Universal spatiotemporal dynamics of spontaneous superfluidity breakdown in the presence of synthetic gauge fields

Shuyuan Wu1,2, Xizhou Qin1, Jun Xu1,3, and Chaohong Lee1,2,4,*

1 TianQin Research Center \& School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China
2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University (Guangzhou Campus), Guangzhou 510275, China
3 Center of Experimental Teaching for Common Basic Courses, South China Agriculture University, Guangzhou 510642, China
4 Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China

(Dated: June 18, 2018)

According to the famous Kibble-Zurek mechanism (KZM), the universality of spontaneous defect generation in continuous phase transitions (CPTs) can be understood by the critical slowing down. In most CPTs of atomic Bose-Einstein condensates (BECs), the universality of spontaneous defect generations has been explained by the divergent relaxation time associated with the nontrivial gapless Bogoliubov excitations. However, for atomic BECs in synthetic gauge fields, their spontaneous superfluidity breakdown is resulted from the divergent correlation length associated with the zero Landau critical velocity. Here, by considering an atomic BEC ladder subjected to a synthetic magnetic field, we reveal that the spontaneous superfluidity breakdown obeys the KZM. The Kibble-Zurek scalings are derived from the Landau critical velocity which determines the correlation length. In further, the critical exponents are numerically extracted from the critical spatial-temporal dynamics of the bifurcation delay and the spontaneous vortex generation. Our study provides a general way to explore and understand the spontaneous superfluidity breakdown in CPTs from a single-well dispersion to a double-well one, such as, BECs in synthetic gauge fields, spin-orbit coupled BECs, and BECs in shaken optical lattices.

\textbf{Introduction.} Engineered synthetic gauge fields for neutral atoms1,8 provide new opportunities to explore exotic collective quantum phenomena2,14. The dispersion relation plays an important role in the emergence of many collective quantum phenomena. Through controlling the applied external fields, the dispersion relation can be tuned from a single-well shape into a double-well one, such as, spin-orbit coupled quantum gases15,18, ultracold atoms in shaken optical lattices19,21 and Bose ladders within magnetic fields22,23. At the transition point, due to the interplay between the synthetic gauge fields and the atom-atom interactions, the Landau critical velocity vanishes17,18,20 and thus the superfluid spontaneously breaks down. Such a spontaneous superfluidity breakdown is very different from the conventional Landau instability which requires the superfluid velocity exceeding a nonzero critical velocity20,28. Although the static phase transitions in synthetic gauge fields have been extensively studied, the underlying dynamics of phase transitions is still unclear.

The Kibble-Zurek mechanism (KZM)29,32 describes the universality of real-time dynamics in continuous phase transitions. According to the KZM, universal scalings can be derived by comparing two characteristic time scales: the reaction time and the transition time. Not only the dynamics of thermodynamic phase transitions33,42, but also the dynamics of quantum phase transitions21,44,54 obey the KZM. Due to their high controllability, atomic Bose-Einstein condensates (BECs) provide an excellent platform to examine KZM21,33–35,37,42,46–54. Usually, the spontaneous defect generation is associated with the nontrivial gapless Bogoliubov excitations (such as Higgs modes) and thus the Kibble-Zurek scalings can be given by comparing the two characteristic time scales derived from the Bogoliubov excitation gap10,43,50,54. However, for atomic BECs in synthetic gauge fields1,8, whose dispersion relations are continuously tuned from a single-well shape to a double-well one, the spontaneous superfluidity breakdown is resulted from the spontaneous Landau instability. Two natural questions arise: Does the spontaneous superfluidity breakdown obey the KZM? If it obeys the KZM, can one explore the universal scalings via analyzing the Landau critical velocity?

