Effects of Different Mulching Materials and Planting Distance on Selected Soil Properties of Organic Farms Planted with *Orthosiphon stamineus*

N.A.A. Hamid\(^1\), S.R. Keeren\(^2\), A.B. Zahidah\(^3\), K.S. Daljit\(^1\),*, A. Norulhuda\(^4\), M.M. Farrah\(^5\), Z. Dzarifah\(^6\)

\(^1\)Department of Land Management, Faculty of Agriculture, UPM, 43400 Serdang, Selangor, Malaysia.
\(^2\)Department of Biology, Faculty of Science, UPM, 43400 Serdang, Selangor, Malaysia.
\(^3\)School of Agriculture, Faculty of Science and Technology, University College Yayasan Pahang, Malaysia.
\(^4\)School of Environmental and Natural Resources Science, UPM, 43600 Bangi, Selangor, Malaysia.
\(^5\)Department of Agriculture Technology, Faculty of Agriculture, UPM, 43400 Serdang, Selangor, Malaysia.
\(^6\)Department of Plant Protection, Faculty of Agriculture, UPM 43400 Serdang, Selangor, Malaysia.

Abstract

A field study was carried out to determine the impact of mulching and planting distance on the growth of *Orthosiphon stamineus*, soil properties and also to observe the changes in pH and EC of soil in response to mulching and planting distance. The experiment was carried out at Ladang 16, Faculty of Agriculture UPM. Factorial Randomized Complete Block Design (RCBD) was incorporated with four replicates for each of the four treatments. The four treatments consisted of mulching, non-mulching, planting distance of 30 cm × 30 cm and planting distance of 45 cm × 45 cm. After eight weeks of planting, the plants were harvested while soil pH and EC were measured on a weekly basis throughout the planting period. Results showed that application of biochar and usage of mulching materials and suitable planting distance does help to maintain the soil pH and electrical conductivity (EC) at the suitable range for crop growth. The level of the acidity of the soil is in the range of 5.3 to 6.61 which is considered appropriate for *O. stamineus*. As for influence of planting distance, it is best to give longer time for *O. stamineus* growth. It is recommended that more planting distance and types of mulching materials to be used to grow *O. stamineus*.

1. Introduction

Orthosiphon stamineus (Family: Lamiaceae) can grow up to 1.5m, exhibiting opposite pairs of leaf arrangement, simple, glabrous, lanceolate leaf blade with serrate margin and green in colour [1]. The white flower species produced rhomboid shapes in leaves without coloured spots, acuminate apex, abaxial base, and green venation. Zaharah and Sahibah [2] found that *Orthosiphon stamineus* is suitable to be cultivated in any type of soil including sandy soils like BRIS and tin tailings. The plant needs an average monthly rainfall of 180-200 cm to grow well and irrigation should be provided during dry season. *Orthosiphon stamineus* leaves were used as remedy for kidney stones, diabetes, capillary and circulatory disorders.

Mulching is a loose covering or sheet of organic material that is spread on top of the soil as a protective layer. It can be either derived from organic waste like paddy straw or inorganic materials like plastic mulching. Mulching has proven to be an effective method in reducing water and soil loss rates. A good layer of mulch will help to preserve moisture and suppress weed germination. Mulch also enhances root and increases maize grain crop yield by increasing plant N-uptake efficiency, decreasing the losses of nitrogen discharge and improving nutrient preservation over non-mulched plots [3]. Mulching involves maintaining a permanent or semi-permanent protective cover on the soil surface that can be composed of different materials such as vegetative residues, biological geo-textiles, gravel and crushed stones.

1.1 Plastic Mulching

Plastic mulching has been used widely in the production of vegetables since 1950s [4]. Plastic mulches are used to protect seedlings and shoots through insulation and preventive excessive evaporation. In semiarid areas of the Loess Plateau in northwest China, plastic mulching is an important material to improve crop productivity [5, 6]. The different colour of plastic mulch determines its energy-radiating behaviour and its influence on the microclimate around the vegetable plant.

