Applying the Principle of Variables to Solve the Problems of Forced Vibration of the Plate with Three Clamped and the Other Free with Concentrated Load

Ying Jie Chen, Jing Yao Wu
YanShan University QinHuangDao 066004

Abstract. In this paper, with the principle of least action with variables to solve the problems of forced vibration of the Rectangular plate with three clamped and the other free with concentrated load, and the stable solution can be worked out. We can compare the results with the literate; it also can be proved to be true. So the results by calculating not only it have important academic value, but also it can be directly referred in the actual work.

1 Introduction

Curved rectangular sheet has been widely used in engineering practice. When calculating the stability vibration and bending of the sheet based on sheet classical theory, there will be some errors. In the previous solution, it is difficult to find an easy displacement functions to solve it. The principle of least action mixed variables applied in article[1] requires only weak displacement, that is, displacement should meet the requirements of the strain-displacement in advance, instead of boundary conditions. This eliminates the need to make displacement hypothesis. the total potential energy of mixed variables can be set up according to the actual boundary condition of the curved rectangular sheet, thus obtained the steady-state solution of forced vibration can be obtained. This solution overcomes the classical solution of the complex calculation process and the difficulty to solve certain issues and other limitations[2-5].

2 The basic equation

Figure 1 (a) is a rectangular plate with three fixed and one free, undock side \(x=0, y=0, y=a \) bending moment amplitude constraint substituting \(\bar{M}_{xo}, \bar{M}_{xu}, \bar{M}_{yo} \) as the Figure 1 (b) shows, also assume that the free edge of \(y=b \) of deflection magnitude \(\bar{W}_{yb} \)

\[
\bar{M}_{xo} = \sum_{m=1,2}^{\infty} A_m \sin \frac{m \pi x}{a} \quad (1)
\]

\[
\bar{M}_{xu} = \sum_{m=1,2}^{\infty} B_m \sin \frac{m \pi x}{a} \quad (2)
\]

Wherein \(\beta_n = \frac{n \pi}{b}, A_n, B_n, c_n, d_n \) coefficients to be determined.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article available at http://www.matec-conferences.org or http://dx.doi.org/10.1051/matecconf/20164402052
\[
\frac{\partial w}{\partial y} = 0, \quad \frac{\partial w}{\partial x} = 0 \quad \text{at } y=0, x=0, y=b, x=a
\]
\[
\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + (2 - \nu) \frac{\partial^2 w}{\partial x \partial y} = 0
\]
\[
w_{x=0} = w_{x=a} = 0, \quad \frac{\partial^2 w}{\partial x^2} \quad \text{at } y=0, x=b
\]

(5)

(6)

3 solving any concentrated harmonic forced vibration under loads with three fixed side of rectangular plates

The total potential energy mix variable assignment

\[
\Pi_{mp} = \int_0^b \int_0^a \left[\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right]^2 \left(1 - \nu \right) dxdy - 2 \left(1 - \nu \right) \int_0^a \left(\frac{\partial^2 w}{\partial x \partial y} \right) dxdy + \int_0^a \left[Pw + \frac{1}{2} \rho \omega^2 w^2 \right] dxdy + \int_0^b \left(\frac{dM}{dx} \right)_{x=a} dxdy + \int_0^b \left(\frac{dM}{dx} \right)_{x=0} dxdy
\]

\[
\int_0^a \left(\frac{dM}{dx} \right)_{x=0} dxdy + \int_0^b \left(\frac{dM}{dx} \right)_{x=a} dxdy - \int_0^b \left(\frac{dM}{dx} \right)_{x=0} dxdy + \int_0^b \left(\frac{dM}{dx} \right)_{x=a} dxdy
\]

(7)

Suppose deflection curve equation for curved rectangular plate

\[
w(x, y) = \sum_{m=1,2} \sum_{n=1,2} A_{mn} \sin \alpha_m x \sin \beta_n y
\]

\[
(0 \leq x \leq a \quad 0 \leq y < b)
\]

(8)

Among them

\[
\alpha_m = \frac{m\pi}{a}
\]

