Benchmark of Simplified Time-Dependent Density Functional Theory for UV-Vis Spectral Properties of Porphyrinoids

Kamal Batra, Stefan Zahn, Thomas Heine

Submitted date: 27/09/2019 • Posted date: 30/09/2019
Licence: CC BY 4.0

Citation information: Batra, Kamal; Zahn, Stefan; Heine, Thomas (2019): Benchmark of Simplified Time-Dependent Density Functional Theory for UV-Vis Spectral Properties of Porphyrinoids. ChemRxiv. Preprint.

We thoroughly benchmark time-dependent density-functional theory for the predictive calculation of UV/Vis spectra of porphyrin derivatives. With the aim to provide an approach that is computationally feasible for large-scale applications such as biological systems or molecular framework materials, albeit performing with high accuracy for the Q-bands, we compare the results given by various computational protocols, including basis sets, density-functionals (including gradient corrected local functionals, hybrids, double hybrids and range-separated functionals), and various variants of time-dependent density-functional theory, including the simplified Tamm-Dancoff approximation. An excellent choice for these calculations is the range-separated functional CAM-B3LYP in combination with the simplified Tamm-Dancoff approximation and a basis set of double-\(\zeta\) quality def2-SVP (mean absolute error [MAE] of \(~0.05\) eV). This is not surpassed by more expensive approaches, not even by double hybrid functionals, and solely systematic excitation energy scaling slightly improves the results (MAE \(~0.04\) eV).

File list (2)

File Name	Size	View/Download
PP-bench-final.docx	1.01 MiB	view on ChemRxiv   download file
Supporting-Information-PPbench-final.pdf	2.32 MiB	view on ChemRxiv   download file
Benchmark of simplified Time-Dependent Density Functional Theory for UV-Vis Spectral Properties of Porphyrinoids.

Kamal Batra, a Stefan Zahn, b and Thomas Heine *a, c

a Technische Universität Dresden, Theoretische Chemie, Bergstraße 66c, 01062 Dresden, Germany

b Leibniz Institut für Oberflächenmodifizierung (IOM), Permoserstraße 15, 04318 Leipzig, Germany

c Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany

KEYWORDS. Porphyrinoids, UV/Vis, Absorption, Density Functional Theory.

ABSTRACT

We thoroughly benchmark time-dependent density-functional theory for the predictive calculation of UV/Vis spectra of porphyrin derivatives. With the aim to provide an approach that is computationally feasible for large-scale applications such as biological systems or molecular framework materials, albeit performing with high accuracy for the Q-bands, we
compare the results given by various computational protocols, including basis sets, density-functionals (including gradient corrected local functionals, hybrids, double hybrids and range-separated functionals), and various variants of time-dependent density-functional theory, including the simplified Tamm-Dancoff approximation. An excellent choice for these calculations is the range-separated functional CAM-B3LYP in combination with the simplified Tamm-Dancoff approximation and a basis set of double-\(\zeta\) quality def2-SVP (mean absolute error [MAE] of \(~0.05\) eV). This is not surpassed by more expensive approaches, not even by double hybrid functionals, and solely systematic excitation energy scaling slightly improves the results (MAE \(~0.04\) eV).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{graph.png}
\caption{Graph showing absolute error (eV) for different methods.}
\end{figure}

INTRODUCTION
Porphyrids (PPs) and their derivatives can be found in many natural biological systems and offer potential solutions to a wide range of applications. In plants, PPs are an essential part of the chlorophyll pigment that converts solar energy into chemical energy.1 Porphyrinoids also have been proven to be efficient sensitizers2 and catalysts3 in several chemical processes, including medical applications such as photodynamic therapy.4 They have been incorporated both as linkers and connectors in metal-organic frameworks5-6 (MOFs) and covalent-organic frameworks7 (COFs). A good light harvesting material efficiently absorbs photons from the highly abundant visible solar spectrum. This property can be probed by UV/Vis spectroscopy. The characteristic absorption bands of porphyrinoids are displayed for an example of tetraphenyl PP (see Supporting Information [SI], Figure S1). The intense Soret-band, also called B-band, commonly arises in the UV from 350 to 450 nm. In metal free porphyrins, four transitions with much lower intensity are found in the spectral range from 450 to 800 nm, which are called Q-bands. All transitions between the frontier orbitals are allowed based on symmetry rules. However, both highest occupied molecular orbitals (HOMO-1 and HOMO) as well as both lowest unoccupied molecular orbitals (LUMO and LUMO+1) are close in energy and thus, nearly degenerated as in a simplified model of a 18π cyclic polyene, as employed by Gouterman8. In this model, two transitions are allowed between the degenerated frontier orbitals while two are forbidden. Indeed, the frontier molecular orbitals of porphyrin and the model system show strong similarities. Furthermore, a strong mixing of the transitions was observed for Q- and Soret bands by quantum chemical calculations.9,10 Opposing transition dipoles reduce the intensity of the Q-bands while a parallel orientation of both transition dipoles contributes to the Soret band and thus, a more intense absorption band
is observed for the latter. Therefore, tuning the energy levels of the frontier molecular orbitals strongly affects the absorption intensity of the characteristic Q-bands. The higher the energy gap between HOMO-1 and HOMO as well as LUMO and LUMO+1, the stronger will be the absorption intensity of the Q-bands. Nonetheless, predicting the final spectra is challenging.

Obviously, correlated \textit{ab-initio} approaches such as coupled cluster theory11-13 (CC2, CCSD, and CC3), the algebraic diagrammatic construction through second order14 (ADC2), and complete active space second order perturbation theory13, 15-16 (CASPT2) deliver reliable absorption energies in accordance with experimental results. However, these approaches are computationally quite expensive for tackling a conjugated molecular system beyond the basic PP. Other prominent approaches, such as symmetry adapted cluster-configuration interaction17 (SAC-CI) and similarity transformed equation-of-motion coupled-cluster18 (STEOM-CC) are more accurate than CASPT2, but limited to molecular system up to 50 atoms due to their high computational cost. To overcome the limits of CASPT2, second order N-electron valence state perturbation theory19-20 (NEVPT2) has been introduced, which is more efficient than CASPT2, size consistent and intruder-state-free, but like all multi-reference approaches, the computational cost of NEVPT2 is still high for larger systems. Overall, previously mentioned approaches yield reliable absorption energies for PPs, but suffer from a high computational cost for increased molecular systems, making them practically unsuitable for large molecules and materials.

To find an alternative for the prediction of excited state properties of large systems at a moderate cost, time-dependent density functional theory (TD-DFT) appears to be a promising
candidate. TD-DFT is an extension of Kohn-Sham DFT and based on almost 35-years old Runge-Gross theorem21 which has been thoroughly reviewed in the literature21-25. Almost 25 years ago, Casida developed a constructive linear-response formalism for TD-DFT, known as random-phase approximation (RPA) or Casida equations,21 allowing to efficiently determine the solution of the TD-DFT equations which are formulated in matrix equation involving the excitation and de-excitation matrices.

A popular approximation to the Casida equations is the Tamm-Dancoff approximation26 (TDA), which simplifies the algebra and associated algorithms to obtain the electronic excitations, yet it typically yields electronic excitations close to those obtained by TD-DFT.27-28 Unfortunately, TD-DFT on the basis of popular exchange correlation functionals suffers accuracy limitations which are most evident in the failure to correctly describe Rydberg and charge transfer (CT) states.29-30 These drawbacks can usually be overcome by range-separated hybrid (RSH) functionals, which employ a large amount of HF exchange at large electron-electron distances and, therefore, reflect the correct asymptotic exchange potential.

TD-DFT in numerous variants has been applied to PPs, and in the following we are summarizing the state of the art as found in the current literature:

In 1996, Bauernschmitt et al.31 employed TD-DFT to compute the first four electronic excitations of PP to validate exchange correlation functionals, including the local density approximation (LDA: S-VWN), the generalized gradient approximation (GGA: BP86) and hybrid functional (B3LYP). Their results showed that TD-DFT excitation using the BP86 functional are in better accordance with experiment than CIS and TD-HF. Also, CASPT2
possesses an error of more than 0.3 eV for the Q-bands compared to experimental results. However, the employed basis set was overall small for post-HF approaches.

In 2010, Tian et al. examined the performance of global hybrids (PBE0, B3LYP, M06, M06-2X, M06HF) and long-range corrected (LC) hybrid functionals (ωB97X-D, ωB97X, ωB97, LC-ωPBE and CAM-B3LYP) in TD-DFT calculations to predict the spectral properties of PP analogues. Among the many functionals tested, the LC functional ωB97X-D results in an error of 0.05 eV for Q_y band. Moreover, they concluded that the results are robust with respect to subtle geometry changes resulting from the functional choice for geometry optimization and showed that diffuse functions have only a minor effect on calculated absorption spectra. However, the quite general study included only two porphyrinoids.

Eriksson et al. (2011) investigated the ability of LC hybrid functionals ωB97, ωB97X and ωB97X-D within the TD-DFT framework. They found that ωB97X reproduces the experiment best with an error of up to 0.09 eV. Additionally, it was confirmed that the applied functional for geometry optimization has only a small influence on the calculated spectra.

Lee et al. (2012) benchmarked five DFT functionals (B3LYP, LC-ωPBE, LC-BLYP, CAM-B3LYP and ωB97X-D) using TD-DFT for PP derivative. It was found that ωB97X-D yields the best agreement to the reference for the LC functionals (Q_ave bands: 0.055 eV). Overall, better results were obtained for B3LYP for the Soret and Q-bands. However, it was not recommended due to the susceptibility for charge transfer excitations.
A benchmark set of 66 medium-sized and large aromatic organic molecules, including five porphyrinoids, has been studied by Winter et al.35 in 2013. B3LYP was outperformed by the investigated post-HF approaches (ADC (2), CC2, SOS-CC2, SCS-CC2).

Fang et al.36 (2014) compiled a subset of 96 excitations of 79 different organic and inorganic molecules, including basic PP.37 They have assessed diverse DFT functionals (BP86, B3LYP, PBE0, M06-2X, M06-HF, CAM-B3LYP and ωB97XD) and two wave-function based approaches (CIS and CC2). Overall, the lowest error was produced by CC2 with MAE of 0.19 eV. However, it was found that CC2 approach did not perform well for inorganic systems (MAE: 0.31 eV) while the MAE of B3LYP is only 0.22 eV.

Theisen et al.38 (2015) validated the performance of diverse DFT functionals (B3LYP, PBE0, CAM-B3LYP, M062X, M06, M11) for Zn-phthalocyanine (ZnPc). Interestingly, the extra diffuse function in 6-31+g(d) caused convergence problems in the TD-DFT calculations. Among the investigated functionals, M11 showed the best accordance with experiment with an error of 0.13 eV for the $Q_x (0-0)$ band.

Despite the many successful applications of TD-DFT on a wide range of molecular systems, it is often challenging in TD-DFT to calculate a sufficient number of excited states for a complete spectrum or spectra of extended biological systems. To overcome this challenge, the Grimme group presented two highly efficient approaches, the simplified Tamm–Dancoff-Approximation39 (sTDA) and simplified Time-Dependent Density Functional Theory approach40 (sTD-DFT). In both approaches, the computational resources needed to tackle a targeted system is solely determined by the ground state DFT calculation. This is achieved by
neglecting the response of the exchange-correlation operator of the functional while Coulomb and exchange interactions of the electrons are approximated by monopole interactions. Computational studies validating sTDA or sTD-DFT for PPs are missing in the literature so far.

With the goal to identify a computational feasible approach to investigate the absorption properties of PP-containing materials and extended biological systems, we compare sTDA, sTD-DFT and canonical TD-DFT (RPA and TDA) for UV/Vis spectra calculations of porphyrinoids. After a short summary of computational details, we assess diverse DFT functionals regarding their performance for the calculations of absorption energies of the Q-bands.

COMPUTATIONAL METHODS

All geometries have been fully optimized using the Turbomole-suite, employing the BLYP functional with Grimme’s D3 correction for London dispersion (BLYP-D3) in combination with the resolution of identity (RI) approximation and the TZVP split-valence basis set of triple-ζ quality with polarization functions. The convergence criterion for the self-consistent field approach was increased to 10^{-8} Hartree. This approach is very fast for the molecules studied here, but also easily affordable in periodic calculations that suffer severe performance loss for hybrid functionals. As hybrid functionals are known to produce more accurate structures, we assessed the influence of the geometry on the excited state properties. For that purpose, we reoptimized all geometries using the B3LYP-D3 hybrid functional, again employing the TZVP basis set and the RI.
For excited state properties we applied the ORCA code50 with a wide range of functionals, basis sets and TD-DFT approaches. A summary of the calculation types is given in Table S1 in the SI. In detail, we calculated UV/Vis spectra using the following density-functionals:

- GGA and \textit{meta}-GGA functionals: BLYP,42-43 BP86,52, 53 PBE,52, 53 TPSS,54 M06-L55
- Global hybrid functionals: B3LYP,42-43, 49 PBE0,52-53, 56 B3P86,49, 51 BHLYP,57 TPSS0,58 M06,59 M06-2X,59
- Range separated hybrid functionals: \(\omega\text{B97,}60\ \omega\text{B97X,}60\) LC-BLYP,61 CAM-B3LYP62
- Double hybrid functionals: B2PLYP,63 B2GP-PLYP,64 mPW2PLYP65

The motivation of this work is to quantitatively reproduce the Q-bands of porphyrinoids with the possibly lowest computational cost which plays a vital role for the simulations in bio- and material related chemistry. Hence, each method is validated with the relatively small basis set def2-SVP66 which is of double-\(\zeta\) quality. For basis set validation, we repeated the calculations with the def2-TZVP basis set66 for the sTDA and sTD-DFT approaches, and we also investigated the impact of diffusive functions for sTDA (def2-SVPD67 and def2-TZVPD67).

To speed up the calculations, we employed the RI approximation throughout, including its variant for double hybrid functionals,68-69 and the RIJCOSX approximation70 was employed for the global hybrid and range-separated hybrid functionals. For comparison, we have also included the post-Hartree-Fock methods CIS71 and CIS(D).72-73
The performance of each approach was assessed by calculation of the mean error (ME), the mean absolute error (MAE), and the absolute maximum error (MAXE) to the experimental reference values.

BENCHMARK SET: We have included diverse variants of porphyrinoids starting from basic PP to the extension of conjugated \(\pi \)-system of the central core followed by ring functionalization and modification of metal atoms. The molecules included in our benchmark set are given in Figure 1 while Table 1 list the experimental references.

Table 1. Experimental references of benchmark-set of investigated porphyrinoids

Porphyrinoids Benchmark-Set	Abbrev.	Ref.
[1] Porphyrin	H\(\text{2 }\)PP	[74-76]\(^a\)
[2] Octaethylporphyrin	H\(\text{2 }\)OEP	[75-77]\(^b\)
[3] Magnesium Octaethylporphyrin	MgOEP	[75-76, 78]\(^a\)
[4] Zinc Octaethylporphyrin	ZnOEP	[75-76, 79]\(^a\)
[5] Tetraphenylporphyrin	H\(\text{2 }\)TPP	[75-76, 80]\(^a\)
[6] Magnesium Tetraphenylporphyrin	MgTPP	[75-76, 81]\(^a\)
[7] Zinc Tetraphenylporphyrin	ZnTPP	[75-76, 80]\(^a\)
[8] Tetrakis(o-aminophenyl) porphyrin	H\(\text{2 }\)TAPP	[75-76, 82]\(^a\)
[9] Zinc tetrakis(4-carboxyphenyl) porphyrin	ZnTCP	[83]\(^1\)
[10] Zinc [5,15-dipyridyl-10,20-bis(pentafluorophenyl) porphyrin	F-ZnP	[84]\(^d\)
[11] Zinc [5,15-di(4-pyridylacetyl)-10,20-diphenyl] porphyrin	DA-ZnP	[84]\(^d\)
[12] Octabromotetraphenyl porphyrin	H\(\text{2 }\)OBP	[85]\(^e\)

\(^a\) Toluene; \(^b\) Benzene; \(^c\) THF; \(^d\) DMF; \(^e\) CH\(_2\)Cl\(_2\)
RESULTS AND DISCUSSION

In this section, the performance of diverse functionals is presented. We will start the validation with the computationally least costly DFT approach, the GGA functionals, and will finish with the most expensive one, the double hybrid functionals. We would like to add here that the TD-DFT studies can calculate only transition between vibrational ground states. Therefore, only the $0 \rightarrow 0$ transitions of the Q-bands can be obtained from the calculations.
We will focus on the Q-bands in the following because they absorb in the visible light range. Furthermore, these transitions can be clearly distinguished from other transitions in the excited state calculations.

