INTRODUCTION

Fish and meat preservation is a big challenge in different regions of the world. Among fish preservation methods, smoking is the mostly used method (Berkel et al., 2005; Nout et al., 2003; Toth & Potthast, 1984). It extends shelf life and confers special taste and aroma to the end products (Igwegbe et al., 2015; Yusuf et al., 2015). Despite these advantages, the consumption of smoked fish or meat products presents health concern due to process contaminants. Several authors reported acrolein, acrylamide, furan, heterocyclic amines, monochloropropanediol (MCPD), nitrosamine, and polycyclic aromatic hydrocarbons (PAHs) as heat-induced toxic compounds in foods and dealt with their risk assessment (Akpambang et al., 2009; Alomirah et al., 2011; Domingo & Nadal, 2015; Larsen, 2006; Mey et al., 2014; Skog, Johansson, & Jaègerstad, 1998; Stadler & Lineback, 2009; Swann, 1977; Yurchenko & Molder, 2007).

Abstract

This review aims to give an insight into the main hazards currently found in smoked meat and fish products. Literature research was carried out on international databases such as Access to Global Online Research in Agriculture (AGORA) database, Science direct, and Google scholar to collect and select 92 relevant publications included in this review. The smoking process was described and five hazards mostly found in smoked fish and meat were presented. The heat-induced compounds such as polycyclic aromatic hydrocarbons, heterocyclic amines, and nitrosamines were found in smoked fish and meat. Other hazards such as biogenic amines and heavy metals were also present in smoked fish and meat. The levels of these hazards reported from the literature exceeded the maximal limits of European Union. A brief description of risk assessment methodology applicable to such toxic compounds and risk assessment examples was also presented in this review. As most of the hazards reported in this review are toxic and even carcinogenic to humans, actions should be addressed to reduce their presence in food to protect consumer health and to prevent public health issue.

KEYWORDS

benzo(a)pyrene, food safety, heat-induced compounds, nitrosamines, systematic review
Among these various heat-induced compounds, PAHs and heterocyclic amines are mainly associated with smoking or grilling process. Moreover, due to the amino acid composition of fish and meat, some toxic compounds like biogenic amines and even nitrosamines may be formed. Other environmental hazards like heavy metals can also be found in fish and meat. The consumption of food contaminated with these compounds could result in adverse effects on human health including cancer (EFSA (European Food Safety Authority), 2008; EFSA (European Food Safety Authority), 2011). This literature review aims to focus on chemical hazards (nitrosamines, heterocyclic amines, PAHs, heavy metals, and biogenic amines) commonly reported in smoked fish and meat.

2 | METHODOLOGY

Publications included in this review were from international databases such as Access to Global Online Research in Agriculture (AGORA) database, Science direct, and google scholar. Original and review papers were collected on December 2019 and updated on July 2021 using key words such as “smoking,” “heterocyclic amines,” “PAHs,” “benzo(a)pyrene (BaP),” “heavy metals,” “nitrosamine,” “biogenic amines,” “histamine,” “risk assessment,” “fish,” and “meat.” Only 112 relevant papers in accordance with the topic of this review were included on the basis of their keywords. The software Endnote, version 13 was used to manage and rank the collected publications in different subgroups according to each topic.

3 | RESULTS

3.1 | Smoking process

Smoking is a food processing method used as a preservation method to extend shelf life of food by reducing moisture content and microorganism load (Köse, 2010). Smoking is also used to improve sensorial characteristics including taste, aroma, and appearance of smoked fish and meat (Berkel et al., 2005; Codex Alimentarius, 2009). Two types of smoking processes are commonly used. The “cold” smoking process in which the temperature of the product does not exceed 30°C and “hot” smoking process during which food such as fish is well cooked and temperature in the center of the product may reach up to 60–85°C (Berkel et al., 2005; Stolyhwo & Sikorski, 2005). According to Berkel et al. (2005), there is a third smoking process called smoke-drying which is hot smoking followed by a drying step carried out in the smoking equipment. Hot smoking and smoke-drying are frequently used to preserve fish in African countries (Assogba et al., 2019). According to Codex Alimentarius (2013), the smoke-drying process enables us to obtain dried products with a water activity lower or equal to 0.75, allowing keeping the end product at room temperature and to control bacterial and fungi alteration.

During smoking, fish or meat and their products are submitted directly or indirectly to smoke produced by partial burning of wood.
amine, amides, secondary amino acids, quaternary ammonium salts, etc.) and a nitrosating agent (nitrite, nitrates, and nitrogen oxides) through several reactions (Filho et al., 2003; INERIS (Institut National de l'Environnement Industriel et des Risques), 2014; Reinik, 2007). Nitrogen oxides are formed either from the addition of nitrate and/or nitrite to foods or from the heating process of food such as smoking, during which nitrogen molecular can be oxidized or present in the smoke (INERIS (Institut National de l’Environnement Industriel et des Risques), 2014; Jakszyn et al., 2005). Al Bulushi et al. (2009) reported NPYR and NPIP in vitro formation at high temperature (160°C, 2 h). Microorganisms (Aspergillus sp.; Pseudomonas sp.; E. coli) can be involved in N-nitrosamine formation by reducing nitrates to nitrites, by degrading proteins to amines and amino acids, or by producing enzymes working at a suitable pH (2–4) for nitrosation (Al Bulushi et al., 2009; Ayanaba & Alexander, 1973; Drabik-Markiewicz et al., 2009; Jägerstad & Skog, 2005; Jägerstad et al., 1998; Mills & Alexander, 1976; Rostkowska et al., 1998; Yurchenko & Molder, 2007). Nitrite and nitrate are frequently used in meat preservation and lead to nitrosamines formation due to reaction with amino compounds either in the stomach or within the food product (Filho et al., 2003; Pan et al., 2011; Sebranek & Bacus, 2007; Swann, 1977). It is the case of meat products such as sausages, ham, and salami where the addition of nitrite and nitrate was used to inhibit the formation of spoilage bacteria (Drabik-Markiewicz et al., 2009; Filho et al., 2003; Hustad et al., 1973). The nitrosamines are found in smoked meat, grilled meat, canned meat, and pickled meat at different levels (Table 1), but not in raw meat where there is not enough nitrite and amines for its production (Yurchenko & Molder, 2007). Studies carried out on nitrosamine determination in fish products mostly focused on NDMA determination because of its precursor dimethylamine (DMA) which is widely formed in marine fish (Al Bulushi et al., 2009). NDMA is classified in Group 2A (probably carcinogenic to humans) by the International Agency for Research on Cancer (IARC (International Agency for Research on Cancer), 2010), whereas N-nitrosonornicotine (NNN) and 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK) are classified in Group 1 (carcinogenic to humans). Belitz et al. (2009) reported NDMA in cured meat processed with pickling with levels ranging between 0.5 and 15 μg/kg (Table 1). Herrmann et al. (2014) also reported NDMA in smoked pork fillet (1.3 μg/kg) and smoked ham (2.1 μg/kg).

Different analytical methods were used to analyze nitrosamines. The method of gas chromatography and mass spectrometry detection with ion monitoring using different columns has been used by several authors to identify and quantify nitrosamines (Filho et al., 2003; Herrmann et al., 2014; Swann et al., 1977; Yurchenko & Molder, 2007). However, only Thermal Energy Analyzer (TEA) detection is recognized as specifically for nitrosamines but expensive (Filho et al., 2003). Filho et al. (2003) developed methods for nitrosamine compounds analysis (extraction, preconcentration, and analysis) which allowed their determination even at trace levels. The separation of nitrosamines was performed using micellar electrokinetic chromatography and confirmation...
was achieved using gas chromatography coupled with mass spectrometry detection (Filho et al., 2003; Herrmann et al., 2014).

3.2.2 Heterocyclic amines

Heterocyclic amines are toxic compounds produced in meat and fish during processing at temperatures over 150°C (Haskaraca et al., 2014; Jägerstad & Skog, 2005; Puangsombat et al., 2011; Sinha et al., 1998; Solyakov & Skog, 2002). According to their chemical structures, two groups of heterocyclic amines can be distinguished: pyrolytic heterocyclic amines also known as amino-carboline heterocyclic amines and thermic heterocyclic amines composed of imidazo-quinolines (e.g., IQ (2-Amino-3,4-dimethylimidazo[4,5-f]quinolone)), imidazoquinoxalines (e.g., MeIQx (2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline) and PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) (Jägerstad & Skog, 2005; Viegas, Novo, Pinto, et al., 2012). The imidazo-quinolines, imidazoquinaxalines, and imidazopryridines are three groups of precursors present in raw meat and fish muscle and could be produced from creatine or creatinine, free amino acids, and sugars through the Maillard reaction (Jägerstad & Skog, 2005; Viegas, Novo, Pinto, et al., 2012). The IARC (International Agency for Research on Cancer) classified MeIQx, MelQx, and PhiP as possibly carcinogenic to humans (Group 2B). The 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (8-MeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhiP) (Figure 3) are the most abundant heterocyclic amines formed in grilled beef, bacon, fish, and poultry (Turesky, 2007). Skog et al. (1998) reported the presence of heterocyclic amines in smoked fish and fried meat products. The authors showed that the use of wood charcoal induced high production of heterocyclic amines (1.6–4 ng/g MeIQx; 1.5–7.8 ng/g PhIP) contrary to coconut charcoal (0.7–1 ng/g MeIQx; 0.9–3 ng/g PhIP) (data not shown) in grilled salmon and beef samples (Viegas, Novo, Pinto, et al., 2012). Gibis (2016) reported high temperature (180°C and 220°C) and duration as key factors of heterocyclic amines production, mainly IQ, MelQx, MeIQ, MeIQx, 4,8-DiMeIQx, and PhIP. Table 2 shows different concentrations of some heterocyclic amines reported from the literature. Very few studies reported the presence of IQ in grilled or smoked foods. Levels of 1.6–2 ng/g were reported in grilled beef (Table 2). However, MeIQx was reported in several foods such as processed bacon and pork (Sinha et al., 1998) with levels ranging from 0.4 to 5.4 ng/g (Table 2). High levels of PhIP (till 480 ng/g) were reported from the literature (Table 2). Even though no maximal limit of heterocyclic amines was reported in the literature, their presence in food is a health concern and adequate food preparation procedures should be implemented having the ALARA (ALARA = as low as reasonably achievable) principle in mind. Lu et al. (2018) reported that the use of different spices (Garlic, onion, red chili, paprika, black pepper, and ginger) before deep-frying of beef and chicken had inhibitory effects (43%–87%) on the formation of heterocyclic amines (data not shown).

