The readiness model of information technology implementation among universities in Indonesia

Mohamad Irfan¹, Syopiansyah Jaya Putra² and Muhammad Ali Ramdhani¹

¹Department of Informatics, Sunan Gunung Djati Bandung State Islamic University, Bandung, Indonesia
²Department of Information System, UIN Syarif Hidayatullah, Jakarta, Indonesia

*irfan.bahaf@uinsgd.ac.id

Abstract. This study reports on how to combine several models in the context to assess the readiness of IT implementation in Higher Education Institution. Many studies are generated by researchers about the readiness model, that most Readiness models are developed by adopting, combining, and adapting models of some existing models. Researchers develop models based on input-process-output logic and processional models and causal relationships using the E-Readiness model and the ZEN Framework adoption model. The developed model is organized into seven variables and 50 indicators. Relationships between variables are linked with 12 links as hypotheses. For this model research to the break down the level of the assessment instrument. However, this study is limited to the model to be used for research.

1. Introduction

The problem of implementing IT in Higher Education Institution (HEI) in Indonesia is one of the interesting themes for researchers and practitioners in the Information Systems scientific discipline two decades ago. The goal of implementation in HEI is to gain competitive advantage from business opportunities generated by IT, saving costs for infrastructure development in the future, developing successful resources and competencies in the organization. The steps that must be taken to see the readiness of the system are by combining management and business knowledge with technical knowledge, developing business strategies, determining IT strategies, stakeholder interaction with IT and stakeholders' business collaboration vision [1]–[4].

How can the role of IT in HEI be optimal and optimal should there be a study that measures HEI’s readiness for IT implementation [5]–[7]. People have discussed this subject especially about the efficiency and effectiveness of business in IT-based HEI. Then the study was conducted by researchers and professional readiness in the next few periods [8]–[11]. It can be seen clearly that the models are interconnected between one another, and several models are combined with other models. For example, the E-Readiness theory, Service Quality, and ZEN Framework from Indonesia for the adoption of IT in HEI. This is consistent with indications of several previous studies which show that many Readiness models are developed concerning previous theories and are based on empirical studies.

Furthermore, many studies explain that E-readiness is a level where stakeholders are prepared to participate using technology that can help build better institutions and institutions ready to receive the benefits and benefits of implementing IT [12]–[17]. Thus, this is an interesting phenomenon of how to continue the study of Readiness performance by developing new Readiness by adopting, combining or adapting the existing Readiness models [18], [19].
The purpose of this research is to explore the effect of merging, combination and adoption of IT implementation readiness on HEI. Based on the presentation of the research program mentioned above, two research questions were then proposed to be a reference for the implementation of this exploratory research.

Q-1. How to understand the relationship between the E-Readiness model and the implementation of IT in HEI?

Q-2. How can merging, combination, and adoption of IT implementation readiness increase the benefits of using IT in HEI?

Structurally this paper is arranged in seven parts. First, the introduction section which explains the background, problems, and objectives of the study. Second, the Literature Review section which describes the relevant theory references that are used to define the variables to be studied. The three research methods used to combine, combine and adopt IT implementation readiness. Fourth Result and Discussion. The fifth part of the conclusion that concludes this study.

2. Literature Review

It can be seen clearly that the implementation of IT has a significant impact on the progress of HEI, what if it is able and successful in implementing IT by the factors that influence readiness [4], [5], [13], [20]. This means that the successful implementation of IT is a significant challenge for HEI before benefiting. On the contrary, besides the failure of IT implementation will bring financial losses; inhibition of the academic system [21], the delay in the administration and unmanaged services of the needs of stakeholders well [6], [22]. Previous studies that measured IT implementation readiness [5], [12], [23]–[25] showed that the criteria for IT implementation readiness related to People, Process, Technology, Governance, Policy, Work Environment, and Infrastructure. Several surveys about IT implementation readiness [8], [26], [27] studies revealed that one indication of implementation failure was, according to Mohamad Ali Murtadho, because of the incompatibility of the system with business processes and information needed by the organization [28]. According to [29], the failure of the implementation of information systems in organizational business processes includes universities (universities) not only due to technical factors but rather non-technical problems (human factors, work processes and organizations). Unlike Curry, [30] distinguishes failure in the implementation of an information system into two aspects, namely technical aspects and non-technical aspects [31], [32].

