IT support in emergency remote teaching in response to COVID-19

Abstract

Background: The COVID-19 pandemic hit the German education system unexpectedly and forced its universities to shift to Emergency Remote Teaching (ERT). The Data Integration Center (DIC) of the University Hospital Magdeburg and the Institute of Biometry and Medical Informatics (IBMI) has developed a concept based on existing structures that can be quickly implemented and used by the Medical Faculty at Otto von Guericke University. This manuscript focuses on the IT support for lecturers, which allows them to concentrate on teaching their lessons, although the authors are aware that this is only a small part of the entire subject. Additionally, there is a great awareness that ERT can never replace well-structured in-person classes.

Concept: The key feature of the concept uses the well-working management system for all physical rooms of the university by designing a virtual video conference room for every physical room. This allows high interactivity for lectures and seminars while applying proven teaching methods. Additionally, a collaboration software system to document all lessons learned and a technical support team have been available for the teaching staff. Courses with a hands-on approach require more personal interaction than lectures. Therefore, the issues of practical trainings have not been solved with this concept, but been tackled by using questionnaires and minimizing contacts during attestations.

Applied IT tools: The concept’s requirements were met by Zoom Meetings, Confluence, HIS/LSF and Moodle.

Discussion and Conclusion: The concept helped the lecturers to provide high-quality teaching for students at universities. Additionally, it allows for a dynamic response to new needs and problems. The concept will be reviewed as part of a higher Universal Design for Learning concept and may support lecturers in the following semesters in hybrid meetings with real and virtual attendees.

Keywords: emergency remote teaching, virtual rooms, IT support, medical education, COVID-19

Introduction

The COVID-19 pandemic arrived in Germany just before the start of the summer semester 2020 and caused dramatic change in traditional teaching at German universities [1], which had mostly been based on in-person classes. This report focuses on a concept which enabled the Medical Faculty of the Otto von Guericke University Magdeburg to provide as many courses as possible using IT resources. Building on an existing minimal e-learning structure and experiences with virtual conference tools, the main goal was to provide the lecturers in cooperation with the Studies Office with an IT infrastructure they could use almost effortlessly to provide the students with their existing teaching materials. Therefore, the authors decided to talk to the lecturers at a meta-level about their main needs and IT skills before developing a fast and user-friendly generic IT solution for everyone.

The authors want to emphasize that Emergency Remote Teaching (ERT) [2] as applied in this case can never replace a well-thought-out step-by-step process adapting each part of the teaching chain [3]. Nonetheless, the COVID-19 crisis afforded a new insight into different IT solutions that provide the technical basis for teaching a large part of the required materials instead of shutting down the university completely to make the required methodological adaptations. The different requirements and the corresponding IT solutions are described below.

Administration

To put the concept described above into practice, the authors decided to use the university room bookings system for all existing physical rooms (LSF; [http://his.de]) to administrate the virtual rooms as well: a video conference
room, which is permanently open and secured by a uniform password, was assigned to every physical room. Each physical room in the database is now directly linked to its corresponding video conference room. This has led to only a minimal change in the workflow and the workload of the University room bookings team. The concept was demonstrated to the lecturers online, which was recorded for future use. For additional technical support of the Medical Faculty, the Data Integration Center (DIC) of the University Hospital Magdeburg and the Institute of Biometry and Medical Informatics (IBMI) provided and trained a small four-person team that documented all lessons learned and recorded tutorial videos to provide and increase sustainable knowledge within the teaching staff using the collaboration software.

Lectures/seminars

Most of the modern lecture strategies require at least a minimal interaction between lecturers and students. Therefore, this video conference solution permits showing the presentation of the lecturers and providing them with rights to unmute students for questions or comments. Another advantage is the possibility of using the same solution for lectures and seminars with high interactivity. However, the high number of students in medical courses requires licenses for at least 250 participants that might attend a lecture at the same time. Some lecturers are used to interacting more intensively with their students. They like to keep them alert and attentive by asking questions and involving them in possible medical decisions. For this, a standardized poll with generic answers (a, b, c, d, ...) was developed with regard to the content of the slides shown by the lecturers. To enable students to work in smaller groups, the virtual room can be split up by the lecturer.

