Identification of pathological RA endotypes using blood-based biomarkers reflecting tissue metabolism. A retrospective and explorative analysis of two phase III RA studies

Blair, J. P. M.; Bager, C.; Platt, A.; Karsdal, M.; Bay-Jensen, A. -C.

Published in:
PLoS ONE

DOI:
10.1371/journal.pone.0219980

Publication date:
2019

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Blair, J. P. M., Bager, C., Platt, A., Karsdal, M., & Bay-Jensen, A. -C. (2019). Identification of pathological RA endotypes using blood-based biomarkers reflecting tissue metabolism. A retrospective and explorative analysis of two phase III RA studies. PLoS ONE, 14(7), [e0219980]. https://doi.org/10.1371/journal.pone.0219980

Download date: 23. Oct. 2023
Identification of pathological RA endotypes using blood-based biomarkers reflecting tissue metabolism. A retrospective and explorative analysis of two phase III RA studies

J. P. M. Blair, C. Bager, A. Platt, M. Karsdal, A.-C. Bay-Jensen

1 ProScion, Herlev, Denmark, 2 University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark, 3 Target & Translational Science, Respiratory, Inflammation and Autoimmunity (RIA), IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden, 4 Rheumatology, Nordic Bioscience, Biomarkers and Research, Herlev, Denmark

Abstract

There is an increasing demand for accurate endotyping of patients according to their pathogenesis to allow more targeted treatment. We explore a combination of blood-based joint tissue metabolites (neoepitopes) to enable patient clustering through distinct disease profiles. We analysed data from two RA studies (LITHE (N = 574, follow-up 24 and 52 weeks), OSKIRA-1 (N = 131, follow-up 24 weeks)). Two osteoarthritis (OA) studies (SMC01 (N = 447), SMC02 (N = 81)) were included as non-RA comparators. Specific tissue-derived neoepitopes measured at baseline, included: C2M (cartilage degradation); CTX-I and PINP (bone turnover); C1M and C3M (interstitial matrix degradation); CRPM (CRP metabolite) and VICM (macrophage activity). Clustering was performed to identify putative endotypes. We identified five clusters (A-E). Clusters A and B were characterized by generally higher levels of biomarkers than other clusters, except VICM which was significantly higher in cluster B than in cluster A (p < 0.001). Biomarker levels in Cluster C were all close to the median, whilst Cluster D was characterised by low levels of all biomarkers. Cluster E also had low levels of most biomarkers, but with significantly higher levels of CTX-I compared to cluster D. There was a significant difference in ΔSHP score observed at 52 weeks (p < 0.05). We describe putative RA endotypes based on biomarkers reflecting joint tissue metabolism. These endotypes differ in their underlying pathogenesis, and may in the future have utility for patient treatment selection.

Introduction

Rheumatoid Arthritis (RA) is a heterogeneous chronic inflammatory and autoimmune disease, characterised by pain and swelling of joints, progressive joint deterioration, bone
erosions and impaired function, often leading to disability[1]. Due to the heterogeneity and the complex aetiology of the disease, rates of drug response in RA patients varies from compound to compound. A systematic review of effectiveness of anti-TNF compounds found the mean percentage of ACR-20 responders was 60.8% and EULAR responders 70.5%, leaving a large proportion still unresponsive[2]. Development and selection of treatment is therefore a challenging process making it difficult to deliver targeted treatments.

Currently treatment is based on the use of disease activity markers such as disease activity scores (e.g. DAS28), radiographic scores and other clinical assessments to gauge a patient’s state, progress and response to treatment. This does not take into account more intricate pathological differences between the patients but rather more systemic levels of inflammation. By adopting a precision medicine approach, one aims to improve response rates through the use of biomarkers facilitating the identification of patients most likely to benefit[3].

RA may comprise of multiple clinical and molecular endotypes[4], being defined as subtypes of a disease with distinctive underlying pathological mechanisms[4,5]. A patient’s clinical presentation, response to treatment and rates of disease progression may be determined by a patient’s endotype. Thus, well characterised endotypes may provide patients and physicians with a means for targeted treatment against a patient’s individual molecular disease pathogenesis. Moreover, endotypes may provide insight into novel pathways and thereby discovery of new drug modes[4].

In order to begin designing such a tool to identify distinct endotypes in RA, it is vital to have an understanding of underlying pathological mechanisms. Type I, II and III collagens are the most prevalent structural proteins in the joint, and among the most prevalent in the body [6]. Various clinical and preclinical studies have shown in increase in type I, II and III collagen degradation in RA due to an increase in proteolytic activity[7,8]. Multiple biomarkers have been developed that measure such tissue metabolites in blood of patients with arthritis[9]. Examples of such tissue metabolites are: i) CTX-I and PINP, which are measures of bone resorption and formation;[8,10] ii) C1M and C3M, which reflect MMP mediated degradation of collagen 1 and 3 respectively;[11,12] iii) C2M, measuring MMP mediated collagen 2 degradation;[13] iv) CRPM, CRP degradation;[14] and v) VICM, MMP driven citrullinated vimentin degradation[15]. These are also examples of tissue metabolites which have been shown to elevated in RA, associated with disease activity[16] and treatment response[9]. As these metabolites are a reflection of tissue associated disease mechanism, they could be useful tools to identify different endotypes in RA.

The aim of this study was to demonstrate how different putative endotypes representing underlying pathologies of RA, can be identified through the use of joint specific serological biomarkers.

