Deformation of Batalin-Vilkovisky Structures

Noriaki IKEDA

Department of Mathematical Sciences, Ritsumeikan University
Kusatsu, Shiga 525-8577, Japan nikeda@se.ritsumei.ac.jp

A Batalin-Vilkovisky formalism is the most general framework to construct consistent quantum field theories. Its mathematical structure is called a Batalin-Vilkovisky structure. First, we explain the mathematical setting of a Batalin-Vilkovisky formalism. Next, we consider deformation theory of a Batalin-Vilkovisky structure. Especially, we consider deformation of topological sigma models in any dimension, which is closely related to deformation theories in mathematics, including deformation from commutative geometry to noncommutative geometry. We obtain a series of new nontrivial topological sigma models and find that these models have the Batalin-Vilkovisky structures based on a series of new algebroids.

1 Introduction

Topological field theory is a powerful method to analyze geometry by means of a quantum field theory. A Batalin-Vilkovisky formalism is a most general systematic method to treat a consistent quantum field theory. So it is natural to treat topological field theory by means of a Batalin-Vilkovisky formalism.

Deformation theory is one of the main topics in mathematics. On the other hand, deformation theory of a quantum field theory is proposed in the physical context. Purposes of this deformation theory are to find a new gauge theory, or to prove a no-go theorem to construct a new gauge theory. Now we apply deformation theory to topological field theories, especially to topological sigma models. Our purpose is to construct many geometries by topological field theories, classify geometries as topological field theories, and unify many deformation theories as a topological field theories. Moreover we can analyze many deformation theories in mathematics as quantum field theories.

In this article, we consider a topological sigma model. Let X and M be two manifolds. We denote ϕ a (smooth) map from X to M. A sigma model is a...
quantum field theory constructed from a map ϕ (and other auxiliary fields). We analyze structures on M by the structures induced from X. A topological sigma model is a sigma model independent of metrics of X and M [W1].

The AKSZ formulation [AKSZ] of the Batalin-Vilkovisky formalism is a general framework to construct a topological sigma model by the Batalin-Vilkovisky method. This formulation is appropriate to analyze geometry by means of a topological sigma model. In this article, first we generalize the AKSZ formulation to a general n dimensional base manifold X and a target manifold with general gradings p.

Next we discuss deformation of a Batalin-Vilkovisky structure with general gradings. We can construct various geometrical structures on M if we consider general n and general grading p. This formulation provides a clear method to unify and to classify many geometries as Batalin-Vilkovisky structures, and to analyze them as quantum field theories. This construction includes many new topological sigma models as special cases, for examples, the topological sigma model with a Kähler structure (A model), with a complex structure (B model) [W2], with a symplectic structure (A model) [W1], with a Poisson structure (the Poisson sigma model) [II, SS], with a Courant algebroid structure [R1, I4, HP], with a twisted Poisson structure [KS, I5], with a Dirac structure [KSS], with a generalized complex structure [Z, I5, Pe], and so on.

2 AKSZ formulation of Batalin-Vilkovisky formalism on Graded Bundles

We explain general setting of the AKSZ formulation [AKSZ] of the Batalin-Vilkovisky formalism for a general graded bundle in the rather mathematical context.

Let M be a smooth manifold in d dimensions. We consider a supermanifold $\Pi T^* M$. Mathematically, $\Pi T^* M$, whose bosonic part is M, is defined as a cotangent bundle with reversed parity of the fiber. That is, a base manifold M has a Grassman even coordinate and the fiber of $\Pi T^* M$ has a Grassman odd coordinate. We can introduce a grading. The coordinate on the base manifold has grade zero and the coordinate on the fiber has grade one. This grading is called the total degrees. Similarly, we can define ΠTM for a tangent bundle TM.

We can consider more general assignments for the degree of the fibers of $T^* M$ or TM. For a nonnegative integer p, we define $T^*[p]M$, which is called a graded cotangent bundle. $T^*[p]M$ is a cotangent bundle the degree of whose fiber is p. If p is odd, the fiber is Grassman odd, and if p is even, the fiber is Grassman even. The coordinate on the base manifold has the total degree zero and the coordinate on the fiber has the total degree p. We define a graded tangent bundle $T[p]M$ in the same way. For a general vector bundle E, a
graded vector bundle $E[p]$ is defined in a similar way. $E[p]$ is a vector bundle which degree of the fiber is shifted by p.

We consider a Poisson manifold N with a Poisson bracket $\{*, *\}$. If we can construct a graded manifold \tilde{N} from N, then the Poisson structure $\{*, *\}$ shifts to a graded Poisson structure by grading of \tilde{N}. The graded Poisson bracket is called an antibracket and denoted by $(*, *)$. $(*, *)$ is graded symmetric and satisfies the graded Leibniz rule and the graded Jacobi identity with respect to grading of the manifold. The antibracket $(*, *)$ with the total degree $-n+1$ satisfies the following identities:

\[
\begin{align*}
(F, G) &= -(-1)^{|F|+1-n}|G|+1-n(G, F), \\
(F, GH) &= (F, G)H + (-1)^{|F|+1-n}|G|G(F, H), \\
(FG, H) &= F(G, H) + (-1)^{|G|+1-n}|H|+1-n(F, H)G, \\
(-1)^{|F|+1-n}|H|+1-n(F, (G, H)) + \text{cyclic permutations} = 0, \\
\end{align*}
\]

where F, G and H are functions on \tilde{N} and $|F|, |G|$ and $|H|$ are the total degrees of functions respectively. The graded Poisson structure is also called the P-structure.

Typical examples of a Poisson manifold N are a cotangent bundle T^*M and a vector bundle $E \oplus E^*$. Two bundles have important roles in this paper. An other example is a vector bundle E with a Poisson structure on the fiber. We consider these three bundles.

First we consider a cotangent bundle T^*M. Since T^*M has a natural symplectic structure, we can define a Poisson bracket induced from the natural symplectic structure. If we take a local coordinate ϕ_i on M and a local coordinate B_i of the fiber, we can define a Poisson bracket as follows:

\[
\{F, G\} \equiv F \overset{\phi^i}{\partial} \overset{B_i}{\partial} G - F \overset{B_i}{\partial} \overset{\phi^i}{\partial} G.
\]

where F and G are a function on T^*M, and $\overset{\phi^i}{\partial} / \partial \phi^i$ and $\overset{B_i}{\partial} / \partial B_i$ are the right and left differentiations with respect to ϕ and B respectively. Next we shift the degree of fiber by p, and we consider the space $T^*[p]M$. The Poisson structure changes to a graded Poisson structure. The corresponding graded Poisson bracket is called the antibracket, $(*, *)$. Let ϕ^i be a local coordinate of M and $B_{n-1,i}$ a basis of the fiber of $T^*[p]M$. An antibracket $(*, *)$ on a cotangent bundle $T^*[p]M$ is represented as:

\[
(F, G) \equiv F \overset{\phi^i}{\partial} \overset{B_{p,i}}{\partial} G - F \overset{B_{p,i}}{\partial} \overset{\phi^i}{\partial} G.
\]

1. Note that only the fiber is shifted and the base space is not shifted.
2. We take Einstein's summation notation.
3. We use bold notations for local coordinates of graded (super)vector bundles, while we use nonbold notations for local coordinates of usual vector bundles.
The total degree of the (\ast, \ast) is $-p$.

