Observation of tW production in the single-lepton channel in pp collisions at $\sqrt{s} = 13$ TeV

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

Abstract: A measurement of the cross section of the associated production of a single top quark and a W boson in final states with a muon or electron and jets in proton-proton collisions at $\sqrt{s} = 13$ TeV is presented. The data correspond to an integrated luminosity of 36 fb$^{-1}$ collected with the CMS detector at the CERN LHC in 2016. A boosted decision tree is used to separate the tW signal from the dominant $t\bar{t}$ background, whilst the subleading W+jets and multijet backgrounds are constrained using data-based estimates. This result is the first observation of the tW process in final states containing a muon or electron and jets, with a significance exceeding 5 standard deviations. The cross section is determined to be $89 \pm 4 \text{(stat)} \pm 12 \text{(syst)}$ pb, consistent with the standard model.

Keywords: Hadron-Hadron scattering (experiments), Top physics

ArXiv ePrint: 2109.01706

https://doi.org/10.1007/JHEP11(2021)111
1 Introduction

The observation of singly produced top quarks by the D0 [1] and CDF [2] Collaborations opened a new era in the study of electroweak interactions of top quarks. At hadron colliders, top quarks are produced predominantly via the strong interaction with an antiquark partner ($t\bar{t}$). Much less frequently, top quarks and antiquarks are produced singly by the electroweak interaction via the Wtb vertex between the W boson and the top and bottom quarks. Three main processes contribute to electroweak single top quark production: the t channel [3–5], produced by quark scattering via the exchange of a virtual W boson; the s channel [6, 7], produced by quark-antiquark annihilation to an off-shell W boson; and the associated production of a single top quark with a W boson (tW), produced either via the exchange of a top quark or by an intermediate off-shell b quark.

All three single top quark processes are sensitive to the Cabibbo-Kobayashi-Maskawa matrix element V_{tb}, and their study provides a direct probe of its value. Any significant deviation from the established value may be indicative of physics beyond the standard model (SM). The tW process is sensitive in particular to the Wtb vertex, whilst the t- and s-channel processes contain contributions from additional four-fermion operators. By studying all three single top quark channels it should, therefore, be possible to disentangle the new physics effects, if any such deviations are observed [8, 9].

Whilst the Fermilab Tevatron experiments successfully observed the t- and s-channel processes [1, 2], the tW production cross section was too small to be accessible. At the
CERN LHC, the tW process has the second-largest cross section among the single top quark channels after the t channel, making detailed studies of the tW process possible. Evidence of the tW process was first reported by the ATLAS and CMS experiments at the LHC using data at $\sqrt{s} = 7$ TeV [10, 11], followed by the observation at $\sqrt{s} = 8$ TeV [12, 13]. Precise cross section and differential measurements have since been carried out using data at $\sqrt{s} = 13$ TeV by both collaborations [14–16].

The leading-order (LO) Feynman diagrams for the tW process are shown in figure 1. The production cross section in proton-proton (pp) collisions at $\sqrt{s} = 13$ TeV, assuming a top quark mass m_t of 172.5 GeV, has been computed to be 71.7 ± 1.8 (scale) ± 3.4 (PDF) pb at approximate next-to-next-to-LO (NNLO) [17], and $79.5^{+1.0}_{-1.8}$ (scale) $^{+2.0}_{-1.4}$ (PDF) pb at approximate next-to-NNLO (aN3LO) [18]. The first uncertainties are due to scale variations in the calculation, and the second correspond to the choice of parton distribution functions (PDFs).

The tW process is of special interest because of its interference at next-to-LO (NLO) with $t\bar{t}$ production [19–21]. Whilst the two processes are distinct at LO, they share a subset of Feynman diagrams at NLO, examples of which can be seen in figure 2. This leads to conceptual and practical problems with signal definition, the understanding and measurement of which can provide insight into how such types of interference predicted in various new physics models might manifest. Two schemes have been proposed to describe the tW signal: “diagram removal” (DR) [21], where all NLO diagrams that are doubly resonant, such as those in figure 2, are excluded from the signal definition; and “diagram subtraction” (DS) [21, 22], in which the differential cross section is modified with a gauge-invariant subtraction term that locally cancels the contribution of the $t\bar{t}$ diagrams. The DR scheme is used to define the tW signal in this analysis.

In the SM, top quarks decay almost exclusively to a W boson and a b quark. Consequently, the tW process results in a signature containing two W bosons and one b quark.

To date, all tW studies carried out on data collected by the CMS detector have been performed using the final states in which both W bosons decay leptonically. In comparison to this well-established final state, the single-lepton final state — in which one W boson decays leptonically and the other hadronically — has seen little study; to date, only one measurement has been presented by the ATLAS Collaboration using data at

Figure 1. Leading-order Feynman diagrams for single top quark production in the tW channel. Charge conjugate states are implied.
\[\sqrt{s} = 8 \text{ TeV} \] \[23\]. Whilst the single-lepton channel offers the advantages of larger branching fractions and the possibility of a fully reconstructable top quark system, it suffers from larger and more numerous backgrounds.

This paper reports the first measurement from the CMS Collaboration of the tW process in the single-lepton final state. Single-lepton events are selected from pp collisions at \(\sqrt{s} = 13 \) TeV corresponding to an integrated luminosity of 36 fb\(^{-1}\). A boosted decision tree (BDT) is used to separate the tW signal from the dominant t\(\bar{t} \) background. The subdominant W+jets events and events comprised of jets produced through the strong interaction, referred to as quantum chromodynamic (QCD) multijet events, are constrained using data-based estimates. The tW production cross section is extracted using a binned likelihood fit carried out on the BDT discriminant distributions for both channels and three jet multiplicity regions simultaneously. Tabulated results are provided in HEPData \[24\].

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (\(\eta \)) coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid.

The candidate vertex with the largest value of summed physics-object \(p_T^2 \) (where \(p_T \) is the transverse momentum) is taken to be the primary pp interaction vertex. The physics objects are the jets, clustered using the jet finding algorithm \[25, 26\] with the tracks assigned to candidate vertices as inputs, and the associated missing transverse momentum, taken as the negative vector \(p_T \) sum of those jets.

The particle-flow algorithm \[27\] aims to reconstruct and identify each individual particle in an event, with an optimized combination of information from the various elements of the CMS detector. The energy of photons is obtained from the ECAL measurement. The energy of electrons is determined from a combination of the electron momentum at the primary interaction vertex as determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with
originating from the electron track. The energy of muons is obtained from the curvature of the corresponding track [28]. The energy of charged hadrons is determined from a combination of their momentum measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for the response function of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energies.

The missing transverse momentum vector \vec{p}_{miss} is computed as the negative vector p_T sum of all the particle-flow candidates in an event, and its magnitude is denoted as p_{miss} [29]. The \vec{p}_{miss} is modified to account for corrections to the energy scale of the reconstructed jets in the event.

A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in ref. [30].

3 Data and simulated samples

The measurement uses data collected with the CMS detector during pp collisions in 2016 at $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 36 fb$^{-1}$ [31].

Events simulated using the Monte Carlo (MC) method are used throughout the analysis. Signal tW events are simulated using the POWHEG v1 [32] generator interfaced with PYTHIA 8.205 [33] for showering using the CUETP8M1 tune [34]. Fully hadronic decays are excluded from the simulation, and separate samples are created for top quark and antiquark events. The tW process signal is defined using the DR scheme. Events for the $t\bar{t}$ background are simulated using POWHEG v2 [35] interfaced with PYTHIA 8.205 using the CUETPM2T4 tune [36]. The second-leading background, W+jets, is simulated using MadGraph5_aMC@NLO 2.2.2 [37]. The matrix element (ME) calculations are matched to parton shower (PS) using the FxFx [38] algorithm. Single top quark backgrounds from the t and s channel — together referred to as the single t background throughout this paper — are generated using POWHEG v2 interfaced with PYTHIA 8.205 with the CUETP8M1 tune, including spin correlations [39]. QCD multijet events are simulated using MadGraph5_aMC@NLO interfaced with PYTHIA 8.205 using the MLM matching [40]. The WW, WZ and ZZ diboson backgrounds — collectively referred to as the VV background — are simulated using PYTHIA 8.205 with the CUETP8M1 tune. All samples are generated at NLO in QCD with the exception of the VV and QCD multijet processes, which are produced at LO. Contributions from other processes are found to be negligible.

For all samples, the proton structure is described using the NNPDF3.0 [41] PDF set, and m_t is chosen to be 172.5 GeV. Minimum bias pp interactions generated using PYTHIA 8.205 are overlayed on all simulated events to account for additional interactions occurring per bunch crossing that do not originate from the primary vertex of interest (pileup). The detector response is simulated using the GEANT4 package [42, 43].

