TK gene combined with mIL-2 and mGM-CSF genes in treatment of gastric cancer

Shan-Yu Guo, Qin-Long Gu, Zheng-Gang Zhu, He-Qun Hong, Yan-Zhen Lin

INTRODUCTION
Gastric cancer is a common malignancy in China. However, all the efforts of conventional treatments including extended resection, radiation and chemotherapy have a little influence on the improvement of its survival. In searching for a new way to the treatment of such a malignant disease, the gene therapy was introduced and displayed its promising. One of the landmark discoveries is the application of suicide gene to cancer cells. It converted a nontoxic prodrug into a cell-killing compound. The herpes simplex virus type I thymidine kinase (HSV-tk) and the Escherichia coli cytosine deaminase (CD) was popularly used as transfected suicide gene.

The expressed products of these genes are enzymes, which can convert the nontoxic anti-ancer drugs into toxic ones, and disrupt the synthesis of target DNA. The product of TK gene can phosphalate the ganciclovir (GCV), and it was further phospholated by endogenous kinase that leads to the formation of cytotoxic ganciclovir triphosphate. Interestingly, neighbor tumor cells that do not express the suicide gene were also killed in the presence of prodrg. This phenomenon is called the “bystander effect”[1-10].

Cytokines play important roles in the anti-tumor immune responses. IL-2 can activate the NK, LAK cells and CD8+ T lymphocytes. The activated CD8+ T lymphocytes can kill tumor cells directly. GM-CSF can promote the antigen presentation to macrophage and dendritic cells in the anti-tumor immune reaction[6-14].

The aim of this study was to boost the anti-tumor effect to achieve long-term survival and tumor eradication in model by the combination of TK/GCV with IL-2 and GM-CSF.

MATERIALS AND METHODS

Materials
The retroviral vector pLxSN was purchased from the Genetech. The HSV-TK gene was provided by Dr. Bingya Liu. LacZ gene was purchased from Promega. MFC cell line was derived from the 615 murine carcinoma of proximal stomach, and obtained from the Drug Research Institute of Chinese Science Academy. PA317 cell and NIH3T3 cells were cultured in this laboratory. Ganciclovir was purchased from Shanghai Roche Company, DMEM from Gibso, and G 418 from Promega.

Methods
Vectors and cell lines The retroviral vector is pLxSN. TK gene was inserted into the multiple cloning site between EcoRI and BamHI I, which was under the control of long terminal repeat (LTR), and the neomycin resistance gene was driven by an SV40 promoter. The report gene LacZ was inserted as same as TK gene. The murine IL-2 (Mil-2) and murine GM-CSF (mGM-CSF) were cloned from murine spleen tissue, and was confirmed by DNA sequencing. They were inserted into multiple cloning site of the pIRES vector through the EcoRI I and BamHI I, and driven by the cytomegalovirus (CMV) promoter.

MFC cells were maintained in DMEM (Dubecco’s modified essential medium), supplemented with 10% FBS (Hangzhou
Sijiqing Biotech Company), 2 mM L-glutamine, 100 units/ml penicillin and 100 µg/ml streptomycin. PA317 cell was used as the packaging cell, and NIH 3T3 cell was used to assay the virus titre.

Packaging cells transfection, clone selection and supernatant preparation The retrovirus plasmids containing TK and LacZ gene were transduced into the PA317 packaging cell line by lipofectamine (Gibco). Clones were isolated by G418 selection. After 48hs of lipofection, the media was replaced by the media contain G418 (600 µg/ml). The media was changed every 3 days. Most cells died after 2 weeks and the transfected cells survived. Culture and generate the selected anti-G418 cells. Collect virus suspension of four generations. To infect the NIH 3T3 cell with the virus suspension in different titres. Calculate the virus titres.

Infection of MFC gastric carcinoma cell line Infection was performed in suspension by a 30 minutes incubation of MFC cells with virus dilutions in 1 ml of PBS, supplemented with 4 µg/ml polybrene. To change the medium with DMEM which contained G418 48hs later, and repeated it every 3 days. Cells started to die after one week. The infected cells survived ultimately and formed cell clones.

Histological analysis and immunohistochemical studies Samples of tumor and surrounding tissues were fixed with formalin for 24 h, wax embedded. Sections were obtained with a microtome, and stained with haematoxylin-eosin for histological analysis. The frozen samples were incubated for 15 minutes in phosphate buffered saline (PBS), 1 % bovine serum albumin (BSA), and then overnight at 4°C with monoclonal antibodies diluted in PBS/1 % BSA.

