A VACUUM-ADAPTED APPROACH TO
QUANTUM FEYNMAN–KAC FORMULAE

ALEXANDER C. R. BELTON, J. MARTIN LINDSAY, AND ADAM G. SKALSKI

Abstract. The vacuum-adapted formulation of quantum stochastic calculus is employed to perturb expectation semigroups via a Feynman–Kac formula, giving an alternative perspective on some recent Feynman-Kac formulae developed by the authors. This generalises earlier work of Lindsay and Sinha, and its extension by Bahn and Park, which use classical stochastic calculus, and also existing quantum-stochastic results, which involve conjugation by unitary processes.

1. Introduction

Let \(\alpha = (\alpha_t)_{t \in \mathbb{R}} \) be an ultraweakly continuous group of normal \(*\)-automorphisms of a von Neumann algebra \(A \) acting faithfully on the Hilbert space \(\mathcal{H} \), and let \(\delta \) be its ultraweak generator. Gaussian subordination may be used to construct an ultraweakly continuous semigroup \(P_0 \) on \(A \) with ultraweak pre-generator \(\frac{1}{2} \delta^2 \) [15, Section 1] in the following manner. If \(B = (B_t)_{t \geq 0} \) is standard Brownian motion on Wiener’s probability space \(\mathbb{W} \), then, by Itô’s formula, the unital \(*\)-homomorphism \(j_t : A \to A \otimes L_\infty(\mathbb{W}; A) \) satisfies the stochastic differential equation

\[
\dot{j}_t(x) = x + \int_0^t j_s(\delta(x)) \, dB_s + \frac{1}{2} \int_0^t j_s(\delta^2(x)) \, ds \quad (x \in \text{Dom } \delta^2)
\]

in the strong sense on \(L_2(\mathbb{W}; \mathcal{H}) \). Thus

\[
P_0^t(a)u := \mathbb{E}_{\mathbb{W}}[j_{t}(a)u] \quad (a \in A, u \in \mathcal{H})
\]

defines an ultraweakly continuous semigroup \((P_0^t)_{t \geq 0} \) of normal unital completely positive contractions on \(A \) whose ultraweak generator is as desired.

For the case where \(\alpha \) is unitarily implemented, Lindsay and Sinha obtained an ultraweakly continuous semigroup \(P^b \) with Feynman–Kac representation

\[
P_t^b(a)u = \mathbb{E}_{\mathbb{W}}[j_t(a)m^b_t u] \quad (t \geq 0, a \in A, u \in \mathcal{H})
\]

whose ultraweak generator extends \(\frac{1}{2} \delta^2 + \rho_b \delta \), where \(\rho_b : a \mapsto ab \) is the operator on \(A \) of right multiplication by \(b \) [15, Theorem 3.2]. Here \(m^b \) is the exponential

2000 Mathematics Subject Classification. Primary 47D08; Secondary 46L53, 47N50, 81S25.

Key words and phrases. Quantum stochastic cocycle, Markovian cocycle, quantum stochastic flow, Feynman–Kac perturbation, quantum stochastic analysis.
martingale such that
\[m_t^b = I + \int_0^t j_s(b) m_s^b \, dB_s \quad (t \geq 0), \]
where \(b \in A \) is self adjoint. For the Laplacian on \(\mathbb{R}^{3d} \) and the commutative von Neumann algebra \(L^\infty(\mathbb{R}^{3d}) \), such vector-field perturbations have been studied from this viewpoint in [18]. Other works on quantum Feynman–Kac formulae include [1], [13], [2] and [5], all of which belong to the pre-quantum stochastic era.

The classical Feynman-Kac formula for Schrödinger operators, which is closely related to instances of the Trotter product formula, is well described in the books [19] and [20].

The results of Lindsay and Sinha have been fully generalised in [10]. In that paper a general perturbation theory for quantum stochastic flows is developed, yielding a much wider class of quantum Feynman–Kac formulae.

Here we take our inspiration from [6]. The semigroups defined in (1.2) will not, in general, be positive or even real (i.e., \(*\)-preserving). In this light Bahn and Park investigate a more symmetric form of Feynman–Kac perturbation, using instead an operator process \(n^b_t \) such that
\begin{align}
\frac{n^b_t f}{f} = f + \int_0^t j_s(b) E_W[n^b_s f|B_s] \, dB_s - \frac{1}{2} \int_0^t j_s(b^2) E_W[n^b_s f|B_s] \, ds \tag{1.3}
\end{align}
for all \(f \in L^2(W; \mathfrak{h}) \), where \((B_t)_{t \geq 0} \) is the canonical filtration of the Brownian motion \(B \).

In this case, letting
\[Q^b_t u := E_W[(n^b_t)^* j_t(a) n^b_t u] \quad (a \in A, u \in \mathfrak{h}) \]
gives an ultraweakly continuous completely positive semigroup \((Q^b_t)_{t \geq 0} \) on \(A \), which is contractive if \(n^b \) is and whose generator extends the map
\[\frac{1}{2} \delta^2 + \lambda b \delta + \rho b \lambda - \frac{1}{2} \lambda b^2 - \frac{1}{2} \rho b^2, \tag{1.4} \]
where \(\lambda_b \) denotes the operator on \(A \) given by left multiplication by \(b \).

In this work we are guided by the form of (1.3); the conditional expectations make it reminiscent of a stochastic differential equation used by Alicki and Fannes for dilating quantum dynamical semigroups [4, Equation (12)]. As observed in [7], this type of equation may be profitably interpreted in the vacuum-adapted form of quantum stochastic calculus. In contrast to [10], where the standard identity-adapted (Hudson–Parthasarathy) theory is used, here the analysis is slightly easier although the algebra becomes a bit more complicated.

