Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions

Andreas Kürtén, Tuija Jokinen, Mario Simon, Mikko Sipilä, Nina Sarnela, Heikki Junninen, Alexey Adamov, João Almeida, Antonio Amorim, Federico Bianchi, Martin Breitenlechner, Josef Domscheit, Neil M. Donahue, Jonathan Duplissy, Sebastian Ehrhart, Richard C. Flagan, Alessandro Franchin, Jani Hakala, Armin Hansel, Martin Heinritzi, Manuel Hutterli, Juha Kangasluoma, Jasper Kirkby, Ari Laaksonen, Katrianne Lehtipalo, Markus Leiminger, Vladimir Makhmutov, Serge Mathot, Antti Onnela, Tuukka Petäjä, Arnaud P. Praplan, Francesco Riccobono, Matti P. Rissanen, Linda Rondo, Siegfried Schobesberger, John H. Seinfeld, Gerhard Steiner, António Tomé, Jasmin Tröstl, Paul M. Winkler, Christina Williamson, Daniela Wimmer, Penglin Ye, Urs Baltensperger, Kenneth S. Carslaw, Markku Kulmala, Douglas R. Worsnop, and Joachim Curtius

*Institute for Atmospheric and Environmental Sciences, Goethe-University of Frankfurt, 60438 Frankfurt am Main, Germany; †Department of Physics, University of Helsinki, 00140 Helsinki, Finland; ‡Helsinki Institute of Physics, University of Helsinki, 00140 Helsinki, Finland; §European Organization for Nuclear Research, CH-1211 Geneva, Switzerland; ¶Laboratory for Systems, Instrumentation and Modeling for Space and the Environment, University of Labor and University of Beira Interior, 1749-016 Lisbon, Portugal; †Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland; ‡Ionicon Analytik GmbH, 6020 Innsbruck, Austria; ¶Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria; †Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213; †Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; ‡Tofwerk AG, 3600 Thun, Switzerland; †Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland; ¶Finnish Meteorological Institute, 00101 Helsinki, Finland; ‡Airmodus Ltd., 00560 Helsinki, Finland; ¶Solar and Cosmic Ray Research Laboratory, Lebedev Physical Institute, 11999 Moscow, Russia; †Faculty of Physics, University of Vienna, 1090 Vienna, Austria; ¶School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom; and †Aerodyne Research Inc., Billerica, MA 01821

Edited* by Barbara J. Finlayson-Pitts, University of California, Irvine, CA, and approved September 8, 2014 (received for review March 21, 2014)

For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are formed to find at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even though the neutral particles are stable against evaporation from the SA dimer onward, the formation rates of particles at 1.7 nm size, which contain about 10 SA molecules, are up to 4 orders of magnitude smaller compared with those of the dimer due to coagulation and wall loss of particles before they reach 1.7 nm in diameter. This demonstrates that neither the atmospheric particle formation rate nor its dependence on SA can simply be interpreted in terms of cluster evaporation or the molecular composition of a critical nucleus.

Significance

A significant fraction of atmospheric aerosols is formed from the condensation of low-volatility vapors. These newly formed particles can grow, become seeds for cloud particles, and influence climate. New particle formation in the planetary boundary layer generally proceeds via the neutral channel. However, unambiguous identification of neutral nucleating clusters has so far not been possible under atmospherically relevant conditions. We explored the system of sulfuric acid, water, and dimethylamine in a well-controlled laboratory experiment and measured the time-resolved concentrations of neutral clusters. Clusters containing up to 14 sulfuric acid and 16 dimethylamine molecules were observed. Our results demonstrate that a cluster containing as few as two sulfuric acid and one or two dimethylamine molecules is already stable against evaporation.

