Responsible AI in Healthcare*
Overview of the Research Activities carried out at the Department of Informatics, Systems, and Communication of the University of Milano-Bicocca, within the CINI National Laboratory “Artificial Intelligence and Intelligent Systems” (AIIS)†

Federico Cabitza⋄, Davide Ciucci⋄, Gabriella Pasi★, and Marco Viviani★
Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo)
Edificio U14 (ABACUS), Viale Sarca, 336 – 20126 Milan, Italy
⋄MUDILAB: Modeling Uncertainty, Decisions and Interaction
Website: https://mudilab.disco.unimib.it/
★IKR3 LAB: Information and Knowledge Representation, Retrieval, and Reasoning
Website: https://ikr3.disco.unimib.it/
{federico.cabitza, davide.ciucci, gabriella.pasi, marco.viviani}@unimib.it

Abstract
This article discusses open problems, implemented solutions, and future research in the area of responsible AI in healthcare. In particular, we illustrate two main research themes related to the work of two laboratories within the Department of Informatics, Systems, and Communication at the University of Milano-Bicocca. The problems addressed concern, in particular, uncertainty in medical data and machine advice, and the problem of online health information disorder.

1 Research Themes
According to the Ethics Guidelines for Trustworthy Artificial Intelligence (AI) [AA.VV., 2021], a document defined by the High-Level Expert Group on Artificial Intelligence (AI HLEG) set up by the European Commission, seven are the key requirements that AI systems should meet in order to be trustworthy:

1. **Human agency and oversight**, i.e., supporting human autonomy and decision-making, as prescribed by the principle of respect for human autonomy;
2. **Technical robustness and safety**, i.e., including resilience to attack and security, fall back plan and general safety, accuracy, reliability and reproducibility;
3. **Privacy and data governance**, i.e., including respect for privacy, quality and integrity of data, and access to data;
4. **Transparency**, i.e., including traceability, explainability and communication;
5. **Diversity, non-discrimination and fairness**, i.e., including the avoidance of unfair bias, accessibility and universal design, and stakeholder participation;
6. **Societal and environmental well-being**, i.e., including sustainability and environmental friendliness, social impact, society and democracy;
7. **Accountability**, i.e., including auditability, minimisation and reporting of negative impact, trade-offs and redress.

The researchers of the Department of Informatics, Systems and Communication (DISCo) of the University of Milano-Bicocca, who work on the macro theme of the article, are organized in different research laboratories active on two main research themes, addressing some of the key requirements illustrated before in the health domain. In particular, Federico Cabitza and Davide Ciucci, members of the Modeling Uncertainty, Decisions and Interaction Laboratory (MUDILAB), discuss the problem of uncertainty in data that feed machine learning algorithms and the importance of the cooperation between AI and human decision-makers in healthcare. All the seven key requirements are involved, with particular reference to 1, 4, and 6. Gabriella Pasi and Marco Viviani, members of the Information and Knowledge Representation, Retrieval and Reasoning Laboratory (IKR3 LAB), address the problem of health information disorder and discuss several open issues and research directions related mainly to key requirements 1, 2, 4, 5, and 6.

2 Responsible AI as a Support for Healthcare Decisions (F. Cabitza and D. Ciucci)
In this section, we address some responsibility and trustworthiness issues in current machine learning algorithms and decision support systems in healthcare. First of all, medical data can be affected by different types of uncertainty/variability,
some of which are not usually accounted for when developing ML models. In particular, we refer to different forms of variability:

- **Biological variability**, which occurs when a person is associated with more or less different values that express a health condition over time;
- **Analytical variability**, which occurs when a testing equipment, although calibrated, produces different values for a specific patient/subject with respect to other equipment (from the same vendor or different vendors);
- **Pre- and post-analytical variability**, which occurs when different values in the same exam for the same subject can be due to different ways (including erroneous ones) to use the equipment or produce data about test results.

