【巻頭言】

1 エレクトロニクスソサイエティ企画会議のご紹介

【寄稿】

【各賞受賞記】

【ELEX Best Paper Award】

【ELEX招待論文賞】

【学生奨励賞】

【論文誌技術解説】

16 ELEX 近況
【報告】

17 APSAR 2023 の開催報告
[APSAR 国内委員会 委員長] 須崎 純一 (京都大学)

18 第 35 回国際電波科学連合総会（URSI-GASS 2023）開催報告
[URSI 日本国内委員会 委員長] 八木谷 聡 (金沢大学)
[URSI 日本国内委員会 副委員長] 小林 一哉 (中央大学)
[URSI 日本国内委員会 主幹事] 芳原 容英 (電気通信大学)

20 PIERS 2023 Prague 開催報告
[PIERS 国内委員会 委員長] 小林 一哉 (中央大学)
[PIERS 国内委員会 幹事補佐] 長坂 崇史 (足利大学)

【短信】

22 2023 年ソサイエティ大会開催報告と 2024 年総合大会へのお誘い
[エレクトロニクスソサイエティ大会運営委員長] 岩田 達哉 (富山県立大学)

【お知らせ】

2024 年フェロー候補者推薦公募について
シニア会員の申請について
エレクトロニクスソサイエティ学生奨励賞について
各種募集、編集後記

本誌に掲載された記事の著作権は電子情報通信学会に帰属します。© 電子情報通信学会 2024
【巻頭言】

「エレクトロニクスソサイエティ企画会議のご紹介」
（エレクトロニクスソサイエティ副会長）
杉田 憲一（東芝インフラシステムズ）

2023年度より、電子情報通信学会エレクトロニクスソサイエティ副会長（企画広報財務担当）を拝命しました東芝インフラシステムズの杉田です。2021年度、2022年度はエレクトロニクスソサイエティ企画会議財務幹事を務めておりました。今回、執筆の機会を頂きましたので、私が担当しておりますエレクトロニクスソサイエティ（以下、エレソと略す）企画会議の活動内容を簡単にご紹介したいと思います。

エレソは、情報通信システムに必須のエレクトロニクス（材料、部品、デバイス、サブシステムなど）に関する研究を活動領域としています。この領域における我が国の産官学連携促進や科学技術の進歩への貢献、会員（研究者）の満足度向上を目的として、「企画会議」、「編集出版会議」、「研究技術会議」の3会議体制で、本会全体及びソサイエティの活性化につながる施策の検討及び具体化を進めています。エレソの企画広報財務を担当する組織がエレソ企画会議であり、企画会議にてソサイエティの財務状況把握と予算配分、会員サービスの企画・推進（学術コンテンツ配信、表彰等）、及び広報活動（HP管理、News Letter編集等）を担当しており、企画会議内に財務幹事、企画・広報幹事を設けて会員活性化・増加施策の強化などの活動をしております[1]。

近年のエレソの活動の振り返ってみますと2020年から流行した新型コロナウィルスによる規制に伴い、大きく変わったと思います。特にオンラインでの学会活動、オンラインサービスの充実化に向けた取り組みを行ってきました。2023年5月8日からコロナの感染症法上の位置づけを「5類」に引き下げたことに伴い、様々な規制が解消され、以前の様な生活様式に戻っているところもあれば、コロナ禍を経て大きく変わったところも多数あるかと思います。例えば各学会にてリアルオンラインハイブリッド開催などが定着しているかと思います。リアルとオンラインのそれぞれの利点を活かした環境を模索しつつ、学会活動の場がさらに活性化しやすい環境になるように取り組み続けていきたいと思っています。これにより会員の皆様にとってよりよい環境、情報発信ができるように検討を進めていきたいと思います。

これからも会員の皆様にとってよりよい環境、情報発信ができるように検討を進めていきたいと思います。

図1 リニューアルされたエレソHP

[1] https://www.ieice.org/es/jpn/kitei_kikaku
[2] https://webinar.ieice.org/soc_es.php?expandable=2&code=S
[3] https://www.ieice.org/es/jpn

著者略歴：
2004年福井大学大学院工学研究科修士課程修了、2009年福井大学大学院工学研究科博士後期課程修了、博士（工学）。2004～2006年京セラ（株）、2009年東京大学先端科学技术研究センター研究員、2009～2013年福井大学研究員、2013～2017年（株）東芝、2017年現在東芝インフラシステムズ（株）。現在、化合物半導体デバイスの研究開発に従事。2021～2022年本会エレクトロニクスソサイエティ企画会議財務幹事、2023年～本会エレクトロニクスソサイエティ副会長（企画広報財務担当）。

今回、エレクトロニクスソサイエティ賞を受賞致しました
3人（伊東健治、野口啓介、坂井尚貴）を代表致しまして、
ご推薦を賜ったマイクロ波研究会の前委員長 末松憲治先
生をはじめとするマイクロ波研究会の関係者の皆様、エレ
クトロニクスソサイエティの関係の皆様に厚く御礼申し上
げます。本研究は、過去から現在まで国プロの支援により
実施されています。①「微小エネルギーを利用した革新的
な環境発電技術の創出」(JST-CREST)，②内閣府 SIP 第二
期「IoE 社会のエネルギーシステム」，③NICT の委託研究
「完全ワイヤレス社会実現を目指したワイヤレス電力伝
送の周波数および通信との融合技術」，④総務省の「電
波資源拡大のための研究開発による委託研究」，⑤JAXA
の「広域未踏峰探査技術 宇宙・地上両用途の高効率・長
距離無線電力伝送ミリ波デバイス及び全体システムの
開発」により、1MHz から 30GHz までの周波数領域、nW
から 10W のレクテナ/整流器の研究開発を実施
してきました。現在は将来の宇宙用途を想定しミリ波での
大電力レクテナの実現に注力しています。関係機関の皆様、
また共同研究者の皆様に深謝申し上げます。

ここで、本研究に至る経緯を説明したいと思います。私
は三菱電機に入社以来、大船にある研究所で、周波数変換
回路を中心に高周波半導体回路の研究をしておりました。
当時の研究所の幹部である故片木孝至先生（後に金沢
工大教授）、直接の上司であった石田修己先生（後に沖縄
高専教授）のご厚意により、1997 年に東北大水野皓司先
生のご指導で学位を頂きました。その中で偶高調波ミク
サを取り上げました。ダイオードを局部発振波で励振し時
変素子として動作させる場合、多周波での動作解析が必要
です。これは整流器の動作と同じです。学位取得後に、尼
崎の携帯電話の事業所に転勤となりました。そこでは、客
先である NTT ドコモ、部品メーカである TI, ADI, IBM
microelectronics、村田製作所のご協力を得、第 2 世代携帯
電話用 RF-IC や、前述の偶高調波ミクサを用いる世界初の
第 3 世代携帯電話用ダイレクトコンバージョン受信機[5]
の開発を行いました。その後の社内では、携帯電話
の無線電力伝送技術を後押ししています。
MTT の編集委員を務め、2 年間で約 200 本の採否判定を行ったり、MTT-S の ADCOM メンバーとなり、APMC 主催国との conference quality の control を行ったりしていました。CALTECH の D. Rutledge 先生や UCLA の故伊藤鶴男先生の要請によるもので、良い機会を頂戴しました。ADCOM election で選出された同期が、モントリオール工科大の教授であり、その後 MTT-S の President を務めた Ke Wu 先生です。2008 年頃だったか、Wu 先生がサヴァティカルでの滞在先を探しているときに、京大篠原真毅先生を紹介しました。私が委員をしていた URSI-C で、そのような枠が案内されていたからです。Wu 先生の京大滞在が、その後の Wireless Power Transfer Conf. (WPTC) に繋がっていきました。そうな経緯で 2009 年の冬に、Wu 先生と篠原先生が金沢に来られ、無線電力伝送の研究の話をされました。私が無線電力伝送に関心を持つ契機となりました。無線電力伝送用レクテナについては、1960 年代より W. C. Brown による宇宙太陽光発電の研究のなかで報告され、国内においても、京大、北大、早大、CRL をはじめとする多くの研究機関で先駆的な取り組みが行われてきました。2.4GHz では Brown の研究により、1970 年代には 90% 前後の整流効率に達しております [6]。私がそのような示唆もありレクテナの研究をはじめたのは 2010 年で、極めて後発です。研究の動機は至って単純です。新任の大学で、SG 1 台とマルチメータで実施できる整流器の研究はハードルが低いのです。研究課題は追々考えることになります。最初はブリッジ整流器を取り上げました。複数のダイオードを用いる回路は、高調波処理が容易で高効率化しやすい、前職でのミクサ研究での知見です。将来の実用化に向け必要な集積化にも適しています。佐圓君（現 TDK）にブリッジ整流器のビヘイビアル定式化を行ってもらいました。これによ り、設計条件が理解できました。この成果を電子情報通信学会の和文論文誌 C に投稿しましたが、IEEE Trans. MTT の編集委員の経験から見てもだいじな誤差を指摘され、3 回も Reject となりました。その後、追加の理論、データを加え IEEE Trans. MTT に採録されました [7]。その筆頭著者である桔川君（現三菱電機）は 2023 IEEE MTT-S Japan Young Engineer Award を受賞しました。このような発表者の親和性、和文論文誌の課題ではないでしょうか。この知見をもとに、伊藤君（現東芝エレベータ）に 2.4GHz レクテナを試作してもらったのは 2013 年です。効率を高めるためには高耐圧の整流用ダイオードを用い、高インピーダンス RF 電源により耐圧ぎりぎりで駆動すれば良い。その高インピーダンス RF 電源を、高インピーダンスアンテナで実現すれば、インピーダンスのステップアップに伴う回路損失をゼロです。金沢工大内で野口先生、故別段伸一先生に相談し、折返しダイポールアンテナを設計しました。これに市販の Si SBD によるブリッジダイオードを接続し、1W の入力電力に対し 80% の整流効率を得ました。Si SBD ではトプブの破損が発生[8]で、WPTC で Student Paper Award を頂きました。しかし[5]では GaAs SBD により 90% の効率を得ています。2000 年代以降、市販ディスクリート GaAs 素子が姿を消し、レクテナの電気性能は退行していました。この頃から、競争力のあるレクテナ用の半導体開発が重要であると、痛感しました。同時に、IBM Microelectronics におられた渡邊祐一さんより、SOI-CMOS でのシャトル提供のお話を頂きました。前述の第 3 世代携帯電話に同社と SiGe BiCMOS IC を開発した経緯です。2015 年の春より、柳原君（現パナソニックシステムネットワークス開発研究所）に設計環境の立ち上げと SOI-CMOS による大電力整流器 IC の検討を行ってもらいました。低耐圧なので大電力化には向かないのですが、レクテナ用半導体開発のヒントとなりました。ノーマリーオフの FET （NMOS FET）により、容易に整流用ダイオードが構成できることが分かりました。大電力整流器用の高耐圧ノーマリーオフの FET を探そうと思いました。そんな頃、同年 6 月に米フェニックスでの IEEE MTT-S International Microwave Symp. (IMS) で、名古屋工大の分島彰男先生から GaN デバイス応用の相談を頂きました。2002 年の IEEE GaAs IC Symposium（米モンタレー）に招待されたとき、reception で当時 NEC の新進気鋭の研究員であった先生と随分話し込んだ記憶があります。フェニックスでの議論が GaN GAD 前世の研究に関するお互いの起点で、私はまず GaAs E-pHEMT GAD での整流回路の検討を行うことにしました。それをプロジェクト化できたのは 2018 年秋であり（内閣府 SIP）、それまでは SOI-CMOS での検討を進めました。その間、野口先生に 10kΩ の高インピーダンスアンテナを検討頂きました。その端子インピーダンスの SOI-CMOS 整流器の整合は困難であり、岸本君（現 MCC）と土本君（現三菱電機）に誘導性の高インピーダンスアンテナと容量性の整流器の直接整合[10]を実現してもらいました。2018 年からの内閣府 SIP での 5.8GHz 帯レクテナの開発では、以上のような経緯のもとに得た知見をもとに、麦谷君（現中部管区警察局）に新たに高調波反射機能を集積化したアンテナ[11]、野口先生には 1 波長ダイポールアングラ子のアイデア[1]、小松君（現三菱電気ソフトウェア）
には GaAs E-pHEMT GAD による整流器 MMIC[12]を開発してもらい、高効率な大電力整流器を実現するピースを補いました。これらの技術を集積した 5.8GHz レクテナにおける整流効率は、92.8%@1W レクテナ[1]、83.7%@10W レクテナ[11]であり、現時点では世界トップのベンチマークです。図 2 に 5.8GHz 帯 10W レクテナを示します。窒化アルミニウム基板上にアンテナを構成し、GaAs 整流器 MMIC と接続しています。整流器 MMIC の発熱は窒化アルミニウム基板を介し、ヒートシンクで放熱します。IMSでの坂井君の講演後も質問が続き、強い関心を集めていることが分かりました。

