Prevalence and Predictor for Malignancy of Contralateral Thyroid Nodules in Patients with Unilateral PTMC: A Systematic Review and Meta-Analysis

Weidi Wang¹, Lingjun Kong², Hongkun Guo³, Xiangjin Chen²*

¹Department of emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China. 272945617@qq.com

²Department of Thyroid and Breast, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China. h23o17n21@163.com

³Department of emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.1318549001@qq.com

²Department of Thyroid and Breast, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China. rjbhcxj@sina.com

*Correspondence should be addressed to Xiangjin Chen; rjbhcxj@sina.com

Word Count : Main text 3690, Figures 6, Tables 3.

Keywords: unilateral PTMC; risk factors; contralateral thyroid nodules; meta-analysis.
Abstract

Background: The presence of clinically negative nodules on the contralateral lobe is common in patients with unilateral papillary thyroid microcarcinoma (PTMC). The appropriate operational strategies of contralateral thyroid nodules remain controversial. In this study, we analyzed clinical features that could be predictors for malignancy of contralateral thyroid nodules coexisting with diagnosed unilateral PTMC.

Methods: The literatures published from January 2000 to December 2019 were searched in PubMed, Cochrane Library, Embase, Web of Science, CNKI, and Wan Fang database. Odds Ratio (OR) with 95% Confidence Intervals (CI) were used to describe categorical variables. Heterogeneity among studies was examined by the Q test and I^2 test; potential publication bias was detected by Harbord test and 'trim and fill’ method.

Results: 2541 studies were searched and 8 studies were finally included in this meta-analysis. The results showed that the rate of carcinoma in contralateral nodules was 23% (OR=0.23, 95%CI=0.18-0.29). The pooled data indicated that contralateral malignancy was not associated with age, gender, primary lesion size, ipsilateral central lymph node metastasis and multifocality of contralateral lesion. The following variables have correlations with an increased risk of contralateral malignancy: multifocality of primary carcinomas (OR=3.93, 95%CI=2.70-5.73, p<0.0001), capsular invasion (OR=1.61, 95%CI=1.10-2.36, p=0.01), and Hashimoto’s thyroiditis (OR=1.57, 95%CI=1.13-2.20, P=0.008).

Conclusions: Based on our meta-analysis, the rate at which contralateral malignancy are preoperatively misdiagnosed as benign is 23%. The risk factors for contralateral malignancy in
unilateral PTMC patients with contralateral clinical negative nodules include multifocality of primary carcinomas, capsular invasion, and Hashimoto's thyroiditis.

Introduction

Papillary thyroid carcinoma (PTC) is the most common pathological subtype of thyroid carcinoma (TC). In recent years, the incidence of PTC is gradually increasing worldwide. The increase in incidence is explained by the improvement of examination techniques, which have promoted the detection of unilateral papillary thyroid microcarcinoma (PTMC). PTMC has been regarded as indolent. It is controversial whether all patients with PTMC confined to the unilateral lobe determined by fine-needle aspiration (FNA) or clinical negative nodules in the contralateral lobe, should undergo a total thyroidectomy (TT). Thyroid lobectomy alone may be sufficient for PTMC, which is considered as low-risk and unifocal tumor. A study evaluating the long-term effect of lobectomy showed that lobectomy (with isthmectomy) is effective for most patients with unilateral multifocal PTC. Moreover, the risk of injury to the contralateral parathyroid gland and recurrent laryngeal nerve during TT is also increased. Besides, patients undergoing TT need lifelong thyroid hormone replacement, which requires more compliance.

So far, only a few studies have analyzed the risk factors for malignancy of contralateral nodules in unilateral PTMC patients, and the incidence of carcinoma in contralateral nodules obtained from each study is inconsistent (7.7%-43.3%). In addition, relevant studies have not found consistent risk factors. We aimed to identify specific types of unilateral PTMC patients, whose contralateral nodules present a high risk of carcinoma. According to our data, the risk factors for
contralateral malignancy in unilateral PTMC patients with contralateral clinical negative nodules
include multifocality of primary carcinomas, capsular invasion, and Hashimoto's thyroiditis.

Methods

This systematic review was conducted following the criteria of the Preferred Reporting Items for
Systematic Review and Meta-Analyzes (PRISMA). (Supplementary Table 1). The protocol for
this systematic review was registered on PROSPERO (http://www.crd.york.ac.uk/prospero/)
under No. CRD42021232568.

Search Strategies

We accessed PubMed, Cochrane Library, Embase, Web of Science, China National Knowledge
Infrastructure (CNKI), and Wan Fang database to search for potential studies from January 2000
to December 2019. The following keywords ((PTMC OR PTC OR microcarcinoma) AND (thyroid
nodules) AND (risk or predictive or factor) AND (bilateral or contralateral or unilateral)) were used.
No language restriction was applied. To expand our search, references of the retrieved articles
were also screened to identify additional studies.

Selection Criteria

Two reviewers independently read the titles and abstracts of all articles to search for relevant
studies. We included studies fulfilling all the following criteria: (1) prospective or retrospective
original studies; (2) all of the patients were diagnosed unilateral PTMC preoperatively by US or
FNA; (3) all of the patients underwent TT or nearly total thyroidectomy; (4) none of the patients had clinical evidence of contralateral thyroid carcinoma preoperatively (If any suspicious ultrasound images exist, FNA was performed); (5) sufficient data provided concerning the feature of patients.

Studies were excluded if (1) they were case reports, reviews, conference abstracts, and posters; (2) patients with other pathologic types of thyroid carcinoma or preoperatively bilateral thyroid cancer; (3) patients who had undergone head and neck irradiation or oncological surgery radiotherapy; (4) patients with a family history of thyroid cancer.

We define contralateral carcinoma as a nodule in the contralateral lobe that was diagnosed as benign by ultrasound (US) or FNA preoperatively, but the nodule was diagnosed as malignant by postoperative pathological examination.

