In this paper we return to the problem of reduced-state dynamics in the presence of an interacting environment. The question we investigate is how to appropriately model a particular system evolution given some knowledge of the system-environment interaction. When the experimenter takes into account certain known features of the interaction such as its invariant subspaces or its non-local content, it may not be possible to consistently model the system evolution over a certain time interval using a standard Stinespring dilation, which assumes the system and environment to be initially uncorrelated. Simple examples demonstrating how restrictions can emerge are presented below. When the system and environment are qubits, we completely characterize the set of unitaries that always generate reduced dynamics capable of being modeled using a consistent Stinespring dilation. Finally, we show how any initial correlations between the system and environment can be certified by observing the system transformation alone during certain joint evolutions.

I. INTRODUCTION

In quantum mechanics, the time evolution of a closed system is described by a unitary transformation acting on its state space. However, when the system is interacting with some external environment, its reduced-state dynamics is no longer unitary. How to properly characterize the dynamics of such open quantum systems has been an area of extensive research and a source of lively debate [1–9]. In general, an overall unitary evolution of the combined system-environment translates into a reduced dynamics of the system given by

\[\rho_S(t_0) \rightarrow \rho'_S(t) = \text{tr}_E[U_{SE}(\rho_{SE}(t_0))]U^*_{SE}. \] (1)

All is well if the system and environment are known to begin interacting at some time \(t_0 \), prior to which they are uncorrelated; i.e. \(\rho_{SE}(t_0) = \rho_S \otimes \sigma_E \). Then Eq. (1) has the standard Stinespring form, and thus the system evolution can be described by a completely positive (CP) map \(\mathcal{E}(\rho_S) = \text{tr}_E[U_{SE}(\rho_S \otimes \sigma_E)]U^*_{SE} \). But difficulty arises when the system and environment are initially correlated, and one must be careful when trying to interpret Eq. (1) as a map acting on the system’s state space.

In this paper, we are not interested in understanding Eq. (1) as anything more than a physical model for the particular state transformation \(\rho_S \rightarrow \rho'_S \). Although we will make no specific reference to “maps” in this scenario, the transformation problem fits within more general frameworks designed to handle restricted-domain subsystem maps. We suppose that an experimenter measures the system to be in state \(\rho_S \) at time \(t_0 \) and in state \(\rho'_S \) at some later time \(t \); Eq. (1) then offers a physical description of how this transformation came about in terms of an initial correlation with the environment (\(\rho_{SE} \)) and a subsequent interaction (\(U_{SE} \)). There, of course, will be many different choices of \(\rho_{SE} \) and \(U_{SE} \) that will successfully model the observed transformation \(\rho_S \rightarrow \rho'_S \) via Eq. (1). However, if the experimenter has some knowledge of \(U_{SE} \) it will greatly limit the possible \(\rho_{SE} \).

The primary goal of this paper is to begin understanding what type of initial system-environment states \(\rho_{SE} \) will correctly model a given reduced state transformation \(\rho_S \rightarrow \rho'_S \) if the joint unitary \(U_{SE} \) is a priori known or at least partially known. For example, if \(U_{SE} \) is a \(d \otimes d \) unitary with known eigenstates \(|\varphi_i\rangle \) and \(\rho_S \rightarrow \rho'_S \) is an observed reduced-state transformation under \(U_{SE} \), what are the compatible initial states \(\rho_{SE} \)? We study this question and provide a general necessary condition relating the eigenstates of \(U_{SE} \) with any \(\rho_{SE} \) that generates the reduced-state transformation \(\rho_S \rightarrow \rho'_S \).

We also consider permissible models for \(\rho_S \rightarrow \rho'_S \) if a certain nonlocal character is demanded of \(U_{SE} \). Joint unitaries acting on \(\mathcal{H}_S \otimes \mathcal{H}_E \) can be grouped into local unitary (LU) equivalence classes such that \(U_{SE} \equiv U'_{SE} \) iff there exists product unitaries \(V = V_S \otimes V_E \) and \(W = W_S \otimes W_E \) such that \(U_{SE} = WU'_{SE}V \). Two unitaries that are not LU equivalent can be regarded as possessing different types of nonlocality since the action of one cannot be simulated using the other combined with arbitrary local unitaries. If it is known that the system-environment unitary belongs to a certain equivalence class, it is always possible to choose a product state \(\rho_{SE} \) to model an observed transformation \(\rho_S \rightarrow \rho'_S \)? Below we show that when \(\mathcal{H}_S \otimes \mathcal{H}_E \) is two qubits, this can be done iff \(U_{SE} \) is LU equivalent to either the swap operator or the identity. Even stronger, for every other type of unitary, there exists system transformations that require an initially entangled \(\rho_{SE} \) to accurately model.

One particularly interesting transformation we consider involves converting a mixed system state into a pure one via Eq. (1), a process we generically call purity extraction. If we assume that \(\rho_{SE} = \rho_S \otimes \sigma_E \) is a...
product state, what LU classes of unitaries will generate the reduced-state purity extraction $\rho_S \rightarrow |\psi\rangle\langle\psi|$? We identify the class of unitaries in two-qubits that can be used to model such a process. Studying these types of transformations may have thermodynamics applications as purity obtained from a quantum system can then be used to perform work [14–16].

