The role of miRNAs in cutaneous squamous cell carcinoma

Xin Yu #, Zheng Li *, #

Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Received: March 25, 2015; Accepted: June 8, 2015

Introduction

Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer among Caucasian population, with a constantly increasing incidence estimated to 700,000 new cases diagnosed each year in the USA alone [1, 2]. Cutaneous squamous cell carcinoma is derived from epidermal keratinocyte, which is more malignant than basal cell cancers because cSCC grow and spread much faster [3, 4]. Cutaneous squamous cell carcinoma commonly develops on sun-exposed areas of the body since ultraviolet light (UV) exposure and immunosuppression are the major risk factors for the development of cSCC [5]. Most cSCCs are considered to be low risk cancers and are usually cured by surgery and/or radiotherapy. However, their potential to recur and metastasize often raises therapeutic problems [6]. For patients with metastatic cSCC, the long-term prognosis is poor, with a 1-year disease-specific survival at 44–56% [7]. Therefore, it is urgent to develop more effective targets or early detection and new therapeutic approaches.

MicroRNAs (miRs) are small, non-coding RNAs, which can negatively regulate gene expressions at post-transcriptional level. Each miR can control hundreds of gene targets and play important roles in various biological and pathological processes such as hematopoiesis, organogenesis, cell apoptosis and proliferation. Aberrant miR expression contributes to initiation and cell progression of cancers. Accumulating studies have found that miRs play a significant role in cutaneous squamous cell carcinoma (cSCC). Deregulations of miRs may contribute to cSCC carcinogenesis is through acting as oncogenic or tumour suppressive miRs. In this study, we summarized the recent data available on cSCC-associated miRs. In particular, we will discuss the contribution of miR to the initiation and progression of cSCCs. Although there are many obstacles to be overcome, clinical use of miRs as biomarkers for diagnosis, prediction of prognosis and target for therapies, will be a promising area in the future with more expression and functional role of miRs revealed.

Abstract

MicroRNAs (miRs) are small, non-coding RNAs that negatively regulate gene expressions at post-transcriptional level. Each miR can control hundreds of gene targets and play important roles in various biological and pathological processes such as hematopoiesis, organogenesis, cell apoptosis and proliferation. Aberrant miR expression contributes to initiation and cell progression of cancers. Accumulating studies have found that miRs play a significant role in cutaneous squamous cell carcinoma (cSCC). Deregulations of miRs may contribute to cSCC carcinogenesis is through acting as oncogenic or tumour suppressive miRs. In this study, we summarized the recent data available on cSCC-associated miRs. In particular, we will discuss the contribution of miR to the initiation and progression of cSCCs. Although there are many obstacles to be overcome, clinical use of miRs as biomarkers for diagnosis, prediction of prognosis and target for therapies, will be a promising area in the future with more expression and functional role of miRs revealed.

Keywords: cutaneous squamous cell carcinoma • microRNAs • miR • oncogene
Deregulated microRNAs in cSCC

MiRs down-regulated in cSCC

MiR-1

MicroRNA-1, a 22-nucleotide miR, might be a tumour suppressor since it is significantly decreased in multiple types of cancers including skin, lung, liver, bladder, renal and prostate cancer [13–17]. In addition, increased expression of miR-1 inhibits cell migration and growth while it promotes apoptosis *in vitro*. MicroRNA-1 participates in some classic oncogenic signalling pathways such as those controlled by Met, Cyclin D, Wnt, FOXP1 and TAGLN2 [13, 16, 18–21]. Fleming et al. found that miR-1 expression was frequently reduced both in mouse cSCCs and murine cSCC cell lines [22]. Furthermore, functional studies showed that miR-1 inhibited proliferation and increased apoptosis in cSCC cell line. Met, Twf1 and Ets1 and Bag4 were identified as the targets of miR-1, indicating that miR-1 could target various genes to suppress cSCC development. MicroRNA-1, along with miR-133a, miR-205 and let-7d was downregulated in SCCs of head and neck (HNSCC). Moreover, miR-1 significantly decreased HNSCC cell proliferation, invasion and migration, and promoted cell apoptosis and cell cycle arrest [17].

Overall, the role for miR-1 in the regulation of proliferation, invasion, metastasis and apoptosis in cSCC suggest its potential application as therapeutic target.

