Susceptibility of the Western Honey Bee Apis mellifera and the African Stingless Bee Meliponula ferruginea (Hymenoptera: Apidae) to the Entomopathogenic Fungi Metarhizium anisopliae and Beauveria bassiana

Authors: Omuse, Evanson R., Niassy, Saliou, Wagacha, John M., Ong'amo, George O., G. Lattorff, H. Michael, et al.

Source: Journal of Economic Entomology, 115(1) : 46-55

Published By: Entomological Society of America

URL: https://doi.org/10.1093/jee/toab211
Biological and Microbial Control

Susceptibility of the Western Honey Bee *Apis mellifera* and the African Stingless Bee *Meliponula ferruginea* (Hymenoptera: Apidae) to the Entomopathogenic Fungi *Metarhizium anisopliae* and *Beauveria bassiana*

Evanston R. Omuse,1,2, Saliou Niassy,1,0 John M. Wagacha,2 George O. Ong’amo,2 H. Michael G. Lattorff,1,0 Nkoba Kiatoko,1 Samira A. Mohamed,1 Sevgan Subramanian,1,0 Komivi S. Akutse,1,0 and Thomas Dubois1,3

1International Centre of Insect Physiology and Ecology (icipe), 30772-00100, Nairobi, Kenya, 2School of Biological Sciences, University of Nairobi, 30197-00100, Nairobi, Kenya, and 3Corresponding author, e-mail: tdubois@icipe.org

Abstract

This study assessed the nontarget effect of entomopathogenic fungi on the Western honey bee *Apis mellifera* L. and the African stingless bee *Meliponula ferruginea* Cockrel (Hymenoptera: Apidae). Pathogenicity of five *Metarhizium anisopliae* (ICIPE 7, ICIPE 20, ICIPE 62, ICIPE 69, and ICIPE 78) (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae) and one of *Beauveria bassiana* (ICIPE 284) (Balsamo) Vuillemin (Hypocreales: Cordicipitaceae) isolates were evaluated on bees at 10^8 conidia/ml. Conidial acquisition was evaluated immediately after exposure. *Apis mellifera* acquired more conidia (2.8 x 10^4–1.3 x 10^5 conidia per bee) compared to *M. ferruginea* (1.1 x 10^4–2.3 x 10^4 conidia per bee). In the bioassay with *A. mellifera*, ICIPE 7, ICIPE 20, and ICIPE 69 moderately reduced the survival by 16.9, 17.4, 15.3%, with lethal times LT₁₀ = 7.4, 7.6, 8.1 d and LT₂₅ = 8.7, 10.0, 9.9 d, respectively. The three isolates caused *A. mellifera* mycosis of 11.6–18.5%. None of the isolates had a significant effect on *M. ferruginea*. The tested isolates are nontoxic to bees according to the International Organization of Biological Control (IOBC) classification. However, the effect of ICIPE 7, ICIPE 20, and ICIPE 69 merits further studies on bee colonies, especially those of *A. mellifera*, under field conditions.

Graphical Abstract

Bees provide pollination services and honey	Bioassays to test the safety of biopesticides to bees	Conclusion
Honey bee *Apis mellifera*	Several biopesticides are being developed as alternatives to chemicals in pest management	*Apis mellifera*: Significant susceptibility with ICIPE 7, ICIPE 20 and ICIPE 69
Stingless bee *Meliponula ferruginea*	*Metarhizium anisopliae*: ICIPE 7, ICIPE 20, ICIPE 62, ICIPE 69, ICIPE 78	*Meliponula ferruginea*: Low susceptibility to all isolates
	Beauveria bassiana: ICIPE 284	The tested isolates are nontoxic according the International Organization of Biological Control (IOBC) classification
	Spray tower: Exposure to 10^8 conidia/mL	10-days survival bioassays

© The Author(s) 2021. Published by Oxford University Press on behalf of Entomological Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Bees, principally the Western honey bee *Apis mellifera* L. (Hymenoptera: Apidae: Apini) and stingless bees (Hymenoptera: Apidae: Meliponini), are among the most culturally and economically important insects worldwide, providing essential pollination services to a wide range of flowering plants, thereby contributing to ecological well-being, crop productivity and food security (IPBES 2016). Insects pollinate 75% of world crop species, accounting for 35% of food production (IPBES 2016, Klein et al. 2007) valued at $267–657 billion USD annually (Porto et al. 2020). Additionally, honey bees and stingless bees produce several hive products including honey, wax, cerumen, bee bread, royal jelly, bee venom, and propolis, commonly used in nutritious food, pharmacology, cosmetics, generating income to many beekeepers (Raina 2000, Pasupuleti et al. 2017). During the last decade, apiculture has been growing in Africa and accounts for 10% and 25% of the global production of honey and wax, respectively (Moind 2016). Honey bees and stingless bees exist in several African biodiversity hotspots (Eardley et al. 2009, Anguilet et al. 2015), and increasing interest in meliponiculture of stingless bees is associated with their Afrotropical existence (Eardley and Kwapong 2013, Kiatoko et al. 2016, Yurrita et al. 2017), pollination services (Kajobe 2006, Slaa et al. 2006, Kiatoko et al. 2014), and production of high quality and medicinal honey (Eardley and Kwapong 2013, Souza et al. 2006).

Insect pollination services and beekeeping are at risk owing to several factors, including the heavy applications of broad-spectrum chemical pesticides in response to significant damages inflicted by pests and diseases (Brittain et al. 2010, Sponsler et al. 2019). Impacts of chemical pesticides on nontarget and beneficial insects are well documented (Brittain et al. 2010, Wiest et al. 2011, Ndakidemi et al. 2016), and they partly constitute key drivers to the unprecedented declines of bee pollinators across the world (IPBES 2016, Kumar et al. 2016).

The entomopathogenic fungi *Metarhizium anisopliae* (Metschnikoff) Sorokin and *Beauveria bassiana* (Balsamo) Vuillemin are formulated and used worldwide as biopesticides, and these biopesticides are safer alternatives to chemical pest control based on their persistence in the field and environmental compatibility (Shah and Pell 2003, Maina et al. 2018). During the last two decades, *M. anisopliae* isolates researched at the International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya have been developed into biopesticides, and they are currently applied on 133,000 ha to manage several insect pests in sub-Saharan Africa (Akurse et al. 2020). Currently, *M. anisopliae* ICIPE 7, ICIPE 20, ICIPE 62, ICIPE 69, ICIPE 78, and *B. bassiana* ICIPE 284 isolates are in the pipeline or have been commercialized for the management of several pests (Table 1).

