A Non-Standard Analysis of a Cultural Icon

DOI:
10.1007/s11787-016-0153-0

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
PIOTR B LASZCZYK, Borovik, A., VLADIMIR KANOVELI, Katz, M. G., TARAS KUDRYK, SEMEN S. KUTATELADZE, & DAVID SHERRY (2016). A Non-Standard Analysis of a Cultural Icon: The Case of Paul Halmos. Logica Universalis, 10(4). https://doi.org/10.1007/s11787-016-0153-0

Published in:
Logica Universalis

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
A NON-STANDARD ANALYSIS OF A CULTURAL ICON: THE CASE OF PAUL HALMOS

PIOTR BLASZCZYK, ALEXANDRE BOROVIK, VLADIMIR KANOVEI, MIKHAIL G. KATZ, TARAS KUDRYK, SEMEN S. KUTATELADZE, AND DAVID SHERRY

Abstract. We examine Paul Halmos’ comments on category theory, Dedekind cuts, devil worship, logic, and Robinson’s infinitesimals. Halmos’ scepticism about category theory derives from his philosophical position of naive set-theoretic realism. In the words of an MAA biography, Halmos thought that mathematics is “certainty” and “architecture” yet 20th century logic teaches us is that mathematics is full of uncertainty or more precisely incompleteness. If the term architecture meant to imply that mathematics is one great solid castle, then modern logic tends to teach us the opposite lesson, namely that the castle is floating in midair. Halmos’ realism tends to color his judgment of purely scientific aspects of logic and the way it is practiced and applied. He often expressed distaste for nonstandard models, and made a sustained effort to eliminate first-order logic, the logicians’ concept of interpretation, and the syntactic vs semantic distinction. He felt that these were vague, and sought to replace them all by his polyadic algebra. Halmos claimed that Robinson’s framework is “unnecessary” but Henson and Keisler argue that Robinson’s framework allows one to dig deeper into set-theoretic resources than is common in Archimedean mathematics. This can potentially prove theorems not accessible by standard methods, undermining Halmos’ criticisms.

Keywords: Archimedean axiom; bridge between discrete and continuous mathematics; hyperreals; incomparable quantities; indispensability; infinity; mathematical realism; Robinson.

Contents

1. Introduction 2
2. Paraphrase 3
3. Indispensability argument of Henson and Keisler 4
 3.1. Second-order Arithmetic 4
 3.2. Rebuttal of Halmos’ claims 5
4. Dedekind cuts and category theory 6
 4.1. Category theory viewed by some 6
1. Introduction

Fifty years ago, the *Pacific Journal of Mathematics* published a pair of papers in the same issue, each containing a proof of a conjecture in functional analysis known as the Smith–Halmos conjecture. The event had philosophical ramifications due to the fact that one of these proofs involved methods that were not only unusual for functional analysis but also challenged both historical thinking about the evolution of analysis and foundational thinking in mathematics. The present article explores these and related issues.

Paul Halmos was a 20th century expert in functional analysis. His textbooks on measure theory, Hilbert spaces, and finite dimensional vector spaces are well written, still relevant, and highly praised.

Following the Aronszajn–Smith proof of the existence of invariant subspaces for compact operators [Aronszajn & Smith 1954], Smith and Halmos conjectured that the same should be true for more general classes of operators, such as operators with a compact square. A proof in the more general case of polynomially compact operators in [Bernstein & Robinson 1966] (exploiting Robinson’s infinitesimals) was a notable event in functional analysis. Simultaneously the same journal published an infinitesimal-free proof [Halmos 1966].

