ProDOMA: improve PROtein DOMAiN classification for third-generation sequencing reads using deep learning

Nan Du
Dept. of Computer Science and Engineering
Michigan State University
East Lansing, MI 48824, United States
dunan00001@gmail.com

Jiayu Shang
Dept. of Electrical Engineering
City University of Hong Kong
Kowloon, Hong Kong SAR, China
jyshang2-c@my.cityu.edu.hk

Yanni Sun
Dept. of Electrical Engineering
City University of Hong Kong
Kowloon, Hong Kong SAR, China
yannisun@cityu.edu.hk

September 29, 2020

ABSTRACT

Motivation: With the development of third-generation sequencing technologies, people are able to obtain DNA sequences with lengths from 10s to 100s of kb. These long reads allow protein domain annotation without assembly, thus can produce important insights into the biological functions of the underlying data. However, the high error rate in third-generation sequencing data raises a new challenge to established domain analysis pipelines. The state-of-the-art methods are not optimized for noisy reads and have shown unsatisfactory accuracy of domain classification in third-generation sequencing data. New computational methods are still needed to improve the performance of domain prediction in long noisy reads.

Results: In this work, we introduce ProDOMA, a deep learning model that conducts domain classification for third-generation sequencing reads. It uses deep neural networks with 3-frame translation encoding to learn conserved features from partially correct translations. In addition, we formulate our problem as an open-set problem and thus our model can reject unrelated DNA reads such as those from noncoding regions. In the experiments on simulated reads of protein coding sequences and real reads from the human genome, our model outperforms HMMER and DeepFam on protein domain classification. In summary, ProDOMA is a useful end-to-end protein domain analysis tool for long noisy reads without relying on error correction.

Availability: The source code and the trained model are freely available at https://github.com/strideradu/ProDOMA.

Contact: yannisun@cityu.edu.hk

1 Introduction

Third-generation sequencing technologies, such as Pacific Biosciences single-molecule real-time sequencing (PacBio) and Oxford Nanopore sequencing (Nanopore), produce longer reads than next generation sequencing (NGS) technologies. With increased read length, long reads can contain complete genes or protein domains, making gene-centric functional analysis for high throughput sequencing data more applicable [1][2][3]. In gene-centric analysis, often there are specific sets of genes in pathways that are of special interest, for example G protein-coupled receptor (GPCR) genes.
in intracellular signaling pathways for environmental sensing, while other genes in the assemblies provide little insight to the specific questions.

One basic step in gene-centric analysis is to assign sequences into different functional categories, such as families of protein domains (or domains for short), which are independent folding and functional units in a majority of annotated protein sequences. There are a number of tools available for protein domain annotation. They can be roughly divided into two groups depending on how they utilize the available protein domain sequences. One group of methods rely on alignments against the references. HMMER is the state-of-the-art profile search tool based on profile hidden Markov models (pHMM) [4, 5]. But the speed of the pHMM homology search suffers from the increase of the families. Extensive research has been conducted to improve the efficiency of the profile homology search [6].

The other group of tools are alignment-free [7]. Recent developments in deep learning have led to alignment-free approaches with automatic feature extraction [8, 9, 10, 11]. A review of some available methods and their applications can be found in [12]. Of the learning-based tools, the most relevant one to protein domain annotation is DeepFam [9], which used convolutional neural networks (CNN) to classify protein sequences into protein/domain families. The authors showed that it outperformed HMMER and previous alignment-free methods on protein domain classification. Also, DeepFam is fast and the speed is not affected much by the number of families. For example, DeepFam is at least ten times faster than HMMER when 1,000 query sequences are searched against thousands of protein families [9]. Thus deep learning-based methods have advantages for applications that do not need detailed alignments.

Despite the success of existing protein domain annotation tools, they are not ideal choices for domain identification in error-prone reads. In particular, most of these errors are insertions and deletions, which can cause frameshifts during translation [13]. Without knowing the errors and their positions, the frameshifts can lead to only short or non-significant alignments [14]. As the translation of each reading frame is partially correct, it also leads to poor classification performance for existing learning-based models.

1.1 Domain classification with error correction

As there are error correction tools for third-generation sequencing data [15, 13], an alternative pipeline is to apply tools such as HMMER and DeepFam to error-corrected sequences. Error correction tools can be generally divided into hybrid and standalone depending on whether they need short reads for error correction. Recently, several groups conducted comprehensive review and comparison of existing error correction tools [15, 13]. None of these tool can achieve optimal performance across all tested data sets. Particularly, the performance of standalone tools is profoundly affected by the coverage of the aligned sequences against the chosen backbone sequences. When the coverage is low (e.g. <50X for LoRMA [16]), less regions of the reads can be corrected. In addition, we found that error correction tools have difficulty correcting mixed reads from homologous genes within the same family, such as GPCR. The similarities between different genes/domain sequences can confuse the error correction method.

