Natural products as potential cancer therapy enhancers: A preclinical update

Abed Agbarya¹, Nili Ruimi², Ron Epelbaum¹, Eran Ben-Arye³,⁴ and Jamal Mahajna²,⁵

Abstract
Cancer is a multifactorial disease that arises as a consequence of alterations in many physiological processes. Recently, hallmarks of cancer were suggested that include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis, along with two emerging hallmarks including reprogramming energy metabolism and escaping immune destruction. Treating multifactorial diseases, such as cancer with agents targeting a single target, might provide partial treatment and, in many cases, disappointing cure rates. Epidemiological studies have consistently shown that the regular consumption of fruits and vegetables is strongly associated with a reduced risk of developing chronic diseases, such as cardiovascular diseases and cancer. Since ancient times, plants, herbs, and other natural products have been used as healing agents. Moreover, the majority of the medicinal substances available today have their origin in natural compounds. Traditionally, pharmaceuticals are used to cure diseases, and nutrition and herbs are used to prevent disease and to provide an optimal balance of macro- and micro-nutrients needed for good health. We explored the combination of natural products, dietary nutrition, and cancer chemotherapeutics for improving the efficacy of cancer chemotherapeutics and negating side effects.

Keywords
Cancer, cancer therapy, natural products, herbs, nutrition

Introduction
A long history exists of natural products originating from plants, fungi, and microorganisms that have been used for the treatment and prevention of human diseases. In recent years, there has been an emerging focus on the exploration of natural products, including dietary phytoconstituents, in cancer prevention and treatment. An analysis of the origin of drugs developed between 1981 and 2002 showed that natural products or natural-product-derived drugs comprise 28% of all novel chemical entities (NCEs) launched into the market.¹ Examples of anti-cancer agents originating from natural sources include vinblastine from *Vinca rosea*, one of the earliest examples, and paclitaxel, the most recent example, which originates from a Chinese Pacific yew plant.² Other plant-derived anti-cancer agents include etoposide, teniposide, homoharringtonine, and camptothecin derivatives.

Natural products as inhibitors of cancer cell proliferation and as inducers of cancer cell cycle arrests and apoptosis
Proliferation is the multiplication or reproduction of cells resulting in the rapid expansion of a cell population. Mammalian cell growth and proliferation are mediated via cell cycle progression. In each cell division cycle, chromosomes are replicated once (DNA synthesis or S-phase) and segregated to create two genetically identical daughter cells (mitosis or M-phase). These events are spaced by intervals of growth and reorganization (gap phases G1 and G2). Progression through the G1 phase of the cell division cycle is

¹Thoracic Oncology Clinic, Division of Oncology, Rambam Health Care Campus, Haifa, Israel
²Cancer Drug Discovery Program, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
³Complementary and Traditional Medicine Unit, Department of Family Medicine, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
⁴Integrative Oncology Program, The Oncology Service, Lin Medical center, Clalit Health Services, Haifa and Western Galilee District, Israel
⁵Department of Nutritional Sciences, Tel-Hai College, Kiryat Shmona, Israel

Corresponding author:
Jamal Mahajna, Cancer Drug Discovery Program, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel.
Email: jamalm@migal.org.il

Creative Commons CC-BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (http://www.uk.sagepub.com/aboutus/openaccess.htm).
a rate-limiting step in mammalian cell proliferation and is governed by numerous mitogenic pathways until the restriction point is passed. Cyclin-dependent kinases (CDK), CDK4 and CDK6, complexed with cyclin D1 are responsible for cell cycle progression through the G1 phase, and the CDK2/cyclin E complex functions in the progression of the cell from the late G1 to the early S-phase.

Apoptosis is the predominant mechanism by which cancer cells die when subjected to chemotherapy or irradiation. However, cancer cells develop resistance to these therapies that may be due, at least in part, to the development of effective anti-apoptotic mechanisms.3

More than 600 natural products are reported to possess pharmaceutical activity and many of them exhibit anti-cancer activity. Among the 600 natural products, curcumin (diferuloyl methane), a yellow spice and phenolic compound derived from the plant Curcuma longa, is one of the most powerful and promising chemo-preventive and anti-cancer agents.4

Curcumin has been found to exert preventive and therapeutic effects in various cancers, in part, due to its ability to influence a diverse range of molecular targets and signaling pathways, including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), signal transducer and activator of transcription 3 (STAT3), PI3K and AKT pathways. Moreover, the number of its proposed cellular targets grows as research continues. Recently, curcumin was implicated in modulating cancer cell proliferation by targeting the mammalian target of rapamycin (mTOR) signaling pathways 6,7 (Table 1).

Table 1. Major anti-cancer natural products and their principal target genes.

Major natural products	Principal target genes	
Curcumin	Wnt/β-catenin pathway;	
	MMP2;LMP1;TIMP-1;Gelatinase;EGF;MMP9;KDR;Angiopoietin1	
Sulforaphane (SFN)	Wnt/β-catenin pathway;	
	IL-6;IL-1β;TNFα;PDGF;VEGF;NF-κB;GATA6	
Resveratrol	Wnt/β-catenin signaling;	
	NF-κB;HER2;AKT;ERα;POU2AF3	
Caffeic acid phenethyl ester (CAPE)	Wnt/β-catenin signaling;	
	NF-κB;COX-2;TNFα	
Quercetin	Wnt/β-catenin signaling;	
	NF-κB;GATA6	
EGCG	Wnt/β-catenin signaling;	
	NF-κB;DNMT76-78	
Lycopene	NF-κB;IGF-1;AKT;β-catenin;	
	cyclin D1;Bcl2;IRS1	
Genistein	EGF;FOXO3; IL-1β;Notch-1;APAF1	
I3-cis-retinoic acid	IL-2;44;TIMP-1;NF-	
	κB;ATF-2;JNK	
Indol-3-carbinol (I3C)	IGFR1;IRS-1;NF-κB	
Urolithin, ellagitannins and punicalagin	COX-2;	
Amentoflavone	TIMP-1;	
Indirubin	VEGF-R2;	
Salvinolic Acid B (Sal B)	TGF-β;	

