Random walks with preferential relocations to places visited in the past and their application to biology

Denis Boyer1,2 and Citlali Solis-Salas1

1Instituto de Física, Universidad Nacional Autónoma de México, D.F. 04510, México
2Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, D.F. 04510, México

(Dated: March 25, 2014)

Strongly non-Markovian random walks offer a promising modeling framework for understanding animal and human mobility, yet, few analytical results are available for these processes. Here we solve exactly a model with long range memory where a random walker intermittently revisits previously visited sites according to a reinforced rule. The emergence of frequently visited locations generates very slow diffusion, logarithmic in time, whereas the walker probability density tends to a Gaussian. This scaling form does not emerge from the Central Limit Theorem but from an unusual balance between random and long-range memory steps. In single trajectories, occupation patterns are heterogeneous and have a scale-free structure. The model exhibits good agreement with data of free-ranging capuchin monkeys.

PACS numbers: 05.40.Fb, 89.75.Fb, 87.23.Ge

The individual displacements of living organisms exhibit rich statistical features over multiple temporal and spatial scales. Due to their seemingly erratic nature, animal movements are often interpreted as random search processes and modeled as random walks [1–3]. In recent years, the increasing availability of data on animal [4–7] as well as human [8–11] mobility have motivated numerous models inspired from the simple random walk (RW). Let us mention, in particular, multiple scales RWs, such as Lévy walks [12, 13] or intermittent RWs [4, 14–16], which are walks with short local movements mixed with less frequent but longer commuting displacements.

Markovian RWs are the basic paradigm for modeling animal and human mobility and they provide useful insights at short temporal scales. However, empirical studies conducted over long periods of times reveal pronounced non-Markovian effects [11, 17, 18]. As for humans, mounting evidence shows that many animals have sophisticated cognitive abilities and use memory to move to familiar places that are not in their immediate perception range [19, 20]. The use of long-term memory should strongly impact movement and it is probably at the origin of many observations which are incompatible with RWs predictions, such as, very slow diffusion, heterogeneous space use, the tendency to revisit often particular places at the expense of others (site fidelity), or the emergence of routines [10, 11, 17, 18, 21, 22]. Non-Markovian random walks, where movement steps depend on the whole path of the walker, offer a promising modeling framework in this context. But the relative lack of available analytical results in this area limits the understanding of the effects of memory on mobility patterns.

An important class of non-Markovian processes are the reinforced RWs, where, typically, a walker on a lattice moves to its nearest-neighbor sites with probabilities that depends on the number of previous visits received by these sites [23, 24]. The description of a single walk requires the introduction of multiple-time distribution functions, which are related to each other via a hierarchy of master equations. Some exact results have been obtained for the mean square displacement (MSD) in simpler, linear reinforced models, such as in RWs with memory of the largest distance from the origin [26], or in the so-called elephant walk [27, 28]. In the latter, the walker tends to move in the same direction of its previous movement steps, and can exhibit superdiffusive behavior.

In this Letter we solve the minimal version of a reinforced model proposed some time ago in the ecological literature [21, 22], where a walker can either move randomly (explore locally) or stochastically relocate to places visited in the past (via long distance steps). A constant parameter describes the relative rate of these two movement modes (Fig. 1). This RW model with long range memory is, to our knowledge, one of the very few where not only the MSD is derived exactly, but also the asymptotic form of the full probability density. We then compare the model with field data and infer the strength of memory use in real animals.

We consider a walker with position \(X_t\) at time \(t\) on a regular \(d\)-dimensional lattice with unit spacing, and ini-
tially located at $X_0 = 0$. Consider q a constant parameter, $0 < q < 1$. At each discrete time step, $t \to t + 1$, the walker decides with probability $1 - q$ to visit a randomly chosen nearest neighbor site, as in the standard RW. With the complementary probability q, the walker relocates directly to a site visited in the past (Fig. 1). In this case, the probability to choose a given lattice site, among all the visited sites, is proportional to the number of visits this site has already received in the interval $[0, t]$. It is thus more likely to revisit a site which has been visited many times than a site visited only once. This linear preferential revisit rule is equivalent to choosing a random integer t' uniformly in the interval $[0, t]$ and to return to the site occupied at t'. This model bears some similarities with that of ref. [29], where a RW is stochastically “reset” to the origin ($t' = 0$) at a constant rate. Here, the RW can be reset to any previous time, or visited site, thus making the process highly non-Markovian. Unlike most path-dependent processes, this one can be exactly described through a single master equation.