1.2 Overview of our work

In this work, we designed and implemented ProDOMA, a deep learning based method to predict the protein domains for third-generation sequencing reads. By training a CNN-based model using 3-frame translation encoding, ProDOMA is able to classify error-containing reads into their correct domains with significantly better accuracy. Compared to previous works, ProDOMA has several merits. First, it does not require error correction. As a result, it has robust performance for low coverage data. Second, although we use simulated PacBio reads as the training data, the experimental results show that ProDOMA performs well on real PacBio and Nanopore data. Third, unlike previous deep learning works that were designed for classification, ProDOMA can also be used for detection by distinguishing targeted domain homologs from irrelevant coding or non-coding sequences. The detection performance is better than HMMER after ProDOMA adopts a modified loss function from targeted image detection.

The classification accuracy of ProDOMA consistently outperformed the state-of-the-art method like HMMER and DeepFam across various error rates. And its performance is not affected by coverage. We tested it on real third-generation sequencing datasets, focusing on its function on detecting targeted domains using Outlier Exposure [17]. ProDOMA achieved higher recall with comparable precision to HMMER.

2 Methods

Figure 1 sketches the architecture of ProDOMA. It is based on CNN because the convolutional filters can represent motifs, which are important for sequence classification [9]. It incorporates 3-frame encoding to convert DNA reads into a 3-channel tensor as the input to a neural network. From the input, ProDOMA automatically extracts features by using
convolutional layer and max-over-time pooling layer. A classifier with two fully connected layers was used to generate
the probabilities of the sequence against all input protein domains. To exclude the unrelated coding or non-coding DNA
sequences, we trained the CNN using a modified loss function so that out-of-distribution samples tend to have uniform
distribution on softmax values.

Figure 1: The overview of ProDOMA. The input sequence was translated and encoded to a 3-channel tensor. c_i is
defined in Equation (1). In the classification task, the model directly outputs the family with the largest score as
the prediction. In the detection task, the maximum of softmax score needs to compare with a specified threshold to
determine whether the input contains a trained domain family or should be rejected.

2.1 Encoding

With frequent insertion and deletion errors, the correct translation of a read is composed of fragments of different
reading frames. In order to train the CNN to learn the conserved motifs from erroneous translations, we implemented
and compared multiple encoding methods (see Section 2.3). The empirical results show that the 3-frame encoding
scheme achieved the best performance. In this scheme, each DNA sequence is translated into 3 protein sequences
using 3 reading frames. To accommodate domain identification on the reverse strand, the reverse complement of the
sequence can be used as input. All the residues in the translated sequence are one-hot encoded using a 21-dimensional
vector following IUPAC amino acid code notation. Then we combine three matrices into a single 3-channel tensor like
an RGB image.

Given a translated sequence of length n, the encoded input is a tensor with size $3 \times n \times 21$. The pseudo-code of 3-frame
encoding can be found in Algorithm 1.

Algorithm 1 3-frame encoding

Input: DNA sequence x with length L, peptide to index dictionary idx, peptide alphabet size $|\Sigma|$, output sequence
length n.
Output: Input tensor for neural networks with size $3 \times n \times 21$.

1: Initialize an array arr with dimensions $3 \times n \times |\Sigma|$ with all 0
2: for $i = 1$ to 3 do
3: $x^i \leftarrow x[i:]$
4: $y^i \leftarrow$ translation of x^i
5: for residue a at position k in y^i do
6: if $k \leq n$ then
7: $arr[i, k, idx[a]] \leftarrow 1$
8: end if
9: end for
10: end for
11: arr is the input tensor for neural networks
2.2 Convolutional Neural Networks

ProDOMA consists of two convolutional layers, one max-over-time pooling layer, one hidden linear layer, and one linear output layer with the softmax function. For a multi-channel input that we have from 3-frame encoding, we transform the output arr from Algorithm 1 into a feature value using the following equation.

$$c_i = f\left(\sum_{j=1}^{3} w_j \cdot arr[j][i : i + h - 1][1 : |\Sigma|] + b\right)$$

b is the bias term and h is the filter size. f is the activation function ReLU [18]. The filter consists of three 2D matrices w_j for $j = 1, 2, 3$, corresponding to three reading frames. $arr[j][i : i + h - 1][1 : |\Sigma|]$ defines a 2D window of size $h \times |\Sigma|$ for the one-hot matrix with reading frame j. We applied filters repeatedly to each possible window of the input one-hot matrix to produce the feature map. Then the max-over-time pooling is applied to the feature map to capture the maximum value $\max(c_i)$ as the feature from this particular filter. The max-over-time pooling is flexible with different input length.

