Burden of out-of-pocket payments among patients with cardiovascular disease in public and private hospitals in Ibadan, South West, Nigeria: a cross-sectional study

Folashayo Adeniji

ABSTRACT

Objective Given that the mechanism for financial protection is underdeveloped in Nigeria, out-of-pocket (OOP) payment for treating cardiovascular disease could impose substantial financial burden on individuals and their families. This study estimated the burden of OOP expenditures incurred by a cohort of patients with cardiovascular disease (CVD) in Ibadan, Nigeria.

Design and settings This study used a descriptive cross-sectional study design. A standardised survey questionnaire originally developed by Initiative for Cardiovascular Health Research in Developing Countries was used to electronically collect data from all the patients with CVD who accessed healthcare between 4 November 2019 and 31 January 2020 in the cardiology departments of private and public hospitals in Ibadan, Nigeria. Baseline characteristics of respondents were presented using percentages and proportions. The OOP payments were reported as means±SDs. Costs/OOP payments were in Nigerian Naira (NGN). The average US dollar to NGN at the time of data collection was N362.12 per $1. All quantitative data were analysed using STATA V.15.

Outcome measures The burden of outpatient, inpatient and rehabilitative care OOP payments.

Results Majority of the patients with CVD were within the age range of 45–74 years and 68.55% of them were women. The diagnostic conditions reported among patients with CVD were hypertensive heart failure (84.01%), dilated cardiomyopathy (4.44%), ischaemic heart disease (3.9%) and anaemic heart failure (2.15%). Across all the hospital facilities, the annual direct and indirect outpatient costs were N421 595.7±N885 962.0 ($1164.2±$2363.8) and N19 146.5±N53 610.1 ($52.87±$148.05). Similarly, the average direct and indirect OOP payments per hospitalisation across all facilities were N182 302.4±N249 090.4 ($503.43±$687.87) and N14 700.8±N6 297.1 ($40.60±$91.37), respectively. The average rehabilitative cost after discharge from index hospitalisation was N30 012.0 ($82.88).

Conclusion The burden of OOP payment among patients with CVD is enormous. There is a need to increase efforts to achieve universal health coverage in Nigeria.

Background The prevalence of cardiovascular diseases (CVDs) is increasing in low-income and middle-income-countries (LMICs), imposing a substantial economic burden on economies, households and individuals.1–3 In many developing countries, CVDs are becoming the leading cause of morbidity and deaths.4–7 A study reported that this health condition accounts for between 7% and 9% of all hospital admissions in the African region.8 Between 1990 and 2017, the number of deaths related to CVDs in SSA increased by over 50%.9 10

Furthermore, universal health coverage (UHC) remains low in majority of the
countries in SSA, and as a result, the burden of medical payments is often disproportionately borne by individuals and their households. This constitutes large economic burdens for families and predisposes them to catastrophic healthcare payments and other impoverishment impacts of out-of-pocket (OOP) payments.

In Nigeria, the mechanism for financial protection against excessive medical payments is underdeveloped as only about 5% of the entire population is covered by the health insurance provided under the National Health Insurance Scheme. A study conducted to compare the level of UHC in three SSA countries, Ghana, Kenya and Nigeria, revealed that Nigeria had the lowest UHC of the countries, with 1.1% of the female population and 3.1% of the male population covered by social health insurance, respectively. Consequently, there has been an overdependence on OOP payments as the major source of healthcare financing in Nigeria, as revealed in figure 1.

In view of the rising levels of chronic disease like CVDs and the desire to achieve UHC by 2030 in the country, there is an increasing demand for research evidence in connection with the economic burden posed by OOP payments on patients. Therefore, this study aimed at estimating the OOP health expenditures (the direct and indirect costs) of treatment incurred by patients receiving outpatient and inpatient care in public and private hospital facilities in Ibadan, a Southwestern state in Nigeria. In addition, homecare cost for patients who required rehabilitative care after hospitalisation was estimated. Findings in the study will be useful for ascertaining the cost-effectiveness of the efforts to control modifiable risk factors for CVDs while also aiding the design of policy interventions for preventing the economic distress associated with OOP payments for medical services in Nigeria and in similar countries in SSA.

MATERIALS AND METHODS
Study design
This study used a descriptive cross-sectional study design.

