Implementacija vlaknastog "Stub-Greda" elementa u akademski CAD softver - Matrix 3D

Fiber Beam-Column Element Implementation in Academic CAD Software Matrix 3D

1 INTRODUCTION

Developments in earthquake engineering and nonlinear analysis have led to need for more sophisticated finite-elements (FE). Even though 2D or 3D FE are certainly more accurate for precise nonlinear analysis, there are many drawbacks in its use. Some of the most relevant are complicated interpretation of results, cumbersome numerical analysis, and substantial time for modelling. All of these obstacles are surpassed with the use of fibre line elements, obviously provided frame-type structure is analysed. Fibre FE can be divided into force-based (FB) and displacement-based elements. Although great majority of software is displacement based, efficient algorithm for implementation of FB elements is developed in [22, 24]. Basic formulation of FB element used in this paper is designed by a group of scientists...
2 FORMULACIJA VLAKNASTOG STUB-GREDA ELEMENTA

Postoje dve mogućnosti za numeričko opisivanje materijalno-nelinearnog ponašanja u gredama i stubovima: konkentrisana i raspodeljena plastičnost. Uzročilo, koncentrisana plastičnost, najčešće modellirana nelinearnim zglobovima (hinges), podrazumeva dva velika ograničenja. Prvo, precizna pozicija očekivanih plastičnih zglobova mora biti poznata a prirodi, i drugo, nelinearna relacija je definisana kao zavisnost između presečnih sila i deformacija. Ovakvi tipovi zavisnosti su poznati iz eksperimenta, zatim uprošćeni i uprošćeni i potom specifičirani u različitim tehničkim propisima kao

led by Fillipou [18,22-24] and is afterwards improved by same group to include some other aspects such as shear deformations [8,11], effects of bond deterioration [6], and composite sections [3]. This work established theoretical foundation of OpenSees, software developed on University of California, Berkeley, and one of the most popular for academic research in the field of nonlinear seismic analyses. Firstly, formulation is developed for linear geometry/nonlinear materials [8,18], and shortly after Neuenhofer and Filippou [19] presented procedure for linear material/nonlinear geometry. Recently, De Souza presented in [9] extension of their work introducing corotational formulation, thus enabling analysis with large displacements and large rotations. His work can be viewed as a generalisation of the state determination procedures established in [8] and [19]. Different approaches led to other improvements on including shear deformations [16,17], thus enabling to capture interaction between axial, flexural and shear responses with great accuracy. All of the mentioned fibre elements are used primarily for dynamic analysis of concrete structures. Excellent ability of these elements to predict behaviour of composite structures is validated in [13,20]. Thai and Kim [25,26] included stability functions and nonlinear springs, and used FB elements for analysis of steel structure.

In this paper, formulation very similar to one used in [26] will be presented, discussed and tested, also on steel structure examples. This formulation is implemented in academic software for structural analysis - Matrix 3D [28,29], developed on the Faculty of technical sciences in Novi Sad, which is primarily developed for nonlinear analyses. Software is based on finite element method and includes analysis of structures modelled by line, surface and special elements. In this paper only line elements are used – Bernoulli-Euler beam, point supports as elastic springs and point loads. System stiffness matrix K_{sys} and equivalent node load vector P are assembled by code number method, with transformation to global coordinate system. Solution of unknown displacements for system stiffness matrix and node load vector is found using Gaussian elimination. Matrix 3D has graphical user interface developed, which will be shown in chapter 3.1.

2 FIBRE BEAM-COLUMN ELEMENT FORMULATION

There are two options for describing nonlinear material behaviour in beams and columns: lumped and distributed plasticity. Briefly, lumped plasticity, most often modelled with hinges, has two major shortcomings. Firstly, precise position of expected plastic hinge must be known a priori, and secondly nonlinear relation is specified as relation between force and deformation. These types of relations are known from experiments, further simplified and specified in various codes such as [21], textbooks etc. More realistic way of performing materially-nonlinear-only analysis (MNO) is through the
što je npr. [21], priučnicima i tako dalje. Realističniji način sprovođenja samo-materijalno-nelinearne analize (MNO) jeste kroz konstituisanje zakona materijalne nelinearnosti na nivou napon-deformacija, gde vlačnaši elementi imaju prednost.

Prvi vlasnik formule korišteni su na sličan način kao nelinearni zglobovi, pozicionirani na mestima na kojima se očekuju plastični zglobovi u konstrukciji, samo da bi se integracijom napona realističnije predstavila zavisnost sila/pomeranje. Vremenom je mogućnost korišćenja jednog konačnog elementa po štapu postala moguća. Stoga je priprema numeričkog modela postala manje vremenski zahtevna, i ako je cilj koristiti jedan KE po štapu, FB elementi su prikladniji izbor. Ipak, FB elementi se retko mogu pronaći u komercijalnim CAD softverima. Osnovna prepreka za široku upotrebu ovog tipa elemenata je teškoća integriranja jedne faze proračuna (određivanja nelinearnog stanja u elementu) u program baziran na metodi deformacija [24]. Ova prepreka je prevazidena procedurom određivanja stanja, predloženom u [22], u kojoj se iterativno određuju unutrašnje sile i matrica krutosti striktno zadovoljavajući uslove ravnoteže i kompatibilnosti u svakoj iteraciji. Ovim analizama postaje inkrementalno-iterativna, što je razmatrano u 2.4. Budući da analizu sistema s više stepeni slobode potpuno zasnovanu na metodima sila nije jednostavno automatizovati [18], većina CAD softvera je bazirana na metodi deformacija. Ovo znači da su linearni KE zasnovani na interpolacijskim funkcijama za opisivanje pomeranja štapa. Konvencionalni linijski KE u svojoj formulaciji uključuju Hermit-ove polinome za polje poprečnih pomeranja i Lagranž-ove funkcije oblika za polje aksijalnih pomeranja. Nasuprot ovome, formulacija FB elemenata se bazira na interpolacionim funkcijama za predstavljanje presečnih sila. Osnovna razlika je što se u klasičnom grednom KE sa dva čvora, zasnovanom na konceptu krutosti, krivina menja linearno duž elementa (dok u stvarnom nosaču krivina postaje veoma nelinearna kako dolazi do tečenja materijala). Kod FB elementa kojim nema opterećenja duž štapa, pretpostavljena je linearna promena momenta savijanja, što je način i u slučaju plastifikacije. Kao posledica ovoga, dovoljno je koristiti jedan KE za modeliranje jednog štapa, a preciznost će zavisiti od usvojene tolerancije numeričke greške. S druge strane, kod elementa formulisana prema metodi deformacija, pored numeričke greške javlja se i greška usled aproksimativne prirodne interpolacijske funkcije. Ovo je osnovna prednost FB elemenata, dok su ostale pregledno prikazane u radovima [15,18].

U software Matrix 3D implementiran je, i u ovom radu testiran, FB fiber element. Osnovna formulacija ovog elementa zasnovana je na mešovitoj metodi, kao što je to detaljno prikazano u [24], koja se za specifičan izbor konstitutivnih odnosa preiska svodi na klasičnu metodu fleksibilnosti. Osnovne pretpostavke formacije elementa su male deformacije i Bernoulli-jeva pretpostavka o ravnim presecima tokom celog istorije opterećenja. Predloženom formulacijom elementa ravnoteže svih sila je zadovoljena u svakom trenutku, a kompatibilnost je zadovoljena ne samo na krajevima elementa, već i duž njega [24]. Samo izvođenje formulacije konačnog elementa stub-greda u ovom radu će biti izostavljeno, a može se pronaći u [24], dok će detaljno biti prikazana procedura proračuna implementirana u softver Matrix 3D.

First fibre elements were used in the similar way as hinges, positioned in the area of expected plastic hinge, only to represent more realistic force/deformation dependence through integration of stresses. Later the possibility of using only one FE per element became possible. Hence, pre-processing became less time-consuming and, if the goal is to use one element per member, FB elements are more suitable. Still, FB elements may be scarcely found in commercial CAD software. Main obstacle in the widespread use of this type of elements is the difficulty of integrating nonlinear element state determination in an analysis program based on direct stiffness method [24]. This obstacle is overcome by a state determination procedure, proposed by [22] that iteratively determines the element resisting forces and stiffness matrix, while strictly satisfying element equilibrium and compatibility in each iteration. With this, analysis becomes incremental-iterative, which is discussed in 2.4. Since a pure flexibility formulation is not easily feasible in multi-degree freedom structure model [18], most of the CAD software is displacement-based. This means that linear elements are based on appropriate interpolation functions for member displacements. Conventional frame elements are based on Hermition polynomials for transverse displacement fields, and Lagrange shape functions for axial displacements. On the contrary, formulation of FB elements is based on interpolation functions for the internal forces. The main difference is that in classical stiffness-based 2-node element, curvature distribution is assumed linear (and in real member it becomes highly nonlinear as material softening occurs), while in FB element in the absence of distributed element loads, moment distribution is assumed linear, which is true. As result, only one element per member can be used, with accuracy depending on adopted tolerance of numerical error. On the other hand, displacement-based elements, in addition to numerical error, suffer from error due to the approximate nature of interpolation functions. This is the basic advantage of the FB elements, while others are presented in [15,18].

In software Matrix 3D FB fibre element is implemented, and it is tested in this paper. Basic formulation of this element is based on the mixed method, as it is presented in detail in [24], which for a specific choice of section constitutive relation simplifies to the classical flexibility method. Fundamental assumptions of the element formulation are that deformations are small and plane sections remain plane during the loading history (Bernoulli assumption). With the proposed formulation, equilibrium along the element is always strictly satisfied, and compatibility is satisfied not only at the element ends, but also along the element [24]. Pure derivation of the beam-column element formulation will be omitted in this paper, and can be found in [24], while procedure of calculation implemented in Matrix 3D will be presented.

