PD-1/PD-L1 Blockade Therapy in Advanced Non-Small-Cell Lung Cancer: Current Status and Future Directions

LIANG XIA,a† YUANYONG LIU,a,b† YING WANG,a,c
aShanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; bSchool of Life Science and Technology, Changchun University of Science and Technology, Changchun, People’s Republic of China; cShanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, People’s Republic of China
†Contributed equally

Disclosures of potential conflicts of interest may be found at the end of this article.

Key Words. Immune checkpoint inhibitors • PD-1/PD-L1 • Non-small-cell lung cancer • Clinical trials • Combination therapy

ABSTRACT

The use of immune checkpoint inhibitors (ICIs) has become one of the most promising approaches in the field of cancer therapy. Unlike the current therapies that target tumor cells, such as chemotherapy, radiotherapy, or targeted therapy, ICIs directly restore the exhausted host antitumor immune responses mediated by the tumors. Among multiple immune modulators identified, the programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) axis leading to the exhaustion of T-cell immunity in chronic infections and tumors has been widely investigated. Therefore, blocking antibodies targeting PD-1 or PD-L1 have been developed and approved for the treatment of various advanced cancers, including non-small-cell lung cancer (NSCLC), making them the most successful ICIs. Compared with chemotherapy or radiotherapy, PD-1/PD-L1 blockade therapy significantly improves the durable response rate and prolongs long-term survival with limited adverse effects in both monotherapy and combination therapy for advanced NSCLC. However, extensive challenges exist for further clinical applications, such as a small fraction of benefit population, primary and acquired resistance, the lack of predictive and prognostic biomarkers, and treatment-related adverse effects. In this article, we summarize the latest clinical applications of PD-1/PD-L1 blockade therapy in advanced NSCLC worldwide, as well as in China, and discuss the bottlenecks related to the use of this therapy in clinical practice. An exploration of the underlying mechanism of PD-1/PD-L1 blockade therapy and biomarker identification will maximize the application of ICIs in advanced NSCLC and facilitate bedside-to-bench studies in cancer immunotherapy as well. The Oncologist 2019;24(Special Issue):S31–S41

Implications for Practice: Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein 1 (PD-1) and programmed cell death protein ligand 1 (PD-L1) display apparent benefits for the treatment of advanced non-small-cell lung cancer (NSCLC). However, the clinical applications of these therapies are challenged by the limited benefit population with additional high economic burden and adverse events. This review discusses the bottlenecks of ICI therapy in clinical practice and provides appropriate guidance in the development of predictive biomarkers, the establishment of the criteria for combining PD-1/PD-L1 blockade therapy with the existing therapies, and the management of adverse events observed both in monotherapy and combination therapy, which will help maximize the applications of ICIs in advanced NSCLC.

INTRODUCTION

The development of immune checkpoint inhibitor (ICI) agents targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1) or programmed cell death protein ligand 1 (PD-L1) has garnered tremendous interests in the field of immuno-oncology because of the recent successful applications in multiple advanced cancers [1–3]. Although CTLA-4 is the first immune checkpoint molecule identified in 1987 [4], the PD-1/PD-L1 axis has been widely investigated because of the role in the exhaustion of CD8+ T cells [5]. Immuno-oncologists
extended the concept to antitumor immunity, making PD-1/PD-L1 the most promising targets for drug development [6]. Therapeutic monoclonal antibodies targeting PD-1 or PD-L1 have demonstrated notable clinical efficacy in the treatment of various advanced cancers [6, 7]. Up to the end of 2017, five monoclonal antibodies targeting PD-1 or PD-L1 have been approved by the U.S. Food and Drug Administration (FDA) for the treatment of various advanced cancers (Table 1), including melanoma [8], non-small-cell lung cancer (NSCLC) [9], head and neck squamous cell cancer [10], classical Hodgkin lymphoma [11], urothelial carcinoma [12], hepatocellular carcinoma [8], Merkel cell carcinoma [13], renal cell carcinoma [14], and colorectal cancer [15]. Immune checkpoint therapy, which was first approved as second-line treatment and has been extended to first-line treatment [16, 17], becomes an alternative option for cancer therapy. In this review, we introduce the development of PD-1/PD-L1 blockade therapy and its clinical applications in advanced NSCLC. The ongoing clinical trials of PD-1 and PD-L1 inhibitors in China are also introduced, which might contribute to a better understanding of ICI therapy in China.

Table 1. Overview of anti-PD-1/PD-L1 antibodies approved by the FDA as of October 2017

Drug	Trademark	Manufacturer	Description	Approved by the FDA	Usage
Pembrolizumab	KEYTRUDA	Merck & Co	Humanized IgG4 anti-PD-1	September 4, 2014	Unresectable or metastatic melanoma Metastatic NSCLC Recurrent or metastatic head and neck squamous cell cancer Classical Hodgkin lymphoma
Nivolumab	OPDIVO	Bristol-Myers Squibb	Human IgG4 anti-PD-1	December 22, 2014	Metastatic melanoma Metastatic NSCLC Renal cell carcinoma Classical Hodgkin lymphoma Squamous cell carcinoma of the head and neck Urothelial carcinoma MSI-H or dMMR metastatic colorectal cancer Hepatocellular carcinoma
Atezolizumab	TECENTRIQ	Genentech	Humanized IgG1 anti-PD-L1	May 18, 2016	Advanced or metastatic urothelial carcinoma Metastatic NSCLC
Durvalumab	IMFINZI	AstraZeneca	Human IgG1 anti-PD-L1	May 1, 2017	Advanced or metastatic urothelial carcinoma
Avelumab	BAVENCIO	Merck KGaA/Pfizer	Human IgG1 anti-PD-L1	March 23, 2017	Metastatic Merkel cell carcinoma

Abbreviations: dMMR, mismatch repair deficient; FDA, U.S. Food and Drug Administration; MSI-H, microsatellite instability-high; NSCLC, non-small-cell lung cancer; PD-1, programmed cell death protein 1; PD-L1, programmed cell death protein ligand 1.

