State-by-state calculations for all channels of the exotic (μ^-, e^-) conversion process

T. S. KOSMAS, AMAND FAESSLER, F. ŠIMKOVIC,
Institut für Theoretische Physik der Universität Tübingen, D-72076 Tübingen, Germany

J. D. VERGADOS
Theoretical Physics Division, University of Ioannina, GR-451 10 Ioannina, Greece

Abstract

The coherent and incoherent channels of the neutrinoless muon to electron conversion in nuclei, $\mu^-(A,Z) \rightarrow e^-(A,Z)^*$, are studied throughout the periodic table. The relevant nuclear matrix elements are computed by explicitly constructing all possible final nuclear states in the context of the quasi-particle RPA. The obtained results are discussed in view of the existing at PSI and TRIUMF experimental data for 48Ti and 208Pb and compared with results obtained by: (i) shell model sum-rule techniques (ii) nuclear matter mapped into nuclei via a local density approximation and (iii) earlier similar calculations.

PACS number(s): 25.30.-c, 23.40.Bw, 13.35.Bv, 21.60.Jz, 12.60.Cn

Permanent address: Theoretical Physics Division, University of Ioannina, GR 451 10, Greece.
The neutrinoless muon to electron conversion in the field of a nucleus,

$$\mu^- + (A,Z) \rightarrow e^- + (A,Z)^*$$ (1)

is forbidden in the standard model by lepton flavour conservation and plays an important role in the study of flavour changing neutral currents which violate muon and electron numbers [1]-[10]. Within the last decade, experiments at PSI [1, 3, 4] and TRIUMF [2] aiming at a search of \(\mu - e\) conversion electrons have not yet observed such events. These experiments have, however, provided us with useful constraints for the violation of muon and electron numbers. The best upper limit on the branching ratio

$$R_{\mu e}^{Ti} = \frac{\Gamma(\mu^-, e^-)}{\Gamma(\mu^-, \nu_\mu)} < 4.3 \times 10^{-12}$$ (2)

has recently been set by SINDRUM II at PSI [1] by using \(^{48}Ti\) as target. This value is of the same order with the previous limit set at TRIUMF [2], i.e. \(R_{\mu e}^{Ti} < 4.6 \times 10^{-12}\). This year [4], experimental data extracted at PSI by using \(^{208}Pb\) have yielded an upper limit \(R_{\mu e}^{Pb} < 4.6 \times 10^{-11}\). This experiment improved by an order of magnitude over the previous upper limit, \(R_{\mu e}^{Pb} < 4.9 \times 10^{-10}\), extracted from preliminary experimental data for the same target at TRIUMF [2].

The experimental sensitivity is expected to be further improved by two to three orders of magnitude by on going experiments at PSI (to \(10^{-14}\)) [1], at TRIUMF (to \(10^{-14}\)) [2, 8] and at INS (to \(10^{-14} - 10^{-16}\)) [11]. Hopefully, such experiments will not only yield a still better limit, but they will detect some \((\mu^-, e^-)\) events which will signal the break down of the muon number conservation revealing ”new physics” beyond the standard model. For a discussion of lepton flavour violation limits in conjunction with theoretical predictions, the reader is referred to the recent survey by Depommier and Leroy [8].

Due to the similarity of electrons and muons, \(\mu - e\) conversion was originally expected to proceed real fast. From a theoretical point of view, the basic background for the \((\mu^-, e^-)\) has been set long time ago by Weinberg and Feinberg [5] who assumed that this process is mediated by virtual photons (Fig. 1(a)). Non-photonic contributions (Fig. 1(b)-(d)) have been included later on in the post gauge theory era (for a recent review on this topic see Ref. [10] and for the experimental data extracted from various targets see Ref. [12].

One expects that the Z-exchange diagrams, Fig. 1(b),(c), to be less important than the W-box diagrams, Fig. 1(d), even for the incoherent process. The precise value depends, of course, on details like quark masses etc. One also expects the W-box to dominate by large factors especially in the case of heavy intermediate neutrinos [13]. Similar conclusions have been obtained by Marciano and Sanda [14]. In the present work we have not included exotic particles like \(Z'\), exotic Higgs scalars, many Higgs doublets, R-parity violating interactions etc., which may in some models be important. We intentionally stayed within the context of the minimal extensions of the standard model keeping also in mind that our emphasis here is on the nuclear structure aspects.

An interesting feature of the \((\mu^-, e^-)\) conversion in nuclei is the possibility of the ground state to ground state transitions. The strength of this channel is expected to be enhanced because of the coherent contribution of all nucleons of the participating nucleus or at least all protons. The rate for such transitions can be expressed in terms of the proton and neutron nuclear form factors [6, 7, 16]. Earlier estimates for the branching ratio \(R_{\mu e}\) by Weinberg and Feinberg [3] have
indicated that, for $A \geq 100$ this ratio is approximately constant, while Shanker \cite{6} found that the ratio $R_{\mu e}$ could be bigger in heavy nuclei.

The incoherent rate is much harder to calculate. The first such calculations have been performed only recently \cite{9,17} in nuclei with closed (sub)shells throughout the periodic table by employing shell model sum-rules, i.e. by invoking closure approximation in some form with a suitable choice of a mean excitation energy, using a single Slater determinant for the initial state. In reality, these calculations give the total rate. The incoherent strength can be estimated by subtracting from the total strength the coherent part obtained independently. What, however, is needed is the ratio of the coherent rate to the total rate. Shell model results showed that the coherent channel dominates the (μ^-,e^-) process for light and medium nuclei, but in the region of ^{208}Pb, a great part of the rate comes from the inelastic channels. Furthermore, these calculations showed that the dependence of the branching ratio $R_{\mu e}$ on the nuclear mass A and charge Z reaches a maximum around $A \sim 100$ in agreement with the estimates of Ref. \cite{5}.

Recently \cite{18}, we have employed, for the coherent and incoherent (μ^-,e^-) conversion, another approach based on a local density approximation in conjunction with a relativistic Lindhard function for the description of the elementary processes: $\mu^-p \rightarrow e^-p$ and $\mu^-n \rightarrow e^-n$. The incoherent rate in this method was obtained by integrating over the excited states of a local Fermi sea. These results have shown that, the coherent contribution is dominant for all nuclei and that the branching ratio $R_{\mu e}$ presents a maximum in the region of very heavy nuclei, i.e. in the Pb region.

