On some new soliton solutions of \((3 + 1)\)-dimensional Boiti–Leon–Manna–Pempinelli equation using two different methods

Khalid K. Ali\(^a\) and M. S. Mehanna\(^b\)

\(^a\)Mathematics Department, Faculty of Science, Al-Azhar University, Nasr-City, Cairo, Egypt; \(^b\)Faculty of Engineering, MTI University, Cairo, Egypt

ABSTRACT
In this article, a new solution for the \((3 + 1)\) dimensions Boiti–Leon–Manna–Pempinelli (BLMP) equation using the sine Gordon expansion method and the extended tanh function method is given. The methods were chosen very carefully due to the precision of their solutions. Also, some of the two- and three-dimensional figures and some of the contours plots of the obtained solutions were presented. Finally, a discussion of the results was given.

1. Introduction
Nonlinear partial differential equations (NPDEs) appear in modeling many phenomena in physics, engineering, biology, archeology, hydrodynamics, plasma physics, molecular biology, quantum mechanics, nonlinear optics, surface water waves and so on. Many equations of mathematical physics have the solutions of soliton type. Solitons exhibit the particle-like properties because the energy is at any instant confined to a limited region of space (Ghanbari & Nisar, 2020; Nisar et al., 2021; Zafar, Ali, Raheel, Jafar, & Nisar, 2020). With the development of soliton theory, many powerful methods for obtaining exact solutions of NLPDEs have been presented, such as homotopy perturbation method, nonperturbative method, homogeneous balance method, Backlund transformation, Darboux transformation, extended tanh-function method, extended F-expansion method, \(\varphi\) function method, exp-function method, sine–cosine method, Jacob elliptic function method, extended Riccati equation rational expansion method, extended auxiliary function method and other methods (Achab et al., 2020; Akbar, Alam, & Hafez, 2016; Alam, Hafez, Akbar, & Roshid, 2015; Ali Akbar, Ali, & Tarikul Islam, 2019; Duan & Lu, 2021; Hong & Lu, 2013; Islam, Akbar, & Khan, 2018; Kazi Sazzad Hossain & Ali Akbar, 2017; Khan & Akbar, 2014; Lu, 2018; Mahmud, Samshuzzoha, & Akbar, 2017; Mohyud-Din, Nawaz, Azhar, & Akbar, 2017; Nur Alam1, Ali Akbar, & Fazlul Hoque, 2014; Shafiqul Islam, Khan, Ali Akbar, & Mastroberardino, 2014). In this article, we used the sine Gordon expansion method and extended tanh function method to the \((3 + 1)\) dimensional Boiti–Leon–Manna–Pempinelli equation (BLMP) which is used to describe incompressible liquid in fluid mechanics (Wazwaz, 2019). The equation is given as:
\[
(u_x + u_y + u_z)_{t} + (u_x u_y + u_z)_{xx} + (u_x(u_y + u_z))_{x} = 0
\] (1)
which was derived by Boiti et al. when they researched a Korteweg–de Vries (KdV) equation through weak Lax pairs relations (Boiti, Leon, Manna, & Pempinelli, 1986). Many researchers discussed the BLMP equation (Darvishi, Najafi, Kavitha, & Venkatesh, 2012; Li & Ma, 2018; Liu, Du, Zeng, & Nie, 2017; Liu, Tian, & Hu, 2018; Mabrouk & Rashid, 2017; Osman & Wazwaz, 2019; Peng, Tian, & Zhang, 2019; Tang & Zai, 2015; Wu, Liu, Piao, Zhuang, & Wang, 2020; Xu, 2019; Zuo, Gao, Yu, Sun, & Xue, 2015).

