Electronic band structure effects in the stopping of protons in copper
Edwin E. Quashie, Bidhan C. Saha, and Alfredo A. Correa
Phys. Rev. B 94, 155403 — Published 5 October 2016
DOI: 10.1103/PhysRevB.94.155403
Electronic Band Structure Effects in the Stopping of Protons in Copper

Edwin E. Quashie and Bidhan C. Saha

Department of Physics, Florida A&M University, Tallahassee, FL 32307, USA

Alfredo A. Correa

Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA

We present an ab initio study of the electronic stopping power of protons in copper over a wide range of proton velocities $v = 0.02 - 10$ a.u. where we take into account non-linear effects. Time-dependent density functional theory coupled with molecular dynamics is used to study electronic excitations produced by energetic protons. A plane-wave pseudopotential scheme is employed to solve the time-dependent Kohn-Sham equations for a moving ion in a periodic crystal. The electronic excitations and the band structure determine the stopping power of the material and alter the interatomic forces for both channeling and off-channeling trajectories. Our off-channeling results are in quantitative agreement with experiments, and at low velocity they unveil a crossover region of superlinear velocity dependence (with a power of ~ 1.5) in the velocity range $v = 0.07 - 0.3$ a.u., which we associate to the copper crystalline electronic band structure. The results are rationalized by simple band models connecting two separate regimes. We find that the limit of electronic stopping $v \to 0$ is not as simple as phenomenological models suggest and it plagued by band-structure effects.
I. INTRODUCTION

The interaction of charged particles with matter has been a subject of extensive research over many decades. These studies provide information for many technological applications such as nuclear safety, applied material science, medical physics and fusion and fission applications1-3.

Among the measurable quantities associated to the interaction between ions and solids, the stopping power (S)5 has received much attention; it provides information regarding the energy transfer between the incoming projectile and the solid target. When a fast ion moves through a material, it loses most of its kinetic energy due to the excitations of the target electrons along its trajectory in what constitutes a fundamentally non-adiabatic process. This energy-loss phenomenon plays an important role in many experimental studies involving radiation in solids, surfaces, and nanostructures6-12.

Various models and theories have been proposed to calculate stopping cross sections due to electrons. Employing the First Born Approximation, Bethe13 has introduced the first calculations of inelastic and ionization cross section. The Bloch correction14 provides a convenient link between the Bohr and the Bethe scheme. Fermi and Teller15 using electron gas models had reported electronic stopping for various targets. The Bethe formula for stopping has been studied in details by Lindhard and Winther16 on the basis of the generalized linear-response theory.

In particular, the condensed matter community has introduced sophisticated numerical computer simulation techniques for this fundamentally non-adiabatic problem as spearheaded by Echenique \textit{et al.} 17 aimed to overcome limitations of historical approaches14-16,18. A unified \textit{ab initio} theoretical approach suitable for different projectiles and energies is in its developing stages19-21. A review on the topic can be found in Ref.22 and references therein.

Using a Kohn-Sham (KS) scheme of time-dependent density functional theory (TDDFT) where the KS wave functions are expanded in a basis set of spherical harmonics, Quijada \textit{et al.}23 have studied the energy loss of protons and anti-protons moving inside metallic spherical Al (Jellium) clusters and obtained good results for the projectile-target energy transfer over a restricted energy range. Recently Uddin \textit{et al.}24 and Haque \textit{et al.}25 have calculated stopping cross sections for various media using atomic density functions from Dirac-Hartree-Fock-Slater wave functions in the Lindhard-Schraff theory26 with fitted parameters and obtained close agreement with the experimental and S\textit{RIM} data. S\textit{RIM}27 provides both a fitted model for electronic stopping as well as a large set of experimental points.

In studying the role of ion-solid interactions of H+ in Al, Correa \textit{et al.}28 have shown that the electronic excitations affect the interatomic forces relative to the adiabatic outcome. Recently, Schleife \textit{et al.}29 have calculated the electronic stopping power (S_e) of H and He projectiles including TDDFT non-adiabatic electron dynamics and found that off-channeling trajectories along with the inclusion of semicore electrons enhance S_e, resulting in much better agreement with the S\textit{RIM} experimental and modeled data27 in a wide range of energies. In this case we concentrate in a metal with a richer electronic band structure around the Fermi energy, such as Cu.