Aerosol particles are important constituents of the Earth’s atmosphere. A large fraction of the particles form by nucleation of low-volatility vapors. The newly formed particles first consist only of a few molecules and have diameters between 1 and 2 nm. Under favorable conditions, where loss rates are small and growth rates are sufficiently large, the particles can reach sizes of ~50 nm where they can act as cloud condensation nuclei (CCN). Model simulations suggest that globally about half the CCN originate from new particle formation (NPF) (1). Therefore, NPF is an important process affecting the climate through the cloud albedo effect (2). Numerous studies have shown that sulfuric acid (SA; H2SO4) and water vapor are important compounds participating in the formation of new particles (3, 4). However, atmospheric boundary layer NPF events cannot be explained by the binary nucleation of these two compounds alone (5); therefore, at least one additional substance besides SA and water vapor is required (6). However, the chemical identity of the compounds responsible for the high observed NPF rates remains to be fully elucidated. Recent theoretical (7, 8) and experimental (6, 9–15) studies have shown that amines efficiently stabilize SA particles | atmospheric nucleation | atmospheric chemistry | mass spectrometry

Author contributions: A.K., M. Simon, M. Sipilä, A. Adamov, F.B., J. Dommen, N.M.D., J. Duplissy, S.E., R.C.F., A.F., J. H., A.H., J. Kirkby, A.L., V.M., S.M., A.O., T.F., A.P.P., F.R., M.P.R., S.S., J.H.S., G.S., A.T., D.W., U.B., K.S.C., M.K., D.R.W., and J.C. designed research; A.K., T.J., M. Simon, M. Sipilä, N.S., A. Adamov, J.A., A. Amorim, F.B., M.B., J. Duplissy, S.E., J.H., M. Heinritzi, J. Kangasluoma, J. Kirkby, K.L., M.L., A.P.P., F.R., M.P.R., L.R., S.S., G.S., A.T., J.T., P.M.W., C.W., D.W., and P.Y. performed research; A.K., T.J., M. Simon, M. Sipilä, A. Adamov, F.B., J. Dommen, N.M.D., M. Simon, M. Sipilä, N.S., H.J., J.A., F.B., M.B., J. Dommen, M. Heinritzi, J. Kirkby, K.L., A.P.P., S.S., G.S., A.T., D.W., and D.R.W. analyzed data; and A.K. and J.C. wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.

Freely available online through the PNAS open access option.

†To whom correspondence should be addressed. Email: kuernten@iau.uni-frankfurt.de.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1404853111/-/DCSupplemental.
clusters and can also form new particles together with methanesulfonic acid and water vapor (16). Other research involving amines focused on the physiochemical properties of alkylammonium sulfates (17) and on the substitution of ammonia by amines in sulfuric acid–ammonia clusters (18, 19). A recent review article summarizes the findings on the atmospheric implications of amines (20). Oxidized organic compounds can also contribute to the enhancement of NPF rates (21–25). Because neutral (uncharged) new particle formation appears to dominate in the boundary layer (26, 27), it is critically important to develop techniques to measure the composition of small neutral clusters as they grow from monomers to ultrafine particles. New particle formation is highly nonlinear with respect to the concentration of the precursor gases; therefore, it is essential for these measurements to be conducted at the (extremely low) concentrations of relevant precursor gases found in the atmosphere.

Considerable progress has been made in recent years toward the development of instruments for measurement of gaseous compounds and particles during NPF events. The number density of small particles down to ~1.2 nm in diameter can now be measured with the particle size magnifier (28). For charged clusters, the molecules involved can be measured with the Atmospheric Pressure Interface–Time Of Flight (APi-TOF) mass spectrometer (29). However, an instrument to measure the precise molecular composition of neutral clusters has been developed only recently (30). Although atmospheric neutral clusters have previously been detected (12, 13, 31), their molecular composition was not unambiguously resolved.

Here we present results using a Chemical Ionization (CI)–APi-TOF mass spectrometer that can resolve the elemental composition of neutral clusters up to ~2,000 atomic mass units (30). The largest detected clusters have a mobility diameter around 2 nm, which falls within the measurement range of recently developed condensation particle counters (28). Thus, the CI-APi-TOF can measure the molecular composition of neutral clusters from the molecular up to the macroscopic size. The results shown here relate to a previous study conducted at the Cosmic Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), which found that atmospheric boundary layer nucleation rates have the same range of values as particle formation rates from sulfuric acid, dimethylamine, and water (15). Almeida et al. (15) reported particle formation rates measured by condensation particle counters and showed results for charged clusters measured with an APi-TOF mass spectrometer (29). One of the conclusions was, however, that ions are not essential in the formation of particles in the SA–dimethylamine (DMA) system when nucleation rates exceed a certain value. Our study reports on the very first measurements to our knowledge of neutral clusters made with a CI-APi-TOF.

