SARS-CoV-2 Cross-Reactivity in Prepandemic Serum from Rural Malaria-Infected Persons, Cambodia

Jessica Manning, Irfan Zaidi, Chanthap Lon, Luz Angela Rosas, Jae-Keun Park, Aiyana Ponce, Jennifer Bohl, Sophana Chea, Maria Karkanitsa, Sokunthea Sreng, Huy Rekol, Char Meng Chour, Dominic Esposito, Jeffery K. Taubenberger, Matthew J. Memoli, Kaitlyn Sadtler, Patrick E. Duffy, Fabiano Oliveira

Inhabitants of the Greater Mekong Subregion in Cambodia are exposed to pathogens that might influence serologic cross-reactivity with severe acute respiratory syndrome coronavirus 2. A prepandemic serosurvey of 528 malaria-infected persons demonstrated higher-than-expected positivity of nonneutralizing IgG to spike and receptor-binding domain antigens. These findings could affect interpretation of large-scale serosurveys.

Serological surveys for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the Greater Mekong Subregion (GMS) of Cambodia have been limited to those screening healthcare workers in 2 urban hospital-based settings (1,2). These antibody-based studies are necessary to determine at-risk populations and direct disease containment measures; however, before informing public health decisions, serologic assays require careful, country-specific calibration because several regions report fluctuating results or high background reactivity in different populations (3–5). This variability might be attributable to myriad serologic assays, the hypothesized cross-reactivity between common cold-type respiratory coronaviruses (6), previous Plasmodium infections (7,8; S. Lapidus et al., unpub. data, https://www.medrxiv.org/content/10.1101/2021.05.10.21256855v1), or previously uncharacterized betacoronaviruses in wildlife populations (9–11). Although many serologic SARS-CoV-2 investigations are in progress, considering how pathogen diversity in the GMS might influence estimations of SARS-CoV-2 seroprevalence is prudent.

The Study
We tested serum or plasma samples collected from 528 malaria-infected persons in Cambodia during 2005–2011 (before SARS-CoV-2 emerged in 2019) for IgG reactive to SARS-CoV-2 spike and receptor-binding domain (RBD) proteins by using ELISA (12,13). We used de-identified, anonymized serum or plasma samples biobanked after malaria research studies (NCT00341003, NCT00663546, and NCT01350856, approved by the National Institute of Allergy and Infectious Diseases and the National Ethics Committee on Human Research in Cambodia) for this retrospective study.

Because 6 other coronaviruses (OC43, HKU1, 229E, NL63, severe acute respiratory syndrome coronavirus 1 [SARS-CoV-1], and Middle East respiratory syndrome coronavirus) possess structural proteins capable of infecting humans, we selected highly specific ELISAs for the SARS-CoV-2 structural proteins (12,13). Compared with other coronaviruses, SARS-CoV-2 shows varying levels of spike protein sequence homology; levels are highest for SARS-CoV-1 (76% identity, 87% similarity) and lowest for the common cold coronavirus HKU1 (29% identity, 40% similarity) (12). Reactivity to both spike and RBD antigens above cutoff values is required for a positive test with reported sensitivity of 100% (95% CI 92.9%–100%) and specificity of 100% (95% CI 98.8%–100%) (12,13). Prepandemic samples had levels above the set cutoffs for SARS-CoV-2 spike and RBD antigens (Figure 1) varying from 4.4% to 13.8% positivity to both SARS-CoV-2 spike and RBD depending on which cutoff
SARS-CoV-2 Cross-Reactivity in Prepandemic Serum

values (calibrated for the Mali or US populations) were used for this assay (4,12,13) (Table; Figure 1; Appendix Table 1, https://wwwnc.cdc.gov/EID/article/28/2/21-1725-App1.pdf).

To test whether the higher-than-expected positivity was an artifact of our in-house ELISA, we tested a subset of samples with a commercially validated SARS-CoV-2 Spike S1-RBD IgG ELISA Detection Kit (Genscript, https://www.genscript.com). Of the 24 persons who were seronegative by in-house assay and 11 who were seropositive by in-house assay, 18 tested negative and 9 tested positive by the commercial test, yielding an overall concordance of 77.1% between assays (Appendix Table 2). This inconsistency might be explained by the stringency of the in-house assay that tests both spike and RBD versus the commercial kit that tests for RBD only; nevertheless, higher-than-expected positivity was observed in both assays. Because common cold coronaviruses do circulate in Cambodia, but no cases of SARS-CoV-1 or Middle East respiratory syndrome have been documented, we tested a subset of the cohort for IgG to HKU1 and OC43. Reactivity between subjects was comparable despite SARS-CoV-2 serostatus (Figure 2, panel A).

