Evaluation of input geological parameters and tunnel strain for strain-softening rock mass based on GSI

Lan Cui¹,², Qian Sheng¹,², Jun Zhang³, You-kou Dong⁴*, & Zhen-shan Guo³

The regression analysis method is being widely adopted to analyse the tunnel strain, most of which ignore the strain-softening effect of the rock mass and fail to consider the influence of support pressure, initial stress state, and rock mass strength classification in one fitting equation. This study aims to overcome these deficiencies with a regression model used to estimate the tunnel strain. A group of geological strength indexes (GSI) are configured to quantify the input strength parameters and deformation moduli for the rock mass with a quality ranging from poor to excellent. A specific semi-analytical procedure is developed to calculate the tunnel strain around a circular opening, which is validated by comparison with those using existing methods. A nonlinear regression model is then established to analyse the obtained tunnel strain, combining twelve fitting equations to relate the tunnel strain and the factors including the support pressure, GSI, initial stress state, and critical softening parameter. Particularly, three equations are for the estimation of the critical tunnel strain, critical support pressure, and tunnel strain under elastic behaviour, respectively; and the other nine equations are for the tunnel strain with different strain-softening behaviours. The relative significance between the GSI, the initial stress and the support pressure on the tunnel strain is assessed.

List of symbols

Symbol	Description
η	Softening parameter
σᵣ, σ₀	Radial and tangential stresses
εᵣᵢ(ᵣ₀), εθᵢ(ᵣ₀)	Radial and tangential strains at r = rᵢ(ᵣ₀)
εᵣᵢ₋₁, εθᵢ₋₁	Radial and tangential strains at r = rᵢ₋₁
ε₊plasᵢ, ε₋plasᵢ	Radial and tangential plastic strains
Δε₊plasᵢ, Δε₋plasᵢ	Radial and tangential plastic strain increments
Δε₊elasᵢ, Δε₋elasᵢ	Radial and tangential elastic strain increments
uᵢ(ᵣ₀)	Radial displacement at r = rᵢ(ᵣ₀)
p₀	Initial ground stress
μ	Poisson's ratio
σ₁, σ₃	Major and minor principal stresses at failure, respectively
GSI	Geological Strength Index
GSP, GSR	Peak and residual values of the Geological Strength Index
ψ	Dilatancy angle
Kψ(η)	Dilatancy coefficient
φ	Friction angle
σci	Uniaxial compression strength of intact rock
m₁b, s, α	Strength parameters of the Hoek–Brown rock mass
ω	m₁b, s and α

¹State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China. ²University of Chinese Academy of Sciences, Beijing 100049, China. ³Key Laboratory of Highway Construction and Maintenance Technology in Loess Region of Ministry of Transport, Shanxi Transportation Technology Research & Development Co., Ltd., Taiyuan 030032, China. ⁴College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China. *email: dongyk@cug.edu.cn
assumptions. Some assumptions are considered prior to the analysis:

1. A circular opening, with a radius of R_0, is under a hydrostatic stress field of σ_0 asymmetrically distributed around it; the radial stress σ_r and the tangential stress σ_θ correspond to the minor and major principal stresses σ_3 and σ_1, respectively;
2. Plane strain condition is considered as the deformation along the longitudinal direction of the tunnel is virtually uniform;
3. Material of the rock mass is isotropic, continuous, and initially elastic. Near underground excavations where confinement is reduced, most rock mass exhibits post-peak strength loss, which is called strain-softening property. The rock mass presents strain-softening (SS) behaviour; the elastic-perfectly-plastic (EPP) and elastic-brittle-plastic (EBP) behaviours are also considered, which are taken as special cases of the SS behaviour. The SS, EPP, and EBP rock masses are shown in Fig. 1. A support pressure p_i is evenly imposed around the tunnel. σ_{r_p} and σ_{θ_p} represent the radial and tangential stresses at the elasto-plastic boundary, respectively. Within a SS rock mass, σ_{r_1} and σ_{θ_1} are the radial and tangential stresses at the plastic softening-residual boundary, respectively. The radii of the plastic softening and residual areas are symbolised as R_{plas} and R_r, respectively. For the EPP and EBP rock masses, the radius of plastic area is represented as R_p.
4. The softening parameter η characterises the softening quantity in the rock mass and is calculated as the gap between the tangential and radial plastic strains for the axisymmetric problem:

$$\eta = \varepsilon^{plas}_r - \varepsilon^{plas}_\theta$$

(1)

The critical value of η is denoted as η^*, which occurs at the moment that the rock mass strength decays to its residual value. Specially, η has values of ∞ and 0 for the EPP and EBP rock masses, respectively.
5. The Mohr–Coulomb failure criterion is considered for the plastic potential function22,23

\[g(\sigma_r, \sigma_\theta, \psi) = \sigma_0 - \frac{1 + \sin \psi}{1 - \sin \psi} \sigma_r \]

where \(\psi \) is the dilatancy angle and herein is taken as nil.

6. The Hoek–Brown (H-B) failure criterion is satisfactory in the quick estimate of the rock mass strength24:

\[\sigma_1 = \sigma_3 + \sigma_\text{ci} \left(\frac{m_b \sigma_3}{\sigma_\text{ci}} + s \right)^a \]

where \(\sigma_\text{ci} \) represents the uniaxial compression strength of the intact rock; \(m, s \) and \(a \) are strength parameters of the Hoek–Brown rock mass. Because of the axisymmetric condition, the radial stress \(\sigma_r \) and the tangential stress \(\sigma_\theta \) correspond to the minor and major principal stresses \(\sigma_3 \) and \(\sigma_1 \), respectively. Equation (3) can be transformed as:

\[f(\sigma_r, \sigma_\theta, \eta) = \sigma_\theta - \sigma_r - \sigma_\text{ci} \left(\frac{m_b \sigma_r}{\sigma_\text{ci}} + s \right)^a \]

According to the geological observations in the field, Reference10,24,25 constructed the relation between the strength parameters \((m_b, s \text{ and } a) \) and GSI. The empirical equations are listed as follows:

\[m_b = m_i \exp \left(\frac{\text{GSI} - 100}{28 - 14D} \right) \]

\[s = \exp \left(\frac{\text{GSI} - 100}{9 - 3D} \right) \]

\[a = \frac{1}{2} + \frac{1}{6} \left(e^{-\text{GSI}/15} - e^{-20/3} \right) \]

where \(D \) is a coefficient influenced by the disturbance from blast impact and the stress relaxation. An optimised blasting operation with an accurate drilling control technique is assumed during the tunnel excavation, thereby, the damage to the tunnel wall is negligible and \(D \) is regarded as 0 by Hoek26. \(m_i \) in Eq. (5) characterises the friction between the composition minerals.

Strength classification of rock mass. The strength classification systems, such as the RMR, Q, and GSI, were successfully applied to many tunnel excavations. Various empirical equations by the systems are feasible to characterise the strength and deformation behaviours of the rock mass. Herein, GSI is incorporated to quantify the rock mass properties. Advantages of the GSI are demonstrated in three aspects: GSI is directly correlated to the strength constants in the Hoek–Brown failure criterion24; GSI can be estimated by RMR and Q systems, thus some strength parameters related to RMR can also be represented by GSI; and the residual strength of the strain-softening rock mass could be calculated from the peak value of GSI based on the equation proposed27.

Correlation between RMR and GSI. In the latest version, the relationship between GSI and RMR is:

\[\text{GSI} = \text{RMR} - 5, \text{RMR} > 23 \]

It is noted that Eq. (8) is specialised for the dry condition of the rock mass and thus is not applicable to the weak rock mass with the RMR below 18.