Next, we consider a vector bundle $E \oplus E^\ast$. There is a natural Poisson structure on the fiber of $E \oplus E^\ast$ induced from natural paring among E and E^\ast. If we take a local coordinate A^a on the fiber of E and B_a on the fiber of E^\ast, we define

$$\{F, G\} \equiv F \left(\frac{\partial}{\partial A^a} \frac{\partial}{\partial B_a} + \frac{\partial}{\partial B_a} \frac{\partial}{\partial A^a} \right) G.$$

(4)

where F and G are a function on $E \oplus E^\ast$. We shift the degrees of fibers of E and E^\ast to $E[p] \oplus E^\ast[q]$, where p and q are positive integers. The Poisson structure changes to a graded Poisson structure (\ast, \ast). Let A^a be a basis of the fiber of $E[p]$ and $B_{q,a}$ a basis of the fiber of $E^\ast[q]$. An antibracket is represented as

$$(F, G) \equiv F \left(\frac{\partial}{\partial A^a} \frac{\partial}{\partial B_{q,a}} + \frac{\partial}{\partial B_{q,a}} \frac{\partial}{\partial A^a} \right) G - (-1)^{pq} F \left(\frac{\partial}{\partial B_{q,a}} \frac{\partial}{\partial A^a} - \frac{\partial}{\partial A^a} \frac{\partial}{\partial B_{q,a}} \right) G.$$

(5)

The total degree of the (\ast, \ast) is $-p - q$.

Next, we consider a vector bundle E with a Poisson structure on the fiber. If we shift the degree of the fiber of E to $E[p]$, the Poisson structure changes to a graded Poisson structure (\ast, \ast). Let A^a be a basis of the fiber of $E[p]$. An antibracket is represented as

$$(F, G) \equiv F \left(\frac{\partial}{\partial A^a} \frac{\partial}{\partial A^b} k^{ab} \frac{\partial}{\partial A^b} \right) \frac{\partial}{\partial A^a} G,$$

(6)

where F and G are a function on $E[p]$ and k^{ab} is a nondegenerate constant bivector induced from a (graded) Poisson structure. The total degree of the antibracket (\ast, \ast) is $-2p$.

Next we define a Q-structure. A Q-structure is a function S on a supermanifold \tilde{N} which satisfies the classical master equation $(S, S) = 0$. S is called a Batalin-Vilkovisky action, or simply an action. We require that S satisfy the compatibility condition

$$S(F, G) = (SF, G) + (-1)^{|F|+1} (F, SG),$$

(7)

where F and G are arbitrary functions and $|F|$ is the total degree of F. $(S, F) = \delta F$ generates an infinitesimal transformation (a Hamiltonian flow). We call this a BRST transformation, which coincides with the gauge transformation of the theory.

We define a (classical) Batalin-Vilkovisky structure as follows:

Definition 1. If a structure on a supermanifold has P-structure and Q-structure, it is called a Batalin-Vilkovisky structure.
3 Batalin-Vilkovisky Structures of Abelian Topological Sigma Models

3.1 BF case

In this section, we consider Batalin-Vilkovisky structures of topological sigma models.

Let \(X \) be a base manifold in \(n \) dimensions, with or without boundary, and \(M \) be a target manifold in \(d \) dimensions. We denote \(\phi \) a smooth map from \(X \) to \(M \).

We consider a supermanifold \(\Pi T X \), whose bosonic part is \(X \). \(\Pi T X \) is defined as a tangent bundle with reversed parity of the fiber. We extend a smooth function \(\phi \) to a function \(\phi : \Pi T X \rightarrow M \). \(\phi \) is an element of \(\Pi T^* X \otimes M \). The total degree defined in the previous section is grading with respect to \(M \). We introduce a nonnegative integer grading on \(\Pi T^* X \). A coordinate on a base manifold is zero and a coordinate on the fiber is one. This grading is called the form degrees. We denote \(\deg F \) the form degree of a function \(F \).

\(gh F = |F| - \deg F \) is called the ghost number.

First we consider a \(P \)-structure on \(T^*[p]M \). It is natural to take \(p = n - 1 \) to construct a Batalin-Vilkovisky structure in a topological sigma model. In other words, the dimensions of \(X \) labels the total degree of a Batalin-Vilkovisky structure on the supermanifold \(T^*[p]M \). We consider \(T^*[n-1]M \) for an \(n \)-dimensional base manifold \(X \). Let \(\phi^i \) be a local coordinate expression on \(\Pi T^* X \otimes \phi^*(T^*[n-1]M) \). According to the discussion in the previous section, we can define an antibracket \((\cdot, \cdot) \) on a cotangent bundle \(T^*[n-1]M \) as

\[
(F, G) = \int_X F \frac{\partial}{\partial \phi^i} \frac{\partial}{\partial B_{n-1,i}} G - F \frac{\partial}{\partial B_{n-1,i}} \frac{\partial}{\partial \phi^i} G,
\]

where \(F \) and \(G \) are functions of \(\phi^i \) and \(B_{n-1,i} \). We take a Darboux coordinate \(\phi^i, B_{n-1,i} \), but it is for simplicity. We can take more general coordinates. The total degree of the antibracket is \(-n + 1 \). If \(F \) and \(G \) are functionals of \(\phi^i \) and \(B_{n-1,i} \), we understand an antibracket is defined as

\[
(F, G) = \int_X F \frac{\partial}{\partial \phi^i} \frac{\partial}{\partial B_{n-1,i}} G - F \frac{\partial}{\partial B_{n-1,i}} \frac{\partial}{\partial \phi^i} G,
\]

where the integration over \(X \) is understood as that on the \(n \)-form part of the integrand. Through this article, we always understand an antibracket on two functionals in a similar manner and abbreviate this notation.

Next we consider a \(P \)-structure on \(E \oplus E^* \). Natural assignment of the total degrees is nonnegative integers \(p \) and \(q \) are \(p + q = n - 1 \). That is, we consider \(E[p] \oplus E^*[n-p-1] \), where \(1 \leq p \leq n-2 \). We can naturally construct a
topological sigma model in this case. Let \(|x| \) be the floor function which gives the largest integer less than or equal to \(x \). If \(\lfloor \frac{n}{2} \rfloor \leq p \leq n - 2 \), we identify \(E[p] \oplus E^*[n - p - 1] \) with the dual bundle \(E^*[n - p - 1] \oplus (E^*)^*[p] \). Therefore \(1 \leq p \leq \lfloor \frac{n-1}{2} \rfloor \) provides different structures of grading.

Let \(A^a_p \) be a basis of sections of \(\Pi T^*X \otimes \phi(E[p]) \) and \(B_{n-p-1,a_p} \) a basis of the fiber of \(\Pi T^*X \otimes \phi^*(E^*[n - p - 1]) \). From (5), we can define an antibracket as

\[
(F, G) = F \frac{\partial}{\partial A_p^a} \frac{\partial}{\partial B_{n-p-1,a_p}} G - (-1)^{np} F \frac{\partial}{\partial B_{n-p-1,a_p}} \frac{\partial}{\partial A_p^a} G. \tag{10}
\]

We want to consider various grading assignments for \(E \oplus E^* \). Because each assignment induces different Batalin-Vilkovisky structures. I n order to consider all independent assignments, we define the following bundle. Let \(E_p \) be \(\lfloor \frac{n-1}{2} \rfloor \) series of vector bundles, where \(1 \leq p \leq \lfloor \frac{n-1}{2} \rfloor \). We consider \(E_p \oplus E_p^*[n - p - 1] \) and consider a direct sum

\[
\sum_{p=1}^{\lfloor \frac{n-1}{2} \rfloor} E_p \oplus E_p^*[n - p - 1] \tag{11}
\]

And we define a \(P \)-structure on the graded vector bundle

\[
\left(\sum_{p=1}^{\lfloor \frac{n-1}{2} \rfloor} E_p \oplus E_p^*[n - p - 1] \right) \oplus T^*[n - 1]M. \tag{12}
\]

A local (Darboux) coordinate expression of the antibracket \(\langle \cdot, \cdot \rangle \) is a sum of (8) and (10):

\[
(F, G) = \sum_{p=0}^{\lfloor \frac{n-1}{2} \rfloor} F \frac{\partial}{\partial A_p^a} \frac{\partial}{\partial B_{n-p-1,a_p}} G - (-1)^{np} F \frac{\partial}{\partial B_{n-p-1,a_p}} \frac{\partial}{\partial A_p^a} G \tag{13}
\]

where \(p = 0 \) component is the antibracket (8) on the graded cotangent bundle \(T^*[n - 1]M \) and \(A_0^a = \phi \). Note that all terms of the antibracket have the total degree \(-n + 1 \). We can confirms that the antibracket (13) satisfies the identity (1).