Heterocyclic amine determination was performed according to methods including extraction, purification injection, and quantification using high-performance liquid chromatography coupled with diode array and fluorescence detectors (HPLC-DAD/FLD) (Melo, 2014).

Processing	N-nitrosamines (µg/kg)	References					
	NDMA	NDEA	NPYR	NPIP	NDMA	NDPA	
Smoked meat	0.2–1.4	0.3–0.7	0.2–19.5	0.4–2.3	0.4–0.9	0.3	Al-Kaseem et al. (2014); Reinik (2007); Yurchenko and Molder (2007)
Cured meat (pickling salt)	0.5–15	nd	3.2–4.2	nd	Nd	nd	Belitz et al. (2009)
Grilled meat	0.2–3.2	0.3–0.6	0.8–14.6	1.0–2.8	0.2–0.4	<0.1–0.3	Al-Kaseem et al. (2014); Reinik (2007); Yurchenko and Molder (2007)
Smoked fish	<0.1–2.8	<0.1–0.5	0.4–25.4	<0.2–7.8	<0.2–6.0	nd	Reinik (2007)
Smoked chicken	1.2–2.1	<0.1–0.3	0.5–22.1	<0.1–5.3	0.1–6.3	nd	

Abbreviations: nd, not determined; NDBA, N-nitrosodibutylamine; NDEA, N-nitrosodiethyamine; NDMA, N-nitrosodimethylamine; NDPA, N-nitrosodipropylamine; NPIP, N-nitrosopiperidine; NPYR, N-nitrosopyrrolidine.

FIGURE 3 Chemical structure of three examples of heterocyclic amines: IQ (2-Amino-3,4-dimethylimidazo[4,5-f]quinolone); MelQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline) and PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) (PubChem, 2020)
et al., 2008). Heterocyclic amines can also be extracted by solid-phase extraction and analyzed by reverse phase HPLC or LC/MS (Oz & Yuze, 2016; Santos et al., 2004; Sinha et al., 1998; Viegas, Novo, Pinto, et al., 2012).

3.2.3 Polycyclic aromatic hydrocarbons

Polycyclic aromatic hydrocarbons are toxic compounds having a low solubility in water and constitute a large class of organic compounds, containing 2 or more fused aromatic rings composed of carbon and hydrogen atoms (EFSA (European Food Safety Authority), 2008; SCF (Scientific Committee on Food), 2002). They are produced from incomplete combustion of the organic matter when foods such as fish or meat are processed by smoking, grilling, or roasting (Battisti et al., 2015; EFSA (European Food Safety Authority), 2008; Ingenbleek et al., 2019; Yusuf et al., 2015). Several studies reported that fat dropping in the flame during grilling processing contributes to PAHs formation (Chen et al., 2013; Codex Alimentarius, 2009; Kpoclou et al., 2014; Stolyhwo & Sikorski, 2005). Traditional smoking or grilling is responsible for the production of high amounts of PAH in meat and fish as reported by Forsberg et al. (2012); Onyango et al. (2012); Iko Afé et al. (2020); Ubwa et al. (2015).

Consumers are exposed to PAHs according to three possible ways: by inhalation, contact with the skin, and consumption of contaminated food (EFSA (European Food Safety Authority), 2008; Silva et al., 2011). Likewise, foods are contaminated with PAHs either by environment (exhaust fumes of the engines, bush fires, etc.) or by traditional food processing (drying, smoking, grilling, etc.) (ANSES (Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail), 2011). The main route of human exposure to PAHs is diet (ANSES (Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail), 2011). PAHs are genotoxic, carcinogenic, and mutagen (EFSA (European Food Safety Authority), 2008; SCF (Scientific Committee on Food), 2002). Due to their genotoxicity, sixteen PAHs have been included in a priority list of the European Union (EU) (SCF (Scientific Committee on Food), 2002). Among these 16 priority EU PAHs, benzo[a]anthracene (BaA), chrysene (CHR), benzo[a]pyrene (BaP), and benzo[b]fluoranthene (BbF) are four PAHs

Table 2: Concentration of main heterocyclic amines in cooked meat, as reported from the literature

Products	Cooking methods.	MeIQx (µg/kg)	DiMeIQx	PhIP (µg/kg)	IQ	MeIQ	References
Bacon	Pan-fried	0.4–4.3	nd	0.7–4.8	nd	nd	Sinha et al. (1998)
	Oven-broiled	1.5–4	nd	1.4–30.3	nd	nd	Sinha et al. (1998)
	microwaved	0.4–1.5	nd	3.1	nd	nd	Knize et al. (1997); Skog et al. (1998).
	Grilled	1.0–27	nd–9.3	nd–36	nd	nd	Knize et al. (1997); Skog et al. (1998).
Pork	Pan-fried	0.4–5.4	nd	0.1–2.3	nd	nd	Sinha et al. (1998)
	Oven-broiled	nd	nd	nd	nd	nd	Sinha et al. (1998)
Beef	Grilled	0.5–6	0.1–1.2	0.6–27	0.2	nd	Fay et al., (1997); Murray and Lynch (1993); Wakabayashi et al. (1993);
	Barbecued	4.4	2.7	38	1.6	nd	Skog et al. (1998).
Chicken	Barbecued	0.3–9	0.1–3.1	27–480	nd	nd	Knize et al. (1996); Murray and Lynch (1993); Sinha et al. (1995)
	Grilled	0.6–2.3	0.5–3.1	21–315	nd	nd	Knize, Salmon, Hopmans, et al. (1997); Knize et al. (1997); Wakabayashi et al. (1993)

Abbreviations: nd, not determined; MeIQx = 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline; DiMeIQx = 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline; PhIP = 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine; IQ = 2-amino-3-methylimidazo[4,5-f]quinoline; MeIQ = 2-amino-3,4-dimethylimidazo[4,5-f]quinoline.

Figure 4 Chemical structure of the PAH for which a maximum limit in food has been set in EU (PubChem, 2020).
(named PAH4) (Figure 4) relevant in food due to their toxicity and occurrence (EFSA (European Food Safety Authority), 2008). PAHs are metabolized in the liver by cytochrome P450 (CYP1A1 in particular) into compounds named epoxides, which are able to bind to macromolecules such as proteins and nucleic acids (EFSA (European Food Safety Authority), 2008). After ingestion, before to reach the liver, PAHs come in contact with the intestinal microbiota, which can also have a metabolization role. Van de Wiele et al. (2005) evaluated the possible ways of biotransformation of PAHs in the human intestine using a simulator of the human intestinal microbial ecosystem (SHIME). These authors showed that PAHs are bioactivated in colon digestion into estrogenic metabolites, whereas the digestion of the stomach and small intestine does not generate any estrogenic metabolite. Moreover, the inactivation of the colon microbiote eliminated these estrogenic effects, which suggests that the estrogenic activity would be related to the bio-activation of PAHs by the microbiote of the colon (Van de Wiele & Al, 2005). In addition to be carcinogenic, PAHs can thus be qualified of endocrine disrupters.

Among PAHs, BaP is the mostly used one for in vivo toxicological studies. After giving female mice BaP at doses >10 mg/kg b.w. (body weight) per day, impaired fertility was observed in their offspring. The studies on carcinogenicity of PAHs showed that the type of cancer developed after PAHs exposure depends on the exposure way. Indeed, a dermic exposure would induce tumors on the skin, whereas an exposure by oral way would induce gastric tumors. After oral exposure of laboratory animals to BaP, gastrointestinal tract, liver, and lung tumors were reported (EFSA (European Food Safety Authority), 2008). After feeding female mice with diets containing BaP at a concentration of 0, 5, 25, or 100 mg/kg of diet for 2 years, papillomas and carcinomas were observed in the forestomach, oesophagus, and tongue (Culp et al., 1998). Several authors also associate colorectal cancer with meat consumption and some of them established colorectal cancer (Gunter et al., 2007; Ronco et al., 2011; Sinha et al., 2005). Sinha et al. (2005) reported an increased risk of colorectal adenomas resulting from high BaP intake from both meat consumption and other food sources.

Benz(a)pyrene is classified as carcinogenic to humans (Group 1), and CHR, BaA, and BbF are classified as possibly carcinogenic to humans (Group 2B) (IARC (International Agency for Research on Cancer), 2010).

The European commission set maximum levels of 2 and 12 µg/kg for benzo(a)pyrene (BaP) and the PAH4, respectively, in smoked meat and smoked fish products (EC (European Commission), 2006). Table 3 shows some examples of PAH4 levels reported from the literature (between 2015 and 2020), far above the EU limit of 12 µg/kg (25 times (Iko Afé et al., 2020) or 52 times (Rozentale et al., 2018) this limit).

Determination of PAH in food can be performed after using an accelerated solvent extractor (ASE) for the extraction, and HPLC coupled with fluorescence and photo diode array detectors (FLD/PDA) or gas chromatography coupled with mass spectrometry (GC/MS) for quantification (Brasseur et al., 2007; Kendirci et al., 2014; Saito et al., 2014; Viegas et al., 2012).

During these past decades, several studies dealt with PAHs in processed food, especially in smoked meat and fish. Some of these studies reported in Tables 3 and 4 were from different continents: Asia (15.8%), Africa (42.1%), and Europe (42.1%). In Africa, Nigeria is the country in which more studies were carried out on PAHs. The PAHs data reported in Table 4 showed that most studies are recent (published between 2017 and 2021), showing that there is a new interest for scientists to update data on the presence of PAHs in smoked or grilled fish and meat. However, for countries such as Benin and Egypt, very few relevant data were available on PAHs contamination in fish and meat products before 2016 (Table 4). Most of the reported concentrations were above the EU maximal limit for BaP, and the highest BaP level (288 µg/kg) was about one hundred and forty-four times above this limit, showing that consumers could be highly exposed to PAHs through the consumption of this kind of food.

