A community perspective on the concept of marine holobionts: current status, challenges, and future directions

Simon M Dittami 1, Enrique Arboleda 2, Jean-Christophe Auguet 3, Arite Bigalke 4, Enora Briand 5, Paco Cardenas 6, Ulisse Cardini 7, Johan Decelle 8, Ashwin H Engelen 9, Damien Eveillard 10, Claire M M Gachon 11, Sarah M Griffith 12, Tilmann Harder 13, Ehsan Kayal 14, Elena Kazamia 14, François H Lallier 15, Monica Medina 16, Ezequiel M Marzinelli 17, 18, 19, Teresa Morganti 20, Laura Núñez Pons 21, José Pintado Valverde 22, Mahasweta Saha 24, 25, Marc-André Selosse 26, 27, Derek Skillings 28, Willem Stock 29, Shinichi Sunagawa 30, Eve Toulza 31, Alexey Vorobev 32, Catherine Leblanc 1, Fabrice Not 15

1 Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
2 FR2424, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
3 MARBEC, Université de Montpellier, CNRS, IFREMER,IRD, Montpellier, France
4 Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Jena, Germany
5 Laboratoire Phytoxines, Ifremer, Nantes, France
6 Pharmacognosy, Dept. of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
7 Integrative Marine Ecology Dept, Stazione Zoologica Anton Dohrn, Napoli, Italy
8 Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, Grenoble, France
9 CCMAR, Universidade do Algarve, Faro, Portugal
10 Laboratoire des Sciences Numériques de Nantes (LS2N), Université de Nantes, CNRS, Nantes, France
11 Scottish Marine Institute, Scottish Association for Marine Science, Oban, United Kingdom
12 School of Science and the Environment, Manchester Metropolitan University, Manchester, United Kingdom
13 University of Bremen, Bremen, Germany
14 Institut de Biologie, ENS, Paris, France
15 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
16 Dept. of Biology, Pennsylvania State University, University Park, United States of America
17 School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
18 Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
19 Sydney Institute of Marine Science, Mosman, Australia
20 Max Planck Institute for Marine Microbiology, Bremen, Germany
21 Section Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
22 Molecules of Communication and Adaptation of Microorganisms (UMR 7245), National Museum of Natural History, CNRS, Paris, France
23 Instituto de Investigaciones Marinas, Vigo, Spain
24 Benthic Ecology, Helmholtz Center for Ocean Research, Kiel, Germany
25 Marine Ecology and Biodiversity, Plymouth Marine Laboratory, Plymouth, United Kingdom
26 National Museum of Natural History, Département Systématique et Evolution, Paris, France
27 Faculty of Biology, University of Gdansk, Gdansk, Poland
28 Philosophy Dept, University of Pennsylvania, Philadelphia, United States of America
29 Laboratory of Protistology & Aquatic Ecology, Dept. of Biology, Ghent University, Ghent, Belgium
30 Dept. of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH, Zürich, Switzerland
31 IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
32 CEA - Institut de Biologie François Jacob, Genoscope, Evry, France

PeerJ reviewing PDF | (2020:09:53081:1:2:NEW 22 Dec 2020)
Host-microbe interactions play crucial roles in marine ecosystems. However, we still have very little understanding of the mechanisms that govern these relationships, the evolutionary processes that shape them, and their ecological consequences. The holobiont concept is a renewed paradigm in biology that can help to describe and understand these complex systems. It posits that a host and its associated microbiota with which it interacts, form a holobiont, and have to be studied together as a coherent biological and functional unit to understand its biology, ecology, and evolution. Here we discuss critical concepts and opportunities in marine holobiont research and identify key challenges in the field. We highlight the potential economic, sociological, and environmental impacts of the holobiont concept in marine biological, evolutionary, and environmental sciences. Given the connectivity and the unexplored biodiversity specific to marine ecosystems, a deeper understanding of such complex systems requires further technological and conceptual advances, e.g. the development of controlled experimental model systems for holobionts from all major lineages and the modeling of (info)chemical-mediated interactions between organisms. Here we propose that one significant challenge is to bridge cross-disciplinary research on tractable model systems in order to address key ecological and evolutionary questions. This first step is crucial to decipher the main drivers of the dynamics and evolution of holobionts and to account for the holobiont concept in applied areas, such as the conservation, management, and exploitation of marine ecosystems and resources, where practical solutions to predict and mitigate the impact of human activities are more important than ever.
A community perspective on the concept of marine holobionts: current status, challenges, and future directions

The Holomarine working group*: Simon M. Dittami1, Enrique Arboleda2, Jean-Christophe Auguet3, Arite Bigalke4, Enora Briand5, Paco Cárdenas6, Ulisse Cardini7, Johan Decelle8, Aschwin H. Engelen9, Damien Eveillard10, Claire M.M. Gachon11, Sarah M. Griffiths12, Tilmann Harder13, Ehsan Kayal2, Elena Kazamia14, Francois H. Lallier15, Mónica Medina16, Ezequiel M. Marzinelli17, Teresa Morganti18, Laura Núñez Pons19, Soizic Prado20, José Pintado Valverde21, Mahasweta Saha22, Marc-André Selosse23, Derek Skillings24, Willem Stock25, Shinichi Sunagawa26, Eve Toulza27, Alexey Vorobev28, Catherine Leblanc1, and Fabrice Not15

* This working group gathers 31 scientists from ten different countries, with expertise covering different scientific disciplines including philosophy, evolution, computer sciences, marine biology, ecology, chemistry, and microbiology, who participated in a workshop on marine holobionts, organized at the Roscoff Biological Station in March 2018. Their aim was to exchange ideas regarding key concepts and opportunities in marine holobiont research, to start structuring the community, and to identify and tackle key challenges in the field.

1 Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
2 Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, 29680 Roscoff, France
3 MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier, France
4 Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Lessingstrasse 8, D-07743 Jena, Germany
5 Ifremer, Laboratoire Phycotoxines, 44311 Nantes, France
6 Pharmacognosy, Dept. of Medicinal Chemistry, Uppsala University, BMC Box 574, 75123 Upppsala, Sweden
7 Integrative Marine Ecology Dept., Stazione Zoologica Anton Dohrn, Napoli, Italy
8 Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRA; 38054, Grenoble Cedex 9, France
9 CCMAR, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
10 Université de Nantes, CNRS, Laboratoire des Sciences Numériques de Nantes (LS2N), 44322 Nantes, France
11 Scottish Association for Marine Science, Scottish Marine Institute, PA37 1QA Oban, UK
12 School of the Environment, Manchester Metropolitan University, Manchester, UK
13 University of Bremen, Leobener Strasse 6, 28359 Bremen, Germany
14 Institut de Biologie de l’ENS, 46 rue d’Ulm, 75005 Paris, France
15 Sorbonne Université, CNRS, Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, 29680 Roscoff, France
16 Dept. of Biology, Pennsylvania State University, University Park PA 16801, USA
17 The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia;
Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University,
Singapore; Sydney Institute of Marine Science, Mosman, NSW 2088, Australia
18 Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
19 Section Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN),
Villa Comunale, 80121, Napoli, Italy
20 Molecules of Communication and Adaptation of Microorganisms (UMR 7245), National Museum of
Natural History, CNRS, 57 rue Cuvier, 75005 Paris, France
21 Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Galicia, Spain
22 Benthic Ecology, Helmholtz Center for Ocean Research, Düsternbrooker Weg 20, 24105 Kiel, Germany;
Marine Ecology and Biodiversity, Plymouth Marine Laboratory, PL1 3DH Plymouth, UK.
23 Département Systématique et Evolution, Muséum national d'Histoire naturelle, UMR 7205 ISYEB, CP
50, 45 rue Buffon, Paris 75005, France; Faculty of Biology, University of Gdansk, ul. Wita Stwosza 59,
80-308, Gdansk, Poland
24 Philosophy Dept., University of Pennsylvania, 249 S. 36th Street, Philadelphia PA 19104-6304, USA
25 Laboratory of Protistology & Aquatic Ecology, Dept. of Biology, Ghent University, Krijgslaan 281-S8,
9000 Ghent, Belgium
26 Dept. of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Vladimir-
Prelog-Weg 4, 8093 Zürich, Switzerland
27 Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, 66000 Perpignan,
France
28 CEA - Institut de Biologie François Jacob, Genoscope, 2 Rue Gaston Crémieux, 91057 Evry, France
Abstract

Host-microbe interactions play crucial roles in marine ecosystems. However, we still have very little understanding of the mechanisms that govern these relationships, the evolutionary processes that shape them, and their ecological consequences. The holobiont concept is a renewed paradigm in biology that can help to describe and understand these complex systems. It posits that a host and its associated microbiota with which it interacts, form a holobiont, and have to be studied together as a coherent biological and functional unit to understand its biology, ecology, and evolution. Here we discuss critical concepts and opportunities in marine holobiont research and identify key challenges in the field. We highlight the potential economic, sociological, and environmental impacts of the holobiont concept in marine biological, evolutionary, and environmental sciences. Given the connectivity and the unexplored biodiversity specific to marine ecosystems, a deeper understanding of such complex systems requires further technological and conceptual advances, e.g. the development of controlled experimental model systems for holobionts from all major lineages and the modeling of (info)chemical-mediated interactions between organisms. Here we propose that one significant challenge is to bridge cross-disciplinary research on tractable model systems in order to address key ecological and evolutionary questions. This first step is crucial to decipher the main drivers of the dynamics and evolution of holobionts and to account for the holobiont concept in applied areas, such as the conservation, management, and exploitation of marine ecosystems and resources, where practical solutions to predict and mitigate the impact of human activities are more important than ever.

Glossary*

* If no other examples of the use of each term are cited below, the definition was based on the online version of the Merriam-Webster dictionary (2019, https://www.merriam-webster.com/) or the Oxford dictionary (2020, https://www.lexico.com/)

Anna Karenina principle – several factors can cause a system to fail, but only a narrow range of parameters characterizes a working system; based on the first sentence of Leo Tolstoy’s “Anna Karenina” (1878): “Happy families are all alike; every unhappy family is unhappy in its own way” (Zaneveld, McMinds, et al. 2017).

Aposymbiotic culture – a culture of a host or a symbiont without its main symbiotic partner(s) (e.g. Kelty and Cook 1976). In contrast to gnotobiotic cultures, aposymbiotic cultures are usually not germ-free.

Biological control (biocontrol) – methods for controlling diseases or pests by introducing or supporting natural enemies of the former (see e.g. Hoitink and Boehm 1999).

Biomonitoring – the use of living organisms as quantitative indicator for the health of an environment or ecosystem (Holt and Miller 2010).

Community assembly process – the processes that shape community composition in a given habitat, according to Nemergut et al. (2013) the four main forces relevant for community assembly are evolutionary diversification, dispersal, selection, and ecological drift.

Dysbiosis – microbial imbalance in a symbiotic community that affects the health of the host (Egan and Gardiner 2016).
Ecological process – the processes responsible for the functioning and dynamics of ecosystems including biogeochemical cycles, community assembly processes, interactions between organisms, and climatic processes (see e.g. Bennett et al. 2009).

Ecosystem services – any direct or indirect benefits that humans can draw from an ecosystem; they include provisioning services (e.g. food), regulating services (e.g. climate), cultural services (e.g. recreation), and supporting services (e.g. habitat formation) (Millennium Ecosystem Assessment Panel 2005).

Ectosymbiosis – a symbiotic relationship in which symbionts live on the surface of a host. This includes, for instance, algal biofilms or the skin microbiome (Nardon and Charles 2001).

Emergent property – a property of complex systems (e.g. holobionts), which arises from interactions between the components and that is not the sum of the component properties (see e.g. Theis 2018).

Endosymbiosis (sometimes also referred to more precisely as endocytobiosis; Nardon and Charles 2001) – a symbiotic relationship in which a symbiont lives inside the host cells; prominent examples are mitochondria, plastids/photosymbionts, or nitrogen fixing bacteria in plant root nodules. See also ectosymbiosis.