Process of calculation for a single load increment is achieved on three different levels: structure, element and section level. After calculating structure displacements using global stiffness matrix (1), another set of element degrees of freedom is adopted, and deformations are recalculated using transformation matrix L given in [23].
Proces proračuna za jedan inkrement opterećenja sprovodi se na tri različita nivoa: na nivou konstrukcije, štapa i nivou preseka. Nakon izračunavanja generalizovanih pomeranja konstrukcije koristeći globalnu matricu krutosti (1), usvaja se novi set stepeni slobode za svaki KE i deformacije se ponovo izračunavaju uz pomoć matrice transformacije L date u [23].

\[\delta \Delta p = K_{sys} \Delta P \]

gdje je \(\delta \Delta p \) vektor generalizanih pomeranja konstrukcije, \(K_{sys} \) je globalna matrica krutosti i \(\Delta P \) predstavlja inkrement opterećenja.

Poslednja jednačina važi samo za prvu Newton-Raphsonovu (NR) iteraciju, dok se za naredne menja u:

\[\delta \Delta p = K_{sys} \Delta P \]

gdje je \(P_U \) vektor neuravnoteženih sila, i dat je u (14). Na početku svakog inkrementa vektor \(\Delta p \) je nula vektor, i kroz iteracije u njemu se akumuliraju vektori \(\delta \Delta p \) iz svake pojedinačne iteracije.

U formulaciji zasnovanoj na fleksibilnosti referentni sistem mora biti osloboden pomeranja štapa kao krutog tela. Stoga, na nivou elementa postoji samo pet stepeni slobode, dobijenih eliminisanjem pomeranja krutog tela i prikazanih na slici 1. Pomeranja po ovim stepenima slobode označena su vektorom \(q \), a njima odgovarajuće presečne sile vektorom \(Q \) (3). Generisana pomeranja data jednačinom (4) predstavljaju aksijalno izduženje i po dva para rotacija u odnosu na tetivu štapa. Rotacije krajeva štapa i odgovarajući momenti sadržani u vektoru \(Q \), odgovaraju proizvoljnim ortogonalnim osama \(y \) i \(z \).

In a flexibility-based formulation the reference system has to be free of rigid body modes. Therefore, on the element level, there is only 5 degrees of freedom, derived by eliminating rigid body modes, and presented in Figure 1. These element deformations are denoted by \(q \), and corresponding internal forces by \(Q \) (3). Generalised displacements given in equation (4) are axial extension and two rotations relative to the chord at each end node. The end rotations and corresponding moments, contained in \(Q \), refer to two arbitrary, orthogonal axes \(y \) and \(z \).
Prirastaj pomeranja po osnovnim deformacijskim nezavisnim veličinama dobija se iz:

\[Q = \begin{bmatrix} PM^y \ M^y & M^z & M^z & M^z \end{bmatrix}^T \]

\[q = \begin{bmatrix} \delta \theta^y, \theta^y, \theta^z, \theta^z \end{bmatrix}^T \]

Prirastaj pomeranja po osnovnim deformacijskim nezavisnim veličinama dobija se iz:

\[\delta \Delta q = L_{ele} \cdot \delta \Delta p^T \]

Matrica \(L_{ele} \) je matrica transformacije za element i predstavlja kombinaciju dve transformacije: prva je transformacija iz globalnog referentnog sistema u lokalni sistem štapa, a druga predstavlja transformisanje tako dobijenih pomeranja u deformacije elementa po stepenima slobode dobijenim eliminisanjem pomeranja štapa kao krutog tela.

Formulacija korišćena u radu ne uključuje torziju ni deplanaciju preseka, ali se oni mogu jednostavno uključiti. Prirast sile na krajevima štapa \(\delta \Delta Q \) dobija se množenjem vektora prirasta deformacija \(\delta \Delta q \) i matrice krutosti \(K_{ele} \), koja je u ovom slučaju kvadratna matrica 5x5 (6).

\[\delta \Delta Q^{j=1} = K_{ele} \cdot \delta \Delta q \]

Ova jednačina se primenjuje samo u prvoj iteraciji petlje određivanja stanja elementa \((j=1) \), dok za svako drugo \(j \) umesto nje treba koristiti jednačinu (7):

\[\delta \Delta Q^{j=1} = K_{ele} \cdot s \]

gde je \(s \) dato u (18). Vektor sila na krajevima štapa je kumulativan:

\[q = Q + \delta \Delta Q \]

\(K_{ele} \) se računa invertonom matrice fleksibilnosti \(F \) i modifikovanjem funkcijama stabilnosti, što je objašnjeno kasnije u radu. Za sada, ignorišući efekte normalne sile, matrica krutosti je krajnji rezultat dobijen proračunom na nivou elementa, nakon čega se pristupa formiranju globalne matrice krutosti konstrukcije uobičajenom procedurom. Radi konstruisanja \(F \) prema (9) potrebno je prethodno odrediti matrice fleksibilnosti preseka \(f(x) \), što znači da je neophodno započeti analizu na nivou preseka. Nije potrebno čuvati \(F \) u memorijskim imenovima i direktno koristiti \(K_{ele} \).

\[F = \int_0^L b^T(x) f(x) b(x) \, dx = \frac{1}{2} \sum_{sec=1}^{sec} \omega_{sec} gb^T(\text{sec}) f(\text{sec}) b(\text{sec}) \]

Matrica fleksibilnosti preseka \(f(x) \) određuje se inverzijom matrice krutosti preseka \(k_{sec} \), date u (11):

\[f(x) = k_{sec}^{-1}(x) \]

\[k_{sec}(x) = \sum_{i=1}^{nib} \begin{bmatrix} E_i A_i z_i & E_i A_i z_i & -E_i A_i y_i \\
- E_i A_i z_i & E_i A_i z_i & -E_i A_i y_i \\
E_i A_i z_i & E_i A_i z_i & E_i A_i z_i \end{bmatrix} \]

\(K_{ele} \) je matrica transformacije za element i je kombinacija dve transformacije: prva je transformacija iz globalnog koordinatnog sistema u lokalni sistem elementa i druga predstavlja transformisanje elementa u deformacije elementa po stepenima slobode dobijenim eliminisanjem pomeranja štapa kao krutog tela.

Formulacija korišćena u radu ne uključuje torziju ni deplanaciju preseka, ali se oni mogu jednostavno uključiti. Prirast sile na krajevima štapa \(\delta \Delta Q \) dobija se množenjem vektora prirasta deformacija \(\delta \Delta q \) i matrice krutosti \(K_{ele} \), koja je u ovom slučaju kvadratna matrica 5x5 (6).

\[\delta \Delta Q^{j=1} = K_{ele} \cdot \delta \Delta q \]

Ova jednačina se primenjuje samo u prvoj iteraciji petlje određivanja stanja elementa \((j=1) \), dok za svako drugo \(j \) umesto nje treba koristiti jednačinu (7):

\[\delta \Delta Q^{j=1} = K_{ele} \cdot s \]

gde je \(s \) dato u (18). Vektor sila na krajevima štapa je kumulativan:

\[q = Q + \delta \Delta Q \]

\(K_{ele} \) se računa invertonom matrice fleksibilnosti \(F \) i modifikovanjem funkcijama stabilnosti, što je objašnjeno kasnije u radu. Za sada, ignorišući efekte normalne sile, matrica krutosti je krajnji rezultat dobijen proračunom na nivou elementa, nakon čega se pristupa formiranju globalne matrice krutosti konstrukcije uobičajenom procedurom. Radi konstruisanja \(F \) prema (9) potrebno je prethodno odrediti matrice fleksibilnosti preseka \(f(x) \), što znači da je neophodno započeti analizu na nivou preseka. Nije potrebno čuvati \(F \) u memorijskim imenovima i direktno koristiti \(K_{ele} \).
U prvoj iteraciji prvog inkrementa, E_i uzima vrednost nominalnog Young-ovog modula materijala, dok se u svakom drugom slučaju računa na nivou vlakna i zavisi od naponskog stanja u posmatranom vlaknu. U (11), n_{fib} je broj vlakana kojima je izdeljen presek, z i y su koordinate svakog vlakna od težišta preseka i A je površina vlakna, kao što je prikazano na slici 2.

In the first iteration of the first increment, E_i is taken as nominal Young’s modulus of material, and in every other case, it is calculated in the fibre level and dependant on the stress state of the considered fibre. In (11), n_{fib} is the number of fibres the section is divided in, z and y are coordinates of fibre from the centroid of section, and A is the area, as represented in Figure 2.