Results and Discussion

Ternary nucleation of SA, DMA, and water was studied using the CLOUD chamber at atmospherically relevant concentrations of SA, between ~5 × 10^11 and 1.5 × 10^12 cm^−3, and with DMA [(CH3)2NH] mixing ratios between 5 and 32 parts per trillion by volume (pptv). The experiments were conducted at 278 K and 38% relative humidity. Two CI-APi-TOF mass spectrometers were deployed, both using nitrate charger ions (SI Text and Fig. S1).

Recent results obtained at CLOUD for the SA–DMA system showed that charged clusters containing three or more SA molecules (including the core bisulfate ion) grow by maintaining a near 1:1 ratio between the SA and DMA molecules during ion-induced nucleation (15). Here we present the first measurements, to our knowledge, of the neutral nucleating clusters. For these experiments a high-voltage clearing field is applied inside the CLOUD chamber to remove all ions and charged clusters that form due to galactic cosmic rays (5). The neutral clusters are sampled from the chamber; they only become charged upon entering the nitrate charging unit of the CI-API-TOF instrument. The elemental composition of clusters is unambiguously identified from their exact mass-to-charge ratio due to the high mass accuracy (typically better than 10 ppm) and resolving power (maximum of 4,500 Th/Th) of the instrument. Isotopic ratios provide additional information to help resolve between atomic species.

The neutral clusters are seen to grow by stepwise addition of one SA followed by one DMA molecule (Fig. 1 A and B), according to the same base stabilization mechanism seen previously for charged clusters (15). The largest detected neutral cluster contains 14 SA and 16 DMA molecules. Some of the smallest clusters [tetramer and smaller, i.e., HSO4− (H2SO4)k, where k ≤ 3] are measured without DMA. However, it is likely that at least one DMA molecule is lost from the neutral clusters during the charging process because both HSO4− and NO3− are Lewis bases which compete with DMA to attach to a SA molecule. On the other hand, if not all HNO3 evaporates from the cluster in the charging process, the evaporation of DMA can be prevented. This is indeed observed for the SA dimers [HSO4− (H2SO4)2], which are detected with up to two DMA molecules (Fig. 1B). This is the first time to our knowledge that a stabilizing compound has been directly observed in the SA dimer. Additional evidence for the stabilizing effect of DMA on the dimers is provided by the

![Fig. 1. Molecular weight and composition of neutral clusters during a new particle formation event with SA and DMA. (A) Mass defect plot measured with the CI-API-TOF mass spectrometer for an experiment with 10 pptv DMA and 3 × 10^11 cm^−3 SA. The mass defect is the difference between the exact mass (Th) and the nominal (integer) mass of the cluster. The symbol size is proportional to the logarithm of the signal intensity (count rate). Background ions and clusters (not containing SA or DMA) are indicated by gray symbols. (B) The same data with the signals grouped to show the number of SA and DMA molecules in the cluster.](https://www.pnas.org/cgi/doi/10.1073/pnas.1404853111)
magnitude of the dimer signal. For a binary system (SA and water), the dimer concentration is expected to be at least six orders of magnitude lower than that seen in our measurements (32). Therefore, only stabilization by DMA can explain such high dimer concentrations (15, 33). Finally, we add that quantum chemical calculations suggest that even the neutral monomer of SA is bound to a DMA molecule (8), although this cannot yet be confirmed experimentally because DMA rapidly evaporates from the bisulfate ion.