3.3 Other hazards in grilled or smoked fish and meat

3.3.1 Heavy metals

Trace elements include environmental contaminants (heavy metals such as cadmium, mercury, and lead) which can have toxic effects on human health (Aina et al., 2012; Ismail et al., 2015) and oligo-elements (copper, nickel, iron, cobalt, zinc, manganese, etc.) which play important physiological roles when they are at low concentrations.

Products	PAH4 (µg/kg)	References
Smoked fish	198	Ingenbleek et al. (2019)
Smoked sprats	25.6	Gheorghe et al. (2019)
Grilled pork	53.8–300.6	Iko Afé et al. (2020)
Slavonska kobasica, smoked pork sausage	12.8–42.6	Mastanjević et al. (2020)
Smoked meat	56.2–628	Rozentale et al. (2018)
Smoked meat	34.6	Rozentale et al. (2015)
Barbecued pork	25.2	Duedahl-Olesen et al. (2015)
Barbecued beef	48	

Note: PAH4: sum of benzo[a]pyrene, chrysene, benzo[b]fluoranthene, and benzo[a]anthracene.
Heavy metals such as cadmium (Cd), mercury (Hg), and lead (Pb) are toxic even at low concentrations (Amos-Tautua et al., 2013; Daniel et al., 2013; Ersoy et al., 2006; Sireli et al., 2006). Cadmium and arsenic are classified as carcinogenic for humans (Group 1) and lead is classified as possibly carcinogenic for humans (Group 2B) by the IARC (International Agency for Research on Cancer) (2010). Environmental pollution is the main way of food contamination with heavy metals (Costa et al., 2016; EFSA (European Food Safety Authority), 2010). In 2010, the European Food Safety Authority reported that human exposure to lead through diet results in its bioaccumulation responsible for adverse effects on the cardiovascular, renal, endocrine, gastrointestinal, immune, and reproductive systems. The Codex Alimentarius reported that lead was responsible for the low intellectual quotient based on lead exposure studies in children (Codex Alimentarius, 2004). European Commission set a maximum limit of 0.1 mg/kg for lead in muscle (excluding offal) of bovine animals, sheep, pig, and poultry and 0.3 mg/kg in muscle of fish (EC (European Commission), 2006). For cadmium, the maximal limit is 0.1 mg/kg in muscle of mackerel (Scomber spp.), tuna (Thunnus spp., Katsuwonus pelamis, Euthynnus spp.), and bichique (Sicyopterus lagocephalus), whereas in meat products, the maximal limits range between 0.05 and 1 mg/kg, depending on the species and the tissue of the animal.

Several authors reported the presence of trace elements in smoked fish (Anigboro et al., 2011; Ibangha et al., 2019; Inobeme et al., 2018). Sireli et al. (2006) reported the presence of lead (0.01–0.8 mg/kg) in vacuum packaged smoked fish marketed on the Ankara market in Turkey (Table 5). In that study, 37% of the smoked fish samples were not compliant to the Turkish acceptable limit of 0.2 mg/kg. Likewise, Anigboro et al. (2011) reported high levels of lead (13–59 mg/kg) in smoked fish samples (Table 5) collected from different local markets in Nigeria. Arsenic was found in smoked Dicentrarchus labrax (0.4 mg/kg), Scomber scombrus (0.4 mg/kg), Clarias gariepinus (0.02 mg/kg), and Ethmolaosa fimbriata (0.02 mg/kg) (Table 5). For cadmium, examples of concentration reported from the literature are shown in Table 5.

Perello et al. (2008) reported the increase of Pb, As, and Hg contents in fish and meat products processed with grilling, frying, boiling, and roasting, compared to the raw products collected from Spain markets (data not shown). Even though an increase of heavy metal levels was recorded after processing in different studies, this increase could be due to the absorption phenomenon or environmental contamination as the culinary practices were not carried out in controlled close space. It could also be a concentration of the contaminants due to water loss during smoking and drying.

Heavy metal concentrations can be measured by a graphite furnace atomic absorption spectrometer (GFAAS) or an atomic absorption spectrophotometer (Anigboro et al., 2011; Sireli et al., 2006). They could also be determined using atomic absorption spectrometry after microwave digestion and inductively coupled plasma mass spectrometry (ICP/MS) (Kabir et al., 2011; Uluzuzlu et al., 2009). The studies on the occurrence of heavy metals in smoked or grilled fish and meat reported in this section were mainly from Africa. Indeed, although some studies were from Turkey (Ersoy et al., 2006; Şireli et al., 2006), Spain (Perello et al., 2008) and Poland (Rajkowska-Myśliwiec et al., 2021), the majority of them were from Nigeria (Amos-Tautua et al., 2013; Anigboro et al., 2011; Aremu et al., 2014; Daniel et al., 2013; Ersoy et al., 2006; Ibangha et al., 2019) and other African countries such as Egypt (Abbas et al., 2021), Ghana (Kobia et al., 2016) and Burkina Faso (Bazie et al., 2021). Heavy metals contamination data (Table 5) showed that before 2015 (2006–2014) many studies from different countries especially Turkey and Nigeria were carried out on the occurrence of these environmental contaminants in smoked or grilled fish and meat. From 2015 to 2021, additional studies from Nigeria were carried out again on these compounds showing the necessity to update contamination data in smoked or grilled fish and meat. However, for other countries such as Burkina-Faso or Egypt, very few relevant data were available on heavy metals contamination in smoked or grilled fish and meat before 2015 (Table 5).

3.3.2 | Biogenic amines

Biogenic amines are found in protein-rich foods such as fish and meat products (Chong et al., 2011; Latorre-Moratalla et al., 2017; Sagratini et al., 2012). Despite the important role of some biogenic amines in human and animal physiology, the consumption of a high amount of these amines can result in food intoxication (EFSA (European Food Safety Authority), 2011; Lehane & Olley, 2000). They are usually produced from decarboxylation of free amino acids by bacterial enzymes (Table 6), before or after processing. They are also heat resistant, so not destroyed by the cooking practices. Among biogenic amines, histamine received particular attention due to its toxicity. Several authors reported histamine as responsible for foodborne intoxication in reference to scombroid fish poisoning (EFSA (European Food Safety Authority), 2011; Latorre-Moratalla et al., 2017). Intoxication with histamine is associated with symptoms such as hypertension, headache, and allergy reactions including reddening on the face, neck and upper chest, vomiting, sweating, nausea, abdominal cramps, diarrhea, rash, dizziness, palpitations, spasm of bronchi, and flushing (Hassan, El-Shater, & Waly, 2017; Marissiaux et al., 2018; da Silva, Pinho, Ferreira, Pestilova, & Gibbs, 2002; Zaman et al., 2010). Several papers reported biogenic amines in smoked fish and grilled meat products (Douny et al., 2019; Köse et al., 2012; Ntzimani et al., 2006; Simunovic et al., 2019). The histamine concentrations reported by several authors in these kinds of food are summarized in Table 7. The presence of histamine was reported in smoked salmon at levels ranging between 2.5 and 171 mg/kg, in smoked Sardina sp. (18 mg/kg), and in hot smoked bonito (98.7 ± 0.6 mg/kg) (Table 7). The presence of histamine was also reported in grilled pork (<11.2–81.5 mg/kg) and in smoked turkey (32.9 ± 1.4 mg/kg) (Table 7).

European Commission set maximal limits for histamine (100–200 mg/kg) in fish and fishery products from fish species associated with a high amount of histidine (EC (European Commission), 2005). No maximal limit of histamine is available for meat products.
TABLE 4 Examples of polycyclic aromatic hydrocarbon levels found in smoked or grilled fish and meat products in these past decades

