EXOTIC BLOWUP SOLUTIONS FOR THE u^5 FOCUSING WAVE EQUATION IN \mathbb{R}^3

ROLAND DONNINGER, MIN HUANG, JOACHIM KRIEGER, WILHELM SCHLAG

Abstract. For the critical focusing wave equation $\Box u = u^5$ on \mathbb{R}^{3+1} in the radial case, we construct a family of blowup solutions which are obtained from the stationary solutions $W(r)$ by means of a dynamical rescaling $\lambda(t)^\tau W(\lambda(t)r) + \text{correction}$ with $\lambda(t) \to \infty$ as $t \to 0$. The novelty here lies with the scaling law $\lambda(t)$ which eternally oscillates between various pure-power laws.

1. Introduction

The energy critical focusing wave equation in \mathbb{R}^3

$$\Box u = u^5, \quad \Box = \partial_t^2 - \Delta$$

has been the subject of intense investigations in recent years. This equation is known to be locally well-posed in the space $\mathcal{H} = H^1 \times L^2(\mathbb{R}^3)$, meaning that if $(u(0), u_t(0)) \in \mathcal{H}$, then there exists a solution locally in time and continuous in time taking values in \mathcal{H}. Solutions need to be interpreted in the Duhamel sense:

$$u(t) = \cos(t|\nabla|)f + \sin(t|\nabla|)|\nabla|g + \int_0^t \sin((t-s)|\nabla|)|\nabla|u^5(s)ds$$

These solutions $\mathcal{L}_{\text{quintic}}(u) = 0$ have finite energy:

$$E(u, u_t) = \int_{\mathbb{R}^3} \left[\frac{1}{2}(u_t^2 + |\nabla u|^2) - \frac{u^6}{6} \right] dx = \text{const}$$

The recent series of papers [3] – [6] establishes a complete classification of all possible type-II blow up dynamics. It remains, however, to investigate the existence of all allowed scenarios in this classification. Steps in this direction were undertaken in [8], [11], [2], where a constructive approach to actually exhibit and thereby prove the existence of such type-II dynamics.
was undertaken. Recall that a type-II blow up solution \(u(t, x) \) with blowup time \(T_\ast \) is one for which

\[
\limsup_{t \to T_\ast} \|u(t, \cdot)\|_{H^1} + \|u_t(t, \cdot)\|_{L^2_x}^2 < \infty
\]

but of which no extension in the usual sense of well-posedness theory in \(H^1 \times L^2 \) exists beyond time \(T_\ast \). In [6], it is demonstrated that such solutions can be described as a sum of dynamically re-scaled ground states

\[
\pm W(x) = \pm \left(1 + \frac{|x|^2}{3}\right)^{-\frac{1}{2}}
\]

plus a radiation term. In particular, for solutions where only one such bulk term is present, one can write the solution as

\[
u(t, x) = W_{\lambda(t)}(x) + \epsilon(t, x) + \sigma_{H^1}(1), \quad W_A(x) = \lambda^{\frac{1}{2}} W(\lambda x), \quad \epsilon(t, \cdot) \in H^1
\]

where the error is in the sense as \(t \to T_\ast \). Moreover, we have the dynamic condition

\[
\lim_{t \to T_\ast} (T_\ast - t) \lambda(t) = \infty
\]

In [11], it was shown that such solutions with \(\lambda(t) = t^{-1-\nu} \) do exist, where \(\nu > \frac{3}{2} \) is arbitrary. In [9] the latter condition was relaxed to \(\nu > 0 \).

It is natural to ask which rescaling functions are admissible for (1.3) — both in general, and in particular within the confines of the method developed in [11, 9]. It seems very difficult (perhaps hopeless) to answer this question in full generality. Nevertheless, important progress has been made in recent years such as in the deep work of Raphaël, Rodnianski [13], and Hillairet, Raphaël [7] who studied stable blowup laws (relative to a suitable topology) for energy critical equations.

The purpose of this paper is to exhibit an uncountable family of rates which are not of the pure-power type as above. Our main result, which is in the spirit of [10, 11, 12], is as follows.

Theorem 1.1. Let \(\nu > 3 \) and \(|\varepsilon_0| \ll 1 \) be arbitrary and define

\[
\lambda(t) := t^{-1-\nu} \exp(-\varepsilon_0 \sin(\log t)), \quad 0 < t < \frac{1}{2}
\]

Then there exists a radial energy solution \(u(t) \) of (1.1) which blows up precisely at \(r = t = 0 \) and which has the following property: in the cone \(|x| = r \leq t \) and for small times \(t \) the solution has the form

\[
u(t, r) = \lambda^{\frac{1}{2}}(t) W(\lambda(t) r) + \eta(t, x)
\]

where

\[
\int_{|x| < t} \left[|\nabla \eta(t, x)|^2 + |\eta_t(t, x)|^2 + |\eta(t, x)|^6 \right] dx \to 0 \quad \text{as} \quad t \to 0
\]

and outside the cone \(u(t, r) \) satisfies

\[
\int_{|x| \geq t} \left[|\nabla u(t, x)|^2 + |u_t(t, x)|^2 + |u(t, x)|^6 \right] dx < \delta
\]
for all sufficiently small $t > 0$ where $\delta > 0$ is arbitrary but fixed. In particular, the energy of these blow-up solutions can be chosen arbitrarily close to $E(W,0)$, i.e., the energy of the stationary solution.

We remark that

$$\lambda(t) = t^{-1-v(t)}, \quad v(t) = v + \epsilon_0 \frac{\sin(\log t)}{\log t} \to v \text{ as } t \to 0+$$

This shows that $v(t)$ eternally oscillates around the constant v, but does approach that constant. Currently we do not know if it is possible to have such solutions for which $v(t)$ is not asymptotically constant.

