Determine the clustering of cities in Indonesia for disaster management using K-Means by excel and RapidMiner

Rienna Oktarina*, Junita

Industrial Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia 11480.

Email: rienna.oktarina@binus.ac.id

Abstract. The impact of disasters can disrupt people's lives, both natural and non-natural, resulting in human casualties, environmental damage, property loss, and psychological impact. Besides that, disasters that occur can also cause damage to health facilities, worship, education, and damage to homes, both severely, moderately, and lightly. The impact of disasters is so large, so a logistics warehouse is needed to handle the disaster. One of the countries prone to disasters, Indonesia which has the fourth largest population in the world with 34 provinces and 502 regions or cities. The purpose of this research is to determine the clustering of areas in Indonesia with a very high-risk, high-risk, moderate risk, low risk, and very low risk of disaster based on disaster data in Indonesian National Agency for Disaster Management 2010-2019 using K-Means calculations by Excel and the RapidMiner application. The results of both clustering methods are 6 cities that have a very high-risk index, 79 cities that have a high-risk index, 29 cities that have a medium risk index, 19 cities that have a low-risk index, and 369 cities have a very low-risk index. This result can be considered for the construction of logistics warehouses for disaster management and K-Means method also can be used to know the clustering risk.

Keywords: Disaster, Risk, Clustering, K-Means, RapidMiner

1. Introduction

Disaster according to the Indonesian National Agency for Disaster Management (www.bnpb.go.id) is an event or series of events that disrupt people's lives, both natural and non-natural, resulting in human casualties, environmental damage, property loss, and psychological impact. One of the countries prone to disasters is Indonesia with the potential for natural disasters such as floods, landslides, tornadoes, drought, forest and land fires, earthquakes and tsunamis, and non-natural disasters such as fires, transportation accidents, conflicts, or social unrest.

Based on data from the Indonesian National Agency for Disaster Management (www.bnpb.go.id), natural disasters in Indonesia increased from 3,622 natural disaster events in 2018 to 3,768 natural disaster events in 2019. The most frequent disasters include tornadoes 1,370 events, 764 floods, forest, and land fires up to 746 incidents. In general, the trend of disaster events increased by 12% in 2019. The provinces that were most affected by disasters based on 2019 data were Central Java with 914 incidents, West Java with 691 events, East Java with 612 events, Aceh with 180 incidents, South Sulawesi with 164 incidents. Disasters that occur in Indonesia can result in victims being injured, dead, missing, affected, and displaced. Besides that, disasters that occur can also cause damage to health facilities, worship, education, and damage to homes, both severely, moderately, and lightly.
The impact of a disaster is very large, so disaster management is needed. Disaster management can be overcome by building logistics warehouses in areas with the highest potential disaster risk. The location of the warehouse can be determined by using Data Mining. Data mining is an unsupervised classification method that aims at creating groups of an object, or cluster, in such a way that objects in the same cluster are very similar and objects in different clusters are quite distinct [1]. This research utilizes data mining by using a K-Means method for the main purposes of (a) finding the clustering of the risk index of cities in Indonesia by using calculation K-Means and RapidMiner (b) compare both results to determine the areas in Indonesia that have high disaster risk index.

2. Literature Study

2.1. Data Mining
Data mining is a branch of science that combines databases, statistics, artificial intelligence, and machine learning [2]. Data mining is one of the processes undertaken to discover patterns and knowledge from large data [3]. The ultimate goal of data mining is to obtain important information from raw data [1].

2.2. Clustering
One of the techniques usually used in Data Mining is Clustering. Clustering is a technique of grouping data into different groups by their similar measurement. It means data in the same group that is called cluster are more similar to each other than to those in other groups. The Clustering technique mainly used two algorithms such as hierarchical algorithm and partition algorithm. In the hierarchical algorithm, the dataset is divided into smaller subset in a hierarchical manner whereas in partition algorithm dataset is partitioned into the desired number of sets in a single step [4]. The Partitioning method aims to find clusters contained in the data by optimizing the function of specific objectives to improve the quality of the partition [5].

