ON WINTGEN IDEAL SURFACES

Bang-Yen Chen

Abstract

Wintgen proved in [29] that the Gauss curvature K and the normal curvature K^D of a surface in the Euclidean 4-space E^4 satisfy

$$K + |K^D| \leq H^2,$$

where H^2 is the squared mean curvature. A surface M in E^4 is called a Wintgen ideal surface if it satisfies the equality case of the inequality identically. Wintgen ideal surfaces in E^4 form an important family of surfaces; namely, surfaces with circular ellipse of curvature. In this paper, we provide a brief survey on some old and recent results on Wintgen ideal surfaces and more generally Wintgen ideal submanifolds in definite and indefinite real space forms.

2000 Mathematics Subject Classification: Primary: 53A05; Secondary 53C40, 53C42

Keywords: Gauss curvature, normal curvature, squared mean curvature, Wintgen ideal surface, superminimal surface, Whitney sphere.

1 Introduction

For surfaces M in a Euclidean 3-space E^3, the Euler inequality

$$K \leq H^2,$$

(1)

whereby K is the intrinsic Gauss curvature of M and H^2 is the extrinsic squared mean curvature of M in E^3, at once follows from the fact that

$$K = k_1k_2, \quad H = \frac{1}{2}(k_1 + k_2),$$

whereby k_1 and k_2 denote the principal curvatures of M in E^3. And, obviously, $K = H^2$ everywhere on M if and only if the surface M is totally...
umbilical in E^3, i.e. $k_1 = k_2$ at all points of M, or still, by a theorem of Meusnier, if and only if M is a part of a plane E^2 or of a round sphere S^2 in E^3.

Consider an isometric immersion $\psi : M \to \tilde{M}^4$ of a surface M into a Riemannian 4-manifold \tilde{M}^4, the ellipse of curvature at a point p of M is defined as

$$E_p = \{h(X,X) \mid X \in T_pM, \|X\| = 1\},$$

where h is the second fundamental form of M in \tilde{M}^4.

In 1979, P. Wintgen [29] proved a basic relationship between the intrinsic Gauss curvature K, the extrinsic normal curvature K^D, and squared mean curvature H^2 of any surface M in a Euclidean 4-space E^4; namely,

$$K + |K^D| \leq H^2,$$

with the equality holding if and only if the curvature ellipse is a circle. Wintgen’s inequality was generalized to surfaces in 4-dimensional real space forms in [20]. A similar inequality holds for surfaces in pseudo-Euclidean 4-space E^4_2 with neutral metric [7, 9].

Following L. Verstraelen et al. [14, 26], we call a surface M in E^4 Wintgen ideal if it satisfies the equality case of Wintgen’s inequality identically. Obviously, Wintgen ideal surfaces in E^4 are exactly superminimal surfaces.

In this article, we provide a brief survey on some old and some recent results on Wintgen ideal surfaces; and more generally, Wintgen ideal submanifolds in definite and indefinite real space forms. Some related results are also presented in this paper.

2 Some known results on superminimal surfaces

2.1 R-surfaces

A surface $\psi : M \to \tilde{M}^4$ is superminimal if and only if, at each point $p \in M$, the ellipse of curvature E_p is a circle with center at the origin o (see [15]). Simple examples of superminimal surfaces in the Euclidean 4-space E^4 are R-surfaces, i.e., graphs of holomorphic functions:

$$\{(z, f(z)) : z \in U\},$$

where $U \subset \mathbb{C} \cong \mathbb{R}^2$ is an open subset of the complex plane and f is a holomorphic function.
When the ambient space \hat{M}^4 is a space of constant curvature, O. Borůvka proved in 1928 that the family of superminimal immersions $\psi : M \to \hat{M}^4$ depends (locally) on two holomorphic functions.

2.2 Isoclinic surfaces

For an oriented plane E in \mathbb{E}^4, let E^\perp denote the orthogonal complement with the orientation given by the condition

$$E \oplus E^\perp = \mathbb{E}^4.$$

Two oriented planes E, F are called oriented-isoclinic if either

(a) $E = F^\perp$ (as oriented planes) or

(b) the projection $pr_F : E \to F$ is a non-trivial, conformal map preserving the orientations.

Consider an oriented surface $\psi : M \to \hat{M}^4$. If γ is a curve in \hat{M}^4, denote by τ_γ the parallel displacement along γ in the tangent bundle $T\hat{M}^4$. The surface M^2 is called a negatively oriented-isoclinic surface if, for every curve γ in M from x to y, the planes $\tau_{\psi_0\gamma}(T_{\psi(x)}M)$ and $T_{\psi(y)}M$ are negatively oriented isoclinic planes in $T_{\psi(y)}\hat{M}^4$.

S. Kwietniowski proved in his 1902 dissertation at Zürich that a surface in \mathbb{E}^4 is superminimal if and only if it is negatively oriented-isoclinic. Th. Friedrich in 1997 extended this result for surface in \hat{M}^4.