Conidia of entomopathogenic fungi applied on blooming crops may be acquired by forager bees and ultimately carried to their colonies. Laboratory studies on the effect of entomopathogenic fungi on bees have yielded variable results, which may be associated with the tested bee species (Toledo-Hernandez et al. 2016), isolates of entomopathogenic fungi (Espinosa-Ortiz et al. 2011), methods of exposure (Potrich et al. 2018, Colombo et al. 2020) or tested concentrations of entomopathogenic fungi (Conceição et al. 2014). For instance, exposure to some isolates of *M. anisopliae* caused 100% mortality to *A. mellifera* in 10-d bioassays (Bull et al. 2012), and 50.1–94.2% mortality and 40.0–53.0% mortality to the neotropical stingless bees *Tetragonisca angustula* Latreille and *Melipona beecheii* Bennett (Hymenoptera: Apidae) in 20-d bioassays, respectively (Toledo-Hernandez et al. 2016). Similarly, exposure to some isolates of *B. bassiana* caused high mortality in 10-d bioassays with the stingless bee *Melipona scutellaris* Latreille (30.9–79.6%) (Conceição et al. 2014). However, in these bioassays, certain isolates of *B. bassiana* and *M. anisopliae* caused low mortality (<40.0%) to the stingless bees *Scaptotrigona mexicana* Guérin–Méneville (Hymenoptera: Apidae) and *M. beecheii* (Toledo-Hernandez et al. 2016).

The process of registration of fungal-based biopesticides requires the provision of their ecotoxicological test results on vertebrates and nontarget invertebrates. Ecotoxicological dossier of *M. anisopliae* ICIPE 7, ICIPE 62, ICIPE 69, and ICIPE 78 registered in sub-Saharan Africa indicate that they are nontoxic to bees. However, these ecotoxicological results are obtained according to the guidelines of OECD (1998) by testing suboptimal doses (<10⁷ conidia/ml) through oral exposure in short bioassays (<96 hr). In these studies, only *A. mellifera* is used as a model insect, yet the susceptibility of other bees such as stingless bees to these biopesticides may vary significantly and remains unexplored. Entomopathogenic fungi typically kill the target insect within 3–14 d after exposure (Maina et al. 2018) and their toxicity to *A. mellifera* is arguably higher through contact exposure than through oral exposure (Potrich et al. 2018, Colombo et al. 2020).

Therefore, the objective of the present study was to assess the nontarget effect of *M. anisopliae* and *B. bassiana* isolates in the pipeline and already commercialized on *A. mellifera* and *M. ferruginea* through contact exposure to 1 × 10⁷ conidia/ml in 10-d bioassays under laboratory conditions.

Materials and Methods

Fungal Isolates

Five isolates of *M. anisopliae* and one isolate of *B. bassiana* were used in this study (Table 1). Isolates were obtained from icipe where they had been preserved as slant cultures in 10% glycerol at −80°C. Virulence of each isolate was revived by injecting 7th instar larvae of *Galleria mellonella* L. (Lepidoptera: Pyralidae) with 5 μl water containing ≈5,000 conidia followed by 7 d incubation at 25 ± 2°C and 0:24 L:D (light:dark photoperiod). The conidia were harvested, streak-plated on media surfaces, and incubated for 21 d at 25 ± 2°C and 0:24 L:D. Sabouraud dextrose agar (SDA) (Oxoid, Hampshire, UK) and potato dextrose agar (PDA) (Oxoid) were used for *M. anisopliae* and *B. bassiana* isolates, respectively, after being autoclaved at 121°C for 15 min and 15 PSI in a 63 liter autoclave (AMA440, Astell Scientific, Kent, UK). A selective antibiotic agent (0.25 g/liter of streptomycin sulfate) was added to the media (cooled to 45°C) followed by dispensing in 95 mm (diameter) × 15 mm (height) plastic Petri dishes. Inoculated media in Petri dishes were incubated for 21 d at 25 ± 2°C and 0:24 L:D before bioassays.

Preparation of Fungal Suspensions

The viability of each isolate was assessed before bioassays as follows. Conidia were harvested from 21-d-old cultures, transferred into a 25 ml universal bottle containing 10 ml of sterile 0.05% Triton-X-100 (Triton, Darmstadt, Germany), and 4 sterile 1–2 mm (diameter) glass beads, and vortexed for 3 min at 700 rpm to ensure homogeneity. The suspensions were serially diluted (10⁻²) in...
Table 1. Overview of entomopathogenic fungal isolates that were assessed for pathogenicity to *Apis mellifera* and *Meliponula ferruginea*

Fungal isolate	Future target pests	Trade name	Current target pests	Host/substrate	Year	Location
Metarhizium anisopliae	*Amblyomma variegatum*	Mazao TickOH	-	-	1996	Rusinga Island
	Rhipicephalus sp.	Mazao Supreme	-	-	1989	Kinshasa (DR Congo)
	Frankliniella occidentalis	ICIPE 20 Soil	-	*F. occidentalis*	1989	Migori (Kenya)
	Ceratitis sp.	ICIPE 62 Soil	-	*Ceratitis sp.*	1990	Kinshasa (DR Congo)
	S. frugiperda	ICIPE 69 Soil	-	*S. frugiperda*	1990	Kinshasa (DR Congo)
		ICIPE 78 Soil	-	*T. absoluta*	2005	Kinshasa (DR Congo)
		ICIPE 284 Soil	-	*L. huidobrensis*		Kinshasa (DR Congo)

The suspensions were then adjusted to 3 × 10^8 conidia/ml using sterile 0.05% Triton-X-100 and the concentrations were microscopically enumerated using an improved Neubauer hemocytometer (Marienfeld, Lauda-Königshofen, Germany).

Source and In Vitro Maintenance of *Apis mellifera*

Brood frames were obtained from *A. mellifera* colonies maintained in standard Langstroth hives at *icipe* apiaries, Nairobi, Kenya (S 1°13’17.51” E 36°53’45.18”). Colonies were headed by naturally mated queens and were first established to be healthy using colony strength metrics described by Medrzycki et al. (2013) and Delaplane et al. (2013). Six colonies were selected and brood frames containing mature pupae of worker bees (red-eye stage) estimated to emerge in 1–3 d were collected. Frames were placed in modified wooden emerging cages (30 × 5 × 20 cm) and incubated at 0:24 L:D in a 406 liter high precision biological oxygen-demand (BOD) incubator (MIR-554, PHC Holdings Corporation, Tokyo, Japan) at *icipe*. To promote the emergence of bees, incubator temperature was calibrated to 34.5°C, and RH adjusted to 70–80% as suggested by Williams et al. (2013).