In this Letter, we explore the universality of spontaneous superfluidity breakdown within synthetic gauge fields. We consider an atomic BEC ladder subjected to a synthetic magnetic field, which undergoes a continuous transition from a single-well dispersion to a double-well one. By employing a variational ansatz, we analytically give the mean-field phase diagram. Due to the absence of nontrivial gapless Bogoliubov excitations, it is difficult to give the two characteristic time scales and the Kibble-Zurek scalings from the Bogoliubov excitation gap. Fortunately, we find that the universal scalings can be derived from the Landau critical velocity which determines the correlation length. In particular, the correlation length divergence and the spontaneous super-
fluidity breakdown are resulted from the zero Landau critical velocity at the transition point. To extract the Kibble-Zurek scalings, we numerically simulate the real-time dynamics of the continuous transition from a single-well dispersion to a double-well one, in which the ground state changes from the Meissner phase to the broken symmetry phase. Our numerical results show the bifurcation delay and the spontaneous vortex generation obeys the KZM. Our study opens a new avenue for exploring and understanding the universality of spontaneous superfluidity breakdown in various systems, such as, spin-orbit coupled BECs [13, 18], BECs in shaken optical lattices [19–21], and BECs within magnetic fields [22, 25].

Model and ground states. We consider an ensemble of Bose condensed atoms in a two-leg ladder subjected to a uniform synthetic magnetic field. The ladder potential can be created by a normal standing-wave along one direction and a bi-frequency standing-wave along the other direction [22], and the uniform synthetic magnetic field can be realized by laser-induced tunneling [1, 5, 6, 8, 11, 12, 22], see Fig. 1(a). The mean-field Hamiltonian reads as

\[
H = -J \sum_l (\psi_{l+1,L}^\dagger \psi_{l,L} + \psi_{l+1,R}^\dagger \psi_{l,R}) + \text{h.c.}
\]

\[
- K \sum_l (\psi_{l,R}^\dagger \psi_{l,L} e^{i\phi} + h.c.)
\]

\[
+ \frac{g}{2} \sum_l (|\psi_{l,L}|^4 + |\psi_{l,R}|^4).
\]

(1)

with \(\psi_{l,\sigma}\) denoting the order parameters for the site \((l, \sigma)\) and \(\sigma = \{L, R\}\) respectively labelling the \{left, right\} legs. Here, \(J\) is the intra-leg tunneling, \(Ke^{i\phi}\) is the spatially dependent inter-leg tunneling and \(\phi\) is the magnetic flux per plaquette. The on-site interaction \(g\), which is proportional to the \(s\)-wave scattering length, can be tuned via Feshbach resonances [53].

The determine the ground states, we implement a variational procedure based on the ansatz

\[
\begin{bmatrix}
\psi_{l,L} \\
\psi_{l,R}
\end{bmatrix} = \begin{bmatrix}
C_1 \cos \theta e^{ik-L} + C_2 \sin \theta e^{-ik-L} \\
C_2 \cos \theta e^{ik-L} + C_1 \sin \theta e^{-ik-L}
\end{bmatrix},
\]

(2)

with the total atomic number \(N\), the ladder length \(L\), the complex amplitudes \((C_1, C_2)\), the quasi-momentum \(k\) and the angle \(\theta\) (\(0 \leq \theta \leq \frac{\pi}{2}\)). By minimizing the Hamiltonian under the normalization condition \(|C_1|^2 + |C_2|^2 = n = N/L\), the variational parameters \((C_1, C_2, k, \theta)\) can be determined. There are three different ground states: (I) the vortex phase with \(C_1 \neq C_2, k \neq 0, \theta = \pi/4\) for \(0 < K/J < R_1\), (II) the biased ladder phase (BLP) with \(C_1 \neq C_2, k \neq 0, \theta = 0, \pi/2\) for \(R_1 < K/J < R_2\), and (III) the Meissner phase with \(C_1 = C_2, k = 0\) for \(K/J > R_2\). The two critical points \((R_1, R_2)\) have to be determined numerically, however, the second critical point can be analytically given as \(R_2 = \sqrt{2} - gn/2\) for \(\phi = \pi/2\). Our numerical results show that the phase (II) disappears if there is no inter-particle interaction, that is, \(R_1^* = R_2^* = \sqrt{2}\) for \(g = 0\).

