Genomic analysis of ST88 Community-Acquired methicillin resistant Staphylococcus aureus in Ghana

Grace Kpeli Corresp., 1, 2, 3, Andrew H Buultjens 4, Stefano Giulieri 4, Evelyn Owusu-Mireku 1, Samuel Y Aboagye 1, Sarah L Baines 4, Torsten Seemann 4,5, Dieter Bulach 4,5, Anders Gonçalves da Silva 4, Ian R Monk 4, Benjamin P Howden 4,6,7, Gerd Pluschke 2,3, Dorothy Yeboah-Manu 1, Timothy Stinear Corresp. 4

1 Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
2 Molecular Parasitology and Immunology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland
3 University of Basel, Basel, Switzerland
4 Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
5 University of Melbourne, Victorian Life Sciences Computation Initiative (VLSCI), Melbourne, Australia
6 Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Australia
7 Infectious Diseases Department, Austin Health, Heidelberg, Australia

Corresponding Authors: Grace Kpeli, Timothy Stinear
Email address: gkpeli@noguchi.ug.edu.gh, tstinear@unimelb.edu.au

Background. The emergence and evolution of community-acquired methicillin resistant Staphylococcus aureus (CA-MRSA) strains in Africa is poorly understood. However, one particular MRSA lineage called ST88, appears to be rapidly establishing itself as an "African" CA-MRSA clone. In this study, we employed whole genome sequencing to provide more information on the genetic background of ST88 CA-MRSA isolates from Ghana and to describe in detail ST88 CA-MRSA isolates in comparison with other MRSA lineages worldwide. Methods. We first established a complete ST88 reference genome (AUS0325) using PacBio SMRT sequencing. We then used comparative genomics to assess relatedness among 17 ST88 CA-MRSA isolates recovered from patients attending Buruli ulcer treatment centers in Ghana, three non-African ST88s and 15 other MRSA lineages. Results. We show that Ghanaian ST88 forms a discrete MRSA lineage (harbouring SCCmec-IV [2B]). Gene content analysis identified five distinct genomic regions enriched among ST88 isolates compared with the other S. aureus lineages. The Ghanaian ST88 isolates had only 658 core genome SNPs and there was no correlation between phylogeny and geography, suggesting the recent spread of this clone. The lineage was also resistant to multiple classes of antibiotics including β-lactams, tetracycline and chloramphenicol. Discussion. This study reveals that S. aureus ST88-IV is a recently emerging and rapidly spreading CA-MRSA clone in Ghana. The study highlights the capacity of small snapshot genomic studies to provide actionable public health information in resource limited settings. To our knowledge this is the first genomic assessment of the ST88 CA-MRSA
clone.
Genomic analysis of ST88 Community-Acquired methicillin resistant

Staphylococcus aureus in Ghana

Grace Kpeli¹²³, Andrew H. Buultjens⁴, Stefano Giulieri⁴, Evelyn Owusu-Mireku¹, Sammy Y. Aboagye¹,
Sarah Baines⁴, Torsten Seemann⁴⁵, Dieter Bulach⁴⁵, Anders Goncalves da Silva⁴, Ian. R. Monk⁴,
Benjamin P. Howden⁴⁶⁷, Gerd Pluschke²³, Dorothy Yeboah-Manu¹, Timothy P. Stinear⁴

¹ Noguchi Memorial Institute for Medical Research, Bacteriology Department, University of Ghana, Accra Ghana,
² Swiss Tropical and Public Health Institute, Molecular Parasitology and Immunology Department, Basel Switzerland
³ University of Basel, Basel Switzerland
⁴ Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.
⁵ Victorian Life Sciences Computation Initiative (VLSCI), University of Melbourne, Parkville
⁶ Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
⁷ Infectious Diseases Department, Austin Health, Heidelberg, Victoria, Australia
Abstract

Background. The emergence and evolution of community-acquired methicillin resistant *Staphylococcus aureus* (CA-MRSA) strains in Africa is poorly understood. However, one particular MRSA lineage called ST88, appears to be rapidly establishing itself as an ‘’African’’ CA-MRSA clone. In this study, we employed whole genome sequencing to provide more information on the genetic background of ST88 CA-MRSA isolates from Ghana and to describe in detail ST88 CA-MRSA isolates in comparison with other MRSA lineages worldwide.

Methods. We first established a complete ST88 reference genome (AUS0325) using PacBio SMRT sequencing. We then used comparative genomics to assess relatedness among 17 ST88 CA-MRSA isolates recovered from patients attending Buruli ulcer treatment centers in Ghana, three non-African ST88s and 15 other MRSA lineages.