MiR-34a

Expression of miR-34a is decreased in many cancers, including prostate, non-small-cell lung, colorectal and pancreatic cancers [23]. MicroRNA-34a mediates p53 action on growth arrest, senescence, and apoptosis, as well as inhibition of epithelial-mesenchymal transition.

MicroRNA-34a was found to function as a novel node in the squamous cell differentiation network. The expression of miR-34a increased with keratinocyte differentiation and decreased in skin and oral SCCs, SCC cell lines, and aberrantly differentiating primary human keratinocytes [24]. In addition, SIRT6 (sirtuin-6) was proved to be the direct target and determinant of its impact on differentiation. SIRT6 expression level is inversely correlated with miR-34a in normal keratinocytes and keratinocyte-derived tumours. SIRT6 plays a significant role in DNA repair and genomic stability and has been demonstrated to act as a tumour suppressor in liver and colorectal cancers. Since SIRT6 was up-regulated in cSCC tissues and cell lines, it might play an opposite and/or more complex function in keratinocytes differentiation. Furthermore, miR-34a could induce differentiation of human keratinocytes both *in vitro* and *in vivo*.

Taken together, the role of miR-34a-SIRT6 axis might help to understand the pathogenesis of cSCC, which is characterized by abnormal differentiation. In addition, it may also contribute to developing useful biomarkers for treatment of premalignant and malignant SCCs and beyond.

MiR-124/214

MicroRNA-124 (also called miR-124a) plays a significant role in gastrulation and neural development [25]. Deregulated miR-124 is described to play important roles in different types of cancer. Through suppressing various genes, miR-124 can suppress cancer growth and...

Table 1 Deregulated miRNAs in cSCCs and their target genes

Expression changes	MiRNAs	References	Role	Target genes
Downregulated	miR-1	[17, 22]	Suppressive	Met; Twf1; Ets1; Bag4
	miR-34a	[24]	Suppressive	SIRT6
	miR-124/214	[32]	Suppressive	ERK2
	miR-125b	[39]	Suppressive	MMP13
	miR-155	[49]	Suppressive	Not mentioned
	miR-193b/365a	[54]	Suppressive	KRAS; MAX
	miR-199a	[60]	Suppressive	CD 44
	miR-361-5p	[55]	Suppressive	VEGFA
	miR-483-3p	[68]	Suppressive	API5; BIRC5; RAN
Up-regulated	miR-21	[39, 75–77]	Promotive	PDCD4; GRHL3; PTEN
	miR-31	[39, 82]	Promotive	Not mentioned
	miR-205	[83]	Promotive	SHIP2
	miR-365	[85, 86]	Promotive	NFIB

NFIB: nuclear factor I/B; cSCCs: cutaneous squamous cell carcinomas; MMP13: matrixmetalloproteinase 13.
metastasis in many cancers, including colorectal cancer, breast cancer, hepatocellular carcinoma, gastric cancer and prostate cancer [26–30]. MicroRNA-214 can operate in opposite manners in different types of tumours. In some cancers, miR-214 plays oncogenic role, while in others cancers suppressive role. High miR-214 expression is observed in many cancers including pancreatic, prostate, stomach, nasopharyngeal, and lung tumours, as well as in some kinds of cutaneous T-cell lymphomas. Conversely, miR-214 downregulation occurs in hepatocellular, bladder, cervical, and colorectal carcinomas [31]. The complexity of miR-214 function depends on different targets and signalling, which granted the future investigation in different context.

Yamane et al. showed that miR-124 and miR-214 was decreased in cSCC both in vitro and in vivo [32]. Supplement expression of miR-124 and miR-21 inhibited the cell proliferation via normalizing ERK1/2 (extracellular regulated protein kinases) levels in the cSCC cell in vitro. Additionally, serum concentration of miR-124 was inversely correlated with cSCC progression. Overexpression of miR-124 decreased expression of ERK2 protein, indicating that ERK2 was the target of miR-124. However, transfection of miR-214 mimic reduced the expression of both ERK1 and ERK2, suggesting that ERK1 and ERK2 was the target of miR-214.

In conclusion, the down-regulation of miR-124/-214 increased ERK1/2 expression, which subsequently mediates the hyperproliferation of cSCC tumour cells. The role of miR124/214 in the abnormal keratinocyte proliferation may lead to the development of useful targets for early diagnosis and novel treatment.

