“Exercise intolerance in pulmonary arterial hypertension: insight into central and peripheral pathophysiological mechanisms.” S. Malenfant, M. Lebret, É. Breton-Gagnon, et al. *Eur Respir Rev* 2021; 30: 200284.

Unfortunately, an error was made in labelling figure 4 of this manuscript. The solid black line should have been labelled “Fick principle” not “Fick Law”. The equation associated with this label should have read \(V'O_2 = CO \times (P_a - vO_2) \) not \(V'O_2 = CO - a - vO_2 \). The corrected version of figure 4 is shown below.

The article has been corrected and republished online.

FIGURE 4 The Wagner diagram. Oxygen uptake is plotted as a function of microvascular oxygen pressure. Black line: diffusive (Fick law) and convective (Fick principle) components that interact to determine peak oxygen uptake \(V'_O_2\text{peak} \). The Fick principle line is not straight because it directly represents the haemoglobin dissociation curve (greater haemoglobin O2 affinity), resulting in a lower venous O2 partial pressure [130]. The slope of the straight line (Fick law) is determined by the diffusing capacity of the muscles [130]. Red line: in patients with heart failure, a left-shifted haemoglobin dissociation curve (greater haemoglobin O2 affinity), resulting in a lower venous O2 partial pressure, and a lower slope of the Fick law line results in earlier bisection of both diffusive and convective components and reduced \(V'_O_2\text{peak} \). \(D_O_2 \): oxygen delivery; HFrEF: heart failure with reduced ejection fraction; \(P_O_2 \): partial pressure of oxygen; CO: cardiac output.