In yet another recent theoretical study of the (μ^-,e^-) conversion \cite{19}, the quasi-particle RPA (QRPA) was employed for the construction of the final nuclear states entering the coherent and incoherent rate. Such quasi-particle RPA results for ^{48}Ti have shown that the coherent channel dominates. One of the advantages of the QRPA method is that it can be used to estimate the mean excitation energy of the nucleus of interest which in turn is useful in checking the results of the above mentioned closure approximation which are sensitive to this property. The important result \cite{19} was that the mean excitation energy \bar{E} of the nucleus in process (1) is very small, $\bar{E} \approx 1\text{MeV}$, which is appreciably smaller than $\bar{E} \approx 20\text{MeV}$ used in shell model calculations \cite{9}. The latter value had been chosen from the phenomenology of the charge changing (μ^-,ν_μ) reaction. This difference is mainly due to the fact that, the coherent elastic channel, possible only in the (μ^-,e^-), is the dominant channel.

From the above discussion it is clear that, a detailed study of all possible channels of the (μ^-,e^-) conversion for medium and heavy nuclei and in particular for nuclei around ^{208}Pb, which is of current experimental interest, is needed. In the present work, we use the formalism developed in the context of quasi-particle RPA \cite{19} (improved in the part of the reduced matrix elements, see appendix) to extend our previous results for ^{48}Ti and we report calculations performed for all individual (μ^-,e^-) conversion channels, in a set of isotopes covering the above region (see below Table I) including, of course, ^{48}Ti and ^{208}Pb, since, the upper limit on the branching ratio $R_{\mu e}$ has been extracted \cite{1,2,3} from experimental data on these nuclei. We note that, the method using a local density approximation \cite{18} cannot give us the individual contribution of each accessible channel.

Before embarking on such calculations, we mention that for certain nuclei, in particular those with closed shells, like ^{60}Ni and ^{208}Pb, a special treatment in QRPA is required in order to determine the pairing parameters for protons (g_{pair}^p) and neutrons (g_{pair}^n). In this work we follow the manner used recently in the double beta decay \cite{20}. In sect. II we briefly discuss the method used, while the obtained results are presented and discussed in sect. III and the conclusions are summarized in sect. IV.
II. BRIEF DESCRIPTION OF THE METHOD

A. The \((\mu^-, e^-)\) conversion effective operator

The effective Hamiltonian operator of the \((\mu^-, e^-)\) conversion, which involves both vector and axial vector currents, after the usual non-relativistic reduction takes the form \[10\]

\[
\Omega_V = \bar{g}_V \sum_{j=1}^{A} (3 + f_V \beta \tau_3 j) e^{-i \mathbf{q} \cdot \mathbf{r}_j}, \quad \Omega_A = -\bar{g}_A f_A \sum_{j=1}^{A} (\xi + \beta \tau_3 j) \frac{\sigma_j}{\sqrt{3}} e^{-i \mathbf{q} \cdot \mathbf{r}_j}
\]

The parameters \(\bar{g}_V\) and \(\bar{g}_A\) depend on the assumed mechanism for lepton flavour violation \[7, 10\]. For the photonic mechanism these parameters take the values \(\bar{g}_V = 1/6, \bar{g}_A = 0, \beta = 3, f_V = 1\) while, for the non-photonic neutrino mediated mechanism, they are \(\bar{g}_V = \bar{g}_A = 1/2, \beta = 5/6, f_V = 1, f_A = 1.24\) and \(\xi = f_V/f_A = 1/1.24\).

In Eq. (3), \(\mathbf{q}\) represents the momentum transfer to the nucleus. Its magnitude is approximately given by

\[
|\mathbf{q}| = |\mathbf{q}| = m_\mu - \epsilon_b - (E_f - E_{gs})\]

where \(m_\mu\) is the muon mass, \(\epsilon_b\) is the muon binding energy and \(E_f, E_{gs}\) are the energies of the final and ground state of the nucleus, respectively. We should mention that \(\epsilon_b\), although negligible in light nuclei, can become important in heavy elements (see below Table I).

The matrix elements of the operators of Eq. (3) can be obtained via the multipole operators \(T_{M}^{(l,s)}J\) given in the appendix (for details see Refs. \[10, 19\]).

B. Nuclear matrix elements for the coherent rate

In the case of the coherent \((\mu^-, e^-)\) process, i.e. ground state to ground state transitions \((0^+ \rightarrow 0^+)\), only the vector component of the \((\mu^-, e^-)\) operator contributes and the coherent rate is proportional to \[10\]

\[
|\langle f | \mathbf{q} (q^2) | i, \mu \rangle |^2 = \bar{g}_V^2 (3 + f_V \beta)^2 \left[\bar{F}_p(q^2) + \frac{3 - f_V \beta}{3 + f_V \beta} \bar{F}_n(q^2) \right]^2
\]

where

\[
\bar{F}_{p,n}(q^2) = \int d^3 x \rho_{p,n}(x) e^{-i \mathbf{q} \cdot \mathbf{x}} \Phi_\mu(x)
\]

In the last equation \(\rho_p(x), \rho_n(x)\) represent the proton, neutron densities normalized to \(Z\) and \(N\), respectively and \(\Phi_\mu(x)\) is the muon wave function. If we assume that the muon is bound in the 1s atomic orbit which varies very little inside the nucleus, we can factorize the muon wave function out of the integral of Eq. (3) and write

\[
\bar{F}_p(q^2) \approx < \Phi_{1s} > Z F_Z(q^2), \quad \bar{F}_n(q^2) \approx < \Phi_{1s} > N F_N(q^2)
\]

where \(F_Z (F_N)\) the usual proton (neutron) nuclear form factors.
We should mention that, experimentally the most interesting quantities are the branching ratio \(R_{\mu e} \) and the ratio \(\eta \) of the coherent to the total (\(\mu^-, e^- \)) conversion rate (see Eq. (15) below). We do not expect the branching ratio to be greatly affected by the approximation of Eq. (7), especially if we calculate the total \(\mu^- \) capture rate in the same way. We expect this to be good even if for the total muon capture rate we use the Primakoff function [21], which is obtained by explicitly using this approximation. The Primakoff function fits the experimental data remarkably well throughout the periodic table (even for heavy nuclei). Furthermore, and for similar reasons, we expect that the ratio \(\eta \) is not going to be drastically affected by this approximation.

