Physics Motivation

• Important test of
 • pQCD calculations.
 • multi-parton interactions.
• Investigate the interplay between hard and soft components in a pp collision.
• Investigate the increase of particle yields with multiplicity.
 • Role of auto-correlation effects already introduce stronger than linear increase with multiplicity.

New measurements performed in pp collisions at $\sqrt{s} = 13$ TeV with improved precision

S.G. Weber et al., EPJ C 79, (2019) 1, 36
Measurement of D-meson production as a function of charged particle multiplicity in proton–proton collisions at $\sqrt{s} = 13$ TeV with ALICE at the LHC

Methodology

- Charged-particle multiplicity: estimated at mid rapidity as the number of tracklets ($N_{\text{tracklets}}$) in the SPD.
- $N_{\text{tracklets}}$ to $dN_{\text{ch}}/d\eta$ conversion via $N_{\text{tracklets}}$ vs N_{ch} correlation distribution.
- D-meson raw yield extracted after PID and topological selections via invariant mass fit.
- D-meson self-normalized yield is defined as

$$Y_{\text{mult}}^{\text{corr}} = \left(\frac{Y_{\text{mult}}}{\left(e_{\text{mult}} \times N_{\text{mult}} / e_{\text{trg}}^{\text{mult}} \right)} \right) / \left(\frac{Y_{\text{mult int}}}{\left(e_{\text{mult int}} \times N_{\text{mult int}} / e_{\text{trg}}^{\text{mult int}} \right)} \right)$$

Y_{mult} is the extracted raw yield, e_{mult} is the acceptance \times efficiency, N_{event} is the number of events, and $e_{\text{trg}}^{\text{mult}}$ is the trigger efficiency for a particular multiplicity interval. The numerator is normalized to the corresponding quantity for the multiplicity integrated sample.

Datasets
- 2016, 2017, 2018 Minimum bias triggered data (32 nb^{-1})
- 2018 High multiplicity SPD triggered data (0.8 pb^{-1})

D-meson decay channels
- $D^0 \rightarrow K^- \pi^+$
- $D^+ \rightarrow K^- \pi^+ \pi^+$
- $D^{*+} \rightarrow D^0 \pi^+$
Measurement of D-meson production as a function of charged particle multiplicity in proton—proton collisions at $\sqrt{s} = 13$ TeV with ALICE at the LHC

Results

- Self-normalized yields show stronger than linear increase as a function of $dN_{ch}/d\eta/\langle dN_{ch}/d\eta \rangle$ and steeper rise at higher p_T

- Agreement between D-meson self-normalized yields in pp collisions at $\sqrt{s} = 13$ TeV and 7 TeV
Measurement of D-meson production as a function of charged particle multiplicity in proton—proton collisions at $\sqrt{s} = 13$ TeV with ALICE at the LHC

Results

- Similar trend of self-normalized yield for D-meson, electrons from heavy flavour hadron decays, and J/ψ at mid-rapidity, both at low and high p_T.
- A large contribution from autocorrelation effects.

Graphs

- Low p_T graph showing $dN_{\text{ch}}/d\eta$ for D^0, D^* mesons.
- High p_T graph showing $dN_{\text{ch}}/d\eta$ for D^0, D^* mesons.

S.G. Weber et al., EPJ C 79, (2019) 1, 36
Measurement of D-meson production as a function of charged particle multiplicity in proton–proton collisions at $\sqrt{s} = 13$ TeV with ALICE at the LHC

Conclusions

- EPOS3 generator assuming flux tube initial conditions followed by a hydrodynamical evolution, shows a faster than linear increase which is qualitatively comparable to data.
- EPOS3 without the hydro component underestimates the measurements.
- CGC Pomeron3, using a colour dipole framework, with the contribution of a three pomeron fusion correction, shows a departure from a linear multiplicity dependence but overestimates the increasing trend.

Comparisons with models

- Average D-meson self-normalized yields measurements vs multiplicity in pp collisions at $\sqrt{s} = 13$ TeV show stronger than linear increase with strong p_T dependence \rightarrow Large contribution from auto-correlation is expected.
- Average D-mesons in pp at $\sqrt{s} = 7$ TeV, J/ψ and $c, b \rightarrow e$ in pp at $\sqrt{s} = 13$ TeV are compatible in similar p_T and multiplicity intervals.
- EPOS with hydro predictions fairly describes the results, EPOS without hydro underestimates and 3-pomeron CGC model overestimates the results.

References

- K. Werner et al., PRC 89, (2014), 064903
- I. Schmidt et al., PRD 101, (2020), 094020
- S.G. Weber et al., EPJ C 79, (2019) 1, 36