Description of study area
Data were collected in the cardiology departments/outpatient clinics of purposively selected private and public (secondary and tertiary), general and specialised, hospital facilities in Ibadan, Oyo State, South West, Nigeria. Ibadan is the capital of Oyo State. The city is also regarded as the third most populous city in Nigeria, behind Lagos and Kano. However, it is renowned as Nigeria’s largest city in terms of geographical area. The city is situated within South West, Nigeria, 128 km inland northeast of Lagos and 350 km southwest of Abuja, the federal capital territory (FCT) of Nigeria. The residents and natives of the city are the Yorubas, although individuals from other ethnic groups across the country live in the city too. There are 11 local government areas (LGAs) in Ibadan which are stratified into 5 urban LGAs and 6 semi-urban LGAs. Major healthcare facilities like the University College Hospital (UCH) and many other large public and private hospitals are located in Ibadan. These hospitals, especially UCH, serve as referral centres for other facilities in Oyo State and indeed, facilities in Nigeria as a whole.
Study population
The study population consisted of individuals seeking healthcare related to heart conditions (CVDs) in private and public (secondary and tertiary), general and specialised, hospital facilities in Ibadan, Oyo State, South West, Nigeria.

Inclusion and exclusion criteria
Respondents were considered eligible to participate if he/she is 18 years and older and have been clinically confirmed to have any of the CVDs.

Sampling technique
Major hospitals that provide healthcare services for chronic diseases like CVDs are not widely spread across Ibadan city. They are clustered in a few urban and semi-urban LGAs within the city. Therefore, those LGAs were purposively selected. Following this, the only tertiary hospital facility, UCH and two secondary hospitals in Ibadan, Adeoyo State Hospital and Jericho Specialist Hospital, were included in the study. Also, data were collected from all the specialised heart hospitals in the city. These facilities include Elyon Heart Rehabilitation Centre, Brofam Specialist Hospital and Fountain Heart Clinic. Therefore, a total sampling of all the 744 patients with CVD that attended the outpatient clinics of these hospital facilities between 4 November 2019 and 31 January 2020 was carried out. Details of the sample size calculation and sampling procedure are provided in the online supplemental material.

Data collection
Data were collected using a standardised survey questionnaire originally developed by Initiative for Cardiovascular Health Research in Developing Countries, which has been used in a previous study. This tool was adapted and designed using the REDcap software. The validity and reliability of the questionnaire was ensured by pretesting it in facilities that were similar to the ones included in the study. A total of 43 questionnaires, 10% of the estimated sample size, were administered for the pretest. Completed questionnaires were checked for completeness. The Cronbach alpha was used to test for internal consistency. From the results generated, necessary corrections were made accordingly. The instrument was then used to elicit information on respondents’ demographic characteristics, medical history, individual and household economic information, OOP payments (ie, direct and indirect costs) incurred towards outpatient CVD treatment, inpatient care (for those hospitalised in the last 15 months prior to the study) as well as those who require home-based rehabilitative medical care. All the costs incurred per outpatient visit were elicited. The recall period for inpatient care was 15 months, while that for home-based rehabilitative care was 1 month, similar to that adopted in a previous study. Trained research assistants administered the research tool electronically using tablets after written informed consent was obtained from the participants. Strict data quality was ensured by the principal investigator and two data collection supervisors. Regular reviews of the data collected were conducted by reviewing hospital patient treatment records, especially to verify the costs of hospitalisation reported by patients. All the data collected were anonymised.

Burden of OOP payments among patients with CVD
This study adopted a microcosting of all the OOP payments incurred by patients towards accessing outpatient, inpatient and home-based medical services. This methodology for estimating the burden of OOP payments, that is, direct costs and indirect costs, follows that adopted in previous studies. Direct costs related to expenditures incurred when paying for hospital fees, purchase of medicines/drugs, transportation to and fro to access outpatient and inpatient treatment (also referred to as direct non-medical cost), medical consumables, laboratory tests, emergency room, hospital bed and radiological procedures. Similarly, indirect costs referred to the costs associated with loss of work/productivity/income as a result of sick days as well as the income/wages loss by the caregiver(s) who accompanied the patients to the clinic/hospital. For outpatient and inpatient care, information were elicited from patients and/or patients’ caregiver(s) to calculate the indirect cost. The number of days absent from work due to outpatient and inpatient care was multiplied by the patient’s earnings per day. Following similar procedure, the wages lost for caregiving was also ascertained. No indirect costs were recorded for respondents/caregivers who were unemployed and those who had regular paid job because they may not have incurred any income loss due to CVD treatment. For patients with CVD who were self-employed, the average hourly/daily earnings were elicited, and this was multiplied by the number of hours/days spent while undergoing treatment as a result of CVD. Estimated outpatient costs were annualised, while inpatient cost related to cost per hospitalisation. Home-based care costs included all the costs incurred for rehabilitative care outside of the hospital. Patients reported the average OOP payment incurred for home-based/rehabilitative care on a monthly basis and this cost was annualised. The presence of comorbidity could potentially bias the estimated costs upward, and to partially mitigate this effect, participants were asked to report on the OOP payments related to CVD treatment only, and, where necessary, guidance was sought from the attending physicians to ensure that possible effects of comorbidity were minimised.