We further tested 289 samples to assess whether a relationship existed between antibodies to Plasmodium spp. and SARS-CoV-2 proteins by using 2 known malarial antigens: Plasmodium falciparum apical membrane antigen 1 (AMA-1), which is highly immunogenic and an indicator of parasite exposure, and P. falciparum Pfsp25 protein (Pfs25), which is poorly immunogenic and expressed only during

Table. SARS-CoV-2 ELISA results by cutoff values in prepandemic serum samples from rural malaria-infected persons in 3 Cambodia provinces, 2005–2011*

Province	Year	Total	No. positive by 2 SDs	No. positive by 3 SDs	No. positive, Mali
Preah Vihear	2011	81	12 (15)	6 (7)	5 (6)
Pursat	2005	80	8 (10)	4 (5)	3 (4)
	2009	76	12 (16)	6 (8)	3 (0.9)
	2010	81	5 (6)	3 (4)	1 (0.3)
	2011	110	17 (15.5)	12 (11)	6 (5.4)
Subtotal		347	42 (12)	25 (7)	13 (3.7)
Ratanakiri	2011	100	19 (19)	6 (6)	5 (5)
Total		528	73 (13.8)	37 (7)	23 (4.4)

*Values are no. (%) except as indicated. Using United States arbitrary ELISA unit cutoffs of 2 SDs for spike (0.674) and receptor binding domain (RBD) (0.306); United States 3 SDs for spike (0.910) and RBD (0.387); and Mali cutoff for spike (0.791) and RBD (1.183). SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
the mosquito stages of parasite development (4) (Figure 2, panels B–E). Of note, when we grouped samples by SARS-CoV-2 serostatus, we detected significantly higher levels of AMA-1 antibodies in SARS-CoV-2–seropositive persons than seronegative persons (mean AMA-1 antibody level 3.0 vs. 2.1; p = 0.0003) (Figure 2, panel B). As expected, no difference was seen in antibody levels to Pfs25 with regard to SARS-CoV-2 seropositivity (Figure 2, panel C). A weak but statistically significant positive correlation was detected between spike and RBD with AMA-1 IgG (Figure 2, panel D). This finding corroborates recent observations that higher SARS-CoV-2 seroreactivity by ELISA or rapid tests is detected in persons from malaria-endemic areas, expanding previous observations to include Southeast Asia (7,8; S. Lapidus et al., unpub. data). We also evaluated samples for seroreactivity against the nucleocapsid protein that also positively correlated with the AMA-1 IgG. Only nucleocapsid antibodies were weakly correlated with Pfs25 antibodies, which reinforces the argument for nonspecific nucleocapsid reactivity (Figure 2, panel E). Preincubation with 10 mg/mL of AMA-1 or bovine serum albumin had no notable effect on reactivity to SARS-CoV-2 spike S1-RBD (Figure 2, panel F). Therefore, Plasmodium spp. exposure might contribute to SARS-CoV-2 malaria-related background reactivity. This reactivity could be attributed to immune responses to other Plasmodium spp. proteins, polyclonal B cell activation during infection, or interaction with the sialic acid moiety on N-linked glycans of the SARS-CoV-2 spike protein (7; S. Lapidus et al., unpub. data). Of note, SARS-CoV-2 spike proteins used in the assays were produced in HEK293 mammalian cells and likely have comparable glycosylation patterns. Elsewhere, malaria-induced cross-reactivity in prepandemic samples from malaria-experienced persons from malaria-positive rural persons in Cambodia, 2005–2011, to A) common cold OC43 and HKU1 viruses, B) Plasmodium falciparum AMA-1 and C) P. falciparum Pfs25 protein by SARS-CoV-2 serosurvey statuses. D–E) Correlation of mean IgG levels of AMA-1 and Pfs25 against Spike (blue triangles), RBD (red circles) and NC (open circles) IgG levels in prepandemic serum samples from malaria-positive rural persons in Cambodia. F) OD levels of RBD protein after preincubation of serum samples with 10 mg/mL of AMA-1 or BSA. AMA-1, apical membrane antigen 1; BSA, bovine serum albumin; NC, nucleocapsid; OD, optical density; RBD, receptor binding domain; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
Africa was mitigated by the modification of 2 commercial assays to add a urea wash (S. Lapidus et al., unpub. data).

