T cell receptor mimic antibodies for cancer therapy

Leonid Dubrovsky, Tao Dao, Ron S Gejman, Elliott J Brea, Aaron Y Chang, Claire Y Oh, Emily Casey, Dmitry Pankov, and David A Scheinberg*

Memorial Sloan Kettering Cancer Center; New York, NY USA

Keywords: immunotherapy, T cell receptor (TCR), TCR mimic antibody, TCR like antibody, monoclonal antibody

The major hurdle to the creation of cancer-specific monoclonal antibodies (mAb) exhibiting limited cross-reactivity with healthy human cells is the paucity of known tumor-specific or mutated protein epitopes expressed on the cancer cell surface. Mutated and overexpressed oncoproteins are typically cytoplasmic or nuclear. Cells can present peptides from these distinguishing proteins on their cell surface in the context of human leukocyte antigen (HLA). T cell receptor mimic (TCRm) mAb can be discovered that react specifically to these complexes, allowing for selective targeting of cancer cells. The state-of-the-art for TCRm and the challenges and opportunities are discussed. Several such TCRm are moving toward clinical trials now.

Cancer Antigens and T Cell Receptor-Mimic Monoclonal Antibodies

Spontaneous antitumor T cell responses occur frequently in cancer patients and analyses of these responses have led to successful identification of tumor antigens recognized by T cells in the context of HLA. Tumor specific antigens can originate from mutated gene products, such as Ras and BCR/ABL fusion proteins. Although the neoantigens resulting from these mutations are strictly unique to tumor cells, the chances that a peptide displaying such a mutation will bind the patient’s HLA and be displayed are small, and few are documented. Tumor associated antigens, on the other hand, include proteins that are overexpressed in tumor cells, and therefore are displayed at a far higher rate on the surface of cancer cells (Table 1). CD8+ T cells of the immune system can identify antigenic peptides presented by HLA class I molecules. Peptides recognized as non-self, such as those derived from mutated, oncofetal or viral genes, can be detected by T cells, which will then kill the antigen presenting tumor cell.

Strategies for enhancing T cell responses to these antigens include vaccination of cancer patients using DNA, peptides, whole proteins derived from tumor antigens, and dendritic cells loaded with peptides or incorporated with mRNAs. Unfortunately, therapeutic results to date have not been robust. Current approaches to primarily enhance tumor-specific T cell immunity by vaccination appear inadequate to maintain an effective antitumor immune response, likely because it is difficult to vaccinate patients against self-antigens. As our understanding of the complex interaction between tumors and the immune system has improved, alternative approaches have been exploited to enhance the therapeutic efficacy of T cells. One approach is to adoptively transfer T cells that have been engineered to express high affinity T cell receptors (TCRs) specific for tumor antigens. Another approach is to engineer T cells with chimeric antigen receptors (CARs). These constructs link antigen-specific mAb with one or more intracellular T cell co-stimulatory molecules. Transducing such constructs into polyclonal T cells directs T cell cytotoxicity to tumor cells. However, CAR T cells have been largely generated to recognized differentiation antigens that are already well recognized by mAbs. The CAR T cell may offer far more effective T cell therapy by bypassing immune tolerance to a predetermined antigen.

The other arm of adaptive immunity is circulating immunoglobulins, which have been effectively exploited therapeutically as mAbs. MAbs mediate their activity by direct cytotoxicity by blocking or activating signaling pathways, complement-dependent cytolyis, antibody-dependent cell cytotoxicity (ADCC), or by activating the immune response. The FDA has approved nearly 20 mAbs for the treatment of various hematological and solid tumors. Targets include primarily lineage and differentiation antigens such as epidermal growth factor receptor, vascular endothelia growth factor, cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), PD1, CD20, CD30, and CD52. Immunoglobulins can also serve as carrier vehicles for targeted delivery of more potent cytotoxic agents, such as toxins, drugs, and radiation. However, all the marketed therapeutic mAbs have been limited to cell surface or extracellular proteins found on healthy cells and tissues, resulting in off-target toxicity. Additionally, as the vast majority of tumor specific and tumor associated antigens are intracellular, these important antigens cannot be targeted by conventional mAb therapy.