図 2 5.8GHz 帯 10W レクテナ
現在は、ミリ波での IC 実装に伴う接続損失を抑制するために、非接触給電の実現を進めています。29GHz において 74%@入力電力 15dBm の整流効率を得ており[14]、これを大電力化する検討を行っています。

以上のように多くの方々のご指導、学生達の努力により技術開発を進めてきました。今後も、アンテナから IC設計までの先端的な技術開発を通じ、多くの学生が十分な開発・設計スキルを習得できるよう、研究室を運営していきたいと思っています。引き続き、関係の皆様のご支援をお願い致します。

著者略歴:
1983 年同志社大・工・電子卒。1997 年東北大学工学研究科・電子工学専攻・後期博士課程修了。1983 年三菱電機(株)に入社。同社情報電子研究所、モバイルターミナル製作所・ハードウェア技術部を経て、2009 年金沢工大教授。衛星通信地球局、衛星搭載中継器、レーダ装置などに用いられるマイクロ波・ミリ波送受信機の研究・開発、RFIC、携帯電話機、無線電力伝送用レクテナの研究・開発に従事。2002 年第 50回オーム技術賞、2014 年 IEEE MTT-S Walter Cox Award など受賞。2008 年~2011 年 URSI-C 委員長。2016 年~2017 年 MTT-S Nagoya chapter chair。著書「モノパイル通信の無線回路技術」(電子情報通信学会,共著)ほか。IEEE Fellow, 博士(工学)。

[1] N. Sakai, K. Noguchi, and K. Itoh, “A 5.8-GHz band highly efficient 1-W rectenna with short-stub-connected high-impedance dipole antenna,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 7, pp. 3558–3566, Jul. 2021.

[2] K. Itoh, N. Sakai, K. Noguchi, “Highly Efficient High-Power Rectenna with the Diode on Antenna (DoA) Topology,” IEICE Trans. Elect., Vol.E105-C, no.10, pp.483-491, 2022: https://doi.org/10.1587/transele.2022MM10007

[3] 伊東健治, 野口啓介, 坂井尚貴, “無線電力伝送用大電力レクテナ,” 信学技報 MW2023-2, 2023.

[4] 石原和弘, 長谷川安昭, 大嶋元樹, 坂井尚貴, 伊東健治, “GaAs E-pHEMT gated anode diode を用いた 5.75GHz 帯 1W レクテナ,” 2023 信学ソ大, B-20-12, 2023.

[5] K. Itoh, T. Yamaguchi, T. Katsura, K. Sadahiro, T. Ikushima, R. Hayashi, F. Ishizu, E. Taniguchi, T. Nishimo, M. Shimozawa, N. Suehara, T. Takagi, and O. Ishida, “Integrated even harmonic type direct conversion receiver for W-CDMA mobile terminals,” 2002 IEEE MTT-S Internl. Microw. Symp. Digest, pp. 9-12, 2002.

[6] W. C. Brown: “Optimization of the Efficiency and Other Properties of the Rectenna Element”, 1976 IEEE MTT-S Internl. Microw. Symp. Digest, pp.142-144, 1976.

[7] K. Kikkawa, T. Saen, N. Sakai, and K. Itoh, “A 2.4-GHz 10-W class bridge rectifier and its efficiency analysis with the behavioral model,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 3, pp. 1994–2001, 2022.

[8] M. Ito, K. Itoh, et.al., “High efficient bridge rectifiers 100MHz and 2.4GHz bands”, 2014 IEEE Wireless Power Transfer Conf., pp. 64–67, 2014.

[9] S. Yamagihara, S. Tsuchimoto, K. Itoh, K. Kawasaki, T. Yao and M. Tsuru, “The 2.4 GHz band SOI-CMOS bridge rectifier IC,” 2017 IEEE Wireless Power Transfer Conf., 2017.

[10] S. Tsuchimoto, K. Itoh, K. Noguchi and J. Ida, “High sensitive 2.4 GHz band rectenna with direct matching topology,” 2019 IEEE Wireless Power Transfer Conf., pp. 278-281, 2019.

[11] A. Mugitani, N. Sakai, A. Hirono, K. Noguchi and K. Itoh, “Harmonic reaction inductive folded dipole antenna for direct connection with rectifier diodes,” IEEE Access, vol. 10, pp. 53433-53442, 2022.

[12] 小松郁弥, 坂井尚貴, 伊東健治, “パッシブ動作 E-pHEMT を用いる 5.8GHz 帯大電力整流器 MMIC,” 信学技報 MW2020-35, 2020.

[13] N. Sakai, N. Furutani, K. Uchiyama, Y. Hirose, F. Komatsu, and K. Itoh, “5.8 GHz band 10 W rectenna with GaAs E-pHEMT gated anode diode on the aluminum nitride antenna for thermal dispersion,” 2023 IEEE MTT-S Internl. Microw. Symp. Digest, 2023.

[14] 坂井尚貴, 遁所雄大, 小林章伸, 野口啓介, 津留正臣, 伊東健治, “外部高効率ワイヤアンテナへの非接触給電構造を用いる 28GHz 帯高効率 GaAs レクテナ MMIC,” 信学技報 MW2023-156, 2023.
この度は、令和 4 年度（第 26 回）のエレクトロニクスソサイエティ賞を頂き、誠に光栄に存じます。ご推薦いただいた先生、審査していただいた皆様に心より御礼申し上げます。

受賞対象となった集積光ナノ構造を用いたトポロジカルフォトニクスに関する研究は、私が荒川泰彦先生（東京大学）とともに長年続けてきた半導体フォトニック結晶に関する研究を基礎としたものです。フォトニック結晶研究を始めるきっかけを頂くとともに、様々なご指導を頂いた荒川先生には改めて深く感謝申し上げます。申し上げるまでもありませんが、今回対象となった研究成果は、決して私一人で達成したものではありません。当該研究を始めた当初より一緒に研究を進めています太田泰友先生（慶應義塾大学）、高橋駿先生（京都工芸繊維大学）をはじめとする多くの共同研究者の皆様、研究室の研究員や学生の皆さんが一緒に取り組んできた研究が、このような高い評価をいただけましたことは、望外の喜びであり皆様にはこの場をお借りして心から敬意と感謝を申し上げます。

トポロジカルフォトニクスとは、2000年代半ばから後半にうまれた光学・フォトニクスの新しい研究領域の一つです。トポロジーの概念は、現代物理学の様々な分野で重要な考え方の一つとなっています。2016年のノーベル物理学賞受賞者の一人である Haldane 先生です。2008年、Haldane 先生らは、ある種のフォトンニック結晶を用いれば、光でも電子のトポロジカルエッジ状態に相当する状態が実現できるということが理論的に示しました[1]。翌 2019年には、MITのグループがマイクロ波領域でこの光のトポロジカルエッジ状態の実現に成功します[2]。光のトポロジカルエッジ状態にはいくつかの種類がありますが、一般に異なるバンドトポロジーを有する 2 つのフォトンニック結晶で形成された界面に現れます。これら光のトポロジカルエッジ状態は、電子のそれと同様、構造欠陥や表面の曲がりがあっても光を高効率に伝送することが出来、この特徴を光波導線やその他の光デバイスに応用しようとする試みが各国で進められています。トポロジカルフォトニクスの概要、導波路としての応用可能性について、最近、電子情報通信学会誌に解説記事[3]を寄稿させていただきました。また、半導体フォトニック結晶を用いたトポロジカルフォトニクスの進展は文献[4]にまとめています。興味を持っていただけました方は是非これもご参照いただければ幸いです。

