First measurement of nitrogen fractionation in shocked clumps of the L1157 protostellar outflow

SOLIS XI

M. Benedettini1, S. Viti2,3, C. Codella4,5, C. Ceccarelli5, E. Bianchi5, G. Busquet6,7, P. Caselli8, F. Fontani4, B. Lefloch5, L. Podio4, S. Spezzano8, C. Vastel9

1 INAF, Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, 00133 Roma, Italy
e-mail: milena.benedettini@inaf.it
2 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
3 Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
4 INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
5 Univ. Grenoble Alpes, CNRS, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), 38000 Grenoble, France
6 Institut de Ciències de l’Espai (ICE, CSIC), Can Magrans, s/n, 08193 Cerdanyola del Vallès, Catalonia, Spain
7 Institut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Catalonia, Spain
8 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany
9 IRAP, Université de Toulouse, 9 avenue du colonel Roche, 31028 Toulouse Cedex 4, France

Received ; accepted

ABSTRACT

Context. The isotopic ratio of nitrogen presents a wide range of values in the Solar System: from ~ 140 in meteorites and comets to 441 in the Solar wind. In star forming systems even a higher spread is observed ~ 150 – 1000. The origin of these differences is still unclear.

Aims. Chemical reactions in the gas phase are one of the possible processes that could modify the 14N/15N ratio. We aim at investigating if and how the passage of a shock wave in the interstellar medium, that activates a rich chemistry, can affect the relative fraction of nitrogen isotopes. The ideal place for such a study is the chemically rich outflow powered by the L1157-mm protostar, where several shocked clumps are present.

Methods. We present the first measurement of the 14N/15N ratio in the two shocked clumps, B1 and B0, of the protostellar outflow L1157, derived from the interferometric maps of the H13CN (1–0) and the HC15N (1–0) lines, obtained with the NOrthern Extended Millimeter Array (NOEMA) interferometer as part of the Seeds of Life in Space (SOLIS) programme.

Results. In B1, we find that the H13CN (1–0) and HC15N (1–0) emission traces the front of the clump, that is the apex of the shocked region where the fast jet impacts the lower velocity medium, with averaged column density of N(H13CN) ~ 7×1012 cm−2 and N(HC15N) ~ 2×1013 cm−2. In this region the ratio H13CN (1–0)/HC15N (1–0) is quite uniform with an average value of ~ 5±1. The same average value is also measured in the smaller clump B0e. Assuming the standard 13C/12C = 68, we obtain 14N/15N = 340±70. This ratio is similar to those usually found with the same species in prestellar cores and protostars. We analysed the prediction of a chemical shock model for several shock conditions and we found that the nitrogen and carbon fractionations do not vary much for the first period after the shock. The observed H13CN/HC15N can be reproduced by a non-dissociative, C-type shock with pre-shock density n(H) = 109 cm−3, shock velocity Vsh between 20 and 40 km s−1 and cosmic ray ionization rate of 3×10−16 s−1, in agreement with previous modelling of other chemical species in L1157-B1.

Conclusions. Both observations and chemical models indicate that the rich chemistry activated by the shock propagation does not affect the nitrogen isotopic ratio that remains similar to that measured in lower temperature gas in prestellar cores and in protostellar envelopes.

Key words. ISM: jets and outflows – ISM: molecules – ISM: individual objects: L1157

