Magnetically Switchable Light-Matter Interaction in the Two-Dimensional Magnet CrI$_3$

Yang Zhang,1,2 Tobias Holder,3 Hiroaki Ishizuka,4 F. de Juan,5 Naoto Nagaosa,6,7 Claudia Felser,1 and Binghai Yan3,*

1Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
2Leibniz Institute for Solid State and Materials Research, 01069 Dresden, Germany
3Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
4Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
5Donostia International Physics Center, P. Manuel de Lardizabal 4, 20018 Donostia-San Sebastian, Spain
6RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
7Department of Applied Physics and Quantum Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656, Japan

Abstract

Coupling different physical properties is a fascinating subject of physics. Already well-known are the multiferroics which show properties of ferroelectrics and magnets. But ferroelectricity by itself also entails the bulk photovoltaic effect, a light-matter interaction which generates dc currents. Here we propose a magnetic photogalvanic effect that couples the magnetism to the light-matter interaction. This phenomenon emerges from the k to $-k$ symmetry-breaking in the band structure and does not require a static polarization. It is distinct from other known bulk photovoltaic mechanisms such as the shift current. We demonstrate such phenomena in a newly discovered layered magnetic insulator CrI$_3$. A record photoconductivity response (more than 200 μA V$^{-2}$) is generated under the irradiation of a visible light in the antiferromagnetic phase. The current can be reversed and switched by controllable magnetic phase transitions. Our work paves a new route for photovoltaic and optoelectronic devices and provides a sensitive probe for the magnetic transition.

*binghai.yan@weizmann.ac.il
I. INTRODUCTION

Under strong light irradiation, a homogeneous non-centrosymmetric material can rectify light into a dc current, called the bulk photovoltaic effect (BPVE) [1–7]. The induced open-circuit voltages can be much larger than the band gap. Thus, the BPVE displayed a promising potential in the solar energy conversion in ferroelectric perovskites [8–10] and triggered the interest for the application of solar cells [11] beyond the p–n junction design and more recently also the application of photodetectors [12]. A well known mechanism that describes the BPVE is the shift current [2, 4, 13] that commonly refers to a charge polarization in the optical excitation by a topological quantity, the Berry phase [14]. Therefore, ferroelectrics that exhibit intrinsic charge polarization are a promising direction in the search of BPVE materials. Furthermore, non-centrosymmetric Weyl semimetals [15, 16] have recently been investigated for the BPVE [17–23], due to their their band structure topology.

The essential requirement of the BPVE is inversion symmetry (P) breaking. Thus, the present guiding principle to design BPVE materials is to break the crystal centrosymmetry and induce a strong polarization [24–27]. The polarization, however, is not the necessary condition for inversion symmetry breaking. In this work, we show a large photogalvanic effect by a magnetic ordering which breaks P but preserves the parity-time symmetry (PT, where T represents the time-reversal symmetry); therefore, no polarization exists. This phenomenon, called magnetic photogalvanic effect (MPGE), cannot be described by the shift current that applies to nonmagnetic systems.

The light excitation is known to generate an electron and hole pair in the solid. The velocity difference between the excited electron and hole may lead to a dc current. However, such a current usually vanishes because the velocity reverses its direction from k to −k in the momentum space. Such a symmetry in the band structure (see Fig. 1) is induced by either P or T. So we can realize this photocurrent by breaking both P and T in the band structure, which is the core of the MPGE proposed.

We demonstrate the MPGE in a newly discovered two-dimensional ferromagnetic insulator, CrI$_3$ [28, 29]. In the antiferromagnetic (AFM) phase of a CrI$_3$ bilayer [28, 30], both P and T are broken while the combined symmetry PT is preserved. We find that a giant dc photocurrent emerges in the visible light window, due to the momentum-inversion symmetry breaking (k to −k) in the band structure. Because the PT symmetry forces
the charge polarization to vanish, such a photocurrent is distinct from the shift current. The photoconductivity is sourced from the resonant optical transition and the spin-orbit coupling (SOC). The magnetic phase transition, which is controllable as demonstrated in recent experiments [30–34], can be utilized to control the direction and amplitude of the induced current. When reversing all spins in the AFM phase, we can switch the current direction. When switching from the AFM phase to the ferromagnetic (FM) phase, we can completely turn off the current by recovering the spatial inversion. Therefore, we realize three states with different light-matter responses – positive, zero and negative currents (as illustrated in Fig. 1e). Thus, the MPGE provides new routines to control the light-matter interaction by magnetism and to design novel optical storage/switch devices. Our findings can be generalized to multilayers, the bulk system and other magnetic materials(such as Cr$_2$Ge$_2$Te$_6$[35] and VSe$_2$[36]).