The temporal evolution of the cluster concentrations in a single representative experiment is shown in Fig. 2. The experiment is started by turning on the UV illumination; this initiates SA production and leads to sequential appearance of progressively larger clusters. Each cluster reaches a steady-state concentration when its production and loss rates are equal. The cluster concentrations predicted by a kinetic model with unit sticking efficiency are also shown in Fig. 2. The only free parameter in the model is the monomer production rate, which was adjusted to fit the measured monomer concentration \(N_1 \). The modeled dimer concentration \(N_2 \) matches the experimental value within a factor of 1.5, which is within the uncertainties of the detection efficiency. The uncertainty in the measured trimer \(N_3 \), tetramer \(N_4 \), and pentamer \(N_5 \) concentrations increases progressively (SI Text and Fig. S2), and the modeled concentrations of these clusters are systematically higher than the measured values.

However, when normalizing the cluster concentrations to their steady-state values, comparison between measured and modeled concentrations assuming zero evaporation shows excellent agreement (Figs. S3 and S4). Therefore, these data indicate that NPF in the SA–DMA system is very likely kinetically controlled; that is, cluster evaporation rates are effectively zero. In the present work, the term “kinetically limited nucleation” refers to a situation where the cluster growth is entirely controlled by collisions with monomers and smaller clusters and not by the evaporation of monomers. Because the measured \(N_2 \) agrees with the kinetic limit calculation, this should apply also for the larger clusters because evaporation rates are expected to decrease with increasing cluster size (13, 15). The discrepancies between the modeled and measured \(N_k \) for \(k \geq 3 \) in Fig. 2 can be explained by the uncertainties in deriving the concentrations from the measured cluster signals, particularly because it is presently not possible to calibrate the CI-API-TOF for cluster concentration measurements (SI Text). Therefore, the charging and detection efficiencies of the clusters are not well constrained and can account for the uncertainties.

The steady-state \(N_2, N_3, N_4, \) and \(N_5 \) concentrations are shown as a function of the SA monomer concentration \(N_1 \) in Fig. 3. For comparison, the modeled cluster concentrations are shown for the kinetic limit and for finite dimer evaporation rates of 0.01 and 0.1 \(s^{-1} \). The measurements agree closely with the modeled \(N_2 \) assuming no evaporation, providing further evidence that the dimer with DMA is stable. This contrasts with earlier Chemical Ionization Mass Spectrometer (CIMS) measurements in which \(N_2 \) was about a factor of 5 lower than expected for kinetic NPF (15). Fragmentation of the HSO\(_4^−\) (H\(_2\)SO\(_4^\)) ions in the CIMS is the most likely explanation for this discrepancy.

For the larger clusters the measured concentrations shown in Fig. 3 are below the kinetic limit calculations (zero evaporation rate). However, it is important to note that the slopes of the experimental cluster concentrations vs. \(N_1 \) are compatible with the kinetic limit curves but incompatible with those for finite evaporation rates. Evaporation of the clusters would generally lead to a steepening of the slopes, which is not observed. Furthermore, the model curves that go through the data require progressively larger values of the dimer evaporation rate \(k_{2,\text{evap}} \), which is unphysical. In contrast, curves accounting for progressive decrease in the detection efficiency reproduce the slope reductions with negligible SA evaporation (SI Text). Our measurements therefore indicate that the larger clusters also form at or near the kinetic limit. This confirms for the first time, to our knowledge, through direct measurement of neutral clusters that SA–DMA new particle formation can be a purely kinetic process. Kinetic behaviour contrasts with the observation of stable prenucleation clusters as precursors in crystallization (34). These clusters are stable up to a certain size before they reach a barrier where they become unstable before eventually crossing the nucleation barrier. Although we cannot rule out entirely that such a barrier could also exist in the SA–DMA system, it would almost certainly be beyond the pentamer. The reason is that otherwise, no monotonic decrease, but rather a sharp step, should become visible when plotting the ratio between measured and modeled cluster concentration as a function of cluster size (SI Text and Fig. S2). The data from Fig. 1B provide further qualitative information that even beyond the pentamer, no sharp drop in the cluster signal is visible for clusters as large as 2 nm in mobility diameter.