Results. We show that Ghanaian ST88 forms a discrete MRSA lineage (harbouring SCC*mec*-IV [2B]). Gene content analysis identified five distinct genomic regions enriched among ST88 isolates compared with the other *S. aureus* lineages. The Ghanaian ST88 isolates had only 658 core genome SNPs and there was no correlation between phylogeny and geography, suggesting the recent spread of this clone. The lineage was also resistant to multiple classes of antibiotics including β-lactams, tetracycline and chloramphenicol.
Discussion. This study reveals that S. aureus ST88-IV is a recently emerging and rapidly spreading CA-MRSA clone in Ghana. The study highlights the capacity of small snapshot genomic studies to provide actionable public health information in resource limited settings. To our knowledge this is the first genomic assessment of the ST88 CA-MRSA clone.
Introduction

Since the 1990s, community acquired methicillin-resistant *Staphylococcus aureus* (CA-MRSA) infections have been increasing worldwide (CDC, 2013; de Kraker, Davey & Grundmann, 2011). CA-MRSA clones are known to be more virulent than hospital-acquired MRSA, with infections linked to significant mortality and morbidity (Chambers, 2001; Chua et al., 2014; Chua et al., 2011; Etienne, 2005; Kourbatova et al., 2005; Seybold et al., 2006). First reported in Australia and the United States, CA-MRSA occurrence has been increasing, with epidemics due to clones such as ST8 USA300 in the United States (Diekema et al., 2014), ST93 and ST1 in Australia (Coombs et al., 2009), ST80 in Europe (Otter & French, 2010), ST59 in China and Taiwan (Chen & Huang, 2014), ST772 in India (D'Souza, Rodrigues & Mehta, 2010; DeLeo et al., 2010; Nadig et al., 2012; Shambat et al., 2012) and ST72 in South Korea (Kim et al., 2007). Other identified CA-MRSA clones belong to ST30 (South West Pacific clone) (Williamson, Coombs & Nimmo, 2014), ST45 (Berlin clone) (Witte et al., 1997), ST1 (USA400) (DeLeo et al., 2010) and ST78 (Western Australian MRSA-2) (Williamson, Coombs & Nimmo, 2014). In Africa, the distribution of MRSA clones in general is not well understood (Abdulgader et al., 2015). A recent review on MRSA in Africa with data from 15 of the 54 countries identified community clones of ST8-IV [2B] (USA300) and ST88-IV [2B] “West Australia MRSA-2 clone” in both community and health care associated infections in seven countries and a “Brazilian/Hungarian clone” ST239-III [3A] in hospital acquired infections in nine countries (Abdulgader et al., 2015). The European ST80-IV [2B] clone was limited to Algeria, Egypt and Tunisia while clonal types ST22-IV [2B], ST36-II [2A], and ST612-IV [2B] have only been reported so far in South Africa (Abdulgader et al., 2015). Among the two CA-MRSA clones, the ST8IV [2B] clone is an internationally disseminated clone recognized in every continent except Antarctica (David &
The ST88-IV [2B] CA-MRSA clone however is predominant in Sub-Saharan Africa (West, Central and East Africa) with reported rates of 24.2-83.3% of all MRSA isolates (Schaumburg et al., 2014). Studies from Angola (Conceicao et al., 2014), Cameroon (Breurec et al., 2011), Gabon (Ateba Ngoa et al., 2012; Schaumburg et al., 2011), Ghana (Amissah et al., 2015; Egyir et al., 2013; Egyir et al., 2014), Madagascar (Breurec et al., 2011), Niger (Breurec et al., 2011), Nigeria (Ghebremedhin et al., 2009; Raji et al., 2013; Shittu et al., 2012) and Senegal (Breurec et al., 2011) have identified it as a major circulating clone within both hospital and community settings. It was also detected in children from West Africa who underwent surgery in Switzerland but had been hospitalized in their home countries prior to surgical treatment (Blanc et al., 2007). Globally, this clone has been identified in China (Yu et al., 2008) and Japan (Maeda et al., 2012) in lower proportion (5.3-12.5%) than in Africa and sporadically in Belgium (Denis et al., 2005), Portugal (Aires-de-Sousa, Correia & de Lencastre, 2008) and Sweden (Fang et al., 2008).

Control of MRSA infections is assisted by a thorough knowledge of the epidemiology and dissemination of specific clones. To this end we employed whole genome sequencing and comparative genomics to describe in detail ST88 CA-MRSA isolates in comparison to other MRSA lineages worldwide.

Materials & Methods

Bacterial isolates and antibiogram analysis
The 17 ST88 *S. aureus* isolates analyzed from Ghana are listed in Table 1 and comprised five strains isolated in the Akwapim South District (Eastern Region) of Ghana with previously published genome data (GenBank accession numbers LFNJ00000000, LFNI00000000, LFNH00000000, LFMH00000000, LFMG00000000) (Amissah et al., 2015) and 12 isolates recovered from wounds of 11 patients attending Buruli ulcer (BU) treatment centers in the Ga-South and Ga-West municipalities (Greater Accra Region) of Ghana with two isolates from one patient; one a PVL positive isolate and the other PVL negative. Patients were outpatients, nine of whom had laboratory confirmed BU. Initial isolate identification was made using colony and microscopic morphology, catalase and coagulase biochemical reactions and a Staphylase kit BD BBL™ Staphyloslide Latex Test (Becton, Dickinson and Company) for further confirmation. Antibiograms were determined using the Kirby Bauer disc diffusion method according to CLSI guidelines (CLSI, 2014) and PCR targeting the *mecA* gene (Oliveira & de Lencastre, 2002) for identification of MRSA. Ethical clearance was obtained from the institutional review board of the Noguchi Memorial Institute for Medical Research (NMIMR) (Federal-wide Assurance number FWA00001824). All study participants were well informed of the study objectives and written informed consent was obtained either from the patient or from the guardian of the patient.