As an application of this line of inquiry, we consider using the knowledge of U_{SE} to certify initial correlations between the system and environment through measuring exclusively the system. For example, suppose that in Eq. (I) we take U_{SE} to be the two-qubit CNOT gate and ρ_{SE} to be the entangled pure state $|\psi\rangle = \sqrt{1/2}(|0+\rangle + |1-\rangle)$, where $|\pm\rangle = \sqrt{1/2}(|0\rangle \pm |1\rangle)$. Then the induced transformation on S is $I/2 \rightarrow |0\rangle\langle 0|$. It is not difficult to show that this transformation is impossible for any product state input $\rho_{SE} = I/2 \otimes \sigma_E$ whenever CNOT is being implemented. This means that if we know the joint dynamics to be governed by U_{SE}, but we do not know the initial joint state ρ_{SE}, then detecting the system transformation $I/2 \rightarrow |0\rangle\langle 0|$ means that S and E cannot be uncorrelated in the initial state. In fact, from the analysis of Sect. III, it can further be shown that ρ_{SE} must be entangled to witness the transformation $I/2 \rightarrow |0\rangle\langle 0|$ under CNOT. The general question then becomes the following: Given a state ρ_S, can one always find a unitary U_{SE} such that a transformation à la Eq. (I) is possible only if ρ_{SE} is entangled? If so, then detecting the system transformation $\rho_S \rightarrow \rho'_S$ would necessarily indicate that the system is initially entangled with the environment. In this paper, we construct a unitary U_{SE} for every ρ_S that generates a transformation $\rho_S \rightarrow \rho'_S$, which is possible only if ρ_{SE} is initially entangled with the environment. By the same reasoning, we also construct a very general experimental procedure for certifying when ρ_{SE} fails to be a product state, based on measuring the system state alone.

Before proceeding in more detail, we introduce the following definition which fixes the language used to describe Eq. (I).

Definition 1. Let U be any unitary acting on $H_S \otimes H_E$. We say that a transformation $\rho_S \rightarrow \rho'_S$ can be **U-generated by** ρ_{SE} if (i) $tr_E[U_{SE}^\dagger \rho_{SE} U_{SE}^\dagger] = \rho'_S$ and (ii) $tr_E[U_{SE}^\dagger U_{SE}] = I$. The transformation $\rho_S \rightarrow \rho'_S$ is a **U-generated physical transformation** if it is U-generated by some density matrix ρ_{SE}.

We now begin in Sect. III by considering the restrictions in modeling a physical transformation when invariances of U_{SE} are known. We will then consider in Sect. III modeling transformations using unitaries from certain LU equivalence classes. Finally, in Sect. IV we turn to the question of detecting entanglement by observing reduced-state dynamics.

II. **MODELING WITH KNOWN EIGENSTATES OF U$_{SE}$: GENERAL RESTRICTIONS ON THE SPECTRUM OR ρ'_{SE}**

In this section we prove a general necessary condition for the permissible joint states that generate a particular transformation when eigenstates of the unitary are known.

Lemma 1. Suppose that $|\varphi\rangle_{SE}$ is an eigenstate of U; i.e. $U|\varphi\rangle = e^{i\theta}|\varphi\rangle$. Then a transformation $\rho_S \rightarrow \rho'_S$ can be U-generated by ρ_{SE} only if

$$\tau \cdot \lambda_k(tr_E\langle\varphi|) \leq \lambda_k(\rho'_S)$$

for all $k \in \{1, \cdots, \text{rank}[\rho_{SE}]\}$, $\lambda_k(\sigma)$ denotes the k^{th} largest eigenvalue of σ, and

$$\tau = \begin{cases} \frac{1}{\langle\varphi|\rho_{SE}|\varphi\rangle} & \text{if } |\varphi\rangle \in \text{supp}(\rho_{SE}) \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Suppose that $\rho_S \rightarrow \rho'_S$ is U-generated by ρ_{SE}. If $|\varphi\rangle \notin \text{supp}(\rho_{SE})$, then the lemma trivially holds. So assume $|\varphi\rangle \in \text{supp}(\rho_{SE})$. Taking a spectral decomposition $\rho_{SE} = \sum_i |e_i\rangle \langle e_i|$, we can write $|\varphi\rangle = \sum_i \alpha_i |e_i\rangle$ for some coefficients α_i. By the Schrödinger-HJW Theorem, it follows that we can expand $\rho_{SE} = q|\varphi\rangle\langle\varphi| + (1-q)\sigma$ for some density operator σ whenever $|\langle \varphi | \sigma | \varphi \rangle| = \sum_i \alpha_i^2 |e_i\rangle \langle e_i|$. Since $\sqrt{q}|\varphi\rangle = \sum_i \sqrt{\alpha_i^2} |e_i\rangle$, we have that $q = \min_i \frac{\alpha_i^2}{\langle \varphi | \rho_{SE} | \varphi \rangle} \geq \frac{1}{\langle \varphi | \rho_{SE} | \varphi \rangle}$. Since the transformation is generated by ρ_{SE}, we have

$$tr_E[U_{SE}^\dagger \rho_{SE} U_{SE}] = q \cdot tr_E|\varphi\rangle\langle\varphi| + (1-q)tr_E[UAU^\dagger] = \rho'_S.$$

The proposition then follows from Weyl’s Theorem, which gives that $\lambda_k(A \leq A + B) \geq \lambda_k(\rho_{SE})$ for non-negative operators A and B [15].

Note the bound of Lemma 1 can be made trivially tight by taking $\rho_{SE} = |\varphi\rangle\langle\varphi|$.

