Abstract
Dynamic Power Dispatch (DPD) intends to schedule the online generators output with the forecasted load demand over a certain period of time, in order to operate an electric power system most economically within its operating limits. The behavior and the activity of honey bees during food foraging is implemented as a Honey Bees Searching Optimization (HBSO) technique in solving the DPD problem. The HBSO algorithm provides a balance between exploration and exploitation of a search space. Further, the HBSO is independent of control parameters when compared to other techniques. The DPD formulation includes ramp rate constraint, rectified sinusoidal effect, uniformity and disparity constraint, which normally present in the realistic power system. In order to express the efficacy of the HBSO algorithm a test case of 6 units DPD problem is considered and lower fuel cost is obtained when compared with other algorithm.

Keywords: Dynamic Power Dispatch, HBSO Algorithm, Power Balance Constraint, Ramp rate constraint, Valve Point Loading

1. Introduction
Dynamic power dispatch intends to schedule the online generators output with the predicted load demand considering major constraints over a certain period of time. In order to satisfy the necessity of power demand with losses and to obtain the minimum production cost DED is considered\(^1\). In the general Economic Power Dispatch problem the fuel cost function is assumed to be linear in nature by considering only the equality and inequality constraints\(^2\). In order to solve this smooth fuel cost function, traditional optimization method was used\(^3-5\). Even though the problem gets simplified, the traditional optimization technique has the drawback to get stuck up at the local optimal points in the cost function. So the solution which was obtained from these methods is not the exact optimal solution\(^6\). But in practical power dispatch problem there are much more constraints which normally convert the fuel cost function to be non convex\(^7,8\), which creates a real challenge to obtain the optimized solution. In order to overcome the drawback of the traditional optimization method and to find the optimal solution for the non smooth economic power dispatch problem evolutionary computation techniques were introduced\(^9-13\). The evolutionary computational techniques inbuilt have the nature to search the global optimum with any type of non convex cost function\(^14,21\). In this article the more advanced stage of EPD problem namely Dynamic power dispatch was considered by including more constraints and it was optimized with the help of Honey Bees Searching Optimization technique.

2. Problem Formulation
Dynamic Power Dispatch determines the most economical operation of the thermal units for a certain period of time, also by fulfilling all the constraints which makes
the problem to be non-convex in real time operation. Mathematically it was formulated as follows:

2.1 Dynamic Power Dispatch (DPD)

Problem Description

The problem statement for DPD will be stated in the form of quadratic function with fuel cost coefficients. Hence the aim of DPD is to minimize:

\[
F_{TC} = \sum_{h=1}^{H} \sum_{i=1}^{N} F_i(P_{ih})
\]

Where

\[
F_i(P) = a_i P^2 + b_i P + c_i
\]

\(a_i, b_i, c_i\) are the fuel cost coefficients of the \(i\)th unit

\(T\) is the number of hours

\(N\) be the no. of generating units

\(P_i\) is the output generation of \(i\)th unit

2.1.1 Uniformity Constraint

\[
\sum_{i=1}^{N} P_i = P_D + P_L
\]

Where

\(P_D\) – Total power required

\(P_L\) – Total power loss

2.1.2 Disparity Constraint

\[
P_{i_{\text{min}}} \leq P_i \leq P_{i_{\text{max}}}
\]

Where

\(P_{i_{\text{min}}}\) – min gen limit

\(P_{i_{\text{max}}}\) – max gen limit

2.2 Valve Point Loading

Depends on the sudden increase and decrease in power demand to be satisfied, it is necessary to adjust the fuel input supplied to the prime mover of the generator. In order to achieve this fuel admission valves are frequently opened and closed according to the load curve, this increases the throttling losses rapidly and rise in incremental heat rate suddenly. The above mentioned constraint creates the pumping nature in the normal fuel cost curve as shown in Figure 2.1.

By adding the sinusoidal component to the normal fuel cost equation that makes the traditional DPD problem to be non-convex as given below,

\[
F_i(P) = F_i(P_i) + e_i \sin(f_i[P_i^{\text{min}} - P_i])
\]

Where

\(F_i(P_i)\) – Valve point loading included fuel cost equation for \(i\)th unit

\(e_i, f_i\) – coefficients of the \(i\)th unit with valve point loading.

2.3 Ramp Rate Constraint

The upper limit and lower limit of ramp rate constraints of \(i\)th generator are given by

As generation increases,

\[
P_i - P_{i0} \leq UR_i
\]

As generation decreases

\[
P_i - P_{i0} \leq DR_i
\]

and

\[
\max(P_{i_{\text{min}}}, P_{i0} - DR_i) \leq P_i \leq \min(P_{i_{\text{max}}}, P_{i0} + UR_i)
\]

Where \(P_i\) is the current power output and \(P_{i0}\) is the power output in the prior interval of the \(i\)th unit. \(UR_i\) is the upper-ramp rate of the \(i\)th unit and \(DR_i\) is the down-ramp rate of the \(i\)th unit.

