The NORAD IncRNA assembles a topoisomerase complex critical for genome stability

Mathias Munschauer1,6, Celina T. Nguyen1, Klara Sirokman1, Christina R. Hartigan1, Larson Hogstrom1, Jesse M. Engreitz1, Jacob C. Ulirsch1,2,3, Charles P. Fulco1, Vidya Subramanian1, Jenny Chen1,4, Monica Schenone1, Mitchell Guttman5, Steven A. Carr1 & Eric S. Lander1,6,7*

The human genome contains thousands of long non-coding RNAs (lncRNAs), but specific biological functions and biochemical mechanisms have been discovered for only about a dozen2–7. A specific long non-coding RNA—non-coding RNA activated by DNA damage (NORAD)—has recently been shown to be required for maintaining genomic stability8, but its molecular mechanism is unknown. Here we combine RNA antisense purification and quantitative mass spectrometry to identify proteins that directly interact with NORAD in living cells. We show that NORAD interacts with proteins involved in DNA replication and repair in steady-state cells and localizes to the nucleus upon stimulation with replication stress or DNA damage. In particular, NORAD interacts with RBMX, a component of the DNA-damage response, and contains the strongest RBMX-binding site in the transcriptome. We demonstrate that NORAD controls the ability of RBMX to assemble a ribonucleoprotein complex—which we term NORAD-activated ribonucleoprotein complex 1 (NAR1)—that contains the known suppressors of genomic instability topoisomerase I (TOP1), ALYREF and the PRPF19–CDC5L complex. Cells depleted for NORAD or RBMX display an increased frequency of chromosome segregation defects, reduced replication-fork velocity and altered cell-cycle progression—which represent phenotypes that are mechanistically linked to TOP1 and PRPF19–CDC5L function. Expression of NORAD in trans can rescue defects caused by NORAD depletion, but rescue is significantly impaired when the RBMX-binding site in NORAD is deleted. Our results demonstrate that the interaction between NORAD and RBMX is important for NORAD function, and that NORAD is required for the assembly of the previously unknown topoisomerase complex NAR1, which contributes to maintaining genomic stability. In addition, we uncover a previously unknown function for long non-coding RNAs in modulating the ability of an RNA-binding protein to assemble a higher-order ribonucleoprotein complex.

NORAD stands out among long non-coding RNAs (lncRNAs) because it (1) is highly conserved relative to other lncRNAs, (2) is abundantly expressed in many cell types, (3) is upregulated upon DNA damage and (4) induces chromosomal instability and aneuploidy when deleted. This phenotype is intriguing as it is known about the roles of lncRNAs in maintaining a stable genome. A model for lncRNA function suggests that lncRNAs can serve as assembly scaffolds for ribonucleoprotein complexes6,7, yet this model has been explored in only a few cases. The mechanism that connects the NORAD lncRNA to chromosomal instability remains unknown.

Two recent studies have reported PUMILIO, a highly abundant cytoplasmic RNA-binding protein with no known role in genomic stability, as the sole NORAD-interacting protein11,12. However, these results were obtained from in vitro mixing of exogenous NORAD fragments with cytoplasmic extracts, which may not accurately represent the protein contacts of NORAD in living cells (Supplementary Note 1).

To reveal the direct interactions of NORAD with proteins in live cells, we captured and identified NORAD-interacting proteins by combining RNA antisense purification (RAP) with quantitative liquid chromatography–mass spectrometry using isobaric mass tag quantification (RAP MS) (Fig. 1a). HCT116 colon carcinoma cells were treated with 365-nm light after 4-thiouridine labelling13, which covalently crosslinks proteins to RNA but not to other proteins. IncRNA-protein complexes were purified by RNA hybrid selection with antisense oligonucleotides that target NORAD, under denaturing and reducing conditions at high temperature to minimize the copurification of indirectly bound proteins14 (Fig. 1a). To identify specific interactors with NORAD, we quantitatively compared the resulting proteins to those captured in purifications with antisense oligonucleotides that target the well-characterized’RNA component of mitochondrial RNA processing endoribonuclease' (RMRP), which is not expected to interact with the same proteins as NORAD. We analysed biological replicate purifications in a single 4-plex iTRAQ quantification, quantifying 1,361 proteins that each had more than two unique peptides (Fig. 1b).

The control purification captured about 85% of RMRP transcripts (Extended Data Fig. 1) and enriched the target RNA approximately 550-fold versus input RNA. We found 12 strongly enriched proteins (mean log₂(iTRAQ ratio (NORAD/RMRP)) < −1.6, P < 0.05, moderated t-test) (Fig. 1c), including 8 of the 10 known core components of the RMRP complex15 and one previously identified candidate RNA- and/or RNA-processing factor12.

We then analysed NORAD antisense purifications. Experiments captured 82% of endogenous NORAD (Extended Data Fig. 1) (about 80-fold enrichment versus input RNA). We reproducibly identified 45 proteins that met our enrichment criteria (mean log₂(iTRAQ ratio (NORAD/RMRP)) > 1.6, P < 0.05, moderated t-test) (Fig. 1b). This set of proteins is highly specific to NORAD, in that 41 out of the 45 proteins (Fig. 1c) were not among 219 promiscuous binders (Supplementary Note 3). The RNA-binding protein PUMILIO2 (PUM2) was indeed present in our NORAD interactome, but it ranked 185th out of the 265 proteins we detected (mean log₂(iTRAQ ratio (NORAD/ RMRP)) > 0.5) and did not meet our cut-off for strongly enriched proteins.

Notably, many of the 41 NORAD-interacting proteins have key roles in nuclear processes such as DNA unwinding, replication and repair (including PURA, PURB, TAF15, ALYREF, SFQ, SRPS1, RBM14, DDX17, RBMX and its retrogene RBMXX1). Twenty-nine (71%) of the forty-one proteins localize to the nucleus, nucleoplasm or chromatin, whereas only two (5%) localize exclusively to the cytoplasm (Fig. 1d). The interactome thus points towards an important nuclear function of NORAD.

1 Broad Institute of MIT and Harvard, Cambridge, MA, USA. 2 Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA. 3 Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, USA. 4 Division of Health Sciences and Technology, MIT, Cambridge, MA, USA. 5 Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. 6 Department of Biology, MIT, Cambridge, MA, USA. 7 Department of Systems Biology, Harvard Medical School, Boston, MA, USA. *e-mail: mathias@broadinstitute.org; eric@broadinstitute.org

© 2018 Springer Nature Limited. All rights reserved.
Given the overrepresentation of nuclear proteins, we used single-molecule RNA fluorescent in situ hybridization (smRNA FISH) to assess the subcellular localization of NORAD in intact cells. In contrast to previous reports that characterized NORAD as being located exclusively in the cytoplasm, we found that on average 40–50% of NORAD proteins in HCT116 cells reside in the nucleus (Fig. 2a and Extended Data Fig. 2a, b). We confirmed the nuclear localization by subcellular fractionation and quantitative PCR with reverse transcription (RT–qPCR) (Extended Data Fig. 2c, d). Notably, when cells were challenged with DNA damage and replication stress, NORAD was upregulated (Extended Data Fig. 2e) and its nuclear localization increased markedly (to about 85%), whereas the localization patterns of control RNAs were unaffected (Fig. 2a, b). Given this shift in localization, we performed RAP experiments with and without DNA damage to confirm that the interactions of NORAD with several candidate binders also occur under conditions of DNA damage (Extended Data Fig. 2f, g).

Among the NORAD-interacting proteins, we focused on RBMX, the knockdown phenotype of which (impaired DNA damage repair and premature sister-chromatid separation) is closely related to the previously reported NORAD knockout phenotype. To explore this connection, we quantified the frequency of chromosome-segregation defects in response to depletion of NORAD or RBMX by imaging mitotic cells. We achieved >90% reduction in NORAD expression (estimated by RT–qPCR, RNA-sequencing and smRNA FISH) by CRISPR interference (KRAB–dCas9) targeted to the NORAD promoter (Fig. 2a and Extended Data Fig. 3a, b). For both wild-type and knockdown cells, we imaged 100 anaphase nuclei and calculated the frequency of DAPI-positive anaphase bridges. Consistent with previous reports, NORAD depletion caused a significant increase (2.2-fold) in segregation defects (Fig. 2c, d). Importantly, these defects were rescued by expression of full-length NORAD in trans (Fig. 2d), indicating that the defects are dependent on the NORAD RNA. Depletion of RBMX (Extended Data Fig. 3a) caused a comparable increase (2.6-fold) in the frequency of anaphase bridges (Fig. 2d). By contrast, depletion of the cytoplasmic protein PUM2 (Extended Data Fig. 3a) caused no substantial increase in segregation defects (Extended Data Fig. 3c). We reasoned that the interaction between NORAD and RBMX may hold important mechanistic insights into NORAD function.

To explore this interaction, we mapped RBMX-binding sites on NORAD by crosslinking and immunoprecipitation (CLIP). We covalently coupled proteins to RNA using ultraviolet crosslinking and immunopurified RBMX with a specific antibody. We isolated and sequenced RNA crosslinked to RBMX. RBMX displays unusually strong and specific binding to the 5′ end of NORAD (Fig. 2e). The RBMX-binding site in NORAD extends over more than 800 nucleotides and covers about 15% of NORAD—making it eight times larger than the majority of RBMX-binding sites (Extended Data Fig. 3d) and the strongest RBMX-binding region in the transcriptome (Fig. 2f). This unusual binding pattern suggests that NORAD serves as a high-affinity binding target for RBMX and contains many RBMX-binding sites. A multiple sequence alignment of NORAD transcripts, which was assembled de novo from RNA-sequencing data from 11 mammalian species (Extended Data Fig. 3e), suggests that the RBMX-binding region in NORAD is transcribed and conserved throughout mammalian evolution. Next, we performed CLIP for three additional RNA-binding proteins and showed that the RBMX-binding region does not bind PUMI10, PUBP1 or FUBP3 (Extended Data Fig. 3f).