All simulated events are processed using the same software chain as for collision data, reweighted to account for the observed distribution in pileup, and normalized to the predicted cross section of the process.
4 Event selection

Events of interest are selected using a two-tiered trigger system [44, 45]. To be considered for the analysis, events must pass high-level triggers that select a single lepton with p_T of at least 24 (27) GeV for muons (electrons). Additional offline selections are made such that each event contains exactly one muon with $p_T > 26$ GeV and $|\eta| < 2.1$ or one electron with $p_T > 30$ GeV and $|\eta| < 1.48$. The forward η range is excluded from the electron selection because background processes dominate in this region. These leptons must pass identification and isolation requirements [28, 46], and have originated from the well-reconstructed primary interaction vertex. The isolation requirements are based on the ratio between the lepton p_T and the scalar sum of the p_T of charged hadrons and neutral particles within a cone of $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.3$ of the lepton (corrected for pileup), where ϕ is the azimuthal angle in radians. Events that contain additional leptons with lower p_T requirements ($p_T > 10$ GeV for muons and $p_T > 20$ GeV for electrons) and $|\eta| < 2.4$ are rejected. Corrections are applied to the trigger and lepton efficiencies in simulation to match those observed in data.

Further selections are made based on the jet topology of the event. Particle-flow jets, reconstructed using the anti-k_T algorithm [25] with a distance parameter $R = 0.4$, are selected if they have $p_T > 30$ GeV and $|\eta| < 2.4$. Only jets that are $\Delta R > 0.4$ from the selected leptons are considered. At least two and no more than four jets must be present in the event to be considered in the analysis. The energy of the jets is corrected to take into account inefficiencies and anisotropies in the detectors and reconstruction stages [47].

Jets originating from the hadronization of a b quark are identified (b-tagged) using the combined secondary vertex v2 (CSVv2) algorithm [48]. The candidate b jets must pass the nominal jet selections, as well as a working point of the CSVv2 algorithm chosen to give a b tagging efficiency of $\approx 75\%$ for b quark jets and a misidentification probability of 1% for u, d, s quark and gluon jets. Exactly one jet that passes these criteria must be present in an event to be used in the analysis. The b tagging efficiencies and misidentification probability are corrected in simulation to match those observed in data.

No selection requirements are made on the p_T^{miss} of the event.

5 Analysis strategy

Events used in the final fit are classified into three distinct analysis regions, one signal region and two control regions. Along with the requirements on leptons and b tagging, an event must contain exactly three jets to be selected in the signal region (3j).

Two control regions are defined such that they are enhanced in the leading backgrounds of the analysis. To keep the regions as kinematically similar to the signal as possible, the selection requirements applied to these regions are identical to those of the signal region, with the exception of the number of selected jets. The first such region contains events with exactly two jets (2j), and is enhanced in the W+jets and QCD multijet backgrounds. The second contains events with exactly four jets (4j), and is enhanced in $t\bar{t}$ background.

Normalized distributions (templates) and normalization estimates for all processes are taken directly from simulation, with the exception of the W+jets and QCD multijet back-
grounds. In the case of the W+jets background, templates are taken from simulation but with the normalization corrected using data to account for the observed mismodelling of jet composition in simulation with respect to data. For the QCD multijet background, mismodelling in both genuine leptons produced in hadron decays, and photon conversions and other objects incorrectly identified as leptons — collectively referred to as nonprompt leptons — precipitates the need to extract both templates and normalization estimates from data directly.

By far the largest contribution to the QCD multijet background is found to be when a jet contains a nonprompt lepton and therefore passes the signal selection requirements. In order to model this background, a sample enriched in these nonprompt leptons is defined. By inverting the isolation requirement on the selected lepton, a sample that is dominated by the QCD multijet background can be created that is as kinematically similar to the desired analysis regions as possible whilst remaining statistically independent. Templates to be used in the final fit of the analysis regions are extracted from these events. A small contribution of $t\bar{t}$ events is found in this sample, and their contribution — estimated from simulation — is subtracted before use.

The normalizations of both the QCD multijet and W+jets backgrounds are then estimated together using a binned likelihood fit on a distribution that has good separating power between the two processes. The chosen distribution is the transverse mass m_T^W of the reconstructed leptonically decaying W boson candidate, defined as

$$m_T^W = \sqrt{2p_T^{\text{miss}} p_T^\ell \left(1 - \cos[\phi^{\text{miss}} - \phi^\ell]\right)}, \quad (5.1)$$

where p_T^ℓ is the lepton p_T, and ϕ^{miss} and ϕ^ℓ are the azimuthal angles of the p_T^{miss} and lepton, respectively. In events with a real W boson, such as the W+jets background, this distribution peaks at the W boson mass, whereas backgrounds with no real W boson, such as QCD multijet, exhibit a falling distribution that peaks at zero. To avoid potential bias, the fit is carried out in a sample that is enhanced in W+jets and QCD multijet events but statistically independent from the analysis regions, namely on a sample with exactly two jets, neither of which pass b tagging requirements. All other backgrounds are fixed to the values obtained from simulation. Correction factors for both the W+jets and QCD multijet processes are calculated by comparing the results of the fit with initial yield estimates taken directly from simulation. These correction factors are then applied to the expected yields from simulation in each analysis region to estimate the normalization of the two backgrounds.

The uncertainty in extrapolating the correction factors to the analysis regions is assessed by performing the m_T^W fit to the analysis regions (rather than the no-b-tag sample), and treating the difference as the uncertainty. Both this and the uncertainty from the fit are included in the normalization uncertainty of the W+jets and QCD multijet processes in the final fit.

Table 1 shows the event yields per process for each analysis region for the muon and electron channels. Figure 3 shows the p_T of the selected lepton in the signal region for the muon and electron channels, scaled to the result of the final fit.
Sample	Muon channel			
	3j	2j	4j	
tW	26083 ± 62	29814 ± 66	10612 ± 40	
t\(\bar{t}\)	274100 ± 360	198120 ± 300	186200 ± 300	
W+jets	79500 ± 1200	319800 ± 3200	18000 ± 480	
QCD multijet	66830 ± 360	277610 ± 940	7700 ± 110	
Single t	15786 ± 55	55250 ± 100	4124 ± 28	
Z+jets	7290 ± 500	26950 ± 960	2080 ± 240	
VV	2860 ± 160	7480 ± 250	754 ± 83	
Total prediction	472500 ± 2700	915000 ± 5800	229400 ± 1300	
Data	472540	923880	223720	

Sample	Electron channel			
	3j	2j	4j	
tW	15726 ± 35	17479 ± 36	6596 ± 23	
t\(\bar{t}\)	156050 ± 200	109980 ± 160	108410 ± 160	
W+jets	50230 ± 670	192400 ± 1800	12090 ± 310	
QCD multijet	21120 ± 410	87880 ± 680	2370 ± 79	
Single t	8937 ± 30	30335 ± 54	2379 ± 15	
Z+jets	6960 ± 300	24170 ± 590	1840 ± 140	
VV	1635 ± 84	4050 ± 130	463 ± 44	
Total prediction	260700 ± 1700	466300 ± 3500	134000 ± 780	
Data	270330	462940	136190	

Table 1. The total number of events passing the event selection in each analysis region and their associated statistical uncertainties. The event yields are given for the tW signal and all major backgrounds for both the muon (upper) and electron (lower) channels. These values are provided for reference using simulation and scaled to the SM cross sections, with the exception of the QCD multijet background, which is taken from a data-based method, and the W+jets background, which uses the SM cross section corrected using a data-based method. A more precise estimation is obtained from the final fit, as described in the text. The single t background is comprised of the t- and s-channel single top quark processes.
Figure 3. The \(p_T \) of the selected muon (left) and electron (right) in the signal region of their respective channels. The signal and backgrounds have been scaled with the results of the final fit. The lower panel shows the ratio of observed data to the prediction for signal and background. In both panels the hatched regions show the statistical uncertainty from the limited size of the simulated samples for each bin.

After all selection requirements have been applied, \(tW \) signal events are selected with an efficiency of about 5%, and constitute 6% of the expected events in the signal region. In order to increase the sensitivity of the measurement, a multivariate analysis is used to distinguish this signal from the backgrounds. For this analysis, a BDT is trained to identify signal \(tW \) events from the dominant \(t\bar{t} \) background. The implementation of the BDT is provided by the “Toolkit for Multivariate Data Analysis” [49], and uses the gradient boosting algorithm [50]. Although a considerable fraction of the selected events in the signal region comes from QCD multijet and \(W+\)jets backgrounds, it was found that, given the relatively small number of available training events for these samples, including contributions from these backgrounds in the samples used to train the BDT did not improve the sensitivity of the result.

