Research Article

Yuri V. Muranov and Anna Szczepkowska*

Path homology theory of edge-colored graphs

https://doi.org/10.1515/math-2021-0049
received August 4, 2020; accepted May 6, 2021

Abstract: In this paper, we introduce the category and the homotopy category of edge-colored digraphs and construct the functorial homology theory on the foundation of the path homology theory provided by Grigoryan, Muranov, and Shing-Tung Yau. We give the construction of the path homology theory for edge-colored graphs that follows immediately from the consideration of natural functor from the category of graphs to the subcategory of symmetrical digraphs. We describe the natural filtration of path homology groups of any digraph equipped with edge coloring, provide the definition of the corresponding spectral sequence, and obtain commutative diagrams and braids of exact sequences.

Keywords: path homology groups, edge coloring, edge-colored path, homotopy-colored graphs, spectral sequence

MSC 2020: 05C15, 05C20, 05C25, 05C38, 05C76, 18G60, 18G40, 55U99, 57M15

1 Introduction

In this paper, we continue to study the homological properties of colored digraphs and graphs. It should be mentioned that, on the basic concepts of the path homology theory introduced in [1–3], the collection of path homology theories for vertex colored (di)graphs have been already constructed in [4].

The path homology theory is a homology theory for digraphs that computes the simplicial homology of a finite simplicial complex S if applied to its incidence digraph $G = G_S$ defined in the following way (see [1,3]). For a finite simplicial complex S, let V be the set of its simplexes. Consider a digraph $G = (V, E)$ with the set of vertices V as above and the set of arrows E such that $\sigma \to \tau$ is an arrow if and only if $\tau \subset \sigma$. Then the path homology of the digraph G is naturally isomorphic to the simplicial homology of the simplicial complex S. The cohomology theory of digraphs that is dual to the path homology theory was introduced in previous studies [5–8]. This cohomology theory was motivated by the physical applications of discrete mathematics. This theory provides a differential calculus on digraphs and discrete sets which are considered as discretizations of topological spaces. Thus, various physical theories can be formulated on a discrete set analogous to the continuum case.

Recently, the path homology theory has been used in applications of the persistent homology to the various types of networks (see, for e.g., [9,10]). So in [10] the directed networks related to applications are considered and efficient algorithms for computing one-dimensional path homology and its persistent version are developed.

* Corresponding author: Anna Szczepkowska, Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Słoneczna 54, 10-710, Olsztyn, Poland, e-mail: anna.szczepkowska@matman.uwm.edu.pl

Yuri V. Muranov: Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Słoneczna 54, 10-710, Olsztyn, Poland, e-mail: muranov@matman.uwm.edu.pl

Open Access. © 2021 Yuri V. Muranov and Anna Szczepkowska, published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
In what follows, we provide the category of edge-colored digraphs together with the notion of the homotopy and the homotopy category of edge-colored digraphs. For any edge-colored digraph, we define the collection of edge-colored path homology groups and indicate the possibility of the functorial passage from the category of graphs to the subcategory of symmetrical digraphs. We also prove the colored homotopy invariance of the colored path homology and describe its algebraic properties. More precisely, we discuss the natural filtration of the path homology groups of the edge-colored digraph, construct commutative diagrams and braids of exact sequences for those homology groups, and describe the spectral sequence that is associated with the filtration. This paper contains many examples to illustrate the non-triviality of edge-colored homology groups. We discuss also possible applications of the constructed theory.

2 Preliminaries

In this section, for the sake of convenience, we review some basic notions of various categories of digraphs, graphs (see [11–13]), and the path homology theory (see [1–3]).

A graph \(G = (V, E) \) is a nonempty set \(V \) of objects called vertices together with a set \(E \) of non ordered pairs \(\{v, w\} \in E \) of distinct vertices \(v, w \in V \) called edges.

A directed graph or simply a digraph \(G = (V, E) \) is a nonempty set \(V \) of objects called vertices together with a set \(E \) of ordered pairs of distinct vertices \(v, w \in V \) called directed edges or arrows. A pair \(\{v, w\} \in E \) is denoted \(v \to w \), whereas the vertices \(v \) and \(w \) are called, respectively, the origin and the end of the given arrow. Accordingly, we write \(v = \text{orig}(v \to w), w = \text{end}(v \to w) \).

Two different edges (arrows) \(e, e' \in E_G \) of a graph (digraph) \(G \) are called incident if they have at least one common vertex.

Let \(G = (V, E) \) be a graph. The corresponding symmetric digraph \(\overline{G} = (\overline{V}, \overline{E}) \) is built from the same set of vertices \(\overline{V} = V \) but each edge \(\{v, w\} \in E \) gives rise to two arrows, namely \((v \to w), (w \to v) \in \overline{E}\). Let \(G = (V_G, E_G) \) and \(H = (V_H, E_H) \) be any graphs. A mapping \(f : G \to H \) between two graphs is defined as a mapping \(f : V_G \to V_H \) such that for any edge \(\{v, w\} \in E_G \), we have either \(f(v), f(w) \in E_H \) or \(f(v) = f(w) \in V_H \).

The mapping \(f \) is called a homomorphism if \(f(v), f(w) \in E_H \) for any \(\{v, w\} \in E_G \).

Let \(G = (V_G, E_G) \) and \(H = (V_H, E_H) \) be any digraphs this time. A digraph mapping \(f : G \to H \) (or simply a mapping) from a digraph \(G \) to a digraph \(H \) is a mapping \(f : V_G \to V_H \) such that for any arrow \((v \to w) \in E_G \), we have either \(f(v) \to f(w) \in E_H \) or \(f(v) = f(w) \in V_H \). The mapping \(f \) is called a homomorphism if \(f(v) \to f(w) \in E_H \) for any \((v \to w) \in E_G \).

Having in mind all the considerations above, we point out that we are thus provided with the following categories: the category \(\mathcal{G} \) of graphs and graph mappings, the subcategory \(\mathcal{NG} \) of \(\mathcal{G} \) with the same objects and with the morphisms given by homomorphisms, the category \(\mathcal{D} \) of digraphs and digraph mappings, and the subcategory \(\mathcal{ND} \) of \(\mathcal{D} \) with the same objects and with the morphisms given by homomorphisms. It is easy to check that the passing from a graph \(G \) to a symmetric digraph \(\overline{G} \) naturally defines the mapping of morphisms and gives the functors \(S : \mathcal{G} \to \mathcal{D} \) and \(\mathcal{NS} : \mathcal{NG} \to \mathcal{ND} \).

Let \(G \) and \(H \) be any graphs. We define their Box product \(G \square H \) as a graph with the set of vertices \(V_G \square H = V_G \times V_H \) and the set of edges \(E_G \square H \) such that \(\{(x, y), (x', y')\} \in E_G \square H \) if and only if either \(x = x' \) and \(y = y' \) or \(x, x' \in E_G \) and \(y = y' \).

We define the Box product \(G \square H \) of two digraphs \(G \) and \(H \) in a similar fashion, namely as a digraph with the set of vertices \(V_G \square H = V_G \times V_H \) and the set of edges \(E_G \square H \) such that there is an arrow \((x, y) \to (x', y') \) \in E_G \square H \) if and only if either \(x = x' \) and \(y \to y' \) or \(x \to x' \) and \(y = y' \).

Fix \(n \geq 0 \). Denote by \(J_n \) a graph with the set of vertices \(\{0, 1, \ldots, n\} \) and the set of edges \(\{i, i + 1\} \) \(0 \leq i \leq n - 1 \). From now on \(J_n \) will be called a segment graph. Denote by \(I_n \) any digraph with the set of vertices \(\{0, 1, \ldots, n\} \) and the set of edges in which there is exactly one of the arrows: \(i \to i + 1 \) or \(i + 1 \to i \) for \(0 \leq i \leq n - 1 \). Such \(I_n \) will be called a segment digraph.

Two graph mappings \(f_0, f_1 : G \to H \) are called homotopic and denoted accordingly \(f_0 = f_1 \) if there exists a segment graph \(J_n \) and a mapping \(F : G \square J_n \to H \) called a homotopy between \(f_0 \) and \(f_1 \) such that

\[
F|_{G \square \{0\}} = f_0 : G \square \{0\} \to H, \quad F|_{G \square \{n\}} = f_1 : G \square \{n\} \to H.
\]
Two graph homomorphisms are called \textit{strongly homotopic} if the homotopy between them is also a homomorphism.

Two digraph mappings \(f_0, f_1 : G \to H \) are called \textit{homotopic} and denoted \(f_0 \sim f_1 \) if there exists a segment digraph \(I_n \) together with a mapping \(F : G \square I_n \to H \) called a \textit{homotopy} between \(f_0 \) and \(f_1 \) such that
\[
F|_{G \square \{0\}} = f_0 : G \square \{0\} \to H, \quad F|_{G \square \{n\}} = f_1 : G \square \{n\} \to H.
\]

Two digraph homomorphisms are called \textit{strongly homotopic} if the homotopy between them is a homomorphism. In the case of homotopy \(F \) for which \(n = 1 \), the map \(F \) is called the \textit{one-step homotopy of (di)graphs}.

