The privileged position of glp-1 in diabetic nephropathy

Abstract

Nowadays worldwide, an estimated 200 million people have chronic kidney disease (CKD). Diabetic nephropathy is a diagnosis that refers to specific pathologic structural and functional changes seen in kidney patients with Type 2 Diabetes Mellitus (T2DM). Incretins such as Glucagon like peptide 1(GLP-1) control blood glucose level through different metabolic pathways; for example, inhibition of glucagon production, and delay in gastric emptying and satiety induction. Accumulated evidence suggests that long term treatment with GLP-1 receptor agonist is associated with a reduction in measured glomerular filtration rate (GFR), preservation of renal function and/or a decrease in the incidence of cardiovascular events.

Keywords: diabetes mellitus, diabetic nephropathy, enterohormones, incretins, GLP-1, renoprotection

Introduction

Nowadays worldwide, an estimated 200 million people have chronic kidney disease (CKD). About 40% of patients with T2DM develop CKD. As a result of intensive blood glucose control through pharmacological intervention, it is possible to delay CKD progression with standard therapies for treatment of T2DM. These include metformin, sulfonylureas, meglitinides, thiazolidinediones, and insulin. Up to date therapies such as glucagon like peptide 1 receptor agonist (GLP-1) are increasingly being used in the treatment of T2DM.1–7

According to the National Kidney Foundation (NKF) Practice Guidelines from Chronic Kidney Disease, it is defined as either kidney damage or decreased kidney function, decreased glomerular filtration rate (GFR) for 3 or more months. Structural or functional abnormalities of kidney damage are shown through pathologic abnormalities of kidney damage, such as abnormal blood tests, urinalysis or renal imaging. In this classification, five stages chronic kidney diseases are defined (KDOQI). Diabetic Kidney disease is over stage 4 and 5 when diagnosed.8–12

Diabetic kidney disease occurs in patients with T2DM as a consequence of reduced kidney function, triggered by hypertensive nephrosclerosis and unresolved acute renal failure as the main culminating reasons.13–19

Diabetic nephropathy is a diagnosis that refers to specific pathologic structural and functional changes seen in kidneys of patients with T2DM. These changes result in a clinical presentation that is characterized by proteinuria, hypertension, and progressive reductions in kidney function.20–26

Incretins (GLP-1) and glucose dependent insulinitropic peptide (GIP) are small peptides produced by cells of the small intestine as a response to the ingestion of various nutrients. They participate in the regulation of carbohydrate homeostasis through the increase in the production of insulin in a glucose dependent manner, and suppression of the production of glucagon by pancreatic alpha cells. Furthermore, these molecules also have extrapancreatic mechanisms of action that contribute to their glucose lowering properties, such as slow gastric emptying and increase satiety (Figure 1).27–39

Dipeptidyl peptidase 4 (DDP4) is an enzyme responsible for glucagon like peptide-1 inactivation and plays an important role in glucose metabolism. DPP4 have demonstrated anti hyperglycemic efficacy of DPP4 inhibitors alone or in combination, with mean change in Hb1ac-3 to -19 mmol/mol (-0.3 to -1.7%) without excess risk of hypoglycemia or weight gain (Figure 2).40–45

Linagliptin is the only DPP4 inhibitor excreted primarily via non-renal, and no dose adjustment is necessary in patients with CKD. Different pharmacological trials approved DPP4 inhibitors

Figure 1 Current Diabetes Reviews.

Figure 2 The effects of GLP-1 analogues, DPP-4 inhibitors and SGLT2 inhibitors on the renal system.

Linaigliptin is the only DPP4 inhibitor excreted primarily via non-renal, and no dose adjustment is necessary in patients with CKD. Different pharmacological trials approved DPP4 inhibitors
(Sitagliptin, Saxagliptin and Alogliptin) can be used in patients with CKD or end stage renal disease. The only requirement is an assessment of renal function before initiating therapy, and periodical check-ups thereafter are recommended (Figure 3).66–69

Figure 3 Effects of incretin-based therapies on renal function.

Therefore GLP-1 receptors and DPP4 inhibitors both stimulate insulin secretion and inhibit glucagon secretion in a glucose dependent manner. Among the substrates of DPP4 are peptide hormones such as β type natriuretic peptides, neuropeptide Y, peptide YY and stromal cell derived factor 1 alpha.68–72

About 40% patients with diabetes mellitus (diagnosed or not) have an advanced stage of kidney disease, often because of serious deficiencies in the management of the disease itself. The main renal dysfunctions are due to the thickening of the glomerular basement membranes, formed of microaneurysms and development of mesangial nodules. The latest estimates show a global prevalence of 415 million adults with diabetes mellitus, of which 90% suffer T2DM. The onset of an initially documented diabetic nephropathy is generally preceded by the appearance of proteinuria greater than 500 mg/day.64–71

How does GLP-1 works?