Data Extraction

Two reviewers independently selected studies for inclusion and exclusion. Discrepancies in the selection were resolved by consensus. The following variables were recorded: first author, journal and year of publication, countries of study, number of carcinomas, number of cases, the features of patients (age, sex, size of primary lesion, ipsilateral central lymph node metastasis, multifocality of primary lesion, multifocality of contralateral lesion, capsular invasion, and Hashimoto's thyroiditis). If necessary, the corresponding authors of the studies were contacted to obtain additional information.
Quality Assessment

Two independent evaluators used the Newcastle-Ottawa quality assessment scale (NOS)15. The content of the evaluation includes the following four aspects: quality of selection, comparability, exposure, and outcome of study participants. The total score of NOS (maximum 9 points) is obtained according to the specific requirements of each item above. Studies with a total score > 7 were considered as high quality. We assessed the overall certainty of evidence for each outcome using the Grading Recommendations Assessment, Development and Evaluation (GRADE) approach16. Disagreements for GRADE assessments were resolved by discussion. We used the Guideline Development Tool (https://www.gradepro.org) to formulate the summary of findings table.

Statistical Analysis

We utilized Review Manager (Revman) for statistical analysis. Heterogeneity was quantified using the Cochran Q test and \(I^2 \) statistics. A fixed-effects model or random-effects model was used to calculate the pooled odds ratio (OR) with its 95\% confidence interval (CI). A P value of less than 0.05 was considered as statistically significant in the present meta-analysis. \(I^2 > 50\% \) was regarded to indicate significant heterogeneity, where random-effects model would be used. Otherwise, fixed-effects model would be applied. Sensitivity analysis for each study, especially the study with low-quality control, large weight and results that greatly differ from other works. These studies were excluded to recalculate the number of combined effects, which were compared with previous meta-analysis. We selected a conservative conclusion if the sensitivity...
analysis is inconsistent with the original results. For publication bias evaluation, we utilized Harbord test17. Although planned, we did not construct funnel plots to assess for publication bias as these are inaccurate when less than ten trials are included in the analysis. If the Harbord test showed a P value <0.05, we assumed publication bias was present. The Duval & Tweedie non-parametric ‘trim and fill’ method was used to adjust for it18.

\section*{Results}

\subsection*{Study Selection}

The comprehensive computer study search revealed 2541 potentially relevant studies. According to the above criteria, a total of 8 studies and 1,221 patients were included in this meta-analysis. The main characteristics of the included studies are summarized in Table 1. A flow chart of the selection process is presented in Fig 1.

\subsection*{Quantitative Analysis}

The included studies were statistically heterogeneous ($I^2=84.6\%$) for the prevalence of carcinoma, which ranged from 7.7\% to 43.3\%. A random-effects model shows: the pooled prevalence of carcinoma in contralateral nodules in the eight included studies was 23\% (95\%CI=0.17-0.29) (Fig 2).

\subsection*{Meta-analysis}

Meta-analysis indicated that contralateral malignancy was not associated with age, sex, primary lesion size, ipsilateral central lymph node metastasis, and multifocality of contralateral lesion.
Forest plots are shown in Fig 3 (see Supplemental Figure 1-5 for more details). A summary of the meta-analytic statistics is presented in Table 2.

Hashimoto's Thyroiditis

This article includes four studies on Hashimoto's Thyroiditis (HT)\(^8, 9, 12, 13\). The heterogeneity test showed no significant heterogeneity among these studies (\(p=0.24, I^2=28\%\)). The results indicated that HT was associated with a high rate of malignancy in contralateral nodules (OR=1.57, 95%CI=1.13-2.20, \(p=0.008\)) (Fig 4). The same results were obtained after sensitivity analysis. Publication bias was evaluated by Harbord test, which revealed that the impact of publication bias was minimal on the meta-analysis study.

Multifocality of Primary Lesion

Four studies were included in the analysis of multifocality of primary lesion\(^6, 8, 9, 13\). We found a positive correlation between multifocality of primary lesion and contralateral malignancy (OR=3.93, 95%CI=2.70-5.73, \(p<0.0001\)) (Fig 5). The same results were obtained after sensitivity analysis.

Capsular Invasion

Four studies relating to capsular invasion were included\(^6, 8, 9, 13\). A fixed-effects model was applied due to insignificant heterogeneity (\(p=0.38, I^2=2\%\)). It is shown that patients with capsular invasion exhibited a 1.61-fold risk of contralateral malignancy (OR=1.61, 95%CI=1.10-2.36, \(p=0.01\)) compared with the patients without capsular invasion (Fig 6). The same results were obtained after sensitivity analysis.
Sensitivity Analyses

Sensitivity analysis was performed by excluding one study at a time, where no significant influence on the stability of the results was identified.

The size of primary lesion was not associated with contralateral carcinoma (OR=1.18, 95%CI=0.67-2.09, p=0.57). Following the leave-one-out method (sensitivity analysis), the results were statistically significant only when Meng (2012) is excluded (OR=1.71, 95%CI=1.15-2.56, p=0.008) (Supplemental Figure 6), but the results were reversed compared with the results before sensitivity analysis. Due to the low stability of the results, a conservative conclusion was taken and the correlation was not considered. In addition, the study Meng (2012) was considered as one of the sources of heterogeneity.

Publication Bias and Safety

Evaluation of publication bias by Harbord test is shown in Table 2. The Harbord test result for multifocality of primary lesion suggest that the presence of publication bias that may distort the meta-analysis. The Duval & Tweedie non-parametric ‘trim and fill’ method was employed and generally resulted in similar conclusions of the unadjusted random-effect model of 3.93(95% CI=2.70-5.73); we calculated a summary adjusted OR of 3.75(95% CI=2.64-5.32). Publication bias was not evident from the Harbord test for any other clinical feature. The GRADE approach was adopted to evaluate the overall certainty of evidence and "Summary of findings" tables were presented (Table 3).
Discussion

Debate: Extent of Surgery for PTMC

For unilateral PTMC patients with thyroid nodules in contralateral lobe that was preoperatively diagnosed as benign, appropriate operational strategy of thyroid nodules remains controversial. When a unilateral PTMC coexists with contralateral nodules diagnosed by US as benign, most clinicians tend to perform a TT for worrying the risk of recurrence in remnant thyroid tissue. However, the recent consensus statements from the Japan Association of Endocrine Surgery show that no evidence exists that patients with benign nodules should be excluded for active surveillance of PTMC19.

Furthermore, for low risk PTMC, the few recurrences that develop during long-term follow-up are readily detected and appropriately treated with no impact on survival20. Given that PTMC typically exhibits low malignancy, good prognosis3, it is widely recognized that "delayed treatment" does not affect the prognosis of patients with low-risk PTMC.