To clarify the Meissner-like effect, we calculate the chiral current \(j_c = \frac{1}{\mathcal{N}_\tau} \sum_{\ell} \left(j_{\parallel,\ell} - j_{\parallel,\ell}^\dagger \right)\), which is defined as the averaged difference between the local currents along the two legs \(j_{\parallel,\ell} = iJu_{\parallel,\ell}^\dagger - iJu_{\parallel,\ell}^\dagger u_{\parallel,\ell}\). The chiral current increases with \(K/J\) and then becomes saturated in the Meissner phase. This is analogy to the Meissner effect in the type-II superconductor [22]. The ground states and their chiral currents are consistent with the variational prediction [22], see Fig. 1(b).

The phase transitions are characterized by the changes in the band structure (dispersion relation) and the chiral current. The transition between the vortex phase and the BLP is a first-order phase transition, which corresponds to a jump in the chiral current \(j_c\) and the change from complete to single occupancy of the two band-minima at finite quasi-momentum \(\pm k\). The transition between the Meissner phase and the BLP is a continuous phase transition, in which the chiral current \(j_c\) is continuous and the lowest band continuously changes from a single-well shape to a double-well one. Below we concentrate on discussing the continuous phase transition.

Landau critical velocity and correlation length. In a continuous phase transition, the critical slowing down can be understood by the divergence of either the relaxation time \(\tau_r\) or the correlation length \(\xi\). For our system, it is difficult to give the relaxation time \(\tau_r\). Below, we...
show how to derive the universal scaling of ξ from the Landau critical velocity,

$$v_L = \min_q |\omega/q|.$$ \tag{3}$$

Here the Bogoliubov excitation gap ω is a function of the quasi-momentum q. According to the Landau criterion, if the superfluid velocity exceeds v_L, elementary excitations appear due to the conservation of energy and momentum. This indicates that elementary excitation will take place spontaneously if $v_L = 0$.

To give v_L, we implement the Bogoliubov analysis to obtain the excitation gap ω. We express the perturbed ground-state as,

$$\begin{bmatrix} \psi_{l,L}(t) \\ \psi_{l,R}(t) \end{bmatrix} = \begin{bmatrix} (C_1 + \delta \psi_{l,L}(t)) e^{i(k - \frac{\omega t}{L})} \\ (C_2 + \delta \psi_{l,R}(t)) e^{i(k + \frac{\omega t}{L})} \end{bmatrix} e^{-i\omega t}.$$ \tag{4}$$

with the perturbation terms

$$\delta \psi_{l,\sigma}(t) = \sum_q u_{q,\sigma} e^{i(ql + \sigma t)} + v^*_{q,\sigma} e^{-i(ql - \sigma t)}.$$ \tag{5}$$

Here, the discrete quasi-momenta are given as $q = \frac{2\pi m}{L}$ with the integers $m = \{-L/2, -L/2 + 1, \cdots, L/2 - 1\}$, and the perturbation amplitudes $(u_{q,\sigma}, v_{q,\sigma})$ are complex numbers. Inserting the perturbed state into the time-evolution equation, $i\partial \psi_{l,\sigma}/\partial t = \theta H/\partial \psi_{l,\sigma}^*$, one can obtain the Bogoliubov-de Gennes (BdG) equation. Therefore, ω can be obtained by diagonalizing the BdG equation. At the critical point, $K = K_c = J(\sqrt{2} - gn/2)$, the low-energy long-wavelength excitation behaves as

$$\lim_{q \to 0} \omega(q) \approx q^2 \sqrt{\frac{gn}{2\sqrt{2}}}.$$ \tag{6}$$

As $\omega(q) \propto |q|^z$ when $q \to 0$, we have the dynamical critical exponent $z = 2$.

In Fig. 2 (a), we show the dependence of v_L on K/K_c. The Landau critical velocity v_L gradually decreases to zero when $K \to K_c$. The notch of v_L near $K = K_c$ originates from the softening phonon mode $\omega(q) \propto q^2$, which implies $|\omega(q)/q| \to 0$ as $q \to 0$. In particular, the vanishing critical velocity at the critical point will result in the spontaneous superfluidity breakdown and the spontaneous elementary excitations.

