The promise of CD4\(^+\)FoxP3\(^+\) regulatory T-cell manipulation \textit{in vivo}: applications for allogeneic hematopoietic stem cell transplantation

Sabrina Copsel,1,* Dietlinde Wolf,2,* Krishna V. Komanduri1,2,3 and Robert B. Levy1,3,4

1Department of Microbiology and Immunology; 2Sylvester Comprehensive Cancer Center; 3Division of Transplantation and Cellular Therapy, Department of Medicine and 4Department of Ophthalmology, Miller School of Medicine, University of Miami, FL, USA

*SC and DW contributed equally to this work.

ABSTRACT

CD4\(^+\)FoxP3\(^+\) regulatory T cells (Tregs) are a non-redundant population critical for the maintenance of self-tolerance. Over the past decade, the use of these cells for therapeutic purposes in transplantation and autoimmune disease has emerged based on their capacity to inhibit immune activation. Basic science discoveries have led to identifying key receptors on Tregs that can regulate their proliferation and function. Notably, the understanding that IL-2 signaling is crucial for Treg homeostasis promoted the hypothesis that \textit{in vivo} IL-2 treatment could provide a strategy to control the compartment. The use of low-dose IL-2 \textit{in vivo} was shown to selectively expand Tregs \textit{versus} other immune cells. Interestingly, a number of other Treg cell surface proteins, including CD28, CD45, IL-33R and TNFRSF members, have been identified which can also induce activation and proliferation of this population. Pre-clinical studies have exploited these observations to prevent and treat mice developing autoimmune diseases and graft-\textit{versus}-host disease post-allogeneic hematopoietic stem cell transplantation. These findings support the development of translational strategies to expand Tregs in patients. Excitingly, the use of low-dose IL-2 for patients suffering from graft-\textit{versus}-host disease and autoimmune disease has demonstrated increased Treg levels together with beneficial outcomes. To date, promising pre-clinical and clinical studies have directly targeted Tregs and clearly established the ability to increase their levels and augment their function \textit{in vivo}. Here we review the evolving field of \textit{in vivo} Treg manipulation and its application to allogeneic hematopoietic stem cell transplantation.

Introduction

The identification of CD4\(^+\)FoxP3\(^+\) regulatory T cells (Tregs) as a non-redundant cell population essential for the maintenance of peripheral self-tolerance has stimulated strong interest in their potential therapeutic application to promote allograft acceptance and ameliorate autoimmune diseases.\(^1,5\) The finding that Tregs are often present at tumor sites has also raised the prospect of augmenting antitumor immunity by diminishing their numbers or function.\(^1,6-11\) Accordingly, the fields of transplantation, autoimmunity and oncology have converged on a common objective to selectively manipulate the Treg compartment to inhibit or promote conventional T-cell (Tconv) antigen-specific adaptive immune responses.

Clinical procedures developed to harvest Tregs for study and therapeutic application have been primarily based on cell surface expression of CD4, CD25 and CD127.\(^12-14\) Employing magnetic bead or flow cytometric isolation methodology, viable and enriched preparations of Tregs have been generated for subsequent \textit{ex vivo} expansion and translational use in patients.\(^15-18\) Inherent in such \textit{in vitro} manipu-
lations is the absence of the precise in situ microenvironment wherein individual cell populations differentiate, undergo expansion and mediate effector function. Several established strategies have incorporated the use of microbead and antigen-presenting cell (APC)-based technologies to expand Tregs incorporating anti-CD3, CD28, and anti-TNFR family mAbs together with cytokines (e.g. IL-2, TGFβ, and retinoic acid). Successful expansion ranging from approximately 100-1300x was reported from starting populations of peripheral blood (CD4+CD127(lo/−)) and umbilical cord (CD25+) cells. Notably, employing these Tregs in phase I studies reported no apparent toxicities or adverse effects.

Although Tregs can be induced to expand in vitro, size and purity of the initiating culture, the maintenance of FoxP3 expression and functional activity during culture vary and depend both on starting cell populations and culture conditions. Consistency of reagents from batch to batch also poses challenges for ultimate clinical application. Generation of a GMP product containing high cell numbers for adoptive therapy requires infrastructure and significant economic investment. Accordingly, routinely generating adequate numbers of functional Tregs in vitro as a readily available adoptive therapy remains translationally challenging. Several excellent articles which include discussion of in vitro expansion methods have recently been published and we refer readers to these thorough reviews. Strategies to manipulate Tregs in vivo have and continue to be examined to circumvent the practical and economic considerations that limit the feasibility of in vitro approaches. The provocative finding that low-dose IL-2 more efficiently stimulates Tregs versus Tconv populations has fostered optimism that selective manipulation of the FoxP3 compartment in situ can be exploited for clinical benefit. Because the production and expansion of effector versus Tregs is associated with the development of chronic graft-versus-host disease (cGvHD), correction of a Treg:Tconv cell imbalance would have therapeutic benefit. This review presents a historical overview and survey of experience with in vivo Treg expansion and associated changes in their functional capacity. Pre-clinical and clinical studies designed to augment Treg levels and function in vivo examining therapeutic benefit in the setting of GvHD prevention and therapy will be discussed.

Targeting cell surface receptors for in vivo Treg expansion, function and therapeutic application

Experimentally, a number of molecules expressed on Tregs have been shown to expand natural Tregs and/or augment their functional activity in vivo, including IL-2, several members of the TNFR family (TNFR2/TNF; TNFRSF25/TL1A; OX-40/OX-40L; 4-1BB/4-1BB-L) as well as CD28 and IL-33 to suppress autoimmune responses, allograft rejection and GvHD (Table 1 and Figure 1). While other molecules have been found to modulate Tregs in vivo (e.g. CD45, GITR/GITRL), these are not discussed here because they have not been assessed in GvHD.

IL-2 / CD25

Over the past decade, IL-2 treatment has been the approach most extensively utilized in pre-clinical and...
clinical settings to expand Tregs in vivo to ameliorate GvHD. Therapeutic strategies have varied the reagents, timing of administration and targeting donor/recipient populations (Table 1).

IL-2/CD25 targeting to manipulate Tregs in vivo. IL-2 is a pleiotropic cytokine which plays a dual role in maintaining tolerance and contributing to immunity in vivo.35 Tregs but not Tconv cells constitutively express high CD25 levels, although Tconv up-regulate this receptor after activation. Importantly, downstream signaling in Tregs versus Tconv is more sensitive to IL-2 stimulation.36 Accordingly, high doses (HD) of IL-2 can target CD4+ effector cells and stimulate immunity whereas low-dose (LD; 100-fold lower) IL-2 selectively activates Tregs, promoting tolerance.36 Human recombinant IL-2 was first approved by the US Food and Drug Administration (FDA) in 1998 for use at HD to stimulate immunity toward metastatic cancers (renal cell carcinoma and melanoma).37 LD IL-2 has minimal side effects36 and, together with its effects on in vivo Treg expansion, is of interest for tolerance induction.

Multiple studies demonstrated that free LD IL-2 treatment results in Treg expansion leading to efficient reversion of autoimmune type 1 diabetes (T1D),38 amelioration of experimental autoimmune encephalomyelitis (EAE)39

Table 1. Summary of reagents and properties discussed in this review with regard to in vivo Treg manipulation.

