Distinct Partitions and Some q-Binomial Summation Identities

M.J. Kronenburg

Abstract

The partition functions $P(n, m, p)$, the number of integer partitions of n into exactly m parts with each part at most p, and $Q(n, m, p)$, the number of integer partitions of n into exactly m distinct parts with each part at most p, are related by double summation identities which follow from their generating functions. From these identities and some identities from an earlier paper, some other identities involving distinct partitions and some q-binomial summation identities are proved, and from these follow some combinatorial identities.

Keywords: q-binomial coefficient, integer partition function.
MSC 2010: 05A17 11B65 11P81

1 Introduction

The following q-binomial summation identities are proved, of which (1.2) is known as identity (1.8) and (1.6) as (1.9) in [5] and both in [8], and (1.3) is known as corollary 4.1 and (1.7) as corollary 3.7 in [8]. Corollaries 2.4 and 3.4 of [8] follow from (1.9) and (1.10).

\[\sum_{k=0}^{n} (-1)^k q^{k/2} \binom{m+n-k}{m} q^{m+1} k = \delta_{n,0} \]
(1.1)

\[\sum_{k=0}^{[n/2]} q^{(n-2k)/2} \binom{m+1}{n-2k} q^{m+k} k^2 = \binom{m+n}{m} q \]
(1.2)

\[\sum_{k=0}^{[n/2]} (-1)^k q^{k/2} \binom{m+n-2k}{m} q^{m+1} k^2 = q^n \binom{m+1}{n} q \]
(1.3)

\[\sum_{k=0}^{[n/3]} (-1)^k q^{(n-3k)/2} \binom{m+1}{n-3k} q^{m+k} k^3 = \sum_{k=0}^{n} \cos\left(\frac{2k-n}{3}\pi\right) \binom{m+n-k}{m} q^{m+k} k \]
(1.4)

\[\sum_{k=0}^{[n/3]} (-1)^k q^{3k/2} \binom{m+n-3k}{m} q^{m+1} k^3 = \sum_{k=0}^{n} \cos\left(\frac{2k-n}{3}\pi\right) q^{(n-k)/2} \binom{m+1}{n-k} q^{m+1} k \]
(1.5)
\[
\sum_{k=0}^{\lfloor n/4 \rfloor} q^{\lfloor n-4k \rfloor} \binom{m+1}{n-4k} q^{\binom{m+k}{m}} q^4 = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{m+n-2k}{m} q^{\binom{m+k}{m}} q^2 \tag{1.6}
\]
\[
\sum_{k=0}^{\lfloor n/4 \rfloor} (-1)^k q^{k} \binom{m+n-4k}{m} q^{\binom{m+1}{k}} q^4 = \sum_{k=0}^{\lfloor n/2 \rfloor} q^{\binom{n-2k}{2}} \binom{m+1}{n-2k} q^{\binom{m+1}{k}} q^2 \tag{1.7}
\]
\[
\sum_{k=0}^{n} \sum_{l=0}^{n-k} (-1)^k q^a \binom{n-k-l}{2} \binom{p+n-k-l}{p} q^{\binom{m+1}{k}} q^b \binom{m+l}{m} q^b = q^a \binom{n}{2} \binom{p+n}{p} q^c \tag{1.8}
\]
\[
\sum_{k=0}^{n} \sum_{l=0}^{n-k} (-1)^k q^a \binom{n-k-l}{2} \binom{p+n-k-l}{p} q^b \binom{m+1}{k} q^b \binom{m+l}{m} q^b = q^a \binom{n}{2} \binom{p+n}{p} q^c \tag{1.9}
\]
\[
\sum_{k=0}^{n} \sum_{l=0}^{n-k} (-1)^k q^a \binom{n-k-l}{2} \binom{p+n-k-l}{p} q^c \binom{m+1}{k} q^b \binom{m+l}{m} q^b = q^a \binom{n}{2} \binom{p+n}{p} q^c \tag{1.10}
\]
\[
\sum_{k=0}^{n} \sum_{l=0}^{n-k} (-1)^k q^a \binom{n-k-l}{2} \binom{p+n-k-l}{p} q^c \binom{m+1}{k} q^c \binom{m+l}{m} q^b = q^a \binom{n}{2} \binom{p+n}{p} q^c \tag{1.11}
\]

In the summands of the last four identities, because of the type of double summation, \(k\) and \(l\) can be interchanged, and \(l\) can be replaced by \(n-k-l\). When \(q=1\) these identities give the following combinatorial identities, of which \((1.13)\) and \((1.14)\) are known as (3.24) and (3.25) in [4].

\[
\sum_{k=0}^{n} (-1)^k \binom{m+k}{m} \binom{m+1}{n-k} = \delta_{n,0} \tag{1.12}
\]
\[
\sum_{k=0}^{n} \binom{m+1}{2k} \binom{m+n-k}{m} = \binom{m+2n}{m} \tag{1.13}
\]
\[
\sum_{k=0}^{n} \binom{m+1}{2k+1} \binom{m+n-k}{m} = \binom{m+2n+1}{m} \tag{1.14}
\]
\[
\sum_{k=0}^{n} (-1)^k \binom{m+2k}{m} \binom{m+1}{n-k} = (-1)^n \binom{m+1}{2n} \tag{1.15}
\]
\[
\sum_{k=0}^{n} (-1)^k \binom{m+2k+1}{m} \binom{m+1}{n-k} = (-1)^n \binom{m+1}{2n+1} \tag{1.16}
\]
\[
\sum_{k=0}^{n} (-1)^k \binom{m+1}{3k} \binom{m+n-k}{m} = \sum_{k=0}^{3n} \cos \left(\frac{2k}{3} \pi \right) \binom{m+3n-k}{m} \binom{m+k}{m} \tag{1.17}
\]
\[
\sum_{k=0}^{n} (-1)^k \binom{m+1}{3k+1} \binom{m+n-k}{m} = \sum_{k=0}^{3n+1} \cos \left(\frac{2k-1}{3} \pi \right) \binom{m+3n-k+1}{m} \binom{m+k}{m} \tag{1.18}
\]
\[\sum_{k=0}^{n} (-1)^{k} \binom{m+1}{3k+2} \binom{m+n-k}{m} = \sum_{k=0}^{3n+2} \cos\left(\frac{2k-2}{3} \pi\right) \binom{m+3n-k+2}{m} \binom{m+k}{m} \]
(1.19)

