Resonant and anti-resonant frequency dependence of the effective parameters of metamaterials

T. Koschny¹, P. Markos²,³,⁴, D. R. Smith⁴ and C. M. Soukoulis¹,³

¹ Research Center of Crete, 71110 Heraklion, Crete, Greece
² Institute of Physics, Slovak Academy of Sciences, 845 11 Bratislava, Slovakia
³ Ames Laboratory and Dept. Phys. and Astronomy, Iowa State University, Ames, Iowa 50011
⁴ Dept. Phys., University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0319

We present a numerical study of the electromagnetic response of the metamaterial elements that are used to construct materials with negative refractive index. For an array of split ring resonators (SRR) we find that the resonant behavior of the effective magnetic permeability is accompanied by an anti-resonant behavior of the effective permittivity. In addition, the imaginary parts of the effective permittivity and permeability are opposite in sign. We also observe an identical resonant versus anti-resonant frequency dependence of the effective materials parameters for a periodic array of thin metallic wires with cuts placed periodically along the length of the wire, with roles of the permittivity and permeability reversed from the SRR case. We show in a simple manner that the finite unit cell size is responsible for the anti-resonant behavior.

PACS numbers: 41.20.Jb, 42.70.Qs, 73.20.Mf

The recent development of metamaterials with negative refractive index - or double-negative (DNG) metamaterials⁵ has confirmed that structures can be fabricated that can be interpreted as having both a negative effective permittivity ϵ and a negative effective permeability µ simultaneously. Since the original microwave experiment of Smith et al., ² various new samples were prepared,³,⁴ all of which have been shown to exhibit a pass band in which the permittivity and permeability are both negative. These materials have been used to demonstrate negative refraction of electromagnetic waves,⁵ a phenomenon predicted by Veselago.⁶ Subsequent experiments⁷ have reaffirmed the property of negative refraction, giving strong support to the interpretation that these metamaterials can be correctly described by negative permittivity and negative permeability.⁸,⁹

There is also an increasing amount of numerical work¹⁰-¹² in which the transmission and reflection of electromagnetic wave is calculated for a finite length of metamaterial. For a finite slab of continuous material, the complex transmission and reflection coefficients are directly related to the refractive index n and impedance z associated with the slab, which can in turn be expressed in terms of permittivity ϵ and permeability µ. A retrieval procedure can then be applied to find material parameters for a finite length of metamaterial, with the assumption that the material can be treated as continuous. A retrieval process was applied in Ref.,¹³ and confirmed that a medium composed of split ring resonators (SRRs) and wires could indeed be characterized by effective ϵ and µ whose real parts were both negative over a finite frequency band, as was the real part of the refractive index n.

The retrieval process, however, uncovers some unexpected effects. For the SRR medium, for instance, the real part of the effective permittivity ϵ′ exhibits an anti-resonant frequency dependence in the same frequency region where the permeability undergoes its resonance. This anti-resonance can be seen in the composite SRR+wire negative index medium as well. The anti-resonance in the real part of the permittivity is also accompanied by anti-resonant behavior in the imaginary part of the permittivity ϵ″, which exhibits an absorption peak opposite in sign to that of the imaginary part of the permeability. Assuming that waves have a time dependence of exp(−iωt), one would expect the imaginary parts of both the permittivity and permeability to have positive values at all frequencies, since the material is passive.¹⁴,¹⁵

The aim of present paper is to show that the anti-resonant behavior of the material parameter is an intrinsic property of a metamaterial, a consequence of the finite spatial periodicity. To illustrate this point, we present the retrieved material parameters for two types of metamaterial media that have been used to form negative refractive index composites: the first medium comprises an array of SRRs that exhibit a resonant permeability and anti-resonant permittivity. The second medium comprises an array of cut metallic wires, which exhibits resonant permittivity and anti-resonant permeability.

We used the transfer matrix method to simulate numerically the transmission of the electromagnetic waves through the metamaterials. Transmission data for an array of SRR were published elsewhere,¹⁰,¹² and will not be repeated here. To the best of our knowledge, the analysis of the array of cut wires has not been presented in the literature yet. Fig. 1 shows the frequency dependence of the transmission and absorption for an array of cut wires. As expected, the system exhibits a band gap for frequencies f₀ < f < fₚ. Here, f₀ is the resonance frequency and fₚ is the plasma frequency. The transmission data are similar to that for an array of the SRR. However, contrary to an array of SRR, the system exhibits the resonant behavior of the effective permittivity at f = f₀.