The recent measurements by Cantero \textit{et al.}29 and by Markin \textit{et al.}30 of slow ($v \leq 0.6$ a.u.) H+ in Cu give a glimpse of the interesting extreme low velocity limit. Although disagreeing with each other in absolute scale by $\sim 40\%$ (Fig. 4), both reveal the stopping due to conduction band electronic excitations at lower velocity, evidenced as a change in slope near $v = 0.15$ or 0.10 a.u. respectively. The change of slope was deduced qualitatively to be caused by the participation of d-electrons31.

In this paper we will address the problem of theoretical calculation of S_e of protons in crystalline Cu for a wide range of available experimental velocities (0.02 a.u. $\leq v \leq 10$ a.u.). We perform our calculations by directly simulating the process of a proton traversing a crystal of Cu atoms, producing individual and collective electronic excitations within the TDDFT framework28,32,33 including Ehrenfest molecular dynamics (EMD)34-38. This method is used to calculate most microscopic quantities along the process (forces, electronic density, charges, etc); in particular, we concentrate here in the calculation of S_e. A quantitative explanation and interpretation of our results are furnished along with a detailed experimental comparison.

II. METHOD

During the course of the simulation, we monitored the energy transferred to the electrons of the target due to a constant velocity moving proton. For simplicity, and since the eletronic stopping is a velocity-resolved quantity the proton is constrained to move at constant velocity, hence the total energy of the system is not conserved. The excess in total energy is instead used as a measure of the stopping power as a function of the proton velocity. As the proton moves, the time-dependent Kohn-Sham (TDKS) equation39 describes the evolution of the electronic density and energy of the system, due to the dynamics of effective single-particle states under the external potential generated by the proton and the crystal of Cu nuclei. These states are evolved in time with a self-consistent Hamiltonian that
is a functional of the density:

\[i\hbar \frac{\partial}{\partial t} \psi_i(r, t) = \left\{ -\frac{\hbar^2 \nabla^2}{2m} + V_{\text{KS}}[n(t), \{R_j(t)\}_j](r, t) \right\} \psi_i(r, t) \]

(1)

The KS effective potential \(V_{\text{KS}}[n(t), \{R_j(t)\}_j](r, t) \) is given by

\[V_{\text{KS}}[n, \{R_j(t)\}_j] = V_{\text{ext}}[\{R_j(t)\}_j] + V_H[n] + V_{\text{XC}}[n] \]

(2)

where the external potential is \(V_{\text{ext}}[\{R_j(t)\}_j](r, t) \) due to ionic core potential (with ions at positions \(R_j(t) \)), \(V_H[n](r, t) \) is the Hartree potential comprising the classical electrostatic interactions between electrons and \(V_{\text{XC}}[n](r, t) \) denotes the exchange-correlation (XC) potential. The spatial and time coordinates are represented by \(r \) and \(t \) respectively. At time \(t \) the instantaneous density is given by the sum of individual electron probabilities \(n(r, t) = \sum_i |\psi_i(r, t)|^2 \). The XC potential used in this study is due to Perdew-Burke-Ernzerhof (PBE) \(^{40,41}\), and we used norm-conserving Troullier-Martins pseudopotential to represent \(V_{\text{ext}} \), with 17 explicit electrons per Cu atom (not necessarily all 17 electrons participate in the process as we will discuss later).

Each simulation of the ion-solid collision consists of a well-defined trajectory of the projectile in the FCC metallic bulk sample with experimental density. The calculations were done using the code QBOX\(^{42}\) with time-dependent modifications\(^{32}\). The KS orbitals are expanded in a supercell plane-wave basis. The advantages of using the plane-wave approach is that it systematically deals with basis-size effects, which was a drawback for earlier approaches\(^{19,28}\). Periodic boundary conditions along with Ewald summation\(^{44,45}\) are used throughout this study. The supercell size was chosen so as to reduce the spurious size effects while maintaining controllable computational demands. Since the larger size effects are negligible this calculation used \((3 \times 3 \times 3) \) conventional cells containing 108 host Cu atoms and \(\text{H}^+ \). To integrate the Brillouin zone a single \(k \)-point (\(\Gamma \)) was used, except for test cases. The screening length of Cu is close to the interatomic spacing, which reduces the range of Coulomb interactions and makes it controllable in a periodic representation.

