The Catalytic Mechanism of Glutathione Reductase as Derived from X-ray Diffraction Analyses of Reaction Intermediates*

Emil F. Pai‡ and Georg E. Schulz
From the Max-Planck-Institut für medizinische Forschung, D-6900 Heidelberg, Federal Republic of Germany

The mode of binding of NADPH and oxidized glutathione to the flavoenzyme glutathione reductase has been determined by x-ray crystallography. Furthermore, two intermediates of the reaction have been produced in the crystal and have been structurally elucidated. All these analyses were done at 0.3 nm resolution. The redoxactive disulfide bridge. This is consistent with the scheme that has been postulated from biochemical, spectroscopic, and model studies.

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† Present address, Department of Chemistry, University of California at Santa Barbara, Santa Barbara, CA 93106.

Glutathione reductase (EC 1.6.4.2) is a ubiquitous FAD-containing enzyme (1). It catalyzes the reaction

\[H^+ + \text{NADPH} + E = \text{NADP}^+ + \text{EH}_2 \]

\[\text{EH}_2 + \text{GSSG} \rightleftharpoons 2 \text{GSH}, \]

where the intermediate \(\text{EH}_2 \) is the stable 2-electron reduced form of the enzyme. The function of the enzyme is to keep the cellular concentration of the reduced form of glutathione (GSH) high and that of its oxidized form (GSSG) low. Recent publications report a value of about 3000 for the ratio [GSH]/[GSSG] (2). The enzyme uses NADPH as a source of reduction equivalents. Its substrate GSSG as well as its product GSH are important for a broad range of cellular functions, e.g. cell division (3, 4), amino acid transport through membranes (5), regulation of enzymatic activity (6, 7), damage repair (8, 9), drug metabolism (10), and detoxication (11). Moreover, the enzyme has been identified as one of the target molecules of the widely applied antitumor drug carmustine (12, 13).

Glutathione reductase is a member of the family of disulfide reductases. This family also includes lipoamide dehydrogenase and thioredoxin reductase, both FAD-containing redox enzymes that interact with disulfide substrates (1, 14). Lipoamide dehydrogenase especially is very similar to glutathione reductase, both in structural and mechanistic aspects (15, 16). Also the bacterial enzyme mercuric reductase resembles glutathione reductase (17).

In our experiments we used glutathione reductase from human erythrocytes, a member of the enzyme of 2 × 52,400 molecular weight (18, 19). Its amino acid sequence is known (20–23) and has been fitted to an electron density map of 0.2 nm resolution, yielding the complete structure of the molecule (24). Here we report on the crystal structures of the complexes between glutathione reductase and its reaction partners NADPH and GSSG as well as on two reaction intermediates and a covalently modified enzyme. The observed geometries of these complexes and the intermediates allow some conclusions on the mechanism of action of this flavoenzyme.

MATERIALS AND METHODS

Purified glutathione reductase (20) was a gift from Dr. R. H. Schirmer (University of Heidelberg, West Germany). The crystallization of the enzyme has been described earlier (24). Crystals of Form B were transferred to standard storage solutions (26) containing the dinucleotide NADPH in an extended form of flavin. These crystals were fixed in their \(\text{EH}_2 \) state. The imidazole of His-467 is near to all sulfurs taking part in the disulfide bridge exchange and is therefore certainly crucial for catalysis.

The crystallographic results establish that electrons flow from NADPH to the substrate GSSG via flavin and the redoxactive protein disulfide bridge. This is consistent with the scheme that has been postulated from biochemical, spectroscopic, and model studies.
to GSSG. Here the difference density revealed that only the adenosine moiety of oxidized NADP+ is bound to the oxidized enzyme, E, whereas from the pyrophosphate onward the nicotinamide moiety is dangling in the solvent.

The intermediate state EH2 in the catalytic cycle of the enzyme was produced in Soak C. The resulting difference electron density showed one major change as compared to the oxidized enzyme; the disulfide bridge Cys-58-Cys-63 has opened and the sulfur of Cys-58 has moved by about 0.1 nm toward the sulfur of glutathione I. In Fig. 1 these two sulfurs are marked by dots. The opening of the disulfide bridge Cys-58:Cys-63 has also been observed in Soak A, where NADPH had reduced the enzyme to its EH2 form.