13C: indol-3-carbinol; SAL B: salvinolic acid B; MMP: matrix metalloprotease; TIMP-1: tissue inhibitor of metalloprotease-1; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; EGF: epidermal growth factor; FOXO3: forkhead box O3; IGF: vascular endothelial growth factor; HER2: human epidermal growth factor receptor 2; bFGF: basic fibroblast growth factor; STAT3: signal transducer and activator of transcription 3; mTOR: mammalian target of rapamycin; JNK: c-Jun N-terminal kinases; ERK: extracellular-signal-regulated kinase; uPA: urokinase-type plasminogen activator; KDR: kinase insert domain receptor; IL: interleukin; TNF: tumor necrosis factor; PGDF: platelet-derived growth factor receptor; MAPK: mitogen-activated protein kinase; AR: androgen receptor; COX: cyclooxygenase; NOS: nitric oxide synthase; ER-α: estrogen receptor-alpha; iNOS: inducible nitric oxide synthase; DNMT7: DNA cytosine methyltransferase; IGF: insulin-like growth factor; PSA: prostate specific antigen; ICAM: intercellular adhesion molecule; SP-1: specificity protein 1; ATF-2: activating transcription factor 2; GATA6: GATA-binding factor 6.
several cancers, heart diseases, inflammation, and viral infections. Resveratrol was reported to block proliferation, promote cell cycle arrest, and induce apoptosis in cancer cells, mediated by the suppression of extracellular-signal-regulated kinase (ERK) 1/2 signaling pathway, p53, Rb/E2F, cyclins, and CDKs. Furthermore, resveratrol affects the activity of transcriptional factors involved in proliferation and stress responses, such as NF-κB, activator protein 1 (AP1) and Egr1, mitogen-activated protein kinases (MAPKs) and tyrosine kinases (e.g. Src), leading to apoptosis induction. In addition, resveratrol also inhibits cellular proliferation of prostate cancer cells in both androgen receptor (AR)-dependent and independent mechanisms. Resveratrol inhibits AR transcriptional activity and stimulates phosphatase and tensin homolog (PTEN) expression and decreased AKT phosphorylation (Table 1).

Drinking green tea is also associated with a decreased frequency of cancer development, mainly due to the presence of epigallocatechin gallate (EGCG) and other polyphenols. EGCG suppresses androgen receptor expression and signaling via several growth factor receptors. Moreover, EGCG blocks nuclear translocation of the transcription factor NF-κB.

Genistein is an isoflavone found in soy. Soy consumption is associated with a lower incidence of a number of cancers, including colon cancer which is believed to be mediated by genistein. Genistein was reported to inhibit cancer progression and block proliferation, in part by attenuating the negative effect of epidermal growth factor (EGF) on forkhead box O3 (FOXO3) activity. However, its therapeutic actions in vivo have been questioned due to contradictory reports from animal studies. Recent in vivo data argue that genistein exhibited a cancer promoting effect (Table 1).

Ellagitannins are bioactive polyphenols found in berries and pomegranate fruit which have attracted recent attention due to their anti-cancer and anti-atherosclerotic, anti-oxidant, and anti-inflammatory bioactivities. Ellagitannins are not absorbed intact into the bloodstream but are hydrolyzed to ellagic acid. They are also metabolized by gut flora into urolithins which are conjugated in the liver and excreted in the urine. These urolithins are also bioactive and inhibit cancer cell proliferation, mediated in part by interfering with the activity of the NF-κB pathway. In clinical studies, pomegranate juice administration led to a decreased rate of prostate specific antigen (PSA) rise after primary treatment with surgery or radiation. Moreover, urolithin, an ellagitannins derivative, significantly inhibited testosterone-induced MCF-7aro (MCF-7 that over-expresses aromatase protein) cell proliferation, probably by exhibiting anti-aromatase activity (Table 1).

Epidemiological studies have shown that the consumption of lycopene is inversely related to human prostate cancer. Moreover, experimental studies have shown that lycopene inhibits the growth of breast, prostate, and endometrial cancer cells with regulation of cell-cycle-related genes, mediated by interfering with NF-κB activity. In colon cancer cells, lycopene was reported to inhibit the activity of AKT signaling and consequently induced apoptosis. In addition, it has been reported that lycopene inhibited insulin-like growth factor-1 (IGF-1) mediated AKT and AR signaling in rat prostate cancer. Clinical trials have revealed that lycopene supplements could reduce tumor size and PSA level in localized prostate cancers, consistent with the down-regulation of AR nuclear translocation found during in vitro studies (Table 1).

Moreover, a widely recognized nutritional dietary supplement called Propolis made by honeybees and containing flavonoids, phenolic acids and esters, and caffeic acid phenethyl ester (CAPE) exerted a variety of anti-cancer activities by modulating cell proliferation; induction of cell cycle arrest and apoptosis mediated by inhibition of NF-κB, PI3K, and p53 signaling pathways and reduction in phosphorylated human epidermal growth factor receptor 2 (HER2) protein in breast cancer cell lines. Furthermore, the presence of CAPE augmented activity of docetaxel and paclitaxel in prostate cancer cells that was mediated by interfering with AKT, ERK, and ER-α activity (Table 1).

Natural products interfering with cancer angiogenesis

Angiogenesis is a physiological process involving the growth of new blood vessels from pre-existing vessels. It is a normal process in growth and development as well as in wound healing. However, this is also a fundamental step in the transition of tumors from a dormant state to a malignant state. Tumors induce angiogenesis by secreting various growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which induce capillary growth into the tumor and allow it to grow by supplying nutrients and oxygen and removing waste products. In addition, the new vessels allow tumor cells to escape into the circulation and lodge in other organs (i.e. tumor metastases). A vast array of products of natural origin have been shown to have anti-angiogenic potential in preclinical models, including Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanadin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinale (ginger), Panax ginseng, Rabdosia rubescens (Rabdo sia), and Chinese destagnation herbs (Table 1).

Quercetin, at non-toxic concentrations, was reported to significantly inhibit micro-vessel sprouting, endothelial cell proliferation, migration, invasion, and tube formation, which are key events in the process of angiogenesis. Furthermore, quercetin exhibited anti-angiogenic activity in ex vivo angiogenesis assays, using the chicken egg chorioallantoic membrane (CAM) assay. Moreover, quercetin also exhibited in
vivo anti-tumor activity manifested by significant reduction of tumor size in a xenograft mouse model by targeting angiogenesis.\(^5\) (Table 1).

Green tea polyphenols down-regulated the activity of a number of key enzymes, including MAPK and vascular endothelial growth factor receptor (VEGFR) signaling, leading to blocking the proliferation of endothelial cells.\(^7\) Also, ellagittannin-rich pomegranate extract was demonstrated to inhibit the proliferation of endothelial cells and to block tumor-associated angiogenesis in animal models.\(^3\)

Indirubin, the active component of a traditional Chinese herbal medicine, Banlangen, exhibited anti-angiogenic activity when tested in the CAM assay and mouse corneal model. Moreover, indirubin inhibited endothelial cell migration, tube formation, and in vitro cell survival\(^1\) (Table 1).

