TBX4 variants and pulmonary diseases: getting out of the ‘Box’

Meindina G. Haarman\(^a\), Wilhelmina S. Kerstjens-Frederikse\(^b\), and Rolf M.F. Berger\(^a\)

Purpose of review
In 2013, the association between T-Box factor 4 (TBX4) variants and pulmonary arterial hypertension (PAH) has first been described. Now – in 2020 – growing evidence is emerging indicating that TBX4 variants associate with a wide spectrum of lung disorders.

Recent findings
TBX4 variants are enriched in both children and adults with PAH. The clinical phenotype associated with a TBX4 variant seems to be milder than that in other PAH-associated gene mutations. Further, TBX4 variants have increasingly been associated with a variety of clinical and histopathological phenotypes, including lethal developmental parenchymal lung diseases such as not only acinar dysplasia in neonates, but also less outspoken parenchymal lung diseases in children and adults.

Summary
The clinical phenotype of a TBX4 variant has recently been recognised to expand from bone disorders to different types of lung diseases. Recent data suggest that variants of TBX4, a transcription factor known to be an important regulator in embryonic development, are not rare in both children and adults with PAH and/or developmental parenchymal lung diseases.

Keywords
lung disease, pulmonary arterial hypertension, T-Box factor 4

INTRODUCTION
In 1927, Nadezhda Alexandrovna Dobrovolskaya-Zavadskaya described a heterozygous mutation in mice that affected both tail length and the sacral vertebrae [1]. This mutation was called *brachyury* (short tail, Greek) mutation. Later, because of the T(tail)-locus of the gene product, the mutation was renamed into T-Box mutation [2,3]. In 1996, T-Box transcription factor 4 (TBX4) was identified, in a series of other T-Box genes (TBX1–5), as a gene highly expressed during organogenesis [4,5].

This review deepens into the TBX4 gene and its variants in pulmonary diseases, since in the recent years, the spectrum of clinical phenotypes associated with variants of the TBX4 gene [including both mutations and copy number variations (CNVs)] is expanding from bone abnormalities to conditions affecting other organs, especially the lungs. We aim to discuss the current knowledge on the role of TBX4 variants in human lung diseases.

EMBRYOGENESIS
T-Box genes are DNA-binding transcription factors that play a crucial role during embryogenesis [6]. The TBX4 gene is located on chromosome 17q23.2 and has shown to be important for hindlimb
and pelvic development in both animals and humans [5,7,8]. Animal studies have also suggested an important role for TBX4 in the formation of the body wall, development of external genitalia and anorectal development [5,9,10].

In addition, TBX4 is expressed in the lung mesenchyme, already at an early stage during embryogenesis [10]. Together with TBX5, TBX4 regulates the process of lung branching by controlling the expression of the secreted fibroblast growth factor (FGF)10 and activation of FGF10 signalling [11,12]. FGF10 is expressed in the mesenchyme surrounding the distal epithelial tips that mark the site of future bud formation and acts by mainly binding to the FGF receptor 2b [13–15]. FGF10 is involved in the initial production of paired buds of endoderm from the ventral foregut and their eventual outgrowth forming the precursors of the main bronchi [14]. Second, FGF10 induces new bud formation and therefore plays a key role in branching morphogenesis [14,16].

Another important regulatory gene that is affected by TBX4 and TBX5 signalling is canonical wingless-2 (WNT2), a mesenchymal protein that is essential for lung specification [11,17].

Reduction of TBX4 or TBX5 leads to a severe decrease in branching by a loss of expression of both FGF10 and WNT2. This results in a defect of formation of lung lobes and failure of lung lobe separation, eventually leading to a smaller overall lung size [11,18]. Absence of both TBX4 and TBX5 leads to complete branching arrest [19].

In addition, TBX4 and TBX5, via SOX9 and independently of the FGF10 signalling pathway, regulate the condensation of cells to form the cartilage rings of the trachea and bronchi, and also the development of the smooth muscle cells in the trachea [11,20]. Reduction of both TBX4 and TBX5 causes a decreased number of tracheal cartilage rings and can therefore result in tracheomalacia or tracheal stenosis [11]. TBX4 has also been shown to be present in pulmonary veins and arteries, suggesting that pulmonary vessels arise from the surrounding lung mesenchyme [10]. These experimental data, derived from cell and animal studies, indicate rather convincingly that TBX4 plays an important role in foetal development, including both parenchymal and vascular lung development.