The modified form of Eq. (1) is given by Wazwaz (see Liu & Wazwaz, 2021; Wazwaz, 2019). In this article, we will study the \((3 + 1)\) BLMP equation that was proposed by Wazwaz in this form:
\[
(u_x + u_y + u_z)_{t} + (u_x(u_y + u_z))_{xx} + (u_x(u_y + u_z))_{x} = 0.
\] (2)
This article is organized as follows: In Section 2, description of the extended tanh function method (Nuruddeen, Aboodh, & Ali, 2020; Shukri & Al-Khaled,
We consider a partial differential equation:

\[P(u, u_t, u_x, u_y, u_{xx}, u_{xy}, u_{yy}, \ldots) = 0. \quad (3) \]

Step 1. Introduce the wave transformation:

\[u(x, y, z, t) = U(\xi), \xi = ax + by + dz - ct, \quad (4) \]

where \(a, b, d \) are constants and \(c \) is the velocity of the traveling wave. By using Eq. (4) in Eq. (2), we get an ordinary differential equation of the form:

\[F(U', U'', U''', \ldots) = 0. \quad (5) \]

Step 2. The modified extended tanh method present the wave solution of Eq. (5) in the form of the finite series:

\[U(\xi) = a_0 + \sum_{i=1}^{N} (a_i \phi(\xi)^i + b_i \phi(\xi)^{-i}), \quad (6) \]

where \(\phi = \phi(\xi) \) is a solution of the Riccati equation of the form

\[\frac{d\phi}{d\xi} = w + \phi^2. \quad (7) \]

The Riccati Eq. (7) has the general solutions:

If \(w < 0 \) then

\[\phi(\xi) = -\sqrt{-w} \tanh(\sqrt{-w} \xi), \quad \phi(\xi) = -\sqrt{-w} \coth(\sqrt{-w} \xi). \quad (8) \]

If \(w = 0 \) then

\[\phi(\xi) = -\frac{1}{\xi}. \quad (9) \]

If \(w > 0 \) then

\[\phi(\xi) = \sqrt{w} \tan(\sqrt{w} \xi), \quad \phi(\xi) = -\sqrt{w} \cot(\sqrt{w} \xi). \quad (10) \]

Step 3. Obtaining \(N \) by balancing the highest order derivative term with the highest power nonlinear term in Eq. (5). Substituting Eqs. (7) and (6) into (5) and then set the coefficients of \(\phi(\xi)^i \), we get a system of algebraic equations for \(w, a_0, \ldots, a_N, b_1, \ldots, b_N \) and we solve this system to find all constants.

2.2. Sine Gordon expansion method

Consider the sine-Gordon equation

\[u_{xx} - u_{tt} = m^2 \sin(u), \quad (11) \]

where \(u = u(x, t) \) and \(m \) is a constant. Use the wave transformation \(u(x, t) = U(\xi), \xi = x - ct \) in Eq. (11), we get the nonlinear ordinary differential equation:

\[U'' = \frac{m^2}{(1 - c^2)} \sin(U), \quad (12) \]

where \(U = U(\xi) \), \(\xi \) and \(c \) are the amplitude and velocity of the traveling waves. By integrating once and put the constant of integral equal to zero, we get:

\[\left[\frac{U'}{2} \right]^2 = \frac{m^2}{(1 - c^2)} \sin^2 \left(\frac{U}{2} \right), \quad (13) \]

let \(w(\xi) = \frac{U}{2} \) and \(a^2 = \frac{m^2}{(1 - c^2)} \), so Eq. (13) becomes:

\[w' = a \sin(w). \quad (14) \]

Set \(a = 1 \) in Eq. (14), we get:

\[w' = \sin(w). \quad (15) \]

Solving Eq. (15), we obtain the two significant equations as:

\[\sin(w) = \sin(w(\xi)) = \frac{2pe^{i\xi}}{p^2e^{2i\xi} + 1} \bigg|_{p=1} = \text{sech}(\xi), \quad (16) \]

\[\cos(w) = \cos(w(\xi)) = \frac{p^2e^{2i\xi} - 1}{p^2e^{2i\xi} + 1} \bigg|_{p=1} = -\tanh(\xi), \quad (17) \]

where \(p \) is the integral constant and non-zero.

We consider the solution of Eq. (5), which can be expressed as:

\[U(\xi) = A_0 + \sum_{i=1}^{N} ((-\tanh(\xi))^{-i} (B_i \text{sech}(\xi) - A_i \tanh(\xi)). \quad (18) \]

Using Eqs. (16) and (17), we get:

\[U(w) = A_0 + \sum_{i=1}^{N} (\cos i^{-1}(w)) (B_i \sin(w) + A_i \cos(w)). \quad (19) \]

We applied the balance principle to determine the value of \(N \) as we did in the previous method. We put the summation of coefficients of \(\sin^i(w) \cos^i(w) \) with the same power equal to zero, we get a system of algebraic equations, which can be solved using Mathematica program.