Newly emerged adult *A. mellifera* bees were transferred into sleeved Perspex cages (18 × 14 × 14 cm) using a soft camel brush at 24 hr intervals. Each cage received equal numbers of bees from different colonies and was replicated four times for each treatment. Caged bees were provided ad libitum with 50% (w/v) sugar solution and 0.5 g of bee-collected pollen, and maintained at 32°C and 70–80% RH one day before the bioassays. The bioassays were conducted in November 2019 with 30 bees per cage collected from three colonies and repeated in February 2020 with 35 bees per cage collected from the remaining three colonies.

Source and In Vitro Maintenance of *Meliponula ferruginea*

Six colonies of *M. ferruginea* were obtained from the *icipe* meliponary at Nairobi, Kenya, and had originally been sourced from Kakamega forest, Kenya (N 0°0’17”18.00” E 34°51’13.19”). Before selection, each colony (≈3,000 adult bees) was visually checked for the absence of any pathogens and pests, the presence of an egg-laying queen bee, and at least seven brood combs containing eggs, larvae, or pupae. Brood combs with pupae of worker bees projected to emerge within one week were collected and placed in well-ventilated sterile 0.5 liter plastic cages and maintained in the BOD incubator calibrated to 30°C, and 60–70% RH as suggested by Dorigo et al. (2019). Combs were maintained in 0:24 L:D to facilitate the emergence of new adults.

An equal number of newly emerged bees from source colonies were transferred every 24 hr into sleeved Perspex cages using a...
soft camel brush. Caged bees were provided ad libitum with 70% (v/v) honey–water solution and 0.5 g of pollen obtained from *M. ferruginea* colonies. Four replications were made for each treatment and bees were acclimatized to caging conditions (30°C, 60–70% RH and 024 L:D) one day before the bioassays. The bioassays with *M. ferruginea* were carried out in April 2020 with 30 bees per cage collected from three colonies and repeated in July 2020 with 35 bees per cage collected from the remaining three colonies.

Exposure of *Apis mellifera* and *Meliponula ferruginea* to Fungal Isolates

Bees were indirectly exposed to the six fungal isolates alongside the control. Whatman filter papers (18 × 14 cm) were sprayed with 10 ml of either sterile 0.05% Triton-X-100 (control) or isolate (1 × 10⁶ conidia/ml) using a micro-spray tower (Potter Precision Laboratory Spray Tower, Burkard Manufacturing Co., Hertfordshire, England) at a pressure of 10 PSI. Filter papers for the controls were first sprayed, followed by each isolate suspension in four replications. Before and after each spray, the tower spraying chambers, contamination arena, and cuvettes were sterilized with 70% ethanol and rinsed with sterile water. Sprayed filter papers were air-dried for 10 min and introduced in the bottom of the cages. Caged bees were allowed to walk over the filter papers for 10 min. Five bees per cage were randomly sampled for conidial acquisition assessment and the remaining bees were transferred into clean Perspex cages (*A. mellifera*) or 0.5 liter plastic cages (*M. ferruginea*) lined inside with paper towels.

Assessment of Conidial Acquisition and Survival of Fungus-Exposed Bees

Bees for conidial acquisition assessment were suspended singly in 1 ml of sterile 0.05% Triton-X-100 and vortexed for 3 min at 700 rpm. Dislodged conidia were enumerated using an improved Neubauer hemocytometer. The remaining exposed and caged bees were maintained and fed based on the above-described protocols for each bee species. The survival of bees was monitored at 24 hr intervals for 10 d. Dead bees were removed from the cages and surface-sterilized by the passage in 3% sodium hypochlorite for 1 min, followed by 70% ethanol for 3 min, and three times rinsing in sterile water for 1 min. Surface-sterilized cadavers were singly placed in 95 mm (diameter) × 15 mm (height) plastic Petri dish lined inside with moistened filter paper. Cadavers were incubated at 25 ± 2°C in 0:24 L:D and mycosis was recorded from incubated cadavers after 2–7 d postinoculation by observing any growth of fungus on the surface using a microscope. Mortality due to fungus was confirmed through the presence of green- and white-colored mycelium after 2–7 d postinoculation by observing any growth of fungus on the surface using a microscope. Mortality due to fungus was confirmed through the presence of green- and white-colored mycelium. Mortality due to fungus was confirmed through the presence of green- and white-colored mycelium. Mortality due to fungus was confirmed through the presence of green- and white-colored mycelium.

Results

Conidial Acquisition by *Apis mellifera* and *Meliponula ferruginea*

All fungus-exposed bees acquired conidia, while no conidia were detected in the control bees (Table 2). Therefore, controls were omitted from the analysis. *Apis mellifera* acquired significantly more conidia than *M. ferruginea* (χ² = 232.00, df = 1, *P* < 0.0001).

Fungal isolate	*Apis mellifera*	*Meliponula ferruginea*
	Mean (±SE × 10⁴)	Mean (±SE × 10⁴)
Metarhizium anisopliae		
ICIPE 7	8.03 ± 0.01 b	1.85 ± 0.01 a
ICIPE 20	12.97 ± 0.06 c	2.11 ± 0.02 a
ICIPE 62	9.49 ± 0.03 b	2.00 ± 0.03 a
ICIPE 69	7.03 ± 0.01 b	2.28 ± 0.03 a
ICIPE 78	7.25 ± 0.03 b	1.90 ± 0.01 a
ICIPE 284	2.83 ± 0.05 a	1.14 ± 0.01 a
Bacillus bassiana		
ICIPE 75		

Means within columns with the same letters are not significantly different at α = 0.05 according to the Tukey test. For each species, *n* = 40 bees per treatment and replications = 8.

SE = standard error.
For *A. mellifera*, conidial acquisition differed significantly among isolates ($\chi^2 = 98.04, df = 5, P < 0.0001$) but not between experiments ($\chi^2 = 0.34, df = 1, P = 0.56$) or among experiment-isolate interactions ($\chi^2 = 3.70, df = 5, P = 0.60$). Conidial acquisition by *M. ferruginea* was highest when exposed to ICIPE 20 and lowest when exposed to ICIPE 284. On the other hand, for *M. ferruginea*, no significant difference in conidial acquisition was detected among isolates ($\chi^2 = 9.16, df = 5, P = 0.10$), between experiments ($\chi^2 = 0.0016, df = 1, P = 0.97$) or among experiments-isolate interactions ($\chi^2 = 3.45, df = 5, P = 0.63$).

