Facile Detection of Oil Adulteration using UV-Visible Spectroscopy Coupled with Chemometric Analysis

Nina Gusti¹, Dinda Oktarina¹, Rina Elvia¹, Euis Nursa’adah¹, Rendy W. Wardhana¹, Agus Sundaryono¹, M. Lutfi Firdaus¹*

¹ Graduate School of Science Education, University of Bengkulu, Indonesia
*Corresponding author: lutfi@unib.ac.id

Abstract

Engine and machine oils, better known as lubricant, is a fast-moving part within the motorcycle and automobile industries. Due to its high demand, these oils are often counterfeited by irresponsible people to get more profit. The thing most often done to adulterate oil is by mixing it with other low-quality or used oil. Here, we propose a simple analytical method to identify oil adulteration by using UV-Visible spectroscopy coupled with chemometric analysis. A number of 425 genuine and adulterated oils were used as samples. After appropriate dilution using n-hexane, the samples were analyzed by UV-Visible spectrophotometer followed by Principle Component Analysis (PCA) and Principle Component Regression (PCR) as part of the chemometric analysis. The results show that prediction samples were accurately classified into their corresponding groups with PCA scores of 49% and 27% for principal component 1 and 2, respectively. PLS model achieved a good prediction to detect lubricant oil adulteration, with R-square of predicted and reference samples were 0.9257 and 0.9204, respectively. The proposed method shows a promising alternative to the conventional chemical method using a more sophisticated instruments such as GC-MS and HPLC for oil or other organic compound identification.

Keywords

Lubricant oil, adulteration, UV-Visible spectroscopy, chemometrics, multivariate analysis

1. INTRODUCTION

Lubricant, generally, contains 90% base oil and less than 10% additives. Base oil may derive from petroleum fractions, mineral oils, vegetable oils or synthetic liquids such as hydrogenated polyolefins, esters, silicones, fluorocarbons and many others (Iłowska et al. (2018); Liu et al. (2019a)). Synthetic oil is a man-made lubricant that consists of chemically modified materials such as petroleum components (Liu et al., 2019b). Oil is used as lubricant due to it reduces friction; the lubricant is more slippery than the components it is applied to. A reduction in friction generate easier movement, less wear on components, and reduced energy needs of the system (Díaz Tovar et al., 2018). Currently, renewable lubricants with tailored molecular architecture are also introduced to the market (Liu et al., 2019a). High population growth followed by the increase of purchasing power has resulted in more vehicles being produced and used worldwide. Engine (lubricant or machine) oil is one of the fast-moving items in a vehicle whose production is increasing due to the high demand. This results in increasing oil price, accompanied by the oil adulteration that is becoming more widespread. Therefore, it is necessary to develop an analytical method to detect oil adulteration. Up to today, the qualitative and quantitative analysis of oil have been conducted using one or combination of HPLC, GC-MS and FT-IR (Escandar et al. (2006); Mobaraki and Hmameenjad (2011); Wiberg (2006)). Chemometrics technique were often embedded to the analysis of organic compounds for a more comprehensive and present additional insight on the analysis (Hanrahan (2008); Miller and Miller (2018)). In this paper, we report the development of UV-Vis spectrometry coupled with chemometrics technique to discriminate lubricant-oil adulteration that provide a robust and low-cost alternative to the conventional chemical method.

2. EXPERIMENTAL SECTION

2.1 Materials

Dilution of oil samples were conducted by using n-hexane as a solvent. This n-hexane and other chemicals were purchased from Merck (Darmstadt, Germany). Various lubricant oils were purchased from local market in Bengkulu city, Indonesia. Cheaper and used oils that is often used to adulterate lubricant were obtained from traditional motorbike service and workshop (Figure 1). A Genesys 20 UV-visible Spectrophotometer from Thermo Fisher Scientific (Massachusetts, USA) was used to obtain the
spectra. Quartz and glass cuvettes, beaker glass, erlenmeyer were used for samples preparation and analysis. The chemometrics analysis was done by using The Unscrambler X software from CAMO Analytics (Oslo, Norway).

2.2 Methods
As much as 5 genuine oils from different companies were purchased from the authorized motorcycle workshop. In addition, we purchased various low-quality oils and used oils from traditional motorcycle workshop as samples of mixture and adulterated oils. Before analyzed, oils were filtered and diluted with n-hexane in order to get appropriate absorbance when analyzed by UV-Visible spectrophotometer. Dilution of oil with n-hexane was conducted from 10% (9:1) to 90% (1:9) dilution factors. The prepared samples in cuvettes were scanned from 420 to 920 nm using UV-Visible spectrophotometer. A total number of 425 samples were analyzed in this research, including 5 genuine lubricant oil samples. The csv files from spectrophotometer were converted and processed with MS Excel software (Microsoft, USA) and further analyzed in Unscramble X software using two models, i.e. Principal Components Analysis (PCA) and Partial Least Squares (PLS), as chemometrics analysis (Nunes (2014); Tan et al. (2015); Wold et al. (2001)).