The magnitude of the deflection surface equation (8) into (7) take variational extremum formula calculated, then there are

\[
\delta \Pi_{mp} = \frac{Dab}{4} \sum_{m=1,2} \sum_{n=1,2} A_{mn} \delta A_{mn} K_{mmn}^2 - q \sum_{m=1,2} \sum_{n=1,2} \delta A_{mn} \frac{ab}{\pi^2 mn} \left[1 - (-1)^m \right]
\]

\[
\left[1 - \left(\frac{b}{a} \right)^2 \right] \sum_{m=1,2} \sum_{n=1,2} \frac{1}{2} A_{mn} \alpha_m \delta A_{mn} + \left[\sum_{m=1,2} \sum_{n=1,2} \frac{1}{2} \beta_n \delta A_{mn} \right] + \left[\sum_{m=1,2} \sum_{n=1,2} \beta_n ^2 A_{mn} \right] + \left[\sum_{m=1,2} \sum_{n=1,2} \left(\frac{1}{2} \beta_n ^2 \right) \right]
\]

(9)

Among them

\[
\lambda^2 = \frac{1}{D} \rho \omega^2 K_{mnm}^2 = (\alpha_m ^2 + \beta_n ^2)^2 - \lambda^2
\]

From (9) can be obtained

\[
A_{mn} = \sum_{m=1,2} \sum_{n=1,2} \frac{4q}{Da} \frac{1}{mn} \frac{1}{K_{mmn}} \left[1 - (-1)^m \right] \left[1 - (-1)^n \right] + \sum_{m=1,2} \sum_{n=1,2} \frac{2}{Da} \alpha_m (A_n) + \sum_{m=1,2} \sum_{n=1,2} \frac{2}{Da} \beta_n (B_n)
\]

\[
+ \sum_{m=1,2} \sum_{n=1,2} \frac{2}{Db} \beta_n ^2 (C_m) - \sum_{m=1,2} \sum_{n=1,2} \frac{2}{Db} \beta_n ^2 (D_m)
\]

(10)

The magnitude of the deflection surface equation points (10) into (8) represented by triangular series are:

\[
w_1 = \frac{4P}{Dab} \sum_{m=1,2} \sum_{n=1,2} \sin \alpha_m x \sin \beta_n y
\]

\[
\sin \alpha_m x \sin \beta_n y
\]

(11)

\[
w_2 = \frac{2}{Da} \sum_{m=1,2} \sum_{n=1,2} \alpha_m \sin \alpha_m x
\]

\[
\sin \beta_n y (A_n)
\]

(12)

\[
w_3 = \frac{2}{Da} \sum_{m=1,2} \sum_{n=1,2} (-1)^m \sin \alpha_m x
\]

\[
\sin \alpha_m x \sin \beta_n y (B_n)
\]

(13)

\[
w_4 = \frac{2}{Db} \sum_{m=1,2} \sum_{n=1,2} (-1)^n \beta_n ^2 + \alpha_m ^2 \beta_n (2 - \nu)
\]

(14)

To speed up the convergence rate and eliminate deflection and moment magnitude of the triangular series representation of the boundary that appears in the first category discontinuity, it also must points deflection surface equation for the amplitude of the triangular series and hyperbolic functions expressed mixed form.

In the case of \(\alpha_m ^2 < \lambda \) and \(\beta_n ^2 < \lambda \), then there are
(15) \[w_1 = \frac{2P}{Db} \sum_{n=1}^{\infty} \frac{1}{\alpha_n^2 - \beta_n^2 - \beta_n^2} \left[\frac{\text{sh} \alpha_n (a-x_0) \text{sh} \alpha_n x}{\alpha_n \text{sh} \alpha_n} + \frac{\text{sh} \beta_n (a-x_0) \text{sh} \beta_n x}{\beta_n \text{sh} \beta_n} \right] \sin \beta_n y_0 \sin \beta_n t \quad (0 \leq x \leq x_0) \]

\[w_1 = \frac{2P}{Db} \sum_{n=1}^{\infty} \frac{1}{\alpha_n^2 - \beta_n^2} \left[\frac{\text{sh} \alpha_n (a-x) \text{sh} \alpha_n x}{\alpha_n \text{sh} \alpha_n} + \frac{\text{sh} \beta_n (a-x) \text{sh} \beta_n x}{\beta_n \text{sh} \beta_n} \right] \sin \beta_n y_0 \sin \beta_n t \]

\[x_0 \leq x \leq a \]