Finite size effects are studied between 108 and 256 atoms in a supercell of \((3 \times 3 \times 3) \) and \((4 \times 4 \times 4) \) respectively in this simulation, the errors remain within 3% in conformity with the earlier observation\(^{20}\). The plane-wave basis set is sampled accurately with a 130 Ry energy cutoff. We also tested for \(k \)-point convergence in a \((3 \times 3 \times 3) \)-Monkhorst-Pack grid (for the cubic 108-supercell), which would be equivalent to a 2916 (108 \times 27 simulation cell of an hypothetical periodic system, including replicas of the proton), for selected velocities with negligible differences within 0.08%.

The projectile \(\text{H}^+ \) is initially placed in the crystal and a time-independent DFT calculation was completed to obtain the converged ground state results that are required as the initial condition for subsequent evolution with the moving projectile. We then perform TDDFT calculations on the electronic system with the moving proton in the channeling and off-channeling geometries. Following the method introduced by Pruneda et al.\(^{46}\) the projectile is put in motion with a constant velocity in a straight along a \(\{100\} \) channeling trajectory (also called hyper-channeling) which minimizes the collision of the projectile with the host atoms\(^{19,20,28}\).

In the off-channeling case the projectile takes random trajectory directions through the host crystal yielding occasionally stronger interaction between the projectile and the tightly bound electrons of the host atom. The use of off-channeling trajectories was introduced in Ref.\(^{20}\).

The fourth-order Runge-Kutta scheme (RK4)\(^{32}\) is used to propagate the electronic orbitals in time, following the scheme of Ref.\(^{32}\) the TDKS equation (see Eq. 1) with a time step of, at most, 0.121 attoseconds (which is within the numerical stability limit time-integration scheme for this basis set). High velocity points were simulated with smaller time steps. The wavefunctions were then propagated for up to tens of femtoseconds.

The total electronic energy \((E) \) of the system changes as a function of the projectile position \((x) \) since the projectile (forced to maintain its velocity) deposits energy into the electronic system as it moves through the host atoms. The increase of \(E \) as a function of projectile displacement \(x \) enables us to extract the electronic stopping power as a time-averaged quantity for each velocity,

\[S_e = \frac{dE(x)}{dx} \]

(3)

\(S_e \) has the dimension of a force (e.g. \(E_h/a_0 \)) and it has the interpretation of a drag force acting on the projectile.

III. RESULTS

Our calculations of \(\text{H}^+ \rightarrow \text{Cu} \) system in the range of velocities between 0.02 and 10 a.u. are presented in details in this section. Fig. 1 shows the total electronic energy of the \(\text{H}^+ + \text{Cu} \) system as a function of position for various projectile velocities for the hyper-channeling case. At a lower velocities regime, the energy transfer is smaller, approaching the
adiabatic behavior, while at higher velocities (aside oscillations of the total energy with the position of the projectile) the total energy of the system increases linearly with time. After the projectile travels some short distance in the crystals (∼ 3 \(a_0\)) the increase in total energy of the system stabilizes to a steady rate. At that steady state, the \(S_e\) is then extracted from the average slope of the total energy vs. projectile displacement; it represents the rate of energy gained by the target and loss by the projectile.

In the low velocity cases extracting a slope becomes more challenging, first because a longer time simulation is required to sample the crystalline structure and second because the natural oscillations associated with the crystal periodicity becomes relatively larger. For the channeling cases, we subtract the adiabatic energy from time-dependent energy and we perform an oscillatory fit to the resulting curve. Fig. 2 explains how the slopes of Fig. 1 are evaluated in these cases. For higher velocities, a linear fit alone is enough to obtain reasonable values with small relative errors.

For the off-channeling trajectory, the procedure for computing the \(S_e\) is depicted in Fig. 3. We used two directions, approximately [0.705, 0.610, 0.363] and [0.309, 0.5, 0.809] (given normalized here). The first direction was chosen by visual inspection of the supercell in order to not match any simple channel but also avoid an immediate head on collision. The second direction is the normalized version of [1, \(\phi\), \(\phi^2\)], where \(\phi\) is the golden ratio (∼ 1.618), which guarantees a trajectory most incommensurate with the cell due to its mathematical properties as an irrational number. It is important to note here an interesting geometrical fact that, for a direction incommensurate with the crystal directions, all available densities and impact parameters (distances of closest approach to host atom) are probed (averaged) eventually for a long enough trajectory. Our simulations are limited in space (and time) but it is clear that the trajectories explore a wide range of impact parameters and therefore densities. The viability and the necessity of considering this geometrical averaging method was shown earlier in\(^{20}\).