From the transmission and reflection data we calculate the effective permittivity and permeability. Details of the method were published elsewhere.¹³ The method is based on the assumption that the system is homogeneous. Textbook formulas for the transmission and reflection of the slab of width d are then inverted to obtain effective impedance z and effective refractive index n. Permittivity and permeability are obtained from relations

\[
n = \sqrt{\mu \epsilon} \quad \text{and} \quad z = \sqrt{\mu/\epsilon}.
\]

Typical frequency dependence of the effective parameters of an array of SRR and array of cut wires are shown in fig. 2 and 3, respectively. Both structures exhibit qualitatively the same
behavior: there is a resonant frequency interval, in which one effective parameter is negative (μ' for SRR, ϵ' for cut wires). The resonant behavior of this parameter at the left border of the band gap is clearly visible. The frequency dependence of the second parameter is anti-resonant. Its real part decreases to zero at $f = f_0$ and imaginary part is negative for $f > f_0$. Notice the qualitative similarity of both systems: data are qualitatively the same, and differ only in the exchange of ϵ and μ (which is equivalent to the transformation $z \to 1/z$).

The anti-resonant behavior of the effective parameter has its origin in the finite lattice period a associated with the metamaterial structure. One manifestation of the lattice periodicity is that there is a maximal wave number, given by $k_{\text{max}} = \pi/a$. If we assume that the metamaterial can be treated as a continuous medium with an index of refraction n, then the definition of $n = c_{\text{light}}k/\omega$ shows that n is necessarily bounded. The generic $\omega(k)$ dispersion diagram of a resonant periodic structure results from the coupling of a dispersionless resonant curve at the resonant frequency $\omega_0 = 2\pi f_0$ and the light line $f = c_{\text{light}}/k$ (see Ref.2 for details). The result is a lower branch that extends from zero frequency to the resonance frequency f_0, followed by a band gap that extends from f_0 to f_p, followed by an upper branch that extends upwards in the frequency from f_p.

Because the resonant frequency of a typical metamaterial element implies a free space wavelength much longer than the unit cell size, an effective medium approach has been applied that results in a characterization of metamaterial in terms of unit cell size, an effective medium approach has been applied for the system near the resonant frequency, where we have

$$\omega \sim \omega_0 - \frac{1}{a^2}(k - \frac{\pi}{a})^2$$

(2)

where α is a real number. Solving Eq. 2 for k and using $n = c_{\text{light}}k/\omega$, we find an approximate expression for the refractive index:

$$n(f) \approx \frac{c_{\text{light}}}{2\pi f_0} \left(\frac{\pi}{a} - \alpha \sqrt{\omega_0 - \omega}\right).$$

(3)

The maximum value of the refractive index at the resonance frequency is thus

$$n_{\text{max}} = \frac{c_{\text{light}}}{\omega_0} \frac{\pi}{a}$$

(4)

determined only by the resonant frequency of the element and the periodicity.

For the composite structures analyzed in this paper, Eq. 4 gives $n_{\text{max}} = 4.24$ for an array of SRRs and $n_{\text{max}} = 3$ for the cut wires array. When comparing n_{max} with data presented in figs. 2 and 3, we see that n' indeed does not exceed these limits.

Assume that the effective parameter x (x represents the effective permittivity for the cut wires system and the effective permeability for the SRR system) exhibits a resonant form corresponding to

$$x(f) = 1 - \frac{F f^2}{f^2 - f_0^2 + \gamma^2 f^4}.$$

(5)

where γ is a damping factor, and F is a filling factor (fraction of volume of the metallic components). At resonance, the imaginary part $x''(\omega)$ becomes

$$x''(\omega) = (1 - F)\frac{\omega_0^2 - \omega_0^2}{\gamma \omega_0} > 0$$

(6)

($\omega_0^2 = \omega_0^2/(1 - F)$) and is greater than zero, as expected.