1 Introduction

The blue-shifted lobe of the molecular outflow powered by the low-mass, Class 0 protostar L1157-mm, at a distance of 352 pc (Zucker et al. 2019), contains three chemically rich clumps, B0, B1 and B2, at the apex and at the wall of cavities excavated by the precessing jet (Guet et al. 1996, Bachiller et al. 2001). These are pure shocked regions, not affected by the UV field of the protostar that is at more than 2×104 au. Therefore, they are an ideal astrochemical laboratory where to investigate how the propagation of a shock wave, that triggers the release of molecules from dust grain surfaces and activates many chemical reactions in the gas phase, modifies the chemical composition of the interstellar medium (ISM). Given its chemical richness, the L1157 outflow is also a favourable place where to detect and study species with low abundances usually not detectable in low particle density medium (e.g. Codella et al. 2010, Lefloch et al. 2017). In particular, the measurement of the isotopic abundances and the understanding of the reason of their variation in different astronomical environments is one of the open questions that can be addressed in this unique place. One of the most intriguing issues regards nitrogen, the fifth most abundant element in the...
The present observations of L1157-B1, centered at $\alpha_{2000} = 20^h39^m10^s.21$, $\delta_{2000} = +68^\circ01'10''.5$, were carried out in the framework of Seeds Of Life In Space (SOLIS), an IRAM NORTHERN EXTENDED MILLIMETER ARRAY (NOEMA) large programme (Ceccarelli et al. 2017). The array was used in the C configuration: the shortest and longest baselines were 24 m and 644 m, respectively, allowing us to recover emission at scales up to $\sim15''$. H$_3^1$CN (1–0) at 86.33992 GHz and HC15N (1–0) at 86.05497 GHz were observed with PolyFiX correlator with a spectral resolution of 2 MHz (≈ 7 km s$^{-1}$). Calibration was carried out following standard procedures via GILDAS-CLIC.

The bandpass was calibrated on 3C84, while the absolute flux was fixed by observing LkHα 101, 2010+723, and 1928+738. The root mean square (rms) phase was $\lesssim 60''$, the typical precipitable water vapor (PWV) was from 6 mm to 10 mm, and the system temperatures $\sim 80-120$ K. The final uncertainty on the absolute flux scale is $\lesssim 60$%. The rms noise in the channels at the considered frequency is ~ 1 mJy beam$^{-1}$. Images were produced using natural weighting and the final clean beam was $3.8''\times 2.8''$ (PA$\approx -168^\circ$). Comparing the spectra of the two lines extracted from the NOEMA maps with the IRAM 30 m spectra from the ASAI large programme (Lefloch et al. 2018) we found a similar level of filtering of the extended emission for the two lines. In particular, 70% and 60% of the total integrated emission of the single dish spectrum was recovered by the interferometer for H$_3^1$CN (1–0) and HC15N (1–0), respectively (Fig. 1).

3. Results

In Fig. 1 we show the spectra of H$_3^1$CN (1–0) and HC15N (1–0) lines extracted from the NOEMA cube in a circle with a diameter of 28$''$ centered in B1. The lines appear blue shifted with respect to the systemic velocity $v_{\text{sys}} = 2.7$ km s$^{-1}$ and spectrally resolved with a FWHM = 14 km s$^{-1}$. The blue wings are projected up to ~ 21 km s$^{-1}$ and ~ 14 km s$^{-1}$ for H$_3^1$CN (1–0) and HC15N (1–0), respectively. At the spectral resolution of our data, the line emission is spread on only a few channels, making unfeasible a comparative analysis of the gas flowing at different velocities. In the following analysis, therefore, we consider the line intensities integrated over the full line profile and since the bulk of the emission comes from the low and moderate-velocity ($v \leq 10$ km s$^{-1}$) outflowing gas (see Fig. 1), the results presented in this paper refer to this shock component. The proper quantitative analysis of the high-velocity shocked gas, present in the L1157 blue-lobe outflow even in form of high-velocity bullets (Benedettini et al. 2007, Spezzano et al. 2020) requires a much higher spectral resolution dataset.

Maps of the H$_3^1$CN (1–0) and HC15N (1–0) integrated line intensity are shown in Fig. 2. H$_3^1$CN (1–0) was integrated over a velocity range from -21 km s$^{-1}$ to 12 km s$^{-1}$ and HC15N (1–0) was integrated over a velocity range from -14 km s$^{-1}$ to 14 km s$^{-1}$