A TCRm mAb would be able to combine recognition of intracellular proteins, analogous to that of a TCR, with the therapeutic potency and versatility of a mAb. Biological and technical issues were major obstacles to this approach until
recently. The antigenic density of a peptide within a HLA class I molecule on the cancer cell surface (perhaps 10 to a few thousand molecules) is substantially lower than for most expressed cell surface targets (ranging from tens of thousands to a million molecules). In addition, the presented peptide is buried in the groove of the HLA molecule, a protein found in large numbers on the surface of all nucleated cells. Therefore, it was extremely difficult to generate a mAb with both high specificity and high affinity by traditional hybridoma techniques. Phage display library technology to select such mAbs has now made it possible to easily identify rare mAbs against epitopes such as peptide/HLA-A complexes, from a large library. As an example, we have successfully generated a fully human TCRm mAb, ESK1, specific for epitopes derived from WT1, an intracellular oncofetal antigen and transcription factor overexpressed in a wide range of cancer types. The mAb showed potent therapeutic activity against WT1-expressing leukemia and solid tumors, both in vitro and in vivo, via antibody-dependent cellular cytotoxicity.

TCRm mAbs Under Investigation

Numerous TCRm based constructs have been created over the past 15 years, recognizing both viral and self-antigens in the context of HLA-A, most commonly in HLA-A*02:01, and HLA-A*24:02. The majority of TCRm are used as biochemical tools to study antigen presentation, structure, and recognition. Many of these TCRm mAbs target viral antigen presentation, such as Env183/A2 (Hep B/HLA-A*02:01), KP14/1 and KP15/11 (HIV envelope gp160/HLA-A*02:01), and RL36A (West Nile Virus/mouse H-2D b). TCRm derivatives have also been designed for cancer therapy. In addition, TCR-like and TCR transduced T cells aimed at cancer antigens overexpressed in tumors, such as MAGE-A1 or WT1 respectively, have been described for engineered T cell therapy. TCRm Fab linked immunotoxin conjugates have been constructed as well. However, none of these TCRm have yet advanced to the clinical setting.

The generation of full-length functional TCRm IgGs for the purpose of cancer therapy has rarely been accomplished. Three groups have reported on such TCRm. The Weidanz lab has created three antibodies: RL6A (p68 RNA helicase/HLA-A*02:01), RL4B (hCG-β/HLA-A*02:01), and RL1B (Her2-E75/HLA-A*02:01). The Molldrem group created the TCRm mAb 8F4, targeting PR-1 in context of HLA-A*02:01. Finally,
our lab has generated the antibody ESK1, and its Fc enhanced form, ESKM, directed to WT1/HLA-A*02:01 (Fig. 1). The latter TCRm is a human IgG, allowing its use immediately in patients. While all of these TCRm antibodies have shown promising results in vitro and in vivo, clinical trials in humans are still pending.

Regulation of TCRm Epitope Expression

A potential hurdle to effective use of TCRm mAb is the relative lack of epitope density on the cell surface, which may be extremely low (100–1,000 sites per cell), as compared to the high (20,000–500,000 sites per cell) number of sites per cell for traditional mAbs. TCRm Abs have been shown to trigger complement mediated killing or ADCC even at low epitope density. Potency appears to be correlated with numbers of target sites, stressing the importance of examining epitope regulation.

Level of protein expression, protein half-life, peptide processing, HLA levels, and HLA presentation of the peptide all dictate TCRm target epitope density. The protein must first be translated in sufficient quantities to facilitate peptide processing, and stability plays an important role. For instance, defective ribosomal products (DRiPs) may accumulate due to errors in transcription, translation, or protein folding. Various reports suggest DRiPs are rapidly degraded and constitute a significant percentage of peptides presented on HLA. Short lived proteins also appear to be more likely to be present than those with a longer half-life. To initiate antigen processing, proteins are cleaved into random-sized peptides by proteasome-mediated degradation in the cytosol. These peptides then enter the endoplasmic reticulum through TAP, where they are trimmed by aminopeptidases, loaded onto HLA, and transported to the cell surface. Peptide HLA loading is governed by the binding affinity of the HLA protein to the peptide. The amino acid residues at position number 2 and 9 in the peptide determine binding affinity to most HLA alleles. Although several peptides may briefly bind a single HLA molecule, chaperones such as tapasin allow rapid peptide exchange ensuring the replacement of low-affinity peptides by those with high affinity. The resulting product is trafficked to the cell surface. Unstable peptides dissociate from HLA on the cell surface, resulting in significantly shortened half-lives. Moreover, specific peptides have been shown to cluster on the cell surface, which increases the avidity of the epitope and allows for increased activation of recruited effectors. However, some tumors have been observed to significantly downregulate surface HLA expression. Such tumors will be far less susceptible to TCRm based therapy due to target downregulation.

To overcome the issue of low target density, pharmacological modulation of key steps in peptide presentation should be considered. For instance, specific cytokines, such as IFNγ and TNFα, increase HLA presentation. Specific chemotherapeutic agents and radiation can also enhance HLA expression. Thus, modulation through exogenous treatment or cytokine release in the local tumor environment may increase epitope density and augment TCRm efficacy. Moreover, because tools for predicting affinity and immunogenicity of potential peptide epitopes are imprecise, development of robust tools will allow for greater accuracy in deciding which peptides will be presented in adequate numbers and hence lead to potential targets to pursue with TCRm Abs.

