Ethylene Polymerization and Copolymerization with Polar Monomers by Benzothiophene-bridged BPMO-Pd Catalysts

Hong-Liang Mu, Jun-Hao Ye, Guang-Lin Zhou, Kang-Kang Li, and Zhong-Bao Jian*

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

Abstract A series of new bisphosphine-monoxide (BPMO) ligands based on benzothiophene backbone and the corresponding palladium complexes (k2-2-P(O)(Ph)2-3-PrR2-C6H4S(PdMeCl (2a): R1 = R2 = Ph; 2b: R1 = R2 = 2-OMe-Ph; 2c: R1 = R2 = 2-CF3-Ph; 2d: R1 = Ph, R2 = 2-(2′,6′-(OMe)2-C6H3)-C6H4) were synthesized and fully characterized by 1H, 13C- and 2D-NMR spectroscopy and single-crystal X-ray diffraction. In the presence of NaBArF3, these complexes showed very high activities (up to 2.0 × 106 g·mol⁻¹·h⁻¹) for ethylene polymerization. More significantly, these catalysts enabled the copolymerization of ethylene with a broad scope of commercially available polar comonomers such as acrylates, acrylic acid, acrylonitrile, vinyltrialkoxysilane, allyl acetate, and long-chain 6-chloro-1-hexene to give functionalized polyethylene with reasonable catalytic activities (up to 106 g·mol⁻¹·h⁻¹) and incorporations (up to 5.3 mol%). This contribution suggests that, besides the modulation of conventionally steric and electronic factors, the connectivity (at different linking positions) of BPMO donors to the heteroaryl backbone also greatly influences the catalyst properties in terms of catalytic activity, polymer branching content, comonomer scope, and comonomer incorporation.

Keywords Olefin polymerization; Bisphosphine monoxide; Palladium; Polar monomers; Heteroaryl backbone

Citation: Mu, H. L.; Ye, J. H.; Zhou, G. L.; Li, K. K.; Jian, Z. B. Ethylene polymerization and copolymerization with polar monomers by benzothiophene-bridged BPMO-Pd catalysts. Chinese J. Polym. Sci. 2020, 38, 579–586.

INTRODUCTION

Transition-metal-catalyzed insertion copolymerization of commercially available polar vinyl monomers with olefins represents the most straightforward method for the precise preparation of functionalized polyolefins.1–9 In these reactions, the choice of catalytic system is of crucial importance because the polar functional groups adjacent to the double bond tend to poison most organometallic catalysts. As a milestone, Brookhart24–26 and Drent27 seminally breakthrough, phosphine-sulfonate palladium catalysts and the production of semicrystalline copolymers. As another seminal breakthrough, phosphine-sulfonate palladium catalysts reported by Drent23 (Chart 1, A) represented the most thoroughly studied system due to the excellent catalytic properties for a broad scope of polar vinyl comonomers.12,23 The asymmetric combination of strong (P) and weak (O) σ-donors is considered to be crucial. Thus, Shimizu21 and Li28,29 separately described that phosphino-phenolate nickel complexes (B) were efficient catalysts for the copolymerization of ethylene with acrylates, affording high molecular weight linear functionalized polyolefins. As an important extension, Nozaki designed cationic (not neutral) bisphosphine monoxide (BPMO) palladium system30 (C) that could also copolymerize ethylene with a broad family of polar vinyl monomers. After that, great efforts have been devoted to the modification of this system (C and D)31–38. Notably, the optimization of catalysts mostly relied on altering steric and electronic effects of P,O donor substituents, with very few studies focusing on the modifications of the ligand backbone, let alone on the change of the connectivity (different linking positions) of P,O donors. In fact, the connectivity of P,O donor to the ligand backbone could also significantly influence the catalyst properties. For instance, it has been reported that ferrocene-bridged phosphine sulfonate palladium catalysts (E) polymerized ethylene to semicrystalline polyolefins.19 Using the same backbone, however, if phosphine and sulfonate moieties are located at different cyclopentadienyl rings (F), these palladium catalysts only dimerized ethylene.40 More relevantly, Chen recently investigated the influence of connectivity of phosphine-sulfonate donors to naphthalene backbone on catalytic behavior (G, H).41–43. Very recently, we first developed a new series of BPMO-Pd catalysts...
(I) based on heteroaryl backbones, which were highly active for ethylene polymerization and copolymerization with various fundamental polar vinyl monomers.\(^{[43]}\) Differed from the conventional and symmetric benzene backbone group, heteroaryl backbone has different environment on the 2,3-positions, thus we envisioned that introducing P,O donors into different backbone has different environment on the 2,3-positions, thus we now report a family of new Pd catalysts bearing benzothiophene skeleton with the P,O donor fragments locating at the opposite position of our previously reported catalyst I. Catalysts with the modulation of steric and electronic effects in this case were even more active than the prototype catalyst I for ethylene polymerization. Most interestingly, the scope of polar comonomers applied to the copolymerizations was broadened.