In the above approximation the nuclear dependence of the rate for the coherent process, is proportional to the matrix element

\[
M_{\text{coh}}^2(q^2) \equiv M_{gs\rightarrow gs}^2(q^2) = \left[1 + \frac{3 - f_V\beta}{3 + f_V\beta} \frac{N}{Z} \frac{F_N(q^2)}{F_Z(q^2)} \right]^2 Z^2 F_Z^2(q^2) \tag{8}
\]

Thus, the variation of the coherent (\(\mu^-, e^- \)) conversion rate through the periodic table can be studied by calculating the matrix elements \(M_{gs\rightarrow gs}^2 \) of Eq. (8) for various \(A \) and \(Z \). The nuclear form factors involved in \(M_{gs\rightarrow gs}^2 \) can either be calculated by using various models as shell model [16, 22], quasi-particle RPA [19, 23] etc., or can be obtained directly from experiment whenever possible [24, 25].

In the context of the quasi-particle RPA with an uncorrelated vacuum as ground state, the nuclear form factors are given by (see appendix)

\[
F_\tau(q^2) = \frac{1}{\tau} \sum_j \left(V_\tau^j \right)^2 (2j + 1) < j \mid j_0(qr) \mid j >, \quad \tau = Z, N \tag{9}
\]

where \(\left(V_\tau^j \right)^2 \) are the occupation probabilities for the proton, neutron single particle states \(| j > \) included in the used model space \((j \equiv (n, l, j)) \).

We should mention that, in the photonic case (\(\beta = 3 \)) only the protons of the considered nucleus contribute and the right hand side of Eq. (8) becomes \(Z^2 F_Z^2(q^2) \).

C. Incoherent rate by explicit calculations of the final states

The incoherent (\(\mu^-, e^- \)) conversion rate is evaluated by summing the partial rates for all final nuclear states \(| f > \) except the ground state. We need calculate the matrix elements for both the vector and axial vector operators of Eq. (3), i.e. the quantities

\[
S_\alpha = \sum_f \left(\frac{q_f}{m_\mu} \right)^2 \int \frac{d\hat{q}_f}{4\pi} | < f \mid \Omega_\alpha \mid gs > |^2, \quad | f > \neq | gs >, \quad \alpha = V, A. \tag{10}
\]

\(\hat{q}_f \) is the unit vector in the direction of the momentum transfer \(q_f \).

As we have mentioned in the introduction, for the calculation of \(S_V \) and \(S_A \), one can either use closure approximation (in which case the state \(| f > = | gs > \) is included in Eq. (10)) or compute state-by-state the partial rates involved if one can construct the final states \(| f > \) in the context of some nuclear model. By using the multipole expansion operators \(\hat{T}^{(l,\sigma)J} \) (see appendix), the matrix elements \(S_V \) and \(S_A \) are written as
\[
S_\alpha = \sum_{f_{\text{exc}}} \left(\frac{q_{\text{exc}}}{m_\mu} \right)^2 \sum_{l,J} |< f_{\text{exc}} || \hat{T}^{(l,J)} || gs >|^2
\]

(\alpha = V, A, for the vector (\sigma = 0), axial vector (\sigma = 1) component, respectively). The partial matrix element from the initial state 0\(^+\) to an excited state \(| f >\) in the context of QRPA takes the form

\[
|< f || \hat{T}^{(l,J)} || 0^+ >| = \sum_{\lambda,\tau} W^J_{\lambda} \left[X^{(f,J,\tau)}_{\lambda} U^{(\tau)}_{j_21} + Y^{(f,J,\tau)}_{\lambda} V^{(\tau)}_{j_21} \right]
\]

where \(V^{(\tau)}_j\) and \(U^{(\tau)}_j\) represent the probability amplitudes for the single particle states to be occupied and unoccupied, respectively. They are determined by solving the BCS equations iteratively. X and Y represent the forward and backward scattering amplitudes. They are obtained by solving the QRPA equations. The index \(\lambda\) runs over two particle configurations coupled to a given J, namely \((j_1, j_2)\) for the proton \((\tau = 1)\) or neutron \((\tau = -1)\). The quantities \(W^J_{\lambda} \equiv W^{J}_{j_2j_1}\) are given in the appendix.

For the total \((\mu^-, e^-)\) rate the relevant matrix elements are obtained by adding the vector and axial vector contributions of the coherent and incoherent rate i.e.

\[
M^2_{\text{tot}} = S_V + 3S_A + S_0
\]

where \(S_0\) is associated with the ground state to ground state transition

\[
S_0 = \left(\frac{q_{gs}}{m_\mu} \right)^2 \sum_{l,J} |< gs || \hat{T}^{(l,J)} || gs >|^2
\]

for the vector component \(\sigma = 0\), and for the axial vector component \(\sigma = 1\). For 0\(^+\) nuclei only the vector term contributes.

\section*{III. RESULTS AND DISCUSSION}

Using the method outlined above, in the present work we have calculated the matrix elements needed for both the coherent and incoherent \((\mu^-, e^-)\) rate, for the nuclei \(^{48}\text{Ti}, \; ^{60}\text{Ni}, \; ^{72}\text{Ge}, \; ^{112}\text{Cd}, \; ^{162}\text{Yb}\) and \(^{208}\text{Pb}\). The specific parameters used and a brief description of the model spaces employed can be read from Table I. For all nuclei considered we have employed the same model space for protons and neutrons. For the harmonic oscillator parameter \(b\) in the region of heavy nuclei we have employed the improved expressions of Ref. [26].