3. Mathematical analysis of the model and its solutions

Applying the transformation (4) in Eq. (2), then the partial differential equation is Blackced to the
following ordinary differential equation:
\[(a + b + d)((-c + 2a^2U'(\xi))U'(\xi) + a^3U''(\xi)) = 0. \tag{20}\]

Integrating it once and set the integration constant equal zero, we get:
\[-CU'(\xi) + a^2(U'(\xi))^2 + a^3U''(\xi) = 0. \tag{21}\]

Balancing \(U''(\xi)\) with \((U'(\xi))^2\) in Eq. (21) we get \(N + 3 = 2N + 2\), then \(N = 1\).

3.1. Solution with the extended tanh function method

For the value \(N = 1\), the solution of (21) can be written in the form:
\[U(\xi) = a_0 + a_1\phi(\xi) + \frac{b_1}{\phi(\xi)}. \tag{22}\]

Substituting Eq. (22) into (21) and using Eq. (7), collecting the coefficients of \(\phi'(\xi)\), we obtain the following system:
- Coefficients of \(\phi^k\):
 - \(6a^3a_1 + a^2a_1^2\),
 - \(-ca_1 + 8a^3wa_1 + 2a^2wa_1^2 - 2a^2a_1b_1\),
 - \(-ca_1 + 2a^3wa_1 + a^2wa_1^2 + ca_1 - 2a^3wb_1 + 4a^2wa_1b_1 + a^2b_1^2\),
 - \(cw_1 - 8a^3wb_1^2 - 2a^2wa_1b_1 + 2a^2wb_1^2\),
 - \(-6a^3wb_1 + a^2wa_1^2b_1^2\).

Put these coefficients equal to zero, and solving the system by the aid of Mathematica with Eqs. (22) and (4) we get more than one solution of Eq. (2) as follows:

Case 1:
\[a_1 = 0, b_1 = -\frac{3c}{2a^3}, w = -\frac{c}{4a^3}. \tag{24}\]
\[U(\xi) = (a_0 + a_1(-\sqrt{-c}coth(\sqrt{-c}\xi))) + b_1(-\sqrt{-c}coth(\sqrt{-c}\xi))^{-1}\]
\[u(x, y, z, t) = a_0 + 3a\sqrt{\frac{c}{a^3}}\tanh\left(\frac{1}{2}\sqrt{\frac{c}{a^3}}(ax + by + dz - ct)\right). \tag{25}\]

Case 2:
\[a_1 = -6a, b_1 = 0, w = -\frac{c}{4a^3}. \tag{26}\]
\[U(\xi) = (a_0 + a_1(-\sqrt{-c}tanh(\sqrt{-c}\xi))) + b_1(-\sqrt{-c}tanh(\sqrt{-c}\xi))^{-1}\]
\[u(x, y, z, t) = a_0 + 3a\sqrt{\frac{c}{a^3}}\tanh\left(\frac{1}{2}\sqrt{\frac{c}{a^3}}(ax + by + dz - ct)\right). \tag{27}\]

Case 3:
\[a_1 = -6a, b_1 = -\frac{3c}{8a^2}, w = -\frac{c}{16a^2}. \tag{28}\]
\[U(\xi) = (a_0 + a_1(-\sqrt{-c}coth(\sqrt{-c}\xi))) + b_1(-\sqrt{-c}coth(\sqrt{-c}\xi))^{-1}\]
\[u(x, y, z, t) = a_0 + \frac{3a}{2}\sqrt{\frac{c}{a^3}}\coth\left(\frac{1}{2}\sqrt{\frac{c}{a^3}}(ax + by + dz - ct)\right) + \frac{3a}{2}\sqrt{\frac{c}{a^3}}\tanh\left(\frac{1}{4}\sqrt{\frac{c}{a^3}}(ax + by + dz - ct)\right). \tag{29}\]