DNA Extraction, Whole Genome Sequencing and Analysis

Genomic DNA was extracted from isolates using the Qiagen DNeasy kit and protocol (Qiagen, Hilden, Germany). DNA libraries were prepared using Nextera XT (Illumina, San Diego, California, USA) and whole genome sequencing was performed using the Illumina MiSeq with 2 x 300 bp chemistry. Small Molecular Real Time sequencing was performed on the RS-II (Pacific...
Biosciences) using P6-C4 chemistry, and reference genome assembly was performed as described (Baines et al., 2016).

Read mapping, variant calling and phylogenomic analysis

The sequence reads were processed using Nullarbor (nullarbor.pl 0.6, https://github.com/tseemann/nullarbor), a recently developed bioinformatics pipeline for public health microbial genomics as described previously (Kwong et al., 2016). S. aureus ST88 raw sequence reads with accession numbers ERS1354589-600 have been deposited in the European Nucleotide Archive (ENA), Project PRJEB15428 (url - http://www.ebi.ac.uk/ena/data/view/PRJEB15428). Ortholog clustering was performed using Roary (Page et al., 2015) and was visualized with Fripan (http://drpowell.github.io/FriPan/). Recombination within the core genome was inferred using ClonalFrameML v1.7 (Didelot & Wilson, 2015) with the whole genome alignment generated by Nullarbor. Using FastTree v2.1.8 (Price, Dehal & Arkin, 2010), a ML tree was generated and used as a guide tree for ClonalFrameML. Positions in the reference genome that were not present in at least one genome (non-core) were omitted from the analysis using the “ignore_incomplete_sites true” option and providing ClonalFrameML with a list of all non-core positions. Maximum likelihood trees were constructed using a recombination free SNP alignment using FastTree. Bootstrap support was derived from comparisons between the original tree against 1000 trees that were built upon pseudo-alignments (sampled from the original alignment with replacement).

Results and Discussion
136 **ST88 complete reference genome**

137 A prerequisite for high-resolution comparative genomics by read-mapping is a high-quality,
complete reference genome, closely related to the bacterial population under investigation
(Kwong et al., 2016). There were no fully-assembled ST88 *S. aureus* genomes publicly
available, so to address this issue, we selected the methicillin-susceptible, penicillin-resistant
ST88 *S. aureus* isolate AUS0325. This clinical isolate was obtained in 2013 from a patient in
Melbourne, Australia who had a persistent infection of a prosthetic joint, and was part of a
separate, unpublished study. The AUS0325 genome comprised a 2,771,577 bp circular
chromosome with 32.9% GC content. There were no plasmids; the beta-lactamase operon (*bla*)
was carried by the Tn552 transposon and integrated into the chromosome. The overall
chromosome architecture of AUS0325 was like representative *S. aureus* genomes from other
community-associated lineages (ST1, ST8 and ST93) but with five distinct regions of difference,
discussed in more detail below (Fig. 1A). We took advantage of the PacBio data to define the
Sa_aus0325 methylome. Motif analysis and inspection of the AUS0325 annotation identified two
active type I restriction modification *hsdMS* loci. Protein alignment of the two *hsdS* alleles with
previously characterised *hsdS* proteins allowed the attribution of target recognition sequences to
either allele (Monk et al., 2015) (Table 2). The first *hsdS* recognized a motif not previously
described, while the second *hsdS* contained an identical sequence to the target recognition
domain-2 of CC30-2 and ST93-2, which recognises TCG (Table 2).

155

ST88 population structure
To understand the genomic diversity and evolutionary origin of the ST88 isolates, a core genome phylogeny was inferred by mapping reads from the 17 ST88 isolates (Table 1, Fig. 1B), two published ST88 MRSA genomes from Lebanon and USA and 15 other geographically and genetically distinct *S. aureus* clones to AUS0325 (Table 3, Fig. 1B). To assess the clonal ancestry, SNPs within inferred regions of recombination (71,862 clonal SNPs; 26,570 recombinogenic SNPs) (Fig. S1) were removed and a maximum likelihood phylogenomic tree was established using the clonal core SNP alignment (71,862 SNPs). All 20 ST88 genomes formed a discrete, closely related lineage, defined by only 1,759 core genome SNPs, compared with 71,862 SNPs among all 35 *S. aureus* genomes (Fig. 1B, Fig. 2A). The global tree was rooted using *Bacillus subtilis* B4068 (GenBank ID: JXHK00000000) (Berendsen et al., 2016) as an outgroup and this phylogeny indicated ST88 shares a most recent common ancestor (MRCA) with ST72 (Fig. 1A).

Five distinct genomic regions were identified by ortholog comparisons, enriched among the ST88 genomes compared to the 15 other diverse *S. aureus* genomes. These regions included νSAα (GI-3, Fig. 1) that harboured 10 staphylococcal superantigen-like (*ssl*) genes, of which four were uniquely present in the ST88 isolates. Upregulation of SSLs has been reported in some CA-MRSA strains and may be involved in neutrophil and complement activation (Foster, 2005; Voyich et al., 2005). GI-3 also harboured the first of the two functional type I restriction modification *hsdMS* loci (see above, Table 2). GI-1 and GI-4 may be mobile integrative elements of unknown function with the presence of putative integrases and four and 12 CDS respectively, all encoding hypothetical proteins. GI-1 also harbours elements of a putative restriction modification system (Fig. 1, Table S1). GI-2 contains 13 CDS, most of unknown function although three CDS may encode membrane proteins (Fig. 1, Table S1). GI-5 had 14 CDS, that
included the second of the type I restriction modification *hsdMS* loci and seven CDS encoding putative proteases (Table 2, Table S1).