Materials and methods

Studies

Four cohorts were pooled for this study, including two RA studies; LITHE (N = 1196, NCT00106535) and OSKIRA-1 (N = 918, NCT01197521) and two OA studies; SMC01 (N = 1176, NCT00486434) and SMC02 (N = 1030, NCT00704847) all of which have been described in detail before[17–20]. The RA studies included patients with moderate to severe disease and with a high disease activity. Patients from the OA studies were included in order to enrich the cohort with a disease population with low inflammation but with known joint disease as characterised by X-ray and by symptomatic scores, providing a broader range of biomarker levels. Patients were randomly selected from the clinical trials to participate in biomarker sub-studies of all phase III clinical trials for RA (LITHE and OSKIRA-1) and
placebo arms of OA studies (SMC01 and SMC02) (Fig 1). Patients in LITHE all had active moderate to severe RA with inadequate response to methotrexate (MTX). OSKIRA-1 had similar inclusion criteria, selecting patients with active RA and inadequate response to MTX. Both SMC trials recruited patients with a medical history and symptoms of knee OA. Further details of the patient demographics from each study can be read in Table 1. Patients from any cohort with missing biomarker measurements at baseline were excluded from the study. No ethical approval was required as no patient recruitment or data collection was carried out for this study. The authors did not have access to any identifying participant information.

Endpoints in each RA study were measured according to ACR and EULAR criteria[21], and include radiographic measurements, DAS-28 disease activity scores as well as patient and physician reported outcomes. Erosion (ERN), joint space narrowing (JSN) and modified sharp score (SHP) were calculated at baseline and 24 weeks for LITHE and OSKIRA, and at 52 weeks for LITHE. Delta (Δ) ERN, JSN and SHP were calculated by subtracting baseline score from follow-up scores at week 24 and 52 where available for the placebo patients, to remove treatment bias.
Biomarker measurements

Several serological biomarkers were measured in each cohort and selected due to the specific tissue metabolite they represented. A total of 20 biomarkers were measured across all trials, with 7 biomarkers common to all studies and analysed post hoc in this paper. All samples were destroyed after measurement according protocol. These included: C2M (cartilage degradation)[22,23]; CTX-I[24] and PINP (bone resorption and formation)[13,25]; C1M and C3M (interstitial matrix degradation)[9,11,12,26]; CRPM (CRP metabolite)[14,23], and VICM (macrophage activity)[16,27]. The biomarkers were measured in serum samples following the manufacturers protocols and under Good Laboratory Practice (GLP).

All variables were calibrated according to the assay they had been measured in to control for possible batch effect. Each biomarker was then log transformed and min-max normalised to allow for direct comparison of each of the variables.

Clustering protocol

Three statistical heuristics were evaluated in order to identify cluster tendency and the number of inherent clusters in the data. The GAP statistic[28], silhouette method[29] and elbow method[30] were all used to assess this, with the majority rule used to indicate number of clusters.

Patient clustering was then performed using Ward hierarchical clustering. The statistical significance of the resulting cluster separations was assessed using permutation testing as described by Serviss et al.[31] using 100 iterations. ANOVA and Chi squared tests were used to identify differences of clinical measures between the placebo patients in each of the clusters. In order to identify individual differences between clusters, Tukey ad hoc test was used.

All data handling and statistical analysis was performed using R software (version 3.4.1, R Development Core Team, 2012), with use of factoextra (version 1.0.5) and pheatmap (version 1.0.8) packages.

---

Table 1. Baseline patient demographics for four cohorts used in this study, LITHE, OSKIRA, SMC1 and SMC2. All measurements were taken at the start of each of the clinical trials prior to treatment.

| Cohort characteristics | LITHE | OSKIRA | SMC1 | SMC2 | p-value |
|------------------------|-------|--------|------|------|---------|
| **Disease Indication** | RA    | RA     | OA   | OA   | -       |
| **N**                  | 574   | 131    | 447  | 81   | -       |
| **Age (± SD)**         | 52.1 ± 12.3 | *      | 65.7 ± 6.1 | 64.4 ± 6.38 | < 0.001 |
| **% Female**           | 82.8  | 83.2   | 65.4 | 63.5 | 0.26    |
| **BMI (mean ± SD) (n)**| 27.4 ± 6.0 (567) | 27.62 ± 5.3 (131) | 28.4 ± 4.9 (447) | 28.5 ± 4.4 (81) | 0.002 |
| **Burden of disease activity** | - | - | - | - | - |
| **DAS28**              | 6.5 ± 0.92 (563) | 5.7 ± 0.81 (73) | NA   | NA   | -       |
| **Pain**               |       |        |      |      |         |
| **VAS pain**           | 54.4 ± 22.1 (568) |       |      |      |         |
| **HAQ pain**           |       | 61.3 ± 19.7 (130) |      |      |         |
| **WOMAC pain**         |       | 45.2 ± 19.3 (447) | 50.6 ± 20.5 (81) |      |         |
| **X-ray scores**       |       |        |      |      |         |
| **Erosion scores**     | 16.8 ± 16.0 (549) | 21.9 ± 33.7 (131) | 87.0% | 76.5% |         |
| **Kellgren Lawrence = 2** |       |        |      |      |         |
| **Kellgren Lawrence = 3** |       |        |      |      |         |

* Ages were reported in ranges for OSKIRA: <25 (0.7%), 25–34 (6.8%), 35–44 (13.7%), 45–54 (28.1%), 55–64 (32.8%), 65–74 (16.9%) and 75–84 (0.7%)

https://doi.org/10.1371/journal.pone.0219980.1001
Permutation testing was performed using the `ClusterSignificance` package (version 1.4.1). Statistics were computed using the `stats` package (version 3.4.1).