The starting point of our investigation was to adapt the method from [11] to the setting where $\lambda(t)$ is not restricted to the class of pure-power laws. This turns out to run into serious difficulties essentially from the beginning, with the “renormalization construction” of the approximate solution being the first serious obstacle. Recall from [11] that this construction relies on an iterative procedure and involves delicate book-keeping of various asymptotic expansions of the approximate solutions, the corrections, as well as the errors. For the more general rates $\lambda(t)$ this cannot be done in the same fashion, and we succeeded in a much modified fashion for the laws (1.5); however, only two steps of the iteration seem feasible. This then forces one to confront a very major difficulty which was not present in [11]; namely the lack of a suitable smallness parameter which allowed for the ultimate contraction argument yielding an exact solution rather than an approximate one to go through. In absence of this small parameter we are forced to follow a different route. The idea is very simple but its actual implementation turns out to be quite subtle. Schematically, we have to deal with a fixed point problem on a Banach space of the form

$$x = F(x) + Ax + x_0$$

where the norm of the linear operator A is not small. However, it turns out that A^n has small operator norm provided n is sufficiently large. This implies the existence of $(1 - A)^{-1}$ (via the Neumann series) and thus, we may re-write the problem at hand as

$$x = (1 - A)^{-1}F(x) + (1 - A)^{-1}x_0$$

which we then solve by the Banach fixed point theorem. Thus, a large part of the present paper is devoted to the development of a technique that allows one to show smallness of $\|A^n\|$. In order to succeed, we have to exploit the fine-structure of the operator A, in particular smoothing properties and oscillations.

2. The approximate solution for a modified power-law rescaling

2.1. Generalities. The radial quintic wave equation in \mathbb{R}^3 is

$$L_{\text{quintic}}u := u_{tt} - u_{rr} - \frac{2}{r} u_r - u^5 = 0$$

(2.1)
A special stationary solution is $W(r) = (1 + r^2/3)^{-\frac{1}{2}}$. By scaling, $\lambda^\frac{1}{2}W(\lambda r)$ is also a solution for any $\lambda > 0$. We are interested in letting λ depend on time. More precisely, we would like to find solutions $L_{\text{quintic}}u = 0$ of the form

$$u(t, r) = \lambda(t)^{\frac{1}{2}}W(\lambda(t)r) + \epsilon(t, r), \quad \lambda(t) \to \infty \text{ as } t \to 0^+$$

and ϵ small in a suitable sense. It suffices to show that ϵ remains small in energy, since this ensures that the solution blows up at time $t = 0$ by the mechanism of “energy concentration” at the tip of the light-cone $(t, r) = (0, 0)$ (think of solving backwards in time). In the paper \cite{11} such solutions were found with $\lambda(t) = t^{-1-\nu}$, and $\nu > \frac{1}{2}$ constant. The goal here is to allow for more general functions; more specifically, we will set

$$\lambda(t) = t^{-1-\nu} \exp(-\epsilon_0 \sin(\log t)), \quad \nu > 3, \ |\epsilon_0| \ll 1$$

This is of the form $\lambda(t) = t^{-1-\nu(t)}$ with

$$\nu(t) = \nu + \epsilon_0 \frac{\sin(\log t)}{\log t} \to \nu \text{ as } t \to 0^+$$

For future reference, we introduce $\mu(t) := t\lambda(t)$, and

$$\kappa(t) := -\frac{t\mu'(t)}{\mu(t)}$$

so that for (2.3) we obtain

$$\kappa(t) = \nu + \epsilon_0 \cos(\log t)$$

Our goal is to prove the following result. In what follows, $R = r\lambda(t)$.

Proposition 2.1. Let $\lambda(t)$ be as in (2.3) and $t_0 \ll 1$.

(i) There exists some $u_2(t, r) \in C^2((0 < t < t_0, 0 \leq r \leq t))$ such that

$$u_2(t, r) = \sqrt{\lambda(t)}(W(R) + \mu^{-2}(t)O(R)), \quad 0 < t < t_0, 0 < r < t$$

and $e_2 := L_{\text{quintic}}u_2$ satisfies

$$t^2 \lambda^{-\frac{1}{2}}e_2(t, r) = \mu^{-2}(t)O\left(\frac{\log(R + 2)}{R + 1}\right), \quad 0 < t < t_0, 0 < r < t$$

(ii) For $0 < t < t_0$, $0 < r < t/2$ and all $k, j \geq 0$ we have

$$\partial_t^k \partial_r^j u_2(t, r) = \sqrt{\lambda(t)}W(R) + t^{-k}r^{-j} \sqrt{\lambda(t)}\mu^{-2}(t)O(R)$$

and

$$\partial_t^k \partial_r^j (t^2 \lambda^{-\frac{1}{2}}e_2(t, r)) = t^{-k}r^{-j} \mu^{-2}(t)O\left(\frac{\log(R + 2)}{R + 1}\right)$$

The same bound applies without the restriction $r < \frac{t}{2}$, provided $k + j \leq 2$.

(iii) The function $u_2(t, r)$ admits a C^2-extension (on fixed time slices) beyond the light cone $r \leq t$ with the property that given $\delta > 0$,

$$\int_{r \geq t} [|\partial_r u_2|^2 + \partial_t u_2^2 + u_2^2](t, r) r^2 \, dt \ll \delta$$
provided \(t < t_0 \) is sufficiently small.

The proof will be given in Section 2.7.

2.2. The bulk term.

Define

\[
u_0(t, r) = \lambda(t)^{\frac{1}{2}} W(r\lambda(t)) = \lambda(t)^{\frac{1}{2}} W(R) \tag{2.8}\]

While \(u_0 \) is very far from being an approximate solution, the construction in \([11]\) for \(\lambda(t) = t^{-\alpha} \) where \(\alpha > 1 \) is constant shows that one can add successive corrections via an iterative procedure

\[
u = u_0 + v_1 + v_2 + v_3 + \ldots + v_k\]

so that this function approximately solves \((2.1)\) in the light cone \(\{ r \leq t \ll 1 \} \). To be specific, we achieved that \(L_{\text{quintic}}u(t) \) goes to zero like \(t^N \) in the energy norm as \(t \to 0 \) where \(N \) can be made arbitrarily large by taking \(k \) large.

For \((2.3)\) we will content ourselves with two steps of the construction only, i.e., \(u = u_0 + v_1 + v_2 \). Let us first compute the error resulting from \(u_0 \).