Time-Response Mortality of *Apis mellifera* and *Meliponula ferruginea*

The lethal time-response mortality to 10% (LT$_{10}$) and 25% (LT$_{25}$), and the corresponding fiducial limits and regression slopes of the fungus-exposed caged bees are presented in Table 3. The LT$_{10}$ estimates for *A. mellifera* were shorter in treatments with ICIPE 7, followed by ICIPE 20 and ICIPE 69, and were the shortest in treatments with ICIPE 284. LT$_{25}$ estimates for *A. mellifera* were shortest in treatments with ICIPE 7, followed by ICIPE 20 and ICIPE 69 treatments, and longest in treatments with ICIPE 62, ICIPE 78, and ICIPE 284.

In the bioassays with *M. ferruginea*, LT$_{10}$ estimates were shortest in treatments with ICIPE 7 and ICIPE 69, followed by ICIPE 62, and were the longest in treatments with ICIPE 20, ICIPE 78, and ICIPE 284. However, LT$_{25}$ estimates were the shortest in treatments with ICIPE 69, followed by ICIPE 7, ICIPE 62, and ICIPE 78 treatments, and were the longest in treatments with ICIPE 20 and ICIPE 284.

Postexposure Survival of *Apis mellifera* and *Meliponula ferruginea*

The 10-d postexposure survival of *A. mellifera* and *M. ferruginea* is summarized using the Kaplan–Meier survival curves (Fig. 1). Survival was significantly different between bee species ($\chi^2 = 29.46, df = 1, P < 0.0001$), with overall *A. mellifera* survival (73.5%) being lower than overall *M. ferruginea* survival (85.5%) in all bioassays.

Fungal Mycosis on *Apis mellifera* and *Meliponula ferruginea*

Mycosis of fungus-exposed *A. mellifera* and *M. ferruginea* is presented in Fig. 2. Mycosis was relatively low in fungus-exposed *A. mellifera* (<18.5%) and *M. ferruginea* (<11.7%), and no significant differences were detected in these isolates after exposure to ICIPE 62, ICIPE 78, and ICIPE 284. On the other hand, for *M. ferruginea*, no significant differences were detected in the survival between bioassays ($\chi^2 = 37.8, df = 3, P = 0.07$) or among treatments ($\chi^2 = 7.21, df = 6, P = 0.30$) or their interactions ($\chi^2 = 1.03, df = 6, P = 0.98$). Survival of fungus-exposed *M. ferruginea* ranged between 80.9–89.1%, while survival of fungus-free *M. ferruginea* was 90.9%.

| Table 3. Estimates of lethal times (LT$_{10}$, LT$_{25}$) of fungal isolates (1 x 108 conidia/ml) against *Apis mellifera* and *Meliponula ferruginea* |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Fungal isolate | LT$_{10}$ | LT$_{25}$ | LT$_{10}$ | LT$_{25}$ |
| Beauveria bassiana | 6.2 ± 0.1 | 8.9 ± 0.1 | 12.7 ± 1.3 | 17.1 ± 1.7 |
| Metarhizium anisopliae | 5.0 ± 0.1 | 7.6 ± 0.1 | 10.0 ± 0.1 | 12.7 ± 1.3 |
| ICIPE 7 | 4.0 ± 0.1 | 6.0 ± 0.1 | 9.0 ± 0.1 | 11.7 ± 1.3 |
| ICIPE 20 | 4.0 ± 0.1 | 6.0 ± 0.1 | 9.0 ± 0.1 | 11.7 ± 1.3 |
| ICIPE 62 | 4.0 ± 0.1 | 6.0 ± 0.1 | 9.0 ± 0.1 | 11.7 ± 1.3 |
| ICIPE 69 | 4.0 ± 0.1 | 6.0 ± 0.1 | 9.0 ± 0.1 | 11.7 ± 1.3 |
| ICIPE 78 | 4.0 ± 0.1 | 6.0 ± 0.1 | 9.0 ± 0.1 | 11.7 ± 1.3 |
| ICIPE 284 | 4.0 ± 0.1 | 6.0 ± 0.1 | 9.0 ± 0.1 | 11.7 ± 1.3 |

αProbit regression model ± standard error (SE). βFL = fiducial limits.
mycosed insects were recorded in the controls. No significant differences in mycosis between bioassays with A. mellifera ($\chi^2 = 0.61$, df = 1, $P = 0.44$) or M. ferruginea ($\chi^2 = 1.26$, df = 1, $P = 0.26$) were observed. However, significant differences in mycosis of A. mellifera were detected among isolates ($\chi^2 = 39.21$, df = 5, $P < 0.0001$), with ICIPE 7 and ICIPE 20 causing the lowest mycosis, followed by ICIPE 69, while ICIPE 62, ICIPE 78, and ICIPE 284 caused the lowest mycosis. In bioassays with M. ferruginea, no significant differences in mycosis were detected among isolates ($\chi^2 = 5.59$, df = 5, $P = 0.23$). None of M. ferruginea exposed to ICIPE 284 exhibited mycosis.

Correlation of Conidial Acquisition with Pathogenicity of Fungi

The LT$_{10}$ estimates for fungus-exposed bees were correlated with conidial acquisition. In bioassays with A. mellifera, conidial acquisition and LT$_{10}$ had a strong negative correlation in treatment with ICIPE 69 ($R = -0.84, P = 0.009$), weak negative correlations in treatments with ICIPE 7 ($R = -0.18, P = 0.67$), ICIPE 20 ($R = -0.36, P = 0.38$), ICIPE 62 ($R = -0.27, P = 0.52$), and ICIPE 78 ($R = -0.36, P = 0.38$), and a weak positive correlation in treatments with ICIPE 284 ($R = 0.29, P = 0.49$). Conversely, conidial acquisition and mycosis had strong positive correlations in treatments with ICIPE 7 ($R = 0.89, P = 0.03$) and ICIPE 20 ($R = 0.84, P = 0.009$), but weak positive correlations in treatments with ICIPE 69 ($R = 0.61, P = 0.11$), ICIPE 62 ($R = 0.04, P = 0.93$), ICIPE 78 ($R = 0.09, P = 0.84$), and ICIPE 284 ($R = 0.05, P = 0.90$).

In bioassays with M. ferruginea, conidial acquisition in treatments with ICIPE 69 correlated strongly and positively with mycosis ($R = 0.78, P = 0.023$) and weakly and negatively with LT$_{10}$ ($R = -0.53, P = 0.18$). No significant correlations of conidial acquisition with LT$_{10}$ were confirmed in treatments with ICIPE 7 ($R = -0.43, P = 0.29$), ICIPE 20 ($R = -0.47, P = 0.24$), ICIPE 62 ($R = -0.18, P = 0.67$), ICIPE 78 ($R = -0.01, P = 0.97$), and ICIPE 284 ($R = 0.14, P = 0.74$). Similarly, no significant correlations of conidial acquisition with mycosis were confirmed in treatments with ICIPE 7 ($R = 0.50, P = 0.21$), ICIPE 20 ($R = 0.45, P = 0.27$), ICIPE 62 ($R = 0.42, P = 0.30$), and ICIPE 78 ($R = 0.03, P = 0.95$).