KEY POINTS

- TBX4 variants are associated with idiopathic and hereditary pulmonary arterial hypertension (IPAH/HPAH) and seem to be enriched in children compared with adults.
- TBX4 variants are associated with a variety of parenchymal lung diseases, ranging from lethal neonatal developmental lung diseases, including acinar dysplasia and congenital alveolar dysplasia, to milder forms of growth abnormalities.
- Both infants, children and adults can present with TBX4-associated parenchymal lung diseases.
- The presence of parenchymal lung disease in a patient with TBX4-associated pulmonary hypertension (PH) may complicate clinical classification of the patient in HPAH or group 3 PH associated with developmental lung disease.

CLINICAL PHENOTYPES

Clinical consequences of TBX4 variants in humans were first revealed in 2004, when the association between a spectrum of limb and skeletal abnormalities, known as small patella syndrome (SPS) or ischiocoxopodopatellar syndrome, was identified (Fig. 1) [22]. This syndrome causes aplasia or hypoplasia of the patella and developmental anomalies of the pelvis and feet.

In 2013, Kerstjens-Frederikse et al. [23] discovered that mutations in the TBX4 gene or deletions encompassing the TBX4 gene were associated with pulmonary arterial hypertension (PAH) in childhood. Pulmonary hypertension, an increased pulmonary arterial pressure, is a haemodynamic symptom, and its underlying diseases are characterised by a clinical classification (Table 1) [24,25]. PAH is a specific form of PH and is a rare, progressive and often lethal disease of the pulmonary vasculature, characterised by an increased pulmonary vascular resistance, leading to right ventricular failure and eventually death [26,27]. It may be associated with a variety of underlying diseases, including connective tissue diseases, congenital heart diseases, portal hypertension, HIV infection and drugs. In the absence of associated conditions, it is classified as idiopathic PAH (IPAH) or it can be caused by a genetic defect (hereditary PAH; HPAH) (Table 1) [24,25]. In recent years, a progressive number of gene mutations is being identified as cause for PAH, including mutations in bone morphogenetic protein receptor type II (BMPR2) being the most frequently found gene mutation in both children and adults with PAH [28–30]. Further, mutations in activin receptor-like kinase 1 (ACVRL1), endoglin (ENG), potassium channel subfamily K member 3 (KCNK3), eukaryotic translation initiation factor 2-alpha kinase 4 (EIF2AK4), Caveolin-1 (CAV1) and SMAD9 have currently been identified as associated with the occurrence of PAH, and this list is growing [31–36].
In the study of Kerstjens-Frederikse et al. [23], genetic analyses in a cohort of 20 children with IPAH revealed deletions at 17q23.2 with an overlapping region harbouring the \(\text{TBX4} \) gene in three children with PAH and mental retardation, and an intragenic \(\text{TBX4} \) mutation in three children with PAH with normal intelligence. All appeared to have skeletal malformations characteristic for SPS.

Since the discovery of the association between \(\text{TBX4} \) variants and paediatric PAH, different cohorts confirmed an enrichment of \(\text{TBX4} \) variants in childhood P(A)H. Levy et al. [33] reported three \(\text{TBX4} \) truncating mutations in a subgroup of 40 paediatric IPAH/HPAH patients (8%). Zhu et al. [37*] found in a cohort of 155 patients with paediatric-onset IPAH/HPAH that \(\text{TBX4} \) variants were present in a substantial proportion of children (8%). Of these, 5% were pathogenic and likely pathogenic (LP) variants in \(\text{TBX4} \), while another 3% were variants of unknown significance (VUS).

In summary, the prevalence of \(\text{TBX4} \) variants in children with IPAH/HPAH is estimated 7–8%, which makes \(\text{TBX4} \), after \(\text{BMPR2} \), the second most frequently affected gene in these children [33,37*,38].