(16) \[w_1 = \frac{2P}{Da} \sum_{n=1}^{\infty} \frac{1}{\alpha_n^2 - \beta_n^2} \left[\frac{\text{sh} \alpha_n (b-y_0) \text{sh} \alpha_n y}{\alpha_n \text{sh} \alpha_n} + \frac{\text{sh} \beta_n (b-y_0) \text{sh} \beta_n y}{\beta_n \text{sh} \beta_n} \right] \sin \alpha_n x_0 \sin \alpha_n x \]

\[0 \leq y \leq y_0 \]

(17) \[w_1 = \frac{2P}{Da} \sum_{n=1}^{\infty} \frac{1}{\alpha_n^2 - \beta_n^2} \left[\frac{\text{sh} \alpha_n (b-y) \text{sh} \alpha_n y}{\alpha_n \text{sh} \alpha_n} + \frac{\text{sh} \beta_n (b-y) \text{sh} \beta_n y}{\beta_n \text{sh} \beta_n} \right] \sin \alpha_n x_0 \sin \alpha_n x \]

\[y_0 \leq y \leq b \]

Among them \[\alpha_n^2 = \sqrt{\beta_n^2 + \lambda}, \quad \beta_n^2 = \sqrt{\beta_n^2 - \lambda} \]

(18) \[w_2 = \frac{1}{D} \sum_{n=1}^{\infty} \frac{1}{\alpha_n^2 - \beta_n^2} \left[\frac{\text{sh} \alpha_n (a-x)}{\alpha_n} + \frac{\text{sh} \beta_n (a-x)}{\beta_n} \right] \sin \beta_n y(A_n) \]

(19) \[w_2 = \frac{1}{D} \sum_{n=1}^{\infty} \frac{1}{\alpha_n^2 - \beta_n^2} \left[\frac{\text{sh} \alpha_n (a-x)}{\alpha_n} + \frac{\text{sh} \beta_n (a-x)}{\beta_n} \right] \sin \beta_n y(B_n) \]

(20) \[w_3 = \frac{1}{D} \sum_{n=1}^{\infty} \frac{1}{\alpha_n^2 - \beta_n^2} \left[\frac{\text{sh} \alpha_n (b-y)}{\alpha_n} + \frac{\text{sh} \beta_n (b-y)}{\beta_n} \right] \sin \beta_n y(C_n) \]

(21) \[w_4 = \frac{1}{D} \sum_{n=1}^{\infty} \frac{1}{\alpha_n^2 - \beta_n^2} \left[\frac{\text{sh} \alpha_n (b-y)}{\alpha_n} + \frac{\text{sh} \beta_n (b-y)}{\beta_n} \right] \sin \beta_n y(D_n) \]

When \(\alpha_n^2 < \lambda \) and \(\beta_n^2 < \lambda \), easy to get the corresponding points deflection surface amplitude equation, due to limited space no longer given.

Investigation boundary conditions.

Boundary condition formula (5) is automatically satisfied, the following boundary condition investigated formula (6). When \(\alpha_n^2 > \lambda \) and \(\beta_n^2 > \lambda \), executive boundary condition

\[\left(\frac{\partial w}{\partial y} \right)_{y_0} = 0 \]

then get

\[\frac{2P}{Da} \left[\frac{-\text{sh} \alpha_m (b-y_0) + \text{sh} \beta_m (b-y_0)}{\text{sh} \alpha_m b + \text{sh} \beta_m b} \right] \sin \alpha_m x_0 + 4\lambda \sum_{n=1,2}^{\infty} K_m \left[\frac{\alpha_m^2 - \alpha_n^2 (2-v)}{\alpha_m^2 - \alpha_n^2 (2-v)} \right] \frac{\alpha_m}{\alpha_m} \]

