Machinery, regulation and pathophysiological implications of autophagosome maturation

Yan G. Zhao, Patrice Codogno and Hong Zhang

Abstract | Autophagy is a versatile degradation system for maintaining cellular homeostasis whereby cytosolic materials are sequestered in a double-membrane autophagosome and subsequently delivered to lysosomes, where they are broken down. In multicellular organisms, newly formed autophagosomes undergo a process called ‘maturation’, in which they fuse with vesicles originating from endolysosomal compartments, including early/late endosomes and lysosomes, to form amphisomes, which eventually become degradative autolysosomes. This fusion process requires the concerted actions of multiple regulators of membrane dynamics, including SNAREs, tethering proteins and RAB GTPases, and also transport of autophagosomes and late endosomes/lysosomes towards each other. Multiple mechanisms modulate autophagosome maturation, including post-translational modification of key components, spatial distribution of phosphoinositide lipid species on membranes, RAB protein dynamics, and biogenesis and function of lysosomes. Nutrient status and various stresses integrate into the autophagosome maturation machinery to coordinate the progression of autophagic flux. Impaired autophagosome maturation is linked to the pathogenesis of various human diseases, including neurodegenerative disorders, cancer and myopathies. Furthermore, invading pathogens exploit various strategies to block autophagosome maturation, thus evading destruction and even subverting autophagic vacuoles (autophagosomes, amphisomes and autolysosomes) for survival, growth and/or release.

Here, we discuss the recent progress in our understanding of the machinery and regulation of autophagosome maturation, the relevance of these mechanisms to human pathophysiology and how they are harnessed by pathogens for their benefit. We also provide perspectives on targeting autophagosome maturation therapeutically.
to drive membrane fusion.

Motifs of these proteins are assembled into a hetero-

dynamics, such as vesicle

extracellular release.

bound intraluminal vesicles.

Phosphoinositides

of the

and also promote the assembly

vesicles to target membranes

that link the transported

space and periphery of cells maximizes the frequency of

Viruses and bacteria thereby evade destruction and

viruses and bacteria also widely target maturation of

also accumulate autophagic vacuoles for their survival,

neurodegeneration, muscle diseases and cancer. We

further discuss the causative link between impaired

defects of autophagosome maturation in relevant human

of autophagosomes with endosomes/lysosomes

requires the concerted actions of cognate SNARE (soluble

is tightly controlled and highly responsive to nutrient

activities of partially redundant factors or mechanisms.

usually causes a weaker defect and gradual accumula-

function of genes acting at autophagosome maturation

based autophagic marker

structures after closure (which can be differentiated

from isolation membranes by co-labelling with markers

for other autophagy proteins or use of the HaloTag–LC3

method19), double-membrane autophagosomes cannot

be distinguished from single-membrane amphisomes

and autolysosomes. Hence, LC3-marked structures

after closure should be referred to as ‘autophagic vacu-

unless the structure has been unambiguously

maturation of autophagic vacuoles. Hence, LC3 subfamily

and the GABARAP subfamily, also help to recruit other factors such as tethers

and RAB guanine nucleotide exchange factors (GEFs) for

Autophagic vacuoles are decorated with lipidated

(phosphatidylethanolamino-conjugated) ubiquitin-like autophagy proteins related to yeast Atg8. These

proteins, in the LC3 subfamily or the GABARAP subfamily,

also need to recruit other factors such as tethers and

RAB guanine nucleotide exchange factors (GEFs) for

maturation26,27. LC3 is a widely used autophagic marker

that labels autophagic structures at different stages of biogenesis, and, together with markers for late endosomes/

lysosomes, it accumulates on amphisomes during maturation.

Of note, in studies using LC3 to label autophagic

structures after closure (which can be differentiated

from isolation membranes by co-labelling with markers

for other autophagy proteins or use of the HaloTag–LC3

method19), double-membrane autophagosomes cannot

be distinguished from single-membrane amphisomes

and autolysosomes. Hence, LC3-marked structures

after closure should be referred to as ‘autophagic vacu-

ole’ unless the structure has been unambiguously

demonstrated.

Machinery for autophagosome fusion

Maturation of autophagosomes requires their fusion with functional endolysosomal compartments such as early endosomes, late endosomes/multivesicular bodies and lysosomes. Accordingly, disturbances in biogenesis of these endolysosomal compartments — such as those caused by the loss of function of subunits of the ESCRT (endosomal sorting complexes required for transport) complex and COP1 vesicles — cause accumulation of non-degradative autophagic vacuoles25,26. Fusion of autophagosomes with late endosomes/lysosomes involves the concerted action of RABs, tethers and the SNARE complex. Membrane fusion is driven by the assembly of a trans-SNARE complex composed of Qa, Qb, Qc and R SNAREs18. Tethering factors, which are recruited to target membranes and/or fusing vesicles by the active form of small RAB GTPases, phosphoinositides and SNARE proteins, facilitate the initial capture of vesicles and subsequent formation of the trans-SNARE complex26,27.

Autophagic vacuoles are decorated with lipidated (phosphatidylethanolamine-conjugated) ubiquitin-like autophagy proteins related to yeast Atg8. These proteins, in the LC3 subfamily or the GABARAP subfamily, also help to recruit other factors such as tethers and RAB guanine nucleotide exchange factors (GEFs) for maturation26,27. LC3 is a widely used autophagic marker that labels autophagic structures at different stages of biogenesis, and, together with markers for late endosomes/lysosomes, it accumulates on amphisomes during maturation. Of note, in studies using LC3 to label autophagic structures after closure (which can be differentiated from isolation membranes by co-labelling with markers for other autophagy proteins or use of the HaloTag–LC3 method19), double-membrane autophagosomes cannot be distinguished from single-membrane amphisomes and autolysosomes. Hence, LC3-marked structures after closure should be referred to as ‘autophagic vacuoles’ unless the structure has been unambiguously demonstrated.

The role of SNARE complexes. SNARE complexes formed by autophagosomal membrane-localized STX17 (Qa), SNAP29 (Qbc) and late endosomal/lysosomal-localized VAMP8 (Vamp7 in flies and VAMP-7 in worms), or by the autophagosomal YKT6, SNAP29 and late endosomal/lysosomal-localized STX7, function partially redundantly to drive fusion of autophagosomes with late endosomes/lysosomes28–30 (Fig. 1a). Targeting of STX17 to forming autophagosomes accompanies autophagosome closure32. The small guanosine triphosphatase IRGM facilitates translocation of STX17 to autophagosomes by interacting with STX17 and ATG8-like proteins on the autophagosomal membrane19. SNAP29 is recruited by interacting with other SNAREs. STX17–SNAP29 complex assembly is promoted by the autophagosome-associated autophagy protein ATG14, which directly interacts with STX17 (Ref.31) (Fig. 1a). Different SNARE complexes may act at different steps of autophagosome maturation or drive fusion of autophagic vacuoles with different sets of late endosomes/lysosomes32,33. Postfusion SNAREs disassemble and return to their donor compartments to

V-ATPase

A proton pump, driven by ATP hydrolysis, which transports protons into the lumen of membrane compartments for their acidification. V-ATPases are multisubunit complexes, containing V1 and V0 sectors.

SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes

Complexes consisting of the Qa, Qb, Qc and R SNARE proteins in opposing membranes. The SNARE motifs of these proteins are assembled into a hetero-

extracellular release.

bound intraluminal vesicles.

Phosphoinositides

of the

and also promote the assembly

vesicles to target membranes

space and periphery of cells maximizes the frequency of

Viruses and bacteria thereby evade destruction and

viruses and bacteria also widely target maturation of

also accumulate autophagic vacuoles for their survival,

neurodegeneration, muscle diseases and cancer. We

further discuss the causative link between impaired

defects of autophagosome maturation in relevant human

of autophagosomes with endosomes/lysosomes

requires the concerted actions of cognate SNARE (soluble

is tightly controlled and highly responsive to nutrient

activities of partially redundant factors or mechanisms.

usually causes a weaker defect and gradual accumula-

function of genes acting at autophagosome maturation

usually causes a weaker defect and gradual accumula-

as vesicle transport, fusion and positioning.

Endocytic vesicles formed by invagination of the endosomal membrane to form membrane-bound intraluminal vesicles. They subsequently undergo lysosomal degradation or extracellular release.

Multivesicular bodies

Endocytic vesicles formed by invagination of the endosomal membrane to form membrane-bound intraluminal vesicles. They subsequently undergo lysosomal degradation or extracellular release.

Author addresses

1Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, People’s Republic of China.

2Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France.

3National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China.

4College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China.
Autophagy, a lysosome-mediated degradation system, is an evolutionarily conserved pathway for recycling cellular content and for removing aggregated proteins, damaged organelles and invading pathogens (for example, viruses and bacteria) to maintain normal cellular function and homeostasis. Autophagy occurs in a stepwise manner involving sequential membrane remodelling processes (see the figure). Upon induction, autophagy starts with the initiation and nucleation of a double-membrane sac, known as the isolation membrane (or phagophore), in the cytosol. Vesicles carrying the multispans membrane protein ATG9 have been suggested to serve as one of the membrane sources for isolation membrane initiation and nucleation. The isolation membrane then undergoes expansion to surround the cargos. Multiple membrane sources have been reported to contribute to isolation membrane growth, including the endoplasmic reticulum (ER), lipid droplets, the ER–Golgi intermediate compartment (ERGIC), the plasma membrane, ATG9 vesicles and COPII vesicles. Isolation membrane expansion can also be mediated by lipid transfer from the ER and local fatty acid synthesis. Once the autophagosome is fully closed, it fuses with late endosomes/lysosomes to form an amphisome/autolysosome. The sequestered materials are broken down in degradative autolysosomes.