A lower number of \(\text{TBX4} \) variants seemed to be present in the adult population with IPAH/HPAH. Kerstjens-Frederikse et al. [23] in the same study, as previously mentioned, identified two \(\text{TBX4} \) variants (one LP, one VUS) in a cohort of 49 adults with IPAH. In a larger cohort of 257 adults with IPAH/HPAH, Zhu et al. [37*] identified three adult patients with a \(\text{TBX4} \) variant (one LP, two VUS) (1.2%). Navas et al. [39] reported a prevalence of 2.4% of \(\text{TBX4} \) variants in patients with IPAH/HPAH. In a cohort of 966 adult patients with IPAH/HPAH, Gräf et al. [40] reported that 1.4% of the patients had a \(\text{TBX4} \) variant. Finally, in a French cohort, Eyries et al. [38] reported that 2.6% of the patients with IPAH/HPAH had a \(\text{TBX4} \) variant, concluding that also in adulthood PAH, \(\text{TBX4} \) may be the most frequently mutated gene after \(\text{BMPR2} \). In summary, the overall prevalence of \(\text{TBX4} \) variants in adults with IPAH/HPAH is estimated around 1.7%.

The reason why \(\text{TBX4} \) variants seem to be more frequent in childhood-onset compared with adulthood-onset IPAH/HPAH is insufficiently clear. A detrimental disease course of \(\text{TBX4} \)-associated HPAH with early decease before reaching adulthood would have explained such phenomenon, however...
Table 1. Clinical classification of pulmonary hypertension (PH) [24,25]

1. PH
 1.1 Idiopathic PAH
 1.2 Heritable PAH
 1.3 Drug- and toxin-induced PAH
 1.4 PAH associated with:
 1.4.1 Connective tissue disease
 1.4.2 HIV infection
 1.4.3 Portal hypertension
 1.4.4 Congenital heart disease
 1.4.5 Schistosomiasis
 1.5 PAH longterm responders to calcium channel blockers
 1.6 PAH with overt features of venous/capillaries (PVOD/PCH) involvement
 1.7 Persistent PH of the newborn syndrome

2. PH due to left heart disease
 2.1 PH due to heart failure with preserved LVEF
 2.2 PH due to heart failure with reduced LVEF
 2.3 Valvular heart disease
 2.4 Congenital/acquired cardiovascular conditions leading to postcapillary PH

3. PH due to lung diseases and/or hypoxia
 3.1 Obstructive lung disease
 3.2 Restrictive lung disease
 3.3 Other lung disease with mixed restrictive/obstructive pattern
 3.4 Hypoxia without lung disease
 3.5 Developmental lung disorders

4. PH due to pulmonary artery obstructions
 4.1 Chronic thromboembolic PH
 4.2 Other pulmonary artery obstructions

5. PH with unclear and/or multifactorial mechanisms
 5.1 Haematological disorders
 5.2 Systemic and metabolic disorders
 5.3 Others
 5.4 Complex congenital heart disease

LVEF, left ventricular ejection fraction; PAH, pulmonary arterial hypertension; PCH, pulmonary capillary haemangiomatosis; PVOD, pulmonary veno-occlusive disease.

Currently available, preliminary outcome data invalidate such speculation. The clinical implications of the presence of TBX4 variants in children with PAH have been scarcely studied. Where BMPR2 mutation carriers have shown to have a worse survival in both children and adults with HPAH when compared with noncarriers, children with TBX4 variants in a Dutch national cohort of 70 children with PAH showed less severe clinical presentation and more favourable survival compared with BMPR2 mutation carriers, similar to nonmutation carriers (own data). Similar findings have been reported by Levy et al. [33] in a French cohort of 66 children with PAH.

Navas et al. [39] confirmed these findings in adults with IPAH/HPAH and showed that patients with a TBX4 variant tended to have a milder clinical presentation compared with patients with IPAH, BMPR2 mutation carriers, KCNK3 mutation carriers and patients with familial PAH without a mutation. Also, survival in patients with a TBX4 variant was better compared with patients with a BMPR2 mutation or a KCNK3 mutation.

Zhu et al. [37*] reported that HPAH patients carrying a TBX4 variant had a 20-year younger age-of-onset than BMPR2 mutation carriers (mean ± SD: 7.9 ± 9.0 compared with 28.2 ± 15.4, respectively, P < 0.0001). Although the clinical phenotype of PAH in TBX4 variant carriers in general seems to be milder than in BMPR2 mutation carriers, it is not necessarily favourable, and varies from mild/moderate PAH to also more severe forms of PAH, eventually fatal or requiring lung transplantation [37*].