Now we give a brief explanation of the notion of homotopy in the case of graphs that is similar to the case of digraph given in [2]. There exists a \textit{one-step homotopy} \(F \) between graph mappings \(f : G \to H \) and \(g : G \to H \) if and only if either \(f(x) = g(x) \in V_G \) or \(\{ f(x), g(x) \} \in E_H \) for every \(x \in V_G \). It follows that two graph mappings \(f \) and \(g \) are homotopic if there is a finite sequence of graph mappings \(f = f_0, f_1, \ldots, f_n = g \) from \(G \) to \(H \) such that \(f_k \) and \(f_{k+1} \) are one-step homotopic (see also Examples 3.6, 3.7, and 3.9).

This time, it is easy to check that we are provided with the following categories: the category \(\mathcal{G}' \) of graphs and classes of homotopic mappings, the category \(NG' \) with the same objects and with the morphisms given by the classes of strongly homotopic homomorphisms, the category \(D' \) of digraphs and classes of homotopic mappings, and the category \(ND' \) with the same objects and with the morphisms given by the classes of strongly homotopic homomorphisms.

It follows easily from [2, Proposition 6.5] that the functors \(S \) and \(NS \) preserve the relation to be homotopic and hence define functors \(S' : \mathcal{G}' \to D' \) and \(NS' : NG' \to ND' \).

Now we turn our attention to the path homology groups of any (di)graph and provide necessary definitions. Let \(G = (V, E) \) be a digraph and \(R \) be a commutative ring.

An \textit{elementary} \(p \)-\textit{path} denoted \(e_{i_0 \ldots i_p} \) is defined as any sequence \(i_0, \ldots, i_p \) of vertices. Let \(\Lambda_p(V, R) \) be a free \(R \)-module generated by all elementary \(p \)-paths. The elements of \(\Lambda_p \) are called \textit{\(p \)-paths}. We set \(\Lambda_{-1} = 0 \) and define the \textit{boundary} operator \(\partial : \Lambda_p \to \Lambda_{p-1} \) in the following way:
\[
\partial e_{i_0 \ldots i_p} = \sum_{q=0}^{p} (-1)^q e_{i_0 \ldots i_{q-1} i_q \ldots i_p} \quad \text{for } p \geq 1, \\
0 \quad \text{for } p = 0.
\]
The operator defined above has the property \(\partial^2 = 0 \).

For \(p \geq 1 \), let \(I_p = I_p(V) \) be the submodule of \(\Lambda_p \) that is generated by all elementary paths for which two consecutive vertices are equal. Set \(I_0 = I_1 = 0 \). Then \(\partial(I_p) \subset I_{p-1} \) and we obtain a chain factor complex \(\mathcal{R}_p = \mathcal{R}_p(V, R, \Lambda_p I_p) \) with the differential that is induced by \(\partial \). The elements of this module are called \textit{regular paths} and \textit{regular elementary paths} for basic elements. Now we return to the consideration of the digraph \(G = (V, E) \). For \(p \geq 1 \), a regular elementary path \(e_{i_0 \ldots i_p} \) is called \textit{allowed} if \((i_k \to i_{k+1}) \) is an arrow of the digraph \(G \) for \(0 \leq k \leq p - 1 \). For \(p \geq 0 \), let \(\mathcal{A}_p = \mathcal{A}_p(G, R) \) be a submodule of \(\mathcal{R}_p(V, R) \) that is generated by all the allowed elementary \(p \)-paths and set \(\mathcal{A}_{-1} = 0 \). Define a submodule \(\Omega_p = \Omega_p(G, R) = \{ v \in \mathcal{A}_p : \partial v \in \mathcal{A}_{p-1} \} \) of the module \(\mathcal{A}_p \). The submodule \(\Omega_p \) consists of all linear combinations \(v \) of allowed paths for which \(\partial v \) is a linear combination of allowed paths as well. Having all the above in mind, we obtain a chain complex \(\Omega(G, R) \). The homologies of this chain complex are called \textit{path homologies of the digraph} \(G \) and denoted by
\[
H_p(G, R) = \ker \partial|_{\Omega_p}/\text{im}\partial|_{\Omega_{p-1}}.
\]

For a graph \(G \) we define the \textit{path homology} \(H_p(G, R) \) setting \(H_p(G, R) = H_p(\bar{G}, R) \), where \(\bar{G} \) denotes the corresponding symmetric digraph.

For a digraph mapping \(f : G \to H \), define for every \(p \geq 0 \) the induced map \(f_* : \Lambda_p V_G \to \Lambda_p V_H \) given on the basic elements by the rule
\[
f_* (e_{i_0 \ldots i_p}) = e_{f(i_0) \ldots f(i_p)}.
\]
The map \(f \) is a morphism of chain complexes and it is clear that \(f_\ast (I_p(V_G)) \subset I_p(V_H) \) [2]. Hence, we obtain an induced chain map of quotient chain complexes \(f_\ast : \mathcal{R}_\ast (V_G) \to \mathcal{R}_\ast (V_H) \) that is defined on basic elements by the rule

\[
f_\ast (e_{i_0 \ldots i_p}) = \begin{cases} e_{f(i_0) \ldots f(i_p)}, & \text{if } e_{f(i_0) \ldots f(i_p)} \text{ is regular}, \\ 0, & \text{if } e_{f(i_0) \ldots f(i_p)} \text{ otherwise}. \end{cases}
\]

(2.2)

It follows from (2.2) that if a path \(e_{i_0 \ldots i_p} \in \mathcal{A}_p(G) \), then \(f_\ast (e_{i_0 \ldots i_p}) \) is \(0 \in \mathcal{A}_p(H) \) or is allowed. Hence, \(f_\ast (\mathcal{A}_p(G)) \subset \mathcal{A}_p(H) \). Now the standard line of arguments provides a morphism of chain complexes \(\Omega_\ast (G) \to \Omega_\ast (H) \) and a homomorphism of homology groups \(H_\ast (G, R) \to H_\ast (H, R) \).

Thus, the path homology groups of digraphs and graphs are functorial and these groups are homotopy invariant [2].

3 Categories of edge-colored digraphs and graphs

In this section, we introduce several categories of edge-colored graphs and digraphs, describe their basic properties, and provide examples. In the next section, we shall use these categories for constructing the collection of edge-colored path homology theories.

An edge coloring of a graph (digraph) \(G = (V_G, E_G) \) is given by an assignment of a color to each edge (arrow) \(e \in E_G \). An edge coloring is called proper if incident edges (arrows) have distinct colors. An edge coloring is called \(k \)-improper if for any edge (arrow) \(e \in E_G \) there exist at most \(k \) incident edges (arrows) having the same color as \(e \). An edge coloring that uses \(k \) colors is called a \(k \)-edge coloring.

An edge coloring of a (graph) digraph \(G = (V_G, E_G) \) can be considered as a pair \((G, \phi) \), where \(\phi : E_G \to \mathbb{N} \) is a function. For the \(k \)-edge coloring, we assume that \(\phi : E_G \to \{1, \ldots, k\} \). In what follows, we shall consider proper coloring as the \(k \)-improper coloring with \(k = 0 \). Since from now on only edge colorings will be considered, the word edge will be accordingly omitted.

Definition 3.1. Let \((G, \phi) \) and \((H, \psi) \) be any colored graphs (digraphs). A graph (digraph) mapping \(f : G \to H \) is called a colored morphism (or simply a morphism) if \(\psi(f(e)) = \phi(e) \) for all \(e \in E_G \) with \(f(e) \in E_H \).

Thus, we obtain the following categories: the category \(CG \) of colored graphs and the colored morphisms, the subcategory \(CNG \) with the same objects and with the colored morphisms that are homomorphisms, the category \(C\mathcal{D} \) of colored digraphs and the colored morphisms, and the subcategory \(C\mathcal{N\mathcal{D}} \) with the same objects and with the colored morphisms given by homomorphisms.

For a colored graph \((G, \phi) \), we define a colored symmetric digraph \((\bar{G}, \bar{\phi}) \) by setting \(\bar{\phi}(v \to w) = \phi(w \to v) = \phi(v, w) \). Thus, as in Section 2, we obtain the functors \(CS : CG \to C\mathcal{D} \) and \(CNS : CNG \to C\mathcal{N\mathcal{D}} \).

For a colored (di)graph \((G, \phi) \), we can consider this (di)graph \(G \) without any coloring. Any morphism of colored (di)graphs \(f : (G, \phi) \to (H, \psi) \) is, in particular, a (di)graph mapping and we obtain a collection of forgetful functors from the categories of colored (di)graphs to the corresponding categories of (di)graphs.