1.2 Straw Mulching

Straw mulch is also used in many developed countries including America and Australia where it helps to improve soil properties such as soil moisture retention ability, prevent wind erosion, weed control and nutrient retention. Sontheby et al. [7] reported that application of straw mulch and grass mulch significantly increased the available phosphorus and potassium in the soil. Nutrients which are being released from biodegradation of these materials add as soil supplement thus improve fertility for plant growth.

1.3 Planting Distance

Good planting distance gives the right plant density, which allows for optimum yield production. Adequate plant distance in combination with plant per unit area also will give a good yield. Planting distance also plays important roles in the performance, production and consequently the yield of medicinal and aromatic plants which in turn affect the farm income and food security [8]. Acosta and Lergh [9] found that a planting distance of 40 cm and cutting height of 120-25 cm gave the best yields of *Orthosiphon stamineus*.

1.4 Biochar

Biochar is the product of thermal degradation of organic materials in the absence of air known as pyrolysis and used as a soil amendment. Soil amendment with biochar is globally seen as an excellent source to improve soil fertility by enhance soil aggregation, water holding capacity, soil aggregate stability [10]. Biochar can also mitigate climate change because it contains highly condensed aromatic structures that resist decomposition in soil and thus can effectively sequester a portion of the applied carbon [11, 12].
1.5 Chicken Manure

Animal manures such as chicken dung contribute nutrients to the soil such as nitrogen, phosphorus and potassium. The usage of chicken dung as a soil amendment can help to increase organic matter content and improve soil structure. Composted chicken manure can also increase soil biota and improve soil water holding capacity. Zaharah and Salbiah [2] recommended that the optimum fertilizer of *Orthosiphon stamineus* is 5 t/ha usage of organic fertilizers such as chicken manure in alluvial soil and 10 t/ha in BRIS soil for six months.

1.6 Organic Fertilizer

Organic fertilizers are farm waste comprising mainly of crop residues, animal manure, compost, green manure and residues from the processing of plant, animal and sewage sludge products. Many researchers have reported on the benefits of organic fertilizers such as enhancement in soil biological activity which improves nutrient mobilization from organic and chemical sources, promote root growth due to better soil structure, improves soil water retention and improves soil organic matter content.

Bokashi is a plant-based fertilizer used in this study as a source of nutrient for plant growth. Bokashi is made up using a Japanese technique where organic matter is fermented with the addition of efficient microorganisms [13, 14]. Besides that, the addition of bokashi improves nutrient concentration in the soils of the experimental site and improved survival and growth rates of pine seedlings from local and commercial nurseries. The objective of this study was to determine the effect of different mulching types and planting distance on selected soil properties of *Orthosiphon stamineus*.

2. Experimental Methods

2.1 Experimental Layout and Treatment

This experiment was conducted at Farm 16, Faculty of Agriculture Universiti Putra Malaysia. Soil in the plot was Bungor series, which is classified as kaolinitic and isohyperthermic. About 5.0 tonne/ha of biochar and 2.5 tonne/ha chicken dung were used as soil amendments and were applied one week before planting. Bokashi fertilizer at 300 kg/ha was also used as a nutrient source for plant growth. The *Orthosiphon stamineus* variety that was used for planting is MOS 1. O. stamineus which was cultivated via stem cutting. Silver shine plastic mulching was used to cover the plants. The experiment with 2 types of mulching × 2 types of planting distance 30 cm × 30 cm and 45 cm × 45 cm were conducted during the flowering stage of the plants. The result showed that the soil pH of the organic plot at Farm 16 was acidic (4.62). The moisture content was low (1.83%). The total carbon, cation exchange capacity (CEC), total nitrogen, calcium, magnesium, potassium and available phosphorus was also low. The soil had high porosity (67.84%). Bulk density reading was quite low and the soil texture contained high clay.

2.2 Soil Analyses and Plant Growth Measurement

The soil samples were collected before planting and every week for 8 weeks. The fresh soil samples were air-dried and sieved through 2.0 mm sieve prior to analysis. Soil texture (clay, silt and clay fraction) was determined according to the procedure described by Gupta [2]. The soil density were determined according to the procedure described by Gupta [2]. Soil texture (clay, silt and clay fraction) was determined according to the procedure described by Gupta [2].