Chen et al. (13) concluded that nucleation of SA and base molecules (ammonia and/or amines) is not proceeding at the kinetic limit and that an evaporation rate of 0.4 \(s^{-1} \) for the trimer containing at least one base molecule can explain the atmospheric particle formation rates in Atlanta and Mexico City. This contrasts with our finding that cluster evaporation rates are negligible in the SA–DMA system. However, one needs to keep in mind that the DMA concentration is also an important
parameter. Indeed, the study by Chen et al. (13) showed for the SA–DMA system that the ratio between N_2 and N_1 reaches a constant value only when the DMA concentration is about a factor of 100 larger than the SA concentration. If this ratio is reached, the measured N_2 concentration approaches the expected value for the kinetic limit within errors (13). Additionally, the study by Almeida et al. (15) also shows this behavior where the nucleation rate is approaching a plateau when the DMA mixing ratio exceeds ~ 10 pptv (i.e., $\sim 2.5 \times 10^8$ cm$^{-3}$ at $[\text{H}_2\text{SO}_4] = 2 \times 10^6$ cm$^{-3}$). One explanation for this plateauing effect is that SA•DMA agglomerates are required to initiate the formation of new particles (8, 15). However, quantum chemical calculations suggest that appreciable evaporation of SA•DMA is occurring (8). In this case, efficient dimer (and larger cluster) formation can only proceed if the arrival rate of DMA on a SA molecule is compatible with the evaporation rate of SA•DMA. Under these circumstances, collisions between SA and SA•DMA or between SA•DMA agglomerates can efficiently produce stable dimers and larger clusters. Therefore, the concentration of the stabilizing compound would determine what fraction of the clusters is stable, and the highest possible formation rates are only observed once the DMA to SA concentration ratio exceeds a certain threshold value. In this study the concentration ratio between DMA and SA was on average ~ 110, and therefore, our results are consistent with previous observations where saturation effects at high DMA levels were observed (13, 15). However, reported atmospheric DMA mixing ratios are mostly below 10 pptv (35), therefore, it is unlikely that SA–DMA nucleation, if occurring, is always saturated with respect to DMA and can generally proceed at the kinetic limit. A similar process could occur in a system involving sulfuric acid and oxidized organics. However, it remains to be elucidated if these systems can produce equally stable neutral clusters with SA or other compounds. Another important aspect to be examined in the future is the effect of temperature, although

![Fig. 3. Measured and modeled cluster concentrations N_2 (A), N_3 (B), N_4 (C), and N_5 (D) as a function of the sulfuric acid monomer concentration (N_1). The measured data are from two mass spectrometers (CI-API-TOF-U-HEL and CI-API-TOF-U-FRA; SI Text). Dimethylamine levels are between 5 and 32 pptv. Calculated steady-state cluster concentrations from a kinetic model are included. The solid lines assume that all evaporation rates are zero, whereas the dashed lines simulate a nonzero dimer evaporation rate ($k_{2,\text{evap}} = 0.01$ or 0.1 s$^{-1}$). Error bars include the statistical variation plus a systematic error of $\pm 30\%$. In addition, correction factors due to the unknown cluster charging and detection efficiencies need to be considered (Figs. S2 and S3). These are derived by scaling the model curve assuming no evaporation ($k_{2,\text{evap}} = 0$ s$^{-1}$) to fit the measured data (colored lines). The derived scaling factors are 0.67 for N_2, 0.37 for N_3, 0.17 for N_4, and 0.11 for N_5 and are always in the direction of reducing the measurements below the true values. Using the model curve assuming zero dimer evaporation as the reference is justified because the slopes of the model curves with $k_{2,\text{evap}} > 0$ s$^{-1}$ do not match the slopes of the measured data. The uncertainty in N_1 (x axis) is a factor 1.5.](https://www.pnas.org/doi/10.1073/pnas.1404853111)
quantum chemical calculations suggest that there is only a weak dependency for SA–DMA new particle formation on temperature (15). Using the same quantum chemical methods, this has also been concluded for the effect of relative humidity (RH). Varying the RH between 0 and 100% did only lead to a small increase of about a factor of 2 in the particle formation rates even when the DMA mixing ratio was as low as 0.1 pptv [at a SA concentration of 2 × 10^6 cm^-3 (15)]. Regarding the effect of water on the nucleation process, it is important to note that although SA and DMA molecules are not evaporating from the clusters, condensed water molecules can evaporate. However, our data indicate that this does not have a substantial effect on the SA–DMA cluster stability, and therefore, the nucleation process is termed “kinetically limited.”

