THE SOUTH CAICOS FACTORING ALGORITHM

Michael O. Rubinstein

Abstract
Let $N = UV$, where U, V are integers, with $1 < U, V < N$, and $\gcd(U, V) = 1$. We describe a probabilistic algorithm for factoring N using $O(\max(U, V)^{1/2+\epsilon})$ bit operations.

1. Preliminaries
Let $N = UV$, where U, V are integers, with $1 < U, V < N$, and $\gcd(U, V) = 1$.

Let a be an integer, $1 < a < N$. By the division algorithm, write

$$U = u_1a + u_0, \quad \text{with } 0 < u_0 < a$$

$$V = v_1a + v_0, \quad \text{with } 0 < v_0 < a.$$ \hspace{1cm} (1)

If, for a given a, we can determine u_0, u_1, v_0, v_1 then we have found U and V. We have assumed that u_0 and v_0 are non-zero. Otherwise, $a\mid N$ and we easily extract a non-trivial factor of N.

Previously, the author developed a factoring algorithm (called ‘Hide and Seek’) requiring $O(N^{1/3+\epsilon})$ bit operations which involves studying (1) with large a, of size $N^{1/3}$. Details are provided in [1].

In this paper, we describe an alternative method to finding u_0, v_0, u_1, v_1, and $O(\max(U, V)^{1/2+\epsilon})$ bit operations. Thus, in the case, for example, that both U and V are $O(N^{1/2})$, the algorithm has complexity $O(N^{1/4+\epsilon})$.

Let a be prime. We also let $a \geq \max(U, V)^{1/2}$, so that $u_1, v_1 < a$. Furthermore, u_0 and v_0 are invertible modulo a, because a is prime and $0 < u_0, v_0 < a$.

Our starting point is the formula

$$N = (u_1a + u_0)(v_1a + v_0) = u_1v_1a^2 + (v_0u_1 + u_0v_1)a + u_0v_0$$ \hspace{1cm} (2)

with $0 < u_0, v_0 < a$, and $u_1, v_1 < a$. Thus, subtracting u_0v_0, dividing by a, and finally reducing modulo a, we have:

$$((N - u_0v_0)/a) = v_0u_1 + u_0v_1 \mod a.$$ \hspace{1cm} (3)

We will determine u_0, v_0, u_1, v_1 by considering this equation.

\hspace{1cm} iSupport for work on this paper was provided by an NSERC Discovery Grant
2. Model case

We first examine the rare situation that \(v_0 = u_0 \mod a \), i.e. that \(a|V-U \). After explaining the method, we will relax this assumption.

Now, from (2), \(u_0v_0 = N \mod a \), hence, under the assumption \(v_0 = u_0 \mod a \),

\[u_0^2 = N \mod a. \] (4)

Since \(a \) is assumed prime, given \(N \) and \(a \), we can use the Tonelli-Shanks algorithm [2] to determine the two possible solutions to the above equation.

The Tonelli-Shanks algorithm requires \(O(\log a + r^2) \) multiplications modulo \(a \), where \(r \) is the power of 2 dividing \(a-1 \). The average value of \(r \), as one averages over primes \(a \), is equal to 2 (see the appendix). Thus, on average, over primes \(a \), Tonelli-Shanks requires \(O(\log a) \) multiplications modulo \(a \) to determine the two possible values of \(u_0 \). And, because we are assuming \(v_0 = u_0 \mod a \), \(v_0 \) is determined by \(u_0 \).