Curcumin was reported to down-regulate the expression of the \(VEGF\) and \(MMP9\) genes that are associated with angiogenesis.\(^3\) Additionally, curcumin interfered with the activity of both \(MMP2\) and \(MMP9\) and, consequently, reduced degradation of the extracellular matrix (ECM),\(^4\) leading to a reduction in the levels of released angiogenic factors stored in the ECM. Furthermore, curcumin also inhibits growth factor receptors, such as \(EGFR\) and \(VEGFR\), and the other intracellular signaling tyrosine kinases implicated in angiogenesis. Recent reports implicated curcumin in decreasing the gelatinolytic activities of \(MMP9\). In addition, treatment with curcumin inhibited glioma-induced angiogenesis.\(^4\) The membrane-bound enzyme \(CD\)13 (aminopeptidase N) is found in blood vessels undergoing active angiogenesis. Curcumin binds to \(CD\)13 and blocks its activity, thereby inhibiting angiogenesis and invasion of tumor cells\(^4\) (Table 1). 13-cis-retinoic acid significantly inhibited in vitro angiogenesis, as well as micro-vessel sprouting, vascular endothelial (VE) cell proliferation, migration, and tube formation.\(^4\)

Resveratrol inhibits \(VEGF\)-induced angiogenesis by disruption of reactive oxygen species–dependent Src kinase activation and subsequent VE-cadherin tyrosine phosphorylation.\(^4\) Edible berries contain high concentrations of proanthocyanidin which inhibits tumor necrosis factor (TNF)\(\alpha\)-induced \(VEGF\) expression. Feeding proanthocyanidins to mice with tumor xenografts resulted in reduced intratumoral microvasculature\(^4\) (Table 1).

In addition to its effect on cell proliferation, \(EGFR\) is also implicated in cancer angiogenesis.\(^5\) \(EGF\) stimulates urokinase-type plasminogen activator (\(uPA\)) expression, which is involved in angiogenesis promotion. Genistein, curcumin, resveratrol, and quercetin were reported to inhibit the effects of \(EGF\).\(^5\) In in vitro systems, genistein and curcumin inhibit \(EGF\)-stimulated \(uPA\) production. Another family member of \(EGFR\), the \(HER2/neu\) gene, is amplified in more than 30% of patients with breast cancer and is correlated with higher levels of angiogenesis.\(^5\) The activity of herceptin, a drug that inhibits \(HER2/neu\) expressing breast cancer cells, can be further enhanced by oleic acid.\(^5\) Interestingly, emodin, a natural constituent of Polygonummultiflorum and aloe, inhibits \(HER2/neu\) expression and exhibits selective cellular toxicity to cancer cells\(^5\) (Table 1).

Natural products interfering with cancer invasion and metastasis

Metastasis, the spread of cancer cells from the primary tumor to distant organs, is a multi-step process in which cancer cells must invade through the extracellular matrix, intravasate into the bloodstream, survive transport through the circulatory system and, finally, extravasate to distant organs.\(^5\) Aberrant activation of a developmental program, termed the epithelial-to-mesenchymal transition (EMT), has recently been recognized as an important driver of the metastatic process. EMT is a conserved developmental process in which epithelial cells lose E-cadherin-mediated cell–cell contacts and apical–basal polarity and become motile and invasive. This program is accompanied by expression changes in a variety of genes.

SFl was reported to synergize with the multi-kinase inhibitor, sorafenib, in reducing tumor size of pancreatic cancer in an animal model, due to the blockage of proliferation and angiogenesis, and down-regulation of EMT modulators\(^5\) (Table 1).

In addition, the bioactive component, grape seed proanthocyanidins (GSPs), interfered with the invasion potential of head and neck squamous cell carcinoma (HNSCC). The inhibition of cell invasion by GSPs was associated with the reversal of the EMT process.\(^5\)

Salvianolic acid B (Sal B) is a water-soluble component from Danshen (Salvia miltiorrhiza Bunge), a traditional Chinese herb reported to prevent tubular EMT in the fibrotic kidney.\(^5\) (Table 1).

Curcumin is reported to possess anti-invasive activity which is partly mediated by down-regulation of \(MMP2\) and up-regulation of tissue inhibitor of metalloproteinase-1 (TIMP1).\(^6\) Enzymes that are involved in the regulation of tumor cell invasion.

Experimental studies have shown that lycopene exhibited anti-cancer activity,\(^2\) that mediated, in part, by inhibiting NF-\(\kappa\)B-mediated expression of \(MMP9\), leading to the inhibition of invasion of cancer cells.\(^6\) In addition, EGCG reduced cancer cell invasiveness through the inhibition of \(Wnt\) signaling\(^6\) (Table 1).

Moreover, CAPE found in the nutritional dietary supplement Propolis is reported to interfere with cancer metastasis and invasion by modulating activities of \(MMP2\) (Table 1).

Natural products targeting cancer stem cells

The present understanding of cancer biology argues for the existence of a small portion of cells that show stem cell–like characters. These cells constitute a limited subpopulation of
primitive undifferentiated cancer cells that have the ability to self-renew, are tumorigenic and invasive, undergo asymmetrical divisions, and generate all aspects of cancers. Like non-malignant stem cells, putative cancer stem cells (CSC) show remarkable resistance to radiation and chemotherapy. A number of reports implicate stem-like cells as a potential cause of chemoresistance. The EMT process that regulates cancer metastasis is also implicated in the generation of CSC and has been associated with resistance to chemotherapy. In order to cure cancer, it is necessary to eliminate CSC in addition to differentiated cancer cells, to decrease metastasis, reduce recurrence, and improve patient survival.

Diverse dietary constituents, such as vitamins A and D, genistein, EGCG, SFN, piperine, theanine, choline, and curcumin, have been shown to modify self-renewal properties of CSC and influence proliferation, as well as other functions in CSC, suggesting the potential of using these dietary components in preventing resistance and cancer recurrence. Wnt signaling and modulation of β-catenin expression is essential for CSC. A number of phenolic compounds, such as CAPE, curcumin, resveratrol, quercetin, iso-flavone, fisetin, EGCG, and isoflavone, were able to inhibit Wnt and β-catenin signaling (Table 1).

Resveratrol has been shown to significantly decrease the level of β-catenin in the nucleus of cancer cells (Table 1). Recent studies in breast cancer cells demonstrated that curcumin inhibited aldehyde dehydrogenases (ALDH)-expressing breast CSC self-renewal but did not cause toxicity to differentiated cells by suppressing Wnt signaling. Likewise, curcumin has been shown to inhibit CD133 positive medulloblastoma, glioblastoma, pancreatic, and colon CSC proliferation. Moreover, a recent report demonstrated that SFN suppresses the activity of NF-κB/GATA6 and thus affects proliferation and migration of vascular smooth muscle cell (VSMC) as well as CSC. Others have reported activity of SFN against stem cells that is mediated by blocking the Wnt/β-catenin self-renewal pathway (Table 1).

