SHP-2 is a novel target of Abl kinases during cell proliferation

Sayan Mitra1, Carol Beach2, Gen-Sheng Feng3 and Rina Plattner1,*

1Department of Molecular and Biomedical Pharmacology and 2Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
2Burnham Institute for Medical Research, La Jolla, CA 92037, USA
*Author for correspondence (e-mail: rplat2@uky.edu)

Summary
Previously, we showed that Abl family tyrosine kinases are activated by growth factors, and Abl is required for transition from G1 to S phase during PDGF-mediated proliferation. Here, we show that the SHP-2 tyrosine phosphatase, which acts to promote proliferation in response to cytokines and growth factors, is a novel substrate of endogenous Abl kinases during growth factor-mediated cellular proliferation. Using a pharmacological inhibitor and RNAi, we show that endogenous Abl kinases phosphorylate SHP-2 on Y580, and induce sustained activation of ERK kinases in response to growth factor stimulation in fibroblasts. Consistent with these data, SHP-2 is required for Abl-dependent PDGF-mediated proliferation since expression of an activated form of SHP-2 rescues the ability of Abl-Arg null fibroblasts to transit from G1 to S phase, whereas inhibition of SHP-2 signaling reduces the ability of Abl kinases to rescue the proliferation defect. Abl kinases also indirectly mediate phosphorylation of SHP-2 on Y63 and Y279, which are frequent sites of germline mutation in two cancer susceptibility syndromes. Significantly, we demonstrate that phosphorylation of SHP-2 on Y279 downregulates growth factor-induced sustained ERK activation and proliferation, supporting a role for Abl kinases not only in potentiating growth factor-mediated SHP-2 signaling, but also in negative-feedback regulation.

Supplementary material available online at http://jcs.biologists.org/cgi/content/full/121/20/3335/DC1

Key words: Abl, Arg, SHP-2, Proliferation, ERK

Introduction
The mammalian Abl family of nonreceptor tyrosine kinases (Abl kinases) includes two tightly regulated proteins, Abl (also known as ABL1) and Abl-related gene (Arg; also known as ABL2) (Pendergast, 2002). Abl kinases have highly homologous, catalytic SH2 and SH3 domains in their amino termini, but are more divergent in their carboxyl termini (Pendergast, 2002). Translocation of Abl next to BCR results in constitutively active BCR-Abl fusion proteins that drive the development of several forms of human leukemia (Pendergast, 2001). BCR-Abl transforms hematopoietic cells by phosphorylating a variety of proteins involved in cell proliferation, survival, adhesion and motility (Pendergast, 2001). One of these proteins, the tyrosine phosphatase SHP-2 (also known as PTPN11), binds BCR-Abl, is tyrosine phosphorylated in cells transformed by BCR-Abl, and is required for BCR-Abl-mediated transformation in vitro and leukemogenesis in vivo (Chen et al., 2007; Sattler et al., 1997; Tauchi et al., 1994).

Although the role of BCR-Abl in leukemogenesis has been extensively studied, the function of endogenous Abl kinases has remained more elusive. In earlier studies, we demonstrated that platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) induce activation of the cytoplasmic-membrane pool of Abl kinases in fibroblasts, and PDGF-induced activation of Abl requires Src family kinases and PLCγ (Plattner et al., 2003; Plattner et al., 1999; Plattner et al., 2004). Activation of Abl is required for PDGF-mediated proliferation, membrane ruffling, and PLCγ-induced migration (Plattner et al., 2003; Plattner et al., 1999; Plattner and Pendergast, 2003). Endogenous Abl also promotes proliferation by accelerating the G1 to S transition (Furstoss et al., 2002; Plattner et al., 1999; Plattner and Pendergast, 2003), and activates a Rac-dependent mitogenic pathway in fibroblasts (Boureux et al., 2005); however, it is not clear whether this pathway is the exclusive mechanism by which Abl kinases promote proliferation.

Mammalian SHP-2, encoded by the Ptpn11 gene, contains two SH2 domains and a protein tyrosine phosphatase domain (PTP) (Feng, 1999). SHP-2 catalytic activity is essential for signaling downstream of growth factor and cytokine receptors and integrins, and is required for proliferation, survival, adhesion and migration (Feng, 1999). Intramolecular interactions between N-SH2 and PTP domains maintain SHP-2 in an inactive conformation, and binding of the N-SH2 domain to phosphorysine residues releases the inhibition and activates SHP-2 (Feng, 1999). SHP-2 binds the adapter protein Gab1, and this complex is required for Ras–extracellular-signal-regulated-kinase (ERK) signaling in response to growth factor stimulation (Huang et al., 2002).

SHP-2 is tyrosine phosphorylated on two C-terminal residues (Y542, Y580) following growth factor stimulation. Y542 is phosphorylated by PDGFR-β, whereas the tyrosine kinase that phosphorylates Y580 has remained elusive (Bennett et al., 1994). The role of C-terminal tyrosine phosphorylation on SHP-2 activity and function is controversial. Early studies suggested that Y542 and/or Y580 phosphorylation performs an adapter function by recruiting Grb2-SOS complexes to growth factor receptors, thereby increasing Ras activation, since Y542 and Y580 are consensus Grb2 binding sites (Bennett et al., 1994). However, the catalytic activity of SHP-2 clearly is required for activation of the Ras-ERK pathway (Yamauchi et al., 1995; Yart et al., 2001), and association of SHP-2 with Grb2 is not sufficient to promote full ERK activation (Araki et al., 2003). Some suggest that phosphorylation of Y542 and Y580 stimulates the catalytic activity of SHP-2 (Lu et al., 2001), whereas...
others show that phosphorylation of Y542 and Y580 is required for sustained activation of the Ras-ERK pathway in response to PDGF (Araki et al., 2003).