MiR-125b

MicroRNA-125b is implicated in multiple human cancers; however, the role of miR-125b in cancer remains controversial. In some cancers, it is up-regulated while in others it is downregulated. For example, the increased expression of miR-125b was observed in breast cancer, oral SCC, and bladder cancer, in which miR-125b inhibits tumour growth in vitro and in vivo [33–37]. Meanwhile, decreased expression of miR-125b was observed in prostate cancer, in which it can promote growth of prostate cells [38].

Comparing with healthy skin, miR-125b was found to be downregulated in cSCC. Functional analysis revealed that miR-125b suppressed proliferation, colony formation, migratory, and invasive capacity of cSCC cells in vitro. Furthermore, matrix metalloproteinase 13 (MMP13) was proved to be a direct target of miR-125b since their expression levels were inversely related in cSCC [39].

To conclude, these findings indicate that miR-125b plays a critically suppressive role in cSCC by targeting MMP13. Previously study has reported the therapeutic potential of MMP13, indicating that overexpression of miR-125b in cSCC cells could also be a potential therapeutic candidate in cSCC.

MiR-155

MicroRNA-155 is a critical regulator in the immune system and immune function of miR-155-knock-out mice is impaired [40–43]. In addition, miR-155 plays an oncogenic role in various cancers and it is overexpressed in many cancers [44–46]. However, recent data have revealed that miR-155 may also exhibit anti-oncogenic properties and exhibit immunological prevention against cancers [47, 48]. Therefore, the role of miR-155 in cancer remains unclear.

High-risk human papillomavirus (HPV), such as HPV16 and HPV18, lead to many squamous cells carcinomas, including virtually all cases of cervical cancer and a significant proportion of other anogenital cancers, as well as some head and neck squamous cancers [49]. The K14-HPV16 transgenic mouse model is often used to study the pathogenesis of HPV-associated squamous cancers. Using this model, Paiva et al. showed that all transgenic mice with demonstrated persistent epidermal squamous hyperplasia or in situ carcinoma and hyperkeratosis while the wild-type mice did not develop any skin lesion. In hyperplastic skin samples, miR-155 expression was lower than in normal chest skin.

In summary, miR-155 expression was lower in HPV-induced hyperplastic skin, indicating that miR155 levels may exhibit immunological prevention against carcinogenesis induced by HPV16.

MiR-193b/365a

Previous reports showed that miR-193b and miR-365 were decreased in melanoma and liver, lung and colon cancers [50–53]. Gastaldi et al. found that miR-193b-3p and miR-365-3p are highly expressed in epidermis. However, there is a parallel decrease of their expression during cSCC progression. Overexpression of these miRs reduced tumour cell proliferation, clonogenic potential and migration. Furthermore, KRAS (kirsten rat sarcoma viral oncogene) and MAX were identified as direct targets of miR-193b and miR-365a. The expression levels of KRAS and MAX were significantly decreased by miR-193b-3p and miR-365-3p [54].

MicroRNA-193b and miR-365 act tumour suppressor functions in cSCC, inhibiting skin carcinogenesis through repression of KRAS and MAX. Restoration of miR-193b-3p or miR-365-3p by delivery of these miRs could provide promising future strategies for cancer treatment.

MiR-199a

The expression of miR-199a was altered in various cancers [56, 57]. For example, the miR-199a was up-regulated in ovarian cancer, gastric cancer and cervical carcinomas [57–59] while it was downregulated in liver, breast and bladder cancer [54].

Wang et al. showed that expression of miR-199a was reduced in human cSCC tissues. In addition, miR-199a inhibited the proliferation and migration of cSCC cells via directly targeting CD 44. Moreover, miR-199a played a role in the regulation of the interaction between CD44 and Ezrin [60].

Therefore, the tumour suppressive role of miR-199a in cSCC by targeting CD44 might be an adjuvant strategy for the treatment of cutaneous SCC.