Statistical analyses The tumor volumes were performed using the variance analysis. $P<0.05$ was considered to be statistically significant.

RESULTS

Plasmid transduction and virus supernatant collection The TK gene retrovirus vector plasmid was transduced into packaging cells with lipofectamine and maintained for 5-7 days in culture medium containing G418 600 mg/ml, and many cells started to die. After cultured for 2-3 weeks, some adherent cells formed cell clones contrasted with the dead cells.

The supernatants of every clone were collected and filtered after the cell clones were selected and expanded, the number of retroviral particles produced by the different cell clones was measured by NIH 3T3 cells. The maximum titer was 2x10⁵ cfu/ml.

In vitro cytotoxicity and bystander-effect After infected by the virus supernatant, many MFC cells began to die. Some adhesive cellsimmerged 3 weeks later, and formed cell clones.

MFC cells expressing TK gene were assayed for sensitivity to GCV. From the second day of culture with the medium containing GCV, the TK gene transfected cells began to die, and almost all the cells died at the seventh day. The untransfected cells in control group had no marked death.

The TK gene transfected MFC cells expressing marked bystander effect. A few transfected cells can cause many co-cultured cells to death combined with GCV (50 u/ml). Twenty percent of the TK gene transfected cells could kill 70-80 % of total cells (Figure 1).
In vivo experiment

In vivo analyses of TK/GCV and cytokines were performed in 615 mice implanted with the mouse carcinoma MFC cell line in proximal stomach. The retrovirus supernatant was injected into the tumors, and the cytokine genes were injected into the tumor surrounding tissues as indicated in the “materials and methods”. There has no significant inhibition of tumor growth in control group although treated with peritoneum injection of GCV. The group of TK gene without use of GCV also had no inhibition effect on tumor growth. In the TK/GCV group, tumor growth was significantly suppressed (P<0.01). In the animal groups treated with both TK/GCV and mIL-2 or mGM-CSF, there was a further significant reduction of the residual tumor size as compared to the group treated with TK/GCV (P<0.05).

There was further more decrease of tumor size in the group of TK/GCV combined with both cytokines. The tumors diminished in 7 mice of this group (Figure 2).

Histological and immunohistochemical analyses

There were great many tumor cells with mitoses in the sections of control group. The TK/GCV group showed lots of necrotic cells, and some of them accompanied by bleeding. But active tumor cells could also be seen in this group. There was massive infiltration of inflammation cells surrounding the necrotic area of the tumor treated with TK + cytokine, but not in those areas of animals treated with TK alone. Tumor cells diminished in most animals treated with TK/GCV + mIL-2 + mGM-CSF. There were a few residuum tumor tissues in part of these animals, but few mitoses phase can be seen, with great many of inflammatory cells.

Immunohistochemical analyses revealed that the infiltrates were mainly CD8+ lymphocytes in the tumor boundary area of animals treated with TK+mIL-2 or TK+ mIL-2 + mGM-CSF. The number of CD8+ lymphocytes was approximately equal in the TK + mGM-CSF and TK+mIL-2 + mGM-CSF groups. But few mitoses phase can be seen, with great many of inflammatory cells.

Immunohistochemical analyses revealed that the infiltrates were mainly CD8+ lymphocytes in the tumor boundary area of animals treated with TK+mIL-2 or TK+ mIL-2 + mGM-CSF. The number of CD8+ lymphocytes was approximately equal in the TK + mGM-CSF and TK+mIL-2 + mGM-CSF groups.

In vivo expression of transfected genes

By RT-PCR analyses, TK gene and cytokine genes all can be expressed in vivo by virus transfection or liposome transduction.

