INTRODUCTION

Type 2 diabetes mellitus has become a serious threat to global human health because of its vascular complications which are associated with increased disability, frailty and reduced life expectancy, including cardiovascular and cerebrovascular diseases (CVD), diabetic nephropathy, diabetic retinopathy, diabetic foot. India is the diabetes capital of the world, with diabetes and pre-diabetes, prevalence of 9% and 11-14%, respectively. This increased burden of diabetes in Indians is a grim precursor of an exponential increase in diabetes-related end-organ damage and associated morbidity in the next few decades.

Chronic inflammation has been considered the potential pathogenesis responsible for the development of diabetic complications. Increased white blood count (WBC) is an easily available inflammatory marker, which correlates with several cardiovascular disease risk factors and its sequel with diabetes. Apart from WBC count, inflammatory markers...
such as interleukin 1 (IL-1), IL-6, IL-8, transforming growth factor β1, tumor necrosis factor-α have been linked to end organ damage in diabetes. Limitations of these markers include lack of availability in routine clinical practice compounded by the associated increased expenses and assay standardization. Among multiple parameters complete blood count, neutrophil-lymphocyte ratio (NLR) has been studied extensively for the association with cardiovascular risk factors like myocardial infarction, heart failure and stroke. NLR stands out as a novel marker of chronic inflammation that reflects a balance between 2 complementary components of the immune system- Neutrophils being the active nonspecific mediator of inflammation, whereas Lymphocytes acting as the protective or regulatory component of inflammation. Data are lacking of NLR as a predictor of end-organ damage in Indians with T2DM. This study, therefore, aimed to evaluate the role of NLR has a role in predicting diabetic vascular complications such as retinopathy, neuropathy, nephropathy, diabetic foot, cardiovascular and cerebrovascular complications.

Aims and objectives

To compare Neutrophil-Lymphocyte ratio in diabetics with and without vascular complications.

MATERIALS AND METHODS

Study design

Cross sectional type.

Study area

The present study was conducted on patients admitted in hospitals affiliated to Bangalore Medical College and Research Institute, Bangalore.

Inclusion criteria

1. Age >18 years
2. Patient willing to give informed consent
3. Diagnosis as per American diabetes association 2018 guidelines

Exclusion criteria

1. Patients who did not give informed consent

Study population

A study population of 111 diabetic patients with and without vascular complications was taken with 56 patients with complications and 55 without complications.

Study period

November 2018 to May 2020.

Methodology of data collection

This study was conducted among patients admitted under medicine department between November 2018 to May 2020 at Victoria hospital and Bowring & Lady Curzon hospital, Bangalore Medical College and Research Institute, Bangalore, Karnataka, India. Approval and clearance were obtained from the institutional ethics committee on 15/11/2018-BMCRI/PG/124/2018-19. Information was collected from the patients on their duration of T2DM, treatment history, age and sex. Data were collected on the anthropometric parameters and vitals of the patients (height, weight, BMI), Pulse rate and Blood pressure. Both fasting and post prandial blood samples of 5 ml each were collected in plain vacutainer and processed immediately for routine biochemical analysis. Spot urine sample was collected and looked for presence of albuminuria. Such patients underwent ultrasonography abdomen for the evaluation of the kidney echotexture and size. Digital fundoscopy was done to assess diabetic retinopathy. Diabetic retinopathy was diagnosed using The Early Treatment Diabetic Retinopathy Study criteria (ETDRS). Patients who had neuropathic symptoms were clinically examined for diabetic neuropathy. Patients who had symptoms and signs of lower limb ischemia were evaluated with respective limb arterial and venous doppler. Patients were screened and evaluated clinically for macrovascular complications and relevant investigations like ECG, 2D ECHO for cardiovascular complications and neuroimaging for cerebrovascular complications. All relevant investigations were done on out-patient and in-patient basis.