Outpatient OOP payments
These include costs/payments for hospital charges, costs of drugs, laboratory costs and other costs which were associated with outpatient treatment.

Inpatient OOP payments
These include expenditures incurred for emergency room, hospital bed, treatment, surgery, purchase of
drugs, laboratory tests, food expenses, costs of ambulance service and other costs incurred during index hospitalisation in the last 15 months.

Home-based/rehabilitative OOP payments
This includes doctor fees, nurse fees, physiotherapist costs, occupational rehabilitation, costs of drugs and laboratory costs.

Statistical analysis
Baseline characteristics of respondents was presented using percentages and proportions. The OOP payments for outpatient, inpatient and home-based medical services was reported as means±SDs. All quantitative data were analysed using STATA V.15 and costs/OOP payments were in Nigerian Naira (₦). The average US dollar to NGN at the time of data collection was ₦362.12 per $1. All through this article, the patient-perspective costs (direct and indirect) are used interchangeably with OOP medical payments.

Patient and public involvement statement
Apart from being research participants, there was no patient and/or public involvement in the design and execution of this study.

RESULTS
The background characteristics of respondents are depicted in Table 1. The highest number of patients with CVD were within age groups 55–64 years (27.69%) and 65–74 years (30.11%). Respondents within ages below 45 years (10.22%), age group 45–54 years (17.88) and those with ages above 74 years (14.7%) were the lowest. Majority of the patients were women (68.55%). Of the participants, 211 (28.36%) had primary education; 184 (24.73%) had secondary education; and 203 (27.28%) had tertiary education, while 146 had no formal education. Also, 515 (69.22%) were married; 200 (26.88%) had lost his/her partner; 14 (1.88%) were divorced; and 15 (2.02%) were never married. Those who are self-employed (35.62%) were the highest, and respondents who cannot work due to disability (2.02%) were the fewest. The prevalence of participants who had ever smoke was 8.33%, and only 9.19% of respondents consumed alcohol in the last 1 month prior to the time data were collected.

Table 1 shows the clinical/medical characteristics of the respondents. Majority of the patients were undergoing treatment due to hypertensive heart failure (84.01%). This was followed by dilated cardiomyopathy (4.44%), ischaemic heart disease (3.9%) and anaemic heart failure (2.15%), in that order. Of the 744 patients with CVD, 128 (17.41%) were hospitalised in the last 15 months, and majority of them (81.25%) were hospitalised once in the last 15 months, while only 2 (1.56%) were hospitalised more than five times during that period. As such, the hospitalisation rate among this cohort of patients with CVD was 17.42%. Also, for all the hospitalised patients, the average length of hospital stay was 8.2 days.

Estimates of annualised outpatient OOP payments
The OOP payment for different components of outpatient medical services among patients with CVDs by private and
public (federal and state) hospital facilities are reported in table 3. The cost of laboratory test was the highest relative to other components of OOP payments in private and federal-owned hospital facilities, N535,042.1±N6226830.4 ($1477.5±$1719.6) and N265,091.7±N3968390.7 ($732.1±$1095.9), respectively. For patients who accessed healthcare in state-owned hospital facilities, the cost of drugs/medicines was the highest when compared with other components of OOP payments, N238,917.4±N886081.5 ($659.8±$2446.9). As expected, the annual average OOP payments in private hospitals was higher than that incurred in public hospitals (both federal-owned and state-owned hospitals): N283,515.8 ($782.9) for private hospital facilities, N115,593.5 ($319.2) for federal-owned hospital; N85,959.1 ($237.4). Across all the hospital facilities, the annual direct and indirect costs were N421,595.7±N55,962.0 ($1164.2±$2363.8) and N19,146.5±N53,610.1 ($52.87±$148.05). Estimated OOP payments are heavy-tailed to the right, hence the higher value of the SD from the mean.