Residual value of GSI. The guideline for the GSI was presented25, which are to characterise the peak strength parameters of the EPP rock mass. Considering the strain-softening effect, Reference27 extended the GSI framework to consider the residual strength. In their study, through the in-situ block shear test at a number of real
To correlate the deformation modulus of rock mass, the peak and residual values (strength parameters) are denoted with \(E_p \) and \(E_r \) within the plastic area of the EBP rock mass. The deformation modulus \(E_r \) and strength parameters, such as \(\sigma_{ci} \) and \(m_i \), also need to be determined. A number of compression tests show that \(E_p \) deteriorates for the rock mass beyond the peak state\(^{28,29}\). It is proposed that \(\sigma_{ci} \) wanes from its peak value to the residual during the softening stage since the rock mass quality is weakened, and the variations of \(E_r \) and \(\sigma_{ci} \) also obey Eq. (10). Therefore, \(E_r \), \(\sigma_{ci} \), and \(m_i \) within the plastic softening area are all assumed to obey Eq. (10). As observed in Eq. (10), the prerequisite for obtaining \(E_r \), \(\sigma_{ci} \), \(m_i \), \(s \), and \(a \) in the softening area is to predict the peak and residual values (\(E_p^b \), \(E_t \), \(\sigma_{ci} \), \(m_i \), \(s_i \), \(a_i \)). Based on GSP and GSI, the derivation of \(E_p^b \), \(E_t \), \(\sigma_{ci} \), \(m_i \), \(s_i \), \(a_i \), \(s_i \), \(a_i \) is presented in the following.

Within the plastic elastic and plastic residual areas. Empirical equations to determine \(E_r \) were proposed with GSI and RMR.

Reference\(^3\)\(^1\):
\[
E_r = 2RMR - 100
\]
(11)

Reference\(^3\)^{30}:
\[
E_r = 10^{[RMR-10]/40}
\]
(12)

Reference\(^3\)^{31}:
\[
E_r = 0.1 \left(\frac{RMR}{10} \right)^3
\]
(13)

Simplified Hoek and Diederichs equation\(^3\)^{32}:
\[
E_r = 100 \left(\frac{1 - D/2}{1 + e^{(75+25D - GSI)/11}} \right)
\]
(14)

With GSP and GSI\(^p\) listed in Table 1, the calculated \(E_p^b \) and \(E_r^b \) from Eqs. (11)–(14) are shown in Table 2. In Table 3, \(E_p^b \) and \(E_r^b \) can be estimated as the average values from Eqs. (11)–(14).

Strength constant \(m_i \). In the previous works, such as Reference\(^{33-35}\), \(m_i \) was approximated by two methods. One is to determine the classification of \(m_i \) from the rock type, such as in Hoek and Brown\(^34\). The other method is to estimate \(m_i \) from the rock mass quality. Although the latter method tends to be subjective, it enables to establish a direct relationship between \(m_i \) and the rock mass strength classification\(^34\). Therefore, the latter method is utilised in this study to correlate \(m_i \) with GSI. The test data of \(m_i \) for different GSI by Hoek and Brown\(^33\) and Hoek and Marinors\(^36\) is listed in Table 4. The data for estimating \(m_i \) by GSI can be best-fitted by,

\[
m_i = 0.7375 GSI^{0.7586}
\]
(15)
Table 2. Calculated values of E_r and E_r by Eqs. (11) to (14).

GSI	Equation (11)	Equation (12)	Equation (13)	Equation (14)	GSI	Equation (11)	Equation (12)	Equation (13)	Equation (14)
25	3.162	2.700	1.050	17.883	20.069	2.381	1.575	1.126	
30	4.217	4.288	1.645	21.897	2.645	1.946	1.295		
35	5.623	6.400	2.567	23.403	2.885	2.291	1.452		
40	7.499	9.113	3.986	24.623	3.094	2.599	1.592		
45	10.000	12.500	6.138	25.585	3.271	2.861	1.712		
50	13.335	16.638	9.341	26.320	3.412	3.072	1.809		
55	17.783	21.600	13.965	26.852	3.518	3.232	1.883		
60	23.714	27.463	20.365	27.205	3.590	3.340	1.934		
65	31.623	34.300	28.719	27.205	3.631	3.401	1.962		
70	42.170	42.188	38.828	27.399	3.642	3.418	1.970		
75	56.234	51.200	50.000	27.453	3.642	3.418	1.970		

Table 3. Estimated values of E_r and E_r.

GSI	E_r (MPa)	GSI	E_r (MPa)
75	54.359	27.453	3.010
70	43.296	27.399	2.998
65	33.660	27.205	2.955
60	25.385	26.852	2.878
55	18.337	26.320	2.764
50	12.328	25.585	2.615
45	7.160	24.623	2.429
40	5.149	23.403	2.209
35	3.648	21.897	1.962
30	2.537	20.069	1.694
25	1.728	17.883	1.417

Table 4. Values of m_i with different GSI: (a) Hoek and Brown; (b) Hoek and Marino.

(a) GSI	75	50	30	75	75	65	20	24
m_i	25	12	8	16.3	17.7	15.6	9.6	10

(b) GSI	20	5	13	28
m_i	8.0	2.0	5.0	11.0

Figure 2. Fitting for m_i.
The coefficient of determination \(R^2 \) reaches 81.38%, which indicates that the fitting line is in agreement with the test results. By Eq. (15) (see Fig. 2), the calculated \(m_i^p \) and \(m_i^r \) with different \(GSI_p \) and \(GSI_r \) are presented in Table 5.

It is admitted that \(m_i \) is the inherent characteristic of the intact rock. In this respect, \(m_i \) corresponds to \(GSI = 100 \). But from many references, it is found that generally a greater \(GSI \) gives rise to a larger value of \(m_i \). Hence, in the analysis, a rough and immature relation between \(GSI \) and \(m_i \) is proposed as shown in Eq. (15) is proposed. The aim of Eq. (15) is to solve the tunnel strain as one of the input parameter in the latter. And according to Eq. (15), the tunnel strain is greater in comparison to a constant \(m_i \) with no reduction. Then, the tunnel design will be conservative and safe. In this respect, Eq. (15) is reasonable. Furthermore, the sensitive analysis for the influence of multiple mechanical parameters on the tunnel strain has also been undertaken. It is found that in comparing with other input parameters such as the deformation modulus and the compressive rock strength, the effect of \(m_i \) on the rock deformation is trivial. In this aspect, although Eq. (15) is subjective, it seems to be not very important factor that affect the results in this analysis.

Strength constants \(m_p \), \(s \), and \(a \)

According to Eqs. (5) to (7), when the disturbance factor \(D \) is 0, \(m_p^p \), and \(m_p^r \) can be obtained from \(GSI_p \), \(GSI^p \), \(m_i^p \), and \(m_i^r \); and \(s^p \), \(s^r \), \(a^p \), \(a^r \) can be calculated from \(GSI_p \) and \(GSI^r \). The estimated result is listed in Table 6.

Compressive strength of intact rock \(\sigma_{ci} \)

Here, \(\sigma_{ci} \) by GSI is calculated in three steps.

Table 5. Estimated values of \(m_i^p \) and \(m_i^r \).