II. RESULTS

The recent discovery of 2D van der Waals magnetic insulators, such as CrI$_3$, brings fascinating opportunities to design 2D magnetic devices. Bulk CrI$_3$ is an FM insulator [29]. The FM coupling is preserved down to the monolayer limit [28]. In the bilayer and few-layer thickness, the interlayer coupling can be switched between AFM and FM by either an external magnetic field [32] or electric gating [31, 33], giving rise to a giant magnetoresistance effect [30, 34]. The atomic crystal of CrI$_3$ exhibits inversion symmetry with two inversion centers, one inside the monolayer and the other in between neighboring monolayers. The AFM order reduces the crystal symmetry by removing the interlayer inversion center. Therefore, an AFM bilayer breaks the inversion symmetry, although an FM bilayer does not. Another important feature is that the AFM ordered phase preserves \mathcal{PT} symmetry while it breaks \mathcal{P} and \mathcal{T} independently; hence, no polarization exists in the ordered phase. Therefore, the bilayer CrI$_3$ (see Fig. 1) is an ideal system to examine the photocurrent response, where the inversion symmetry is solely broken by the AFM order instead of the crystal structure. In the following, the \mathcal{PT} symmetry is found to be crucial to determine the mechanism of the photocurrent response.

We show the band structures of the bilayer calculated by the density-functional theory (DFT) including the spin-orbit coupling (SOC) in Fig. 1. All bands are doubly degenerate
FIG. 1. **Band structure and magnetic structures of the bilayer CrI\(_3\).** Schematics of band structures (a) with both inversion symmetry (\(\mathcal{P}\)) and the time-reversal symmetry (\(\mathcal{T}\)), (b) with only \(\mathcal{T}\) but \(\mathcal{P}\)-breaking, and (c) with both \(\mathcal{P}\)- and \(\mathcal{T}\)-breaking. For both (a) and (b), the light excitation (\(\hbar\omega\)) at \(+k\) and \(-k\) is symmetric to each other. However, such a symmetry is broken in (c). As a consequence, excited electrons at \(+k\) and \(-k\) do not cancel each other in velocity, giving rise to a dc photocurrent. (d) The band structure of antiferromagnetic (AFM) bilayer CrI\(_3\). Here both \(\mathcal{P}\)- and \(\mathcal{T}\) are broken as the case of (c), violating the \(k\) to \(-k\) symmetry. The spin-orbit coupling is included. The Fermi energy is shifted to zero. (e) The AFM, ferromagnetic (FM) and reversed AFM phases display three distinct responses to a linearly polarized light – positive current state(1), zero current state (0) and negative current state(-1). which is protected by the \(\mathcal{PT}\) symmetry in the AFM phase. In contrast, such degeneracy is lifted in the FM phase (Supplementary Fig. S1). For the AFM phase, an important feature is the breaking of the \(k\) to \(-k\) symmetry. In a simple consequence, excited electrons (holes) at \(k\) and \(-k\) by the optical excitation (\(\hbar\omega\)) exhibit uncompensated velocities and lead to a nonzero dc current. In addition, the energy gap is slightly lower than the experimental
value, which can be attributed to the known gap underestimation of DFT.

In general, the photocurrent is a nonlinear effect. In this work, we provide a proper formalism (Eq. 1b) to describe T-breaking photocurrent by the second-order response theory (see Sec. III). We first evaluate the photocurrent response of the bilayer CrI$_3$ using the general formalism based on Bloch wave functions of the realistic material. Then we prove that this formalism can be reduced to a simple form of the resonant optical transition (Eq. 5) in the presence of the \mathcal{PT} symmetry.

Under the irradiation of the linearly polarized light, the FM bilayer exhibits vanishing photocurrent due to inversion symmetry. However, the AFM phase displays a large photocurrent conductivity (more than 200 μAV$^{-2}$) in the visible-light range (see Fig. 2). This value is higher than that of any known BPVE materials reported so far [6, 24, 26, 37–40]. We note that the photocurrent reverses its direction when reversing all spins in the AFM phase. Therefore, the FM, AFM and reversed AFM represent three photocurrent states, 0 (no current), 1 (positive current) and -1 (negative current), respectively, as illustrated in Fig. 1. In addition, for circularly polarized light, we do not observe any photocurrent for both AFM and FM bilayers.

III. DISCUSSION

The BPVE response can be calculated by the second-order Kubo formula [2, 21]. It accounts for the steady-state short-circuit photocurrent with the relaxation time approximation. The conductivity $\sigma_{ab} (a, b, c = x, y, z)$ represents the photocurrent J^c generated by the dipole electrical field of light, $E = (E_a(\omega), E_b(\omega), 0)$,

$$J^c = \sum_{ab} \sigma_{ab}^c E_a^*(\omega) E_b(\omega)$$ \hspace{1cm} (1a)

$$= \sum_{ab} \frac{\pi \epsilon^3}{\omega^2} \text{Re} \left\{ \sum_{l,m,n} \int_{BZ} \frac{dk}{(2\pi)^d} f_{ln}(E_{nm} - i\hbar/\tau)(E_{nl} - \hbar \Omega - i\hbar/\tau) E_a^*(\omega) E_b(\omega) \right\},$$ \hspace{1cm} (1b)

where $v_{nl}^a = \langle n, k | \hat{v}^a | l, k \rangle$, \hat{v}^a is the velocity operator, τ is the relaxation time, d is the system dimension, $f_{ln} = f(E_l) - f(E_n)$, $f(E_n)$ is the Fermi-Dirac distribution, $E_{nm} = E_n - E_m$, $E_n \equiv E_n(k)$ and $|n, k\rangle$ are energy and wave functions, respectively, at k for the nth band.

