Data Article

A collection of transcriptomic and proteomic datasets from sesame in response to salt stress

Yujuan Zhangb, Donghua Lia, Rong Zhoua, Aili Liua, Linhai Wanga, Yanxin Zhanga, Huihui Gongb, Xiurong Zhanga,\textast, Jun Youa,\textast

aKey Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan 430062, China
bCotton Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China

A R T I C L E I N F O

Article history:
Received 1 July 2020
Revised 23 July 2020
Accepted 24 July 2020
Available online 31 July 2020

Keywords:
Sesame
Salt stress
RNA sequencing
Proteomic
iTRAQ

A B S T R A C T

Soil salinity is a major abiotic factor affecting the growth and development of important crops such as sesame (Sesamum indicum L.). To understand the molecular mechanisms of this oilseed crop in response to salt stress, we examined the transcriptome and proteome profiles of two sesame varieties, with contrasting tolerances to salinity. Here, RNA sequencing and quantitative proteomic analyses of 30 samples from salt-tolerant and -sensitive sesame seedlings under salt stress were carried out. These data can be used for differential gene expression and protein accumulation analyses, based on a genetic aberration or phenotypic differences in sesame responses to salt stress. Our dataset provides an extensive resource for understanding the molecular mechanisms underlying the adaptation of sesame to salt stress, and may constitute useful a resource for increasing the tolerance of major crop plants to raised salinity levels in soils.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

* Corresponding authors.
E-mail addresses: zhangyanxin@caas.cn (Y. Zhang), zhangxr@oilcrops.cn (X. Zhang), junyou@caas.cn (J. You)

https://doi.org/10.1016/j.dib.2020.106096
2352-3409/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
Specifications Table
Subject
Specific subject area
Type of data
How data were acquired
Data format
Parameters for data collection
Description of data collection
Data source location
Data accessibility
The RNA-Seq and iTRAQ raw data were deposited in the Sequence Read Archive of NCBI, under accession number SRP186970 and the ProteomeXchange with identifier PXD013013. Direct URL to data: https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP186970; http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD013013

Value of the data

• These RNA-seq and iTRAQ data obtained from the selected 2 sesame varieties which represent the first complete set of transcriptome and proteomic data generated from sesame varieties with contrasting tolerances to salt.

• These datasets permit comparative transcriptomics and proteomics between salt-tolerant and salt-sensitive sesame varieties. Differential gene and protein expression profiles between varieties could help in understanding the salinity response and tolerance mechanisms of sesame, which helps plant breeders develop traditional breeding and biotechnological approaches to improve stress resistance in sesame.

• These datasets will be of value for future characterization of functional genes and proteins involved in salt stress responses in sesame.

• These datasets are also expected to provide valuable information for the study of molecular mechanisms underlying salt tolerance in other plants.

1. Data description

This dataset aims to provide the transcriptomic and proteomic profiling of 30 samples, from salt-tolerant and salt-sensitive sesame varieties. Fig. 1 provides an overview of our study design. In this work, 30 RNA libraries were sequenced using the Illumina HiSeq X ten platform and 150 bp paired-end reads were generated. Approximately 55 million RNA-seq reads were generated in each sample. After filtering, clean reads were mapped to the sesame genome v1.0, resulting in 26,620 genes. Using weighted gene co-expression network analysis (WGCNA), 11 co-expression gene modules involved in responses to salt stress were identified in sesame (Fig. 2A and B). At the same time, 30 protein samples, labeled with iTRAQ tags, were analytically separated using an AB SCIEX nanoLC-MS/MS system (Triple TOF 6600). In total, 405,606 spectra and 16,921 unique peptides were generated and 6771 protein species were identified after mapping the sesame protein database (assembly S_indicum_v1.0). Finally, the relationship between mRNA and protein expression levels of differentially expressed genes
(proteins), at different salt stress time points, were analyzed (Fig. 3). Stringent technical design at each experimental stage enabled the generation of high-quality RNA-seq and iTRAQ data sets which will be of value for future characterization of genes and proteins expressed in sesame during salt stress responses. These datasets are also expected to provide valuable information for the study of molecular mechanisms underlying salt tolerance in other plants.
Fig. 2. Topological overlap matrix plot of RNA-seq data (A) and plot of module-sample correlation (B).
Fig. 3. Correlation analysis between mRNA and protein expression levels for differentially expressed genes (proteins) at different salt stress time points.
2. Experimental design, materials and methods