Example 3.2. Consider the following colored digraph \(G \):

\[
a \rightarrow b \leftarrow x \rightarrow y \rightarrow c
\]

Let the mapping \(f : G \to G \) be given on the set of vertices by

\[
f(a) = a, \quad f(b) = f(c) = b, \quad f(x) = f(y) = x.
\]

Then \(f \) is a morphism of colored digraphs.
For a colored digraph \((G, \varphi)\), define a function \(\kappa\) which returns the number of different colors that are being used for the coloring of arrows in a non empty set \(A\) of arrows in \(E_G\). For every allowed path \(v = e_{i_0} \ldots e_{i_p}\) in the colored digraph \((G, \varphi)\), we define \(\kappa(v) = 0\) for \(p = 0\) and, for \(p \geq 1\), we put \(\kappa(v) = \kappa(A)\), where \(A\) consists of arrows \(i_0 \to i_1, \ldots, i_{p-1} \to i_p\) of the path \(v\). An allowed regular elementary path \(v = e_{i_0} \ldots e_{i_p}\) is called \(s\)-colored if \(\kappa(v) = s\).

Let \(f : (G, \varphi) \to (H, \psi)\) be a colored morphism. By (2.2) and Definition 3.1, for a regular path \(v = e_{i_0} \ldots e_{i_p}\) in the digraph \(G\) we have \(\kappa(f_i(v)) = \kappa(v)\) if the path \(f_i(v)\) is regular. In the opposite case of the non-regular path \(f_i(v)\), we set \(\kappa(f_i(v)) = 0\). Then we have \(\kappa(f_i(v)) \leq \kappa(v)\) for any allowed path \(v = e_{i_0} \ldots e_{i_p}\) in the colored digraph \((G, \varphi)\).

Now we introduce the notion of a \(s\)-colored homotopy between two colored morphisms of digraphs. Denote by \(I\) the segment digraph \(I = (0 \to 1)\). For any allowed elementary \(p\)-path \(v = e_{i_0} \ldots e_{i_p}\) in a colored digraph \((G, \varphi)\), define an allowed elementary \((p + 1)\)-path \(\tilde{v}_k (0 \leq k \leq p)\) in \(G \Box I\) by \(\tilde{v}_k = e_{i_0} \ldots e_{i_k} \ldots e_{i_p}\), where \(i_j\) denotes the vertex \((i_j, 0) \in G \Box \{0\}\) and \(i'_j\) denotes the vertex \((i_j, 1) \in G \Box \{1\}\). These notions are well defined since we have the natural identifications \(G = G \Box \{0\}\) and \(G = G \Box \{1\}\). For the product \(G \Box I\), we define a coloring \(\varphi_i\) of the subgraph \(G \Box \{i\} \subset G \Box I\) \((i = 0, 1)\) by setting \(\varphi_i(v, i) \to (w, i) = \varphi(v \to w)\), where \((v, i) \to (w, i) \in E_G \Box \{i\}\). Denote by \(E_i\) the set of edges of the digraph \(G \Box I\) that have the form \(((v, 0) \to (v, 1))\) with \(v \in V_G\). Any coloring \(\varphi_{[0,1]} : E_{[0,1]} \to \mathbb{N}\) of the set of edges \(E_{[0,1]}\) together with the colorings \(\varphi_i\) induces the coloring of the digraph \(G \Box I\) which we denote \(\Phi_{[0,1]} : E_G \Box I \to \mathbb{N}\).

Definition 3.3. Let \(f_0, f_1 : (G, \varphi) \to (H, \psi)\) be colored morphisms of colored digraphs and let \(F : G \Box I \to H\) be a homotopy.

(i) For \(s \geq 0\), we say that \(F\) defines the \(s\)-colored one-step homotopy from \(f_0\) to \(f_1\) if there exists a coloring \(\varphi_{[0,1]} : E_{[0,1]} \to \mathbb{N}\) such that the mapping \(F\) is a colored morphism

\[
F : (G \Box I, \Phi_{[0,1]}) \to (H, \psi)
\]

and, for every allowed path \(v = e_{i_0} \ldots e_{i_p}\) in \(G\) with \(\kappa(v) \leq s\), the condition \(\kappa(F_i(\tilde{v}_k)) \leq s\) is satisfied for every \(0 \leq k \leq p\). We denote such a homotopy by \((F, \varphi_{[0,1]}\) or simply \(F^s\) if the mapping \(\varphi_{[0,1]}\) is clear from the context.

(ii) The colored morphisms \(f_0, f_1\) are called \(s\)-colored one-step homotopic if there exists an \(s\)-colored one-step homotopy from \(f_0\) to \(f_1\) or from \(f_1\) to \(f_0\).

Definition 3.4. Let \(f, g : (G, \varphi) \to (H, \psi)\) be colored morphisms of colored digraphs. We say that \(f\) is \(s\)-colored homotopic to \(g\) if there exists a finite sequence of colored morphisms \(f = f_0, f_1, \ldots, f_{p-1}, f_p = g\) such that any two consequent morphisms are \(s\)-colored one-step homotopic.

Let \(f, g\) be \(s\)-colored homotopic morphisms as in Definition 3.4 with the sequence \(f, f_1, \ldots, f_p = g\) of \(s\)-colored one-step homotopies. By Definition 3.3, for each pair \((f_k, f_{k+1})\) of consequent morphisms, we have two possibilities. First, there is a colored morphism \(F_k : (G \Box I, \Phi_{[0,1]}^k) \to (H, \psi)\) such that \(F_k|_{G \Box \{0\}} = f_k\) and \(F_k|_{G \Box \{1\}} = f_{k+1}\). Second, there is a colored morphism \(F_k : (G \Box I, \Phi_{[0,1]}^k) \to (H, \psi)\) such that \(F_k|_{G \Box \{0\}} = f_{k+1}\) and \(F_k|_{G \Box \{1\}} = f_k\). Now, define a segment digraph \(I_p\) in the following way. For every pair of vertices \((k, k + 1)\) with \(0 \leq k \leq p - 1\), there is an arrow \(k \to k + 1\) if the first case of the colored morphism \(F_k\) occurs and there is an arrow \(k + 1 \to k\) if the second case of the colored morphism \(F_k\) occurs. Now, the coloring \(\Phi_{[0,1]}^k\) is well defined on the subgraph \(k \to k + 1\) or the subgraph \(k + 1 \to k\) of the digraph \(I_p\) whichever case occurs.

The colorings \(\Phi_{[0,1]}^k\) with \(0 \leq k \leq p - 1\) define a coloring \(\Phi\) of the digraph \(G \Box I_p\). Moreover, the union of morphisms \(F_k\) defines a colored morphism \(F : (G \Box I_p, \Phi) \to (H, \psi)\) since \(F_k|_{G \Box \{k+1\}} = F_{k+1}\). Please note also that the condition (i) of Definition 3.3 is satisfied for the morphism \(F_k\) on the sub-digraph \(k \to k + 1\) (or the sub-digraph \(k + 1 \to k\)) in the second case of \(I_p\) under natural identification of \(k \to k + 1\) with \(I (k + 1 \to k)\) with \(I\), respectively.
We would like to indicate here that the notion of \(s \)-colored homotopy essentially depends on the number \(s = 0, 1, 2 \ldots \). Two colored digraph morphisms \(f \) and \(g \) are \(0 \)-colored homotopic only in the case of \(f = g \). Indeed, let \((F, \varphi_{[0,1]}^i) \) be a \(0 \)-colored homotopy from \(f \) to \(g \) and \(f(i) \neq g(i) \) for a vertex \(i \in V_G \). Then, for \(v = e_i \), we have \(\kappa(v) = 0 \) and \(\kappa(E(\tilde{v}_i)) = 1 \). Thus, we obtain a contradiction and hence \(f(i) = g(i) \) for every \(i \in V_G \). Now let \(f, g : G \rightarrow H \) be \(k \)-colored digraphs and \(s \geq k \). Then \(f \) and \(g \) are \(s \)-colored homotopic if and only if these morphisms are homotopic as digraph mappings. It follows from Definitions 3.3, 3.4, and the definition of \(k \)-coloring that for any regular paths \(v \) in \(G \), we have \(\kappa(v) \leq s \) and \(\kappa(E(\tilde{v}_k)) \leq s \).

Now we prove that relation to be \(s \)-colored homotopic is an equivalence relation and provide several examples.

Proposition 3.5. The relation “to be \(s \)-colored homotopic” is an equivalence relation for any \(s \geq 0 \) on the set of colored morphisms \(f : (G, \varphi) \rightarrow (H, \psi) \) of colored digraphs.

Proof. Let \(f : G \rightarrow H \) be a colored morphism. Define a homotopy \(F : G \square I \rightarrow H \) by \(F(v, i) = f(v) \) where \((v, i) \in V_G \square I \) for \(i = 0, 1 \) and define the coloring \(\varphi_{[0,1]} : E_{[0,1]} \rightarrow \mathbb{N} \) by \(\varphi_{[0,1]}((v, 0) \rightarrow (v, 1)) = 1 \). Since \(f(e) \) is a vertex in \(H \) for any arrow \(e \in E_{[0,1]} \), we conclude that for any regular path \(v = e_{i_0} \ldots e_{i_p} \) the path \(E(\tilde{v}_k) \) is not regular and hence \(\kappa(E(\tilde{v}_k)) = 0 \leq s \). Thus, the pair \((F, \varphi_{[0,1]}^i)\) is \(s \)-colored homotopy for any \(s \geq 0 \) and relation “to be \(s \)-homotopic” is reflexive. Note that in the place of the color “1” in the definition of the homotopy \(F^s \) we can take any another color.