2.3. K-Means
K-Means is an unsupervised learning algorithm that is used to classify the given dataset that is unlabeled. The goal of this algorithm is to find similar groups represented by variable k (number of clusters). The steps of K-Means Clustering are [6]:
1. Randomly select ‘c’ cluster centers.
2. Calculate the distance between each data point and cluster centers.
3. Assign the data point to the cluster center whose distance from the cluster center is a minimum of all the cluster centers.
4. Recalculate the new cluster center using:
 \[Z_t = \frac{1}{\sum_{j=1}^{c_i} x_t} \sum_{j=1}^{c_i} x_t \]
 Where ‘c_i’ represents the number of data points in the cluster.
5. Recalculate the distance between each data point and new obtained cluster centers.
6. If no data point was reassigned then stop, otherwise repeat from step 3.

2.4. RapidMiner
RapidMiner is a data mining software, which can be used as a standalone application for data analysis or be integrated as a data mining engine into other products. This tool has unique features such as (IJCSIS) [7]:
- Data integration, analytical Extract Transform Load (ETL), data analysis, and reporting into a single suite;
- Powerful intuitive Graphical User Interface (GUI) for the design of analytical process;
- Repository for a process, data, and metadata management;
- Metadata transformation which results in inspection available during design;
- Support on-the-fly error detection and quick fixes; and
Compete and flexible with hundreds of methods available for data integration, data transformation, modeling, and visualization.

3. Method
The data used in this study are the natural, non-natural and social disasters of each city in Indonesia from 2010 – 2019. The flowchart is as in figure 1.

Figure 1. Flowchart of K-Means using Microsoft Excel and RapidMiner

The steps of this research are:
1. Collect the disaster data in Indonesia from 2010 – 2019. The data include the number of incidents, damage to health facilities, damage to educational facilities, damage to religious facilities, missing victims, injured victims, displaced victims, dead victims, affected victims,
and severely damaged houses, minor and moderate damage. The data include the natural disasters, non-natural disaster and social disasters. Natural disasters such as earthquakes, tsunamis, volcanic eruptions, floods, drought, tornadoes, landslides, abrasion, forest and land fires. Non-natural disasters such as fire and transportation accidents. Social disasters include conflict and acts of terror.

2. Find the average number of disaster data in Indonesia from 2010 – 2019.

3. Determine the number of clusters. The number of the cluster are divide into 5 clusters, such as very high, high, medium, low, and very low.

4. Choose the method using RapidMiner Software or MicrosoftExcel.

5. If using K-Means by Excel:
 5.1 Set the centroid, such as Cilacap, Central Java as the centroid of a very-high risk cluster, KotaKupang, East Nusa Tenggara as the centroid of the high-risk cluster, Sampang, East Java as the centroid of medium risk cluster, Barito Selatan, Central Kalimantan as the centroid of the low-risk cluster, and Yapen, Papua as the centroid of very-low risk cluster.
 5.2 Calculate the distance between centroid with other object using Euclidean distance.

\[D_{ij} = \sqrt{(x_{1i} - x_{1j})^2 + (x_{2i} - x_{2j})^2 + \cdots + (x_{ki} - x_{kj})^2} \]

Explanation:
- \(D_{ij} \) = Distance of data in \(i \) to centroid \(j \)
- \(x_{ki} \) = \(i \) data to attribute \(k \) data
- \(x_{kj} \) = Centroid \(j \) to attribute \(k \)

5.3 Find the minimum value of each cluster to know to risk clustering.

5.4 After know the risk category then find the average of each data and repeat the 5.2 methods to find the new centroid.

5.5 Analyze the result of the centroid. If the result is changing back to 5.4 but if the result is not changed, compare both results of RapidMiner and K-Means.

