EXTENSION DIMENSION AND QUASI-FINITE CW-COMPLEXES

ALEX KARASEV AND VESKO VALOV

Abstract. We extend the definition of quasi-finite complexes by considering not necessarily countable complexes. We provide a characterization of quasi-finite complexes in terms of L-invertible maps and dimensional properties of compactifications. Several results related to the class of quasi-finite complexes are established, such as completion of metrizable spaces, existence of universal spaces and a version of the factorization theorem. Further, we extend the definition of $UV(L)$-spaces on non-compact case and show that some properties of $UV(n)$-spaces and $UV(n)$-maps remain valid, respectively, for $UV(L)$-spaces and $UV(L)$-maps.

1. Introduction

Extension theory introduced by Dranishnikov [14, 15] unifies the covering dimension and the cohomological dimension. There are two classes of maps which play an important role in extension theory. For a given complex L, theses are L-invertible and L-soft maps. It should be mentioned that universal spaces in dimension L as well as absolute extensors in dimension L are obtained as preimages of Hilbert cube or Hilbert space under maps from the above classes [10]. For a countable complex L, existence of L-invertible mapping of certain L-dimensional compactum onto the Hilbert cube is closely connected with the dimensional properties of compactifications of spaces with extension dimension not grater than L [9]. It turned out that the existence of such L-invertible mappings can be characterized in terms of “extensional” properties of a complex. This inspired the concept of quasi-finite countable complexes [20].

In the present paper we extend the definition of quasi-finite complexes by considering not necessarily countable complexes. We also provide a characterization of quasi-finite complexes in terms of L-invertible maps and dimensional properties of compactifications. Another interesting observation consists in the fact that many results established for finite or countable complexes remain valid...
for quasi-finite complexes. In particular, quasi-finite complexes possess the L-soft map property and every metrizable space of extension dimension $\leq L$ has a completion with the same extensional dimension. We also prove a version of the factorization theorem, and construct universal spaces. Finally, in case L being quasi-finite it is possible to define $UV(L)$-property for non-compact spaces. We show that this property does not depend on the embedding of a space into absolute neighborhood extensor in dimension L and obtain some results about $UV(L)$-maps and $UV(L)$-spaces which were known for $UV(n)$-maps and $UV(n)$-spaces, respectively.

2. **Quasi-finite CW-complexes**

Everywhere in this paper we assume that spaces are Tychonov and maps are continuous. Let X and Y be two spaces, $A \subset X$ and $g: A \to Y$ a map. We write $Y \in ANE(g, A, X)$ if g has a continuous extension $\bar{g}: U \to Y$, where U is a neighborhood of A in X which has the following property: there exists a function $h: X \to [0, 1]$ such that $h^{-1}((0, 1]) = U$ and $h(A) = 1$. If, in the above definition, $U = X$, we write $Y \in AE(g, A, X)$. Let us note that, by [16, Lemma 2.8], $Y \in ANE(g, A, X)$ if and only if g extends to a map $\bar{g}: X \to \text{Cone}(Y)$.

Everywhere below L always denotes a CW-complex.

We say that L is an absolute extensor of X, notation $L \in AE(X)$, if $L \in AE(g, A, X)$ for every closed $A \subset X$ and every map $g: A \to L$ with $L \in ANE(g, A, X)$. We say also that the extension dimension of X is not greater than L, notation $\text{e-dim}X \leq L$, if $L \in AE(X)$. Using Dydak's version of the Homotopy Extension Theorem [16, Theorem 13.7] one can show that if L_1 is homotopy equivalent to L_2, then $\text{e-dim}X \leq L_1$ is equivalent to $\text{e-dim}X \leq L_2$ for any space X. Moreover, our definition of e-dim coincides with that one of Chigogidze [8] in case L is countable and with the original definition of Dranishnikov [?] when compact spaces are considered.

A pair of spaces $K \subset P$ is called L-connected if whenever $A \subset X$ is a closed subset of a space X with $\text{e-dim}X \leq L$, then every map $g: A \to K$ has an extension $\overline{g}: X \to P$ provided A is normally placed in X with respect to (g, P). The notion of a normally placed set was introduced in [8] under different notation and means that for every continuous function h on P the function $h \circ g$ can be continuously extended over X. Obviously, this condition is satisfied for every normal space X and every map $g: A \to K$ with $A \subset X$ closed. We sometimes say that a pair $K \subset P$ is L-connected with respect to a given class of spaces \mathcal{B} if the additional requirement $X \in \mathcal{B}$ is imposed in the above definition.

Quasi-finite CW-complexes were introduced in [20] as countable complexes L satisfying the following condition: every finite subcomplex K of L is contained in a finite subcomplex $P \subset L$ such that the pair $K \subset P$ is L-connected with respect to Polish spaces. It was also shown in [20] that there exists a countable
quasi-finite complex M extension type $[M]$ of which does not contain a finitely dominated complex (see [10] for more information on extension types). In this note we extend the above definition by considering not necessarily countable complexes. Here is our revised definition: a CW-complex L is quasi-finite if every finite subcomplex K of L is contained in a finite subcomplex $P \subset L$ such that the pair $K \subset P$ is L-connected. It is easy to verify that this definition coincides with the definition given in [20] in case L is countable.

We say that a map $f : X \to Y$ is L-invertible if for any map $g : Z \to Y$ with $e\dim Z \leq L$ there is a map $h : Z \to X$ such that $g = f \circ h$. If, in addition, Z is required to be from a given class of spaces \mathcal{B}, then we say that the map f is L-invertible with respect to the class \mathcal{B}. Everywhere below $w(X)$ denotes the weight of the space X and \mathbb{I}^τ denotes Tychonov cube of weight τ.

Theorem 2.1. The following conditions are equivalent for any CW-complex L and an infinite cardinal τ:

1. L is quasi-finite.
2. $e\dim \beta X \leq L$ whenever X is a space with $e\dim X \leq L$.
3. There exists an L-invertible map $f : Y_\tau \to \mathbb{I}^\tau$ such that Y_τ is a compact space of weight $\leq \tau$ and $e\dim Y_\tau \leq L$.
4. For every L-connected pair $K \subset M$, where K is a compactum of weight $\leq \tau$ and M an arbitrary space, there exists a compactum $P \subset M$ containing K such that $w(P) \leq \tau$ and the pair $K \subset P$ is L-connected.

Proof. (1) \Rightarrow (2) Suppose $e\dim X \leq L$ and let $f : A \to L$, where A is a closed subset of βX. It is well known that every CW-complex is an absolute neighborhood extensor for the class of compact spaces, so $L \in ANE(f, A, \beta X)$ and there exists a closed neighborhood B of A in βX and a map $g : B \to L$ extending f. Because $g(B)$ is compact, it is contained in a finite subcomplex K of L. Since L is quasi-finite, there exists a finite subcomplex P of L such that the pair $K \subset P$ is L-connected. We can assume that B is a zero-set in βX. Then $B \cap X$, being a non-empty zero-set in X, is normally placed in X with respect to (g, P). Therefore, the map $g : B \cap X \to K$ extends to a map $h : X \to P$ because $e\dim X \leq L$ and the pair $K \subset P$ is L-connected. Finally, let $\overline{h} : \beta X \to P$ be the unique extension of h. Then \overline{h} extends f, so $e\dim \beta X \leq L$.

(2) \Rightarrow (3) We consider the family of all maps $\{h_\alpha : X_\alpha \to \mathbb{I}^\tau\}_{\alpha \in \Lambda}$ such that each X_α is a closed subset of \mathbb{I}^τ with $e\dim X_\alpha \leq L$. Let X be the disjoint sum of all X_α and the map $h : X \to \mathbb{I}^\tau$ coincides with h_α on every X_α. Clearly, $e\dim X \leq L$. Therefore, $e\dim \beta X \leq L$. Consider the extension $\overline{h} : \beta X \to \mathbb{I}^\tau$. Then, by the factorization theorem from [24], there exists a compact space Y_τ of weight $\leq \tau$ and maps $r : \beta X \to Y_\tau$ and $f : Y_\tau \to \mathbb{I}^\tau$ such that $e\dim Y_\tau \leq L$ and $f \circ r = \overline{h}$.

Let us show that f is L-invertible. Take a space Z with $e\dim Z \leq L$ and a map $g : Z \to \mathbb{I}^\tau$. Considering βZ and the extension $\overline{g} : \beta Z \to \mathbb{I}^\tau$ of g, we can
assume that Z is always compact. We also can assume that the weight of Z is \(\leq \tau \) (otherwise we apply again the factorization theorem from [24] to find a compact space T of weight $\leq \tau$ and maps $g_1: Z \to T$ and $g_2: T \to \mathbb{I}^r$ with $e\dim T \leq L$ and $g_2 \circ g_1 = g$, and then consider the space T and the map g_2 instead, respectively, of $(Z$ and g)). Therefore, without losing generality, we can assume that Z is a closed subset of \mathbb{I}^r. According to the definition of X and the map h, there is an index $\alpha \in \Lambda$ such that $Z = X_\alpha$ and $g = h_\alpha$. The restriction $r|Z: Z \to Y_\tau$ is a lifting of g, i.e. $f \circ (r|Z) = g$.

(3) \Rightarrow (4) Suppose that K is a compact subset of the space M with $w(K) \leq \tau$ and $K \subset M$ being L-connected. We embed K in \mathbb{I}^r and consider an L-invertible mapping $f: Y_\tau \to \mathbb{I}^r$ such that Y_τ is compact and $e\dim Y_\tau \leq L$. Let $\bar{K} = f^{-1}(K)$ and $\bar{h} = f|\bar{K}$. Obviously, \bar{K} is normally placed in Y_τ with respect to (h, M). Consequently, \bar{h} extends to a map $\bar{h}: Y_\tau \to M$ and let $P = \bar{h}(Y_\tau)$. Obviously, $w(P) \leq \tau$, so that it remains only to show that $K \subset P$ is L-connected. For this end, let $g: A \to K$, where $A \subset X$ is a closed normally placed subset of X with respect to (g, P) and $e\dim X \leq L$. This implies that A is normally placed in X with respect to (g, \mathbb{I}^r). Since \mathbb{I}^r is an absolute extensor, there exists an extension $g_1: X \to \mathbb{I}^r$ of g. Next, we lift g_1 to a map $g_2: X \to Y_\tau$ such that $f \circ g_2 = g_1$ (recall that f is L-invertible) and let $\bar{g} = \bar{h} \circ g_2$. Clearly, \bar{g} is a map from X into P extending g. Therefore, $K \subset P$ is L-connected.