The achievements of this paper are as follows; for simplicity, we restrict here to the case of one-dimensional noise, although the results below are obtained in full generality. The requirement that \(\alpha \) is unitarily implemented is removed; our primary object is a vacuum-adapted quantum stochastic flow. This is an ultraweakly continuous family \(j_t \) of normal \(*\)-homomorphisms which form a vacuum-adapted quantum stochastic cocycle on Boson Fock space over \(L^2(\mathbb{R}_+) \) and which are as unital as vacuum adaptedness permits. The flow \(j_t \) is assumed to satisfy the quantum stochastic differential equation
\begin{align}
dj_t(x) = j_t(\delta_0(x)) \, dA_t^1 + j_t(\pi_0(x)) \, dA_t + j_t(\delta^*_0(x)) \, dA_t + j_t(\tau_0(x)) \, dt \tag{1.5}
\end{align}
for all \(x \) in a subset \(A_0 \) of \(A \), where the structure maps

\[
\tau_0, \; \delta_0, \; \delta_0^\dagger, \; \pi_0 : A_0 \rightarrow A
\]

must satisfy certain algebraic relations, thanks to the unital and \(*\)-homomorphic properties of \(j \). Equation (1.5) generalises (1.1), which corresponds to the case where \(A_0 = \text{Dom} \delta^2, \pi_0 \) is the inclusion map,

\[
\delta_0 = \delta_0^\dagger = \delta|_{A_0} \quad \text{and} \quad \tau_0 = \frac{1}{2} \delta^2.
\]

The appearance of the non-zero gauge term \(\tau_0 \) is due to the fact that we are working in the vacuum-adapted set-up: cf. [9, Theorem 7.3]. It follows from (1.5) that the quantum stochastic flow satisfies the equation

\[
\langle u\Omega, j_t(x)\eta \Omega \rangle = \langle u, v \rangle + \int_0^t \langle u\Omega, j_s(\tau_0(x))\eta \Omega \rangle \; ds \quad (u, v \in \mathfrak{h}, \; t \geq 0, \; x \in A_0),
\]

where \(\Omega \) denotes the Fock vacuum vector. The generator of the vacuum-expectation semigroup \(P^0 := (E \circ j_t)_{t \geq 0} \) therefore extends the map \(\tau_0 \). A natural assumption is that \(\tau_0 \) is a pre-generator of \(P^0 \), although this plays no rôle here.

Starting with Evans and Hudson [12], several authors have used conjugation with a unitary process to perturb quantum stochastic flows. These works focused on the case of bounded structure maps, so that the vacuum-expectation semigroup \(P^0 \) is norm continuous, and considered identity-adapted flows and processes. For \(h = h^* \in A \) and \(l \in A \) there exists a unitary process \(U \) such that

\[
U_0 = 1, \quad \quad dU_t = j_t(l)U_tdA_t^I + j_t(-l^*)U_t dA_t + j_t(-ih - \frac{1}{2} l^* l)U_t dt,
\]

and the vacuum-expectation semigroup of the perturbed flow \((a \mapsto U_t^* j_t(a) U_t)_{t \geq 0} \) has generator

\[
\tau_0 + \lambda_t \delta_0 + \rho_t \delta_0^\dagger + \lambda_t \pi_0 + i[h, \cdot] - \frac{1}{2} \{l^* l, \cdot\},
\]

where \([\cdot, \cdot] \) and \(\{\cdot, \cdot\} \) denote commutator and anticommutator. The main result obtained here includes this situation as a special case.

For any vacuum-adapted quantum stochastic flow \(j \) and any \(c = \begin{bmatrix} c_0 \\ c_1 \end{bmatrix} \) in \(A \oplus A \), Theorem 5.3 below gives a process \(M^c \) such that \(M^c - I \) is vacuum adapted and the following quantum stochastic differential equation is satisfied:

\[
d(M^c - I)_t = j_t(c_0) M^c_t dt + j_t(c_1) M^c_t dA_t^I.
\]

Consequently, for any \(d = \begin{bmatrix} d_0 \\ d_1 \end{bmatrix} \) in \(A \oplus A \), there is an ultraweakly continuous semigroup \(P^{c,d} \) on \(A \) with

\[
\langle u, P^{c,d}_t(a)v \rangle = \langle u\Omega, (M^c_t)^* j_t(a) M^d_t v\Omega \rangle \quad (u, v \in \mathfrak{h}, \; t \geq 0, \; a \in A).
\]

When \(j \) satisfies (1.5), the ultraweak generator of \(P^{c,d} \) necessarily extends

\[
\tau_0 + \lambda c_1 \delta_0 + \rho c_1 \delta_0^\dagger + \lambda c_1 \pi_0 + \lambda c_0^* + \rho d_0, \quad (1.6)
\]

This class of semigroups includes both the Lindsay–Sinha and the Bahn–Park examples, as well as those obtained by unitary conjugation; the generators of the latter correspond to the case

\[
c = d = \begin{bmatrix} -ih - \frac{1}{2} l^* l \\ l \end{bmatrix}, \quad \text{where} \; h = h^*.
\]
1.1. Conventions. Hilbert spaces are complex with inner products linear in their second argument. The linear, Hilbert-space and ultraweak tensor products are denoted by ⊗, ⊗ and ⊗, respectively. For a Hilbert space H we adopt the Dirac-inspired notation $|H|$ for $B(C; H)$ and $\{H\}$ for the topological dual $B(H; C)$, writing $|u\rangle$ for the operator $\lambda \mapsto \lambda u$ and $\langle u|$ for the functional $v \mapsto \langle u, v \rangle$, where $u \in H$. Recall the E notation,

$$E_u := |u\rangle \otimes I \quad \text{and} \quad E_u^* := (E_u)^* = \langle u| \otimes I \quad (u \in H), \quad (1.7)$$

in which I denotes the identity operator on a Hilbert space determined by context. The following commutator and anticommutator notation is also used for elements of an algebra:

$$[a, b] := ab - ba \quad \text{and} \quad \{a, b\} := ab + ba. \quad (1.8)$$

2. Multipliers for quantum stochastic flows

Fix now, and for the rest of the paper, Hilbert spaces \mathfrak{h} and \mathfrak{k}, referred to as the initial space and multiplicity space, respectively. Fix also a von Neumann algebra \mathcal{A} acting faithfully on \mathfrak{h}. Set $\hat{\mathfrak{k}} := \mathbb{C} \otimes \mathfrak{k}$,

$$\tilde{\epsilon} := \left(\begin{array}{c} 1 \\ \epsilon \end{array}\right) \in \hat{\mathfrak{k}} \quad (\epsilon \in \mathfrak{k}) \quad \text{and} \quad \omega := \hat{0} = \left(\begin{array}{c} 1 \\ 0 \end{array}\right). \quad (2.1)$$

For a subinterval I of \mathbb{R}_+, let \mathcal{F}_I denote the Boson Fock space over $L^2(I; \mathfrak{k})$ and let $\mathcal{N}_I := B(\mathcal{F}_I)$. For brevity, set $\mathcal{F} := \mathcal{F}_{\mathbb{R}_+}$, $\mathcal{F}_{[0,t)} := \mathcal{F}_{[0,t]}$ and $\mathcal{F}_{t} := \mathcal{F}_{[t,\infty)}$, with corresponding abbreviations for the noise algebra $\mathcal{N} = B(\mathcal{F})$. The identifications

$$\mathcal{F} = \mathcal{F}_{s} \otimes \mathcal{F}_{[s,t]} = \mathcal{F}_{s} \otimes \mathcal{F}_{[s,t]} \otimes \mathcal{F}_{t} \quad (0 \leq s \leq t < \infty),$$

which arise from the exponential property of Fock space, entail the identifications

$$\mathcal{N} = \mathcal{N}_{s} \otimes \mathcal{N}_{[s,t]} = \mathcal{N}_{s} \otimes \mathcal{N}_{[s,t]} \otimes \mathcal{N}_{t} \quad (0 \leq s \leq t < \infty).$$

The notation $\Omega_{[s,t]}$, $I_{[s,t]}$ and $id_{[s,t]}$ for the vacuum vector in $\mathcal{F}_{[s,t]}$, the identity operator on $\mathcal{F}_{[s,t]}$ and the identity map on $\mathcal{N}_{[s,t]}$, respectively, is also useful, with corresponding abbreviations for other intervals as above.