Natural products modulate epigenetic modifications

Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modulates gene expression without changes to the underlying nucleotide sequence, ultimately determining phenotype from genotype. DNA methylation and post-translational histone modifications are classical levels of epigenetic regulation. Epigenetic changes in DNA methylation patterns at CpG sites or deregulated chromatin states of tumor promoting genes and non-coding RNAs emerge as major governing factors in tumor progression and cancer drug sensitivity. DNA methylation in mammals is an enzymatic process primarily mediated by active DNA cytosine methyltransferase (DNMT). During cell division, methylation patterns in the parental strand of DNA are maintained in the daughter strand by the action of DNMT1, which catalyses the transfer of a methyl group from S-adenosylmethionine (SAM), the methyl donor, to the cytosine residues, restoring the symmetrically methylated CpG dinucleotide pair. Aberrant patterns and dysregulation of DNA methylation cause stable, heritable transcriptional silencing of the associated gene during tumorigenesis. Epigenetic variability at specific transcription regulation sites appear to be susceptible to modulation by nutritional changes. Therefore, dietary components which can affect the process of DNA methylation may influence tumorigenesis by regulation of the expression of certain key genes. Currently, the best evidence to show that nutritional components can modulate epigenetic status of mammalian cells comes from studies with mice carrying the agouti viable yellow gene. Various environmental factors, such as nutrition, remodel our epigenomes lifelong in a beneficial or detrimental way. Since epigenetic marks are reversible in contrast to genetic defects, chemo-preventive nutritional polyphenols are currently evaluated for their ability to reverse adverse epigenetic marks in cancer cells to attenuate tumorigenesis progression, prevent metastasis, or sensitize for drug sensitivity.

Nutrients involved in one-carbon metabolism, namely folate, vitamin B12, vitamin B6, riboflavin, methionine, choline, and betaine, are involved in DNA methylation by regulating the levels of the universal methyl donor SAM and S-adenosylhomocysteine (SAH). Other nutrients and bioactive food components, such as retinoic acid, resveratrol, curcumin, SFN, and tea polyphenols, can modulate epigenetic patterns by altering the levels of SAM and SAH or affecting the catalytic activity of enzymes involved in DNA methylation and histone modifications. Cancer and other age-related diseases are associated with profound changes in epigenetic patterns, although it is not yet known whether these changes are programmatic or stochastic in nature (Table 2).

The green tea polyphenol, EGCG, is believed to be a key active ingredient for cancer inhibition through epigenetic control. It has been found that EGCG can reverse CpG island hypermethylation of various methylation-silenced genes and reactivate these gene expressions. It was also reported that consumption of polyphenols could lead to a decrease in the availability of SAM and an increase in SAH and homocysteine levels. Currently, green tea extracts have been applied in clinical trials, including oral cancer prevention, indicating that tea polyphenols could be used in multiple human cancer preventive and therapeutic purposes due to their bioactivities, such as regulating epigenetic factors (Table 2).

A methyl donor diet that is used for the synthesis of SAM, including folate and vitamin B12, is expected to affect DNA methylation. Studies on feeding in rats with diets deficient in folate showed a significant genome-wide DNA hypomethylation, as well as gene-specific DNA hypermethylation.
It is becoming clear that genistein exerts multiple chemopreventive effects as their daily diet. Genistein is believed to be a breast cancer in Asian women who consume soybean products as their daily diet. A growing body of evidence demonstrates that a high intake of n-3 polyunsaturated fatty acids (PUFAs) is protective against tumorigenesis. In contrast, diets rich in n-6 PUFAs (linoleic acid (LA) and arachidonic acid (AA)) enhance both the initiation and promotion of cancer. Recently, miRNA expression of let-7d, miR-15b, miR-107, miR-191, and miR-324-5p were modulated by a n-3 PUFA-enriched diet, arguing that miRNAs may be involved in mediating some of the anti-oncogenic and chemo-protective properties of PUFAs.

Butyrate, a short-chain fatty acid produced via fermentation of dietary fiber, exhibited cancer protective effects which are believed to be mediated in part by modulating miRNA expression, such as miR-17–92, miR-18b-106a, and miR-106b–25 clusters. The same applies to all-trans-retinoic acid, the most biologically active metabolites of vitamin A; up-regulated miR-186, miR-215, and miR-324-5p were modulated by a n-3 PUFA-enriched diet, arguing that miRNAs may be involved in mediating some of the anti-oncogenic and chemo-protective properties of PUFAs (Table 3).

Polyphenols are ubiquitous secondary metabolites found in dietary nutrition that exhibit chemo-prevention activity against a number of chronic diseases. Some studies have demonstrated that curcumin has protective properties against several cancer stages. Dietary intake of natural products contributes to disease prevention and therapy, partly due to their capacity to alter the expression of miRNAs and consequently regulate cellular signaling and biological behavior. Curcumin, isoflavone, 3,3′-diindolylmethane (DIM), I3C, and EGCG are typical examples of natural agents that have been demonstrated to regulate miRNA expression.

Table 2. Natural products as epigenetic modifiers.

Natural product	Epigenetic activity
EGCG	DNMT inhibitor^{105,106}, HAT¹⁰⁷
	HAT¹⁰⁷, HDAC³¹⁰⁷
Parthenolide	DNMT inhibitor¹⁰⁶
Folate	Methyl group donor^{91,92,94–96,109}
Genistein	DNMT inhibitor^{91,92,94–96,109}, HAT inhibitor^{94–96,109}, HDAC⁶¹¹⁰
Caffeic acid phenethyl ester (CAPE)	HDAC inhibitor³¹
Curcumin	HDAC inhibitor¹¹¹, HAT inhibitor¹¹¹, DNMT inhibitor^{96,112,113}
Selenium	Decrease DNMT¹¹⁴ expression, Affect homocysteine availability¹¹⁴
Methionine	Methyl group donor^{108,115}
Choline	Methyl group donor^{108,115}
Betaine	Methyl group donor^{108,115}
Folate	Methyl group donor^{115,108}
Vitamin B12	Methyl group donor^{115,108}
Resveratrol	Activating SIRT-1¹¹⁶
Sulforaphane	HDAC inhibitor¹¹⁷

EGCG: epigallocatechin gallate; DNMT: DNA cytosine methyltransferase; HAT: histone acetyltransferases; HDAC: histone deacetylases.