If we require that the index n calculated form the dispersion curves be consist of the bulk permeability and permeability, than we must have $n(\omega) = \sqrt{x(\omega)y(\omega)}$. Near the resonance frequency this implies that the second effective parameters $y(\omega)$ behaves as

$$y(\omega) = \frac{n''(\omega)}{x(\omega)}.$$

(7)

Comparing the expression for $y(\omega)$ with that for $x(\omega)$ we see that the poles and zeros of x and y are reversed, as long as n is bounded with the form given by Eq. 4. Moreover, for small $n''(\omega)$, we immediately see that the product of imaginary parts $x''(\omega)y''(\omega) < 0$ is negative. To be more specific, with the help of Eq. 1 we obtain that

$$\epsilon'' \mu'' = \frac{1}{|z|^2} \left[(n'' z')^2 - (n' z'')^2\right]$$

(8)

One sees that the sign of $\epsilon'' \mu''$ is fully determined by the r.h.s. of Eq. 8. We are not aware about any physical requirement which prevents the r.h.s. of Eq. 8 to be negative. In fact, data presented in Figs. 2 and 3 show clearly that

$$|n'' z'| \leq |n' z'|.$$

(9)

in the left part of the resonance gap, since $|z'| < |z''|$ and $|n''| < |n'|$. Thus, in agreement with Eq. 7 we conclude that the opposite sign of $\epsilon'' \mu''$ is a consequence of small transmission losses in the structure. The same conclusion was derived in Ref.12 for the DNG metamaterials.

In conclusion, we presented the numerical analysis of the effective parameters of two metamaterials: an array of SRR and an array of thin metallic cut wires. We show that the effective parameters of these systems exhibit resonant and anti-resonant behavior similar to that found recently in the double negative metamaterials. We suggest that the anti-resonant behavior is caused by the requirement that the refractive index must be bounded in the structures which possess finite spatial periodicity. As the spatial periodicity is an unavoidable property of the metamaterials, we conclude that observed seemingly unphysical behavior of effective material parameters is an intrinsic property of composites, which cannot be avoided for instance by decreasing the size of the unit cell.

The electromagnetic response of metamaterials is usually embodied in a description involving bulk, continuous, frequency dependent permittivity and permeability tensors. This description, however, is only approximate, as spatial dispersion is always present to some degree in metamaterials. Thus, the applicability of our retrieval procedure, which
uses the formulas for transmission and reflection of the homogeneous slab, might not be applicable in the neighbor of the resonance frequency, where the wave length of the electromagnetic wave inside the composite is already comparable with the spatial period.

Besides the analysis of the effective parameters, our results are interesting also for further development of new double negative metamaterials, in which the lattice of cut wires might find new interesting applications.12,18

Acknowledgments. This work was supported by Ames Laboratory (Contract n. W-7405-Eng-82). Financial support of DARPA (Contract n. MDA972-01-2-0016), NATO (Grant No. PST.CLG.978088), VEGA (Project n. 2/3108/2003) and EU_FET project DALHM are also acknowledged.

