Reduced expression of Axin correlates with tumour progression of oesophageal squamous cell carcinoma

M Nakajima*1, M Fukuchi1, T Miyazaki1, N Masuda1, H Kato1 and H Kuwano1

1Department of Surgery I, Gunma University Faculty of Medicine, 3-39-22 Shosha-machi, Maebashi, Gunma 371-8511, Japan

Axin is a negative regulator of the Wnt signalling pathway, and genetic alterations of AXIN1 have been suggested to be an important factor of carcinogenesis in some tumours. The objective of this study was to clarify the clinicopathologic and prognostic significance of Axin in oesophageal squamous cell carcinoma (SCC). Immunohistochemical staining for Axin was performed on surgical specimens obtained from 81 patients with oesophageal SCC. Western and Northern blottings were performed on proteins and RNA from oesophageal SCC cell lines. Then polymerase chain reaction–single-strand conformational analysis (PCR–SSCP) was performed on DNA from oesophageal SCC cells and cell lines. Axin expression was found to be correlated inversely with depth of invasion, lymph node metastasis, and lymphatic invasion. Although univariate analysis showed Axin to be a negative predictor, multivariate analysis showed that it was not an independent prognostic marker. In all but one of the seven cell lines examined, the levels of protein expression were equivalent to RNA expression. PCR–SSCP showed that five patients and three cell lines had polymorphisms in exon 4 or 5 of the AXIN1 gene, but none of the 81 patients with oesophageal SCC had mutations. Our findings suggest that reduced expression of Axin is correlated with tumour progression of oesophageal SCC. However, additional studies will be necessary to elucidate the mechanism responsible for loss of Axin expression in tumour cells.

British Journal of Cancer (2003) 88, 1734–1739. doi:10.1038/sj.bjc.6600941 www.bjcancer.com

© 2003 Cancer Research UK

Keywords: Axin; oesophageal squamous cell carcinoma; carcinogenesis; immunohistochemistry; single nucleotide polymorphism

The Wnt signalling pathway regulates cellular proliferation, differentiation, morphology, and motility in vertebrates and invertebrates (Zeng, 1997; Akiyama, 2000; Bienz and Clevers, 2000). Axin, a negative regulator of this pathway, promotes phosphorylation of serine/threonine in exon 3 of β-catenin to form a complex with adenomatous polyposis coli (APC) and glycogen synthase kinase-3β (GSK-3β) (Ikeda et al., 1998, 2000; Kishida et al., 1998). Phosphorylated β-catenin is quickly degraded via a ubiquitin–proteasome pathway in the cytoplasm (Nakamura, 1997). Upon Wnt signalling, because the activity of Axin complex is blocked through Dishevelled, phosphorylation of β-catenin is suppressed and β-catenin accumulates in the cytoplasm. Accumulated β-catenin protein is translocated to the nucleus as a coactivator for the T-cell factor (TCF)/lymphocyte enhancer-binding factor (LEF) family (Morin et al., 1997; He et al., 1998) and activates the transcription of Wnt target genes such as c-myc (He et al., 1998) or cyclin D1 (Tetsu and McCormick, 1999).

The wild-type Axin gene (AXIN1) is regarded as a tumour suppressor in some kinds of tumours. AXIN1 mutations have been reported in a colon carcinoma cell line (Webster et al., 2000), hepatocellular carcinoma (HCC) (Satoh et al., 2000; Laurent-Puig et al., 2001), ovarian endometrioid adenocarcinoma (Wu et al., 2001), and sporadic medulloblastoma (Dahmen et al., 2001). In HCC cell lines with AXIN1 mutations, accumulation of β-catenin in the cytoplasm or nucleus has been observed, and the transcription activity of TCF4 is regulated positively (Satoh et al., 2000).

Oesophageal carcinoma is one of the most lethal gastrointestinal malignancies. Despite recent advances in therapy and management, the overall 5-year survival rate remains at less than 50% (Ando et al., 1997; Collard et al., 2001). In future, it will be possible to identify prognostic markers and thus select the most suitable therapy for each tumour.