Case 4:
\[a_1 = 0, b_1 = -\frac{c}{a^2}, w = 0. \tag{30}\]
\[U(\xi) = a_0 + a_1\left\{-\frac{1}{\xi}\right\} - b_1(\xi)\]
\[u(x, y, z, t) = a_0 + \frac{c(ax + by + dz - ct)}{a^2}. \tag{31}\]

3.2. Solution with sine Gordon expansion method

For the value \(N = 1\), Eq. (19) takes the form,
\[U(w) = A_0 + B_1 \sin(w) + A_1 \cos(w), \tag{32}\]
substituting from Eq. (32) into the ordinary differential equation [Eq. (21)], we equate to zero the coefficients of the same power of the trigonometric functions, so we get the following algebraic system of equations:
\[cA_1 - 4a^3 + a^2B_1^2 = 0, \]
\[2a^1A_1 + a^2A_1^2 + 4a^1A_1 - a^2B_1^2 = 0, \]
\[-cB_1 + a^2B_1 = 0, \]
\[-5a^3B_1 - 2a^2A_1B_1 - a^2B_1 = 0. \tag{33}\]

By solving above system by the aid of Mathematica with Eqs. (32), (18) and (4), we get more than one solution of Eq. (2) as follows:

Case 1:
\[A_1 = 3(-1)^\frac{1}{2}c^1, B_1 = -3(-1)^\frac{1}{2}c^1, a = (-1)^\frac{1}{2}c^1. \tag{34}\]
\[u(x, y, z, t) = A_0 - 3(-1)^\frac{1}{2}c^1\text{sech}\left((-1)^\frac{1}{2}c^1x - by - dz + ct\right) + 3(-1)^\frac{1}{2}c^1 \times \tanh\left((-1)^\frac{1}{2}c^1x - by - dz + ct\right). \tag{35}\]

Case 2:
\[A_1 = 3(-1)^\frac{1}{2}c^1, B_1 = 3(-1)^\frac{1}{2}c^1, a = (-1)^\frac{1}{2}c^1. \tag{36}\]
Figure 1. Graph of case 1 using the extended tanh method at $c = 0.05, a = 0.1, b = 0.01, d = 0.1, a_0 = 0.1, y = 0.5, z = 0.5.$

\[
\begin{align*}
 u(x, y, z, t) & = A_0 + 3(-1)^{3/2}c\text{sech}\left((-1)^{3/2}c x - by - dz + ct\right) \\
 & + 3(-1)^{1/2}c^2 \times \tanh\left((-1)^{3/2}c x - by - dz + ct\right). \\
\end{align*}
\]

Case 3:
\[
\begin{align*}
 A_1 & = -3(-1)^{3/2}c, B_1 = -3(-1)^{3/2}c, a = (-1)^{3/2}c^2. \\
 u(x, y, z, t) & = A_0 - 3(-1)^{3/2}c\text{sech}\left((-1)^{3/2}c x - by - dz + ct\right) \\
 & - 3(-1)^{3/2}c^2 \times \tanh\left((-1)^{3/2}c x - by - dz + ct\right). \\
\end{align*}
\]

Case 4:
\[
\begin{align*}
 A_1 & = -3(-1)^{3/2}c, B_1 = 3(-1)^{3/2}c, a = (-1)^{3/2}c^2. \\
 u(x, y, z, t) & = A_0 + 3(-1)^{3/2}c\text{sech}\left((-1)^{3/2}c x - by - dz + ct\right) \\
 & - 3(-1)^{3/2}c^2 \times \tanh\left((-1)^{3/2}c x - by - dz + ct\right). \\
\end{align*}
\]

Case 5:
\[
\begin{align*}
 A_1 & = -3(2)^{1/2}c, B_1 = 0, a = \frac{c^1}{2^3}. \\
 u(x, y, z, t) & = A_0 - 3(2)^{1/2}c\text{tanh}\left(\frac{c^1}{2^3} x - by - dz + ct\right). \\
\end{align*}
\]

Case 6:
\[
\begin{align*}
 A_1 & = 3(-2)^{1/2}c, B_1 = 0, a = -\frac{(-1)^{1/2}c^1}{2^3}. \\
 u(x, y, z, t) & = A_0 + 3(-2)^{1/2}c\text{tanh}\left(\frac{(-1)^{1/2}c^1}{2^3} x - by - dz + ct\right). \\
\end{align*}
\]