Algorithm 1 described how a single filter in the convolutional layer works. In our application, we used multiple filters with various sizes to extract features of different lengths.

ProDOMA has two convolutional layers. The first convolutional layer uses consistent filter size to extract low-level motif-like patterns directly from 3-frame encoding input. Then second convolutional layer extracts high-level, intricate patterns with varying distance from the output of the first convolutional layer. By repeatedly applying the operations, we can finally generate a feature map. Then the max-over-time pooling was applied to keep the most important features. Dropout [19] is also used after pooling to prevent overfitting and to learn robust features. A two-layer classifier with softmax function transfers the features to a vector of probabilities over each label. For classification, we select the label with the maximum probability as the prediction from ProDOMA.

2.3 Comparison of encoding methods and model structures

We also tested other encoding methods with similar model structure to ProDOMA: (1) DNA one-hot encoding, which directly transfers DNA sequence to one hot encoding matrix of size $L \times 4$. For a fair comparison, we used filter sizes that are 3 times as long as we used for 3-frame encoding; (2) 3-branch model, where we constructed a network architecture with three branches processing each of the 3-frame translated protein sequence separately. Each of the branches consists of identical convolution layers, and all the parameters are shared between the same layer of 3 branches. In other words, the Equation 1 becomes $c_i(j) = f(w_j \cdot arr[j][i : i + h - 1][1 : |\Sigma|] + b)$ for $j = 1$ to 3. In the 3-branch model, each branch models the translated protein sequences separately before the merging layer right before the two-layer classifier. In contrast, in our 3-frame encoding, all three translated protein sequences were processed and combined by the 3-channel convolution filter in the first convolutional layer.

Our experimental results show that 3-frame encoding is a better encoding scheme, possibly because it can effectively encode the original DNA sequence information and also helps convolutional filters extract useful features for prediction of the protein domains (See results in Section 3.1.1). In addition, our experiments show that changing the order of the input reading frames does not affect the classification accuracy.

2.4 Detecting out-of-distribution inputs

We have described how ProDOMA predicts the domain labels for given DNA reads using CNN and softmax. However, with the close-set property of softmax, the classifier will always assign a label for the input sample, even if the input is not related to any label in the model (we call such inputs out-of-distribution samples, compared to in-distribution samples). For example, in RNA-Seq data, not every read encodes targeted domain families in the model. In real applications, this close-set property will lead to an undesired high false-positive rate. To address the problem, we adopt Outlier Exposure (OE) [17] with a threshold on softmax prediction probability [20] to distinguish the out-of-distribution inputs from in-distribution ones.

2.4.1 The threshold baseline

Usually, the samples from the out-of-distribution dataset tend to have small softmax values because their normalized probabilities are more uniformly distributed than the samples from the in-distribution dataset.

Following [20], we extracted the maximum value of the softmax probability vector from the output of ProDOMA for each input sample. We separated the in-distribution samples from the out-of-distribution samples by specifying
a threshold on the maximum softmax probability. A holdout dataset with both in-distribution and out-of-distribution samples was used to empirically determine the best threshold that can produce the largest F_1 score: $F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$. Then this learned softmax threshold is used to reject any sample with smaller softmax values. The performance of this baseline model is shown in the Figure 2(A).

2.4.2 Outlier Exposure

To further improve the performance of the out-of-distribution sample detection, we adopt the Outlier Exposure (OE) method introduced by [17]. As we discussed previously, we expect the out-of-distribution samples to have uniformly distributed softmax probabilities for all classes. However, as such inputs were never processed in training, sometimes the model will yield unexpected high confidence prediction for out-of-distribution inputs (Figure 2(A)). To address the problem, we expose the model to out-of-distribution samples in the training process to let the model effectively learn the heuristics for detecting out-of-distribution inputs. Compared with the threshold baseline, we need to introduce a new dataset with out-of-distribution samples in the training process.