These sources of variability add on to the noise due to more common (and treated) sources of data or label noise [Cabitza and Batini, 2016; Cabitza et al., 2019a; Cabitza et al., 2019b; Hüllermeier and Waegeman, 2021]:

- **Missing data**, in different forms, e.g., a value that is not known or a patient that does not reveal a symptom;
- **Vagueness**, such as a symptom is mild rather than severe;
- A physician undecided on the interpretation of an exam, perhaps with a degree of confidence;
- **Noise**, in instruments or in reporting data.

In light of these considerations, it is important to get awareness of potential sources of noise in biological and clinical data and conceive novel methods to both mitigate their impact and manage the related variability and uncertainty.

To this aim, we are developing a set of new algorithms able to cope with all these flaws in healthcare data. We explore different approaches: partially labeled data [Campagner et al., 2020], superset learning [Campagner et al., 2021b], multi-rater annotation [Campagner et al., 2021c], cautious learning [Campagner et al., 2021a], and soft clustering [Campagner and Ciucci, 2019]. The goal is to create a framework for robustness validation of classification systems based on Machine Learning. The developed tools and algorithms should be able to handle different forms of uncertainty simultaneously and to abstain from giving a precise answer whenever this is not possible or too risky.

Moreover, we advocate the need to move beyond aggregation methods by mere majority voting in ground truthing [Campagner et al., 2021a], that is the production of the ground truth labels to be used in supervised learning, as this could result in excessive simplification with respect to the complexity of the phenomenon at hand, for which multiple right and complementary interpretations are possible to coexist for a single case [Basile et al., 2021].

Finally, we also advocate further research on the design and evaluation of alternative interaction protocols [Cabitza et al., 2021] stipulating how human decision makers could use, and in some case even collaborate, with AI-based decision support systems, in order to mitigate the risk of having cognitive biases, like automation bias, automation complacency, AI over-reliance and its opposite, the prejudice against the machine [Cabitza, 2019], which undermine the effectiveness and efficiency of computer-supported decision making process. This will lead to more reliable and trustworthy decision support systems.

3 Responsible AI and Health Information Disorder (G. Pasi and M. Viviani)

In this section we address the issue of the responsibility and trustworthiness of AI algorithms in the context of the spread of different forms of health-related communication pollution. This is an important issue, which is fundamental to both understand and limit the generation and diffusion of rumors, misinformation, and disinformation [Guess and Lyons, 2020; Wardle et al., 2018], especially in the health domain [Di Sotto and Viviani, 2022; Swire-Thompson and Lazer, 2019; Viviani and Pasi, 2017]. All these forms of false, unreliable, low-quality information, generated with or without fraudulent intent, have recently been grouped under the name of information disorder [Wardle and Derakhshan, 2017].

3.1 Health Information Disorder Generation

A first aspect that needs to be addressed in this context is that there are several systems based on AI techniques that have allowed in recent years: (i) the generation of increasingly realistic fraudulent content, and (ii) the large-scale dissemination of the same, often, with manipulative intent [Bontridder and Poullet, 2021]. As far as the first aspect is concerned, let us think, for example, to the phenomenon of deep fakes [Hancock and Bailenson, 2021]; as far as the second aspect is concerned, we may cite the increasing effectiveness of the systems of micro-targeting [Zuiderveen Borgesius et al., 2018], of information filtering [Chitra and Musco, 2020], and of social bot generation [Allem and Ferrara, 2018].

The ethical implications of information disorder generation essentially concern human dignity, autonomy, and democracy [Bæøe et al., 2020; Bontridder and Poullet, 2021]. Human dignity, because people are treated not as persons but as “temporary aggregates of data processed at industrial scale” [AA.VV., 2021], often with opinion manipulation intents, leaving to people the impression that they are receiving the same information as any other person in the digital ecosystem when in fact they are part of filter bubbles [Holone, 2016]. This problem is closely related to that of autonomy, in fact users are not completely able to build their own (digital) identity. Finally, manipulation leading to excessive polarization (as seen above) produces impossibility to make globally shared decisions, leading to serious repercussions in several areas of well-being, not least health.