Let \(f \) be \(s \)-colored homotopic to \(g \) due to the sequence of colored morphisms \(f = f_0, f_1, \ldots, f_{p-1}, f_p = g \) as in Definition 3.4. Then the sequence of those morphisms in reverse order \(g = g_p, g_{p-1}, \ldots, f_1, f_0 = f \) gives the \(s \)-colored homotopy from \(g \) to \(f \) by Definition 3.3. Thus, the relation is also symmetric.

Let \(f, g, h : G \rightarrow H \) be \(s \)-colored morphisms for which \(f \) is \(s \)-colored homotopic to \(g \) by a sequence of colored morphisms \(f = f_0, f_1, \ldots, f_{p-1}, f_p = g \) and \(g \) is \(s \)-colored homotopic to \(h \) by a sequence of colored morphisms \(g = g_0, g_1, \ldots, g_{r-1}, g_r = h \), as in Definition 3.4. Then the sequence of colored morphisms \(f = f_0, f_1, \ldots, f_{p-1}, f_p, g_0, g_1, \ldots, g_{r-1}, g_r = h \), where \(f_p = g = g_0 \) provides \(s \)-colored homotopy from \(f \) to \(h \) and so the transitivity is proved.

The definition of \(s \)-colored homotopy in the category of colored graphs is similar and it is an equivalence relation on the set of colored morphisms of colored graphs.

From the considerations above it follows that, for \(s \geq 0 \), we are provided with the collection of \(s \)-colored homotopy categories of graphs \(C^{sG} \) in which the objects are colored graphs and morphisms are classes of \(s \)-colored homotopic morphisms. Similarly, we also obtain the collection of \(s \)-colored homotopy categories of digraphs \(C^{sD} \) and the \(s \)-colored homotopy categories \(C^{sNG} \), \(C^{sND} \).

Below, we give an example of a non trivial one-step two-colored homotopy between colored morphisms of three-colored digraphs.

Example 3.6. Consider the following three-colored digraphs \(G \) and \(H \) where \(E_H \) contains two symmetric arrows \(a \rightarrow b \) and \(b \rightarrow a \) (Figure 1):

![Figure 1: The edge-colored digraphs G and H, respectively.](image-url)
We define $f_0 : G \rightarrow H$ on the appropriate set of vertices in the following way:

$$f_0(x) = a, \quad f_0(y) = b, \quad f_0(z) = c.$$

As for the $f_1 : G \rightarrow H$, set

$$f_1(x) = b, \quad f_1(y) = a, \quad f_1(z) = d.$$

It is easy to see that both f_0 and f_1 are colored morphisms which are in fact colored homomorphisms.

Let $F : G \square I_1 \rightarrow H$ be the digraph homotopy given on the set of vertices in the following way:

$$F(x, 0) = a, \quad F(y, 0) = b, \quad F(z, 0) = c,$$
$$F(x, 1) = b, \quad F(y, 1) = a, \quad F(z, 1) = d.$$

The image of restriction of the mapping F to the set of arrows

$$E_{[0,1]} = \{ (x, 0) \rightarrow (x, 1), (y, 0) \rightarrow (y, 1), (z, 0) \rightarrow (z, 1) \}$$

consists of the blue-colored arrows and defines the constant coloring $\varphi_{[0,1]}$. Thus, we have a colored morphism $(F, \varphi_{[0,1]})$ and for any regular path v in G, $\kappa(v) \leq 2$. Moreover, it is easy to see that for every such path $\kappa(E(v)) \leq 2$. In other words, the mappings f_0 and f_1 are two-colored homotopic. Note that $F : G \square I_1 \rightarrow H$ is in fact a homomorphism.

Now we turn our attention to $\mathcal{C}N\mathcal{D}$ and provide an example of non trivial homotopy in this category for $s = 2$.

Example 3.7. Consider digraphs G and H given in Figure 2.

We define $f : G \rightarrow H$ on the appropriate set of vertices in the following way:

$$f(x) = a, \quad f(y) = b, \quad f(z) = c, \quad f(v) = d.$$

As for the $g : G \rightarrow H$, we set

$$g(x) = c, \quad g(y) = h, \quad g(z) = g, \quad g(v) = b.$$

It is easy to see that both f and g are colored homomorphisms. Denote by I_2 the segment digraph $0 \rightarrow 1 \rightarrow 2$ and let $F : G \square I_2 \rightarrow G$ be the digraph mapping given on the set of vertices of the digraph $G \square I_2$ in the following way:

$$F(x, 0) = a, \quad F(y, 0) = b, \quad F(z, 0) = c, \quad F(v, 0) = d,$$
$$F(x, 1) = g, \quad F(y, 1) = f, \quad F(z, 1) = e, \quad F(v, 1) = a,$$
$$F(x, 2) = c, \quad F(y, 2) = h, \quad F(z, 2) = g, \quad F(v, 2) = b. \quad (3.1)$$

![Figure 2: The edge-colored digraph G and H, respectively.](image-url)
Note that \(F_{G^1} = f \), \(F_{G^0} = g \), whereas \(F \) is a colored homomorphism and the sequence of colored morphisms \(f_0 = F_{G^0}, f_1 = F_{G^1} \) defines a two-colored homotopy between \(f \) and \(g \).

Proposition 3.8. The functors \(CS : C\, G \to C\, D \) and \(CNS : C\, NG \to C\, ND \) defined above induce functors
\[
C^4S' : C^4G' \to C^4D', \quad C^4NS' : C^4NG' \to C^4ND'.
\]

Proof. It follows directly from [2, Proposition 6.5]. \(\square \)

Example 3.9. Now we give an example of a homotopy between colored morphisms which is not the \(s \)-colored homotopy for any \(s \geq 0 \). Consider the colored digraph \(G \).

\[
a \longrightarrow b \leftarrow c \leftrightarrow d
\]

Let \(f_0 : G \to G \) be the identity morphism and \(f_1 \) be a morphism defined on the set of vertices in the following way: \(f_1(a) = a, f_1(b) = f_1(c) = f_1(d) = b \). Denote by \(I_2 \) the segment digraph \(0 \to 1 \to 2 \) and let \(F : G \square I_2 \to G \) be the digraph mapping given on the set of vertices as follows:
\[
F(a, 0) = a, \quad F(b, 0) = b, \quad F(c, 0) = c, \quad F(d, 0) = d,
\]
\[
F(a, 1) = a, \quad F(b, 1) = b, \quad F(c, 1) = b, \quad F(d, 1) = c,
\]
\[
F(a, 2) = a, \quad F(b, 2) = b, \quad F(c, 2) = b, \quad F(d, 2) = b.
\]

It is easy to see that \(F \) is a digraph mapping as well as a homotopy. The restrictions \(F_{G \square I_2} \) and \(F_{G^0} \) coincide, respectively, with the morphisms \(f_0 \) and \(f_1 \). Nevertheless, the mapping \(F \) is not a colored homotopy since the mapping \(F_{G \square I_1} : G \square (I_1) \to G \) given on the set of vertices by the formula in the middle row of (3.2) is not a colored morphism.

4 Path homology of colored graphs and digraphs

In this section, we construct a collection of path homology theories defined on various categories of colored graphs and digraphs and describe their basic properties. To illustrate the definitions thus introduced, we also provide several examples. Let \((G, \varphi)\) be a colored digraph. Recall that for every nonempty set of arrows \(A \subset E_G \), we have defined the function \(\kappa \) which returns the number of different colors that are being used in the coloring of arrows from the set \(A \).

Definition 4.1. An allowed regular elementary path \(e_{i_0} \ldots e_i \) \((p \geq 1)\) is called \(s \)-**colored** if \(\kappa(A) = s \), where \(A \) consists of arrows \(i_0 \to i_1, \ldots, i_{p-1} \to i_p \) of the path \(e_{i_0} \ldots e_i \). Every elementary path \(e_i \) is called \(0 \)-colored.

Note that the set of the all \(0 \)-colored paths coincides with the set of vertices \(V_G \). For \(k, p \geq 1 \), we define a free \(R \)-module \(L^k_p = L^k_p(G, R) = L^k_p(G, \varphi) \) as a submodule of \(\mathcal{A}_p(G, R) \) generated by all the allowed regular elementary \(s \)-colored paths with \(1 \leq s \leq k \). Let \(L^0_p = L^0_p(G) = 0 \) for \(p \geq 1 \) and \(L^k_1 = 0 \), for \(k \geq 0 \). Note that \(L^k_0 \) is the free \(R \)-module generated by all the elementary \(0 \)-colored paths. Thus, we obtain submodules \(L^k_p \subset \mathcal{A}_p(G, R) \subset \mathcal{R}_p(V_G, R) \) for \(p \geq -1 \) and \(k \geq 0 \).