For each of the two possible solutions \(0 < u_0 < a \) to (4), we multiply (3) by \(u_0^{-1} \mod a \). We get, assuming \(v_0 = u_0 \mod a \),

\[u_0^{-1}(N - u_0v_0)/a = u_1 + v_1 \mod a. \] (5)

But \(u_1+v_1 < 2a \) (because \(u_1, v_1 < a \)), i.e. either \(0 \leq u_1+v_1 < a \), or \(a \leq u_1+v_1 < 2a \). Therefore, given the lhs of (5), i.e. given \(N, a, u_0, v_0 \), there are at most two possible values for \(u_1 + v_1 \), which we denote by \(s \). For each of the two possible values of \(s \) (and given \(N, a, u_0, v_0 \)), we substitute \(v_1 = s - u_1 \) into (2), and solve the resulting quadratic equation in \(u_1 \), yielding two possible values of \(u_1 \), which then also determines \(v_1 = s - u_1 \). We then test whether the \(u_0, v_0, u_1, v_1 \) thus obtained gives a correct integer factorization of \(N \).

3. Generalizing the model case

The model case, \(v_0 = u_0 \mod a \), occurs rarely, but similar cases can be considered. For example, say

\[\beta v_0 = \alpha u_0 \mod a. \] (6)

Assume further that

\[\alpha, \beta \text{ are invertible modulo } a, \]
\[\gcd(\alpha, \beta) = 1, \]
\[1 \leq \alpha \leq \beta_{\text{max}}/2, \]
\[-\beta_{\text{max}} \leq \beta \leq \beta_{\text{max}}/2, \] (7)
for some positive β_{max}.

Equation (6) can be equivalently written as

$$a|\beta V - \alpha U.$$ (8)

Now, $u_0v_0 = N \mod a$, hence, by (6),

$$u_0^2 = \alpha^{-1} \beta N \mod a.$$ (9)

Thus, given N, α, β, and prime a, we can again use the Tonelli-Shanks algorithm to determine the two possible values of $u_0 \mod a$.

Thus, multiplying (3) by βu_0^{-1} mod a, we get

$$\beta u_0^{-1}((N - u_0v_0)/a) = \alpha u_1 + \beta v_1 \mod a.$$ (10)

But, because of our assumed bounds on α and β, we have

$$-\beta_{\text{max}} a < \alpha u_1 + \beta v_1 < \beta_{\text{max}} a.$$ (11)

Hence, given the lhs of (10), there are at most $2\beta_{\text{max}}$ possibilities for

$$s = \alpha u_1 + \beta v_1,$$ (12)

i.e. one per interval of length a.

For each of the possible values of s (and given $N, a, u_0, v_0, \alpha, \beta$), we substitute $v_1 = (s - \alpha u_1)/\beta$ into (2), and solve the resulting quadratic equation in u_1, yielding two possible values of u_1, from which we also determine $v_1 = (s - \alpha u_1)/\beta$. We then test whether the u_0, v_0, u_1, v_1 thus obtained gives a correct integer factorization of $N = (u_1a + u_0)(v_1a + v_0)$.

Note that if u_0 leads to a positive integer factorization of $N = UV$, then the other solution $-u_0 \mod a$ to (9) produces the factorization $N = (-U)(-V)$.

4. The South Caicos Algorithm

We are now ready to describe our South Caicos factoring algorithm.

Initially, assume that $\max(U, V) < (2N)^{1/2}$. In section 5 we will remove this assumption.

This condition holds, for example, if $U < V < 2U$, since then $V^2 < 2UV = 2N$. But because the method of the previous section does not distinguish $U < V$, we prefer to state the condition as we have.

The idea is to loop through a small number of values of α and β, as determined by $\beta_{\text{max}} = 2$, say, and primes, $(2N)^{1/4} < a < 2(2N)^{1/4}$, and apply the method of Section 3.
If, for given \((\alpha, \beta)\), we encounter a prime \((2N)^{1/4} < a < 2(2N)^{1/4}\) such that \(a|\beta V - \alpha U\), then, for that choice of \(\alpha, \beta, a\), the method of Section 3 quickly uncovers \(u_0, v_0, u_1, v_1\), and hence \(U\) and \(V\).