Estimates of OOP payments per hospitalisation

Table 4 shows the OOP payment per hospitalisation among patients with CVD. The cost of treatment, N68,428.57±N108,814.60 ($188.97±$300.49), was the highest in private hospitals, followed by the cost of laboratory tests, N51,428.57±N55,280.67. In the federal-owned facility, OOP payments for surgical procedure was the highest, N3,414,000.0 ($9429.8), and this was followed by the costs of laboratory tests, N78,456.55±N99,141.23 ($216.66±$273.78). This was followed by the costs of treatment and the costs of drugs, N49,577.62±N91,349.57 ($136.91±$252.26) and N47,050.60±N64,373.54 ($129.93±$177.11), respectively. Similarly, the costs of laboratory test and OOP payments to purchase drugs per hospitalisation were the largest in state-owned hospitals. Following a similar pattern to the OOP payments for outpatient care, patients who attended state hospitals incurred the least OOP payment per an episode of hospitalisation, N91,075.67 ($251.51), relative to those who accessed care in private and federal hospitals, N193,665.71 ($534.81) and N254,559.19 ($792.97). Relative to that of outpatient care, patients with CVD who were admitted in the Federal hospital, incurred the highest OOP payment. Overall, the average direct and indirect OOP payments per hospitalisation across all facilities were N182,302.4±N249,090.4 ($503.43±$867.87) and N14,700.8±N69,297.1 ($40.60±$191.37), respectively. Components of total OOP payments for hospitalised patients with cardiovascular disease as computed by the author are reported in figure 2.

Estimates of OOP payments for home-based/rehabilitative care

The annualised OOP payment incurred by patients with CVD who required rehabilitative care is reported in table 5. The highest cost incurred was physiotherapy costs, N14,000.0±N401,905.8 ($397.66±$1109.87), followed by the cost of drugs, N35,161.8±N334,195.4 ($97.10±$922.89). The average rehabilitative cost was N30,012.0 ($82.88).

Table 2 Medical characteristics of respondents (N=744)

Health issue	Frequency	Per cent (%)
Cardiovascular diseases		
Alcoholic cardiomyopathy	3	0.4
Anaemic heart failure	16	0.21
Complete heart block	6	0.81
Congenital heart disease	5	0.67
Cor pulmonale	1	0.13
Dilated cardiomyopathy	33	4.44
Hypertensive heart disease	625	84.01
Ischaemic heart disease	29	3.9
Pericardial valvar heart disease	7	0.94
Peripartum cardiomyopathy	5	0.67
Thyroid disease	3	0.4
Other	11	1.48

Hospitalised in the last 15 months?

	Frequency	Per cent (%)
No	607	82.59
Yes	128	17.41

Numer of times hospitalised

	Frequency	Per cent (%)
Once	104	81.25
Twice	18	14.06
Thrice	4	3.13
Five times	2	1.56

LoHS (days)

	Frequency	Per cent (%)
1–3	13	10.16
4–6	26	20.31
7–9	38	29.69
10–12	16	12.5
>12	35	27.34

Average LoHS 8.2 days

LoHS, length of hospital stay.
Table 3 Annualised out-of-pocket payment for outpatient treatment among patients with cardiovascular disease

Hospital type	Respondents (n)	Minimum cost (₦)	Maximum cost (₦)	Mean cost (₦)	SD (₦)
Private					
Hospital charges	38	0.0	90,000.0	51,978.9	20,366.8
Lab test cost	38	0.0	2,400,000.0	535,042.1	62,268.3
Cost of drug	38	14,400.0	397,440.0	529,357.9	84,481.3
Other medical costs	38	0.0	384,000.0	17,684.2	65,785.1
Average cost				283,515.8	
Federal					
Hospital charges	338	0.0	42,000.0	15,571.6	7,213.0
Lab test cost	338	0.0	2,400,000.0	265,091.7	396,839.7
Cost of drug	338	0.0	336,000.0	176,600.7	293,799.6
Other medical costs	324	0.0	150,000.0	5110.0	17,084.5
Average cost				115,593.5	
State					
Hospital charges	368	0.0	25,200.0	3135.3	2498.9
Lab test cost	368	0.0	1,440,000.0	95,701.6	185,896.8
Cost of drug	368	0.0	1,210,000.0	238,917.4	886,081.5
Other medical costs	359	0.0	259,200.0	6082.2	27118.9
Average cost				85959.1	
Average direct outpatient cost (all facilities)				421,595.7	855,962.0
Average indirect outpatient cost (all facilities)				191,465.7	53610.1

implications for healthcare financing in Nigeria and in SSA as a whole.