In 1991, J. Dauben interviewed the distinguished model theorist C. C. Chang about the Bernstein–Robinson paper. Even a quarter century later (and after [Lomonosov 1973] superceded the 1966 results) Chang still seemed a bit sore about Bernstein and Robinson not getting enough credit, for he insisted that

1See http://www.maa.org/news/paul-halmos-a-life-in-mathematics
once you know something is true, it is easier to find other proofs. Major credit must go to Robinson3 (Chang quoted in [Dauben 1995, p. 327])

Robinson himself supports Chang’s reading:

As for the Halmos standard ‘translation’, it was all very nice, but the NSA (i.e., nonstandard analysis) proof was quite natural, while the standard proof required an argument that would not have been so easy to spot without first seeing the NSA version. (Reported by Moshe Machover, private communication)

In a course at Hebrew University in the late 1960s, Robinson said:

Halmos was proud of his proof but in the end all he did was rewrite our proof in a language he was educated in. (Reported by Shmuel Dahari, private communication).

Halmos himself essentially agreed with this sentiment when he wrote that the purpose of his paper was

\begin{quote}
\begin{center}
to show that by appropriate \textit{small modifications}[\!] the Bernstein–Robinson proof can be converted \ldots into one that is expressible in the standard framework of classical analysis. [Halmos 1966, p. 433] (emphasis added)
\end{center}
\end{quote}

Further details can be found in Section 2.

Subsequently Halmos expressed reservations about Robinson’s framework, and described researchers working in the framework as converts (see Section 6.1).

What philosophical outlook shaped Halmos’ attitude toward Robinson’s framework, and prompted his critical remarks concerning fellow experts? Following [Jerome 2004], we provide an analysis that can hardly be described as \textit{standard} of a little-known aspect of a mathematical \textit{cultural icon}.

2. Paraphrase

The invariant subspace conjecture of Smith and Halmos was first proved by Bernstein and Robinson, and published in the Pacific Journal of Mathematics (PJM). A number of scholars would have been more comfortable had Halmos’ infinitesimal-free paraphrase of the proof in [Bernstein & Robinson 1966] (for which Halmos was apparently the referee) appeared in the \textit{next} issue of the PJM rather than being published simulataneously in the same issue as [Halmos 1966].

The Bernstein–Robinson proof is presented in detail in [Davis 1977].

3Chang’s reference to Robinson is certainly shorthand for Bernstein–Robinson.
Halmos claimed two decades later that he received the manuscript by Bernstein and Robinson “early in 1966” in [Halmos 1985, p. 320], but that date is certainly incorrect. Dauben documents a letter from Halmos to Robinson acknowledging receipt of the manuscript, and dated 19 June 1964 (see [Dauben 1995, p. 328, note 66]). Thus Halmos was in possession of the Bernstein–Robinson manuscript even prior to its submission for publication on 5 July 1964.

Several specialists have privately testified that Halmos was most likely the referee for the Bernstein–Robinson paper. A slightly delayed publication of Halmos’ paraphrase (say, in the following issue of the *PJM*) would have avoided the effect of weakening the Bernstein–Robinson priority claim on the result, and may have constituted a more appropriate use of publication timetables. There have been several cases of scholars affected by the marginalisation campaign against Robinson’s framework who ended up suffering in terms of employment as a result, indicating that such issues are not purely academic.

Here by “Robinson’s framework” we mean Robinson’s rigorous justification of Leibnizian infinitesimal procedures in the framework of modern mathematics (viz., the Zermelo–Fraenkel set theory with the axiom of choice), as developed in [Robinson 1961] and [Robinson 1966]. Robinson exploited the theory of types in presenting his framework. Alternative presentations involve ultrapower constructions; see e.g., [Luxemburg 1962].

3. Indispensability Argument of Henson and Keisler

Halmos explicitly referred to his own paper as a “translation” (of the Bernstein–Robinson proof). However he did not think of it as an awkward translation, and on the contrary used it to justify his claim in [Halmos 1985] that NSA is unnecessary because it can always be translated. The following year, Henson and Keisler published a paper [Henson & Keisler 1986] that was a reaction to a widespread belief at the time that Robinson’s framework is unnecessary, and in particular provided a rebuttal of Halmos’ claims.

