A UNIFIED SPECTRAL METHOD FOR FPDES WITH TWO-SIDED DERIVATIVES; A FAST SOLVER

MEHDI SAMIEE †, MOHSEN ZAYERNOURI ‡ AND MARK M. MEERSCHAERT §

Abstract. We develop a unified Petrov-Galerkin spectral method for a class of fractional partial differential equations with two-sided derivatives and constant coefficients of the form

\[\sum_{j=1}^{d} \left[\frac{\partial^{2\nu_j}}{\partial x_j^{2\nu_j}} u + \sum_{i=1}^{d} \left(c_{ij} \frac{\partial^{\mu_i} u}{\partial x_i^{\mu_i}} + d_{ij} \frac{\partial^{\mu_i} u}{\partial x_i^{\mu_i}} \right) \right] + \gamma u = f, \]

where \(2\nu_j \in (0, 2), \mu_i \in (0, 1) \) and \(2\nu_j \in (1, 2) \), in a \((1+d)\)-dimensional space-time hypercube, subject to homogeneous Dirichlet initial/boundary conditions. We employ the eigenfunctions of the fractional Sturm-Liouville eigen-problems of the first kind in [49], called Jacobi poly-fractionominals, as temporal bases, and the eigen-functions of the boundary-value problem of the second kind as temporal test functions. Next, we construct our spatial basis/test functions using Legendre polynomials, yielding mass matrices being independent of the spatial fractional orders \((\mu_i, \nu_j, i, j = 1, 2, \ldots, d) \). Furthermore, we formulate a novel unified fast linear solver for the resulting high-dimensional linear system based on the solution of generalized eigen-problem of spatial mass matrices with respect to the corresponding stiffness matrices, hence, making the complexity of the problem optimal, i.e., \(O(N^{d+2}) \). We carry out several numerical test cases to examine the CPU time and convergence rate of the method. The corresponding stability and error analysis of the Petrov-Galerkin method are carried out in [60].

Key words. Anomalous transport, high-dimensional FPDEs, diffusion-to-wave dynamics, Jacobi poly-fractionominal, Legendre polynomials, unified fast solver, spectral convergence

1. Introduction. Fractional calculus seamlessly generalizes the notion of standard integer-order calculus to its fractional-order counterpart, leading to a broader class of mathematical models, namely fractional ordinary differential equations (FODEs) and fractional partial differential equations (FPDEs) [33, 27, 14, 37, 4]. Such non-local models appear as tractable mathematical tools to describe anomalous transport, which manifests in memory-effects, non-local interactions, power-law distributions, sharp peaks, and self-similar structures [18, 27, 29, 45]. Although anomalous, such phenomena are observed in a range of applications e.g., bioengineering [32, 23, 35, 31], turbulent flows [39, 40, 26, 11, 12, 54], porous media [2, 3, 25], viscoelastic materials [24].

Due to their history dependence and non-local character, the discretization of such problems becomes computationally challenging. Numerical methods, developed to discretize FPDEs, can be categorized in two major classes: i) local methods, e.g., finite difference method (FDM), finite volume method (FVM), and finite element method (FEM), and ii) global methods, e.g., single and multi-domain spectral methods (SM).

Local schemes have been studied extensively in the literature. Lubich introduced the discretized fractional calculus within the spirit of FDM [22]. Sugimoto employed a FDM scheme for approximating fractional Burger’s equation [42, 41]. Meerschaert and Tadjeran [28] developed finite difference approximations to solve one-dimensional advection-dispersion equations with variable coefficients on a finite domain. Tadjeran and Meerschaert [44] employed a practical alternating directions implicit (ADI) method to solve a class of fractional partial differential equations with variable coefficients in bounded domain. Hejazi et al. [15] developed a finite-volume method utilizing fractionally shifted grunwald formula for the fractional derivatives for space-fractional advection-dispersion equation on a finite domain. To
solve the two-dimensional two-sided space-fractional convection diffusion equation. Chen and Deng [6] proposed a practical alternating directions implicit method. Zeng et al. [5] constructed a finite element method and a multistep method for unconditionally stable time-integration of sub-diffusion problem. In addition, Zhao et al. developed second-order FDM for the variable-order FPDEs in [59]. Li et al. [19] proposed an implicit finite difference scheme for solving the generalized time-fractional Burger’s equation. Recently, Feng et al. [13] proposed a second-order Crank-Nicolson scheme to approximate the Riesz space-fractional advection-dispersion equations (FADE). Moreover, two compact non-ADI FDMs have been proposed for the high-dimensional time-fractional sub-diffusion equation by Zeng et al. [56]. Recently, Zayernouri and Matzavinos [54] have developed an explicit fractional adams/Bashforth/Moulton and implicit fractional Adams-Moulton finite difference methods, applicable to high-order time-integration of nonlinear FPDEs and amenable for formulating implicit/explicit (IMEX) splitting methods.

Regarding global methods, Sugimoto [42] used Fourier SM in a fractional Burger’s equation. Shen and Wang [38] constructed a set of Fourier-like basis functions for Legendre-Galerkin method for non-periodic boundary value problems and proposed a new space-time spectral method. Sweilam et al. [43] considered Chebychev Pseudo-spectral method for solving one-dimensional FADE, where the fractional derivative is described in Caputo sense. Chen et al. [5] developed an approach for high-order time integration within multi-domain setting for time-fractional diffusion equations. Mokhtary developed a fully discrete Galerkin method to numerically approximate initial value fractional integro-differential equations [30].

Moreover, Zayernouri and Karniadakis [49] introduced a new family of basis/test functions, called (tempered)Jacobi poly-fractonomials, known as the explicit eigenfunctions of (tempered) fractional Strum-Liouville problems in bounded domains of the first and second kind. Following this new spectral theory, they have developed a number of single- and multi-domain spectral methods [50, 51, 52, 48, 53]. Recently, Dehghan et al. employed a Galerkin finite element and interpolating element free Galerkin methods for full discretization of the fractional diffusion-wave equation. They [10] also introduced a full discretization of time-fractional diffusion and wave equations using meshless Galerkin method based on radial basis functions. Zhao et al. [58] developed a spectral method for the tempered fractional diffusion equations (TFDEs) using the generalized Jacobian function [7]. Mao and Shen [25] developed Galerkin spectral methods for solving multi-dimensional fractional elliptic equations with variable coefficients. Besides, Lischke et al. [21] presented a tunable accurate Laguerre Petrov-Galerkin spectral method for solving linear multiterm fractional initial value problems. Kharazmi et al. [16] developed a new Petrov-Galerkin spectral element method for one-dimensional fractional elliptic problems using the standard spectral element bases and the Jacobi poly-fractonominals as the test functions.

The main contribution of the present work is to construct a unified Petrov-Galerkin spectral method and a unified fast solver for the weak form of linear FPDEs with constant coefficients in (1+d) dimensional space-time hypercube of the form

\[\begin{align*}
\mu_i \mathcal{D}^{2\mu_i}_x u + \sum_{i=1}^{d} \left[c_{ui} a_i \mathcal{D}^{2\nu_i}_x u + c_{ri} x_i \mathcal{D}^{2\nu_i}_x u \right] &= \sum_{j=1}^{d} \left[k_{lj} a_j \mathcal{D}^{2\nu_j}_x u + k_{rj} x_j \mathcal{D}^{2\nu_j}_x u \right] \\
-\gamma u &= f,
\end{align*} \]

(1.1)

where \(2\mu_i \in [0, 1], 2\nu_i \in [1, 2], \) and \(2\tau \in [0, 2]\) subject to Dirichlet initial and boundary conditions, where \(i = 1, 2, ..., d.\) Compared to the problem considered in [45], we extend the one-sided spatial derivatives to two-sided ones, also, we include an advection term in order to consider the drift effects. Employing different (Legendre polynomial) spatial basis/test
functions and the additional advection term then would not allow employing the fast linear solver developed in [45]. Accordingly, we formulate a new fast linear solver for advection-dispersion problems. We additionally aim to perform the inf-sup stability analysis in any (1+d) dimensions in [2], while in [45], only the stability of 1-D problem has been carried out. Furthermore, we briefly presented the stochastic interpretation of FADE on bounded domain which sheds light on the well-posedness of the problem from the perspective of the probability theory. In [36], we also carry out the corresponding error analyses of the PG method along with several verifying numerical tests.

The outline of this paper is as follows: in section 2 we introduce some preliminary results from fractional calculus. In section 3 we present the mathematical formulation of the spectral method in a (1+d) dimensional space, which leads to the generalized Lyapunov equations. In section 4 we develop a unified fast linear solver and obtain the closed-form solution in terms of the generalised eigenvalues and eigenvectors of the corresponding mass and stiffness matrices. In section 5, the performance of the PG method is examined via several numerical simulations for low-to-high dimensional problems with smooth and non-smooth solutions.

2. Preliminaries on Fractional Calculus. Here, we obtain some basic definitions from fractional calculus [27, 48]. Denoted by \(a^\alpha D^\nu_c x f(x) \), the left-sided Reimann-Liouville fractional derivative of order \(\nu \) in which \(g(x) \in C^n[a, b] \) and \(n = \lceil \nu \rceil \), is defined as:

\[
RL^\nu_c x f(x) = \frac{1}{\Gamma(n-\nu)} \frac{d^n}{dx^n} \int_a^x \frac{g(s)}{(x-s)^{\nu+1-n}} \, ds, \quad x \in [a, b],
\]

where \(\Gamma \) represents the Euler gamma function. The corresponding right-sided Reimann-Liouville fractional derivative of order \(\nu \), \(RL^\nu_r x f(x) \), is given by

\[
RL^\nu_r x f(x) = \frac{1}{\Gamma(n-\nu)} (-1)^n \frac{d^n}{dx^n} \int_x^b \frac{g(s)}{(s-x)^{\nu+1-n}} \, ds, \quad x \in [a, b].
\]

In (2.1) and (2.2), as \(\nu \to n \), the fractional derivatives tend to the standard \(n \)-th order derivative with respect to \(x \). We recall from [49, 54] that the following link between the Reimann-Liouville and Caputo fractional derivatives, where

\[
(2.3) \quad RL^\nu_r x f(x) = \frac{f(a)}{\Gamma(1-\nu)(x-a)^\nu} + \int_a^x \frac{g''(s)}{(x-s)^{\nu+1-n}} \, ds, \quad x \in [a, b],
\]

\[
(2.4) \quad RL^\nu_c x f(x) = \frac{f(b)}{\Gamma(1-\nu)(b-x)^\nu} + \int_x^b \frac{g''(s)}{(s-x)^{\nu+1-n}} \, ds, \quad x \in [a, b].
\]

In (2.3) and (2.4), \(RL^\nu_r x f(x) = RL^\nu_c x f(x) = C^\nu x f(x) \) when homogeneous Dirichlet initial and boundary conditions are enforced.

