ABSTRACT

We report on multicolor photometry of long GRB 080603B afterglow from BOOTES-1B and BOOTES-2. The optical afterglow has already been reported to present a break in the optical lightcurve at 0.12 ± 0.2 days after the trigger. We construct the lightcurve and the spectral energy distribution and discuss the nature of the afterglow.

Key words. gamma-ray bursts, individual, GRB 080603B

1. Introduction

GRB 080603B was a long gamma-ray burst detected on June 3, 2008, at 19:38:13 UT by Swift-BAT (Mangano et al., 2008b). The burst was also detected by Konus-WIND (Golenetskii et al., 2008) and INTEGRAL-SPI/ACS (Rau, 2012). In X-rays, the afterglow was detected by Swift-XRT, providing a rapid and precise localization (Mangano et al., 2008a).

Photometry was done in the optimal aperture using IRAF/Daophot. Calibration was performed against three SDSS (DR8) stars. The stars are marked on the identification chart (Fig. 2) and their brightnesses are in Table 1. Our unfiltered, "Clear", best fit magnitude Clear = $A_1 + g' + A_2 + r'$ used for BOOTES-1B calibration is mentioned as well.

2. Observations

At both BOOTES stations, the GRB happened during twilight, delaying follow-up by ~1h. Despite the delay, the optical afterglow is well detected in the data from both telescopes.

For the summary of our observations, see Table 2.

| ID | g' | r' | i' | Clear |
|----|----|----|----|-------|
| 1  | 18.00 | 17.50 | 17.32 | 17.52 |
| 2  | 18.80 | 17.35 | 16.04 | 17.35 |
| 3  | 19.88 | 18.42 | 17.09 | 18.47 |

Received / Accepted

Preprint online version: February 6, 2012

Send offprint requests to: Martin Jelínek, e-mail: mates@iaa.es
### Table 2. Optical photometric observations of the optical afterglow of the GRB 080603B.

| UT Date of mid exp. | $T - T_0$ [h] | tel. filter | $T_{exp}$ [s] | mag | $\delta$ mag |
|---------------------|---------------|-------------|---------------|-----|--------------|
| Jun 3.855805        | 0.902         | B-2 r       | 2x120 s       | 17.46 | 0.07         |
| Jun 3.859348        | 0.987         | B-2 r       | 2x120 s       | 17.59 | 0.13         |
| Jun 3.862188        | 1.056         | B-2 r       | 120 s         | 17.31 | 0.05         |
| Jun 3.864311        | 1.107         | B-2 r       | 120 s         | 17.57 | 0.08         |
| Jun 3.865747        | 1.141         | B-2 r       | 120 s         | 17.30 | 0.07         |
| Jun 3.867151        | 1.175         | B-2 r       | 120 s         | 17.46 | 0.06         |
| Jun 3.868946        | 1.218         | B-1B Clear  | 10x60 s       | 17.53 | 0.07         |
| Jun 3.870011        | 1.243         | B-2 g       | 3x120 s       | 18.29 | 0.04         |
| Jun 3.874248        | 1.345         | B-2 g       | 3x120 s       | 18.24 | 0.04         |
| Jun 3.876738        | 1.405         | B-1B Clear  | 10x60 s       | 17.54 | 0.06         |
| Jun 3.879225        | 1.465         | B-2 g'      | 4x120 s       | 18.14 | 0.03         |
| Jun 3.884248        | 1.585         | B-2 r'      | 3x120 s       | 17.50 | 0.09         |
| Jun 3.884664        | 1.595         | B-1B Clear  | 10x60 s       | 17.70 | 0.06         |
| Jun 3.889912        | 1.721         | B-2 r'      | 3x120 s       | 17.70 | 0.15         |
| Jun 3.892654        | 1.787         | B-1B Clear  | 10x60 s       | 17.75 | 0.06         |
| Jun 3.893455        | 1.806         | B-2 r'      | 4x120 s       | 17.74 | 0.06         |
| Jun 3.899839        | 1.959         | B-2 g'      | 5x120 s       | 18.42 | 0.19         |
| Jun 3.900620        | 1.978         | B-1B Clear  | 10x60 s       | 17.79 | 0.06         |
| Jun 3.906961        | 2.130         | B-2 g'      | 5x120 s       | 18.42 | 0.04         |
| Jun 3.908509        | 2.167         | B-1B Clear  | 10x60 s       | 17.87 | 0.09         |
| Jun 3.914867        | 2.320         | B-2 r'      | 4x120 s       | 18.15 | 0.13         |
| Jun 3.916482        | 2.359         | B-1B Clear  | 10x60 s       | 17.91 | 0.11         |
| Jun 3.922694        | 2.508         | B-2 i'      | 5x120 s       | 17.89 | 0.05         |
| Jun 3.931774        | 2.726         | B-2 r'      | 7x120 s       | 18.01 | 0.06         |
| Jun 3.934988        | 2.803         | B-1B Clear  | 35x60 s       | 18.30 | 0.32         |
| Jun 3.940845        | 2.943         | B-2 r'      | 5x120 s       | 17.88 | 0.07         |
| Jun 3.947882        | 3.112         | B-2 r'      | 5x120 s       | 18.12 | 0.08         |
| Jun 3.956941        | 3.330         | B-1B Clear  | 20x60 s       | 18.45 | 0.07         |
| Jun 3.971736        | 3.685         | B-1B Clear  | 21x60 s       | 18.38 | 0.06         |
| Jun 3.977109        | 3.814         | B-2 r'      | 5x120 s       | 18.26 | 0.18         |
| Jun 4.006997        | 4.531         | B-1B Clear  | 78x60 s       | 18.79 | 0.07         |