1. Spectral parameters are taken from the Cologne Database for Molecular Spectroscopy (Müller et al. 2005) and are derived from Fuchs et al. (2004) and Cazzoli et al. (2005).
2. http://www.iram.fr/IRAMFR/GILDAS
Fig. 2. Maps of the H13CN (1–0) integrated intensity between velocity range −21, 12 km s$^{-1}$ (left panel) and of HC15N (1–0) integrated intensity between velocity range −14, 6 km s$^{-1}$ (right panel). The synthesized beam, $3'8 \times 2'8$ (PA = −168°), is shown in the bottom-right corner. First level is equivalent to 3σ, corresponding to 0.06 Jy beam$^{-1}$ km s$^{-1}$ and 0.04 Jy beam$^{-1}$ km s$^{-1}$ for H13CN (1–0) and HC15N (1–0), respectively. Level steps are 0.1 Jy beam$^{-1}$ km s$^{-1}$ and 0.02 Jy beam$^{-1}$ km s$^{-1}$ for H13CN (1–0) and HC15N (1–0), respectively. The central position of several clumps (B0d, B0e, B1a, B1b, B1c, B1d, B1e, B1f and B2a), previously identified with other molecular tracers (Benedettini et al. 2007; Codella et al. 2015), is indicated by a cross and the arrow indicates the direction towards the driving source L1157-mm.

3.1. Column densities

In B1 the emission of H13CN (1–0) and HC15N (1–0) peaks at the head of the shock and has a morphology very similar to that of CS (2–1) and (3–2) (see Fig. [3]) as observed with the Plateau de Bure (PdB) interferometer (Benedettini et al. 2007, 2013). These lines have also a similar energy of the upper level: 4 K for H13CN (1–0) and HC15N (1–0) and 7 K for CS (2–1). We can, therefore, reasonably deduce that both H13CN (1–0) and HC15N (1–0) lines are emitted from the same gas component that emits also the low-J CS lines. The detailed analysis of the CS emission carried out by Gómez et al. (2015), indicates that the low-J transitions of CS observed with PdB in B1 are emitted by the wall of the B1 cavity from a gas with $T_{\text{kin}} = 60 – 80$ K, $n(H_2) = 10^5 – 10^6$ cm$^{-3}$, and size = 18″, compatible with the size of H13CN and HC15N emission (Fig. [3]). We used these physical parameters and the measured FWHM = 14 km s$^{-1}$ of the lines, as input for the radiative transfer code RADEX (Van der Tak et al. 2007) and we derived the column densities averaged over the total B1 clump of N(H13CN) $\sim 7 \times 10^{12}$ cm$^{-2}$ and N(HC15N) $\sim 2 \times 10^{12}$ cm$^{-2}$. In these conditions both the H13CN (1–0) and HC15N (1–0) lines are optically thin. We note that the value of N(H13CN) is also consistent, considering the uncertainties of these measurements, with that derived by Busquet et al. (2017) from the H13CN (2–1) transition that is $\sim 2 \times 10^{12}$ cm$^{-2}$.
3.2. Line ratio

The ratio of the integrated intensity of H13CN (1–0)/HC15N (1–0) over the region where both lines have signal-to-noise ratio > 5 is shown in Fig. 3. The ratio towards B1 is quite constant, ranging from 3.1 to 6.6 with a mean value of ∼ 5 ± 1. Note that the same ratio is also found towards the other shocked clump B0e. Since both lines are optically thin and have the same upper level energy, the ratio of their integrated intensity is a straightforward measure of their column density ratio. Indeed, in B1 the measured line ratio is quite similar to that derived from the column densities of the two species calculated in the previous section, that is ∼ 3.5, confirming that the physical parameters that were assumed for the emitting gas are correct. Considering that the lines are emitted from the same region, as shown by the present maps (Fig. 2), the column density ratio is equivalent to the abundance ratio of the two species. This means that the measured H13CN (1–0)/HC15N (1–0) line ratio can be used to derive the 14N/15N ratio once the carbon isotopic ratio is known (or assumed: see Sect. 4).