Practical trainings

Practical trainings and medical demonstrations can hardly be completely virtualized. One concept is to work in small groups to comply with social distancing rules. Additionally, in certain cases initial attestations via video had already reduced the number of contacts. As an alternative solution, experiments can be performed with various typical parameters and be recorded by a training supervisor. Afterwards, the students decide on the best steps to proceed with the experiment and obtain results by answering a questionnaire. Then they continue their work and log the results. Some of these experiments have been transformed into a step-by-step online course providing experimental data that relies on the individual decisions. Software solutions matching the requirements presented above were Zoom Meetings, a videoconferencing tool, Confluence, a collaboration software from Atlassian, and Moodle, an already established learning platform for questionnaires of the practical trainings.

Discussion

The concept has been more successful than expected (considering that this was ERT) not least because of the high motivation (also shown in figure 1 by the usage statistics from selected virtual rooms) and creativity of the lecturers themselves, optimizing and developing concepts for their own applications. Nonetheless, there were different typical misunderstandings in the beginning, i.e. lecturers were worried about overbooking the virtual rooms – just like they might worry about overbooking physical rooms. Hence, the team added some more rooms with an open calendar, which can be booked spontaneously and easily.

A first short evaluation by 24 lecturers against the background of ERT appreciated our intuitive solution. Lecturers noticed a higher attendance rate and asked for more customizable rooms for individual teaching in the future. Criticism was mainly voiced about the information provided beforehand to the lecturers. Hence, more information and video clips were provided in the collaboration software. Another criticism was the poor technical equipment, which has been neglected at our hospital just like at other German institutions in the past years [4]. The good students' marks in exams and their very positive feedback were surprising. Noteworthy, the students supported each other a lot, leading to lower central technical support from University institutions.

The support level decreased massively as time went by, from around 8 hours per week in the beginning to just some calls at the end of the semester. In general, the IT support mainly focused on the videoconferencing tool. The focus of this short manuscript is on IT support for lecturers. When physical attendance was necessary, i.e. during patient contacts or exams, the IT team was less able to provide support. Several other aspects are not covered in this report. Among them are privacy laws, students' perspectives, the sudden change of didactic methods and a higher workload in clinical daily life due to the COVID-19 pandemic [4]. An obvious aspect of security should however be noted: in the summer semester, no non-authorized attendees were documented. Once, a password was leaked to an external person. The problem was solved within a few hours by changing the password. In conclusion, ERT cannot substitute personal contact, but it can prevent a complete shutdown of education institutions. Additionally, this “enforced experiment” has stimulated online education to supplement traditional teaching in the future.
Figure 1: The usage statistics in hours as sum per week of 19 selected permanent (24h/7d) web conference meeting rooms for e-learning.

Outlook

In the near future, the authors want to collect some more feedback to create a Universal Design for Learning concept [2] which includes IT infrastructure in preparation of future emergency teaching events. The authors are convinced that hybrid methods are possible with some of the participants attending in person while others participate virtually.

Competing interests

The authors declare that they have no competing interests.

References

1. Kerres M. Against All Odds: Education in Germany Coping with Covid-19. Postdigital Sci Educ. 2020;2:690-694. DOI: 10.1007/s42438-020-00130-7.
2. Hodges C, Moore S, Locke B, Frust T, Bond A. The difference between emergency remote teaching and online learning. Educ Rev. 2020. Zugänglich unter/available from: https://er.educause.edu/articles/2020/3/the-difference-between-emergency-remote-teaching-and-online-learning
3. Dykman CA, Davis CK. Online Education Forum: Part Two-Teaching Online versus Teaching Conventionally. J Inform Syst Educ. 2008;19:157-164.
4. Offergeld C, Ketterer M, Neudert M, et al. "Ab morgen bitte online": Vergleich digitaler Rahmenbedingungen der curricularen Lehre an nationalen Universitäts-HNO-Kliniken in Zeiten von COVID-19: Digitale Lehre an nationalen Universitäts-HNO-Kliniken. HNO. 2020. DOI: 10.1007/s00106-020-00939-5