1. **Examples**

To demonstrate the use of Lemma 1 consider any two-qubit unitary with a maximally entangled eigenstate $|\varphi\rangle = \sqrt{1/2}(|00\rangle + |11\rangle)$. Suppose the initial state has the form $\rho_{SE} = I/2 \otimes (I/2 + \bar{\sigma} \cdot \sigma)$, and the interaction is observed to generate the final state $\rho'_S = p|0\rangle\langle 0| + (1-p)|1\rangle\langle 1|$. Are there any constraints on the possible form of ρ_S? Since $\tau = 1/tr(\rho_{E_2}^{-1}) = 1/4 - m_1^2 - m_2^2 - m_3^2$ we can deduce from Lemma 1 the necessary condition that

$$7/8 + 1/2 \sum_{i=1}^3 m_i^2 \geq p \geq 1/8 - 1/2 \sum_{i=1}^3 m_i^2.$$
On the other hand, suppose that $\rho_{SE} = \mathbb{I}/2 \otimes \mathbb{I}/2 + \sum_{i=1}^{3} m_i \sigma_i \otimes \sigma_i$, so that ρ_S is still the maximally mixed state. Then $\tau = 1/4 + m_1 - m_2 + m_3$, and

$$7/8 - 1/2(m_1 - m_2 + m_3) \geq p \geq 1/8 + 1/2(m_1 - m_2 + m_3).$$

As $(m_1, m_2, m_3) \to (1/4, -1/4, 1/4)$, the only compatible values of p converge to 1/2, which is expected since $\rho_S \to |\varphi\rangle\langle\varphi|$.

2. Application: Increasing Purity Using an Interacting Bath

The previous example can be interpreted as providing bounds on how close the state ρ'_S can be brought to a pure state, given the fact that U_{SE} acts invariantly on a maximally entangled state. We generalize this idea here.

For a general system state ρ_S, any function depending on its eigenvalues remain invariant under unitary evolution. Examples of such functions are the Von Neumann entropy and its first-order approximation approximation, the linear entropy. The linear entropy of ρ_S is given by

$$\gamma(\rho_S) = tr[\rho_S^2] = \sum_{k=1}^{rk[\rho_S]} |\lambda_k(\rho_S)|^2.$$

Due to unitary invariance of γ, the purity of a given state can only be increased through an interacting external environment via Eq. (1). How large can the purity be increased given known conditions of ρ_{SE} and U?

We can use Lemma 1 to compute a general upper bound on the increase in purity of ρ'_S if the initial system-environment state is assumed to take the product state form $\rho_{SE} = \rho_S \otimes \mathbb{I}/d_E$. First assume that ρ_S is invertible. For an arbitrary $|\varphi\rangle \in \mathcal{H}_S \otimes \mathcal{H}_E$, we have

$$\langle \varphi | \rho_{SE}^{-1} | \varphi \rangle = d_E tr[\rho_S^{-1} tr_E(|\varphi\rangle\langle\varphi|)] \leq d_E tr[\rho_S^{-1}] \leq d_E d_S / \lambda_r(\rho_S),$$

where $r = rk[\rho_S]$. Hence for every eigenstate $|\varphi\rangle$ of U_{SE}, Lemma 1 gives

$$\lambda_k(\rho'_S) \geq \frac{\lambda_r(\rho_S)}{d_E d_S} \lambda_k(tr_E|\varphi\rangle\langle\varphi|). \quad (2)$$

In terms of the purity, we therefore obtain

$$\gamma(\rho'_S) \leq 1 - \left(\frac{\lambda_r(\rho_S)}{d_E d_S} \right)^2 \max_{\varphi} \sum_{k=1}^{rk[\rho_S]} \lambda_k(tr_E|\varphi\rangle\langle\varphi|)^2, \quad (3)$$

where the maximization is taken over all eigenstates of U. Note that this upper bound trivially holds when ρ_S is not invertible. Eq. (3) then gives a general limit to how much the purity of ρ_S can be increased by interaction with an initially uncorrelated bath, \mathbb{I}/d_E, when one or more eigenstates of the interacting unitary are known.

III. MODELING WITH DIFFERENT CLASSES OF UNITARIES: TWO-QUBIT SOLUTIONS

We now consider the various restrictions that emerge for the structure of ρ_{SE} when modeling a given system transformation with unitaries belonging to different LU equivalence classes. In particular, we are interested in the following question: For some unitary U_{SE}, can every U-generated physical transformation be generated by a product state? If not, what are the types of unitaries for which this is possible?

A. General Conditions for Simulating without Initial Correlations

When the system and environment form a two-qubit system, the above two questions can be completely solved. To state the result, we begin by recalling two special types of two-qubit unitaries: (1) The SWAP operator \mathbb{F} is the unitary map whose action is $\mathcal{F}|\alpha\beta\rangle = |\beta\alpha\rangle$ for any product state $|\alpha\beta\rangle$. (2) An SE-controlled unitary operator U_{cSE} is any unitary of the form $U_{cSE} = |0\rangle\langle0| \otimes I + |1\rangle\langle1| \otimes V_E$ where U_E and V_E are unitaries acting on the environment. Note that every U_{cSE} is defined with respect to some fixed computational basis and with S being the control and E the target. When the roles of control and target are reversed, we have an ES-controlled unitary U_{cES}, which therefore has the form $U_{cES} = \mathbb{F}U_{cSE}^{-1}$ for some SE-controlled unitary U_{cSE}. These unitaries can be used to represent special equivalence classes of two-qubit unitaries. Letting LU denote the set of two-qubit local unitaries, we define the following:

$$\text{SWAP} := \{ U : U \approx_{LU} \mathbb{F} \},$$

$$\text{UC}_2 := \{ U : U \approx_{LU} U_{cSE} U_{cES} \text{ for any } U_{cSE} \text{ and } U_{cES} \}.$$

It can be shown that $\text{SWAP} \neq \text{UC}_2$. Finally, turning to the initial system-environment state, the state ρ_{SE} is separable (or unentangled) if it can be expressed as a convex combination of pure product states:

$$\rho_{SE} = \sum_k p_k |\alpha_k\rangle \langle\alpha_k| \otimes |\beta_k\rangle \langle\beta_k|_E.$$

If the state can be decomposed in such a way that the $|\beta_k\rangle$ are also pairwise orthogonal, then the states is said to be quantum-classical (QC). With these classifications, we can now state the main result of this section.

