Observation of forward neutron multiplicity dependence of dimuon acoplanarity in ultraperipheral Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

The CMS Collaboration

Abstract

The first measurement of the dependence of $\gamma\gamma \rightarrow \mu^+\mu^-$ production on the multiplicity of neutrons emitted very close to the beam direction in ultraperipheral heavy ion collisions is reported. Data for lead-lead interactions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV, with an integrated luminosity of approximately 1.5 nb$^{-1}$, are collected using the CMS detector at the LHC. The azimuthal correlations between the two muons in the invariant mass region $8 < m_{\mu\mu} < 60$ GeV are extracted for events including 0, 1, or at least 2 neutrons detected in the forward pseudorapidity range $|\eta| > 8.3$. The back-to-back correlation structure from leading-order photon-photon scattering is found to be significantly broader for events with a larger number of emitted neutrons from each nucleus, corresponding to interactions with a smaller impact parameter. This observation provides a data-driven demonstration that the average transverse momentum of photons emitted from relativistic heavy ions has an impact parameter dependence. These results provide new constraints on models of photon-induced interactions in ultraperipheral collisions. They also provide a baseline to search for possible final-state effects on lepton pairs caused by traversing a quark-gluon plasma produced in hadronic heavy ion collisions.

“Published in Physical Review Letters as doi:10.1103/PhysRevLett.127.122001.”
The Lorentz-boosted electromagnetic (EM) fields surrounding relativistic heavy ions with large charges can be treated as a flux of quasireal photons \[1,2\] with the flux intensity proportional to the square of the ion charge. Therefore, ions accelerated at colliders can interact when their impact parameter \((b)\) is greater than twice the nuclear radius \(R_A\), via photon-photon and photon-nucleus processes, the so-called ultraperipheral collisions (UPCs) \[3–7\]. Photon-photon interactions can be used to test quantum electrodynamics (QED) and to search for physics beyond the standard model \[8–17\]. Photon-nucleus interactions probe the gluon distribution at small Bjorken \(x\) in the nucleon or nucleus \[12,13,18–25\].

The momentum of emitted quasireal photons is predominantly along the beam direction and the transverse momentum \(p_T\) is small, typically less than 30 MeV \[5,6\]. Therefore, the lepton pairs produced from leading-order photon-photon scattering \((\gamma\gamma \rightarrow \ell^+ \ell^-)\) possess small pair \(p_T\) and are nearly back-to-back in the azimuthal angle \(\phi\). Recently, photon-photon \[26,27\] and photon-nucleus \[28,29\] processes have been observed at very low \(p_T\) in hadronic \((b < 2R_A)\) heavy ion collisions. Interestingly, a broadening of lepton pair azimuthal angle correlations (or, equivalently, an increase of lepton pair \(p_T\)) is observed in hadronic collisions compared to that from UPCs \[26,27\]. In hadronic events, a deconfined state of partonic matter, known as the quark-gluon plasma (QGP), can be formed. Therefore, final-state EM modifications of lepton pairs inside a QGP medium have been proposed as possible interpretations of the broadening effect \[26,27,30\]. The initial \(p_T\) of the lepton pairs depends on the overlap integral of the photon fluxes produced by the two nuclei, and as a result, the average pair \(p_T\) \(\langle p_T \rangle\) could depend on the \(b\) between the two colliding ions. Although models of the flux of photons integrated over a given \(b\) range have large uncertainties \[7,31,32\], a QED calculation \[32\] predicts larger \(\langle p_T \rangle\) for smaller \(b\) values. Such a larger \(\langle p_T \rangle\) in the initial state would broaden the pair angular correlation, which could explain the effects observed in more central hadronic collisions.

To disentangle possible contributions from initial- and final-state effects to the modifications observed in hadronic heavy ion collisions, an experimental handle on the \(b\) dependence of lepton pair production in UPCs is essential. The photon-photon interactions can occur in conjunction with the excitation of one or both of the ions via photon absorption into giant dipole resonances or higher excited states \[5–8,33,34\]. The giant dipole resonances typically decay by emitting a single neutron, while higher excited states may emit two or more neutrons. These forward neutrons have very low relative momentum with respect to their parent ions, and therefore approximately retain the beam rapidity. The contribution of higher excitations becomes larger as \(b\) gets smaller \[5–8\]. Therefore, the number of emitted neutrons detected in the forward region can be used to classify UPC events into different \(b\) ranges.

This Letter reports the first measurement of the forward neutron multiplicity dependence of \(\gamma\gamma \rightarrow \mu^+\mu^-\) production in the muon pair invariant mass region \(8 < m_{\mu\mu} < 60\) GeV in lead-lead (Pb-Pb) UPCs at a nucleon-nucleon center-of-mass energy \(\sqrt{s_{NN}} = 5.02\) TeV, using data collected with the CMS detector during the 2018 LHC run. The Pb-Pb sample that includes information about forward neutrons corresponds to an integrated luminosity of approximately \(1.5\) nb\(^{-1}\). Azimuthal correlations of muon pairs, quantified by the acoplanarity, \(\alpha = 1 - | \phi^+ - \phi^- | / \pi \), are presented for several different classes of neutron multiplicity detected in the forward pseudorapidity range \(|\eta| > 8.3\). Here, \(\phi^\pm\) represent the azimuthal angle of each muon in the lab frame. A larger average \(\alpha\) for lepton pairs from leading-order \(\gamma\gamma\) scatterings corresponds to fewer back-to-back azimuthal correlations, and thus larger initial \(p_T\) of the interacting photons. The muon azimuthal angle is used instead of \(p_T\) because of its superior experimental resolution. The average invariant mass of muon pairs in various neutron multiplicity classes is also presented as a probe of the initial photon energy and its \(b\) dependence. Tabulated results are provided in the HEPData record for this analysis \[35\].
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume, there are four subdetectors, including a silicon pixel and strip tracker detector, a lead-tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two end cap sections. Muons are detected in the range $|\eta| < 2.4$ in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. Matching muons to tracks measured in the silicon tracker leads to a relative p_T resolution around 1% [36] and an azimuthal angle resolution better than 7×10^{-4} rad for a typical muon in this analysis.

The CMS experiment has extensive forward calorimetry, including two steel and quartz-fiber Cherenkov hadron forward (HF) calorimeters that cover the range of $2.9 < |\eta| < 5.2$, which are used to reject hadronic Pb-Pb collision events. Two zero degree calorimeters (ZDC) [37], made of quartz fibers and plates embedded in tungsten absorbers, are used to detect neutrons from nuclear dissociation events in the range $|\eta| > 8.3$. A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [38].

Events used in this study were selected online using a hardware-based trigger system that requires at least one muon candidate coincident with a Pb-Pb bunch crossing [39]. On the trigger level, there is no explicit selection on the minimum muon p_T and events with an energy deposit above the noise threshold in both HF calorimeters are vetoed. For the off-line analysis, events have to pass a set of selection criteria designed to reject beam-related background processes (beam-gas collisions and beam scraping events) and hadronic collisions. Events are required to have a primary interaction vertex, formed by two or more tracks, within 20 cm from the CMS detector center along the beam axis. The cluster shapes in the pixel detector must be compatible with those expected from particles produced by a Pb-Pb collision [40]. To suppress hadronic Pb-Pb collisions, the largest energy deposits in the HF calorimeters are required to be below 7.3 and 7.6 GeV in the positive and negative rapidity sides, respectively, where these noise thresholds are determined from empty bunch crossing events. In addition, events must contain exactly two muon candidates and no additional tracks in the range $|\eta| < 2.4$. Selected events are then classified by neutron multiplicity, which is determined by the energies deposited in the ZDCs. For single neutrons, the relative energy resolution of the ZDCs is $\sim 22\%$–26%, while the detection efficiency is close to 100% in simulated events [37]. Based on neutron peaks observed in the total ZDC energy distribution (see Appendix A), events are divided into three neutron multiplicity classes (0n, 1n, and Xn with $X \geq 2$) on each side. The corresponding purities of selected neutron multiplicity classes are estimated by a multi-Gaussian function fit to the energy distribution. The purities are nearly 100% for the 0n and Xn classes, but only $\sim 93\%$–95% for the 1n class because of detector resolution effects. From the combinations of the number of neutrons in each ZDC separately, a total of six neutron multiplicity classes, labeled as 0n0n, 0n1n, 0nXn, 1n1n, 1nXn, and XnXn, are used in this study. The 0n0n class corresponds to no Coulomb breakup of either nucleus and the 1nXn class corresponds to one neutron emitted from one nucleus and at least two neutrons emitted from the other nucleus.