Until today, available clinical data do not justify patients with HPAH harbouring a TBX4 variant to be treated differently than patients with other forms of PAH-associated conditions.

TBX4 AND PARENCHYMAL LUNG DISEASES

After the first discovery of a role for TBX4 variants in the development of PAH, Szafranski et al. [41] described in 2016 a neonate with signs of acinar dysplasia (AcDys), a severe diffuse developmental lung disease, who showed to have a de novo TBX4 mutation. This was the first report suggesting a relation between a TBX4 variant and developmental parenchymal lung disease. Subsequently, in 2019, German et al. [42] described another case of a preterm born neonate with respiratory failure due to a diagnosis of AcDys, harbouring a deletion from chromosome 17q23.2 to 17q23.2 involving 14 genes including TBX4 (Fig. 2). In the same year, Karolak et al. [43**] described a cohort of 26 children with AcDys, congenital alveolar dysplasia (CAD) or other rare pulmonary hypoplasias and reported in 16 children, a TBX4 variant or FGF10 variant. In almost 50% of these cases, the developmental lung disease was accompanied by PH. Suhrie et al. [44] identified pathogenic TBX4 mutations in two cases of infants presenting with respiratory failure. One child had abnormal lung lobulation with marked deficiency in acinar/alveolar development, and eventually deceased. The other child had a lung biopsy that demonstrated areas of the lung with near normal alveolarisation adjacent to regions with deficient alveolar growth, characterised by simplified, cystically dilated alveolar spaces [45].

Galambos et al. [46**] subsequently further extended the spectrum of paediatric diffuse parenchymal lung disease associated with TBX4 variants. The authors described a cohort of 19 children with TBX4 variants, including six children with loss of the TBX4 gene due to 17q23 deletions and thirteen...
children with intragenic mutations. The majority of the children (63%) presented with a biphasic clinical course of neonatal hypoxic respiratory failure and persistent pulmonary hypertension of the neonate (PPHN), which seemed to resolve around the age of 1 month, but followed by chronic PH later in infancy or early childhood. Histopathological assessment was available in seven children and showed mainly signs of severe disruption of all compartments of distal lung development similar to CAD or AcDys, or signs of pulmonary interstitial glycogenosis (PIG). The children with a severe presentation of PPHN in the beginning of their life also showed more severe disruption of the distal lung development compared with children who were diagnosed later in childhood. Some children had prominent interstitial lung disease. This series unequivocally shows that

\textit{TBX4} variants are not only associated with lethal developmental lung diseases such as AcDys or CAD, but may also present with milder growth abnormalities or nonspecific interstitial lung diseases. Interestingly, a recent case report of Maurac et al. [47] suggests that such developmental growth anomalies are not necessarily associated with neonatal presentation. The authors describe a 34-year-old woman presenting with unexplained PAH and right heart failure [47]. On x-rays of the feet and the pelvis, the patient showed signs of SPS. Chest computed tomography (CT) revealed peripheral reticular lines, centrilobular nodules, thin-walled cysts in the upper lobes and an appearance resembling diverticula in the trachea and large bronchi. Lung biopsy from the left upper lobe showed densification foci of the lung parenchyma with cholesterol crystals. Although the histopathological abnormalities were not typical for developmental distal lung abnormalities, the tracheal abnormalities in this patient highlight a potential role of \textit{TBX4} in a disturbed development of the larger airways [11].