Country	Type of food	Benzo(a)pyrene (µg/kg)	PAH4 (µg/kg)	References
Benin	Smoked *Scomber Scombrus*	5.6 ± 2.4	52.6 ± 20.4	Assogba et al. (2021)
	Smoked *Cypselurus cyanopterus*	23.0 ± 19.3	90.1 ± 93.3	
	Smoked-dried *Cypselurus cyanopterus*	30.9 ± 16.2	153.8 ± 85.8 b	
	Grilled pork	28.9 ± 18.0	161.8 ± 87.2	Iko Afé et al. (2020)
	Smoked fish	21.8 ± 21.2	119.3 ± 107.5	Iko Afé et al. (2021)
	Smoked-dried fish	78.5 ± 53.8	484.2 ± 305.6	
Croatia	Smoked sprat	2.2 ± 0.5	12.5 ± 1.9	Racovita et al. (2021)
Egypt	Grilled beef meat	2.7 ± 0.4	4.8 ± 0.9	Darwish et al. (2019)
	Grilled beef (kebab)	9.2	-	Eldaly et al. (2016)
	Grilled beef (kofta)	26	-	
Estonia	Smoked meat products	3.9	26.3	Rozentale et al. (2018)
France	Smoked *boucané* (pork product)	6.9 ± 2.4	-	Poligné et al. (2001)
Ghana	Smoked Atlantic chub mackerel (*Scomber colias*)	15.5 ± 16.6	121.6 ± 98.9	Asamoah et al. (2021)
	Smoked barracuda (*Sphyraena Sphyraena*)	1.3 ± 2.1	68 ± 32.6	
Ivory Cost	Smoked *Cyprinus carpio*	16.9	-	Ake Assi (2012)
	Smoked *Esox lucius*	56.5	-	
	Smoked *Pagellus erythrinus*	36.7	-	
	Smoked *Sarda spp.*	55.4	-	
	Smoked *Sarpa salpa*	18.0	-	
Korea	Charcoal broiled pork	2.6 ± 0.3	-	Kim et al. (2014)
Kuwait	Meat tikka	2.5	-	Alomirah et al. (2011)
Latvia	Smoked pork	35.1	-	Stumpe-Viksna et al. (2008)
	Smoked meat products	8.1	53.8	Rozentale et al. (2018)
Lithuania	Smoked meat products	1.9	9.5	Rozentale et al. (2018)
Nigeria	Smoked *Arius heude loti*	5.7	-	Ubwa et al. (2015)
	Smoked Mud minnow	5.4	-	
	Smoked *Scomber scombrus*	2.4	-	Amos-Tautua et al. (2013)
	Smoked *Clarias gariepinus*	204 ± 20	-	Tongo et al., 2017; Zachara et al. (2017)
	Smoked *Ethemalosa fimbriata*	288 ± 230	-	
	Smoked *Scomber scombrus*	7 ± 13	-	
	Smoked *Pseudolatilthus elongates*	44	-	Akpan et al. (1994)
	Smoked *Pomadasys perotati*	25	-	
	Smoked *Heterotis niloticus*	19.4	-	
	Grilled suya*	10.1	-	Akpambang et al. (2009)
	Grilled antelope*	7.9	-	
	Smoked *Clarias gariepinus*	38.0	-	
	Smoked *Salar crumenophthalmus*	3.0	-	
	Smoked *Scomber scombrus*	6.6	-	
	Smoked *Pseudolatilthus senegalensis*	21.5	-	
Poland	Smoked sprat	1	10.3	Zachara et al. (2017)
	Smoked sausage	3	24.3	
	Smoked pork hams	1.8	15.5	
Portugal	Chouriço grosso, dry-cured fermented pork sausages*	3.3	-	Roseiro et al. (2011)
	Grilled Salmon	4.7 ± 0.8	-	Viegas, Novo, Pinto, et al. (2012)
	Chicken	8.7 ± 0.3	-	
Spain	Charlo, Spanish smoked pork meat	3.2	-	Ledesma et al. (2015)
Turkey	Grilled anchovy fish (*Engraulis encrasicolus*)	0.7 ± 0.04	3.3 ± 0.1	Sahin et al. (2020)
	Grilled chicken	<LOD (0.05)	2.1 ± 0.1	

Abbreviations: -, data not presented in the cited paper; PAH4, sum of benzo[a]pyrene, chrysene, benzo[b]fluoranthene and benzo[a]anthracene.
*Data of this author were presented in dry weight.
However, several authors reported the use of biogenic index (sum of putrescine, tyramine, cadaverine, and histamine levels) to assess the freshness and quality of pork (Cheng et al., 2016; Douny et al., 2019). The highest histamine concentration in fish reported in this review was 44 times over the authorized European limit and resulted in histamine fish poisoning (HFP) (Marissiaux et al., 2018). Similar concentration (4,384.2 mg/kg) was also reported in smoked-dried fish from Benin (Table 8). Regarding the geographical location, the selected paper reported in the Tables 7 and 8 was from America (5%), Asia (20%), Africa (30%), and Europe (45%). Although several studies dealt with the production of biogenic amines in fish, very few studies were available about grilled and/or smoked fish and meat products. From 2015 to 2021, studies dealing with biogenic amines in grilled or smoked fish and meat mainly focused on their occurrence (Tables 7 and 8).

3.4 Risk assessment

3.4.1 Risk assessment methodology applicable to toxic compounds

The risk assessment is part of the risk analysis concept, which, as reported by Larsen (2006), includes risk assessment, risk evaluation, and risk communication. These three elements are separate tasks, performed by different actors, but should be part of an interactive

Table 5	Mean concentrations of heavy metals in smoked or grilled fish (a) and meat (b) products as reported from the literature								
(a)	**Country**	**Fish species**	**Heavy metals (mg/kg)**	**References**					
			Pb	**Cd**	**Hg**	**Ni**	**As**	**Cr**	
Egypt	*Ctenopharyngodon idella*	nd	0.2	nd	7.7	nd	nd	nd	Abbas et al. (2021)*
Iran	*Rutilus frissi*	0.003	0.002	nd	nd	nd	0.002	nd	Mehdiipour et al. (2018)*
Nigeria	*Scomber scombrus*	nd	nd	nd	nd	0.40	0.1	nd	Aremu et al. (2014)
	Clarias gariepinus	0.2	2.5	0.02	12.8	0.02	nd	nd	Ibainga et al. (2019)*
	Ethmalosa fimbriata	0.2	19.5	0.02	12.4	0.02	nd	nd	nd
	Heterocloria	18.7	1	nd	123.3	nd	50.3	nd	Anigboro et al. (2011)
	Ethmalosa fimbriata	21.3	2.2	nd	120.7	nd	54.3	nd	nd
	Tilapia guineensis	43.7	nd	nd	148.7	nd	71	nd	nd
Poland	Herring	0.04	0.004	nd	nd	nd	nd	nd	Rajkowska-Myśliwiec et al. (2021)
	Sprats	0.02	0.02	nd	nd	nd	nd	nd	Perello et al. (2008)
Spain	Sardine	0.04	0.02	0.03	3.3	nd	nd	nd	Perello et al. (2008)
	Hake	0.02	nd	0.2	1.4	nd	nd	nd	nd
	Tuna	0.03	0.002	0.4	1.6	nd	nd	nd	nd
Turkey	*Dicentrarchus labrax*	0.3	nd	nd	0.2	0.4	0.05	nd	Ersoy et al. (2006)
	Salmo salar	0.2	0.02	nd	nd	nd	nd	nd	Şireli et al. (2006)*
	Oncorhynhus mykiss	0.1	0.01	nd	nd	nd	nd	nd	nd
	Mackerel	0.05	0.01	nd	nd	nd	nd	nd	nd
	Oncorhynhus mykiss	0.4	0.02	nd	nd	nd	nd	nd	nd
(b)	**Country**	**Meat products**	**Heavy metals (mg/kg)**	**References**					
			Pb	**Cd**	**Hg**	**Ni**	**As**	**Cr**	
Burkina- Faso	Braised chicken	0.2	0.5	nd	nd	nd	Nd	Nd	Bazié et al. (2021)
	Flamed chicken	0.1	0.2	nd	nd	nd	Nd	Nd	
Ghana	Bush meat	3.6	0.1	nd	nd	nd	Nd	Nd	Kobia et al. (2016)
Spain	Veal steak	0.02	nd	nd	nd	0.2	nd	Nd	Perello et al. (2008)
	Loin pork	nd	nd	nd	nd	0.2	nd	Nd	
	Chicken	nd	nd	nd	nd	0.1	nd	Nd	
	Lamb	nd	nd	nd	nd	0.2	nd	Nd	

Abbreviation: nd, not determined.

Reported data were expressed in dry matter.
process (Larsen, 2006; Stadler & Lineback, 2009). Risk assessment is a scientific process used to quantify the risk linked to a hazard and requires expertise in toxicology and nutrition (for the intake assessment). It is used to determine whether a particular chemical poses a significant risk to human health (FASFC (Federal Agency for the Safety of the Food Chain), 2005; Larsen, 2006; Reinik, 2007; Stadler & Lineback, 2009; Scholl et al., 2012). Risk assessment follows four steps (EFSA (European Food Safety Authority), 2008; FASFC (Federal Agency for the Safety of the Food Chain), 2005; FASFC (Federal Agency for the Safety of the Food Chain), 2006; Larsen, 2006) which are as follows:

Hazard identification: It will indicate which dangers can be associated with the consumption of a specific foodstuff and what harmful effects they can cause for consumers.

Hazard characterization: This step aims to describe and evaluate the dose–response relationship, the mode of action, including

Amino acid precursors	Biogenic amine	Chemical structure and formula	Main microorganisms producing amino acid decarboxylase
Histidine	Histamine	![C6H9N3](image)	Hafnia alvei, Morganella morganii, Klebsiella pneumonia, Morganella psychrotolerans, Photobacterium phosphoreum, Photobacterium psychrotolerans
Tryptophan	Tryptamine	![C10H12N2](image)	-
Tyrosine	Tyramine	![C8H11NO](image)	Enterococcus (Ent. faecalis, Ent. faecium), Lactobacillus (Lact. curvatus; Lact. brevis), Leuconostoc spp, Carnobacterium spp, Staphylococcus spp
Phenylalanine	2-Phenylethylamine	![C8H11N](image)	Enterococcus, Lactobacillus curvatus, Staphylococcus (S. carnosus)
Hydroxytryptophan	Serotonin	nd	-
Lysine	Cadaverine	![NmNH2(CH2)2NH2](image)	Enterobacteriaceae (Citrobacter, Klebsiella, Escherichia, Proteus, Salmonella et Shigella), Pseudomonadaceae, Shewanellaceae
Ornithine; arginine	Putrescine	![NmNH2(CH2)4NH2](image)	Enterobacteriaceae (Citrobacter, Klebsiella, Escherichia, Proteus, Salmonella et Shigella), Pseudomonadaceae, Shewanellaceae
Ornithine; arginine	Spermine	![C10H26N4](image)	-
Ornithine; arginine	Spermidine	![C7H19N3](image)	-

Source: Santos (1996); Kim et al. (2002), Onal (2007); EFSA (2011); Tosukhowong et al. (2011); Ali et al. (2016).

TABLE 7	Histamine levels in smoked or grilled fish and meat products		
Product	**Concentration (mg/kg)**	**Analytical method**	**References**
Smoked salmon	2.5–171	Extraction with Trichloroacetic acid; LC-MS/MS	Simunovic et al. (2019)
Smoked Sardinella sp.	18	Extraction trichloroacetic acid ion-exchange chromatography	Plahar et al. (1999)
Cold-smoked salmon	30.9 ± 0.4	Extraction with perchloric acid high-performance liquid chromatography with a diode array detector	Köse et al. (2012)
Hot-smoked Bonito (Tuna fish)	98.7 ± 0.6	Extraction with perchloric acid	Köse et al. (2012)
Grilled tuna	4,400	Not mentioned	Marissiaux et al. (2018)
Smoked fish from different species	11–63	Quantification colorimetrically at 495 nm using a spectrophotometer	CSIR (2017)
Smoked turkey breast fillets stored at 4°C after 30 days	32.9 ± 1.4	Extraction trichloroacetic acid With liquid chromatography. Quantification was performed coupled with a UV detector	Ntzimani et al. (2008)
Grilled pork	<11.2–81.5	Extraction with perchloric acid and injection on UPLC coupled with a fluorescence detector	Douny et al. (2019)
dynamic and kinetic aspects, and how to establish an acceptable daily intake (ADI) or a tolerable daily intake (TDI) using a safety factor to consider for the intra- and inter-species variation.