For \(p \geq 1 \), let
\[
\Theta^k_p = \Theta^k_p(G, R) = \{ v \in L^k_p : \partial v \in L^{k-1}_p \}
\]
be a submodule of \(L^k_p \) and let \(\Theta^k_p = L^k_p \) for \(p = -1, 0 \). The following result follows directly from the definition in (4.1).
Proposition 4.2. For \(p \geq 0 \) and any \(k \geq 0 \), we have \(\partial(\Theta^k_p) \subset \Theta^k_{p-1} \). Hence, the elements of \(\Theta^k_p \) are \(\partial \)-invariant and there is a chain complex

\[
0 \leftarrow \Theta^k_0 \leftarrow \Theta^k_1 \leftarrow \cdots \leftarrow \Theta^k_{p-1} \leftarrow \Theta^k_p \leftarrow \cdots
\]

with the differential that is induced by the differential \(\partial \) of the chain complex \(\mathcal{R}_*(V_c, R) \).

The homology groups of chain complex (4.2) will be referred to as \(k \)-colored path homology groups and denoted by \(\mathcal{H}^k_*(G, R) \).

Proposition 4.3. For any colored digraph \(G(\varphi) \), we have a filtration

\[
\Theta^1(G, R) \subset \Theta^2(G, R) \subset \cdots \subset \Omega_*(G, R).
\]

Moreover, for a \(k \)-colored digraph \(G \) this filtration is finite and \(\Theta^k(G, R) = \Omega_*(G, R) \).

Proof. For \(k \geq 1 \), we have natural inclusions \(L^p_k(G) \subset L^{p+1}_k(G) \subset \mathcal{A}(G) \) and the statement follows from (4.1).

Example 4.4. Consider the cubic digraph \(G = (V, E) \) in Figure 3 with proper coloring. We compute all colored homology groups of this digraph for \(R = R \) to illustrate the definition.

The module \(\Theta^0_1(G) \) is generated by elements \(e_i \) where \(i \in V_0 \), hence \(\text{rank } \Theta^0_1(G) = 8 \). On the other hand, the module \(\Omega_1(G) \) is generated by all the possible edges, so \(\text{rank } \Omega_1(G) = 12 \). Since \(G \) is a proper colored digraph, we deduce that \(\Theta^i_1(G) = 0 \) for \(i \geq 2 \). Having in mind all the facts stated above, by direct computation, we obtain \(\mathcal{H}^1_1(G) = R, \mathcal{H}^2_1(G) = R^5 \) and \(\mathcal{H}^3_1(G) = 0 \) for \(i \geq 2 \).

The modules \(\Theta^0_2(G) \) and \(\Theta^1_2(G) \) are isomorphic to \(\Theta^0_1(G) \) and \(\Theta^1_1(G) \), respectively. The module \(\Theta^2_2(G) \) is generated by the elements

\[
e_{013} - e_{023}, \ e_{015} - e_{045}, \ e_{026} - e_{046}, \ e_{137} - e_{157}, \ e_{237} - e_{267}, \ e_{457} - e_{467}
\]

and thus it follows that \(\text{rank } \Theta^2_2(G) = 6 \). The module \(L^1_2(G) \) is generated by the elements \(e_{0137} \) and \(e_{0467} \) and in consequence, the module \(\Theta^1_2(G) \) is trivial since no linear combination of the paths \(\partial e_{0137} \) and \(\partial e_{0467} \) is in \(L^1_2(G) \). The module \(\Theta^2_2(G) \) is trivial for \(i \geq 4 \) since in this case the module \(L^1_2(G) \) already is trivial. We have the commutative diagram

\[
\begin{array}{ccc}
\Theta^1(G) & \xrightarrow{\partial} & \Theta^0_1(G) \\
\downarrow & & \downarrow \\
\Theta^2_1(G) & \xrightarrow{\partial} & \Theta^1_1(G)
\end{array}
\]
Hence,
\[
\text{rank} \{ \ker (\partial : \Theta_1^1(G) \to \Theta_0^1(G)) \} = 5.
\]

We can see directly that the differential \(\partial : \Theta_2^1(G) \to \Theta_1^1(G) \) has the kernel \(R \). Direct computations in which all gathered information is used give us desired homology groups, namely \(\mathcal{H}_2^1(G) = R, \mathcal{H}_1^1(G) = 0, \mathcal{H}_0^1(G) = R \), and \(\mathcal{H}_i^1(G) = 0 \) for \(i \geq 3 \).

In the case of \(k \geq 3 \), the modules \(\Theta_0^1(G), \Theta_1^1(G), \) and \(\Theta_2^1(G) \) are isomorphic to \(\Theta_0^1(G), \Theta_1^1(G), \) and \(\Theta_2^1(G) \), respectively. The module \(\Theta_i^1(G) \) is generated by the element
\[
e_{0137} = e_{0157} - e_{0467} - e_{0267} + e_{0237},
\]
and the differential \(\partial : \Theta_2^1(G) \to \Theta_1^1(G) \) is a monomorphism. The considerations like in the case of \(\Theta_2^1(G) \) give \(\mathcal{H}_3^1(G) = R \) and \(\mathcal{H}_i^1(G) = 0 \) for \(i \geq 1 \).

Theorem 4.5. Let \(f : (G, \varphi) \to (H, \psi) \) be a morphism of colored digraphs. For \(k \geq 1 \), the morphism \(f \), in (2.2) induces a morphism of chain complexes
\[
\Theta_k^1(G, R) \to \Theta_k^1(H, R) \tag{4.4}
\]
and, hence, a homomorphism of \(k \)-colored path homology groups
\[
f_* : \mathcal{H}_k^1(G, R) \to \mathcal{H}_k^1(H, R).
\]

Proof. It follows from Definition 3.1 and (2.2) that \(f_*(L_k^p(G, R)) \subseteq L_k^p(H, R) \). Thus, it is sufficient to prove that \(f_*(\Theta_k^p(G, R)) \subseteq \Theta_k^p(H, R) \). By (4.1), for any \(v \in \Theta_k^p(G, R) \) we have \(v \in L_k^p(G) \) and \(\partial v \in L_{k-1}^p(G) \). Hence, \(f_*(v) \in L_k^p(H, R) \) and \(\partial (f_*(v)) = f_*(\partial v) \in L_{k-1}^p(H, R) \), which implies \(f_*(v) \in \Theta_k^p(H, R) \).

Now we state the \(k \)-colored homotopy invariance of \(k \)-colored path homology groups of digraphs.

Theorem 4.6. Let \(f = g : (G, \varphi) \to (H, \psi) \) be \(k \)-colored homotopic digraph morphisms for \(k \geq 1 \). Then \(f \) and \(g \) induce the identical homomorphisms
\[
f_* = g_* : \mathcal{H}_k^1(G, R) \to \mathcal{H}_k^1(H, R)
\]
of \(k \)-colored homology groups.

Proof. The colored \(k \)-homotopy is a special case of a homotopy, and we give only the sketch of proof (see [2, §2.5 and §3.2] for details). It follows from Definitions 3.3 and 3.4 that it is sufficient to consider the case of one-step \(k \)-colored homotopy. By Theorem 4.5, the colored morphisms \(f \) and \(g \) induce morphisms of chain complexes
\[
f_*, g_* : \Theta_k^1(G, R) \to \Theta_k^1(H, R).
\]
For any regular path \(v = e_{i_0} \ldots e_{i_p} \in \Theta_k^p(G, R) \) define a path \(\tilde{v} \in \Theta_k^{p+1}(G \Box I_1, R) \) by
\[
\tilde{v} = \sum_{k=0}^{p} \tilde{v}_k = \sum_{k=0}^{p} (-1)^p e_{i_0} \ldots e_{i_k} \ldots e_{i_p},
\]
where \(i_j \) denotes the vertex \((i_j, 0) \in G \Box \{0\}\) and \(i_j' \) denotes the vertex \((i_j, 1) \in G \Box \{1\}\). By Definition 3.3, the colored morphism \(F \) induces a morphism of chain complexes
\[
F_* : \Theta_k^1(G \Box I_1, R) \to \Theta_k^1(H, R)
\]
and we define homomorphisms \(L_p : \Theta_k^p(G, R) \to \Theta_{k+1}^p(H, R) \) by \(L_p(v) = E_0(\tilde{v}) \). Then, \(\partial L_p + L_{p-1} \partial = g_* - f_* \).
Hence, the collection of homomorphisms \(L_p \) is a chain homotopy (see [14, Chapter 2.2]) between the chain mappings \(f_* \) and \(g_* \) and the theorem follows. \(\square \)
Corollary 4.7. If colored digraphs \((G, \varphi)\) and \((H, \psi)\) are \(k\)-colored homotopy equivalent for \(k \geq 1\), then colored homology groups \(\mathcal{H}_G^k(G, R)\) and \(\mathcal{H}_H^k(H, R)\) are isomorphic and mutually inverse isomorphisms of these groups are induced by the \(k\)-colored homotopy inverse colored morphisms.

Corollary 4.8. For \(k \geq 1\), the \(k\)-colored homology groups \(\mathcal{H}_G^k(G, R)\) provide a collection of functors from the \(k\)-colored homotopy category \(C^k\mathcal{D}'\) to the category of \(R\)-modules and homomorphisms.