\[\sum_{k=0}^{n} (-1)^{k} \binom{m+3k}{m} \binom{m+1}{n-k} = \sum_{k=0}^{3n} \cos\left(\frac{2k-1}{3} \pi\right) \binom{m+1}{m} \binom{m+1}{m} \]
(1.20)

\[\sum_{k=0}^{n} (-1)^{k} \binom{m+3k+1}{m} \binom{m+1}{n-k} = \sum_{k=0}^{3n+1} \cos\left(\frac{2k-1}{3} \pi\right) \binom{m+1}{m} \binom{m+1}{m+1} \]
(1.21)

\[\sum_{k=0}^{n} (-1)^{k} \binom{m+3k+2}{m} \binom{m+1}{n-k} = \sum_{k=0}^{3n+2} \cos\left(\frac{2k-2}{3} \pi\right) \binom{m+1}{m} \binom{m+1}{m+1} \]
(1.22)

\[\sum_{k=0}^{n} (-1)^{k} = \binom{m+2k}{m} \binom{m+2n-k}{m} \]
(1.23)

\[\sum_{k=0}^{n} (-1)^{k} = \binom{m+2k+1}{m} \binom{m+2n-k}{m} \]
(1.24)

\[\sum_{k=0}^{n} (-1)^{k} = \binom{m+2k}{m} \binom{m+2n-k+1}{m} \]
(1.25)

\[\sum_{k=0}^{n} (-1)^{k} = \binom{m+2k+1}{m} \binom{m+2n-k+1}{m} \]
(1.26)

\[\sum_{k=0}^{n} (-1)^{k} = \binom{m+2k}{2k} \binom{m+1}{2n-k} \]
(1.27)

\[\sum_{k=0}^{n} (-1)^{k} = \binom{m+2k+1}{2k+1} \binom{m+1}{2n-k} \]
(1.28)

\[\sum_{k=0}^{n} (-1)^{k} = \binom{m+2k+2}{2k} \binom{m+1}{2n-k} \]
(1.29)

\[\sum_{k=0}^{n} (-1)^{k} = \binom{m+2k+3}{2k+1} \binom{m+1}{2n-k} \]
(1.30)

\[\sum_{k=0}^{n} (-1)^{k} = \binom{m+2k+1}{2k+1} \binom{m+1}{2n-k+1} \]
(1.31)

\[\sum_{k=0}^{n} (-1)^{k} = \binom{m+2k+2}{2k} \binom{m+1}{2n-k+1} \]
(1.32)

\[\sum_{k=0}^{n} (-1)^{k} = \binom{m+2k+3}{2k+1} \binom{m+1}{2n-k+1} \]
(1.33)
\[
\sum_{k=0}^{n} \sum_{l=0}^{n-k} (-1)^l \binom{p}{n-k-l} \binom{m+1}{k} \binom{m+l}{m} = \binom{p}{n}
\]

(1.34)

2 Definitions and Basic Identities

Let the coefficient of a power series be defined as:

\[
[q^n] \sum_{k=0}^{\infty} a_k q^k = a_n
\]

(2.1)

Let \(P(n) \) be the number of integer partitions of \(n \), let \(Q(n) \) be the number of integer partitions of \(n \) into distinct parts, let \(P(n,m) \) be the number of integer partitions of \(n \) into exactly \(m \) parts, and let \(Q(n,m) \) be the number of integer partitions of \(n \) into exactly \(m \) distinct parts. Let \(P(n,m,p) \) be the number of integer partitions of \(n \) into exactly \(m \) parts, each part at most \(p \), and let \(P^*(n,m,p) \) be the number of integer partitions of \(n \) into at most \(m \) parts, each part at most \(p \), which is the number of Ferrer diagrams that fit in a \(m \) by \(p \) rectangle:

\[
P^*(n,m,p) = \sum_{k=0}^{m} P(n,k,p)
\]

(2.2)

Let the following definition of the q-binomial coefficient, also called the Gaussian polynomial, be given.

Definition 2.1. The q-binomial coefficient is defined by \([1,3]\):

\[
\binom{m+p}{m}_q = \prod_{j=1}^{m} \frac{1 - q^{p+j}}{1 - q^j}
\]

(2.3)

The q-binomial coefficient is the generating function of \(P^*(n,m,p) \) \([1]\):

\[
P^*(n,m,p) = [q^n] \binom{m+p}{m}_q
\]

(2.4)

In the earlier paper \([7]\) it was proved that:

\[
P^*(n,m,p) = P(n + m, m, p + 1)
\]

(2.5)

For the q-binomial coefficient there is the following symmetry identity \([7]\):

\[
\binom{m+p}{m}_q = \binom{m+p}{p}_q
\]

(2.6)

3 Formulas Involving Distinct Partitions

Let \(Q(n,m,p) \) be the number of integer partitions of \(n \) into exactly \(m \) distinct parts with each part at most \(p \). In the earlier paper \([7]\) it was proved that:

\[
Q(n,m,p) = P(n - m(m-1)/2, m, p - m + 1)
\]

(3.1)
The generating functions for $P(n, m, p)$ and $Q(n, m, p)$ are identities (7.3) and (7.4) in [2]:

$$\prod_{j=1}^{p} \frac{1}{1 - zq^j} = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} P(n, m, p) q^n z^m$$ \hspace{1cm} (3.2)$$

$$\prod_{j=1}^{p} (1 + zq^j) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} Q(n, m, p) q^n z^m$$ \hspace{1cm} (3.3)$$

Theorem 3.1.

$$P(n, m, p) = \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor m/2 \rfloor} Q(n - 2k, m - 2l, p) P(k, l, p)$$ \hspace{1cm} (3.4)$$

Proof. Using $(1 + zq^j)(1 - zq^j) = 1 - z^2 q^{2j}$:

$$\prod_{j=1}^{p} (1 - zq^j) = \prod_{j=1}^{p} (1 + zq^j) \prod_{j=1}^{p} (1 - z^2 q^{2j})$$ \hspace{1cm} (3.5)$$

Substituting the generating functions (3.2) and (3.3):