Theorem 1. Suppose that the system and environment consists of two qubits. Every U-generated physical transformation $\rho_S \to \rho'_S$ can be U-generated by a product state iff U belongs to $\text{LU} \cup \text{SWAP}$. If U belongs to UC_2, the transformation can be U-generated by a QC state. On the other hand, if U does not belong to $\text{SWAP} \cup \text{UC}_2$, then there exists physical transformations that cannot be U-generated by any separable state.
The full proof is carried out in the Appendix. The analysis there relies heavily on the special structure of two-qubit systems. For instance, there exists a so-called “magic basis” of $2 \otimes 2$ systems given by
\[
|\Phi_1\rangle = \sqrt{1/2}(|01\rangle - |10\rangle) \quad |\Phi_2\rangle = -i\sqrt{1/2}(|00\rangle - |11\rangle) \\
|\Phi_3\rangle = \sqrt{1/2}(|00\rangle + |11\rangle) \quad |\Phi_4\rangle = -i\sqrt{1/2}(|01\rangle + |10\rangle).
\]
Working in the magic basis has proven to be very helpful in the study of two-qubit entanglement \[21\]. Kraus and Cirac have shown that
\[
|\psi\rangle \in D(2) \quad \text{where the minimum indeed exists due to compactness of } D(2) \text{.}
\]
\[
\text{stating that every two-qubit unitary can be decomposed as}
\[
U = (U_S \otimes U_E) U_d (V_S \otimes V_E),
\]
where U_d is diagonal in the magic basis:
\[
U_d = \sum_{i=1}^{4} e^{-i\lambda_i} |\Phi_i\rangle \langle \Phi_i|,
\]
and $0 \leq \lambda_i < 2\pi$. It should be noted that the matrix U_d is not unique for a given U since the $|\Phi_i\rangle$ can be interconverted by a local unitary. With the form of a general two-qubit unit greatly simplified by Eq. (5), we compute in the Appendix the various types of transformations that can be U_d-generated for a given U_d. The transformations that are shown to require an entangled initial state ρ_{SE} involve transforming a rank-two state ρ' into a pure state $|\psi\rangle \langle \psi|$.

Robustness of Theorem 1

We now give a simple continuity argument showing that the above result holds even for nonzero error in the initial and final states. Namely, for every unitary in $U \notin \text{SWAP} \cup U_{\text{C2}}$, there exists a limit to how well every U-generated transformation can be approximated using an uncorrelated system-environment state. Suppose that $U \notin \text{SWAP} \cup U_{\text{C2}}$ is given. By Theorem 1 there exists a transformation $\rho_S \rightarrow \rho'_S$ that cannot be U-generated by a product state. Letting $D(C^2)$ denote the set of one-qubit density matrices, define the map $\varphi : D(C^2 \otimes C^2) \rightarrow D(C^2)$ given by $\varphi(\rho_{SE}) = tr_E[U_{SE}(\rho_{SE}) U_{SE}^\dagger]$, which is uniformly continuous (it is a linear map on a finite, compact set). Next, let
\[
\epsilon = \min_{\omega_E \in D(C^2)} ||\varphi(\rho_S \otimes \omega_E) - \rho'_S||_1,
\]
where the minimum indeed exists due to compactness of $D(C^2)$, and $\epsilon > 0$ due to Theorem 1. Here, we are using $||A||_1 = tr\sqrt{A^\dagger A}$ to denote the trace norm. Therefore, by uniform continuity of φ, there exists a $\delta > 0$ such that for any $\omega_E \in D(C^2)$ we have
\[
||\rho_{SE} - \rho_S \otimes \omega_E||_1 < \delta \quad \Rightarrow \quad ||\varphi(\rho_{SE}) - \rho'_S||_1 > \epsilon/2.
\]
Hence, as long as the prepared state ρ_{SE} is within δ-distance (w.r.t. the trace norm) to any product state of the form $\rho_S \otimes \omega_E$, we are guaranteed that the final state will be at least $\epsilon/2$-distance away from the target state ρ'_S. Note that ρ_{SE} need not be a product state for this error bound to hold.

B. Purity Extractions in Two Qubits with No Initial Correlations

The main technique used to prove Theorem 1 involves constructing, for a given U_d, one particular transformation of a mixed state ρ_S into a pure one that is impossible unless ρ_{SE} has a certain form. Let us consider the transformation $\rho_S \rightarrow |\psi\rangle \langle \psi|$ in more generality, first by focusing on the situation when the system and environment are initially in a product state.

Lemma 2. Suppose that the system and environment consists of two qubits. If $\rho_S \rightarrow |\psi\rangle \langle \psi|$ is U-generated by some product state $\rho_S \otimes \rho_E$ with $\text{rk}(\rho_S) = 2$, then $U \in \text{SWAP}$.

Proof. The joint transformation is $U(\rho_S \otimes \rho_E) U^\dagger = |0\rangle \langle 0| \otimes \omega_E$, which requires that ρ_E is pure while ω_E and ρ_S must have the same spectrum. Hence, the action of U must take the form
\[
|0\rangle \langle 0| \overset{U}{\rightarrow} |0\rangle \langle 0|, \quad |1\rangle \langle 1| \overset{U}{\rightarrow} |1\rangle \langle 1|
\]
Up to local unitaries, this requires U to be F. \(\square\)

