A Role for siRNA in X-Chromosome Dosage Compensation in Drosophila melanogaster

Debashish U. Menon and Victoria H. Meller

Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202

ABSTRACT

Sex-chromosome dosage compensation requires selective identification of X chromatin. How this occurs is not fully understood. We show that small interfering RNA (siRNA) mutations enhance the lethality of Drosophila males deficient in X recognition and partially rescue females that inappropriately dosage-compensate. Our findings are consistent with a role for siRNA in selective recognition of X chromatin.

MALES of many species carry a euchromatic, gene-rich X chromosome and a gene-poor, heterochromatic Y chromosome (Charlesworth 1991). This creates a potentially lethal imbalance in the X to autosomal (X:A) ratio in one sex (Gupta et al. 2006; Nguyen and Disteche 2006; Deng et al. 2011). Dosage compensation is an essential process that equalizes X-linked gene expression between XY males and XX females, thereby maintaining a constant ratio of X:A gene products. Strategies to accomplish this differ between species, but share the need for coordinated regulation of an entire chromosome (Lucchesi et al. 2005). In flies, the male-specific lethal (MSL) complex, composed of five MSL proteins and noncoding rodX RNA on the X chromosome, binds with great selectivity to the X chromosome of males (Deng and Meller 2006a). The MSL complex directs H4K16 acetylation to the body of X-linked genes, increasing transcription by enhancing RNA polymerase II processivity (Smith et al. 2001; Larschan et al. 2011).

Recruitment of the MSL complex is postulated to occur at X-linked chromatin entry sites (CES) (Kelley et al. 1999; Alekseyenko et al. 2008; Straub et al. 2008). CES contain 21-bp MSL recognition elements (MREs), which are modestly enriched on the X chromosome (Alekseyenko et al. 2008). The MSL complex then spreads to nearby transcribed genes (Larschan et al. 2007; Sural et al. 2008). While this model elegantly describes the local distribution of the MSL complex, it fails to explain the exclusive recognition of X chromatin that is a hallmark of Drosophila dosage compensation.

The initiation of dosage compensation and hypertranscription of X-linked genes is dependent on rodX RNA (Meller 2003; Deng and Meller 2006b). The X-linked rodX genes, rodX1 and rodX2, are redundant for these functions (Meller and Rattner 2002). Mutation of a single rodX gene is without phenotype, but simultaneous mutation of rodX1 and rodX2 reduces X-localization of the MSL complex, resulting in a reduction in X-linked gene expression and male-specific lethality (Meller and Rattner 2002; Deng and Meller 2006b).

Because the rodX RNAs are necessary for exclusive X-localization of the MSL proteins, genetic modifiers of rodX1 rodX2 lethality may identify novel pathways that contribute to X-recognition. We previously reported that a maternally imprinted Y chromosome is a potent suppressor of rodX1 rodX2 lethality (Menon and Meller 2009). The expression of Y-linked protein-coding genes is restricted to the germ-line, making it unlikely that these genes influence the somatic process of dosage compensation. Furthermore, the Y chromosome itself is nonessential for dosage compensation (reviewed by Lucchesi 1973). We postulate that, in spite of the fact that Y-linked genes are unnecessary for dosage compensation, the Y-chromosome imprint modulates a pathway involved in this process.

Repetitive sequences, which are abundant on the Y chromosome, have been proposed to influence somatic gene expression (Lemos et al. 2008, 2010; Jiang et al. 2010; Pergentili 2010). Small RNA pathways are potential mediators of this effect. To pursue the idea that small RNA might play a role in dosage compensation, we conducted a directed
screen of RNAi pathways. Mutations in the small interfering RNA (siRNA) pathway were found to enhance roX1 roX2 lethality. siRNA mutations disrupt localization of the MSL complex in roX1 roX2 mutants and partially rescue female flies that inappropriately dosage-compensate, leading to toxic overexpression of X-linked genes. Our findings are consistent with participation of siRNA in recognition of X chromatin.