A direct measure of the nitrogen fractionation could be also derived by the comparison with the HCN (1–0) emission. The map of the HCN (1–0) line towards L1157-B1 was observed with PdB interferometer (Benedettini et al. 2007) with the same angular scale (15”) of the present NOEMA observations, filtering therefore very similar spatial scales, and slightly lower spatial resolution of 5’’×3’’8. Unfortunately, at the same physical conditions derived for the H13CN (1–0) and HC15N (1–0) and with the column density derived by Benedettini et al. (2007), N(HCN) ∼ 1015 cm$^{-3}$, the radiative transfer code RADEX (Van der Tak et al. 2007) shows that the HCN (1–0) line is optically thick, therefore its ratio with the same line level of its isotopologues gives only a lower limit to the chemical abundance ratio of the species. Still, these lower limits can be useful as additional constraints of the chemical modeling (see Sect. 5), therefore we calculated the line ratios after degrading the NOEMA maps to the same HPBW of the PdB map. Toward the L1157-B1 clump we find the following mean values of the line ratios: HCN (1–0) / H13CN (1–0) ∼ 18 and HCN (1–0) / HC15N (1–0) ∼ 100.

4. Nitrogen fractionation

We used the measured H13CN (1–0)/HC15N (1–0) line ratio to derive the nitrogen fractionation for the first time in shocks along a protostellar outflow, with the double-isotope method, that requires the assumption of the carbon isotopic ratio. Assuming the standard value measured in the Solar neighborhood, 13C/12C = 68 (Milam et al. 2005), we derive an average value toward the B1 shock of (1515N/1514N = 340 ± 70. As noticed in the previous section, we do not observe any significant variation of the H13CN (1–0)/HC15N (1–0) line ratio, that fluctuates up to a factor of two (see Fig. 4) among the resolved structure of B1 and the other shocked clump B0e. Consequently, also the nitrogen fractionation should be quite constant in these shocked clumps. However, as shown by Colzi et al. (2020), 12C/13C depends on the physical conditions of the emitting gas and this can influence the derived nitrogen fractionation. For example, if we consider the value of 12C/13C = 50±5 measured by Kahane et al. (2018) in the protocluster OMC2 – FIR 4, we would obtain a slightly lower value for the 14N/15N ratio of 250±75. We will further discuss this point in the following section.

The nitrogen fractionation derived above is within the range of values usually found with the same species in prestellar cores and protostars (e.g. Hily-Blant et al. 2013; Colzi et al. 2018a; Magalhães et al. 2018), even if also values as high as ∼ 1000 are found in some objects (e.g. Bizzocchi et al. 2013; Fontani et al. 2015; Colzi et al. 2018b). Interestingly, our findings are very similar to those found from interferometric observations of N$_2$H$^+$ isotopologues in the low mass protocluster OMC-2 FIR4 by Fontani et al. (2020), that observe no significant variations of the nitrogen fractionation among the cores of the protocluster and a range of 15N/14N = 280 – 370.

It seems, therefore, that the rich chemistry activated by the shock propagation does not affect the nitrogen isotopic ratio that remains similar to that of the prestellar and protostellar cores. Actually, lower values of 15N/14N are found in comets (∼ 140, Manfroid et al. 2009; Shinnaka et al. 2016) and protoplanetary disks (∼ 110, Guzmán et al. 2017), indicating the presence of a 15N-enrichment in the evolutionary process leading to the formation of a star with its planetary system. Our first measurement of the 15N/14N ratio in pure shock regions suggests that shock chemistry could not play a role in such an enrichment.