Define \(\mathcal{D} := \frac{1}{2} + r\partial_r = \frac{1}{2} + R\partial_R \). Then

\[
e_0 := L_{\text{quintic}}u_0 = \lambda^2(t) \left[\left(\frac{N'}{N} \right)^2 (t)(\mathcal{D}^2 W)(R) + \left(\frac{N'}{N} \right)' (t)(\mathcal{D} W)(R) \right]
\]

\[
t^2 \epsilon_0 := \lambda^2(t) \left[\omega_1(t) \frac{1 - R^2/3}{(1 + R^2/3)^2} + \omega_2(t) \frac{9 - 30R^2 + R^4}{(1 + R^2/3)^2} \right] \tag{2.9}\]

We note that \((2.3)\) satisfies

\[
\frac{t \lambda'(t)}{\lambda(t)}, \quad \frac{t^2 \lambda''(t)}{\lambda(t)} = O(1), \quad t \to 0+ \tag{2.10}\]

and analogously for higher derivatives. Moreover, the functions on the left remain bounded under \((t\partial_t)^\ell \) for any \(\ell \); the same properties hold for \(\omega_1(t), \omega_2(t) \).

Then \(t^2 \epsilon_0 = \lambda(t)^{\frac{1}{2}} O(R^2 \langle R \rangle^{-3}) \) uniformly in \(0 < t \ll 1 \) (with derivatives). Clearly, this error blows up as \(t \to 0 \) like \(t^{-2} \).

2.3. The first correction.

Then \(t^2 \epsilon_0 = \lambda(t)^{\frac{1}{2}} O(R^2 \langle R \rangle^{-3}) \) as \(R \to \infty \). This error blows up as \(t \to 0 \) like \(t^{-2} \). The goal is now to reduce it — in fact turn it into an error that vanishes as \(t \to 0 \) — by adding corrections to \(u_0 \), the first one being \(v_1 \). We will do this by setting \(\lambda^2(t)L_0v_1 = e_0 \) where

\[
L_0 := \partial_R^2 + \frac{2}{R} \partial_R + 5W^4(R) \tag{2.11}\]

Note that this is the linearized operator obtained by plugging \(u_0 + v_1 \) into \((2.1)\) and discarding \(\partial_t \) altogether. While this may seem strange, the idea is to look first at the regime \(0 < r \ll t \) where \(\partial_r \) should matter less than \(\partial_t \). We shall see shortly that \(v_1 \) has the good property that it decays like \((t\lambda(t))^{-2} \), but it produces errors for the nonlinear PDE that grow in \(r \) too strongly. To remove this growth, we carry out a correction at the second
stage by solving a suitable differential operator. At this stage the self-similar variable \(a = \frac{r}{t} \) becomes important.

Now we discuss \(v_1 \) in more detail. A fundamental system of \(L_0 \) is

\[
\phi_1(R) := \frac{1 - R^2/3}{(1 + R^2/3)^2}, \quad \phi_2(R) := \frac{1 - 2R^2 + R^4/9}{R(1 + R^2/3)^2}
\]

(2.12)

The operator

\[
\tilde{L}_0 = RL_0 R^{-1} = \partial^2_R + 5W^4(R)
\]

(2.13)

has a fundamental system

\[
\tilde{\phi}_1(R) := \frac{R(1 - R^2/3)}{(1 + R^2/3)^2} = \psi_1(R^{-2})
\]

\[
\tilde{\phi}_2(R) := \frac{1 - 2R^2 + R^4/9}{R(1 + R^2/3)^2} = R\psi_2(R^{-2})
\]

(2.14)

The right-hand sides here are for large \(R \), and the \(\tilde{\psi}_j \) are analytic around 0. The Wronskian is

\[
\phi_1'(R)\phi_2(R) - \phi_1(R)\phi_2'(R) = 1
\]

We let \(\mu(t) = t\lambda(t) \) as above, and

\[
\mu^2(t)L_0 v_1 = t^2\epsilon_0, \quad v_1(0) = v_1'(0) = 0
\]

(2.15)

We claim that

\[
v_1(t, r) = \mu^{-2}(t)L_0^{-1}t^2\epsilon_0 = \lambda^{\frac{1}{2}}(t)\mu^{-2}(t)O(R) \quad \text{as} \ R \to \infty
\]

To be more specific, write

\[
t^2\epsilon_0 = \lambda^{\frac{1}{2}}(t)\left(\omega_1(t)g_1(R) + \omega_2(t)g_2(R)\right)
\]

(2.16)

see (2.9). Note that the \(g_j \) are of the form

\[
g_j(R) = R^{-1}\phi_j(R^{-2}) \quad R \gg 1
\]

(2.17)

where \(\phi_j \) is analytic around 0. Then \(L_0 f_j = g_j \) with \(f_j(0) = f_j'(0) = 0 \) satisfies

\[
f_j(R) = R^{-1}\left(\tilde{\phi}_1(R)\int_0^R \tilde{\phi}_2(R')R'g_j(R')dR' - \tilde{\phi}_2(R)\int_0^R \tilde{\phi}_1(R')R'g_j(R')dR'\right)
\]

(2.18)

for \(j = 1, 2 \). Then one checks that

\[
f_j(R) = b_1jR + b_2j + b_3j\log R + O(1/R) \quad \text{as} \ R \to \infty
\]

\[
f_j(R) = c_1jR^2 + O(R^4) \quad \text{as} \ R \to 0
\]

(2.19)
In fact, around $R = 0$ the $f_j(R)$ are even analytic functions, whereas around $R = \infty$ one has the representation

$$f_j(R) = R(b_j + b_j R^{-1} + R^{-2} \log R \varphi_j(R^{-2}) + R^{-2} \varphi_{2j}(R^{-1})) =: R(F_j(\rho) + \rho^2 G_j(\rho^2) \log \rho) \quad (2.20)$$

where $\varphi_{1j}, \varphi_{2j}$ and F_j, G_j are analytic around zero, with $\rho := R^{-1}$. This follows from (2.14), (2.17), and (2.18). For future reference, we remark that the structure in (2.20) is preserved under application of \mathcal{D}. In particular, and abusing notation somewhat, we have

$$v_1(t, r) = \lambda_{\frac{3}{2}}(t) \mu^{-2}(t) \omega_1(t)f_1(R) + \omega_2(t)f_2(R)) =: \lambda_{\frac{3}{2}}(t) \mu^{-2}(t) \omega(t)f(R) \quad (2.21)$$

Define

$$u_1 := u_0 + v_1 = \lambda_{\frac{3}{2}}(t)(W(R) + \mu^{-2}(t) \omega(t)f(R))$$

In view of (2.19), and $R \leq \mu$ (recall that we are inside of the light cone $r \leq t$)

$$u_1(t, r) = \lambda_{\frac{3}{2}}(t)O(R^{-1}) \quad R \geq 1$$

$$u_1(t, r) = \lambda_{\frac{3}{2}}(t)O(1) \quad 0 \leq R < 1$$

uniformly in $0 < t < 1$; moreover, we may apply $t \partial_t$ or $r \partial_r = R \partial_R$ any number of times without affecting this asymptotic property. Finally, $\lambda(t)^{-\frac{3}{2}}u_1(t, r)$ is an even analytic function around $R = 0$.