To analytically obtain the fractional differentiation of our basis function, we employ the following relations [49] as:

\[
(2.7) \quad RL^\nu_c x \left[(1+x)^{\beta} P_n^\beta(x) \right] = \frac{\Gamma(n+\beta+1)}{\Gamma(n+\beta+\nu+1)} (1+x)^{\beta+\nu} P_n^{\alpha-\nu+\beta}(x),
\]
and

\[RLT_x^\alpha[(1 - x)\gamma P_n^{\alpha\gamma}(x)] = \frac{\Gamma(n + \alpha + 1)}{\Gamma(n + \alpha + \gamma + 1)} (1 - x)^\gamma P_n^{\alpha\gamma}(x), \]

where \(0 < \gamma < 1, \alpha > -1, \beta > -1 \) and \(P_n^{\alpha\beta}(x) \) denote the standard Jacobi Polynomials of order \(n \) and parameters \(\alpha, \beta \). It is worth mentioning that

\[RLT_x^\alpha[f(x)] = \frac{1}{\Gamma(\gamma)} \int_a^x \frac{f(s)(x - s)^{-\gamma}}{(x - s)^{1-\gamma}} ds, \quad x \in [a, b], \]

and

\[RLT_x^\alpha[f(x)] = \frac{1}{\Gamma(\gamma)} \int_x^b \frac{f(s)(s - x)^{-\gamma}}{(s - x)^{1-\gamma}} ds, \quad x \in [a, b]. \]

By substituting \(\alpha = +\gamma \) and \(\beta = -\gamma \), we can simplify equations (2.7) and (2.8), thereby we have:

\[RLT_x^\gamma[(1 + x)^{-\gamma}P_n^{\gamma}(x)] = \frac{\Gamma(n - \gamma + 1)}{\Gamma(n + 1)} P_n^{\gamma}(x), \quad x \in [-1, 1], \]

and

\[RLT_x^\gamma[(1 - x)^{-\gamma}P_n^{\gamma}(x)] = \frac{\Gamma(n - \gamma + 1)}{\Gamma(n + 1)} P_n^{\gamma}(x), \quad x \in [-1, 1]. \]

Accordingly, we have the fractional derivative of Legendre polynomial by differentiating (2.9) and (2.10) as

\[-D_x^\gamma P_n(x) = \frac{\Gamma(n + 1)}{\Gamma(n - \gamma + 1)} P_n^{\gamma}(x) (1 + x)^{-\gamma}, \]

and

\[D_x^\gamma P_n(x) = \frac{\Gamma(n + 1)}{\Gamma(n - \gamma + 1)} P_n^{\gamma}(x) (1 - x)^{-\gamma}, \]

where \(P_n(x) = P_n^{0,0}(x) \) represents Legendre polynomial of degree \(n \).

3. Mathematical Framework. Let \(u : \mathbb{R}^{d+1} \rightarrow \mathbb{R} \) for some positive integer \(d \) and \(\Omega = [0, T] \times [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_d, b_d] \), where

\[\frac{\partial^{2\mu}}{\partial t^{2\mu}} u + \sum_{i=1}^d \left[c_{1i} \frac{\partial^{2\mu}}{\partial x_i^{2\mu}} u + c_{1i} \frac{\partial^{2\mu}}{\partial x_i^{2\mu}} u \right] - \sum_{j=1}^d \left[\kappa_{ij} \frac{\partial^{2\mu}}{\partial x_j^{2\mu}} u + \kappa_{ij} \frac{\partial^{2\mu}}{\partial x_j^{2\mu}} u \right] + \gamma u = f, \]

and \(\gamma, c_{1i}, c_{1i}, \kappa_{ij}, \) and \(\kappa_{ij} \) are all constant. Besides, \(2\mu_i \in (0, 1), 2\nu_j \in (1, 2), \) and \(2\tau \in (0, 2) \), for \(j = 1, 2, \ldots, d \). This equation is subject to the following Dirichlet initial and boundary conditions as:

\[u|_{t=0} = 0, \quad \tau \in (0, 1/2), \]

\[u|_{t=0} = \frac{\partial u}{\partial t}|_{t=0} = 0, \quad \tau \in (1/2, 1), \]

\[u|_{x_i=a_i} = u|_{x_i=b_i} = 0, \quad \nu_j \in (1/2, 1), \quad j = 1, 2, \ldots, d. \]
3.1. Stochastic Interpretation of the FPDEs. Following [1], we provide a brief stochastic interpretation of the FPDEs in (3.1) that further sheds light on the well-posedness of the problem from the perspective of probability theory. Let suppose that in (3.1), \(f \equiv 0 \) and \(\gamma = 0 \) and \(0 < 2\tau < 1 \) and that \(a_i = -\infty \) and \(b_i = +\infty \) for \(i = 1, 2, \cdots \). Then (3.1) governs \(\tau \) a time-changed Lévy process \(X(t) \) on \(\mathbb{R}^d \) whose Fourier transform is \(\mathbb{E}[e^{-ikX(t)}] = e^{i\psi(k)} \) with the Fourier symbol

\[
\psi(k) = -\sum_{n=1}^{d}[c_{\alpha}(ik_n)^{2\mu_n} + c_{\sigma_n}(-ik_n)^{2\mu_n} + \sum_{m=1}^{d}[\kappa_{\alpha_y}(-ik_m)^{2\nu_m} + \kappa_{\sigma_m}(ik_m)^{2\nu_m}].
\]

Recalling that in one dimension the Lévy process \(Y(t) \) with Fourier Transform \(\mathbb{E}[e^{-ikY(t)}] = e^{-i\mu(k)} \) where \(\mu(k) = pD(ik)^{\alpha} + qD(-ik)^{\alpha} \) for \(D > 0 \) and \(1 < \alpha < 2 \), \(p \geq 0 \), \(q \geq 0 \), and \(p + q \equiv 1 \) is a stable Lévy process with index \(\alpha \) and skewness \(p - q \) [27][1]. In brief, fractional advection-dispersion equation on unbounded domain is represented by a solution involves an inverse stable subordinator time-changed, resulting in an non-Markovian process. We can find complete details in [27].

Regarding a computational domain, Chen et al. [8] developed a solution for the case of equation (3.1) where \(f \equiv 0 \) and \(\gamma = 0 \) and \(0 < 2\tau < 1 \) and all \(a_m = a_n > -\infty \) and \(b_m = b_n < \infty \), with zero Dirichlet boundary conditions. It follows from [1] that

\[
Lu(x) = cu'(x) + \kappa_{d, \alpha}D^{2\tau}_{\alpha, \sigma}u(x) + \kappa_{\sigma, \alpha}D^{2\tau}_{\alpha, \sigma}u(x)
\]

is the generator of the killed semigroup on the bounded domain \(\Omega = (a, b) \) which is also the point source to (3.1). In other words, starting with the point source initial condition \(u(x, 0) = \delta(x) \), the solution to (3.1) with the restrictions discussed in [27][3] is the PDF of a killed non-Markovian process.

3.2. Mathematical Framework. In [20], the usual Sobolev space associated with the real index \(\sigma \geq 0 \) on bounded interval \(\Lambda = (a, b) \), is denoted by \(H^\sigma(\Lambda) \) and is defined as the completion of \(C_0^\infty(\Lambda) \) with respect to the norm \(\| \cdot \|_{H^\sigma(\Lambda)} \). As shown in Lemma 2.6 in [20], the equivalency between the following norms holds:

\[
\| \cdot \|_{H^\sigma(\Lambda)} \equiv \| \cdot \|_{H^\sigma(\Lambda)} \equiv \| \cdot \|_{H^\sigma(\Lambda)},
\]

where

\[
\| \cdot \|_{H^\sigma(\Lambda)} = \left(\| \cdot \|^2_{L^2(\Lambda)} + \| \cdot \|^2_{L^2(\Lambda)} \right)^{\frac{1}{2}},
\]

and

\[
\| \cdot \|_{H^\sigma(\Lambda)} = \left(\| \cdot \|^2_{L^2(\Lambda)} + \| \cdot \|^2_{L^2(\Lambda)} \right)^{\frac{1}{2}}.
\]

Similarly, we can show that \(\| \cdot \|_{H^\sigma(\Lambda)} \equiv \| \cdot \|_{H^\sigma(\Lambda)} \), defined as

\[
\| \cdot \|_{H^\sigma(\Lambda)} = \left(\| \cdot \|^2_{L^2(\Lambda)} + \| \cdot \|^2_{L^2(\Lambda)} \right)^{\frac{1}{2}}.
\]

Let \(X_i = (a_i, b_i), \Lambda_i = (a_i, b_i) \times \Lambda_{i-1} \) for \(i = 2, \cdots, d \), and \(\Lambda_1 = H^\sigma_0(\Lambda_1) \), with the associated norm \(\| \cdot \|_{H^\sigma(\Lambda_1)} \equiv \| \cdot \|_{H^\sigma(\Lambda_1)} \). Accordingly, we construct \(X_{d} \) such that

\[
X_2 = H^\sigma_0\left((a_2, b_2); L^2(\Lambda_1)\right) \cap L^2((a_2, b_2); X_1),
\]

\[
\vdots
\]

\[
X_d = H^\sigma_0\left((a_d, b_d); L^2(\Lambda_{d-1})\right) \cap L^2((a_d, b_d); X_{d-1}),
\]

\[
\| \cdot \|_{H^\sigma(\Lambda_1)} \equiv \| \cdot \|_{H^\sigma(\Lambda_1)}.
\]
associated with the norm
\[\| \cdot \|_{X_d} = \left\{ \| \cdot \|_{L^2(I; X_d)}^2 + \sum_{i=1}^d \left(\| x \mathcal{D}^r_i (\cdot) \|_{L^2(I; X_d)}^2 + \| a \mathcal{D}^s_i (\cdot) \|_{L^2(I; X_d)}^2 \right) \right\}^{\frac{1}{2}}. \]

Similarly, the Sobolev space with index \(\tau > 0 \) on the time interval \(I = (0, T) \), denoted by \(H^\tau(I) \), is endowed with norm \(\| \cdot \|_{H^\tau(I)} \), where
\[\| \cdot \|_{H^\tau(I)} = \| \cdot \|_{H^0(I)} = \| \cdot \|_{H^\tau(I)} \]
\[\| \cdot \|_{H^\tau(I)} = \left(\| a \mathcal{D}^r_i (\cdot) \|_{L^2(I; X_d)}^2 + \| \cdot \|_{L^2(I; X_d)}^2 \right)^{\frac{1}{2}}, \]
and
\[\| \cdot \|_{H^\tau(I)} = \left(\| \cdot \mathcal{D}^s_i (\cdot) \|_{L^2(I; X_d)}^2 + \| \cdot \|_{L^2(I; X_d)}^2 \right)^{\frac{1}{2}}. \]