The sulfhydryl of Cys-58 created in this reduction is a highly reactive nucleophile and can be rather selectively modified with 2-iodoacetamide to give EHR, the blocked 2-electron reduced enzyme. This reaction could be demonstrated for the yeast (29) and the human enzyme (22). In the human enzyme the reaction occurs when NADPH (or dithioerythritol) and 2-iodoacetamide are applied at the same time (22). When we tried a similar procedure on the crystalline human enzyme in Soak D (Table I), the resulting difference-Fourier map showed one significant positive peak with size and shape corresponding to a carboxamidomethyl group plus the displaced sulfur of Cys-58. EHR molecules are no longer able to react with glutathione, or, to transfer electrons via FAD to NADP+ in the back reaction. Therefore, crystals of EHR are stable in aerobic buffers. So far, we have kept some of them for more than 1 year without any indications of reoxidation.

In two further experiments, Soaks E and F (Table I), we obtained the mixed disulfide between glutathione I and Cys-58 of the protein. The two difference electron density maps were essentially identical with each other. Glutathione I was bound like the glutathione I moiety of GSSG in Soak B, except for the disulfide bridge which now is glutathione I:Cys-58 instead of glutathione I:Cys-63. The reductive disulfide bridge between Cys-58 and Cys-63 is open. The position of glutathione II is occupied at a level of about 20% of glutathione I.

In order to illustrate the gross arrangement of ligands in glutathione reductase we give a structural overview in Fig. 2. The enzyme consists of two subunits, which are related to each other by a 2-fold axis. The subunits are covalently connected by a single disulfide bond across this molecular axis. The 18 NH2-terminal residues have no defined structure in the crystal. The functional role of this flexible arm is not known. The arm contains a cysteine at position 2. Considering the gross geometry of the enzyme Cys-2 could possibly reach Cys-58 of the reductive disulfide bridge. The remaining 460 residues of the polypeptide chain are geometrically organized into four domains. The first two domains along the chain resemble each other structurally and bind FAD and NADPH, respectively. The central and the interface domain follow at the COOH-terminal side.

Considering all residues making up one catalytic center one realizes that they come from five different domains: all four domains of one subunit and the interface domain of the other subunit. As compared to other known protein structures such a large number of domains participating in the catalytic center is unusual. Moreover, the catalytic center lies between subunits. For example both glutathione molecules are stretched between subunits as indicated in Fig. 2.

The catalytic center can be subdivided into two parts, one

![Fig. 1. Stereo drawing of ligands bound to glutathione reductase together with important amino acid residues. The positions of FAD, NADPH, and GSSG correspond to those of Fig. 3, where they are named. The same applies for the depicted couples of amino acid side chains Cys-58:Cys-63, Lys-66:Glu-201, Arg-291:Asp-331 and His-467:Glu-472. The side chain of Tyr-114 is given at its location without GSSG bound. On binding of this substrate the side chain of Tyr-114 moves by about 0.1 nm toward the viewer. All Cα-atoms of these amino acids are marked by dots. The bridge Cys-58:Cys-63 is given by a dotted line. The formation of the mixed disulfide Cys-58:Glutathione-I is marked by a dashed line.](http://www.jbc.org/)

![Fig. 2. Gross structure of the dimeric enzyme glutathione reductase as viewed along the molecular 2-fold axis. The NH2-terminal 18 residues are flexible. The remaining polypeptide chain is geometrically organized into four domains. The ligands FAD, NADPH, and GSSG are indicated. There exists a single intersubunit disulfide bridge across the molecular axis.](http://www.jbc.org/)
part binding NADPH and the other binding GSSG. This distinction reflects the two-step reaction catalyzed by the enzyme. As shown in Fig. 3 each part corresponds to a deep pocket in the protein, which is filled with solvent when the respective ligand is absent. These two pockets come from opposite sides of a subunit, and meet each other in the subunit center. If these pockets were not separated from each other by flavin and the reductase disulfide Cys-58:Cys-63, they would join and form a channel through the subunit. Binding of the substrates to the enzyme in such a geometry results in optimal protection of the reaction center against solvent molecules, which otherwise could interfere with the electron transfer process.

In Fig. 3 we have sketched all those parts of the enzyme-ligand complexes which are given as an exact drawing in Fig. 1. We find it advisable to describe the catalytic center using this sketch and refer the reader to Fig. 1 for exact geometry. The two dinucleotides FAD and NADPH bind in elongated conformations to the protein. The nicotinamide part of NADPH is in close contact with the flavin part of FAD, whereas the adenine moieties of NADPH and FAD are far apart from each other; the distance between the N1 positions of the two adenines is 2.9 nm.