Gnotobiosis – the condition in which all organisms present in a culture can be controlled, i.e. germ-free (axenic) organisms or organisms with a controlled community of symbionts. Gnotobiotic individuals may be obtained e.g. by surgical removal from the mother (vertebrates) or by surface sterilization of seeds (plants) and subsequent handling in a sterile environment and possible inoculation with selected microbes (Hale, Lindsey, et al. 1973, Williams 2014).

Holism – the theory that parts of a whole are in intimate interconnection, such that they cannot exist independently of the whole, or cannot be understood without reference to the whole, which is thus regarded as greater than the sum of its parts.

Holobiont – an ecological unit of different species living together in symbiosis. The term is frequently used for the unit of a host and its associated microbiota but can be extended to larger scales. Whether or to what extent holobionts are also a unit of evolution is still a matter of debate (Douglas and Werren 2016).

Hologenome – the combined genomes of the host and all members of its microbiota; Rosenberg et al. 2007a; Zilber-Rosenberg and Rosenberg 2008)

Horizontal transmission – acquisition of the associated microbiome from the environment (e.g. Myers and Rothman 1995; Roughgarden 2019, preprint).

Host – the largest or dominant partner in a holobiont.

Infochemical – a chemical compound, usually diffusible, that carries information on the environment, such as the presence of other organisms, and can be used to mediate inter- and intraspecific communication (Dicke and Sabelis 1988).

Microbial gardening – the act of frequently releasing growth-enhancing or inhibiting chemicals or metabolites that favor the development of a microbial community beneficial to the host (see e.g. Saha and Weinberger 2019).

Microbiome – the combined genetic information encoded by the microbiota; may also refer to the microbiota itself or the microbiota and its environment (see Marchesi and Ravel 2015).

Microbiota – all microorganisms present in a particular environment or associated with a particular host (see Marchesi and Ravel 2015).

Nested ecosystems – a view of ecosystems where each individual system, like a “Russian doll”, can be decomposed into smaller systems and/or considered part of a larger system, all of which still qualify as ecosystems (e.g. McFall-Ngai et al. 2013).

Phagocytosis – a process by which a eukaryotic cell ingests other cells or solid particles, e.g. the engulfing of symbionts by sponges (Leys, Kahn, et al. 2018).
Phycosphere – the physical envelope surrounding a phytoplankton cell; usually rich in organic matter (see Amin *et al.* 2012).

Phylosymbiosis – congruence in the phylogeny of different hosts and the composition of their associated microbiota (Brooks, Kohl, *et al.* 2016).

Rasputin effect – the phenomenon that commensals and mutualists can become parasitic in certain conditions (Overstreet and Lotz 2016); after the Russian monk Rasputin who became the confidant of the Tsar of Russia, but later helped bring down the Tsar’s empire during the Russian revolution.

Sponge loop – sponges efficiently recycle dissolved organic matter turning it into detritus that becomes food for other consumers (de Goeij, van Oevelen, *et al.* 2013).

Symbiont – an organism living in symbiosis; usually refers to the smaller/microbial partners living in mutualistic relationships (see also host), but also includes organisms in commensalistic and parasitic relationships.

Symbiosis – a close and lasting or recurrent (*e.g.* over generations) relationship between organisms living together; usually refers to mutualistic relationships, but also includes commensalism and parasitism.

Vertical transmission – acquisition of the associated microbiome by a new generation of hosts from the parents (as opposed to horizontal transmission; *e.g.* Roughgarden 2019, preprint).

Rationale, intended audience, and survey methodology

The idea of considering organisms in connection with the complex microbial communities they are associated with is a concept rapidly gaining in importance in a wide field of life and environmental sciences. It goes along with an increasing awareness that many organisms depend on complex interactions with their symbiotic microbiota for different aspects of their life, even though the extent of dependencies may vary strongly (Hammer, Sanders, *et al.* 2019). The host and its associated microbiota are considered a single ecological unit, the holobiont. This implies a real paradigm shift. Marine environments harbor most of the diversity of life in terms of the number of lineages that coexist, and the constant presence of surrounding water as a potential carrier of metabolites but also microbes facilitates tight interactions between these lineages, making a “holistic” view of these environments and the organisms that inhabit them particularly important.

This paper is intended for both scientists seeking an overview of recent developments in marine holobiont research and as a reference for policymakers. We review the state of the art in the field research and identify key challenges, possible solutions, and opportunities in the field. Our work is based on the result of a foresight workshop hosted in March 2018, which brought together an interdisciplinary group of 31 scientists. These scientists were selected for their complementary expertise in philosophy, evolution, computer sciences, marine biology, ecology, chemistry, microscopy, and microbiology, as well as for their work with a wide range of different model systems from phytoplankton, via macroalgae, corals, and sponges, to bacterial communities of hydrothermal vents. After a three-day brainstorming session, the resulting ideas and discussions were divided into different topics, and groups of two or more scientists were appointed to draft each section, each based on their expertise in the field, their knowledge of the
literature, and literature searches. The assembled paper was then corrected and completed by the entire consortium.

Marine holobionts from their origins to the present

The history of the holobiont concept

Holism is a philosophical notion first proposed by Aristotle in the 4th century BC. It states that systems should be studied in their entirety, with a focus on the interconnections between their various components rather than on the individual parts (Met. Z.17, 1041b11–33). Such systems have emergent properties that result from the behavior of a system that is ‘larger than the sum of its parts’. However, a major shift away from holism occurred during the Age of "Enlightenment" when the dominant thought summarized as “dissection science” was to focus on the smallest component of a system as a means of understanding it.

The idea of holism started to regain popularity in biology when the endosymbiosis theory was first proposed by Mereschkowski (1905) and further developed by Wallin (1925). Still accepted today, this theory posits a single origin for eukaryotic cells through the symbiotic assimilation of prokaryotes to form first mitochondria and later plastids (the latter through several independent symbiotic events) via phagocytosis (reviewed in Archibald 2015). These ancestral and founding symbiotic events, which prompted the metabolic and cellular complexity of eukaryotic life, most likely occurred in the ocean (Martin, Baross, et al. 2008).

Despite the general acceptance of the endosymbiosis theory, the term ‘holobiosis’ or ‘holobiont’ did not immediately enter the scientific vernacular. It was coined independently by Adolf Meyer-Abich in 1943 (Baedke, Fábregas-Tejeda, et al. 2020) and by Lynn Margulis in 1990, who proposed that evolution has worked mainly through symbiosis-driven leaps that merged organisms into new forms, referred to as ‘holobionts’, and only secondarily through gradual mutational changes (Margulis and Fester 1991, O’Malley 2017). However, the concept was not widely used until it was co-opted by coral biologists over a decade later. Corals and dinoflagellate algae of the family Symbiodiniaceae are one of the most iconic examples of symbioses found in nature; most corals are incapable of long-term survival without the products of photosynthesis provided by their endosymbiotic algae. Rohwer et al. (2002) were the first to use the word “holobiont” to describe a unit of selection sensu Margulis (Rosenberg, Koren, et al. 2007b) for corals, where the holobiont comprised the cnidarian polyp (host), algae of the family Symbiodiniaceae, various endosymbionts (endolithic algae, prokaryotes, fungi, other unicellular eukaryotes), and viruses.

Although initially driven by studies of marine organisms, much of the research on the emerging properties and significance of holobionts has since been carried out in other fields of research: the microbiota of the rhizosphere of plants or the animal gut became predominant models and have led to an ongoing paradigm shift in agronomy and medical sciences (Bulgarelli, Schlaeppi, et al. 2013, Shreiner, Kao, et al. 2015, Faure, Simon, et al. 2018). Holobionts occur in terrestrial and aquatic habitats alike, and several analogies between these ecosystems can be made. For example, in all of these habitats,
interactions within and across holobionts such as induction of chemical defenses, nutrient acquisition, or biofilm formation are mediated by chemical cues and signals in the environment, dubbed *infochemicals* (Loh, Pierson, *et al.* 2002, Harder, Campbell, *et al.* 2012, Rolland, Stien, *et al.* 2016, Saha, Berdalet, *et al.* 2019). Nevertheless, we can identify two major differences between terrestrial and aquatic systems. First, the physicochemical properties of water result in higher chemical connectivity and signaling between macro- and micro-organisms in aquatic or moist environments. In marine ecosystems, carbon fluxes also appear to be swifter and trophic modes more flexible, leading to higher plasticity of functional interactions across holobionts (Mitra, Flynn, *et al.* 2013). Moreover, dispersal barriers are usually lower, allowing for faster microbial community shifts in marine holobionts (Kinlan and Gaines 2003, Burgess, Baskett, *et al.* 2016, Martin-Platero, Cleary, *et al.* 2018). Secondly, phylogenetic diversity at broad taxonomic scales (*i.e.* supra-kingdom, kingdom and phylum levels), is higher in aquatic realms compared to land, with much of the aquatic diversity yet to be uncovered (de Vargas, Audic, *et al.* 2015, Thompson, Sanders, *et al.* 2017), especially marine viruses (Middelboe and Brussaard 2017, Gregory, Zayed, *et al.* 2019). The recent discovery of such astonishing marine microbial diversity in parallel with the scarcity of marine holobiont research suggest a high potential for complex cross-lineage interactions yet to be explored in marine holobionts (Figure 1).

The boundaries of holobionts are usually delimited by a physical gradient, which corresponds to the area of local influence of the host, *e.g.* in unicellular algae the so-called *phycosphere* (Seymour, Amin, *et al.* 2017). However, they may also be defined in a context-dependent way as a ‘Russian Matryoshka doll’, setting the boundaries of the holobiont depending on the interactions and biological functions that are being considered. Thus holobionts may encompass all levels of host-symbiont associations from intimate *endosymbiosis* with a high degree of co-evolution up to the community and ecosystem level; a concept referred to as “*nested ecosystems*” (Figure 2; McFall-Ngai *et al.* 2013; Pita *et al.* 2018).

Such a conceptual perspective raises fundamental questions not only regarding the interaction between the different components of holobionts and processes governing their dynamics, but also of the relevant units of selection and the role of co-evolution. For instance, plant and animal evolution involves new functions co-constructed by members of the holobiont or elimination of functions redundant among them (Selosse, Bessis, *et al.* 2014), and it is likely that these processes are also relevant in marine holobionts. Rosenberg *et al.* (2010) and Rosenberg and Zilber-Rosenberg (2018) argued that all animals and plants can be considered holobionts, and thus advocate the *hologenome* theory of evolution, suggesting that natural selection acts at the level of the holobiont and its hologenome. This interpretation of Margulis’ definition of a ‘holobiont’ considerably broadened fundamental concepts in evolution and speciation and has not been free of criticism (Douglas and Werren 2016), especially when applied at the community or ecosystem level (Moran and Sloan 2015). More recently, it has been shown that species that interact indirectly with the host can also be important in shaping coevolution within mutualistic multi-partner assemblages (Guimarães, Pires, *et al.* 2017). Thus, the holobiont concept and the underlying complexity of holobiont systems should be better defined and further considered when addressing evolutionary and ecological questions.

Marine holobiont models
Today, an increasing number of marine model organisms, both unicellular and multicellular, are being used in holobiont research (Figure 1), often with different emphasis and levels of experimental control, but altogether covering a large range of scientific topics. Here, we provide several illustrative examples of this diversity and some of the insights they have provided, distinguishing between “environmental models”, chosen for their environmental, evolutionary, economical, or ecological importance, or for historical reasons, but in which microbiome composition is not or only partially controlled, and “controlled bi- or trilateral associations”, which can be kept separately from their symbionts under laboratory conditions and are particularly useful to develop functional approaches and study the mechanisms of symbiotic interactions.