One popular explanation in the past for enrichment of 15N in molecular gas has been (low) temperature isotopic exchange reactions (Terzieva & Herbst 2000; Rodgers & Charnley 2008), very similar to those responsible for deuterium enrichment in cold gas (e.g. Watson 1976). This explanation has been challenged by both recent theoretical models (e.g. Roueff, Loison & Hickson 2015; Wiström & Charnley 2018; Loison et al. 2019) and observations (e.g. Colzi et al. 2018a; De Simone et al. 2018; Fontani et al. 2020) which have suggested that in pre- and protostellar cores the two isotopic fractions do not seem to be related. Even tough a protostellar shock like L1157-B1 is not the environment in which low-temperature reactions are likely regulating the chemistry, still we can test observationally whether the two isotopic fractions are related or not in this warmer environment. In fact, measurements of the D/H ratio in HCN at high-angular resolution were obtained towards L1157-B1 by Busquet et al. (2017). Morphologically, the DCN and HC15N maps look similar, even though the DCN one is more widespread and not limited to the head of the shock. The D/H measured by Busquet et al. (2017) show a little variations between the different cores, being ∼ 0.3 in B1a and B1c and a factor of about 2 higher in B1b and B0e. A much higher variation of the D/H ratio was, instead,
derived from H$_2$CO (Fontani et al. 2014) who measured D/H \sim 0.14 towards B0e, \sim 0.04 at the rear of the shock front (corresponding to clumps B1a, B1e and B1f) and an upper limit of 0.015 at the head of the shock (corresponding to B1c). Overall, it seems that in the shocked clumps of the L1157 outflow the D/H ratio shows much larger variation than the 14N/15N ratio indicating that also in shocked regions, as it was found for the lower temperature gas, the two isotopic fractionations are not strictly related.

5. Should shocks affect nitrogen fractionation?

It is well known that L1157-B1 and B0e are shocked regions. It is interesting, however, to note that the nitrogen fractionation derived from the observations is quite similar to that measured in colder environments as prestellar cores. As speculated in the previous section, this seems to imply that the presence of shocks does not affect such fractionation. In this section we want to test this hypothesis by looking at the theoretical chemical abundances calculated by an astrochemical shock model and comparing the abundance ratios with our observations.

In the past many chemical and shock models have been used to fit the wealth of molecular observations in L1157-B1. In particular, Viti et al. (2011), and later Benedettini et al. (2013), found that at least some of the species observed in B1 were likely the product of a non-dissociative, C-type shock with pre-shock density n(H) \geq 106 cm$^{-3}$ and shock velocity V_sh \geq 40 km s$^{-1}$. In this section, we use their same (updated) chemical and shock time dependent gas-grain model, UCLCHEM (Holdship et al. 2017), augmented with the nitrogen and carbon isotopologues chemistry (Viti et al. 2019, 2020), to determine whether - theoretically - we should expect the passage of a shock to affect the nitrogen fractionation in L1157-B1. Full details of the chemical and shock model UCLCHEM can be found in the references above. In a nutshell, UCLCHEM firstly computes the chemical evolution of an ambient medium undergoing collapse (for this study, in free-fall) up to a user-supplied final density. In a second phase, the presence of a C-shock is simulated and the chemical evolution of the gas subjected to such event is followed. The initial (solar) elemental abundances in our models are from Asplund et al. (2007). Our elemental isotopic carbon and nitrogen ratios are respectively 68 (Milam et al. 2005) and 440 (Marty et al. 2011).

Considering the previous results of the shock modeling in L1157-B1, we ran a grid of models spanning pre-shock densities (the final densities of Phase I) from 103 cm$^{-3}$ to 106 cm$^{-3}$ for two shock velocities of 20 and 40 km s$^{-1}$. Podio et al. (2014) derived a high cosmic ray ionization rate of 3x10$^{-16}$ cm$^{-3}$ s$^{-1}$ in L1157-B1. We therefore adopted this value for our grid of models. A full theoretical study of how carbon and nitrogen fractionation varies as a function of the physical parameters and of time is beyond the scope of this paper and has in fact already been recently performed (Roueff, Loison & Hickson 2015). Cozi et al. (2020). In Fig. 5 we show the evolution of the chemical abundances ratio between HCN, H13CN and H15N after the passage of the shock (considered as time zero) for the models of the grid.

The first thing we notice, across all models, is that HCN/H13CN, that is the carbon fractionation, is not affected by the shock and remains fairly constant for all the period of time considered in our model (106 yr). Also HCN/H15N remains constant for the first period after the advent of the shock, then at a certain time of the evolution, that for most of the models is around 105 yr, it starts to decrease by an order of magnitude or more. This is possibly due to the fact that H15N starts increasing, due to the increase in 15N (which can either directly form H14C15N or can form C15N). In summary, if we look at the evolution for time comparable to the age of L1157-B1 shock, that is \sim 1550 yr for a distance of 352 pc (Podio et al. 2016), Spezzano et al. (2020), the carbon and nitrogen fractionation ratios for HCN do not vary much for most models and, in particular for models with (pre-shock) densities of 105 cm$^{-3}$, confirming that the shock itself (i.e. the changes in temperatures and densities caused by the passage of the shock) has little influence on these ratios.