さて、我々がトポロジカルフォトニクスの研究を始めたのは2016年頃のことです。当時、荒川研・特任助教だった高橋駿先生が、ある国際会議でトポロジカル物理学の分野で著名な初貝安弘先生（筑波大学）のグループの博士課程の学生さんの発表で議論をしてきたことがきっかけとなりました。荒川先生、高橋先生と研究を進めていた3次元カイラルフォトニック結晶が、ワイル点と呼ばれるトポロジカルな特徴を持った異常点と関連するエッジ状態を持つ可能性がわかったのです。これをきっかけに初貝先生との共同研究を開始しました[5]。これと並行して、当時の博士課程の学生さんと構造が大きく作製が容易なフォトンニック結晶（フォトニック結晶ではなく）でのトポロジカル状態（この場合は光ではなく無電流波に対応する状態）に関する研究[6]、集積光ナノ構造でトポロジカルエッジ状態の実現を目指す研究を太田先生などともに振る舞い、光のバンド構造によって記述されることがよく知られています。その類似性に注目したのが、2016年のノーベル物理学賞受賞者の一人である Haldane 先生です。
開始しました。

集積光ナノ構造を用いたトポロジカルフォトニクスに関しては、半導体フォトニック結晶を用いて世界で初めてトポロジカルナノ共振器レーザ[7]を実現するとともに、物性物理の理学部の若林克義先生（関西学院大学）、Feng Liu先生（関西学院大学、現在、中国・寧波大学）と連携しコーナー状態を呼ぶ局在したトポロジカル状態をナノフォトニックのプラットフォームで初めて実現することに成功しました[8]。また、シリコンリング共振器をプラットフォームとして、周波数空間での光トポロジカル状態の実現とそのアイソレータなどが用いられる応用を目指した研究[9]で、馬場俊彦先生（横浜国立大学）、トポロジカル物理の理論家である若林克義先生（関西学院大学）、トポロジカル物理の理論家である若林克義先生（関西学院大学）、太田先生のチームで取り組んでいるほか、光計測や情報通信、物性制御などに新たな可能性を拓くものと期待される光スキャニングと呼ばれる特有な偏光分布を有する光ビームのオンチップ生成[10]に関する研究も進めています。以下では、半導体フォトニック結晶を用いたトポロジカル導波路に関する研究について、少し詳しくご紹介させていただきたいと思います。

光のトポロジカルエッジ状態を用いた光導波路は曲げに強いという魅力的特徴があります。我々は、光トポロジカルエッジ状態のうちバレーフォトニック結晶と呼ばれる構造に現れるエネルギー状態を用いた導波路を半導体フォトニック結晶を用いて実現し実際に境界の急峻な曲げがある場合にも良好な光伝搬が可能であることを示しました[11]。半導体バレーフォトニック結晶導波路は、我々も含めて3つの機関で独立に、ほぼ同時期に報告されました。さらに、バレーフォトニック結晶導波路の構造を工夫することで、曲げに強いという特徴を可能に生み出す、伝搬モードをスローライト化できることを見出し[12]、シリンゴンフォトニックのプラットフォームでその実現に成功しました[13]。スローライト導波路では、光の伝搬モデルで非常に大きな損失があるが、バレーフォトニック結晶スローライト導波路では、曲げ損失が大きく抑制されます。我々の提案したバレーフォトニック結晶スローライト導波路構造は、海外のいくつかの研究グループでも採用されています。

バレーフォトニック結晶導波路は、特微量の曲げやある種の構造欠陥に対しては高い堅牢性を示す一方、ランダムな構造揺らぎに対する耐性は限定的です。これは、バレーフォトニック結晶がデトポロジカルな性質が、構造の対称性に起因しているためです。ランダムな構造揺らぎに対しても堅牢なトポロジカル光導波路を実現するには、時間反転対称性の破れた系で実現されるカイラルエッジ状態というものを利用する必要があり、そのためには磁気光学効果を用いる必要があります。しかし、通信波長帯で利用できる材料の磁気光学効果はマイクロ波帯のそれに比較して小さいため、光領域でのカイラルエッジ状態の実現は難しいのが現状です。我々は、磁性材料の専門家である電磁材科学研究所の小林伸甘教授、池田賢司主任研究員とともに、新たな磁気光学材料の開発にも取り組みながら、その実現に挑戦しています[14,15]。

トポロジカルフォトニクスはまだ若い研究分野です。集積フォトニック学などへの応用が期待られていますが、明らかにすべきポイント、克服すべき課題が多いのが現状であり、明確な応用ターゲットとそれへの道筋が見えているわけではありません。我々の研究もまだ図書館的なもので、そのような研究内容に対してエレクトロニクスソサイエティの賞をいただけましたことは、「頑張って応用の可能性を示せ」というメッセージだと思っております。今回の受賞を励みとし、それに応えるよう、共同研究者や研究室のメンバータイに引き続き研究を進めて参ります。

最後になりましたが、共同研究者の皆様、研究室メンバーをはじめ、日頃よりご支援いただく皆様に改めて感謝の意を申し上げます。

参考文献:
[1] F. D. M. Haldane and S. Raghu, “Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
[2] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772 (2009).
[3] 岩本敏, “トポロジカルフォトニクス,” 電子情報通信学会誌 解説記事, in press
[4] S. Iwamoto, Y. Ota, and Y. Arakawa, “Recent progress in topological waveguides and nanocabites in a semiconductor photonic crystal platform”, Opt. Mater. Express 11, 319 (2021).
[5] S. Takahashi, S. Oono, S. Iwamoto, Y. Hatsugai, and Y. Arakawa, “Circularly Polarized Topological Edge States Derived from Optical Weyl Points in Semiconductor-Based Chiral Woodpile Photonic Crystals”, J. Phys. Soc. Jpn. 87, 123401 (2018).
[6] I. Kim, S. Iwamoto, and Y. Arakawa, “Topologically protected elastic waves in one-dimensional phononic crystals of continuous media”, Appl. Phys. Express 11, 017201 (2018). Selected as a Spotlight Paper 2018.

[7] Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Topological photonic crystal nanocavity laser”, Commun. Phys. 1, 86 (2018).

[8] Y. Ota, F. Liu, R. Katsumi, K. Watanabe, K. Wakabayashi, Y. Arakawa, and S. Iwamoto, “Photonic crystal nanocavity based on a topological corner state”, Optica 6, 786 (2019).

[9] A. Balčytis, T. Ozawa, Y. Ota, S. Iwamoto, J. Maeda, and T. Baba, “Synthetic dimension band structures on a Si CMOS photonic platform”, Sci. Adv. 8, eabk0468 (2022).

[10] W. Lin, Y. Ota, Y. Arakawa and S. Iwamoto, “Microcavity-based generation of full Poincare beams with arbitrary skyrmion numbers”, Phys. Rev. Research 3, 023055 (2021).

[11] T. Yamaguchi, Y. Ota, R. Katsumi, K. Watanabe, S. Ishida, A. Osada, Y Arakawa and S. Iwamoto: “GaAs valley photonic crystal waveguide with light-emitting InAs quantum dots,” Appl. Phys. Express 12, 062005 (2019).

[12] H. Yoshimi, T. Yamaguchi, Y. Ota, Y. Arakawa, and S. Iwamoto, “Slow light waveguides in topological valley photonic crystal”, Opt. Lett. 45, 2648 (2020).

[13] H. Yoshimi, T. Yamaguchi, R. Katsumi, Y. Ota, Y. Arakawa, and S. Iwamoto, “Experimental demonstration of topological slow light waveguides in valley photonic crystals”, Opt. Express 29, 13441 (2021).

[14] T. Liu, N. Kobayashi, K. Ikeda, Y. Ota, and S. Iwamoto, “Topological Band Gaps Enlarged in Epsilon-Near-Zero Magneto-Optical Photonic Crystals”, ACS Photonics. 9, 1621 (2022).

[15] K. Ikeda, T. Liu, Y. Ota, N. Kobayashi, and S. Iwamoto, “Enhanced Magneto-Optical Effects in Epsilon-Near-Zero Indium Tin Oxide at Telecommunication Wavelengths”, Adv. Optical Mater. 2023, 2301320 (2023).

著者略歴:
2002年東京大学工学部研究科物理工学専攻博士課程修了、博士(工学)。同年、東京大学生産技術研究所・助手、2003年同・講師、2007年東京大学先端科学技术研究センター・准教授。2019年同・教授(生産技術研究所・教授兼務)。2000年応用物理学会講演奨励賞、2005年SSDM Best Paper Award、2012年文部科学省若手科学者賞、2022年ドコモモバイルサイエンス賞、2023年エレクトロニクスソサイエティ賞など。電子情報通信学会、応用物理学会、IEEE各会員、OPTICAフェロー。
この度、栄誉ある令和5年度エレクトロニクスソサイエティ賞を受賞させていただくこととなり、心より感謝の意を表申し上げます。長年にわたり共に研究開発を実施してきました情報通信研究機構未来ICT研究所超伝導ICT研究室の皆様をはじめとして、共同研究を通じてご支援・ご協力いただいた皆様には深く感謝申し上げます。引き続き、ご支援・ご鞭撃を賜りたいと存じますので、どうぞよろしくお願いいたします。

さて、本賞を受賞するにあたり取り組んできた「超伝導ナノストリップ単一光子検出器（Superconducting Nanostrip Single Photon Detector、以下SNSPD）」に関する研究開発ですが、過去の記憶を掘り起こしながら少しさせていただくと、SNSPDに初めて接点を持ったのは私が修士3年生のときで、2000年にアメリカで開催された応用超伝導に関する国際会議に参加したのと、同時昭和60年のアメリカ国際会議に参加したのとそれぞれ同時で、両方ともに超伝導ナノストリップ技術の発展を示したと記憶しております。といっても、私当時の研究テーマは超伝導ホットエレクトロンオメガを用いた新しい技術に関する研究開発で、関わりをもったというほどのものではありませんが、ちょうどその頃、量子情報通信技術においても光子検出器の重要性が認識され、情報通信研究機構(NICT)が有する世界最高水準の高品質超伝導窒化ニオブ(NbN)薄膜成膜技術を駆使してSNSPDの開発をスタートすることができました。私自身、超伝導薄膜を用いたデバイス開発にはそれまでにも携わっていましたが、光子検出器に関する知識がない状態の中でスタートしたのですが、同機構の佐々木雅英氏、藤原幹夫氏との連携の下で研究開発を進めることができ、世界質の最先端技術として位置づけられました。SNSPDの開発は、半導体素子の開発に比べて極めて技術的に難しく、その開発の成功は、当時、国内では大規模な研究が行われていなかった分野であり、我々のグループは、その技術の開発に貢献できたものともご承知の通りです。超伝導デバイスでは極低温環境が必要ですが、当時、まだ大きなアドバンテージとなり、量子暗号鍵配送システムへの適用をはじめとする様々な応用分野への適用を実施し、SNSPDシステムの有効性・優位性を示すことができました。
が可能な超伝導単一磁束量子（SFQ）回路を用いた SNSPD 用多量化信号処理方式を世界に先駆けて提案し[13]、動作実証を行ってきました。複数の SNSPD からの出力信号を多量化するための回路[14]や、アドレス情報をエンコーディングする回路[15]、2 個の検出器の同時計数出力回路[16]など用途に応じた回路を柔軟に設計し動作実証することにも成功しています。