The photocurrent conductivity matrix σ_{ab}^c is shaped by the symmetry of the AFM bilayer. The three-fold rotational symmetry and \mathcal{PT} lead to only six nonzero tensor elements, $\sigma_{xx}^c = \pi \epsilon^3/\omega^2 \text{Re} \left\{ \int_{BZ} \frac{dk}{(2\pi)^d} f_{ln}(E_{nm} - i\hbar/\tau)(E_{nl} - \hbar \Omega - i\hbar/\tau) E_a^*(\omega) E_b(\omega) \right\}$.
FIG. 2. Calculated photoconductivity in response to the linearly polarized light. (a) The photon energy ($\hbar \omega$) dependence of σ_{xx} and σ_{yy}. (b) The linear-response optical conductivity σ_{xx} and σ_{yy}. (c)-(d) The angle dependent photoconductivity $\sigma^x(\theta), \sigma^y(\theta)$ [cf. Eq. (2)] in the same unit as (a) for $\hbar \omega = 1.2$ eV. x and y are the directions of the current and θ is the angle between the electric field of light and the x-axis.

$-\sigma_{yy} = -\sigma_{xy} = -\sigma_{yx} = -\sigma_{xx}$. Here only two of them (such as σ_{xx}^{x} and σ_{yy}^{y}) are independent, since x and y directions are not equivalent in a hexagonal lattice. For a linearly polarized light $\mathbf{E} = (\cos \theta, \sin \theta, 0)E_0 \cos(\omega t)$, according to Eq. (1a) the photocurrent along the x and y direction is

$$J^x = \sigma^x(\theta) E_0^2 = [\sigma_{xx}^x \cos(2\theta) - \sigma_{yy}^y \sin(2\theta)] E_0^2$$

$$J^y = \sigma^y(\theta) E_0^2 = [-\sigma_{yy}^y \cos(2\theta) - \sigma_{xx}^x \sin(2\theta)] E_0^2.$$

The photocurrent is sensitive to the polarization direction θ, as we show in Figs. 2c-2d. Such an anisotropy is usually measured to deduce the conductivity tensor elements in experiment.

In contrast, for the circularly polarized light, the photocurrent is forced to vanish by symmetries of the AFM bilayer. For example, $J^x = \sum_{ab} \sigma_{xx}^a E_a E_b = \sigma_{xx}^x E_x^2 E_x + \sigma_{yy}^y E_y^2 E_y + \sigma_{xy}^x E_x^* E_y + \sigma_{yx}^y E_y^* E_x = 0$ for a circular polarized light with $E_y = iE_x$. Such a dramatic distinction between light polarization provides a simple, useful hallmark to verify our results.
We will focus our discussion mainly on the linearly polarized light in the following.

The general formalism (Eq. [1b]) can be simplified when special symmetries appear. The BPVE arises as a consequence of the three-band \((l,m,n)\) interference in the optical excitation. (i) The response function vanishes to zero if the inversion \(\mathcal{P}\) exists, because the numerator \(N_{lmn}(k) = v^a_{nl}v^b_{lm}v^c_{mn},\) the product of three matrix elements, is odd to \(k\). (ii) If \(\mathcal{P}\) is broken but \(\mathcal{T}\) appears, \(N_{lmn}(k) = -N_{lmn}(-k)^*\). Then only the imaginary part of \(N_{lmn}(k)\) contributes nonzero values to the photocurrent. Therefore, the linearly and circularly polarized lights are related to the imaginary and real parts of the energy denominator, respectively, in Eq. [1b]. For a \(\mathcal{T}\)-symmetric insulator, Eq. [1b] can be simplified to the shift current and injection current formalisms \([2, 4, 41]\) for the linearly and circularly polarized lights, respectively. Here, the velocity matrix is commonly transformed to the length gauge \([41]\), because valence and conduction wave functions are smooth in the momentum space. For a gapless system with crossing bands (e.g. a Weyl semimetal) \([2, 21]\), however, the general formula Eq. [1b] should be employed.