EXPERIMENTAL

General Considerations

All moisture/oxygen sensitive reactions were performed using standard glove box or Schlenk techniques under a N\(_2\) atmosphere. THF, \(n\)-hexane, CH\(_2\)Cl\(_2\), and Et\(_2\)O were purified by the MBraun SPS system. NMR spectra for the ligands, complexes, and polymers were recorded on Bruker AV400 (\(\text{H}: 400 \text{ MHz,} \quad \text{C}: 100 \text{ MHz,} \quad \text{P}: 162 \text{ MHz}) or Bruker AV500 (\(\text{H}: 500 \text{ MHz,} \quad \text{C}: 125 \text{ MHz,} \quad \text{P}: 202 \text{ MHz}) spectrometers. \(^{1}\text{H}\) and \(^{13}\text{C}\) chemical shifts are internally referenced to residual \(^{1}\text{H}\) and \(^{13}\text{C}\) solvent resonances. \(^{31}\text{P}\) chemical shifts are externally referenced to 85% H\(_3\)PO\(_4\) (\(\delta 0.0\)). NMR assignments were confirmed by \(^{1}\text{H}-^{1}\text{H}\) COSY, \(^{1}\text{H}-^{13}\text{C}\) HSQC, and \(^{1}\text{H}-^{13}\text{C}\) HMBC experiments when necessary. The molecular weights and molecular weight distributions (\(M_w/M_n\)) of polyethylenes and copolymers were measured by means of gel permeation chromatography (GPC) on a PL-GPC 220-type high-temperature chromatograph equipped with three PL-gel 10 \(\mu\)m Mixed-B LS type columns at 150 °C. Melting points (\(T_m\)) of polyethylenes and copolymers were measured through DSC analyses, which were carried out on a Q 100 DSC from TA Instruments under a nitrogen atmosphere at heating and cooling rates of 10 °C min\(^{-1}\) (temperature range: 20–160 °C). Elemental analyses were performed at the National Analytical Research Centre of Changchun Institute of Applied Chemistry.

Synthesis of the Representative Compounds

Synthesis of ligand 1b

\(\text{n-BuLi (0.9 mL, 1.6 mol} \cdot \text{l}^{-1}\) in hexane, 1.44 mmol, 1.03 equiv.) was slowly added to a solution of 3-(dianisylphosphanyl)-benzol[phi]thiophene (0.53 mg, 1.4 mmol, 1.0 equiv.) in the mixed solvent Et\(_2\)O (50 mL)/THF (10 mL) at −78 °C. The mixture was stirred for 2 h at −78 °C and then CIP(O)Ph\(_2\) was added dropwise. The reaction mixture was allowed to warm slowly to room temperature and stirred overnight. The solvent was removed and the residue was extracted with CH\(_2\)Cl\(_2\)/water. After dried with Na\(_2\)SO\(_4\), the solution was concentrated to a small volume, and precipitated in hexane. 0.31 g of pure ligand 1b was obtained (total yield, 30%). \(^{1}\text{H}-\text{NMR (500 MHz,} \quad \text{C}\(_2\)Cl\(_2\), 5.3 ppm,} \delta): 7.91 (d, \(J = 8.2 \text{ Hz,} \quad \text{H}\)) 7.86 (br, 4H), 7.43 (t, \(J = 7.0 \text{ Hz,} \quad \text{H}\)) 7.34–7.24 (m, 7H), 7.04 (d, \(J = 8.4 \text{ Hz,} \quad \text{H}\)) 6.94 (t, \(J = 7.7 \text{ Hz,} \quad \text{H}\)) 6.82–6.67 (m, 6H), 3.46 (s, 6H). \(^{13}\text{C}-\text{NMR}\) (125 MHz, 298 K, CDCl\(_3\), 77.16 ppm, \(\delta\)) 161.05, 143.53 (dd, \(J = 106.5, 47.6 \text{ Hz,} \quad \text{C}\)) 143.53 (d, \(J = 6.1 \text{ Hz,} \quad \text{C}\)) 137.39 (dd, \(J = 27.3, 9.5 \text{ Hz,} \quad \text{C}\)) 133.12, 132.59 (dd, \(J = 10.7, 4.7 \text{ Hz,} \quad \text{C}\)) 131.75 (d, \(J = 3.0 \text{ Hz,} \quad \text{C}\)) 130.04, 127.88 (d, \(J = 12.9 \text{ Hz,} \quad \text{C}\)) 125.55 (d, \(J = 14.5 \text{ Hz,} \quad \text{C}\)) 124.21, 122.63, 120.98, 110.33, 55.29. \(^{31}\text{P}(\text{H})\)-NMR (202 MHz, CDCl\(_3\), \(\delta\)) 22.72 (d, \(J = 15.3 \text{ Hz,} \quad \text{P}\)).

Synthesis of complex 2b

A mixture of ligand 1b (100 mg, 0.17 mmol) and (COD)PdMeCl\(_2\) (47 mg, 0.18 mmol) was dissolved in 15 mL of CH\(_2\)Cl\(_2\) and stirred at room temperature for 12 h. Following filtration, the target complex was obtained as a white solid powder (105 mg, 84%). \(^{1}\text{H}-\text{NMR (500 MHz,} \quad \text{C}\(_2\)Cl\(_2\), 7.26 ppm,} \delta): 7.74 (d, \(J = 8.2 \text{ Hz,} \quad \text{H}\)) 7.69 (dd, \(J = 12.7, 7.9 \text{ Hz,} \quad \text{H}\)) 7.51 (t, \(J = 7.3 \text{ Hz,} \quad \text{H}\)) 7.44–7.34 (m, 8H, \(J = 12.7 \text{ Hz,} \quad \text{H}\)) 7.31 (t, \(J = 7.2 \text{ Hz,} \quad \text{H}\)) 7.09–7.01 (m, 2H, \(J = 12.7 \text{ Hz,} \quad \text{H}\)) 6.85–6.72 (m, 4H, \(J = 12.7 \text{ Hz,} \quad \text{H}\)) 3.36 (s, 6H, \(J = 8.4 \text{ Hz,} \quad \text{H}\)). \(^{13}\text{C}(\text{H})\)-NMR (125 MHz, 298 K, CDCl\(_3\), 77.16 ppm, \(\delta\)) 160.6 (C\(_1\)) 142.3 (d, \(J = 12.2 \text{ Hz,} \quad \text{C}\)) 124.1 (t, \(J = 7.2 \text{ Hz,} \quad \text{C}\)) 139.6 (dd, \(J = 103.3, 25.4 \text{ Hz,} \quad \text{C}\)) 136.7 (d, \(J = 12.7 \text{ Hz,} \quad \text{C}\)) 136.1 (dd, \(J = 36.8, 6.4 \text{ Hz,} \quad \text{C}\)) 132.7 (d, \(J = 10.9 \text{ Hz,} \quad \text{C}\)) 130.3 (d, \(J = 112.7 \text{ Hz,} \quad \text{C}\)) 128.6 (d, \(J = 12.7 \text{ Hz,} \quad \text{C}\)) 126.6 (C\(_{18}\)) 126.2 (C\(_{16}\)) 124.5 (C\(_{14}\)) 121.9 (C\(_{12}\)) 120.9 (d, \(J = 11.8 \text{ Hz,} \quad \text{C}\)) 116.5 (d, \(J = 52.8 \text{ Hz,} \quad \text{C}\)) 111.2 (C\(_{11}\)) 55.4 (C\(_{1}\)) 12.1 (C\(_{2}\)). \(^{31}\text{P}(\text{H})\)-NMR (202 MHz, CDCl\(_3\), \(\delta\)) 30.84 (d, \(J = 17.7 \text{ Hz,} \quad \text{P}\)).
RESULTS AND DISCUSSION