In the binding pocket of NADPH the side chain of Tyr-197 is indicated by a dotted line. Without NADPH being present this phenol ring covers the nicotinamide binding pocket and thus shields flavin against the solvent. On binding of NADPH (Soak A), but not on binding of NADP⁺ (Soak B), Tyr-197 moves away so that nicotinamide can reach the flavin.

Flavin is surrounded by several pairs of polar, usually ionized residues, which most likely form salt bridges. The most conspicuous one is Lys-66:Glu-201 at the bottom of the nicotinamide binding pocket deeply buried in the protein. The imidazole of His-467' is fixed by a short and therefore strong hydrogen bond to Glu-472'. This imidazole also contacts the sulfur of the distal Cys-58 and the sulfur of glutathione I. The guanidinium group of Arg-291 is close to the Cα methyl group of flavin. It interacts with Asp-331 via a trapped water molecule. In all three cases, it is the basic partner of these couples of polar residues which is closer to the flavin ring.

Between flavin and GSSG there is the reductase disulfide Cys-58:Cys-63 of the protein. This disulfide and its catalytic importance have already been detected by chemical means (1, 30) before the x-ray analysis was started. Moreover, on the basis of chemical and spectroscopic data it had been postulated that this disulfide bridge contacts the flavin ring near to its C4a atom (31). This hypothesis is now perfectly confirmed by the x-ray analysis showing the proximal sulfur of Cys-63 between C4a and C10a (see below). On binding of GSSG, Tyr-114 moves by about 0.1 nm as observed in the difference electron density map. Its phenolic ring then fits between the glycine moieties of glutathiones I and II with the hydroxyl group contacting the disulfide bridge of GSSG.

In the first part of the catalytic reaction given above the enzyme is reduced to its stable EH₂ form, and NADPH is oxidized to NADP⁺. From Soak C and the resulting difference density we know that EH₂ contains an open disulfide bridge Cys-58:Cys-63. Moreover, spectroscopic data indicated that there is a charge transfer complex between a thiolate anion of the proximal Cys-63 and the oxidized flavin ring (32, 33). These data together with the now known geometrical arrangement of the reaction partners (Figs. 1 and 3) clearly indicate that the reduction equivalents flow from nicotinamide via flavin to the Cys-58:Cys-63 bridge.

In this sequence the first step is the transfer of reduction equivalents from nicotinamide to flavin while the two rings are stacked onto each other. The exact geometry of the...
bridge Cys-58:Cys-63 are given in Table II.

State 2 of the reaction cycle given in Fig. 5 is the complex between NADP" and EH2. In our experiments we have produced the complex between NADPH and EH2 in Soak A because we used a large excess of reduced NADPH and because NADPH binds more tightly to EH2 than NADP" (35). In both complexes, however, the NADP conformation and location are essentially the same, because the difference electron density maps of Soak A and of Soak D, where we produced the complex between NADP" and the blocked reduced enzyme EHR (carboxymethylated at Cys-58), correspond closely with each other at 0.3 nm resolution.

The 2-electron reduced form of the enzyme, EH2, is represented as State 3 of Fig. 5. When compared to State 1, the sulfur of Cys-58 has moved by about 0.1 nm. Furthermore, some positive difference electron density between the proximal sulfur of Cys-63 and flavin appears, indicating a slight movement of the order of 0.01 nm of this sulfur toward flavin on the formation of the charge transfer complex (32,33). The distances between these two sulfurs and N, of His-467 are given in Table II.

In State 4 of Fig. 5 we merged three steps of the reaction, (i) the binding of GSSG to the reduced enzyme EH2, (ii) the formation of the mixed disulfide between glutathione I and Cys-58 with subsequent release of glutathione II, and (iii) the release of glutathione I. This drawing is based on Soak B, which revealed how GSSG is bound to the oxidized enzyme E, and on Soaks E and F, which established that glutathione I forms the mixed disulfide and glutathione II leaves the enzyme first. In the mixed disulfide the sulfurs of glutathione I and Cys-58 are at essentially the same positions as in Soaks B and C, respectively. Although Soaks E and F show a certain although low occupancy of glutathione II the position of sulfur