DISCUSSION

Transfer suicide genes into tumors has emerged as an attractive gene therapy for the selective elimination of cancer cells. The suicide genes encode non- mammalian enzymes that can convert nontoxic prodrugs into cellular toxic metabolites. The most widely used suicide gene is HSV-tk, which confers prodrug GCV into phosphorylated GCV. The GCV monophosphate is further phosphorylated by cellular kinase, forming GCV triphosphate, which inhibits cellular DNA synthesis and lead to cell death. The “bystander effect” caused by TK gene can strongly enhance its killing capacity. Many researchers believe that necrosis of tumor cells is the mechanism of tumor killing effect caused by the metabolites of prodrugs, but the activated CTL can kill tumor cells as well. There also have many people think that apoptosis take an important role in the procession. In our studies, necrosis was shown in the prodrug used tumor tissues, some of them with bleeding. This might be the vascular endothelials transfected by suicide genes. In vitro experiment showed that 20% gene transfected cells rendered 80% of total cells to death. The mechanism of bystander effect has unclear. It has been hypothesized that the following factors may be concerned with the mechanism. (1) Gap junction: the toxic product of suicide gene was transferred from transfected cells into the surrounding untransfected ones. Studies demonstrated that the bystander effect of TK gene was via the gap junction. The converted phosphorylated GCV can get into the contact cells by gap junction, which needs the direct cell contact. (2) Apoptosis: the apoptotic acetes that released by the transfected cells engulfed by the surrounding cells. (3) Immune mechanism: tumors cells killed by TK/GCV can release tumor antigens. The tumor cell derived antigens were taken up by APCs (antigen presenting cells), and then presented to the CD8+ T lymphocytes. It in turn activated tumor-specific CD8+ cytolytic T cells. The immunohistochemistry shows tremendous aggregation of CD8+ and CD2+ lymphocytes surrounding the tumor tissue.

Chen et al reported that cytokine gene IL-2 acted synergistically with the suicide gene to induce a systemic antitumor immunity. The immunity resulted in regression of local tumor and protection against distant site challenge of parental tumor cells. The antitumor immunity was attributed to IL-2 mediated activation and proliferation of CD8+ CTLs.

TK/GCV gene therapy led to death of the tumor cells. The tumor antigens were then available to the immune system, and might activate an anti-tumor immune response. The local expression of mGM-CSF enhanced the inflammatory response and antigen presentation. Expressed mIL-2 activated and enhanced the proliferation of T lymphocytes. Combination of mIL-2 with mGM-CSF can synergistically stimulate the anti-tumor immune response.

The experimental results confirmed that TK/GCV gene therapy could kill tumor cells markedly. If combined with mIL-2 and mGM-CSF genes, they could boost the anti-tumor reaction, and produce powerful anti-tumor effects.

REFERENCES

1. Roth JA, Cristiano RJ. Gene therapy for cancer: What have we done and where are we going? J Natl Cancer Inst 1997; 89: 21-39

2. Huber BE, Richardson CA, Krementsky TA. Retroviral mediate gene therapy for the treatment of hepatocellular carcinoma: an innovative approach for cancer therapy. Proc Natl Acad Sci USA 1993; 88: 8039-8043

3. Guo SY et al. Gene therapy for gastric cancer 235
5 Gore ME, Collins MK. Gene therapy for cancer. Eur J Cancer 1994; 30: 1047-1049

6 Moolten FL. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes; paradigm for a prospective cancer control strategy. Cancer Res 1986; 46: 5276-5281

7 Moolten FL. Drug sensitivity (“suicide”) genes for selective cancer chemotherapy. Cancer Gene Ther 1994; 1: 279-287

8 Mulligan RC. The basic science of gene therapy. Science 1993; 260: 926-932

9 Marcel T, Graus J. The TMC worldwide gene therapy enrollment report, end 1996. Hum Gene Ther 1997; 8: 775-800

10 Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM. In vivo gene transfer with retroviral vector producer cells for treatment of experimental brain tumors. Science 1992; 256: 1550-1552

11 Freeman SM, Ramesh R, Marrogi AJ. Immune system in suicide gene therapy. Lancet 1997; 349: 2-3

12 Mahvi DM, Burkholder JK, Turner J, Culp J, Malter JS, Sondel PM, Yang NS. Particle-mediated gene transfer of GM-CSF cDNA to tumor cells: implications for a clinically relevant tumor vaccine. Hum Gene Ther 1997; 8: 1355-1354

13 Kim TS, Cohen EP. IL-2 secreting mouse fibroblasts transfected with genomic DNA from murine melanoma cells prolong the survival of mice with melanoma. Cancer Res 1994; 54: 2531-2535

14 Cao GW, Gao J, Du P, Qi ZT, Kong XT. Construction of retroviral vectors to induce a strong expression of human class I interferon gene in human hepatocellular carcinoma cells in vitro. China J New Gastroenterol 1997; 3: 139-142

15 Wei MX, Bougnoux P, Beatrice SS, Peyrat MB, Lhuillery C, Salzmann JL, Klatzmann D. Suicide gene therapy of chemically sensitized tumor cells: implications for a clinically relevant tumor vaccine. Hum Gene Ther 1997; 8: 3529-3532