Case 7:
\[
\begin{align*}
 A_1 & = -3(-1)^{3/2}c, B_1 = 0, a = \frac{(-1)^{3/2}c^1}{2^3}. \\
 u(x, y, z, t) & = A_0 - 3(-1)^{3/2}c\text{tanh}\left(\frac{(-1)^{3/2}c^1}{2^3} x - by - dz + ct\right). \\
\end{align*}
\]
Figure 2. Graph of case 2 using the extended tanh method at $c = 0.1, a = 0.3, b = 0.5, d = 0.5, a_0 = 0.1, y = 0.5, z = 0.5$.

Figure 3. Graph of case 4 using the extended tanh method at $c = 0.2, a = 0.2, b = 2, d = 0.1, a_0 = 0.1, y = 0.5, z = 0.5$.
Figure 4. Graph of case 1 using the sine Gordon expansion method at $c = 0.1, b = 0.4, d = 2, A_0 = 1, y = 0.5, z = 0.5$.

Figure 5. Graph of case 2 using the sine Gordon expansion method at $c = 0.1, b = 0.1, d = 0.1, A_0 = 1.5, y = 0.5, z = 0.5$.
Figure 6. Graph of case 3 using the sine Gordon expansion method at $c = 0.1, b = 0.01, d = 0.01, A_0 = 2, y = 0.5, z = 0.5$.

Figure 7. Graph of case 4 using the sine Gordon expansion method at $c = 0.1, b = 2, d = 0.1, A_0 = 1.5, y = 0.5, z = 0.5$.
4. Some graphical illustrations

Herein, we present some figures in the two-dimensional, three-dimensional and contours to illustrate the solutions that we have got. Some of the analytical solutions are presented in Figures 1–8, while the accuracy of the methods was compared to the solution given by Duan & Lu, (2021) and Lu (2018) as shown in Figures 1–8, respectively. In Figure 1, we introduce the graph of case 1 for Eq. (25) using the extended tanh method at $c = 0.05, a = 0.1, b = 0.01, d = 0.1, A_0 = 0.1, y = 0.5, z = 0.5$. Graph of case 2 for Eq. (27) using the extended tanh method at $c = 0.1, a = 0.3, b = 0.3, d = 0.5, A_0 = 0.1, y = 0.5, z = 0.5$ is presented in Figure 2, we introduce the graph of case 4 for Eq. (31) using the extended tanh method at $c = 0.2, a = 0.2, b = 2, d = 0.1, A_0 = 0.1, y = 0.5, z = 0.5$. In Figure 3, we present the graph of case 1 for Eq. (35) using the sine Gordon expansion method at $c = 0.1, b = 0.01, d = 0.02, A_0 = 1.5, y = 0.5, z = 0.5$ in Figure 4. Graph of case 2 for Eq. (37) using the sine Gordon expansion method at $c = 0.1, b = 0.01, d = 0.01, A_0 = 2, y = 0.5, z = 0.5$ is presented in Figure 5, we present the graph of case 3 for Eq. (39) using the sine Gordon expansion method at $c = 0.1, b = 2, d = 0.01, A_0 = 1.5, y = 0.5, z = 0.5$ in Figure 6. Graph of case 5 for Eq. (41) using the sine Gordon expansion method at $c = 0.05, b = 0.01, d = 0.4, A_0 = 1.5, y = 0.5, z = 0.5$ is presented in Figure 7. Finally, we give the graph of case 5 for Eq. (43) using the sine Gordon expansion method at $c = 0.05, b = 0.01, d = 0.4, A_0 = 1.5, y = 0.5, z = 0.5$ in Figure 8.

5. Conclusion

A new solution for the $(3 + 1)$ dimensions of BLMP equation by using the sine Gordon expansion method and the extended tanh function method have been presented. These methods have been chosen very carefully due to their accuracy and ease of application. The accuracy has tested from presented some figures in two- and three dimensions and some of the contours for solutions that we have obtained. In the end, we can say that we have made a clear contribution to finding solutions to the proposed equation, and these solutions are satisfactory. Note that the solutions we obtained have soliton waves characteristics, and this is evident in Figures 1–8 in that it keeps its shape over time.