Some of the dietary agents, such as butyrate, flavonoids, and curcumin, are capable of altering the epigenetic landscape which can modulate gene/microRNA (miRNA) transcription and subsequently trigger changes in cell proliferation, differentiation, and cell survival^{101,102} (Table 2). Interestingly, several investigators have recently begun to explore how bioactive dietary agents alter the inter-regulatory patterns between promoter regions of miRNAs and several genes.¹⁰³

Natural products’ activity mediated by modulation of miRNA expression

miRNAs are small non-coding RNAs (~22 nucleotides long) that play a critical role in basic biological processes, including carcinogenesis. miRNAs are found in both plants and animals and regulate protein expression by acting through complementarity to 3′ un-translated regions (UTRs) of their “target” miRNAs, which results in the repression of target gene expression post-transcriptionally.¹⁰⁴ Currently, more than 800 human and mouse miRNAs have been identified that are involved in almost all human malignancies.¹⁰⁵ Furthermore, miRNAs have been correlated to tumor location, mutation status of several tumor suppressor genes/oncogenes, and cancer disease stages. Dietary intake of natural products contributes to disease prevention and therapy, partly due to their capacity to alter the expression of miRNAs and consequently regulate cellular signaling and biological behavior. Curcumin, isoflavone, 3,3′-diindolylmethane (DIM), I3C, and EGCG are typical examples of natural agents that have been demonstrated to regulate miRNA expression.¹⁰⁶

A growing body of evidence demonstrates that a high intake of n-3 polyunsaturated fatty acids (PUFAs) is protective against tumorigenesis.¹⁰⁷ In contrast, diets rich in n-6 PUFAs (linoleic acid (LA) and arachidonic acid (AA)) enhance both the initiation and promotion of cancer.¹⁰⁸ Recently, miRNA expression of let-7d, miR-15b, miR-107, miR-191, and miR-324-5p were modulated by a n-3 PUFA-enriched diet,¹⁰⁹ arguing that miRNAs may be involved in mediating some of the anti-oncogenic and chemo-protective properties of PUFAs (Table 3).

Butyrate, a short-chain fatty acid produced via fermentation of dietary fiber, exhibited cancer protective effects which are believed to be mediated in part by modulating miRNA expression,¹¹⁰ such as miR-17–92, miR-18b-106a, and miR-106b–25 clusters. The same applies to all-trans-retinoic acid, the most biologically active metabolites of vitamin A; up-regulated miR-186, miR-215, and miR-223;¹¹¹ and down-regulated miR-17, miR-25, miR-93, miR-193, and miR-181b¹¹² (Table 3).

Polyphenols are ubiquitous secondary metabolites found in dietary nutrition that exhibit chemo-prevention activity against a number of chronic diseases.¹¹³ Some studies have demonstrated that curcumin has protective properties against several...
modulating epigenetic changes of the chromatin. Interestingly, some EGCG activities are mediated by affecting the expression of miRNAs such as miR-16, let-7c, miR-18, miR-25, and miR-92 which were up-regulated and miR-129, miR-196, miR-200, miR-342, and miR-526 which were down-regulated. Moreover, EGCG affects the expression of the hypoxia-inducible factor 1 alpha (HIF-1α) pathway, an effect which is mediated by regulation of miR-210134 (Table 3).

Soy isoflavones, such as daidzein, genistein, and glycitein, have been reported to have anti-carcinogenic effects mediated by inhibition of cell growth, invasion, and metastasis.125 Genistein regulates the expression of miRNAs implicated in controlling cancer cell proliferation,126 also up-regulating miR-200, which was associated with the down-regulation of validated targets zinc finger E-box-binding homeobox 1 (ZEB1), slug, and vimentin, known to play a role in the EMT process116 (Table 3).

Concluding remarks

Many natural products or dietary substances exhibit anti-cancer activity in in vitro systems against a variety of cancer cell lines, including leukemia, lymphoma, breast, prostate, liver, lung, and myeloma cells. The anti-cancer activity of natural products includes the inhibition of proliferation, induction of apoptosis, induction of cell cycle arrest, inhibition of invasive behavior, and suppression of tumor angiogenesis in many experimental systems. We suggest a need for more in-depth studies that focus on the most promising herbal-derived substances, such as curcumin, genistein, and others. Preliminary clinical data have shown promising efficacies of natural products in cancer treatment as well as in other indications. Yet, few of these natural products have been subjected to randomized clinical trials (RCTs) under the International Conference on Harmonization (ICH) Good Clinical Practice Guidelines to determine their efficacy and/or safety. The data summarized here show that many non-clinical in vitro and in vivo studies on herbal medicines have commonly supported the traditional therapeutic claims. However, systematic reviews of the study protocols or data interpretation and validation are lacking. We believe that there is a need to explore the full potential of the dietary supplements of natural products, and to assess their safety and efficacy in well-designed, double-blinded, randomized, placebo-controlled clinical trials as stand-alone treatments or in combination with other treatments. To achieve this goal, standardization of pure natural products or active extracts is an important element. Because the composition and amount of biologically active substances depend on sites of production, cultivation conditions, and extraction procedures, standardization will help the acceptance of natural products as suitable for cancer treatment. However, there is a need for the identification and prediction of potential herb–drug interactions.
Declaration of conflicting interests
No author has any conflict of interest to declare.