In the BCS description of the uncorrelated ground state, for each nuclear isotope the single particle energies have been calculated from a Coulomb corrected Wood-Saxon potential with spin-orbit coupling. The G-matrix elements of the realistic Bonn one-boson exchange potential [27] have been employed. The values of pairing parameters, \(g_{\text{pair}}^p\) and \(g_{\text{pair}}^n\), renormalizing the proton and neutron pairing channels in the G-matrix have been deduced by comparing the quasi-particle energies with experimental pairing gaps as is described in Refs. [28, 29]. For the special cases of \(^{60}\text{Ni}, \; \text{which is a proton closed-shell nucleus and} \; ^{208}\text{Pb}, \; \text{which is a doubly closed-shell nucleus, the pairing parameters have been deduced from the neighboring nuclei} \; ^{60}\text{Fe}\) and \(^{208}\text{Po}\), respectively,
in analogy with the procedure followed in the study of the nuclear double beta decay in the double closed shell nucleus $^{48}_{20}$Ca [20]. The resulting pairing parameters g^p_{pair}, g^n_{pair} for each nucleus are shown in Table I.

A. The coherent process

It is obvious from Eq. (8) that, for the coherent process, i.e. $gs \rightarrow gs$ transitions, we need the proton and neutron nuclear form factors, $F_Z(q^2)$ and $F_N(q^2)$, respectively. The results obtained by using as ground state the uncorrelated RPA vacuum, are listed in Table II for the following two cases:

(i) By neglecting the muon binding energy ϵ_b in Eq. (4) (as in Refs. [5, 9]). Then, the elastic momentum transfer is the same for all nuclei, i.e. $q \approx m_\mu \approx 535 fm^{-1}$. Such results are indicated as QRPA(i).

(ii) By taking into account ϵ_b in Eq. (4). Then, the elastic momentum transfer is $q \approx m_\mu - \epsilon_b$ and varies from $q \approx .529 fm^{-1}$, for 48Ti where $\epsilon_b \approx 1.3 MeV$, to $q \approx .482 fm^{-1}$, for 208Pb where $\epsilon_b \approx 10.5 MeV$ (see Table II, results indicated as QRPA(ii)).

In Table II we also present the shell model results of Ref. [9], obtained with $q = 535 fm^{-1}$ throughout the periodic table, i.e. as in case (i) above. We see that, QRPA(i) and shell model methods, give about the same results. However, the form factors of QRPA(ii) for heavy nuclei differ appreciably from those of both QRPA(i) and shell model. For 208Pb, for example, the QRPA(ii) form factors are about 30% larger than the corresponding QRPA(i) and shell model. This happens because the inclusion of ϵ_b results in a smaller momentum transfer to the nucleus and, consequently, in an increase of the form factors. The larger the value of ϵ_b, lead region, the bigger the difference between form factors QRPA(i) and QRPA(ii).

In Table II we also show the experimental form factors obtained from electron scattering data [24, 25] at momentum transfer $q = m_\mu - \epsilon_b$. We see that, when using the right form factors, i.e. taking into account the binding energy ϵ_b (QRPA(ii) case), the form factors calculated in the present work, are in good agreement with the experimental ones. The deviation is less than 5% with the possible exception of 112Cd and 208Pb where it is about 10%.

The variation of the coherent nuclear matrix elements M_{coh}^2 with respect to A and Z is shown in Fig. 2(a), for the photonic mechanism, and Fig. 2(b), for the non-photonic one. From these Figures we see that, by taking into account the muon binding energy ϵ_b, QRPA(ii), all matrix elements increase continuously up to the lead region where they become about a factor of two bigger than the corresponding QRPA(i) and shell model values. This implies that the coherent rate becomes bigger for heavy nuclei, Pb region, which makes such nuclei attractive from an experimental point of view [2, 4] provided, of course, that they also satisfy other additional criteria, e.g. the minimization of the reaction background etc. [8, 12]. The (μ^-, e^-) conversion electrons of a given target are expected to show a pronounced peak around $E_e = m_\mu - \epsilon_b$, which for the lead region is $E_e \approx 95 MeV$. One prefers this peak to be as far as possible above the reaction induced background.

We should recall that, in the present work and in shell model method of Ref. [9], the factorization approximation Eq. (6) was used. The exact expression, Eq. (3), was used in Ref. [18] and yielded matrix elements which for heavy nuclei are bigger than the approximate ones. This, however, as we have extensively seen in sect. II.B, only slightly affects the branching ratio $R_{\mu e}$ and the ratio η of the coherent rate to the total rate, which in our case are the most important quantities. We also mention that, shell model results for the total muon capture rate [31], ob-
tained by using the exact muon wave function, differ by only 5.7%, in the case of ^{60}Ni, and by 7.0%, in the case of ^{208}Pb, from those obtained by using the approximation of Eq. (7). Detailed QRPA calculations, which do not invoke this factorization approximation, are under way and will be published elsewhere.

B. Incoherent process

As we have stated in sect. II.C, the incoherent process in the present work is investigated by calculating state-by-state the contributions of all the excited states of the nucleus in question which are included in the model space described in Table I.

For the photonic mechanism the nuclear matrix elements obtained for all positive and negative parity states up to $6^-, 6^+$ are shown in Table III. For this mechanism only the vector component, S_V gives non-zero contribution ($M^2_{inc} = S_V$). For the non-photonic mechanism we have non-zero contributions from both the vector and axial vector components, S_V and S_A, and the results are shown in Table IV ($M^2_{inc} = S_V + 3S_A$).

From Tables III and IV we see that, the main contribution to the incoherent rate comes from the low-lying excited states. High-lying excited states contribute negligibly. This means that for a given A, a nuclear isotope with many low-lying states in its spectrum is characterized by big incoherent matrix elements.

For the doubly closed shell nucleus ^{208}Pb, which is of current experimental interest [2, 4], the incoherent matrix elements are smaller than expected. A plausible explanation is that the spectrum of this nucleus presents a big gap (minimum energy needed to excite the first excited state) and only few excited states lie below $\approx 5MeV$.

In general, the incoherent matrix elements do not show clear A and Z dependence. Their magnitude depends on the spectrum of the individual nuclear isotope.