Researchers are interested in creating a readiness model that suits the needs and conditions of HEI in Indonesia, research questions are arranged based on Population, Intervention, Comparison, Results, Context (PICOC) [33], [34]. The development of the research model on Readiness is done by adopting, combining, and adapting the previous Readiness model [8], [23], [35], [36].

3. Research Method

The study of the development of this model was carried out in four main stages (Figure 1). First, a preliminary study (S1) is carried out by retrospectively reviewing the behavioral, organizational, and social themes of the Information System (IS) study, one of which is Readiness [37]. In addition to reviewing the literature to formulate research programs. Then followed by modeling in the second stage (S2). The development phase of this model begins with the first sub-step (S2.1) to develop assumptions based on the chosen theory.
Figure 1. Research Methodology

Following the assumptions developed by Nur Mardhiyah Aziz's technology readiness model [38] and the ZEN Framework readiness model, later adopted, combined, and adapted respectively in the second (S2.2), third (S2.3), and fourth sub-stages (S2.4). The model developed was then broken down into the level of the next research instrument entered into the operational phase (S3). Finally, the research model developed and the data collection instruments are then proposed in the reporting phase.

4. Result and Discussions

Figure 2 presents the proposed IT Implementation Readiness (ITIR) model. This development was inspired by previous model development research [8], [12] following for the trend of developing models from Nur Mardhiyah Aziz [38] and Zen Framework [8], [39], studies showing that most IS research models tend to be developed practically using the previous model rather than based on empirical studies. Generally, this model was developed by adopting, combining, and adapting technology readiness [5], [10], [12], [13], [26], [35], [40], [41] models with seven variables, namely IT Content (ITC), Institutional Context (INC), People (PPL), Process (PRC), Technology (TCG), Service Quality (SVQ) and IT Implementation Readiness (ITIR).

Figure 2. Propose ITIR Model
Referring to previous research [4], [8], [12], [13], [40], [42]–[44] which uses input-process-output logic (IPO) in the development of research models, researchers assume that the combination process and the adoption of readiness can also be assumed in the logic mentioned above. Conceptually, IT Content and Institutional Context are Inputs from the developed model, while People, Process, Technology and Service Quality are the phases of the process of developing the readiness model, while for IT implementation and the output of the process, ITIR. The definition of seven variables and 50 indicators can be seen in table 1, table 2 and table 3.

Table 1. List of The Variables

Variable	Definitions	Reference
ITC	This variable is defined as an internal condition of IT use that expresses its characteristics regarding IT implementation	[8], [12], [40]
INC	This variable describes the point into the internal property and the external conditions of the institution that affect IT implementation	[12], [45]
PPL	Variables that explain the readiness factors influenced by people such as Workforce Capability, Leadership, Competency, Resources, Change Management, HR and Cultural Infrastructure	[8], [13], [40]
PRC	Variables that explain the readiness factors influenced by the Process such as Culture, Governance, Awareness, Strategy and Management Commitment	[8], [13], [40]
TCG	Variables that explain the readiness factors that are influenced by Technology such as Infrastructure, Security, Networking, Data and Telecommunication	[8], [13], [40]
SVQ	The degree of the excellence of the IT services into its users	[13], [39], [40]
ITIR	The achievement of the IT based on its implementation planning	[13], [39], [40]