Funding
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References
1. Newman DJ, Cragg GM and Snader KM. Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 2003; 66: 1022–1037.
2. Butler MS. Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 2008; 25: 475–516.
3. Hanahan D and Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.
4. Bar-Sela G, Epelbaum R and Schaffer M. Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications. Curr Med Chem 2010; 17: 190–197.
5. Jagtap S, Meganathan K, Wagh V, et al. Chemoprotective mechanism of the natural compounds, epigallocatechin-3-O-gallate, quercetin and curcumin against cancer and cardiovascular diseases. Curr Med Chem 2009; 16: 1451–1462.
6. Johnson SM, Gulhati P, Arrieta I, et al. Curcumin inhibits proliferation of colorectal carcinoma by modulating Akt/mTOR signaling. Anticancer Res 2009; 29: 3185–3190.
7. Beevers CS, Zhou H and Huang S. Hitting the golden generation. Nat Prod Rep 2011; 144: 646–674.
8. Kucuk O, Sarkar FH, Djuric Z, et al. Effects of lycopene supplementation in patients with localized prostate cancer. Exp Biol Med (Maywood) 2012; 237: 31–40.
9. Lee S, Sato T, Akita T, et al. Anti-cancer agent: review of the gap between basic and clinical applications. Curr Med Chem 2010; 17: 190–197.
10. Qazi A, Pal J, Maitah M, et al. Anticancer activity of a broccoli derivative, sulforaphane, in Barrett adenocarcinoma: potential use in chemoprevention and as adjuvant in chemotherapy. Transl Oncol 2010; 3: 389–399.
11. Iwata Y, Yogosawa S, Sowa Y, et al. Brassinin induces G1 phase arrest through increase of p21 and p27 by inhibition of the phosphatidylinositol 3-kinase signaling pathway in human colon cancer cells. Int J Oncol 2012; 40: 816–824.
12. De Leo A, Arena G, Stecca C, et al. Resveratrol inhibits proliferation and survival of Epstein Barr virus-infected Burkitt’s lymphoma cells depending on viral latency program. Mol Cancer Res 2011; 9: 1346–1355.
13. Ding XZ and Adrian TE. Resveratrol inhibits proliferation and induces apoptosis in human pancreatic cancer cells. Pancreas 2002; 25: e71–e76.
14. Li Y, Liu J, Liu X, et al. Resveratrol-induced cell inhibition of growth and apoptosis in MCF7 human breast cancer cells are associated with modulation of phosphorylated Akt and caspase-9. Appl Biochem Biotechnol 2006; 135: 181–192.
15. Signorelli P and Ghidoni R. Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem 2005; 16: 449–466.
16. Wang Y, Romigh T, He X, et al. Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines. Hum Mol Genet 2010; 19: 4319–4329.
17. Beltz LA, Bayer DK, Moss AL, et al. Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer Agents Med Chem 2006; 6: 389–406.
18. Pan H, Zhou W, He W, et al. Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-kappaB activity via the Notch-1 pathway. Int J Mol Med 2012; 30: 337–343.
19. Nakamura H, Wang Y, Kurita T, et al. Genistein increases epidermal growth factor receptor signaling and promotes tumor progression in advanced human prostate cancer. PLoS One 2011; 6: e20034.
20. Heber D. Multitargeted therapy of cancer by ellagitannins. Cancer Lett 2008; 269: 262–268.
21. Adams LS, Zhang Y, Seeram NP, et al. Pomegranate ellagitannin-derived compounds exhibit antiproliferative and antiaromatase activity in breast cancer cells in vitro. Cancer Prev Res (Phila) 2010; 3: 108–113.
22. Hung CF, Huang TF, Chen BH, et al. Lycopene inhibits TNF-alpha-induced endothelial ICAM-1 expression and monocyte-endothelial adhesion. Eur J Pharmacol 2010; 586: 275–282.
23. Tang FY, Shih CJ, Cheng LH, et al. Lycopene inhibits growth of human colon cancer cells via suppression of the Akt signaling pathway. Mol Nutr Food Res 2008; 52: 646–654.
24. Palozza P, Sheriff A, Serini S, et al. Lycopene induces apoptosis in immortalized fibroblasts exposed to tobacco smoke condensate through arresting cell cycle and down-regulating cyclin D1, pAKT and pBAD. Apoptosis 2005; 10: 1445–1456.
25. Liu X, Allen JD, Arnold JT, et al. Lycopene inhibits IGF-I signal transduction and growth in normal prostate epithelial cells by decreasing DHT-modulated IGF-I production in co-cultured reactive stromal cells. Carcinogenesis 2008; 29: 816–823.
26. Kucuk O, Sarkar FH, Djuric Z, et al. Effects of lycopene supplementation in patients with localized prostate cancer. Exp Biol Med (Maywood) 2002; 227: 881–885.
27. Chen MJ, Chang WH, Lin CC, et al. Caffeic acid phenethyl ester induces apoptosis of human pancreatic cancer cells involving caspase and mitochondrial dysfunction. Pancreatology 2008; 8: 566–576.
28. Wu J, Omene C, Karkoszka J, et al. Caffeic acid phenethyl ester (CAPE), derived from a honeybee product propolis, exhibits a diversity of anti-tumor effects in pre-clinical models of human breast cancer. Cancer Lett 2011; 308: 43–53.
29. Omene CO, Wu J and Frenkel K. Caffeic Acid Phenethyl Ester (CAPE) derived from propolis, a honeybee product, inhibits growth of breast cancer stem cells. Invest New Drugs 2012; 30: 1279–1288.
30. Onori P, DeMorrow S, Gaudio E, et al. Caffeic acid phenethyl ester decreases cholangiocarcinoma growth by inhibition
of NF-kappaB and induction of apoptosis. Int J Cancer 2009; 125: 565–576.
31. Omene C, Kalac M, Wu J, et al. Propolis and its active component, Caffeic Acid Phenethyl Ester (CAPE), modulate breast cancer therapeutic targets via an epigenetically mediated mechanism of action. J Cancer Sci Ther 2013; 5: 334–342.
32. Tolba MF, Esmat A, Al-Abd AM, et al. Caffeic acid phenethyl ester synergistically enhances docetaxel and paclitaxel cytotoxicity in prostate cancer cells. IUBMB Life 2013; 65: 716–729.
33. Neal CP, Berry DP, Doucas H, et al. Clinical aspects of natural anti-angiogenic drugs. Curr Drug Targets 2006; 7: 371–383.
34. Sagar SM, Yance D and Wong RK. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer–part 1. Curr Oncol 2006; 13: 14–26.
35. Pratheeshkumar P, Budhrajha A, Son YO, et al. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR-2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS One 2012; 7: e47516.
36. Sartippour MR, Seeram NP, Rao JY, et al. Ellagitannin-rich pomegranate extract inhibits angiogenesis in prostate cancer in vitro and in vivo. Int J Oncol 2008; 32: 475–480.
37. Zhang X, Song Y, Wu Y, et al. Indirubin inhibits tumor growth by antitumor angiogenesis via blocking VEGF2-mediated JAK/STAT3 signaling in endothelial cell. Int J Cancer 2011; 129: 2502–2511.
38. Kim JH, Shim JS, Lee SK, et al. Microarray-based analysis of anti-angiogenic activity of demethoxycurcumin on human umbilical vein endothelial cells: crucial involvement of the down-regulation of matrix metalloproteinase. Jpn J Cancer Res 2002; 93: 1378–1385.
39. Chen HW, Yu SL, Chen JJ, et al. Anti-invasive gene expression profile of curcumin in lung adenocarcinoma based on a high throughput microarray analysis. Mol Pharmacol 2004; 65: 99–110.
40. Perry MC, Demeule M, Regina A, et al. Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Mol Nutr Food Res 2010; 54: 1192–1201.
41. Gururaj AE, Belakavadi M, Venkatesh DA, et al. Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem Biophys Res Commun 2002; 297: 934–942.
42. Hahm ER, Gho YS, Park S, et al. Synthetic curcumin analogs inhibit activator protein-1 transcription and tumor-induced angiogenesis. Biochem Biophys Res Commun 2004; 321: 337–344.
43. Guruvayoorappan C and Kuttan G. 13 cis-retinoic acid regulates cytokine production and inhibits angiogenesis by disrupting endothelial cell migration and tube formation. J Exp Ther Oncol 2008; 7: 173–182.
44. Igura K, Ohta T, Kuroda Y, et al. Resveratrol and quercetin inhibit angiogenesis in vitro. Cancer Lett 2001; 171: 11–16.
45. Lin MT, Yen ML, Lin CY, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis by resveratrol through interruption of Src-dependent vascular endothelial cadherin tyrosine phosphorylation. Mol Pharmacol 2003; 64: 1029–1036.
46. Roy S, Khanna S, Alessio HM, et al. Anti-angiogenic property of edible berries. Free Radic Res 2002; 36: 1023–1031.
47. Bagchi D, Bagchi M, Stohs SJ, et al. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology 2000; 148: 187–197.
48. Singh RP, Tyagi AK, Dhanalakshmi S, et al. Grape seed extract inhibits advanced human prostate tumor growth and angiogenesis and upregulates insulin-like growth factor binding protein-3. Int J Cancer 2004; 108: 733–740.
49. Casanova ML, Larcher F, Casanova B, et al. A critical role for ras-mediated, epidermal growth factor receptor-dependent angiogenesis in mouse skin carcinogenesis. Cancer Res 2002; 62: 3402–3407.
50. Smith PC, Santibanzef JF, Morales JP, et al. Epidermal growth factor stimulates urokinase-type plasminogen activator expression in human gingival fibroblasts. Possible modulation by genistein and curcumin. J Periodontal Res 2004; 39: 380–387.
51. Banerjee T, Van der Vliet A and Ziboh VA. Downregulation of COX-2 and iNOS by amentoflavone and quercetin in A549 human lung adenocarcinoma cell line. Prostaglandins Leukot Essent Fatty Acids 2002; 66: 485–492.
52. Huynh H, Nguyen TT, Chan E, et al. Inhibition of ErbB-2 and ErbB-3 expression by quercetin prevents transforming growth factor alpha (TGFA-alpha)- and epidermal growth factor (EGF)-induced human PC-3 prostate cancer cell proliferation. Int J Oncol 2003; 23: 821–829.
53. Ma ZS, Huynh TH, Ng CP, et al. Reduction of CWR22 prostate tumor xenograft growth by combined tamoxifen-quercetin treatment is associated with inhibition of angiogenesis and cellular proliferation. Int J Oncol 2004; 24: 1297–1304.
54. Blackwell KL, Dewhirst MW, Liotecha V, et al. HER-2 gene amplification correlates with higher levels of angiogenesis and lower levels of hypoxia in primary breast tumors. Clin Cancer Res 2004; 10: 4083–4088.
55. Benendez JA, Vellon L, Colomer R, et al. Oleic acid, the main monounsaturated fatty acid of olive oil, suppresses Her-2/neu (erbB-2) expression and synergistically enhances the growth inhibitory effects of trastuzumab (Herceptin) in breast cancer cells with Her-2/neu oncogene amplification. Ann Oncol 2005; 16: 359–371.
56. Wasserman L, Avigad S, Beery E, et al. The effect of aloe emodin on the proliferation of a new merkel carcinoma cell line. Am J Dermatopathol 2002; 24: 17–22.
57. Chambers AF, Groom AC and MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002; 2: 563–572.
58. Rauch V, Liu L, Kalliatidis G, et al. Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characterisitcs. Cancer Res 2010; 70: 5004–5013.
59. Unakova L, Sedlakova O, Cholujova D, et al. Modulation of markers associated with aggressive phenotype in MDA-MB-231 breast carcinoma cells by sulforaphane. Neoplasma 2009; 56: 548–556.
61. Sun Q, Prasad R, Rosenthal E, et al. Grape seed proanthocyanidins inhibit the invasive potential of head and neck cutaneous squamous cell carcinoma cells by targeting EGFR expression and epithelial-to-mesenchymal transition. *BMC Complement Altern Med* 2011; 11: 134.