To compare the models with our observations we used the H13CN(1–0)/HC15N(1–0) line ratio, that is a good measure of the ratio of the chemical abundances of the two isotopologues. As derived in Sect. 3.1, the range of observed values for the H13CN/HC15N in L1157-B1 is about 3–6. In general, all the models here are within this range for a specific period after the passage of the shock. However, at (pre-shock) densities of 105 cm$^{-3}$ this ratio is only matched at very early ages (< 10 years) for shock velocities of 40 kms$^{-1}$ or at late age (> 106 yr) for shock velocities of 20 kms$^{-1}$, and for models with (pre-shock) densities of 105 cm$^{-3}$ only up to ages ~ few hundred years. The models that best fits the observed H13CN/HC15N ratio within the estimated shock age are those with a pre-shock density of 105 cm$^{-3}$, that foresee chemical abundance ratios very similar for the two shock velocities. These models are also in agreement with the lower limits of HCN/H13CN (1–0) and HC15N/HC15N (1–0) that are 18 and 100, respectively. Interestingly, one of our best fit model (the one with a shock velocity of 40 kms$^{-1}$) is the same that was able to reproduce also other species in L1157-B1 (e.g. Viti et al. 2011; Benedettini et al. 2013; Busquet et al. 2017). On the basis of the model of the precession of the jet that power the L1157 outflow (Podio et al. 2016), the B0e shock episode is younger than B1 and given the difference of their dynamical times, the estimated age of B0e is 1340 yr at the distance of 352 pc (Spezzano et al. 2020). At this epoch the shock models with pre-shock density of 105 cm$^{-3}$ foresee the same carbon and nitrogen fractionations for B0e and B1, which is consistent with our measurement of similar H13CN(1–0)/HC15N(1–0) line ratio in the two shock episodes. We note that our best fit models foresees a HCN/H13CN \sim 70, consistent with the value derived from the Solar neighborhood (Milam et al. 2005) and hence our assumptions for the estimate of the nitrogen fractions in Sect. 4 is justified.

Finally we also investigated, from a theoretical point of view, whether a simple warming up of the gas to a moderate temperature of a few tens of Kelvin (consistent with the kinetic temperature derived from observations of the gas in L1157-B1), much lower that that produced by a shock event, can have some effect the nitrogen fractionation. Hence, we ran a model where in Phase II the gas and dust temperatures are increased up to ~ 70 K without simulating the presence of a shock. In Fig. 6 we show the result of such a model with a pre-shock density of 105 cm$^{-3}$. As for the shock models, for the first 105 yr the carbon and nitrogen fractionation ratios for HCN do not vary much and are all within the observed values. The fact that the observations can be fit by a model where the shock is not present confirm that the shock itself does not alter the nitrogen and carbon fractionation.

6. Conclusions

We presented maps of the H13CN (1–0) and HC15N (1–0) lines towards the shocked clumps B1 and B0, in the blue-shifted lobe of the L1157 outflow, obtained with NOEMA as part of the SollySIS large programme. The emission of both lines traces the front...
head of the B1 shock at the apex of the cavity excavated by the propagation of the outflow, and the B0e clump, at the eastern wall of the cavity. The emission of the two HCN isotopologues has a morphology very similar to that of the low-\textit{J} CS lines, indicating that the two species are emitted from the same gas component. By assuming the same gas physical parameters derived from the low-\textit{J} CS lines, we derived the average column densities in B1 of $N(\text{H}^{13}\text{CN}) \sim 7 \times 10^{12}$ cm$^{-2}$ and $N(\text{HC}^{15}\text{N}) \sim 2 \times 10^{12}$ cm$^{-2}$. In these conditions both the H13CN (1–0) and HC15N (1–0) lines are optically thin and their line ratio, whose in B1 is $\sim 5\pm 1$, is a good proxy of their chemical abundance ratio. A similar average ratio is found also in B0e. From the above ratio, assuming the typical $^{12}\text{C}/^{13}\text{C} = 68$, we derived $^{14}\text{N}/^{15}\text{N} = 340\pm 70$. This is the first measurement of the nitrogen fractionation in shocked gas along a protostellar outflow.