(4) \Rightarrow (1) Take a finite subcomplex K of L. Let us first show that the pair $K \subset L$ is L-connected. Suppose Z is a space with $e\dim Z \leq L$, $A \subset Z$ closed and $g: A \to K$ a map such that A is normally placed in Z with respect to (g, L). Since K is C-embedded in L, A is normally placed in Z with respect to (g, K). The last condition together with the fact that K is an absolute neighborhood extensor for all separable metric spaces implies that $K \in \text{ANE}(g, A, Z)$. Indeed, we embed K in \mathbb{R}^ω and fix a retraction $r: U \to K$, where U is a neighborhood of K in \mathbb{R}^ω. Since A is normally placed in Z with respect to (g, K), we can find a map $h: Z \to \mathbb{R}^\omega$ extending g. Then $h^{-1}(U)$ is a co-zero neighborhood of A in Z which contains the zero-set $h^{-1}(K)$ and $r \circ h: h^{-1}(U) \to K$ extends g. Hence, $K \in \text{ANE}(g, A, Z)$ which yields $L \in \text{ANE}(g, A, Z)$. Since $e\dim Z \leq L$, g can be extended to a map $\bar{g}: Z \to L$. Thus, $K \subset L$ is an L-connected pair. Therefore there exists a compact set $H \subset L$ containing K such that the pair $K \subset H$ is L-connected. Finally, we take a finite subcomplex P of L which contains H and observe that the pair $K \subset P$ is also L-connected. Hence, L is quasi-finite.

Corollary 2.2. None of the Eilenberg-MacLane complexes $K(G, n)$, $n \geq 2$ and G an Abelian group, is quasi-finite.

Proof. This follows from Theorem 2.1(2) and the following statement (see [22, Theorem 1.4]): there exists a separable metric space X with $\dim_G X \leq 2$ and
e-dim$\beta X > L$ for every Abelian group G and every non-contractible CW-complex L. Here $\dim_G X$ denotes the cohomological dimension of X with respect to the group G.

Let us also observe that for every quasi-finite complex L there exists a compact metrizable space which is universal for the class of all separable metric spaces of e-$\dim \leq L$, in particular every space from this class has a compactification of e-$\dim \leq L$. Indeed, let Y_ω be the space from Theorem 2.1(3). Then, for every X from the above class we take an embedding $i: X \to \mathbb{I}^\omega$ and lift i to a map $j: X \to Y_\omega$. The required compactification of X is the closure of $j(X)$ in Y_ω.

Next corollary provides a characterization of quasi-finite countable complexes in terms of compactifications.

Corollary 2.3. For a countable complex L the following conditions are equivalent:

(a) L is quasi-finite.

(b) For every separable metrizable space X with e-$\dim X \leq L$ and its metrizable compactification $c(X)$ there exists a metrizable compactification $c^*(X)$ such that e-$\dim c^*(X) \leq L$ and $c^*(X) \geq c(X)$ (i.e., there is a map from $c^*(X)$ onto $c(X)$ which is the identity on X).

Proof. (a) \Rightarrow (b) Let L be quasi-finite and X a separable metric space with e-$\dim X \leq L$. We take a metric compactification $c(X)$ of X and a map $f: \beta X \to c(X)$ such that $f(x) = x$ for every $x \in X$. Since, by Theorem 2.1, e-$\dim \beta X \leq L$, f can be factored through a metrizable compactum Z with e-$\dim Z \leq L$. Clearly, Z is a compactification of X which is $\geq c(X)$.

(b) \Rightarrow (a) According to [17, Corollary 3.4], there exists a metrizable compactum Y with e-$\dim Y \leq L$ and a surjective map $f: Y \to \mathbb{I}^\omega$ such that for any map $g: X \to \mathbb{I}^\omega$, X being separable metrizable with e-$\dim X \leq L$, there exists an embedding $i: X \to Y$ lifting g, i.e. $f \circ i = g$. Hence, f is L-invertible with respect to separable metric spaces. By Theorem 2.1(3), it suffices to show that f is L-invertible. Consider $g: Z \to \mathbb{I}^\omega$ where e-$\dim Z \leq L$. According to [8, Proposition 4.9], there exist a Polish space P with e-$\dim P \leq L$ and maps $h: Z \to P$ and $q: P \to \mathbb{I}^\omega$ with $g = q \circ h$. We lift q to a map $\overline{q}: P \to Y$ such that $f \circ \overline{q} = q$. Then $\overline{q} \circ h$ is the required lifting of g. □

Here is another property of quasi-finite complexes:

Proposition 2.4. Every quasi-finite complex L has the following connected-pairs property:

(CP) For any metrizable compactum K with e-$\dim K \leq L$ there exists a metrizable compactum P containing K such that e-$\dim P \leq L$ and the pair $K \subset P$ is L-connected.
Proof. Suppose K is a metrizable compactum with $e\dim K \leq L$. We embed K into the Hilbert cube \mathbb{I}^n and take an L-invertible map $f: Y \to \mathbb{I}^n$ such that Y is a metrizable compactum with $e\dim Y \leq L$ (see Theorem 2.1(3)). Consider the adjunction space $Y \cup_f K$, i.e. the disjoint union of $Y - f^{-1}(K)$ and K with the topology consisting of the usual open subsets of $Y - f^{-1}(K)$ together with sets of the form $f^{-1}(U - K) \cup (U \cap K)$ for open subsets U of \mathbb{I}^n. There are two associated maps $p_K: Y \to Y \cup_f K$ and $f_K: Y \cup_f K \to \mathbb{I}^n$ such that $f = f_K \circ p_K$. Since f is L-invertible, so is f_K. Moreover, $Y - f^{-1}(K)$, being open in Y, is the union of countably many compact sets each with $e\dim \leq L$. Hence, by the countable sum theorem, $e\dim Y \cup_f K \leq L$.

We need only to show that the pair $K \subset Y \cup_f K$ is L-connected. Let $g: A \to K$ be a map from a closed subset $A \subset Z$ such that $e\dim Z \leq L$ and A is normally placed in Z with respect to $(g, Y \cup_f K)$. Then, considering g as a map from A into $K \subset \mathbb{I}^n$, we obviously have that A is normally placed in Z with respect to (g, \mathbb{I}^n). Since \mathbb{I}^n is an absolute extensor, there exists a map $\overline{g}: Z \to \mathbb{I}^n$ extending g. Finally, since f_K is L-invertible, we lift \overline{g} to a map $h: Z \to Y \cup_f K$ with $f_K \circ h = \overline{g}$. Clearly, h extends g. \hfill \square

Proposition 2.5. For every $n \geq 2$ there is no $K(\mathbb{Z}, n)$-connected pair $K \subset P$ of compact sets such that K is homeomorphic to the n-dimensional sphere S^n and $\dim_\mathbb{Z} P \leq n$.

Proof. We use the arguments from the proof of [17, Theorem 3.5]. Suppose for some $n \geq 2$ there is a $K(\mathbb{Z}, n)$-connected compact pair $S^n \subset P$ with $\dim_\mathbb{Z} P \leq n$. We choose a complex L of type $K(\mathbb{Z}, n)$ and having finite skeleta. It was shown in [18] that there exist metrizable compacta X_k, $k \geq 1$, such that:

- $\dim_\mathbb{Z} X_k \leq n$ for each k;
- each X_k contains a copy of S^n;
- the inclusion $i: S^n \hookrightarrow L$ cannot be extended over X_k so that the image of the extension is contained in the k-skeleton $L^{(k)}$ of L.

We take an extension $h: P \to L$ of the inclusion $i: S^n \hookrightarrow L$, and m such that $h(P) \subset L^{(m)}$. This means that the inclusion $j: S^n \hookrightarrow P$ cannot be extended to a map from X_m into P which contradicts the fact that $S^n \subset P$ is L-connected. \hfill \square

The problem [27] whether, for any fixed $n \geq 2$ there is a universal space in the class of all metrizable compacta X with $\dim_\mathbb{Z} \leq n$ is still unsolved. Zarichnyi [28] observed that each of the above classes does not have an universal element which is an absolute extensor for the same class. Proposition 2.5 yields a little bit stronger observation.

Corollary 2.6. None of the complexes $K(\mathbb{Z}, n)$, $n \geq 2$, have the (CP)-property.

Recall that a map $f: X \to Y$ between metrizable spaces is called uniformly 0-dimensional [21] if there exists a metric on X generating its topology such that
for every $\epsilon > 0$ every point of $f(X)$ has a neighborhood U in Y with $f^{-1}(U)$
being the union of disjoint open subsets of X each of diameter $< \epsilon$. It is well
known that every metric space admits uniformly 0-dimensional map into l_2.

Proposition 2.7. Let L be a quasi-finite CW-complex. Then for every $\tau \geq \omega$
there exists a perfect L-invertible surjection $f_{(L,\tau)} : Y_{(L,\tau)} \to l_2(\tau)$ such that:

(a) $Y_{(L,\tau)}$ is a completely metrizable space of weight τ with $e\text{-dim} Y_{(L,\tau)} \leq L.$

(b) Every (completely) metrizable space of weight $\leq \tau$ and extension dimension
$\leq L$ can be embedded as a (closed) subspace of $Y_{(L,\tau)}$.

Proof. By Theorem 2.1(3), there exists an L-invertible map $f : Y \to \mathbb{I}^\omega$, where
Y is a metrizable compactum with $e\text{-dim} Y \leq L$. We embed l_2 in \mathbb{I}^ω and let
$Y_{(L,\omega)} = f^{-1}(l_2)$ and $f_{(L,\omega)} = f|Y_{(L,\omega)}$. Then $e\text{-dim} Y_{(L,\omega)} \leq L$ and since f is
L-invertible, so is $f_{(L,\omega)}$.