Let \(2 \tau \in (0, 1) \) and \(\Omega = I \times \Lambda_d \). We define
\[\| u \|_{H^\tau(I; L^2(\Lambda_d))} = \left\{ \| u(t, \cdot) \|_{L^2(\Lambda_d)}^2 + \| u \|_{L^2(I; \Omega)}^2 \right\}^{\frac{1}{2}}, \]
which is equipped with the norm
\[\| u \|_{H^\tau(I; L^2(\Lambda_d))} = \left\{ \| u(t, \cdot) \|_{L^2(\Lambda_d)}^2 + \| u \|_{L^2(I; \Omega)}^2 \right\}^{\frac{1}{2}}. \]
Similarly,
\[\| v \|_{H^\tau(I; L^2(\Lambda_d))} = \left\{ \| v(t, \cdot) \|_{L^2(\Lambda_d)}^2 + \| v \|_{L^2(I; \Omega)}^2 \right\}^{\frac{1}{2}}, \]
which is equipped with the norm
\[\| v \|_{H^\tau(I; L^2(\Lambda_d))} = \left\{ \| v(t, \cdot) \|_{L^2(\Lambda_d)}^2 + \| v \|_{L^2(I; \Omega)}^2 \right\}^{\frac{1}{2}}. \]

We define the solution space
\[\mathcal{B}^{\gamma_1, \ldots, \gamma_d}(\Omega) := \| \cdot \|_{H^\tau(I; L^2(\Lambda_d))} \cap L^2(I; \Lambda_d), \]
endowed with the norm
\[\| u \|_{\mathcal{B}^{\gamma_1, \ldots, \gamma_d}(\Omega)} = \left\{ \| u \|_{H^\tau(I; L^2(\Lambda_d))}^2 + \| u \|_{L^2(I; \Lambda_d)}^2 \right\}^{\frac{1}{2}}, \]
where due to (3.9),
\[\| u \|_{L^2(I; \Lambda_d)} = \left\{ \| u(t, \cdot) \|_{\Lambda_d} \right\}_{I=1}^{\frac{1}{2}} \]
\[= \left\{ \| u \|_{L^2(\Omega)}^2 + \sum_{i=1}^d \left(\| x \mathcal{D}^r_i (u) \|_{L^2(\Omega)}^2 + \| a \mathcal{D}^s_i (u) \|_{L^2(\Omega)}^2 \right) \right\}^{\frac{1}{2}}. \]
Therefore,
\[\| u \|_{\mathcal{B}^{\gamma_1, \ldots, \gamma_d}(\Omega)} = \left\{ \| u \|_{L^2(\Omega)}^2 + \| a \mathcal{D}^r_i (u) \|_{L^2(\Omega)}^2 + \sum_{i=1}^d \left(\| x \mathcal{D}^r_i (u) \|_{L^2(\Omega)}^2 + \| a \mathcal{D}^s_i (u) \|_{L^2(\Omega)}^2 \right) \right\}^{\frac{1}{2}}. \]
Likewise, we define the test space

\begin{equation}
\mathcal{B}^{\nu,\nu_1}(\Omega) := \mathcal{H}(I; L^2(\Lambda_d)) \cap L^2(I; X_d),
\end{equation}

endowed with the norm

\begin{equation}
\|v\|_{\mathcal{B}^{\nu,\nu_1}} = \left\{ \|v\|^2_{\mathcal{H}(I; L^2(\Lambda_d))} + \|v\|^2_{L^2(I; X_d)} \right\}^{\frac{1}{2}},
\end{equation}

\begin{equation}
= \left\{ \|v\|^2_{L^2(\Omega)} + \|D_T^\nu(v)\|^2_{L^2(\Omega)} + \sum_{i=1}^d (\|\partial_x D_{b_i}^\nu(v)\|^2_{L^2(\Omega)} + \|a_i D_{s_i}^\nu(v)\|^2_{L^2(\Omega)}) \right\}^{\frac{1}{2}}.
\end{equation}

In case $2\tau \in (1, 2)$, we define the solution space as

\begin{equation}
\mathcal{B}^{\tau,\nu,\nu_1}(\Omega) := \mathcal{H}(I; L^2(\Lambda_d)) \cap L^2(I; X_d),
\end{equation}

where

\begin{equation}
0_0^{,\tau}\mathcal{H}(I; L^2(\Lambda_d)) := \left\{ u \mid \|u(t, \cdot)\|_{L^2(\Lambda_d)} \in \mathcal{H}(I), \right. \\
\left. \frac{\partial u}{\partial t}|_{t=0} = u|_{t=0} = u|_{x=a_i} = u|_{x=b_i} = 0, \quad i = 1, \cdots, d \right\},
\end{equation}

which is associated with $\| \cdot \|_{\mathcal{B}^{\tau,\nu,\nu_1}}$. The corresponding test space is also defined as

\begin{equation}
\mathcal{B}^{\tau,\nu,\nu_1}(\Omega) := \mathcal{H}(I; L^2(\Lambda_d)) \cap L^2(I; X_d),
\end{equation}

where

\begin{equation}
0_0^{,\tau}\mathcal{H}(I; L^2(\Lambda_d)) := \left\{ v \mid \|v(t, \cdot)\|_{L^2(\Lambda_d)} \in \mathcal{H}(I), \quad \right. \\
\left. \frac{\partial v}{\partial t}|_{t=T} = v|_{t=T} = v|_{x=a_i} = v|_{x=b_i} = 0, \quad i = 1, \cdots, d \right\},
\end{equation}

which is endowed with $\| \cdot \|_{\mathcal{B}^{\tau,\nu,\nu_1}}$.

3.3. Petrov-Galerkin Method.

Next, we define the corresponding bilinear form as

\begin{equation}
a(u, v) = (\partial_t D_T^\nu u, D_T^\nu v)_{\Omega} \\
+ \sum_{i=1}^d [c_i^\nu(a_i, D_{b_i}^\nu u, x_i, D_{b_i}^\nu v)_{\Omega} + c_i^\nu(a_i, D_{b_i}^\nu u, a_i D_{s_i}^\nu v)_{\Omega}] \\
- \sum_{i=1}^d [\kappa_i^\nu(a_i, D_{s_i}^\nu u, x_j, D_{b_j}^\nu v)_{\Omega} + \kappa_i^\nu(a_i, D_{b_j}^\nu u, a_i D_{s_i}^\nu v)_{\Omega}] \\
+ \gamma(u, v)_{\Omega},
\end{equation}

Now, the problem reads as: find $u \in \mathcal{B}^{\tau,\nu,\nu_1}(\Omega)$ such that

\begin{equation}
a(u, v) = (f, v)_{\Omega}, \quad \forall v \in \mathcal{B}^{\tau,\nu,\nu_1}(\Omega),
\end{equation}

where $a(u, v)$ is a continuous bilinear form and $f \in \mathcal{B}^{\tau,\nu,\nu_1}(\Omega)$, which is the dual space of $\mathcal{B}^{\tau,\nu,\nu_1}(\Omega)$. It should be noted that $\langle D_T^\nu u, v \rangle_{\Omega} = \langle D_T^\nu u, D_T^\nu v \rangle_{\Omega}$ is proven in Lemma 4.
constructed based on the univariate poly-fractonomials \([4 9]\) as both boundary conditions needs to be presented. Naturally, for the temporal basis functions

\[
(3.31)
\]

\[
(3.33)
\]

where \(\eta\) and \(\sigma\) are defined as

\[
(3.27)
\]

Next, we choose proper subspaces of \(B^{\tau,\nu} \times \nu(\Omega)\) and \(B^{\tau,\nu} \times \nu(\Omega)\) as finite dimensional \(U_N\) and \(V_N\) with \(\text{dim}(U_N) = \text{dim}(V_N) = N\). Now, the discrete problem reads: find \(u_N \in U_N\) such that

\[
(3.28)
\]

By representing \(u_N\) as a linear combination of points/elements in \(U_N\), i.e., the corresponding \((1 + d)\)-dimensional space-time basis functions, the finite-dimensional problem \((3.28)\) leads to a linear system known as Lyapunov system. For instance, when \(d = 1\), we obtain the corresponding Lyapunov equation in the space-time domain \((0, T) \times (a_1, b_1)\) as

\[
(3.29)
\]

where all are defined in \([.56]\). To find the general form of Lyapunov equation, we can define \(S_{tot}^\tau\) as

\[
(3.30)
\]

Considering equation \((3.30)\), we obtain the \((1+1)\)-D space-time Lyapunov system as

\[
(3.31)\]

We present a new class of basis and test functions yielding symmetric stiffness matrices. Moreover, we compute exactly the corresponding mass matrices, which are either symmetric and pentadiagonal. In the following, we extensively study the properties of the aforementioned matrices, allowing us to formulate a general fast linear solver for \((3.29)\).

3.4. Space of Basis Functions \((U_N)\). We construct the basis for the spatial discretization employing the Legendre polynomials defined as

\[
(3.32)
\]

for \(n \geq 1\). With the notation established, we define the space-time trial space to be

\[
(3.33)
\]

where \(\eta(t) = 2t/T - 1\) and \(\xi_j(s) = 2^{s-a_j/b_j} - 1\).
3.5. Space of Test Functions \((V_N) \). We construct the spatial test functions using Legendre polynomial as well as the basis function in the Petrov-Galerkin method as

\[
\Phi_k(\xi) = \bar{\sigma}_k \left(P_{k+1}(\xi) - P_{k-1}(\xi) \right), \quad k = 1, 2, \ldots \text{ and } \xi \in [-1, 1],
\]

where \(\bar{\sigma}_k = 2(-1)^k + 1 \). Next, we define the temporal test functions using the univariate poly-fractonomials

\[
\Psi^r_\tau(\eta) = \bar{\sigma}_r \left(1 - \eta \right)^r P_{r-1}^r(\eta), \quad r = 1, 2, \ldots \text{ and } \eta \in [-1, 1],
\]

and we construct the corresponding space-time test space as

\[
V_N = \text{span}\left[\left(\Psi^r_\tau \circ \eta \right)(t) \prod_{j=1}^d \left(\Phi_{k_j} \circ \xi_j \right)(x_j) : r = 1, \ldots, N, k_j = 1, \ldots, M_j \right].
\]

Remark 3.1. The choices of \(\sigma_m \) in (3.31) and (3.32), also \(\bar{\sigma}_k \) in (3.34) and (3.35), result in the spatial/temporal mass and stiffness matrices being symmetric, which are discussed in Theorems 3.2, 3.3, and 3.4 in more details.