GSIp	\(m_i^p \)	\(GSI^p \)	\(m_i^r \)
75	19.507	27.453	9.101
70	18.512	27.399	9.087
65	17.500	27.205	9.038
60	16.469	26.852	8.949
55	15.417	26.320	8.814
50	14.342	25.585	8.627
45	13.240	24.623	8.380
40	12.108	23.403	8.063
35	10.942	21.897	7.666
30	9.734	20.069	7.176
25	8.477	17.883	6.575
20	7.157	15.298	5.840

Table 6. Estimated values of \(m_p^p \), \(s^p \), \(a^p \) and \(m_p^r \), \(s^r \), \(a^r \).

GSIp	\(m_p^p \)	\(s^p \)	\(a^p \)	\(GSI^p \)	\(m_p^r \)	\(s^r \)	\(a^r \)
75	7.988	62.177	0.501	27.453	0.682	0.316	0.527
70	6.341	35.674	0.501	27.399	0.680	0.314	0.527
65	5.014	20.468	0.502	27.205	0.671	0.307	0.527
60	3.947	11.744	0.503	26.852	0.656	0.295	0.528
55	3.090	6.738	0.504	26.320	0.634	0.278	0.529
50	2.405	3.866	0.506	25.585	0.605	0.257	0.530
45	1.857	2.218	0.508	24.623	0.568	0.230	0.532
40	1.421	1.273	0.511	23.403	0.523	0.201	0.535
35	1.074	0.730	0.516	21.897	0.471	0.170	0.539
30	0.799	0.419	0.522	20.069	0.413	0.139	0.544
25	0.582	0.240	0.531	17.883	0.350	0.109	0.550
20	0.411	0.138	0.544	15.298	0.284	0.082	0.560

Table 7. Estimated values of \(\sigma_{cm}/\sigma_{ci} \) proposed by Asef et al.14.

RMR	\(\sigma_{cm}/\sigma_{ci} \)
20	0.147
30	0.142
40	0.142
50	0.166
60	0.200
70	0.250
80	0.400
90	0.666
100	1.000
1. Estimation of σ_{cm}/σ_{ci}
Considering different RMR, the reduction factor σ_{cm}/σ_{ci} was proposed by Wilson37 to characterise the rock mass strength decreasing from its peak value to the residual. Assuming RMR-5 equals to GSI (see Eq. (8)), the estimated σ_{cm}/σ_{ci} by Asef et al.14 are listed in Table 7. Other fitting equations for σ_{cm}/σ_{ci} in the literature are presented in Eqs. (16) to (22):

Reference34:

$$\frac{\sigma_{cm}}{\sigma_{ci}} = \sqrt{e^{\left(\frac{RMR - 100}{9}\right)}}$$

Reference38:

$$\frac{\sigma_{cm}}{\sigma_{ci}} = e^{(0.0765RMR-7.65)}$$

Reference39:

$$\frac{\sigma_{cm}}{\sigma_{ci}} = e^{\left(\frac{RMR-100}{24}\right)}$$

Reference40:

$$\frac{\sigma_{cm}}{\sigma_{ci}} = e^{\left(\frac{RMR-100}{20}\right)}$$

Reference41:

$$\frac{\sigma_{cm}}{\sigma_{ci}} = e^{\left(\frac{RMR-100}{18.75}\right)}$$

Reference42:

$$\frac{\sigma_{cm}}{\sigma_{ci}} = \frac{RMR}{RMR + 6(100 - RMR)}$$

Reference26:

$$\frac{\sigma_{cm}}{\sigma_{ci}} = 0.019e^{0.05GSI}, 5 \leq GSI \leq 35$$

σ_{cm} was given values from 5 to 95 with 10 intervals, which is to compute σ_{cm}/σ_{ci} through Eqs. (16) to (22). The obtained σ_{cm}/σ_{ci} by Eqs. (16) to (22), by Asef et al.14, and the field data retrieved from realistic construction sites42 are plotted in Fig. 3. With the estimated σ_{cm}/σ_{ci}, the best-fitting equation is expressed as:

$$\frac{\sigma_{cm}}{\sigma_{ci}} = 0.0103e^{0.0476GSI}$$

The coefficient of determination R^2 is 95.84%, which indicates the prediction by Eq. (23) is acceptable.

2. Estimation of σ_{cm} and σ_{ci}.
Reference\(^4\) claimed that \(\sigma_{cm}\) can be described as a function of RMR:

\[
\sigma_{cm} = 0.5e^{0.06RMR}
\]

(24)

Combing Eqs. (23) and (24), the solution for \(\sigma_{ci}\) is derived as:

\[
\sigma_{ci} = \frac{0.5e^{0.06RMR}}{0.0387 + 0.00474e^{18.9086}}
\]

(25)

\(\sigma_{ci}^p\) and \(\sigma_{ci}^r\) with different values of GSI\(^p\) and GSI\(^r\) are calculated by Eq. (25), and the result is presented in Table 8.

Semi-analytical procedure

Governing equation.

For the case of plane strain, the equilibrium equation is:

\[
\frac{\partial\sigma_r}{\partial r} + \frac{\sigma_r - \sigma_\theta}{r} = 0
\]

(26)

In terms of small strain case, the displacement compatibility is:

\[
e = \frac{du}{dr}, \quad \epsilon_\theta = \frac{u}{r}
\]

(27)

Stresses and strains in the plastic softening zone.

The generalised H-B failure criterion\(^3\) is:

\[
\sigma_1 = \sigma_3 + \sigma_{ci}(m_b\sigma_3/\sigma_{ci} + s)^a
\]

(28)

where \(\sigma_1\) and \(\sigma_3\) are the major and minor principal stresses, \(\sigma_{ci}\) is the uniaxial compression strength of intact rock, \(m_b\) and \(s\) are the strength constants, respectively. According to Eq. (28), the yielding function of the rock mass surrounding a circular opening is:

\[
f(\sigma_0, \sigma_1, \sigma_\theta, \eta) = \sigma_0 - \sigma_1 - \sigma_{ci}(\eta)(m_b(\eta)\sigma_1/\sigma_{ci} + s(\eta))^a
\]

(29)

First, \(\sigma_1, \sigma_2\), the radial stress at the elastic–plastic boundary is solved by combing Eq. (26) with Eq. (29) through Runge–Kutta method.

A constant radial stress increment is assumed for each annulus, i.e.:

\[
\Delta\sigma_r = \sigma_{r(i)} - \sigma_{r(i-1)}
\]

(30)

where \(\sigma_{r(i)}\) and \(\sigma_{r(i-1)}\) are the radial stresses at the inner and outer boundaries of each annulus (i.e. \(r = r_{i}\)) and \(r_{i+1}\).

The plastic strain is expressed as:

\[
\left\{ \begin{array}{l}
\epsilon_{r(i)} \\
\epsilon_{\theta(i)}
\end{array} \right\} = \left\{ \begin{array}{l}
\epsilon_{r(i-1)} \\
\epsilon_{\theta(i-1)}
\end{array} \right\} + \left\{ \begin{array}{l}
\Delta \epsilon_{r(i)}^{plas} \\
\Delta \epsilon_{\theta(i)}^{plas}
\end{array} \right\} + \left\{ \begin{array}{l}
\Delta \epsilon_{r(i)}^{plas} \\
\Delta \epsilon_{\theta(i)}^{plas}
\end{array} \right\}
\]

(31)

where \(\epsilon_{r(i)}\) and \(\epsilon_{\theta(i)}\) are the radial and tangential strains at \(r = r_{i}\); \(\Delta \epsilon_{r(i)}^{plas}\) and \(\Delta \epsilon_{\theta(i)}^{plas}\) are the radial and tangential plastic strain increments; \(\Delta \epsilon_{r(i)}^{elas}\) and \(\Delta \epsilon_{\theta(i)}^{elas}\) are the radial and tangential elastic strain increments.