* Corresponding author. Email Peter.Markos@savba.sk

1 R. W. Ziolkowski and E. Heyman, Phys. Rev. E 64, 056625 (2001).
2 D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2002).
3 R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, Appl. Phys. Lett. 78, 489 (2001); M. Bayindir, K. Aydin, E. Ozbay, P. Markoš, and C. M. Soukoulis, Appl. Phys. Lett. 81, 120 (2002);
4 K. Li, S.J. McLean, R.B. Gregor, C.G. Parazzoli, and M. Tanielian, Appl. Phys. Lett. 82, 2535 (2003).
5 R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
6 V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968) [Usp. Fiz. Nauk 92, 517 (1968)].
7 C.G. Parazzoli, R., Gregor, K. Li, B.E.C Koltenbach, and M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003); A. A. Houck, J. B. Brock, and I. L. Chuang, Phys. Rev. Lett. 90, 137401 (2003).
8 J. B. Pendry, A. J. Holden, W. J. Stewart, and I. L. Chuang, Phys. Rev. Lett. 76, 4773 (1996); J. Phys.: Condens. Matt. 10, 4785 (1998).
9 J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. on Microwave Theory and Techn. 47, 2057 (1999).
10 P. Markoš and C. M. Soukoulis, Phys. Rev. E 65, 036622 (2002).
11 P. Markoš, I. Rousouchatzakis, and C. M. Soukoulis, Phys. Rev. E 66, 045601 (2002); J. Pacheco, Jr., T. M. Grzegorczyk, B.-I. Wu, Y. Zhang, and J. A. Kong, Phys. Rev. Lett. 89, 257401 (2002); C. D. Moss, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, in Progress in Electromagnetic Research (PIER) vol. 35, 315 (2002) (EMW Publishing, Cambridge, MA)
12 P. Markoš and C. M. Soukoulis, Optics Express 11, 649 (2003).
13 D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
14 A. L. Pokrovsky and A. L. Efros, Solid St. Comm. 124, 283 (2002).
15 L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press 1982. Note, however, that requirements $\varepsilon'' > 0$ and $\mu'' > 0$ were derived separately, assuming that $\mu \equiv 1$ or $\varepsilon \equiv 1$, respectively. In P. Markoš and C. M. Soukoulis, e-print cond-mat/0212136 it is argued that the electromagnetic losses in passive materials are proportional to the product of n'' ε' so that the relation $\varepsilon' \mu'' < 0$ does not contradict an assumption that material is passive, if $n'' > 0$ and $\varepsilon' > 0$.
16 Alternatively, we argue that the wavelength of the electromagnetic wave can not be smaller than the spatial period of the structure, $\lambda > \lambda_{\text{min}} = a$.
17 A. K. Sarychev and V. M. Shalaev, cond-mat/0103145; P. Markos and C. M. Soukoulis, Optics Letters 28, 846 (2003).
18 E. Ozbay, K. Aydin, E. Cubukcu, and M. Bayindir, IEEE Trans. on Antenas and Propagation 51 (2003) (to appear in October)

FIG. 1. Transmission of the EM wave through the periodic lattice of thin metallic wires. Wires are parallel with the y axis, and the EM wave, polarized with $\vec{E} \parallel y$, propagates in the z direction. The system is infinite in the x and z direction, and 60 rows of wires are considered along the propagation direction. The structure is characterized by four length parameters: the wire thickness w, gap Δ, the wire length L and the lattice period (mutual distance of wires) a. In the present simulations, the lattice constant $a = 3.66$ mm, the thickness of the wire is $w = 0.33$ mm, the length of the wire is $L = 7$ mm and the cut of the wire is $\Delta = 0.33$ mm. Data show the drop of the transmission (solid line) at frequency $f_0 \approx 13.35$ GHz. Dashed line is absorption. We found that the resonant frequency f_0 is almost independent on the lattice constant a (1.66 $\leq a \leq 5$ mm). However, it depends strongly on the gap Δ. In inset shows how the frequency f_0 depends on the ratio Δ/L. Solid line is the fit $f_0 = \frac{c}{2\pi L} \left[a_0 \ln(L/\Delta) + a_1 \right]^{-1/2}$ with $a_0 = 0.48$ and $a_1 = 0.17$. Plasma frequency f_p depends on the lattice period a. For $a = 3.66$ mm we found numerically $f_p \approx 24.5$ GHz which agrees with predictions of Sarychev and Shalaev,17 indicating that the value of the plasma frequency is not influenced by the wire cut.
FIG. 2. Effective parameters for an array of split ring resonators (solid lines: real part, dashed lines: imaginary part). The resonant behavior of the effective permeability μ at frequency $f_0 = 9.66$ GHz is clearly visible. Shaded area shows the resonance frequency interval in which μ' is negative. Note the anti-resonant behavior of ϵ. Note also that ϵ'' is negative. The sharp discontinuity in ϵ'' is due to the extremely fast decrease of n' to zero in the right part of the resonance interval. The size of SRR is 3 mm, the size of unit cell is $L_x \times L_y \times L_z = 3.33 \times 3.66 \times 3.66$ mm. The SRR lies in the $x = 0$ plane, EM wave propagates along the z direction and is $E \parallel$ y polarized.

FIG. 3. Effective parameters of the periodic lattice of cut wires. Resonant behavior of the effective permittivity ϵ as well as anti-resonant behavior of effective permeability μ are clearly visible. The real part of permeability μ' is zero at f_0, and the imaginary part of the permeability μ'' is negative for $f > f_0$.