Although several studies have been performed to elucidate the relation between Axin expression and tumours in several organs, to our knowledge, there have been no reports related to immunohistochemical expression of Axin in oesophageal carcinoma, or the association between Axin expression and prognosis. To clarify whether Axin expression is a significant prognostic factor, we examined immunohistochemically the relation between Axin expression, pathologic tumour variables, and prognosis in patients with oesophageal squamous cell carcinoma (SCC). Next, to clarify the mechanism of regulation of Axin expression, we performed Western and Northern blot analyses of oesophageal SCC cell lines. We also searched for mutations of AXIN1 that were considered to activate the Wnt signalling pathway.

MATERIALS AND METHODS

Patients

Surgical specimens were obtained from 81 patients (70 males and 11 females) with oesophageal SCC, who underwent potentially curative surgery at the Department of Surgery I, Gunma University.
Faculty of Medicine, between 1983 and 2000. The age range of the patients was 40 – 78 years, and the mean age 61.3 years. Tumour stage and disease grade were classified according to the fifth edition of the TNM Classification of the International Union Against Cancer (UICC). None of the patients had received irradiation or chemotherapy before surgery, nor did any of them have haematogetic metastases at the time of surgery. Patients who underwent noncurative surgery and/or had inadequate follow-up were not included in the study. Postoperative chemotherapy and/or radiation therapy were not performed until recurrence of the tumour was confirmed by radiologic or endoscopic examination. All patients signed informed consent forms according to our institutional guidelines.

Cell culture

Seven human oesophageal SCC cell lines were grown on plastic tissue culture dishes: TE-series 1, 2, 8, 13, and 15 (gift from Dr T Nishihira, Tohoku University, Sendai, Japan) (Nishihira et al, 1993), and TT and TTn (JCRB0262 and 0261, gift from Dr K Takahashi, Tohoku University, Miyagi, Japan). The TE-series were cultured in RPMI 1640 medium (Sigma, St Louis, MO, USA) containing 10% foetal bovine serum and antibiotics (100 U ml⁻¹ penicillin and 100 µg ml⁻¹ streptomycin); TT and TTn were cultured in a 1:1 mixture of Dulbecco’s modified Eagle medium and Ham’s F-12 medium (Sigma) containing 10% foetal bovine serum and antibiotics, as described above.

Immunohistochemistry for Axin

Resected specimens were fixed with 10% neutral-buffered formalin and embedded in paraffin blocks. Sections, 4 µm thick, were deparaffinised with xylene, rehydrated, and incubated with fresh 0.3% H₂O₂ in methanol for 30 min at room temperature. After rehydration through a graded ethanol series, tissue sections for the Axin study were autoclaved in 20 mM citric acid buffer at 120°C for 2 min and then cooled to 30°C. After incubation with normal goat serum (Histofine SAB-PO (R) kit; Nichirei, Tokyo, Japan), the sections were incubated with primary rabbit serum (Histofine SAB-PO (R) kit; Nichirei, Tokyo, Japan). The sections were then incubated overnight with primary rabbit serum (Histofine SAB-PO (R) kit; Nichirei, Tokyo, Japan), and the sections were incubated with fresh 10% normal goat serum (Histofine SAB-PO (R) kit; Nichirei, Tokyo, Japan). After incubation with primary rabbit serum (Histofine SAB-PO (R) kit; Nichirei, Tokyo, Japan), the sections were incubated with secondary antibody for 30 min at room temperature. Immunohistochemistry was performed with the SAB-PO (R) kit. The chromogen was 3,3’-diaminobenzidine tetrachloride, applied as a 0.02% solution containing 0.005% H₂O₂ in 50 mM Tris-HCl buffer, pH 6.0. The sections were lightly counterstained with haematoxylin. Negative controls were prepared by substituting normal rabbit serum for each primary antibody, and no detectable staining was evident.

Evaluation of Axin expression

The mean Axin expression rate in the 81 primary tumours was almost 50%. Therefore, when 50% or more of the tumour cells in a given specimen were positively stained to the same degree as normal epithelium, the sample was graded as Axin preserved. When fewer than 50% of the tumour cells were stained to the same degree as normal epithelium, the sample was graded as having reduced expression.