Muons are selected in the kinematic range of $p_T^\mu > 3.5$ GeV and $|\eta^\mu| < 2.4$. They are reconstructed using the combined information of the tracker and muon detectors (so-called “soft muons” defined in Ref. [36]). The opposite-sign distribution (signal and background) is reconstructed by combining μ^+ and μ^- candidates, while the combinatorial background is estimated using events containing same-sign muons. One of the muon candidates in the opposite- or same-sign pair is required to match a trigger muon. The studied dimuon kinematic range is $8 < m_{\mu\mu} < 60$ GeV and $|y^{\mu\mu}| < 2.4$ to ensure high efficiency and also to suppress the contribu-
tion from photoproduced resonances (charmonia and Z bosons).

The detector reconstruction efficiency is estimated using a dedicated $\gamma\gamma \rightarrow \mu^+\mu^-$ Monte Carlo simulation sample produced by the STARLIGHT (v3.0) event generator [45] without restriction on the Coulomb breakup of either nucleus. Only $\ell^+\ell^-$ pairs from the leading-order $\gamma\gamma$ scattering are generated, and the calculation is performed by integrating over the entire b space for UPC events. No differential b dependence of the initial photon p_T is considered in STARLIGHT. The CMS detector response is simulated further using GEANT4 with these STARLIGHT generated events [44]. The muon trigger ($\varepsilon_{\text{trig}}^\mu$) and reconstruction ($\varepsilon_{\text{reco}}^\mu$) efficiencies are estimated as functions of p_T^μ, $|\eta^\mu|$, and ϕ^μ. To correct for detector inefficiencies, each muon pair event is scaled by $(\varepsilon_{\text{trig}}^\mu\varepsilon_{\text{reco}}^\mu)^{-1}$, where $\varepsilon_{\text{trig}} = 1 - (1 - \varepsilon_{\text{trig}}^+)(1 - \varepsilon_{\text{trig}}^-)$ and $\varepsilon_{\text{reco}} = \varepsilon_{\text{reco}}^+\varepsilon_{\text{reco}}^-$. The reconstruction and trigger efficiencies rapidly reach a plateau as functions of p_T^μ with values of $\sim 95\%$--99% above $p_T^\mu \approx 6\text{ GeV}$ for $|\eta^\mu| < 1.2$ and above $p_T^\mu \approx 4\text{ GeV}$ for $1.2 < |\eta^\mu| < 2.4$. Systematic uncertainties associated with the efficiency corrections are negligible since they largely cancel out in the final observables, which are normalized by the total yield.

The cross section of single electromagnetic dissociation (EMD) [45,46] of Pb nuclei in Pb-Pb collisions was measured to be 187.4 ± 0.2 (stat)$^{+13.2}_{-11.2}$ (syst) b at $\sqrt{s_{NN}} = 2.76\text{ TeV}$ [47]. It is expected to be even larger at $\sqrt{s_{NN}} = 5.02\text{ TeV}$ given the stronger EM fields. Because of the large single-EMD cross section, a single measured $\gamma\gamma \rightarrow \mu^+\mu^-$ event may contain concurrent EMD Pb-Pb events in the same bunch crossing. These concurrent events can emit neutrons and migrate the neutron multiplicity of a single $\gamma\gamma \rightarrow \mu^+\mu^-$ interaction to higher values. This EMD pileup effect is quantified by measuring the ZDC energy distributions from “zero-bias” triggered events that require only the presence of both beams in the same bunch crossing. No valid collision vertex or track is allowed to be present in the event. The same HF veto thresholds as for the $\gamma\gamma \rightarrow \mu^+\mu^-$ events are applied. The neutron multiplicity classes in these selected zero-bias events are used to estimate the probability of a $\gamma\gamma \rightarrow \mu^+\mu^-$ event being assigned an incorrect neutron multiplicity because of pileup effects. By inverting a matrix of these migration probabilities, the true observable distributions are extracted from the measured data. In this study, about 11% of measured $\gamma\gamma \rightarrow \mu^+\mu^-$ events have neutron multiplicity migration caused by EMD pileup.

Figure 1 shows the corrected α distributions of $\mu^+\mu^-$ pairs in Pb-Pb collisions within the kinematic range ($p_T^\mu > 3.5\text{ GeV}$, $|\eta^\mu| < 2.4$, and $|y^{\mu\mu}| < 2.4$) for different neutron multiplicity classes. The α distributions are normalized to unit integral over their measured range $[(1/N_s)dn_s/da_s$, where N_s represents the signal yield]. Each α spectrum is characterized by a narrow core close to zero and a long tail. The core component mostly originates from the leading-order $\gamma\gamma$ scattering, while in the tail component, higher-order $\gamma\gamma$ processes dominate. These higher-order processes include, e.g., extra photon radiation from the produced lepton(s), multiple-photon interactions, or scattering of (one or both) photons emitted from one of the protons inside the nucleus [9,30]. The tail contribution in the $XnXn$ class is larger than that in the $0n0n$ class. This is consistent with the expectation of larger contributions of higher-order $\gamma\gamma$ processes in UPC events that have smaller b and produce more neutrons in the forward region.

To investigate a possible b dependence of the initial photon p_T, the core contribution to the α distribution is decoupled from the tail contribution using a two-component empirical fit function (where c_i and t_i are the fit parameters), as shown in Fig. 1

\begin{equation}
\text{core} : c_1e^{-\alpha/c_2+3\pi\epsilon^{0.25}},
\tag{1}
\end{equation}

\begin{equation}
\text{tail} : t_1[1 + (t_2/t_3)i\alpha]^{-t_3},
\end{equation}
Figure 1: Neutron multiplicity dependence of acoplanarity distributions from $\gamma\gamma \rightarrow \mu^+\mu^-$ for $p_T^\mu > 3.5$ GeV, $|\eta^\mu| < 2.4$, $|y^{\mu\mu}| < 2.4$, and $8 < m_{\mu\mu} < 60$ GeV in ultraperipheral Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. The α distributions are normalized to unit integral over their measured range. The dot-dot-dashed and dotted lines indicate the core and tail contributions, respectively, found using a fit to Eq. (1). The vertical lines on data points depict the statistical uncertainties, while the systematic uncertainties and horizontal bin widths are shown as gray boxes.

except for the case of 1n1n, where a simple exponential function is used for the tail component, given the limited number of events. The core component is largely modeled by an exponential function with a correction term (c_3) to account for the small depletion in the very small α (e.g., $< 5 \times 10^{-4}$) region, which tends to become more evident as the neutron multiplicity increases. This core functional form is validated by the STARLIGHT event generator and leading-order QED calculations, resulting in a $< 0.3\%$ discrepancy on the average acoplanarity from the fit and theoretical predictions. A binned χ^2 goodness-of-fit minimization is performed using the integral of the function across each bin to account for the finite binning effect of the histogram. The average acoplanarity of $\mu^+\mu^-$ pairs from the core component ($\langle \alpha_{\text{core}} \rangle$) is then calculated using the fit function.

The measured α distribution and $\langle \alpha_{\text{core}} \rangle$ of $\mu^+\mu^-$ pairs have several sources of systematic uncertainty arising from the contamination of hadronic collisions, EMD pileup correction, neutron multiplicity classification, and fit procedure. The uncertainty of the hadronic contamination is estimated by removing the requirement that selected events only contain two muons and is found to be $< 1.1\%$. To estimate the systematic uncertainty associated with the HF noise threshold, the threshold to define the hadronic contamination is tightened to 5 GeV for both UPCs and zero-bias triggered events. The difference from the nominal result is quoted as the systematic uncertainty and contributes $< 2.7\%$. The uncertainty arising from impure 1n class selection ($< 0.7\%$) is estimated by subtracting the contributions of 2n events selected with tight energy requirements, according to the 2n contamination probability. The systematic uncertainty associated with contamination of photoproduced Υ mesons ($\sim 0.6\%$) is estimated by comparing α distributions from STARLIGHT between pure $\gamma\gamma \rightarrow \mu^+\mu^-$ and $\gamma\gamma \rightarrow \mu^+\mu^-$ mixed with photoproduced coherent $\Upsilon(1S)$, with the relative yield ratio of $\Upsilon(1S)$ over $\gamma\gamma \rightarrow \mu^+\mu^-$ estimated by fitting the invariant mass distribution. The systematic uncertainty in $\langle \alpha_{\text{core}} \rangle$ associated with
the binned χ^2 fit procedure is estimated by varying the bin width of α distributions, and is found to be less than 4%. The total systematic uncertainties are derived from a quadratic sum of all systematic sources and are found to be at most 5.1% in $\langle \alpha_{\text{core}} \rangle$. To measure $\langle m_{\mu\mu} \rangle$, a second-order polynomial function is fit to the mass spectrum (see Appendix A), to interpolate the contribution of $\gamma\gamma$ scattering to dimuon pair production over the Υ mass region. The systematic uncertainty related to this procedure is estimated by comparing the nominal result to the one obtained by a third-order polynomial function fit. Together with the aforementioned systematic sources, the total systematic uncertainty in $\langle m_{\mu\mu} \rangle$ is below 1.8%, across all neutron multiplicity classes.