For the bilayer AFM CrI\(_3\) that respects \(\mathcal{PT}\) but breaks \(\mathcal{P}\) and \(\mathcal{T}\) independently, the response function exhibits a unique symmetry. Because \(\mathcal{PT}\) requires \(N_{lmn}(k) = N^*_{l'm'n'}(k)\), the numerator \((N_{lmn}(k) + N^*_{l'm'n'}(k))\) in Eq. [1b] is always real, where \(l', m', n'\) are \(\mathcal{PT}\) partners (degenerate in energy) of \(l, m, n\), respectively. Opposite to the \(\mathcal{T}\)-symmetric case, the linearly and circularly polarized lights are related to the real and imaginary parts of the energy denominator, respectively, in the \(\mathcal{PT}\)-symmetric system, the Abelian Berry phase vanishes while the non-Abelian Berry phase still appears. Because both Abelian and non-Abelian parts are related to the imaginary part of \(N_{lmn}\), they will not contribute a photocurrent under the \(\mathcal{PT}\) symmetry.

To establish the intuitive correlation between the band structure and the BPVE, we decompose Eq. [1b] into two-band and three-band process \([2, 21]\). The former corresponds to a direct resonant transition from \(|l\rangle\) to \(|n\rangle\), where \(n = m\). By considering \((E_n - E_m - i\hbar/\tau)^{-1} = -i\tau/\hbar\) in Eq. [1b] the response function can be derived,

\[
\sigma^{ac}_{ab} = -\frac{\pi e^2}{\omega^2 h} \sum_{l,n,\Omega = \pm 2\Omega} \int_{\text{BZ}} \frac{dk}{(2\pi)^d} \frac{1}{2} \{ v^a_{nl}, v^b_{ln} \} v^c_{mn} \delta(E_{nl} - \hbar\Omega), \tag{3}
\]

where \(\frac{1}{2} \{ v^a_{nl}, v^b_{ln} \} = \frac{1}{2} (v^a_{nl}v^b_{ln} + v^b_{ln}v^a_{nl}) \equiv Re(v^a_{nl}v^b_{ln})\) and the \(\delta\)-function is derived from the imaginary part of \((E_{nl} - \hbar\Omega - i\hbar/\tau)^{-1}\). Such two-band photocurrent is proportional to the relaxation time \(\tau\) and decided by the resonant transition according the selection rule
\(E_{nl} = \pm \hbar \omega \). We further transform Eq. 3 to the length gauge,

\[
\sigma_{ab}^c = \frac{\pi e^3 \tau}{\hbar} \sum_{l,n} \int_{BZ} \frac{dk}{(2\pi)^d} \mathcal{I}_{fn} \frac{1}{2} \{ r_{nl}^a, r_{ln}^b \} \Delta_{ln}^c \delta(E_{nl} - \hbar \omega),
\]

where \(r_{nl}^a = i \langle n | \partial_k a | l \rangle \) is the position matrix element and \(v_{nl}^a = r_{nl}^a E_{nl}/\hbar \equiv r_{nl}^a \Omega \) if \(E_{nl} - \hbar \Omega = 0 \), and \(\Delta_{in}^c = v_{in}^c - v_{in}^e \). This formula is very similar to the the known \(T \)-symmetric injection current expression (Eq. 56 in Ref. 4), except that in Ref. 4 the injection current is integrated over the imaginary part of the position matrix \(r_{nl}^a r_{ln}^b \) due to \(T \). In contrast, Eq. 4 evaluates its real part due to \(P \). Suppose a linearly polarized light with the polarization along \(x \), Eq. 4 looks more intuitive in the following form,

\[
\sigma_{xx}^c = \frac{\pi e^3 \tau}{\hbar} \sum_{l,n} \int_{BZ} \frac{dk}{(2\pi)^d} \mathcal{I}_{fn} |r_{ln}^x|^2 \Delta_{ln}^c \delta(E_{nl} - \hbar \omega).
\]

It represents an excitation from \(l \) to \(n \) with dipole transition rate \(|r_{ln}^x|^2 \). The excited electron (hole) with finite velocity \(v_{in}^c, v_{in}^e \) induces a dc current. If \(v_{in}^c \) at \(k \) and \(-k \) cancel each other exactly when \(P \) or \(T \) exists, the photocurrent from Eq. 4 or 5 vanishes. Only when both \(P \) and \(T \) are broken, a nonzero photocurrent may exist.

The three-band contribution refers to \(n \neq m \). We can exclude a trivial case that \(|n \rangle \) and \(|m \rangle \) are degenerate in energy for example protected by \(P T \), because \(v_{nm}^a = 0 \) if so. When \(E_n \neq E_m \), the real part of the denominator in Eq. 1b is \(\tau \)-independent. Thus the three-band process generates a photocurrent that is robust against scattering, different from the two-band transition. The three-band process evaluate \((E_{nm} - i\hbar/\tau)^{-1} \) in the denominator. Thus, the ratio between the three-band and two-band contributions are \((\hbar/\tau)/E_{nm} \) that is usually in the order of meV/eV. Then the three-band contribution is much smaller than the two-band one. In calculations, we indeed find that the photoconductivity is predominantly produced by the two-band transition, where the three-band contribution is less than 0.5% of the two-band contribution (See the supplementary Fig. S2).