I. GGA and meta-GGA Functionals

GGA and meta-GGA functionals do not require four-center integrals as the Coulomb interaction can be calculated directly via the electron density, which is particularly beneficial for periodic calculations and for codes employing different basis functions than Gaussian-type orbitals. As can be seen in Table 2 and Figure 2a, the performance of TD-DFT for the GGA functionals PBE, BP86 and BLYP is very similar. Compound 8 shows a large error resulting in an outlier of about 0.5 eV. This can be attributed to a significant contribution of charge transfer excitations to the Q-bands (see SI, Table S2 and Figure S2 for a detailed description). Employing the meta-GGA functionals TPSS and M06-L reduces significantly the MAXE. However, the MAE (denoted by ‘+’ sign in Figure 2a) is not improved and still exceeds 0.12 eV. Furthermore, meta-GGAs tend stronger to over-estimate the absorption energies compared to GGAs. Employing the RPA-approach does not result in significant improvements in comparison to the TDA-approach (see Table 2 and Figure 2b). For instance, the calculated MAE from both approaches in combination with the GGA-functionals is nearly similar. Only for M06-L, the MAE is reduced by about 0.03 eV. Additionally, the RPA-approach tends to lower absorption energies than the TDA-approach.

Table 2. Calculated original error values in eV for the GGA and meta-GGA functionals
GGA and meta-GGA Functionals	TDA (def2-SVP)	RPA (def2-SVP)	sTDA (def2-SVP)	sTD-DFT (def2-SVP)	sTDA (def2-TZVP)	sTD-DFT (def2-TZVP)	
PBE	ME	0.02	-0.04	-0.08	-0.12	-0.18	-0.20
	MAE	0.11	0.11	0.09	0.13	0.18	0.21
	MAXE	0.48	0.48	0.52	0.53	0.49	0.50
BP86	ME	0.02	-0.04	-0.08	-0.12	-0.18	-0.20
	MAE	0.11	0.11	0.09	0.13	0.18	0.21
	MAXE	0.47	0.47	0.52	0.52	0.48	0.49
BLYP	ME	0.01	-0.05	-0.08	-0.13	-0.18	-0.21
	MAE	0.10	0.10	0.09	0.14	0.19	0.21
	MAXE	0.46	0.46	0.49	0.50	0.47	0.48
TPSS	ME	0.06	0.00	-0.02	-0.06	-0.12	-0.15
	MAE	0.12	0.10	0.08	0.09	0.13	0.16
	MAXE	0.38	0.38	0.41	0.42	0.39	0.41
M06-L	ME	0.11	0.05	0.05	0.01	-0.05	-0.08
	MAE	0.14	0.11	0.10	**0.08**	0.09	0.11
	MAXE	0.25	0.26	0.28	**0.30**	0.29	0.31

The computationally cheaper approaches, sTDA and sTD-DFT, show a comparable MAXE for GGAs (see Table 2 and Figure 3a, 3b). However, the MAE of the GGA-functionals is strongly affected by the selected approach and basis set. For example, the ME and MAE of sTDA with the functional BLYP increases by about 0.1 eV when the larger def2-TZVP basis set is employed (see Table 2 and Figure 4a). Changing from sTDA to sTD-DFT results also in large MAE values. The ME and MAE of a given approach-basis-set-combination is overall
close to each other in all cases and thus, highlighting systematic deviations. TPSS shows an improvement to the GGAs but is still significantly affected by the selected basis-set. The MAE of M06-L for sTDA and sTD-DFT is only slightly affected by the choice of basis set which is in contrast to the GGAs. To sum up, the MAE of GGAs and meta-GGAs exceeds 0.08 eV while the MAXE is reduced to 0.30 eV only for the M06-L functional. Finally, a systematic under-estimation of absorption energies, especially for the sTDA and sTD-DFT in combination with a large basis set, is observed suggesting a global scaling of the obtained energies to match better the experimental reference.

After scaling of energies, significant improvements of the MAE and MAXE are only obtained for the sTDA and sTD-DFT approaches in combination with the large basis-set, (see Figure 4b for e.g. BLYP). All functionals with scaled error value are listed in Table S3 and a graphical illustration can be seen in Figure S5. Nonetheless, the MAE is still above 0.05 eV and high MAXE is obtained as well. Thus, GGAs and meta-GGAs cannot be recommended for calculations of UV-Vis-spectra of porphyrinoids.

II. Global Hybrid Functionals

A hybrid functional is defined as an approximate KS density functional where a part or all the semi-local DFT exchange expression E_X^{DFT} is replaced by exact Hartree-Fock (HF) exchange E_X^{HF}. The amount of HF exchange for typical hybrid functionals lies in the range of 10-25% but can be as high as 50-55% like in the BHLYP and the M06-2X functional. Incorporation of exact Hartree-Fock exchange reduce the self-interaction error (SIE) which is
a significant trouble-maker in TD-DFT. However, it also introduces a four-index integral into the Hamiltonian which leads to higher computational cost in comparison to the GGA and meta-GGA functionals.

As shown in Table 2 and 3, similar trends are observed for global hybrids as for pure DFT functionals, e.g. RPA tends to lower absorption energies than TDA. In contrast, the large error which stem from the outliers are significantly reduced for the global hybrids with respect to GGAs (see Table 3 and Figure 2a, 2b). TDA in combination with global hybrids tends strongly to over-estimate absorption energies of Q-bands which can be reduced by employing the RPA approach, especially in combination with the BHLYP and M06-2X functional. Nonetheless, MAE is still above 0.10 eV and thus, this approach cannot be recommended.

Table 3. Calculated original error values in eV for the global hybrid functionals

Global Hybrid Functionals	TDA (def2-SVP)	RPA (def2-SVP)	sTDA (def2-SVP)	sTDA-DFT (def2-SVP)	sTDA-DFT (def2-TZVP)		
PBE0	ME	0.22	0.15	-0.09	-0.12	-0.22	-0.24
	MAE	0.22	0.15	0.10	0.12	0.22	0.24
	MAXE	0.31	0.25	0.23	0.27	0.40	0.42
B3P86	ME	0.19	0.13	-0.02	-0.06	-0.15	-0.17
	MAE	0.19	0.13	0.06	0.08	0.16	0.18
	MAXE	0.28	0.24	0.18	0.22	0.34	0.35
B3LYP	ME	0.18	0.12	-0.03	-0.07	-0.16	-0.18
	MAE	0.18	0.12	**0.06**	0.08	0.17	0.19
The approximate sTDA and sTD-DFT approaches fail significantly for the global hybrids with large amount of HF exchange like BHLYP and M06-2X. However, global hybrids with HF-exchange contributions in the range of 20-25% show significant improvement compared to the pure DFT functionals (see Table 3 and Figure 3a, 3b). For example, sTDA in combination with the B3LYP functional and def2-SVP basis set possesses a MAE of 0.06 eV while the MAXE is 0.18 eV. Increasing the basis set increases the deviation, similarly as for the GGA functionals (see Figure 4a for e.g. B3LYP and Figure S5 for all the tested functionals).

The MAE and MAXE can be reduced by energy scaling due to systematic deviations. A global hybrid with large HF-exchange contribution works best: sTDA/sTD-DFT in combination with the functionals BHLYP or M06-2X and the def2-SVP basis set possess...
MAE’s of only 0.06 eV (see SI, Table S4 and Figure S5). Moreover, MAXE is reduced to 0.12 eV for M06-2X functional in combination with the RPA-approach and def2-SVP basis set. Therefore, employing global hybrids with large HF-exchange contribution and energy scaling might be a suitable, albeit somewhat empirical approach to estimate the absorption energies of porphyrinoids.

III. Range Separated Hybrid Functionals

Range separated hybrid functionals (RSH) possess a different contribution of HF exchange in short and long interelectronic distances. Short range corrected functionals, like HSE06, possess a medium amount of HF exchange in the short range while it drops commonly to zero at long interelectronic distances. This allows a faster calculation of solid-state properties compared to global hybrid functionals but an improvement for excited states cannot be expected for this type of functional. In contrast, long-range corrected (LC) RSH possess a large amount of HF exchange at long interelectronic distances. This significantly reduces errors originating from Rydberg states and charge transfer excitations in TD-DFT calculations. Therefore, we will focus solely on LC-RSH.

The performance of TDA for the investigated RSH functionals is overall comparable to that of global hybrids, as visible in Table 3, 4 and Figure 2a. Additionally, TDA tends stronger to over-estimate the absorption energies. The RPA approach for CAM-B3LYP results in overestimated absorption energies, while other LC-RSH functionals tend to underestimate these energies. Overall, RPA has a strong dependency on the type of functional and produce lower absorption energies than TDA (see Table 4 and Figure 2b).
Table 4 Calculated original error values in eV for investigated RSH functionals

Range Separated Hybrid Functionals	TDA (def2-SVP)	RPA (def2-SVP)	sTDA (def2-SVP)	sTD-DFT (def2-SVP)	sTDA (def2-TZVP)	sTD-DFT (def2-TZVP)	
ωB97	ME	0.21	-0.16	-0.16	-0.45	-0.18	-0.45
	MAE	0.21	0.16	0.16	0.45	0.18	0.45
	MAXE	0.31	0.23	0.39	0.69	0.40	0.68
ωB97X	ME	0.22	-0.08	-0.18	-0.43	-0.20	-0.42
	MAE	0.22	0.09	0.18	0.43	0.20	0.42
	MAXE	0.30	0.17	0.41	0.67	0.42	0.65
LC-BLYP	ME	0.20	-0.09	-0.13	-0.35	-0.16	-0.35
	MAE	0.20	0.10	0.15	0.35	0.16	0.35
	MAXE	0.28	0.18	0.37	0.59	0.38	0.58
CAM-B3LYP	ME	0.24	0.07	0.03	-0.02	-0.13	-0.17
	MAE	0.24	0.08	0.05	0.05	0.13	0.17
	MAXE	0.31	0.16	**0.10**	0.14	0.27	0.29

On the other hand, as can be seen in Table 4, Figure 3a and 3b, the performance of sTDA and sTD-DFT is improved over global hybrids only for CAM-B3LYP which amounts up to 46% HF-exchange. In contrast to CAM-B3LYP, LC-RSH functionals incorporating up to 85-100% HF-exchange result in remarkably large errors. Hence, it seems that a high amount of HF-exchange for LC-RSH functionals cannot be recommended. Employing large basis sets does not improve the results based on simplified approaches. (see Figure 4a for e.g. CAM-B3LYP)
Thus, results obtained with the def2-SVP in combination with simplified approaches are most reliable and reasonable.

Figure 2. Box-plot displaying original error values in eV for the variant of density-functionals in combination with TD-DFT types (a) TDA, (b) RPA, and def2-SVP basis set. Here, MAE is denoted by (+) while outliers (•) termed as extremes error values which are outside the range given in bars. (scaled error values can be seen in SI, Figure S3).
Figure 3. Box-plot displaying original error values in eV for the variant of density-functionals in combination with TD-DFT types (a) sTDA, (b) sTD-DFT, and def2-SVP basis set. (scaled error values can be seen in SI, Figure S4).

Figure 4. Box-plot displaying error values in eV, where (a) original and (b) scaled for the selected DFT functional in combination with variant basis-set qualities and simplified time dependent approaches.
Figure 5. Box-plot displaying error values in eV, where (a) original and (b) scaled for the selected functionals from DFT-group in combination with TD-DFT types and def2-SVP basis set. A detailed box-plot representation (original and scaled error values) of all the investigated density functional-approaches-basis set combinations can be seen in SI, Figure S5 (in eV) and Figure S6 (in nm).

To sum up and as shown in Figure 5a, GGA functionals produce large errors in the form of outliers e.g., BLYP in combination with def2-SVP basis set. Global hybrid functionals, e.g. B3LYP, produces MAE of 0.06 eV in combination with sTDA and the def2-SVP basis set and appears to produce overall reliable results. However, best results, and indeed excellent ones, are obtained with the RSH, CAM-B3LYP in combination with sTDA and an overall small def2-SVP basis set which yields a MAE of about 0.05 eV. This can be barely improved by energy scaling (see Figure 5b).

IV. Double Hybrid Functionals and post-Hartree Fock approaches
In addition to the exact HF exchange, double hybrid functionals include a second order perturbation theory correction term (MP2) for the correlation part of the functional. This improves mainly the consideration of dispersion forces. However, the computational time is comparable to MP2. Therefore, we have also included some traditional post-HF approaches with comparable computational cost, CIS and CIS(D), in our study.

Table 5. Calculated original error values in eV for double hybrids and post HF methods

approach	def2-SVP	
B2PLYP	ME	0.24
	MAE	0.24
	MAX E	0.31
B2GP-PLYP	ME	0.29
	MAE	0.29
	MAX E	0.37
mPW2PLYP	ME	0.25
	MAE	0.25
	MAX E	0.33
CIS	ME	0.26
	MAE	0.26
	MAX E	0.39
CIS (D)	ME	0.51
	MAE	0.51
	MAX E	0.60
As can be seen in Table 5 as well as in Figure 6a, double hybrid functionals produce large errors comparable to CIS. Including perturbative double corrections results in even larger errors of the CI approach. However, we would like to highlight that the employed basis set is only of double-ζ quality due to the system size. The strong systematic overestimation of absorption energies for the double hybrid functionals and post HF methods suggests a scaling of the obtained absorption energies. Indeed, the results are significantly improved and an accuracy comparable to CAM-B3LYP can be reached (see Figure 6b and Table S5). Thus, CIS(D) with scaled absorption energies might be a suitable approach to verify results obtained with sTDA, def2-SVP and CAM-B3LYP.

Figure 6. Box-plot displaying error distribution in eV, where (a) original value and (b) scaled values for the double hybrid functional and post HF methods in combination with def2-SVP basis-set.

V. Influence of diffuse basis set functions and ground state structure
Commonly, diffuse basis sets are recommended for weakly bound electrons found in anions or in excited states. Therefore, we have selected three functionals, BLYP, B3LYP and CAM-B3LYP, and extended the employed Ahlrichs basis set by diffuse functions. Independent of the employed functional type, including diffuse basis set functions provides poorer results compared to the def2-SVP double-ζ basis set, (see SI, Figure S7a and Table S7). Also scaling of energy does not improve results since including diffuse basis sets increases the scattering of the calculated absorption energies in most cases. Thus, unintuitively, the smallest basis set provides the most accurate results.

Finally, we investigated the influence of the electronic structure method during structure optimization. Instead of the GGA BLYP, the more expensive hybrid functional B3LYP was selected for structure optimization. The influence is overall negligible for absorption energies obtained by BLYP and B3LYP, compare Table S7 and S8 in SI. In case of the RSH CAM-B3LYP, the errors without energy scaling are even increased pointing to some error compensation for the most reliable approach. Nonetheless, global scaling of energy provides nearly identical results. Thus, as long as the correct combination of scaling factor, structure optimization setup and absorption energies calculation approach are selected, results can be barely improved.

CONCLUSIONS

We have presented a detailed validation of the simplified time dependent density functional theory method developed by Grimme et al. for the calculation of UV/Vis-spectra of
porphyrinoids including free base and metal containing PPs. The original RPA-approach tends to smaller absorption energies than TDA, which is also visible for the simplified versions. Local GGA functionals produce large errors and therefore cannot be recommended. In contrast to local DFT functionals, global hybrids yield significantly improved results only after energy scaling, especially BHLYP and M06-2X. We can recommend as global hybrid B3LYP which produces MAE of 0.06 eV in combination with sTDA and the def2-SVP basis set which can be barely improved by energy scaling. Best results without energy scaling are obtained with the RSH CAM-B3LYP in combination with sTDA and the def2-SVP basis set yielding a MAE of about 0.05 eV. Significantly more expensive perturbative corrected double hybrid functionals tend to yield results comparable to CAM-B3LYP solely when energies are scaled. Apart from that, employing a hybrid instead of a GGA functional for geometry optimization has less-significant effect on the calculated absorption bands whereas increasing the basis set does not improve the calculated absorption bands. Most notable, including diffuse basis set function even lead to worse results. Thus, employing a cheap GGA like BLYP for structure optimization, selecting an overall small basis set of double-ζ quality in combination with a CAM-B3LYP and the sTDA approach provides a cost-efficient approach to estimate the absorption spectra of porphyrinoids which can be barely improved by more expensive approaches. Unfortunately, none of the local functionals has sufficient predictive power, which is an obstacle in particular for periodic calculations.

ASSOCIATED CONTENT

Supporting Information (SI). A listing of the contents of each file supplied as SI.
AUTHOR INFORMATION

Corresponding Author * E-mail:

ACKNOWLEDGMENT

This work is supported by Deutsche Forschungsgemeinschaft (DFG) under COORNETs Priority Project SPP 1928. The computations were performed on a Taurus cluster at the center of information services and ZIH at TU Dresden. TH thanks Prof. Carlo Adamo (ParisTech) for fruitful discussion.