Discussion

Entomopathogenic fungi are promising biocontrol agents against several devastating pests (Shah and Pell 2003, Maina et al. 2018, Akutse et al. 2020). The commercialized entomopathogenic fungi used in this study were considered safe according to their ecotoxicological dossiers, which were obtained in 48-hr oral bioassays with A. mellifera incubated at 25 ± 2°C and 50–70% RH. However, their effect on A. mellifera for a longer duration and through contact exposure under bee hive simulated conditions (30 ± 2°C, 60–80% RH) remained unknown. Besides, assessment of toxicity on stingless bees is not part of registration requirements. The present study compared the effect of fungal-based biopesticides under development and already commercialized on key African insect pollinators, A. mellifera, and M. ferruginea, under laboratory conditions.

The efficacy of an entomopathogenic fungus is determined by its ability to adhere, germinate, penetrate, and colonize the body of the host insect (Maina et al. 2018). The behavior of insects may determine the actual sites of adherence and penetration (Butt and Goettel 2000). In this study, we considered the realistic situation where bees visit flowers of crops sprayed with entomopathogenic fungi and therefore may be exposed through conidial adhesion on tarsi using inoculated filter paper (Butt and Goettel 2000). Both A. mellifera and M. ferruginea acquired conidia (1.1 × 104–1.3 × 105 conidia/bee) when exposed for 10 min to surfaces sprayed with 1 × 106 conidia/ml of isolates of M. anisopliae and B. bassiana. The tested concentration used in the study is considered safe according to their ecotoxicological dossiers, which were obtained in 48-hr oral bioassays with A. mellifera incubated at 25 ± 2°C and 50–70% RH. However, their effect on A. mellifera for a longer duration and through contact exposure under bee hive simulated conditions (30 ± 2°C, 60–80% RH) remained unknown. Besides, assessment of toxicity on stingless bees is not part of registration requirements. The present study compared the effect of fungal-based biopesticides under development and already commercialized on key African insect pollinators, A. mellifera, and M. ferruginea, under laboratory conditions.

In field application, commercialized entomopathogenic fungi may be formulated at a higher concentration (1 × 107 conidia/ml).
Fig. 2. Mycosis of bees after 10 d of exposure to 1 × 10^8 conidia/ml of *Metarhizium anisopliae* (ICIPE 7, ICIPE 20, ICIPE 62, ICIPE 69, ICIPE 78), and *Beauveria bassiana* (ICIPE 284) isolates. Error bars represent the standard errors. For each species, different letters above error bars indicate significant differences in mycosis (P < 0.05) according to Tukey.

therefore, collected more conidia than *M. ferruginea*. Although with no direct reference to *M. ferruginea*, Kajobe (2006) observed that *A. mellifera* collects more and diverse pollen grains than the stingless bees *M. bocaneci* and *M. nebulata*, and he indicated such differences could be correlated to their morphological variability such as body size. Generally, an *A. mellifera* worker bee has a total body length of 14.4 mm (surface area: 651 mm^2^) (Adeoye et al. 2020) while a *M. ferruginea* worker bee has a total body length of 7.5 mm (surface area: 177 mm^2^) (Eardley 2004), and this morphological variability could have accounted for the observed difference in conidial acquisition between the two bee species.

Unlike *M. ferruginea*, conidial acquisition by *A. mellifera* significantly differed among isolates, and this variability could be ascribed to conidial hydrophobicity, surface attachment cues such as adhesins in *Metarhizium* spp. (Liu et al. 2003, Mora et al. 2017) and lectin-binding proteins in *Beauveria* spp. (Wanchoo et al. 2009). Conidia of *M. anisopliae* are larger (8.5 µm length and 2.8 µm width) than conidia of *B. bassiana* (2.1–2.6 µm diameter) (Liu et al. 2003) and, therefore, the conidia of *M. anisopliae* were readily collected by the bees, especially *A. mellifera*. Additionally, conidial attachment is dependent on the fungus-specific cuticular composition of the exposed insect such as hydrocarbon epitopes (Greenfield et al. 2014), and the lack of variations in conidial acquisition indicates that *M. ferruginea* probably lacks these cues for the tested isolates.

A detected reduction in the survival of fungus-exposed *A. mellifera* can be linked to the caging of small groups of bees under laboratory conditions. Being social insects, bees caged in small groups may not express adequate allogrooming, which is normally present in their natural setting, and this may have artificially reduced their survival due to fungal infection. Alves et al. (1996) confirmed that confinement of small groups of *A. mellifera* worker bees excluded from their queen under artificial conditions renders them more stressful and consequently more vulnerable to *B. bassiana* and *M. anisopliae*.

The survival of both *A. mellifera* and *M. ferruginea* was not statistically different between the first and second bioassays, indicating that the susceptibility of bees at the seasons at which they were collected had no impact. Compared to the control (11.4% mortality), ICIPE 7, ICIPE 20, and ICIPE 69 caused a significant reduction in the survival of *A. mellifera* by 15.3–17.4%. Our findings agree with studies by Espinosa-Ortiz et al. (2011) demonstrating low mortality (<12.7%) of caged *A. mellifera* after 10 d of exposure to 1 × 10^7 conidia/ml of certain isolates of *M. anisopliae* and *B. bassiana*. But et al. (1994) observed that direct spraying *A. mellifera* with two virulent isolates of *M. anisopliae* at low concentration (1 × 10^7 conidia/ml) resulted in low mortality (29–35%), however, when sprayed with high concentration (1 × 10^9 conidia/ml), high mortality (>94.0%) with short LT_{90} (4.4–8.5 d) and almost 100% mycosis were recorded in 14-d bioassays. Potrich et al. (2018) exposed *A. mellifera* workers on smooth surfaces inoculated with *M. anisopliae* (1.0 × 10^6 conidia/ml), which resulted in a reduction of survival to 0% 128 hr postexposure. Colombo et al. (2020) also reported a significant reduction in *A. mellifera* survival after exposure to surfaces sprayed with 1 × 10^9 conidia/ml of *M. anisopliae* (12.5%) and *B. bassiana* (50.0%) in 6-d bioassays.