C. A Family of Two-Qubit Purity Extractions

Next, we turn to purity extraction for an arbitrary initial ρ_{SE}. For simplicity, we focus on the specific U-generated transformation $1/2 \rightarrow |0\rangle \langle 0|$ with U_{SE} belonging to a two-parameter family of unitaries given by
\[
U(\theta, \gamma) = \begin{pmatrix}
\frac{1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} \\
0 & \cos \theta & \sin \theta & 0 \\
0 & -e^{i\gamma} \sin \theta & e^{i\gamma} \cos \theta & 0 \\
\frac{1}{\sqrt{2}} & 0 & 0 & -\frac{1}{\sqrt{2}}
\end{pmatrix}.
\]
Since the unitary U preserves the rank of ρ_{SE}, the transformation $1/2 \rightarrow |0\rangle \langle 0|$ in two qubits is possible only if ρ_{SE} has rank at most two. Let $|e_1\rangle$ and $|e_2\rangle$ being the eigenstates of ρ_{SE} with corresponding eigenvalues p_1 and p_2. Then $|0\rangle$ being the final state requires that
\[
U|e_1\rangle = |0\rangle (\cos \theta |0\rangle + e^{i\gamma} \sin \theta |1\rangle) \\
U|e_2\rangle = |0\rangle (-\sin \theta |0\rangle + e^{i\gamma} \cos \theta |1\rangle)
for some values μ and ν. Applying U^\dagger to both sides gives
\[|e_1\rangle = \cos \mu |\Phi_3\rangle + e^{i\nu} \sin \mu (\cos \theta |01\rangle - e^{-i\gamma} \sin \theta |10\rangle) \]
\[|e_2\rangle = -\sin \mu |\Phi_3\rangle + e^{i\nu} \cos \mu (\cos \theta |01\rangle - e^{-i\gamma} \sin \theta |10\rangle). \]

Demanding that $tr_E(p_1|e_1\rangle\langle e_1| + p_2|e_2\rangle\langle e_2|) = I/2$, we first arrive at the conditions
\[\frac{1}{2} = p \cos^2 \mu + (1 - p) \sin^2 \mu \]
\[= p \cos^2 \mu + (1 - p) \sin^2 \mu \]
\[= p \cos^2 \mu + (1 - p) \cos^2 \mu \sin^2 \theta. \]

These can be simultaneously satisfied only if $0 = (p \sin^2 \mu + (1 - p) \cos^2 \mu) \cos 2\theta$, which has a solution if (a) $\cos^2 \theta = \sin^2 \theta = 1/2$, or (b) $p \sin^2 \mu + (1 - p) \cos^2 \mu = 0$. In case (a), Eq. (8) further requires that $p = 1/2$. In case (b), there is only one eigenvector $|\Phi_3\rangle$.

In summary then, an arbitrary $U (\theta, \gamma)$ will U-generate the transformation $I/2 \rightarrow |0\rangle |0\rangle$ iff $\rho_{SE} = |\Phi_3\rangle \langle \Phi_3|$ for arbitrary (θ, γ) unless $\theta = \pi/4$. However, if $\theta = \pi/4$, then ρ_{SE} will be as following,
\[\rho_{SE} = p |\Phi_3\rangle \langle \Phi_3| + (1 - p) |\Phi_4(\gamma)\rangle \langle \Phi_4(\gamma)|, \tag{9} \]
where $|\Phi_4(\gamma)\rangle = \sqrt{1/2} (|01\rangle - e^{-i\gamma} |10\rangle)$. Note, this state is separable iff $p = 1/2$; however, no product state solutions exist.

IV. A METHOD FOR DETECTING INITIAL CORRELATIONS

We now propose one way in which the questions studied above might be used for detecting initial correlations between a quantum system and an environment.

A. Certifying the Presence of System-Environment Entanglement

Without additional knowledge of the system-environment dynamics, initial entanglement between the system and the environment cannot be decided by measuring the system alone. However, if we know a certain transformation $\rho_S \rightarrow \rho'_S$ can only be U-generated by an entangled ρ_{SE}, then observing this transformation under the coupling U guarantees that the system and environment are initially entangled. Of course, here we are assuming that the experimenter has access to a source of preparations ρ_{SE}, and standard tomographic techniques are used to estimate ρ_S and ρ'_S. This is similar in spirit to the idea of detecting entanglement through the use of entanglement witnesses, which involves an observable W_{SE} for which $tr[W_{SE} \rho_{SE}] < 0$ only if ρ_{SE} is entangled. However, unlike entanglement witnesses, the detection scheme described here only requires measurements to be made on system S. The ability to certify the presence of entanglement based on measurement data of S alone comes from knowledge of the global unitary U_{SE}.

A natural and practically relevant question is whether system-environment entanglement can always be detected in this manner. More precisely, given some ρ_S, can we always find a U-generated transformation $\rho_S \rightarrow \rho'_S$ that is possible only if ρ_S is the reduced state of some entangled state ρ_{SE}? The following theorem shows this is always possible.

Theorem 2. For every genuinely mixed state ρ_S, there exists a unitary U_{SE} such that the transformation $\rho_S \rightarrow |0\rangle |0\rangle_S$ can be U-generated only by an entangled ρ_{SE}.

Proof. Let ρ_S have a spectral decomposition $\rho_S = \sum_{i=1}^r p_i |\Psi_i\rangle \langle \Psi_i|$, where we assume $r \geq 2$. For an arbitrary basis $\{|j\rangle_E\}$ for the environment, define a unitary U_0 whose action on basis states is
\[U_0 |\Psi_i\rangle |j\rangle = |i - j\rangle |j\rangle, \tag{10} \]
where subtraction is taken mod r. Then an arbitrary ρ_{SE} for which $tr_E[\rho_{SE}]$ can be expanded as
\[\rho_{SE} = \sum_{i,j} \alpha_{ij} |\Psi_i\rangle \langle \Psi_j|_S \otimes |j\rangle \langle j'|_E. \tag{11} \]

We compute
\[U_0(\rho_{SE}) U_0^\dagger = \rho_{SE}' = |0\rangle \langle 0| \otimes \sigma_E \]
\[= \sum_{i,j} \alpha_{ij} |i - j\rangle \langle i - j'| \otimes |j\rangle \langle j'|. \]