62. Wang QL, Tao YY, Yuan JL, et al. Salvianolic acid B prevents epithelial-to-mesenchymal transition through the TGF-beta1 signal transduction pathway in vivo and in vitro. *BMC Cell Biol* 2010; 11: 31.

63. Shao ZM, Shen ZZ, Liu CH, et al. Curcumin exerts multiple suppressive effects on human breast carcinoma cells. *Int J Cancer* 2002; 98: 234–240.

64. Huang CS, Fan YE, Lin CY, et al. Caffeic acid phenethyl ester inhibits invasion and expression of matrix metalloproteinase-9 expression and down-regulates the binding activity of nuclear factor-kappa B and stimulatory protein-1. *J Nutr Biochem* 2007; 18: 449–456.

65. Kim J, Zhang X, Rieger-Christ KM, et al. Suppression of Wnt signaling by the green tea compound (-)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. Requirement of the transcriptional repressor HBPI. *J Biol Chem* 2006; 281: 10865–10875.

66. Lee KW, Kang NJ, Kim JH, et al. Epigenetics in human prostate cancer—a mechanism for early oncogenic pathway addiction? *Nature* 2005; 11: 7033–7041.

67. Vanden Bergh W. Epigenetic impact of dietary polyphenols in cancer chemoprevention: lifelong remodeling of our epigenomes. *Pharmacol Res* 2012; 65: 565–576.

68. Huang J, Plass C and Gerhauser C. Cancer chemoprevention by targeting the epigenome. *Curr Drug Targets* 2011; 12: 1925–1956.

69. Berletch JB, Liu C, Love WK, et al. Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. *J Cell Biochem* 2008; 103: 509–519.

70. Ross SA. Evidence for the relationship between diet and cancer. *Exp Oncol* 2010; 32: 137–142.

71. Fang MZ, Wang Y, Ai N, et al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. *Cancer Res* 2003; 63: 7563–7570.

72. Yuasa Y, Nagasaki H, Akiyama Y, et al. Relationship between CDX2 gene methylation and dietary factors in gastric cancer patients. *Carcinogenesis* 2005; 26: 193–200.

73. Kim YL. Nutritional epigenetics: impact of folate deficiency on DNA methylation and colon cancer susceptibility. *J Nutr* 2005; 135: 2703–2709.

74. Stempak JM, Sohn KJ, Chiang EP, et al. Cell and stage of transformation-specific effects of folate deficiency on methionine cycle intermediates and DNA methylation in an in vitro model. *Carcinogenesis* 2005; 26: 981–990.

75. Lee HP, Gourley L, Duffy SW, et al. Dietary effects on breast-cancer risk in Singapore. *Lancet* 1995; 337: 1197–1200.

76. Fang CY, Tseng M and Daly MB. Correlates of soy food consumption in women at increased risk for breast cancer. *J Am Diet Assoc* 2005; 105: 1552–1558.

