Supporting Information

for

In-depth characterization of self-healing polymers based on π–π interactions

Josefine Meurer, Julian Hniopek, Johannes Ahner, Michael Schmitt, Jürgen Popp, Stefan Zechel, Kalina Peneva and Martin D. Hager

Beilstein J. Org. Chem. doi:

Additional data
Figure S1: 1H NMR spectra of P1 and P2 (300 MHz, CDCl$_3$).

Figure S2: SEC-traces of the polymers P1 and P2 (chloroform/isopropanol/triethylamine [94/2/4]) revealing a molar mass of $M_n = 11,400$ g/mol for P1 and $M_n = 17,400$ g/mol for P2.
Figure S3: TGA analysis of P1 and P2 (heating rate 20 Kmin$^{-1}$).

Figure S4: Temperature dependent IR spectra of P2 drop casted on KBr in the C=C (1570–1605 cm$^{-1}$) and C=O stretching region (1640–1710 cm$^{-1}$). During heating, slight shifts in the position of all bands (1578 cm$^{-1}$: +0.2 cm$^{-1}$; 1595: −1.5 cm$^{-1}$; 1655 cm$^{-1}$: +0.4 cm$^{-1}$; 1696: +1.6 cm$^{-1}$). These shifts are partially reversed while cooling the
polymer, indicating a reversible cause for the shifts. Additionally, all bands exhibit broadening during heating, especially noticeable at 150 °C, indicating a broader distribution of species contributing to the IR spectrum.

Figure S5: Self-healing of scratch two of P1 at 150 °C for 18 h.

Figure S6: Self-healing of scratch three of P1 at 80 °C for 18 h and additional 18 h.
Figure S7: Analysis of the scratch of P2 after indentation.

Figure S8: Self-healing of scratch three of P1 at 125 °C for 18 h.