3. RESULTS AND DISCUSSION
3.1 UV-Visible spectroscopy
Figure 2 shows the typical spectra of UV-visible for genuine and adulterated oils at wavelength from 220 to 920 nm. The mixture of oil, including those of adulterated ones, shows distinct absorbance between 350 to 390 nm that we used as the basis to differentiate various lubricant and its mixtures using this simple least square technique. In general, a good separation between each sample were observed from 300 to 420 nm wavelength. Therefore, a good linear correlation between oil impurity and absorbance were noticed, as shown in Figure 2. However, at low wavelength from 220 to 300 nm, the noise of spectra was high and thus it is impossible to differentiate between genuine and adulterated ones using a simple and traditional linear regression. At high wavelength from 520 to 920 nm, the spectra were uniform almost for all samples. In order to obtain a more comprehensive results of adulterated oil identification, a more complex computation of the whole UV-Visible spectra using chemometric technique is necessary. Therefore, we use chemometric as multivariate analysis to elucidate the UV-Visible spectra.

A simple linear regression of oil impurity versus absorbance at wavelength of 380 nm is shown in Figure 3. Since the color of diluted oil is pale yellow, it shows a good linearity in ultra violet range with R-square = 0.9891 with linear equation of y = 1.1694x + 0.0437. Genuine oil shows a lower absorbance due to a clearer liquid compared to the adulterated ones. Absorbance ranges from 0.2 to 1.1 that shows a wide dynamic range and in turn it will provides a high sensitivity.

3.2 Chemometrics analysis
Two models of chemometrics, i.e. Principal Components Analysis (PCA) and Partial Least Squares (PLS), were chosen as multivariate techniques to analyze the principal component in oil samples. The PCA technique is well known to predict adulteration of samples with appropriate precision and sensitivity (Herrero-Latorre et al., 2019). Figure 4 shows the PCA plot derived from UV-visible spectra from 220 to 920 nm wavelength of oil using a projection onto the first two principal components. A good separation of genuine and adulterated oils was achieved with percentage of the first principal component (PC-1) and the second principal component (PC-2) were 49% and 27%, respectively. These results show that both PC-1 and PC-2 components represent 76% of the total variability, and successfully capturing the data structures. According to Sugianti et al. (2016), if the number of variants of PC 1 and PC 2 are greater than 70%,
the score plot shows a good two-dimensional visualization. Therefore, prediction samples were accurately classified into their corresponding groups of PC-1 and PC-2. Various genuine oils were identified as a cluster between -5 to -10 (PC-1) and -2 to +1 (PC-2), while those of adulterated oils were located between +5 to +10 (PC-1) and +2 to +7 (PC-2).

The second model of chemometrics technique used in this research was Partial Least Squares (PLS), as shown in Figure 5. The UV-Visible spectra from 220 to 920 nm wavelength of 425 samples were applied using a full cross-validation classification model. The R-square of predicted and reference samples were 0.9257 and 0.9204, respectively. The calibration model with R-square greater than 0.91 is treated to be an excellent prediction (Suhandy and Yulia, 2017). These high value of R-square, i.e., close to 1.0, confirm that the PLS model is appropriate to discriminate the genuine lubricant oil and adulterated ones. Furthermore, the value of mean squared error (RMSECV) was low enough for both predicted and reference samples, i.e. 0.0052 and 0.0053, respectively. These low values show that PLS model is not over fitting which is a good result for the purpose of this research (Sirisomboon and Posom, 2019).

Table 1 shows the application of chemometric techniques to analyze various samples that mixed with impurities. Most of the samples are organic compounds and thus HPLC, GC-MS, FT-IR and UV-Vis spectrometry were employed as an initial instrumentation part. Detected samples include pharmaceuticals, food, coffee, wine, and oil. The advantage of UV-Vis spectrometry among other methods is its simple operation procedure. Furthermore, colored samples such as oil can be easily detected using visible spectrometry. Further works will include the digital image colorimetry coupled with chemometric techniques and smartphone applications (Firdaus et al. (2019); Herrero-Latorre et al. (2019)). The most common chemometrics techniques used for organic analysis were PCR and PLS, including those of the present study. The results of present study show that both techniques, i.e., PCR and PLS, can be used as qualitative and quantitative analytical method to identify the adulteration of lubricant oils.