2.3 Representation

In 1982, R. Bryant studied a superminimal immersion of a Riemann surface M into S^4 by lifting it to CP^3, via the twistor map

$$\pi : CP^3 \to S^4$$

of Penrose. The lift is a holomorphic curve, of the same degree as that of the immersion, which is horizontal with respect to the twistorial fibration; moreover, the lift is a holomorphic curve in CP^3 satisfying the differential equation

$$z_0d\bar{z}_1 - z_1dz_0 + z_2dz_3 - z_3dz_2 = 0.$$

Setting

$$z_0 = 1, \quad z_1 + z_2z_3 = f, \quad z_2 = g,$$

the differential equation is satisfied.
one can solve for \(z_1, z_2, z_3\) in terms of the meromorphic functions \(f\) and \(g\), which serves as a kind of Weierstrass representation. Via this, R. Bryant showed the existence of a superminimal immersion from any compact Riemann surface \(M\) into the 4-sphere \(S^4\).

M. Dajczer and R. Tojeiro established in [13] a representation formula for superminimal surfaces in \(E^4\) in terms of pairs \((g, h)\) of conjugate minimal surfaces in \(E^4\).

2.4 Twister space

On an oriented Riemannian 4-manifold \(\tilde{M}^4\), there exists an \(S^2\)-bundle \(Z\), called the **twistor space** of \(\tilde{M}^4\), whose fiber over any point \(x \in \tilde{M}^4\) consists of all almost complex structures on \(T_x\tilde{M}^4\) that are compatible with the metric and the orientation. It is known that there exists a one-parameter family of metrics \(g^t\) on \(Z\), making the projection

\[Z \to \tilde{M}^4 \]

(6)

into a Riemannian submersion with totally geodesic fibers.

Th. Friedrich proved in 1984 that superminimal surfaces are characterized by the property that the lift into the twistor space is holomorphic and horizontal.

2.5 Central sphere congruence

The central sphere congruence of a surface in Euclidean space is the family of 2-dimensional spheres that are tangent to the surface and have the same mean curvature vector as the surface at the point of tangency.

In 1991, B. Rouxel [27] proved the following results:

Theorem 2.1. If the ellipse of curvature of a surface in \(E^4\) is a circle, then the surface of centers of the harmonic spheres is a minimal surface of \(E^4\).

Theorem 2.2. If \(M\) is a surface of \(E^4\) with circular ellipse of curvature and if the harmonic spheres of \(M\) have a common fixed point, then \(M\) is a conformal transform of a superminimal surface of \(E^4\).

Theorem 2.3. The surface of centers of such sphere congruence is a minimal surface.
2.6 Ramification divisor

Let M be a compact Riemann surface of genus g and let $\phi : M \to \mathbb{C}P^1$ be a holomorphic map of degree d. A point $x \in M$ is a ramification point of ϕ if $d\phi(x) = 0$, and its image $\phi(x) \in \mathbb{C}P^1$ is called a branch point of ϕ.

By the Riemann-Hurwitz Theorem the number of branch points of ϕ (counting multiplicities) is $2g + 2d - 2$.

The ramification divisor of ϕ is the formal sum

$$
\sum_i a_i p_i,
$$

where p_i is a ramification point of ϕ with multiplicity a_i, and where the sum is taken over all ramification points of ϕ. Let $\text{Ram}(\phi)$ denote the ramification divisor of ϕ.

If we put

$$
f_1 = \frac{z_1}{z_0}, \quad f_2 = \frac{z_3}{z_2},
$$

then f_1 and f_2 are known of degree d satisfying $\text{ram}(f_1) = \text{ram}(f_2)$, where $\text{ram}(f)$ is the ramification divisor of the meromorphic function f.

This provides a method for constructing the moduli space $M_d(M)$ of horizontal holomorphic curves of degree d for a Riemann surface M in S^4.

For $M = S^2$, B. Loo proved [24] that the moduli space $M_d(M)$ is connected and it has dimension $2d + 4$.

2.7 Riemann surfaces of higher genera

By applying algebraic geometry, Chi and Mo studied in [11] the moduli space over superminimal surfaces of higher genera. In particular, they proved the following 5 results:

Theorem 2.4. Let M be a Riemann surface of genus $g \geq 1$. Then all the branched superminimal immersions of degree $d < 5$ from M into S^4 are totally geodesic.

Theorem 2.5. Let M be a Riemann surface of genus $g \geq 1$. Then M admits a non-totally geodesic branched superminimal immersions of degree 6 into S^4 if and only if M is a hyper-elliptic surface, i.e., it is an elliptic fibration over an elliptic curve.

Theorem 2.6. Let M be a hyper-elliptic surface of genus $g > 3$. Then non-totally geodesic branched superminimal immersions of degree 6 from M into
S^4 are the pullback of non-totally geodesic branched superminimal spheres of degree 3 via the branched double covering of M onto CP^1.

Theorem 2.7. Let M be a Riemann surface of genus $g \geq 2$ ($g = 1$, respectively). If $d > 5g + 4$, $(d \geq 6$, respectively), then there is a non-totally geodesic branched superminimal immersion of degree d from M into S^4. The immersion is generically one-to-one.

Theorem 2.8. Let M be a Riemann surface of genus $g \geq 1$. If the degree d of a superminimal immersion of M in S^4 satisfies $d \geq 2g - 1$, then the dimension of the moduli space $M_d(M)$ is between $2d - 4g + 4$ and $2d - g + 4$, where the upper bound is achieved by the totally geodesic component.