6. If using RapidMiner Software:
 6.1 Open the RapidMiner and drag the Read Excel operators.
 6.2 Input the average disaster data in Indonesia from 2010 – 2019.
 6.3 Find K-Means in clustering operators.
 6.4 Input the number of maximum optimization steps two times and click play to compare both of the results.
 6.5 Analyze the result of the centroid. If the result is changed, must increase the number of maximum optimization steps and back to 6.4 but if the result already the same compare both results of RapidMiner and K-Means.

7. Compare both results of RapidMiner and K-Means.

8. Analyze the result, if the result is the same it means the process finish, and if the result is not the same repeat step 4.

4. Result and Discussion

The result of configuration in RapidMiner as Figure 2.

![Figure 2.Configuration RapidMiner](image_url)
The number of the cluster is 5, with the result of clustering is same until the number of maximum optimization is 8 with the result as Figure 3.

Cluster Model

- Cluster 0: 10 items
- Cluster 1: 20 items
- Cluster 2: 369 items
- Cluster 3: 6 items
- Cluster 4: 79 items

Total number of items: 502

Figure 3: Clustering Result in RapidMiner

The result of iteration 1-10 using RapidMiner is shown in Table 1 below.

Table 1. Summary of Iteration 1 - 10 using RapidMiner

Iteration	Cluster 0	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Total
1	33	12	279	60	118	502
2	96	10	146	42	208	502
3	20	42	353	7	80	502
4	18	36	355	6	87	502
5	18	32	358	6	88	502
6	18	29	362	6	87	502
7	18	29	366	6	83	502
8	19	29	369	6	79	502
9	19	29	369	6	79	502
10	19	29	369	6	79	502

The result of iteration by using Excel is optimized when 11 iterations and show in table 2 below.

Table 2. Summary of Iteration 1 - 12 using K-Means Excel

Iteration	Very High	High	Medium	Low	Very Low	Total
1	41	71	17	232	141	502
2	19	60	51	141	231	502
3	12	71	52	99	264	502
4	7	81	47	74	293	502
5	6	87	40	58	311	502
6	6	89	34	36	337	502
7	6	89	30	27	350	502
8	6	84	29	24	359	502
9	6	84	29	24	359	502
10	6	84	29	24	359	502
11	6	79	29	19	369	502
12	6	79	29	19	369	502

From Tables 1 and 2, the result of iteration was different by using RapidMiner and K-Means Excel because the centroid used in Excel is random, so more iteration is needed to optimize the clustering. It different from RapidMiner, RapidMiner just needs input the data, find the K-Means operator, and input the number of maximum optimization steps. Below are the percentage result of clustering using a pie chart as shown in Figure 4.
Based on the result in the pie chart, the highest percentage is 73% of cities in Indonesia has very-low risk, 16% of cities in Indonesia has high risk, 6% of cities in Indonesia has medium risk, 4% of cities in Indonesia has low risk and 1% of cities in Indonesia has very high risk.

From the K-Means Excel calculation and RapidMiner, the cluster of each city can be found with the result as shown in table 3 up to table 7.

Table 3. Very High-Risk Cluster

No	City	Clustering Excel	Clustering Rapid Miner
1	BANDUNG	Very high	Very high
2	BANDUNG BARAT	Very high	Very high
3	BIMA	Very high	Very high
4	GORONTALO UTARA	Very high	Very high
5	LOMBOK TENGAH	Very high	Very high
6	RUMBUGANG	Very high	Very high