![Slika 2. Stub-greda sa analiziranim presećima za 5 Gauss-Lobatto-vih tačaka integracije (levo) i podela preseka na vlakna (desno)](image)

Figure 2. Beam-column with analysed sections for 5 Gauss-Lobatto points of integration (left) and division of section into fibres (right)

Sada je moguće odrediti deformacije preseka prema:

$$
\delta \Delta d (x) = r (x) + f (x) \cdot \Delta D (x)
$$

At this point, computation is transferred to fibre level, but after the termination of fibre loop, convergence criterion on section force vector is imposed. It is done by

\[b (x) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \xi - 1 & \xi & 0 & 0 \\ 0 & 0 & 0 & \xi - 1 & \xi \end{bmatrix} , \xi = x / L \]

(12)

\[D (x) = \begin{bmatrix} N (x) \\ M_y (x) \\ M_z (x) \end{bmatrix} , d (x) = \begin{bmatrix} \varepsilon (x) \\ \chi_y (x) \\ \chi_z (x) \end{bmatrix} \]

(13)

In the section level, section force and section deformation vectors, by the principle of virtual work, are respectively:

Section force vector is cumulative and is calculated through (14):

$$
D (x)^{j} = D (x)^{j-1} + \delta \Delta D (x)
$$

(14)

$$
\delta \Delta D (x) = b (x) \cdot \delta \Delta Q (x)
$$

(15)

Vektor sila u preseku je kumulativan i računa se prema (14):
Time se primenjuju sukcesivne iteracije na nivou elementa dok vektor neuravnoteženih sila $D_u(x)$ postane manji od date tolerancije. Da bi se odredio vektor neuravnoteženih sila u preseku $D_u(x)$ pomoću (18), potrebne su presečne sile $D_{nf}(x)$ koje se dobijaju sumiranjem po površini poprečnog preseka:

$$D_R(x) = \sum_{i=1}^{n_{fib}} \sigma_i A_i^T$$ (17)

$$D_V(x) = D(x) - D_R(x)$$ (18)

Ako kriterijum konvergencije nije zadovoljen, vektor rezidualnih deformacija preseka korišćen u (16) se određuje prema:

$$r(x) = f(x) D_V(x)$$ (19)

Na nivou vlakna pretpostavlja se jednoaksijalno stanje napona i dilatacije vlakna e_{fib} se računaju iz vektora deformacija preseka $d(x)$ sa:

$\Delta \delta e_{fib} = a_{fib}(x) \cdot \Delta \delta d(x)$, (20)

gde $a_{fib}(x)$ je linearna geometrijska matrica veličine $n_{fib} \times 3$, sa i-tim redom (tj za i-to vlakno) datim sa:

$$a_i = \begin{bmatrix} 1 & z_i & -y_i \end{bmatrix}.$$ (21)

Tangentni modul materijala je uopšteno izražen kao:

$$E_{fib} = \frac{\Delta \sigma}{\delta e_{fib}}.$$ (22)

Vrednost E_{fib} predstavlja tangentni modul za vlakno pod brojem fib. Ove vrednosti su za jedan presek smeštene u kolonu matrice koja ima kolona koliko element ima Gausovih tačaka integracije.

Koristeći odabrani zavisnost napona-deformacije, pronalaze se naponi za svako vlakno, nakon čega je moguće izračunavanje vektora unutrašnjih sila u preseku D_R (17). Kao što je već rečeno, određivanje stanja elementa (j petlja) ovde se završava, i vektor P_R sila koje su prihvaćene elementom može se dobiti u globalnim koordinatama, prema:

$$P_R = L_{sel}^T Q$$ (23)

Vektor neuravnoteženih sila u štapu P_U računa se kao:

$$P_U = P - P_R$$ (24)

Rezidualne sile elementa se koriste u samouzračujućem mehanizmu (7) kroz rezidualne deformacije elementa s (25), koje se dobijaju primenom principa virtualnih sila.

Residual forces in the element are used for self-balance mechanism (7) through residual deformation of element s (25), which are obtained by the principle of virtual forces:

$$s = \frac{L}{2} \sum_{sec=1}^{n_{sec}} \left[w_{sec} b(\sec)^T r(\sec) \right]$$ (25)

Vectors denoted with δ are calculated in every iteration of element state determination, while vectors denoted only with Δ are calculated once per NR iteration.

GRABEVINSKI MATERIJALI I KONSTRUKCIJE 60 (2017) 2 (57-77)
BUILDING MATERIALS AND STRUCTURES 60 (2017) 2 (57-77)
Tako se algoritam proračuna sastoji iz tri petlje: petlja inkrementa opterećenja, NR petlja za konstrukciju, i petlja određivanja stanja elementa. Unutar posljednje, postoe petlje po presecima i vlaknima, ali one ne unose neuravnotežene veličine, već su te veličine njima predate od strane tri glavne petlje.

Jedan od najvažnijih aspekata implementacije prezentovane formulacije KE jeste kriterijum konvergencije koji je nametnut, kako na nivou elementa, tako i na nivou cele konstrukcije. Petlja na nivou elementa se prekida kada svi preseci konvergiraju, ili kada se izvede propisan maksimalni broj iteracija (u Matrix 3D [28,29] usvojeno je 25 iteracija). Ako se ne dostigne konvergencija u pomenutom broju iteracija, prekida se i spoljna petlja, i nanosi manji inkrement opterećenja. Unutar petlje na nivou konstrukcije izvode se NR iteracije dok se ne postigne zadatna tolerancija. Kriterijum konvergencije na ovom nivou može biti baziran na pomeranjima, silama ili kao energetski kriterijum. Criesfield u [7] objašnjava kako energetski kriterijum može biti varljiv, dok Fillipou u [22] predlaže upravo ovaj kriterijum. U Matrix 3D, za unutrašnju petlju je definisan samo kriterijum po silama, dok je za celu konstrukciju potrebno da budu zadovoljeni i energetski i kriterijum po silama da bi se nastavio proračun. Uštojene tolerancije su 10^{-6} za kriterijum po silama i 10^{-12} za energetski kriterijum.

2.1 Numerička integracija

Pošto je cilj korištenja jednog KE za ceo štap precizno predstavljanje pravog ponašanja elementa, dva numerička izbora su od suštinske važnosti. Prvi je izbor tipa numeričke integracije, a drugi broj integracionih stanica (broj posmatranih poprečnih preseka) duž elementa. Očigledno je da što je veći broj preseka usvojen, veća je preciznost, ali uz cenu skuplje (duže) analize. Uobičajeno se koristi tri do pet preseka po elementu, dajući zadovoljavajuću tačnost. Međutim, važniji izbor je tip numeričke analize koji diktira pozicije posmatranih preseka, kao što je prikazano na slici 2. Kod ovog izbora, prednost ima Gauss-Lobattova numerička integracija (26) u odnosu na Gaussov integraciju. Iako je druga izvedena optimizirajući paralelno težinske koeficijente i integracione stanice, prva ima fiksirane stanice (tačke integracije) na krajevima štapa gde se očekuju najveći momenti/krivine. Stoga, postoji minimum tri tačke, dve krajnje koje su fiksirane i proizvoljan broj slobodnih tačaka između, koje su postavljene simetrično u odnosu na sredinu elementa. Težinski koeficijenti slobodnih apscisa su dati u (27), a krajnjih u (28).

\[
\int_{-1}^{1} f(x)\,dx = w_1 f(1) + w_n f(n) + \sum_{i=2}^{n-1} w_i f(x_i)
\]

\[
w_i = \frac{2}{n(n-1)\left[P_{n-1}(x_i) \right]^2}
\]

\[
w_i \rightarrow w_n = \frac{2}{n(n-1)}
\]

gde je n ukupan broj tačaka integracije, a $P(x)$ Legendre-ov polinom.

Hence, algoritam consists of three loops: load increment loop (k loop), NR structure (i) loop, and element state determination one (j). Inside the last one there are section and fibre loops, but they are unlikely to bring unbalanced quantities since they depend on values passed by the main 3 loops.

One of the most important aspects of implementation of presented FE is convergence criterion enforced on both the element and structure loop. Element loop is terminated when all of the sections achieve convergence, or when prescribed number of iterations is performed (in Matrix 3D [28,29] it is adopted as 25). If latter is the case, outer (structure) loop is also aborted, and smaller load increment is applied. Structure loop continues NR iterations until the tolerance is achieved. Convergence criteria may be displacement-based, force-based or energy-based. Cries field in [7] explains that energy criterion can be misleading, while Fillipou in [22] proposes this type of criterion. In Matrix3D, for inner loop, force criterion is defined, while for structure loop, both energy and force criterion have to be satisfied to proceed. Adopted tolerances are 10^{-6} for force, and 10^{-12} for energy criterion.

2.1 Numerical integration

Since the goal of using one fibre FE per member is to accurately represent true behaviour of a member, two numerical choices are crucial. First one is type of numerical integration, and second one is number of sections per element. Obviously, the greater number of sections, greater is the accuracy, but this leads to greater cost of analysis. Usually, three to five sections per element are used, giving more than satisfactory accuracy. Even more important is the proper type of integration. This choice dictates positions of the considered sections, as shown in Figure 2. Regarding this particular issue, advantages of Gauss-Lobatto integration rule (26) surpasses the ones of Gauss integration. Even though the latter is derived optimising both the weights and the integration points (stations), former has fixed stations at the ends of interval where the highest bending moments/curvatures are expected. Hence, there are minimum three stations, two endpoints being fixed and arbitrary number of free stations in the middle, symmetrical about the midpoint of the element. The weights of free abscissas are given in (27),and of the endpoints in (28).
2.2 Materijalna nelinearnost – materijalni modeli