上記の通り、SNSPD に関する研究開発は、18 年におよぶ研究開発の中で、目覚ましい進化を遂げ、いまや光子検出を必要とする先端技術分野において、必要不可欠なものとして位置づけられるまでになりました。しかし一方で、いまだ発展途上技術であることに変わりはなく今もなお興味深い成果や進化を見せる研究テーマとなっていいます。例えば、つい先日論文誌に掲載された我々の成果として、従来の超伝導ナノストリップよりも 200 倍以上広い 20µm のストリップ幅を有する超伝導光子検出器の高性能動作に成功したというものがあります[17]。これにより、超伝導ストリップ光子検出器においてストリップ幅を狭くしないと高感度に光子検出ができないという従来の概念を覆すもので、これまで超伝導ナノストリップも含めて明らかにされていなかった超伝導ストリップ型光子検出器の光子検出原理の解明がより進んでいくものと期待されます。また、ストリップ幅が広くなることで作製プロセスが格段に容易となることから、生産性・コストの大幅な改善も期待されます。今後、様々な先端技術分野において今後膨大な数の超高性能光子検出器が必要となってくる社会となったとき、超伝導光子検出技術が大きな役割を果たすものと信じ、引き続き開発を推進したいと思います。

文献：
[1] G. Gol’t’sman et al., Appl. Phys. Lett. 47, 4827 (2008).
[2] S. Miki et al., IEEE Trans. on Appl. Super. 19, 332 (2009).
[3] A. Tanaka et al., Opt. Exp. 16, 11354 (2008).
[4] T. Honjo et al., Opt. Exp. 16, 19118 (2008).
[5] M. Sasaki et al., Opt. Exp. 19, 10387 (2011).
[6] T. Kobayashi et al., Nat. Photo. 10, 441 (2016).
[7] S. Miki et al., Appl. Phys. Lett. 92, 061116 (2008).
[8] S. Miki et al., Opt. Lett. 35, 2133 (2010).
[9] S. Miki et al., Opt. Exp. 21, 10208 (2013).
[10] S. Miki et al., Opt. Exp. 25, 6796 (2017).
[11] https://www.nict.go.jp/press/2022/09/16-1.html
[12] S. Miki et al., Opt. Exp. 22, 7811 (2014).
[13] H. Terai et al., Appl. Phys. Lett. 97, 112510 (2010).
[14] T. Yamashita et al., Opt. Lett. 37, 2982 (2012).
[15] S. Miyajima et al., Opt. Exp. 26, 29045 (2018).
[16] S. Miki et al., Appl. Phys. Lett. 112, 262601 (2018).
[17] M. Yabuno et al., Optica Quantum 1, 26 (2023).

著者略歴:
2003 年神戸大学大学院自然科学研究科博士後期課程修了。
2005 年10月情報通信研究機構に入所。現在、同機構未来 ICT 研究所神戸フロンティア研究センター超伝導 ICT 研究室室長。主に超伝導ストリップ型光子検出器の研究開発に従事。応用物理学部会員、電子情報通信学会会員。工学博士。2012 年文部科学大臣表彰若手科学者賞、2017 年超伝導科学研究賞、2021 年島密賞、2023 年エレクトロニクスサイエンティフィック賞を受賞。
この度は、IEICE Electronics Express (ELEX)に投稿した論文、“PAM4 48-Gbit/s Wireless Communication Using a Resonant Tunneling Diode in the 300-GHz Band”[1]を IEICE ELEX Best Paper Award に選定頂きましたことを大変光栄に思い、関係各位に深く御礼申し上げます。本論文は本News Letterの筆者が大阪大学大学院基礎工学研究科に所属した際の研究成果をまとめたものです。

本論文では 300 GHz 帯のテラヘルツ波を用いた 4 値振幅変調（Pulse Amplitude Modulation 4: PAM4）無線通信システム、特に共鳴トンネルダイオード（Resonant Tunneling Diode: RTD）受信器を用いた増幅検波という新たな検波方式の解析とそれを利用した PAM4 通信の実証を行い、RTDがテラヘルツ波の増幅器としても機能する可能性を初めて示しました。PAM4 は大容量光ファイバ通信での利用が広がっている通信方式であり、テラヘルツ通信においてもこの方式を用いることで有線通信と無線通信のシームレスな接続が期待されます。

従来のテラヘルツ波受信器であるショットキー遮蔽二極管（Schottky Barrier Diode: SBD）と比較して、RTDは特に低い受信電力に対する感度が高いことがわかりました（図1）。これはRTDが有する負性コンダクタンス（Negative Differential Conductance, NDC）領域におけるテラヘルツ波の増幅機能が寄与していることを見出しました。これにより、PAM4通信に対する受信波形が改善し、SBD 領域での PAM4 通信速度が 14 Gbit/s に限定されていた 300 GHz 帯での PAM4 通信速度が RTD では 48 Gbit/s に向上しました（図2）。

本論文の成果は今後、データセンターなどの大規模施設における有線通信を無線通信に置き換えるような通信インフラの効率化に寄与することが期待されます。私はこの分野の研究開発に大きな期待を寄せています。

大阪大学大学院在籍中には本論文の共著者である永妻 忠夫 教授、富士田 誠之 深教授、Julian Webber 博士にはご指導頂き、西上 直毅氏、山本 拓実氏、山本 拓実氏には多大なるご協力頂きました。ここに厚く御礼申し上げます。
It is an immense pleasure to be praised with the 2023 ELEX Best Paper Award for my research publication in the prestigious IEICE Electronics Express journal, entitled “Small magnetless integrated optical isolator using a magnetized cobalt ferrite film”. I would like to briefly introduce the background of this research here.

Optical isolators are nonreciprocal optical devices that allow light propagation in a single direction, preventing unwanted backward light reflections in photonic circuits. These devices typically consist of magnetized bulky magneto-optical (MO) materials to break Lorentz reciprocity and achieve optical isolation. An integrated optical isolator on Silicon photonic integrated circuits (Si-PICs) is highly desired for the optimal operation of active devices such as integrated lasers.

Great efforts have been made to integrate traditional MO materials such as yttrium iron garnet (YIG) on Si platforms, but crystal growth of garnets on silicon is challenging due to their material discrepancy. So far, Si optical isolators based on YIG have been achieved by heterogeneous integration methods such as direct bonding [1], adhesive bonding [2], or micro transfer printing [3]. Isolators using polycrystalline YIG deposition on silicon have also been demonstrated [4], but the lower MO material quality and the required high temperature process are a concern for practical application on Si-PICs.

In order to solve the Si integrated isolator problem, we propose the use of cobalt ferrite (CFO) as novel MO material for the realization of optical isolators. The material discrepancy between CFO and Si can be solved using an appropriate buffer layer such as magnesium oxide. In addition, The Faraday rotation coefficient (FR) at 1,550 nm wavelength of cobalt ferrite is multiple times larger than that of Ce:YIG, permitting the realization of reduced footprint nonreciprocal devices. However, the large optical absorption at telecom wavelengths of spinel materials is a performance-limiting factor for practical devices.

In this research, we demonstrate a compact and monolithically integrated optical isolator on a silicon-on-insulator (SOI) substrate. This isolator uses a self-magnetized CFO film deposited by a sputtering method on a Si racetrack micro-ring waveguide structure with a reduced footprint of only 40 x 80 um. The CFO film is self-biased by its own remanent magnetic field, allowing operation without an external magnet, reducing device bulk, and improving fabrication throughput. Isolation operation near 1550 nm wavelength with an isolation ratio of 9.6 dB was achieved.

References :
[1] Shoji, Y., et al., Applied Physics Letters, 92(7), 071117 (2008).
[2] Ghosh, S., et al., Optics Express, 20(2), 1839 (2012).
[3] Minemura, D., et al., Optics Express, 31(17), 27821 (2023).
[4] Bi, L., et al., Nature Photonics, 5(12), 758–762 (2011).
[5] Serrano-Núñez, et al., Applied Physics Express, 13(6), 062002 (2020).