Table 4. High-Risk Cluster

No	City	Clustering Excel	Clustering Rapid Miner
7	ACEH BARAT	High	High
8	ACEH JAYA	High	High
9	ACEH SELATAN	High	High
10	ACEH SINGKIL	High	High
11	ACEH UTARA	High	High
12	ALOR	High	High
13	BANDAR LAMPUNG	High	High
14	BANTAR	High	High
15	BELOU	High	High
16	BONTANDIRING	High	High
17	BANGIRI	High	High
18	BEKASARI	High	High
19	BENGKAL	High	High
20	BENGKAPAN	High	High
21	KAIMA	High	High
22	KALENG	High	High
23	KAMAS	High	High
24	KARANGAN	High	High
25	KEPATUKAN	High	High
26	KEPING	High	High
27	KERIBUN	High	High
28	KETAPANG	High	High
29	KIRING	High	High
30	KOTA BARU	High	High
31	KOTA BARU	High	High
32	KOTA BENGKAL	High	High
33	KOTA BULU	High	High
34	KOTA KOBAN	High	High
35	KOTA KUNING	High	High
36	KOTA PASIRUAN	High	High
37	KUANTAN SENGING	High	High
38	KUPANG	High	High
39	KUTAI BARAT	High	High
40	KUTAI BANGAN	High	High
41	LAMPUNG SELATAN	High	High
42	LANDAK	High	High
43	LANGKAT	High	High
44	LEBARAN	High	High
45	KAWU UTARA	High	High
46	KEDANG	High	High

Table 5. High-Risk Cluster (Continue)

No	City	Clustering Excel	Clustering Rapid Miner
47	MANGGIS	High	High
48	MANGGIS TIMUR	High	High
49	MAMAROS	High	High
50	MURI BAYA	High	High
51	MURIBAYA	High	High
52	NAGA KOTO	High	High
53	NIAS UTARA	High	High
54	OGAN RAYA	High	High
55	PANGANDAAN	High	High
56	PATTI	High	High
57	PEKALONGAN	High	High
58	PEMAUTAI	High	High
59	PONTIANAK	High	High
60	ROKOKAN	High	High
61	SRIWORO	High	High
62	SRIWORO	High	High
63	SRIWORO	High	High
64	TAMAN SARI	High	High
65	TAMAN SARI	High	High
66	TAMAN SARI	High	High
67	TAMAN SARI	High	High
68	TAMAN SARI	High	High
69	TAMAN SARI	High	High
70	TAMAN SARI	High	High
71	TAMAN SARI	High	High
72	TAMAN SARI	High	High
73	TAMAN SARI	High	High
74	TAMAN SARI	High	High
75	TAMAN SARI	High	High
76	TAMAN SARI	High	High
77	TAMAN SARI	High	High
78	TAMAN SARI	High	High
79	TAMAN SARI	High	High
80	TAMAN SARI	High	High
81	TAMAN SARI	High	High
82	TAMAN SARI	High	High
83	TAMAN SARI	High	High
84	TAMAN SARI	High	High
85	TAMAN SARI	High	High
86	TAMAN SARI	High	High
87	TAMAN SARI	High	High
88	TAMAN SARI	High	High
89	TAMAN SARI	High	High
90	TAMAN SARI	High	High
91	TAMAN SARI	High	High
92	TAMAN SARI	High	High
93	TAMAN SARI	High	High
94	TAMAN SARI	High	High
95	TAMAN SARI	High	High
96	TAMAN SARI	High	High
97	TAMAN SARI	High	High
98	TAMAN SARI	High	High
99	TAMAN SARI	High	High
100	TAMAN SARI	High	High

Figure 4. Percentage Clustering Result in Pie Chart

![Pie Chart](image-url)
Table 6. Medium Risk Cluster

No	City	Clustering Excel	Clustering Rapid Miner
1	BENGKALIS	Medium	Medium
2	BIDARA	Medium	Medium
3	BOGOR	Medium	Medium
4	BOHONEGORO	Medium	Medium
5	CANDI	Medium	Medium
6	CIREBON	Medium	Medium
7	GUNUNG KEUL	Medium	Medium
8	JAKARTA BARAT	Medium	Medium
9	JAKARTA TIMUR	Medium	Medium
10	KAMPAR	Medium	Medium
11	KARAWANG	Medium	Medium
12	KEBUMEN	Medium	Medium
13	KOTA CIMAH	Medium	Medium
14	LOMBOK TIMUR	Medium	Medium
15	LOMBOK UTARA	Medium	Medium
16	MANGGARAI BARAT	Medium	Medium
17	MEDAN	Medium	Medium
18	MUSI RAWAS UTARA	Medium	Medium
19	NGADA	Medium	Medium
20	PAMEKASAN	Medium	Medium
21	PANDEGLANG	Medium	Medium
22	PASURUAN	Medium	Medium
23	SABU RAJUA	Medium	Medium
24	SEMARANG	Medium	Medium
25	SUMBA BARAT	Medium	Medium
26	SUMBA TIMUR	Medium	Medium
27	SUMBAWA	Medium	Medium
28	TOLI TOLI	Medium	Medium
29	TUBAN	Medium	Medium