In obtaining the results of Tables III and IV for 1^- states, we removed the spurious center of mass contributions by explicitly calculating the spurious state $|S>$ and removing its admixtures from the incoherent and total rate. We have also calculated the overlaps $<1^-, m|S>$ (where m counts the 1^- excited states) and found that most of the spuriousity lies in the lowest 1^- state being 88% for ^{48}Ti, 63% for ^{60}Ni, 62% for ^{72}Ge, 57% for ^{112}Cd, 87% for ^{162}Yb and 77% for ^{208}Pb [30]. We should stress that, for all nuclei studied, the spurious center of mass contribution is less than 30% of the incoherent matrix elements, i.e., 1.0-1.5% of the total (μ^-, e^-) conversion rate.

An additional point we should note is the effect of the ground state correlations on the (μ^-, e^-) matrix elements. In QRPA this can be easily estimated by using a correlated quasi-particle RPA vacuum instead of the uncorrelated one [32]-[35]. In the present work we have not performed additional calculations with a correlated RPA vacuum. It is known, however, that the matrix elements for ^{48}Ti obtained this way [19] are reduced by $\approx 30\%$. The ground state correlations tend to decrease the strengths of all (μ^-, e^-) conversion channels, but do not affect the parameter η (see sect. III.C).

C. Comparison of coherent and incoherent processes

As we have seen above, the $gs \rightarrow gs$ channel is the most important one. Therefore, a useful quantity for the (μ^-, e^-) conversion is the fraction of the coherent matrix elements M^2_{coh} divided by the total one M^2_{tot}, i.e. the ratio
\[\eta = \frac{M_{\text{coh}}^2}{M_{\text{tot}}^2} \]

(15)

In earlier calculations \(\eta \) was estimated \([5]\) to be a decreasing function of \(A \) with a value of \(\eta \approx 83 \% \) in Cu region. By using, however, the most appropriate QRPA(ii) results, we find that indeed the coherent channel dominates throughout the periodic table (see Table V, for the photonic and Table VI, for the non-photonic mechanism). In fact we see that the values of \(\eta \) obtained in the present calculations are a bit bigger than those of Ref. \([18]\) obtained with a local density approximation and a lot bigger than those of Ref. \([9]\). We should stress, however, that the exaggeration of the incoherent channels in shell model calculations of Ref. \([3]\) is not a shortcoming of the method itself but the result of ignoring the muon binding energy \(\epsilon_b \) in calculating the nuclear form factors. In fact, repeating the calculations of Ref. \([3]\) and taking into account the effect of \(\epsilon_b \) on the form factors of the coherent process as well as on the mean excitation energy entering the total rate, we find a value of \(\eta \geq 75\% \).

IV. CONCLUSIONS

In the present work we have studied in detail the dependence of \((\mu^-, e^-)\) conversion matrix elements on the nuclear parameters \(A \) and \(Z \). Our nuclear matrix elements were obtained in the context of Quasi-particle Random Phase Approximation (QRPA) which permits a relatively simple construction of all needed final states. So, there was no need to invoke closure approximation. The results obtained cover six nuclear systems from \(^{48}\text{Ti}\) to \(^{208}\text{Pb}\), which are of experimental interest. The most important conclusions stemming out of our detailed study are:

i) The coherent mode dominates throughout the periodic table but it is more pronounced in the heavy nucleus \(^{208}\text{Pb}\) which is currently used at PSI in the SINDRUM II experiment.

ii) The coherent and total rates as well as the ratio \(\eta \) (coherent to total) tend to increase as a function of the mass number \(A \) up to the \(\text{Pb} \) region. This encourages the use of heavier nuclear targets to look for lepton flavour violation.

iii) In evaluating the nuclear matrix elements the muon binding energy should not be ignored especially for heavy nuclear elements.

iv) The great part of the incoherent rate comes from the low lying excitations.

The results obtained in the present work are in good agreement with those obtained in the framework of the local density approximation \([18]\) as well as those of shell model calculations provided that all calculations take into account the muon binding energy \(\epsilon_b \).

ACKNOWLEDGMENTS

This work has been partially supported (T.S.K.) by DFG No FA67/19-1. The authors T.S.K. and J.D.V. would like to acknowledge support from the EU Human Capital and Mobility Program CHRX-CT 93-0323.

APPENDIX

A). The multipole expansion operators \(\hat{T}^{(l,\sigma)J} \), resulting from \(\Omega_V \) and \(\Omega_A \) of Eq. \([3]\), are written as
\[T_{M}^{(l,0)J} = \tilde{g}_{V} \delta_{lJ} \sqrt{4\pi} \sum_{i=1}^{A} (3 + \beta \tau_{3i}) j_{l}(qr_{i}) Y_{M}^{l}(\hat{r}_{i}) \]

(16)

for \(\Omega_{V} \), the spin independent component, and

\[T_{M}^{(l,1)J} = \tilde{g}_{A} \sqrt{\frac{4\pi}{3}} \sum_{i=1}^{A} (\xi + \beta \tau_{3i}) j_{l}(qr_{i}) \left[Y_{M}^{l}(\hat{r}_{i}) \otimes \sigma_{i}\right]^{J}_{M} \]

(17)

for \(\Omega_{A} \), the spin dependent component. \(j_{l}(qr) \) are the spherical Bessel functions.

The quantities \(W^{J}_{J_{1}} \equiv W^{J}_{j_{2}j_{1}} \) of Eq. (12) contain the reduced matrix elements of the operators \(\hat{T}^{J} \) between the single particle proton or neutron states \(j_{1} \) and \(j_{2} \) as

\[W^{J}_{j_{1}j_{2}}(\tau) = (\zeta + \tau \beta) \frac{\langle j_{1} \parallel \hat{T}^{J} \parallel j_{2} \rangle}{2J + 1} \]

(18)

\((\zeta = 3, \text{ for } \Omega_{V} \text{ and } \zeta = 1/1.24, \text{ for } \Omega_{A}) \). The reduced matrix elements \(\langle j_{1} \parallel T^{J} \parallel j_{2} \rangle \) are given in Ref. [19]. The relevant radial matrix elements \(\langle n_{1}l_{1}|j_{l}(qr)|n_{2}l_{2} \rangle \), for harmonic oscillator basis often used, can be written in the elegant way

\[\langle n_{1}l_{1}|j_{l}(qr)|n_{2}l_{2} \rangle = e^{-\chi} \sum_{\kappa=0}^{\kappa_{max}} \varepsilon_{\kappa} \chi^{\kappa+l/2}, \quad \chi = (qb)^{2}/4 \]