According to Hooke’s law, the elastic strain increments can be correlated to the stress increments, i.e.:
The relation between $\epsilon_{\eta}^{\text{plas}}$ and $\epsilon_{r}^{\text{plas}}$ can be given as:

$$\epsilon_{\eta}^{\text{plas}} = -K_\psi(\eta)\epsilon_{\eta}^{\text{plas}}$$ \hspace{1cm} (33)

where $K_\psi(\eta)$ is the dilatancy coefficient and can be written as:

$$K_\psi(\eta) = \frac{1 + \sin \psi(\eta)}{1 - \sin \psi(\eta)}$$ \hspace{1cm} (34)

where ψ is the dilatancy angle, it should be noted that ψ is not equal to the friction angle φ when the non-associated flow rule is employed.

In order to solve the strain components, Eq. (27) can be rewritten as:

$$\begin{align*}
\epsilon_{r(i)} &= \frac{\Delta u_{r(i)}}{\Delta r_{(i)}} \quad \epsilon_{\theta(i)} = \frac{u_{\theta(i)}}{r_{(i)}}
\end{align*}$$ \hspace{1cm} (35)

where $u_{(i)}$ is the radial displacement at $r = r_{(i)}$ substituting Eqs. (32) and (33) into Eqs. (31) and (36), one gains:

$$\begin{align*}
\epsilon_{\theta(i)} &= \frac{\Delta u_{\theta(i)}}{\Delta r_{(i)}} = -K_\psi(\eta)\epsilon_{\theta(i)} + A_{(i-1)} \cdot \frac{r_{(i)}}{r_{(i-1)}} - 1 \\
\epsilon_{r(i)} &= \frac{\Delta u_{r(i)}}{\Delta r_{(i)}} = -K_\psi(\eta)\epsilon_{\theta(i)} + \frac{r_{(i)}}{r_{(i-1)}} - 1 \\
A_{(i-1)} &= \frac{(1 + v)}{E} \{ \Delta \sigma_{r(i)}(1 - v - K_\psi v) + [\sigma_{\theta(i-1)} + \sigma_{r(i)} + H(\sigma_{\theta(i)}, \eta_{(i-1)})] (K_\psi - K_\psi v - v) + \epsilon_{r(i)} + K_\psi \epsilon_{\theta(i-1)}
\}
\end{align*}$$

In accordance with Reference4, the relation between $r_{(i)}$ and $r_{(i-1)}$ can be derived as:

$$\frac{r_{(i)}}{r_{(i-1)}} = \frac{2H(\sigma_{\theta(i)} + \sigma_{r(i-1)})/2, \eta_{(i-1)}}{2H(\sigma_{\theta(i)} + \sigma_{r(i-1)})/2, \eta_{(i-1)}} - \Delta \sigma_{r}$$ \hspace{1cm} (39)

As illustrated in Eqs. (36), (37) and (39), $\epsilon_{\theta(i)}$, $\epsilon_{r(i)}$ and $r_{(i)}/r_{(i-1)}$ are independent of the radius R_p, or R_c. This means that with no need to obtain the value of R_c, stress and strain components in the plastic softening zone can be solved first.

Radii of plastic softening and residual zones. \hspace{0.5cm} IN the plastic residual zone, by incorporating Eq. (29) into Eq. (26), one obtains:

$$\frac{\partial \sigma_{r}}{\partial r} = \frac{\sigma_{\text{ci}}(m_{b}^{\prime} \sigma_{r}^{\prime} + s')^{a'} - (m_{b}^{\prime} \sigma_{r}^{\prime} + s')^{a'}}{m_{b}^{\prime}(1 - a')}$$ \hspace{1cm} (40)

where m_{b}^{\prime} and s' are the strength parameters in the residual zone. The boundary conditions for Eq. (41) are: (1) $r = R_p$, $\sigma_{r} = \sigma_{\text{ci}}$ and (2) $r = R_c$, $\sigma_{r} = \sigma_{\text{ci}}$. Hence, the following equation can be derived from Eq. (40):

$$R_c = R_0 \exp \left[\frac{(m_{b}^{\prime} \sigma_{r}^{\prime} + s')^{a'} - (m_{b}^{\prime} \sigma_{r}^{\prime} + s')^{a'}}{m_{b}^{\prime}(1 - a')} \right]$$ \hspace{1cm} (41)

Equation (41) illustrates that R_c can be obtained by use of m_{b}^{\prime}, s' and σ_{ci}. In fact, from Eq. (40), the relation between R_c and R_p can be derived as follows:

$$\frac{R_c}{R_p} = \prod_{i=1}^{j} \frac{2H(\sigma_{\theta(i)}^{\prime}, \eta_{(i-1)}) + \Delta \sigma_{r}}{2H(\sigma_{\theta(i)}^{\prime}, \eta_{(i-1)}) - \Delta \sigma_{r}}$$ \hspace{1cm} (42)

where j is the number of the annulus immediately outside the plastic softening-residual boundary. Equation (42) shows that R_p can be solved by R_c. In addition, when only the plastic softening zone is formed, Eq. (42) can be rewritten into:
Table 9. Parameters of the tunnel cases for verification.

	C1	C2	C3	C4	C5	C6
ψ*	φ'/2	φ'/4	φ'/8	0.25	0.25	0.25
ψpp	30	30	30	30	30	24.81
ψdr	22	22	22	22	22	15.69
η*	0.008	0.008	0.008	0.008	0.008	0.017
E/GPa	10	10	10	10	3.837	3.837
μ	0.25	0.25	0.25	0.25	0.25	0.25
R/ln	3	3	3	3	3	7
σ/MPa	1	1	1	1	1	0.744
σ/MPa	20	20	20	20	20	12

\[
\frac{R_p}{R_0} = \prod_{i=1}^{j} \frac{2H(\sigma'_{\tau(i)} \eta_{(i-1)}) + \Delta \tau}{2H(\sigma'_{\tau(i)} \eta_{(i-1)}) - \Delta \sigma} \tag{43}
\]

Radial displacement of plastic softening and residual zones. Essentially, after obtaining \(R_p, u_{(i)} \) in the plastic softening zone can be solved by Eq. (38). As for \(u \) in the plastic residual zone, it can be obtained in a closed-form as shown in Eq. (44)\(^4\). Since the plastic softening zone is considered herein, \(R_0 \) and \(\sigma_0 \) of Eq. (44) are substituted for \(R_p \) and \(\sigma_0 \) of Eq. (38) presented in the elastic-brittle-plastic solution\(^4\).

\[
\frac{u}{r} = \frac{1}{2G} \frac{1}{R_0} \left[D_1 f_1 (r) + D_2 f_2 (r) + D_3 f_3 (r) + 2 R_0 \mu u \right] \tag{44}
\]

where \(G \) is the shear modulus, \(G = E/2(1 + \mu) \).

\[
A^{H-B} = (m_b \sigma_{\tau}^{\alpha_1} p_1 + s \sigma_{\tau}^{\alpha_2})/\sigma_{\tau} = m_b \sigma_{\tau}^{\alpha_1}/4
\]

\[
D_1 = (K_\psi - \mu K_\psi - \mu A^{H-B} + (K_\psi + 1)(1 - 2\mu)(p_1 - \sigma_1),
\]

\[
D_2 = (K_\psi + 1)(1 - 2\mu)A^{H-B} + 2(K_\psi - \mu K_\psi - \mu)B^{H-B},
\]

\[
D_3 = (K_\psi + 1)(1 - 2\mu)B^{H-B},
\]

\[
f_1 (r) = r_{K_\psi + 1} / (K_\psi + 1),
\]

\[
f_2 (r) = \frac{r_{K_\psi + 1} / (K_\psi + 1)}{\ln \left(\frac{r}{R_0} \right) - \frac{1}{K_\psi + 1}}
\]

\[
f_3 (r) = \frac{r_{K_\psi + 1} / (K_\psi + 1)}{\ln \left(\frac{r}{R_0} \right) - \frac{2}{K_\psi + 1} \ln \left(\frac{r}{R_0} \right) + \frac{2}{(K_\psi + 1)^2}}
\]

Verification

The strength parameters for a group of tunnel excavation cases are used to verify the proposed semi-analytical procedure (Table 9). The cases are from the References\(^2,3,6\). Figure 4 demonstrates the distribution of the normalised radial displacement predicted by the semi-analytical procedure and a self-similar method\(^2\) for the SS rock masses. In this aspect, the above can also serve as a verification of the EPP and EPB rock masses.