Statistical Analysis

Statistical methods

Data was entered into Microsoft excel data sheet and was analyzed using SPSS 22 version software. Categorical data was represented in the form of Frequencies and proportions. Chi-square test was used as test of significance for qualitative data. Continuous data was represented as mean and standard deviation. Independent t test was used as test of significance to identify the mean difference between two quantitative variables. ANOVA (Analysis of Variance) was the test of significance to identify the mean difference between more than two groups for quantitative data.

Table 1: Age distribution of subjects in the study

Age	Count	%
<40 years	17	15.3%
41 to 50 years	27	24.3%
51 to 60 years	27	24.3%
61 to 70 years	25	22.5%
71 to 80 years	11	9.9%
>80 years	4	3.6%
Table 2: Glycemic Profile of subject’s comparison with respect to duration of diabetes

Duration of Diabetes	Newly Detected	<5 years	6 to 10 years	>10 years	Total	
	Mean	SD	Mean	SD	Mean	SD
FBS (mg/dl)	202.77	70.93	242.5	85.35	230.44	74.6
PPBS (mg/dl)	265.67	63.67	281.38	78.14	276.29	92.39
HbA1c (%)	9.42	1.56	9.86	1.93	9.58	2.1

Table 3: Correlation of NLR with respect to duration of diabetes

Duration of Diabetes	Newly Detected	<5 years	6 to 10 years	>10 years	Total	
	Mean	SD	Mean	SD	Mean	SD
N (%)	68.25	6.89	68.93	12.41	71.85	12.93
L (%)	20.92	6.44	18.80	7.84	19.12	9.77
NL Ratio	3.71	2.39	4.54	3.40	5.39	4.04

Table 4: Percentage of complications in diabetic subjects

Complications	Count	%
No Vascular Complications	55	49.5%
Micro complications	25	22.5%
Macro complications	32	28.8%

Graphical representation of data
MS Excel and MS word was used to obtain various types of graphs such as bar diagram, Pie diagram and ROC Curve

Statistical software
MS Excel, SPSS version 22 (IBM SPSS Statistics, Somers NY, USA) was used to analyze data.

RESULTS

This study was conducted among 111 patients admitted in Victoria hospital and Bowring & Lady Curzon hospital attached to Bangalore Medical College and Research Institute.

Age distribution
In this study Mean age was 55.66 ± 13.675 years (Table 1).

Sex distribution
Out of 111 patients 63 patients (56.8%) were Male and 48 patients (43.2%) were Female. In this study male patients were more than female.

Distribution of cases according to duration of diabetes
In the study, duration of diabetes was newly detected in 16.2%, <5 years in 37.8%, 6 to 10 years in 30.6% and >10 years in 15.3%.

Glycemic profile of subject’s comparison with respect to duration of diabetes
There was no significant correlation of FBS, PPBS and HbA1C with the duration of diabetes (Table 2).

Correlation of NLR with respect to duration of diabetes
There was significant correlation of N (%) and NL ratio with duration of diabetes but L (%) did not show significant correlation with duration of diabetes (Table 3).

Vascular complications in diabetic subjects
In the study patients had no vascular complications in 49.5%, had micro-vascular complications in 22.5% and macro-vascular complications in 28.8%. Out of which patients had Diabetic retinopathy in 34%, diabetic nephropathy in 34.2%, diabetic neuropathy in 0.9%, cerebrovascular Accident in 17.1%, ischemic heart disease in 12.6%, diabetic foot in 6.3% of the individuals (Table 4).

NLR comparison with complications and glycemic profile in type 2 diabetics
In the study N (%) was 70.9 ± 13.6, L (%) was 19 ± 8.1 and NL Ratio was 4.8 ± 3 among subjects involved in the study.

In this study, mean N (%) in no vascular complications was 61.7 ± 10.6, in micro complications was 80.6 ± 9.4 and in macro complications was 79.5 ± 9.7. There was a significant difference in mean N (%) comparison with respect to complications.