In Fig. 3, the sharp peaks show when the proton is in the vicinity of a host Cu atom during an off-channeling trajectory, while the smaller peaks and flatter regions indicate that the proton is not very close to any host atom.
Figure 2. (color online). The increase of E as a function of proton position at $v = 0.06$ a.u. (green dashed line) along $\langle 100 \rangle$ channeling trajectory and the adiabatic energy (magenta dot-dashed line). The adiabatic curve would correspond to a proton moving infinitely slowly, where there is no transfer of energy, just oscillations of the total energy with an overall zero slope. The oscillations in the curves reflect the periodicity of the Cu lattice. The red solid line shows the energy difference (subtraction of adiabatic energy from the $v = 0.06$ a.u. curves). The blue dashed and black dotted lines shows the slope of linear and oscillatory fits of the red solid line from $x = 5.0\ a_0$ (after the transient) to a given maximum position x as a function of this maximum position respectively. For visualization purposes the black line has been shifted vertically. A linear fit, $y = a + bx$ (blue line) yields a slope of $6.989 \times 10^{-3}\ E_h/a_0$ with an error of $\pm 6.936 \times 10^{-5}\ E_h/a_0$. We then proceed for a linear fit in addition to an oscillatory function $y = a + bx + A\cos(kx + \phi)$ (black dotted line) to capture any remnant oscillation. This oscillatory fit generates a slope of $7.435 \times 10^{-3}\ E_h/a_0$ with an error of $\pm 8.52 \times 10^{-7}\ E_h/a_0$, that is a minimal fitting error is obtained in the channeling trajectory.

To obtain the S_e we compute the slopes of the curves by a linear fit of the form $y = a + bx$ (black solid lines) using our data from $x > 5\ a_0$ (to eliminate the transient region) up to a given maximum position of x determined by minimizing reentrancy in the periodic supercell near the initial position. The slope (b) gives the electronic stopping for this off-channeling case.

Fig. 4 shows a comparison of our calculated S_e with SRIM-based model and experimental data. In the channeling case, the maximum of our calculated stopping is lower in value and velocity compared to the SRIM database and the off-channeling case, and it decreases faster after the maximum.

For the off-channeling case, there is a better agreement between our S_e results with the SRIM data in most of the range. In experiments, where trajectories are not necessarily finely controlled, the projectile does indeed explore core regions of the host atoms, and that is presumably why off-channeling simulations are a better representation for the most common experiments\cite{48}. At higher velocities ($v > 4\ a.u.$) further disagreement stems from combined effect of the lack of explicit deeper core electrons in the simulation and also size effects, as excitations of long wavelength plasma oscillations are artificially constrained by the simulation supercell\cite{20}. It is clear that a larger cell and eventually the
Figure 3. (color online) The total energy increase as a function of proton position at velocities $v = 1.0$ a.u. (magenta line), $v = 1.8$ a.u. (blue line) and $v = 2.5$ a.u. (red line) along the off-channeling direction [0.309, 0.5, 0.809] trajectory with the corresponding linear fits (black solid lines).

inclusion of more core electrons would be necessary to obtain better agreement in this high velocity region that is out of scope of this article.

Although experimental values have considerable vertical spread, our calculated stopping power is on the low side for most of the points and also below the fitted by SRIM model27. While this was partially explained by taking into account off-channeling trajectories near the maximum of stopping, there are other possible intrinsic limitations of the approximations to the density functional theory used. Along this line, we would like to note that more sophisticated approaches, based on the dielectric and current-density response but including the exact many-body and dynamic exchange-correlation treatment, are available in the literature49. This type of advanced approaches which are beyond the current scope contain explicitly additional channels of dissipation not taken into account in our adiabatic exchange and correlation functionals, which can be relatively important. Given the aforementioned limitations of the orbital based method and the exchange and correlation used it is still reassuring to see agreement up to a few times the velocity of the maximum stopping and gives us confidence to make predictions in the lower velocity regime.