## Results

### Study overview

Patients with serological markers measured at baseline (BL) were selected from study populations (N = 1233, Table 1). Patients from the OA studies (SMC01 and SMC02) were significantly older and had significantly higher BMI than patients in the RA cohorts (LITHE and OSKIRA) (Age, p < 0.001; BMI, p = 0.002). There was no significant difference in the percentage of males in the OA cohorts.

### Description of clusters

Hierarchical clustering was performed based on a panel of 7 tissue specific serological biomarkers measuring bone resorption and formation (CTX-1 and P1NP), cartilage degradation (C2M), macrophage activity (VICM), interstitial matrix degradation (C1M and C3M), and CRP metabolites (CRPM). This analysis revealed 5 distinct clusters from based on patient biomarker profiles, which can be seen in the heatmap in Fig 2. Permutation testing revealed all clusters were statistically significantly different from each other, all with p < 0.01.

Clusters A (194 subjects) and B (256 subjects) were comprised of the majority of the RA patients (97.9% and 98% RA patients respectively). Cluster C (188 subjects), D (363 subjects) and E (232 subjects) contained lower percentages of RA patients (74.5%, 5.8% and 44.3% respectively). This was reflected in the demographics and biomarker profiles of the patients. A full description of cluster demographics and distribution can be found in Table 2.

Cluster A and B, which were predominantly RA clusters, had higher levels of C2M, CRPM, C1M and C3M compared to clusters C, D and E. This is indicative of high levels of cartilage turnover, CRP metabolites and interstitial matrix turnover respectively, typically observed in RA patients[32,33]. Both bone markers (P1NP and CTX-I) were also significantly elevated in clusters A and B in comparison to clusters C, D and E (p < 0.001). Both Clusters A and B were characterised by consistently high levels of all biomarker measures, indicating cluster A and B appear to reflect endotypes of high disease activity. The difference between cluster A and B was the level of VICM (macrophage activity) that was significantly lower in cluster A compared to cluster B (p < 0.001).

Cluster C had a mix of RA and OA patients and did not appear to have a particularly defining characteristic, all biomarker levels being close to the median. Cluster D, the largest cluster and predominantly an OA cluster, had relatively moderate levels of tissue turnover, characterising patients with lower disease activity as expected of OA patients. Furthermore, cluster D was characterised by significantly low levels of C2M, indicating lower cartilage turnover than patients from clusters A, B and C (p < 0.01). Cluster D therefore reflects an endotype with low bone activity, low inflammation and low cartilage activity. While cluster E, a mixed RA and OA cluster, shared many of the characteristics of cluster D, including low levels of all inflammatory markers, and lower levels of cartilage turnover, a notable exception was the higher levels of bone turnover biomarkers observed. Thus, cluster E appears to reflect an endotype with high bone activity and low inflammation.

### Association between clusters and RA clinical assessments in placebo patients

We looked at the RA placebo patients across the 5 clusters in order to identify differences in clinically relevant variables (Table 3).
Fig 2. 1233 patients from 4 clinical trials; two rheumatoid arthritis (RA) and two osteoarthritis (OA), were clustered based on 7 tissue specific blood based biomarkers measuring bone resorption and formation, cartilage degradation, macrophage activity, interstitial matrix degradation and CRP metabolites. 5 clusters were found with two high inflammatory RA endotypes and one low inflammatory RA endotype, and a final “mixed” endotype. OA patients were clearly separated from RA patients as expected.

Table 2. Descriptive statistics for each cluster identified through hierarchical clustering, with p-values calculated using ANOVA test to identify differences between the clusters.

| Clusters | A   | B   | C   | D   | E   | p-value |
|----------|-----|-----|-----|-----|-----|---------|
| N        | 194 | 256 | 188 | 363 | 232 | -       |
| RA/OA %  |     |     |     |     |     |         |
| % of OA Cohort | <1 | 9.4 | 9.4 | 65.0 | 24.4 |         |
| % of RA Cohort | 27.0 | 35.6 | 19.9 | 2.9 | 15.0 |         |
| Age mean * | 51.9 ± 12.7 | 51.4 ± 12.6 | 55.8 ± 11.1 | 64.1 ± 6.8 | 62.7 ± 10.1 | <0.005 |
| % Female | 80.2 | 79.7 | 84.1 | 61.8 | 80.0 | <0.005 |
| BMI mean (SD) | 27.4 ± 5.2 (191) | 27.5 ± 6.4 (256) | 28.0 ± 6.1 (184) | 27.9 ± 4.5 (363) | 27.1 ± 4.5 (232) | <0.005 |
| % RA     | 97.9 | 98.0 | 74.5 | 58.3 | 44.3 | -       |

*OSKIRA was omitted due to data being reported in ranges. P-value calculated using ANOVA or chi squared test.
Table 3. Mean and standard deviation of clinical variables for placebo patients in each cluster identified, where p-values have been measured using ANOVA test or Chi squared.