To elucidate the functionality of the detected antibodies, we took a subset (n = 21) of the samples with the highest reactivity to SARS-CoV-2 total IgG and performed neutralization assays (Appendix Figure). No neutralizing activity was identified despite high levels of antibodies reacting to both spike and RBD proteins. Identical results were obtained by using a surrogate virus neutralization test targeting RBD interaction with the host cell receptor ACE2 (Genscript) (Appendix Table 3) (14). Both SARS-CoV-2 infection and vaccination can trigger high levels of nonneutralizing antibodies, whereas neutralizing antibodies aimed primarily at the RBD seem to wane faster and remain at low titers (14). Plausibly, the cross-reactive nonfunctional antibodies to SARS-CoV-2 were raised during an infection by Plasmodium spp. (S. Lapidus et al., unpub. data), but we cannot discard the hypothesis that nonneutralizing SARS-CoV-2–reactive antibodies in prepanemic serum samples might be linked to the ability of betacoronaviruses to evade immune recognition because of their complex surfaces (14,15). A limitation in understanding the assays’ specificity is the lack of prepanemic samples from non–malaria-endemic areas and from present-day confirmed SARS-CoV-2 convalescent samples in Cambodia.

Conclusions

We found in a widely used, highly specific, and validated ELISA that ≈4%–14% of prepanemic serum samples from malaria-infected persons in Cambodia were positive for nonneutralizing antibodies to SARS-CoV-2 spike and RBD antigens by using various standardized optical density cutoff values (4,12,13). We noted a relationship between increased SARS-CoV-2 seroreactivity and antimalarial humoral immunity, which was also recently shown in Africa (S. Lapidus et al., unpub. data). The plausibility of regular spillover events, or simply increased exposure to uncharacterized betacoronaviruses, as a reason for SARS-CoV-2 cross-reactivity is also increased in settings at high risk for zoonotic disease transmission because of agricultural and dietary practices such as bat guano collection and consumption of wild meats (9–11). Given that 50%–80% of GMS residents are classified as rural, careful calibration of serologic assays targeting SARS-CoV-2 will be necessary in national and subnational serosurveys. Although neutralization assays with live virus are often considered the standard because of their specificity, they are cost-prohibitive for large-scale serosurveys. The use of competition ELISA assays such as surrogate virus neutralization tests targeting the RB-DACE2 blockade might be an attractive option for populations at high risk for zoonotic exposures in resource-scare settings without Biosafety Level 3 facilities.

Acknowledgments

We thank the participants of the studies in Pursat, Ratanakiri, and Preah Vihear provinces and the original study protocol staff.

This research was supported by the Intramural Research Program of the NIH, National Institute of Allergy and Infectious Diseases.

About the Author

Dr. Manning is an infectious diseases physician-scientist focused on vector-borne disease epidemiology. She is currently based in Phnom Penh as an Assistant Clinical Investigator for the National Institute of Allergy and Infectious Diseases and its International Center of Excellence in Research Cambodia.