If $\tau > \omega$, we take a metric d_1 on $l_2(\tau)$ and a uniformly 0-dimensional map
g : $l_2(\tau) \to l_2$ with respect to d_1. Denote by $Y_{(L,\tau)}$ the fibered product of $l_2(\tau)$
and $Y_{(L,\omega)}$ with respect to the maps g and $f_{(L,\omega)}$. We also consider the projections
$f_{(L,\tau)} : Y_{(L,\tau)} \to l_2(\tau)$ and $h : Y_{(L,\tau)} \to Y_{(L,\omega)}$. Since $f_{(L,\omega)}$ is a perfect and
L-invertible surjection, so is $f_{(L,\tau)}$. If d_2 is any metric on $Y_{(L,\omega)}$, then h is uni-
formly 0-dimensional with respect to the metric $d = \sqrt{d_1^2 + d_2^2}$ on $Y_{(L,\tau)}$ (see [4]).
Thus $Y_{(L,\tau)}$ admits a uniformly 0-dimensional map into the space $Y_{(L,\omega)}$ having
extension dimension $\leq L$. Hence, by [23, Theorem 1.2], $e\text{-dim} Y_{(L,\tau)} \leq L$. Ob-
serve that $Y_{(L,\tau)}$ is completely metrizable as a perfect preimage of the completely
metrizable space $l_2(\tau)$.

To prove the second item, suppose M is a metrizable space of weight $\leq \tau$ and
e-$\text{dim} M \leq L$. We consider M as a subset of $l_2(\tau)$ and use the L-invertibility of
$f_{(L,\tau)}$ to lift the identity map on M. Obviously this lifting is an embedding of
M into $Y_{(L,\tau)}$. Moreover, if M is completely metrizable, then we can embed it
in $l_2(\tau)$ as a closed subspace. This implies that the corresponding embedding
of M in $Y_{(L,\tau)}$ is also closed. \hfill \square

A completion theorem for L-dimensional metric spaces, where L is any count-
able CW-complex, was established in [26]. It follows from Proposition 2.7 that
this is also true for quasi-finite (not necessarily countable) complexes L.

Corollary 2.8. Let L be a quasi-finite complex. Then every metrizable space
X with $e\text{-dim} X \leq L$ has a completion with extension dimension $\leq L$.

Corollary 2.9. Let L be a quasi-finite complex and X a metrizable space. Then
e-$\text{dim} X \leq L$ if and only if X admits a uniformly 0-dimensional map into a
separable metrizable space of extension dimension $\leq L$.

Proof. In one direction (sufficiency) this follows from the mentioned above re-
sult of Levin [23, Theorem 1.2]. Suppose X is a metrizable space of weight τ
with e-dim$X \leq L$. By Proposition 2.7, X can be embedded in the space $Y_{(L,\tau)}$. It follows from the construction of $Y_{(L,\tau)}$ that the map $h: Y_{(L,\tau)} \to Y_{(L,\omega)}$ is uniformly 0-dimensional. Then the restriction $h|X$ is also uniformly 0-dimensional which completes the proof.

A general factorization theorem for L-dimensional compact spaces, where L is an arbitrary complex, was proved in [24]. We provide here a factorization theorem for L-dimensional metrizable spaces with L being quasi-finite (see [23, Theorem 1.5] for similar result with L countable).

Proposition 2.10. Let L be a quasi-finite complex and let $f: X \to Y$ be a map with Y metrizable. If e-dim$X \leq L$, then f factors through a metrizable space Z such that e-dim$Z \leq L$ and $w(Z) \leq w(Y)$.

Proof. Let us first show how to reduce this proposition to the case Y is separable. This reduction is well known (see, for example, [4]), but we present it here for the reader’s convenience. Suppose the result holds when the range space is separable and metrizable. We take a uniformly 0-dimensional map $g: Y \to l_2$ and apply the “separable factorization theorem” to the map $g \circ f: X \to l_2$ to obtain a separable metrizable space M and maps $q: X \to M$ and $h: M \to l_2$ with e-dim$M \leq L$ and $h \circ q = g \circ f$. Let $p_M: Z \to M$ and $p_Y: Z \to Y$ be the pullbacks of g and h respectively. Clearly, Z is a metrizable space of weight $w(Z) \leq w(Y)$. Since g is uniformly 0-dimensional, so is p_M. Then, by [23, Theorem 1.2], e-dim$Z \leq L$.

Now we prove the “separable case”. Let \hat{Y} be a metrizable compactification of Y and $\hat{f}: \beta X \to \hat{Y}$ be the Čech-Stone extension of f. Since L is quasi-finite, e-dim$\beta X \leq L$. Therefore we can apply the factorization theorem of Levin-Rubin-Schapiro [24] to obtain a metrizable compactum \hat{Z} and maps $\hat{f}_1: \beta X \to \hat{Z}$ and $\hat{f}_2: \hat{Z} \to \hat{Y}$ such that $\hat{f}_2 \circ \hat{f}_1 = \hat{f}$ and e-dim$\hat{Z} \leq L$. Then the space $Z = \hat{f}_1(X)$ and the maps $f_1 = \hat{f}_1|X$ and $f_2 = \hat{f}_2|Z$ form the required factorization. □

We say that a map $f: X \to Y$ is L-soft, where L is a CW-complex, if for any space Z with e-dim$Z \leq L$, any closed set $A \subset Z$ and any two maps $h: Z \to Y$ and $g: A \to X$, where A is normally placed in Z with respect to (g, X) and $f \circ g = h|A$, there exists a map $\overline{g}: Z \to X$ extending g such that $f \circ \overline{g} = h$. If, in the above definition, we additionally require Z to be from a given class of spaces \mathcal{A}, then we say that f is L-soft with respect to the class \mathcal{A}. It was established in [11] that for every countable complex L and every metric space Y there exists an L-soft map $f: X \to Y$ such that X is a metric space of extension dimension $\leq L$ and $w(X) = w(Y)$. We are going to show that quasi-finite complexes also have this property.
Proposition 2.11. Let L be a quasi-finite CW-complex. Then for every $\tau \geq \omega$ there exists an L-soft map $p_{(L,\tau)} : X_{(L,\tau)} \to l_2(\tau)$ such that:

(a) $X_{(L,\tau)}$ is a completely metrizable space of weight τ with $\text{e-dim} X_{(L,\tau)} \leq L$.
(b) $X_{(L,\tau)}$ is an absolute extensor for all metrizable spaces of $\text{e-dim} \leq L$.
(c) $p_{(L,\tau)}$ is a strongly (L,τ)-universal map, i.e. for any open cover U of $X_{(L,\tau)}$, any (complete) metrizable space Z of weight $\leq \tau$ with $\text{e-dim} Z \leq L$ and any map $g : Z \to X_{(L,\tau)}$ there exists a (closed) embedding $h : Z \to X_{(L,\tau)}$ which is U-close to g and $p_{(L,\tau)} \circ g = p_{(L,\tau)} \circ h$.

Proof. Using Proposition 2.11 and following Zarichnyi’s idea from [28] (see also [8]) that invertibility generates softness, we can show the existence of a complete separable metrizable space X with $\text{e-dim} X \leq L$ and an L-soft map $f : X \to l_2$. Then, as in [11], we construct the space $X_{(L,\tau)}$ and the map $p_{(L,\tau)} : X_{(L,\tau)} \to l_2(\tau)$ possessing the desired properties. □

3. SOME MORE PROPERTIES OF QUASI-FINITE COMPLEXES

In this section, all spaces and all CW-complexes, unless stated otherwise, are, respectively, metrizable and quasi-finite. We are going to show that some properties of finitely dominated complexes remain valid for quasi-finite complexes.

We say that a space X is an absolute (neighborhood) extensor in dimension L (notation $X \in A(N)E(L)$) if for every space Z of extension dimension $\leq L$ and every map $g : A \to X$, where A is a closed subset of Z, there exists an extension of g over Z (resp., over a neighborhood of A in Z).

Everywhere below $\text{cov}(X)$ denotes the family of all open covers of X. Two maps $f_0, f_1 : X \to Y$ are L-homotopic [10] if for any map $h : Z \to X \times [0,1]$, where Z is a space with $\text{e-dim} Z \leq L$, the composition $(f_0 \oplus f_1) \circ h \circ (h^{-1}(X \times \{0,1\})) : h^{-1}(X \times \{0,1\}) \to Y$ admits an extension $H : Z \to Y$. If $U \in \text{cov}(X)$ and the extension H in the above definition can be chosen such that the collection $\{H(h^{-1}\{(x) \times [0,1]\}) : x \in X\}$ refines U, then f_0 and f_1 are called (U,L)-homotopic.

The following three propositions were given in [10] for finitely dominated countable complexes L and Polish $A(N)E(L)$-spaces X. Because of Proposition 2.7, one can show they also hold for quasi-finite complexes L and arbitrary (not necessarily Polish) $A(N)E(L)$-spaces.

Proposition 3.1. Let X be an $A(N)E(L)$-space and $U \in \text{cov}(X)$. Then there exists a cover $V \in \text{cov}(X)$ such that any two V-close maps of any space into X are (U,L)-homotopic.

Proposition 3.2. Let $X \in A(N)E(L)$ and $U \in \text{cov}(X)$. Then there exists a cover $V \in \text{cov}(X)$ refining U, such that the following condition holds:

(H) For any space Z with $\text{e-dim} Z \leq L$, any closed $A \subset Z$, and any two V-close maps $f, g : A \to X$ such that f has an extension $F : Z \to X$,
it follows that g also can be extended to a map $G: Z \to X$ which is (U, L)-homotopic to F.

Proposition 3.3. Let $X \in ANE(L)$, Z be a space with $e\dim Z \leq L$ and $A \subset Z$ closed. If $f, g: A \to X$ are L-homotopic and f admits an extension $F: Z \to X$, then g also admits an extension $G: Z \to X$, and we may assume that F and G are L-homotopic.