Denote by Δ any of the following projections:

$$P_k \in B(\mathfrak{k}), \quad P_k \otimes 1_{\mathcal{A}} \in B(\mathfrak{k}) \otimes \mathcal{A} \quad \text{and} \quad P_k \otimes 1_{\mathcal{A}} \otimes I_{\mathcal{F}} \in B(\hat{\mathfrak{k}}) \otimes \mathcal{A} \otimes \mathcal{N}, \quad (2.2)$$

where $P_k = \left[\begin{array}{cc} 0 & 0 \\ 0 & f_k \end{array}\right] \in B(\mathfrak{k})$ is the orthogonal projection onto k.

The right shift

$$s_t : L^2(\mathbb{R}_+; \mathfrak{k}) \to L^2([t, \infty); \mathfrak{k}); \quad f \mapsto f(\cdot - t) \quad (t \geq 0)$$

has second quantisation

$$S_t : \mathcal{F} \to \mathcal{F}_{t}; \quad \varepsilon(f) \mapsto \varepsilon(s_t f),$$

where $\varepsilon(g)$ denotes the exponential vector corresponding to the vector g, and the map

$$\sigma_t : \mathcal{A} \otimes \mathcal{N} \to \mathcal{A} \otimes \mathcal{N}_t; \quad T \mapsto (I_{\mathfrak{h}} \otimes S_t)T(I_{\mathfrak{h}} \otimes S_t)^*$$

is a normal $*$-isomorphism for all $t \geq 0$.

Definition 2.1. A vacuum-adapted quantum stochastic cocycle k on A is a family of normal completely bounded maps $(k_t : A \to A \otimes N)_{t \geq 0}$ such that, for all $a \in A$ and $s, t \geq 0$,

1. $(\Omega-C \ i)$ $k_0(a) = a \otimes |\Omega \rangle \langle \Omega|$
2. $(\Omega-C \ ii)$ $k_t(a) = k_{t+s}(a) \otimes |\Omega_t \rangle \langle \Omega_t|$, where $k_{t+s}(a) \in A \otimes N_t$,
3. $(C \ iii)$ $k_{s+t} = \hat{k}_s \circ \sigma_s \circ k_t$, where $\hat{k}_s := k_s \otimes \text{id}_s$ and
4. $(C \ iv)$ $r \mapsto k_r(a)$ is ultraweakly continuous.

Such a family is a flow on A if it is also *-homomorphic and each k_t is unital. Following tradition we use the letter j for quantum stochastic flows.

In the standard theory, $(\Omega-C \ i)$ and $(\Omega-C \ ii)$ are replaced by their identity-adapted counterparts,

1. $(I-C \ i)$ $k_0(a) = a \otimes I_F$
2. $(I-C \ ii)$ $k_t(a) = k_{t,j}(a) \otimes I_{[t]}$, where $k_{t,j}(a) \in A \otimes N_t$.

Remark 2.2. The prescription

$$k(t) = (k(t) \cdot \otimes |\Omega_t \rangle \langle \Omega_t|)_{t \geq 0} \mapsto k(I) = (k(t) \cdot \otimes I_{[t]})_{t \geq 0} \ (2.3)$$

gives a bijective correspondence between the class of vacuum-adapted quantum stochastic cocycles and the class of identity-adapted quantum stochastic cocycles. Note that

$$k_{t,j}(a) = E^{\Omega_t} k_t(a) E^{\Omega_t} \quad (t \geq 0, a \in A) \ (2.4)$$

in both cases.

In terms of the orthogonal projection

$$P_t := I_B \otimes I_j \otimes |\Omega_t \rangle \langle \Omega_t|, \quad (2.5)$$

condition $(\Omega-C \ ii)$ becomes

$$k_t(a) = P_t k_t(a) P_t,$$

whereas $(I-C \ ii)$ only implies the weaker commutation relation

$$k_t(a) P_t = P_t k_t(a).$$

Let

$$E := \text{id}_A \otimes \omega_\Omega : A \otimes N \to A$$

denote the vacuum expectation, where ω_Ω is the state on N corresponding to the vacuum vector Ω.

Proposition 2.3. Let k be a vacuum-adapted quantum stochastic cocycle on A. Then the ultraweakly continuous family of normal completely bounded maps $(E \circ k_t)_{t \geq 0}$ on A forms a semigroup, called the vacuum-expectation semigroup of k.

Proof. For all $t \geq 0$, the conditional expectation

$$E_t : A \otimes N \to A \otimes N; \ x \mapsto (\text{id}_A \otimes \omega_{\Omega_t}) (x) \otimes I_{[t]} \ (2.6)$$

has the tower property $E \circ E_t = E$. The claim then follows from the fact that vacuum-adapted (as well as identity-adapted) quantum stochastic cocycles satisfy the identity

$$E_t \circ \hat{k}_t \circ \sigma_t = k_t \circ E \quad (t \geq 0). \ \square$$
Quantum stochastic differential equations of the following form are a basic source of quantum stochastic cocycles.

Remark 2.4. Under the correspondence (2.3), \(k(\Omega) \) satisfies a quantum stochastic differential equation of the form

\[
k_0(a) = a \otimes |\Omega\rangle\langle\Omega|, \quad dk_t = \tilde{k}_t(\psi(a)) \, d\Lambda_t
\]

on a subset \(A_0 \) of \(A \), where \(\tilde{k}_t := \text{id}_{B(\hat{k})} \otimes k_t \), if and only if \(k(I) \) satisfies a quantum stochastic differential equation of the form

\[
k_0(a) = a \otimes I_{F}, \quad dk_t = \tilde{k}_t(\phi(a)) \, d\Lambda_t \tag{2.8}
\]

on \(A_0 \), where the maps \(\psi, \phi : A_0 \to B(\hat{k}) \otimes A \) are related by the following identity:

\[
\psi(a) = \phi(a) + \Delta \otimes a \quad (a \in A_0).
\]

This is proved in [9, Theorem 7.3].