Mean L (%) in no vascular complications was 23.7 ± 5.8, in micro complications was 14.1 ± 6.9 and in macro...
Table 5: NLR Comparison with respect to complications

Complications	No Vascular Complications	Micro complications	Macro complications			
	Mean	SD	Mean	SD	Mean	SD
N (%)	61.7	10.6	80.6	9.4	79.5	9.7
L (%)	23.7	5.8	14.1	6.9	14.8	8.0
NL Ratio	2.8	0.7	7.1	3.5	6.5	2.7

F P value
<0.001* <0.001*

Table 6: Correlation between NLR with Glycemic Profile

NLRATIO	Pearson Correlation	P value	N
FBS (mg/dl)	0.38	.00039	111

NLRATIO	Pearson Correlation	P value	N
PPBS (mg/dl)	0.49	< .00001	111

NLRATIO	Pearson Correlation	P value	N
HBA1C (%)	0.29	.002019	111

Table 7: Validity of NLR in predicting Vascular Complications

Area under the ROC curve (AUC)

Area under the ROC curve (AUC)	0.924
Standard Error	0.0315
95% Confidence interval	0.858 to 0.966
z statistic	13.441
Significance level P (Area=0.5)	<0.0001

Youden index

Youden index J	0.8565
95% Confidence interval	0.7326 to 0.9282
Associated criterion	>3.9989
95% Confidence interval	3.477203178 to 4.2334

DISCUSSION

Diabetes is a growing health problem associated with increased risk of micro and macro-vascular complications. With the easy availability of various blood tests such as complete blood count (CBC) efforts are made to identify and prove their utility to act as bio-markers for early detection of diabetic complications.

This is a cross sectional study conducted over a period of 2 years from Nov 2018- May 2020 to study association...
of NLR with vascular complications in Type 2 DM. 111 patients were included in this study, where 56 patients were diabetics with vascular complication and 55 patients were diabetes without vascular complications.

Age
In this study the most common age group was 51-60 (22 patients) with mean age of 55.66±13.67. Most of the patients were of 40-70 years. The IDF Diabetes Atlas which tracks the global impact of diabetes also shows the more common age group of diabetes is between 20-79 years of age. This is important because of increasing risk within population and failure to control factors such as obesity and poor diets. This would further cause a rising prevalence as each person getting diagnosed at a earlier age stays longer.

Sex
In this study there was male predominance i.e., 56.8% of patients and female patients were 43.2%, which was similar to study done by Mohammed Haghighatpanah et al. Correlation of glycosylated hemoglobin levels with fasting and postprandial glucose in South Indian Type 2 Diabetic patients.

Duration of diabetes
In this study, Duration of Diabetes was Newly Detected in 16.2%, <5 years in 37.8%, 6 to 10 years in 30.6% and >10 years in 15.3%. Ours being a tertiary care center most of the patients were incidentally diagnosed patients and duration more than 6 years who were on regular follow up for their medications.

There was no significance in mean FBS, mean PPBS, mean HBA1C compared with the duration of the diabetes.

In this study, Duration of diabetes had significant correlation with N (%) with p value (0.035) and NL ratio with p value (0.045) but the L (%) did not show significant correlation.

Study done by Sachin chittawar et al. showed that patients in higher NLR quartiles had significantly higher diabetes duration.

Glycemic profile
In this study, there was a significant positive correlation found in between NLR and FBS, NLR and PPBS and NLR and HBA1C.

Study done by Mazhar hussain et al. also showed that NLR was significantly high in diabetic patients with poor glycemic control.

NLR with respect to vascular complications in type-2 diabetes
Study done by Moursy et al. showed NLR is an important predictor for the presence of microvascular complications like diabetic nephropathy, retinopathy and neuropathy.

In this study there was a significant difference in NLR-Ratio comparison with respect to vascular complications in patients with Type 2 DM. Thus, this study highlighted the importance of a routine assessment of Neutrophil-Lymphocyte ratio which can be easily calculated from a simple peripheral blood count in patients with diabetes to predict the vascular complications.