(23) \[\frac{2P}{Da} \left[\frac{-\text{sh} \alpha_m (a-x_0) + \text{sh} \beta_m (a-x_0)}{\text{sh} \alpha_m b + \text{sh} \beta_m b} \right] \sin \beta_m y_0 \]

Executive boundary condition

\[\left(\frac{\partial^2 w}{\partial x \partial y} \right)_{y_0} = 0 \]

then get

\[\frac{2P}{Db} \left(\frac{-\text{sh} \alpha_m (a-x_0) + \text{sh} \beta_m (a-x_0)}{\text{sh} \alpha_m b + \text{sh} \beta_m b} \right) \sin \beta_m y_0 \]

(24) \[\frac{2P}{Db} \left(\frac{-\text{sh} \alpha_m (a-x_0) + \text{sh} \beta_m (a-x_0)}{\text{sh} \alpha_m b + \text{sh} \beta_m b} \right) \sin \beta_m y_0 \]

Executive boundary condition

\[\left(\frac{\partial^3 w}{\partial x^3} + (2-v) \frac{\partial^3 w}{\partial x^2 \partial y} \right)_{y_0} = 0 \]
then get
\[
\frac{2P}{Da} \left[\alpha_m^2 - \alpha_m^2 (2 - v) \right] \frac{sh \alpha_m}{sh \alpha_m B} \sin \alpha_m x_0 - \\
\left[\beta_m^2 - \alpha_m^2 (2 - v) \right] \frac{sh \beta_m}{sh \beta_m B} \sin \alpha_m x_0 - \\
4 \frac{\lambda}{Da} \sum_{n=1}^{\infty} \frac{(-1)^n \alpha_m \beta_n}{K_{dmm}^2} \left[\alpha_m^2 + \beta_n^2 (2 - v) \right] (A_n) + \\
4 \frac{\lambda}{Da} \sum_{n=1}^{\infty} \frac{(-1)^{m+n} \alpha_m \beta_n}{K_{dmm}^2} \left[\alpha_m^2 + \beta_n^2 (2 - v) \right] (B_n) + \\
\frac{1}{D} \left[\alpha_m^2 - \alpha_m^2 (2 - v) \right] \frac{\alpha'_m}{sh \alpha_m B} - \\
\left[\beta_m^2 - \alpha_m^2 (2 - v) \right] \frac{\beta'_m}{sh \beta_m B} \right) (C_n) + \\
\left[\alpha_m^2 - \alpha_m^2 (2 - v) \right] \frac{\alpha'_m}{sh \alpha_m B} + \\
\left[\beta_m^2 - \alpha_m^2 (2 - v) \right] \frac{\beta'_m}{sh \beta_m B} \right) (d_m) = 0
\] (25)

When \(\alpha_m^2 < \lambda \) and \(\beta_n^2 < \lambda \), the boundary condition (27) - (29) is:

\[
\frac{2P}{Da} \left[\alpha_m^2 - \alpha_m^2 (2 - v) \right] \frac{sh \alpha_m}{sh \alpha_m B} \sin \alpha_m x_0 - \\
\left[\beta_m^2 - \alpha_m^2 (2 - v) \right] \frac{sh \beta_m}{sh \beta_m B} \sin \alpha_m x_0 - \\
\frac{4 \lambda}{Da} \sum_{n=1}^{\infty} \frac{(-1)^n \alpha_m \beta_n}{K_{dmm}^2} \left[\alpha_m^2 + \beta_n^2 (2 - v) \right] (A_n) + \\
\frac{4 \lambda}{Da} \sum_{n=1}^{\infty} \frac{(-1)^{m+n} \alpha_m \beta_n}{K_{dmm}^2} \left[\alpha_m^2 + \beta_n^2 (2 - v) \right] (B_n) + \\
\frac{1}{D} \left[\alpha_m^2 - \alpha_m^2 (2 - v) \right] \frac{\alpha'_m}{sh \alpha_m B} - \\
\left[\beta_m^2 - \alpha_m^2 (2 - v) \right] \frac{\beta'_m}{sh \beta_m B} \right) (C_n) + \\
\left[\alpha_m^2 - \alpha_m^2 (2 - v) \right] \frac{\alpha'_m}{sh \alpha_m B} + \\
\left[\beta_m^2 - \alpha_m^2 (2 - v) \right] \frac{\beta'_m}{sh \beta_m B} \right) (d_m) = 0
\] (28)