At low velocity we observe that the off-channeling and channeling simulated results collapse into a common curve, this effect has been seen in the simulations before20,21,28. The effect is that the computed quantity less sensitive to the precise geometry of the trajectory, as the geometric cross section increases. We speculate that this is because the effective binary cross section increases beyond the interatomic separation making the energy loss less sensitive the precise geometry of the environment.
Figure 4. (color online). The S_e vs. projectile velocity v: for a channeling trajectory (red lines) and for off-channeling trajectory (blue crosses). The black continuous line refers to the nominal tabulated model from SRIM, based on its database for electronic stopping power27. The gray dots refer to the SRIM experimental database contained therein37. The error bars of the off-channeling trajectory are shown by the blue vertical lines, while error bars in channeling trajectories are smaller than the points. Open circles and open squares show data of Cantero et al.29 and Markin et al.30 respectively.

IV. DISCUSSION

A logarithmic version of the findings of Fig. 4 is depicted in Fig. 5, where we have observed that the resulting curve is not as particularly simple. In order to interpret the results we also calculated the linear response stopping $S_L(n,v)$50 based on a simple Lindhard RPA dielectric function ε_{RPA} for different effective densities n of the homogeneous electron gas51

$$S_L(n,v) = \frac{2e^2}{\pi \hbar^2} \int_0^\infty \frac{dk}{k} \int_0^{kv} \omega d\omega \text{Im} \left(\frac{1}{\varepsilon_{\text{RPA}}(n,k,\omega)} \right)$$

(4)

(which assumes a proton effective charge of $Z_1 = 1$). As shown in Fig. 5, for $v < 0.07$ a.u. the response of the effective electron gas with one electron per Cu mimics the TDDFT results. While more sophisticated dielectric models can be used52, we use the minimal model that can explain the simulation in the different regimes.

The resulting curves in Fig. 5 shows that for $v > 0.3$ a.u. at least the 11 electrons per atom (full valence) participates in the stopping electron gas within linear response. We observe a S_e kink around $v \sim 0.07$ a.u. due to a mixture of d-band in the electronic density of states. Similarly, according to this analysis of our new results, for $v \leq 0.07$ a.u., are primarily due to s-band electrons within linear response. In the simulation we directly show a crossover region between the two linear regimes, and we find that the friction is in direct relation to the velocity with a power law with exponent 1.48 ± 0.02. (In linear scale kinks are represented by changes of curvature, here logarithmic scale is more appropriate to discuss the physics.)
The kink we found at $v = 0.07$ a.u. can be explained by conservation laws in the effective homogeneous electron gas and general properties of electronic density of states in crystalline Cu. The minimum energy loss with maximum momentum transfer from an electron to an ion moving with velocity v are respectively $2\hbar k_F v$ and $2\hbar k_F$ (plus small corrections of order m_e/m_p). Due to Pauli exclusion, only electrons in the energy range $E_F \pm 2\hbar k_F v$ can participate in the stopping process. Taking into account that DFT band structure predicts that the d-band edge is $\Delta_{\text{DFT}} = 1.6$ eV below the Fermi energy (see for example, Fig. 3(a) in Ref.53), that electron (band) effective mass close to 1 and that $k_F = 0.72/a_0$ for the effective homogeneous electron gas of Cu s-electrons54, we can derive an approximate value of v_{kink} caused by the participation of d-electrons. Based in this DFT ground state density of states plus conservation laws, we obtain an estimate of $v_{\text{kink}} = \Delta/(2\hbar k_F) = 0.41$ a.u. in near agreement with our TDDFT prediction. In reality, the d-band is about $\Delta_{\text{exp}} = 2$ eV below the Fermi energy as indicated by ARPES 55, which means that both the DFT-based estimate and the full TDDFT result should be giving an underestimation of 25% of the kink location. The second (negative) kink at $v = 0.3$ a.u. is more difficult to explain precisely as the qualitative description in terms of k_F (as in the homogeneous electron gas) becomes more ambiguous, but it is related to the point at which the whole conduction band (11 's + d' electrons) starts participating in the process.