Incretin-like actions control blood glucose level through different metabolic pathways, such as the stimulation of insulin secretion, the inhibition of the production of glucagon, delay in gastric emptying and induction of satiety.73–76

Furthermore, it is able to reduce the levels of HbA1c in the percentage varying between 0.55%-1.9% with extremely low risk of hypoglycemic episodes, enabling rapid gastric emptying.77–82

Additionally, studies in healthy humans have shown GLP-1 infusion to increase sodium excretion by kidneys. And in obese insulin resistant, GLP-1 infusion was associated with an increased sodium excretion, a decreased urinary secretion and a decreased GFR. Recent findings indicate that treatment with GLP-1 decelerates the progression of diabetic nephropathy by inhibiting inflammatory actions and by improving endothelial function (Figure 4).83–87

Figure 4 Effects of incretin-based therapies on renal function.

GLP-1 receptor is highly expressed in both the glomeruli and proximal tubules in the kidney. It has been stated by (Park et al. 2007) that GLP-1 agonist has a renoprotective role through increasing this molecule receptor expression in diabetic kidneys.88–90 Oxidative stress is well known to be a major contributor of the pathophysiology of hypertensive nephropathy. Inhibition of nitric oxide (NO), followed by arterial hypertension lead to the production of excessive reactive oxygen species (eNOS), that results in oxidative stress. GLP-1 is claimed to have antioxidative activity due to activation of Foxo3a signaling after the up-regulation level and its receptor. Activation of Foxo3a leads to increase the activity of the antioxidants enzymes as superoxide dismutase (SOD).

The inhibition of NF-κB (nuclear factor kappa-light chain enhancer of activated β cells) binding was associated with reduction in the expression of 2 key proinflammatory cytokines, TNFα (tumor necrosis factor alpha) and IL-1β (interleukin 1 β). There was a reduction in the expression of JNK-1 (C-Jun N-terminal kinases), TLR-2 (Toll-like receptor 2) and TLR-4 at mRNA (messenger ribonucleic acid) and protein level. As Fig. 5 shows, in addition there was a reduction in plasma concentration of MCP1 (Monocyte chemoattractant protein 1), the chemokine MMP-9 (metalloproteinase 9) and somatic afferents fibers. GLP-1 induces a marked increase in plasma concentrations of interleukin 1 receptor antagonist.3 This would interfere with the damaging effect of IL-1β on the β-cell, thus potentially increasing insulinogenesis and possibly prolonging β-cell life. Furthermore, exenatide suppressed plasma concentrations of GFβ (Transforming growth factor), the cytokine contributed to the pathogenesis of diabetic nephropathy (Figure 5).91–94

Figure 5 Incetrins: Beyond type 2 diabetes.

Pathophysiology

The increase in sodium excretion is accompanied by an increase in the renal waste of calcium, chloride, phosphate and bicarbonate, whereas the renal potassium handling is not usually affected.95–99

The natriuretic effect of GLP-1 may result from the inhibition of sodium hydrogen exchanger isoform 3 (NHE3) that is located at the proximal tubular cells. Native GLP-1 inhibitors block the function of this exchanger, possibly through the activation of protein kinase A (PKA). Additionally, GLP-1 antagonist receptors decrease the circulating concentrations of angiotensin II, an effect that also plays a role in the observed increase in renal sodium wasting.

Metabolic and Endocrinology Surgery Unit Unidad de Cirugía Endocrina y Metabólica (UCEM)

This reduction in angiotensin II levels follows the administration of GLP-1 possibly results from the increase in blood pressure values, the increased delivery of sodium to the macula densa and the reduced activity of tissue reninangiotensin-aldosterone system.100–104

Citation: Ivan PPA, Walter KM. The privileged position of glp-1 in diabetic nephropathy. Endocrinal Metab Int J. 2018;6(3):233–239.
DOI: 10.15406/emij.2018.06.00182
The inhibition of DPP4 or the use of GLP-1 receptor agonist results in the increased activation in the kidney, leading cAMP (cyclic AMP receptor) the activation of protein kinase (A) (Figure 6). This mechanism becomes maladaptive in diabetes, however as hyperglycemia rise the expression and activity of sodium-glucose cotransporter (SGLT2) in the proximal tubule of the kidney. As a result, glucose reabsorption may be increased by 20% in individuals with poorly controlled diabetes. SGLT2 is a low affinity, high capacity glucose transport protein that reabsorbs 90% of filtered glucose.