A large number of studies have investigated the clinical features as potential predictors for malignancy of contralateral thyroid nodules coexisting with proven unilateral PTMC. However, the outcomes of these studies are discrepant. Here, we conducted a meta-analysis of eight retrospective studies that evaluated the possible correlation between carcinoma in contralateral nodules and related clinical-pathological features of PTMC patients.

Risk Factors

Age
Age is closely related to the prognosis of PTMC. The cut-off point of age in the studies included was 45 years old. However, a multicenter retrospective study found that by increasing the cut-off point of age to 55 years old, about 17% of the patients have a lower pathological stage compared to the 45 years old patients. However, there was no significant difference in the overall survival rate in this group of the patients21. The American Joint Committee on Cancer (AJCC) 8th edition for TC adjusted the age cut-off point from 45 to 55 years. This adjustment avoided overtreatment of low-risk patients. Meanwhile, Jeon et al. reported that age over 50 is closely related to PTMC progression22. Kwong et al. reported that the prevalence of thyroid nodules increases with age, but the risk of malignancy is reduced23.

At present, there is no conclusion on the correlation between age and contralateral carcinoma. Our meta-analysis found that age is not a risk factor for malignancy in the contralateral nodules.

SEX

TC has a high incidence in women. Several studies have suggested this phenomenon is related to the overexpression of estrogen receptor in TC since ER-\(\alpha\) promotes the growth and progress of PTC24. Male gender was identified as a risk factor for malignancy of indeterminate thyroid nodules25.

On one hand, this work showed that there was no correlation between sex and contralateral carcinoma. Small number of included samples may cause the result. On the other hand, a recent meta-analysis shows that male gender is associated with a high risk of recurrence in PTC patients26. Further genomic and large-scale population epidemiological studies are required to understand the mechanism underlying the sex differences.
Multifocality of Primary Lesion

In this study, multifocality is defined as multiple primary foci that exist only in unilateral glands and is not related to contralateral nodules.

This meta-analysis shows consistent results as demonstrated by several previous studies that the multifocality of the primary tumor is an important risk factor for contralateral cancer, regardless of whether there are contralateral nodules27, 28. Recently, some studies have reported that the multifocal PTCs are multiple synchronous primary tumors arising from independent clones29, 30. Shattuck et al. analyzed the pattern of X chromosome inactivation in 17 cases of highly differentiated multifocal PTC and suggested that PTC may have an independent genetic origin31. Therefore, most guidelines recommend total / subtotal thyroidectomy for PTMC, with multifocal primary tumors, regardless of stage.

It is worth noting that multifocality indicated by preoperative ultrasound could not be used as a prediction for malignancy, final surgical strategy should be based on pathological results such as frozen section. This suggests that preoperative ultrasound is insufficient to evaluate the foci12. A TT is required to reduce recurrence when the frozen section results show that the primary tumor is multifocal PTMC.

Size of Primary Lesion

Tumor size is an important factor affecting the prognosis of TC. The heterogeneity among the included studies is significant and the results are unstable. Unfortunately, the correlation between the size of primary lesions and contralateral carcinoma cannot be determined. Feng et al.
demonstrated that tumor>1cm was an independent predictor of contralateral carcinoma\(^{32}\). In contrast, Park et al. suggested that size of the primary tumor could not be a predictor for contralateral carcinoma\(^{33}\). Meanwhile, in a study that followed 992 patients with benign thyroid nodules for 5 years, Durant et al. reported an increase in diameter for at least 2mm in 15.4% of the nodules\(^{34}\). However, the significance of this growth pattern is unclear, as changes in the size of nodules are not an effective predictor of malignancy\(^{35}\).

Although tumor size is an important factor affecting the prognosis of PTMC, we could not draw definitive conclusions regarding the possible association between the size of primary lesions and the existence of contralateral carcinoma.

Multifocality of Contralateral Lesion

Y et al. reported that the presence of contralateral nodules is a predictor of carcinoma on the contralateral lobe of unilateral PTMC\(^{36}\). LEE et al. showed that the contralateral multiple non-suspicious nodules were more likely to coexist with carcinoma\(^{37}\). This phenomenon may be related to intrathyroidal metastasis of tumors, which has been confirmed by a number of studies\(^{38, 39}\). Frate et al. pointed out that for the general population; the probability of thyroid cancer in nodules is not related to the number of nodules\(^{40}\).

Given that low certainty of the evidence and low stability of the results included in our meta-analysis, it is not clear whether the multifocality of contralateral nodules is correlated with contralateral carcinoma. LIN et al. reported that 49.3% of patients with thyroid cancer smaller than 1cm could not be accurately diagnosed by preoperative FNA\(^{41}\). Furthermore,
other studies have pointed out that ultrasound, FNA and ultrasound combined with FNA all have high sensitivity and accuracy in the diagnosis of the thyroid nodule in the >1 cm group, without significant differences\(^4\). We speculate these results may arise from the fact that the background of multiple nodules makes it more difficult to determine nodules, which leads to misdiagnosis of contralateral nodules before operation.

Ipsilateral Central Lymph Node Metastasis

Cervical lymph node metastasis (CLNM) is the most common form of PTC metastasis. It occurs in the early stage of the disease, especially in the ipsilateral cervical lymph node\(^4\). Previous study has shown that central lymph node metastasis is a predictor for malignancy of contralateral thyroid nodules, which can be evaluated by preoperative ultrasound examination and intraoperative frozen biopsy\(^4\). The results of this work show that ipsilateral central lymph node metastasis is not correlated with contralateral carcinoma.

In order to reduce the risk of local recurrence, Asian national guidelines recommend prophylactic central lymph node dissection if allowed. By contrast, routine lymph node dissection is less performed in PTMC patients with clinical negative central lymph nodes (cN0) and more postoperative \(\text{I}^{131}\) treatment is selected in Europe and the United States\(^4,\,45\). Different treatment strategies lead to a higher detection rate of ipsilateral CLNM in Asian studies, and the resulting selection bias may be one of the reasons for significant heterogeneity.

Hashimoto’s Thyroiditis
Hashimoto's thyroiditis is a common autoimmune disease of the thyroid. This meta-analysis suggests that PTMC patients with HT exhibited a 1.56-fold higher risk of contralateral malignancy, suggesting that HT was a risk factor for cancer in contralateral nodules. The relationship between TC and HT has evoked broad interest in the field.