Synthesis and Characterization of Complexes 2a–2d

Benzothiophene-containing BPMO ligands 1a–1d were facilely synthesized via a two-step method (Scheme 1). 3-Bromobenzothiophene was lithiated with n-BuLi at –78 °C before reacting with electrophile chlorophosphines to give 3-phosphinobenzothiophene in moderate yields. Ligands 1b–1d were obtained from reaction of ClP(O)Ph2 with the lithium salts of 3-phosphinobenzothiophenes. All four ligands were fully characterized by 1H, 13C, and 31P-NMR spectroscopy and elemental analysis.

The presence of two doublets in the 31P-NMR spectra of 1a–1d was a diagnostic for the formation of bisphosphine monoxide compounds. The resultant BPMO ligands reacted with (COD)PdMeCl in dichloromethane at room temperature to yield white powder of the target palladium complexes followed by precipitation in hexane. Upon coordination to palladium, the 31P chemical shifts of phosphine signals moved downfield as compared to the free ligands. The complete disappearance of P(III) signals and X-ray structure (see below) verified that the coordination mode was unique, excluding the possibility of [S, P=O] coordination, which was consistent with the expected weak donor ability of the sulfur atom of thiophene. The NMR chemical shifts for the newly formed Pd–Me groups of 2a–2d in both 1H- (0.58, 0.43, 0.68 ppm) and 13C-NMR (2.16, 1.20, 2.64 ppm) spectra correlated with the order of 2c (CF3) > 2a (H) > 2b (OMe), clearly reflecting the different shielding effects caused by the change in electronic density. The small coupling constants (|JNN| = 3.8–4.4 Hz) of Pd–Me doublets indicated a cis arrangement between methyl group and phosphine moiety in each case.

The solid-state structures of 2a–2c were further confirmed by X-ray single crystal diffraction analysis (Fig. 1). In each case, a near-square-planar Pd(II) center is chelated by phosphorous and oxygen donor atoms with the chloride atom cis to the phosphine oxide moiety and the methyl group cis to the phosphine moiety, which is consistent with the EPR values observed. The bond lengths of P–C (2a: 2.039(3) Å, 2b: 2.023(4) Å, 2c: 2.047(3) Å) of these complexes are similar, and are also close to that of I (P–C: 2.047(3) Å). The bite angles (O–Pd–O) of 2b (85.40(7)°) and 2c (84.82(8)°) are close to that of I (85.23(6)°) but are much smaller than that of 2a (98.12(5)°). The most prominently different structural feature for 2a–2c and I lies in the angles between P–C–C–P and O–Pd–P planes. For less sterically demanding 2a, this value is only 28.6°. As the steric bulk of the phosphine substituents increases, the angle reaches 50.32° for 2b and 53.6° for 2c, which is much larger than that in I (42.2°). The distortion causes the repulsion to varying degrees between the substituents and the backbone, leading to different influences on the metal center. These observations also indicate that both the position of P and P=O donors on the benzothiophene backbone and substituents on the donor fragments greatly influence the structure of the complexes, which would potentially lead to different catalytic properties.

The solid-state structures of 2a–2c were also analyzed by
Cavallo’s SambVca 2.0 program[44] to visualize steric hindrance around the palladium center (Fig. 2). As expected, 2a (H) shows widely open space in the northwest quadrants and a low percent buried volume (\%\textit{V}_{\text{bur}}) of 45.6. 2b (OMe) shows an increased \%\textit{V}_{\text{bur}} of 48.2 that is also slightly higher than the counterpart 1 (\%\textit{V}_{\text{bur}} 46.8). Introducing two CF\textsubscript{3} groups to the phosphine moiety significantly increases the filled space (\%\textit{V}_{\text{bur}} 54.1) around the palladium center. Due to different folding direction, the less crowded quadrant for 2b and 2c is northwest and southwest, respectively. However, additional space is filled for 2c in this area (Fig. 2, right versus middle) due to the presence of CF\textsubscript{3} group that is situated at the phenyl ring titling toward the coordination plane (Pd···F = 3.2 Å). In 2b and I, the o-anisyl group is almost perpendicular to the coordination plane, and the methoxy group there-on is far from the metal center (Pd···O > 3.3 Å). We believe that differences in the structure between I and the current catalysts come from the repulsion between the phosphine substituent and the backbone.

