Comparison of bird diversity in protected and non-protected wetlands of western lowland of Nepal

Jagan Nath Adhikari 1 5, Janak Raj Khatiwada 2, Dipendra Adhikari 3, Suman Sapkota 4, Bishnu Prasad Bhattarai 5 6, Deepak Rijal 6 & Lila Nath Sharma 7

1 Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal.
2 Department of Zoology, Birendra Multiple Campus, Bharatpur, Chitwan, Nepal.
3 Small Mammals Conservation and Research Foundation, PO Box 9092, Kathmandu, Nepal.
4 Friends of Nature (FON), Kathmandu, Nepal.
5 USAID Program for Aquatic Natural Resource Improvement, Paani Program, Baluwatar, Kathmandu, Nepal.
6 Forest Action Nepal, Bagdol Lalitpur, Nepal.
7 Forest Action Nepal, Bagdol Lalitpur, Nepal.

1 jagan.adhikari@bimc.tu.edu.np (corresponding author), 2 janakrajkhatiwada@gmail.com, 3 dipenadk2005@gmail.com,
4 suman.palpa99.ss@gmail.com, 5 bishnu.bhattarai@cdz.tu.edu.np, 6 deepak_rijal@dai.com, 7 lilanathsharma@gmail.com

Abstract: Protected areas are considered important for biodiversity conservation, however, studies have shown that habitats outside protected areas can also support high diversity and are important for biodiversity conservation. In this context, we compared the bird diversity between protected (Rani Taal in Shuklaphanta National Park) and non-protected (Sati Karnali Taal) wetlands in western Nepal. Bird surveys were conducted from February to August 2019, using open width point count method in 100 m intervals along transects. A total of 122 species belonging to 18 orders and 44 families were recorded from the protected wetland, and 107 species belonging to 16 orders and 41 families from the non-protected wetland area. Insectivores had high abundance in both wetlands (43% and 47% in protected and non-protected wetlands, respectively). Forest-dependent birds were more abundant in protected wetland compared to non-protected wetland. Our study showed that both protected and non-protected wetlands along with agricultural landscapes, support a richness of birds. Hence priority should be given to both wetlands for the conservation of birds.

Keywords: Aves, conservation, protected and non-protected areas, threatened birds.
INTRODUCTION

Protected area (PA) is a key strategy for in situ conservation of biodiversity. Evidence has shown PAs that are crucial in conserving forests, natural environments, biodiversity, and ecosystem services (Rodrigues et al. 2004; Dahal et al. 2014; Watson et al. 2016). In the past, PAs surged globally, and Nepal has also made notable progress in increasing PA coverage (UNEP-WCMC et al. 2018; DNPWC 2020). By the end of 2020 over 15% of the earth’s terrestrial surface was covered by PAs (Terborgh et al. 2002; UNEP-WCMC et al. 2018). In spite of increase in PAs, their efficacy in protecting overall biodiversity is contested (Rodrigues et al. 2004; Chape et al. 2005). Several important species remain outside the jurisdiction of PAs (Chakravarthy et al. 2012), and some geographical areas are under-represented (Shrestha et al. 2010), including some global biodiversity hotspots and agro-ecosystems that support rich biodiversity (Sharma & Vetaas 2015). Researchers have argued and demonstrated that areas outside formal PAs are worth conserving, as they provide alternative habitats and refuges for maintaining viable populations of residential and migratory bird species (Shrestha et al. 2010; Cox & Underwood 2011; Dudley et al. 2014; DNPWC 2020) and thus complement PAs in achieving biodiversity goals.

Freshwater ecosystems are among the most productive ecosystems, and they provide countless services to both the human and ecological communities (Dudgeon et al. 2006). Yet they remain vulnerable to various stresses and pressures (Geist 2011). Freshwater constitutes about 2.5% of the area of all water on Earth (Ostfeld et al. 2012) and approximately 5% (743,500 ha) in Nepal (Siwakoti & Karki 2009). In the global context, wetlands support more than 40% of the birds and 12% of other animals (Kumar 2005; Paracuellos 2006). More than 20% of threatened bird species, both migratory and resident, are supported by the wetlands of Asia (Paracuellos 2006; Grimmett et al. 2016a).

Birds are important indicators of the health of freshwater ecosystems (Zakaria & Rajpar 2010; Inskipp et al. 2017; Baral & Inskipp 2020; Brotherton et al. 2020). Past studies have highlighted that Nepal’s freshwater diversity has been threatened by different factors, including construction of dams, point source and non-point source pollution, habitat encroachment by invasive species, overharvesting, and recent global environmental changes (Khatiwada et al. 2021).

Many wetlands outside protected areas are important for conserving biodiversity, but are not given due attention for conservation. Past studies of bird species have been mostly concentrated in the protected areas and Ramsar sites. The difference in bird diversity between protected and non-protected areas is not well documented. In this study, we compared bird diversity between wetlands within a PA (Rani Taal in Shuklaphanta National Park) and outside it (Sati Karnali Taal), and asked following questions: (i) is there a difference in bird richness between protected and non-protected wetlands? (ii) is there a difference in conservation value for birds inside and outside protected area? (iii) do birds in protected and non-protected wetland differ in their feeding guilds? Understanding the distribution of bird diversity in and outside PAs can be useful to conservation managers and planners to formulate conservation strategies.

MATERIALS AND METHODS

Study area

This study was conducted in two wetlands, one in Shuklaphanta National Park (Rani Taal, hereafter referred to as protected and undisturbed wetland) and one in a nearby agricultural landscape (Sati Karnali Taal, hereafter non-protected and disturbed wetland), selected to compare bird diversity and distribution (Image 1). These wetlands share similar geography and climatic conditions, but differ in terms of management and disturbance (Table 1).

Bird survey

A bird survey was carried out following the “point count” method along transects near the bank of lake/wetland, following detailed instructions provided by Bibby et al. (2000) from February to September 2019 two times a day at 0600–1000 h and 1600–1800 h. A total of five transects were laid in each wetland and bird study was carried out during the winter and summer seasons. The length of the transect walks varied from 500 m to 1,000 m depending upon the shape of the wetland and forest patch. The points were fixed in every 100-m intervals along the transects, then the birds were scanned and counted with the aid of binoculars (Nikon 20 x 50 and Bushnell 10 x 40) within the 50 m circular radius.

Four observers scanned for birds in all directions for five minutes. The observed birds were counted and listed, and data from all observers were pooled for each transect. To ensure a comprehensive species list for each survey site, calls of birds were also recorded with a cell phone in MP3 format. All the observed species were
recorded with abundance by visual and auditory aids, with habitat and environmental variables. Birds were identified using Grimmett et al. (2016a,b). Calls were identified using the bird song database of Xeno-Canto (https://www.xeno-canto.org/). Foraging behavior was grouped into five different trophic structures based on the feeding habit of birds and availability of food resources in the study area (Zakaria & Rajpar 2010). These trophic structures are: insectivores, omnivores, piscivores, herbivores, and carnivores. We also carried out a questionnaire survey and literature review to record migratory and other rare bird species in the area.

Data analysis

We classified birds based on their feeding guilds, habitats and migratory behavior (BCN & DNPWC 2016; Grimmett et al. 2016). We also categorized bird conservation status using IUCN Red List (https://www.iucnredlist.org). Species richness refers to the number of species, and abundance means the number of individuals of each species. We used two measures of richness, one for transects and another for sites. We also calculated the diversity indices of birds in protected and non-protected sites.

Shannon Weiner diversity index (H) was used to determine species diversity in a community (Shannon 1948).

\[
H = -\sum_{i=1}^{s} p_i \ln p_i
\]

Where, \(p_i \) is the proportion (n/N) of individuals of one particular species found (n) divided by the total number of individuals found (N), ln is the natural log, \(\Sigma \) is the sum of the calculations, and \(s \) is the number of species.

Simpson index was determined to measure community diversity in relation to habitats (Simpson 1949).

\[
D = -\sum_{i=1}^{s} p_i \ln p_i
\]

Where \(p_i \) is the proportion (n/N) of individuals of one particular species found (n) divided by the total number of individuals found (N), \(\Sigma \) is the sum of the calculations, and \(s \) is the number of species.