CONCLUSION
From this study we can conclude that NLR is significantly increased in diabetic patients with complications compared to diabetics without complications showing that increment is more in diabetics with poor glycemic control and longer duration of the disease. NLR would be a useful marker of vascular complications in diabetes both micro and macro-vascular. Hence, it can be shown that NLR can be used as a simple and cost-effective tool to monitor the progression and control of DM and its vascular complications.

ACKNOWLEDGEMENT
Authors would also like to thank Dr Ravi K, HOD & Prof. Department of Medicine, BMCRI and are grateful to all the patients who participated in the study.

REFERENCES
1. Kahm K, Laxy M, Schneider U, Rogowski WH, Lhachimi SK, and Holle R. Health care costs associated with incident complications in patients with type 2 diabetes in Germany. Diabetes Care. 2018; 41(5): 971-978. https://doi.org/10.2337/dc17-1763
2. Cho NH, Shaw JE, Karuranga S, Huang Y, da Roncha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice. 2018; 138: 271-281. https://doi.org/10.1016/j.diabres.2018.02.023
3. Garber AJ, Abrahamson MJ, Barzilay JI, Mechanick JI, Rosenblit PD, Umpierrez GE, et al. Consensus statement by the
American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm - 2019 executive summary. Endocrine Practice. 2019; 25(1): 69-100. https://doi.org/10.4158/CS-2018-0535

4. Dutta D and Mukhopadhyay S. Intervening at prediabetes stage is critical to controlling the diabetes epidemic among Asian Indians. Indian J Med Res. 2016; 143(4):401-404. https://doi.org/10.4103/0971-5916.184281

5. Ferrucci L and Fabbri E. Inflamm ageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nature Reviews. Cardiology. 2018; 15(9): 505-522. https://doi.org/10.1038/s41569-018-0064-2

6. Fujita T, Hemmi S, Kajiwara M, Yabuki M, Fuke Y, Satomura A, et al. Complement-mediated chronic inflammation is associated with diabetic microvascular complication. Diabetes/Metabolism Research and Reviews. 2013; 29(3): 220-226. https://doi.org/10.1002/dmr.2380

7. Cebeci E, Cakan C, Gursu M, Uzun S, Karadag S, Koldas M, et al. The main determinants of serum resistin level in type 2 diabetic patients are renal function and inflammation not presence of microvascular complication, obesity and insulin resistance. Experimental and Clinical Endocrinology & Diabetes. 2019; 127(4): 189-194. https://doi.org/10.1055/s-0043-121262

8. Twig G, Afek A, Shamiss A, Derazne E, Tzur D, Gordon B, et al. White blood cells count and incidence of type 2 diabetes in young men. Diabetes Care. 2013; 36:278-282. https://doi.org/10.2337/dc13-1298

9. Jiang H, Yan WH, Li CJ, Wang AP, Dou JT and Mu YM. Elevated dysfuntion and nitrosative stress in diabetic retinopathy. Can J Diabetes. 2013; 37:401-407. https://doi.org/10.1016/j.jcjd.2013.05.004

10. Choudhuri S, Dutta D, Chowdhury IH, Mitra B, Sen A, Mandal LK, et al. Association of hyperglycemia mediated increased advanced glycation and erythrocyte antioxidant enzyme activity in different stages of diabetic retinopathy. Diabetes Res Clin Pract. 2013; 100:376-384. https://doi.org/10.1016/j.diabres.2013.03.031

11. Nguyen DV, Shaw LC and Grant MB. Inflammation in the pathogenesis of microvascular complications in diabetes. Front Endocrinol. (Lausanne). 2012; 3:170 https://doi.org/10.3389/fendo.2012.00170

12. Rajala MW, Scherer PE. Minireview: The adipocyte - At the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology. 2003; 144:3765-3773. https://doi.org/10.1210/en.2003-0580