The input variables to the BDT are chosen based on their ability to separate the signal from the \(t\bar{t} \) background and the quality of their modelling in simulation. The chosen variables exploit the only difference between a \(tW \) and \(t\bar{t} \) event at LO, i.e. the number of jets originating from the fragmentation of a b quark. For a \(t\bar{t} \) event to pass the selection criteria in the signal region, one jet must be misidentified or otherwise fail reconstruction. The loss of this jet causes various kinematic distributions to differ significantly between the two processes, and is particularly noticeable when looking at combinations of reconstructed objects from the selected events. For example, the two selected non-b-tagged jets in the event should, for \(tW \) signal events, originate from the hadronic decay of a \(W \) boson. In a \(t\bar{t} \) event, however, it is possible that the two jets originate from separate decays. This combinatoric uncertainty means that distributions containing combinations of these objects (angular separation (\(\Delta R \)), total invariant mass, etc.) differ from those of the signal. In order to extract these distributions, candidates for the two intermediate \(W \) bosons in the \(tW \) signal are reconstructed from the selected objects in each event; a leptonically decaying
W boson candidate is reconstructed from the selected lepton and p_T^{miss} in the event, and a hadronically decaying W boson candidate is reconstructed from the two non-b-tagged jets.

The BDT input variables, chosen to exploit a variety of these properties, are:

- mass of the hadronically decaying W boson candidate,
- invariant mass of the b-tagged jet and the sub-leading (in p_T) non-b-tagged jet,
- angular separation between the two non-b-tagged jets,
- angular separation between the reconstructed leptonic W boson candidate and leading (in p_T) non-b-tagged jet,
- p_T of the selected lepton,
- energy of the two non-b-tagged jets,
- angular separation between the b-tagged jet and the selected lepton,
- transverse momentum of the system made of the three jets, lepton and p_T^{miss}.

One BDT is trained for each lepton flavour (electron and muon) in its respective signal region using a subset of the selected $t\bar{W}$ and $t\bar{t}$ events as the signal and background samples, respectively. Although they are trained separately, the two BDTs share the same input variables. The trained BDT is then applied to data and simulated samples in each analysis region for its respective lepton flavour, and the produced distributions are used as templates in a likelihood fit to measure the production cross section of the $t\bar{W}$ process.

In the analysis regions where these variables may not be well defined, e.g. the angular separation of the two non-b-tagged jets in the 2j control region, a default value is assigned to the input variable before the discriminant is calculated.

6 Systematic uncertainties

The sources of systematic uncertainty considered in the analysis are classified as either experimental or modelling uncertainties. These systematic uncertainties are included in the signal extraction as nuisance parameters of the likelihood fit, as an effect on the normalization and/or shape of the input templates. The experimental and modelling uncertainties impact on both shape and normalization, whilst the uncertainty of the luminosity measurement and background normalization uncertainties affect the normalization only.

Experimental uncertainties originate from corrections applied to the MC simulation in order to correctly describe data, and have a number of sources. Uncertainties in the total inelastic cross section [51] are propagated to the result by varying the pileup reweighting applied to simulated samples. The lepton energy scale uncertainty also incorporates the impact of uncertainties in the identification, isolation, and reconstruction efficiencies of the selected leptons. Lepton trigger efficiencies are calculated separately and included as an independent source of uncertainty in the result.
The momentum of the reconstructed jets is varied based on the applied jet energy corrections (the jet energy scale uncertainty [47]), and the jet energy resolution [52] of the detector. The impact of these variations is propagated to the p_T^{miss} in the result. An additional uncertainty on the p_T^{miss} is calculated by varying the unclustered energy in the detector that make up the p_T^{miss} within their respective energy resolutions.

The uncertainties associated with the measured b tagging efficiency and misidentification rate [48] are included independently for each flavour of reconstructed jet.

The uncertainty in the measurement of the integrated luminosity collected during 2016 pp collisions, 2.5% [31], is propagated to the result.

In addition, an uncertainty in the production cross section for each of the background processes is included. For the t-channel single top quark and $t\bar{t}$ processes this uncertainty is taken from their respective recent CMS measurements [53, 54]. For the $W+$jets and QCD multijet backgrounds this uncertainty is taken from the data-based background estimation. All other backgrounds are assigned an uncertainty of 50%. The normalization uncertainties are treated as correlated across all analysis regions, with the exception of the data-based backgrounds, which are assigned uncorrelated uncertainties in each analysis region.

The modelling uncertainties originate from the choices in the generator parameters made during event simulation. These uncertainties are assessed by comparing the templates produced from the nominal samples with templates derived from alternate samples generated with variations in these parameters. These parameters include ME scale variations in the tW signal powheg simulation [55]. The strong coupling parameter α_S, which controls the factorization and renormalization scales at parton shower level, is varied to produce samples that reflect the uncertainty in both the initial- and final-state radiation produced by the tW signal and leading $t\bar{t}$ background.

The h_{damp} parameter in powheg, which controls the scale of parton shower [36] matching with the ME [56], and therefore regulates the damping of real emission in NLO calculations, is varied in dedicated samples for the $t\bar{t}$ background. The effect of the underlying event on the $t\bar{t}$ background is estimated by varying several parameters that together control the recoil part of the event. The impact of the choice of colour reconnection model on the $t\bar{t}$ background [57, 58] is also assessed in the result.

The uncertainty in the proton PDFs is taken into account by reweighting simulated events using variations of the NNPDF3.0 set [59]. The envelope of these varied weights is taken as the uncertainty in the likelihood fit.

In order to assess the impact of the choice of using the DR or DS scheme when simulating the tW signal events, an alternate signal sample is generated using the DS scheme. The templates that are produced using this alternate sample are treated as the morphed templates under the DR/DS nuisance parameter.

The systematic uncertainties are applied to all relevant processes, signal and backgrounds alike, in exactly the same manner. Their associated nuisance parameters are treated as correlated between all analysis regions in which they are applicable. Where the sources differ due to the lepton flavour (i.e. trigger efficiencies, lepton scale uncertainties), the three regions of each lepton flavour are correlated with each other, but uncorrelated
from the regions of opposite flavour. The data-based background uncertainties are uncorrelated across all regions.

For the case of nuisance parameters that change the shape of the input templates, the morphed templates are smoothed with a polynomial fit in order to avoid unrealistic constraints originating from statistical fluctuations. The contribution of each systematic source to the total uncertainty of the result is displayed in table 2.

7 Results

A binned likelihood fit is performed on the BDT discriminants in order to extract the tW production cross section. All regions in the muon and electron channels are fit simultaneously to produce the result, with systematic uncertainties included as nuisance parameters in the fit.

The likelihood used in the statistical analysis, \(L(\sigma, \vec{\theta}) \), is a function of the measured signal cross section \(\sigma \), and a set of nuisance parameters \(\vec{\theta} \) that parameterise the systematic uncertainties as nuisance parameters associated with log-normal priors. The number of events in each bin of the input templates is assumed to be described by a Poisson distribution, and is a function of the number of predicted background events, \(\mu \), and \(\vec{\theta} \). The best value for \(\mu \) is then found by maximising the likelihood with respect to all of its parameters. The impact of each source of systematic uncertainty is assessed by performing the fit with the remaining nuisance parameters held constant.

The measured tW production cross section is \(89 \pm 4 \text{ (stat)} \pm 12 \text{ (syst)} \) pb. The total observed uncertainty on the measurement is 15%, compared to an expected uncertainty of 17%. This result is compatible with both the SM predictions for the process of \(71.7 \pm 1.8 \text{ (scale)} \pm 3.4 \text{ (PDF)} \) pb at NNLO in QCD [17], and \(79.5 \pm 1.9 \text{ (scale)} \pm 2.0 \text{ (PDF)} \) pb at aN^3LO [18]. This corresponds to an excess of signal over the background-only hypothesis that exceeds 5 standard deviations, and is therefore the first observation of the tW channel in the single-lepton final state.

Figure 4 shows the BDT discriminant for the signal and control regions scaled to the output of the fit.

8 Summary

The first observation of the associated production of a single top quark and a W boson in the single-lepton channel containing a muon or electron and jets is presented. The cross section is extracted using a binned likelihood fit of the discriminant from a boosted decision tree designed to separate the signal from the dominant top quark and antiquark pair background. The analysis is performed using proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the CMS detector at the LHC corresponding to an integrated luminosity of 36 fb\(^{-1}\).