### Fig. 1. The detail of the optical light curve of GRB 080603B showing the observations by BOOTES (filled symbols) and from literature (empty symbols).

### 3. Fitting The Lightcurve

The lightcurve, as already shown by Zhuchkov et al. (2008), shows a smooth transition between two decay slopes $\alpha_1 = -0.55 \pm 0.16$ and $\alpha_2 = -1.23 \pm 0.22$. The break occurs at $t_b = 0.129 \pm 0.016$ days.

There is no hint of chromatic evolution within the lightcurve so all filters were scaled and fitted together with the r'-band. The fitting of the lightcurve was performed in log $t$ / log $f$ space, where power law functions, typical for gamma-ray bursts, show as straight lines. We used a hyperbolic transition between two slopes (smoothly broken power-law):

$$ h(a, b) = a + \frac{b}{2} \sqrt{1 + \frac{a^2}{b^2}} $$

$$ m(t) = m_0 - 2.5 \alpha_2 \log \frac{t}{t_b} + h(-2.5(\alpha_1 - \alpha_2) \log \frac{t}{t_b}, G) $$

### Fig. 2. The overall view of the light curve of GRB 080603B.
Where $\alpha_1$ and $\alpha_2$ are pre-break and post-break decay indices, $t_b$ is the break time, $m_0$ is an absolute scaling parameter of the brightness and $G$ expresses smoothness of the break.

Although the early point by ROTSE (Rujopakarn et al., 2008) was not used, it agrees with the backward extrapolation of the $\alpha_1$ slope and so supports this simple interpretation.

We constructed a spectral energy distribution (SED) by fitting the obtained magnitude shift of the R-band lightcurve model to the photometric points from BOOTES-UVOT (Mangano et al., 2008b) and PAIRITEL (Miller et al., 2008) obtained in other filters. While the points from UVOT are practically contemporaneous to BOOTES, PAIRITEL observed rather later (0.32 days after trigger), so the SED is therefore model-dependent in its infrared part. The synthetic AB magnitudes equivalent to $t = 0.1$ days are in Table 3.

The SED shows a clear suppression of radiation above 4500Å, i.e. redshifted Ly-α line. No radiation is detected above the Lyman break at 3365Å. A rather shallow power law with an index $\beta = -0.53 \pm 0.06$ was found redwards from r’ band. The fit was performed using the E(B-V) = 0.013 mag (Schlegel et al., 1998).