The studies described here strongly suggest that \textit{TBX4} variants can be associated with a broad spectrum of lung diseases with a wide age range of clinical presentations. Neonates and infants with \textit{TBX4} variants are clearly overrepresented in the reports on parenchymal lung diseases and authors have frequently used the terminology ‘developmental lung disease’. Different classifications for children’s interstitial and diffuse lung disease (chILD) have been proposed. The American Thoracic Society published a classification of chILD in 2013 where AcDys, CAD, alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) are classified as diffuse developmental disorders, whereas primary pulmonary hypoplasia is classified under growth abnormalities (Table 2) [48,49]. The structural changes seen in these diseases are associated with the different stages during lung embryogenesis in which growth arrest occurs; the pseudoglandular (AcDys), canalicular (CAD) and saccular/alveolar (both ACDMPV and primary pulmonary hypoplasia) phase [50]. Also, PIG, characterised by interstitial expansion due to increased mesenchymal cellularity, is regarded a disease of altered lung development [49,51]. Also, other diffuse lung diseases such as chronic neonatal lung disease (i.e. bronchopulmonary dysplasia), or surfactant dysfunction disorders (i.e. nonspecific interstitial pneumonia) are associated with disturbed or disrupted vascular and parenchymal lung development [46,47,48].

\textbf{ChILD is a complex spectrum of disorders with a high variety in clinical phenotypes for which the}
associated pathophysiology is insufficiently understood. Therefore, although the notable role of TBX4 in embryonic development may be tempting, the term ‘developmental lung disease’ as a common denominator in the phenotypical spectrum of TBX4-associated lung diseases should be used with caution.

The reason for the variety in clinical presentation in patients carrying a TBX4 variant remains unclear. It has been hypothesised that the type of mutation may determine both phenotype and its severity, but currently, there does not seem to be a pattern when comparing all described different mutations [41,46**,50**]. Genetic modifiers – coding or noncoding – may play a role in the variability of the phenotype. Karolak et al. demonstrated that all infants with developmental lung disease with either a TBX4 variant or FGF10 variant also harboured at least one noncoding mutation in BCAS3 (microtubule associated cell migration factor), which has overlap with the predicted regulatory elements that have been identified in the human foetal lung fibroblast cell line [43**,52]. However, children with deletions of chromosome 17q23.2, harbouring both TBX4 and BCAS3, do not necessarily present with lung disease or PAH [45].

Table 2. Classification scheme for paediatric diffuse lung disease [48]

I. Disorders more prevalent in infancy
A. Diffuse developmental disorders
1. Acinar dysplasia
2. Congenital alveolar dysplasia
3. Alveolar-capillary dysplasia with pulmonary vein misalignment
B. Growth abnormalities
1. Pulmonary hypoplasia
2. Chronic neonatal lung disease
A. Prematurity-related chronic lung disease (bronchopulmonary dysplasia)
B. Acquired chronic lung disease in term infants
3. Structural pulmonary changes with chromosomal abnormalities
A. Trisomy 21
B. Others
4. Associated with congenital heart disease in chromosomally normal children
C. Specific conditions of undefined aetiology
1. Pulmonary interstitial glycosenosis
2. Neuroendocrine cell hyperplasia of infancy
D. Surfactant dysfunction mutations and related disorders
1. SFTB genetic mutations – PAP and variant dominant histologic pattern
2. SFTC genetic mutations – CPI dominant histologic pattern; also DIP and NSIP
3. ABCA3 genetic mutations – PAP variant dominant pattern; also CPI, DIP, NSIP
4. Others with histology consistent with surfactant dysfunction disorder without a yet recognised genetic disorder

II. Disorders not specific to infancy
A. Disorders of the normal host
1. Infectious and postinfectious processes
2. Disorders related to environmental agents: hypersensitivity pneumonia, toxic inhalation
3. Aspiration syndromes
4. Eosinophilic syndromes
B. Disorders related to systemic disease processes
1. Immune-related disorders
2. Storage disease
3. Sarcoidosis
4. Langherhans cell histiocytosis
5. Malignant infiltrates
C. Disorders of the immunocompromised host
1. Opportunistic infection
2. Disorders related to therapeutic intervention
3. Disorders related to transplantation and rejection syndromes
4. Diffuse alveolar damage of unknown aetiology
D. Disorders masquerading as interstitial disease
1. Arterial hypertensive vasculopathy
2. Congestive vasculopathy, including veno-occlusive disease
3. Lymphatic disorders
4. Congestive changes related to cardiac dysfunction

III. Unclassified – includes end-stage disease, nondiagnostic biopsies and those with inadequate material

CPI, chronic pneumonitis of infancy; DIP, desquamative cell interstitial pneumonia; NSIP, nonspecific interstitial pneumonia; PAP, pulmonary alveolar proteinosis.
Karolak *et al.* [53] recently published a case report on an infant with PIG, harbouring both a TBX4 variant and a CTNNB1 mutation (associated with intellectual disability and neurodevelopmental abnormalities). The authors state that a heterozygous TBX4 variant alone may not be sufficient to cause lung disease and suggest that mixed phenotypes may be due to complex compound inheritance [54]. In addition, environmental and maternal/pregnancy-related factors may also influence the severity of the clinical phenotype [55].