Remark 2.5 ([16, Section 6]). Let the map \(\phi : A \to B(\hat{k}) \otimes A \) have the block-matrix form

\[
\phi(a) = \begin{bmatrix}
[ih, a] - \frac{1}{2} \{r^*r, a\} + r^*\pi(a)r & ar^* - r^*\pi(a) \\
ra - \pi(a)r & \pi(a) - I_k \otimes a
\end{bmatrix} \quad (a \in A), \tag{2.9}
\]

where \(h \in A \) is self adjoint, \(r \in |k\rangle \otimes A \) and \(\pi : A \to B(k) \otimes A \) is a normal unital \(*\)-homomorphism. Then the quantum stochastic differential equation (2.8) has a unique solution and this is an identity-adapted quantum stochastic flow. Conversely, if an identity-adapted quantum stochastic flow satisfies (2.8) for some normal bounded map \(\phi : A \to B(\hat{k}) \otimes A \) then \(\phi \) has the form (2.9).

Definition 2.6. Let \(j \) be a vacuum-adapted quantum stochastic flow on \(A \). A family of operators \(M = (M_t)_{t \geq 0} \) in \(A \otimes N \) is a multiplier for \(j \) if, for all \(s, t \geq 0 \),

\begin{align*}
(M \text{ i}) & \quad M_0 = I_{A \otimes F}, \\
(M \text{ ii}) & \quad M_t P_s = P_s M_t, \\
(M \text{ iii}) & \quad M_{s+t} = J_s(M_t)M_s, \quad \text{where } J_s := \hat{j}_s \circ \sigma_s \\
(M \text{ iv}) & \quad r \mapsto M_t \text{ is strongly continuous}.
\end{align*}

The Banach–Steinhaus Theorem and condition (M iv) imply that \(M \) is locally bounded.

Theorem 2.7 (Cf. [6, Theorem 2.1]). Let \(M \) and \(N \) be multipliers for the vacuum-adapted quantum stochastic flow \(j \). The ultraweakly continuous normal completely bounded family

\[
\mathcal{P} := (a \mapsto E[M^*_t j_t(a)N_t])_{t \geq 0}
\]

forms a semigroup, which is completely contractive if \(M \) and \(N \) are contractive and is completely positive if \(M = N \).
To prove the semigroup property, let $a \in A$ and $s, t \geq 0$. By the tower property for the conditional expectation E_s defined in (2.6), it follows that

$$
P_{s+t}(a) = \mathbb{E}[E_s[M^*_s J_s(M^*_t J_s(j_t(a))J_t(N_t)N_s)]
$$

by (C iii) and (M iii)

$$
= \mathbb{E}[M^*_s E_s[J_s(M^*_t j_t(a)N_t)]N_s]
$$

by (M ii)

$$
= \mathbb{E}[M^*_s j_s(E[M^*_t j_t(a)N_t])N_s]
$$

by (M ii) and the tower property

$$
= P_s (P_t(a)).
$$

For the equality (2.10), note that if $a \in A$ and $x \in \mathbb{N}$ then

$$
\mathbb{E}_s[J_s(a \otimes x)] = \langle \Omega, x\Omega \rangle j_s(a) = j_s(\mathbb{E}[a \otimes x]);
$$

thus $\mathbb{E}_s \circ J_s = j_s \circ \mathbb{E}$, by linearity and ultraweak continuity. \hfill \square

Remark 2.8. Many of the ideas in this section go back to work of Accardi [1, Sections 2 and 4]; see also [3, Section 2.3].

3. A vacuum-adapted quantum stochastic differential equation

Let $(u_t)_{t \in \mathbb{R}}$ be a strongly continuous one-parameter unitary group in A, let $B = (B_t)_{t \geq 0}$ be the canonical Brownian motion on Wiener’s probability space \mathbb{W} and identify $L^2(\mathbb{W})$ with \mathcal{F}, where $k = C$, via the Wiener–Itô–Segal isomorphism. If the unitary operator $U_t \in A \otimes \mathbb{N}$ is such that

$$
U_t \xi : \omega \mapsto u_{B_t(\omega)} \xi(\omega) = u_{\omega(t)} \xi(\omega) \quad (\xi \in L^2(\mathbb{W}; h))
$$

then the family of maps $(j_t^B : a \mapsto U_t(a \otimes I_{\mathcal{F}})U_t^*)_{t \geq 0}$ is an identity-adapted quantum stochastic flow on A (cf. [14, Section 5]).

Bahn and Park considered the operator stochastic differential equation

$$
M^a_t = I_{h \otimes \mathcal{F}}, \quad dM^a_t = j_t^B(a)P_tM^a_t dB_t - \frac{1}{2}j_t^B(a^2)P_tM^a_t dt,
$$

where $a \in A$, and obtained a solution pointwise in $L^2(\mathbb{W}; h)$ [6, Proposition 3.2]. They showed that the collection of operators $(M^a_t)_{t \geq 0}$ forms a multiplier for the quantum stochastic flow j^B [6, Proposition 3.3].

Fix $a \in A$ and set $N_t := M^a_t - I_{h \otimes \mathcal{F}}$ for all $t \geq 0$, so that

$$
N_t \xi = \int_0^t Q_s \xi dB_s - \frac{1}{2} \int_0^t R_s \xi ds + \int_0^t Q_s N_s \xi dB_s - \frac{1}{2} \int_0^t R_s N_s \xi ds
$$

for all $\xi \in L^2(\mathbb{W}; h)$, where

$$
Q_t := j_t^B(a)P_t \quad \text{and} \quad R_t := j_t^B(a^2)P_t.
$$

As $(j_t^B(b))_{t \geq 0}$ is identity adapted for all $b \in A$, the processes Q and R are vacuum adapted. Hence the quantum stochastic differential equation

$$
N_0 = 0, \quad dN_t = Q_t dA^I_t - \frac{1}{2} R_t dt + Q_t N_t dA^I_t - \frac{1}{2} R_t N_t dt
$$

has a unique vacuum-adapted solution.
To see that (3.2) is the correct quantum stochastic generalisation of (3.1), for simplicity take \(\mathfrak{h} = \mathbb{C} \) and let \(\hat{z}(f) \) denote the Brownian exponential corresponding to \(f \in L^2(\mathbb{R}_+) \), i.e., the unique element of \(L^2(\mathbb{W}) \) such that

\[
\hat{z}(f)_t := \mathbb{E}_W[\hat{z}(f)|\mathcal{B}_t] = 1 + \int_0^t f(s)\mathbb{E}_W[\hat{z}(f)|\mathcal{B}_s] \, dB_s \quad (t \geq 0),
\]