Determining Ideal TCRm Targets

The power of TCRm comes from their ability to exquisitely target cells based on expression of specific, otherwise undruggable, intracellular proteins. Ideal TCRm targets for cancer therapy are thus tumor-specific peptide/HLA complexes found in abundance on the cell surface. These antigens are most likely to be found in overexpressed proteins with short half-lives that are cleaved and processed into peptides with high affinity to the patient’s HLA.

Targets meeting the above criteria can be grouped into three general categories. The first category is antigens presented only by the tumor itself, such as peptides derived from commonly mutated proteins (e.g. KRAS G12V/D) or fusion proteins. Another group is re-expressed oncofetal proteins (e.g. Carcinoembryonic antigen) and overexpressed genes (e.g. MART-1/Melan-A, MAGE, PSA) (Table 1). Targeting commonly mutated proteins is the most conceptually interesting as it may enable the holy grail of cancer therapy: a drug which selectively kills transformed cells across a wide array of cancer types. The disadvantage of these common mutations is that not all tumors will bear susceptible mutations—or the correct HLA type. Developing TCRm against re-expressed oncofetal proteins (as we have done with WT1) or proteins overexpressed in cancer may be a more general strategy, in which the limited expression on healthy tissue must be addressed in each case.

A third broad category of possible TCRm targets are tumor associated cells of the microenvironment, such as regulatory T cells, tumor-associated macrophages (TAMs), and cells involved in angiogenesis. It is too early to tell whether targeting these tumor infiltrates will be an effective antitumor strategy, but it is notable that a phase I clinical trial targeting macrophages systematically with an anti-CSF-1R antibody has shown early positive results. As genes that distinguish tumor-infiltrating cells from their systemic counterparts are discovered—TCRm, which do not rely on surface marker expression—may allow for more specific targeting of only the tumor infiltrating cells. TCRm developed against populations of normal cells may have other applications, such as in diseases of immune dysregulation.

TCRm Versus TCR

While TCRm antibodies react with a peptide sequence similar to that which the TCR reacts with, (because both see an epitope within the peptide carried by HLA, as well as the HLA molecule...
Table 2. A Comparison of TCR and TCRm

Feature	TCR	TCRm
Binding domain	Vα and Vβ	VH and VL
Affinity/avidity	Typically > 1 μM; higher affinities may be engineered	0.2–200 nM
Valency	Monovalent, unless on a cell	Bivalent or monovalent
Pharmacokinetics	Variable; short	Days to weeks
		(for intact human IgG)
Production	Ex vivo process, by vaccination, adoptive T cell therapy, or genetically modified T cell.	Large-scale manufacturing, well established.
HLA Subtype binding	Highly restricted to patient’s HLA subtypes	Less stringent HLA restriction possible.

Adoptive T cell and CAR therapies are far more expensive, cumbersome, logistically difficult to provide as off the shelf therapies. Furthermore, persistence of T cells is difficult to maintain in vivo.20,67 TCRm mAb are simple and inexpensive to manufacture, as has been done successfully for the past two decades for many FDA approved therapeutic antibodies. Additionally, TCRm mediated ADCC, complement killing, or TCRm immunocytokines rely on multiple effectors or no cellular effectors, respectively, and allows for the bypassing of T cell mediated immunosuppression in the cancer patients on chemotherapy.68

Mechanisms of TCRm Function

TCRm mAbs have been shown to mediate Fc-independent cell death, specifically such as: RL4B, RL6A, and RL1B.33,35 These TCRm antibodies activate apoptosis in target breast cancer models in which the hCG-β, p68 RNA helicase, or Her2 derived peptides are presented on HLA-A0201, respectively. This apoptosis is mediated by internalization of the antibody bound to the peptide/HLA complexes, followed by phosphorylation of the JNK protein kinase and/or p38 MAPK resulting in activation of the intrinsic caspase-dependent pathway. However, other therapeutic TCRm antibodies do not promote Fc-independent cell death.7,24