2.1. Plant materials and sample selection

The seeds of two sesame varieties were sown and germinated in a box containing half-strength Hoagland solution. The whole cultivation process was accomplished in a growth chamber with a 16/8 h light/dark cycle at 28 °C [1]. 14 day old seedlings of salt-tolerant WZM3063 (ST) and salt-sensitive ZZM4028 (SS) varieties were used for this study. Plants were subjected to salt treatment (150 mM NaCl) at different time points. We collected shoot samples at 0 (control), 2, 6, 12, and 24 h after salt treatment, for RNA and protein extraction. These samples, containing three independent biological replicates, were immediately frozen in liquid nitrogen and stored at −80 °C until use.

2.2. RNA extraction, library preparation and sequencing

For each sample, an EASYspin Plus kit (Aidlab, Beijing, China) was used to extract RNA following manufacturer’s recommendations. The RNA concentration was measured using a Qubit® RNA Assay Kit and Qubit® 2.0 Fluorometer (Life Technologies, CA, USA) and the RNA integrity number (RIN) was assessed using the RNA Nano 6000 Assay Kit for the Bioanalyzer 2100 system (Agilent Technologies, CA, USA). RNA libraries were prepared using 3 μg RNA per sample, using a NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB, USA), following manufacturer’s instructions. Library preparations were sequenced on an Illumina HiSeq X ten platform at the Novogene Corporation (Beijing, China) and 150 bp paired-end reads were generated, using methods described previously [3].

2.3. RNA-seq data analysis

The raw data (Data Citation 1: NCBI Sequence Read Archive SRP186970) were filtered using Fastq clean v2.0, and clean reads were obtained by removing low quality reads and those containing adapter or ploy-N reads, according to parameters previously reported [4]. At the same time, the Q20, Q30 and GC contents of the clean data were calculated; all downstream analyses were based on these clean, high-quality data. An index of the sesame genome was built using Bowtie v2.2.3 and paired-end clean reads were aligned to the reference genome using TopHat v2.0.12. HTSeq v0.6.1 was used to count the read numbers mapped to each gene, and then the FPKM (fragments per kilobase of transcript per million fragments mapped) for each gene were calculated based on the length of the gene and read count. Correlation analysis of relationships among biological replicates was performed using the software R package (version 3.4.3). The relationship among gene clusters on normalized read counts was analyzed using a WGCNA package (version 1.68) in R [5]. Genes corresponding to the different co-expression modules are listed in Table S1. Differential expression analysis of the two groups was performed using the DESeq R package (version 1.18). Genes with an adjusted P value <0.05 were assigned as statistically significant differentially expressed.

2.4. Protein extraction, iTRAQ labeling and LC-MS/MS

Protein was extracted from each sample using methods described previously [6]. Protein concentrations were measured using a Bradford assay and protein quality was analyzed on SDS-PAGE. The supernatant from each sample, containing precisely 0.1 mg of protein, was reduced by DTT, underwent iodoacetamide alkylation and was digested with Trypsin Gold (Promega, Madison, WI) at 37 °C for 16 h. After digestion, peptides were applied to a C18 cartridge to
remove urea; desalted peptides were then dried by vacuum centrifugation. Desalted peptides were labeled with iTRAQ reagent (iTRAQ® Reagent-8PLEX Multiplex Kit, Sigma) following manufacturer’s instructions. Differently labeled peptides were mixed equally and then desalted in 100 mg SCX columns. The iTRAQ-labeled peptide mix was fractionated using a C18 column (waters BEHC18 4.6 \times 250 mm, 5 \mu m) on a Rigol L3000 HPLC operating at 1 ml/min and subsequently analyzed on an AB SCIEX nanoLC-MS/MS system (Triple TOF 6600) at Novogene Genetics, Beijing, China.

2.5. iTRAQ data analysis

The raw LC–MS/MS data (Data Citation 2: ProteomeXchange PXD013013) were analyzed using Proteome Discoverer 2.2 software (PD 2.2, Thermo). Search parameters included a mass tolerance of 10 ppm for the precursor ion scans and a mass tolerance of 0.02 Da for the product ion scans. Carbamidomethyl was specified in PD 2.2 as a fixed modification. The oxidation of methionine, acetylation of the N-terminus and iTRAQ 8-plex of tyrosine and lysine were specified in PD 2.2 as variable modifications. A maximum of two mis-cleavage sites were allowed. Protein identification and relative abundance quantitation was carried out based on the sesame genome annotation database (https://www.ncbi.nlm.nih.gov/genome/?term=sesamum) as previously reported [7]. For protein identification, proteins with at least one unique peptide were identified at a false discovery rate of < 1.0% at the peptide and protein levels. Proteins containing similar peptides that could not be distinguished based on MS/MS analysis, were grouped separately. Reporter quantification (iTRAQ 8-plex) was used for iTRAQ quantification as described previously [8].