Western blot analysis

Protein extraction and immunoblotting were performed as described previously (Kain et al, 1994). Lysates from exponentially growing cell lines were prepared in a buffer containing 20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 1% aprotinin and 1 mM phenylmethylsulphonyl fluoride. The protein concentration was determined with a BCA Protein Assay Kit (Pierce, Rockford, IL, USA). In all, 30 µg of protein from each cell line was resuspended in sodium dodecyl sulphate (SDS) sample buffer (100 mM Tris-HCl, pH 8.8; 0.01% bromophenol blue; 36% glycerol; 4% SDS) containing 1 mM dithiothreitol, boiled for 5 min, and subjected to 5 – 20% Ready Gels J (Bio-Rad, Tokyo, Japan). Proteins were electrotransferred to a Hybond enhanced chemiluminescence nitrocellulose membrane (Amersham Pharmacia Biotech, Buckinghamshire, UK). Proteins were immunoblotted with anti-rabbit Axin antibody (Zymed Laboratories Inc.), and bands were detected using an enhanced chemiluminescence detection system (Amersham Pharmacia Biotech). For blotted membranes, were stripped according to the manufacturer’s protocol. Anti-β-actin (Sigma) antibody served as the control.

Northern blot analysis

Total RNA was extracted from the cells with Trizol Reagent (Gibco BRL, Rockville, MD, USA). In all, 20 µg of RNA per lane was electrohoresed in 1.2% agarose gels containing 2.2 mol l⁻¹ formaldehyde, and blotted onto a Biodyne B membrane (Pall, Tokyo, Japan). The cDNA probe was labelled using a Random Primer DNA Labelling Kit (Roche Molecular Biochemicals, Mannheim, Germany) and [α-³²P]dCTP (Amersham Pharmacia Biotech). The rabbit Axin probe was digested from pcDNA3-FLAG/rAxin (full-length) (gift from Dr A Kikuchi, Hiroshima University, Hiroshima, Japan). Membranes were prehybridised at 42°C for more than 2 h and hybridised overnight at 42°C after staining with methylene blue to verify the quality and quantity of the RNA. The membranes were washed in 2 × SSC, 0.1% SDS for 15 min and 0.2 × SSC, 0.1% SDS for 15 min at 42°C. The washed membrane was exposed to X-ray film under an intensifying screen. A human 18S probe served as the control.

DNA extraction and polymerase chain reaction – single-strand conformational polymorphism (PCR – SSCP) analysis

Small pieces of normal tissue and tumour tissue were frozen in liquid nitrogen and stored at –80°C until DNA extraction. High-molecular-weight DNA samples from seven oesophageal SCC cell lines, as well as fresh-frozen tumour and normal tissues from the 81 patients, were prepared by the phenol–chloroform method after treatment with SDS and proteinase K.

All samples were examined by PCR–SSCP analysis for mutations in exons 2 – 5 of AXIN1, which correspond to the binding sites of β-catenin and GSK-3β. Each exon was amplified using the nine sets of PCR primers published previously (Satoh et al, 2000). Each target sequence was amplified in a 20-µl reaction volume containing 10 – 20 ng of genomic DNA, 2 µM dNTPs, 10 mM Tris-HCl, pH 8.3, 50 mM KCl, 2 mM MgCl₂, 0.2 µM each primer, 1.5 µCi of [α-³²P]dCTP (Amersham Japan, Tokyo, Japan), and 1 U of Taq DNA polymerase (Applied Biosystems, Foster City, CA, USA). These samples were amplified for 35 cycles of denaturation at 95°C for 30 s, annealing at 60 or 61°C for 30 s, and extension at 72°C for 1 min. The PCR products were electrophoresed in 5% polyacrylamide with 5% glycerol gels and autoradiographed for 24 h on Kodak XAR film (Eastman Kodak, Rochester, NY, USA).

DNA sequencing

DNA fragments were cut out of the dried gels and reamplified by PCR with the corresponding sets of primers for 40 cycles. Amplified DNA fragments were purified with a QIA quick PCR Purification Kit (QIAGEN, Hilden, Germany) and sequenced with an ABI PRISM 3100 (Applied Biosystems, Foster City, CA, USA).
Statistical analysis
Statistical analysis was performed by the χ^2 test, the Fisher exact test, and the Mann–Whitney U-test to assess the correlation between Axin immunohistochemical positivity and parameters. A Cox proportional hazards model for risk ratio was used to assess the simultaneous contribution of Axin expression to survival.