3.6. Implementation of PG Spectral Method. We now seek the solution to (3.1) in terms of a linear combination of elements in the space \(U_N \) of the form

\[
u_N(x, t) = \sum_{n=1}^N \sum_{m_1=1}^{M_1} \cdots \sum_{m_d=1}^{M_d} \tilde{u}_{n,m_1,\ldots,m_d} \left[\Psi^r_\tau(t) \prod_{j=1}^d \left(\Phi_{k_j} \circ \xi_j \right)(x_j) \right]
\]

in \(\Omega \). We enforce the corresponding residual

\[
R_N(t, x_1, \ldots, x_d) = \partial_t^2 \Psi^r_\tau u_N + \sum_{j=1}^d \left[c_{i_j} \partial_t \partial_{x_i} u_N + c_{r_j} \partial_{x_i} \partial_{x_i} \partial_{x_j} u_N \right]
\]

\[
- \sum_{j=1}^d \left[\kappa_{i_j} \partial_t \partial_{x_j} \partial_{x_i} u_N + \kappa_{r_j} \partial_{x_j} \partial_{x_i} \partial_{x_i} u_N \right] + \gamma u_N - f
\]

to be \(L^2 \)-orthogonal to \(v_N \in V_N \), which leads to the finite-dimensional variational weak form in (3.28). Specifically, by choosing \(v_N = \Psi^r_\tau(t) \prod_{j=1}^d \Phi_{k_j}(x_j) \), when \(r = 1, \ldots, N \) and \(k_j = 1, \ldots, M_j, j = 1, 2, \ldots, d \), we have

\[
\begin{align*}
\sum_{n=1}^N \sum_{m_1=1}^{M_1} \cdots \sum_{m_d=1}^{M_d} \tilde{u}_{n,m_1,\ldots,m_d} & \left(S_{i_1} \right)_{r,n} \left(M_1 \right)_{k_1,m_1} \cdots \left(M_d \right)_{k_d,m_d} \\
& + \sum_{i=1}^d \left[c_{i} \left(M_1 \right)_{r,n} \left(M_1 \right)_{k_1,m_1} \cdots \left(S_{i} \right)_{r,n} \left(M_1 \right)_{k_1,m_1} \cdots \left(M_d \right)_{k_d,m_d} \\
& + c_{r} \left(M_1 \right)_{r,n} \left(M_1 \right)_{k_1,m_1} \cdots \left(S_{i} \right)_{r,n} \left(M_1 \right)_{k_1,m_1} \cdots \left(M_d \right)_{k_d,m_d} \\
& - \sum_{j=1}^d \left[\kappa_{i} \left(M_1 \right)_{r,n} \left(M_1 \right)_{k_1,m_1} \cdots \left(S_{j,i} \right)_{r,n} \left(M_1 \right)_{k_1,m_1} \cdots \left(M_d \right)_{k_d,m_d} \\
& + \kappa_{r} \left(M_1 \right)_{r,n} \left(M_1 \right)_{k_1,m_1} \cdots \left(S_{j,i} \right)_{r,n} \left(M_1 \right)_{k_1,m_1} \cdots \left(M_d \right)_{k_d,m_d} \\
& + \gamma \left(M_1 \right)_{r,n} \left(M_1 \right)_{k_1,m_1} \cdots \left(M_d \right)_{k_d,m_d} \\
& = F_{r,k_1,\ldots,k_d},
\end{align*}
\]
where S_τ and M_τ denote, respectively, the temporal stiffness and mass matrices whose entries are defined as

$\{S_{\tau}\}_{r,n} = \int_0^T \phi_\tau^T(t) \phi_\tau(t) + \sum_{j=1}^d \psi_j(t) \psi_j(t) \, dt$,

and

$\{M_{\tau}\}_{r,n} = \int_0^T \phi_\tau^T(t) \phi_\tau(t) \, dt$.

Moreover, $\{S_{\mu}\}_{j,m} = \int_0^\beta \phi_{\mu}^T(x_j) \phi_{\mu}(x_j) \, dx_j$ and $\{M_{\mu}\}_{j,m} = \int_0^\beta \phi_{\mu}^T(x_j) \phi_{\mu}(x_j) \, dx_j$ are the corresponding spatial stiffness and mass matrices where the left-sided and right-sided entries of the spatial stiffness matrices are obtained as

$\{S_{\mu,j}\}_{k,m_j} = \int_0^\beta \phi_{\mu,k}^T(x_j) \phi_{\mu}(x_j) \, dx_j = \{S_{\mu}\}_{k,m}$

and the corresponding entries of the spatial mass matrix are given by

$\{M_{j}\}_{k,m_j} = \int_0^\beta \phi_{\tau,j}^T(x_j) \phi_{\mu}(x_j) \, dx_j$.

Moreover, the components of the load vector are computed as

$F_{r,k_1,\cdots,k_d} = \int_0^T \phi_{\tau}(t) \phi_{\mu}(t) \, dx_j \, \Phi_{k_j} \, \eta_j \, d\Omega$.

The linear system (3.39) can be exhibited as the following general Lyapunov equation

$S_\tau \otimes M_1 \otimes M_2 \cdots \otimes M_d$

$+ \sum_{i=1}^d c_i M_\tau \otimes M_1 \otimes \cdots \otimes S_{\mu,i} \otimes M_{i+1} \cdots \otimes M_d$

$+ \sum_{i=1}^d c_i M_\tau \otimes M_1 \otimes \cdots \otimes S_{\mu,r} \otimes M_{i+1} \cdots \otimes M_d$

$- \sum_{j=1}^d \kappa_j M_\tau \otimes M_1 \otimes \cdots \otimes S_{\nu,j} \otimes M_{j+1} \cdots \otimes M_d$

$- \sum_{j=1}^d \kappa_j M_\tau \otimes M_1 \otimes \cdots \otimes S_{\nu,r} \otimes M_{j+1} \cdots \otimes M_d$

$\gamma M_\tau \otimes M_1 \otimes M_2 \cdots \otimes M_d \, U = F$.

Let

$\gamma c_i \times S_{\mu,i} + c_r \times S_{\mu,r} - \kappa_j \times S_{\nu,j} - \kappa_r \times S_{\nu,r} = S_\tau T$.
Considering the fact that all the aforementioned stiffness and mass matrices are symmetric, \(S_{\mu,l}, S_{\mu,r}, S_{\nu,l}, \) and \(S_{\nu,r} \) can be replaced by \(S^{Tot} \) which remains symmetric. Therefore,

\[
(3.42) \quad \left(S_\tau \otimes M_1 \otimes M_2 \cdots \otimes M_d \right.
\]
\[
+ \sum_{i=1}^{d} \left[M_1 \otimes M_1 \otimes \cdots \otimes M_{i-1} \otimes S_i^{Tot} \otimes M_{i+1} \cdots \otimes M_d \right]
\]
\[
+ \gamma M_1 \otimes M_1 \otimes M_2 \cdots \otimes M_d \right) \mathcal{U} = F,
\]
in which \(\otimes \) represents the Kronecker product, \(F \) denotes the multi-dimensional load matrix whose entries are given in (3.39), and \(\mathcal{U} \) denotes the corresponding multi-dimensional matrix of unknown coefficients with entries \(\hat{u}_{n_{m_1} \cdots m_d} \).

In the Theorems 3.2, 3.3, and 3.4, we study the properties of the aforementioned matrices. Besides, we present efficient ways of deriving the spatial matrix and the temporal stiffness matrices analytically and exact computation of the temporal mass and the spatial stiffness matrices through proper quadrature rules.

Theorem 3.2. The temporal stiffness matrix \(S_\tau \) corresponding to the time-fractional order \(\tau \in (0, 1) \) is a diagonal \(N \times N \) matrix, whose entries are obtained as

\[
[S_\tau]_{r,n} = \tilde{\sigma}_r \sigma_n \frac{\Gamma(n+\tau)}{\Gamma(n)} \frac{\Gamma(r+\tau)}{\Gamma(r)} \left(\frac{2}{7} \right)^{2r-1} \frac{2}{2n-1} \delta_{r,n}, \quad r, n = 1, \cdots, N.
\]

Moreover, the entries of temporal mass matrices \(M_\tau \) can be computed exactly by employing a Gauss-Lobatto-Jacobi (GLJ) rule with respect to the weight function \((1-\eta)^\alpha(1+\eta)^\gamma\), \(\eta \in [0, 1] \), where \(\alpha = \tau/2 \). Moreover, \(M_\tau \) is symmetric.

Proof. See [48].

Theorem 3.3. The spatial mass matrix \(M \) is a penta-diagonal \(M \times M \) matrix, whose entries are explicitly given as

\[
(3.43) \quad M_{k,r} = \tilde{\sigma}_k \sigma_r \left[\frac{2}{2k+3} \delta_{k,r} - \frac{2}{2k+3} \delta_{k+1,r-1} - \frac{2}{2k-3} \delta_{k-1,r+1} + \frac{2}{2k-3} \delta_{k-1,r-1} \right].
\]

Proof. The \((k, r) \)-th entry of the spatial mass matrix is given by

\[
(3.44) \quad M_{k,r} = \int_a^b \phi_k \circ \xi(x) \Phi_k \circ \xi(x) \, dx = \frac{b-a}{2} \int_{-1}^{1} \phi_k(\xi) \Phi_k(\xi) \, d\xi,
\]

where \(\xi = \frac{2x-a}{2b-a} - 1 \) and \(\xi \in (-1, 1) \). Substituting the spatial basis/test functions, we have

\[
(3.45) \quad M_{k,r} = \frac{b-a}{2} \tilde{\sigma}_k \sigma_r \left[\tilde{M}_{k,r} - \tilde{M}_{k+1,r-1} - \tilde{M}_{k-1,r+1} + \tilde{M}_{k-1,r-1} \right].
\]

in which

\[
(3.46) \quad \tilde{M}_{i,j} = \int_{-1}^{1} P_i(\xi) P_j(\xi) \, d\xi = \frac{2}{2i+1} \delta_{i,j}.
\]

Therefore, we have

\[
M_{k,r} = \frac{b-a}{2} \tilde{\sigma}_k \sigma_r \left[\frac{2}{2k+3} \delta_{k,r} - \frac{2}{2k+3} \delta_{k+1,r-1} - \frac{2}{2k-3} \delta_{k-1,r+1} + \frac{2}{2k-3} \delta_{k-1,r-1} \right]
\]
as a pentadiagonal matrix. Moreover,

\[
M_{r,k} = \frac{b-a}{2} \tilde{\sigma}_r \sigma_k \left[\frac{2}{2r+3} \delta_{r,k} - \frac{2}{2r+3} \delta_{r+1,k-1} - \frac{2}{2r-3} \delta_{r-1,k+1} + \frac{2}{2r-3} \delta_{r-1,k} \right]
\]

\[\equiv M_{k,r}.\]
Theorem 3.4. The total spatial stiffness matrix S^{tot}_i is symmetric and its entries can be exactly computed as:

\[(3.47) \quad c_i \times S_{\mu,i} + c_{ri} \times S_{\mu,ri} - \kappa_i \times S_{\nu,i} - \kappa_{ri} \times S_{\nu,ri} = S_i^{tot} \]

where $i = 1, 2, \cdots, d$.