Molecular cluster measurements allow direct determination of the NPF rate at a given cluster size because at steady-state concentration, the formation (nucleation) rate equals the total loss rate (to larger clusters, chamber walls, etc.). The dimer formation rate at given cluster size because at steady-state concentration, the formation (nucleation) rate equals the total loss rate of the small clusters.

Conclusions

Because atmospheric boundary layer nucleation is generally dominated by the neutral nucleation pathway, it is of utmost importance to study the formation of neutral clusters (6, 26, 27). Additionally, recent CLOUD chamber studies demonstrated that ion-induced nucleation is not substantial when the particle formation rates exceed ∼1 cm^-3 s^-1 in nucleating systems involving SA as well as DMA or oxidized organics (15, 25). In this study, the formation of neutral clusters containing up to 14 SA and 16 DMA molecules was observed for the first time to our knowledge. The implications are that the critical cluster size is smaller than the dimer. We find that the NPF rate of neutral SA dimers versus [H_2SO_4] in the presence of DMA proceeds at the maximum rate expected for kinetically limited NPF, with a power dependence on [H_2SO_4] of 2. However, due to particle losses, the formation rate at 1.7 nm is up to 4 orders of magnitude lower than the dimer formation rate and has a power dependence near 3.7. The implication is that the translation of experimental results into mechanisms appropriate for the atmosphere will require an understanding of the kinetics of NPF, growth, and loss from the first molecular collisions (39). Most importantly, cluster loss via collisions with larger particles, and not evaporation, can dominate for even the smallest clusters (40). We have developed a detailed understanding for the neutral SA–DMA system here, and similar progress now seems achievable for various other atmospherically relevant systems.

Methods

The CLOUD chamber at CERN allows nucleation experiments to be conducted under exceptionally clean and well-defined conditions (5, 15). The 26.1-m^3 electropolished stainless steel chamber is filled with artificial air by mixing nitrogen and oxygen from cryogenic liquids at a ratio of 79:21. Additionally, water, H_2O, O_3, and SO_2 can be added; together with UV light, which is fed into the chamber by means of a sophisticated fiber-optic system, this allows the photolytic generation of H_2SO_4. Dimethylamine from a gas bottle diluted with nitrogen was fed into the chamber during the experiments studying the NPF of SA and DMA. Two magnetically driven mixing fans ensured the rapid distribution of DMA and the other trace gases. Contact between plastic materials and the gases flowing into the chamber is avoided to minimize the abundance of spurious compounds. The chamber temperature is precisely controlled (±0.01 K) and can be adjusted between 208 and 373 K. During all experiments discussed here, the temperature was 278 K, and the relative humidity was 38%. One of the main purposes of the CLOUD facility is to study
the influence of ions on nucleation and particle growth. Ions can be created by galactic cosmic rays and a pion beam from the CERN proton synchrotron. However, for the experiments shown here, an ion-free environment was required. Therefore, ±30 kV were applied to two opposing high-voltage field cage electrodes installed inside the CLOUD chamber. The strong electric field eliminates all ions within about 1 s and allows the neutral nucleation pathway to be studied. The data shown in this study were obtained by using the CI-API-TOF (Tofwerk AG and Aerodyne Research) technique (30) (SI Text). The CI-API-TOFs include a CI charging unit where nitrate ions [NO3−(HNO3)], water, and the gas sampled from the CLOUD chamber. The primary ions rapidly react with free H2SO4 molecules and SA–DMA clusters at ambient pressure and produce distinct product ions. Using the API, the ions can be transferred from the reaction zone into a TOF mass spectrometer. Owing to the high mass resolving power and mass accuracy the elemental composition of the measured ions can be determined. The data were analyzed with the MATLAB-based software package tofTOOLS (29). Dimethylamine mixing ratios were determined from measurements with an ion chromatograph (15, 41).