Biography :
Mario Serrano received his Ph.D. degree in Electronic and Electrical Engineering from Tokyo Institute of Technology in 2022. His Ph.D. degree research was focused on the development and integration on Silicon Photonics of cobalt ferrite films with high Faraday rotation. In 2022, he joined Fujitsu Optical Components Ltd, where his research interests are ultra high-speed germanium photodiodes on silicon photonics, and integrated silicon modulators based on large electro-optic effect materials.
この度は拙著論文に対してエレクトロニクスソサイエティ招待論文賞をいただき、大変光栄に思います。推薦していただいた皆様、選考委員の皆様、エレクトロニクスソサイエティの皆様に感謝申し上げます。推薦していただいた皆様、推薦していただいた皆様、推薦していただいた皆様、推薦していただいた皆様、推薦していただいた皆様、推薦していただいた皆様、推薦していただいた皆様、推薦していただいた皆様、推薦していただいた皆様、推薦していただいた皆様、推薦していただいた皆様、推薦していただいた皆様。

研究開発の背景

本論文では、私たちの日常生活でインフラとして活用されている無線通信やレーダ等に用いられる窒化ガリウム（GaN）高出力アンプ（PA）の研究を紹介します。PAはマイクロ波・ミリ波の電力を高める役割を担っており、その出力電力と効率は、各アプリケーションの運用距離や消費電力を決定する重要な要素です。

GaNに関する現在および今後の研究は、高出力、高効率、高周波・広帯域性の3つの方向性があります。PAの高出力化は、通信機器やレーダの到達範囲を広げることを可能にします。また、PAの高効率化は、冷却システムの簡素化や無線機器の小型化を可能にします。さらに、無線通信では、高周波ほど高データレート信号の送信に必要な帯域幅を確保するため、広帯域性の追求も重要な課題となります。そのため高周波/広帯域に対応できるデバイスや回路設計の導入が求められます。

GaNは、高い電子移動度、電子飽和速度、大きなバンドギャップを持つため、上記の目標達成に向けて魅力的な選択肢となります。論文では、当社が行ったGaN高電子移動度トランジスタ（HEMT）の性能向上に向けた取り組みを紹介し、その効果と可能性を示しました。

従来、GaNデバイスには供給層にAlGaNを用いたものが主流ですが、我々はインジウム（In）を添加したInAlGaInGaN HEMTを開発し、マイクロ波からミリ波領域で高い出力特性を実現しました。Inを添加することにより、格子歪を取り除くことなくシート抵抗を低減することができました。これにより高いキャリア濃度と移動度を同時に実現し、結果として高出力を達成することが可能となりました。ゲート長0.25 μmデバイスのS帯GaN HEMTでは、従来9 W/mmであった大信号出力を15 W/mmに向上しました。さらに、6G通信での適用が期待される100 GHz帯に対応するため、ゲート長を80 nmまで縮小し、大信号特性を評価しました。その結果、96 GHzで3 W/mmというW帯でも高い出力特性が得られました。さらに、このトランジスタを用いてW帯パワーアンプMMICを設計しました。W帯では、モデルの高精度化が必要となります。そのため、我々はドレイン電圧に対して出力側容量が変化するモデルを提案し、このモデルを用いて設計を行いました。試作したMMICは86 GHzで利得18 dB、出力電力1.15 W、電力付加効率12.3%を達成しました。これらの結果はInAlGaInGaN HEMTが高周波・高出力アプリケーションに有望な技術であることを示しています。

PAの広帯域化に向けた設計手法も提案しています。一般的に、PAはトランジスタが並列に配置されるため、インピーダンスが数Ωまで低下します。このような低インピーダンスから、入出力に使われている50Ωへ広い周波数範囲にわたり低損失で変換する必要があります。我々は、3次元配線構造を用いた結合線路を電力合成器に適用し、電力合成器にインピーダンス変換機能を持たせることで、インピーダンスの変換の緩和と電力合成の両方を実現しました。試作したGaNPAは、中心の周波数とカバーする周波数（0.5～2.1 GHz）の比である帯域比120%で、200 Wの出力を得られました。出力電力と周波数帯域の積で定義する広帯域増幅器の性能指標は、従来と比べて2.5倍以上を実現し、広帯域な電力合成ができていることを実証しました。

今回の受賞を大いなる励みとして、GaNデバイスの高出力・広帯域・高効率化を目指したデバイス開発と回路技術の進化を推進し、エレクトロニクス分野の更なる発展に貢献していきます。

著者略歴：
1999年東北大学大学院工学研究科修士課程修了。同年富士通研究所入社。2009-2010年ジョージア理工学院客員研究員。2014年東京工業大学工学博士。現在、マイクロ波・ミリ波帯アナログ回路の研究開発に従事。電子情報通信学会、IEEE各会員。2006年電子情報通信学会学術奨励賞受賞。
【寄稿】学生奨励賞受賞記

「極低温下での 67-116 GHz 帯 導波管回路の損失測定」

増井 翔（国立天文台）

この度、名誉ある電子情報通信学会エレクトロニクスソサイエティ学生奨励賞を受賞することができ、大変光栄に存じております。また、選定に携わられた学会関係者の皆様に心より御礼申し上げます。

私どもは、チリのアタカマに設置されたALMA (Atacama Large Millimeter/submillimeter Array) 望遠鏡に搭載する高感度ヘテロダイン受信機の開発に従事しております。本研究では、67-116 GHz 帯に対応した新受信機に使用される導波管回路を極低温下（約4ケルビン）にて、いかに高精度化に測定できるかを研究しています。高感度な受信機を開発する上で、使用している回路のパラメータを知ることは非常に重要です。しかし、導波管回路は、非常に低損失（0.2–0.3 dB@100 GHz 帯）でありながら冷却下で使用されるため、実動作温度での挿入損失を測定することが困難でした。上記の問題を解決するために、我々はネットワークアナライザとクライオスタットを使用し、高精度な測定系の開発を進めました。高精度化のために、フィードスルーの見廻りが容易であることからRFID等のバックスキャッタ通信へ適していると考えられます。

RDA の評価としては、任意の到来方向から電波が照射された際の再放射パターンの測定が行われています。二次元 RDA の場合は二次元再放射パターン測定による評価が望ましいですが、従来研究においてそのような例は報告されていませんでした。

そこで本研究では5 GHz 帯 2×2 RDA を試作し、二次元再放射パターンの測定を行いました。測定にはアジャス・エレベーションポジショナを用い、RDA へ電波を照射するアンテナをアジャス台に固定し、共に再送信で射するアレートンテネア 3 つに分離し、2 個のアレートンテネア空間直交させて RDA への照射波と RDA からの再放射波とのアイソレーションを高めました。測定結果より、試作 RDA が各次元方向それぞれに 30°の範囲でレトロディレクティブ特性を示すことを見繋しています。

今回の受賞を励みとして、より一層精進して参ります。最後に、本研究を進めるにあたりご指導いただきました東北大学の末松憲治教授、芝隆司特任教授、古市朋之助教をはじめとする研究関連者の皆様に心より感謝いたします。

著者略歴：
2023 年 大阪府立大学 理学系研究科 博士前期課程修了、同年、国立天文台 先端技術センター 特任研究員。ミリ波サブミリ波帯ヘテロダイナム受信機の開発を主導し、多素子化が実現した。2020 年先端 ICT デバイスマテリアルログショップ最優秀ポスター賞、2020, 2021 年 VLBI 研究会シンポジウム最優秀口頭発表賞、2023 年応用物理学会講演奨励賞 各受賞。

「5 GHz 帯 2×2反射型レトロディレクティブアレーの二次元再放射パターンの測定」

本間 優作（東北大学）

この度は名誉あるエレクトロニクスソサイエティ学生奨励賞をいただいた大変光栄に存じます。ご推薦いただいたエレクトロニクスソサイエティ関係者の皆様に深く感謝申し上げます。

受賞対象となります研究について簡単にご紹介いたします。レトロディレクティブアレー (RDA) とは、任意の電波の到来方向に対し指向性を有するアレートンテネアのことで、その一種である反射型 RDA は终端条件の切り替えが容易であることから RFID 等のバックスキャッタ通信へ適していると考えられます。

RDA の評価としては、任意の到来方向から電波が照射された際の再放射パターンの測定が行われています。二次元 RDA の場合は二次元再放射パターン測定による評価が望ましいですが、従来研究においてそのような例は報告されていませんでした。

そこで本研究では5 GHz 帯 2×2 RDA を試作し、二次元再放射パターンの測定を行いました。測定にはアジャス・エレベーションポジショナを用い、RDA へ電波を照射するアンテナをアジャス台に固定し、共に回転させることで照射方向を保つようにしました。また RDA を受信アレートンテネア、位相共役回路、再送信アレートンテネアの 3 つに分離し、2 個のアレートンテネア空間直交させることで RDA への照射波と RDA からの再放射波とのアイソレーションを高めました。測定結果より、試作 RDA が各次元方向それぞれに 30°の範囲でレトロディレクティブ特性を示すことを見繋しています。

今回の受賞を励みとして、より一層精進して参ります。最後に、本研究を進めるにあたりご指導いただきました東北大学の末松憲治教授、芝隆司特任教授、古市朋之助教をはじめとする研究関連者の皆様に心より感謝いたします。

著者略歴：
2021 年東北大学学術情報技術工学科卒業、2023 年東北大学大学院工学研究科通信工学専攻修士課程修了。同年株式会社村田製作所入社。現在は通信モジュール開発に従事。2022年度マイクロ波研究会研究奨励発表賞受賞。
寄稿
学生奨励賞受賞記

「高感度偏光イメージングシステムを用いたミリ波電界イメージング」
岡田 龍馬（奈良先端科学技術大学院大学）

この度は、名誉あるエレクトロニクスソサイエティ学生奨励賞をいただき、誠に光栄に存じます。ご推薦していただいたエレクトロニクスソサイエティ関係者の皆様に厚くお礼申し上げます。

本研究を進めるにあたりご指導頂いた奈良先端科学技術大学院大学の太田淳教授、笹川清隆准教授をはじめとする光機能素子科学研究室の先生方、情報通信研究機構の水野麻弥様に、深く御礼申し上げます。また、研究室のメンバーとの議論を通じて研究内容をより洗練されたものとすることでことができました。

今回受賞対象となりました研究は、電気光学効果を用いてミリ波電界を高感度にイメージングするシステムの開発を行いました。我々はこれまでに、各画素上に金属配線層によるワイヤグリッド偏光子を搭載した偏光イメージングセンサに一様な偏光子を重ねた二重偏光子構成とすることで、微弱な偏光変化を高感度に検出する方法を提案してきました。本手法では、イメージング画素への入射光量を低減して画素飽和を回避することが可能であり、電界プローブとしてはたらく電気光学結晶への照射光量上限を大幅に増加可能となるため、電界検出性能が飛躍的に改善されました。本システムでは、局部発振光を光変調器と光増幅器を組み合わせて生成することによって、十分な周波数と光強度を実現し、電界検出性能が飛躍的に改善されました。この高感度偏光イメージングシステムと電気光学結晶を組み合わせた電界検出システムを構築し、ミリ波5Gにおける近傍電界のイメージングに成功しました。

今回の受賞を励みとして今後の研究活動により一層の精進を重ねてまいりたいと存じます。著者略歴:
2020 年静岡大学工学部電気電子工学科卒業。2022 年奈良先端科学技術大学院大学先端科学技術専攻修士課程修了。現在同大学院博士後期課程に在籍し、光機能素子科学研究室に所属。微弱偏光検出 CMOS 偏光イメージングセンサおよび、それを用いた電気光学効果に基づく高周波電界イメージングに関する研究に従事。