Ethylene Polymerization Using Complexes 2a–2d

Complexes 2a–2d were applied to ethylene polymerization at 80 °C under various ethylene pressures with NaBArF as the co-catalyst. All these complexes displayed very high activities (up to 2.0 × 103 g mol-1 h-1) toward ethylene polymerization except 2c. After 30 min, 2c produced only 0.44 g of polyethylene with a higher melting point (Table 1, entries 1, 5, 9, and 13), indicating a lower branching density.[45,46] However, when polymerizations were conducted at 60 °C, the activities raised to 2.7 ×

![Fig. 2 Schematic maps of palladium catalysts 2a–2c based on heteroaryl BPMO ligands.](https://doi.org/10.1007/s10118-020-2359-0)

Table 1. Ethylene polymerization using catalysts 2a–2d.

Entry	Cat.	T (°C)	P (bar)	Yield (g)	Activity a	\(M_n\) × 103	\(M_w/M_n\) b	\(T_m\) c (°C)	Brs d
1	2a	60	20	5.54	3.7	2.5	2.5	124.9	2
2	2a	60	10	5.32	3.5	2.4	2.4	123.7	2
3	2a	60	5	3.55	2.4	4.0	4.0	124.2	2
4	2a	60	5	0.71	1.1	3.7	3.7	127.5	1
5	2b	60	20	29.45	19.6	6.3	6.3	124.2	8
6	2b	60	10	22.32	14.9	6.7	6.7	120.0	10
7	2b	60	5	13.94	9.3	11.0	11.0	126.6	6
8	2b	60	5	5.09	3.4	19.2	19.2	134.8	1
9	2c	60	20	0.44	0.3	4.3	4.3	128.7	4
10	2c	60	10	3.98	2.7	10.5	10.5	132.3	1
11	2c	60	5	2.88	1.9	7.6	7.6	131.1	1
12	2c	60	5	2.72	1.8	14.2	14.2	130.8	1
13	2d	60	20	27.55	18.3	6.4	6.4	125.5	7
14	2d	60	10	18.75	12.5	8.1	8.1	124.1	7
15	2d	60	5	11.16	7.4	11.8	11.8	126.6	6
16	2d	60	5	2.41	1.6	38.5	38.5	135.8	<1

\(a \) Reaction conditions: catalyst (3 μmol), NaBArF (3.6 μmol), toluene/CH\textsubscript{2}Cl\textsubscript{2} (96 mL/4 mL), time (0.5 h), 750 r·min-1, unless noted otherwise; \(b \) Activity is in unit of 103 g mol-1 h-1; \(c \) Determined by GPC in 1,2,4-trichlorobenzene at 150 °C versus linear polystyrene standards, and corrected by universal calibration versus linear polyethylene via Mark-Houwink-Sakurada equation; \(d \) Determined by DSC (second heating); \(e \) Number of branches per 1000C, as determined by \(^1\)H-NMR in C\textsubscript{2}D\textsubscript{2}Cl\textsubscript{4} at 110 °C.

https://doi.org/10.1007/s10118-020-2359-0
10^6 g·mol^{-1}·h^{-1}, indicating a less thermally stable nature of 2c possibly caused by the electron-withdrawing CF groups. It has been reported that the analogous phenylene-bridged BPMO-Pd catalyst (C, R1 = R2 = R3 = R4 = Ph) showed low activity (6.4 × 10^6 g·mol^{-1}·h^{-1}) and produced very low molecular weight polyethylene (M_n = 800). By comparison, the heteroaryl-bridged 2a showed significantly higher activities (> 2.4 × 10^9 g·mol^{-1}·h^{-1}), but the molecular weight only increased by 3 times. Expectedly, both 2b with electron-donating group and 2d with bulkier group further enhanced the activities by 3–5 times and increased the molecular weight by 3 times (Table 1, entries 3, 7, and 15). Note that the activities markedly increased when ethylene pressure increased from 5 bar to 10 bar, but this trend was less prominent when ethylene pressure further elevated from 10 bar to 20 bar (Table 1, entries 5–7), suggesting that the active sites became saturated at higher ethylene concentration. In addition, the polymer molecular weights roughly decreased with increasing ethylene pressures, indicating the presence of serious chain transfer to ethylene monomer.

To investigate the effect of connectivity of P,O donors on catalytic behavior, 1 and 2b were compared. 2b displayed more than twice higher activity than 1 under otherwise identical conditions (e.g. 20 bar, 8.7 × 10^6 versus 2.0 × 10^7 g·mol^{-1}·h^{-1}). These two catalysts produced polymers with substantially the same molecular weight under low ethylene pressure (M_n = 11000). The molecular weight of the polymer produced by 1 slightly altered with the increase of ethylene pressure, while the decrease of molecular weight for 2b took place due to the more serious chain transfer to monomer (Table 1, entries 5–7). Moreover, the melting point of the polymers with the same molecular weight prepared by the two catalysts also differed, indicating that the two catalysts generated different branching densities. Calculation from 1H-NMR spectra verified that the branching densities of the polymer produced by 2b (6–10 brs/1000C) were higher than those by 1 (≤ 2 brs/1000C). Meanwhile, the polymer branching was sensitive to polymerization temperature, and highly linear polyethylene (< 1 brs/1000C) could be obtained at 60 °C (Table 1, entries 8 and 16) with high T_m. At the first glance, these results seem to be somewhat confusing, as catalysts with higher steric hindrance generally give higher molecular weight polymers with lower branching content. We thus believe that the small difference in steric hindrance (%V_{bur} 48.2 (2b) versus 46.8 (1)) does not cause a decisive influence, and that the difference between the chain transfer tendency and the aforementioned catalytic activity is more likely to be electronic reason due to the different connectivity (2,3- versus 3,2-).