Corresponding author:
Christian Bruns
Otto von Guericke University Magdeburg, Institute of Biometry and Medical Informatics, Magdeburg, Germany christian.bruns@med.ovgu.de

Please cite as
Bruns C, Herrmann T, Böckmann-Barthel M, Rothkötter HJ, Bernarding J, Plaumann M. IT support in emergency remote teaching in response to COVID-19. GMS J Med Educ. 2021;38(1):Doc16. DOI: 10.3205/zma001412, URN: urn:nbn:de:0183-zma0014125

This article is freely available from https://www.egms.de/en/journals/zma/2021-38/zma001412.shtml

Received: 2020-07-28
Revised: 2020-10-15
Accepted: 2020-11-24
Published: 2021-01-28
IT-Unterstützung der Notfall-Fernlehre als Reaktion auf COVID-19

Zusammenfassung

Hintergrund: Die Covid-19-Pandemie traf das deutsche Bildungssystem unerwartet und zwang dessen Universitäten, auf „Emergency Remote Teaching“ (ERT) umzustellen. Das Datenintegrationszentrum (DIZ) des Universitätsklinikums Magdeburg und das Institut für Biometrie und Medizinische Informatik (IBMI) haben auf Grundlage bestehender Strukturen ein Konzept entwickelt, das von der Medizinischen Fakultät der Otto-von-Guericke-Universität schnell umgesetzt und genutzt werden konnte. Im Mittelpunkt dieses Manuskripts steht die IT-Unterstützung der Dozierenden, die es diesen ermöglicht, sich auf die Lehre zu konzentrieren, wobei den Autoren bewusst ist, dass dies nur einen kleinen Teil des gesamten Problems abdeckt. Außerdem ist dieses Manuskript unter dem Bewusstsein verfasst, dass die ERT einen gut strukturierten Präsenzunterricht niemals ersetzen kann.

Konzept: Das Hauptmerkmal des Konzepts ist die weitere Nutzung des bereits gut funktionierenden Raumverwaltungssystems für alle existierenden Räume der Universität mithilfe der Einrichtung eines virtuellen Videokonferenzraums für jeden physischen Raum. Dies ermöglicht eine hohe Interaktivität für Vorlesungen und Seminare bei weiterer Verwendung bewährter und gewohnter Lehrmethoden. Zusätzlich wurden ein Kollaborationssoftwaresystem zur Dokumentation aller gewonnenen Erkenntnisse und typischer Fehler und ein technisches Support-Team für das Lehrpersonal zur Verfügung gestellt. Da Kurse mit einem praxisorientierten Ansatz mehr persönliche Interaktion als Vorlesungen benötigen, wurden die Anforderungen der Praktika nicht vollständig mit diesem Konzept gelöst, aber durch die Verwendung von Fragebögen und der Minimierung von Kontakten während der Testate angegangen.

Angewandte IT-Tools: Die Anforderungen des Konzepts wurden durch Zoom Meetings, Confluence, HIS/LSF und Moodle gelöst.

Diskussion und Schlussfolgerung: Das Konzept half den Dozierenden den Studierenden an der Hochschule eine hochqualitative Lehre anzu bieten. Darüber hinaus ermöglicht es eine dynamische Reaktion auf neue Bedürfnisse und Probleme. Das Konzept wird im Rahmen eines „Universal Design for Learning“-Konzepts überprüft und kann die Dozierenden in den folgenden Semestern bei hybriden Veranstaltungen mit realen und virtuellen Teilnehmern unterstützen.