Materials and Methods

Fly culture and genetics

Flies were maintained at 25°C on standard cornmeal–agar fly food. Unless otherwise noted, mutations are described in Lindsley and Zimm (1992). roX1 mutations and a complex roX2 deletion (Df(1)52; [w+Δ4.3]) have been described (Meller et al. 1997; Meller and Rattner 2002; Deng et al. 2005). A viable deletion of roX2 (roX2Δ) was accomplished by FLP-mediated recombination between CG11695[801356] and nod[804008]. Description of dcr2[808444], ago2[8081], ago2[14], r2d1, D-elp1[80826], loqs[800791], ago1[800081], spn-E1, aub[QC42], aub[HN], and piwi[806843] can be found at http://flybase.org. ago2[414] was provided by R. Carthew, and all other mutations were provided by the Bloomington Drosophila Stock Center.

RNAi mutations were outcrossed for six generations to minimize genetic background effects. All stocks were constructed with the Y chromosome from the laboratory reference yw strain to eliminate confounding effects attributable to different Y chromosomes that we and others have observed (Lemos et al. 2008). After rebalancing, all mutations were confirmed by PCR or phenotype. Matings to determine the effect of RNAi pathway mutations on roX1ex33 roX2Δ male and yw female survival are detailed in Figure S2.

qRT-PCR

Accumulation of roX1ex40 transcript was measured by qRT-PCR as previously described (Deng et al. 2009). Briefly, RNA was prepared from three groups of 50 third instar male larvae. One microgram of RNA was reverse-transcribed using random hexamers and ImProm-II reverse transcriptase (Promega). Two technical replicates of each biological replicate were amplified with 300 nM of the primers TTTTGTCCCACGGAATAA and CTTTTTATGCGTTTTCCGA. Expression of roX1ex40 was normalized to autosomal Dmn, amplified with 300 nM of primers GACAAGTTGAGCCGCCTTAC and CTTGGTGCTTAGATGACGCA.

Results and Discussion

The roX1ex33 roX2Δ X chromosome supports ~20% eclosion of adult male escapers. roX1ex33 roX2Δ females were mated to males heterozygous for mutations in the Piwi-interacting RNA, small interfering RNA (siRNA), and microRNA (miRNA) pathways (RNAi−/+). The survival of sons with reduced RNA interference (RNAi) function (roX1ex33 roX2Δ ; RNAi−/+) was divided by that of their brothers with intact RNAi (roX1ex33 roX2Δ ; +/+) to reveal enhancement or suppression of male lethality. Mutations in Dcr-2, Ago2, Loqs, and D-elp1 were found to lower the survival of roX1ex33 roX2Δ males by 30, 55, 50, and 70%, respectively (Figure 1A).

Figure 1 siRNA mutations enhance roX1 roX2 male lethality. (A) Eclosing roX1ex33 roX2Δ males carrying RNAi mutations divided by their brothers with full RNAi function. SEM is represented by error bars. An asterisk indicates Student’s two-sample t-test significance of ≤0.05. (B) Ago2 reduction partially rescues the developmental delay of females expressing MSL2. Females carry the [H83M2]6I transgene and express MSL2. Females carry the [H83M2]6I transgene and express MSL2. Solid bars represent females heterozygous for ago2[414]; shaded bars represent females with wild-type ago2. (C) Ago2 reduction does not influence the eclosion of otherwise wild-type females. Solid bars depict females heterozygous for ago2[414]; shaded bars represent females with wild-type ago2.

Dcr-2 and **D-elp1** play a role in endogenous siRNA (endo-siRNA) production and transposon silencing, and **Ago2** is a member of the RNAi-induced silencing complex (Carthew and Sontheimer 2009; Lipardi and Paterson 2009; Siomi and Siomi 2009). While **loqs** has a prominent role in miRNA biogenesis, an isoform of **Loqs** has been implicated in the biogenesis of endo-siRNA from structured loci and transposons (Okamura et al. 2008; Zhou et al. 2009; Marques et al. 2010). All of the candidate genes therefore affect siRNA production or function. Reduction of the canonical siRNA gene **r2d2** did not enhance **roX1 roX2** male lethality. R2D2 affects strand selection during loading of siRNA onto Ago2 (Liu et al. 2003; Tomari et al. 2004). It is possible that this is unnecessary for dosage compensation or that the level of R2D2 is not limiting when a single copy of the gene is mutated.

