A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase

Alina Stein,* Dongping Chen,* Nico V. Igareta, Yoann Cotelle,* Johannes G. Rebelein,* and Thomas R. Ward*

ABSTRACT: Artificial metalloenzymes result from anchoring a metal cofactor within a host protein. Such hybrid catalysts combine the selectivity and specificity of enzymes with the versatility of (abiotic) transition metals to catalyze new-to-nature reactions in an evolvable scaffold. With the aim of improving the localization of an arylsulfonamide-bearing iridium-pianostool catalyst within human carbonic anhydrase II (hCAII) for the enantioselective reduction of prochiral imines, we introduced a covalent linkage between the host and the guest. Herein, we show that a judiciously positioned cysteine residue reacts with a p-nitropicolinamide ligand bound to iridium to afford an additional sulfonamide covalent linkage. Three rounds of directed evolution, performed on the dually anchored cofactor, led to improved activity and selectivity for the enantioselective reduction of harmaline (up to 97% ee (R) and >350 turnovers on a preparative scale). To evaluate the substrate scope, the best hits of each generation were tested with eight substrates. X-ray analysis, carried out at various stages of the evolutionary trajectory, was used to scrutinize (i) the nature of the covalent linkage between the cofactor and the host as well as (ii) the remodeling of the substrate-binding pocket.

INTRODUCTION

Artificial metalloenzymes (ArMs) expand the repertoire of biocatalyzed reactions.1–10 ArMs combine attractive features of organometallic catalysts—such as broad substrate scope and large reaction repertoire—with characteristics of enzymes, including high turnover numbers, unrivalled stereoselectivity, and biocompatibility. Such hybrid catalysts result from the incorporation of an abiotic metal cofactor within a protein.11–16 Four distinct anchoring strategies have been pursued to date: covalent,17–19 supramolecular,20–22 dative,23–25 and metal substitution.26–28 As the “repurposed active site” seldom snugly matches the structure of the cofactor-substrate complex, the cofactor is poorly localized, potentially limiting the effect of mutations on the catalytic performance of ArMs.29 With the aim of firmly localizing an abiotic cofactor, several groups have engineered additional interactions between the cofactor and the host protein, ultimately leading to improved activities and selectivities for ArMs based on myoglobin,30,31 LmrR,32–35 streptavidin,36 etc.

To complement our efforts centered around streptavidin-based ArMs, our group has reported the use of human carbonic anhydrase II (hCAII) as a host protein for the assembly and optimization of an artificial transfer hydrogenase37–39 (ATHase hereafter) and artificial metathase.40 hCAII provides an attractive scaffold due to its monomeric globular structure (30 kDa), high affinity for aromatic sulfonamides, and large funnel-shaped hydrophobic access to the active site.41,42 Thanks to its monomeric nature, hCAII can readily be displayed on Escherichia coli’s outer membrane, significantly simplifying the ArM’s assembly and the whole-cell screening procedure. In a previous study, we identified cofactor 1 (Figure 1a) as a promising cofactor for the transfer hydrogenation using wild-type hCAII (hCAIIWT) as a protein scaffold.39 Enantiopure amines represent attractive targets both as pharmaceutical ingredients and agrochemicals.43–46 Following a seminal report in 2011,47 imine reductases have firmly highlighted their versatility for the production of enantiopure amines.48–51 These complement homogeneous catalysts for the reduction of prochiral enamines and imines.52–54 Capitalizing on our previous efforts in ATHases, we set out to introduce a covalent anchor between the IrCp* cofactor and hCAII. We hypothesized that the resulting firm localization of the cofactor may positively affect both the turnover numbers (TONs) and the stereoselectivity of the resulting ATHase.

Received: July 8, 2021
Published: November 11, 2021
Building on the abundant literature covering ligation of cysteines with electrophiles including maleimides, nitro pyridines, halogenoalkanes, alpha-halocarbonyls, Mukaiyama reagents, and sulfones, we envisioned engineering a suitably positioned cysteine residue that would undergo a nucleophilic addition on the cofactor bearing an electrophilic moiety. Herein, we report on our efforts to design and evolve an ATHase equipped with a dual-anchoring system.

DESIGN OF A DUAL-ANCHORING STRATEGY FOR CARBONIC ANHYDRASE

Building on our previous hCAII-based ATHase, the requirements for the cofactor design were set as follows: (i) an arylsulfonamide moiety for anchoring to hCAII, (ii) an ethyl spacer between the anchor and the IrCp* moiety, (iii) a picolinamide chelate for increased transfer hydrogenation activity, and (iv) an electrophilic substituent on the pyridine, susceptible to nucleophilic attack by a suitably positioned cysteine (Figure 1). We envisioned that cofactor 2 would efficiently bind to hCAII thanks to the arylsulfonamide linker and would be further anchored via a nucleophilic aromatic substitution (SNAr) with a suitably positioned cysteine residue present in the protein vestibule (Figure 1c). Moreover, we hypothesized that the SNAr may further increase the activity of the IrCp* picolinamide complex by increasing the electron-donating ability of the ligand. Cofactor 2 was synthesized in two steps from commercially available starting materials (Scheme S1). Next, hCAII was crystallized by sitting drop vapor diffusion, and the crystals were cross-linked with glutaraldehyde prior to soaking with cofactor 2 (see Supporting Information). The resulting X-ray diffraction data were solved at 1.41 Å resolution. Inspection of the X-ray structure of 2·hCAII reveals that both glutamate 69 and isoleucine 91 (191) residues lie closest to the electrophilic nitro group of the picolinamide. The shortest contacts to one oxygen of the nitro group to cofactor 2 for these two residues are Cγ of E69 and Cγ1 of I91 (3.4 and 3.6 Å, respectively, Figure 1b). Accordingly, we expressed and purified the single mutants hCAIIE69C and hCAIII91C and evaluated their catalytic performance toward the transfer hydrogenation of harmaline and dihydroisoquinolinium precursor to crispine A (Table S18). In contrast, ATHases 2·hCAII, 2·hCAIIE69C, and 2·hCAIII91C catalyze the enantioselective reduction of both substrates. Strikingly, the position of the cysteine residue affects the resulting enantioselectivity: for both substrates, opposite enantiomers are preferentially produced in the presence of 2·hCAIIE69C and 2·hCAIII91C (Table 1).