To confirm that the NORAD–RBMX interaction occurs in the nucleus, we performed RBMX RNA immunoprecipitation (RIP) in nuclear and cytoplasmic extracts and showed that over 99% of the total RBMX RIP signal is indeed nuclear (Extended Data Fig. 3g). Consistent with this result, immunofluorescence microscopy suggests that RBMX localizes exclusively to the nucleus (Extended Data Fig. 3h). Finally, depletion of RBMX did not affect subcellular localization of NORAD (Extended Data Fig. 3i).

We speculated that NORAD might use its large RBMX-binding site to assemble a ribonucleoprotein complex. To examine the role of NORAD in such a complex, we sought to identify proteins that bind RBMX and determine whether their interaction with RBMX was dependent on NORAD. We performed co-immunoprecipitation and mass spectrometry (co-IP MS) experiments and compared the quantitative enrichment of RBMX-interacting proteins in cells with and without NORAD knockdown (Fig. 3a). Importantly, we used a nonspecific RNA and DNA nuclease (benzonase) to ensure that RBMX-binding is direct, rather than being mediated by RNA.

Among the top 11 proteins that bound to RBMX only in the presence of NORAD, 7 are linked to DNA replication or repair (Fig. 3b).

Six of these proteins (TOP1, TOP1MT, PRPF19, CDC5L, BCAS2 and MPEC) were not detected in NORAD RAP MS data or were not among the top 200 enriched proteins, which suggests that they bind directly to RBMX and do not interact strongly with NORAD (Extended Data Fig. 4a). We further confirmed by western blot the absence of TOP1 in NORAD antisense purifications (Extended Data Fig. 4b) and showed that levels of TOP1, RBMX, PRPF19 and CDC5L proteins...
were not changed upon NORAD depletion (Extended Data Fig. 4c). PRPF19, CDC5L, and BCAS2, together with PLRG1, make up the core of the human PRPF19–CDC5L complex, and both PRPF19–CDC5L and TOP1 have important roles in DNA replication and genomic stability, as previously reviewed. TOP1 suppresses genome instability by preventing interference between replication and transcription. This involves relieving torsional stress in DNA (that is, supercoiling) and preventing interference between replication and transcription. This stability, as previously reviewed, TOP1 suppresses genome instability by preventing interference between replication and transcription. This involves relieving torsional stress in DNA (that is, supercoiling) and preventing interference between replication and transcription.

The precise roles of the remaining two NORAD-dependent RBMX interactors in maintaining genomic stability are less well understood. MEPECE binds to the 5′ cap of 7SK and was reported in several studies that aimed to identify proteins involved in the DNA damage response; however, its exact function in this process remains unknown. Unlike the six proteins above that were not found by RAP to interact strongly with NORAD, a seventh protein—ALYREF—was identified as a strong NORAD binder. ALYREF is part of the human TREX complex and interacts with the 5′ end of many RNAs, including NORAD (Extended Data Fig. 4d), to facilitate RNA export from the nucleus. ALYREF contributes to genomic stability by suppressing R-loops, as does TOP1.

We performed reciprocal co-IP and western blots to confirm that TOP1, ALYREF and CDC5L interact with RBMX and also contact each other (Extended Data Fig. 4e), suggesting that these proteins may constitute a complex. To test whether such a complex exists, we generated cell lines that express epitope-tagged RBMX and performed co-IP experiments (using benzonase to digest unprotected RNA and DNA) followed by native elution and size-exclusion chromatography. Western blot analysis of size-fractionated co-IP samples showed that RBMX,
TOP1 and PRPF19 are part of a 700–1,000-kDa complex (Fig. 3c and Extended Data Fig. 4f). The majority of TOP1 in this complex displays an approximately 50-kDa size shift, consistent with a known SUMO-1 modification of TOP1 proteins that are associated with transcriptionally active or replicating chromatin. Mass spectrometry confirmed that—in addition to RBMX, TOP1 and PRPF19—RBMXL1, which is encoded by an RBMX retrogene, is a component of this complex (Fig. 3c). Finally, we speculated that this complex protects NORAD from benzonase digestion. We constructed sequencing libraries using RNA extracted from various size-exclusion chromatography fractions. Notably, RNA footprints that matched the previously identified RBMX-binding site in NORAD were present only in fractions that contained the complex (Fig. 3c). These data demonstrate that NORAD is a physical part of the captured complex.

We next used proximity ligation assays to show that the RBMX–TOP1 interaction occurs in the nucleus, is disrupted by NORAD depletion and is rescued by re-introducing full-length NORAD into NORAD-depleted cells (Fig. 3d and Extended Data Fig. 4g). Importantly, rescue is strongly impaired if the rescue construct lacks the RBMX-binding region (Fig. 3d and Extended Data Fig. 4g).

Our results indicate that NORAD modulates the ability of RBMX to interact with other proteins that appear not to bind NORAD directly—namely, TOP1 and the core PRPF19–CDC5L complex. Given the distinct molecular composition of this NORAD-dependent RBMX complex and the functional importance of its components, we name it NORAD-activated ribonucleoprotein complex 1 (NARC1).

Many NARC1 components have prominent roles in maintaining genomic stability. Although individual components such as RBMX or PRPF19 have been reported to contribute to mRNA splicing, we did not observe global changes in mRNA splicing upon NORAD depletion in HCT116 cells (Extended Data Fig. 5a). In other cell types, RBMX and CDC5L can influence the expression of BRCA2 and BRCA1. However, BRCA1 and BRCA2 were not among differentially expressed genes (Supplementary Table 7) and their proteins levels were not noticeably different in NORAD-depleted and normal HCT116 cells (Extended Data Fig. 4c).

Given the essential role of NORAD in assembling NARC1, we speculated that NORAD depletion may cause a TOP1-related phenotype and directly or indirectly alter DNA replication, which can lead to chromosome segregation defects and genomic instability. To assess the functional consequence of NORAD depletion on replication, we used the DNA combing technique and measured replication-fork velocity at the single-molecule level. Analysis of over 250 replication forks in wild-type and knockdown cells confirmed that NORAD and RBMX depletion significantly reduced replication-fork velocity (Fig. 4a); the observed effect size was comparable to previously published TOP1 knockdown data. Thus, NORAD may directly or indirectly affect DNA replication even in the absence of additional DNA damage stimuli.

We tested whether NORAD depletion also affects cell-cycle progression. We labelled newly synthesized DNA with 5-ethyl-2′-deoxyuridine (EdU) and measured EdU incorporation and total DNA content by fluorescence-activated cell sorting. We observed a clear decrease in S phase accompanied by increased G1 phase in NORAD-, RBMX- and TOP1-depleted cells (Fig. 4b, c and Extended Data Fig. 5b–f). Consistent with these findings, impaired replication-fork progression has been linked to chromosome mis-segregation to the role of NORAD and RBMX knockdown cells, which in turn can trigger a cell-cycle arrest in the subsequent G1 phase. Importantly, a G1 arrest alone cannot explain the reduction in replication-fork velocity observed above. We next examined whether the NORAD–RBMX interaction is important for this effect on cell-cycle progression. Expression of full-length NORAD in trans was sufficient to rescue cell-cycle defects in NORAD-knockdown cells (Fig. 4b and Extended Data Fig. 5b, e). By contrast, a NORAD construct that lacks the RBMX-binding site decreased S phase and increased G2/M phase; this contrasts with NORAD knockdown and may point towards an altered molecular function of truncated NORAD (Fig. 4b and Extended Data Fig. 5b, e). Deletion of the RBMX-binding site may therefore act as a dominant negative alteration, which indicates that the RBMX-binding region is required for correct NORAD function.

Our results link the known function of members of the NARC1 complex (particularly TOP1) in preventing replication stress and genome instability to the role of NORAD in suppressing aneuploidy. Importantly, we demonstrate that the RBMX-binding region in NORAD contributes to NORAD function, presumably by promoting NARC1 assembly.

It has widely been suggested that lncRNAs participate in assembling groups of proteins, but lncRNA–protein complexes have been fully characterized for only a few lncRNAs; these include XIST2, TERC1, NEAT14, MALAT15 and HOTAIR6. Our results demonstrate that NORAD is essential for the assembly of the ribonucleoprotein complex NARC1, which physically links proteins known to be involved in DNA replication or repair but not known to act together. We suggest a model in which deletion of NORAD or deletion of its RBMX-binding site disrupts NARC1, which alters replication-fork velocity and impairs...
cell-cycle progression. It is tempting to speculate that altered DNA replication causes cells to accumulate the observed chromosome segregation defects, a known cause of genomic instability and aneuploidy [28,29] (Fig. 4d). While our data demonstrates a central role of NARC1 in the NORAD phenotype, other proteins or complexes may contribute to additional aspects of NORAD function.

The precise mechanism or mechanisms by which NORAD promotes NARC1 assembly remain to be elucidated but might include (1) inducing a conformational change in RBMX, (2) recruiting a large number of RBMX molecules to its 5′ end to create a protein interaction scaffold or (3) using other direct interactions to bring NARC1 members into close proximity. RBMX encodes a large low-complexity domain that can self-assemble and undergo phase separation in vitro [30]. Binding of RBMX to NORAD may nucleate the formation of higher-order RBMX assemblies that facilitate binding of other proteins that contain a low-complexity domain.