By considering the various contractions $E |j\rangle \langle j'|_E$, it is easy to see that $i = j$ and $i' = j'$ for all the nonzero terms. Hence the only compatible system-environment state is maximally correlated:
\[\rho_{SE} = \sum_{ij} \alpha_{ij} |\Psi_i, i\rangle \langle \Psi_j, j|. \tag{12} \]

It is well-known that such states are always entangled unless ρ_S is pure. For completion, we supply a quick proof of this fact. Taking a partial transpose of ρ_{SE} gives
\[\rho_{SE}^\Gamma = \sum_{ij} \alpha_{ij} |\Psi_i, j\rangle \langle \Psi_j, i|. \]

From this we see that the support of ρ_{SE}^Γ decomposes into one-dimensional subspaces (the ith spanned by $|\Psi_i, i\rangle$), and two-dimensional subspaces (the i,jth spanned by $|\Psi_i, j\rangle, |\Psi_j, i\rangle$ for $i \neq j$). Since ρ is hermitian, on each of the two-dimensional subspaces, ρ^Γ has the form
\[\begin{pmatrix} 0 & \alpha_{ij} \\ \alpha'^{\dagger}_{ij} & 0 \end{pmatrix}. \]
Thus, the eigenvalues of ρ_{SE} are α_{ii} and $\pm|\alpha_{ij}|$ for $i \neq j$. By the PPT criterion of separability, this proves that ρ_{SE} is entangled whenever ρ_{SE} has rank greater than one.
B. Certifying the Presence of System-Environment Correlations

One largely practical drawback of Theorem 2 is that can be used to detect entanglement only if the system’s evolved state is close to $|0\rangle<0\rangle$. How small must $1 - <0\rangle\rho_S<0\rangle$ be in order to definitively certify entanglement? We leave this seemingly complicated question open for future research. However, if instead of initial entanglement, we focus on initial product state preparation, an experimentally useful answer can be given to this question. Recall that for a density matrix ρ, we let $\gamma(\rho) = \text{tr}[\rho^2]$.

Theorem 3. For every ρ_S, there exists a unitary U_{SE} such that every transformation $\rho_S \rightarrow \rho'_S$ satisfying

$$(0\rangle\rho'_S<0\rangle \leq \sqrt{\gamma(\rho_S)}$$

can only be U-generated by an initially correlated ρ_{SE} (i.e. ρ_{SE} cannot be a product state).

Proof. For $\rho_S = \sum_i p_i |\psi_i\rangle\langle\psi_i|$, consider the unitary U_{shift} defined in previous section. If $\rho_E = \sum_{i,j} c_i c^*_j |i\rangle\langle j|$, then applying U_0 to an initial product state gives

$$U_{\text{shift}} (\rho_S \otimes \rho_E) U^\dagger_{\text{shift}} = \sum_{i,i',j,j'} p_i c_i c^*_j |i - i', i'\rangle\langle i - j', j'|.$$

The final system state satisfies

$$<0\rangle\rho'_S<0\rangle = \sum_i p_i c_i |i\rangle\langle i| \leq \sqrt{\sum_i p_i^2} \sqrt{\sum_i c_i^2} \leq \sqrt{\gamma(\rho_S)},$$

where we have used the Cauchy-Schwarz inequality. \qed

Theorem 3 provides an experimental criterion for detecting when $\rho_{SE} \neq \rho_S \otimes \rho_E$. For many identical preparations of ρ_{SE}, the experimenter first uses tomographic techniques to estimate ρ_S (actually the only knowledge of ρ_S needed are its eigenstates and its purity). Next, the unitary U_{SE} is applied to the system and the interacting environment. Finally, the experimenter measures ρ'_S in the computational basis and estimates the value $<0\rangle\rho'_S<0\rangle$. If the inequality in Theorem 3 is violated, the system and the environment must be initially correlated in each preparation of ρ_{SE}.

V. CONCLUSION

In this paper, we have begun investigating compatibility conditions between reduced-state dynamics $\rho_S \rightarrow \rho'_S$ and the underlying system-environment unitary evolution. The motivating question has been how one can faithfully model such dynamics given partial knowledge of the system-environment interaction or of the initial system-environment joint state. For example, it may be known that the interaction possesses certain symmetries which can be identified by eigenstates of the unitary U_{SE}. In this case, we have shown in Lemma 4 a necessary compatibility condition that must be satisfied which relates these eigenstates with the initial joint state ρ_{SE} and the final system state ρ'_S.

If the unitary U_{SE} is known completely, we considered whether its generated reduced-state dynamics can always be modeled in standard Stinespring form, using an initially uncorrelated system and environment state. By examining two-qubit interactions, we proved in Theorem 2 that only product unitaries and SWAP always allow for such modeling. Of course, reduced dynamics can always modeled by a standard Stinespring prescription if one places no restriction on U_{SE} or considers the system and environment over a longer time interval. However, such freedoms might not accurately reflect experimental situations, and our results confirm that a more general framework of open-system dynamics is needed in these cases.

As an application of our results, we describe in Theorems 2 and 3 how initial system-environment correlations can be witnessed by monitoring system evolution alone. The potential to detect such correlations rests on prior knowledge of the system-environment interaction, but assumes no prior knowledge of the environment’s state. It would be interesting to see how this detection method can be strengthened. For instance, the unitary described in Theorem 2 involves the “shift” operator U_0. Perhaps statements like Theorem 3 can be made for more general classes of unitaries.

A primary focus in this paper has been on transformations which we have called purity extractions. The nature of these transformations make their quantitative analysis relatively simpler than more general transformations. However, purity extractions are of fundamental interest from a thermodynamic perspective and when considering purity within a resource-theoretic framework [13, 16]. We hope the work of this paper helps shed new light on these exciting topics as well as on general open system dynamics.