On one hand, Liu et al. conducted a population-based study of HT. The study showed that HT was strongly correlated with PTMC, and HT was an important risk factor for PTMC in young people aged between 18 and 30 years\(^46\). A meta-analysis involving 64628 patients showed that HT was associated with a high risk of PTC\(^47\). It suggested that excessive lymphocyte infiltration could release higher levels of inflammatory factors, such as interferon-γ, tumor necrosis factor-α, etc. which may lead to an increased risk of cancer\(^48\).

On the other hand, PTC with HT is characterized by smaller tumor size, less capsule infiltration, less lymph node metastasis and better prognosis, which may represent weaker invasiveness and the regulation of autoimmune response\(^49\). However, there are also studies suggesting that HT is not an independent risk factor of contralateral cancer\(^50\).

In view of the correlation between HT and PTMC, when frozen section results show the coexistence of PTMC and HT, TT should be adopted to avoid misdiagnosis of contralateral malignant nodules.

Capsular Invasion

When the primary tumor is growing close to thyroid capsule, it is very likely to invade capsule tissue. Once the capsule invasion occurs, it may further lead to an extra-glandular invasion,
including recurrent laryngeal nerve, esophagus, trachea and other organs. TT is recommended for patients with extra-glandular invasion.4

Thyroid capsule in front of the trachea is discontinuous, and possible existence of adipose tissue and skeletal muscle tissue in the thyroid tissue itself, these may lead to clinical pathologists' misjudgment of minimal extraglandular invasion of PTMC. Moreover, some studies have shown that there was no significant difference in the prognosis between patients with minor extraglandular invasion and patients without capsule invasion.51, 52 Therefore, we chose capsule invasion as a potential predictor for contralateral cancer rather than extraglandular invasion or micro-extraglandular invasion.

Previous studies have suggested that contralateral nodule with carcinoma is not associated with capsule invasion.53 However, our results showing that patients with capsular invasion exhibited a 1.61-fold increased risk of contralateral malignancy. Given that thyroid capsule is rich in lymphatic vessels, capsule invasion may lead to an increase in the risk of metastasis. Although most guidelines do not specify the scope of resection of PTMC with capsule invasion, total / subtotal thyroidectomy should be performed actively considering the high possibility of extraglandular invasion.

Limitations

This meta-analysis has several limitations. First, in order to execute the inclusion criteria in strict rotation, the sample size of this meta-analysis was relatively small. Second, several detailed information of the tumor was not recorded, such as the location of the primary tumor in the glandular lobe, the size and location of the contralateral nodule. The loss of information may lead
to inevitable biases. Third, most of the patients from the included studies were Asian. Given the
differences between Asian and Western populations with regard to culture, genetic background,
lifestyle, so that the conclusions of our study may be applicable for Asian populations only,
more studies from other regions or countries should be included to support the results. Fourth, the
judgment of contralateral nodules is based on preoperative FNA and ultrasound, even if the same
standards are followed, errors may caused by different operators and pathological interpretations.

Conclusion

In conclusion, for unilateral PTMC patients, the rate at which contralateral carcinomas are
preoperatively misdiagnosed as benign is 23%. The risk factors for contralateral malignancy in
unilateral PTMC patients with contralateral clinical negative nodules include multifocality of
primary carcinomas, capsular invasion, and HT. When frozen section examination reveals the
above risk factors, TT/subtotal TT should be performed to avoid misdiagnosis as much as possible.
For patients without high-risk factors, more conservative treatment can be tried, which can reduce
the complications of operation and improve the compliance of patients.

Declaration of Interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the
impartiality of this study

Ethics Statement
The paper is exempted from ethical committee approval since this is a systematic review and meta-analysis.

Funding Statements

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Author Contributions

Conceived and designed the experiments: XJC WDW LJK. Performed the experiments: WDW LJK. Analyzed the data: WDW LJK HKG. Contributed analysis tools: WDW LJK. Wrote the paper: WDW.

Acknowledgments

Wei-Kun Huang, the English language editor, was responsible for correcting language and grammar issues.

References

1. Siegel RL, Miller KD & Jemal A. Cancer statistics, 2020. Ca A Cancer Journal for Clinicians 2020 70.

2. Chen AY, Jemal A & Ward EM. Increasing incidence of differentiated thyroid cancer in the United States, 1988-2005. Cancer 2010 115 3801-3807.
3. Du L, Wang Y, Sun X, Li H, Geng X, Ge M & Zhu Y. Thyroid cancer: trends in incidence, mortality and clinical-pathological patterns in Zhejiang Province, Southeast China. *BMC Cancer* 2018** 18** 291.

4. Haugen B, Alexander E, Bible K, Doherty G, Mandel S, Nikiforov Y, Pacini F, Randolph G, Sawka A & Schlumberger M et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. *Thyroid : official journal of the American Thyroid Association* 2016** 26** 1-133.

5. Huang H, Liu S, Xu Z, Ni S, Zhang Z & Wang X. Long-term outcome of thyroid lobectomy for unilateral multifocal papillary carcinoma. *Medicine* 2017** 96** e7461.

6. Koo B, Lim H, Lim Y, Yoon Y, Kim Y, Park Y & Rha K. Occult contralateral carcinoma in patients with unilateral papillary thyroid microcarcinoma. *Annals of surgical oncology* 2010** 17** 1101-1105.

7. Connor M, Wells D & Schmalbach C. Variables predictive of bilateral occult papillary microcarcinoma following total thyroidectomy. *Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery* 2011** 144** 210-215.

8. Meng L, Huang L, Xu C & Zhang W. Managements of small thyroid nodules with contralateral papillary thyroid microcarcinoma. *Chinese journal of otorhinolaryngology head and neck surgery* 2012** 47** 827-830.
9. Yang M & Yu C. Analysis of clinical characteristics of patients with unilateral PTMC complicated with contralateral thyroid nodules. *Journal of Chinese Physician* 2013 **015** 549-551.

10. Choi S, Woo S, Shin J, Choi N, Son Y, Jeong H, Baek C & Chung M. Prevalence and prediction for malignancy of additional thyroid nodules coexisting with proven papillary thyroid microcarcinoma. *Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery* 2013 **149** 53-59.