Fc-dependent mechanisms of mAb action can be further broken down into two subcategories: complement mediated or effector cell mediated. Complement proteins can bind to the Fc region of therapeutic mAbs and initiate the complement cascade, resulting in CDC. RL4B, RL6A, and 8F4 TCRm antibodies have been shown to induce complement in vitro.17,32,33,69 TCRm Abs also recruit immune effector cells, such as NK cells, monocytes/macrophages, and neutrophils, via Fcy receptors, resulting in ADCC. The exact mechanism of ADCC varies depending on the type of immune effector cell activated. For example, activated NK cells secrete perforin and granzyme B, which are taken up by the target cell and result in cell lysis, similar to cytotoxic CD8+ T cells.70 Meanwhile, monocytes and macrophages have been shown to phagocytose an IgG-bound target cell as the primary method of ADCC, but can also secrete cytotoxic factors, such as TNF and reactive oxygen intermediates.71,72 Neutrophils have also been suggested to mediate...
ADCC in this manner. ADCC has shown itself to be a widespread mechanism of action for therapeutic TCRm antibodies. RL4A, RL6A, and 8F4 have all demonstrated in vitro ADCC activity. Additionally, ESK, which does not show direct apoptotic induction nor complement activation, is a potent initiator of ADCC.

Challenges and Opportunities with TCRm

A potential concern for the efficacy of TCRm antibodies is the generally low density of their target peptide/MHC epitopes, with only hundreds to a few thousand expressed on a target cell surface, versus the tens to hundreds of thousands of epitopes targeted by commercially available antibodies. Therefore, strategies to augment the therapeutic index should be considered. For example, Fc engineering to enhance ADCC via altered Fc glycosylation or amino acid changes in the Fc sequence have been employed. In addition, TCRm mAbs serve as an ideal cancer targeting platform for delivery of cytotoxic payloads specifically to a tumor, including attachment of α emitting radioisotopes or potent drugs and toxins. Lastly, the ScFv’s used to reverse engineer a TCRm mAb can be formed into bispecific antibodies, bispecific T-cell engagers (BiTEs), and CARs for expression on cyotoxic T-cells.

The effective use of TCRm mAbs for treatment of cancer must overcome a number of hurdles, including the problems with low epitope density discussed earlier (Table 3). In addition, the determination of appropriate antigenic targets, the complete avoidance of cross-reactivity with the HLA molecule itself (found on all nucleated cells), the discovery of high specificity, high-affinity TCRm, and the resistance by tumors to ADCC are potential issues. In general, MHC molecules do not readily or rapidly internalize, reducing the efficacy of drug conjugates, so activation of immune effectors will likely be the dominant mode of cytotoxicity for TCRm. However, the low density of cell surface targets makes both ADCC and complement mediated killing far more difficult. Furthermore, some of the patients in whom the TCRm may be prescribed will not have sufficient numbers of active effector cells as a consequence of the underlying disease (such as with leukemias) or due to prior cytotoxic therapy.

Although the manufacture of mAb on a large scale is easily done, the selection of targets, mAb creation and verification are at this time all difficult, expensive, and time consuming. The selection of validated targets poses several challenges. HLA restriction has been posed as a major obstacle to the widespread use of TCRm. However, HLA-A*02 is found in up to 40% of Caucasians, and 10–20% of other ethnic groups around the world. The success of just one TCRm to this HLA type would treat more patients than a typical “targeted” therapy that can only reach the small fraction of patients that express a particular mutated kinase or receptor. By preparing several TCRm of different HLA restrictions, it would be possible to address a large fraction of patients of patients with many cancers.

While a number of transcription factors and proteins have been described as over-expressed in tumor cells, few are seen on the cell surface in the context of HLA in sufficient numbers to allow for TCRm guided ADCC. An approach to overcome this problem might be to utilize multiple TCRm to different epitopes presented by the same HLA type. Making multiple mAbs targeting a variety of commonly overexpressed targets in the context of a variety of the most common HLA types also would allow for increased specificity, efficacy, and population coverage. Another potential hurdle is the cross-reactivity of TCRm to epitopes that share sequence homology to the chosen 9-mer amino acid sequences. As the mAb binds to small numbers of amino acids derived from sequences from both the HLA and the peptide, other amino acid sequences (either from processed peptides that share partial homology, or from HLA that share homology) may bind the TCRm.

Conclusions

Effective, truly cancer-specific therapies do not currently exist. A major advantage of the TCRm approach is that for the first time it should allow a readily available and potent drug that binds almost exclusively to target cancer cells, a goal currently not