Proof. Regarding the definition of stiffness matrix, we have

\[
(S_{\mu,i})_{r,n} = \int_{a_i}^{b_i} a_i D^\mu_i \left(\phi_n(x_i) \right) D^\mu_i \left(\Phi_r(x_i) \right) dx_i,
\]

\[
= \frac{b_i - a_i}{2} \sigma_r \sigma_n \int_{-1}^{1} D^\mu_i \left(P_{n+1} - P_{n-1} \right) \xi D^\mu_i \left(P_{r+1} - P_{r-1} \right) d\xi_i
\]

\[
(3.48)
\]

where

\[
\bar{S}^{\mu}_{r,n} = \int_{-1}^{1} D^\mu_i \left(P_{n}(\xi_i) \right) D^\mu_i \left(P_{r}(\xi_i) \right) d\xi_i
\]

\[
\bar{S}^{\mu}_{r,n} = \int_{-1}^{1} \frac{\Gamma(r + 1)}{\Gamma(r - \mu_i + 1)} \frac{\Gamma(n + 1)}{\Gamma(n - \mu_i + 1)} (1 + \xi_i)^{-\mu_i} (1 - \xi_i)^{-\mu_i} P^r_{\mu_i}(\xi_i) P^n_{\mu_i}(\xi_i) d\xi_i
\]

\[
(S_{\mu,i})_{r,n} = \frac{\Gamma(r + 1)}{\Gamma(r - \mu_i + 1)} \frac{\Gamma(n + 1)}{\Gamma(n - \mu_i + 1)} \sum_{q=1}^{Q} w_q P^r_{\mu_i}(\xi_q) P^n_{\mu_i}(\xi_q),
\]

in which $Q \geq N + 2$ represents the minimum number of GJ quadrature points $\{\xi_q\}_{q=1}^{Q}$, associated with the weight function $\Gamma(1 - \xi_i)^{-\mu_i}(1 + \xi_i)^{-\mu_i}$, for exact quadrature, and $\{w_q\}_{q=1}^{Q}$ are the corresponding quadrature weights. Employing the property of the Jacobi polynomials where $P^\mu_n(-x_i) = (-1)^n P^\mu_n(x_i)$, we can re-express $\bar{S}^{\mu}_{r,n}$ as $(-1)^{(n+r)} S^{\mu}_{n,r}$. Accordingly,

\[
(S_{\mu,i})_{r,n} = \frac{b_i - a_i}{2} \sigma_r \sigma_n \left[\int_{-1}^{1} (1 + \xi_i)^{-\mu_i} (1 - \xi_i)^{-\mu_i} \right] D^\mu_i \left(P_{n+1} - P_{n-1} \right) D^\mu_i \left(P_{r+1} - P_{r-1} \right) d\xi_i
\]

\[
= \bar{S}^{\mu}_{r,n} = \int_{-1}^{1} \frac{\Gamma(r + 1)}{\Gamma(r - \mu_i + 1)} \frac{\Gamma(n + 1)}{\Gamma(n - \mu_i + 1)} \sum_{q=1}^{Q} w_q P^r_{\mu_i}(\xi_q) P^n_{\mu_i}(\xi_q),
\]

According to (3.50).

\[
(3.51)
\]

In fact, σ_r and σ_n are chosen such that $(-1)^{(n+r)}$ is canceled. Furthermore,

\[
(S_{\mu,i})_{r,n} = \int_{a_i}^{b_i} a_i D^\mu_i \left(\phi_n(x_i) \right) D^\mu_i \left(\phi_r(x_i) \right) dx_i,
\]

\[
= \int_{a_i}^{b_i} a_i D^\mu_i \left(\phi_n(x_i) \right) D^\mu_i \left(\phi_r(x_i) \right) dx_i
\]

\[
(3.52)
\]
where \(S_{\mu,i} \) is a symmetric matrix due to symmetry of \(S_{\mu,j} \) and \(S_{\mu,r} \). Similar to (3.52), we get \(S_{\nu,i} = \{ S_{v,i} \} S_{\nu} \); therefore,

\[
(3.53) \quad -(k_i + k_r) S_{\nu} + (c_i + c_r) S_{\mu} = S_{t}^{\text{Tot}}.
\]

Hence it can be easily concluded that the stiffness matrix \(S_{\mu,i} \), \(S_{\nu,i} \), and thereby \(S_{t}^{\text{Tot}} \) as the sum of two symmetric matrices are symmetric.

4. Unified Fast FPDE Solver. We formulate a closed-form solution for the Lyapunov system (3.42) in terms of the generalised eigensolutions that can be computed very efficiently, leading to the following unified fast solver for the development of Petrov-Galerkin spectral method.

Theorem 4.1. Let \([\xi, \lambda]^{M} \) be the set of general eigen-solutions of the spatial stiffness matrix \(S^{\text{Tot}} \) with respect to the mass matrix \(M \). Moreover, let \([\tau, \lambda]^{N} \) be the set of general eigen-solutions of the temporal mass matrix \(M \) with respect to the stiffness matrix \(S \).

(I) If \(d > 1 \), then the multi-dimensional matrix of unknown coefficients \(\mathbf{U} \) is explicitly obtained as

\[
(4.1) \quad \mathbf{U} = \sum_{\nu=1}^{M} \sum_{m_1=1}^{M_1} \cdots \sum_{m_d=1}^{M_d} \nu_n \cdots \nu_m \nu^1 \nu^d \cdots \nu^{d_r} (e_{n,m_1} \cdots e_{n,m_d}),
\]

where \(\nu_n \cdots \nu_m \) are given by

\[
(4.2) \quad \nu_n \cdots \nu_m = \frac{(e_{n,m_1} \cdots e_{n,m_d})^T F}{(e_{n,m_1}^T S_{t} e_{n,m_1}^T M_j e_{n,m_1}) \Lambda_{n,m_1} \cdots \Lambda_{n,m_d}}.
\]

in which the numerator represents the standard multi-dimensional inner product, and \(\Lambda_{n,m_1} \cdots \Lambda_{n,m_d} \) are obtained in terms of the eigenvalues of all mass matrices as

\[
\Lambda_{n,m_1} \cdots \Lambda_{n,m_d} = \left[1 + \gamma \lambda_n^2 + \lambda_n \sum_{j=1}^{d} (\lambda_{m_j}) \right].
\]

(II) If \(d = 1 \), then the two-dimensional matrix of the unknown solution \(\mathbf{U} \) is obtained as

\[
\mathbf{U} = \sum_{\nu=1}^{M} \sum_{m_1=1}^{M_1} \nu_n \nu^1 (e_{n,m_1})^T.
\]

where \(\nu_n \nu^1 \) is explicitly obtained as

\[
\nu_n \nu^1 = \frac{e_{n,m_1}^T F e_{n,m_1}^1}{(e_{n,m_1}^T S_{t} e_{n,m_1}^T M_j e_{n,m_1}) (1 + \gamma \lambda_n^2 + \lambda_n \lambda_{m_1}^2)}.
\]

Proof. Let us consider the following generalised eigenvalue problems as

\[
(4.3) \quad S_{t}^{\text{Tot}} e_{m_j}^j = \lambda_{m_j}^j M_j e_{m_j}^j, \quad m_j = 1, \cdots, M_j, \quad j = 1, 2, \cdots, d,
\]

and

\[
(4.4) \quad M_j e_{n}^j = \lambda_n^j S_{t} e_{n}^j, \quad n = 1, 2, \cdots, N.
\]
Having the spatial and temporal eigenvectors determined in equations (4.4) and (4.3), we can represent the unknown coefficient matrix \mathbf{U} in (3.37) in terms of the aforementioned eigenvectors as

\[
\mathbf{U} = \sum_{n=1}^{N} \sum_{m_1=1}^{M_1} \cdots \sum_{m_d=1}^{M_d} \kappa_{n,m_1,\ldots,m_d} \mathbf{e}_n^\tau \otimes \mathbf{e}_{m_1}^1 \otimes \cdots \otimes \mathbf{e}_{m_d}^d,
\]

where $\kappa_{n,m_1,\ldots,m_d}$ are obtained as follows. First, we take the multi-dimensional inner product of $\mathbf{e}_q^\tau \mathbf{e}_{p_1}^1 \cdots \mathbf{e}_{p_d}^d$ on both sides of the Lyapunov equation (3.22) as

\[
\begin{align*}
(\mathbf{e}_q^\tau \mathbf{e}_{p_1}^1 \mathbf{e}_{p_2}^2 \cdots \mathbf{e}_{p_d}^d) \left[\mathbf{S}_n \otimes \mathbf{M}_1 \otimes \cdots \otimes \mathbf{M}_d \right] \\
+ \sum_{j=1}^{d} [\mathbf{M}_j \otimes \mathbf{M}_1 \otimes \cdots \otimes \mathbf{M}_{j-1} \otimes \mathbf{S}_{j+1}^\text{T} \otimes \mathbf{M}_{j+1} \otimes \cdots \otimes \mathbf{M}_d] \\
+ \gamma \mathbf{M}_n \otimes \mathbf{M}_1 \otimes \cdots \otimes \mathbf{M}_d] \mathbf{U} = (\mathbf{e}_q^\tau \mathbf{e}_{p_1}^1 \cdots \mathbf{e}_{p_d}^d) \mathbf{F},
\end{align*}
\]