Time-dependence ethylene polymerization studies using 2b (80 °C, 2 μmol cat., 1.2 equiv. NaBARF, ethylene = 5 bar, toluene = 96 mL, CH2Cl2 = 4 mL) showed no obvious attenuation in activity for this catalyst from 15 min to 60 min (Fig. 3), indicating that the catalyst has excellent thermal stability under high temperature. Catalyst 1 also showed good thermal stability under these conditions, but the catalytic activities were about half lower than those of 2b.

Ethylene Copolymerization with Polar Monomers

2a–2d/NaBARF were first used to copolymerize ethylene with methyl acrylate (MA). Catalyst 2a was completely deactivated in the presence of 1 mol·L^{-1} of MA (Table 2, entry 1), although it exhibited satisfactory activity for ethylene homopolymerization. Apart from the lower basic catalytic activity for ethylene, this may also originate from less protection due to the lack of steric hindrance around the metal center for 2a. This phenomenon has been also observed in phosphine-sulfonate Pd[47] and phosphino-phenolate Ni catalysts,[28] where —PPH2 substituted catalysts performed poorly in the presence of polar monomers. However, 2b–2d were active for these copolymerizations, giving highly linear ethylene/MA copolymers. The incorporation could be adjusted by changing the concentration of MA or the pressure of ethylene (Table 2, entries 2–4). Lowering temperature resulted in decrease of MA incorporation (Table 2, entry 4 versus 5). Considering the thermally less stable nature of 2c, copolymerizations were carried out at 60 °C. The MA incorporation was clearly lower than that using 2b (Table 2, entry 5 mol% versus 7 mol%, 1.9 mol% versus 0.5 mol%), in line with the results reported by Nozaki.[35] We believe that it can be partly attributed to the aforementioned crowded steric environment around metal center for 2c besides the electronic effect. Considering the connectivity effect, under otherwise identical conditions, 2b gave a lower MA incorporation than 1, which may be related to a slightly higher %V_{bur} in 2b. In addition, 2b was better than bulkier 2d (Table 2, entry 2 versus 8) in terms of both activity and MA incorporation. As anticipated, 2a was also deactivated by 1 mol·L^{-1} of AA that has dual poisoning effects due to protonation and coordination (Table 2, entry 9). In contrast, 2b showed good activity (8.0 × 10^4 g·mol^{-1}·h^{-1}) for the ethylene/AA copolymerization (Table 2, entry 10). The incorporation nearly doubled when the AA concentration was increased from 1 mol·L^{-1} to 2 mol·L^{-1} (Table 2, entry 10 versus 11), which could also be achieved by reducing ethylene pressure (Table 2, entry 10 versus 12). Compared to 1,[43] 2b gave a slightly lower AA incorporation (3.9 mol% versus 2.4 mol%). Again, the electron-withdrawing 2c and the bulkier 2d showed very limited incorporation of AA (Table 2, entries 14–17), possibly due to more congested environment.

Since 2b–2d exhibited satisfactorily catalytic activity and insertion ability in the copolymerization of ethylene with MA
and AA, we further expanded the scope of polar monomers to which these catalysts are applied. Vinyl trimethoxysilane (VTMoS) was first tried for the copolymerization that was accessible using phosphine-sulfonate[48,49] and α-dimine catalysts,[13,30] although I was inactive and 2b only displayed low catalytic activity (Table 2, entry 18). Furthermore, 2b and 2c were able to copolymerize ethylene with allyl acetate (AAC), but the copolymerization of ethylene with vinyl acetate (VAc) only generated polymer without VAc incorporation. We subsequently tried the more challenging polar monomers acrylonitrile (AN) which could not be incorporated using 2a. We subsequently tried the more challenging polar monomers acrylonitrile (AN) which could not be incorporated using I,[43] By using 2b, however, both end-capped and backbone comonomer signals were observed in 1H-NMR spectrum of the copolymers, demonstrating the beneficial effects of P,O donor position on the catalytic performance. We also tried long chain polar monomers containing $-\text{Cl}$ or $-\text{COOMe}$ groups. In the presence of 1 mol·L$^{-1}$ of methyl 10-undecenoate (UA), the catalytic activity was greatly suppressed, with 5.1 mol% of the comonomer built into the polymer chain. However, it is worth noting that 6-chloro-1-hexene (6-Cl-Hex) was copolymerized with ethylene using 2b with very high activity (1.0 × 106 g·mol$^{-1}$·h$^{-1}$), giving linear copolymers with 5.3 mol% incorporation.

CONCLUSIONS

By altering the position of P,O donor fragments on the asymmetric benzothiophene backbone, a series of new BPMO-Pd complexes with different steric and electronic effects have been prepared and fully characterized. In the presence of NaBArf, these catalysts showed remarkably high activities for ethylene copolymerization. 2b (2-P=O, 3-P=O) was more active than the counterpart I (2-P, 3-P=O), indicating the pivotal role of connectivity position of donors. Moreover, these catalysts were able to copolymerize ethylene with various challenging polar monomers with reasonable activities and incorporations to give functionalized linear copolymers. Compared to the counterpart I, a broader scope of polar comonomers including VTMoS, AN, 6-Cl-Hex, and UA could be applied to ethylene copolymerization using 2b. This work suggests that installation of coordination groups at different positions of the backbone is a facile way to modulate the catalytic properties. The easily modified nature of asymmetric heterocyclic ligand backbones allows this method to avoid the tedious organic synthesis steps required for designing versatile phosphine(oxide) donors to some extent.

Electronic Supplementary Information

Electronic supplementary information (ESI) is available free of charge in the online version of this article at

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (No. 21871250), the Jilin Provincial Science and Technology Department Program (No. 20190201009JC), and Shaanxi Provincial Natural Science Basic Research Program-Shaanxi Coal and Chemical Industry Group Co., Ltd. Joint Fund (No. 2019JLZ-02).