3.1. Second-order Arithmetic. Henson and Keisler point out that a nonstandard extension of second order Arithmetic is not a conservative extension of second-order Arithmetic, but is rather closely related to third-order theory. This is because, roughly, nonstandard arguments often rely on saturation techniques that typically involve third-order theory. They go on to argue against the type of fallacy contained

[^3]: See also a related discussion at http://mathoverflow.net/questions/225455
in Halmos’ position that Robinson’s framework is unnecessary. The gist of their argument is that since most mathematics takes place at second-order level, there may well be nonstandard proofs whose standard translations, while theoretically possible, may well be humanly incomprehensible. They conclude as follows:

This shows that in principle there are theorems which can be proved with nonstandard analysis but cannot be proved by the usual standard methods. The problem of finding a specific and mathematically natural example of such a theorem remains open. [Henson & Keisler 1986, p. 377]

In this spirit, [Tao & Vu 2016] use the language of Robinson’s framework in order to avoid a large number of iterative arguments to manage a large hierarchy of parameters. Ultraproducts form a bridge between discrete and continuous analysis [Gordon 1997].

3.2. Rebuttal of Halmos’ claims. Halmos formulated a pair of claims concerning Robinson’s framework, which are closely related but perhaps not identical:

(1) Robinson had a language and not an idea.
(2) Robinson introduced a special tool, too special, and other tools can do everything it can, so it’s all a matter of taste.

In Halmos’ own words:

If they had done it in Telegu [sic] instead, I would have found their paper even more difficult to decode, but the extra difficulty would have been one of degree, not of kind. [Halmos 1985, p. 204]

Even though Halmos calls it a “language” in (1) and a “tool” in (2), the underlying claim is essentially the same: just as you can express your mathematics in English, French, or Telugu and it does not make any difference, so similarly you can do your mathematics in traditional set-ups or in a Robinsonian logical contraption.

The rebuttal is the same in both cases, and was already provided by the Henson–Keisler argument and the example of Tao’s work, as discussed in Section 3.

Today, Robinson’s framework is neither a language, idea, or tool, but rather is a branch of modern mathematics with its own domain, set of tools, collection of key results, and numerous applications.

4The correct spelling is Telugu.
4. DEDEKIND CUTS AND CATEGORY THEORY

The following comment by Halmos needs to be addressed:

Here is a somewhat unfair analogy: Dedekind cuts. It’s unfair because it’s even more narrowly focused, but perhaps it will suggest what I mean. No, we don’t have to learn it (Dedekind cuts or non-standard analysis): it’s a special tool, too special, and other tools can do everything it does. It’s all a matter of taste. [Halmos 1985, p. 204]

Halmos seems to view both Dedekind cuts and category theory with disfavor. On the other hand, one who doesn’t favor cuts should apparently favor category theory, since excising cuts would make the real line a category, i.e., something without a strict set-theoretic definition.

4.1. CATEGORY THEORY VIEWED BY SOME. Halmos’ attitude to Robinson’s framework is somewhat comparable to Halmos’ attitude to category theory, at the expense of which he also made disparaging remarks:

A microscopic examination of such similarities might lead to category theory, a subject that is viewed by some with the same kind of suspicion as logic, but not to the same extent. [Halmos 1985, p. 205]

In his essay “Applied mathematics is bad mathematics,” Halmos claimed that when applied mathematicians describe category theory as “abstract nonsense,” they mean it [Halmos 1981a, p. 15], but provided no evidence to substantiate his claim that applied mathematicians feel this way, or that such sentiments are due to anyone but himself.

Halmos sought to identify categories with universal algebras, thus reducing category theory to set theory in [Halmos 1981b].

Category theory is today one of the fastest growing industries, with avid advocates like David Kazhdan. Halmos might have pigeon-holed Kazhdan a “convert” as well (see Section 6.1), but it wouldn’t have helped Halmos’ reputation.

4.2. BRIDGE BETWEEN DISCRETE AND CONTINUOUS. Robinson’s framework is a fruitful modern research area that has attracted many researchers, as noted in Section 3.2. Halmos predicted that

in the foreseeable future . . . discrete mathematics will be an increasingly useful tool in the attempt to understand the world, and . . . analysis will therefore play a proportionally smaller role. [Halmos 1981a, p. 19] (emphasis added)
What Halmos may not have anticipated is that, in fact, the ultra-products form a bridge between discrete and continuous analysis as mentioned above.