The peripheral and central GLP-1 receptor activation that is presented below has so far been proven with animal evidence only (Figure 7).

Figure 6 Effects of Diabetes Medications Targeting the Incretin System on the Kidney.

Figure 7 Incretins: Beyond type 2 diabetes.

Targets in Diabetic Kidney Disease

Glycemic targets in the presence of diabetic kidney disease should be individualized depending on the patient. Based on several pivotal trials in T2DM, the NKF KDOQI guidelines recommend intensive glycemic control (HbA1c ≤ 53 mmol/mol[7%]) to prevent or delay the progression of albuminuria and other macro and microvascular complications. Recent ADA (American Diabetes Association) guidelines also indicate that HbA1c below 53 mmol/mol (7%) has been shown to reduce the risk of microvascular complications on young adults. Landmark studies in patients with T2DM including Veteran Affairs Diabetes trial (VADT), the Action in Diabetes and Vascular Disease: Preterax and Diamicron MR controlled Evaluation (ADVANCE) trial, and the Action in Diabetes and Vascular Disease: Preterax and Diamicron MR controlled Evaluation (ADVANCE) trial, have provided consistent evidence that intensive glycemic control is the path to follow.108–112

Vascular Disease: Preterax and Diamicron MR controlled Evaluation (ADVANCE) trial, and the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial have provided consistent evidence that intensive glycemic control is the path to follow.108–112

ADA and NKF KDOQI guidelines suggest less stringent glucose control (>53mmol/mol [7%]) in patients with limited life expectancy, advanced microvascular or macrovascular complications, and long duration of T2DM who are unable to attain the general treatment goal despite diabetes self management education, glucose monitoring and use of multiple diabetes drugs.104,113,114

Objective

The glucose lowering effects are well proved by GLP-1 receptor agonist, but recently it has been hypothesized that GLP-1 receptor agonist receptors may exert also beneficial renal effects. So the aim of this article review is to expand the label to include patients that have Diabetic Nephropathy.

Materials and methods

The following research was done using the next terms: MeSH “Diabetes Mellitus type 2”, “Diabetic Nephropathy”, “Enterohormones”, “Incretins”, “GLP-1”, “Renoprotection”. The results were reviewed for each of the authors independently, continuing with references obtained from remarkable articles.

Results

The academic research was obtained from PubMed database, with exclusion criteria from articles published no more than 5 years ago (2013-2018), found useful to work 119, previously mentioned.114–117

Patients with T2DM are at risk for diabetic kidney disease, especially when hyperglycemia, hypertension, or both conditions are poorly controlled. Early detection and continuous monitoring are critical for slowing the progression of this complication. Periodic measurements of both urinary albumin excretion and GFR in high risk patients are advisable. Choosing the optimal glucose lowering therapy (Analogs of GLP-1) in patients with diabetic kidney disease ultimately defines the success of the treatment regime (Figure 8).104,112

Figure 8 Effects of incretin-based therapies on renal function.

Conclusion

Accumulated evidence suggests that both glucagon like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors may affect renal function in both glucose lowering dependent and independent mechanisms of action. The clinical relevance of these observations is currently unknown, since only a few randomized clinical studies with renal endpoints have been conducted so far. Clinical studies addressing renal endpoints in patients with diabetic and no diabetic kidney diseases are warranted to provide information whether the promising preclinical findings can be translated into clinical benefit for patients with renal diseases. In addition, there is evidence that incretin based therapy may facilitate natriuresis and anti-inflammatory lowering mechanisms.117–120
The privileged position of glp-1 in diabetic nephropathy

Acknowledgements
None.

Conflict of interest
The author declares that they have no competing interests.