4. CONCLUSIONS

We have successfully discriminated genuine and adulterated oil samples using a simple and rapid method of UV-Vis spectrometry coupled with chemometrics technique. Both model of PCA and PLS achieved good prediction to detect lubricant oil adulteration, with R-square of predicted and reference samples were 0.9257 and 0.9204, respectively. The results suggest that the proposed method is a promising alternative with a low-cost and less chemicals for assessment of lubricant oil adulteration.

5. ACKNOWLEDGEMENT

This work was funded by Indonesian Kemenristek-BRIN, under grant number 8/E1/KPT/2020 and 036/SP2H/LT/DRPM/2020 for master thesis (M.Sc) research project.

REFERENCES

Barbosa, M. F., D. S. DO NASCIMENTO, M. GRÜNHUT, H. V. Dantas, B. S. F. BAND, M. C. U. DE ARAÚJO, and M. Insausti (2017). Fast determination of biodiesel content in commercial diesel/biodiesel blends by using digital images and multivariate calibration. Analytical Sciences, 33(11): 1285–1289.

Bhaskar, R., R. Bhaskar, M. K. Sagar, V. Saini, and K. Bhat (2012). Simultaneous Determination of Verapamil Hydrochloride and Gliclazide in Synthetic Binary Mixture and Combined Tablet Preparation by Chemometric-Assisted Spectroscopy. Journal of Analytical Sciences, Methods and Instrumentation, 02(03): 161–166.

Chen, Y., S.-B. Zhu, M.-Y. Xie, S.-P. Nie, W. Liu, C. Li, X.-F. Gong, and Y.-X. Wang (2008). Quality control and original discrimination of Ganoderma lucidum based on high-performance liquid chromatographic fingerprints and combined chemometrics methods. Analytica Chimica Acta, 623(2): 146–156.

Costa, G. B., D. D. S. Fernandes, V. E. Almeida, T. S. P. Araújo, J. P. Melo, P. H. G. D. Diniz, and G. Véras (2015). Digital image-based classification of biodiesel. Talanta, 139; 50–55.

Díaz Tovar, J. S., S. Valbuena-Duarte, and F. Racedo-Niebles (2018). Study of non-linear optical properties in automobile lubricating oil via Z-Scan technique. Revista Facultad de Ingeniería Universidad de Antioquia, (86); 27–31.

Didham, M., V. K. Truong, J. Chapman, and D. Cozzolino (2020). Sensing the Addition of Vegetable Oils to Olive Oil: The Ability of UV–VIS and MIR Spectroscopy Coupled with Chemometric Analysis. Food Analytical Methods, 13(3); 601–607.

Dinç, E. and Ö. Üstündag (2003). Spectrophotometric quantitative resolution of hydrochlorothiazide and spironolactone in

Figure 4. Principal Components Analysis (PCA) derived from UV-visible spectra of oil using a projection onto the first two principal components

Figure 5. Partial Least Squares (PLS) derived from oil UV-Visible spectra
Analytical method	Chemometric model	Sample	Reference
HPLC	PCA	Pharmaceutical (Wiberg, 2006)	
	PLS	Pharmaceutical (Chen et al., 2008)	
GC-MS	PCA	Pharmaceutical (Escandar et al., 2006)	
		(Pan et al., 2011)	
	PLS	rgb (Gröger and Zimmermann, 2011)	
FT-IR	PLS	Metabolomics (Mobaraki and Hemmateenejad, 2011)	
	PCA	Carbonyl (Foca et al., 2011)	
	PLS	Wine (Martelo-Vidal and Vázquez, 2014)	
	PCR	Pharmaceutical (Bhaskar et al., 2012)	
	PLS	Coffee (Souto et al., 2015)	
	MLA	Pharmaceutical (Dinç and Üstündağ, 2003)	
	PCA, PLS	Lubricants oil (Present study)	
	PLS	Biodiesel (Costa et al., 2015)	
	LDA	Vegetable oil (Barbosa et al., 2017)	

Escandar, G. M., P. C. Damiani, H. C. Goicoechea, and A. C. Olivieri (2006). A review of multivariate calibration methods applied to biomedical analysis. *Microchemical Journal*, 82(1); 29–42

Firdaus, M. L., A. Aprian, N. Meileza, M. Hitsmi, R. Elvia, L. Rahmidar, and R. Khaydarov (2019). Smartphone coupled with a paper-based colorimetric device for sensitive and portable mercury ion sensing. *Chemosensors*, 7(2); 25

Foca, G., F. Masino, A. Antonelli, and A. Ulrici (2011). Prediction of compositional and sensory characteristics using RGB digital images and multivariate calibration techniques. *Analytica Chimica Acta*, 706(2); 238–245