We construct a \(Q \)-structure on the bundle (12). A simplest and natural action for a topological sigma model is

\[
S_0 = \sum_{p=0}^{\lfloor \frac{n-1}{2} \rfloor} (-1)^{n-p} \int_X B_{n-p-1,a_p} dA_p^a, \tag{14}
\]

where \(d \) is a exterior differential on \(X \). The total degree of \(d \) is 1 because the form degree is 1 and we assign the ghost number 0. The integration over
X is understood as that over the \(n \)-form part (the form degree \(n \) part) of the integrand. This action is analogy of a fundamental form \(\theta = p_i dq^i \) for a symplectic form \(\omega \), which has \(\omega = -d\theta \), therefore this action is directly derived from the \(P \)-structure on the graded bundle. The total degree of \(S_0 \) is \(n \). It is called an abelian \(BF \) theory in \(n \) dimensions.

\(S_0 \) defines a \(Q \)-structure, since we can easily confirm that \(S_0 \) satisfies the classical master equation:

\[
(S_0, S_0) = 0, \quad \text{(15)}
\]

'Abelian’ means that the theory has a \(U(1) \) gauge symmetry. The BRST transformation (the gauge symmetry) is defined as

\[
\delta_0 \Phi \equiv (S_0, \Phi) = d\Phi, \quad \text{(16)}
\]

where \(\Phi \) is an arbitrary section of a total bundle \(\left(\sum_{p=1}^{\frac{n+1}{2}} E_p[p] \oplus E_p^*[n-p-1] \right) \oplus T^*[n-1]M. \delta_0^2 = 0 \) is satisfied from \((S_0, S_0) = 0 \), which is consistent to \(d^2 = 0 \).

3.2 Chern-Simons with BF case

For a vector bundle \(E \) with a Poisson structure on the fiber, we can construct another topological sigma model if \(n \) is odd. We consider a graded vector bundle \(E[q] \) for \(E \), which degree of the fiber is shifted by \(q \). Let \(A_q^{a_1} \) be a basis of sections of \(\Pi T^*X \otimes \phi^* (E[q]) \). From the equation (6), we can define an antibracket as

\[
(F, G) \equiv \sum_{p=0}^{\frac{n-3}{2}} F \frac{\partial}{\partial A_q^a} \frac{\partial}{\partial A_q^b} G - (-1)^p \sum_{p=0}^{\frac{n-3}{2}} F \frac{\partial}{\partial B_{n-p-1} a_p} \frac{\partial}{\partial A_q^b} G + F \frac{\partial}{\partial A_q^a} \frac{\partial}{\partial A_q^b} G, \quad \text{(17)}
\]

If we take a nonnegative integer \(q = \frac{n-1}{2} \), then the total degrees of (8), (10) and (17) are all \(-n + 1 \). Thus we can consider a combined \(P \)-structure.

We consider a direct sum of \(E[q] \) with \(E[p] \oplus E^*[n-p] \)

\[
\left(\sum_{p=1}^{\frac{n-1}{2}} E_p[p] \oplus E_p^*[n-p-1] \right) \oplus E \left[\frac{n-1}{2} \right], \quad \text{(18)}
\]

where we have absorbed \(E_p[p] \oplus E_p^*[n-p-1] \) to \(E \left[\frac{n-1}{2} \right] \) for \(p = \frac{n-1}{2} \). We can define a natural \(P \)-structure on the graded vector bundle

\[
\left(\sum_{p=1}^{\frac{n-1}{2}} E_p[p] \oplus E_p^*[n-p-1] \right) \oplus E \left[\frac{n-1}{2} \right] \oplus T^*[n-1]M. A \text{ local (Darboux) coordinate expression of the antibracket } (\cdot, \cdot) \text{ is a sum of } (8), (10) \text{ and (17)}:
\]

\[
(F, G) \equiv \sum_{p=0}^{\frac{n-3}{2}} F \frac{\partial}{\partial A_p^{a_1}} \frac{\partial}{\partial B_{n-p-1} a_p} G - (-1)^p F \frac{\partial}{\partial B_{n-p-1} a_p} \frac{\partial}{\partial A_{p}^{a_1}} G + F \frac{\partial}{\partial A_q^a} \frac{\partial}{\partial A_q^b} G, \quad \text{(19)}
\]
where \(p = 0 \) component is the antibracket on the graded cotangent bundle \(T^*[n-1]M \) and \(A_0^{a_0} = \phi^i \). \(q = \frac{n-1}{2} \) is needed for all the terms to have the total degree \(-n+1\).

A simplest and natural action \(S_0 \) is

\[
S_0 = \sum_{p=0}^{n-3} (-1)^{n-p} \int_X B_{n-p-1} a_p dA_p^{a_p} + \int_X \frac{k_{ab}}{2} A_{\frac{n-1}{2}} a dA_{\frac{n-1}{2}} b, \tag{20}
\]

The second term is called an abelian Chern-Simons theory in \(n \) dimensions. \(S_0 \) defines a \(Q \)-structure, since we can easily confirm that \(S_0 \) satisfies the classical master equation:

\[
(S_0, S_0) = 0, \tag{21}
\]

This action also has a \(U(1) \) gauge symmetry. The BRST transformation is

\[
\delta_0 \Phi = (S_0, \Phi) = d\Phi, \tag{22}
\]

where \(\Phi \) is an arbitrary section of the total bundle.

4 Deformation

In this section, we consider deformation of Batalin-Vilkovisky structures. Deformation means deformation of the \(Q \)-structure for a fixed \(P \)-structure. We consider local deformation from the settled point \(14 \) or \(20 \) of the moduli space.

First we consider the BF case of the bundle \(\left(\sum_{p=0}^{\lfloor \frac{n-1}{2} \rfloor} E_p[p] \oplus E^*[n-p-1] \right) \oplus T^*[n-1]M \). The beginning \(Q \)-structure is the equation \(14 \). We deform this Batalin-Vilkovisky action \(S_0 \) to

\[
S = S_0 + gS_1, \tag{23}
\]

under the condition that \(S \) also satisfies the classical master equation:

\[
(S, S) = 0, \tag{24}
\]

where \(g \) is a deformation parameter and \(S_1 \) represents all the deformation terms, which are functional on \(X \) and functions on \(\left(\sum_{p=0}^{\lfloor \frac{n-1}{2} \rfloor} E_p[p] \oplus E^*[n-p-1] \right) \oplus T^*[n-1]M \). We require that \(S \) is the total degree \(n \). It is equivalent that the ghost number is zero \(\text{gh}S = |S| - \text{deg}S = 0 \). This condition is physically necessary, though we can relax this condition mathematically. If two deformations \(S \) and \(S' \) satisfy \(S' = S + (S_0, T) = S + \delta_0 T \) for some functional \(T \), two Batalin-Vilkovisky structures are equivalent. Therefore the problem is to
look for the total degree \(n \) cohomology class

\[
H^n \left(IT^* X \otimes \left(\sum_{p=0}^{n-1} E_p[p] \oplus E_p^*[n-p-1] \right) \oplus T^*[n-1]M \right).
\]

Substituting \(S = S_0 + gS_1 \) to (24), we obtain \(g \) expansion

\[
(S_0, S_0) + 2g(S_0, S_1) + g^2(S_1, S_1) = 0,
\]

(25)

Zero-th order of the equation (25), \((S_0, S_0) = 0 \), is already satisfied.