Study	Target	Reagent	Clone	Property	Combinations	References
Animal	CD25 (IL-2Rα)	Free LD IL-2	n/a	agonistic	------------	38-41, 79
		Free LD IL-2	n/a	agonistic	Sirolimus	42, 43, 80
		Free LD IL-2	n/a	agonistic	Dexamethasone	44, 46
		Free LD IL-2	n/a	agonistic	IL-33	56
		IL-2 Complex (IL-2/anti-IL2)	JES-1A12	agonistic	------------	45-50, 77-78
		IL-2 Complex (IL-2/anti-IL2)	JES-1A12	agonistic	Sirolimus	51
		TNC-scTNF80	n/a	agonistic	------------	52, 53
		CD25-IL-2 FP	n/a	agonistic	------------	54
		IgG-IL-2 FP	n/a	agonistic	------------	55
		IL-233	n/a	agonistic	------------	56
	TNFRSF1B (TNFR2)	TNFR-/- mice	n/a	n/a	------------	88, 89, 92, 93, 97
		TNFR2-Fc	n/a	agonistic	90	
		α-TNF-α mAb	XT3.11	blocking	91	
		TNFRS-Fc	n/a	agonistic	94, 95	
		TNF-α	n/a	agonistic	------------	96
		α-TNFR2 mAb	TR75-54.7	blocking	97	
	TNFRSF4 (OX-40)	α-OX-40 mAb	OX-86	agnostic	------------	100-107, 109
		α-OX-40-L overexpression	n/a	agonistic	100-104	
		α-OX-40-L mAb	RM134L	blocking	108	
		α-OX-40-L mAb	KY1006	blocking	110	
		α-OX-40-L mAb	KY1005	blocking	Sirolimus	110
	TNFRSF9 (4-1BB)	4-1BB-L-Fc	n/a	agonistic	113	
		4-1BB mAb	3H3	agonistic	114-116, 120, 121	
		4-1BB mAb	J5321	agonistic	117	
		4-1BB mAb	IA42	agonistic	118	
		4-1BB-L mAb	TKS1	blocking	119	
	TNFRSF25 (DR3)	α-TNFRSF25 mAb	4C12	agonistic	126, 127, 130, 131, 133, 135	
		α-TNFRSF25 mAb	4C12	agonistic	128, 129	
		TLIA-Ig	n/a	agonistic	127, 130, 133	
		TLIA-Ig	n/a	agonistic	IL-2	130, 132, 136, 137
	CD28	α-CD28SA mAb	D665 (ms)	agonistic	139, 142, 146, 148, 153	
		α-CD28SA mAb	J316 (rat)	agonistic	140, 141, 143-145, 147, 149, 150-152	
	ST2 (IL-33R)	IL-33	n/a	agonistic	158, 159, 161-165	
		IL-33	n/a	agonistic	IL-2	56
		IL-233	n/a	agonistic	56	
		ST2-/- donor cells	n/a	n/a	167	
		ST2-Fc	n/a	n/a	167	
		IL-33-/- recipients	n/a	n/a	167	
Human	CD25 (IL-2Rα)	LD IL-2	n/a	agonistic	70-73, 75, 76	
		LD IL-2	n/a	agonistic	Tacrolimus	7
		LD IL-2	n/a	agonistic	Sirolimus + Tacrolimus	81, 82
		Ultra LD IL-2	n/a	agonistic	74, 84	
		α-CD28 mAb	TGN1412	agonistic	154	

LD: low dose; HD: high dose; n/a: not applicable.
and improved long-term allograft survival in a corneal transplant model.61 These findings led to combination therapy with synergistic effects on Treg expansion using free LD IL-2 with sirolimus in transplant models, i.e. cornea62 and skin.63 Similar results in combination with dexamethasone (Dex) were observed in EAE.64

To increase circulating IL-2 half-life and decrease the required dose, antibody/cytokine (α-IL-2/IL-2) complexes (IL-2C) are under development. Notably, in vivo utilization of different IL-2C resulted in targeting specific cell subsets, i.e. mAbJES-1A12-IL-2 and S4B6/IL-2 preferentially expanded Tregs and Tconv, respectively.65 The IL-2C (mAbJES-1A12+IL-2) caused selective Treg expansion and suppression of allergic airway inflammation,66 contact hypersensitivity,67 and experimental myasthenia gravis.68 Furthermore, in renal and cardiac ischemia reperfusion models, IL-2C expanded Tregs attenuated acute renal damage improving renal and myocardial recovery.69,70 Using a combination therapy of IL-2C, sirolimus and islet Ag peptide, protection against spontaneous and induced T1D in NOD mice occurred following increased Treg levels and function.71 Recombinant adeno-associated viral vector that continuously releases IL-2 achieved persistent and sufficient levels of LD IL-2 while avoiding toxic effects.72,73 Importantly, this viral vector controlled diabetes and sufficient levels of LD IL-2 while avoiding toxic effects.72,73

IL-2/CD25 Treg manipulation in pre-clinical and clinical allogeneic hematopoietic stem cell transplantation. Adoptive transfer of Tregs is a promising therapy to diminish GvHD. In humans, development of cGvHD is associated with poor Treg reconstitution post HSCT.74,75 We and others have been examining the application of donor Tregs as a prophylactic strategy to prevent the development of GvHD in experimental models.76,77 Experiments demonstrated that donor Tregs inhibit lethal acute GvHD (gVHD) only at high ratios, i.e. 1:1 (Treg:Tconv).78 Because circulating Tregs account for only approximately 5-10% of CD4+ T cells, a practical obstacle is collecting sufficient numbers of Tregs from donors or recipients for use in allogeneic hematopoietic stem cell transplantation (aHSCT) to suppress activation of anti-host reactive Tconv in T-cell-replete grafts, thus in vivo expansion is attractive.

A. Treatment of recipients: pre-clinical and clinical models. In the early 1990s, using a fully MHChaploidentical bone marrow transplant (BMT) model, studies demonstrated that short-term human recombinant IL-2 administration (50,000 U twice daily) starting the day of the BMT significantly reduced GvHD mortality.80 Moreover, IL-2 treatment did not prevent allogeneic engraftment and preserved graft-versus-leukemia (GvL) effect. The IL-2 effect on GvHD but not on GvL was explained by selective inhibition of CD4-mediated activity.81 Clinical and immunological effects of IL-2 administration in patients following TCD allogeneic and autologous BMT were evaluated. Strikingly, patients who received TCD-BM and LD IL-2 (2-6x10^4 IU/m2 daily for 90 days) to enhance GvL exhibited high circulating NK cells.82,83 Since CD25+ Tregs had not yet been identified, the success of these studies was not immediately attributed to Treg expansion. Later, discovery of this suppressive population84 and the recognition that their infusion inhibited immune responses opened a new era of GvHD prophylaxis and treatment.85-87,88,89 Indeed, the addition of IL-2 (6x10^4 IU/m2 daily) with donor CD4+ T cells resulted in expansion of Tregs in patients post transplant.90 A seminal phase I dose-escalation study demonstrated that therapy of LD IL-2 daily for eight weeks in patients with steroid refractory active cGvHD was well tolerated and induced significant Treg expansion (Online Supplementary Table S1).91 This treatment diminished cGvHD manifestations, including decreased cutaneous sclerosis in a considerable number of patients.92 Notably, this IL-2 regimen induced selective activation of pStat5 in Tregs versus Tconv, which was associated with increased thymopoiesis and production of Tregs.93 These observations demonstrated that more nTreg homeostasis appeared to be restored following IL-2 therapy in patients with cGvHD.94

Ultra LD IL-2 (0.1-0.2x10^6 IU/m2 thrice weekly) was administered as a GvHD prophylaxis in pediatric patients after aHSCT starting <day 30 and continuing 6-12 weeks. Treg levels increased in recipients of matched related donor and the Treg functional suppressor activity was restored. IL-2 treated recipients had diminished humoral but not virus-specific cellular immune responses. Importantly, treated patients showed GvHD inhibition with no increase in leukemia/lymphoma relapse rates versus controls, suggesting that ultra LD IL-2 increased Tregs without impairing GvL.95 In contrast, when IL-2 (1x10^6 IU/m2 daily) was administered in a patient seven years post-GvHD onset, therapeutic effects were decreased.96 The patient experienced partial improvement of GvHD symptoms, Treg levels were increased after one week but declined despite continual IL-2 administration for approximately two months. A clinical trial randomized 90 subjects to determine whether LD IL-2 administration post transplant could reduce the incidence of both leukemia relapse and cGvHD. Patients were treated with LD IL-2 post-HSCT (day 60) for two weeks (followed by a 2-week hiatus) and compared with untreated controls. The treated group had a lower incidence of cGvHD, accompanied by a significant increase in GvHD-free and GvHD progression-free survival at three years, but administration did not decrease the incidence of leukemia relapse. Correlative studies demonstrated that circulating Treg and natural killer (NK) cells were increased in the IL-2 cohort during the treatment periods.97 In pre-clinical studies (Figure 2), treatment with LD IL-2C in MHC-matched HSCT recipients transplanted following reduced-intensity conditioning (RIC) regiments, administered either prior or following aHSCT, promoted expansion and activation of host Tregs within the first 7-10 days post transplant. Notably, host-versus-graft reactions (HvG) were inhibited, resulting in enhanced donor chimerism and long-term hematopoietic cell engraftment.98 This work indicated for the first time that in vivo administration of IL-2C following BMT was a viable approach to expand host Tregs and consequently regulate alloimmunity following transplantation.99 In contrast, using an MHC-haploidentical aHSCT model, IL-2 administration post transplant for ten days did not prevent GvHD nor improve survival; comparable results were
observed in a xenogeneic GvHD model. In a murine major-MHC mismatched aHSCT, no effect occurred when treating recipients with LD IL-2 (twice daily) alone. However, the concomitant administration of the mTOR inhibitor sirolimus (0.5 kg/mg daily) in the first week post transplant improved survival and diminished aGvHD. Importantly, in vivo treatment with IL-2 plus sirolimus resulted in higher donor Treg expansion versus either IL-2 or sirolimus alone. These donor-derived expanded Tregs comprised both expanded natural Tregs and increased conversion of induced Tregs. Initially in a human trial, superior Treg reconstitution and aGvHD prevention was observed in patients treated with the combination of sirolimus and tacrolimus versus peri-transplant methotrexate and tacrolimus. In order to improve Treg recovery and based on previous reports, LD IL-2 administration (3 times/wk for 90 days) post transplant was added to the sirolimus/tacrolimus treatment regimen in 20 patients (clinicaltrials.gov identifier: 01927120) (Online Supplementary Table S1). This phase II trial demonstrated augmented peripheral blood Treg reconstitution in the first month post HSCT in the LD IL-2 (200,000 IU/m²) plus sirolimus/tacrolimus treated group compared to sirolimus/tacrolimus alone. However, this early Treg expansion was not maintained and did not ameliorate acute or cGvHD. National Institutes of Health clinical trials involving IL-2 and aHSCT are summarized (Online Supplementary Table S1).