References

1. Song LH, Hoan NX, Bang MH, Kremsner PG, Velavan TP. Viral and serological testing of SARS-CoV-2 among health care workers and patients in Vietnam. Lancet Reg Health West Pac. 2021;8:100113. https://doi.org/10.1016/j.lanwpc.2021.100113
2. Nop sopon T, Pongpirul K, Chotirosnimarat K, Jakae w K, Kaewwinit C, Kanchana S, et al. Seroprevalence of hospital staff in a province with zero COVID-19 cases. PLoS One. 2021;16:e0238088. https://doi.org/10.1371/journal.pone.0238088
3. Uyoga S, Adetifa IMO, Karanja HK, Nyagwange J, Tuju J, Wanjiku P, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Kenyan blood donors. Science. 2021;371:79–82. https://doi.org/10.1126/science.abe1916
4. Sagara I, Woodford J, Dicko A, Zeguine A, Doucoure M, Kwan J, et al. Rapidly increasing SARS-CoV-2 seroprevalence and limited clinical disease in 3 Malian communities: a prospective cohort study. Clin Infect Dis. 2021 Jun 29 [Epub ahead of print]. https://doi.org/10.1093/cid/ciab589
5. Murhekar MV, Bhatnagar T, Selvaraju S, Saravanakumar V, Thangaraj JWV, Shah N, et al.; ICMR Serosurveillance Group. SARS-CoV-2 antibody seroprevalence in India, August-September, 2020: findings from the second nationwide household serosurvey. Lancet Glob Health. 2021;9:e257–66. https://doi.org/10.1016/S2214-109X(20)30344-1
6. Ng KW, Faulkner N, Cornish GH, Rosa A, Harvey R, Hussain S, et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science. 2020;370:1339–43. https://doi.org/10.1126/science.abc1107
7. Steinhardt LC, Ige F, Iriemienam NC, Greby SM, Hamada Y, Uwandu M, et al. Cross-reactivity of two SARS-CoV-2 serological assays in a setting where malaria is endemic. J Clin Microbiol. 2021;59:e0051421. https://doi.org/10.1128/JCM.00514-21
8. Vanroye F, Bossche DVD, Brosius I, Tack B, Esbroeck MV, Jacobs J. COVID-19 antibody detecting rapid diagnostic tests show high cross-reactivity when challenged with pre-pandemic malaria, schistosomiasis and Dengue samples. Diagnostics (Basel). 2021;11:1163. https://doi.org/10.3390/diagnostics11071163

9. Delaune D, Hu V, Karlsson EA, Hassanin A, Ou TP, Baidaliuk A, et al. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. Nat Commun. 2021;12:6563. https://doi.org/10.1038/s41467-021-26809-4

10. Wacharapluesadee S, Tan CW, Maneeorn P, Duengkae P, Zhu F, Joyjinda Y, et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. [Erratum in: Nat Commun. 2021;12:1430]. Nat Commun. 2021;12:972. https://doi.org/10.1038/s41467-021-21240-1

11. Huong NQ, Nga NTT, Long NV, Luu BD, Latinne A, Pruvot M, et al. Coronavirus testing indicates transmission risk increases along wildlife supply chains for human consumption in Viet Nam, 2013–2014. PLoS One. 2020;15:e0237129. https://doi.org/10.1371/journal.pone.0237129

12. Klumpp-Thomas C, Kalish H, Drew M, Hunsberger S, Snead K, Fay MP, et al. Standardization of ELISA protocols for serosurveys of the SARS-CoV-2 pandemic using clinical and at-home blood sampling. Nat Commun. 2021;12:113. https://doi.org/10.1038/s41467-020-20383-x

13. Hicks J, Klumpp-Thomas C, Kalish H, Shunmugavel A, Mehalko J, Denson J-P, et al. Serologic cross-reactivity of SARS-CoV-2 with endemic and seasonal betacoronaviruses. J Clin Immunol. 2021;41:906–13. https://doi.org/10.1007/s10875-021-00997-6

14. Tan CW, Chia WN, Qin X, Liu P, Chen M-C, Tiu C, et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat Biotechnol. 2020;38:1073–8. https://doi.org/10.1038/s41587-020-0631-z

15. Bachmann MF, Mohsen MO, Zha L, Vogel M, Speiser DE. SARS-CoV-2 structural features may explain limited neutralizing-antibody responses. NPJ Vaccines. 2021;6:2. https://doi.org/10.1038/s41541-020-00264-6

Address for correspondence: Fabiano Oliveira, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Pkwy, Rockville, MD 20852, USA; email: loliveira@niaid.nih.gov
SARS-CoV-2 Cross-Reactivity in Prepandemic Serum from Rural Malaria-Infected Persons, Cambodia

Appendix

Appendix Table 1. SARS-CoV-2 seroreactivity in rural malaria-experienced persons by site, year, sex, and age, Cambodia*

Site	Samples	Year	Male	Female	<10 y	10–17 y	>18 y
Preah Vihear	81 (15)	2011	51 (9.7)	30 (5.7)	7 (1.6)	27 (6.0)	47 (10.5)
	2009						
	2010						
	2011						
Pursat	347 (66)	2005	261 (49.4)	86 (16.3)	20 (4.5)	71 (15.9)	256 (57.3)
	2009						
	2010						
	2011						
Ratanakiri†	100 (19)	2011	11 (2.1)	8 (1.5)	6 (1.3)	7 (1.6)	6 (1.3)
Total	528	528	323 (61.2)	124 (23.5)	33 (7.4)	105 (20.3)	309 (60.1)

*All values are no. (%) unless otherwise indicated. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
†81 samples were missing data on sex and age.