Somatic SHP-2 mutations have been identified in childhood leukemias and in solid tumors, and germline mutations have been identified in two cancer susceptibility syndromes: LEO-PARD syndrome (multiple lentigines, electro-cardiographic conduction abnormalities, urogenital hypertelorism, pulmonary stenosis, abnormal genitalia, retardation of growth, sensorineural deafness; LS) and Noonan syndrome (NS) (Bentires-Alj et al., 2004; Tartaglia and Gellb, 2005). Mutant forms of SHP-2 associated with Noonan syndrome and leukemia have increased activity and/or ability to signal, whereas mutant forms associated with LEO-PARD syndrome are inactive and inhibit wild-type SHP-2 function (Kontaridis et al., 2006).

Since Abl kinases and SHP-2 are both activated downstream of growth factor receptors and are involved in growth factor-mediated cellular processes, and BCR-Abl induces SHP-2 phosphorylation in hematopoietic cells, we hypothesized that SHP-2 may be a target of endogenous Abl kinases during growth factor-induced proliferation. In the present report, we demonstrate that in response to EGF and PDGF stimulation, endogenous Abl kinases phosphorylate SHP-2 on Y580, and Abl kinases also indirectly mediate SHP-2 phosphorylation on two other sites (Y63, Y279). Additionally, we show that Abl kinase-mediated phosphorylation of SHP-2 on Y580 increases sustained ERK activation in response to PDGF, and Abl kinases promote PDGF-mediated proliferation, at least in part, by phosphorylating SHP-2. Our data are significant because we are the first to demonstrate that: (1) Abl kinases are the elusive kinases that phosphorylate SHP-2 on Y580 in response to growth factor stimulation; (2) endogenous Abl kinases mediate sustained PDGF-induced activation of ERK kinases; (3) SHP-2 is tyrosine phosphorylated on residues other than Y580 and Y542 (Y63, Y279) in an Abl kinase-dependent manner; and (4) tyrosine phosphorylation of Y63 and Y279 alters the ability of SHP-2 to signal and affect cellular proliferation.

Results

Abl kinases tyrosine phosphorylate SHP-2 and promote EGF-dependent SHP-2 phosphorylation

To test whether SHP-2 is a downstream target of Abl kinases, we expressed wild-type Abl, constitutively active Abl or Arg (Abl-PP, Arg-PP), which have mutations of two interliner proline residues, and wild-type SHP-2 in 293T cells and assessed the phosphorylation status of SHP-2. We found that active Abl kinases induced SHP-2 tyrosine phosphorylation, whereas kinase-inactive forms had no effect (Fig. 1A). Wild-type Abl induced SHP-2 phosphorylation because overexpression of Abl at high levels in 293T cells activates its kinase activity (Pendergast et al., 1991). Wild-type Arg did not induce SHP-2 tyrosine phosphorylation, probably because expression levels were not high enough to activate Arg (Fig. 1A). Abl kinases also phosphorylated soluble SHP-2 in vitro (Fig. 1B), which demonstrates that Abl kinases directly phosphorylate SHP-2. Although wild-type Arg did not induce tyrosine phosphorylation of SHP-2 in cells (Fig. 1A), the immunoprecipitated, partially purified, wild-type protein was capable of phosphorylating SHP-2 in vitro (Fig. 1B), probably because cellular inhibitors were washed away during immunoprecipitation (Pendergast et al., 1991).

To determine whether endogenous Abl kinases, activated by growth factors, can phosphorylate SHP-2, we assayed the effect of inhibiting Abl and Arg activities on growth factor-induced SHP-2 phosphorylation, using a pharmacological inhibitor of the Abl kinases, STI571 (also known as Gleevec or imatinib mesylate). A concentration of 10 μM STI571 was utilized in these experiments because we and others found that this concentration is required to efficiently eliminate (75-90%) endogenous Abl kinase phosphorylation and activity (Burton et al., 2003; Srivivasan and Plattner, 2006; Zipfel et al., 2004), and this concentration has no effect on the activities of similar proteins such as the highly related Src kinases (Buchdunger et al., 2001; Srivivasan and Plattner, 2006). Serum-starved 10T1/2 fibroblasts that express the EGF receptor (10T1/2-EGFR) were pretreated with STI571 or vehicle for 4 hours prior to EGF stimulation, and SHP-2 phosphorylation was assessed by immunoprecipitation followed by western blotting. We found that EGF-induced tyrosine phosphorylation of SHP-2 was significantly decreased in STI571-treated cells (Fig. 1C,D). STI571 has no effect on the activity of EGFR but does inhibit PDGF receptors (Druker et al., 1996). Therefore, to rule out that the effect of STI571 on SHP-2 phosphorylation was due to inhibition of PDGF, which may affect EGFR activation via receptor crosstalk, we assessed whether STI571 inhibited EGFR-induced EGFR activation. We found that phosphorylation of EGFR on Y1173, a measure of EGFR activation, was not altered in STI571-treated cells (Fig. 1C), which indicates that the effect of STI571 on SHP-2 phosphorylation is likely mediated by Abl kinase inhibition. A small amount of constitutive SHP-2 phosphorylation was observed in unstimulated cells, due to low-level constitutive activation of EGFR; STI571 treatment also reduced constitutive SHP-2 phosphorylation (Supplementary material Fig. S1, top). To confirm the data obtained with STI571, we silenced Abl or Arg with siRNAs, starved and stimulated the cells with EGF for 30 minutes, and assessed SHP-2 phosphorylation by immunoprecipitation followed by phosphotyrosine blotting. Knockdown of either Abl or Arg also significantly reduced EGF-mediated SHP-2 phosphorylation (Fig. 1E,F). Since Abl and Arg are highly homologous, expression of the Arg siRNA partially inhibited Abl expression and vice versa. However, as we will show in subsequent figures, we do not believe that the modest cross-inhibition of the siRNAs has significant biological effects. Since STI571 inhibits the activities of PDGF receptors (Druker et al., 1996), it was not possible to assess the effect of STI571 on PDGF-induced SHP-2 phosphorylation.