B. Treatment of donors: pre-clinical and clinical models. Using an MHC-haploidentical aHSCT model, LD IL-2 treatment in donor mice was inadequate as a GvHD prevention strategy. Although IL-2 administration over five days elevated Treg levels in the graft, no improvement in recipient weight loss or survival was observed. These results were attributed to a <1:1 ratio of Tregs:Tconv using a LD IL-2 only Treg expansion strategy. Notably, when donor mice were treated with Dexam 5 mg/kg daily and LD IL-2 for three days, higher Treg levels were observed in comparison to treatment with either reagent alone. In a fully-MHC mismatched aHSCT, mice receiving Dex+IL-2 pre-treated donor cells exhibited improvement in survival and diminution of aGvHD (Figure 2). We are currently not aware of any studies reporting the use of T cells from IL-2 treated HSCT human donors. A recent report noted that treatment of healthy individuals with ultra LD rhIL-2 (50,000-200,000 U/m²/day) for five days elevated peripheral Tregs with augmented suppressive activity without detection of acute or long-term on/off-target effects.

TNFR super family

The TNF family currently comprises 29 receptors and 19 ligands. In this section, we discuss those members reported to be capable of regulating the Treg compartment in vivo including TNFR2, OX-40, 4-1BB and TNFRSF25. TNFRSF1B (TNFR2)/TNF-α targeting to manipulate Tregs in vivo. TNFR2 is highly and constitutively expressed on murine Tregs and other immune cells and further up-regulated after activation. It is also found on some endothelial and cells of the nervous system whereas TNFR1 is ubiqui-
TNFRSF4 (OX-40)/TNF-α manipulation in pre-clinical allogeneic hematopoietic stem cell transplantation.

Two decades ago, inhibition of the OX-40/OX-40-L axis was found to diminish murine lethal aGvHD in recipients post aHSCT. Indeed, infusion of pre-treated Tregs with OX-86 or intraperitoneal (i.p.) injection of OX-86 resulted in the inhibition of Treg suppressive activity on GvHD development. Additionally, when an OX-40L blocking antibody (KY1005) was combined with sirolimus in a non-human primate GvHD model, synergistic inhibition of T-cell activation while preserving post-HSCT Treg reconstitution was observed. Importantly, KY1005/sirolimus GvHD prophylaxis resulted in long-term GvHD-free survival and significant control of aGvHD. Interfering with the OX-40L/OX-40 pathway in the setting of aHSCT did not reduce Treg reconstitution although impairment of this pathway resulted in impaired Treg development in young mice.

TNFRSF9 (4-1BB)/TNFSF9 (4-1BB-L)

TNFRSF9 (4-1BB)/TNFSF9 (4-1BB-L) targeting to manipulate Tregs in vivo. Analogous to OX-40, 4-1BB (CD137) is constitutively expressed on Tregs and is up-regulated upon activation on CD4+ Tconv cells and to a lesser extent on CD8+ Tconv cells and to a lesser extent on NK, NKT cells and neutrophils. OX40 ligand, (OX-40-L, CD252), is expressed on a number of different cell types including activated professional APCs, activated T cells, NK cells, mast cells and endothelial cells. A role for OX-40 in the development, homeostasis and suppressive activity of Tregs has been implicated from studies using young knockout (KO) OX-40−/− mice.

The role of OX-40 on Treg expansion and function remains controversial. The use of agonistic anti-OX-40 mAb (OX-86) or APCs over-expressing OX-40L resulted in clear but weak proliferation and expansion of mouse Tregs in vivo and enhanced suppressive capacity in models of colitis and EAE. Addition of IL-2 together with anti-OX-40 mAb further amplified Treg expansion as well as suppressive activity in a heart transplant model. However, other studies where clone OX-86 was administered failed to induce Treg expansion and found inhibition of Treg function in models of skin grafts and cancer.

TNFRSF4 (OX-40)/TNFSF4 (OX-40-L) manipulation in pre-clinical allogeneic hematopoietic stem cell transplantation.

Several laboratories have investigated the implication of 4-1BB/4-1BBL interactions in GvHD and GvL. 4-1BB/4-1BBL interactions increased GvHD-induced lethality and allogeneic bone marrow rejection mediated by either CD4+ or CD8+ donor T cells. Moreover, treatment with agonistic anti-4-1BB mAb augmented GvL effects of delayed lymphocyte infusion in an acute myeloid leukemia (AML) model by stimulating an allogeneic anti-tumor response. Blockade of 4-1BB-L in F1 mice ameliorated aGvHD, but aggravated cGvHD with high levels of IgE and anti-dsDNA IgG autoantibody. Furthermore, stimulation of 4-1BB using an agonistic mAb prevented GvHD by inhibition of autoantibody production through activation induced donor CD4+ T-cell death accompanied by diminished host B-cell activation and decreased autoantibody production. As noted above, it has been demonstrated that stimulation of 4-1BB promotes in vivo Treg proliferation and suppressive activity. Following anti-4-1BB mAb (3H3) in vivo treatment, IL-2 production by memory T cells was increased resulting in the induction of Treg expansion in an Ag-independent manner. Notably, in this haploidentical (parent-into-F1) aGvHD model, host Tregs survived long term. Furthermore, pre-conditioning with anti-4-1BB mAb ameliorated GvHD by increasing Treg suppressive activity against alloreactive donor T cells. When anti-4-1BB
mAb-primed host Tregs were adoptively transferred into BDF1 mice, less severe disease was observed.121

TNFRSF25 (DR3)/TNFSF15 (TL1A)

TNFRSF25 (DR3)/TNFSF15 (TL1A) targeting to manipulate Tregs in vivo. TNFRSF25 is constitutively expressed on Tregs and up-regulated upon activation on CD4+ and CD8+ T cells. Low levels are also present on NK, NKT cells and ILC2/3 subsets. Its natural ligand, TL1A, is primarily expressed on endothelial cells and upon activation on APC and T cells, including Tregs.122,123 TNFRSF25 co-stimulation promotes proliferation, effector function and survival, as well as apoptosis depending on signal strength.124,125

Recent studies, using either agonistic mAb (clone 4C12) or a TL1A-Ig fusion protein, have shown that triggering the TNFRSF25 pathway in the absence of antigen leads to a significant expansion of Tregs in vivo which is dependent on the TCR and IL-2.126,127 Notably, TNFRSF25 stimulation expands Tregs to a greater degree than CD25 stimulation (via IL-2) alone. Moreover, TNFRSF25 stimulation alone has the strongest in vivo effect on Treg expansion compared to other TNFRSF members including GITR, OX-40 or 4-1BB.128 Stimulating multiple receptors on Tregs can have synergistic effects, though the levels of expansion achieved depend on the molecular targets. Thus, targeting two TNF family members, TNFRSF25 (4C12) and CD25 (OX-86)129,130 in the context of co-stimulation or vaccination led to increased frequency of Tregs versus either alone. However, when both TNFRSF25 and CD25 are stimulated,130 there is a marked elevation of the compartment, much greater than activation of TL1A-Ig or IL-2 alone or 4C12 together with OX-86. It is likely that the former is observed because sufficient IL-2 is provided to maintain the elevated Treg levels.