5. Halmos and logic

The algebraic approach to logic has a long history starting with Boole, continuing with Peirce and Schröder, and reaching a high point with the Löwenheim–Skolem theorem. Subsequently it went out of fashion to a certain extent, but the work of Tarski on Boolean algebras with operators eventually led to his cylindric algebras, i.e., Boolean algebras with quantifiers as the added operators. The Tarski school has proved a number of difficult, and perhaps even deep, results about this class of algebras.

5.1. From cylindric to polyadic algebras. Halmos became interested in this topic, as he discusses in his book [Halmos 1985], where one finds some remarks on polyadic vs cylindric algebras; see also [Halmos 2000]. Whether or not there are any contributions of substance by Halmos to logic proper is a delicate question. His polyadic formalism differs from the cylindric counterpart, but the theory in his book is a straightforward translation of first order logic, thus not deep by any means. Neither polyadic nor cylindric algebras made a major contribution to logic and its applications, and are of marginal interest today.

In later work on probability, the algebraic formalism was dropped in favor of working within first order logic. Halmos’ translation of the completeness theorem, i.e., his representation theorem, is rather complicated. Thus, Fenstad gave a simplified presentation and used this work to give a rather general representation theorem for logical probabilities in [Fenstad 1967].

Halmos’ feelings about logic in general and Robinson’s framework in particular are neatly summarized in a limerick dating from 1957, and republished on page 216 in his book:

If you think that your paper is vacuous,
Use the first-order functional calculus.
It then becomes logic,
And, as if by magic,
The obvious is hailed as miraculous.

It has to be admitted that Halmos and Bishop had something in common, namely literary talent (see Section 6.2). The limerick aptly summarizes the import of Halmos’ own contribution to logic.
5.2. Quixotic battle against formal logic. A passage in Halmos’ book reproduced in his article “An Autobiography of Polyadic Algebras” is part of his attack on formal logic (as opposed to symbolic logic favored by Halmos), and runs as follows:

When I asked a logician what a variable was, I was told that it was just a ‘letter’ or a ‘symbol’. Those words do not belong to the vocabulary of mathematics; I found the explanation that used them unhelpful—vague.

When I asked what ‘interpretation’ meant, I was answered in bewildering detail (set, correspondence, substitution, satisfied formulas). In comparison with the truth that I learned later (homomorphism), the answer seemed to me unhelpful—forced, ad hoc. It was a thrill to learn the truth—to begin to see that formal logic might be just a flat photograph of some solid mathematics—it was a thrill and a challenge. \cite{Halmos_1985, Halmos_2000} (emphasis added)

Some issues need to be clarified in connection with this passage:

1. What is Halmos’ problem with formal logic exactly?
2. What is wrong with the term interpretation?
3. In what way does replacing the term interpretation by the term homomorphism help?
4. What is unsolid about formal logic?

Exploring these questions may help understand Halmos’ 36 year battle (1964–2000) against anything nonstandard.\footnote{What Halmos seems to be reacting against is a distinction taken for granted in modern logic, namely that between syntax and semantics. Roughly, this means that one can have a theory at the syntactic level which does not mean anything until one interprets it in a specific model to get meaning (semantics). This view presupposes a possibility of having distinct models for the same theory.}

Mathematics as one great thing. Halmos’ position against such dualities appears to stem from a naive set-theoretic realism (already on display in his opposition to category theory; see Section \ref{section:category}). Halmos seems opposed to the idea that there are different levels of things in mathematics: you can have a theory of a different level of mathematical Sein than an interpretation thereof. Halmos apparently prefers to see all mathematics as made of the same cloth:

\footnote{There is yet another dig against non-standard models in his 2000 article cited above, one of the last ones he wrote.}
I see mathematics, the part of human knowledge that I call mathematics, as one thing—one great, glorious thing.