77. Barnes S. Effect of genistein on in vitro and in vivo models of cancer. *J Nutr* 1995; 125: 777S–783S.

78. Waterland RA and Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. *Nutrition* 2004; 20: 63–68.

79. Yen TT, Gill AM, Frigeri LG, et al. Obesity, diabetes, and neoplasia in yellow A(yv)- mice: ectopic expression of the agouti gene. *FASEB J* 1994; 8: 479–488.

80. Michaud EJ, Van Vugt MJ, Bultman SJ, et al. Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. *Genes Dev* 1994; 8: 1463–1472.

81. Kim YS, Farrar W, Colburn NH, et al. Cancer stem cells: implications for colon cancer prevention. *Mol Nutr Food Res* 2008; 52(Suppl. 1): S52–S61.

82. Huang J, Plass C, and Gerhauser C. Cancer chemoprevention by targeting the epigenome. *Curr Drug Targets* 2011; 12: 1925–1956.

83. Bartkova J, Jacks T, Hrstka FR, et al. Epigenetic and genomic analyses of the human breast cancer cell line T47D and the antiestrogen-resistant derivative T47D-r. *Mol Cell Proteomics* 2004; 3: 43–55.

84. Ahmed N, Abubaker K, Findlay J, et al. Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer. *Curr Cancer Drug Targets* 2010; 10: 268–279.

85. Hope C, Planuti K, Planutiene M, et al. Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: implications for colon cancer prevention. *Mol Nutr Food Res* 2008; 52(Suppl. 1): S52–S61.

86. Li Y, Zhang T, Korkaya H, et al. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. *Cancer Res* 2010; 16: 2580–2590.

87. Li Y, Zhang T, Korkaya H, et al. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. *Clin Cancer Res* 2010; 16: 41–49.

88. Bestor TH. The DNA methyltransferases of mammals. *Hum Mol Genet* 2000; 9: 2395–2402.

89. Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. *Nature* 2004; 429: 457–463.

90. Baylin SB and Ohm JE. Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? *Nat Rev Cancer* 2006; 6: 107–116.

91. Majid S, Kikuno N, Nelles J, et al. Genistein induces the anti-silencing function of the p160 nuclear receptor. *FASEB J* 1994; 8: 479–488.
active chromatin modification. Cancer Res 2008; 68: 2736–2744.

96. Clark LC, Cantor KP and Allaway WH. Selenium in forage crops and cancer mortality in U.S. counties. Arch Environ Health 1991; 46: 37–42.

97. Clark LC, Combs GF Jr, Turnbull BW, et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 1996; 276: 1957–1963.

98. Davis CD, Uthus EO and Finley JW. Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon. J Nutr 2000; 130: 2903–2909.

99. Davis CD and Uthus EO. Dietary selenite and azadeoxycytidine treatments affect dimethylhydrazine-induced aberrant crypt formation in rat colon and DNA methylation in HT-29 cells. J Nutr 2002; 132: 292–297.

100. Uthus EO and Ross SA. Dietary selenium affects homocysteine metabolism differently in Fisher-344 rats and CD-1 mice. J Nutr 2007; 137: 1132–1136.

101. Duthie SJ. Epigenetic modifications and human pathologies: cancer and CVD. Proc Nutr Soc 2011; 70: 47–56.

102. Fu S and Kurzrock R. Development of curcumin as an epigenetic agent. Cancer 2010; 116: 4670–4676.

103. Tsai KW, Wu CW, Hu LY, et al. Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int J Cancer 2011; 129: 2600–2610.

104. Esquela-Kerscher A and Slack FJ. Oncormirs—microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259–269.

105. Griffiths-Jones S, Saini HK, van Dongen S, et al. miRBase: tools for microRNA genomics. Nucleic Acids Res 2008; 36: D154–D158.

106. Shah MS, Davidson LA and Chapkin RS. Mechanistic insights into the role of microRNAs in cancer: influence of nutrient crosstalk. Front Genet 2012; 3: 305.

107. West SG, Krick AL, Klein LC, et al. Effects of diets high in walnuts and flax oil on hemodynamic responses to stress and vascular endothelial function. J Am Coll Nutr 2010; 29: 595–603.

108. Whelan J and McIntee MF. Dietary (n-6) PUFA and intestinal tumorigenesis. J Nutr 2004; 134: 3421S–3426S.

109. Davidson LA, Wang N, Shah MS, et al. n-3 Polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon. Carcinogenesis 2009; 30: 2077–2084.

110. Hu S, Dong TS, Dalal SR, et al. The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PLoS One 2011; 6: e16221.

111. Rossi A, D’Urso OF, Gatto G, et al. Non-coding RNAs change their expression profile after Retinoid induced differentiation of the promyelocytic cell line NB4. BMC Res Notes 2010; 3: 24.

112. Garzon R, Pichirolli F, Palumbo T, et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene 2007; 26: 4148–4157.

113. Spencer JP, Abd El, Mohsen MM, Minihane AM, et al. Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br J Nutr 2008; 99: 12–22.

114. Lopez-Lazaro M. Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res 2008; 52(Suppl. 1): S103–S127.

115. Sun M, Estrov Z, Ji Y, et al. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther 2008; 7: 464–473.

116. Li Y, VandenBoom TG 2nd, Kong D, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 2009; 69: 6704–6712.

117. Bao B, Ali S, Banerjee S, et al. Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res 2012; 72: 335–345.

118. Yang J, Cao Y, Sun J, et al. Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med Oncol 2010; 27: 1114–1118.

119. Jin Y. 3,3′-Diindolylmethane inhibits breast cancer cell growth via miR-21-mediated Cdc25A degradation. Mol Cell Biochem 2011; 358: 345–354.

120. Hu FW, Tsai LL, Yu CH, et al. Impairment of tumor-initiating stem-like property and reversal of epithelial-mesenchymal transdifferentiation in head and neck cancer by resveratrol treatment. Mol Nutr Food Res 2012; 56: 1247–1258.

121. Wen XY, Wu SY, Li ZQ, et al. Ellagitannin (BJA3121), an anti-proliferative natural polyphenol compound, can regulate the expression of MiRNAs in HepG2 cancer cells. Phytother Res 2009; 23: 778–784.

122. Surh YJ, Kundu JK, Na HK, et al. Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr 2005; 135: 2993S–3001S.

123. Tsang JS, Ebert MS and van Oudenaarden A. Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol Cell 2010; 38: 140–153.

124. Wang H, Bian S and Yang CS. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1alpha. Carcinogenesis 2011; 32: 1881–1889.

125. Dixon RA and Pasinetti GM. Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol 2010; 154: 453–457.

126. Parker LP, Taylor DD, Kesterson J, et al. Modulation of microRNA associated with ovarian cancer cells by genistein. Eur J Gynaecol Oncol 2009; 30: 616–621