「高速波長可変レーザとアレー導波路回折格子を用いたテラヘルツパルス波発生」
桝冨 直人（九州大学）

この度はエレクトロニクスソサイエティ学生奨励賞という名誉ある賞を賜り、大変光栄に存じます。ご推薦して頂いたエレクトロニクスソサイエティ関係者の皆様方に厚く御礼申し上げます。

今回受賞対象となりました研究は、私たちの研究室で提案している単一光源によるテラヘルツパルス波生成法におけるパルス波の形状改善を図るものです。将来の大容量無線通信の無線キャリアとしてテラヘルツ帯の利用に注目が集まっています。テラヘルツ波を生成する手法のうち、フォトミキシング技術は周波数可変性、位相制御性に優れた技術です。その一方で従来手法では二つのレーザを用いて構成されるため、将来の実用化に向けてシステム規模や消費電力の削減の余地が十分にあります。そこでこれまで私たちは波長可変レーザを用いて一つのレーザからテラヘルツ波を生成する手法を考案・実証し、さらにパルス状のテラヘルツ波の生成を確認してきました。しかし波長可変レーザの波長切替過程において目的外の光周波数の光波が生成されることがあり、その結果、生成されるパルス波の形状に歪みが生じています。今回の発表では本手法によるパルス波の形状改善のために、新たにアレー導波路回折格子を導入してテラヘルツパルス波の生成実験を行い、歪みを解消したパルス波の生成を確認した結果を報告致しました。

今回の受賞を励みに、より一層の精進を重ねていく所存です。終わりになりますが、本研究を進めるにあたりご指導賜りました九州大学の加藤和利教授、ならびに共同研究機関の関係者の皆様、研究室メンバにこの場をお借りして厚く御礼申し上げます。

著者略歴:
2023 年九州大学工学部電気情報工学科卒業。同年より同大学院システム情報科学研究科電子工学専攻修士課程に在籍。波長可変レーザを用いたテラヘルツ波生成に関する研究に従事。
【寄稿】学生奨励賞受賞記

「電極/Nb-doped SrTiO3 界面の光誘起電流を利用したリザバーコンピュティング」

山﨑 悠太郎（東京理科大学）

この度は名誉あるエレクトロニクスソサエティ学生奨励賞を授与いただき、大変光栄に存じます。ご推薦頂いたエレクトロニクスソサエティ関係者の皆様方に厚く御礼申し上げます。

今回受賞対象となりました研究は、リザバーコンピュティング（RC）の物理実装に関するものです。RCの中間層「リザバー」は、入力信号の非線形変換を担いますが、この働きをソフトウェアに代えて物理ダイナミクスの非線形応答で置き換えることができます。物理実装したリザバー（物理リザバー、以下「PR」）はRCの更なる高効率化を実現しますが、精度の良い時系列学習を行うには、入力信号とPRの「忘却」の時間スケールが同程度である必要があります。物理系を熱平衡状態かららずらした際、元の状態へ復帰するのに要する緩和時定数がPRの忘却の時間スケールに相当します。故に、従来のPRでは、扱うことができる時系列信号の時間スケールが、選択した物理系に固有の緩和時定数により制限されています。本研究では、緩和時定数を任意に調整可能なPRの実現を目指し、基板材料として光刺激と電気刺激の両者で電気伝導率が変化するチタン酸ストロンチウム（SrTiO3）に注目しました。SrTiO3ベースの光メモリスタに対して、光照射中に電気刺激を重畳することで、デバイスの緩和時定数を数桁に亘って制御できることを実証しました。これにより、論理状態の確率分布はボルツマン分布に従うため、QFPの状態を後段回路で読み出すことで、動作周波数により変化しない確率分布を実現できます。

現在、更なる効率的なニューラルネットワーク構造を目指しています。今回の受賞を励みとして、一層の精進を重ね研究に邁進する所存です。今後とも皆様のご指導ご鞭撻の程、何卒宜しくお願い申し上げます。

最後に、指導教員の吉川信行教授をはじめ、本研究で大変貴重なご助言を頂いている竹内尚輝教授、陳オリビア教授に、この場を借りて厚く御礼申し上げます。

著者略歴:
2021年横浜国立大学大学院理工学府数物・電子情報系理工学専攻博士課程前期修了。現在、同大学院理工学府数物・電子情報系理工学専攻博士課程後期在学中。

「熱平衡型超伝導ストカスティックメモリの提案」

羅 文輝（横浜国立大学）

この度は名誉あるエレクトロニクスソサエティ学生奨励賞を授与いただき、大変光栄に存じます。本研究を推薦していただきました関係者の皆様方に厚く御礼申し上げます。

本発表は、ストカスティック演算（SC）に基づくニューラルネットワークの実装に向けて、自身の先行研究で提案された超伝導ストカスティックメモリ（SSM）を改良し、熱平衡型SSMを提案しました。SCでは、ビット系列の論理1の確率を用いて数値が表され、シンプルなハードウェアでニューロン回路を実装できます。私は、これまでに小さなハードウェアコストで二進数をストカスティックビット列に変換するため、磁束保持ループと量子磁束パラメトロン（QFP）を利用し、従来型SSMを提案しました。しかし、このSSMではQFPの動的なポテンシャルを利用するため、0と1の確率分布が動作周波数により変化してしまうという問題があります。本研究では、QFPを直流で励起し、ポテンシャルのエネルギーバリアを非常に低くすることで、QFPの論理状態が熱雑音により揺らぐことを利用します。その結果、論理状態の確率分布はボルツマン分布に従うため、QFPの状態を後段回路で読み出すことで、動作周波数により変化しない確率分布を実現できます。

現在、更なる効率的なニューラルネットワーク構造を目指しています。今回の受賞を励みとして、一層の精進を重ね研究に邁進する所存です。今後とも皆様のご指導ご鞭撻の程、何卒宜しくお願い申し上げます。

最後に、指導教員の吉川信行教授をはじめ、本研究で大変貴重なご助言を頂いている竹内尚輝教授、陳オリビア教授に、この場を借りて厚く御礼申し上げます。

著者略歴:
2021年横浜国立大学大学院理工学府数物・電子情報系理工学専攻博士課程前期修了。現在、同大学院理工学府数物・電子情報系理工学専攻博士課程後期在学中。
会員の皆様には、日頃より ELEX の編集にかかわる活動や運営へ多大なるご協力、ご理解を頂き有難うございます。この場をお借りして感謝を申し上げます。

ELEX (IEICE Electronics Express) は、完全電子版、オープンアクセスの英文レター誌です。電子版であることにより、誌面内の参考文献へのリンクが提供され、また、カラー図面の使用に加えて動画などのマルチメディアファイルの使用も可能となっています。さらに、投稿から判定までができるだけ短期間となるよう、査読期間の短縮に努めております。採録決定後には、直ちに校正前原稿を早期公開した上で月２回の出版を行うなど、電子版であることの特徴を活かした出版を行なってきています。

このような目的を達成するために、これまでも何度か論文書式の見直しを実施してきましたが、ELEX では現在、新たな論文書式の変更を計画しています。皆様が本稿をお読みになる頃には、ELEX のウェブページ (https://www.ieice.org/publications/elex/index.html) には、早期公開となった論文が随時掲載されています。

この書式変更は、主に以下のように要約されます。
1) ELEX 掲載論文の著作権情報を１ページ目の下部に表示することとした。
2) ORCID 情報を表示できるようにした。

ELEX の掲載論文は、創刊当初からオープンアクセスとしておりましたが、その著作権に関する制限の有無をより明確に示すため、すべての論文に著作権情報（CC-BY-NC-ND）を示すこととしました。CC-BY-NC-ND とは、適切なクレジットを表示し、原著論文を改変せず、かつ非営利目的であるという条件のもとで、自由に複製や再配布を可能とするライセンスです。この著作権情報を示すことによって共有等がより容易になり、ELEX の論文が世界中のさらに多くの方に触れられる機会が増えるものと期待しております。

また、ORCID 情報とは、研究成果や著作物に関する著作者の情報を統一したプロファイルにより示すことを目的とする識別 ID であり、無償で取得し使用することができる上記著作権表示と異なり、論文への ORCID 情報の表示は、著者が自らの意図で表示または非表示を選択できるオプションとしています。ORCID 情報は、研究成果の管理や名寄せが容易になるなど、著者にとっても学術コミュニティにとっても様々な利便性があります。このため、今後、多くの著者が ORCID 情報を表示するものと期待しています。

これらの書式上の小さな変更に見えるかもしれませんが、ELEX としては、これらの取り組みが著者にとっても ELEX の目的を果たす上でも有益な変更であると考えております。皆様の優れた成果の発表の場としてふさわしいものとなるよう、時流に遅れないこと無く、また、流れること無く、ELEX の改善を続けて参ります。今後も皆様からの積極的なご投稿をお待ちしております。

末筆となりましたが、編集委員、特別編集幹事、編集幹事、および査読者の皆様方の献身的なご努力により本誌の出版が支えられていることを、深い感謝の念を込めて申し添えまして、筆を置かせていただきます。

著者略歴：
2004 年京都大学大学院情報学研究科 博士課程修了。博士(情報学)。日立製作所、ルネサステクノロジー、東京工業大学を経て、2009 年より京都大学大学院情報学研究科教授。2020 年より ELEX 編集委員長。
Asia-Pacific Synthetic Aperture Radar (APSAR: アジア太平洋合成開口レーダ) 国際会議は、開始から十年余りの若い会議です。奇数年度に開催しており、中国、韓国、日本、シンガポール、オーストラリアの国々の持ち回りで開催されてきました。2023年10月23日から26日まで、インドネシア・バリで対面形式で開催されました。2021年11月にも開催されましたがオンライン形式だったため、再度バリでの開催とされたようです。大会実行委員長は、インドネシア出身で千葉大学環境リモートセンシング研究センター所属のJosaphat Tetuko Sri Sumantyo（ヨサファット）教授が務めました。大会のWebサイトのURLは、https://apsar2023.orgです。

大会は10月23日〜10月26日に開催され、101人が登録し、19のセッションが構成されました。口頭発表予定77編のうち65編が発表されました。以下に、セッション名を記載します。