Environmental models: Within the animal kingdom, and in addition to corals and sponges, which will be discussed below, the discovery of deep-sea hydrothermal vents revealed symbioses of animals with chemosynthetic bacteria that have later been found in many other marine ecosystems (Dubilier, Bergin, et al. 2008, Rubin-Blum, Antony, et al. 2019) and frequently exhibit high levels of metabolic and taxonomic diversity (Duperron, Halary, et al. 2008, Petersen, Kemper, et al. 2016, Ponnudurai, Kleiner, et al. 2017). In the SAR supergroup, in addition to well-known models such as diatoms, radiolarians and foraminiferans, both heterotrophic protist dwellers harboring endosymbiotic microalgae, are emerging as ecological models for unicellular photosymbiosis due to their ubiquitous presence in the world’s oceans (Decelle, Colin, et al. 2015, Not, Probert, et al. 2016). Among the haptophytes, the cosmopolitan *Emiliania huxleyi*, promoted by associated bacteria (Seyedsayamdost, Case, et al. 2011, Segev, Wyche, et al. 2016), produces key intermediates in the carbon and sulfur biogeochemical cycles, making it an important model phytoplankton species. Finally, within the Archaeplastida, the siphonous green alga *Bryopsis* is an example of a model that harbors heterotrophic endosymbiotic bacteria, some of which exhibit patterns of co-evolution with their hosts (Hollants, Leliaert, et al. 2013)

Controlled bi- or trilateral associations: Only a few models, covering a small part of the overall marine biodiversity, are currently being cultivated *ex-situ* and can be used in fully controlled experiments, where they can be cultured *aposymbiotically*. The flatworm *Symagittifera (= Convoluta) roscennis* (Arboleda, Hartenstein, et al. 2018), the sea anemone *Exaiptasia* (Baumgarten, Simakov, et al. 2015, Wolfowicz, Baumgarten, et al. 2016), the upside-down jellyfish *Cassiopea* (Ohdera, Abrams, et al. 2018), and their respective intracellular green and dinoflagellate algae have, in addition to corals, become models for fundamental research on evolution of metazoan-algal photosymbiosis. In particular, the sea anemone *Exaiptasia* has been used to explore photobiology disruption and restoration of cnidarian symbioses (Lehnert et al. 2012). The *Vibrio*-squid model provides insights into the effect of microbiota on animal development, circadian rhythms, and immune systems (McFall-Ngai 2014). The unicellular green alga *Ostreococcus*, an important marine primary producer, has been shown to exchange vitamins with specific associated bacteria (Cooper, Kazamia, et al. 2019). The green macroalga *Ulva mutabilis* has enabled the exploration of bacteria-mediated growth and morphogenesis including the identification of original chemical interactions in the holobiont (Wichard 2015, Kessler, Weiss, et al. 2018). Although the culture conditions in these highly-controlled model systems differ from the natural environment, these systems are essential to gain elementary mechanistic understanding of the functioning, the roles, and the evolution of marine holobionts.
The influence of marine holobionts on ecological processes

Work on model systems has demonstrated that motile and macroscopic marine holobionts can act as dissemination vectors for geographically restricted microbial taxa. Pelagic mollusks or vertebrates are textbook examples of high dispersal capacity organisms (e.g. against currents and through stratified water layers). It has been estimated that fish and marine mammals may enhance the original dispersion rate of their microbiota by a factor of 200 to 200,000 (Troussellier, Escalas, et al. 2017) and marine birds may even act as bio-vectors across ecosystem boundaries (Bouchard Marmen, Kenchington, et al. 2017). This host-driven dispersal of microbes can include non-native or invasive species as well as pathogens (Troussellier, Escalas, et al. 2017).

A related ecological function of holobionts is their potential to sustain rare species. Hosts provide an environment that favors the growth of specific microbial communities distinct from the surrounding environment (including rare microbes). They may, for instance, provide a nutrient-rich niche in the otherwise nutrient-poor surroundings (Smriga, Sandin, et al. 2010, Webster, Taylor, et al. 2010, Burke, Thomas, et al. 2011, Chiarello, Auguet, et al. 2018).

Lastly, biological processes regulated by microbes are important drivers of global biogeochemical cycles (Falkowski, Fenchel, et al. 2008, Madsen 2011, Anantharaman, Brown, et al. 2016). In the open ocean, it is estimated that symbioses with the cyanobacterium UCYN-A contribute ~20% to total N₂ fixation (Thompson, Foster, et al. 2012, Martínez-Pérez, Mohr, et al. 2016). In benthic systems, sponges and corals may support entire ecosystems via their involvement in nutrient cycling thanks to their microbial partners (Raina, Tapiolas, et al. 2009, Fiore, Jarett, et al. 2010, Cardini, Bednarz, et al. 2015, Pita, Rix, et al. 2018), functioning as sinks and sources of nutrients. In particular the “sponge loop” recycles dissolved organic matter and makes it available to higher trophic levels in the form of detritus (de Goeij, van Oevelen, et al. 2013, Rix, de Goeij, et al. 2017). In coastal sediments, bivalves hosting methanogenic archaea have been shown to increase the benthic methane efflux by a factor of up to eight, potentially accounting for 9.5% of total methane emissions from the Baltic Sea (Bonaglia, Brüchert, et al. 2017). Such impressive metabolic versatility is accomplished because of the simultaneous occurrence of disparate biochemical machineries (e.g. aerobic and anaerobic pathways) in individual symbionts, providing new metabolic abilities to the holobiont, such as the synthesis of specific essential amino acids, photosynthesis, or chemosynthesis (Dubilier, Bergin, et al. 2008, Venn, Loram, et al. 2008). Furthermore, the interaction between host and microbiota can potentially extend the metabolic capabilities of a holobiont in a way that augments its resilience to environmental changes (Berkelmans and van Oppen 2006, Gilbert, McDonald, et al. 2010, Dittami, Duboscq-Bidot, et al. 2016, Shapira 2016, Godoy, Bartomeus, et al. 2018), or allow it to cross biotope boundaries (e.g. Woyke 2006) and colonize extreme environments (Bang, Dagan, et al. 2018). Holobionts thus contribute to marine microbial diversity and possibly resilience in the context of global environmental changes (Troussellier, Escalas, et al. 2017) and it is paramount to include the holobiont concept in predictive models that investigate the consequences of human impacts on the marine realm and its biogeochemical cycles.
Challenges and opportunities in marine holobiont research

Marine holobiont assembly and regulation

Two critical challenges partially addressed by using model systems are 1) to decipher the factors determining holobiont composition and 2) to elucidate the impacts and roles of the different partners in these complex systems over time. Some marine organisms such as bivalves transmit part of the microbiota maternally (Bright and Bulgheresi 2010, Funkhouser and Bordenstein 2013). In other marine holobionts, vertical transmission may be weak and inconsistent, whereas mixed modes of transmission (vertical and horizontal) or intermediate modes (pseudo-vertical, where horizontal acquisition frequently involves symbionts of parental origin) are more common (Björk, Díez-Vives, et al. 2019). Identifying the factors shaping holobiont composition and understanding their evolution is highly relevant for marine organisms given that most marine hosts display a high specificity for their microbiota and even patterns of phylosymbiosis (Brooks, Kohl, et al. 2016, Kazamia, Helliwell, et al. 2016, Pollock, McMinds, et al. 2018), despite a highly connected and microbe-rich environment.

During microbiota transmission (whether vertical or horizontal), selection by the host and/or by other components of the microbiome, is a key process in establishing or maintaining a holobiont microbial community that is distinct from the environment. The immune system of the host, e.g. via the secretion of specific antimicrobial peptides (Franzenburg, Walter, et al. 2013, Zheng, Liwinski, et al. 2020), is one way of performing this selection in both marine and terrestrial holobionts.

Another way of selecting a holobiont microbial community is by chemically mediated microbial gardening. This concept has been demonstrated for land plants, where root exudates manipulate microbiome composition (Lebeis, Paredes, et al. 2015). In marine environments, the phylogenetic diversity of hosts and symbionts suggests both conserved and marine-specific chemical interactions, but studies are still in their infancy. For instance, seaweeds can chemically garden beneficial microbes, facilitating normal morphogenesis and increasing disease resistance (Kessler, Weiss, et al. 2018, Saha and Weinberger 2019), and seaweeds and corals structure their surface-associated microbiome by producing chemo-attractants and anti-bacterial compounds (Harder, Campbell, et al. 2012, Ochsenkühn, Schmitt-Kopplin, et al. 2018). There are fewer examples of chemical gardening in unicellular hosts, but it seems highly likely that similar processes are in place (Gribben, Nielsen, et al. 2017, Cirri and Pohnert 2019).

In addition to selection, ecological drift, dispersal and evolutionary diversification have been proposed as key processes in community assembly, but are difficult to estimate in microbial communities (Nemergut, Schmidt, et al. 2013). The only data currently at our disposal to quantify these processes are the diversity and distribution of microbes. Considering the high connectivity of aquatic environments, differences in marine microbial communities are frequently attributed to a combination of selection and drift, rather than limited dispersal (e.g. Burke, Steinberg, et al. 2011), a conclusion which, in the future, could be refined by conceptual models developed for instance for soil microbial communities (Stegen et al. 2013; Dini-Andreote et al. 2015). Diversification is mainly considered in the sense of coevolution or adaptation to host selection, which may also be driven by the horizontal acquisition of genes. However, cospeciation is challenging to prove (de Vienne, Refrégier, et al. 2013, Moran and Sloan 2015) and only
few studies have examined this process in marine holobionts to date, each focused on a restricted number
of actors (e.g. Peek et al. 1998; Lanterbecq et al. 2010).

Perturbations in the transmission or the recruitment of the microbiota can lead to dysbiosis, and
eventually microbial infections (Selosse, Bessis, et al. 2014, de Lorgeril, Lucassen, et al. 2018). Dysbiotic
microbial communities are frequently determined by stochastic processes and thus display higher
variability in their composition than those of healthy individuals. This observation in line with the “Anna
Karenina principle” (Zaneveld, McMinds, et al. 2017), although there are exceptions to this rule (e.g.
Marzinelli et al. 2015). A specific case of dysbiosis is the so-called “Rasputin effect” where benign
endosymbionts opportunistically become detrimental to the host due to processes such as reduction in
immune response under food deprivation, coinfections, or environmental pressure (Overstreet and Lotz
2016). Many diseases are now interpreted as the result of a microbial imbalance and the rise of
opportunist or polymicrobial infections upon host stress (Egan and Gardiner 2016). For instance in reef-
building corals, warming destabilizes cnidarian-dinoflagellate associations, and some beneficial
Symbiodiniacea strains switch their physiology and sequester more resources for their own growth at the
expense of the coral host, leading to coral bleaching and even death (Baker, Freeman, et al. 2018).

Increasing our knowledge on the contribution of these processes to holobiont community
assembly in marine systems is a key challenge, which is of particular urgency today in the context of
ongoing global change. Moreover, understanding how the community and functional structure of resident
microbes are resilient to perturbations remains critical to predict and promote the health of their host
and the ecosystem. Yet, the contribution of the microbiome is still missing in most quantitative models
predicting the distribution of marine macro-organisms, or additional information on biological
interactions would be required to make the former more accurate (Bell, Rovellini, et al. 2018).

Integrating marine model systems with large-scale studies

By compiling a survey of the most important trends and challenges in the field of marine holobiont
research (Figure 3), we identified two distinct opinion clusters: one focused on mechanistic understanding
and work with model systems whereas another targets large-scale and heterogeneous data set analyses
and predictive modeling. This illustrates that, on the one hand, the scientific community is interested in
the establishment of models for the identification of specific molecular interactions between marine
organisms at a given point in space and time, up to the point of synthesizing functional mutualistic
communities *in vitro* (Kubo, Hosoda, et al. 2013). On the other hand, another part of the community is
moving towards global environmental sampling schemes such as the TARA Oceans expedition (Pesant,
Not, et al. 2015) or the Ocean Sampling Day (Kopf, Bicak, et al. 2015), and towards long-term data series
(e.g. Wiltshire et al. 2010; Harris 2010). What emerges as both lines of research progress is the
understanding that small-scale functional studies in the laboratory are inconsequential unless made
applicable to ecologically-relevant systems. At the same time, and despite the recent advances in
community modeling (Ovaskainen, Tikhonov, et al. 2017), hypotheses drawn from large scale-studies
remain correlative and require experimental validation of the mechanisms driving the observed
processes. We illustrate the importance of integrating both approaches in Figure 3, where the node
related to potential applications was perceived as a central hub at the interface between mechanistic understanding and predictive modeling.

