THE TRACE OF THE LOCAL A^1-DEGREE

THOMAS BRAZELTON, ROBERT BURKLUND, STEPHEN MCKEAN, MICHAEL MONTORO, AND MORGAN OPIE

Abstract. We prove that the local A^1-degree of a polynomial function at an isolated zero with finite separable residue field is given by the trace of the local A^1-degree over the residue field. This fact was originally suggested by Morel’s work on motivic transfers and Kass and Wickelgren’s work on the Scheja-Storch bilinear form.

1. Introduction

The A^1-degree, first defined by Morel [Mor04, Mor12], provides a foundational tool for solving problems in A^1-enumerative geometry, a field which seeks to resolve enumerative questions over arbitrary fields by wielding the machinery of A^1-homotopy theory [MV99]. One often encounters problems for which an A^1-degree is needed at a point which is not rational. At points whose residue field is a finite extension of the ground field, it was suggested by Morel’s work on cohomological transfer maps [Mor12] that one may first compute the A^1-local degree over the residue field, and then trace down to the ground field. Kass and Wickelgren show that the Scheja-Storch bilinear form [SS75] is equal to the local A^1-degree at rational points [KW19]. They also prove that at points with finite separable residue field, the Scheja-Storch form is given by taking the trace of the Scheja-Storch form over the residue field [KW17, Proposition 32]. We show that an analogous statement is true for the local A^1-degree.

Theorem 1.1. Let $f : A^n_k \to A^n_k$ be an endomorphism of affine space, and let $p \in A^n_k$ be an isolated root of f such that $k(p)$ is a separable extension of finite degree over k, and let \tilde{p} denote a canonical point above p. Then

$$\deg^A_\tilde{p} f = \text{Tr}_{k(p)/k} \deg^A_p (f \otimes_k k(p))$$

is an equality in $GW(k)$.

As a corollary, we strengthen the result that the local A^1-degree is the Scheja-Storch form at rational points [KW19] by weakening the requirement that the point be rational.

Corollary 1.2. At points whose residue fields are finite separable extensions of the ground field, the local A^1-degree coincides with the Scheja-Storch form.

Date: December 11, 2019.

1For the sake of brevity, we neglect to include exposition of the basic notions used in A^1-enumerative geometry; instead we refer the reader to the expository paper [WW19], as well as the exposition found throughout the following papers: [KW17, Lev17, BKW18, SW18, KW19, LV19, KT19].
In this paper we utilize the machinery of stable \mathbb{A}^1-homotopy theory, initially developed by Morel and Voevodsky [MV99], to prove this theorem. In particular, we rely heavily on work of Hoyois [Hoy15].

Terminology 1.3. If p is a point with $k(p) \mid k$ a separable extension of finite degree, we call p a *finite separable point*. We may also say that p has a *finite separable residue field* in this context.

Remark 1.4. Throughout this paper, we will often discuss bilinear forms and their isomorphism classes. If β is a bilinear form, then we may, by abuse of notation, denote the isomorphism class of β by β.

1.1. **Acknowledgements.** We would like to thank Kirsten Wickelgren for her excellent guidance during this project. We would also like to thank Matthias Wendt and Jesse Kass for their helpful insights during the 2019 Arizona Winter School. Finally, we would like to thank the organizers of the Arizona Winter School, as this work is the result of one of the annual AWS project groups.

The first and fifth authors are supported by NSF Graduate Research Fellowships under grant numbers DGE-1845298 and DGE-1144152, respectively.

2. **Proof of Theorem 1.1**

For any k-scheme X and any point $p \in X$, we have a canonical $k(p)$-rational point $\tilde{p} \in X_{k(p)}$ sitting over p, defined via the following pullback diagram:

$$
\begin{array}{ccc}
\text{Spec } k(p) & \xrightarrow{\text{id}} & \text{Spec } k(p) \\
\downarrow & & \downarrow \\
X_{k(p)} & \xrightarrow{\text{id}} & \text{Spec } k(p) \\
\downarrow & & \downarrow \\
X & \xrightarrow{\text{id}} & \text{Spec } k
\end{array}
$$

To simplify notation, we write $L = k(p)$, and write the base change of f as $f_L = f \otimes_k L$. Let $\pi : \mathbb{A}^n_L \to \mathbb{A}^n_k$ denote the canonical morphism of affine space given by the inclusion of fields $k \hookrightarrow L$. We may consider the following diagram

$$
\begin{array}{c}
\mathbb{A}^n_L \xrightarrow{f_L} \mathbb{A}^n_L \\
\pi \downarrow \quad \pi \downarrow \\
\mathbb{A}^n_k \xrightarrow{f} \mathbb{A}^n_k \\
\end{array}
\quad \text{which maps} \quad
\begin{array}{c}
\tilde{p} \longrightarrow 0 \\
\downarrow \\
p \longrightarrow 0
\end{array}
$$