(19)

where

\[\kappa_{max} = n_{1} + n_{2} + m, \quad m = (l_{1} + l_{2} - l)/2 \]

The coefficients \(\varepsilon_{\kappa}(n_{1}l_{1}, n_{2}l_{2}, l) \), in general simple numbers, are given by

\[\varepsilon_{\kappa} = \left[\frac{\pi n_{1}!n_{2}!}{4 \Gamma(n_{1} + l_{1} + \frac{3}{2}) \Gamma(n_{2} + l_{2} + \frac{3}{2})} \right]^{\frac{1}{2}} \sum_{\kappa_{1}=0}^{n_{1}} \sum_{\kappa_{2}=0}^{n_{2}} n! \Lambda_{\kappa_{1}}(n_{1}l_{1}) \Lambda_{\kappa_{2}}(n_{2}l_{2}) \Lambda_{\kappa}(nl) \]

where the \(\Lambda_{\kappa}(nl) \) are defined in Ref. [19], \(n = \kappa_{1} + \kappa_{2} + m \) and

\[\phi = \begin{cases} 0, & \kappa - m - n_{2} \leq 0 \\ \kappa - m - n_{2}, & \kappa - m - n_{2} > 0 \end{cases}, \quad \sigma = \begin{cases} 0, & \kappa - m - \kappa_{1} \leq 0 \\ \kappa - m - \kappa_{1}, & \kappa - m - \kappa_{1} > 0 \end{cases} \]

The advantage of Eq. (19) is that, it permits the calculation of \(\varepsilon_{\kappa} \), which are independent of the momentum \(q \), once and for the whole model space used. Afterwards, the relevant reduced matrix elements are easily obtained for every value of the momentum transfer \(q \).

\(\text{B). In the context of the quasi-particle RPA, the point-proton (-neutron) nuclear form factors of Eq. (9) can be cast in the compact form} \)
\[F_\tau(q^2) = \frac{1}{\tau} e^{-(qb)^2/4} \sum_{\lambda=0}^{N_{\text{space}}} \theta^\tau_\lambda (qb)^{2\lambda}, \quad \tau = Z, N \] (21)

where \(b \) is the harmonic oscillator parameter, \(N_{\text{space}} \) represents the maximum harmonic oscillator quanta included in the model space used (see Table I), and \(\theta^\tau_\lambda \) the coefficients

\[\theta^\tau_\lambda = \sqrt{\frac{\pi}{2}} \sum_{(n,l)j, \lambda \geq l} \left(V^\tau_j \right)^2 \frac{(2j + 1)n!C_{nl}^{\lambda-l}}{\Gamma(n + l + \frac{3}{2})} \] (22)

where \(\left(V^\tau_j \right)^2 \) are the occupation probabilities for the proton (neutron) single particle j-levels. The coefficients \(C_{nl}^m \) are given in Ref. \[22\].

References

[1] C. Dohmen et al., (SINDRUM II Collaboration), Phys. Lett. B 317, 631 (1993).
[2] S. Ahmad et al., (TRIUMF Collaboration), Phys. Rev. Lett. 59, 970 (1987); Phys. Rev. D 38, 2102 (1988).
[3] A. Badertscher et al., (SINDRUM Collaboration), J. of Phys. G 17, S47 (1991);
 A. van der Schaaf, Nucl. Phys. A 546, 421c (1992); Prog. Part. Nucl. Phys. 31, 1 (1993).
[4] W. Honecker et al., (SINDRUM II Collaboration), Phys. Rev. Lett. 76, 200 (1996).
[5] S. Weinberg and G. Feinberg, Phys. Rev. Lett. 3, 111 (1959); ibid E 244.
[6] O. Shanker, Phys. Rev D 20, 1608 (1979).
[7] J.D. Vergados, Phys. Reports 133, 1 (1986).
[8] P. Depommier and C. Leroy, Rep. Prog. Phys. 58, 61 (1995).
[9] T.S. Kosmas and J.D. Vergados, Nucl. Phys. A 510, 641 (1990).
[10] T.S. Kosmas, G.K. Leontaris and J.D. Vergados, Prog. Part. Nucl. Phys. 33, 397 (1994);
 T.S. Kosmas and J.D. Vergados, Phys. Reports 264, 251 (1996).
[11] (MELC Collaboration), V.S. Abadjev et al., preprint INS/Moscow (1992);
 V.M. Lobashev, Private Communication (1996).
[12] D.A. Bryman et al., Phys. Rev Lett. 28, 1469 (1972); Phys. Rev. Lett. 55, 465 (1985);
 A. Badertscher et al., Nucl. Phys. A 377, 406 (1982).
[13] G.K. Leontaris, Study of the muonic and lepton numbers in modern gauge theories, Ph.D. thesis University of Ioannina, 1986, Greece.
[14] W.J. Marciano and A.I. Sanda, Phys. Rev. Lett. 38, 1512 (1977).
[15] J. Bernabeu, E. Nardi and D. Tommasini, Nucl. Phys. B 409, 69 (1993).

[16] T.S. Kosmas and J.D. Vergados, Phys. Lett. B 215, 460 (1988).

[17] T.S. Kosmas and J.D. Vergados, Phys. Lett. B 217, 19 (1989).

[18] H.C. Chiang, E. Oset, T.S. Kosmas, A. Faessler and J.D. Vergados, Nucl. Phys. A 559, 526 (1993).

[19] T.S. Kosmas, J.D. Vergados, O. Civitarese and A. Faessler, Nucl. Phys. A 570, 637 (1994).

[20] J. Suhonen, J. Phys. G 19, 139 (1993).

[21] B. Goulard, and H. Primakoff, Phys. Rev. C 10, 2034 (1974).

[22] T.S. Kosmas and J.D. Vergados, Nucl. Phys. A 523, 72 (1992).

[23] T.S. Kosmas, A. Faessler, F. Šimkovic and J.D. Vergados, Proc. 5th Hellenic Symp. on Nucl. Phys., Ioannina 1-2 Oct., 1993, ed. X. Aslanoglou et al., (University Press, 1994) p. 216.