First order is \((S_0, S_1) = 0 \). Because of the equation (16), \(S_1 \) is the integration of an arbitrary function \(F \) of all fundamental superfields \(\Phi \) which are \(A_p a_p \) or \(B_q b_q \), and their derivatives \(d\Phi \):

\[
S_1 = \int_X F(\Phi, d\Phi).
\]

(26)

For simplicity, we assume that there is no boundary contribution to \(S \), that is, integration of total derivative terms on \(X \) is always zero. This corresponds to assume that there is no obstruction of deformation. Then we can prove the following theorem:

Theorem 1. Assume there is no boundary contribution on \(X \), i.e. \(\int_X dG(\Phi) = 0 \) for any function \(G \). If a monomial of \(F(\Phi, d\Phi) \) includes at least one \(d\Phi \), \(\int_X F(\Phi, d\Phi) \) is \(\delta_0 \)-exact.

Proof. We can assume that \(\int_X F(\Phi, d\Phi) = \sum_{p=0}^{n-1} \int_X F_{n-p-1} dG_p \) where \(F_{n-p-1} \) are functions with the form degree \(n - p - 1 \) and \(G_p \) are functions with the form degree \(p \). From (16), we obtain

\[
\begin{align*}
\delta_0 F_0 &= 0, \\
\delta_0 F_{n-p-1} &= dF_{n-p-2} \quad \text{for } -1 \leq p \leq n - 2, \\
dF_n &= 0, \\
\delta_0 G_0 &= 0, \\
\delta_0 G_p &= dG_{p-1} \quad \text{for } 1 \leq p \leq n, \\
dG_n &= 0,
\end{align*}
\]

(27)

For even \(p \), adjoining two terms are combined as

\[
F_{n-p-1} dG_p + F_{n-p-2} dG_{p+1} = (-1)^{n-p-1} \delta_0(F_{n-p-1} G_{p+1}) - (-1)^{n-p-1} d(F_{n-p-2} G_{p+1})
\]

(28)

using the relations (24). Thus integration of these two terms is \(\delta_0 \)-exact.

If \(n \) is even, \(S_1 = \sum_{p=0}^{n-1} \int_X F_{n-p-1} dG_p \) has even numbers of terms, therefore we combine each two term like (25) and we can confirm that \(S_1 \) is \(\delta_0 \)-exact.

If \(n \) is odd, the last term \(F_0 dG_{n-1} \) remains. However this term is \(\delta_0 \)-exact because \(F_0 dG_{n-1} = \delta_0(F_0 G_n) \). Therefore \(S_1 \) is \(\delta_0 \)-exact.

\[\Box\]
Therefore since the nontrivial S_1 cohomological class does not include d, we can take $S_1 = \int_X F(\Phi)$. Concretely we can express

$$
S_1 = \sum_{p(1),\ldots,p(k),q(1),\ldots,q(l)} \int_X F_{p(1)\ldots p(k),q(1)\ldots q(l)} a_{p(1)}\cdots a_{p(k)} b_{q(1)}\cdots b_{q(l)} (A_0^{a_0})
\times A_p^{a_p(1)} \cdots A_p^{a_p(k)} B_q^{b_q(1)} \cdots B_q^{b_q(l)},
$$

(29)

where $F_{p(1)\ldots p(k),q(1)\ldots q(l)} a_{p(1)}\cdots a_{p(k)} b_{q(1)}\cdots b_{q(l)} (A_0^{a_0})$ is a function of $A_0^{a_0}$ and $p(r) \neq 0, q(s) \neq 0$ for $r = 1, \ldots, k, s = 1, \ldots, l$. From the deg $S = n$ condition, we obtain

$$
\sum_{\alpha=0}^{k} |A_{p_{\alpha}}^{a_{p(\alpha)}}| + \sum_{\beta=0}^{l} |B_{q_{\beta}}^{b_{q(\beta)}}| = n.
$$

Second order of the equation (29) imposes conditions on functions $F_{p(1)\ldots p(k),q(1)\ldots q(l)} a_{p(1)}\cdots a_{p(k)} b_{q(1)}\cdots b_{q(l)} (A_0^{a_0}).$

These conditions determine the mathematical structure of a Batalin-Vilkovisky structure.

We call a resulting field theory $S = S_0 + gS_1$ a nonlinear gauge theory in n dimensions.

Next we consider the Chern-Simons with BF case

$$
\left(\sum_{p=1}^{\frac{n}{2}} E_p[p] \oplus E_p^*[n-p-1] \right) \oplus E \left[\frac{n-1}{2} \right].
$$

We make a similar discussion with the BF case. We consider deformation of the Batalin-Vilkovisky action (29) to (29), $S = S_0 + gS_1$, under the condition that S also satisfies the classical master equation (24). We obtain S_1 by using Theorem 1. S_1 has a similar expression with (29) but has different field contents. The second order of the equation (29)

$$
(S_1, S_1) = 0,
$$

(30)

imposes conditions on functions $F_{p(1)\ldots p(k),q(1)\ldots q(l)} a_{p(1)}\cdots a_{p(k)} b_{q(1)}\cdots b_{q(l)} (A_0^{a_0})$.

5 Deformation in lower dimensions

In this section, we concretely analyze the algebraic and geometric structure of deformation of a topological sigma model in lower dimensional X.

We can easily find that we cannot obtain nontrivial deformation in case of the total degree $n = 1$, thus we cannot obtain a nontrivial structure.

5.1 $n = 2$

We analyze the algebraic structure of the total degree $n = 2$ topological sigma model. In two dimensions, the total graded bundle [12] is $T^*[1]M = \Pi T^* M$. Under (29) is
\[S = S_0 + gS_1, \]
\[S_0 = \int_X B_{1i} d\phi^i, \quad S_1 = \int \frac{1}{2} f^{ij}(\phi) B_{1i} B_{1j}, \]
\hspace{1cm} (32)

where \(i,j, \cdots \) are indices of a local coordinate expressions on \(T^* [1] M \). and we rewrite the notations as \(\phi^i = A_0^i \) and \(\frac{1}{2} f^{ij}(\phi) = F_{i1j}(A_0) \). This topological sigma model is known as the Poisson sigma model \(\text{[II]SS} \). If we substitute this \(S_1 \) to the condition (30), we obtain the geometric structure of the action. We obtain the following identity on \(f_{ij} \):

\[f_{kl} \rightarrow \partial \partial \phi_l f_{ij} + f_{il} \rightarrow \partial \partial \phi_l f_{jk} + f_{jl} \rightarrow \partial \partial \phi_l f_{ki} = 0. \]
\hspace{1cm} (33)

If we restrict the identity on \(X \) (i.e. a ghost number zero sector), (33) reduces to

\[f_{kl}(\phi) \partial f_{ij}(\phi) \partial \phi_l + f_{il}(\phi) \partial f_{jk}(\phi) \partial \phi_l + f_{jl}(\phi) \partial f_{ki}(\phi) \partial \phi_l = 0. \]
\hspace{1cm} (34)

Under the identity (33), \(-f^{ij} \) defines a Poisson structure as

\[\{ F(\phi), G(\phi) \} \equiv -f^{ij}(\phi) \partial F \partial \phi_i \partial G \partial \phi_j, \]
\hspace{1cm} (35)

on the space \(M \). Conversely, if we consider the Poisson structure \(-f^{ij} \) on \(M \), which satisfies the identity (33), we can define the action (32) consistently. This Poisson bracket (35) is directly constructed if we restrict the derived bracket \(\text{[Kos]} \) of a Batalin-Vilkovisky structure:

\[\{ F(\phi), G(\phi) \} = -f^{ij}(\phi) \partial f_{ij}(\phi) \partial \phi^j G = (S, F), (G), \]
\hspace{1cm} (36)

to \(M \) and \(X \), i.e. to the ghost number zero sector.

