Vitamin D receptor gene FokI polymorphisms and tuberculosis susceptibility: a meta-analysis

Yan Cao, Xinjing Wang, Zhihong Cao, Xiaoxing Cheng

Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, Beijing, China

Submitted: 24 January 2015
Accepted: 27 May 2015

Arch Med Sci 2016; 12, 5: 1118–1134
DOI: 10.5114/aoms.2016.60092
Copyright © 2016 Termedia & Banach

Abstract

Introduction: The association between FokI polymorphism of vitamin D receptor (VDR) and tuberculosis (TB) susceptibility has been investigated previously; however, the results were inconsistent and conflicting. In the present study, a meta-analysis was performed to assess the relationship between VDR FokI gene polymorphism and the risk of TB.

Material and methods: Databases including PubMed and Embase were searched for genetic association studies of FokI polymorphism of vitamin D receptor (VDR) and TB. Data were extracted by two independent authors and the pooled odds ratio (OR) with 95% confidence interval (CI) was calculated to assess the strength of the association between VDR FokI gene polymorphism and TB risk. Meta-regression and subgroup analyses were performed to identify the source of heterogeneity.

Results: Thirty-four studies with a total of 5669 cases and 6525 controls were reviewed in the present meta-analysis. A statistically significant correlation was found between VDR FokI gene polymorphism and increased TB risk in two comparison models: the homozygote model (ff vs. FF: OR = 1.37, 95% CI: 1.17–1.60; \(P_{\text{heterogeneity}} = 0.001\)) and the recessive model (ff vs. Ff + FF: OR = 1.32, 95% CI: 1.14–1.52; \(P_{\text{heterogeneity}} = 0.006\)). Meta-regression found no source contributing to heterogeneity. However, sub-group analyses revealed that there was a statistically increased TB risk in the East and Southeast Asian population.

Conclusions: Synthesis of the available studies suggests that homozygosity for the FokI polymorphism of the VDR gene might be associated with an increased TB risk, especially in the East and Southeast Asian population. Additional well-designed, larger-scale epidemiological studies among different ethnicities are needed.

Key words: vitamin D receptor, FokI polymorphisms, tuberculosis susceptibility.

Introduction

Tuberculosis (TB) is one of the most important infectious diseases, with an estimated 9.0 million new cases and 1.5 million deaths worldwide in 2013, and more than half were in the South-East Asia and Western Pacific Regions [1]. It is suggested that the susceptibility to disease after infection with Mycobacterium tuberculosis is influenced by many risk factors, such as malnutrition, HIV infection, and environmental and host genetic factors [2–5]. Host genetic factors implicated in human susceptibility
Vitamin D receptor gene FokI polymorphisms and tuberculosis susceptibility: a meta-analysis

Material and methods

Data extraction and quality assessment

Statistical analysis

Results

Characteristics of enrolled studies

A flow chart of the study selection process is shown in Figure 1. According to the inclusion crite-
ria, 34 qualified case-control studies were selected in the final analysis after the literature search from the PubMed (Medline), Web of Science and Embase web databases [8, 10–15, 19–45]. Twenty-four studies were based on Asian populations [8, 10–13, 19–37], seven were based on African populations [14, 15, 38–42] and the remaining three were conducted in Europe and America [43–45]. The eligible studies contained 4 “large” studies [19, 29, 40, 42] and 30 “small” studies [8, 10–15, 21–28, 30–39]. Thirty studies were genotyped by restriction fragment length polymorphism (RFLP) analysis and five were conducted by other methods [19, 23, 38, 40, 41]. The detailed characteristics of the enrolled studies are listed in Table I. A total of 5669 TB cases were obtained in the 34 studies, including 5126 (92.3%) with pulmonary TB and 426 (7.7%) with extra-pulmonary TB. The corresponding controls for the TB cases numbered 6525. Distribution of genotypes and HWE p-values in the controls are shown in Table II. Among the controls, the genotype distribution for 31 studies of the assessed polymorphisms was in HWE, except for 3 studies from India and Iran [31, 32, 35].

Sensitivity analyses and publication bias

In the sensitivity analysis, the influence of each individual data set on the pooled OR was assessed by deleting one single study each time. The results showed that the corresponding pooled ORs were not materially varied, suggesting stability of this meta-analysis (data not shown). Begg’s funnel plot and Egger’s test were used to evaluate the publication bias of the selected studies for the meta-analysis (Figure 2). Begg’s funnel plot seemed symmetrical in all genetic models. Furthermore, the statistical results from Egger’s test supported the result of Begg’s funnel plot indicating that there was no publication bias among all genetic models (p > 0.05) (Table III).

Meta-analysis results

We pooled all 34 studies together for the assessment of the relationship between the VDR FokI polymorphism and the risk of TB. The pooled ORs from overall studies indicated a significantly increased risk of TB in the homozygote model (ff vs. FF: OR = 1.37, 95% CI: 1.17–1.60; P heterogeneity = 0.001, Figure 3) and recessive model (ff vs. Ff + FF: OR = 1.32, 95% CI: 1.14–1.52; P heterogeneity = 0.006, Figure 4). However, no significant association was found in the allele model (f vs. F: OR = 1.09, 95% CI: 0.97–1.21; P heterogeneity = 0.000, Figure 5) and in the dominant model (ff + Ff vs. FF: OR = 1.08, 95% CI: 0.99–1.17; P heterogeneity = 0.000, Figure 6). The heterozygote model (Ff vs. FF: OR = 1.03, 95% CI: 0.95–1.13; P heterogeneity = 0.001, Figure 7) failed to show any association with the risk of TB. The strength of the association between VDR FokI gene polymorphism and TB risk is shown in Table IV.

To account for the sources of heterogeneity, we performed meta-regression by publication years, ethnicity, sample size, genotyping methods, as well as source of controls and type of TB. However, no significant source was found to substantially contribute to heterogeneity (Table V).