A successful example merging both functional and large-scale approaches, are the root nodules of legumes, which harbor nitrogen-fixing bacteria. In this system, the functioning, distribution, and to some extent the evolution of these nodules, are now well understood (Epihov, Batterman, et al. 2017). The integration of this knowledge into agricultural practices has led to substantial yield improvements (e.g. Kavimandan 1985; Alam et al. 2015). In the more diffuse and partner-rich system of mycorrhizal symbioses between plant roots and soil fungi, a better understanding of the interactions has also been achieved via the investigation of environmental diversity patterns in combination with experimental culture systems with reduced diversity (van der Heijden, Martin, et al. 2015).

We advocate the implementation of comparable efforts in marine sciences through interdisciplinary research combining physiology, biochemistry, ecology, and computational modeling. A key factor will be the identification and development of tractable model systems for keystone holobionts that allow hypotheses generated by large-scale data sets to be tested in controlled experiments. Such approaches will enable the identification of organismal interaction patterns within holobionts and nested ecosystems. In addition to answering fundamental questions, they will help address the ecological, societal, and ethical issues that arise from attempting to actively manipulate holobionts (e.g. in aquaculture, conservation, and invasion) in order to enhance their resilience and protect them from the impacts of global change (Llewellyn, Boutin, et al. 2014).

Emerging methodologies to approach the complexity of holobiont partnerships

As our conceptual understanding of the different levels of holobiont organization evolves, so does the need for multidisciplinary approaches and the development of tools and technologies to handle the unprecedented amount of data and their integration into dedicated ecological and evolutionary models. Here, progress is often fast-paced and provides exciting opportunities to address some of the challenges in holobiont research.

A giant technological stride has been the explosion of affordable ‘–omics’ technologies allowing molecular ecologists to move from metabarcoding (i.e. sequencing of a taxonomic marker) to metagenomics or single-cell genomics, metatranscriptomics, and metaproteomics, thus advancing our research from phylogenetic analyses of the holobiont to analyses capable of making predictions about the functions carried out by different components of the holobiont (Bowers et al. 2017; Meng et al. 2018; Figure 4). These approaches are equally useful in marine and in terrestrial environments, but the scarcity of well-studied lineages in the former makes the generation of good annotations and reference databases challenging for marine biologists. Metaproteomics combined with stable isotope fingerprinting can help study the metabolism of single lineages within the holobiont (Kleiner, Dong, et al. 2018). In parallel, metabolomics approaches have advanced over the last decades, and can be used to unravel the chemical interactions between partners. One limitation particularly relevant to marine systems is that many compounds are often not referenced in the mostly terrestrial-based databases, although recent technological advances such as molecular networking and meta-mass shift chemical profiling to identify relatives of known molecules may help to overcome this challenge (Hartmann, Petras, et al. 2017).
A further challenge in holobiont research is to identify the origin of compounds among the different partners of the holobionts and to determine their involvement in the maintenance and performance of the holobiont system. Well-designed experimental setups may help answer some of these questions (e.g. Quinn et al. 2016), but they will also require high levels of replication in order to represent the extensive intra-species variability found in marine systems. Recently developed in vivo and in situ imaging techniques combined with metabolomicomics can provide small-scale spatial and qualitative information (origin, distribution, and concentration of a molecule or nutrient), shedding new light on the contribution of each partner of the holobiont system at the molecular level (e.g. Geier et al. 2020). The combination of stable isotope labelling and chemical imaging (mass spectrometry imaging such as secondary ion mass spectrometry and matrix-assisted laser desorption ionization, and synchrotron X-ray fluorescence) is particularly valuable in this context, as it enables the investigation of metabolic exchange between the different compartments of a holobiont (Musat, Musat, et al. 2016, Raina, Clode, et al. 2017). Finally, three-dimensional electron microscopy may help evaluate to what extent different components of a holobiont are physically integrated (Colin, Coelho, et al. 2017, Decelle, Stryhanyuk, et al. 2019), where high integration is one indication of highly specific interactions. All of these techniques can be employed in both marine and terrestrial systems, but in marine systems the high phylogenetic diversity of organisms adds to the complexity of adapting and optimizing these techniques.

One consequence of the development of such new methods is the feedback they provide to improve existing models or to develop entirely new ones, e.g. by conceptualizing holobionts as the combination of the interactions between the host and its microbiota (Skillings 2016, Berry and Loy 2018), or by redefining boundaries between the holobiont and its environment (Zengler and Palsson 2012). Such models may incorporate metabolic complementarity between different components of the holobiont (Dittami, Eveillard, et al. 2014, Bordron, Latorre, et al. 2016), e.g. enabling the prediction of testable metabolic properties depending on holobiont composition (Burgunter-Delamare, KleinJan, et al. 2020), or simulate microbial communities starting from different cohorts of randomly generated microbes for comparison with actual metatranscriptomics and/or metagenomics data (Coles, Stukel, et al. 2017).

A side-effect of these recent developments has been to move holobiont research away from laboratory culture-based experiments. We argue that maintaining or even extending cultivation efforts, possibly via the implementation of “culturomics” approaches as successfully carried out for the human gut microbiome (Lagier, Armougom, et al. 2012), remains essential to capture the maximum holobiont biodiversity possible and will facilitate the experimental testing of hypotheses and the investigation of physiological mechanisms. A striking example of the importance of laboratory experimentation is the way germ-free mice re-inoculated with cultivated bacteria (the so-called gnotobiotic mice) have contributed to the understanding of interactions within the holobiont in animal health, physiology, and behavior (e.g. Neufeld et al. 2011; Faith et al. 2014; Selosse et al. 2014). In terms of gnotobiotic marine organisms there are several examples of microalgae that can be cultured axenically, but gnotobiotic multicellular organisms are rare. One example is the green alga Ulva mutabilis, which can be rendered axenic based on the movement of its spores and has been used to study the effects of bacteria-produced morphogens (Spoerner, Wichard, et al. 2012). There are also examples of gnotobiotic marine fish and mollusks (Marques, Ollevier, et al. 2006). However, in many cases, not all associated microorganisms can be controlled leaving researchers with aposymbiotic cultures (i.e. cultures without the main symbiont(s), as e.g. for the sea anemone Exaiptasia) (Lehnert, Mouchka, et al. 2014). Innovations in cultivation techniques...
for axenic (or germ-free) hosts or in microbial cultivation such as microfluidic systems (e.g. Pan et al. 2011) and cultivation chips (Nichols, Cahoon, et al. 2010) may provide a way to obtain a wider spectrum of pure cultures. Yet, bringing individual components of holobionts into cultivation can still be a daunting challenge due to the strong interdependencies between organisms as well as the existence of yet unknown metabolic processes that may have specific requirements. In this context, single-cell '-omics' analyses can provide critical information on some of the growth requirements of the organisms, and complement approaches of high-throughput culturing (Gutleben, Chaib De Mares, et al. 2018).

Established cultures can then be developed into model systems, e.g. by genome sequencing and the development of genetic tools to move towards mechanistic understanding and experimental testing of hypothetical processes within the holobiont derived from environmental meta-'omics' approaches. In this context, CRISPR/cas9 is a particularly promising tool for the genetic modification of both host and symbiont organisms, and has been established for a few marine model systems, including diatoms, cnidarians, annelids, echinoderms, and chordates (Momose and Concordet 2016), although this tool has not, to the best of our knowledge, been used so far to decipher host symbiont interactions. 'Omers' techniques, coupled to efforts in adapting these genetic tools, have the potential to broaden the range of available models, enabling a better understanding of the functioning of marine holobionts and their interactions in marine environments (Wichard and Beemelmanns 2018).

Ecosystem services and holobionts in natural and managed systems

A better understanding of marine holobionts will likely have direct socio-economic consequences for coastal marine ecosystems, estimated to provide services worth almost 50 trillion (10^{12}) US$ per year (Costanza, de Groot, et al. 2014). Most of the management practices in marine systems have so far been based exclusively on the biology and ecology of macro-organisms. A multidisciplinary approach that provides mechanistic understanding of habitat-forming organisms as holobionts will ultimately improve the predictability and management of coastal ecosystems. For example, host-associated microbiota could be integrated in biomonitering programs as proxies used to assess the health of ecosystems. Microbial shifts and dysbiosis constitute early warning signals that may allow managers to predict potential impacts and intervene more rapidly and effectively (van Oppen, Gates, et al. 2017, Marzinelli, Qiu, et al. 2018).

One form of intervention could be to promote positive changes of host-associated microbiota, in ways analogous to the use of pre- and/or probiotics in humans (Singh, Ahmad, et al. 2013) or inoculation of beneficial microbes in plant farming (Berruti, Lumini, et al. 2015, van der Heijden, Martin, et al. 2015). In macroalgae, beneficial bacteria identified from healthy seaweed holobionts could be used as biological control agents and applied to diseased plantlets in order to suppress the growth of bacteria detrimental to the host and to prevent disease outbreaks in aquaculture settings. In addition to bacteria, these macroalgae frequently host endophytic fungi that may have protective functions for the algae (Porras-Alfaro and Bayman 2011, Vallet, Strittmatter, et al. 2018). Host-associated microbiota could also be manipulated to shape key phenotypes in cultured marine organisms. For example, specific bacteria associated with microalgae may enhance algal growth (Amin, Green, et al. 2009, Kazamia, Aldridge, et al. 2012, Le Chevanton, Garnier, et al. 2013), increase lipid content (Cho, Ramanan, et al. 2015), and participate in the bioprocessing of algal biomass (Lenneman, Wang, et al. 2014). More recently, the active
modification of the coral microbiota has even been advocated as a means to boost the resilience of the holobiont to climate change (van Oppen, Oliver, et al. 2015, Peixoto, Rosado, et al. 2017), an approach which would, however, bear a high risk of unanticipated and unintended side effects.

Also, holistic approaches could be implemented in the framework of fish farms. Recent developments including integrated multi-trophic aquaculture, recirculating aquaculture, offshore aquaculture, species selection, and breeding increase yields and reduce the resource constraints and environmental impacts of intensive aquaculture (Klinger and Naylor 2012). However, the intensification of aquaculture often goes hand in hand with increased amounts of disease outbreaks both in industry and wild stocks. A holistic microbial management approach, e.g. by reducing the use of sterilization procedures and favoring the selection of healthy and stable microbiota consisting of slow-growing K-strategists, may provide an efficient solution to these latter problems, reducing the sensitivity of host to opportunistic pathogens (De Schryver and Vadstein 2014).

Nevertheless, when considering their biotechnological potential, it should also be noted that marine microbiota are likely vulnerable to anthropogenic influences and that their deliberate engineering, introduction from exotic regions (often hidden in their hosts), or inadvertent perturbations may have profound, and yet entirely unknown, consequences for marine ecosystems. Terrestrial environments provide numerous examples of unwanted plant expansions or ecosystem perturbations linked to microbiota (e.g. Dickie et al. 2017), and cases where holobionts manipulated by human resulted in pests (e.g. Clay and Holah 1999) call for a cautious and ecologically-informed evaluation of holobiont-based technologies in marine systems.