where \((\mathcal{B}_t)_{t \geq 0} \) is the canonical filtration generated by the Brownian motion \(B \). (Recall that \(\hat{z}(f) \) corresponds to \(\varepsilon(f) \) and \(\mathbb{E}_W[\cdot|\mathcal{B}_t] \) to \(P_t \).) If \((X_t)_{t \geq 0} \) is a process of bounded operators on \(\mathcal{F} \) with locally bounded norm and such that \(X_t P_t = P_t X_t \) for all \(t \geq 0 \) then, by the Itô product formula,

\[
\mathbb{E}_W[\hat{z}(f) \int_0^t X_s P_s \hat{z}(g) \, dB_s] = \mathbb{E}_W\left[\int_0^t \hat{z}(f) X_s \hat{z}(g) \, ds \right]
= \left\langle \varepsilon(f), \int_0^t X_s P_s \, dA_s \varepsilon(g) \right\rangle \quad (f, g \in L^2(\mathbb{R}_+)).
\]

Definition 3.1. For a Hilbert space \(\mathcal{H} \), a bounded process in \(B(\mathcal{H}) \otimes \mathcal{A} \) is a family of operators \(Z = (Z_t)_{t \geq 0} \) in \(B(\mathcal{H}) \otimes \mathcal{A} \otimes \mathcal{N} \) such that

\[
t \mapsto \langle \zeta', Z_t \zeta \rangle
\]

is measurable \((\zeta, \zeta' \in \mathcal{H} \otimes \mathfrak{h} \otimes \mathcal{F})\); such a process is **vacuum adapted** if

\[
Z_t = (I_{\mathcal{H}} \otimes P_t)Z_t(I_{\mathcal{H}} \otimes P_t) \quad (t \geq 0)
\]
or, equivalently,

\[
Z_t = Z_{t|} \otimes |\Omega_t\rangle\langle \Omega_t|, \quad Z_{t|} \in B(\mathcal{H}) \otimes \mathcal{A} \otimes \mathcal{N}|_{0, t} \quad (t \geq 0).
\]

A vacuum-adapted bounded process \(G \) in \(B(\mathfrak{k}) \otimes \mathcal{A} \) is an **integrand** process if its block-matrix form \(\begin{bmatrix} k & m \\ l & n \end{bmatrix} \) is such that

\[
\| G \|_t := \| k \|_{1, t} + \| l \|_{2, t} + \| m \|_{2, t} + \| n \|_{\infty, t} < \infty \quad (t \geq 0),
\]

where \(\| f \|_{p, t} \) denotes the \(L^p \) norm of the function \(1_{[0, t]} f \).

The following result is the coordinate-independent version of [8, Proposition 37], with non-trivial initial space. Recall the \(E \) notations (1.7).

Proposition 3.2. Let \(G \) be an integrand process. There is a unique bounded vacuum-adapted process \(\int G \, d\Lambda = \left(\int_0^t G_s \, d\Lambda_s \right)_{t \geq 0} \) in \(\mathcal{A} \) such that

\[
\langle u \varepsilon(f), \int_0^t G_s \, d\Lambda_s | v \varepsilon(g) \rangle = \int_0^t \langle u \varepsilon(f), E^{\varepsilon(s)} G_s E^{-\varepsilon(s)} v \varepsilon(g) \rangle \, ds \quad (t \geq 0)
\]

for all \(u, v \in \mathfrak{h} \) and \(f, g \in L^2(\mathbb{R}_+; \mathfrak{k}) \). Moreover, the following inequality holds:

\[
\| \int_0^t G_s \, d\Lambda_s \| \leq \| G \|_t \quad (t \geq 0).
\]

We shall need to pass suitably adapted operators inside quantum stochastic integrals. The following result takes care of this.
Lemma 3.3. Let G be an integrand process such that $G\Delta \equiv 0$ and let X be a bounded vacuum-adapted process in \mathfrak{A}. Then

$$\int_s^t G_r \, d\Lambda_r X_s = \int_s^t G_r (I_k \otimes X_s) \, d\Lambda_r \quad (0 \leq s \leq t). \quad (3.3)$$

Proof. Let $u, v \in \mathfrak{h}$ and $f, g \in L^2(\mathbb{R}_+; k)$; note that

$$\langle u\varepsilon(f), \int_s^t G_r \, d\Lambda_r \, v\varepsilon(g) \rangle = \int_0^t \langle u\varepsilon(f), E_{(r)} G_r \, v\varepsilon(g) \rangle \, dr,$$

since $\Delta \hat{E}_\xi = E_\xi$ for all $\xi \in k$. If $A \in B(\mathfrak{h} \otimes \mathcal{F}_s)$ and $\xi \in \mathfrak{h} \otimes \mathcal{F}$ then, setting $P_s := |\Omega_s\rangle\langle\Omega_s|$ for brevity, it follows that

$$\langle u\varepsilon(f), \int_s^t G_r \, d\Lambda_r (A \otimes P_s)\xi \rangle = \int_s^t \langle u\varepsilon(f), E_{(r)} G_r (A \otimes P_s)\xi \rangle \, dr$$

$$\quad = \int_s^t \langle u\varepsilon(f), E_{(r)} G_r (I_k \otimes A \otimes P_s)E_\xi \rangle \, dr$$

$$\quad = \langle u\varepsilon(f), \int_s^t G_s (I_k \otimes A \otimes P_s) \, d\Lambda_r \xi \rangle. \quad \square$$

The following existence and uniqueness theorem is sufficiently general for present purposes.

Theorem 3.4. Let G and X be as in Lemma 3.3, with X locally bounded in norm. Then there is a unique vacuum-adapted process Z in \mathfrak{A} such that

$$Z_t = X_t + \int_0^t G_s (I_k \otimes Z_s) \, d\Lambda_s \quad (t \geq 0). \quad (3.4)$$

Furthermore,

$$\|Z\|_{\infty,t} \leq \sqrt{2} \|X\|_{\infty,t} \exp(2\|t\|_{2,t}^2 + 2\|k\|_{1,t}^2) \quad (t \geq 0),$$

where $\begin{bmatrix} k & 0 \\ 0 & 0 \end{bmatrix}$ is the block-matrix form of G, and Z is norm continuous if and only if X is.