RESULTS

Immunohistochemistry of Axin
Immunoreactivity for Axin was strongly positive in normal stratified squamous epithelium of the oesophagus, and was localised in the cytoplasm (Figure 1A). Several staining patterns were observed for the expression of Axin in tumour tissues. Some tumours showed a diffuse decrease in Axin expression, others had both preserved and reduced expression in cell colonies, and others showed highly preserved expression (Figure 1B, C).

Relation between Axin expression and clinicopathologic features
The correlation between the clinicopathologic characteristics of patients with oesophageal SCC and the expression of Axin in their tumours is summarised in Table 1. There were significant inverse correlations between Axin expression and depth of invasion ($P = 0.0235$), lymph node metastasis ($P = 0.0255$), and lymphatic invasion ($P = 0.0058$). However, there was no significant association with patient age, gender, tumour location, grade, pathologic stage, intraepithelial spread, or blood vessel invasion.

As a strong inverse correlation between Axin expression and lymphatic invasion was recognised, we examined the Axin status of tumour cells that had infiltrated lymph vessels. The result revealed that most of the cases positive for lymphatic invasion had reduced or no Axin expression (50 out of 56 cases).

Prognostic significance of Axin expression
To clarify whether Axin expression is a significant prognostic marker of patients with oesophageal SCC, univariate and multivariate survival analyses were performed. In univariate analyses by the Cox model, Axin negativity, pT classification, pN classification, pM classification, pStage, and lymphatic invasion were identified as negative predictors. In multivariate analyses, pT classification, but not Axin, was recognised as an independent prognostic factor (Table 2).

Expression of Axin at the protein level in cultured cells
Expression of Axin was characterised at the protein level in seven oesophageal SCC cell lines. Although all of these seven cell lines were originally derived from oesophageal SCC, Western blotting revealed different levels of Axin expression (Figure 2A). Axin was expressed at high levels in TE1, TE15, TT, and TTn, and there was very weak expression in TE2, TE8, and TE13.

Expression of Axin at the mRNA level in cultured cells
As there were marked variations in the level of expression of Axin protein in the cultured cell lines, Northern blotting was performed to examine the underlying mechanisms of the effects of Axin on tumour cell regulation. This analysis indicated that levels of mRNA expression were equivalent to levels of Axin protein expression, with the exception of the TE8 line, in which Axin expression was reduced in comparison with protein expression (Figure 2B).
Mutation of the AXIN1 gene in oesophageal SCC

None of the 81 patients with oesophageal SCC had mutations, but five patients and three cell lines showed polymorphisms in the AXIN1 gene (Figure 3, Table 3). We confirmed three previously published single-nucleotide polymorphisms (SNPs) (Lin et al., 2000; Dahmen et al., 2001). One polymorphism resulted in an amino-acid substitution, and the others were silent SNPs. However, there was no novel polymorphism or silent mutation.

DISCUSSION

Axin is a negative regulator of the Wnt signalling pathway. It accelerates phosphorylation and ubiquitination of β-catenin, thus inhibiting importation of β-catenin to the nucleus and controlling cell proliferation. Although an association of Axin with carcinoma-ogenesis has been reported in colon cancer cell lines (Webster et al., 2000), HCC (Satoh et al., 2000; Laurent-Puig et al., 2001) and medulloblastoma (Dahmen et al., 2001), to our knowledge there has been no report concerning oesophageal SCC. Therefore, we investigated the association between Axin expression and oesophageal SCC.

First, we performed an immunohistochemical study of the correlation between Axin expression and clinicopathologic factors in patients with oesophageal SCC. Axin expression was seen in the cytoplasm in normal oesophageal stratified squamous cells and

Table 1 Correlation between clinicopathologic characteristics and Axin expression