11. Wan H, Zhang B, Yan D & Xu Z. Prediction of occult carcinoma in contralateral nodules for unilateral papillary thyroid carcinoma. *Chinese journal of otorhinolaryngology head and neck surgery* 2014 **49** 881-884.

12. Lee Y, Eun Y, Sohn Y, Rhee S, Hong I, Chon S, Oh S & Kim D. Predictive factors for occult contralateral carcinoma in patients with unilateral papillary thyroid microcarcinoma by preoperative ultrasonographic and pathological features. *World journal of surgery* 2015 **39** 1736-1741.

13. Wu Z, Yan X, Su R, Ma Z, Xie B & Cao F. How Many Contralateral Carcinomas in Patients with Unilateral Papillary Thyroid Microcarcinoma are Preoperatively Misdiagnosed as Benign? *World journal of surgery* 2017 **41** 129-135.

14. Moher D, Liberati A, Tetzlaff J, Altman DG & Tugwell P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *Revista Espanola de Nutricion Humana y Dietetica* 2014 **18** 172-181.

15. Higgins J & Green S. Cochrane Handbook for Systematic Reviews for Interventions,
16. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P & Schünemann H. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ* 2008 336.

17. Harbord RM, Egger M & Sterne J. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. *Statistics in medicine* 2006 25.

18. Duval S & Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. *Biometrics* 2015 56 455-463.

19. Sugitani I, Ito Y, Takeuchi D, Nakayama H, Masaki C, Shindo H, Teshima M, Horiguchi K, Yoshida Y & Kanai T et al. Indications and Strategy for Active Surveillance of Adult Low-Risk Papillary Thyroid Microcarcinoma: Consensus Statements from the Japan Association of Endocrine Surgery Task Force on Management for Papillary Thyroid Microcarcinoma. *Thyroid : official journal of the American Thyroid Association* 2021 31 183-192.

20. Park J & Yoon J. Lobectomy in patients with differentiated thyroid cancer: indications and follow-up. *Endocrine-related cancer* 2019 26 R381-R393.

21. Ganly I, Nixon IJ, Wang LY, Palmer FL, Migliacci JC, Aniss A, Sywak M, Eskander A, Freeman JL & Campbell MJ. Survival from Differentiated Thyroid Cancer: What Has Age Got to Do with It? *Thyroid Official Journal of the American Thyroid Association* 2015.

22. Jeon M, Chung M, Kwon H, Kim M, Park S, Baek J, Song D, Sung T, Hong S & Kim T et al. Features of papillary thyroid microcarcinoma associated with lateral cervical lymph
node metastasis. *Clinical endocrinology* 2017 **86** 845-851.

23. Kwong N, Medici M, Angell T, Liu X, Marqusee E, Cibas E, Krane J, Barletta J Kim M & Larsen P et al. The Influence of Patient Age on Thyroid Nodule Formation, Multinodularity, and Thyroid Cancer Risk. *The Journal of clinical endocrinology and metabolism* 2015 **100** 4434-4440.

24. Huang Y, Dong W, Li J, Zhang H, Shan Z & Teng W. Differential expression patterns and clinical significance of estrogen receptor-α and β in papillary thyroid carcinoma. *BMC Cancer* 2014 **14** 383.

25. Hegedüs L. Clinical practice. The thyroid nodule. *The New England journal of medicine* 2004 **351** 1764-1771.

26. Guo K & Wang Z. Risk factors influencing the recurrence of papillary thyroid carcinoma: a systematic review and meta-analysis. *International journal of clinical and experimental pathology* 2014 **7** 5393-5403.

27. Mantinan B, Rego-Iraeta A, Larrañaga A, Fluiters E, Sánchez-Sobrino P & Garcia-Mayor R. Factors influencing the outcome of patients with incidental papillary thyroid microcarcinoma. *Journal of thyroid research* 2012 **2012** 469397.

28. Chen X, Zhong Z, Song M, Yuan J, Huang Z, Du J, Liu Y & Wu Z. Predictive factors of contralateral occult carcinoma in patients with papillary thyroid carcinoma: a retrospective study. *Gland surgery* 2020 **9** 872-878.

29. Park S, Park Y, Lee Y, Lee H, Choi S, Choe G, Jang H, Park S, Park D & Cho B. Analysis of differential BRAF(V600E) mutational status in multifocal papillary thyroid carcinoma.
evidence of independent clonal origin in distinct tumor foci. *Cancer* 2006 **107** 1831-1838.

30. Giannini R, Ugolini C, Lupi C, Proietti A, Elisei R, Salvatore G, Berti P, Materazzi G, Miccoli P & Santoro M et al. The heterogeneous distribution of BRAF mutation supports the independent clonal origin of distinct tumor foci in multifocal papillary thyroid carcinoma. *The Journal of clinical endocrinology and metabolism* 2007 **92** 3511-3516.

31. Shattuck T, Westra W, Ladenson P & Arnold A. Independent clonal origins of distinct tumor foci in multifocal papillary thyroid carcinoma. *The New England journal of medicine* 2005 **352** 2406-2412.

32. Feng J, Ye J, Wu W, Pan H, Qin A, Jiang Y & Wu B. Management of Clinically Solitary Papillary Thyroid Carcinoma Patients According to Risk-Scoring Model for Contralateral Occult Carcinoma. *Frontiers in endocrinology* 2020 **11** 553577.

33. Park S, Jung Y, Ryu C, Lee C, Lee Y, Lee E, Kim S, Kim T, Kim T & Jang J et al. Identification of occult tumors by whole-specimen mapping in solitary papillary thyroid carcinoma. *Endocrine-related cancer* 2015 **22** 679-686.

34. Durante C, Costante G, Lucisano G, Bruno R, Meringolo D, Paciaroni A, Puxeddu E, Torlontano M, Tumino S & Attard M et al. The natural history of benign thyroid nodules. *JAMA* 2015 **313** 926-935.

35. Nakamura H, Hirokawa M, Ota H, Kihara M, Miya A & Miyauchi A. Is an Increase in Thyroid Nodule Volume a Risk Factor for Malignancy? *Thyroid : official journal of the American Thyroid Association* 2015 **25** 804-811.