MiR-361-5p

VEGFA is a homo-dimeric heparin-binding glycoprotein, which associated with several types of skin cancer [61–64]. In particular, elevated levels of VEGFA were observed in cSCC [63]. Kanitz et al. found that miR-361-5p suppressed the expression of VEGFA in vitro and were inversely correlated with VEGFA expression in cSCC and in healthy skin. In addition, miR-361-5p levels were decreased in cSCC.
ASO-miR-21 may have potential applications as a therapeutic target. Growth and invasion and induces apoptosis of cSCC cells. Therefore, genes, PDCD4 and PTEN [77]. Downregulation of miR-21 inhibited cell tumorigenesis, suggesting that decreased Grhl3 expression contributes to tumour progression and up-regulation of the oncomir miR-21 in squamous cell carcinoma of the skin. Another study also showed that miR-21 downregulated the expression of tumour suppressors GRHL3 and PTEN [76]. Mice subcutaneously injected with transformed keratinocytes lacking Grhl3 demonstrated increased tumorigenesis, suggesting that decreased Grhl3 expression contributes to tumour progression and up-regulation of the oncomir miR-21 in squamous cell carcinoma of the skin. Another study also showed that miR-21 downregulated the expression of tumour suppressor genes, PDCD4 and PTEN [77]. Downregulation of miR-21 inhibited cell growth and invasion and induces apoptosis of cSCC cells. Therefore, ASO-miR-21 may have potential applications as a therapeutic target. Understanding the role of miR-21 and its target gene in cSCC may help to understand the pathogenesis of cSCC. Furthermore, gene therapy targeting miR-21 should be further investigated to explore novel therapeutic candidate for cSCC.

MiRs up-regulated in cSCC

MiR-21

MicroRNA-21 (miR/miR-21), up-regulated in various cancers, is a well-established oncogenic miR [69–74]. MicroRNA-21 expression was also increased in cSCC [39, 75]. In addition, increased levels of miR-21 are associated with reduced expression of tumour suppressors GRHL3 and PTEN [76]. Mice subcutaneously injected with transformed keratinocytes lacking Grhl3 demonstrated increased tumorigenesis, suggesting that decreased Grhl3 expression contributes to tumour progression and up-regulation of the oncomir miR-21 in squamous cell carcinoma of the skin. Another study also showed that miR-21 downregulated the expression of tumour suppressor genes, PDCD4 and PTEN [77]. Downregulation of miR-21 inhibited cell growth and invasion and induces apoptosis of cSCC cells. Therefore, ASO-miR-21 may have potential applications as a therapeutic target.

Understanding the role of miR-21 and its target gene in cSCC may help to understand the pathogenesis of cSCC. Furthermore, gene therapy targeting miR-21 should be further investigated to explore novel therapeutic candidate for cSCC.

MiR-31

MicroRNA-31 is frequently deregulated miRs in human cancers [78–80]. However, its role in tumour development is remains not fully understood. MicroRNA-31 can behave as either as a tumour suppressor or an oncogenic miR since it is up-regulated in head and neck squamous cancer, liver cancer and colorectal cancer, but downregulated in gastric cancer breast cancer and prostate carcinoma [81]. MicroRNA-31 can regulate cell growth, migration, metastasis in cancers.

MicroRNA-31 expression was higher in cSCC than healthy skin and precancerous skin lesions [39, 82]. In addition, miR-31 was specifically up-regulated in cSCC cancer cells. Downregulation of endogenous miR-31 suppressed migration, invasion and colony forming ability in human metastatic cSCC cells. In conclusion, miR-31 acts an oncogenic role in cSCC. Treatment targeting miR-31 may provide a novel therapeutic method for cSCC.

MiR-205

MicroRNA-205 was overexpressed in head and neck SCC cell lines. In addition, SHIP2 (Src homology 2-containing 5'-inositol phosphatase 2) levels were inversely correlated with miR-205 and suggest that high levels of miR-205. Antagomir to miR-205 increased apoptosis via restoring the expression of SHIP2 in SCCs [83]. Therefore, antagomir to miR-205 may provide a novel treatment of cSCC.

MiR-365

Deregulation of miR-365 is reported in many kinds of cancer. For example, miR-365 is overexpressed in human breast cancer and it is also involved in the carcinogenesis of small cell lung cancer and colorectal cancer [52, 53]. MicroRNA-365 was one of the highest expressed miRs induced by UVB treatment [84]. In addition, Zhou et al. showed that miR-365 was up-regulated in both cells and clinical specimens of cSCC and it promoted the development of cSCCs through targeting nuclear factor I/B [85, 86]. HaCaTpre-miR-365-2 cell line, which overexpressed miR-365, induced subcutaneous tumours while antagoni-365, an anti-miR-365 oligonucleotide, inhibited cutaneous tumour formation in vivo. MicroRNA-365 could also induce GI phase arrest and apoptosis of cancer cells. In summary, miR-365 acts an oncogenic role in cutaneous SCC both in vitro and in vivo. The overexpression and roles of miR-365 in cSCC indicate that it can be used as a potential indicator both in the clinical diagnosis and treatment.