Postoji nekoliko materijalnih modela čelika koji su široko korišćeni u numeričkim studijama poslednjih godina. Da bi dinamičke ili ciklične analize bile moguće, neophodno je specifičarati histerezisne osobine materijala. Uobičajeno je korišćeno izotropno, kinematičko ili mešovito ojačanje. Svi navedeni histereziski modeli implementirani su u pomenuti softver. Pored toga, moguće je nelinearnu vezu napona i deformacija zadati bilo kojim višeslojnim pravilom (multilinearn). Ipak, multilinearni tipovi opisa ove zavisnosti mogu dovesti do poželjne modela širine frekvenca. Poštov se izraz za k_{sec} uključuje tangentni modul svakog vlakana pojedinčno, tokem analize kolapecta (kao što je pushover analiza, posebno ako se javlja izvijanje nekih elemenata), ako je razlika između dva susreda nagiba značajna, konvergencija će biti teško dostigna. Stoga se preferiraju materijalni modeli opisani glatkim krvima. Ovo je ispunjeno s bilo kojim od Ramberg-Osgood, Monti-Nutti ili Menegotto-Pinto modelom. Među ovim modelima, često korišćen Ramberg-Osgood ima jednu veliku nepogodnost iz aspekta prezentovane formulacije. Poštov pojkazani algoritam zahteva izračunavanje napona iz dilatacija, a ovaj model nije opisan bijektivnom funkcijom napona, neophodno je rešiti jednačinu Ramberg-Osgooda svaki put kada se traži napon u vlaknu. S obzirom na to što ima mnogo vlakana, preseka, iteracija i inkrementa, ovakav proračun postaje vremenski zahtevan. S druge strane, Menegotto-Pinto model je unapreden od strane Fillipou et al [12] da bi se uključilo izotropno ojačanje materijala. Za prikazane analize u ovom radu, korišćen je standardni Menegotto-Pinto model sa sledećim vrednostima parametara:

\[
R_e=20, \ a_1=18.5, \ a_2=0.15, \ b=0.01.
\]

\[
\sigma^* = b \cdot \varepsilon^* + \frac{(1-b) \cdot \varepsilon^*}{(1+\varepsilon^* R)^{1/R}}
\] \hspace{1cm} (29)

\[
\varepsilon^* = \frac{\varepsilon - \varepsilon_r}{\varepsilon_r},
\] \hspace{1cm} (30)

Normalizovani napon σ^* dobija se jednačinom (29) u odnosu na normalizovanu dilataciju ε^* (30). Oblik krive zavisi od odnosa ojačanja b i od parametra R, koji simulira Baushinger-ov efekat, i dat je u (31). Efekat ova dva parametra na oblik krive napon/dilatacija tokom neizmeničnog ojačenja prikazan je na slici 3. Parametar R kontrolise radijus prelaza između dve grane na slici 3, dok ξ menja R nakon promene smera opterećenja.

\[
R = R_0 - \frac{a_1 \xi}{a_2 + \xi}
\] \hspace{1cm} (31)

gde su a_1 i a_2 konstante materijala, a ξ je apsolutna vrednost plastične dilatacije tokom prethodne plastifikacije, normalizovana dilatacijom na granici tečenja ε_p, kao što pokazuje slika 3.

2.2 Material nonlinearity - material models

There are few material models extensively used in numerical researches of steel structures lately. To perform dynamic, or cyclic analysis, hysteretic properties need to be specified. Usually isotropic, kinematic or mixed strain hardening is chosen. All of them are implemented in aforementioned software. Besides, any multi linear material rule can be specified. Special advantage of the flexibility approach is that negative slopes (material failure) can be specified stresses are obtained from strains and not the other way around. However, multi linear type of stress-strain relation may lead to numerical obstacles. Since k_{sec} is calculated with tangent stiffness of each fibre, during collapse analysis (such as pushover, especially close to buckling), if the difference between two adjoining slopes is considerable, convergence will be difficult to achieve. Thus, material models described with smooth curves are preferred. This condition is fulfilled with either of Ramberg-Osgood, Monti-Nutti or Menegotto-Pinto model. Among these models Ramberg-Osgood has an important disadvantage. Since described algorithm requires calculation of stresses from strains, and this model is described with objective function of stress, it means that equation of material law must be solved for each strain. Because there are many fibres, sections, iteration and increments, it becomes vastly time-consuming. Menegotto-Pinto model is improved by Fillipou et al [12] to include isotropic strain hardening. For the analysis performed in this paper, regular model is used with the following values:

\[
R_e=20, \ a_1=18.5, \ a_2=0.15, \ b=0.01.
\]

\[
\sigma^* = b \cdot \varepsilon^* + \frac{(1-b) \cdot \varepsilon^*}{(1+\varepsilon^* R)^{1/R}}
\] \hspace{1cm} (29)

\[
\varepsilon^* = \frac{\varepsilon - \varepsilon_r}{\varepsilon_r},
\] \hspace{1cm} (30)

Normalised stress σ^* is found by equation (29) in relation to normalised strain ε^* (30). The curve is controlled by hardening ratio b and a parameter R, which simulates Baushinger effect, given in (31). The effect of those parameters to stress strain curve during load reversals is shown in Figure 3. Parameter R controls smoothness of transition between two branches on Figure 3, while ξ changes R throughout load reversals.
Slika 3. Guiffre-Mennegotto-Pinto materijalni model
Figure 3. Guiffre-Mennegotto-Pinto material model

Pored određivanja napona za datu dilataciju vlakna, potrebno je odrediti i tangentni modul E_i (25) koji je za Menegotto-Pinto model dat sa:

$$E_i = \frac{\sigma_y - \sigma_r}{\varepsilon_0 - \varepsilon_r} \left[b + \frac{1}{1 + b \frac{1 - \varepsilon^R}{(1 + \varepsilon^R)^{1/b}}} \right]$$ \hspace{1cm} (32)

Tokom j petlje u procesu određivanja stanja elementa nailazi se na promenu znaka inkrementalne dilatacije, posebno u blizini izvijanja. U takvim situacijama, vrednosti ε_0 i ε_r menjaju vrednost. Ali, da bi se sačuvala glatka kriva istorije napona/dilatacija jednog vlakna, prethodne vrednosti (ε_0, ε_r) čuvaju se u memoriji, u slučaju da se znač dva puta promeni tokom iteriranja.

2.3 Geometrijska nelinearnost

Dva efekta geometrijske nelinearnosti uvršteni su u implementiranu FB formulaciju: $P-\Delta$ i $P-\delta$. $P-\Delta$, poznat još i kao geometrijska nelinearnost, jeste nelinearni efekat koji se javlja u svakoj konstrukciji u kojoj su elementi izloženi aksijalnim silama. Ovaj efekat uvodi u analizu sekundarne uticaje koji nastaju usled relativnog pomeranja krajeva štapa, Δ. $P-\delta$ je efekat kojim se modeliraju sekundarni uticaji koji nastaju usled lokalne deformacije štapa, to jest odstupanja elastične linije od tete štapa. Prvi od pomenutih efekata ($P-\Delta$) uveden je komplementiraju geometrijsku matricu K_g matrici ključnosti elementa u globalnim stepenima slobode (34). Matrica koja se dodaje obeležena je sa K_g i računa se prema (33), gde je Z_0 nula matrica veličine 3x3. Ovakav način uključivanja $P-\Delta$ efekata u analizu precizniji je i takođe prikladniji za prikazanu formulaciju u odnosu na izračunu.

2.3 Geometrical nonlinearity

Two effects regarding geometrical nonlinearity are represented through implemented FB formulation: $P-\Delta$ and $P-\delta$. $P-\Delta$, also known as geometric nonlinearity, is the nonlinear effect that occurs in each structure with elements subjected to axial forces. This effect introduces secondary forces as a result of the relative displacement of the member ends, Δ. $P-\delta$ is the effect that models the secondary forces caused by a local deformation of the member, i.e. elastic line deviation of the chord of the member. Former ($P-\Delta$) is introduced complementing geometric matrix K_g to the element stiffness matrix in global degrees of freedom (34). It is denoted by K_g and calculated by (8), where Z_0 is zero matrix 3x3. This way of including $P-\Delta$ effect in analysis is more accurate, and also more suitable for presented formulation in comparison with calculating only shear due to second
navanje samo transverzalnih sila usled efekata drugog reda, i potom ponavljanje proračuna sa ovom silom kao ĉvornim opterećenjem (kao što je npr. sluĉaj u programu SAP2000).

\[
\begin{bmatrix}
K_g
\end{bmatrix}_{12\times12} = \begin{bmatrix}
K_r & -[K_r]
\end{bmatrix},
\]

(33a)

\[
[K_r]_{6\times6} = \begin{bmatrix}
K_g & Z_0
Z_0 & Z_0
\end{bmatrix},
\]

(33b)

\[
\begin{bmatrix}
0 & a & -b
a & c & 0
-b & 0 & c
\end{bmatrix}
\]

(33c)

gde je \(P \) negativno za silu pritiska. Konaĉno, matrica elementa je u globalnim stepenima slobode:

\[
[K_{de}] = [L]_{5\times12}^T[K_r]_{5\times5}[L]_{5\times12} + [K_g]_{2\times12}
\]

(34)

Efekat sile koja deluje u pravcu tetive štapa (P-\(\delta \)) predstavljen je korišćenjem funkcija stabilnosti u matrici krutosti elementa (5x5 - u prirodnim stepenima slobode). Izvođenje ovih funkcija (12) može se naći u [4,5], a prvi ih je uveo James još 1935. godine u radu koji se bavio metodom distribucije momenta. One su izvedene za moment savijanja na jednom kraju poluuklještenih grede, uvodeći poprećne pomeranja usled rotacije jednog kraja stuba-grede, i stoga se mogu koristiti samo za kruto vezane elemente. Za proste štapove (npr. elemente sprega), potrebno je koristiti drugačiji set funkcija. Ove funkcije su prikazane u [4].

\[
\begin{bmatrix}
\Delta P
\Delta M y_A
\Delta M y_B
\Delta M z_A
\Delta M z_B
\end{bmatrix} = \begin{bmatrix}
K_{r,11} & 0 & 0 & 0 & 0 & 0
0 & S_{2,2}/2 \cdot K_{r,2,3} & S_{2,3}/2 \cdot K_{r,2,3} & 0 & 0 & 0
0 & S_{2,2}/2 \cdot K_{r,3,3} & S_{2,3}/2 \cdot K_{r,3,3} & 0 & 0 & 0
0 & 0 & 0 & S_{2,2}/4 \cdot K_{r,4,4} & S_{2,3}/2 \cdot K_{r,4,4} & 0
0 & 0 & 0 & 0 & S_{2,2}/4 \cdot K_{r,5,5} & S_{2,3}/2 \cdot K_{r,5,5}
\end{bmatrix}
\begin{bmatrix}
\Delta \delta
\Delta \theta y_A
\Delta \theta y_B
\Delta \theta z_A
\Delta \theta z_B
\end{bmatrix}
\]