Given a model g and the learning objective \mathcal{L}, the objective of OE is to minimize the original loss function with an auxiliary loss term to regularize the out-of-distribution examples. OE can be formulated as minimizing the following objective [17]:

$$
\mathcal{E}_{(x,y) \sim \mathcal{D}_{\text{in}}} [\mathcal{L}(g(x), y) + \lambda \mathcal{E}_{x' \sim \mathcal{D}_{\text{out}}} [\mathcal{L}_{\text{OE}}(g(x'), g(x), y)]]
$$

$$
\mathcal{L}_{\text{OE}} = - \sum_i \mathcal{P}(i) \ln \frac{\mathcal{Q}(i)}{\mathcal{P}(i)}
$$

\mathcal{D}_{in} is the original in-distribution dataset, \mathcal{D}_{out} is the out-of-distribution dataset for OE. In the original classification task, we use the cross-entropy loss function \mathcal{L}. In order to force the out-of-distribution samples to have uniform distribution on all labels, we minimize the KL-divergence between out-of-distribution and the uniform distribution as shown in Equation (3). $\mathcal{P}(i)$ is the predicted distribution of out-of-distribution samples from the model and $\mathcal{Q}(i)$ is a normalized uniform distribution. In the experiment, we use $\lambda = 0.5$ for the coefficient of the auxiliary loss. More detailed and comprehensive description of OE can be found in the original publication [17].

Figure 2 presents the distribution of the maximum softmax score for each input sequence with and without OE for the threshold calibration dataset we used in Section 3.2. Without OE, there are still a lot of out-of-distribution samples with large softmax scores (0.5 to 1). With OE, most of the out-of-distribution samples accumulate with small softmax scores (0 to 0.4). With OE, the overlapping area between the two distributions (red vs combined green and blue) is decreased from 26.06% to 21.99%. In addition, for the in-distribution samples with small softmax values, their classification results tend to be wrong (blue in Figure 2). Thus, using OE can provide better classification accuracy at a cost of rejection some in-distribution samples.
3 Experiments and results

To evaluate ProDOMA, we applied ProDOMA on both simulated and real datasets: a simulated PacBio G protein-coupled receptor (GPCR) coding sequences (CDS) dataset [7], and two real third-generation sequencing datasets of human genome [21, 22]. GPCR is a large protein family that is involved in many critical physiological processes, such as visual sense, gustatory sense, sense of smell, regulation of immune system activity, and so on [23]. In addition, GPCR is a very diverse set of protein sequences and thus can pose challenges for classification. It consists of 8,222 protein sequences belonging to 5 families, 38 subfamilies, and 86 sub-subfamilies. Following DeepFam, all the experiments are conducted on the sub-subfamilies.

We compared the performance of ProDOMA with HMMER and DeepFam, which are representatives of alignment-based and alignment-free domain classification tools. In both experiments, ProDOMA was trained with simulated PacBio reads from the GPCR CDS downloaded from NCBI. The simulation was conducted using a popular simulation tool PBSIM [24] with default setup and error rates from 1% to 15%. Following their instructions and design principle, HMMER and DeepFam were trained using the correct protein sequences in the GPCR dataset.

In our first experiment, we tested ProDOMA and its alternative implementations on simulated PacBio reads. In the second experiment, we tested ProDOMA on real PacBio and Nanopore reads from human data. All specific commands, parameters, and output of our experiments can be found along with the source code of ProDOMA.

3.1 Experiments on simulated PacBio GPCR CDS dataset

The reference coding sequences of each sub-subfamily are divided into 80% training samples and 20% test samples. The number of reference sequences in each class is shown in Table S1 in Supplementary File 1. Then we used PBSIM to generate simulated PacBio reads with 80X coverage on the plus strand for training and test samples with specified error rates. As a result, the training set has 939,888 simulated reads, and the test dataset has 228,388 simulated reads for 86 sub-subfamilies, respectively. Our strategy of conducting simulation after splitting the coding sequences can guarantee that there is no overlap of the GPCR CDS sequences between the training and test datasets, which is important for meaningful evaluations. In our experiments, we used 5-fold cross validation. Thus, the above training and testing dataset construction process was repeated for five times.

3.1.1 Performance with different architectures

We conducted a series of experiments by varying the key opponents in our base models: the number of convolutional layers, the number of convolution filters, the size of convolution filters, and different encoding strategies. Totally, we compared 14 different combinations of hyperparameters or architectures in the experiments. We listed all variations and their accuracy in Table S2 and Figure S1 in the supplementary file, respectively. As shown in Figure S1, the highest accuracy is 86.74%, which is achieved by using 3-frame encoding with two convolution layers. Based on the comparison, the key factors affecting the performance are the encoding strategies and the size of filters.