Exposure assessment: To assess the exposure, consumption data and contamination data are needed to calculate the estimated daily intake (EDI) by multiplying the concentration of hazard by the daily consumption of food contaminated with this hazard. EDI can be calculated for several categories of population (i.e., babies, children, teenager, and adults). EDI can be calculated either following a deterministic approach using median, mean, or maximum of consumption or contamination data, or following a probabilistic approach using distributions of consumption and contamination data.

Risk characterization: This step consists of comparing the calculated EDI with a toxicological reference dose (classical way) which can be a tolerable daily intake (TDI) or an acceptable daily intake (ADI). For carcinogenic compounds such as PAHs, the margin of exposure (MoE) suggested by EFSA (European Food Safety Authority) (2005) and Constable and Barlow (2009) is used. MOE is calculated as follows:

\[
\text{MOE} = \frac{\text{BMDL}_{10} \text{ (mg per kg bw per day)}}{\text{EDI (mg per kg bw per day)}}
\]

where BMDL₁₀ is the 95% lower confidence limit of the benchmark dose causing 10% extra risk of cancer in laboratory animals (in case of PAHs, of rat hepatocellular adenomas, and carcinoma), and EDI is the estimated daily intake. For carcinogenic compounds such as PAHs, the risk may be considered as negligible or very low only when MOE is above 10,000.

3.4.2 | Examples reported from the literature of risk assessment for some chemical hazards (PAHs, heavy metals, and biogenic amines)

Examples of risk assessments related to PAH ingestion through consumption of grilled and/or smoked fish and meat (Table 9) pointed out a health concern for consumers of several countries such as Cambodia (Douny et al., 2021), Benin (Iko Afé et al., 2020, 2021), Turkey (Sahin et al., 2020), Nigeria (Akpambang et al., 2009), and Latvia (Rozentale et al., 2018). Before 2015, the mean values of MoE associated with the consumption of smoked or grilled fish (Table 9a) and meat products (Table 9b) contaminated with PAHs including BaP and PAH4 were globally above 10,000, showing a very low concern for the consumers of these products. After 2015, the studies reported showed MoE globally below 10,000 for consumers of smoked or grilled fish and meat products from different countries such as Benin, Cambodia, Turkey, and Latvia (Table 9). MOE below 10,000 indicates a high concern (risk of cancer) for consumers for carcinogenic compounds such as PAHs.

Regarding consumers exposure to heavy metals from consumption of smoked or grilled fish and meat products, very few
data were available from the literature. Recently, two papers have been published on exposure of consumers from Burkina-Faso (Bazié et al., 2021) and Poland (Rajkowska-Myśliwiec et al., 2021).

The cancer risk index linked to lead exposure calculated for consumers of braised and flamed chicken processed in Burkina Faso ranged between 7×10^{-7} and 3×10^{-6} (Table 10). None of the index risk values was above the threshold set by US-EPA (IR > 10^{-4}). Similar

TABLE 9
Estimated daily intakes (EDI) and margin of exposure (MOE) for polycyclic aromatic hydrocarbons (PAH) through consumption of smoked or grilled fish (a) and meat (b) products, in different countries

Country	Type of food	Estimated daily intake (ng/kg bw/day)	Margin of exposure	References
Benin	Smoked fish	BaP: 2.3-809.9	BaP: 30,978-86	Iko Afé et al. (2021)
	Smoked-dried fish	BaP: 12.0-4,314.9	PAH4: 28,241-79	
		PAH4: 2.5-1,974.8	BaP: 27,718-35	
		PAH4: 174-13,627.2	PAH4: 19,510-25	
Cambodia	Smoked fish	BaP: 1.407	BaP: 50	Douny et al. (2021)
		PAH4: 5.773	PAH4: 59	
China	Grilled fish	BaP: 0.2	BaP: 333,000	Wang et al. (2021)
		PAH4: 1.0	PAH4: 336,000	
Croatia	Shellfish products	BaP: -	BaP: 1,643,906	Bogdanovic et al. (2019)
		PAH4: -	PAH4: 298,900	
Nigeria	Smoked fish	BaP: 4.52	BaP: 17,722-1,346	Akpambang et al. (2009)
		PAH4: -	PAH4: -	
Turkey	Grilled fish	BaP: 0.2	BaP: 389	Sahin et al. (2020)
		PAH4: 0.8	PAH4: 425	

Country	Type of food	Estimated daily intake (ng/kg bw/day)	Margin of exposure	References
Benin	Grilled pork	BaP: 0.7-235.7	BaP: 235,796-297	Iko Afé et al. (2020)
		PAH4: 4.1-312.1	PAH4: 83,925-257	
China	Grilled meat	BaP: 0.5	BaP: -	Jiang et al. (2018)
		PAH4: 4.0	PAH4: -	
Croatia	Smoked meat products	BaP: -	BaP: 280,657	Bogdanovic et al. (2019)
		PAH4: -	PAH4: 66,213	
Denmark	Home grilled meat (beef, pork, and chicken)	BaP: -	BaP: -	Duedahl-Olesen et al. (2015)
		PAH4: 10	PAH4: -	
Egypt	Grilled beef meat	BaP: 290.5	BaP: -	Darwish et al. (2019)
		PAH4: -	PAH4: -	
France	Foodstuffs (28 different foods)	BaP: 0.2	BaP: -	Veyrand et al. (2013)
		PAH4: 1.5	PAH4: -	
Korea	Smoked meat products (bacon, chicken, duck, pork, salmon, tuna, and turkey).	BaP: 0.014	BaP: -	Kim et al. (2014)
		PAH4: 0.038	PAH4: 265,957	
Kuwait	Grilled chicken	BaP: 15.6	BaP: -	Alomirah et al. (2011)
		PAH4: -	PAH4: -	
Latvia	Smoked meat products	BaP: 5.4	BaP: 12,952	Rozentale et al. (2018)
		PAH4: 35.9	PAH4: 9,475	
	Smoked meat (pork, pork breast, chop, speck, ham, and chicken) and meat products (sausages, small sausages, semi-dry sausages, and roulette)	BaP: 2.3	BaP: -	Rozentale et al. (2015)
		PAH4: 35.9	PAH4: 24,776	
Nigeria	Grilled meat	BaP: 10.5-14.0	BaP: 5.015-6.652	Akpambang et al. (2009)
		PAH4: -	PAH4: -	
Turkey	Grilled chicken	BaP: -	BaP: -	Sahin et al. (2020)
		PAH4: 1.8	PAH4: 190	

Abbreviations: - , data not presented in the cited paper; PAH4, sum of benzo[a]pyrene, chrysene, benzo[b]fluoranthene, and benzo[a]anthracene; bw, body weight.
to the cancer risk index, a noncancer risk index was calculated using the median consumption level of braised and flamed chicken. This Hazard Index (HI), which is the sum of individual metal hazard (Ag, Cd, Pb, Zn, Ni, Co, Fe, Mn, Cu, and Cr) quotients, ranged between 0.07 and 0.15. These values were below the reference value (HI = 1) (Hough et al., 2004) showing also the absence of noncancer risk linked to heavy metals exposure for Burkina-Faso consumers of braised and flamed chicken (Bazié et al., 2021). However, the HI (sum of hazard quotient of Zn, Fe, Mn, Cu, Al, Pb, and Cd) calculated for polish consumers was 1.4 (Table 10), so above the reference value of 1. The HI obtained for polish consumers was similar to HI values reported for Ugandan consumers of heat-processed meat which ranged from 1.2 to 1.9 for different types of meats (Table 10).

Among biogenic amines, histamine and tyramine are two dietary biogenic amines which are present in food are undesirable due to their adverse effects on consumer’s health such as hypertension, headache, and allergic reactions (EFSA, 2011; Marissiaux et al., 2018). To our best knowledge, there are few relevant studies showing the exposure to histamine or tyramine for consumers of smoked or grilled fish and meat products. Four studies dealing with histamine exposure were reported in Table 11. These four studies were published during the period of 2017–2021. The mean histamine intake calculated from the consumption of smoked fish and smoked-dried fish marketed in Benin was 146 mg/meal and 116 mg/meal, respectively, whereas the acute reference dose (ARfD) of histamine suggested by the European Food Safety Authority (EFSA) is 50 mg histamine/meal (EFSA, 2011). In Spain, Cambodia, and Egypt, the mean histamine exposure (Table 11) was well below this ARfD. Based on the limited published data, no adverse health effects have been observed in healthy volunteers exposed to a level of 25–50 mg of histamine per person per meal (EFSA, 2011). The mean histamine exposure reported in Table 11 revealed a health concern for Beninese consumers of smoked fish and smoked-dried fish (Iko Afé et al., 2021). Although the mean histamine exposure reported for consumers of Cambodia, Spain, and Egypt showed an absence of intoxication risk, there is risk of histamine poisoning in case of extreme consumption of smoked or grilled fish and meat products during the same meal or for sensitive consumers.