Table 2 Ethylene copolymerization with polar monomers using catalysts 2a–2d.

Entry	Cat.	T (°C)	P (bar)	Comonom. (mol·L$^{-1}$)	Yield (g)	Activity b	X− (mol%)	M_n d × 103	M_w/M_n d	T_m e (°C)	Brs f
1 2a	80	10	MA (1.0)	0	110.4	<1	6.3	2.0	116.2	<1	
2 2b	80	10	MA (1.0)	0.54	2.7	3.6	2.2	108.9	1		
3 2b	80	10	MA (2.0)	0.27	2.7	3.6	2.2	108.9	1		
4 2b	80	10	MA (1.0)	0.16	1.6	3.4	4.5	110.4	1		
5 2b	60	5	MA (1.0)	0.13	1.3	1.9	8.5	117.1	<1		
6 2c	60	10	MA (1.0)	1.66	16.6	0.3	5.3	129.0	<1		
7 2c	60	5	MA (1.0)	0.57	5.7	0.5	4.6	127.1	<1		
8 2d	80	10	MA (1.0)	0.12	1.2	0.9	3.9	20	124.7	2	
9 2a	80	10	AA (1.0)	0	–	–	–	–	–	–	
10 2b	80	10	AA (1.0)	0.80	8.0	1.3	4.2	2.1	123.9	<1	
11 2b	80	10	AA (2.0)	0.32	3.2	2.4	1.6	3.0	109.5	<1	
12 2b	80	5	AA (1.0)	0.24	2.4	2.6	1.9	3.1	115.8	1	
13 2b	60	5	AA (1.0)	0.14	1.4	0.9	6.8	2.0	122.4	2	
14 2c	60	10	AA (1.0)	2.29	22.9	n.d.	3.0	1.8	128.1	<1	
15 2c	60	5	AA (1.0)	0.71	7.1	n.d.	2.4	1.8	126.3	<1	
16 2c	60	5	AA (2.0)	0.13	1.3	0.3	0.9	2.2	111.1	1	
17 2d	80	10	AA (1.0)	0.19	1.9	0.4	6.5	2.0	128.9	2	
18 2b	80	10	VTMoS (1.0)	0.02	0.5	2.1	4.6	5.3	109.6	1	
19 2b	80	10	Ac (1.0)	0.22	5.5	1.1	2.3	2.3	120.2	<1	
20 2c	60	5	Ac (1.0)	0.09	9.0	0.8	1.8	2.1	121.8	2	
21 2b	80	10	VAc (1.0)	0.09	2.3	0	3.4	2.7	129.1	1	
22 2b	80	10	AN (1.0)	0.25	6.3	0.8	1.2	2.1	122.4	<1	
23 2b	80	10	6-Cl-Hex (1.0)	10.10	101.0	5.3	2.9	2.8	103.5	2	
24 2b	80	5	UA (1.0)	0.05	5.0	5.1	7.2	2.0	92.4	1	

a Reaction conditions: catalyst (10 μmol), NaBArf (1.2 equiv.), BHT (30 mg), toluene/CH$_2$Cl$_2$ (46 mL/4 mL), time (1.0 h), 750 r·min$^{-1}$, unless noted otherwise; b Activity is in unit of 104 g·mol$^{-1}$·h$^{-1}$; c Determined by 1H-NMR in CD$_2$Cl$_2$ at 110 °C; d Determined by GPC in 1,2,4-trichlorobenzene at 150 °C versus linear polystyrene standards, and corrected by universal calibration versus linear polyethylene via Mark-Houwink-Sakurada equation; e Determined by DSC (second heating); f Number of branches per 1000C, as determined by 1H-NMR in CD$_2$Cl$_2$ at 110 °C; g Time, 4.0 h.

Electronic Supplementary Information

Electronic supplementary information (ESI) is available free of charge in the online version of this article at
REFERENCES

1. Dong, J. Y.; Hu, Y. L. Design and synthesis of structurally well-defined functional polyolefins via transition metal-mediated olefin polymerization chemistry. *Coord. Chem. Rev.* 2006, 250, 47–65.

2. Nakamura, A.; Ito, S.; Nozaki, K. Coordination-insertion copolymerization of fundamental polar monomers. *Chem. Rev.* 2009, 109, 5215–5244.

3. Mu, H.; Pan, L.; Song, D.; Li, Y. Neutral nickel catalysts for olefin homo- and copolymerization: relationships between catalyst structure and catalytic properties. *Chem. Rev.* 2015, 115, 12091–12137.

4. Guo, L.; Dai, S.; Sui, X.; Chen, C. Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization. *ACS Catal.* 2016, 6, 428–441.

5. Ittel, S. D.; Johnson, L. K.; Brookhart, M. Late-metal catalysts for ethylene homo- and copolymerization. *Chem. Rev.* 2000, 100, 1169–1203.

6. Chen, M.; Chen, C. L. Polar and functionalized polyolefins: new catalysts, new modulation strategies and new materials. *Acta Polym. Sinica* (in Chinese) 2018, 1372–1384.

7. Jian, Z. B. Synthesis of functionalized polyolefins: design from catalysts to polar monomers. *Acta Polym. Sinica* (in Chinese) 2018, 1359–1371.

8. Tan, C.; Chen, C. L. Emerging palladium and nickel catalysts for copolymerization of olefins with polar monomers. *Angew. Chem. Int. Ed.* 2019, 58, 7192–7200.

9. Wang, F. Z.; Chen, C. L. A continuing legend: the Brookhart-type α-dilimine nickel and palladium catalysts. *Polym. Chem.* 2019, 10, 2354–2369.