![Figure 1. Strategy to assemble dually anchored ArMs. (a) Structure of the cofactors 1–2, (b) X-ray structure of cofactor 2 (depicted as sticks, Ir and Zn as color-coded spheres) bound to hCAII WT (depicted as cartoon representation). Distances between the Oobs and the residue glutamate E69 and isoleucine I91 (depicted as sticks) are highlighted, (c) Schematic representation of the expected and observed dual anchoring within engineered hCAII E69C and hCAII I91C.](https://doi.org/10.1021/acscentsci.1c00825)
ArMs (10 μM) in MOPS buffer containing NaHCO₂ (1 M) as the hydride source. Reduction of harmaline 3 using 2-hCAIWT gave (R)-3-H₂ with a good yield (68%, after 16 h) and a moderate enantioselectivity (26% ee). In contrast, 2-hCAIIE₆₉C gave (R)-3-H₂ with a comparable yield (66%) but with an increased ee = 50%. Interestingly, 2-hCAI₁₉₁C also gave a good yield (66%) and a reverse ee = −38% for (S)-3-H₂ (Table 1, Entry 1–3). The difference in enantioselectivity suggests different binding poses for harmaline in the larger binding pocket of 2-hCAI₁₉₁C compared to 2-hCAIIE₆₉C (Figures S3 and S5). More strikingly, the reduction of iminium 4 by 2-hCAIWT gave a low conversion (6%) and hardly any enantioselectivity (Table 1, Entry 4). In contrast, 2-hCAIIE₆₉C led to a slightly higher yield (13%) and ee (≈30%) (Table 1, Entry 5). Mutant 2-hCAI₉₁C gave a higher yield (30%) but low enantioselectivity (15%, Table 1, Entry 6). Taken together, these results highlight the power of the dual-anchoring strategy, giving rise to an increased enantioselectivity for substrates 3 and 4 compared to the parent hCAIWT. To further improve the catalytic performance of the dually anchored ATHases, we relied on directed evolution.⁶⁴−⁶⁶

To confirm the dual anchoring of the cofactor 2 within hCAIIE₆₉C and hCAI₁₉₁C, the two variants were incubated with cofactor 2 (16 h, pH 9.4, 50 mM (NH₄)₂CO₃). The unbound cofactor 2 was removed, and the buffer was exchanged (25 mM Tris-HCl, pH 7.4) by ultrafiltration. The resulting ArMs were crystallized by sitting drop vapor diffusion (see Supporting Information). To our delight, the crystals diffracted to a good resolution for 2-hCAIIE₆₉C (1.51 Å) and for 2-hCAI₁₉₁C (1.04 Å). The electron density highlights the cofactor’s localization within hCAIIE₆₉C (Figure S1) and hCAI₁₉₁C (Figure 3b,c). As observed for 2-hCAIWT, the arylsulfonamide anchor of cofactor 2 is bound to the zinc ion of hCAI. An additional bond was identified between the picolinamide moiety and the engineered cysteine residues. Unexpectedly, the well-resolved electron density revealed the presence of a pyridine−sulfonamide linkage (Figures 3b,c and S1b and S2b), rather than the anticipated thioether moiety (Figure 1c). For 2-hCAI₁₉₁C, the pyridine−sulfonamide bond

Table 1. Catalytic Performance of ATHases Constructed by Anchoring Cofactor 2 to hCAIWT, hCAIIE₆₉C, and hCAI₁₉₁C

Protein	Substrate	Yield (%)	TON	ee (%)
1 WT	3	68	136	26 (R)
2 E₆₉C	3	66	132	50 (R)
3 I₉₁C	3	66	132	38 (S)
4 WT	4	6	12	7
5 E₆₉C	4	13	26	-50
6 I₉₁C	4	30	60	15

*Reactions were performed for 16 h using hCAI (10 μM), cofactor 2 (10 μM), and substrate (2 mM) in MOPS/NaHCO₂ buffer (pH 7.4, 0.34 M, 0.85 M).

Figure 2. In cellulo assembly of artificial transfer hydrogenases (ATHases). hCAI is displayed on the cell surface of E. coli by fusion to a truncated lipoprotein and the outer membrane protein A (Lpp-OmpA). Following incubation with the sulfonamide-bearing IrCp* piansotol complex 2, the resulting ArM catalyzes the enantioselective reduction of harmaline 3 in the presence of NaHCO₂ as the hydride source.
is fully formed, resulting in a complete occupancy (100%) for the IrCp*(picolinamide) moiety (Figures 3c and S2b and S2e). For 2-hCAII_E69C, the IrCp*(picolinamide) moiety with the pyridine−sulfonamide linkage has a lower occupancy (∼70%) (Figure S1). Two additional cofactor positions with a free cysteine E69C were refined (Figure S1c). The incomplete formation of the pyridine−sulfonamide bond for hCAII_E69C may be caused by the somewhat unfavorable geometry that cofactor 2 has to adopt to form the pyridine−sulfonamide linkage (Figure S3). The dihedral angle between C6−C7−C8−N1 serves as an indicator for the strain on cofactor 2. Within hCAII_E69C, the dually anchored cofactor 2 has an acute dihedral angle (102.2°), which is significantly smaller than the dihedral angle observed for the noncovalently bound cofactor 2 in hCAII WT (158.6°). The dihedral angle for 2 in hCAII E69C (134.0°) is closer to the angle of 2 in hCAII WT (158.6°) suggesting a more relaxed geometry of 2 in hCAII E69C. The observed difference of the dihedral angles of 2 in hCAII E69C and hCAII E69C might explain the difference between the incomplete and quantitative formation of the pyridine−sulfonamide bond for these two hCAII mutants, respectively.

Compared to 2-hCAII WT, the presence of the pyridine−sulfonamide linkage leads to the relocation of the Ir-picolinamide complex in hCAII E69C, providing slightly more space for substrate binding (Figures S3 and S5). The Ir-ion of ATHase 2-hCAII E69C is displaced (1.0 Å), and the N2 of the...
nitro precursor is shifted (3.4 Å) in 2·hCAII^{91C} compared to 2·hCAI^{WT} (Figure S4). Cofactor 2 is stabilized via H-bonds with glutamine 92 (Q92) and threonine 198 (T198) and by π-stacking with phenylalanine (F130) in hCAII^{91C} (Figure S6). In all three X-ray structures of 2·hCAII^{WT}, E69^C and I91^C, the Ir in 2 has an (S)-configuration. In contrast to previous reports on ATHases, the absolute configuration of the metal does not correlate with the configuration of the products. Indeed, both 2·hCAII^{E69C} and 2·hCAII^{I91C} contain cofactor 2 with an (S)-configuration at the Ir–Cl, but convert substrate 3 and 4 preferentially to opposite enantiomers.