Table 10: Cancer and noncancer risks related to heavy metals through consumption of smoked or grilled fish and meat products reported from the literature

Country	Type of food	Noncancer risk: Hazard index (HI)	Cancer index risk (IR)	References
Burkina-Faso	Flamed chicken	0.2	Pb: 7 × 10^{-7} to 3 × 10^{-6}	Bazié et al. (2021)
	Braised chicken	0.1	Pb: 7 × 10^{-7} to 3 × 10^{-6}	
Poland	Smoked fish	1.4	-	Rajkowska-Myśliwiec et al. (2021)
Uganda	Roasted pork	1.7	Pb: 4.5 × 10^{-5}	Bamuwamye et al. (2015)
	Roasted beef	1.7	Pb: 3.92 × 10^{-5}	
	Roasted goat	1.2	Pb: 2.95 × 10^{-6}	
	Roasted chicken	1.9	Pb: 2.50 × 10^{-5}	

Table 11: Histamine and tyramine exposure from consumption of fish and meat products

Country	Type of food	Histamine exposure (mg/meal)	Tyramine exposure (mg/meal)	References
Benin	Smoked fish	145.6 (1,019.1)*	-	Iko Afé et al. (2021)
	Smoked-dried fish	115.9 (1,236.2)	-	
Cambodia	Smoked fish	<50 (-)	-	Douny et al. (2021)
Egypt	Beef shawarma	16.0	-	Sallam et al. (2021)
	Chicken shawarma	31	-	
Spain	Dry fermented sausages	1.4 (45.8)	6.2 (92.5)	Latorre-Moratalla et al. (2017)

*Numbers in parentheses represent the maximum value.

Abbreviation: -, data not presented in the cited paper.
CONCLUSION

Smoked fish and meat products may be contaminated by various toxic compounds including carcinogenic compounds. Most of the chemical hazards reported in this review are processing contaminants. Some of them can be formed when high temperature is reached inside the product (heterocyclic amines and nitrosamines) and others during pyrolysis of the fuel during processing (PAHs). Biogenic amines are not related to the smoking process but can be present in raw or smoked fish due to decarboxylation of free amino acids occurring after microbial contamination. In case of heavy metals, they are environmental pollutants found in raw and processed food. In traditionally smoked fish or grilled meat, most of the chemical hazards mentioned in this review exceed the maximal limits established by EU. Several actions should be addressed to decrease them in smoked fish and meat as they are highly consumed products.

ACKNOWLEDGMENTS

This work was fully supported by QualiSani project through ARES CCD (Académie de Recherche et d’Enseignement Supérieur, Commission de la Coopération au Développement).

CONFLICT OF INTEREST

The authors have no conflicts of interest to declare.

ETHICAL APPROVAL

This study does not involve any human or animal testing.

DATA AVAILABILITY STATEMENT

All the data used in this study can be made available upon reasonable request.

ORCID

Ogouyom Herbert Iko Afé https://orcid.org/0000-0001-7110-6986
Yénoukounmè Euloge Kpoclou https://orcid.org/0000-0003-4859-6205
Caroline Douny https://orcid.org/0000-0002-4162-1589
Victor Bienvenu Anihouvi https://orcid.org/0000-0002-2609-3837
Ahmed Igout https://orcid.org/0000-0002-2438-8615
Jacques Mahillon https://orcid.org/0000-0002-4463-1328
Djidjoh Joseph Hounhouigan https://orcid.org/0000-0002-3677-4986
Marie-Louise Scippo https://orcid.org/0000-0002-8463-3264

REFERENCES

Abbas, M. M. M., Shehata, S. M., Talab, A. S., & Mohamed, M. H. (2021). Effect of traditional processing methods on the cultivated fish species, Egypt. Part I. Mineral and heavy metal concentrations. Biological Trace Element Research, 1-15. https://doi.org/10.1007/s12011-021-02840-w
Adeyeye, S. A. O., Oyewole, O. B., Obadina, A. O., & Omemu, A. M. (2015). Evaluation of microbial safety and quality of traditional smoked Bonga Shad (Ethmalosa frimbiatra) fish from Lagos State, Nigeria. The Pacific Journal of Science and Technology, 16(1), 286–294.
Aina, M. P., Degila, H., Chikou, A., Adjahatode, F., & Matejka, G. (2012). Risk of intoxication by heavy metals (Pb, Cd, Cu, Hg) connected to the consumption of some halieutic species in Lake Nokoué: Case of the Penaeus shrimps and the Sarotherodon melanotheron. British Journal of Science, 5(1), 104–118.
Ake Assi, Y. (2012). Validation of a method for the quantification of polycyclic aromatic hydrocarbons in fish. European Journal of Scientific Research, 74(1), 69–78.
Akpambang, V. O. E., Purcaro, G., Lajide, L., Amoo, I. A., Conte, L. S., & Moret, S. (2009). Determination of polycyclic aromatic hydrocarbons (PAHs) in commonly consumed Nigerian smoked/grilled fish and meat. Food Additives & Contaminants (A), 26(7), 1096–1103. https://doi.org/10.1080/02652030902855406
Akpan, V., Lodovici, M., & Dolara, P. (1994). Polycyclic Aromatic Hydrocarbons in fresh and smoked fish samples from three Nigerian cities. Bulletin of Environmental and Toxicology, 53, 246–253. https://doi.org/10.1007/BF00192040
Al Bulushi, I., Poole, S., Deeth, H. C., & Dykes, G. A. (2009). Biogenic amines in fish: Roles in intoxication, spoilage, and nitrosamine formation—A review. Critical Reviews in Food Science and Nutrition, 49(4), 369–377. https://doi.org/10.1080/10408390802067514
Ali, A., Waheed, K. N., Hadaityt, A., Begum, I., & Hayat, S. (2016). Determination of histamine levels by LC-MS/MS in various fish species available in the local markets of Punjab, Pakistan. International Journal of Fisheries and Aquatic Sciences, 4(6), 128–132.
Al-Kaseem, M., Al-Assaf, Z., & Karabeet, F. (2014). Determination of seven volatile N-nitrosamines in fast food. Pharmacology & Pharmacy, 5, 195–203. https://doi.org/10.4236/pp.2014.52026
Alomirah, H., Al-Zenki, S., Al-Hooti, S., Zaghloul, S., Sawaya, W., Ahmed, N., & Kannan, K. (2011). Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control, 22, 2028–2035. https://doi.org/10.1016/j.foodcont.2011.05.024
Amons-Tautua, B. M. W., Inengite, A. C., Abasi, C. Y., & Amirize, G. C. (2013). Evaluation of polycyclic aromatic hydrocarbons and some heavy metals in roasted food snacks in Amassoma, Niger Delta, Nigeria. African Journal of Environmental Science and Technology, 7(10), 961–966.
Anigboro, F. O., Akpoveta, O. V., & Aweatefe, K. J. (2011). Determination of concentration levels of heavy metals in different species of smoked fishes from three markets in Agbor, Delta state, Nigeria. Agbor Journal of Science Education, 4, 81–88.
ANSES (Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail) (2011). Étude de l'alimentation totale française 2 (EAT 2), Tome 2: Résidus de pesticides, additifs, acrylamide, hydrocarbures aromatiques polycycliques [French Total Food Study 2 (TFS 2), Volume 2: Pesticide residues, additives, acrylamide, polycyclic aromatic hydrocarbons]. Retrieved from https://www.anses.fr/fr/system/files/PASER2006sa0361Ra2.pdf
Aremu, M. O., Namo, B. S., Oko, O. J., Adelagun, R. O. A., & Yebgella, G. G. (2014). Compositional evaluation of local smoked Nigerian mackerel (Scomber scombrus). Food Science and Quality Management, 24, 42–50.
Asamoah, E. K., Nunoo, F. K. E., Addo, S., Nyarko, J. O., & Hyldig, G. (2021). Polycyclic aromatic hydrocarbons (PAHs) in fish smoked using traditional and improved kilns: Levels and human health risk implications through dietary exposure in Ghana. Food Control, 121, 1–9.
Assogba, M. F., Anihouvi, D. G. H., Iko Afé, O. H., Kpoclou, Y. E., Mahillon, J., Scippo, M.-L., Hounhouigan, D. J., & Anihouvi, V. B. (2019).
through the consumption of nine species of smoked freshwater fish from Cambodia. *Food Control*, 130, 1–10. https://doi.org/10.1016/j.foodcont.2021.108219

Drabik-Markiewicz, G., Maagdenberg, K. V., De Mey, E., Deprez, S., Kowalska, T., & Paelinck, H. (2009). Role of proline and hydroxyproline in N-nitrosamine formation during heating in cured meat. *Meat Science*, 81, 479–486. https://doi.org/10.1016/j.meatsci.2008.10.002

Duedahl-Olesen, L., Aaslyng, M., Meinert, L., Christensen, T., Jensen, A. H., & Binderup, M.-L. (2015). Polycyclic aromatic hydrocarbons (PAH) in Danish barbecued meat. *Food Control*, 57, 169–176. https://doi.org/10.1016/j.foodcont.2015.04.012

EC (European Commission) (2005). No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. *Official Journal of the European Union L*, 338, 1–32. Retrived from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32005R2073&from=EN

EC (European Commission) (2006). Regulation No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. *Official Journal of the European Union L*, 364, 1–40. Retrived from https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF

EFSA (European Food Safety Authority) (2005). Opinion of the Scientific Committee on a request from EFSA related to A Harmonised Approach for Risk Assessment of Substances Which are both Genotoxic and Carcinogenic. *The European Food Safety Authority Journal*, 282, 1–31.