Table 7. Low-Risk Cluster

No	City	Clustering Excel	Clustering Rapid Miner
1	BIREUEN	Low	Low
2	BOYOLALI	Low	Low
3	BONGGALA	Low	Low
4	HALMAHERA SELATAN	Low	Low
5	JEPARA	Low	Low
6	KARO	Low	Low
7	KLATEN	Low	Low
8	MAGELANG	Low	Low
9	MALUKU TENGAH	Low	Low
10	NAGAN RAYA	Low	Low
11	PALU	Low	Low
12	PENSIR SELATAN	Low	Low
13	PODE JAYA	Low	Low
14	SERAM BAGIAN TIMUR	Low	Low
15	SLEMBEN	Low	Low
16	SINTANG	Low	Low
17	SLEMAN	Low	Low
18	TARAKAN	Low	Low

List of Cities with the result of a very low-risk index based on K-Means Excel and RapidMiner as shown in table 8.

Table 8. Very Low-Risk Cluster

No	City	Excel	Rapid Miner
1	BENGKALIS	Medium	Medium
2	BIDARA	Medium	Medium
3	BOGOR	Medium	Medium
4	BOHONEGORO	Medium	Medium
5	CANDI	Medium	Medium
6	CIREBON	Medium	Medium
7	GUNUNG KEUL	Medium	Medium
8	JAKARTA BARAT	Medium	Medium
9	JAKARTA TIMUR	Medium	Medium
10	KAMPAR	Medium	Medium
11	KARAWANG	Medium	Medium
12	KEBUMEN	Medium	Medium
13	KOTA CIMAH	Medium	Medium
14	LOMBOK TIMUR	Medium	Medium
15	LOMBOK UTARA	Medium	Medium
16	MANGGARAI BARAT	Medium	Medium
17	MEDAN	Medium	Medium
18	MUSI RAWAS UTARA	Medium	Medium
19	NGADA	Medium	Medium
20	PAMEKASAN	Medium	Medium
21	PANDEGLANG	Medium	Medium
22	PASURUAN	Medium	Medium
23	SABU RAJUA	Medium	Medium
24	SEMARANG	Medium	Medium
25	SUMBA BARAT	Medium	Medium
26	SUMBA TIMUR	Medium	Medium
27	SUMBAWA	Medium	Medium
28	TOLI TOLI	Medium	Medium
29	TUBAN	Medium	Medium
Table 8. Very Low-Risk Cluster (Continue)

No	City	Cluster	Risk	Year	Type of Disaster	No	City	Cluster	Risk	Year	Type of Disaster
61	BOGOR	413	2.2	2010	1.6	62	KOTA DAMAK	428	2.6	2011	1.8
63	BENGKULUEN	435	2.6	2011	2.0	64	SUMSEL	448	2.8	2012	2.2
65	BANTUL	457	2.4	2012	2.4	66	MADIUN	468	2.4	2013	2.4
67	ENDOG	479	2.2	2013	2.2	68	MESTER	490	2.1	2014	2.1