3 Wintgen’s inequality

We recall the following result of P. Wintgen [29].

Theorem 3.1. Let M be a surface in Euclidean 4-space E^4. Then we have
\[
H^2 \geq K + |K^D|
\]
at every point in M. Moreover, we have

(i) If $K^D \geq 0$ holds at a point $p \in M$, then the equality sign of (9) holds at p if and only if, with respect to some suitable orthonormal frame $\{e_1, e_2, e_3, e_4\}$ at p, the shape operator at p satisfies
\[
A_{e_3} = \begin{pmatrix} \mu + 2\gamma & 0 \\ 0 & \mu \end{pmatrix}, \quad A_{e_4} = \begin{pmatrix} 0 & \gamma \\ \gamma & 0 \end{pmatrix}.
\]

(ii) If $K^D < 0$ holds at $p \in M$, then the equality sign of (9) holds at p if and only if, with respect to some suitable orthonormal frame $\{e_1, e_2, e_3, e_4\}$ at p, the shape operator at p satisfies
\[
A_{e_3} = \begin{pmatrix} \mu - 2\gamma & 0 \\ 0 & \mu \end{pmatrix}, \quad A_{e_4} = \begin{pmatrix} 0 & \gamma \\ \gamma & 0 \end{pmatrix}.
\]

4 Wintgen ideal surfaces in E^4

In this and the next sections we present some recent results on Wintgen ideal surfaces.
Proposition 4.1. Let M be a Wintgen ideal surface in E^4. Then M has constant mean curvature and constant Gauss curvature if and only if M is totally umbilical.

The following results classifies Wintgen ideal surfaces in E^4 with equal Gauss and normal curvatures.

Theorem 4.1. Let $\psi : M \to E^4$ be a Wintgen ideal surface in E^4. Then $|K| = |K^D|$ holds identically if and only if one of the following four cases occurs:

1. M is an open portion of a totally geodesic plane in E^4.
2. M is a complex curve lying fully in C^2, where C^2 is the Euclidean 4-space E^4 endowed with some orthogonal almost complex structure.
3. Up to dilations and rigid motions on the Euclidean 4-space E^4, M is an open portion of the Whitney sphere defined by
 \[
 \psi(u, v) = \frac{\sin u}{1 + \cos^2 u} \left(\sin v, \cos v, \cos u \sin v, \cos u \cos v \right).
 \]
4. Up to dilations and rigid motions of the Euclidean 4-space E^4, M is a surface with $K = K^D = \frac{1}{2}H^2$ defined by
 \[
 \psi(x, y) = \frac{2\sqrt{y}}{5} \cos x \cos \left(\frac{x}{2} \right) \cos(y) \cos \left(\frac{1}{2} \tanh^{-1} \left(\tan \frac{x}{2} \right) \right) \\
 \times \left(\tan \left(\frac{1}{2} \tanh^{-1} \left(\tan \frac{x}{2} \right) \right) (2 - \tan(y)) + \tan \left(\frac{x}{2} \right) (1 + 2 \tan(y)) \right),
 \]
 where
 \[
 \tan \left(\frac{1}{2} \tanh^{-1} \left(\tan \frac{x}{2} \right) \right) (1 + 2 \tan(y)) - \tan \left(\frac{x}{2} \right) (2 - \tan(y)),
 \]
 \[
 \tan \left(\frac{x}{2} \right) \tan \left(\frac{1}{2} \tanh^{-1} \left(\tan \frac{x}{2} \right) \right) (1 + 2 \tan(y)) + \tan(y) - 2,
 \]
 \[
 \tan \left(\frac{x}{2} \right) \tan \left(\frac{1}{2} \tanh^{-1} \left(\tan \frac{x}{2} \right) \right) (\tan(y) - 2) - 2 \tan(y) - 1.
 \]

According to I. Castro [3], up to rigid motions and dilations of C^2 the Whitney sphere is the only compact orientable Lagrangian superminimal surface in C^2.

Remark 4.1. In order to prove Theorem 4.1 we have solved the following
fourth order differential equation:

\[p^{(4)}(x) - 2(tan x)p''(x) + \left(1 + \frac{5}{8} sec^2 x \right) p''(x) + \left(\frac{5}{8} sec^2 x - 2 \right) (tan x)p'(x) + \frac{185}{256} (sec^4 x)p(x) = 0. \]

(12)

to obtain the following exact solutions:

\[p(x) = \sqrt{\cos x} \left\{ (c_1 \cos \left(\frac{x}{2} \right) + c_2 \sin \left(\frac{x}{2} \right)) \cos \left(\frac{1}{2} \tanh^{-1} \left(\tan \left(\frac{x}{2} \right) \right) \right) \\
+ \left(c_3 \cos \left(\frac{x}{2} \right) + c_4 \sin \left(\frac{x}{2} \right) \right) \sin \left(\frac{1}{2} \tanh^{-1} \left(\tan \left(\frac{x}{2} \right) \right) \right) \right\} \]

(13)

5 Wintgen ideal surfaces in \(\mathbb{E}_2^4 \)

For space-like oriented surfaces in a 4-dimensional indefinite real space form \(R_2^4(c) \) with neutral metric, one has the following Wintgen type inequality (cf. [7, 9, 10]).