TNFRSF25-induced expansion, either alone or in combination with IL-2, leads to upregulation of activation markers on Tregs and enhanced suppressive activity.131,132 Our own studies have demonstrated that ICOS-1, Nrp-1, PD-1 and other molecules are more highly expressed after combined TNFRSF25 and CD25 in vivo stimulation compared with targeting the individual receptors.126 Tregs expanded in vivo via the TNFRSF25 are protective against allergic lung inflammation and EAE.133,134 Furthermore, they also in vivo preserved GvL while GvHD was effectively diminished. In fact, because TL1A-Ig/IL-2 expanded Tregs expressed higher activation and functional molecules, very low numbers of these expanded cells (corresponding to a ratio of 1:6 expanded Tregs/Tconv) very effectively suppress GVHD post aHSCT.122 Furthermore, TL1A-Ig/IL-2 expanded Treg therapy was shown to be as effective as post-transplant cyclophosphamide for GVHD prophylaxis while more rapid thymic reconstitution providing earlier recovery of recipient immune function.135 GVHD is promoted by alloreactive donor T cells and inflammation; therefore, we proposed to regulate both pathways. Donor Treg expansion was combined with EP11313 (a bromodomain and extra-terminal bromodomain inhibitor, BETi) using short-term treatment in the recipient in a fully MHC-mismatched aHSCT. This strategy was found to significantly reduce early GVHD clinical scores including decreased ocular and skin involvement. Importantly, utilizing highly purified TL1A-Ig/IL-2 expanded donor Tregs in vivo, this second assessment of the combinatorial strategy further supported the notion that selective BETi can be used for GVHD treatment in combination with Treg adoptive therapy.137

CD28/CD80/86 (B7.1/2)

CD28/CD80/86 (B7.1/2) targeting to manipulate Tregs in vivo. CD28, a key co-stimulatory molecule, is expressed on all T cells and provides signals for activation and survival. Its ligands, CD80 and CD86, are expressed on APC. CD28 super-agonists (CD28SA) are mAbs which induce polyclonal T-cell proliferation in the absence of TCR ligation.138,139 In rodents, in vivo application of CD28SA at low doses efficiently expands Tregs and partially inhibits expansion of autoreactive T cells. In addition, CD28SA expanded Tregs showed enhanced suppressive activity (increased IL-10 production) and migrated to inflamed tissues without causing cytokine release syndrome.140-142 Treg expansion by CD28SA is dependent on paracrine IL-2 from CD28SA-stimulated Tconv cells.143 Accordingly, CD28SA expanded Tregs are highly effective in the treatment/prevention of disease in rodent models of autoimmunity, like EAE,144 experimental autoimmune neuritis145.
and T1D, as well as inflammation, e.g. arthritis, glomerulonephritis and trypanosomiasis-associated inflammation. Furthermore, CD28-DSA expanded Tregs prolong graft survival in experimental models of solid organ (renal/heart) transplantation.

CD28/CD80/86 (B7.1/2) manipulation in pre-clinical allogeneic hematopoietic stem cell transplantation. A single dose of CD28SA (clone JJ316) administration in vivo to Lewis rats induced a selective 4-fold expansion of Tregs over Tconv. Adoptive transfer of anti-CD28 mAb treated splenocytes in a rat transplantation model reduced lethality and suppressed GvHD. Importantly, this therapeutic effect was mediated by expanded Tregs detected in high levels after transfer of anti-CD28 mAb-treated lymphocytes. Moreover, this mAb was utilized to treat F1 rat recipients at different time-points pre- or post aHSCT. GvHD mortality was absent or suppressed when recipients were treated with anti-CD28, three days before T-cell transfer or on day 0, respectively. In contrast, no protective effect was observed in recipients treated on day 7 or 10. Importantly, GvHD lethality reduction was mediated by anti-CD28SA selective Treg expansion in an antigen-specific manner. In a murine major-MHC mismatched aHSCT model, adoptive transfer of unfractionated polyclonal activated donor Tregs, with CD28SA (D665) significantly reduced GvHD-associated clinical signs and histopathological changes.

The ST2 receptor is constitutively expressed on innate adaptive immune cells (Tregs, Th2, NKT) and up-regulated upon activation on Th1 and cytotoxic T cells. A soluble form of ST2 can be produced by alternative splicing and serves as a decoy receptor to limit IL-33 signaling. The CD28SA in vitro approach may have clinical potential for patients because an anti-human CD28 mAb (TGN1412) induced a cytokine storm during the first in human clinical study.

IL-33/ST2

IL-33/ST2 targeting to manipulate Tregs in vivo. IL-33, an IL-1 family member, is constitutively expressed in epithelial and endothelial cells at barrier sites where it functions as an endogenous danger signal in response to tissue damage. IL-33 is also a pleiotropic cytokine found in fibroblastic reticular cells of secondary lymphoid organs. It binds to the ubiquitously expressed IL-1R accessory protein (IL-1Rac) and the more selectively expressed receptor ST2. The ST2 receptor is constitutively expressed on innate (mast cells, ILC2s, eosinophils, basophils, NK cells) and adaptive immune cells (Tregs, Th2, NKT) and up-regulated upon activation on Th1 and cytotoxic T cells. A soluble form of ST2 can be produced by alternative splicing and serves as a decoy receptor to limit IL-33 signaling. Notably, the quantitative differences in ST2 expression among different T-cell subsets potentially could lead to competition for IL-33. Tissue Tregs, which express constitutively high levels of ST2, could therefore sequester IL-33 from inflammatory cells which would give them an advantage over effector T cells in situations of limited IL-33. Soluble ST2 released from intestinal tissue has recently been identified as an important biomarker of GvHD that is highly predictive for early post-HSCT mortality.

Several reports have shown that administration of IL-33 leads to a ST2 dependent expansion of Tregs in vivo. ST2+ Tregs represent an activated subset of Tregs and are preferentially expressed in non-lymphoid tissues, like lung (20-30% of Treg), gastrointestinal tract (GI) (approx. 20%), and liver (50-60%). ST2+ Tregs exhibit superior suppressive function compared to ST2- Tregs. In a model of allogeneic heart transplantation, IL-33 expanded ST2+ Tregs migrated to the graft and prolonged survival. Furthermore, in a model of collagen induced rheumatoid arthritis, IL-33 expanded ST2+ Tregs suppressed clinical and histological signs of arthritis. In addition, IL-33 signaling is apparently crucial for liver Treg expansion, accumulation and suppression of infection after murine CMV infection. A combination of IL-33 together with IL-2 administration has a synergistic effect with regard to Treg expansion. This group also generated a hybrid fusion protein between those 2 cytokines, IL-233, which bears the activities of both. IL-233 treatment significantly increased the number of Tregs in blood, spleen and renal compartments and prevented ischemia reperfusion injury more efficiently than a mixture of IL-2 and IL-33.

IL-33/ST2 manipulation in pre-clinical allogeneic hematopoietic stem cell transplantation. In aHSCT, the IL-33/ST2 axis has recently emerged as a novel therapeutic target for GvHD. In particular, high levels of IL-33 and ST2 were detected in recipients post conditioning, contributing to lethal aGvHD via donor Th1 alloimmune responses. Therefore, transplants involving either IL-33-/- recipients, ST2-/- donor T cells or IL-33 antagonist (ST2-Fc fusion protein) administration resulted in increased recipient survival. Conversely, in vivo administration of peri-aHSCT IL-33 (day 10 to day 4) to recipients induced a diminution of clinical GvHD scores and prolonged survival. This protection against GvHD was promoted by IL-33-expanded recipient ST2+ Tregs (persisted after total body irradiation) which controlled M1 macrophage activation and reduced effector T-cell levels. The underlying mechanism of IL-33/ST2-induced Treg proliferation was mediated by activation of p38 MAPK. Subsequent studies found that transfer of ST2+ donor Tregs affect diminished protection of GvHD after an MHC-mismatched aHSCT. We are unaware of any ongoing clinical trials regulating the IL-33/ST2 pathway in vivo to manipulate Tregs.