Conclusions

Marine ecosystems represent highly connected reservoirs of largely unexplored biodiversity. They are of critical importance to feed the ever-growing world population, constitute significant players in global biogeochemical cycles but are also threatened by human activities and global change. In order to unravel some of the basic principles of life and its evolution, and to protect and sustainably exploit marine natural resources, it is paramount to consider the complex biotic interactions that shape the marine communities and their environment. The scope of these interactions ranges from simple molecular signals between two partners, via complex assemblies of eukaryotes, prokaryotes, and viruses with one or several hosts, to entire ecosystems. Accordingly, current key questions in marine holobiont research cover a wide range of topics: What are the exchanges that occur between different partners of the holobiont, and how do they condition their survival, dynamics and evolution? What are the cues and signals driving these exchanges? What are the relevant units of selection and dispersal in marine holobionts? How do holobiont systems and the interactions within them change over time and in different conditions? How do such changes impact ecological processes? How can this knowledge be applied to our benefit and where do we need to draw limits? Identifying and consolidating key model systems while adapting emerging “-omics”, imaging, culturing technologies, and functional analyses via transgenesis (e.g. CRISPR/cas9) to them will be critical to the development of “holobiont-aware” ecosystem models.

The concept of holobionts represents the fundamental understanding that all living organisms have intimate connections with their immediate neighbors, which may impact all aspects of their biology.
We believe that this concept of holobionts will be most useful if used with a degree of malleability, enabling us to define units of interacting organisms that are most suitable to answer specific questions. The consideration of the holobiont concept marks a paradigm shift in biological and environmental sciences, but only if scientists work together as an (inter)active and transdisciplinary community bringing together holistic and mechanistic views. This will result in tangible outcomes including a better understanding of evolutionary and adaptive processes, improved modeling of habitats and understanding of biogeochemical cycles, as well as application of the holobiont concept in aquaculture and ecosystem management projects.

Acknowledgements

This paper is based on the results of a foresight workshop funded by the EuroMarine network, Sorbonne University, and the UMRs 8227 and 7144 of the Roscoff Biological Station. We are grateful to Catherine Boyen for useful advice and helpful discussions. We thank Sylvie Kwayeb-Fagon for workshop facilitation; Maryvonne Saout and Léna Corre for administrative support; and Marc Trousselier, Sébastien Villéger, Arthur Escalas, Yvan Bettarel, Thierry Bouvier for help writing a part of the manuscript. EMM was partially funded by an Australian Research Council Discovery Project (DP180104041), and JP was partially funded by the Galician Innovation Agency (IN607A 2017/4). The work of SD ad CL was partially funded by the ANR project IDEALG (ANR-10-BTBR-04). CG, CL, and SD received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement number 624575 (ALFF). The work of FN was partially funded by the ANR project IMPEKAB (ANR-15-CE02-001). UC was partially funded by the Research Council of Lithuania project INBALANCE (09.3.3-LMT-K-712-01-0069). JD was supported by the LabEx GRAL (ANR-10-LABX-49-01) and Pôle CBS from the University of Grenoble Alpes. PC received support from the European Union's Horizon 2020 research and innovation program through the SponGES project (grant agreement No. 679849). EKAZ was funded by a Marie Curie Individual Fellowship (Horizon 2020, IRONCOMM). AHE was supported by Portuguese national funds from FCT - Foundation for Science and Technology through projects UID/Multi/04326/2019 and UIDB/04326/2020. This document reflects only the authors’ view and the Executive Agency for Small and Medium-sized Enterprises (EASME) is not responsible for any use that may be made of the information it contains. This manuscript has been peer-reviewed and recommended by Peer Community In Ecology (https://doi.org/10.24072/pci.ecology.100045).

Conflict of interest disclosure

The authors of this manuscript declare that they have no financial conflict of interest with the content of this article.

References

Alam, F., Kim, T.Y., Kim, S.Y., Alam, S.S., Pramanik, P., Kim, P.J. & Lee, Y.B. 2015. Effect of molybdenum on...
nodule, plant yield and nitrogen uptake in hairy vetch (Vicia villosa Roth). Soil Sci. Plant Nutr. 61:664–75.
634 Amin, S.A., Green, D.H., Hart, M.C., Küpper, F.C., Sunda, W.G. & Carrano, C.J. 2009. Photolysis of iron-siderophore
635 chelates promotes bacterial-algal mutualism. Proc. Natl. Acad. Sci. U. S. A. 106:10701–6.
636 Amin, S.A., Parker, M.S. & Armbrust, E.V. 2012. Interactions between diatoms and bacteria. Microbiol. Mol. Biol.
637 Rev. 76:667–84.
638 Anantharaman, K., Brown, C.T., Hug, L.A., Sharon, I., Castelle, C.J., Probst, A.J., Thomas, B.C., Singh, A., Wilkins,
639 M.J., Karaoz, U., Brodie, E.L., Williams, K.H., Hubbard, S.S. & Banfield, J.F. 2016. Thousands of microbial
640 genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun.
641 7:13219.
642 Arboleda, E., Hartenstein, V., Martinez, P., Reichert, H., Sen, S., Sprecher, S. & Bailly, X. 2018. An emerging system
to study photosymbiosis, brain regeneration, chronobiology, and behavior: the marine acoel Sym sagittifera
643 roscoffensis. BioEssays. 40:1800107.
644 Archibald, J.M. 2015. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25:R911–21.
645 Baedke, J., Fábregas-Tejeda, A. & Nieves Delgado, A. 2020. The holobiont concept before Margulis. J. Exp. Zool.
646 Part B Mol. Dev. Evol. 334:149–55.
647 Baker, D.M., Freeman, C.J., Wong, J.C.Y., Fogel, M.L. & Knowlton, N. 2018. Climate change promotes parasitism in a
coral symbiosis. ISME J. 12:921–30.
648 Bang, C., Dagan, T., Deines, P., Dubilier, N., Duschl, W.J., Franue, S., Hentschel, U., Hirt, H., Hülter, N., Lachnit, T.,
Picaizo, D., Pita, L., Poischke, C., Radecker, N., Saad, M.M., Schmitz, R.A., Schulenburg, H., Voolstra, C.R.,
Weiland-Bräuer, N. et al. 2018. Metaorganisms in extreme environments: do microbes play a role in
organismal adaptation? Zoology. 127:1–19.
649 Baumgarten, S., Simakov, O., Esherick, L.Y., Liew, Y.J., Lehnert, E.M., Michell, C.T., Li, Y., Hambleton, E.A., Guse, A.,
Oates, M.E., Gough, J., Weis, V.M., Aranda, M., Pringle, J.R. & Voolstra, C.R. 2015. The genome of Aiptasia, a
sea anemone model for coral symbiosis. Proc. Natl. Acad. Sci. U. S. A. 112:11893–8.
650 Bell, J.J., Rovellini, A., Davy, S.K., Taylor, M.W., Fulton, E.A., Dunn, M.R., Bennett, H.M., Kandler, N.M., Luter, H.M. &
Webster, N.S. 2018. Climate change alterations to ecosystem dominance: how might sponge-dominated
reefs function? Ecology. 99:1920–31.
651 Bennett, A.F., Haslem, A., Cheal, D.C., Clarke, M.F., Jones, R.N., Koehn, J.D., Lake, P.S., Lumsden, L.F., Lunt, I.D.,
Mackey, B.G., Nally, R., Mac, Menkhorst, P.W., New, T.R., Newell, G.R., Oâ®Hara, T., Quinn, G.P., Radford,
J.Q., Robinson, D., Watson, J.E.M. et al. 2009. Ecological processes: a key element in strategies for nature
conservation. Ecol. Manag. Restor. 10:192–9.
652 Berkelmans, R. & van Oppen, M.J.H. 2006. The role of zooxanthellae in the thermal tolerance of corals: a “nugget of
hope” for coral reefs in an era of climate change. Proc. R. Soc. B Biol. Sci. 273:2305–12.
653 Berruti, A., Lumini, E., Balestrini, R. & Bianciotto, V. 2015. Arbuscular mycorrhizal fungi as natural biofertilizers:
let’s benefit from past successes. Trends Microbiol. 23:999–1007.
654 Björk, J.R., Diez-Vives, C., Astudillo-García, C., Archie, E.A. & Montoya, J.M. 2019. Vertical transmission of sponge
microbiota is inconsistent and unfaithful. Nat. Ecol. Evol. 3:1172–83.
655 Bonaglia, S., Brüchert, V., Callac, N., Vicenzi, A., Chi Fru, E. & Bianciotto, V. 2017. Methane fluxes from coastal
sediments are enhanced by macrofauna. Proc. R. Soc. B Biol. Sci. 284:20162129.
656 Bordron, P., Latorre, M., Cortés, M.-P., González, M., Thiele, S., Siegel, A., Maass, A. & Eveillard, D. 2016. Putative
bacterial interactions from metagenomic knowledge with an integrative systems ecology approach.
657 Microbiologiyopen. 5:106–17.
658 Bouchard Marmen, M., Kenchington, E., Ardyna, M. & Archambault, P. 2017. Influence of seabird colonies and
other environmental variables on benthic community structure, Lancaster Sound region, Canadian Arctic. J.
Mar. Syst. 167:105–17.
659 Bowers, R.M., Doud, D.F.R. & Woyke, T. 2017. Analysis of single-cell genome sequences of bacteria and archaea.
Emerg. Top. Life Sci. 1:249–55.
660 Bright, M. & Bulgheresi, S. 2010. A complex journey: transmission of microbial symbionts. Nat. Rev. Microbiol.
661 8:218–30.
662 Brooks, A.W., Kohl, K.D., Brucker, R.M., van Opstal, E.J. & Bordenstein, S.R. 2016. Phylosymbiosis: relationships and
functional effects of microbial communities across host evolutionary history. PLOS Biol. 14:e2000225.
Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E. & Schulze-Lefert, P. 2013. Structure and functions of the bacterial microbiota of plants.

Burgess, S.C., Baskett, M.L., Grosberg, R.K., Morgan, S.G. & Strathmann, R.R. 2016. When is dispersal for dispersal? Unifying marine and terrestrial perspectives.

Burgunter-Delamare, B., KleinJan, H., Frioux, C., Frevy, E., Wagner, M., Corre, E., Le Salver, A., Leroux, C., Leblanc, C., Boyen, C., Siegel, A. & Dittami, S.M. 2020. Metabolic complementarity between a brown alga and associated cultivable bacteria provide indications of beneficial interactions. Front. Mar. Sci. 7:813683.

Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S. & Thomas, T. 2011. Bacterial community assembly based on functional genes rather than species. Proc. Natl. Acad. Sci. U. S. A. 108:14288–93.

Burke, C., Thomas, T., Lewis, M., Steinberg, P. & Kjelleberg, S. 2011. Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME J. 5:590–600.

Cardini, U., Bednarz, V.N., Naumann, M.S., van Hoytema, N., Rix, L., Foster, R.A., Al-Rshaidat, M.M.D. & Wild, C. 2015. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc. R. Soc. B Biol. Sci. 282:20152257.

Chiarello, M., Auguet, J.-C., Betarel, Y., Bouvier, C., Claverie, T., Graham, N.A.J., Rieuvilleneuve, F., Sucré, E., Bouvier, T. & Villéger, S. 2018. Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet.

Cho, D.-H., Ramanan, R., Heo, J., Lee, J., Kim, B.-H., Oh, H.-M. & Kim, H.-S. 2015. Enhancing microalgal biomass productivity by engineering a microalgal–bacterial community.

Cirri, E. & Pohnert, G. 2019.

Clay, K. & Holah, J. 1999. Fungal endophyte symbiosis and plant diversity in successional fields. Science (80-.). 285:1742–4.

Coles, V.J., Stukel, M.R., Brooks, M.T., Burd, A., Crump, B.C., Moran, M.A., Paul, J.H., Satinsky, B.M., Yager, P.L., Zielinski, B.L. & Hood, R.R. 2017. Ocean biogeochemistry modeled with emergent trait-based genomics. Science (80-.). 358:1149–54.