(35)

\[
S_{1n} = \frac{(k_n \sinh(k_nL) - k_nL \sin(k_nL))^2 \cos(k_nL)}{2 - 2 \cos(k_nL) - k_nL \sin(k_nL)}
S_{2n} = \frac{(k_n \sinh(k_nL) - k_nL \sin(k_nL))^2 \cosh(k_nL) - k_nL \sinh(k_nL)}{2 - 2 \cosh(k_nL) + k_nL \sinh(k_nL)}
\]

(36)

gde

\[
k_n^2 = \left| P \right|/EI_n = \left| P \right|/\left(\sum_{j=1}^{\text{nsec}} \sum_{i=b}^{\text{ninf}} E_i A_i z_i^2 \right)
\]

Gornji set jednaĉina (36) sa trigonometrijskim funkcijama se koristi kada je štap pritisnut, dok se donji red sa hiperboličkim funkcijama koristi ako je normalna sila \(P \) zatoĉuća. Funkcije \(S_1 \) se obiĉno nazivaju \(s \) funkcije, dok su funkcije \(S_2 \) dobijene množenjem \(s \).

Gornji set jednaĉina (36) sa trigonometrijskim funkcijama je uveo James 1935. godine u radu koji se bavio metodom distribucije momenta. One su izvedene za moment savijanja na jednom kraju poluuklještenih grede, uvodeći poprećne pomeranja usled rotacije jednog kraja stuba-grede, i stoga se mogu koristiti samo za kruto vezane elemente. Za proste štapove (npr. elemente sprega), potrebno je koristiti drugačiji set funkcija. Ove funkcije su prikazane u [4].

Upper set of equations with trigonometric functions in (36) is used when axial force is compressive, while bottom set with hyperbolical functions is used if \(P \) is tensile. Functions \(S_1 \) are usually called \(s \) functions, and functions \(S_2 \) are derived by multiplying \(s \) with \(c \).
funkcija sa c, i stoga se obeležavaju sa sc. Parametar c se naziva faktor prenosa, isto kao u približnoj metodi deformacije. Dijagrami s, c i sc su prikazani na slici 4, kao funkcije promenjive p=P/P_E, gde je P_E Ojlerova kritična sila za zglobno oslonjen stup dužine L. S povećanjem aksijalnog pritiska, s opada dok faktor prenosa raste. Za p=2.046, s postaje 0, a c→∞, ali sc ima konačnu vrednost. Nulta vrednost s predstavlja beskonačnu fleksibilnost pri P=2.046P_E, vrednosti koja je poznata kao prva kritična sila poluuklještene grede. Pri vrednostima ρ>2.046 moment na neuklještenom kraju postaje ograničavajući i ovo objašnjava zašto krutost postaje negativna.

Slika 4. Dijagrami funkcija stabilnosti kao funkcije parametra ρ
Figure 4. Diagrams of stability functions as a functions of ρ

Dodatno, poprečne deformacije duž štapa su uključene u proračun inkrementalnih sila u preseku, (18). Matrica interpolacije sila (15) promenjena je tako da b_{2,1} postaje −δ_y(x) umesto 0, i b_{3,1} postaje −δ_z(x) [11,20], gde je x prostorna koordinata duž elementa.

\[\delta_y(x) = \delta_{y,0}(x) - \frac{M_{nA}}{EI_k} \left[\frac{\sin(k_x x)}{\tan(k_x L)} - \cos(k_x x) \frac{x}{L} + 1 \right] \]
\[\delta_z(x) = \delta_{z,0}(x) + \frac{M_{nB}}{EI_k} \left[\frac{\sin(k_y x)}{\tan(k_y L)} - \cos(k_y x) \frac{x}{L} + 1 \right] \]

gde je \(\delta_{y,0}(x) = L/1000 \cdot \sin(\pi x / L) \), što predstavlja početnu imperfekciju elementa u obliku luka.

2.4 Numeričke tehnike za nelinearne analize

Među nekoliko numeričkih metoda korišćenih za rešavanje sistema nelinearnih jednačina, ne postoji jedna značajno pogodnija od drugih. Više metoda su zadovoljavajuće za analize u kojima se ne javlja kolaps konstrukcije, i to su NR metoda, metoda sečice ili functions, and hence denoted as sc. Parameter c is termed the carry-over factor, same as in slope-deflection method. The diagrams of s, c and sc are shown in Figure 4, as functions of ρ=P/P_E, where P_E is Euler’s critical force for a simple supported column with length L. With increase of axial compression, s decreases and carry-over factor increases. For ρ=2.046, s becomes 0, and c→∞, with sc finite. The zero value of s represents infinite flexibility at P=2.046P_E, a value already recognized to be the first buckling load for a fixed-hinged beam. At values ρ>2.046 moment at hinged end becomes restraining moment, and this explains why the stiffness becomes negative.

Slika 4. Dijagrami funkcija stabilnosti kao funkcije parametra ρ
Figure 4. Diagrams of stability functions as a functions of ρ

Additionally, lateral displacements are included in calculation of incremental section forces (18). Force interpolation matrix (15) is altered so b_{2,1} becomes −δ_y(x) instead of 0, and b_{3,1} becomes −δ_z(x) [5,25], where x is a spatial coordinate throughout the element.

\[\delta_y(x) = \delta_{y,0}(x) - \frac{M_{nA}}{EI_k} \left[\frac{\sin(k_x x)}{\tan(k_x L)} - \cos(k_x x) \frac{x}{L} + 1 \right] \]
\[\delta_z(x) = \delta_{z,0}(x) + \frac{M_{nB}}{EI_k} \left[\frac{\sin(k_y x)}{\tan(k_y L)} - \cos(k_y x) \frac{x}{L} + 1 \right] \]

2.4 Numeričke tehnike za nelinearne analize

Među nekoliko numeričkih metoda korišćenih za rešavanje sistema nelinearnih jednačina, ne postoji jedna značajno pogodnija od drugih. Više metoda su zadovoljavajuće za analize u kojima se ne javlja kolaps konstrukcije, i to su NR metoda, metoda sečice ili functions, and hence denoted as sc. Parameter c is termed the carry-over factor, same as in slope-deflection method. The diagrams of s, c and sc are shown in Figure 4, as functions of ρ=P/P_E, where P_E is Euler’s critical force for a simple supported column with length L. With increase of axial compression, s decreases and carry-over factor increases. For ρ=2.046, s becomes 0, and c→∞, with sc finite. The zero value of s represents infinite flexibility at P=2.046P_E, a value already recognized to be the first buckling load for a fixed-hinged beam. At values ρ>2.046 moment at hinged end becomes restraining moment, and this explains why the stiffness becomes negative.

Slika 4. Dijagrami funkcija stabilnosti kao funkcije parametra ρ
Figure 4. Diagrams of stability functions as a functions of ρ

2.4 Numeričke tehnike za nelinearne analize

Među nekoliko numeričkih metoda korišćenih za rešavanje sistema nelinearnih jednačina, ne postoji jedna značajno pogodnija od drugih. Više metoda su zadovoljavajuće za analize u kojima se ne javlja kolaps konstrukcije, i to su NR metoda, metoda sečice ili functions, and hence denoted as sc. Parameter c is termed the carry-over factor, same as in slope-deflection method. The diagrams of s, c and sc are shown in Figure 4, as functions of ρ=P/P_E, where P_E is Euler’s critical force for a simple supported column with length L. With increase of axial compression, s decreases and carry-over factor increases. For ρ=2.046, s becomes 0, and c→∞, with sc finite. The zero value of s represents infinite flexibility at P=2.046P_E, a value already recognized to be the first buckling load for a fixed-hinged beam. At values ρ>2.046 moment at hinged end becomes restraining moment, and this explains why the stiffness becomes negative.
kombinacija sa NR, i tako dalje. U Matrix-u 3D koristi se klasična NR metoda, umesto modifikovane, s obzirom na to što je najveća teška ove metode izračunavanje tangenatne krutosti pri svakoj iteraciji. Međutim, pošto se matrice krutosti elemenata računaju svakako, samo sastavljanje globalne matrice krutosti nije vremenski zahtevno, i komparativno je efikasnije u odnosu na korišćenje modifikovane NR metode. U prikazanom algoritmu, granica od 20 NR iteracija je nametnuta kao maksimum za dostizanje konvergencije, pre nego što se pribegne smanjivanju inkrementa opterećenja.

Although aforementioned numerical methods are very efficient, in the proximity of limit point they become insufficient. NR method will not be able to surpass limit point, and also is unable to handle snap-through behaviour. For these situations, which are experienced with buckling or with material softening (concrete), continuation techniques are needed. The most popular, and very possibly the most robust one is the arc length method [7, 10]. Few variations are most often: Criesfield’s (cylindrical or spherical), Ramm’s or Riks-Wemper’s. Criesfield’s arc length method is probably the most used one, and it belongs to the group of variation with constant arc length. For all of above-mentioned arc length methods, load increment \(\Delta \lambda \) is considered as an additional unknown (instead of a constant, as in NR method), thereby augmenting the \(n \)-dimensional space of unknowns. The system, with \(n \) equations, is indeterminate and an additional equation must be supplied. This equation is path-following restraint. Basic differences between above-mentioned methods are exactly in this equation. Problem with Criesfield’s method, where constraint equation is quadratic and represents constant arc length, is that there are two solutions of described problem, hence it needs predictor and corrector phase of solution.

