Antioxidant Effect of Melatonin on the Functional Activity of Colostral Phagocytes in Diabetic Women

Gliciane Morceli 1†, Adenilda C. Honorio-França 2*, Danny L. G. Fagundes 1, Iracema M. P. Calderon 1, Eduardo L. França 2

1 Post Graduate Program in Gynecology, Obstetrics and Mastology of Botucatu Medical School, São Paulo State University/Unesp, Botucatu, São Paulo, Brazil. 2 Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil

Abstract

Melatonin is involved in a number of physiological and oxidative processes, including functional regulation in human milk. The present study investigated the mechanisms of action of melatonin and its effects on the functional activity of colostral phagocytes in diabetic women. Colostrum samples were collected from normoglycemic (N = 38) and diabetic (N = 38) women. We determined melatonin concentration, superoxide release, bactericidal activity and intracellular Ca²⁺ release by colostral phagocytes treated or not with 8-(Diethylamino) octyl-3,4,5-trimethoxybenzooate hydrochloride (TMB-8) and incubated with melatonin and its precursor (N-acetyl-serotonin-NAS), antagonist (luzindole) and agonist (chloromelatonin- CMLT). Melatonin concentration was higher in colostrum samples from hyperglycemic than normoglycemic mothers. Melatonin stimulated superoxide release by colostral phagocytes from normoglycemic but not hyperglycemic women. NAS increased superoxide, irrespective of glycemic status, whereas CMTL increased superoxide only in cells from the normoglycemic group. Phagocytic activity in colostrum increased significantly in the presence of melatonin, NAS and CMLT, irrespective of glycemic status. The bactericidal activity of colostral phagocytes against enteropathogenic Escherichia coli (EPEC) increased in the presence of melatonin or NAS in the normoglycemic group, but not in the hyperglycemic group. Luzindole blocked melatonin action on colostrum phagocytes. Phagocytes from the normoglycemic group treated with melatonin exhibited an increase in intracellular Ca²⁺ release. Phagocytes treated with TMB-8 (intracellular Ca²⁺ inhibitor) decreased superoxide, bactericidal activity and intracellular Ca²⁺ release in both groups. The results obtained suggest an interactive effect of glucose metabolism and melatonin on colostral phagocytes. In colostral phagocytes from normoglycemic mothers, melatonin likely increases the ability of colostrum to protect against EPEC and other infections. In diabetic mothers, because maternal hyperglycemia modifies the functional activity of colostral phagocytes, melatonin effects are likely limited to anti-inflammatory processes, with low superoxide release and bactericidal activity.

Introduction

Diabetes is prevalent in young women and is increasingly related to maternal and child health issues, such as breastfeeding. Several studies have investigated the association of breastfeeding with a variety of chronic diseases, including obesity and diabetes [1,2]. Infants born to diabetic women are at higher risk of hypoglycemia because maternal hyperglycemia causes fetal hyperinsulinism [3]. However, the impact of breastfeeding on glucose metabolism is only partially understood.

Breastfeeding decreases the risk of diabetes development [4], infant morbidity and mortality and prevents gastrointestinal and respiratory infections [5,6,7,8,9]. Human milk contains soluble and cellular components such as lipids, carbohydrates, proteins, cells and hormones, which are important for the nutrition and immunological defense of infants [10]. Melatonin (MLT), one of the hormones contained in milk, is produced by the pineal gland and plays an important role for infants [11].

The benefits of MLT and its metabolites are related to their antioxidant and anti-inflammatory properties [12,13] and prooxidant effects [14]. MLT also affects glucose regulation in humans [15,16]. Diabetic patients have lower diurnal serum MLT levels and more pancreatic melatonin-receptors [17,18]. The role of MLT in preventing or delaying diabetes onset, however, is not well established, because studies showing the beneficial effects of MLT have been conducted after the development of the clinical manifestation of diabetes [19,20]. In addition, the actions of MLT on endocrine pancreas physiology, including the probable reduction in diabetes incidence, have not been well described [18].

MLT is not a conventional hormone because it displays both receptor-mediated and receptor-independent actions. Therefore, regardless if they possess indolamine receptors, all cells in the body are a target for melatonin. MLT interacts with membrane and nuclear receptors. Membrane receptors mediate functions such as seasonal reproduction, sleep and bone growth [16]. Using...
Melatonin Activity onto Diabetic Women Colostrum

Materials and Methods

The effect of melatonin on the functional activity of colostrum phagocytes in hyperglycemic women was evaluated in a cross-sectional study. The subjects attended the Diabetes and Pregnancy Facility, School of Medicine Obstetrics Course, UNESP, Botucatu, SP, Brazil.