A pair of closed subsets $X_0 \subset X_1$ of a space X is called $UV(L)$-connected in X if every neighborhood U of X_1 in X contains a neighborhood V of X_0 such that $V \subset U$ is L-connected with respect to metrizable spaces, i.e. any map $g: A \to V$, where A is a closed subset of a space Z with $e\dim \leq L$, admits an extension $\overline{g}: Z \to U$. When $X_0 \subset X_1$ is $UV(L)$-connected in X, we say that X_0 is $UV(L)$ in X. If in the above definition all pairs under consideration are L-connected with respect to a given class A, we obtain the notion of $UV(L)$-sets with respect to A. If instead of L-connectedness of the pair $V \subset U$ we require the inclusion $V \subset U$ to be L-homotopic to a constant map in U then the pair $X_0 \subset X_1$ (resp. the set X_0) is called $UV(L)$-homotopic in X. Obviously, every $UV(L)$-connected pair is $UV(L)$-homotopic. Next corollary, which follows from Proposition 3.3, shows that these two properties are equivalent in case $X \in ANE(L)$.

Corollary 3.4. Let X be an $ANE(L)$-space. A pair $X_0 \subset X_1$ of closed subsets of X is $UV(L)$-connected in X if and only if it is $UV(L)$-homotopic in X.

Lemma 3.5. Let $X_0 \subset X_1 \subset X \subset E$, where both X and E are $ANE(L)$-spaces and $X \subset E$ is closed. Then the pair $X_0 \subset X_1$ is $UV(L)$-connected in X if and only if it is $UV(L)$-connected in E.

Proof. By Proposition 2.7, there exists a perfect L-invertible surjection $f: \bar{E} \to E$ with $e\dim \bar{E} \leq L$, and let $\bar{X} = f^{-1}(X)$. Since $X \in ANE(L)$, we can extend $f|\bar{X}$ to a map $g: W \to X$ with W being a neighborhood of \bar{X} in \bar{E}. Since f is closed, we may assume that $W = f^{-1}(G)$ for some neighborhood G of X in E. The claim below follows from our constructions.

Claim. For every open $O \subset X$ the set $O^* = G - f(g^{-1}(X - O))$ is open in G and has the following two properties: $O^* \cap X = O$ and $g(f^{-1}(O^*)) = O$.

Suppose $X_0 \subset X_1$ is $UV(L)$-connected in X. We are going to show that this pair is $UV(L)$-connected in E. To this end, let $U \subset G$ be a neighborhood of X_1 in E. Then there is a neighborhood O of X_0 in X such that $O \subset U \cap X$ is L-connected. Since U is an $ANE(L)$ (as an open subset of E), we can apply Proposition 3.2 for the space U and the one-element cover $U = \{U\}$ to find an open cover $V = \{V_\alpha : \alpha \in \Lambda\}$ of U satisfying the condition (H). For every α let $G_\alpha = V_\alpha \cap (V_\alpha \cap X)^* \cap O^*$ and $V = \bigcup\{G_\alpha : \alpha \in \Lambda\}$. Obviously, $V \subset U$ is open and contains X_0. The pair $V \subset U$ is L-connected. Indeed, let $h: A \to V$
be a map, where $A \subset Z$ is closed and $\text{e-dim}Z \leq L$. Since f is L-invertible, h admits a lifting $h_1: A \to f^{-1}(V)$, i.e. $h = f \circ h_1$. According to the Claim, $g\left(f^{-1}(G_\alpha)\right) \subset V_\alpha \cap X$, $\alpha \in \Lambda$, and $V \cap X \subset O$. This implies that h and the map $h_2 = g \circ h_1: A \to V \cap X$ are V-close. Since the pair $O \subset U \cap X$ is L-connected, h_2 can be extended to a map from Z into $U \cap X$. This yields, according to Proposition 3.2, that h also can be extended to a map from Z into U.

Now, suppose the pair $X_0 \subset X_1$ is $UV(L)$-connected in E. To show this pair is $UV(L)$-connected in X, let U be a neighborhood of X_1 in X. Then $U^* \subset G$ is open in E, and we can find a neighborhood V of X_0 in E such that $V \subset U^*$ is L-connected. The pair $V \cap X \subset U$ is L-connected. Indeed, any map $h: A \to V \cap X$, where $A \subset Z$ is closed and $\text{e-dim}Z \leq L$, admits an extension $h_1: Z \to U^*$. Then the map $\overline{h} = g \circ h_2: Z \to U$, where $h_2: Z \to f^{-1}(U^*)$ is a lifting of h_1, extends h.

Theorem 3.6. Suppose X is an $ANE(L)$-space and the pair $X_0 \subset X_1$ is $UV(L)$-connected in X. Then it is $UV(L)$-connected in any $ANE(L)$-space in which X_1 is embeddable as a closed subspace.

Proof. Let $i: X_1 \to Y$ be a closed embedding, where $Y \in ANE(L)$, and M be the space obtained from the disjoint union $X \uplus Y$ by identifying all pairs of points $x \in X_1 \subset X$ and $i(x) \in Y$. The space M is metrizable and if $p: X \uplus Y \to M$ is the quotient map, then $p(X)$, $p(Y)$ and $p(X_1)$ are closed sets in M homeomorphic, respectively, to X, Y and X_1. Moreover, $p(X_1)$ is the common part of $p(X)$ and $p(Y)$. We embed M in a normed space E as a closed subspace. Every normed space is an absolute extensor for the class of metrizable spaces, so $E \in ANE(L)$. Since the pair $p(X_0) \subset p(X_1)$ is $UV(L)$-connected in $p(X)$, by Lemma 3.5 it is also $UV(L)$-connected in E. This implies, again by Lemma 3.5, that $p(X_0) \subset p(X_1)$ is $UV(L)$-connected in $p(Y)$. □

Corollary 3.7. If a space X is $UV(L)$ in a given $ANE(L)$-space, then X is $UV(L)$ in any $ANE(L)$-space in which X is embeddable as a closed subset.

In the existing literature, the UV^∞-property, and more general, the $UV(L)$-property, is defined for compact spaces, see [10] and [6]. We extend this definition to arbitrary (metrizable) spaces: X is a $UV(L)$-space if it is $UV(L)$ in some $ANE(L)$-space containing X as a closed subspace. According to Corollary 3.7, the $UV(L)$-property does not depend on the embeddings in $ANE(L)$-spaces (for compact spaces and finite complexes L this was done in [6]). It follows from Corollary 3.4 that X is a $UV(L)$-space if and only if X is $UV(L)$-homotopic in every space $Y \in ANE(L)$ containing X as a closed subset.

Recall that a normal space X is a C-space [1] if for any sequence $\{\omega_n\}$ of open covers of X there exists a sequence $\{\gamma_n\}$ of open disjoint families such that each γ_n refines ω_n and $\cup \gamma_n$ covers X. Every finite-dimensional paracompactum, as well as every countable-dimensional metrizable space has property C [19].
We say that a complex \(L \) (not necessarily quasi-finite) possesses the soft map property if for every space \(X \) there exists a space \(Y \) with \(\text{e-dim} Y \leq L \) and an \(L \)-soft map from \(Y \) onto \(X \). Every countable complex has the soft map property (see [11]), as well as every quasi-finite complex (by Proposition 2.11).

A pair of spaces \(\tilde{V} \subset \tilde{U} \) is called an \(L \)-extension of the pair \(V \subset U \) [7] if \(\tilde{U} \in AE(L) \) and there exists a map \(q: \tilde{U} \to U \) such that the restriction \(q|\tilde{V} \) is an \(L \)-soft map onto \(V \). The following property of \(L \)-extension pairs was established in [7].

Lemma 3.8. Let \(L \) be a complex (not necessarily quasi-finite) with the soft map property and \(\tilde{V} \subset \tilde{U} \) an \(L \)-extension of the pair \(V \subset U \). Let also \(A \subset B \) be a pair of closed subsets of a space \(X \) with \(\text{e-dim} X \leq L \). Suppose we have maps \(f: B \to U \) and \(g: A \to \tilde{U} \) such that \(q \circ g = f|A \) and \(f(B \setminus A) \subset V \). Then there exists a map \(h: X \to \tilde{U} \) such that \(q \circ (h|B) = f \).

Lemma 3.9. Let \(L \) be a complex (not necessarily quasi-finite). Every \(L \)-connected pair \(V \subset U \) of spaces admits an \(L \)-extension provided \(L \) has the soft map property.

Proof. We take a normed space \(E \) containing \(V \) as a closed subspace and an \(L \)-soft surjection \(g: \tilde{U} \to E \) such that \(\tilde{U} \) is a space of \(\text{e-dim} \leq L \). Since \(V \subset U \) is \(L \)-connected, there exists a map \(q: \tilde{U} \to U \) extending the map \(g|\tilde{V} \), where \(\tilde{V} = g^{-1}(V) \). Moreover, \(\tilde{U} \in AE(L) \) because \(E \) is an absolute extensor for the class of metrizable spaces and \(g \) is \(L \)-soft. Therefore, \(\tilde{V} \subset \tilde{U} \) is an \(L \)-extension of \(V \subset U \).

If \(A \) is a subset of a space \(X \) we denote the star of \(A \) with respect to a cover \(\omega \in \text{cov}(X) \) by \(\text{St}(A, \omega) \). We say that \(\nu \in \text{cov}(X) \) is a strong star-refinement of \(\omega \in \text{cov}(X) \) if for each \(V \in \nu \) there exists \(W \in \omega \) such that \(\text{St}(V, \nu) \subset W \).

Auxiliary Construction. Suppose we are given the spaces \(X, Z \) and the map \(g: A \to X \), where \(A \subset Z \) is closed. Let \(\alpha_n = \{ U_n(x) : x \in X \}, \beta_n = \{ V_n(x) : x \in X \}, n \geq 0 \), be two sequences of open covers of \(X \) and \(\mu_n^*, n \geq 1 \), be a sequence of disjoint open families in \(A \) such that:

1. \(\alpha_n \) is a strong star refinement of \(\beta_{n-1} \) for any \(n \geq 1 \).
2. Each \(\mu_n^*, n \geq 1 \), refines \(g^{-1}(\beta_n) \) and \(\cup \{ \mu_n^* : n \geq 1 \} \) is a locally finite cover of \(A \).