![Graphically presented three iterations of Ramm’s arc-length method](image.png)
dva rešenja tako definisanog problema, pa je neophodna prediktorska i nešto problematičnija korektorska faza rešenja. Drugim rečima, hiper-sfera s centrom u rešenju prethodnog inkrementa preseka funkciju odgovora u dve tačke, od kojih je jedna željeno rešenje, a druga se nalazi na već utvrđenom delu krive odgovora. Ramm-ova metoda je zasnovan na pronalazaču preseka traženog polja otpornosti konstrukcije sa iterativno obnavljanom hiperlokom. Ramm-ova i Criesfield-ova metoda su implementirane u Matrix 3D u spoju s klasičnom NR metodom, ali samo će Ramm-ova jednačina (13) biti prikazana poslo nijedna prednost Criesfield-ove metode nije otkrivena dosadašnjom upotrebom i testiranjem od strane autora. Takođe, ipak treba napomenuti da je iskustvo autora nastalo upotrebom ove metode dovelo do zaključka da je parametar \(\beta \), koji meri komparativni značaj pomeranja i sila, efikasnije usvojiti različitim od nule, suprotno mišljenju nekih autora.

\[
\delta \lambda = \frac{\Delta p_0^T \delta \bar{p}}{\Delta p_0^T \delta p + \Delta \lambda_0 \beta^T P_{cf}^T P_{cf}}
\]

(39)

gde je:
- \(\delta \lambda \): iterativna promena parametra \(\lambda \) (nivoa opterećenja – videti sliku 5),
- \(\Delta \lambda_0 \): inkrementalni parametar opterećenja izmenjen u svakoj iteraciji (0 znači prethodni, I kroz iteracije uzima vrednosti \(\Delta \lambda_1, \Delta \lambda_2 \) itd.),
- \(\Delta p_0 \): kumulativni vektor pomeranja po iteracijama (0 označava prethodnu iteraciju),
- \(\delta p_i \): iterativna promena vektora pomeranja koja nastaje usled neuravnoteženih sila iz NR metode (pomeranja usled rezidualnih sila),
- \(\delta \bar{p} \): vektor pomeranja koji odgovara opterećenju \(\Delta \lambda_i P_{cf} \).

3 VERIFIKAICIJA FORMULACIJE

Implementacija gorepomenute formulacije je verifikovana u pogledu tačnosti i efikasnosti poredenjem s dostupnim rezultatima i rezultatima dobijenim analizom komercijalnim softverima baziranim na metodii koničnih elemenata putem dva primera. Prvi primer predstavlja stub sa svim krajnjim stepenima slobode fiksiranim u dva rešenja tako definisanog problema, pa je neophodna prediktorska i nešto problematičnija korektorska faza rešenja. Drugim rečima, hiper-sfera s centrom u rešenju prethodnog inkrementa preseka funkciju odgovora u dve tačke, od kojih je jedna željeno rešenje, a druga se nalazi na već utvrđenom delu krive odgovora. Ramm-ova metoda je zasnovan na pronalazaču preseka traženog polja otpornosti konstrukcije sa iterativno obnavljanom hiperlokom. Ramm-ova i Criesfield-ova metoda su implementirane u Matrix 3D u spoju s klasičnom NR metodom, ali samo će Ramm-ova jednačina (13) biti prikazana poslo nijedna prednost Criesfield-ove metode nije otkrivena dosadašnjom upotrebom i testiranjem od strane autora. Takođe, ipak treba napomenuti da je iskustvo autora nastalo upotrebom ove metode dovelo do zaključka da je parametar \(\beta \), koji meri komparativni značaj pomeranja i sila, efikasnije usvojiti različitim od nule, suprotno mišljenju nekih autora.

\[
\delta \lambda = \frac{\Delta p_0^T \delta \bar{p}}{\Delta p_0^T \delta p + \Delta \lambda_0 \beta^T P_{cf}^T P_{cf}}
\]

(39)

gde je:
- \(\delta \lambda \): iterativna promena parametra \(\lambda \) (nivoa opterećenja – videti sliku 5),
- \(\Delta \lambda_0 \): inkrementalni parametar opterećenja izmenjen u svakoj iteraciji (0 znači prethodni, I kroz iteracije uzima vrednosti \(\Delta \lambda_1, \Delta \lambda_2 \) itd.),
- \(\Delta p_0 \): kumulativni vektor pomeranja po iteracijama (0 označava prethodnu iteraciju),
- \(\delta p_i \): iterativna promena vektora pomeranja koja nastaje usled neuravnoteženih sila iz NR metode (pomeranja usled rezidualnih sila),
- \(\delta \bar{p} \): vektor pomeranja koji odgovara opterećenju \(\Delta \lambda_i P_{cf} \).

3 VERIFIKAICIJA FORMULACIJE

Implementation of above-mentioned formulation is verified for accuracy and efficiency by the comparison of predictions with accessible results and those generated by commercial finite element packages through two examples. First one investigates a column with all end restraints fixed except for longitudinal displacement at the upper end, as shown in Figure 6, with the aim to verify the accuracy and efficiency of the proposed element in capturing the buckling loads of columns with imperfections. Second example is the Vogel’s portal frame, which is usually adopted for calibrating advanced second-order inelastic analysis. Since the frame collapse is determined by the column’s inelastic buckling, this example is a good benchmark test for any inelastic formulation [6].
U oba modela je uključena početna imperfekcija, modelirana preko ekvivalentnih sila u prvom primjeru i pomeranjem čvorova u drugom. Oba modela obuhvataju već pomenute inicijalne imperfekcije odstupanja od pravca ose duž elementa. Iako obuhvatanje zaostalih napona nije pogodno u formulaciji baziranoj na fleksibilnosti i pri korišćenju Manegotto-Pinto modela, moguće je prevazići probleme uz nekoliko improvizacija pri kodiranju. Raspored zaostalih napona u poprečnom preseku koji je korišćen u ovom radu je predložen od strane Evropskog kongresa za konstrukcijski čelik – ECCS, prikazan je na slici 6. Naponi su pri prvom inkrementu aplicirani direktno na vlakna preseka kao početni naponi.

Krive sila-pomeranja stuba dobijene korišćenjem predloženog elementa (Slika 7) poredene su sa onima koje su dobijene iz programa SAP2000 i SeismoStruct. Materijalni model korišćen u programu Matrix 3D (PW) i SeismoStruct (SS) jeste Manegotto-Pinto sa inicijalnim modulom 210 GPa i post-elasticnim ojačanjem od 1%, dok je bilinearni materijal sa identičnim ojačanjem korišćen u modelu iz programa SAP2000. Vlaknasti model iz programa SAP2000 precenjuje kritičnu silu za oko 18% pri korišćenju dva elementa i 6% pri korišćenju četiri elementa. Kritična sila dobijena prema programu SeismoStruct i prema predloženom modelu gotovo su identične, dok razlike u pomeranjima mogu biti objašnjene neobuhvatanjem zaostalih napona u SS modelu. Valja napomenuti i to da SeismoStruct ima implementirane vlaknaste elemeante bazirane na sili dok su u SAP2000 modelu korišćeni elementi bazirani na pomeranju. Projektna otpornost stuba na izvijanje određena prema pravilima EC3 (označena sa $N_{b,Rd}$) takođe je označena na grafiku radi poredenja. Povećanje broja elemenata zasnovanih na metodi deformacije u paketu SAP2000 dovelo bi do boljeg slaganja s rezultatima dobijenim u SS i PW modelima. Podaci o tačnosti u zavisnosti od broja elemenata mogu se pronaći u [25], ali treba naglasiti da povećanje broja elemenata čini analizu vremenski zahtevnijom.

Both models include initial out-of-plumbness imperfections, modelled by equivalent load in first example, and rearrangement of nodes in the second. Both models include already mentioned out-of-straightness initial imperfection throughout their length. Even though residual stresses incorporation is not so convenient for both flexibility approach and Menegotto-Pinto model, it may be overcome with few coding improvisations. Residual stress pattern of cross section used for this research is proposed by European Convention for Constructional Steelwork – ECCS as illustrated in Figure 6. Residual stresses are assigned directly to fibres as initial stresses at first increment.

The load-deflection curves of the column obtained by the proposed element (Figure 7) are compared with those generated by SAP2000 and SeismoStruct. Material model used in Matrix 3D (PW) and SeismoStruct (SS) is Menegotto-Pinto with initial modulus of 210GPa and post-elastic hardening of 1%, while bilinear material with the same hardening is used for SAP2000 model. Fibre element of SAP2000 overpredicts buckling load by about 18% if two elements are used, and 6% if 4 elements per member are used. Critical force obtained by SeismoStruct and proposed element are almost identical, while the difference in displacement can be partly explained by the absence of residual stresses in SS model. It should be noted that SeismoStruct has FB element implemented while for SAP2000 model, displacement-based fibre element is used. Design buckling resistance of a column determined by EC3 rules of design (labelled as $N_{b,Rd}$) is marked on the graph for comparison. Increasing the number of displacement-based elements in SAP2000 package would lead to better agreement with the results obtained in the SS and PW models. Accuracy depending on the number of elements can be found in [25], but it should be noted that the increase of the element number makes analysis more time-consuming.
Slika 7. Krive sila-pomeranje stuba

Figure 7. Load-displacement curve of column

Na slici 7 su prikazana poređenja krivih sila-pomeranja za Vogelov ram, dobijenih predloženim elementom s rezultatima nekoliko autora. Prvo ga je analizirao Vogel 1985. [27], čiji je model plastične zone (PZ) nepoznat autorima, a kasnije Klark 1994. [6], koji je koristio 50 PZ elemenata po stubu i 20 za gredu. Kim i Li [14] korištenjem komercijalnog softvera Abaqus, modelirali su ram sa 8952 2D-shell elementa. Alvarenga i Silveira [1] 2009. godine koristili su vlaknast model sa osam elemenata po stubu i šest u gredi. Poređenje sile nosivosti (granične tačke) i maksimalnih horizontalnih pomeranja gornjeg desnog čvora prezentovano je u Tabeli 1.