Proof. Define a sequence of processes $(X^{(n)})_{n \geq 0}$ inductively by letting $X^{(0)} := X$ and

$$X^{(n+1)}_t := \int_0^t G_s (I_k \otimes X^{(n)}_s) \, d\Lambda_s \quad (t \geq 0).$$

This process is well defined and such that

$$\|X^{(n+1)}_t\|_{\infty,t} \leq \|k\|_{1,t} \|X^{(n)}_t\|_{1,t} + \|t\|_{2,t} \|X^{(n)}_t\|_{2,t} \quad (t \geq 0),$$

so

$$\|X^{(n+1)}_t\|_{\infty,t}^2 \leq 2\|k\|_{1,t}^2 \|X^{(n)}_t\|_{1,t}^2 + 2\|t\|_{2,t}^2 \|X^{(n)}_t\|_{2,t}^2 \leq \int_0^t c(s) \|X^{(n)}_t\|_{\infty,s}^2 \, ds,$$

where

$$c(s) := 4\|k_s\| \int_0^s \|k_r\| \, dr + 2\|t_s\|^2.$$
It follows that
\[
\|X^{(n+1)}\|_{\infty,t}^2 \leq \frac{1}{n!} \left(\int_0^t c(s) \, ds \right)^n \|X\|_{\infty,t}^2 \quad (n \geq 0, \ t \geq 0),
\]
so \(Z_t := \sum_{n=0}^{\infty} X_t^{(n)} \) exists for all \(t \geq 0 \), the series being convergent in norm. A dominated-convergence argument shows that \(Z \) satisfies (3.4) and, since
\[
\|Z_t\|^2 \leq 2\|X_t\|^2 + 2 \int_0^t c(s)\|Z_s\|^2 \, ds \quad (t \geq 0),
\]
the inequality and so uniqueness follow from Gronwall’s lemma. The final claim is immediate. \(\square \)

4. Multipliers via quantum stochastic differential equations

Fix a vacuum-adapted quantum stochastic flow \(j \) on \(A \) and let
\[
J_t := \hat{j}_t \circ \sigma_t : A \otimes N \to A \otimes N_{t} \otimes N|t = A \otimes N
\]
and \(\hat{J}_t := \text{id}_{\hat{B} \otimes} \otimes J_t \), for all \(t \geq 0 \). The ultraweakly continuous family of normal unital \(*\)-homomorphisms \((J_t)_{t \geq 0}\) form a semigroup (cf. [17, Proposition 4.3]).

The following result is a vacuum-adapted version of [10, Lemma 5.1] which suffices for the present paper.

Lemma 4.1. If the integrand process \(G \) is norm continuous then the family of operators \(\{1_{[s,\infty]}(r)J_s(G_{r-s})\}_{r \geq 0} \) defines an integrand process such that
\[
J_s \left(\int_0^t G_r \, d\Lambda_r \right) = \int_s^{s+t} \hat{J}_s(G_{r-s}) \, d\Lambda_r \quad (t \geq 0).
\]

Sketch proof. Apply the ampliation of the vector functional \(A \mapsto \langle \epsilon(f), A\epsilon(g) \rangle \) to the left-hand side, then consider suitable Riemann sums. \(\square \)

With this technical lemma we can construct multipliers of \(j \) by solving quantum stochastic differential equations with coefficients driven by \(j \).

Lemma 4.2. For all \(c \in [\hat{k}] \otimes A \) there is a unique process \(M^c = (M^c_t)_{t \geq 0} \) in \(A \) such that \(M^c - I = (M^c_t - I_{0 \otimes x})_{t \geq 0} \) is vacuum adapted and
\[
M^c_t = I_{0 \otimes x} + \int_0^t \hat{j}_s(cE^\omega)(I_{\hat{k}} \otimes M^c_s) \, d\Lambda_s,
\]
where \(\hat{j}_s := \text{id}_{\hat{B} \otimes} \otimes j_s \) and \(\omega := \left(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right) \in \hat{k} \), i.e.,
\[
\langle u\epsilon(f), (M^c - I)u\epsilon(g) \rangle = \int_0^t \langle u\epsilon(f), j_s(E^\omega(s)c)M^c_s \epsilon(g) \rangle \, ds \quad (t \geq 0)
\]
for all \(u, v \in \mathfrak{h} \) and \(f, g \in L^2(\mathbb{R}_+; \mathfrak{k}) \). The process \(M^c \) is norm continuous.

Proof. Define an integrand process \(G \) by setting \(G_t := \hat{j}_t(cE^\omega) \) for all \(t \geq 0 \). In view of the identity \(\hat{j}(\cdot)\Delta = \hat{j}(\cdot, \Delta) \), which exploits the abuse of notation (2.2),
and the fact that $E^\omega \Delta = 0$, Theorem 3.4 gives a vacuum-adapted process N in A which is norm continuous and such that

$$N_t = \int_0^t G_s \, d\Lambda_s + \int_0^t G_s (I_k \otimes N_s) \, d\Lambda_s \quad (t \geq 0).$$

Hence $M^c_t := I_h \otimes F + N_t$ is a norm-continuous process as required; uniqueness holds because the solution of (4.1) is unique. □

Theorem 4.3. For all $c \in [\hat{k} \otimes A$ the process M^c given by Lemma 4.2 is a multiplier for j.

Proof. It suffices to verify that condition (M iii) of Definition 2.6 holds. Fix $s \geq 0$ and let

$$M_t := \begin{cases} M^c_t & \text{if } t \in [0, s), \\ J_s(M^c_{t-s})M^c_s & \text{if } t \in [s, \infty). \end{cases}$$

Now $\tilde{J}_r \circ \tilde{J}_{r-s} = \tilde{J}_r$ for all $r \geq s$, by (C iii) of Definition 2.1, so Lemma 3.3 and Proposition 4.1 imply that

$$M_{t+s} = J_s(I_h \otimes F + \int_0^s \tilde{J}_r (cE^{\omega})(I_k \otimes M^c_r) \, d\Lambda_r)M^c_s + \int_0^{t+s} \tilde{J}_r (cE^{\omega})(I_k \otimes M^c_r) \, d\Lambda_r.$$

By Lemma 4.2, $M \equiv M^c$ and $M^c_{t+s} = M_{t+s} = J_s(M^c_t)M^c_s$, as required. □

5. Semigroup perturbation

For vacuum-adapted integrands the quantum Itô product formula takes the following form [8, Section 5.4].

Lemma 5.1. Let $Z := \int G \, d\Lambda$ and $Z' := \int G' \, d\Lambda$ for integrand processes G and G'. Then

$$H := (I_k \otimes Z)\Delta^\perp G' + G\Delta^\perp (I_k \otimes Z') + G\Delta G'$$

defines an integrand process such that $ZZ' = \int H \, d\Lambda$.