Organism	Sample	Replicate	Analysis type	Accession	Accession in SRA
Sesamum indicum	ST_0h_1	Biological Replicate 1	RNA-Seqencing (paired)	salt-tolerant	SRX5437947
Sesamum indicum	ST_0h_2	Biological Replicate 2	RNA-Seqencing (paired)	salt-tolerant	SRX5437946
Sesamum indicum	ST_0h_3	Biological Replicate 3	RNA-Seqencing (paired)	salt-tolerant	SRX5437945
Sesamum indicum	ST_2h_1	Biological Replicate 4	RNA-Seqencing (paired)	salt-tolerant	SRX5437944
Sesamum indicum	ST_2h_2	Biological Replicate 5	RNA-Seqencing (paired)	salt-tolerant	SRX5437955
Sesamum indicum	ST_2h_3	Biological Replicate 6	RNA-Seqencing (paired)	salt-tolerant	SRX5437953
Sesamum indicum	ST_6h_1	Biological Replicate 7	RNA-Seqencing (paired)	salt-tolerant	SRX5437954
Sesamum indicum	ST_6h_2	Biological Replicate 8	RNA-Seqencing (paired)	salt-tolerant	SRX5437941
Sesamum indicum	ST_6h_3	Biological Replicate 9	RNA-Seqencing (paired)	salt-tolerant	SRX5437952
Sesamum indicum	ST_12h_1	Biological Replicate 10	RNA-Seqencing (paired)	salt-tolerant	SRX5437951
Sesamum indicum	ST_12h_2	Biological Replicate 11	RNA-Seqencing (paired)	salt-tolerant	SRX5437950
Sesamum indicum	ST_12h_3	Biological Replicate 12	RNA-Seqencing (paired)	salt-tolerant	SRX5437949
Sesamum indicum	ST_1h_1	Biological Replicate 13	RNA-Seqencing (paired)	salt-tolerant	SRX5437948
Sesamum indicum	ST_1h_2	Biological Replicate 14	RNA-Seqencing (paired)	salt-tolerant	SRX5437943
Sesamum indicum	SS_0h_1	Biological Replicate 15	RNA-Seqencing (paired)	salt-sensitive	SRX5471706
Sesamum indicum	SS_0h_2	Biological Replicate 16	RNA-Seqencing (paired)	salt-sensitive	SRX5471707
Sesamum indicum	SS_0h_3	Biological Replicate 17	RNA-Seqencing (paired)	salt-sensitive	SRX5471708
Sesamum indicum	SS_2h_1	Biological Replicate 18	RNA-Seqencing (paired)	salt-sensitive	SRX5471709
Sesamum indicum	SS_2h_2	Biological Replicate 19	RNA-Seqencing (paired)	salt-sensitive	SRX5471710
Sesamum indicum	SS_2h_3	Biological Replicate 20	RNA-Seqencing (paired)	salt-sensitive	SRX5471711
Sesamum indicum	SS_6h_1	Biological Replicate 21	RNA-Seqencing (paired)	salt-sensitive	SRX5471712
Sesamum indicum	SS_6h_2	Biological Replicate 22	RNA-Seqencing (paired)	salt-sensitive	SRX5471713
Sesamum indicum	SS_6h_3	Biological Replicate 23	RNA-Seqencing (paired)	salt-sensitive	SRX5471704
Sesamum indicum	SS_12h_1	Biological Replicate 24	RNA-Seqencing (paired)	salt-sensitive	SRX5471705
Sesamum indicum	SS_12h_2	Biological Replicate 25	RNA-Seqencing (paired)	salt-sensitive	SRX5471701
Sesamum indicum	SS_12h_3	Biological Replicate 26	RNA-Seqencing (paired)	salt-sensitive	SRX5471702
Sesamum indicum	SS_2h_1	Biological Replicate 27	RNA-Seqencing (paired)	salt-sensitive	SRX471699
Sesamum indicum	SS_2h_2	Biological Replicate 28	RNA-Seqencing (paired)	salt-sensitive	SRX5471700
Sesamum indicum	SS_2h_3	Biological Replicate 29	RNA-Seqencing (paired)	salt-sensitive	SRX5471703
Table 2.
iTRAQ raw data in ProteomeXchange (PXD013013).