In some existing studies, efforts were given to calculate the tunnel strain \(\varepsilon_t \) for the EPP rock mass with a wide range of qualities\(^13-16\). Particularly, Reference\(^16\) established a regression model with 20 < RMR < 90:
Figure 4. Variations of dimensionless support pressure p_i/σ_0 versus dimensionless radial displacement $u_0E_r/2R_0(1 + \mu)(\sigma_0 - \sigma_{r2})$ for case C1, C2, C3 and C4.

Figure 5. Variations of dimensionless support pressure p_i/σ_0 versus plastic radius R_r/R_0, or R_p/R_0 for case C5.

Figure 6. Ground reaction curve for case C6.
Based on Eqs. (8), (45) can be transferred to the following equation,

\[u_0 = \begin{cases}
24711 \times 0.43p_i \times RMR^{-2.42}, & \sigma_0 = 2.7 \text{ MPa} \\
157513 \times 0.59p_i \times RMR^{-2.71}, & \sigma_0 = 5.4 \text{ MPa} \\
696395 \times 0.65p_i \times RMR^{-2.99}, & \sigma_0 = 8.1 \text{ MPa} \\
3973329 \times 0.66p_i \times RMR^{-3.37}, & \sigma_0 = 10.8 \text{ MPa} \\
18531047 \times 0.67p_i \times RMR^{-3.72}, & \sigma_0 = 13.5 \text{ MPa}
\end{cases} \]

Then \(GSI_p \) was varied between 40 and 65 with 5 intervals to compare the proposed method with that by Reference 16. For each \(GSI_p \) value, \(\sigma_0 \) ranges from 2.7 to 13.5 MPa, \(p_i = 0 \) and \(R_0 = 5 \text{ m} \). \(\varepsilon_{\theta_Basarir} \) is obtained by dividing \(u_0 \) by \(R_0 \). The comparison of \(\varepsilon_{\theta} \) obtained from the semi-analytical procedure and \(\varepsilon_{\theta_Basarir} \) by the scheme in Reference 16 shows good agreement with the coefficient of determination \(R^2 \) up to 90.8% (see Fig. 7). Then the rationality of the input geological parameters (\(E_r, E_r', \sigma_c, \sigma_c', m_i, m_i', m_b, m_b', s', s_i, a', a_i' \)) in this study can be validated to some extent.

Regression model for tunnel strain

The strain \(\varepsilon_{\theta} \) can be fitted as a function of \(GSI_p, \sigma_0 \) and \(p_i/\sigma_0 \) by a nonlinear regression method. The equations for \(\varepsilon_{\theta} \) in the plastic and elastic areas differ from each other:

\[\varepsilon_{\theta} = f_1 (GSI_p, \sigma_0, p_i/\sigma_0), \varepsilon_{\theta} > \varepsilon_{\theta_2}, p_i < \sigma_{r2}, \text{ plastic area} \]

\[\varepsilon_{\theta} = f_2 (GSI_p, \sigma_0, p_i/\sigma_0), \varepsilon_{\theta} \leq \varepsilon_{\theta_2}, p_i \geq \sigma_{r2}, \text{ elastic area} \]

In Eq. (38), the critical strain \(\varepsilon_{\theta_2} \) and the critical support pressure \(\sigma_{r2} \) need to be determined prior to solving \(\varepsilon_{\theta} \). Combining Eqs. (26) and (27), fitting equations for \(\sigma_{r2} \) and \(\varepsilon_{\theta_2} \) can be written as:

\[\sigma_{r2} = f_3 (GSI_p, \sigma_0) \]

\[\varepsilon_{\theta_2} = f_4 (GSI_p, \sigma_0) \]

The Taylor series polynomial regression (PR) can be adopted to solve \(f_1, f_3 \) and \(f_4 \). Particularly for \(f_1 \), a nonlinear function can be constructed as:

Figure 7. Comparison between \(\varepsilon_{\theta} \) and \(\varepsilon_{\theta_Basarir} \).
For f_2 and f_3, the variable $y (e_0$ or σ_p) depends on x_1 (GSP) and $x_2 (\sigma_0)$, as:

$$y = a_1 + b_1 x_1 + b_2 x_2 + c_1 x_1 + c_2 x_2 + c_3 x_1 x_2 + c_4 x_1 + c_5 x_2 + c_6 x_1 x_2 + c_7 x_1 + c_8 x_2 + c_9 x_1 x_2$$

For f_4 and f_5, the variable $y (e_0$ or σ_p) depends on x_1 (GSP) and $x_2 (\sigma_0)$, as:

$$y = a_1 + b_1 x_1 + b_2 x_2 + c_1 x_1 + c_2 x_2 + c_3 x_1 x_2 + d_1 x_1^3 + d_2 x_2^3 + d_3 x_1 x_2^2 + d_4 x_1^2 x_2$$

To obtain the coefficients in Eqs. (40) to (42), e_0 for a large number of tunnelling cases are calculated by the proposed iterative procedure. The input geological parameters (GSP, E_p, E_r, σ_p, σ_r, m_f, m_s, ϕ, δ, and θ) for the calculation are given in Tables 1, 3, 6, and 8. Nine values for η within cases A1 to A9 are listed in Table 10. e_0 varies from 5 to 50 MPa with intervals of 5 MPa. p_i/σ_0 ranges from 0 to 1 MPa and 10 to 20 values are selected for different combination of p_i and σ_0. f_2, f_3, and f_4 are correlated to the peak geological parameters in the elastic zone. The regression model is composed of twelve equations: three equations are for f_1, f_2, and f_3, and nine equations are for f_4. Then the coefficients can be determined with the Levenberg Marquardt iteration algorithm (see Tables 11 and 12), which is validated through the analysis of variance ANOVA. The predictions with the twelve equations match well with those by the semi-analytical procedure.

Parametric study

Variation of tunnel strain with different critical softening parameters.