Theorem 5.1. Let \(M \) be an oriented space-like surface in a 4-dimensional indefinite space form \(R_2^4(c) \) of constant sectional curvature \(c \) and with index two. Then we have

\[K + K^D \geq \langle H, H \rangle + c \]

(14)

at every point.

The equality sign of (14) holds at a point \(p \in M \) if and only if, with respect to some suitable orthonormal frame \(\{ e_1, e_2, e_3, e_4 \} \), the shape operator at \(p \) satisfies

\[A_{e_3} = \begin{pmatrix} \mu + 2\gamma & 0 \\ 0 & \mu \end{pmatrix}, \quad A_{e_4} = \begin{pmatrix} 0 & \gamma \\ \gamma & 0 \end{pmatrix}. \]

(15)

As in surfaces in 4-dimensional real space forms, we call a surface in \(R_2^4(c) \) Wintgen ideal if it satisfies the equality case of (14) identically.

Theorem 5.2. Let \(M \) be a Wintgen ideal surface in a neutral pseudo-Euclidean 4-space \(\mathbb{E}_2^4 \). Then \(M \) satisfies \(|K| = |K^D| \) identically if and only if, up to dilations and rigid motions, \(M \) is one of the following three types of surfaces:
(i) A space-like complex curve in C^2_1, where C^2_1 denotes E^4_2 endowed with some orthogonal complex structure;

(ii) An open portion of a non-minimal surface defined by

$$\sec^2 x \left(\sin x \sinh y, \sqrt{2 - \sin^2 x} \cosh y, \sin x \cosh y, \sqrt{2 - \sin^2 x} \sinh y \right);$$

(iii) An open portion of a non-minimal surface defined by

$$\frac{\cosh x}{6\sqrt{2}y} \left(6\sqrt{2}\sqrt{2+(1-2 \tanh x)\sqrt{1+\tanh x}} + y^2 \sqrt{2+\sqrt{1+\tanh x}},
ight.$$

$$6\sqrt{2}\sqrt{2+(2 \tanh x-1)\sqrt{1+\tanh x}} + y^2 \sqrt{2+\sqrt{1+\tanh x}},$$

$$6\sqrt{2}\sqrt{2+(1-2 \tanh x)\sqrt{1+\tanh x}} - y^2 \sqrt{2+\sqrt{1+\tanh x}},$$

$$-y^2 \sqrt{2+\sqrt{1+\tanh x}} \left(\sqrt{2} \cosh x \sqrt{1+\tanh x} - e^x \right) \bigg).$$

6 Surfaces with null normal curvature in E^4_2.

The following theorem of Chen and Suceava from [10] classifies surfaces with null normal curvature in E^4_2.

Theorem 6.1. Let M be a space-like surface in the pseudo-Euclidean 4-space E^4_2. If M has constant mean and Gauss curvatures and null normal curvature, then M is congruent to an open part of one of the following six types of surfaces:

1. A totally geodesic plane in E^4_2 defined by $(0, 0, x, y)$;
2. A totally umbilical hyperbolic plane $H^2(-\frac{1}{a^2}) \subset E^3_1 \subset E^4_2$ given by

$$\left(0, a \cosh u, a \sinh u \cos v, a \sinh u \sin v \right),$$

where a is a positive number;

3. A flat surface in E^4_2 defined by

$$\frac{1}{\sqrt{2m}} \left(\cosh(\sqrt{2}mx), \cosh(\sqrt{2}my), \sinh(\sqrt{2}mx), \sinh(\sqrt{2}my) \right),$$
where \(m \) is a positive number;

(4) A flat surface in \(\mathbb{E}_2^4 \) defined by
\[
\left(0, \frac{1}{a} \cosh(ax), \frac{1}{a} \sinh(ax), y \right),
\]
where \(a \) is a positive number;

(5) A flat surface in \(\mathbb{E}_2^4 \) defined by
\[
\left(\frac{\cosh(\sqrt{2}x)}{\sqrt{2m}}, \frac{\cosh(\sqrt{2}y)}{\sqrt{2m(2m-r)}}, \frac{\sinh(\sqrt{2}x)}{\sqrt{2m}}, \frac{\sinh(\sqrt{2}y)}{\sqrt{2m(2m-r)}} \right),
\]
where \(m \) and \(r \) are positive numbers satisfying \(2m > r > 0 \);

(6) A surface of negative curvature \(-b^2\) in \(\mathbb{E}_2^4 \) defined by
\[
\left(\frac{1}{b} \cosh(bx) \cosh(by), \int_0^y \cosh(by) \sinh \left(\frac{4\sqrt{m^2-b^2}}{b} \tan^{-1} \left(\frac{\tanh \frac{by}{2}}{2} \right) \right) dy, \right.
\]
\[
\left. \frac{1}{b} \sinh(bx) \cosh(by), \int_0^y \cosh(by) \cosh \left(\frac{4\sqrt{m^2-b^2}}{b} \tan^{-1} \left(\frac{\tanh \frac{by}{2}}{2} \right) \right) dy \right),
\]
where \(b \) and \(m \) are real numbers satisfying \(0 < b < m \).