ORCID

Khalid K. Ali [http://orcid.org/0000-0002-7801-2760]

References

Achab, A. E., Rezazadeh, H., Baleanu, D., Desta Leta, T., Javeed, S., & Alimgeer, K. S. (2020). Ginzburg Landau...
Ali, K., Osman, M. S., & Abdel-Aty, M. (2020). Optical soliton solutions to the generalized nonautonomous nonlinear Schrödinger equations in optical fibers via the sine-Gordon expansion method. *Optik, 208*, 164132. doi:10.1016/j.jjopt.2019.164132

Boiti, M., Leon, J., Manna, M., & Pempinelli, F. (1986). On the spectral transform of a Korteweg–de Vries equation in two spatial dimension. *Inverse Problems, 2*(3), 271–279. doi:10.1088/0266-5611/2/3/005

Darvishi, M. T., Najafi, M., Kavitha, L., & Venkatesh, M. (2012). Stair and step soliton solutions of the integrable (2 + 1) and (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equations. *Communications in Theoretical Physics, 58*(6), 785–794. doi:10.1088/0253-6102/58/6/01

Duan, X., & Lu, J. (2021). The exact solutions for the (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. *Results in Physics, 21*, 103820. doi:10.1016/j.rinp.2021.103820

Ghanbari, B., & Nisar, K. S. (2020). Kottakkaran Sooppy Nisar, Determining new soliton solutions for a generalized nonlinear evolution equation using an effective analytical method. *Alexandria Engineering Journal, 59*(5), 3171–3179. doi:10.1016/j.aeje.2020.07.032

Hong, B., & Lu, D. (2013). New exact solutions for coupled Schrodinger–Boussinesq equation. *Journal of Applied Mathematics, 2013*, 1–7. doi:10.1155/2013/170835

Islam, M. S., Akbar, M. A., & Khan, K. (2018). Analytical solutions of nonlinear Klein–Gordon equation using the improved F-expansion method. *Optical and Quantum Electronics, 50*, 224.

Kazi Sazzad Hossain, A. K. M., & Ali Akbar, M. (2017). Traveling wave solutions of nonlinear evolution equations via Modified simple equation method. *Journal of Applied Mathematics and Theoretical Physics, 3*(2), 20–25.

Khan, K., & Akbar, M. A. (2014). Solitary wave solutions of some coupled nonlinear evolution equations. *Journal of Scientific Research, 6*(2), 273–284. doi:10.3329/jsr.v6i2.16671

Kumar, D., Hosseini, K., & Samadani, F. (2017). The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitzéica type equations in nonlinear optics. *Optik, 149*, 439–446. doi:10.1016/j.jjopt.2017.09.066

Li, B. Q., & Ma, Y. L. (2018). Multiple-lump waves for a (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation arising from incompressible fluid. *Computers & Mathematics with Applications, 76*(1), 204–214. doi:10.1016/j.camwa.2018.04.015

Liu, J. G., Du, J. Q., Zeng, Z. F., & Nie, B. (2017). New three-wave solutions for the (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. *Nonlinear Dynamics, 88*(1), 655–661. doi:10.1007/s11071-016-3267-2

Liu, J. G., Tian, Y., & Hu, J. G. (2018). New non-traveling wave solutions for the (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. *Applied Mathematics Letters, 79*, 162–168. doi:10.1016/j.aml.2017.12.011

Liu, J., & Wazwaz, A. (2020). Breather wave and lump-type solutions of new (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation in incompressible fluid. *Mathematical Methods in the Applied Sciences, 44*(2), 2200–2208. doi:10.1002/mma.6931

Lu, J. (2018). New exact solutions for Kudryashov–Sinelshchikov equation. *Advances in Difference Equations, 2018*(1), 374. doi:10.1186/s13662-018-1769-6

Mabrouk, S. M., & Rashed, A. S. (2017). Analysis of (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation via Lax pair investigation and group transformation method. *Computers & Mathematics with Applications, 74*(10), 2546–2556. doi:10.1016/j.camwa.2017.07.033

Mahmud, F., Samuzzoza, M., & Akbar, M. A. (2017). The generalized Kudryashov method to obtain exact traveling wave solutions of the PHI-four equation and the Fisher equation. *Results in Physics, 7*, 4296–4302. doi:10.1016/j.rinp.2017.10.049