Challenges for TCRm	Discussion and Possible Solutions
Low epitope density or low HLA	• Upregulate HLA or antigen pharmacologically, eg with interferon γ
Cross reactivity with HLA	• Increase potency of TCRm via Fc engineering, CAR, BiTE, etc.
HLA restriction	• Create predictive models in silico
Lack of MHC internalization	• Screen extensively during discovery
Reduced Effector cell numbers	• Identify the key contact residues of HLA molecules by crystallography
Cross reactivity with other epitopes	• Use of multiple TCRm to broaden coverage
	• Screen for HLA cross-reactive mAb
	• Use potent radiopharmaceutical that does not require entry such as α emitter
	• Careful choice of patient population, such as with reduced tumor burden
	• Use immunomodulators or radio-immunomodulators, CAR, or BiTE
	• Infuse human effector cells
	• Treat with GM-CSF, IL-2, or other cytokines to promote effector expansion
	• Careful screening and selection
	• Develop predictive models in silico
	• MASS Spec to confirm if the predicted epitopes are presented
possible with any other approved form of therapy. Currently available small molecule therapies are not specific to cancer cells and other immunological approaches, such as vaccines or cellular therapies, which might be characterized as tumor specific, are cumbersome to produce, use, or control, or they lack the potency of the mAb. Moreover, as antibody therapy does not require the host adaptive immunity system, these drugs may be used in conjunction with lymphotropic chemotherapy. TCIRm may be viable and frozen or lyophilized, allowing widespread, immediate and inexpensive use worldwide in virtually any setting. Such accessibility is not possible with adoptive cell therapies, CAR T therapies, bone marrow transplants, or donor leukocyte infusions. However, as has been observed with traditional mAb therapy against widespread targets on cancer cells, mAb therapy alone is not likely to be sufficiently potent to eliminate 100% of cells when used as monotherapy, even at high effector to target ratios. Mechanisms of cancer cell resistance to antibody therapy must therefore be elucidated and remediated before the full potential of TCRm mAb therapy can be realized. Combination therapies with other anticancer agents likely will be necessary.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Funding
This study was supported by the Leukemia and Lymphoma Society, NIH P30 CA08748, NIH R01CA55349, P01CA23766, Lymphoma Foundation, Tudor and Glades funds, the MSKCC Technology Development Fund and the Experimental Therapeutics Center. L Dubrovsky was supported by NIH T32CA62948-18. E Brea and RS Gejman were supported by a Medical Scientist Training Program NIH T32GM007739. The content of this study is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References
1. Coule PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes at the core of cancer immunotherapy. Nat Rev Cancer 2014; 14:135-46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24457417; PMID:24457417
2. Kubuschok B, Neumann F, Brent R, Sester M, Schor mann C, Wagner C, Sester U, Hartmann F, Wagner M, Remmberger K et al. Naturally occurring T-cell response against mutated p21 ras oncoprotein in pancreatic cancer. Clin Cancer Res 2006; 12:1365-72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16489095; PMID:16489095
3. Kessler JH, Bres-Vloemans SA, van Veelen PA, de Ru A, Huijbers IJG, Camps M, Mulder A, Offerings R, Drifhout JW, Leekma OC et al. BCR-ABL fusion regions as a source of multiple leukemia-specific CD8+ T-cell epitopes. Leukemia 2006; 20:1738-50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16868838; PMID:16868838
4. Pinilla-Ibarz J, Garthart C, Korosnovt T, Soignet S, Bocchia M, Caggiano J, Lai L, Jimenez J, Kolitz J, Scheinberg DA. Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene break point peptides generates specific immune responses. Blood 2000; 95:1781-7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10688838; PMID:10688838
5. Asai H, Fujiwara H, An J, Ochi T, Miyazaki Y, Nagai K, Oka moto S, Mineo J, Kurushima K, Shika H et al. Co-introduced functional CCR2 potentiates in vivo antitumor activity of T cells redirected with a TCR-like chimeric antigen receptor. Sci Rep 2014; 4:4571. Available from: http://www.nature.com/srep/2014/140106/srep03571/full/srep03571.html; PMID:24389689
6. LeMaistre CF, Meneghetti C, Howes L, Osborne CK. Improved human T-cell responses against synthetic peptide HLA-0201 analog peptides derived from the WT1 tumor antigen. Leukemia 2006; 20:1738-50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16990779; PMID:16990779