Regarding the baseline profile of patients with CVD in this study, majority were within the age range of 45–74 years. This is consistent with findings in previous studies that most chronic non-communicable diseases, especially CVDs, manifest earlier and during the most productive ages of individuals in low-income countries compared with what is obtainable in high-income countries.\(^{26-29}\) Also, the prevalence of CVDs was higher among women relative to men, a finding which has also been revealed in earlier studies.\(^{29,30}\) Hypertensive heart failure and ischaemic heart disease were the predominant diagnostic conditions relative to other types of CVDs. A study conducted to investigate the profile of acute heart failure in a tertiary hospital in Abeokuta, Nigeria, reported that hypertensive heart failure was the most common heart condition (about 78.5% of all cases) observed in the study.\(^{31}\) Another study assessed the pattern of CVDs in Abuja, the FCT of Nigeria and compared this pattern with that of a similar study implemented in South Africa, the Heart of Soweto Study. The study reported that hypertensive heart failure was the predominant (ie, 61% of the cases) diagnostic condition among patients with CVD and that heart-related patients in Abuja were twice likely to present with hypertensive heart disease relative to that observed in the South African study.\(^{32}\)

The OOP payment incurred by patients with CVD who accessed outpatient healthcare services in private hospital facilities was higher on average, relative to those who were treated in public hospitals. The average OOP payment expended by patients who attended private hospitals was almost three times that incurred by patients who were treated in the federal-owned/tertiary hospital. Patients who accessed treatment in the state-owned hospitals incurred the least average outpatient costs per year. Apparently, the fact that private facilities are driven by the aim of maximising profit is enough reason to charge higher fees for healthcare services. Another justification for the differences in OOP payments in private and public hospitals is that patients who accessed healthcare services in public hospitals enjoy subsidised charges. However, these reduced treatment fees oftentimes impose a huge financial burden on individuals and families, especially the poor ones. Also, patients are sometimes weary of accessing healthcare in public-owned facilities due to long waiting time and poor infrastructure as these hospitals are usually overstretched as a result of high hospital attendance rate.

A different pattern was shown for OOP payment per hospitalisation. It was observed that all severe cases of CVDs hospitalisations (ie, those requiring surgery) were managed in the federal-owned hospital. This is because tertiary hospital facilities have a higher number
Table 4 Out-of-pocket payment per hospitalisation among patients with cardiovascular disease

Hospital type	Respondents (n)	Minimum cost (₦)	Maximum cost (₦)	Mean cost (₦)	SD (₦)
Private					
Emergency room	7	0.00	0.00	0.00	0.00
Hospital bed	7	0.00	30000.00	6442.86	10752.34
Treatment	7	0.00	300000.00	68428.57	108814.60
Surgery	7	0.00	0.00	0.00	0.00
Cost of drug	7	0.00	50000.00	23571.43	20354.01
Lab test cost	7	0.00	160000.00	51428.57	55280.67
Food expenses	7	0.00	7000.00	1964.29	2451.31
Cost of ambulance	5	0.00	0.00	0.00	0.00
Other medical costs	5	0.00	184150.00	41830.00	79980.43
Average cost				193665.71	
Federal					
Emergency room	83	0.00	20000.00	872.29	3430.90
Hospital bed	84	0.00	1680000.00	28651.19	182802.10
Treatment	84	0.00	500000.00	49577.62	91349.57
Surgery	10	1440000	5400000.00	3414000.00	5400000
Cost of drug	84	0.00	400000.00	47050.60	64373.54
Lab test cost	84	0.00	450000.00	78456.55	99141.23
Food expenses	84	0.00	100000.00	6696.43	14935.59
Cost of ambulance	76	0.00	25000.00	32.89	286.77
Other medical costs	78	0.00	250000.00	9352.56	29655.76
Average cost				752339.3	
State					
Emergency room	37	0.00	15000.00	675.68	2677.62
Hospital bed	37	0.00	56000.00	4808.11	9937.68
Treatment	37	0.00	400000.00	36891.89	80026.31
Surgery	37	0.00	0.00	0.00	0.00
Cost of drug	37	0.00	105000.00	20794.59	20575.74
Lab test cost	37	0.00	100000.00	23540.54	23462.26
Food expenses	37	0.00	56000.00	2689.19	9275.90
Cost of ambulance	37	0.00	0.00	0.00	0.00
Other medical costs	37	0.00	31500.00	1675.68	5408.61
Average cost				91075.67	
Average direct outpatient cost (all facilities)				182302.4	249090.4
Average indirect outpatient cost (all facilities)				14700.8	69297.1