K-Means method can be used for analyzing the risk of each city besides the calculation of Indonesia’s Disaster Risk Index. The result between Excel and RapidMiner compared with Indonesia’s Disaster Risk Index is different because RapidMiner and Excel use the data from 2010-2019 and the Indonesia’s Disaster Risk Index uses the data from 2015-2018, and the data in Indonesia’s Disaster Risk Index consists of hazards per type of disaster, casualties per type of disaster, and rupiah losses per type of disaster.
disaster, environmental damage (ha) per type of disaster and local government capacity per city. It
different with the K-Means that use the data of the number of incidents, damage to health facilities,
damage to educational facilities, damage to religious facilities, missing victims, injured victims,
displaced victims, dead victims, affected victims, and severely damaged houses, minor and moderate
damage. Besides that, the data of disaster that use are different in Indonesia’s Disaster Risk Index
include the data of floods, earthquakes, tsunamis, volcanic eruptions, forest and land fires, landslides,
abrasion, drought, extreme weather. In K-Means method use the natural disasters, non-natural disaster
and social disasters. Natural disasters such as earthquakes, tsunamis, volcanic eruptions, floods,
drought, tornadoes, landslides, abrasion, forest and land fires. Non-natural disasters such as fire and
transportation accidents. Natural disasters include conflict and acts of terror.

The K-Means and the calculation of Indonesia’s Disaster Risk Index has own strength and
weakness. The K-Means method is more efficient than the calculation of Indonesia’s Disaster Risk
Index because it only takes historical data from disaster events and it doesn’t take long time to find the
risk if the data is needed urgent. But in this case, the K-Means didn’t analyse from the rupiah losses
per type of disaster and local government capacity per city. The strength of Indonesia’s Disaster Risk
Index analyse from the rupiah losses per type of disaster and local government capacity per city but
the data Indonesia’s Disaster Risk Index is only update every five years. The K-Means method can be
used as another alternative to find the risk clustering from other perspective.

5. Conclusion
The clusters are divided into 5, which are very high, high, medium, low, and very low. In this case,
clustering with RapidMiner is recommended because using RapidMiner is faster than Excel to find the
result. In the RapidMiner just need to input the data and K-Means operators until the iteration is
optimized. The number of iteration in RapidMiner is 8 and K-Means Excel is 11. The difference of the
number iteration is because the centroid used in Excel is random, so more iteration is needed to
optimize the clustering.

The result of the cluster is the same both K-Means Excel and RapidMiner with 6 cities that have a
very high-risk index, 79 cities with high-risk, 29 cities with medium risk, 19 cities with low-risk, and
369 cities with very low-risk. The percentage of each risk is the highest is 73% of cities in Indonesia
has very-low risk, 16% of cities in Indonesia has high risk, 6% of cities in Indonesia has medium risk,
4% of cities in Indonesia has low risk and 1% of cities in Indonesia has very-high risk. So, this result
can become another alternative for clustering the risk of cities in Indonesia and the government or
Indonesian National Agency for Disaster Management can consider this result for disaster
management.

References
[1] Bansal A, Sharma M and Goel S 2017 Improved K-Mean Clustering Algorithm for Prediction
Analysis using Classification Technique in Data Mining *Int. J. Comput. Appl.* 157 35–40
[2] Ramadhani M and Fitriah D 2019 Implementation of Data Mining Analysis to Determine the
Tuna Fishing Zone Using DBSCAN Algorithm *9* 706
[3] Virk M and Chauhan V Big Data and Shipping-managing Vessel Performance *2* 73–5
[4] Yadav A and Dhingra S 2016 An Enhanced K-Means Clustering Algorithm to Remove Empty
Clusters *4* 901
[5] Ad zipa K, Bustaman A, Aldila D 2019 The implementation of K-Means partitioning algorithm
in HOPACH clustering method *1* 243
[6] Kumar S and Kaur S 2017 Modified K-Means Clustering Algorithm for Disease Prediction
Abstract : *3* 197
[7] Zainal K, Sulaiman N, Jali M 2015 An Analysis of Various Algorithms For Text Spam
Classification and Clustering Using RapidMiner and Weka *13* 4