Having established a powerful method to dually anchor the cofactor 2 to hCAII scaffolds bearing a judiciously positioned cysteine residue, we set out to optimize the ATHase activity by directed evolution.54–66

DIRECTED EVOLUTION

To improve the activity of ATHases based on the dual-anchoring strategy, we selected hCAII^{91C} as a scaffold for directed evolution. The selection of hCAII^{91C} over hCAI^{E69C} is based on the following considerations: (i) the bioconjugation is quantitative, thus affording single and well-defined localization of the cofactor 2 within the "active site", and (ii) more space is available for the prochiral substrate to approach the Ir–H moiety. To streamline the directed evolution, we selected an <i>E. coli</i> surface display for hCAII.59 This strategy was favored over the periplasmic compartmentalization in light of the following factors: (i) the cofactor concentrations are roughly similar—as determined by ICP-MS—and (ii) the accessibility for the substrate is coupled with a defined reaction environment (i.e., extracellular versus peptidoglycan environment).60 For <i>E. coli</i> surface display, hCAII was fused at its N-terminus with a truncated <i>E. coli</i> lipoprotein Lpp (residues 1–9), followed by the first five β-sheets of OmpA (residues 46–159, Figure 2). Initial experiments were performed with hCAII^{WT} and hCAII^{91C} evaluating the effect of varying concentrations of cofactor 2 in the presence of either substrate 3 or 4. In line with the reactions performed with purified hCAII samples (Table 1), the conversion of substrate 3 was higher than that of substrate 4. Accordingly, harrimaine 3 was selected as the substrate for the directed evolution campaign. To minimize the background reaction resulting from unspecifically bound cofactor 2 (e.g., in the presence of <i>E. coli</i> bearing an empty plasmid), its concentration was set to 5 μM (Figure S7).

Next, we designed site-saturation mutagenesis libraries for hCAII^{91C}, focusing on the five closest residues to the chloride ligand of 2 as determined in the X-ray structure of 2·hCAII^{91C} (Figure 3b). The closest lying positions are L60, N62, N67, E69, and Q92. To minimize the screening effort, we relied on a "small-intelligent" focused library approach by combining NDT, VMA, and TGG codons.68 We omitted the ATG codon to exclude methionine, thus affording a nonredundant library encoding 19 amino acids. We developed a workflow for the growth, expression, and catalysis by <i>E. coli</i> displaying hCAII mutants in a 96-well format (Figure 3a). After induction of hCAII, followed by overnight expression (30 °C), the cells were harvested by centrifugation and washed with a [Cu(gly₃)₂] buffer to oxidize traces of thioles.69,70 Next, the cells were resuspended in a buffer (pH 9.4, 50 mM (NH₄)₂CO₃) containing the cofactor 2 and incubated (1 h at 30 °C) to afford the diallyl anchored ArMs on the cell surface. The supernatant was removed by centrifugation, and the cells were resuspended in the reaction buffer (pH 7.4, 0.4 M MOPS) containing substrate 3 (50 μM) and NaHCO₃ (1 M). The 96-well plate was then shaken (16 h at 30 °C, 300 rpm). Cells were sedimented by centrifugation, and the supernatant was transferred to a reaction tube (1.5 mL) for workup. Finally, each sample was analyzed by supercritical fluid chromatography (SFC, using 2-methyl indoline as an internal standard) to determine the product concentration and enantioselectivity. This procedure enables the screening of hundreds of mutants per week, substantially increasing the throughput compared to the conventional workflow that relies on purified mutants. The first round of directed evolution was performed by constructing a combinatorial library, mutating simultaneously asparagine 67 (N67) and glutamate 69 (E69), which are located 5.6 and 6.5 Å from the chloride ligand of cofactor 2, respectively. Upon screening (>650 colonies), we identified two mutants displaying an increased cell-specific activity compared to 2·hCAII^{WT} and 2·hCAII^{91C}. The ATHase 2·hCAII^{N67G-E69R-91C} had a higher cell-specific activity (1.8 ± 0.2 (average ± s.d.) fold) compared to 2·hCAII^{91C} and an enhanced enantioselectivity for (R)-3-H₂ (80.0 ± 2.9% ee). To explore the influence of the pyridine–sulfonamide anchor, we expressed hCAII^{N67G-E69R} lacking the 91C mutation. The corresponding 2·hCAII^{N67G-E69R} afforded a markedly reduced ee (10.0 ± 1.2%) and a reduced activity compared to 2·hCAII^{N67G-E69R-91C} for the reduction of harmaline 3. Interestingly, the second identified mutant 2·hCAII^{N67L-E69Y-91C} afforded (S)-3-H₂ with a slightly higher cell-specific activity compared to 2·hCAII^{91C} (1.2 ± 0.1-fold) and a moderate ee (~48.0 ± 10.7%). Two additional rounds of directed evolution at positions L60 and N62 afforded a quintuple mutant hCAII^{L60W-N62D-N67G-E69R-91C}, which displayed a higher cell-specific activity (2.8 ± 0.3-fold) and a similar ee (79.0 ± 0.4%) for enantiomer (R)-3-H₂ compared to 2·hCAII^{91C}. Starting from the (S)-selective ATHase 2·hCAII^{N67L-E69Y-91C}, the directed evolution campaign afforded the quadruple mutant hCAII^{L60W-N62D-N67G-E69R-91C}, which displayed the highest cell-specific activity (4.3 ± 0.4 fold) compared to hCAII^{91C} and an improved ee (~59 ± 1.8%) for (S)-3-H₂ (Figure 3e). The purified mutants hCAII^{N62D-N67L-E69Y-91C} and hCAII^{L60W-N62D-N67L-E69Y-91C} displayed higher activities than the parent hCAII^{N67L-E69Y-91C} for several substrates as summarized below (Table 2). All mutants resulting from the site-saturation mutagenesis library at position Q92 displayed a decreased activity. We hypothesize that the H-bond interaction between Q92 and the cofactor 2 plays an important role in maintaining the cofactor's position within the active site of the ATHase to favor the pyridine–sulfonamide linkage (Figures 3b and 4).