Evenness (e) was used to determine distribution of

![Figure 1. Map of the study area showing protected and non-protected wetlands.](image)
individuals of a species in a community.

Evenness = H'/Hmax

Where H' is Shannon diversity index and Hmax is the maximum possible value. E is constrained between 0 and 1.0. As with H', evenness assumes that all species are represented within the sample.

Jacobs’s equitability (J) was used to measure the evenness with which individuals are divided among the taxa present. Equitability (J) = H'/lnS

Where, H’ = Shannon’s index of diversity, S = number of taxa

Fisher’s index describes mathematically the relation between the number of species and the number of individuals in those species (Fisher & Yates 1943). Fisher diversity index, defined implicitly by the formula.

S = a × ln (1 + 5

Where, S is number of taxa, n is number of individuals and a is the Fisher’s alpha.

Differences in species richness and abundance between the protected and non-protected areas were tested using a student t test. Data were checked for normality before conducting the t test. All statistical analyses were carried out in R version. 3.6.1 (R Development Core Team 2019).

RESULTS

Diversity and distribution of birds in protected and non-protected wetlands

We recorded a total of 1,693 individuals (winter= 961; summer= 732) belonging to 122 species (winter= 118; summer= 104) from 18 orders and 44 families in the protected wetland, and 1,672 individuals (winter= 791; summer= 881) belonging to 107 species (winter= 94; summer= 86) from 16 orders and 41 families in non-protected wetland (Appendix 1). The most abundant species were from order Passeriformes (37%) followed by Coraciiformes (9.8%), Psittaciformes (7.2%), and Galliformes (6.3%) in the protected wetland whereas Passeriformes (43%) was the most abundant followed by Coraciiformes (11%), Pelecaniformes (6.9%), and Psittaciformes (6.8%) in the non-protected wetland.

In terms of cumulative abundance, Common Peafowl (4.9%) was the most abundant species in the protected wetland, followed by House Swift (4.7%), Blue-tailed Bee-eater (4.3%), and Wire-tailed Swallow (3.0%), whereas House Sparrow (4.2%) was the most abundant species followed by Cattle Egret (4.0%), Blue-tailed Bee-eater (3.5%), Lesser Whistling Duck (3.3%), and Slaty-headed Parakeet (3.2%) in non-protected wetland (Appendix 1).

Overall, there was higher richness of birds in protected wetland (n= 122 compared to non-protected wetland (n= 107, t= 8.623, p <0.004). Similarly, species richness was also higher in both summer (t= 4.01, p= 0.004) and winter (t= 4.726, p= 0.001) seasons (Figure 1) in protected wetland. However, there was no significant difference in species abundance between protected and non-protected wetlands (t= 0.140, p= 0.870). But the mean abundance of the birds was higher in summer season than winter in protected wetland (Figure 1).

The overall Shannon index of diversity (H), and Fisher alpha (a) in protected wetland was higher than from the non-protected wetland (Table 2). Similarly, the species diversity of protected wetland was more in winter season than summer. But there was no variation in species dominance index (D) during winter and summer seasons (D= 0.019, in winter and D= 0.021, in summer season) (Table 2). Similarly, the species diversity of birds in non-protected wetland was more winter (H= 4.21, α= 31.0) than in summer (H= 4.19, α= 27.43) (Table 2).

Categorization of birds according to habitat types

A total of 49 species of wetland dependent birds, followed by 43 species of forest, 17 species of open area birds, and 13 species of bush were recorded from protected wetland, whereas 41 species of wetland birds, 37 species of forest birds, 18 species of open area birds, and 11 species of bush dependent birds were recorded from human dominated non-protected lake (Figure 2).

Feeding guilds of birds

The proportion of insectivorous birds was higher in both wetlands (protected 43.5% and non-protected 47.41%) followed by omnivores, piscivores, herbivores, and carnivores, respectively (Figure 3).

Bird species with conservation concern

We recorded a globally Endangered species: Egyptian Vulture Neophron percnopterus; two Vulnerable species: Common Pochard Aythya ferina & Great Slaty Woodpecker Mulleripicus pulverulentus; and seven Near Threatened species: Grey-headed Fish Eagle Icthyophaga ichthyaeus, Lesser Fish Eagle Icthyophaga humilis, River Lapwing Vanellus duvaealci, Red-headed Falcon Falco chicquera, Painted Stork Mycteria leucocephala, Asian Woollyneck Ciconia episcopus, & Oriental Darter Anhinga melanogaster in protected wetland. In non-protected wetland and its vicinity we reported three Vulnerable species: Common Pochard Aythya ferina, Great Slaty Woodpecker Mulleripicus
protected and non-protected wetland birds of Nepal
Adhikari et al.
Journal of Threatened Taxa | www.threatenedtaxa.org | 26 January 2022 | 14(1): 20371–20386

20375

pulverulentus, & Lesser Adjutant Leptoptilos javanicus; and six Near Threatened species: Grey-headed Fish-eagle Ichthyophaga ichthyaetus, River Lapwing Vanellus duvaucelii, Asian Woollyneck Ciconia episcopus, Painted Stork Mycteria leucocephala, Oriental Darter Anhinga melanogaster, and Alexandrine Parakeet Psittacula eupatria (Figure 4, Image 2).

DISCUSSION

The present study examined diversity of wetland-associated bird species from the lowlands of western Nepal. Our results indicate that bird community structure (i.e., species richness, abundance, composition) varied notably between protected and non-protected wetland and associated areas. Nevertheless, wetlands outside the protected area system also support a large number of important birds.

Bird diversity in protected and non-protected areas

The wetlands in both protected and non-protected areas support a considerable bird diversity of different feeding guilds. Overall, higher bird diversity was found in protected areas, signifying the importance of these areas for species conservation. Similar results were reported by Dahal et al. (2014) from forests of lowland Nepal. Abundance of forest specialist bird species such as Lesser Yellowwax Picus chlorolophus and Common Peafowl Pavo cristatus was higher around the protected

Parameters	Protected wetland	Non-protected wetland
Location	Inside Shuklaphanta National Park, Kanchanpur	Inside Sati Karnali Community Forest User Group, Tikapur, Kailali
Geographic location	N28.922883/ E80.176317	N28.453533/ E81.07378
Elevation	175 m	158 m
River basin	Mahakali	Karnali
Nature of lake	Oxbow	Oxbow
Area	369 hectar	25 hector
Temperature	Average temperature 25.9 °C (14.3–32 °C, warmest month May and coldest month January)	Average temperature 24.6 °C (15.6–32 °C, warmest month May and coldest month January)
Rainfall	1,579 mm	1,757 mm
Feeder	Rainwater	Rani Kulo
Vegetation	Surrounded by dense Sal (Shorea robusta) forest. Associated tree species are Kusum (Shorea olesse), Saaz (Terminalia aflat), Rohini (Mallotus philippensis), Jamun (Syzygium cuminii), Bhelar (Treia nudiflora) Common shrub species: Rudilo (Pogostemon bengalensis), Asare (Murraya koenighii) and Bhati (Clorodendron viscosum). The lake is surrounded by elephant grass (Saccharum spontaneum), Narenga (Narenga porphyrocoma) on south, west and east Khatiwada et al. (2019)	Surrounded by riverine type and dominated by Sisoo (Dalbergia sissoo), Simal (Bombax ceiba), Vellar (Treia nudiflora) and Khayer (Azoca catechu). Sinduure (Mallotus philippensis) and Shirish (Albizia chinensis) Common shrub species: Asare (Murraya koenighii), Bhati (Clorodendron viscosum). This area is well known for rattan cane (Calamus tenuis). Khatiwada et al. (2019)
Disturbance	No human impact, Natural eutrophication and siltation is common. More than 80% of the total area of this lake is converted into grassland and marshy land	Anthropogenic activities such as fishing, collection of snails, other aquatic products, grazing are very common.
Management authority	Shuklaphanta National Park	Sati Karnali Community Forest User Group

Table 1. Comparative information about the study area: Protected and non-protected wetlands of lowland Terai western Nepal.