In addition to these structural features, NORAD has unusual functional features in that NORAD localization to the nucleus can be triggered by DNA damage, which may allow cells to rapidly assemble NARC1 or to re-localize pre-assembled complexes without the need for additional protein synthesis.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, statements of data availability and associated accession codes are available at https://doi.org/10.1038/s41586-018-0453-z.

Received: 10 January 2018; Accepted: 17 July 2018; Published online 27 August 2018.

1. Gutmann, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).
2. McHugh, C. A. et al. The Xist IncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).
3. Zappulla, D. C. & Cech, T. R. Yeast telomerase RNA: a flexible scaffold for protein subunits. Proc. Natl Acad. Sci. USA 101, 10024–10029 (2004).
4. Clemson, C. M. et al. An architectural role for a nuclear noncoding RNA: NEAT1 is essential for the structure of parasepplidemes. Mol. Cell 33, 717–726 (2009).
5. Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39, 925–938 (2010).
6. Tsai, M.-C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).
7. Kopp, F. & Mendell, J. T. Functional classification and experimental dissection of long noncoding RNAs. Cell 172, 393–407 (2018).
8. Lee, S. et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUM11O proteins. Cell 164, 69–80 (2016).
9. Trichon, A. et al. A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells. Nat. Commun. 7, 12209 (2016).
10. Baltz, A. G. et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46, 674–690 (2012).
11. Esaikova, O. & Krasilnikov, A. S. Of proteins and RNA: the RNase P/MRP family. Nature 510, 1096–1101 (2015).
12. Adamson, B., Smogorzewska, A., Sigillott, F. D., King, R. W. & Elledge, S. J. A conserved domain in transposition, replication and genomic stability. Nat. Rev. Mol. Cell Biol. 17, 703–721 (2016).
13. Matsunaga, S. et al. RBMX: a regulator for maintenance and centromeric function. J. Cell Biol. 54, 1315–1324 (2009).
14. Gan, W. et al. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev. 25, 2041–2056 (2011).
15. Zhang, N., Kaur, R., Akhter, S. & Legerski, R. J. Cdc5L interacts with ATR and is required for the S-phase cell-cycle checkpoint. EMBO Rep. 10, 1029–1035 (2009).
16. Maréchal, A. et al. RPR19 transforms into a sensor of RPA-associated DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. Mol. Cell 53, 235–246 (2014).
17. Jaramillo, C. et al. Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol. Cell 27, 262–274 (2007).
18. Boeijing, S. et al. Multiomic analysis of the UV-induced DNA damage response. Cell Rep. 15, 1997–1610 (2016).
19. Domeniguez-Sánchez, M. S., Berrozo, S., Gómez-González, B., Luna, R. & Aguilera, A. Genome instability and transcription elongation impairment in human cells depleted of THO/TREX. PLoS Genet. 7, e1002386 (2011).
20. Li, M., Pokharel, S., Wang, J.-G., Xu, X. & Liu, Y. REDC5-dependent SUMOylation of DNA topoisomerase I prevents transcription-associated genome instability. Nat. Commun. 6, 6720 (2015).
21. Abbas, M., Shanmugam, I., Basai, M., Hromas, R. & Shaheen, M. The role of the human prosorin 4 (P/PS4) protein complex in replication stress and homologous recombination. J. Biol. Chem. 289, 14009–14019 (2014).
22. Miao, Z.-H. et al. Nonclassic functions of human topoisomerase I: genome-wide and pharmacologic analyses. Cancer Res. 67, 8752–8761 (2007).
23. Durrell, R. A. et al. Replication stress links structural and numerical chromosome abnormalities. Science 332, 1895–1898 (2011).
24. Liu, N. et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45, 6051–6063 (2017).

Acknowledgements We thank C. A. McHugh for help setting up RAP MS; K. A. Knouse for help imaging mitotic cells; C. W. Garvie for help with size-exclusion chromatography; L. Ludwig for help with cell-cycle data visualization; L. Gaffney for artwork; T. Wang, B. Cleary, S. R. Grossman for discussions. M.M. is supported by a Deutsche Forschungsgemeinschaft (DFG) Research Fellowship. J.M.E. is supported by the Harvard Society of Fellows. M.G. is supported by an NIH Director’s Early Independence Award (DP5OD012190), the NIH 4DN program Nucleome Project (U01 DA040612 and U01 HL130007), the New York Stem Cell Foundation, the Edward Mallinckrodt Foundation, Sontag Foundation, Searle Scholars Program, Pew-Steword Scholars program and funds from the California Institute of Technology. M.G. is a NYSCF-Robertson Investigator. Work in the Lander Laboratory is supported by the Broad Institute.

Reviewer information Nature thanks R. Bonasio, S. Diederichs and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author contributions M.M. and E.S.L. conceived and designed the study. M.M. performed and analysed all experiments; C.T.N. and K.S. assisted with several experiments, including CLIP. V.S. helped with RAP MS experiments. M.M. developed computational tools and analysed CLIP data. J.M.E. and C.P.F. helped with RNA FISH experiments. M.M. performed and analysed all experiments; C.T.N. and K.S. assisted with size-exclusion chromatography; L. Ludwig for help with cell-cycle data visualization; L. Gaffney for artwork; T. Wang, B. Cleary, S. R. Grossman, M. Yassour, C. M. Vockley, B. Cimini, K. W. Karhohs, M. Doan, S. A. Myers, D. R. Mani and V. G. Sankaran for discussions. M.M. is supported by a Deutsche Forschungsgemeinschaft (DFG) Research Fellowship. J.M.E. is supported by the Harvard Society of Fellows. M.G. is supported by an NIH Director’s Early Independence Award (DP5OD012190), the NIH 4DN program Nucleome Project (U01 DA040612 and U01 HL130007), the New York Stem Cell Foundation, the Edward Mallinckrodt Foundation, Sontag Foundation, Searle Scholars Program, Pew-Steword Scholars program and funds from the California Institute of Technology. M.G. is a NYSCF-Robertson Investigator. Work in the Lander Laboratory is supported by the Broad Institute.

Competing interests The Broad Institute holds patents and has filed patent applications on technologies related to other aspects of CRISPR.

Additional information Extended data is available for this paper at https://doi.org/10.1038/s41586-018-0453-z.
Supplementary information is available for this paper at https://doi.org/10.1038/s41586-018-0453-z.
Reprints and permissions information is available at http://www.nature.com/reprints.
Correspondence and requests for materials should be addressed to M.M. or E.S.L.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
METHODS

No statistical methods were used to predetermine sample size. The experiments were not randomized and investigators were not blinded to allocation during experiments and outcome assessment.

Tissue culture. We maintained HCT116 cells (ATCC) in McCoy's 5A (Thermo Fisher Scientific) with 10% heat-inactivated FBS (HIFBS, Thermo Fisher Scientific), 1 mM sodium pyruvate, 2 mM L-glutamine, and 100 units/mL streptomycin and 100 μg/mL penicillin. Cells were grown at 37 °C and 5% CO2 atmosphere.

Lentivirus production. We plated 700,000 HEK293T cells in 6-well tissue culture plates and grew them for 24 h before transfecting with 1 μg pDVPR, 300 ng VSVG, and 1.12 μg transfection plasmid using FuGene HD (Promega). Sixteen hours after transfection we changed the medium to DMEM with 20% HIFBS. At 48 h post-transfection, we collected viral supernatants and filtered them through a 0.45 μm syringe filter before use.

Generation of CRISPR interference cell lines. We generated inducible CRISPR interference (CRISPRi) cell lines by transducing HCT116 cells with a construct expressing rtTA linked by IRES to a neomycin resistance cassette expressed from an EF1α promoter (Clontech) and selecting with 200 μg/mL G418 (Thermo Fisher Scientific). Next, rtTA-expressing HCT116 cells were transduced with a previously described KRAB–dCas9 construct linked by IRES to BFP31. We selected for cells expressing BFP by fluorescence-activated cell sorting. Inducible NORAD, RBMX and PUM2 knockdown cell lines were generated by transducing stable CRISPRi cell lines with sgRNAs (expressed from a previously described sgOpti backbone32) and selecting with 1 μg/mL puromycin.

RAP MS. To capture endogenous NORAD, RBMX and PUM2 transcripts, we first pre-heated to 55 °C. We used 50 μg RNA per sample at room temperature. Next, the samples were diluted with 120 μl of 250 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% NP40, 0.1% sodium deoxycholate, and Halt Protease and Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific). Lysates were incubated on ice for 30 min and mixed by pipetting every 5–10 min to enhance nuclear lysis. Lysates were cleared by centrifugation at 14,000g for 10 min at 4 °C and insoluble material was removed. We pre-cleared lysates by incubating with 50 μl protein A magnetic beads (Thermo Fisher Scientific) for 30 min at 4 °C. Meanwhile, 900 ng RBMX antibody (Cell Signaling #14794) was pre-coupled to 50 μl protein A beads for 45 min at room temperature. We determined the total protein concentration in pre-cleared lysates by BCA assay in triplicates and normalized all samples to contain exactly 2.5 μg total protein. To non-specifically digest all DNA and RNA, we added 50 U benzonase and 1 mM MgCl2 to all lysates. Free RBMX antibody was removed from magnetic beads and benzona-treated lysates were added to beads and incubated overnight at 4 °C. The next day, supernatant was removed and beads were washed twice in 50 mM Tris–HCl pH 7.5, 150 mM NaCl and 0.05% NP40, followed by two washes in 50 mM Tris–HCl pH 7.5 and 150 mM NaCl. After the last wash, beads were overlaid with 10 μl PBS and immediately subjected to sample preparation for mass spectrometry and TMT labelling.