The hCAII mutant proteins were expressed in 2 L cultures and purified (up to 100 mg of lyophilized protein). Transfer hydrogenation was then performed on harrimaine 3 with purified proteins and cofactor 2 to validate the results obtained from the whole-cell experiments. From the in vitro validation, we can draw the following conclusions: (i) TON and stereoselectivity of the evolved ATHases are higher than the parent cofactor 2 and 2·hCAII^{WT} (Table 2, Entry 2–3), confirming the efficiency of our strategy, (ii) concerning (R)-selectivity, 2·hCAII^{N67G-E69R-91C} is the best mutant, affording enantiomer (R)-3-H₂ (96% ee, 451 TON; Table 2, Entry 5), (iii) for the best ATHase for (S)-3-H₂ only moderate ee are observed, with 2·hCAII^{N67L-E69Y-91C} (~62% ee) and 2·hCAII^{L60W-N67L-E69Y-91C} (~49% ee; Table 2, Entry 8–9), (iv)
Table 2. Selected Catalytic Results Obtained with Purified 2-hCAIImutant(s) for the Transfer Hydrogenation of Harmaline 3

mutants	TON	ee (%)
none	311	0
hCAII	149	31 (R)
hCAII59C	278	48 (R)
hCAII19C	265	39 (S)
hCAII567G-596R-191C	451	96 (R)
hCAII567N-567E-191C	460	73 (R)
hCAII568R-567N-191C	415	74 (R)
hCAII567L-669F-191C	458	62 (S)
hCAII568R-669F-191C	221	9 (S)
hCAII567G-669F-191C-3	375	97 (R)
hCAII568R-669F-191C-3	430	43 (S)

*Reactions were performed over 16 h using hCAII (10 μM), cofactor 2 (10 μM), and substrate (5 mM) in MOPS/NaHCO3 buffer (pH 7.4, 0.34 M, 0.85 M). Values are the mean values of duplicate experiments. Experiments were performed on a preparative scale with 0.5 mmol of harmaline 3.

Figure 4. Crystal structure of the evolved 2-hCAII567G-669R-191C. The surface. The cofactor is depicted as an orange cartoon and as a transparent gray surface. The cofactor protein is depicted as an orange cartoon and as a transparent gray surface. The cofactor is displayed in color-coded sticks, and Ir-atoms are depicted as purple and gray spheres, respectively. Amino acids in the proximity of the cofactor are highlighted as green sticks, labeled, mutated amino acids are highlighted in green, and the H-bond between Q92 and cofactor 2 is depicted as red dashes.

Table 3. Mass Spectrometry Analysis of Selected ATHases

Protein	Mabs (Da)	Mabs apoprotein (Da)	Mabs ATHase (Da)
2 · hCAIIWT	29836.9	29181.2	29838.3
2 · hCAII59C	29812.1	29155.3	29812.4
2 · hCAII19C	29827.0	29171.2	29828.3
2 · hCAII567G-669R-191C	29797.7	29141.3	29798.4

Denaturing MS

Protein	Mabs (Da)	Mabs apoprotein (Da)	Mabs ATHase (Da)
2 · hCAIIWT	29098.2	29097.8	29772.9
2 · hCAII59C	29749.0	29071.9	29747.0
2 · hCAII19C	29763.9	29087.8	29762.9
2 · hCAII567G-669R-191C	29733.5	29057.9	29733.0

*Protein mass plus Zn (65.4 Da) and one H2O (18.0 Da). †Protein mass plus Zn (65.4 Da) and cofactor 2 without Cl (675.1 Da). ‡Protein mass without Zn. §Protein mass plus cofactor 2 without Cl (675.1 Da). ‼Similar masses are highlighted in light red.
catalyst, as previously described for the computational improvement of the hCAII binding pocket.72

COVALENT ANCHORING

As pointed out by an insightful referee, Fleming and co-workers reported that a sulfonamide linkage was formed as a product resulting from the photoreduction of an aromatic nitro group which was trapped by a thiol, followed by redox chemistry at both the nitrogen and sulfur atoms.72

In order to confirm that the bioconjugation step is not the result of photoreduction caused by the X-ray beam, the ATHases 2-hCAII$^{\text{WT}}$, 2-hCAII$^{\text{E69C}}$, and 2-hCAII$^{\text{N67G-E669-R191C}}$ as well as the control ATHase 2-hCAII$^{\text{WT}}$ were subjected to MS analysis.

(i) Under native MS conditions, 2-hCAII$^{\text{WT}}$, 2-hCAII$^{\text{E69C}}$, and 2-hCAII$^{\text{N67G-E669-R191C}}$ afford signals at 29749.0, 29763.9, and 29733.5 Da, respectively (Figure S22). These masses correspond to the ATHases (hCAII plus cofactor 2).

(ii) Under denaturing MS conditions, 2-hCAII$^{\text{E69C}}$, 2-hCAII$^{\text{N67G-E669-R191C}}$, and 2-hCAII$^{\text{N67G-E669-R191C}}$ afford signals at 29797.7 and 29797.8 Da, respectively (Table 3 and Figures S22–S25). These masses correspond to the ATHases (hCAII plus cofactor 2).

To further investigate the formation of the sulfonamide linkage, cofactor 2 and hCAII$^{\text{N67G-E669-R191C}}$ were incubated in the dark and under ambient light. Native MS revealed almost identical masses, either with or without light: 29797.7 and 29797.8 Da, respectively (Figures S25 and S26). We thus conclude that the formation of the covalent sulfonamide linkage does not require light and is not the result of X-ray photodamage.

To confirm the positive influence of the covalent bioconjugation on catalytic performance, the enantioselective reduction of harmaline 3 was monitored in the presence of 2-hCAII$^{\text{WT}}$, 2-hCAII$^{\text{E69C}}$, and 2-hCAII$^{\text{N67G-E669-R191C}}$ (Figure S21).

From these data, the following trends emerge:

(i) The catalytic performance (both yield and ee) of 2-hCAII$^{\text{WT}}$ and 2-hCAII$^{\text{E69C}}$ is little affected by the incubation time following the mixing of the cofactor 2 and the host hCAII (Figure S21a,b). As revealed by X-ray crystallography (Figure S1c) and MS analysis (Figures S23 and S28), prolonged incubation only leads to partial formation of the sulfonamide covalent linkage in 2-hCAII$^{\text{E69C}}$.