Consistent with its possible role as an Abl kinase substrate, SHP-2 co-immunoprecipitated with Abl kinases when co-expressed in 293T cells (Supplementary material Fig. S2A,B); endogenous SHP-2 formed a PDGF-inducible complex with endogenous Abl kinases in fibroblasts (Supplementary material Fig. S2C); GST-pulldown assays demonstrated that the interaction was mediated by Abl and Arg SH2 domains (Supplementary material Fig. S2D); and far western analyses indicated that the Abl-Arg-SHP-2 interactions were direct and did not require bridging proteins (Supplementary material Fig. S2E). Interestingly, Arg SH2 domains consistently interacted more strongly with SHP-2 immunoprecipitated from PDGF-stimulated NIH3T3 cells in GST pulldown and far western assays, indicating that Arg may bind SHP-2 more strongly than Abl.

Abl kinases directly phosphorylate SHP-2 on Y580, and induce phosphorylation of Y63 and Y279

Mass spectrometry was utilized to identify the sites on SHP-2 that are phosphorylated by Abl kinases. We identified two residues on SHP-2 that were potentially phosphorylated by wild-type Abl, in vitro (Y542 and Y580), whereas Y580 was identified as the sole phosphorylation site induced by Abl-PP and Arg-PP, in vitro (Fig. 1C).
Abl kinases phosphorylate SHP-2 (A). SHP-2 was immunoprecipitated from 293T cells transfected with SHP-2 and kinase-inactive (KR), wild-type (WT), or constitutively active forms (PP) of Abl or Arg, and blotted with phosphotyrosine antibody (4G10/PY99; top). The blot was stripped and reprobed with SHP-2 antibody (middle). Results are representative of three independent experiments. (B) Immunoprecipitated Abl kinases were incubated in a ‘cold’ kinase assay with GST, GST-SHP-2, or GST-Crk, and probed with anti-phosphotyrosine antibody. Arg-WT was expressed to a greater extent than Arg-PP (data not shown). Data are representative of three independent experiments. (C) Serum-starved 10T1/2-EGFR cells were pretreated with STI571 (10 μM) or vehicle (water) for 4 hours, stimulated with EGF (100 ng/ml), SHP-2 was immunoprecipitated from the lysates, and probed with anti-phosphotyrosine antibody (top). Percentage phosphorylation is relative to total immunoprecipitated SHP-2 protein, and is expressed as a percentage of phosphorylation observed in untreated cells. (D) SHP-2 phosphorylation (relative to total protein levels) from STI571-treated cells (as in C) was compared to untreated cells and expressed as a percentage of untreated. Results from three independent experiments are shown (mean ± s.e.m.). *P<0.05 using a ratio paired t-test. (E) 10T1/2-EGFR cells, transfected with Abl or Arg siRNAs (40 nM), were starved and stimulated with EGF for 30 minutes, SHP-2 was immunoprecipitated and blotted with phosphotyrosine antibody. The blot was stripped and reprobed with SHR-2 antibody. SHP-2 phosphorylation (relative to total protein levels) from Abl or Arg siRNA-transfected cells was compared with scrambled control-transfected cells and expressed as a percentage of scrambled. Results from three independent experiments are shown; values are mean ± s.e.m. *P<0.05, **P<0.005 using a one-way ANOVA followed by a Bonferroni post-hoc test.

Fig. 1. Abl kinases phosphorylate SHP-2. (A) SHP-2 was immunoprecipitated from 293T cells transfected with SHP-2 and kinase-inactive (KR), wild-type (WT), or constitutively active forms (PP) of Abl or Arg, and blotted with phosphotyrosine antibody (4G10/PY99; top). The blot was stripped and reprobed with SHP-2 antibody (middle). Results are representative of three independent experiments. (B) Immunoprecipitated Abl kinases were incubated in a ‘cold’ kinase assay with GST, GST-SHP-2, or GST-Crk, and probed with anti-phosphotyrosine antibody. Arg-WT was expressed to a greater extent than Arg-PP (data not shown). Data are representative of three independent experiments. (C) Serum-starved 10T1/2-EGFR cells were pretreated with STI571 (10 μM) or vehicle (water) for 4 hours, stimulated with EGF (100 ng/ml), SHP-2 was immunoprecipitated from the lysates, and probed with anti-phosphotyrosine antibody (top). Percentage phosphorylation is relative to total immunoprecipitated SHP-2 protein, and is expressed as a percentage of phosphorylation observed in untreated cells. (D) SHP-2 phosphorylation (relative to total protein levels) from STI571-treated cells (as in C) was compared to untreated cells and expressed as a percentage of untreated. Results from three independent experiments are shown (mean ± s.e.m., *P<0.05 using a ratio paired t-test). (E) 10T1/2-EGFR cells, transfected with Abl or Arg siRNAs (40 nM), were starved and stimulated with EGF for 30 minutes, SHP-2 was immunoprecipitated and blotted with phosphotyrosine antibody. The blot was stripped and reprobed with SHP-2 antibody. SHP-2 phosphorylation (relative to total protein levels) from Abl or Arg siRNA-transfected cells was compared with scrambled control-transfected cells and expressed as a percentage of scrambled. Results from three independent experiments are shown; values are mean ± s.e.m. *P<0.05, **P<0.005 using a one-way ANOVA followed by a Bonferroni post-hoc test.
tagged SHP-2 proteins lacking Y63 and Y279 (Y63F, Y279F; Fig. 2D), which indicates that Abl kinases activate tyrosine kinase intermediates that phosphorylate Y63 and Y279.