We note that the point \tilde{p} in the top left corner is a root of f when we base change to the residue field $L = k(p)$. Thus we have that f_L has an isolated rational zero at \tilde{p}.
We now have a diagram of pointed schemes, so by passing to sufficiently small local neighborhoods around each of these points, we obtain an induced diagram

\[
\begin{array}{ccc}
\mathbb{P}^n_L/(\mathbb{P}^n_L \setminus \{\tilde{p}\}) & \xrightarrow{\gamma} & \mathbb{P}^n_L/(\mathbb{P}^n_L \setminus \{0\}) \\
\pi_p & \downarrow & \pi_0 \\
\mathbb{P}^n_k/(\mathbb{P}^n_k \setminus \{p\}) & \xrightarrow{\gamma} & \mathbb{P}^n_k/(\mathbb{P}^n_k \setminus \{0\})
\end{array}
\]

(1)

For any point \(q \in \mathbb{P}^n_k \), there is a canonical \(\mathbb{A}^1 \)-homotopy equivalence

\[
\mathbb{P}^n_k/(\mathbb{P}^n_k \setminus \{q\}) \simeq \mathbb{P}^n_{k(q)}/\mathbb{P}^{n-1}_{k(q)}.
\]

This is a standard result of purity \([MV99, \text{Proposition 2.17}]\), which allows us to identify \(\mathbb{P}^n_k/(\mathbb{P}^n_k \setminus \{y\}) \) with the Thom space \(\text{Th}(\mathcal{O}_{k(q)}) \). We then apply the canonical \(\mathbb{A}^1 \)-weak equivalence \(\text{Th}(\mathcal{O}_{k(q)}) \simeq \mathbb{P}^n_{k(q)}/\mathbb{P}^{n-1}_{k(q)} \) which may be found in \([MV99, \text{Proposition 2.17(3)}]\).

As an application of this argument, we obtain the following \(\mathbb{A}^1 \)-equivalences:

\[
\begin{align*}
\mathbb{P}^n_L/(\mathbb{P}^n_L \setminus \{\tilde{p}\}) & \simeq \mathbb{P}^n_L/\mathbb{P}^{n-1}_L, \\
\mathbb{P}^n_L/(\mathbb{P}^n_L \setminus \{0\}) & \simeq \mathbb{P}^n_L/\mathbb{P}^{n-1}_L, \\
\mathbb{P}^n_k/(\mathbb{P}^n_k \setminus \{0\}) & \simeq \mathbb{P}^n_k/\mathbb{P}^{n-1}_k, \\
\mathbb{P}^n_k/(\mathbb{P}^n_k \setminus \{p\}) & \simeq \mathbb{P}^n_k/\mathbb{P}^{n-1}_k.
\end{align*}
\]

Lemma 2.1. In the stable homotopy category \(\mathcal{SH}(k) \), the collapse map

\[
\mathbb{P}^n_k/\mathbb{P}^{n-1}_k \to \mathbb{P}^n_k/(\mathbb{P}^n_k \setminus \{p\}) \simeq \mathbb{P}^n_L/\mathbb{P}^{n-1}_L
\]

is \(\mathbb{P}^n_k/\mathbb{P}^{n-1}_k \wedge (-) \) applied to the transfer map

\[
\eta : \mathbf{1}_k \to \rho_*\rho^*\mathbf{1}_k \simeq \rho_*\mathbf{1}_k,
\]

where \(\rho : \text{Spec}L \to \text{Spec}k \) is the canonical structure map.

Proof. The case \(n = 1 \) may be found in \([Hoy15, \text{Lemma 5.5}]\), and the proof generalizes to higher \(n \) as in \([KW19, \text{Lemma 13}]\). \(\square \)

Definition 2.2. Let \(f : \mathbb{A}^n_k \to \mathbb{A}^n_k \) be an endomorphism of affine space, with \(q \) a point such that \(f(q) \) is \(k \)-rational. Let \(U \ni q \) be an open neighborhood, chosen sufficiently small so that \(U \cap f^{-1}(f(q)) = \{q\} \). Then the local \(\mathbb{A}^1 \)-degree \(\deg_{q}^{\mathbb{A}^1} f \) is defined to be Morel’s \(\mathbb{A}^1 \)-degree homomorphism applied to the element in the stable homotopy category

\[
\mathbb{P}^n_k/\mathbb{P}^{n-1}_k \to \mathbb{P}^n_k/(\mathbb{P}^n_k \setminus \{q\}) \xrightarrow{\simeq} U/(U \setminus \{q\}) \xrightarrow{f|_U} \mathbb{P}^n_k/(\mathbb{P}^n_k \setminus \{f(q)\}) \xrightarrow{\simeq} \mathbb{P}^n_k/\mathbb{P}^{n-1}_k,
\]

where this first map is the collapse map defined in Lemma 2.1.
We may rewrite Diagram 1 as:

\[
\begin{array}{ccc}
P_L/P_{L}^{n-1} & \xrightarrow{\deg_{L}^{A}} & P_{L}^{n}/P_{L}^{n-1} \\
\downarrow{r} & & \downarrow{g} \\
P_{L}^{n}/P_{L}^{n-1} & \xrightarrow{\tilde{f}} & P_{k}^{n}/P_{k}^{n-1}.
\end{array}
\]