To further investigate the heterogeneity, we performed subgroup analyses (Table IV). To evaluate the possible effect of the geographical differences on the variability of overall estimates, we classified the studies conducted in Asia into two groups: East and Southeast Asia (China, Indonesian and South Korean) and South and West Asia (India and Iran). As a result, the enrolled studies were divided into five subgroups including Africans, East and Southeast Asians, South and West
Table I. Main characteristics of included studies summarized for the meta-analysis

Year	First author	Country	Ethnicity	Study design	Tuberculosis Part of the body	Sample size Cases/controls	Diagnosis method	Genotyping method	Controls source	HIV status	Age, gender	Diabetes status
2014	Arji	Morocco	Arab or Berber	PB	Pulmonary tuberculosis	274/203	AFB smear and culture	PCR-RFLP	Healthy persons	Negative	Matched	Negative
2014	Mahmoud	Egypt	Egyptian	PB	Pulmonary tuberculosis	40/25	AFB smear and culture	PCR-RFLP	Healthy persons	Not available	Matched	Negative
2014	Sinaga	Indonesia	Indonesian Batak	PB	Pulmonary tuberculosis	76/76	Clinical evaluation, AFB smear and chest radiography	PCR-RFLP	Healthy health workers, tuberculin skin test positivity (61.7%)	Negative	Matched	Negative
2013	Wu	China	Chinese Kazakh	PB	Pulmonary tuberculosis	213/211	Clinical symptoms bacteriology, X-ray	PCR-RFLP	Healthy persons	Negative	Matched	Negative
2013	Joshi	India	Indian	PB	Pulmonary tuberculosis	110/225	AFB smear	PCR-RFLP	Household contacts (110) and healthy persons (115)	Negative	Matched	Negative
2012	Rathored	India	Indian	PB	MDR tuberculosis and drug-sensitive pulmonary tuberculosis	692/205	AFB smear and culture	PCR-RFLP	Healthy persons	Negative	Matched	Negative
2011	Kim	South Korean	Korean	PB	Pulmonary tuberculosis (98) and extra-pulmonary tuberculosis (62)	160/156	AFB smear and culture	Pyro sequencing	Healthy persons	Not available	Matched	Not available
2011	Kang	South Korean	Korean	PB	Pulmonary tuberculosis	103/105	AFB smear and culture	PCR-RFLP	Healthy persons	Not available	Matched	Not available
2011	Singh	India	Indo-Caucasian Brahmin caste	HB, PB	Pulmonary tuberculosis	101/225	AFB smear or culture	PCR-RFLP	Healthy persons	Negative	Not matched	Not available
2011	Sharma	India	Indian	PB	Pulmonary tuberculosis	474/607	AFB smear or culture	PCR-RFLP	Healthy persons	Not available	Matched	Not available
Year	First author	Country	Ethnicity	Study design	Tuberculosis Part of the body	Sample size	Diagnosis method	Genotyping method	Controls source	HIV status	Age, gender	Diabetes status
------	--------------	---------	-----------	--------------	-----------------------------	-------------	-----------------	------------------	----------------	------------	-------------	----------------
2011	Ates	Turkey	Anatolian	PB	Pulmonary (98) and extra-pulmonary tuberculosis (30)	128/80	AFB smear or culture	PCR-RFLP	Healthy persons	Not available	Matched	Not available
2010	Marashian	Iran	Iranian	HB	Pulmonary tuberculosis	164/50	AFB smear and X-ray	PCR-RFLP	Contacts	Not available	Matched	Not available
2010	Zhang	China	Chinese Han	PB	Spinal tuberculosis	110/102	Postoperative pathology	PCR-RFLP	Unrelated contacts	Negative	Matched	Negative
2009	Banoel	Iran	Iranian	PB	Pulmonary tuberculosis	60/62	Confirmed in Massih Daneshvar	PCR-RFLP	Healthy subjects	Negative	Matched	Negative
2009	Merza	Iran	Iranian	HB	Pulmonary tuberculosis	117/60	AFB smear and X-ray	PCR-RFLP	Contacts	Not available	Matched	Not available
2009	Vidyarani	India	Dravidian	PB	Pulmonary tuberculosis	40/49	AFB smear and culture	PCR-RFLP	Normal healthy subjects	Not available	Matched	Not available
2009	Selvaraj	India	Indian	HB	Pulmonary tuberculosis	65/60	Clinical symptom, AFB smear and culture	PCR-RFLP	Healthy subjects	Negative	Matched	Not available
2009	Alagarasu	India	Dravidian	HB	Pulmonary (187) and extra-pulmonary tuberculosis (30)	217/144	AFB smear, clinical criteria and X-ray	PCR-RFLP	Healthy controls	Cases (51%), controls (0)	Matched	Not available
2008	Selvaraj	India	Dravidian	HB	Pulmonary tuberculosis	51/60	AFB smear and culture	PCR-RFLP	Normal healthy subjects	Negative	Matched	Not available
2008	Liu	China	Chinese Han	PB	Pulmonary tuberculosis	60/30	AFB smear and culture	SNaPshot	Normal healthy subjects	Negative	Matched	Negative
2007	Wilbur	Paraguay	Ache, Chiripa, Guarani	PB	Pulmonary tuberculosis	54/124	Clinical symptoms, PPD test	PCR-RFLP	No symptoms	Not available	Not available	Not available
Vitamin D receptor gene FokI polymorphisms and tuberculosis susceptibility: a meta-analysis