![Fig. 4. Environment of the stacked rings of flavin and nicotinamide. Flavin is assumed to lie in the paper plane with its surface pointing to the viewer, all other atoms are projected vertically onto this plane. All distances are given in nanometers. Presumed hydrogen bonds are indicated by rows of slashes. Distance measurements are marked by dashed lines. Also in the paper plane is the carboxyl oxygen of His-467 and the center C(6) of the guanidinium group of Arg-291. The inserted a-helix of residues 338-354 starts close to O2a in the paper plane and extends to the upper rear side. The sulfur S is located 0.34 nm below the paper plane and belongs to Cys-63. The nicotinamide ring lies 0.34 nm above the paper plane. Its carboxamide group is twisted as marked. The distance between O2a of Glu-201 and N1 of Lys-66 is 0.24 nm. The distance between O4a and C4' of nicotinamide is 0.32 nm. The alky parts of Lys-66 covers tightly the N3 atom of flavin, the distance between C(6) and N5 being 0.34 nm. The accuracy of the nicotinamide position is about 0.05 nm.](http://www.jbc.org/)

![Fig. 5. Four states of the catalytic reaction cycle of glutathione reductase, for which structural data are available. State 1 is the oxidized enzyme E. State 2 is the complex between NADP" and the reduced enzyme EH2. Here, we know the structures of the complexes between NADPH and EH2 as well as the complex between NADP" and the blocked (carboxymethylated at Cys-58) reduced enzyme EHR. The NADP location in both complexes is very similar. State 3 is the reduced enzyme EH2, a stable reaction intermediate. In State 4 we combine three catalytic steps, the binding of GSSG to EH2, the formation of the mixed disulfide between glutathione I and Cys-58 (dotted line) with subsequent release of glutathione II, and the release of glutathione I. The light arrows refer to assumed hydrogen movements on formation of mixed disulfide and release of glutathione II. The black arrows refer to splitting of the mixed disulfide and the release of glutathione I. The hydrogens of all four states are postulated; they cannot be located by x-ray diffraction. For distances see Table II.](http://www.jbc.org/)

Table II

State	Complex	Atoms	Distance (nm)
1	E	Nɛ-Sα	0.36
2	EH2	Nɛ-Sα	0.44
3	E-GSSG	Sα-Sɛ	0.50
4	EH2-GSSG	Sα-Sɛ	0.36
4	E-SG + GSH	Nɛ-Sɛ	0.31
		Nɛ-Sɛ	0.38

SII cannot be recognized safely. On formation of the mixed disulfide the sulfur of glutathione II moves away. The distances between the relevant atoms are given in Table II. Assuming that SII moves toward N, of His-467 where it can find space, and that it stops at van der Waals distance of 0.32 nm from its former sulfur partner S, the resulting distance to N amounts to 0.38 nm. Thus, glutathione II may well pick up a proton from His-467. Moreover, there is no other conspicuous proton donor nearby.

DISCUSSION

Glutathione reductase is catalytically active in the crystals used for x-ray analysis; on addition of NADPH yellow crystals...
Catalytic Mechanism of Glutathione Reductase

(State 1 of Fig. 5) turn red (State 3 of Fig. 5), and these red crystals turn yellow again when NADPH is removed and GSSG added. Therefore, the structurally analyzed intermediates are most likely catalytically competent.

The catalytic cycle starts with the binding of NADPH to the oxidized enzyme (State 1 of Fig. 5). As the first intermediate we define State 2 of Fig. 5, where the reduction equivalents have opened the redox-active disulfide bridge. In Soaks A and D (Table I) we produced the complexes EH2•NADPH and EHR•NADP+, which resemble each other closely. Therefore, it is most likely that within the limits of error their geometry corresponds to State 2 of Fig. 5.

The geometric arrangement of nicotinamide, flavin, and their environment are given in Fig. 4. Here, one has to keep in mind that x-ray analyses of proteins do not show hydrogen atoms. As a consequence all hydrogens given in, or discussed in conjunction with Figs. 4 and 5, are either postulated or derived from standard geometries. Fig. 4 demonstrates that the transferred H3-atom of nicotinamide (34) is near to N5 of flavin at Lys-66. Since N5 is tightly covered by the alkyl part of Lys-66, it is rather unlikely that H2 attaches to N5 and enters the flavin plane. Also, we cannot find any other reasonable pathway for H2 from the re- to the si-face of flavin. Thus, we conclude that H3 does not proceed to the redoxactive disulfide, but eventually remains as a proton in the NADPH-binding pocket (Figs. 3 and 5).

