Experimental study on rule of radioactive change of red mud concrete

Bin Wu 1,2,* Zhuoying Tan 1 and Zhongtao Yu 3

1 School of Civil and Environmental, University of Science and Technology Beijing, China
2 Department of Construction Engineering, Liaoning Provincial College of Communications, Shenyang Liaoning, China
3 Technology Department, Liaoning Provincial College of Communications, Shenyang Liaoning, China

*Corresponding author e-mail: 66084537@qq.com

Abstract. Red mud was used to partially replace cement to prepare red mud concrete, with replacement rate of red mud mass being 0%, 5%, 10%, 15% and 20% respectively, and hydration age being 3d, 28d and 90d. The experiment of cube compressive strength and radioactivity were conducted for 90 cubical test pieces respectively. The results show that with rise of replacement rate of red mud, the cube compressive strength of red mud concrete at the same hydration age first increased and then decreased, leading to increase of content of 226Ra, 232Th, 40K in red mud concrete, and increase of material's radioactivity accordingly; as hydration age was prolonged, with the replacement rate of red mud being the same, the compressive strength increased, and internal and external exposure indices and total specific activity all increased yet with small increase range. Generally the hydration age does not significantly influence the radioactivity of red mud concrete.

1. Introduction

As the solid waste produced in production of alumina, the red mud has high alkali content, leading to severe pollution to the ambience. China, a large producer of aluminium, discharges substantive red mud each year to increasingly cause the problem of red mud treatment [1]. Presently, the main domain treating red mud is the industry of building materials. As red mud is somewhat radioactive [2], applying it to building materials exposes the surrounding environment to radiation for long, thereby influencing the health of people around. The environment with low-dose radiation causes dizziness and tinnitus, hypomnesia and skin injury, while the high dose causes chromosomal variation to be entailed on next generation or several generations, even causes death. Thus, the radiological hazard of red mud has severely hindered its extensive application in the industry of building materials [3]. Some research has been done on the application of red mud to concrete at home and abroad [4-9], yet little research has been done on the rule of radioactivity of red mud concrete. Thus, radioactivity tests were conducted on 90 red mud concrete specimens to explore the influence of radioactivity of radionuclides, especially 226Ra, 232Th, 40K, on specific activity.
2. General situation of experiment

2.1. Experimental materials
Cement: Yatai ordinary Portland cement with strength level of 42.5, its basic performance is in table 1; sand: common natural fluvial sand, its basic performance is in table 2; coarse aggregate: natural continuously graded rubble with maximum particle size of 20mm, as shown in table 3; red mud: red mud produced in the process of bayer method in Shandong Weiqiao Beihai Alumina Factory, its basic chemical composition is in table 4; mixing water: tap water from laboratory.

Table 1	Basic properties of cements					
Specific surface area/m².kg⁻¹	Setting time/min	Compressive strength/MPa	Flexural strength/MPa			
	Initial set	Final set	3d	28d	3d	28d
355	255	315	23.7	46.3	5.8	7.3

Table 2	Basic properties of fine aggregate					
Mud content of natural sand %	Apparent density/kg.m⁻³	Loose density/kg.m⁻³	alkali-aggregate reaction %	Grading area	Fineness module	Degree of thickness
1.3	2650	1490	0.04	II	2.96	Medium sand

Table 3	Basic properties of coarse aggregate				
Course aggregate type	Grading /mm	Bulk density/kg.m⁻³	Apparent density/kg.m⁻³	Absorption %	Crushing index %
Course aggregate I	5-10	1520	2740	1.1	—
Course aggregate II	10-20	1500	2760	0.9	17.8

Table 4	Red mud chemical composition											
Chemical components	Al₂O₃	Na₂Ok	Fe₂O₃	SiO₂	TiO₂	CaO	CO₂	H₂O	H₂O附	Loss on ignition	PH	Density/ g.cm⁻³
%	23.73	7.39	28.79	24.63	2.22	2.69	0.97	8.59	1	14.94	11.3	3.2

2.2. Preparation of red mud concrete
The red mud concrete was prepared by replacing cement in concrete with equal mass of red mud. Altogether 5 replacement rates of red mud mass were considered: r = 0%, 5%, 10%, 15%, 20%. When r = 0%, the concrete is normal concrete, which was taken as reference concrete. Normal concrete composition was designed as per literature [10]: first defined dosage of different materials, then replaced cement by 5 replacement rates of red mud mass to prepare 45 red mud concrete specimens (150mmx150mmx150mm), which were cured for 3d, 28d, 90d in standard curing conditions respectively, then conducted experiment. The mixture proportion is in table 5.