![Figure 5](image_url)

Figure 5. (color online) The average S_e vs. projectile velocity v: for a channeling trajectory (red circles) and for off-channeling trajectory (blue crosses). The solid black and solid magenta lines refer to the nominal tabulated results from the Srim database for electronic and ionic stopping powers respectively27. Open circles and open squares show data of Cantero et al.29 and Markin et al.30 respectively. Dash (green) line and dash-dot (brown) line corresponds to a linear RPA calculation for a free-electron gas with $r_s = 2.67 a_0$ (1e per Cu atom) and $r_s = 1.12 a_0$ (11e per Cu atom). The thin solid black line, obtained by a linear fit to our simulated results, is the polynomial curve $\propto v^q$ to fit the crossover region (with a power of $q = 1.48 \pm 0.02$).

At low velocity, our results show good agreement with the experiments of Markin et al.30 but in relative disagreement with the measurements of Cantero et al.29 and the Srim model. The difference between experiments could be due to a simple experimental scaling issue related to the difference between measuring relative and absolute stopping power at low velocities30.
Below 0.07 a.u., the lack of experimental points precludes a direct comparison, but we find linear behavior at least down to 0.02 a.u. Below 0.02 a.u. the direct real time integration becomes less efficient and the accuracy is compromised by the quality of the numerical time integrator and the number of steps necessary to complete a calculation\(^\text{32}\). Probing this regime experimentally would be rather difficult, especially to disentangle it from nuclear stopping effects, but if this is confirmed it would be an unexpected new regime. In any case, the combination of experimental and theoretical results shows that the limit \(v \to 0\) is intricate for metals as it is for insulators\(^\text{56,57}\) where analogous band and gap threshold effects have been found.

Finally, we point out that the investigation of the low velocity limit of stopping power is important for the understanding of the non-adiabatic coupling between ions and electrons\(^\text{58}\) and also for modeling dissipative molecular dynamics\(^\text{59,60}\) where electrons act both as a thermal bath and a friction media. In simulations of radiation events the final state is precisely controlled by dissipation in the late stages when ions move slowly but still non-adiabatically\(^\text{61}\)

A snapshot of the redistribution of the charge density as a function of time for the simulation is shown in Fig. 6. At \(t = 0\) attoseconds (see Fig. 6a) the \(\text{H}^+\) interacts with the neighboring \(\text{Cu}\) atoms charge density where some electron density is acquired. Elongated wake tails are characteristic of projectiles traveling at or above the Fermi velocity\(^\text{63}\), in turn this affects the forces exerted on the neighboring atoms.

Fig. 7 shows the radial forces exerted on a neighboring \(\text{Cu}\) atom closest to \(\text{H}^+\) trajectory as a function of parallel distance to the projectile at different projectile velocities along the (100) channeling trajectory. The forces on the nuclei are evaluated using the time-dependent electron density, \(n(r,t)\).

The adiabatic force is recovered for \(v \to 0\) with no oscillations as expected. The maximum value for the force is obtained at the closest distance between the \(\text{H}^+\) and a neighbor \(\text{Cu}\) atom. As the proton moves further from the \(\text{Cu}\) atom, the force decreases and eventually reduces to zero. As the velocity increases the position of the maximum value of the force first shifts and later results in persistent oscillations. The existence of plasma oscillations is detected in our simulations by persistent charge motion above a certain threshold velocity of \(v \geq 1.0\) a.u.. These plasma oscillations affect the components forces over individual \(\text{Cu}\) atoms near the trajectory of the passing hydrogen (Fig. 7). These forces persist (and oscillate) even after the proton has passed.

\section{V. \ CONCLUSION}

In this paper we have reported the \(S_u\) of protons in copper in a very wide range of velocities. TDDFT-based electron dynamics is capable of capturing most of the physics in the different ranges, starting from non-linear screening effects, electron-hole excitations and production of plasmons. We disentangled channeling and off-channeling effects and observe a collapse of the two curves at low velocities; and identified four regimes i) the linear s-only \((0.02 - 0.07\) a.u.), ii) linear \(s + d\) \((0.3 - 1\) a.u.), iii) crossover with \(\sim 1.5\)-power law \((0.07 - 0.3\) a.u.) and iv) plasma-like \((v > 1\) a.u.). This further illustrates that the electronic stopping in general does not possess a simple behavior in the limit \(v \to 0\), and that band and bound effects dominate this behavior.