Via the definition of Morel’s A^1-degree $\deg_{A}^{A^1} : [P_{L}^{n}/P_{L}^{n-1}, P_{L}^{n}/P_{L}^{n-1}]_{A^1} \cong GW(L)$, the homotopy class of the top map can be identified with the local degree of f_L at \tilde{p}. The bottom map, which we have denoted \tilde{f}, is not exactly the local degree of f, since the domain is a sphere over L. To rectify this, we will precompose with a collapse map from a sphere over k.

Proposition 2.3. The degree of the composite

\[
P_k^{n}/P_k^{n-1} \xrightarrow{\pi^*T\mathbb{A}_k^{n}/\eta} P_L^{n}/P_L^{n-1} \xrightarrow{\tilde{f}} P_k^{n}/P_k^{n-1}
\]

is the local degree $\deg_{\tilde{p}}^{A^1}(f) \in GW(k)$.

Proof. The first map in Definition 2.2 is the collapse map, which is equal to $P_k^{n}/P_k^{n-1} \wedge \eta$ by Lemma 2.1. Applying Definition 2.2 to Diagram 2 gives the desired result. □

Proposition 2.4. [Hoy15, p.15] The map g in Diagram 2 is $\pi^*T\mathbb{A}_k^{n}/(-)$ applied to the map

\[
\epsilon : \rho_*\rho^*1_k \cong \rho_*1_L \to 1_k
\]

in the stable homotopy category $SH(k)$.

Proposition 2.5. The stable homotopy class of the map r in Diagram 2 is $\langle 1 \rangle \in GW(L)$.

Proof. Consider the map $\pi : \mathbb{A}_L^{n} \to \mathbb{A}_k^{n}$ sending the canonical point \tilde{p} to p. This induces a map on the cofiber of tangent spaces

\[
\begin{array}{ccc}
T_{\tilde{p}}\mathbb{A}_L^{n} \setminus \{0\} & \xrightarrow{(\pi^*T\mathbb{A}_k^{n})_{\tilde{p}}} & (\pi^*T\mathbb{A}_k^{n})_{\tilde{p}} \setminus \{0\} \\
T_{\tilde{p}}\mathbb{A}_k^{n} \setminus \{0\} & \xrightarrow{\sim} & \mathbb{A}_L^{n} \setminus \{0\}.
\end{array}
\]

Via the standard trivialization of the tangent space of affine space, we obtain a canonical isomorphism

\[
\begin{array}{ccc}
T_{\tilde{p}}\mathbb{A}_L^{n} \setminus \{0\} & \sim & \mathbb{A}_L^{n} \setminus \{0\}.
\end{array}
\]

Together with our choice of isomorphism $k(p) \cong L$, we get canonical weak equivalences

\[
\begin{array}{ccc}
(\pi^*T\mathbb{A}_k^{n})_{\tilde{p}} \setminus \{0\} & \sim & L \otimes_k \mathbb{A}_k^{n} \setminus \{p\} = \mathbb{A}_L^{n} \setminus \{p\} \sim \mathbb{A}_L^{n} \setminus \{0\},
\end{array}
\]

where this last equivalence is given by translation. We can see that, on the tangent spaces, the base change map π sends $\frac{d}{dx_i}$ to $\frac{d}{dx_i}$, so Equation 3 can be rewritten as
the identity map on $\frac{A^n}{\mathbb{A}^n \setminus \{0\}}$. The result then follows from applying the A^1-equivalence $P^n_L/P^{n-1}_L \simeq A^n_L/(\mathbb{A}^n_L \setminus \{0\})$.