(Halmos quoted in [Albers 1982, p. 234])

Now the ‘one great thing’ comment suggests that all mathematical objects are sets, and sets differ in degree of complexity but they do not differ in kind.

In this sense, homomorphisms are more solid than interpretations, in that talking about homomorphisms implies that the domain and the range are of the same kind, thereby escaping the duality of theory/interpretation that seems to threaten the solidity of naive set-theoretic realism. Perhaps Halmos’ polyadic algebras could be understood as an attempt to undo formal logic with its threatening dualities and inherent possibilities of unsolid (a.k.a., nonstandard) models. A related point was made by G. Lolli, in the context of an analysis of Halmos’ views, in the following terms:

. . . the deep reason for the opposition, depreciation and misunderstandings concerning logic among mathematicians lies in their inability or unwillingness to accept the binomium language-metalanguage as a mathematical tool; they don’t even seem capable of understanding its sense. This could be due to their habit of talking in an informal quasi-natural language, where metalanguage is flattened on the language itself, or the languages are absorbed in the metalanguage, a habit legitimated and reinforced by the set-theoretical framework.

[Lolli 2008]

Having identified the set-theoretic source of the problem, Lolli concludes:

They should know however, as everybody is now aware, that this very identification is the source of dangerous circularities. Only the conceptual distinction, at least in principle, of language and metalanguage avoids the paradoxes. (ibid.)

6. A RHETORICAL ANALYSIS

In addition to scientific arguments, Halmos resorted on several occasions to excesses of language aimed at marginalizing Robinson’s framework, as we document in this section.

6.1. Halmos on types of worship. Halmos may have been a leading expert in his field, but so was Edward Nelson (see e.g., [Nelson 1967],
and so is Peter Loeb (see e.g., [Loeb 1975]). Halmos had the following to say about their relation to Abraham Robinson’s framework:

\[
\ldots \text{for some converts (such as Pete Loeb and Ed Nelson), it’s a religion, \ldots For some others, who are against it (for instance Errett Bishop), it’s an equally emotional issue—they regard it as devil worship.} \quad \text{[Halmos 1985, p. 204]} \quad \text{(emphasis added)}
\]

Halmos’ description of both Nelson and Loeb as “converts” in the comment quoted above raises questions of motivation behind applying this kind of epithet to fellow leading mathematicians, or for that matter of invoking Errett Bishop on “devil worship,” remarks that are dangerously close to the category of expletives. In point of fact Bishop never used such a term in reference to Robinson’s infinitesimals (see more on devil worship in Section 6.2). Halmos sought to create the impression of a balanced presentation of both sides of the controversy by mentioning both Nelson and Bishop, but in fact both of his sides serve only as a vehicle for an attempt to demonize Robinson’s framework.

6.2. Errett Bishop. Halmos’ remarks concerning devil worship in Section 6.1 deserve closer scrutiny. Bishop’s verse on the neat devil that is classical mathematics, from his essay “Schizophrenia in contemporary mathematics,” run as follows:

The devil is very neat. It is his pride
To keep his house in order. Every bit
Of trivia has its place. He takes great pains
To see that nothing ever does not fit.
And yet his guests are queasy. All their food,
Served with a flair and pleasant to the eye,
Goes through like sawdust. Pity the perfect host!
The devil thinks and thinks and he cannot cry.

(See [Bishop 1973, p. 14].) For additional details on Bishop’s antics see [Katz & Katz 2011], [Katz & Katz 2012], [Kanovei et al. 2015]. The “Schizophrenia” essay says not a word about Robinson’s framework, and all the devil material (verse or prose) targets classical mathematics as a whole, including Halmos’ favorite subjects such as invariant subspaces. Bishop’s poem was published earlier but composed later than his teacher Halmos’ limerick; see Section 5.1. Halmos’ claim that Bishop regarded Robinson’s framework as devil worship appears to be merely a smear-by-proxy attack on Robinson. It is certainly possible

\footnote{Apparently in more than one area}
that Bishop may have made private remarks along these lines to Halmos, who was after all his advisor. Still, Halmos’ purported quote of Bishop cited in Section 6.1 is taken out of context.