Parameters	n	Reduced	Preserved	P-value
Age (mean ± s.d., years)	61.3 ± 8.5	61.9 ± 8.6	0.7676	
Gender				
Male	70	32	38	
Female	11	6	5	0.5853
Location				
Cervical	1	1	0	
Upper thoracic	10	6	4	
Mid-thoracic	50	23	27	
Lower thoracic	20	8	12	0.3218
Grade				
Well	21	9	12	
Moderate	39	15	24	
Poor	21	14	7	0.1497
TNM classification				
T1	31	8	23	
T2	12	8	4	
T3	32	18	14	
T4	6	4	2	0.0235*
N				
N0	34	11	23	
N1	47	27	20	0.0255*
M				
M0	66	29	37	
M1	15	9	6	0.5136
Stage				
I	21	4	17	
II	12	6	6	
III	14	6	8	
IVA	3	2	1	
IVB	12	7	5	0.0750
Infiltrative growth pattern				
α	20	6	14	
β	56	29	27	
γ	5	3	2	0.2044
Intraepithelial spread				
(−)	41	18	23	
(+)	40	20	20	0.5825
Lymphatic invasion				
(−)	25	6	19	
(+)	56	32	24	0.0058*
Blood vessel invasion				
(−)	46	20	26	
(+)	35	18	17	0.4775

s.d. = standard deviation; *Significant.

Table 2 Univariate and multivariate analysis of Axin expression and pathologic factors

Factors	Hazard ratio (95% CI⁹)	P-value
Univariate		
Axin	2.018 (1.031–3.950)	0.0405*
Gender	0.483 (0.147–1.581)	0.2288
Age	0.996 (0.958–1.035)	0.8206
Differentiation	1.265 (0.571–2.799)	0.5624
pT classification	8.245 (2.889–23.527)	<0.0001
pN classification	3.204 (1.447–7.094)	0.0041*
pM classification	3.336 (1.510–7.371)	0.0029*
pStage classification	8.338 (1.996–34.842)	0.0036*
Lymphatic invasion	2.591 (1.127–5.956)	0.0250*
Blood vessel invasion	1.579 (0.807–3.093)	0.1824
Multivariate		
Axin	1.352 (0.656–2.784)	0.4137
pT classification	5.930 (1.361–25.848)	0.0178*
pN classification	1.503 (0.488–4.628)	0.4778
pM classification	1.510 (0.621–3.671)	0.3636
pStage classification	1.031 (0.117–9.062)	0.9783
Lymphatic invasion	1.374 (0.479–3.940)	0.5549

CI = confidence interval. *Significant.

Figure 2 Western and Northern blotting of Axin in human oesophageal SCC cell lines. (A) Expression of Axin protein (top) and β-actin (bottom), as determined by Western blotting in various carcinoma cell lines. β-actin protein levels were used as controls for sample loading. (B) Expression of Axin mRNA as determined by Northern blotting. Top is Axin and bottom is 18S. mRNA expression is equivalent to protein expression except in the TE8 line. 18S was used as a control.
negative regulator of Axin initiates or promotes tumour progression. As Axin is reduced or lost in most cases, suggesting that reduced expression of Axin might offer a possible approach for gene therapy of oesophageal SCC. In conclusion, Axin expression appears to be useful for predicting the prognosis of patients with oesophageal SCC, because Axin expression declines with tumour progression. Additional studies will no doubt elucidate the mechanism responsible for loss of Axin expression in tumour cells.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of the Department of Biochemistry, Hiroshima University Faculty of Medicine. We thank Professor Akira Kikuchi for generous provision of pcDNA3-FLAG/rAxin (full-length). This work was supported in part by a Grant-in-Aid for Scientific Research (A) No. 11307021 from Japan Society for the Promotion of Science.

Table 3 Mutational analysis of Axin gene in oesophageal SCC

Case Age (year)/gender	Exon	Base change	aa change	Codon
30 66/male	4	G1256A	Yes	419
40 54/male	4	G1256A	Yes	419
13 64/female	5	G1396A	No	485
15 62/male	5	G1396A	No	485
17 59/male	5	G1396A	No	485
TE1	5	C1690T	No	563
TE2		C1690T	No	563
TE13		C1690T	No	563

*Amino-acid (aa) positions according to GenBank accession no. AF009674.

tumour cells. In tumour tissues, Axin expression was inversely correlated with depth of invasion, lymph node metastasis, and lymphatic invasion. When we examined the Axin status of tumour cells that had invaded lymph vessels, their Axin expression was reduced or lost in most cases, suggesting that reduced expression of Axin initiates or promotes tumour progression. As Axin is a negative regulator of β-catenin/TCF-dependent cell proliferation (Kikuchi, 1999) and carcinogenesis (Barker et al., 2000), loss of Axin expression in oesophageal SCC may lead to tumour progression.