The Batalin-Vilkovisky structure of this theory has a structure of the Lie algebroid \(T^*[1] M \text{[LO]}, \) where \(M \) is a space of a (smooth) map from \(ITX \) to a target space \(M \).

A Lie algebroid is a generalization of a bundle of a Lie algebra over a base manifold \(M \). A Lie algebroid over a manifold is a vector bundle \(E \rightarrow M \) with a Lie algebra structure on the space of the sections \(\Gamma(E) \) defined by the Lie bracket \([e_1, e_2], \quad e_1, e_2 \in \Gamma(E) \) and a bundle map (the anchor) \(\rho : E \rightarrow T M \) satisfying the following properties:

\[
\begin{align*}
1. \quad & \text{For any } e_1, e_2 \in \Gamma(E), \quad [\rho(e_1), \rho(e_2)] = \rho([e_1, e_2]), \\
2. \quad & \text{For any } e_1, e_2 \in \Gamma(E), \quad F \in C^\infty(M), \\
& \quad \quad \quad \quad [e_1, Fe_2] = F[e_1, e_2] + (\rho(e_1)F)e_2.
\end{align*}
\hspace{1cm} (37)
\]

We can derive the bracket of a Lie algebroid from the antibracket and the Batalin-Vilkovisky structure of the \(n = 2 \) theory. In our case, a vector bundle
\[\mathcal{E} \] is a cotangent bundle \(T^*[1]\mathcal{M} \). The Lie bracket of the two sections \(e_1 \) and \(e_2 \) is defined as a derived bracket of the antibracket by
\[
[e_1, e_2] \equiv ((S, e_1), e_2), \tag{38}
\]
and the anchor is defined by
\[
\rho(e)F(\phi) \equiv (e, (S, F(\phi))). \tag{39}
\]
Then we can confirm \([e_1, e_2] = -[e_2, e_1] \), from \((e_1, e_2) = 0\) and the graded Jacobi identity of the antibracket. Similarly, a Lie algebroid condition on the bracket \([\cdot, \cdot]\) and the anchor map \(\rho \) are obtained from the classical master equation \((S, S) = 0\). From this derived bracket, we directly obtain the following “noncommutative” relation on the coordinates:
\[
[\phi^i, \phi^j] = -f^i_{\ j} (\phi). \tag{40}
\]
The anchor is a differentiation on functions of \(\phi \) as
\[
\rho(\phi^i)F(\phi) = -f^i_{\ j}(\phi) \frac{\partial}{\partial \phi^j} F(\phi). \tag{41}
\]

5.2 \(n = 3 \)

BF case

We analyze a nonlinear gauge theory in three dimensions. In this case, the theory defines the topological open 2-brane as a sigma model \[12\] [13]. We consider a supermanifold \(\Pi T^*X \) whose ghost number zero part is a three-dimensional manifold \(X \). A base space \(\mathcal{M} \) is the space of a (smooth) map \(\phi \) from \(\Pi T^*X \) to a target space \(\mathcal{M} \). In \(n = 3 \), the total bundle \([11]\) is a vector bundle \(E[1] \oplus \mathcal{E}^*[1] \). From \([13]\), we consider \((E[1] \oplus \mathcal{E}^*[1]) \oplus T^*[2]\mathcal{M} \). We obtain an antibracket \([\cdot, \cdot]\) on the space of sections of \(\Pi T^*X \otimes \phi^*(E[1] \oplus \mathcal{E}^*[1] \oplus T^*[2]\mathcal{M}) \) if we set \(n = 3 \) in \([13]\).

In order to write down the Batalin-Vilkovisky action \(S \), we take a local basis on \(\Pi T^*X \otimes \phi^*(E[1] \oplus \mathcal{E}^*[1]) \) as \(A_1^a, B_1^a \), which are Darboux coordinates such that \((A_1^a, A_1^b) = (B_1^a, B_1^b) = 0\) and \((A_1^a, B_1^b) = \delta^a_b\). Moreover we introduce \(B_{2i} \) a section of \(\Pi T^*X \otimes \phi^*(T^*[2]\mathcal{M}) \).

The total action \(S \) under \([20]\) is
\[
S = S_0 + gS_1,
S_0 = \int_X [-B_{2i} d\phi^i + B_{1a} dA_1^a],
S_1 = \int_X [f_{1a}^i(\phi) A_1^a B_{2i} + f_{2i}^b(\phi) B_{2i} B_{1b} + \frac{1}{3!} f_{3abc}(\phi) A_1^a A_1^b A_1^c + \frac{1}{2} f_{4ab}^c(\phi) A_1^a A_1^b B_{1c} + \frac{1}{2} f_{5a}^{bc}(\phi) A_1^a B_{1b} B_{1c} + \frac{1}{3!} f_{6}^{abc}(\phi) B_{1a} B_{1b} B_{1c}], \tag{42}
\]
where we set \(f_1 i = F_{1,2} i \), \(f_2 i = F_{3,1} i \), \(\frac{1}{i} f_3 abc = F_{111, abc} \), \(\frac{1}{2} f_4 ab e = F_{11,1ab,e} \), \(\frac{1}{2} f_5 ba c = F_{1,11a} bc \). For clarity, the condition of the classical master equation (30) imposes the following identities on six \(f_i \)'s, \(i = 1, \cdots, 6 \):

\[
\begin{align*}
&f_{1e} i f_{2je} + f_{2e} i f_{1e} j = 0, \\
&- \left(\frac{\partial}{\partial \phi} f_{1c} i \right) f_{1b} j + \left(\frac{\partial}{\partial \phi} f_{1b} i \right) f_{1c} j + f_{1e} i f_{4bc} e + f_{2e} i f_{3e} bc = 0, \\
&f_{1b} j \left(\frac{\partial}{\partial \phi} f_{2ic} \right) - f_{2i} e \left(\frac{\partial}{\partial \phi} f_{1b} \right) + f_{1e} i f_{5b} e - f_{2e} i f_{4eb} c = 0, \\
&- f_{2j} e \left(\frac{\partial}{\partial \phi} f_{3ic} \right) + f_{2e} j \left(\frac{\partial}{\partial \phi} f_{2ib} \right) + f_{1e} i f_{6e} bc + f_{2e} i f_{5e} bc = 0, \\
&- f_{1[a} \left(\frac{\partial}{\partial \phi} f_{4bc} \right) d f_{2j} [d \frac{\partial}{\partial \phi} f_{5b} \right) c + f_{4e} [a d f_{4bc} e + f_{3e} [1ab f_{5e} d e = 0, \\
&+ f_{3e} ab f_{6} c d e + f_{4e} [a d f_{5b} \right) c + f_{4ab} e f_{5e} cd = 0, \\
&- f_{1[a} \left(\frac{\partial}{\partial \phi} f_{6} cd \right) + f_{2j} [b \left(\frac{\partial}{\partial \phi} f_{3a} c d \right) + f_{4e} a d f_{6} c e + f_{5e} [bc f_{5a} d e = 0, \\
&- f_{2j} a \left(\frac{\partial}{\partial \phi} f_{6} c d \right) + f_{6} [e ab f_{5e} cd] = 0, \\
&- f_{1[a} \left(\frac{\partial}{\partial \phi} f_{3e} c d \right) + f_{4e} [a d f_{3e} cd] = 0, \\
&\text{where \([\cdots]\) on the indices represents the antisymmetrization of them, e.g.,} \\
&\Phi_{[ab]} = \Phi_{ab} - \Phi_{ba}. \\
\end{align*}
\]