We are not sure whether there is an official philosophical term for such a rhetorical technique, but at any rate it is not the unique occurrence of such a technique in Halmos. He did something similar with regard to category theory, while positioning himself safely behind the broad backs of unnamed applied mathematicians; see Section 4.

6.3. Underworld. What would be the point of using mocking epithets like “dredged up from the underworld,” as Halmos did in his 1990 article, in describing Robinson’s accomplishment with regard to infinitesimals:

The modern theory of nonstandard analysis *dredged* the forbidden concepts *up from the underworld* and is trying to reinstate them at the right side of Cauchy’s throne. [Halmos 1990, p. 569] (emphasis added)

Halmos may have been more moderate in his language than Connes who used some objectionable vitriol in referring to Robinson’s framework (see [Kanovei et al. 2013], [Katz & Leichtnam 2013]), but in the end Halmos’ attitude is comparable to Connes’, that other leading expert. In fact, in his book Halmos broadened his criticism of Robinson to a broader criticism of logic:

The logician’s attention to the nuts and bolts of mathematics, to the symbols and words (0 and + and “or” and “and”), to their order (∀∃ or ∃∀), and to their grouping (parentheses) can strike the mathematician as pettifogging . . . [Halmos 1985, p. 205] [emphasis added]

The definite article attached to “mathematician” is the issue here, for it presupposes that there is just one thing that counts as being a mathematician. ‘Some’ would make it more accurate, but significantly blunt the force of the remark.

Here Halmos is apparently alluding to Robinson’s approach to infinitesimals via the theory of types, with its reliance on the “nuts and bolts” of logic. If Halmos wished to publish an evaluation of Robinson’s framework, he could have been expected to have done enough research to discover a more elementary analytical approach. This is the ultrapower approach, already exploited in [Hewitt 1948] and popularized by Luxemburg in the CalTech Lecture Notes and e.g., in [Luxemburg 1962], namely over two decades prior to the publication of Halmos’ book.
The sweeping and sarcastic critique Halmos presents fails to inform the reader that there does exist an accessible analytical approach to infinitesimals [Lindstrom 1988]. The existence of such an approach makes much of Halmos’ vitriol rather misplaced. There might exist more abstract approaches that he does not appreciate, but the same can be said about many fields in mathematics. There are certainly textbooks in, for example, differential geometry that are more accessible than other textbooks in differential geometry. The existence of the more abstract textbooks generally does not lead sceptical scholars to speak of differential geometry as being “dredged up from the underworld.”

7. Conclusion

Robinson’s characterisation of Bishop’s “attempt to describe the philosophical and historical background of [the] remarkable endeavor” of the constructive approach to mathematics, as “more vigorous than accurate” [Robinson 1968, p. 921] applies equally well to Halmos’ take on logical issues, conditioned by his naive set-theoretic realism. Such a philosophical parti pris led Halmos to reject not merely Robinson’s infinitesimals but also broad swathes of standard techniques and applications, ranging from a modern logical toolkit like first-order logic to applied mathematics. Halmos’ attempted reform of logic is a radical project that bears similarity to his student Errett Bishop’s even more radical opposition to classical mathematics as a whole, as analyzed elsewhere.