Let \((G, \varphi)\) be a colored graph. For \(k \geq 1\), define the \(k\)-colored path homology groups of \(G\) as the \(k\)-colored path homology groups of the corresponding symmetric digraph

\[
\mathcal{H}_G^k(G, R) = \mathcal{H}_G^k(G, R).
\]

(4.5)

Corollary 4.9. For \(n \geq 0\), the \(k\)-colored path homology groups \(\mathcal{H}_G^k(G, R)\) defined in (4.5) give a collection of functors from the homotopy category \(C^k\mathcal{G}\) to the category of \(R\)-modules and homomorphisms.

5 Algebraic properties of colored path homology

In this section, we describe the basic algebraic properties of the colored path homology groups. In particular, we introduce a notion of the relative colored path homology and construct various diagrams of exact sequences that give effective methods of computation. Then we construct a spectral sequence of colored homology groups following [15, Chapter 7] and present several examples.

Let \((H, \varphi_H)\) with \(H = (V_H, E_H)\) be an edge-colored (di)graph. A colored (di)graph \(G = (V_G, E_G)\) with the coloring \(\varphi_G\) is a colored sub-(di)graph of \(H\) if \(V_G \subseteq V_H, E_G \subseteq E_H\) and \(\varphi_G = \varphi_H|_{E_G}\). In what follows, we shall denote the functions \(\varphi_G\) and \(\varphi_H\) simply by \(\varphi\) since this cannot lead to confusion. In this case, we write \((H, G; \varphi)\) or \((G \subset H, \varphi)\) and call the pair \((H, G)\) a colored pair of (di)graphs.

Proposition 5.1. Let \((G \subset H, \varphi)\) be a pair of colored digraphs. The natural inclusion homomorphism \(i : (G, \varphi) \to (H, \varphi)\) induces a monomorphism of chain complexes \(\Theta^i_{k}(G, R) \to \Theta^i_{k}(H, R)\) and hence provides a short exact sequence

\[
0 \to \Theta^i_{k}(G, R) \to \Theta^i_{k}(H, R) \to \Theta^i_{k}(H, R)/\Theta^i_{k}(G, R) \to 0
\]

of chain complexes.

Proof. The inclusion \(i\) induces an inclusion \(i : L^k_n(G, R) \to L^k_n(H, R)\) of modules for any \(k \geq 0\) and \(n \geq -1\). For the pair \(G \subset H\) by (4.4), we have

\[
v \in \Theta^i_{k}(G) \subset L^k_n(G) \subset L^k_n(H) \Rightarrow \partial v \in \Theta^i_{k-1}(G) \subset L^k_{n-1}(G) \subset L^k_{n-1}(H).
\]

Hence, \(\Theta^i_{k}(G, R) \subset \Theta^i_{k}(H, R)\) and the result follows.

Now for any \(k \geq 0\), we define a chain complex \(\Theta^i_{k}(H, G) = \Theta^i_{k}(H, G;R)\) as a factor-complex \(\Theta^i_{k}(H)/\Theta^i_{k}(G)\).

We denote homology groups of this complex by \(\mathcal{H}^i_{k}(H, G) = \mathcal{H}^i_{k}(H, G;R)\) and call these groups the relative colored path homology groups.

Corollary 5.2. Under the assumption of Proposition 5.1, for any \(k \geq 0\) there is a homology long exact sequence

\[
\cdots \to \mathcal{H}^i_{k}(G, R) \to \mathcal{H}^i_{k}(H, R) \to \mathcal{H}^i_{k}(H, G;R) \to \mathcal{H}^i_{k-1}(G, R) \to \cdots
\]

Proof. See [16, Chapter 6.5, Theorem 4].
The homology long exact sequence of a pair of colored digraphs $G \subset H$ provides algebraic relations between colored path homology groups of digraphs G and H and is an effective computing tool in many cases.

Example 5.3. Consider the three-colored digraph pair $G \subset H$, where G is the induced sub-digraph with the set of vertices $V_G = \{0, 1, 2\}$ in Figure 4. We compute all colored homology groups of this pair of digraphs for $R = \mathbb{R}$ to illustrate the definition.

Once again, we apply direct techniques for homology groups computation only to obtain that in the case of G and H, the colored path homology groups look as follows:

$$H^i_0(G) = H^i_2(G) = \mathbb{R}, \quad H^i_1(G) = 0 \quad \text{for } i \geq 2,$$

$$H^k_0(H) = \mathbb{R}, \quad H^i_1(H) = R^2, \quad H^i_2(H) = 0 \quad \text{for } i \geq 2,$$

$$H^k_0(H) = \mathbb{R}, \quad H^i_1(H) = \mathbb{R}, \quad H^i_2(H) = 0 \quad \text{for } k \geq 2, \, i \geq 2.$$

Having in mind all the computations for G and H we can provide the homology groups for the chain complex $(\cdot) \subset \cdots \subset \cdots \subset (\cdot)^* = \cdots$, namely

$$H^i_0(H, G) = 0, \quad H^i_1(H, G) = \mathbb{R}, \quad H^i_2(H, G) = 0 \quad \text{for } i \geq 2.$$

All the above leads us to the conclusion that in the case of $k \geq 2$ the homology long exact sequence comes down to the following:

$$\cdots \longrightarrow 0 \longrightarrow H^i_0(G) = 0 \longrightarrow H^i_1(H) = \mathbb{R} \longrightarrow H^i_2(H, G) = \mathbb{R} \longrightarrow H^i_0(G, H) = \mathbb{R} \longrightarrow H^i_1(H) = \mathbb{R} \longrightarrow H^i_2(H, G) = 0.$$

Let (G, φ) be an edge-colored digraph. By Proposition 4.3, we have a filtration $\cdots \subset \cdots \subset \cdots \subset \cdots \subset \Theta_i(G)$ of the chain complex $\Omega_i(G, R)$. From now on we write this filtration in the form

$$\cdots \subset \Theta_i^1(G) \subset \Theta_i^2(G) \subset \Theta_i^3(G) \subset \cdots \subset \Omega_i(G), \quad (5.1)$$

where $\Theta_i^k(G) = 0$, for $k \leq -1$ and we put $\Theta_i(G) = \Omega_i(G, R)$. We denote $H_i(G) = H_\ast(\Theta_i(G))$.

Recall that any inclusion of chain complexes $\mathcal{C} \hookrightarrow \mathcal{D}$, gives a short exact sequence of chain complexes

$$0 \longrightarrow \mathcal{C} \longrightarrow \mathcal{D} \longrightarrow \mathcal{D}/\mathcal{C} \longrightarrow 0,$$

where \mathcal{D}/\mathcal{C} is the quotient chain complex with boundary operator induced by that of \mathcal{D}, (see [16, Chapter 4] for details). Hence, any pair of consequent chain complexes $\Theta_i^k \subset \Theta_i^p$ in (5.1) defines a chain complex $\Theta_i^p/\Theta_i^{p-1}$ and we denote $H_i^{p/p-1}(G) = H_\ast(\Theta_i^p/\Theta_i^{p-1})$ its homology groups.

Figure 4: The colored pair of digraphs (H, G).

Theorem 5.4. For every colored digraph \((G, \varphi)\), filtration (5.1) has the following properties.
1. \(\Theta^p_0 = 0\) for \(p < 0\).
2. There is a short exact sequence of chain complexes
\[
0 \to \Theta^{p-1}_{\phi} \to \Theta^p_{\phi} \to \Theta^p_{\phi} / \Theta^{p-1}_{\phi} \to 0
\]
with \(H_{p+q}(\Theta^p_{\phi} / \Theta^{p-1}_{\phi}) = \mathcal{H}^{(p-1)}_{p+q}(G) = 0\) for \(q < 0\).
3. \[
\bigcup_{p > 0} \Theta^p_{\phi}(G) = \Theta(G).
\]

Proof. The first statement follows from the definition of filtration. The elements of the module \(\Theta^p_{\phi} / \Theta^{p-1}_{\phi}\) are given by linear combinations of allowed paths of length \(p\) in which the arrows are colored exactly by \(p\) different colors. Consider an elementary allowed path \(e_{i_0 \ldots i_k}\). The arrows of this path can be colored at most by \(s\) colors. Hence, \(e_{i_0 \ldots i_k} \in \Theta^p_{\phi}\) for \(s < p\), that is the module \(\Theta^p_{\phi} / \Theta^{p-1}_{\phi}\) is trivial for \(s < p\). Hence, \(\mathcal{H}^{(p-1)}_{p+q}(G) = H_q(\Theta^p_{\phi} / \Theta^{p-1}_{\phi}) = H_q(0) = 0\) for \(s < p\) and the second statement follows. Any path has a finite number of edges that are colored by a finite number of colors. Now the third statement follows. \(\square\)

Corollary 5.5. The exact sequence (5.2) induces a homology long exact sequence of colored homology groups
\[
\cdots \to \mathcal{H}^{(p-1)}_n(G) \to \mathcal{H}^p_n(G) \to \mathcal{H}^{(p-1)}_n(G) \to \cdots
\]

Proof. We have \(\mathcal{H}^{(p-1)}_n(G) = H_n(\Theta^p_{\phi} / \Theta^{p-1}_{\phi})\) and \(\mathcal{H}^p_n(G) = H_n(\Theta^p_{\phi})\) for \(p \geq 0\). \(\square\)

Now we construct a spectral sequence of colored homology groups using the filtration (5.1) (see [15, Chapter 7]).