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} P(n, m, p) q^n z^m = (\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} Q(n, m, p) q^n z^m)(\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} P(n, m, p) q^{2n} z^{2m})$$

$$= \sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \sum_{m_1=0}^{\infty} \sum_{m_2=0}^{\infty} Q(n_1, m_1, p) P(n_2, m_2, p) q^{n_1 + 2n_2} z^{m_1 + 2m_2}$$ \hspace{1cm} (3.6)$$

The coefficients on both sides must be equal, so $n_1 + 2n_2 = n$ and $m_1 + 2m_2 = m$, which is equivalent to $n_1 = n - 2n_2$ and $m_1 = m - 2m_2$:

$$P(n, m, p) = \sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \sum_{m_1=0}^{\infty} \sum_{m_2=0}^{\infty} Q(n_1, m_1, p) P(n_2, m_2, p)$$

$$= \sum_{n_1=0}^{\lfloor n/2 \rfloor} \sum_{n_2=0}^{\lfloor m/2 \rfloor} Q(n - 2n_2, m - 2m_2, p) P(n_2, m_2, p)$$ \hspace{1cm} (3.7)$$

□

Let $Q^*(n, m, p)$ be the number of integer partitions of n into at most m distinct parts with each part at most p, which is defined like $P^*(n, m, p)$ in (2.2):

$$Q^*(n, m, p) = \sum_{k=0}^{m} Q(n, k, p)$$ \hspace{1cm} (3.8)$$

From the previous theorem a relation between $Q^*(n, m, p)$ and $P(n, m, p)$ can be derived.
Theorem 3.2.

\[P(n + m, m, p + 1) = \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor m/2 \rfloor} Q^*(n - 2k, m - 2l, p)P(k, l, p) \] \hfill (3.9)

Proof. Using the previous theorem and (2.5):

\[P^*(n, m, p) = P(n + m, m, p + 1) = \sum_{h=0}^{m} P(n, h, p) \]

\[= \sum_{h=0}^{m} \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor h/2 \rfloor} Q(n - 2k, h - 2l, p)P(k, l, p) \]

\[= \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor m/2 \rfloor} \sum_{h=2l}^{m} Q(n - 2k, h - 2l, p)P(k, l, p) \]

\[= \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor m/2 \rfloor} Q^*(n - 2k, m - 2l, p)P(k, l, p) \]

Let \(P_{\text{most}}(n, p) \) be the number of integer partitions of \(n \) with each part at most \(p \). From (2.2), (2.5) and conjugation of Ferrer diagrams [7]:

\[P_{\text{most}}(n, p) = \sum_{k=0}^{n} P(n, k, p) = P^*(n, n, p) = P(2n, n, p + 1) = P(n + p, p) \] \hfill (3.11)

Obviously \(P^*(n, m, p) = P_{\text{most}}(n, p) \) when \(m \geq n \). Let \(Q_{\text{most}}(n, p) \) be the number of integer partitions of \(n \) into distinct parts with each part at most \(p \), for which \(Q^*(n, m, p) = Q_{\text{most}}(n, p) \) when \(m \geq n \). When taking \(m = n \) in this theorem for nonzero summands \(l \leq k \) and therefore \(n - 2l \geq n - 2k \):

\[P(n + p, p) = \sum_{k=0}^{\lfloor n/2 \rfloor} Q_{\text{most}}(n - 2k, p)P(p + k, p) \] \hfill (3.12)

From this identity follows as a special case when taking \(p = n \), and using \(P(2n, n) = P(n) \) and from [6] \(P(n, m) = P(n - m) \) if \(2m \geq n \) and therefore \(P(n + k, n) = P(k) \) if \(n \geq k \):

\[P(n) = \sum_{k=0}^{\lfloor n/2 \rfloor} Q(n - 2k)P(k) \] \hfill (3.13)

Theorem 3.3.

\[Q(n, m, p) = \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor m/2 \rfloor} (-1)^{l}P(n - 2k, m - 2l, p)Q(k, l, p) \] \hfill (3.14)
Proof. Using \((1 + izq^j)(1 - izq^j) = 1 + z^2q^{2j}\):
\[
\prod_{j=1}^p(1 + izq^j) = \frac{\prod_{j=1}^p(1 + z^2q^{2j})}{\prod_{j=1}^p(1 - izq^j)}
\tag{3.15}
\]

Substituting the generating functions \(3.2\) and \(3.3\):
\[
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} Q(n, m, p)izq^n z^m = (\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} P(n, m, p)izq^n z^m)(\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} Q(n, m, p)q^{2n}z^{2m})
\]
\[
= \sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \sum_{m_1=0}^{\infty} \sum_{m_2=0}^{\infty} P(n_1, m_1, p)Q(n_2, m_2, p)izq^{n_1+2n_2}z^{m_1+2m_2}
\]
\[
= \sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \sum_{m_1=0}^{\infty} \sum_{m_2=0}^{\infty} i^{n_1}P(n_1, m_1, p)Q(n_2, m_2, p)
\tag{3.16}
\]

The coefficients on both sides must be equal, so \(n_1 + 2n_2 = n\) and \(m_1 + 2m_2 = m\), which is equivalent to \(n_1 = n - 2n_2\) and \(m_1 = m - 2m_2\):
\[
i^{n_1}Q(n, m, p) = \sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \sum_{m_1=0}^{\infty} \sum_{m_2=0}^{\infty} i^{m_1}P(n_1, m_1, p)Q(n_2, m_2, p)
\]
\[
= \sum_{n_2=0}^{\infty} \sum_{m_2=0}^{\infty} i^{m_2}P(n - 2n_2, m - 2m_2, p)Q(n_2, m_2, p)
\]

With \(i^{-2m_2} = (-1)^{m_2}\) the theorem is proved. \(\square\)

Using a similar derivation as in theorem \(3.2\) gives:
\[
Q^*(n, m, p) = \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor m/2 \rfloor} (-1)^lP(n + m - 2(k + l), m - 2l, p + 1)Q(k, l, p)
\tag{3.18}
\]

Using a similar reasoning as above:
\[
Q(n) = \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor n/2 \rfloor} (-1)^lP(n - 2k)Q(k, l)
\tag{3.19}
\]