Table 2. List of Indicators

Indicator	Definitions
Timeliness (ITC1)	The degree related to the measurement towards the time precision of data processing to be information at the most suitable time.
Completeness (ITC2)	The degree related to the information form of being whole or perfect without nothing missing.
Consistency (ITC3)	The degree related to the ability to remain the same in actions, treatments, or qualities.
Relevance (ITC4)	The degree related to the subject of matter appropriately.
Data Processing Use (ITC5)	The degree related to the IT use for the data processing needs
Data Storage Use (ITC6)	The degree related to the IT use for the data storage needs
Data Communication Use (ITC7)	The degree related to the IT use for the data communication needs
Information Distribution Use (ITC8)	The degree related to the IT use for the data distribution needs
Intensity of use (ITC9)	The degree related to the amount of time a system is used.
Extent of use (ITC10)	The degree related to the scope of system utilizations based on the use or nonuse of basic and advanced system capabilities.
Institutional Culture (INC1)	The degree related to the institutionalized norms, values, and beliefs that shape the behavior or actions in an institution.
Institutional Policies (INC2)	The degree related to the institutionalization of behaviors and actions that influences the determination of the standard rules and its operational procedures in an institution.
-------------------------------	--
Institutional Project Experience (INC3)	The degree related to the knowledge, understandings, and the capabilities of an institution from the previous development IT projects.
System Existence (INC4)	The degree related to the state of a current system as the results of the prior project implementations.
Infrastructure Availability (INC5)	The degree related to the assurance that the infrastructure requirement of the IT implementation is provided adequately.
External Environments (INC6)	The degree related to the environmental conditions of an IT project in the context of the local, national, regional, and the international scopes.
Legal Environment (INC7)	The degree related to the Legal environment which determines the required legal conditions for IT adoption in Institution.
Institutional Policies (INC8)	The degree related to the institutionalization of behaviors and actions that influences the determination of the standard rules and its operational procedures in an institution.
Institutional Project Experience (INC9)	The degree related to the knowledge, understandings, and the capabilities of an institution from the previous development IT projects.
Workforce Capability (PPL1)	The degree related to the effectiveness of ICT training and capability of human resources
Leadership (PPL2)	The degree related to the highest hierarchy in organization or stakeholders
Competency (PPL3)	The degree related to skills, experience, and knowledge
Resources (PPL4)	The degree related to human resources, ICT resources, and budget resources
Change Management (PPL5)	Refers to change commitment and change the efficacy
HR and Cultural Infrastructure (PPL6)	The degree related to the quality and quantity of IT workers and cultural circumstance for IT adoption
Culture (PRC1)	The degree related to activities in the environment of an organization
Governance (PRC2)	The degree related to structure, procedures, and routines, and communications involving business and IT
Awareness (PRC3)	The degree related to the understanding of the concept, sharing of experience and raising the level of knowledge
Strategy (PRC4)	The degree related to business and ICT strategy
Management Commitment (PRC5)	The degree related to the policy which determines the status of organizational plans and management commitment for IT Adoption
Infrastructure (TCG1)	The degree related to technology, including software and hardware
Security (TCG2)	The degree related to policy, information safety, and the legal and regulatory environment.
Networking (TCG3)	The degree related to the Internet connectivity and data connectivity
Data (TCG4)	The degree related to Mechanism to collect, store and retrieve information, standards formats for information organization, storage, and retrieval
Telecommunication (TCG5) The degree related to the infrastructure which determines the status of telecommunication and technical infrastructure
Responsiveness (SVQ1) The degree related to the quick reaction in the way that is needed, suitable, or right for a particular situation
Availability (SVQ2) The degree related to ensuring that the information is available when it is required.
Security (SVQ3) The degree related to the safety from attack, harm, or damage that unexpected.
Functionality (SVQ4) The degree related to the scope which appropriated to the functional requirements.
Extension (SVQ5) The degree related to scope whereas the system is able to provide the addition purposes.
Reliability (SVQ6) The degree related reliable problem-solving service and reliable system
Efficiency (SVQ7) The degree related to the system performance based on a comparison of the value of the output of the system and the resources needed to achieve the output
Effectiveness (SVQ8) The degree related to the system capacity to fulfill the requirements of the users to achieve their goals
Flexibility (SVQ9) The degree related to the adaptive ability of a system appropriate to the required demands.
Overall satisfaction (SVQ10) The degree related to the adequacy based on the overall aspect of a project
Technology Management (ITIR1) The degree related to the management of technology to create a competitive advantage
IT skills (ITIR2) The degree related to education, competence and Experience from using IT
IT Partnership (ITIR3) The degree related to creating business value
Quality Improvement (ITIR4) The degree related to identify and measure quality indicators in IT services
IT acquaintance (ITIR5) The degree related to education, Experience from participation in IT projects Experience from using IT