We are going first to construct open and disjoint families \(\mu_n, n \geq 1 \), in \(Z \) satisfying the following condition:

3. \(\mu = \cup \{ \mu_n : n \geq 1 \} \) is locally finite in \(Z \) and the restriction of each \(\mu_n \) on \(A \) is \(\mu_n^* \).

To this end, we choose an upper semi-continuous (br., u.s.c.) set-valued map \(r: Z \to A \) such that each \(r(z) \) is a finite set and \(r(z) = \{ z \} \) for \(z \in A \) (see [25] for the existence of such \(r \)). Recall that \(r \) is upper semi-continuous means that
$r^*(T) = \{ z \in Z : r(z) \subset T \}$ is open in Z whenever T is open in A. Obviously, $r^*(T) \cap A = T$ and $r^*(T_1) \cap r^*(T_2) \neq \emptyset$ if and only if $T_1 \cap T_2 \neq \emptyset$ for any open subsets T, T_1 and T_2 of A. Therefore all families $\mu_n = \{ r^*(T) : T \in \mu_n^* \}$, $n \geq 1$, are open and disjoint in Z. Since μ^* is locally finite in A and r is finite-valued, the family $\mu = \cup \{ \mu_n : n \geq 1 \}$ is locally finite in Z.

The second part of our construction is to find points $x_W \in X$ such that

(4) $St(g(W \cap A), \alpha_n) \subset V_{n-1}(x_W)$ for every $W \in \mu_n$ and $n \geq 1$

This can be done as follows. Since α_n is a strong star refinement of β_n-1 and μ_n refines $g^{-1}(\beta_n)$, for every $n \geq 1$ and $W \in \mu_n$ there exist $S \in \beta_n$ and a point $x_W \in X$ such that $St(g(W \cap A), \alpha_n) \subset St(S, \alpha_n) \subset V_{n-1}(x_W)$. The auxiliary construction is completed.

Lemma 3.10. Let L be a complex (not necessarily quasi-finite) with the soft map property and $f : M \to X$ be a surjection with the following property:

(UV) for every $x \in X$ and its neighborhood $U(x)$ in X there exists a smaller neighborhood $V(x)$ of x such that the pair $V(x) = f^{-1}(V(x)) \subset U(x) = f^{-1}(U(x))$ is L-connected with respect to the class of metrizable spaces.

Suppose $p : Y \to Z$ is a surjective map with $\text{e-dim} Y \leq L$. Then, for any $\omega \in \text{cov}(X)$ and any map $g : A \to X$, where A is a closed subset of Z such that either A or $g(A)$ is a C-space, there is a neighborhood G of A in Z and a map $h : p^{-1}(G) \to M$ with $(f \circ h)|p^{-1}(A)$ being ω-close to $g \circ p$.

Proof. For every $x \in X$ and $n = 0, 1, 2, \ldots$ we choose a point $P(x) \in f^{-1}(x)$ and neighborhoods $U_n(x)$ and $V_n(x)$ of x in X such that the cover $\alpha_0 = \{ U_0(x) : x \in X \}$ refines ω, each pair $V_n(x) \subset U_n(x)$ is L-connected with respect to all metrizable spaces and the covers $\alpha_n = \{ U_n(x) : x \in X \}$, $\beta_n = \{ V_n(x) : x \in X \}$ satisfy condition (1) from the auxiliary construction. Since either A or $g(A)$ is a C-space, there exists a sequence of disjoint open families $\{ \mu_n^* : n \geq 1 \}$ in A satisfying condition (2) above. Therefore, according to the auxiliary construction, we can extend each μ_n^* to a disjoint open family μ_n in Z such that $\mu = \cup \{ \mu_n : n \geq 1 \}$ is locally finite in Z and let G be the union of all elements of μ.

We introduce the following notations: $B = p^{-1}(A)$, $\overline{g} = g \circ (p|B)$, $\Omega = p^{-1}(G)$, and $\nu_n = p^{-1}(\mu_n)$. Obviously, each ν_n is a disjoint open family in Y and $\nu = \cup \{ \nu_n : n \geq 1 \}$ is a locally finite cover of Ω. Let us also consider the open covers $\tilde{\omega} = f^{-1}(\omega)$, $\tilde{\alpha}_n = \{ \tilde{U}_n(x) : x \in X \}$ and $\tilde{\beta}_n = \{ \tilde{V}_n(x) : x \in X \}$ of M corresponding, respectively, to ω, α_n and β_n. According to Lemma 3.9, every pair $\tilde{V}_n(x) \subset \tilde{U}_n(x)$ has an L-extension $\tilde{V}_n(x) \subset \tilde{U}_n(x)$ with a corresponding map $q_{n,x} : \tilde{U}_n(x) \to \tilde{U}_n(x)$ such that $(q_{n,x})|\tilde{V}_n(x)$ is an L-soft surjection onto $\tilde{V}_n(x)$.
Consider the nerve \mathcal{R} of ν and a barycentric map $\theta: \Omega \to |\mathcal{R}|$. Any simplex $\sigma = \langle W_0, W_1, \ldots, W_k \rangle$ from \mathcal{R}, where $W_i \in \nu_{n(i)}$, can be ordered such that $n(0) < n(1) < \ldots < n(k)$. This is possible because $\cap\{W_i : i = 0, 1, \ldots, k\} \neq \emptyset$, so the numbers $n(i)$ are different. It is easily seen that, for fixed $k \geq 1$ and $W \in \nu_k$, condition (4) from the auxiliary construction implies the following one

\[(5) \ St(\mathcal{F}(W \cap B), \alpha_k) \subset V_{k-1}(x_W), \text{ and therefore } St(f^{-1}(\mathcal{F}(W \cap B)), \alpha_k) \subset \tilde{V}_{k-1}(x_W).\]

Let $\Sigma(\sigma)$, $\sigma \in \mathcal{R}$, be the closed subset $\theta^{-1}(\sigma)$ of Ω and $\Sigma^k = \theta^{-1}(\mathcal{R}^k)$, where \mathcal{R}^k denotes the k-th skeleton of \mathcal{R}. For every $k \geq 0$ and $\sigma = \langle W_0, W_1, \ldots, W_k \rangle \in \mathcal{R}^k$ with $W_0 \in \nu_{n(0)}$, we define by induction maps $h_k: \Sigma^k \to M$ and $h_\sigma: \Sigma(\sigma) \to \tilde{U}_{n(0)-1}(x_{W_0})$ such that

\[(6) \ h_k|_{\Sigma^{k-1}} = h_{k-1} \text{ for } k \geq 1 \text{ and } h_k|_{\Sigma(\sigma)} = q_{n(0)-1, x_{W_0}} \circ (h_\sigma|_{\Sigma(\sigma)}) \text{ for } k \geq 0 \text{ and } \]

\[(7) \ f^{-1}(\mathcal{F}(W_0 \cap B)) \bigcup h_k(\Sigma(\sigma)) \subset \tilde{U}_{n(0)-1}(x_{W_0}), \text{ } k \geq 0.\]

We also require that

\[(8) \ h_{\sigma_1}|_{(\Sigma(\sigma_1) \cap \Sigma(\sigma_2))} = h_{\sigma_2}|_{(\Sigma(\sigma_1) \cap \Sigma(\sigma_2))} \text{ for any } \sigma_1 \text{ and } \sigma_2 \text{ from } \mathcal{R}^k \text{ having the same first vertex.}\]

For $k = 0$ we define $h_0: \Sigma^0 \to M$ and $h_{<W>}: \Sigma(< W >) \to \tilde{U}_{n-1}(x_W)$ by $h_0(\Sigma(< W >)) = P(x_W)$ and $h_{<W>}(\Sigma(< W >)) = Q(x_W)$, where $W \in \nu_n$ and $Q(x_W)$ is a point from $\tilde{V}_{n-1}(x_W)$ with $q_{0, x_W}(Q(x_W)) = P(x_W)$. Obviously, h_0 restricted on every set $W \cap \Sigma^0$ is constant, so it is continuous. Moreover, every $h_{<W>}$ is also constant satisfying condition (6), and, by (5), h_0 satisfies also (7). Note that condition (8) holds for $k = 0$.

Suppose that for some $k \geq 1$ maps $h_{k-1}: \Sigma^{k-1} \to M$ and $h_\sigma: \Sigma(\sigma) \to \tilde{U}_{m-1}(x_W)$ satisfying conditions (6), (7) and (8) have already been defined. Here $\sigma \in \mathcal{R}^{k-1}$ and $W \in \nu_m$ is the first vertex of the simplex σ.

Now, let $\sigma = \langle W_0, W_1, \ldots, W_k \rangle \in \mathcal{R}^k$ with $W_i \in \nu_{n(i)}$, $i = 0, 1, \ldots, k$. Then $\sigma \cap \mathcal{R}^{k-1}$ consists of the simplexes $\sigma_i = \langle W_0, W_i, W_{i+1}, \ldots, W_k \rangle$, $i = 1, 2, \ldots, k$ and the simplex $\sigma_0 = \langle W_0, W_1, W_2, \ldots, W_k \rangle$.

Claim. $f^{-1}(\mathcal{F}(W_0 \cap B)) \bigcup h_{k-1}(\Sigma(\sigma_0)) \subset \tilde{V}_{n(0)-1}(x_{W_0})$ and $f^{-1}(\mathcal{F}(W_0 \cap B)) \bigcup h_{k-1}(\Sigma(\sigma_i)) \subset \tilde{U}_{n(0)-1}(x_{W_0})$ for every $i = 1, \ldots, k$.