The neutron multiplicity dependence of $\langle \alpha_{\text{core}} \rangle$ for $\mu^+\mu^-$ pairs in ultraperipheral Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV is shown in Fig. 2 (upper), in the mass region $8 < m_{\mu\mu} < 60$ GeV. A strong neutron multiplicity dependence of $\langle \alpha_{\text{core}} \rangle$ is clearly observed, while the $\langle \alpha_{\text{core}} \rangle$ predicted by STARlight is almost constant at a value of about 1.35×10^{-3}, shown as the dot-dashed line in Fig. 2 (upper). The $\langle \alpha_{\text{core}} \rangle$ for inclusive UPCs is measured to be $[1227 \pm 7 \text{ (stat)} \pm 8 \text{ (syst)}] \times 10^{-6}$, about 10% lower than the STARlight prediction. In general, the $\langle \alpha_{\text{core}} \rangle$ in data becomes larger as the emitted neutron multiplicity increases. A fit to the dependence of $\langle \alpha_{\text{core}} \rangle$ on the neutron multiplicity with a constant value is rejected with a p value corresponding to 5.7 standard deviations. This observation demonstrates that initial photons producing $\mu^+\mu^-$ pairs have a significant b dependence of their p_T, which impacts the p_T and acoplanarity of muon pairs in the final state. This initial-state contribution must be properly taken into account when exploring possible final-state EM effects arising from a hot QGP medium formed in hadronic heavy ion collisions [26, 27]. A recent leading-order QED calculation [48], incorporating a b dependence of the initial photon p_T [32], has provided results for all the reported neutron mul-

![Figure 2: Neutron multiplicity dependence of (upper) $\langle \alpha_{\text{core}} \rangle$ and (lower) $\langle m_{\mu\mu} \rangle$ of $\mu^+\mu^-$ pairs in ultraperipheral Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV. The vertical lines on data points depict the statistical uncertainties, while the systematic uncertainties of the data are shown as shaded areas. The dot-dashed line shows the STARlight prediction, and the dashed line corresponds to the leading-order QED calculation of Ref. [48].](image)
tiplicity classes. The average b values estimated in Ref. [48] range from about 112 to 22 fm for the $0n0n$ to $XnXn$ neutron multiplicity classes, respectively. The model calculation can qualitatively describe the increasing trend of $\langle \alpha^{\text{core}} \rangle$ data with the neutron multiplicity, shown as the dashed line in Fig. 2 (upper). However, the data are systematically higher than the model calculation (plotted without uncertainties) by about 5%, which may be related to the presence in data of soft photon radiation from the muons [30].

Figure 3 shows a direct comparison between data and model calculations for the α distributions with $\alpha < 0.008$ in all the reported neutron multiplicity classes. The α distribution is clearly observed to broaden in the high neutron multiplicity class. The QED calculation, incorporating a b dependence of the initial photon p_T, can describe the α distributions reasonably well while STARLIGHT fails to describe the data.

A rapidity dependence of the α distribution is also investigated for $0n1n$, $0nXn$ and $1nXn$ classes (see Appendix A) for dimuon rapidity in the hemisphere containing larger (smaller) neutron multiplicity. In the $0nXn$ class, the tail contribution in the rapidity hemisphere with Xn is significantly larger than that in the rapidity hemisphere with zero neutrons, suggesting contributions from different higher-order processes that correlate with the dimuon pair production. However, no rapidity dependence is observed for the $\langle \alpha^{\text{core}} \rangle$ values extracted from the fits using Eq. (1). This is consistent with the expectation that the $\langle \alpha^{\text{core}} \rangle$ is dominated by leading-order $\gamma\gamma \rightarrow \mu^+\mu^-$ scatterings and illustrates that the employed core functional form is robust.

In Fig. 2 (lower), the average invariant mass $\langle m_{\mu\mu} \rangle$ of all muon pairs passing the selection criteria, is shown as a function of the neutron multiplicity. A clear neutron multiplicity dependence of $\langle m_{\mu\mu} \rangle$ is observed, with the $\langle m_{\mu\mu} \rangle$ value measured in $XnXn$ events being larger than that in $0n0n$ events with a significance exceeding 5 standard deviations. This trend of $\langle m_{\mu\mu} \rangle$ can be qualitatively described by both model calculations. As the muon pair invariant mass is largely
determined by the initial photon energy, this observation suggests that the energy of the photons involved in UPCs is, on average, larger in collisions with smaller b, a conclusion similar to that previously drawn for the initial photon p_T.

In summary, the first measurements of $\gamma\gamma \rightarrow \mu^+\mu^-$ production as a function of forward neutron multiplicity in ultraperipheral lead-lead collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV are reported. A significant broadening of back-to-back azimuthal correlations is seen, with respect to the leading-order $\gamma\gamma \rightarrow \mu^+\mu^-$ process, for increasing multiplicities of emitted forward neutrons. This observed trend is qualitatively reproduced by a leading-order quantum electrodynamics calculation, demonstrating the importance of an impact-parameter-dependent photon p_T. A similar trend of increasing average invariant mass of muon pairs with neutron multiplicity is also observed. These measurements provide the first experimental demonstration that the initial energy and transverse momentum of photons exchanged in ultraperipheral heavy ion collisions depend on the impact parameter of the interaction. These results call for theoretical efforts to improve the precision in modeling photon-induced interactions. Future searches for electromagnetic interactions of leptons inside the quark-gluon plasma created in heavy ion collisions should incorporate a baseline where the initial broadening effects presented in this Letter are properly taken into account.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MON (Montenegro); MIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.).

References

[1] E. J. Williams, “Nature of the high energy particles of penetrating radiation and status of ionization and radiation formulae”, Phys. Rev. 45 (1934) 729, doi:10.1103/PhysRev.45.729.

[2] C. F. von Weizsacker, “Radiation emitted in collisions of very fast electrons”, Z. Phys. 88 (1934) 612, doi:10.1007/BF01333110.
[3] C. A. Bertulani and G. Baur, “Electromagnetic processes in relativistic heavy ion collisions”, *Phys. Rep.* **163** (1988) 299, doi:10.1016/0370-1573(88)90142-1.

[4] G. Baur et al., “Coherent $\gamma\gamma$ and γA interactions in very peripheral collisions at relativistic ion colliders”, *Phys. Rep.* **364** (2002) 359, doi:10.1016/S0370-1573(01)00101-6, arXiv:hep-ph/0112211.

[5] C. A. Bertulani, S. R. Klein, and J. Nystrand, “Physics of ultra-peripheral nuclear collisions”, *Annu. Rev. Nucl. Part. Sci.* **55** (2005) 271, doi:10.1146/annurev.nucl.55.090704.151526, arXiv:nucl-ex/0502005.

[6] A. J. Baltz et al., “The physics of ultraperipheral collisions at the LHC”, *Phys. Rep.* **458** (2008) 1, doi:10.1016/j.physrep.2007.12.001, arXiv:0706.3356.

[7] S. R. Klein and P. Steinberg, “Photonuclear and two-photon interactions at high-energy nuclear colliders”, *Annu. Rev. Nucl. Part. Sci.* **70** (2020) 323, doi:10.1146/annurev-nucl-030320-033923, arXiv:2005.01872.

[8] A. J. Baltz, Y. Gorbunov, S. R. Klein, and J. Nystrand, “Two-photon interactions with nuclear breakup in relativistic heavy ion collisions”, *Phys. Rev. C* **80** (2009) 044902, doi:10.1103/PhysRevC.80.044902, arXiv:0907.1214.

[9] G. Baur, K. Hencken, and D. Trautmann, “Electron-positron pair production in relativistic heavy ion collisions”, *Phys. Rep.* **453** (2007) 1, doi:10.1016/j.physrep.2007.09.002, arXiv:0706.0654.

[10] STAR Collaboration, “Production of e^+e^- pairs accompanied by nuclear dissociation in ultra-peripheral heavy ion collision”, *Phys. Rev. C* **70** (2004) 031902, doi:10.1103/PhysRevC.70.031902, arXiv:nucl-ex/0404012.

[11] STAR Collaboration, “Measurement of e^+e^- momentum and angular distributions from linearly polarized photon collisions”, *Phys. Rev. Lett.* **127** (2021) 052302, doi:10.1103/PhysRevLett.127.052302, arXiv:1910.12400.

[12] PHENIX Collaboration, “Photoproduction of J/ψ and of high mass e^+e^- in ultra-peripheral Au+Au collisions at $\sqrt{s_{NN}} = 200\text{ GeV}$”, *Phys. Lett. B* **679** (2009) 321, doi:10.1016/j.physletb.2009.07.061, arXiv:0903.2041.