REFERENCES

1. Li, L.-L.; Diau, E. W.-G., Porphyrin-Sensitized Solar Cells. *Chem. Soc. Rev.* **2013**, *42*, 291.

2. Ishihara, S.; Labuta, J.; Van Rossum, W.; Ishikawa, D.; Minami, K.; Hill, J. P.; Ariga, K., Porphyrin-Based Sensor Nanoarchitectonics in Diverse Physical Detection Modes. *Phys. Chem. Chem. Phys.* **2014**, *16*, 9713.

3. Xu, J.; Wu, J.; Zong, C.; Ju, H.; Yan, F., Manganese Porphyrin-dsDNA Complex: A Mimicking Enzyme for Highly Efficient Bioanalysis. *Anal. Chem.* **2013**, *85*, 3374.

4. Bonnett, R., Photosensitizers of the Porphyrin and Phthalocyanine Series for Photodynamic Therapy. *Chem. Soc. Rev.* **1995**, *24*, 19.

5. Liu, J.; Zhou, W.; Liu, J.; Howard, I.; Kilibarda, G.; Schlabach, S.; Coupry, D.; Addicoat, M.; Yoneda, S.; Tsutsui, Y., Photoinduced Charge-Carrier Generation in Epitaxial MOF Thin Films: High Efficiency as a Result of an Indirect Electronic Band Gap? *Angew. Chem. Int. Ed.* **2015**, *54* (25), 7441-7445.

6. Haldar, R.; Batra, K.; Marschner, S. M.; Kuc, A. B.; Zahn, S.; Fischer, R. A.; Bräse, S.; Heine, T.; Wöll, C., Bridging the Green Gap: Metal–Organic Framework Heteromultilayers Assembled from Porphyrinic Linkers Identified by Using Computational Screening. *Chem. Eur. J* **2019**.

7. Kandambeth, S.; Shinde, D. B.; Panda, M. K.; Lukose, B.; Heine, T.; Banerjee, R., Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds. *Angew. Chem. Int. Ed.* **2013**, *52* (49), 13052-13056.
8. Gouterman, M., Spectra of Porphyrins. *J. Mol. Spectrosc.* 1961, 6, 138.

9. Hashimoto, T.; Choe, Y.-K.; Nakano, H.; Hirao, K., Theoretical study of the Q and B bands of free-base, magnesium, and zinc porphyrins, and their derivatives. *J. Phys. Chem. A* 1999, 103 (12), 1894-1904.

10. Rosa, A.; Ricciardi, G.; Baerends, E.; van Gisbergen, S. A., The optical spectra of NiP, NiPz, NiTBP, and NiPc: electronic effects of meso-tetraaza substitution and tetrabenzo annulation. *J. Phys. Chem. A* 2001, 105 (13), 3311-3327.

11. Christiansen, O.; Koch, H.; Jørgensen, P., The Second-Order Approximate Coupled Cluster Singles and Doubles Model CC2. *Chem. Phys. Lett.* 1995, 243, 409.

12. Hättig, C.; Weigend, F., CC2 Excitation Energy Calculations on Large Molecules Using the Resolution of the Identity Approximation. *J. Chem. Phys.* 2000, 113, 5154.

13. Schreiber, M.; Silva-Junior, M. R.; Sauer, S. P.; Thiel, W., Benchmarks for Electronically Excited States: CASPT2, CC2, CCSD, and CC3. *J. Chem. Phys.* 2008, 128, 134110.

14. Schirmer, J., Beyond the random-phase approximation: A new approximation scheme for the polarization propagator. *Phys. Rev. A* 1982, 26 (5), 2395.

15. Andersson, K.; Malmqvist, P. Å.; Roos, B. O., Second-Order Perturbation Theory with a Complete Active Space Self-Consistent Field Reference Function. *J. Chem. Phys.* 1992, 96, 1218.

16. Serrano-Andrés, L.; Merchán, M.; Rubio, M.; Roos, B. O., Interpretation of the electronic absorption spectrum of free base porphin by using multiconfigurational second-order perturbation theory. *Chem. Phys. Lett.* 1998, 295, 195.

17. Tokita, Y.; Hasegawa, J.; Nakatsuij, H., SAC-CI Study on the Excited and Ionized States of Free-Base Porphin: Rydberg Excited States and Effect of Polarization and Rydberg Functions. *J. Phys. Chem. A* 1998, 102, 1843.

18. Gwaltney, S. R.; Bartlett, R. J., Coupled-Cluster Calculations of the Electronic Excitation Spectrum of Free Base Porphin in a Polarized Basis. *J. Chem. Phys.* 1998, 108, 6790.

19. Angeli, C.; Cimiraglia, R.; Evangelisti, S.; Leininger, T.; Malrieu, J.-P., Introduction of n-Electron Valence States for Multireference Perturbation Theory. *J. Chem. Phys.* 2001, 114, 10252.

20. Angeli, C.; Pastore, M.; Cimiraglia, R., New perspectives in Multireference Perturbation Theory: The n-Electron Valence State Approach. *Theor. Chem. Acc.* 2007, 117, 743.

21. Runge, E.; Gross, E. K., Density-Functional Theory for Time-Dependent Systems. *Phys. Rev. Lett.* 1984, 52, 997.
22. Gross, E.; Kohn, W., Time-dependent density-functional theory. In *Advances in quantum chemistry*, Elsevier: 1990; Vol. 21, pp 255-291.

23. Casida, M. E., Time-Dependent Density Functional Response Theory for Molecules. In *Recent Advances In Density Functional Methods: (Part I)*, World Scientific: 1995; p 155.

24. Van Leeuwen, R., Key concepts in time-dependent density-functional theory. *Int. J. Mod. Phys. A* 2001, 15, 1969-2023.

25. Marques, M. A.; Gross, E. K., Time-dependent density functional theory. *Annu. Rev. Phys. Chem.* 2004, 55, 427-455.

26. Hirata, S.; Head-Gordon, M., Time Dependent Density Functional Theory within the Tamm–Dancoff Approximation. *Chem. Phys. Lett.* 1999, 314, 291.

27. Chantzis, A.; Laurent, A. D.; Adamo, C.; Jacquemin, D., Is the Tamm-Dancoff Approximation Reliable for the Calculation of Absorption and Fluorescence Band Shapes? *J. Chem. Theory. Comput.* 2013, 9, 4517.

28. Wang, Y. L.; Wu, G. S., Improving the TDDFT Calculation of Low-Lying Excited States for Polycyclic Aromatic Hydrocarbons using the Tamm–Dancoff approximation. *Int. J. Quantum Chem* 2008, 108, 430.

29. Dreuw, A.; Head-Gordon, M., Failure of Time-Dependent Density Functional Theory for Long-Range Charge-Transfer Excited States: The zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes. *J. Am. Chem. Soc.* 2004, 126, 4007.

30. Tozer, D. J.; Amos, R. D.; Handy, N. C.; Roos, B. O.; Serrano-Andrés, L., Does Density Functional Theory Contribute to the Understanding of Excited States of Unsaturated Organic Compounds? *Mol. Phys.* 1999, 97, 859.

31. Bauernschmitt, R.; Ahlrichs, R., Treatment of Electronic Excitations within the Adiabatic Approximation of Time Dependent Density Functional Theory. *Chem. Phys. Lett* 1996, 256, 454.

32. Tian, B.; Eriksson, E. S.; Eriksson, L. A., Can Range-Separated and Hybrid DFT Functionals Predict Low-Lying Excitations? A Tookad Case Study. *J. Chem. Theory Comput.* 2010, 6, 2086.

33. Eriksson, E. S.; Eriksson, L. A., Predictive Power of Long-Range Corrected Functionals on the Spectroscopic Properties of Tetrapyrrole Derivatives for Photodynamic Therapy. *Phys. Chem. Chem. Phys.* 2011, 13, 7207.

34. Lee, M.-J.; Balanay, M. P.; Kim, D. H., Molecular Design of Distorted Push–Pull Porphyrins for Dye-Sensitized Solar Cells. *Theor. Chem. Acc* 2012, 131, 1269.
35. Winter, N. O.; Graf, N. K.; Leutwyler, S.; Hättig, C., Benchmarks for 0–0 Transitions of Aromatic Organic Molecules: DFT/B3LYP, ADC (2), CC2, SOS-CC2 and SCS-CC2 Compared to High-Resolution Gas-Phase Data. *Phys. Chem. Chem. Phys.* **2013**, *15*, 6623.

36. Fang, C.; Oruganti, B.; Durbeej, B., How Method-Dependent are Calculated Differences Between Vertical, Adiabatic, and 0–0 Excitation Energies? *J. Phys. Chem. A* **2014**, *118*, 4157.

37. Send, R.; Kühn, M.; Furche, F., Assessing Excited State Methods by Adiabatic Excitation Energies. *J. Chem. Theory Comput.* **2011**, *7*, 2376.

38. Theisen, R. F.; Huang, L.; Fleetham, T.; Adams, J. B.; Li, J., Ground and Excited states of Zinc Phthalocyanine, Zinc Tetrabenzoporphyrin, and Azaporphyrin Analogs using DFT and TDDFT with Franck-Condon Analysis. *J. Chem. Phys.* **2015**, *142*, 094310.

39. Grimme, S., A simplified Tamm-Dancoff Density Functional Approach for the Electronic Excitation Spectra of Very Large Molecules. *J. Chem. Phys.* **2013**, *138*, 244104.

40. Bannwarth, C.; Grimme, S., A simplified Time Dependent Density Functional Theory Approach for Electronic Ultraviolet and Circular Dichroism Spectra of Very Large Molecules. *Comput. Theor. Chem.* **2014**, *1040*, 45.

41. Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C., Electronic Structure Calculations on Workstation Computers: The Program System Turbomole. *Chem. Phys. Lett.* **1989**, *162*, 165.

42. Becke, A. D., Density Functional Exchange Energy Approximation with Correct Asymptotic Behavior. *Phys. Rev. A* **1988**, *38*, 3098.

43. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti Correlation Energy Formula into a Functional of the Electron Density. *Phys. Rev. B* **1988**, *37*, 785.

44. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A Consistent and Accurate ab initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys* **2010**, *132*, 154104.

45. Baerends, E.; Ellis, D.; Ros, P., Self-Consistent Molecular Hartree-Fock-Slater Calculations I. The Computational Procedure. *Chem. Phys.* **1973**, *2*, 41.

46. Dunlap, B. I.; Connolly, J.; Sabin, J., On Some Approximations in Applications of X α Theory. *J. Chem. Phys.* **1979**, *71*, 3396.

47. Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R., Auxiliary Basis Sets for Main Row Atoms and Transition Metals and their Use to Approximate Coulomb Potentials. *Theor. Chem. Acc* **1997**, *97*, 119.

48. Schäfer, A.; Huber, C.; Ahlrichs, R., Fully Optimized Contracted Gaussian Basis Sets of Triple Zeta Valence Quality for Atoms Li to Kr. *J. Chem. Phys.* **1994**, *100*, 5829.
49. Becke, A. D., Density Functional Thermochemistry. III. The Role of Exact Exchange. *J. Chem. Phys.* 1993, 98, 5648.

50. Neese, F., The ORCA Program System. *WIREs: Comput Mol Sci* 2012, 2, 73.

51. Perdew, J. P., Density Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. *Phys. Rev. B* 1986, 33, 8822.

52. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* 1996, 77, 3865.

53. Perdew, J. P.; Wang, Y., Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. *Phys. Rev. B* 1992, 45, 13244.

54. Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E., Climbing the Density Functional Ladder: Nonempirical meta–Generalized Gradient Approximation Designed for Molecules and Solids. *Phys. Rev. Lett.* 2003, 91, 146401.

55. Zhao, Y.; Truhlar, D. G., A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Non-Covalent Interactions. *J. Chem. Phys.* 2006, 125, 194101.

56. Perdew, J. P.; Ernzerhof, M.; Burke, K., Rationale for Mixing Exact Exchange with Density Functional Approximations. *J. Chem. Phys.* 1996, 105, 9982.

57. Becke, A. D., A New Mixing of Hartree–Fock and Local Density Functional Theories. *J. Chem. Phys.* 1993, 98, 1372.

58. Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E., Climbing the Density Functional Ladder: Non-Empirical meta-Generalized Gradient Approximation Designed for Molecules and Solids. *Phys. Rev. Lett.* 2003, 91, 146401.

59. Zhao, Y.; Truhlar, D. G., The M06 suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Non-Covalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. *Theor. Chem. Acc.* 2008, 120, 215.

60. Chai, J.-D.; Head-Gordon, M., Systematic Optimization of Long-Range Corrected Hybrid Density Functionals. *J. Chem. Phys.* 2008, 128, 084106.

61. Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao, K., A Long Range Corrected Time Dependent Density Functional Theory. *J. Chem. Phys.* 2004, 120, 8425.

62. Yanai, T.; Tew, D. P.; Handy, N. C., A New Hybrid Exchange–Correlation Functional Using the Coulomb Attenuating Method (CAM-B3LYP). *Chem. Phys. Lett.* 2004, 393, 51.
63. Grimme, S., Semiempirical Hybrid Density Functional with Perturbative Second-Order Correlation. *J. Chem. Phys.* **2006**, *124*, 034108.

64. Karton, A.; Tarnopolsky, A.; Lamére, J.-F.; Schatz, G. C.; Martin, J. M., Highly Accurate First-Principles Benchmark Data-Sets for the Parametrization and Validation of Density Functional and Other Approximate Methods. Derivation of a Robust, Generally Applicable, Double-Hybrid Functional for Thermochemistry and Thermochemical Kinetics. *J. Phys. Chem. A* **2008**, *112*, 12868.

65. Schwabe, T.; Grimme, S., Towards Chemical Accuracy for the Thermodynamics of Large Molecules: New Hybrid Density Functionals Including Non-Local Correlation Effects. *Phys. Chem. Chem. Phys.* **2006**, *8*, 4398.

66. Weigend, F.; Ahlrichs, R., Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297.

67. Rappoport, D.; Furche, F., Property-optimized Gaussian basis sets for molecular response calculations. *J. Chem. Phys.* **2010**, *133* (13), 134105.

68. Feyereisen, M.; Fitzgerald, G.; Komornicki, A., Use of Approximate Integrals in Abinitio Theory - An Application in MP2 Energy Calculations. *Chem. Phys. Lett.* **1993**, *208*, 359.

69. Weigend, F.; Haser, M.; Patzelt, H.; Ahlrichs, R., RI-MP2: Optimized Auxiliary Basis Sets and Demonstration of Efficiency. *Chem. Phys. Lett.* **1998**, *294*, 143.

70. Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U., Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. *Chem. Phys.* **2009**, *356* (1-3), 98-109.

71. Foresman, J. B.; Headgordon, M.; Pople, J. A.; Frisch, M. J., Toward a Systematic Molecular-Orbital Theory for Excited-States. *J. Phys. Chem.* **1992**, *96*, 135.

72. Headgordon, M.; Rico, R. J.; Oumi, M.; Lee, T. J., A Doubles Correction to Electronic Excited-States from Configuration-Interaction in the Space of Single Substitutions. *Chem. Phys. Lett.* **1994**, *219*, 21.

73. Headgordon, M.; Maurice, D.; Oumi, M., A Perturbative Correction to Restricted Open-Shell Configuration-Interaction with Single Substitutions for Excited-States of Radicals. *Chem. Phys. Lett.* **1995**, *246*, 114.

74. Eisner, U.; Linstead, R., Chlorophyll and related substances. Part II. The dehydrogenation of chlorin to prophin and the number of extra hydrogen atoms in the chlorins. *J. Chem. Soc. (Resumed)* **1955**, *3749*-3754.
75. Du, H.; Fuh, R. C. A.; Li, J.; Corkan, L. A.; Lindsey, J. S., PhotochemCAD: A computer-aided design and research tool in photochemistry. Photochem. Photobiol 1998, 68, 141-142.

76. Dixon, J. M.; Taniguchi, M.; Lindsey, J. S., PhotochemCAD 2: a refined program with accompanying spectral databases for photochemical calculations. Photochem. Photobiol. 2005, 81, 212-213.

77. Eisner, U.; Lichtarowicz, A.; Linstead, R., 142. Chlorophyll and related compounds. Part VI. The synthesis of octaethylchlorin. J. Chem. Soc. (Resumed) 1957, 733-739.

78. Zass, E.; Isenring, H. P.; Etter, R.; Eschenmoser, A., Der Einbau von Magnesium in Liganden der Chlorophyll-Reihe mit (2, 6-Di-t-butyl-4-methylphenoxy) magnesiumjodid. Helv. Chim. Acta 1980, 63, 1048-1067.