Year	First author	Country	Ethnicity	Study design	Tuberculosis Part of the body	Sample size Cases/controls	Diagnosis method	Genotyping method	Controls source	HIV status	Age, gender	Diabetes status
2007	Olesen	Guinea-Bissau	Papel, Manjaco, Mancanha, Balanta, Fulani, Mandinka and others	PB	Pulmonary tuberculosis	320/344	AFB smear and clinical criteria	TaqMan	Healthy controls	HIV positive in 33% of cases and negative in controls	Gender not matched	Not available
2007	Babb	South Africa	South African	HB	Pulmonary tuberculosis	249/352	AFB smear and X-ray	PCR-RFLP	No clinical history or symptoms of TB	Negative	Not available	Not available
2007	Soborg	Tanzania	Tanzanian	HB	Pulmonary tuberculosis	435/416	Culture	PCR-SSP	Culture negative	HIV positive in 44% of cases and 18% of controls	Gender not matched	Not available
2006	Chen XR	China	Chinese Tibetans	PB	Pulmonary tuberculosis	140/139	Clinical symptoms, AFB smear and X-ray	PCR-RFLP	House hold contacts	Negative	Matched	Negative
2006	Lombard	Venda	Venda	HB	Pulmonary and meningeal tuberculosis	66/86	AFB smear	ARMS-PCR	Healthy controls with no history of TB	Negative	Not available	Not available
2004	Bornman	Gambia, Guinea-Bissau, Guinea	Gambia, Guinea-Bissau, Guinea	HB	Pulmonary tuberculosis	416/718	AFB or culture	PCR-RFLP	Healthy community control subjects	Cases (12.5%), controls (6.8%)	Matched	Not available
Year	First author	Country	Ethnicity	Study design	Tuberculosis Part of the body	Sample size Cases/controls	Diagnosis method	Genotyping method	Controls source	HIV status	Age, gender	Diabetes status
------	--------------	---------	-----------	--------------	-----------------------------	----------------------------	-------------------	-------------------	----------------	------------	-------------	----------------
2004	Selvaraj a	India	Indian	HB	Spinal tuberculosis patients	64/103	X-ray and clinical criteria	PCR-RFLP	77 were contacts and 26 were normal healthy subjects	Not available	Matched	Not available
2004	Selvaraj b	India	Indian	HB	Pulmonary tuberculosis	46/64	AFB smear, culture and radiographic abnormalities	PCR-RFLP	Clinically normal	Negative	Matched	Not available
2004	Roth	Peru	Amerindian	PB	Pulmonary tuberculosis	100/201	AFB smear	PCR-RFLP	Two healthy controls, 1 PPD + and 1 PPD–	Negative	Matched	Not available
2004	Liu	China	Chinese Han	PB	Pulmonary tuberculosis	120/240	AFB smear, culture and X-ray	PCR-RFLP	Normal controls	Negative	Not available	Negative
2004	Liu	China	Chinese Han	PB	Pulmonary tuberculosis	76/171	Culture and X-ray	PCR-RFLP	Normal controls	Not available	Matched	Negative
2004	Selvaraj	India	Indian	HB	Pulmonary tuberculosis	120/80	Culture	PCR-RFLP	Patient contacts	Not available	Matched	Not available
2000	Wilkinson	India	Gujarati	HB	Pulmonary tuberculosis (27) and military tuberculosis (64)	91/116	Biopsy or culture Tuberculosis	PCR-RFLP	Contacts with no TB	Negative	Gender not matched	Not available

PB – population-based, HB – hospital-based, AFB – acid-fast bacilli, HIV – human immunodeficiency virus, MDR – multi-drug resistance for isoniazid and rifampicin, PPD – purified protein derivative, SNPs – single nucleotide polymorphism, TB – tuberculosis, PCR-RFLP – polymerase chain reaction–restriction fragment length polymorphism.
Asians, Americans and Europeans. As for ethnicities, an increased TB risk was found in the East and Southeast Asia population in five comparison models: allele model (f vs. F: OR = 1.42, 95% CI: 1.20–1.69; \(P_{\text{heterogeneity}} = 0.055 \)), homozygote model (ff vs. FF: OR = 1.98, 95% CI: 1.53–2.56; \(P_{\text{heterogeneity}} = 0.012 \)), recessive model (ff vs. Ff + FF: OR = 1.64, 95% CI: 1.31–2.06; \(P_{\text{heterogeneity}} = 0.003 \)), heterozygote model (Ff vs. FF: OR = 1.37, 95% CI: 1.13–1.65; \(P_{\text{heterogeneity}} = 0.853 \)) and dominant model (ff + Ff vs. FF: OR = 1.52, 95% CI: 1.27–1.82; \(P_{\text{heterogeneity}} = 0.695 \)). In South and West Asians, however, no significant association was found in the heterozygote model (ff vs. Ff + FF: OR = 1.33, 95% CI: 1.00–1.78; \(P_{\text{heterogeneity}} = 0.045 \)).

Further subgroup analyses were stratified by the source of the controls. Studies were divided into healthy persons-based and patient