Theorem 3.4.
\[
\sum_{k=0}^{\lfloor n/3 \rfloor} \sum_{l=0}^{\lfloor m/3 \rfloor} (-1)^lQ(n - 3k, m - 3l, p)P(k, l, p) = \sum_{k=0}^{n} \sum_{l=0}^{m} \cos\left(\frac{2l - m}{3}\pi\right)P(n - k, m - l, p)P(k, l, p)
\tag{3.20}
\]

Proof. Using \((1 - zq^j)(1 - (-1)^{2/3}zq^j)(1 + (-1)^{1/3}zq^j) = 1 - z^3q^{3j}\):
\[
\frac{\prod_{j=1}^p(1 + (-1)^{1/3}zq^j)}{\prod_{j=1}^p(1 - z^3q^{3j})} = \frac{1}{\prod_{j=1}^p(1 - zq^j)}\prod_{j=1}^p(1 - (-1)^{2/3}zq^j)
\tag{3.21}
\]
Substituting the generating functions (3.2) and (3.3):

\[
\sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \sum_{m_1=0}^{\infty} \sum_{m_2=0}^{\infty} Q(n_1, m_1, p) P(n_2, m_2, p) (-1)^{m_1/3} q^{n_1 + 3n_2} z^{m_1 + 3m_2} = \sum_{n_3=0}^{\infty} \sum_{n_4=0}^{\infty} \sum_{m_3=0}^{\infty} \sum_{m_4=0}^{\infty} P(n_3, m_3, p) P(n_4, m_4, p) (-1)^{2m_3/3} q^{n_3 + n_4} z^{m_3 + m_4}
\]

(3.22)

Taking the coefficients on both sides equal to \(q^n z^m \), then \(n_1 + 3n_2 = n_3 + n_4 = n \) and \(m_1 + 3m_2 = m_3 + m_4 = m \), which is equivalent to \(n_1 = n - 3n_2, n_3 = n - n_4, m_1 = m - 3m_2 \) and \(m_3 = m - m_4 \), gives:

\[
\sum_{k=0}^{[n/3]} \sum_{l=0}^{[m/3]} (-1)^k Q(n - 3k, m - 3l, p) P(k, l, p) = \sum_{k=0}^{n} \sum_{l=0}^{m} (-1)^{m-2l} P(n-k, m-l, p) P(k, l, p)
\]

(3.23)

Equating the imaginary parts of this identity gives:

\[
\sum_{k=0}^{n} \sum_{l=0}^{m} \sin\left(\frac{m-2l}{3} \pi\right) P(n-k, m-l, p) P(k, l, p) = 0
\]

(3.24)

Changing \(k \) into \(n-k \) and \(l \) into \(m-l \) changes the sign of the summand, and therefore this identity is trivial. Equating the real parts of the previous identity and using \(\cos(x) = \cos(-x) \) gives the theorem.

\[\square\]

Theorem 3.5.

\[
\sum_{k=0}^{[n/3]} \sum_{l=0}^{[m/3]} (-1)^k P(n - 3k, m - 3l, p) Q(k, l, p) = \sum_{k=0}^{n} \sum_{l=0}^{m} \cos\left(\frac{2l-m}{3} \pi\right) Q(n-k, m-l, p) Q(k, l, p)
\]

(3.25)

Proof. In the previous theorem replacing \(z \) by \(-z \) leads to:

\[
\prod_{j=1}^{p} \frac{1 + z^3 q^{2j}}{1 + (-1)^{1/3} z q^3} = \prod_{j=1}^{p} (1 + z q^j) \prod_{j=1}^{p} (1 + (-1)^{2/3} z q^j)
\]

(3.26)

When comparing this with the previous theorem it is clear that \(P \) and \(Q \) are interchanged, which gives:

\[
\sum_{k=0}^{[n/3]} \sum_{l=0}^{[m/3]} (-1)^k P(n - 3k, m - 3l, p) Q(k, l, p) = \sum_{k=0}^{n} \sum_{l=0}^{m} (-1)^{m-2l} Q(n-k, m-l, p) Q(k, l, p)
\]

(3.27)

Equating the imaginary parts of this identity gives:

\[
\sum_{k=0}^{n} \sum_{l=0}^{m} \sin\left(\frac{m-2l}{3} \pi\right) Q(n-k, m-l, p) Q(k, l, p) = 0
\]

(3.28)

As in the previous theorem this identity is trivial. Equating the real parts of the previous identity and using \(\cos(x) = \cos(-x) \) gives the theorem.

\[\square\]
Theorem 3.6.
\[
\sum_{k=0}^{\lfloor n/4 \rfloor} \sum_{l=0}^{\lfloor m/4 \rfloor} Q(n-4k, m-4l, p)P(k, l, p) = \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor m/2 \rfloor} (-1)^{l}P(n-2k, m-2l, p)P(k, l, p) \tag{3.29}
\]

Proof. Using \((1 + izq^j)(1 - izq^j)(1 - z^4q^{2j}) = 1 - z^4q^{4j}\):
\[
\prod_{j=1}^{p}(1 + izq^j) = \prod_{j=1}^{p}(1 - z^4q^{4j})
\]

The proof is similar to the previous proofs. \(\Box\)

Theorem 3.7.
\[
\sum_{k=0}^{\lfloor n/4 \rfloor} \sum_{l=0}^{\lfloor m/4 \rfloor} (-1)^{l}P(n-4k, m-4l, p)Q(k, l, p) = \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor m/2 \rfloor} Q(n-2k, m-2l, p)Q(k, l, p) \tag{3.31}
\]

Proof. Using \((1 + (-1)^{1/4}zq^j)(1 - (-1)^{1/4}zq^j)(1 + iz^2q^{2j}) = 1 + z^4q^{4j}\):
\[
\prod_{j=1}^{p}(1 + (-1)^{1/4}zq^j) = \prod_{j=1}^{p}(1 + (-1)^{1/4}z^2q^{2j}) \tag{3.32}
\]

The proof is similar to the previous proofs. \(\Box\)

Theorem 3.8.
\[
\sum_{k=0}^{n} \sum_{l=0}^{m} (-1)^{l}P(n-k, m-l, p)Q(k, l, p) = \delta_{n,0}\delta_{m,0} \tag{3.33}
\]