Genetic screens in yeast identified a group of conserved autophagy proteins, named ‘Atg (autophagy-related) proteins’, which function at different steps of autophagosome formation. According to their function, these proteins can be divided into five groups. (1) The Atg1–Atg13–Atg17 kinase complex, whose mammalian counterpart is the ULK1–ATG13–FIP200 complex, is first recruited to the autophagosome formation site and triggers the nucleation of isolation membranes. (2) The phosphatidylinositol 3-phosphate (PtdIns3P) kinase complex, consisting of Vps34, Atg6 (mammalian beclin 1 homologue) and Atg14, is responsible for local production of PtdIns3P to recruit downstream effectors. (3) The Atg12 conjugation system, comprising the E1 enzyme Atg7 and the E2 enzyme Atg10, catalyses conjugation of ubiquitin-like protein Atg12 with Atg5. The Atg12–Atg5 conjugate further interacts with Atg16. (4) The Atg8 conjugation system, comprising Atg7 and the E2 enzyme Atg3, catalyses conjugation of ubiquitin-like protein Atg8 to phosphatidylethanolamine. The Atg12 and Atg8 conjugation systems function at multiple steps of autophagy, including isolation membrane expansion, isolation membrane closure and cargo recognition in selective autophagy. (5) The Atg2–Atg18 complex and the transmembrane protein Atg9 are possibly involved in tethering the ER with the isolation membrane to transfer glycerophospholipids for isolation membrane growth. By recruiting different effectors, PtdIns3P has multiple functions in autophagy, including initiation and expansion of the isolation membrane and also fusion of autolysosomes with the vacuole.

Autophagy in multicellular organisms contains steps that are absent in yeast autophagy, including the recruitment of autophagy proteins to the autophagosome formation sites on the ER, the formation of complex ER–isolation membrane contacts during isolation membrane expansion, and autophagosome maturation. Genetic screens in Caenorhabditis elegans identified multiple metazoan-specific autophagy proteins, that is, EPG (ectopic PGL granules) proteins. These proteins act at steps unique to autophagy in multicellular organisms. EPG-3 (known as VMP1 in mammals) is required for establishing dynamic ER–isolation membrane contacts, while EPG-5 and WDR45/WDr45b mediate autophagosome–lysosome fusion. Thus, ATG and EPG proteins act together to complete the more complex mammalian autophagy process.
Guanine nucleotide exchange factors (GEFs). Factors that catalyze the conversion of the GDP-bound inactive form of small GTPase proteins to their GTP-bound active form.

Recycling endosomes
Endosomal compartments for recycling materials internalized by endocytosis back to the cell surface to maintain the composition of the plasma membrane.

HOPS (homotypic fusion and protein sorting) complex
A multisubunit seahorse-shaped complex consisting of VPS41, VPS39, VPS18, VPS35A, VPS11 and VPS16. It facilitates fusion events involving late endosomes and lysosomes.

SNARE chaperone
A protein chaperone such as Sec1/Munc18 (SM) proteins that binds to individual SNAREs or assembly intermediates. It ensures the fast and accurate assembly of trans-SNARE complexes to drive efficient membrane fusion.

Box 2 | Degradation, catabolite export and lysosome re-formation
After autophagosome maturation, the inner membrane disintegrates and is degraded together with sequestered materials in acidic autolysosomes by hydrolases. Specific hydrolases are involved in the degradation of different macromolecules, such as proteins, nucleic acids, lipids and carbohydrates. The glycosylated integral membrane protein Atg15 is a lipase essential for disintegration of inner membranes. In Caenorhabditis elegans, the T2 family endoribonuclease RNST-2 degrades ribosomal RNAs that are delivered to lysosomes via autophagy. The lysosomal degradation products are exported to the cytosol via lysosomal efflux transporters, such as the lysosomal lysine/arginine transporter LIAAT-1 and the sugar transporter Spinster221,222. The exported degradation products are lysosomal degradation or catabolite export from lysosomes leads to impaired lysosomal function and accumulation of undigested materials or digested catabolites.

Upon release of the digestion products, lysosomes are regenerated from autolysosomes, a process known as autophagic lysosome re-formation (ALR), to maintain lysosome homeostasis223. ALR involves clathrin-mediated budding of tubular structures from autolysosomes, KIF5B-driven extension of membrane tubules along microtubules, dynamin 2-mediated scission of proteolysosomes devoid of lysosomal contents and subsequent maturation of proteolysosomes to functional lysosomes. During prolonged starvation-induced autophagy, ALR is triggered by mTOR reactivation, which is normally repressed under starvation. This requires degradation of autophagic cargo and release of degraded products, among which are amino acids — the primary activators of mTOR. Defective autophagic degradation or export of the degradation products from the autolysosome, such as in cells derived from patients with lysosome storage diseases, inhibits mTOR reactivation and ALR, resulting in accumulation of enlarged autolysosomes223. The activity of the lysosomal channel protein TRPML1 is also involved in autolysosome re-formation223. Lysosomal regeneration at the end of autophagic flux is critical for maintaining the lysosome pool and thus sustained autophagy.

Autophagosome maturation requires retrograde transport of autophagic vacuoles and lysosomes driven by the microtubule motor protein dynein, as well as their anterograde transport mediated by kinesin motors12,26,41, which allow the two compartments to meet and fuse.

Machinery mediating transport of autophagic vacuoles and lysosomes. Anterograde transport of lysosomes enables them to fuse with peripheral autophagosomes. Anterograde transport is mediated by the late endosomal/lysosomal-associated multisubunit BoRC complex, which recruits the small GTPase ARL8 to promote ARL8-dependent coupling to kinesin motors122,41 (Fig. 2). ARL8 directly interacts with kinesin 3, or interacts with its effector SKIP, which in turn couples to kinesin 1 (REF.40). Depletion of BoRC complex decreases the fusion of peripheral autophagosomes with lysosomes41. The ARB7 effector FYCO1 also acts as an adaptor of kinesin 1 to mediate anterograde transport of late endosomes/lysosomes, and of autophagic vacuoles through its binding to LC3 and PtdIns3P29,49 (Fig. 2).

The recruitment of the dynein–dynactin motor complex to late endosomes/lysosomes and autophagic vacuoles for retrograde transport is mediated by RAB7 and its effectors RILP and ORP1L29,41 (Fig. 2). RILP interacts with the p150 subunit of the dynein–dynactin motor complex29, whereas ORP1L promotes the binding of the dynein complex with late endosomal/lysosomal membrane-associated βIII spectrin29. In addition, ORP1L can sense and couple cholesterol levels with transport of lysosomes and autophagic vacuoles (Fig. 2). Under low-cholesterol conditions, ORP1L interacts with the endoplasmic reticulum (ER) protein VAPA to form contacts between the ER and lysosomes/autophagic vacuoles; the dynein motor then disassociates from RAB7–RILP, causing dispersal of these organelles56,57. In Niemann–Pick type C disease and other lysosome storage diseases (LSDs), accumulation of cholesterol in the late endosomal/lysosomal compartments results in their perinuclear clustering and a defect in autophagosome maturation32.

Transport of autophagic vacuoles and late endosomes/lysosomes is tightly coordinated with recruitment of tethering factors. Specifically, the HOPS complex can be recruited by ARL8 (REF.49) or by the ORP1L–RAB7–RILP complex, which occurs either directly or via PLEKHM1 (REF.58). This allows coupling of anterograde and retrograde transport and fusion events32.

Directional transport of autophagic vacuoles is particularly prominent in polarized neuronal cells, where autophagosomes formed at the distal synaptic termini undergo long-range retrograde transport to the soma. Maturation of autophagosomes is tightly linked with their dynein-driven transport to the soma, which requires coordinated actions of scaffolding proteins, including JNK-interacting protein 1 (JIP1), HTT-associated protein 1 (HAP1) and JIP3 (REFS.145–147). These factors bridge autophagic vacuoles with the dynein–dynactin complex, and their actions depend on location and autophagosomal maturity145–147. JIP1 acts in the distal portion of the axon, HAP1 functions in the mid-axon, while JIP3 primarily controls the motility of
Regulation of autophagosome maturation

The machinery governing autophagosome maturation is dynamically regulated to allow adaptation of autophagic flux to the needs of the cell and to enable integration of autophagic degradation with external inputs. This involves regulation of the membrane recruitment of the key components mediating fusion events as well as transcriptional regulation, which occurs predominantly via the MiT/TFE family transcription factors TFEB and TFE3. During autophagosome biogenesis, various stresses and signalling pathways can modulate the initiation of autophagosome formation via multiple mechanisms, such as by regulating the kinase activity, stability and assembly of the Atg1 complex (ULK1 complex in mammals) and the Vps34 PtdIns3P kinase complex. mTORC1, an evolutionarily conserved signalling hub that senses nutrient status and growth factor signals, plays a key role here. Nutrient status and other stresses also integrate into the autophagosome maturation machinery to add another level of control of autophagic flux. It is also noteworthy that the machinery governing autophagosome maturation is heterogeneous and demonstrates at least partial redundancy, which may allow flexible regulation of autophagic flux in different cell types.