Parameters	Protected Non-protected	Protected Non-protected	Winter	Summer	Total	
Species richness	118	94	104	86	122	107
Dominance_D	0.019	0.03	0.021	0.03	0.019	0.018
Shannon_H	4.512	4.21	4.29	4.19	4.47	4.38
Evenness_e^H/S	0.68	0.69	0.69	0.67	0.66	0.672
Equitability_J	0.917	0.921	0.92	0.92	0.92	0.921
Fisher_alpha	37.21	31	34.51	27.43	31.54	27.31

Table 2. The diversity and dominance indices of birds in protected and non-protected wetlands.
Protected and non-protected wetland birds of Nepal

Adhikari et al.

Our results showed an important dynamic in the wetlands in and outside the protected area. Increasing in richness in PA within the wetlands during summer, there is not distinct change in wetlands outside the PA (Figure 1). Slight increase of bird richness inside the PA might be because it provides a safe refuge for breeding birds and the disturbance is very low. Similarly, the higher abundance of the birds outside the PA during winter indicates that open and more disturbed nature of the wetlands are equally important to provide habitat for birds. Agriculture landscapes around the wetlands outside the protected area also provide bird feeding grounds. Abundance in wetlands outside PA decreases noticeably, indicating that winter migrants would have left and some resident species may also leave seeking safer habitat to breed. During March-June, water resources inside the PA become dry and the birds concentrate in this lake, hence it shows greater abundance during summer than in winter.

Our study reports higher species richness in wetland followed by forest birds (Figure 2). The species richness of birds is comparatively higher in and around the protected wetland. Lowland protected areas support old and mature forests and harbor the highest richness of forest specialist bird species (Dahal et al. 2014). Similarly, some of the wetland-dependent and associated bird species like Lesser Fish Eagle Icthyophaga humilis, Osprey Pandion haliaetus, Mallard Anas platyrhynchos, Ruddy Shelduck Tadorna ferruginea, and Gadwall Mareca strepera were reported only from the protected wetland and associated areas. Higher richness of birds in protected wetland areas may be attributed to lower anthropogenic disturbance (Khatri et al. 2019; Lamsal et al. 2019), supporting birds that require undisturbed forests.

National Park are surrounded by Sal forest and grassland that support many globally threatened birds. Nepal’s wetlands provide an important habitat for many wetland dependent and grassland birds including 15

Figure 1. Mean richness and abundance of bird species on the protected and non-protected wetlands. The level of significance is from t-test (** <0.01).

Figure 2. Habitat-wise species richness of birds.

Figure 3. Percentage of bird species recorded for the different feeding guilds.
globally threatened and 13 near threatened bird species (Baral & Inskipp 2009). During our study, we recorded one Endangered species of bird: Egyptian Vulture *Neophron percnopterus*, two globally Vulnerable birds: Great Slaty Woodpecker *Mulleripicus pulverulentus* Common Pochard *Aythya ferina* and five globally Near Threatened birds in and around the protected lake.

Habitat heterogeneity is greater inside the Shuklaphanta National Park in and around the protected wetland. Higher the habitat heterogeneity favours higher the species diversity (Tamme et al. 2010). Hence higher number of forest specific birds and wetland birds were recorded in the protected wetland. But the non-protected wetland is surrounded by small patch of forest and agriculture landscape. The exploitation of natural resources and impact of human pressure was more in non-protected wetland which may be a cause of lower abundance of forest and wetland specialist birds. Nevertheless, due to diverse habitats, agricultural landscape supported higher richness and abundance of open area birds. Elsen et al. (2017) reported that low intensity agriculture supports higher bird diversity during winter in Himalayan montane landscape.

The wetland outside the protected area also supported considerable bird diversity. The birds reported here included several species listed as Vulnerable (VU) in IUCN Red List. Non-protected wetland and adjoining areas provide the suitable habitats for several vulnerable and near threatened bird species. During this study, we reported three Vulnerable and six Near Threatened bird species. The adjoining area of this wetland is surrounded by paddy fields and swampy areas, which are the foraging ground to several species (de Silva et al. 2015; Adhikari et al. 2019). The tree species present in paddy field and adjoining community forest provide the nesting and foraging places for birds. The study on the responses of birds with tree species in agricultural landscape found larger population sizes of birds with low intensity farming as they share same land for foraging (Hulme et al. 2013). Hence, land sharing would result in better bird conservation outcomes (Hulme et al. 2013; Edwards et al. 2014; Schulte et al. 2016) but land sparing has greater potential biodiversity benefits for large mammals, cats and large birds than land sharing (Lamb et al. 2019; Finch et al. 2020). Several studies show that agricultural land is an important driver that effect the wild nature directly or indirectly which is very common in developing countries (Green et al. 2005; Haslem & Bennett 2008; Šálek et al. 2018; Chaudhary et al. 2020).

Difference in feeding guilds

The results showed that wetlands are suitable for avifauna as they offer shelter, food, suitable nesting, and roosting sites for different groups of birds (Giosa et al. 2018). The habitat preference of the bird could be due to the availability of food they feed on such as insects, fishes, frogs, lizards, mouse, grains, fruits, vegetable matter (Katuwal et al. 2016; Harisha & Hosetti 2018). We identified five different foraging guilds such as insectivores, omnivores, piscivores, herbivores, and...
carnivores of birds. Among them, insectivores were highly abundant in both wetland systems. Dahal et al. (2014) identified seven main foraging guilds of birds. Insectivores are the most dominant group of birds as compared to other birds in the globe (Zakaria & Rajpar 2010; Datta 2011; Dahal et al. 2014; Basnet et al. 2016; Adhikari et al. 2018a,b). The main reason for the selection of different habitats by birds could be the presence of different vegetation types. The vegetation surrounding the protected wetland was dense and relatively mature compared to non-protected wetland. The agricultural fields around the non-protected wetland also supported more insectivore birds. Hence, both protected and non-protected wetlands are very important from conservation aspects of birds.

CONCLUSION

This study demonstrates that both protected and non-protected wetlands have comparable richness, though the composition of birds slightly differed.
Protected areas supported some forest and wetland specialist birds. The study reported the same common bird species on both protected and non-protected wetlands, hence, wetlands outside protected areas are also important for species conservation. This result suggests that the habitats outside protected areas also play an important complementary role to conservation of bird species which are worth conserving. Mosaics of habitat patches in low-intensity agricultural landscape favored considerable bird diversity which supports the idea that food production and biodiversity conservation can be reconciled in same landscape unit. Wetlands rich in biodiversity and sources of ecosystem goods and services are dwindling faster due to increased human activities related with agriculture, land use change and infrastructure development. We underscore call for action to extend program for the protection of ecosystem outside protected areas while emphasizing the management of protected areas for enhanced in situ conservation.

REFERENCES

Adhikari, J.N., B.P. Bhattarai & D.N. Dhakal (2018a). Conservation value of Beeshhaizari Lake: an insight into diversity and abundance of wetland birds. Our Nature 16(1): 17–26. https://doi.org/10.3126/on.v16i1.21563

Adhikari, J.N., B.P. Bhattarai & T.B. Thapa (2018b). Diversity and conservation threats of water birds in and around Barandabhar corridor forest, Chitwan, Nepal. Journal of Natural History Mesuem 30: 164–179. https://doi.org/10.3126/jnhm.v30i0.27553

Adhikari, J.N., B.P. Bhattarai & T.B. Thapa (2019). Factors affecting distribution and diversity of threatened birds in Chitwan National Park, Nepal. Journal of Threatened Taxa 11(5): 13511–13522. https://doi.org/10.11609/jott.4137.11.3.13511-13522

Baral, H.S. & C. Inskipp (2009). The birds of Sukhaphanta Wildlife Reserve. Our Nature 7(1): 56–81. https://doi.org/10.3126/on.v7i1.2554

Baral, H.S. & C. Inskipp (2020). Birds of Nepal: Their Status and Conservation Especially with Regards to Watershed Perspectives, pp. 435–458. In: Regmi, G.R. & F. Huettmann (eds.), Hindu Kush-Himalaya Watersheds Downhill: Landscape Ecology and Conservation Perspectives. Springer. https://doi.org/10.1007/978-3-030-36275-1_22

Basnet, T.B., M.B. Rokaya, B.P. Bhattarai & Z. Munzbergova (2016). Heterogeneous Landscapes on Steep Slopes at Low Altitudes as Hotspots of Bird Diversity in a Hilly Region of Nepal in the Central Himalayas. PLoS ONE 11(3): e0150498. https://doi.org/10.1371/journal.pone.0150498

BCN & DNPWC (2016). Birds of Nepal: An Official Checklist. Bird Conservation Nepal (BCN) and Department of National Parks and Wildlife Conservation (DNPWC), Kathmandu, Nepal, 40 pp.