(ii) In contrast, for 2-hCAII$^{\text{N67G-E669-R191C}}$, the catalytic performance is affected by the incubation time, prior to the addition of substrate 3 and formate. The catalytic performance of the covalently anchored ArM 2-hCAII$^{\text{N67G-E669-R191C}}$ (resulting from 6 h of incubation) clearly outperforms the non-preincubated 2-hCAII$^{\text{N67G-E669-R191C}}$ (Figure S21c).

(iii) As the pH requirements for the bioconjugation step and catalysis differ (pH = 9.4 and 7.4, respectively), the catalytic anchor is not formed in significant amounts under catalytic conditions.

We thus conclude that both cofactor localization and catalytic performance of 2-hCAII$^{\text{N67G-E669-R191C}}$ are positively affected by the presence of an additional covalent linkage between the host protein and the catalytically active pia nostool cofactor 2.

SUBSTRATE SCREENING

To evaluate the substrate scope, the purified hCAII mutants were screened for the transfer hydrogenation of various substrates 4–11. The substrates 5–7 are derived from β-carbolines, and substrates 8–11 are from dihydroisoquinoline.

Selected results are displayed in Table 4 and the full screening data can be found in the Supporting Information (Tables S9–S17). The same conditions were used for all substrates. Mutants hCAII$^{\text{N62D}}$, hCAII$^{\text{E69Y}}$, and hCAII$^{\text{N67G}}$ were obtained during the directed evolution were also tested for catalysis. From the screening, the following trends are apparent: All substrates were converted with good TON (>200 for at least one ArM) and with moderate to good enantioselectivity. Substrates with electron-rich substituents give a higher TON compared to substrates with moderate to good enantioselectivity. Substrates with moderate to good enantioselectivity. Substrates. Substrates with moderate to good enantioselectivity. Substrates. Substrates. Substrates with moderate to good enantioselectivity. Substrates. Substrates with moderate to good enantioselectivity. Substrates.

To confirm the positive influence of the cofactor activation on catalytic performance, the enantioselective reduction of harmaline 3 was monitored in the presence of 2-hCAII$^{\text{WT}}$, 2-hCAII$^{\text{E69C}}$, and 2-hCAII$^{\text{N67G-E669-R191C}}$ (Figure S21).

From these data, the following trends emerge:

(i) The catalytic performance (both yield and ee) of 2-hCAII$^{\text{WT}}$ and 2-hCAII$^{\text{E69C}}$ is little affected by the incubation time following the mixing of the cofactor 2 and the host hCAII (Figure S21a,b). As revealed by X-ray crystallography (Figure S1c) and MS analysis (Figures S23 and S28), prolonged incubation only leads to partial formation of the sulfonamide covalent linkage in 2-hCAII$^{\text{E69C}}$.

(ii) In contrast, for 2-hCAII$^{\text{N67G-E669-R191C}}$, the catalytic performance is affected by the incubation time, prior to the addition of substrate 3 and formate. The catalytic performance of the covalently anchored ArM 2-hCAII$^{\text{N67G-E669-R191C}}$ (resulting from 6 h of incubation) clearly outperforms the non-preincubated 2-hCAII$^{\text{N67G-E669-R191C}}$ (Figure S21c).

(iii) As the pH requirements for the bioconjugation step and catalysis differ (pH = 9.4 and 7.4, respectively), the catalytic anchor is not formed in significant amounts under catalytic conditions.

We thus conclude that both cofactor localization and catalytic performance of 2-hCAII$^{\text{N67G-E669-R191C}}$ are positively affected by the presence of an additional covalent linkage between the host protein and the catalytically active pia nostool cofactor 2.
Table 4. Selected Results of the Substrate Screening in the Presence of Evolved ATHases

Substrate	Mutants	TON	ee (%)
1	hCAII³⁴⁰	219	62
2	hCAII³⁴⁰	355	86
3	hCAI³⁴⁰	500	87
4	hCAI³⁴⁰	189	72
5	hCAI³⁴⁰	191	80
6	hCAI³⁴⁰	249	72
7	hCAI³⁴⁰	296	68
8	hCAI³⁴⁰	372	43
9	hCAI³⁴⁰	500	59
10	hCAI³⁴⁰	422	58
11	hCAI³⁴⁰	250	56
12	hCAI³⁴⁰	415	55
13	hCAI³⁴⁰	338	75
14	hCAI³⁴⁰	242	71
15	hCAI³⁴⁰	215	51
16	hCAI³⁴⁰	47	47

The reactions were performed using cofactor 2 (10 μM), hCAII (10 μM), and substrate (5 mM) in NaHCO₃/MOPS buffer (850 mM/340 mM, 25 °C, 16 h). The reported TON and ee are the mean values of independent duplicates. Complete screening data are included in the Supporting Information (Tables S9–S17).

With the aim of firmly anchoring the Ir-pianostool cofactor 2 within hCAII, we introduced a nucleophilic residue hCAII^{E69R} in the proximity of the p-nitropicolinamide ligand bound to the catalytically competent Ir-ion. Rather than affording the anticipated S_nAr reaction, a pyridine−sulfonamide linkage was formed, thus resulting in a dualy anchored cofactor. Starting from 2-hCAII^{E69R}, three rounds of directed evolution were performed using <i>E. coli</i> cell surface display. This led to the identification of the (R)-selective AThase 2·hCAII^{N67G-E69R-I91C} (up to 96% ee and 451 TONs) for tetrahydro-harmine (R)-3-H₂. The opposite enantiomer (S)-3-H₂ was obtained using 2-hCAII^{N67G-E69R-I91C} (<~63% ee, 458 TON). We hypothesize that mutation N67G generates more space for the substrate to access the cofactor, whereas the mutation E69R stabilizes the substrate by ionic-π interactions.

A substrate scope, carried out with the best mutants, revealed a marked substrate dependency, thus requiring independent directed evolution efforts for each substrate. This suggests that, starting from 2-hCAII^{E69R}, the evolutionary trajectory has crafted a close fit between the active site and the Ir−H····harmaline transition state, which is less suitable for structurally unrelated substrates. The presence of a single and well-defined cofactor conformation within hCAII resulting from the dual anchor leads to increased TONs and an improved enantioselectivity. Locking the cofactor in place via

harmalane analogue 6, the TONs decrease compared to substrate 5 (Table S12): 2-hCAII^{N67G-E69R-I91C} yields the best ee (80% (S)) and moderate TON (191). Instead, 2-hCAII^{L60F-N62D-N67L-E69R-I91C} produces the opposite enantiomer (72% ee (R), 249 TON) (Entry 5–6).