2.4 Multiple Fuels

Some generating units are capable of operating using different types of fuels. The use of multiple fuel types may result in multiple cost curves that are not necessarily parallel or continuous. The lower region of the resulting cost curve determines which fuel type is most economical to burn.
This cost function can be represented by a piecewise curve (see Figure 2.2), and the segments are defined by the range in which each fuel is used\(^{21}\). The ED problem with piece wise quadratic cost curves is very difficult to solve by standard techniques. Piecewise quadratic cost functions have as many segments as fuel types.

\[
F_i(P_G,i) = \begin{cases}
 a_{i,1} + b_{i,1}P_G + c_{i,1}P_G^2, & P_G^1 < P_G^i \\
 a_{i,2} + b_{i,2}P_G + c_{i,2}P_G^2, & P_G^2 < P_G^i \\
 \vdots \\
 a_{i,k} + b_{i,k}P_G + c_{i,k}P_G^2, & P_G^k < P_G^i
\end{cases} \tag{9}
\]

Where \(P_G^k\) and \(P_G^i\) are the lower and upper bound respectively of the \(k^{th}\) fuel of unit-i, and \(a_{i,k}, b_{i,k}, c_{i,k}\) are the \(k^{th}\) fuel cost coefficient of unit-i.

3. Honey Bees Searching Optimization Algorithm

HBSO algorithm for real bound optimization problem, is a recently introduced optimization technique which simulates the foraging behavior of bees in searching of their food which is called the nectar and sharing the information of food sources to the bees in the nest\(^{20,21}\). For solving the non convex optimization problems, an evolutionary computational technique with constraint handling method was incorporated with the algorithm.

Main steps of the HBSO algorithm for DPD problem are given below, here the food represents the power generation and the food source represents the limits of each generator.

- Initialize the position of food source.
- In their food source site a new food source is produced by each employed and exploits the better source.
- Depends on the quality of their solution, each onlooker bee selects a source, which produces a new food source in selected food source site and exploits the better source.
- Determine the source to be abandoned and allocate its employed bee as scout for searching new food sources.
- The best food source should be stored.
- Until the stopping criteria reached, repeat the steps 2 to 5.

4. Implementation of HBSO Algorithm

The flow chart of the HBSO algorithm is given below\(^{21}\):

![Flowchart of HBSO Algorithm](image)

Figure 3. HBSO algorithm.
The HBSO algorithm steps are presented as follows:

4.1 Initialization

In the search space a new percentage of population was sprayed randomly, and then it was applied to the fitness function which was termed as nectar amounts, which represents the proportion of employed bees to the total population. Once it gets settled in their positions in the search space, they are named as employed bees.

4.2 Move the Onlookers

Probability of food source selection should be calculated. For every onlooker bees, it is necessary to select the food source to move by roulette wheel selection and then find out their nectar amount.

4.3 Move the Scouts

The employed bees become scouts if there is no betterment in the solution obtained with the fitness function of the employed bees after the number of trials got over. Those food sources are neglected.

4.4 Update the Best Food Source Found So Far

The most optimal solution obtained from the search space and the position, which are found by the bees are stored.

4.5 Termination Checking

Once after finding the solution from the fitness function, check for the stopping criteria and terminate the program if condition is satisfied, or else repeat from step 2.

\[
P_i = \frac{F(\theta_i)}{\sum_{k=1}^{S} F(\theta_k)}
\]

where

- \(\theta_i \) - \(i^{th} \) employed bee position
- \(S \) - No. of employed bees and
- \(P_i \) - probability of selecting the \(i^{th} \) employed bee.

\[
x_j(t+1) = \theta_j + \phi(\theta_j)(t - \theta_k(t))
\]

where

- \(x_j \) - Position of the \(j^{th} \) onlooker bee
- \(t \) - No. of iteration
- \(\theta_k \) - Randomly chosen employed bee
- \(j \) - dimension of the solution and

\[\phi(.) - \text{series of random variable between [-1, 1].}\]

\[\theta_j = \theta_{j_{\text{min}}} + r(\theta_{j_{\text{max}}} - \theta_{j_{\text{min}}})\]

where \(r \) is a random number and \(r \in [0, 1] \).

5. Data and Results

The unit characteristics data are given. The variation load curve is shown in Figure 5.1. The constraints which have been included are uniformity & disparity, Valve point loading, Ramp Rate constraint, and transmission losses.