The strong suppression of light for wavelengths shorter than r’ band is likely due to the Ly-α absorption within the host galaxy and Ly-alpha line blanketing for $z=2.69$.

### Table 3. The spectral energy distribution in AB magnitudes equivalent to 0.1 days after the trigger. ($^\dagger$UVOT, $^\ddagger$PAIRITEL)

| Filter | $m_{AB}$ | $\Delta m_{AB}$ |
|--------|----------|-----------------|
| W$^\dagger$ | 20.98 | 0.56 |
| U$^\dagger$ | 19.83 | 0.23 |
| B$^\dagger$ | 19.22 | 0.14 |
| g$^\ddagger$ | 18.57 | 0.07 |
| r$^\ddagger$ | 17.88 | 0.05 |
| i$^\ddagger$ | 17.81 | 0.09 |
| J$^\ddagger$ | 17.44 | 0.10 |
| H$^\ddagger$ | 17.19 | 0.10 |
| K$^\ddagger$ | 17.22 | 0.10 |

### 4. Discussion

The values of $\alpha_2 = -1.23 \pm 0.22$ and $\beta = -0.53 \pm 0.06$ both point to a common electron distribution parameter $p = 2.05 \pm 0.20$ ($\alpha = (3 + p - 1)/4$, $\beta = (p - 1)/2$) (Piran, 2004). Such a combination suggests a stellar wind profile expansion and a slow cooling regime.

The pre-break decay rate $\alpha_1 = -0.55 \pm 0.16$ remains unexplained by the standard fireball model. It is unlikely that the break at $t_b = 0.129 \pm 0.016$ would be a jet break. It is quite possible that the plateau is not really a straight power law, and that some late activity of the inner engine may be producing bumping of hydrodynamic origin.

We note that the literature contains a number of observations suggesting a rapid decay by about one day after the GRB. Without having all the images, it is, however, impossible to decide whether this is a real physical effect or a zero-point mismatch.

### 5. Conclusions

The 0.6 m telescope BOOTES-2 in La Mayora observed the optical afterglow of GRB 080603B in three filters. The 0.3 m BOOTES-1B in El Arenosillo observed the same optical afterglow of GRB 080603B in three filters. The 0.6 m telescope BOOTES-2 in La Mayora observed the optical afterglow of GRB 080603B in three filters. The 0.3 m BOOTES-1B in El Arenosillo observed the same optical afterglow without filter.

Using the data we obtained at BOOTES and from the literature, we construct the lightcurve and broadband spectral energy distribution.

Our fit of the obtained data provides the decay parameters $\alpha_2 = 1.23 \pm 0.22$ and $\beta = -0.53 \pm 0.06$, which suggest a slow cooling expansion into a stellar wind.

### Acknowledgements

We acknowledge the support of the Spanish Ministerio de Ciencia y Tecnología through Projects AYA2008-03467/ESP and AYA2009-14000-C03-01/ESP, and Junta de Andalucía through the Excellence Research Project P06-FQM-219, and the GACR grants 205/14-0000-C03-01 and 102/09/0097. We are also indebted to T. Mateo-Sanguino (UHU), J.A. Adame, J.A. Andreu, B. de la Morena, J. Torres (INTA) and to R. Fernández-Munoz (EELM-CSIC), V. Munoz-Fernández and C. Pérez del Pulgar (UMA) for their support.

### References

P. Chandra and D. A. Frail. GRB 080603B: PAIRITEL infrared detection. GCN Circular 7827, 2008.
A. Cucchiara and D. Fox. GRB 080603B: Hobby-Eberly Telescope redshift confirmation. GCN Circular 7815, 2008.
D. J. Eisenstein, D. H. Weinberg, E. Agol, H. Aihara, C. Allende Prieto, S. F. Anderson, J. A. Arns, É. Aubourg, S. Bailey, E. Balbinot, and et al. SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way, and Extra-Solar Planetary Systems. AJ, 142:72, Sept. 2011.
J. Fynbo, P.-O. Quirion, D. Xu, D. Malesani, C. Thoene, J. Hjorth, B. Milvang-Jensen, and P. Jakobson. GRB 080603B: NOT redshift. GCN Circular 7797, 2008.