It is useful to find a simple indicator for the nonlinear photoconductivity. Because the photocurrent is proportional to the resonant transition rate, the imaginary dielectric function or the optical conductivity may provide such an indicator. In other words, the optical conductivity is the sum of all allowed transitions equally while the photoconductivity is to sum them with the velocity weight (see Eq. 5). As shown in Fig. 2c, the optical conductivity \(\sigma_{xx} \) is strongly correlated to \(\sigma_{xx}^c \). In addition, the photoconductivity indeed scales linearly to the relaxation time \(\tau \) in our calculations (Supplementary Fig. S3).
FIG. 3. Distribution of the photoconductivity σ_{xx}^\pm in the first Brillouin zone. Without including the spin-orbit coupling (SOC), the k to $-k$ symmetry appears while finite SOC breaks such a symmetry. The ring-like shape indicates the resonant optical transition between valence (E_l) and conduction (E_n) bands by the selection rule $E_n - E_l = \hbar \omega$ (1.2 eV). (c) Transitions from top two valence bands to the bottom two conduction bands. The yellow rings indicate the transition paths and correspond to the large-σ_{xx}^\pm-amplitude rings in (b).

Figure 3 shows the σ_{xx}^\pm distribution in the momentum space for the AFM bilayer at $\hbar \omega = 1.2$ eV. It is clear that the photoconductivity is contributed by resonant transition channels between the valence and conduction bands. Because of the breaking of both \mathcal{P} and \mathcal{T}, these channels are not symmetric between k and $-k$ anymore. We point out that SOC play a significant role here despite that it is less obvious from Eq. 5. The strength of SOC represents the amount of the k to $-k$ symmetry-breaking in the band structure. When SOC is absent, the AFM band structure is still symmetric (see the supplementary Fig. S1). This is because of the spin rotation symmetry SU(2). Therefore, the net photocurrent vanishes, as shown in **Fig. 3a**. Finite SOC locks the the spin orientation with respect to the lattice and breaks the momentum-inversion symmetry (see **Fig. 3b**), resulting in a nonzero photocurrent. The SOC modifies the band structure by opening a gap at the band crossing points. So peaks of σ_{xx}^\pm usually correspond to the transitions involving these anti-crossing gap regions.
In reality, the substrate or the gate may modify the bilayer electronic structure by breaking the crystal inversion between two layers. It is practical to investigate how robust the \(\mathcal{PT}\)-symmetry-induced photocurrent behaves in the presence of such perturbation. We apply an out-of-plane electric field \(E\) to represent the perturbation. \(E\) induces a potential drop between two layers and breaks the \(\mathcal{PT}\) symmetry of the bilayer. We calculate the photoconductivity using Eq. 1b, where both the real and imaginary parts of \(N_{lmn}(k)\) contribute. The photoconductivity remains relatively robust even for a large \(E = 0.005\) V/a.u. (1 a.u. = 0.53 Å) for the AFM bilayer (see the supplementary Fig. S4). On the other hand, the FM phase starts to exhibit nonzero photocurrent when \(E\) breaks its inversion symmetry. At \(E = 0.005\) V/a.u., the photoconductivity is non-negligible.

In addition, the MPGE can be easily generalized to multi-layers and other magnetic materials. Some magnetic orders of a trilayer CrI\(_3\), for example, \(↑↑↓\) or \(↑↓↓\), can break the inversion symmetry and generate the MPGE. Different from a bilayer, \(\mathcal{PT}\) is broken here. Then the real and imaginary parts of \(N_{lmn}(k)\) contribute to the photoconductivity in Eq. 1b. Magnetic orders such as \(↑↑↑\) and \(↑↓↑\) preserve the inversion symmetry and produce no photocurrent. Further, hetero-structures of layer materials and twisted layers provide vast possibilities. Beyond 2D materials, the MPGE may also exist in 3D systems, specially AFM materials with the \(\mathcal{PT}\) symmetry and strong SOC, such as Cr\(_2\)O\(_3\) [42], Mn\(_2\)Au [43], CuMnAs [44, 45].

IV. SUMMARY

To summarize, we discover a simple magnetic photogalvanic effect to generate the photocurrent by breaking the momentum-inversion symmetry in the band structure. This mechanism induces a large photoconductivity in the AFM phase of the bilayer CrI\(_3\) despite no electric polarization. The photocurrent appears for the linearly polarized light but vanishes for the circularly polarized one in current system. It exhibits an injection-current-like feature and is proportional to the relaxation time, the resonant transition rate and SOC. Tuning the magnetic structure is a sensitive handle to manipulate the photocurrent. Although the bilayer CrI\(_3\) exhibits a record photoconductivity, it seems possible to design even better non-linear magnetic materials, for example by considering stronger SOC and longer relaxation time. There are plenty of AFM and FM materials, such as magnetoelectric multiferroic.
V. METHODS

We obtain the DFT band structure and Bloch wave functions from the Full-Potential Local-Orbital program (FPLO) \[48\] within the generalized gradient approximation \[49\]. By projecting the Bloch wave functions onto atomic-like (Cr-\(d\) and I-\(sp\)) Wannier functions, we obtain a tight-binding Hamiltonian with sixty-eight bands that well reproduce the DFT band structure. We employ this material specific tight-binding Hamiltonian for accurate evaluation of the photocurrent. We use \(\hbar/\tau = 1\) meV in our calculations. For the integrals of Eq. \[1b\] the 2D Brillouin zone was sampled by a grid of \(400 \times 400\). Increasing the grid size to \(960 \times 960\) varied the conductivity by less than 5%.