The output power for each generator among the six units has been represented below and also the total power along with the fuel cost has been calculated after considering the above mentioned constraints. Comparison has been made for the calculated result in HBSO with General Algebraic Modeling system (GAMS) in Table 5.1 and graphically shown in Figure 5.2.

Table 1. With valve point effect & losses

Time in Hours	Power (MW)	Total MW
1	256.35	100
2	433.562	142.364
3	385.554	138.156
4	362.345	118.352
5	362.345	118.352
6	336.512	115.431
7	436.826	145.874
8	433.562	142.364
9	436.826	145.874
10	436.826	145.874
11	436.826	145.874
12	385.554	138.156
13	362.345	118.352
14	362.345	118.352
15	362.345	118.352
16	362.345	118.352
17	362.345	118.352
18	362.345	118.352
19	362.345	118.352
20	362.345	118.352
21	362.345	118.352
22	362.345	118.352
23	362.345	118.352
24	362.345	118.352

Figure 4. Daily load curve.

Figure 5. Convergence cure for 6 unit system.
Table 1. Convergence results for 6 generating units With valve point effect & losses

Hour	\(P_{G1}\)	\(P_{G2}\)	\(P_{G3}\)	\(P_{G4}\)	\(P_{G5}\)	\(P_{G6}\)	Power Demand (MW)	Power Loss (MW)	Total Power O/P (MW)	Generation cost ($/hr)	
1	256.35	100	50	142.542	197.21	53.898	800	7.652	807.652	3201.99	3186.75
2	293.933	100	50	170.642	216.764	78.526	900	9.865	909.865	3614.327	3576.84
3	305.685	100	50	190.524	266.648	99.613	1000	12.47	1012.47	4045.941	3968.52
4	336.512	115.431	52.546	184.278	311.57	114.523	1100	14.86	1114.86	4496.908	4428.64
5	378.654	126.423	68.532	227.516	330.985	136.54	1250	18.65	1268.65	5203.722	5184.78
6	336.512	115.431	52.546	184.278	311.57	114.523	1100	14.86	1114.86	4496.908	4428.64
7	358.071	112.874	55.456	219.54	298.645	120.864	1150	15.45	1165.45	4728.766	4666.21
8	362.345	118.352	67.425	230.657	310.648	128.563	1200	17.99	1217.99	4964.366	4885.64
9	380.645	140.641	85.264	249.463	357.112	157.335	1350	20.46	1370.46	5693.768	5621.56
10	433.562	142.364	92.745	274.514	364.842	164.523	1450	22.55	1472.55	6199.03	6104.54
11	435.642	170.451	97.72	268.984	374.54	178.123	1500	25.46	1525.46	6457.408	6385.62
12	433.562	142.364	92.745	274.514	364.842	164.523	1450	22.55	1472.55	6199.03	6104.54
13	436.826	145.874	84.512	248.154	348.268	156.846	1400	20.48	1420.48	5944.489	5876.28
14	336.512	115.431	52.546	184.278	311.57	114.523	1100	14.86	1114.86	4496.908	4428.64
15	362.345	118.352	67.425	230.657	310.648	128.563	1200	17.99	1217.99	4964.366	4885.64
16	362.345	118.352	67.425	230.657	310.648	128.563	1200	17.99	1217.99	4964.366	4885.64
17	378.654	126.423	68.532	227.516	330.985	136.54	1250	18.65	1268.65	5203.722	5184.78
18	385.554	138.156	72.622	246.152	332.643	142.123	1300	17.25	1317.25	5446.851	5398.54
19	436.826	145.874	84.512	248.154	348.268	156.846	1400	20.48	1420.48	5944.489	5876.28
20	433.562	142.364	92.745	274.514	364.842	164.523	1450	22.55	1472.55	6199.03	6104.54
21	362.345	118.352	67.425	230.657	310.648	128.563	1200	17.99	1217.99	4964.366	4885.64
22	336.512	115.431	52.546	184.278	311.57	114.523	1100	14.86	1114.86	4496.908	4428.64
23	256.242	100	50	182.241	238.665	132.963	950	10.111	960.111	3827.712	3796.56
24	187.794	100	50	146.452	195.212	76.54	750	5.998	755.998	3002.983	2976.11

6. Conclusion

In this paper, a more realistic non convex dynamic power dispatch problem including valve point loading and ramp rate limits were discussed. On subjecting the above mentioned problem to the Honey Bees Searching Optimization algorithm, it was found best suited for the fuel cost functions of non-smooth cost functions when compared with the results presented in the literature. The proposed method assures the global optimal solution in the search space with low computation burden. The research work is under way in order to incorporate more security issues of power system in the DPD model with other constraints.