Interestingly, the $^{14}\text{N}/^{15}\text{N}$ ratio is similar to the values found in prestellar cores and protostars, suggesting that the rich gas-phase chemistry activated by the shock does not affect significantly the relative abundance of the two nitrogen isotopes with respect to the ISM value. This hypothesis was confirmed by the
analysis of a small grid of chemical shock models that showed that the carbon and nitrogen fractionation ratios for HCN do not vary much in the first period after the passage of the shock. Finally, we found that the observed H13CN/HCN$_{15}$N in B1 and B0e can be reproduced, for a time compatible to the shock age (1550 yr and 1340 yr in B1 and B0e, respectively), by a non-dissociative, C-type shock with pre-shock density $n_0 = 10^5$ cm$^{-3}$ and shock velocity V_s between 20 and 40 km s$^{-1}$, in agreement with previous modelling of other chemical species in L1157-B1.

Acknowledgements. We thank Laura Colzi for the useful discussion. We are very grateful to all the IRAM staff, whose dedication allowed us to carry out the SOLIS programme. This work was supported by: (i) the European Research Council (ERC) Horizon 2020 research and innovation programme “MOPPEX”, grant agreement No 833460; (ii) the PRIN-INAF 2016 “The Cradle of Life - General Conditions in Early Planetary Systems for the rise of life with SKA”; (iii) the ERC Horizon 2020 ITN Project “Astro-Chemistry Origins” (ACO), grant agreement No 811312; (iv) the ERC Horizon 2020 research and innovation programme “The Dawn of Organic Chemistry” (DOC), grant agreement No 741002; (v) the MINECO (Spain) AYA2017-84390-C2 grant.