A BRIEF HISTORY OF CANCER IMMUNOTHERAPY

The successful treatment of an inoperable sarcoma using bacterial toxins reported by William Coley in 1910 [18] is recognized as the first example of immunotherapy. After Coley’s success, researchers since the late 1990s have made great efforts to manipulate host immune responses for cancer immunotherapy, such as interleukin-2 (IL-2) [19], lymphokine-induced killer cells [20], tumor-infiltrating lymphocytes (TILs) [21], and the first therapeutic prostate cancer vaccine [22]. However, the clinical applications of these agents remain limited, mainly because of the low therapeutic effectiveness, high toxicity when used at a large dosage, and the cost of the treatments.

The successes of immune checkpoint blockade reagents and chimeric antigen receptor T-cells against multiple cancers made cancer immunotherapy the scientific breakthrough in 2013 according to Science journal [23]. CTLA-4 and PD-1/PD-L1 are among the targets that draw great attention in the field of cancer immunotherapy. CTLA-4 was first identified by screening mouse cytolytic-T-cell-derived cDNA libraries and is mainly expressed on activated T cells and regulatory T cells (Treg) [4]. CTLA-4 inhibits T-cell proliferation and IL-2 secretion by competing with CD28 for the B7 ligands [24, 25]. The blockade of CTLA-4 has been shown to potentiate T-cell responses in vitro [26] and cause tumor rejection in vivo in murine models [27]. The therapeutic CTLA-4-blocking antibody ipilimumab has been developed since 1999 and was approved in 2011 for the treatment of advanced melanoma [28, 29]. The development of CTLA-4 blocking antibody thus became the milestone of ICIs for cancer immunotherapy. Subsequently, ICIs targeting PD-1 and PD-L1, which were cloned in 1992 and 1999, respectively [30, 31], were developed. The antitumor efficacy of these ICIs observed in clinical trials is also encouraging for multiple advanced cancers [7, 32]. At present, five ICIs targeting PD-1...
or PD-L1 have been approved by the FDA for the treatment of various cancers (Table 1), propelling cancer therapy into a new era.

Mechanisms of PD-1/PD-L1 Blockade in Immunotherapy

It is widely accepted that activated T cells are key players in restraining cancer cells initiated by T-cell receptor (TCR) recognition of peptides presented by major histocompatibility complex molecule. PD-1 is mainly expressed on activated T cells and functions as a brake of T-cell activation through binding to the PD-1 ligands PD-L1 and PD-L2 [30, 33]. Upon binding with PD-L1 and PD-L2, PD-1 is phosphorylated by the protein tyrosine kinase Lck, leading to the recruitment of the tyrosine phosphatase Shp2 and the subsequent dephosphorylation of CD28, which in turn inhibits TCR/CD28 signaling and subsequent T-cell activation signal [34–37]. The PD-1 ligand PD-L1 is expressed on multiple normal tissues and malignant cells [38]. The expression of PD-L1 is upregulated on tumor cells when exposed to interferon-γ and other cytokines that are released by local activated T cells, resulting in the resistance of tumor cells to T-cell immunity, especially within the tumor microenvironment (TME) [39, 40]. After long exposure to tumor antigens in the TME, T cells infiltrated in the TME (named TILs) become exhausted, with characteristics of high expression of PD-1 and low antitumor function [40]. Therefore, antibodies blocking PD-1/PD-L1 interaction largely rescue the function of these exhausted T cells and result in enhanced antitumor immunity [41]. With high expression of PD-1 on Tregs, which play inhibitory roles in antitumor immunity [42, 43], interruption of PD-1/PD-L1 interaction can release antitumor responses by impairing the suppressive activity of Tregs [44]. In addition to T-cell immunity, antitumor effects can also be enhanced by redirecting the function of tumor-associated macrophages [45] and the natural killer cell-dendritic cell axis in the TME [46].

PD-1/PD-L1 Blockade Therapy in Advanced NSCLC

Lung cancer is the leading cause of cancer mortality in China and worldwide [47–49]. Despite the availability of surgical resection, radiotherapy, platinum-based chemotherapy, and targeted therapies, the overall efficacies of the present therapies are still limited, with the 5-year survival rate at approximately 17.4% in NSCLC [50] accounting for approximately 80%–85% of lung cancer cases [49]. Therefore, there is still an urgent need for more clinical approaches with less toxicity and improved efficacy. Several ICIs targeting PD-1 or PD-L1 have been approved by the FDA for the clinical treatment of advanced NSCLC, demonstrating notable efficacy in clinical practice.