of physicians with different expertise compared with the resources available in private and state-owned facilities. Presumably, this had impact on the average OOP payment per hospitalisation incurred in federal-owned facility as this was the highest relative to that incurred in private and state-owned hospitals.

In general, the contribution of different cost categories as a proportion of total OOP payments by hospital type was examined. The costs of drugs and laboratory tests were particularly high in all the facilities. An earlier study on the economic burden of heart failure in Abeokuta, Nigeria, revealed that the cost of drugs and transportation represent about 90% of total costs. Also, another study conducted in a similar SSA country found that the cost of drugs was about 50% of the total OOP expenditures incurred by patients. This implies that the cost of purchasing medicines among patients with CVD represented a significant financial burden for patients. In
addition, this present study also revealed that the costs of laboratory tests are equally substantial in connection with outpatient OOP payments. This finding is not unexpected because in some cases, the equipment used for carrying out laboratory tests can be in short supply in hospital facilities in Nigeria. Where the equipment is available, the costs of laboratory tests can sometimes be quite expensive for patients. Another reason for the significant contribution of laboratory costs to the overall OOP payments in this study is that sometimes patients may need to travel to another hospital facility located within or outside the state where they are being managed to have access to laboratory test services. The costs of transportation will usually serve to increase the overall OOP expenditures incurred for laboratory tests.

Comparing the average OOP payments incurred across federal-owned, state-owned and private-owned hospitals, the outpatient costs were expectedly the highest in private hospitals. However, it was observed that all the cases/patients requiring surgery during inpatient stay accessed the federal owned hospital, and as a result, the average costs of accessing inpatient care in the federal-owned hospital were substantially higher relative to the mean costs incurred in state-owned and privately owned hospital facilities. This gap was due to the huge costs of surgeries. Evidence in this study also showed that the OOP payments incurred in public hospital facilities remain high against the expectation that the costs of healthcare services should be much cheaper in those facilities. This represents a cause for concern, and the government needs to do more regarding the efforts towards ensuring UHC in Nigeria.

In general, the average direct OOP payments for outpatient and inpatient healthcare services across all facilities were ₦421,595.7±₦855,962.0 ($1164.2±2363.8) and ₦421,595.7±₦855,962.0 ($1164.2±$2363.8). These seem very high in a country where almost 89.2 million (ie, 40.1% of the entire population) are adjudged to be poor.33

Table 5	Annualised out-of-pocket payments for home-based/rehabilitative care among patients with cardiovascular disease				
Cost components	Respondents (n)	Minimum cost (₦)	Maximum cost (₦)	Mean cost (₦)	SD (₦)
Doctor fee	355	0.0	600,000.0	459.7	4256.5
Nurse fee	336	0.0	600,000.0	2035.7	32855.7
Lab test	336	0.0	118,020.0	15428.6	106,186.6
Cost of drug	335	0.0	600,000.0	35161.8	334,195.4
Occupational rehabilitation	334	0.0	276,000.0	9556.9	152,789.1
Physiotherapist cost	334	0.0	144,000.0	144,000.0	401,905.8
Other medical cost	333	0.0	360,000.0	3441.4	29510.7
Average cost				30012.0	

BMJ Open: first published as 10.1136/bmjopen-2020-044044 on 8 June 2021. Downloaded from http://bmjopen.bmj.com/ on July 15, 2021 by guest. Protected by copyright.
the other hand, the low contribution of indirect cost to total cost is indicative of the level of unemployment as many of the patients and their caregivers reported little income loss due to sick days.

Among the patients who needed rehabilitative care at home, physiotherapy cost was the major OOP payment made which is reasonable since most patients with CVD may require physiotherapy sessions after hospitalisation in order to regain the ability to engage in basic activities of daily living that might have been affected by illness. Compared with the average OOP payments incurred for outpatient and inpatient healthcare services among patients with CVD, the average costs incurred for home-based/rehabilitative care are much lower. This shows that majority of the OOP payments borne by patients with CVD are incurred for accessing outpatient and inpatient care services in Nigeria.