We summarize below our main results in $d = 1$ for this model, where memory profoundly modifies the normal diffusion process and generates complex patterns of space occupation. (The results naturally extend to higher dimensions.) Let $P(n, t)$ be the probability that $X_t = n$. The MSD, defined as the second moment of $P(n, t)$, or $M_2(t) = \langle n^2 \rangle(t) = \sum_{n=-\infty}^{\infty} n^2 P(n, t)$, is calculated exactly for all t. Asymptotically, it grows very slowly with time:

$$M_2(t) \simeq \frac{1 - q}{q} \left[\ln(qt) + \gamma \right], \quad t \gg 1,$$

with $\gamma = 0.5772\ldots$ the Euler constant. In addition, the distribution $P(n, t)$ tends to a Gaussian, as in normal diffusion, but with a variance given by the anomalous logarithmic law [11] instead of the usual normal law $\propto t$:

$$P(n, t) \to G(n, t) \equiv \frac{1}{\sqrt{2\pi M_2(t)}} e^{-\frac{n^2}{2M_2(t)}},$$

Notably, the mechanism that makes the process eventually Gaussian is driven by memory and thus markedly differs from the Central Limit Theorem. In particular, the convergence towards this scaling form is logarithmically slow in time, thus it is difficult to observe in practice in discrete time simulations. We also study the probability $P_{(v)}(m)$ that a site, randomly chosen among the sites visited by a single walker in $[0, t]$, has received exactly m visits. It is found numerically to decay as a power-law:

$$P_{(v)}(m) \propto m^{-\alpha}, \quad \text{with} \quad \alpha \simeq 1.1,$$

which indicates that the walker occupies space in a very heterogeneous way. The model in 2d agrees quantitatively with trajectory data of capuchin monkeys ($Cebus capucinus$) in the wild.

We next present a derivation of the main results. In one dimension, the master equation describing the evolution of $P(n, t)$ is:

$$P(n, t + 1) = \frac{1 - q}{2} P(n - 1, t) + \frac{1 - q}{2} P(n + 1, t) + \frac{q}{t + 1} \sum_{t' = 0}^{t} P(n, t').$$

(4)

The last term in Eq. (4) indicates that site n can be visited (from any other site) following the memory rule provided that the walker was at n at an earlier time t'. We define even moments of the distribution as $M_{2p}(t) = \sum_{n=-\infty}^{\infty} n^{2p} P(n, t)$ with p a positive integer ($M_{2p+1}(t) = 0$ by symmetry).

Mean square displacement.—Taking the second moment of Eq. (4), we obtain an evolution equation for the MSD:

$$M_2(t + 1) = 1 - q + (1 - q) M_2(t) + \frac{q}{t + 1} \sum_{t' = 0}^{t} M_2(t'),$$

(5)

where we have used the normalization condition $M_0(t) = 1$. The above equation can be solved by introducing the Laplace transform of $M_2(t)$, defined as $\tilde{M}_2(\lambda) = \sum_{\alpha=0}^{\infty} \lambda^\alpha M_2(\alpha)$. Transforming Eq. (5) and using the identity $\lambda^\alpha(1 + 1) = \lambda^{-1} \int_0^\lambda du \tilde{M}_2(u)$, one obtains:

$$\frac{\tilde{M}_2(\lambda)}{\lambda} = \frac{1 - q}{1 - \lambda} + (1 - q) \tilde{M}_2(1) + \frac{q}{\lambda} \int_0^\lambda du \tilde{M}_2(u) \frac{\lambda}{1 - u}.$$

(6)

This equation becomes a first order ordinary differential equation after taking a derivative with respect to λ. As $M_2(t = 0) = 0$, the condition to be fulfilled by the solution of Eq. (6) is $\tilde{M}_2(\lambda = 0) = 0$. One finds:

$$\tilde{M}_2(\lambda) = - \left(\frac{1 - q}{q} \right) \frac{\ln(1 - \lambda) - \ln[1 - (1 - q)\lambda]}{1 - \lambda}.$$

(7)

The function $f(t)$ such that $\sum_{\alpha=0}^{\infty} \lambda^\alpha f(t) = \ln[1 - (1 - q)\lambda]/(1 - \lambda)$, is $f(t) = - \sum_{k=1}^{t} (1 - q)^k/k$. Therefore, Eq. (7) can be inverted, giving the exact solution:

$$M_2(t) = \frac{1 - q}{q} \sum_{k=1}^{t} \frac{1 - (1 - q)^k}{k}.$$

(8)

At large t, $\sum_{k=1}^{t} 1/k \approx \ln t + \gamma$ and $\sum_{k=1}^{t} (1 - q)^k/k \approx - \ln q$, yielding the asymptotic behavior [11] up to order $(\ln t)^0$. This result holds in any spatial dimensions. Figure 2 displays Eq. (1) for several values of q, in very good agreement with numerical simulations. Despite of the random steps, at any finite q, memory induces frequent returns to the same sites and very slow diffusion.