13. Dutta D, Choudhuri S, Mondal SA, Maisnam I, Reza AH, Ghosh S, et al. Tumor necrosis factor alpha -238G/A (rs 361525) gene polymorphism predicts progression to type-2 diabetes in an Eastern Indian population with prediabetes. Diabetes Res Clin Pract. 2013; 99: e37-e41. https://doi.org/10.1016/j.diabres.2012.12.007

14. Ruddiger A, Burckhardt OA, Harpes P, Müller SA and Follath F. The relative lymphocyte count on hospital admission is a risk factor for long-term mortality in patients with acute heart failure. Am J Emerg Med. 2006; 24:451-454. https://doi.org/10.1016/j.ajem.2005.10.010

15. Bhutta H, Agha R, Wong J, Tang TY, Wilson YG and Walsh SR. Neutrophil-lymphocyte ratio predicts medium-term survival following elective major vascular surgery: A cross-sectional study. Vasc Endovascular Surg. 2011; 45:227-231. https://doi.org/10.1177/1538574410396590

16. Turkmen K, Guney I, Yerlikaya FH and Tonbul HZ. The relationship between neutrophil-to-lymphocyte ratio and inflammation in end-stage renal disease patients. Ren Fail. 2012; 34:155-159. https://doi.org/10.3109/0886022X.2011.641514

17. [Guideline] American Diabetes Association. Summary of Revisions: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020 Jan. 43 (Suppl 1): S4-S6. https://doi.org/10.2337/dc20-Srev

18. Grading diabetic retinopathy from stereoscopic color fundus photographs - An extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmol. 1991;98(5 Suppl):786-806. https://doi.org/10.1016/S0161-6420(13)38012-9

19. IDF Diabetes Atlas [Internet]. Idf.org. [cited 2020 Dec 12]. Available from: https://www.idf.org/e-library/epidemiology-research/diabetes-atlas.html

20. Haghighatpanah M, Thunga G, Khare S and Mailayasamy S. Correlation of glycosylated hemoglobin levels with fasting and postprandial glucose in South Indian type 2 diabetic patients. Int J Pharm Pharm Sci. 2016;8(8):285-288. 10.22159/ijpeds.2017.22533

21. Chittawar S, Dutta D, Qureshi Z, Surana V, Khandare S and Dube YN. Neutrophil-lymphocyte ratio is a novel reliable predictor of nephropathy, retinopathy, and coronary artery disease in Indians with type-2 diabetes. Indian J Endocr Metab. 2017; 21:864-870. https://doi.org/10.4103/ijem.IJEM_476_16

Asian Journal of Medical Sciences | Aug 2021 | Vol 12 | Issue 8 21
28. Hussain M, Babar MZM, Akhtar L and Hussain MS. Neutrophil lymphocyte ratio (NLR): A well assessment tool of glycemic control in type 2 diabetic patients. Pak J Med Sci. 2017;33(6):1366-1370. https://doi.org/10.12669/pjms.336.12900

29. Moursy EY, Megalla M, Mouftah RF and Ahmed SM. Relationship between neutrophil lymphocyte ratio and microvascular complications in Egyptian patients with type 2 diabetes. Am J Intern Med. 2015;3(6):250-255. https://doi.org/10.11648/j.ajim.20150306.16

Author’s Contribution:
STA - Concept and design of the study; coordination; SHK - Interpreted the results; reviewed the literature and manuscript preparation; RKR - Review of literature and manuscript preparation; coordination; RMG - Prepared first draft of manuscript Statistically analyzed and interpreted, preparation of manuscript and revision of the manuscript.

Work Attributed to:
Bangalore Medical College and Research, Bangalore, Karnataka, India.

Orcid ID:
Dr. Shilpa Tumkur Andane Gowda - https://orcid.org/0000-0001-9610-7520
Dr. Shahari Hegde Kusumakar - https://orcid.org/0000-0002-0158-6117
Dr. Raveendra Kodur Ramamurthy - https://orcid.org/0000-0003-4246-9491
Dr. Rohith Maraludevanapura Govindaiah - https://orcid.org/0000-0003-3915-9521

Source of funding: None, Conflict of Interest: None.