2.3. Experiment method
The compression test for all the samples was conducted on 200t microcomputer controlled compression testing machine. The test set is as shown in fig.2. The radiation test on red mud concrete utilized CIT-3000F low-background multi-channel gamma spectrometer produced by Sichuan
Xinxianda Measurement and Control Technology Co., Ltd. to determine the compressive strength for concrete at 3d, 28d and 90d of hydration age and radioactive specific activity of 226Ra, 232Th, 40K.

Table 5 The mixture proportion of red concrete

No.	Red mud	Cement	Fine aggregate	Course aggregate I	Course aggregate II	Water	Water-reducing admixture
RMC-0	0	360	780	216	862	162	3.6
RMC-5	18	342	780	216	862	162	3.6
RMC-10	36	324	780	216	862	162	3.6
RMC-15	54	306	780	216	862	162	3.6
RMC-20	72	288	780	216	862	162	3.6

Figure 1. Several specimens after fabricating. Figure 2. Test device

3. Result and discussion

3.1. Influence of replacement rate of red mud on compressive strength of red mud concrete

Under different replacement rates of red mud, the cube compressive strength of red mud concrete at different hydration ages is as shown in fig.3. With increase of replacement rate of red mud, the cube compressive strength of red mud concrete at 3d, 28d and 90d first increased and then decreased, being the largest when the replacement rate of red mud $r=5\%$: 20.66MPa, 41.83MPa, 47.12MPa respectively, with strength improved by 9.54%, 46.93% and 31.51% compared with normal concrete whose replacement rate of red mud $r=0\%$; When the replacement rate of red mud $r=20\%$, the compressive strength was the smallest, being 18.48MPa, 28.32MPa and 30.90MPa respectively, with strength reduced by 2.05%, 0.50% and 13.77% compared with normal concrete whose replacement rate of red mud $r=0\%$. Thus, the longer the hydration age was, the more obvious the improvement on strength of red mud concrete was. When $r=20\%$, the compressive strengths of red mud concrete in all the hydration ages was basically equal compared with that of normal concrete, indicating the red mud can deliver significant effect when replacing the cement.

3.2. Influence of replacement rate of red mud on radioactivity of red mud concrete

The detection result of radioactivity of red mud concrete under different replacement rates of red mud is as shown in fig.4. The internal and external exposure indices and total specific activity at all hydration ages and under all replacement rates are in table 6. Fig.4 and table 6 show that with increase of replacement rate of red mud, the internal and external exposure indices and total specific activity of red mud concrete at 3d, 28d and 90d all increased, with increase ranges at 3d being respectively 188.5%, 156.1% and 142.5%; increase ranges at 28d being respective 197.3%, 163% and 152.2%,
increase ranges at 90d being 200.2%, 165.5% and 154.8%. The reason is that the more the red mud in red mud concrete is, the higher the content of 226Ra, 232Th and 40K in red mud concrete is, and the stronger the radioactivity of material is.

![Figure 3. Relationships between f_{cu} and r](image)

Table 6 Influence of red mud on radioactivity of red mud concrete

No.	I_{Ra}	I_{r}	Total specific activity /Bq.kg$^{-1}$
RMC-0-3d	0.2965	0.2088	82.8
RMC-5-3d	0.5220	0.3426	131
RMC-10-3d	0.7440	0.4630	175.5
RMC-15-3d	0.7865	0.4898	185
RMC-20-3d	0.8555	0.5348	200.8
RMC-0-28d	0.2965	0.2084	81.1
RMC-5-28d	0.5400	0.3512	133
RMC-10-28d	0.7650	0.4736	178.2
RMC-15-28d	0.8100	0.5026	188.4
RMC-20-28d	0.8815	0.5481	204.5
RMC-0-90d	0.2965	0.2083	80.8
RMC-5-90d	0.5505	0.3572	134.8
RMC-10-90d	0.7725	0.4784	179.5
RMC-15-90d	0.8250	0.5106	191
RMC-20-90d	0.8900	0.5530	205.9

![image](a)

![image](b)
3.3. Influence of hydration age on radioactivity of red mud concrete

The detection result of radioactivity of red mud concrete at different hydration ages is as shown in Fig. 5 and Table 6. With prolonging of hydration age, the internal and external exposure indices and total specific activity all increased yet with small increase range, which indicates that generally the hydration age does not significantly influence the radioactivity of red mud concrete.

3.4. Analysis on mechanism of radioactive shielding

The coarse aggregate in raw material and red mud replacing cement are all materials with certain natural radioactivity [11]. The radioactivity is mainly from the α, β and γ rays released when nuclear decay occurs to 226Ra, 232Th and 40K [12-13]. In the process of hydration of red mud concrete, on the one hand, the clinker minerals incessantly release radionuclide ions to lead to rise of radioactive specific activity; on the other hand, the C-S-H gel produced in hydration process absorbs and envelops the radionuclide to some extent, thereby sealing the radionuclide ions released by clinker minerals into solidified body to lead to drop of radioactive specific activity.