“Unintentional” effects on the Treg compartment: potential impact in hematopoietic stem cell transplantation

While direct targeting of molecules on the Treg cell surface can induce their expansion, unintentional but clinically useful procedures in HSC transplantation including extracorporeal photopheresis (ECP), donor stem cell mobilization, PTCy, azacytidine, JAK1/2 inhibitors and ROCK1/2 inhibitors also affect the Treg compartment although to a lesser extent than intentional interventions. Although Tregs have demonstrated promising results in regulating GvHD, combining their regulatory activity with other strategies being used in the clinic may further improve transplant outcomes for patients. Therefore, if strategies partially diminish or do not interfere with Tregs, augmenting the compartment should be useful. For example, in addition to alloreactive Tconv deletion, Tregs are reportedly needed for optimal PTCy (day 5-4) GvHD prophylaxis. Treg expansion subsequent to PTCy may, therefore, augment the effectiveness of this reagent. In contrast, if strategies elevate Tregs this should provide additional benefit and further enable synergistic expansion. For example, azacytidine (AzaC), like PTCy, preferentially inhibits Teff versus Treg proliferation, but additionally converts Teffs to Tregs via hypomethylation of the Foxp3 promoter. Pre-clinical and clinical studies have
demonstrated that post ECP, Treg levels in mouse and humans are elevated, suggesting that these effects on the Tregs might be a primary mechanism underlying the relative success of this clinical approach.165 Regarding stem cell mobilization, studies in primates and healthy HSCT donors showed an increase in Treg frequency using plerixafor.171,172 Development of balanced JAK1/JAK2 targeted inhibitors has led to promising clinical results in aHSCT.176 Notably, baricitinib is significantly more potent than ruxolitinib in preventing GvHD and demonstrates high Treg expansion by preserving the JAK3-STAT5 IL-2R pathway.177 Additionally, the Rho kinase inhibitors which down-regulate ROCK1/ROCK2 inhibiting inflammation have also shown promise in suppressing GvHD.178,179 ROCK2 inhibition leads to pSTAT5 upregulation inducing an increase in Tregs.

Cellular “cross-talk” with Tregs can also result in an expansion of this population. For example, host iNKT cells were shown to induce in vivo donor Treg proliferation via IL-4 while preventing lethal aGvHD in mice.182 Subsequently, reports showed that donor iNKT cells diminished aGvHD and cGvHD through the expansion of donor Tregs.183,184 These approaches are currently being examined in clinical trials of α-galactosylceramide, which has been shown to increase numbers of Tregs in model systems by expanding iNKT cells.185

Future perspectives

Approaches manipulating Tregs in vivo continue to advance. Systemic administration of IL-2 and other compounds can elevate the peripheral compartment for extended time-periods without apparent alteration of global immune function. Notably, not all reagents have equivalent efficacy in inducing and maintaining Treg expansion, which is a result of the specific receptor targeted and reagent persistence. For example, administration of modified IL-2 compared with free IL-2 results in greater Treg frequency in large measure due to prolonging the half-life of the cytokine.40,186,187 This has fostered increasing numbers of novel IL-2 constructs including fusosomes, muteins and IL-2/receptor fusion proteins.4,186,187,188 A recent study reported human IL-2 complexed to a human anti-IL2 mAb with in vivo enhancing activity.189 The development of highly CD25 specific signaling reagents with increased persistence suggests in vivo delivery to selectively target Tregs versus Tcony may lead to more effective therapeutic application during disorders where effector cells are present.

To date, approaches targeting Tregs have focused primarily on systemic (vs. local) homeostasis. Local manipulation of Tregs might provide an effective strategy for the treatment of widespread (systemic lupus erythematosus, etc.) as well as regional (e.g. GI diseases, encephalitis) inflammation. Treg expansion in the conjunctiva/ocular adnexa can be induced targeting CD25,190 or more potently through CD25 and TNFRSF25 (Copsel et al., unpublished data, 2019). Such strategies may be useful to treat ocular GvHD and uveitis. In the context of HSCT, conditioning using targeted total lymphoid irradiation promotes selective survival of Tregs locally, for example the GI. Subsequent administration of reagents may therefore “selectively” manipulate local intestinal Tregs which could be particularly effective in inhibiting GvHD.190,191

Allogeneic hematopoietic stem cell transplantation is primarily administered to patients with hematologic malignancies. There has been increasing usage of checkpoint inhibitors (CI) including PD-1 for the treatment of these cancers and their effect on Tregs remains controversial. Studies have suggested that the PD-L1/PD-1 pathway drives Treg stability/function and expansion,6,192,193 while others have reported Treg inhibition.143,144 Clinical improvement of experimental GvHD was associated with increased PD-1 levels on Tregs consistent with the hypothesis that this pathway promotes Treg-mediated tolerance.196 Stimulation of PD-1 on Tregs in hematologic tumors have been reported to promote the inhibition of effector T cells, reducing anti-tumor immune responses.197 Although early reports noted that severe GvHD may result from administering pembrolizumab post HSCT in patients with hematologic malignancies,198 evaluation using CI after PT/Cy deletion of allosreactive T cells should be considered. In addition to promoting CD8 anti-tumor specific T cells, the success of this therapeutic approach may also depend on direct effects of PD-1 inhibitors on Tregs, since increasing or decreasing their numbers/function could positively or negatively modulate anti-tumor immunity. Taken together, since no single prophylactic treatment including adoptive Treg transfer is likely to abolish GvHD, we suggest combining in vivo Treg expansion strategies with promising reagents being translated to clinical aHSCT is feasible and could provide a significant advance in the field.

Conclusions

The Treg compartment can now be manipulated in vivo as a consequence of intentionally targeting identified receptors. Pre-clinical and clinical studies contributed by a large number of laboratories have directly targeted these cells and reported the ability to efficiently augment their numbers and function in vivo. While there is an increasing number of molecules which effectively expand Tregs, for the moment IL-2 is the only FDA-approved compound in use in GvHD clinical trials. It is not surprising that efforts to improve in vivo IL-2 efficacy through the generation of modified IL-2 molecules are currently underway. Other strategies stimulating different signaling pathways promoting Tregs have shown promise in preclinical models. Targeting TNF receptors for example, TNFRSF25 alone or together with LD IL-2 has demonstrated extremely potent Treg expansion and improved function. Combination approaches should, therefore, be investigated for potential clinical application.

Acknowledgments

SC: support from a Sylvester Comprehensive Cancer Center research grant for post-doctoral trainees; KVK support from: Kalish Family Foundation, Applebaum Foundation and the Sylvester Comprehensive Cancer Center; RBL support from: the Sylvester Comprehensive Cancer Center, NIH (RO1 EY024484-01) and an SRA from Heat Biologics, Inc. and Pelican Therapeutics. Due to space limitations, the authors sincerely regret not being able to cite all of our colleagues’ publications contributing to this field.
References

1. Sakaguchi S, Sakaguchi N, Shimizu J, et al. Immunological tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunity. 2006;21(3):153-160.

2. Malek TR, Bnder AL. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol. 2004;4(9):665-674.

3. Wang FY, Lee DA, Peng G, et al. Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity. 2004;20(3):107-118.

4. Saki JM, Ross JS, Rotem J, et al. Intraepithelial CD8+ Tumor-infiltrating lymphocytes and a high CD8+/CD4+ regulatory T-cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A. 2005;102(5):1830-1835.

5. Gao Q, Quji SJ, Fan J, et al. Intra-tumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 2007;25(18):2586-2593.

6. Fridman WH, Pages F, Sautes-Fridman C, et al. Expression of interleukin (IL)-2 and IL-7 receptors on regulatory T cells: foundation of a promising therapy. Mol Ther Oncolytics. 2016;3:16015.

7. Campbell A, Bitew T, Ravil O, et al. Concise Review: Process Development Considerations for Cell Therapy. Stem Cells Transl Med. 2016;5(9):1155-1165.

8. Gee AP. Manufacturing genetically modified T cells for clinical trials. Cancer Gene Ther. 2015;7(315):315ra189.

9. Malek TR, Bakaya Y, Rusiu L, et al. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol. 2007;8(2):191-197.

10. Fisher CA, Shevach EM. Naturally occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin Immunol. 2004;16(2):81-89.

11. Mlecnik B, Bindea G, Angell HK, et al. Immunologic tolerance maintained by CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin Immunol. 2004;16(2):81-89.

12. Sakaguchi S, Sakaguchi N, Shimizu J, et al. Regulatory T Cells. Cell Physiol Biochem. 2010;26(5):229-240.

13. Seddiki N, Santner-Nanan B, Martinson J, et al. Expression of immunity, and transplantation tolerance. J Clin Invest. 2014;124(10):4014-4027.

14. Di Ianni M, Falzetti F, Carotti A, et al. Tregs show immunoscore is a stronger predictor of Patient Survival Than Microsatellite Instability. Immunity. 2016;44(3):698-711.

15. Malek TR, Bnder AL. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol. 2004;4(9):665-674.

16. Wang FY, Lee DA, Peng G, et al. Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity. 2004;20(3):107-118.

17. Saki JM, Ross JS, Rotem J, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/CD4+ regulatory T-cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A. 2005;102(5):1830-1835.