On-bead protein digestion for co-IP MS. Following immunoprecipitation and washing of beads, harvested pellets were resuspended in 90 μl of 50 mM Tris–HCl pH 7.8, 2 μM DTT, 0.005% B055 (sequencing-grade trypsin) and incubated for 1 h with agitation at 700 rpm. The supernatant was removed and placed in a fresh tube. Beads were washed twice with 60 μl of 2 μM in 150 mM Tris–HCl pH 7.8, and washes were combined with the supernatant. This procedure was repeated twice to ensure complete removal of proteins from the beads. Supernatants were combined and proteins were reduced (3.5 μl of 500 mM DTT, 30 min, room temperature) and alkylated (9 μl of IAA, 45 min, room temperature, dark), before digestion with 2 μg of trypsin overnight at room temperature with agitation. Samples were acidified (1% formic acid) and desalted on Waters 10 mg Oasis HLB cartridges.

TMT labelling of peptides and BRP Fractionation for co-IP MS. Desalted peptides were labelled with TMT6 reagent according to the manufacturer’s instructions (Thermo Fisher Scientific). Peptides were dissolved in 25 μl of HEPES pH 8.5 and 0.2 μg of TMT labelling reagent was added to each sample in 10 μl of ACN. Samples were incubated with labelling reagent for 1 h with agitation. The next reaction was quenched with 2 μl of 5% hydroxyamine. Differentially labelled peptides were subsequently mixed and prepared for BRP fractionation on 50 mg SepPak columns according to the following protocol: cartridges were prepared for desalting by equilibrating with methanol, 50% ACN, 1% formic acid and 3 washes with 0.1% TFA. Samples were loaded on the cartridge and washed 3 times with 1% formic acid. A pH switch was performed with 5 mM ammonium formate at pH 10, collected and run as fraction 1. Subsequent fractions were collected at the following ACN concentrations: 10% ACN in 5 mM ammonium formate; 15% ACN in 5 mM ammonium formate; 20% ACN in 5 mM ammonium formate; 30% ACN in 5 mM ammonium formate; 40% ACN in 5 mM ammonium formate; 50% ACN in 5 mM ammonium formate.

LC–MS/MS Analysis (RAP MS and co-IP MS). Reconstituted peptides were injected onto a capillary column (Picolifrit with 10-μm tip opening, 75-μm diameter, New Objective) packed-in-house with 20 cm C18 silica material (1.9 μm ReproSil-Pur C18-AQ medium, Dr Maisch GmbH), and separated on an online nanoflow EASY-nLC 1000 UPLC system (Thermo Fisher Scientific). Columns were heated to 50 °C in column heater sleeves (Phoenix-ST) to reduce back-pressure during the gradient.

RAP MS experiments. Peptides were separated at a flow rate of 200 nl/min with a linear 120-min gradient from 100% solvent A (3% ACN, 0.1% formic acid) to 8% solvent A (99% ACN, 0.1% formic acid) for 82 min, followed by a 3-min linear increase from 35 to 90% B with a 5-min hold at 60% B before increasing to 90% B for 3 min and holding for 20 min, and equilibrating back at 50% B for 10 min to end the gradient.

Co-IP MS experiments. Peptides in each BRP fraction were separated at a flow rate of 200 nl/min over a linear gradient of 100% A to 20% B for 28 min, with a linear increase from 20% B to 60% B for 16 min, and a hold at 90% B for 5 min before returning to 50% B.

Peptides were analysed on an Orbitrap Q Exactive Plus mass spectrometers (Thermo Fisher Scientific) operated in data-dependent mode. Higher-energy collision dissociation tandem mass spectrometry (HCD MS/MS) scans (resolution = 17,500 for iTRAQ and TMT methods) were taken after each MS1 scan (resolution = 70,000) on the top 12 most abundant ions using an AGC target of

© 2018 Springer Nature Limited. All rights reserved.
3 × 10^6 ions for MS1 and 5 × 10^8 ions for MS2. The isolation widths for MS/MS ions were 1.6 for iTRAQ and TMT methods. The maximum ion fill-time for MS/MS scans was 120 ms, the HCD-normalized collision energy was 29; dynamic exclusion time was set to 20 s, and peptide match and isoipeptide exclusion functions were enabled.

Quantification and identification of peptides and proteins (RAP MS and co-IP MS). All mass spectra were processed using the Spectrum Mill software package v.6.01 release (Agilent Technologies), which includes modules developed for iTRAQ and TMT6-based quantitation. Precursor ion quantification was done using extracted ion chromatograms for each precursor ion. The peak area for the extracted ion chromatogram of each precursor ion subjected to MS/MS was calculated in the intervening high-resolution MS1 scans of the LC–MS/MS runs using narrow windows around each individual member of the isotope cluster. Peak widths in both time and mz domains were dynamically determined on the basis of mass spectrometry scan resolution, precursor charge and mz, subject to quality metrics on the relative distribution of the peaks in the isotope cluster versus theoretical. Similar MS/MS spectra acquired on the same precursor mz in the same dissociation mode with ± 60 m/z were merged. MS/MS spectra with precursor charge >7 and poor quality MS/MS spectra, which failed the quality filter by having a sequence tag length less than 1, were excluded from searching.

For peptide identification, MS/MS spectra were searched against the human Uniprot database to which a set of common laboratory contaminant proteins was appended. Search parameters included: ESI-QEXACTIVE-HCD scoring parameters, trypsin or Lys-c/trypsin enzyme specificity with a minimum of 2 missed cleavages, 40% minimum matched peak intensity, ± 20 ppm product mass tolerance, and carbamidomethylation of cysteins and isotopic labelling of lysines and N-termini as fixed modifications in the RAP MS (iTRAQ) and the immunoprecipitation mass spectrometry (TMT6) experiments with no fixed modification on lysines or N-termini for the size-exclusion chromatography experiment. Oxidation of methionine, N-terminal acetylation and deamidated (N) were allowed as variable modifications, with a precursor MH + shift range from ~18 to 64 Da. Identities interpreted for individual spectra were automatically designated as valid by optimizing score and delta rank1−rank2 score thresholds separately for each precursor charge state in each LC–MS/MS run, while allowing a maximum target-decoy-based false-discovery rate (FDR) of 1.0% at the spectrum level.

In calculating scores at the protein level and reporting the identified proteins, redundancy is addressed in the following manner: the protein score is the sum of the scores of distinct peptides. A distinct peptide is the single highest scoring instance of a peptide detected through an MS/MS spectrum. MS/MS spectra for a particular peptide may have been recorded multiple times (that is, from different precursor charge states, isolated from adjacent BRP fractions or modified by oxidation of Met), but are still counted as a single distinct peptide. When a peptidic sequence is of sufficient length to be assigned to a specific protein isoform or family member. Finally, gel pieces were dehydrated with ACN, which was collected with the rest of the elution. Fractions were then dried using a SpeedVac concentrator, reconstituted in 3% ACN and 0.1% formic acid, and desalted on C18 Stage Tips. Eluate from each fraction was transferred to HPLC vials, dried down and reconstituted in 5 μl of 3% ACN, 5% formic acid and run on an EasyLC 1200 coupled to an Orbitrap Q Exactive Plus mass spectrometer. The previously described method for co-IP MS experiments (see ‘Co-IP MS experiments’ above) was used for analysis, with the only difference being a normalized collision energy of 25, which is routinely used for label-free peptide analysis.

To extract RNA from size-exclusion chromatography fractions containing the protein complex as well as control fractions we Trizol-extracted the remaining 250 μl of sample, and isolated RNA using Direct-zol columns (Zymo Research). We removed RNA with the NEBNext RNA Depletion Kit (New England Biolabs) by following the manufacturer’s instructions. Finally, we constructed RNA-sequencing libraries using the SMARTer smRNA-Seq Kit (Clontech) by following the manufacturer’s instructions. Libraries were sequenced on an Illumina HiSeq 2500 instrument to an average read depth of 15–20 million reads with 30-bp read 1 and 60-bp read 2. We trimmed 5 bp from the beginning of read 1 and 15 bp from the end of read 2. Reads were mapped using the references from downstream analysis. Reads were then merged to lg19 using Bowtie2. Mapping results were restricted to the single best alignment found for any given read. Discordant alignments of paired-end reads were excluded from analysis. Data normalization was performed by scaling coverage values by (1,000,000/total mapped read count).

CLIP. The CLIP protocol below is extensively based on three previously published CLIP methods: irCLIP, PAR-CLIP and cCLIP.

We constructed the pre-adenylated irCLIP adaptor as previously described. All other oligonucleotides were synthesized as described in the irCLIP protocol, with the exception of reverse transcription primers. We replaced the thymine with uracil in all oligonucleotides and the 5′ end of reverse transcription primers to reflect the nucleotide preference of CigLigase II (general structure: 5’phos/RNNNNN-6nt-barcode-NNNN).