Usually, the correlation length ξ is defined by the equality between the kinetic energy per particle $\hbar^2/(2m\xi^2)$ and the interaction energy per particle gn. However, the Landau critical velocity v_L provides another general definition according to $\xi = \hbar/(mv_L)$, which is consistent with the usual definition. This means that, near the critical point, the inverse critical velocity v_L^{-1} scales as

$$v_L^{-1} \sim |\epsilon|^{-\nu}.$$ \tag{7}$$

In Fig. 2(b), we show the dependence of v_L^{-1} on $|\epsilon| = |K(t) - K_c|/K_c$. Our numerical results show $v_L^{-1} \sim |\epsilon|^{-b}$ with $b = 0.4985 \pm 0.0172$ and 0.4983 ± 0.0160 for the BLP and the Meissner phase, respectively. This indicates that the static correlation-length critical exponent $\nu = 1/2$.

Kibble-Zurek scalings. Now we discuss the universal scalings of the real-time dynamics across the critical point. To drive the system from the Meissner phase to the BLP, we quench the tunneling strength K according to

$$K(t) = K_c(1 - t/\tau_Q)$$ \tag{8}$$

where τ_Q is the quench time. In the vicinity of the critical point, both the relaxation time τ_r and the correlation length ξ diverge as

$$\tau_r \sim |\epsilon|^{-\nu}, \quad \xi \sim |\epsilon|^{-\nu},$$ \tag{9}$$

with $\nu(t) = (r(t) - K_c)/K_c$ is the dimensionless distance from the critical point and (z, ν) are the critical exponents. Due to the critical slowing down caused by the divergent relaxation time, a system driven across its critical point has no sufficient time to follow its instantaneous ground state no matter how slow it is driven.

The Kibble-Zurek scalings can be derived by comparing the relaxation time τ_r and the transition time $\tau_t = |\epsilon|/\tilde{c}$ (where $\tilde{c} = dc/dt$). The system evolves adiabatically if $\tau_r < \tau_t$, otherwise the adiabaticity breaks down. Defining the freezing time \tilde{t} with $\tau_r(\tilde{t}) = \tau_t(\tilde{t})$, the two characteristic times change from $\tau_r < \tau_t$ to $\tau_r > \tau_t$ when the time t changes from $|t| > |\tilde{t}|$ to $|t| < |\tilde{t}|$. Thus, at the freezing time \tilde{t}, the dimensionless distance $\epsilon(t)$ and the correlation length $\xi(t)$ exhibit universal power laws,

$$\tilde{c} = \epsilon(\tilde{t}) \sim \tau_Q^{-1/(1+z\nu)}, \quad \xi(\tilde{t}) \sim \tau_Q^{\nu/(1+z\nu)},$$ \tag{10}$$

with respect to τ_Q. After the system is driven through the critical point, distant parts of the system choose to
break the symmetry randomly and defects (discrete vortices) are spontaneously created. The total number of generated vortices scales as

$$N_v \sim \xi^{-d} \sim \tau_Q^{-d/(1+z\nu)}, \quad (11)$$

with d the dimension of the system.

Numerical scalings. Below we show how to numerically extract the Kibble-Zurek scalings from the real-time dynamics. According to the time-evolution equation $i\partial \psi_{i\sigma} / \partial t = \partial H / \partial \psi_{i\sigma}^*$, we simulate the quenching process $[K(t) = K_c(1 - t/\tau_Q)]$ for different τ_Q. When the time increases from $t < 0$ to $t > 0$, the system goes from the Meissner phase into the BLP. In our simulation, the parameters are chosen as $N = 5 \times 10^4$, $L = 200$, $J = 1$, $\phi = \pi/2$ and $\tilde{g}_n = 0.2$. For each τ_Q, we perform 150 runs of simulations under random initial fluctuations. In a single run, we calculate the bifurcation delay $b_d = |K(\hat{t}) - K_c|$ and the vortex number N_v and then give their averaged values for each τ_Q.