Evolution and molecular epidemiology of ST88 in Ghana

To assess the evolutionary relationships among the ST88 genomes, a phylogenomic tree comprised exclusively of ST88 genomes was established using clonal, core SNPs (1,759 clonal SNPs; 207 recombinogenic SNPs) (Fig. S2, Fig. 2A). The tree was rooted using an ST93 genome (Sa_JKD6159) as an outgroup. The phylogeny and the restricted genomic diversity (658 core SNPs) suggests that the spread of ST88 MRSA in Ghana is a recent phenomenon, with isolates from the United States, Australia and Lebanon ancestral to the spread of these isolates in Ghana. Five specific clusters of CDS were also found to be exclusively present with the African ST88 genomes (Fig. 2C). These CDS were different to the five genomic regions identified in all ST88 relative to other *S. aureus* clones (Fig. 1B) suggesting that they were horizontally acquired by an ST88 MRCA that has since spread in Ghana, (although a significantly larger sampling effort would be required to confirm this hypothesis). These regions harbour CDS suggestive of plasmid, phage and other mobile DNA elements (Table S2). We conducted a phylogeographic analysis to formally assess the relationship between the Ghanaian ST88 phylogeny and the specific geographic origin of the isolates, based on patient villages. However, there was no correlation between geography and phylogeny, suggesting again that the spread of ST88 in Ghana has been recent and rapid (Fig. 3).
Phenotypic and genotypic antibiotic resistance

All 17 Ghanaian ST88 isolates harboured a SCCmec-IV [2B] cassette, and displayed phenotypic resistance to β-lactams, tetracycline, and chloramphenicol (Table 1). Isolates were variably resistant to erythromycin, clindamycin, trimethoprim, amikacin and streptomycin (Table 1). There was agreement between phenotypic and inferred genotypic resistance (Fig. 1B). For the four genes \(\text{blaZ, mecA, tetL, tetM} \) detected in all 12 ST88 isolates from the Greater Accra Region, resistance correlated with phenotypic resistance to all β-lactams and tetracyclines. Six isolates showed phenotypic and genotypic resistance to chloramphenicol (Table 1, Fig. 1B). Five of these isolates were from the same health center, however the time of isolation and the geographic origins of the patients were different, suggesting that these isolates are spread across the region and were not acquired from a common source.

Conclusions

The analysis presented here suggests that \(\textit{S. aureus} \) ST88-IV is an emerging CA-MRSA clone in Ghana. This has the potential to become a serious public health threat, with implications for the treatment of \(\textit{S. aureus} \) infections in Ghana, where there is no developed surveillance infrastructure to monitor antibiotic resistance. The abuse and misuse of antibiotics by health care givers and patients in Ghana is extensive (Kpeli et al., 2016). The development of resistance is furthermore encouraged by the widespread availability of higher classes of antibiotics to lower level health centers from regional medical stores, in addition to the unrestricted sale of these medicines to over-the-counter medicine sellers by pharmaceutical wholesalers- even though existing laws are supposed to limit the scope of these facilities to handle such medicines.
implicated and widely documented are the prescribing practices of clinicians; with over-reliance on presumptive treatment and haphazardly prescribing antibiotics without recourse to due laboratory investigation. CA-MRSA has undergone rapid evolution and expansion worldwide. Because of its epidemic potential and limited treatment options, vigilance and antibiotic stewardship programmes need to be put in place to prevent further spread.

Acknowledgements

We are grateful to the health care workers and patients at the Ga West and Ga South Municipalities and to Miss Nana Ama Amissah for giving us access to genome data.

References

Abdulgader SM, Shittu AO, Nicol MP, and Kaba M. 2015. Molecular epidemiology of Methicillin-resistant Staphylococcus aureus in Africa: a systematic review. *Front Microbiol* 6:348.

Aires-de-Sousa M, Correia B, and de Lencastre H. 2008. Changing patterns in frequency of recovery of five methicillin-resistant Staphylococcus aureus clones in Portuguese hospitals: surveillance over a 16-year period. *J Clin Microbiol* 46:2912-2917.

Amissah NA, Chlebowicz MA, Ablordey A, Sabat AJ, Tetteh CS, Prah I, van der Werf TS, Friedrich AW, van Dijl JM, Rossen JW, and Stienstra Y. 2015. Molecular Characterization of Staphylococcus aureus Isolates Transmitted between Patients with Buruli Ulcer. *PLoS Negl Trop Dis* 9:e0004049.

Ateba Ngoa U, Schaumburg F, Adegnika AA, Kosters K, Moller T, Fernandes JF, Alabi A, Issifou S, Becker K, Grobusch MP, Kremsner PG, and Lell B. 2012. Epidemiology and population structure of Staphylococcus aureus in various population groups from a rural and semi urban area in Gabon, Central Africa. *Acta Trop* 124:42-47.