Schlüsselwörter: Emergency Remote Teaching, virtuelle Räume, IT-Unterstützung, medizinische Ausbildung, COVID-19

Einführung

Die COVID-19-Pandemie begann in Deutschland kurz vor Beginn des Sommersemesters 2020 und bewirkte einen dramatischen Wandel in der traditionellen Lehre an deutschen Universitäten [1], die zumeist auf Präsenzveranstaltungen aufgebaut war. Dieses Manuskript konzentriert sich auf ein Konzept, das es der Medizinischen Fakultät der Otto-von-Guericke-Universität Magdeburg ermöglichte, möglichst viele Lehrveranstaltungen mit Hilfe von IT-Unterstützung anzubieten. Aufbauend auf einer bestehenden minimalen E-Learning-Struktur und Erfahrungen mit virtuellen Konferenzwerkzeugen war es das Hauptziel, den Dozierenden in Zusammenarbeit mit dem Studiendekanat eine IT-Infrastruktur zur Verfügung zu stellen, die sie mit möglichst geringem Aufwand nutzen konnten, um die Lehre für die Studierenden mithilfe bereits vorhandener Lehrmaterialien durchführen zu können. Daher beschlossen die Autoren, mit den Dozierenden auf einer Metaebene über ihre grundlegenden Lehrbedürfnisse und IT-Fähigkeiten zu sprechen und anschlie-

Christian Bruns¹,²
Tim Herrmann¹,²
Martin Böckmann-Barthel³
Hermann-Josef Rothkötter⁴
Johannes Bernarding¹,²
Markus Plaumann⁴

¹ Otto-von-Guericke-Universität Magdeburg, Institut für Biometrie und Medizinische Informatik, Magdeburg, Deutschland
² Otto-von-Guericke-Universität Magdeburg, Zentrum für Datenintegration, Magdeburg, Deutschland
³ Otto-von-Guericke-Universität Magdeburg, Abteilung für Experimentelle Audiologie, Magdeburg, Deutschland
⁴ Otto-von-Guericke-Universität Magdeburg, Institut für Anatomie, Magdeburg, Deutschland
ßend eine schnelle, benutzerfreundliche und generische IT-Lösung für alle zu entwickeln. Die Autoren möchten betonen, dass „Emergency Remote Teaching“ (ERT) [2], wie es in diesem Fall angewandt wird, niemals einen gut durchdachten schrittweisen Prozess zur Anpassung eines jeden Teils der Lehrkette [3] ersetzen kann. Nichtsdestotrotz ermöglichte die COVID-19-Krise einen neuen Einblick in verschiedene IT-Lösungen und die erforderlichen methodischen Anpassungen, um eine technische Grundlage für einen großen Teil der erforderlichen Lehre darzustellen, anstatt die universitäre Lehre komplett einzustellen. Im Folgenden werden die unterschiedlichen Anforderungen und die entsprechenden IT-Lösungen beschrieben.

Verwaltung

Um das oben beschriebene Konzept zu realisieren, beschlossen die Autoren, das Raumbuchungssystem der Universität für alle bestehenden physischen Räume (LSF; [https://www.his.de/]) auch für die Verwaltung der virtuellen Räume zu nutzen; jedem physischen Raum wurde ein Videokonferenzraum zugeordnet, der permanent geöffnet und durch ein einheitliches Passwort gesichert ist. Jeder physische Raum in der Datenbank ist nun direkt mit dem entsprechenden Videokonferenzraum verbunden. Dies hat zur minimalen Änderung des Arbeitsablaufs und der Arbeitsbelastung des Raumbuchungsteams der Universität geführt. Das Konzept wurde den Vorlesenden online demonstriert und diese Demonstration für die zukünftige Nutzung aufgezeichnet. Zur zusätzlichen technischen Unterstützung der Medizini schen Fakultät stellten und schulten das Datenintegrationszentrum (DIZ) des Universitätsklinikums Magdeburg und das Institut für Biometrie und Medizinische Informatik (IBMI) ein kleines vierköpfiges Team, das alle gewonnenen Erfahrungen dokumentierte und Tutorial-Videos aufnahm, um mit Hilfe der Kollaborationsssoftware nachhaltig Wissen innerhalb des Lehrkörpers zu verbreiten.