Proof.
\[
\prod_{j=1}^{p}(1 + (-z)q^j) = 1 \tag{3.34}
\]

\[
\sum_{n, m=0}^{\infty} \delta_{n,0} \delta_{m,0} q^{n}z^{m} = \left(\sum_{n, m=0}^{\infty} P(n, m, p)q^{n}z^{m} \right) \left(\sum_{n, m=0}^{\infty} Q(n, m, p)(-1)^{m}q^{n}z^{m} \right) = \prod_{n=0}^{\infty} \prod_{m=0}^{\infty} P(n, m, p)Q(n, m, p)(-1)^{m}q^{n}z^{m} \tag{3.35}
\]

The coefficients on both sides must be equal, so \(n_1 + n_2 = n\) and \(m_1 + m_2 = m\), which is equivalent to \(n_1 = n - n_2\) and \(m_1 = m - m_2\), which gives the theorem. \(\Box\)

4 Some q-Binomial Summation Identities

From theorems 3.1, 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8 the following q-binomial summation identities are proved.
In theorem 3.1 it was used that:

\[k \]

so the summation over \(k \) can be done:

\[\sum_{k=0}^{\lfloor n/2 \rfloor} q^{(n-2k)/2} \binom{m+1}{n-2k} q^{m+k} q^2 = \binom{m+n}{m} q \]

(4.1)

Proof. From theorem 3.1 using (2.5) and (3.1):

\[P^*(n-m, m, p-1) = \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor m/2 \rfloor} P^*(n-2k-(m-2l)(m-2l+1)/2, m-2l, p-m+2l) P^*(k-l, l, p-1) \]

(4.2)

Using (2.4):

\[[q^{n-m}] \binom{m+p-1}{m} = \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor m/2 \rfloor} [q^{n-2k}] q^{-(m-2l)(m-2l+1)/2-2k} \binom{p}{m-2l} q^{k-l} \binom{p+l-1}{l} q \]

(4.3)

In theorem 3.1 it was used that:

\[\sum_{k=0}^{\lfloor n/2 \rfloor} a_{n-2k} b_k = [q^n] \left(\sum_{k=0}^{\infty} a_k q^k \right) \left(\sum_{k=0}^{\infty} b_k q^{2k} \right) \]

(4.4)

so the summation over \(k \) can be done:

\[[q^n] q^m \binom{m+p-1}{m} = [q^n] \sum_{l=0}^{\lfloor m/2 \rfloor} q^{-(m-2l)(m-2l+1)/2} \binom{p}{m-2l} q^{2l} \binom{p+l-1}{l} q^2 \]

(4.5)

Because all coefficients \([q^n]\) are equal, the polynomials must be equal, and cancelling some powers of \(q \):

\[\binom{m+p-1}{m} = \sum_{l=0}^{\lfloor m/2 \rfloor} q^{-(m-2l)(m-2l-1)/2} \binom{p}{m-2l} q^{2l} \binom{p+l-1}{l} q^2 \]

(4.6)

Replacing \(m \) by \(n \) and \(l \) by \(k \) and \(p \) by \(m+1 \) and using (2.4) gives the theorem.

Taking \(q = 1 \) and replacing \(n \) by \(2n \) and \(k \) by \(n-k \) this is combinatorial identity (3.24) in [4]:

\[\sum_{k=0}^{n} \binom{m+1}{2k} \binom{m+n-k}{m} = \binom{m+2n}{m} \]

(4.7)

and replacing \(n \) by \(2n+1 \) and \(k \) by \(n-k \) this is combinatorial identity (3.25) in [4]:

\[\sum_{k=0}^{n} \binom{m+1}{2k+1} \binom{m+n-k}{m} = \binom{m+2n+1}{m} \]

(4.8)
Theorem 4.2.

\[
\sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k q^{k(\binom{n}{2})} \binom{m + n - 2k}{m} \binom{m + 1}{k} q^{\binom{n}{2}} \binom{m + 1}{n} q \tag{4.9}
\]

Proof. From theorem 4.1 using (2.5) and (3.1):

\[
P^*(n - m(m + 1)/2, m, p - m)
\]

\[
= \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor m/2 \rfloor} (-1)^l P^*(n - 2k - m + 2l, m - 2l, p - 1) P^*(k - l(l + 1)/2, l, p - l)
\tag{4.10}
\]

Using (2.4) and (2.6):

\[
[q^{n-m(m+1)/2}] \binom{p}{m} q = \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor m/2 \rfloor} (-1)^l [q^{n-m-2k+2l}] \binom{m + p - 2l - 1}{m - 2l} q^{k-(l(l+1)/2)} \binom{p}{l} q
\]

\[
= \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor m/2 \rfloor} (-1)^l [q^{n-2k}] q^{m-2l} \binom{m + p - 2l - 1}{p - 1} q^{k-l(l+1)/2} \binom{p}{l} q
\tag{4.11}
\]

As in theorem 4.1, the sum over \(k\) can be done:

\[
[q^n] q^{m(m+1)/2} \binom{p}{m} q = [q^n] \sum_{l=0}^{\lfloor m/2 \rfloor} (-1)^l q^{m-2l} \binom{m + p - 2l - 1}{p - 1} q^{l(l+1)/2} \binom{p}{l} q^2
\tag{4.12}
\]

Because all coefficients \([q^n]\) are equal, the polynomials must be equal, and cancelling some powers of \(q\):

\[
q^{m(m-1)/2} \binom{p}{m} q = \sum_{l=0}^{\lfloor m/2 \rfloor} (-1)^l q^{l(l-1)} \binom{m + p - 2l - 1}{p - 1} q^{l(l+1)/2} \binom{p}{l} q^2
\tag{4.13}
\]

Replacing \(m\) by \(n\) and \(l\) by \(k\) and \(p\) by \(m + 1\) gives the theorem.