Run groups	Samples	File name	File type	File size
ZMYP_1	ST_0h_1	20,170,821_ZMYP1.txt.zip	search	2.13M
	ST_0h_2			
	ST_0h_3			
	SS_0h_1			
	SS_0h_2			
	SS_0h_3			
	ZMYP_1–1.raw	raw		1.58G
	ZMYP_1–10.raw	raw		1.55G
	ZMYP_1–2.raw	raw		1.51G
	ZMYP_1–3.raw	raw		1.66G
	ZMYP_1–4.raw	raw		1.59G
	ZMYP_1–5.raw	raw		1.6G
	ZMYP_1–6.raw	raw		1.43G
	ZMYP_1–7.raw	raw		1.53G
	ZMYP_1–8.raw	raw		1.03G
	ZMYP_1–9.raw	raw		1.51G
ZMYP_2	ST_2h_1	20,170,815_ZMYP2.txt.zip	search	2.15M
	ST_2h_2			
	ST_2h_3			
	SS_2h_1			
	SS_2h_2			
	SS_2h_3			
	ZMYP_2–1.raw	raw		1.59G
	ZMYP_2–10.raw	raw		1.65G
	ZMYP_2–2.raw	raw		1.62G
	ZMYP_2–3.raw	raw		1.71G
	ZMYP_2–4.raw	raw		1.62G
	ZMYP_2–5.raw	raw		1.89G
	ZMYP_2–6.raw	raw		1.58G
	ZMYP_2–7.raw	raw		1.65G
	ZMYP_2–8.raw	raw		1.59G
	ZMYP_2–9.raw	raw		1.74G
ZMYP_3	ST_6h_1	20,170,821_ZMYP3.txt.zip	search	2.3M
	ST_6h_2			
	ST_6h_3			
	SS_6h_1			
	SS_6h_2			
	SS_6h_3			
	ZMYP_3–1.raw	raw		1.59G
	ZMYP_3–10.raw	raw		1.75G
	ZMYP_3–2.raw	raw		1.66G
	ZMYP_3–3.raw	raw		1.15G
	ZMYP_3–4.raw	raw		1.53G
	ZMYP_3–5.raw	raw		1.74G
	ZMYP_3–6.raw	raw		1.76G
	ZMYP_3–7.raw	raw		1.64G
	ZMYP_3–8.raw	raw		1.66G
	ZMYP_3–9.raw	raw		1.63G
ZMYP_4	ST_12h_1	20,170,821_ZMYP4.txt.zip	search	2.15M
	ST_12h_2			
	ST_12h_3			
	SS_12h_1			
	SS_12h_2			
	SS_12h_3			

(continued on next page)
Table 2. (continued)

Run groups	Samples	File name	File type	File size
	20,170,821_ZMYP_4–1.raw	raw	1.45G	
	20,170,821_ZMYP_4–10.raw	raw	1.58G	
	20,170,821_ZMYP_4–2.raw	raw	1.57G	
	20,170,821_ZMYP_4–3.raw	raw	1.5G	
	20,170,821_ZMYP_4–4.raw	raw	1.57G	
	20,170,821_ZMYP_4–5.raw	raw	1.48G	
	20,170,821_ZMYP_4–6.raw	raw	1.57G	
	20,170,821_ZMYP_4–7.raw	raw	1.53G	
	20,170,821_ZMYP_4–8.raw	raw	1.46G	
	20,170,821_ZMYP_4–9.raw	raw	1.46G	
	20,170,821_ZMYP_4–10.raw	raw	1.55G	
	20,170,821_ZMYP_4–10.raw	raw	1.55G	
	20,170,821_ZMYP_4–10.raw	raw	1.59G	
	20,170,821_ZMYP_4–10.raw	raw	1.56G	
	20,170,821_ZMYP_4–10.raw	raw	1.58G	
	20,170,821_ZMYP_4–10.raw	raw	1.54G	
	20,170,821_ZMYP_4–10.raw	raw	1.66G	
	20,170,821_ZMYP_4–10.raw	raw	1.55G	
	20,170,821_ZMYP_4–10.raw	raw	1.67G	
	20,170,821_ZMYP_4–10.raw	raw	1.63G	
	20,170,821_ZMYP_4–10.raw	raw	1.55G	
	20,170,821_ZMYP_4–10.raw	raw	1.67G	
	20,170,821_ZMYP_4–10.raw	raw	1.63G	
	20,170,821_ZMYP_4–10.raw	raw	1.55G	
	20,170,821_ZMYP_4–10.raw	raw	1.67G	
	20,170,821_ZMYP_4–10.raw	raw	1.63G	
	20,170,821_ZMYP_4–10.raw	raw	1.55G	
	20,170,821_ZMYP_4–10.raw	raw	1.67G	
	20,170,821_ZMYP_4–10.raw	raw	1.63G	
	20,170,821_ZMYP_4–10.raw	raw	1.55G	
	20,170,821_ZMYP_4–10.raw	raw	1.67G	
	20,170,821_ZMYP_4–10.raw	raw	1.63G	
	20,170,821_ZMYP_4–10.raw	raw	1.55G	
	20,170,821_ZMYP_4–10.raw	raw	1.67G	
	20,170,821_ZMYP_4–10.raw	raw	1.63G	
	20,170,821_ZMYP_4–10.raw	raw	1.55G	
	20,170,821_ZMYP_4–10.raw	raw	1.67G	
	20,170,821_ZMYP_4–10.raw	raw	1.63G	