Conclusions

Cutaneous squamous cell carcinoma is one of the most common skin cancers with increasing number of new cases diagnosed each year. MicroRNA play a significant role in many physiological and pathological processes, especially in carcinogenesis. Increasing evidence has observed that deregulated miRs in cSCC, providing potential diagnostic and therapeutic targets. Anticancer cSCC treatment may be achieved by altering the deregulated level of miRs. Inhibitions of oncomiRs overexpressed in cSCC by administration of complementary nucleic acid sequences or by decreasing the actual expression level provides a potential therapeutic method. For example, inhibitory medicines against miR-21s can be used in treatment of cSCC patients in future. However, further investigations are needed to confirm the therapeutic potential of miRs of cSCC clinically.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (NSFC) (grant number 81401847).

Conflicts of interest

The authors have no conflicts of interest to disclose.
References

1. Ratnushy V, Gober MD, Hick R, et al. From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. J Clin Invest 2012; 122: 464–72.

2. Hussain SK, Sundquist J, Hemminki K. Incidence trends of squamous cell and rare skin cancers in the Swedish national cancer registry point to calendar year and age-dependent increases. J Invest Dermatol 2010; 130: 1323–8.

3. Pfaff D, Philipova M, Buechner SA, et al. T-cadherin loss induces an invasive phenotype in human keratinocytes and squamous cell carcinoma (SCC) cells in vitro and is associated with malignant transformation of cutaneous SCC in vivo. Br J Dermatol 2010; 163: 353–63.

4. Alam M, Ratner D. Cutaneous squamous-cell carcinoma. N Engl J Med 2001; 344: 975–83.

5. Runger TM. Role of UVA in the pathogenesis of melanoma and non-melanoma skin cancer. A short review. Photodermatol Photoimmun Photomed. 1999; 15: 212–6.

6. Crammer LD, Engelhardt C, Morgan SS. Treatment of unrectetable and metastatic cutaneous squamous cell carcinoma. Oncologist 2010; 15: 1320–8.

7. Wells JL 3rd, Shirai K. Smooth muscle cell functions in atherosclerotic lymphomas. J Cell Mol Med. Vol 20, No 1, 2016

8. Xu Y, Li Z, Liu J. MiRNAs in primary cutaneous lymphomas. Cell Prolif. 2015; 48: 271–7.

9. Xu Y, Li Z. MicroRNAs regulate vascular smooth muscle cell functions in atherosclerosis. Int J Mol Med. 2014; 34: 923–33.

10. Xu Y, Li Z, Shen J, et al. MicroRNA-10b promotes nucleus pulposus cell proliferation through RhoC-Akt pathway by targeting HOXD10 in intervertebral disc degeneration. PLoS ONE. 2013; 8: e83080.

11. Xu Y, Li Z, Wu WK. MicroRNA-10b induces vascular muscle cell proliferation through Akt pathway by targeting TIP30. Curr Vasc Pharmacol. 2015. [Epub ahead of print].

12. Li Z, Yu X, Shen j, et al. MicroRNA expression and its clinical implications in Ewing’s sarcoma. Cell Prolif. 2015; 48: 1–6.

13. Li D, Yang P, Li H, et al. MicroRNA-1 inhibits proliferation of hepatocarcinoma cells by targeting endothelin-1. Life Sci. 2011; 91: 440–7.

14. Hudson RS, Yi M, Esposito D, et al. MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Res. 2012; 40: 3689–703.

15. Nohata N, Hanazawa T, Enokida H, et al. microRNA-1/133a and microRNA-206/133b clusters: dysregulation and functional roles in human cancers. Oncotarget. 2012; 3: 9–21.

16. Tominaga E, Yusa K, Shimazaki S, et al. MicroRNA-1 targets Slug and endows lung cancer A549 cells with epithelial and anti-tumorigenic properties. Exp Cell Res. 2013; 319: 77–88.