[1] V I Belinicher and B I Sturman, “The photogalvanic effect in media lacking a center of symmetry,” Sov. Phys. Usp. 23, 199–223 (1980).
[2] Ralph von Baltz and Wolfgang Kraut, “Theory of the bulk photovoltaic effect in pure crystals,” Physical Review B 23, 5590 (1981).
[3] Paul J Sturman, Photovoltaic and Photo-refractive Effects in Noncentrosymmetric Materials, Vol. 8 (CRC Press, 1992).
[4] J E Sipe and A I Shkrebtii, “Second-order optical response in semiconductors,” Phys. Rev. B 61, 5337–5352 (2000).
[5] V M Fridkin, “Bulk photovoltaic effect in noncentrosymmetric crystals,” Crystallography Reports 46, 654–658 (2001).
[6] Steve M Young and Andrew M Rappe, “First principles calculation of the shift current photovoltaic effect in ferroelectrics,” Physical review letters 109, 116601 (2012).
[7] Takahiro Morimoto and Naoto Nagaosa, “Topological nature of nonlinear optical effects in solids,” Science advances 2, e1501524 (2016).
[8] T Choi, S Lee, Y J Choi, V Kiryukhin, and S-W Cheong, “Switchable Ferroelectric Diode and Photovoltaic Effect in \(BiFeO_3\),” Science 324, 63–66 (2009).
[9] S Y Yang, J Seidel, S J Byrnes, P Shafer, C H Yang, M D Rossell, P Yu, Y H Chu, J F Scott,
J W Ager III, L W Martin, and R Ramesh, “Above-bandgap voltages from ferroelectric
photovoltaic devices,” Nature Nanotech 5, 143–147 (2010).

[10] Ilya Grinberg, D Vincent West, Maria Torres, Gaoyang Gou, David M Stein, Liyan Wu,
Guannan Chen, Eric M Gallo, Andrew R Akbashev, Peter K Davies, Jonathan E Spanier, and
Andrew M Rappe, “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic
materials,” Nature 503, 509–512 (2013).

[11] Jonathan E Spanier, Vladimir M Fridkin, Andrew M Rappe, Andrew R Akbashev, Alessia
Polemi, Yubo Qi, Zongquan Gu, Steve M Young, Christopher J Hawley, Dominic Imbrenda,
Geoffrey Xiao, Andrew L Bennett-Jackson, and Craig L Johnson, “Power conversion efficiency
exceeding the Shockley–Queisser limit in a ferroelectric insulator,” Nature Photonics 2018 12:2
10, 611–616 (2016).

[12] Dan Daranciang, Matthew J. Highland, Haidan Wen, Steve M. Young, Nathaniel C. Brandt,
Harold Y. Hwang, Michael Vattilana, Matthieu Nicoul, Florian Quirin, John Goodfellow,
Tingting Qi, Ilya Grinberg, David M. Fritz, Marco Cammarata, Diling Zhu, Henrik T.
Lemke, Donald A. Walko, Eric M. Dufresne, Yuelin Li, Jörgen Larsson, David A. Reis, Klaus
Sokolowski-Tinten, Keith A. Nelson, Andrew M. Rappe, Paul H. Fuoss, G. Brian Stephenson,
and Aaron M. Lindenber, “Ultrafast photovoltaic response in ferroelectric nanolayers,” Phys.
Rev. Lett. 108, 087601 (2012).

[13] Liang Z Tan, Fan Zheng, Steve M Young, Fenggong Wang, Shi Liu, and Andrew M Rappe,
“Shift current bulk photovoltaic effect in polar materials—hybrid and oxide perovskites and
beyond,” NPJ Computational Materials 2, 16026 (2016).

[14] Di Xiao, Ming-Che Chang, and Qian Niu, “Berry phase effects on electronic properties,” Rev.
Mod. Phys. 82, 1959–2007 (2010).

[15] N P Armitage, E J Mele, and Ashvin Vishwanath, “Weyl and Dirac Semimetals in Three
Dimensional Solids,” arxiv (2017), 1705.01111.

[16] Binghai Yan and Claudia Felser, “Topological Materials: Weyl Semimetals,” Annual Review
of Condensed Matter Physics 8, 337–354 (2017).