In Fig. 3, we show the universal scaling of the averaged bifurcation delay. As a signature of the impulse regime resulted from the critical slowing down, the dynamic chiral current $j_c(t)$ keep unchanged in the duration of $-\hat{t} < t < \hat{t}$. Unlike the static case, $j_c(t)$ does not decrease immediately after the critical point $t = 0$ but starts to decrease after the impulse-adiabatic transition at $t = \hat{t}$, see the inset of Fig. 3. In a single run, \hat{t} is numerically determined by $\delta j_c = |j_c(\hat{t}) - j_c^{\text{max}}|/j_c^{\text{max}} = 0.005$ with the maximum chiral current j_c^{max}, and the bifurcation delay is given as $b_d = |K(\hat{t}) - K_c| \propto |\hat{t}|$. Our numerical results show that the averaged bifurcation delay scales as $b_d = |K(\hat{t}) - K_c| \sim \tau_Q^{-0.5026\pm0.0040}$, which agrees with the analytical scaling $b_d \propto |\hat{t}| \sim \tau_Q^{-1/(1+z\nu)}$ with $1/(1+z\nu) = 1/2$.

In Fig. 4, we show the universal scaling of the averaged vortex number. In a single run, we count the number of discrete vortices at a certain time t_v after the impulse-adiabatic transition at $t = \hat{t}$. As \hat{t} is defined as the time where $\delta j_c = 0.005$, we count the vortex numbers at different t_v where $0.005 \leq \delta j_c \leq 0.02$ and find similar scalings of the averaged vortex numbers with respect to τ_Q. The counting of vortex numbers is proceeded by analyzing the current patterns. To minimize numerical errors, we take the inter-leg current j_\perp to be zero if $|j_\perp|/j_c^{\text{max}}$ is less than a threshold 0.01. We checked that the results are unaffected for other reasonable thresholds between 0.001 and 0.05. Our numerical results show that the averaged vortex numbers follows $N_v \sim \tau_Q^{-0.2510\pm0.0387}$, which is consistent with the analytical scaling $N_v \sim \tau_Q^{-d/(1+z\nu)}$ with $d/(1+z\nu) = 1/4$.

Combining the scalings for the inverse critical velocity v_L^{-1}, the averaged bifurcation delay b_d and the averaged vortex number N_v, one may determine the dimension d and the critical exponents (z, ν). From the numerical results shown in Figs. 2(b), 3 and 4, we give the dimension $d = 1$, the static correlation-length critical exponent $\nu = 1/2$ and the dynamic critical exponent $z = 2$. Actually, $z = 2$ is a direct result of the unique quartic dispersion at the critical point. These critical exponents are in the same universal class for the continuous phase transitions, in which the dispersion continuously changes from a single-well shape to a double-well one.

Summary and discussion. To summarize, we reveal the universality of spontaneous superfluidity breakdown within synthetic gauge fields. We find that the spontaneous superfluidity breakdown obeys the KZM and extract the critical exponents from the Landau critical velocity and the critical spatial-temporal dynamics. The
numerical scalings extracted from the critical spatial-temporal dynamics well agree with the analytical Kibble-Zurek scalings. Our study provide a general approach to explore and understand the dynamic universality of continuous phase transitions involving continuous variation from a single-well dispersion to a double-well one. As an experimental evidence, the critical spatial-temporal dynamics of BECs in a shaken optical lattice share the same critical exponents ($z=2, \nu=1/2$) for ours.

At last, we briefly discuss the experimental feasibility. Based upon the recent experiment, our system can be realized and the considered phase transition can be observed if the interaction is sufficiently strong. The interaction strength can be enhanced via Feshbach resonance or tuning the transverse confinement. To drive the system across the considered phase transition, one may gradually decrease the inter-leg potential barriers via decreasing the laser intensity. The Kibble-Zurek scalings can be extracted by counting the vortex number and measuring the chiral current via the well-developed high-resolution imaging.

This work was supported by the National Basic Research Program of China (Grant No. 2012CB821305) and the National Natural Science Foundation of China (Grants No. 11374375 and No. 11574405).