Since the stable homotopy class of r is $\langle 1 \rangle$, it is in particular a weak equivalence, and its inverse r^{-1} is given by $\langle 1 \rangle$ as well. Putting the previous propositions together, we obtain a commutative diagram, where we can associate the homotopy classes of the top and bottom maps with their associated degrees in $GW(L)$ and $GW(k)$, respectively:

(4)

\[
\begin{array}{ccc}
\mathbb{P}^n_L/P^{n-1}_L & \overset{\deg_{A^1} f_L}{\longrightarrow} & \mathbb{P}^n_L/P^{n-1}_L \\
\downarrow \langle 1 \rangle & & \downarrow \mathbb{P}^n_k/P^{n-1}_k \wedge \epsilon \\
\mathbb{P}^n_k/P^{n-1}_k & \overset{\deg_{A^1} f}{\longrightarrow} & \mathbb{P}^n_k/P^{n-1}_k \\
\end{array}
\]

Lemma 2.6. Let L be a finite separable extension of k, and let $\rho : \text{Spec} L \to \text{Spec} k$ be the corresponding morphism of schemes. For any element $\omega \in GW(L)$, we have that $Tr_{L/k}\omega$ is the composite

\[
1_k \xrightarrow{\eta} \rho_*1_L \simeq \rho_#1_L \xrightarrow{\rho_#\omega} \rho_#1_L \xrightarrow{\epsilon} 1_k.
\]

Proof. This is due to [Hoy15, Proposition 5.2, Lemma 5.3].

Proof of Theorem 1.1. By applying Lemma 2.6 to Diagram 4, we can factor $\deg_{A^1} f \in GW(k)$ as the maps along the top to obtain an equality in $GW(k)$. Therefore

\[
\deg_{A^1} f = (\mathbb{P}^n_k/P^{n-1}_k \wedge \eta) \circ \langle 1 \rangle \circ \deg_{A^1} f_L \circ (\mathbb{P}^n_k/P^{n-1}_k \wedge \epsilon) \\
= (\mathbb{P}^n_k/P^{n-1}_k \wedge \eta) \circ \deg_{A^1} f_L \circ (\mathbb{P}^n_k/P^{n-1}_k \wedge \epsilon) \\
= Tr_{L/k} \deg_{A^1} f_L. \quad \square
\]

3. A Brief Proof of Corollary 1.2

In [KW17, Proposition 32], the authors prove that the Scheja-Storch bilinear form, denoted $\text{ind}_p f$, is computed by the trace

\[
\text{ind}_p f = Tr_{k(p)/k}\text{ind}_{k(p)} f_{k(p)}.
\]

Moreover in [KW19], the authors prove that at any rational point, the Scheja-Storch form agrees with the local A^1-degree. Combining these two results with Theorem 1.1 for any isolated zero p with finite separable residue field we have that

\[
\text{ind}_p f = Tr_{k(p)/k}\text{ind}_{k(p)} f_{k(p)} = Tr_{k(p)/k} \deg_{A^1} f_{k(p)} = \deg_{A^1} f.
\]
References

[BKW18] Candace Bethea, Jesse Leo Kass, and Kirsten Wickelgren, An example of wild ramification in an enriched Riemann-Hurwitz formula, arXiv preprint arXiv:1812.03386 (2018).

[Hoy15] Marc Hoyois, A quadratic refinement of the Grothendieck-Lefschetz-Verdier trace formula, Algebraic & Geometric Topology 14 (2015), no. 6, 3603–3658.

[KT19] Andrew Kobin and Libby Taylor, \mathbb{A}^1-local degree via stacks, arXiv preprint arXiv:1911.05955 (2019).

[KW17] Jesse Leo Kass and Kirsten Wickelgren, An arithmetic count of the lines on a smooth cubic surface, ArXiv e-prints (2017).

[KW19] Jesse Leo Kass and Kirsten Wickelgren, The class of Eisenbud-Khimshiashvili-Levine is the local \mathbb{A}^1-Brouwer degree, Duke Math. J. 168 (2019), no. 3, 429–469. MR 3909901

[Lev17] Marc Levine, Toward an enumerative geometry with quadratic forms, arXiv preprint arXiv:1703.03049 (2017).

[LV19] Hannah Larson and Isabel Vogt, An enriched count of the bitangents to a smooth plane quartic curve, arXiv preprint arXiv:1909.05945 (2019).

[Mor04] Fabien Morel, An introduction to \mathbb{A}^1-homotopy theory, Contemporary developments in algebraic K-theory, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 357–441. MR 2175638

[Mor12] , \mathbb{A}^1-algebraic topology over a field, Lecture Notes in Mathematics, vol. 2052, Springer, Heidelberg, 2012. MR 2934577

[MV99] Fabien Morel and Vladimir Voevodsky, \mathbb{A}^1-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. (1999), no. 90, 45–143 (2001). MR 1813224

[SS75] Günter Scheja and Uwe Storch, Über spurfunktionen bei vollständigen durchschnitten., Journal für die reine und angewandte Mathematik 278 (1975), 174–190.

[SW18] Padmavathi Srinivasan and Kirsten Wickelgren, An arithmetic count of the lines meeting four lines in \mathbb{P}^3, arXiv preprint arXiv:1810.03503 (2018).

[WW19] Kirsten Wickelgren and Ben Williams, Unstable motivic homotopy theory, arXiv preprint arXiv:1902.08857 (2019).