To determine whether endogenous Abl kinases phosphorylate SHP-2 on Y580 following activation by growth factors, we assayed the effect of inhibiting endogenous Abl and Arg on growth factor-mediated SHP-2 phosphorylation on Y580. Pretreatment of 10T1/2-EGFR cells with STI571 for 4 hours prior to EGF stimulation, significantly reduced EGF-dependent SHP-2 phosphorylation on Y580 (Fig. 3A,B), but phosphorylation of Y542 was not altered (Fig. 3A). Interestingly, the effect of STI571 increased with increasing times of EGF stimulation (Fig. 3B), indicating that phosphorylation of SHP-2 by Abl kinases is maximal 10-30 minutes after EGF stimulation in this cell type. A small amount of constitutive Y580 phosphorylation was observed in unstimulated cells, as a result of low-level activation of EGFR, and this phosphorylation also was decreased in cells treated with STI571 (supplementary material Fig. S1, bottom). To confirm the results obtained with STI571, we silenced Abl kinases with siRNAs and assessed the effect on growth factor-induced SHP-2-Y580 phosphorylation. Significantly, silencing either Abl or Arg reduced EGF-induced SHP-2 phosphorylation in 10T1/2-EGFR cells, whereas the effect of silencing Abl on SHP-2-Y580 phosphorylation was not significant over three experiments (Fig. 3C, right; Fig. 3D, bottom).

No basal phosphorylation of SHP-2 on Y580 was observed in
Abl kinases phosphorylate SHP-2 (Y580), and transfection of Abl siRNAs did not affect the low level basal phosphorylation of SHP-2 on Y580 in 10T1/2-EGFR cells (data not shown). Taken together our data definitively demonstrate that endogenous Abl kinases are required for efficient phosphorylation of SHP-2 on Y580 in response to growth factor stimulation.

Since Abl and Arg are highly homologous, expression of the Arg siRNA partially inhibited Abl expression and vice versa. However, although the Abl siRNA modestly inhibited Arg activity in NIH3T3 cells, there was no significant effect of the Abl siRNA on SHP-2-Y580 phosphorylation (Fig. 3D), which demonstrates that the modest cross-inhibition of the siRNAs has little biological effect. Phospho-specific antibodies were not available for Y63 and Y279, and thus we were unable to determine whether endogenous Abl kinases mediate phosphorylation of these sites.
Since Abl kinases phosphorylate SHP-2 on Y580, and Y580 phosphorylation was previously shown to be required for sustained Ras-ERK activation in response to PDGF (Araki et al., 2003), we tested whether Abl kinases promote sustained ERK phosphorylation following PDGF stimulation. Indeed, silencing either Abl or Arg significantly reduced ERK activation after 20 minutes (data not shown) or 30 minutes PDGF stimulation (Fig. 3E,F), whereas Abl kinase siRNAs had no effect on basal ERK phosphorylation (data not shown). Therefore, in PDGF-stimulated NIH3T3 cells, silencing Arg significantly reduced SHP-2-Y580 phosphorylation and ERK activation, whereas silencing Abl only inhibited ERK activation and had little effect on SHP-2-Y580 phosphorylation. These data indicate that Abl may induce phosphorylation of SHP-2 on another residue, or Abl may mediate sustained ERK activation in a SHP-2-independent manner.

Mutations of Y63 or Y279 to phenylalanine affects the activity of SHP-2 towards phosphotyrosine-containing substrates

To determine whether phosphorylation of SHP-2 by Abl kinases affects SHP-2 catalytic activity or phosphotyrosine-induced activation, we assessed whether phosphorylation mutants have altered catalytic activity. Basal activities of mutant SHP-2 proteins were assessed by incubating immunoprecipitated SHP-2 proteins, isolated from serum-starved overexpressing 293T cells, in vitro phosphatase assays using $p$-nitrophenyl phosphate (pNPP) as substrate. A constitutively active mutant (E76K) had an increased ability to dephosphorylate the substrate, whereas a catalytically inactive form (C459S) demonstrated very low-level activity (Fig. 3E,F). To determine whether F63 and F279 have an altered affinity for the phosphopeptide substrate, R-R-L-I-E-D-A-E-pY-A-A-R-G (derived from Src) as substrate. A constitutively active mutant (E76K) had an increased ability to dephosphorylate the substrate, whereas a catalytically inactive form (C459S) demonstrated very low-level activity (Fig. 4B). Similar results were obtained for Y63F, Y279F and Y580F mutants using a different phosphopeptide substrate, T-S-T-E-P-Q-Y(P)-P-G-E-N-L (Src529; data not shown). To determine whether F63 and F279 have an altered affinity for the phosphopeptide substrate, velocity assays were performed. The velocity curve for F63 was shifted to the left of wild type indicating that this mutant has a lower $K_{\text{m}}$, whereas the curve corresponding to F279 was shifted to the right of wild type, indicating it has a higher $K_{\text{m}}$ (Fig. 4C,D). In addition, maximum velocity values for F279 did not approach those obtained by wild type or F63 SHP-2, suggesting that the catalytic activity ($V_{\text{max}}$) also was significantly lower for this mutant. It was not possible to obtain high enough substrate concentrations to accurately determine $K_{\text{m}}$ and $V_{\text{max}}$ values.
Abl kinases phosphorylate SHP-2

Abl-dependent phosphorylation of SHP-2 affects ERK phosphorylation and proliferation

To identify the biological consequences of Abl-dependent SHP-2 phosphorylation, we assessed the ability of mutant SHP-2 proteins, lacking Abl and/or Arg phosphorylation sites, to induce ERK phosphorylation. Previous reports showed that SHP-2 activity and ability to signal downstream can be assessed by overexpressing mutant SHP-2 proteins together with the scaffold adaptor protein Gab1 and HA-tagged ERK in 293T cells, and assessing the level of growth factor-induced HA-ERK phosphorylation (Kontaridis et al., 2006). Therefore, 293T cells were transfected with wild-type or mutant forms of SHP-2, Gab1 and HA-tagged ERK2. Cells were serum-starved, and HA-ERK2 phosphorylation was assessed in unstimulated cells expressing wild-type SHP-2. Values are mean ± s.e.m.