The cross section is \(89 \pm 4 \text{ (stat)} \pm 12 \text{ (syst)} \) pb, with a significance exceeding 5 standard deviations, which is compatible with both the standard model predictions at approximate next-to-next-to-leading order in quantum chromodynamics of \(71.7 \pm \)
Table 2

Relative uncertainty in the measured cross section from each source of systematic uncertainty for the combination of the muon and electron channels. The table is divided into experimental, normalization, and modelling uncertainties. Uncertainties arising from the limited size of the simulated samples are included in the statistical uncertainty.

Source	Relative uncertainty (%)
Experimental	
Jet energy scale	6
b tagging efficiency	4
Luminosity	3
Lepton energy scale	2
Trigger efficiency	1
Jet energy resolution	1
b tagging misidentification rate	<1
Unclustered energy	<1
Pileup	<1
Normalization	
QCD multijet normalization	7
W+jets normalization	6
Z+jets normalization	3
Single t normalization	1
t\(\tau\) normalization	1
VV normalization	<1
Modelling	
\(h_{\text{damp}}\)	4
Diagram removal/diagram subtraction	3
Underlying event tune	3
Colour reconnection model	1
Parton distribution function	1
Matrix element/parton shower matching	1
Final-state radiation	<1
Initial-state radiation	<1
Total systematic uncertainty	14
Statistical uncertainty	5
Total uncertainty	15

Figure 4. BDT discriminant in the signal region for the muon (left) and electron (right) channels for the (from upper to lower) 3j, 2j and 4j regions. The upper 3j region is considered the nominal signal region, while the remaining 2j and 4j regions are considered control regions, enhanced in W+jets and QCD multijet, and tt̅ background events, respectively. The shape of the discriminant for the tW signal multiplied by 10 is overlayed. The signal and backgrounds have been scaled with the results of the fit. The lower panel shows the ratio of observed data to the prediction for signal and background. In both panels the hatched regions show the total uncertainty of the prediction.
1.8 (scale) ± 3.4 (PDF) pb and at approximate next-to-next-to-next-to-leading order of
79.5 ±1.9 ±1.8 (scale) ±2.0 ±1.4 (PDF) pb.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent
performance of the LHC and thank the technical and administrative staffs at CERN and
at other CMS institutes for their contributions to the success of the CMS effort. In addi-
tion, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC
Computing Grid and other centres for delivering so effectively the computing infrastructure
essential to our analyses. Finally, we acknowledge the enduring support for the construction
and operation of the LHC, the CMS detector, and the supporting computing infrastruc-
ture provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and
FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and
BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia);
MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and
ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3
(France); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIA (Hungary); DAE
and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic
of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVEST-
AV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New
Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna);
MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN,
PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland);
MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK
(Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.).

Individuals have received support from the Marie-Curie programme and the Euro-
ppean Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730,
758316, 765710, 824093, 884104, and COST Action CA16108 (European Union); the Leven-
tis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation;
the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche
dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie
door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium)
under the “Excellence of Science — EOS” — be.h project n. 30820817; the Beijing Mu-
nicipal Science & Technology Commission, No. Z191100007219010; the Ministry of Ed-
ucation, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsge-
meinschaft (DFG), under Germany’s Excellence Strategy — EXC 2121 “Quantum Uni-
verse” — 390833306, and under project number 400140256 — GRK2497; the Lendület
(“Momentum”) Programme and the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIH research
grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary);
the Council of Science and Industrial Research, India; the Latvian Council of Science; the
Ministry of Science and Higher Education and the National Science Center, contracts Opus
2014/15/B/ST2/03998 and 2015/19/B/ST2/02861 (Poland); the Fundação para a Ciência e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, project no. 14.W03.31.0026 (Russia); the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Stavros Niarchos Foundation (Greece); the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (U.S.A.).

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] D0 collaboration, Observation of single top quark production, Phys. Rev. Lett. 103 (2009) 092001 [arXiv:0903.0850] [inSPIRE].

[2] CDF collaboration, First observation of electroweak single top quark production, Phys. Rev. Lett. 103 (2009) 092002 [arXiv:0903.0885] [inSPIRE].

[3] ATLAS collaboration, Measurement of the inclusive cross-sections of single top-quark and top-antiquark t-channel production in pp collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector, JHEP 04 (2017) 086 [arXiv:1609.03920] [inSPIRE].

[4] CMS collaboration, Measurement of the single top quark and antiquark production cross sections in the t channel and their ratio in proton-proton collisions at \(\sqrt{s} = 13 \) TeV, Phys. Lett. B 800 (2020) 135042 [arXiv:1812.10514] [inSPIRE].

[5] ATLAS, CMS collaboration, Combinations of single-top-quark production cross-section measurements and \(|F_{LV}| \) determinations at \(\sqrt{s} = 7 \) and 8 TeV with the ATLAS and CMS experiments, JHEP 05 (2019) 088 [arXiv:1902.07158] [inSPIRE].

[6] ATLAS collaboration, Evidence for single top-quark production in the s-channel in proton-proton collisions at \(\sqrt{s} = 8 \) TeV with the ATLAS detector using the matrix element method, Phys. Lett. B 756 (2016) 228 [arXiv:1511.05980] [inSPIRE].

[7] CMS collaboration, Search for s channel single top quark production in pp collisions at \(\sqrt{s} = 7 \) and 8 TeV, JHEP 09 (2016) 027 [arXiv:1603.02556] [inSPIRE].

[8] T.M.P. Tait and C.P. Yuan, Single top quark production as a window to physics beyond the standard model, Phys. Rev. D 63 (2000) 014018 [hep-ph/0007298] [inSPIRE].

[9] Q.-H. Cao, J. Wudka and C.P. Yuan, Search for new physics via single top production at the LHC, Phys. Lett. B 658 (2007) 50 [arXiv:0704.2809] [inSPIRE].

[10] ATLAS collaboration, Evidence for the associated production of a W boson and a top quark in ATLAS at \(\sqrt{s} = 7 \) TeV, Phys. Lett. B 716 (2012) 142 [arXiv:1205.5764] [inSPIRE].
JHEP11(2021)111

[11] CMS collaboration, Evidence for associated production of a single top quark and W boson in pp collisions at √s = 7 TeV, Phys. Rev. Lett. 110 (2013) 022003 [arXiv:1209.3489] [nSPIRE].

[12] CMS collaboration, Observation of the associated production of a single top quark and a W boson in pp collisions at √s = 8 TeV, Phys. Rev. Lett. 112 (2014) 231802 [arXiv:1401.2942] [nSPIRE].

[13] ATLAS collaboration, Measurement of the production cross-section of a single top quark in association with a W boson at 8 TeV with the ATLAS experiment, JHEP 01 (2016) 064 [arXiv:1510.03752] [nSPIRE].

[14] ATLAS collaboration, Measurement of the cross-section for producing a W boson in association with a single top quark in pp collisions at √s = 13 TeV with ATLAS, JHEP 01 (2018) 063 [arXiv:1612.07231] [nSPIRE].

[15] ATLAS collaboration, Measurement of differential cross-sections of a single top quark produced in association with a W boson at √s = 13 TeV with ATLAS, Eur. Phys. J. C 78 (2018) 186 [arXiv:1712.01602] [nSPIRE].

[16] CMS collaboration, Measurement of the production cross section for single top quarks in association with W bosons in proton-proton collisions at √s = 13 TeV, JHEP 10 (2018) 117 [arXiv:1805.07399] [nSPIRE].

[17] N. Kidonakis, Theoretical results for electroweak-boson and single-top production, PoS DIS2015 (2015) 170 [arXiv:1506.04072] [nSPIRE].

[18] N. Kidonakis and N. Yamanaka, Higher-order corrections for tW production at high-energy hadron colliders, JHEP 05 (2021) 278 [arXiv:2102.11300] [nSPIRE].

[19] A.S. Belyaev, E.E. Boos and L.V. Dudko, Single top quark at future hadron colliders: complete signal and background study, Phys. Rev. D 59 (1999) 075001 [hep-ph/9806332] [nSPIRE].

[20] C.D. White, S. Frixione, E. Laenen and F. Maltoni, Isolating Wt production at the LHC, JHEP 11 (2009) 074 [arXiv:0908.0631] [nSPIRE].

[21] S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] [nSPIRE].

[22] T.M.P. Tait, The tW⁻ mode of single top production, Phys. Rev. D 61 (1999) 034001 [hep-ph/9909352] [nSPIRE].

[23] ATLAS collaboration, Measurement of single-top-quark production in association with a W boson in the single-lepton channel at √s = 8 TeV with the ATLAS detector, Eur. Phys. J. C 81 (2021) 720 [arXiv:2007.01554] [nSPIRE].

[24] CMS collaboration, HEP data record for this analysis, CMS-TOP-20-002, (2021).