Appendix Table 2. Seropositivity status by 2 SARS-CoV-2 IgG assays in rural malaria-experienced persons, Cambodia*

Participant no.	Test 1 Spike / RBD 2 SD cutoff	Mean RBD OD (450nm)	Mean Spike OD (450nm)	Test 2 Genscript / Spike S1-RBD Cutoff‡	Mean (450nm)/Cutoff (0.12) >1
1	Negative	0.2157	0.2637	Negative	Positive
2	Negative	0.0813	0.1241	Negative	Positive
3	Negative	0.0847	0.3078	Negative	Positive
4	Negative	0.0480	0.0532	Negative	Positive
5	Negative	0.0854	0.5203	Negative	Positive
6	Negative	0.0616	0.1983	Negative	Positive
7	Negative	0.0613	0.1358	Positive	Positive
8	Negative	0.0369	0.0361	Negative	Positive
9	Positive	3.7444	0.7881	Positive	Positive
10	Negative	0.1912	0.2379	Negative	Positive
11	Negative	3.8750	0.4312	Positive	Negative
12	Negative	3.8917	0.4280	Positive	Negative
13	Negative	3.8517	0.3964	Positive	Negative
14	Negative	3.8069	0.3910	Positive	Negative
15	Positive	3.8931	0.9565	Positive	Negative
16	Positive	3.8532	0.9306	Positive	Negative
17	Positive	2.5646	0.7263	Positive	Negative
18	Positive	3.8824	1.9820	Positive	Positive
19	Positive	3.4743	0.9039	Positive	Positive
20	Negative	2.2409	0.6454	Positive	Positive
21	Positive	3.8911	1.9976	Positive	Positive
22	Negative	0.2088	0.2645	Negative	Positive
23	Negative	0.2221	0.1648	Negative	Positive
24	Negative	0.1635	0.1754	Negative	Positive
25	Negative	0.2032	0.2628	Negative	Positive
26	Positive	3.9031	1.5984	Positive	Positive
27	Negative	0.2109	1.0731	Negative	Positive
28	Negative	0.2123	0.2391	Negative	Positive
29	Negative	0.1325	0.1466	Negative	Positive
30	Positive	3.7932	0.9603	Positive	Positive
31	Positive	2.3932	1.5027	Positive	Positive
32	Negative	0.2703	0.3775	Negative	Positive
33	Negative	0.2216	0.3375	Negative	Positive
Appendix Table 3. SARS-CoV-2 surrogate virus neutralization test results in rural malaria-experienced persons, Cambodia*

Participant no.	Test 1 Spike / RBD 2 SD cutoff	Mean RBD OD (450nm)	Mean Spike OD (450nm)	Test 2 Gen script / Spike S1-RBD Cutoff	Mean (450nm)	Cutoff (0.12) >1
34	Negative	3.6172	0.4099	Negative	0.0972	0.8007
35	Positive	3.1024	0.7545	Positive	0.6504	5.3575

*RBD, receptor binding domain; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
†Positives for test 2 gen script = mean OD 450/cutoff (0.12) >1.