17. Nohata N, Sone Y, Hanazawa T, et al. miR-1 as a tumor suppressive microRNA targeting TAIL1 in head and neck squamous cell carcinoma. Oncotarget. 2011; 2: 29–42.

18. Yoshino H, Enokida H, Chiyomaru T, et al. Tumor suppressive microRNA-1 mediated novel apoptosis pathways through direct inhibition of splicing factor serine/arginine rich 9 (SR5F9/Sp30c) in bladder cancer. Biochem Biophys Res Commun. 2012; 417: 588–93.

19. Yamazaki T, Yoshino H, Enokida H, et al. Novel molecular targets regulated by tumor suppressors microRNA-1 and microRNA-133a in bladder cancer. Int J Oncol. 2012; 40: 1821–30.

20. Yan D, Dong Xda E, et al. MicroRNA-1/206 targets c-Met and inhibits rhadomyosarcoma development. J Biol Chem. 2009; 284: 29596–604.

21. Reid JF, Sokolova V, Zoni E, et al. MicroRNA-1 profiling in colorectal cancer highlights miR-1 involvement in MET-dependent proliferation. Mol Cancer Res. 2012; 10: 504–15.

22. Fleming JL, Gable DL, Samadzadeh-Targhat S, et al. Differential expression of miR-1, a putative tumor suppressing microRNA in cancer resistant and cancer susceptible mice. PLoS ONE. 2013: 1: e688.

23. Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010; 17: 193–9.

24. Lefort K, Brooks Y, Ostano P, et al. MicroRNA-214 regulates neural differentiation of mesenchymal stem cells by targeting Sp1 mRNA. J Cell Biochem. 2015; 116: 949–53.

25. Mondainizadeh M, Arefian E, Mosayebi G, et al. MicroRNA-124 regulates neuronal differentiation of mesenchymal stem cells by targeting Sp1 mRNA. J Cell Biochem. 2015; 116: 949–53.

26. Furuta M, Kozaki K, Tanaka S, et al. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis. 2010; 31: 766–76.

27. Hunt S, Jones AV, Hisley EE, et al. MicroRNA-124 suppresses oral squamous cell carcinoma motility by targeting ITGB1. FEBS Lett. 2011; 585: 187–92.

28. Liu X, Sempere LF, Galimberti F, et al. Uncovering growth-suppressive MicroRNAs in lung cancer. Clin Cancer Res. 2009; 15: 1177–83.

29. Zhang T, Wang J, Zhai X, et al. MicroRNA-124 retards bladder cancer growth by directly targeting CDK4. Acta Biochim Biophys Sin. 2014; 46: 1072–9.

30. Zheng F, Liao YJ, Cai MY, et al. The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut. 2012; 61: 278–89.

31. Penna E, Orso F, Taverna D, et al. miR-214 as a key hub that controls cancer networks: small player, multiple functions. J Invest Dermatol. 2015; 135: 960–9.

32. Yamane K, Jinnin M, Etoh T, et al. Down-regulation of miR-124/-214 in cutaneous squamous cell carcinoma mediates abnormal cell proliferation via the induction of ERK. J Mol Med. 2013; 91: 69–81.

33. Henson BJ, Bhattacharjee S, O’Dee DM, et al. Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosom Cancerosom. 2009; 48: 569–82.

34. Liu LH, Li H, Li JP, et al. miR-125b suppresses the proliferation and migration of osteosarcoma cells through down-regulation of STAT3. Biochem Biophys Res Commun. 2011; 416: 31–8.

35. Huang L, Luo J, Cai Q, et al. MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int J Cancer. 2011; 128: 1758–69.

36. Wu D, Ding J, Wang L, et al. microRNA-125b inhibits cell migration and invasion by targeting matrix metalloproteinase 13 in bladder cancer. Oncol Lett. 2013; 5: 829–34.

37. Zhang Y, Yan LX, Wu QN, et al. miR-125b is methylated and functions as a tumor suppressor by regulating the ETS1 proto-oncogene in human invasive breast cancer. Cancer Res. 2011; 71: 3552–62.