[25] M. Cacciari, G.P. Salam and G. Soyez, The anti-kₜ clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [nSPIRE].

[26] M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [nSPIRE].

[27] CMS collaboration, Particle-flow reconstruction and global event description with the CMS detector, 2017 JINST 12 P10003 [arXiv:1706.04965] [nSPIRE].
[28] CMS collaboration, *Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at √s = 13 TeV*, 2018 *JINST* **13** P06015 [arXiv:1804.04528] [INSPHERE].

[29] CMS collaboration, *Performance of missing transverse momentum reconstruction in proton-proton collisions at √s = 13 TeV using the CMS detector*, 2019 *JINST* **14** P07004 [arXiv:1903.06078] [INSPHERE].

[30] CMS collaboration, *The CMS experiment at the CERN LHC*, 2008 *JINST* **3** S08004 [INSPHERE].

[31] CMS collaboration, *CMS luminosity measurements for the 2016 data taking period*, Tech. Rep. CMS-PAS-LUM-17-001, CERN, Geneva, Switzerland (2017).

[32] E. Re, *Single-top Wt-channel production matched with parton showers using the POWHEG method*, *Eur. Phys. J. C* **71** (2011) 1547 [arXiv:1009.2450] [INSPHERE].

[33] T. Sjöstrand et al., *An introduction to PYTHIA 8.2*, *Comput. Phys. Commun.* **191** (2015) 159 [arXiv:1410.3012] [INSPHERE].

[34] CMS collaboration, *Event generator tunes obtained from underlying event and multiparton scattering measurements*, *Eur. Phys. J. C* **76** (2016) 155 [arXiv:1512.00815] [INSPHERE].

[35] S. Alioli, P. Nason, C. Oleari and E. Re, *A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX*, *JHEP* **06** (2010) 043 [arXiv:1002.2581] [INSPHERE].

[36] P. Skands, S. Carrazza and J. Rojo, *Tuning PYTHIA 8.1: the Monash 2013 tune*, *Eur. Phys. J. C* **74** (2014) 3024 [arXiv:1404.5630] [INSPHERE].

[37] J. Alwall et al., *The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations*, *JHEP* **07** (2014) 079 [arXiv:1405.0301] [INSPHERE].

[38] R. Frederix and S. Frixione, *Merging meets matching in MC@NLO*, *JHEP* **12** (2012) 061 [arXiv:1209.6216] [INSPHERE].

[39] P. Artuso, R. Frederix, O. Mattelaer and R. Rietkerk, *Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations*, *JHEP* **03** (2013) 015 [arXiv:1212.3460] [INSPHERE].

[40] J. Alwall et al., *Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions*, *Eur. Phys. J. C* **53** (2008) 473 [arXiv:0706.2569] [INSPHERE].

[41] R.D. Ball et al., *Parton distributions with LHC data*, *Nucl. Phys. B* **867** (2013) 244 [arXiv:1207.1303] [INSPHERE].

[42] GEANT4 collaboration, *GEANT4 — a simulation toolkit*, *Nucl. Instrum. Meth. A* **506** (2003) 250 [INSPHERE].

[43] J. Allison et al., *GEANT4 developments and applications*, *IEEE Trans. Nucl. Sci.* **53** (2006) 270 [INSPHERE].

[44] CMS collaboration, *Performance of the CMS level-1 trigger in proton-proton collisions at √s = 13 TeV*, 2020 *JINST* **15** P10017 [arXiv:2006.10165] [INSPHERE].

[45] CMS collaboration, *The CMS trigger system*, 2017 *JINST* **12** P01020 [arXiv:1609.02366] [INSPHERE].

– 17 –
[46] CMS collaboration, Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at \(\sqrt{s} = 8 \) TeV, 2015 JINST 10 P06005 [arXiv:1502.02701] [inSPIRE].

[47] CMS collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV, 2017 JINST 12 P02014 [arXiv:1607.03663] [inSPIRE].

[48] CMS collaboration, Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV, 2018 JINST 13 P05011 [arXiv:1712.07158] [inSPIRE].

[49] A. Hocker et al., TMVA — toolkit for multivariate data analysis, PoS ACAT (2009) 040 [physics/0703039] [inSPIRE].

[50] H.-J. Yang, B.P. Roe and J. Zhu, Studies of boosted decision trees for MiniBooNE particle identification, Nucl. Instrum. Meth. A 555 (2005) 370 [physics/0508045] [inSPIRE].

[51] CMS collaboration, Measurement of the inelastic proton-proton cross section at \(\sqrt{s} = 13 \) TeV, JHEP 07 (2018) 161 [arXiv:1802.02613] [inSPIRE].

[52] CMS collaboration, Jet algorithms performance in 13 TeV data, Tech. Rep. CMS-PAS-JME-16-003, CERN, Geneva, Switzerland (2017).

[53] CMS collaboration, Measurement of the \(t\bar{t} \) production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at \(\sqrt{s} = 13 \) TeV, Eur. Phys. J. C 79 (2019) 368 [arXiv:1812.10505] [inSPIRE].

[54] CMS collaboration, Cross section measurement of \(t\bar{t} \)-channel single top quark production in pp collisions at \(\sqrt{s} = 13 \) TeV, in 10th international workshop on top quark physics, (2017) [arXiv:1711.01769] [inSPIRE].

[55] S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [inSPIRE].

[56] CMS collaboration, Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements, Eur. Phys. J. C 80 (2020) 4 [arXiv:1903.12179] [inSPIRE].

[57] S. Argyropoulos and T. Sjöstrand, Effects of color reconnection on \(t\bar{t} \) final states at the LHC, JHEP 11 (2014) 043 [arXiv:1407.6653] [inSPIRE].

[58] J.R. Christiansen and P.Z. Skands, String formation beyond leading colour, JHEP 08 (2015) 003 [arXiv:1505.01684] [inSPIRE].

[59] NNPDF collaboration, Parton distributions for the LHC run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [inSPIRE].
The CMS collaboration

Yerevan Physics Institute, Yerevan, Armenia
A. Tumasyan

Institut für Hochenergiephysik, Vienna, Austria
W. Adam, J.W. Andrejkovic, T. Bergauer, S. Chatterjee, M. Dragicevic, A. Escalante Del Valle, R. Frühwirth, M. Jeitler, N. Krammer, L. Lechner, D. Liko, I. Mikulec, P. Paulitsch, F.M. Pitters, J. Schieck, R. Schöfbeck, M. Spanring, S. Tempel, W. Wulz

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, A. Litomin, V. Makarenko

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish, E.A. De Wolf, X. Janssen, T. Kello, A. Lelek, H. Rejeb Sfar, P. Van Neerven, S. Van Putte, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, E.S. Bols, J. D’Hondt, J. De Clercq, M. Delcourt, H. El Faham, S. Lowette, S. Moortgat, A. Morton, D. Müller, A.R. Sahasransu, S. Tavernier, W. Van Doninck, P. Van Mulders

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, B. Clerbaux, G. De Lentecker, L. Favart, A. Grebenyuk, A.K. Kalsi, K. Lee, M. Mahdavikhorrami, L. Makarenko, L. Moureaux, L. Pétré, A. Popov, N. Postiau, E. Starling, L. Thomas, M. Vanden Bemden, C. Vander Velde, P. Vanlaer, D. Vannerom, L. Wezenbeek

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, J. Knolle, L. Lambrecht, G. Mestdach, M. Niedziela, C. Roskas, A. Samalan, K. Skovpen, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
A. Bethani, G. Bruno, F. Bury, C. Caputo, P. David, C. Delaere, I.S. Donertas, A. Giammanco, K. Jaffel, Sa. Jain, V. Lemaître, K. Mondal, J. Prisciandaro, A. Taliercio, M. Tekli, T.T. Tran, P. Vischia, S. Wertz

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, C. Hensel, A. Moraes

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, M. Alves Gallo Pereira, M. Barroso Ferreira Filho, H. BRANDAO MALBOISSON, W. Carvalho, J. Chinellato, E.M. Da Costa, G.G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, D. Matos Figueiredo, C. Mora Herrera, K. Mota Amarilo, L. Mundim, H. Nogima, P. Rebelo Teles, A. Santoro, S.M. Silva Do Amaral, A. Sznajder, M. Thiel, F. Torres Da Silva De Araujo, A. Vilela Pereira
Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil

C.A. Bernardesa,a,5, L. Calligarisa, T.R. Fernandez Perez Tomeia, E.M. Gregoresa,b, D.S. Lemosa, P.G. Mercadantea,b, S.F. Novaea, Sandra S. Padulaa