To confirm that siRNA selectively affects dosage compensation, we asked whether reduction of **Ago2** rescued females that inappropriately deploy the dosage compensation machinery, leading to toxic overexpression of both X chromosomes. Ectopic expression of **male-specific lethal 2** (**msl2**) induces dosage compensation in females (Kelley et al. 1995). MSL2 expression, driven by the [H83M2]61 transgene, reduces female survival and delays the peak of eclosion until day 6 (shaded bars, Figure 1B) (Kelley et al. 1995). In contrast, eclosion of sisters not expressing MSL2 peaks on day 2 (shaded bars, Figure 1C). Eclosion of [H83M2]61 females with one mutated ago2 allele is advanced by 2 days, peaking on day 4 (solid bars, Figure 1B). Reduction of **Ago2** in otherwise wild-type females had no discernible effect on eclosion timing (Figure 1C). The enhancement of **roX1 roX2** male lethality by siRNA mutations and partial rescue of MSL2-expressing females by reduction of **Ago2** identifies a role for small RNA in *Drosophila* dosage compensation.

The **roX1**Δ40 internal deletion mutant supports full male survival, presumably because it retains essential 5’ and 3’ **roX1** regions in a transcript of reduced size (Deng et al. 2005). Localization of the MSL complex on polytene chromosomes of **roX1**Δ40 **roX2**Δ males is similar to that observed in wild-type flies. **roX1**Δ40 therefore has a molecularly detectable but subphenotypic defect. Loss of **Ago2** has no effect on male survival by itself, but when **Ago2** is eliminated in **roX1**Δ40 **roX2**Δ males, survival is reduced to 8% (Figure 2A). Loss of **Loqs** reduces **roX1**Δ40 **roX2**Δ male survival by >50% (Figure 2B), **roX1**Δ40 **roX2**Δ males with reduced D-Elp1 levels have full viability, but D-Elp1 lethality precludes homozygote testing. We took advantage of the synthetic lethality between **roX1**Δ40 **roX2**Δ and siRNA mutations to explore how siRNA contributes to dosage compensation.

To address the possibility that siRNA mutations act by modulating the level of **roX** RNA, quantitative RT-PCR (qRT-PCR) was used to measure **roX1**Δ40 transcript in **ago2**Δ14/+ or **D-elp1**Δ00296/+ males. Accumulation of **roX1**Δ40 RNA was unaffected by these mutations (Supporting Information, Figure S1A). We also considered the possibility that siRNA indirectly influences the level of an MSL protein. Protein blotting revealed no reduction in core members of the MSL complex in males lacking **Ago2** or with reduced **D-elp1** (Figure S1, C–F). This conclusion is supported by whole-genome expression studies in S2 cells following **Ago2** knockdown (Rehwinkel et al. 2006). As suggested by the lack of a male phenotype, the **roX1**Δ40 **roX2**Δ chromosome alone did not affect MSL protein levels (Figure S1, C–F). Disruption of dosage compensation in **roX1** roX2 males with reduced siRNA therefore does not involve reduction in the core components of the MSL complex.
The synthetic lethality between roX1ex40 roX2\textDelta and siRNA mutations suggested that siRNA could contribute to X-identification or to recruitment of the MSL complex to the X chromosome. If this is the case, loss of siRNA alone might disrupt MSL localization, which is exclusive to the X chromosome in wild-type males (Figure 3A). Reduction of D-Elp1 did not discernibly affect MSL1 localization to the polytene X chromosome of otherwise wild-type males (Figure 3B). A slight disruption of X-localization was detected in ago2 mutants, but this was only marginally higher than that observed in wild-type controls (Figure 3, B, C, and E; Table S1).