However, if, for our given set of \((\alpha, \beta)\)'s, no such \((2N)^{1/4} < a < 2(2N)^{1/4}\) is encountered, then we can repeat the process with the same set of primes \(a\), but with \(\beta_{\text{max}}\) replaced, say, with \(\beta_{\text{max}} + 2\), taking care to exclude \((\alpha, \beta)\)'s already tested.

Heuristically, as \(\beta_{\text{max}}\) grows, we quickly expect to find \((\alpha, \beta)\), and a prime \((2N)^{1/4} < a < 2(2N)^{1/4}\), such that (8) holds. A complexity analysis follows after the pseudo code below.

Algorithm 4.1 (South Caicos). Let \(N = UV\), with \(U, V > 1\) positive integers to be determined satisfying \(\gcd(U, V) = 1\), satisfying \(\max(U, V) < (2N)^{1/2}\).

1. Let \(\beta_{\text{max}} = 2\), and \(S(\text{old}) = \{\}\).

2. Let \(S(\beta_{\text{max}}) = \{ (\alpha, \beta) \in \mathbb{Z}^2 : (\alpha, \beta) \text{ satisfy (7)} \}\).

3. Let \(a\) to be the first prime \(> (2N)^{1/4}\).

4. Use the Euclidean algorithm to compute \(d = \gcd(N, a)\). If \(d > 1\) then we have determined a non-trivial factor of \(N\) and quit.

5. For \((\alpha, \beta) \in S(\beta_{\text{max}}) - S(\text{old})\):
 Carry out the procedure described in section 3 for given \(N, a, \alpha, \beta\).
 If this results in a non-trivial integer factorization of \(N\), then quit.
 Otherwise, replace \(a\) by the next prime, and, if \(a < 2(2N)^{1/4}\), repeat from Step 4.

6. Replace \(S(\text{old})\) by \(S(\beta_{\text{max}})\), \(\beta_{\text{max}}\) by \(\beta_{\text{max}} + 2\), and repeat from step 2.

Analysis: The success and efficiency of the method hinges on encountering a prime \((2N)^{1/4} < a < 2(2N)^{1/4}\), and relatively small integers \(\alpha, \beta\), such that \(a|\beta V - \alpha U\). Heuristically, for \(U, V\) much larger than, and relatively prime to \(a\), and \(\gcd(U, V) = 1\), we expect \(\beta V - \alpha U\) to be divisible by \(a\), on average over \(S(\beta_{\text{max}})\), \(1/a\) of the time.

More precisely, letting \(X = (2N)^{1/4}\), we expect, as \(X \to \infty\) and \(|S(\beta_{\text{max}})|/ \log X \to \infty\), the number of triples \(\alpha, \beta, a\), with \(a|\beta V - \alpha U\), \(X < a < 2X\), and \((\alpha, \beta) \in S(\beta_{\text{max}})\), to satisfy

\[
\sum_{X < a < 2X} \sum_{a|\beta V - \alpha U} 1 \sim |S(\beta_{max})| \sum_{X < a < 2X} 1/a \sim |S(\beta_{max})| \log(2)/\log(X). \tag{13}
\]

The last step follows from the prime number theorem and a summation by parts, or else using the elementary estimate \(\sum_{a < Y} 1/a \sim \log \log(Y) + b + O(1/\log(Y))\),
where b is a constant, and noting that $\log \log (2X) - \log \log (X) = \log ((\log (2) + \log (X))/\log (X)) \sim \log (2)/\log (X)$.

However, from the definition of $S(\beta_{\text{max}})$,

$$|S(\beta_{\text{max}})| \sim \frac{6}{\pi^2} \frac{3}{4} \beta_{\text{max}}^2,$$ \hspace{1cm} (14)

with the factor $6/\pi^2$ to account for the condition $\gcd(\alpha, \beta) = 1$ in (7). Thus, as $\beta_{\text{max}}/\log (N)^{1/2}$ grows, we expect to encounter at least one $(\alpha, \beta) \in S(\beta_{\text{max}})$, and a prime $X < a < 2X$, with $X = (2N)^{1/4}$, such that $a\beta V - \alpha U$, and hence such that the method of Section 4 with succeed in finding non-trivial factors U, V of N.