[24] J. Heisenberg, R. Hofstadter, J.S. McCarthy and I. Sick, Phys. Rev. Lett. 23, 1402 (1969); T.W. Donnelly and J.D. Walecka, Ann. Rev. Nucl. Sci. 25, 329 (1975); B. Frois and C.N. Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987).

[25] H. de Vries, C.W. de Jager and C. de Vries, Atomic Data and Nuclear Data Tables, 36 495 (1987).

[26] G.A. Lalazissis and C.P. Panos, Phys. Rev. C 51, 1247 (1995).

[27] K. Holinde, Phys. Reports 68, 121 (1981).

[28] J. Suhonen, I. Taigel and A. Faessler, Nucl. Phys. A 486, 91 (1988).

[29] M.K. Cheoun, A. Bobyk, A. Faessler, F. Šimkovic and G. Teneva, Nucl. Phys. A 561, 74 (1993); Nucl. Phys. A 564, 329 (1993).

[30] J. Schwieger, T.S. Kosmas and A. Faessler, in preparation.

[31] D. Duplain, B. Goulard, and J. Joseph, Phys. Rev. C 12, 28 (1975).

[32] D.J. Rowe, Nuclear collective motion, (Methuen and CO. LTD., London, 1970).

[33] E.A. Sanderson, Phys. Lett. 19, 141 (1965); J. Da Providencia, Phys. Lett. 21, 668 (1966).

[34] P.J. Ellis, Nucl. Phys. A 467, 173 (1987).

[35] J.A. McNeil, C.E. Price and J.R. Shepard, Phys. Rev. C 42, 2442 (1990).
TABLE I. Renormalization constants for proton \((g^p_{\text{pair}}) \) and neutron \((g^n_{\text{pair}}) \) pairing interactions determined from the experimental proton \((\Delta^p_{\text{exp}}) \) and neutron \((\Delta^n_{\text{exp}}) \) pairing gaps.

Nucleus	Configuration Space	\(b_{ho} (fm^{-1}) \)	\(\Delta^p_{\text{exp}} (MeV) \)	\(\Delta^n_{\text{exp}} (MeV) \)	\(g^p_{\text{pair}} \)	\(g^n_{\text{pair}} \)
\(^{48}_{22}Ti_{26} \)	16 levels (no core)	1.92	1.896	1.564	1.082	1.002
\(^{60}_{28}Ni_{32} \)	16 levels (no core)	2.02	1.718\(^a\)	1.395\(^a\)	1.033	0.901
\(^{72}_{32}Ge_{40} \)	16 levels (no core)	2.07	1.611	1.835	0.924	0.995
\(^{112}_{48}Cd_{64} \)	16 levels \((^{40}_{20}Ca_{20})\)	2.21	1.506	1.331	1.099	0.950
\(^{162}_{70}Yb_{92} \)	23 levels \((^{40}_{20}Ca_{20})\)	2.32	1.170	1.104	0.894	0.951
\(^{208}_{82}Pb_{126} \)	18 levels \((^{100}_{50}Sn_{50})\)	2.40	0.807\(^a\)	0.611\(^a\)	0.861	1.042

\(^a\) For the closed shell nuclei the parameters \(g^p_{\text{pair}} \) and \(g^n_{\text{pair}} \) have been borrowed from the \((N \pm 2, Z \mp 2)\) nuclei i.e. the experimental gaps \((\text{columns 4 and 5})\) for \(^{60}_{28}Ni_{32} \) and \(^{208}_{82}Pb_{126} \), are those of \(^{60}_{20}Fe_{34} \) and \(^{208}_{84}Po_{124} \), respectively.

TABLE II. Nuclear form factors for protons \((F_Z) \) and neutrons \((F_N) \) calculated in the context of the shell model \([9]\) and quasi-particle RPA cases: QRPA(i) and QRPA(ii) (see text). For comparison the experimental form factors \([24, 25]\) are also shown.

Nucleus	Shell Model	QRPA(i)	QRPA(ii)	Exper.					
\((A, Z)\)	\(b_{ho} (fm^{-1}) \)	\(F_Z \)	\(F_N \)	\(F_Z \)	\(F_N \)	\(F_Z^{\text{exp}} \)			
\(^{48}_{22}Ti_{26} \)	1.906	.543	.528	.528	.506	1.250	.537	.514	.532
\(^{60}_{28}Ni_{32} \)	1.979	.489	.478	.489	.476	1.950	.503	.490	.494
\(^{72}_{32}Ge_{40} \)	2.040	.470	.448	.456	.435	2.150	.472	.451	.443
\(^{112}_{48}Cd_{64} \)	2.202	.356	.318	.349	.312	4.890	.388	.352	.353
\(^{162}_{70}Yb_{92} \)	2.335	.261	.208	.252	.218	8.445	.314	.280	.305
\(^{208}_{82}Pb_{126} \)	2.434	.194	.139	.207	.151	10.475	.271	.214	.242
TABLE III. Incoherent $\mu - e$ conversion matrix elements (M^2_{inc}) for the photonic mechanism. Only the vector component (S_V) of the operator of Eq. (3) contributes.

J^π	$^{48}_{22} Ti$	$^{60}_{28} Ni$	$^{72}_{32} Ge$	$^{112}_{48} Cd$	$^{162}_{70} Yb$	$^{208}_{82} Pb$
0^+	1.946	1.160	2.552	2.088	4.305	2.512
2^+	0.242	0.738	1.396	2.669	6.384	2.342
4^+	0.004	0.005	0.015	0.021	0.063	0.056
6^+	6 10^{-6}	6 10^{-6}	1 10^{-5}	6 10^{-5}	2 10^{-4}	3 10^{-4}
1^-	3.711	4.215	5.066	5.282	4.824	4.533
3^-	0.037	0.081	0.152	0.249	0.542	0.476
5^-	2 10^{-4}	2 10^{-4}	5 10^{-4}	0.001	0.005	0.005
S_V	5.940	6.199	9.181	10.309	16.123	9.924
M^2_{inc}	5.940	6.199	9.181	10.309	16.123	9.924
TABLE IV. Non-photonic mechanism. Incoherent $\mu - e$ conversion matrix elements (M_{inc}^2) for the vector (S_V) and axial vector (S_A) component of the (μ^-, e^-) operator.