2.4. The error from u_1. Set $e_1 := \mathcal{L}_{\text{quintic}}(u_1)$. Then

$$e_1 = \partial^2_t v_1 - 10u_0^2 v_1^2 - 10u_0^2 v_1^3 - 5u_0^4 v_1 - v_1^5 \quad (2.23)$$

One has

$$\hat{t}^2 \lambda^{-\frac{3}{2}}(t)e_1 = \lambda^{-\frac{3}{2}}(t)(t(\partial_t)^2 - t \partial_t)(\lambda_{\frac{3}{2}}(t) \omega_1(t, \rho \lambda(t)))) - \mu^2(t)(10W^3(R)w_1^2(t, R) + 10W^2(R)w_3^3(t, R) + 5W(R)w_4^4(t, R) + w_5^5(t, R)) \quad (2.24)$$

We write symbolically $w_1(t, R) = \mu^{-2}(t) \omega(t)f(R)$. Then the nonlinearity in (2.24) is

$$\mu^2(t)(10W^3(R)w_1^2(t, R) + 10W^2(R)w_3^3(t, R) + 5W(R)w_4^4(t, R) + w_5^5(t, R))$$

$$= \mu^{-2}(t)(10W^3(R) \omega^2(t)f_2(R) + 10W^2(R) \mu^{-2}(t) \omega^3(t)f_3^3(R) + 5W(R) \mu^{-4}(t) \omega^4(t)f_4^4(R) + \mu^{-6}(t) \omega^5(t)f_5^5(R)) \quad (2.25)$$

whereas

$$\lambda^{-\frac{3}{2}}(t)((t \partial_t)^2 - t \partial_t)(\lambda_{\frac{3}{2}}(t) \omega_1(t, \rho \lambda(t))))$$

$$= \left(\left(t \partial_t + \frac{t \lambda'(t)}{\lambda(t)} \mathcal{D}\right)^2 - \left(t \partial_t + \frac{t \lambda'(t)}{\lambda(t)} \mathcal{D}\right)\right) \omega_1(t, R) \quad (2.26)$$
Now

\[\mu^2(t) \left(t \partial_t + \frac{t \lambda'(t)}{\lambda(t)} D \right) \mu^{-2}(t) \omega(t) f(R) \]

\[= \left(- \frac{2 t \dot{\mu}(t)}{\mu(t)} \omega(t) + t \dot{\omega}(t) + \frac{t \lambda'(t)}{\lambda(t)} \omega(t) D \right) f(R) \]

(2.27)

Note that this is schematically of the form \(\omega(t) f(R) \) with \(f \) as in (2.19), and \(\omega(t) \) bounded together with all powers of \(t \partial_t \) as \(t \to 0^+ \). Henceforth, we refer to such functions \(\omega(t) \) as admissible. Thus we can write

\[t^2 \lambda^{-1}(t) c_1(t, r) \]

\[= \mu^{-2}(t) \left(\omega(t) f(R) - \left(10 W^3(R) a^2(t) f^2(R) + 10 W^2(R) \mu^{-2}(t) \omega^3(t) f^3(R) \right. \right. \]

\[+ 5 W(R) \mu^{-4}(t) \omega^4(t) f^4(R) + \mu^{-6}(t) \omega^5(t) f^5(R) \left. \right) \bigg) \]

(2.28)

We let \(a = \xi = \frac{R}{\mu} = R b \), \(b := \mu^{-1} \) and isolate those terms in (2.28) which do not decay for large \(R \). Since we are working inside of the light-cone, we have \(0 \leq a \leq 1 \). Now, abusing notation somewhat,

\[\mu^{-2}(t) f(R) = b^2 R(F(\rho) + \rho^2 G(\rho^2) \log \rho) = ba(F(\rho) + \rho^2 G(\rho^2) \log \rho) \]

\[\mu^{-2}(t) W^3(R) f^2(R) = b^2 R^{-3}(2) R^2(F(\rho) + \rho^2 G(\rho^2) \log \rho)^2 \]

\[= b^2 R^{-1}(1) F(\rho) + \rho^2 F(\rho) \log \rho + \rho^4 G(\rho^2) \log^2 \rho \]

(2.29)

\[\mu^{-4}(t) W^2(R) f^3(R) = b^4 R^{-2}(1) R^3 F(\rho) + \rho^2 G(\rho^2) \log \rho)^3 \]

\[= b^3 a F(\rho) + \rho^2 F(\rho) \log \rho + \rho^4 F(\rho) \log^2 \rho + \rho^6 G(\rho^2) \log^3 \rho \]

where \(F, G \) can change from line to line. Similarly,

\[\mu^{-6}(t) W(R) f^4(R) = b^6 R^{-1}(1) R^4(F(\rho) + \rho^2 G(\rho^2) \log \rho)^4 \]

\[= b^3 a^3 F(\rho) + \rho^2 F(\rho) \log \rho + \rho^4 F(\rho) \log^2 \rho \]

\[+ \rho^6 F(\rho) \log^3 \rho + \rho^8 G(\rho^2) \log^4 \rho \]

\[\mu^{-8}(t) f^5(R) = b^8 R^5 F(\rho) + \rho^2 G(\rho^2) \log \rho)^5 \]

\[= b^3 a^5 F(\rho) + \rho^2 F(\rho) \log \rho + \rho^4 F(\rho) \log^2 \rho \]

\[+ \rho^6 F(\rho) \log^3 \rho + \rho^8 F(\rho) \log^4 \rho + \rho^{10} G(\rho^2) \log^5 \rho \]

(2.30)