[13] ALICE Collaboration, “Charmonium and e^+e^- pair photoproduction at mid-rapidity in ultra-peripheral PbPb collisions at $\sqrt{s_{NN}} = 2.76\text{ TeV}$”, *Eur. Phys. J. C* **73** (2013) 2617, doi:10.1140/epjc/s10052-013-2617-1, arXiv:1305.1467.

[14] CMS Collaboration, “Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at $\sqrt{s_{NN}} = 5.02\text{ TeV}$”, *Phys. Lett. B* **797** (2019) 134826, doi:10.1016/j.physletb.2019.134826, arXiv:1810.04602.

[15] ATLAS Collaboration, “Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC”, *Nat. Phys.* **13** (2017) 852, doi:10.1038/nphys4208, arXiv:1702.01625.

[16] ATLAS Collaboration, “Observation of light-by-light scattering in ultraperipheral PbPb collisions with the ATLAS detector”, *Phys. Rev. Lett.* **123** (2019) 052001, doi:10.1103/PhysRevLett.123.052001, arXiv:1904.03536.
[17] R. Bruce et al., “New physics searches with heavy-ion collisions at the CERN Large Hadron Collider”, *J. Phys. G* 47 (2020) 060501, [doi:10.1088/1361-6471/ab7ff7](https://doi.org/10.1088/1361-6471/ab7ff7), arXiv:1812.07688.

[18] STAR Collaboration, “Coherent ρ^0 production in ultraperipheral heavy ion collisions”, *Phys. Rev. Lett.* 89 (2002) 272302, [doi:10.1103/PhysRevLett.89.272302](https://doi.org/10.1103/PhysRevLett.89.272302), arXiv:nucl-ex/0206004.

[19] STAR Collaboration, “Coherent diffractive photoproduction of ρ^0 mesons on gold nuclei at 200 GeV/nucleon-pair at the Relativistic Heavy Ion Collider”, *Phys. Rev. C* 96 (2017) 054904, [doi:10.1103/PhysRevC.96.054904](https://doi.org/10.1103/PhysRevC.96.054904), arXiv:1702.07705.

[20] ALICE Collaboration, “Coherent J/ψ photoproduction in ultra-peripheral PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, *Phys. Lett. B* 718 (2013) 1273, [doi:10.1016/j.physletb.2012.11.059](https://doi.org/10.1016/j.physletb.2012.11.059), arXiv:1209.3715.

[21] ALICE Collaboration, “Exclusive J/ψ photoproduction off protons in ultra-peripheral p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV”, *Phys. Rev. Lett.* 113 (2014) 232504, [doi:10.1103/PhysRevLett.113.232504](https://doi.org/10.1103/PhysRevLett.113.232504), arXiv:1406.7819.

[22] ALICE Collaboration, “Coherent J/ψ photoproduction at forward rapidity in ultra-peripheral Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV”, *Phys. Lett. B* 798 (2019) 134926, [doi:10.1016/j.physletb.2019.134926](https://doi.org/10.1016/j.physletb.2019.134926), arXiv:1904.06272.

[23] CMS Collaboration, “Coherent J/ψ photoproduction in ultra-peripheral PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the CMS experiment”, *Phys. Lett. B* 772 (2017) 489, [doi:10.1016/j.physletb.2017.07.001](https://doi.org/10.1016/j.physletb.2017.07.001), arXiv:1605.06966.

[24] CMS Collaboration, “Measurement of exclusive Υ photoproduction from protons in pPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV”, *Eur. Phys. J. C* 79 (2019) 277, [doi:10.1140/epjc/s10052-019-6774-8](https://doi.org/10.1140/epjc/s10052-019-6774-8), arXiv:1809.11080.

[25] CMS Collaboration, “Measurement of exclusive $\rho(770)^0$ photoproduction in ultraperipheral pPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV”, *Eur. Phys. J. C* 79 (2019) 702, [doi:10.1140/epjc/s10052-019-7202-9](https://doi.org/10.1140/epjc/s10052-019-7202-9), arXiv:1902.01339.

[26] STAR Collaboration, “Low-p_T e^+e^- pair production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and U+U collisions at $\sqrt{s_{NN}} = 193$ GeV at STAR”, *Phys. Rev. Lett.* 121 (2018) 132301, [doi:10.1103/PhysRevLett.121.132301](https://doi.org/10.1103/PhysRevLett.121.132301), arXiv:1806.02295.

[27] ATLAS Collaboration, “Observation of centrality-dependent acoplanarity for muon pairs produced via two-photon scattering in Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the ATLAS detector”, *Phys. Rev. Lett.* 121 (2018) 212301, [doi:10.1103/PhysRevLett.121.212301](https://doi.org/10.1103/PhysRevLett.121.212301), arXiv:1806.08708.

[28] ALICE Collaboration, “Measurement of an excess in the yield of J/ψ at very low p_T in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, *Phys. Rev. Lett.* 116 (2016) 222301, [doi:10.1103/PhysRevLett.116.222301](https://doi.org/10.1103/PhysRevLett.116.222301), arXiv:1509.08802.

[29] STAR Collaboration, “Observation of excess J/ψ yield at very low transverse momenta in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and U+U collisions at $\sqrt{s_{NN}} = 193$ GeV”, *Phys. Rev. Lett.* 123 (2019) 132302, [doi:10.1103/PhysRevLett.123.132302](https://doi.org/10.1103/PhysRevLett.123.132302), arXiv:1904.11658.
[30] S. Klein, A. H. Mueller, B.-W. Xiao, and F. Yuan, “Acoplanarity of a lepton pair to probe the electromagnetic property of quark matter”, *Phys. Rev. Lett.* 122 (2019) 132301, doi:10.1103/PhysRevLett.122.132301, arXiv:1811.05519.

[31] S. Klein, A. H. Mueller, B.-W. Xiao, and F. Yuan, “Lepton pair production through two photon process in heavy ion collisions”, *Phys. Rev. D* 102 (2020) 094013, doi:10.1103/PhysRevD.102.094013, arXiv:2003.02947.

[32] W. Zha, J. D. Brandenburg, Z. Tang, and Z. Xu, “Initial transverse-momentum broadening of Breit–Wheeler process in relativistic heavy-ion collisions”, *Phys. Lett. B* 800 (2020) 135089, doi:10.1016/j.physletb.2019.135089, arXiv:1812.02820.

[33] B. L. Berman and S. C. Fultz, “Measurements of the giant dipole resonance with monoenergetic photons”, *Rev. Mod. Phys.* 47 (1975) 713, doi:10.1103/RevModPhys.47.713.

[34] M. Broz, J. G. Contreras, and J. D. Tapia Takaki, “A generator of forward neutrons for ultra-peripheral collisions: nOOn”, *Comput. Phys. Commun.* 253 (2020) 107181, doi:10.1016/j.cpc.2020.107181, arXiv:1908.08263.

[35] CMS Collaboration, “HEPData record for this analysis”, 2021. doi:10.17182/hepdata.95233.

[36] CMS Collaboration, “Performance of CMS muon reconstruction in pp collision events at $\sqrt{s} = 7$ TeV”, *JINST* 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002, arXiv:1206.4071.

[37] O. Surányi et al., “Performance of the CMS zero degree calorimeters in pPb collisions at the LHC”, *JINST* 16 (2021) P05008, doi:10.1088/1748-0221/16/05/P05008, arXiv:2102.06640.

[38] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[39] CMS Collaboration, “The CMS trigger system”, *JINST* 12 (2017) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.

[40] CMS Collaboration, “Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV”, *Phys. Rev. C* 84 (2011) 024906, doi:10.1103/PhysRevC.84.024906, arXiv:1102.1957.

[41] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.127.122001 for ZDC energy distributions and rapidity dependence of acoplanarity distributions and subtraction of Y mesons, which includes Ref. [42].

[42] P. A. Zyla et al. (Particle Data Group), “Review of Particle Physics”, *Prog. Theor. Exp. Phys.* 2020 (2020) 083C01, doi:10.1093/ptep/ptaa104.

[43] S. R. Klein et al., “STARLIGHT: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions”, *Comput. Phys. Commun.* 212 (2017) 258, doi:10.1016/j.cpc.2016.10.016, arXiv:1607.03838.

[44] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, *Nucl. Instrum. Meth. A* 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.
[45] I. A. Pshenichnov et al., “Mutual heavy ion dissociation in peripheral collisions at ultrarelativistic energies”, Phys. Rev. C 64 (2001) 024903, doi:10.1103/PhysRevC.64.024903, arXiv:nucl-th/0101035.

[46] I. A. Pshenichnov, “Electromagnetic excitation and fragmentation of ultrarelativistic nuclei”, Phys. Part. Nucl. 42 (2011) 215, doi:10.1134/S1063779611020067.

[47] ALICE Collaboration, “Measurement of the cross section for electromagnetic dissociation with neutron emission in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, Phys. Rev. Lett. 109 (2012) 252302, doi:10.1103/PhysRevLett.109.252302, arXiv:1203.2436.