Taking \(q = 1\) and replacing \(n\) by \(2n\) and \(k\) by \(n - k\) gives the combinatorial identity:

\[
\sum_{k=0}^{n} (-1)^k \binom{m + 2k}{m} \binom{m + 1}{n - k} = (-1)^n \binom{m + 1}{2n}
\tag{4.14}
\]

and replacing \(n\) by \(2n + 1\) and \(k\) by \(n - k\) gives the combinatorial identity:

\[
\sum_{k=0}^{n} (-1)^k \binom{m + 2k + 1}{m} \binom{m + 1}{n - k} = (-1)^n \binom{m + 1}{2n + 1}
\tag{4.15}
\]

Theorem 4.3.

\[
\sum_{k=0}^{\lfloor n/3 \rfloor} (-1)^k q^{k(n-3k)/2} \binom{m + 1}{m} \binom{m + k}{n-3k} q^{m+k} q^3 = \sum_{k=0}^{n} \cos\left(\frac{2k - n}{3} \pi\right) \binom{m + n - k}{m} q^k \binom{m + k}{m} q
\tag{4.16}
\]
Proof. From theorem 3.4 using (2.5) and (3.1):

$$\sum_{k=0}^{n} \sum_{l=0}^{m} (-1)^l P^*(n-3k-(m-3l)(m-3l-1)/2, m-3l, p-m+3l) P^*(k-l, l, p-1)$$

$$= \sum_{k=0}^{n} \sum_{l=0}^{m} \cos(\frac{2l-m}{3}\pi) P^*(n-k-m+l, m-l, p-1) P^*(k-l, l, p-1)$$

(4.17)

Using (2.4) and (2.6):

$$\sum_{k=0}^{n} \sum_{l=0}^{m} (-1)^l q^{n-3k} q^{(m-3l)(m-3l+1)/2} \binom{p}{m-3l} q^{l} [q^{k}] q^{l} \binom{p+l-1}{p-1} q$$

$$= \sum_{k=0}^{n} \sum_{l=0}^{m} \cos(\frac{2l-m}{3}\pi) [q^{k}] q^{l} \binom{p+l-1}{p-1} q$$

(4.18)

In theorem 3.4 it was used that:

$$\sum_{k=0}^{n} a_{n-3k} b_k = [q^n] \sum_{k=0}^{\infty} a_k q^k (\sum_{k=0}^{\infty} b_k q^{3k})$$

(4.19)

so as in the previous theorems the summation over \(k \) can be done:

$$\sum_{l=0}^{m} (-1)^l q^{m-3l} q^{(m-3l)(m-3l+1)/2} \binom{p}{m-3l} q^{l} \binom{p+l-1}{p-1} q^3$$

(4.20)

Cancelling some powers of \(q \) and replacing \(m \) by \(n \) and \(l \) by \(k \) and \(p \) by \(m+1 \) gives the theorem. \(\square \)

Taking \(q = 1 \) and replacing \(n \) by \(3n \) and in the left side replacing \(k \) by \(n-k \) and using \(\cos(\alpha - n\pi) = (-1)^n \cos(\alpha) \) gives the combinatorial identity:

$$\sum_{k=0}^{n} (-1)^k \binom{m+1}{3k} \binom{m+n-k}{m} = \sum_{k=0}^{3n} \cos(\frac{2k}{3}\pi) \binom{m+3n-k}{m} \binom{m+k}{m}$$

(4.21)

Replacing \(n \) by \(3n+1 \) or \(3n+2 \) gives similar identities.

Theorem 4.4.

$$\sum_{k=0}^{n} (-1)^k q^{n-k} \binom{m+n-3k}{m} q \binom{m+1}{k} q^3 = \sum_{k=0}^{n} \cos(\frac{2k-n}{3}\pi) q^{(n-k)+\binom{k}{2}} q \binom{m+1}{k}$$

(4.22)
Proof. From theorem 3.5 using (2.5) and (3.1):

\[
\sum_{k=0}^{[n/3]} \sum_{l=0}^{[m/3]} (-1)^l P^*(n-3k-m+3l, m-3l, p-1) P^*(k-l(l+1)/2, l, p-l)
\]

\[
= \sum_{k=0}^{n} \sum_{l=0}^{m} \cos\left(\frac{2l-m}{3}\pi\right) P^*(n-k-(m-l)(m-l+1)/2, m-l, p-m+l)
\]

\[
\cdot P^*(k-l(l+1)/2, l, p-l)
\]

Using (2.4) and (2.6):

\[
\sum_{k=0}^{[n/3]} \sum_{l=0}^{[m/3]} (-1)^l [q^{n-3k}] q^{m-3l} \left(\frac{m+p-3l-1}{p-1}\right) q^{3l(l+1)/2} \left(\frac{p}{l}\right) q
\]

\[
= \sum_{k=0}^{n} \sum_{l=0}^{m} \cos\left(\frac{2l-m}{3}\pi\right) [q^{n-k}] q^{(m-l)(m-l+1)/2} \left(\frac{p}{m-l}\right) q^{3l(l+1)/2} \left(\frac{p}{l}\right) q
\]

As in the previous theorem the summation over \(k\) can be done:

\[
\sum_{l=0}^{[m/3]} (-1)^l q^{m-3l} \left(\frac{m+p-3l-1}{p-1}\right) q^{3l(l+1)/2} \left(\frac{p}{l}\right) q^3
\]

\[
= \sum_{l=0}^{m} \cos\left(\frac{2l-m}{3}\pi\right) q^{(m-l)(m-l+1)/2} \left(\frac{p}{m-l}\right) q^{3l(l+1)/2} \left(\frac{p}{l}\right) q
\]

Cancelling some powers of \(q\) and replacing \(m\) by \(n\) and \(l\) by \(k\) and \(p\) by \(m+1\) gives the theorem. \(\Box\)

Taking \(q = 1\) and replacing \(n\) by \(3n\) and in the left side replacing \(k\) by \(n-k\) and using \(\cos(\alpha - n\pi) = (-1)^n \cos(\alpha)\) gives the combinatorial identity:

\[
\sum_{k=0}^{n} (-1)^k \left(\frac{m+3k}{m}\right) \left(\frac{m+1}{n-k}\right) = \sum_{k=0}^{3n} \cos\left(\frac{2k}{3}\pi\right) \left(\frac{m+1}{3n-k}\right) \left(\frac{m+1}{k}\right)
\]

Replacing \(n\) by \(3n+1\) or \(3n+2\) gives similar identities.