Table 3. List of Questionnaire Statements

Indicator	Definitions
ITC1	The system is able to process data into information that is needed to influence the readiness of IT implementation in HEI
ITC2	The system provides complete information affecting the application of IT in HEI
ITC3	The ability of the system to be consistent in action, care, or quality influences the readiness of the application of IT to HEI
ITC4	The system becomes a material subject that correctly influences IT implementation readiness in HEI
ITC5	Systems that use IT for data processing needs affect IT implementation readiness in HEI
ITC6	Systems that use IT for data storage needs affect IT implementation readiness in HEI
ITC7	Systems that use IT for data communication needs influence IT implementation readiness in HEI
ITC8	Systems that use IT for the needs of data distribution to several clients affect IT implementation readiness in HEI
ITC9	The amount used by the system to do the process influences the readiness for IT implementation in HEI
Number	Explanation
--------	-------------
ITC10	The system used based on basic and advanced capabilities influences IT implementation readiness in HEI
INC1	Institutional Culture influences the readiness of IT implementation on HEIs
INC2	Institutional Policies affect the readiness to implement IT on HEIs
INC3	Institutional Project Experience influences IT implementation readiness on HEIs
INC4	System Existence influences the readiness of IT implementation on HEIs
INC5	Infrastructure Availability affects IT implementation readiness on HEIs
INC6	External Environments affect IT implementation readiness on HEIs
INC7	Legal Environment influences the readiness of IT implementation on HEIs
PPL1	Workforce Capability affects the readiness of IT implementation on HEIs
PPL2	Leadership influences the readiness of IT implementation in HEIs
PPL3	Competency affects the readiness of IT implementation on HEIs
PPL4	Resources affect the readiness of IT implementation on HEIs
PPL5	Change Management affects the readiness of IT implementation on HEIs
PPL6	HR and Cultural Infrastructure affect the readiness of IT implementation on HEIs
PRC1	Culture influences the readiness of IT implementation on HEIs
PRC2	Governance influences IT implementation readiness on HEIs
PRC3	Awareness influences IT implementation readiness on HEIs
PRC4	Strategy influences the readiness of IT implementation on HEIs
PRC5	Management Committees affect the readiness of implementing IT on HEIs
TGY1	Infrastructure affects IT implementation readiness on HEIs
TGY2	Security influences IT implementation readiness on HEIs
TGY3	Networking affects IT implementation readiness on HEIs
TGY4	Data affects the readiness of IT implementation on HEIs
TGY5	Telecommunication affects IT implementation readiness on HEIs
SVQ1	Responsiveness affects the readiness of IT implementation on HEIs
SVQ2	Availability affects the readiness of IT implementation on HEIs
SVQ3	Security influences IT implementation readiness on HEIs
SVQ4	Functionality affects IT implementation readiness on HEIs
SVQ5	Extension affects the readiness of implementing IT on HEIs
SVQ6	Reliability affects the readiness of IT implementation on HEIs
SVQ7	Efficiency affects the readiness of IT implementation on HEIs
SVQ8	Effectiveness affects IT implementation readiness on HEIs
SVQ9	Flexibility affects IT implementation readiness on HEIs
SVQ10	Overall satisfaction affects the readiness of IT implementation on HEIs
ITIR1	Technology Management influences IT implementation readiness on HEIs
ITIR2	IT skills affect the readiness of IT implementation on HEIs
ITIR3	IT Partnership affects IT implementation readiness on HEIs
ITIR4	Quality Improvement affects the readiness of IT implementation on HEIs
ITIR5	IT Acquaintance affects IT implementation readiness on HEIs

Based on the research questions above, the following is an explanation of the research questions. First, the relationship between technology readiness and construction IT implementation readiness can be illustrated sequentially throughout the retrospective analysis of the factors used to measure readiness. For example, Marcel tried to integrate the G-Readiness model with the ZEN Framework that produced a combination of the two models. Then I. B. Batoya, F. Wabwoba, and J. Kilwake combined the E-Readiness model with Technology in teaching, resulting in a model of technology use readiness. Finally, Aang Subiyakto combines readiness and success models to produce a readiness model for success. This is consistent with indications of previous studies which indicate that the adoption, combination, or adaptation of the previous model in social studies is development models from existing ones, in terms of exploring new models.