79. Buchler, J. W.; Puppe, L., Metallkomplexe mit Tetrapyrrol-Liganden, II1) Metallchelate des α. γ-Dimethyl-α. γ-dihydro-octaäthylporphins durch reduzierende Methylierung von Octaäthylporphinato-zink. Eur. J. Org. Chem. 1970, 740, 142-163.

80. Barnett, G. H.; Hudson, M. F.; Smith, K. M., Concerning meso-tetraphenylporphyrin purification. J. Chem. Soc., Perkin Trans. 1 1975, (14), 1401-1403.

81. Miller, J.; Dorough, G., Pyridinate Complexes of Some Metallo-derivatives of Tetraphenylporphine and Tetraphenylchlorin1. J. Am. Chem. Soc. 1952, 74, 3977-3981.

82. Collman, J. P.; Gagne, R. R.; Reed, C.; Halbert, T. R.; Lang, G.; Robinson, W. T., Picket fence porphyrins. Synthetic models for oxygen binding hemoproteins. J. Am. Chem. Soc. 1975, 97, 1427-1439.

83. Segawa, H.; Takehara, C.; Honda, K.; Shimidzu, T.; Asahi, T.; Mataga, N., Photoinduced electron-transfer reactions of porphyrin heteroaggregates: energy gap dependence of an intradimer charge recombination process. J. Phys. Chem. A 1992, 96, 503-506.

84. Son, H.-J.; Jin, S.; Patwardhan, S.; Wezenberg, S. J.; Jeong, N. C.; So, M.; Wilmer, C. E.; Sarjeant, A. A.; Schatz, G. C.; Snurr, R. Q., Light-harvesting and ultrafast energy migration in porphyrin-based metal–organic frameworks. J. Am. Chem. Soc. 2013, 135, 862-869.

85. Bhyrappa, P.; Krishnan, V., Octabromotetraphenylporphyrin and its metal derivatives: electronic structure and electrochemical properties. Inorg. Chem. 1991, 30, 239.

86. Ikikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K., A long-range correction scheme for generalized-gradient-approximation exchange functionals. J. Chem. Phys 2001, 115 (8), 3540-3544.

87. Gill, P. M.; Adamson, R. D.; Pople, J. A., Coulomb-attenuated exchange energy density functionals. Mol. Phys. 1996, 88 (4), 1005-1009.
88. Leininger, T.; Stoll, H.; Werner, H.-J.; Savin, A., Combining long-range configuration interaction with short-range density functionals. *Chem. Phys. Lett* **1997**, *275* (3-4), 151-160.
Benchmark of simplified Time-Dependent Density Functional Theory for UV-Vis Spectral Properties of Porphyrinoids.

Kamal Batra, a Stefan Zahn, b and Thomas Heine a, c

a Technische Universität Dresden, Theoretische Chemie, Bergstraße 66c, 01062 Dresden, Germany

b Leibniz Institut für Oberflächenmodifizierung (IOM), Permoserstraße 15, 04318 Leipzig, Germany

c Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany

Supporting Information
Table of Contents

1. UV/Vis Representation of Tetra-Phenyl-Porphyrin (TPP)
2. Computational Summary
3. Charge Transfer Excitations in Tetrakis(o-aminophenyl) Porphyrin
4. Scaled Error Dataset for Diverse DFT Functional Approaches
5. Box-Plot – Absolute Mean Error Representations
6. Influence of Diffuse Functions and Geometry
7. Optimized Geometries of Benchmark Set – BLYP-D3/TZVP
8. Re-Optimized Geometries of Benchmark Set – B3LYP-D3/TZVP
1. UV/Vis Representation of Tetrphenyl Porphyrin (H2TPP)

![UV/Vis Spectra of Tetraphenyl Porphyrin (H2TPP)](image)

Figure S1. UV/Vis-spectra of tetrphenyl-porphyrin (H2TPP) and the transitions based on the model of Gouterman

2. Computational Summary

Table S1. Summarize the computational protocols (including various functionals, approaches and basis-sets) applied for the PP-benchmark study.

DFT Group	DFT Functionals	Computational Approaches (Basis Set Choices)							
		TDA (SVP)	RPA (SVP)	sTDA (SVP)	sTD-DFT (SVP)	sTDA (TZVP)	sTD-DFT (TZVP)	sTDA (SVPD)	sTDA (TZVPD)
GGA and meta-GGA	PBE	x	x	x	x	x	x	x	x
	BP86	x	x	x	x	x	x	x	x
	BLYP	x	x	x	x	x	x	x	x
	*BLYP	x	x	x	x	x	x	x	x
	TPSS	x	x	x	x	x	x	x	x
	M06-L								
------------------------------	--------	---	---	---	---	---	---		
PBE0	X	X	X	X	X	X	X		
B3P86	X	X	X	X	X	X	X		
B3LYP	X	X	X	X	X	X	X	X	
*B3LYP									
TPSS0	X	X	X	X	X	X	X		
M06	X	X	X	X	X	X	X		
BHLYP	X	X	X	X	X	X	X		
M06-2X	X	X	X	X	X	X	X		
ωB97	X	X	X	X	X	X	X		
ωB97X	X	X	X	X	X	X	X		
LC-BLYP	X	X	X	X	X	X	X		
CAM-B3LYP	X	X	X	X	X	X	X	X	
*CAM-B3LYP									
B2PLYP									
B2GP-PLYP									
mPW2PLYP									
CIS									
CIS(D)									

Note: All the ground state geometries are fully optimized using BLYP-D3/TZVP level. Here (*) indicates the re-optimization of all geometries using B3LYP-D3/TZVP level to examine the influence of applied functional on calculated absorption bands.

3. Charge Transfer Excitations in Tetrakis(o-aminophenyl) Porphyrin

Table S2: Charge transfer (CT) properties shown by GGA’s in TD-DFT type (RPA) for 8 (H2TAPP) molecule.
Method	State	E (eV)	Method	State	E (eV)	Method	State	E (eV)
BLYP/RPA	State 1	1.82	PBE/RPA	State 1	1.80	BP86/RPA	State 1	1.81
	173 → 178	18 %		173 → 178	15 %		173 → 178	16 %
	176 → 178	22 %		176 → 178	25 %		176 → 178	24 %
	177 → 178	54 %		177 → 178	55 %		177 → 178	55 %
BLYP/RPA	State 2	1.85	PBE/RPA	State 2	1.83	BP86/RPA	State 2	1.84
	175 → 178	99 %		175 → 178	99 %		175 → 178	99 %

Figure S2. Molecular orbitals of 8 (H2TAPP)

4. Scaled Error Dataset for Diverse Density Functional Approaches

Table S3. Calculated errors in eV for the pure DFT functionals with scaled absorption energies

Method	TDA	RPA	sTDA	sTD-DFT	sTDA	sTD-DFT
GGA and meta-GGA Functionals	(def2-SVP)	(def2-SVP)	(def2-SVP)	(def2-TZVP)	(def2-TZVP)	(def2-TZVP)
Global Hybrid Functionals	TDA (def2-SVP)	RPA (def2-SVP)	sTDA (def2-SVP)	sTD-DFT (def2-SVP)	sTDA (def2-TZVP)	sTD-DFT (def2-TZVP)
---------------------------	----------------	----------------	----------------	---------------------	----------------	---------------------
PBE0	ME	0.00	0.00	0.00	0.00	0.00

Table S4. Calculated errors in eV for the global hybrid functionals with scaled absorption energies.
	MAE	0.07	0.08	0.07	0.07	0.08	0.08
MAXE	0.14	0.15	0.17	0.18	0.22	0.22	
Scaling Factor	0.90	0.93	1.04	1.06	1.12	1.13	
B3P86	ME	0.00	0.00	0.00	0.00	0.00	0.00
MAE	0.07	0.08	0.06	0.07	0.08	0.08	
MAXE	0.15	0.16	0.17	0.18	0.22	0.22	
Scaling Factor	0.91	0.94	1.01	1.03	1.08	1.09	
B3LYP	ME	0.00	0.00	0.00	0.00	0.00	0.00
MAE	0.07	0.08	0.06	0.07	0.08	0.08	
MAXE	0.15	0.15	0.17	0.18	0.21	0.22	
Scaling Factor	0.92	0.95	1.01	1.03	1.08	1.10	
TPSS0	ME	0.00	0.00	0.00	0.00	0.00	0.00
MAE	0.07	0.08	0.06	0.07	0.08	0.08	
MAXE	0.14	0.15	0.16	0.17	0.21	0.22	
Scaling Factor	0.90	0.93	1.02	1.04	1.09	1.11	
M06	ME	0.00	0.00	0.00	0.00	0.00	0.00
MAE	0.07	0.08	0.06	0.07	0.08	0.08	
MAXE	0.14	0.15	0.17	0.18	0.21	0.22	
Scaling Factor	0.93	0.97	1.08	1.11	1.17	1.19	
BHLYP	ME	0.00	0.00	0.00	0.01	0.00	0.00
MAE	0.07	0.07	0.06	0.06	0.08	0.08	
MAXE	0.14	0.14	0.14	0.14	0.18	0.16	
Scaling Factor	0.88	0.94	1.17	1.21	1.27	1.34	
M06-2X	ME	0.00	0.00	0.00	0.01	0.00	0.00
MAE	0.07	0.06	0.06	0.06	0.08	0.08	
MAXE	0.13	0.12	0.14	0.15	0.19	0.18	
Table S5. Calculated errors in eV for the RSH functionals with scaled absorption energies.

Range Separated Hybrid Functionals	TDA (def2-SVP)	RPA (def2-SVP)	sTDA (def2-SVP)	sTD-DFT (def2-SVP)	sTDA (def2-TZVP)	sTD-DFT (def2-TZVP)
ωB97	0.00	0.00	0.00	0.00	0.00	0.00
MAE	0.06	0.05	0.12	0.12	0.11	0.11
MAXE	0.12	0.11	0.23	0.23	0.22	0.23
Scaling Factor	0.91	1.08	1.08	1.28	1.09	1.27
ωB97X	0.00	0.00	0.00	0.00	0.00	0.00
MAE	0.06	0.05	0.12	0.12	0.11	0.11
MAXE	0.12	0.10	0.23	0.24	0.21	0.22
Scaling Factor	0.90	1.04	1.09	1.26	1.10	1.25
LC-BLYP	0.00	0.00	0.00	0.00	0.00	0.00
MAE	0.06	0.05	0.12	0.12	0.11	0.11
MAXE	0.12	0.10	0.24	0.24	0.22	0.22
Scaling Factor	0.91	1.05	1.07	1.20	1.08	1.20
CAM-B3LYP	0.00	0.00	0.00	0.00	0.00	0.00
MAE	0.06	0.05	0.04	0.05	0.06	0.07
MAXE	0.13	0.12	0.08	0.12	0.13	0.13
Scaling Factor	0.90	0.96	0.99	1.01	1.07	1.09

Table S6. Calculated errors in eV for the double hybrids and post-HF functionals with scaled absorption energies
Double Hybrids and Post-HF functionals	(def2-SVP)
B2PLYP	ME 0.00
	MAE 0.04
	MAXE 0.08
Scaling Factor	0.90
B2GP-PLYP	ME 0.00
	MAE 0.04
	MAXE 0.09
Scaling Factor	0.88
mPW2PLYP	ME 0.00
	MAE 0.05
	MAXE 0.09
Scaling Factor	0.89
CIS	ME 0.00
	MAE 0.10
	MAXE 0.17
Scaling Factor	0.89
CIS (D)	ME 0.00
	MAE 0.04
	MAXE 0.08
Scaling Factor	0.80

5. Box-Plots Analysis - Absolute Mean Error Representations

Box-plot of variant DFT functionals displaying the error distribution of dataset based on the following four number summary: (+) mean absolute error; (box) range between lower and upper quartile; (dashed lines)
minimum and maximum, excluding outliers; (black dots) outliers termed as extremes error values which are outside the range given in bar. Variant color box represents functional-approach-basis-set combination such as yellow: TDA (def2-SVP); cyan: RPA (def2-SVP); orange: sTDA (def2-SVP); sky blue: sTD-DFT (def2-SVP); red: sTDA (def2-TZVP); blue: sTD-DFT (def2-TZVP); white: TDA+MP2 (def2-SVP); grey: CIS and CISD, (def2-SVP); light brown: sTDA (def2-SVPD) and dark brown: sTDA (def2-TZVPD)

Figure S3. Box-plot displaying scaled error values in eV for the variant of density-functionals in combination with TD-DFT types (a) TDA, (b) RPA, and def2-SVP basis set.
Figure S4. Box-plot displaying scaled error values in eV for the variant of density-functionals in combination with TD-DFT types (a) sTDA, (b) sTD-DFT, and def2-SVP basis set.
Figure S5. Full box-plot error distribution in eV for all approaches and basis set combinations. Original error values are on the left while scaled error values are shown on the right.
Figure S6. Full box-plot error distribution in nm for all approaches and basis set combinations. Original error values are on the left while scaled error values are shown on the right.
6. Influence of Diffuse Functions and Geometry

Table S7 Calculated original and scaled error values in eV for the selected density functionals

BLYP-D3/TZVP Optimized Geometry	Original Error Values	Scaled Error Values					
	sTDA-def2-SVP	sTDA-def2-SVPD	sTDA-def2-TZVPD	sTDA-def2-SVP	sTDA-def2-SVPD	sTDA-def2-TZVPD	
BLYP	ME	-0.08	-0.23	-0.26	0.01	0.00	0.00
	MAE	0.09	0.23	0.26	0.09	0.09	0.09
	MAXE	0.49	0.50	0.51	0.41	0.27	0.27
Scaling Factor				1.04	1.12	1.14	
B3LYP	ME	-0.03	-0.22	-0.25	0.00	0.00	0.00
	MAE	0.06	0.22	0.25	0.06	0.09	0.09
	MAXE	0.18	0.42	0.45	0.17	0.27	0.24
Scaling Factor				1.01	1.12	1.14	
CAM-B3LYP	ME	0.03	-0.20	-0.23	0.00	0.00	0.00
	MAE	0.05	0.20	0.23	0.04	0.08	0.09
	MAXE	0.10	0.35	0.14	0.08	0.15	0.15
Scaling Factor				0.99	1.10	1.12	

Table S8 Calculated original and scaled error values in eV for the selected density functionals

B3LYP-D3/TZVP Optimized Geometry	Original Error Values	Scaled Error Values				
	sTDA-def2-SVP	sTDA-def2-SVPD	sTDA-def2-TZVPD	sTDA-def2-SVP	sTDA-def2-SVPD	sTDA-def2-TZVPD
ME	-0.04	-0.19	-0.22	0.00	0.00	0.00
	MAE					
--------	-------	----	----	----	----	----
BLYP	0.08	0.19	0.22	0.09	0.09	0.10
	0.46	0.46	0.47	0.42	0.27	0.27
Scaling Factor	-			1.02	1.10	1.12
B3LYP	0.07	0.18	0.21	0.07	0.09	0.10
	0.18	0.37	0.41	0.16	0.26	0.25
Scaling Factor	-			0.99	1.09	1.11
CAM-B3LYP	0.08	-0.17	-0.21	0.00	0.00	0.00
	0.08	0.14	0.18	0.04	0.08	0.09
	0.16	0.30	0.34	0.07	0.15	0.16
Scaling Factor	0.96	1.07	1.09			

Figure S7 Box-plot displaying original error values in eV for the selected density functionals with and without diffuse (‘D’) basis set functions where (a) is the BLYP-D3 and TZVP based geometry optimization while (b) is the B3LYP-D3 and TZVP based geometry optimization for the benchmark-set.
Figure S8 Box-plot displaying scaled error values in eV for the selected density functionals with and without diffuse('D') basis set functions, where (a) is the BLYP-D3 and TZVP based geometry optimization while (b) is the B3LYP-D3 and TZVP based geometry optimization for the benchmark-set.