Ethics Statement

This study was approved by the institutional Research Ethics Committee of Botucatu Medical School, and all the subjects gave informed written consent before entering the experimental protocol.

Subjects

We evaluated 76 women (18–45 years old) tested for hyperglycemia between the 24th and 28th weeks of pregnancy. Hyperglycemia was diagnosed by the 100 g – oral glycemia tolerance test (OGTT test), according to American Dietetic Association criteria [27], and the glucose profile (GP) test, according to Gillmer’s threshold values [28]. After delivery, colostrum samples from these subjects were analyzed according to maternal glycemic status: normoglycemic group (normal 100 g-OGTT and normal GP; n = 38) and diabetes group (abnormal pre-pregnancy 100 g-OGTT and insulin-dependent; n = 38). The mean and standard deviation for gestational age were 38.9±1.1 weeks in normoglycemic and the 37.3±0.9 weeks in diabetes groups and newborns’ birth weight (g) were 3127.3±664.9 g in normoglycemic and the 3266.3±469.8 g in diabetes groups. The subjects continued attending the facility, irrespective of diagnosis, and the hyperglycemic patients followed a specific treatment for glycemic control [28]. The variables controlled were smoking status (yes/no), arterial hypertension (yes/no) and glycemic index (GI), whose mean plasma glucose level was measured in the glycemic profiles taken during the gestation. GI was classified as adequate (GI<120 mg/dL) or inadequate (GI≥120 mg/dL) [29].

Colostrum sampling and separation of colostral cells

About 8 mL of colostrum from each woman was collected in sterile plastic tubes between 48 and 72 hours postpartum. The samples were centrifuged (160 x g, 4°C) for 10 min, which separated colostrum into three different phases: cell pellet, an intermediate aqueous phase, and a lipid-containing supernatant. The upper fat layer was discarded and the aqueous supernatant stored at −80°C for later analyses. Cells were separated by a Ficoll-Paque gradient (Pharmacia, Upsala, Sweden), producing preparations with 98% of pure mononuclear cells, analyzed by light microscopy. Purified macrophages were resuspended independently in serum-free medium 199 at a final concentration of 2 x 10^6 cells/mL.

Melatonin hormone dosage by the immunoenzymatic method

MLT was extracted by affinity chromatography, concentrated by speed-vacuum and determined using the ELISA kit (Immune-Biological Laboratories, Hamburg, Germany) [29]. Reaction rates were measured by absorbance plate-reading spectrophotometer with a 405 nm filter. The results were calculated according to the standard curve and shown in pg/mL.

Treatment of colostral mononuclear phagocytes with melatonin and its precursor, antagonist and agonist

To assess the effects of melatonin on superoxide anion release, as well as on phagocytic and bactericidal activity, mononuclear phagocytes (2 x 10^6 cells/mL) were incubated with 50 μL MLT (Sigma, ST Louis, USA; at a final concentration of 10^{-7} M [30], 50 μL N-acetyl-serotonin (NAS - Sigma, ST Louis, USA at a final concentration of 10^{-7} M, at a final concentration of 10^{-7} M, 50 μL luizendolne (Sigma, ST Louis, USA; at a final concentration of 10^{-7} M and 50 μL chloromelatonin (CMLT – Sigma, ST Louis, USA; at a final concentration of 10^{-7} M for 1 h at 37°C. To investigate the effects of intracellular Ca^{2+} on MLT action, phagocytes (2 x 10^6 cells/mL) were incubated with 10 μL of 8-(Diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8 intracellular calcium inhibitor - at a final concentration of 0.1 mM, Sigma, ST Louis, USA) for 1 h at 37°C. The phagocytes were then washed once with medium 199 at 4°C and immediately used in the assays developed to measure superoxide release, phagocytosis and bactericidal activity.

Escherichia coli strain

The enterophagogenic Escherichia coli (EPEC) used was isolated from stools of an infant with acute diarrhea (serotype 0111:H2, LA1, eae1, EAF1, bfp1). This material was prepared and adjusted to 10^7 bacteria/mL, as previously described [22].