16 Boucher PD, Ruch RJ, Shewach DS. Differential ganciclovir-mediated cytotoxicity and bystander killing in human colon carcinoma cell lines expressing herpes simplex virus thymidine kinase. Hum Gene Ther 1998; 9: 801-814

17 Namba H, Tagawa M, Iwadate Y, Kimura M, Sueyoshi K, Sakiyama S. Bystander effect-mediated therapy of experimental brain tumor by genetically engineered tumor cells. Hum Gene Ther 1998; 9: 3-4

18 Su H, Lu R, Chang JC, Kan YW. Tissue-specific expression of herpes simplex virus thymidine kinase gene delivered by adenovirus associated virus inhibits the growth of human hepatocellular carcinoma in athymic mice. Proc Natl Acad Sci USA 1997; 94: 13891-13896

19 Sturtz FG, Waddell K, Shulok J, Chen X, Caruso M, Sanson M, Snodgrass HR, Platika D. Variable efficiency of the thymidine kinase/ganciclovir system in human glioblastoma cell lines: implications for gene therapy. Hum Gene Ther 1997; 8: 1945-1953

20 Chen CY, Chang YN, Ryan P, Linscott M, McGarity GJ, Chang YL. Effect of herpes simplex virus thymidine kinase expression on ganciclovir-mediated cytotoxicity and the “bystander effect”. Hum Gene Ther 1995; 6: 1467-1476

21 McMasters RA, Sayers RL, Jones K, Hendrix ME, Moyer MP, Drake RR. Lack of bystander killing in herpes simplex virus thymidine kinase-transduced colon cell lines due to deficient connexin43 gap junction formation. Hum Gene Ther 1998; 9: 2253-2261

22 Tournaire RL, Vahanian N, Ramsey WJ, Blaese RM. Enhancement of the herpes simplex virus thymidine kinase/ganciclovir bystander effect and its antitumor efficacy in vivo by pharmacologic manipulation of gap junctions. Hum Gene Ther 1999; 9: 2385-2391

23 Caruso M, Panis Y, Gagandeep S, Housin D, Salzmann JL, Klatzmann D. Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc Natl Acad Sci USA 1993; 90: 7024-7028

24 Tanaka T, Kanai F, Okabe S, Yoshida Y, Wakiimoto H, Hamada H, Shiratori Y, Lan K H, Ishitobi M, Omata M. Adenovirus-mediated prodrug gene therapy for carcinoembryonic antigen-producing human gastric carcinoma cells in vitro. Cancer Res 1996; 56: 1321-1325

25 Mesnil M, Piccoli C, Tiraby G, Willede K, Yamash K. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc Natl Acad Sci USA 1999; 96: 1813-1815

26 Trinh QT, Austin EA, Murray DM, Knick VC, Huber BE. Enzyme/prodrug gene therapy: comparison of CD/5-Fc versus TK/Gcv enzyme/prodrug systems in a human colorectal carcinoma cell line. Cancer Res 1995; 55: 4088-4812

27 Rogulsiki KR, Kim JH, Kim SH, Freytag SO. Glialoma cells transduced with an E. coli CD/HSV-ITK fusion gene exhibit enhanced metabolic suicide and radiosensitivity. Hum Gene Ther 1997; 8: 73-85

28 Denning C, Pitts JD. Bystander effects of different enzyme/prodrug systems for cancer gene therapy depend on different pathways for intercellular transfer of toxic metabolites, a factor that will govern clinical choice of appropriate regimes. Hum Gene Ther 1997; 8: 1825-1835

29 Yang L, Chiang Y, Lenz HJ, Danenberg KD, Spears CP, Gordon EM, Anderson WF, Parekh D. Intercellular communication mediates the bystander effect during herpes simplex thymidine kinase/ganciclovir-based gene therapy of human gastrointestinal tumor cells. Hum Gene Ther 1998; 9: 719-728

30 Vile RG, Nelson JA, Castleden S, Chong H, Hart IR. Systemic gene therapy of murine melanoma using tissue specific expression of the HSV-TK gene involved an immune component. Cancer Res 1994; 54: 6228-6234

31 Mullen CA, Coale MM, Lowe R, Blaese RM. Tumor expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5-Fc and induce protective immunity to wild type tumor. Cancer Res 1994; 54: 1503-1506

32 Yang Y, Nunes FA, Berenci K, Furth EE, Gonzalez E, Wilson JM. Cellular immunity to viral antigens limits E1-deleted adenovirus for gene therapy. Proc Natl Acad Sci USA 1994; 91: 4407-4411