Interestingly, 2-hCAII^{N67G-E69R-I91C} is the most selective mutant for harmaline 3 as well as substrate 6. The reduced activity of the AThases for this substrate may be traced back to steric hindrance and mismatched electronics caused by the p-nitrophenyl group. In contrast, the electron-rich substrate 7 affords higher TONs at the cost of a lower ee (Table S13). The best ArM 2-hCAII^{E69R} gave (S)-7-H₂ (296 TON, 68% ee, Table 4, Entry 7). Next, we turned our attention to dihydroisouquinolines. The less-hindered substrate 8 gives a high TON but moderate enantioselectivity, with the most enantioselective ArM being 2-hCAII^{N67G-E69R-I91C} (500 TON, 59% ee (S), Table 4, Entry 9). To evaluate the tolerance of transfer hydrogenation toward substrates presenting steric hindrance next to the imine moiety, we tested substrates 9–11. Substrate 9 is reduced with good activities but low stereoselectivity (Table S15). The most promising ArM is 2-hCAII^{L60F-N62Y-N67G-E69R-I91C} (415 TON, −55% ee, Table 4, Entry 12). Next, the steric hindrance was increased by introducing an o-methoxyphenyl substituent in substrate 10. The results (Table S16) are rather different from the previous ones; the mutants derived from 2-hCAII^{N67G-E69R-I91C} give lower turnovers compared to the mutants derived from 2-hCAII^{N67L-E69R-I91C}. The best ArM for substrate 10 is 2-hCAII^{N62D-N67L-E69R-I91C} (338 TON, 75% ee) (Table 4, Entry 13). It should be noted that 2-hCAII^{E69C} gives the opposite enantiomer (−71% ee, 242 TON, Table 4, Entry 14). Finally, substrate 11 incorporating an o-chloro substituent was evaluated. In this case, both TON and enantioselectivities are low compared to the other substrates (Table S17) with the most promising catalyst being 2-hCAII^{N62D-N67L-E69R-I91C} (Table 4, Entry 15).

CONCLUSION

With the aim of firmly anchoring the Ir-pianostool cofactor 2 within hCAII, we introduced a nucleophilic residue hCAII^{E69R} in the proximity of the p-nitropicolinamide ligand bound to the catalytically competent Ir-ion. Rather than affording the anticipated S_nAr reaction, a pyridine−sulfonamide linkage was formed, thus resulting in a dualy anchored cofactor. Starting from 2-hCAII^{E69R}, three rounds of directed evolution were performed using <i>E. coli</i> cell surface display. This led to the identification of the (R)-selective AThase 2·hCAII^{N67G-E69R-I91C} (up to 96% ee and 451 TONs) for tetrahydro-harmine (R)-3-H₂. The opposite enantiomer (S)-3-H₂ was obtained using 2-hCAII^{N67G-E69R-I91C} (<~63% ee, 458 TON). We hypothesize that mutation N67G generates more space for the substrate to access the cofactor, whereas the mutation E69R stabilizes the substrate by ionic-π interactions.

A substrate scope, carried out with the best mutants, revealed a marked substrate dependency, thus requiring independent directed evolution efforts for each substrate. This suggests that, starting from 2-hCAII^{E69R}, the evolutionary trajectory has crafted a close fit between the active site and the Ir−H····harmaline transition state, which is less suitable for structurally unrelated substrates. The presence of a single and well-defined cofactor conformation within hCAII resulting from the dual anchor leads to increased TONs and an improved enantioselectivity. Locking the cofactor in place via...
an additional covalent bond allows randomizing neighboring amino acids to improve catalytic performance without affecting the position of the cofactor. Accordingly, an ArM with a dual anchor is a propitious starting point for a directed evolution campaign. Finally, the unanticipated reaction between an aromatic nitro group and a cysteine is a welcome addition to the well-established cysteine bioconjugation tools.

ASSOCIATED CONTENT

* Supporting Information
 The Supporting Information is available free of charge at https://pubs.acs.org/10.1021/acscentsci.1c00825.

 Detailed experimental procedures; methods for cofactor and substrate synthesis, library construction, protein expression and crystallization, catalysis, MS analysis; data for catalysis, X-ray structures; spectra for MS and NMR (PDF)

AUTHOR INFORMATION

Corresponding Authors

Yoan Cotelle — Aix-Marseille Université, CNRS, Centrale Marseille, iSm2, 13284 Marseille, France; Email: yoan.cotelle@univ-amu.fr

Johannes G. Rebelein — Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany; orcid.org/0000-0003-2560-716X; Email: Johannes.Rebelein@mpi-marburg.mpg.de

Thomas R. Ward — Department of Chemistry, University of Basel, 4058 Basel, Switzerland; National Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland; orcid.org/0000-0001-8602-5468; Email: thomas.ward@unibas.ch

Authors

Alina Stein — Department of Chemistry, University of Basel, 4058 Basel, Switzerland; National Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland

Dongping Chen — Department of Chemistry, University of Basel, 4058 Basel, Switzerland; National Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland

Nico V. Igareta — Department of Chemistry, University of Basel, 4058 Basel, Switzerland; National Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland

Complete contact information is available at: https://pubs.acs.org/10.1021/acscentsci.1c00825

Author Contributions

A.S. and D.C. contributed equally to this study.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

T.R.W. thanks the Swiss National Science Foundation (Grant SNF, 200020_182046/1), the NCCR “Molecular Systems Engineering”, and the ERC (the DrEAM, Advanced Grant 694424) for generous support of this work. J.G.R. thanks the EMBO for a long-term fellowship (ALTF 194-2017). Dr. Valentin Köhler is thanked for providing the substrate 4. Dr. Alexandria Deliz Liang is thanked for helpful discussions for the construction of the mutant libraries. Dr. Roman Jakob is thanked for discussions about X-ray crystallography and structure solution, and the staff at beamline X06DA of the Swiss Light Source (Villigen, CH) are thanked for excellent assistance with diffraction data collection. Dr. Witold Szymanski is thanked for the mass spectrometry analysis of the tryptic digest.

REFERENCES

(1) Bornscheuer, U. T. The fourth wave of biocatalysis is approaching. *Philos. Trans. R. Soc., A* 2018, 376, 1–7.

(2) Hammer, S. C.; Knight, A. M.; Arnold, F. H. Design and evolution of enzymes for non-natural chemistry. *Curr. Opin. Green Sustain. Chem.* 2017, 7, 23–30.