Year	First author	Case	Control							
	Genotype Minor allele	Genotype Minor allele	HWE							
	FF	Ff	ff	MAF	FF	Ff	ff	MAF	P-value	
2014	Arji	151	103	20	0.26	109	82	12	0.26	0.5038
2014	Mahmoud	12	20	8	0.45	10	10	5	0.4	0.404
2014	Sinaga	27	42	7	0.37	30	34	12	0.38	0.6497
2013	Fang	72	96	45	0.44	101	88	22	0.31	0.6642
2013	Joshi	51	46	13	0.33	118	85	22	0.29	0.252
2012	Rathored	319	298	75	0.32	118	80	7	0.23	0.1356
2011	Kim	47	75	38	0.47	46	73	37	0.47	0.4463
2011	Kang	30	58	15	0.43	41	43	21	0.40	0.1240
2011	Singh	55	40	6	0.26	96	110	19	0.33	0.1069
2011	Sharma	77	67	10	0.28	395	197	36	0.21	0.0880
2011	Ates	58	60	10	0.31	35	37	8	0.33	0.6945
2010	Marashian	97	57	10	0.23	15	30	5	0.40	0.0771
2010	Zhang	16	43	51	0.66	26	47	29	0.51	0.4330
2009	Banoei	30	21	9	0.33	29	27	6	0.31	0.9375
2009	Merza	67	46	4	0.23	35	25	0	0.21	0.0415
2009	Vidyarani	23	14	3	0.25	20	29	0	0.30	0.0033
2009	Selvarani	33	29	3	0.27	33	26	1	0.23	0.1019
2009	Alagarasu	138	66	13	0.21	81	59	4	0.23	0.0766
2008	Selvaraj	31	16	4	0.24	27	33	0	0.28	0.0033
2008	Liu	16	25	19	0.53	11	17	2	0.35	0.1789
2007	Wilbur	35	19	0	0.18	81	42	1	0.18	0.0740
2007	Olesen	198	106	16	0.22	207	118	19	0.23	0.6862
2007	Babb	132	104	13	0.26	203	129	20	0.24	0.9337
2007	Soborg	288	128	19	0.19	267	128	21	0.20	0.2734
2006	Chen	60	56	24	0.37	70	60	9	0.28	0.4144
2006	Lombard	43	21	2	0.19	64	18	2	0.13	0.5917
2004	Bornman	258	138	20	0.21	444	242	32	0.21	0.8932
2004	Selvaraj	47	15	2	0.15	55	39	9	0.28	0.5834
2004	Selvaraj^a	28	15	3	0.23	38	23	3	0.23	0.8388
2004	Roth	9	32	59	0.75	14	78	109	0.74	0.9928
2004	Liu	29	63	28	0.50	85	120	35	0.40	0.4821
2004	Liu W	29	34	13	0.39	90	70	11	0.27	0.5930
2003	Selvaraj	78	36	6	0.20	43	29	8	0.28	0.3551
2000	Wilkinson	52	31	8	0.26	74	39	3	0.19	0.4178

HWE – Hardy-Weinberg equilibrium, MAF – minor allele frequency, ^a the different articles by the same author in the same year.
contacts-based studies, and importantly the association in healthy persons-based studies was reinforced in the allele model (f vs. F: OR = 1.13, 95% CI: 1.01–1.27; $P_{\text{heterogeneity}} = 0.001$), the homozygote model (ff vs. FF: OR = 1.42, 95% CI: 1.18–1.70; $P_{\text{heterogeneity}} = 0.019$) and the recessive model (ff vs. Ff + FF: OR = 1.31, 95% CI: 1.10–1.56; $P_{\text{heterogeneity}} = 0.028$), which conferred a significantly increased risk of TB, whereas this risk was reversed in patient contacts-based studies with no significance in each model (Table IV).

In addition, when categorized by the sample size with a cutoff of 500 individuals, 30 out of 34 studies had sample sizes less than 500 and conferred an increased risk of TB for two comparison models: the homozygote model (ff vs. FF: OR = 1.38, 95% CI: 1.15–1.64; $P_{\text{heterogeneity}} = 0.002$) and the recessive model (ff vs. Ff + FF: OR = 1.33, 95% CI: 1.14–1.56; $P_{\text{heterogeneity}} = 0.012$). For the subgroup analysis by the genotyping methods, the homozygote model (ff vs. FF: OR = 1.47, 95% CI: 1.23–1.75; $P_{\text{heterogeneity}} = 0.001$), recessive genetic model (ff vs. Ff + FF: OR = 1.39, 95% CI: 1.19–1.63; $P_{\text{heterogeneity}} = 0.010$) and dominant model (ff + Ff vs. FF: OR = 1.10, 95% CI: 1.00–1.20; $P_{\text{heterogeneity}} = 0.000$) remained statistically significant in PCR-RFLP studies (Table IV).

Table III. Statistics to test the publication bias and heterogeneity in the meta-analysis

Comparisons	Begg’s regression analysis	Egger’s regression analysis	Heterogeneity analysis	Model used for the meta-analysis			
	P-value	95% confidence interval	P-value	Q-value	I^2 (%)		
f vs. F	0.614	(–1.133)–0.404	0.341	88.47	0.000	62.7	Random
ff vs. FF	0.441	(–0.327)–0.574	0.580	65.90	0.001	49.9	Random
Ff vs. FF	0.313	(–0.949)–0.241	0.234	66.35	0.001	50.3	Random
ff + Ff vs. FF	0.459	(–0.918)–0.409	0.440	79.44	0.000	58.5	Random
ff vs. Ff + FF	0.495	(–0.327)–0.640	0.514	57.01	0.006	42.1	Random

Discussion

Tuberculosis is one of the leading causes of morbidity and mortality, and the VDR gene might be important in modulating host susceptibility to TB because of the potential roles of VDR in the immune response to TB. However, many studies generated conflicting association data concerning the association between VDR FokI gene polymorphism and the risk of TB.