Ectopic MSL1 binding on the autosomes at the chromocenter and at the telomeres is a sensitive metric for disruption of MSL localization. Although MSL1 recruitment in roX1ex40 roX2\textDelta males is superficially similar to wild type, examination of a large number of nuclei revealed a reduction of MSL1 recruitment to the X chromosome in some nuclei and elevated ectopic localization, particularly at the chromocenter (Figure 3, B and C; Table S1). This supports the idea that
roX1\textit{ex40} has a defect in function. However, mislocalization of MSL1 was notably more severe in chromosome preparations from \textit{roX1\textit{ex40} roX2\Delta}; \textit{ago2\textit{414}} and \textit{roX1\textit{ex40} roX2\Delta}; \textit{D-elp1\textit{00296}/+} males. The number of nuclei exhibiting minimal or no recruitment of MSL1 to the X chromosome is enhanced over threefold by the loss or reduction of these siRNA proteins (Figure 3E). These same genotypes displayed a threefold increase in ectopic autosomal MSL1 localization (Figure 3, D, F, and G; Table S1). Despite increased mislocalization of the MSL complex, \textit{roX1\textit{ex40} roX2\Delta}; \textit{D-elp1\textit{00296}/+} male viability appears unaffected, and the viability of \textit{roX1\textit{ex40} roX2\Delta} males with reduced levels of Ago2 or Loqs is also high (Figure 2, A and B). It is possible that this disparity is because the accumulation of mutated roX1 transcripts, including \textit{roX1\textit{ex40}}, is lower in the salivary gland than in other tissues (Figure S1B; see figure 3 in Deng et al. 2005). In spite of reduced transcript in the salivary gland, the \textit{roX1\textit{ex40}} mutant directs considerable X-localization of the MSL complex, in accord with the ability of \textit{roX1\textit{ex40} roX2\Delta} males to tolerate a partial, but not a complete, reduction in RNAi. Taken together, these studies reveal a role for siRNA in the process of dosage compensation in \textit{Drosophila}. The genetic interaction between mutations affecting siRNA and roX1 roX2 chromosomes, as well as the enhancement of ectopic MSL mislocalization, suggests that siRNA contributes to X recognition or chromatin binding of the MSL complex.

Small RNA has been implicated in numerous chromatin-based processes, but the present study is the first to link small RNA to \textit{Drosophila} dosage compensation. Small RNA typically acts through gene silencing (Pal-Bhadra et al. 2004; Verdel et al. 2004; Brower-Toland et al. 2007; Wang and Elgin 2011). For example, Ago2 and Dcr2 mutations suppress position-effect variegation in flies, suggesting a function in heterochromatic repression (Deshpande et al. 2005; Fagegaltilier et al. 2009). Ago2 and Dcr2 exert a repressive effect on expression of euchromatic genes by modulating transcriptional elongation (Cernilogar et al. 2011). In contrast, dosage compensation selectively elevates transcription of a large portion of the fly genome. The siRNA mutations examined in this study dramatically enhance the male-specific lethality of roX1 roX2 chromosomes and promote delocalization of the MSL complex from the X chromosome. This suggests that siRNA modulates the stability of MSL binding or contributes to recognition of the X chromosome. While evidence that Ago2 or other siRNA factors directly activate gene expression is lacking, a few studies have demonstrated increased silencing at some loci upon loss of Ago2 and Piwi (Yin and Lin 2007; Moshkovich and Lei 2010). It is possible that siRNA influences dosage compensation not through direct action at compensated genes, but by contributing to interphase chromosome architecture or organization of the nucleus. This would be consistent with the role of RNAi at insulators (Lei and Corces 2006; Moshkovich et al. 2011). Intriguingly, the male X chromosome displays an interphase conformation distinct from that in females (Grimaud and Becker 2009).

Acknowledgments

The authors thank M. Kuroda for antibodies and M. P. Bozzetti, R. Carthew, K. Maggett, S. Pimpinelli, and the Bloomberg Drosophila Stock Center for fly strains. D.U.M. was supported in part by a Graduate Enhancement Research Assistantship and a Thomas C. Rumble University Graduate Fellowship. This research was supported by National Science Foundation award 0641121 and National Institutes of Health award GM093110.

Literature Cited

Alekseyenko, A. A., S. Peng, E. Larschan, A. A. Gorchakov, O.-K. Lee et al., 2008 A sequence motif within chromatin entry sites directs MSL establishment on the \textit{Drosophila} X chromosome. Cell 134: 599–609.

Brower-Toland, B., S. D. Findley, L. Jiang, L. Liu, H. Yin et al., 2007 \textit{Drosophila} PIWI associates with chromatin and interacts directly with HP1a. Genes Dev. 21: 2300–2311.

Carthew, R. W., and E. J. Sontheimer, 2009 Origins and mechanisms of miRNAs and siRNAs. Cell 136: 642–655.

Cernilogar, F. M., M. C. Onorati, G. O. Kothe, A. M. Burroughs, K. M. Parsi et al., 2011 Chromatin-associated RNA interference components contribute to transcriptional regulation in \textit{Drosophila}. Nature 480: 391–395.