Bibby, C.J., N.D. Burgess, D.A. Hill & S. Mustoe (2000). Bird census techniques. Academic Press, Elsevier, 302 pp.

Brotherton, S., C.B. Joyce & J.P. Scharlemann (2020). Global offtake of wild animals from wetlands: critical issues for fish and birds. Hydrobiologia 847: 1631–1649. https://doi.org/10.1007/s10750-020-04188-z

Chakravarty, S., S. Ghosh, C. Suresh, A. Dey & G. Shukla (2012). Deforestation: causes, effects and control strategies, pp. 1–26. In: Shukla, G. (eds.), Global perspectives on sustainable forest management. Intech Rijeka, Croatia, 315 pp.

Chape, S., J. Harrison, M. Spalding & I. Lysenko (2005). Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philosophical Transactions of the Royal Society B: Biological Sciences 360(1454): 443–455. https://doi.org/10.1098/rstb.2004.1592

Chaudhary, S., Y. Wang, A.M. Dixit, N.R. Khanal, P. Xu, B. Fu, K. Yan, Q. Liu, Y. Lu & M. Li (2020). A synopsis of farmland abandonment and its driving factors in Nepal. Land 9(3): 1–24. https://doi.org/10.3390/land9030084

Cox, R.L. & E.C. Underwood (2011). The importance of conserving biodiversity outside of protected areas in Mediterranean ecosystems. PLoS ONE 6(1): e14508. https://doi.org/10.1371/journal.pone.0014508

Dahal, B.R., C.A. McAlpine & M. Maron (2014). Bird conservation values of off-reserve forests in lowland Nepal. Forest Ecology and Management 323: 28–38. https://doi.org/10.1016/j.foreco.2014.03.033

Dahal, B.R., C.A. McAlpine & M. Maron (2015). Impacts of extractive forest uses on bird assemblages vary with landscape context in lowland Nepal. Biological Conservation 186: 167–175. https://doi.org/10.1016/j.biocon.2015.03.014

Datta, T. (2011). Human interference and avifaunal diversity of two wetlands of Jalpaiguri, West Bengal, India. Journal of Threatened Taxa 3(12): 2253–2262. https://doi.org/10.11609/jott.2739.2253-62

de Silva, T.N., S. Fernando, H.B. de Silva & P. Tennakoon (2015). Lesser Adjutant Leptoptilos javanicus Horsfeld, 1821 (Ciconiiformes: Ciconiidae) in the dry lowlands of Sri Lanka: distribution, ecology, and threats. Journal of Threatened Taxa 7(14): 8089–8095. https://doi.org/10.11609/jott.2425.7.14.8089-8095

DNPWC (2020). Protected areas of Nepal. Department of National Parks and Wildlife Conservation (DNPWC) Nepal, Kathmandu, Nepal. Downloaded on 20 January 2020. http://www.dnpwc.gov.np

Dudgeon, D., A.H. Arthington, M.O. Gessner, Z.I. Kawabata, D.J. Knowler, C. Lévêque, R.J. Naiman, A.-H. Prieur-Richard, D. Soto & M.L. Stowesny (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81(2): 163–182. https://doi.org/10.1111/j.1469-185X.2005.00690.x

Dudley, N., C. Groves, K.H. Redford & S. Stonel (2014). Where now for protected areas? Setting the stage for the 2014 World Parks Congress. Oryx 48(4): 496–503. https://doi.org/10.1111/1462-8211.12353

Elson, P.R., R. Kalyanaraman, K. Ramesh & D.S. Wilcove (2017). The importance of agricultural lands for Himalayan birds in winter. Conservation Biology 31(2): 416–426. https://doi.org/10.1111/10.3390/land9030084

Fitch, T., S. Gillings, D. Massimino, T. Bretreron, J. Redhead, R. Pywell, R. Field, A. Balmford, R. Green & W. Peach (2020). Assessing the utility of land sharing and land sparing for birds, butterflies and ecosystem services in lowland England. Natural England Commissioned Report NERC80, 73 pp.

Fisher, R.A. & F. Yates (1943). Statistical Tables: For Biological, Agricultural and Medical Research. Second edition. Oliver and Boyd Ltd, London, 105 pp.

Geist, J. (2011). Integrative freshwater ecology and biodiversity conservation. Ecological Indicators 11(6): 1507–1516. https://doi.org/10.1016/j.ecolind.2011.04.007

Green, R.E., S.J. Cornell, J.P. Scharlemann & A. Balmford (2005). Farming and the fate of wild nature. Science 307(5709): 550–555. http://doi.org/10.1126/science.1106049
Grinnell, R., C. Inskipp & T. Inskipp (2016a). Birds of the Indian Subcontinent: India, Pakistan, Sri Lanka, Nepal, Bhutan, Bangladesh and the Maldives. Bloomsbury Publishing, 448 pp.

Grinnell, R., C. Inskipp, T. Inskipp & H.S. Baral (2016b). Birds of Nepal: Revised Edition. Bloomsbury Publishing, India, 386 pp.

Harisha, M.N. & B.B. Hosetti (2018). Status and conservation issues of wetland birds in Komaranahalli lake, Davanagere district, Karnataka, India. Journal of Threatened Taxa 10(2): 11290–11294. http://doi.org/10.11609/jott.2809.10.11290-11294

Haslem, A. & A.F. Bennett (2008). Birds in agricultural mosaics: the influence of landscape pattern and countryside heterogeneity. Ecological Applications 18(1): 185–196. https://doi.org/10.1890/07-0692.1

Hulme, M.F., J.A. Vickery, R.E. Green, B. Phalan, D.E. Chamberlain, D.E. Pomeroy, D. Mushabe, R. Katebaka & S. Bolwig (2013). Conserving the birds of Uganda’s banana-coffee arc: land sparing and land sharing compared. PLoS ONE 8(2): e54597. https://doi.org/10.1371/journal.pone.0054597

Inskipp, C., H.S. Baral, T. Inskipp, A.P. Khatiwada, M.P. Khatiwada, L.P. Poudyal & R. Amin (2017). Nepal’s National Red List of birds. Journal of Threatened Taxa 9(1): 9700–9722. https://doi.org/10.11609/jott.2855.9.1.9700-9722

Katwul, H.B., K. Basnet, B. Khanal, S. Devkota, S.K. Rai, J.P. Gajurel, C. Scheidegger & M.P. Nobis (2016). Seasonal Changes in Bird Species and Feeding Guilds along Elevational Gradients of the Central Himalayas, Nepal. PLoS ONE 11(7): e0158362. https://doi.org/10.1371/journal.pone.0158362

Khatiwada, J.R., J.N. Adhikari, D. Adhikari, S. Sapkota, S.R. Ghimire, P.B. Budha & L.N. Sharma (2019). Assessment and conservation status of aquatic biodiversity in lower Karnali and Mahakali River basin. Forest Action Nepal, USAID Pani Program, 116 pp.