The tested isolates did not affect the survival of *M. ferruginea*. To our knowledge, this is the first report on the effect of fungal biopesticides on an Afrotropical stingless bee, specifically *M. ferruginea*. However, previous studies on 10–20-d bioassays with neotropical stingless bees indicated that some isolates of *B. bassiana* and *M. anisopliae* (1 × 10^8–1 × 10^9 conidia/ml) caused low mortality (<40.0%) to *M. beecheii*, *S. mexicana*, and *T. angustula* (Toledo-Hernandez et al. 2016) and significant survival reduction (<69.1%) of *M. scutellaris* (Conceição et al. 2014).

Generally, *M. ferruginea* was less susceptible to the isolates compared to *A. mellifera*. Although we could attribute this difference to conidial acquisition between the two species, their susceptibility to entomopathogenic fungi can also be linked to several other factors. For instance, Bull et al. (2012) and Hamiduzzaman et al. (2012) interrelated the low susceptibility of *A. mellifera* to *M. anisopliae* and *B. bassiana* with the upregulation of immune-related antimicrobial peptide genes including *abaecin*, *defensin-2*, and *bymenoptyaecin*.
Bull et al. (2012) demonstrated that young (nursing) bees are very tolerant of fungi due to differential expression of 35 related antimicrobial genes compared to old (forager) bees, which expressed only 2 of these genes.

Conidial acquisition strongly correlated with LT$_{10}$ and mycosis of A. mellifera after exposure to ICIPE 7, ICIPE 20, and ICIPE 69, and with mycosis of M. ferruginea after exposure to ICIPE 69. The effect of these isolates could be attributed to their genetics and general efficacy (Akutse et al. 2020, Gao et al. 2020). Reportedly, the generalist entomopathogenic fungi commonly possess a couple of virulence genes such as subtilisin-like Pr1 genes (Gao et al. 2020). In particular, ICIPE 7, ICIPE 20, and ICIPE 69 are highly pathogenic to diverse pest groups, which could be related to the possession of chitinase chs2 and chs4 genes, and additional genes for toxin production and conidiation (Niaissy et al. 2013).

Under laboratory conditions, we observed that the mortality caused by isolates did not exceed 17.4% for A. mellifera or 11.0% for M. ferruginea. However, in field conditions, the effects of the entomopathogenic fungi on bees would be lower compared to the observed values in the laboratory for the following reasons. First, the efficacy of the fungi is likely to be reduced by several adverse environmental conditions (Abbaszadeh et al. 2011). Secondly, honey bees and stingless bees inherently regulate their central nest temperatures to a typical range of 32–36°C (Jarimi et al. 2020) and 31–32°C (Jones and Oldroyd 2006), respectively, and these temperatures may restrict the performance of most entomopathogenic fungi (Alves et al. 1996, Davidson et al. 2003). Thirdly, these bees are social insects with sophisticated grooming and hygienic behaviors to detect and remove unusual materials, including fungus-related materials from other bees and eventually from the hives (Gliński and Buczek 2003). Studies investigating the impact of Metarhizium spp., Beauveria spp., and Hirsutella thompsonii Fischer (Hypocreales: Ophiocordycipitaceae) in the bee hive showed that they did not cause any lethal effect on adult A. mellifera, their broods, queen fecundity, or colony development (Kanga et al. 2002, 2009; Meikle et al. 2007, 2008).

Our findings from contact toxicity in 10-d bioassays with A. mellifera and M. ferruginea exposed to 1 x 108 conidia/ml show that the tested isolates are non-toxic (<25% mortality) to bees according to the IOBC classification (Sterk et al. 2000). Therefore, these isolates can be safely manipulated in the management of pests of pollinator-dependent crops. We consider high conidial acquisition coupled with laboratory conditions or cage membership may have stressed the bees, and probably accounted for the detectable effect of ICIPE 7, ICIPE 20, and ICIPE 69 on A. mellifera. Therefore, the three isolates may need a further assessment on hive colonies where bees are arguably less stressed. The interactions of bee pollinators and biopesticides can also be limited by careful timing of biopesticide application techniques to avoid peak foraging periods and/or improving ‘lure and infect’ application techniques.

Acknowledgments

We appreciate the assistance of Joseph W. Kilonzo, James N. Kimani, and Givnian N. Onsomo for providing and taking care of the A. mellifera and M. ferruginea colonies for this research. This work received financial support from the German Federal Ministry for Economic Cooperation and Development (BMZ) commissioned and administered through the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ); Fund for International Agricultural Research (FIA), grant number 17.7860.4-001; Norwegian Agency for Development Cooperation, the Section for Research, Innovation, and Higher Education grant number RAf-3058 KEN-18/0005; UK’s Foreign, Commonwealth and Development Office (FCDO); the Swedish International Development Cooperation Agency (Sida); the Swiss Agency for Development and Cooperation (SDC); the Federal Democratic Republic of Ethiopia; and the Government of the Republic of Kenya.

References Cited

Abbaszadeh, G., M. K. Dhillon, C. Srivastava, and R. D. Gautam. 2011. Effect of climatic factors on bioefficacy of biopesticides in insect pest management. Biopest. Int. 7: 1–14.

Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265–267.

Adeoye, O. T., O. R. Pitan, K. O. Ademolu, and A. E. Ayandokun. 2020. Morphometric studies on Nigerian honeybee Apis mellifera adansonii L. workers of rainforest and Sudan agro-ecological zones of Nigeria. Int. J. Trop. Insect Sci. 41: 1255–1263.

Akutse, K. S., S. Subramaniam, N. K. Maniania, and T. Dubois. 2020. Biopesticide research and product development in Africa for sustainable agriculture and food security – experiences from the International Centre of Insect Physiology and Ecology (ICIPE). Front. Sustain. Food Syst. 4: 563016.

Alves, S. B., L. C. Marchini, R. M. Pereira, and L. L. Baumgarten. 1996. Effects of some insect pathogens on the Africanized honey bee, Apis mellifera L. (Hym., Apidae). J. Appl. Entomol. 120: 559–564.

Anguillet, E. C. F., B. K. Nguyen, T. B. Ndng, É. Haubrueg, and F. Francis. 2015. Meliponina and Apini in Africa (Apidae: Apinae): a review on the challenges and stakes bound to their diversity and their distribution. Biotechnol. Agron. S. Environ. 19: 382–391.

Bates, D., M. Macchler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67: 1–48.

Brittain, C. A., M. Vighi, R. Bommarco, J. Settele, and S. G. Potts. 2010. Impacts of a pesticide on pollinator species richness at different spatial scales. Basic Appl. Ecol. 11: 106–115.