[48] J. D. Brandenburg et al., “Acoplanarity of QED pairs accompanied by nuclear dissociation in ultra-peripheral heavy ion collisions”, 2020, arXiv:2006.07365.
A ZDC energy distributions and rapidity dependence of acoplanarity distributions and subtraction of Υ mesons

Figure A.1 (left) shows the correlation between energy distributions of the ZDC detectors, located on the positive (Plus) and negative (Minus) directions with respect to the CMS interaction point, for events selected in the analysis. Figure A.1 (right) shows the measured Minus ZDC energy distribution together with a multi-Gaussian function fit.

For the measured neutron multiplicity class with asymmetric neutron numbers, the dimuon rapidity is divided into two hemispheres using the plane defined by $y = 0$. In each rapidity hemisphere, the α distribution from $\gamma\gamma \rightarrow \mu^+\mu^-$ is normalized by the total yields in this neutron multiplicity class ($\langle 1/N_s \rangle dN_{\text{rap}}/d\alpha$, where the N_s represents the total yields and N_{rap}^s represents the yields in each rapidity hemisphere), as shown in Fig. A.2.

Figure A.1: The left panel shows the correlation between energy distributions of the Minus and Plus ZDC detectors (one entry per event), while the right panel shows a multi-Gaussian function fit to the Minus ZDC energy distribution.

For the measured neutron multiplicity class with asymmetric neutron numbers, the dimuon rapidity is divided into two hemispheres using the plane defined by $y = 0$. In each rapidity hemisphere, the α distribution from $\gamma\gamma \rightarrow \mu^+\mu^-$ is normalized by the total yields in this neutron multiplicity class ($\langle 1/N_s \rangle dN_{\text{rap}}/d\alpha$, where the N_s represents the total yields and N_{rap}^s represents the yields in each rapidity hemisphere), as shown in Fig. A.2.

Figure A.2: Acoplanarity distributions of $\gamma\gamma \rightarrow \mu^+\mu^-$ events for three different neutron multiplicity classes with asymmetric neutron numbers. The solid red (open blue) symbols correspond to events where the dimuon rapidity is in the hemisphere containing larger (smaller) neutron multiplicity. The vertical lines on data points depict the statistical uncertainties while the systematic uncertainties are shown as shaded areas.

The yields of muon pairs from $\gamma\gamma$ scattering in the Υ mass region ($9 < m_{\mu\mu} < 11 \text{ GeV}$) are extracted by a binned χ^2 fit to the invariant mass spectrum, as shown in Fig. A.3 Each Υ state is modeled by a Gaussian function. All the parameters of the $\Upsilon(1S)$ fit are left free. For the $\Upsilon(2S)$ and $\Upsilon(3S)$ states, the yields are allowed to vary while the mean and width are fixed.
to values found by multiplying those for $Y(1S)$ by the ratio of the published masses of the states [42]. The contribution of $γγ$ scattering to dimuon pair production in the Y mass region is extracted using a second order polynomial function.

Figure A.3: The efficiency corrected invariant mass distribution of muon pairs in inclusive ultraperipheral Pb-Pb collisions, for the kinematic range $p_T^μ > 3.5$ GeV, $|η| < 2.4$, and $|y^{μμ}| < 2.4$. The result of the fit to the data is shown as solid blue line. The yields of muon pairs from $γγ$ scattering in the Y mass region are shown as dashed red line. The separate yields for each Y state are shown as dotted violet lines.
B The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan5, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, A. Escalante Del Valle, R. Frühwirth1, M. Jeitler1, N. Krammer, L. Lechner, D. Liko, T. Madlener, I. Mikulec, F.M. Pitters, N. Rad, J. Schieck1, R. Schönbeck, M. Spanring, S. Templ, W. Waltenberger, C.-E. Wulz1, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, A. Litomin, V. Makarenko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish2, E.A. De Wolf, D. Di Croce, X. Janssen, T. Kello3, A. Lelek, M. Pieters, H. Rejeb Sfar, H. Van Haevermaet, S. Van Putte, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, E.S. Bols, S.S. Chhibra, J. D’Hondt, J. De Clercq, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, A. Morton, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, B. Clerbaux, G. De Lentdecker, B. Dorney, L. Favart, A. Grebenyuk, A.K. Kalsi, I. Makarenko, L. Moureaux, L. Pétré, A. Popov, N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom, L. Wezenbeek

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, M. Gruchala, I. Khvastunov4, M. Niedziela, C. Roskas, K. Skovpen, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
G. Bruno, F. Bury, C. Caputo, P. David, C. Delaere, M. Delcourt, I.S. Donertas, A. Giammanco, V. Lemaître, K. Mondal, J. Prisciandaro, A. Taliercio, M. Teklishyn, P. Vischia, S. Wuyckens, J. Zobec

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
G.A. Alves, C. Hensel, A. Moraes

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, E. Belchior Batista Das Chagas, H. BRANDAO MALBOUISSON, W. Carvalho, J. Chinellato5, E. Coelho, E.M. Da Costa, G.G. Da Silveira6, D. De Jesus Damiao, S. Fonseca De Souza, J. Martins7, D. Matos Figueiredo, M. Medina Jaime8, C. Mora Herrera, L. Mundim, H. Nogima, P. Rebello Teles, L.J. Sanchez Rosas, A. Santoro, S.M. Silva Do Amaral, A. Szajdjer, M. Thiel, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
C.A. Bernardesa,b, L. Calligarisa, T.R. Fernandez Perez Tomeia, E.M. Gregoresa,b, D.S. Lemosa, P.G. Mercadantea,b, S.F. Novaesa, Sandra S. Padulaa

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, G. Antchev, I. Atanasov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
M. Bonchev, A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov
Beihang University, Beijing, China
W. Fang, Q. Guo, H. Wang, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
M. Ahmad, Z. Hu, Y. Wang

Institute of High Energy Physics, Beijing, China
E. Chapon, G.M. Chen, H.S. Chen, M. Chen, T. Javaid, A. Kapoor, D. Leggat, H. Liao, Z. Liu, R. Sharma, A. Spiezia, J. Tao, J. Thomas-wilsker, J. Wang, H. Zhang, S. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. Ban, C. Chen, Q. Huang, A. Levin, Q. Li, M. Lu, X. Lyu, Y. Mao, S.J. Qian, D. Wang, Q. Wang, J. Xiao

Sun Yat-Sen University, Guangzhou, China
Z. You

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao

Zhejiang University, Hangzhou, China
M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, J. Fraga, A. Sarkar, M.A. Segura Delgado

Universidad de Antioquia, Medellin, Colombia
J. Jaramillo, J. Mejia Guisao, F. Ramirez, J.D. Ruiz Alvarez, C.A. Salazar Gonzalez, N. Vanegas Arbelaez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, D. Majumder, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, E. Erodotou, A. Ioannou, G. Kole, M. Kolosova, S. Konstantinou, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka, D. Tsiakkouri

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton, J. Tomsa

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
S. Elgammal12, A. Ellithi Kamel13, A. Mohamed14

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
M.A. Mahmoud, Y. Mohammed15

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehatath, M. Kadastik, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
E. Brücken, F. Garcia, J. Havukainen, V. Karimäki, M.S. Kim, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
P. Luukka, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
C. Amendola, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.-L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, B. Lenzi, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M.Ö. Sahin, A. Savoy-Navarro16, M. Titov, G.B. Yu

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
S. Ahuja, F. Beaudette, M. Bonanomi, A. Buchot Perraguin, P. Busson, C. Charlot, O. Davignon, B. Diab, G. Falmagne, R. Granier de Cassagnac, A. Hakimi, I. Kucher, A. Lobanov, C. Martin Perez, M. Nguyen, C. Ochando, P. Paganini, J. Rembser, R. Salerno, J.B. Sauvan, Y. Sirois, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram17, J. Andrea, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard, J.-C. Fontaine17, D. Gelé, U. Goerlach, C. Grimault, A.-C. Le Bihan, P. Van Hove

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
E. Asilar, S. Beauceron, C. Bernet, G. Boudoul, C. Camen, A. Carle, N. Chanon, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, Sa. Jain, I.B. Laktineh, H. Lattaud, A. Lesauvage, M. Lethuillier, L. Mirabito, L. Torretotot, G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
T. Toriaishvili18, Z. Tsamalaidze11

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, M. Preuten, M.P. Rauch, J. Schulz, M. Teroerde

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
D. Eliseev, M. Erdmann, P. Fackeldey, B. Fischer, S. Ghosh, T. Hebbeker, K. Hoepfner, H. Keller, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, G. Mocellin, S. Mondal, S. Mukherjee, D. Noll,
A. Novak, T. Pook, A. Pozdnyakov, T. Quast, Y. Rath, H. Reithler, J. Roemer, A. Schmidt, S.C. Schuler, A. Sharma, S. Wiedenbeck, S. Zaleski