Second, the ITIR model developed (Fig. 2) is one of developing new models. Adoption, combination, and adaptation techniques of readiness applied by researchers based on the assumption of input-process-
output (IPO) [45], as also presented by previous studies [4], [8], [12], [13], [40], [42]–[44]. In the context of social engineering assessment, the model developed was also broken down into data collection instruments by adopting and adapting the context of the study.

Simply stated, it can be clearly seen that the development of the ITIR model proves the possibility of developing new models by combining, adopting, and adapting several models of readiness. This research can contribute theoretically by proposing the ITIR model.

To build a model can use the basic assumptions of the development of models, research methods, and understanding of the author may be a limitation of the study of model development. Differences in assumptions, methods and understanding can produce different models. Thus, the limitations of studies on building a readiness model can be assessed and corrected in subsequent studies.

5. Conclusion

IS performance issues have become one of the interesting studies for researchers and practitioners since a few decades ago. Studies show that many IS models are developed based on existing theories rather than developing from empirical studies. Thus, researchers develop the ITIR by adopting, combining, and adapting readiness. The proposed model consists of seven variables with 50 indicators. The researcher also submitted 50 items of questions for the development of the questionnaire for the next stage. In addition to this exploratory study can contribute theoretically regarding the readiness of IT implementation in HEI, the process of developing the proposed model and its data collection instruments can be practical points of consideration for future studies.

Even though the assumptions used in the development of models, research methods and understanding of the author may be a limitation of the study. Other studies that use different assumptions, methods, and understandings can present different results. Therefore, the limitations of this study can be refined by subsequent studies.

References

[1] A. Wahyudin and Z. Hasibuan, “Research Classification in Strategic Information System Planning Development : A Critical Review,” Int. Conf. Sci. Inf. Technol., pp. 287–292, 2015.
[2] H. Yuhetty, “ICT and Education in Indonesia,” Proc. Asia Pacific Semin., no. 50, 2004.
[3] R. Koen, R. Von Solms, and M. Gerber, “ICT Readiness for Business Continuity in local government,” 2016 IST-Africa Conf. IST-Africa 2016, pp. 1–11, 2016.
[4] M. Irfan, S. J. Putra, C. N. Alam, A. Subiyakto, and A. Wahana, “Readiness factors for information system strategic planning among universities in developing countries: A systematic review,” in Journal of Physics: Conference Series, 2018, vol. 978, no. 1.
[5] M. Fathian, P. Akhavan, and M. Hoorali, “E-readiness assessment of non-profit ICT SMEs in a developing country: The case of Iran,” Technovation, vol. 28, no. 9, pp. 578–590, 2008.
[6] A. Z. Aswati, Safrian; Mulyani, Neni; Siagian, Yessica; Syah, “Peranan Sistem Informasi Dalam Perguruan Tinggi,” Teknol. dan Sist. Inf., vol. 1, pp. 79–86, 2015.
[7] D. D. Bhkati, “PEMODELAN SISTEM INFORMASI KEUANGAN DAERAH PADA DIREKTORAT EVALUASI PENDANAAN DAN INFORMASI KEUANGAN DAERAH,” JOIN (Jurnal Online Inform.), vol. 1, no. 2, pp. 1–6, 2016.
[8] Marcel, “A conceptual green-ICT implementation model based-on ZEN and G-readiness framework,” 2016 Int. Conf. Informatics Comput. ICIC 2016, no. Icic, pp. 99–104, 2017.
[9] M. Li, A. Computing, and M. a Y. Intake, “ICT-READINESS FOR E-LIBRARY (A CASE STUDY OF INSTITUTION OF HIGHER LEARNING),” no. May, p. 2014, 2014.
[10] M. Kashorda and T. M. Waema, “ICT Indicators in Higher Education : Towards an E-readiness Assessment Model,” Proc. reports 4th UbuntuNet Alliance Annu. Conf., pp. 57–76, 2011.
[11] H. S. H. Gombachika and G. Khangamwa, “ICT readiness and acceptance among TEVT students in University of Malawi,” Campus-Wide Inf. Syst., vol. 30, no. 1, pp. 35–43, 2012.
[12] M. Kiula, E. Waiganjo, and J. Kihoro, “Novel E-Readiness Accession in Higher Education Institutions in Kenya,” Int. J. Manag. Stud. Res., vol. 5, no. 6, pp. 101–111, 2017.
[13] C. Machado, “Developing an e-readiness model for higher education institutions: Results of a focus group study,” Br. J. Educ. Technol., vol. 38, no. 1, pp. 72–82, 2007.
[14] G. Soni Fajar Surya and K. Surendro, “E-readiness framework for cloud computing adoption in higher education,” 2014 Int. Conf. Adv. Informatics Concept, Theory Appl., pp. 278–282, 2014.