[17] Liang Wu, Shreyas Patankar, Takahiro Morimoto, Nityan L Nair, Eric Thewalt, Arielle Little,
James G Analytis, Joel E Moore, and J Orenstein, “Giant anisotropic nonlinear optical
response in transition metal monopnictide Weyl semimetals,” Nature Physics (2016).
Qiong Ma, Su-Yang Xu, Ching-Kit Chan, Cheng-Long Zhang, Guoqing Chang, Yuxuan Lin, Weiwei Xie, Tomás Palacios, Hsin Lin, Shuang Jia, et al., “Direct optical detection of weyl fermion chirality in a topological semimetal,” Nature Physics 13, 842 (2017).

Ching-Kit Chan, Netanel H Lindner, Gil Refael, and Patrick A Lee, “Photocurrents in weyl semimetals,” Physical Review B 95, 041104 (2017).

Fernando de Juan, Adolfo G Grushin, Takahiro Morimoto, and Joel E Moore, “Quantized circular photogalvanic effect in weyl semimetals,” Nature communications 8, 15995 (2017).

Yang Zhang, Hiroaki Ishizuka, Jeroen van den Brink, Claudia Felser, Binghai Yan, and Naoto Nagaosa, “Photogalvanic Effect in Weyl Semimetals from First Principles,” Phys. Rev. B 97, 241118(R) (2018).

Yang Zhang, Yan Sun, and Binghai Yan, “Berry curvature dipole in Weyl semimetal materials: An ab initio study,” Physical Review B 97, 041101 (2018).

Gavin B Osterhoudt, Laura K Diebel, Xu Yang, John Stanco, Xiangwei Huang, Bing Shen, Ni Ni, Philip Moll, Ying Ran, and Kenneth S Burch, “Colossal photovoltaic effect driven by the singular berry curvature in a weyl semimetal,” arXiv preprint arXiv:1712.04951 (2017).

Ashley M Cook, Benjamin M Fregoso, Fernando De Juan, Sinisa Coh, and Joel E Moore, “Design principles for shift current photovoltaics,” Nature communications 8, 14176 (2017).

M Nakamura, S Horiuchi, F Kagawa, N Ogawa, T Kurumaji, Y Tokura, and M Kawasaki, “Shift current photovoltaic effect in a ferroelectric charge-transfer complex,” Nature communications 8, 281 (2017).

Tonatiuh Rangel, Benjamin M Fregoso, Bernardo S Mendoza, Takahiro Morimoto, Joel E Moore, and Jeffrey B Neaton, “Large bulk photovoltaic effect and spontaneous polarization of single-layer monochalcogenides,” Physical review letters 119, 067402 (2017).

Ming-Min Yang, Dong Jik Kim, and Marin Alexe, “Flexo-photovoltaic effect,” Science , eaan3256 (2018).

E. Navarro-Moratalla DR Klein R. Cheng KL Seyler D. Zhong E. Schmidgall MA McGuire DH Cobden W. Yao D. Xiao P. Jarillo-Herrero BB. Huang, G. Clark and X. Xu, “Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature (London) 546, 270 (2017).” Nature (London) 546, 270 (2017).

Michael A McGuire, Hemant Dixit, Valentino R Cooper, and Brian C Sales, “Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator cri3,” Chemistry of
Materials 27, 612–620 (2015).

[30] Tiancheng Song, Xinghan Cai, Matisse Wei-Yuan Tu, Xiaou Zhang, Bevin Huang, Nathan P Wilson, Kyle L Seyler, Lin Zhu, Takashi Taniguchi, Kenji Watanabe, et al., “Giant tunneling magnetoresistance in spin-filter van der waals heterostructures,” Science, eaar4851 (2018).

[31] Shengwei Jiang, Jie Shan, and Kin Fai Mak, “Electric-field switching of two-dimensional van der Waals magnets,” Nature Materials 17, 406–410 (2018).

[32] Dahlia R Klein, David MacNeill, Jose L Lado, David Soriano, Efrén Navarro-Moratalla, Kenji Watanabe, Takashi Taniguchi, Soham Manni, Paul Canfield, Joaquín Fernández-Rossier, et al., “Probing magnetism in 2d van der waals crystalline insulators via electron tunneling,” Science 360, 1218–1222 (2018).

[33] Shengwei Jiang, Lizhong Li, Zefang Wang, Kin Fai Mak, and Jie Shan, “Controlling magnetism in 2D CrI₃ by electrostatic doping,” Nature nanotechnology, 1 (2018).

[34] Zhe Wang, Ignacio Gutiérrez-Lezama, Nicolas Ubrig, Martin Kroner, Marco Gibertini, Takashi Taniguchi, Kenji Watanabe, Ataç Imamoğlu, Enrico Giannini, and Alberto F Morpurgo, “Very large tunneling magnetoresistance in layered magnetic semiconductor CrI₃,” Nature communications 9, 2516 (2018).

[35] Cheng Gong, Lin Li, Zhenglu Li, Huiwen Ji, Alex Stern, Yang Xia, Ting Cao, Wei Bao, Chenzhe Wang, Yuan Wang, Z Q Qiu, R J Cava, Steven G Louie, Jing Xia, and Xiang Zhang, “Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals,” Nature 546, 265–269 (2017).