References
1. Billeter AT, Scheurlen KM, Probst P, et al. Meta-analysis of metabolic surgery versus medical treatment for microvascular complications in patients with type 2 diabetes mellitus. Br J Surg. 2018;105(3):168–181.
2. Dandonia P, Ghanim H, Chaudhari A. Incretins: Beyond type 2 diabetes. Diabetes, Obesity and Metabolism. 2018;20(51):59–67.
3. Tsimihodimos V, Elisa F. Effects of incretin-based therapies on renal function. Eur J Pharmacol. 2018;818:103–109.
4. Mann JFE, Ørsted DD, Brown-Branden K, et al. Liraglutide and Renal Outcomes in Type 2 Diabetes. N Engl J Med. 2017;377(9):839–848.
5. Mori H, Okada Y, Aarao T, et al. Sitagliptin improves albuminuria in patients with type 2 diabetes mellitus. J Diabetes Investig. 2015;5(3):313–319.
6. Guo H, Li H, Wang B, et al. Protective Effects of Glucagon-Like Peptide-1 Analogue on Renal Tubular Injury in Mice on High-Fat Diet. Cell Physiol Biochem. 2017;41(3):1113–1124.
7. Von Scholten BJ, Persson F, Rosenlund S. The effect of iraglutide on renal function: A randomized clinical trial. Diabetes. Diabetes Obes Metab. 2016;19(10):239–247.
8. Katayama S, Hatano M, Issiki M. Clinical features and therapeutic perspectives on hypertension in diabetes. Hypertens Res. 41(4):213–229.
9. Chang JT, Liang YJ, Hsu CY, et al. Glucagon-like peptide receptor agonists attenuate advanced glycation end product-induced inflammation in rat mesangial cells. BMC Pharmacol Toxicol. 2017;24(18):67.
10. He J, Yuan G1, Cheng F, et al. Mast Cell and M1 Macrophage Inflammation and Local Pro-Inflammatory Factors Were Attenuated with Incretin-Based Therapies in Obesity-Exilated Gledemulopathy. Metab Syndr Relat Disord. 2017;15(7):344–353.
11. Tanaka T, Higashijima Y, Wada T, et al. The potential for renoprotection with incretin-based drugs. Kidney Int. 2014;86(4):701–711.
12. Davies M, Chatterjee S, Khunti K. The treatment of type 2 diabetes in the presence of renal impairment: what we should know about newer therapies. Clin Pharmacol. 2016;23:8–61.
13. Maclsaac RJ, Thomas MC. Effects of Diabetes Medications Targeting the Incretin System on the Kidney. Clin J Am Soc Nephrol. 2018;13:321–323.
14. Kang YM, Jung CH. Effects of Incretin-Based Therapies on Diabetic Microvascular Complications. Endocrinol Metab (Seoul). 2017;32(3):316–325.
15. Jiang Y, Zhang W, Xu S, et al. Transplantation of human fetal pancreatic progenitor cells ameliorates renal injury in streptozotocin-induced diabetic nephropathy. J Transl Med. 2017;15(1):147.
16. Maclsaac RJ, Jerums G, Ekinci EI. Effects of glycaemic management on diabetic kidney disease. World J Diabetes. 2017;8(5):172–186.
17. Leiter LA, Carr MC, Stewart M, et al. Efficacy and Safety of the Once-Weekly GLP-1 Receptor Agonist Albiglutide Versus Sitagliptin in Patients With Type 2 Diabetes and Renal Impairment: A Randomized Phase III Study. Diabetes Care. 2014;37(10):2723–30.
18. Abd E, Motteleb DM, Elshazly SM. Renoprotective effect of sitagliptin against hypertensive nephropathy induced by chronic administration of L-NAME in rats: Role of GLP-1 and GLP-1 receptor. Eur J Pharmacol. 2013;720(1–3):158–165.
19. Negoh CLY, So JBY, Tiong HY, et al. Effect of weight loss after bariatric surgery on kidney function in a multiethnic Asian population. Surg Obes Relat Dis. 2016;12(3):600–605.
20. Coppolino G, Leporini C, Rivoli L, et al. Exploring the effects of DPP-4 inhibitors on the kidney from the bench to clinical trials. Pharmacol Res. 2017;129:274–294.
21. Lovshin JA. Glucagon-like Peptide-1 Receptor Agonists: A Class Update for Treating Type 2 Diabetes. Can J Diabetes. 2017;41(5):524–535.
22. Neumiller JJ, Aliciz RJ, Tuttle KR. Therapeutic Considerations for Antihyperglycemic Agents in Diabetic Kidney Disease. J Am Soc Nephrol. 2017;28(8):2263–2274.
23. Di Lullo L, Mangano M, Ronco C, et al. The treatment of type 2 diabetes mellitus in patients with chronic kidney disease: What to expect from new oral hypoglycemic agents. Diabetes Metab Syndr. 2017;11(Suppl 1):S295–S305.
24. Vallen V, Docherty NG. Intestinal regulation of urinary sodium excretion and the pathophysiology of diabetic kidney disease: a focus on glucagon-like peptide 1 and dipeptidyl peptidase 4. Exp Physiol. 2014;99(9):1140–5.
25. Ketteler M, Wanner C. Chronisches Nierenversagen–Update 2018. Dtsch med Wochenschr. 2018;143(3):169–173.
26. Pilla SJ, Maruthum NM, Schweitzer MA, et al. The Role of Laboratory Testing in Differentiating Type 1 Diabetes from Type 2 Diabetes in Patients Undergoing Bariatric Surgery. Obstet Surg. 2017;28(1):25–30.
27. Zac-Varghese S, Winocour P. Managing diabetic kidney disease. Br Med Bull. 2018;121(1):55–66.
28. Yin W, Xu S, Wang Z, et al. Recombinant human GLP-1 (rHGLP-1) alleviating renal tubulointerstitial injury in diabetic STZ-induced rats. Biochem Biophys Res Commun. 2018;495(1):793–800.
29. Bloomgarden Z, Ning G. Journal of Diabetes: Ushering in Volume 10. J Diabetes. 2017;10(1):4–5.
30. Giugliano D, Maiorino MI, Bellastella G, et al. Type 2 diabetes and cardiovascular prevention: the dogmas disputed. Endocrine. 2017;60(2):224–228.
31. Zhang SS, Wu Z, Zhang Z, et al. Glucagon-like peptide-1 inhibits the receptor for advanced glycation end products to prevent podocyte apoptosis induced by advanced oxidative protein products. Biochem Biophys Res Commun. 2017;482(4):1413–1419.
32. Bouchi R, Nakano Y, Fukuda T, et al. Reduction of visceral fat by iraglutide is associated with ameliorations of hepatic steatosis, albuminuria, and micro-inflammation in type 2 diabetic patients with insulin treatment: a randomized control trial. Endocr J. 2017;64(3):269–281.
33. Einbinder Y, Ohana M, Bencherit S, et al. Glucagon-like peptide-1 and vitamin D: anti-inflammatory response in diabetic kidney disease in db/db mice and in cultured endothelial cells. Diabetes Metab Res Rev. 2016;32(8):805–815.
34. Scherthaner G, Mogensen CE, Scherthaner GH. The effects of GLP-1 analogues, DPP-4 inhibitors and SGLT2 inhibitors on the renal system. Diab Vasc Dis Res. 2014;11(5):306–23.
35. Docherty NG, le Roux CW. Improvements in the metabolic milieu following Roux-en-Y gastric bypass and the arrest of diabetic kidney disease. Exp Physiol. 2014;99(9):1146–53.
36. Billeter AT, Scheuren KM, Probst P, et al. Meta-analysis of metabolic surgery versus medical treatment for microvascular complications in patients with type 2 diabetes mellitus. Br J Surg. 2018;105(3):168–181.