Table 1 Experimental layout for *Orthosiphon stamineus* experiment

Treatment details	Label
Mulching & planting distance 30 cm × 30 cm	M30
Mulching & planting distance 45 cm × 45 cm	M45
Non-mulching & planting distance 30 cm × 30 cm	NM30
Non-mulching & planting distance 45 cm × 45 cm	NM45

Table 2 Chemical properties of the soil at organic plot

Parameter	Results
Soil texture (%)	Clay
	Sand
	Silt
Bulk density (g cm⁻³)	0.85
Porosity (%)	71.84
Moisture content (%)	1.80
Soil pH	4.62
Soil EC (dSm⁻¹)	0.12
Total N (%)	0.17
Total C (%)	2.05
Available P (ppm)	31.36
CEC (cmol(+)kg⁻¹)	8
Ca (cmol(+)kg⁻¹)	0.04
Mg (cmol(+)kg⁻¹)	0.02
K (cmol(+)kg⁻¹)	0.14

3. Results and discussion

3.1 Soil pH

Figs. 1-4 show the results of soil pH for six weeks for the different treatments. The acidity level for every treatment for period of six weeks is at the range of 5.35 to 6.61. The range is considered acceptable and suitable for the growth of *O. stamineus*. Application or organic materials like chicken manure or cow dung might increase the acidity of the soil as those materials will decompose. However, the application of biochar in the treatments able kept the pH range at suitable limits.

Fig. 1 pH of soil samples for six weeks. Note: M30: Mulching with planting distance 30 cm × 30 cm, NM30: Non-mulching with planting distance 30 cm × 30 cm

Fig. 2 pH of soil samples for six weeks. Note: M45: Mulching with planting distance 45 cm × 45 cm, NM45: Non-Mulching with planting distance 45 cm × 45 cm
3.12 Soil Electrical Conductivity

Figs. 5-8 show the soil EC reading for six weeks under different treatments. The results showed that there were no significant differences among the treatments and range of soil EC was between 0.25 – 0.55 dSm⁻¹. It was found treatment M45 had decreases in soil EC from the first week to the sixth week. Chaudhry et al. [20] stated that using mulching can decrease soil electrical conductivity compared to non-mulching treatment. The result showed the range of soil EC was in non-saline class.

3.1.3 Cation Exchange Capacity and Exchangeable Bases

Table 3 shows that there are no significant results of CEC, exchangeable bases (K, Ca and Mg) for all treatments after six weeks. The highest level of CEC recorded was in treatment NM30 (9.3 cmol.c/kg). The Bungo series and the CEC of the series is usually less than 16 cmol, kg⁻¹. Treatment M30 showed the highest exchangeable K (0.85cmol, kg⁻¹). The calcium content in the soil is quite low and the highest reading was 0.60 cmol, kg⁻¹ (NM45). The treatment M45 showed the highest reading of exchangeable Mg (1.68 cmol, kg⁻¹) as compared to the other four treatments. Longer duration on the application of plastic mulching might help increment or retention of CEC as the plastic mulching protect the soil from leaching process.

3.1.4 Bulk Density, Moisture Content and Porosity

There was no significant difference at P ≤ 0.05 found for all soil total carbon, nitrogen and available P among the treatments (Table 4). Increase in soil nitrogen under mulching might be due to addition of organic material.

Table 4: Soil Total Carbon, Nitrogen and Available Phosphorus

Treatment (TRT)	Distance (DIS)	C (%)	N (%)	P (ppm)
M	30 × 30	2.71 ± 0.02a	0.21 ± 0.19a	138.55 ± 4.30a
NM	30 × 30	2.54 ± 0.11a	0.20 ± 0.10a	114.80 ± 3.37a
M	45 × 45	2.21 ± 0.05a	0.19 ± 0.05a	85.10 ± 1.66a
NM	45 × 45	2.38 ± 0.04a	0.18 ± 0.01a	118.65 ± 1.70a
TRT*DIS	ns	ns	ns	ns