[36] Manuel Bonilla, Sadhu Kolekar, Yujing Ma, Horacio Coy Diaz, Vijaysankar Kalappattil, Raja Das, Tatiana Eggers, Humberto R Gutierrez, Manh-Huong Phan, and Matthias Batzill, “Strong room-temperature ferromagnetism in VSe₂ monolayers on van der Waals substrates,” Nature Nanotech 13, 289–293 (2018).

[37] Steve M. Young, Fan Zheng, and Andrew M. Rappe, “First-principles calculation of the bulk photovoltaic effect in bismuth ferrite,” Phys. Rev. Lett. 109, 236601 (2012).

[38] Fan Zheng, Hiroyuki Takenaka, Fenggong Wang, Nathan Z Koocher, and Andrew M Rappe, “First-Principles Calculation of the Bulk Photovoltaic Effect in CH₃NH₃PbI₃ and CH₃NH₃PbI₃₋ₓClₓ,” The journal of physical chemistry letters 6, 31–37 (2014).

[39] John A Brehm, Steve M Young, Fan Zheng, and Andrew M Rappe, “First-principles calculation of the bulk photovoltaic effect in the polar compounds LiAsS₂, LiAsSe₂, and NaAsSe₂,”
The Journal of chemical physics 141, 204704 (2014).

[40] M Sotome, M Nakamura, J Fujioka, M Ogino, Y Kaneko, T Morimoto, Y Zhang, M Kawasaki, N Nagaosa, Y Tokura, et al., “Spectral dynamics of shift current in ferroelectric semiconductor SbSI,” Proceedings of the National Academy of Sciences 116, 1929–1933 (2019).

[41] Claudio Aversa and JE Sipe, “Nonlinear optical susceptibilities of semiconductors: Results with a length-gauge analysis,” Physical Review B 52, 14636 (1995).

[42] M. Fiebig, D. Fröhlich, B. B. Krichevtsov, and R. V. Pisarev, “Second Harmonic Generation and Magnetic-Dipole-Electric-Dipole Interference in Antiferromagnetic Cr2O3,” Phys. Rev. Lett. 73, 2127–2130 (1994).

[43] V M T S Barthem, C V Colin, H Mayaffre, M H Julien, and D Givord, “Revealing the properties of Mn2Au for antiferromagnetic spintronics,” Nat. Commun. 4, 2892 (2013).

[44] K Olejnik, V Schuler, X Marti, V Novak, Z Kaspar, P Wadley, R P Campion, K W Edmonds, B L Gallagher, J Garces, M Baumgartner, P Gambardella, and T Jungwirth, “Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility,” Nat. Commun. 8, 15434 (2017).

[45] Eve Emmanouilidou, Huibo Cao, Peizhe Tang, Xin Gui, Chaowei Hu, Bing Shen, Junyi Wu, Shou-Cheng Zhang, Weiwei Xie, and Ni Ni, “Magnetic order induces symmetry breaking in the single-crystalline orthorhombic CuMnAs semimetal,” Phys. Rev. B 96, 224405 (2017).

[46] Manfred Fiebig, “Revival of the magnetoelectric effect,” Journal of physics D: applied physics 38, R123 (2005).

[47] Nicola A Spaldin and Manfred Fiebig, “The Renaissance of Magnetoelectric Multiferroics,” Science 309, 391–392 (2005).

[48] Klaus Koepernik and Helmut Eschrig, “Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme,” Physical Review B 59, 1743 (1999).

[49] John P. Perdew, Kieron Burke, and Matthias Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).
Supplemental Materials for “Magnetically Switchable Light-Matter Interaction in the Two-Dimensional Magnet CrI$_3$”

FIG. S1. Band structure of the bilayer CrI$_3$ for the (a) AFM phase with SOC, (b) AFM without including SOC and (c) FM phase with SOC. In both (b) and (c), the k to $-k$ symmetry is preserved in the band structure. In contrast, momentum inversion symmetry is broken in (a).

FIG. S2. The photoconductivity contributions from (a) the three-band and (b) two-band processes. Distribution of the photoconductivity $\sigma_{xx}^x (h\omega = 1.2 \text{ eV})$ in the first Brillouin zone, the hexagonal area. Note that the colorbar of the three-band contribution is two orders in magnitude smaller than the two-band one. The momentum inversion symmetry is broken in both (a) and (b). The three-band distribution is relatively uniform in the Brillouin zone, because it has no energy selection rule.
FIG. S3. The photoconductivity for different relaxation time (a) $\hbar/\tau = 5$ meV, (b) 1 meV (same as Fig. 2a) and (c) 0.01 meV. The photoconductivity scales linearly with τ.

FIG. S4. The photoconductivity σ_{xx} in different electric field applied for the (a) AFM and (b) FM phases. The electric field E is in unit of V/a.u. (1 a.u. = 0.53 Å).