(3) Sabatino, V.; Rebelein, J. G.; Ward, T. R. “Close-to-release”: Spontaneous bioorthogonal uncaging resulting from ring-closing metathesis. *J. Am. Chem. Soc.* 2019, 141, 17048–17052.

(4) Wu, S.; Zhou, Y.; Gerngross, D.; Jeschek, M.; Ward, T. R. Chemo-enzymatic cascades to produce cycloalkanes from bio-based resources. *Nat. Commun.* 2019, 10, 5060.

(5) Chordia, S.; Narasimhan, S.; Lucini Piaoni, A.; Baldus, M.; Roelfes, G. In vivo assembly of artificial metalloenzymes and application in whole-cell biocatalysis*. *Angew. Chem., Int. Ed.* 2021, 60, 5913–5920.

(6) Himiyama, T.; Okamoto, Y. Artificial metalloenzymes: From selective chemical transformations to biochemical applications. *Molecules* 2020, 25, 2989.

(7) Booth, R. L.; Grogan, G.; Wilson, K. S.; Duhme-Klair, A.-K. Artificial imine reductases: Developments and future directions. *RSC Chem. Biol.* 2020, 1, 369–378.

(8) Leveson-Gower, R. B.; Zhoua, Z.; Drienovská, I.; Roelfes, G. Unlocking iminium catalysis in artificial enzymes to create a friedel–crafts alkylation. *ACS Catal.* 2021, 11, 6763–6777.

(9) Studer, S.; Hansen, D. A.; Pianowski, Z. L.; Mittl, P. R. E.; Debon, A.; Guffy, S. L.; Der, B. S.; Kuhlman, B.; Hilvert, D. Evolution of a highly active and enantiospecific metalloenzyme from short peptides. *Science* 2018, 362, 1285–1288.

(10) Markel, U.; Sauer, D. F.; Schifflers, J.; Okuda, J.; Schwanenberg, U. Towards the evolution of artificial metalloenzymes-a protein engineer’s perspective. *Angew. Chem., Int. Ed.* 2019, 58, 4454–4464.

(11) Raines, D. J.; Clarke, J. E.; Blagova, E. V.; Dodson, E. J.; Wilson, K. S.; Duhme-Klair, A. K. Redox-switchable siderophore anchor enables reversible artificial metalloenzyme assembly. *Nat. Catal.* 2018, 1, 680–688.

(12) Large, B.; Baranska, N. G.; Booth, R. L.; Wilson, K. S.; Duhme-Klair, A.-K. Artificial metalloenzymes: The powerful alliance between protein scaffolds and organometallic catalysts. *Curr. Opin. Green Sustain. Chem.* 2021, 28, 100420.

(13) Morra, S.; Pordea, A. Biocatalyst-artificial metalloenzyme cascade based on alcohol dehydrogenase. *Chem. Sci.* 2018, 9, 7447–7454.

(14) Thiél, A.; Sauer, D. F.; Markel, U.; Mertens, M. A. S.; Polen, T.; Schwanenberg, U.; Okuda, J. An artificial ruthenium-containing beta-barrel protein for alkene-alkyne coupling reaction. *Org. Biomol. Chem.* 2021, 19, 2912–2916.

(15) Markel, U.; Sauer, D. F.; Wittwer, M.; Schifflers, J.; Cui, H.; Davari, M. D.; Kröckert, K. W.; Herres-Pawlis, S.; Okuda, J.; Schwanenberg, U. Chemogenetic evolution of a peroxidase-like artificial metalloenzyme. *ACS Catal.* 2021, 11, 5079–5087.

(16) Doble, M. V.; Obrecht, L.; Jooosten, H.-J.; Lee, M.; Rozboom, H. J.; Branigan, E.; Nasmith, J. H.; Janssen, D. B.; Jarvis, A. G.; Kamer, P. C. J. Engineering thermostability in artificial metalloenzymes to increase catalytic activity. *ACS Catal.* 2021, 11, 3620–3627.

(17) Yang, H.; Srivastava, P.; Zhang, C.; Lewis, J. C. A general method for artificial metalloenzyme formation through strain-promoted azide-alkyne cycloaddition. *ChemBioChem* 2014, 15, 223–227.
(18) Sauer, D. F.; Himiyama, T.; Tachikawa, K.; Fukumoto, K.; Onoda, A.; Mizohata, E.; Inoue, T.; Bocola, M.; Schwaneger, U.; Hayashi, T.; et al. A highly active biohybrid catalyst for olefin metathesis in water: Impact of a hydrophobic cavity in a β-barrel protein. ACS Catal. 2015, 5, 7519–7522.

(19) Haquette, P.; Salmain, M.; Sudrling, K.; Martel, A.; Rudolf, B.; Zakrzewski, J.; Cordier, S.; Roisnel, T.; Fosse, C.; Jaouen, G. Cysteine-specific, covalent anchoring of transition organometallic complexes to the protein papain from carica papaya. ChemBioChem 2007, 8, 224–231.

(20) Ricoux, R.; Dubuc, R.; Dupont, C.; Marechal, J. D.; Martin, A.; Sellier, M.; Mahy, J. P. Hemeoxygenase peroxidase activity of artificial heme proteins constructed from the streptomyces lividans xylanase a and iron(iii)-carboxy-substituted porphyrins. Bioconjgate Chem. 2008, 19, 899–910.

(21) Rondot, L.; Girgenti, E.; Oddon, F.; Marchi-Delapierre, C.; Jorge-Robin, A.; Menage, S. Catalysis without a headache: Modification of ibuprofen for the design of artificial metalloenzymes for sulfide oxidation. J. Mol. Catal. A: Chem. 2016, 416, 20–28.

(22) Song, W. J.; Tezcan, F. A. D. Designed supramolecular protein assembly with in vivo enzymatic activity. Science 2014, 346, 1525–1528.

(23) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(24) Sommer, D. J.; Vaughn, M. D.; Ghirlanda, G. Protein secondary-shell interactions enhance the photoinduced hydrogen production of cobalt protoporphyrin ix. Chem. Commun. 2014, 50, 15852–15855.

(25) Soltau, S. R.; Dahlberg, P. D.; Niklas, J.; Poluektov, O. G.; Mullfort, K. L.; Utschig, L. M. Ru-protein-co biohybrids designed for solar hydrogen production: Understanding electron transfer pathways related to photocatalytic function. Chem. Sci. 2016, 7, 7068–7078.