| Cluster | A     | B     | C     | D     | E     | p-value |
|---------|-------|-------|-------|-------|-------|---------|
| N RA    | 81    | 113   | 54    | 16    | 60    | -       |
| Age     | 51.2±13.2 (58) | 50.7±13.3 (81) | 52.9±10.8 (34) | 56±10.3 (4)  | 56.9±10.4 (16) | 0.40    |
| BMI     | 27.1±4.7 (80)  | 28.7±7.6 (113)  | 27.6±6.5 (53)  | 27.8±4.01 (16) | 26.8±5.32 (60) | 0.32    |
| Disease duration | 9.8±7.7 (81)  | 9.3±8.4 (113)  | 9.15±7.8 (54)  | 10.03±7.91 (16) | 8.8±8.96 (60) | 0.96    |
| No. Prev. DMARDs | 1.6±1.3 (58)  | 1.8±1.5 (81)  | 1.9±2.1 (34)  | 1±0.82 (4)  | 1.6±1.8 (16) | 0.83    |
| % Previous DMARDs | 63.0±81 | 61.1±113 | 61.1±54 | 43.8±16 | 45±60 | 0.139   |
| HAQ     |       |       |       |       |       |         |
| BL      | 1.5±0.64 (73) | 1.7±0.59 (107) | 1.6±0.64 (53) | 1.5±0.61 (16) | 1.6±0.52 (57) | 0.53    |
| Δ24     | -0.32±0.61 (51) | -0.43±0.5 (68) | -0.25±0.66 (40) | -0.57±0.47 (15) | -0.23±0.4 (52) | 0.08    |
| Δ52     | -0.24±0.55 (25) | -0.44±0.64 (29) | -0.62±0.37 (12) | 0.31±0.27 (2) | -0.25±0.47 (6) | 0.12    |
| DAS     |       |       |       |       |       |         |
| BL      | 6.3±0.91 (80) | 6.6±0.95 (111) | 6.1±1.0 (53) | 5.9±0.93 (16) | 5.7±0.82 (59) | <0.001  |
| Δ24     | -1.6±1.1 (58) | -1.4±1.2 (69) | -1.3±1.3 (40) | -1.9±1.3 (15) | -1.4±1.2 (54) | 0.46    |
| Δ52     | -2.0±1.3 (28) | -1.3±1.5 (27) | -1.7±1.4 (11) | -2.7 (1) | -2.1±1.2 (8) | 0.30    |
| JSN     |       |       |       |       |       |         |
| BL      | 16.0±22.0 (79) | 17.8±19.8 (105) | 15.6±24.81 (54) | 13±17.4 (16) | 19.8±34.8 (60) | 0.81    |
| Δ24     | -0.01±0.65 (71) | 0.12±0.87 (87) | 0.05±0.28 (45) | 0.38±1.5 (16) | 0.15±0.57 (55) | 0.30    |
| Δ52     | 0.32±0.93 (29) | 0.72±1.7 (30) | 0.04±0.13 (14) | 0±0 (2) | 0.18±0.49 (8) | 0.42    |
| ERN     |       |       |       |       |       |         |
| BL      | 18.9±21.7 (79) | 20.5±23.3 (105) | 16.6±21.0 (54) | 11.3±15.0 (16) | 20.3±37.4 (60) | 0.65    |
| Δ24     | 0.21±0.69 (71) | 0.47±1.2 (87) | 0.18±0.58 (43) | 0.31±1.01 (16) | 0.1±0.81 (54) | 0.15    |
| Δ52     | 0.35±0.87 (29) | 1.51±2.1 (30) | 0.15±0.43 (14) | 0.5±0.71 (2) | 0.35±0.72 (8) | 0.01    |
| SHP     |       |       |       |       |       |         |
| BL      | 34.9±42.1 (79) | 38.3±41.3 (105) | 32.2±44.2 (54) | 24.3±31.5 (16) | 40.1±71.2 (60) | 0.76    |
| Δ24     | 0.2±1.04 (71) | 0.6±1.6 (87) | 0.23±0.67 (43) | 0.69±2.5 (16) | 0.28±1.22 (54) | 0.28    |
| Δ52     | 0.68±1.6 (29) | 2.2±3.4 (30) | 0.18±0.48 (14) | 0.5±0.71 (2) | 0.52±1.2 (8) | 0.03    |

The absolute radiographic scores (ERN, JSN and SHP) did not differ significantly at BL between the clusters. At 52 weeks however, ΔSHP was significantly different (p = 0.03). This was driven by ΔERN which was also significantly different between the clusters (p = 0.01), with cluster B having the highest change in erosion (ΔERN = 1.51 ± 2.1). Tukey post-hoc analysis reveals ΔERN was significantly higher in B at 52 weeks than A (p<0.05) and C (p<0.05). JSN did not differ between the clusters at baseline, nor ΔJSN at week 24 or week 52.

There was a significant difference in DAS28 at baseline (p<0.001) between all clusters. Tukey post-hoc analysis shows that at baseline, DAS28 was significantly different between cluster pairs A-E, B-C and B-E. The ΔDAS28 values at week 24 and 52 however was insignificant between the clusters (Table 3).

Age, BMI, duration of the disease, number of previous DMARDS, HAQ were statistically insignificantly different between the RA placebo patients of all the clusters identified.

**Discussion**

This study was a retrospective analysis of phase III clinical studies, exploring the hypothesis that biomarkers reflecting tissue metabolism may identify previously unrecognised RA endotypes. We used biomarker data from two RA clinical studies, enriched with two OA studies as a non-inflammatory arthritic population. Through clustering analysis we attempted to identify
endotypes of RA with distinct profiles of tissue specific turnover, and identify associations between these endotypes and indicators of clinical outcomes. The biomarkers used are measures of tissue inflammation or turnover, mainly metabolites of collagen degradation and formation. As collagens are the main constituents of connective and calcified tissue, these biomarkers reflect the active molecular processes in disease affected tissue[33]. Type I and type III collagen are found in the connective tissue around the joint, as well as other affected connective tissues of the body, while type II collagen is present mainly in cartilage.

