ON SMOOTHLY SUPERSLICE KNOTS

DANIEL RUBERMAN

ABSTRACT. We find smoothly slice (in fact doubly slice) knots in the 3-sphere with trivial Alexander polynomial that are not superslice, answering a question posed by Livingston and Meier.

1. Introduction

A recent paper of Livingston and Meier raises an interesting question about superslice knots. Recall [3] that a knot K in S^3 is said to be superslice if there is a slice disk D for K such that the double of D along K is the unknotted 2-sphere S in S^4. We will refer to such a disk as a superslicing disk. In particular, a superslice knot is slice and also doubly slice, that is, a slice of an unknotted 2-sphere in S^4. Livingston and Meier ask about the converse in the smooth category.

Problem 4.6 (Livingston-Meier [10]). Find a smoothly slice knot K with $\Delta_K(t) = 1$ that is not smoothly superslice.

The corresponding question in the topological (locally flat) category is completely understood [10, 12], for a knot K with $\Delta_K(t) = 1$ is topologically superslice.

In this note we give a simple solution to problem 4.6, making use of Taubes’ proof [10] that Donaldson’s diagonalization theorem [5] holds for certain non-compact manifolds. For K a knot in S^3, we write $\Sigma_k(K)$ for a k-fold cyclic branched cover of S^3 branched along K. The same notation will be used for the corresponding branched cover along an embedded disk in B^4 or sphere in S^4.

Theorem 1.1. Suppose that J is a knot with Alexander polynomial 1, so that $\Sigma_k(J) = \partial W$, where W is simply connected and the intersection form on W is definite and not diagonalizable. Then the knot $K = J\# - J$ is smoothly doubly slice, but is not smoothly superslice.

An unpublished argument of Akbulut says that the positive Whitehead double of the trefoil is a knot J satisfying the hypotheses of the theorem, with
\[k = 2. \] The construction is given as \[1\] Exercise 11.4 and is also documented, along with some generalizations, in the paper \[4\]. Hence \(J \) gives an answer to Problem 4.6. We remark that for the purposes of the argument, it doesn’t matter if \(W \) is positive or negative definite, as one could replace \(J \) by \(-J\) and change all the signs.

We need a simple and presumably well-known algebraic lemma.

Lemma 1.2. Suppose that

\[
\begin{array}{c}
 A \\
 \downarrow i_1 \\
 B \\
 \downarrow i_2 \\
 \downarrow j_2 \\
 C \\
 \uparrow j_1 \\
 B \\
 \uparrow i_1
\end{array}
\]

is a pushout of groups, and that \(i_1 = i_2 \). Then \(C \) surjects onto \(B \).

Proof. This follows from the universal property of pushouts; the identity map \(\text{id}_B \) satisfies \(\text{id}_B \circ i_1 = \text{id}_B \circ i_2 \), and hence defines a homomorphism \(C \rightarrow B \) with the same image as \(\text{id}_B \). \[\square\]

Applying Lemma 1.2 to the decomposition of the complement of the unknot in \(S^4 \) into two disk complements, we obtain the following useful facts. (The first of these was presumably known to Kirby and Melvin; compare \[8\] Addendum, p. 58, and the second is due to Gordon and Sumners \[6\].)

Corollary 1.3. If \(K \) is superslice and \(D \) is a superslicing disk, then

\[
\pi_1(B^4 - D) \cong \mathbb{Z} \quad \text{and} \quad \Delta_K(t) = 1.
\]

Proof. The lemma says that there is a surjection \(\mathbb{Z} \cong \pi_1(S^4 - S) \rightarrow \pi_1(B^4 - D) \). Hence \(\pi_1(B^4 - D) \) is abelian and so must be isomorphic to \(\mathbb{Z} \). This condition implies, using Milnor duality \[13\] in the infinite cyclic covering, that the homology of the infinite cyclic covering of \(S^3 - K \) vanishes, which is equivalent to saying that \(\Delta_K(t) = 1 \). \[\square\]

Proof of Theorem 1.1. It is standard \[15\] that any knot of the form \(J \# -J \) is doubly slice. In fact, it is a slice of the 1-twist spin of \(J \), which was shown by Zeeman \[17\] to be unknotted.

Suppose that \(K \) is superslice and let \(D \) be a superslicing disk, so \(D \cup_K D = S \), an unknotted sphere. Then \(S^4 = \Sigma_k(S) = V \cup_Y V \), where we have written \(Y = \Sigma_k(K) \) and \(V = \Sigma_k(D) \). By Claim 1.3 the \(k \)-fold cover of \(B^4 - D \) has \(\pi_1 \cong \mathbb{Z} \), so the branched cover \(V \) is simply connected.