Colin, S., Coelho, L.P., Sunagawa, S., Bowler, C., Karsenti, E., Bork, P., Pepperkok, R. & de Vargas, C. 2017. Quantitative 3D-imaging for cell imaging and ecology of environmental microbial eukaryotes. Elife. 6:e26066.

Cooper, M.B., Kazamia, E., Helliswell, K.E., Kudahl, U.J., Sayer, A., Wheeler, G.L. & Smith, A.G. 2019. Cross-exchange of B-vitamins underpins a mutualistic interaction between Ostreococcus tauri and Dinoroseobacter shibae. ISME J. 13:334–345.

Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S.J., Kubiszewski, I., Farber, S. & Turner, R.K. 2014. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26:152–8.

de Goeiij, J.M., van Oevelen, D., Vermeij, M.J.A., Osinga, R., Middelburg, J.J., de Goeiij, A.F.P.M. & Admiraal, W. 2013. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science (80-.). 342:108–10.

de Lorgeril, J., Lucasson, A., Petton, B., Toulza, E., Montagnani, C., Clerissi, C., Vidal-Dupiol, J., Chaparro, C., Galinier, R., Escoubas, J.-M., Haffner, P., Dégremont, L., Charrière, G.M., Lafont, M., Delort, A., Vergnes, A., Chiarello, M., Faury, N., Rubio, T. et al. 2018. Immune-suppression by OsHV-1 viral infection causes fatal bacteraemia in Pacific oysters. Nat. Commun. 9:4215.

De Schryver, P. & Vadstein, O. 2014. Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME J. 8:2360–8.

de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R., Lara, E., Berney, C., Le Bescot, N., Probert, I., Carmichael, M., Poulin, J., Romac, S., Colin, S., Aury, J.-M., Bittner, L., Chaffron, S., Dunthorn, M., Engelen, S. et al. 2015. Eukaryotic plankton diversity in the sunlit ocean. Science (80-.). 348:1261605.

de Vienne, D.M., Refrégié, G., López-Villavicencio, M., Tellier, A., Hood, M.E. & Giraud, T. 2013. Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. New Phytol. 198:347–85.
Dicke, M. & Sabelis, M.W. 1988. Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? **Funct. Ecol.** 2:131.

Dickie, I.A., Bufford, J.L., Cobb, R.C., Desprez-Loustau, M.-L., Grelet, G., Hulme, P.E., Klironomos, J., Makiola, A., Núñez, M.A., Pringle, A., Thrall, P.H., Tourtellot, S.G., Waller, L. & Williams, N.M. 2017. The emerging science of linked plant-fungal invasions. **New Phytol.** 215:1314–32.

Dini-Andreote, F., Stegen, J.C., van Elsas, J.D. & Salles, J.F. 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. **Proc. Natl. Acad. Sci. USA.** 112:E1326-32.

Dittami, S.M., Duboscq-Bidot, L.L., Perennou, M., Gobet, A.A., Corre, E., Boyen, C. & Tonon, T. 2016. Host–microbe interactions as a driver of acclimation to salinity gradients in brown algal cultures. **ISME J.** 10:51–63.

Dittami, S.M., Eveillard, D. & Tonon, T. 2014. A metabolic approach to study algal–bacterial interactions in changing environments. **Mol. Ecol.** 23:1656–60.

Douglas, A.E. & Werren, J.H. 2016. Holes in the hologenome: why host-microbe symbioses are not holobionts. **MBio.** 7:e02099.

Dubilier, N., Bergin, C. & Lott, C. 2008. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. **Nat. Rev. Microbiol.** 6:725–40.

Duperron, S., Halary, S., Lorion, J., Sibuet, M. & Gaill, F. 2008. Unexpected co-occurrence of six bacterial symbionts in the gills of the cold seep mussel *Idas* sp. (Bivalvia: Mytilidae). **Environ. Microbiol.** 10:433–45.

Egan, S. & Gardiner, M. 2016. Microbial dysbiosis: rethinking disease in marine ecosystems. **Front. Microbiol.** 7:991.

Epilov, D.Z., Batterman, S.A., Hedin, L.O., Leake, J.R., Smith, L.M. & Beerling, D.J. 2017. N2-fixing tropical legume evolution: a contributor to enhanced weathering through the Cenozoic? **Proc. R. Soc. B Biol. Sci.** 284:20170370.

Faith, J.J., Ahern, P.P., Ridaura, V.K., Cheng, J. & Gordon, J.I. 2014. Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. **Science (80-.). J.** 320:1034–9.

Faure, D., Simon, J.-C. & Heulin, T. 2018. Holobiont: a conceptual framework to explore the eco-evolutionary and functional implications of host-microbiota interactions in all ecosystems. **New Phytol.** 218:1321–4.

Fiore, C.L., Jarett, J.K., Olson, N.D. & Lesser, M.P. 2010. Nitrogen fixation and nitrogen transformations in marine symbioses. **Trends Microbiol.** 18:455–63.

Franzenburg, S., Walter, J., Kunzel, S., Wang, J., Baines, J.F., Bosch, T.C.G. & Fraune, S. 2013. Distinct antimicrobial peptide expression determines host species-specific bacterial associations. **Proc. Natl. Acad. Sci.** 110:E3730–8.

Funkhouser, L.J. & Bordenstein, S.R. 2013. Mom knows best: the universality of maternal microbial transmission. **PLoS Biol.** 11:e1001631.

Geier, B., Sogin, E.M., Michelloid, D., Janda, M., Komppauer, M., Spengler, B., Dubilier, N. & Liebeke, M. 2020. Spatial metabolomics of in situ host–microbe interactions at the micrometre scale. **Nat. Microbiol.** 1–13.

Gilbert, S.F., McDonald, E., Boyle, N., Buttino, N., Gyi, L., Mai, M., Prakash, N. & Robinson, J. 2010. Symbiosis as a source of selectable epigenetic variation: taking the heat for the big guy. **Philos. Trans. R. Soc. B Biol. Sci.** 365:671–8.

Godoy, O., Bartomeus, I., Rohr, R.P. & Saavedra, S. 2018. Towards the integration of niche and network theories. **Trends Ecol. Evol.** 33:287–300.

Gregory, A.C., Zayed, A.A., Conceição-Neto, N., Temperton, B., Bolduc, B., Alberti, A., Ardyna, M., Arkhipova, K., Carmichael, M., Cruaud, C., Dimier, C., Domínguez-Huerta, G., Ferland, J., Kandels, S., Liu, Y., Marec, C., Pesant, S., Picheral, M., Pisarev, S. et al. 2019. Marine DNA viral macro- and microdiversity from pole to pole. **Cell.** 177:1109–1123.e14.

Gribben, P.E., Nielsen, S., Seymour, J.R., Bradley, D.J., West, M.N. & Thomas, T. 2017. Microbial communities in marine sediments modify success of an invasive macrophyte. **Sci. Rep.** 7:9845.

Guimarães, P.R., Pires, M.M., Jordano, P., Bascompte, J. & Thompson, J.N. 2017. Indirect effects drive coevolution in mutualistic networks. **Nature.** 550:511–4.

Gutleben, J., Chaib De Mares, M., van Elsas, J.D., Smidt, H., Overmann, J. & Sipkema, D. 2018. The multi-omics promise in context: from sequence to microbial isolate. **Crit. Rev. Microbiol.** 44:212–29.
Hammer, T.J., Sanders, J.G. & Fierer, N. 2019. Not all animals need a microbiome. *FEMS Microbiol. Lett.* 366.

Harder, T., Campbell, A.H., Egan, S. & Steinberg, P.D. 2012. Chemical mediation of ternary interactions between marine holobionts and their environment as exemplified by the red alga *Delisea pulchra*. *J. Chem. Ecol.* 38:442–50.

Harris, R. 2010. The L4 time-series: the first 20 years. *Annu. Rev. Phytopathol.* 37:427–46.

Hollants, J., Leliaert, F., Verbruggen, H., De Clerck, O. & Willems, A. 2013. Host specificity and coevolution of *Flavobacteriaceae* endosymbionts within the siphonous green seaweed *Bryopsis*. *Mol. Phylogenet. Evol.* 67:608–14.

Holt, E.A. & Miller, S.W. 2010. Bioindicators: using organisms to measure environmental impacts. *Nat. Educ. Knowl.* 3:8.

Kavimandan, S.K. 1985. Root nodule bacteria to improve yield of wheat (*Triticum aestivum* L.). Springer.

Kazamia, E., Aldridge, D.C. & Smith, A.G. 2012. Synthetic ecology – A way forward for sustainable algal biofuel production? *J. Biotechnol.* 162:163–9.

Kazamia, E., Hellwell, K.E., Purton, S. & Smith, A.G. 2016. How mutualisms arise in phytoplankton communities: building eco-evolutionary principles for aquatic microbes. *Ecol. Lett.* 19:810–22.

Kelty, M.O. & Cook, C.B. 1976. Survival during starvation of symbiotic, aposymbiotic, and non-symbiotic *Hydra*. In *Coelenterate Ecology and Behavior*. Springer, Boston, MA, pp. 409–14.

Kessler, R.W., Weiss, A., Kuegler, S., Hermes, C. & Wichard, T. 2018. Macroalgal-bacterial interactions: Role of dimethylsulfoniopropionate in microbial gardening by *Ulva* (Chlorophyta). *Mol. Ecol.* 27:1808–19.

Kinean, B.P. & Gaines, S.D. 2003. Propagule dispersal in marine and terrestrial environments: a community perspective. *Ecology*. 84:2007–20.

Kleiner, M., Dong, X., Hinze, T., Wippler, J., Thorson, E., Mayer, B. & Strous, M. 2018. Metaproteomics method to determine carbon sources and assimilation pathways of species in microbial communities. *Proc. Natl. Acad. Sci. U. S. A.* 115:E5576–84.

Klinger, D. & Naylor, R. 2012. Searching for solutions in aquaculture: charting a sustainable course. *Annu. Rev. Environ. Resour.* 37:247–76.

Kopf, A., Bicak, M., Kottmann, R., Schnetzer, J., Kostadinov, I., Lehmann, K., Fernandez-Guerra, A., Jeanthon, C., Rahav, E., Ulrich, M., Wichels, A., Gerdz, G., Polymenakou, P., Kotoulas, G., Siam, R., Abdallah, R.Z., Sonnenschein, E.C., Cariou, T., O’Gara, F. et al. 2015. The ocean sampling day consortium. *Gigascience*. 4:27.

Kubo, I., Hosoda, K., Suzuki, S., Yamamoto, K., Kihara, K., Mori, K. & Yomo, T. 2013. Construction of bacteria–eukaryote synthetic mutualism. *Biosystems*. 113:66–71.

Lagier, J.C., Armougom, F., Million, M., Hugon, P., Pagnier, I., Robert, C., Bittar, F., Fournous, G., Gimenez, G., Maraninchi, M., Trape, J.F., Koonin, E. V., La Scola, B. & Raoult, D. 2012. Microbial culturomics: Paradigm shift in the human gut microbiome study. *Clin. Microbiol. Infect.* 18:1185–93.

Lanterbecq, D., Rouse, G.W. & Eeckhaut, I. 2010. Evidence for cospeciation events in the host–symbiont system involving crinoids (*Echinodermata*) and their obligate associates, the myzostomids (*Myzostomida, Annelida*). *Mol. Phylogenet. Evol.* 54:357–71.

Le Chevanton, M., Garnier, M., Bougaran, G., Schreiber, N., Lukomska, E., Bérard, J.-B., Fouilland, E., Bernard, O. & Cadoret, J.-P. 2013. Screening and selection of growth-promoting bacteria for Dunaliella cultures. *Algal Res.* 2:212–22.