DIAGNOSTICS

Characterising chILD is difficult especially in neonates [48]. Symptoms are nonspecific and neonatal presentation will complicate the diagnostic process. For a long time, lung biopsy for histopathological analyses has been the ultimate diagnostic, limited by high procedural risks and often low diagnostic yield. Genetic testing is gaining ground due to the identification of an increasing number of genetic causes for several interstitial lung diseases [48]. The presence of a certain mutation can have profound effects for clinical decision making: the dismal prognosis of a FOXF1 mutation causing ACDMPV will affect treatment decisions in a neonate dependent on intensive ventilatory support and will avoid the otherwise required lung biopsy [50**]. Standard testing for TBX4 variants in neonates with respiratory insufficiency has been proposed: Vincent *et al.* [50**] proposed to screen infants with AcDys, CAD or other lung hypoplasias on TBX4 variants when there is a family history of PAH. However, as long as the prevalence and incidence of TBX4 variants in neonates and the consequences in terms of treatment strategies are not defined, the role of standard testing on TBX4 variants is unclear.

CLASSIFICATION OF PULMONARY ARTERIAL HYPERTENSION ASSOCIATED WITH TBX4

During the most recent World Symposium on Pulmonary Hypertension in 2018, the clinical classification of PH was updated [25]. In this classification, unexplained PAH-associated TBX4 mutations are assigned to group 1 PAH (HPAH). The Pediatric Task Force introduced in Group 3: PH due to lung diseases and/or hypoxia, a subclass ‘PH associated with developmental lung disease’, in order to accommodate neonatal PH (other than PPHN) in the classification. Now, as TBX4 variants are frequently associated with developmental lung diseases, the appropriate classification of an infant or child with a TBX4 variant and PH becomes more complicated and may be hazardous. This forces the diagnosing physician to a meticulous assessment of any lung disease and, if present, its causal role in the presence of PH. This is obviously a challenging task in small infants, but crucial in defining optimal treatment strategy.

CONCLUSION

Animal studies have demonstrated an important role of the TBX4 gene in the embryonic development of limbs and tail mesoderm, the lung mesenchyme and the genital papilla [5,9]. The clinical phenotype of TBX4 variants in humans has expanded from bone disorders to vascular and parenchymal lung diseases and is likely to expand further. The enrichment of TBX4 variants in PAH justifies inclusion of this gene in genetic analyses in patients with PAH. Further, TBX4 variants have shown to contribute to diffuse lung diseases, especially but not exclusively in neonates, and seems to be multifaced. Importantly, the exact genotype-phenotype correlations have to be further ‘unboxed’.

Acknowledgements

None.

Financial support and sponsorship

This work was supported by the Sebald Fund.

Conflicts of interest

There are no conflicts of interest.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as: **of special interest** and ***of outstanding interest***

1. Dobrovolskaia-Zavadskaja N. On spontaneous tail mortification in newborn mice and on the existence of a ‘non-viable’ hereditary trait (factor). Soc Biol 1927; 97:116–118.
2. Hermann BG, Labeit S, Poustka A, et al. Cloning of the T gene required in mesoderm formation in the mouse. Nature 1990; 343:617–622.
3. Bollag RJ, Siegfried Z, Cebra-Thomas JA, et al. An ancient family of embryonically expressed mouse genes sharing a conserved protein motif with the T locus. Nat Genet 1994; 7:385–389.
4. Agulnik SI, Garvey N, Hancock S, et al. Evolution of mouse T-box genes by tandem duplication and cluster dispersion. Genetics 1996; 144:249–254.
5. Chapman DL, Garvey N, Hancock S, et al. Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development. Dev Dyn 1998; 214:223–229.
6. Naiche LA, Harrelson Z, Kelly RG, et al. Expression of T-box genes in vertebrate development. Annu Rev Genet 2005; 39:219–239.
7. Yi OH, Russ A, Brook JD. Virtual cloning and physical mapping of a human T-box gene, TBF4. Genomics 2000; 67:92–95.
8. Gibson-Brown JJ, Agulnik I, Silver S, et al. Expression of T-box genes Tbx1-Tbx5 during chick organogenesis. Mech Dev 1998; 74:165–169.
9. Li M, Zhang H, Liu H, et al. Abnormal expression of TBX4 during anorectal development in rat embryos with ethynlestradiol-induced anorectal malformations. Biol Res 2019; 52:27.
Genetics