Values of e_0 are calculated by the proposed regression model, which are plotted for Cases A1 to A9 versus GSP, σ_0, and p_i/σ_0, respectively, as in Figs. 8 and 9. In Fig. 8, GSP is variable, σ_0 is 30 MPa and p_i/σ_0 is 0.1, and in Fig. 9, p_i/σ_0 is variable, GSP is 30 and σ_0 is 5 MPa. When GSP is 70 or 75, and p_i/σ_0 is 0.3, e_0 maintains constant. The reason is that GSP and p_i/σ_0 are relatively large, so that the rock mass takes elastic deformations and is independent of η. With plastic deformations in the rock mass, e_0 decreases to a substantial constant with the increase in η. The decrease of e_0 is induced by the shrinkage of the plastic residual area. If η is nil, all rock mass within the plastic area is characterised with the residual strength; and the maximum e_0 is therefore reached; as η increases, e_0 falls rapidly since the softening area expands; and e_0 becomes stable when the softening zone dominates in the plastic area. The expansion of the plastic residual area is the critical factor enhancing the deformation within the rock mass. In the practical engineering, the measures to decrease the plastic residual zone can substantially improve the tunnel stability. Furthermore, e_0 falls quickly and becomes constant within a small η for excellent quality rock mass, whereas e_0 for the weak rock mass decreases slowly and the decline process is prolonged until a plateau is reached (see Fig. 9). Hence, the rock mass deformation decreases more suddenly with a better quality rock while η increases.

Table 10. Critical plastic softening parameter η.

Case	η	f_1	f_2
A1	0	0.005	0.01
A2	0.025	0.05	0.1
A3	0.5	1	\approx

Table 11. Coefficients in f_1, f_2, and f_3.

$a_1 (10^{-5})$	a_2	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8	c_9	f_1	f_2
42.5845	-0.28589	0.01052	0.00273									
2.88088		0.0338	-0.01925									
1.1807		0.91007	0.47982									
0.075412	-0.00195	-3.57994										
0.043128		0.00938										
0.035988		-0.01975										
0.000485												
0.000479												
0.000468												
0.000488												5.4923
Difference of tunnel strain between the EPP and EBP rock masses. ε_0 for the EPP rock mass is symbolised by $\varepsilon_{0\text{-EPP}}$. The increase ratio of ε_0 for the EBP rock mass in comparison to the EPP counterpart is denoted by $\Delta\varepsilon/\varepsilon_{0\text{-EPP}}$. $\Delta\varepsilon/\varepsilon_{0\text{-EPP}}$ versus GSIp for variations in σ_0 and p_i/σ_0 is plotted in Fig. 10.

(a) η^*	∞	1	0.5	0.1	0.05
a_1	0.37576	−0.74117	−0.61639	1.08615	3.27504
b_1	−0.3432	−0.24502	−0.2742	−0.43415	−0.58165
b_2	−16.0768	−16.14255	−16.5117	−16.45784	−19.47774
b_3	0.32939	0.41235	0.46672	0.53739	0.53157
c_1	0.00788	0.00246	0.00225	0.00656	0.00967
c_2	19.49741	21.77123	22.57404	21.46441	27.19204
c_3	−0.00289	−0.00176	−0.00156	−0.00562	−0.00485
c_4	0.33925	0.34786	0.36874	0.38357	0.45668
c_5	−0.07987	−0.22695	−0.26771	−0.70855	−0.82604
c_6	−0.00862	−0.02094	−0.02172	−0.01372	−0.00686
d_1	−0.00059963	−0.01182	−0.00343	0.00441	0.00765
d_2	2.24755	0.707777	−0.862592	4.88805	10.3286
d_3	4.96784	15.5397	17.8538	8.07328	−8.19222
d_4	−0.01828	0.29111	0.37644	0.83708	0.87071
d_5	−0.00565	−0.02268	−0.0153	0.00261	0.00517
d_6	15.49841	−18.33127	−18.88734	−19.65351	−25.08435
d_7	9.11563	8.73084	10.4683	1.56558	−2.26792

(b) η^*	0.025	0.01	0.005	0
a_1	3.37806	−1.23767	−0.45896	3.37629
b_1	−0.56164	−0.16611	−0.15858	−0.47128
b_2	−21.86517	−21.45617	−19.50907	−16.89839
b_3	0.48318	0.52196	0.38419	0.25426
c_1	0.0088	−0.00075226	−0.00132	0.00759
c_2	33.78561	37.16971	26.33782	28.57907
c_3	−0.00656	−0.00627	−0.00162	−0.00173
c_4	0.51334	0.43875	0.29709	0.15241
c_5	−0.96887	−0.66871	−0.00379	0.38674
c_6	−0.00277	−0.00527	−0.0063	0.00259
d_1	0.01421	0.00686	−0.0018	−0.00575
d_2	14.2824	10.6465	4.79792	2.97141
d_3	−19.9824	2.54789	19.5277	4.91271
d_4	0.85951	0.57685	−0.19027	0.13331
d_5	0.0037	0.00075557	−0.01386	0.02578
d_6	−30.75648	−32.48237	−20.64928	−36.72157
d_7	−4.78882	2.51696	2.35951	−5.6103
e_1	68.6	81.9	25.7	109.2
e_2	97.7	19.3	94.2	39.7
e_3	−7.28793	−3.79109	12.6335	32.7694
e_4	19.6994	4.32378	−20.7783	4.66801
e_5	−0.18899	−0.13045	0.17124	0.25735
e_6	−10.6367	−2.62886	13.3079	2.50107
e_7	0.00376	−0.00163	−0.00931	0.00429

Table 12. Coefficients in f_1: (a) when $\eta^* = \infty$, 1, 0.5, 0.1, 0.05; (b) when $\eta^* = 0.025$, 0.01, 0.005, 0.
When p_i/σ_0 is 0.1, 0.2 and 0.3, $\Delta\varepsilon/\varepsilon_{\text{EPP}}$ decreases as GSI_p increases (see Fig. 10b–d). Hence, while p_i exceeds 0.1, the effect of η^* on ε for the weakest rock mass ($GSI_p = 25$) is the greatest, which should be highlighted. While p_i is 0, and σ_0 ranges from 10 to 20 MPa, $\Delta\varepsilon/\varepsilon_{\text{EPP}}$ rises but then decreases with the increase in GSI_p (Fig. 10a). The maximum $\Delta\varepsilon/\varepsilon_{\text{EPP}}$ appears while GSI_p is around 45 or 50. In this case, the influence of η^* on ε for the moderate rock mass ($GSI_p = 45, 50$) is the largest. For GSI_p is 50 and σ_0 is 20 MPa, $\Delta\varepsilon/\varepsilon_{\text{EPP}}$ reaches almost 10.64 for p_i/σ_0 is 0 but drops to 1.77 for p_i/σ_0 is 0.1 (see Fig. 10a,b). This means that the growth of p_i effectively weakens the softening effect on the deformation for moderate quality rock mass with high initial stress. Furthermore, when GSI_p is greater than 55 and p_i/σ_0 exceeds 0.1, $\Delta\varepsilon/\varepsilon_{\text{EPP}}$ for most cases is 0, which means ε by EPP and EBP rock masses are equivalent (see Fig. 10b–d). This is because that the rock mass undergoes an elastic deformation. Therefore, if p_i/σ_0 reaches 0.1, the rock mass deformation is inconsiderable and irrespective of η^* for the excellent rock mass quality ($GSI_p \geq 55$).

Sensitive analysis. Figure 11 illustrates the sensitivity analysis concerning the tunnel strain ε_0, showing the relative significance of the most significant input data (i.e. GSI_p, σ_0 and p_i/σ_0) on this final output (i.e. ε_0). Three base cases with different rock mass qualities are given in Table 13. In the sensitive analysis, σ_0 varies between 5 and 30 MPa with even intervals of 5 MPa. p_i/σ_0 ranges from 0 to 0.225 with 0.025 intervals. GSI_p ranges from 25 to 75 with 5 intervals. GSI_p, σ_0 or p_i/σ_0 is represented by the variable m. GSI_p, σ_0 or p_i/σ_0 in cases B1 to B3 is represented by m_{base}. ε_0 calculated by cases B1 to B3 is represented by $\varepsilon_0_{\text{base}}$.