Lebeis, S.L., Paredes, S.H., Lundberg, D.S., Breakfield, N., Gehring, J., McDonald, M., Malfatti, S., Glavina del Rio, T., Jones, C.D., Tringe, S.G. & Dangl, J.L. 2015. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. *Science (80-.).* 349:860–4.

Lehnert, E.M., Burriesci, M.S. & Pringle, J.R. 2012. Developing the anemone *Aiptasia* as a tractable model for cnidian-dinoflagellate symbiosis: the transcriptome of apoSymbiotic *A. pallida*. *BMC Genomics*. 13:271.

Lehnert, E.M., Mouchka, M.E., Burriesci, M.S., Gallo, N.D., Schwarz, J.A. & Pringle, J.R. 2014. Extensive differences...
in gene expression between symbiotic and aposymbiotic cnidarians. G3845
Genes Genomes Genetics. 4:277–95.
846 Lenneman, E.M., Wang, P. & Barney, B.M. 2014. Potential application of algicidal bacteria for improved lipid
recovery with specific algae. FEMS Microbiol. Lett. 354:102–10.
847 Leys, S.P., Kahn, A.S., Fang, J.K.H., Kutti, T. & Bannister, R.J. 2018. Phagocytosis of microbial symbionts balances the
carbon and nitrogen budget for the deep-water boreal sponge Geodia barretti. Limnol. Oceanogr. 63:187–
848 202.
852 Llewellyn, M.S., Boutin, S., Hoseinifar, S.H. & Derome, N. 2014. Teleost microbiomes: the state of the art in their
characterization, manipulation and importance in aquaculture and fisheries. Front. Microbiol. 5:207.
853 Loh, J., Pierson, E.A., Pierson, L.S., Stacey, G. & Chatterjee, A. 2002. Quorum sensing in plant-associated bacteria.
854 Curr. Opin. Plant Biol. 5:285–90.
855 Madsen, E.L. 2011. Microorganisms and their roles in fundamental biogeochemical cycles. Curr. Opin. Biotechnol.
856 22:456–64.
858 Marchesi, J.R. & Ravel, J. 2015. The vocabulary of microbiome research: a proposal. Microbiome. 3:31.
859 Margulis, L. & Fester, R. 1991. Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis.
860 MIT Press. 470 pp.
861 Marques, A., Ollevier, F., Verstraete, W., Sorgeloos, P. & Bossier, P. 2006. Gnotobiatically grown aquatic animals:
opportunities to investigate host-microbe interactions. J. Appl. Microbiol. 100:903–18.
863 Martin-Platero, A.M., Cleary, B., Kauffman, K., Preheim, S.P., McGillicuddy, D.J., Alm, E.J. & Polz, M.F. 2018. High
resolution time series reveals cohesive but short-lived communities in coastal plankton. Nat. Commun.
864 9:266.
866 Martin, W., Baross, J., Kelley, D. & Russell, M.J. 2008. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol.
867 6:805–14.
868 Martinez-Pérez, C., Mohr, W., Löscher, C.R., Dekaezemacker, J., Littmann, S., Yilmaz, P., Lehnen, N., Fuchs, B.M.,
Lavik, G., Schmitz, R.A., LaRoche, J. & Kuypers, M.M.M. 2016. The small unicellular diazotrophic symbiont,
UCYN-A, is a key player in the marine nitrogen cycle. Nat. Microbiol. 1:16163.
871 Marzinelli, E.M., Campbell, A.H., Zozaya Valdes, E., Vergés, A., Nielsen, S., Wernberg, T., de Bettignies, T., Bennett,
872 S., Caporaso, J.G., Thomas, T. & Steinberg, P.D. 2015. Continental-scale variation in seaweed host-associated
bacterial communities is a function of host condition, not geography. Environ. Microbiol. 17:4078–88.
874 Marzinelli, E.M., Qiu, Z., Dafforn, K.A., Johnston, E.L., Steinberg, P.D. & Mayer-Pinto, M. 2018. Coastal urbanisation
affects microbial communities on a dominant marine holobiont. Biofilms and Microbiomes. 4:1.
876 McFall-Ngai, M., Hadfield, M.G., Bosch, T.C.G., Carey, H. V., Domazet-Lošo, T., Douglas, A.E., Dubilier, N., Eberl, G.,
877 Fukami, T., Gilbert, S.F., Hentschel, U., King, N., Kjelleberg, S., Knoll, A.H., Kremer, N., Mazmanian, S.K.,
879 Metcalf, J.L., Nealson, K., Pierce, N.E. et al. 2013. Animals in a bacterial world, a new imperative for the life
881 sciences. Proc. Natl. Acad. Sci. U. S. A. 110:3229–36.
882 McFall-Ngai, M.J. 2014. The importance of microbes in animal development: lessons from the squid-Vibrio
884 symbiosis. Annu. Rev. Microbiol. 68:177–94.
888 Meng, A., Marchet, C., Corre, E., Peterlongo, P., Alberti, A., Da Silva, C., Wincker, P., Pelletier, E., Probert, I.,
890 Decelle, J., Le Crom, S., Not, F. & Bittner, L. 2018. A de novo approach to disentangle partner identity and
function in holobiont systems. Microbiome. 6:105.
893 Mereschkowsky, C. 1905. Über Natur und Ursprung der Chromatophoren im Pflanzenreich. Biol. Cent. 25:593–
895 604.
897 Meyer-Abich, A. 1943. Beiträge zur Theorie der Evolution der Organismen. I. Das typologische Grundgesetz und
seine Folgerungen für Phylogenie und Entwicklungphysiologie [Contributions to the evolutionary theory of
organisms: I. The basic typological law and its implications]. Acta Biotheor. 7:1–80.
899 Middleton, W. & Brussaard, C.P.D. 2017. Marine viruses: key players in marine ecosystems. Viruses. 9:302.
901 Millennium Ecosystem Assessment Panel, T. 2005. Ecosystems and human well-being: synthesis / Millennium
Ecosystem Assessment. Island press, Washington, USA. 1–155 pp.
903 Mitra, A., Flynn, K.J., Burkholder, J.M., Berge, T., Calbet, A., Raven, J.A., Granéli, E., Gilbert, P.M., Hansen, P.J.,
904 Stoecker, D.K., Thingstad, F., Tillmann, U., Våge, S., Wilken, S. & Zubkov, M. V. 2013. The role of mixotrophic
protists in the biological carbon pump. Biogeosciences Discuss. 10:13535–62.
906 Momose, T. & Concordet, J.-P. 2016. Diving into marine genomics with CRISPR/Cas9 systems. Mar. Genomics.
907 30:55–65.
Moran, N.A. & Sloan, D.B. 2015. The hologenome concept: helpful or hollow? *PLOS Biol.* 13:e1002311.

Musat, N., Musat, F., Weber, P.K. & Pett-Ridge, J. 2016. Tracking microbial interactions with NanoSIMS. *Curr. Opin. Biotechnol.* 41:114–21.

Myers, J.H. & Rothman, L.E. 1995. Virulence and transmission of infectious diseases in humans and insects: evolutionary and demographic patterns. *TREE.* 10:194–8.

Nardon, P. & Charles, H. 2001. Morphological Aspects of Symbiosis. *In Symbiosis.* Kluwer Academic Publishers, Dordrecht, pp. 13–44.

Nemerget, D.R., Schmidt, S.K., Fukami, T., O’Neill, S.P., Bilinski, T.M., Stanish, L.F., Knelman, J.E., Darcy, J.L., Lynch, R.C., Wickey, P. & Ferrenberg, S. 2013. Patterns and processes of microbial community assembly. *Microbiol. Mol. Biol. Rev.* 77:342–56.

Neufeld, K.M., Kang, N., Bienenstock, J. & Foster, J.A. 2011. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. *Neurogastroenterol. Motil.* 23:255–64, e119.

Nichols, D., Cahoon, N., Trakhtenberg, E.M., Pham, L., Meht, A., Belanger, A., Kanigan, T., Lewis, K. & Epstein, S.S. 2010. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. *Appl. Environ. Microbiol.* 76:2445–50.

Not, F., Probert, I., Gerikas Ribeiro, C., Crenn, K., Guillou, L., Jeanthon, C. & Vaulot, D. 2016. Photosymbiosis in marine pelagic environments. *In The Marine Microbiome.* Springer International Publishing, Cham, pp. 305–32.

O’Malley, M.A. 2017. From endosymbiosis to holobionts: Evaluating a conceptual legacy. *J. Theor. Biol.* 434:34–41.

Ochsenkühn, M.A., Schmitt-Kopplin, P., Harir, M. & Amin, S.A. 2018. Coral metabolite gradients affect microbial community structures and act as a disease cue. *Commun. Biol.* 1:184.

Ohdera, A.H., Abrams, M.J., Ames, C.L., Baker, D.M., Suéscún-Bolivar, L.P., Collins, A.G., Freeman, C.J., Gamero-Mora, E., Goulet, T.L., Hofmann, D.K., Jaimes-Beccera, A., Long, P.F., Marques, A.C., Miller, L.A., Mydlarz, L.D., Morandini, A.C., Newkirk, C.R., Putri, S.P., Samson, J.E. et al. 2018. Upside-down but headed in the right direction: review of the highly versatile Cassiopea xamachana system. *Front. Ecol. Evol.* 6:35.

Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan, L., Dunson, D., Roslin, T. & Abrego, N. 2017. How to make more out of community data? A conceptual framework and its implementation as models and software. *Ecol. Lett.* 20:561–76.

Oversetree, R.M. & Lotz, J.M. 2016. Host–symbiont relationships: understanding the change from guest to pest. In Hurst, C. J. [Ed.] *The Rasputin Effect: When Commensals and Symbionts Become Parasitic.* Springer, Cham, pp. 27–64.

Pan, J., Stephenson, A.L., Kazamia, E., Huck, W.T.S., Dennis, J.S., Smith, A.G. & Abell, C. 2011. Quantitative tracking of the growth of individual algal cells in microdroplet compartments. *Integr. Biol.* 3:1043.

Peek, A.S., Feldman, R.A., Lutz, R.A. & Vrijenhoek, R.C. 1998. Cospeciation of chemosynthetic bacteria and deep sea clams. *Proc. Natl. Acad. Sci.* 95:9962–6.

Peixoto, R.S., Rosado, P.M., Leite, D.C. de A., Rosado, A.S. & Bourne, D.G. 2017. Beneficial microorganisms for symbionts of marine invertebrate animals are capable of nitrogen fixation. *Nat. Microbiol.* 2:16195.

Pita, L., Rix, L., Slaby, B.M., Franke, A. & Hentschel, U. 2018. The sponge holobiont in a changing ocean: from microbes to ecosystems. *Microbiome.* 6:46.

Pollock, F.J., McMinds, R., Smith, S., Bourne, D.G., Willis, B.L., Medina, M., Thurbler, R.V. & Zaneveld, J.R. 2018. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. *Nat. Commun.* 9:4921.

Ponnudurai, R., Kleiner, M., Sayavedra, L., Petersen, J.M., Moche, M., Otto, A., Becher, D., Takeuchi, T., Satoh, N., Dubilier, N., Schweder, T. & Markert, S. 2017. Metabolic and physiological interdependencies in the *Bathymodiolus azoricus* symbiosis. *ISME J.* 11:463–77.

Porras-Alfaro, A. & Bayman, P. 2011. Hidden fungi, emergent properties: endophytes and microbiomes. *Annu. Rev. Phytopathol.* 49:291–315.
Quinn, R.A., Vermeij, M.J.A., Hartmann, A.C., Galtier d’Auriac, I., Benler, S., Haas, A., Quistad, S.D., Lim, Y.W., Little, M., Sandin, S., Smith, J.E., Dorrestein, P.C. & Rohwer, F. 2016. Metabolomics of reef benthic interactions reveals a biochemical involvement in coral defence. *Proc. R. Soc. B Biol. Sci.* 283:20160469.