Our present meta-analysis, based on 34 eligible studies until January 2015, provides evidence to propose a consistent effect of VDR FokI polymorphism. We found that the f allele was associated with a significantly increased risk of TB in the East and Southeast Asian population, whereas this risk was reversed in patient contacts-based studies with no significance in each model (Table IV).
Vitamin D receptor gene FokI polymorphisms and tuberculosis susceptibility: a meta-analysis

Figure 3. Forest plot of homozygote model for overall comparison (ff vs. FF) (TIF)

Study ID	OR (95% CI)	Weight (%)
African		
Arji 2014	1.20 (0.56–2.56)	4.35
Mahmoud 2014	1.33 (0.33–5.39)	1.28
Olesen 2007	0.88 (0.44–1.76)	5.20
Babb 2007	1.00 (0.48–2.08)	4.66
Saborg 2007	0.84 (0.44–1.59)	6.04
Lombard 2006	1.49 (0.20–10.97)	0.63
Bomman 2004	1.08 (0.60–1.92)	7.43
Subtotal (I² = 0.0%, p = 0.985)	1.01 (0.75–1.35)	29.59
SW Asian		
Joshi 2013	3.96 (1.78–8.85)	3.87
Rathored 2012	0.55 (0.21–1.46)	2.62
Singh 2011	1.42 (0.68–2.99)	4.53
Sharma 2011	0.31 (0.09–1.03)	1.72
Marashian 2010	1.45 (0.46–4.59)	1.88
Banoei 2009	4.73 (0.25–90.42)	0.29
Merza 2009	6.11 (0.30–125.35)	0.27
Vidyarani 2009	3.00 (0.30–30.35)	0.47
Selvaraj 2009	1.91 (0.60–6.05)	1.87
Alagarasu 2009	7.86 (0.40–152.57)	0.28
Selvaraj 2008	0.26 (0.05–1.26)	1.00
Selvaraj 2004a	1.36 (0.25–7.23)	0.89
Selvaraj 2004b	0.41 (0.13–1.27)	1.98
Selvaraj 2003	3.79 (0.96–14.99)	1.32
Wilkinson 2000	1.28 (0.95–1.74)	27.27
Subtotal (I² = 54.0%, p = 0.007)		
ES Asian		
Wu 2013	0.64 (0.22–1.86)	2.22
Sinaga 2014	1.01 (0.55–1.85)	6.74
Kim 2011	0.98 (0.43–2.20)	3.78
Kang 2011	2.86 (1.32–6.18)	4.19
Zhang 2010	6.53 (1.26–33.90)	0.92
Liu 2008	3.11 (1.34–7.21)	3.53
Chen 2006	2.34 (1.22–4.50)	5.88
Liu 2004	3.67 (1.48–9.07)	3.04
Liu W 2004	1.98 (1.53–2.56)	37.39
Subtotal (I² = 59.1%, p = 0.012)		
European		
Ates 2011	0.75 (0.27–2.09)	2.40
Subtotal	0.75 (0.27–2.09)	2.40
American		
Wilbur 2007	0.77 (0.03–19.24)	0.24
Roth 2004	0.84 (0.34–2.06)	3.11
Subtotal (I² = 0.0%, p = 0.955)	0.84 (0.35–1.98)	3.35
Heterogeneity between groups: p = 0.005		
Overall (I² = 49.9%, p = 0.001)	1.37 (1.17–1.60)	100.00

Additionally, it was reported that the f allele frequency was higher in Asians than Africans [17]. Thus, the finding of this meta-analysis might be attributed to the racial differences.

There are some limitations to this systematic review. First, some individual information such as age, sex, HIV status and environmental factors could not be obtained, which makes the detailed sub-grouping analyses and interpretation of the results difficult. Second, considering that diabetes, hypertension and any other medical problem may affect vitamin D level, the confounding effect should be taken into account. VDR FokI polymorphisms have been suggested to be related to diabetes in Asians [46]. Diabetes status in the study population may therefore influence the association observed for VDR polymorphisms and TB incidence. Therefore, the stratification of diabetes status would further reveal the relationship between VDR gene SNPs and TB. However, diabetes status was not reported in two-thirds of the enrolled studies. Therefore, it was not possible to
Figure 4. Forest plot of recessive model for overall comparison (ff vs. Ff + FF) (TIF)

apply stratification according to diabetes status. Third, the small sample sizes in some subgroup analyses may not comprehensively represent the population. More studies are needed to confirm the association of FokI polymorphisms and TB risk, especially in different ethnic populations. Fourth, the different experimental designs and diagnostic standards make the analyses prone to bias. Fifth, included studies were restricted to those published in English or Chinese in our study, which might introduce potential bias into data analysis as well. Sixth, based on the data provided by the articles and our own calculations, significant deviations from HWE (p < 0.05) in controls were observed for three studies based on Asians [31, 32, 35]. Thus, their results should be interpreted with more caution. We therefore repeated the meta-analyses after exclusion of these studies. However, this exclusion did not materially affect the results (Table VI). Although genome-wide association studies (GWAS) are important for the discovery of genetic variations, we did not identify
any published GWAS on this subject. In conclusion, the results from this meta-analysis demonstrate that VDR FokI polymorphism is associated with increased TB risk, especially in East and Southeast Asians, which supports the hypothesis that VDR might play an important role in the host defense against TB. However, due to the moderate strength of the associations, their values to be used for risk prediction should be considered cautiously, and future large scale case-control studies are required to validate these findings.

Acknowledgments

Both authors – Yan Cao, Xinjing Wang – contributed equally to the work. This study was supported by a key project of the 309th Hospital to Y.C. (2014ZD-004). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare no conflict of interest.
Figure 6

Forest plot of dominant model for overall comparison (ff + Ff vs. FF) (TIF)