The product of three integrals gives the following.
Corollary 5.2. Let G, G' and G'' be integrand processes and let $Z := \int G \, d\Lambda$, $Z' := \int G' \, d\Lambda$ and $Z'' := \int G'' \, d\Lambda$. Then

$$H := (I_k \otimes ZZ')\Delta^\perp G'' + (I_k \otimes Z)\Delta^\perp G'\Delta^\perp (I_k \otimes Z') + G\Delta^\perp (I_k \otimes Z' Z'')$$

is an integrand process such that $ZZ'Z'' = \int H \, d\Lambda$.

Theorem 5.3. Let $\psi : A_0 \to A \overline{\otimes} B(\hat{k})$, where $A_0 \subseteq A$, and suppose j satisfies the vacuum-adapted quantum stochastic differential equation

$$j_0(x) = x \otimes |\Omega\rangle \langle \Omega|, \quad dj_t(x) = \tilde{j}_t(\psi(x)) \, d\Lambda_t \quad (x \in A_0).$$

Let τ be the ultraweak generator of the semigroup $P := \{\mathbb{E}(M^\tau_i) \, j_t(\cdot) \, M^\tau_i) \}_{t \geq 0}$, where $c, d \in [\hat{k}] \overline{\otimes} A$. Then $\text{Dom} \, \tau \supseteq A_0$ and, for all $x \in A_0$,

$$\tau(x) = E^{\psi}(x)E_\omega + c^* \Delta \psi(x)E_\omega + E^{\psi}(x)\Delta d + c^* \Delta \psi(x)\Delta d + c^* E_\omega x + x E^\omega d. \quad (5.1)$$

Proof. Let $x \in A_0$ and $t \geq 0$; note that $(M^\tau_i \, j_t(x)M^\tau_i - j_t(x))$ equals

$$(M^\tau_i - I)^*_t (j_t - j_0)(x)(M^\tau_i - I)_t + (M^\tau_i - I)^*_t(j_t - j_0)(x)$$

$$+ (j_t - j_0)(x)(M^\tau_i - I)_t + (M^\tau_i - I)^*_t j_0(x)(M^\tau_i - I)_t$$

$$+ (M^\tau_i - I)^*_t j_0(x) + j_0(x)(M^\tau_i - I)_t. \quad \quad \quad (5.2)$$

If $u, v \in \mathfrak{h}$ and $f, g \in L^2(\mathbb{R}_+; k)$ then, writing P_Ω for $|\Omega\rangle \langle \Omega| \in \mathbb{N},$

$$\langle u \varepsilon(f), j_0(x)(M^\tau_i - I)_t v \varepsilon(g) \rangle = \langle (x^* u) \Omega, \int_0^t \tilde{j}_s(dE^\omega)(I_k \otimes M^\tau_i) \, d\Lambda_s \, v \varepsilon(g) \rangle$$

$$= \int_0^t \langle (x^* u) \Omega, E^{\varepsilon}_s \tilde{j}_s(dE^\omega)(I_k \otimes M^\tau_i) E^{-\varepsilon}_s(v \varepsilon(g)) \rangle \, ds$$

$$= \int_0^t \langle u \varepsilon(f), (x \otimes P_\Omega) j_s(E^\omega d) M^\tau_i v \varepsilon(g) \rangle \, ds,$$

therefore

$$j_0(x)(M^\tau_i - I)_t = \int_0^t (x \otimes P_\Omega) j_s(E^\omega d) M^\tau_i ds,$$

$$(M^\tau_i - I)^*_t j_0(x) = \int_0^t (M^\tau_i)^* j_s(c^* E_\omega)(x \otimes P_\Omega) ds$$

and

$$(M^\tau_i - I)^*_t j_0(x)(M^\tau_i - I)_t = \int_0^t (M^\tau_i - I)^*_t(x \otimes P_\Omega) j_s(E^\omega d) M^\tau_i ds$$

$$+ \int_0^t (M^\tau_i)^* j_s(c^* E_\omega)(x \otimes P_\Omega)(M^\tau_i - I)_s ds.$$
This implies that the sum of the last three terms in (5.2) equals
\[
\int_0^t (M_s^e)^*((x \otimes P_\Omega)j_s(E^\omega d) + j_s(c^*E_\omega)(x \otimes P_\Omega))M_s^d \, ds
\]
\[
= \int_0^t (\tilde{M}_s^e)^*((I_k \otimes x \otimes P_\Omega)\tilde{j}_s(\Delta^\omega dE^\omega) + \tilde{j}_s(E_\omega c^*\Delta^\omega)(I_k \otimes x \otimes P_\Omega))\tilde{M}_s^d \, d\Lambda_s,
\]
where $\tilde{M}_s^e := I_k \otimes M_s^e$ for $e = c, d$.

After some working, with the aid of Lemma 5.1 and Corollary 5.2, it follows that $(M_t^c)^*j_t(x)M_t^d - j_0(x)$ equals
\[
\int_0^t (\tilde{j}_s(A_1) + \tilde{j}_s(A_2)\tilde{M}_s^d + (\tilde{M}_s^e)^*\tilde{j}_s(A_3) + (\tilde{M}_s^e)^*\tilde{j}_s(A_4)\tilde{M}_s^d) \, d\Lambda_s,
\]
where
\[
A_1 := \Delta \psi(x)\Delta,
\]
\[
A_2 := \Delta \psi(x)\Delta^\omega + \Delta \psi(x)\Delta dE^\omega,
\]
\[
A_3 := \Delta^\omega \psi(x)\Delta + E_\omega c^*\Delta \psi(x)\Delta
\]
and
\[
A_4 := \Delta^\omega \psi(x)\Delta^\omega + E_\omega c^*\Delta \psi(x)\Delta^\omega + \Delta^\omega \psi(x)\Delta dE^\omega + E_\omega c^*\Delta^\omega \Delta dE^\omega + E_\omega c^*\Delta^\omega (I_k \otimes x) + (I_k \otimes x)\Delta^\omega dE^\omega.
\]
Hence
\[
\langle u, (\mathcal{P}_t(x) - x)v \rangle = \langle u, (M_t^c)^*j_t(x)M_t^d - j_0(x)\rangle v\Omega
\]
\[
= \int_0^t \langle u, \left(j_s(E^\omega A_1 E_\omega) + j_s(E^\omega A_2 E_\omega)M_s^d
\right.
\]
\[
+ (M_s^e)^*j_s(E^\omega A_3 E_\omega) + (M_s^e)^*j_s(E^\omega A_4 E_\omega)M_s^d) \rangle v\Omega \rangle \, ds
\]
\[
= \int_0^t \langle u, \left(M_t^c)^*j_t(E^\omega A_4 E_\omega)M_t^d \rangle v\Omega \rangle \, ds
\]
\[
= \int_0^t \langle u, \mathcal{P}_s(y)v \rangle \, ds,
\]
where
\[
y = E^\omega \psi(x)E_\omega + c^*\Delta \psi(x)E_\omega + E^\omega \psi(x)\Delta d + c^*\Delta \psi(x)\Delta d + c^*E_\omega x + xE^\omega d,
\]
as required. \qed