Higher moments.—The asymptotic form of the propagator $P(n, t)$ can be extracted in principle from the
knowledge of all its moments at large t. We first assume that a scaling relation is satisfied for t large enough:

$$M_{2p}(t) \simeq a_p[M_2(t)]^p,$$

(9)

for any integer p, with a_p a constant. A well-known and unique property of the Gaussian distribution with zero mean and arbitrary variance is that of having $a_0 = 1$ and

$$a_p = (2p - 1)a_{p-1}, \quad p \geq 1. \quad (10)$$

We take the $2p$-th moment of Eq. (4):

$$M_{2p}(t + 1) - M_{2p}(t) = 1 - q + (1 - q) \sum_{k=1}^{p-1} C_{2p}^{2k} M_{2k}(t)$$

$$+ \frac{q}{t + 1} \sum_{t' = 0}^{t} [M_{2p}(t') - M_{2p}(t)]. \quad (11)$$

Since $M_2(t)$ diverges at large t, from (11) the leading term in the first sum of (11) is that with $k = p - 1$, like in the simple RW. But unlike in the RW, the left-hand-side $M_{2p}(t + 1) - M_{2p}(t) \to 0$ and can be neglected, since it is $\simeq dM_{2p}/dt \propto (\ln t)^{p-1}/t$. Thus, using Eqs. (9) and (11), Eq. (11) gives the following relation for the a_p's:

$$a_p = p(2p - 1)a_{p-1} \lim_{t \to \infty} \frac{(t + 1)(\ln t)^{p-1}}{\sum_{t' = 0}^{t} [(\ln t)^p - (\ln t')^p]}. \quad (12)$$

The limit in (12) turns out to be $1/p$ (30). Therefore relation (10) is obtained, implying the Gaussian form (2).

This analysis illustrates that, here, Gaussianity is not the result of random increments producing fluctuations that scale as \sqrt{t}, but rather emerges in a process with very small fluctuations (of order $\sqrt{\ln t}$) from a balance between purely random steps and recurrent memory steps.

To examine how a_p/a_{p-1} converges towards $2p - 1$, we relax the condition that a_p is constant. Assuming that $da_p(t)/dt$ does not decay slower than an inverse power law of time, one can still neglect the left-hand-side of (11). Keeping the terms of order $(\ln t)^{p-1}$ and $(\ln t)^{p-2}$, the leading time-dependent correction is obtained:

$$\frac{a_p}{a_{p-1}}(t) = (2p - 1) \frac{1 + cp}{\ln t} + \mathcal{O}((\ln t)^{-2}) \quad (13)$$

with $c_p = (p - 1)[1 + q/6(1 - q)]$. It is clear from (13) that the distribution $P(u, t)$ converges extremely slowly toward the Gaussian form, due to corrections of order $1/\ln t$ in the moment relations. In standard sums of random variables, these corrections are $O(1/\sqrt{t})$. Figure 2 displays the quotient $Q_p(t) = M_{2p}(t)/[M_{2p-2}(t)M_2(t)]$ obtained from numerical simulations as a function of time, for $p = 2, 3$ and 4. If a scaling relation (9) strictly holds, $Q_p(t) = a_p/a_{p-1}$. Here, such scaling settles at $t = O(10^{10})$. At more reasonable times (e.g., $t = 10^8$), $Q_p(t)$ still differs significantly from $2p - 1$. Fig. 2 also displays $\frac{a_p}{a_{p-1}}(t)$ as given by formula (13). What seems to be a plateau at a constant value $> 2p - 1$ is actually a very slowly decaying function. The differences between the simulation and the analytical results are due to terms $O((\ln t)^{-2})$ or higher, which are not that small.

Monkey mobility data.—We now use this model to quantify how far from simple random walks are the trajectories of real animals in the wild. In principle, our model is a candidate for describing animal mobility, as the very slow growth of the MSD with t agrees qualitatively with the fact that most animals have limited diffusion or home ranges [18, 21, 31–33]. The displacements of four radio-collared capuchin monkeys were recorded during a period of six months in Barro Colorado Island, Panama. Discretized 2d positions, with resolution $\Delta t = 50$ m were obtained regularly every 10 min (see [18, 34 for details). The MSD was obtained for each individual by time-averaging the square displacements along
Nonetheless, even this small memory use by capuchin monkeys is rather intermittent.