[15] I. Septiana, M. Irfan, A. R. Atmadja, B. Subaeki, J. T. Informatika, and F. Sains, “PENENTU DOSEN PENGUJI DAN PEMBIMBING TUGAS AKHIR MENGGUNAKAN FUZZY MULTIPLE ATTRIBUTE DECISION MAKING DENGAN SIMPLE ADDITIVE WEIGHTING (Studi Kasus: Jurusan Teknik Informatika UIN SGD Bandung),” J. Online Tek. Inform., vol. I, no. 1, pp. 43–50, 2016.

[16] E. Darmawan, “C4.5 Algorithm Application for Prediction of Self Candidate New Students in Higher Education,” J. Online Inform., vol. 3, no. 1, p. 22, 2018.

[17] R. Yuliana and B. Rahardjo, “Agile Data Architecture in Mining Industry for Continuously Business-IT Alignment: EA Perspective,” J. Online Inform., vol. 3, no. 1, p. 48, 2018.

[18] M. Irfan, S. J. Putra, and C. N. Alam, “E-Readiness for ICT Implementation of the Higher Education Institutions in the Indonesian,” 6th Int. Conf. Cyber IT Serv. Manag. (CITSM 2018), no. CITSM, pp. 3–8, 2018.

[19] W. B. Zulfikar, M. Irfan, C. N. Alam, and M. Indra, “The comparation of text mining with Naive Bayes classifier, nearest neighbor, and decision tree to detect Indonesian swear words on Twitter,” in 2017 5th International Conference on Cyber and IT Service Management, CITSM 2017, 2017.

[20] T. C. Kahveci, Ö. Uygun, U. Yurtsever, and S. İlyas, “Quality Assurance in Higher Education Institutions Using Strategic Information Systems,” Procedia - Soc. Behav. Sci., vol. 55, no. 0, pp. 161–167, 2012.

[21] M. A. Adiguna and A. Muhajirin, “Penerapan Logika Fuzzy Pada Penilaian Mutu Dosen Terhadap Tri Dharma Perguruan Tinggi,” JOIN (Jurnal Online Inform., vol. 2, no. 1, pp. 16–19, 2017.

[22] Direktorat Perguruan Tinggi, “Kerangka Pengembangan IT Pendidikan Tinggi di Indonesia,” 2013.

[23] S. M. Mutula and P. van Brakel, “E-readiness of SMEs in the ICT sector in Botswana with respect to information access,” Electron. Libr., vol. 24, no. 3, pp. 402–417, 2006.

[24] M. G. Aboelmaged, “Predicting e-readiness at firm-level: An analysis of technological, organizational and environmental (TOE) effects on e-maintenance readiness in manufacturing firms,” Int. J. Inf. Manage., vol. 34, no. 5, pp. 639–651, 2014.

[25] P. Hanafizadeh, M. R. Hanafizadeh, and M. Khodabakhshi, “Taxonomy of e-readiness assessment measures,” Int. J. Inf. Manage., vol. 29, no. 3, pp. 189–195, 2009.

[26] C. Paper, “Development of the Readiness and Success Model for Assessing the Information System Integration The author version of the presented paper (In publishing) Development of the Readiness and Success Model for Assessing the Information System Integration,” no. September, 2017.

[27] K. Subrahmanyam, S. Ibrahim, and R. A. A. De Lara, “An evaluation of Malaysian ICT sectors’ readiness for telecommuting,” Proc. - Int. Symp. Inf. Technol. 2008, ITSim, vol. 4, 2008.