37. Liang H, Cao Q, Liu H, et al. The Predictive Factors for Diabetic Remission in Chinese Patients with BMI > 30 kg/m2 and BMI < 30 kg/m2 Are Different. Obes Surg. 2018.

38. Serra A, Esteve A, Navarro Díaz M, et al. Long-Term Normal Renal Function after Drastic Weight Reduction in Patients with Obesity-Related Glomerulopathy. Obes Facts. 2015;8(3):188–199.

39. Yormaz S, Yilmaz H, Ece I, et al. Laparoscopic Ileal Interposition with Diverted Sleeve Gastrectomy Versus Laparoscopic Transit Bipartition with Sleeve Gastrectomy for Better Glycemic Outcomes in T2DM Patients. Obes Surg. 2017;28(1):77–86.

40. Yin Q, Zhang R, Li L, et al. Exendin-4 Ameliorates Lipotoxicity-induced Glomerular Endothelial Cell Injury by Improving ABC Transporter Al-mediated Cholesterol Efflux in Diabetic apoE Knockout Mice. Journal of Biological Chemistry. 2016;291(51):26487–26501.

41. Norman E Cameron. Current Diabetes Reviews. 2015;11(3):191–200.

42. Howse PM, Chibrikova LN, Twwells LK, et al. Safety and Efficacy of Incretin-Based Therapies in Patients With Type 2 Diabetes Mellitus and CKD: A Systematic Review and Meta-analysis. Am J Kidney Dis. 2016;68(5):733–742.

43. Zhou SJ, Bai L, Lv L, et al. Liraglutide ameliorates renal injury in streptozotocin-induced diabetic rats by activating endothelial nitric oxide synthase activity via the downregulation of the nuclear factor-κB pathway. Mol Med Rep. 2014;10(5):2587–94.

44. Umanah K, Lewis JB. Update on Diabetic Nephropathy: Core Curriculum 2018. Am J Kidney Dis. 2018;71(6):884–895.

45. Fried M, Dolezalova K, Chambers AP, et al. A novel approach to glycemic control in type 2 diabetes mellitus, partial jejunal diversion: pre-clinical to clinical pathway. BMJ Open Diabetes Research & Care. 2017;5(1):e000431.