Theorem 4.5.

\[
\sum_{k=0}^{[n/4]} q \binom{n-4k}{2} \binom{m+1}{n-4k} q^{\binom{m+k}{m}} q^4 = \sum_{k=0}^{[n/2]} (-1)^k \binom{m+n-2k}{m} q^{\binom{m+k}{m}} q^2
\]

Proof. From theorem 3.6 using (2.5) and (3.1):

\[
\sum_{k=0}^{[n/4]} \sum_{l=0}^{[m/4]} P^*(n-4k - (m-4l)(m-4l+1)/2, m-4l, p-m+4l) P^*(k-l, l, p-1)
\]

\[
= \sum_{k=0}^{[n/2]} \sum_{l=0}^{[m/2]} (-1)^l P^*(n-2k-m+2l, m-2l, p-1) P^*(k-l, l, p-1)
\]

13
Using (2.4) and (2.6):

\[
\sum_{k=0}^{\lfloor n/4 \rfloor} \sum_{l=0}^{\lfloor m/4 \rfloor} [q^{n-4k}] q^{(m-4l)(m-4l+1)/2} \left(\frac{p}{m-4l} \right) q^k \qbin{n}{l} q^{p+1-l} \qbin{p}{p-1} q
\]

\[
= \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor m/2 \rfloor} (-1)^l [q^{n-2k}] q^{m-2l} \left(\frac{m+p-2l-1}{p-1} \right) q^k \qbin{n}{l} q^{p+1-l} \qbin{p}{p-1} q
\]

(4.29)

As in the previous theorem the summation over \(k \) can be done:

\[
\sum_{k=0}^{\lfloor n/4 \rfloor} \sum_{l=0}^{\lfloor m/4 \rfloor} q^{(m-4l)(m-4l+1)/2} \left(\frac{p}{m-4l} \right) q^k \qbin{n}{l} q^{p+1-l} \qbin{p}{p-1} q^4
\]

\[
= \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor m/2 \rfloor} (-1)^l q^{m-2l} \left(\frac{m+p-2l-1}{p-1} \right) q^k \qbin{n}{l} q^{p+1-l} \qbin{p}{p-1} q^2
\]

(4.30)

Cancelling some powers of \(q \) and replacing \(m \) by \(n \) and \(l \) by \(k \) and \(p \) by \(m+1 \) gives the theorem. \(\square \)

Taking \(q = 1 \) and replacing \(n \) by \(4n \) and in the left side replacing \(k \) by \(n-k \) and in the right side \(k \) by \(2n-k \) gives the combinatorial identity:

\[
\sum_{k=0}^{n} \left(\frac{m+1}{4k} \right) \left(\frac{m+n-k}{m} \right) = \sum_{k=0}^{2n} (-1)^k \left(\frac{m+2k}{m} \right) \left(\frac{m+2n-k}{m} \right)
\]

(4.31)

Replacing \(n \) by \(4n+1 \) or \(4n+2 \) or \(4n+3 \) gives similar identities.

Theorem 4.6.

\[
\sum_{k=0}^{\lfloor n/4 \rfloor} \sum_{l=0}^{\lfloor m/4 \rfloor} (-1)^k q^k \qbin{n}{l} q^4 \qbin{m}{k} q^4 \left(\frac{m+n-4k}{k} \right) \left(\frac{m+1}{m} \right)
\]

\[
= \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor m/2 \rfloor} q^{(n-2k)/2} \left(\frac{m+1}{n-2k} \right) \qbin{m}{k} q^2
\]

(4.32)

Proof. From theorem 3.7 using (2.5) and (3.1):

\[
\sum_{k=0}^{\lfloor n/4 \rfloor} \sum_{l=0}^{\lfloor m/4 \rfloor} (-1)^l P^*(n-4k-m+4l, m-4l, p-1) P^*(k-l(l+1)/2, l, p-l)
\]

\[
= \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor m/2 \rfloor} P^*(n-2k-(m-2l)(m-2l+1)/2, m-2l, p-m+2l) P^*(k-l(l+1)/2, l, p-l)
\]

(4.33)

Using (2.4) and (2.6):

\[
\sum_{k=0}^{\lfloor n/4 \rfloor} \sum_{l=0}^{\lfloor m/4 \rfloor} (-1)^l [q^{n-4k}] q^{m-4l} \left(\frac{p+m-4l-1}{p-1} \right) q^k \qbin{n}{l} q^{p+(l+1)/2} \left(\frac{p}{l} \right) q
\]

\[
= \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor m/2 \rfloor} [q^{n-2k}] q^{(m-2l)(m-2l+1)/2} \left(\frac{p}{m-2l} \right) q^k \qbin{n}{l} q^{p+(l+1)/2} \left(\frac{p}{l} \right) q
\]

(4.34)
Replacing n in the previous theorem the summation over k can be done:

\[
\sum_{k=0}^{\lfloor n/4 \rfloor} \sum_{l=0}^{\lfloor m/4 \rfloor} (-1)^i q^{m-4l} \binom{p+m-4l-1}{p-1} q^{2l(i+1)} \binom{p}{l} q^4 = \sum_{k=0}^{\lfloor n/2 \rfloor} \sum_{l=0}^{\lfloor m/2 \rfloor} q^{m-2l(m-2l+1)/2} \binom{p}{m-2l} q^{l(i+1)} \binom{p}{l} q^2 \tag{4.35}
\]

Cancelling some powers of q and replacing m by n and l by k and p by $m+1$ gives the theorem. \(\square\)

Taking $q = 1$ and replacing n by $4n$ and in the left side replacing k by $n-k$ and in the right side k by $2n-k$ gives the combinatorial identity:

\[
\sum_{k=0}^{n} (-1)^k \binom{m+4k}{m} \binom{m+1}{n-k} = (-1)^n \sum_{k=0}^{2n} \binom{m+1}{2k} \binom{m+1}{2n-k} \tag{4.36}
\]

Replacing n by $4n+1$ or $4n+2$ or $4n+3$ gives similar identities.