Raina, J.-B., Clode, P.L., Cheong, S., Bougoure, J., Kilburn, M.R., Reeder, A., Forêt, S., Stat, M., Beltran, V., Thomas-Hall, P., Tapiolas, D., Motti, C.M., Gong, B., Pernice, M., Marjo, C.E., Seymour, J.R., Willis, B.L. & Bourne, D.G. 2017. Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. *Elife.* 6:e23008.

Raina, J.-B., Tapiolas, D., Willis, B.L. & Bourne, D.G. 2009. Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. *Appl. Environ. Microbiol.* 75:3492–501.

Rix, L., de Goeij, J.M., van Oevelen, D., Struck, U., Al-Horani, F.A., Wild, C. & Naumann, M.S. 2017. Differential recycling of coral and algal dissolved organic matter via the sponge loop. *Funct. Ecol.* 31:778–89.

Rohwer, F., Seguritan, V., Azam, F. & Knowlton, N. 2002. Diversity and distribution of coral-associated bacteria. *Mar. Ecol. Prog. Ser.*

Rosenberg, E., Koren, O., Reshef, L., Efrony, R. & Zilber-Rosenberg, I. 2007a. The role of microorganisms in coral health, disease and evolution. *Nat. Rev. Microbiol.* 5:355–62.

Rosenberg, E., Koren, O., Reshef, L., Efrony, R. & Zilber-Rosenberg, I. 2007b. The hologenome theory disregards the coral holobiont: reply from Rosenberg et al. *Nat. Rev. Microbiol.* 5:826–826.

Roughgarden, J. 2019. Holobiont evolution: model with vertical vs. horizontal microbiome transmission. *bioRxiv.* 465310.

Rubin-Blum, M., Antony, C.P., Sayavedra, L., Martínez-Pérez, C., Birgel, D., Peckmann, J., Wu, Y.-C., Cardenas, P., McDonald, I., Marcon, Y., Sahling, H., Hentschel, U. & Dubilier, N. 2019. Fueled by methane: deep-sea sponges from asphalt seeps gain their nutrition from methane-oxidizing symbionts. *ISME J.* 13:1209–25.

Saha, M., Berdalet, E., Carotenuto, Y., Fink, P., Harder, T., John, U., Not, F., Pohnert, G., Potin, P., Selander, E., Vyverman, W., Wichard, T., Zupo, V. & Steinke, M. 2019. Using chemical language to shape future marine health. *Front. Ecol. Environ.* 17:530–7.

Saha, M. & Weinberger, F. 2019. Microbial ”gardening” by a seaweed holobiont: Surface metabolites attract protective and deter pathogenic epibacterial settlement. *J. Ecol.* 107:2255–65.

Segev, E., Wyche, T.P., Kim, K.H., Petersen, J., Ellebrandt, C., Vlamakis, H., Barteneva, N., Paulson, J.N., Chai, L., Clardy, J. & Kolter, R. 2016. Dynamic metabolic exchange governs a marine algal-bacterial interaction. *Elife.* 5.

Selosse, M.-A., Bessis, A. & Pozo, M.J. 2014. Microbial priming of plant and animal immunity: symbionts as developmental signals. *Trends Microbiol.* 22:607–13.

Seyedsayamdost, M.R., Case, R.J., Kolter, R. & Clardy, J. 2011. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. *Nat. Chem.* 3:331–5.

Seymour, J.R., Amin, S.A., Raina, J.-B. & Stocker, R. 2017. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. *Nat. Microbiol.* 2:17065.

Shapira, M. 2016. Gut microbiota and host evolution: scaling up symbiosis. *Trends Ecol. Evol.* 31:539–49.

Shreiner, A.B., Kao, J.Y. & Young, V.B. 2015. The gut microbiome in health and in disease. *Curr. Opin. Gastroenterol.* 31:69–75.

Singh, Y., Ahmad, J., Musarrat, J., Ehtesham, N.Z. & Hasnain, S.E. 2013. Emerging importance of holobionts in evolution and in probiotics. *Gut Pathog.* 5:12.

Skillings, D. 2016. Holobionts and the ecology of organisms: multi-species communities or integrated individuals? *Biol. Philos.* 31:875–92.

Smriga, S., Sandin, S.A. & Azam, F. 2010. Abundance, diversity, and activity of microbial assemblages associated with coral reef fish guts and feces. *FEMS Microbiol. Ecol.* 73:31–42.

Spörner, M., Wichard, T., Bachhuber, T., Stratmann, J. & Oertel, W. 2012. Growth and thallus morphogenesis of *Ulva mutabilis* (Chlorophyta) depends on a combination of two bacterial species excreting regulatory factors. *J. Phycol.* 48:1433–47.
Stegen, J.C., Lin, X., Fredrickson, J.K., Chen, X., Kennedy, D.W., Murray, C.J., Rockhold, M.L. & Konopka, A. 2013. Quantifying community assembly processes and identifying features that impose them. *ISME J.* 7:2069–79.

Theis, K.R. 2018. Hologenomics: systems-level host biology. *mSystems.* 3:e00164-17.

Thompson, A.W., Foster, R.A., Krupke, A., Carter, B.J., Musat, N., Vaulot, D., Kuypers, M.M.M. & Zehr, J.P. 2012. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. *Science (80-.).* 337:1546–50.

Thompson, L.R., Sanders, J.G., McDonald, D., Amir, A., Ladau, J., Locey, K.J., Prill, R.J., Tripathi, A., Gibbons, S.M., Ackermann, G., Navas-Molina, J.A., Janssen, S., Kopylova, E., Vázquez-Baeza, Y., González, A., Morton, J.T., Mirarab, S., Zech Xu, Z., Jiang, L. et al. 2017. A communal catalogue reveals Earth’s multiscale microbial diversity. *Nature.* 551:457.

Tolstoy, L.N. 1878. *Анна Каренина.* Русский вестник, Moscow. 1–864 pp.

Troussellier, M., Escalas, A., Bouvier, T. & Mouillot, D. 2017. Sustaining rare marine microorganisms: Macroorganisms as repositories and dispersal agents of microbial diversity. *Front. Microbiol.* 8:947.

Vallet, M., Strittmatter, M., Murúa, P., Lacoste, S., Dupont, J., Hubas, C., Genta-Jouve, G., Gachon, C.M.M., Kim, G.H. & Prado, S. 2018. Chemically-mediated interactions between macroalgae, their fungal endophytes, and protistan pathogens. *Front. Microbiol.* 9:3161.

van der Heijden, M.G.A., Martin, F.M., Selosse, M.-A. & Sanders, I.R. 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. *New Phytol.* 205:1406–23.

van Oppen, M.J.H., Gates, R.D., Blackall, L.L., Cantin, N., Chakravarti, L.J., Chan, W.Y., Cormick, C., Crean, A., Damjanovic, K., Epstein, H., Harrison, P.L., Jones, T.A., Miller, M., Pears, R.J., Peplow, L.M., Raftos, D.A., Schaffelke, B., Stewart, K., Torda, G. et al. 2017. Shifting paradigms in restoration of the world’s coral reefs. *Glob. Chang. Biol.* 23:3437–48.

van Oppen, M.J.H., Oliver, J.K., Putnam, H.M. & Gates, R.D. 2015. Building coral reef resilience through assisted evolution. *Proc. Natl. Acad. Sci. U. S. A.* 112:2307–13.

Venn, A.A., Loram, J.E. & Douglas, A.E. 2008. Photosynthetic symbioses in animals. *J. Exp. Bot.* 59:1069–80.

Wallin, I.E. 1925. On the nature of mitochondria. IX. Demonstration of the bacterial nature of mitochondria. *Am. J. Anat.* 36:131–49.

Webster, N.S., Taylor, M.W., Behnam, F., Lücker, S., Rattei, T., Whalan, S., Horn, M. & Wagner, M. 2010. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. *Environ. Microbiol.* 12:2070–82.

Wichard, T. 2015. Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta). *Front. Plant Sci.* 6:86.

Wichard, T. & Beemelmanns, C. 2018. Role of chemical mediators in aquatic interactions across the prokaryote–eukaryote boundary. *J. Chem. Ecol.* 44:1008–21.

Williams, S.C.P. 2014. Gnotobiotics. *Proc. Natl. Acad. Sci. U. S. A.* 111:1661.

Wiltshire, K.H., Kraberg, A., Bartsch, I., Boersma, M., Franke, H.-D., Freund, J., Gebühr, C., Gerdts, G., Stockmann, K. & Wichels, A. 2010. Helgoland Roads, North Sea: 45 years of change. *Estuaries and Coasts.* 33:295–310.

Wolfovicz, I., Baumgarten, S., Voss, P.A., Hambleton, E.A., Voolstra, C.R., Hatta, M. & Guse, A. 2016. *Aiptasia* sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. *Sci. Rep.* 6:32366.

Zaneveld, J.R., McMinds, R. & Vega Thurber, R. 2017. Stress and stability: applying the Anna Karenina principle to animal microbiomes. *Nat. Microbiol.* 2:17121.

Zengler, K. & Palsson, B.O. 2012. A road map for the development of community systems (CoSy) biology. *Nat. Rev. Microbiol.* 10:366–72.

Zheng, D., Liwinski, T. & Elinav, E. 2020. Interaction between microbiota and immunity in health and disease. *Cell Res.* 30:492–506.

Zilber-Rosenberg, I. & Rosenberg, E. 2008. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. *FEMS Microbiol. Rev.* 32:723–35.
Figure 1

Partners forming marine holobionts

They are widespread across the tree of life including all kingdoms (eukaryotes, bacteria, archaea, viruses), and represent a large diversity of potential models for exploring complex biotic interactions across lineages. Plain lines correspond to holobionts referred to in the present manuscript. Dashed lines are examples of potential interactions. Photo credits: Archaeplastida – C. Leblanc, U Cardini; Cryptophyta, Excavata, Amoebozoa, Excavata, Cryptophyta – Roscoff Culture Collection; Stramenopila – C. Leblanc, S. M. Dittami; Alveolata – A. M. Lewis; Rhizaria – F. Not; Haptophyta – A. R. Taylor; Opisthokonta – C. Frazee, NOAA Photo Library; Bacteria – E. Nelson, L. Sycuro, S. M. Dittami; Archaea – National Space Science Data Center, Xiaoyu Xiang; Viruses – M. B. Sullivan et al.
Figure 2

Schematic view of the “Russian Doll” complexity and dynamics of holobionts, according to diverse spatiotemporal scales

The host (blue circles), and associated microbes (all other shapes) including bacteria and eukaryotes that may be inside (i.e. endosymbiotic or outside the host, i.e. ectosymbiotic, are connected by either beneficial (solid orange lines), neutral (solid blue lines) or pathogenic (dashed black lines) interactions respectively. Changes from beneficial or neutral to pathogenic interactions are typical cases of dysbiosis. The different clusters can be illustrated by the following examples: 1, a model holobiont in a stable physiological condition (e.g. in controlled laboratory condition); 2 and 3, holobionts changing during their life cycle or submitted to stress conditions – examples of vertically transmitted microbes are indicated by light blue arrows; 4 and 5, marine holobionts in the context of global sampling campaigns or long-term time series – examples of horizontal transmission of microbes and holobionts are illustrated by pink arrows.
Figure 3

Mind map of key concepts, techniques, and challenges related to marine holobionts

The basis of this map was generated during the Holomarine workshop held in Roscoff in 2018 (https://www.euromarinenetwork.eu/activities/HoloMarine). The size of the nodes reflects the number of votes each keyword received from the participants of the workshop (total of 120 votes from 30 participants). The two main clusters corresponding to predictive modeling and mechanistic modeling, are displayed in purple and turquoise, respectively. Among the intermediate nodes linking these disciplines (blue) “potential use, management” was the most connected.
Impact of emerging methodologies (light green) on the main challenges in marine holobiont research identified in this paper (blue).

Turquoise and purple correspond to the two main clusters of activity identified in Figure 3.