REFERENCES

[Albers 1982] Albers, D. “Paul Halmos: maverick mathologist.” Two-Year College Math. J. 13, no. 4, 226–242.
[Aronszajn & Smith 1954] Aronszajn, N.; Smith, K. “Invariant subspaces of completely continuous operators.” Ann. of Math. (2) 60, 345–350.
[Bascelli et al. 2014] Bascelli, T.; Bottazzi, E.; Herzberg, F.; Kanovei, V.; Katz, K.; Katz, M.; Nowik, T.; Sherry, D.; Shnider, S. “Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow.” Notices of the American Mathematical Society 61, no. 8, 848-864. See http://www.ams.org/notices/201408/rnoti-p848.pdf and http://arxiv.org/abs/1407.0233
[Bernstein & Robinson 1966] Bernstein, A.; Robinson, A. “Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos.” Pacific Journal of Mathematics 16, 421–431.
[Bishop 1973] Bishop, E. Schizophrenia in contemporary mathematics. In Errett Bishop: reflections on him and his research (San Diego, Calif., 1983), 1–32, Contemp. Math., 39, American Mathematical Society, Providence, RI, 1985. [Published posthumously; originally distributed in 1973]
[Dauben 1995] Dauben, J. Abraham Robinson. The creation of nonstandard analysis. A personal and mathematical odyssey. With a foreword by Benoît B. Mandelbrot. Princeton University Press, Princeton, NJ.

[Davis 1977] Davis, M. Applied nonstandard analysis. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. Reprinted by Dover, NY, 2005. See http://store.doverpublications.com/0486442292.html

[Fenstad 1967] Fenstad, J. “Representations of probabilities defined on first order languages.” 1967 Sets, Models and Recursion Theory (Proc. Summer School Math. Logic and Tenth Logic Colloq., Leicester, 1965), pp. 156–172, North-Holland, Amsterdam.

[Gordon 1997] Gordon, E. I. Nonstandard methods in commutative harmonic analysis. Translated from the Russian manuscript by H. H. McFaden. Translations of Mathematical Monographs, 164. American Mathematical Society, Providence, RI.

[Halmos 1966] Halmos, P. “Invariant subspaces of polynomially compact operators.” Pacific Journal of Mathematics 16 (1966), 433–437.

[Halmos 1981a] Halmos, P. “Applied mathematics is bad mathematics.” In Mathematics tomorrow, edited by Lynn Arthur Steen, Springer-Verlag, New York–Berlin, 9–20. Reprinted in Halmos 1983.

[Halmos 1981b] Halmos, P. “Does mathematics have elements?” The Mathematical Intelligencer 3, no. 4, 147–152.

[Halmos 1983] Halmos, P. Selecta: expository writing. Edited by Donald E. Sarason and Leonard Gillman. Including an article by Donald J. Albers. Springer-Verlag, New York.

[Halmos 1985] Halmos, P. I want to be a mathematician. An automathography. Springer-Verlag, New York.

[Halmos 1990] Halmos, P. “Has progress in mathematics slowed down?” American Mathematical Monthly 97, no. 7, 561–588.

[Halmos 2000] Halmos, P. “An autobiography of polyadic algebras.” Log. J. IGPL 8, no. 4, 383–392.

[Henson & Keisler 1986] Henson, C. W.; Keisler, H. J. “On the strength of nonstandard analysis.” J. Symbolic Logic 51 (1986), no. 2, 377–386.

[Hewitt 1948] Hewitt, E. “Rings of real-valued continuous functions. I.” Transactions of the American Mathematical Society 64, 45–99.

[Jerome 2004] Jerome, F. “Einstein, race, and the myth of the cultural icon.” Isis 95, no. 4, 627–639.

[Kanovei et al. 2013] Kanovei, V.; Katz, M.; Mormann, T. “Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.” Foundations of Science 18 (2013), no. 2, 259–296. See http://dx.doi.org/10.1007/s10699-012-9316-5 and http://arxiv.org/abs/1211.0244

[Kanovei et al. 2015] Kanovei, V.; Katz, K.; Katz, M.; Schaps, M. “Proofs and Retributions, Or: Why Sarah Can’t Take Limits.” Foundations of Science 20, no. 1, 1–25. See http://dx.doi.org/10.1007/s10699-013-9340-0

[Katz & Katz 2011] Katz, K.; Katz, M. “Meaning in classical mathematics: is it at odds with Intuitionism?” Intellectica, 56, no. 2, 223–302. See http://arxiv.org/abs/1110.5456
[Katz & Katz 2012] Katz, K.; Katz, M. “A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography.” *Foundations of Science* 17, no. 1, 51–89. See http://dx.doi.org/10.1007/s10699-011-9223-1 and http://arxiv.org/abs/1104.0375