The bulk of the work, per (α, β, a), involves one application of the Tonelli-Shanks algorithm in equation (9), followed by extracting roots of $2\beta_{\text{max}}$ quadratic equations, one per each value of s from (12).

For each candidate $X < a < 2X$, primality testing of a can be done in polynomial time. Alternatively, one can sieve for all primes in the interval using the sieve of Eratosthenes, at a cost of $O(a^{1/2}/\log a)$, i.e. $O(N^{1/8}/\log N)$ bits of storage, needed to keep track of multiples of the primes $< (2X)^{1/2}$ as we carry out the sieve in short intervals. A table of primes $< (2X)^{1/2}$ needed to carry out the sieve can also be tabulated using the sieve of Eratosthenes.

Overall, we expect this algorithm to successfully factor N in $O(N^{1/4+\epsilon})$ bit operations. With this stated efficiency, the method is probabilistic, since it relies on finding a prime $X < a < 2X$, and small α, β, i.e. of order N^{ϵ}, such that $a\beta V - \alpha U$.

5. Example

For example, if $N = 23713634802068266491347$, the algorithm first uncovers the triple $a = 804901, \alpha = 1, \beta = 3$, with $u_0 = 523125, v_0 = 174375$, being a solution to $\beta v_0 = \alpha u_0 \mod a$, and $u_0 v_0 = N \mod a$, found by applying Tonelli-Shanks to (9). Then, following the method in section 3 we obtain $u_1 = 235108, v_1 = 155684$ (with the value of s that succeeds in (12) being $s = 702160$), giving a correct factorization of $N = UV$, with $U = u_1 a + u_0 = 189239187433, V = v_1 a + v_0 = 125310381659$.

In table 1 we list additional triples a, α, β, with $\beta_{\text{max}} = 16$, such that $a\beta V - \alpha U$, and the corresponding values of u_0, v_0, s, u_1, v_1, U and V, produced by our method.

6. Removing the assumption $\max(U, V) < (2N)^{1/2}$

The assumption that $\max(U, V) < (2N)^{1/2}$ was made so that, with $a > (2N)^{1/4}$, one has, for given a, that $u_1, v_1 < a$. This is important in equation (12) so that we only need to check $2\beta_{\text{max}}$ possibilities for s.

Algorithm 6.1 (South Caicos B).

Let $N = UV$, with $U, V > 1$ positive integers to be determined satisfying $\gcd(U, V) = 1$.

1. Let $\beta_{\max} = \log N$, $j = 1$, and $X = (2N)^{1/4}$.

2. Let

 $S(\beta_{\max}) = \{ (\alpha, \beta) \in \mathbb{Z}^2 : (\alpha, \beta) \text{ satisfy } (7) \}$.

3. Let a be the first prime $> 2^{j-1} X$.

 Use the Euclidean algorithm to compute $d = \gcd(N, a)$. If $d > 1$ then we have determined a non-trivial factor of N and quit.
5 For \((\alpha, \beta) \in S(\beta_{\text{max}})\):
 Carry out the procedure described in section 3 for given \(N, a, \alpha, \beta\).
 If this results in a non-trivial integer factorization of \(N\), then quit.
 Otherwise, replace \(a\) by the next prime, and, if \(a < 2^j X\),
 repeat from Step 4.

6 Replace \(j\) by \(j + 1\), \(\beta_{\text{max}}\) by \(j \log N\), and repeat from step 2.

7. Appendix

We justify the assertion made in section 2 regarding the average value of \(r\) that appears in the Tonelli-Shanks algorithm.