**Trafficking and post-translational modification of SNARE proteins.** SNARE proteins dynamically move between distinct membrane compartments. Upon starvation, RAB21, an endosomal RAB protein, is activated by its GEF MTMR13, which further promotes the translocation of plasma membrane-localized VAMP8 to late endosomes/lysosomes (FIG. 3a). SNARE protein dynamics is required for efficient fusion of the endolysosomal structures with autophagic vacuoles as evidenced by LSDs such as multiple sulfatase deficiency and mucopolysaccharidosis type IIA, where SNAREs are sequestered in cholesterol-enriched regions of endolysosomal membranes and locked in assembled complexes. Therefore, disassembly of postfusion SNARE complexes and their sorting and recycling back to target membranes is impaired, and, consequently, fusion of lysosomes with endocytic and autophagic vesicles is reduced.

The SNARE activity of STX17 is regulated by acetylation of its SNARE domain, a modification controlled by the histone acetyltransferase CREBBP/CBP and the deacetylase HDAC2. Starvation or mTORC1 inhibition inactivates CREBBP, while promoting the deacetylation of STX17. Deacetylation of STX17 facilitates the assembly of the STX17–SNAP29–VAMP8 complex and also enhances its binding to the HOPS complex.
Anterograde transport
Intracellular movement from the nucleus towards the cell periphery mediated by kinesin motors. Also known as centripetal movement or plus-end transport.

BORC complex
A multisubunit complex that associates peripherally with the lysosomal membrane to regulate lysosomal positioning by recruiting ARL8. It comprises eight subunits: BLOS1, BLOS2, snapin, KCD1, myristin, lysperin, diaskedin and MEF2BNB.

ARL8
A small ADP-ribosylation factor-like RAS family GTPase that mediates kinesin-driven lysosome transport, and also regulates lysosome fusion by recruiting the HOPS complex.

Lysosome storage diseases (LSDs).
A group of inherited metabolic disorders characterized by abnormal storage of toxic materials. They result from deficiencies of lysosomal enzymes or transporters.

Atg1 complex
The Atg1 complex consists of the protein kinase Atg1 together with Atg15, Atg17, Atg51 and Atg29. Activation of this complex triggers the initiation of autophagy.

Vps34–PtdIns3P kinase complex
A complex, containing the phosphatidylinositol 5-phosphate (PtdIns5P) kinase Vps34 together with Vps15, Atg6 and Atg14, that generates PtdIns3P at the autophagosome formation site to recruit downstream effectors for autophagosome formation.

SNARE complex assembly
During transport, the tethering factors HOPS complex and PLEKHM1 are concomitantly recruited to promote fusion processes (see Fig. 1).

Regulation of HOPS complex recruitment.
During autophagosome biogenesis, the VPS34–beclin 1–ATG14 complex (PI3K complex I) generates PtdIns3P on the ER and/or membrane to recruit effectors such as ATG18 for autophagosome maturation. SNAP29 is post-translationally modified via O-GlcNAcylation at multiple serine/threonine residues, a process catalysed by O-linked β-N-acetylglucosamine (O-GlcNac) transferase (OGT). O-GlcNAcylation of SNAP29 attenuates SNARE complex assembly (Fig. 3a). OGT knockdown or expression of O-GlcNAcylation-defective SNAP29 facilitates the formation of SNAP29-containing SNARE complexes and promotes autophagic flux. Levels of UDP-GlcNAc, the donor for O-GlcNAc addition, are responsive to the availability of glucose, fatty acids, uridine and glutamine. The SNAP29 O-GlcNAcylated level is reduced by starvation in mammalian cells and worms, thus integrating nutrient status with autophagosome maturation.

Vps34–PtdIns3P kinase complex, thus promoting autophagosome–lysosome fusion under stress conditions (Fig. 3a).
SNAP29 contains two antiparallel helix bundles and is the key SNARE for autophagosome maturation. SNAP29 is post-translationally modified via O-GlcNAcylation at multiple serine/threonine residues, a process catalysed by O-linked β-N-acetylglucosamine (O-GlcNac) transferase (OGT). O-GlcNAcylation of SNAP29 attenuates SNARE complex assembly (Fig. 3a). OGT knockdown or expression of O-GlcNAcylation-defective SNAP29 facilitates the formation of SNAP29-containing SNARE complexes and promotes autophagic flux. Levels of UDP-GlcNAc, the donor for O-GlcNAc addition, are responsive to the availability of glucose, fatty acids, uridine and glutamine. The SNAP29 O-GlcNAcylated level is reduced by starvation in mammalian cells and worms, thus integrating nutrient status with autophagosome maturation.

The role of UVRAG in autophagosome maturation is debated, as it is dispensable for autophagosome–lysosome fusion in fly fat cells and in certain mammalian cells.

In addition to PtdIns3P, PtdIns4P also participates in multiple steps of the autophagy pathway. During autophagosome biogenesis, PtdIns4P contributes to recruitment of the ULK1 complex subunit ATG13 to the autophagosome initiation site. During maturation, GABARAPs recruit phosphatidylinositol 4-kinase IIa (PI4KIIa) to autophagosomes to generate PtdIns4P, thus facilitating autophagosome–lysosome fusion. Accumulation of PtdIns4P on the endosomes/lysosomes also promotes fusion events. The spatiotemporal distribution of PtdIns4P is regulated by PI4Ks and the PtdIns4P phosphatase SAC1. The ER-localized transmembrane protein SUS2 and the PI4KIIa activity on the ER membrane promote the interaction of PtdIns4P with the ER to drive autophagosome–lysosome fusion.

Rubicon, a RAB7 effector, which interacts with beclin 1 and associates with VPS34 complexes, antagonizes UVRAG function and negatively regulates autophagosome maturation. The UVRAG–Rubicon interaction is enhanced by mTORC1-mediated phosphorylation of UVRAG, while active GTP-bound RAB7 and Pacer compete with Rubicon to release UVRAG, thus recruiting the HOPS complex and stimulating VPS34 activity under starvation. However, the role of UVRAG in autophagosome maturation is debated, as it is dispensable for autophagosome–lysosome fusion in fly fat cells and in certain mammalian cells.

www.nature.com/nrm
Activity and dynamics of RAB7 proteins. RAB7 activity and dynamics — involving its switch between an active GTP-bound state and an inactive GDP-bound form on autophagic vesicles — are essential for progression of autophagic flux. RAB7 activity is negatively regulated by a GT-Pase-activating protein (GAP) called ‘Armus’ (also known as TBC1D2A), whose targeting is mediated via binding to LC3 on autophagic vacuoles and PtdIns3P generated by VPS34 on endosomes. Armus finely tunes the nucleotide cycle of RAB7 to promote autolysosome formation and acidification. Armus was also demonstrated to be regulated by the nutritional status of the cell via starvation-induced inactivation of the small GTPase RAC1, which competes with Armus for binding to LC3 on autophagic vacuoles. Limiting Armus recruitment to target membranes leads to persistence of active RAB7 on autophagic vacuoles and endosomes, which may have multiple inhibitory effects on autophagosome maturation: it reduces the availability of mobile RAB7 required for endosome maturation into late endosomes/lysosomes; it maintains high activity of RAB7 effectors, such as Rubicon, whose aberrant activity may impede autophagosome maturation as described earlier; and it also impede formation of intraluminal vesicles in multivesicular bodies — a process that is important for the endocytic pathway and hence the formation of amphiesms as well as for endosome maturation into late endosomes/lysosomes.

In addition to regulation by Armus, the conversion of endosomal PtdIns4P generated by PHKIIα to phosphatidylinositol 4,5-bisphosphate also inactivates RAB7 and causes its dissociation from late endosomes and from PLEKH1M1. This step also facilitates autophagosome maturation.

Regulation of TFEB/TFE3 activity by cytoplasm-to-nucleus transport. TFEB and TFE3 are transcription factors with key functions in autophagy as they control expression of a network of genes involved in autophagosome formation, autophagosome maturation and lysosomal biogenesis. Their activity is extensively regulated by phosphorylation status, controlled by various kinases and phosphatases, with phosphorylation of TFEB and TFE3 inhibiting their cytoplasm-to-nucleus trafficking. This regulation is coupled to nutrient availability via mTORC1. Under nutrient-rich conditions, amino acids promote mTORC1 translocation to the lysosomal surface, where mTORC1 is activated. This lysosome surface-associated mTORC1 phosphorylates TFEB and TFE3, creating binding sites for the scaffold protein 14-3-3, which prevents nuclear translocation and activity of these factors. In addition to nutrients, various extra-cellular signals also regulate TFEB/TFE3. For example, it has been shown that glycogen synthase kinase 3β (GSK3β) — which is inactivated by protein kinase C (PKC), which responds to several signal transduction cascades — phosphorylates TFEB to prevent it from translocating into the nucleus. In response to various stresses, TFEB/TFE3 phosphorylation is inhibited and nuclear transport is facilitated. TFEB and TFE3 are also actively dephosphorylated by the ubiquitous protein phosphatase 2A (PP2A) and by calcineurin — a phosphatase activated by starvation-triggered lysosomal calcium release or ER stress.

Regulation of TFEB activity via phase separation. Protein liquid–liquid phase separation (LLPS) is now an established mechanism for concentrating proteins in confined liquid-like compartments. LLPS also compartmentalizes transcription factors, co-activators, the Mediator complex and RNA polymerase II into condensates for mediating gene expression. It has been recently shown that TFEB undergoes LLPS and that phase-separated TFEB puncta colocalize with the Mediator complex and target mRNAs. The nuclear protein inositol polyphosphate multikinase (IPMK) directly interacts with TFEB and chaperones it to inhibit its LLPS. IPMK knockout increases the formation of TFEB transcriptional condensates without altering TFEB phosphorylation or nuclear transport. Consequently, IPMK knockout facilitates autophagosome maturation and promotes the maturation and degradation capability of lysosomes.