If we restrict fields to \(X \), (43) reduces to the following identities:

\[
\begin{align*}
&f_{1e} i f_{2je} + f_{2e} i f_{1e} j = 0, \\
&- \frac{\partial f_{1c} i}{\partial \phi} f_{1b} j + \frac{\partial f_{1b} i}{\partial \phi} f_{1c} j + f_{1e} i f_{4bc} e + f_{2e} i f_{3e} bc = 0, \\
&f_{1b} j \frac{\partial f_{2ic}}{\partial \phi} - f_{2i} e \frac{\partial f_{1b}}{\partial \phi} + f_{1e} i f_{5b} e - f_{2e} i f_{4eb} c = 0, \\
&- f_{2j} e \frac{\partial f_{2ic}}{\partial \phi} + f_{2i} e \frac{\partial f_{2ib}}{\partial \phi} + f_{1e} i f_{6e} bc + f_{2e} i f_{5e} bc = 0, \\
&- f_{1[a} \frac{\partial f_{4bc} d}{\partial \phi} + f_{2j} [d \frac{\partial f_{3a} c d}{\partial \phi} + f_{4e} a d f_{4bc} c + f_{3e} [1ab f_{5e} d c = 0. \\
\end{align*}
\]
antibracket as follows:

The algebraic structure (43) (or (44)) is a Courant algebroid. A Courant algebroid is introduced by Courant in order to analyze the Dirac structure as a generalization of a Lie algebra of vector fields on a vector bundle \[E \rightarrow M \]. The Batalin-Vilkovisky structure on a Courant algebroid is first analyzed in [LWX].

A Courant algebroid is a vector bundle \(E \rightarrow M \) and has a nondegenerate symmetric bilinear form \(\langle \cdot, \cdot \rangle \) on the bundle, a bilinear operation \(\circ \) on \(\Gamma(E) \) (the space of sections on \(E \)), and a bundle map (called the anchor) \(\rho : E \rightarrow TM \) satisfying the following properties:

\[
\begin{align*}
1. & \quad e_1 \circ (e_2 \circ e_3) = (e_1 \circ e_2) \circ e_3 + e_2 \circ (e_1 \circ e_3), \\
2. & \quad \rho(e_1 \circ e_2) = [\rho(e_1), \rho(e_2)], \\
3. & \quad e_1 \circ F e_2 = F(e_1 \circ e_2) + (\rho(e_1) F)e_2, \\
4. & \quad e_1 \circ e_2 = \frac{1}{2} D(e_1, e_2), \\
5. & \quad \rho(e_1)(e_2, e_3) = \langle e_1 \circ e_2, e_3 \rangle + \langle e_2, e_1 \circ e_3 \rangle,
\end{align*}
\]

where \(e_1, e_2 \) and \(e_3 \) are sections of \(E \), and \(F \) is a function on \(M \); \(D \) is a map from functions on \(M \) to \(\Gamma(E) \) and is defined by \(\langle DF, e \rangle = \rho(e) F \).

In our nonlinear gauge theory, \(M \) is the space of a map \(\phi \) from \(ITX \) to \(M \) and \(E \) is the space of sections of \(IIT^*X \oplus \phi^*(E[1] \oplus E^*[1]) \). Let \(e^a \) be a local basis of sections of \(E \). We take \(e^a = A_1^a \) or \(B_1^a \), which are an \(E[1] \) component or an \(E^*[1] \) component respectively. We define a graded symmetric bilinear form \(\langle \cdot , \cdot \rangle \), a bilinear operation \(\circ \), a bundle map \(\rho \) and \(D \) from the antibracket as follows:

\[
\begin{align*}
e^a \circ e^b & \equiv ((S, e^a), e^b), \\
\langle e^a, e^b \rangle & \equiv \langle e^a, e^b \rangle, \\
\rho(e^a)F(\phi) & \equiv (e^a, (S, F(\phi))), \\
D(*) & \equiv (S, *).
\end{align*}
\]

Then we can confirm that the classical master equation \(\langle S, S \rangle = 0 \), which derive the identity (43) on structure functions \(f \)'s, is equivalent to the conditions 1 to 5 of the equation (45). We calculate the operations \(\circ \) and \(\rho \) on the basis as follows:
Deformation of Batalin-Vilkovisky Structures

\[A_1^a \circ A_1^b = -f_{5c}^{ab}(\phi)A_1^c - f_6^{abc}(\phi)B_1^c, \]
\[A_1^a \circ B_{1b} = -f_{4bc}^{a}(\phi)A_1^c + f_{5b}^{ac}(\phi)B_1^c, \]
\[B_{1a} \circ B_{1b} = -f_{3abc}(\phi)A_1^c - f_{4ab}^{c}(\phi)B_1^c, \]
\[\rho(A_1^a) \phi^i = -f_2^{ia}(\phi), \]
\[\rho(B_{1a}) \phi^i = -f_1^{ia}(\phi). \]

(47)

This topological sigma model defines a Courant algebroid structure on the space \(E[1] \oplus E^*[1] \). We call this model as the Courant sigma model.

Chern-Simons with BF case

Since we can consider Chern-Simons with BF case if \(n \) is odd. In three dimensions, we can construct another model. Let \(E \) be a vector bundle with a Poisson structure on the fiber. If we take \(n = 3 \) in the equation (18), we obtain \(E[1] \). A \(P \)-structure is defined on the graded vector bundle \(E[1] \oplus T^*M \) by setting \(n = 3 \) in the equation (19). The abelian action is the \(n = 3 \) case in the action (20):

\[S_0 = \int_X -B_2d\phi^i + \frac{k_{ab}}{2}A_1a dA_1b, \]

(48)

and deformation is obtained as follows:

\[S = S_0 + gS_1, \]
\[S_1 = \int_X \left(f_{1a}^i(\phi)A^a B_i + \frac{1}{6} f_{2abc}(\phi)A^a A^b A^c \right), \]

(49)

where we rewrite two structure functions \(f_{1a}^i = gF_{11,a}^i \) and \(\frac{1}{6} f_{2abc} = gF_{30,abc} \) for clarity. If we substitute (49) to the condition (30), we obtain the identities on the structure functions \(f_{1a}^i \) and \(f_{2abc} \) as

\[k_{ab} f_{1a}^i f_{1b}^j = 0, \]
\[\left(\frac{\partial}{\partial \phi^j} f_{1b}^i \right) f_{1c}^j - \left(\frac{\partial}{\partial \phi^i} f_{1c}^j \right) f_{1b}^j + k_{ef} f_{1e}^i f_{2f}^{bc} = 0, \]
\[\left(f_{1d} \frac{\partial}{\partial \phi^j} f_{2abc} - f_{1c}^j \frac{\partial}{\partial \phi^i} f_{2dab} + f_{1b}^j \frac{\partial}{\partial \phi^i} f_{2cda} - f_{1a}^j \frac{\partial}{\partial \phi^i} f_{2bcd} \right) + k_{ef} (f_{2eab} f_{2d}^f + f_{2ecf} f_{2d}^b + f_{2edf} f_{2bc}^f) = 0. \]