Protein quantification results were statistically analyzed using the Mann-Whitney Test and significant ratios, defined as P value < 0.05 and fold-changes > 1.5 or < 0.67, were used to screen differentially expressed proteins (DEP) [2]. Correlation analysis of biological replicate samples was performed using the IBM SPSS Statistics package version 22 and a heatmap was generated using the Morpheus web server (https://software.broadinstitute.org/morpheus/). Finally, R software version 3.4.3 was used to analyze the relationship between mRNA and protein expression levels of selected genes or proteins.

3. Data records

The RNA-Seq and iTRAQ raw data were deposited in the Sequence Read Archive (SRA) of NCBI, under accession number SRP186970 (Data Citation 1) and the ProteomeXchange with identifier PXD013013 (Data Citation 2). Detailed descriptions of the raw data in the SRA and ProteomeXchange are provided in Tables 1 and 2, respectively. In addition, RPKM gene expression and protein relative quantification data of different samples are included in Tables S2 and S3, respectively.

4. Technical validation

4.1. Quality control of RNA and protein

RIN is positively correlated on uniquely mapped reads in RNA-Seq, and all RNA samples with Agilent Bioanalyzer RIN scores above 6.3 were used to construct RNA libraries. Protein quality
was analyzed by SDS-PAGE and all protein samples, used for this study, showed high quality (Fig. S1). Quality values for RNA and protein samples are listed in Tables 3 and 4, respectively.

4.2. Quality evaluation of RNA-seq and iTRAQ data

The quality of the RNA-seq data was assessed and all samples were deemed of high quality in this study (Table 3). For each sample, over 87.47% of the clean reads with a Q20 rate between 97.29 and 98.31% and Q30 rate between 93.39 and 95.66% were mapped to unique locations in the sesame genome (Table 3). Using correlation analysis of the biological replicates, correlations between the replicates was high ($R^2 > 0.91$, Table S4).

In this study, 30 protein samples, labeled with iTRAQ tags, were divided into five run groups (Table 4). To evaluate the quality of iTRAQ data, the length distribution of peptides, distribution of the precursor ion tolerance, distribution of the unique peptide number, distribution of protein sequence coverage and protein mass distribution for each run group were analyzed (Fig. 4). To evaluate the reliability of protein quantification data, the correlation coefficient of protein expression among 30 samples was measured and a high correlation between biological replicates was recorded ($R^2 > 0.88$, Fig. S2).

5. Data citations

1 2019. NCBI Sequence Read Archive. SRP186970
Table 4. Protein sample quality and iTRAQ data statistics.