Indeed, by (7) we have $f^{-1}(\mathcal{F}(W_1 \cap B)) \bigcup h_{k-1}(\Sigma(\sigma_0)) \subset \tilde{U}_{n(1)-1}(x_{W_1})$. But $\mathcal{F}(W_1 \cap B) \cap \mathcal{F}(W_0 \cap B) \neq \emptyset$, and hence $f^{-1}(\mathcal{F}(W_1 \cap B)) \bigcup h_{k-1}(\Sigma(\sigma_0))$ is contained in $St(f^{-1}(\mathcal{F}(W_0 \cap B)), \tilde{\alpha}_{n(1)-1})$. Since $n(0) \leq n(1)-1$, $\tilde{\alpha}_{n(1)-1}$ refines $\tilde{\alpha}_{n(0)}$. This fact and the inclusion $St(f^{-1}(\mathcal{F}(W_0 \cap B)), \tilde{\alpha}_{n(0)}) \subset \tilde{V}_{n(0)-1}(x_{W_0})$, which follows from (5), complete the proof of the claim for $i = 0$. Since W_0 is a vertex of each σ_i, $i = 1, 2, \ldots, k$, the other inclusions from the claim follow directly from (7).
Consider the “boundary” \(\partial \Sigma(\sigma) = \bigcup_{i=0}^{k} \Sigma(\sigma_i) \) of \(\Sigma(\sigma) \). According to the claim, \(h_{k-1}(\partial \Sigma(\sigma)) \subset \tilde{U}_{n(0)-1}(x_{W_0}) \) and \(h_{k-1}(\partial \Sigma(\sigma) \setminus \Sigma_0) \subset \tilde{V}_{n(0)-1}(x_{W_0}) \), where \(\Sigma_0 = \bigcup_{i=1}^{k} \Sigma(\sigma_i) \). Since the maps \(h_{\sigma_i} : \Sigma(\sigma_i) \to \tilde{U}_{n(0)-1}(x_{W_0}) \), \(i = 1, \ldots, k \), satisfy condition (8), they determine a map \(h_{\Sigma} : \Sigma_0 \to \tilde{U}_{n(0)-1}(x_{W_0}) \) such that \(h_{\sigma_i}|\Sigma(\sigma_i) = h_{\Sigma}|\Sigma(\sigma_i) \) for each \(i \). Moreover, by (6), \(q_{n(0)-1,x_{W_0}} \circ h_{\Sigma} = h_{k-1}|\Sigma_0 \).

Therefore, we can apply Lemma 3.8 for the pair \(\tilde{V}_{n(0)-1}(x_{W_0}) \subset \tilde{U}_{n(0)-1}(x_{W_0}) \), its \(L \)-extension \(\tilde{V}_{n(0)-1}(x_{W_0}) \subset \tilde{U}_{n(0)-1}(x_{W_0}) \), the sets \(\Sigma_0 \subset \partial \Sigma(\sigma) \subset \Sigma(\sigma) \) and the maps \(h_\Sigma \) and \(h_{k-1}|\partial \Sigma(\sigma) \). In this way we obtain a map \(h_\sigma : \Sigma(\sigma) \to \tilde{U}_{n(0)-1}(x_{W_0}) \) such that \(q_{n(0)-1,x_{W_0}} \circ h_\sigma|\partial \Sigma(\sigma) = h_{k-1}|\partial \Sigma(\sigma) \). Now we define \(h_k : \Sigma^k \to M \) by \(h_k|\Sigma(\sigma) = q_{n(0)-1,x_{W_0}} \circ h_\sigma \). Obviously, \(h_k \) is continuous on every “simplex” \(\Sigma(\sigma) \), \(\sigma \in \mathfrak{H}^k \), and, since the family \(\nu \) is locally finite in \(\Omega \), \(h_k \) is continuous. Moreover, \(h_k \) and \(h_\sigma \) satisfy conditions (6), (7) and (8), and the induction is completed.

Finally, we define \(h : \Omega \to M \) letting \(h|\Sigma^k = h_k \) for each \(k \). Continuity of \(h \) follows from continuity of each \(h_k \) and the fact that \(\nu \) is locally finite. Observe also that \((f \circ h)|p^{-1}(A) \) is \(\omega \)-close to \(g \circ p \) because of condition (7).

Proposition 3.11. Let \(L \) be a complex (not necessarily quasi-finite) with the soft map property and \(f_0 : M \to X \) be a closed map such that each fiber \(f_0^{-1}(x) \), \(x \in X \), is \(UV(L) \)-connected in \(M \). Then for every map \(g_0 : A \to X \), where \(A \) is a closed subset of a space \(Z \) with \(e\dim Z \leq L \) such that either \(A \) or \(\varrho_0(A) \) is a \(C \)-space, there exists a neighborhood \(Q \) of \(A \) in \(Z \) and an u.s.c map \(\Psi : Q \to M \) such that \(\Psi \) is single-valued on \(Q \setminus A \) and \(f_0 \circ \Psi \) is a continuous single-valued map extending \(g_0 \).

Proof. Our proof is based on some ideas from [2, proof of Theorem 3.1]. Let \(f_0 \) and \(g_0 \) be as in the proposition. We take sequences \(\{\omega_n\} \subset \text{cov}(X) \) and \(\{\gamma_n\} \subset \text{cov}(A) \), and open intervals \(\{\Delta_n\} \) covering the interval \(J = [0,1] \), with \(0 \in \Delta_1 \), such that:

- \(\omega_{n+1} \) is a strong star-refinement of \(\omega_n \) and \(\gamma_{n+1} \) is a strong star-refinement of \(\gamma_n \), \(n = 1, 2, 3, \ldots \),
- \(\lim \text{mesh}(\omega_n) = \lim \text{mesh}(\gamma_n) = 0 \)
- \(\Delta_n \cap \Delta_m \neq \emptyset \) if and only if \(n \) and \(m \) are consecutive integers.

Then \(\omega = \{\omega_n \times \Delta_n : n = 1, 2, \ldots\} \) and \(\gamma = \{\gamma_n \times \Delta_n : n = 1, 2, \ldots\} \) are open covers, respectively, of \(X \times J \) and \(A \times J \), satisfying the following conditions:

1. For every point \((x,1) \in X \times I \) and its neighborhood \(U \) in \(X \times I \) there exists another neighborhood \(V \) such that \(St(V, \omega) \subset U \).
2. For every point \((a,1) \in A \times I \) and its neighborhood \(U \) in \(A \times I \) there exists another neighborhood \(V \) such that \(St(V, \gamma) \subset U \).

Since \(f_0 \) is a closed map all fibers of which are \(UV(L) \)-connected in \(M \), the map \(f = f_0 \times id : M \times J \to X \times J \) has the property \((UV) \) from Lemma 3.10.
Further, let g denote the map $g_0 \times id : A \times J \to X \times J$ and consider an L-soft surjection $p : Y \to Z \times I$, $I = [0, 1]$, such that Y is a space of e-dim$Y \leq L$. We have the following diagram:

$$
\begin{array}{ccc}
Y & \xrightarrow{p \text{ (L-soft)}} & M \times J \\
\downarrow & & \downarrow f = f_0 \times id \\
Z \times I \supset A \times J & g = g_0 \times id & X \times J
\end{array}
$$

Since the product of any metrizable C-space and J is also a C-space, either $A \times J$ or $g_0(A) \times J$ is a C-space. Following the notations from Lemma 3.10, we can apply construction of this lemma by considering the spaces $M \times J$, $X \times J$, $Z \times J$, $A \times J$ and $p^{-1}(Z \times J)$ instead of the spaces M, X, Z, A and Y, respectively. Let us also note that in our situation we take α_n and β_n, $n \geq 0$, to be open covers of $X \times J$ satisfying condition (1) from the auxiliary construction with α_0 refining ω. We also require μ^*_n to be disjoint open families in $A \times J$ satisfying condition (2) such that $\mu^* = \bigcup_{n=1}^\infty \mu^*_n$ is a locally finite open cover of $A \times J$ which, in addition, refines γ. Then, as in the auxiliary construction, we can extend μ^*_n to disjoint open families μ_n in $Z \times J$ by choosing an u.s.c. retraction $r : Z \times I \to A \times I$ such that $r(z,t) \subset A \times \{t\}$ for every $t \in I$. This can be achieved by taking an u.s.c. finite-valued retraction $r_1 : Z \to A$ and letting $r(z,t) = r_1(z) \times \{t\}$. Observe that this special choice of r implies that $r^2(T)$ is open in $Z \times I$ for every open $T \subset A \times I$ and $r^2(T)$ is contained in $Z \times J$ provided $T \subset A \times J$. We also pick the points $x_W \in X \times J$, $W \in \mu$, satisfying condition (4).

According to Lemma 3.10, there exists a map $h : p^{-1}(G) \to M \times J$, where $G = \cup \{ \Lambda : \Lambda \in \mu \}$, such that each $h_k = h|\Sigma^k$ satisfies condition (7) and $(f \circ h)|\{p^{-1}(A \times J)\}$ is ω-close to $g \circ p$. Now, let $H = p^{-1}(G \cup (A \times \{1\}))$ and define the set-valued map $\psi : H \to M \times I$ letting $\psi(y) = h(y)$ if $y \in p^{-1}(G)$ and $\psi(y) = (f_0^{-1}(g_0(p(y))), 1)$ if $y \in p^{-1}(A \times \{1\})$. Let also $\psi_1 = \pi \circ \psi : H \to M$, where $\pi : M \times I \to M$ is the projection.

Claim. The map ψ_1 is u.s.c.