Note: For all subsequent tables: Means within a column followed by the same letter are not significantly different as indicated by Honest Significant Difference at P ≤ 0.05. *ns significant at P ≤ 0.05, ns is not significant. M: mulching, NM: non-mulching, planting distance: 30 cm x 30 cm and 45 cm x 45 cm
significantly higher, showed by treatment NM30 (0.92 gc m⁻³). Bulk density is a soil parameter that is used to quantify soil compactness. Mbab et al. [21] reported that high bulk density results in reduced water infiltration into the soil, reduced aeration and poor root penetration, resulting in reduction of crop yield. The results showed that the moisture content was very low and not significant among the treatments. Since, the plot was at the field, the moisture content might have variation according to the amount of water that was received by plant. Narrow planting distance had higher moisture content compared with wider planting distance. Treatment M30, M45 and NM45 showed the similarly higher mean of soil porosity compared to NM30. Soils with high porosity are good for crop because it provides more pore space for root growth. Narrow planting distance helps the plant growth where the roots can grow well in the soil and can uptake the nutrients.

Table 5 Soil bulk density, moisture content and porosity

Treatment (TRT)	Distance (DIS)	Bulk density (gc m⁻³)	Moisture content (%)	Porosity (%)
M	30 x 30	0.85 ± 0.01a	1.91 ± 0.08a	67.83 ± 0.48a
NM	30 x 30	0.92 ± 0.01a	1.84 ± 0.09a	65.36 ± 0.71a
M	45 x 45	0.88 ± 0.01a	1.65 ± 0.06a	66.08 ± 0.55a
NM	45 x 45	0.91 ± 0.01a	1.68 ± 0.03a	65.90 ± 0.19a
TRT*DIS	ns	*	ns	ns
TRT*DIS	ns	*	ns	ns

3.2 Effect of Mulching and Planting Distance on Orthosiphon stamineus Growth

3.2.1 Plant Height

Table 6 shows the plant height of O. stamineus for all treatments significantly different at P ≤ 0.05 with different planting distance. In this experiment, narrow distance exhibited the highest plant height and increased plant density compared with wider distance. Ikeawuch et al. [8] reported that the okra spaced 30 cm within the row was significantly taller than other okra plants spaced otherwise. This may be attributed to the closer spacing of 30 cm along the row which made the crops to be crowded, possibly because of intra competition for light and other grow resources.

Table 6 Height increment of O. stamineus by 8 weeks

Treatment (TRT)	Distance (DIS)	Height (cm)
M	30 x 30	83.23 ± 0.5ha
NM	30 x 30	73.03 ± 1.01a
Mean DIS (30 cm)	73.63	
M	45 x 45	65.38 ± 1.91a
NM	45 x 45	65.45 ± 3.02a
Mean DIS (45 cm)	65.41 b	
TRT*DIS	ns	*

Table 7 Average yield fresh weight, dry weight, roots fresh weight and dry weight

Treatment (TRT)	YFW (Kg)	YDW (Kg)	RWF (Kg)	RDW (Kg)
M	18.60 ± 2.99	0.40 ± 0.10	0.16 ± 0.01	0.18 ± 0.02
NM	20.55 ± 3.29	0.42 ± 0.09	0.19 ± 0.01	0.20 ± 0.01
Mean DIS (30 cm)	2.08a	0.33a	0.05a	0.01a
M	15.55 ± 1.69	0.53 ± 0.12	0.20 ± 0.01	0.22 ± 0.01
NM	1.88a	0.30a	0.04a	0.01a
Mean DIS (45 cm)	1.38 ± 0.59	0.14 ± 0.01	0.05 ± 0.01	0.06 ± 0.01
TRT*DIS	19.58 ± 3.14	0.41 ± 0.09	0.13 ± 0.01	0.15 ± 0.01

3.2.2 Biomass of Yield and Roots of Orthosiphon stamineus

Table 7 shows the fresh and dry weight of the yield and roots of Orthosiphon stamineus. Even though there is no significant difference, treatments NM30 showed the highest biomass yield of 20.55 kg fresh weight and 3.29 kg dried weight. Treatments NM45 on Orthosiphon stamineus shows the highest biomass of roots where the 0.59 kg fresh weight and 0.14 kg dried weight. Wider planting distance contributes to the elongation and increment of the roots.