(50)

The identities (50) define a Courant algebroid. In the definition of the Courant algebroid, \(M \) is the space of a map \(\phi \) from \(\Pi T X \) to \(M \) and \(E \) is the space of sections of \(\Pi T^* X \oplus \phi^*(E[1]) \). We define a graded symmetric bilinear form \(\langle \cdot, \cdot \rangle \), a bilinear operation \(\circ \), a bundle map \(\rho \) and \(D \) by the antibracket with the same as the equation (46), Then we can confirm that
the classical master equation \((S, S) = 0\), which derive the identity on structure functions \(f\)'s, is equivalent to the conditions 1 to 5 of a Courant algebroid [I3]. We take the basis of the section of the fiber \(e^a = A^a_1\). We calculate the operations \(\circ\) and \(\rho\) on the basis as follows:

\[
A^a \circ A^b = -k^{ac}k^{bd}f_{2cde}(\phi)A^c, \\
\langle A^a, A^b \rangle = k^{ab}, \\
\rho(A^a)\phi^i = -f_1e^i(\phi)k^{ac}.
\] (51)

All deformations of a topological sigma model on the space \(E[1]\) have a Courant algebroid structure.

5.3 General \(n\)

In \(n\) dimensions, the equation \((S_1, S_1) = 0\), impose an algebroid structure on the space \(E, \sum_{p=1}^{n-1} E_p[p] \oplus E^p[n-p-1]\). The algebroid structure is derived from the Batalin-Vilkovisky structure \((S_1, S_1) = 0\) of nonlinear gauge theories. Now we obtain an infinite series of algebroids labeled by \(n\). We call this algebroid an \(n\)-algebroid.

In the previous section, we have found that the \(n = 2\) case defines a Lie algebroid on \(T^*M\) and the \(n = 3\) case defines a Courant algebroid on \(E \oplus E^*\). For \(n \geq 4\) cases, we can easily calculate algebraic relations but characterization of algebroid structures is still unknown. Higher order generalization has also been discussed in [Se].

In the Chern-Simons case, the equation \((S_1, S_1) = 0\) impose an algebroid structure on the space \(E, \sum_{p=1}^{n-3} E_p[p] \oplus E^p[n-p-1] \oplus E^{n-1,2}\). In the previous section, we have found that the \(n = 3\) case defines a Courant algebroid on \(E\).

6 Quantum Version of Deformation

In the previous sections, we have considered a classical BV structure. In this section, we discuss quantum version of deformation of a Batalin-Vilkovisky structure. In this section, we discuss the BF case. We can make a similar discussion in the Chern-Simons with BF case.

In order to quantize a gauge theory, we must fix the gauge. Gauge fixing is carried out by adding a gauge fixing term \(S_{GF}\) to the classical action \(S\) [GPS]. The gauge fixed quantum action is \(S_q = S + S_{GF}\).

We need the \(BV\) Laplacian. The BV Laplacian is defined as follows:

\[
\Delta F \equiv \sum_{p=0}^{\frac{n-1}{2}} \frac{\partial}{\partial A^a p} \frac{\partial}{\partial B_{n-p-1, a_p}} F
\] (52)
The BV Laplacian satisfies the following identity:

\[\Delta (F \cdot G) = (\Delta F)G + (-1)^{(n+1)F} (F, G) + (-1)^{|F|} F \Delta G, \]

(53)

In order for the generating functional to be gauge invariant in the quantum sense, the following quantum master equation is required:

\[(S_q, S_q) - 2i\hbar \Delta S_q = 0, \]

(54)

for the quantum action \(S_q \). In our \(n \)-algebroid topological sigma model, two terms are independently satisfied, i.e. \(\Delta S_q = 0 \) and \((S_q, S_q) = 0 \).

\(O \) is called an observable if an operator \(O \) satisfies the following equation:

\[(S_q, O) - i\hbar \Delta O = 0. \]

(55)

Generally, there are two kinds of observables. One is the integration of a local function \(F \) on the boundary \(\partial X \). Let \(X_r \subset \partial X \) be a \(r \)-cycle on the boundary \(\partial X \). If \(F \) has the form degree \(r \), the integration of \(F \) on the \(r \) cycle \(X_r \):

\[O = \int_{X_r} F(\Phi) \]

(56)

is nontrivial and satisfies (55).

Another observable is constructed from \(A^a_0 \). We consider a function \(F \) of \(A^a_0 \) and restrict \(F \) on the boundary, \(O_F \equiv F(\partial A^a_0)|_{\partial X} \). We can confirm that the form degree zero part \(O_F^{(0)} \) of \(O_F \) is an local observable with ghost number zero on the boundary.

The generating functional is defined by the path integral as

\[Z[O_k] = \int \frac{[DA_p DB_{n-p-1}]}{\prod_{p=0}^{n-2-1}} e^{i(S_q + \sum_r J_r O_r)}, \]

(57)

where \(DA_p DB_{n-p-1} \) is a path integral measure and \(J_k \) are source fields and \(O_k \) are observables and \(\hbar = g \).

We consider \(n = 2 \) case. Let \(X \) be a two-dimensional disc. Note that classical deformation derives a Poisson structure on \(T^* M \) in \(n = 2 \) case. On the other hand, quantum deformation derives the deformation quantization on a Poisson manifold \(M \). \[\text{Kon} \] The correlation function of two local observables \(O_f^{(0)} \) and \(O_g^{(0)} \) derives the Kontsevich’s star product formula \[\text{CF} \] on a Poisson manifold:

\[f \ast g(x) = \int_{\phi(\infty) = x} [DA_\phi DB_1] O_f^{(0)}(\phi(1)) O_g^{(0)}(\phi(0)) e^{i S_q}, \]

(58)

where \(\phi = A_0 \) and 0, 1, \(\infty \) are three distinct points at the boundary \(\partial X \).
If we calculate the same correlation function for S_0, we obtain the usual product of functions f and g:

$$f(x)g(x) = \int_{\phi(\infty)=x} D\phi DB_1 \mathcal{O}_f(0) \mathcal{O}_g(0) e^{\bar{s}_0 S_0 q},$$

(59)

where $S_0 = S_0 + S_{GF}$. Therefore quantum deformation in $n = 2$ is equivalent to the star deformation on $C^\infty(M)$.

We can generalize this discussion to higher orders. Deformation $S_0 \to S$ derives a generalization of the star deformation to higher dimensions as follows:

$$m_k[\mathcal{O}_1, \mathcal{O}_2, \cdots, \mathcal{O}_k] = \int \prod_{p=0}^{\frac{n-1}{2}} DA_p DB_{n-p-1} \mathcal{O}_1 \mathcal{O}_2 \cdots \mathcal{O}_k e^{\bar{s}_0 S_0 q},$$

(60)

under the appropriate regularization and the boundary conditions, where S is the deformation of the abelian topological sigma model and \mathcal{O}_r’s are two kinds of observables at the boundary. The correlation functions satisfy the Ward-Takahashi identity derived from the gauge symmetry:

$$\int \prod_{p=0}^{\frac{n-1}{2}} DA_p DB_{n-p-1} \Delta \left(\mathcal{O}_r e^{\bar{s}_0 S_0} \right) = 0,$$

(61)

which leads a quantum geometric structure on the space of correlation functions.