PD-1/PD-L1 Blockade as Second-Line Treatment in Advanced NSCLC

Nivolumab, a human anti-PD-1 monoclonal antibody, was the first PD-1/PD-L blockade agent for second-line treatment of advanced NSCLC. A series of international, open-label, randomized phase III trials have been undertaken [51]. The results from the CheckMate 017 clinical trial demonstrated that nivolumab significantly improved the overall survival (OS), the overall response rate (ORR), and progression-free survival (PFS) with acceptable safety profiles such as treatment-related adverse events (TRAEs) and mortality in patients with previously treated advanced squamous NSCLC in comparison with docetaxel (Table 2) [51]. In nonsquamous NSCLC, although the median PFS did not favor nivolumab over docetaxel (2.3 months for nivolumab vs. 4.2 months for docetaxel), the OS and ORR were significantly improved for the patients treated with nivolumab according to the results from the CheckMate 057 trial [52]. Nivolumab thus became the first ICI targeting PD-1/PD-L1 approved by the FDA for metastatic NSCLC therapy in 2015 [9]. Importantly, a pooled analysis of the two studies revealed better 2-year OS rates (23% for nivolumab vs. 8% for docetaxel in squamous NSCLC and 29% with nivolumab vs. 16% with docetaxel in nonsquamous NSCLC), indicating that nivolumab provides a long-term clinical benefit and a favorable tolerability profile compared with docetaxel in advanced NSCLC [53]. Likewise, the results of the phase II/III clinical trial study KEYNOTE 010 demonstrated that compared with docetaxel, pembrolizumab, another anti-PD-1 antibody, significantly improved the OS, PFS, and ORR of the patients with advanced NSCLC who had PD-L1 expression on ≥50% of tumor cells (Table 2) [54]. Furthermore, ICIs targeting PD-L1 also exhibit impressive benefits in the treatment of advanced NSCLC. Atezolizumab, a humanized anti-PD-L1 monoclonal antibody, significantly prolonged the OS of previously treated patients with advanced NSCLC with a favorable safety profile when compared with docetaxel treatment in both phase II (POPLAR) and phase III (OAK) clinical trials (Table 2) [55, 56].

Collectively, these results demonstrate that ICIs targeting PD-1 and PD-L1 significantly improve clinical efficacy in patients with advanced NSCLC with a favorable safety profile compared with chemotherapy [57], making anti-PD-1 and PD-L1 therapeutic antibodies a new option as second-line treatment in patients with advanced NSCLC.

PD-1/PD-L1 Blockade as First-Line Treatment in Advanced NSCLC

Based on the promising results of second-line treatment, the clinical efficacy of PD-1/PD-L1 blockade as first-line treatment for advanced NSCLC has been investigated. Results from the KEYNOTE 024 phase III trial demonstrated that compared with chemotherapy, the OS, PFS, and ORR were significantly improved by pembrolizumab in patients with PD-L1 expression on ≥50% of tumor cells (Table 2) [58]. In 2016, these data led the FDA to permit pembrolizumab as a single agent for first-line treatment of patients with metastatic NSCLC [16]. Recently, results from the KEYNOTE 042 phase III trial showed that the OS of patients treated with pembrolizumab was significantly improved even in patients with PD-L1 expression on ≥1% of tumor cells (Table 2) [59], indicating that more patients might benefit from pembrolizumab treatment. However, despite the favorable safety profile, nivolumab treatment exhibited no significant effects on improving the OS (median, 14.4 months
Trial name (line)	Number (selections)	Arms	Median OS (95% CI or p value), mo	Median PFS (95% CI or p value), mo	ORR (95% CI or p value), %	Grade 3–5 TRAEs, %	Ref.
CheckMate 017 (second)	272 (squamous)	Nivo 3 mg/kg every 2 wk	9.2 (7.3–13.3)	3.5 (2.1–4.9)	20 (14–28)	7	[51]
		Doce 75 mg/m² every 3 wk	6.0 (5.1–7.3)	2.8 (2.1–3.5)	9 (5–15)	55	
CheckMate 057 (second)	582 (nonsquamous)	Nivo 3 mg/kg every 2 wk	12.2 (9.7–15.0)	2.3 (2.2–3.3)	19 (15–24)	10	[52]
		Doce 75 mg/m² every 3 wk	9.4 (8.1–10.7)	4.2 (3.5–4.9)	12 (9–17)	54	
CheckMate 078 (second)	504	Nivo 3 mg/kg every 2 wk	12.0 (10.4–14.0)	2.8 (2.4–3.4)	16.6 (12.8–21.0)	10.0	[78]
		Doce 75 mg/m² every 3 wk	9.6 (7.6–11.2)	2.8 (1.6–2.9)	4.2 (1.7–8.5)	48.0	
KEYNOTE 010 (second)	1,034 (PD-L1 ≥1%)	Pem 2 mg/kg every 2 wk	10.4 (9.4–11.9)	3.9 (3.1–4.1)	18 ($p = .005$)	13	[54]
		Pem 10 mg/kg every 2 wk	12.7 (10.0–17.3)	4.0 (2.7–4.3)	18 ($p = .002$)	16	
		Doce 75 mg/m² every 3 wk	8.5 (7.5–9.8)	4.0 (3.1–4.2)	9	35	
OAK (second)	850	Atezo 1,200 mg every 3 wk	13.8 (11.8–15.7)	2.8 (2.6–3.3)	14	15	[55]
		Doce 75 mg/m² every 3 wk	9.6 (8.6–11.2)	4.0 (3.3–4.2)	13	43	
PACIFIC (consolidation)	709	Durva 10 mg/kg every 2 wk	23.2 (23.2–NR)	16.8 (13.0–18.1)	28.4	29.9	[76]
		Placebo	14.6 (10.6–18.6)	5.6 (4.6–7.8)	16.0 ($p < .001$)	26.1	
CheckMate 026 (first)	423 (PD-L1 ≥1%)	Nivo 3 mg/kg every 2 wk	14.4 (11.7–17.4)	4.2 (3.0–5.6)	26 (20–33)	18	[60]
		Chemo	13.2 (10.7–17.1)	5.9 (5.4–6.9)	33 (27–40)	51	
KEYNOTE 024 (first)	305 (PD-L1 ≥50%)	Pem 200 mg every 3 wk	NR	10.3 (6.7–NR)	44.8 (36.8–53.0)	26.6	[58]
		Chemo	NR ($p = .005$)	6.0 (4.2–6.2)	27.8 (20.8–35.7)	53.3	
KEYNOTE 042 (first)	1,274 (PD-L1 ≥1%)	Pem 200 mg every 3 wk	16.7 (13.9–19.7)	5.4 (4.3–6.2)	27.3	17.8	[59]
		Chemo	12.1 (11.3–13.3)	6.5 (6.3–7.0)	26.5	41.0	
CheckMate 227 (first)	1,739 (TMB higha)	Nivo + ipili	7.2 (5.5–13.2)	45.3 (36.9–54.0)	31.2	[69]	
		Chemo	5.5 (4.5–5.8)	26.9 (20.2–34.4)	36.1		
IMpower 131 (first)	1,021	Atezo + chemo	6.3 (5.7–7.1)	59.4b	68	[66]	
		Chemo	5.6 (5.5–5.7)	51.3b	56.9		
IMpower 150 (first)	692 (nonsquamous)	Atezo + BCP	19.2 (17.0–23.8)	8.3 (7.7–9.8)	63.5 (58.2–68.5)	58.5	[67]
		BCP	14.7 (13.3–16.9)	6.8 (6.0–7.1)	48.0 (42.5–53.6)	50.0	
KEYNOTE 407 (first)	560 (squamous)	Pem + chemo	58.4	64.4	[65]		
		Chemo	35.0 ($p = .0004$)	74.5			
KEYNOTE 189 (first)	616 (nonsquamous)	Pem + chemo	8.8 (7.6–9.2)	47.6 (42.6–52.5)	67.2	[64]	
		Chemo	11.3 (8.7–15.1)	4.9 (4.7–5.5)	18.9 (13.8–25.0)	65.8	