ACKNOWLEDGMENTS. We thank the European Center for Nuclear Research (CERN) for supporting Cosmic Leaving Outdoor Droplets (CLOUD) with important technical and financial resources and for providing a particle beam from the CERN Proton Synchrotron. We also thank P. Carrie, L.-P. De Menezes, J. Dumollard, K. Ivanova, F. Josa, I. Krasin, R. Kristic, A. Laassiri, O. S. Maksumov, B. Marichy, H. Martinat, S. V. Mizin, R. Sitals, A. Wasem, and K. Wijesooriya for their important contributions to the experiment and P. H. McMurry for helpful discussion. We thank the tofTools team for providing tools for mass spectrometry analysis. This research has received funding from the European Commission Seventh Framework Programme (Marie Curie Initial Training Network “CLOUD-ITN” 215072, MC-ITN “CLOUD-TRAIN” 316662, European Research Council (ERC)-Starting “MOCAPAF” Grant 57360, and ERC-Advanced “ATMNUCLEAR” Grant 227463). This research has also received funding from the German Federal Ministry of Education and Research (Projects 01LK0902A and 01LK1222A), the Swiss National Science Foundation (Projects 200020 135307 and 206620 141278), the Academy of Finland (135054, 133872, 251427, 139656, 139995, 137479, 141217, 141451 and Center of Excellence Project 1118615), the Finnish Funding Agency for Technology and Innovation, the Väisälä Foundation, the Nessling Foundation, the Austrian Science Fund (Project J319B-N21), the Portuguese Foundation for Science and Technology (Project CERN/FIS/115367/2010), the Swedish Research Council, Vetenskapsrådet (Grant 2011-5120), the Presidium of the Russian Academy of Sciences and Russian Foundation for Basic Research (Grants 08-02-91006-CERN and 12-02-91522-CERN), the US National Science Foundation (Grants AGS1136479 and CHE1012293), Pan-European Gas- Aerosols Chemistry: Atmospheric Study project [funded by the European Commission under the Framework Program 7 (FP7-ENV-2010-265148), and the Daviddon Foundation.