Since π is continuous, it suffices to prove that ψ is u.s.c. To this end, observe that $p^{-1}(G)$ is open in H and ψ is single-valued and continuous on $p^{-1}(G)$, so that we need to show only that ψ is u.s.c. at the points of $p^{-1}(A \times \{1\})$. Let $\{y_i\} \subset H$ be a sequence converging to a point $y_0 \in p^{-1}(A \times \{1\})$ and $U_0 = V_0 \times (t, 1]$ be a neighborhood of $\psi(y_0) = (f_0^{-1}(g_0(p(y_0))), 1)$ in $M \times I$. We are going to show that $\psi(y_i) \subset U_0$ for almost all i which will complete the proof of the claim. Since f_0 is a closed map, ψ is u.s.c. on $p^{-1}(A \times \{1\})$. Therefore we can assume that $\{y_i\} \subset p^{-1}(G)$, hence $\psi(y_i) = h(y_i)$ for all i. Thus $p(y_0) = (a, 1) \in A \times \{1\}$ and $p(y_i) \in G$. Since f_0 is closed, we can find a neighborhood V of $g_0(p(y_0))$ in X with $f_0^{-1}(V) \subset V_0$. By (9), there exists a
Let \(\varphi \) and \(X \) be established in [6, Corollary 7.5] for finite complexes \(UV \) between Polish spaces \((U, \vartheta)\). Since \(\{p(y_i)\} \) converges to \((a, 1)\), we can assume that \(\{p(y_i)\} \subset r^2(S) \). It suffices to show that \(f(h(y_i)) \in U \) for all \(i \). To this end, fix \(i \) and \(\Lambda_0 \in \mu_k(0) \), \(p(y_i) \), where \(k(0) \) is the minimal \(k \) such that \(p(y_i) \) is contained in some element of \(\mu_k \). Then \(\Lambda_0 = r^2(\Lambda_0^*) \) for some \(\Lambda_0^* \in \mu^* \) and therefore \(p(y_i) \in r^2(\Lambda_0^*) \cap r^2(S) \). Consequently, \(S \) meets \(\Lambda_0^* \) and let \(p(y_i^*) \in \Lambda_0^* \cap S \), where \(y_i^* \in p^{-1}(\Lambda_0^*) \). On the other hand, there exists \(\Gamma \in \gamma \) containing \(\Lambda_0^* \) (recall that \(\mu^* \) refines \(\gamma \)). Therefore, \(p(y_i^*) \in St(S, \gamma) \cap T(a) \times (q, 1] \). Since \(g(p(y_i^*)) = (g_0 \circ id)(p(y_i^*)) \), according to the choice of \(T(a) \times (q, 1] \) we have
\[
(10) \quad g(p(y_i^*)) \in U_1 = V_1 \times (q, 1].
\]
Since \(k(0) \) is the minimal \(k \) such that \(y_i \) is contained in some \(W \in \nu_k \), according to the definition of the maps \(h_k \) and condition (7) from Lemma 3.10, we have \(h(y_i) \in \tilde{U}_{k(0)-1}(x_{W_0}) \), where \(W_0 = p^{-1}(\Lambda_0) \). The last inclusion implies \(f(h(y_i)) \in U_{k(0)-1}(x_{W_0}) \). Also, condition (5) from Lemma 3.10 yields that
\[
(11) \quad g(p(y_i^*)) \in g(p(W_0 \cap p^{-1}(A \times J))) \subset V_{k(0)-1}(x_{W_0}).
\]
Hence, both \(g(p(y_i^*)) \) and \(f(h(y_i)) \) are points from \(U_{k(0)-1}(x_{W_0}) \). But the cover \(\alpha_{k(0)-1} \) refines \(\omega \), and hence \(U_{k(0)-1}(x_{W_0}) \) is contained in an element \(O \) of \(\omega \). Therefore, \(O \) contains \(g(p(y_i^*)) \) and \(f(h(y_i)) \). This means, according to (10), that \(f(h(y_i)) \in St(U_1, \omega) \). Finally, since \(St(U_1, \omega) \subset U \), we obtain \(f(h(y_i)) \in U \) which completes the proof of the claim.

Now we can finish the proof. There exists a decreasing sequence \(\{Q_i\} \) of open subsets of \(Z \) and an increasing sequence of real numbers \(0 = t_0 < t_1 < \ldots < 1 \) such that \(\bigcap_{i=1}^\infty Q_i = A \), \(\lim t_i = 1 \), \(\overline{Q}_{i+1} \subset Q_i \), and \(Q_i \times [0, t_i] \subset G \) for all \(i \). Let \(\varphi_i: Z \to [t_{i-1}, t_i], i \geq 1 \), be continuous functions such that \(\varphi_i(Z \setminus Q_i) = t_{i-1} \) and \(\varphi_i(z) = t_i \) for \(z \in \overline{Q}_{i+1} \). Then \(\varphi: Z \to [0, 1] \) defined by \(\varphi(z) = \varphi_i(z) \) for \(z \in Q_i \setminus Q_{i+1} \), \(\varphi(Z \setminus Q_1) = 0 \), and \(\varphi(A) = 1 \), is continuous. Consequently, the map \(\theta: Q_1 \to G \cup (A \times \{1\}) \), \(\theta(z) = (z, \varphi(z)) \), is well defined and continuous. Moreover, \(\theta(z) = (z, 1) \) for all \(z \in A \). Since \(p \) is \(L \)-invertible and \(e \)-dim \(Q_1 \) \(\leq L \) (as an open subset of \(Z \)), we can lift \(\theta \) to a map \(\overline{\theta}: Q_1 \to H \). Then \(\Psi = \psi_1 \circ \overline{\theta}: Q \to M \), where \(Q = Q_1 \), is the required map.

Theorem 3.12 below is a generalization of the well known result that if \(G \) is an u.s.c. decomposition of a metrizable space \(X \) such that each element of \(G \) is \(UV^n \) in \(X \), then \(X/G \) is \(LC^n \) [13, Theorem 11]. The result from Theorem 3.12 was also established in [6, Corollary 7.5] for finite complexes \(L \) and proper \(UV(L) \)-maps between Polish spaces \((UV(L)-maps are maps with all fibers being \(UV \)-(spaces). The version of Theorem 3.12 when \(L \) is a point is a generalization
of the well known result of Ancel [3, Theorem C.5.9]. This version was also established in [12, Proposition 3.5].

Theorem 3.12. Let \(L \) be quasi-finite and \(f: X \to Y \) be a closed map with all fibers being \(UV(L) \)-connected in \(X \). Then \(Y \) is an \(ANE(L) \) with respect to \(C \)-spaces. If, in addition, \(X \) is \(C^L \) (i.e., every map into \(X \) is \(L \)-homotopic to a constant map in \(X \)), then \(Y \in AE(L) \) with respect to \(C \)-spaces.

Proof. Let \(g: A \to Y \) be an arbitrary map, where \(A \) is a closed subspace of a space \(Z \) with \(e\dim Z \leq L \), such that \(A \) is a \(C \)-space. Since \(L \) is quasi-finite, it has the soft mapping property. Therefore we can apply Proposition 3.11 to obtain a neighborhood \(U \) of \(A \) in \(Z \) and an u.s.c. map \(\Psi: U \to X \) such that \(\Psi \) is single-valued outside \(A \) and \(f \circ \Psi \) is a single-valued extension of \(g \). Hence, \(Y \in ANE(L) \) with respect to \(C \)-spaces (actually we proved that \(Y \in ANE(g,A,Z) \) for arbitrary \(g: A \to Y \), where \(A \) is a closed subspace of \(Z \) such that \(e\dim Z \leq L \) and \(A \) is a \(C \)-space).

Suppose now that \(X \) is \(C^L \) and let \(A \subset Z \) and \(g: A \to Y \) be as above. To show that \(Y \in AE(L) \) with respect to \(C \)-spaces, we need to extend \(g \) over \(Z \). Embedding \(Z \) as a closed subset of an \(AE(L) \)-space with \(e\dim L \leq L \), we can assume that \(Z \in AE(L) \). Then, as before, there exists a neighborhood \(U \) of \(A \) in \(Z \) and an u.s.c. map \(\Psi: U \to X \) such that \(\Psi \) is single-valued outside \(A \) and \(f \circ \Psi \) extends \(g \). Take neighborhoods \(V_1 \) and \(V_2 \) of \(A \) in \(Z \) such that \(\overline{V_1} \subset V_2 \subset \overline{V_2} \subset U \). Let \(W = Z \setminus \overline{V_1} \) and \(F = W \cap \overline{V_2} \). Since \(W \cap U \) is open in the \(AE(L) \)-space \(Z \), the cone \(\text{Cone}(W \cap U) \) is an \(AE(L) \). So, the inclusion \(F \subset W \cap U \) can be extended to a map \(\varphi: W \to \text{Cone}(W \cap U) \) because \(F \) is closed in \(W \) and \(e\dim W \leq L \). On the other hand, since \(X \in C^L \), \(\Psi|W(\cap U) \) is \(L \)-homotopic to a constant map in \(X \). Consequently, the map \(\Psi|F \) can be extended to a map \(h: W \to X \). Finally, we define the set-valued map \(\theta: Z \to X \) by \(\theta(z) = h(z) \) if \(z \in Z \setminus \overline{V_2} \) and \(\theta(z) = \Psi(z) \) otherwise. Obviously, \(\theta \) is u.s.c. and single-valued outside \(A \). Moreover, \(f \circ \theta \) is the required extension of \(g \).

We say that a space \(X \) is locally \(ANE(L) \) if every point from \(X \) is \(UV(L) \) in \(X \). Let us mention the following corollary from Theorem 3.12.

Corollary 3.13. Let \(Y \) be locally \(ANE(L) \), where \(L \) is quasi-finite. Then \(Y \in ANE(L) \) with respect to \(C \)-spaces. If, in addition, \(Y \in C^L \), then \(Y \in AE(L) \) with respect to \(C \)-spaces.

Remark. We can show that if, in Corollary 3.13, the property of \(X \) to be locally \(ANE(L) \) is replaced by the weaker one \(X \) to be \(LC^L \) (every \(x \in X \) is \(UV(L) \)-homotopic in \(X \) [10]), then \(X \) is an \(ANE(L) \) with respect to finite-dimensional spaces (see also [6, Theorem 4.1] for a similar result).

We know that the domain and the range of a \(UV^n \)-map between compacta are simultaneously \(UV^n \) (see, for example [5]). Here is a generalization of this
result for a subclass of quasi-finite complexes. We say that a CW complex L is a C-complex if every space of e-$\dim \leq L$ is a C-space. Each complex L with $L \leq S^n$ for some n (this means that e-$\dim Z \leq L$ implies $\dim Z \leq n$ for any space Z) is a C-complex, in particular every sphere S^k is such a complex. Observe that Lemma 3.10 and Proposition 3.11 remain valid for C-complexes L having the soft map property without the requirements either A or $g(A)$ (resp., $g_0(A)$) to be C-spaces. This yields that, if in Theorem 3.12 and Corollary 3.13 L is a quasi-finite C-complex, then Y is an $A(N)E(L)$.