7. Imai N, Ikeda H, Shiku H. [Targeting cancer antigen Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. J Exp Med 1995; 181:363-8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8999578; PMID:8999578
8. Han H, He W, Wang W, Zhao Y et al. Anti-melanoma activity of T cells redirected with a TCR-like antibody to the intracellular WT1 oncogene product stimulate CD4+ and CD8+ T cells that recognize and kill human malignant mesothelioma tumor cells. Clin Cancer Res 2007; 13:4547-55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17761141; PMID:17761141
9. Derlinne S, Armstrong A, Hawkins RE, Stern PL. Cancer vaccines and immunotherapy. Br Med Bull 2002; 62:149-62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12176857; PMID:12176857
10. Castelli C, Storkus WJ, Mauret MJ, Martin DM, Huang EC, Pramanik BN, Nagabhushan TL, Parmiani G, Lotze MT. Mass spectrometric identification of a naturally processed melanoma peptide recognized by CD8+ cytotoxic T lymphocytes. J Exp Med 1995; 181:363-8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8999578; PMID:8999578
11. Kubuschok B, Neumann F, Brent R, Sester M, Schor mann C, Wagner C, Sester U, Hartmann F, Wagner M, Remmberger K et al. Naturally occurring T-cell response against mutated p21 ras oncoprotein in pancreatic cancer. Clin Cancer Res 2006; 12:1365-72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16489095; PMID:16489095
12. Imai N, Ikeda H, Shiku H. [Targeting cancer antigen Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. J Exp Med 1995; 181:363-8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8999578; PMID:8999578
13. Disis ML, Cheever MA. HER-2/neu protein: a target for tumor immune surveillance. J Immunol 2012; 189:5476-84. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3626376; PMID:22437872; PMID:22437872
14. Baxevanis CN, Papanicolaou M, Perez SA. Therapeutic cancer vaccines: a long and winding road to success. Expert Rev Vaccines 2014; 13:131-44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24224539; PMID:24224539
15. LeMaistre CF, Meneghetti C, Howes L, Osborne CK. Improved human T-cell responses against synthetic peptide HLA-0201 analog peptides derived from the WT1 tumor antigen. Leukemia 2006; 20:1738-50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16990779; PMID:16990779
16. Alatrash G, Mittendorf EA, Sergeeva A, Sukhumal hetra V, Zheng S, Wang L, Cui J et al. Anti-tumor immunity mediated by a TCR-like antibody against the intracellular WT1 oncogene product. Sci Transl Med 2012; 14:e6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23434126; PMID:23434126
17. Disis ML. Mechanism of action of immunotherapy. Adv Cancer Res 1997; 71:343-71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9111870; PMID:9111870
18. Disis ML, Cheever MA. HER-2/neu/ neuralantigens: the potential of TCRm mAb therapy can be realized. Combination therapies with other anticancer agents likely will be necessary.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Funding
This study was supported by the Leukemia and Lymphoma Society, NIH P30 CA08748, NIH R01CA55349, P01CA23766, Lymphoma Foundation, Tudor and Glades funds, the MSKCC Technology Development Fund and the Experimental Therapeutics Center. L Dubrovsky was supported by NIH T32CA62948-18. E Brea and RS Gejman were supported by a Medical Scientist Training Program NIH T32GM007739. The content of this study is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
oncoprotein. Clin Cancer Res 2014; 20:4036-46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24850840; PMID:24850840
26. Dubovicky L, Pankov D, Beja DJ, Dao T, Scott A, Yan SH, Fitchey RJ, Liu C, Scheiberg DA. A TCR-mimic antibody to WT1 bypasses tyrosine kinase inhibitor resistance in human BCR-ABL+ leukemias. Blood. 2014; 123:3296-304. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24723681; PMID:24723681
27. Sastry KSR, Too CT, Kaur K, Gehring AJ, Low L, Javed A, Pollicino T, Li K, Kennedy PT, Loparit U et al. Targeting hepatitis B virus-infected cells with a T-cell receptor-like antibody. J Virol 2011; 85:1935-42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21350022; PMCID:PMC3335595
28. Polakova K, Pliskov D, Chung DH, Belyakov IM, Berzofsky JA. Margulies DH. Antibodies Directed Against the MHC-I Molecule H2-Dd Complied with an Antigenic Peptide: Similarities to a T Cell Receptor with the Same Specificity. J Immunol 2000; 165:5703-12. Available from: http://www.jimmunol.org/content/165/11/5703; PMID:11067026
29. Kim S, Pinto AK, Hawkins NB, Hawkins O, Doll K, Kaabiejdanja S, Netland J, Bevan M, Weidanz JA, Hildebrandt WH et al. A novel T-cell receptor mimic defines dendritic cells that present an immunodominant West Nile virus peptide. Eur J Immunol. 2014; 44:1936-46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24723377; PMID:24723377