Native RBMX co-IP and size-exclusion chromatography. To capture native RBMX complexes, we generated stable HCT116 cell lines that express Flag–RBMX–V5. For co-IP and size-exclusion chromatography experiments, we grew 200 μl of cells. Cells were collected by scraping culture dishes, washed once with PBS and pelleted by centrifugation at 900 × g for 5 min. Fresh cell pellets were lysed in 8 mL co-IP lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% NP40, 0.1% sodium dodecyl sulfate, and Halt Protease and Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific)). Lysates were incubated on ice for 30 min and mixed by pipetting every 5–10 min to enhance nuclear lysis. Lysates were cleared by centrifugation at 14,000g for 10 min at 4°C and insoluble material was removed. We pre-cleared lysates by incubating with 2.5 μl protein G magnetic beads (Thermo Fisher Scientific). Meanwhile, 60 μl of Flag-M2 antibody was pre-coupled to 2.5 μl protein G beads for 45 min at room temperature. To non-specifically digest DNA and RNA, we added 500 μl benzonase to the cell lysate. Free Flag M2 antibody was removed from magnetic beads and benzonase-treated lysates were added to beads and incubated overnight at 4°C. The next day, supernatant was removed and beads were washed twice in 50 mM Tris–HCl pH 7.5, 150 mM NaCl and 0.05% NP40, followed by two washes in 50 mM Tris–HCl pH 7.5 and 150 mM NaCl. After the last wash, protein complexes were eluted using 250 μg Flag-epitope in 500 μl of 150 mM NaCl, 25 mM Tris pH 7.5, 0.05% IGEPAL. Eluates were incubated 1 h at 4°C with agitation. Eluates were separated from beads and filtered using a 0.2-μm membrane filter. Size-exclusion chromatography of the RBMX complex was performed using a Superose 6 Increase 10/300 column (GE Healthcare) equilibrated in 150 mM NaCl, 25 mM Tris pH 7.5, 0.05% IGEPAL. We injected 400 μl of the eluate onto the column at a flow rate of 0.4 ml/min and collected 0.5-ml fractions. Two hundred and fifty microliters of each fraction was subjected to trichloroacetic acid–precipitation to concentrate proteins. Protein content was analysed by western blotting and mass spectrometry.

For mass spectrometry analysis, proteins were reduced, alkylated and denatured at 90°C for 5 min, spun down and loaded separated by SDS–PAGE. The gel was run in 1× MES SDS–PAGE running buffer at 175 V for 40 min, after which it was stained for 2 h in SimplyBlue Safe Stain (Thermo Fisher Scientific) and destained in water overnight. The gel lane was cut into 4 fractions, dried and destained with 50% ACN, 50% 100 mM ammonium bicarbonate. Destaining buffer was removed and gel pieces were dehydrated with 300 μl of ACN. ACN was aspirated once the gel pieces were white. One- and a-half micrometers of trypsin was added to each of the 4 fractions in 100 μl of 100 mM ammonium bicarbonate (pH 8) and incubated overnight at 37°C. The supernatant from each fraction was collected into a fresh tube, and the peptides were extracted from the gel pieces by washing twice with 60% ACN, 0.1% formic acid and collecting the extract in the tube with the initial supernatant. Finally, gel pieces were dehydrated with ACN, which was collected with the rest of the extract. Fractions were then dried using a SpeedVac concentrator, reconstituted in 3% ACN and 0.1% formic acid, and desalted on C18 Stage Tips. Eluate from each fraction was transferred to HPLC vials, dried down and reconstituted in 5 μl of 3% ACN, 5% formic acid and run on an EasyLC 1200 coupled to an Orbitrap Q Exactive Plus mass spectrometer. The previously described method for co-IP MS experiments (see ‘Co-IP MS experiments’ above) was used for analysis, with the only difference being a normalized collision energy of 25, which is routinely used for label-free peptide analysis.
15.00g for 15 min. Insoluble material was removed and total protein concentration was determined by BCA assay. Cell lysates were flash-frozen and stored in batches of 10 mg total protein at −80 °C.

For each immunoprecipitation experiment, lysates (10 mg total protein) were thawed on ice and pre-cleared by incubating with antibody A/G magnetic beads (using 30 μl/mg total protein) for 30 min at 4 °C. In the meantime, antibodies (6 μg/mg total protein) were coupled to A/G magnetic beads (using 30 μl/mg total protein) at room temperature for 45 min (antibodies used: RBM1, Cell Signaling #14794; ALYREF, Bethyl # A302-892A; PUM1, Bethyl # A302-577A; V5, Abcam # ab27671). We removed unconbound antibody and added the pre-cleared lysates to antibody-coupled beads and incubated overnight at 4 °C. The following day, we washed the beads 3 times in IP wash buffer (50 mM HEPES pH 7.5, 300 mM KCl, 0.5% (v/v) NP40, 0.25 mM DTT, complete EDTA-protease inhibitor cocktail), followed by one wash in FastAP buffer (10 mM Tris-HCl pH 8.0, 5 mM MgCl₂, 100 mM KCl, 0.02% Triton X-100). Immunopurified protein–RNA complexes were dephosphorylated by resuspending beads in 25 μl FastAP mix (18.5 μl 0.25% Triton X-100, 10 μl FastAP buffer (Thermo Fisher Scientific), 2.5 μl FastAP enzyme (1 U/μl Thermo Fisher Scientific), 0.5 μl Murine RNase Inhibitor (New England Biolabs)) and incubating for 20 min at 37 °C. In the meantime, we prepared polyadenylate kinase mix (56μl H₂O, 10μl × PNG buffer (New England Biolabs), 1 μl Murine RNase Inhibitor, 7 μl T4 PNK (10 U/μl New England Biolabs), 1 μl TURBO DNase) and added 75μl to each 25 μl sample and incubated 20 min at 37 °C. Beads were separated on a magnet and dephosphorylation reaction was removed before washing beads once in RNA ligation buffer without DTT (50 mM Tris-HCl pH 7.5, 10 mM MgCl₂). Next, 3rd ligation was performed by resuspending beads in 20 μl ligation mix (3 μl 0.1 M DTT, 20 μl FastAP buffer (New England Biolabs), 1 μl DMSO, 1 μl RNase inhibitor, 15 μmole pre-adenylated 3rd adaptor, 10 μl 50% PEG 8000, 2 μl T4 RNA Ligase 1 High Concentration (New England Biolabs)) using low-retention pipette tips and incubated overnight at 16 °C with agitation. The next day we added 7 μl × PNGAGE LDS Sample Buffer (Thermo Fisher Scientific) to ligation reactions and incubated samples for 10 min at 75°C. Protein–RNA complexes were resolved by SDS–PAGE using NuPAGE 4–12% Bis-Tris-HCl Gels (Thermo Fisher Scientific) at 200 V for 1 h, followed by transfer to a nitrocellulose membrane using the iBlot Dry Blotting System (Thermo Fisher Scientific). Protein–RNA complexes were visualized using the Odyssey Clx infrared imager (LI-COR) and desired complexes were excised from membrane using a clean scalpel. Membrane pieces were immediately subjected to proteinase K treatment by adding 250 μl proteinase K solution (4 mg/ml Proteinase K (New England Biolabs), 100 mM Tris-HCl pH 7.5, 150 mM NaCl, 12.5 mM EDTA, 1% (w/v) SDS) and incubating 1 h at 55°C. Following proteinase K treatment, RNA was phenol-chloroform extracted using Heavy Phase Lock Gel tubes (5Prime) and purified with the Zymo RNA Clean & Concentrator-5 kit by following the manufacturer’s instructions for small and large RNAs. We eluted RNA in 7 μl 2× T4 PNK buffer and subjected to a second PCR amplification (providing output of each replicate). Normalized coverage in the intersection peaks was first calculated separately for each replicate as the average depth at a given peak divided by the total number of reads after correcting for the observed duplication rate. The mean of the relative fold change between the two replicates was calculated for each peak and peaks that did not show a twofold or greater change in both replicates were excluded. We report a CLIP signal score for a given peak as the product of enrichment (average fold change) and the peak length (see Supplementary Table 3).

To compile significant results across replicate experiments, we intersected the intervals from the peak calling output of each replicate. Normalized coverage in the intersection peaks was first calculated separately for each replicate as the average depth at a given peak divided by the total number of reads after correcting for the observed duplication rate. The mean of the relative fold change between the two replicates was calculated for each peak and peaks that did not show a twofold or greater change in both replicates were excluded. We report a CLIP signal score for a given peak as the product of enrichment (average fold change) and the peak length (see Supplementary Table 3).

RNA-seq analysis. We performed RNA-seq on cells that stably expressed CRITICAL. We prepared polyadenylate kinase mix (56μl H₂O, 10μl × PNG buffer (New England Biolabs), 1 μl Murine RNase Inhibitor, 7 μl T4 PNK (10 U/μl New England Biolabs), 1 μl TURBO DNase) and added 75μl to each 25 μl sample and incubated for 20 min at 37 °C. RNA was purified with the Zymo RNA Clean & Concentrator-5 kit by following the manufacturer’s instructions for small and large RNAs. RNA was eluted in 5 μl H₂O and combined with 25 μl ligation mix (1 μl × T4 T4 RNA ligation buffer (New England Biolabs), 1.5 μl DMSO, 1 μl RNase inhibitor, 15 μmole pre-adenylated 3rd adaptor, 15 μl 50% PEG 8000, 3 μl T4 RNA Ligase 1 High Concentration (New England Biolabs)) using low-retention pipette tips and incubated for 2 h at 23°C with agitation. Ligation reactions were purified to remove free 3rd adaptor using two consecutive Silane bead purifications. For each reaction, we washed 15 μl Silane beads (Thermo Fisher Scientific) twice in 1 ml RT ligase buffer (Qiagen), resuspended beads in 90 μl RT ligase and combined 90 μl beads in RT ligase with 30 μl ligation reaction. We added 0.7 volumes 100% ethanol and incubated mixtures 10 min at room temperature. Supernatant was removed and air-dried beads in 9 μl H₂O. We used 7 μl of the eluted RNA for reverse transcription and proceeded with the library preparation as described in the above section.