Western blotting revealed marked variation in the intensity of Axin expression, corresponding to the results of immunohistochemistry of the tumour tissues. During oesophageal carcinogenesis, some error may occur in the process of Axin protein production. Therefore, Northern blotting was performed to investigate the translation status of each tumour cell line. The status of RNA expression was variable, but the levels of Axin expression were equivalent to those of Axin protein with the exception of the TE8 cell line. That is, six of the cell lines – apart from the TE8 line – had no errors of translation. In these six lines, transcription errors might have occurred, because their intensity of Axin expression was weak compared with that in TE8. Thus, in the TE8 line, some errors might have occurred at the level of transcription, or after. Further examination of this possibility will be needed.

Next, PCR–SSCP was performed to examine whether the variation of mRNA expression was derived from any genetic alterations of the GSK-3β or β-catenin binding site of Axin DNA. Five patients showed polymorphisms and three cell lines showed silent mutations in the AXIN1 gene, but no pathogenetic gene mutation was detected. Although the frequency of AXIN1 deletions in medulloblastoma is 12% (Dahmen et al., 2001) and a similar figure for genetic alterations has been demonstrated in HCC (Satoh et al., 2000), the results of our mutational analysis of oesophageal SCC were different, suggesting that association of AXIN1 mutations with carcinogenesis is rare in oesophageal SCC. Similarly, one previous study detected no mutations in paediatric renal tumours (Miao et al., 2002). However, in addition to allelic losses, inactivation of transcription because of methylation in the promoter region could be responsible for downregulation of Axin. This possibility remains to be examined.

To examine whether Axin regulates only the Wnt-β-catenin-TCF/LEF pathway and determine which factors in this pathway would be good predictors of prognosis, we also analysed relations among Axin, β-catenin, and GSK-3β using immunohistochemistry and Western blotting. There was no significant association between either Axin and β-catenin, or between β-catenin and clinicopathologic factors (data not shown). Furuhashi et al. (2001) have reported that Axin facilitates Smad3 activation in the TGFβ signalling pathway. Ishiguro et al. (2001) have reported that transcription of AXIN1 upregulated (AXUD1), a gene induced by AXIN1, is independent of the TCF/LEF complex and that AXUD1 is frequently downregulated in some tumours. Oesophageal SCC may be regulated in a similar manner by an unknown pathway. GSK-3β expression was found to have no association with Axin expression or clinicopathologic factors (data not shown). Thus, there may be other pathways besides the Wnt signalling pathway that participate in carcinogenesis.

In HCC cells, adenovirus-mediated gene transfer of wild-type AXIN1 induces apoptosis, regardless of the existence of AXIN1 mutations (Satoh et al., 2000). Thus, transfer of wild-type Axin might offer a possible approach for gene therapy of oesophageal SCC.

Table 3 Mutational analysis of Axin gene in oesophageal SCC

Case Age (year)/gender	Exon	Base change	aa change	Codon
30 66/male	4	G1256A	Yes	419
40 54/male	4	G1256A	Yes	419
13 64/female	5	G1396A	No	485
15 62/male	5	G1396A	No	485
17 59/male	5	G1396A	No	485
TE1	5	C1690T	No	563
TE2		C1690T	No	563
TE13		C1690T	No	563
REFERENCES