Gröger, T. and R. Zimmermann (2011). Application of parallel computing to speed up chemometrics for GC× GC–TOFMS based metabolic fingerprinting. *Talanta*, 83(4); 1289–1294

Hadad, G. M., A. El-Gindy, and W. M. Mahmoud (2008). HPLC and chemometrics-assisted UV-spectroscopy methods for the simultaneous determination of ambroxol and doxycycline in capsule. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 70(3); 655–663

Hanrahan, G. (2008). *Environmental chemometrics: principles and modern applications*. CRC Press

Herrero-Latorre, C., J. Barciela-Garcia, S. Garcia-Martin, and R. M. Peña-Crecente (2019). Detection and quantification of adulterations in aged wine using RGB digital images combined with multivariate chemometric techniques. *Food chemistry*, 158; 28–34

Iłowska, J., J. Chrobak, R. Grabowski, M. Szmatała, J. Woch, I. Szwach, J. Drabik, M. Trzos, R. Kozdrach, and M. Wrona (2018). Designing lubricating properties of vegetable base oils. *Molecules*, 23(8); 2025

Liu, S., T. R. Josephson, A. Athaley, Q. P. Chen, A. Norton, M. Ierapetritou, I. J. Siepmann, B. Saha, and D. G. Vlachos (2019a). Renewable lubricants with tailored molecular architecture. *Science advances*, 5(2); eaav5487

Liu, S., B. Saha, and D. G. Vlachos (2019b). Catalytic production of renewable lubricant base oils from bio-based 2-alkylfurans and enals. *Green Chemistry*, 21(13); 3606–3614

Martelo-Vidal, M. and M. Vázquez (2014). Determination of polyphenolic compounds of red wines by UV–VIS–NIR spectroscopy and chemometrics tools. *Food chemistry*, 158; 28–34

Milanez, K. D. T. M., T. C. A. Nóbrega, D. S. Nascimento, M. Insausti, B. S. F. Band, and M. J. C. Pontes (2017). Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach. *LWT-Food Science and Technology*, 85; 9–15

Miller, J. and J. C. Miller (2018). *Statistics and chemometrics for analytical chemistry*. Pearson education

Mobaraki, N. and B. Hemmateenejad (2011). Structural characterization of carbonyl compounds by IR spectroscopy and chemometrics data analysis. *Chemometrics and Intelligent Laboratory Systems*, 109(2); 171–177

Nunes, C. A. (2014). Vibrational spectroscopy and chemometrics to assess authenticity, adulteration and intrinsic quality parameters of edible oils and fats. *Food Research International*, 60; 255–261

Pan, R., F. Guo, H. Lu, W.-w. Feng, et al. (2011). Development of
the chromatographic fingerprint of Scutellaria barbata D. Don
by GC–MS combined with Chemometrics methods. *Journal of pharmaceutical and biomedical analysis*, 55(3); 391–396
Sirisomboon, P. and J. Posom (2019). On-line measurement of activation energy of ground bamboo using near infrared spectroscopy. *Renewable Energy*, 133; 480–488
Souto, U. T. d. C. P., M. F. Barbosa, H. V. Dantas, A. S. de Pontes, W. da Silva Lyra, P. H. G. D. Diniz, M. C. U. de Araújo, and E. C. da Silva (2015). Identification of adulteration in ground roasted coffees using UV–Vis spectroscopy and SPA-LDA. *LWT-Food Science and Technology*, 63(2); 1037–1041
Sugianti, C., N. Apratiwi, D. Suhandy, M. Telaumbanua, S. Waluyo, and M. Yulia (2016). STUDIES ON THE USE OF UV-VIS SPECTROSCOPY FOR IDENTIFICATION OF BLENDING OF CIVET COFFEE WITH ARABICA COFFEE. *Jurnal Teknik Pertanian Lampung*, 5(3); 167–176
Suhandy, D. and M. Yulia (2017). The use of partial least square regression and spectral data in UV-visible region for quantification of adulteration in Indonesian palm civet coffee. *International journal of food science*, 2017
Tan, J., R. Li, and Z.-T. Jiang (2015). Chemometric classification of Chinese lager beers according to manufacturer based on data fusion of fluorescence, UV and visible spectroscopies. *Food chemistry*, 184; 30–36
Wiberg, K. (2006). Quantitative impurity profiling by principal component analysis of high-performance liquid chromatography–diode array detection data. *Journal of Chromatography A*, 1108(1); 50–67
Wold, S., M. Sjöström, and L. Eriksson (2001). PLS-regression: a basic tool of chemometrics. *Chemometrics and intelligent laboratory systems*, 58(2); 109–130