Heterogeneity and redundancy of autophagosome maturation mechanisms. Overall, there is high variability in fusion events leading to mature, degradative autolysosomes. The process involves multiple, probably non-sequential, fusion processes, including fusion of autophagosomes with different endosomal and lysosomal structures, as well as various homotypic and heterotypic fusion events between the different types of autophagic vacuoles themselves. This involves different tethers, which possess differential binding affinity for ATG8 members and thus mediate maturation of distinct populations of autophagosomes decorated with different ATG8-like proteins. Accordingly, different cell types, with distinct organization of endocytic vesicles, may require different tethers for autophagosome maturation. For example, PLEKH1M1 depletion causes no autophagy defect in A549 lung adenocarcinoma cells and in C. elegans. Loss of function of factors involved in autophagosome maturation may also result in accumulation of autophagic vacuoles at different stages of maturation in different cell types. Depletion of fly Rab2 causes accumulation of autophagosomes in muscle cells and amphiesms in larval fat cells. To acquire degradative potential, autophagic vacuoles must be acidified efficiently, which is accomplished by further rounds of fusion with endosomes/lysosomes. Late endosomes/lysosomes also show heterogeneity, with different surface RAB proteins and distinct resident hydrolytic enzymes. Hence, efficient autophagic degradation requires fusion of autophagic vacuoles with multiple late endosomes/lysosomes, which may require distinct SNAREs and tethers.

Notably, the functions of the multiple SNARE complexes and tethering factors are partially redundant,
which, in some cases, means that impaired autophagosome maturation caused by depletion of one factor can be rescued by promotion of an alternative maturation mechanism. This is exemplified by characterization of suppressors of the autophagy defect associated with loss of EPG-5 activity in *C. elegans*. First, enhanced assembly of the STX17–SNAP29–VAMP8 complex achieved by reduced O-GlcNAcylation of SNAP29 suppresses the autophagy defect in *epg-5* mutant worms, EPG5-deficient cells, cells depleted of VCP (also known as p97) — which is essential for maturation of ubiquitin cargo-containing autophagosomes (see also the next section) — and *Wdr45–Wdr45b* double-knockout cells. Second, the autophagy defect caused by EPG5 deficiency is also suppressed by enhancement of late endosomal/lysosomal recruitment of the HOPS complex in *TMEM39A*-knockdown cells or by elevation of lysosomal function and biogenesis by promoting TFEB activity via IPMK knockout. Finally, defective autophagosome maturation in *epg-5* mutant worms was rescued by promotion of RAB-7 dynamics on non-degradative autophagic vacuoles by expression of the GDP-bound form of RAB-7 or by promotion of lysosome biogenesis and function by depletion of the RBG-1–RBG-2 complex — a GEF and GAP complex known for promoting RAB protein dynamics for synaptic transmission and lipid droplet biogenesis. RBG-1–RBG-2 has emerged as a new regulator of RAB-7 activity, which may act by targeting the RAB-7 GEF to lysosomes, or by promoting its activity on lysosomes. These mechanisms, however, fail to suppress the autophagy defect caused by knockout of genes involved in autophagosome formation.

Autophagosome maturation is intrinsically connected with endocytic trafficking pathways that are highly responsive to growth conditions. The heterogeneity and redundancy of the mechanisms governing autophagosome maturation confer flexibility and robustness on dynamic endocytic trafficking to maintain cellular homeostasis.
Complex and SNAP29 and thus promotes autophagosome–lysosome fusion. SNAP29 deacetylation of STX17. Deacetylated STX17 interacts more strongly with the HOPS complex and therefore promotes autophagosome–lysosome fusion. SNAP29 is O-GlcNAcylated by O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT). This modification attenuates the assembly of SNAP29-containing SNARE complexes.

Under starvation conditions that decrease the intracellular UDP-GlcNAc level, or in OGT-knockdown cells, the O-GlcNAcylation of SNAP29 is reduced, which in turn facilitates the assembly of the trans-SNARE complex for autophagosome maturation. MTRM13, the guanine nucleotide exchange factor for the endosomal protein Rab21, controls Rab21-dependent trafficking of plasma membrane-localized VAMP8 to late endosomes/lysosomes. Upon starvation, MTRM13 activates Rab21, which subsequently promotes the translocation of VAMP8 R SNARE to late endosomes/lysosomes to promote fusion of endosomes/lysosomes with autophagic vacuoles (see Fig. 1).

Phosphatidylinositol 3-phosphate (PtdIns3P) on autophagic vacuoles, generated by the UVRAG-containing VPS34 complex, facilitates autophagosome maturation by recruiting the tethering factors HOPS complex. Rubicon interacts with the UVRAG–VPS34 complex and negatively regulates its function. Rubicon is targeted by autophagic vacuole-localized beclin 1 and phosphoinositides (PhDs), and it antagonizes Rubicon and recruits the UVRAG–VPS34 complex to autophagic vacuoles. Pacer and UVRAG also recruit the HOPS complex. The Rab7 GTPase-activating protein Armus is targeted to autophagic vacuoles by interacting with LC3 and PhDs, and promotes Rab7 dynamics, whereby it is recycled from the autophagic vacuole membranes. This generates a mobile pool of Rab7 that can be recruited to endosomes to drive their maturation to late endosomes/lysosomes. Depletion of the endoplasmic reticulum-localized transmembrane protein TMEM39A increases phosphatidylinositol 4-phosphate (PtdIns4P) levels on late endosomes/lysosomes (via inhibition of endoplasmic reticulum-to-Golgi apparatus trafficking of the PtdIns4P phosphatase SAC1, not shown), probably by increasing PtdIns4P levels in the trans-Golgi network (TGN), which promotes HOPS complex recruitment and enhances autophagosome–lysosome fusion.

The transcription factor TFEB (as well as its homologue TFE3, not shown) activates the expression of genes involved in autophagy (including genes involved in autophagosome trafficking and fusion with lysosomes (UVRAG and VPS34)) and lysosomal biogenesis and function. The nuclear transport of TFEB is regulated by liquid–liquid phase separation (LLPS), whereby TFEB forms condensates that promote gene transcription. The nuclear protein inositol polyphosphate multikinase (IPMK) directly binds to TFEB and inhibits the formation of TFEB condensates.

**Autophagosome maturation and disease**

Impaired formation of degradative autolysosomes is associated with the pathogenesis of various human diseases, including neurodegenerative disorders, cancer and muscle diseases (myopathies). Defective autophagosome maturation causes accumulation of toxic protein aggregates and damaged organelles that disrupt cellular homeostasis. Non-functional amphisomes, autolysosomes and even hybrid vesicles resulting from promiscuous fusion of autophagosomes and endosomes/lysosomes can still occur, but the resulting autolysosomes are non-degradative. Mutant presenilin 1, one of the major causes of familial Alzheimer disease, impairs lysosomal acidification. Also, LSDs featuring dysfunctional, non-degradative autolysosomes, such as Gaucher disease, multiple sulfatase deficiency, mucopolysaccharidosis type IIIA and mucolipidosis type IV, are associated with neurodegeneration

Impaired lysosomal biogenesis is also a feature of neurodegenerative disorders. In this case, disease proteins, such as accumulated α-synuclein in Parkinson disease or androgen receptor with polyglutamine expansion in x-linked spinal and bulbar muscular atrophy sequester TFEB in the cytoplasm, impairing lysosomal function and autophagosome maturation. Lysosomal function can also be impaired by physical damage instigated by disease proteins. Amyloid assemblies of disease-associated proteins, including Aβ and tau in Alzheimer disease, α-synuclein in Parkinson disease and huntingtin (HTT) with a pathological polyglutamine expansion in Huntington disease, can be secreted and transported between cells, and, following endocytosis, can induce endolysosomal rupture in recipient cells.

Mutations in genes directly involved in autophagosome maturation can also cause selective damage of certain populations of neurons, resulting in neurodegenerative features (Fig. 4). Mice deficient in Epgo show selective loss of motor neurons and display key characteristics of ALS. Recessive mutations in human EPG5 are associated with the multisystem disorder Vici syndrome. Patients with Vici syndrome exhibit neurodevelopmental and neurodegenerative features that are recapitated in Epgo knockout mice. Patients with Vici syndrome also display muscle abnormalities (skeletal muscle myopathy and cardiomyopathy), which, as discussed later, have been linked to autophagosome maturation defects.

In neural cells, WDR45 and WDR45B act redundantly during autophagosome maturation to target EPG5 to late endosomes/lysosomes. De novo mutations in WDR45 cause β-propeller protein-associated neurodegeneration, previously known as static encephalopathy of childhood with neurodegeneration in adulthood, which, as discussed later, have been linked to autophagosome maturation defects. In muscle cells, WDR45B knockout mice exhibit extensive swollen axons and impaired learning and memory, reminiscent of β-propeller protein-associated neurodegeneration. A potential causative role of WDR45B in intellectual disability recently emerged. Wdr45b knockout mice have an increased number of axons with dense core vesicles and myelinated axons.
A precursor protein (APP). processing of amyloid neurotoxic plaques in patients adulthood.
parkinsonism, dystonia and sudden-onset progressive early childhood, then develop WDR45 neurodegeneration protein-associated \( \beta \) mutations in the autophagy recurrent infections, and immunodeficiency and microcephaly, cataracts, (agenesis of the corpus disease. A multisystem disorder Vici syndrome: EPG5 mutations BPAN: WDR45 mutations ID: WDR45B mutations also display abnormal motor behaviour and cognitive impairment, and pathologically exhibit cerebellar atrophy and accumulation of autophagosomes in swollen axons. Of note, mutations in different genes acting in autophagosome maturation result in distinct neuro-pathological deficits. This could be because the genes are differentially expressed in different neuronal sub-populations or are required in different types of neural cells or because their mutation results in accumulation of different types of autophagic cargo that may differ in different cells. The differential function of these genes in endocytic trafficking and recycling may also contribute to the distinct pathological defects.