4. Conclusion

Using mulching materials on the growing bed for O. stamineus does help in retaining selected soil properties. As for planting distance, suitable distance will allow the roots of the O. stamineus to grow well. However, further study using other type of mulching and also planting distance should be conducted to find the best approach to grow O. stamineus. It is recommended to use biochar as soil amendment to grow O. stamineus as application on biochar does helps in maintaining the soil acidity level which is suitable for O. stamineus growth.

Acknowledgement

This work was financed by UPM Grant – IPM/2016/9484900. We would like to express our gratitude to Mr. Sahar and other staff who helped us with the fieldwork.

References

[1] A. Abdu, N. Aderis, H. Abdul-Hamid, N.M. Majid, S. Jusop, et al., Using Orthosiphon stamineus B. for phytoextraction of metals in soils amended with sewage sludge, Am. J. Appl. Sci. 8(4) (2011) 323-331.
[2] A. Zaharah, H. Sahibah, Population density of Misai Kucing (Orthosiphon stamineus) grown on BRIS soil, Curr. Trends Perspect.: Proceeding of the Seminar on Medicinal and Aromatic Plants (2005) 374-382.
[3] M.S. Aulakh, S.K. Rewat, J. Doran, R. Malhi, U.M. Sainju, H. Chaudhry, D. Brown, J. Wang, X. Fu, U.M. Sainju, F. Zhao, Soil carbon and nitrogen dynamics in a rice-wheat system using green manure and inorganic fertilizer, Soil Sci. Soc. Am. J. 64(5) (2000) 1-11.
[4] W.J. Lamont, Plastics: Modifying the microclimate for the production of vegetable crops, Horticul. Technol. 15(3) (2005) 477-481.
[5] F.M. Li, J. Wang, J. Xu, H.L. Xu, Profitability and soil response to plastic film mulching in the Loess Plateau of China, Soil Tillage Res. 78(4) (2004) 9-20.
[6] J. Wang, X. Fu, U.M. Sainju, F. Zhao, Soil carbon fractions in response to straw mulching in the Loess Plateau of China, Biol. Fert. Soils 54(4) (2018) 423-436.
[7] A. Sönsteby, A. Nes, F. Mage, Effects of bark mulch and NPK fertilizer on yield, leaf nutrient status and soil mineral nitrogen during three years of strawberry production, Acta Agric. Scand. B – Soil & Plant Sci. 54(3) (2004) 128-134.
[8] I. Ikeawuch, E. Matthews-Njikoa, M.O. Ologe, C.O. Anyanwu, V.K. Okony, Plant spacing, dry matter accumulation and yield of local and improved maize cultivars, Jour. Am. Sci. 4(1) (2008) 11-20.
[9] L. Acosta, G. Lergb, Effect of planting distance and cutting height on yield of Orthosiphon stamineus (Benth), Revista Cubana de Farmacia 18 (1984) 409-414.
[10] J. Lehmah, M.C. Rillig, J.E. Thiers, C. Maiselo, W.C. Hockaday, D. Crowley, Biochar effects on soil biota – A review, Soil Biol. Biochem. 43(9) (2011) 1812-1836.
[11] B. Fungo, J. Lehmah, K. Kalbitz, M. Tenywa, M. Thiongo, H. Neufeldt, Emissions intensity and carbon stocks of a tropical Ultisol after amendment with Tithonia green manure, urea and biochar, Field Crops Res. 260 (2017) 179-188.
[12] P.K. Gupta, Soil, Plant water and fertilizer analysis, in: P. Kumar, M. Misra, S. Dubey, Comprehensive Soil Fertility Management, Vol. 3, pp. 33-39, 2007.
[13] A. Abdu, N. Aderis, H. Abdul-Hamid, N.M. Majid, S. Jusop, et al., Proposing a suitable soil quality index for natural, secondary and rehabilitation tropical forests in Malaysia, Agri. J. Biotechnol. 11(14) (2012) 3297-3309.
[14] J. Wang, X. Fu, U.M. Sainju, F. Zhao, Soil carbon fractions in response to straw mulching in the Loess Plateau of China, Biol. Fert. Soils 54(4) (2018) 423-436.