46. Zobel EH, von Scholten BJ, Lindhardt M, et al. Pleiotropic effects of liraglutide treatment on renal risk factors in type 2 diabetes: Individual effects of treatment. J Diabetes Complications. 2017;31(1):162–168.

47. Tuttle KR, McKinney TD, Davidson JA, et al. Effects of once-weekly dulaglutide on kidney function in patients with type 2 diabetes in phase II and III clinical trials. Diabetes Obes Metab. 2016;19(3):436–441.

48. Birnbbaum Y, Bajaj M, Qian J, et al. Dipeptidyl peptide-4 inhibition by Saxagliptin prevents inflammation and renal injury by targeting the Nlrp3/ASC inflammasome. BMJ Open Diabetes Res Care. 2016;4(1):e000227.

49. Scheen AJ. Pharmacokinetics and Clinical Use of Incretin-Based Therapies in Patients with Chronic Kidney Disease and Type 2 Diabetes. Clin Pharmacokinet. 2015;54(1):1–21.

50. Agrawal NK, Sany S. Targeting inflammation in diabetes: Newer therapeutic options. World J Diabetes. 2014;5(5):697–710.

51. Salminen P, Helmiö M, Ovaska J, et al. Effect of Laparoscopic Sleeve Gastrectomy vs Laparoscopic Roux-en-Y Gastric Bypass on Weight Loss at 5 Years Among Patients With Morbid Obesity. JAMA. 2018;319(3):241–254.

52. Seyfried F, Buhr HJ, Klinger C, et al. Qualitätsindikatoren für die metabolische und Adipositasschirurgie. Der Chirurg. 2017;89(1):4–16.

53. Fonseca DC, Sala P, Singer J, et al. Uregulation of Ghrelin Gene Expression in the Excluded Stomach of Obese Women with Type 2 Diabetes After Roux-en-Y Gastric Bypass in the SURMetaGIT Study. Obes Surg. 2018;28(3):877–880.

54. Woelnerhannsen B, Peterli R, Steiner RE, et al. Effects of postbariatric surgery weight loss on adipokines and metabolic parameters: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy—a prospective randomized trial. Surg Obes Relat Dis. 2011;7(5):561–568.

55. Ingelfinger JR, Rosen CJ. Cardiac and Renovascular Complications in Type 2 Diabetes—Is There Hope? N Engl J Med. 2016;375(4):380–382.

56. Lee YS, Jun HS. Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control. Mediators Inflamm. 2016;2016:3094642.

57. Mima A. Incretin-Based Therapy for Prevention of Diabetic Vascular Complications. J Diabetes Res. 2016;2016:1379274.

58. Anutyanova MS, Glazunova AM, Mikhailova OV, et al. Nonglycemic effects of incretins in patients with long-term type 1 diabetes mellitus and chronic kidney disease. Ter Arkh. 2015;87(10):54–61.

59. Salvador J, Andrades P. Efectos extrapancreaticos de los agonistas del receptor de GLP-1: una ventana hacia nuevos objetivos del tratamiento farmacologico de la diabetes mellitus tipo 2. Medicina Clinica. 2014;143(Suppl 2):28–34.

60. Cummings DE, Rubino F. Metabolic surgery for the treatment of type 2 diabetes in obese individuals. Diabetologia. 2017;60(2):257–264.

61. Lemus R, Kari D, Hong D, et al. The impact of bariatric surgery on insulin-treated type 2 diabetes patients. Surg Endosc. 2017;32(6):1990–1001.

62. Park S, Kim YJ, Choi CY, et al. Bariatric Surgery can Reduce Albuminuria in Patients with Severe Obesity and Normal Kidney Function by Reducing Systemic Inflammation. Obes Surg. 2017;28(3):831–837.

63. Li C, Yang M, Wang X, et al. Glutazumab, a novel longlasting GLP-1 anti-GLP-1R antibody fusion protein, exerts anti-diabetic effects through targeting dual receptor binding sites. Biochem Pharmacol. 2018;150:46–53.

64. Sancar-Bas S, Gezginici-Oktayoglu S, Bolkent S. Exendin-4 attenuates renal tubular injury by decreasing oxidative stress and inflammation in streptozotocin-induced diabetic mice. Growth Factors. 2015;33(5–6):419–29.

65. Davies MJ, Bain SC, Atkin SL, et al. Efficacy and Safety of Liraglutide Versus Placebo as Add-on to Glucose-Lowering Therapy in Patients With Type 2 Diabetes and Moderate Renal Impairment (LIRA-RENAI): A Randomized Clinical Trial. Diabetes Care. 2016;39(2):222–30.

66. Görriz JL, Nieto J, Navarro-González JF, et al. Nephroprotection by Hypoglycemic Agents: Do We Have Supporting Data? J Clin Med. 2015;4(10):1866–89.