7 Spacelike minimal surfaces with constant Gauss curvature.

From the equation of Gauss, we have

Lemma 7.1. Let \(M \) be a space-like minimal surface in \(\mathbb{R}_2^4(c) \). Then \(K \geq c \). In particular, if \(K = c \) holds identically, then \(M \) is totally geodesic.

For space-like minimal surfaces in \(\mathbb{R}_2^4(c) \), Theorem 1 of [28] implies that \(M \) has constant Gauss curvature if and only if it has constant normal curvature.

We recall the following result of M. Sasaki from [28].

Theorem 7.1. Let \(M \) be a space-like minimal surface in \(\mathbb{R}_2^4(c) \). If \(M \) has constant Gauss curvature, then either

1. \(K = c \) and \(M \) is a totally geodesic surface in \(\mathbb{R}_2^4(c) \);
2. \(c < 0 \), \(K = 0 \) and \(M \) is congruent to an open part of the minimal surface defined by
\[
\frac{1}{\sqrt{2}} \left(\cosh u, \cosh v, 0, \sinh u, \sinh v \right),
\]
or

(3) \(c < 0, K = c/3 \) and \(M \) is isotropic.

Let \(\mathbb{R}^2 \) be a plane with coordinates \(s, t \). Consider a map \(B : \mathbb{R}^2 \to \mathbb{E}_3^5 \) given by

\[
B(s, t) = \left(\sinh \left(\frac{2s}{\sqrt{3}} \right) - \frac{t^2}{3} - \left(\frac{7}{8} + \frac{t^4}{18} \right) e^{\frac{2t}{\sqrt{3}}}, t + \left(\frac{t^3}{3} - \frac{t}{4} \right) e^{\frac{2t}{\sqrt{3}}}, \right.
\]

\[
\quad \quad \quad \quad \quad \left. \frac{1}{2} + \frac{t^2}{2} e^{\frac{2t}{\sqrt{3}}}, t + \left(\frac{t^3}{3} + \frac{t}{4} \right) e^{\frac{2t}{\sqrt{3}}}, \sinh \left(\frac{2s}{\sqrt{3}} \right) - \frac{t^2}{3} - \left(\frac{1}{8} + \frac{t^4}{18} \right) e^{\frac{2t}{\sqrt{3}}} \right).
\]

The first author proved in [5] that \(B \) defines a full isometric parallel immersion

\[
\psi_B : H^2_{\left(-\frac{1}{3}\right)} \to H^2_{\left(-1\right)}
\]

of the hyperbolic plane \(H^2_{\left(-\frac{1}{3}\right)} \) of curvature \(-\frac{1}{3} \) into \(H^2_{\left(-1\right)} \).

The following result was also obtained in [5].

Theorem 7.2. Let \(\psi : M \to H^2_{\left(-1\right)} \) be a parallel full immersion of a space-like surface \(M \) into \(H^2_{\left(-1\right)} \). Then \(M \) is minimal in \(H^2_{\left(-1\right)} \) if and only if \(M \) is congruent to an open part of the surface defined by

\[
\left(\sinh \left(\frac{2s}{\sqrt{3}} \right) - \frac{t^2}{3} - \left(\frac{7}{8} + \frac{t^4}{18} \right) e^{\frac{2t}{\sqrt{3}}}, t + \left(\frac{t^3}{3} - \frac{t}{4} \right) e^{\frac{2t}{\sqrt{3}}}, \right.
\]

\[
\quad \quad \quad \quad \quad \left. \frac{1}{2} + \frac{t^2}{2} e^{\frac{2t}{\sqrt{3}}}, t + \left(\frac{t^3}{3} + \frac{t}{4} \right) e^{\frac{2t}{\sqrt{3}}}, \sinh \left(\frac{2s}{\sqrt{3}} \right) - \frac{t^2}{3} - \left(\frac{1}{8} + \frac{t^4}{18} \right) e^{\frac{2t}{\sqrt{3}}} \right).
\]

Combining Theorem 7.1 and Theorem 7.2, we obtain the following.

Theorem 7.3 Let \(M \) be a non-totally geodesic space-like minimal surface in \(H^2_{\left(-1\right)} \). If \(M \) has constant Gauss curvature \(K \), then either

(1) \(K = 0 \) and \(M \) is congruent to an open part of the surface defined by

\[
\frac{1}{\sqrt{2}} \left(\cosh u, \cosh v, 0, \sinh u, \sinh v \right),
\]

or
(2) $K = -\frac{1}{3}$ and M is is congruent to an open part of the surface defined by

\[
\left(\sinh \left(\frac{2s}{\sqrt{3}} \right) - \frac{t^2}{3} - \left(\frac{7}{8} + \frac{t^4}{18} \right) e^{\frac{2s}{\sqrt{3}}} t + \left(\frac{t^3}{3} - \frac{t}{4} \right) e^{\frac{2s}{\sqrt{3}}} \right),
\]

\[
\frac{1}{2} + \frac{t^2}{2} e^{\frac{2s}{\sqrt{3}}} t + \left(\frac{t^3}{3} + \frac{t}{4} \right) e^{\frac{2s}{\sqrt{3}}},
\]

\[
\sinh \left(\frac{2s}{\sqrt{3}} \right) - \frac{t^2}{3} - \left(\frac{1}{8} + \frac{t^4}{18} \right) e^{\frac{2s}{\sqrt{3}}}.
\]

8 Wintgen ideal surfaces satisfying $K^D = -2K$.

We need the following existence result from \[10\].