The nature and the sequence of the reduction equivalents transferred from NADPH to flavin and from flavin to the disulfide cannot be directly determined in an x-ray structure analysis. The observed geometry does not rule out previous suggestions (36-40): only the covalent bond between C2' and C4a proposed by Hemmerich (37) seems to be very unlikely. The atomic arrangement indicates that H2 ends up at Nc of Lys-66 after this has pushed one hydrogen over to Glu-201. The short distance between C4' and O4 of Glu-201 may help to drive electrons into flavin.

When immersed in the flavin ring system, the electrons have to be stabilized. A major contribution to this stabilization could come from the presumably positively charged residues around flavin (Fig. 3). Moreover, the NH2 terminus of α-helix 338-354 is near to N1 and O2α (Fig. 4). This helix stabilizes a negative charge, which occurs in this region in anionic flavin states (41).

For picking up the electrons from flavin the proximal sulfur of Cys-63 may form a short-lived covalent bond to C4a, as has been suggested from spectroscopic data (42). An intermediate bond between sulfur and C4a is likely to occur in the closely related enzyme lipoamide dehydrogenase (31). Moreover, such a bond has been observed in model studies (43, 44). After breaking this bond, Cys-63 forms a thiolate anion. This anion is at the NH2 terminus of α-helix 63-80 and therefore stabilized by the helix dipole.

In stopped flow experiments the formation of State 2 (Fig. 5) has been resolved into three steps (42). In the light of the then known general geometry at the active center (27), these steps have been interpreted as (i) a charge transfer complex between NADPH (donor) and oxidized flavin (acceptor), (ii) a charge transfer complex between NADP+ (acceptor) and reduced flavin (donor), and (iii) a covalent attachment of the proximal sulfur to C4a (42). The assumed charge transfer complexes, however, do not imply that electrons are passed on via such an interaction.

In the next step of the cycle the enzyme proceeds to State 3 (Fig. 5), the stable intermediate EH2 that has been characterized in detail (1, 30). EH2 contains an oxidized flavin and a reduced disulfide. In this step NADP+ leaves its pocket. Presumably, this is facilitated by the surplus positive charge at Lys-66 repelling the positively charged nicotinamide. Furthermore, the additional proton in the salt bridge is released to the solvent via a column of water molecules, and the salt bridge is reinstalled.

From what has been chemically (1, 30) the enzyme takes up 2 protons from the solvent when proceeding from State 1 to State 3. This happens most likely in the GSSG binding pocket. States 2 is drawn with these protons already present, although nothing is known about the time sequence of NADP+ detachment, salt bridge discharge, and proton uptake. For geometric reasons (Table I) the protons should be picked up one after the other using Nc of His-467 as a relay station. In EH2 a hydrogen bond between this Nc and Seα is very likely, whereas the distance between Nc and Seα is too large for such an interaction. Fig. 5 agrees well with chemical data, showing that a base with a pK of 6.5 has been protonated in EH2, which indicates that a histidine is involved (45). The charged histidine may also stabilize the thiolate anion.

The reactions from State 1 to State 3 (as well as the complete cycle) lead to a proton release in the NADP pocket at one side of the enzyme (Fig. 3) and a proton uptake in the GSSG pocket at the other side. As a consequence, the enzyme would perform the function of a proton pump if it were suitably packed into a membrane (46, 47).

The stable intermediate EH2 allows the subdivision of the reaction cycle into the two parts given above as separate equations. The structure analysis shows that these two parts are also geometrically distinct from each other (Figs. 2, 3, and 5). Between State 1 and State 3 of Fig. 5 the most essential reactions happen at the NADPH site, i.e. at the re-face of flavin, whereas the following bridge exchange takes place at the si-face. The degree of separation is also reflected in the observation that transhydrogenase and electron transferase activity, which are by-reactions occurring in the NADPH pocket, are not much affected by enzyme modifications in the GSSG pocket (47).

When the substrate GSSG is bound, the enzyme proceeds to State 4. This figure combines three reaction steps: (i) the binding of GSSG to EH2, (ii) the formation of the mixed disulfide with subsequent release of glutathione II, and (iii) the release of glutathione I. Our x-ray analysis showed how GSSG is bound to the oxidized enzyme (Soak B). Since the only appreciable difference between EH2 (State 3) and E (State 1) is the opened disulfide bridge, we can safely use Soaks B and C and derive the structure of the complex EH2-GSSG from E-GSSG and EH2.