In this area, we are working on the definition of models and methodologies based on graph mining and NLP techniques for the identification of echo chambers and limiting the problem of their formation, which is closely related to the problem of selective filtering of information, including with respect to the health domain [Villa et al., 2021].

3.2 Health Information Disorder Detection

Due to the spread of online information disorder, a second aspect that needs to be addressed is to identify different forms
of communication pollution in different media formats, including in the health domain; in this context several solutions have been proposed in recent years [Cui et al., 2020; Dharawat et al., 2020; Hou et al., 2019; Upadhyay et al., 2021; Zhao et al., 2021].

Ethical issues that arise in this area concern the fact that the algorithms developed to identify information disorder should not impede freedom of expression and autonomy in decision making. According to [Brachman and Schmolze, 1985], “permitting AI systems to regulate content automatically would [...] seriously affect freedom of expression and information”. This, in particular, because “it is not clear how often and under which circumstances ex ante filtering or blocking take place” [Marsden and Meyer, 2019], and because AI systems trained to detect information disorder could produce false positives and false negatives. Indeed, such systems “could lead to over-censorship of legitimate content that is machine-labeled incorrectly as disinformation” [Marsden and Meyer, 2019]. Such problems, related to a non-transparent or incorrect identification or filtering of information judged as not genuine, brings with it the problems related to awareness, and therefore autonomy, in decisions.

Therefore, in the development of solutions for the identification of information disorder (also related to health information), we are currently investigating models and methodologies that allow users not to have a hard filter with respect to access to information (based on their genuineness estimated by the system). In fact, we are evaluating the possibility of providing users with a ranking of the information that takes into account a gradual notion of genuineness [Goeuriot et al., 2021a; Putri et al., 2021], instead of a binary notion as done so far in the literature.

Other issues concern: (i) data collection and data processing, since they can be carried out incorrectly, or on data that already contain bias, or are incomplete with respect to different cultural environments (e.g., based on the use of a single language); (ii) the presence of opacity in algorithms with respect to not obvious connections between the data used, how they were used, and the obtained conclusions, which, in addition, can only be as reliable as the data they are based on. Such issues lead to the so-called inscrutable evidence and misguided evidence, as reported in [Trocin et al., 2021].

To take these issues into consideration, we have recently worked on the definition suitable labeled datasets and evaluation strategies within the CLEF eHealth Evaluation Lab [Goeuriot et al., 2021a], which focuses on the Consumer Health Search (CHS) task [Goeuriot et al., 2021b]. In addition, we have been working on the development of model-driven solutions for the evaluation of the genuineness of information (including health information), which are based on the use of Multi-Criteria Decision Making (MCDM) techniques where the system proves to be explainable with respect to the results obtained [Pasi et al., 2019].

4 Funded Research Projects

- DoSSIER. Horizon 2020 ITN on Domain Specific Systems for Information Extraction and Retrieval (H2020-EU.1.3.1., ID: 860721). URL: https://dossier-project.eu/
References

[AA.VV., 2021] AA.VV. Ethics Guidelines for Trustworthy AI. Technical report, European Commission, 2021. URL: https://ec.europa.eu/futurium/en/ai-alliance-consultation_1.html.

[Allem and Ferrara, 2018] Jon-Patrick Allem and Emilio Ferrara. Could social bots pose a threat to public health? American Journal of Public Health, 108(8):1005, 2018.

[Bærøe et al., 2020] Kristine Bærøe, Ainar Miyata-Sturm, and Edmund Henden. How to achieve trustworthy artificial intelligence for health. Bulletin of the World Health Organization, 98(4):257, 2020.

[Basile et al., 2021] Valerio Basile, Federico Cabitza, Andrea Campagner, et al. Toward a perspectivist turn in ground truthing for predictive computing. Corr, abs/2109.04270, 2021.

[Bontridder and Poullet, 2021] Noémi Bontridder and Yves Poullet. The role of artificial intelligence in disinformation. Data & Policy, 3, 2021.