Theorem 3.14. Let L be a quasi-finite C-complex and $f : X \to Y$ a closed map with $UV(L)$-fibers. Then X is $UV(L)$ if and only if Y is.

Proof. Let E_X be a normed space containing X as a strong Z-set. This means that $X \subset E_X$ is closed and for every $\omega \in cov(E_X)$ and every map $g : Q \to E_X$, where Q is an arbitrary space, there is another map $h : Q \to E_X$ which is ω-close to g and $h(Q) \cap X = \emptyset$ (such space E_X can be constructed as follows: embed X as a closed subset of a normed space F and let E_X be the product $F \times l_2(\tau)$, where $w(X) \leq \tau$; then $X \times \{0\}$ is a copy of X which is a strong Z-set in E_X). Identifying each fiber of f with a point, we obtain space E_Y (equipped with the quotient topology) and let $p : E_X \to E_Y$ be the natural quotient map. Obviously, $p(X) \subset E_Y$ is closed and, since f is a closed map, $p(X)$ is homeomorphic to Y. And everywhere below we write Y instead of $p(X)$. Moreover, p is a closed map and E_Y is metrizable. Any fiber of p is either a point or $f^{-1}(y)$ for some $y \in Y$. Hence, p is an $UV(L)$-map. Since E_X is an absolute extensor for metrizable spaces, the fibers of p are $UV(L)$-connected in E_X. Consequently, by the modified version of Theorem 3.12 for C-complexes, $E_Y \in AE(L)$.

$X \in UV(L) \Rightarrow Y \in UV(L)$. To prove this implication, by Corollary 3.7, it suffices to show that Y is $UV(L)$ in E_Y. Let U be a neighborhood of Y in E_Y. Since X is $UV(L)$ in E_X (recall that E_X is an absolute extensor) and p is closed, there exists a neighborhood V of Y in E_Y such that the pair $p^{-1}(V) \subset p^{-1}(U)$ is L-connected. We choose a neighborhood V_1 of Y in E_Y with $V_1 \subset U$ and show that the pair $V_1 \subset U$ is L-connected. To this end, take a space Z with e-$\dim Z \leq L$ and a map $h : A \to V_1$ with $A \subset Z$ being closed. Since U is an $ANE(L)$, there exists $\omega \in cov(U)$ satisfying condition (H) from Proposition 3.2. Further, let $\beta \in cov(E_Y)$ be the cover $\{G \cap V : G \in \omega\} \cup \{E_Y \setminus V_1\}$. By Lemma 3.10, there exists a map $h_1 : A \to E_X$ such that $p \circ h_1$ is β-close to h. Obviously, $h_1(A) \subset p^{-1}(V)$ and hence there exists an extension $h_2 : Z \to p^{-1}(U)$ of h_1. Then $p \circ h_2$ is a map from Z into U such that $(p \circ h_2)\mid A$ is ω-close to h. Finally, according to the choice of ω, h admits an extension $\overline{h} : Z \to U$.

$Y \in UV(L) \Rightarrow X \in UV(L)$. As in the previous implication, it suffices to show that X is $UV(L)$ in E_X. To this end, let U be a neighborhood of X in E_X. We can assume that $U = p^{-1}(U_0)$ for some neighborhood U_0 of Y in E_Y.
Choose neighborhoods V_0, G_0 and W_0 of Y such that $V_0 \subset \overline{V_0} \subset G_0 \subset \overline{G_0} \subset W_0 \subset \overline{W_0} \subset U_0$ and the pair $G_0 \subset W_0$ is L-connected. Denote by V, G and W, respectively, the preimages $p^{-1}(V_0)$, $p^{-1}(G_0)$ and $p^{-1}(W_0)$. We claim that the pair $V \subset U$ is L-connected. Indeed, consider a map $g_V : A \to V$, where A is a closed subset of a space Z with ϵ-$\dim Z \leq L$. Let $\alpha \in \text{cov}(U)$ satisfy condition (H) from Proposition 3.2 and $\alpha_1 = \{T \cap G : T \in \alpha\} \cup \{E_X \setminus \overline{V}\} \in \text{cov}(E_X)$. Since X is a strong Z-set in E_X, we can find a map $g_G : A \to E_X$ which is α_1-close to g_V and $g_G(A) \cap X = \emptyset$. It is easily seen that $g_G(A) \subset G$ and g_G is α-close to g_V. The last yields (because of the choice of α) that g_G can be extended to a map from Z into U if and only if g_G has such an extension. Hence, our proof is reduced to show that g_G admits an extension from Z into U. Obviously, g_G can be considered as a map from A into G_0 such that the closure $g_G(A)$ (this is a closure in E_Y) does not meet Y. Since $G_0 \subset W_0$ is L-connected, g_G can be extended to a map $g_W : Z \to W_0$. Finally, consider the cover $\gamma \in \text{cov}(E_Y)$ defined by $\gamma = \{p(T \setminus X) : T \in \alpha\} \cup \{E_Y \setminus \overline{g_G(A)}\} \cup \{E_Y \setminus \overline{W}\}$. According to Lemma 3.10, there exists a map $g_U : Z \to E_X$ such that $p \circ g_U$ is γ-close to g_W. It is easily seen that $g_U(Z) \subset U$ and $g_U|A$ is α-close to g_G. The last condition implies that g_G admits an extension from Z into U which completes our proof. □

References

[1] D. Addis and J. Gresham, A class of infinite-dimensional spaces. Part I: Dimension theory and Alexandroff’s problem, Fund. Math. 101 (1978), 195-205.
[2] S. Ageev and D. Repovs, A method of approximate extension of maps in theory of extensions, Sibirsk. Mat. Zh. 43, 4 (2002), 739-756 (in Russian).
[3] F. Ancel, The role of countable dimensionality in the theory of cell-like relations, Trans. Amer. math. Soc. 287: 1 (1985), 1-40.
[4] P. Alexandrov and B. Pasynkov, Introduction to dimension theory, Nauka (Moscow, 1973).
[5] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Memoirs Amer. Math. Soc. 71: 380 (1988).
[6] N. Brodsky, A. Chigogidze and A. Karasev, Approximations and selections of multivalued mappings of finite-dimensional spaces, JP Jour. Geometry and Topology 2(1) (2002), 29-73.
[7] N. Brodsky and A. Chigogidze, Extension dimensional approximation theorem, Topology and Appl. 125:3 (2002), 385-391.
[8] A. Chigogidze, Cohomological dimension of Tychonov spaces, Topology and Appl. 79:3 (1997), 197-228.
[9] A. Chigogidze, Compactifications and universal spaces in extension theory, Proc. Am. Math. Soc. 128, no. 7 (2000), 2187-2190.
[10] A. Chigogidze, Infinite dimensional topology and shape theory, Handbook of Geometric Topology, R.J. Daverman and R.B. Sher, eds., Elsevier, Amsterdam (2002), 307-371.
[11] A. Chigogidze and V. Valov, Universal metric spaces and extension dimension, Topology and Appl. 113 (2001), 23-27.
Quasi-finite CW-complexes

[12] A. Chigogidze and V. Valov, *Extension dimension and C-spaces*, Bull. London Math. Soc. 34 (2002), 708-716.

[13] R. Daverman, *Decomposition of manifolds*, Academic Press, 1986.

[14] A. N. Dranishnikov, *The Eilenberg-Borsuk theorem for mappings into an arbitrary complex*, Russian Acad. Sci. Sb. 81 (1995), 467–475.

[15] A. N. Dranishnikov, J. Dydak, *Extension dimension and extension types*, Proc. Steklov Inst. Math. 212, no. 1 (1996), 55–88.

[16] J. Dydak, *Extension Theory: the interface between set-theoretic and algebraic topology*, Topology Appl. 74(1-3) (1996), 225-258.

[17] J. Dydak and J. Mogilski, *Universal cell-like maps*, Proc. Amer. Math. Soc. 122 (3) (1994), 943-948.

[18] J. Dydak and J. Walsh, *Spaces without cohomological dimension preserving compactifications*, Proc. Amer. Math. Soc. 113 (1991), 1155-1162.

[19] R. Engelking, *Theory of Dimensions: Finite and Infinite* (Heldermann Verlag, Lemgo, 1995).

[20] A. Karasev, *On two problems in extension theory*, preprint.

[21] M. Katetov, *On the dimension of non-separable spaces. I*, Czech. Math. Jour. 2 (1952), 333–368 (in Russian).

[22] M. Levin, *Some examples in cohomological dimension theory*, Pacific J. Math. 202, 2 (2002), 371–378.

[23] M. Levin, *On extensional dimension of metrizable spaces*, preprint.

[24] M. Levin, L. Rubin and P. Schapiro, *The Mardešić factorization theorem for extension theory and C-separation*, Proc. of Amer. Math. Soc. 128, 10 (2000), 3099–3106.

[25] S. Nedev, *Selections and factorization theorems for set-valued mappings*, Serdica 6 (1980), 291-317.

[26] W. Olszewski, *Completion theorem for cohomological dimensions*, Proc. Amer. Math. Soc. 123 (1995), 2261–2264.

[27] J. West, *Open problems in infinite-dimensional topology*, Open Problems in Topology, North Holland, Amsterdam (1990).

[28] M. Zarichnyi, *Universal spaces and absolute extensors for integral cohomological dimension*, Topology and Appl., preprint.

Department of Computer Science and Mathematics, Nipissing University, 100 College Drive, P.O. Box 5002, North Bay, ON, P1B 8L7, Canada
E-mail address: alexandk@nipissingu.ca

Department of Computer Science and Mathematics, Nipissing University, 100 College Drive, P.O. Box 5002, North Bay, ON, P1B 8L7, Canada
E-mail address: veskov@nipissingu.ca