Exclusive ϕ production in proton-proton collisions in the resonance model

C. Fuchs, Amand Faessler, M.I. Krivoruchenko, B.V. Martemyanov
Institut für Theoretische Physik, Universität Tübingen

The production of ϕ mesons is strongly suppressed compared to that of ω mesons. This fact is known under the name "OZI rule". According to the OZI rule, ϕ mesons can only be produced due to a small admixture of non-strange light quarks in their wave function. The corresponding mixing angle θ_{mix} is equal to $\theta_{mix} \approx 3.7^\circ$. A naive estimate based on the OZI expectation underestimates the measured ratio ϕ and ω mesons cross sections should at comparable energies by about one order of magnitude.

In ref. [2] we determined the ϕ production in elementary nucleon-nucleon reactions within the framework of the resonance model. Their ϕ production is described by a two step mechanism, i.e. the excitation of nucleon resonances and their subsequent decay $pp \rightarrow pR \rightarrow pp\phi$. The cross sections for the resonance production were taken from ref.[3] where they were fitted to describe $\pi, \eta, \rho, \pi\pi$ production in NN collisions. The ϕNR coupling is obtained from the known ωNR coupling of the ω meson [4] and the mixing angle between ϕ and ω mesons. The ωNR couplings, in turn, have been determined within the framework of the extended Vector Meson Dominance (eVMD) model by fitting the available data on electro- and photo-production of nucleon resonances as well as their mesonic decays [5]. The description of the ϕ and ω meson production in elementary nucleon-nucleon reactions is then essentially parameter free since all model parameters have already been fixed by other sources. In [4] it was demonstrated that available data on the exclusive ω production in pp reactions are very accurately reproduced by the present model over a wide energy range, i.e. from extremely close to threshold up to several GeV above threshold.

The $pp \rightarrow pR \rightarrow pp\phi$ cross section is given as follows:

$$\sigma(s) = \sum_R \int_0^{(\sqrt{s}-2m_p)^2} dM^2 \int_{(\sqrt{s}-m_R)^2}^{(\sqrt{s}-m_p)^2} d\mu^2 \times \frac{d\sigma(s, \mu|pp\rightarrow pR)}{d\mu^2},$$

with M being the running mass of ϕ meson. The cross sections for the baryon resonances production are given by

$$d\sigma(s, \mu|pp\rightarrow pR) = \frac{|M|\mu}{16\pi\sqrt{s}} |\Phi_2(\sqrt{s}, \mu, m_p)dW_R(\mu)$$

with $\Phi_2(\sqrt{s}, \mu, m_p) = \pi p^2(\sqrt{s}, \mu, m_p)/\sqrt{s}$ being the two-body phase space, $p^2(\sqrt{s}, \mu, m_p)$ the final c.m. momentum, p, the initial c.m. momentum, μ and m_R are the running and pole masses of the resonances, respectively, m_p the proton mass. The mass distribution $dW_R(\mu)$ of the resonances is described by the standard Breit-Wigner formula:

$$dW_R(\mu) = \frac{1}{\pi} \frac{\Gamma_R(\mu) \mu^2}{(\mu^2 - m_R)^2 + (|\mu_R(\mu)|)^2}.$$

The sum in (1) runs over the same set of nucleon resonances which is responsible for the ω meson production [4]. This includes all well established $(4\pi) N^*$ resonances quoted by the PDG [7] with masses below 2 GeV. The branching to the ϕ decay mode is given by

$$dB(\mu, M|pp\rightarrow pR) = \frac{1}{\Gamma_R(\mu)} \frac{\Gamma_N(\mu, M)}{\Gamma_N(\mu)}$$

with $\Gamma_N(\mu, M)$ calculated the same way as in the case of ω meson production [4].

The results for cross section $\sigma(pp \rightarrow pp\phi)$ are presented in Fig. 1 in form of the ratio of the ϕ over ω meson production cross sections. The ω mesons production cross section was shown to agree well with experimental data if one uses a strong $N^*(1535)N\omega$ coupling [4] The dashed line in Fig. 1 corresponds to the idealized case of stable ϕ and ω mesons, i.e. to the limit of zero widths.

Important properties of the $\Gamma_N(\mu, M)$ width are the following ones: the M dependence of magnetic, electric and Coulomb couplings entering into the amplitude and the Blatt-Weisskopf suppression factor which suppresses the width for large off-shell masses μ of the resonances [4]. Their combined effects lead to an increase of the $\Gamma_N(\mu, M)$ width with M increasing from m_ω to m_ϕ for $\mu > 2$GeV. This effect is finally responsible for the violation of the naive OZI rule estimate.

References
[1] DISTO Collaboration, F. Balestra et al., Phys. Rev. C 63, 024004 (2001).
[2] Amand Faessler, C. Fuchs, M.I. Krivoruchenko, B.V. Martemyanov, Phys. Rev. C 68, 068201 (2003).
[3] S. Teis, W. Cassing, M. Effenberger, A. Hombach, U. Mosel, and G. Wolf, Z. Phys. A356, 421 (1997).
[4] C. Fuchs, M.I. Krivoruchenko, H.L. Yadav, Amand Faessler, B.V. Martemyanov and K. Shekhter., Phys. Rev. C 67, 025202 (2003).
[5] M.I. Krivoruchenko, B.V. Martemyanov, A. Faessler and C. Fuchs, Annals Phys. (N.Y.) 296, 290 (2002).