Let
\[
D_{p,q} = \mathcal{H}^{(p-1)}_{p+q}(G) = H_{p+q}(\Theta^p_{\phi}), \quad E_{p,q} = \mathcal{H}^{(p-1)}_{p+q}(G) = H_{p+q}(\Theta^p_{\phi} / \Theta^{p-1}_{\phi}),
\]
and \(D_\ast = \{D_{p,q}\}, E_\ast = \{E_{p,q}\}\) be the corresponding bigraded \(R\)-modules. The exact sequence of Corollary 5.5 gives homomorphisms of colored homology groups:
\[
i_{p,q} : D_{p,q} \to \mathcal{H}^{(p-1)}_{p+q}(G) = \mathcal{H}^{(p-1)}_{p+q}(G) = D_{p+1,q-1},
\]
\[
j_{p,q} : D_{p,q} \to \mathcal{H}^{(p-1)}_{p+q}(G) = \mathcal{H}^{(p-1)}_{p+q}(G) = E_{p,q},
\]
\[
k_{p,q} : \partial_{p,q} : E_{p,q} \to \mathcal{H}^{(p-1)}_{p+q}(G) = \mathcal{H}^{(p-1)}_{p+q}(G) = D_{p-1,q},
\]
which define bigraded homomorphisms
\[
i_\ast : D_\ast \to D_\ast,
\]
\[
j_\ast : D_\ast \to E_\ast,
\]
\[
k_\ast : E_\ast \to D_\ast
\]
of bidegree \((+1, -1), (0, 0), (-1, 0)\), respectively. Now like in [15, Chapter 7], we obtain the following results.

Proposition 5.6. The homomorphisms in (5.3) fit into the commutative diagram
\[
\begin{array}{ccc}
D_\ast & \xrightarrow{i_\ast} & D_\ast \\
\downarrow{k_\ast} & & \downarrow{k_\ast} \\
E_\ast & & E_\ast
\end{array}
\]
which is exact in each vertex. Thus, we have an exact couple of modules in the sense of [15].
Corollary 5.7. The exact couple in (5.4) defines a spectral sequence with the first differential $d^1 = [d_{p,q}]$ where $d_{p,q} : E^1_{p,q} \to E^1_{p-1,q}$ is given by

$$j_{p-1,q} : E^1_{p,q} = H_{p+1}(G) \to H_{p+2}(G) = E^1_{p-1,q}$$

of bidegree $(-1, 0)$. The group $E^r_{p,q}$ is isomorphic to the quotient group

$$\frac{\text{im}(H_{p+q}(\Theta^p/\Theta^{p-1}))}{\text{im}((\partial : H_{p+q+1}(\Theta^p/\Theta^{p-1})/\Theta^p \to H_{p+q}(\Theta^p/\Theta^{p-1})))}.$$

The differential d^{r+1} coincides with the composition $j_{i,1}^{-1} k_1$.

We shall call this spectral sequence the colored spectral sequence of path homology groups of the colored digraph (G, φ). Let

$$F_{p,q} = \text{im}(H^p_{p+q}(G) \to H^p_{p+q}(\Theta)),$$

Then we have a natural inclusion $F_{p-1,q+1} \to F_{p,q}$, and hence, we can define a module

$$E^\infty_{p,q} = F_{p,q}/F_{p-1,q+1}.$$

Theorem 5.8. The colored spectral sequence of a colored digraph (G, φ) converges, that is

(i) $E^r_{p,q} = E^{r+1}_{p,q}$ for $r > \max\{p, q + 1\}$, and

(ii) $E^r_{p,q} \cong E^\infty_{p,q}$ for $r > \max\{p, q + 1\}$.

Proof. It follows from conditions 1 and 2 of Theorem 5.4 that $E^1_{p,q} = 0$ for $p < 0$ or $q < 0$ and, hence $E^r_{p,q} = 0$ for $r \geq 1$. The group $E^{r+1}_{p,q}$ is the homology group of the chain complex

$$\cdots \to E^r_{p+r,q-r+1} \to E^r_{p,q} \to E^r_{p-r,q+r-1} \to \cdots$$

Thus for $r > \max\{p, q + 1\}$, we have $E^r_{p+r,q-r+1} = E^r_{p-r,q+r-1} = 0$, that is, $E^r_{p,q} = E^{r+1}_{p,q}$. By similar reasoning, using conditions 1 and 2 of Theorem 5.4, we can prove the isomorphism in (ii). See the detailed proof in [15, Chapter 7, Proposition 5] and [15, Chapter 7, Theorem 1].

Note that $F_{p,q} = \text{im}(H^p_{p+q}(G) \to H^p_{p+q}(\Theta))$ consists of the image in $H^p_{p+q}(G)$ of colored path homology groups given by paths that are colored with no more than p colors. It follows from Theorem 5.8 that we have a finite filtration

$$F_{0,n} \subset F_{1,n-1} \subset \cdots \subset F_{n,0} = H_q(G).$$

The successive quotients $E^\infty_{p,n} = F_{p,n}/F_{p,n-i+1}$ of this filtration have a description on the level of the subfiltration

$$\Theta^p \subset \Theta^{p+1} \subset \Theta$$

of (5.1) in which the modules of two left complexes have a clear description as colored path homology groups. Thus, we can apply results about colored path homology groups to computations of path homology groups of a digraph.

Let (G, φ) be a three-colored digraph. Then the filtration in (5.1) gives a finite filtration

$$\Theta^1(G) \subset \Theta^2(G) \subset \Theta^3(G) = \Omega(G).$$
Theorem 5.9. The colored homology groups of filtration (5.5) fit into the commutative braid of the exact sequence

\[\cdots \to H^2_{n+1}(G) \to H^3_{n+1}(G) \to H^3_{n+1}(G) \to H^4_{n+1}(G) \to \cdots \]

which consists of the relative colored exact sequences for the following pairs of chain complexes \(\Theta_i \subset \Theta_3 \), \(\Theta_i \subset \Theta_2 \), \(\Theta_i \subset \Theta_1 \), and \((\Theta_i/\Theta_k) \subset (\Theta_i/\Theta_l) \).

Proof. By [16, Chapter 4], inclusions in (5.5) induce a short exact sequence

\[0 \to \Theta^i_1/\Theta^i_1 \to \Theta^i_1/\Theta^i_1 \to \Theta^i_1/\Theta^i_1 \to 0 \]

and we can write down the commutative diagram of chain complexes

\[
\begin{array}{cccc}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow \\
0 & \Theta^i_1 & \Theta^i_2 & \Theta^i_1/\Theta^i_1 \\
\downarrow & \equiv & \downarrow & \downarrow \\
0 & \Theta^i_1 & \Theta^i_2 & \Theta^i_1/\Theta^i_1 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & \Theta^i_1/\Theta^i_2 & \cong & \Theta^i_1/\Theta^i_2 \\
\downarrow & & & \downarrow \\
0 & 0 & 0 \\
\end{array}
\]

in which the rows and columns are short exact sequences. Passing to the homology long exact sequences of the rows and columns of this diagram we obtain the commutative braid of exact sequences. \(\square \)

Let \((G, \varphi)\) be a \(k\)-colored digraph with \(k \geq 3\). Then for any sub-filtration \(\Theta^m_i \subset \Theta^l_i \subset \Theta^k_i \) of filtration (5.1) with \(m < l < k \) there exists a braid of exact sequences that is similar to (5.6) for filtration (5.5).

We also remark that, for a filtration consisting of three chain complexes as in (5.5), the braid of exact sequences (5.6) gives more information about homology groups of these chain complexes than the spectral sequence constructed above.

Figure 5: An edge-colored digraph.
Example 5.10. Consider an edge-colored digraph \((G, \varphi)\) in Figure 5 in which the vertices that are denoted by equal numbers and the arrows between pairs of such vertices are identified naturally. Note that the underlying non-directed graph is a one-dimensional skeleton of the minimal triangulation of the projective plane. Now we compute all colored homology groups in the braid of exact sequence (5.6) for \(R = \mathbb{R}\). We denote \(\langle a_1, \ldots, a_n \rangle\) the free \(\mathbb{R}\)-module generated by elements \(a_1, \ldots, a_n\). For \(n = 1, 2, 3\), we have \(\Theta^0_n = \langle e_1, \ldots, e_6 \rangle\) and

\[
\Theta^0_n = \langle e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}, e_{12} \rangle.
\]

Thus, in these cases, \(\text{rank } \Theta^0_n = 6\) and \(\text{rank } \Theta^2_n = 15\). We can compute directly that the image of the differential \(\partial : \Theta^0_n \to \Theta^0_n\) has rank 5. Hence, the rank of the kernel of this differential equals \(15 - 5 = 10\) for \(n = 1, 2, 3\).