Release of superoxide anion

Superoxide release was determined by cytochrome C (Sigma, ST Louis, USA) reduction [22,31]. Briefly, mononuclear phagocytes and bacteria, opsonized or not with the aforementioned opsonins, were mixed and incubated for 30 min for phagocytosis.
Cells were then resuspended in Phosphate Buffer Solution (PBS) containing 2.6 mM CaCl₂, 2 mM MgCl₂, and cytochrome C (Sigma, ST Louis, USA; 2 mg/mL). The suspensions (100 μL) were incubated for 60 min at 37°C on culture plates. The reaction rates were measured by absorbance at 550 nm and the results were expressed as nmol/O₂⁻. All the experiments were performed in duplicate or triplicate.

Bactericidal assay

Phagocytosis and Microbicidal activity were evaluated by the acridine orange method described by Bellinati-Pires et al. [32]. Equal volumes of bacteria and cell suspensions were mixed and incubated at 37°C for 30 min under continuous shaking. Phagocytosis was stopped by incubation in ice. To eliminate extracellular bacteria, the suspensions were centrifuged twice (160 × g, 10 min, 4°C). Cells were resuspended in serum-free medium 199 and centrifuged. The supernatant was discarded and the sediment dyed with 200 μL of acridine orange (Sigma, ST Louis, USA; 14.4 g/L) for 1 min. The sediment was resuspended in cold culture 199, washed twice and observed under immunofluorescence microscope at 400× and 1000× magnification.

The bactericidal index was calculated by counting the number of cells ingesting at least 3 bacteria in a pool of 100 cells. To determine the phagocytosis index, we stained the slides with acridine orange and ingesting at least 3 bacteria in a pool of 100 cells. To determine the bactericidal index, we stained the slides with acridine orange and counted 100 cells with phagocytized bacteria. The bactericidal index is calculated as the ratio between orange-stained (dead) and counted 100 cells with phagocytized bacteria. The bactericidal index was calculated as the ratio between orange-stained (dead) and counted 100 cells with phagocytized bacteria. The bactericidal index is calculated as the ratio between orange-stained (dead) and green-stained (alive) bacteria ×100 [8]. All the experiments were performed in duplicate.

Intracellular Ca²⁺ release determined by fluorescence and flow cytometry

We performed fluorescence staining at the FACS Calibur (BD San Jose USA) to assess intracellular Ca²⁺ release in colostrum phagocytes [33]. Cells were loaded with the fluorescent radiometric calcium indicator Fluo3-Acetoxyethyl (Fluo3-AM– Sigma ST Louis, USA). Cell suspensions, pre-treated or not with melatonin and TMB-8, mixed and incubated at 37°C for 30 min under continuous stirring. Suspensions were centrifuged twice (160 × g, 10 min, 4°C) and resuspended in PBS containing BSA (5 mg/mL). This suspension was incubated with 5 μL of Fluo-3 (1 μg/mL) for 30 min at 37°C. After incubation, cells were washed twice in PBS containing BSA (5 mg/mL; 160 × g, 10 min, 4°C) and then analyzed by flow cytometry. Calibration and sensitivity were routinely checked using CaliBRITE 3 Beads (BD Cat. No 340486 USA). Fluor-3 was detected at 530/30 nm filter for intracellular Ca²⁺. The rate of intracellular Ca²⁺ release was expressed in geometric mean fluorescence intensity of Fluor-3. Data shown in the figures correspond to one of several trials performed.

Statistical analysis

Analysis of variance (ANOVA) was used to evaluate superoxide anion release, phagocytosis, bactericidal index and calcium release. Statistical significance was considered for a p-value of less than 0.05.

Results

MLT concentration in colostrum

MLT concentration was higher in colostrum samples from hyperglycemic than normoglycemic mothers (P<0.05; Figure 1).

Effects of MLT on superoxide release by colostrum phagocytes

Hyperglycemic and normoglycemic groups exhibited similar spontaneous superoxide release by colostral mononuclear phagocytes, which did not increase with phagocyte exposure to EPEC. In the normoglycemic group, phagocytes stimulated with MLT and incubated with EPEC had higher superoxide release than those exposed to the bacteria alone (p<0.05), but MLT stimulation was not observed in the hyperglycemic group. Superoxide release increased when colostral phagocytes were incubated with NAS, irrespective of the group’s glycemic status, whereas when incubated with CMTL, this anion increased only in the normoglycemic group. Luzindole decreased superoxide release in both groups (Table 1). Phagocytes treated with TMB-8 (inhibitor of intracellular Ca²⁺) displayed a reduction in superoxide release in all the groups studied (Table 1).