In comparison with the EBP rock mass, $\varepsilon_0/\varepsilon_{0,\text{base}}$ of the EPP rock mass with the moderate and weak rock qualities tends to be closer to the line for $\varepsilon_0/\varepsilon_{0,\text{base}}$ is 1 (see Fig. 11b,c). In this respect, ε_0 for the EBP rock mass is more sensitive to the change in GSI_p, p_i/σ_0 and σ_0. However, for the excellent quality rock mass, $\varepsilon_0/\varepsilon_{0,\text{base}}$ of EBP rock mass coincides with that of EPP rock mass (Fig. 11a). This is attributed to that the rock mass exhibits the elastic behaviour, and thus ε_0 is independent of the plastic parameters. In this respect, the influence of GSI_p, p_i/σ_0 or σ_0 on ε_0 by EPP and EBP rock masses are equivalent.

Among the input parameters GSI_p, σ_0 and p_i/σ_0, the change in GSI_p gives rise to the greatest change in ε_0. Especially for the excellent rock mass, $\varepsilon_0/\varepsilon_{0,\text{base}}$ by GSI_p is considerably higher than σ_0 and p_i/σ_0 (Fig. 11a). Therefore, GSI_p is of vital importance in controlling ε_0. The relative significance of p_i/σ_0 and σ_0 varies with different conditions. For the EBP rock mass, when p_i/σ_0 decreases and σ_0 increases with an equivalent variation, $\varepsilon_0/\varepsilon_{0,\text{base}}$ affected
by p_i/σ_0 is always higher than that by σ_0; and it becomes remarkably higher while p_i/σ_0 decreases to a small value. Hence, for the EBP rock mass, when p_i/σ_0 decreases and σ_0 increases, the influence of p_i/σ_0 on ε_\varnothing is larger than that of σ_0. For all the other conditions, the influence of σ_0 on ε_\varnothing is greater than that of p_i/σ_0. For instance, for the EPP rock mass, the change in σ_0 causes a larger variation in ε_\varnothing for the EBP rock mass, when p_i/σ_0 increases and σ_0 decreases with the equivalent variation, a decrease of σ_0 yields a higher reduction of ε_\varnothing. As the weak rock mass shows the EPP behaviour33, the reduction of σ_0 exerts greater influence than the increase in p_i/σ_0 in controlling the rock deformation for the weak rock mass. In the tunnelling engineering, the reduction of σ_0 and the increase of p_i/σ_0 can be obtained by relieving the stress and installing the rigid support, respectively.

Conclusions

Various GSI were considered to quantify the input geological parameters for the strain-softening rock masses with various qualities. A specialised numerical scheme was presented to calculate the tunnel strain around a circular opening within the rock mass. The proposed semi-analytical procedure and the input geological parameters were validated through comparison of the tunnel strain obtained by the semi-analytical procedure with that predicted by the previous studies. With the obtained input geological parameters, more accurate quantification of the tunnel strain was obtained by a semi-analytical procedure. A regression model, composed of 12 fitting equations, was further proposed: 3 equations were to calculate the critical tunnel strain, the critical support pressure and the tunnel strain with elastic behaviour, and 9 equations were for the tunnel strain with different strain-softening behaviours. The model provides practical guidelines to assess the deformations of the rock mass prior to the tunnel construction. Following conclusions can then be drawn:

The tunnel strain wanes to a constant value with the critical softening parameter keeps increasing, which is mainly ascribed to the shrinkage of the plastic residual area. Reversely, the rock deformation is mainly raised due to the expansion of the plastic residual area. In the practical engineering, the measures to decrease the plastic residual area can substantially improve the tunnel stability.

While the support pressure exceeds a certain value ($p_i/\sigma_0 \geq 0.1$), the critical softening parameter makes the most significant influence on the tunnel strain for the weakest rock mass (GSP = 25). In comparison, with no support pressure ($p_i/\sigma_0 \geq 0$) and relatively high initial stress ($\sigma_0 \geq 10$ MPa), the influence of the critical softening parameter for the moderate rock mass (GSP is around 45 or 50) is the most significant. While the support pressure that acted on the good rock mass quality (GSP ≥ 55) exceeds a certain value, the rock mass deformation becomes inconsiderable.

While the rock mass exhibits a strain-softening behaviour, the tunnel strain for the EBP rock mass can be affected by the change in the rock mass quality, the support pressure and the initial stress state. Among the three

Figure 10. Variation of $\Delta\varepsilon_{\varnothing}/\varepsilon_{\varnothing-\text{EPP}}$ versus GSI p : (a) $p_i/\sigma_0 = 0$; (b) $p_i/\sigma_0 = 0.1$; (c) $p_i/\sigma_0 = 0.2$; (d) $p_i/\sigma_0 = 0.3$.
input geological parameters (i.e. GSI_p, the support pressure, and the initial stress), GSI_p is of vital importance in controlling the tunnel strain. The relative significance of the support pressure and initial stress varies with different conditions. For the EBP rock mass, with the support pressure decreases and the initial stress increases, the tunnel strain is mostly influenced by the variation in the support pressure. For all other conditions, the initial stress state becomes the critical factor.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Received: 2 November 2021; Accepted: 2 November 2022
Published online: 29 November 2022

References
1. Einstein, H. H. & Schwartz, C. W. Discussion of the article: Simplified analysis for tunnel supports. *J. Geotech. Eng. Div. ASCE* **106**(7), 835–838 (1979).
2. Alonso, E., Alejano, L. R., Varas, F., Fdez-Manin, G. & Carranza-Torres, C. Ground response curves for rock masses exhibiting strain-softening behaviour. *Int. J. Rock Mech. Min. Sci. Geomech. Abstr.* **27**, 1153–1185 (2003).
3. Alejano, L. R. et al. Ground reaction curves for tunnels excavated in different quality rock masses showing several types of post-failure behaviour. *Tunn. Underg. Space Technol.* **24**(6), 689–705 (2009).
4. Lee, Y. K. & Pietruszczak, S. A new numerical procedure for elastic-plastic analysis of a circular opening excavated in a strain-softening rock mass. *Tunn. Underg. Space Technol.* **19**(2), 187–213 (2008).

Figure 11. Sensitive analysis of GSI_p, σ_0 and p/σ_0 on ε_θ: (a) cases B1; (b) case B2; (c) case B3.

Case B1	Case B2	Case B3	
GSI_p	70	50	30
σ_0 (MPa)	20	20	20
p/σ_0	0.15	0.15	0.15

Table 13. GSI, σ_0 and p/σ_0 for cases B1 to B3.
5. Wang, S. L., Yin, X. T., Tang, H. & Ge, X. R. A new approach for analyzing circular tunnel in strain-softering rock masses. Int. J. Rock Mech. Min. Sci. 47, 170–178 (2010).

6. Song, F. & Rodriguez-Dono, A. Numerical solutions for tunnels excavated in strain-softering rock masses considering a combined support system. Appl. Math. Model. 92, 905–930 (2021).

7. Bieniawski, Z. T. Determination rock mass deformability: Experience from case histories. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15, 237–247 (1978).