Study ID	OR (95% CI)	Weight (%)
African		
Aji 2014	0.89 (0.62–1.27)	5.07
Mahmoud 2014	1.56 (0.55–4.43)	0.60
Olesen 2007	0.93 (0.68–1.27)	6.78
Babb 2007	1.21 (0.87–1.67)	6.20
Soborg 2007	0.91 (0.69–1.21)	8.30
Lombard 2006	1.71 (0.84–3.49)	1.30
Bornman 2004	0.99 (0.77–1.27)	10.68
Subtotal	1.01 (0.88–1.15)	38.94
SW Asian		
Joshi 2013	1.06 (0.67–1.69)	3.07
Rathored 2012	1.59 (1.16–2.17)	6.67
Singh 2011	1.70 (0.19–2.42)	5.25
Sharma 2011	0.30 (0.15–0.58)	1.43
Marashian 2010	0.88 (0.43–1.79)	1.31
Banoei 2009	1.04 (0.56–1.96)	1.66
Merza 2009	0.51 (0.22–1.19)	0.92
Vidyarani 2009	1.19 (0.59–2.40)	1.34
Selvaraj 2009	0.74 (0.48–1.13)	3.58
Alagarasu 2009	0.53 (0.25–1.13)	1.15
Selvaraj 2008	0.41 (0.21–0.82)	1.44
Selvaraj 2004a	0.94 (0.43–2.04)	1.10
Selvaraj 2004b	0.63 (0.35–1.12)	1.98
Selvaraj 2003	1.32 (0.75–2.32)	2.09
Wilkinson 2000	0.97 (0.85–1.11)	35.96
Subtotal	1.80 (1.22–2.66)	4.31
ES Asian		
Wu 2013	1.18 (0.62–2.25)	1.59
Sinaga 2014	1.01 (0.62–1.63)	2.82
Kim 2011	1.56 (0.87–2.78)	1.98
Kang 2011	2.01 (1.01–4.02)	1.38
Zhang 2010	1.59 (0.62–4.07)	0.75
Liu 2008	1.35 (0.84–2.17)	2.97
Chen 2006	1.72 (1.05–2.82)	2.70
Liu 2004	1.80 (1.04–3.13)	2.17
Liu W 2004	1.52 (1.27–1.82)	20.67
Subtotal	0.94 (0.53–1.65)	2.09
European		
Ates 2011	0.94 (0.53–1.65)	2.09
Subtotal	0.94 (0.53–1.65)	2.09
American		
Wilbur 2007	1.02 (0.52–2.00)	1.47
Roth 2004	0.76 (0.32–1.81)	0.87
Subtotal	0.91 (0.54–1.56)	2.34
Heterogeneity between groups: $p = 0.001$	1.08 (0.99–1.17)	100.00
Overall		

Overall ($I^2 = 58.5\%, p < 0.001$)
Vitamin D receptor gene FokI polymorphisms and tuberculosis susceptibility: a meta-analysis

Figure 7. Forest plot of heterozygote model for overall comparison (Ff vs. FF) (TIF)
Table IV. Meta-analysis results

Variable	f vs. F	ff vs. FF	ff vs. F + FF	ff vs. FF	ff + Ff vs. FF						
	N	OR	P-h	OR	P-h	OR	P-h	OR			
Total	34	1.09 (0.97–1.21)	0.000	1.37 (1.17–1.60)*	0.001	1.32 (1.14–1.52)*	0.006	1.03 (0.95–1.13)	0.001	1.08 (0.99–1.17)	0.000
Ethnicities:											
ES Asians	9	1.42 (1.20–1.69)*	0.055	1.98 (1.53–2.56)*	0.012	1.64 (1.31–2.06)*	0.003	1.37 (1.13–1.65)	0.853	1.52 (1.27–1.82)*	0.695
SW Asians	15	0.92 (0.75–1.13)	0.000	1.28 (0.95–1.74)	0.007	1.33 (1.00–1.78)*	0.045	0.91 (0.79–1.05)	0.000	0.97 (0.85–1.11)	0.000
Africans	7	1.01 (0.91–1.12)	0.731	1.01 (0.75–1.35)	0.985	0.10 (0.75–1.32)	0.990	1.02 (0.89–1.17)	0.533	1.01 (0.88–1.15)	0.525
Americans	2	1.05 (0.76–1.45)	0.821	0.84 (0.35–1.98)	0.955	1.20 (0.74–1.94)	0.775	0.88 (0.51–1.53)	0.399	0.92 (0.54–1.56)	0.592
Europeans	1	0.92 (0.60–1.40)	–	0.75 (0.27–2.09)	–	0.76 (0.29–2.02)	–	0.98 (0.54–1.76)	–	0.94 (0.54–1.65)	–
Sample size:											
Largea	4	1.09 (0.97–1.21)	0.003	1.34 (0.96–1.88)	0.022	1.26 (0.90–1.76)	0.048	1.15 (0.99–1.34)	0.023	1.18 (1.02–1.36)*	0.000
Smallb	30	1.06 (0.94–1.20)	0.000	1.38 (1.15–1.64)*	0.002	1.33 (1.14–1.56)*	0.012	0.98 (0.89–1.09)	0.003	1.04 (0.94–1.14)	0.006
Genotyping method:											
PCR-RFLP	29	1.08 (0.95–1.22)	0.000	1.47 (1.23–1.75)*	0.001	1.39 (1.19–1.63)*	0.010	1.05 (0.95–1.15)	0.000	1.10 (1.00–1.20)*	0.000
Other methods	5	1.07 (0.86–1.33)	0.114	1.02 (0.71–1.45)	0.235	1.03 (0.74–1.44)	0.196	0.99 (0.81–1.19)	0.642	0.99 (0.83–1.19)	0.447
Source of controls:											
Contactsc	10	0.97 (0.75–1.26)	0.000	1.24 (0.91–1.68)	0.002	1.33 (1.03–1.71)*	0.022	0.93 (0.78–1.11)	0.012	0.99 (0.83–1.17)	0.001
Healthyd	24	1.13 (1.01–1.27)*	0.001	1.42 (1.18–1.70)*	0.019	1.31 (1.10–1.56)*	0.028	1.07 (0.97–1.17)	0.006	1.11 (1.01–1.21)*	0.001

N – number of studies included; OR – odds ratio; P-h – p-value for heterogeneity; *OR with statistical significance; *studies with more than 500 participants; **studies with less than 500 participants; †studies with controls from patient contacts; ‡studies with controls from healthy persons.