The value of the time step is adjusted to $\Delta t = 2$ min in the model, so that the model MSD matches the monkeys’ at short time. With these parameters, the value $q \approx 0.05 \pm 0.01$ best describes the monkeys MSD over the entire range up to $t = 2000$ min (Fig. 3b). The resulting relocation rate $r \equiv q/\Delta t \approx 0.025$ min$^{-1}$ is low, suggesting that memory use by capuchin monkeys is rather intermittent. Nonetheless, even this small r strongly affects diffusion after a few hours.

Figure 4 shows the number $S(t)$ of distinct sites visited by the model walker in $2d$ with the parameters determined above, confirming the good agreement with empirical data [35]. Further insight into the recurrent properties of these walks is given by the distribution function of the number m of visits per site, $P_\ell^{(v)}(m)$. Scale-free distributions often are an outcome of preferential rules, such as in Yule processes [36, 37] or network growth models with preferential attachment [38]. In a model trajectory, many sites are visited only once whereas fewer sites are visited very often and thus likely to be visited again, giving rise to the formation of “hot-spots” of activity. Figure 4 shows that $P_\ell^{(v)}(m)$ in $2d$ is actually scale-free when $q \neq 0$, with an exponent α independent of q, see Eq. (8). The scaling regime is more extended for q and t large. Monkeys visitation patterns closely follow the theoretical law. Unlike in Yule processes or the reinforced walk with preferential visits of ref. [11], spatial correlations are strong here (the sites near a hot-spot are likely to be visited often, too), making the analytical calculation of $P_\ell^{(v)}(m)$ quite challenging.

Discussion.—Motivated by the modeling of animal mobility, we have studied a minimal, solvable random walk model with infinite memory where the sites visited in the past are preferentially revisited. Memory induces very slow diffusion and slowly drives the process towards Gaussianity. This latter form contrasts with the scaling functions of Markovian RW models exhibiting logarithmic diffusion (e.g., the Sinai model [39–41] or stopped diffusion (e.g., the RW stochastically reset to the origin [29]), which have exponential tails. Likewise, the scaling function of the elephant walk model [27] in the anomalous regime is not Gaussian, although its precise form is not known [42]. Our results point out a new mechanism for the emergence of Gaussian distributions, which could be generic in stochastic processes where a recurrent memory does not prevent fluctuations from diverging with time, but make them grow slower than a power-law. As a consequence, the process is asymptotically described by an effective Fokker-Planck equation with a time dependent diffusion coefficient, $D = (1 - q)/(2qt)$, see Eqs. (1)–(2). Such an effective description can be useful to study first-passage properties [43].

The primate mobility data presented here provide further evidence that memory is a key factor for home range self-organization [21, 22, 52, 33, 44, 45], and our study illustrates the need of analyzing mobility data beyond the usual random walk paradigm. Preferential rules could govern animal movements, but their biological origins still remain elusive. The present framework can be extended to more complex rules and could also be relevant to other contexts, e.g. social or economical, where the dynamics is driven by a combination of exploratory behaviors and traditions [46].

We thank M.C. Crofoot, H. Larralde, F. Leyvraz, G. Oshanin, I. Pérez-Castillo, A. Robledo, S. Thurner and P.D. Walsh for fruitful discussions and D. Aguilar for technical support. This work was supported by the Grant IN103911 of the Universidad Nacional Autónoma de México.

* Electronic address: boyer@fisica.unam.mx

[1] P. Turchin, *Quantitative analysis of movement*. (Sunderland, MA. Sinauer Associates Inc, 1998).

[2] E. A. Codling, M. J. Plank, and S. Benhamou, J. R. Soc. Interface 5, 813 (2008).

[3] G. M. Viswanathan, M. G. E. da Luz, E. P. Raposo, and H. E. Stanley, *The Physics of foraging* (Cambridge, Cambridge, 2011).

[4] J. M. Morales, D. T. Haydon, J. Frair, K. E. Holsinger, J. M. Fryxell, Ecology 85, 2436 (2004).

[5] R. Nathan et al., Proc. Natl. Acad. Sci. USA 105, 19052 (2008).

[6] D. W. Sims et al., Nature 451, 1098 (2008).