7. Benchmark Set: Optimized Geometries with BLYP-D3/TZVP

[1] Porphyrin (H2PP)

38 Atoms

Element	X Coordinates	Y Coordinates	Z Coordinates
C	-0.000850	0.000339	-0.084729
C	0.149708	-0.000127	1.311843
C	1.346922	-0.000582	2.035361
C	1.517883	-0.001086	3.465635
C	2.869981	-0.000840	3.736589
C	3.578635	-0.000430	2.482415
N	2.617103	-0.000357	1.488774
H	3.349635	-0.001034	4.709212
H	0.700392	-0.001447	4.178071
C	-1.299964	0.000995	-0.765334
C	-1.032821	0.001009	-2.102501
C	0.427859	0.000388	-2.231921
N	1.028037	0.000058	-0.995668
[2] Octaethylporphyrin (H2OEP)

86 Atoms
Atoms	X	Y	Z
C	-1.697198	0.383828	-4.688646
C	-0.380143	0.437430	-4.222442
C	0.837605	0.475184	-5.992204
C	1.909475	0.520229	-6.512720
C	1.372107	0.511812	-2.778391
N	-0.002819	0.458013	-2.894319
C	2.080626	0.544460	-1.573843
C	-4.545336	0.160111	-5.992204
C	-6.603354	0.060838	-3.495637
N	-0.002819	0.458013	-2.894319
C	2.080626	0.544460	-1.573843
C	-4.545336	0.160111	-5.992204
C	-6.603354	0.060838	-3.495637
C	-3.583189	0.188465	3.999399
C	-3.583189	0.188465	3.999399
C	3.905079	0.513973	0.981193
C	1.847285	0.402450	3.477583
H	5.870002	-0.179353	0.843200
H	3.163099	0.593047	1.670135
H	-0.897782	0.391950	3.257352
H	-1.809379	0.382541	5.770647
H	1.833273	0.829960	-6.870404
C	0.731637	-1.035370	-7.059896
C	-1.091447	1.040006	-6.938171
H	0.761448	-1.044396	-8.158321
H	1.539188	-1.680463	-6.689366
H	-0.220525	-1.476054	-6.737418
C	4.006594	-0.908013	-4.361957
C	3.920002	1.187690	-3.782574
H	5.077721	-0.879915	-4.604935
H	3.893783	-1.319785	-3.350314
H	3.513444	-1.598522	-5.058597
C	4.509780	-0.895384	0.751669
H	4.300927	1.203836	0.220144
H	4.255464	0.900705	1.948891
H	5.608284	-0.861772	0.769439
H	4.174560	-1.592446	1.531161
H	4.193394	-1.304352	-0.216823
H	2.849662	0.816737	3.657922
H	1.151885	1.037098	4.048218
C	1.791708	-1.042807	4.037909
H	2.025983	-1.060319	5.110792
H	0.795017	-1.482038	3.895762
H	2.513095	-1.685728	3.516015
C	-3.330850	-1.239716	4.546633
H	-2.836396	0.875404	4.424367
H	-4.559014	0.544314	4.357578
H	-3.359173	-1.250401	5.645135
H -4.092682 -1.938847 4.177256
H -2.350919 -1.614541 4.223852
H -6.260642 0.444300 2.960561
H -6.675844 0.703869 1.274214
C -6.580105 -1.393883 1.844144
H -7.648921 -1.460636 2.090280
H -6.435561 -1.788495 0.829795
H -6.026250 -2.042522 2.535164
H -6.985583 0.421174 -4.461386
C -7.084404 -1.396717 -3.275392
H -7.057879 0.709384 -2.731013
H -8.181667 -1.459147 -3.301051
H -6.684365 -2.058642 -4.054815
H -6.740931 -1.781656 -4.054815
C -4.375254 -1.269662 -6.567949
H -5.576924 0.496821 -6.168628
H -3.901884 0.853675 -6.555121
H -4.604030 -1.293282 -7.642732
H -3.347281 -1.629397 -6.427105
H -5.045053 -1.974024 -6.057338
H -2.058273 0.369447 -0.407341
H -0.650824 0.449533 -2.106236

[3] Magnesium octaethylporphyrin (MgOEP)

85 Atoms

N -0.024039 0.160588 -2.845935
C -0.366038 0.171675 -4.185853
C 0.846098 0.163733 -5.002191
C 1.915612 0.135503 -4.127992
C 1.357192 0.141850 -2.777591
C -1.684556 0.189619 -4.673338
C -2.879914 0.202157 -3.933750
C -4.230249 0.219235 -4.492321
C -5.104302 0.239508 -3.422480
C -4.288151 0.219154 -2.210323
N -2.948347 0.199370 -2.552434
C -4.775572 0.220161 -0.891659
C -4.036100 0.203246 0.303736
C -4.594705 0.200999 -1.654113
C -3.524895 0.193322 -2.528422
C -2.312885 0.175478 1.712098
N -2.654909 0.184404 0.372129
C -0.994381 0.153982 -2.199500
C 0.200888 0.139741 1.459837
Element	X	Y	Z
N	0.269327	0.145881	0.078506
C	1.609205	0.131790	-0.263600
C	2.425464	0.120468	0.948523
C	1.551076	0.115319	2.018256
MG	-1.339514	0.172028	-1.236934
C	1.895187	0.142880	3.485800
C	1.899878	1.576851	4.074846
C	3.931459	0.066734	0.992651
C	4.487847	-1.369683	0.820530
C	2.096717	0.129652	-1.582231
C	-3.569580	0.152355	4.034778
C	-3.423934	-1.282792	4.602086
C	-6.061495	0.259414	1.997637
C	-6.624924	1.703484	1.982694
C	-6.611189	0.226267	-3.466236
C	-7.205341	-1.196073	-3.302466
C	-4.572410	0.268308	-5.959758
C	-4.517999	1.704178	-6.541522
C	0.889817	0.134444	-6.508862
C	0.705713	-1.291184	-7.088785
C	3.383398	0.157584	-4.471361
C	3.984572	1.586303	-4.445465
H	-5.858361	0.236214	-0.782787
H	3.179568	0.116997	-1.690942
H	-0.885541	0.148580	3.282400
H	-1.793147	0.195285	-5.756251
H	1.846588	0.547257	-6.858050
H	0.110807	0.794947	-6.918212
H	0.734260	-1.278359	-8.187464
H	1.500091	-1.960299	-6.731495
H	-0.255037	-1.718617	-6.773480
H	3.941783	-0.483418	-3.772823
H	3.536277	-0.281142	-5.467649
H	5.055764	1.569409	-4.690693
H	3.474388	2.232689	-5.172056
H	3.865238	2.043425	-3.454028
H	4.351649	0.713905	0.208244
H	4.287348	0.481697	1.946015
H	5.586594	-1.374967	0.850076
H	4.118764	-2.026383	1.619835
H	4.166336	-1.799531	-0.137080
H	2.881834	-0.315932	3.642350
H	1.183290	-0.478298	4.049655
H	2.143791	1.563663	5.146410
H	2.640763	2.203010	3.560057
H	0.918722	2.054342	3.950625
H	-2.773117	0.788006	4.449815
H -4.515011 0.587547 4.387774
H -3.451869 -1.278942 5.700849
H -4.236192 -1.926955 4.239232
H -2.475182 -1.733286 4.282545
H -6.636430 -0.361267 1.294185
H -6.226397 -0.182803 2.990489
H -7.696371 1.712690 2.227383
H -6.098555 2.330695 2.714483
H -6.493352 2.165132 0.994904
H -7.013696 0.879485 -2.677583
H -6.956541 0.656202 -4.416861
H -8.303839 -1.171598 -3.329134
H -6.855977 -1.856827 -4.107295
H -6.893044 -1.640972 -2.348681
H -5.577033 -0.148480 -6.119171
H -3.886161 -0.378625 -6.526586
H -4.763908 1.706643 -7.612696
H -5.231162 2.358206 -6.022228
H -3.517445 2.139463 -6.416888

[4] Zinc octaethylporphyrin (ZnOEP)

85 Atoms

N 0.235973 0.342362 0.026206
C 0.176478 0.334365 1.407074
C 1.529019 0.334744 1.958986
C 2.396591 0.342921 0.884549
C 1.572512 0.348439 -0.323139
C -1.009650 0.322771 2.154848
C -2.324257 0.299319 1.670440
C -3.533372 0.263824 2.491561
C -4.604750 0.248657 1.620664
C -4.048090 0.274528 0.269165
N -2.668408 0.303412 0.331886
C -4.790730 0.268288 -0.919328
C -4.301399 0.272958 -2.232945
C -5.121014 0.245630 -3.442781
C -4.250484 0.263110 -4.514404
C -2.899603 0.300120 -3.958299
N -2.962817 0.303310 -2.577116
C -1.713792 0.327447 -4.701688
C -0.394919 0.341157 -4.221772
C 0.799132 0.342758 -5.051985
C 1.892936 0.337901 -4.203016
C 1.351579 0.346737 -2.838925
N -0.034207 0.344696 -2.889707
C 2.071310 0.355959 -1.632969
C -4.584164 0.188661 -5.981760
C -6.623975 0.143737 -3.471654
C -3.560187 0.185048 3.995855
C -6.070895 0.153493 1.954453
C 3.323249 0.313703 4.7237
C 0.811462 0.278692 6.558091
C 3.902107 0.286074 0.909137
C 1.868721 0.269124 3.425481
H -5.872962 0.251124 -0.809596
H 3.149882 0.366202 -1.712830
H -0.894928 0.324078 3.236728
H -1.828501 0.329656 -5.783549
H 1.735353 0.732056 -6.943777
C 0.693612 -1.171135 -7.095144
H -0.012240 0.882340 -6.966751
H 0.712628 -1.189656 -8.193890
H 1.521720 -1.791910 -6.727408
H -0.243021 -1.634462 -6.758313
C 4.511746 0.309866 -3.743294
H 3.423159 -0.568270 -5.377197
H 3.445580 1.178590 -5.396689
H 5.452318 0.289542 -4.310249
H 4.528007 1.208881 -3.113657
H 4.503832 -0.572117 -3.089683
C 4.453735 -1.146136 0.700329
H 4.315118 0.949166 0.133978
H 4.270135 0.677202 1.868110
H 5.556261 -1.150507 0.720263
H 4.096423 -1.820300 1.488354
H 4.128748 -1.556193 -0.263416
H 2.879682 0.669104 3.587724
H 1.190765 0.921634 3.996279
C 1.794353 -1.168439 4.001750
H 2.035767 -1.176996 5.073824
H 0.789059 -1.591213 3.872320
H 2.501138 -1.830377 3.484433
C -3.332064 -1.252400 4.530026
H -2.795293 0.853115 4.419636
H -4.525402 0.556966 4.367509
H -3.353803 -1.273828 5.628719
H -4.109958 -1.932008 4.157507
H -2.362096 -1.643906 4.196994
H -6.243504 0.537626 2.969815
H -6.650583 0.804561 1.282665
C -6.621828 -1.292685 1.859601
H -7.694629 -1.322859 2.096177
Atom	X	Y	Z
H	-6.480908	-1.700321	0.849622
H	-6.096171	-1.954519	2.560271
H	-7.000874	0.525005	-4.431134
C	-7.135503	-1.305335	-3.266812
H	-7.058622	0.792955	-2.696735
H	-8.233725	-1.343799	2.560271
H	-7.000874	0.525005	-4.431134
C	-4.469268	-1.246310	-6.557590
H	-5.605045	0.561171	-6.146882
H	-3.922362	0.859201	-6.550596
H	-4.706426	-1.261297	-7.630550
H	-3.453467	-1.641785	-6.424306
H	-5.160037	-1.927072	-6.043012
ZN	-1.356160	0.332999	-1.281140

[5] Tetraphenylporphyrin (H2TPP)

78 Atoms

Atom	X	Y	Z
C	0.158693	-0.006113	-0.036169
C	0.350594	-0.015173	1.359032
C	1.601667	-0.019886	2.019844
C	-1.098621	-0.006322	-0.738815
C	-0.837590	0.002134	-2.090321
C	0.590785	-0.008442	-2.274762
N	1.149247	-0.010427	-1.005887
H	-1.557852	0.012057	-2.898139
H	-2.067834	-0.008884	-0.256997
C	1.742614	-0.017314	3.479522
C	3.078969	-0.016548	3.739371
C	3.756332	-0.003369	2.438399
N	2.837804	-0.009217	1.411576
H	3.566672	-0.023567	4.706835
H	0.927819	-0.017792	4.193592
C	5.164011	-0.002223	2.293602
C	5.862720	-0.005405	1.070441
C	7.291063	0.008367	0.886102
C	7.552172	0.004153	-0.465413
C	6.294880	0.003318	-1.168118
N	5.304303	-0.005156	-0.198459
H	8.521401	0.004812	-0.947207
H	8.011219	0.017505	1.694032
C	6.003077	0.004994	3.541885
C	-0.894022	-0.019489	2.204079
C	1.289534	-0.001356	-3.497893
C	2.697223	-0.00982	-3.642609
C 3.374543 -0.010930 -4.943614
C 4.710904 -0.008963 -4.683825
C 4.851953 -0.012928 -3.224156
N 3.615799 -0.006442 -2.615835
H 5.525618 -0.006558 -5.397971
H 2.886790 -0.017821 -5.911055
C 6.103033 -0.004542 -2.563345
C 7.347591 -0.001393 -3.408464
C 0.450451 0.012168 -4.746113
H 4.302513 -0.008228 0.391343
H 2.151053 -0.011534 0.813058
C 0.245517 1.140136 5.155819
C 0.245517 1.140136 -5.155819
C 1.027461 1.126736 6.317765
C 1.125387 0.040967 -7.086357
C 0.436393 1.194048 6.686478
C 0.345862 1.179317 5.525032
H 0.707011 2.095204 2.764160
C 0.245517 -1.140136 5.155819
C 0.245517 -1.140136 -5.155819
C 1.027461 -1.126736 -6.317765
C 1.125387 0.040967 7.086357
C 0.436393 -1.194048 -6.686478
C 0.345862 1.179317 5.525032
H 0.707011 -2.095204 -2.764160
C -0.245517 1.140136 -5.155819
C -1.027461 1.126736 -6.317765
C -1.125387 0.040967 7.086357
C -0.436393 -1.194048 -6.686478
C 0.345862 -1.179317 -5.525032
H 0.165850 -2.047937 -4.559035
C -1.125387 1.172024 -4.333723
C 0.18552 1.167586 3.543800
H 1.69195 2.075895 3.975894
C 9.227112 2.076431 5.377905
H 9.857949 2.087311 4.433868
C 7.761735 1.167649 4.077873
C 8.918554 1.164581 4.867249
C 9.678431 0.005735 4.997798
C 9.275108 1.172024 -4.333723
C 8.118552 1.167586 -3.543800
H 7.169195 2.075895 -3.975894
C 9.227112 2.076431 5.377905
H 10.577655 0.009178 -5.613016
H 9.857949 2.087311 4.433868
H 7.802009 2.073849 3.029112
C 6.109464 1.167930 4.326766
C 6.890455 1.174877 5.489172
C 7.576414 0.018226 5.883919
C 7.477157 -1.145150 5.108979
C 6.696528 -1.150760 3.946149
H 5.574715 2.065411 4.019050
Magnesium tetraphenylporphyrin (MgTPP)

77 Atoms

C 6.711399 -1.167257 3.920435
C 6.014628 -0.008231 3.530764
C 6.123179 1.145330 4.329298
C 6.910089 1.141261 5.487719
C 7.600142 -0.018235 5.866265
C 7.498063 -1.173097 5.078995
C 5.172980 -0.003006 2.284302
C 5.858167 -0.002947 1.044571
C 7.301978 0.005484 0.886196
C 7.564306 0.003980 -0.458264
C 6.285519 0.011102 -1.146925
N 5.263098 0.004103 -0.208588
C 6.115637 0.008657 -2.553172
C 7.362311 0.009039 -3.394645
C 7.759142 -1.149275 -4.088494
C 8.918061 -1.150024 -4.874685
C 9.698638 0.009197 -4.978852
C 9.312891 1.168028 -4.291667
C 8.153893 1.167120 -3.505553
C 3.766676 0.00956 2.454179
C 3.077804 -0.009855 3.732875
C 1.733375 -0.003420 3.470423
C 1.575184 -0.005522 2.026606
N 2.828421 0.000289 1.431665
C 0.335583 0.000574 1.341328
C -0.911163 -0.001420 2.182684
C -1.702506 1.156538 2.296666
C -2.861677 1.155534 3.082502
C -3.247855 -0.005129 3.766344
C -2.467538 -1.164246 3.659093
C -1.308466 -1.161609 2.873118
C 0.165729 0.007493 -0.064912
C -1.113048 0.001416 -0.753564
C -0.850674 0.007170 -2.098090
C 0.593143 0.000677 -2.256402
N 1.188185 0.004278 -1.003219
C 1.278325 0.005326 -3.496081
C 0.436697 0.002893 -4.742607
[7] Zinc tetraphenylporphyrin (ZnTPP)