Strengths and limitation of the study
Compared with earlier studies conducted in Nigeria, the implementation of this study is methodologically robust as it attempted to avoid some of the weaknesses observed in the few previous studies reviewed. However, there are some limitations that are noteworthy. The OOP payments elicited for hospitalised patients with CVD may have been underestimated since data were collected after the patients were discharged to avoid bogging the patients and/or their caregivers at a time when they are seriously ill and hospitalised. Despite this, attempts were made to ensure that the estimates were as accurate as possible by verifying the inpatient OOP payments incurred by patients from hospital records. In addition, there were no follow-ups on individual patients, which would have been beneficial for capturing other OOP payments over a longer period. However, this was not possible due to the design and duration of the study. Despite the efforts to reduce the effects of comorbidity/multimorbidity on the estimated costs, it is not unlikely that some level of bias remains. Lastly, the conceptualisation of indirect costs in this study is a narrow one. Other indirect costs which relates to reduced healthcare and loss of employment for other family members, as well as reduced school attendance of children, were not included in the calculation of indirect costs. This may mean that the indirect cost is quite higher than what is reported in the study. Therefore, these limitations should be considered when interpreting the findings of this study.

CONCLUSION
The burden of OOP payment among patients with CVD is high as revealed in this study. This could further expose patients and their families to financial hardship, which will be detrimental to achieving the twin target of poverty eradication and good health as articulated in the Sustainable Development Goals. Therefore, there is a need to increase efforts to achieve UHC in Nigeria.

Contributors FA conceived the idea, designed the study, collected and analysed the data, and wrote the manuscript.

Funding This research was supported by the Consortium for Advanced Research Training in Africa (CARA). CARA is jointly led by the African Population and Health Research Center and the University of the Witwatersrand and funded by the Carnegie Corporation of New York (Grant No.-G-19-57145), Sida (Grant number 54100113), Uppasala Monitoring Centre and the DELTAS Africa Initiative (Grant No: 107768/2/15/2). The DELTAS Africa Initiative is an independent funding scheme of the African Academy of Sciences (AAS’s) Alliance for Accelerating Excellence in Science in Africa (AESA) and supported by the New Partnership for Africa’s Development Planning and Coordinating Agency (NEPAD Agency) with funding from the Wellcome Trust (UK) and the UK government. The statements made and views expressed are solely the responsibility of the Fellow.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval This study involved human subjects and necessary ethical procedures were followed. Ethical approval was obtained from the ethics review committee of the University of Ibadan/University College Hospital (NHREC/05/01/2008a). Approval was also obtained from respective hospital facilities.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement The data used for this study will be available on reasonable request from the corresponding author.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD
Folashayo Adeniji http://orcid.org/0000-0002-4697-3081

REFERENCES
1 Balbinotto Neto G, Silva ENda. The costs of cardiovascular disease in Brazil: a brief economic comment. Arq Bras Cardiol 2008;91:198–9.
2 Abegunde DO, Mathers CD, Adam T, et al. The burden and costs of chronic diseases in low-income and middle-income countries. Lancet 2007;370:1929–38.
3 Martinuk ALC, Lee CMY, Lawes CMM, et al. Hypertension: its prevalence and population-attributable fraction for mortality from cardiovascular disease in the Asia-Pacific region. J Hypertens 2007;25:73–9.
4 Opie LH, Mayosi BM. Cardiovascular disease in sub-Saharan Africa. 5 Kengne AP, Ntintyane LM, Mayosi BM. A systematic overview of prospective cohort studies of cardiovascular disease in sub-Saharan Africa. Cardiovasc J Afr 2012;23:103–12.
6 Godwin KM, Wasserman J, Oshwald SK. Cost associated with stroke: outpatient rehabilitative services and medication. Top Stroke Rehabil 2011;18:676–84.
7 Cappuccio FP, Miller MA. Cardiovascular disease and hypertension in sub-Saharan Africa: burden, risk and interventions. Intern Emerg Med 2016;11:299–305.
8 Mocumbi AO. Lack of focus on cardiovascular disease in sub-Saharan Africa. Cardiovasc Diagn Ther 2012;2:74.
9 Hamid S, Groot W, Pavlova M. Trends in cardiovascular diseases and associated risks in sub-Saharan Africa: a review of the evidence for Ghana, Nigeria, South Africa, Sudan and Tanzania. Aging Male 2019;22:169–76.
10 Yuyun MF, Sliwa K, Kengne AP, et al. Cardiovascular diseases in Sub-Saharan Africa compared to high-income countries: an epidemiological perspective. Glob Health 2020;15:15.