aTMB ≥10 mutations per megabase.

bData cutoff: January 22, 2018, unconfirmed.

Abbreviations: atezo, atezolizumab; BCP, bevacizumab plus carboplatin plus paclitaxel; chemo, chemotherapy; CI, confidence interval; doce, docetaxel; durva, durvalumab; ipili, ipilimumab; nivo, nivolumab; NR, not reached; OR, odds ratio; ORR, overall response rate; OS, overall survival; pem, pembrolizumab; PD-L1, programmed cell death protein ligand 1; PFS, progression-free survival; TMB, tumor mutational burden; TRAE, treatment-related adverse event.
for nivolumab vs. 13.2 months for chemotherapy) or PFS (median, 4.2 months for nivolumab vs. 5.9 months for chemotherapy) in previously untreated patients at stage IV or recurrent patients with PD-L1 expression on at least 5% of tumor cells [60]. Even in patients with high PD-L1 positivity (PD-L1 expression on ≥50% of tumor cells), no difference was demonstrated for nivolumab treatment compared with chemotherapy [60]. A retrospective analysis of the tumor mutational burden (TMB) in these studies showed that patients with a high TMB (≥2434 missense mutations) had a higher ORR (47% vs. 28%) and longer PFS (median, 9.7 vs. 5.8 months) with nivolumab treatment. However, the OS was similar between two groups regardless of the TMB level [60]. The differences in patient characteristics, such as PD-L1 positivity, gender ratio, or TMB, might contribute to the conflicting results for the different efficacy of PD-1 blockade treatments [60]. The application of nivolumab as first-line treatment for advanced NSCLC warrants more supporting data before moving into clinical practice, even in combination therapy approaches. Similar to pembrolizumab, atezolizumab also achieved a high ORR (19%) with good tolerability in patients with advanced NSCLC in a phase II trial (BIRCH) [61]. Consequently, the efficacy of atezolizumab as first-line treatment in NSCLC will be tested in a phase III trial (IMpower110) through recruiting more patients.

Although ICIs targeting PD-1 and PD-L1 have been demonstrated with impressive benefits for advanced NSCLC in first-line treatment trials, there still exists a certain population of patients who do not respond to the therapy. To increase the response rate, combinations of PD-1 or PD-L1 blockade with other treatments, such as chemotherapy, targeted therapies, and other ICIs, have been investigated and show impressive improvements in first-line treatments. For instance, in the KEYNOTE 021 phase II study, the ORR for chemotherapy plus pembrolizumab (55%) was significantly higher than that for chemotherapy alone (29%), even in patients with PD-L1 expression levels less than 1% (57% vs. 13%) [62]. The incidence of grade 3 or 4 TRAEs was 39% in combination therapy and 26% in chemotherapy, indicating a tolerated safety profile for combination therapy [62]. Considering the promising efficacy and safety profiles of combination therapy, pembrolizumab plus chemotherapy is under an accelerated approval process by the FDA as first-line treatment for patients with metastatic nonsquamous NSCLC [63]. In the following phase III studies, pembrolizumab plus chemotherapy showed a higher response rate in both nonsquamous and squamous NSCLC (Table 2) [64, 65]. In addition, atezolizumab combined with chemotherapy got a longer median PFS (6.3 months vs. 5.6 months) compared with chemotherapy alone in the phase III trial IMpower 131 (Table 2) [66]. Combined with bevacizumab (a VEGF inhibitor) and chemotherapy, atezolizumab significantly improved PFS, OS, and ORR among patients with metastatic nonsquamous NSCLC, regardless of PD-L1 expression and EGFR or ALK mutations (Table 2) [67]. In addition, the combination of ICIs targeting two or more immune checkpoint molecules also leads to a synergistic response in clinical practice. In the CheckMate 227 phase III study, the combination of nivolumab and the anti-CTLA-4 antibody ipilimumab, which regulate immune responses at different stages and through different mechanisms [68], demonstrated a longer PFS, higher ORR, and comparable adverse events compared with chemotherapy in advanced NSCLC with a high TMB (Table 2) [69]. In a phase Ib trial, the combination of durvalumab (an anti-PD-L1 blocking antibody) and the anti-CTLA-4 antibody tremelimumab has been used in a dose-escalation manner among 102 patients with advanced or metastatic NSCLC [70]. The ORR was 23% in durvalumab (10–20 mg/kg every 2 weeks or 4 weeks) treatment combined with tremelimumab (1 mg/kg) regardless of PD-L1 expression [70]. However, 36% of the 102 patients had TRAEs, and 28% discontinued treatment because of severe TRAEs, among which three deaths were related to the treatment [70]. The assessment of the safety and clinical activity of the combination of durvalumab and tremelimumab versus platinum-based chemotherapy is still ongoing [71, 72].