Khatiwada, J.R., J.N.A. Adhikari, D. Adhikari, S. Sapkota, S.R. Ghimire, P.B. Budha & L.N. Sharma (2021). Freshwater biodiversity in western Nepal: A review. Nepal J. Zoo. Sci. 5(1): 34–46. hhttps://doi.org/10.3126/njzs.v5i1.38290

Khatrri, N.D., B. Neupane, Y.P. Timilsina & S. Ghimire (2019). Assessment of Avifaunal diversity and threats to them in Phewa wetland, Nepal. Forestry: Journal of Institute of Forestry, Nepal 16: 31–47. https://doi.org/10.3216/forestry16.28352

Kumar, A. (2005). Handbook on Indian wetland birds and their conservation. Zoological Survey of India, Dibrugarh, India, 472 pp.

Lamb, A., T. Finch, J.W. Pearce-Higgins, M. Ausden, A. Balmford, C. Feniuk, G. Hirons, D. Massimino & R.E. Green (2019). The consequences of land grazing for birds in the United Kingdom. Journal of Applied Ecology 56(8): 1870–1881. https://doi.org/10.1111/1365-2664.13362

Lamsal, P., K. Atrey, M.K. Ghosh & K.P. Pant (2019). Effects of population, land cover change, and climatic variability on wetland resource degradation in a Ramsar listed Ghodagodi Lake Complex, Nepal. Environmental Monitoring and Assessment 191(7): 1–16. https://doi.org/10.1007/s10661-019-7514-0

Ostfeld, A., S. Barchiesi, M. Bonte, C.R. Collier, K. Cross, G. Darch, T.A. Farrell, M. Smith, A. Vicory & M. Weyand (2012). Climate change impacts on river basin and freshwater ecosystems: some observations on challenges and emerging solutions. Journal of Water and Climate Change 3(3): 171–184. https://doi.org/10.2166/wcc.2012.006

Paracuellos, M. (2006). Relationships of songbird occupation with habitat configuration and bird abundance in patchy reed beds. ARDEA 94(1): 87–98.

Development Core Team (2019). A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Rodrigues, A.S., H.R. Alcakaya, S.J. Andelman, M.I. Bakarr, L. Boitani, T.M. Brooks, J.S. Chanson, L.D. Fishpool, G.A. Da Fonseca & K.J. Gaston (2004). Global gap analysis: priority regions for expanding the global protected-area network. BioScience 54(12): 1092–1100. https://doi.org/10.1641/0006-3568(2004)054[1092:GGAPPR2.0.CO;2

Šálek, M., M. Bažant & M. Žmihorski (2018). Active farmsteads are year-round strongholds for farmland birds. Journal of Applied Ecology 55(4): 1908–1918. https://doi.org/10.1111/1365-2664.13093

Schulte, L.A., A.L. MacDonald, J.B. Niemi & M.J. Helmers (2016). Prairie strips as a mechanism to promote land sharing by birds in industrial agricultural landscapes. Agriculture, Ecosystems and Environment 220: 55–63. https://doi.org/10.1016/j.agee.2016.01.007

Shannon, C.E. (1948). Mathematical Theory of Communication. The Bell System Technical Journal 27(3): 379–424. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Sharma, L.N. & O.R. Vetaas (2015). Does agroforestry conserve trees? A comparison of tree species diversity between farmland and forest in mid-highs of central Himalaya. Biodiversity Conservation 24(8): 2047–2061. https://doi.org/10.1007/s10531-015-0927-3

Sheשתа, U.B., S. Sheещa, P. Chaudhary & P.R. Chaudhary (2010). How representative is the protected areas system of Nepal? Mountain Research and Development 30(3): 282–294. https://doi.org/10.1659/MRD-JOURNAL-D-10-00019.1

Simpson, E.H. (1949). Measurement of diversity. Nature 163(4148): 688–688. https://doi.org/10.1038/163688a0

Siwaloti, M. & J.B. Karki (2009). Conservation status of Ramsar sites of Nepal Terai: an overview. Botanica Orientalis: Journal of Plant Science 6: 76–84. https://doi.org/10.3126/botorv6i06.2914

Tamme, R., I. Hihisalu, L. Laanisto, R. Szava & M. Pärtel (2010). Environmental heterogeneity, species diversity and co-existence at different spatial scales. Journal of Vegetation Science 21(4): 796–801. https://doi.org/10.1111/j.1654-1103.2010.01185.x

Terborgh, J., C. van Schaik, L. Davenport & M. Rao (2002). Making Parks Work: Strategies for Preserving Tropical Nature. Island Press, 511 pp.

UNEP-WCMC, IUCN & NGS (2018). Protected Planet Report 2018. UNEP-WCMC, IUCN and NGS, Cambridge UK; Gland, Switzerland; and Washington, D.C., USA, 70 pp.

Watson, J.E., E.S. Darling, O. Venter, M. Maron, J. Walston, H.P. Possingham, N. Dudley, M. Hockings, M. Barnes & T.M. Brooks (2016). Bolder science needed now for protected areas. Conservation Biology 30(2): 243–248. https://doi.org/10.1111/cobi.12645

Zakaria, M. & M.N. Rajpar (2010). Bird species composition and feeding guilds based on point count and mist netting methods at the Paya Indah Wetland Reserve, Peninsular Malaysia. Tropical Life Sciences Research 21(2): 7–26.
Appendix 1. Bird species with their abundance observed in protected and non-protected wetlands in Winter and Summer. Relative abundance (RA) refers total percentage contribution of each species to the total sample. 0 indicated the species were not recorded during field study, here, EN= Endangered, VU= Vulnerable, NT= Near threatened and LC= Least Concern.