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

A. Aleksandrov, G. Antchev, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria

A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov

Beihang University, Beijing, China

T. Cheng, Q. Guo, T. Javaid6, M. Mittal, H. Wang, L. Yuan

Department of Physics, Tsinghua University

M. Ahmad, G. Baner, C. Dozen7, Z. Hu, J. Martins8, Y. Wang, K. Yi9,10

Institute of High Energy Physics, Beijing, China

E. Chapon, G.M. Chen6, H.S. Chen6, M. Chen, F. Iemmi, A. Kapoor, D. Leggat, H. Liao, Z.-A. Liu6, V. Milosevic, F. Monti, R. Sharma, J. Tao, J. Thomas-Wilsker, J. Wang, H. Zhang, S. Zhang6, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

A. Agapitos, Y. An, Y. Ban, C. Chen, A. Levin, Q. Li, X. Lyu, Y. Mao, S.J. Qian, D. Wang, Q. Wang, J. Xiao

Sun Yat-Sen University, Guangzhou, China

M. Lu, Z. You

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) — Fudan University, Shanghai, China

X. Gao3, H. Okawa

Zhejiang University, Hangzhou, China

Z. Lin, M. Xiao

Universidad de Los Andes, Bogota, Colombia

C. Avila, A. Cabrera, C. Florez, J. Fraga, A. Sarkar, M.A. Segura Delgado

Universidad de Antioquia, Medellin, Colombia

J. Mejia Guisao, F. Ramirez, J.D. Ruiz Alvarez, C.A. Salazar González

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak
Indian Institute of Science (IISc), Bangalore, India
J.R. Komaragiri, D. Kumar, L. Panwar, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati33, C. Kar, P. Mal, T. Mishra, V.K. Muraleedharan Nair Bindhu34, A. Nayak34, P. Saha, N. Sur, S.K. Swain, D. Vats34

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, G. Chaudhary, S. Chauhan, N. Dhingra35, R. Gupta, A. Kaur, M. Kaur, S. Kaur, P. Kumari, M. Meena, K. Sandeep, J.B. Singh, A.K. Virdi

University of Delhi, Delhi, India
A. Ahmed, A. Bhardwaj, B.C. Choudhary, M. Gola, S. Keshri, A. Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, A. Shah

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
M. Bharti36, R. Bhattacharya, S. Bhattacharya, D. Bhownik, S. Dutta, S. Dutta, B. Gomber37, M. Maity38, P. Palit, P.K. Rout, G. Saha, B. Sahu, S. Sarkar, M. Sharan, B. Singh36, S. Thakur36

Indian Institute of Technology Madras, Madras, India
P.K. Behera, S.C. Behera, P. Kalbhor, A. Muhammad, R. Pradhan, P.R. Pujahari, A. Sharma, A.K. Sikdar

Bhabha Atomic Research Centre, Mumbai, India
D. Dutta, V. Jha, V. Kumar, D.K. Mishra, K. Naskar39, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, M. Kumar, U. Sarkar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, R. Chudasama, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, S. Mukherjee

Indian Institute of Science Education and Research (IISER), Pune, India
K. Alpana, S. Dube, B. Kansal, A. Laha, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Isfahan University of Technology, Isfahan, Iran
H. Bakhshiansohi40, M. Zeinali41

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani42, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi

University College Dublin, Dublin, Ireland
M. Grunewald
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M.I. Asghar, A. Awais, M.I.M. Awan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoai, M. Waqas

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, M. Górska, M. Kazana, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, D. Bastos, A. Boletti, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo, T. Niknejad, M. Pisano, J. Seixas, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, D. Budkouski, I. Golutvin, I. Gorbunov, V. Karjavin, V. Korenkov, A. Lanev, A. Malakhov, V. Matveev, V. Palichik, V. Perelygin, M. Savina, D. Seitoa, V. Shalaev, S. Shimatov, S. Shulha, V. Smirnov, O. Teryaev, N. Voytishin, B.S. Yudashesv, A. Zarubin, I. Zhizhin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
G. Gavrilov, V. Golovtcov, Y. Ivanov, V. Kim, E. Kuznetsova, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Volkov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, D. Kirpichnikov, M. Kirsanov, N. Krasnikov, A. Pashenkov, G. Pivovarov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, A. Nikitenko, V. Popov, A. Spiridonov, A. Stepenov, M. Toms, E. Vlasov, A. Zhokin
Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
R. Chistov57, M. Danilov57, A. Oskin, P. Parygin, S. Polikarpov57

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin58, L. Dudko, A. Gribushin, V. Klyukhin, N. Korneeva, I. Lokhtin, S. Obraztsov, M.Perfilov, V. Savrin, P. Volkov

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov59, T. Dimova59, L. Kardapoltsev59, A. Kozyrev59, I. Ovtin59, Y. Skovpen59

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, D. Elumakhov, V. Kachanov, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, S. Slabospitskii, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, V. Okhotnikov

Tomsk State University, Tomsk, Russia
V. Borshch, V. Ivanchenko, E. Tcherniaev

University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic60, M. Dordevic, P. Milenovic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, Cristina F. Bedoya, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, J. León Holgado, D. Moran, Á. Navarro Tobar, C. Perez Dengra, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sánchez Navas, L. Urda Gómez, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz, R. Reyes-Almanza
C. Martin Perez, M.T. Meinhard, F. Nessi-Tedaldi, J. Niedziela, F. Pauss, V. Perovic, S. Pigazzini, M.G. Ratti, M. Reichmann, C. Reissel, T. Reitenspiess, B. Ristic, D. Ruini, D.A. Sanz Becerra, M. Schönenberger, V. Stampf, J. Steggemann, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland
C. Amsler, P. Bärtschi, C. Botta, D. Brzhechko, M.F. Canelli, K. Cormier, A. De Wit, R. Del Burgo, J.K. Heikklä, M. Huwiler, W. Jin, A. Jofrehei, B. Kilminster, S. Leontsinis, S.P. Liechti, A. Macchiolo, P. Meiring, V.M. Mikuni, U. Molinatti, I. Neutelings, A. Reimers, P. Robmann, S. Sanchez Cruz, K. Schweiger, Y. Takahashi

National Central University, Chung-Li, Taiwan
C. Adloff, C.M. Kuo, W. Lin, A. Roy, T. Sarkar, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
L. Ceard, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Y.Y. Li, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, H.Y. Wu, E. Yazgan, P.R. Yu

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
F. Boran, S. Damarseckin, Z.S. Demiroglu, F. Dolek, I. Dumanoglu, E. Eskut, Y. Guler, E. Gurpinar Guler, I. Hos, C. Isik, O. Kara, A. Kayis Topaksu, U. Kiminsu, G. Onengut, K. Ozdemir, A. Polatoz, A.E. Simsek, B. Tali, U.G. Tok, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak, G. Karapinar, K. Ocalan, M. Yalvac

Bogazici University, Istanbul, Turkey
B. Akgun, I.O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, Ö. Ölçelik, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Istanbul University, Istanbul, Turkey
S. Cerci, B. Kaynak, S. Ozkorucuklu, D. Sunar Cerci

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk
University of Bristol, Bristol, United Kingdom
D. Anthony, E. Bhal, S. Bologna, J.J. Brooke, A. Bundock, E. Clement, D. Cussans, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, M.I. Holmberg, L. Kreczko, B. Krikler, S. Paramesvaran, S. Seif El Nasr-Storey, V.J. Smith, N. Stylianou, K. Walkingshaw Pass, R. White

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, C. Cooke, K.V. Ellis, K. Harder, S. Harper, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petyt, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, S. Bonomally, J. Borg, S. Breeze, O. Buchmuller, V. Cepaitis, G.S. Chahal, D. Colling, P. Dauncey, G. Davies, M. Della Negra, S. Fayer, G. Fedi, G. Hall, M.H. Hassanshahi, G. Iles, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, D.G. Monk, J. Nash, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyiski, A. Tapper, K. Uchida, T. Virdee, M. Vojinovic, N. Wardle, S.N. Webb, D. Winterbottom, A.G. Zecchinelli

Brunel University, Uxbridge, United Kingdom
K. Coldham, J.E. Cole, A. Khan, P. Kyberd, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, U.S.A.
S. Abdullin, A. Brinkerhoff, B. Caraway, J. Dittmann, K. Hatakeyama, A.R. Kanuganti, B. McMaster, N. Pastika, M. Saunders, S. Sawant, C. Sutantawibul, J. Wilson

Catholic University of America, Washington, DC, U.S.A.
R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, U.S.A.
A. Buccilli, S.I. Cooper, D. Di Croce, S.V. Gleyzer, C. Henderson, C.U. Perez, P. Rumerio, C. West