Effects of melatonin on the phagocytic activity of colostral mononuclear cells

Colostral mononuclear phagocytes from the hyperglycemic groups had some phagocytic activity in response to EPEC. Phagocytosis increased significantly in the presence of MLT. The highest phagocytosis rates for EPEC were also exhibited by colostral phagocytes incubated with NAS and CMTL, independently of glycemic status (Figure 2). Luzindole blocked MLT action on colostral phagocytes. The phagocytosis indexes of cells incubated with luzindole plus MLT were similar to those exhibited by phagocytes incubated with bacteria alone (Figure 2). Pretreatment of mononuclear phagocytes with TMB-8 decrease the phagocytic activity for EPEC in the diabetic groups treated with MLT and CMTL (Figure 2).

Effect of melatonin on the bactericidal activity of mononuclear phagocytes

In general, colostral mononuclear phagocytes not treated with MLT had low bactericidal activity against EPEC. In the normoglycemic group, the bactericidal activity was higher when the phagocytes were incubated with MLT or NAS, but this effect was not observed in the hyperglycemic group. Incubation with luzindole decreased the effects of MLT on the bactericidal activity of colostral phagocytes. The bactericidal index of phagocytes incubated with luzindole plus MLT was similar to that of phagocytes incubated with bacteria alone (Figure 3).

Afer incubation with MLT, NAS and CMTL, mononuclear phagocytes pretreated with TMB-8 had lower bactericidal activity in the normoglycemic groups (Figure 3).

Intracellular Ca²⁺ release by colostral phagocytes in the presence of melatonin

Mononuclear phagocytes had low spontaneous intracellular Ca²⁺ release. In response to MLT, NAS and CMTL, colostral phagocytes displayed increased intracellular Ca²⁺ release in the normoglycemic groups (Table 2). Colostral from diabetes mothers decrease intracellular Ca²⁺ release in the presence of MLT, NAS and CMTL when compared with the normoglycemic mothers (Figure 2). Incubation with luzindole decreased the effects of MLT on the intracellular Ca²⁺ release (Table 2). Pretreatment of mononuclear phagocytes with TMB-8 decreased intracellular Ca²⁺ release in both groups (Table 2 – Figure 4).
Discussion

The major findings of the present study are that MLT was shown to increase superoxide production and bactericidal activity of colostral phagocytes from normoglycemic women, but not colostral phagocytes from hyperglycemic women. The bactericidal activity of colostral cells incubated with NAS, a melatonin precursor, was potentiated in normoglycemic group. Similar results were obtained when phagocytes were exposed to melatonin agonists, suggesting that MLT and its agonist have the same mechanism of action. Finally, the mechanism of action of MLT was shown to be dependent on intracellular Ca++ release.

The beneficial actions of MLT are associated to its ability to scavenge free radicals and increase antioxidant enzyme activity [34,35,36]. On the other hand, immune cells produce a high amount of superoxide radical anion during oxidative stress [37,38,39], an important protective mechanism during infectious processes, particularly intestinal infections [5,6,7,8,9,14,22,40,41]. In the present study, melatonin potentiated the production of these free radicals by phagocytes from normoglycemic mothers. Therefore, colostral MLT probably enhances the protective role of colostrum against EPEC and other infections.

MLT also exhibits immunomodulatory effects [42] and stimulates immune cells [43,44]. In this study MLT stimulated the functional activity of phagocytes in the normoglycemic group, increasing EPEC killing capacity. However, an important finding in the present study was that colostral phagocytes from diabetic women were not stimulated by MLT, showing low superoxide release and bacteria killing capacity. The insufficient stimulation of the functional activity of colostral macrophages, e.g., a failure of the prooxidant effect, indicates a diabetes-related antioxidant effect [13]. Similar results were observed in alloxan-induced diabetes models [30,45,46,47,48].

NAS effects on superoxide release, phagocytic activity and the bactericidal capacity of colostral phagocytes was also evaluated in order to investigate the mechanisms of melatonin action. Interestingly, that NAS also was able to potentiate the bactericidal activity of colostral phagocytes from normoglycemic mothers, but not those from hyperglycemic mothers. On the other hand, the agonist CMLT was able to stimulate the functional activity of colostrum phagocytes, irrespective of glycemic status.