EFSA (European Food Safety Authority) (2008). Polycyclic Aromatic Hydrocarbons in food: Scientific opinion of the panel on contaminants in the food chain. *The European Food Safety Authority Journal*, 724, 1–114. Retrieved from https://doi.org/10.2903/j.efsa.2008.724

EFSA (European Food Safety Authority) (2010). Scientific Opinion on lead in food. *The European Food Safety Authority Journal*, 8(4), 1–151. https://doi.org/10.2903/j.efsa.2010.1570

EFSA (European Food Safety Authority) (2011). Scientific Opinion on risk based control of biogenic amine formation in fermented foods. *The European Food Safety Authority Journal*, 9(10), 1–93. Retrieved from https://doi.org/10.2903/j.efsa.2011.2393

Eldaly, E. A., Hussein, M. A., El-Gam, A. M. A., El-hefny, D. E., & Mishref, M. A. (2016). Polycyclic aromatic hydrocarbons (PAHs) in charcoal grilled meat (Kebab) and Kofta and the effect of marinating on their existence. *Zagazig Veterinary Journal*, 44(1), 40–47. https://doi.org/10.21608/zvjz.2016.7830

Emborg, J., & Dalgaard, P. (2006). Formation of histamine and biogenic amines in cold-smoked Tuna: An investigation of psychrotolerant bacteria from samples implicated in cases of histamine fish poisoning. *Journal of Food Protection*, 69(4), 897–906. https://doi.org/10.4315/0362-028X-69.4.897

Ersoy, B., Yanar, Y., Kucukgulmez, A., & Celik, M. (2006). Effects of four cooking methods on the heavy metal concentrations of sea bass fillets (*Dicentrarchus labrax* Linne, 1785). *Food Chemistry*, 99, 748–751. https://doi.org/10.1016/j.foodchem.2005.08.055

FASFC (Federal Agency for the Safety of the Food Chain) (2006). Application of risk assessment in the food chain. Sci Com Workshop. p98. Retrieved from http://www.afsca.be/comitescientifique/publications/brochures/documents/2007-11_WS_SciCOM_Fr.pdf

FASFC (Federal Agency for the Safety of the Food Chain) (2005). *Terminology for hazard and risk analysis according to the codex alimentarius*. p46. Retrieved from http://www.afsca.be/comitescientifique/publications/brochures/documents/2005-09_SciCom_Term_Fr.pdf

Fay, L. B., Ali, S., & Gross, G. A. (1997). Determination of heterocyclic aromatic amines in food products: Automation of the sample preparation method prior to HPLC and HPLC-MS quantification. *Mutation Research*, 376, 29–35. https://doi.org/10.1016/S0027-5107(97)00022-5

Filho, P. J. S., Rios, A., Valcarcel, M., Zanin, K. D., & Caramao, E. B. (2003). Determination of nitrosamines in preserved sausages by solid-phase extraction–micellar electrokinetic chromatography. *Journal of Chromatography A*, 985, 503–512. https://doi.org/10.1016/S0021-9673(02)01825-3

Forsberg, N. D., Stone, D., Harding, A., Harper, B., Harris, S., Matzke, M. M., Cardenas, A., Waters, K. M., & Anderson, K. A. (2012). Effect of Native American fish smoking methods on dietary exposure to Polycyclic Aromatic Hydrocarbons and possible risks to human health. *Journal of Agricultural and Food Chemistry*, 60, 6899–6906. https://doi.org/10.1021/jf300978m

Gheorge, P., Iulia, D., Valentin, N., Valter, E. D., & Carmen, I. (2019). Research on the detection of polycyclic aromatic hydrocarbons (PAHs) from fish and smoked fish samples, the values obtained and the significance of their presence on human health. *Romanian Biotechnological Letters*, 24(4), 697–704. https://doi.org/10.25083/rbl/24.4/697.704

Gibis, M. (2016). Heterocyclic aromatic amines in cooked meat products: Causes, occurrence, and risk assessment. *Comprehensive Reviews in Food Science and Food Safety*, 15, 269–302. https://doi.org/10.1111/1541-4337.12186

Gomez-Guillén, M. C., Gomez-Estaca, J., Giménez, B., & Montero, P. (2009). Alternative fish species for cold-smoking process. *International Journal of Food Science and Technology*, 44, 1525–1535. https://doi.org/10.1111/j.1365-2621.2008.01762.x

Goulas, A. E., & Kontominas, M. G. (2005). Effect of salting and smoking method on the keeping quality of chub mackerel (*Scomber japonicus*): Biochemical and sensory attributes. *Food Chemistry*, 93, 511–520. https://doi.org/10.1016/j.foodchem.2004.09.040

Gunter, M. J., Divi, R. L., Kuldorff, M., Vermeulen, R., Haverkos, K. J., Kuo, M. M., Strickland, P., Poirier, M. C., Rothman, N., & Sinha, R. (2007). Leukocyte polycyclic aromatic hydrocarbon–DNA adduct formation and colorectal adenoma. *Carcinogenesis*, 28(7), 1426–1429. https://doi.org/10.1093/carcin/bgm022

Haskaraca, G., Demirok, E., Kolsarici, N., Öz, F., & Özsarac, N. (2014). Effect of green tea extract and microwave pre-cooking on the formation of heterocyclic aromatic amines in fried chicken meat products. *Food Research International*, 63, 373–381. https://doi.org/10.1016/j.foodres.2014.04.001

Hassan, M. A., El-Shater, M. A., & Waly, H. A. (2017). Histamine as biogenic amine residue in imported frozen fish. *Benha Veterinary Medical*, 32(1), 75–78. https://doi.org/10.21608/bvmj.2017.31115

Herrmann, S. S., Duedahl-Olesen, L., & Granby, K. (2014). Simultaneous determination of volatile and non-volatile nitrosamines in processed meat products by liquid chromatography tandem mass spectrometry using atmospheric pressure chemical ionization and electrospray ionization. *Journal of Chromatography A*, 1330, 20–29.

Herrmann, S. S., Duedahl-Olesen, L., & Granby, K. (2015). Occurrence of volatile and non-volatile N-nitrosamines in processed meat products and the role of heat treatment. *Food Control*, 48, 163–169. https://doi.org/10.1016/j.foodcont.2014.05.030

Hough, R. L., Breward, N., Young, S. D., Crout, N. M. J., Tye, A. M., Moir, A. M., & Thornton, I. (2004). Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations. *Environmental Health Perspectives*, 112(2), 215–221. https://doi.org/10.1289/ehp.5589

Hustad, G. O., Cerveny, J. G., Trenk, H., Deibel, R. H., Kautter, D. A., Fazio, T., Johnston, R. W., & Kolar, O. E. (1973). Effect of sodium nitrite and sodium nitrate on bovine tolbutin toxin production and nitrosamine formation in wiener. *Applied Microbiology*, 26(1), 22–26. https://doi.org/10.1128/am.26.1.22-26.1973

IARC (International Agency for Research on Cancer) (2010). *Monographs on the evaluation of carcinogenic risks to humans* Lyon, (France). http://monographs.iarc.fr/ENG/Monographs/vol92/mono92.pdf
Poligné, L., Collignan, A., & Trystram, G. (2001). Characterization of traditional processing of pork meat into boucané. Meat Science, 59, 377–389. https://doi.org/10.1016/S0309-1740(01)00090-0

Puangsombat, K., Gadgil, P., Houser, T. A., Hunt, M. C., & Smith, J. S. (2011). Heterocyclic amine content in commercial ready to eat meat products. Meat Science, 88, 227–233. https://doi.org/10.1016/j.meatsci.2010.12.025

PubChem (2020). National Center for Biotechnology Information. PubChem Database. Retrieved from https://pubchem.ncbi.nlm.nih.gov

Racovita, R. C., Secuianu, C., & Israel-Roming, F. (2021). Quantification and risk assessment of carcinogenic polycyclic aromatic hydrocarbons in retail smoked fish and smoked cheeses. Food Control, 121, 1–9. https://doi.org/10.1016/j.foodcont.2020.107586

Rajkowska-Myśliwiec, M., Pokorska-Niewiada, K., Witzczak, A., Balcerzak, M., & Ciecholewska-Jusko, D. (2021). Health benefits and risks associated with elements uptake from grilled fish and fish products. Journal of the Science of Food and Agriculture, 1–8. https://doi.org/10.1002/jsfa.11429

Rauscher-Gabernig, E., Grossgut, R., Bauer, F., & Paulsen, P. (2009). Assessment of alimentary histamine exposure of consumers in Austria and development of tolerable levels in typical foods. Food Control, 20, 423–429. https://doi.org/10.1016/j.foodcont.2008.07.011

Reinik, M. (2007). Nitrates, nitrites, N-nitrosamines and Polycyclic Aromatic Hydrocarbons in food: Analytical methods, occurrence and dietary intake (Doctoral dissertation). Retrieved from https://www.acadia.edu/23501371/Nitrates_nitrites_N-nitrosamines_and_polycyclic_ aromatic_hydrocarbons_in_food_analytical_methods_occurrence_and_dietary_intake

Ronco, A. L., Stefani, E. D., Correa, P., DeneoPellegrini, H., Boffetta, P., Acosta, G., & Mendilaharsu, M. (2011). Dietary benzo[a]pyrene, alcohol drinking, and risk of breast cancer: A case-control study in Uruguay. Asian Pacific Journal of Cancer Prevention, 12, 1463–1467.

Roose, L. C., Gomes, A., & Santos, C. (2011). Influence of processing in the prevalence of polycyclic aromatic hydrocarbons in a Portuguese traditional meat product. Food and Chemical Toxicology, 49, 1340–1345. https://doi.org/10.1016/j.fct.2011.03.017

Rostkowska, K., Zwierz, K., Różański, A., Moniuszko-Jakoniuk, J., & Roszczenko, A. (1998). Formation and Metabolism of N-Nitrosamines. Polish Journal of Environmental Studies, 7(6), 321–325.

Rozentale, I., Stumpe-Vıksna, I., Zacs, D., Siksna, I., Melngaile, A., & Bartkevics, V. (2015). Assessment of dietary exposure to polycyclic aromatic hydrocarbons from smoked meat products produced in Latvia. Food Control, 54, 16–22. https://doi.org/10.1016/j.foodcont.2015.01.017

Rozentale, I., Zacs, D., Bartkiene, E., & Bartkevics, V. (2018). Polycyclic aromatic hydrocarbons in traditionally smoked meat products from the Baltic States. Food Additives & Contaminants (B), 11(2), 138–145. https://doi.org/10.1080/19393210.2018.1440637

Sagrati, G., Fernández-Franzón, M., Berardínis, F. D., Font, G., Vittori, S., & Mañes, J. (2012). Simultaneous determination of eight underivatised biogenic amines in fish by solid phase extraction and liquid chromatography-tandem mass spectrometry. Food Chemistry, 132, 537–543. https://doi.org/10.1016/j.foodchem.2011.10.054

Sahin, S., Ulusoy, H. İ., Alemdar, S., Erdogan, S., & Aagoulu, S. (2020). The presence of polycyclic aromatic hydrocarbons (PAHs) in grilled beef, chicken and fish by considering dietary exposure and risk assessment. Food Science of Animal Resources, 40(5), 675–688.