Bull, J. C., E. V. Ryabov, G. Prince, A. Mead, C. Zhang, L. A. Baxter, J. K. Pell, J. L. Osborne, and D. Chandler. 2012. A strong immune response in young adult honey bees masks their increased susceptibility to infection compared to older bees. PLoS Pathog. 8: 1–14.

Butt, T. M., and M. S. Goettel. 2000. Bioassays of entomogenous fungi, pp. 141–195. In A. Navon and K. R. S. Ascher (eds.), Bioassays entomopathogenic microbes nematodbs. CABI Publishing, New York, U.S.A.

Butt, T. M., L. Ibrahim, B. V. Ball, and S. J. Clark. 1994. Pathogenicity of the entomogenous fungi Metarhizium anisopliae and Beauveria bassiana against crucifer pests and the honey bee. Biocontrol Sci. Technol. 4: 207–214.

Colombo, F. C., R. M. A. Maciel, R. Abati, F. Raulino-Domanski, S. J. Longhi, F. M. Costa-Maia, E. de Souza Vismara, E. R. Lozano, and M. Potrich. 2020. Do Beauveria bassiana and Metarhizium anisopliae affect worker survival and the production of Africanized Apis mellifera queens? J. Apic. Res. 60: 260–269.

Conceição, P., R. C. Pereira, A. V. Souza, G. Sodré, G. Ribeiro, C. A. De Carvalho, and C. M. D. L. Neves. 2014. Susceptibility of Melipona scutellaris (Latreille, 1811) (Hymenoptera: Apidae) worker bees to Beauveria bassiana (Bals.) Vuill. Sociobiology, 61: 184–188.

Davidson, G., K. Phelps, K. D. Sunderland, J. K. Pell, B. V. Ball, K. E. Shaw, and D. Chandler. 2003. Study of temperature-growth interactions of entomopathogenic fungi with potential for control of Varroa destructor (Acari: Mesostigmata) using a nonlinear model of poikilotherm development. J. Appl. Microbiol, 94: 816–825.

Delaplane, K. S., J. Van Der Steen, and E. Guzman-Novoa. 2013. Standard methods for estimating strength parameters of Apis mellifera colonies. J. Apic. Res. 52: 1–12.

Dorigo, A. S., A. S. Rosa-Fontana, H. M. Soares-Lima, J. S. Galaschi-Teixeira, R. C. F. Nocelli, and O. Malaspina. 2019. In vitro larval rearing protocol
for the stingless bee species Melipona scutellaris for toxicological studies. PLoS One. 14: e0213109.

Earley, C. D. 2004. Taxonomic revision of the African stingless bees (Apoidea: Apinae: Meliponini). Afr. Plant Prot. 10: 64–96.

Earley, C., and P. Kwapan. 2013. Taxonomy as a tool for conservation of African stingless bees and their honey, pp. 261–268. In P. Vit, et al. (ed.), Pot-honey A leg. stingless bees. Springer, New York, USA.

Earley, C. D., M. Gikungu, and M. P. Schwarz. 2009. Bee conservation in sub-Saharan Africa and Madagascar: diversity, status and threats. Apidologie. 40: 355–366.

Ekeli, S., S. Dimbi, and N. K. Maniania. 2007. The role of entomopathogenic fungi in the integrated management of fruit flies (Diptera: Tephritidae) with emphasis on species occurring in Africa, pp. 239–274. In E. Sunday et al. (eds.), Use entomopathogenic fungi in biological pest management. Research Signpost, Kerala, India.

Espinoza-Ortiz, G. E., J. Lara-Reyna, G. Otero-Colina, and R. A. R. Valdez-Carrasco. 2011. Susceptibility of larval, pupal and adult honey bees to isolates of Beauveria bassiana (Bals.) Vuill., Metarhizium anisopliae (Sorokin) and Paecilomyces fumosoroseus (Wize). Interdisciencia 36: 148–152.

Gao, B., J. Y. N. Mou, S. M. Tong, S. H. Ying, and M. G. Feng. 2020. Subtilisin-like Pr1 proteases marking the evolution of pathogenicity in a wide-spectrum insect-pathogenic fungi. Virulence. 11: 363–380.

Gliński, Z., and K. Buczek. 2003. Response of the Apoidea to fungal infectious. Apacta. 38: 183–189.

Greenfield, B. P., A. M. Lord, E. Dudley, and T. M. Butt. 2014. Conidia of the insect pathogenic fungus, Metarhizium anisopliae, fail to adhere to mosquito larval cuticle. R. Soc. Open Sci. 1: i140193.

Hamiduzzaman, M. M., A. Sinia, E. Guzman-Novoa, and P. H. Goodwin. 2012. Entomopathogenic fungi as potential biocontrol agents of the ectoparasite mite, Varroa destructor, and their effect on the immune response of honey bee (Apis mellifera L.). Invertebr. Pathol. 111: 237–243.

Hlána, B. L. 2020. ecotox: a package for analysis of ecotoxicology. R package version 1.4.2. Available from https://cran.r-project.org/package=ecotox.

Hothorn, T., F. Bretz, and P. Westfall. 2008. Simultaneous inference in general parametric models. The R package multcomp. Version 1.4-14. Biometrical J. 50: 346–363.

IPBES Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 2016. The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) on pollinators, pollination and food production. IPBES, Bonn, Germany.

Jarimi, H., E. Tapia-Brito, and S. Riff. 2020. Field trials using the fungal pathogen, Metarhizium anisopliae (Sorokin) and Paecilomyces fumosoroseus (Wize). Interdisciencia 36: 148–152.

Kang, L. H., B. F. C. Colombo, F. G. Tedesco, and A. de Gouvea. 2018. Laboratory evaluation of entomopathogenic fungi, Metarhizium anisopliae and Metarhizium carpophilus against Varroa destructor, a honey bee parasitoid. J. Apic. Res. 57: 356–363.

Kumar, S., P. C. Joshi, P. Nath, and V. K. Singh. 2018. Impacts of insecticides on pollinators of different food plants. Entomol. Ornithol. Herpetol. 7: 1–6.

Lenth, R. V. 2015. lsmeans: least-squares means. The R package, version 2.30-0. J. Stat. Softw. 69: 1–33.

Liu, H., M. Skinner, M. Brownbridge, and B. L. Parker. 2003. Characterization of Beauveria bassiana and Metarhizium anisopliae isolates for management of tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae). J. Invertebr. Pathol. 82: 139–147.

Maina, U. M., I. B. Galadima, F. M. Gambo, and D. Zakaria. 2018. A review on the use of entomopathogenic fungi in the management of insect pests of field crops. J. Entomol. Zoool. Stud. 6: 27–32.