We found five distinct putative endotypes (i.e. clusters), associated with different biomarker levels. Clusters A and B both had high levels of connective tissue and bone turnover compared to other groups, somewhat typical of RA[7,34,35]. Conversely, clusters D and E had lower levels of the connective tissue markers. Whilst this is to be expected of OA patients, RA patients in these clusters are more unusual. These RA patients showed no significant difference in DAS28 compared to other clusters, which could indicate a subset of RA patients that have low connective tissue turnover in spite of high disease activity.

Both clusters A and B exhibit high levels of connective tissue markers and high rates of bone formation and resorption, but differ in macrophage activity (VICM) and CRP metabolism (CRPM). Interestingly, placebo patients in these clusters differ significantly in the rate of radiographic progression.

Recent studies by Gu et al. showed the role macrophages play in inflammatory bone diseases and the effect they have on bone formation and degradation. These studies record that macrophage activity plays a part in bone tissue turnover[36].

Differences between diverse inflammatory and arthritic endotypes have previously been reported by other groups[37–39]. Dennis et al. who investigated synovial biomarker traits of certain endotypes in relation to drug response. They found four potential endotypes; i) lymphoid (B and plasma cell dominant), ii) a myeloid (macrophage dominant), iii) a fibroid, and iv) a low inflammatory phenotype[37]. This may align well with the connective tissue turnover endotypes we propose in this paper, where cluster A and B are characterised by high tissue turnover driven by the MMP activity which are expressed by immune cells such as macrophages[40]. Similarly, we also found differences in the macrophage marker VICM, separating the two high inflammatory endotypes, clusters A and B.

It is also important to note that whilst disease activity (DAS28) significantly differed across the groups, the disease activity difference between groups A and B (inflammatory endotypes) was insignificant, while cluster B exhibited much faster structural progression. This finding is consistent with claims that measurement of disease activity alone it is not sufficient to identify fast progressing RA patients who may require more a more aggressive therapeutic strategy[41].

Presently, there are few positive examples of endotyping in the field of RA, other than seropositivity, and anti-‐cyclic citrullinated peptide, often used to classify disease. The identification of 31 genetic risk loci in seropositive RA, including HLA–DRB1, and the group of alleles referred to as the shared epitope, demonstrate that RA has a strong but complex genetic aetiology. As a result, a genetic approach to the identification of biomarkers of response has been pursued with both candidate and genome-‐wide level approaches[42,43]. While associations that may ultimately lead to a greater insight into the molecular aetiology of RA have been established, the predictive capability so far has been insufficient to have meaningful clinical application. Indeed, Wang et al.[44] reported that each polymorphism identified in a genome-‐wide association study accounted for 2% of the variance observed with a change in Disease Activity Score in 28 joints (DAS28) response to tocilizumab, while no significant association of polymorphisms of the target IL-6 receptor and its cognate ligand IL-6 was associated with change in DAS28 response, following correction for multiple testing. Baseline serum or RNA
measurement of IL-6 or IL-6 receptor levels also provided little discrimination between
responders and non-responders, indicating that the prevalence of the target receptor or it’s
cognate ligand was not clinically deployable to identify those patients most likely to benefit
from tocilizumab[43]. There also have been attempts to utilise gene expression analysis to
identify biomarkers of biologic endotypes with superior response to treatment[45]. For exam-
ple, Kim et al. showed the importance of a differentially expressed gene, G0S2, in the response
to anti-TNF therapy, in multiple cohorts.

The findings in this study support previous proposals that RA patients have differing
underlying molecular aetiologies, and encourages further investigation into developing tools
to advance patient stratification. The prospect of identifying robust endotype profiles repre-
senting distinct disease driving pathways and networks is tantalising. Such findings have impli-
cations for the development of new precision medicines, benefiting patients, physicians and
payers[46]. If our endotypes are validated they may allow for superior treatment regime selec-
tion for the individual patients[47]; e.g. the treatment of patients with high bone remodelling,
but moderate tissue inflammation might be focused on rebalancing the bone remodelling
balance. Sivadas et al. show how whole genome sequencing has been used to identify genes
involved in drug metabolism and identification of target genes[48]. In a review by Orr et al.
they describe the advances in the use of synovial tissue for patient stratification and identifica-
tion of novel targets and biomarkers[49]. Such approached could be coupled with a serological
approach in order to improve understanding of drug metabolism and patient strata.

The strengths of this study were the large number of participants at baseline, along with
robust tissue specific markers allowing for an accurate profiling and clustering of arthritic
patients’ disease pathology. Due to the nature of clinical trials, a high placebo dropout rate
may affect the comparison of clinical endpoints. Patients enrolled in the trials had been
exposed to prior therapy including DMARDs and NSAIDs. As information regarding specific
prior treatments and ACPA positivity was not recorded or made available to us, we were
not able to correct for these possible confounders. In contrast to LITHE, which was a 52 week
placebo-controlled study, OSKIRA was a 24 week placebo-controlled study. Hence radio-
graphic endpoint for OSKIRA were only available up to 24 weeks. For this reason, in order
to reap any practical gain from this investigation, these findings must be validated in larger
cohorts with more consistent follow up measurements to show any true predictive ability of
these endotypes.

Conclusion
In conclusion this paper shows how the clustering of RA patients using tissue specific markers
allows for the identification of disease endotypes, which may have use in precision medicine
after continued research.