Note that \(\Sigma_k(K) = \Sigma_k(J) \# -\Sigma_k(J) \). Since \(\Delta_J(t) = 1 \), the same is true for \(\Delta_K(t) \), moreover this implies that both \(\Sigma_k(J) \) and \(\Sigma_k(K) \) are homology
spheres. An easy Mayer–Vietoris argument says that $V = \Sigma_k(D)$ is a homology ball; in fact Claim 1.3 implies that it is contractible. Adding a 3-handle to V, we obtain a simply-connected homology cobordism V' from $\Sigma_k(J)$ to itself. By hypothesis, there is a manifold W with boundary $\Sigma_k(J)$ and non-diagonalizable intersection form. Stack up infinitely many copies of V', and glue them to W to make a definite periodic-end manifold M, in the sense of Taubes [16]. Since $\pi_1(V)$ is trivial, M is admissible (see [16, Definition 1.3]), and Taubes shows that its intersection form (which is the same as that of W) is diagonalizable. This contradiction proves the theorem.

□

The fact that $\pi_1(B^4 - D) \cong \mathbb{Z}$ for a superslicing disk leads to a second obstruction to supersliceness, based on the Ozsváth–Szabó d-invariant [14]. Recall from [11] (for degree 2 covers) and [7] in general that for a knot K and prime p, that one denotes by $\delta_p(K)$ the d-invariant of a particular spin structure s on Σ_p^p pulled back from the 3-sphere. The fact that a p^n fold branched cover of a slicing disk is a rational homology ball implies that if K slice then $\delta_p(K) = 0$. For a non-prime-power degree k, the invariant $\delta_k(K)$ might not be defined, because $\Sigma_k(K)$ is not a rational homology sphere. (One might define such an invariant using Floer homology with twisted coefficients as in [2, 9], but there’s no good reason that it would be a concordance invariant.)

Theorem 1.4. If K is superslice, then for any k, the d-invariant $d(\Sigma_k(K), s_0)$ is defined and vanishes.

Proof. Since by Claim 1.3 the Alexander polynomial is trivial, so $\Sigma_k(K)$ is a homology sphere, and hence $d(\Sigma_k(K), s_0)$ is defined. (There is only the one spin structure.) As in the proof of Theorem 1.1 the branched cover $\Sigma_k(D)$ is contractible, and hence [14, Theorem 1.12], $d(\Sigma_k(K), s_0) = 0$.

□

Sadly, we do not know any examples of a slice knot where Theorem 1.4 provides an obstruction to it being superslice. For such a knot would not be ribbon, so we would also have a counterexample to the slice-ribbon conjecture!

Acknowledgements. Thanks to Hee Jung Kim for an interesting conversation that led to this paper, and to Chuck Livingston, Paul Melvin, and Nikolai Saveliev for comments on an initial draft.

References

[1] Selman Akbulut, 4-manifolds, book in preparation, http://www.math.msu.edu/~akbulut/papers/akbulut.lec.pdf, 2015.

[2] Stefan Behrens and Marco Golla, Heegaard Floer correction terms, with a twist, 2015, [arXiv:1505.07401](https://arxiv.org/abs/1505.07401).

[3] W. R. Brakes, Property R and superslices, Quart. J. Math. Oxford Ser. (2) 31 (1980), no. 123, 263–281.
[4] Tim D. Cochran and Robert E. Gompf, Applications of Donaldson’s theorems to classical knot concordance, homology 3-spheres and property P, Topology 27 (1988), no. 4, 495–512.

[5] S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), no. 2, 279–315.

[6] C. McA. Gordon and D. W. Sumners, Knotted ball pairs whose product with an interval is unknotted, Math. Ann. 217 (1975), no. 1, 47–52.

[7] Stanislav Jabuka, Concordance invariants from higher order covers, Topology Appl. 159 (2012), no. 10-11, 2694–2710.

[8] Robion Kirby and Paul Melvin, Slice knots and property R, Invent. Math. 45 (1978), no. 1, 57–59.

[9] Adam Simon Levine and Daniel Ruberman, Generalized Heegaard Floer correction terms, Proceedings of the 20th Gökova Geometry and Topology Conference, 2014, Gökova Geometry/Topology Conference (GGT), Gökova, 2014, http://arxiv.org/abs/1403.2464

[10] Charles Livingston and Jeffrey Meier, Doubly slice knots with low crossing number, New York J. Math. 21 (2015), 1007–1026 (electronic).

[11] Ciprian Manolescu and Brendan Owens, A concordance invariant from the Floer homology of double branched covers, Int. Math. Res. Not. IMRN (2007), no. 20, Art. ID rnm077, 21.

[12] Jeffrey Meier, Distinguishing topologically and smoothly doubly slice knots, J. Topol. 8 (2015), no. 2, 315–351.

[13] J. Milnor, Infinite cyclic coverings, Topology of Manifolds (J. Hocking, ed.), Prindle, Weber and Schmidt, Boston, 1968, pp. 115–133.

[14] Peter Ozsváth and Zoltán Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003), no. 2, 179–261.

[15] D. Sumners, Invertible knot cobordisms, Comm. Math. Helv. 46 (1971), 240–256.

[16] C. Taubes, Gauge theory on asymptotically periodic 4-manifolds, J. Diff. Geo. 25 (1987), 363–430.

[17] E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471–495.