PD-1/PD-L1 Blockade as Third-Line Treatment in Advanced NSCLC

The BIRCH phase II trial investigated the clinical benefits of atezolizumab in first-line, second-line, and third-line treatments simultaneously in 667 patients with preselected advanced NSCLC [61]. The median OS was 23.5, 15.5, and 13.2 months in the first-line, second-line, and third-line cohorts, respectively [61]. The median PFS and ORR was comparable between the third-line (2.8 months, 18%) and second-line (2.8 months, 19%) cohorts [61]. These results suggested the efficacy of atezolizumab in the third-line treatment for patients with advanced NSCLC. In another phase II trial (ATLANTIC), the ORR of durvalumab in patients with NSCLC with EGFR and ALK positivity and ≥25% of tumor cells expressing PD-L1 was 12.2%, which was lower than those with EGFR and ALK negativity (16.4%) or those with ≥90% PD-L1 expression of tumor cells (30.9%) [73]. Because the clinical trials in this stage are limited, the efficacy of PD-1/PD-L1 blockade therapy might be warranted with more phase III trials.

PD-1/PD-L1 Blockade as Neoadjuvant and Consolidation Treatment in Advanced NSCLC

In patients with untreated and resectable early (stage I, II, or IIIA) NSCLC, nivolumab treatment exhibited few side effects (TRAE rate of any grade was 23%; of grade 3 or higher was 4.5%) and induced a major pathological response in 45% of resected tumors, demonstrating a good safety and feasibility of neoadjuvant role in early-stage NSCLC [74]. In advanced NSCLC, platinum-based doublet chemotherapy concurrent with radiotherapy is the standardized cure strategy. However, its efficacy is still poor [75]. PACIFIC is a phase III trial to compare the efficacy of durvalumab as consolidation treatment and placebo in patients with stage III NSCLC who did not had disease progression after two or more cycles of platinum-based chemoradiotherapy. The results indicated that the median OS (durvalumab, 23.2 months vs. placebo, 14.6 months), PFS (durvalumab, 16.8 months vs. placebo, 5.6 months), and ORR (durvalumab, 28.4% vs. placebo, 16.0%) were significantly improved in patients receiving durvalumab treatment [76]. Grade 3 or 4 adverse events occurred in
29.9% of patients treated with durvalumab versus 26.1% with placebo, indicating a safety profile for durvalumab (Table 2) [76]. The result suggests that durvalumab may become an effective adjuvant therapy in patients with stage III NSCLC after standard treatment. In addition, anti-PD-1/PD-L1 therapies are also under investigation in the neoadjuvant and consolidation settings for stage III NSCLC, which may provide treatment options in the management of stage III NSCLC [77].

PD-1/PD-L1 Blockade Therapy for Advanced NSCLC in China

Lung cancer is the most common cancer and the leading cause of cancer death in China [48] with a great need to improve clinical efficacy. Registered clinical trials of PD-1/PD-L1 blockade inhibitors against advanced NSCLC have been initiated since December 2015. CheckMate 078 is a randomized, open-label, and multinational phase III trial for nivolumab treatment in patients with advanced or metastatic NSCLC for whom platinum-based doublet chemotherapy has failed. This is the first Chinese study on PD-1/PD-L1 inhibitors in NSCLC. Results of CheckMate 078 showed that nivolumab significantly improved OS, ORR, and safety profiles in patients with advanced NSCLC without EGFR or ALK mutations in comparison with docetaxel (Table 2) [78]. The efficacy of nivolumab in CheckMate 078 is comparable to that in CheckMate 017 and CheckMate 057, indicating that Chinese patients with NSCLC benefit from nivolumab treatment similarly. Accordingly, nivolumab was approved by the Chinese Food and Drug Administration (CFDA) on June 15, 2018, as second-line treatment for advanced NSCLC without EGFR or ALK mutations and became the first commercialized ICI in China on August 28, 2018.

At present, several clinical trials of PD-1/PD-L1 inhibitors have been carried out to investigate the clinical efficacy in China [79]. Based on the Chinese drug trial registration website (www.chinadrugtrials.org.cn), 14 clinical trials concerning four FDA-approved drugs, nivolumab, pembrolizumab, durvalumab, and atezolizumab, are ongoing in China as of October 2017, particularly for patients with advanced NSCLC (Table 3). These include eight trials for first-line treatment (CTR20170340 for nivolumab, CTR20170044 and CTR20160097 for pembrolizumab, CTR20170012 and CTR20170158 for durvalumab, CTR20160510, CTR20160994, and CTR20170064 for atezolizumab) and six for second-line treatment (CTR20150767, CTR20170541, and CTR20171020 for nivolumab, CTR20160103 and CTR20160205 for pembrolizumab, CTR20160504 for atezolizumab; Table 3). Combination therapy is designed in 3 of 14 trials (nivolumab plus ipilimumab or chemotherapy in CTR20170541, atezolizumab plus chemotherapy in CTR20170064 and CTR20160994). Thirteen of 14 clinical trials are phase III trials, among which two trials have finished recruitment, three trials have no recruitment, and eight trials are currently recruiting patients in China (as of October 2017; Table 3).