36. So Y, Kim M & Son Y. Multifocality and bilaterality of papillary thyroid microcarcinoma.
37. Lee K, Cho Y, Kim J & Lee D. How many contralateral papillary thyroid carcinomas can be missed? World journal of surgery 2013 37 780-785.

38. Wang W, Wang H, Teng X, Wang H, Mao C, Teng R, Zhao W, Cao J, Fahey T & Teng L. Clonal analysis of bilateral, recurrent, and metastatic papillary thyroid carcinomas. Human pathology 2010 41 1299-1309.

39. Jovanovic L, Delahunt B, McIver B, Eberhardt N, Bhattacharya A, Lea R & Grebe S. Distinct genetic changes characterise multifocality and diverse histological subtypes in papillary thyroid carcinoma. Pathology 2010 42 524-533.

40. Frates M, Benson C, Doubilet P, Kunreuther E, Contreras M, Cibas E, Orcutt J, Moore F, Larsen P & Marqusee E et al. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. The Journal of clinical endocrinology and metabolism 2006 91 3411-3417.

41. Lin J, Huang B, Chao T & Hsueh C. Diagnosis of occult thyroid carcinoma by thyroid ultrasonography with fine needle aspiration cytology. Acta cytologica 1997 41 1751-1756.

42. Li J, Wang Q, Wang L, Wang J, Wang D, Xin Z, Liu Y & Zhao Q. Diagnostic value of fine-needle aspiration combined with ultrasound for thyroid cancer. Oncology letters 2019 18 2316-2321.

43. Li N, Cui M, Yu P & Li Q. Correlations of IncRNAs with cervical lymph node metastasis and prognosis of papillary thyroid carcinoma. OncoTargets and therapy 2019 12 1269-1278.
44. Chang Y, Kim H, Jung S, Kim H, Lee J, Bae J & Son G. Significance of micrometastases in the calculation of the lymph node ratio for papillary thyroid cancer. *Annals of surgical treatment and research* 2017 92 117-122.

45. Takami H, Ito Y, Okamoto T, Onoda N, Noguchi H & Yoshida A. Revisiting the guidelines issued by the Japanese Society of Thyroid Surgeons and Japan Association of Endocrine Surgeons: a gradual move towards consensus between Japanese and western practice in the management of thyroid carcinoma. *World journal of surgery* 2014 38 2002-2010.

46. Liu Y, Li C, Zhao W & Wang Y. Hashimoto's Thyroiditis is an Important Risk Factor of Papillary Thyroid Microcarcinoma in Younger Adults. *Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme* 2017 49 732-738.

47. Resende de Paiva C, Grønhøj C, Feldt-Rasmussen U & von Buchwald C. Association between Hashimoto's Thyroiditis and Thyroid Cancer in 64,628 Patients. *Frontiers in oncology* 2017 7 53.

48. Fiore E, Latrofa F & Vitti P. Iodine, thyroid autoimmunity and cancer. *European thyroid journal* 2015 4 26-35.

49. Caturegli P, Remigis AD, Chuang K, Dembele M, Iwama A & Iwama S. Hashimoto's Thyroiditis: Celebrating the Centennial Through the Lens of the Johns Hopkins Hospital Surgical Pathology Records. *Thyroid Official Journal of the American Thyroid Association* 2013 23 142.

50. Mukasa K, Noh JY, Kunii Y, Matsumoto M, Sato S, Yasuda S, Suzuki M, Ito K & Ito K. Prevalence of malignant tumors and adenomatous lesions detected by ultrasonographic
screening in patients with autoimmune thyroid diseases. *Thyroid* 2011 21 37-41.

51. Radowsky J, Howard R, Burch H & Stojadinovic A. Impact of degree of extrathyroidal extension of disease on papillary thyroid cancer outcome. *Thyroid: official journal of the American Thyroid Association* 2014 24 241-244.

52. Woo C, Sung C, Choi Y, Kim W, Kim T, Shong Y, Kim W, Hong S & Song D. Clinicopathological Significance of Minimal Extrathyroid Extension in Solitary Papillary Thyroid Carcinomas. *Annals of surgical oncology* 2015 S728-733.

53. Lv T, Zhu C & Di Z. Risk factors stratifying malignancy of nodules in contralateral thyroid lobe in patients with pre-operative ultrasound indicated unilateral papillary thyroid carcinoma: A retrospective analysis from single centre. *Clinical endocrinology* 2017.

Figure Legends

Figure 1. Flowchart of the study selection.

Figure 2. Forest plots of the pooled prevalence of carcinoma in contralateral nodules.

Figure 3. Forest plot for the meta-analysis of studies reporting on the association with the risk of contralateral carcinoma of (a)age, (b)sex, (c)size of primary lesion, (d) Ipsilateral central lymph node metastasis, (e)multifocality of contralateral lesion.

Figure 4. Forest plots of the association between HT and contralateral carcinoma.

Figure 5. Forest plots of the association between multifocality of primary lesion and contralateral carcinoma.

Figure 6. Forest plots of the association between capsular invasion and contralateral carcinoma.
Table 1. Characteristics of the included studies.

Table 2. Summary of data synthesis.

Table 3. GRADE summary of findings.

Supplemental Table 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

Supplemental Figure 1. Forest plots of the association between age and contralateral carcinoma.

Supplemental Figure 2. Forest plots of the association between sex and contralateral carcinoma.

Supplemental Figure 3. Forest plots of the association between size of primary lesion and contralateral carcinoma.

Supplemental Figure 4. Forest plots of the association between CLNM and contralateral carcinoma.

Supplemental Figure 5. Forest plots of the association between multifocality of contralateral lesion and contralateral carcinoma.