[7] N. E. Humphries, H. Weimerskirch, N. Queiroz, E. J. Southall, and D. W. Sims, Proc. Natl. Acad. Sci. USA
109, 7169 (2012).
[8] D. Brockmann, L. Hufnagel and T. Geisel, Nature 439, 462 (2006).
[9] M. C. González, C. A. Hidalgo and A.-L. Barabási, Nature 453, 779 (2008).
[10] C. Song, Z. Qu, N. Blumm and A.-L. Barabási, Science 327, 1018 (2010);
[11] C. Song, T. Koren, P. Wang and A.-L. Barabási, Nature Phys. 6, 818 (2010).
[12] G. M. Viswanathan, E. P. Raposo, M. G. E. da Luz, Phys. Life Rev. 5, 133 (2008).
[13] F. Bartumeus, M. G. E. da Luz, G. M. Viswanathan, J. Catalan, Ecology 86, 3078 (2005).
[14] O. Bénichou, M. Coppey, M. Moreau, P.-H. Suet, and R. Voituriez, Phys. Rev. Lett. 94, 198101 (2005).
[15] O. Bénichou, C. Loverdo, M. Moreau, and R. Voituriez, Rev. Mod. Phys. 83, 81 (2011).
[16] F. Bartumeus, Oikos 118, 488 (2009).
[17] X.-W. Wang, X.-P. Han, B.-H. Wang PLoS ONE 9, e84954 (2014).
[18] D. Boyer, M. C. Crofoot and P. D. Walsh, J. R. Soc. Interface 9, 842-847 (2012).
[19] C. H. Janson and R. Byrne, Anim. Cogn. 10, 357 (2007).
[20] W. F. Fagan et al., Ecol. Lett. 16, 1316 (2013).
[21] A. O. Gautestad and I. Mysterud, Am. Nat. 165, 44 (2005).
[22] A. O. Gautestad and I. Mysterud, Ecol. Complex. 3, 44 (2006).
[23] B. Davis, Probab. Theor. Related Fields 84, 203 (1990).
[24] H. G. Othmer and A. Stevens, SIAM J. Appl. Math. 57, 1044 (1997).
[25] J. Choi, J. I. Sohn, K. I. Goh, I. M. Kim, EPL 99, 50001 (2012).
[26] M. Serva, Phys. Rev. E 88, 052141 (2013).
[27] G. M. Schütz and S. Trimper, Phys. Rev. E 70, 045101(R) (2004).
[28] J. C. Cressoni, M. A. A. da Silva, and G. M. Viswanathan, Phys. Rev. Lett. 98, 070603 (2007).
[29] M. R. Evans and S. N. Majumdar, Phys. Rev. Lett. 106, 160601 (2011).
[30] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions (Dover, New York, 1970).
[31] P. R. Moorcroft and M. A. Lewis, Mechanistic home range analysis (Princeton University Press, Princeton, 2006).
[32] L. Börger, B. D. Dalziel and J. M. Fryxell, Ecol. Lett. 11, 637 (2008).
[33] B. van Moorter et al., Oikos 118, 641 (2009).
[34] M. C. Crofoot, I. C. Gilby, M. C. Wikelski and R. W. Kays, Proc. Natl. Acad. Sci. USA 105, 577 (2008).
[35] Since animal positions were recorded every 10 min and not every $\Delta t = 2$ min, the position of the model walker was recorded once every 10/2 = 5 steps and $S(t)$ computed from such undersampling.
[36] G. U. Yule, Phil. Trans. R. Soc. (London) B 213, 21 (1925).
[37] H. A. Simon, Biometrika 42, 425 (1955).
[38] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[39] H. Kesten, Physica A 138, 299 (1986).
[40] A. O. Golosov, Russ. Math. Surv. 41, 199 (1986).
[41] P. Le Doussal, C. Monthus, and D. S. Fisher, Phys. Rev. E 59, 4795 (1999).
[42] M. A. A. da Silva, J. C. Cressoni, G. M. Schütz, G. M. Viswanathan, and S. Trimper, Phys. Rev. E 88, 022115 (2013).
[43] S. C. Lim and S. V. Muniandy, Phys. Rev. E 66, 021114 (2002).
[44] D. Boyer and P. D. Walsh, Phil. Trans. R. Soc. A 368, 5645 (2010).
[45] J. Nabe-Nielsen, J. Tougaard, J. Teilmann, K. Lucke, and M. C. Forchhammer, Oikos 122, 1307 (2013).
[46] J. G. Foster, A. Rzhetsky, J. A. Evans, arXiv:1302.6006 [physics.soc-ph] (2013).