MLT plays a crucial role in a number of metabolic functions such as antioxidant and anti-inflammatory responses [15]. As a multitasking indolamine, MLT seems to be involved in several physiological and metabolic processes via receptor-mediated and receptor-independent mechanisms [49].

To investigate whether MLT exerted its effect upon colostral phagocytes activity through membrane-bound receptors, we used the non-specific MLT receptor antagonist – luzindole that inhibited the effects of hormone. MLT-binding sites have been shown to increase superoxide production and bactericidal activity of colostral macrophages, e.g., a failure of the prooxidant effects, indicates a diabetes-related antioxidant effect [13]. Similar results were observed in alloxan-induced diabetes models [30,45,46,47,48].

Table 1. Superoxide release by colostrum phagocytes (mean ± SD, N = 8 per treatment).

Phagocytes incubated with:	TMB-8	Superoxide release (nmol)
	Normoglycemic	Diabetes
Control (without EPEC)	No 1.2±0.4	1.2±0.1
EPEC+PBS	Yes 0.5±0.2	0.4±0.2
EPEC+MLT	No 1.7±0.6	1.4±0.1
	Yes 0.6±0.3	0.3±0.1
EPEC+NAS	No 2.8±0.6	1.6±0.5
	Yes 0.2±0.1	0.2±0.1
EPEC+Luzindole+MLT	No 2.9±0.4	2.3±0.4
	Yes 0.15±0.1	0.3±0.12
EPEC+CMLT	No 0.5±0.13	0.40±0.05*
	Yes 0.1±0.02	0.45±0.03
EPEC+CMLT	No 1.95±0.4	1.43±0.5
	Yes 0.68±0.2	1.0±0.3

Phagocytes were incubated with enteropathogenic Escherichia coli (EPEC) in the presence of melatonin (MLT), N-acetyl-5erotonin (NAS), luzindole or chloromelatonin (CMLT) and pre-treated or not with 8-(Diethylamino) octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8). In controls assays, phagocytes were pre-incubated with phosphate buffer solution (PBS).

*indicates intergroup differences within each treatment (ANOVA, P<0.05);
#indicates differences between TMB-8 use within each treatment and group.

doi:10.1371/journal.pone.0056915.t001
identified in several human immune cells such as T lymphocytes [50], bone marrow cells and Th2 lymphocytes [51], platelets [52], neutrophils, granulocytes [53] and monocytes [54]. In mammals, MLT activates at least three distinct high-affinity receptors (MT). All three MLT receptors are blocked by luzindole [55]. This inhibitory effect was observed in the present study, where the luzindole concentration used blocked MT receptors, thereby decreasing superoxide release and EPEC killing by colostrum phagocytes.

When MLT interacts with its receptors, the latter signal to second messenger 3′-5′-cyclic adenosine monophosphate (cAMP) or inositol triphosphate (IP3)/calcium (Ca2), changing intracellular concentrations of either cAMP or calcium. In this study, pretreatment of colostral phagocytes with TMB-8 (intracellular calcium inhibitor) showed that the mediation of phagocytic activity by MLT is calcium dependent. On the other hand, MLT induced intracellular calcium release by colostrum phagocytes. Some authors have shown that TMB-8 effects include inhibition of calcium influx but not calcium release [56], whereas others reported that TMB-8 inhibits calcium release [57].

The actions and effects of MLT were shown to be transmitted via G-protein-coupled receptors (GPCRs), a class of membrane
Table 2. Intracellular Ca$^{2+}$ release by mononuclear (MN) colostrum phagocytes from diabetic mothers indicated by fluorescence intensity.

Phagocytes	TMB-8	Intensity (%)	
		Normoglycemic (N = 5)	Diabetes (N = 5)
FLUO3-AM	No	35.7±10.2	29.4±8.0
	Yes	4.0±0.6a	5.1±0.8a
MLT+FLUO3-AM	No	64.9±8.0	30.2±5.0c
	Yes	18.4±6.1f	13.0±6.0f
NAS+FLUO3-AM	No	61.4±9.3	38.5±9.7c
	Yes	14.5±7.9g	9.6±3.9g
Luzindole+MLT+FLUO3-AM	No	13.5±2.9*c	4.5±1.3*c
	Yes	10.2±5.2	3.9±1.1*
CMLT+FLUO3-AM	No	58.9±12.5	12.3±2.5*c
	Yes	7.5±4.7f	7.7±3.2f

Phagocytes were pre-treated or not with 8-(Diethylamino) octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8) and incubated with melatonin (MLT), N-acetyl-serotonin (NAS), luzindole or chloromelatonin (CMLT) and loaded with the fluorescent radiometric calcium indicator FLUO3-AM (Fluo3-Acetoxymethyl) as described in Materials and Methods. Results are expressed as mean and SD (N=5 per treatment).