Supplemental Figure 6. Forest plot of the association between size of primary lesion and contralateral carcinoma (Excluding Meng 2012).
Records identified through database search (n=2541)
Records identified through other sources (n=0)
Records after duplicates removed (n=2160)
Records screened (n=2160)
Excluded after title/abstract review (n=2069)
Full-text articles assessed for eligibility (n=91)
Excluded studies: They were case reports, reviews, conference abstracts, and posters (n=3)
No sufficient data (n=37)
Irrelevant studies (n=8)
Overlapping data (n=4)
Other pathologic types (n=5)
Preoperatively bilateral cancers (n=26)
Studies included in meta-analyses (n=8)
Heterogeneity: $\tau^2 = 0.01$, $I^2 = 84.60\%$, $H^2 = 6.49$

Test of $\theta_i = \theta_j$: $Q(7) = 32.79$, $p = 0.00$

Test of $\theta = 0$: $z = 7.16$, $p = 0.00$

Random-effects REML model
Hashimoto thyroiditis+	Hashimoto thyroiditis-	Odds Ratio
Meng LW 2012 | 38 | 146 | 15 | 107 | 23.8% | 2.16 [1.12, 4.17] | 2012
Yang M 2013 | 16 | 57 | 3 | 33 | 5.1% | 3.90 [1.04, 14.61] | 2013
Young CL 2015 | 15 | 63 | 36 | 178 | 26.7% | 1.23 [0.62, 2.45] | 2015
Zeng GW 2016 | 26 | 82 | 74 | 265 | 44.4% | 1.20 [0.70, 2.05] | 2016
Total (95% CI) | 348 | 583 | 100.0% | 1.57 [1.13, 2.20]
Total events | 95 | 128

Heterogeneity: Chi² = 4.18, df = 3 (P = 0.24); I² = 28%
Test for overall effect: Z = 2.65 (P = 0.008)
Study or Subgroup	Multifocality	Single Focality	Odds Ratio	M-H. Random, 95% CI Year
Bon SK 2010	3	15	5.40 [0.83, 35.33]	2010
Meng LW 2012	26	27	4.39 [2.29, 8.39]	2012
Yang M 2013	10	9	4.96 [1.68, 14.64]	2013
Zeng GW 2016	38	62	3.37 [1.98, 5.74]	2016
Total (95% CI)	**166**	**598**	**3.93 [2.70, 5.73]**	
Total events	**77**	**113**		

Heterogeneity: Tau² = 0.00; Chi² = 0.72, df = 3 (P = 0.87); I² = 0%

Test for overall effect: Z = 7.13 (P < 0.00001)
Study or Subgroup	capsular invasion+	capsular invasion-	Odds Ratio	M-H, Fixed, 95% CI Year
Bon SK 2010	9	34	1.24	[0.43, 3.59] 2010
Meng LW 2012	5	21	1.20	[0.42, 3.43] 2012
Yang M 2013	8	19	3.97	[1.30, 12.09] 2013
Zeng GW 2016	38	108	1.55	[0.95, 2.53] 2016
Total (95% CI)	**182**	**582**	**1.61**	**[1.10, 2.36]**

Heterogeneity: Chi² = 3.07, df = 3 (P = 0.38); I² = 2%
Test for overall effect: Z = 2.45 (P = 0.01)
Study (Author, Year)	Study design	Country	Median age (Range)	No. of carcinoma/No. of case (%)	Surgical intervention	Surgical time span	Quality Assessment
Bom Seok Koo, 2010	Retrospective	Korea	48 (26-84)	18/74 (24.3%)	TT	2005-2009	8
Connor Matt, 2011	Retrospective	USA	43 (13-64)	1/13 (7.7%)	TT	1998-2008	8
Li Wei Meng, 2012	Retrospective	China	48 (19-80)	53/253 (20.9%)	TT/NTT	2007-2011	8
Ming Yang, 2013	Retrospective	China	56 (42-64)	19/90 (21.1%)	TT/NTT	2009-2012	7
Sung Yong Choi, 2013	Retrospective	Korea	51 (26-76)	16/106 (15.1%)	TT	2005-2009	8
Han Feng Wan, 2014	Retrospective	China	40.5 (16-67)	42/97 (43.3%)	TT/NTT	2011-2013	7
Young Chan Lee, 2015	Retrospective	Korea	53 (-)	51/241 (21.2%)	TT	2007-2013	9
Zeng Gui Wu, 2016	Retrospective	China	48 (-)	100/347 (28.9%)	TT/NTT	2011-2015	9

Copyright © 2019 the authors
TT: Total thyroidectomy. NTT: Nearly total thyroidectomy.
Clinical features	OR(95% CI)	P value	Heterogeneity	Pub bias		
			Q test	I² (%)	Harbord test	
Age	1.16(0.82-1.64)	0.40	0.46	0	0.154	
Sex	0.84(0.56-1.26)	0.40	0.63	0	0.516	
size of primary lesion	1.18(0.67-2.09)	0.57	0.04	59	0.541	
ipsilateral central lymph node metastasis	1.16(0.83-1.62)	0.37	0.58	0	0.490	
HT	1.57(1.13,2.20)	0.008	0.24	28	0.333	
multifocality of primary lesion	3.93(2.70-5.73)	<0.00001	0.87	0	0.025	
multifocality of contralateral lesion	1.32(0.56-3.10)	0.52	0.04	68	0.220	
capsular invasion	1.61(1.10-2.36)	0.01	0.38	2	0.115	
Outcomes	No of participants (studies) Follow up	Certainty of the evidence (GRADE)	Relative effect (95% CI)	Anticipated absolute effects		
--------------------------	--	-----------------------------------	--------------------------	-----------------------------		
Age	764 (4 observational studies)	LOW	OR 1.16 (0.82 to 1.54)	228 per 1,000		
				27 more per 1,000		
				(33 fewer to 99 more)		
Sex	967 (6 observational studies)	LOW	OR 0.84 (0.56 to 1.26)	262 per 1,000		
				32 fewer per 1,000		
				(66 fewer to 47 more)		
Size of primary lesion	621 (5 observational studies)	LOW	OR 1.18 (0.67 to 2.09)	195 per 1,000		
				27 more per 1,000		
				(55 fewer to 141 more)		
CLINN	850 (4 observational studies)	LOW	OR 1.16 (0.83 to 1.62)	237 per 1,000		
				38 more per 1,000		
				(32 fewer to 99 more)		
HT	931 (4 observational studies)	LOW	OR 1.57 (1.13 to 2.10)	200 per 1,000		
				87 more per 1,000		
				(22 more to 163 more)		
Multifocality of primary lesion	764 (4 observational studies)	VERY LOW 2	OR 3.93 (2.70 to 5.73)	188 per 1,000		
				208 more per 1,000		
				(157 more to 503 more)		
Multifocality of contralateral lesion	890 (3 observational studies)	VERY LOW 3	OR 1.32 (0.56 to 3.10)	204 per 1,000		
				48 more per 1,000		
				(79 fewer to 226 more)		
Capsular invasion	764 (4 observational studies)	LOW	OR 1.91 (1.10 to 3.36)	223 per 1,000		
				93 more per 1,000		
				(17 more to 101 more)		

The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; OR: Odds ratio.