- Interferometric and Polarimetric SAR 1 to 4
- SAR Applications 1 to 2
- SAR Image Processing 1 to 4
- SAR and Radar Systems 1 to 2
- Dedicated for Indonesian Remote Sensing Society 1 to 2
- Instrumentation and Future Technologies
- SAR Moving Target and Detection 1 to 2

閉会式では表彰式も行われ、「Best Chair Award」や「Best Participant Award」等、独特な賞も授与されました。下記に優秀発表賞と優秀論文賞者を記載します。

- Best Presenter Award : Yuta Otsuka, The University of Tokyo, Japan
- Best Student Presenter Award : Haolin Li, Harbin Institute of Technology, China
- Best Paper Award : Avik Bhattacharya, Indian Institute of Technology Bombay, India
- Best Student Paper Award: Subuh Pramono, Universitas Sebelas Maret, Indonesia

インドネシアに続き日本からの参加者も多かった反面、中国からの参加者が激減していました。次回は、2025年10月5日〜9日に、著者を大会委員長として松江市にて開催予定です。APSAR 2023の開会式でも松江市の会場や魅力を説明し、参加者には好評でした。

APSAR 2025の準備委員会は実質的に2023年10月から開始しました。約30名の委員と共に、当面は2カ月に一度進捗状況を確認していく予定です。

著者略歴:

2000年 東京大学大学院工学系研究科博士課程修了。同年 東京情報学技術研究所博士研究員。2001年 同大学総合情報学部助手。2004年 東京情報学技術研究所助手。2007年 東京大学大学院工学研究科助手教授。2020年 東京大学助教授。一般社団法人日本写真測量学会賞、Asian Conference on Remote Sensing (ACRS) Shunji Murai Award等を受賞。
URSI 日本国内委員会
委員長 八木谷 聡（金沢大学）
副委員長 小林 一哉（中央大学）
主幹事 芳原 容英（電気通信大学）

URSI 総会（URSI General Assembly and Scientific Symposium: URSI GASS）は国際電波科学連合（International Union of Radio Science: URSI）が3年ごとに開催する電波科学分野における世界最大の国際会議です。電磁波伝搬・計測から環境電磁工学、エレクトロニクス、フォトニクス、地球、宇宙、天文、生体を含む広範な分野にわたる電波科学関連技術の研究領域において世界各国の研究者・技術者が一堂に会して研究発表ならびに情報交換を行う国際的な場を提供し、世界の電波科学ならびに関連の研究・開発の一層の活性化と発展に資することを目的としています。

URSI 総会は過去に日本で2回開催され（1963年東京、1993年京都）、共に大成功を収めてきました。

第35回国際電波科学連合総会（URSI GASS 2023）はわが国での30年ぶり3回目的開催となる記念すべきURSI総会であり、電子情報通信学会の主催ならびにURSI及び日本学術会議の共同主催により、2023年8月19日～26日に札幌コンベンションセンター（北海道札幌市）にて開催されました（https://www.ursi-gass2023.jp/）。参加者数は49カ国から1,434人（国内447人、海外987人）で、投稿論文数は1,682件（うち採択1,680件）、発表論文数は1,443件に上りました。これは当初の想定を大幅に上回り、参加者数、論文数とともに、コロナ禍以前の2017年にカナダ・モントリオールにて開催された第32回国際電波科学総会の規模を上回る結果となりました。

URSI GASS 2023ではこれまでのURSI総会と同様に、電波科学分野における優秀な若手研究者を発掘、支援すべく、2つの若手研究者プログラムである学生論文コンテスト（Student Paper Competition: SPC）及び若手研究者学術賞（Young Scientist Award: YSA）を実施しました。これらのプログラムには多数の応募（SPC 62名、YSA 186名）があり、SPC受賞者11名、及びYSA受賞者97名を選考し
表彰しました。YSA 受賞者を図 4 に示します。また若手研究者向けのプログラムとして、若手研究者スクール、若手研究者ネットワーキングイベント、及び若手研究者パーティーを実施し、学生を含む数多くの若手研究者が参加、交流する場を提供しました。

図 4 URSI GASS 2023 YSA 受賞者

また特別プログラムとして、「電波科学における女性研究者（Women in Radio Science: WIRS）ワークショップ」、及び「災害リスク軽減と管理ワークショップ」を開催しました。いずれも時宜を得た世界的に関心の高いテーマであり、多数の参加者が熱心に討論を行いました。

会場には電波・情報通信関連の企業展示ブースが 22 件設けられ、多くの会議参加者が展示に立ち寄り、ブース担当者と熱心に情報交換を行う姿が見られました。

併せて、会期中には URSI 役員会や URSI 理事会などの各種ビジネスミーティングが開催されました。特に URSI 加盟各国の代表者らが参加する URSI 理事会においては、次期（2023 年～2026 年）URSI 役員の選定、2029 年 URSI 総会開催地の選定、各国における URSI 分担金の再設定などの重要議題について審議がなされました。

さらに本国際会議の関連イベントとして、会期中 2023 年 8 月 24 日には「持続可能な社会を目指した電波科学が拓く未来」と題する市民講座を開催し、札幌市内の中小・一般市民及び関連企業の研究者・技術者に広く参加いただきました。本市民講座では、電波科学研究の最前線で活躍する著名な研究者を 2 名招聘し、最新の研究成果について分かりやすい講演がなされました。また会期終了翌日の 2023 年 8 月 27 日には小学校を対象とした体験型イベント「科学教室－見えないでんぱを感じてみよう」として、ゲルマニウムラジオの製作教室を行いました（図 5）。札幌及び陸別の中高・小学校の生徒を対象にした、教員が手伝いながら、小学生们が自分でラジオを製作し、電波を実際に感じられる体験を通じて、電波の魅力に親しむ機会を提供しました。

URSI GASS 2023 は多数の参加者を得て大成功裏に終了しました。札幌から世界に向けて最先端の研究成果が発信されたことにより、国内外における電波科学研究の飛躍的な発展につながるものと期待しています。引き続き世界の URSI コミュニティにおける我が国のプレゼンテーションを高めるため、私たち URSI 日本は組織的に電波科学関連活動を推進していく所存です。最後になりますが、URSI GASS 2023 の開催に対してご支援・ご協力頂いた関係各位に厚く御礼申し上げます。

図 5 体験型イベント

なお、URSI GASS 2023 の記録動画を以下のサイトで公開しています。ぜひご覧ください。

(1) URSI GASS 2023 メモリアル動画
https://www.youtube.com/watch?v=YgoEAut8dnI
(2) URSI GASS 2023 開会式（第 1 部：開会式）
https://www.youtube.com/watch?v=ZYTXxUj6zFg
(3) URSI GASS 2023 開会式（第 2 部：URSI の歴史）
https://www.youtube.com/watch?v=WkEKPAnxs
(4) URSI GASS 2023 開会式（第 3 部：学術賞授賞式）
https://www.youtube.com/watch?v=Jpklv3-oRyA
(5) URSI GASS 2023 閉会式
https://www.youtube.com/watch?v=j9TzukYBC1Y

著者略歴：
八木谷 聡：1993 金沢大学生計科学研究科修士、博士（工学）。同年同助教。1997～1998 米国ミネソタ大客員研究員。現在、金沢大理工研究域教授・先端宇宙理工学研究センター長。日本学術会議連携会員。
小林 一哉：1982 早稲田大理工学研究科修士、博士。同年同助教。現在、中央大理工学部教授。URSI 副会長。米国 M. A. Khizhnyak Award 受賞。
芳原 容英：1997 情報理工学院電気通信学研究科修士、博士（工学）。同年応用物理研(露)客員研究員。現在、電気通信大学情報理工学研究科教授、宇宙・電磁環境研究センター長。日本学術会議会議員。
1. はじめに
フォトニクス・電磁波工学研究に関するシンポジウム(Photonics and Electromagnetics Research Symposium: PIERS)は、米国マサチューセッツ州ケンブリッジに本部を置く電磁波工学アカデミー(The Electromagnetics Academy: TEMA)が主催する大型国際会議である。本国際会議はフォトニクス・電磁波工学とその応用・関連技術に関する最新の研究成果の発表と情報交換を行うことを目的としており、これまでに計44回開催され、参加者数・論文数・学術レベルにおいて常に成功を収めてきた。本稿の以下においては、2023年7月にチェコ・プラハで開催されたPIERS 2023 Pragueの概要を報告する。

2. PIERS 2023 Pragueの概要
PIERS 2023 Prague（第44回PIERS）は、2023年7月3日～6日にプラハコングレスセンター(Prague Congress Center)(チェコ・プラハ)で、完全対面形式で開催された。本会議から、新たな分野としてSC6（量子科学・工学）のセッションが追加された。PIERS 2023 Pragueの開催規模を表1にまとめめる。また、オーラルセッションとポスターセッションの様子を各々、図1、2に示す。PIERS 2023 Pragueでは、54の国・地域から1059名の参加があった。

項 目	数 量
アブストラクト投稿件数	1630
アブストラクト採録件数	1300
フルペーパー投稿件数	467
フルペーパー採録件数	354
オーラルセッション論文数	1071
(内数)フォーカスセッション論文数	109
(内数)スペシャルセッション論文数	829
(内数)一般セッション論文数	133
ポスターセッション論文数	229
参加登録者数	1153
参加者数	1059

3. PIERS 2023 Pragueの参加登録者数
参加登録者数の国・地域別内訳（上位20の国・地域）を図3に示す。参加登録者数は中国が最も多く419名（第1位）で、日本の参加登録者数は中国、イタリア、米国、ドイツに次いで第5位56名であった。
4. Piers 2023 Prague 学術賞
PIERS 2023 Prague では、若手研究者プログラムと上級研究者プログラムが実施され、その受賞者が 2023 年 7 月 5 日のパネルに示し、表彰された。若手研究者プログラムでは、フォトニクス・電磁波工学研究の将来を担う優秀な若手研究者を発掘することを目的として、以下 3 つのプログラムが実施された。
・最優秀学生論文賞（BSPA）
・若手研究者学術賞（YSA）
BSPA では、論文を 5 分野（SC1&6、SC2、SC3、SC4、SC5）に分類し、各分野について受賞者（Prize Winner）3 名（1 位、2 位、3 位）及び奨励賞（Honorable Mention）1～2 名を選考し、合計で 24 名が表彰された。図 4 は BSPA-SC1 の受賞者を示す。