On binding of GSSG, the phenol ring of Tyr-114 moves by about 0.1 nm and accommodates itself snugly between the hydroxyl moieties of glutathione I and II. The tyrosine hydroxyl group is at van der Waals contact to both sulfurs of GSSG (Fig. 5). However, because of its high pK value we hesitate to suggest this hydroxyl as a proton donor for any one of the leaving glutathiones. We do not expect that this pK is lowered in the rather nonpolar environment of the phenol.

From Soaks E and F we know that glutathione I forms a mixed disulfide with the protein, E-SG, and that glutathione II leaves the enzyme first. This order could have been guessed from the structure of E-GSSG found with Soak B, because in this complex glutathione I is much more tightly bound than glutathione II. The crystals of Soaks E and F have the red color characteristic for EH2, indicating that the charge transfer complex between thiolate anion and flavin is still intact. As shown in Table II, the opening of the Cys-58:Cys-63 bridge makes Sα move toward S1 (of glutathione I) the distance decreasing from 0.50 to 0.36 nm. At its new position Sα can start a nucleophilic attack on S1, whereas the proton of Sβ leaves its position between Sα and Sβ and moves towards Nc of His-
467'. Concomitantly, the proton of N, is handed over to SII, which on breaking of the SI:SII bond can come as near as 0.38 nm to N,. Gluthionine I1 is then released.

The new bonding pattern at now facilitates a nucleophilic attack from the reaction cycle given in Fig. 5. These analyses did not reveal any hydrogens. Therefore, the ionic states of possible partners in GSSG and in the enzyme.

In conclusion we report here the x-ray structures of in TAS and in the enzyme.

Acknowledgment—We thank Dr. R. Heiner Schirmer for providing us with a pure glutathione reductase preparation ready for crystallization as well as for very informative discussions, and Dr. Alwyn Jones for generous help on the interactive display system at Uppsala, Sweden.