Lemma 7.1. Let \(a\) be prime, and \(r\) the power of 2 dividing \(a - 1\). Then, the average value of \(r\) tends to 2, when averaged over primes \(A < a \leq 2A\), as \(A \to \infty\).

Proof. Let \(k\) be a positive integer. If \(a = m \mod 2^k\), with \(m\) odd and \(1 \leq m < 2^k\), then the value of \(r\), the power of 2 dividing \(a - 1\), is equal to

- 1, if \(m - 1 = 2, 6, 10, 12, \ldots\)
- 2, if \(m - 1 = 4, 12, 20, 28, \ldots\)
- 3 if \(m - 1 = 8, 24, 40, 56, \ldots\)
 etc.

More precisely, if we write \(m\) as a \(k\) bit binary number (possibly with some leading zeros), then \(r = 1\) if \(m\) ends in 11, \(r = 2\) if \(m\) ends in 101, \(r = 3\) if \(m\) ends in 1001, etc. In particular, \(2^{k-2}\) these \(m\) have \(r = 1\), \(2^{k-3}\) have \(r = 2\), \(2^{k-4}\) have \(r = 3\), \ldots, one has \(r = k - 1\) (namely \(m = 2^{k-1} + 1\)). The residue class \(m = 1\) requires more careful consideration. If \(m = 1\), then the value of \(r\) is not precisely determined, but rather satisfies, for \(a < 2A\),

\[
k \leq r \leq \log(2A)/\log(2).
\]

(15)

Now, the primes are equi-distributed amongst the odd residue classes \(\mod 2^k\). However, we require slightly more than just the main term of the prime number theorem in arithmetic progressions. Specifically, let \(c > 0\), and \(q\) a positive integer with \(q \leq \log(x)^c\). The Siegel-Walfisz Theorem implies that, if \(\gcd(m, q) = 1\) then, \(\pi(x; q, m)\), the number of primes less than or equal to \(x\) and congruent to \(m \mod q\), satisfies

\[
\pi(x; q, m) = \frac{1}{\phi(q)} \frac{x}{\log x} (1 + o(1)),
\]

(16)
as $x \to \infty$, with the implied constant dependent on c, and ineffective. If we assume the GRH, then this holds with the implied constant effectively computable (and also a much stronger remainder term). Thus, for k satisfying, say,

$$\log(A)^2 < 2^k \leq 2 \log(A)^2,$$

we have

$$\pi(2A, 2^k, m) - \pi(A, 2^k, m) = \frac{1}{2^{k-1}} \frac{A}{\log A} (1 + o(1)),$$

as $x \to \infty$.

Hence the average value of r, over primes $A < a \leq 2A$, is equal to:

$$\frac{1}{\pi(2A) - \pi(A)} \left(\sum_{r=1}^{k-1} r 2^{k-r-1} + O(\log A) \right) \frac{1}{2^{k-1}} \frac{A}{\log A} (1 + o(1)).$$

But the sum in parentheses is equal to $2^k - k - 1$, as can be verified inductively. Furthermore, $\pi(2A) - \pi(A) \sim A/\log A$. Thus, the above equals

$$(2 + O((\log A + k)/2^k)) (1 + o(1)).$$

But, by (17), $(\log(A) + k)/2^k \to 0$ as $A \to \infty$. Hence, the average value of r is equal to 2.

\medskip

Acknowledgements

The above algorithm was developed by the author in South Caicos while on vacation with his lovely girlfriend Lisa, in between snorkeling, drinking, and getting chased by rabid dogs on the beach.

References

[1] M.O. Rubinstein, The distribution of solutions to $XY = N$ mod a with an application to factoring integers, Integers, 13 (2013), A12, 1–13.

[2] D. Shanks, Five number theoretic algorithms, Proceedings of the Second Manitoba Conference on Numerical Mathematics, Congressus Numerantium, No. VII, Utilitas. Math., Winnipeg, 1973, 51-70.