Charlesworth, B., 1991 The evolution of sex chromosomes. Science 251: 1030–1033.

Deng, X., and V. H. Meller, 2006a Non-coding RNA in \textit{Drosophila} dosage compensation. Trends Biochem. Sci. 31: 526–532.

Deng, X., and V. H. Meller, 2006b roX RNAs are required for increased expression of X-linked genes in \textit{Drosophila melanogaster} males. Genetics 174: 1859–1866.

Deng, X., B. P. Rattner, S. Souter, and V. H. Meller, 2005 The severity of roX1 mutations are predicted by MSL localization on the X chromosome. Mech. Dev. 122: 1094–1105.

Deng, X., S. K. Koya, Y. Kong, and V. H. Meller, 2009 Coordinated regulation of heterochromatic genes in \textit{Drosophila melanogaster} males. Genetics 182: 481–491.

Deng, X., J. B. Hiatt, D. K. Nguyen, S. Ercan, D. Sturgill et al., 2011 Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and \textit{Drosophila} melanogaster. Nat. Genet. 43: 1179–1185.

Deshpande, G., G. Calhoun, and P. Schell, 2005 \textit{Drosophila} argonaute-2 is required early in embryogenesis for the assembly of centric/centromeric heterochromatin, nuclear division, nuclear migration, and germl-cell formation. Genes Dev. 19: 1680–1685.

Fagegaltilier, D., A. L. Bouge, B. Berry, E. Poisot, O. Sismeiro et al., 2009 The endogenous siRNA pathway is involved in heterochromatin formation in \textit{Drosophila}. Proc. Natl. Acad. Sci. USA 106: 21258–21263.

Grimaud, C., and P. B. Becker, 2009 The dosage compensation complex shapes the conformation of the X chromosome in \textit{Drosophila}. Genes Dev. 23: 2490–2495.

Gupta, V., M. Parisi, D. Sturgill, R. Nuttall, M. Doctolero et al., 2006 Global analysis of X–chromosome compensation. J. Biol. 5: 3.

Jiang, P. P., D. L. Hartl, and B. Lemos, 2010 Y not a dead end: epistatic interactions between Y-linked regulatory polymorphisms and genetic background affect global gene expression in \textit{Drosophila melanogaster}. Genetics 186: 109–118.

Kelley, R. L., I. Solovyeva, L. M. Lyman, R. Richman, V. Solovyev et al., 1995 Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in \textit{Drosophila}. Cell 81: 867–877.
Kelley, V. H., and B. P. Rattner, 2002 The MSL complex from roX RNA genes into flanking chromatin. Cell 98: 513–522.

Larschan, E., A. A. Alekseyenko, A. A. Grotchakov, S. Peng, B. Li et al., 2007 MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism. Mol. Cell 28: 121–133.

Larschan, E., E. P. Bishop, P. V. Kharchenko, L. J. Core, J. T. Lis et al., 2011 X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature 471: 115–118.

Lei, E. P., and V. G. Corces, 2006 RNA interference machinery influences the nuclear organization of a chromatin insulator. Nat. Genet. 38: 936–941.

Lemos, B., L. O. Araripe, and D. L. Hartl, 2008 Polymorphic Y chromosomes harbor cryptic variation with manifold functional consequences. Science 319: 91–93.

Lemos, B., A. T. Branco, and D. L. Hartl, 2010 Epigenetic effects of polymorphic Y chromosomes modulate chromatin components, immune response, and sexual conflict. Proc. Natl. Acad. Sci. USA 107: 15826–15831.

Lucchesi, J. C., 1973 Dosage compensation in Drosophila. Annu. Rev. Genet. 7: 225–237.

Lucchesi, J. C., W. G. Kelly, and B. Panning, 2005 Chromatin remodeling in dosage compensation. Annu. Rev. Genet. 39: 615–651.

Marques, J. T., K. Kim, P. H. Wu, T. M. Alleyne, N. Jafari et al., 2010 Loqs and R2D2 act sequentially in the siRNA pathway in Drosophila. Nat. Struct. Mol. Biol. 17: 24–30.

Meller, V. H., 2003 Initiation of dosage compensation in Drosophila melanogaster. Academic Press, San Diego.

Meller, V. H., P. R. Gordadze, G. Roman, R. L. Davis et al., 1999 Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell 98: 513–522.