18. Gao Q, Quji SJ, Fan J, et al. Intra-tumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 2007;25(18):2586-2593.

19. Fridman WH, Pages F, Sautes-Fridman C, et al. Expression of interleukin (IL)-2 and IL-7 receptors on regulatory T cells: foundation of a promising therapy. Mol Ther Oncolytics. 2016;3:16015.

20. Campbell A, Bitew T, Ravil O, et al. Concise Review: Process Development Considerations for Cell Therapy. Stem Cells Transl Med. 2016;5(9):1155-1165.

21. Bluestone JA, Buckner JH, Fitch M, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. 2015;7(315):151ra189.

22. Wang X, Riviere I. Clinical manufacturing of CAR T cells: foundations of a promising therapy. Mol Ther Oncolytics. 2016;3:16015.

23. Campbell A, Bitew T, Ravil O, et al. Concise Review: Process Development Considerations for Cell Therapy. Stem Cells Transl Med. 2016;5(9):1155-1165.

24. Gee AP. Manufacturing genetically modified T cells for clinical trials. Cancer Gene Ther. 2015;7(315):315ra189.

25. Levy MK, Sangregorio R, Roncarolo MG. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol. 2007;8(2):191-197.

26. Malek TR, Bnder AL. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol. 2004;4(9):665-674.

27. Wang FY, Lee DA, Peng G, et al. Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity. 2004;20(3):107-118.

28. Saki JM, Ross JS, Rotem J, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/CD4+ regulatory T-cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A. 2005;102(5):1830-1835.

29. Gao Q, Quji SJ, Fan J, et al. Intra-tumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 2007;25(18):2586-2593.

30. Fridman WH, Pages F, Sautes-Fridman C, et al. Expression of immunity, and transplantation tolerance. J Clin Invest. 2014;124(10):4014-4027.

31. Chen X, Oppenheim JJ, Winkler-Pickett RT, Ortizio JR, Howard OM. Glucocorticoids amplifies IL-2-dependent expansion of functional FoxP3+CD4+CD25+ regulatory T cells in vivo and enhances their capacity to suppress EAE. Eur J Immunol. 2006;36(8):2139-2149.

32. Booyman O, Kovar M, Rubinstein MF, Sird DP. Specific human CD4+ regulatory T cells and the development of experimental autoimmune encephalomyelitis. Immunobiology. 2015;221(4):678-682.

33. Wilson CR, Pettiton S, Naserian S, et al. Administration of low doses of IL-2 combined to rapamycin promotes allogeneic skin graft survival in mice. Am J Transplant. 2015;15(4):1297-2022.

34. El Beidaq A, Link CW, Hofmann K, et al. In Vivo Expansion of Endogenous Regulatory T Cell Populations Induces Long-Term Suppression of Contact Hypersensitivity. J Immunol. 2016;196(5):2557.

35. Liu R, Zhou Q, La Cava A, et al. Expansion of regulatory T cells via IL-2/anti-IL-2 mAb complexes suppresses experimental myasthenia. Eur J Immunol. 2010;40(6):1577-1589.

36. Kim MG, Koo TY, Yang J, et al. IL-2/anti-IL-2 complex attenuates renal ischemia-reperfusion injury through expansion of regulatory T cells. J Am Soc Nephrol. 2013;24(10):1559-1566.

37. Xiao J, Yu K, Li M, et al. The IL-2/anti-IL-2 Complex Attenuates Cardiac Ischaemia-Reperfusion Injury Through Expansion of Regulatory T Cells. Cell Physiol Biochem. 2017;44(5):1810-1827.

38. Mannarozza JN, Wei CH. Combination Therapy of Interleukin-2 and Rapamycin for Prevention of Chronic Graft VERSUS Host Disease (cGVHD) After Unrelated Donor Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2017;23(5):673-681.

39. Boyman O, Kovar M, Rubinstein MF, Sird DP. Specific human CD4+ regulatory T cells and the development of experimental autoimmune encephalomyelitis. Immunobiology. 2015;221(4):678-682.

40. Wilson CR, Pettiton S, Naserian S, et al. Administration of low doses of IL-2 combined to rapamycin promotes allogeneic skin graft survival in mice. Am J Transplant. 2015;15(4):1297-2022.
Therapy Using IL-2/IL-2 Monoclonal Antibodies, Rapaycin, and Inlet Autoantigen Peptides Increases Regulatory T Cell Frequency and Protects against Spontaneous and Induced Type I Diabetes in NODsebbe Diabetic Mice. J Immunol. 2015;195(3):2528-2541.

25. Churlaud G, Jimenez V, Rubette J, et al. Sustained stimulation and expansion of Tregs by IL2 control autoimmunity without inducing immunologic responses to infection, vaccination, and cancer. Clin Immunol. 2014;151(2):114-126.

26. Johnson MC, Garland AL, Nicolson SC, et al. beta-cell-specific IL-2 therapy increases islet Fas expression and suppresses type 1 diabetes in NOD mice. Diabetes. 2015;62(12):3775-3784.

27. Ward NC, Yu A, Moro A, et al. IL-2/CD255: A Long-Acting Fusion Protein That Promotes Immune Tolerance by Selectively Targeting the IL-2 Receptor on Regulatory T Cells. J Immunol. 2018;109(9):2579-2592.

28. Iij J, Son Y, Novoa UA, et al. Sustained in vivo signaling by long-lived IL-2 induces prolonged increases of regulatory T cells. J Autoimmun. 2015;56:66-80.

29. Jose S, Santaray V, et al. IL233, A Novel IL-2 and IL-23 Hybrid Cytokine, Ameliorates Renal Injury. J Am Soc Nephrol. 2017;28(9):2681-2693.

30. Miura Y, Thebourn CJ, Bright EC, et al. Association of Foxp3 regulatory gene expression with graft-versus-host disease. Blood. 2004;104(7):2187-2193.

31. Zorn E, Kim HT, Lee SJ, et al. Reduced frequency of FOXP3+ CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood. 2005;106(5):2903-2911.

32. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S. Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med. 2002;196(5):589-599.

33. Cohen JL, Trenado A, Vasey D, Klatzmann D, Salomon BL. CD4(+)CD25(+)CD45RA(-) immunoregulatory T Cells: new therapeutics for graft-versus-host disease. J Exp Med. 2004;199(7):1059-1068.

34. Edinger M, Hoffmann P, Ermann J, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med. 2003;9(9):1144-1145.

35. Trenado A, Charlotte F, Fisson S, et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J Clin Invest. 2008;112(11):1688-1696.

36. Jones SC, Murphy GF, Knorlold P. Post-hematopoietic cell transplantation control of graft-versus-host disease by donor CD425 T cells to allow an effective graft-versus-leukemia response. Blood Marrow Transplant. 2003;93(2):245-256.

37. Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4+CD25(+) immunoregulatory cells inhibits graft-versus-host disease lethality. Blood. 2002;99(10):3493-3499.

38. Hanash AM, Levy RB. Donor CD4+CD25(+) T cells promote engraftment and tolerance following HCT-matched hematopoietic cell transplantation. Blood. 2005;105(4):1823-1836.

39. Sykes M, Romick ML, Hoyles KA, Sachs DH. In vivo administration of interleukin 2 plus T-cell depletion-associated symptoms and mortality prevents graft-versus-host disease mortality and permits allograftenmant. J Exp Med. 1990;171(5):1159-1165.

40. Soiffer RJ, Murray C, Cochran K, et al. Clinical and immunologic effects of prolonged infusion of low-dose recombinant interleukin-2 after autologous and T-cell-depleted allogeneic bone marrow transplantation. Blood. 1992;79(2):517-526.

41. Soiffer RJ, Murray C, Gennj R, Ritz J. Effect of low-dose interleukin-2 on disease relapse after T-cell-depleted allogeneic bone marrow transplantation. Blood. 1994;84(3):964-971.

42. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintenance by 3-17-liposomal receptor-alpha chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1999;155(5):1151-1164.

43. Zorn E, Matsen K, Kim H, et al. Combined CD4+ donor lymphocyte infusion and low-dose recombinant IL-2 expand FoxP3+ regulatory T cells following allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2009;15(5):382-388.

44. Koreth J, Matsuoaka K, Kim HT, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med. 2003;349(3):2215-2225.

45. Matsuoka K, Koreth J, Kim HT, et al. Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease. Sci Transl Med. 2013;5(197):197ra143.

46. Matsuoka K. Low-dose interleukin-2 as a modulator of Treg homeostasis after HSCT: current understanding and future perspectives. Int J Hematol. 2018;107(2):130-137.

47. Kennedy-Nasser AA, Ku S, Castillo-Caro P, et al. Ultrasound-induced TNFR2 activation protects from lethal acute graft-versus-host disease. Cell Mol Immunol. 2019;16(1):65-74.