Table V. Meta-regression analysis results

Variable	f vs. F	ff vs. FF	ff vs. F + FF	Ff vs. FF	ff + Ff vs. FF						
	N	95% CI	P-value	95% CI	P-value	95% CI	P-value	95% CI	OR	P-value	
Publication years	34	(–52.14)–23.05	0.44	(–92.13)–90.56	0.99	(–76.13)–88.01	0.88	(–65.78)–36.31	0.56	(–61.78)–35.21	0.58
Ethnicities	34	(–0.48)–0.40	0.86	(–1.17)–0.96	0.85	(–1.13)–0.90	0.82	(–0.62)–0.60	0.98	(–0.61)–0.56	0.92
Sample size	34	(–0.06)–0.19	1.08	(–0.24)–0.46	0.52	(–0.25)–0.45	0.56	(–0.10)–0.22	0.44	(–0.08)–0.220	0.35
Genotyping method	34	(–0.15)–0.15	0.96	(–0.38)–0.37	0.98	(–0.33)–0.36	0.94	(–0.21)–0.19	0.95	(–0.19)–0.19	0.97
Source of controls	34	(–0.11)–0.15	0.76	(–0.28)–0.37	0.78	(–0.14)–0.39	0.36	(–0.22)–0.15	0.74	(–0.18)–0.17	0.95
Type of tuberculosis	34	(–0.21)–0.99	0.97	(–0.45)–0.51	0.90	(–0.40)–0.46	0.89	(–0.32)–0.25	0.79	(–0.29)–0.25	0.87
Table VI. Sensitivity analyses of study with controls not in HWE excluded

Study with controls not in HWE excluded	Summarized odds ratio (95% CI)	No. of included studies	I² (%)	P-value
f vs. F	1.097 (0.978–1.229)	31	65.3	0.113
ff vs. FF	1.323 (1.037–1.689)	31	52.3	0.025
ff vs. FF + FF	1.320 (1.083–1.608)	31	39.7	0.006
Ff vs. FF	1.042 (0.917–1.185)	31	47.4	0.526
ff vs. Ff + FF	1.085 (0.945–1.246)	31	58.8	0.246

CI – confidence interval.