Fig. 5. Expression of SHP-2 Y63F and Y279F mutants increases EGF-induced sustained ERK phosphorylation in 293T cells. (A,C) 293T cells were transfected with plasmids encoding wild-type or mutant forms of SHP-2 (10 μg), Gab1 (4 μg) and HA-tagged ERK2 (1 μg), cells were serum-starved, stimulated with EGF for the indicated times, and lysates were probed with phospho-ERK1/2 antibody. Only HA-tagged ERK2, which migrates slower than endogenous ERK1/2, is shown. Blots were stripped and reprobed with HA antibody. (B,D) Values for three unstimulated (as in A) or four EGF-stimulation experiments (as in C). Levels of phosphorylated HA-ERK2 relative to total HA-ERK2 for cells expressing SHP-2 mutants were expressed as a percentage of HA-ERK2 phosphorylation observed in cells expressing wild-type SHP-2. Values are mean ± s.e.m. *P<0.05, **P<0.03, ***P<0.001, t-tests.

had sustained levels of phosphorylated HA-ERK (Fig. 5C,D). In agreement with a previous report, expression of Y580F had little effect on EGF-induced ERK phosphorylation (Fig. 5C,D) (Araki et al., 2003).

To rule out the possibility that the effects observed in 293T cells were cell-type specific, we performed a related assay in fibroblasts. Wild-type or mutant forms of SHP-2 were expressed in NIH3T3 cells and the effect on endogenous ERK1/2 phosphorylation was assessed. Cells expressing Y279F had sustained phospho-ERK1/2 levels at the 20- and 60-minute time points (Fig. 6A,B), similar to the results obtained for 293T cells (Fig. 5C,D). Cells expressing Y63F also had significantly increased ERK phosphorylation at 20 minutes, but it was not sustained for 60 minutes (Fig. 6A,B). In agreement with a previous report, expression of SHP-2-Y580F decreased sustained ERK phosphorylation (60 minute) in response to PDGF (Fig. 6A,B) (Araki et al., 2003).

To examine whether Abl-dependent phosphorylation of SHP-2 affects the ability of SHP-2 to promote cellular proliferation, we assessed the proliferative capability of NIH3T3 cells expressing wild-type or mutant forms of SHP-2. Expression of C459S decreased cellular proliferation, as evidenced by decreased uptake of tritiated thymidine (Fig. 6C,D) and induced a flat morphology reminiscent of SHP-2 null fibroblasts (data not shown) (Yu et al.,
Expression of Y63F significantly inhibited cell proliferation ($P < 0.001$; Fig. 6C,D), whereas expression of Y279F increased the ability of cells to incorporate tritiated thymidine ($P < 0.05$; Fig. 6C,D). These results are significant because effects on proliferation are usually difficult to observe in asynchronous cell populations unless the changes are fairly large. Therefore, our results indicate that phosphorylation of Y63 acts to potentiate SHP-2-mediated proliferation, whereas phosphorylation of Y279 turns off the pathway and inhibits proliferation.

SHP-2 is a target of endogenous Abl kinases during PDGF-mediated mitogenesis

Endogenous Abl kinases phosphorylate SHP-2 on Y580 and induce sustained ERK phosphorylation in response to PDGF. These data suggest that Abl kinases may promote PDGF-mediated proliferation by phosphorylating SHP-2. To test this hypothesis, we examined whether SHP-2 function is required for Abl-mediated mitogenesis. Previously, we and others showed that Abl null fibroblasts enter S phase in response to PDGF stimulation at a slower rate than the same cells reconstituted with Abl (Furstoss et al., 2002; Plattner and Pendergast, 2003). Abl/Arg double null fibroblasts also are defective in their ability to enter S phase following PDGF stimulation, and reintroduction of Abl and Arg into these cells increases their ability to respond to PDGF-BB (12.5 ng/ml; Fig. 7A,B). Expression of a constitutively active form of SHP-2 (E76K) completely rescued the ability of Abl/Arg null fibroblasts to proliferate in response to PDGF, and inhibition of SHP-2 signaling by expression of a catalytically inactive, dominant-negative form of SHP-2 (C459S) significantly decreased the ability of Abl and Arg to rescue PDGF-mediated mitogenesis (Fig. 7A,B). Taken together, our data indicate that endogenous Abl kinases induce PDGF-mediated proliferation, at least in part, by activating a SHP-2-dependent pathway.

Discussion

In this report, we provide strong evidence that endogenous SHP-2 is a substrate of endogenous Abl kinases: (1) PDGF- and EGF-mediated SHP-2 phosphorylation on Y580 is reduced in cells expressing Abl kinase siRNAs; (2) PDGF-induced sustained activation of ERK kinases requires Abl kinases; (3) expression of active SHP-2 rescues the ability of Abl/Arg null fibroblasts to respond to PDGF; and (4) inhibition of SHP-2 function reduces the ability of Abl and Arg to rescue the mitogenic defect observed in Abl/Arg null fibroblasts. Abl previously was shown to promote proliferation by activating a Rac-JNK-Nox pathway, since Rac
Abl kinases phosphorylate SHP-2

**Fig. 7.** SHP-2 lies downstream of Abl kinases during PDGF-mediated mitogenesis. Abl/Arg double null fibroblasts, infected with vectors (Migr1, MigCD4, PK1), Abl and Arg (MigCD4-Abl, PK1-Arg), and/or wild-type or mutant forms of SHP-2 (Migr1-SHP2-C459S, Migr1-SHP2-E76K), were serum-starved, stimulated with PDGF-BB (12.5 ng/ml) for 16-20 hours, pulsed with tritiated thymidine, and harvested. (A) Results from one representative experiment; values are mean ± s.e.m. Tritiated thymidine incorporation is expressed as a percentage of vector-visible. Lysates from infected cells were probed with the indicated antibodies. (B) Composite of three independent experiments; values are mean ± s.e.m. Tritiated thymidine incorporation is expressed as a percentage of vector-transfected cells. *P<0.05, **P<0.01, ***P<0.001, using a one-way ANOVA followed by a Bonferroni post-hoc test.