[Brachman and Schmolze, 1985] Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE knowledge representation system. Cognitive Science, 9(2):171–216, April–June 1985.

[Cabitza and Batini, 2016] Federico Cabitza and Carlo Batini. Information quality in healthcare. In Data and Information Quality, pages 403–419. Springer, 2016.

[Cabitza et al., 2019a] Federico Cabitza, Davide Ciucci, and Raffaele Rasolini. A giant with feet of clay: On the validity of the data that feed machine learning in medicine. In Organizing for the Digital World, pages 121–136. Springer Int. Publishing, 2019.

[Cabitza et al., 2019b] Federico Cabitza, Angela Locoro, Camilla Alderighi, et al. The elephant in the record: On the multiplicity of data recording work. Health Informatics J., 25(3), 2019.

[Cabitza et al., 2021] Federico Cabitza, Andrea Campagner, and Luca Maria Sconfienza. Studying human-ai collaboration protocols: the case of the kasparov’s law in radiological double reading. Health Inf. Sci. Syst., 9(1):8, 2021.

[Cabitza, 2019] Federico Cabitza. Biases Affecting Human Decision Making in AI-Supported Second Opinion Settings. In MDAI 2019 - 16th Int. Conf., Milan, Italy, September 4-6, 2019, Proc., volume 11676 of LNCS, pages 283–294. Springer, 2019.

[Campagner and Ciucci, 2019] Andrea Campagner and Davide Ciucci. Orthopartitions and soft clustering: Soft mutual information measures for clustering validation. Knowl. Based Syst., 180:51–61, 2019.

[Campagner et al., 2020] Andrea Campagner, Federico Cabitza, and Davide Ciucci. The three-way-in and three-way-out framework to treat and exploit ambiguity in data. Int. J. Approx. Reason., 119:292–312, 2020.

[Campagner et al., 2021a] Andrea Campagner, Federico Cabitza, Pedro Berjano, et al. Three-way decision and conformal prediction: Isomorphisms, differences and theoretical properties of cautious learning approaches. Inf. Sci., 579:347–367, 2021.

[Campagner et al., 2021b] Andrea Campagner, Davide Ciucci, and Eyke Hüllermeier. Rough set-based feature selection for weakly labeled data. Int. J. Approx. Reason., 136:150–167, 2021.

[Campagner et al., 2021c] Andrea Campagner, Davide Ciucci, Carl-Magnus Svensson, et al. Ground truthing from multi-rater labeling with three-way decision and possibility theory. Inf. Sci., 545:771–790, 2021.

[Chitra and Musco, 2020] Uthsav Chitra and Christopher Musco. Analyzing the impact of filter bubbles on social network polarization. In Proc. of the 13th Int. Conf. on Web Search and Data Mining, pages 115–123, 2020.

[Cui et al., 2020] Limeng Cui, Haesung Seo, Maryam Tabar, et al. Deterrent: Knowledge guided graph attention network for detecting healthcare misinformation. In Proc. of the 26th ACM SIGKDD, pages 492–502, 2020.

[Dharawat et al., 2020] Arkir Dharawat, Ismini Lourentzou, Alex Morales, et al. Drink bleach or do what now? covid-hera: A dataset for risk-informed health decision making in the presence of covid19 misinformation. arXiv preprint arXiv:2010.08743, 2020.

[Di Sotto and Viviani, 2022] Stefano Di Sotto and Marco Viviani. Health misinformation detection in the social web: An overview and a data science approach. International Journal of Environmental Research and Public Health, 19(4), 2022.

[Goeuriot et al., 2021a] Lorraine Goeuriot, Hanna Suominen, Liadh Kelly, et al. CLEF eHealth evaluation lab 2021. In ECIR 2021, Proc., pages 593–600. Springer, 2021.

[Goeuriot et al., 2021b] Lorraine Goeuriot, Hanna Suominen, Gabriella Pasi, Elias Bassani, Nicola Brew-Sam, Gabriela Gonzalez-Sáez, Liadh Kelly, Philippe Mulhem, Sandaru Seneviratne, R Gyanendra Upadhyay, et al. Consumer health search at clef ehealth 2021. In CLEF 2021 Evaluation Labs and Workshop: Online Working Notes. CEUR-WS, 2021.