REFERENCES

1. Williams, C. H., Jr. (1976) in The Enzymes (Boyer, P. D., ed), 3rd ed., Vol. 13, pp. 89-172; Academic Press, New York
2. Akbar, T. M., Blizer, M., and Sies, H. (1982) J. Biol. Chem. 257, 4296-4302
3. Il, I., and Sakai, H. (1974) Biochim. Biophys. Acta 350, 151-161
4. Rebun, L. I., Miller, M., Schnaitmann, T. C., Nath, J., and Mellon, M. (1976) J. Supramol. Struct. 5, 199-219
5. Meister, A. (1981) Trends Biochem. Sci. 6, 231-234
6. Pontremo, S., and Horecker, B. L. (1970) Curr. Top. Cell. Regul. 2, 173-199
7. Holmgren, A. (1979) J. Biol. Chem. 254, 3672-3678
8. Freedman, R. B. (1979) FEBS Lett. 97, 201-210
9. Kosower, N. S., and Kosower, E. M. (1974) in Glutathione (Flohe, L., Beno, M. Ch., Sies, H., Waller, H. D., and Wendel, A., eds) pp. 218-227; Georg Thieme Publishers, Stuttgart
10. Carberg, L., Depierre, J. W., and Mannervik, B. (1981) Biochim. Biophys. Acta 677, 140-145
11. Chasseaud, L. F. (1979) Adv. Cancer Res. 30, 175-274
12. Fisch, H., and Ahmad, R. (1977) J. Lab. Clin. Med. 89, 1081-1091
13. Babson, J. R., and Reed, D. J. (1978) Biochem. Biophys. Res. Commun. 83, 754-762
14. Holmgren, A. (1980) Experientia (Basel) Suppl. 36, 149-180
15. Williams, C. H., Jr., Arscott, L. D., and Schulz, G. E. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 2198-2203
16. Williams, C. H., Jr., Thorpe, C., and Arscott, L. D. (1978) in Mechanisms of Oxidizing Enzymes (Singh, T. P., and Ondarza, R. N., eds) pp. 3-16; Elsevier North-Holland, New York
17. Fox, B., and Walsh, C. T. (1982) J. Biol. Chem. 257, 2498-2503
18. Worthington, D. J., and Rosemeyer, M. A. (1975) Eur. J. Biochem. 60, 426-426
19. Worthington, D. J., and Rosemeyer, M. A. (1976) Eur. J. Biochem. 67, 231-238
20. Krohne-Ehrich, G., Schirm, R. H., and Untucht-Grau, R. (1977) Eur. J. Biochem. 80, 65-71
21. Schulte, E., Blatterspiel, R., and Untucht-Grau, R. (1979) Eur. J. Biochem. 102, 269-279
22. Untucht-Grau, R., Schirm, R. H., Schirm, I., and Krauth-Siegeld, R. L. (1981) Eur. J. Biochem. 120, 407-419
23. Krauth-Siegeld, R. L., Blatterspiel, R., Saleh, M., Schiltz, E., Schirm, R. H., and Untucht-Grau, R. (1982) Eur. J. Biochem. 121, 255-267
24. Thieme, R., Pai, E. F., Schirm, R. H., and Schulz, G. E. (1981) J. Mol. Biol. 152, 763-782
25. Schulz, G. E., Zappe, H., Worthington, D. J., and Rosemeyer, M. A. (1978) FEBBS Lett. 54, 86-88
26. Zappe, H. A., Krohne-Ehrich, G., and Schulz, G. E. (1977) J. Mol. Biol. 113, 141-152
27. Schulz, G. E., Schirm, R. H., Sachsenheimer, W., and Pai, E. F. (1978) Nature (Lond.) 273, 120-124
28. Jones, T. A. (1978) J. Appl. Crystallogr. 11, 268-272
29. Arscott, L. D., Thorpe, C., and Williams, C. H., Jr. (1981) Biochim. Biophys. Acta 20, 1513-1520
30. Massey, V., and Williams, C. H., Jr. (1965) J. Biol. Chem. 240, 4470-4480
31. Thorpe, C., and Williams, C. H., Jr. (1976) J. Biol. Chem. 251, 7729-7728
32. Kosower, E. M. (1966) in Flavins and Flavoproteins (Slater, E. C., ed), pp. 1-14; Elsevier, Amsterdam
33. Massey, V., and Ghisia, S. (1974) Ann. N. Y. Acad. Sci. 227, 46-465
34. Stern, B. K., and Vendeeland, B. (1960) J. Biol. Chem. 235, 209-212
35. Bulger, J. E., and Brandt, K. G. (1971) J. Biol. Chem. 246, 5578-5587
36. Hamilton, G. A. (1971) in Progress in Bioorganic Chemistry (Kaiser, E. T., and Keeley, T. J., eds) Vol. 1, pp. 83-173; Wiley-Interscience, New York
37. Hemmerich, F. (1976) in Progress in the Chemistry of Organic Natural Products (Herz, W., Grisebach, H., and Kirby, G. W., eds) Vol. 34, pp. 451-527; Springer-Verlag, Wien
38. Walsh, C. (1980) Acccts. Chem. Res. 13, 148-155
39. Bruice, T. C. (1980) Am. Chem. Res. 13, 236-262
40. Blakemorn, G. (1976) Eur. J. Biochem. 67, 57-80
41. Müller, F., Hemmerich, P., Ehrenberg, A., Palmer, G., and Massey, V. (1970) Eur. J. Biochem. 14, 186-196
42. Huber, P. W., and Brandt, K. G. (1980) Biochemistry 19, 4568-4575
43. Yako, I., and Bruice, T. C. (1975) J. Am. Chem. Soc. 97, 450-451
44. Loechler, E. L., and Holoher, T. C. (1980) J. Am. Chem. Soc. 102, 7312-7314
45. Matthews, R. G., Ballou, D. P., Thorpe, C., and Williams, C. H., Jr. (1977) J. Biol. Chem. 252, 3199-3207
46. Fritsch, K. G., Pai, E. F., Schirm, R. H., Schulz, G. E., and Untucht-Grau, R. (1979) Hoppe-Seylers Z. Physiol. Chem. 360, 261-262
47. Mannervik, B., Boggaram, V., Carlberg, L., and Larson, K. (1980) in Flavins and Flavoproteins (Yagi, K., and Yamano, T., eds) pp. 173-187; Japan Scientific Societies Press, Tokyo
The catalytic mechanism of glutathione reductase as derived from x-ray diffraction analyses of reaction intermediates.

E F Pai and G E Schulz

J. Biol. Chem. 1983, 258:1752-1757.