Fig. 8. Model of Abl-dependent proliferation in fibroblasts. Endogenous Abl kinases directly phosphorylate SHP-2 on Y580, which increases sustained ERK activation in response to PDGF (Figs 3 and 6) (Araki et al., 2003). Abl kinases also induce phosphorylation of Y63 and Y279 (Fig. 2B) presumably by activating unknown tyrosine kinases (X and Y). Phosphorylation of Y63 potentiates mitogenic signaling in fibroblasts (Fig. 6C,D), and phosphorylation of Y279 negatively regulates ERK activation (Fig. 6A,B) and proliferation (Fig. 6C,D). Abl kinases also activate a Rac-JNK pathway (Boureux et al., 2005), which may be dependent or independent of SHP-2 (Yu et al., 2006) (dotted lines).

Abl kinases directly phosphorylate SHP-2 on Y580, which increases sustained ERK activation in response to PDGF (Figs 3 and 6) (Araki et al., 2003). Abl kinases also induce phosphorylation of Y63 and Y279 (Fig. 2B) presumably by activating unknown tyrosine kinases (X and Y). Phosphorylation of Y63 potentiates mitogenic signaling in fibroblasts (Fig. 6C,D), and phosphorylation of Y279 negatively regulates ERK activation (Fig. 6A,B) and proliferation (Fig. 6C,D). Abl kinases also activate a Rac-JNK pathway (Boureux et al., 2005), which may be dependent or independent of SHP-2 (Yu et al., 2006) (dotted lines).

In addition to directly phosphorylating Y580, Abl kinases also indirectly induce tyrosine phosphorylation of SHP-2 on two residues (Y63, Y279) that are important for SHP-2 function since they reside in the N-SH2 and PTP domains, respectively, which are important for keeping SHP-2 in an inactive state. Interestingly, phosphorylation of Y279 is Arg but not Abl dependent, whereas phosphorylation of Y63 is both Arg and Abl dependent. Therefore, it is likely that two different tyrosine kinase intermediates mediate these phosphorylation events, one that is activated by Abl and Arg and phosphorylates Y63, and another that is only activated by Arg and phosphorylates Y279 (Fig. 8).

Y63 and Y279 are frequently mutated in several disease states including somatic mutation in leukemia (Y63C), and germline mutation in Noonan (Y63C) and LEOPARD (Y279C) syndromes, which demonstrates that these residues are important for SHP-2 function (Kontaridis et al., 2006; Tagliafia and Gelb, 2005). In fact, Y279 is the most common mutated residue in LEOPARD syndrome (Kontaridis et al., 2006). Y279 is located in the catalytic cleft of the phosphatase domain, which confers specificity for phosphotyrosine-containing substrates (Kontaridis et al., 2006). Mutation of Y279 to cysteine decreases SHP-2 activity toward phosphotyrosine substrates, and inhibits EGF-induced ERK phosphorylation in 293T cells.
Interestingly, we show that mutation of Y279 to phenylalanine also dramatically decreases SHP-2 activity towards phosphotyrosine substrates. It is possible that mutation of the tyrosine residue to phenylalanine changes the strength of the interaction between N-SH2 and PTP domains. However, since phenylalanine substitutions are unlikely to alter the depth of the catalytic cleft or orientation of the catalytic cysteine 459, as is predicted to occur for Y279C (Kontaridis et al., 2006), and mutation to phenylalanine has the identical effect on SHP-2 activation as mutation to cysteine, it is also possible that phosphorylation of Y279 contributes to phosphotyrosine-induced SHP-2 activation. Significantly, unlike Y279C, expression of Y279F does not inhibit signaling as it increases constitutive ERK activation in 293T cells, induces sustained EGF-induced ERK phosphorylation in 293T cells, sustained PDGF-induced ERK phosphorylation in fibroblasts, and increases fibroblast proliferation. There are several possible explanations for these contrasting results. Expression of Y279F may increase SHP-2 signaling in a phosphatase-independent manner by preventing the binding of a protein involved in negatively regulating ERK phosphorylation and proliferation. Catalytic-independent functions involved in promoting proliferation have been previously described for SHP-2 (Chen et al., 2007; Yu et al., 1998). Alternatively, mutation of Y279 to phenylalanine may alter substrate specificity; this could result in decreased affinity of SHP-2 for some substrates (e.g. peptide substrates used in the phosphatase assays) and increased affinity for others (e.g. substrate(s) involved in ERK activation and proliferation). Indeed, PTP mutants have been described that have altered substrate specificity, which results in more effective dephosphorylation of a subset of target proteins (Keilhack et al., 2005), and F279 velocity curves demonstrate decreased affinity for the Src peptide substrate (Fig. 4C, D). In either event, phosphorylation of Y279 clearly acts to downregulate SHP-2-dependent ERK signaling and proliferation.