The apparent clinical benefits of ICIs in cancer therapy have drawn great attention from Chinese pharmaceutical companies. Enormous efforts have been made to develop ICIs domestically. As indicated in the Chinese drug trial registration database, eight anti-PD-1/PD-L1 antibodies (BGB-A317, JS001, SHR-1210, IBI308, GB226, and GLS-010 targeting PD-1; KN035 and CS1001 targeting PD-L1) developed by Chinese pharmaceutical companies have been approved by the CFDA for clinical trials up to October 2017. Four of these antibodies (BGB-A317 from BeiGene, Beijing, China; JS001 from Junshi Biosciences, Shanghai, China; SHR-1210 from Hengrui Medicine, Shanghai, China; IBI308 from Innovo Biologics, Jiangsu, China) are undergoing efficacy evaluation in seven clinical trials for patients with advanced NSCLC in particular, including two trials as first-line treatment (CTR20170322 for SHR-1210, CTR20170361 for BGB-A317) and five trials as second-line treatment (Table 3). SHR-1210 plus chemotherapy is designed as combination therapy in CTR20170322 for first-line treatment and in CTR20170090 for second-line treatment (Table 3). Among seven clinical trials, three are phase III studies (CTR20170380 for IBI308, CTR20170322 for SHR-1210, and CTR20171112 for BGB-A317). The trials CTR20170380 and CTR20170322 are currently recruiting patients in China.

Challenges for PD-1/PD-L1 Blockade Therapy in Advanced NSCLC

ICI therapy using antibodies targeting PD-1 or PD-L1 has demonstrated profound clinical efficacy for advanced NSCLC. However, the clinical applications of these antibodies are still limited because of certain unsolved challenges. First, there are few predictive biomarkers to identify patients who can benefit from ICI therapy. Tissue-based PD-L1 expression is the first criterion for the prediction of ICI treatment. The expression of PD-L1 on tumor cells has been demonstrated to be associated with the efficacy of PD-1/PD-L1 blockade therapy in NSCLC [54, 80, 81]. Nevertheless, the association is quite variable among different ICIs. For example, the improvement of the OS by nivolumab for squamous NSCLC and by durvalumab for NSCLC occurs regardless of PD-L1 expression [52, 76]. The expression levels of PD-L1 are heterogeneous and dynamic in immunohistochemistry assays with different detecting antibodies, as well as various scoring cutoffs, complicating the interpretation of the results [82–84]. Panels have been investigated to explore predictive biomarkers (Fig. 1), including nonsynonymous mutation burden and neoantigen prediction [85–89], defects of mismatch repair genes or defects in mismatch repair [90, 91], microsatellite instability [92, 93], and metabolic profiles [94]. However, these predictive biomarkers must be validated in more clinical samples. Importantly, the predictive models integrating multiplex factors show potential in predicting the clinical responses of ICI therapy [89, 95]. Considering the multifactorial properties of cancer-immune cross-talk [96], the determination of theoretical predictive models based on comprehensive biomarkers might be more feasible in future applications.

The second challenge is the occurrence of TRAEs. The incidence of grade 3 or 4 TRAEs ranges from 7% to 29.9% in anti-PD-1/PD-L1 monotherapy for advanced NSCLC, whereas the percentage ranges from 26.1% to 55% in the chemotherapy group, displaying the promising safety profiles of ICI treatments (Table 2). However, the TRAE incidence is much
higher in combination therapy (Table 2). For example, 68% of patients receiving atezolizumab plus chemotherapy treatment developed TRAEs, compared with 56.9% in the chemotherapy-alone group [66]. In the pembrolizumab-plus-chemotherapy treatment group, 67.2% of the patients developed TRAEs, which is comparable to chemotherapy [64]. In the combination of durvalumab and tremelimumab, 36% of the patients developed TRAEs, resulting in the discontinuation of the treatment in 28% of the patients and three deaths [70]. So TRAEs are still a great challenge for PD-1/PD-L1 blockade therapy, and efforts should be made to decrease and predict severe TRAEs in advance in the future.

The third challenge lies in how to choose optimal combination therapy for advanced NSCLC. Combination therapy of diverse ICIs has been demonstrated to be of great potential in increasing the response rates (Table 2) [69]. Apart from chemotherapy, inhibitors targeting IDO [97], VEGF [98], CTLA-4 [70, 99], lymphocyte activating 3 [100, 101], or T-cell immunoglobulin mucin 3 [102, 103] may provide more options for combination strategies in the future. Hence, with the improvement in combination therapy, establishing guiding principles to identify the optimal combination strategy for advanced NSCLC from these combination approaches will greatly extend the clinical applications of anti-PD-1/PD-L1 antibodies in the future.