Order/Family/ Common name	Zoological name	RA in Winter	RA in Summer	Total RA(%)	IUCN category			
		Protected	Non-protected	Protected	Non-protected			
Order ACCIPITRIFORMES								
Family Accipitridae								
1 Black Kite	Milvus migrans	0.004	0.5	0.007	0.554	0.524	0.53	LC
2 Crested Serpent-eagle	Spilornis cheela	0.002	0.125	0.001	0.111	0.175	0.117	LC
3 Grey-headed Fish-eagle	Icthyophaga ichthyaeus (Horsfield, 1821)	0.002	0.503	0.001	0.443	0.175	0.47	NT
4 Lesser Fish-eagle	Icthyophaga humilis (Müller & Schlegel, 1841)	0.604	0	0.005	0	0.466	0	NT
5 Egyptian Vulture	Neophron percnopterus (Linnaeus, 1758)	0.001	0	0.001	0	0.117	0	EN
Family Pandionidae								
6 Osprey	Pandion haliaetus (Linnaeus, 1758)	0.002	0	0.003	0	0.233	0	LC
Order ANSERIFORMES								
Family Anatidae								
7 Bar-headed Goose	Anser indicus (Latham, 1790)	0.005	0	0	0	0.291	0	LC
8 Common Pochard	Aythya ferina (Linnaeus, 1758)	1.915	1.509	0	0	0.874	0.707	LC
9 Common Shelduck	Tadorna tadorna (Linnaeus, 1758)	1.017	1.509	0	0	0.932	0.7	LC
10 Common Teal	Anas crecca Linnaeus, 1758	0.004	0.628	0	0	0.233	0.294	LC
11 Gadwall	Moreoa strepera (Linnaeus, 1758)	0.004	0	0	0	0.233	0	LC
12 Lesser Whistling-duck	Dendrocopos javanicus (Horsfield, 1821)	0.91	6.92	0	0	0.583	3.241	LC
13 Mallard	Anas platyrhynchos Linnaeus, 1758	0.002	0	0	0	0.117	0	LC
14 Ruddy Shelduck	Tadorna ferruginea (Pallas, 1764)	0.002	0	0	0	0.117	0	LC
Order BUCEROTIFORMES								
Family Bucerotidae								
15 Indian Grey Hornbill	Ocyxera birostris (Scopoli, 1786)	0.002	0	0.003	0.111	0.233	0.05	LC
Family Upupidae								
16 Common Hoopoe	Upupa epops Linnaeus, 1758	0.006	0.25	0.008	0.222	0.699	0.235	LC
Order CAPRIMULGIFORMES								
Family Apodidae								
17 House Swift	Apus nipalensis (Hodgson, 1836)	2.052	2.77	3.04	2.328	4.662	2.533	LC
Order CHARADRIIFORMES								
Family Charadriidae								
18 Grey-headed Lapwing	Vanellus cinereus (Blyth, 1842)	0.004	0.251	0.005	0	0.466	0.118	LC
19 Red-wattled Lapwing	Vanellus indicus (Boddart, 1783)	0.004	0.503	0.007	0.665	0.524	0.589	LC
20 River Lapwing	Vanellus duvaucelii (Lesson, 1826)	0.004	0.628	0.004	0.665	0.408	0.648	NT
21 Yellow-wattled Lapwing	Vanellus malabaricus (Boddart, 1783)	0.004	1.006	0.005	1.219	0.466	1.119	LC
Family Jacanidae								
22 Bronze-winged Jacana	Metopidius indicus (Latham, 1790)	0.81	0.628	1.019	0.312	1.399	0.471	LC
Order/Family/ Common name	Zoological name	RA in Winter	RA in Summer	Total RA(%)	IUCN category			
---------------------------	-----------------	--------------	-------------	-------------	---------------			
	Protected	Non-protected	Protected	Non-protected	Protected			
					category			
Family Scopoliidae								
23 Common Sandpiper	Actitis hypoleucus Linnaeus, 1758	0.004	0.003	0.35	0 LC			
24 Green Sandpiper	Tringa ochropus Linnaeus, 1758	0.012	0.007	0.991	0.53 LC			
25 Marsh Sandpiper	Tringa stagnatilis (Bechstein, 1803)	0.004	0.003	0.443	0.35 0.471 LC			
26 Wood Sandpiper	Tringa glareola Linnaeus, 1758	0.002	0.003	0.117	0 LC			
Order CICONIIFORMES								
27 Asian Openbill	Anastomus ascitans (Beddaert, 1783)	0.71	1.509	0.991	1.649 LC			
28 Asian Woollyneck	Ciconia episcopus (Beddaert, 1783)	0.002	0.125	0.03	0.233	0.53 NT		
29 Black Stork	Ciconia nigra (Linnaeus, 1758)	0.002	0.003	0.233	0 LC			
30 Lesser Adjutant	Leptoptilus javanicus (Horsfield, 1821)	0	0.252	0	0	0.117 VU		
31 Painted Stork	Mycteria leucocephala (Pennant, 1769)	0.002	0.252	0	0	0.117 NT		
Order COLUMBIFORMES								
32 Grey-capped Emerald Dove	Chalcophaps indica (Linnaeus, 1758)	0.008	1.006	0.997	0.932 1.001 LC			
33 Oriental Turtle-dove	Streptopelia orientalis (Latham, 1790)	0.004	0.503	0.005	0.443 0.466 LC			
34 Red Turtle-dove	Streptopelia tranquebarica (Hermann, 1804)	0.004	0.503	0.005	0.554 0.466	0.53 LC		
35 Rock Dove	Columba livia Gmelin, 1789	0.005	0	0	0.466	0 LC		
36 Western Spotted Dove	Spilopelia capensis (Gmelin, 1789)	0.019	0.628	0.008	4.212 1.399 2.53 LC			
Order CORACIIFORMES								
37 Common Kingfisher	Alcedo atthis (Linnaeus, 1758)	0.005	0.628	0.007	0.554 0.583 0.589	LC		
38 Pied Kingfisher	Ceyx erithacus (Linnaeus, 1758)	0	0.252	0.001	0	0.058 0.117 LC		
39 Stork-billed Kingfisher	Pelargopsis capensis (Linnaeus, 1766)	0.002	0	0	0	0.117	0 LC	
40 White-breasted Kingfisher	Halcyon smyrnensis (Linnaeus, 1758)	0.07	0.88	0.012	2.1	0.932 1.532 LC		
Family Coraciidae								
41 Indian Roller	Coracias benghalensis (Linnaeus, 1758)	0.05	0.628	0.007	0.554 0.583 0.589	LC		
Family Meropidae								
42 Asian Green Bee-eater	Merops orientalis Latham, 1802	1.018	2.138	2.013	2.106 1.573 2.121 LC			
43 Blue-tailed Bee-eater	Merops philippinus Linnaeus, 1766	2.038	3.899	3.048	3.215 4.254 3.535 LC			
44 Chestnut-headed Bee-eater	Merops leschenaulti Vieillot, 1817	0.004	0.503	0.005	0.222	0.466 0.353 LC		
Order CUCULIFORMES								
45 Banded Bay Cuckoo	Cacomantis sonneratii (Latham, 1790)	0.002	0.252	0.003	0.222 0.233 0.23	LC		
46 Common Hawk-cuckoo	Hierococcyx varius (Vahl, 1797)	0.002	0.252	0.003	0.222 0.233 0.23	LC		
47 Greater Coucal	Centropus sinensis (Stephens, 1815)	0.002	0.252	0.003	0.222 0.233 0.23	LC		
48 Indian Cuckoo	Cuculus micropterus Gould, 1837	0.003	0.377	0.004	0	0.35 0.176 LC		
Order/Family/ Common name	Zoological name	RA in Winter	RA in Summer	Total RA(%)	IUCN category			
--------------------------	----------------	--------------	--------------	-------------	---------------			
	Protected	Non-protected	Protected	Non-protected				
49 Lesser Coucal	Centropus bengalensis (Gmelin, 1788)	0.008	1.006	0.009	0.776	0.874	0.88	LC
50 Western Koel	Eudynamys scolopaceus (Linnaeus, 1758)	0.002	0	0.003	0	0.233	0	LC

Order FALCONIFORMES

Family Falconidae

| 51 Red-headed Falcon | Falco chicquera Daudin, 1800 | 0.002 | 0 | 0.003 | 0 | 0.233 | 0 | NT |

Order GALLIFORMES

Family Phasianidae

| 52 Black Francolin | Francolinus francolinus (Linnaeus, 1766) | 0.004 | 0.252 | 0.003 | 0.221 | 0.35 | 0.23 | LC |

Order GRUIFORMES

Family Rallidae

| 57 Ruddy-breasted Crane | Zapornia fusca (Linnaeus, 1766) | 0.015 | 0 | 0.017 | 0 | 1.632 | 0 | LC |

Order PASSERIFORMES

Family Alaudidae

| 60 Rufous-winged Lark | Mirafra assamica Horsfield, 1840 | 0.715 | 1.88 | 2.017 | 1.33 | 1.632 | 1.591 | LC |

Family Cisticolidae

| 63 Jungle Prinia | Prinia sylvatica Jerdon, 1840 | 0.005 | 0.628 | 0.005 | 0 | 0.524 | 0.294 | LC |

Family Corvidae

| 65 Grey Treepie | Dendrocitta formosae Swinhoe, 1863 | 0.002 | 0 | 0.003 | 0 | 0.233 | 0 | LC |

Family Dicruridae

| 70 Ashy Drongo | Dicrurus leucophaeus Vieillot, 1817 | 0.005 | 0.628 | 0.007 | 0.55 | 0.583 | 0.58 | LC |

| 71 Black Drongo | Dicrurus macroscepus Vieillot, 1817 | 1.015 | 1.88 | 2.017 | 1.88 | 1.632 | 1.885 | LC |

| 72 Greater Racquet-tailed Drongo | Dicrurus paradiseus (Linnaeus, 1766) | 0.004 | 0.503 | 0.003 | 0.44 | 0.35 | 0.47 | LC |