1. Merikanto J, et al. (2009) Impact of nucleation on global CCN. Atmos Chem Phys 9(3): 12999-13037.
2. Lohmann U, Feichter J (2005) Global indirect aerosol effects: A review. Atmos Chem Phys 5(5):715-737.
3. Sihto SL, et al. (2006) Atmospheric sulphuric acid and aerosol formation: Implications from atmospheric measurements for nucleation and early growth mechanisms. Atmos Chem Phys 6(12):4097-4091.
4. Kuang C, McMurry PH, McCormick AV, Eisele FL (2008) Dependence of nucleation rates on the OH and NO3 radical concentration in diverse atmospheric locations. J Geophys Res 113(D10):D10209.
5. Kirkby J, et al. (2011) Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric nucleation. Nature 476(7361):429-433.
6. Kulmala M, et al. (2013) Direct observations of atmospheric aerosol nucleation. Science 339(6122):943-946.
7. Kurtén T, Loukonen V, Vehkamäki H, Kulmala M (2008) Amines are likely to enhance neutral and ion-induced sulphuric acid-water nucleation in the atmosphere more effectively than ammonia. Atmos Chem Phys 8(14):4095-4103.
8. Ortega IK, et al. (2012) From quantum chemical formation free energies to evaporation rates. Atmos Chem Phys 12(1):225-235.
9. Smith JN, et al. (2010) Observations of ammonium salts in atmospheric nanoparticles and possible climatic implications. Proc Natl Acad Sci USA 107(15):6634-6639.
10. Berntt T, et al. (2010) Laboratory study on new particle formation from the reaction OH + SO2: Influence of experimental conditions, H2O vapour, NH3 and the amine tert-butyamine on the overall process. Atmos Chem Phys 10(15):7101-7116.
11. Eruppe ME, Viggiano AA, Lee SH (2011) The effect of trimethylamine on atmospheric nucleation involving H2SO4. Atmos Chem Phys 11(10):4767-4775.
12. Zhao J, et al. (2011) Observation of neutral sulfuric acid–amine containing clusters in laboratory and ambient measurements. Atmos Chem Phys 11(21):10823-10836.
13. Chen M, et al. (2012) Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer. Proc Natl Acad Sci USA 109(46):18713-18718.
14. Arrieta MF, et al. (2012) Observation of neutral sulfuric acid-amine containing clusters in laboratory and ambient measurements. Atmos Chem Phys 12(10):4399-4411.
15. Almeida J, et al. (2013) Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere. Nature 502(7471):359-363.
16. Dawson ML, et al. (2012) Simplified mechanism for new particle formation from methanesulfonic acid, amine, and water via experiments and ab initio calculations. Proc Natl Acad Sci USA 109(46):18719-18724.
17. Qiu C, Zhang R (2012) Physiochemical properties of alkylammonium sulfates: Hygroscopicity, thermostability, and density. Environ Sci Technol 46(8):4474-4480.
18. Bzdak BR, Ridge DP, Johnston MV (2010) Amine exchange into ammonium bisulfate and ammonium nitrate nitrates. Atmos Chem Phys 10(8):3495-3503.
19. Kupiainen O, Ortega IK, Kurtén T, Vehkamäki H (2012) Amine substitution into sulfuric acid–ammonia clusters. Atmos Chem Phys 12(8):3591-3599.
20. Qiu C, Zhang R (2013) Multiphase chemistry of atmospheric amines. Phys Chem Chem Phys 15(16):5738-5752.
21. Zhang R, et al. (2004) Atmospheric new particle formation enhanced by organic acids. Science 304(5676):1487-1490.
22. Metzger A, et al. (2010) Evidence for the role of organics in aerosol particle formation under atmospheric conditions. Proc Natl Acad Sci USA 107(15):6546-6551.
23. Riccobono F, et al. (2012) Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth. Atmos Chem Phys 12(20):9427-9439.
24. Schobesberger S, et al. (2013) Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proc Natl Acad Sci USA 110(43):17223-17228.
25. Riccobono F, et al. (2014) Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles. Science 344(6185):717-721.
26. Ida K, et al. (2006) Contribution of ion-induced nucleation to new particle formation: Methodology and its application to atmospheric observations in Boulder, Colorado. J Geophys Res 111(D23):D23201.
27. Kerminen VM, et al. (2010) Atmospheric nucleation: Highlights of the EUCAARI project and future directions. Atmos Chem Phys 10(22):10829-10848.
28. Vanhanen J, et al. (2011) Particle size magnifier for nano-CN detection. Aerosol Sci Technol 45(4):533-542.
29. Jokinen T, et al. (2012) A high-resolution mass spectrometer to measure atmospheric ion composition. Atmos Meas Tech 3(4):1039-1053.
30. Johansen A, et al. (2012) Atmospheric sulfuric acid and neutral cluster measurements using CI-API-TOF. Atmos Chem Phys 12(9):4117-4125.
31. Donahue NM, et al. (2013) How do organic vapors contribute to new-particle formation? Environ Sci Technol 47(6):2167-2174.
32. Hanson DR, Lovejoy ER (2006) Measurement of the thermodynamics of the hydrated dimer and trimer of sulfuric acid. J Phys Chem A 110(41):9525-9528.
33. Petaja T, et al. (2011) Experimental observation of strongly bound dimers of sulfuric acid: Application to nucleation in the atmosphere. Phys Rev Lett 106(22):228302.
34. Gabauer D, Kellermayer M, Gale JD, Bergström L, Cölfen H (2014) Pre-nucleation clusters as solute precursors in crystallisation. Chem Soc Rev 43(7):2348-2371.
35. Jokinen T, et al. (2012) Atmospheric sulphuric acid and aerosol formation: Implications from atmospheric measurements for nucleation and early growth mechanisms. Atmos Chem Phys 12(35):21671-21676.