Sample	Protein quality Concentration (µg/µl)	Total (µg)	iTRAQ tags	Run groups	Total spectra	Peptide Number of pro-	Number of pro-
ST_0h_1	0.61	109.8	113	ZMYP_1	387,760	20,782	
ST_0h_2	0.79	142.2	114				
ST_0h_3	1.05	189.0	115				
SS_0h_1	0.68	122.4	116				
SS_0h_2	1.79	322.2	117				
SS_0h_3	0.98	176.4	118				
ST_2h_1	0.95	171.0	113	ZMYP_2	405,606	20,307	
ST_2h_2	1.09	196.2	115				
ST_2h_3	0.80	144.0	116				
SS_2h_1	1.02	183.6	117				
SS_2h_2	2.19	394.2	118				
SS_2h_3	1.33	239.4	119				
ST_6h_1	1.65	297.0	113	ZMYP_3	394,654	21,506	5006
ST_6h_2	1.56	280.8	114				
ST_6h_3	1.09	196.2	116				
SS_6h_1	1.33	239.4	117				
SS_6h_2	0.76	136.8	118				
SS_6h_3	1.84	331.2	119				
ST_12h_1	1.28	230.4	113	ZMYP_4	369,499	20,203	4824
ST_12h_2	1.63	293.4	114				
ST_12h_3	1.67	300.6	115				
SS_12h_1	1.27	228.6	117				
SS_12h_2	1.08	194.4	118				
SS_12h_3	1.48	266.4	119				
ST_24h_1	1.52	273.6	113	ZMYP_5	397,839	21,281	4949
ST_24h_2	1.00	180.0	114				
ST_24h_3	2.15	387.0	115				
SS_24h_1	1.11	199.8	116				
SS_24h_2	2.48	446.4	117				
SS_24h_3	0.76	136.8	118				

2 2019. ProteomeXchange. PXD013013

Declaration of Competing Interest

Authors declare no conflict of interest.

Acknowledgments

This research was supported by the Opening Project of the Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, P. R. China (KF2019001), Agricultural scientific and technological innovation project of Shandong Academy of Agricultural Sciences (CXGC2018E06), the China Agriculture Research System (CARS-14), the Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2016-OCRI), and the Central Public-interest Scientific Institution Basal Research Fund (1610172018007). We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.
Fig. 4. Quality control metrics of iTRAQ data. (A) The length distribution of peptides. (B) Distribution of precursor ion tolerance. (C) Distribution of the unique peptide number. (D) Distribution of protein sequence coverage. (E) Protein mass distribution.
Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dib.2020.106096.

References

[1] Y. Zhang, D. Li, R. Zhou, X. Wang, K. Dossa, L. Wang, Y. Zhang, J. Yu, H. Gong, Xiurong Zhang, Y. Jun, Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress, BMC Plant Biol. 19 (2019) 66, doi:10.1186/s12870-019-1665-6.

[2] Y. Zhang, M. Wei Mengyu, A. Liu, R. Zhou, D. Li, K. Dossaomivi, L. Wang, Y. Zhang, H. Gong, X. Zhang, J. You Comparative proteomic analysis of two sesame genotypes with contrasting salinity tolerance in response to salt stress. J. Proteom. 201(2019) 73–83, doi:10.1016/j.jprot.2019.04.017.

[3] Y. Zhao, Z. Zhang, M. Li, J. Luo, F. Chen, Y. Gong, Y. Li, Wei Y, Y. Su, L. Kong, Transcriptomic profiles of 33 opium poppy samples in different tissues, growth phases, and cultivars, Sci. Data 6 (2019) 66, doi:10.1038/s41597-019-0082-x.

[4] Z. Zhao, F. Meng, W. Wang, Z. Wang, C. Zhang, T. Jiang, Comprehensive RNA-seq transcriptomic profiling in the malignant progression of gliomas, Sci. Data 4 (2017) 170024, doi:10.1038/sdata.2017.24.

[5] B. Zhang, S. Horvath, A general framework for weighted gene co-expression network analysis, Stat. Appl. Genet. Mol. 4 (2005) Article17, doi:10.2202/1544-6115.1128.

[6] J.R. Wisniewski, A. Zougman, N. Nagaraj, M. Mann, Universal sample preparation method for proteome analysis. Nat. Methods 6(2009) 359–362, doi:10.1038/nmeth.1322.

[7] W. Li, F. Zhao, W. Fang, D. Xie, J. Hou, X. Yang, Y. Zhao, Z. Tang, L. Nie, S. Lv, Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique, Front. Plant Sci. 6 (2015) 732, doi:10.3389/fpls.2015.00732.

[8] X. Guo, J. Xu, X. Cui, H. Chen, H. Qi, iTRAQ-based protein profiling and fruit quality changes at different development stages of oriental melon. BMC Plant Biol. 17(2017), 28, doi:10.1186/s12870-017-0977-7.