4 Numerical Analysis

So we get four sets of infinite simultaneous equations (23)-(25) or (26)-(28). Remove restricted item, Solutions for the \(A_n, B_n, C_n \) and \(d_m \). And then according to the formula (1) to (4) to obtain the moment and deflection magnitude of the amplitude. In particular, take each items of \(A_n, B_n, C_n \) and \(d_m \), and assuming harmonic loads concentrated on midpoint board programming calculated for different values obtained are shown in table 1 deflection magnitude of moment magnitude and fixed side edge moment, and as shown in Figure 2 and Figure 3.

Discuss:

(1) The issue of convergence coefficient. Since the load and structural balance in the direction axis for symmetric, so there are \(A_0=B_0, C_0=d_m=0(m=2,4,...) \), \(C_m \) and \(d_m \) is that is actually only take eight. And calculated that, An convergence of magnitude from \(10^0 \) to \(10^2 \) magnitude, \(C_m \) magnitude from \(10^0 \) to converge to \(10^{-4} \) magnitude, \(d_m \) magnitude from \(10^2 \) to \(10^{-5} \) convergence of magnitude, than the uniform load harmonic convergence is better.

(2) With regard to the distribution of \(M_{00} \). It is found, When \(\omega/\omega_1 = 0.8 \), \(M_{00} \) larger value of the free edges will appear near the end. This suggests that, as the load frequency close to the natural frequency and a significant increase in the magnitude of the impact on its adjacent sides of the free edge of the moment.
(3) With regard to the distribution of M_{x0}. When the ω/ω_{h1} value is not the same, the value is not the same, M_{y0} along $y=0$ edge was smooth symmetrical, and at both ends of a slight reverse moment appear.

(4) The impact of load frequency. When the ω/ω_{h1} from 0.0 to 0.8, the free side of the midpoint deflection of about 4.46 times the amplitude increases, $y=0$ along the side of the midpoint fixed maximum moment magnitude approximately double.

Table 1. The amplitudes (P) of the moment and the maximum deflection (P_2/D) $a/b=1$ at the clamped ends

M_{x0}	0.000647	-0.02006	-0.1066
M_{y0}	0.001470	-0.01934	-0.1045
w_{yb}	0.000044	0.00508	0.002086

M_{x0}	0.000359	0.022110	-0.1142
M_{y0}	0.001633	-0.02097	-0.1122
w_{yb}	0.000062	0.000634	0.002515

M_{x0}	-0.000416	-0.02682	-0.13110
M_{y0}	0.002043	-0.02459	-0.12920
w_{yb}	0.000106	0.000957	0.003601

M_{x0}	-0.00697	-0.05466	-0.22210
M_{y0}	0.00512	-0.04353	-0.2211
w_{yb}	0.000457	0.003413	0.01171

5 Conclusion

(1) In this paper, mixed variables method for solving a rectangular plate with three fixed and one free vibration in any concentrated harmonic loads obtain the steady-state solution by forced vibration.

(2) Mix variables method is a simple vibration, universal, effective method to solve problem of forced vibration of bending a rectangular sheet.

(3) The results obtained by mixed variables method is correct, it may be practical engineering directly.

References

1. BaoLian Fu. Elasticity energy principle and its application. Beijing: Science Press, 2004. 6-56
2. BaoLian Fu. Bent sheet reciprocal new theory. Beijing: Science Press, 2003
3. FuFan Zhang. Bending under harmonic load cantilever rectangular plate. Applied Mathematics and Mechanics, 1980, 1 (3): 349-362
4. FuFan Zhang. The elastic sheet (second edition) Beijing: Science Press, 1984
5. DeJian Shu, ZhengDong Shi. The elastic sheet generalized variational principle and its application [J], Beijing Aviation College, 1957, (1): 27-3