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

C. Dziwok, G. Flügge, W. Haj Ahmad19, O. Hlushchenko, T. Kress, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl20, T. Ziemons

Deutsches Elektronen-Synchrotron, Hamburg, Germany

H. Aarup Petersen, M. Aldaya Martin, P. Asmuss, I. Babounikau, S. Baxter, O. Behnke, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras21, V. Botta, D. Brunner, A. Campbell, A. Cardini, P. Connor, S. Consuegra Rodríguez, V. Danilov, A. De Wit, M.M. Defranchis, L. Didukh, D. Domínguez Damiani, G. Eckerlin, D. Eckstein, T. Eichhorn, L.I. Estevez Banos, E. Gallo22, A. Geiser, A. Giraldi, A. Grohsjean, M. Guthoff, A. Harb, A. Jafari23, N.Z. Jomhari, H. Jung, A. Kasem21, M. Kasemann, H. Kaveh, C. Kleinwort, J. Knolle, D. Krücker, W. Lange, T. Lenz, J. Lidrych, K. Lipka, W. Lohmann24, R. Mankel, I.-A. Melzer-Pellmann, J. Metwally, A.B. Meyer, M. Meyer, M. Missiroli, J. Mnich, A. Mussgiller, V. Myronenko, Y. Otard, D. Pérez Adán, S.K. Pfitsch, D. Pitzl, A. Raspereza, A. Saggio, A. Saibel, M. Savitskyy, V. Scheurer, C. Schwanenberger, A. Singh, R.E. Sosa Ricardo, N. Tonon, O. Turkot, A. Vagnerini, M. Van De Klundert, R. Walsh, D. Walter, Y. Wen, K. Wichmann, C. Wissing, S. Wuchterl, O. Zenaiev, R. Zlebcik

University of Hamburg, Hamburg, Germany

R. Aggleton, S. Bein, L. Benato, A. Benecke, K. De Leo, T. Dreyer, A. Ebrahimí, M. Eich, F. Feindt, A. Fröhlich, C. Garbers, E. Garutti, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, V. Kutzner, J. Lange, T. Lange, A. Malara, C.E.N. Niemeyer, A. Nigamova, K.J. Pena Rodríguez, O. Rieger, P. Schlepper, S. Schummann, J. Schwandt, D. Schwarz, J. Sonneveld, H. Stadie, G. Steinbrück, B. Vormwald, I. Zoi

Karlsruher Institut fuer Technologie, Karlsruhe, Germany

S. Baur, J. Bechtel, T. Berger, E. Butz, R. Caspart, T. Chwalek, W. De Boer, A. Dierlamm, A. Droll, K. El Morabit, N. Faltermann, K. Flöh, M. Giffels, A. Gottmann, F. Hartmann20, C. Heidecker, U. Husemann, M.A. İqbal, I. Katkov25, P. Keicher, R. Koppenhöfer, S. Maier, M. Metzler, S. Mitra, D. Müller, Th. Müller, M. Musich, G. Quast, K. Rabbertz, J. Rauser, D. Savoiu, D. Schäfer, M. Schepf, M. Schröder, D. Seith, I. Shvetsov, H.J. Simonis, R. Ulrich, M. Wassmer, M. Weber, R. Wolf, S. Wozniewski

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

G. Anagnostou, P. Asenov, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki, A. Stakia

National and Kapodistrian University of Athens, Athens, Greece

M. Diamantopoulou, D. Karasavvas, G. Karathanasis, P. Kontaxakis, C.K. Koraka, A. Manousakis-katsikakis, A. Panagiotou, I. Papavergou, N. Saoulidou, K. Theofilatos, K. Vellidis, E. Vourliotis

National Technical University of Athens, Athens, Greece

G. Bakas, K. Kousouris, I. Papakrivopoulos, G. Tsiopolitis, A. Zacharopoulos

University of Ioánnina, Ioánnina, Greece

I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, K. Manitara, N. Manthos, I. Papadopoulos, J. Strologas
MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Bartók26, R. Chudasama, M. Csanad, M.M.A. Gadallah27, S. Lőkös28, P. Major, K. Mandal, A. Mehta, G. Pasztor, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath29, F. Sikler, V. Veszpremi, G. Vesztergombi30

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
S. Czellar, J. Karancsi26, J. Molnar, Z. Szillasi, D. Teyssier

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Eszterhazy Karoly University, Karoly Robert Campus, Gyongyos, Hungary
T. Csorgo, F. Nemes, T. Novak

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, D. Kumar, L. Panwar, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati30, D. Dash, C. Kar, P. Mal, T. Mishra, V.K. Muraleedharan Nair Bindhu, A. Nayak31, D.K. Sahoo30, N. Sur, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, N. Dhingra32, R. Gupta, A. Kaur, S. Kaur, P. Kumari, M. Meena, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi

University of Delhi, Delhi, India
A. Ahmed, A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, A. Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, A. Shah

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
M. Bharti33, R. Bhattacharya, S. Bhattacharya, D. Bhowmik, S. Dutta, S. Ghosh, B. Gomber34, M. Maity,35 S. Nandan, P. Palit, A. Purohit, P.K. Rout, G. Saha, S. Sarkar, M. Sharan, B. Singh33, S. Thakur33

Indian Institute of Technology Madras, Madras, India
P.K. Behera, S.C. Behera, P. Kalbhor, A. Muhammad, R. Pradhan, P.R. Pujahari, A. Sharma, A.K. Sikdar

Bhabha Atomic Research Centre, Mumbai, India
D. Dutta, V. Kumar, K. Naskar36, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, M.A. Bhat, S. Dugad, R. Kumar Verma, G.B. Mohanty, U. Sarkar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, S. Mukherjee, D. Roy

Indian Institute of Science Education and Research (IISER), Pune, India
S. Dube, B. Kansal, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Department of Physics, Isfahan University of Technology, Isfahan, Iran
H. Bakhshiansohi37
INFIN Sezione di Pavia, Università di Pavia, Pavia, Italy
C. Aime, A. Braghieri, S. Calzaferri, D. Fiorina, P. Montagna, S.P. Ratti, V. Re,
M. Ressegotti, C. Riccardi, P. Salvini, I. Vai, P. Vitulo

INFIN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, D. Ciangottini, L. Fanò, P. Lariccia, G. Mantovani,
V. Mariani, M. Menichelli, F. Moscatelli, A. Piccinelli, A. Rossito, A. Santocchia,
D. Spiga, T. Tedeschi

INFIN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
K. Androsov, P. Azzurri, G. Bagliesi, V. Bertacchi, L. Bianchini, T. Boccali, R. Castaldi,
M.A. Ciocco, R. Dell’Orso, M.R. Di Domenico, S. Donato, L. Giannini,
M.T. Grippo, F. Ligabue, E. Manca, G. Mandorli, A. Messineo, F. Palla,
G. Ramirez-Sanchez, A. Rizzi, G. Rolandi, S. Roy Chowdhury, A. Scribano,
N. Shafiei, P. Spagnolo, R. Tenchini, G. Tonelli, N. Turini, A. Venturi, P.G. Verdini

INFIN Sezione di Roma, Sapienza Università di Roma, Rome, Italy
F. Cavallari, M. Cipriani, D. Del Re, E. Di Marco, M. Diemoz, E. Longo,
P. Meridiani, G. Organtini, F. Pandolfi, R. Paramatti, C. Quaranta,
S. Rahatlou, C. Rovelli, F. Santanastasio, L. Soffi, R. Tramontano

INFIN Sezione di Torino, Università di Torino, Torino, Italy, Università del Piemonte Orientale, Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan,
A. Bellora, C. Bino, A. Cappati, N. Cartiglia, S. Cometti, M. Costa,
R. Covarelli, N. Demaria, B. Kiani, F. Leggeri, C. Mariotti, S. Maselli,
E. Migliore, V. Monaco, E. Monteil, M. Monteno, M.M. Obertino,
G. Ortona, L. Pacher, N. Pastrone, M. Pelliccioni, G.L. Pinna Angioni,
M. Ruspa, R. Salvatico, F. Siviero, V. Sola, A. Solano, D. Soldi,
A. Staiano, D. Trocino

INFIN Sezione di Trieste, Università di Trieste, Trieste, Italy
S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, A. Da Rold, G. Della Ricca,
F. Vazzoler

Kyungpook National University, Daegu, Korea
S. Dogra, C. Huh, B. Kim, D.H. Kim, G.N. Kim, J. Lee, S.W. Lee, C.S. Moon,
Y.D. Oh, S.I. Pak, B.C. Radburn-Smith, S. Sekmen, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon

Hanyang University, Seoul, Korea
B. Francois, T.J. Kim, J. Park

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, S. Ha, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park,
S.K. Park, J. Yoo