10. Naiche LA, Arora R, Kania A, et al. Identity and fate of Tbx4-expressing cells reveal developmental cell fate decisions in the allantois, limb, and external genitalia. Dev Dyn 2011; 240:2290–2300.

11. Arora R, Berger RJ, Papaiouannou VE. Multiple roles and interactions of Tbx4 and Tbx5 in development of the respiratory system. PLoS Genet 2012; 8:e1002866.

12. Cebro-Thomas JA, Bromer J, Gardner R, et al. T-box gene products are required for mesenchymal induction of epithelial branching in the embryonic mouse lung. Dev Dyn 2003; 226:82–90.

13. Able LL, Mansour SL, Sun X. Conditional gene inactivation reveals roles for Fgf10 and Fgfr2 in establishing a normal pattern of epithelial branching in the mouse lung. Dev Dyn 2000; 218:1999–2013.

14. Bellussi S, Grindley J, Emoto H, et al. Fibroblast Growth Factor 10 (Fgf10) and branching morphogenesis in the embryonic lung mouse. Development 1997; 124:4867–4878.

15. Chuchi H, Hori Y, Yamasaki M, et al. Fgf10 acts as a major ligand for Fgf receptor 2 Lib in mouse multigenerational development. Biochem Biophys Res Commun 2000; 277:643–649.

16. Sakiyama JI, Yamagishi A, Kurowa A, Tbx4-Fgf10 system controls lung bud formation during chicken embryonic development. Development 2003; 130:1255–1258.

17. Goss AM, Tian Y, Tsyukova T, et al. Wnt2/2b and β-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell 2009; 17:290–298.

18. Itch N. Fgf10: a multifunctional mesenchymal-epithelial signaling growth factor in development, health, and disease. Cytokine Growth Factor Rev 2005; 16:283–289.

19. Takahashi T, Friedmacher F, Zimmer J, et al. Expression of T-box transcription factors 2, 4 and 5 is decreased in the branching airway mesenchyme of congenital hyperplastic lungs. Pediatr Surg Int 2017; 33:139–143.

20. Akiyama H, Chabossier MC, Martin JF, et al. The transcription factor Sox9 has essential roles in successive steps of the chordodectomy differentiation pathway and is required for expression of Sox5 and Sox8. Genes Dev 2002; 16:2813–2828.

21. Haarman MG, Kerstjens-Frederikse WS, Bongers EMHF, et al. Conditional gene inactivation reveals roles for Fgf10 and Fgfr2 in establishing a normal pattern of epithelial branching in the mouse lung. Dev Dyn 1997; 218:1999–2013.

22. Bongers EMHF, Duijf PHG, van Beersum SEM, et al. Identification of a deletion containing TBX4 in a neonate with acinar dysplasia of the lungs. Am J Med Genet Part A 2016; 170:2440–2444.

23. German K, Deutsch GH, Freed AS, et al. Identification of a deletion containing TBX4 in a neonate with acinar dysplasia by rapid exome sequencing. Am J Med Genet Part A 2019; 179:842–845.

24. Karolak JA, Vincent M, Deutsch G, et al. Complex compound inheritance of lethal pulmonary developmental disorders due to disruption of the TBX-FGF pathway. N Engl J Med 2017; 376:21–31.

This study reports on a fairly large group of neonates with developmental lung diseases in whom TBX4 and FGF10 variants were found. The results of this study advanced the important role of TBX4 and FGF10 in the development of pulmonary arterial hypertension (PAH) and understanding its underlying genetic basis.