[28] M. Ali and F. Wahid, “Permasalahan Implementasi Sistem Informasi Di Perguruan Tinggi Swasta,” J. Ilm. Teknol. Sist. Inf., vol. 2, no. 1, pp. 17–21, 2016.

[29] J. Curry, J. Curry, and J. Ferguson, “Increasing the Success of the Global Information Technology Strategic Planning Process Process University of Western Sydney University of Western Sydney,” Proc. 33rd Hawaii Int. Conf. Syst. Sci. - 2000 Increasing, vol. 00, no. January 2000, pp. 1–10, 2000.

[30] M. Jogiyanto, “[2008] Metodologi Penelitian Sistem Informasi.PDF.”

[31] E. Rezaei, Y. Rostami, M. Ghafori, and A. Fashkhorani, “The infrastructure attitude to strategic planning of information technology in organizations,” AIMIJOURNAL, vol. 3, pp. 97–108, 2016.

[32] G.-G. Lee and B. Rong-Ji, “Organizational mechanisms for successful IS/IT strategic planning in the digital era,” Manag. Decis., vol. 41, no. 1/2, pp. 32–42, 2003.

[33] R. S. Wahono, “A Systematic Literature Review of Software Defect Prediction: Research
Trends, Datasets, Methods and Frameworks,” *J. Softw. Eng.*, vol. 1, no. 1, pp. 1–16, 2015.

[34] S. S. Hussein *et al.*, “Towards designing an EA readiness instrument: A systematic review,” *Colloq. Inf. Sci. Technol. Cist*, pp. 158–163, 2017.

[35] I. B. Batoya, F. Wabwoba, and J. Kilwake, “Influence of Social Technical Factors on ICT Readiness for Primary Schools in Bungoma County, Kenya,” vol. 1, no. 1, pp. 1–7, 2015.

[36] K. A. Aziz and M. M. Yusof, “Measuring organizational readiness in information systems adoption,” *18th Am. Conf. Inf. Syst. 2012, AMCIS 2012*, 2012.

[37] E. Ziaeipour, A. Taghizade, F. Bazazan, F. Khoshalhan, and A. Mohamadian, “A model for national e-readiness assessment based on system approach,” *ITNG 2009 - 6th Int. Conf. Inf. Technol. New Gener.*, pp. 993–998, 2009.

[38] N. M. AZIZ, “A MODEL FOR ORGANISATIONAL READINESS IN INFORMATION TECHNOLOGY (IT) PROJECT IMPLEMENTATION IN THE MALAYSIAN CONSTRUCTION INDUSTRY,” 2013.

[39] Marcel, “A study of TESCA an Indonesia’ higher education e-readiness assessment model,” *2015 Int. Conf. Inf. Technol. Syst. Innov. ICITSI 2015 - Proc.*, 2016.

[40] S. M. Mutula and P. van Brakel, “An evaluation of e-readiness assessment tools with respect to information access: Towards an integrated information rich tool,” *Int. J. Inf. Manage.*, vol. 26, no. 3, pp. 212–223, 2006.

[41] K. Mohitmafi and P. Hanafizadeh, “A selection framework of e-business model by assessing organizational e-readiness,” *IEEE Int. Conf. Ind. Eng. Eng. Manag.*, vol. 2016–Decem, no. December 2016, pp. 1765–1769, 2016.

[42] A. Subiyakto, A. R. Ahlan, M. Kartiwi, and S. J. Putra, “Measurement of the information system project success of the higher education institutions in Indonesia: A pilot study,” *Int. J. Bus. Inf. Syst.*, vol. 23, no. 2, 2016.

[43] A. Molla and V. Cooper, “Green IT readiness: A Framework And Preliminary Proof of Concept,” *Australas. J. Inf. Syst.*, vol. 16, no. 2, pp. 5–23, 2009.

[44] K. A. Benjamin, “E-Readiness Assessment of Seven Higher Education Institutions in Ghana,” no. August, p. 210, 2004.

[45] A’ang Subiyakto, “Development of the Readiness and Success Model for Assessing the Information System Integration The author version of the presented paper (In publishing) Development of the Readiness and Success Model for Assessing the Information System Integration,” *ReserachGate Publ.*, no. September, 2017.