ACKNOWLEDGMENTS

We would like to thank Kavan Modi for stimulating and constructive discussions on open-system dynamics.
APPENDIX: PROOF OF THEOREM 1

Before proceeding to the proof of Theorem 1, we provide two technical lemmas that explicate important properties of the classes SWAP and UC2.

Proposition 1. Let U_d be given as in Eq. [6]. If $\lambda_i - \lambda_j \in \{0, \pi\}$ for all pairs i and j, then U_d is LU equivalent to either \mathbb{I} or \mathbb{F}.

Proof. Note that LU and SWAP are the only classes of two-qubit unitaries that map product states to product states. So let $|\tau\rangle = \sum_{i=1}^d \alpha_i |\Phi_i\rangle$ be an arbitrary product state. It is a fundamental property of the “magic basis” that no entanglement exists in $|\tau\rangle$ iff all the α_i are real (up to an overall phase). Applying U_d to $|\tau\rangle$ gives

$$U_d |\tau\rangle = \sum_{i=1}^d e^{i\lambda_i} \alpha_i |\Phi_i\rangle = e^{i\lambda_1} \sum_{i=1}^d e^{i(\lambda_i-\lambda_j)} \alpha_i |\Phi_i\rangle$$

for any $j \in \{1, \ldots, 4\}$. This will be a product state only if $(\lambda_i - \lambda_j) \in \{0, \pi\}$.

Proposition 2. Suppose that U performs the following pairwise transformation between orthogonal product states:

$$|0\rangle|0\rangle \xrightarrow{U} |1\rangle|0\rangle, \quad |1\rangle|0\rangle \xrightarrow{U} |1\rangle|b\rangle,$$

$$(a)|1\rangle \xrightarrow{U} |0\rangle|1\rangle, \quad |a\rangle|1\rangle \xrightarrow{U} |1\rangle|b\rangle.$$ (13)

Then $U \in \mathbf{UC}_2$.

Proof. The transformation is completed by first applying $\mathbb{I} \otimes |0\rangle|0\rangle + W \otimes |1\rangle|1\rangle$ and then $|0\rangle|0\rangle \otimes \mathbb{I} + |1\rangle|1\rangle \otimes V$, where W (resp. V) rotates the states $\{|a\rangle, |a\rangle\}$ (resp. $\{|b\rangle, |b\rangle\}$) into the computational basis. Since a unitary is determined by its action on a complete basis, the conclusion of the lemma follows.

Proof of Theorem 4.

By the decomposition of Eq. (11), it suffices to prove the theorem only for U_d-generated transformations. Indeed, the transformation $\rho_S \to \rho'_S$ can be U-generated by some product/QC/separable state ρ_{SE} iff the transformation $V_S \rho S \otimes V_S \to U_d \sigma U_d^\dagger S \otimes V_S \sigma V_S$ is U_d-generated by the product/QC/separable state $V_S \otimes V_{SE} \rho_{SE} (V_S \otimes V_{SE})$.

Let us first turn to the case when U belongs to SWAP. By the same argument as just given, it suffices to consider when U is \mathbb{F}. In this case, the transformation is U_d-generated by the product state $\rho_S \otimes \rho_S'$.

Next, suppose that $U_d \in \mathbf{UC}_2$. Up to local unitaries, U_d takes the form $U_d = U_c^{SE} U_c^{ES}$ where $U_c^{SE} = |0\rangle|0\rangle \otimes \mathbb{I} + |1\rangle|1\rangle \otimes U$ and $U_c^{ES} \in \mathbb{I} \otimes |0\rangle|0\rangle + V \otimes |1\rangle|1\rangle$ (14)

with unitaries U and V.

Now, for any state ρ_{SE}, we can dephase in the computational basis: $\rho_{SE} := \sum_{i=1}^d |\lambda_i\rangle\langle\lambda_i| E |\Phi_i\rangle\langle\Phi_i|$. This is a QC state such that $tr E \rho_{SE} = \rho_S$; and direct calculation shows that it realizes the desired transformation under the action of U_d. On the other hand, there does exist physical transformations $\rho_S \to \rho_S'$ that cannot be U_d-generated by any product state when $U_d \in \mathbf{UC}_2 \setminus \mathbf{LU}$.

First consider the case when $V \neq Z(\theta_1, \theta_2)$, where $Z(\theta_1, \theta_2) = \begin{pmatrix} e^{i\theta_1} & 0 \\ 0 & e^{i\theta_2} \end{pmatrix}$ for arbitrary phases. Then the
state $|\Psi\rangle = \sqrt{1/2}(|00\rangle + (V^\dagger \otimes 1)|01\rangle)$ is entangled. Under
the action of U_d we have $|\Psi\rangle \rightarrow |0\rangle (U|+\rangle)$, and hence the
transformation on S is $\rho_S = tr_E|\Psi\rangle\langle\Psi| \rightarrow |0\rangle\langle0| \otimes \rho'$
where ρ_S is rank two. If this transformation can be U_d-generated by
a product state, then $U_d\rho_S \otimes \omega U_d^\dagger = |0\rangle\langle0| \otimes \omega'$
for some ω and ω'. Since ρ_S is rank two and U_d preserves
rank, we must have that $\omega = |\omega\rangle\langle\omega|$ is a pure state and
ω' is rank two. Therefore,
\[
\rho_S \otimes |\omega\rangle\langle\omega| = (U_c^{SE})^\dagger (U_c^{SE})^\dagger |0\rangle\langle0| \otimes \omega' U_c^{SE} U_c^{SE}.
\]
However, from Eq. (14), $(U_c^{SE})^\dagger |0\rangle\langle0| \otimes \omega' U_c^{SE} = |0\rangle\langle0| \otimes \omega'$,
and the final application of U_c^{SE} will leave the
environment invariant. But this is impossible since ω'
is rank two. Hence, the transformation cannot be U_d-
generated by a product state.