With replacement rate of red mud being fixed, with the increase of hydration age, the internal and external exposure indices and total specific activity increased slightly, which was caused by joint effect of above two aspects. Analysis on test data shows that in hydration process, the 226Ra in clinker minerals was incessantly released, while 226Ra is instable in water and prone to be absorbed into C-S-H gel. But the alite structure cannot block the γ rays released by 226Ra; 232Th is very stable in nature, with little change in radioactive specific activity in hydration; 40K can be rapidly fused into hydration liquidoid, while water can shield the radioactivity of 40K to some extent. In the hydration process, 40K was enveloped in hydrated product of Si-OK [14-15], with little change in radioactive specific activity. To sum up, with replacement rate of red mud being fixed, with prolonging of hydration age, the internal and external exposure indices and total specific activity all increased yet with small increase range.
Figure 5. Influence of hydration ages on radioactivity of red mud concrete

4. Conclusion
After experimental study on radioactivity of red mud concrete, the paper preliminarily draws following conclusions:

(1) Under the same replacement rate, the longer the hydration age is, the more obvious the improvement on strength of red mud concrete is. When r=20\%, the compressive strengths of red mud concrete at all the hydration ages are basically equal compared with that of normal concrete.

(2) With increase of replacement rate of red mud, the cube crushing strength of red mud concrete first increases and then decreases, being the highest when r=5\%, and lowest when r=20\%.

(3) The more the red mud in red mud concrete is, the higher the content of 226Ra, 232Th and 40K in red mud concrete is, and the stronger the radioactivity of material is.

(4) With prolonging of hydration age, the internal and external exposure indices and total specific activity all increased yet with small increase range, indicating generally the hydration age does not largely influence the radioactivity of red mud concrete.

(5) Table 6 shows that the internal and external exposure indices all meet the requirements of literature [16].

Acknowledgments
This work was financially supported by National Natural Science Foundation of China and Liaoning Province Natural Science Foundation fund.

References
[1] MA Hongkun, YU Qizheng, ZHONG Jingbo etc, Comprehensive Utilization of Red Mud in Building Materials[J]. The World of Building Materials, 2012, 33(5):9-12.
[2] POWER G, GRAFE M, KLAUBER C. Bauxite residue issues: II. Options for residue utilization[J]. Hydrometallurgy, 2011, 108:11-32.
[3] HUANG Yingchao, WANG Ning, WAN Jun etc. Comprehensive Utilization of Red Mud and Control Techniques of Radioactive Issues[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2009, 28(2):128-130.
[4] Rudraswamy M.P, Dr.K.B.Prakash. An experimental investigation on the effect of alternate wetting and drying on the properties of concrete produced by red mud [J]. International Journal of Advanced Research, 2014, 2(1):473—484.
[5] D. Linora Metilda, C. Selvmony, R. Anandakumar, A. Seeniu. Investigations on optimum possibility of replacing cement partially by red mud in concrete[J]. Scientific Research and Essays, 2015, 10(4):137—143.
[6] Pratik Deshmukh. Efficient Use of Aluminum Industry Waste (Red Mud) for High Quality Self Compacting Concrete[J]. International Journal of Advanced Research, 2015, 3(12):759—764.
[7] LING Naixing, Zhang Dengliang. Analysis of Mechanical Properties of Cement Red Mud Concrete [J]. Journal of Xi’an Highway University, 1995, 15(3): 1—4.
[8] LING Naixing, Zhang Dengliang, Yan Zuxing. Strength mechanism of cement red mud concrete [J]. J. Xi’an Univ. of Arch. a Tech, 1996, 28(2): 147—151.
[9] YAN Zuxing. The Application and Research of Cement-red Mud Concrete [J]. Concrete, 2000, 132(10): 18—20.
[10] JGJ55-2011 Specification for mix proportion design of ordinary concrete[S]. Beijing: China Architecture and Building Press, 2011.
[11] WANG Xinfu. Slag Radioactive Influence on Cement Property [J]. Cement technology, 2005, 28(4): 83—84.
[12] ZENG Zhaohua. The relation between the cancers and Th element in the soil environment of china [J]. Hunan geology, 1999, 18(4): 245—248.
[13] DU Hengyan. The research about radioactivity level of associated mineral in Chongqing [D]. Beijing: Tsinghua University, 2008.
[14] Chen Xufeng, Lu Chunxuan. Effect of alkali on hydration process and properties of cement [J]. Journal of the Chinese ceramic society, 1993, 21(4): 301—308.
[15] FENG Xiaoxin, FENG Naiqian. Investigation of the Binding Forms of the Alkalis in C-S-H [J]. Journal of building materials, 2004, 7(1): 1—7.
[16] GB6566-2010 Limits of radionuclides in building materials[S]. Beijing: China Standard Press, 2010