Kyung Hee University, Department of Physics, Seoul, Republic of Korea
J. Goh, A. Gurtu

Sejong University, Seoul, Korea
H.S. Kim, Y. Kim
Seoul National University, Seoul, Korea
J. Almond, J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim, S. Ko, H. Kwon, H. Lee, K. Lee, S. Lee, K. Nam, B.H. Oh, M. Oh, S.B. Oh, H. Seo, U.K. Yang, I. Yoon

University of Seoul, Seoul, Korea
D. Jeon, J.H. Kim, B. Ko, J.S.H. Lee, I.C. Park, Y. Roh, D. Song, I.J. Watson

Yonsei University, Department of Physics, Seoul, Korea
H.D. Yoo

Sungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, Y. Jeong, H. Lee, Y. Lee, I. Yu

College of Engineering and Technology, American University of the Middle East (AUM), Kuwait
Y. Maghrbi

Riga Technical University, Riga, Latvia
V. Veckalns

Vilnius University, Vilnius, Lithuania
A. Juodagalvis, A. Rinkevicius, G. Tamulaitis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
G. Ayala, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, C.A. Mondragon Herrera, D.A. Perez Navarro, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropesa Barrera, M. Ramirez-Garcia, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autonoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M.I. Asghar, M.I.M. Awan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski
National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, M. Szleper, P. Traczyk, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Olszewski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, D. Bastos, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo, T. Niknejad, J. Seixas, K. Schelina, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golotvin, I. Gorbunov, A. Kamenev, V. Karjavine, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palchik, V. Perelygin, M. Savina, V. Shalaev, S. Shmatov, S. Shulha, V. Smirnov, O. Teryaev, N. Voytishin, B.S. Yuldashev, A. Zarubin, I. Zhizhin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
G. Gavrilov, V. Golovtcov, Y. Ivanov, V. Kim, E. Kuznetsova, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Volkov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Deremeniev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, G. Pivovarov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, A. Nikitenko, V. Popov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
R. Chistov, M. Danilov, A. Oskin, P. Parygin, S. Polikarpov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, A. Ershov, A. Gribushin, A. Kaminski, O. Kodoslova, V. Korotkikh, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, T. Dimova, L. Kardapoltsev, I. Ovtin, Y. Skovpen

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, V. Kachanov, A. Kalinin, D. Konstantinov, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, A. Iuzhakov, V. Okhotnikov, L. Sukhikh
Paul Scherrer Institut, Villigen, Switzerland
L. Caminada, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, P. Berger, A. Calandri, N. Chernyavskaya, A. De Cosa, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, T. Gadek, T.A. Gómez Espinosa, C. Grab, D. Hits, W. Lustermann, A.-M. Lyon, R.A. Manzoni, M.T. Meinhard, F. Micheli, F. Nessi-Tedaldi, F. Pauss, V. Perovic, G. Perrin, L. Perrozzi, S. Pigazzini, M.G. Ratti, M. Reichmann, C. Reissel, T. Reitenspiess, B. Ristic, D. Ruini, D.A. Sanz Becerra, M. Schönenberger, V. Stampf, M.L. Vesterbacka Olsson, R. Walny, D.H. Zhu

Universität Zürich, Zurich, Switzerland
C. Amsler, C.M. Kuo, W. Lin, A. Roy, T. Sarkar, S.S. Yu

National Central University, Chung-Li, Taiwan
C. Adloff, C.M. Kuo, W. Lin, A. Roy, T. Sarkar, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
L. Ceard, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Y.y. Li, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, E. Yazgan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
F. Boran, S. Damarseckin, Z.S. Demiroglu, F. Dolek, C. Dozen, I. Dumanoglu, E. Eskut, G. Gokbulut, Y. Guler, E. Gurpinar Guler, I. Hos, C. Isik, E.E. Kangal, O. Kara, A. Kayis Topaksu, U. Kiminsu, G. Onengut, K. Ozdemir, A. Polatoz, A.E. Simsek, B. Tali, U.G. Tok, S. Turkcanar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak, G. Karapinar, K. Ocalan, M. Yalvac

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmmez, M. Kaya, O. Kaya, O. Özcelik, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Istanbul University, Istanbul, Turkey
F. Aydogmus Sen, S. Cerci, B. Kaynak, S. Ozkorucuklu, D. Sunar Cerci

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
E. Bhal, S. Bologna, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreeczko, B. Kriklar, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-Storey, V.J. Smith, J. Taylor, A. Titterton
Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, K.V. Ellis, K. Harder, S. Harper, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petyt, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, S. Bonomally, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, V. Cepaitis, G.S. Chahal, D. Colling, P. Dauncey, G. Davies, M. Della Negra, G. Fedi, G. Hall, G. Iles, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, V. Milosevic, J. Nash, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, M. Stoye, A. Tapper, K. Uchida, T. Virdee, N. Wardle, S.N. Webb, D. Winterbottom, A.G. Zecchinelli

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA
A. Brinkerhoff, K. Call, B. Caraway, J. Dittmann, K. Hatakeyama, A.R. Kanuganti, C. Madrid, B. McMaster, N. Pastika, S. Sawant, C. Smith, J. Wilson

Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, O. Charaf, S.I. Cooper, S.V. Gleyzer, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
A. Akpinar, A. Albert, D. Arcaro, C. Cosby, Z. Demiragli, D. Gastler, J. Koh, K. Salyer, D. Sperka, D. Spitzbart, I. Suarez, S. Yuan, D. Zou

Brown University, Providence, USA
G. Benelli, B. Burkle, X. Coubze, D. Cutts, Y. Duh, M. Hadley, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, K.T. Lau, J. Lee, M. Narain, S. Sagir, R. Syarif, E. Usai, W.Y. Wong, D. Yu, W. Zhang

University of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breedon, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, F. Jensen, W. Ko, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, M. Shi, D. Taylor, K. Tos, M. Trigathi, Y. Yao, F. Zhang

University of California, Los Angeles, USA
M. Bachtis, R. Cousins, A. Dasgupta, D. Hamilton, J. Hauser, M. Ignatenko, T. Lam, N. Mccoll, W.A. Nash, S. Regnard, D. Saltzberg, C. Schnaible, B. Stone, V. Valuev

University of California, Riverside, Riverside, USA
K. Burt, Y. Chen, R. Clare, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, O.R. Long, N. Manganelli, M. Olmedo Negrete, M.I. Paneva, W. Si, S. Wimpenny, Y. Zhang

University of California, San Diego, La Jolla, USA
J.G. Branson, P. Chang, S. Cittolin, S. Cooperstein, N. Deelen, J. Duarte, R. Gerosa, D. Gilbert, V. Krutelyov, J. Letts, M. Masciovecchio, S. May, S. Padhi, M. Pieri, V. Sharma, M. Tadel, F. Würthwein, A. Yagil

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, C. Campagnari, M. Citron, A. Dorsett, V. Dutta, J. Incandela, B. Marsh, H. Mei, A. Ovcharova, H. Qu, M. Quinnan, J. Richman, U. Sarica, D. Stuart, S. Wang
California Institute of Technology, Pasadena, USA
D. Anderson, A. Bornheim, O. Cerri, I. Dutta, J.M. Lawhorn, N. Lu, J. Mao, H.B. Newman, T.Q. Nguyen, J. Pata, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
J. Alilson, M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, E. MacDonald, T. Mulholland, R. Patel, A. Perloff, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, Y. Cheng, J. Chu, D.J. Cranshaw, A. Datta, A. Frankenthal, K. Mcdermott, J. Monroy, J.R. Patterson, D. Quach, A. Ryd, W. Sun, S.M. Tan, Z. Tao, J. Thom, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Baurerdick, A. Beretvas, D. Berry, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grunendahl, O. Gutsche, R.M. Harris, S. Hasegawa, R. Heller, T.C. Herwig, J. Hirschauser, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, P. Klabbers, T. Klijnsma, B. Klima, M.J. Kortelainen, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, J. Lykken, K. Maeshima, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, V. Papadimitriou, K. Pedro, C. Pena, O. Prokofyev, F. Ravera, A. Reinsvold Hall, L. Ristori, B. Schneider, E. Sexton-Kennedy, N. Smith, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, H.A. Weber, A. Woodard

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, L. Cadamuro, V. Cherepanov, F. Errico, R.D. Field, D. Guerrero, B.M. Joshi, M. Kim, J. Konigsberg, A. Korytov, K.H. Lo, K. Matchev, N. Menendez, G. Mitselmakher, D. Rosenzweig, K. Shi, J. Sturdy, J. Wang, S. Wang, X. Zuo

Florida State University, Tallahassee, USA
T. Adams, A. Askew, D. Diaz, R. Habibullah, S. Hagopian, V. Hagopian, K.F. Johnson, R. Khurana, T. Kolberg, G. Martinez, H. Prosper, C. Schiber, R. Yohay, J. Zhang