30. Willemsen RA, Roentoft C, Chames P, Debets R, Bolhuis RL. T cell re-targeting with MHC class I-restricted antibodies: the CD28 co-stimulatory domain enhances antigen-specific cytotoxicity and cytokine production. J Immunol 2005; 174:7853-8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15944200; PMID:15944200
31. Correale P, Walmley K, Nieremberg S, Verma B, Jain R, Caseltine SL, Bosh AL. MHC class I antigen presentation pathway, resulting in increased activity and extent of contributions by defective ribosome. Nat Immunol 2011; 12:184-2156-65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21282517; PMID:21282517
32. Verma B, Hawkins OA, Caseltine SL, Lopek ML, Hildebrandt WH, Weidanz JA. TCR-directed discovery and validation of a peptide/MHC epitope expressed in primary human breast cancer cells using a TCRm monoclonal antibody with profound antitumor immune escape in papillary thyroid cancer that is independent mechanisms. J Immunol 2011; 187:3265-76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21559560; PMID:21559560
33. Jain R, Rawat A, Verma B, Markiewski MM, Weidanz JA. Antitumor activity of a monoclonal antibody targeting major histocompatibility complex class I-Her2 peptide complexes. J Natl Cancer Inst 2013; 105:202-18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23618522; PMCID:PMC3582036
34. Jain R, Rawat A, Verma B, Markiewski MM, Weidanz JA. Targeting Her2 peptide complexes. J Natl Cancer Inst 2013; 105:202-18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23618522; PMCID:PMC3582036
35. Jain R, Rawat A, Verma B, Markiewski MM, Weidanz JA. A TCR-mimic antibody to WT1 bypasses tyrosine kinase inhibitor resistance in human BCR-ABL+ leukemias. Blood. 2014; 123:3296-304. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24723681; PMID:24723681
36. Sastry KSR, Too CT, Kaur K, Gehring AJ, Low L, Javed A, Pollicino T, Li K, Kennedy PT, Loparit U et al. Targeting hepatitis B virus-infected cells with a T-cell receptor-like antibody. J Virol 2011; 85:1935-42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21350022; PMCID:PMC3335595
37. Basani-Sternberg M, Pflersch-Frankäld S, Jensen LJ, Mann M. Mass spectrometry of HLA-I peptidomes reveals strong effects of protein abundance and turnover on MHC molecule presentation. Mol Cell Proteomics 2015; Available from: http://www.ncbi.nlm.nih.gov/pubmed/25573631; PMID:25573631
38. Bassani-Sternberg M, Pletscher-Frankild S, Jensen LJ, Mann M. Covalent modifications of MHC-I molecules by accelerating peptide exchange. Eur J Immunol 2010; 40:214-24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20017190; PMID:20017190; http://dx.doi.org/10.1002/eji.200939342
39. Neefjes J, Jonkers Y, Bakke O. Towards a understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011; 11:823-36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21557536; PMID:21557536
40. Verma B, Hawkins OA, Caseltine SL, Lopek ML, Hildebrandt WH, Weidanz JA. Direct discovery and validation of a peptide/MHC epitope expressed in primary human breast cancer cells using a TCRm monoclonal antibody with profound antigenic properties. Cancer Immunol Immunother 2010; 59:1781-8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19777914; PMID:19777914; http://dx.doi.org/10.1007/s00262-009-7748-4
41. Verma B, Jain R, Caseltine S, Rennels A, Bhattacharya R, Markiewski MM, Rawat A, Neethling FA, Bosh AL. TCR mimic monoclonal antibodies induce apoptosis of tumor cells via immune effector-independent mechanisms. J Immunol 2011; 186:3265-76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21282517; PMID:21282517; http://dx.doi.org/10.1084/jimmunol.201102576
42. Verma B, Neethling FA, Caseltine S, Fabrizio G, Largo S, Dury JA, Tabaczewski P, Weidanz JA. TCR mimic monoclonal antibodies target a specific peptide/HLA class I complex and significantly impedes tumor growth in vivo in breast cancer models. J Immunol 2013; 189:2156-65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20065113; PMID:20065113; http://dx.doi.org/10.4049/jimmunol.0902414
43. Jain R, Rawat A, Verma B, Markiewski MM, Weidanz JA. Antitumor activity of a monoclonal antibody targeting major histocompatibility complex class I-Her2 peptide complexes. J Natl Cancer Inst 2013; 105:202-18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23618522; PMCID:PMC3582036
61. Ding Y-H, Smith KJ, Garboczi DN, Urz U, Biddison WE. Wiley DC. Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids. Immunity 1998; 8:403-11. Available from: http://www.sciencedirect.com/science/article/pii/S1074761300805464; PMID:9586631; http://dx.doi.org/10.1016/S1074-7613(00)80546-4