Pathogenesis of muscle diseases. Autophagy is essential for preserving muscle mass and maintaining myofibre integrity. Defects in lysosomal function and their degradative potential have been associated with a group of autophagic vascular myopathies, including Pompe disease, Danon disease and X-linked myopathy with excessive autophagy, which all present with accumulation of different types of autophagic cargo that may differ in different cells. The differential function of these genes in endocytic trafficking and recycling may also contribute to the distinct pathological defects.

Pathogenesis of muscle diseases. Autophagy is essential for preserving muscle mass and maintaining myofibre integrity. Defects in lysosomal function and their degradative potential have been associated with a group of autophagic vascular myopathies, including Pompe disease, Danon disease and X-linked myopathy with excessive autophagy, which all present with accumulation of non-functional autophagic vacuoles. Pompe disease is caused by deficiency of the lysosomal acid \( \alpha \)-glucosidase (GAA), which hydrolyses glycogen to glucose. It is characterized by massive accumulation of autophagic vacuoles, especially in skeletal muscles.

Patients with Danon disease, which is linked to deficiency in the lysosomal membrane protein LAMP2, display cardiomyopathy, myopathy and variable mental retardation. Massive autophagic vacuoles accumulate in cardiomyocytes and skeletal muscle cells of patients with Danon disease and LAMP2-deficient mice. X-linked myopathy with excessive autophagy, a childhood-onset disease with progressive vacuolation and atrophy of skeletal muscle, is caused by compromised lysosomal acidification due to deficiency in the vacuolar ATPase assembly factor VMA21.

Muscle cells from patients with inclusion body myopathy, Paget disease of bone and frontotemporal dementia (IBMPFD)-related myopathy accumulate large, ubiquitin-positive rimmed vacuoles, which are non-digested autophagic vacuoles. The causative gene for IBMPFD is VCP. VCP is primarily known for its roles in extraction of ubiquitylated proteins — which are often misfolded and prone to aggregation — from membranes or protein complexes for degradation or recycling. VCP knockdown or expression of IBMPFD mutant VCP results in accumulation of autophagic vacuoles containing ubiquitin-positive contents, and VCP was found to be essential for autophagosome maturation at late stages (following initial acidification), but the exact mechanisms through which VCP promotes further maturation are elusive. VCP mutations are also associated with familial ALS.

Deregulation in cancer. Autophagy functions as a tumour suppressor and promoter in a context-dependent manner. Autophagy impedes tumour initiation and early stages of tumour progression by...
acting in quality control processes such as removal of damaged mitochondria and maintenance of genomic stability. By contrast, in advanced tumours or during cancer therapy, autophagy enables tumour cells to survive harsh conditions such as hypoxia and metabolic stresses. In line with this, elevated lysosomal activity resulting from increased activity of TFEB and TFE3 — which may be caused by chromosomal rearrangements, gene amplification or upregulation, and enhanced nuclear transport — is associated with the development or metastasis of various tumours, such as renal cell carcinomas, prostate cancer, pancreatic cancer, non-small-cell lung cancer (NSCLC) and breast cancer.188,132. It is important to note that TFE3 and TFE5 may also promote cancer progression, at least in part independently of their function in autophagy, by activating signalling pathways implicated in tumorigenesis, such as WNT and TGFβ signalling.132. However, increased expression and nuclear import of TFE3 and TFE5 have been demonstrated to maintain a high autophagy level to sustain intracellular amino acid pools in the pathogenesis of pancreatic ductal adenocarcinoma.132 Enhanced TFE5 activity can also promote lysosome exocytosis, releasing proteolytic enzymes, such as cathepsins, into the cell microenvironment, which fuels extracellular matrix remodelling, thereby stimulating cancer cell invasion and metastasis.191

Perturbation of autophagosome maturation machinery may also contribute to the occurrence and development of tumours. Alterations in EPG5 have been suggested to be involved in breast and prostate cancers.130,146. EPG5 expression is significantly lower in NSCLC clinical samples, and EPG5 knockdown promotes NSCLC cell proliferation and tumorigenesis.147 WDR45 is genetically altered in patients with uterine corpus endometrial carcinoma and downregulated in cervical cancer development.150,151,152. However, owing to the heterogeneity and redundancy in the autophagosome maturation machinery highlighted above, changes in individual components are probably not sufficient to drive tumorigenesis and tumorigenic progression, and it is likely that alterations in autophagosome maturation coexist with other oncogenic lesions, further aggravating pathology.

**Interplay with pathogen life cycles**

Autophagy responds to invading pathogens by capturing them and delivering them to lysosomes for degradation (a process known as xenophagy); this facilitates antigen presentation for activation of innate and adaptive immune responses.14,15,135,140. Pathogens have evolved diverse strategies to inhibit autophagy at the initiation and/or maturation steps to escape destruction. Certain pathogens even block autophagosome maturation and subvert the resulting vesicles for their own benefit.

**Harnessing of autophagosomes/amphisomes for viral replication and release** Positive-strand RNA viruses belonging to the family Picornaviridae, such as poliovirus, rhinovirus, coxsackievirus B3 and enterovirus D68, utilize double-membrane vesicles (DMVs) as membrane scaffolds for replication and transcription.141,142. DMVs formed in virus-infected cells are smaller than regular autophagosomes. They exhibit hallmarks of autophagosomes/amphisomes such as positivity for LC3 and the late endosomal/lysosomal marker LAMP1, but their further maturation into degradative autolysosomes is blocked.144,146-148.

The betacoronaviruses, including mouse hepatitis virus (MHV), Middle East respiratory syndrome coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2, also induce the formation of DMVs for anchoring the viral replication and transcription complexes.152,147-149. The viral RNA products are localized in the DMV lumen and transported to the cytosol for translation and virion assembly via double-membrane-spanning molecular pores.150. However, the canonical autophagic machinery, such as the LC3 lipidation system, is not required for DMV formation or coronavirus replication.153,152. Instead, the DMVs in MHV-infected cells are related to the ER-derived small vesicles, called ‘EDEMosomes’, that deliver short-lived regulators of ER-associated degradation (ERAD) to late endosomes/lysosomes.135. Certain autophagy proteins, however, are required for coronavirus infection. LC3 decorates the DMVs and is required for MHV replication.135. Unlike on autophagic structures, where LC3 is conjugated with phosphatidylethanolamine, non- lipidated LC3 is present on the DMVs in MHV-infected cells.135. Autophagy proteins involved in the generation of PtdIns3P are required for SARS-CoV-2 infection.134,152. The ER-localized transmembrane autophagy proteins EPG3 (also known as VMP1) and TMEM41B are essential for autophagosome formation.148,149,150. EPG3 and TMEM41B are also essential for replication of coronaviruses such as SARS-CoV-2 (REFS 135,139), but the step at which these proteins act during the viral life cycle has yet to be identified. In betacoronavirus-infected cells, the replicated viruses are transported inside lysosomes and released through the exocytic pathway.149. Decadification of lysosomes by loading with too many viral particles and/or by viral proteins such as ORF3a of SARS-CoV-2 promotes lysosomal exocytosis and thus viral egress from the infected cell.152,153. Autophagosomes also can sequesterate and mediate non-lytic extracellular release of poliovirus, coxsackievirus B3 and enterovirus D68 (REFS 141,145,146).
a cysteine protease that uncouples lipid-conjugated ATG8 proteins\(^{163}\). RavZ cleaves ATG8 proteins between the carboxy-terminal glycine and the penultimate aromatic residue, producing ATG8 proteins that cannot be reconjugated\(^{163}\). SopF, the effector of \textit{Salmonella enterica} subsp. \textit{enterica} serovar Typhimurium, impairs initiation of xenophagy by interfering with the binding of the V-ATPase on damaged bacterium-containing vacuoles to ATG16L\(^{164}\). Maturation of bacterium-containing autophagic vacuoles (autophagosomes or fused vesicles of bacterium-containing vacuoles and autophagosomes) into degradative autolysosomes by deposition of lytic enzymes can also be inhibited. In macrophages, autophagic vacuoles containing the virulent strain of \textit{Mycobacterium tuberculosis} (H37Rv) fail to recruit RAB7 for maturation into autolysosomes\(^{165,166}\). Vacuoles containing \textit{Mycobacterium marinum} and \textit{Yersinia pestis} exhibit features of non-degradative autolysosomes that are devoid of lysosomal enzymes\(^{167,168}\). Some bacteria (for example, \textit{Serratia marcescens}, \textit{Staphylococcus aureus}, \textit{Anaplasma phagocytophilum} and \textit{Coxiella burnetii}) even exploit autophagic vacuoles as replication niches for intracellular growth and proliferation\(^{169–174}\). Fusion with autophagosomes facilitates the formation of vacuoles where bacteria reside and replicate — by promoting fusion of individual bacterium-containing vacuoles and/or providing a membrane for vacuole expansion — and also supplies nutrients to the pathogen\(^{171,172,174,175}\). In line with this, replication of these pathogens is promoted by autophagy induction and is blocked by autophagy inhibition\(^{172–174}\).