48. Nunez A, Piccinelli S, Velardi A, Pierini A. The Effect of TNF-alpha on Regulatory T Cell Function in Graft-versus-Host Disease. Front Immunol. 2018;9:356.

49. Chen X, Baumel M, Mannel DN, Howard WM, Oppenheim JJ. Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ regulatory T cells. J Immunol. 2007;179(1):154-161.

50. Chen X, Sukobl J, Krup H, et al. Cutting edge: expression of TNFR2 defines a maximally suppressive subset of mouse CD4+CD25+ FoxP3+ regulatory T cells: applicability to tumor-infiltrating T regulatory cells. J Immunol. 2006;176(10):6467-6471.

51. Grinberg-Bleyer Y, Saudoun D, Baeyer A, et al. Pathogenic T cells have a paradoxical protective effect in murine autoimmune diabetes by boosting Tregs. J Clin Invest. 2010;120(2):4558-4568.

52. Myers L, Joedicke JJ, Carmody AB, et al. IL-2-independent and TNF-alpha-dependent expansion of Vbeta5+ T regulatory cells during retrovirus infection. J Immunol. 2013;190(11):5485-5495.

53. Housley W, Adams CO, Nichols FC, et al. Natural but not inducible regulatory T cells require TNF-alpha signal for function. J Immunol. 2011;186(8):6779-6787.

54. Tsakiri N, Papadopoulos D, Denis MC, Mitsakostas DD, Kollaris G. TNFR2 on non-hematopoietic cells is required for Foxp3+ Treg-cell function and disease suppression in EAE. Eur J Immunol. 2012;42(2):408-412.

55. Schmid T, Falter L, Weber S, et al. Chronic Inflammation Increases the Sensitivity of Mouse Treg for TNFR2 Costimulation. Front Immunol. 2017;8:1471.

56. Lamontain V, Schmid T, Weber-Steiffens D, et al. Stimulation of TNF receptor type 2 expands regulatory T cells and ameliorates established collagen-induced arthritis in mice. Cell Mol Immunol. 2019;16(1):65-74.

57. Pierini A, Strober W, Moffett C, et al. TNF-alpha priming enhances CD4+FoxP3+ regulatory T-cell suppressive function in murine GVHD prevention and treatment. Blood. 2016;128(6):856-871.

58. Leclere M, Nasieran S, Pulon C, et al. Control of GVHD by regulatory T cells depends on the presence of TNF receptor type 2 signaling. Blood. 2016;128(12):1651-1669.

59. Chopra M, Biehl M, Steinfatt T, et al. Exogenous TNF activation protects from
acute GvHD via host T reg cell expansion. J Exp Med. 2016;215(9):1881-1900.

99. Willoughby J, Griffiths J, Teves I, Cragg MS. OX40: Structure and function - What questions remain? Mol Immunol. 2017;88:15-22.

100. Takeda J, Sillen N, Distel roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells. J Immunol. 2004;172(6):3588-3598.

101. Piconese S, Pizzuto F, Bucorichi A, et al. A non-redundant function for OX40 in the competitive fitness of Treg in response to IL-2. Eur J Immunol. 2010;40(10):2902-2913.

102. Grieno T, Asquith M, Thompson C, Poowee F. OX40 is required for regulatory T cell-mediated control of colitis. J Exp Med. 2010;207(4):699-709.

103. Ruby CE, Yates MA, Hirschhorn-Cymerman S. Copsel SN, Lightbourn CO, Barreras H, et al. Very Low Dose 4-1BB Agonists Promote Cardiac Allograft Survival. Transplantation. 2012;94(6):596-574.

104. Bao J, Zhang C, Tan H, et al. Treatment of experimental autoimmune encephalomyelitis by modulating the balance between Th17 and regulatory T cells. J Immunol. 2011;187(5):1120-1128.

105. Yap YK, Choo YK, Kwak DH, et al. Protective effects of agonistic anti-4-1BB antibody on the development of 4-1BB-induced enostasis-like deminutia in mice. Immunol Lett. 2016;178:131-139.

106. Blazar BR, Kwon BS, Panoskaltsis-Mortari A, et al. Ligation of 4-1BB (CDw157) regulates graft-versus-host disease, graft-versus-leukemia, and graft rejection in allogeneic bone marrow transplant recipients. J Immunol. 2001;166(5):5174-5183.

107. Nozawa K, Ohata J, Sakurai J, et al. Preferential blockade of CD8(+T cell responses by administration of anti-CD157 ligand monoclonal antibody results in differential effect on development of murine acute and chronic graft-versus-host diseases. J Immunol. 2001;167(9):4981-4986.

108. Kim J, Choi WS, La S, et al. Stimulation with 4-1BB (CDw157) induces chronic graft-versus-host disease by inducing induction-cell death of donor CD4+ T cells. Blood. 2005;105(5):2206-2213.

109. Kim J, Kim W, Kim HJ, et al. Host CD25+CD4+Foxp3+ regulatory T cells primed by anti-CD137 mAbs inhibit graft-versus-host disease. Biol Blood Marrow Transplant. 2012;18(1):44-54.

110. Richard AG, Lejlan Y, et al. The TNF-family cytokine TL1A: from lymphocyte costimulator to disease co-conspirator. J Leukoc Biol. 2015;98(3):333-345.

111. Bittner S, Knoll G, Ehrenshwerder M. Death receptor 9: a receptor induced cell death pathway. Oncol Rep. 2011;27(3):251-256.

112. Takachev V, Furlan SN, Watkins B, et al. Combined CD80 and mTOR blockade confers insensitivity to T cell activation and prevents T reg cell reconstitution after transplant. Sci Transl Med. 2017;9(408).

113. Sanchez-Paulet AR, Labiano S, Rodriguez-Ruz ME, et al. Deciphering CD137 (4-1BB) signaling in T cell stimulation for translation into successful cancer immunotherapy. Eur J Immunol. 2016;46(5):518-522.

114. Myers LM, Vella AT. Interfacing T cell effector and regulatory function through CD137 (4-1BB) co-stimulation. Trends Immunol. 2005;26(6):440-446.

115. Zheng G, Wang B, Chen A. The 4-1BB co-stimulation augments the proliferation of CD4+CD25+ regulatory T cells. J Immunol. 2013;190(4):2426-2434.

116. Irie J, Wu Y, Kachapati K, Mittler RS, Edgway WM. Modulating protective and pathogenic CD4+ T cell subsets via CD137 in type 1 diabetes. Diabetes. 2007;56(1):186-196.

117. Lee J, Lee EN, Kim EY, et al. Administration of agonistic anti-4-1BB monoclonal antibody leads to enhanced accumulation of inflammatory bowel disease. Immunol Lett. 2005;101(2):210-216.

118. Kim YH, Choi BK, Shin SM, et al. 4-1BB triggering ameliorates experimental autoimmune encephalomyelitis by modulating the balance between Th17 and regulatory T cells. J Immunol. 2011;187(5):1120-1128.

119. Yoo JK, Choo YK, Kwak DH, et al. Protective effects of agonistic anti-4-1BB antibody on the development of 4-1BB-induced enostasis-like deminutia in mice. Immunol Lett. 2016;178:131-139.

120. Blazar BR, Kwon BS, Panoskaltsis-Mortari A, et al. Ligation of 4-1BB (CDw157) regulates graft-versus-host disease, graft-versus-leukemia, and graft rejection in allogeneic bone marrow transplant recipients. J Immunol. 2001;166(5):5174-5183.

121. Nozawa K, Ohata J, Sakurai J, et al. Preferential blockade of CD8(+) T cell responses by administration of anti-CD157 ligand monoclonal antibody results in differential effect on development of murine acute and chronic graft-versus-host diseases. J Immunol. 2001;167(9):4981-4986.

122. Kim J, Choi WS, La S, et al. Stimulation with 4-1BB (CD157) induces chronic graft-versus-host disease by inducing induction-cell death of donor CD4+ T cells. Blood. 2005;105(5):2206-2213.

123. Kim J, Kim W, Kim HJ, et al. Host CD25+CD4+Foxp3+ regulatory T cells primed by anti-CD137 mAbs inhibit graft-versus-host disease. Biol Blood Marrow Transplant. 2012;18(1):44-54.

124. Richard AG, Lejlan Y, et al. The TNF-family cytokine TL1A: from lymphocyte costimulator to disease co-conspirator. J Leukoc Biol. 2015;98(3):333-345.