Baines SL, Howden BP, Heffernan H, Stinear TP, Carter GP, Seemann T, Kwong JC, Ritchie SR, and Williamson DA. 2016. Rapid Emergence and Evolution of Staphylococcus aureus ClonesHarboring fusC-Containing Staphylococcal Cassette Chromosome Elements. *Antimicrob Agents Chemother* 60:2359-2365.

Berendsen EM, Wells-Bennik MH, Krawczyk AO, de Jong A, van Heel A, Eijlander RT, and Kuipers OP. 2016. Draft genome sequences of 10 Bacillus subtilis strains that form spores with high or low heat resistance. *Genome announcements* 4:e00124-00116.

Blanc DS, Petignat C, Wenger A, Kuhn G, Vallet Y, Fracheboud D, Trachsel S, Reymond M, Troillet N, Siegrist HH, Oeuvray S, Bes M, Etienne J, Bille J, Francioli P, and Zanetti G. 2007. Changing
molecular epidemiology of methicillin-resistant Staphylococcus aureus in a small geographic
area over an eight-year period. *J Clin Microbiol* 45:3729-3736.

Breurec S, Zriouil SB, Fall C, Boisier P, Brisse S, Djibo S, Etienne J, Fonkoua MC, Perrier-Gros-Claude JD,
Pouillot R, Ramarokoto CE, Randrianirina F, Tall A, Thiberge JM, Laurent F, and Garin B. 2011.
Epidemiology of methicillin-resistant Staphylococcus aureus lineages in five major African
towns: emergence and spread of atypical clones. *Clin Microbiol Infect* 17:160-165.

CDC. 2013. Antibiotic Resistance Threats in the United States, 2013. In: U.S. Department of Health and
Human Services CfDC, editor.

Chambers HF. 2001. The changing epidemiology of Staphylococcus aureus? *Emerg Infect Dis* 7:178-182.

Chen CJ, and Huang YC. 2014. New epidemiology of Staphylococcus aureus infection in Asia. *Clin
Microbiol Infect* 20:605-623.

Chua KY, Monk IR, Lin YH, Seemann T, Tuck KL, Porter JL, Stepnell J, Coombs GW, Davies JK, Stinear TP,
and Howden BP. 2014. Hyperexpression of alpha-hemolysin explains enhanced virulence of
sequence type 93 community-associated methicillin-resistant Staphylococcus aureus. *BMC
Microbiol* 14:31.

Chua KY, Seemann T, Harrison PF, Monagle S, Korman TM, Johnson PD, Coombs GW, Howden BO,
Davies JK, Howden BP, and Stinear TP. 2011. The dominant Australian community-acquired
methicillin-resistant *Staphylococcus aureus* clone ST93-IV [2B] is highly virulent and genetically
distinct. *PLoS One* 6:e25887.

CLSI. 2014. Performance standards for Antimicrobial Susceptibility Testing: Twenty fourth Informational
Supplement M100-S24. Wayne, PA, USA.

Conceicao T, Coelho C, Santos-Silva I, de Lencastre H, and Aires-de-Sousa M. 2014. Epidemiology of
methicillin-resistant and -susceptible Staphylococcus aureus in Luanda, Angola: first description
of the spread of the MRSA ST5-IVa clone in the African continent. *Microb Drug Resist* 20:441-
449.

Coombs GW, Nimmo GR, Pearson JC, Christiansen KJ, Bell JM, Collignon PJ, and McLaws ML. 2009.
Prevalence of MRSA strains among Staphylococcus aureus isolated from outpatients, 2006.
Commun Dis Intell Q Rep 33:10-20.

D’Souza N, Rodrigues C, and Mehta A. 2010. Molecular characterization of methicillin-resistant
Staphylococcus aureus with emergence of epidemic clones of sequence type (ST) 22 and ST 772
in Mumbai, India. *J Clin Microbiol* 48:1806-1811.

David MZ, and Daum RS. 2010. Community-associated methicillin-resistant Staphylococcus aureus:
epidemiology and clinical consequences of an emerging epidemic. *Clin Microbiol Rev* 23:616-
687.

de Kraker ME, Davey PG, and Grundmann H. 2011. Mortality and hospital stay associated with resistant
Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic
resistance in Europe. *PLoS Med* 8:e1001104.

DeLeo FR, Otto M, Kreiswirth BN, and Chambers HF. 2010. Community-associated meticillin-resistant
Staphylococcus aureus. *Lancet* 375:1557-1568.

Denis O, Deplano A, De Beenhouwer H, Hallin M, Huysmans G, Garrino MG, Glupczynski Y, Malaviolle X,
Vergison A, and Struelens MJ. 2005. Polyclonal emergence and importation of community-
acquired meticillin-resistant Staphylococcus aureus strains harbouring Panton-Valentine
leucocidin genes in Belgium. *J Antimicrob Chemother* 56:1103-1106.

Didelot X, and Wilson DJ. 2015. ClonalFrameML: Efficient Inference of Recombination in Whole Bacterial
Genomes. *PLoS Comput Biol* 11:e1004041-e1004041.