Acknowledgments
We acknowledge the Danish Research Foundation for funding the study and AstraZeneca for
scientific collaboration.

Author Contributions
Conceptualization: C. Bager, M. Karsdal, A. -C. Bay-Jensen.
Data curation: A. Platt, A. -C. Bay-Jensen.
Formal analysis: J. P. M. Blair.
Investigation: J. P. M. Blair, C. Bager, A. Platt.
Methodology: J. P. M. Blair.
Supervision: C. Bager, M. Karsdal, A. -C. Bay-Jensen.
Writing – original draft: J. P. M. Blair, A. -C. Bay-Jensen.
Writing – review & editing: C. Bager, A. Platt, M. Karsdal.

References
1. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. Elsevier; 2016; 388: 2023–2038. https://doi.org/10.1016/S0140-6736(16)30173-8
2. Lloyd S, Bukiewicz S, Wailoo AJ, Sutton AJ, Scott D. The effectiveness of anti-TNF- therapies when used sequentially in rheumatoid arthritis patients: a systematic review and meta-analysis. Rheumatology. Narnia; 2010; 49: 2313–2321. https://doi.org/10.1093/rheumatology/keq169 PMID: 20566736
3. Giacomelli R, Aletfra A, Alunno A, Bartoloni-Bocci E, Berardicurti O, Bombardieri M, et al. Guidelines for biomarkers in autoimmune rheumatic diseases—evidence based analysis. Autoimmun Rev. Elsevier; 2019; 18: 93–106. https://doi.org/10.1016/J.AUTOREV.2018.08.003 PMID: 30408582
4. Karsdal MA, Bay-Jensen A-C, Henrikssen K, Christiansen C, Genant HK, Chamberlain C, et al. Rheumatoid Arthritis: A Case for Personalized Health Care? Arthritis Care Res (Hoboken). 2014; 66: 1273–1280. https://doi.org/10.1002/acr.22289 PMID: 24470057
5. Lindstrom TM, Robinson WH. Biomarkers for rheumatoid arthritis: making it personal. Scand J Clin Lab Invest Suppl. NIH Public Access; 2010; 242: 79–84. https://doi.org/10.3109/00365513.2010.493406 PMID: 20515283
6. Maijer KI, Gudmann NS, Karsdal MA, Gerlag DM, Tak PP, Bay-Jensen AC. Neo-Epitopes—Fragments of Cartilage and Connective Tissue Degradation in Early Rheumatoid Arthritis and Unclassified Arthritis. Pietropaolo M, editor. PLoS One. Public Library of Science; 2016; 11: e0149329. https://doi.org/10.1371/journal.pone.0149329 PMID: 27019199
7. Siebuhr AS, Wang J, Karsdal M, Bay-Jensen A-C, Y J, Q Z. Matrix Metalloproteinase-dependent turnover of cartilage, synovial membrane, and connective tissue is elevated in rats with collagen induced arthritis. J Transl Med. 2012; 10: 195. https://doi.org/10.1186/1479-5876-10-195 PMID: 22992383
8. Wisłowska M, Jakubicz D, Stepień K, Cicha M. Serum concentrations of formation (PINP) and resorption (CtX) bone turnover markers in rheumatoid arthritis. Rheumatol Int. 2009; 29: 1403–9. https://doi.org/10.1007/s00296-009-0867-x PMID: 19219607
9. Bay-Jensen AC, Platt A, Siebuhr AS, Christiansen C, Byrjalsen I, Karsdal MA. Early changes in blood-based joint tissue destruction biomarkers are predictive of response to tocilizumab in the LITHE study. Arthritis Res Ther. 2016; 18. https://doi.org/10.1186/s13075-015-0913-x PMID: 26787505
10. Garnero P, Thompson E, Woodworth T, Smolen JS. Rapid and sustained improvement in bone and cartilage turnover markers with the anti-interleukin-6 receptor inhibitor tocilizumab plus methotrexate in rheumatoid arthritis patients with an inadequate response to methotrexate: results from a substudy of th. Arthritis Rheum. INSERM Unit 664, Lyon, France. patrickgarnero@free.fr; 2010; 62: 33–43.
11. Leeming D, He Y, Veidal S, Nguyen Q, Larsen D, Koizumi M, et al. A novel marker for assessment of liver matrix remodeling: An enzyme-linked immunosorbent assay (ELISA) detecting a MMP generated type I collagen neo-epitope (C1M). Biomarkers. 2011; 16: 616–628. https://doi.org/10.3109/1354750X.2011.620628 PMID: 21986860
12. Barascuk N, Veidal SS, Larsen L, Larsen DV, Larsen MR, Wang J, et al. A novel assay for extracellular matrix remodeling associated with liver fibrosis: An enzyme-linked immunosorbent assay (ELISA) for a MMP-9 proteolytically revealed neo-epitope of type III collagen. Clin Biochem. 2010; 43: 899–904. https://doi.org/10.1016/j.clinbiochem.2010.03.012 PMID: 20380828
13. Leeming DJ, Larsen DV, Zhang C, Hi Y, Veidal SS, Nielsen RH, et al. Enzyme-linked immunosorbent serum assays (ELISAs) for rat and human N-terminal pro-peptide of collagen type I (PINP)—Assessment of corresponding epitopes. Clin Biochem. 2010; 43: 1249–1256. https://doi.org/10.1016/j.clinbiochem.2010.07.025 PMID: 20709044
14. Skjæt-Arkil H, Schett G, Zhang C, Larsen DV, Wang Y, Zheng Q, et al. Investigation of two novel biochemical markers of inflammation, matrix metalloproteinase and cathepsin generated fragments of C-reactive protein, in patients with ankylosing spondylitis. Clin Exp Rheumatol. 2012; 30.
15. Vassiliadis E, Oliveira CP, Alves-da-Silva MR, Zhang C, Carrilho FJ, Stefano JT, et al. Circulating levels of citrullinated and MMP-degraded vimentin (VICM) in liver fibrosis related pathology. Am J Transl Res. 2012; 4: 403–14. Available: http://www.ncbi.nlm.nih.gov/pubmed/23145208
16. Zhang Q, Wu Y, Chen Z, Wang L, Wang Z, Zhang Z, et al. Circulating citrullinated vimentin fragments reflect disease burden in ankylosing spondylitis and have prognostic capacity for radiographic progression. Arthritis Rheum. 2013; 65. https://doi.org/10.1002/art.37843 PMID: 23280360