Moshiakhovich, N., P. Nisha, P. J. Boyle, B. A. Thompson, R. K. Dale et al., 2011 RNAi-independent role for Argonaute2 in CTCF/CP190 chromatin insulator function. Genes Dev. 25: 1686–1701.

Nguyen, D. K., and C. M. Distech, 2006 Dosage compensation of the active X chromosome in mammals. Nat. Genet. 38: 47–53.

Okamura, K., W. J. Chung, J. G. Ruby, H. Guo, D. P. Bartel et al., 2008 The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 453: 803–806.

Pali-Bhadra, M., B. A. Leibovitch, S. G. Gandhi, M. Rao, U. Bhadra et al., 2004 Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303: 669–672.

Piergentili, R., 2010 Multiple roles of the Y chromosome in the biology of Drosophila melanogaster. ScientificWorldJournal 10: 1749–1767.

Rehwinkel, J., P. Natalin, A. Stark, J. Brennecke, S. M. Cohen et al., 2006 Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster. Mol. Cell. Biol. 26: 2965–2975.

Sorni, H., and M. C. Sorni, 2009 On the road to reading the RNA-interference code. Nature 457: 396–404.

Smith, E. R., C. D. Allis, and J. C. Lucchesi, 2001 Linking global histone acetylation to the transcription enhancement of X-chromosomal genes in Drosophila males. J. Biol. Chem. 276: 31483–31486.

Straub, T., C. Grimaud, G. D. Gilfillan, A. Mitterweger, and P. B. Becker, 2008 The chromosomal high-affinity binding sites for the Drosophila dosage compensation complex. PLoS Genet. 4: 1–14.

Sural, T. H., S. Peng, B. Li, J. L. Workman, P. J. Park et al., 2008 The MSL3 chromodomain directs a key targeting step for dosage compensation of the Drosophila melanogaster X chromosome. Nat. Struct. Mol. Biol. 15: 1318–1325.

Tomary, Y., C. Marranga, B. Haley, N. Martinez, and P. D. Zamore, 2004 A protein sensor for siRNA asymmetry. Science 306: 1377–1380.

Verdel, A., S. Jia, S. Gerber, T. Sugiyama, S. Gygi et al., 2004 RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303: 672–676.

Wang, S. H., and S. C. Elgin, 2011 Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line. Proc. Natl. Acad. Sci. USA 108: 21164–21169.

Yin, H., and H. Lin, 2007 An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature 450: 304–308.

Zhou, R., B. Czech, J. Brennecke, R. Sachidanandam, J. A. Wohlschlegel et al., 2009 Processing of Drosophila endo-siRNAs depends on a specific Lqacious isoform. RNA 15: 1886–1895.
A Role for siRNA in X-Chromosome Dosage Compensation in *Drosophila melanogaster*

Debashish U. Menon and Victoria H. Meller
FIGURE S1 Mutations of ago2 or D-elp1 do not affect accumulation of molecules in the MSL complex.