Comprehensive analysis of CLIP data. We sequenced CLIP and corresponding SM input libraries on an Illumina HiSeq 2500 to an average read depth of 30–50 million reads with 2-bp read 1 and 35-bp read 2. The first read includes a 6-nucleotide barcode added during reverse transcription (see ‘CLIP’ above). After processing to separate samples based on inline barcodes, sequencing reads collected from all CLIP experiments were first mapped to hig19 using TopHat (v 2.0.8)36. Reads aligning to rRNA were removed from downstream analysis, as previously described 36. Duplicate reads were identified and removed using Picard's MarkDuplicates program. Peak calling was performed with the MACS241 algorithm to identify genomic coordinates where experimental conditions (protein IP) were significantly enriched for reads relative to size-matched controls (SM input). Peak calling was performed without a shifting model and the band width to compute fragment size was set to 100 bp. Significant peaks are reported with FDR correction of q = 0.05. Significant peaks were further filtered to include only regions with a average minimum depth of two reads in the size-matched control condition. To compile significant results across replicate experiments, we intersected the intervals from the peak calling output of each replicate. Normalized coverage in the intersection peaks was first calculated separately for each replicate as the average depth at a given peak divided by the total number of reads after correcting for the observed duplication rate. The mean of the relative fold change between the two replicates was calculated for each peak and peaks that did not show a twofold or greater change in both replicates were excluded. We report a CLIP signal score for a given peak as the product of enrichment (average fold change) and the peak length (see Supplementary Table 3).

RNA-sequencing and analysis. We performed RNA-seq on cells that stably expressed CRITICAL. We performed RNA-seq on cells that stably expressed CRITICAL without doxycycline-induced KRAB–dCas9 expression. We performed at least 2 biological replicate experiments for knockdown and control conditions after 24 h, 48 h and 96 h of KRAB–dCas9 induction. RNA-seq sequencing libraries were constructed.
smRNA FISH. smRNA FISH experiments were performed using the ViewRNA Cell Plus Assay Kit (Thermo Fisher Scientific) and following the manufacturer’s instructions. We grew 50,000 cells in black 12-well glass-bottom plates (Cellvis) for 24 h. To induce DNA damage, we supplemented culture medium with 10 μM doxorubicin (1 μM) or camptothecin (200 nM) for 12 h. We washed cells once with PBS before fixation. Cells were then fixed and permeabilized simultaneously in fixation/permeabilization buffer for 30 min at room temperature on a rotating plate. After three brief washes in PBS, incubated cells with the appropriate probe set diluted 1:100 in probe set diluent for 2 h at 4°C, then with preamplifier mix at 40°C for 70 min, followed by amplifier mix at 40°C for 70 min, and finally label probe mix at 40°C for 60 min. For nuclei staining, we incubated the cells for 2 h at room temperature with 1x ViewRNA Cell Plus DAPI in PBS. Cells were then washed three times in PBS and then incubated with Alexa Fluor 647 phallolin (Cell Signaling Technology) diluted 1:20 in PBS for 15 min at room temperature for staining of actin filaments. After a final set of washes, we covered cells with ProLong Gold Anti-Fade Reagent (Cell Signaling Technology) and stored the plates at 4°C until imaging. The probe sets and corresponding fluorophores were type 1 – NORAD and MALAT1 (Alexa Fluor 546) and type 4 – GAPDH (Alexa Fluor 488). Confocal microscopy was performed using a Nikon Eclipse Ti2 with Andor Yokogawa Spinning Disk Revolution WD system.

Quantification of RNA FISH images. For three-dimensional FISH image analysis, Z-stacks were exported such that the top and bottom slices were the beginning and end of DAPI signal in the z direction. Quantification of FISH foci was done with FISH-quant® in MATLAB (version R2017b) following the software’s instructions for mature mRNA quantification. Before spot detection, a dual Gaussian filter was applied to the images in the imageJ using the default settings. The outline of nuclei and cells were determined automatically with the Cell Segmentation Tool in FISH-quant and a modified version of a Cell Profiler pipeline provided in the FISH-quant repository. In Cell Profiler (v.2.2.0) 35, nuclear boundaries were determined by the Otsu method guided by DAPI staining. Identified nuclei were then used as seeds to identify the boundaries of the cells within the watershed method aided with the phalloidin stain. For all probes, the local maximum strategy of spot pre-detection was used. Settings for thresholding pre-detected spots were optimized for each probe separately to account for differences in signal intensity.

In situ proximity ligation assay. In situ proximity ligation assay (PLA) was performed using the Duolink PLA platform (Sigmaj) and following the manufacturer’s instructions. Cells were plated in black, glass-bottom 96-well plates the day before the experiment and allowed to grow overnight at 37°C. Cells were fixed with 4% paraformaldehyde in PBS for 15 min at room temperature, washed three times in PBS and then permeabilized with 0.5% Triton X-100 in PBS for 15 min at room temperature. Cells were blocked for 1 h at 37°C in a humidified chamber using the Duolink blocking solution, and subsequently stained with primary antibodies diluted 1:250 in Duolink antibody diluent for 1 h at room temperature. Duolink antibodies of different colors were incubated in the dark at 37°C for 1 h. The ligation and subsequent amplification steps were performed for 30 min and 100 min, respectively, at 37°C. Upon completion of the assay, cells were overlaid with Duolink mounting medium with DAPI. Two sets of primary antibody pairs were used: rabbit anti-RBMX (Cell Signaling Technologies #14794) was paired with mouse anti-TOP1 (Thermo Fisher Scientific #435900); mouse anti-Flag (Cell Signaling Technologies #81465) (targeting Flag–RBMX) was paired with rabbit anti-Top1 (Bethyl #A302-590A).

Quantification of PLA images. For PLA signal quantification we used Cell Profiler 3.0.0. Separate maximum intensity projections for each channel were exported. Nuclei and PLA-signal segmentation was performed using the minimal cross entropy thresholding method. We applied default settings for nuclei segmentation, whereas the PLA signal detection required more stringent thresholding to distinguish individual spots within clusters. A size filter was applied to exclude overlapping nuclei from the analysis. The total nuclear PLA spot count was normalized to the total nuclear area for each cell.

Immunostaining of cultured cells for anaphase nuclei imaging. We induced knockdown in CRISPRi cells with stably integrated sgRNAs by supplementing cell culture medium with 0.5 μg/ml doxycycline for 48 h. Cells were then trypsinized and plated in multi-well glass-bottom plates (Cellvis), again supplementing culture medium with doxycycline in knockdown cells, and grown for an additional 24 h. We removed culture medium, rinsed each well in PBS and fixed cells in 4% paraformaldehyde (PFA) for 10 min at room temperature. All subsequent manipulation steps were carried out in a humidified chamber. PFA was removed, cells were washed twice in PBS and permeabilized by incubating with PBS + 0.1% Triton X-100 for 10 min at room temperature. Following permeabilization, we blocked cells in PBS containing 4% BSA (Roche), 10% goat serum (Sigma Aldrich) and 0.1% Triton X-100 for 10 min at room temperature. For primary antibody staining, anti-α-tubulin–FITC antibody, anti-S phase kinase-associated protein 2 (ASK2) (Cell Signaling Technology #2859S) and anti-centromere antibodies, Antibodies Incorporated (Alexa Fluor 546) (1:200) were diluted in blocking buffer (PBS containing 4% BSA (Roche), 10% goat serum (Sigma Aldrich) and 0.1% Triton X-100) and used at 1:500 dilution. Following washes, cells were incubated with Alexa Fluor 488 (Roche) for 1 h at room temperature. Cells were washed twice in PBS and stained with DAPI (Roche) for 5 min at room temperature. Slides were mounted using ProLong Gold Anti-Fade Reagent (Life Technologies) and imaged on an Olympus IX83 microscope with a 40x/1.3 objective. Nuclei were imaged using a single channel with DAPI filter set, whereas tubulin was imaged using a single channel with FITC filter set. For quantification, images were analyzed with ImageJ by an independent expert. Three fields of view were used for each condition and at least 100 nuclei per condition were analyzed. We used a validated thresholding procedure with default settings to separate nuclei and chromosome territories in all images and apply a nuclear segmentation mask. The number of nuclei and chromosome territories was recorded for each condition and the median value was used for statistical analysis.
Knockdown and wild-type cells were labelled with a final concentration of 100 μg/ml DNA combing. Cycle analysis and RT–qPCR were performed as described in the above sections following the manufacturer's instructions. Medium was changed the day after antibiotic-free medium. We transfected 50 nM short interfering RNAs (siRNAs) 50,000 HCT116 cells 24 h before transfection into 24-well tissue culture plates using Cocktail (Thermo Fisher Scientific). S′-truncated NORAD was generated by deleting bases 33–898 from NORAD in pDONR211 using site-directed mutagenesis (Q5 Site-Directed Mutagenesis Kit, New England Biolabs). Sequence-verified S′-truncated NORAD pDONR221 was cloned into the described destination vector using LR recombination.