38. Shi XB, Xue L, Yang J, et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci USA. 2007; 104: 19983–8.
50. Chen J, Feilotter HE, Pare GC, et al. MicroRNA-125b down-regulates matrix metallopeptidase 13 and inhibits cutaneous squamous cell carcinoma cell proliferation, migration, and invasion. J Biol Chem. 2012; 287: 29899–908.

40. Ceppi M, Pereira PM, Dunand-Sauthier I, et al. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci USA. 2009; 106: 2735–40.

41. O’Connell RM, Taganov KD, Boldin MP, et al. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA. 2007; 104: 1604–9.

42. Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA. 2006; 103: 7024–9.

48. Thai TH, Calado DP, Casola S, Thai TH, Calado DP, Casola S, O’Connell RM, Taganov KD, Boldin MP, et al. MicroRNA-155 regulates proliferation, migration and invasion in human hepatocellular carcinoma cells. Eur J Cancer. 2010; 46: 2828–36.

52. Kang SM, Lee HJ, Cho JY. MicroRNA-365 regulates NKK2-1, a key mediator of lung cancer. Cancer Lett. 2013; 335: 487–94.

53. Nie J, Liu L, Zheng W, et al. microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2. Carcinogenesis. 2012; 33: 220–5.

54. Gastaldi C, Bertero T, Xu N, et al. miR-193b/365a cluster controls progression of epidermal squamous cell carcinoma. Carcinogenesis. 2014; 35: 1110–20.

55. Kanitz A, Imitj J, Dziunycz P, et al. The expression levels of microRNA-361-5p and its target VEGFA are inversely correlated in human cutaneous squamous cell carcinoma. PLoS ONE. 2012; 7: e49568.

56. Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006; 9: 189–98.

57. Lee JW, Choi CH, Choi JJ, et al. Altered MicroRNA expression in cervical carcinomas. Clin Cancer Res. 2008; 14: 2535–42.

63. Veronese A, Lupini L, Consiglio J, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006; 9: 189–98.

65. Ribas J, Lupold SE. The transcriptional regulation of miR-21, its multiple transcripts, and their implication in prostate cancer. Cell Cycle. 2010; 9: 923–9.

70. Giovannetti E, Funel N, Peters GJ, et al. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res. 2010: 70: 4528–38.

76. Daride C, Georgy SR, Wilanowski T, et al. Targeting of the tumor suppressor GRHL3 by a miR-21-dependent proto-oncopgenic network results in PTEN loss and tumorigenesis. Cancer Cell. 2011; 20: 635–48.

78. Zheng W, Liu Z, Zhang W, et al. miR-31 functions as an oncogene in cervical cancer. Arch Gynecol Obstet. 2015; 292: 1083–9.

8 Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

© 2015 The Authors.
79. Dong Z, Zhong Z, Yang L, et al. MicroRNA-31 inhibits cisplatin-induced apoptosis in non-small cell lung cancer cells by regulating the drug transporter ABCB9. *Cancer Lett.* 2014; 343: 249–57.

80. Kim HS, Lee KS, Bae HJ, et al. MicroRNA-31 functions as a tumor suppressor by regulating cell cycle and epithelial-mesenchymal transition regulatory proteins in liver cancer. *Oncotarget.* 2015; 6: 8089–102.

81. Laurila EM, Kallioniemi A. The diverse role of miR-31 in regulating cancer associated phenotypes. *Genes Chromosom Cancer.* 2013; 52: 1103–13.

82. Wang A, Landen NX, Meisgen F, et al. MicroRNA-31 is overexpressed in cutaneous squamous cell carcinoma and regulates cell motility and colony formation ability of tumor cells. *PLoS ONE.* 2014; 9: e103206.

83. Yu J, Ryan DG, Getsios S, et al. MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. *Proc Natl Acad Sci USA.* 2008; 105: 19300–5.

84. Guo L, Huang ZX, Chen XW, et al. Differential expression profiles of microRNAs in NIH3T3 cells in response to UVB irradiation. *Photochem Photobiol.* 2009; 85: 765–73.

85. Zhou M, Zhou L, Zheng L, et al. miR-365 promotes cutaneous squamous cell carcinoma (CSCC) through targeting nuclear factor I/B (NFIB). *PLoS ONE.* 2014; 9: e100620.

86. Zhou M, Liu W, Ma S, et al. A novel oncomiR-365 induces cutaneous squamous cell carcinoma. *Carcinogenesis.* 2013; 34: 1653–9.