Remark 5.4. In terms of the direct-sum decomposition $\hat{k} = C \oplus k$, if
\[
\psi = \begin{bmatrix} \tau_0 & \delta_0^T \\ \delta_0 & \pi_0 \end{bmatrix}, \quad c = \begin{bmatrix} k_1 \\ l_1 \end{bmatrix} \text{ and } d = \begin{bmatrix} k_2 \\ l_2 \end{bmatrix}
\]
then (5.1) becomes
\[
\tau(x) = \tau_0(x) + l_1^T \delta_0(x) + \delta_0^T(x)l_2 + l_1^T \pi_0(x)l_2 + k_1^T x + x k_2 \quad (x \in A_0).
\]
When \(\psi \) is bounded and everywhere defined, \(\delta_0 \) is a bounded \(\pi_0 \)-derivation. Since \(\delta_0(A_0) \subseteq A \otimes |k\rangle \), it follows that \(\delta_0 \) is implemented ([11], see [14, Chapter 6]) and so

\[
\tau(x) = i[h, x] - \frac{1}{2} \{r^*r, x\} + r^*\pi_0(x)r \\
+ (xr^* - r\pi_0(x))l_2 + l_1^*(rx - \pi_0(x)r) + l_1^*\pi_0(x)l_2 + k_1^*x + xk_2
\]

for some \(h = h^* \in A \) and \(r \in |k\rangle \otimes A \). Equivalently,

\[
\tau(x) = d_1^*\pi_0(x)d_2 + e_1^*x + xe_2,
\]

where \(d_i = l_i - r \) and \(e_i = k_i + r^*l_i - \frac{1}{2}r^*r - ih \) for \(i = 1, 2 \).

Acknowledgments. We thank Kalyan Sinha for constructive remarks at an early stage of this work. Support from the UK-India Education and Research Initiative grant Quantum Probability, Noncommutative Geometry and Quantum Information is gratefully acknowledged.

References

1. Accardi, L.: On the quantum Feynman–Kac formula, Rend. Sem. Mat. Fis. Milano 48 (1978) 135–180.
2. Accardi, L.; Frigerio, A.: Markovian cocycles, Proc. Roy. Irish Acad. Sect. A 83 (1983) no. 2, 251–263.
3. Accardi, L.; Frigerio, A.; Lewis, J. T.: Quantum stochastic processes, Publ. Res. Inst. Math. Sci. 18 (1982) no. 1, 97–133.
4. Allicki, R.; Fannes, M.: Dilations of quantum dynamical semigroups with classical Brownian motion, Comm. Math. Phys. 108 (1987) no. 3, 353–361.
5. Arveson, W.: Ten lectures on operator algebras, CBMS Regional Conference Series in Mathematics 55, American Mathematical Society, Providence, 1984.
6. Bahn, C.; Park, Y. M.: Feynman–Kac representation and Markov property of semigroups generated by noncommutative elliptic operators, Infinite Dim. Anal. Quantum Probab. 6 (2003) no. 1, 103–121.
7. Belton, A. C. R.: Quantum \(\Omega \)-semimartingales and stochastic evolutions, J. Funct. Anal. 187 (2001) no. 1, 94–109.
8. Belton, A. C. R.: An isomorphism of quantum semimartingale algebras, Q. J. Math. 55 (2004) no. 2, 135–165.
9. Belton, A. C. R.: Random-walk approximation to vacuum cocycles, J. London Math. Soc. (2) 81 (2010) no. 2, 412–434.
10. Belton, A. C. R.; Lindsay, J. M.; Skalski, A. G.: Quantum Feynman–Kac perturbations, preprint, 2011.
11. Christensen, E.; Evans, D. E.: Cohomology of operator algebras and quantum dynamical semigroups, J. London Math. Soc. (2) 20 (1979) no. 2, 358–368.
12. Evans, M. P.; Hudson, R. L.: Perturbations of quantum diffusions, J. London Math. Soc. (2) 41 (1990) no. 2, 373–384.
13. Hudson, R. L.; Ion, P. D. F.; Parthasarathy, K. R.: Time-orthogonal unitary dilations and noncommutative Feynman–Kac formulae, Comm. Math. Phys. 83 (1982) no. 2, 261–280; Time-orthogonal unitary dilations and noncommutative Feynman–Kac formulae II, Publ. Res. Inst. Math. Sci. 20 (1984) no. 3, 607–633.
14. Lindsay, J. M.: Quantum stochastic analysis — an introduction, in: Quantum Independent Increment Processes I (2005) 181–271, Lecture Notes in Mathematics 1865, Springer, Berlin.
15. Lindsay, J. M.; Sinha, K. B.: Feynman–Kac representation of some noncommutative elliptic operators, J. Funct. Anal. 147 (1997) no. 2, 400–419.
16. Lindsay, J. M.; Wills, S. J.: Existence, positivity and contractivity for quantum stochastic flows with infinite dimensional noise, Probab. Theory Related Fields 116 (2000), 505–543.
17. Lindsay, J. M.; Wills, S. J.: Markovian cocycles on operator algebras adapted to a Fock filtration, J. Funct. Anal. 178 (2000) no. 2, 269–305.
18. Parthasarathy, K. R.; Sinha, K. B.: A stochastic Dyson series expansion, in: Theory and Application of Random Fields (Bangalore, 1982) (1983) 227–232, Lecture Notes in Control and Information Science 49, Springer, Berlin.
19. Reed, M; Simon, B.: Methods of Modern Mathematical Physics II. Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.
20. Simon, B.: Functional Integration and Quantum Physics, Academic Press, New York, 1979.

ACRB: DEPARTMENT OF MATHEMATICS AND STATISTICS, LANCASTER UNIVERSITY, LANCASTER LA1 4YF, UNITED KINGDOM
E-mail address: a.belton@lancaster.ac.uk

JML: DEPARTMENT OF MATHEMATICS AND STATISTICS, LANCASTER UNIVERSITY, LANCASTER LA1 4YF, UNITED KINGDOM
E-mail address: j.m.lindsay@lancaster.ac.uk

AGS: MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES, UL. ŚNIADECKICH 8,
P.O. BOX 21, 00-956 WARSAWA, POLAND
E-mail address: a.skalski@impan.pl