* Email: lichao2@mail.sysu.edu.cn; chleccn@gmail.com

[1] D. Jaksh and P. Zoller, Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms, New J. Phys. 5, 56 (2003).
[2] Y.-J. Lin, R. L. Compton, K. Jimenez-Garcia, J. V. Porto, and I. B. Spielman, Synthetic magnetic fields for ultracold neutral atoms, Nature 462, 628 (2009).
[3] F. Gerbier and J. Daillbard, Gauge fields for ultracold atoms in optical superlattices, New J. Phys. 12, 033007 (2010).
[4] J. Daillbard, F. Gerbier, G. Juzelinas, and P. Öhberg, Colloquium: Artificial gauge potentials for neutral atoms, Rev. Mod. Phys. 83, 1523 (2011).
[5] A. R. Kolovsky, Creating artificial magnetic fields for cold atoms by photon-assisted tunneling, EPL 93, 20003 (2011).
[6] M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, and I. Bloch, Experimental Realization of Strong Effective Magnetic Fields in an Optical Lattice, Phys. Rev. Lett. 107, 255301 (2011).
[7] J. Struck, M. Weinberg, C. Ölschläger, P. Windpassinger, J. Simonet, K. Sengstock, R. Häppner, P. Hauke, A. Eckardt, M. Lewenstein, Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields, Nat. Phys. 9, 738 (2013).
[8] N. Goldman, G. Juzelinas, P. Öhber, and I. B. Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77, 126401 (2014).
[9] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices, Phys. Rev. Lett. 111, 185301 (2013).
[10] L.-K. Lim, C. M. Smith, and A. Hemmerich, Staggered-Vortex Superfluid of Ultracold Bosons in an Optical Lattice, Phys. Rev. Lett. 100, 130402 (2008).
[11] J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt, M. Lewenstein, K. Sengstock, and P. Windpassinger, Tunable Gauge Potential for Neutral and Spinless Particles in Driven Optical Lattices, Phys. Rev. Lett. 108, 225304 (2012).
[12] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle, Realizing the Harper Hamiltonian with Laser-Assisted Tunneling in Optical Lattices, Phys. Rev. Lett. 111, 185302 (2013).
[13] H. Zhai, Degenerate quantum gases with spin-orbit coupling: a review, Rep. Prog. Phys. 78, 026001 (2015).
[14] B. K. Stuhl, H.-L. Lu, L. M. Aycock, D. Genkina, and I. B. Spielman, Visualizing edge states with an atomic Bose gas in the quantum Hall regime, Science 349, 1514 (2015).
[15] Y.-J. Lin, K. Jimenez-Garcia, and I. B. Spielman, Spin-orbit-coupled bose-einstein condensates, Nature 471, 83 (2011).
[16] V. Galitski and I. B. Spielman, Spin-orbit coupling in quantum gases, Nature 494, 49 (2014).
[17] S.-C. Ji, L. Zhang, X.-T Xu, W. Zhan, Y. J Deng, S. Chen, and J.-W Pan, Softening of Ronon and Phonon Modes in a Bose-Einstein Condensate with Spin-Orbit Coupling, Phys. Rev. Lett. 114, 105301 (2015).
[18] Y.-C. Zhang, Z.-Q. Yu, T. K. Ng, L. Pitaevskii, and S. Stringari, Superfluid Density of a Spin-orbit-Coupled Bose Gas, arXiv:1605.01236 (2016).
[19] C. V. Parker, L.-C. Ha, and C. Chin, Direct observation of effective ferromagnetic domains of cold atoms in a shaken optical lattice, Nat. Phys. 9, 769 (2013).
[20] L.-C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, Ronon-Maxon Excitation Spectrum of Bose Condensates in a Shaken Optical Lattice, Phys. Rev. Lett. 114, 055301 (2015).
[21] L. W. Clark, L. Feng, and C. Chin, Universal spatetime scaling symmetry in the dynamics of bosons across a quantum phase transition, arXiv:1605.01023.