77 Atoms

C 6.596319 -1.172206 3.716451
C 5.918237 -0.006580 3.314606
C 6.045985 1.154659 4.098623

MG 3.225634 0.004346 -0.605896
C 6.833998 1.151409 5.256326
C 7.505740 -0.014624 5.647582
C 7.384400 -0.014624 5.647582
C 5.074218 -0.002591 2.069701
C 5.751441 -0.005689 0.830031
C 7.194416 -0.000516 0.668889
C 7.453752 -0.001794 -0.674989
C 6.173887 0.007896 -1.360844
N 5.153099 0.002403 -0.421280
C 6.005149 0.005728 -2.763270
C 7.249996 0.006217 -3.607299
C 7.651204 -1.155319 -4.292797
C 8.808765 -1.155680 -5.081024
C 9.582688 0.007047 -5.195382
C 9.192053 1.169051 -4.516340
C 8.034635 1.167838 -3.727905
C 3.671860 0.003354 2.238512
C 2.986104 -0.004567 3.518418
C 1.642214 -0.001093 3.259172
C 1.480946 -0.005168 1.816184
N 2.732232 0.000178 1.217769
C 0.241232 -0.000191 1.138995
C -1.003634 -0.002512 1.983028
C -1.787134 1.159273 2.109158
C -2.944581 1.157805 2.897550
C -3.336242 -0.007025 3.571141
C -2.563438 -1.169935 3.451232
C -1.405935 -1.166940 2.662925
C 0.072477 0.006148 -0.263389
C -1.207403 -0.001525 -0.949245
C -0.948072 0.003478 -2.293126
C 0.494911 -0.001199 -2.454264
N 1.093270 0.003335 -1.202952
C 1.172134 0.005500 -3.693892
C 0.328133 0.004781 -4.938836
C -0.348241 -1.160402 -5.344807
C -1.136019 -1.162262 -6.502683
C -1.258990 0.002602 -7.272061
C -0.589147 1.168288 -6.876526
C 0.198816 1.168586 -5.718771
C 2.574479 0.012152 -3.862700
C 3.260164 0.008430 -5.142647
C 4.604062 0.012329 -4.883444
C 4.765414 0.002664 -3.440474
N 3.514148 0.005943 -2.842004
H 1.666389 0.007877 -3.103766
H -2.175674 -0.008286 -0.463817
H 3.471596 -0.010964 4.486657
H 0.831684 0.004140 3.977603
H 8.422048 -0.007291 -1.160371
H 7.912771 0.001652 1.479495
H 5.414518 0.019138 -5.601932
H 2.774622 0.005121 -6.110881
H -1.481208 2.063987 1.585481
H -3.537818 2.067364 2.988427
H -4.236478 -0.008231 4.184897
H -2.862779 -2.080898 3.968952
H -0.804434 -2.070203 2.568731
H -0.251627 -2.065162 -4.745943
H -1.650910 -2.073848 -6.804994
H -1.872276 0.002258 -8.172617
H -0.682513 2.079360 -7.467046
H 0.719749 2.073893 -5.409915
H 7.048828 -2.058444 -4.202997
H 9.107284 -2.064473 -5.603012
H 10.482955 0.007899 -5.809089
H 9.786093 2.078501 -4.602933
H 7.729559 2.070346 -3.199956
H 5.523746 2.060307 3.793002
H 6.926021 2.060508 5.850091
H 8.119207 -0.017214 6.548014
H 7.900764 -2.088788 5.173068
H 6.500896 -2.075029 3.114479
ZN 3.123188 0.003152 -0.812117

[8] Tetrakis(o-aminophenyl) porphyrin (H2TAPP)

86 Atoms

C 6.469967 -1.183995 4.091084
C 5.953619 0.007356 3.559159
C 6.235061 1.238145 4.208477
C 7.029309 1.226472 5.376074
C 7.532996 0.028863 5.886967
C 7.255803 -1.188800 5.249194
C 5.124940 -0.014314 2.301759
C 5.836000 0.004957 1.086276
C 7.265688 0.073690 0.922300
C 7.545510 0.082648 -0.425797
C 6.299300 0.014771 -1.144841
N 5.295459 -0.025622 -0.189822
C 6.123500 -0.003682 -2.541873
C 7.373944 0.025199 -3.377811
C 8.154095 -1.132691 -3.525472
C 9.324147 -1.136963 -4.292906
C 9.725342 0.048209 -4.925645
C 8.967705 1.225004 -4.019663
C 3.716537 -0.033726 2.431586
C 3.033170 -0.081468 3.728025
C 1.698209 -0.091179 3.460687
C 1.565051 -0.040645 2.000311
N 2.805001 -0.009478 1.398770
C 0.315246 -0.015656 1.335476
C 0.935468 0.007819 2.171203
C 1.349174 1.204633 2.816662
C 2.533122 1.187638 3.586591
C 3.288591 0.020894 3.716596
C 2.884241 -1.161387 3.080467
C 1.713349 -1.152185 2.314354
C 0.139417 -0.006278 -0.061527
N 1.143308 -0.029275 -1.016685
C 1.313778 -0.010322 -3.508188
C 0.485424 0.013143 -4.765753
C 0.031012 -1.177411 -5.299393
C 0.815396 -1.180704 -6.458492
C -1.091218 0.037717 -7.095412
C -0.587751 1.234598 -6.582604
C 0.205173 1.244737 -5.414093
C 2.722253 -0.026484 -3.638001
C 3.405738 -0.069725 -4.934540
C 4.740701 -0.077203 -4.667216
C 4.873739 -0.029834 -3.206733
N 3.633717 -0.002792 -2.605117
H -1.530497 0.105126 -2.950891
H -2.079081 0.118505 -0.306418
H 3.523694 -0.111003 4.694001
H 0.874816 -0.136658 4.164234
H 8.517536 0.130825 -0.899625
H 7.968968 0.108318 1.744817
H 5.564183 -0.119283 -5.370857
H 2.915313 -0.098037 -5.900597
H 4.297989 -0.054930 -0.401477
H 2.140842 -0.057230 -0.805151
N -0.639482 2.400412 2.635991
H -2.860108 2.104799 4.079099
H -4.196235 0.035728 4.319654
H -3.467818 -2.074694 3.182032
H -1.379799 -2.060540 1.813611
H 0.191900 -2.112165 -4.785761
H -1.205516 -2.115990 -6.856175
H -1.701753 0.057915 -7.997931
H -0.804135 2.177302 -7.087480
N 0.755402 2.443458 -4.939609
H 7.822929 -2.043393 -3.027413
H 9.909455 -2.048744 -4.398177
H 10.632208 0.066821 -5.529777
H 9.292224 2.132430 -5.280810
N 7.072493 2.418660 -3.834372
N 5.684816 2.437575 3.735789
H 7.246648 2.168556 5.881699
H 8.144800 0.047899 6.788653
H 7.646050 -2.124651 5.645420
H 6.246071 -2.118112 3.576724
H 7.210666 3.124486 -4.551810
H 6.093976 2.312515 -3.580225
H 6.187370 3.284194 3.984732
H 5.376469 2.430273 2.767335
H -0.779909 3.103582 3.355586
H 0.339496 2.297248 2.382409
H 0.253523 3.290546 -5.188326
H 1.062733 2.435090 -3.970845

[9] Zinc tetrakis(4-carboxyphenyl)porphyrin (ZnTCPP)

89 Atoms

N 3.646667 0.004934 -2.812291
C 2.700249 0.012961 -3.826223
C 3.376424 0.006575 -5.111302
C 4.721711 0.008960 -4.862040
C 4.893216 -0.000589 -3.420247
C 1.299027 0.004996 -3.646030
C 0.447113 0.006988 -4.883377
C -0.275776 -1.142455 -5.258605
C -1.069444 -1.142780 -6.405850
C -1.159946 0.011414 -7.206628
C -0.439751 1.164171 -6.838392
C 0.354588 1.157219 -5.689487
C 6.137121 0.007088 -2.750515
C 7.374720 0.011956 -3.602119
C 7.752491 -1.136048 -4.325948
C 8.900428 -1.135323 -5.118667
C 9.699194 0.022226 -5.207381
C 9.328279 1.173626 -4.486362
C 8.17883 1.163735 -3.692835
ZN 3.270279 0.000134 -0.779229
N 1.237408 0.000821 -1.155499
C -1.061657 0.001143 -0.885165
C -0.812416 0.004595 -2.230430
N 1.237408 0.000821 -1.155499
C 0.223454 0.007158 -0.209065
C -1.061657 0.001143 -0.885165
C -0.812416 0.004595 -2.230430
C 0.629411 0.004124 -2.402020
C 0.403662 0.003321 1.192089
C -0.833919 0.004654 2.043710
C -1.640552 1.145878 2.140821
C -2.788002 1.146636 2.934297
C -3.158086 0.008321 3.649392
C -2.358155 -1.163212 3.555183
C -1.209370 -1.156552 2.760762
C 6.317274 0.010949 -1.349303
C 7.602345 0.001600 -0.673198
C 7.353048 0.001910 0.672100
C 5.911262 0.011593 0.843589
N 5.303346 -0.00349 -0.402919
C 5.241690 -0.008527 2.087629
C 3.840529 -0.000483 2.267924
C 3.164325 -0.010441 3.552961
C 1.819058 -0.007257 3.303571
C 1.647616 -0.012649 1.861744
C 5.911262 -0.011593 0.843589
N 5.303346 -0.00349 -0.402919
C 6.093573 -0.014189 3.324992
C 6.812491 -1.166828 3.694638
C 7.607497 -1.177849 4.842951
C 7.700515 -0.026649 5.648337
C 6.983517 1.129018 5.284136
C 6.189429 1.132589 4.137104
H -1.539254 0.011676 -3.033268
H -2.027908 -0.004190 -0.395883
H 3.653527 -0.017447 4.519246
H 1.016000 -0.001878 4.030183
H 8.568528 -0.001421 -1.162639
H 8.079679 0.001277 1.475155
H 5.524618 0.015118 -5.588824
H 2.887087 0.001070 -6.077515
H -1.356753 2.041514 1.590723
H -3.408547 2.037015 3.015708
C -4.394547 0.045093 4.497444
H -2.639717 -2.060683 4.100164
H -0.592815 -2.051115 2.688146
H -0.207198 -2.037579 -4.642469
H -1.624939 -2.031274 -6.699282
C -2.025818 -0.039577 -8.421917
Zinc [5,15-dipyridyl-10,20-bis(pentafluorophenyl) porphyrin (F-ZnP)]

75 Atoms

Element	X	Y	Z
N	6.853892	-1.145560	3.633513
C	6.195368	0.028604	3.302158
C	6.726649	1.118317	4.102877
C	7.692136	0.589875	4.914657
C	7.777142	-0.827614	4.614016
C	5.184970	0.155197	2.324192
C	4.605526	1.523679	2.109340
C	4.916956	2.277355	0.965649
C	4.348463	3.547662	0.811446
N	3.506067	4.105667	1.703074
C	3.212076	3.376722	2.797506
C	3.728735	2.098884	3.044175
C	8.665057	-1.737421	5.224620
C	9.581570	-1.187932	6.278286
C	10.717982	-0.435270	5.946511
C	11.579138	0.079456	6.921698
C	11.311549	-0.162976	8.274239
C	10.186123	-0.911743	8.639117
Atom	X	Y	Z
------	-----------	-----------	-----------
C	9.339355	-1.408864	7.642453
ZN	6.521085	-3.019048	2.823497
N	5.055960	-2.223716	1.602675
C	4.273847	-2.920272	0.698000
C	3.371764	-1.998321	0.031610
C	3.607676	-0.755300	0.550520
C	4.661999	-0.894856	1.535495
C	4.337493	-4.310233	0.462647
C	3.370056	-4.871596	0.537330
C	2.005100	-5.001522	-0.236163
C	1.085639	-5.518313	-1.154918
C	1.531767	-5.930851	-2.416268
C	2.887525	-5.819517	-2.747306
C	3.783032	-5.289755	-1.811828
C	8.772579	-3.115716	4.944477
C	9.703510	-4.029165	5.581503
C	9.486328	-5.267890	5.044061
C	8.423885	-5.130266	4.062700
N	8.008191	-3.808397	4.021635
C	7.878952	-6.187651	3.301176
C	6.821737	-6.073189	2.371973
C	6.266071	-7.169112	1.596707
C	5.272682	-6.648193	0.814654
C	5.216356	-5.222913	1.083762
N	6.164282	-4.898635	2.038617
C	8.474835	-7.551559	3.499763
C	9.750705	-7.867361	3.003318
C	10.265368	-9.152355	3.213689
N	9.606938	-10.125073	3.874297
C	8.384163	-9.814613	4.348282
C	7.781957	-8.560558	4.189292
H	3.108644	0.170854	0.293751
H	2.647749	-2.263920	-0.729334
H	6.594205	-8.200026	1.643446
H	4.643972	-7.182487	0.112661
H	10.424940	-3.762687	6.344721
H	9.993870	-6.191515	5.292875
H	8.296026	1.116058	5.644140
H	6.404765	2.150901	4.048297
H	5.593504	1.878613	0.211139
H	4.580393	4.150717	-0.068602
H	2.526082	3.839304	3.509822
H	3.453308	1.555177	3.946740
H	6.790903	-8.367118	4.597164
H	7.863488	-10.610242	4.884704
H	11.253344	-9.418142	2.832645
H	10.329621	-7.121915	2.460109
F 5.088479 -5.185772 -2.165829
F 3.317881 -6.218853 -3.966191
F 0.655889 -6.435295 -3.311307
F -0.224442 -5.627007 -0.834797
F 1.544447 -4.618320 0.980764
F 11.007352 -0.190037 4.644223
F 12.667170 0.802449 6.570923
F 12.138070 0.325179 9.223896
F 9.255541 -1.141191 9.946190
F 8.253544 -2.126293 8.024258

[11] Zinc\[5,15-di(4-pyridylacetyl)-10,20-diphenyl]porphyrin (DA-ZnP)

79 Atoms

Element	X	Y	Z
C	6.956220	-1.148137	2.920991
C	6.144694	0.000599	2.881718
C	6.556138	1.147304	3.585931
C	7.752898	1.145766	4.313159
C	8.553136	-0.004208	4.348844
C	8.151177	-1.151277	3.651245
C	4.858269	0.002744	2.103131
C	4.955527	0.008678	0.694513
C	6.196388	0.058788	-0.055325
C	5.867087	0.057229	-1.384209
C	4.422411	0.013890	-1.464855
N	3.885764	-0.012739	-0.194290
C	3.675784	0.002971	-2.678606
C	4.410289	0.001708	-3.892226
C	5.045829	0.000454	-4.935845
ZN	1.875620	0.004673	0.301183
N	2.372675	0.021435	2.311122
C	1.497142	-0.005941	3.377515
C	2.240341	-0.051556	4.618773
C	3.569789	-0.054215	4.291733
C	3.656529	-0.002102	2.844482
C	0.075426	0.005190	3.280988
C	-0.659085	0.004105	4.494618
C	-1.294615	0.002479	5.538244
C	-0.671186	0.016033	2.067224
N	-0.134525	-0.011533	0.796681
C	-1.204266	0.009850	-0.092142
C	-2.445115	0.061100	0.657639
C	-2.115839	0.060208	1.986535
C	-1.107023	0.002847	-1.500749
C	0.094688	-0.002754	-2.242113
N	1.378553	0.020574	-1.708766
C 2.254068 -0.007658 -2.775140
C 1.510845 -0.053572 -4.016374
C 0.181399 -0.055671 -3.689329
C -2.393540 -0.000255 -2.279199
C -2.805932 1.145843 -2.983817
C -4.002909 1.143136 -3.710713
C -4.802435 -0.007360 -3.745560
C -4.399524 -1.153831 -3.047525
C -3.204307 -1.149560 -2.317714
H -0.664613 -0.096225 -4.363952
H 1.953235 -0.088281 -5.004627
H 7.187159 0.097322 0.379824
H 6.535841 0.090201 -2.235679
H 7.197929 -0.085729 5.607040
H 4.415779 -0.094695 4.966388
H -2.784580 0.094252 2.837979
H -3.435851 0.099927 0.222430
H -2.183497 2.039226 -2.956102
H -4.311559 2.039894 -4.247099
H -5.013505 2.053531 -3.073068
H -2.889423 2.039874 -1.775238
H 6.642112 2.038927 2.378849
H 8.765685 2.050597 3.677532
H 8.060806 2.043007 4.849164
H 5.933039 2.040210 3.557703
C 5.788012 -0.000797 -6.143414
C -2.036773 0.000207 6.745832
C -3.453003 -0.002165 6.742863
C -4.134224 -0.004381 7.961762
N -3.529401 -0.005053 9.168428
C -2.179656 -0.002901 9.166034
C -1.397222 0.000007 8.009349
H -4.000450 -0.002466 5.802161
H -5.225803 -0.006033 7.976608
H 7.751614 0.016288 -5.199740
H -1.702076 -0.003272 10.147812
H -0.310827 0.002090 8.075678
C 5.148529 -0.011216 -7.406920
C 5.930997 -0.012085 -8.563585
N 7.280713 -0.002906 -8.565971
C 7.885471 0.007161 -7.359313
C 7.204215 0.008385 -6.140435
H 4.062158 -0.018338 -7.473262
H 5.453469 -0.020372 -9.545352
H 8.977026 0.014470 -7.374151
H -5.732720 -0.010590 -4.312495
H 9.483257 -0.006553 4.916053
Octabromo Tetra Phenyl Porphyrin (OBTPP)