62. Garcia RC. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 1998; 279:1166-72. Available from: http://www.sciencemag.org/content/279/5354/1166.long; PMID:9469799

63. Garboczi DN, Ghosh P, Urz U, Fan QR, Biddison WE, Wiley DC. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 1996; 384:134-41; PMID:8906788; http://dx.doi.org/10.1016/S0028-0842(96)00539-9

64. Stewart-Jones G, Hombach A, Shenderov E, Held G, Garcia KC. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 2013; 138:105-15. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3575765&tool=pmcentrerender&type=abstract; PMID:23216602; http://dx.doi.org/10.1111/imm.12036

65. Chapuis AG, Ragnarsson GB, Nguyen HN, Chaney CN, Pufnock JS, Schmitt TM, Duerkopp N, Roberts IM, Pogosov GL, Ho WY et al. Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients. Sci Transl Med 2010; 2:76ra78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20761916; http://dx.doi.org/10.1126/scitranslmed.2007571

66. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996; 14:233-58; PMID:8717514; http://dx.doi.org/10.1146/annurev.immunol.14.1.233

67. June CH. Principles of adoptive T cell cancer therapy. J Clin Invest 2007; 117:1204-12. Available from: http://www.jci.org/articles/view/31446#SEC6; PMID:17476350

68. Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 2013; 138:105-15. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3575765&tool=pmcentrerender&type=abstract; PMID:23216602; http://dx.doi.org/10.1111/imm.12036

69. Wittman VP, Woodburn D, Nguyen T, Neethling FA, Wright S, Weidanz JA. Antibody targeting to a class I MHC-Peptide epitope promotes tumor cell death. J Immunol 2006; 177:4187-95. Available from: http://www.jimmunol.org/content/177/7/4187.full; PMID:16951384

70. Kerndrup G, Meyer K, Ellegaard J, Hokland P. Natural killer (NK)-cell activity and antibody-dependent cellular cytotoxicity (ADCC) in primary preleukemic syndrome. Leuk Res 1983; 7:239-47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6307559

71. Munn DH, Cheung NK. Phagocytosis of tumor cells by human monocytes cultured in recombinant macrophage colony-stimulating factor. J Exp Med 1990; 172:231-7. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2188164&tool=pmcentrerender&type=abstract; PMID:2193096

72. Wright S, Weidanz JA. Antibody targeting to a class I MHC-Peptide epitope promotes tumor cell death. J Immunol 2006; 177:4187-95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16951384

73. Chames P, Baty D. Bispecific antibodies for cancer therapy: the light at the end of the tunnel? MAbs 2009; 1:279-80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19637527; PMID:20073127; http://dx.doi.org/10.4161/mabs.1.6.10015

74. Jefferis R. Glycosylation of recombinant antibody therapeutics. Biotechnol Prog 2005; 21:11-6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15903235; PMID:15903235

75. Smith P, DiLillo DJ, Bournazos S, Li F, Ravetch JV. Mouse model recapitulating human Fc receptor structural and functional diversity. Proc Natl Acad Sci U S A 2012; 109:6181-6. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3341029&tool=pmcentrerender&type=abstract; PMID:22474370

76. Maguire WE, McDevitt MR, Smith-Jones PM, Scheinberg DA. Efficient 1-step radiolabeling of monoclonal antibodies to high specific activity with 225Ac for α-particle radioimmunotherapy of cancer. J Nucl Med 2014; 55:1492-8. Available from: http://jnmd.nuclearmed.com/content/55/9/1492.long; PMID:24982438; http://dx.doi.org/10.2967/jnumed.114.138347

77. Chames P, Baty D. Bispecific antibodies for cancer therapy: the light at the end of the tunnel? MAbs 2009; 1:279-80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19637527; PMID:20073127; http://dx.doi.org/10.4161/mabs.1.6.10015

78. Huelbs AM, Couper TA, Sentman CL. Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol 2014; PMID:25367186; http://dx.doi.org/10.1038/icb.2014.93

79. Curran KJ, Pegram HJ, Brentjens RJ. Chimeric antigen receptor T cells: moving beyond current vaccines. Nat Med 2004; 10:909-15; PMID:15340416; http://dx.doi.org/10.1038/nm1100

80. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10:909-15; PMID:15340416; http://dx.doi.org/10.1038/nm1100

81. Jefferis R. Glycosylation of recombinant antibody therapeutics. Biotechnol Prog 2005; 21:11-6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15903235; PMID:15903235

82. Smith P, DiLillo DJ, Bournazos S, Li F, Ravetch JV. Mouse model recapitulating human Fc receptor structural and functional diversity. Proc Natl Acad Sci U S A 2012; 109:6181-6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19637527; PMID:22474370

83. Maguire WE, McDevitt MR, Smith-Jones PM, Scheinberg DA. Efficient 1-step radiolabeling of monoclonal antibodies to high specific activity with 225Ac for α-particle radioimmunotherapy of cancer. J Nucl Med 2014; 55:1492-8. Available from: http://jnmd.nuclearmed.com/content/55/9/1492.long; PMID:24982438; http://dx.doi.org/10.2967/jnumed.114.138347

84. Huelbs AM, Couper TA, Sentman CL. Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol 2014; PMID:25367186; http://dx.doi.org/10.1038/icb.2014.93

85. Curran KJ, Pegram HJ, Brenjens RJ. Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J Gene Med 2012; 14:405-15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22262649; PMID:22262649; http://dx.doi.org/10.1002/jgm.2604