Now consider the case

For such a unitary, it can be easily
see that U_d is LU equivalent to $U_c^{SE} = |0\rangle\langle0| \otimes 1 = |
1\rangle\langle1| \otimes [UZ(0, \theta_2 - \theta_1)]$. Hence, it suffices to show a
transformation $\rho_S \rightarrow \rho_S'$ that cannot be U_c^{SE}-generated
by this product state. This is done by repeating the same
argument as just given except by choosing the initial
tangled state $|\Psi\rangle = \sqrt{1/2}(|00\rangle + (I \otimes U^\dagger)|10\rangle)$. This state
will indeed be entangled so long as $U \neq Z(\theta_1, \theta_2)$. In
the event that $U = Z(\theta_1, \theta_2)$ with $\theta_1 \neq \theta_2$, simply use the
initial entangled state $\sqrt{1/2}(|0+\rangle + (I \otimes U^\dagger)|1+\rangle)$ in the
previous argument. When $U = Z(\theta_1, \theta_1)$, the operator
U_c^{SE} is LU.

We now consider unitaries U_d not belonging to
SWAP_UC2. By Lemma\[1\] this means that U_d will have
at least one pair λ_i and λ_j for which $\lambda_i - \lambda_j \notin \{0, \pi\}$. We
will show that for all such unitaries, there exists a physical
transformation $\rho_S \rightarrow \rho_S'$ that cannot be U_d-generated
by any separable state.

Without loss of generality, we can assume that $\lambda_3 - \lambda_4 \notin \{0, \pi\}$. Consequently, the states $|\Psi^\pm\rangle_{SE} = \sqrt{1/2}(e^{i\lambda_3} |\Phi_3\rangle \pm ie^{i\lambda_4} |\Phi_4\rangle)$ are entangled, and so $\rho_S = tr_E |\Psi^\pm\rangle\langle\Psi^\pm|$ are both full rank. Applying U_d to $|\Psi^\pm\rangle$
generates the state evolutions
\[
|\Psi^\pm\rangle \rightarrow U_d|\Psi^\pm\rangle = \sqrt{1/2}(|\Phi_2\rangle \pm |\Phi_3\rangle) = |\pm\rangle |\pm\rangle. \quad (15)
\]
Hence, the transformations $\rho_S^\pm \rightarrow |\pm\rangle |\pm\rangle$ are U_d-
generated by the respective states $|\Psi^\pm\rangle\langle\Psi^\pm|$. Let us first
just consider the transformation of ρ_S^\pm, and suppose this
can be U_d-generated by some separable states τ. We then
have $U_d\tau U_d^\dagger = |+\rangle\langle+| \otimes \omega$ for some ω, and like before, τ
must be rank two. Any rank-two separable state of two
qubits can be expressed as $\tau = \sum_{i=1}^2 c_i |a_i b_i\rangle |a_i b_i\rangle$ [26],
and each of the $|a_i b_i\rangle$ must transform into product states.
Thus, the following equalities hold true:
\[
U_d|a_1 b_1\rangle = |+\rangle |\beta_1\rangle,
U_d|a_2 b_2\rangle = |+\rangle |\beta_2\rangle,
U_d|\Psi^\pm\rangle = |+\rangle |+\rangle, \quad (16)
\]
where the $|\beta_i\rangle$ span the space of E. We use them to
express $|+\rangle = d_1 |\beta_1\rangle + d_2 |\beta_2\rangle$, and so with Eq. (15), we
obtain $|\Psi^\pm\rangle = d_1 |a_1 b_1\rangle + d_2 |a_2 b_2\rangle$. However, consistency of the initial state demands that both $|\Psi^\pm\rangle$ and $|\tau\rangle := \sqrt{c_1} |a_1 b_1\rangle |SE| 1\rangle \otimes \sqrt{c_2} |a_2 b_2\rangle |SE| 2\rangle$
are purifications of ρ_S^\pm. Hence, there must exist an isometry
$W : SE \rightarrow \tilde{SE}$ such that
\[
W |\Psi^\pm\rangle = d_1 |a_1 \rangle \otimes W |b_1\rangle + d_2 |a_2 \rangle \otimes W |b_2\rangle = \sqrt{c_1} |a_1 \rangle |b_1\rangle |1\rangle + \sqrt{c_2} |a_2 \rangle |b_2\rangle |2\rangle. \quad (17)
\]
Linear independence of the $|a_i\rangle$ means that $d_i W |b_i\rangle = \sqrt{c_i} |a_i \rangle |b_i\rangle$ and since the isometry preserves inner products,
we must have that $|b_1 |b_2\rangle = 0$. From Eq. (16), this also
implies that $|\beta_1 \rangle |\beta_2\rangle = 0$.

We now repeat the same argument on the transformation of
ρ_S. Collectively we find that U_d facilitates a
transformation of product states taking the form
\[
U_d|a_1 b_1\rangle = |+\rangle |\beta\rangle, \quad U_d|a_2 b_2\rangle = |+\rangle |\beta\rangle, \quad U_d|\bar{a}_2 b_2\rangle = |+\rangle |\bar{\beta}\rangle. \quad (18)
\]
Pairwise orthogonality further requires that either
$|\bar{a}_1 b\rangle = |a_1^\perp b\rangle$ and $|\bar{a}_2 b\rangle = |a_2^\perp b\rangle$ or $|\bar{a}_1 b\rangle = |a_1^\perp b\rangle$
and $|\bar{a}_2 b\rangle = |a_2^\perp b\rangle$. Either way, the transformation is of
the form given in Eq. (14), and so by Lemma\[2\] we must
have that $U_d \in \text{UC}$. This is a contradiction.