Mutation of Y63 to cysteine occurs in patients with chronic myelomonocytic leukemia (CMML) and Noonan syndrome, and is an ‘activating’ mutation (Bentires-Alj et al., 2004; Tartaglia and Gelb, 2005). Y63, located in the N-SH2 domain, is directly involved in N-SH2-PTP domain interactions, and mutation of Y63 to cysteine disrupts auto-inhibition (Tartaglia and Gelb, 2005). Interestingly, similar to Y63C, Y63F also increases phosphotyrosine-induced activation. These data suggest that phosphorylation of Y63 may play a role in maintaining SHP-2 in an inactive state. However, mutation of Y63 to glutamate also increases phosphotyrosine-induced activation (data not shown), which suggests that mutation of the tyrosine residue to phenylalanine changes the strength of the interaction between N-SH2 and PTP domains. Consistent with these data, overexpression of Y63F in 293T cells results in increased and sustained ERK activation in response to EGF. However, in fibroblasts, expression of Y63F only induces sustained ERK phosphorylation for 20 minutes following PDGF stimulation, and ERK phosphorylation is not maintained for 60 minutes as is observed for cells expressing Y279F. In addition, NIH3T3 cells expressing Y63F have a decreased capacity to proliferate. There are several possible explanations for these contrasting results. Perhaps in fibroblasts, mutation of Y63 prevents the binding of a protein(s) to phosphorylated Y63, which is involved in promoting proliferation. Alternatively, the Y63F mutant, although able to activate the ERK pathway, may be unable to activate other SHP-2-dependent proliferative pathways (such as the Rac-JNK pathway). Finally, it is possible that expression of interacting downstream signaling proteins is different in different cell types, and the recruitment of these proteins may differ in response to diverse extracellular stimuli (i.e. EGF, PDGF, serum).
Mass spectrometry
Abi kinases were immunoprecipitated from expressing 293T cells and incubated with soluble GST–SHP-2 in the presence of 1 mM ATP, at 37°C for 30 minutes, in vitro (Plattner et al., 2003). SHP-2 was also immunoprecipitated from 293T cells cotransfected with Abi kinases and wild-type SHP-2 (in cells). Kinase reactions and immunoprecipitations were run on SDS-PAGE gels. SHP-2 was cut from the Coomassie-blue-stained gel, and Western blots were performed on extracted peptides using a polyacrylamide gel and transferred onto nitrocellulose membrane. Immunoprecipitations were run on SDS-PAGE gels. Proteins were visualized by staining the gels with Coomassie blue. Protein bands were then excised and subjected to in-gel digestion with trypsin. Peptide mixture was analyzed by nano-ESI-MS/MS using a quadrupole time-of-flight MS system (LC Packings, Amsterdam, Netherlands) coupled to a QSTAR XL quadrupole time-of-flight mass spectrometer (TOF MS; ABI/MDS Sciex) through a C18 trap column, separated by a C18 reverse-phase column, and introduced into the nanoelectrospray ionization source (Protana, Odense, Denmark). Analyst QS software was used for system control and data collection. Peptide solutions were desalted on a C18 trap column, separated by a C18 reverse-phase column, and introduced into the mass spectrometer. Each cycle consisted of a 1-second TOF MS survey from 400 to 1600 (m/z) and two 2-second MS-MS scans with mass range of 65-1600 (m/z). The LC-MS-MS data were submitted to a local MASCOT server for MS-MS ions search.

Transfections
293T cells were transfected for 5-8 hours using calcium phosphate (15 μg DNA, 62 μl calcium chloride, 500 μl Hepes buffered saline, and 438 μl water per 60 nm dish) in medium containing 0.1 mM chlороquine. pcDNA3 constructs were utilized for 293T transfections, and Migrl or pBabe-puro constructs were used for retroviral infection (Plattner et al., 1999; Yu et al., 1998). siRNAs (40 nm) were transfected with Lipofectamine 2000 (Invitrogen, La Jolla, CA).

Immunoprecipitations, GST-pulldowns, kinase assays, immunoblotting and far western analyses

Procedures were previously described (Plattner et al., 1999; Plattner et al., 2004; Srinivasan and Plattner, 2006). Cell lysis and immunoprecipitations for kinase assays, GST-pulldowns and far western blots were performed in kinase lysis buffer (50 mM Hepes pH 7, 150 mM NaCl, 10% glycerol, 0.5% Triton X-100, 1.5 mM DTT, 1 mM EGTA) and precipitates were analyzed by immunoblotting for GST or Abi proteins, followed by phosphotyrosine staining for kinase activity. For kinase reactions, 10 μg of GST fusion proteins were incubated with 2 μg of GST-pulldowns in kinase buffer containing 1 μCi [γ-32P]ATP and 2 μg of GST fusion proteins. To determine basal phosphatase activity, 5% BSA (1.7 mg/ml) and 1 μg of GST fusion proteins were added to reactions containing 500 μM NaCl, as well as 2 μg of GST-pulldowns in kinase buffer containing 1 μCi [γ-32P]ATP and 2 μg of GST fusion proteins. To determine basal phosphatase activity, 5% BSA (1.7 mg/ml) and 1 μg of GST fusion proteins were added to reactions containing 500 μM NaCl, as well as 2 μg of GST-pulldowns in kinase buffer containing 1 μCi [γ-32P]ATP and 2 μg of GST fusion proteins.

Phosphatase assays
293T cells were transfected with mutant or wild-type SHP-2 constructs (pcDNA) and NIH3T3 cells were infected with retroviruses (Migrl) and cells were serum starved the following day in basal medium for 24 hours. Cells were washed with ice-cold Hepes-NaCl (25 mM Hepes, pH 7.4, 150 mM NaCl) and reacted with phosphatase lysis buffer (25 mM Hepes, pH 7.4, 150 mM NaCl, 2 mM EDTA, 0.5% Triton X-100, 1 mM PMME, 2 μCi [γ-32P]ATP and 2 μg of GST fusion proteins). Phosphatase reactions lacked radioactive ATP, and were probed with phosphotyrosine antibody. For these assays, kinase reactions lacked radioactive ATP, and were probed with phosphotyrosine antibody. For assays with 5% BSA (1.7 mg/ml) and 1 μg of GST fusion proteins were added to reactions containing 500 μM NaCl, as well as 2 μg of GST-pulldowns in kinase buffer containing 1 μCi [γ-32P]ATP and 2 μg of GST fusion proteins.

References
Araki, T., Nawa, H. and Neel, B. G. (2003). Tyrosyl phosphorylation of Shp2 is required for normal ERK activation in response to some, but not all, growth factors. J. Biol. Chem. 278, 4167-41684.

Bennett, A. M., Tang, T. L., Sugimoto, S., Walsh, C. T. and Neel, B. G. (1994). Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras. Proc. Natl. Acad. Sci. USA 91, 7335-7339.

Burkhard-Alli, M., Paez, J. G., David, F. S., Keilhack, H., Halmos, B., Naoki, K., Maris, J. M., Richardson, A., Bardelli, A., Sugarbaker, D. J., et al. (2004). Activating mutations of the noxon synergism-associated (PTPRJ) gene in human solid tumors and acute myelogenous leukemia. Cancer Res. 64, 8816-8820.

Bueurcher, A., Furstoss, O., Simon, V. and Roche, S. (2005). Abi tyrosine kinase regulates a Rac/NNK and a Rac/Nex pathway for DNA synthesis and Myc expression induced by growth factors. J. Cell Biol. 167, 371-378.