Then, by replacing (4.3) and (4.4) into (4.2) and re-arranging the terms, we get

\[
\sum_{n=1}^{N} \sum_{m_1=1}^{M_1} \cdots \sum_{m_d=1}^{M_d} \kappa_{n,m_1,\ldots,m_d} \times \left(\mathbf{e}_q^\tau \mathbf{S}_n \mathbf{e}_{n}^\tau (\mathbf{e}_{p_1}^1)^T \mathbf{M}_1 \mathbf{e}_{m_1}^1 \cdots (\mathbf{e}_{p_d}^d)^T \mathbf{M}_d \mathbf{e}_{m_d}^d \\
+ \sum_{j=1}^{d} \mathbf{e}_q^\tau \mathbf{M}_j \mathbf{e}_{n}^\tau (\mathbf{e}_{p_1}^1)^T \mathbf{M}_1 \mathbf{e}_{m_1}^1 \cdots (\mathbf{e}_{p_j}^j)^T \mathbf{M}_d \mathbf{e}_{m_d}^d \\
+ \mathbf{e}_q^\tau \mathbf{M}_n \mathbf{e}_{n}^\tau \mathbf{e}_{n}^\tau \mathbf{M}_1 \mathbf{e}_{m_1}^1 \cdots (\mathbf{e}_{p_d}^d)^T \mathbf{M}_d \mathbf{e}_{m_d}^d \\
\right) = (\mathbf{e}_q^\tau \mathbf{e}_{p_1}^1 \mathbf{e}_{p_2}^2 \cdots \mathbf{e}_{p_d}^d) \mathbf{F}.
\]

Recalling that $\mathbf{S}_{j+1}^\text{T} \mathbf{e}_{m_j}^j = (\lambda_{m_j}^j \mathbf{M}_j \mathbf{e}_{m_j}^j)$ and $\mathbf{M}_n \mathbf{e}_{n}^\tau = (\lambda_{n}^n \mathbf{S}_n \mathbf{e}_{n}^\tau)$, we have

\[
\sum_{n=1}^{N} \sum_{m_1=1}^{M_1} \cdots \sum_{m_d=1}^{M_d} \kappa_{n,m_1,\ldots,m_d} \left(\mathbf{e}_q^\tau \mathbf{S}_n \mathbf{e}_{n}^\tau (\mathbf{e}_{p_1}^1)^T \mathbf{M}_1 \mathbf{e}_{m_1}^1 \cdots (\mathbf{e}_{p_d}^d)^T \mathbf{M}_d \mathbf{e}_{m_d}^d \\
+ \sum_{j=1}^{d} \mathbf{e}_q^\tau (\lambda_{m_j}^j \mathbf{S}_n \mathbf{e}_{n}^\tau)^T \mathbf{M}_1 \mathbf{e}_{m_1}^1 \cdots (\mathbf{e}_{p_d}^d)^T \mathbf{M}_d \mathbf{e}_{m_d}^d \\
+ \gamma \mathbf{e}_q^\tau (\lambda_{n}^n \mathbf{S}_n \mathbf{e}_{n}^\tau)^T \mathbf{M}_1 \mathbf{e}_{m_1}^1 \cdots (\mathbf{e}_{p_d}^d)^T \mathbf{M}_d \mathbf{e}_{m_d}^d \\
\right) = (\mathbf{e}_q^\tau \mathbf{e}_{p_1}^1 \mathbf{e}_{p_2}^2 \cdots \mathbf{e}_{p_d}^d) \mathbf{F}.
\]

Therefore,

\[
\kappa_{n,m_1,\ldots,m_d} = \frac{(\mathbf{e}_q^\tau \mathbf{e}_{p_1}^1 \cdots \mathbf{e}_{p_d}^d) \mathbf{F}}{(\mathbf{e}_q^\tau \mathbf{e}_{n}^\tau \mathbf{e}_{n}^\tau))^\gamma \prod_{j=1}^{d} ((\mathbf{e}_{p_j}^j)^T \mathbf{M}_j \mathbf{e}_{m_j}^j)^\gamma + \lambda_{n}^n \sum_{j=1}^{d} (\lambda_{m_j}^j)^\gamma}
\]

Then, we have

\[
\sum_{n=1}^{N} \sum_{m_1=1}^{M_1} \cdots \sum_{m_d=1}^{M_d} \kappa_{n,m_1,\ldots,m_d} (\mathbf{e}_q^\tau \mathbf{S}_n \mathbf{e}_{n}^\tau)^T (\mathbf{e}_{p_1}^1)^T \mathbf{M}_1 \mathbf{e}_{m_1}^1 \cdots (\mathbf{e}_{p_d}^d)^T \mathbf{M}_d \mathbf{e}_{m_d}^d \\
\times \left[(1 + \gamma \lambda_{n}^n) + \lambda_{n}^n \sum_{j=1}^{d} (\lambda_{m_j}^j)^\gamma \right] = (\mathbf{e}_q^\tau \mathbf{e}_{p_1}^1 \mathbf{e}_{p_2}^2 \cdots \mathbf{e}_{p_d}^d) \mathbf{F}.
\]
Due to the fact that the spatial Mass \(M_j \) and temporal stiffness matrices \(S_\tau \) are diagonal (see Theorems 3.3 and 3.2), we have \((\partial_q^\tau \partial_n^q)^T \partial_n^q = 0 \) if \(q \neq n \), and also \(((\partial_q^1)^T M_j \partial_n^1) = 0 \) if \(p_j \neq m_j \), which completes the proof for the case \(d > 1 \).

Following similar steps for the two-dimensional problem, it is easy to see that if \(d = 1 \), the relationship for \(\kappa \) can be derived as

\[
\kappa_{q,p} = \frac{\partial_q^\tau q \partial_n^q F \partial_n^1}{((\partial_q^1)^T M_j \partial_n^1)(1 + \gamma \lambda_n^2 + \lambda_m^1)}.
\]

In 4.1, we present a computational method for the fast solver which reduces the computational cost significantly. □

4.1. Computational Considerations. Employing the fast solver in \((1 + d) \) dimensional problem \(d \geq 1 \) reduces the dominant computational cost of the eigensolver from \(\mathcal{O}(N^{2(1+d)}) \) to \(\mathcal{O}(N^{2+d}) \), which becomes even more efficient in higher dimensional problems. This approach is extensively discussed in [48].

5. Numerical Tests. We now examine the unified PG spectral method and the corresponding unified fast solver (4.5) and (4.6) for (3.1) in the context of several numerical test cases in order to investigate the spectral/exponential rate of convergence in addition to the computational efficiency of the scheme. The corresponding force term \(f \) in (5.1) is obtained in Appendix for the following test cases, listed as:

Test case (I): (smooth solutions with finite regularity) we consider the following exact solution to perform the temporal \(p \)-refinement as

\[
\begin{align*}
\text{u}^{\text{exact}}(x) &= \tau^p_1 \times (1 + x)^{p_2} - \epsilon(1 + x)^{p_3},
\end{align*}
\]

where \(p_1 = 7/2, p_2 = 6\frac{4}{7}, p_3 = 6\frac{3}{7} \) and \(\tau \in [0, 2] \) and \(x \in [-1, 1] \).

Test case (II): (spatially smooth function) we consider

\[
\begin{align*}
\text{u}^{\text{exact}}(x) &= t^{\tau_1} \times \sin[n\pi (1 + x)],
\end{align*}
\]

where \(n = 1 \) and \(p_1 = 6\frac{3}{7} \), for the exponential \(p \)-refinement.

Test case (III): (high-dimensional problems) to perform the \(p \)-refinement in higher dimensions \((d = 2, 3) \), we choose the exact solution

\[
\begin{align*}
\text{u}^{\text{exact}}(x) &= t^{\tau_1} \times \prod_{i=1}^{d} (1 + x_i)^{p_{2i}} - \epsilon(1 + x)^{p_{2i+1}},
\end{align*}
\]

where \(p_1 = 7\frac{2}{7}, p_2 = 6\frac{3}{7}, p_3 = 6\frac{4}{7}, p_4 = 7\frac{5}{7}, p_5 = 7\frac{2}{7}, p_6 = 7\frac{5}{7}, p_7 = 7\frac{2}{7} \) and \(\epsilon_1 = 2^{p_2-p_1}, \epsilon_2 = 2^{p_4-p_3}, \epsilon_3 = 2^{p_6-p_5} \) in the hypercube domain as \([0, 1] \times [-1, 1] \times \cdots \times [-1, 1] \times d \) times.

Test case (IV): (CPU time) to examine the efficiency of the method for the high-dimensional domain, we employ (5.3), where \(p_1 = 4, p_2 = 3\frac{1}{7}, p_3 = 3\frac{4}{7}, \epsilon_1 = 2^{p_2-p_1}, t \in [0, 2] \), and \(x \in [-1, 1]^d \). In the following numerical examples, we illustrate the convergence rate and efficiency of the method, employing the test cases.
5.1. Numerical Test (I). We plot the log-log scale L^2-error versus temporal orders N in Fig. 5.1 in a log-log scale plot for the test case (I) while $2\tau = \frac{1}{10}$, $2\mu_1 = \frac{9}{10}$, $2\nu_1 = \frac{19}{10}$, $T = 2$ and spatial expansion order is fixed ($M = 23$). Having the same set-up, we also consider $2\tau = \frac{11}{10}$ in the temporal direction to examine the spectral convergence of fractional wave equation. The L^2-error decays linearly in the log-log scale plot as temporal expansion order N increases in both cases, indicating the spectral convergence of PG method. In [36], we obtain the theoretical convergence rate of $\|e\|_{L^2}$ and compare with the corresponding practical
Fig. 5.3: Exponential convergence in the spatial \textit{p-refinement}: log-log scale L^2-error versus spatial expansion orders M for the test case (II).

Fig. 5.4: Spatial \textit{p-refinement}: log-log scale L^∞-error versus spatial expansion orders M_2, M_3 in the test case (III) for the limit fractional orders of ν.

5.2. Numerical Test (II). Here, we perform the spatial \textit{p-refinement} while the temporal expansion order is fixed for the test case (I). In Fig. 5.2, spectral convergence of log-log scale L^∞-error versus spatial expansion orders M_1 is shown where $2\nu_1 = \frac{11}{10}, \frac{19}{10}$ in setup (a). We set $2\tau = \frac{60}{11}, 2\mu_1 = \frac{5}{11}, T = 2$ and temporal expansion order is fixed ($N = 23$). In this case, the limit fractional orders of ν_1 are examined, where both have the spectral convergence
but with different rates. We also carried out the spatial p-refinement for the limit fractional orders of μ_1. The spectral convergence of the PG method is observed, where $2\mu_1 = \frac{1}{10}, \frac{4}{10}$ and $2\nu_1 = \frac{15}{10}$. To this end, we can conclude that the PG method in (1+1) dimensional space-time domain is spectrally accurate up to the order of 10^{-15}.

5.3. Numerical Test (III). In Fig. 5.3 we plot $\|e\|_{L^2} = \|u - u^H\|_{L^2}$ versus spatial expansion orders M_2, M_3 for the test case (II), showing the spatial p-refinement. In setup (a) $2\nu_1 = \frac{11}{10}, \frac{19}{10}$ while $2\nu_2 = \frac{15}{10}, 2\mu_1 = \frac{1}{10}, \frac{9}{10}$ and setup (b) $2\nu_1 = \frac{15}{10}, \frac{17}{10}$ while $2\nu_2 = \frac{14}{10}, 2\mu_1 = \frac{1}{10}, \frac{9}{10}$. The temporal expansion order ($N = 23$) is fixed. The exponential convergence in the log-linear scale plot is illustrated clearly for the limit fractional orders of μ_1 and ν_1 in case spatial component of the exact solution is a sinusoidal smooth function.