Diekema DJ, Richter SS, Heilmann KP, Dohrn CL, Riahi F, Tendolkar S, McDanel JS, and Doern GV. 2014.
Continued emergence of USA300 meticillin-resistant Staphylococcus aureus in the United
States: results from a nationwide surveillance study. *Infect Control Hosp Epidemiol* 35:285-292.
Egyir B, Guardabassi L, Nielsen SS, Larsen J, Addo KK, Newman M, and Larsen AR. 2013. Prevalence of nasal carriage and diversity of Staphylococcus aureus among inpatients and hospital staff at Korle Bu Teaching Hospital, Ghana. *J Glob Antimicrob Resist* 1:189–193.

Egyir B, Guardabassi L, Sorum M, Nielsen SS, Kolekang A, Frimpong E, Addo KK, Newman MJ, and Larsen AR. 2014. Molecular epidemiology and antimicrobial susceptibility of clinical Staphylococcus aureus from healthcare institutions in Ghana. *PLoS One* 9:e89716.

Etienne J. 2005. Panton-Valentine leukocidin: a marker of severity for Staphylococcus aureus infection? *Clin Infect Dis* 41:591-593.

Fang H, Hedin G, Li G, and Nord CE. 2008. Genetic diversity of community-associated meticillin-resistant Staphylococcus aureus in southern Stockholm, 2000-2005. *Clin Microbiol Infect* 14:370-376.

Foster TJ. 2005. Immune evasion by staphylococci. *Nat Rev Microbiol* 3:948-958.

Ghebremedhin B, Olugbosi MO, Raji AM, Layer F, Bakare RA, Konig B, and Konig W. 2009. Emergence of a community-associated meticillin-resistant Staphylococcus aureus strain with a unique resistance profile in Southwest Nigeria. *J Clin Microbiol* 47:2975-2980.

Kim ES, Song JS, Lee HJ, Choe PG, Park KH, Cho JH, Park WB, Kim SH, Bang JH, Kim DM, Park KU, Shin S, Lee MS, Choi HJ, Kim NJ, Kim EC, Oh MD, Kim HB, and Choe KW. 2007. A survey of community-associated meticillin-resistant Staphylococcus aureus in Korea. *J Antimicrob Chemother* 60:1108-1114.

Kourbatova EV, Halvosa JS, King MD, Ray SM, White N, and Blumberg HM. 2005. Emergence of community-associated meticillin-resistant Staphylococcus aureus USA 300 clone as a cause of health care-associated infections among patients with prosthetic joint infections. *Am J Infect Control* 33:385-391.

Kpeli G, Darko Otchere I, Lamelas A, Buultjens AL, Bulach D, Baines SL, Seemann T, Giuliani S, Nakobu Z, Aboagye SY, Owusu-Mireku E, Pluschke G, Stinear TP, and Yeboah-Manu D. 2016. Possible healthcare-associated transmission as a cause of secondary infection and population structure of Staphylococcus aureus isolates from two wound treatment centres in Ghana. *New Microbes New Infect* 13:92-101.

Kwong JC, Mercoulia K, Tomita T, Easton M, Li HY, Bulach DM, Stinear TP, Seemann T, and Howden BP. 2016. Prospective Whole-Genome Sequencing Enhances National Surveillance of Listeria monocytogenes. *J Clin Microbiol* 54:333-342.

Maeda T, Saga T, Miyazaki T, Koyama Y, Harada S, Iwata M, Yoshizawa S, Kimura S, Ishii Y, Urita Y, Sugimoto M, Yamaguchi K, and Tateda K. 2012. Genotyping of skin and soft tissue infection (SSTI)-associated meticillin-resistant Staphylococcus aureus (MRSA) strains among outpatients in a teaching hospital in Japan: application of a phage-open reading frame typing (POT) kit. *J Infect Chemother* 18:906-914.

Monk IR, Tree JJ, Howden BP, Stinear TP, and Foster TJ. 2015. Complete Bypass of Restriction Systems for Major Staphylococcus aureus Lineages. *MBio* 6:e00308-00315.

Nadig S, Velusamy N, Lalitha P, Kar S, Sharma S, and Arakere G. 2012. Staphylococcus aureus eye infections in two Indian hospitals: emergence of ST772 as a major clone. *Clin Ophthalmol* 6:165-173.

Oliveira DC, and de Lencastre H. 2002. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in meticillin-resistant Staphylococcus aureus. *Antimicrob Agents Chemother* 46:2155-2161.

Otter JA, and French GL. 2010. Molecular epidemiology of community-associated meticillin-resistant Staphylococcus aureus in Europe. *Lancet Infect Dis* 10:227-239.

Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Keane JA, and Parkhill J. 2015. Roary: Rapid large-scale prokaryote pan genome analysis. *bioRxiv*:019315.
352 Price MN, Dehal PS, and Arkin AP. 2010. FastTree 2—approximately maximum-likelihood trees for large alignments. *PloS One* 5:e9490.

354 Raji A, Ojemhen O, Umejiburu U, Ogunleye A, Blanc DS, and Basset P. 2013. High genetic diversity of *Staphylococcus aureus* in a tertiary care hospital in Southwest Nigeria. *Diagn Microbiol Infect Dis* 77:367-369.

357 Schaumburg F, Alabi AS, Peters G, and Becker K. 2014. New epidemiology of *Staphylococcus aureus* infection in Africa. *Clin Microbiol Infect* 20:589-596.

359 Schaumburg F, Ngoa UA, Kosters K, Kock R, Adegnika AA, Kremsner PG, Lell B, Peters G, Melling A, and Becker K. 2011. Virulence factors and genotypes of *Staphylococcus aureus* from infection and carriage in Gabon. *Clin Microbiol Infect* 17:1507-1513.