From (2.29), (2.30) we extract the leading order

\[t^2 \lambda^{-2}(t) c_1^0(t, r) := \mu^{-1}(t)(c_1 a + c_2 b + (c_3 a + c_4 a^3 + c_5 a^5) b^2) \]

(2.31)

with \(c_j = c_j(t) \) admissible functions. Indeed, from the first line in (2.29) we extract \(ba F(0) + \rho F'(0) \) = \(ba c_2 \) whereas from the fifth we extract \(b^3 a F(0) \). From the second line in (2.30) we retain \(b^3 a F(0) \), and from the fifth
one $b^3 a^5 F(0)$. The point here is that with this choice of e^0_1 one obtains a
decaying error as $R \to \infty$

\[t^2 \lambda^{-\frac{1}{2}}(t)(e_1 - e^0_1)(t, r) \]

\[= \mu^{-2}(t) \left[\log \frac{R}{a} \Phi_1(t, a, b, \rho \log \rho, \rho) + \frac{1}{R} \Phi_2(t, a, b, \rho \log \rho, \rho) \right] \]

(2.32)

where $\Phi_j(t, a, b, u, v)$ are polynomials in a, b and analytic in u,v near $(0,0)$; moreover, their time dependence is polynomial in admissible functions. Writing $b = \frac{a}{R}$ we may delete the terms involving $b^2 = ba/R$ on the right-hand side of (2.31), since they are of the form (2.32). Thus, it suffices to consider the simpler leading error

\[t^2 \lambda^{-\frac{1}{2}}(t)e^0_1(t, r) := c_1 a t^{-1}(t) + c_2 \mu^{-2}(t) = c_1(t)a + c_2(t)b \]

with $c_1(t), c_2(t)$ admissible.

2.5. The second correction. Now we would like to solve the corrector problem “near $r = t''$, i.e.,

\[t^2 \left(\frac{\partial_{rr} - 1}{r} \right) = -t^2 e^0_1 \]

(2.34)

Note that we have discarded the nonlinearity on the left-hand side since it decays near $r = t$. This is designed exactly so as to remove the growth in R. We seek a solution in the form

\[v(t, r) = \lambda(t)^{\frac{1}{2}}(\mu^{-1}(t)q_1(a, t) + \mu^{-2}(t)q_2(a, t)) \]

(2.35)

with boundary conditions $q_1(0, t) = 0, q'_1(0, t) = 0$ and $q_2(0, t) = 0, q'_2(0, t) = 0$.

These translate into the boundary conditions $v(t, 0) = 0, \partial_r v(t, 0) = 0$ at $r = 0$.

This v will essentially be the function v_2. In view of

\[\lambda(t)^{-\frac{1}{2}} t^{\alpha} \lambda(t)^{\frac{1}{2}} \mu^{-\alpha} = \partial_t + t^{-1} \left(\frac{1}{2} \frac{t^2}{\lambda} - a \frac{t^2}{\mu} \right) \]

we are reduced to the system

\[t^2 \left(- \left(\partial_t + \frac{\beta_1(t)}{t} \right)^2 + \partial_{rr} + \frac{2}{r} \partial_r \right) q_1(a, t) = c_1(t)a \]

(2.36)

and

\[t^2 \left(- \left(\partial_t + \frac{\beta_2(t)}{t} \right)^2 + \partial_{rr} + \frac{2}{r} \partial_r \right) q_2(a, t) = c_2(t) \]

(2.37)

where

\[\beta_j(t) = \frac{1}{2} \frac{t^2}{\alpha} - j \frac{t^2}{\alpha} = (j - 1/2) \kappa(t) - \frac{1}{2}, \quad j = 1, 2. \]

We impose the boundary conditions $q_j(0, t) = \partial_r q_j(0, t) = 0$.

EXOTIC BLOWUP SOLUTIONS 9
Lemma 2.2. Let $\lambda(t)$ be as in (2.3) with $|\epsilon_0|$ sufficiently small. Equations (2.36), (2.37) have solutions $q_j(a,t)$ satisfying $q_j(0,t) = \partial_0 q_j(0,t) = 0$, $q_j(a,t) \in C^2(0 < t < t_0, 0 \leq a \leq 1)$. Furthermore, for $k \geq 0$ and $0 \leq \ell \leq 2$ we have

$$\partial_t^k \partial_a^\ell q_2(a,t) = O(t^{-k}a^{2-\ell}); \quad \partial_t^k \partial_a^\ell q_1(a,t) = O(t^{-k}a^{3-\ell})$$

Proof. Now, with $\dot{q}_j = \partial_t q_j$, (2.36) and (2.37) can be written as

$$t^2 \left(-\left(\partial_t + \frac{\beta_j(t)}{t}\right)^2 + \partial_r + \frac{2}{r} \partial_r \right) q_j(a,t)
= \left((1 - a^2) \partial_a^2 + (2(\beta_j(t) - 1)a + 2a^{-1}) \partial_a - \beta_j^2(t) + (\beta_j(t) - t\beta_j(t)) \right) q_j(a,t)
- (t^2 \dot{q}_j(a,t) + 2\beta_j(t) t \dot{q}_j(a,t)) + 2at \partial_a \dot{q}_j(a,t) = c_j(t)a^{2-j}$$

By (2.38) we have $\beta_j(t) = \tilde{v}_j + 2\tilde{\epsilon}_j \cos(\log t)$ with $\tilde{v}_j = (j - 1/2)\nu - \frac{1}{2} > 1$ and $\tilde{\epsilon}_j = (j - 2 - 1/4)\epsilon_0$. We note that the admissible functions c_j are as in (2.31), which are of the form $\omega^k(t)$ in (2.28). These are parts of $t^2 \lambda^{-\frac{1}{2}}(t)e_1(t,r)$ with e_1 defined in (2.23), and they come from (2.27) applied no more than twice to v_1 instead of f, where v_1 is as defined in (2.21) with ω_j coming from $t^2 e_0$ in (2.9). Thus we see that $c_j(t)$ are polynomials of $\kappa(t)$ with the operator $t\partial_t$ applied finitely many times, which means we can write

$$c_j(t) = \sum_{n=0}^{N_j} \sum_{m=0}^{n} \tilde{e}_j^{n,m} \kappa(t)^{n-2m}$$

since polynomials of $\kappa(t)$ have this type of expansions and they are preserved by the operator $t\partial_t$.