[Guess and Lyons, 2020] Andrew M Guess and Benjamin A Lyons. Misinformation, disinformation, and online propaganda. Social media and democracy: the state of the field, prospects for reform, pages 10–33, 2020.

[Hancock and Bailenson, 2021] Jeffrey T Hancock and Jeremy N Bailenson. The social impact of deepfakes, The filter bubble and its effect on online personal health information. Croatian medical journal, 57(3):298, 2016.

[Hou et al., 2019] Rui Hou, Verónica Pérez-Rosas, Stacy Loeb, et al. Towards automatic detection of misinformation in online medical videos. In 2019 Int. Conf. on multimodal interaction, pages 235–243, 2019.

[Hüllermeier and Waegeman, 2021] Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in
machine learning: an introduction to concepts and methods. *Mach. Learn.*, 110(3):457–506, 2021.

[Livraga and Viviani, 2019] Giovanni Livraga and Marco Viviani. Data confidentiality and information credibility in on-line ecosystems. In *Proceedings of the 11th International Conference on Management of Digital EcoSystems*, pages 191–198, 2019.

[Marsden and Meyer, 2019] Chris Marsden and Trisha Meyer. Regulating disinformation with artificial intelligence: effects of disinformation initiatives on freedom of expression and media pluralism. European Parliament, 2019.

[Pasi et al., 2019] Gabriella Pasi, Marco Viviani, and Alexandre Carton. A multi-criteria decision making approach based on the choquet integral for assessing the credibility of user-generated content. *Information Sciences*, 503:574–588, 2019.

[Putri et al., 2021] Divi Galih Prasetyo Putri, Marco Viviani, and Gabriella Pasi. A multi-task learning model for multidimensional relevance assessment. In *Int. Conf. of the Cross-Language Evaluation Forum for European Languages*, pages 103–115. Springer, 2021.

[Swire-Thompson and Lazer, 2019] Briony Swire-Thompson and David Lazer. Public health and online misinformation: Challenges and recommendations. *Annual Review of Public Health*, 41:433–451, 2019.

[Trocin et al., 2021] Cristina Trocin, Patrick Mikalef, Zacharoula Papamitsiou, et al. Responsible AI for digital health: a synthesis and a research agenda. *Information Systems Frontiers*, pages 1–19, 2021.

[Upadhyay et al., 2021] Rishabh Upadhyay, Gabriella Pasi, and Marco Viviani. Health misinformation detection in web content: A structural-, content-based, and context-aware approach based on web2vec. In *Proc. of the Conf. on Information Technology for Social Good*, pages 19–24, 2021.

[Villa et al., 2021] Giacomo Villa, Gabriella Pasi, and Marco Viviani. Echo chamber detection and analysis: a topology- and content-based approach in the covid-19 scenario. *Social Network Analysis and Mining*, 11(1):1–17, 2021.

[Viviani and Pasi, 2017] Marco Viviani and Gabriella Pasi. Credibility in social media: opinions, news, and health information—a survey. *Wiley interdisciplinary reviews: Data mining and knowledge discovery*, 7(5):e1209, 2017.

[Wardle and Derakhshan, 2017] Claire Wardle and Hossein Derakhshan. Information disorder: Toward an interdisciplinary framework for research and policy making. *Council of Europe*, 27, 2017.

[Zhao et al., 2021] Yuehua Zhao, Jingwei Da, and Jiaqi Yan. Detecting health misinformation in online health communities: Incorporating behavioral features into machine learning based approaches. *Information Processing & Management*, 58(1):102390, 2021.

[Zuiderveen Borgesius et al., 2018] Frederik Zuiderveen Borgesius, Judith Möller, Sanne Kruijke-meier, et al. Online political microtargeting: promises and threats for democracy. *Utrecht Law Review*, 14(1):82–96, 2018.