Theorem 8.1. Let c be a real number and γ with $3\gamma^2 > -c$ be a positive solution of the second order partial differential equation

\[
\frac{\partial}{\partial x} \left(\frac{(3\gamma \sqrt{c + 3\gamma^2} - c)(6\gamma + 2\sqrt{3c + 9\gamma^2})\sqrt{3}\gamma x}{2\gamma(c + 3\gamma^2)} \right) - \frac{\partial}{\partial y} \left(\frac{(3\gamma \sqrt{c + 3\gamma^2} - c)\gamma y}{2\gamma(c + 3\gamma^2)(6\gamma + 2\sqrt{3c + 9\gamma^2})^{\frac{3}{2}}} \right) = \gamma \sqrt{c + 3\gamma^2}
\]

defined on a simply-connected domain $D \subset \mathbb{R}^2$. Then $M_\gamma = (D, g_\gamma)$ with the metric

\[
g_\gamma = \frac{\sqrt{c + 3\gamma^2}}{\gamma(6\gamma + 2\sqrt{3c + 9\gamma^2})^{\frac{3}{2}}} \left(dx^2 + (6\gamma + 2\sqrt{3c + 9\gamma^2})^{\frac{3}{2}} dy^2 \right)
\]

admits a non-minimal Wintgen ideal immersion $\psi_\gamma : M_\gamma \rightarrow R^4_2(c)$ into a complete simply-connected indefinite space form $R^4_2(c)$ satisfying $K^D = 2K$ identically.

The following result from \[10\] classifies Wintgen ideal surfaces in $R^4_2(c)$ satisfying $K^D = 2K$.

Theorem 8.2. Let M be a Wintgen ideal surface in a complete simply-connected indefinite space form $R^4_2(c)$ with $c = 1, 0$ or -1. If M satisfies $K^D = 2K$ identically, then one of following three cases occurs:

1. $c = 0$ and M is a totally geodesic surface in \mathbb{E}^4_2.
(2) $c = -1$ and M is a minimal surface in $H^4_2(-1)$ congruent to an open part of $\psi : H^2(-\frac{1}{3}) \to H^2_2(-1) \subset \mathbb{E}^3_5$ defined by

$$
\begin{align*}
&\left(\sinh \left(\frac{2s}{\sqrt{3}} \right) - \frac{t^2}{3} - \left(\frac{7}{8} + \frac{t^4}{18} \right) e^{\frac{2s}{\sqrt{3}}}, t + \left(\frac{t^3}{3} - \frac{t}{4} \right) e^{\frac{2s}{\sqrt{3}}} \right) \\
&\frac{1}{2} + \frac{t^2}{2} e^{\frac{2s}{\sqrt{3}}}, t + \left(\frac{t^3}{3} + \frac{t}{4} \right) e^{\frac{2s}{\sqrt{3}}}, \sinh \left(\frac{2s}{\sqrt{3}} \right) - \frac{t^2}{3} - \left(\frac{1}{8} + \frac{t^4}{18} \right) e^{\frac{2s}{\sqrt{3}}} \
&\right);
\end{align*}
$$

(3) M is a non-minimal surface in $R^4_2(c)$ which is congruent to an open part of $\psi_\gamma : \gamma \to R^4_2(c)$ associated with a positive solution γ of the partial differential equation (18) as described in Theorem 8.1.

9 An application to minimal surfaces in $H^4_2(-1)$.

A function f on a space-like surface M is called logarithm-harmonic, if $\Delta (\ln f) = 0$ holds identically on M, where $\Delta (\ln f) := *d \ast (\ln f)$ is the Laplacian of $\ln f$ and $*$ is the Hodge star operator. A function f on M is called subharmonic if $\Delta f \geq 0$ holds everywhere on M.

In this section we present some results from [7].

Theorem 9.1. Let $\psi : M \to H^4_2(-1)$ be a non-totally geodesic, minimal immersion of a space-like surface M into $H^4_2(-1)$. Then

$$K + K_D \geq -1$$

(20)

holds identically on M.