11 Okpani AI, Abimbola S. Operationalizing universal health coverage in Nigeria through social health insurance. Niger Med J 2015;56:305.

12 Amu H, Dickson KS, Kumi-Kyereme A, et al. Understanding variations in health insurance coverage in Ghana, Kenya, Nigeria, and Tanzania: evidence from demographic and health surveys. PLoS One 2018;13:e0201833.

13 Huffman MD, Rao KD, Pichon-Riviere A, et al. A cross-sectional study of the macroeconomic impact of cardiovascular disease hospitalization in four low- and middle-income countries. PLoS One 2011;6:e20821.

14 Patridge EF, Barden TP. Research electronic data capture (REDCap). J Med Library Assoc 2018;106:142.

15 Kernick DP, Reinhold DM, Netten A. What does it cost the patient to see the doctor? Br J Gen Pract 2000;50:401–3.

16 Tolla MT, Norheim OF, Verguet S, et al. Out-of-pocket expenditures for prevention and treatment of cardiovascular disease in general and specialised cardiac hospitals in Addis Ababa, Ethiopia: a cross-sectional cohort study. BMJ Glob Health 2017;2:e000280.

17 Brandle M, Zhou H, Smith BRK, et al. The direct medical cost of type 2 diabetes. Diabetes Care 2003;26:2300–4.

18 Le C, Zhankun S, Jun D, et al. The economic burden of hypertension in rural south-west China. Trop Med Int Health 2012;17:1544–51.

19 Ogah OS, Stewart S, Onwujekwe OE, et al. Economic burden of heart failure: investigating outpatient and inpatient costs in Abeokuta, Southwest Nigeria. PLoS One 2014;9:e113032.

20 Zhou Z-Y, Koeppe MA, Johnson KA, et al. Burden of illness: direct and indirect costs among persons with hemophilia A in the United States. J Med Econ 2015;18:457–65.

21 Eisenberg JM. Clinical economics: a guide to the economic analysis of clinical practices. Jama, 1989 Nov 24 262(20): 2879–86.

22 Xie F, Thumboo J, Fong K-Y, et al. A study on indirect and intangible costs for patients with knee osteoarthritis in Singapore. Value in Health 2008;11:S84–90.

23 Dee A, Kearns K, O’Neill C, et al. The direct and indirect costs of both overweight and obesity; a systematic review. BMC Res Notes 2014;7:242.

24 Ratcliffe J. The measurement of indirect costs and benefits in health care evaluation: a critical review. Project Appraisal 1995:10:13–18.

25 Etiaba E, Onwujekwe O, Torpey K, et al. What is the economic burden of subsidized HIV/AIDS treatment services on patients in Nigeria and is this burden catastrophic to households? PLoS One 2016;11:e016717.

26 Dalal S, Beunza JJ, Volmink J, et al. Non-communicable diseases in sub-Saharan Africa: what we know now. Int J Epidemiol 2011;40:885–901.

27 Asaria P, Chisholm D, Mathers C. Chronic diseases 3 chronic disease prevention health effects and financial costs 2007:370:2044–53.

28 Adeniyi F. Chronic disease profile, health utilization and self-reported financial situation of older people in rural South Africa. Int J Aging Res 2019;2:1–15.

29 Holmes MD, Dalal S, Volmink J, et al. Non-communicable diseases in sub-Saharan Africa: the case for cohort studies. PLoS Med 2010;7:e1000244.

30 Yusuf S, Reddy S, Onnpuu S, et al. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 2001;104:2746–53.

31 Ogah OS, Stewart S, Falase AO, et al. Contemporary profile of acute heart failure in Southern Nigeria. JACC Heart Fail 2014;2:250–9.

32 Oji D, Stewart S, Ajayi S, et al. A predominance of hypertensive heart failure in the Abuja Heart Study cohort of urban Nigerians: a prospective clinical registry of 1515 de novo cases. Eur J Heart Fail 2013;15:835–42.

33 National Bureau of Statistics. Poverty and inequality in Nigeria, 2019. Available: https://nigerianstat.gov.ng/elibrary?queries[search]-poverty [Accessed 28 Jul 2020].