3.1.2 The input order of the reading frames does not change the classification accuracy.

Reads starting from different positions in the same transcript can have different reading frames corresponding to the same translation. In our model training process, the three channels always take translations of reading frame 1, 2, and 3 of a read as input. It is thus fair to ask whether this specific order affects the classification performance. We investigate this question by inputting different orders of reading frames of test sequences to our trained model. Thus, we generated 6 inputs from each reads with different frame orders. As a result, 1,370,328 validation samples are tested in the experiment. Figure 3 shows the classification accuracy of 5-fold cross validation using different reading frame orders as input. The performance keeps nearly the same.

3.1.3 Comparison with HMMER and DeepFam

Following the design principles and the instructions of HMMER and DeepFam, the training of HMMER and DeepFam was conducted using correct protein sequences, rather than DNA sequences. The test sequences are simulated long reads from reference CDs. Their three-frame translations are used as input to HMMER and DeepFam. As long as one of the three translated sequences is classified to the correct sub-subfamily, we call this a correct prediction.

The classification accuracy of ProDOMA and DeepFam was measured using 5-fold cross-validation. As it is tedious to perform 5-fold cross validation for HMMER, we used all 5-fold correctly translated protein sequences to train the pHMM model, which will favor HMMER as the trained model has seen the test sequences. MAFFT [25] was used to generate the multiple sequence alignment for each sub-subfamily. Then we used hmmbuild in the HMMER package to
build pHMM models for each sub-subfamily. For each test DNA sequence, 3-frame translations were applied to get three peptide sequences. All the translated sequences were tested using `hmmscan` against all 86 pHMM models we built.

Figure 3: The mean, min, and max value of classification accuracy using different orders of reading frames as input. X-axis: order of reading frames as input. Y-axis: classification accuracy.

Figure 4: The mean, min, and max value of classification results of ProDOMA, HMMER, and DeepFam on classifying four sets of simulated long reads with different error rates. Each test set contains roughly 228K simulated reads from 86 sub-subfamilies. X-axis: different error rates. Y-axis: classification accuracy.

Figure 4 compared the classification performance of all methods on the simulated PacBio reads. For this data set, our method achieved better performance for datasets with different error rates. The high error rates heavily impacted the performance of HMMER and DeepFam. It is expected because the profile HMM search is much more sensitive to frameshifts caused by gaps, and DeepFam is designed for classifying relatively complete error-free protein sequences.
3.1.4 Can we rely on error correction?

As there are error correction tools for long reads [15], existing domain classification tools such as HMMER can be applied on error-corrected reads. We conducted an experiment to test whether family classification using corrected reads can achieve comparable performance to classification of error-free sequences.

Hybrid error correction tools tend to perform better than self-correction tools. However, not every sequence project has budget and manpower to generate both short read and long read libraries and data. Based on these recent reviews [15] [13], we chose LoRMA [16], a more recently published self-error correction tool, with the lowest error rate after correction [15]. Note that LoRMA failed to generate outputs if we use all the simulated reads as input, probably because of the similarity between the homologous GPCR sequences or the large graph produced by the reads. Thus, we run LoRMA for each set of reads simulated from the same reference sequence of GPCR in order to achieve the best error correction performance. We showed the error correction performance in Table S3 in Supplementary File 1. Although the number of reads remained after error correction increased with the increase of the coverage, it still discarded a large number of reads (e.g. 75.9% reads are discarded when the coverage is 30x). Also, the error correction became significantly slower with the increase of the coverage.

![Table 1: The classification accuracy comparison between ProDOMA, HMMER and DeepFam on corrected reads. The first column is the coverage.](image)

We recorded the domain classification results for corrected reads in Table 1. HMMER achieved the best accuracy for corrected reads. ProDOMA achieved comparable accuracy on corrected reads. With or without error correction, ProDOMA’s performance is consistent with the change of the coverage. Without relying on error correction, ProDOMA can conduct domain classification for all reads and thus lead to a more accurate estimation of the domain/family abundance. As DeepFam will assign a family to each translation, it is unknown which one should be chosen in practical applications. “Best” means that we regard a read as a correct classification as long as one of the translation is correctly classified. “Average” is the performance averaged on three translations.

3.1.5 Performance of remote homology search

As GPCR is a large protein family, some of their coding sequences can show high diversity, posing a challenge for both alignment-based and alignment-free homology search. We plot the change of F1 score of each protein family with the change of the intra-class identity in Figure 5. As DeepFam’s performance is inferior to others, we did not include DeepFam in this experiment. The intra-class identities were calculated using the alistat tool provided in the HMMER package. The sub-subfamilies with low identities are more likely to have remote homologs. F1 score is the harmonic mean of recall and precision. For one protein family A, let its true member sequences be set \(A^+ \) and the predicted sequence set be \(A^{pred} \). The recall is thus \(\frac{|A^+ \cap A^{pred}|}{|A^+|} \). Precision is \(\frac{|A^+ \cap A^{pred}|}{|A^{pred}|} \).