図 4 BSPA-SC1 受賞者

YSA では、40 歳未満の若手研究者による応募論文を BSPA 同じ 5 分野に分類し、合計で 16 名が受賞し、表彰された。BSPA・YSA の応募件数を表 2 に示す。

学術賞の名称	応募件数
最優秀学生論文賞（BSPA）	145
若手研究者学術賞（YSA）	107

年齢が 40 歳以上の研究者を対象とする以下 2 つの上級研究者プログラムも併せて実施された。
・最優秀セッションオーガナイザ賞（BSOA）
・セッションオーガナイザ賞（SOA）
BSOA では、企画された全てのセッションの中から特に顕著な寄与を与えた 5 セッションが選ばれ、オーガナイザが表彰された。SOA では企画された全てのセッションの中から優れた寄与を与えた 10 セッションが選ばれ、オーガナイザが表彰された。

5. Piers ビジネスランチミーティング
PIERS ビジネスランチミーティングが 2023 年 7 月 4 日に開催され、PIERS の今後の開催計画を主催者から報告された。図 5 はビジネスミーティングの様子である。会議では、2024 年 4 月 21 日～25 日に中国・成都で第 45 回開催予定の PIERS 2024 Chengdu 実行委員会から、その開催計画が紹介された。続く第 46 回 PIERS（PIERS 2025 Chiba）は 2025 年 11 月 4 日～9 日に千葉・幕張メッセにて開催予定であり、PIERS 国内委員会から開催計画・準備状況を報告した。なお、PIERS 2025 Chiba の開催概要は、http://www.ccb.or.jp/mice/news/piers2025/に掲載されている。更に、2026 年 5 月 12 日～15 日に中国・蘇州で第 47 回 PIERS として開催予定の PIERS 2026 Suzhou の実行委員会からも開催概要が報告された。

著者略歴:
小林 一哉：1982 年早稲田大学大学院理工学研究科博士課程修了（工学博士）、同年中央大学理工学部専任講師、1995 年同助教授、2000 年同教授、現在に至る。国際電波科学連合（URSI）副会長・副事務局長、PIERS 学術賞選考委員会委員長、日本学術会議第 22～25 期連携会員、PIERS 国内委員会委員長、URSI フェロー、電磁波工学アカデミーフェロー、URSI 会長賞（2020 年）、国際会議 MMET*2016 で M. A. Khizhnyak 業績賞（2016 年）を受賞。
長坂 崇史：2018 年中央大学大学院理工学研究科博士課程修了（工学博士）、同年中央大学助手、2023 年足利大学工学部講師、現在に至る。国際会議 PIERS 2019 Xiamen にて若手研究者学術賞（2019 年）を受賞、国際会議 URSI GASS 2017 にて学生論文コンテスト第 3 位及び若手研究者学術賞を受賞（2017 年）、国際会議 MMET*2016 で若手研究者論文コンテスト奨励賞（2016 年）を受賞。
2023年電子情報通信学会ソサイエティ大会が2023年9月12日（火）～15日（金）に名古屋大学東山キャンパスを会場として開催され、本大会は基礎・境界ソサイエティ、NOLTAソサイエティ、通信ソサイエティ、エレクトロニクスソサイエティの4ソサイエティ合同で毎年開催されており、今回は2019年以来の完全対面開催となりました。大会の参加者総数は2626名、聴講参加者は1200名でした。また、初日に懇親会がザ・コンダーハウスで開催されましたが、150名を超える方にご参加いただき、大変活況となりました。今大会は一般講演1148件、シンポジウム講演50件の合計1198件の講演が行われました。エレクトロニクスソサイエティにおいては、各専門委員会からの一般講演（C-1電磁界理論、C-2マクロ波、C3/4光エレクトロニクスや量子エレクトロニクス、C-5機械デバイス、C-6電子部品・材料、C-7磁気記録・情報ストレージ、C-8超伝導エレクトロニクス、C-9電子ディスプレイ、C-10電子デバイス、C-12集積回路、C-13有機エレクトロニクス、C-14マクロポテラヘルツ光電子技術、C-15エレクトロニクスシミュレーション）として、合計240件の発表が行われ、貴重な成果の発表と活発な議論が行われました。プレナリーセッションにおいては、エレクトロニクスソサイエティ賞、ELEX Best Paper Award、レター論文賞、招待論文賞、学生奨励賞の贈呈式が行われました。その後、「世界を変える宇宙通信」と題して特別講演会を開催し、山川史郎氏（宇宙航空研究開発機構）、湯川守生氏（情報通信研究機構）、堀茂弘氏（株式会社Space Compass）の3名の方々に講演いただきました。宇宙を対象に広げ、また地球のどこからでもネットワーク接続することが可能になるといったような、大変夢のある話題を頂戴しました。

依頼シンポジウムとして、「光技術がSDGsに貢献できるかどうか考えよう」「我が国の最先端半導体製造技術の技術明けと未来」「テテ・ヨコに並べるIC実装の最前線」、通信ソサイエティとの合同で、「宇宙環境マイクロ波無線電力伝送実証型試験に向けた要素技術開発動向」、公募シンポジウムとして「電磁波散乱に対する解析的・数値的技法およびその応用技術」が企画、開催されました。本大会の運営に御尽力いただいた名古屋大学の関係者の皆様に感謝申し上げます。

さて、2024年3月4日（月）～8日（金）に2024年電子情報通信学会総合大会が広島大学東広島キャンパスにおいて対面形式で開催予定です。今大会のスローガンは、「コミュニケーションが育む絆」です。大会企画セッションとして、プレナリーセッションに加え、「社会インフラをささえる情報通信エンジニアリングを目指して」が企画されているほか、昨年に引き続いて、ジュニア&学生ボスター開催が開催されます。さらに、今大会は国際委員会とジョイントし、All Sections MeetingならびにGlobal Net Workshopが企画され、本大会の開催に携わられた皆様に御礼申し上げます。

著者略歴：
2014年京都大学大学院工学研究科博士課程修了。博士（工学）。同年より豊橋技術科学大学電気・電子情報工学系助教。2019年より富山県立大学工学部講師。現在に至る。人工知能向けに高性能センサの特性評価、方法論の構築、およびシステム化に関する研究に従事。電子情報通信学会、応用物理学会、電気学会、IEEE会員。
【お知らせ】

◆ 2024 年フェロー候補者推薦公募について

電子情報通信学会では、本会規則第 2 条第 5 項により、「学問・技術または関連する事業に関して顕著な貢献が認められ、本会への貢献が大きいシニア会員に対し、フェローの称号の証を贈呈」しています。エレクトロニクスソサイエティでは、皆様からご推薦いただいた方の中からフェローピアレビュー委員会と執行委員会にてフェロー候補者を選定し、学会本部のフェローノミネーション委員会に推薦します。本年の推薦期間は 4 月 1 日から 6 月 30 日です。エレクトロニクス分野でフェローの称号にふさわしい方のご推薦をお願い致します。詳細は以下の URL に記載されています。
<https://www.ieice.org/jpn_r/awards/title.html?id=a>

◆ シニア会員の申請について

シニア会員推薦規程が改正され、申請書及び推薦書の提出は年間を通して可能であり、6 月 30 日までに提出された申請書及び推薦書を当該年度の審査対象といたします。詳細は以下の URL に記載されています。
<https://www.ieice.org/jpn_r/awards/title.html?id=b>

・2024 年シニア申請〆切：2024 年 6 月 30 日
・申請資格：本会に関連する技術分野に原則 10 年以上従事しており、本会会員として累計在籍年数 5 年以上の正員、あるいは顕著な業績・貢献が認められる正員。
・申請方法：シニア会員申請ページからの自己申告です。

◆ エレクトロニクスソサイエティ学生奨励賞について

2024 年総合大会（2024 年 3 月 4 日～8 日、広島市、広島大学）において、第 34 回エレクトロニクスソサイエティ学生奨励賞の審査を行います。本賞はエレクトロニクス分野における優秀な発表（一般講演、シンポジウム講演）を行った学生に対して贈呈するものです。概要は以下の通りです。

＊選定対象者：次のすべての条件を満たす方。
(1) 講演申込の際に筆頭者かつ講演者として登録し、かつ実際に講演を行った者。
(2) 過去に電子情報通信学会の学術奨励賞、及び本賞を受賞したことがないこと。

該当者は自動的に本賞の選定対象者として選定されますが、申込み手続きは不要です。
◆ エレソ News Letter 研究室紹介記事を募集します。

研究紹介の機会として奮って応募下さい。

＊応募方法：タイトル、研究室名、連絡先（e-mail）を下記応募先までご連絡下さい。
応募多数の場合は選考の上、編集担当より、フォーマット書類一式をお送り致します。

＊応募先：エレソ事務局（h-sakai@ieice.org）TEL：03-3433-6691
これまでの記事は、下記 URL エレソニュースレターのページに掲載されております。ご参考下さい。
https://www.ieice.org/es/jpn/newsletters/

◆ エレソ News Letter の魅力的な紙面づくりにご協力下さい

本 News Letter は、エレソ会長、副会長からの巻頭言や論文誌編集委員長、研究専門委員会委員長からの寄稿を中心に、年 4 回発行しております。今後、さらに魅力的な紙面づくりを進めるため、エレクトロニクスソサイエティでは、会員の皆様から企画のご提案やご意見を募集いたします。電子情報通信学会エレクトロニクスソサイエティ事務局宛（詳細は下記 URL）にご連絡をお願いします。
https://www.ieice.org/es/jpn/secretariat/

◆ エレソ News Letter は年 4 回発行します。次号は 2024 年 4 月に発行予定です。
編集担当：三浦、北山（企画広報幹事）、大平（編集出版幹事）、堤（研究技術幹事）

[編集後記]
学会もようやく対面形式での開催に戻ってまいりました。一方で、ハイブリッド開催ですと、オンラインで手軽に学会に参加できて非常に便利です（主催者の準備が大変なことは身をもって実感していますが）。このように学会への参加方法ひとつとってみてても、コロナ禍を経てこれまでの常識が大きく変わったようにつくづく感じます。皆様はいかがでしょうか？

最後に、今号にご寄稿いただいた皆様に感謝申し上げます。これからもエレソ News Letter を通じてエレソのさまざまな活動を知っていただけるよう取り組んでまいります。（大平）