17. Kremer JM, Blanco R, Brosko M, Burgos-Vargas R, Halland A-M, Vernon E, et al. Tocilizumab inhibits structural joint damage in rheumatoid arthritis patients with inadequate responses to methotrexate: Results from the double-blind treatment phase of a randomized placebo-controlled trial of tocilizumab safety and prevention of struct. Arthritis Rheum. 2011; 63: 609–621. PMID: 21306490

18. Karsdal MA, Byrjalsen I, Alexandersen P, Bihlet A, Andersen JR, Riis BJ, et al. Treatment of symptomatic knee osteoarthritis with oral salmon calcitonin: results from two phase 3 trials. Osteoarthr Cartil. 2015; 23: 532–543. https://doi.org/10.1016/j.joca.2014.12.019 PMID: 25582279

19. Kay J, Uchchurs K. ACR/EULAR 2010 rheumatoid arthritis classification criteria. Rheumatology. Oxford University Press; 2012; 51: vi5–vi8. https://doi.org/10.1093/rheumatology/kes279 PMID: 23221588

20. Bay-Jensen AC, Liu Q, Byrjalsen I, Li Y, Wang J, Pedersen C, et al. Enzyme-linked immunosorbent assay (ELISAs) for metalloproteinase derived type II collagen neoepitope, CIIM—Increased serum CIIM in subjects with severe radiographic osteoarthritis. Clin Biochem. 2011; 44: 423–429. https://doi.org/10.1016/j.clinbiochem.2011.01.001 PMID: 21223960

21. Bay-Jensen AC, Platt A, Byrjalsen I, Vergnoud P, Christiansen C, Karsdal MA. Effect of tocilizumab combined with methotrexate on circulating biomarkers of synovium, cartilage, and bone in the LITHE study. Semin Arthritis Rheum. 2014; 43: 470–478. https://doi.org/10.1016/j.semarthritis.2013.07.008 PMID: 23932312

22. Karsdal MA, Sigg C, Ovist P, Bjarnason N, Christiansen C. Measurement of a more stable region of osteocalcin in serum by ELISA with two monoclonal antibodies. Clin Chem. 1995; 41: 1439–45. Available: http://www.ncbi.nlm.nih.gov/pubmed/7586514 PMID: 7586514

23. Karsdal MA, Schett G, Emery P, Harari O, Byrjalsen I, Kenwright A, et al. IL-6 Receptor Inhibition Positively Modulates Bone Balance in Rheumatoid Arthritis Patients with an Inadequate Response to Anti-Tumor Necrosis Factor Therapy: Biochemical Marker Analysis of Bone Metabolism in the Tocilizumab RADIATE Study (NCT00106522). Semin Rheum. Nordic Bioscience, Herlev, Denmark; University of Southern Denmark (SDU), Odense, Denmark; 2012; 42: 131–139. https://doi.org/10.1016/j.semarthritis.2012.01.004 PMID: 22397953

24. Siebuhr AS, Bay-Jensen AC, Leeming DJ, Platt A, Byrjalsen I, Christiansen C, et al. Serological identification of fast progressors of structural damage with rheumatoid arthritis. Arthritis Res Ther. 2013; 15. https://doi.org/10.1186/ar4266 PMID: 23945134

25. Vassiliadis E, Oliveira CP, Alves-da-Silva MR, Zhang C, Carrilho FJ, Stefano JT, et al. Circulating levels of citrullinated and MMP-degraded vimentin (VICM) in liver fibrosis related pathology. Am J Transl Res. Assay Development, Nordic Bioscience Copenhagen, Denmark; Department of Endocrinology, University of Southern Denmark Odense, Denmark; 2012; 4: 403–14.

26. Tibshirani R, Walth G, Hastie T. Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser B (Statistical Methodol. Blackwell Publishers Ltd.; 2001; 63: 411–423. https://doi.org/10.1111/1467-9868.00293

27. Rouxseuw PJ. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. North-Holland; 1987; 20: 53–65. https://doi.org/10.1016/0377-0427(87)90125-7

28. Jeon J-Y, Choi J-S, Byun H-G. Implementation of Elbow Method to improve the Gases Classification. PLOS ONE. 2017; 12: e0219980. July 24, 2019

29. Ishiguro N, Ito T, Oguchi T, Kojima T, Iwata H, Ionescu M, et al. Relationships of matrix metalloproteinases and their inhibitors to cartilage proteoglycan and collagen turnover and inflammation as revealed.
by analyses of synovial fluids from patients with rheumatoid arthritis. Arthritis Rheum. Wiley-Blackwell; 2001; 44: 2503–2511. https://doi.org/10.1002/1529-0131(200111)44:11<2503::AID-ART430>3.0.CO;2-P