Figure 5 shows that both HMMER and ProDOMA suffer from low intra-class identity but the performance of ProDOMA decreases slower with the decrease of the identity. One possible reason is that deep learning can learn more degenerate features that are hard to model by HMMs.

3.1.6 Comparison of the running time

With a large amount of data generated by third-generation sequencing platforms, we require both high accuracy and efficiency for the algorithms. We run ProDOMA, DeepFam, and HMMER using Intel® Xeon® Gold 6148 CPU with 20 cores at the High-Performance Computing Center at Michigan State University. We also tested ProDOMA and DeepFam with NVIDIA® Tesla® V100 GPU with Apex acceleration library (HMMER doesn’t support GPU). For each method, We measured its execution time by averaging 5 independent trials with randomly selected 10,000 sequences.

In CPU, HMMER with the default setup runs much faster than ProDOMA and DeepFam. One reason is that with high sequencing error rates, the alignment against many candidate sub-subfamilies cannot pass the filter stage of HMMER,
Figure 5: Scatter plot and their logistic regression curves for all sub-subfamilies. The error bar (regions surrounding the curves) is the 95% confidence interval of the fitting. Y-axis: F1 score of the test sequences. X-axis: intra-class identity.

Table 2: The average elapsed time to predict sub-subfamily labels of 10,000 simulated PacBio reads for each method.

Setup	ProDOMA	DeepFam	HMMER	HMMER $-\text{max}$
CPU	1168.78s	276.74s	312.13s	3470.04s
GPU	25.71s	20.37s	unavailable	unavailable
skipping the expensive pHMM alignment. By turning off all filters, the sensitivity of HMMER increases, but at a large cost in speed. With --max (turning off all filters), HMMER is much slower than deep learning-based methods. With GPU acceleration, the running time of ProDOMA is much shorter than the running time of HMMER with the default setup.

3.2 Human genome dataset

To evaluate ProDOMA’s performance on real third-generation sequencing dataset, we tested ProDOMA on the *H. sapiens* 10x Coverage data from PacBio [22] and Oxford Nanopore Human Reference Datasets Rel6 [26]. In this experiment, as the real genome sequencing data contains non-GPCR coding sequences, we will also test the performance of ProDOMA on detecting out-of-distribution samples.

Training dataset. The training dataset is the same as the previous experiments: long reads simulated using PBSIM. To apply Outlier Exposure, we constructed a dataset that mixed the previous 5-fold training dataset with an outlier dataset. In order to generate the outlier dataset with similar distributions to the real out-of-distribution samples, we simulated a PacBio human genome dataset from GRCh37/hg19 human reference genome [27]. Then we kept the simulated reads that cannot be aligned to any GPCR CDS by BLASR in the outlier dataset [28]. As a result, the outlier dataset has 800,000 simulated reads. Then we retrained ProDOMA with OE as discussed in Methods.

Test dataset. We used two test datasets: a PacBio RS II test dataset from PacBio SMRT Sequencing for CHM11TERT human cell line; and a Nanopore test dataset from Oxford Nanopore MinION on CEPH1463 (NA12878/GM12878, Ceph/Utah pedigree).

We determine the ground truth of these test reads using sequence similarity, which favors alignment-based tools. We first aligned all reads against GPCR CDS dataset using BLASR. We extracted the reads with alignment length longer than 60% of aligned CDS sequence as our in-distribution test samples. For each sample, the ground truth is given by the label of aligned CDS.

We also randomly selected reads that were not aligned to any GPCR CDS as our out-of-distribution samples. As a result, the dataset consists of 50% reads that are coding GPCR and 50% out-of-distribution reads. For reads longer than 3,000 bps in the test dataset, we cropped each read into fragments that are at most 3,000 bps to be consistent with training dataset. As a result, the PacBio test dataset has 12,716 reads, and Nanopore test dataset has 43,654 reads, including both the GPCR CDS and the out-of-distribution samples.

3.2.1 Out-of-distribution test using PacBio and Nanopore reads

Method	PacBio	Nanopore				
HMMER	Recall	Precision	F1 score	Recall	Precision	F1 score
	0.1494	0.9507	0.2583	0.3984	0.9825	0.5670
ProDOMA OE	**0.4479**	**0.9837**	**0.6154**	**0.4836**	0.9731	**0.6458**

Table 3: The performance of protein domain prediction with out-of-distribution examples using ProDOMA with Outlier Exposure (OE), and HMMER on the real PacBio and Nanopore dataset.