**Mechanisms used by pathogens to interfere with autophagosome maturation.** Inhibition of the assembly of STX17–SNAP29–VAMP8 is widely used by viruses to prevent the formation of degradative autolysosomes and/or to accumulate autophagosomes/amphisomes for their replication or release (RG. 5a). Viral proteinase

![Diagram](https://example.com/diagram.png)
**Targeting the autophagosome maturation machinery.** Targeting the machinery that controls autophagosome maturation (such as ESCRT, SNAREs and the HOPS complex) or targeting post-translational modifications of these proteins would be ideal to either increase or decrease autophagy flux186-191. Inhibitors of O-GlcNA transferase and those of the opposing enzyme, O-GlcNAcase, can stimulate or inhibit autophagosome maturation, respectively, by modulating the O-GlcNAcylation of SNAP29 (REFS.[192,193]) (TABLE 1). As many cellular proteins are O-GlcNAcylated, blocking O-GlcNAc sites on a specific protein would require the development of methods to increase the selectivity of targeting, such as the use of aptamers or nanobodies194.

Another strategy to inhibit autophagosome maturation would be to use the small molecule TCH-165 to specifically activate the proteasomal degradation of SNAP29 and STX17 (REF.[195]). Inhibiting Rubicon is a potential approach to promote autophagy; however, pharmacological Rubicon inhibitors have yet to be developed. This strategy must be carefully evaluated because Rubicon is a positive modulator of LC3-associated phagocytosis, a process known to have a protective effect in many inflammatory diseases196-198.

**Modulation of the transcription programme of autophagosome maturation.** Modulation of TFEB/TFE3 is an obvious strategy to control autophagy on a transcriptional level. It has been shown that TFEB overexpression has beneficial effects in ameliorating LSDs and obesity by stimulating lipophagy199-201. However, chronic overexpression of TFEB favours the progression of pancreatic tumours and NSCLCs202. Thus, developing small molecules to acutely stimulate TFEB and harness the autophagy–lysosomal pathway would be beneficial in ameliorating diseases in which autophagy has a defensive role202. Small molecules can activate TFEB indirectly by modulating its upstream kinases or phosphatases (TABLE 1). For example, TFEB nuclear transport is promoted by rapamycin via inhibiting mTORC1 activity or by compounds isolated from the herb Euphorbia peplus Linn via the PKC–GSK3β cascade96.

**Blocking autophagosome maturation with lysosomotropic agents.** Chloroquine (CQ), hydroxychloroquine (HCQ) and their derivatives are the only clinically approved drugs that act on autophagosome maturation (TABLE 1). They are used alone or in combination with other drugs, mostly in ongoing oncology trials, in general with the goal of optimizing therapies by blocking autophagy induced by cancer treatments183-185. The new-generation dimeric CQ derivatives Ly05 and DQ661 are active at lower concentrations than CQ and HCQ184,185,202. CQ and HCQ block autophagy flux by inhibiting the hydrolytic capacity of autolysosomes. They increase the pH in autolysosomal compartments and hence block the activity of acidic proteases and other enzymes203. Beyond their capacity for H+ trapping, monomeric and dimeric CQ derivatives also block lysosomal function by inhibiting the activity of the lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT1), which is involved in stabilizing the lysosomal localization of

**Therapeutic interventions**

Different steps of the autophagy pathway are potential targets for therapeutic interventions179,180. Inhibitors and activators of autophagosome formation, including VPS34 andULK1 inhibitors or the activating peptide Tat–beclin 1, are potent modulators of autophagy, but are not yet available for clinical use181,182. By contrast, lysosomotropic agents, which inhibit the activity of lysosomes and block their fusion with autophagic vesicles, have been used in several clinical trials183-185. Modulation of autophagosome maturation through targeting key components of the maturation machinery or through controlling autolysosomal activity by targeting the transcriptional programme of lysosome and autophagosome biogenesis is also a potential therapeutic option to regulate autophagic flux, but such approaches require further optimization if they are to be used in a clinical setting. Inhibiting and stimulating autophagosome maturation are important therapeutic avenues to explore. In many neurodegenerative diseases, autophagosome maturation is blocked186,187, so restoring the autophagy flux would be an important therapeutic option. When inhibition of autophagy is required, as, for example, in cancer cells, it is important to consider the step at which the autophagic pathway must be interrupted. Different outcomes can be observed when autophagy is blocked at autophagosome formation or autophagosome maturation. In line with this, it has been shown that blocking maturation of autophagosomes favours cell death via necroptosis in human cancer cells in response to TNF-related apoptosis-inducing ligand (TRAIL), whereas blocking the formation of autophagosomes triggers TRAIL-dependent apoptosis in the same cells188.

**Chloroquine (CQ).** An antimalarial drug also commonly used as a lysosomotropic agent that changes the lysosomal pH. 3C of coxsackievirus B3 and enterovirus D68 mediates cleavage of SNAP29, separating the two SNARE motifs and thus impairing the formation of the SNARE complex189,190. The phosphoprotein (P) of human parainfluenza virus type 3 binds to SNAP29 to inhibit its interaction with STX17 (REF.[179]), whereas cells in which hepatitis C virus is replicating exhibit reduced levels of STX17 due to its decreased expression and increased turnover191. Tethering factors can also be targeted by viral effectors. PLEKHM1 is proteolytically targeted by proteinase 3C of coxsackievirus B3 to separate the HOPS complex-binding and LC3-binding amino terminus from the Rab7-interacting carboxy terminus, thus abolishing its tethering function192 (FIG. 5a). Cells infected with SARS-CoV-2, or expressing the viral accessory protein ORF3a, sequester components of the HOPS complex on late endosomes193. This prevents functional HOPS complex from interacting with STX17 and consequently inhibits assembly of the STX17–SNAP29–VAMP8 complex194 (FIG. 5a). M2 protein of influenza virus A inhibits autophagosome maturation by interfering with the beclin 1-containing and UVRAG-containing VPS34 complex195 (FIG. 5a). Bacterial virulence factors also block the maturation and elimination of bacterium-containing autophagic vacuoles, but the mechanisms are less well understood. Examples are shown in FIG. 5b.

**Nanobodies.** Antibodies consisting of a single monomeric heavy chain variable domain used in pharmaceutical applications such as diagnosis and therapy due to their small size, solubility and stability.

**Lysosomotropic agents.** Substances that are taken up selectively into lysosomes irrespective of their chemical nature or uptake mechanism.

**Antibodies.** Consisting of a single monomeric heavy chain variable domain used in pharmaceutical applications such as diagnosis and therapy due to their small size, solubility and stability.

**Aptamers.** Short, single-stranded DNA or RNA molecules or peptides that non-covalently bind to a target molecule with high affinity and specificity.
V-ATPase subunits. Thus, inhibition of PPT1 results in autophagy inhibition. In addition, lysosomal function and/or fusion with autophagosomes could be targeted by other means of pH regulation (such as via modulation of V-ATPase), inhibition of the cation channel TRPML1, inhibition of lysosomal enzymes or modulation of lysosomal membrane dynamics — fusion and fission — which impact on lysosomal number and function

Of note, lysosomotropic agents target all acidic compartments and also other pathways, and thus in some cases the beneficial effects of lysosomotropic agents can be attributed to mechanisms other than a blockade of autophagy. For example, these drugs inhibit tumour progression, independently of the autophagy blockade, by altering the trafficking of signalling molecules (that is, NOTCH1) in the endocytic pathway and by other mechanisms. It is also worth mentioning that the activity of CQ and HCQ observed in vitro may not be the same in vivo due to different parameters. For example, during viral infection, the cell type used in vitro may not reflect the tropism of the virus in vivo and/or the sensitivity to CQ. Moreover, the acidic environment and bacterial virulence factors modulate host autophagy initiation and block maturation to achieve their maximum accumulation. Understanding how viral proteins and bacterial virulence factors modulate host autophagy will help us to develop strategies to interfere with the pathogen-host interaction and even to restore autophagy.

Table 1 | Different strategies used to modulate autophagosome maturation

| Function on autophagy | Potential therapeutic strategy | Pharmacological mechanism |
|-----------------------|-------------------------------|---------------------------|
| Autophagy activator   | Inhibitors of O-GlcNAc transferase | Stimulating autophagy by suppressing the O-GlcNAcylation of SNAP29 |
|                       | Small molecules to stimulate TFEB activity | Promoting transcription of the autophagy-lysosome pathway genes and enhancing lysosomal biogenesis |
|                       | mTOR or GSK3β inhibitors | Suppressing TFEB phosphorylation to promote TFEB nuclear translocation |
|                       | Small molecules to block Rubicon interaction with the VPS34–UVRAG complex | Stimulating autophagy by activating the VPS34–UVRAG complex |
| Autophagy inhibitor   | Inhibitors of O-GlcNAcase | Inhibiting autophagosome maturation by facilitating the O-GlcNAcylation of SNAP29 |
|                       | Chloroquine, hydroxychloroquine and their derivatives | Inhibiting autolysosomal hydrolysis |
|                       | Inhibitors of V-ATPase | Blocking the transport of protons for lysosomal acidification |
|                       | Inhibitors of lysosomal hydrolases | Blocking degradation by lysosomes |
|                       | TCH-165 | Inhibiting autophagosome fusion with lysosomes by activating proteasomal degradation of STX17 and SNAP29 |
|                       | PIKFYVE kinase inhibitors | Inhibiting lysosome fission and causing enlarged non-functional lysosomes |

GSK3β, glycogen synthase kinase 3β; O-GlcNAc, O-linked β-N-acetylglucosamine.