References

1. World Health Organization. Global tuberculosis Report 2014. Geneva: World Health Organization.
2. Rahman S, Gudetta B, Fink J, et al. Compartmentalization of immune responses in human tuberculosis: few CD8+ effector T cells but elevated levels of FoxP3+ regulatory T cells in the granulomatous lesions. Am J Pathol 2009; 174: 2211-24.
3. Bowen EF, Rice PS, Cooke NT, Whitfield RJ, Rayner CF. HIV seroprevalence by anonymous testing in patients with Mycobacterium tuberculosis and in tuberculosis contacts. Lancet 2000; 356: 1488-9.
4. Hillerdal G. Environmental dangers: asbestos and tuberculosis. Respiration 2000; 67: 134.
5. Newport MJ, Nejentsev S. Genetics of susceptibility to tuberculosis in humans. Monaldi Arch Chest Dis 2004; 61: 102-11.
6. Borgdorff MW. The NRAMP1 gene and susceptibility to tuberculosis. N Engl J Med 1998; 339: 199-200; author reply 200-201.
7. Amizargar AA, Yalda A, Hajabolbaghi M, Khoosravi F, Jabbari H. The association of HLA-DRB, DQA1, DQB1 alleles and haplotype frequency in Iranian patients with pulmonary tuberculosis. Int J Tuberc Lung Dis 2004; 8: 1017-21.
8. Selvaraj P, Chandra G, Kurian SM, et al. Association of vitamin D receptor gene variants of BsmI, Apal and FokI polymorphisms with susceptibility or resistance to pulmonary tuberculosis. Curr Sci 2003; 84: 1564-8.
9. Ralph AP, Lucas RM. Vitamin D and tuberculosis: hope or hype? Med J Aust 2013; 199: 648-9.
10. Wilkinson RJ, Llewelyn M, Toossi Z, et al. Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. Lancet 2000; 355: 618-21.
11. Joshi L, Ponnana M, Penmetsa SR, et al. Serum vitamin D levels and VDR polymorphisms (BsmI and FokI) in patients and their household contacts susceptible to tuberculosis. Scand J Immunol 2014; 79: 113-9.
12. Wu F, Zhang W, Zhang L, et al. NRAMP1, VDR, HLA-DRB1, and HLA-DQB1 gene polymorphisms in susceptibility to tuberculosis among the Chinese Kazakh population: a case-control study. Biomed Res Int 2013; 2013: 484535.
13. Sinaga BYM, Amin M, Siregar Y, Sarumpaet SM. Correlation between vitamin D receptor gene FOKI and BSMI polymorphisms and the susceptibility to pulmonary tuberculosis in an Indonesian Batak-ethnic population. Acta Med Indones 2014; 46: 275-82.
14. Arji N, Busson M, Iraqi G, et al. Genetic diversity of TLR2, TLR4, and VDR loci and pulmonary tuberculosis in Morrocan patients. J Infect Dev Ctries 2014; 8: 430-40.
15. Aida M, Abdellah A. Vitamin D receptor gene polymorphism and 25 hydroxy vitamin D levels in Egyptian patients with pulmonary tuberculosis. Egypt J Chest Dis Tubercul 2014; 63: 651-5.
16. Yiiallourou AI, Economou E, Tsimadias V, et al. Association of FokI and Psull polymorphisms with breast cancer staging and survival among Caucasian women: a prospective study. J BUON 2014; 19: 633-42.
17. Chen C, Liu Q, Zhu L, Yang H, Lu W. Vitamin D receptor gene polymorphisms on the risk of tuberculosis, a meta-analysis of 29 case-control studies. PLoS One 2013; 8: e83843.
18. Gao L, Tao Y, Zhang L, Jin Q. Vitamin D receptor genetic polymorphisms and tuberculosis: updated systematic review and meta-analysis. Int J Tuberc Lung Dis 2010; 14: 15-23.
19. Kim J, Ahn JH, Park CK, et al. Influence of vitamin D receptor polymorphism on tuberculosis among South Korean. Chest 2011; 140: 780A.
20. Kang TJ, Jin SH, Yeum CE, et al. Vitamin D receptor gene Taq I, Bsm I and Fok I polymorphisms in Korean patients with tuberculosis. Immune Network 2011; 11: 253-7.
21. Liu YD, Xiao HP, Sha W, et al. Distribution of vitamin D receptor gene polymorphisms among new and recurrent pulmonary tuberculosis. Chin J Infect Chemother 2008; 8: 289-92.
22. Chen XR, Feng YL, Ma Y, et al. Study on the association of two polymorphisms of the vitamin D receptor (VDR) gene with the susceptibility to pulmonary tuberculosis (PTB) in Chinese Tibetans. J Si Chuan Univ (Med Sci Edi) 2006; 37: 847-51.
23. Selvaraj P, Kurian SM, Chandra G, et al. Vitamin D receptor gene variants of BsmI, Apal, TaqI, and FokI polymorphisms in spinal tuberculosis. Clin Genet 2004; 65: 73-6.
24. Liu W, Zhang CY, Wu XM, et al. A case – control study on the vitamin D receptor gene polymorphisms and susceptibility to pulmonary tuberculosis. Chin J Epidemiol 2004; 24: 389-92.
25. Marashlian SM, Farnia P, Seyf S, Aanoosheh S, Velayati AA. Evaluating the role of vitamin D receptor polymorphisms on susceptibility to tuberculosis among Iranian patients: a case-control study. Tuberk Toraks 2010; 14: 15-23.
26. Rathored J, Sharma SK, Singh B, et al. Risk and outcome of multidrug-resistant tuberculosis: vitamin D receptor polymorphisms and serum 25(OH)D. Int J Tuberc Lung Dis 2012; 16: 1522-8.
27. Singh A, Gaughan JP, Kashyap VK. SLC11A1 and VDR gene variants and susceptibility to tuberculosis and disease progression in East India. Int J Tuberc Lung Dis 2011; 15: 1468-74.
28. Sharma PR, Singh S, Jena M, et al. Coding and non-coding polymorphisms in VDR gene and susceptibility to pulmonary tuberculosis in tribes, castes and Muslims of Central India. Infect Genet Evol 2011; 11: 1456-61.
29. Zhang HQ, Deng A, Guo CF, et al. Association between fold polymorphism in vitamin D receptor gene and susceptibility to spinal tuberculosis in Chinese Han population. Arch Med Sci 2010; 41: 46-9.
30. Banoee IM, Mirsaeeidi MS, Houshand M, et al. Vitamin D receptor homozygote mutant tt and bb are associated with susceptibility to pulmonary tuberculosis in the Iranian population. Int J Infect Dis 2010; 14: E84-S.
31. Merza M, Farnia P, Anoosheh S, et al. The NRAMP1, VDR and TNF-alpha gene polymorphisms in Iranian tuberculosis patients: the study on host susceptibility. Braz J Infect Dis 2009; 13: 252-6.
32. Vidyarani M, Selvaraj P, Raghavan S, Narayanan PR. Regulatory role of 1, 25-dihydroxyvitamin D3 and vitamin D receptor gene variants on intracellular granzyme A expression in pulmonary tuberculosis. Exp Mol Pathol 2009; 86: 69-73.
33. Selvaraj P, Prabhu Anand S, Harishankar M, Alagarasu K. Plasma 1,25 dihydroxy vitamin D3 level and expression of vitamin D receptor and cathelicidin in pulmonary tuberculosis. J Clin Immunol 2009; 29: 470-8.
34. Alagarasu K, Selvaraj P, Swaminathan S, Narendran G, Narayanan PR. 5' Regulatory and 3' untranslated region polymorphisms of vitamin D receptor gene in South Indian HIV and HIV-TB patients. J Clin Immunol 2009; 29: 196-204.
35. Selvaraj P, Vidyarani M, Alagarasu K, Prabhu Anand S, Narayanan PR. Regulatory role of promoter and 3' UTR variants of vitamin D receptor gene on cytokine response in pulmonary tuberculosis. J Clin Immunol 2008; 28: 306-13.
36. Selvaraj P, Chandra G, Jawahar MS, et al. Regulatory role of vitamin D receptor gene variants of Bsm I, Apa I, Taq I, and Fox I polymorphisms on macrophage phagocytosis and lymphoproliferative response to mycobacterium tuberculosis antigen in pulmonary tuberculosis. J Clin Immunol 2004; 24: 523-32.
37. Liu W, Cao WC, Zhang CY, et al. VDR and NRAMP1 gene polymorphisms in susceptibility to pulmonary tuberculosis among the Chinese Han population: a case-control study. Int J Tuberc Lung Dis 2004; 8: 428-34.
38. Olesen R, Wejse C, Velez DR, et al. DC-SIGN (CD209), pentraxin 3 and vitamin D receptor gene variants associate with pulmonary tuberculosis risk in West Africans. Genes Immun 2007; 8: 456-67.
39. Babb C, van der Merwe L, Beyers N, et al. Vitamin D receptor gene polymorphisms and sputum conversion time in pulmonary tuberculosis patients. Tuberculosis (Edinb) 2007; 87: 329-37.
40. Roth DE, Soto G, Arenas F, et al. Association between vitamin D receptor gene polymorphisms and response to treatment of pulmonary tuberculosis. J Infect Dis 2004; 190: 920-7.
41. Li L, Wu B, Liu JY, Yang LB. Vitamin D receptor gene polymorphisms and type 2 diabetes: a meta-analysis. Arch Med Res 2013; 44: 235-41.