67. Görriz JL, Nieto J, Navarro-González JF, et al. Nephroprotection by Hypoglycemic Agents: Do We Have Supporting Data? J Clin Med. 2015;4(10):1866–89.

68. Zavattaro M, Caputo M, Samà MT, et al. One-year treatment with liraglutide improved renal function in patients with type 2 diabetes: a pilot prospective study. Endocrine. 2015;50(3):620–626.

69. Craig Wood G, Horwitz D, Still CD. Performance of the DiaRem Score and III clinical trials. Diabetes and complication in patients with type 2 diabetes mellitus— a prospective randomized trial. Br J Surg. 2015;50(3):620–626.

70. Wakamatsu K, Seki Y, Kasama K, et al. Prevalence of Chronic Kidney Disease in Morbidly Obese Japanese and the Impact of Bariatric Surgery on Disease Progression. Obes Surg. 2017;28(2):489–496.

71. Kim JY, Yang S, Lee JI, et al. Correction: Cardiovascular Effect of Saxagliptin, a Dipeptidyl Peptidase-4 Inhibitor, in Type 2 Diabetes Mellitus: Systematic Review and Meta-analysis. PLoS One. 2018;13(1):e0191744.
The privileged position of glp-1 in diabetic nephropathy

Citation: 91. 88. 86. 84. 83. 81. 79. 78. 75. 74. 2018;21(4):365–373. of bariatric surgery for morbid obesity in Belgium. pathophysiology of incretins in the kidney. von Websky K, Reichetzeder C, Hocher B. Physiology and 2013;10(2):88–103. Muskiet MH, Smits MM, Morsink LM, et al. The gut–renal axis: do correction of glomerular hyper-filtration one year after bariatric surgery. Expert Opinion on Pharmacotherapy. 2015;16(9):1325–1333. Glucagon-like peptide 1 receptor agonist (GLP-1 RA): longterm effect on kidney function in patients with type 2 diabetes. J Diabetes Complications. 2015;29(5):670–674. Zhao X, Liu G1, Shen H, et al. Liraglutide inhibits Autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells. Int J Mol Med. 2015;35(3):684–92. Marques C, Mega C, Gonçalves A, et al. Sitagliptin prevents Inflammation and Apoptotic Cell Death in the Kidney in Type 2 Diabetic Animals. Mediators Inflamm. 2014;2014:538737. De Oliveira VLP, Martins GP, Mottin CC, et al. Predictors of Long-Term Remission and Relapse of Type 2 Diabetes Mellitus Following Gastric Bypass in Severely Obese Patients. Obes Surg. 2018;28(1):195–203. Hanssen NM, Russell N, Cooper ME. Recent advances in glucose-lowering treatment to reduce kidney disease. Expert Opinion on Kidney Int. 2015;87(3):660–92. Pedro Iglesias, Manuel Heras, Juan J. Diez, Diabetes mellitus y enfermedad renal en el anciano. Nefrologia. 2014;34(2):85–92. skov J. Effects of GLP-1 in the Kidney. Rev Endocr Metab Disord. 2014;15(3):197–207. Carranza Leon BG, Puzziferri N, Adams Huet B, et al. Metabolic response 4 years after gastric bypass in a complete cohort with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2018;137:224–230. Xu WW, Guan MP, Zheng ZJ, et al. Exendin-4 Alleviates High Glucose-Induced Rat Mesangial Cell Dysfunction through the AMPK Pathway. Cell Physiol Biochem. 2014;33(2):423–432. Game F. Novel Hypoglycaemic Agents: Considerations in Patients with Chronic Kidney Disease. Nephron Clinical Practice. 2014;126(1):14–18. Gadde KM, Martin CK, Berthoud HR, et al. Obesity. Journal of the American College of Cardiology. 2018;71(1):69–84. Agrawal V, Giri C, Solomon RJ. The Effects of Glucose-Lowering Therapies on Diabetic Kidney Disease. Curr Diabetes Rev. 2015;11(3):191–200. Favre G, Anty R, Canivet C, et al. Determinants associated with the correction of glomerular hyper-filtration one year after bariatric surgery. 2017;13(10):1760–1766. Muskiet MH, Smits MM, Morsink LM, et al. The gut–renal axis: do incretin-based agents confer renoprotection in diabetes? Nat Rev Nephrol. 2013;10(2):88–103. Von Websky K, Reichetzeder C, Hocher B. Physiology and pathophysiology of incretins in the kidney. Curr Opin Nephrol Hypertens. 2014;23(1):54–60. Le Roux CW, Heneghan HM. Bariatric Surgery for Obesity. Medical Clinics of North America. 