33 Yang Y, Li Q, Ertl HC, Wilson JM. Cellular and humoral immune response to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 1995; 69: 2004-2015

34 Mullen CA, Kilstrup M, Blaese RM. Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selective system. Proc Natl Acad Sci USA 1996; 93: 7518-7523

35 Consolvo M, Mullen CA, Modesti A, Musiani P, Allione A, Cavallo F, Giovarelli M, Forni G. 5-Fluorocytosine induced eradication of murine adenocarcinoma engineered to express the cytosine deaminase suicide gene gene regain host immune competence and leaves an efficient memory. J Immunol 1995; 154: 5302-5312

36 Plautz GE, Yang ZY, Wu BY, Gao X, Huang L, Nabel GJ. Immunotherapy of malignancy by in vivo gene transfer into tumors. Proc Natl Acad Sci USA 1993; 90: 4645-4649

37 Ilesley DD, Lee SH, Miller WH, Kuchta RD. A cyclic guanosine analogs inhibits DNA polymerase alpha, delta, and epsilon with very different potencies and have unique mechanisms of action. Biochemistry 1995; 34: 2504-2510

38 Ramesh R, Marrogi AJ, Munshi A, Abboud CN, Freeman SM. In vivo analysis of the “bystander effect”: a cytokine cascade. Exp Hematol 1996; 24: 829-838

39 Kiamanesh AR, Perrin H, Panis Y, Fabre M, Nagy HJ, Housin D, Klatzmann D. A “distant” bystander effect of suicide gene therapy: regression of nontransduced tumors together with a distant transduced tumor. Hum Gene Ther 1997; 8: 1807-1814

40 Wolff G, Kerner J, Schumacher A, Arnold W, Dorken B, Mappara MY. Ex vivo breast cancer cell purging by adenovirus-mediated
cytosine deaminase gene transfer and short-term incubation with 5-fluorocytosine completely prevents tumor growth after transplantation. Hum Gene Ther 1998; 9: 2277-2284

42 Addison CL, Braciak T, Ralston R, Muller WJ, Gauldie J, Graham FL. Intratumoral injection of an adenovirus expressing IL-2 induces regression and immunity in a murine breast cancer model. Proc Natl Acad Sci USA 1995; 92: 8522-8526

43 Chen SH, Kosai K, Xu B, Khiem PN, Contant C, Finegold MJ, Woo SL. Combined suicide and cytokine gene therapy for hepatic metastasis of colon carcinoma: sustained antitumor immunity prolongs animal survival. Cancer Res 1996; 56: 3758-3762

44 Sobol RE, Shawler DL, Carson C, Van Baveren C, Mercola D, Fakhrai H, Garrett MA, Barone R, Goldfarb P, Bartholomew RM, Brostoff S, Carlo DJ, Royston I, Gold DP. Interleukin 2 gene therapy of colorectal carcinoma with autologous irradiated tumor cells and genetically engineered fibroblasts: A phase I study. Clin Cancer Res 1999; 5: 2359-2365

45 Palu G, Cavaggioni A, Calvi P, Franchin E, Pizzato M, Boschetto R, Parolin C, Chilosi M, Ferrini S, Zanusso A, Colombo F. Gene therapy of glioblastoma multiforme via combined expression of suicide and cytokine genes: a pilot study in humans. Gene Ther 1999; 6: 330-337

46 Gambotto A, Tuting T, McVey DL, Kovesdi I, Tahara H, Lotze MT, Robbins PD. Induction of antitumor immunity by direct intratumoral injection of a recombinant adenovirus vector expressing interleukin-12. Cancer Gene Ther 1999; 6: 45-53

47 Saffran DC, Horton HM, Yankaukas MA, Anderson D, Barnhart KM, Abai AM, Hobart P, Manthorpe M, Norman JA, Parker SE. Immunotherapy of established tumors in mice by intratumoral injection of IL-2 plasmid DNA: induction of CD8+ T-cell immunity. Cancer Gene Ther 1999; 6: 321-330

48 Shi FS, Weber S, Gan J, Rakhmilevich AL, Mahvi DM. Granulocyte-macrophage colony-stimulating factor (GM-CSF) secreted by cDNA-transfected tumor cells induces a more potent antitumor response than exogenous GM-CSF. Cancer Gene Ther 1999; 6: 81-88

Edited by Zhang JZ