8. Bieniawski, Z. T. Rock Mechanics Design in Mining and Tunneling 97–133 (A. A. Balkema, 1984).

9. Bieniawski, Z. T. Engineering Rock Mass Classifications (Wiley, 1989).

10. Hoek, E. Strength of rock and rock masses. ISRM News J. 2(2), 4–16 (1994).

11. Barton, N. Rock mass classification, tunnel reinforcement selection using the Q-system. In Proceedings of the ASTM Symposium on Rock Classification Systems for Engineering Purposes. Cincinnati, Ohio (1987).

12. Barton, N. Some new Q-value correlations to assist in site characterisation and tunnel design. Int. J. Rock Mech. Min. Sci. 39, 185–216 (2002).

13. Hoek, E. Tunnel support in weak rock. In Symposium of Sedimentary rock Engineering, Taipei, Taiwan, 20–22 (1998).

14. Asef, M. R., Reddish, D. J. & Lloyd, P. W. Rock-support interaction analysis based on numerical modelling. Geotech. Geol. Eng. 18(1), 23–37 (2000).

15. Sari, D. Rock mass response model for circular openings. Can. Geotech. J. 44, 891–904 (2007).

16. Basarir, H., Genis, M. & Ozarslan, A. The analysis of radial displacements occurring near the face of a circular opening in weak rock mass. Int. J. Rock Mech. Min. Sci. 47, 771–783 (2010).

17. Goh, A. T. C. & Zhang, W. G. Reliability assessment of stability of underground rock caverns. Int. J. Rock Mech. Min. Sci. 55, 157–163 (2012).

18. Zhang, W. G. & Goh, A. T. C. Regression models for estimating ultimate and serviceability limit states of underground rock caverns. Eng. Geol. 188, 68–76 (2015).

19. Dong, Y. K., Cui, L. & Zhang, X. Multiple-GPU parallelization of three-dimensional material point method based on single-root complex. Int. J. Numer. Meth. Eng. 123(6), 1481–1504 (2002).

20. Shen, Q., Zheng, J.-J., Cui, L., Pan, Y. & Cui, Bo. A procedure for interaction between rock mass and liner for deep circular tunnel based on new solution of longitudinal displacement profile. Eur. J. Environ. Civ. Eng. 26(1), 280–298. https://doi.org/10.1080/19681819.2019.1657960 (2022).

21. Fan, N., Jiang, J., Dong, Y., Guo, L. & Song, L. Approach for evaluating instantaneous impact forces during submarine slide-pipeline interaction considering the inertial action. Ocean Eng. 245, 110466. https://doi.org/10.1016/j.oceaneng.2021.110466 (2022).

22. Cui, L., Sheng, Q., Dong, Y.-K. & Xie, M.-X. Unified elasto-plastic analysis of rock mass supported with fully grouted bolts for deep tunnels. Int. J. Numer. Anal. Methods Geomech. 46(2), 247–271. https://doi.org/10.1002/nag.3298 (2022).

23. Cui, L., Sheng, Q., Dong, Y.-K. Ruan, B. & Xu, D.-D. A quantitative analysis of the effect of end plate of fully-grouted bolts on the global stability of tunnel. Tunn. Undergr. Space Technol. 114, 104010. https://doi.org/10.1016/j.tust.2021.104010 (2021).

24. Hoek, E., Carranza-Torres, C. & Corbub, H. Hoek-Brown criterion—2002 edition. In Proc NARMS-TAC Conference, Toronto, Vol. 1, 267–273 (2002).

25. Hoek, E., Kaiser, P. K. & Bawden, W. E. Support of Underground Excavations in Hard Rock (Balkema, 1995).

26. Hoek, E. Blast Damage Factor D Technical note for RocNews-February 2, 2012, Winter 2012 Issue (2012).

27. Cai, M., Kaiser, P. K., Tasaka, Y. & Minami, M. Determination of residual strength parameters of jointed rock mass using the GSI system. Int. J. Rock Mech. Min. Sci. 44, 247–265 (2007).

28. Hudson, J. A. & Harrison, J. P. Engineering Rock Mechanics—An Introduction to the Principles (Elsevier, 2000).

29. Zhang, Q., Jiang, B. S., Wang, S. L., Ge, X. R. & Zhang, H. Q. Elasto-plastic analysis of a circular opening in strain-softering rock mass. Int. J. Rock Mech. Min. Sci. 50, 38–46 (2012).

30. Serafin, J. L. & Pereira, J. P. Considerations of the geomechanics classification of Bieniawski. In Proceedings of the International Symposium on Engineering Geology and Underground Construction Vol. 1, 1133–1142 (A.A. Balkema, 1983).

31. Read, S. A. L., Richards, L. R. & Perrin, N. D. Application of the Hoek-Brown failure criterion to New Zealand greywacke rocks. In Proceeding of the 9th International Congress on Rock Mechanics. Paris, France, 25–28 August 1999, 655–660 (A.A. Balkema, 1999).

32. Hoek, E. & Diederichs, M. S. Empirical estimation of rock mass modulus. Int. J. Rock Mech. Min. Sci. 43, 203–215 (2006).

33. Hoek, E. & Brown, E. T. Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. 34(8), 1165–1186 (1997).

34. Hoek, E. & Brown, E. T. Underground Excavations in Rock (Institution of Mining and Metallurgy, 1980).

35. Basarir, H. Analysis of rock-support interaction using numerical and multiple regression modelling. Can. Geotech. J. 45, 1–13 (2008).

36. Hoek, E. & Marinos, P. Predicting tunnel squeezing problems in weak heterogeneous rock masses. Tunnels Tunnel. Int. 32(11), 45–51; 32(12), 34–36 (2000).

37. Wilson, A. H. A method of estimating the closure and strength of lining required in drivages surrounded by a yield zone. International Journal of Rock Mechanics, Sciences and Geomechanics Abstracts, 1980, 17: 349–355. Int. J. Rock Mech. Min. Sci. 47, 170–178 (1980).

38. Vudhibhir, R. K., Lemanza, W. & Prinzl, F. An empirical failure criterion for rock masses. In Proceedings of the 5th International Congress on Rock Mechanics, Vol. 1, B1–B8 (A.A. Balkema, 1983).

39. Kalamaris, G. S. & Bieniawski, Z. T. A rock mass strength concept for coal incorporating the effect of time. In Proceedings of the 8th International Congress on Rock Mechanics, Vol. 1, 295–302 (A.A. Balkema, 1995).

40. Newey, R. Empirical Rock Failure Criteria 176 (A.A. Balkema, 1997).

41. Ramamurthy, T. Stability of rock masses. Indian Geomech. J. 16(1), 1–74 (1986).

42. Aydan, O. & Delaloye, S. Prediction of deformation behaviour of 3-lanes Bolu tunnels through squeezing rocks of North Anatolian fault zone (NAFZ). In Proceedings of the Regional Symposium on Sedimentary Rock Engineering, Taipei, Taiwan, 20–22, November 1998 (Public Construction Commission of Taiwan, 1998).

43. Trueman, R. An Evaluation of Strata Support Techniques in Dual Life Gateroads (Ph.D. thesis). (University of Wales, 1988).

44. Park, K. H. & Kim, Y. J. Analytical solution for a circular opening in an elastic-brittle-plastic rock. Int. J. Rock Mech. Min. Sci. 43, 616–622 (2006).

Acknowledgements
The authors acknowledge the financial support provided by the National Science Foundation of China (Grant No. 52279118, 52009129 and 51909248).

Author contributions
Contributor roles taxonomy: Y.D. and L.C.: conceptualization, methodology, validation, investigation and writing-original draft; Q.S.: data curation, formal analysis; Y.D.: visualization, project administration; J.Z., Z.G. and L.C.: writing—review and editing.
Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.D.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022