Clinico-etiological profile of microbial keratitis: A pilot study from the foothills of Himalayas

Dear Editor:

Microbial keratitis (MK) is known to be one of the most significant causes of monocular blindness in developing countries.[9] Therefore, the knowledge of etiology in a specific region is crucial for the optimal management of these infections. Hence, this study was undertaken to determine the etiology of MK at a tertiary health care institute and to explore epidemiological risk factors.

The age, sex, occupation, and various predisposing factors for suspected cases of MK were recorded for 120 patients. Corneal scrapings that were collected using a sterile Bard-Parker blade (N15) were inoculated on 5% sheep blood agar, chocolate agar, Sabouraud dextrose agar (SDA) (HiMedia, Mumbai). Smears were prepared for Gram staining and wet mount for 10% potassium hydroxide (KOH) and calcofluor white (CFW) staining (HiMedia Laboratories, Mumbai, India).

There was a male preponderance in the study, with a male to female ratio of 2:1. The mean age of patients was 48.9 years and a maximum number of patients, that is, 53% (64/120) belonged to 41–60 years age group. Among the participants, 72% (n = 86/120) belonged to the rural background and 52% (n = 63/120) had an agricultural occupation. Table 1 shows the demographic parameters of the patients enrolled in the study and associated predisposing factors if present. Corneal trauma was the chief predisposing factor documented in 39% (n = 47/120) of cases. Two cases of chemical exposure were noticed. One because of an occupational exposure to cement and the other one due to a broad fungicidal agent containing copper oxychloride (commercially available as Cutox by Gharda Chemicals Ltd., Mumbai, India).

Table 1: Demographic parameters of the patients (n=120) enrolled in the study and predisposing factors associated

Demographics	Particulars	Number (%)
Gender	Male	80 (67)
	Female	40 (33)
Age in years	<20	6 (5)
	21-40	35 (29)
	41-60	64 (53)
	61 onwards	15 (13)
Residence	Rural	86 (72)
	Urban	34 (28)
Occupation	Agricultural	63 (52.5)
	Non-agricultural	57 (47.5)
Predisposing factors (documented in 55/120, that is, 46% cases)		
Corneal trauma		47 (39)
Preexisting illness		5 (4.2)
Structural abnormality		2 (1.7)
Use topical steroids		1 (0.8)
Contact lens		0 (0)
Traumatic agents (documented in 47/120, that is, 39% cases)		
Vegetative matter/wooden stick		32 (27)
Stone/particle		5 (4)
Chemical		2 (2)
Rubbing of eyelid		2 (2)
Nail		2 (2)
Hair		2 (2)
Occupational hazard		1 (1)
Trauma by insect		1 (1)

KOH mount/CFW staining was positive for fungal elements in 40% of cases (n = 48/120). On Gram staining, Gram-positive cocci in 7% (n = 8/120) of cases and Gram-negative bacilli in 2.5% (n = 3/120) of cases were seen. In one patient, on Gram stain, a cluster of ovoid spore-like structures was also seen resembling *Microsporidia* species. Growth in culture was obtained in 50% of cases (n = 60/120). Fungal growth in 26% (n = 31/120) of cases and bacterial growth in 22% (n = 27/120) of cases was obtained. In 2% (n = 2/120) of cases, scraping yielded significant growth of more than one species of fungi or growth of bacteria along with the fungus. Overall, infective etiology could be established in 51% (n = 61/120) of cases according to the predefined criteria. Table 2 summarizes identified causative micro-organisms responsible for the infection.