J^π	$^{48}_{22}Ti$	$^{60}_{28}Ni$	$^{72}_{32}Ge$	$^{112}_{48}Cd$	$^{162}_{70}Yb$	$^{208}_{82}Pb$
0$^+$	2.245	1.441	3.326	3.006	6.097	4.106
2$^+$	0.363	1.000	1.899	4.869	12.618	3.769
4$^+$	0.002	0.006	0.017	0.029	0.078	0.070
6$^+$	2×10^{-6}	7×10^{-6}	1×10^{-6}	8×10^{-5}	2×10^{-4}	4×10^{-4}
1$^-$	4.010	6.164	6.676	7.243	6.796	5.537
3$^-$	0.059	0.097	0.177	0.328	0.684	0.572
5$^-$	1×10^{-4}	2×10^{-4}	5×10^{-4}	0.002	0.006	0.006

S_V	6.679	8.708	12.095	15.477	26.280	14.061
1$^+$	0.265	1.114	0.795	0.943	1.599	0.951
2$^+$	0.041	0.189	0.208	0.362	0.644	0.466
3$^+$	0.044	0.221	0.244	0.422	0.693	0.635
4$^+$	2×10^{-4}	0.001	0.002	0.005	0.013	0.015
5$^+$	2×10^{-4}	0.002	0.002	0.007	0.013	0.021
6$^+$	1×10^{-7}	1×10^{-6}	1×10^{-7}	1×10^{-5}	4×10^{-5}	9×10^{-5}
0$^-$	0.770	1.498	1.394	1.840	1.925	1.539
1$^-$	0.594	1.149	1.057	1.394	1.072	0.616
2$^-$	0.673	0.800	0.880	1.035	1.137	1.170
3$^-$	0.010	0.015	0.024	0.050	0.091	0.110
4$^-$	0.009	0.019	0.031	0.057	0.164	0.129
5$^-$	8×10^{-6}	2×10^{-5}	6×10^{-5}	2×10^{-4}	0.001	0.001
6$^-$	9×10^{-6}	7×10^{-5}	1×10^{-4}	3×10^{-4}	0.001	0.001

$3S_A$	2.405	5.009	4.637	6.115	7.305	6.226

M_{inc}^2 | 9.084 | 13.717 | 16.732 | 21.592 | 33.585 | 20.287
TABLE V. Coherent and total $\mu - e$ conversion rate matrix elements QRPA(ii) (see text) for the photonic mechanism in the neutrino mediated process. For comparison, we also show the ratio η of Eq. (15) given by shell model [9] obtained by ignoring the muon binding energy ϵ_b. The results of QRPA(i) are similar to those of the shell model.

Nucleus	QRPA(ii) Matrix Elements	$\eta\%$		
(A, Z)	$M^2_{gs\rightarrow gs}$	M^2_{tot}	QRPA(ii)	Shell Model
$^{48}_{22}Ti_{26}$	139.6	145.5	95.9	
$^{60}_{28}Ni_{32}$	198.7	204.9	96.9	64.9
$^{72}_{32}Ge_{40}$	227.8	237.0	96.1	59.7
$^{112}_{48}Cd_{64}$	346.7	357.0	97.1	
$^{162}_{70}Yb_{92}$	484.3	500.4	96.8	36.9
$^{208}_{82}Pb_{126}$	494.7	504.6	98.0	25.5

TABLE VI. The same as in Table V for a non-photonic mechanism ($\beta = 5/6$) in the neutrino mediated process. For comparison we have added the results for η obtained with Local Density Approximation (L.D.A.) [18] and shell model [9].

Nucleus	QRPA(ii) Matrix Elements	$\eta\%$			
(A, Z)	$M^2_{gs\rightarrow gs}$	M^2_{tot}	QRPA(ii)	Shell Model	L.D.A.
$^{48}_{22}Ti_{26}$	375.2	384.3	97.6	91.0	
$^{60}_{28}Ni_{32}$	527.4	541.1	97.5	74.9	
$^{72}_{32}Ge_{40}$	639.5	656.2	97.4	70.3	
$^{112}_{48}Cd_{64}$	983.3	1004.9	97.8	93.0	
$^{162}_{70}Yb_{92}$	1341.2	1374.8	97.6	40.1	
$^{208}_{82}Pb_{126}$	1405.2	1425.5	98.5	28.2	94.0
Figure Captions

FIGURE 1. Typical diagrams entering the (μ^-, e^-) conversion: The photonic (a), Z-exchange (b), (c) and box (d) diagrams. Only the specific mechanism involving intermediate neutrinos is exhibited here. $\nu_e = \sum_j U_{ej} \nu_j$, $\nu_\mu = \sum_j U_{\mu j} \nu_j$, where ν_j are the neutrino mass eigenstates and U_{ej}, $U_{\mu j}$ are the charge lepton current mixing matrix elements. Other mechanisms can also contribute (SUSY, Z', Higgs etc., see Ref. [10]).

FIGURE 2. Variation of the coherent (μ^-, e^-) conversion matrix elements M^2_{coh} for specific mass A and charge Z (see text) for the photonic mechanism (a) and the non-photonic mechanism (b). In QRPA(i) the muon binding energy ϵ_b was neglected, but it was included in QRPA(ii). We see that ϵ_b strongly affects the matrix elements for heavy nuclei. For comparison the results of Ref. [9] (shell model results) are also shown. For photonic and non-photonic diagrams the coherent rate increases up to Pb region where it starts to decrease.
\[\mu^- \quad \nu_\mu \quad \nu_e \quad e^- \]
\[p \quad X \quad w^- \quad w^- \]
\[\gamma \]
\[(a) \]
\[\mu^-, \nu_\mu, \nu_e, e^-, u(d), u(d) \]
\[\mu^- \rightarrow \nu_\mu \rightarrow \nu_e \rightarrow e^- \]

\[w^- \rightarrow Z \rightarrow u(d) \]

\[(c) \]
\[(d) \]
\[M_{coh}^2 \]

![Graph showing MASS NUMBER vs. \(M_{coh}^2 \) with different models: SM, QRPA(i), QRPA(ii).](a)