Theorem 4.7.

\[
\sum_{k=0}^{n} (-1)^k q^{k^2} \binom{m+n-k}{m} q^{(m+1)} \binom{m+1}{k} = \delta_{n,0} \tag{4.37}
\]

Proof. From theorem 4.8 using (2.30) and (3.1):

\[
\sum_{k=0}^{n} \sum_{l=0}^{m} (-1)^i P^*_{n-k-m,l-m-l,p-1} P^*(k-l(l+1)/2, l, p) \tag{4.38}
\]

Replacing m by n and l by k and p by $m+1$ gives the theorem. \(\square\)

Taking $q = 1$ and replacing k by $n-k$ gives the combinatorial identity:

\[
\sum_{k=0}^{n} (-1)^k \binom{m+k}{m} \binom{m+1}{n-k} = \delta_{n,0} \tag{4.39}
\]

Theorem 4.8.

\[
\sum_{k=0}^{n} \sum_{l=0}^{n-k} (-1)^k F(k+l) q^{k^2} \binom{m+1}{k} q^{(m+l)} \binom{m+l}{m} q = F(0) \tag{4.40}
\]

\[
\sum_{k=0}^{n} \sum_{l=0}^{n-k} (-1)^k F(k+l) q^{k^2} \binom{m+1}{k} q^{(m+l)} \binom{m+l}{m} q = F(0) \tag{4.41}
\]
Proof. The double summation over \(k \) and \(l \) is over a triangle, and the sum over each diagonal \(k + l = c \) is zero because of the previous theorem with \(n = c \), except at the origin \(k = l = c = 0 \), where the summand is the right side of the identity.

The following four identities are an application of this theorem.

\[
\sum_{k=0}^{n-k} \sum_{l=0}^{n-k-1} (-1)^k q^{a(n-k-l)} + b_{\frac{k}{2}} \binom{p+n-k-l}{p} q^c \binom{m-k}{k} q^b \binom{m+l}{m} q^b = q^{a\binom{p+n}{p}} q^c
\]

(4.42)

\[
\sum_{k=0}^{n-k} \sum_{l=0}^{n-k-1} (-1)^l q^{a(n-k-l)} + b_{\frac{k}{2}} \binom{p+n-k-l}{p} q^c \binom{m-k}{k} q^b \binom{m+l}{m} q^b = q^{a\binom{p+n}{p}} q^c
\]

(4.43)

\[
\sum_{k=0}^{n-k} \sum_{l=0}^{n-k-1} (-1)^k q^{a(n-k-l)} + b_{\frac{k}{2}} \binom{p}{n-k-l} q^c \binom{m-k}{k} q^b \binom{m+l}{m} q^b = q^{a\binom{p}{n}} q^c
\]

(4.44)

\[
\sum_{k=0}^{n-k} \sum_{l=0}^{n-k-1} (-1)^l q^{a(n-k-l)} + b_{\frac{k}{2}} \binom{p}{n-k-l} q^c \binom{m-k}{k} q^b \binom{m+l}{m} q^b = q^{a\binom{p}{n}} q^c
\]

(4.45)

In the summands of the last four identities, because of the type of double summation, \(k \) and \(l \) can be interchanged and \(l \) can be replaced by \(n-k-l \). Some pairs of these identities or identities derived from them in this way have identical summands if \((-1)^k\) is replaced by \((-1)^l\) and vice versa and have identical right sides. In these cases a linear combination of the two identities can be taken such that in the summand of the new identity:

\[
\frac{1}{2} \left[(-1)^k + (-1)^l \right] = \begin{cases}
(-1)^k & \text{if } k + l \text{ is even} \\
0 & \text{if } k + l \text{ is odd}
\end{cases}
\]

(4.46)

where the right side of the new identity is identical to the right sides of the original identities, and:

\[
\frac{1}{2} \left[(-1)^k - (-1)^l \right] = \begin{cases}
(-1)^k & \text{if } k + l \text{ is odd} \\
0 & \text{if } k + l \text{ is even}
\end{cases}
\]

(4.47)

where the right side of the new identity is zero. For example taking identity (4.43) with \(a = 0 \), \(b = c = 1 \) and \(p = m \) and for the first identity interchanging \(k \) and \(l \) and replacing \(l \) by \(n-k-l \), and for the second identity additionally interchanging \(k \) and \(l \) again, and taking linear combination (4.40) gives corollary 2.4 in [3]:

\[
\sum_{k=0}^{n-k} \sum_{l=0}^{n-k-1} (-1)^k q^{a\binom{n-k-l}{2}} \binom{m+k}{m} q^c \binom{m+l}{m} q^b \binom{m+1}{m} q^b = \binom{m+n}{m} q
\]

(4.48)

and taking identity (4.44) with \(a = b = c = 1 \) and \(p = m+1 \) and for the first identity replacing \(l \) by \(n-k-l \), and for the second identity additionally interchanging \(k \) and \(l \), and taking linear combination (4.46) gives corollary 3.4 in [3]:

\[
\sum_{k=0}^{n-k} \sum_{l=0}^{n-k-1} (-1)^k q_{\frac{k}{2}} \binom{m+1}{k} q^c \binom{m+1}{l} q^b \binom{m+n-k-l}{m} q = q^{a\binom{m+1}{n}} q
\]

(4.49)
References

[1] G.E. Andrews, *The Theory of Partitions*, Cambridge University Press, 1984.

[2] G.E. Andrews, K. Eriksson, *Integer Partitions*, Cambridge University Press, 2004.

[3] G.E. Andrews, R. Askey, R. Roy, *Special Functions*, Cambridge University Press, 1999.

[4] H.W. Gould, *Combinatorial Identities*, rev. ed., Morgantown, 1972.

[5] V.J.W. Guo, D.-M. Yang, A q-analogue of some binomial coefficient identities of Y. Sun, *Electron. J. Combin.* 18 (2011) P78

[6] M.J. Kronenburg, Computation of P(n,m), the Number of Integer Partitions of n into Exactly m Parts, [arXiv:2205.04988](https://arxiv.org/abs/2205.04988) [math.NT]

[7] M.J. Kronenburg, Computation of q-Binomial Coefficients with the P(n,m) Integer Partition Function, [arXiv:2205.15013](https://arxiv.org/abs/2205.15013) [math.CO]

[8] M. Merca, Generalizations of two identities of Guo and Yang, *Quaest. Math.* 41 (2018) 643-652.

[9] E.W. Weisstein, *q-Binomial Coefficient*. From Mathworld - A Wolfram Web Resource. https://mathworld.wolfram.com/q-BinomialCoefficient.html

[10] Wikipedia, *Gaussian binomial coefficient*, https://en.wikipedia.org/wiki/Gaussian_binomial_coefficient