*indicates difference from the FLUO3-AM (ANOVA, P<0.05);
aindicates intergroup differences within each treatment (ANOVA, P<0.05);
cindicates differences between TMB-8 use within each treatment and group.
doi:10.1371/journal.pone.0056915.t002

Figure 4. Intracellular Ca$^{2+}$ release by colostral phagocytes from diabetic mothers pre-treated or not with 8-(Diethylamino) octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8) and stimulated with melatonin (MLT). Cells were stained with Fluo-3, and immunofluorescence analyses carried out by flow cytometry (FACScalibur, Becton Dickinson, USA).
doi:10.1371/journal.pone.0056915.g004

receptors expressed at low levels in numerous organs and cell types [58], and general dependent on intracellular Ca$^{2+}$ [21].

The microbicidal activity promoted by MLT and the resulting oxidation products may have important clinical implications [59]. The superoxide may come from a change of responsiveness to intracellular Ca$^{2+}$ level and to phosphorylation events during oxidative metabolism [60]. Here we show that MLT is capable of significantly raising intracellular calcium by colostrum phagocytes from normoglycemic women. Therefore, the results supported that melatonin change the intracellular Ca$^{2+}$ level, which facilitate the microbicidal activity of cells.

MLT may influence the activity of phagocytes through changes in the intracellular Ca$^{2+}$ [46]. In this study, in colostral phagocytes from diabetic mothers, the intracellular Ca$^{2+}$ response to MLT stimulation was significantly lower. Although colostral phagocytes from diabetic women were inhibited by MLT, the luzindole treatment also decreased intracellular Ca$^{2+}$ release. Because MLT is known to exert an effect not only via membrane-bound but also nuclear receptors [16] probably the luzindol might not have entirely inhibited the effect of MLT on colostral phagocytes from diabetic mothers.

At physiological concentration, the pineal hormone MLT can stimulate the natural immunity, an important defense with anti-infectious and microbicidal actions [7,8,9,14,30]. Despite high concentrations of MLT present in colostrum of diabetic mothers, colostral phagocytes of these mothers, however, were not stimulated by MLT. This hormone contained in hyperglycemic maternal milk can contribute to protecting the gastrointestinal mucosa of newborns. The action of MLT in the newborn’s intestine may be associated to prevention of gastrointestinal mucosa ulceration by antioxidant action, reduction of hydrochlo-
ric acid secretion, and immune system stimulation, fostering epithelial regeneration and increased microriculation [26], especially in infants of diabetic mothers.

Conclusions
The results obtained suggest an interactive effect of glucose metabolism and MLT on colostral phagocytes. In colostral phagocytes from normoglycemic mothers, MLT likely increases the ability of colostrum to protect against EPEC and other infections. In diabetic mothers, because maternal hyperglycemia modifies the functional activity of colostrum phagocytes, melatonin effects are likely limited to anti-inflammatory processes, with low superoxide release and bactericidal activity.