GRADE Working Group grades of evidence:
- **High certainty**: We are very confident that the true effect lies close to that of the estimate of the effect.
- **Moderate certainty**: We are moderately confident in the effect estimate. The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
- **Low certainty**: Our confidence in the effect estimate is limited. The true effect may be substantially different from the estimate of the effect.
- **Very low certainty**: We have very little confidence in the effect estimate. The true effect is likely to be substantially different from the estimate of the effect.

Explanations:
- a. The Hartford test result for multifocality of primary lesion suggest that the presence of publication bias that may distort the meta-analysis.
- b. High IQ (86%) and non-overlapping CI suggest that important inconsistency which lowers our certainty in effect.
- c. Wide confidence intervals do not exclude important benefit or harm which lowers our certainty in effect.
PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	3
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	3
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	4
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	4,5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	4
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	4
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	4,5
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	5
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	N/A
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	5,6
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I²) for each meta-analysis.	5,6
PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	6
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	6

RESULTS

Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	7
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	7
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	9,27
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	7,8,27
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	27
Risk of bias across studies	22	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	9,27
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	9

DISCUSSION

Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	9-15
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	16,17
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	17

FUNDING

| Funding | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. | 18 |

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org
Study or Subgroup	<45years Events	Total	>45years Events	Total	Weight	Odds Ratio (95% CI)	Year
Bon SK 2010	5	20	13	54	8.9%	1.05 [0.32, 3.45]	2010
Meng LW 2012	22	79	31	174	23.5%	1.78 [0.95, 3.33]	2012
Sung YC 2013	3	16	13	74	6.3%	1.08 [0.27, 4.35]	2013
Zeng GW 2016	46	163	54	184	61.3%	0.95 [0.59, 1.51]	2016

Total (95% CI): 278/486 = 100.0% 1.16 [0.82, 1.64]

Total events: 76/111

Heterogeneity: Chi² = 2.56, df = 3 (P = 0.46); I² = 0%

Test for overall effect: Z = 0.85 (P = 0.40)
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Fixed. 95% CI	Year
Bon SK 2010	2	8	16	66	4.9%	1.04 [0.19, 5.68]	2010
Meng LW 2012	8	44	45	209	24.0%	0.81 [0.35, 1.86]	2012
Yang M 2013	2	26	17	64	17.0%	0.23 [0.05, 1.08]	2013
Sung YC 2013	4	25	12	81	8.9%	1.10 [0.32, 3.76]	2013
Wan HF 2014	11	24	31	73	15.6%	1.15 [0.45, 2.90]	2014
Zeng GW 2016	12	43	88	304	29.5%	0.95 [0.47, 1.93]	2016

Total (95% CI) 170 797 100.0% 0.84 [0.56, 1.26]

Total events 39 209

Heterogeneity: Chi² = 3.48, df = 5 (P = 0.63); I² = 0%

Test for overall effect: Z = 0.84 (P = 0.40)
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Random, 95% CI	Year
Koo 2010	10	38	8	36	16.0%	1.25 [0.43, 3.63]	2010
Meng 2012	28	156	25	97	25.5%	0.63 [0.34, 1.16]	2012
Yang 2013	12	53	7	37	16.4%	1.25 [0.44, 3.56]	2013
Choi 2013	11	63	5	27	14.4%	0.93 [0.29, 3.00]	2013
Wu 2016	76	221	24	126	27.7%	2.23 [1.32, 3.76]	2016
Total (95% CI)	531	323	100.0%		1.18 [0.67, 2.09]		
Total events	137	69					

Heterogeneity: \(\tau^2 = 0.24; \text{Chi}^2 = 9.74, df = 4 \) (\(P = 0.04 \)); \(I^2 = 59\% \)

Test for overall effect: \(Z = 0.57 \) (\(P = 0.57 \))
Study or Subgroup	CLNM+ Events	Total Events	CLNM− Events	Total Events	Weight	M-H, Fixed, 95% CI Year
Meng LW 2012	27	105	20	107	23.2%	1.51 [0.78, 2.90] 2012
Yang M 2013	9	47	10	43	13.3%	0.78 [0.28, 2.15] 2013
Young CL 2015	13	49	38	192	17.9%	1.46 [0.71, 3.03] 2015
Zeng GW 2016	28	98	72	249	45.7%	0.98 [0.59, 1.65] 2016

Total (95% CI) 299 591 100.0% 1.16 [0.83, 1.62]

Total events 77 140

Heterogeneity: Chi² = 1.98, df = 3 (P = 0.58); I² = 0%

Test for overall effect: Z = 0.89 (P = 0.37)
Study or Subgroup	Events Total	Odds Ratio M-H. Random 95% CI	Odds Ratio M-H. Random 95% CI
Meng LW 2012	45 215	0.99 [0.43, 2.31]	
Yang M 2013	15 76	0.61 [0.17, 2.23]	
Zeng GW 2016	66 174	2.50 [1.54, 4.05]	
Total (95% CI)	465 225	1.32 [0.56, 3.10]	

Total events: 126

Heterogeneity: Tau² = 0.38; Chi² = 6.32, df = 2 (P = 0.04); I² = 68%

Test for overall effect: Z = 0.64 (P = 0.52)
Study or Subgroup	Events	Total	Events	Total	Weight	Odds Ratio	95% CI Year
Bon SK 2010	10	38	8	36	15.8%	1.25 [0.43, 3.63]	2010
Meng LW 2012	28	156	25	97	0.0%	0.63 [0.34, 1.16]	2012
Yang M 2013	12	53	7	37	16.7%	1.25 [0.44, 3.56]	2013
Sung YC 2013	11	63	5	27	15.1%	0.93 [0.29, 3.00]	2013
Zeng GW 2016	76	221	24	126	52.4%	2.23 [1.32, 3.76]	2016

Total (95% CI) | 375 | 226 | 100.0% | 1.71 [1.15, 2.56] |

Total events | 109 | 44 |

Heterogeneity: $\chi^2 = 2.69$, df = 3 (P = 0.44); $I^2 = 0\%$

Test for overall effect: $Z = 2.64$ (P = 0.008)