The module \(\Theta^1_2\) is generated by all one-colored paths of length 2, namely \(\Theta^1_2 = \langle e_{216}, e_{231}, e_{234}, e_{235}, e_{236}, e_{241}, e_{246}, e_{251}, e_{256}, e_{316}, e_{341}, e_{346}, e_{351}, e_{356}, e_{416}, e_{451}, e_{516}, e_{561}, e_{656} \rangle\), with rank \(\text{rank } \Theta^1_2 = 10\) and

\[
\Theta^1_3 = \langle e_{2316}, e_{2341}, e_{2345}, e_{2351}, e_{2356}, e_{2416}, e_{2451}, e_{2456}, e_{2516}, e_{2561}, e_{3416}, e_{3451}, e_{3456}, e_{3516}, e_{3561}, e_{4516} \rangle
\]

with rank \(\text{rank } \Theta^1_3 = 15\). Furthermore, we have

\[
\Theta^1_4 = \langle e_{23416}, e_{23451}, e_{23516}, e_{2516}, e_{43451}, e_{43456}, e_{43516}, e_{4516} \rangle
\]

with rank \(\text{rank } \Theta^1_4 = 6\) and \(\Theta^1_5 = \langle e_{234516} \rangle\) with rank \(\Theta^1_5 = 1\), and \(\Theta^1_6 = 0\) for \(n \geq 6\). Thus, we obtain

\[
\text{rank}(\Theta^1_n) = \begin{cases} 6 & \text{for } n = 0, \\ 15 & \text{for } n = 1, \\ 20 & \text{for } n = 2, \\ 15 & \text{for } n = 3, \\ 6 & \text{for } n = 4, \\ 1 & \text{for } n = 5, \\ 0 & \text{for } n \geq 6. \end{cases}
\]

Once again by direct computations, we obtain the following information:

\[
\text{rank}(\partial(\Theta^1_n)) = \begin{cases} 10 & \text{for } n = 2, \\ 10 & \text{for } n = 3, \\ 5 & \text{for } n = 4, \\ 1 & \text{for } n = 5. \end{cases}
\]

All the above enable us in turn to provide homology groups of the chain complex \(\Theta^2\), namely

\[
\mathcal{H}^0_n(G, R) = H_n(\Theta^2_n) = \begin{cases} \mathbb{R} & \text{for } n = 0, \\ 0 & \text{for } n \geq 1. \end{cases}
\]

Note that the analysis of paths for which at most three colors are used in the graph gives also \(\Theta^3 = \Theta^2\) because there are no paths with three differently colored edges in \(G\). Now, using the diagram chasing in
the diagram (5.6) (see the explanation of this method in [14, Chapter XII.3] for details), we find other homology groups fitting in this diagram: \(H_n^{s}(G, R) = 0 \) for all \(n \geq 0 \) and

\[
H_n^{s}(G, R) = H_n^{s}(G, R) = \begin{cases} 0 & \text{for } n = 0, 1, \\ \mathbb{R}^2 & \text{for } n = 2, \\ 0 & \text{for } n \geq 3.
\end{cases}
\]

6 Discussion

One of the basic applications of homology theory is given by persistent homologies (see, e.g., [17–21]). The main constructions of this theory are based on the natural filtration of the space on which the homology theory is defined. Usually, this filtration is given by the \(n \)-skeleton of a cell complex or by metric conditions on the singular cells. The path homology groups of an arbitrary digraph or a path complex in the general case do not have any similar structure. It follows directly from the results above and from [4] that a vertex (and edge) coloring of a digraph gives a functorial filtration that induces the functorial filtration of path homology groups. Thus, by coloring a digraph in some way, we obtain an effective method to construct the persistence homology theory of a given digraph. It is necessary to remark here that vertex (or edge) weighted digraphs can be considered as colored digraphs and the results above apply to this case as well.

There is a natural way to apply the methods developed in this paper to the cohomology theory that is dual to the path homology theory. This is possible since any chain complex defined in this paper for a colored digraph defines also the corresponding colored cohomology groups of this digraph. Thus, we obtain new methods of computing cohomology groups that are used in physical applications of discrete mathematics (see, e.g., [5–7,22]).

Author contributions: Conceptualization: Y. V. M., and A. S.; investigation: Y. V. M., and A. S. All authors have read and agreed to the published version of the manuscript.

Conflict of interest: The authors state no conflict of interest.

References

[1] A. Grigor’yan, R. Jimenez, Y. Muranov, and S.-T. Yau, On the path homology theory of digraphs and Eilenberg-Steenrod axioms, Homology Homotopy Appl. 20 (2018), no. 2, 179–205, DOI: http://dx.doi.org/10.4310/HHA.2018.v20.n2.a9.

[2] A. Grigor’yan, Y. Lin, Y. Muranov, and S.-T. Yau, Homotopy theory for digraphs, Pure Appl. Math. Q. 10 (2014), 619–674.

[3] A. Grigor’yan, Y. Muranov, and S.-T. Yau, Graphs associated with simplicial complexes, Homology Homotopy Appl. 16 (2014), 295–311.

[4] Y. Muranov and A. Szczepkowska, On path homology of vertex colored (di)graphs, Symmetry 12 (2020), no. 6, 965, DOI: https://doi.org/10.3390/sym12060965.

[5] A. Dimakis and F. Müller-Hoissen, Discrete differential calculus: Graphs, topologies, and gauge theory, J. Math. Phys. 35 (1994), no. 12, 6703–6735, DOI: https://doi.org/10.1063/1.530638.

[6] A. Dimakis and F. Müller-Hoissen, Differential calculus and gauge theory on finite sets, J. Phys. A: Math. Gen. 27 (1994), no. 9, 3159–3178, DOI: https://doi.org/10.1088/0305-4470/27/9/028.

[7] A. Grigor’yan, Y. Lin, Y. Muranov, and S.-T. Yau, Cohomology of digraphs and (undirected) graphs, Asian J. Math. 19 (2015), no. 5, 887–932.

[8] A. Grigor’yan, Y. Muranov, and S.-T. Yau, On a cohomology of digraphs and hochschild cohomology, J. Homotopy Relat. Struct. 11 (2016), 209–230, DOI: https://doi.org/10.1007/s40062-015-0103-1.

[9] S. Chodhury and F. Mémoli, Persistent path homology of directed networks, in: Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2018, pp. 1152–1169, DOI: https://doi.org/10.1137/1.9781611975031.75.
[10] K. Dey Tamal, T. Li, and Y. Wang, *An efficient algorithm for 1-dimensional (persistent) path homology*, arXiv:2001.09549 (2020).

[11] L. W. Beineke and R. J. Wilson, *Topics in chromatic graph theory*, Encyclopedia of Mathematics and its Applications 156, Cambridge University Press, Cambridge, United Kingdom, 2015.

[12] G. Chartrand, L. Lesniak, and P. Zhang, *Graphs and Digraphs*, CRC Press, Boca Raton, Florida, United States, 2011.

[13] H. Galeana-Sánchez and R. Rojas-Monroy, *Extensions of edge-coloured digraphs*, in: Proceedings of the 10th WSEAS International Conference on Applied Mathematics, Dallas, Texas, USA, November 1–3, 2006.

[14] S. MacLane, *Homology*, Die Grundlehren der Mathematischen Wissenschaften, Bd. 114, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.

[15] R. E. Mosher and M. C. Tangora, *Cohomology Operations and Applications in Homotopy Theory*, Harper & Row, Publishers, New York City, United States, 1968.

[16] E. H. Spanier, *Algebraic Topology*, McGraw-Hill, New York, NY, USA, 1966.

[17] P. Bendich, J. S. Marron, E. Miller, A. Pieloch, and S. Skwerer, *Persistent homology analysis of brain artery trees*, Ann. Appl. Stat. 10 (2016), no. 1, 198–218, DOI: https://doi.org/10.1214/15-AOAS886.

[18] P. Bubenik and P. T. Kim, *A statistical approach to persistent homology*, Homology Homotopy Appl. 9 (2007), no. 2, 337–362.

[19] P. Bubenik and J. A. Scott, *Categorification of persistent homology*, Discrete Comput. Geom. 51 (2014), 600–627, DOI: https://doi.org/10.1007/s00454-014-9573-x.

[20] P. Dlotko and H. Wagner, *Simplification of complexes of persistent homology computations*, Homology Homotopy Appl. 16 (2014), 49–63.

[21] A. Zomorodian and G. Carlsson, *Computing persistent homology*, Discrete Comput. Geom. 33 (2005), 249–274, DOI: https://doi.org/10.1007/s00454-004-1146-y.

[22] H. C. Baehr, A. Dimakis, and F. Müller-Hoissen, *Differential calculi on commutative algebras*, J. Phys. A: Math. Gen. 28 (1995), no. 11, 3197–3222, DOI: https://doi.org/10.1088/0305-4470/28/11/019.