For convenience we drop the subscript j and write (2.39) as

$$\left((1 - a^2) \partial_a^2 + (2(\beta(t) - 1)a + 2a^{-1}) \partial_a - \beta^2(t) + \beta(t) - t\beta(t) \right) q(a,t)
- (t^2 \dot{q}(a,t) + 2\beta(t) t \dot{q}(a,t)) + 2at \partial_a \dot{q}(a,t) = c(a,t)$$

where $\beta(t) = \tilde{v} + 2\tilde{\epsilon} \cos(\log t) = \tilde{v} + \tilde{\epsilon} t^i + \tilde{\epsilon} t^{-i}$

and

$$c(a,t) = \sum_{n=0}^{N} \sum_{m=0}^{n} \tilde{e}^{n} \tilde{g}_{n,m}(a) t^{n-2m}$$

where $\tilde{g}_{n,m}(a)$ is linear in a. We seek a solution to (2.41) of the form

$$q(a,t) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} \tilde{e}^{n} \tilde{g}_{n,m}(a) t^{n-2m}$$
where \(g_{n,m}(a) = \xi_{n,m}(a) \). Plugging (2.42) and (2.40) into (2.41) we see that

\[
\sum_{n=0}^{\infty} \sum_{m=0}^{n} \xi^n \epsilon^{i(n-2m)i} \left((1-a^2)g''_{n,m}(a) + (2(\bar{\nu} - 1)a + 2a^{-1})g'_{n,m}(a) \\
+ 2a(g'_{n-1,m}(a) + g'_{n-1,m-1}(a)) + (\bar{\nu} - \bar{\nu}^2)g_{n,m}(a) - 2g_{n-2,m-1}(a) \\
+ (1 - i - 2\bar{\nu})g_{n-1,m}(a) + (1 + i - 2\bar{\nu})g_{n-1,m-1}(a) - g_{n-2,m}(a) - g_{n-2,m-2}(a) \\
+ (n - 2m)(n - 2m + i - 2\bar{\nu}\bar{\iota})g_{n,m}(a) - 2i(n - 2m - 1)g_{n-1,m}(a) \\
- 2i(n - 2m + 1)g_{n-1,m-1}(a) + 2ai(n - 2m)g'_{n,m}(a) \right) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} \xi^n \epsilon_{n,m}(a) \epsilon^{i(n-2m)i}
\]

where \(g_{n,m}(a) = 0 \) if \(n < 0 \) or \(|n - 2m| > n \). Collecting powers of \(\epsilon \) and \(i \) we obtain the equation

\[
(1-a^2)g''_{n,m}(a) + (2(\bar{\nu} - 1)a + 2a^{-1} + 2ai(n - 2m))g'_{n,m}(a) \\
+ (\bar{\nu} - \bar{\nu}^2 + (n - 2m)(n - 2m + i - 2\bar{\nu}\bar{\iota}))g_{n,m}(a) \\
= -2a(g'_{n-1,m}(a) + g'_{n-1,m-1}(a)) - (1 + i - 2\bar{\nu} - 2i(n - 2m))g_{n-1,m}(a) \\
- (1 - i - 2\bar{\nu} - 2i(n - 2m))g_{n-1,m-1}(a) + 2g_{n-2,m-1}(a) \\
+ g_{n-2,m}(a) + g_{n-2,m-2}(a) + \xi_{n,m}(a) =: R_{n,m}(a) \tag{2.43}
\]

Note that \(R_{0,0}(a) = \xi_{0,0}(a) \).

The associated homogeneous equation

\[
(1-a^2)g''_{n,m}(a) + (2(\bar{\nu} - 1)a + 2a^{-1} + 2ai(n - 2m))g'_{n,m}(a) \\
+ (\bar{\nu} - \bar{\nu}^2 + (n - 2m)(n - 2m + i - 2\bar{\nu}\bar{\iota}))g_{n,m}(a) = 0 \tag{2.44}
\]

has two solutions

\[
\frac{(1+a)^{\nu+1+(n-2m)i}}{a}, \quad \frac{(1+a)^{\nu+1+(n-2m)i}}{a}
\]

and their Wronskian is \(2a^{-2}(\bar{\nu} + 1 + (n - 2m)i)(1-a^2)^{\nu+1+(n-2m)i} \). Therefore by (2.43), \(g_{n,m} \) can be defined recursively as

\[
g_{n,m}(a) = \frac{(1+a)^{\nu+1+(n-2m)i}}{2a(\bar{\nu} + 1 + (n - 2m)i)} \int_0^a x(1+x)^{-\nu-1-(n-2m)i} R_{n,m}(x) \, dx \\
- \frac{(1-a)^{\nu+1+(n-2m)i}}{2a(\bar{\nu} + 1 + (n - 2m)i)} \int_0^a x(1-x)^{-\nu-1-(n-2m)i} R_{n,m}(x) \, dx \tag{2.45}
\]

which implies

\[
(a g_{n,m}(a))' = \frac{(1+a)^{\nu+(n-2m)i}}{2} \int_0^a x(1+x)^{-\nu-1-(n-2m)i} R_{n,m}(x) \, dx \\
+ \frac{(1-a)^{\nu+(n-2m)i}}{2} \int_0^a x(1-x)^{-\nu-1-(n-2m)i} R_{n,m}(x) \, dx \tag{2.46}
\]
With \(g_{n,m} \) thus defined, (2.42) gives a formal solution to (2.41). In order to show that (2.42) gives a true solution, it is sufficient to show that \(g''_{n,m}(a) \) is continuous and for some \(C_0 > 0 \) we have

\[
\|g^{(k)}_{n,m}\|_\infty := \sup_{a \in [0,1]} |g^{(k)}_{n,m}(a)| \leq C_0^n
\]

for \(0 \leq k \leq 2 \), since this would imply (2.42) is convergent and twice differentiable in both \(a \) and \(t \) with continuous second derivatives for \(0 \leq t < t_0, 0 \leq a \leq 1, \) as long as \(\tilde{\varepsilon} < C_0^{-1} \). To show that the initial conditions \(q(0, t) = \partial_a q(0, t) = 0 \) are satisfied, we only need to show \(g_{n,m}(0) = g'_{n,m}(0) = 0 \).