25. Arora R, Berger RJ, Papaiouannou VE. Multiple roles and interactions of Tbx4 and Tbx5 in development of the respiratory system. PLoS Genet 2013; 9:e1003371.

26. Levy M, Eyries M, Szezepanski I, et al. Maternal exposure to PM2.5 affects fetal lung development at sensitive windows. Environ Sci Technol 2019; 54:316–324.

27. Zhu N, Gonzaga-Jauregui C, Welch CL, et al. Exome sequencing in children with pulmonary arterial hypertension demonstrates differences compared with adults. Circ Genomic Precis Med 2018; 11:e001887.

28. A large study on exome sequencing in children with pulmonary arterial hypertension (PAH) that demonstrates that TBX4 variants are enriched in children with idiopathic/heritable PAH (IPAH/HPAH) compared with adults with IPAH/HPAH.

29. Akiyama H, Chaboissier MC, Martin JF, et al. Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nat Commun 2018; 9:1416.

30. Szafranski P, Coban-Akdemir ZH, Rupps R, et al. Phenotypic expansion of TBX4 mutations to include acinar dysplasia of the lungs. Am J Med Genet Part A 2016; 170:2440–2444.

31. Abler LL, Mansour SL, Sun X. Conditional gene inactivation reveals roles for Fgf10 and Fgfr2 in establishing a normal pattern of epithelial branching in the mouse lung. Dev Dyn 1997; 218:1999–2013.

32. Baas R, van Beersum S, Bongers EMHF, et al. Conditional gene inactivation reveals roles for Fgf10 and Fgfr2 in establishing a normal pattern of epithelial branching in the mouse lung. Dev Dyn 1997; 218:1999–2013.

33. Karolak JA, Vincent M, Deutsch G, et al. Complex compound inheritance of lethal pulmonary developmental disorders due to disruption of the TBX-FGF pathway. N Engl J Med 2017; 376:21–31.

This study reports on a fairly large group of neonates with developmental lung diseases in whom TBX4 and FGF10 variants were found. The results of this study advanced the important role of TBX4 and FGF10 in the development of pulmonary arterial hypertension (PAH) and understanding its underlying genetic basis.

34. Mauar A, Lardenois E, Eyries M, et al. T-box protein 4 mutation causing pulmonary arterial hypertension and lung disease. Eur Respir J 2019; 54:e2969.

This case report highlights the role of a Tbx4 variant in an adult with PAH and lung disease, demonstrating that the combination of a Tbx4 variant and lung disease not only occurs in children but also in adults.

35. Kurland G, Deterding RR, Hagood JS, et al. An official American thoracic society clinical practice guideline: classification, evaluation, and management of childhood intestinal lung disease in infancy. Am J Respir Crit Care Med 2013; 188:376–394.

36. Cunningham S, Jaffe A, Young LR. Children’s intestinal and diffuse lung disease. Lancet Child Adolesc Heal 2019; 3:566–577.

This review deepens into the progress that has already been made in the diagnostics and treatment of cIHD. However, it also addresses the many difficulties of this rare group of diseases that need to be overcome.

37. Natale LA, Arora R, Kania A, et al. Identity and fate of Tbx4-expressing cells reveal developmental cell fate decisions in the allantois, limb, and external genitalia. Dev Dyn 2011; 240:2290–2300.

38. Levy M, Eyries M, Szezepanski I, et al. Maternal exposure to PM2.5 affects fetal lung development at sensitive windows. Environ Sci Technol 2019; 54:316–324.

39. Karolak JA, Vincent M, Deutsch G, et al. Complex compound inheritance of lethal pulmonary developmental disorders due to disruption of the TBX-FGF pathway. N Engl J Med 2017; 376:21–31.

This study reports on a fairly large group of neonates with developmental lung diseases in whom TBX4 and FGF10 variants were found. The results of this study advanced the important role of TBX4 and FGF10 in the development of pulmonary arterial hypertension (PAH) and understanding its underlying genetic basis.

40. Szafranski P, Coban-Akdemir ZH, Rupps R, et al. Phenotypic expansion of TBX4 mutations to include acinar dysplasia of the lungs. Am J Med Genet Part A 2016; 170:2440–2444.