2018;102(1):165–182. Borisenco O, Lukyanov V, Debergh I, et al. Cost-effectiveness analysis of bariatric surgery for morbid obesity in Belgium. J Med Econ. 2019;22(4):365–373. DeFronzo RA, Davidson JA, Del Prato S. The role of the kidneys in glucose homeostasis: new path towards normalizing glycaemia. Diabetes Obes Metab. 2011;14(1):5–14. Filippatos TD, Eliaf MS. Effects of glucagon-like peptide-1 receptor agonists on renal function. World J Diabetes. 2013;4(5):190–201. Fujita H, Morii T, Fujishima H, et al. The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney Int. 2014;85(3):579–589. Masajit Zagajewska A, Kurnatowska I, Wajdlich M, et al. Influence of hemodialysis on incretin hormones and insulin secretion in diabetic and non-diabetic patients. Int Urol Nephrol. 2013;45(6):1733–1740. Mima A. Diabetic nephropathy: protective factors and a new therapeutic paradigm. J Diabetes Complications. 2013;27(5):526–530. Seino Y, Yabe D. Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: Incretin actions beyond the pancreas. J Diabetes Investig. 2013;4(2):108–130. Molina Vega M, Munoz Garach A, Tínahones FJ. Pharmacokinetic drug evaluation of exenatide for the treatment of type 2 diabetes. Expert Opinion on Drug Metabolism & Toxicology. 2017;14(2):207–217. Peck BCE, Seeley RJ. How does “metabolic surgery” work its magic? New evidence for gut microbiota. Curr Opin Endocrinol Diabetes Obes. 2018;25(2):81–86. Lukashevich V, Schweizer A, Foley JE, et al. Efficacy of vildagliptin in combination with insulin in patients with type 2 diabetes and severe renal impairment. Vasc Health Risk Manag. 2013;9:21–28. Avogaro A, Schernthaner G. Achieving glyemic control in patients with type 2 diabetes and renal impairment. Acta Diabetologica. 2013;50(3):283–291. Koffert J, Stahle M, Karlsson H, et al. Morbid obesity and type 2 diabetes alter intestinal fatty acid uptake and blood flow. Diabetes Obes Metab. 2018;20(6):1384–1390. Von Scholten BJ, Persson F, Svane MS, et al. Effect of large weight reductions on measured and estimated kidney function. BMC Nephrology. 2017;18(1):52. Hsu CC, Almulali A, Chen JC, et al. Effect of Bariatric Surgery vs Medical Treatment on Type 2 Diabetes in Patients With Body Mass Index Lower Than 35. JAMA Surg. 2015;150(12):1117–1124. Ojima A, Ishibashi Y, Matsu T, et al. Glucagon-Like Peptide-1 Receptor Agonist Inhibits Asymmetric Dimethylarginine Generation in the Kidney of Streptozotocin-Induced Diabetic Rats by Blocking dvanced Glycation End Product–Induced Protein Arginine Methyltransferase-1 Expression. Am J Pathol. 2013;182(1):132–141. Ojima A, Ishibashi Y, Matsu T, et al. Glucagon-Like Peptide-1 Receptor Agonist Inhibits Asymmetric Dimethylarginine Generation in the Kidney of Streptozotocin-Induced Diabetic Rats by Blocking dvanced Glycation End Product–Induced Protein Arginine Methyltransferase-1 Expression. Am J Pathol. 2013;182(1):132–141. Sinclair P, Docherty N, le Roux CW. Metabolic Effects of Bariatric Surgery. Clin Chem. 2017;64(1):72–81. Panchapakesan U, Mathur A, Pollock C. Role of GLP-1 and DPP-4 in diabetic nephropathy and cardiovascular disease. Clin Sci (Lond). 2013;124(1):17–26. Thomas MC. The potential and pitfalls of GLP-1 receptor agonists for renal protection in type 2 diabetes. Diabetes Metab. 2017;43 Suppl 1:2S20–2S27. Friedman AN, Wahed AS, Wang J, et al. Effect of Bariatric Surgery on CKD Risk. J Am Soc Nephrol. 2018;29(4):1289–1300. Chang AR, Grams ME, Naveaneethan SD. Bariatric Surgery and Kidney-Related Outcomes. Kidney Int Rep. 2017;2(2):261–270.
The privileged position of glp-1 in diabetic nephropathy

Citation: Ivan PPA, Walter KM. The privileged position of glp-1 in diabetic nephropathy. Endocrinal Metab Int J. 2018;6(3):233–239.
DOI: 10.15406/emij.2018.06.00182