5.4. Numerical Test (IV). In addition to spatial/temporal p-refinement, we perform p-refinement for (1+2) and (1+3) as the higher dimensional domain in the test case (III). In Fig. 5.4 the spectral convergence of log-log L^∞-error versus spatial expansion orders M_2, M_3 is shown. In setup (a), $2\nu_2 = \frac{11}{10}, \frac{19}{10}$ while $2\nu_1 = \frac{15}{10}, 2\mu_1 = \frac{1}{10}, \frac{9}{10}$ and $2\mu_2 = \frac{6}{10}, \frac{9}{10}$ and setup (b) $2\nu_3 = \frac{15}{10}, \frac{19}{10}$ while $2\nu_1 = \frac{15}{10}, 2\nu_2 = \frac{16}{10}, 2\mu_1 = \frac{1}{10}, 2\mu_2 = \frac{6}{10}, \frac{9}{10}$ and $2\mu_3 = \frac{7}{10}$, where $2\tau = \frac{6}{10}, T = 2$. Furthermore, we increase the maximum bases order uniformly in all dimensions.

Similarly, we perform the spatial p-refinement for the limit fractional orders of μ in FADE. We study setup (a) $2\mu_2 = \frac{1}{10}, \frac{17}{10}$ while $2\mu_1 = \frac{1}{10}, \frac{9}{10}$, and setup (b) $2\mu_3 = \frac{1}{10}, \frac{17}{10}$ while $2\mu_1 = \frac{4}{10}, \frac{6}{10}, 2\mu_2 = \frac{6}{10}, \frac{9}{10}$. In both setups, $2\tau = \frac{6}{10}, 2\nu_1 = \frac{15}{10}, 2\nu_2 = \frac{15}{10}, T = 2$. Furthermore, $N = M_1 = M_2 = M_3$ changes concurrently. In Fig. 5.5 the PG method shows spectral convergence for the limit fractional orders of μ.

5.5. Numerical Test (V). To examine the efficiency of the PG method and the fast solver in high-dimensional problem, the convergence results and CPU time for test case (IV) are presented in Table S.1 for (1+1), (1+3) and (1+5) dimensional space-time hypercube domains where the error is measured by the essential norm $\|e\|_\infty$ in the test case (IV). The CPU time is obtained on Intel (Xeon E52670) 2.5 GHz processor. The presented PG method remains
Table 5.1: Performance study and CPU time (in sec.) of the unified PG spectral method for the test case (IV). In each step, we uniformly increase the bases order by one in all dimensions.

	2-D FADRE	3-D FADRE	4-D FADRE												
	\(N \)	\(\epsilon	_{L^\infty}\)	CPU Time [Sec]	\(N \)	\(\epsilon	_{L^\infty}\)	CPU Time [Sec]	\(N \)	\(\epsilon	_{L^\infty}\)	CPU Time [Sec]
5	0.008	1.48		5	0.01	1.43		5	0.01	1.43					
7	0.0003	3.01		7	0.0003	5.39		7	0.0003	5.39					
9	1.69\times10^{-6}	3.48		9	2.6\times10^{-7}	6.14		9	2.6\times10^{-7}	6.14					
15	2.96\times10^{-11}	4.95		15	2.41\times10^{-10}	7.54		15	2.41\times10^{-10}	7.54					

spectrally accurate in (1+5) dimensional time-space domain.

6. **Summary and Discussion.** We developed a new unified Petrov-Galerkin spectral method for a class of fractional partial differential equations with constant coefficients (3.1) in a \((1 + d)\)-dimensional space-time hypercube, \(d = 1, 2, 3, \) etc, subject to homogeneous Dirichlet initial/boundary conditions. We employed Jacobi poly-fractonomials, as temporal basis/test functions, and the Legendre polynomials as spatial basis/test functions, yielding spatial mass matrices being independent of the spatial fractional orders. Additionally, we formulated the novel unified fast linear solver for the resulting high-dimensional linear system, which reduces the computational cost significantly. In fact, the main idea of the paper was to formulate a closed-form solution for the high-dimensional Lyapunov equation in terms of the eigensolutions up to the precision accuracy of computationally obtained eigensolutions. The PG method has been illustrated to be spectrally accurate for power-law test cases in each dimension. Furthermore, exponential convergence is observed for a sinusoidal smooth function in a spatial \(p\)-refinement. To check the stability and spectral convergence of the PG method, we carried out the corresponding discrete stability and error analysis of the method for (3.26) in [36]. Despite the high accuracy and the efficiency of the method especially in higher-dimensional problems, treatment of FPDEs in complex geometries and FPDEs with variable coefficients will be studies in our future works.

Appendix. Here, we provide the force function based on the exact solutions.

- **Force term of test case (I).** To obtain \(f \) in (3.1) based on (5.1), first we need to calculate all fractional derivatives of \(u^{(t)} \). To satisfy the corresponding boundary conditions, \(\epsilon_i = 2^{p_{ii}-p_{ij}} \). Take \(X^T = r^{p_{ii}} \) and \(X^L = (1 + \zeta_i)^{p_{ij}} - \epsilon_i (1 + \zeta_i)^{p_{ij+1}} \), where \(\zeta_i = 2^{p_{ii}-p_{ij}} - 1 \) and...
\(\zeta_i \in [-1, 1] \). Considering (6.1),

\[
(6.1) \quad 0^2 X^T = \frac{\Gamma[p_1 + 1]}{\Gamma[p_1 + 1 - 2\tau]} \rho^{p_1 - 2\tau} = \left(\frac{T}{2} \right)^{p_1 - 2\tau} \frac{\Gamma[p_1 + 1]}{\Gamma[p_1 + 1 - 2\tau]} (1 + \eta(t))^{p_1 - 2\tau},
\]

where \(\eta(t) = 2(\frac{t}{T}) - 1 \). Similarly,

\[
(6.2) \quad a_i D^{2\mu} X^S = \left(\frac{b_i - a_i}{2} \right)^{-2\mu} \left[\frac{\Gamma[p_1 + 1]}{\Gamma[p_1 + 1 - 2\mu]} (1 + \zeta_2(x_i))^{p_2 - 2\mu} \right] - \epsilon_i \frac{\Gamma[p_{2i+1} + 1]}{\Gamma[p_{2i+1} + 1 - 2\mu]} (1 + \zeta_2(x_i))^{p_{2i+1} - 2\mu},
\]

and

\[
(6.3) \quad a_i D^{2\nu} X^S = \left(\frac{b_i - a_i}{2} \right)^{-2\nu} \left[\frac{\Gamma[p_1 + 1]}{\Gamma[p_1 + 1 - 2\nu]} (1 + \zeta_2(x_i))^{p_2 - 2\nu} \right] - \epsilon_i \frac{\Gamma[p_{2i+1} + 1]}{\Gamma[p_{2i+1} + 1 - 2\nu]} (1 + \zeta_2(x_i))^{p_{2i+1} - 2\nu}.
\]

Therefore,

\[
f = \left(\frac{T}{2} \right)^{p_1 - 2\tau} \frac{\Gamma[p_1 + 1]}{\Gamma[p_1 + 1 - 2\tau]} (1 + \eta)^{p_1 - 2\tau} \prod_{j=1}^{d} \left[(1 + \zeta_j)^{p_2_j} - \epsilon_j (1 + \zeta_j)^{p_{2i+1}} \right]
\]

\[
+ \sum_{j=1}^{d} \frac{T}{2} (1 + \eta)^{p_j} (c_j \left(\frac{b_j - a_j}{2} \right)^{-2u} \frac{\Gamma[p_2 + 1]}{\Gamma[p_2 + 1 - 2\mu]} (1 + \zeta_2(x_i))^{p_{2i+1} - 2\mu} - \epsilon_j \frac{\Gamma[p_{2i+1} + 1]}{\Gamma[p_{2i+1} + 1 - 2\mu]} (1 + \zeta_2(x_i))^{p_{2i+1} - 2\mu}) \prod_{j=1, j\neq i}^{d} \left[(1 + \zeta_j)^{p_2_j} - \epsilon_j (1 + \zeta_j)^{p_{2i+1}} \right]
\]

\[
- \epsilon_j \frac{\Gamma[p_{2i+1} + 1]}{\Gamma[p_{2i+1} + 1 - 2\nu]} (1 + \zeta_2(x_i))^{p_{2i+1} - 2\nu} \prod_{j=1, j\neq i}^{d} \left[(1 + \zeta_j)^{p_2_j} - \epsilon_j (1 + \zeta_j)^{p_{2i+1}} \right].
\]

- **Force term of test case (II).** Take \(X^T = \eta \) and \(X^S = \sin(n\pi \zeta) \). Here, we approximate \(X^S \) as

\[
(6.5) \quad X^S = \sum_{j=1}^{N_x} (-1)^{2j-1} \frac{(n\pi \zeta)^{2j-1}}{(2j - 1)!}.
\]

where \(N_x \) controls the level of approximation error. Taking the same steps of (6.4), we obtain

\[
f = \left(\frac{T}{2} \right)^{p_1 - 2\tau} \frac{\Gamma[p_1 + 1]}{\Gamma[p_1 + 1 - 2\tau]} (1 + \eta)^{p_1 - 2\tau} \sum_{j=1}^{N_x} (-1)^{2j-1} \frac{(n\pi \zeta)^{2j-1}}{(2j - 1)!} \left(\frac{\Gamma[2j]}{\Gamma[2j - 2\mu]} \right) \rho^{2j - 2\mu}
\]

\[
+ \frac{T}{2} (1 + \eta)^{p_j} \left(\frac{b_j - a_j}{2} \right)^{-2u} \sum_{j=1}^{N_x} (-1)^{2j-1} \frac{(n\pi \zeta)^{2j-1}}{(2j - 1)!} \frac{\Gamma[2j]}{\Gamma[2j - 2\mu]} \rho^{2j - 2\mu}
\]

\[
- \left(k_0 \right) \frac{(b_j - a_j)}{2} (-2\nu) \sum_{j=1}^{N_x} (-1)^{2j-1} \frac{(n\pi \zeta)^{2j-1}}{(2j - 1)!} \frac{\Gamma[2j]}{\Gamma[2j - 2\nu]} \rho^{2j - 2\nu}.
\]
Acknowledgement. This work was supported by the AFOSR Young Investigator Program (YIP) award on: Data-Infused Fractional PDE Modelling and Simulation of Anomalous Transport (FA9550-17-1-0150) and by the MURI/ARO on Fractional PDEs for Conservation Laws and Beyond: Theory, Numerics and Applications (W911NF-15-1-0562).