Boston University, Boston, U.S.A.
A. Akpinar, A. Albert, D. Arcaro, C. Cosby, Z. Demiragli, E. Fontanesi, D. Gastler, J. Rohlf, K. Salyer, D. Sperka, D. Spitzbart, I. Suarez, A. Tsatsos, S. Yuan, D. Zou

Brown University, Providence, U.S.A.
G. Benelli, B. Burkle, X. Coubez, D. Cutts, M. Hadley, U. Heintz, J.M. Hogan, G. Landsberg, K.T. Lau, M. Lukasik, J. Luo, M. Narain, S. Sagir, E. Usai, W.Y. Wong, X. Yan, D. Yu, W. Zhang

University of California, Davis, Davis, U.S.A.
J. Bonilla, C. Brainerd, R. Breeden, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, P.T. Cox, R. Erbacher, G. Haza, F. Jensen, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, B. Regny, D. Taylor, Y. Yao, F. Zhang
University of California, Los Angeles, U.S.A.
M. Bachtis, R. Cousins, A. Datta, D. Hamilton, J. Hauser, M. Ignatenko, M.A. Iqbal, T. Lam, W.A. Nash, S. Regnard, D. Saltzberg, B. Stone, V. Valuev

University of California, Riverside, Riverside, U.S.A.
K. Burt, Y. Chen, R. Clare, J.W. Gary, M. Gordon, G. Hanso, G. Karapostoli, O.R. Long, N. Manganelli, M. Olmedo Negrete, W. Si, S. Wimpenny, Y. Zhang

University of California, San Diego, La Jolla, U.S.A.
J.G. Branson, P. Chang, S. Cittolin, S. Cooperstein, N. Deelen, D. Diaz, J. Duarte, R. Gerosa, L. Giannini, D. Gilbert, J. Guiang, R. Kansal, V. Krutelyov, R. Lee, J. Letts, M. Masciovecchio, S. May, M. Pieri, B.V. Sathia Narayanan, V. Sharma, M. Tadel, A. Vartak, F. Würthwein, Y. Xiang, A. Yagil

University of California, Santa Barbara — Department of Physics, Santa Barbara, U.S.A.
N. Amin, C. Campagnari, M. Citron, A. Dorsett, V. Dutta, J. Incandela, M. Kilpatrick, J. Kim, B. Marsh, H. Mei, M. Oshiro, M. Quinman, J. Richman, U. Sarica, J. Sheplock, D. Stuart, S. Wang

California Institute of Technology, Pasadena, U.S.A.
A. Bornheim, O. Cerri, I. Dutta, J.M. Lawhorn, N. Lu, J. Mao, H.B. Newman, T.Q. Nguyen, M. Spiropulu, J.R. Vlimant, C. Wang, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, U.S.A.
J. Alison, S. An, M.B. Andrews, P. Bryant, T. Ferguson, A. Harilal, C. Liu, T. Mudholkar, M. Paulini, A. Sanchez, W. Terrill

University of Colorado Boulder, Boulder, U.S.A.
J.P. Cumalat, W.T. Ford, A. Hassani, E. MacDonald, R. Patel, A. Perloff, C. Savard, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, U.S.A.
J. Alexander, S. Bright-thonney, Y. Cheng, D.J. Cranshaw, S. Hogan, J. Monroy, J.R. Patterson, D. Quach, J. Reichert, M. Reid, A. Ryd, W. Sun, J. Thom, P. Wittich, R. Zou

Fermi National Accelerator Laboratory, Batavia, U.S.A.
M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauer, D. Berry, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, K.F. Di Petrillo, V.D. Elvira, Y. Feng, J. Freeman, Z. Gece, L. Gray, D. Green, S. Grünendahl, O. Gutsche, R.M. Harris, R. Heller, T.C. Herwig, J. Hirschauer, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, T. Klijnsma, B. Klima, K.H.M. Kwok, S. Lammel, D. Lincoln, R. Lipton, T. Liu, C. Madrid, K. Maeshima, C. Mantilla, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahm, J. Ngadiuba, V. O’Dell, V. Papadimitriou, K. Pedro, C. Pena, O. Prokofyev, F. Ravera, A. Reinsvold Hall, L. Ristori, B. Schneider, E. Sexton-Kennedy, N. Smith, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, H.A. Weber
University of Florida, Gainesville, U.S.A.
D. Acosta, P. Avery, D. Bourilkov, L. Cadamuro, V. Cherepanov, F. Errico, R.D. Field, D. Guerrero, B.M. Joshi, M. Kim, E. Koenig, J. Konigsberg, A. Korytov, K.H. Lo, K. Matchev, N. Menendez, G. Mitselmakher, A. Muthirakalayil Madhu, N. Rawal, D. Rosenzweig, S. Rosenzweig, K. Shi, J. Sturdy, J. Wang, E. Yigitbasi, X. Zuo

Florida State University, Tallahassee, U.S.A.
T. Adams, A. Askew, R. Habibullah, V. Hagopian, K.F. Johnson, R. Khurana, T. Kolberg, G. Martinez, H. Prosper, C. Schiber, O. Viazlo, R. Yohay, J. Zhang

Florida Institute of Technology, Melbourne, U.S.A.
M.M. Baarmand, S. Butalla, T. Elkafrayw91, M. Hohlmann, R. Kumar Verma, D. Noonan, M. Rahmani, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, U.S.A.
M.R. Adams, H. Becerril Gonzalez, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, A.H. Merrit, C. Mills, G. Oh, T. Roy, S. Rudrabhatla, M.B. Tonjes, N. Varelas, J. Viinikainen, X. Wang, Z. Wu, Z. Ye

The University of Iowa, Iowa City, U.S.A.
M. Alhusseini, K. Dilsiz92, R.P. Gandrajula, O.K. Köseyan, J.-P. Merlo, A. Mestvirishvili93, J. Nachtman, H. Ögüt94, Y. Onel, A. Penzo, C. Snyder, E. Tiras95

Johns Hopkins University, Baltimore, U.S.A.
O. Amram, B. Blumenfeld, L. Corcodilos, J. Davis, M. Eminizer, A.V. Gritsan, S. Kyriacou, P. Maksimovic, J. Roskes, M. Swartz, T.Á. Vámí

The University of Kansas, Lawrence, U.S.A.
A. Abreu, J. Anguiano, C. Baldenegro Barrera, P. Baringer, A. Bean, A. Bylinkin, Z. Flowers, T. Isidori, S. Khalil, J. King, G. Krintiras, A. Kropivnitskaya, M. Lazarovits, C. Lindsey, J. Marquez, N. Minafra, M. Murray, M. Nickel, C. Rogan, C. Royon, R. Salvatico, S. Sanders, E. Schmitz, C. Smith, J.D. Tapia Takaki, Q. Wang, Z. Warner, J. Williams, G. Wilson

Kansas State University, Manhattan, U.S.A.
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, T. Mitchell, A. Modak, K. Nam

Lawrence Livermore National Laboratory, Livermore, U.S.A.
F. Rebassoo, D. Wright

University of Maryland, College Park, U.S.A.
E. Adams, A. Baden, O. Baron, A. Belloni, S.C. Eno, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Koeth, A.C. Miguirey, S. Nabili, C. Palmer, M. Seidel, A. Skuja, L. Wang, K. Wong

Massachusetts Institute of Technology, Cambridge, U.S.A.
D. Abercrombie, G. Andreassi, R. Bi, S. Brandt, W. Busza, I.A. Cali, Y. Chen, M. D’Alfonso, J. Eysermans, C. Freer, G. Gomez Ceballos, M. Goncharov, P. Harris, M. Hu, M. Khute, D. Kovalskyi, J. Krupa, Y.-J. Lee, B. Maier, C. Mironov, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephans, J. Wang, Z. Wang, B. Wyslouch
University of Minnesota, Minneapolis, U.S.A.
R.M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, Sh. Jain, M. Krohn, Y. Kubota,
J. Mans, M. Revering, R. Rusack, R. Saradhy, N. Schroeder, N. Strobbe, M.A. Wadud

University of Nebraska-Lincoln, Lincoln, U.S.A.
K. Bloom, M. Bryson, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, C. Joo,
I. Kravchenko, M. Musich, I. Reed, J.E. Siado, G.R. Snow, W. Tabb, F. Yan

State University of New York at Buffalo, Buffalo, U.S.A.
G. Agarwal, H. Bandyopadhyay, L. Hay, I. Iashvili, A. Kharchilava, C. McLean, D. Nguyen,
J. Pekkanen, S. Rappoccio, A. Williams