(A) Accumulation of roX1ex40 transcript was determined in roX1ex40 roX2Δ (value set to 1), roX1ex40 roX2Δ D-elp1^{00286/+} and roX1ex40 roX2Δ ago2^{241+} male larvae by quantitative RT-PCR (qRT PCR). (B) Accumulation of roX1ex40 transcript in salivary glands and carcass (value set to 1) of roX1ex40 roX2Δ male larvae. Expression in A and B is normalized to the autosomal gene Dmn. Bars represent the standard error of three biological replicates. (C–F) Quantification of MSL levels from protein blots of (C) MSL1 (n=2), (D) MSL2 (n=4), (E) MSL3 (n=3) and (F) MLE (n=3) in wild type, ago2^{241+}, D-elp1^{00286/+} and roX1ex40 roX2Δ adult males. β-tubulin and d-FMR1 were the loading controls. Quantification was performed by scanning blots and integrating signal density using Image J software (http://rsbweb.nih.gov/ij/). Protein signal was normalized to loading controls. A dilution series established that signal remained within linear range. Protein blotting was performed on extracts from groups of 10 or 20 adult males homogenized in 100 or 200 μl of Laemmli buffer with 1mM PMSF. Homogenates were boiled and centrifuged at 10,000 rpm for 2 min to obtain crude lysates. Equal volumes of lysate were separated on 7% polyacrylamide gels and transferred to nitrocellulose (Micron Separations Inc.). Membranes were blocked with 0.5% fish gelatin and 2-5% BSA in PBST or TBST. Primary and secondary antibodies were diluted in the respective blocking solutions. Primary antibodies to MSL1, MSL2, MSL3 and MLE were a gift from M. Kuroda. Antibodies to β-tubulin and dFMR1 are from the Developmental Studies Hybridoma Bank. Alkaline phosphatase conjugated secondary antibodies (Sigma) were used for detection by NBT/BCIP chromogenic system.
FIGURE S2 Matings to determine effect of RNAi mutations on male and female survival. (A) Screen for genetic interaction between roX1ex33roX2\Delta and RNAi mutants. roX1ex33roX2\Delta females were mated to males heterozygous for RNAi mutations, producing roX1ex33roX2\Delta sons with wild type (control) and reduced RNAi (experimental). (B) Mating performed to determine the effect of reduced Ago2 on female development. Females with a yw (wild type) X chromosome and trans-heterozygous for ago2414 and P(wHy)DG23507, a marker situated 5 kb proximal to ago2, were mated to males heterozygous for [H83M2]6I. Equal numbers of the four classes of female zygotes are predicted. Daughters inheriting [H83M2]6I express MSL2, leading to developmental delay (top row); presented in Fig. 1B. Their sisters lacking [H83M2]6I (bottom row) are plotted in Fig. 1C. Daughters with full Ago2 (left) and their sisters with reduced Ago2 (right) were distinguished by y+, present in P(wHy).
Table S1 MSL1 recruitment to polytene chromosomes

A

X chromosome MSL1 recruitment	+	ago2	D-elp1/+	roX1 roX2	roX1 roX2; ago2	roX1 roX2; D-elp1/+
++++	82.66 (177)	56.96 (156)	77.76 (138)	24.13 (81)	11.86 (28)	14.73 (22)
+++	16.33 (26)	34.35 (113)	19.84 (36)	65.90 (184)	63.77 (141)	54.49 (84)
+	0.62 (1)	8.07 (18)	2.4 (5)	7.05 (18)	19.47 (36)	26.96 (42)
No stain	0.39 (1)	0.62 (2)	0 (0)	1.03 (4)	4.91 (11)	3.83 (6)
Total nuclei counted	205	289	179	287	216	154

B

Chromocenter MSL1 recruitment	+	ago2	D-elp1/+	roX1 roX2	roX1 roX2; ago2	roX1 roX2; D-elp1/+
No recruitment	93.54 (192)	80.22 (223)	88.76 (161)	44.93 (119)	30.21 (56)	24.64 (37)
Recruitment	6.46 (15)	19.78 (59)	11.23 (18)	55.07 (163)	69.79 (153)	75.36 (116)
Total nuclei counted	207	282	179	282	209	153

C

Ectopic MSL1 recruitment	+	ago2	D-elp1/+	roX1 roX2	roX1 roX2; ago2	roX1 roX2; D-elp1/+
No autosomal recruitment	67.83 (134)	73.36 (194)	55.88 (110)	61.48 (168)	35.92 (67)	52.70 (79)
1-2 autosomal bands	14.70 (59)	18.89 (63)	36.49 (58)	30.15 (89)	24.29 (51)	25.88 (40)
≥4 autosomal bands	2.89 (14)	5.81 (17)	7.63 (11)	8.37 (25)	39.80 (91)	21.43 (34)
telomere recruitment	2.59 (8)	1.95 (8)	3.58 (6)	9.70 (29)	12.48 (37)	31.79 (48)
Total nuclei counted	215	282	185	311	246	201

Scoring of polytene nuclei stained for MSL1 from wild type (+), ago2^{414}, roX1^{ev40} roX2Δ, roX1^{ev40} roX2Δ; ago2^{414}/+ and roX1^{ev40} roX2Δ; D-elp1^{CGO296}/+ male larvae. (A) MSL1 recruitment to X chromosome is categorized as ++++ (wild type), +++ (moderate) and + (minor). Examples of ++++ and + are presented in Fig. 3. (B) MSL1 recruitment to the chromocenter. (C) MSL1 recruitment to ectopic autosomal sites and telomeres. The percentage of nuclei in each category is represented, followed by the total number of nuclei in parentheses.