Saito, E., Tanaka, N., Miyazaki, A., & Tsuzaki, M. (2014). Concentration and particle size distribution of polycyclic aromatic hydrocarbons formed by thermal cooking. Food Chemistry, 153, 285–291. https://doi.org/10.1016/j.foodchem.2013.12.055
Sallam, K. I., Morgan, S. E. M., Sayed-Ahmed, M. Z., Alqahtani, S. S., & Abd-Elyahmy, S. M. (2021). Health hazard from exposure to histamine produced in ready-to-eat Shawarma widely consumed in Egypt. *Journal of Food Composition and Analysis, 97*, 1–8.

Santos, F. J., Barceló-Barrachina, E., Toribio, F., Puignou, L., Galceran, M. T., Persson, E., Skog, K., Messner, C., Murkovic, M., Nabinger, U., & Ristic, A. (2004). Analysis of heterocyclic amines in food products: Interlaboratory studies. *Journal of Chromatography B, 802*, 69–78. https://doi.org/10.1016/j.jchromb.2003.09.030

Santos, M. H. S. (1996). Biogenic amines: Their importance in foods. *International Journal of Microbiology, 29*, 213–231. https://doi.org/10.1016/0168-1605(95)00032-1

SCF (Scientific Committee on Food) (2002). *Opinion of the Scientific Committee on Food on the risks to human health of polycyclic aromatic hydrocarbons in food expressed on 4 December 2002*. Retrieved from https://ec.europa.eu/food/sites/food/files/safety/docs/sci-com_scf_out153_en.pdf

Scholl, G., Humblet, M.-F., Scippo, M.-L., Pauw, E. D., Eppe, G., & Saegermann, C. (2012). Risk assessment of Belgian adults for furan contamination through the food chain. *Food Additives & Contaminants: Part A, 29*(3), 345–353.

Sebranek, J. G., & Bacus, J. N. (2007). Cured meat products without direct addition of nitrate or nitrite: What are the issues? *Meat Science, 77*, 136–147. https://doi.org/10.1016/j.meatsci.2007.03.025

Silva, B. O., Adetunde, O. T., Oluseyi, T. O., Olayinka, K. O., & Alo, B. I. (2011). Effects of the methods of smoking on the levels of polycyclic aromatic hydrocarbons (PAHs) in some locally consumed fishes in Nigeria. *African Journal of Food Science, 5*(7), 384–391.

Simunovic, S., Jankovic, S., Baltic, T., Nikolic, D., Djivojic-Stojanovic, J., Lukic, M., & Parunovic, N. (2019). Histamine in canned and smoked fishery products sold in Serbia. *Meat technology, 60*(1), 8–16.

Sinha, R., Knize, M. G., Salmon, C. P., Brown, E. D., Rhodes, D., Felton, J. S., Levander, O. A., & Rothman, N. (1998). Heterocyclic amine content of pork products cooked by different methods and to varying degrees of doneness. *Food and Chemical Toxicology, 36*, 289–297. https://doi.org/10.1016/S0278-6915(97)00159-2

Sinha, R., Kuldorff, M., Gunter, M. J., Strickland, P., & Rothman, N. (2005). Dietary benzo[a]pyrene intake and risk of colorectal adenoma. *Cancer Epidemiology, Biomarkers & Prevention, 14*(8), 2030–2034. https://doi.org/10.1158/1055-9965.EPI-04-0854

Sinha, R., Rothman, N., Brown, E. D., Salmon, C. P., Knize, M. G., Swanson, C. A., Rossi, S. C., Mark, S. D., Levander, O. A., & Felton, J. S. (1995). High concentrations of the carcinogen 2-amino-1-methyl-6-pheny-

Stolyhwo, A., & Sikorski, Z. E. (2005). Polycyclic aromatic hydrocarbons in smoked fish – a critical review. *Food Chemistry, 91*, 303–311. https://doi.org/10.1016/j.foodchem.2004.06.012

Stumpe-Viksna, I., Bartkevics, V., Kukare, A., & Morozovs, A. (2008). Polycyclic aromatic hydrocarbons in meat smoked with different types of wood. *Food Chemistry, 110*, 794–797. https://doi.org/10.1016/j.foodchem.2008.03.004

Swann, P. F. (1977). Carcinogenic risk from nitrite, nitrate and N-nitrosamines in food. *Proceedings of the Royal Society of Medicine, 70*, 113–115.

Tongo, I., Ezemoye, L., & Akpeh, K. (2017). Distribution, characterization, and human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in Ovia River, Southern Nigeria. *Environmental Monitoring and Assessment, 189*(247), 1–16. https://doi.org/10.1007/s10661-017-5931-5

Tosukhowong, A., Vissessanguan, W., Pumpuang, L., Tepkasikul, P., Panya, A., & Valyasevi, R. (2011). Biogenic amine formation in Nham, a Thai fermented sausage, and the reduction by commercial starter culture. *Lactobacillus plantarum BCC 9546. Food Chemistry, 129*, 846–853. https://doi.org/10.1016/j.foodchem.2011.05.033

Toth, L., & Potthast, K. (1984). Chemical aspects of the smoking of meat and meat products. *Advances in Food Research, 29*, 87–158.

Turesky, R. J. (2007). Formation and biochemistry of carcinogenic heterocyclic amine cooked meats. *Toxicology Letters, 168*, 219–227. https://doi.org/10.1016/j.toxlet.2006.10.018

Ubwa, S. T., Abah, J., Tarzaa, L., Tyohemba, R. L., & Ahille, U. J. (2015). Effects of traditional smoking methods on the concentrations of polynuclear aromatic hydrocarbons (PAHs) in some species of smoked fish traded in Benue State, Nigeria. *Journal of Food Research, 4*(2), 119–127. https://doi.org/10.5539/jfr.v4n2p119

Uluozlu, O. D., Tuzen, M., Mendil, D., & Soylak, M. (2009). Assessment of trace element contents of chicken products from turkey. *Journal of Hazardous Materials, 163*, 982–987. https://doi.org/10.1016/j.jhazmat.2008.07.050

Van de Wiele, T., Vanhaecke, L., Boeckaert, C., Peru, K., Headley, J., Verstraete, W., & Siciliano, S. (2005). Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. *Environmental Health Perspectives, 113*(1), 6–10. https://doi.org/10.1289/ehp.7259

Veyrand, B., Sirot, V., Durand, S., Pollono, C., Marchand, P., Dervilly-Pinel, G., Tard, A., Leblanc, J.-C., & Bizec, B. L. (2013). Human dietary exposure to polycyclic aromatic hydrocarbons: Results of the second French Total Diet Study. *Environment International, 54*, 11–17. https://doi.org/10.1016/j.envint.2012.12.011

Viegas, O., Novo, P., Pinho, O., & Ferreira, I. M. P. L. V. O. (2012). A comparison of the extraction procedures and quantification methods for the chromatographic determination of polycyclic aromatic hydrocarbons in charcoal grilled meat and fish. *Talanta, 88*, 677–683. https://doi.org/10.1016/j.talanta.2011.11.060

Viegas, O., Novo, P., Pinto, E., Pinho, O., & Ferreira, I. M. P. L. V. (2012). Effect of charcoal types and grilling conditions on formation of heterocyclic aromatic amines (HAs) and polycyclic aromatic hydrocarbons (PAHs) in grilled muscle foods. *Food and Chemical Toxicology, 50*, 2128–2134. https://doi.org/10.1016/j.fct.2012.03.051

Wakabayashi, K., Ushiyama, H., Takahashi, M., Nukaya, H., Kim, S.-B., Hirose, M., Ochiai, M., Sugimura, T., & Nagao, M. (1993). Exposure to heterocyclic amines. *Environmental Health Perspectives, 99*, 129–133. https://doi.org/10.1289/ehp.9399129

Wang, Y., Yao, Y., Kong, Q., Zheng, F., Shao, L., Zhang, T., Jiang, D., & Gao, X. (2021). Occurrence of polycyclic aromatic hydrocarbons in fried and grilled fish from Shandong China and health risk assessment. *Environmental Science and Pollution Research, 28*, 32802–32809. https://doi.org/10.1007/s11356-021-13045-y

Yurchenko, S., & Molder, U. (2007). The occurrence of volatile N-nitrosamines in Estonian meat products. *Food Chemistry, 100*, 1713–1721. https://doi.org/10.1016/j.foodchem.2005.10.017
Yusuf, K. A., Ezechukwu, L. N., Faykoya, K. A., Akintola, S. L., Agboola, J. I., & Omoleye, T. O. (2015). Influence of fish smoking methods on polycyclic aromatic hydrocarbons content and possible risks to human health. *African Journal of Food Science, 9*(3), 126–135. https://doi.org/10.5897/AJFS2014.1227

Zachara, A., Gałkowska, D., & Juszczak, L. (2017). Contamination of smoked meat and fish products from Polish market with polycyclic aromatic hydrocarbons. *Food Control, 80*, 45–51. https://doi.org/10.1016/j.foodcont.2017.04.024

Zaman, M. Z., Bakar, F. A., Selamat, J., & Bakar, J. (2010). Occurrence of Biogenic Amines and Amines Degrading Bacteria in Fish Sauce. *Czech Journal of Food Sciences, 28*(5), 440–449. https://doi.org/10.17221/312/2009-CJFS

How to cite this article: Iko Afé, O. H., Kpoclou, Y. E., Douny, C., Anihouvi, V. B., Igout, A., Mahillon, J., Hounhouigan, D. J., & Scippo, M.-L. (2021). Chemical hazards in smoked meat and fish. *Food Science & Nutrition, 9*, 6903–6922. https://doi.org/10.1002/fsn3.2633