Participant no.	Mean OD sVNT assay Mean/Positive CTRL (1-Mean/Positive CTRL) % neutralizing capacity Detectable SARS-CoV-2 neutralizing antibody Mean RBD Mean Spike tive Spike/RBD seropositive					
1	2.9965	1.3873	−0.3873	−38.73	NO	0.2157
2	2.9837	1.3814	−0.3814	−38.14	NO	0.0813
3	3.0597	1.4166	−0.4166	−41.66	NO	0.0847
4	3.0404	1.4076	−0.4076	−40.76	NO	0.048
5	2.8734	1.3303	−0.3303	−33.03	NO	0.0854
6	2.9994	1.3886	−0.3886	−38.86	NO	0.06165
7	3.0158	1.3962	−0.3962	−39.62	NO	0.0613
8	2.8516	1.3202	−0.3202	−32.02	NO	0.03685
9	2.2910	1.0607	−0.0607	−0.67	NO	3.74435
10	2.8065	1.2993	−0.2993	−29.93	NO	0.1912
11	2.2671	1.0496	−0.0496	−0.46	NO	3.87495
12	2.3722	1.9962	−0.0982	−9.82	NO	3.8917
13	2.5024	1.1585	−0.1585	−15.85	NO	3.8971
14	2.5129	1.1634	−0.1634	−16.34	NO	3.08685
15	2.4956	1.1554	−0.1554	−15.54	NO	3.89305
16	2.5930	1.2005	−0.2005	−20.05	NO	3.85315
17	2.2649	1.0486	−0.0486	−4.86	NO	2.56455
18	2.5655	1.1878	−0.1878	−18.78	NO	3.8824
19	2.2631	1.0477	−0.0477	−4.77	NO	3.47425
20	2.4580	1.1371	−0.1371	−13.71	NO	2.2409
21	1.8539	0.8583	0.1417	14.17	NO	3.8911
22	2.8783	1.3326	−0.3326	−33.26	NO	0.2088
23	2.8563	1.3224	−0.3224	−32.24	NO	0.2221
24	2.6625	1.2326	−0.2326	−23.26	NO	0.1635
25	2.7740	1.2843	−0.2843	−28.43	NO	0.20315
26	2.4614	1.1396	−0.1396	−13.96	NO	3.90305
27	2.8388	1.3143	−0.3143	−31.43	NO	0.21085
28	2.7149	1.2569	−0.2569	−25.69	NO	0.2123
29	2.6724	1.2373	−0.2373	−23.73	NO	0.13245
30	2.2980	1.0639	−0.0639	−6.39	NO	3.79315
31	1.9825	0.9178	0.0822	8.22	NO	2.39315
32	2.1600	1.0000	0.0000	0.00	NO	0.27025
33	2.8539	1.3213	−0.3213	−32.13	NO	0.22155
34	2.4904	1.1530	−0.1530	−15.30	NO	3.6172
35	2.3534	1.0895	−0.0895	−8.95	NO	3.10235

*SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; sVNT, surrogate virus neutralization test.
Appendix Figure. Microneutralization of SARS-CoV-2 in serum samples from pre-pandemic malaria-experienced rural persons, Cambodia. Twenty-one SARS-CoV-2 ELISA-positive Cambodian serum samples, negative controls (serum samples from US patients in 2014), and positive controls (serum samples from US patients who died of SARS-CoV-2 infection in 2020) were heat-inactivated (56°C, 1hr), serially 2-fold diluted (1:10 to 1:1,280) in OptiPRO SFM (catalog no. 12309–019, ThermoFisher Scientific, https://www.thermofisher.com) supplemented with 2mM L-Glutamine (catalog no. 25030–081, ThermoFisher Scientific) and 1x Antibiotic-Antimyctotic (catalog no. 15240062, ThermoFisher Scientific). Diluted serum samples were mixed with an equal volume of SARS-CoV-2 diluted to 200 TCID50/25µl (USA-WA1/2020, catalog no. NR-52281, BEI Resources, https://www.beiresources.org) and incubated at room temperature for 1 hour. Fifty micro liter of the virus-plasma mixture was added in triplicate to Vero cells grown in a 96-well plate and incubated for 3 days at 37°C in a humidified incubator with 5% CO2. After incubation, media was removed and 200µL of 10% neutral buffered formalin was added and incubated at room temperature for 30 min to inactivate the virus and fix the cells. After incubation, the plates were washed 3 times with wash buffer (0.05% Tween 20 in PBS), and 1:4,000 diluted SARS-CoV-2 nucleocapsid antibody (catalog no. 40143-R001, Sino Biological, https://www.sinobiological.com) was added to each well (50 µL per well). After incubation (room temperature, 1hr), the plates were washed 3 times, and 1:10,000 diluted horseradish peroxidase-conjugated anti-rabbit IgG antibody (catalog no.
32460, ThermoFisher Scientific) was added (100 µl per well), and the plates were incubated at room temperature for 1 hr. The plates were then washed 6 times followed by 30 min of room temperature incubation with horseradish peroxidase substrate solution (100 µL per well) prepared by adding a 10-mg o-phenylenediamine dihydrochloride tablet (catalog no. P8287, MilliporeSigma, https://www.sigmaaldrich.com) to 20 mL of phosphate citrate buffer preparation (catalog no. P4922, MilliporeSigma). The reaction was stopped by adding 1 M sulfuric acid (100 µL per well), and the optical density was measured at 492 nm (OD492). To calculate percent infection, the optical density obtained with the lowest amount of serum (1:1,280) was used to set 100% infection for each serum sample. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.