Vorlesungen/Seminare

Die meisten der modernen Vorlesungsstrategien erfordern zumindest eine minimale Interaktion zwischen Dozierenden und Studierenden. Daher erlaubt die beschriebene Videokonferenzlösung, die Präsentation der Dozierenden zu zeigen und ihnen die Möglichkeit einzuräumen, Studierenden für Fragen oder Kommentare das Mikrofon freizugeben. Ein weiterer Vorteil ist die Möglichkeit, dieselbe Lösung (für Vorlesungen) auch für Seminare mit hoher Anwesenheitsquote auszuwählen. Einige Dozenten sind es für mindestens 250 Teilnehmer, die eine Vorlesung zur gleichen Zeit besuchen können. Einige Dozenten sind es gewohnt, intensiver mit ihren Studierenden zu interagieren. Sie halten diese aufmerksam, indem sie ihnen Fragen stellen und sie in möglichst medizinische Entscheidungen einbeziehen. Zu diesem Zweck wurde eine standardisierte Umfrage mit generischen Antworten (a, b, c, d, ...) zum Inhalt der von den Dozierenden gezeigten Folien entwickelt. Um den Studierenden die Arbeit in Kleingruppen zu ermöglichen, kann der virtuelle Raum von den Dozierenden aufgeteilt werden.

Praktika

Praktika und medizinische Demonstrationen lassen sich kaum vollständig virtualisieren. Ein Ansatz besteht darin, in kleinen Gruppen zu arbeiten, um soziale Distanzierung zu gewährleisten. Hinzu kommt, dass einzelne Fälle bereits Antestate per Video die Zahl der physischen Kontakte reduziert haben. Als Alternative können Experimente mit verschiedenen typischen Parametern durchgeführt und von einem Ausbildungsvertreter aufgezeichnet werden. Anschließend entscheiden die Studierenden durch Beantwortung eines Fragebogens, wie das Experiment durchgeführt werden soll und erhalten so die Ergebnisse. Danach setzen sie ihre Arbeit fort und protokollieren die Ergebnisse. Einige dieser Experimente wurden in einen Schritt-für-Schritt-Online-Kurs umgewandelt, der experimentelle Daten liefert, die sich auf die individuellen Entscheidungen stützen.

IT-Werkzeuge

Softwarelösungen, die den oben vorgestellten Anforderungen entsprechen, waren Zoom Meetings, ein Videokonferenzwerkzeug, Confluence, eine Kollaborationssoftware von Atlassian und Moodle, eine bereits etablierte Lernplattform für Fragebogen der Praktika.

Diskussion

Das Konzept war, nicht zuletzt aufgrund der hohen Motivation (zu sehen auch in Abbildung 1 anhand der Nutzungstatistiken ausgewählter virtueller Räume) und Kreativität der Dozierenden selbst, die Konzepte für ihre eigenen Anwendungen optimiert und entwickelt haben, erfolgreicher als erwartet (wenn man bedenkt, dass es sich dabei um ERT handelte). Dennoch gab es anfangs verschiedene typische Missverständnisse, wie beispielsweise die Befürchtung der Dozierenden einer Überbuchung der virtuellen Räume – ähnlich einer Überbuchung der physischen Räume. Daher erstellte das Team einige zusätzliche Räume mit einem offenen Kalender, die spontan und einfach gebucht werden können. Eine erste kurze Evaluation von 24 Dozierenden vor dem Hintergrund des ERT zog ein positives Ergebnis für unsere intuitive Lösung. Die Dozierenden stellten eine höhere Anwesenheitsquote fest, baten aber um Individualisierbare Räume für speziellere Unterricht in den folgenden Semestern. Kritik wurde vor allem am teilweise unvollständigen Informationsfluss an die Dozierenden im Vorfeld geäußert. Um diesem zu begegnen, wurden mehr Informationen und Videoclips in der Kollaborationssoft-
ware bereitgestellt. Ein weiterer Kritikpunkt war die unbedingende technische Ausstattung, die an unserem Universitätsklinikum, genauso wie an anderen deutschen Standorten, in den letzten Jahren vernachlässigt wurde [4]. Überraschend waren die überdurchschnittlichen Noten der Studierenden in den Prüfungen und das positive Feedback der Studierenden. Bemerkenswert ist, dass sie sich gegenseitig sehr unterstützt haben, was zu einem geringeren Aufwand an zentraler technischer Unterstützung durch die universitären Einrichtungen führte. Das Support-Niveau nahm im Laufe der Zeit massiv ab, von etwa 8 Stunden pro Woche am Anfang bis zu einigen Anrufen am Ende des Semesters. Dabei konzentrierte sich der IT-Support hauptsächlich auf das Videokonferenz-Tool.