| 73 Lesser Racquet-tailed Drongo | Dicrurus remifer (Temminck, 1823) | 0.002 | 0.252 | 0.003 | 0.221 | 0.233 | 0.23 | LC |
Order/Family/ Common name	Zoological name	RA in Winter	RA in Summer	Total RA(%)	IUCN category			
	Protected	Non-protected	Protected	Non-protected	Protected	Non-protected		
74 White-bellied Drongo	Dicrurus caerulescens (Linnaeus, 1758)	0	0	0.33	0	0.176	LC	
75 Scaly-breasted Munia	Lonchura punctulata (Linnaeus, 1758)	0.005	0.628	0.007	0.554	0.583	0.589	LC
76 Barn Swallow	Hirundo rustica Linnaeus, 1758	1.023	2.642	2.028	2.771	2.506	2.71	LC
77 Wire-tailed Swallow	Hirundo smithii Leach, 1818	2.026	3.144	3.036	2.771	3.03	2.946	LC
78 Grey-backed Shrike	Lanius tephronotus (Vigors, 1831)	0	0	0.33	0.001	0.176	0.058	LC
79 Common Babbler	Argya coudata (Dumont, 1823)	0.004	0.503	0.005	0.665	0.466	0.589	LC
80 Jungle Babbler	Turdoides striata (Dumont, 1823)	1.014	1.761	2.016	1.33	1.515	1.53	LC
81 Large Grey Babbler	Argya malcolmi (Sykes, 1832)	0	0	0.005	0	0.233	0	LC
82 Black-naped Monarch	Hypothymis azurea (Boddart, 1783)	0.905	0.628	0.807	0.554	0.583	0.589	LC
83 White Wagtail	Motacilla alba Linnaeus, 1758	1.017	1.257	1.215	1.573	1.237	1.233	LC
84 White-browed Wagtail	Motacilla madaraspotensis Gmelin, 1879	0.004	0.503	0.005	0.554	0.466	0.53	LC
85 Black Redstart	Phoenicurus ochruros (Gmelin, 1774)	0	0.629	0	0	0.294	LC	
86 Common Stonechat	Saxicola torquatus (Linnaeus, 1766)	1.017	1.761	1.015	1.108	1.573	1.41	LC
87 Grey Bushchat	Saxicola ferreus Gmelin, 1846	0.002	0.251	0.003	0.221	0.233	0.23	LC
88 Indian Robin	Saxicola fulicata (Linnaeus, 1766)	0.002	0.251	0.003	0.221	0.233	0.23	LC
89 Oriental Magpie-robin	Copsychus saularis (Linnaeus, 1758)	1.017	1.257	0.915	1.219	1.573	1.237	LC
90 Pied Bushchat	Saxicola caprata (Linnaeus, 1766)	0	0	0	0.323	0	0.176	LC
91 White-capped Water-redstart	Phoenicurus leucocephalus (Vigors, 1831)	0.005	0.628	0.001	0.554	0.35	0.589	LC
92 White-tailed Stonechat	Saxicola leucurus (Blyth, 1847)	0.004	0.503	0	0.443	0.233	0.471	LC
93 Black-hooded Oriole	Oriolus xanthornus (Linnaeus, 1758)	0.004	0.503	0.004	1.33	0.408	0.942	LC
94 Chestnut-shouldered Bush-sparrow	Gymnoris xanthocollis (Burton, 1838)	1.015	1.257	1.615	1.662	1.515	1.473	LC
95 House Sparrow	Passer domesticus (Linnaeus, 1766)	1.026	3.144	2.028	5.21	2.681	4.242	LC
96 Baya Weaver	Ploceus philippinus (Linnaeus, 1766)	0.01	1.257	0.016	0.776	1.282	1	LC
97 Black Bulbul	Hypsipetes leucocephalus (Gmelin, 1789)	1.01	1.257	2.015	1.108	1.224	1.17	LC
98 Red-vented Bulbul	Pycnonotus cafer (Linnaeus, 1766)	0.006	0	0.008	0.665	0.699	0.35	LC
99 Red-whiskered Bulbul	Pycnonotus sinensis (Linnaeus, 1766)	1.017	2.012	1.019	1.995	1.748	2	LC
Order/Family/ Common name	Zoological name	RA in Winter	RA in Summer	Total RA(%)	IUCN category			
---------------------------	-----------------	--------------	--------------	-------------	---------------			
	Protected	Non-protected	Protected	Non-protected	Protected	Non-protected		
Family Scotocercidae								
100 Pale-footed Bush-	Hemitesia	0.002	0.251	0.003	0.221	0.233	0.235	LC
warbler	pollidipes	(Blanford,						
		1872)						
Family Sturnidae								
101 Asian-pied Starling	Gracupica	0	0	0.886	0	0.471	LC	
	contra (Linnaeus,							
	1758)							
102 Common Myna	Acridotheres	1.015	1.886	2.019	1.99	1.69	1.944	LC
	tristis	(Linnaeus,						
		1766)						
103 Jungle Myna	Acridotheres	1.012	1.509	1.015	2.1	1.34	1.826	LC
	fuscus (Wagler,							
	1827)							
Family: Zosteropidae								
104 Indian White-eye	Zosterops	0.002	0.251	0.003	0.221	0.233	0.235	LC
	palpebrosus	(Temminck,						
		1824)						
Order PELECANIFORMES								
Family Ardeidae								
105 Cattle Egret	Bubulcus ibis	0.805	0.628	0.005	7.649	0.524	4.36	LC
	(Linnaeus, 1758)							
106 Great White Egret	Ardea alba	0.006	0	0.007	0	0.641	0	LC
	Linnaeus, 1758							
107 Grey Heron	Ardea cinerea	0.004	0.503	0.005	0.443	0.466	0.471	LC
	Linnaeus, 1758							
108 Indian Pond Heron	Ardea grayii	0	0	0.04	0.332	1.748	0.176	LC
	(Sykes, 1832)							
109 Intermediate Egret	Ardea intermedia	0.003	0.628	0.004	0.554	0.35	0.589	LC
	Wagler, 1829							
110 Little Egret	Eretro garzetta (Linnaeus, 1766)	0.004	0.503	0.005	0.997	0.466	0.766	LC
111 Purple Heron	Ardea purpurea Linnaeus, 1766	0.004	0	0.005	0.443	0.466	0.235	LC
Order Threskiornithidae								
112 Red-naped Ibis	Pseudibis	0.004	0.503	0.005	0.11	0.466	0.294	LC
	papillosa (Temminck, 1824)							
Order PICIFORMES								
Family Megalaimidae								
113 Brown-headed Barbet	Psilopagan	0.002	0.251	0.003	0.221	0.233	0.235	LC
	zeylanicus (Gmelin, 1788)							
114 Coppersmith Barbet	Psilopagan	0.005	0.628	0.005	0.55	0.524	0.589	LC
	haemacephalus (Müller, 1776)							
Family Picidae								
115 Brown-capped Pygmy	Picoidecus	0	1.509	0	1.77	0	1.649	LC
Woodpecker	nanus (Vigors, 1832)							
116 Great Slaty	Mulleripicus	0.002	0.251	0.003	0	0.233	0.117	VU
Woodpecker	pulvulentus (Temminck, 1826)							
117 Indian Pygmy Woodpecker	Picoidecus	1.012	0.503	1.012	0	1.224	0.235	LC
	nanus (Vigors, 1832)							
118 Lesser Yellowmite	Picus chlorolophus Vieillot, 1818	0.004	0	0.005	0	0.466	0	LC
119 Greater Flameback	Chrysocolaptes	0.808	0.503	0.78	0.44	0.816	0.471	LC
	guttacristatus (Tickell, 1813)							
120 Yellow-crowned	Leipticus	0.005	0.628	0.004	0.554	0.466	0.589	LC
Woodpecker	mahrottenis (Latham, 1801)							
Order PSITTACIFORMES								
Family Psittacidae								
121 Plum-headed Parakeet	Pittacula	2.021	1.257	2.025	0.997	2.273	1.119	LC
	cyanocephala	(Linnaeus, 1766)						
122 Alexandrine Parakeet	Pittacula	2.019	1.257	0	0.886	1.049	1.06	NT
	eupatria (Linnaeus, 1766)							
123 Rose-ringed Parakeet	Pittacula	1.01	1.509	2.016	1.33	1.282	1.414	LC
	krameri (Scopoli, 1769)							
124 Slaty-headed Parakeet	Pittacula	3.031	4.02	2.02	2.439	2.622	3.18	LC
	himalayana (Lesson, 1832)							
Protected and non-protected wetland birds of Nepal

Adhikari et al.