7. References

1. Panigrahi CK, Chattopadhyay PK, Chakrabarti RN, Basu M. Simulated annealing technique for dynamic economic dispatch. Electric Power Compon Syst. 2006; 34(5):577–86.
2. Bhattacharjee K, Bhattacharya A, nee Dey SH. Solution of economic emission load dispatch problems of power systems by real coded chemical reaction algorithm. Int. Journal of Electrical Power and Energy Systems. 2014 Jul; 59:176–87.

3. Lee FN, Breipohl AM. Reserve constrained economic dispatch with prohibited operating zones. IEEE Trans. Power Syst. 1993; 8(1):246–54.

4. Han XS, Gooi HB, Kirsch Daniel S. Dynamic economic dispatch: Feasible and optimal solutions. IEEE Trans. On power systems. 2001 Feb; 16(1):22–8.

5. Kim JO, Shina DJ, Parka JN, Singh C. Atavistic genetic algorithm for economic dispatch with valve point effect. Electr. Power Syst. Res. 2002; 62(3):201–7.

6. Ravi CN, Selvakumar G, Christober Asir Rajan C. Hybrid real coded genetic algorithm - differential evolution for optimal power flow. International Journal of Engineering and Technology (IJET). 2013 Aug-Sep; 5(4):3404 –12.

7. Padmanabhan B, Siva Kumar RS, Jasper J. DEGL based optimization for practical constrained economic power dispatch problem. JEE Trans. Indus Elect Pow Syst. 2011; 11(3):26–32.

8. Kasilingam G, Pasupuleti J. Coordination of PSS and PID controller for power system stability enhancement – overview. Indian Journal of Science and Technology. 2015 Jan; 8(2):142–51.

9. Rahmati M, Effatnejad R, Safari A. Comprehensive Learning Particle Swarm Optimization (CLPSO) for multi-objective optimal power flow. Indian Journal of Science and Technology, 2014 Mar; 7(3):262–70.

10. Jasper J, Sivakumar RS, Victoire T, Deepa SN. Cost optimization of power generation using a differential evolution algorithm enhanced with neighbourhood search operation. International Review of Electrical Engineering. 2012; 7(5)

11. Vinothkumar K, Selvan MP. Fuzzy embedded genetic algorithm method for distributed generation planning. Electric Power Components and Systems. 2011; 39(4):346–66.

12. Basu M. Artificial immune system for dynamic economic dispatch. Electrical Power and Energy Systems. 2011; 33:131–6.

13. Lee KY, Sode Yone A, Ho Park J. Adaptive hopfield neural networks for economic load dispatch. IEEE Trans. on Power Systems. 1998 May; 13(2):519–26.

14. Chiang C-L. Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels. IEEE Trans. Power Systems. 2005 Nov; 20(4):1690–99.

15. Niknam T, Azizipanah–Abarghoee R, Aghaei J. A new modified teaching- learning algorithm for reserve constrained dynamic economic dispatch. IEEE Trans. on Power Systems. 2013 May; 28(2):749–63.

16. Ravi CN, Christober Asir Rajan C. Line flow constraint combined economic emission dispatch with valve point loading by differential evolution algorithm. International Review of Modelling and Simulations (IREMOS). 2013 Feb; 6(1):114–20.

17. Padmanabhan B, Sivakumar RS, Jasper J, Aruldoss Albert Victoire T. Bacterial foraging approach to economic load dispatch problem with non convex cost function. Swarm, Evolutionary, and Memetic Computing Lecture Notes in Computer Science. 2011; 7076:577–84.

18. Jiang W, Yan Z, Hu Z. A novel improved particle swarm optimization approach for dynamic economic dispatch incorporating wind power. Electric Power Components and Systems. 2011; 39(5):461–77.

19. Aruldoss Albert Victoire T, Ebenezer Jeyakumar A. Reserve constrained dynamic dispatch of units with valve – point effects. IEEE Trans. on Power Systems. 2005 Aug; 20(3):1273–82.

20. Hemamalini S, Simon Sishaj P. Dynamic economic dispatch using artificial bee colony algorithm for units with valve-point effect. Euro. Trans. Electr. Power. 2011; 21:70–81.

21. Padmanabhan B, Jasper J, Siva Kumar RS. Bee hive algorithm to optimize multi constrained piecewise non-linear economic power dispatch problem in thermal units. Int. Journal on Elect. Engg and Informatics. 2011; 3(1):109–17.

22. Bisen D, Dubey HM. Dynamic economic load dispatch with emission and loss using GAMS. IJERT. 2012 May; 1(3):1–7.