Chen, J., Yu, W. M., Daino, H., Brommeyer, H. E., Druker, B. J. and Qu, C. K. (2007). SHP-2 phosphatase is required for hematopoietic cell transformation by Bcr-Abl. Blood 109, 778-785.

Burkhard, B. J., Tamura, S., Bueurcher, E., Ohno, S., Segal, G. M., Fanning, S., Zimmermann, J. and Lyon, N. B. (1996). Effects of a selective inhibitor of the Abi tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2, 561-566.

Druker, B. J., Tamura, S., Bueurcher, E., Ohno, S., Segal, G. M., Fanning, S., Zimmermann, J. and Lyon, N. B. (1996). Effects of a selective inhibitor of the Abi tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2, 561-566.

Huang, Q., Lerner-Marmarosh, N., Che, W., Ohita, S., Osawa, M., Yoshidzumi, M., Glassman, Y., Mann, C., Berk, B. C. and Abe, J. (2002). The novel role of the C-terminal region of SHP-2. Involvement of Gai4 and SHP-2 phosphatase activity in Ltk-1 activation. J. Biol. Chem. 277, 29330-29341.

Keilback, H., David, F. S., McGregor, M., Cantley, L. C. and Neel, B. G. (2005). Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes. J. Biol. Chem. 280, 30908-30913.

Kontardis, M. I., Swanson, K. D., David, F. S., Barford, D. and Neel, B. G. (2006). PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J. Biol. Chem. 281, 37127-37132.

Lu, W., Gong, D., Bar-Sagi, D. and Cole, P. A. (2001). Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in cell signaling. Mol. Cell 8, 759-769.
Mohi, M. G. and Neel, B. G. (2007). The role of Shp2 (PTPN11) in cancer. *Curr. Opin. Genet. Dev.* 17, 23-30.

Pendergast, A. M. (2001). BCR-ABL protein domain, function, and signaling. In *Chronic Myeloid Leukaemia: Biology and Treatment* (ed. A. M. Carella, G. Q. Daley, C. J. Eaves, J. M. Goldman and R. Helmann), pp. 19-39. London: Martin Dunitz.

Pendergast, A. M. (2002). The Abl family kinases: mechanisms of regulation and signaling. *Adv. Cancer Res.* 85, 51-100.

Pendergast, A. M., Muller, A. J., Havlik, M. H., Clark, R., McCormick, F. and Witte, O. N. (1991). Evidence for regulation of the human Abl tyrosine kinase by a cellular inhibitor. *Proc. Natl. Acad. Sci. USA* 88, 5927-5931.

Plattner, R. and Pendergast, A. M. (2003). Activation and signaling of the Abl tyrosine kinase: bidirectional link with phosphoinositide signaling. *Cell Cycle* 2, 273-274.

Plattner, R., Kadlec, L., DeMali, K. A., Kazlauskas, A. and Pendergast, A. M. (1999). c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. *Genes Dev.* 13, 2400-2411.

Plattner, R., Irvin, B. J., Gao, S., Blackburn, K., Kazlauskas, A., Abraham, R. T., York, J. D. and Pendergast, A. M. (2003). A new link between the c-Abl tyrosine kinase and phosphoinositide signaling via PLCγ1. *Nat. Cell Biol.* 5, 309-319.

Plattner, R., Koleske, A. J., Kazlauskas, A. and Pendergast, A. M. (2004). Bidirectional signaling links the abelson kinases to the platelet-derived growth factor receptor. *Mol. Cell. Biol.* 24, 2573-2583.

Sattler, M., Salgia, R., Shrikhande, G., Verma, S., Choi, J. L., Rohrschneider, L. R. and Griffin, J. D. (1997). The phosphatidylinositol polyphosphate 5-phosphatase SHIP and the protein tyrosine phosphatase SHP-2 form a complex in hematopoietic cells which can be regulated by BCR-ABL and growth factors. *Oncogene* 15, 2379-2384.

Srinivasan, D. and Plattner, R. (2006). Activation of Abl tyrosine kinases promotes invasion of aggressive breast cancer cells. *Cancer Res.* 66, 5648-5655.

Tartaglia, M. and Gelb, B. D. (2005). Noonan syndrome and related disorders: genetics and pathogenesis. *Annu. Rev. Genomics Hum. Genet.* 6, 45-68.

Tauchi, T., Feng, G. S., Shen, R., Song, H. Y., Donner, D., Pawson, T. and Broxmeyer, H. E. (1994). SH2-containing phosphotyrosine phosphatase Syt is a target of p21bcr-abl tyrosine kinase. *J. Biol. Chem.* 269, 15381-15387.

Yamauchi, K., Milarski, K. L., Saltiel, A. R. and Pessin, J. E. (1995). Protein-tyrosine-phosphatase SHPTP2 is a required positive effector for insulin downstream signaling. *Proc. Natl. Acad. Sci. USA* 92, 664-668.

Yart, A., Laffargue, M., Mayeux, P., Chretien, S., Peres, C., Tonks, N., Roche, S., Payrastro, B., Chap, H. and Raynal, P. (2001). A critical role for phosphoinositide 3-kinase upstream of Gab1 and SHP2 in the activation of Ras and mitogen-activated protein kinases by epidermal growth factor. *J. Biol. Chem.* 276, 8856-8864.

Yu, D. H., Qu, C. K., Henegarini, O., Lu, X. and Feng, G. S. (1996). Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. *J. Biol. Chem.* 271, 21125-21131.

Yu, M., Luo, J., Yang, W., Wang, Y., Mizuki, M., Kanakura, Y., Besmer, P., Neel, B. G. and Gu, H. (2006). The scaffolding adapter Gab2, via Shp-2, regulates kit-evoked mast cell proliferation by activating the Ras/JNK pathway. *J. Biol. Chem.* 281, 28615-28626.

Zipfel, P. A., Zhang, W., Quirce, M. and Pendergast, A. M. (2004). Requirement for Abl kinases in T cell receptor signaling. *Curr. Biol.* 14, 1222-1231.