[Katz & Leichtnam 2013] Katz, M.; Leichtnam, E. “Commuting and noncommuting infinitesimals.” *American Mathematical Monthly* 120, no. 7, 631–641. See http://dx.doi.org/10.4169/amer.math.monthly.120.07.631 and http://arxiv.org/abs/1304.0583

[Lindstrom 1988] Lindstrom T. “An invitation to nonstandard analysis.” In Cutland N.J., *Nonstandard analysis and its application*, Cambridge University Press, 1–105.

[Loeb 1975] Loeb, P. “Conversion from nonstandard to standard measure spaces and applications in probability theory.” *Trans. Amer. Math. Soc.* 211, 113–122.

[Lolli 2008] Lolli, G. “Why mathematicians do not love logic.” Workshop on “Linguaggio, verità e storia in matematica”, Mussomeli (CL), 9 febbraio 2008. See http://homepage.sns.it/lolli/articoli/Lolli.pdf

[Lomonosov 1973] Lomonosov, V. “Invariant subspaces of the family of operators that commute with a completely continuous operator.” *Funkcional. Anal. i Priložen.* 7, no. 3, 55–56.

[Luxemburg 1962] Luxemburg, W. “Two applications of the method of construction by ultrapowers to analysis.” *Bull. Amer. Math. Soc.* 68, 416–419.

[Nelson 1967] Nelson, E. *Dynamical theories of Brownian motion*. Princeton University Press, Princeton, N.J.

[Nowik & Katz 2015] Nowik, T., Katz, M. “Differential geometry via infinitesimal displacements.” *Journal of Logic and Analysis* 7:5, 1–44. See http://www.logicandanalysis.org/index.php/jla/article/view/237/106 and http://arxiv.org/abs/1405.0984

[Robinson 1961] Robinson, A. “Non-standard analysis.” *Nederl. Akad. Wetensch. Proc. Ser. A* 64 = *Indag. Math.* 23 (1961), 432–440 [reprinted in Selected Works, see item [Robinson 1979], pp. 3–11]

[Robinson 1966] Robinson, A. *Non-standard analysis*. North-Holland Publishing Co., Amsterdam 1966.

[Robinson 1968] Robinson, A. “Reviews: Foundations of Constructive Analysis”. *American Mathematical Monthly* 75, no. 8, 920–921.

[Robinson 1979] Robinson, A. *Selected papers of Abraham Robinson. Vol. II. Non-standard analysis and philosophy*. Edited and with introductions by W. A. J. Luxemburg and S. Körner. Yale University Press, New Haven, Conn.

[Tao & Vu 2016] Tao, T.; Van Vu, V. “Sum-avoiding sets in groups.” See http://arxiv.org/abs/1603.03068
P. BLASZCZYK, Institute of Mathematics, Pedagogical University of Cracow, Poland
 E-mail address: pb@up.krakow.pl

A. BOROVIK, School of Mathematics, University of Manchester, Oxford Street, Manchester, M13 9PL, United Kingdom
 E-mail address: alexandre.borovik@manchester.ac.uk

V. KANOVEL, IPPI, Moscow, and MIIT, Moscow, Russia
 E-mail address: kanovei@googlemail.com

M. KATZ, Department of Mathematics, Bar Ilan University, Ramat Gan 52900 Israel
 E-mail address: katzmik@macs.biu.ac.il

T. KUDRYK, Department of Mathematics, Lviv National University, Lviv, Ukraine
 E-mail address: kudryk@mail.lviv.ua

S. KUTATELADZE, Sobolev Institute of Mathematics, Novosibirsk State University, Russia
 E-mail address: sskut@math.nsc.ru

D. SHERRY, Department of Philosophy, Northern Arizona University, Flagstaff, AZ 86011, US
 E-mail address: David.Sherry@nau.edu