125. Bittner S, Knoll G, Ehrenshwerder M. Death receptor 9: a receptor induced cell death pathway. Oncol Rep. 2011;27(3):251-256.

126. Schreiber TH, Wolf D, Tsai MS, et al. Sustained TL1A-Ig expression in Treg expands donor T cells in vivo and in vitro without engagement of the T cell receptor: evidence for functionally distinct forms of CD28. Eur J Immunol. 1997;27(11):289-297.

127. Langenhorst D, Gogishvili T, Rubenst W, et al. Sequential induction of effector function, tissue migration and cell death during polyclonal activation of mouse regulatory T-cells. PLoS One. 2012;7(11):e50080.

128. Lin CH, Hung T. Efficient expansion of regulatory T cells in vitro and in vivo with a CD28 superagonist. Eur J Immunol. 2008;38(5):626-638.

129. Beyersdorf N, Gaupp S, Balbach K, et al. Selective targeting of regulatory T cells with CD28 superagonists allows efficacy of experimental autoimmune encephalomyelitis. J Exp Med. 2005;202(3):445-455.

130. Goeringevi L, Langenhorst D, Ludehr F, et al. Rapid regulatory T cell response prevents cytokine storm in CD28 superagonist treated mice. PLoS One. 2009;4(2):e4648.

131. Schmidt J, Ellein K, Stueckemeier M, et al. Treatment and prevention of experimental autoimmune neuritis with superagonistic CD28-specific monoclonal antibodies. J Neuroimmunol. 2005;148(1-2):148-152.

132. van den Brand J, Fischer HJ, Walter L, et al. Type 1 diabetes in BioReeding rats is critically linked to an imbalance between Th17 and regulatory T cells and an altered TCR repertoire. J Immunol. 2010;184(12):7238-7246.

133. Miyasato K, Takakata Y, Kamion J, et al. CD28 superagonist-induced regulatory T cell expansion ameliorates mesangiotrophic glomerulonephritis in rats. Clin Exp Nephrol. 2011;15(1):50-57.
In vivo manipulation of Treg cells

In 2015, a series of studies explored the role of Treg cells in various autoimmune and chronic conditions. For instance, Guillaum M. Bosschaerts, T. Herin M, et al. demonstrated that the expansion of the regulatory T cell population increases resistance to African trypanosomiasis. *J Infect Dis.* 2008;198(5):781-791.

Azuoma H, Isaka Y, Li X, et al. Superagonistic CD28 stimulation induces donor-specific toler-ance in rat renal allografts. *Am J Transplant.* 2008;8(2):2004-2014.

Kitaizawa Y, Fuzino M, Sakai K, et al. Foxp3-expressing regulatory T cells expanded with CD28 superagonist antibody can prevent rat cardiac allograft rejection. *J Heart Lung Transplant.* 2008;27(4):362-371.

Kitaizawa Y, Fuzino M, Li X, et al. Superagonistic CD28 antibody preferentially expanded Foxp3-expressing Treg cells and prevented graft-versus-host diseases. *Cell Transplant.* 2009;18(5):627-657.

Kitaizawa Y, Li XK, Liu Z, et al. Prevention of graft-versus-host diseases by in vivo superCD28Ab-expanded antigen-specific nTreg cells. *Cell Transplant.* 2010;19(6):765-774.

Beyersdorf N, Ding X, Hunig T, Kerkau T. Superagonistic CD28 stimulation of allogeneic T cells protects from acute graft-versus-host disease. *Blood.* 2009;114(18):4570-4572.

Suntharingam G, Perry MR, Ward S, et al. Extracorporeal photopheresis reverses experimen-tal graft-versus-host disease through regulatory T cells. *Blood.* 2008;112(4):1515-1521.

Bezemeyer HE, Orschell CM, Clapp DW, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. *J Exp Med.* 2006;203(10):2105-2110.

Feine M, Marek RM, Lohning M. IL-33 in T Cell Differentiation, Function, and Immune Homeostasis. *Trends Immunol.* 2016;37(5):321-333.

Griesener B, Paczesny S. The ST2/IL-33 Axis in Immune Cells during Inflammatory Diseases. *Front Immunol.* 2017;8:475.

Paczesny S, Hakim FT, Pidala J, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: III. The 2014 Biomarker Working Group Report. *Blood.* 2015;125(7):780-792.

Matta BM, Lott JM, Mathews LR, et al. IL-33 is an unconventional Alarmin that stimulates IL-2 secretion by dendritic cells to selectively expand IL-33R/ST2+ regulatory T cells. *J Immunol.* 2014;193(8):4010-4020.

Matta BM, Turquin HR. Expansion of Regulatory T Cells in Vivo by IL-55 and IL-56. *Methods Mol Biol.* 2016;1371:29-41.

Siede J, Frohlich A, Dati A, et al. IL-33 Receptor-Expressing Regulatory T Cells Are Highly Activated, Th2 Biased and Suppress CD4 T Cell Proliferation through IL-10 and TGFβ Receptor Release. *PLoS One.* 2016;11(8):e0161507.

Schiering C, Krausgruber T, Chomka A, et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. *Nature.* 2014;518(7549):564-568.

Xu L, Li W, Wang X, et al. The IL-33-ST2-MyD88 axis promotes regulatory T cell proliferation and resistance in murine liver. *Eur J Immunol.* 2018;48(3):1302-1307.

Turnquist H, Zhao Z, Rosborough BR, et al. IL-33 expands suppressive CD11e+ Gr-1(high) and regulatory T cells, including ST2L+Foxp3+ cells, and mediates regulatory T cell-dependent promotion of cardiac allograft survival. *J Immunol.* 2011;187(9):4596-4610.

Ukena SN, Velaga S, Goudeva L, et al. Significant improvement of allograft survival after transplantation with Mycobacterium tuberculosis. *J Infect Dis.* 2011;203(9):1256-1263.

Broxmeyer HE, Orschell CM, Clapp DW, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. *J Exp Med.* 2006;203(10):2105-2110.

Ashami K, DiPersio JF, Choi J. Targeting IFNGR/IL6R or downstream JAK1/JAK2 to prevent graft-versus-host disease. *Blood.* 2014;124(13):2131-2141.

Cooper ML, Choi J, Karppova D, et al. Aza-ciclosporin A mitigates Graft-versus-Host Disease via Differential Effects on the Proliferation of T and Natural Regulatory T Cells in Vivo. *J Immunol.* 2017;198(1):67-78.

Asahmi K, Difforio JF, Choi J. Targeting IFNGR1/Lf or downstream Jak1/Jak2 to control GVHD. *Oncotarget.* 2016;7(9):5721-5722.

Choi J, Cooper ML, Stasek K, et al. Baricitinib-induced blockade of interferon gamma receptor and interleukin-6 receptor for the prevention and treatment of graft-versus-host disease. *Leukemia.* 2018;32(11):2485-2494.

Zanin-Zhorov A, Weiss JM, Nysydezfe MS, et al. Selective oral ROCK2 inhibitor down-regulates CD4+CD25+Foxp3+ regulatory T cells in murine chronic GVHD. *Blood.* 2018;130(2):229.

Choi J, Cooper ML, Stasek K, et al. Baricitinib-induced blockade of interferon gamma receptor and interleukin-6 receptor for the prevention and treatment of graft-versus-host disease. *Leukemia.* 2018;32(11):2485-2494.

Valli V, Maude SL. CART attack. *Blood.* 2017;130(2):229.

Periasamy S, Dhillon R, Barnes PF, et al. Programmed death-1 and cytokine-inducible SH2-containing protein dependent expansion of regulatory T cells upon stimulation with Mycobacterium tuberculosis. *J Infect Dis.* 2011;205(9):1256-1263.

Kaminsa WD, Alwine H, Keyser H, et al. Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia. *Blood.* 2010;116(14):2483-2493.

Franceschini D, Farooi M, Francavilla V, et al. FDA-approved negative regulators CD4+CD25+Foxp3+ Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV. *J Clin Invest.* 2009;119(5):551-564.

Karin R, Jordanova ES, Piersma SJ, et al. Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T cell infiltration and survival of patients with cervical carcinoma. *Clin Cancer Res.* 2009;15(20):6341-6347.

Asano T, Meguri Y, Yoshioka T, et al. PD-1 blockade with a cyclic peptide prevents autoimmune diabetes in NOD mice. *Diabetologia.* 2015;58(9):1268-1270.

Singh AK, Porra LF, Alijwai O, et al. Fatal graft-versus-host disease induced by PD-1 inhibitor pem-brolizumab in a patient with Hodgkin’s lymphoma. *Bone Marrow Transplant.* 2016;51(9):1266-1270.