If $K + 1$ is logarithm-harmonic, then the equality sign of (20) holds identically if and only if $\psi : M \to H^4_2(-1)$ is congruent to an open portion of the immersion $\psi_\phi : H^2(-\frac{1}{3}) \to H^2_2(-1)$ which is induced from the map $\phi : \mathbb{R}^2 \to \mathbb{E}^3_5$ defined by

$$
\phi(s, t) = \left(\sinh \left(\frac{2s}{\sqrt{3}} \right) - \frac{t^2}{3} - \left(\frac{7}{8} + \frac{t^4}{18} \right) e^{\frac{2s}{\sqrt{3}}}, t + \left(\frac{t^3}{3} - \frac{t}{4} \right) e^{\frac{2s}{\sqrt{3}}} \right) \\
\frac{1}{2} + \frac{t^2}{2} e^{\frac{2s}{\sqrt{3}}}, t + \left(\frac{t^3}{3} + \frac{t}{4} \right) e^{\frac{2s}{\sqrt{3}}} \\
\sinh \left(\frac{2s}{\sqrt{3}} \right) - \frac{t^2}{3} - \left(\frac{1}{8} + \frac{t^4}{18} \right) e^{\frac{2s}{\sqrt{3}}} \right).
$$

(21)
Corollary 9.1. Let \(\psi : M \to H^4_2(-1) \) be a minimal immersion of a space-like surface \(M \) of constant Gauss curvature into \(H^4_2(-1) \). Then the equality sign of (20) holds identically if and only if one of the following two statements holds.

1. \(K = -1, K^D = 0 \), and \(\psi \) is totally geodesic.
2. \(K^D = 2K = -\frac{2}{3} \) and \(\psi \) is congruent to an open part of the minimal surface \(\psi_\phi : H^2_2(-\frac{1}{3}) \to H^4_2(-1) \) induced from (21).

Proposition 9.1. Let \(\psi : M \to E^4_2 \) be a minimal immersion of a space-like surface \(M \) into the pseudo-Euclidean 4-space \(E^4_2 \). Then

\[
K \geq -K^D
\]
holds identically on \(M \).

If \(M \) has constant Gauss curvature, then the equality sign of (22) holds identically if and only if \(M \) is a totally geodesic surface.

Proposition 9.2. Let \(\psi : M \to E^4_2 \) be a minimal immersion of a space-like surface \(M \) into \(E^4_2 \). We have

1. If the equality sign of (20) holds identically, then \(K \) is a non-logarithm-harmonic function.
2. If \(M \) contains no totally geodesic points and the equality sign of (22) holds identically on \(M \), then \(\ln K \) is subharmonic.

Proposition 9.3. Let \(\psi : M \to S^4_2(1) \) be a minimal immersion of a space-like surface \(M \) into the neutral pseudo-sphere \(S^4_2(1) \). Then

\[
K + K^D \geq 1
\]
holds identically on \(M \).

If \(M \) has constant Gauss curvature, then the equality sign of (23) holds identically if and only if \(M \) is a totally geodesic surface.

Moreover, we have the following result from [7].

Proposition 9.4. Let \(\psi : M \to S^4_2(1) \) be a minimal immersion of a space-like surface \(M \) into \(S^4_2(1) \). We have

1. If the equality sign of (23) holds identically, then \(K - 1 \) is non-logarithm-harmonic.
2. If \(M \) contains no totally geodesic points and if the equality case of (23) holds, then \(\ln(K - 1) \) is subharmonic.
10 Wintgen ideal submanifolds are Chen submanifolds

Consider a submanifold M^n of a real space form $\tilde{M}^{n+m}(\epsilon)$, the normalized normal scalar curvature ρ^\perp is defined as

$$\rho^\perp = \frac{2}{n(n-1)} \sqrt{\sum_{1\leq i<j\leq n;1\leq r<s\leq m} \langle R^\perp(e_i,e_j)\xi_r,\xi_s\rangle^2},$$

where R^\perp is the normal connection of M^n, and $\{e_1,\ldots,e_n\}$ and $\{\xi_1,\ldots,\xi_m\}$ are the orthonormal frames of the tangent and normal bundles of M^n, respectively.

in 1999, De Smet, Dillen, Vrancken and Verstraelen proved in [12] the Wintgen inequality

$$\rho \leq H^2 - \rho^\perp + c \quad (24)$$

for all submanifolds M^n of codimension 2 in all real space forms $\tilde{M}^{n+2}(c)$, where ρ is the normalized scalar curvature defined by

$$\rho = \frac{2}{n(n-1)} \sum_{i<j} \langle R(e_i,e_j)e_j,e_i\rangle \quad (25)$$

and R is the Riemann curvature tensor of M^n.

The Wintgen inequality (24) was conjectured by De Smet, Dillen, Vrancken and Verstraelen to hold for all submanifolds in all real space forms in the same paper [12], known as DDVV conjecture.

Recently, Z. Lu [25] and J. Ge and Z. Tang [17], settled this conjecture independently in general. A submanifold M^n of a real space form $\tilde{M}^m(c)$ is called a Wintgen ideal submanifold if it satisfies the equality case of (24) identically.

An n-dimensional submanifold M of a Riemannian manifold is called a Chen submanifold if

$$\sum_{i,j} \langle h(e_i,e_j),\vec{H}\rangle h(e_i,e_j) \quad (26)$$

is parallel to the mean curvature vector \vec{H}, where h is the second fundamental form and $\{e_i\}$ is an orthonormal frame of the submanifold M (cf. [19]).
The following theorem was proved by S. Decu, M. Petrović-Torgašev and L. Verstraelen in [14] which provides a very simple relationship between Wintgen ideal submanifolds and Chen submanifolds for submanifolds in real space forms.

Theorem 10.1. Every Wintgen ideal submanifold of arbitrary dimension and codimension in a real space form is a Chen submanifold.