By differentiating (2.42) we see that \(\partial_t^j \partial_a^k q(a, t) = O(t^{-k} a^{2 - j}) \) for \(k \geq 0 \) and \(0 \leq j \leq 2 \). In addition, to show the second estimate of (2.38) we will prove the inequality

\[
|g''_{n,m}(a)| \leq a \tilde{C}_3^{n+1}
\]

for some \(\tilde{C}_3 \) and \(0 < a < 1/2 \). Note that we do not need to show \(g_{n,m}(a) = \hat{g}_{n,m}(a) \) since we can simply take the real part of \(q(a, t) \) in (2.42) to get a real solution.

Since

\[
(1 + a)^{\hat{v} + (n-2m)i} \int_0^a x(1 + x)^{-\hat{v} - 1 - (n-2m)i} R_{n,m}(x) \, dx \leq a \|R_{n,m}\|_\infty (1 + a)^{\hat{v}} \int_0^a (1 + x)^{-\hat{v} - 1} \, dx = a \tilde{v}^{-1}((1 + a)^{\hat{v}} - 1) \|R_{n,m}\|_\infty \leq a^2 (1 + a)^{\hat{v} - 1} \|R_{n,m}\|_\infty
\]

\[
(1 - a)^{\hat{v} + (n-2m)i} \int_0^a x(1 - x)^{-\hat{v} - 1 - (n-2m)i} R_{n,m}(x) \, dx \leq a \|R_{n,m}\|_\infty (1 - a)^{\hat{v}} \int_0^a (1 - x)^{-\hat{v} - 1} \, dx = a \tilde{v}^{-1}(1 - (1 - a)^{\hat{v}}) \|R_{n,m}\|_\infty \leq a^2 \|R_{n,m}\|_\infty
\]

and \(\sqrt{2}|z| \geq |\Re z| + |\Im z| \) for any \(z \), we have by (2.46)

\[
|g_{n,m}(a)| \leq \frac{\sqrt{2}(2^{\hat{v}-1} + 2^{-1})a \|R_{n,m}\|_\infty}{(|n - 2m| + \tilde{v} + 1)}
\]

\[
|g_{n,m}(a)'| \leq \sqrt{2}(2^{\hat{v}-2} + 2^{-1})a^2 \|R_{n,m}\|_\infty
\]

(2.48)

\[
gen_{n,m}(a)^2 \leq a^{-1} \left(|(a g_{n,m}(a))'| + |g_{n,m}(a)| \right) \leq \sqrt{2}(2^{\hat{v}-1} + 2^{-1})(1 + (\tilde{v} + 1)^{-1}) \|R_{n,m}\|_\infty
\]
for all \(a \in [0, 1] \). We let

\[
\hat{c}_1 = \sup_{0 \leq a \leq 1, 0 \leq m \leq m \leq N} (|\hat{c}_{n,m}(a)|, |\hat{c}_{n,m}'(a)|)
\]

By (2.43) and (2.48) we have

\[
|R_{n,m}(a)| = \left| -2((ag_{n-1,m}(a))' + (ag_{n-1,m-1}(a))') - (-1 + 2\bar{v} - 2i(n - 2m))g_{n-1,m}(a) - (-1 - 2\bar{v} - 2i(n - 2m))g_{n-1,m-1}(a) + 2g_{n-2,m-1}(a) + g_{n-2,m}(a) + g_{n-2,m-2}(a) + \hat{c}_{n,m}(a) | \leq 2((ag_{n-1,m}(a))' + (ag_{n-1,m-1}(a))') + 2(\bar{v} + 1 + |n - 2m|)(|g_{n-1,m}(a)| + |g_{n-1,m-1}(a)|) + 4 \max_{0 \leq j \leq 2} (|g_{n-2,m-j}(a)| + \hat{c}_1)
\]

\[
\leq C_1 \max_{1 \leq j \leq 2 \leq n \leq 1} \|R_{n-j,m+k}\|_\infty + \hat{c}_1
\]

for some \(C_1 > 1 \). Since \(|R_{0,0}(a)| = |\hat{c}_{0,0}(a)| \leq \hat{c}_1 \), we have by induction

\[
|R_{n,m}(x)| \leq (C_1 + \hat{c}_1)^{n+1}
\]

which implies by (2.48)

\[
\|g_{n,m}'\|_\infty \leq \frac{\hat{c}_1^{n+1}}{|n - 2m| + \bar{v} + 1} \quad \|g_{n,m}'\|_\infty \leq \hat{c}_1^{n+1}
\]

for some \(\hat{c}_1 > 1 \). Note that by (2.46) \(g_{n,m}' \) is differentiable, implying \(R_{n,m} \) is continuous by (2.43), and thus we know \(g_{n,m}' \) is continuous by differentiating (2.46). To estimate \(g_{n,m}'' \), we rewrite (2.46) using integration by parts as

\[
(a g_{n,m}(a))' = \frac{(1 + a)^{\bar{v} + (n - 2m)i}}{2} \int_0^a x(1 + x)^{-\bar{v} - 1 - (n - 2m)i} R_{n,m}(x) \, dx + \frac{aR_{n,m}(a)}{2(\bar{v} + (n - 2m)i)} - \frac{(1 - a)^{\bar{v} + (n - 2m)i}}{2(\bar{v} + (n - 2m)i)} \int_0^a (1 - x)^{-\bar{v} - 1 - (n - 2m)i} (xR_{n,m}(x))' \, dx
\]