In the study, 41–60 was the most coon age group which is in concordance with studies from other parts of India.[2,3] There was a male predominance which can be attributed to outdoor work done by them. Similar findings were reported by many authors.[4-6] Patients engaged in agricultural work were more affected because of exposure to trauma. Trauma

[10.4103/ijo.IJO_222_20](https://www.ijo.in/article-access.php?ref=10.4103/ijo.IJO_222_20)
Table 2: Distribution of identified pathogens from microbial keratitis cases in 1 year study period (n=64)

Pathogens	Identification by conventional method	Pure isolate in culture (number)	Mixed with other species in culture (number)
Fungal isolates (n=34)			
Fusarium species	18	16	2
Aspergillus flavus	5	4	1
Aspergillus fumigatus	3	3	-
Pseudallescheria boydii	3	3	-
Curvalaria geniculata	3	3	-
Curvalaria lunata	1	1	-
Geotrichum	1	-	-
Gram positive bacterial isolates (n=16)			
Staphylococcus epidermis	13	13	-
Staphylococcus aureus	2	2	-
Streptococcus pneumoniae	1	1	-
Gram negative bacterial isolates (n=13)			
Pseudomonas species	8	8	-
Acinetobacter baumannii complex	3	3	-
Klebsiella pneumoniae	1	-	1
Escherichia coli	1	-	1
Non-cultivable microorganism (identified on basis of direct microscopy)			
Microsporidia	1	-	-

was the most significant risk factor observed. Agricultural practices in rural areas and humid environment in the state of Uttarakhand is favorable for the development of MK from minor trauma.[4]

In our study, fungal pathogens outnumbered bacterial pathogens. Fusarium was the most common fungus isolated which is in contrast to other studies from north India.[6] Compared to other infective corneal ulcers, fungal corneal ulcers are difficult to diagnose as well as treat. Hence, rapid communication between microbiologists and ophthalmologists is of utmost significance.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Ranjana Rohilla, Suneeta Meena, Neeti Gupta¹, Aroop Mohanty, Neelam Kaistha, Pratima Gupta, Amit Mangla, U Sasi Rekha, Balram Ji Omar

Departments of Microbiology and Ophthalmology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India

Correspondence to: Dr. Suneeta Meena, Department of Microbiology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India.
E-mail: suneetameena@gmail.com

References
1. Chidambaram JD, Prajna NV, Srikanthi P, Lanjewar S, Shah M, Elakkiya S, et al. Epidemiology, risk factors, and clinical outcomes in severe microbial keratitis in South India. Ophthal Micr Epidemiol 2018;2018:25:297-305.
2. Bharathi MJ, Ramakrishnan R, Vasu S, Meenakshi R, Palaniappan R. Epidemiological characteristics and laboratory diagnosis of fungal keratitis. A three-year study. Indian J Ophthalmol 2003;51:315-21.
3. Basak SK, Basak S, Mohanta A, Bhowmick A. Epidemiological and microbiological diagnosis of suppurative keratitis in gangetic West Bengal, Eastern India. Indian J Ophthalmol 2005;53:17-22.
4. Manikandan P, Abdel-hadi A, Babu Singh YR, Revathi R, Anita R, Banawas S, et al. Fungal keratitis: Epidemiology, rapid detection, and antifungal susceptibilities of Fusarium and Aspergillus isolates from corneal scrapings. Biomed Res Int 2019;2019:6395840.
5. Deorukhkar S, Katiyar R, Saini S. Epidemiological features and laboratory results of bacterial and fungal keratitis: A five-year study at a rural tertiary-care hospital in Western Maharashtra, India. Singapore Med J 2012;53:264-7.
6. Satpathy G, Ahmed NH, Nayak N, Tandon R, Sharma N, Agarwal T, et al. Spectrum of mycotic keratitis in north India: Sixteen years study from a tertiary care ophthalmic centre. J Infect Public Health 2019;12:367-71.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Cite this article as: Rohilla R, Meena S, Gupta N, Mohanty A, Kaistha N, Gupta P, et al. Clinico-etiologic profile of microbial keratitis: A pilot study from the foothills of Himalayas. Indian J Ophthalmol 2020;68:2323-4.

© 2020 Indian Journal of Ophthalmology | Published by Wolters Kluwer - Medknow