As the purpose of this experiment is to evaluate the performance of GPCR CDS detection, we computed the recall, precision, and F1 score of each tool on labeling reads from the 86 classes. Recall is the ratio of correctly predicted reads to the total number of reads from the 86 classes. Precision is the ratio of the reads from the 86 classes to the total number of reads predicted with the 86 class labels. F1 score is the harmonic mean of recall and precision and we reported micro-F1 score for our multi-classification model.

We benchmarked the OE model with HMMER, which is highly accurate in distinguishing protein domains from other sequences. As shown in Table[3], both methods have low recall but high specificity because many reads are rejected and not classified into any of the 86 classes. Still, ProDOMA with OE achieved significant improvement on recall while the precision is comparable with HMMER (Table[3]). In general, both methods have better performance on the Nanopore dataset. Note that in the whole pipeline, we only used simulated PacBio reads for training. This result suggests that our strategy is robust with different types of long reads.
4 Discussion

In this work, we showed that ProDOMA can render better accuracy for domain classification in long noisy reads. The major differences between the architecture of ProDOMA and other CNN-based sequence classification models are the coding strategy designed for erroneous reads and the modified loss function to reject out-of-distribution samples. In order to interpret why this 3-frame encoding works, we extracted sequences corresponding to the most frequently activated filters, which often represent the well-conserved motifs. Then we used Weblogo [29] to generate the logos from their alignments as shown in the supplementary file (Figure S3 to Figure S8). An example is provided in Figure 6. Because we translated the original input DNA sequences into 3 peptide sequences, we have 3 logos associated with 3 reading frames respectively. These figures show that the logos corresponding to the three filters are very similar. This is consistent with Figure 5 revealing that most filters for different channels are learning conserved motifs from error-free regions.

![Logos derived from most frequently activated convolutional filters (index: 1033) for Cholecystokinin.](image)

As the model is trained using sequences with 3,000 nt, padding is applied to all inputs shorter than 3,000. Sequences longer than 3,000 will be cut into substrings of length 3,000, which will then be fed into the model. Thus our CNN model cannot accurately detect the start and end positions of domains. Instead, a model that can accurately assign weights for each base is needed for detecting the entering and existing positions of each domain. We plan to explore deep learning-based annotation in our future work.

In summary, ProDOMA provides a complementary tool to current third-generation sequence analysis pipelines on gene-centric function analysis. It can directly identify protein domains in long noisy reads without relying on error correction and its performance is robust to low coverage data and can tolerate higher error rates than other domain classification tools.

Funding

The computation was conducted at HPCC of Michigan State University. This work has been supported by the City University of Hong Kong 7200620.

References

[1] Fuhao Zhang, Hong Song, Min Zeng, Yaohang Li, Lukasz Kurgan, and Min Li. Deepfunc: a deep learning framework for accurate prediction of protein functions from protein sequences and interactions. *Proteomics*, 19(12):1900019, 2019.
[2] Nguyen Quoc Khanh Le and Van-Nui Nguyen. SNARE-CNN: a 2D convolutional neural network architecture to identify SNARE proteins from high-throughput sequencing data. PeerJ Computer Science, 5:e177, 2019.

[3] Jiajun Hong, Yongchao Luo, Yang Zhang, Junbiao Ying, Weiwei Xue, Tian Xie, Lin Tao, and Feng Zhu. Protein functional annotation of simultaneously improved stability, accuracy and false discovery rate achieved by a sequence-based deep learning. Briefings in bioinformatics, 21(4):1437–1447, 2020.

[4] Sean R. Eddy. Profile hidden Markov models. Bioinformatics (Oxford, England), 14(9):755–763, 1998.

[5] Sara El-Gebali, Jaina Mistry, Alex Bateman, Sean R Eddy, Aurélien Luciani, Simon C Potter, Matloob Qureshi, Lorna J Richardson, Gustavo Al Salazar, Alfredo Smart, et al. The Pfam protein families database in 2019. Nucleic acids research, 47(D1):D427–D432, 2018.

[6] Sean R. Eddy, Travis J. Wheeler, and the HMMER development team. HMMER 3.1b2, 2015.

[7] Matthew N Davies, David E Gloriam, Andrew Secker, Alex A Freitas, Miguel Mendao, Jon Timmis, and Darren R Flower. Proteomic applications of automated GPCR classification. Proteomics, 7(16):2800–2814, 2007.