Sequence-verified rescue constructs were transfected into CRISPRi cells with stably integrated NORAD sgRNAs using FuGene HD (Promega) by following the manufacturer's instructions. We selected cells that stably integrated NORAD rescue constructs by selecting with hygromycin B (Sigma Aldrich) at a final concentration of 25 μg/ml. Knockdown of endogenous NORAD was achieved by inducing KRAB–dCas9 expression in CRISPRi cell lines stably expressing sgRNAs targeting the endogenous NORAD promoter using doxycycline at 0.5 μg/ml RT–qPCR Primers specific to the S′ end of NORAD (forward primer: CTCTGCGTGGCTGCCC, reverse primer: GGGTGGGAAAGGAGGTTTG) or a middle segment of NORAD (forward primer: CTCTCCACACAACCTGATG, reverse primer: GGAAGTGAGATAACATCGCTTAA) were used to verify expression of full-length or S′-truncated NORAD in cells depleted of endogenous NORAD.

Cell-cycle analysis. Cell-cycle analysis was carried out by measuring EdU incorporation and total DNA content. CRISPRi cells with stably integrated NORAD or BRMX sgRNAs and stably integrated rescue cassettes expressing different NORAD constructs (full-length NORAD, S′-truncated NORAD or empty rescue cassette) were maintained in medium containing hygromycin B (Sigma Aldrich) at a final concentration of 12.5 μg/ml. Induction of KRAB–dCas9 and constitutive expression of rescue cassettes was routinely monitored by fluorescence-activated cell sorting. Medium supplemented with 0.5 μg/ml doxycycline was added to knockdown samples for 48 h. We then trypsinized cells and plated them in 24-well cell culture plates using 100,000 cells per well and incubated them for another 24 h in the presence of doxycycline labelled by combining EdU by supplying cell culture medium with 10μM EdU for 1 h. Cells were washed with PBS, trypsinized and transferred to a 96-well round-bottom plate for improved handling of many samples in parallel. We used the Click-IT Plus EdU Flow Cytometry Assay Kit (Thermo Fisher Scientific) and followed the manufacturer's instructions with the following modifications. For improved multiplexing, we reduced the number of cells per assay by a factor of 10 (×106 cells/ml) and scaled down washing volumes accordingly. The Click-IT reaction was performed using half the recommended reagent volumes per sample. After the last washing step, cells were resuspended in PBS containing FxCycle Far Red Stain (Thermo Fisher Scientific) as well as RNase Cocktail (Thermo Fisher Scientific) and incubated for 30 min at room temperature to stain total DNA. Fluorescence-activated cell sorting was performed on a CytoFLEX S Instrument (Beckman Coulter).

RNAi knockdown experiments. For RNAi knockdown experiments, we plated 50,000 HCT116 cells 24 h before transfection into 24-well tissue culture plates using antibiotic-free medium. We transfected 50 nM short interfering RNAs (siRNAs) into each well using Lipofectamine RNAiMAX (Thermo Fisher Scientific) by following the manufacturer's instructions. Medium was changed the day after transfections and cells were incubated with siRNAs for a total time of 72 h. Cell cycle analysis and RT–qPCR were performed as described in the above sections (see ‘Cell-cycle analysis’ and ‘RNA extraction and RT–qPCR’ above).

DNA combing. We induced knockdown in CRISPRi cells with stably integrated sgRNAs by supplementing cell culture medium with 0.5 μg/ml doxycycline for 72 h. Knockdown and wild-type cells were labelled with a final concentration of 100 μM CldU for 70 min. CldU-containing medium was removed, cells were washed twice with warm PBS and trypsinized. We counted cells in triplicates and used 75,000 cells for each experiment. Cells were embedded in agarose plugs using the FibrePrep DNA Extraction Kit (Genomic Vision) by following the manufacturer's instructions. DNA combing, immuno-detection, image acquisition and data analysis were performed at specialized service facilities. Only intact replication origins with positive DNA counterstaining were used to measure fibre length and calculate replication fork velocity.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this paper.

Data availability. Sequencing data for this study are available at the Gene Expression Omnibus under the accession number GSE114953. The original mass spectra may be downloaded from MassIVE (http://massive.ucsd.edu) using the identifier: MSV000082561. The data are directly accessible via ftp://massive.ucsd.edu/MSV000082561. All other data are available from the corresponding authors upon reasonable request.

31. Fulco, C. P. et al. Systematic mapping of functional enhancer–promoter connections with CRISPR interference. Science 354, 769–773 (2016).
32. Engreitz, J. M. et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341, 1237973 (2013).
33. Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003).
34. Wiese, S., Reidegeld, K. A., Meyer, H. E. & Warscheid, B. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7, 340–350 (2007).
35. Smyth, G. K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, article 3 (2004).
36. Engreitz, J. M. et al. RNA–RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites. Cell 159, 188–199 (2014).
37. Zernagel, B. J. et al. iCUP platform for efficient characterization of protein–RNA interactions. Nat. Methods 13, 489–492 (2016).
38. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CIP. Cell 141, 129–141 (2010).
39. Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).
40. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
41. Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R17 (2008).
42. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).
43. Lowe, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
44. Trincado, J. L. et al. SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. Genome Biol. 19, 40 (2018).
45. Hu, Y. et al. DiffSplice: the genome-wide detection of differential splicing events with RNA-seq. Nucleic Acids Res. 41, e39 (2013).
46. GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).
47. Brawand, D. et al. The evolution of gene expression levels in mammalian organs. Nature 478, 343–348 (2011).
48. Merkin, J., Russell, C., Chen, P. & Burge, C. B. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338, 1593–1599 (2012).
49. Chen, J. et al. Evolutionary analysis across mammals reveals distinct classes of long non-coding RNAs. Genome Biol. 17, 19 (2016).
50. Dobin, A. et al.STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
51. Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D767 (2017).
52. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
53. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
54. Mueller, F. et al. FISH-quant: automatic counting of transcrips in 3D FISH images. Nat. Methods 10, 277–278 (2013).
55. Kamentsky, L. et al. Improved structure, function and compatibility for CelProfiler: modular high-throughput image analysis software. Bioinformatics 27, 1179–1180 (2011).
Extended Data Fig. 1 | RNA antisense purification of RMRP and NORAD transcripts. RT–qPCR measurements of RNA yield in RMRP and NORAD RAP MS experiments. Columns represent the mean of two biological replicate experiments, individual data points are shown.
Extended Data Fig. 2 | Subcellular localization of NORAD and analysis of NORAD–protein interactions with DNA damage. a, smRNA FISH of GAPDH, NORAD and MALAT1 in wild-type HCT116 cells. GAPDH, cytoplasmic reference; MALAT1, nuclear reference. Actin is stained with Alexa Fluor 647-conjugated phalloidin. Scale bar, 20 μm. Images are representative of one experiment; three independent experiments were performed. b, Quantification of smRNA FISH experiments. Circles show medians; box limits, 25th and 75th percentiles; whiskers, 1.5 × interquartile range; polygons, extreme values. Method 1: phalloidin-aided cell boundary detection using the watershed method. Method 2: proximity-based cell boundary detection using the distance – N method in Cell Profiler. Sample sizes: GAPDH method 1, n = 369; GAPDH method 2, n = 369; NORAD method 1, n = 299; NORAD method 2, n = 299; MALAT1 method 1, n = 229; MALAT1 method 2, n = 229. c, Subcellular fractionation of HCT116 cells. Lamin B2 and α-tubulin serve as controls for nuclear and cytoplasmic fractions, respectively. Western blots are representative of one experiment; three independent experiments were performed. d, RT–qPCR measurements of relative RNA levels in nuclear and cytoplasmic extracts. Quantification relative to GAPDH. Percent nuclear extract is calculated relative to the total signal observed in nuclear and cytoplasmic fractions. Values are mean ± standard deviation (n = 3). e, RT–qPCR measurements of NORAD expression upon doxorubicin, camptothecin or ultraviolet treatment in NORAD wild-type or knockdown cells. Quantification relative to GAPDH. Values are mean ± standard deviation (n = 4). f, Western blot of NORAD RAP experiments with or without DNA damage. Western blots are representative of one experiment; three independent experiments were performed. g, RT–qPCR measurements of RNA yield in NORAD RAP experiments. Values are mean ± standard deviation (n = 3).
Extended Data Fig. 3 | Analysis of NORAD knockdown, NORAD conservation and NORAD–protein interactions. a, RT–qPCR measurements of NORAD, RBMX and PUM2 CRISPRi knockdown and NORAD rescue experiments. Quantification relative to GAPDH. Values are mean ± standard deviation (n = 3). b, Differentially expressed genes in RNA-sequencing experiments from NORAD CRISPRi knockdown cells. c, Quantification of chromosome segregation errors in PUM2 wild-type or knockdown cells. One hundred anaphases were scored for each condition. Columns represent the mean of two biological replicate experiments, individual data points are shown. d, Histogram of RBMX-binding-site length in CLIP experiments. e, Multiple sequence alignment of NORAD transcripts, assembled de novo from RNA-sequencing data from 11 mammalian species. Only transcribed sequences are shown. Blue bar indicates RBMX-binding site in human NORAD. Alignment colour scheme: A, orange; C, blue; T, green; G, red. f, CLIP data plotted across NORAD RNA for RBMX, FUBP1, FUBP3 and PUM1. RBMX SM input library is shown. Representative alignments from two biological replicates are shown. g, RBMX RIP in nuclear and cytoplasmic fractions. The percentage of nuclear RIP signal is calculated relative to the total signal observed in nuclear and cytoplasmic fractions. h, Immunofluorescence imaging of RBMX in HCT116 cells. Scale bar, 20 μm. Representative images from three biological replicates are shown. i, Left, RT–qPCR measurements of NORAD RNA levels in nuclear and cytoplasmic extracts under RBMX CRISPRi wild-type or knockdown conditions. The percentage of nuclear NORAD is calculated relative to the total signal observed in nuclear and cytoplasmic fractions. Right, RT–qPCR measurements of RBMX CRISPRi knockdown. Quantification relative to GAPDH. Values are mean ± standard deviation (n = 3).
Extended Data Fig. 4 | See next page for caption.
Extended Data Fig. 4 | Analysis of RBMX protein–protein interactions and their dependency on NORAD. a, Ranked list of NORAD-dependent RBMX-interacting proteins identified by quantitative co-IP MS (Supplementary Table 4) and their respective rank in NORAD RAP MS experiments. b, Western blot of two independent NORAD RAP experiments with or without crosslink. Antibodies were pooled and incubated with the same membrane. Corresponding size regions were cropped for simplicity of presentation. c, Western blot of levels of TOP1, RBMX, PRPF19, CDC5L, BRCA1 and BRCA2 proteins in NORAD wild-type and knockdown cells from two independent experiments. β-actin serves as loading control. d, CLIP data plotted across NORAD RNA for RBMX and ALYREF. RBMX SM input library is shown. Representative alignments from two biological replicates are shown. e, Co-IP western blot for TOP1, ALYREF, CDC5L, RBMX and IgG control. Inputs are shown on the right. Western blots are representative of one experiment; three independent experiments were performed. f, Western blot of Flag–RBMX–V5 co-IP followed by size-exclusion chromatography. Fractions 1–9 are shown. Fractions 10–20 were not probed for PRPF19 owing to overlap with Flag antibody at this size range (Supplementary Note 4). g, RT–qPCR measurements of NORAD 5′ fragment (light grey) and full-length NORAD (dark grey) in rescue experiments using full-length and 5′-truncated NORAD rescue constructs. Measurements correspond to cells used for proximity ligation assays. Quantification relative to GAPDH. Values are mean ± standard deviation (n = 6).
Extended Data Fig. 5 | Analysis of alternative splicing and cell-cycle progression in NORAD depleted cells. a, Venn diagram of significant splicing changes (percentage spliced in (PSI) > 20%; FDR < 0.05) in NORAD wild-type and knockdown cells at 24, 48 and 96 h (Supplementary Table 6); 89,352, 88,529 and 84,340 events were analysed at 24, 48 and 96 h, respectively. Only six events were consistent between two time points and none were consistent between all three time points b, RT–qPCR measurements of NORAD 5′ fragment (light grey) and full-length NORAD (dark grey) in rescue experiments using full-length and 5′-truncated NORAD rescue constructs. Measurements correspond to cells used in cell-cycle analysis. Quantification relative to GAPDH. Values are mean ± standard deviation (n = 5 or 6). c, RT–qPCR measurements of RBMX CRISPRi knockdown. Quantification relative to GAPDH. Values are mean ± standard deviation (n = 5). d, RT–qPCR measurements of TOP1 RNA interference knockdown. Quantification relative to GAPDH. Values are mean ± standard deviation (TOP1 siRNA, n = 6; control siRNA, n = 5). e, Representative fluorescence-activated cell sorting histograms measuring EdU incorporation and DNA content in RBMX and NORAD CRISPRi knockdown and NORAD rescue cells. Percentage of cells in each cell-cycle phase is indicated. f, As in e, but for TOP1 RNA interference knockdown cells.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main text, or Methods section).