[22] M. Atala, M. Aidelsburger, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Observation of chiral currents with ultracold atoms in bosonic ladders, Nat. Phys. 10, 588 (2014).
[23] R. Wei and E. J. Mueller, Theory of bosons in two-leg ladders with large magnetic fields, Phys. Rev. A 89, 063617 (2014).
[24] M. Piraux, F. Heidrich-Meissner, I. P. McCulloch, S. Greschner, T. Vekua, and U. Schollwöck, Vortex and Meissner phases of strongly interacting bosons on a two-leg ladder, Phys. Rev. B 91, 140406 (2015).
[25] S. Greschner, M. Piraux, F. Heidrich-Meissner, I. P. McCulloch, U. Schollwöck, and T. Vekua, Spontaneous Increase of Magnetic Flux and Chiral-Current Reversal in Bosonic Ladders: Swimming against the Tide, Phys. Rev. Lett. 115, 190402 (2015).
[26] L. D. Landau, The Theory of Superfluidity of Helium II, J. Phys. USSR 5, 71 (1941).
[27] C. Raman, M. Köhl, R. R. D. S. D. S., C. E. Kuklewic, Z. Hadzibabic, and W. Ketterle, Evidence for a Critical
Velocity in a Bose-Einstein Condensed Gas, Phys. Rev. Lett. 83, 2502 (1999).
[28] R. Desbuquois, L. Chomaz, T. Yefsah, J. Léonard, J. Beugnon, C. Weitenberg, and J. Dalibard, Superfluid behaviour of a two-dimensional Bose gas, Nat. Phys. 8, 645 (2012).
[29] T. W. B. Kibble, Topology of cosmic domains and strings, J. Phys. A: Math. Gen. 9, 1387 (1976).
[30] W. H. Zurek, Cosmological experiments in superfluid helium?, Nature 317, 505 (1985).
[31] J. Dziarmaga, Dynamics of a quantum phase transition and relaxation to a steady state, Adv. Phys. 59, 1063 (2010).
[32] A. del Campo and W. H. Zurek, Universality of phase transition dynamics: Topological defects from symmetry breaking, Int. J. Mod. Phys. A 29, 1430018 (2014).
[33] T. Donner, S. Ritter, T. Bourdel, A. Öttl, M. Köhl, and T. Esslinger, Critical Behavior of a Trapped Interacting Bose Gas, Science 315, 1556 (2007).
[34] C. N. Weiler, T. W. Neely, D. R. Scherer, A. S. Bradley, M. J. Davis, and B. P. Anderson, Spontaneous vortices in the formation of Bose-Einstein condensates, Nature 455, 948 (2008).
[35] B. Damski and W. H. Zurek, Soliton Creation During a Bose-Einstein Condensation, Phys. Rev. Lett. 104, 160404 (2010).
[36] R. Yusupov, T. Mertelj, V. V. Kabanov, S. Brazhovskii, P. Kusar, J.-H. Chu, I. R. Fisher, and D. Mitchell, Coherent dynamics of macroscopic electronic order through a symmetry breaking transition, Nat. Phys. 6, 681 (2010).
[37] E. Witkowska, P. Deuar, M. Gajda, and K. Rzazewski, Solitons as the Early Stage of Quasicondensate Formation during Evaporative Cooling, Phys. Rev. Lett. 106, 135301 (2011).
[38] A. Das, J. Sabbatini, and W. H. Zurek, Winding up superfluid in a torus via Bose Einstein condensation, Sci. Rep. 2, 352 (2012).
[39] S.-W. Su, S.-C. Gou, A. Bradley, O. Fialko, and J. Brand, Kibble-Zurek Scaling and its Breakdown for Spontaneous Generation of Josephson Vortices in Bose-Einstein Condensates, Phys. Rev. Lett. 110, 215302 (2013).
[40] G. Lamporesi, S. Donadello, S. Serafini, F. Dalfovo, and G. Ferrari, Spontaneous creation of Kibble-Zurek solitons in a Bose-Einstein condensate, Nat. Phys. 9, 656 (2013).