33. Siebuhr AS, Wang J, Karsdal MA, Bay-Jensen AC, Y Q, Z. Matrix Metalloproteinase-dependent turnover of cartilage, synovial membrane, and connective tissue is elevated in rats with collagen induced arthritis. J Transl Med. 2012; 10. https://doi.org/10.1186/1479-5876-10-195 PMID: 22992383

34. Jacobs JWG, De Nijs RNJ, Lems WF, Bijlsma JWJ. Bone metabolism in rheumatoid arthritis. https://www.clinexprrheumatol.org/article.asp?aid=1223

35. Månsson B, Carey D, Alini M, Ionescu M, Rosenberg LC, Poole AR, et al. Cartilage and bone metabolism in rheumatoid arthritis. Differences between rapid and slow progression of disease identified by serum markers of cartilage metabolism. J Clin Invest. American Society for Clinical Investigation; 1995; 95: 1071–7. https://doi.org/10.1172/JCI117753 PMID: 7533784

36. Gu Q, Yang H, Shi Q. Macrophages and bone inflammation. J Orthop Transl. Elsevier; 2017; 10: 86–93. https://doi.org/10.1016/J.JOT.2017.05.002 PMID: 29662760

37. Dennis G, Holweg CTJ, Kummerfeld SK, Choy DF, Setiadi AF, Hackney JA, et al. Synovial phenotypes in rheumatoid arthritis correlate with response to biologic therapeutics. Arthritis Res Ther. BioMed Central; 2014; 16: R90. https://doi.org/10.1186/ar4555 PMID: 25167216

38. Weyand CM, Klimiuk PA, Goronzy JJ. Heterogeneity of rheumatoid arthritis: from phenotypes to genotypes. Springer Semin Immunopathol. 1998; 20: 5–22. Available: http://www.ncbi.nlm.nih.gov/pubmed/9836366 PMID: 9836366

39. Derksen VFAM, Ajeganova S, Trouw LA, van der Helm-van Mil AHM, Hafström I, Huizinga TWJ, et al. Rheumatoid arthritis phenotype at presentation differs depending on the number of autoantibodies present. Ann Rheum Dis. 2017; 76: 716–720. https://doi.org/10.1136/annrheumdis-2016-209794 PMID: 28283528

40. Birkedal-Hansen H, Moore WGI, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, et al. Matrix Metalloproteinases: A Review. Crit Rev Oral Biol Med. 1993; 4: 197–250. https://doi.org/10.1177/104544193004020401 PMID: 8435466

41. Sewerin P, Vordenbaumen S, Hoyer A, Brinks R, Buchbender C, Miese F, et al. Silent progression in patients with rheumatoid arthritis: is DAS28 remission an insufficient goal in RA? Results from the German Remission-plus cohort. BMC Musculoskelet Disord. 2017; 18: 163. https://doi.org/10.1186/s12891-017-1528-y PMID: 28420375

42. Verweij CL. Pharmacogenetics: Anti-TNF therapy in RA-towards personalized medicine? Nature Reviews Rheumatology. 2011. pp. 136–138. PMID: 21304506

43. Wang J, Platt A, Upmanyu R, Germer S, Lei G, Rabe C, et al. IL-6 pathway-driven investigation of response to IL-6 receptor inhibition in rheumatoid arthritis. BMJ Open. 2013; 3. https://doi.org/10.1136/bmjopen-2013-003199 PMID: 23959753

44. Wang J, Bansal AT, Martin M, Germer S, Benayed R, Essioux L, et al. Genome-wide association analysis implicates the involvement of eight loci with response to tocilizumab for the treatment of rheumatoid arthritis. Pharmacogenomics J. 2013; 13: 235–241. https://doi.org/10.1038/tpj.2012.8 PMID: 22491018

45. Kim T-H, Choi SJ, Lee YH, Song GG, Ji JD. Gene expression profile predicting the response to anti-TNF treatment in patients with rheumatoid arthritis: analysis of GEO datasets. J Bone Spine. Elsevier Masson; 2014; 81: 325–330. https://doi.org/10.1016/J.JBSPIN.2014.01.013 PMID: 24561023

46. Karsdal MA, Bay-Jensen AC, Henriksen K, Christiansen C, Genant HK, Chamberlain C, et al. Rheumatoid arthritis: A case for personalized health care? Arthritis Care Res. 2014; 66. https://doi.org/10.1002acr.22289 PMID: 24470057

47. Wijbrandts CA, Tak PP. Prediction of Response to Targeted Treatment in Rheumatoid Arthritis. Mayo Clin Proc. Elsevier; 2017; 92: 1129–1143. https://doi.org/10.1016/J.MAYOCPR.2017.05.009 PMID: 28688467

48. Sivadas A, Sailieh MZ, Teh LK, Scaria V. Genetic epidemiology of pharmacogenetic variants in South East Asian Malays using whole-genome sequences. Pharmacogenomics J. 2017; 17: 461–470. https://doi.org/10.1038/tpj.2016.39 PMID: 27241059

49. Orr C, Sousa E, Boyle DL, Buch MH, Buckley CD, Cañete JD, et al. Synovial tissue research: a state-of-the-art review. Nat Rev Rheumatol. Nature Publishing Group; 2017; 13: 463–475. https://doi.org/10.1038/nrrheum.2017.115