- Confirmed

Item	Included
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement	✔
An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly	✔
The statistical test(s) used AND whether they are one- or two-sided	✔
A description of all covariates tested	✔
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons	✔
A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)	✔
For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted	✔
Give P values as exact values whenever suitable.	✔
For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings	✔
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes	✔
Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated	✔
Clearly defined error bars	✔
State explicitly what error bars represent (e.g. SD, SE, CI)	✔

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection | Spectrum Mill v6.01 pre-release, NIS elements, CytExpert.

Data analysis | Graphpad Prism 7, Flowjo, Microsoft Excel, R studio, MATLAB (version R2017b), FISH-QUANT, Cell Profiler (version 2.2.0 and version 3.0.0), BEDTools, Integrative Genomics Viewer (version 2.3.26), Igytools 2.3, STAR v2.5.2a, TopHat version 2.0.8, MACS2, Picard’s MarkDuplicates, Bowtie 2, DESeq2, SUPPA2, diffSplice, kallisto, Stringtie v1.3.3b, MAFFT.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Sequencing data associated with Fig. 2, 3, and Extended Data Fig. 3, 4, 5 is available at the Gene Expression Omnibus under the accession number GSE114953.
The original mass spectra associated with Fig. 1, 3, and Extended Data Fig. 4 may be downloaded from MassIVE (http://massive.ucsd.edu) using the identifier: MSV000012345. The data is directly accessible via ftp://massive.ucsd.edu/MSV000012345.

Field-specific reporting

Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☐ Life sciences ☐ Behavioural & social sciences ☐ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical measures were used to predetermine sample size. We typically performed at least 3 biological replicates for each experiment, unless otherwise noted in the figure legends. Quantitative mass spectrometry experiments using isobaric mass tag labeling include 2 replicate experiments in each 4plex or 6plex mass tag cassette as is common practice.

Data exclusions Mass spectrometry data were filtered for common laboratory contaminants. We further required a minimal number of unique peptides as defined in the Methods. Otherwise no data were excluded.

Replication As reported in the figure legends, main text and Methods, the findings were reliably reproduced.

Randomization This study uses a candidate-based approach to dissect molecular interactions and biochemical mechanisms. No randomization was required because the results of biochemical measurements or sequencing of nucleic acid libraries are not affected by sample randomization.

Blinding This study uses a candidate-based approach to dissect molecular interactions and biochemical mechanisms. No blinding was required because the results of biochemical measurements or sequencing of nucleic acid libraries are not affected by knowledge of sample identities. DNA combing was performed by scientists at specialized service facilities and sample identities were not disclosed to the person performing the experiment or data analysis.

Reporting for specific materials, systems and methods

Materials & experimental systems

n/a	Involved in the study
☒	Unique biological materials
☒	Antibodies
☒	Eukaryotic cell lines
☒	Palaeontology
☒	Animals and other organisms
☒	Human research participants

Methods

n/a	Involved in the study
☒	ChiP-seq
☒	Flow cytometry
☒	MRI-based neuroimaging

Antibodies

Antibodies used

- RBMX – Cell Signaling (D7C2V) #14794, Lot #1, 2, (IP (6 ug/ml), western blot (1:1000), proximity ligation assay (1:250), immunofluorescence (1:250))
- RBMX – Santa Cruz Biotechnology (G17) #sc-14581, Lot #K0614, (IP (6 ug/ml) and western blot (1:1000))
- ALYREF – Bethyl #A302-892A, Lot #1, (IP (6 ug/ml))
- ALYREF – Santa Cruz Biotechnology (11G5) #sc-32311, Lot # J1016, (western blot (1:1000))
- PUM1 – Bethyl #A302-577A, Lot #1, (IP (6 ug/ml))
- V5 – Abcam (SV5-Pk1) #ab27671, Lot #GR242588-4, (IP (6ug/ml))
- V5 – Abcam #ab9116, Lot #GR256657-12, (western blot (1:1000))
- Flag – Cell Signaling (9A3) #8146S, Lot #3, (proximity ligation assay (1:250))
- TOP1 – Bethyl #A302-590A, Lot #1, (IP (6 ug/ml), proximity ligation assay (1:250))
- TOP1 – Bethyl #A302-590A, Lot #3, (western blot 1:1000)
- TOP1 – Santa Cruz Biotechnology (C-21) #sc-32736, Lot #K0515, (western blot (1:1000))
- CDCL5 – Bethyl #A303-681A, Lot #1, (IP (6 ug/ml))
- CDCL5 – Santa Cruz Biotechnology (2136C1a) #sc-81220, Lot #C0917, (western blot (1:1000))
- PRPF19 – Bethyl #A300-101A, Lot #1, (western blot (1:500))
ACTB – Abcam #ab8226 (western blot (1:1000))
BRCA1 – Bethyl #A301-378A, Lot #2, (western blot (1:1000))
BRCA2 – Bethyl #A300-005A (western blot (1:1000))
Alpha-Tubulin-FITC – Sigma Aldrich #F2168 (immunofluorescence (1:1000))
Anti-Centromere antibodies (ACA) – Antibodies Incorporated #15-234-0001 (immunofluorescence (1:200))
Normal Rabbit IgG - Cell signaling #2729, Lot #8, (IP (6 ug/ml)

Validation
All antibodies were validated by western blot. Commercial antibodies were also validated by the manufactures as indicated on their web sites.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)
HCT116 cell line was acquired from ATCC.

Authentication
Cell lines were not authenticated.

Mycoplasma contamination
Cell lines tested negative for mycoplasma.

Commonly misidentified lines
No commonly misidentified cell lines were used.

Flow Cytometry

Plots

Confirm that:
☒ The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
☒ The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a ‘group’ is an analysis of identical markers).
☐ All plots are contour plots with outliers or pseudocolor plots.
☒ A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation
A detailed description of the sample preparation procedure is given in the Methods sections "Cell cycle analysis".

Instrument
Beckman Coulter Cytoflex S

Software
CytExpert, FlowJo.

Cell population abundance
No post-sort fractions were collected.

Gating strategy
Cell cycle analysis: We applied forward and side scatter parameters (FSC, SSC) to exclude cell debris and doublets as exemplified in Supplementary Figure 1. Typically, 3-4% of events were excluded to remove events that could not be assigned to cells in G1-, S-, and G2-M-phase. The fraction of cells in each phase of the cell cycle was then quantified using indicated gates (contour plot).

☒ Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.