10. Johnson, L. K.; Mecking, S.; Brookhart, M. Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts. *J. Am. Chem. Soc.* 1996, 118, 267–268.

11. Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M. Mechanistic studies of the palladium-catalyzed copolymerization of ethylene and α-olefins with methyl acrylate. *J. Am. Chem. Soc.* 1998, 120, 888–899.

12. Luo, S. J.; Jordan, R. F. Copolymerization of silyl vinyl ethers with olefins by (α-dilimine)PdR+. *J. Am. Chem. Soc.* 2006, 128, 12072–12073.

13. Chen, Z.; Liu, W.; Daugulis, O.; Brookhart, M. Mechanistic studies of Pd(II)-catalyzed copolymerization of ethylene and vinylalkoxysilanes: evidence for a β-silyl elimination chain transfer mechanism. *J. Am. Chem. Soc.* 2016, 138, 16120–16129.

14. Wang, J. L.; Zhang, K. J.; Ye, Z. B. One-pot synthesis of hyperbranched polyolefins tethered with polymerizable methacryloyl groups via selective ethylene copolymerization with heterofunctional comonomers by chain walking Pd-dilimine catalysis. *Macromolecules* 2008, 41, 2290–2293.

15. Xia, X. W.; Ye, Z. B.; Morgan, S.; Lu, J. M. “Core-first” synthesis of multilistar polyolefins with a hyperbranched core and linear arms via ethylene multifunctional “living” polymerization with hyperbranched polyolefins encapsulating multinuclear covalently tethered Pd-dilimine catalysts. *Macromolecules* 2010, 43, 4889–4901.

16. Ye, Z. B.; Xu, L. X.; Dong, Z. M.; Xiang, P. Designing polyolefins of complex chain architectures via Pd-dilimine-catalyzed “living” ethylene polymerization. *Chem. Commun.* 2013, 49, 6235–6235.

17. Leung, D. H.; Ziller, J. W.; Guan, Z. Axial donating ligands: a new strategy for late transition metal olefin polymerization catalysis. *J. Am. Chem. Soc.* 2008, 130, 7538–7539.

18. Wang, Z.; Liu, Q.; Solan, G. A.; Sun, W. H. Recent advances in Ni-mediated ethylene chain growth: nimine-donor ligand effects on catalytic activity, thermal stability and oligo-/polymer structure. *Coord. Chem. Rev.* 2017, 350, 68–83.

19. Rhinehart, J. L.; Brown, I. A.; Long, B. K. A robust Ni(II) α-dilimine catalyst for high temperature ethylene polymerization. *J. Am. Chem. Soc.* 2013, 135, 16316–16319.

20. Zhong, L.; Li, G.; Liang, G.; Gao, H.; Wu, Q. Enhancing thermal stability and living fashion in α-dilimine-nickel-catalyzed (co)polymerization of ethylene and polar monomer by increasing the steric bulk of ligand backbone. *Macromolecules* 2017, 50, 2675–2682.

21. Chen, X. L.; Gao, J.; Liao, H.; Gao, H. Y.; Wu, Q. Synthesis, characterization, and catalytic ethylene oligomerization of pyridine-imine palladium complexes. *Chinese J. Polym. Sci.* 2018, 36, 176–184.

22. Dai, S.; Chen, C. Direct synthesis of functionalized high-molecular-weight polyethylene by copolymerization of ethylene with polar monomers. *Angew. Chem. Int. Ed.* 2016, 55, 13281–13285.

23. Dai, S.; Sui, X.; Chen, C. Highly robust palladium(II) α-dilimine catalysts for slow-chain-walking polymerization of ethylene and copolymerization with methyl acrylate. Angew. Chem. Int. Ed. 2015, 54, 9946–9953.

24. Wang, F. Z.; Tian, S. S.; Li, R. P.; Li, W. M.; Chen, C. L. Ligand steric effects on naphthyl-α-dilimine nickel catalyzed α-olefin polymerization. *Chinese J. Polym. Sci.* 2018, 36, 157–162.

25. Drent, E.; van Dijk, R.; van Ginkel, R.; van Oort, B.; Pugh, R. I. Palladium-catalysed copolymerisation of ethene with alkylacrylates: polar comonomer built into the linear polymer chain. *Chem. Commun.* 2002, 744–745.

26. Nakamura, A.; Asselman, T. M. J.; Claverie, J.; Goodall, B.; Jordan, R. F.; Mecking, S.; Rieger, B.; Sen, A.; van Leeuwen, P. W. N. M.; Nozaki, K. Ortho-phosphinobenzensulfonate: a superb ligand for palladium-catalyzed coordination-insertion copolymerization of polar vinyl monomers. *Acc. Chem. Res.* 2013, 46, 1438–1449.

27. Xin, B. S.; Sato, N.; Tanna, A.; Oishi, Y.; Konishi, Y.; Shimizu, F. Nickel catalyzed copolymerization of ethylene and alkyl acrylates. *J. Am. Chem. Soc.* 2017, 139, 3611–3614.

28. Zhang, Y.; Mu, H.; Pan, L.; Wang, X.; Li, Y. Robust bulky [P,0] neutral nickel catalysts for copolymerization of ethylene with polar vinyl monomers. *ACS Catal.* 2018, 8, 5963–5976.

29. Zhang, Y.; Mu, H.; Wang, X.; Pan, L.; Li, Y. Elaborate tuning in ligand makes a big difference in catalytic performance: bulky nickel catalysts for (co)polymerization of ethylene with promising vinyl polar monomers. *ChemCatChem* 2019, 11, 2329–2340.

30. Carrow, B. P.; Nozaki, K. Synthesis of functional polyolefins using cationic bisphosphine monoxide-palladium complexes. *J. Am. Chem. Soc.* 2012, 134, 8802–8805.