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, S. Butalla, T. Elkafrawy, M. Hohlmann, D. Noonan, M. Rahmani, M. Saunders, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, H. Becerril Gonzalez, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, C. Mills, G. Oh, T. Roy, M.B. Tonjes, N. Varelas, J. Viinikainen, X. Wang, Z. Wu

The University of Iowa, Iowa City, USA
M. Alhusseini, K. Dilsiz, S. Durgt, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, O.K. Koseyan, J.-P. Merlo, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA
O. Amram, B. Blumenfeld, L. Corcodilos, M. Eminizer, A.V. Gritsan, S. Kyriacou, P. Maksimovic, C. Mantilla, J. Roskes, M. Swartz, T.Á. Vámi

The University of Kansas, Lawrence, USA
C. Baldenegro Barrera, P. Baranger, A. Bean, A. Bylinkin, T. Isidori, S. Khalil, J. King, G. Krintiras, A. Kropivnitskaya, C. Lindsey, N. Minafra, M. Murray, C. Rogan, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang, J. Williams, G. Wilson

Kansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, T. Mitchell, A. Modak, A. Mohammadi

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA
E. Adams, A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, T. Koeth, A.C. Mignerey, S. Nabil, M. Seidel, A. Skuja, S.C. Tonwar, L. Wang, K. Wong

Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, R. Bi, S. Brandt, W. Busza, I.A. Cali, Y. Chen, M. D’Alfonso, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, M. Klute, D. Kovalskyi, J. Krupa, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephans, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, Z. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA
R.M. Chatterjee, A. Evans, S. Guts†, P. Hansen, J. Hiltbrand, Sh. Jain, M. Krohn, Y. Kubota, Z. Lesko, J. Mans, M. Revering, R. Rusack, R. Saradhy, N. Schroeder, N. Strobbe, M.A. Wadud

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, J.R. González Fernández, I. Kravchenko, J.E. Siado, G.R. Snow†, B. Stieger, W. Tabb, F. Yan

State University of New York at Buffalo, Buffalo, USA
G. Agarwal, H. Bandyopadhyay, C. Harrington, L. Hay, I. Iashvili, A. Kharchilava, C. McLean, D. Nguyen, J. Pekkanen, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, J. Li, G. Madigan, B. Marzocchi, D.M. Morse, V. Nguyen, T. Orimoto, A. Parker, L. Skinnari, A. Tishelman-Charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USA
S. Bhattacharya, J. Rueghly, Z. Chen, A. Gilbert, T. Gunter, K.A. Hahn, N. Odell, M.H. Schmitt, K. Sung, M. Velasco

University of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, K. Lannon, N. Loukas, N. Marinelli, I. Mcalister, F. Meng, K. Mohrman, Y. Musienko46, R. Ruchti, P. Siddireddy, S. Taroni, M. Wayne, A. Wightman, M. Wolf, L. Zygala
The Ohio State University, Columbus, USA
J. Alimena, B. Bylsma, B. Cardwell, L.S. Durkin, B. Francis, C. Hill, A. Lefeld, B.L. Winer, B.R. Yates

Princeton University, Princeton, USA
P. Das, G. Dezoort, P. Elmer, B. Greenberg, N. Haubrich, S. Higginbotham, A. Kalogeropoulos, G. Kopp, S. Kwan, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
V.E. Barnes, R. Chawla, S. Das, L. Gutay, M. Jones, A.W. Jung, B. Mahakud, G. Negro, N. Neumeister, C.C. Peng, S. Piperov, H. Qiu, J.F. Schulte, M. Stojanovic, N. Trevisani, F. Wang, R. Xiao, W. Xie

University of Virginia, Charlottesville, USA
M.W. Arenton, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, A. Li, C. Neu, B. Tannenwald, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
P.E. Karchin, N. Poudyal, P. Thapa
University of Wisconsin - Madison, Madison, WI, USA

K. Black, T. Bose, J. Buchanan, C. Caillol, S. Dasu, I. De Bruyn, P. Everaerts, C. Galloni, H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, D. Pinna, T. Ruggles, A. Savin, V. Shang, V. Sharma, W.H. Smith, D. Teague, S. Trembath-reichert, W. Vetens

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at Institute of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt, Alexandria, Egypt
3: Also at Université Libre de Bruxelles, Bruxelles, Belgium
4: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
5: Also at Universidade Estadual de Campinas, Campinas, Brazil
6: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
7: Also at UFMS, Nova Andradina, Brazil
8: Also at Universidade Federal de Pelotas, Pelotas, Brazil
9: Also at University of Chinese Academy of Sciences, Beijing, China
10: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
11: Also at Joint Institute for Nuclear Research, Dubna, Russia
12: Now at British University in Egypt, Cairo, Egypt
13: Now at Cairo University, Cairo, Egypt
14: Also at Zewail City of Science and Technology, Zewail, Egypt
15: Now at Fayoum University, El-Fayoum, Egypt
16: Also at Purdue University, West Lafayette, USA
17: Also at Université de Haute Alsace, Mulhouse, France
18: Also at Tbilisi State University, Tbilisi, Georgia
19: Also at Erzincan Binali Yildirim University, Erzincan, Turkey
20: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
21: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
22: Also at University of Hamburg, Hamburg, Germany
23: Also at Department of Physics, Isfahan University of Technology, Isfahan, Iran, Isfahan, Iran
24: Also at Brandenburg University of Technology, Cottbus, Germany
25: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
26: Also at Institute of Physics, Bhubaneswar, India
27: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
28: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary, Budapest, Hungary
29: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
30: Also at IIT Bhubaneswar, Bhubaneswar, India, Bhubaneswar, India
31: Also at Institute of Physics, Bhubaneswar, India
32: Also at G.H.G. Khalsa College, Punjab, India
33: Also at Shoolini University, Solan, India
34: Also at University of Hyderabad, Hyderabad, India
35: Also at University of Visva-Bharati, Santiniketan, India
36: Also at Indian Institute of Technology (IIT), Mumbai, India
37: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
38: Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
39: Now at INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
40: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
41: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
42: Also at Università di Napoli ‘Federico II’, NAPOLI, Italy
43: Also at Riga Technical University, Riga, Latvia, Riga, Latvia
44: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
45: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
46: Also at Institute for Nuclear Research, Moscow, Russia
47: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
48: Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
49: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
50: Also at University of Florida, Gainesville, USA
51: Also at Imperial College, London, United Kingdom
52: Also at Moscow Institute of Physics and Technology, Moscow, Russia, Moscow, Russia
53: Also at P.N. Lebedev Physical Institute, Moscow, Russia
54: Also at INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy, Padova, Italy
55: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
56: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
57: Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
58: Also at INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy, Pavia, Italy
59: Also at National and Kapodistrian University of Athens, Athens, Greece
60: Also at Universität Zürich, Zurich, Switzerland
61: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria, Vienna, Austria
62: Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
63: Also at Şırnak University, Sirnak, Turkey
64: Also at Department of Physics, Tsinghua University, Beijing, China, Beijing, China
65: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey
66: Also at Beykent University, Istanbul, Turkey, Istanbul, Turkey
67: Also at Istanbul Aydin University, Application and Research Center for Advanced Studies (App. & Res. Cent. for Advanced Studies), Istanbul, Turkey
68: Also at Mersin University, Mersin, Turkey
69: Also at Piri Reis University, Istanbul, Turkey
70: Also at Adiyaman University, Adiyaman, Turkey
71: Also at Ozyegin University, Istanbul, Turkey
72: Also at Izmir Institute of Technology, Izmir, Turkey
73: Also at Necmettin Erbakan University, Konya, Turkey
74: Also at Bozok Universitätessi Rektörlüğü, Yozgat, Turkey, Yozgat, Turkey
75: Also at Marmara University, Istanbul, Turkey
76: Also at Milli Savunma University, Istanbul, Turkey
77: Also at Kafkas University, Kars, Turkey
78: Also at Istanbul Bilgi University, Istanbul, Turkey
79: Also at Hacettepe University, Ankara, Turkey
80: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
81: Also at IPPP Durham University, Durham, United Kingdom
82: Also at Monash University, Faculty of Science, Clayton, Australia
83: Also at Bethel University, St. Paul, Minneapolis, USA, St. Paul, USA
84: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
85: Also at California Institute of Technology, Pasadena, USA
86: Also at Ain Shams University, Cairo, Egypt
87: Also at Bingol University, Bingol, Turkey
88: Also at Georgian Technical University, Tbilisi, Georgia
89: Also at Sinop University, Sinop, Turkey
90: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
91: Also at Nanjing Normal University Department of Physics, Nanjing, China
92: Also at Texas A&M University at Qatar, Doha, Qatar
93: Also at Kyungpook National University, Daegu, Korea, Daegu, Korea