[41] L. Corman, L. Chomaz, T. Biémont, R. Desbuquois, C. Weitenberg, S. Nascimbène, J. Dalibard, and J. Beugnon, Quench-Induced Supercurrents in an Annular Bose Gas, Phys. Rev. Lett. 113, 135302 (2014).
[42] M. Nikkhou, M. Skarabot, S. Copar, M. Ravnik, S. Zumer, and I. Musevic, Light-controlled topological charge in a nematic liquid crystal, Nat. Phys. 11, 183 (2015).
[43] J. Sonner Nikkhou, A. del Campo, and W. H. Zurek, Universal far-from-equilibrium dynamics of a holographic superconductor, Nat. Commun. 6, 7406 (2015).
[44] W. H. Zurek, U. Dorner, and P. Zoller, Dynamics of a Quantum Phase Transition, Phys. Rev. Lett. 95, 105701 (2005).
[45] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Pro-duction: Landau-Zener Transitions from a New Perspective, Phys. Rev. Lett. 95, 035701 (2005).
[46] B. Damski and W. H. Zurek, Dynamics of a Quantum Phase Transition in a Ferromagnetic Bose-Einstein Condensate, Phys. Rev. Lett. 99, 130402 (2007).
[47] M. Uhlmann, R. Schützhold, and U. R. Fischer, Vortex Quantum Creation and Winding Number Scaling in a Quenched Spinor Bose Gas, Phys. Rev. Lett. 99, 120407 (2007).
[48] J. Dziarmaga, J. Meisner, and W. H. Zurek, Winding Up of the Wave-Function Phase by an Insulator-to-Superfluid Transition in a Ring of Coupled Bose-Einstein Condensates, Phys. Rev. Lett. 101, 115701 (2008).
[49] C. Lee, Universality and Anomalous Mean-Field Breakdown of Symmetry-Breaking Transitions in a Coupled Two-Component Bose-Einstein Condensate, Phys. Rev. Lett. 102, 070401 (2009).
[50] J. Sabbatini, W. H. Zurek, and M. J. Davis, Phase Separation and Pattern Formation in a Binary Bose-Einstein Condensate, Phys. Rev. Lett. 107, 230402 (2011).
[51] D. Chen, M. White, C. Borries, and B. DeMarco, Quantum Quench of an Atomic Mott Insulator, Phys. Rev. Lett. 106, 235304 (2011).
[52] N. Navon, A. L. Gaunt, R. P. Smith, and Z. Hadzibabic, Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas, Science 347, 167 (2015).
[53] M. Anquez, B. A. Robbins, H. M. Bharath, M. Boguslawski, T. M. Hoang, and M. S. Chapman, Quantum Kibble-Zurek Mechanism in a Spin-1 Bose-Einstein Condensate, Phys. Rev. Lett. 116, 155301 (2016).
[54] J. Xu, S.-Y Wu, X.-Z Qin, J.-H Huang, Y.-G Ke, H.-H Zhong, and C. Lee, Kibble-Zurek dynamics in an array of coupled binary Bose condensates, EPL 113, 50003 (2016).
[55] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82, 1225 (2010).
[56] S. Sachdev, Quantum Phase Transition (Cambridge University Press, Second Edition, 2011).
[57] M. Robinson, Symmetry and the Standard Model (Springer-Verlag New York, 2011).
[58] A. Polkovnikov, K. Sengupta, A. Sengupta, and M. Vengalattore, Colloquium: Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83, 863 (2011).
[59] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of ultracold atomic Fermi gases, Rev. Mod. Phys. 80, 1215 (2008).
[60] L.-C. Ha, C.-L. Hung, X. Zhang, U. Eismann, S.-K. Tung, and C. Chin, Strongly Interacting Two-Dimensional Bose Gases, Phys. Rev. Lett. 110, 145302 (2013).
[61] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet, and M. Greiner, Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level, Science 329, 547 (2010).
[62] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, Single-atom-resolved fluorescence imaging of an atomic Mott insulator, Nature 467, 68 (2010).