[8] Shumin Li, Junjie Chen, and Bin Liu. Protein remote homology detection based on bidirectional long short-term memory. BMC bioinformatics, 18(1):443, 2017.

[9] Seokjun Seo, Minsik Oh, Youngjune Park, and Sun Kim. DeepFam: deep learning based alignment-free method for protein family modeling and prediction. Bioinformatics, 34(13):i254–i262, 2018.

[10] Brandon Carter, Maxwell Bileschi, Jamie Smith, Theo Sanderson, Drew Bryant, David Belanger, and Lucy J Colwell. Critiquing protein family classification models using sufficient input subsets. Journal of Computational Biology, 2019.

[11] Da Zhang and Mansur Kabuka. Protein Family Classification from Scratch: A CNN based Deep Learning Approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020.

[12] Andrzej Zielezinski, Hani Z. Girgis, Gaëlle Bernard, Chris-Andre Leimeister, Kujin Tang, Thomas Dencker, Anna Katharina Luh, Sophie Röhlöing, Jae Jin Choi, Michael S. Waterman, Matteo Comin, Sung-Hou Kim, Susana Vinga, Jonas S. Almeida, Cheong Xin Chan, Benjamin T. James, Fengzhu Sun, Burkhard Morgenstern, and Wojciech M. Karłowski. Benchmarking of alignment-free sequence comparison methods. Genome Biology, 20(1):144, 2019.

[13] Shuhua Fu, Anqi Wang, and Kin Fai Au. A comparative evaluation of hybrid error correction methods for error-prone long reads. Genome biology, 20(1):26, 2019.

[14] Nan Du and Yanni Sun. Improve homology search sensitivity of PacBio data by correcting frameshifts. Bioinformatics, 32(17):i529–i537, 2016.

[15] Leandro Lima, Camille Marchet, Ségonzé Caboche, Corinne Da Silva, Benjamin Istace, Jean-Marc Aury, Hélène Touzet, and Rayan Chikhi. Comparative assessment of long-read error correction software applied to Nanopore RNA-sequencing data. Briefings in bioinformatics, 21(4):1164–1181, 2020.

[16] L. Salmela, R Walve, and E Rivals. Accurate self-correction of errors in long reads using de Bruijn graphs. Bioinformatics, 33(6):799–806, 2017.

[17] Dan Hendrycks, Mantas Mazeika, and Thomas G Dietterich. Deep Anomaly Detection with Outlier Exposure. In International Conference on Learning Representations, 2019.

[18] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on Machine learning (ICML-10), pages 807–814, 2010.

[19] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.

[20] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

[21] Mark JP Chaisson, John Huddleston, Megan Y Dennis, Peter H Sudmant, Maika Malig, Fereydoun Hormozdari, Francesca Antonacci, Ursvahi Surti, Richard Sandstrom, Matthew Boitano, et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature, 517(7536):608–611, 2015.

[22] Pacific Biosciences. H. sapiens 10x Sequence Coverage with PacBio data, 2014.

[23] B Trzaskowski, D Latke, S Yuan, U Ghoshdastider, A Debinski, and S Filipcek. Action of molecular switches in GPCRs-theoretical and experimental studies. Current medicinal chemistry, 19(8):1090–1109, 2012.

[24] Yukiteru Ono, Kiyoshi Asai, and Michiaki Hamada. PBSIM: PacBio reads simulator—toward accurate genome assembly. Bioinformatics, 29(1):119–121, 2012.
[25] Kazutaka Katoh and Daron M Standley. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular biology and evolution*, 30(4):772–780, 2013.

[26] Miten Jain, Sergey Koren, Karen H Miga, Josh Quick, Arthur C Rand, Thomas A Sasani, John R Tyson, Andrew D Beggs, Alexander T Dilthey, Ian T Fiddes, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. *Nature biotechnology*, 36(4):338, 2018.

[27] Deanna M Church, Valerie A Schneider, Tina Graves, Katherine Auger, Fiona Cunningham, Nathan Bouk, Hsiu-Chuan Chen, Richa Agarwala, William M McLaren, Graham RS Ritchie, et al. Modernizing reference genome assemblies. *PLoS biology*, 9(7):e1001091, 2011.

[28] Mark J Chaisson and Glenn Tesler. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. *BMC bioinformatics*, 13(1):238, 2012.

[29] Gavin E Crooks, Gary Hon, John-Marc Chandonia, and Steven E Brenner. WebLogo: a sequence logo generator. *Genome research*, 14(6):1188–1190, 2004.