Figure 7 (right) shows the comparison of the load-deflection curves for Vogel’s frame predicted by the proposed element with results of several researchers. It was first analysed by Vogel in 1985. [27], whose plastic-zone (PZ) model is unknown to authors, and later by Clarke in 1994. [6], who used 50 PZ elements per column and 20 for the beam. Kim and Lee [14], using the Abaqus commercial software, modelled the frame with 8952 2D-shell elements. Alvarenga and Silveira [1] in 2009. used fibre model with 8 elements per column and 6 for the beam. Comparison of ultimate load (limit point) and maximum horizontal displacement of upper right joint is presented in Table 1.

Kao što se može videti iz Tabele 1, predloženom FB modelu je potreban samo jedan element po štapu kako bi postigao rezultate koji su dobijeni programom Abaqus sa dvodimenzionalnim konačnim elementima korišćenim u [14] ili osam vlaknastih elemenata kao u [1]. Ipak, preciznost u određivanju granične sile je značajno veća nego u određivanju pomeranja. U određenoj meri razlike mogu biti uslovljene različitim post-elasticnim modulom. U svim citiranim radovima korišćen je bilinearni model elastično-savršeno plastično, dok je u ovom radu usvojen post-elasticno ojačanje od 2.05 GPa kako bi se izbegle numeričke poteškoće i zbog čega se javlja donekle kružce ponašanje. Konačno, prezentovani podaci prikazuju zadovoljavajuće poklapanje rezultata dobijenih korišćenjem samo jednog predloženog FB elementa po štapu sa analizama s većim nivoom diskretizacije.

As it can be recognized from Table 1, proposed FB need only one element per member to match the results generated by Abaqus with two-dimensional finite elements used in [14] or 8 fibre elements as in [1]. Again, precision in determination of limit load is considerably greater than for a displacement. Some divergence of results can be attributed to different post-elastic modulus. In all cited analyses elastic-perfectly plastic bilinear model was used, while in present study post-elastic hardening of 2.05 GPa is adopted in order to avoid numerical difficulties and hence somewhat stiffer behaviour. Altogether, presented data illustrate considerable agreement between results obtained using only 1 proposed FB element per member and analyses with higher order of discretization.
3.1 Prikaz rezultata u matrix 3D

Pored pomenutih komercijalnih softvera (SAP2000 i SeismoStruct) postoji nekoliko akademskih koji koriste sličnu ili napredniju (korotacionalnu) formulaciju vlaknastog elementa u odnosu na prikazanu u ovom radu. Dva najčešće korišćena takva softvera su OpenSees, nastao na Berkley-u, koji je open-source softver, i Engineer's Studio, nastao na Univerzitetu u Tokiju. Ovi programe se uglavnom koriste za svrhe akademskih istraživanja, a ređe pri projektovanju objekata, zato što ne poseduju grafički interferej. Matrix 3D, iako primarno koncipiran kao akademski softver za analizu konstrukcija, osmišljen je i kao praktičan alat za naprednije analize inženjerima. Stoga je prezentacija rezultata dostupna u različitim oblicima. Na Slici 9 nalaze se različiti prikazi napona u celoj konstrukciji za odabrani nivo opterećenja: kompletni dijapazon napona u konstrukciji (levo), samo naponi u posmatranim presecima (sredina) i distribucija plastičnih deformacija u konstrukciji (desno). Poslednji prikaz je zapravo interpolirana (između preseka) prezentacija napona većih i manjih od dve zadate granice napona, ali ako se ove granice postave kao +/- granice tečenja, prikaz odgovara distribuciji plastičnih dilatacija.

Slika 3. Različiti tipovi prikaza rezultata
Figure 9. Various displays of results

3.1 Result presentation in matrix 3D

Beside mentioned commercial software (SAP2000 and SeismoStruct) there are several academic packages that use similar or more advanced (corotational) formulation of fibre element, than the one presented in this paper. Two most widely used are Open Sees, developed on Berkley, which is open source software, and Engineer's Studio, made in Tokyo University. These programs are mainly used for research purposes and rarely for design, since they do not possess graphical interface. Matrix 3D, even though primarily made as academic software, is meant to be practical engineers tool for more refined analyses. Therefore, presentation of results is possible in various manners. Figure 9 depicts displays of stresses in whole structure for a selected load step: full range of stresses in a structure (left), only stresses in observed sections (middle) and spread of plastic strains through the structure (right). The last one is actually a smoothened presentation (between sections) of a stresses higher and lower than two set stress limits, but if the limit is set to yield stress, the output corresponds to plastic strain distribution.
Pored globalnog pregleda rezultata, naponi i dilatacije, kao i radni dijagrami, mogu se sagledati za svako pojedinačno vlakno bilo kog preseka. Ovo je predstavljeno na slici 10 za HEA profil sa usvojenim početnim naponima kao u prikazanom primeru.

Besides the overall inspection of results, stresses and strains, along with stress strain curve, can be acquired for each fibre in any section. This is shown in Figure 10 for a HEA profile with initial stresses distribution as used in aforementioned examples.

4 ZAKLJUČCI I DISKUSIJA

Vlaknasti modeli imaju ključnu prednost pri preciznom predstavljanju ponašanja konstrukcija, s jednostavnom pripremom modela i u mogućnosti da prikažu rezultate koji su uobičajeni za inženjere, to jest dijagrame presečnih sila. To znači da nije potrebno dodatno vreme za modeliranje konstrukcija s vlaknastim elementima, u poređenju s klasičnim linijnim elementima. Pored toga, mnoge prednosti sofisticiranih i preciznih analiza su omogućene upotrebom vlaknastih elemenata. To su, na primer: uvođenje realnog ponašanja materijala, pronalaženje graničnog opterećenja i kritičnih konfiguracija, ili čak ponašanje konstrukcije posle tačke loma. U slučaju nelinearne dinamičke analize, elementima s raspodeljenom plastičnosti nije potrebna pretpostavka pozicije zglobova, jer su oni u mogućnosti da prikažu „stvarno“ rasprostiranje plastičnosti. Uz pomoć predstavljene formulacije, postoji mogućnost analiziranja ponašanja konstrukcija uz upotrebu veoma sofisticiranih materijalnih modela, i moguće je istraživati kolaps konstrukcije, ili pravu otpornost konstrukcije, pošto modeliranje destrukcije materijala ne unosi posebne numeričke teškoće.

Uzimajući u obzir čelične konstrukcije, kompletna geometrijsko-materijalna nelinearna analiza s početnim imperfekcijama (GMNIA) može biti izvršena sa ovim tipom elemenata i podešavanja u programu Matrix 3D. Uz dodatak naprednog heurističkog algoritma koji se koristi u programu Matrix 3D za odabir koraka opterećenja, granično opterećenje može biti određeno veoma precizno. Ovoj činjenici teže novi koncept koeficijenata sigurnosti. U Evrokođu 3, dimenzionisanje pritisnutih elemenata uključuje mnoge aproksimacije koje su morale biti uvedene u prošlosti. Uzimajući u obzir trenutni koncept kombinovanja dejstava i koeficijente sigurnosti, nepristasno je reći da je pomoć kompjutera neizbježna. Ovako analizom, koja je prezentovana, mogu se preciznije odrediti koeficijenti sigurnosti, što je i sam cilj dimenzionisanja.

Formulacija i numeričke procedure, koje su prezentovane ovdje, samo su mali deo akademskog CAD programa Matrix 3D. To je veoma razvijen, višenamenski program, koji obuhvata različite tipove nelinearnih geometrijski-materijalnih konfiguracija, ili even exploring the structural behaviour beyond limit point. And in the case of nonlinear dynamic analysis, elements with distributed plasticity need no presumptive positioning of hinges, and are able to show “true” spreading of plasticity. With the use of proposed formulation, there is a possibility to analyse structure behaviour through the use of a very sophisticated material models, and especially investigate collapse of structure, or real strength of a structure, since material damage fail to induce any numerical problems.

Considering steel structures, complete geometrically and materially nonlinear analysis with initial imperfection (GMNIA) can be performed with this type of element and setting in Matrix 3D. Including advanced heuristic algorithm Matrix 3D uses for load stepping, limit load of the structure can be very precisely determined. This fact aspire the new concept of safety coefficients. In Eurocode 3, design of compressed elements includes many approximations that had to be done in the past. Considering present concept of combining loads and safety coefficients, it is unbiased to say that computer aid is unavoidable. When such, analysis presented can determine safety coefficients more accurately which is the aim of design in general.

Formulation and numerical procedures presented here are just a small part of academic CAD software Matrix 3D. It is highly developed multipurpose software capable of different types of nonlinear analysis, including 2D and 3D finite elements, nonlinear dynamic analysis, impact loads, accelerometer inputs etc. On top of that, it is user friendly as everything can be set and viewed from

Figure 10. Results for a single fibre
analiza, uključujući 2D i 3D konačne elemente, nelinearne dinamičke analize, udarna opterećenja, ulaz akcelerograma i tako dalje. Pored toga, program je prilagođen korisniku, jer sve može biti podešeno i pregledano iz korisničkog interfejsa. Ovo predstavlja osnovnu prednost prezentovanog akademskog softvera u odnosu na OpenSees koji se smatra jednim od vodećih paketa za naučna numerička istraživanja. Dalje istraživanje, koje je već u toku, obuhvataće uvođenje modela proklizavanja veza (za armaturu i kompozitne preseke), uključenje smicanja u FB formulaciji, vitoperenje, adaptivnu pushover analizu i tako dalje. Prezentovani rad je drugi u nizu radova kojima će se potvrditi i verifikovati tačnost i mogućnosti novonastalog akademskog softvera za ispitivanje konstrukcija.