7 Summary and Outlook

We have discussed deformation of Batalin-Vilkovisky structures of topological sigma models in n dimensions. We have constructed general theory of most general deformation in general n dimensions. We have analyzed structures in the case of $n = 2$ and 3 in detail. In $n = 2$ deformation of a BV structure produces a Lie algebroid structure, and in $n = 3$, deformation produces a Courant algebroid structure. For $n \geq 4$, characterization of n-algebroids obtained by deformation of topological sigma models is still unknown and an open problem.

We have also discussed quantum version of deformation. For $n = 2$ case, the deformation on the disc X is equivalent to the deformation quantization on a Poisson manifold M.

In $n = 2$, there are two special important cases of deformations. They are A-model and B-model. There are many investigations to analyze quantum moduli. For reviews, BCOV, HKKPTVVZ and references therein.

$n = 3$ quantum deformation is analyzed in HM. For general $n \geq 4$, quantum structures are unknown. If we analyze higher n cases, we will obtain interesting mathematical and physical structures.
In this article, we assume the p and $n - p - 1$ are nonnegative integers in $E[p] \oplus E^*[n - p - 1]$, where we identify the $p = 0$ bundle with a cotangent bundle $T^*[n - 1]M$. We will be able to generalize our discussions to negative integers p and $n - p - 1$. A special case has been analyzed in [BM][II2].

We need make analysis of all moduli, i.e. we should consider Kodaira-Spencer theory of Batalin-Vilkovisky structures.

References

AKSZ. M. Alexandrov, M. Kontsevich, A. Schwartz and O. Zaboronsky: The Geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys., A 12, 1405(1997), [hep-th/9502010]

BBH. G. Barnich, F. Brandt and M. Henneaux: Local BRST Cohomology In The Antifield Formalism. I. General Theorems, Commun. Math. Phys. 174, 57 (1995), [hep-th/9405109] For a review, M. Henneaux: [hep-th/9712226]

BBRT. D. Birmingham, M. Blau, M. Rakowski and G. Thompson: Topological field theory. Phys. Rept., 209, 129 (1991)

BCOV. M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165, 311 (1994), [hep-th/9309140]

BG. G. Barnich and M. Grigoriev, BRST extension of the non-linear unfolded formalism, [hep-th/0504119]

BH. G. Barnich and M. Henneaux: Consistent Couplings Between Fields With A Gauge Freedom And Deformations Of The Master Equation, Phys. Lett. B 311, 123 (1993), [hep-th/9304057]

BM. I. Batalin and R. Marnelius: Superfield algorithms for topological field theories, [hep-th/0110140]

BV. I. A. Batalin and G. A. Vilkovisky: Gauge Algebra And Quantization, Phys. Lett. B 102, 27 (1981); Quantization Of Gauge Theories With Linearly Dependent Generators, Phys. Rev. D 28, 2567 (1983) [Erratum-ibid. D 30, 508 (1984)]

C. T. Courant, Dirac manifolds: Trans. A. M. S. 319, 631 (1990)

CF. A. S. Cattaneo and G. Felder: A path integral approach to the Kontsevich quantization formula, Commun. Math. Phys. 212, 591 (2000), [math.qa/9902090]

GD. M. A. Grigoriev and P. H. Damgaard, Superfield BRST charge and the master action, Phys. Lett. B 474, 323 (2000), [hep-th/0011092]

GPS. For a review, J. Gomis, J. Paris and S. Samuel, Antibracket, antifields and gauge theory quantization, Phys. Rept. 259 (1995) 1, [hep-th/9412228]

HM. C. M. Hofman and W. K. Ma: Deformations of closed strings and topological open membranes, JHEP 0106, 033 (2001), [hep-th/0102201]

HP. C. Hofman and J. S. Park, Topological open membranes, [hep-th/0209148]

HT92. M. Henneaux, C. Teitelboim: Quantization of Gauge Systems, Princeton University (1992)

HKKPTVZ. K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, and E. Zaslow: Mirror symmetry, volume 1 of Clay Mathematics Monographs, American Mathematical Society, Providence, RI, 2003.
II. N. Ikeda and K. I. Izawa: Gauge theory based on quadratic Lie algebras and 2-d gravity with dynamical torsion, Prog. Theor. Phys. 89, 1077 (1993); General form of dilaton gravity and nonlinear gauge theory, Prog. Theor. Phys. 90, 237 (1993).
For a review, N. Ikeda: Two-dimensional gravity and nonlinear gauge theory, Ann. Phys., 235, 435 (1994), hep-th/9312059
II2. N. Ikeda and K. I. Izawa: Dimensional reduction of nonlinear gauge theories, JHEP 0409, 030 (2004).
I1. N. Ikeda: A deformation of three dimensional BF theory. JHEP 0011, 009 (2000), hep-th/0010096
I2. N. Ikeda: Deformation of BF theories, topological open membrane and a generalization of the star deformation, JHEP 0107, 037 (2001) , hep-th/0105286
I3. N. Ikeda: Chern-Simons gauge theory coupled with BF theory, Int. J. Mod. Phys. A 18, 2689 (2003), hep-th/0203043
I4. N. Ikeda: Topological field theories and geometry of Batalin-Vilkovisky algebras, JHEP 0210, 076 (2002), hep-th/0209042
I5. N. Ikeda, Three dimensional topological field theory induced from generalized complex structure, hep-th/0412140
Kon. M. Kontsevich: Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66, 157 (2003), q-alg/9709040
Kos. Y. Kosmann-Schwarzbach: Derived brackets, Lett. Math. Phys. 69, 61 (2004), math.dg/0312524
KS. C. Klimcik and T. Strobl, WZW-Poisson manifolds, J. Geom. Phys. 43, 341 (2002), math.qa/0104189
KSS. A. Kotov, P. Schaller and T. Strobl, Dirac sigma models, Commun. Math. Phys. 260, 455 (2005), hep-th/0411112
LO. A. M. Levin and M. A. Olshanetsky: Hamiltonian algebroid symmetries in W-gravity and Poisson sigma-model, hep-th/0010043
LWX. Z. J. Liu, A. Weinstein and P. Xu: Manin Triples for Lie Bialgebroids, J. Differential Geom., 45, 547-574, (1997), dg-ga/9611001
O. M. A. Olshanetsky: Lie algebroids as gauge symmetries in topological field theories, hep-th/0201164
Pa. J. Park: Topological open p-branes, Symplectic geometry and mirror symmetry, 311-384, Seoul (2000) hep-th/0012141
Pe. V. Pestun, Topological strings in generalized complex space, hep-th/0603145
R1. D. Roytenberg: Courant algebroids, derived brackets and even symplectic supermanifolds, math.qa/0112152 On the structure of graded symplectic supermanifolds and Courant algebroids, math.sg/0203110
Sc. A. Schwarz: Geometry of Batalin-Vilkovisky quantization, Commun. Math. Phys. 155, 249 (1993), hep-th/9205088
SS. P. Schaller and T. Strobl: Poisson structure induced (topological) field theories, Mod. Phys. Lett., A9, 3129 (1994), hep-th/9405110
Se. P. Severa, Some title containing the words "homotopy" and "symplectic", e.g. this one, math.SG/0105080
W1. E. Witten. Topological sigma models. Commun. Math. Phys., 118, 411, (1988)
W2. E. Witten, Mirror manifolds and topological field theory, hep-th/9112056
Z. R. Zucchini, A sigma model field theoretic realization of Hitchin’s generalized complex geometry, JHEP 0411, 045 (2004), hep-th/0409181. Generalized complex geometry, generalized branes and the Hitchin sigma model, JHEP 0503, 022 (2005), hep-th/0501062. A topological sigma model of biKaehler geometry, JHEP 0601, 041 (2006), hep-th/0511144.