31. Contrella, N. D.; Sampson, J. R.; Jordan, R. F. Copolymerization of ethylene and methyl acrylate by cationic palladium catalysts that contain phosphine-diethyl phosphonate ancillary ligands. *Organometallics* 2014, 33, 3546–3555.

32. Sui, X.; Dai, S.; Chen, C. Ethylene polymerization and copolymerization with polar monomers by cationic phosphoric amide palladium complexes. *ACS Catal.* 2015, 5, 5932–5937.

33. Mitsushige, Y.; Carrow, B. P.; Ito, S.; Nozaki, K. Ligand-controlled insertion regioselectivity accelerates copolymerization of ethylene with methyl acrylate by cationic bisphosphine monoxide-palladium catalysts. *Chem. Sci.* 2016, 7, 737–744.

34. Johnson, A. M.; Contrella, N. D.; Sampson, J. R.; Zheng, M.; Jordan, R. F. Allosteric effects in ethylene polymerization catalysis. Enhancement of performance of phosphine-phosphinophosphate and phosphinophosphate palladium allyl catalysts by remote binding of B(C₆F₅)₃. *Organometallics* 2017, 36, 4990–5002.

35. Chen, M.; Chen, C. A versatile ligand platform for palladium- and...
nickel-catalyzed ethylene copolymerization with polar monomers. *Angew. Chem. Int. Ed.* 2018, 57, 3094−3098.

36 Mitsushige, Y.; Yasuda, H.; Carrow, B. P.; Ito, S.; Kobayashi, M.; Tayano, T.; Watanabe, Y.; Okuno, Y.; Hayashi, S.; Kuroda, J.; Okumura, Y.; Nozaki, K. Methylene-bridged bisphosphine monoxide ligands for palladium-catalyzed copolymerization of ethylene and polar monomers. *ACS Macro Lett.* 2018, 7, 305−311.

37 Zhang, W.; Waddell, P. M.; Tiedemann, M. A.; Padilla, C. E.; Mei, J.; Chen, L.; Carrow, B. P. Electron-rich metal cations enable synthesis of high molecular weight, linear functional polyethylenes. *J. Am. Chem. Soc.* 2018, 140, 8841−8850.

38 Sun, J.; Chen, M.; Luo, G.; Chen, C.; Luo, Y. Diphosphazane-monoxide and phosphine-sulfonate palladium catalyzed ethylene copolymerization with polar monomers: a computational study. *Organometallics* 2019, 38, 638−646.

39 Chen, M.; Yang, B.; Chen, C. Redox-controlled olefin (co)polymerization catalyzed by ferrocene-bridged phosphine-sulfonate palladium complexes. *Angew. Chem. Int. Ed.* 2015, 54, 15520−15524.

40 Zábranský, M.; Oberhauser, W.; Manca, G.; Císařová, I.; Štěpnička, P. Selective ethylene dimerization by palladium(II) complexes bearing a phosphinoferrocene sulfonate ligand. *Organometallics* 2019, 38, 1534−1543.

41 Wu, Z.; Chen, M.; Chen, C. Ethylene polymerization and copolymerization by palladium and nickel catalysts containing naphthalene-bridged phosphine-sulfonate ligands. *Organometallics* 2016, 35, 1472−1479.

42 Wu, Z.; Hong, C.; Du, H.; Pang, W.; Chen, C. Influence of ligand backbone structure and connectivity on the properties of phosphine-sulfonate Pd(II)/Ni(II) catalysts. *Polymers* 2017, 9, 168.

43 Ye, J.; Mu, H.; Wang, Z.; Jian, Z. Heteroaryl backbone strategy in bisphosphine monoxide palladium-catalyzed ethylene polymerization and copolymerization with polar monomers. *Organometallics* 2019, 38, 2990−2997.

44 Falivene, L.; Credendino, R.; Poeta, A.; Petta, A.; Serra, L.; Oliva, R.; Scarano, V.; Cavallo, L. Sambvca 2. A web tool for analyzing catalytic pockets with topographic steric maps. *Organometallics* 2016, 35, 2286−2293.

45 Wang, J.; Yao, E.; Chen, Z.; Ma, Y. G. Fluorinated nickel(II) phenoxyiminato catalysts: exploring the role of fluorine atoms in controlling polyethylene productivities and microstructures. *Macromolecules* 2015, 48, 5504−5510.

46 Xu, D.; Zhao, X.; Chen, Z.; T.; Ma, Y. G. Synergistic effect and fluorination effect in ethylene polymerization by nickel phenoxyiminato catalysts. *Chinese J. Polym. Sci.* 2018, 36, 244−251.

47 Hearley, A. K.; Nowack R. J.; Rieger, B. New single-site palladium catalysts for the nonalternating copolymerization of ethylene and carbon monoxide. *Organometallics* 2005, 24, 2755−2763.

48 Chen, M.; Chen, C. Rational design of high-performance phosphate sulfonate nickel catalysts for ethylene polymerization and copolymerization with polar monomers. *ACS Catal.* 2017, 7, 1308−1312.

49 Xia, J.; Zhang, Y.; Zhang, J.; Jian, Z. High-performance neutral phosphate-sulfonate nickel(II) catalysts for efficient ethylene polymerization and copolymerization with polar monomers. *Organometallics* 2019, 38, 1118−1126.

50 Chen, Z.; Leatherman, M. D.; Daugulis, O.; Brookhart, M. Nickel-catalyzed copolymerization of ethylene and vinyltrialkoxysilanes: catalytic production of cross-linkable polyethylene and elucidation of the chain-growth mechanism. *J. Am. Chem. Soc.* 2017, 139, 16013−16022.

https://doi.org/10.1007/s10118-020-2359-0