362 Seybold U, Kourbatova EV, Johnson JG, Halvosa SJ, Wang YF, King MD, Ray SM, and Blumberg HM. 2006. Emergence of community-associated methicillin-resistant *Staphylococcus aureus* USA300 genotype as a major cause of health care-associated blood stream infections. *Clin Infect Dis* 42:647-656.

366 Shambat S, Nadig S, Prabhakara S, Bes M, Etienne J, and Arakere G. 2012. Clonal complexes and virulence factors of *Staphylococcus aureus* from several cities in India. *BMC Microbiol* 12:64.

368 Shittu A, Oyedara O, Abegunrin F, Okon K, Raji A, Taiwo S, Ogunsola F, Onyedibe K, and Elisha G. 2012. Characterization of methicillin-susceptible and -resistant staphylococci in the clinical setting: a multicentre study in Nigeria. *BMC Infect Dis* 12:286.

371 Voyich JM, Braughton KR, Sturdevant DE, Whitney AR, Said-Salim B, Porcella SF, Long RD, Dorward DW, Gardner DJ, Kreiswirth BN, Musser JM, and DeLeo FR. 2005. Insights into mechanisms used by *Staphylococcus aureus* to avoid destruction by human neutrophils. *J Immunol* 175:3907-3919.

374 Williamson DA, Coombs GW, and Nimmo GR. 2014. *Staphylococcus aureus* 'Down Under': contemporary epidemiology of *S. aureus* in Australia, New Zealand, and the South West Pacific. *Clin Microbiol Infect* 20:597-604.

377 Witte W, Kresken M, Braulke C, and Cuny C. 1997. Increasing incidence and widespread dissemination of methicillin-resistant *Staphylococcus aureus* (MRSA) in hospitals in central Europe, with special reference to German hospitals. *Clin Microbiol Infect* 3:414-422.

380 Yu F, Chen Z, Liu C, Zhang X, Lin X, Chi S, Zhou T, and Chen X. 2008. Prevalence of *Staphylococcus aureus* carrying Panton-Valentine leukocidin genes among isolates from hospitalised patients in China. *Clin Microbiol Infect* 14:381-384.

383
Table 1 (on next page)

S. aureus ST88 isolates tested in this study
Isolate ID	Origin (Ghana)	Phenotypic resistance*	Genotype (spa, agr, PVL)	Reference
Sa_NOG-W02	Greater Accra Region	cld, tet, amp, ery, fox, ctx, chl, cro	t939, agr-3, PVL +	This study
Sa_NOG-W25	Greater Accra Region	gen, amk, cld, str, amp, tet, sxt, cfx, ctx, chl, cro	t448, agr-3, PVL -	This study
Sa_NOG-W11	Greater Accra Region	str, amk, gen, sxt, cfx, cld, fox, ctx, tet, chl, cro, amp, ery	t186, agr-3, PVL +	This study
Sa_NOG-W13	Greater Accra Region	gen, str, amk, ctx, tet, chl, cro, sxt, cfx, amp, cld, fox	07-12-12-118-13-13, agr-3, PVL +	This study
Sa_NOG-W01	Greater Accra Region	amk, cfx, tet, ctx, chl, cro, fox	t186, agr-3, PVL +	This study
Sa_NOG-W10	Greater Accra Region	sxt, ery, gen, str, amk, cld, amp, cfx, tet, fox, ctx, chl, cro	t186, agr-3, PVL -	This study
Sa_NOG-W07	Greater Accra Region	gen, str, amp, tet, sxt, cfx, chl, cro, ctx, fox, cld, ery	t448, agr-3, PVL -	This study
Sa_NOG-W14	Greater Accra Region	gen, ery, sxt, amk, cld, str, tet, amp, cfx, ctx, chl, cro, fox, t2649, agr-3, PVL +	This study	
Sa_NOG-W04	Greater Accra Region	sxt, ery, gen, str, amk, amp, cfx, tet, fox, ctx, 07-12-21-17-13-13-34-33-34-34, agr-3,	This study	
Sample ID	Region	Antibiotic Sensitivity	PVL Status	Notes
--------------	---------------------	------------------------	--------------	--
Sa_NOG-W06	Greater Accra Region	sxt, gen, amk, cld, amp, tet, cfx, fox, chl, cro	t786, agr-3, PVL -	This study
Sa_NOG-W24	Greater Accra Region	gen, sxt, amk, str, amp, tet, cfx, ctx, chl, cro, fox	t786, agr-3, PVL +	This study
Sa_NOG-W05	Greater Accra Region	ery, amk, str, amp, cfx, tet, sxt, cld	t186, agr-3, PVL -	This study
BU_G0701_t5	Eastern Region	fox, ben, oxa, tet, chl	t786, agr-3, PVL -	(Amissah et al., 2015b)
BU_G0201_t8	Eastern Region	fox, ben, oxa, tet, chl	t786, agr-3, PVL -	(Amissah et al., 2015b)
BU_G0202_t2	Eastern Region	fox, ben, oxa, tet, chl	t786, agr-3, PVL -	(Amissah et al., 2015b)
BU_G1905_t3	Eastern Region	fox, ben, oxa, tet, chl	t786, agr-3, PVL -	(Amissah et al., 2015b)
BU_W13_11	Eastern Region	fox, ben, oxa, tet, chl	t186, agr-3, PVL -	(Amissah et al., 2015b)