Conclusions and perspectives

Autophagosome maturation is an essential step in the autophagy pathway that ensures the formation of degradative autolysosomes. It adds another layer of complexity and provides an extra node to integrate nutrient status and stresses for regulation of autophagic degradation. The distinct organization and trafficking of the endolysosomal compartment in different cell types and growth conditions add complexity at the intersection of the autophagy and endocytic pathways. Thus, the trans-SNARE complexes and tethering factors act coordinately with context-specific factors to mediate fusion of autophagosomes with endocytic vesicles and lysosomes. Further investigations are needed to elucidate how different signalling pathways and stresses coordinate autophagosome initiation and maturation to ensure efficient progression of autophagic flux and how these processes are adapted in different cell types or pathophysiological contexts.

Autophagosome maturation is widely manipulated by pathogens to escape from destruction and for replication and growth. Pathogens that use autophagic vacuoles for replication can both activate autophagosome initiation and block maturation to achieve their maximal accumulation. Understanding how viral proteins and bacterial virulence factors modulate host autophagy will help us to develop strategies to interfere with the pathogen-host interaction and even to restore autophagy as a defence mechanism. Such strategies are urgently required with the evolution of multidrug-resistant bacteria. Elucidating the underlying mechanisms for autophagosome maturation defects and deregulation of the function of the autophagosome–lysosome system is also key for us to understand the pathogenesis of various human diseases. Targeting autophagosome maturation — via modulation of SNAREs, tethers and their regulators as well as lysosome biogenesis and function — offers an effective strategy for the treatment of these diseases. Biomarkers and methods that reliably monitor autophagy flux in vivo are needed to examine temporal changes of autophagy activity and to evaluate interventions that target autophagosome maturation.
A combination of assays has been used to measure autophagy flux and to monitor autophagosome maturation\(^{121}\). However, many of these assays are difficult to implement in humans. Several methods have recently been developed to serve as reliable autophagy biomarkers in humans\(^ {120}\). Analysis of autophagy flux in isolated peripheral blood mononuclear cells is used to measure autophagy activity in human blood samples\(^ {120,121}\). Postiron emission tomography can be used with hypoxia tracers to correlate hypoxia and autophagy in tumours and also to gauge the level of specific autophagy substrates in tissues by the use of positron emission tomography ligands that bind to autophagy substrates\(^ {124,129}\). The levels of specific molecules in biological fluids can also be used to determine autophagy flux in tissues. For instance, the blood level of arginase 1 reflects autophagy activity in the liver\(^ {122}\). Nevertheless, these methods are of low throughput and/or can be applied only to selected cells or tissues. Thus, to screen drugs targeting autophagy, there is an urgent need for reliable, high-throughput clinical biomarkers to measure autophagy activity by the identification of tissue-specific circulating autophagy by-products and the development of flux probes for use in imaging techniques.

Published online 23 July 2021
This work reveals that in primary neurons, autophagosomes accumulate at the distal tip of the axon undergo retrograde transport to the cell soma, accompanied by gradual maturation and acidification.

Furuya, T . et al. Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol. Cell. 38, 500–511 (2010).

Nixon, R. A., Yang, D. S. & Lee, J. H. Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy 4, 590–599 (2008).

Otomo, A., Pan, L. & Hadano, S. Deregulation of the autophagy-endolysoosomal heterolytic spherical and related motor neuron diseases. Neurol. Res. Rev. 12, 49842 (2012).

Pals, I., et al. Mutant dynactin in motor neuron disease. Nat. Genet. 35, 455–465 (2003).

Parkinson, N. et al. ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67, 1076–1077 (2006).

Mauvezin, C., Nagy, P., Juhasz, G. & Neufeld, T P. Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification. Nat. Commun. 6, 7007 (2015).

McBrayer, M . & Nixon, R. A. Lysosome and calcium dysregulation in Alzheimer’s disease: partners in crime. Biochem. Soc. Trans. 41, 1495–1502 (2014).

Settembre, C. et al. A block of autophagy in lysosomal storage disorders. Hum. Mol. Genet. 17, 119–129 (2008).

Vergerauregii, S., Connelly, P. S., Daniels, M. P. & Puertoillon, R. R. Lysosomal dysfunction in mucolipidosis type IV patients. Hum. Mol. Genet. 17, 2723–2737 (2008).

Decressac, M. et al. TFE3-mediated autophagy rescues midbrain dopamine neurons from autophagosome-to-nucleus toxicity. Proc. Natl Acad. Sci. USA 110, E1817–E1826 (2013).

Corbino, H. et al. Polytubulin-exended androgen receptor interferes with TFE3 to elicit autophagy defects in SBMA. Nat. Neurosci. 17, 1180–1189 (2014).

This work reveals that the polyubiquitinated androgen receptor physically binds to and inactivates TFE3, thereby impairing autophagy function and contributing to the pathogenesis of spinal and bulbar muscular atrophy.

Flavin, W. P. et al. Endocytic vesicle rupture is a conserved mechanism of cell injury by amyloid proteins. Acta. Neuropath. 134, 629–655 (2017).

Jiang, P. Z., Gan, M., Yen, S. H., McLean, P. J. & Dichgans, M. D. Impaired autophagic flux: a new pathogenic mechanism in the progression of alpha-synuclein aggregations within the synucleinopathy. Acta. Neuropath. 193, 615–625 (2020).

Gulup, T. et al. Recessive mutations in WDR45 cause a phenotypically distinct, lethal form of CHON. J. Cell Sci. 207, 285–298 (2017).

This study shows that upon activation by lysosomal calcium release through MCOLN1, the phosphatase calpulin dephosphorylates TFE3 and promotes its nuclear translocation to induce autophagy and lysosomal biogenesis.

Martina, J. A. & Puertollano, R. Protein phosphatase 2A regulates autophagosome maturation independently of mTORC1. Nat. Cell Biol. 18, 285–298 (2016).

Kim, Y. M. et al. mTORC1 phosphorylates UVRAG to inactivate MTMR13 and RAB21 activity regulates autophagosome-lysosome fusion. EMBO J. 38, e100512 (2019).

Tabata, K. et al. Rubicon and PLEKHM1 negatively regulate autophagosome and endosome biogenesis. Autophagy 12, 1215–1226 (2016).

Byrne, S., Dionis-Vici, C., Smith, L., Gautel, M. & Jungbluth, H. Vici syndrome: a review. Orphanet J.Rare Dis. 11, 21 (2016).

Zhao, Y. G. et al. The autophagy gene Wdr45/Wipi4 inactivates TFEB, thereby impairing autophagy function and contributing to the pathogenesis of spinocerebellar ataxia type 11 (SCA11).

Wang, Z. Y. et al. The RBG-1-RBG-2 complex inactivates TFEB, thereby impairing autophagy function and contributing to the pathogenesis of spinocerebellar ataxia type 11 (SCA11).

Kim, Y. M. et al. mTORC1 phosphorylates UVRAG to inactivate MTMR13 and RAB21 activity regulates autophagosome-lysosome fusion. EMBO J. 38, e100512 (2019).

Tabata, K. et al. Rubicon and PLEKHM1 negatively regulate autophagosome and endosome biogenesis. Autophagy 12, 1215–1226 (2016).

Byrne, S., Dionis-Vici, C., Smith, L., Gautel, M. & Jungbluth, H. Vici syndrome: a review. Orphanet J. Rare Dis. 11, 21 (2016).

Zhao, Y. G. et al. The autophagy gene Wdr45/Wipi4 inactivates TFEB, thereby impairing autophagy function and contributing to the pathogenesis of spinocerebellar ataxia type 11 (SCA11).

Wang, Z. Y. et al. The RBG-1-RBG-2 complex inactivates TFEB, thereby impairing autophagy function and contributing to the pathogenesis of spinocerebellar ataxia type 11 (SCA11).
127. Saraste, A. et al. No cardiomyopathy in X-linked myopathy with excess autophagy. Neurosci. Lett. 525, 485–487 (2015).

128. Tresse, E. et al. VCP/p97 is essential for maturation of ubiquitin-conjugate microautophagosomes and this function is impaired by mutations that cause IBM/FAP. Autophagy 6, 217–227 (2010).

129. Ju, J. et al. SARS coronavirus receptor protein (VCP) is required for autophagy and is disrupted in VCP disease. J. Cell Biol. 187, 875–888 (2009).

130. Mohamud, Y. et al. Enteroviral infection inhibits autophagy and cancer: modulation of cell death pathways and cancer cell adaptations. J. Cell. Biol. 219, e201909533 (2020).

131. Dikic, I. et al. Protein misfolding and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19, 549–566 (2018).

132. Antinana, E. et al. Multiactivated activities of translation factor EB in cancer onset and progression. Mol. Oncol. 15, 527–346 (2021).

133. Perera, R. M. et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metastasis. Nature 524, 561–565 (2015). The authors demonstrate that pancreatic ductal adenocarcinoma cells contain higher levels of nuclear MITF, TF3E and TFEB than normal cells, which in turn activate autophagy to promote tumour microenvironment.

134. Konda, S. T. et al. TAM6106 drives lung cancer metastasis by inducing TFE3-dependent lysosome dysfunction. Replication of carcinogenesis. Nat. Commun. 9, 2731 (2018).

135. Sjolholm, T. et al. The consensus coding sequences of breast and colorectal cancers. Science 341, 268–274 (2016).

136. Wu, B. et al. Intratumoral heterogeneity and genetic characteristics of ductal carcinoma. Int. J. Cancer 146, 3536–3537 (2020).