Northeastern University, Boston, U.S.A.
G. Alverson, E. Barberis, Y. Haddad, A. Hortiangtham, J. Li, G. Madigan, B. Marzocchi,
D.M. Morse, V. Nguyen, T. Orimoto, A. Parker, L. Skinnari, A. Tishelman-Charny,
T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, U.S.A.
S. Bhattacharya, J. Bueghly, Z. Chen, A. Gilbert, T. Gunter, K.A. Hahn, Y. Liu, N. Odell,
M.H. Schmitt, M. Velasco

University of Notre Dame, Notre Dame, U.S.A.
R. Band, R. Bucci, A. Das, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa,
C. Jessop, K. Lannon, J. Lawrence, N. Loukas, D. Lutton, N. Marinelli, I. Mealister,
T. McCauley, C. Megrady, F. Meng, K. Mohrman, Y. Musienko, R. Ruchti, P. Siddireddy,
A. Townsend, M. Wayne, A. Wightman, M. Wolf, M. Zarucki, L. Zyrgala

The Ohio State University, Columbus, U.S.A.
B. Bylsma, B. Cardwell, L.S. Durkin, B. Francis, C. Hill, M. Nunez Ornelas, K. Wei,
B.L. Winer, B.R. Yates

Princeton University, Princeton, U.S.A.
F.M. Addesa, B. Bonham, P. Das, G. Dezoort, P. Elmer, A. Frankenthal, B. Greenberg,
N. Haubrich, S. Higginbotham, A. Kalogeropoulos, G. Kopp, S. Kwan, D. Lange, M.T. Luc-
chini, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, U.S.A.
S. Malik, S. Norberg

Purdue University, West Lafayette, U.S.A.
A.S. Bakshi, V.E. Barnes, R. Chawla, S. Das, L. Gutay, M. Jones, A.W. Jung, S. Kar-
markar, M. Liu, G. Negro, N. Neumeister, G. Paspalaki, C.C. Peng, S. Piperov, A. Purohit,
J.F. Schulte, M. Stojanovic, J. Thieman, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, U.S.A.
J. Dolen, N. Parashar
Rice University, Houston, U.S.A.
A. Baty, M. Decaro, S. Dildick, K.M. Ecklund, S. Freed, P. Gardner, F.J.M. Geurts,
A. Kumar, W. Li, B.P. Padley, R. Redjimi, W. Shi, A.G. Stahl Leiton, S. Yang, L. Zhang,
Y. Zhang

University of Rochester, Rochester, U.S.A.
A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti,
A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus

Rutgers, The State University of New Jersey, Piscataway, U.S.A.
B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl,
O. Karacheban25, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur,
S. Schnetzer, S. Somalwar, R. Stone, S.A. Thayil, S. Thomas, H. Wang

University of Tennesee, Knoxville, U.S.A.
H. Acharya, A.G. Delannoy, S. Fiorendi, S. Spanier

Texas A&M University, College Station, U.S.A.
O. Bouhali96, M. Dalchenko, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon97,
H. Kim, S. Luo, S. Malhotra, R. Mueller, D. Overton, D. Rathjens, A. Safonov

Texas Tech University, Lubbock, U.S.A.
N. Akchurin, J. Damgov, V. Hegde, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke,
S. Muthumuni, T. Peltola, I. Volobouev, Z. Wang, A. Whitbeck

Vanderbilt University, Nashville, U.S.A.
E. Appelt, S. Greene, A. Gurrola, W. Johns, A. Melo, H. Ni, K. Padeken, F. Romeo,
P. Sheldon, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, U.S.A.
M.W. Arenton, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy,
A. Li, C. Neu, B. Tannenwald, S. White, E. Wolfe

Wayne State University, Detroit, U.S.A.
N. Poudyal

University of Wisconsin — Madison, Madison, WI, U.S.A.
K. Black, T. Bose, J. Buchanan, C. Caillol, S. Dasu, I. De Bruyn, P. Everaerts, F. Fienga,
C. Galloni, H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless,
J. Madhusudanan Sreekala, A. Mallampalli, A. Mohammadi, D. Pinna, A. Savin, V. Shang,
V. Sharma, W.H. Smith, D. Teague, S. Trembath-Reichert, W. Vetens

†: Deceased
1: Also at TU Wien, Wien, Austria
2: Also at Institute of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for
Science, Technology and Maritime Transport, Alexandria, Egypt
3: Also at Université Libre de Bruxelles, Bruxelles, Belgium
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
6: Also at University of Chinese Academy of Sciences, Beijing, China
7: Also at Department of Physics, Tsinghua University, Beijing, China
8: Also at UFMS, Nova Andradina, Brazil
9: Also at Nanjing Normal University Department of Physics, Nanjing, China
10: Now at The University of Iowa, Iowa City, U.S.A.
11: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
12: Also at Joint Institute for Nuclear Research, Dubna, Russia
13: Also at Helwan University, Cairo, Egypt
14: Now at Zewail City of Science and Technology, Zewail, Egypt
15: Also at Suez University, Suez, Egypt
16: Now at British University in Egypt, Cairo, Egypt
17: Also at Purdue University, West Lafayette, U.S.A.
18: Also at Université de Haute Alsace, Mulhouse, France
19: Also at Tbilisi State University, Tbilisi, Georgia
20: Also at Erzincan Binali Yildirim University, Erzincan, Turkey
21: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
22: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
23: Also at University of Hamburg, Hamburg, Germany
24: Also at Isfahan University of Technology, Isfahan, Iran, Isfahan, Iran
25: Also at Brandenburg University of Technology, Cottbus, Germany
26: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
27: Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
28: Also at Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary
29: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
30: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
31: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
32: Also at Wigner Research Centre for Physics, Budapest, Hungary
33: Also at IIT Bhubaneswar, Bhubaneswar, India
34: Also at Institute of Physics, Bhubaneswar, India
35: Also at G.H.G. Khalsa College, Punjab, India
36: Also at Shoolini University, Solan, India
37: Also at University of Hyderabad, Hyderabad, India
38: Also at University of Visva-Bharati, Santiniketan, India
39: Also at Indian Institute of Technology (IIT), Mumbai, India
40: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
41: Also at Sharif University of Technology, Tehran, Iran
42: Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
43: Now at INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
44: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
45: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
46: Also at Università di Napoli ‘Federico II’, Napoli, Italy
47: Also at Consiglio Nazionale delle Ricerche — Istituto Officina dei Materiali, Perugia, Italy
48: Also at Riga Technical University, Riga, Latvia
49: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
50: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
51: Also at Institute for Nuclear Research, Moscow, Russia
52: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
53: Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
54: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
55: Also at University of Florida, Gainesville, U.S.A.
56: Also at Imperial College, London, United Kingdom
57: Also at P.N. Lebedev Physical Institute, Moscow, Russia
58: Also at California Institute of Technology, Pasadena, U.S.A.
59: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
60: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
61: Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
62: Also at INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
63: Also at National and Kapodistrian University of Athens, Athens, Greece
64: Also at École Polytechnique Fédérale Lausanne, Lausanne, Switzerland
65: Also at Universität Zürich, Zurich, Switzerland
66: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria
67: Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
68: Also at Siirt University, Siirt, Turkey
69: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey
70: Also at Konya Technical University, Konya, Turkey
71: Also at Istanbul University — Cerrahpasa, Faculty of Engineering, Istanbul, Turkey
72: Also at Piri Reis University, Istanbul, Turkey
73: Also at Adiyaman University, Adiyaman, Turkey
74: Also at Ozyegin University, Istanbul, Turkey
75: Also at Izmir Institute of Technology, Izmir, Turkey
76: Also at Necmettin Erbakan University, Konya, Turkey
77: Also at Bozok Universitesesi Rektörlüğü, Yozgat, Turkey
78: Also at Marmara University, Istanbul, Turkey
79: Also at Milli Savunma University, Istanbul, Turkey
80: Also at Kafkas University, Kars, Turkey
81: Also at Istanbul Bilgi University, Istanbul, Turkey
82: Also at Hacettepe University, Ankara, Turkey
83: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
84: Also at Vrije Universiteit Brussel, Brussel, Belgium
85: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
86: Also at IPPP Durham University, Durham, United Kingdom
87: Also at Monash University, Faculty of Science, Clayton, Australia
88: Also at Università di Torino, Torino, Italy
89: Also at Bethel University, St. Paul, Minneapolis, U.S.A., St. Paul, U.S.A.
90: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
91: Also at Ain Shams University, Cairo, Egypt
92: Also at Bingol University, Bingol, Turkey
93: Also at Georgian Technical University, Tbilisi, Georgia
94: Also at Sinop University, Sinop, Turkey
95: Also at Erciyes University, Kayseri, Turkey
96: Also at Texas A&M University at Qatar, Doha, Qatar
97: Also at Kyungpook National University, Daegu, Korea, Daegu, Korea