Mohyud-Din, S. T., Nawaz, T., Azhar, E., & Akbar, M. A. (2017). Fractional sub-equation method to space-time fractional Cologero–Degasperis and potential Kadomtsev–Petviashvili equations. *Journal of Taibah University for Science, 11*(2), 258–263. doi:10.1016/j.jtusc.2014.11.010

Nisar, K. S., Ilhan, O. A., Abdulazeez, S. T., Manafian, J., Mohammed, S. A., & Osman, M. S. (2021). Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method. *Results in Physics, 21*, 103769. doi:10.1016/j.rinp.2020.103769

Nur Alam1, M. D., Ali Akbar, M., & Fazlul Hoque, M. (2014). Exact travelling wave solutions of the (3 + 1)-dimensional mKdV-ZK equation and the (1 + 1)-dimensional compound KdVB equation using the new approach of generalized F-expansion method, *Pramana, Journal of Physics, 83*(3), 317–329.

Nuruddeen, R.I., Aboodh, K. S., & Ali, K. K. (2020). Investigating the tangent dispersive solitary wave solutions to the equal width and regularized long wave equations. *Journal of King Saud University- Science, 32*(1), 677–681.

Osman, M. S., & Wazwaz, A. M. (2019). A general bilinear form to generate different wave structures of solitons for a (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. *Mathematical Methods in the Applied Sciences, 42*(18), 6277–6283. doi:10.1002/mma.5721

Peng, W. Q., Tian, S. F., & Zhang, T. T. (2019). Breather waves and rational solutions in the (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. *Computers & Mathematics with Applications, 77*(3), 715–723. doi:10.1016/j.camwa.2018.10.008

Shafiqul Islam, M., Khan, K., Ali Akbar, M., & Mastroberardino, A. (2014). A note on improved F-expansion method combined with Riccati equation applied to nonlinear evolution equations. *Royal Society Open Science, 1*(2), 140038. doi:10.1098/rsos.140038
Shukri, S., & Al-Khaled, K. (2010). The extended tanh method for solving systems of nonlinear wave equations. *Applied Mathematics and Computation, 217*(5), 1997–2006. doi:10.1016/j.amc.2010.06.058

Taghizadeh, N., & Mirzazadeh, M. (2012). The modified extended tanh method with the Riccati equation for solving nonlinear partial differential equations. *Mathematica Aeterna, 2*(2), 145–153.

Tang, Y. N., & Zai, W. J. (2015). New periodic-wave solutions for (2 + 1)- and (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equations. *Nonlinear Dynamics, 87*(1–2), 249–255. doi:10.1007/s11071-015-1986-4

Wazwaz, A. M. (2019). Painlevé analysis for new (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equations with constant and time-dependent coefficients. *International Journal of Numerical Methods for Heat & Fluid Flow, 30*(9), 4259–4266. doi:10.1108/HFF-10-2019-0760

Wu, J. J., Liu, Y. Q., Piao, L. H., Zhuang, J. H., & Wang, D. S. (2020). Nonlinear localized waves resonance and interaction solutions of the (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. *Nonlinear Dynamics, 100*(2), 1527–1541. doi:10.1007/s11071-020-05573-y

Xu, G. Q. (2019). Painlevé analysis lump-kink solutions and localized excitation solutions for the (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. *Applied Mathematics Letters, 97*, 81–87. doi:10.1016/j.aml.2019.05.025

Yel, G., Baskonus, H. M, & Gao, W. (2020). New dark-bright soliton in the shallow water wave model. *AIMS Mathematics, 5*(4), 4027–4044. doi:10.3934/math.2020259

Zafar, A., Ali, K. K., Raheel, M., & Jafar, N., & Nisar, K. S. (2020). Soliton solutions to the DNA Peyrard–Bishop equation with beta-derivative via three distinctive approaches. *European Physical Journal Plus, 135*, 726.

Zuo, D. W., Gao, Y. T., Yu, X., Sun, Y. H., & Xue, L. (2015). On a (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. *Zeitschrift Fur Naturforschung A, 70*(5), 309–316. doi:10.1515/zna-2014-0340