Der Schwerpunkt dieses kurzen Manuskripts liegt auf der IT-Unterstützung der Dozierenden. Bei notwendigen physischen Kontakten, z.B. bei Patientenkontakten oder Prüfungen, konnte das IT-Team daher weniger unterstützen. Auch weitere andere Aspekte werden in diesem Bericht nicht behandelt. Dazu gehören Datenschutzvorgaben, die Perspektiven der Studierenden, der plötzliche Wechsel der didaktischen Methoden und eine höhere Arbeitsbelastung im klinischen Alltag aufgrund der COVID-19-Pandemie [4]. Um aber den offensichtlichen Aspekt der Sicherheit hinzuzufügen: Im Sommersemester wurden keine nicht-autorisierten Teilnehmenden dokumentiert. Einmal drang ein Passwort zu Dritten vor, aber das Problem konnte innerhalb weniger Stunden durch Änderung des Passworts gelöst werden. Zusammenfassend lässt sich sagen, dass das ERT den persönlichen Kontakt nicht ersetzen, aber eine vollständige Schließung von Bildungseinrichtungen verhindern kann. Zusätzlich hat dieses „erzwungene Experiment“ angeregt, den traditionellen Unterricht in Zukunft durch Online-Lehre zu ergänzen.

Ausblick

In naher Zukunft wollen die Autoren weiteres Feedback sammeln, um ein „Universal Design for Learning“-Konzept [2] zu erstellen, das auch die IT-Infrastruktur zur Vorbereitung künftiger Notfall-Lehrveranstaltungen umfasst. Die Autoren sind überzeugt, dass hybride Lehrmethoden möglich sind, bei denen einige der Teilnehmer persönlich anwesend sind, während andere virtuell teilnehmen.

Interessenkonflikt

Die Autoren erklären, dass sie keinen Interessenkonflikt im Zusammenhang mit diesem Artikel haben.
Literatur

1. Kerres M. Against All Odds: Education in Germany Coping with Covid-19. Postdigital Sci Educ. 2020;2:690-694. DOI: 10.1007/s42438-020-00130-7.

2. Hodges C, Moore S, Lockee B, Frust T, Bond A. The difference between emergency remote teaching and online learning. Educ Rev. 2020. Zugänglich unter/available from: https://er.educause.edu/articles/2020/3/the-difference-between-emergency-remote-teaching-and-online-learning

3. Dykman CA, Davis CK. Online Education Forum: Part Two-Teaching Online versus Teaching Conventionally. J Inform Syst Educ. 2008;19:157-164.

4. Offergeld C, Ketterer M, Neudert M, et al. "Ab morgen bitte online": Vergleich digitaler Rahmenbedingungen der curricularen Lehre an nationalen Universitäts-HNO-Kliniken in Zeiten von COVID-19: Digitale Lehre an nationalen Universitäts-HNO-Kliniken. HNO. 2020. DOI: 10.1007/s00106-020-00939-5

Korrespondenzadresse:
Christian Bruns
Otto-von-Guericke-Universität Magdeburg, Institut für Biometrie und Medizinische Informatik, Magdeburg, Deutschland
christian.bruns@med.ovgu.de

Bitte zitieren als
Bruns C, Herrmann T, Böckmann-Barthe M, Rothkötter HJ, Bernarding J, Plaumann M. IT support in emergency remote teaching in response to COVID-19. GMS J Med Educ. 2021;38(1):Doc16. DOI: 10.3205/zma001412, URN: urn:nbn:de:0183-zma0014125

Artikel online frei zugänglich unter
https://www.egms.de/en/journals/zma/2021-38/zma001412.shtml

Eingereicht: 28.07.2020
Überarbeitet: 15.10.2020
Angenommen: 24.11.2020
Veröffentlicht: 28.01.2021

Copyright
©2021 Bruns et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.