References
Asplund, M., Grevesse, N., Sauval, A.J., & Scott, P. 2009, ARA&A, 47, 481
Bachiller, R., Pérez Gutiérrez, M., Kumar, M. S. N., & Tafalla, M. 2001, A&A 372, 899
Benedettini, M., Viti, S., Codella, C., et al. 2007, MNRAS, 381, 1127
Benedettini, M., Viti, S., Codella, C., et al. 2013, MNRAS, 436, 179
Bizzocchi, L., Caselli, P., Lefloch, B., & Dore, L. 2013 A&A, 555, A109
Busquet, G., Fontani, F., Viti, S., et al. 2017, A&A, 604, A20
Cazzoli, G., Puzzarini, C., & Gauss, J. 2005, ApJSS, 159, 181
Ceccarelli, C., Caselli, P., Fontani, F., et al. 2017, ApJ, 850, 176
Codella, C., Lefloch, B., Ceccarelli, C., et al. 2010, A&A, 518, L112
Codella, C., Fontani, F., Ceccarelli, C., et al. 2015, MNRAS, 449, L11
Colzi, L., Fontani, F., Caselli, P., et al. 2018a, A&A, 609, A129
Colzi, L., Fontani, F., Rivilla, V.M., et al. 2018b, MNRAS, 478, 3693
Codzi, L., Suplía, O., Rouseff, E., Caselli, P., & Fontani, F. 2020, A&A, 640, A51
De Simone, M., Fontani, F., Codella, C., Ceccarelli, C., Lefloch, B., et al. 2018, MNRAS, 476, 1982
Fontani, F., Codella, C., Ceccarelli, C., et al. 2014, ApJ, 788, L43
Fontani, F., Caselli, P., Palau, A., Bizzocchi, L., & Ceccarelli, C. 2015, ApJ, 808, L46
Fontani, F., Quaia, G., Ceccarelli, C., et al 2020, MNRAS, 493, 3412
Fuchs, U., Brüken, S., Fuchs, G. W., et al. 2004, Z. Naturforsch., 59a, 861
Furuya, K., & Aikawa, Y. 2018, ApJ, 857, 105
Gómez, A.I., Codella, C., Lefloch, B., et al. 2015, MNRAS, 466, 3346
Guzmán, V.V., Öberg, K.I., Huang, J., Loomis, R., & Qi, C. 2017, ApJ, 836, 30
Junk, G., & Svee, H. J. 1958, Geochim. Cosmochim. Acta, 14, 234
Heays, A. N., Visser, R., Gredel, R., et al. 2014, A&A 562, A61
Hily-Blant, P., Bonal, L., Faure, A., & Quirico, E. 2013, Icarus, 232, 582
Hily-Blant, P., Magalhaes, V., Kastner, J., et al. 2017, A&A, 603, L6
Hily-Blant, P., Magalhaes de Souza, V., Kastner, J., & Forveille, T. 2019, AA, 632, L12
Holdship, J., Viti, S., Jiménez-Serra, I., Makrymallis, A., & Priestley, F. 2017, AJ, 154, 38
Kahane, C., Jaheb Al-Edhari, A., Ceccarelli, C., et al. 2018, ApJ, 852, 130
Lefloch, B., Ceccarelli, C., Codella, C., et al. 2017, MNRAS, 469, L73
Lefloch, B., Bachiller, R., Ceccarelli, C., et al. 2018, MNRAS, 477, 4792
Loison, J.C., Wakelam, V., Gratier, P., & Hickson, K.M. 2019, MNRAS, 484, 2747
Magalhaes, V. S., Hily-Blant, P., Faure, A., Hernandez-Vera, M., & Lique, F. 2018, A&A, 615, A52
Manfroid, J., Jehin, E., Hutsemékers, D., et al. 2009, A&A, 503, 613
Marty, B., Chauvin, M., Wiens, R. C., Jurewicz, A. J. G., & Burnett, D. S. 2011, Sci, 332, 1533
Milam, S.N., Savage, C., Brewster, M.A., Ziyurs, L.M., Wyckoff, S. 2005, ApJ, 634, 1126
Müller, H. S. P., Schlöder, F., Stutzki, J., & Wennwieser, G., 2005, JMoSt, 742, 215
Podio, L., Lefloch, B., Ceccarelli, C., Codella, C., & Bachiller, R. 2014, A&A, 565, A64
Podio, L., Codella, C., Gueth, F., et al. 2016, A&A, 593, L4
Radaelli, E., Bizzocchi, L., Caselli, P., et al. 2018, A&A, 617, A7
Rodgers, S.D. & Charnley, S.B. 2008, MNRAS, 385, L48
Roueff, E., Loison, J. C., & Hickson, K. M. 2015, A&A, 576, A99
Shinnaka, Y., Kawai, H., Jehin, E., et al. 2016, MNRAS, 462, S195
Spezzano, S., Codella, C., Podio, L., et al. 2020, A&A, 640, A74
Terzieva, R. & Herbst, E. 2000, MNRAS, 317, 563
Van der Tak, F.F.S., Black, J.H., Schöier, F.L., Jansen, D.J., van Dishoeck, E.F. 2007, A&A 468, 627
Viti, S., Jiménez-Serra, I., Yates, J. A., et al. 2011, ApJ, 740, L3
Viti, S., Fontani, F., Jiménez-Serra, I. & Holdship, I. 2019, MNRAS, 486, 4805
Viti, S., Fontani, F. & Jiménez-Serra, I. 2020, MNRAS, 497, 4333
Wampfler, S. F., Jørgensen, J. K., Bizzarro, M., Bisschop, S.E. 2014, A&A, 572, A24
Wirström, E.S. & Charnley, S.B. 2018, MNRAS, 474, 3720
Watson, W. D. 1976, Reviews of Modern Physics, 48, 513
Zucker, C., Speagle, J. S., Schlafly, E. F., et al. 2019, ApJ, 879, 12