Conclusion

In recent decades, the conceptual dissection of immunoncology has highlighted the important roles of immune checkpoints in the regulation of T-cell immunity. This understanding, in turn, has facilitated the development of ICIs for clinical applications against cancers. With the approval of ICIs as both second-line and first-line treatments in advanced NSCLC, PD-1/PD-L1-based immune checkpoint therapy has provided more options for the treatment of advanced NSCLC. However, considering the fact that the response rates of these ICIs range from 14% to 20% in unslected patients, it is crucial to identify predictive biomarkers for the selection of patients who are likely to benefit from the ICI treatments. The limited size of the population with clinical benefit also raises an interest in exploring the mechanism involved, especially concerning the immunological properties of the TME. In fact, a concept of “hot” and “cold” TME has been introduced with different levels of immune checkpoint expression in different local regions [104]. The immunological outcomes related to immune checkpoint expression in the TME are still difficult to investigate, although diverse treatment efficacy has been observed [83, 84]. Therefore, new techniques, such as single-cell sequencing and multiplex immunological imaging in the TME, can be adapted to better understand the complexity and dynamics of the local TME.
immune status [105, 106]. This might in turn guide the selection of patients for precise therapy by ICIs.

In addition, combination therapy of ICIs with conventional treatments must be optimized on a case-by-case principle. Combined with conventional chemotherapy or radiotherapy, ICI treatment might exhibit synergized clinical efficacy because of the enhanced cytotoxicity of T cells. This can be mediated by antigen release and presentation under a lower tumor burden. In addition, combination therapy of ICIs with other immunological activators such as TLR agonists [107] or supporting nutrition [108] are worthy of exploration when considering the complexity of antitumor immunity. Therefore, enriching the reservoirs of ICIs and defining the immune properties of patients with cancer will help realize the individualized treatment in advanced NSCLC.

In China, the clinical applications of ICI therapy started very recently and remain at an early stage. Clinical trials are ongoing to evaluate the effects of anti-PD-1/PD-L1 antibodies in Chinese patients. Importantly, genetic, biochemical, and microbiota-associated characteristics of Chinese populations must be considered in the evaluation of clinical efficacy. For instance, Chinese patients with NSCLC have high EGFR mutation rates (50% in the Chinese population vs. 20% in Western populations) [109–111]. EGFR mutations were previously considered to be associated with low response rates in anti-PD-1/PD-L1 treatments [57, 112, 113]. The Chinese population also harbors different microbiota and microorganisms [114], as well as different biochemical and metabolic profiles [115], which may affect the efficacy of ICI treatments and biomarker profiles for the prediction and prognosis of the diseases. Therefore, together with the ongoing clinical trials, more retrospective or prospective investigations need to be carried out for the validation of treatment efficacy and exploration of biomarker determination, which will finally lead to durable control of the disease.

ACKNOWLEDGMENTS
This work was supported by a grant from the National Key R&D Program of China (2016YFC1303300), grants from the National Natural Science Foundation of China (81602573 and 81472875), and a grant from the China Postdoctoral Science Foundation (2017M611582). Editorial service was provided by Wiley Editing Services.

AUTHOR CONTRIBUTIONS
Conception/design: Liliang Xia, Yuanyong Liu, Ying Wang
Manuscript writing: Liliang Xia, Yuanyong Liu, Ying Wang
Final approval of manuscript: Liliang Xia, Yuanyong Liu, Ying Wang

DISCLOSURES
The authors indicated no financial relationships.
Oncologist exploratory predictive biomarker analysis. FDA approval summary: Nivolumab in advanced renal chemotherapy. urothelial carcinoma after platinum-containing lymphoma. FDA approval summary: Nivolumab for the treatment of recurrent or metastatic head and leukemia. FDA approval summary: Pembrolizumab for the treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst 1994;86:1159–1166.

21. Cheever MA, Higano CS. PROVENCE (sipuleucel-T) in prostate cancer: The first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 2011;17:3520–3526.

22. Couzin-Frankel J. Breakthrough of the year. Cancer immunotherapy. Science 2013;342:1432–1433.

23. Krummell MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 1995;182:459–465.

24. Krummell MF, Allison JP. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 1996;183:2533–2540.

25. Linsley PS, Greene JL, Tan P et al. Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J Exp Med 1992;176:1595–1604.

26. Leach DR, Krummell MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996;271:1734–1736.

27. Hodis FS, O’Day SJ, McDermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363:711–723.

28. Traynor K. Ipilimumab approved for metastatic melanoma. Am J Health System Pharm 2011;68:768.

29. Ishida Y, Agata Y, Shibahara K et al. Induced expression of PD-1, a novel member of the immunoglobulin superfamily, as a negative costimulatory microcluster that inhibits T-cell proliferation and interleukin-10 secretion. Nat Med 1999;5:1365–1369.

30. Brahmer JR, Tykodi SS, Chow LQ et al. Safety and efficacy of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012;366:2455–2465.

31. Keir ME, Butte MJ, Freeman GJ et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008;26:677–704.

32. Hui E, Cheung J, Zhu J et al. T-cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 2017;355:1428–1433.

33. Kamphorst AO, Wieland A, Nasti T et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 2017;355:1423–1427.

34. Yokosuka T, Takamatsu M, Kobayashi Imanishi W et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T-cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 2012;209:1201–1217.

35. Freeman GJ, Long AJ, Iwai Y et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000;192:1027–1034.

36. Okazaki T, Hongoo T. PD-1 and p1 ligands: From discovery to clinical application. Int Immunol 2007;19:813–824.

37. Dong H, Zhang W, Salomao DR et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med 2002;8:793–800.

38. Spranger S, Soppanen RM, Zha Y et al. Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci Transl Med 2013;5:200ra116.

39. Lee J, Ahn E, Kissick HT et al. Reinvigorating exhausted T cells by blockade of the PD-1 pathway. For Immunopathol Dis Therap 2015;6:7–17.

