表: 作者

著者	山本 泰司	
著者別表示		
学位授与番号		
学位名	博士（保健学）	
学位授与年月日		

doi: 10.1007/s12149-014-0807-z
学位請求論文題名
Evaluation of the difference correction effect of the gamma camera systems used by easy
Z-score Imaging System (eZIS) analysis.

著者名・雑誌名
Yasushi Yamamoto・Annals of Nuclear Medicine

金沢大学大学院医学系研究科保健学専攻

医疗科学領域 領域
量子診療技術学 分野
学籍番号 1127022017
氏名 山本 泰司
指導教員名 小野口 昌久
指導教員名

様式4A
【背景】PET や SPECT による脳血流画像診断では、SPM や 3D-SSP を用いた統計学的画像解析によって診断能が向上することが報告されている。しかし、統計学的画像解析をするには、リファレンスとなる健常者の画像データ群で構築された normal database(ndb)が必要である。PET や SPECT 装置は、装置毎に検出器の特性やコリメータの構造が異なることから装置間で ndb を共有することは困難であると予測される。

SPM 解析では装置間差補正を実施しなければ、ndb を共有できないということになる。そこで、松田らは、SPM 解析のアルゴリズムに独自の装置間差補正法を組み込んだユーザーオーダーエイソフを提出した。それが、easy Z-score Imaging System(eZIS)と呼ばれる解析法である。eZIS 解析の装置間差補正法は、ndb を構築した装置と検査実施装置で同じ Hoffman phantom を臨床条件下で収集し、そのカウンタの比画像（ndb 構築装置 Hoffman / 検査実施装置 Hoffman）を被験者検査データに対して掛け合わせて、ndb 構築装置で収集したデータであるかのように変換する手法である。したがって、装置間差補正の効果と精度によって解析結果に左右されると考えられる。しかし、Hoffman と構造が異なる Phantom を用いた場合の装置間差補正効果や、その精度について詳細に検討した報告はない。

【目的】我々は収集装置によって SPECT 画像に違いがあることを検証した後、eZIS 解析における装置間差補正の効果と精度について従来型の Hoffman phantom に加え、様々な Phantom で検証した。更には臨床データから独自に開発した補正データについても検証し、臨床使用に最も適した補正データを求める目的とした。

【方法】①健常被験者の脳血流 SPECT 検査を 99mTc-ECD で 20 名 (60 歳代 10 名、70 歳代 10 名)、99mTc-HMPAO で 32 名 (50 歳代 10 名、60 歳代 12 名、70 歳代 10 名) 施行した。但し、IRIX と ECAM の 2 台の装置で同日に収集した。②2 台の装置で収集した SPECT 画像の有意差検定を SPM8 で 2 sample t-test で算出、その有意差が補正で解消されるか否かを以下的方法で検討した。③装置間差補正用データは Hoffman,Pool,3D-Brain phantom の 3 種類の作成し、加えて健常者データからも補正用データを作成した (Normal SPECT)。④各補正用データで IRIX と ECAM の SPECT 画像間の差が小さくなるか否かを検証。⑤補正効果は SPM8 での有意差画像、Z-score、SPECT 画像間の関相係数から評価した (Decrease、Increase)。⑥次に、アルツハイマー病型認知症診断支援ソフト、Specific VOI analysis(SVA)を用いて各データを解析し、算出される指標値の正当性から最適な補正法を決定した。⑦その補正法が他の放射性薬品での検査で使用可能で有るか否かを 99mTc-HMPAO 脳 SPECT のデータでも検証した。

【結果】異なる装置間の SPECT 画像には有意差が存在した。その有意差は各補正法で解消されるが効果には差がある。SPM 画像からは最も良い補正法は Normal SPECT であった。Z-score の評価からも Normal SPECT の補正法が最も優れた 3D-Brain と Pool の補正効果は小さい。領域別相関係数の結果から脳深部領域では、他の脳領域より相関係数が小さく、標準偏差は大きい。SVA 解析の指標値の評価から、Normal SPECT を用いた補正が標準値に最も近似した。Ratio は、Normal SPECT (51.06) で標準値 (15.16) より大きな値を示した。なお、この Normal SPECT を用いた補正法は 99mTc-HMPAO でも有効な効果が得られた。

【考察】SPECT counts は、同一被験者でも収集装置によって有意差を生じ、何らの装置間差
補正が必要であることを示している。その補正法で Normal-SPECT は、Decrease、Increase ともに、全脳領域で良好な補正効果が得られている。しかし、Hoffman 等の Phantom data 補正では、補正効果が限定された。これは Phantom と実際に解剖学的構造から生じる標的分布の差によるものと考えられる。Phantom の中では Hoffman が最も良い結果であった。これは、3D-Brain は形態的には人体脳に近いか、白質、灰白質のアイソトープ分布という観点からは Hoffman がより人体に近いためと推測する。

今後は、如何に簡便に Normal SPECT データ作成が行えるかが普及の鍵になる。