\section{VI. \ ACKNOWLEDGEMENTS}

We would like to thank Professor C. A. Weatherford, Dr. E. R. Schwegler and Dr. K. J. Reed for their keen interests, constant encouragements and useful suggestions throughout the progress of this work. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Computing support for this work came from the Lawrence Livermore National Laboratory Institutional Computing Grand Challenge program. This is a collaborative project between the Department of Physics, Florida A&M University and Lawrence Livermore National Laboratory. E. E. Quashie and B. C. Saha thankfully acknowledge the support by National Nuclear Security Administration (NNSA), Award Number(s) DE-NA0002630.

\begin{thebibliography}{99}

\bibitem{1} F. F. Komarov, A. F. Komarov, V. V. Pil’ko, and V. V. Pil’ko, J Eng Phys Thermophy \textbf{86}, 1481 (2013).

\bibitem{2} P. Patel, A. Mackinnon, M. Key, T. Cowan, M. Foord, M. Allen, D. Price, H. Ruhl, P. Springer, and R. Stephens, Phys. Rev. Lett. \textbf{91} (2003), 10.1103/physrevlett.91.125004.

\bibitem{3} G. J. Caporaso, Y.-J. Chen, and S. E. Sampayan, Reviews of Accelerator Science and Technology \textbf{02}, 253 (2009).

\bibitem{4} G. R. Odette and B. D. Wirth, in \textit{Handbook of Materials Modeling} (Springer Netherlands, 2005) pp. 999–1037.

\bibitem{5} T. L. Ferrell and R. H. Ritchie, Physical Review B \textbf{16}, 115 (1977).

\end{thebibliography}
K. Morawetz and G. Röpke, Physical Review E 54, 4134 (1996).
Z. Lin, L. V. Zhigilei, and V. Celli, Phys. Rev. B 77 (2008), 10.1103/physrevb.77.075133.
N. Ashcroft and N. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).
J. A. Knapp, F. J. Himpsel, and D. E. Eastman, Phys. Rev. B 19, 4952 (1979).
E. Artacho, Journal of Physics: Condensed Matter 19, 275211 (2007).
A. Lim, W. M. C. Foulkes, A. P. Horsfield, D. R. Mason, A. Schleife, E. W. Draeger, and A. A. Correa, Phys. Rev. Lett. 116 (2016), 10.1103/physrevlett.116.043201.
A. Caro, A. A. Correa, A. Tamm, G. D. Samolyuk, and G. M. Stocks, Phys. Rev. B 92 (2015), 10.1103/physrevb.92.144309.
A. Caro and M. Victoria, Phys. Rev. A 40, 2287 (1989).
D. M. Duffy and A. M. Rutherford, Journal of Physics: Condensed Matter 19, 016207 (2006).
E. Zarkadoula, S. L. Daraszewicz, D. M. Duffy, M. A. Seaton, I. T. Todorov, K. Nordlund, M. T. Dove, and K. Trachenko, Journal of Physics: Condensed Matter 26, 085401 (2014).
H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, K. Biagas, M. Miller, C. Harrison, G. Weber, H. Krishnan, T. Fogal, A. Sanderson, C. Garth, E. Bethel, D. Camp, O. Rubel, M. Durant, J. Favre, and P. Navratil, in High Performance Visualization (Informa UK Limited, 2012).
J. Tehada, P. Echenique, O. Crawford, and R. Ritchie, Nuclear Instruments and Methods 170, 249 (1980).
Figure 6. (color online). Snapshots of density change produced by a H$^+$ moving in Cu atoms with $v = 1.8$ a.u. (kinetic energy of 81 keV) along the $\langle 100 \rangle$ channeling trajectory. The brown balls represent the Cu atoms and the single gray ball with light-blue iso-density contours represents host electron density affected by the presence of H$^+$. From initial condition ($t = 0$) to a representative steady condition after $t = 91.65$ attosecond (see Fig. 1). Visualization produced with VisIt.
Figure 7. (color online). Radial force exerted on a Cu atom as a function of parallel distance to projectile at different projectile velocities \(v \). The force is negative radial, which means that adiabatically (red curve) the proton attracts the neighbour Cu atom, but as the electron wake develops at higher velocities (\(v = 1.5 \) and 2.5 a.u. the force becomes repulsive after passing. For visualization purposes the non-adiabatic curves have been shifted vertically upwards.