(26) Natoli, S. N.; Hartwig, J. F. Noble-metal substitution in β-barrel carbonic anhydrase. J. Mol. Catal. A: Chem. 2015, 39, 126, 193–194.

(27) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(28) Sommer, D. J.; Vaughn, M. D.; Ghirlanda, G. Protein secondary-shell interactions enhance the photoinduced hydrogen production of cobalt protoporphyrin ix. Chem. Commun. 2014, 50, 15852–15855.

(29) Soltau, S. R.; Dahlberg, P. D.; Niklas, J.; Poluektov, O. G.; Mullfort, K. L.; Utschig, L. M. Ru-protein-co biohybrids designed for solar hydrogen production: Understanding electron transfer pathways related to photocatalytic function. Chem. Sci. 2016, 7, 7068–7078.

(30) Natoli, S. N.; Hartwig, J. F. Noble-metal substitution in β-barrel carbonic anhydrase. J. Mol. Catal. A: Chem. 2015, 39, 126, 193–194.

(31) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(32) Sommer, D. J.; Vaughn, M. D.; Ghirlanda, G. Protein secondary-shell interactions enhance the photoinduced hydrogen production of cobalt protoporphyrin ix. Chem. Commun. 2014, 50, 15852–15855.

(33) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(34) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(35) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(36) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(37) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(38) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(39) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(40) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(41) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(42) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(43) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(44) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(45) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(46) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(47) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(48) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(49) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.

(50) Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the sequence of cytochrome c: Photochemical hydrogen evolution in aqueous media. Chem. Commun. 2011, 47, 8229–8231.
Liu, Y.; Yue, X.; Luo, C.; Zhang, L.; Lei, M. Mechanisms of ketone/imine hydrogenation catalyzed by transition-metal complexes. EEM 2019, 2, 292−312.

Agouridas, V.; El Mahdi, O.; Diemer, V.; Cargoet, M.; Monbaliu, J. M.; Melnyk, O. Native chemical ligation and extended methods: Mechanisms, catalysis, scope, and limitations. Chem. Rev. 2019, 119, 7328−7443.

Friedmann, E.; Marrian, D. H.; Simonreuss, I. Antimitotic action of maleimide and related substances. Br. J. Pharmacol. Chemother. 1949, 4, 105−108.

Gempf, K. L.; Butler, S. J.; Funk, A. M.; Parker, D. Direct and selective tagging of cysteine residues in peptides and proteins with 4-nitropyridyl lanthanide complexes. Chem. Commun. 2013, 49, 9104−9106.

Moore, E. J.; Zorine, D.; Hansen, W. A.; Khare, S. D.; Fasan, R. Enzyme stabilization via computationally guided protein stapling. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 12472−12477.

Goddard, D. R.; Michaelis, L. Derivatives of keratin. J. Biol. Chem. 1935, 112, 361−371.

Chalker, J. M.; Gunnoo, S. B.; Boutureira, O.; Gerstberger, S. C.; Fernández-González, M.; Bernardes, G. J. L.; Griffin, L.; Hailu, H.; Schofield, C. J.; Davis, B. G. Methods for converting cysteine to dehydroalanine on peptides and proteins. Chem. Sci. 2011, 2, 1666−1676.

Toda, N.; Asano, S.; Barbas, C. F., 3rd Rapid, stable, chemoselective labeling of thiols with julia-kocienski-like reagents: A serum-stable alternative to maleimide-based protein conjugation. Angew. Chem., Int. Ed. 2013, 52, 12592−12596.

Ngo, A. H.; Ibanez, M.; Do, L. H. Catalytic hydrogenation of cytotoxic aldehydes using nicotinamide adenine dinucleotide (nadh) in cell growth media. ACS Catal. 2016, 6, 2637−2641.

Ngo, A. H.; Do, L. H. Structure−activity relationship study of half-sandwich metal complexes in aqueous transfer hydrogenation catalysis. Inorg. Chem. Front. 2020, 7, 583−591.

Arnold, F. H. Innovation by evolution: Bringing new chemistry to life (nobel lecture). Angew. Chem., Int. Ed. 2019, 58, 14420−14426.

Cho, I.; Jia, Z. J.; Arnold, F. H. Site-selective enzymatic ch amidation for synthesis of diverse lactams. Science 2019, 364, 575−578.

Basler, S.; Studer, S.; Zou, Y.; Mori, T.; Ota, Y.; Camus, A.; Bunzel, H. A.; Helgeson, R. C.; Houk, K. N.; Jimenez-Oses, G.; et al. Efficient lewis acid catalysis of an abiological reaction in a de novo protein scaffold. Nat. Chem. 2021, 13, 231−235.

Robles, V. M.; Durenberger, M.; Heinisch, T.; Lledos, A.; Schirmer, T.; Ward, T. R.; Marechal, J. D. Structural, kinetic, and docking studies of artificial imine reductases based on biotin-streptavidin technology: An induced lock-and-key hypothesis. J. Am. Chem. Soc. 2014, 136, 15676−15683.

Tang, L.; Gao, H.; Zhu, X.; Wang, X.; Zhou, M.; Jiang, R. Construction of “small-intelligent” focused mutagenesis libraries using well-designed combinatorial degenerate primers. BioTechniques 2012, 52, 149−158.

Kachur, A. V.; Koch, C. J.; Biaglow, J. E. Mechanism of copper-catalyzed oxidation of glutathione. Free Radical Res. 1998, 28, 259−269.

Ngamchuea, K.; Batchelor-McAuley, C.; Compton, R. G. The copper(II)-catalyzed oxidation of glutathione. Chem. - Eur. J. 2016, 22, 15937−15944.

Harpaz, Y.; Gerstein, M.; Chothia, C. Volume changes on protein folding. Structure 1994, 2, 641−649.

Fleming, S. A.; Rawlins, D. B.; Samano, V.; Robins, M. J. Photochemistry of nucleoside transport inhibitor 6-s-benzylated thiopurine ribonucleosides. Implications for a new class of photo-affinity labels. J. Org. Chem. 1992, 57, 5968−5976.

Barrios-Rivera, J.; Xu, Y.; Wills, M. Asymmetric transfer hydrogenation of unhindered and non-electron-rich 1-aryl dihydroisouquinolines with high enantioselectivity. Org. Lett. 2020, 22, 6283−6287.