References

[1] O. Borůvka, *Sur une classe de surfaces minima plongées dans un espace à quatre dimensions à courbure constante*, C. R. Acad. Sci. **187** (1928), 334–336.

[2] R. L. Rryant, *Conformal and minimal immersions of compact surfaces into the 4-sphere*, J. Differential Geom. **17** (1982), 455–473.

[3] I. Castro, *Lagrangian surfaces with circular ellipse of curvature in complex space forms*, Math. Proc. Cambridge. Philo. Soc. **136** (2004), 239–245.

[4] B.-Y. Chen, *Riemannian submanifolds*, Handbook of Differential Geometry. Vol. I, 187–418, North-Holland, Amsterdam, (eds. F. Dillen and L. Verstraelen), 2000.

[5] B.-Y. Chen, *A minimal immersion of hyperbolic plane in neutral pseudo-hyperbolic 4-space and its characterization*, Arch. Math. **94** (2010), 257–265.

[6] B.-Y. Chen, *Classification of Wintgen ideal surfaces in Euclidean 4-space with equal Gauss and normal curvature*, Ann. Global Anal. Geom. **38** (2010), 145–160.

[7] B.-Y. Chen, *A Wintgen type inequality for surfaces in 4D neutral pseudo-Riemannian space forms and its applications to minimal immersions*, JMI Int. J. Math. Sci., **1** (2010), 1–12.

[8] B.-Y. Chen, *Pseudo-Riemannian Geometry, δ-invariants and Applications*, Hackensack, NJ, World Scientific, 2011.

[9] B.-Y. Chen, *Wintgen ideal surfaces in four-dimensional neutral indefinite space form $\mathbb{R}^4_2(c)$*, Results Math. 61 (2012), 329–345.
B.-Y. Chen, and B. D. Suceavă, *Classification theorems for space-like surfaces in 4-dimensional indefinite space forms with index 2*, Taiwanese J. Math. **15** (2011), 523–541.

Q.-S. Chi and X.-K. Mo, *The moduli space of branched superminimal surfaces of a fixed degree, genus and conformal structure in the four-sphere*, Osaka J. Math. **33** (1996), 669–696.

P. J. De Smet, F. Dillen, L. Verstraelen and L. Vrancken, *A pointwise inequality in submanifold theory*, Arch. Math. (Brno) **35** (1999), 115–128.

M. Dajczer and R. Tojeiro, *All superconformal surfaces in \(\mathbb{R}^4 \) in terms of minimal surfaces*, Math. Z. **261** (2009), 869-890.

S. Decu, M. Petrović–Torgašev and L. Verstraelen, *On the intrinsic Deszcz symmetries and the extrinsic Chen character of Wintgen ideal submanifolds*, Tamkang J. Math. **41** (2010), 109–116.

Th. Friedrich, *On surfaces in four-spaces* Ann. Glob. Anal. Geom. **2** (1984), 257-287.

Th. Friedrich, *On superminimal surfaces*, Arch. Math. (Brno) **33** (1997), 41-56.

J. Ge and Z. Tang, *A proof of the DDVV conjecture and its equality case*, Pacific J. Math. **237** (2008), 87–95.

L. Gheysens, P. Verheyen and L. Verstraelen, *Sur les surfaces \(\mathcal{A} \) ou les surfaces de Chen*, C. R. Acad. Sci. Paris Sér. I Math. **292** (1981), 913–916

L. Gheysens, P. Verheyen and L. Verstraelen, *Characterization and examples of Chen submanifolds*, J. Geom. **20** (1983), 4762.

I. V. Guadalupe and L. Rodriguez, *Normal curvature of surfaces in space forms*, Pacific J. Math. **106** (1983), 95–103.

D. Hoffman and R. Osserman, *The geometry of the generalized Gauss map*, Mem. Amer. Math. Soc. **236** (1980).

K. Kommerell, *Riemannsche Flächen im ebenen Raum von vier Dimensionen*, Math. Ann. **60** (1905), 548–596.
[23] S. Kwietniewski, Über Flächen der 4-dimensionalen Raumes deren Tangentialebenen paarweise isoklin sind, Doctoral Dissertation, University of Zürich, 1902.

[24] B. Loo, The space of harmonic maps of S^2 into S^4, Trans. Amer. Math. Soc. 313 (1989), 81–102.

[25] Z. Lu, On the DDVV conjecture and the comass in calibrated geometry I, Math. Z. 260, 409–429.

[26] M. Petrović-Torgašev and L. Verstraelen, On Deszcz symmetries of Wintgen ideal submanifolds, Arch. Math. (Brno) 44, 57–67 (2008).

[27] B. Rouxel, Harmonic spheres of a submanifold in Euclidean space, Proc, Proceedings of the 3rd Congress of Geometry (Thessaloniki, 1991), 357–364, Aristotle Univ. Thessaloniki, Thessaloniki, 1992.

[28] M. Sasaki, Spacelike maximal surfaces in 4-dimensional space forms of index 2, Tokyo J. Math. 25 (2002), 295–306.

[29] P. Wintgen, Sur l’inégalité de Chen-Willmore. C. R. Acad. Sci. Paris, 288 (1979), 993–995.

Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, U.S.A.
E-mail: bychen@math.msu.edu