References
1. Davis MK (2001) Breastfeeding and chronic disease in childhood and adolescence. Pediatr Clin North Am 48: 125–141.
2. Kent JC (2007) How Breastfeeding Works. J Mid Womens Health 52: 564–570.
3. Chertok IRA, Raz I, Shosham I, Hadadi L, Wiznitzer A (2009) Effects of early breastfeeding on neonatal glucose levels of term infants born to women with gestational diabetes. J Hum Nutr Diet 22: 166–169.
4. Owen CG, Martin RM, Whincup PH, Smith GD, Cook DG (2006) Does breastfeeding influence risk of type 2 diabetes in later life? A quantitative analysis of published evidence. Am J Clin Nutr 84: 1043–1054.
5. Honorio-França AC, Launay P, Carneiro-Sampaio MMS, Monteiro RC (2001) Colostomal neupores express Fc alpha receptors (CD89) lacking gamma chain association and mediate noninflammatory properties of secretory IgA. J Leukoc Biol 69: 289–296.
6. Kireev RA, Tresguerres ACF, Garcia C, Ariznavarreta C, Vara E, et al. (2008) Kostka-Boţelho AC, Honorio-França AC, França EL, Gomes MA, Costa-Cruz JM (2006) Phagocytosis of Gaerla lambho phagocytes by human colostral leukocytes. Acta Paediatr 95: 438–443.
7. Moreci G, França EL, Magalhães VB, Damasceno DC, Calderon IMP, et al. (2011) Diabetes induced immunological and biochemical changes in human colostrum. Acta Paediatr 100: 550–556.
8. França EL, Bilenetcor RV, Fujimori M, Morais TC, Calderon IMP, et al. (2011a) Human colostomal phagocytes eliminate enterotoxigenic Escherichia coli opsonized by colostomal secretant. J Microbiol Immunol Infect 44: 1–7.
9. França EL, Moreci G, Fagundes DLG, Rugêke MVC, Calderon IMP, et al. (2011) Secretory IgA-Fcz Receptor interaction modulating phagocytosis and microbial activity by phagocytes in human colostrum of diabetics. J Clin Immunol 31: 170–179.
10. Hanson LA (2007) Feeding and infant development: breast-feeding and immune function. Proc Nutr Soc 66: 384–396.
11. Ilnerova´ H, Buresova´ M, Presl J (1993) Melatonin rhythm in human milk. J.Clin. Endocrinol. Metab 77: 838–841.
12. Kireev RA, Tresguerres ACF, Garcia C, Ariznavarreta C, Vara E, et al. (2008) Melatonin is able to prevent the liver of old castrated female rats from oxidative and pro-inflammatory damage. J Pineal Res 41: 394–402.
13. Reiter RJ, Tan DX, Jou MJ, Korkmaz A, Manchester LC, et al. (2008) Modulatory Role of Melatonin on Superoxide Release by Phagocytes Isolated from Alloxan-Induced Diabetic Rats. Braz J Med Biol Res 41: 591–599.
14. Korkmaz A, Topal T, Tan DX, Reiter RJ (2009) Role of melatonin in metabolic effects are likely limited to anti-inflammatory processes, with low superoxide release and bactericidal activity. J Pineal Res 50:71–77.
15. França EL, Feliciano ND, Silva KA, Ferrari CKB, Honorio-França AC (2009) Modulatory Role of Melatonin on Superoxide Release by Phagocytes Isolated from Alloxan-Induced Diabetic Rats. Braz J Med Biol Res 41: 591–599.
16. Bellinati-Pires R, Salgado MM, Hypolito IP, Grumach AS, Carneiro-Sampaio MMS (1995) Application of a fluorochrome-lysostaphin assay to the detection of phagocytic and bactericidal disturbances in human neutrophils and monocytes. J Invest Allergol Clin Immunol 5: 37–342.
17. Fagundes DLG, França EL, Hara CCP, Tulp T, Carneiro-Sampaio MMS (2011) Immunomodulatory effects of poly (ethylene glycol) microspheres adsorbed with cortisol on activity of colostrum phagocytes. Int J Pharmacol: 8: 510–518.
18. Klepac N, Rudis Z, Klepari R (2005) Effects of melatonin on plasma oxidative stress in rats with streptozotocin induced diabetes. Biomed Pharmacother 60: 32–35.
19. Sudnikovich EJ, Maksimshik YZ, Zubrokzka VA, Kushlyk VL, Lapschina EA, et al. (2007) Melatonin attenuates metabolic disorders due to streptozotocin-induced diabetes rats. Eur J Pharmacol 569: 180–187.
20. Pandi-Perumal SR, Trakht I, Srinivasan V, Spencer DW, Maestroni GJM, et al. (2008) Physiological effects of melatonin: Role of melatonin receptors and signal transduction pathways. Prog Neurobiol 83: 355–355.
21. Novelli EL, Rodrigues NL, França EL, Gebriz LMN, Rabus BO (1993) High Dietary Carbohydrate and Pancreatic lesion. Braz J Med Biol Res 26: 31–36.
22. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, et al. (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36: 1–9.
23. Ferrari CKB, França EL, Honorio-França AC (2009) Nitric oxide, health and disease. J Applied Biomed 7: 163–173.
24. França EL, Nicomedes TR, Calderon Honorio-França AC (2010) Time-dependent alterations of soluble and cellular components in human milk. J Pineal Res 48: 353–353.
25. Carneiro-Sampaio MMS, Silva MLM, Carbonara SB, Palmeira P, Delerue MC, et al. (1996) Breast-feeding protection against Enteropathogenic Escherichia coli. Braz J Microbiol 26: 151–154.
26. Sesliysky H, del Rey A (1996) Immune-neuroendocrine interactions: Facts and hypotheses. Endocr Rev 17: 64–102.
27. Cutolo M, Villaggio B, Candido F, Valenti S, Giusti M, et al. (1999) Melatonin influences interleukin-12 and nitric oxide production by primary cultures of rheumatoid synovial macrophages and THP-1 cells. Ann New York Acad Sci 876: 246–254.
28. Skvarla-Stonta K (2002) Bidirectional communication between pineal gland and immune system. J Physiol 543: 68–78.
45. Bromme HJ, Morke W, Peschke E, Ebel H, Peschke D (2002) Scavenging effect of melatonin on hydroxyl radicals generated by alloxan. J Pineal Res 29: 201–208.
46. Pawlak J, Singh J, Lea RW, Skwarlo-Sonta K (2005) Effect of melatonin on phagocytic activity and intracellular free calcium concentration in testicular macrophages from normal and streptozotocin-induced diabetic rats. Mol Cell Biochem 275: 207–213.
47. Devi MMS, Suresh Y, Das UN (2008) Preservation of the antioxidant status in chemically-induced diabetes mellitus by melatonin. J Pineal Res 29: 108–115.
48. Honorio-França AC, Silva KA, Feliciano ND, Calderon IM, Rudge MVC, et al. (2009) Melatonin effects on macrophage in diabetic rats and the maternal hyperglycemic implications for newborn rats. Int J Diabet Metabol 17: 87–92.
49. Erven TG, Reiter RJ (2008) A generalized theory of carcinogenesis due to chronodisruption. Neuro Endocrinol Lett 29: 815–821.
50. Konakchieva R, Manchev S, Pevet P, Masson-Pevet M (1999) Autoradiographic detection of 2-[125I]-iodomelatonin binding sites in immune tissue of rats. Adv Exp Med Biol 460: 611–613.
51. Podl G, Carrolo MC, Nistico G, Doria G (1993) Melatonin increases antigen presentation and amplifies specific and non specific signals for T-cell proliferation. Int J Immunopharmacol 15: 463–468.
52. Vacas M, Del Zar MM, Martinuzzo M, Cardinali DP (1992) Binding sites for [3H]-melatonin in human platelets. J Pineal Res 13: 60–65.
53. Lopez-Gonzalez MA, Calvo JR, Segura JJ, Guerrero JM (1993) Characterization of melatonin binding sites in human peripheral blood neutrophils. Biotechnol Ther 4: 253–262.
54. Barjavel MJ, Mamdouh Z, Raqhate N, Bakouche O (1988) Differential expression of the melatonin receptor in human monocytes. J Immunol 160: 1191–1197.
55. Dubocovich ML, Cardinali DP, Guardiola-Lemaitre B, Hagan RM, Krause DN, et al. (1998) Melatonin receptors. The IUPHAR Compendium of Receptor Characterization and Classification. London: IUPHAR Media 187–193.
56. Kojima I, Shiba H, Ogata E (1986) Action of TMB-8 (8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate) on cytoplasmic free calcium in adrenal glomerulosa cell. Biochim Biophys Acta 29: 25–29.
57. Ogawa T, Adachi N, Nishijima M (1994) Melatonin levels in maternal plasma before and during delivery, and in fetal and neonatal plasma. Nip Sanka Fuj Gak Zass. 43: 335–341.
58. Jockers R, Maurice P, Boutin JA (2000) Melatonin receptors, heterodimerization, signal transduction and binding sites: what’s new? Br J Pharmacol 134: 1102–1105.
59. Silva SO, Carvalho SR, Ximenes VF, Okada SS, Campa A (2006) Melatonin and its kynurenin-like oxidation products affect the microbicidal activity of neutrophils. Microbes Infect 8: 420–425.
60. Carrichon L, Picciochi A, Debruyme F, Beaumel S (2011) Characterization of superoxide overproduction by the D-Loop/NocX-Nox2 cytochrome b558 in phagocytes -Differential sensitivity to calcium and phosphorylation events”, Biochimica et Biophysica Acta Bioch. Biophys Acta, 1808: 78–90.