Medrzycki, P., H. Giffard, P. Aupinel, L. P. Belzunces, M. P. Chauzat, C. Claßen, M. E. Colin, T. Dupont, V. Girolami, et al. 2013. Standard methods for toxicology research in Apis mellifera. J. Apic. Res. 52: 1–61.

Meikle, W. G., G. Mercader, N. Holst, C. Canssen, and V. Girod. 2007. Duration and spread of an entomopathogenic fungus, Beauveria bassiana (Deuteromycota: Hypocreales) used to treat Varroa mites (Acar: Varroidae) in honey bee (Hymenoptera: Apidea) hives. J. Econ. Entomol. 100: 1–10.

Meikle, W., G. Mercader, N. Holst, C. Canssen, W. G. Meikle, G. Mercader, N. Holst, C. Canssen, and V. Girod. 2008. Impact of a treatment of Beauveria bassiana (Deuteromycota: Hypocreales) on honeybee (Apis mellifera) colony health and on Varroa destructor mites (Acar: Varroidae). Apidologie. 39: 247–259.

Moinde, J. 2016. The status and future prospects of honeybee production in Africa. Bull. Anim. Heal. Prod. Africa. 64: 159–182.

Mora, M. A. E., C. A. Castillo, and M. E. Fraga. 2017. Classification and infection mechanism of entomopathogenic fungi. Arq. Inst. Biol. 84: 1–10.

Ndakidemi, B., K. Mtei, and P. A. Ndakidemi. 2016. Impacts of synthetic and botanical pesticides on beneficial insects. Agric. Sci. 07: 364–372.

Niassy, S., N. K. Maniania, S. Subramanian, L. M. Gitonga, D. M. Mburu, D. Masiga, and S. Ekesi. 2012. Selection of promising fungical biological control agent of the western flower thrips Frankliniella occidentalis (Pergande). Lett. Appl. Microbiol. 54: 487–493.

Niassy, S., S. Subramanian, S. Ekesi, J. L. Bargul, J. Villinger, and N. K. Maniania. 2013. Use of Metarhizium anisopliae chitinase genes for genotyping and virulence characterization. Biomed. Res. Int. 2013: 465213.

OECD (Organisation for Economic Cooperation and Development. 1998. Test no. 213: honey bee, acute oral toxicity test, OECD guideline for the testing of chemicals, section 2. OECD Publishing, Paris, France.

Pasupuleti, V. R., L. Sammugam, N. Ramesh, and S. H. Gan. 2017. Honey, propolis, and royal jelly: a comprehensive review of their biological ac-

Pottich, M., R. T. L. d. Silva, F. M. C. Maia, E. R. Lozano, R. M. Rossi, F. C. Colombo, F. G. Tedesco, and A. de Gouvea. 2018. Effect of entomopathogens on Africanized Apis mellifera L. (Hymenoptera: Apidae). Rev. Bras. Entomol. 62: 23–28.

Putra, E. R., and L. Kinasih. 2013. Efficiency of local Indonesia honey bees (Apis cerana L.) and stingless bee (Trigona iridipennis) on tomato (Lycopersicon esculentum Mill.) pollination. Pakistan J. Biol. Sci. 17: 86–91.

Quesada-Moraga, E., A. Ruiz-Garcia, and C. Santiago-Alvarez. 2006. Laboratory evaluation of entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae against puparia and adults of Ceratitis capitata (Diptera: Tephritidae). J. Econ. Entomol. 99: 1935–1966.

R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Raina, S. K. 2000. The economics of apiculture and sericulture modules for income generation in Africa. ICPE, Nairobi, Kenya.

Shah, P. A., and J. K. Pell. 2003. Entomopathogenic fungi as biological control agents. Appl. Environ. Microbiol. 61: 413–423.
Slaa, E. J., L. A. S. Chaves, K. S. Malagodi-Bragac, and F. E. Hofsteded. 2006. Stingless bees in applied pollination: practice and perspectives. Apidologie. 37: 293–315.

Souza, B. A., D. W. Roubik, O. M. Barth, T. A. Heard, E. Enríquez, C. Carvalho, J. Villas-Bôas, L. Marchini, J. C. Locatelli, et al. 2006. Composition of stingless bee honey: setting quality standards. Interciencia 31: 867–875.

Sponsler, D. B., C. M. Grozinger, C. Hitaj, M. Rundlöf, C. Botías, A. Code, E. V. Lonsdorf, A. P. Melathopoulos, D. J. Smith, S. Suryanarayanan, et al. 2019. Pesticides and pollinators: a socioecological synthesis. Sci. Total Environ. 662: 1012–1027.

Sterk, G., F. Heuts, N. Merck, J. Bock, and N. V. Biobest. 2000. Sensitivity of nontarget arthropods and beneficial fungal species to chemical and biological plant protection products: results of laboratory and semi–field trials, pp. 306–313. In 1st international symposium on biological control of arthropods. USDA Forest Service FHTET, Honolulu, USA.

Therneau, T. M. 2020. coxme: mixed effects Cox models. R package version 2.2-16. Available from https://CRAN.R-project.org/package=coxme.

Therneau, T. M., and T. Lumley. 2020. survival: survival analysis. R package version 3.2-3. Available from https://cran.r-project.org/package=survival.

Toledo-Hernandez, R. A., J. Ruiz-Toledo, J. Toledo, and D. Sanchez. 2016. Effect of three entomopathogenic fungi on three species of stingless bees (Hymenoptera: Apidae) under laboratory conditions. J. Econ. Entomol. 109: 1015–1019.

Wanchoo, A., M. W. Lewis, and N. O. Keyhani. 2009. Lectin mapping reveals stage-specific display of surface carbohydrates in in vitro and haemolymph-derived cells of the entomopathogenic fungus (Beauveria bassiana). Microbiology. 155: 3121–3133.

Wiest, L., A. Buleté, B. Giroud, C. Fratta, S. Amic, O. Lambert, H. Poulisuen, and C. Arnaudguilhem. 2011. Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection. J. Chromatogr. A 1218: 5741–5756.

Williams, G. R., C. Alaux, C. Costa, T. Csáki, V. Doublet, I. Fries, R. Kuhn, D. P. McMahon, P. Medrzycki, et al. 2013. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. J. Apic. Res. 1: 1–36.

Yurrita, C. L., M. A. Ortega-Huerta, and R. Ayala. 2017. Distributional analysis of Melipona stingless bees (Apidae: Meliponini) in Central America and Mexico: setting baseline information for their conservation. Apidologie. 48: 247–258.