78 Atoms

C -1.468544 1.353201 -0.538713
C -1.491946 0.060827 0.019525
C -0.304684 -0.474819 0.554208
C 0.881032 0.262110 0.523680
C 0.892976 1.551678 0.026846
C -0.286090 2.096599 -0.554023
H -2.385802 1.769116 -0.951988
C -2.755173 -0.727499 0.031662
C -3.259479 -1.175228 1.277679
N 4.117233 -2.252864 1.418039
C 4.294221 -2.628061 -0.026846
C 3.580732 1.633180 3.511398
C 2.957468 -0.756606 2.630203
C 4.958902 -3.814175 3.136954
C 4.660941 -4.377315 4.482222
C 3.346611 -4.738216 4.835220
C 3.074893 -5.281371 6.092363
C 4.110745 -5.455257 7.021009
C 5.421158 -5.090872 6.681808
C 5.696155 -4.563752 5.418048
H -3.897879 5.873946 8.004048
C 3.410411 -1.000834 -1.202238
N 4.759126 -1.245175 -1.291216
C 5.101729 1.215077 -2.621195
C 3.883891 1.082338 3.434703
C 2.834837 0.949591 2.554744
C 6.452847 1.196097 3.068711
C 6.765404 -0.611962 -4.401545
C 7.400899 -1.383356 -5.393139
C 7.675674 -0.836355 -6.647966
C 7.334227 0.495305 -6.923749
C 6.709080 1.273951 -5.939919
C 6.418664 0.721740 -4.690318
H 7.553508 0.923500 7.901241
C 7.518457 -1.713226 -2.290951
N 7.353152 -2.657868 -1.292691
C 8.555928 3.161522 0.827599
C 9.574703 -2.386901 -1.504391
C 8.948986 -1.514015 -2.387376
C 8.659443 -4.277367 0.039585
Element	X	Y	Z
C	-9.938076	-5.039676	0.065568
C	-10.44759	-5.627403	-1.107966
C	-11.637067	-6.357975	-1.075299
C	-12.343067	-6.496590	0.128205
C	-11.848082	-5.907467	1.299884
C	-10.649149	-5.191047	1.271050
C	-7.590302	-4.693037	0.882652
N	-6.609239	-3.836120	1.318456
C	-5.897879	-4.481257	2.300653
C	-6.360191	-5.873688	2.401636
C	-7.409565	-6.005310	1.521920
H	-0.281858	3.098901	-0.980614
C	-0.217586	-0.069284	0.981417
C	-1.817143	2.128243	-0.045475
BR	9.841366	-0.146039	-3.369089
BR	-11.439620	-2.374241	-1.112500
BR	-3.701550	-1.298617	-5.327670
BR	-8.260459	-7.661054	1.076054
BR	-0.985979	-0.955812	-3.049856
BR	-5.545237	-7.319892	3.354325
BR	-2.061220	0.842726	3.151021
BR	-3.650804	-1.397930	5.401105
H	-2.056165	-5.568621	6.350201
H	-2.544525	-4.600445	4.111676
H	-6.713089	-4.284298	5.147603
H	-6.228218	-5.221403	7.401865
H	-12.015405	-6.818946	-1.987005
H	-9.897178	-5.515943	-2.040768
H	-10.257581	-4.736203	2.179167
H	-12.394828	-6.010853	2.236383
H	-8.156445	-1.446511	-7.411707
H	-7.665620	-2.416765	-5.174476
H	-5.928658	1.320726	-3.924561
H	-6.444819	2.309859	-6.149290
H	1.796532	-0.167102	0.929294
H	-0.317586	-1.476228	0.981417
H	1.817143	2.128243	-0.045475
H	-13.274134	-7.061835	0.152773

8. Benchmark Set: Optimized Geometries with B3LYP-D3/TZVP

[1] Porphyrin (H2PP)

38 Atoms
C 0.025557 0.000582 -0.089457
C 0.171405 -0.000308 2.014185
C 1.361488 -0.000866 1.297991
C 1.529183 -0.001936 3.436150
C 2.870848 -0.001590 3.704853
C 3.573056 -0.000405 2.456980
N 2.620059 0.000005 1.472674
H 3.349248 -0.002116 4.671618
H 0.715292 0.002807 4.143903
C -1.266909 0.001427 -0.764274
C -1.001833 0.001738 -2.217135
N 1.042885 -0.000527 -0.992519
H -1.700806 0.002282 -2.913824
H -2.228716 0.001719 -0.273181
C 4.946927 -0.00395 2.253489
C 5.614754 0.001081 1.028581
H 2.819197 0.00810 0.479706
C 7.067155 0.001767 -0.902190
C 7.332239 0.001409 -0.424262
C 6.039787 0.000544 -1.099092
N 5.022444 -0.000519 -0.196029
H 8.294044 0.001662 -0.915360
H 7.766131 0.00373 1.725284
C 1.118400 0.00371 -3.442030
C 2.492276 -0.000493 -3.645510
C 3.194474 -0.001590 -4.893386
C 4.536143 -0.001833 -4.624689
C 4.703843 -0.000955 -3.202728
N 3.445274 -0.000260 -2.661209
H 3.246132 0.000372 -1.668242
H 5.350042 -0.002534 -5.332431
H 2.716069 -0.002073 -5.860149
C 5.893930 -0.000378 -2.486534
H -0.736801 -0.000610 1.888216
H 6.802134 -0.000649 -3.076763
H 0.507017 0.000411 -4.336129
H 5.558327 0.00368 3.147575

[2] Octaethylporphyrin (H2OEP)

86 Atoms

N 0.247902 -0.091712 0.027281
C 0.193558 0.015018 1.381106
C 1.535213 -0.046754 1.971497
C 2.396012 -0.202852 0.929379
Atom	X	Y	Z
C	1.565754	-0.223242	-0.280107
C	-0.974637	0.160524	2.129909
C	-2.280901	0.210660	1.662928
C	-3.485833	0.340243	2.441841
C	-4.549997	0.349604	1.566498
C	-4.019422	0.226015	0.232893
N	-2.658588	0.141709	0.349565
C	-4.727243	0.198520	-0.960632
C	-4.212650	0.070350	-2.251180
C	-5.045902	0.052718	-3.460374
C	-4.181716	-0.086308	4.054297
C	-2.839306	-0.143348	-3.914978
N	-2.894207	-0.048700	-2.559909
C	-1.670664	-0.281328	-4.664158
C	-0.365277	-0.346999	-4.195711
C	0.838851	-0.490168	-4.972406
C	1.900567	-0.523202	-4.095586
C	1.371572	-0.388220	-2.763388
N	0.011718	-0.286672	-2.881478
C	2.079374	-0.363001	-1.569471
C	-4.498730	-0.124860	-5.968725
C	-6.539998	0.123309	-3.496177
C	-3.524624	0.391812	3.938881
C	-6.010407	0.412864	1.895001
C	3.358294	-0.621192	-4.430459
C	0.882785	-0.628434	-6.464362
C	3.891982	-0.287349	0.966550
C	1.850862	0.000803	3.435980
H	-5.801564	0.285855	-0.869096
H	3.152787	-0.461899	1.660558
H	-0.859463	0.237822	3.202717
H	-1.784256	-0.347218	-5.737996
H	1.854457	-0.290870	-6.831806
C	0.629864	-2.069166	-6.938036
H	0.143300	0.037681	-6.917625
H	0.664455	-2.135017	-8.028297
H	1.382229	-2.747931	-6.530601
H	-0.347761	-2.422332	-6.604421
C	4.051212	0.751054	-4.482124
H	3.863270	-1.255346	-3.696240
H	3.476504	-1.124922	-5.392517
H	5.111860	0.646092	-4.722542
H	3.589528	1.388027	-5.239621
H	3.966285	1.265343	-3.522891
C	4.575380	1.055117	0.656029
H	4.213449	-0.636401	1.950914
H	4.238324	-1.043012	0.254740
Magnesium octaethylporphyrin (MgOEP)

85 Atoms

N -0.035577 0.156407 -2.835301
C -0.376622 0.167669 -4.161192
C 0.826299 0.161074 -4.975645
C 1.887692 0.138564 -4.109985
C 1.331867 0.140316 -2.767881
Atom	X	Y	Z
C	-1.685262	0.187399	-4.646989
C	-2.869769	0.201248	-3.908488
C	-4.211789	0.221712	-4.464306
C	-5.077342	0.234936	-3.402644
C	-4.263053	0.213740	-2.199781
N	-2.937275	0.195140	-2.540978
C	-4.748821	0.216585	0.890975
C	-4.010449	0.201965	0.293605
C	-2.301994	0.170782	1.686903
C	-2.643111	0.179954	3.360997
C	-0.993339	0.151067	2.172660
N	0.191133	0.138334	1.434125
N	0.258567	0.140839	0.066595
C	1.584397	0.125631	-0.274584
C	2.398827	0.115424	0.928299
C	1.533113	0.117664	1.989888
MG	-1.339379	0.166267	-1.237179
C	1.869472	0.148753	3.450446
C	1.815219	1.565954	4.045333
C	3.896629	0.062883	0.963763
C	4.449784	-1.357892	0.763940
C	2.070246	0.125158	-1.583342
C	-3.540418	0.151212	3.999646
C	-3.362020	-1.267738	4.564850
C	-6.026033	0.265676	1.971609
C	-6.595785	1.692262	1.898189
C	-6.576011	0.222691	-3.437930
C	-7.166561	-1.183973	-3.244618
C	-4.546744	0.273117	-5.924650
C	-4.446564	1.691657	-6.510198
C	0.861520	0.134372	-6.474129
C	0.651945	-1.275275	-7.051703
C	3.348577	0.162473	-4.445544
C	3.957234	1.572326	-4.360928
H	-5.825348	0.232952	-0.781779
H	3.146821	0.112475	-1.692478
H	-0.884113	0.146581	3.249291
H	-1.794275	0.194067	-5.723639
H	1.817681	0.530353	-6.824359
H	0.095441	0.805774	-6.873356
H	0.672803	-1.259433	-8.144289
H	1.433428	-1.954860	-6.704545
H	-0.307782	-1.686898	-6.733303
H	3.893507	-0.507306	-3.773494
H	3.499712	-0.236183	-5.451762
[4] Zinc octaethylporphyrin (ZnOEP)

85 Atoms

N 0.235354 0.435625 0.048737
C 0.163990 0.418037 1.415414
C 1.502538 0.464089 1.977816
C 2.371221 0.513037 0.920460
C 1.561292 0.497545 -0.285325
C -1.017873 0.365595 2.149863
C -2.318699 0.305965 1.656405
C -3.522668 0.237308 2.466363
C -4.579365 0.194824 1.596426
C -4.018300 0.239088 0.257215
N -2.653046 0.303226 0.329268
C -4.752620 0.220641 -2.228054
C -4.259787 0.243781 -2.228054
C -5.068796 0.203920 -3.433924
C -4.199654 0.244422 -4.491438
C -2.862018 0.310311 -3.928835
N -2.934018 0.306216 -2.562104
C -0.379019 0.418217 -4.169911
C 0.826247 0.459302 -4.979875
C 1.882657 0.504489 -4.109783
C 1.320150 0.491252 -2.770545
N -0.045442 0.435984 -2.842670
C 2.053671 0.528015 -1.587501
C -4.518115 0.173998 -5.953838
C -6.562024 0.082797 -3.467427
C -3.552658 0.168535 3.962999
C -6.037158 0.064518 1.917335
C 3.346260 0.502244 -4.430226
C 0.861740 0.399619 -6.476690
C 3.869342 0.521886 0.953027
C 1.826345 0.402601 3.439407
H -5.828508 0.176326 -0.821229
H 3.129194 0.580114 -1.692170
H -0.913251 0.365391 3.226655
H -1.784980 0.369702 -5.740026
H 1.807825 0.811484 -6.836274
C 0.690545 -1.026925 -7.025725
H 0.077464 1.040562 -6.890680
H 0.709012 -1.031383 -8.118387
H 1.491125 -1.678136 -6.668451
H -0.256833 -1.459167 -6.697917
C 3.982906 -0.893274 -4.313457
H 3.499286 0.882529 -5.443163
H 3.872158 1.194479 -3.765672
H 5.050300 -0.857959 -4.544505
H 3.864690 -1.293060 -3.304163
H 3.506708 -1.593657 -5.002758
C 4.484031 -0.869104 0.722404
H 4.251062 1.213871 0.196321
H 4.211248 0.910312 1.915493
H 5.575702 -0.822971 0.739117
H 4.160161 -1.568357 1.496188
H 4.173492 -1.277000 -0.241432
H 2.820463 0.822578 3.611365
H	1.131143	1.034785	4.000071
C	1.778761	-1.027350	4.004225
H	2.012416	-1.035303	5.071653
H	0.789474	-1.469361	3.867918
H	2.498873	-1.668243	3.491560
C	-3.283735	-1.244936	4.506358
H	-2.814648	0.860673	4.379358
H	-4.524718	0.512594	4.324630
H	-3.301556	-1.254803	5.599040
H	-4.038226	-1.947865	4.146878
H	-2.309195	-1.610760	4.177146
H	-6.220778	0.423211	2.933002
H	-6.621183	0.713857	1.258082
C	-6.552045	-1.379376	1.790898
H	-7.618072	-1.438141	2.023922
H	-6.402204	-1.759328	0.778251
H	-6.015542	-2.041332	2.473628
H	-6.936185	0.449182	-4.426463
C	-7.054631	-1.358022	-3.250917
H	-7.002383	0.731934	-2.704602
H	-8.146238	-1.406757	-3.272917
H	-6.668124	-2.020300	-4.028419
H	-6.714719	-1.746245	-2.288817
C	-4.353730	-1.240193	-6.536043
H	-5.542947	0.514132	-6.121306
H	-3.876594	0.867173	-6.506313
H	-4.583472	-1.253927	-7.604263
H	-3.331850	-1.600767	-6.401519
H	-5.020181	-1.944452	-6.033858
ZN	-1.349692	0.378678	-1.256675

[5] Tetraphenylporphyrin (H2TPP)

78 Atoms

C	0.183937	-0.002992	-0.041671
C	0.372264	-0.013338	1.343413
C	1.615569	-0.018386	1.997117
C	-1.067026	-0.001761	-0.738282
C	-0.807757	0.008747	-2.079418
C	0.612550	-0.001157	-2.260062
N	1.165353	-0.005246	-1.002587
H	-1.523182	0.019852	-2.883909
H	-2.030730	-0.005218	-0.258144
C	1.753634	-0.016044	3.448804
C	3.079380	-0.016312	3.706419
Atm	X	Y	Z
------	--------	--------	--------
C	3.750796	-0.004557	2.411733
N	2.839989	-0.009456	1.396854
H	3.566599	-0.023171	4.667513
H	0.941928	-0.015618	4.157413
C	5.148513	-0.003335	2.270569
C	5.840310	-0.007330	1.055647
C	7.260621	0.003685	0.874953
C	7.519799	-0.002369	-0.466239
C	6.268776	-0.002052	-1.162702
N	5.287414	-0.007777	-0.201770
H	8.483425	-0.003676	-0.946575
H	7.976079	0.012789	1.679444
C	5.983257	0.006052	3.512468
C	-0.865795	-0.018677	2.184272
C	1.304352	0.006248	-3.474989
C	2.702066	0.004846	-3.616158
C	3.373590	-0.004267	-4.910858
C	4.699320	-0.005325	-4.653131
C	4.837211	-0.011011	-3.201465
N	3.612765	-0.002986	-2.601244
H	5.511197	-0.003997	-5.361567
H	2.886422	-0.008807	-5.871992
C	6.080414	-0.008006	-2.547731
C	7.318590	-0.010087	-3.388566
C	0.469700	0.019478	-4.716915
H	4.293474	-0.009488	-0.393366
H	2.159283	-0.007386	-0.810931
C	-1.633334	1.139594	2.327294
C	-2.783302	1.135262	3.110594
C	-3.182283	-0.029434	3.759937
C	-2.424780	-1.189055	3.621873
C	-1.274588	-1.183026	2.839163
H	-1.319824	2.046542	1.824551
H	-3.365175	2.043177	3.216568
H	-4.077372	-0.033115	4.370355
H	-2.730040	-2.100495	4.122037
H	-0.684298	-2.084910	2.730685
C	-0.212373	-1.128276	-5.128322
C	-0.989355	-1.115874	-6.282528
C	-1.095720	0.046652	-7.040508
C	-0.420372	1.195442	-6.638135
C	0.357088	1.181320	-5.484507
H	-0.125685	2.033782	-4.539851
H	-1.508314	-2.015590	-6.591201
H	-1.700783	0.057445	-7.939153
H	-0.500457	2.105216	-7.221206
H	0.882876	2.074678	-5.170205
[6] Magnesium tetraphenylporphyrin (MgTPP)