Authors details: JAGAN NATH ADHIKARI has a keen interest in the ecology, behavior and conservation of birds, large mammals and herpetofauna. Jagan has authored or co-authored more than ten peer-reviewed papers on birds, mammals, and human-wildlife interactions and three textbooks of zoology for undergraduate level. JANAK RAJ KHATIWADA, PhD is a wildlife biologist with extensive field experience in Himalayan region. He has authored or co-authored more than 15 peer-reviewed papers on taxonomy, thermal ecology, composition, distribution, and conservation status of the herpetofauna of different parts of Nepal, India and China. To date, he has described four new species of amphibians for science from Nepal and India. DIPENDRA ADHIKARI is a wildlife biologist with field experience in lowland to highland of Nepal. His research interests include diversity and distribution patterns of small mammals, birds and photographic capture recapture of megafauna such as tigers, elephants. SUMAN SAPKOTA’s research interests include ecology of frogs, bioacoustics, endemic and threatened frogs and effect of climate change on frogs. He has been involved in different researches related to herpetofauna and presented his work in different national and international conferences. He is currently working as Conservation Officer in Friends of Nature (FON), Nepal. BISHNU PRASAD BHATTARAI, PhD is a conservation biologist His research interests include the conservation of large carnivores, their habitats, and prey, biogeography of Himalayan flora and fauna (e.g., birds, mammals, herpetofauna, and orchids), forest and wildlife habitat management. DEEPAK RIJAL, PhD is nationally reputed scholar of biodiversity. Over 30 years Deepak with specialist expertise in ecological adaptation has been actively involved in research and conservation of agriculture, forest, and freshwater resources. He has been a prolific writer and has been the lead and co-author for knowledge products published nationally and internationally. Deepak as a Board Chair of the nationally reputed research and development non-government organization consistently provides strategic direction that contributes to knowledge and benefit to various end-users in Nepal and abroad. LILA NATH SHARMA, PhD is a researcher at ForestAction Nepal. He is an ecologist and undertakes action research related to biodiversity conservation, forest restoration, and invasive species management.

Author’s contributions: JNA designed the study, carried out the fieldwork, analysed the data and prepare draft, JRK designed the study, analysed the data and revised the draft, DA carried out the fieldwork and revised the final draft, SS carried out the fieldwork and revised the final draft, BPB prepared map and revised the final draft, DR revised the final draft, LNS designed the study, helped in fieldwork, analysed and helped for the preparation of manuscript and revised the draft.

Order/Family/ Common name	Zoological name	RA in Winter	RA in Summer	Total RA(%)	IUCN category			
RA in Winter	RA in Summer	Protected	Non-protected	Protected	Non-protected	Protected	Non-protected	
Protected	Non-protected	Protected	Non-protected	Protected	Non-protected			
Protected	Non-protected	Protected	Non-protected	Protected	Non-protected			
Order STRIGIFORMES								
Family Strigidae								
125 Jungle Owlet	Glaucidium radiatum (Tickell, 1833)	0.001	0	0.001	0	0.117	0	LC
126 Spotted Owlet	Athene brama (Temminck, 1821)	0.001	0	0.001	0	0.117	0	LC
Order SULIFORMES								
Family Anhingidae								
127 Oriental Darter	Anhinga melanogaster Pennant, 1769	0.002	0.125	0	0	0.117	0.058	NT
Family Phalacrocoracidae								
128 Great Cormorant	Phalacrocorax carbo (Linnaeus, 1758)	0.01	0.503	0	0.443	0.583	0.47	LC
129 Little Cormorant	Microcarbo niger (Vieillot, 1817)	1.017	1.006	1.019	0.997	1.748	1	LC
www.threatenedtaxa.org

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows users unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

January 2022 | Vol. 14 | No. 1 | Pages: 20311–20538
Date of Publication: 26 January 2022 (Online & Print)
DOI: 10.11609/jott.2022.14.1.20311-20538

Articles

Estimating the completeness of orchid checklists and atlases: a case study from southern India
– Antonio Croce, Pp. 20311–20322

A floristic survey across three coniferous forests of Kashmir Himalaya, India – a checklist
– Ashaq Ahmad Dar, Akhtar Hussain Malik & Narayanaswamy Parthasarathy, Pp. 20323–20345

Associations of butterflies across different forest types in Uttarakhanda, western Himalaya, India: implications for conservation planning
– Arun Pratap Singh, Pp. 20346–20370

Comparison of bird diversity in protected and non-protected wetlands of western lowland of Nepal
– Jagan Nath Adhikari, Janak Raj Khatiwada, Dipendra Adhikari, Suman Sapkota, Bishnu Prasad Bhattacharai, Deepak Rijal & Lila Nath Sharma, Pp. 20371–20386

Local hunting practices and perceptions regarding the distribution and ecological role of the Large Flying Fox (Chiroptera: Pteropodidae: Pteropus vampyrus) in western Sarawak, Malaysian Borneo
– Jayasimil Mohd-Azlan, Joon Yee Yong, Nabila Norshuhadah Mohd Hazzrol, Philoveny Pengiran, Arianti Atong & Sheema Abdul Azit, Pp. 20387–20399

Communications

Macrolithics of Mathikettan Shola National Park, Western Ghats: a preliminary investigation with some new records
– Aswathi Anilkumar, Stephen Sequeira, Arun Christy & S.M. Arsha, Pp. 20400–20405

New distribution record of globally threatened Ocean Turf Grass Halophila beccarii
– Hamisi Ann Risper, Charles M. Warui & Peter Njoroge, Pp. 20461–20468

Distribution of Smooth-coated Otters Lutrogale perspicillata (Mammalia: Carnivora: Mustelidae): in Ratnagiri, Maharashtra, India
– Muzaffar A. Kichhoo, Asha Sohil & Neeraj Sharma, Pp. 20511–20516

Wildlife at the crossroads: wild animal road kills due to vehicular collision on a mountainous highway in northwestern Himalayan region
– Manojita Dash, Sarat Kumar Sahu, Santosh Kumar Gupta, Niranjana Sahoo & Debarat Mohapatra, Pp. 20494–20499

Short Communications

Revival of Eastern Swamp Deer Rucervus duvaucelii ranjitinsihi (Groves, 1982) in Manas National Park of Assam, India
– Nazrul Islam, Aftab Ahmed, Ratnish Barman, Sanatan Deka, Bhaskar Choudhury, Prasanta Kumar Saikia & Jayottishman Deka, Pp. 20488–20493

Trypanosoma evansi infection in a captive Indian Wolf Canis lupus pallipes – molecular diagnosis and therapy
– Manojita Dash, Sarat Kumar Sahu, Santosh Kumar Gupta, Niranjana Sahoo & Debarat Mohapatra, Pp. 20494–20499

View Point

COVID-19 and civil unrest undoing steady gains in karst conservation and herpetological research in Myanmar, and an impediment to progress
– Evan S.H. Quah, Lee L. Grimmer, Perry L. Wood, Jr., Aung Lin & Myint Kyaw Thura, Pp. 20500–20502

Notes

Robiquetia gracilis (Lindl.) Garay—a new record to the flora of Anamalai Hills, Tamil Nadu, India
– B. Subbaiyan, V. Ganesan, P.R. Nimal Kumar & S. Thangaraj Panneerselvam, Pp. 20523–20525

Ipomoea laxiflora H.J. Chowdhery & Deba (Convolvulaceae): new records for the Western Ghats and semiarid regions
– Sachin M. Patil, Ajit M. Vasava, Vinay M. Raole & Kishore S. Rajput, Pp. 20526–20529

Counting the cost: high demand puts Bunium persicum (Boiss.) B.Fedtsch. in jeopardy
– Monika Sharma, Manisha Mathela, Rupali Sharma, Himanshu Bargali, Gurinderjit S. Goraya & Amit Kumar, Pp. 20530–20533

First record of Parasitic Jaeger Stercorarius parasiticus (Aves: Charadriiformes: Stercorariidae) from inland freshwater Inle Lake, Myanmar
– Sai Sein Lin Oo, Myint Kyaw, L.C.K. Yun, Min Zaw Tun, Yar Zar Lw Lay Naung, Soe Naing Aye & Swn C. Renner, Pp. 20534–20536

Book Review

Capparis of India
– V. Sampath Kumar, Pp. 20537–20538