137. Li, H. et al. Cmyc/miR-150/EPG5 axis mediated dysregulation of autophagy promotes development of small-cell lung cancer. Thoracics 9, 5134–5149 (2018).

138. Bai, M. X., Che, Y. Y., Lu, K. & Fu, L. Analysis of desialylation of CD133 as a biomarker and therapeutic target for cervical cancer by bioinformatic analysis. PeerJ 8, e4146 (2020).

139. Lebovitz, C. B. et al. Cross-cancer profiling of molecular alterations within the human autophagy interaction network. Autophagy 11, 1668–1682 (2015).

140. Huang, J. & Brumell, J. H. Bacteria-autophagy interaction network. Cell 149, 120–132.e14 (2021).

141. Niu, H., Yamaguchi, M. & Rikihisa, Y. Subversion of autophagy by bacterial pathogens. Cell Microbiol. 6, 367–580 (2008).

142. Galluzzi, L., Bravo-San Pedro, J. M., Levine, B., Green, D. R. & Kroemer, G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 16, 487–511 (2017).

143. Morel, E. et al. Autophagy: a druggable target. Annu. Rev. Pharmacol. Toxicol. 58, 477–498 (2018).

144. Levine, B., Packer, M. & Codogno, P. Development of autophagy inducers in clinical medicine. J. Clin. Invest. 125, 2170–2174 (2015).

145. Vakhfakhmetov-Norberg, H., Xia, H. G. & Yuan, J. Pharmacologic agents targeting autophagy. J. Clin. Invest. 130, 5–13 (2015).

146. Amaravadi, R. K., Kimmelman, A. C. & Debnath, J. Targeting autophagy in cancer: recent advances and future directions. Cancer Cell 9, 1167–1181 (2017).

147. Levy, J. M. M., Towers, C. G. & Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer 17, 528–542 (2017).

148. Marsh, T., Tolani, B. & Debnath, J. The pleiotropic functions of autophagy in metastasis. J. Cell Sci. 134, jcs24056 (2021).

149. Djadjlakerta, A. et al. Autophagy induction as a therapeutic strategy for neurodegenerative diseases. J. Mol. Biol. 432, 779–799 (2020).

150. Ganesan, D. & Cai, Q. Understanding amphisomes. Biotech. J. 478, 1959–1976 (2021).

151. Goodall, M. L. et al. The autophagy machinery controls cell death by autophagy-independent and -dependent mechanisms. Nat. Rev. Mol. Cell Biol. 20, 79–95 (2019).

152. Corona, A. K. & Jackson, W. T. Finding the middle ground for autophagy: autophagy requirements. Trends Cell. Biol. 28, 869–881 (2018).

153. van der Beek, J., Jonker, C., van der Welle, R., Liu, N. & Klumperman, J. COPII and COPI: multisubunit tethers of the endo-lysosomal system in health and disease. J. Cell Sci. 132, jcs189154 (2019).

154. Vriend, M., Rudalovic, M. & Stemken, H. The many functions of ESCRTs. Nat. Rev. Mol. Cell Biol. 21, 25–42 (2020).

155. Dodson, M. et al. Increased O-GlcNAcylation of SNAP29 drives arsenic-induced autophagic dysfunction. Mol. Cell. Biol. 38, e00595-17 (2018).

156. Zhou, F. X. et al. Down-regulation of OGT promotes cisplatin resistance by inducing autophagy in ovarian cancer. Theranostics 8, 5200–5212 (2018).

157. Zhan, Y. & Hart, G. W. Targeting the endo-lysosomal system to develop novel therapeutics. Mol. Aspects Med. 79, 100885 (2020).

158. van der Beek, J. M. et al. Regulation of autophagic flux by the 205 kDa proteosome. Cell. Biol. Cell. Med. 26, 1283–1294.e5 (2019).

159. Galluzzi, L. & Green, D. R. Autophagy induction as a therapeutic strategy for cancer. Cell. Biol. Cell. Med. 17, 1682–1699 (2019).

160. Wan, J. H. et al. LCS-associated phagoyosis protects against inflammation and liver fibrosis via immunoreceptor inhibitory signaling. Sci. Transl. Med. 12, eaaw532 (2020).

161. Wang, S. W., Si, P. & Martinez, J. Rubicon LCS-associated phagoyosis and beyond. FEBS J. 285, 1379–1388 (2018).

162. Settembre, C. et al. TFB2M controls cellular lipid metabolism through a starvation-induced autophagocytolytic loop. Nat. Cell. Biol. 15, 1016–1013 (2016).
200. Napolitano, G. & Ballabio, A. TFEB at a glance. J. Cell Sci. 129, 2475–2481 (2016).
201. Parenti, G., Medina, D. L. & Ballabio, A. The rapidly evolving view of lysosomal storage diseases. EMBO Mol. Med. 13, e128356 (2021).
202. Rebecca, V. W. et al. PPT1 promotes tumor growth and is the molecular target of chloroquine derivatives in cancer. Cancer Discov. 9, 220–229 (2019).
203. Nirk, E. L., Reggiori, F. & Mauthe, M. Hydroxochloroquine in rheumatic autoimmune disorders and beyond. EMBO Mol. Med. 12, e12476 (2020).
204. Whitmarsh-Everiss, T. & Laria, L. Small molecule probes for targeting autophagy Nat. Chem. Biol. 17, 653–664 (2021).
205. Chude, C. I. & Amaravadi, R. K. Targeting autophagy in cancer: update on clinical trials and novel inhibitors. Int. J. Mol. Sci. 18, 1279 (2017).
206. Maes, H. et al. Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell 26, 190–206 (2014).
207. Hoffmann, M. et al. Chlороquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature 585, 588–590 (2020).
208. Pellegrini, P. et al. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy 10, 562–571 (2014).
209. Mizushima, N. & Murphy, L. O. Autophagy assays for biological discovery and therapeutic development. Trends Biochem. Sci. 45, 1080–1093 (2020).
210. Pietrocola, F. et al. Metabolic effects of fasting on human and mouse blood in vivo. Autophagy 13, 567–578 (2017).
211. Bensalem, J. et al. Measurement of autophagic flux in humans: an optimized method for blood samples. Autophagy https://doi.org/10.1080/15548627.2020.1846502 (2020).
212. Poollet-Perpez, L. et al. Autophagy maintains tumour growth through circulating arginine. Nature 565, 569–573 (2018).
213. O’Searghda, M. & Wessels, M. R. Streptolysin O and its co-toxin NAD-glycohydrolase protect group A streptococci from xenophagic killing. PLoS Pathog. 9, e1003394 (2013).
214. The authors show that during group A Streptococcus infection, the pore-forming toxin streptolysin O damages the bacterium-containing vacuole, resulting in release of active NADase into the cytosol, which prevents the fusion of group A Streptococcus-containing autophagosomes with lysosomes.
215. Liu, P. F. et al. IsaB inhibits autophagic flux to promote host transmission of methicillin-resistant Staphylococcus aureus. J. Invest. Dermatol. 135, 2714–2722 (2015).
216. Capurro, M. I. et al. VaC generates a protective intracellular reservoir for Helicobacter pylori that is eliminated by activation of the lysosomal calcium channel TRPML1. Nat. Microbiol. 4, 1411–1423 (2019).
217. Liu, Y. B. et al. IsaB inhibits autophagic flux to promote host transmission of methicillin-resistant Staphylococcus aureus. J. Invest. Dermatol. 135, 2714–2722 (2015).
218. Liu, Y. B. et al. IsaB inhibits autophagic flux to promote host transmission of methicillin-resistant Staphylococcus aureus. J. Invest. Dermatol. 135, 2714–2722 (2015).
219. Liu, T. et al. IsaB inhibits autophagic flux to promote host transmission of methicillin-resistant Staphylococcus aureus. J. Invest. Dermatol. 135, 2714–2722 (2015).
220. Liu, Y. B. et al. IsaB inhibits autophagic flux to promote host transmission of methicillin-resistant Staphylococcus aureus. J. Invest. Dermatol. 135, 2714–2722 (2015).
221. Liu, Y. B. et al. IsaB inhibits autophagic flux to promote host transmission of methicillin-resistant Staphylococcus aureus. J. Invest. Dermatol. 135, 2714–2722 (2015).
222. Liu, Y. G. et al. Spinster is required for autophagic lysosome reformation. Nature 562, 563–571 (2014).
223. O’Searghda, M. & Wessels, M. R. Streptolysin O and its co-toxin NAD-glycohydrolase protect group A streptococci from xenophagic killing. PLoS Pathog. 9, e1003394 (2013).
224. O’Searghda, M. & Wessels, M. R. Streptolysin O and its co-toxin NAD-glycohydrolase protect group A streptococci from xenophagic killing. PLoS Pathog. 9, e1003394 (2013).
225. Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942–946 (2010).
226. Chen, Y. & Yu, L. Development of research into autophagic lysosome reformation. Mol. Cell 41, 45–49 (2018).
227. Sun, T., Wang, X. W., Lu, Q., Ren, H. Y. & Zhang, H. CUP-S, the C. elegans ortholog of the mammalian lysosomal channel protein MLN1/TRPML1, is required for proteolytic degradation in autolysosomes. Autophagy 7, 1508–1515 (2011).

Author contributions
The authors contributed equally to all aspects of the article.

Competing interests
The authors declare no competing interests.

Peer review information
Nature Reviews Molecular Cell Biology thanks E. Eskelinen, N. Mizushima and H. Nakatogawa for their contribution to the peer review of this work.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
© Springer Nature Limited 2021