40. Wei T, Zhang J, Qin Y et al. Increased expression of immunosuppressive molecules on intratumoral and circulating regulatory T cells in non-small-cell lung cancer patients. Am J Cancer Res 2015;5:2190–2201.

41. van de Ven R, Niemeijer AN, Stam AGM et al. High PD-1 expression on regulatory and effector T-cells in lung cancer draining lymph nodes. ERJ Open Res 2017;3:0110-2016.

42. Overacre-Delgoffe AE, Chikina M, Dadey RE et al. Interferon-γ drives Treg fragility to promote anti-tumor immunity. Cell 2017;169:1130–1141.e1111.

43. Gordon SR, Maute RL, Dilkens BW et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 2017;545:495–499.

44. Barry KC, Hsu J, Broz ML et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat Med 2018;24:1178–1191.

45. Ferlay J, Soerjomataram I, Dikshit R et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359–E386.

46. Chen W, Zheng R, Baade PD et al. Cancer statistics in China, 2015. CA Cancer J Clin 2016;66:115–132.

47. Siegel R, Ma J, Zou Z et al. Cancer statistics, 2014. CA Cancer J Clin 2014;64:9–29.

48. Khanna P, Blais N, Gaudreau PD et al. Immunotherapy comes of age in lung cancer. Clin Lung Cancer 2017;18:13–22.

49. Brahmer J, Reckamp KL, Baas P et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 2015;373:123–135.

50. Borighaei H, Paz-Ares L, Horn L et al. Nivolumab versus docetaxel in advanced nonsquamous
long-term survivors of pancreatic cancer. Nature 2017;551:512–516.

96. Blank CU, Haanen JB, Ribas A et al. Cancer immunology. The "cancer immunogram." Science 2016;352:658–660.

97. Epacadostat shows value in two SCCHN trials. Cancer Discov 2017;7:OF2.

98. Einstein DJ, McDermott DF. Combined blockade of vascular endothelial growth factor and programmed death 1 pathways in advanced kidney cancer. Clin Adv Hematol Oncol 2017;15: 478–488.

99. Hellmann MD, Rizvi NA, Goldman JW et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): Results of an open-label, phase 1, multicohort study. Lancet Oncol 2017;18:31–41.

100. He Y, Yu H, Rozeboom L et al. LAG-3 protein expression in non-small cell lung cancer and its relationship with PD-1/PD-L1 and tumor-infiltrating lymphocytes. J Thorac Oncol 2017;12: 814–823.

101. Andrews LP, Marciscano AE, Drake CG et al. LAG3 (CD223) as a cancer immunotherapy target. Immunnol 2017;276:80–96.

102. Liu JF, Ma SR, Mao L et al. T-cell immunoglobulin mucin 3 blockade drives an antitumor immune response in head and neck cancer. Mol Oncol 2017;11:235–247.

103. Sakuishi K, Apetoh L, Sullivan JM et al. Targeting TIM-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 2010;207:2187–2194.

104. Teng MW, Nglow SF, Ribas A et al. Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res 2015;75:2139–2145.

105. Krieg C, Nowicka M, Guglietta S et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med 2018;24:144–153.

106. Thommen DS, Koelzer VH, Herzig P et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat Med 2018;24:994–1004.

107. Sato-Kaneko F, Yao S, Ahmadi A et al. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight 2017;2:93397.

108. Triplett TA, Garrison KC, Marshall N et al. Reversal of indoleamine 2,3-dioxygenase-mediated cancer immune suppression by systemic kynurenine depletion with a therapeutic enzyme. Nat Biotechnol 2018;36:758–764.

109. Rosell R, Moran T, Queralt C et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 2009;361:958–967.

110. D’Angelo SP, Pietanza MC, Johnson ML et al. Incidence of EGFR exon 19 deletions and L858R in tumor specimens from men and cigarette smokers with lung adenocarcinomas. J Clin Oncol 2011;29:2066–2070.

111. Shi Y, Au JS, Thongprasert S et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol 2014;9: 154–162.

112. Nishio M, Hida T, Atagi S et al. Multicentre phase II study of nivolumab in Japanese patients with advanced or recurrent nonsquamous non-small cell lung cancer. ESMO Open 2016;1:e000108.

113. Gainor JF, Shaw AT, Sequist LV et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: A retrospective analysis. Clin Cancer Res 2016;22: 4585–4593.

114. Gupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol 2017;8:1162.

115. Wulan SN, Westerterp KR, Plasqui G. Ethnic differences in body composition and the associated metabolic profile: A comparative study between Asians and Caucasians. Maturitas 2010;65:315–319.

116. Cabel L, Riva F, Servois V et al. Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: A proof-of-concept study. Ann Oncol 2017;28:1996–2001.

117. Sanmamed MF, Perez-Gracia JL, Schalper KA et al. Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients. Ann Oncol 2017;28:1988–1995.

118. Teraoka S, Fujimoto D, Morimoto T et al. Early immune-related adverse events and association with outcome in advanced non-small cell lung cancer patients treated with nivolumab: A prospective cohort study. J Thorac Oncol 2017;12:1798–1805.

119. Huang AC, Postow MA, Orlowski RJ et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 2017; 545:60–65.

120. Bagley SJ, Kothari S, Aggarwal C et al. Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer. Lung Cancer 2017;106:1–7.

121. Kamphorst AQ, Pillai RN, Yang S et al. Pro-liferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc Natl Acad Sci USA 2017;114: 4993–4998.

122. Geng Y, Shao Y, He W et al. Prognostic role of tumor-infiltrating lymphocytes in lung cancer: A meta-analysis. Cell Physiol Biochem 2015;37:1560–1571.