Zahvalnost
Ovaj rad je proistekao iz dela istraživačkog projekta TR 36043, koji je podržalo Ministarstvo prosvete i nauke Republike Srbije.

5 LITERATURA

LITERATURE

[1] Alvarenga A. R, Silveira R. A. M: Second-order plastic-zone analysis of steel frames Part I: Numerical formulation and examples of validation, Latin Amer J of Solids and Struct, Vol. 6, No.2, pp. 131-152, 2009.
[2] Ayoub A, Filippou F. C: Mixed formulation of bond-slip problems under cyclic loads, J of Struct Eng, Vol. 125, No. 6, pp. 661-671, 1999.
[3] Ayoub A, Filippou F. C: Mixed formulation of nonlinear steel-concrete composite beam-element, J of Struct Eng, Vol. 126, No. 3, pp. 371-381, 2000.
[4] Bažant Z, Cedolin L: Stability of structures, World Scientific, Singapore, 2010.
[5] Chen W, Lui E: Structural Stability: Theory and Implementation, Elsevier, Amsterdam, 1987.
[6] Clarke M. J: Plastic zone analysis of frames. In W.F. Chen and S. Toma, editors, Advanced analysis of steel frames: theory, software and applications. CRC Press, Boca Ratom, 1994.
[7] Criesfield M.A: Non-linear Finite Element Analysis of Solids and Structures, Vol.1, John Wiley & Sons, New York, USA, 2000.
[8] D’Ambrisi A, Filippou F. C: Modeling of cyclic shear behaviour in RC members, J of Struct Eng, Vol. 125, No.10, pp. 1143-1150, 1999.
[9] De Souza R.M: Force-based finite element for large displacement inelastic analysis of frames, PhD Thesis - Univ. Of California, Berkley, USA, 2000.
[10] De Souza Neto E.A, Peric D, Owen D.R.J: Computational methods for plasticity, Wiley, UK, 2008.
[11] Filippou F.C, D’Ambrisi A, Issa A: Nonlinear static and dynamic analysis of reinforced concrete subassemblages, Rep 92/08 EERC, Univ. Of California, Berkley, USA, 1992.

User interface. This is the basic advantage of the presented academic software compared to OpenSees, which is considered one of the leading packages for numerical scientific research. Future work that is already in progress will include introducing bond-slip model (for reinforcement and composite sections), including shear in FE formulation, warping, adaptive pushover etc. The present work is the second in a series of papers that will confirm and verify the accuracy and possibilities of newly academic software for testing of structures.

Acknowledgments

The work reported in this paper is a part of the investigation within the research project TR 36043 supported by the Ministry for Education and Science Republic of Serbia.
[21] Prestandardand Commentary for the Rehabilitation of Building (FEMA-356), Washington, DC: Federal Emergency Management Agency, 2000.

[22] Spacone E., Ciampi V., Filippou F.C.: Mixed formulation of nonlinear beam finite element, Comput Struct, Vol. 58, No.1, pp. 71-83, 1996.

[23] Spacone E., Ciampi V., Filippou F. C.: A beam element for seismic damage analysis, Rep 92/07 EERC, Univ. Of California, Berkley, USA, 1992.

[24] Taucer F, Spacone E, Filippou F.C: A fiber beam-column element for seismic response analysis of reinforced concrete structures, Rep 91/17 EERC, Univ. Of California, Berkley, USA, 1991.

[25] Thai H.T, Kim S.E: Second-order inelastic analysis of cable-stayed bridges, Finite Elements in Analysis and Design, Vol. 53, pp. 48–55, 2012.

[26] Thai H.T, Kim S.E: Practical advanced analysis software for nonlinear inelastic analysis of space steel structures, Advances in Engineering Software, Vol. 40, No. 9, pp. 786–797, 2009.

[27] Vogel U: Calibrating frames. Stahlbau,Vol. 54, pp. 295–311, 1985.

[28] Žarković D: Computer software for structural analysis and design of reinforced concrete structures, Zbornik radova Fakulteta tehničkih nauka, Novi Sad,Vol. 24, No. 5, pp. 1587-1590, 2009.

[29] Žarković D, Bruić Z, Ladinović Đ: Application of Ottosen’s model to flexural failure of RC beams, E-GTZ, Tuzla, BiH, 2016.

REZIME

IMPLEMENTACIJA VLAKNASTOG "STUB-GREDA" ELEMENTA U AKADEMSKI CAD SOFTVER - MATRIX 3D

Dorđe JOVANOVIĆ
Drago ŽARKOVIĆ
Zoran BRUJIC
Dorđe LADIJOVIĆ

U radu su prikazane teoretske osnove linijskog konačnog elemenata koji je implementiran i testiran u okviru akademskog softvera za analizu konstrukcija razvijenog na Fakultetu tehničkih nauka. Sam element je formulisan na osnovu interpolacije unutrašnjih sila i baziran na diskretizaciji poprečnog preseka na vlakna, kao i podeli štapa na proizvoljan broj preseka. Pored materijalne obuhvaćena je i geometrijska nelinearnost. Razmatrana su ineka numerička pitanja neophodna za izvođenje opisanog inkrementalno-iterativnog proračuna. Konačno, prikazani su rezultati proračuna i upoređeni sa dostupnim rezultatima.

Ključne reči: vlaknasti model, stub-greda, akademski softver, nelinearne analize

SUMMARY

FIBER BEAM-COLUMN ELEMENT IMPLEMENTATION IN ACADEMIC CAD SOFTWARE MATRIX 3D

Djordje JOVANOVIĆ
Drago ZARKOVIĆ
Zoran BRUJIC
Djordje LADIJOVIĆ

Theoretical foundations of beam-column finite element implemented (and tested) within academic CAD software developed on FTN (Department of civil engineering) are presented in this paper. Aforementioned FE is force-based fibre element, divided into a discrete number of monitored sections. Besides of material nonlinearity, finite-element is capable of capturing geometrical nonlinearity. Some of numerical issues needed for performing incremental-iterative solution procedures with those elements are addressed in the paper. Finally, results and comparison with available data are shown.

Key words: fibre element, beam-column, academic software, nonlinear analysis
Spisak simbola / Notation

Skalne veličine / Scalar values:

Simbol	Oznaka i opis
w_i	Gausovi težinski koeficijenti / Gauss weight coefficients
E_i	Jangov modul elastičnosti vlakna i / Young modulus of fiber i
A_i	površina vlakna i / area of fiber i
z_i, y_i	koordinate vlakna i u odnosu na težište preseka / coordinates of fiber i with respect to centroid of section
N	normalna sila u štapu / axial force in element
P	normalna sila u štapu / axial force in element
M_{ik}	moment savijanja oko i na kraju K štapa / bending moment around axis i, at the end K of element
R	radijus prelaza na radnom dijagramu Menegotto-Pinto modela / parameter of transition curve in Menegotto-Pinto material model
L	dužina štapa / element length
λ	parametar nivoa opterećenja / load level parameter
δ_λ	promena parametra nivoa opterećenja unutar jedne iteracije / change in load level parameter inside one iteration
x	prostorna koordinata duž elementa / space coordinate along the element

Vektori i matrice / Vectors and matrices:

Matrica i vektor	Oznaka i opis
K_{sys}	matrica krutosti sistema / system stiffness matrix
P_{ef}	ukupno opterećenje konstrukcije / total load of structure
P	vektor pomeranja krajeva štapa / vector of structure deformations
Q	vektor presečnih sila štapa / vector of element end forces
q	vektor deformacija štapa / vector of element deformations
L_{ele}	matrica transformacije štapa / element transformation matrix
s	vektor rezidualnih deformacija štapa / vector of residual element deformations

Matrica i vektor	Oznaka i opis
$b(x)$	interpolaciona funkcija presečnih sila u štapu / force interpolation matrix
F	matrica fleksibilnosti štapa / element flexibility matrix
$f(x)$	matrica fleksibilnosti preseka / sectional flexibility matrix
$k_{sec}(x)$	matrica krutosti preseka / sectional stiffness matrix
$D(x)$	vektor presečnih sila u preseku x / vector of section forces in section x
$D_U(x)$	vektor neuravnoteženih sila u preseku x / vector of unbalanced forces in section x
$D_R(x)$	vektor unutrašnjih sila u preseku x koje su posledica izračunatih napona u preseku / vector of residual section forces in section x as a result of calculated stresses
P_R	vektor unutrašnjih sila u štapu / vector of residual element forces
P_U	vektor neuravnoteženih sila u štapu / vector of unbalanced element forces
$r(x)$	vektor rezidualnih deformacija preseka / vector of residual sectional deformations
e_{fib}	dilatacija vlakna pod brojem fib / dilatation of fiber numberfib
$a_{fib}(x)$	linearna geometrijska matrica vlakana u preseku x / linear geometric matrix of fibers in sectionx
$d(x)$	vektor deformacije preseka / vector of sectional deformations

Predznaci veličine / Symbols:

Simbol	Oznaka i opis
Δ	označava promenu veličine usled datog inkrementa opterećenja ΔP / represent change of variable due to structure load increment ΔP
δ	označava promenu veličine između Newton-Raphson-ovih (NR) iteracija / represents change of variable between Newton-Raphson (NR) iterations