REFERENCES

[1] Boris Baesuer, Tomasz Lukx, and Mark M Meerschaert, Space-time fractional dirichlet problems, arXiv preprint arXiv:1604.06421, (2016).
[2] David A Benson, Rina Schumer, Mark M Meerschaert, and Stephen W Wheatcraft, Fractional dispersion, light motion, and the made tracer tests, in Dispersion in Heterogeneous Geological Formations, Springer, 2001, pp. 211–240.
[3] D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resources Research, 36 (2000), pp. 1403–1412.
[4] Alberto Carpinteri and Francesco Mainardi, Fractals and fractional calculus in continuum mechanics, vol. 378, Springer, 2014.
[5] Feng Chen, Qinwu Xu, and Jan S Hesthaven, A multi-domain spectral method for time-fractional differential equations, Journal of Computational Physics, 293 (2015), pp. 157–172.
[6] Minghua Chen and Weihua Deng, A second-order numerical method for two-dimensional two-sided space fractional convection diffusion equation, Applied Mathematical Modelling, 38 (2014), pp. 3244–3259.
[7] Sheng Chen, Je Shen, and Li-Lian Wang, Generalized jacobi functions and their applications to fractional differential equations, Preprint on arXiv, (2015).
[8] Zhen-Qing Chen, Mark M Meerschaert, and Erkan Nane, Space–time fractional diffusion on bounded domains, Journal of Mathematical Analysis and Applications, 393 (2012), pp. 479–488.
[9] Mehdi Dehghan, Mostafa Abbaszadeh, and Akbar Mohammrl, Analysis of two methods based on galerkin weak form for fractional diffusion-wave: Meshless interpolating element free galerkin (iefg) and finite element methods, Engineering Analysis with Boundary Elements, 64 (2016), pp. 205–221.
[10] The use of element free galerkin method based on moving kriging and radial point interpolation techniques for solving some types of turing models, Engineering Analysis with Boundary Elements, 62 (2016), pp. 93–111.
[11] Diego del Castillo-Negrete, BA Carreras, and VE Lynch, Fractional diffusion in plasma turbulence, Physics of Plasmas (1994-present), 11 (2004), pp. 3854–3864.
[12] Diego del Castillo-Negrete and PJ Morrison, Chaotic transport by rossby waves in shear flow, Physics of Fluids A: Fluid Dynamics (1989-1993), 5 (1993), pp. 948–965.
[13] LB Feng, P Zhuang, P Liu, J Turner, and J Li, High-order numerical methods for the riez space fractional advection-dispersion equations, Computers & Mathematics with Applications, (2016).
[14] Boiling Gao, Xueke Pu, and Fenghui Huang, Fractional partial differential equations and their numerical solutions, World Scientific, 2015.
[15] Hala Hejazi, Timothy Moroney, and Fawang Liu, A finite volume method for solving the two-sided time-space fractional advection-dispersion equation, Open Physics, 11 (2013), pp. 1275–1283.
[16] Ehsan Kharrazi, Mohsen Zarenkouri, and George Em Karniadakis, A Petrov-galerkin spectral element method for fractional elliptic problems, arXiv preprint arXiv:1610.08608, (2016).
[17] Petrov–galerkin and spectral collocation methods for distributed order differential equations, SIAM Journal on Scientific Computing, 39 (2017), pp. A1003–A1037.
[18] R. Klages, G. Radons, and I. M. Sokolov, Anomalous Transport: Foundations and Applications, Wiley-VCH, 2008.
[19] Dongfang Li, Chenghao Zhang, and Maohua Ran, A linear finite difference scheme for generalized time fractional burgers equation, Applied Mathematical Modelling, (2016).
[20] Xianjuan Li and Chuanju Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, (2010).
[21] Anna Lisaheke, Mohsen Zarenkouri, and George Em Karniadakis, A petrov–galerkin spectral method of linear complexity for fractional multiterm odes on the half line, SIAM Journal on Scientific Computing, 39 (2017), pp. A1922–A1946.
[22] Chi Liubch, Discretized fractional calculus, SIAM Journal on Mathematical Analysis, 17 (1986), pp. 704–719.
[23] Richard L Magin, Fractional calculus in bioengineering, Begell House Redding, 2006.
[24] Francesco Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, World Scientific, 2010.
[25] Zhifeng Mao and Je Shen, Efficient spectral–galerkin methods for fractional partial differential equations with variable coefficients, Journal of Computational Physics, 307 (2016), pp. 243–261.
[26] Mark M Meerschaert, Farzad Sabzikar, Mantha S Phanikumar, and Akeleu Zeleke, Tempered fractional
time series model for turbulence in geophysical flows, Journal of Statistical Mechanics: Theory and Experiment, 2014 (2014), p. P09023.

[27] MARK M MEERSCHAERT AND ALLA SKORSKII, Stochastic models for fractional calculus, vol. 43, Walter de Gruyter, 2012.

[28] MARK M MEERSCHAERT AND CHARLES TADIERAN, Finite difference approximations for fractional advection-dispersion flow equations, Journal of Computational and Applied Mathematics, 172 (2004), pp. 65–77.

[29] RALF METZLER AND JOSEPH KLATZER, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics reports, 339 (2000), pp. 1–77.

[30] P MOKHTARI, Discrete galerkin method for fractional integro-differential equations, arXiv preprint arXiv:1501.01111, (2015).

[31] M. NAGHIBI-BOHSEINI, Estimation of outer-middle ear transmission using DPOAEs and fractional-order modeling of human middle ear, PhD thesis, City University of New York, NY., 2015.

[32] PARIS PEROUDAKIS AND GEORGE EM KARNIAKIS, Fractional-order viscoelasticity in one-dimensional blood flow models, Annals of biomedical engineering, 42 (2014), pp. 1012–1023.

[33] IGOR POKLJUN, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol. 198, Academic Press, 1998.

[34] J. Fitch R. Askey, Integral representations for jacobi polynomials and some applications, Journal of Mathematical Analysis and Applications, 26 (1969).

[35] BENJAMIN MICHAEL REGNER, Randomness in biological transport, (2014).

[36] MEHR SAMIEE, MOHSEN ZAYERNOURI, AND MARK M. MEERSCHAERT, A unified spectral method for fde's with two-sided derivatives: part ii: Stability and error analysis, submitted to Journal of Computational Physics, 2016, (2016).

[37] STEFAN G SAMKO, ANATOLY A KILBAS, AND OLGA I MARICHEV, Fractional integrals and derivatives, Theory and Applications, Gordon and Breach, Yverdon, 1993 (1993).

[38] JIE SHEN AND LI-LIAN WANG, Fourierization of the legendre–galerkin method and a new space–time spectral method, Applied numerical mathematics, 57 (2007), pp. 710–720.

[39] TH SOLOMON, ERIC R WEEKS, AND HARRY L SWINNEY, Observation of anomalous diffusion and levy flights in a two-dimensional rotating flow, Physical Review Letters, 71 (1993), p. 3975.

[40] Chaotic advection in a two-dimensional field: Lévy flights and anomalous diffusion, Physica D: Nonlinear Phenomena, 76 (1994), pp. 70–84.

[41] N SUGOMOTO, Generalized burgers equations and fractional calculus, Nonlinear wave motion, 408 (1989), pp. 162–179.

[42] Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves, Journal of fluid mechanics, 225 (1991), pp. 631–653.

[43] NH SWELIAM, MM KHADER, AND M ADEL, Chebyshev pseudo-spectral method for solving fractional advection-dispersion equation, Applied Mathematics, 5 (2014), p. 3240.

[44] CHARLES TADIERAN AND MARK M MEERSCHAERT, A second-order accurate numerical method for the twodimensional fractional diffusion equation, Journal of Computational Physics, 220 (2007), pp. 813–823.

[45] KAMIRI VAFAI, Handbook of porous media, Cie Press, 2015.

[46] GEORG M ZASLAVSKY AND JD MESS, Physics of chaos in hamiltonian systems, Nature, 398 (1999), p. 303.

[47] MOHSEN ZAYERNOURI, MARK AINSWORTH, AND GEORGE EM KARNIAKIS, Tempered fractional sturm-liouville eigenproblems, SIAM Journal on Scientific Computing, 37 (2015), pp. A1777–A1800.

[48] A unified Petrov–Galerkin spectral method for fractional pdes, Computer Methods in Applied Mechanics and Engineering, 283 (2015), pp. 1545–1569.

[49] MOHSEN ZAYERNOURI AND GEORGE EM KARNIAKIS, Fractional sturm-liouville eigen-problems: theory and numerical approximation, Journal of Computational Physics, 252 (2013), pp. 495–517.

[50] M. ZAYERNOURI AND G. E. KARNIAKIS, Spectral and discontinuous spectral element methods for fractional delay differential equations, Submitted to SIAM J. Scientific Computing, (2013).

[51] MOHSEN ZAYERNOURI AND GEORGE EM KARNIAKIS, Exponentially accurate spectral and spectral element methods for fractional odes, Journal of Computational Physics, 257 (2014), pp. 460–480.

[52] Fractional spectral collocation methods, SIAM Journal on Scientific Computing, 36 (2014), p. A40–A62.

[53] Fractional spectral collocation methods for linear and nonlinear variable order pdes, Journal of Computational Physics, 293 (2015), pp. 312–338.

[54] MOHSEN ZAYERNOURI AND ANASTASIOS MATZAVINOS, Fractional adams–bashforth/moulton methods: An application to the fractional keller–segel chemotaxis system, Journal of Computational Physics, 317 (2016), pp. 1–14.

[55] FANHAI ZENG, CHANGPIN LI, FENHANG LIU, AND IAN TURNER, Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM Journal on Scientific Computing, 37 (2015), pp. A55–A78.

[56] FANHAI ZENG, ZHONGJIANG ZHANG, AND GEORGE EM KARNIAKIS, Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations, Journal of Computational Physics, 307 (2016),
[57] H Zhang, Fawang Liu, and Vo Anh, *Galerkin finite element approximation of symmetric space-fractional partial differential equations*, Applied Mathematics and Computation, 217 (2010), pp. 2534–2545.

[58] Lifeng Zhao, Weihua Deng, and Jan S. Hesthaven, *Spectral methods for tempered fractional differential equations*, Mathematics of Computation, (2016).

[59] Xuan Zhao, Zhi-zhong Sun, and George Em Karniadakis, *Second-order approximations for variable order fractional derivatives: algorithms and applications*, Journal of Computational Physics, 293 (2015), pp. 184–200.