77 Atoms

C 7.732346 -1.174152 -4.040749
C 8.882813 -1.177082 -4.823118
C 9.635488 -0.014597 -4.963487
C 9.231418 1.149873 -4.316889
C 8.081212 1.151096 -3.533905
H 7.145847 -2.078282 -3.930369
H 9.191989 -2.088292 -5.321299
H 10.530848 -0.015904 -5.573517
H 9.809517 2.059978 -4.424705
H 7.763750 2.057787 -3.033173
C 6.096754 1.165719 4.283190
C 6.874383 1.176174 5.436740
C 7.549104 0.025871 5.835832
C 7.441898 -1.134497 5.074680
C 6.664653 -1.143262 3.920623
H 5.571492 2.060279 3.971420
H 6.955192 2.084307 6.022267
H 8.154254 0.033793 6.734451
H 7.960490 -2.035332 5.380695
H 6.577256 -2.047108 3.329704

C 6.668926 -1.159442 3.906757
C 5.995240 -0.004762 3.500593
C 6.118709 1.152422 4.273350
C 6.899238 1.156164 5.425280
C 7.566561 0.000638 5.821445
C 7.448867 -1.157871 5.058937
C 5.158137 -0.007068 2.260165
C 5.835979 -0.009840 1.028618
C 7.271857 -0.003093 0.873555
C 7.531707 -0.006590 -0.460471
C 6.258671 -0.000151 -1.142666
N 5.247885 -0.005436 -0.212518
C 6.092142 -0.001298 -2.538719
C 7.332408 0.002230 -3.375873
C 7.733507 -1.149019 -4.058539
C 8.885527 -1.146537 -4.838662
C 9.653044 0.009510 -4.947737
C 9.262009 1.161616 -4.271535
C 8.110462 1.156929 -3.490730
C 3.762192 -0.004606 2.426794
C 3.080387 -0.010065 3.699953
C	1.746301	-0.005821	3.440430	
C	1.590786	-0.012790	2.004533	
N	2.831810	-0.009166	1.416183	
C	0.359009	-0.008990	1.326868	
C	-0.881202	-0.008702	2.164067	
C	-1.661314	1.144449	2.280548	
C	-2.812841	1.146024	3.061380	
C	-3.201852	-0.007708	3.735972	
C	-2.432346	-1.162267	3.625207	
C	-1.280304	-1.161611	2.845129	
C	0.192429	-0.003760	-0.069213	
C	-1.080591	-0.008319	-0.751373	
C	-0.820807	0.000014	-2.085391	
C	0.615065	-0.005960	-2.240631	
N	1.203167	-0.005590	-0.999443	
C	1.292928	0.001118	-3.472246	
C	0.455971	0.007372	-4.712677	
C	-0.224316	-1.143669	-5.118332	
C	-1.004015	-1.138330	-6.270653	
C	-1.114859	0.020330	-7.033971	
C	-0.440871	1.172204	-6.638456	
C	0.339304	1.164731	-5.486502	
C	2.688976	0.004529	-3.638823	
C	3.370964	0.002129	-4.911953	
C	4.705017	0.006310	-4.652302	
C	4.860420	-0.003930	-3.216453	
N	3.619320	-0.002176	-2.628208	
H	-1.534016	0.007688	-2.892795	
H	-2.044681	-0.015053	-0.270511	
H	3.561756	-0.014372	4.663829	
H	0.939042	0.000089	4.153813	
H	8.495749	-0.011410	-0.941469	
H	7.984850	0.001690	1.681192	
H	5.512381	0.014044	-5.365555	
H	2.889910	-0.000528	-5.875975	
H	-1.357222	2.042521	1.756660	
H	-3.404292	2.050075	3.145323	
H	-4.098537	-0.006878	4.344060	
H	-2.729926	-2.065730	4.144194	
H	-0.681756	-2.060347	2.757339	
H	-0.136346	-2.045636	-4.524696	
H	-1.522541	-2.040355	-6.573358	
H	-1.722516	0.025771	-7.930928	
H	-0.524827	2.079393	-7.225076	
H	0.862660	2.061346	-5.177238	
H	7.136519	-2.048916	-3.972040	
H	9.184670	-2.048724	-5.358968	
H 10.549722 0.012776 -5.555824
H 9.851889 2.066811 -4.354174
H 7.804726 2.053748 -2.965651
H 5.600486 2.051850 3.963755
H 6.988600 2.063225 6.011303
H 8.174449 0.003150 6.718264
H 7.962306 -2.062652 5.362092
H 6.575657 -2.061244 3.313663
MG 3.225452 -0.006481 -0.606034

[7] Zinc tetraphenylporphyrin (ZnTPP)

77 Atoms

C 6.560478 -1.165719 3.697307
C 5.898462 -0.006518 3.285475
C 6.035311 1.154467 4.050092
C 6.818249 1.157431 5.200225
C 7.474249 -0.002497 5.602403
C 7.342884 -1.164729 4.847827
C 5.058893 -0.008055 2.046797
C 5.729445 -0.011259 0.815171
C 7.164706 -0.004611 0.657454
C 7.216343 -0.006928 -0.676079
C 6.147391 -0.00423 -1.355296
N 5.137886 -0.006162 -0.424097
C 5.981940 -0.001554 -2.747810
C 7.220556 0.001954 -3.587443
C 7.631850 -1.155558 -4.252749
C 8.782263 -1.152855 -5.035301
C 9.537230 0.009464 -5.163606
C 9.135588 1.167730 -4.504342
C 7.985622 1.163021 -3.721160
C 3.666389 -0.004436 2.212297
C 2.987310 -0.010087 3.486581
C 1.653761 -0.005869 3.229791
C 1.495820 -0.012036 1.794528
N 2.735069 -0.008439 1.202883
C 0.264069 -0.007208 1.124043
C -0.974591 -0.005851 1.963506
C -1.743044 1.153252 2.095149
C -2.893255 1.155991 2.877945
C -3.291981 -0.002380 3.538787
C -2.533670 -1.162757 3.412614
C -1.382862 -1.163417 2.630661
C 0.098655 -0.001824 -0.268546
C -1.175531 -0.007042 -0.947949
C -0.918490 -0.000518 -2.281445
C 0.516749 -0.005637 -2.439043
N 1.108214 -0.004052 -1.199699
C 1.187305 0.001523 -3.670628
C 0.347975 0.006777 -4.909491
C -0.311962 -1.151813 -5.326285
C -1.093097 -1.147674 -6.477673
C -1.225582 0.017258 -7.227882
C -0.572022 1.176737 -6.820465
C 0.209926 1.170535 -5.669661
C 2.579784 -0.004044 -3.836119
C 3.258921 0.003362 -5.110410
C 4.592462 -0.006289 -4.853538
C 4.750271 -0.000441 -3.418299
N 3.511027 -0.001797 -2.826675
H -1.631490 0.005470 -3.089015
H -2.137673 -0.013414 -0.463256
H 3.472299 -0.014803 4.448598
H 0.846440 -0.000432 3.943052
H 8.383689 -0.010881 -1.161002
H 7.877788 -0.000441 1.464957
H 5.399908 0.013285 -5.566662
H 2.773929 0.001644 -6.072440
H -1.431144 2.054676 1.581683
H -3.476182 2.064352 2.973937
H -4.187631 -0.000607 4.148394
H -2.838936 -2.069606 3.921098
H -0.792758 -2.066462 2.530696
H -0.207020 -2.058385 -4.742479
H -1.595964 -2.055344 -6.789734
H -1.834439 0.021690 -8.124032
H -0.672984 2.088582 -7.397075
H 0.717881 2.072733 -5.351019
H 7.044335 -2.060106 -4.151073
H 9.089835 -2.059610 -5.542564
H 10.432614 0.012804 -5.773596
H 9.715969 2.077546 -4.601957
H 7.671342 2.064373 -3.209010
H 5.525758 2.057134 3.735352
H 6.918218 2.067171 5.780325
H 8.084069 -0.000521 6.497908
H 7.847635 -2.072751 5.155793
H 6.456371 -2.070213 3.110134
ZN 3.123051 -0.005415 -0.811901

[8] Tetrakis(o-aminophenyl) porphyrin (H2TAPP)
86 Atoms

C 6.445046 -1.157606 4.067217
C 5.936465 0.023959 3.530774
C 6.217159 1.248710 4.167539
C 7.003339 1.242515 5.328776
C 7.499900 0.055082 5.845106
C 7.223314 -1.157782 5.219034
C 5.112549 -0.003052 2.279972
C 5.815660 -0.003052 1.071996
C 7.237444 0.069107 0.909205
C 7.513024 -0.073144 -0.429041
C 6.271443 -0.012968 -1.139835
N 5.278254 -0.018229 -0.191802
C 6.098227 -0.005848 -2.526606
C 7.342423 0.013409 -3.358583
C 8.100122 -1.146492 -3.515767
C 9.261987 -1.160531 -4.278480
C 9.675998 -0.016806 -4.896243
C 8.939484 1.182849 -4.751412
C 7.765075 1.203638 -3.985127
C 3.714045 -0.021634 -2.151784
C 3.036123 -0.064784 -2.779288
C 2.819698 -1.185291 -3.069623
C 1.657494 -1.166835 -2.307506
C 0.167625 0.002680 -0.066804
C -1.074151 0.061381 -0.777382
C -0.798631 0.061798 -2.115631
C 0.623310 0.007332 -2.278651
N 1.160845 -0.023496 -1.014954
C 1.326464 -0.000875 -3.486658
C 0.502479 0.028571 -4.737328
C -0.009735 -1.151353 -5.273966
C -0.788717 -1.148890 -6.425297
C -1.062379 0.065001 -7.050665
C -0.562137 1.250823 -6.534200
C 0.224839 1.254368 -5.373498
C 2.725049 -0.015652 -3.613387
Zinc tetrakis(4-carboxyphenyl)porphyrin (ZnTCPP)

89 Atoms
N 3.645020 0.001916 -2.797107
C 2.707261 0.011250 -3.800065
C 3.377258 0.007839 -5.079268
C 4.712122 0.008917 -4.831847
C 4.879711 -0.002401 -3.397631
C 1.316080 0.004574 -3.623288
C 0.468634 0.010369 -4.854946
C 0.229303 -1.137599 -5.243529
C 1.017445 -1.133628 -6.384114
C 1.124894 0.023396 -7.159500
C 0.359032 1.163445 -5.636778
C 6.115289 0.002441 -2.734125
C 7.346976 0.006449 -3.581407
C 7.728540 -1.139231 -0.885690
C 0.652553 1.175763 -2.387816
C 0.426523 -0.009231 1.175763
C 0.805242 -0.011031 2.022970
C 1.595072 1.137707 2.132872
C 2.735335 1.138353 2.921474
C 3.110782 -0.014744 3.615278
C 2.328653 -1.167593 3.508606
C 1.186664 -1.161042 2.719646
C 6.291993 0.004842 -1.342836
C 7.571069 -0.003857 -0.672602
C 7.323419 -0.005374 0.662227
C 5.889209 -0.013423 0.829598
N 5.288912 -0.004242 -0.405186
C 5.225714 -0.010110 2.065198
C 3.834517 -0.004260 2.242025
C 3.164340 -0.013005 3.521136
C 1.829519 -0.010996 3.273482
C 1.662113 -0.016456 1.839235
N 2.896886 -0.009236 1.238908
C 6.073178 -0.012094 3.296796
C 6.772844 -1.161084 3.675880
C 7.562935 -1.167536 4.817082
C 7.667738 -0.015604 5.600835
Element	X	Y	Z
C	6.97	1.13	5.23
C	6.18	1.14	4.09
H	-1.50	0.01	-3.02
H	-1.99	-0.01	-0.39
H	3.65	-0.01	4.48
H	1.03	-0.01	1.46
H	8.53	-0.01	-1.16
H	8.04	-0.01	1.46
H	5.51	0.02	-5.55
H	2.89	0.02	-1.16
C	4.34	0.04	4.45
H	2.62	-2.06	4.04
H	0.61	-2.06	2.64
H	-0.15	-2.04	4.64
C	10.86	0.03	6.03
H	9.90	-2.06	5.11
H	6.70	-2.05	3.07

[10] Zinc [5,15-dipyridyl-10,20-bis(pentafluorophenyl) porphyrin (F-ZnP)]

75 Atoms
Atoms	X	Y	Z
N	6.824138	-1.164976	3.655776
C	6.186480	0.000954	3.312340
C	6.760429	1.096721	4.059464
C	7.733138	0.575078	4.849065
C	7.770378	-0.844812	4.593508
C	5.158023	0.123512	2.366869
C	4.583557	1.485393	2.152897
C	4.832759	2.200013	0.981114
C	4.276345	3.465849	0.830404
N	3.503882	4.049618	1.749667
C	3.266706	3.361635	2.868839
C	3.777953	2.092000	3.116723
C	8.648778	-1.747515	5.204095
C	9.593309	-1.191602	6.218576
C	10.917425	-0.907149	5.894682
C	11.808552	-0.392334	6.827014
C	11.375369	-0.150164	8.124731
C	10.059863	-0.423172	8.478646
C	9.189303	-0.937727	7.526621
ZN	6.492844	-3.025298	2.853470
N	5.039454	-2.234061	1.640101
C	4.256621	-2.928227	0.755202
C	3.309132	-2.027982	0.142769
C	3.534563	-0.796112	0.665523
C	4.626418	-0.925638	1.603056
C	4.349229	-4.299779	0.488733
C	3.424149	-4.851892	-0.545113
C	2.286229	-5.573348	-0.192668
C	1.420157	-6.093487	-1.145525
C	1.686949	-5.892250	-2.493962
C	2.813747	-5.175879	-2.877732
C	3.664192	-4.667867	-1.904592
C	8.729137	-3.122061	4.950940
C	9.618542	-4.036680	5.625775
C	9.389329	-5.270085	5.107988
C	8.359561	-5.125212	4.104627
N	7.974613	-3.809519	4.036827
C	7.828220	-6.174145	3.340039
C	6.801410	-6.050731	2.392766
C	6.299447	-7.127655	1.570271
C	5.332404	-6.604771	0.774802
C	5.230430	-5.201730	1.097412
N	6.135542	-4.892260	2.078388
C	8.405292	-7.535407	3.550374
C	9.695306	-7.849817	3.122133
[11] Zinc $[5,15$-di(4-pyridylacetyl)-10,20-diphenyl]porphyrin (DA-ZnP)

79 Atoms

C 6.909792 -1.144737 2.920028
C 6.113001 0.001410 2.866103
C 6.529416 1.146364 3.549777
C 7.718457 1.145933 4.272086
C 8.504844 -0.001507 4.322621
C 8.097050 -1.147111 3.645280
C 4.833513 0.002599 2.090868
C 4.928571 0.007369 0.692209
C 6.164596 0.052581 -0.050921
C 5.838483 0.050796 -1.369521
Octabromo Tetra Phenyl Porphyrin (OBTPP)

Atom	X	Y	Z
C	5.765188	0.000388	-6.104892
C	-2.013827	0.001628	6.707417
C	-3.417525	-0.004274	6.704409
C	-4.092089	-0.004812	7.917111
N	-3.486845	-0.000692	9.108827
C	-2.150259	0.004688	9.108247
C	-1.374932	0.006476	7.957226
H	-3.964397	-0.008529	5.770714
H	-5.177250	-0.009074	7.933919
H	7.715587	-0.020564	-5.168014
H	-1.673436	0.007970	10.083269
H	-0.294779	0.011547	8.021795
C	5.126461	0.011112	-7.354750
C	5.901907	0.009153	-8.505691
N	7.238457	-0.002084	-8.506146
C	7.843542	-0.012039	-7.314383
C	7.168848	-0.011571	-6.101753
H	4.046347	0.020944	7.419413
H	5.425218	0.017284	-9.480749
H	8.928673	-0.021195	-7.331092
H	-5.679346	0.008510	-4.283073
H	9.429874	-0.003031	4.886452

[12] Octabromo Tetra Phenyl Porphyrin (OBTPP)

78 Atoms
\begin{verbatim}
H -6.220386 -5.128972 7.375963
H -11.931179 -6.846509 -1.971109
H -9.824286 -5.553815 -2.019353
H -10.256840 -4.673732 2.146492
H -12.380454 -5.942141 2.198219
H -8.098643 -1.462090 -7.375190
H -7.602082 -2.432597 -5.156196
H -5.983798 1.314722 -3.869122
H -6.502160 2.302086 -6.077233
H 1.762034 -0.222661 0.863312
H -0.341732 -1.520209 0.911811
H 1.773407 2.083897 -0.043345
H -13.217942 -7.037453 0.138919
\end{verbatim}