S. Golenetskii, R. Aptekar, E. Mazets, V. Pal'shin, D. Frederiks, and T. Chne. Konus-Wind observation of GRB 080603B. GCN Circular 7812, 2008.

M. Ibrahimov, P. Karimov, A. Rumyantsev, and A. Pozanenko. GRB 080603B: optical observations in MAO. GCN Circular 7975, 2008.

M. Jelínek, A. J. Castro-Tirado, A. de Ugarte Postigo, P. Kubánek, S. Guzij, J. Gorosabel, R. Cunniffe, S. Vitek, R. Hudec, V. Reglero, and L. Sabau-Graziati. Four Years of Real-Time GRB Followup by BOOTES-1B (2005-2008). Advances in Astronomy, 2010:432172, 2010.

D. Kann, U. Laux, and S. Ertel. GRB 080603B: TLS Afterglow Observation. GCN Circular 7823, 2008.

A. Klotz, M. Boer, and J. Atteia. GRB 080603B: TAROT Calern observatory detection of a plateau in the light curve. GCN Circular 7795, 2008a.

A. Klotz, M. Boer, and J. Atteia. GRB 080603B: TAROT Calern observatory confirmation of slow optical decay. GCN Circular 7799, 2008b.

A. Klotz, M. Boer, J. Atteia, and B. Gendre. Early Optical Observations of Gamma-Ray Bursts by the TAROT Telescopes: Period 2001 – 2008. The Astronomical Journal, 2009.

E. Klunko and A. Pozanenko. GRB 080603B: optical observation. GCN Circular 7890, 2008.

V. Mangano, B. La Parola, and B. Shaurufatti. GRB 080603B: Swift-XRT refined analysis. GCN Circular 7806, 2008a.

V. Mangano, A. Parsons, T. Sakamoto, V. La Parola, N. Kuin, S. Barthelmy, D. Burrows, P. Roming, and N. Gehrels. Swift Observation of GRB 080603B. GCN Report 144, 2008b.

A. Melandri, A. Gomboc, C. Guidorzi, R. Smith, I. Steele, D. Bersier, C. Mundell, D. Carter, S. Kobayashi, M. Burgdorf, M. Bode, E. Rol, P. O’Brien, N. Bannister, and N. Tanvir. GRB 080603B: Liverpool Telescope Observations. GCN Circular 7813, 2008.

A. Miller, J. Bloom, and D. Perley. GRB 080603B: PAIRITEL infrared detection. GCN Circular 7827, 2008.

T. Piran. The physics of gamma-ray bursts. Reviews of Modern Physics, 76:1143–1210, Oct. 2004.

A. Rau. Catalogue of SPI-ACS Gamma-Ray Burst. http://www.mpe.mpg.de/~gamma/science/gray/1ACSburst.html, 2012.

W. Rujopakarn, T. Gaver, and D. Smith. GRB 080603B: ROTSE-III Detection of Optical Counterpart. GCN Circular 7792, 2008.

A. Rumyantsev, K. Antoniuk, and A. Pozanenko. GRB 080603B: optical observations in CrAO. GCN Circular 7974, 2008.

V. Rumyantsev and A. Pozanenko. GRB 080603B: optical observation. GCN Circular 7869, 2008.

D. Schlegel, D. Finkbeiner, and M. Davis. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds. ApJ, 500:525, June 1998.

I. Xin, Q. Feng, M. Zhai, Y. Qiu, J. Wei, J. Hu, J. Deng, J. Wang, Y. Urata, and W. Zheng. GRB 080603B: Xinglong EST observations. GCN Circular 7814, 2008.

R. Zhuchkov, I. Bikmaev, N. Sakhibullin, I. Khamitov, Z. Eker, U. Kiziloglu, E. Gogus, R. Burenin, M. Pavlinsky, and R. Sunyaev. GRB 080603B: RTT150 optical observations, break in light curves. GCN Circular 7803, 2008.