Akiyama T (2000) Wnt/beta-catenin signaling. Cytokine Growth Factor Rev 11: 273 – 282, doi: 10.1016/S1535-6101(00)00011-3
Ando N, Iizuka T, Kakegawa T, Issos K, Watanabe H, Ide H, Tanaka O, Shinoda M, Takiyama W, Arimori M, Ishida K, Tsuchiya S (1997) A randomized trial of surgery with and without chemotherapy for localized squamous carcinoma of the thoracic esophagus: The Japan Clinical Oncology Group study. J Thorac Cardiovasc Surg 114: 205 – 209
Barker N, Morin PJ, Clevers H (2000) The Yin-Yang of TCF/beta-catenin signaling. Adv Cancer Res 77: 1 – 24
Bienz M, Clevers H (2000) Linking colorectal cancer to Wnt signaling. Cell 103: 311 – 320
Collard JM, Otte JB, Fiasse R, Laterre PF, De Kock M, Longueville J, Glineur D, Romagnoli R, Reynaert M, Kestens PJ (2001) Skeletonizing en bloc esophagectomy for cancer. Ann Surg 234: 25 – 32
Dahmen RP, Koch A, Denkhaus D, Tomm JC, Sorensen N, Berthold F, Behrens J, Birchmeier W, Wiestler OD, Pietsch T (2001) Deletions of AXIN1, a component of the WNT/wingless pathway, in sporadic medulloblastomas. Cancer Res 61: 7039 – 7043
Furuhashi M, Yagi K, Yamamoto H, Furukawa Y, Shimada S, Nakamura Y, Kikuchi A, Miyazono K, Kato M (2001) Axin facilitates Smad3 activation in the transforming growth factor beta signaling pathway. Mol Cell Biol 21: 5132 – 5141, doi: 10.1128/MCB.21.15.5132-5141.2001
He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler K (1998) Identification of c-MYC as a target of the APC pathway. Science 281: 1509 – 1512
Ikeda S, Kishida M, Matsuura Y, Usui H, Kikuchi A (2000) GS K beta-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexed with Axin. Oncogene 19: 537 – 545
Ikeda S, Kishida M, Yamamoto H, Murai H, Koyama S, Kikuchi A (1998) Axin, a negative regulator of the Wnt signaling pathway, forms complex with GS K-beta and beta-catenin and promotes GS K-beta-dependent phosphorylation of beta-catenin. EMBO J 17: 1371 – 1384
Ishiguro H, Tsunoda T, Tanaka T, Fujiwara Y, Nakamura Y, Furukawa Y (2001) Identification of AXUD1, a novel human gene induced by AXIN1 and its reduced expression in human carcinomas of the lung, liver, colon and kidney. Oncogene 20: 5062 – 5066
Kain SR, Mai K, Parisa S (1994) Human multiple tissue Western blots: a new immunological tool for the analysis of tissue-specific protein expression. Biotechniques 17: 982 – 987
Kikuchi A (1999) Roles of axin in the Wnt signaling pathway. Cell Signal 11: 777 – 788, doi: 10.1016/S0898-6568(99)00054-6
Kishida S, Yamamoto H, Ikeda S, Kishida M, Sakamoto I, Koyama S, Kikuchi A (1998) Axin, a negative regulator of the Wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of beta-catenin. J Biol Chem 18: 10823 – 10826
Laurent-Puig P, Legoaix P, Bluteau O, Belghiti J, Franco D, Binot F, Monges G, Thomas G, Boulac-Sage P, Zucman-Rossi J (2001) Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 120: 1763 – 1773, doi: 10.1053/gast.2001.24798
Lin YM, Kato T, Satoh S, Nakamura Y, Furukawa Y (2000) Identification of novel polymorphism in the AXIN1 and CDX-2 genes. J Hum Genet 45: 254 – 256
Miao J, Kuafukiya U, Udastra Y, Okada A (2002) Axin, the main component of the Wnt signaling pathway, is not mutated in kidney tumors in children. Int J Mol Med 9: 377 – 379
Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275: 1787 – 1790
Nakamura Y (1997) Cleaning up on beta-catenin. Nat Med 3: 499 – 500
Nishihira T, Hashimoto Y, Katayama M, Mori S, Kuroki T (1993) Molecular and cellular features of esophageal cancer cells. J Cancer Res Clin Oncol 119: 441 – 449
Sato S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, Kawase T, Ishiguro H, Fujita M, Tokino T, Sasaki Y, Imaoka S, Murata M, Shimano Y, Yamaoka Y, Nakamura Y (2000) AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet 24: 245 – 250
Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature (London) 398: 422 – 426
Webster MT, Rozyczka M, Sara E, Davis E, Smalley M, Young N, Dale TC, Wooster R (2000) Sequence variants of axin gene in breast, colon, and other cancers: an analysis of mutations that interfere with GSK3 binding. Gene Chromosomes Cancer 28: 443 – 453
Wu R, Zhai Y, Fearon ER, Cho KR (2001) Diverse mechanisms of beta-catenin deregulation in ovarian endometrioid adenocarcinomas. Cancer Res 61: 8247 – 8255
Zeng L (1997) The mouse fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90: 181 – 192