Notes: *oxacillin=oxa, cefoxitin=fox, tetracycline=tet, chloramphenicol=chl, cefuroxime=cfx, erythromycin=ery, clindamycin=cld, sulphamethxazole-trimethoprim=sxt, amikacin=amk, streptomycin=str, ampicillin=amp, cefotaxime=ctx, ceftriaxone=cro, gentamicin=gen, benzylpenicillin=ben, spa=Staphylococcus aureus Protein A, agr=Accessory Gene regulator, PVL=Pantone Valentine Leukocidin toxin
Table 2 (on next page)

Sa_aus0325 methylome analysis
Table 2: Sa_aus0325 methylome analysis

HsdS (nucleotide position)	TRD1	N	TRD2
397,724 -> 399,280	ACC	5	RTGT
1,849,852 <- 1,851,408	GAG	6	TCG
Table 3 (on next page)

Comparator Reference Genomes
Table 3: Comparator Reference Genomes

Sequence type	Region/Country of origin	MSSA/MRSA	Reference Strain	Assembly/Accession number
ST8	USA/Canada	CA-MRSA	*Staphylococcus aureus* subsp. *aureus* USA 300 FPR 3757	NC_007793.1
ST 1	USA/Canada	CA-MRSA	*Staphylococcus aureus* subsp. *aureus* MW2	NC_003923.1
ST 80	Europe	CA-MRSA	*Staphylococcus aureus* 11819-97	NC_017351.1
ST45	Europe/ USA/Canada	CA-MRSA	*Staphylococcus aureus* subsp. *aureus* 300-169	GCA_000534855.1
ST 30	Europe/ Australia/Asia	CA-MRSA	*Staphylococcus aureus* subsp. *aureus* S2397	GCA_000577595.1
ST 72	Asia	CA-MRSA	*Staphylococcus aureus* MRSA_CVM43477	GCA_000830555.1
ST 59	Asia	CA-MRSA	*Staphylococcus aureus* subsp. *aureus* M013	NC_016928.1
ST93	Australia	CA-MRSA	*Staphylococcus aureus* subsp. *aureus* JKD 6159	NC_017338.1
ST 250	England	HA-MRSA	*Staphylococcus aureus* subsp. *aureus* COL	NC_002951.2
ST254	Japan	MSSA	*Staphylococcus aureus* subsp. *aureus* Newman	NC_009641.1
ST1	United Kingdom	MSSA	*Staphylococcus aureus* subsp. *aureus* MSSA476	NC_002953.3
ST5	Ireland	MSSA	*Staphylococcus aureus* subsp. *aureus* ED98	NC_013450.1
ST5	Japan	MRSA	*Staphylococcus aureus* subsp. *aureus* N315	NC_002745.2
ST 239	Australia	MRSA	*Staphylococcus aureus* subsp. *aureus* JKD 6008	NC_017341.1
ST772	India	MRSA	*Staphylococcus aureus* subsp. *aureus* ST772-MRSA	GC_000516935.1
--------	---------	--------------------	--	----------------
ST 88	Lebanon	MRSA	*HST-105*	GCA_000564895.1
ST 88	United States	MSSA	*Staphylococcus aureus* subsp *aureus* 21343	GCA_000245595.2
Figure 1

Comparative genomic analysis of *S. aureus* ST88

(A) DNA-DNA comparisons visualized using the Artemis Comparison Tool of three CA-MRSA representative chromosomes and *S. aureus* COL against the complete chromosome of ST88 isolate AUS0325. (B) Core genome phylogeny and accessory genome elements identified among ST88 isolates. The phylogeny was based on an alignment of 71,862 non-recombinogenic core genome SNPs (indels excluded) and inferred using FastTree. Nodes with greater than 70% bootstrap support (1000 replicates) are labelled with red dots. Antibiotic resistance genes were identified using Abricate (https://github.com/tseemann/abricate) and genomic islands (GIs) enriched among ST88 isolates were identified by ortholog comparisons using Roary and visualized using FriPan. CDS present in specific GI are listed in Table S1.
Figure 2

High resolution ST88 phylogeny and accessory genome analysis

(A). Phylogeny inferred by read-mapping and variant identification among only ST88 genomes. Tree was produced using FastTree based on a pairwise alignment of 1,759 non-recombinogenic core genome SNPs among the 20 ST88 genomes. All major nodes in the tree (red circles) had greater than 70% bootstrap support (1000 replicates). (B) Accessory gene content variation among the 20 ST88 genomes as assessed by ortholog comparisons using Roary. (C) Distinct genomic islands (GI) identified in Ghanaian isolates.
Figure 3

Relationship between phylogeny of Ghanaian ST88 and their geographic origin

(A) Phylogeographic alignment of phylogeny against isolate origin geography performed with GenGIS software and (B) Monte-Carlo analysis following 1000 permutations of tree tips and geography of originating villages. The arrangement derived from the data was not significantly different to that which is expected by chance alone (p value >0.05), indicating a lack of geographical structure among the ST88 genomes.
Manuscript to be reviewed