which implies

\[
|2(a g_{n,m}(a))''| \leq \left| (\bar{v} + (n - 2m)i)(1 + a)^{\bar{v} + 1 + (n - 2m)i} \int_0^a x(1 + x)^{-\bar{v} - 1 - (n - 2m)i} R_{n,m}(x) \, dx \right| + (1 + a)^{-1} aR_{n,m}(a) + \left| (1 - a)^{\bar{v} - 1 + (n - 2m)i} \int_0^a (1 - x)^{-\bar{v} - 1 - (n - 2m)i} (xR_{n,m}(x))' \, dx \right| \leq a(1 + a)^{-1} (\bar{v}^{-1} 2\bar{v} (\bar{v} + |n - 2m| + 1)) \|R_{n,m}\|_\infty + (\bar{v} - 1)^{-1} (1 - (1 - a)^{\bar{v} - 1}) \|xR_{n,m}(x)\|_\infty
\]
This together with (2.48) and (2.51) implies
\[
|aR_{n,m}(a)|' \leq 2(|a^m_{n,1}(a)|' + |a^m_{n-1,1}(a)|'')
\]
\[
+ 2(\tilde{\nu} + 1 + |n - 2m|)|a^m_{n-1,1}(a)|' + |a^m_{n-1,1}(a)|')
\]
\[
+ 4 \max_{0 \leq j \leq 2} |a^m_{n-2,1}(a)|' + 2\tilde{c}_1
\]
\[
\leq C_2\left((\tilde{\nu} + 1 + |n - 2m|)(C_1 + \tilde{c}_1)\right)^n
\]
\[
+ \max_{0 \leq k \leq 1} \|xR_{n-1,m-k}(x)\|_{\infty} + 2\tilde{c}_1
\]
for some \(C_2 > 1\). In particular \(|aR_{0,0}(a)|' \leq 2\tilde{c}_1\). Thus we have by induction
\[
\|xR_{n,m}(x)\|_{\infty} \leq (\tilde{\nu} + 2 + n)^{\tilde{C}_2^{n+1}}
\]
where \(\tilde{C}_2 = 2(C_2 + \tilde{c}_1)(C_1 + \tilde{c}_1)\). Therefore, by (2.51), (2.53), and (2.55)
\[
|a^m_{n,m}(a)|'' \leq a^{\tilde{C}_2^{n+1}}
\]
for some \(\tilde{C}_2 > 1\), where we used the fact that in (2.53) we have \(0 \leq 1 - (1 - a)^{\tilde{\nu}} \leq a\). Now, integrating the estimate for \(|a^{m}_{n,m}(a)|'\) in (2.48) we get
\[
|\hat{g}_{n,m}(a)| \leq 3^{-1} \sqrt{2(2^{n-2} + 2^{-1})}a^2\|R_{n,m}\|_{\infty}
\]
which together with (2.48) and (2.51) implies
\[
|\hat{g}_{n,m}^{'\prime}(a)| \leq a^{-1}(|(a^{m}_{n,m}(a))'| + |\hat{g}_{n,m}(a)|)
\]
\[
\leq \sqrt{2(2^{n-1} + 2^{-1})(1 + 3^{-1})a(C_1 + \tilde{c}_1)^{n+1}}
\]
By (2.56) and (2.58) we have for some \(C_0 > \tilde{C}_1\)
\[
|\hat{g}_{n,m}^{''\prime}(a)| \leq a^{-1}(|(a^{m}_{n,m}(a))'| + 2|\hat{g}_{n,m}(a)|) \leq C_0^{n+1}
\]
By (2.52) and (2.59) we have \(||\hat{g}_{n,m}^{(k)}(a)||_{\infty} \leq C_0^n\) for \(0 \leq k \leq 2\). Since \(R_{n,m}\) is continuous (cf. the discussion below (2.52)), writing \(R_{n,m}(x) = R_{n,m}(0) + o(1)\) and expanding (2.45) at \(a = 0\) we get \(\hat{g}_{n,m}(a) = o(a)\), implying \(g_{n,m}(0) = \hat{g}_{n,m}(0) = 0\).
In addition, for \(q_1\) we have \(\hat{c}_{n,m}(a) = \hat{c}_{n,m}.\) By (2.52) we have \(|\hat{g}_{n,m}^{'\prime}(a)| \leq \tilde{C}_1^{n+1}\) and \(|\hat{g}_{n,m}(a)| \leq a\tilde{C}_1^{n+1}\) and thus by definition (cf. (2.43))
\[
|R_{n,m}(a)| \leq a\tilde{C}_3^{n+1}
\]
for some \(C_3 > 0\). By (2.43) we have
\[
|a^{m}_{n,m}(a)|'' = (1 - a^2)^{-1}[2a(\nu + (n - 2m))a^{m}_{n,m}(a)]'
\]
\[
+ (-\nu - \hat{\nu} + (n - 2m)(n - 2m - i - 2\hat{\nu}i))a^{m}_{n,m}(a) - aR_{n,m}(a) \leq a^2\tilde{C}_3^{n+1}
\]
for some \(\tilde{C}_3 > 0\) as long as \(0 \leq a \leq 1/2\), which implies (2.47) by direct calculation. Therefore, \(q(a, t)\) given by (2.42) is a solution to (2.41) satisfying the stated conditions (see the discussion below (2.46)).
Remark 2.1. One can modify the proof of Lemma 2.2 so that the results hold for \(\lambda(t) = t^{1-\nu}F_a(\sin(\log t), \cos(\log t))\) where \(F_a(u, v)\) is analytic in \(u\) and \(v\) at the origin with sufficiently small derivatives. In this case, estimates of the type \(2.50\) remain valid.

Similarly, the results of Lemma 2.2 hold for \(\lambda(t) = t^{1-\nu}F_b(t')\) where \(F_b\) is analytic at the origin with sufficiently small derivatives, and \(\gamma \in \mathbb{R}^+\). In this case, instead of \(2.42\) one considers

\[
q(a, t) = \sum_{n=0}^{\infty} g_n(a)t^{\nu n}
\]

(2.60)

and the rest of the proof is similar to that of Lemma 2.2.

Using \(a = R\mu^{-1}\) we may rewrite (2.55) in the form

\[
v_2(t, r) := \frac{\lambda(t)^{\frac{1}{2}}}{\mu^2(t)}(R\tilde{q}_1(a, t) + q_2(a, t))
\]

(2.61)

where we have set \(\tilde{q}_1(a, t) := a^{-1}q_1(a, t)\). Note that both \(\tilde{q}_1\) and \(q_2\) are \(O(a^2)\) as \(a \to 0\). Thus by Lemma 2.2 we have the estimate

\[
d^k_d^j_d v_2(t, at) = O(t^{-k}a^{-j} \frac{\lambda(t)^{\frac{1}{2}}a^2(1 + R)}{\mu^2(t)})
\]

(2.62)

for \(k \geq 0\) and \(0 \leq j \leq 2\). Furthermore we have

Lemma 2.3. For \(0 \leq r \leq t/2\) the estimate (2.62) holds for \(k, j \geq 0\), or equivalently,

\[
|d^k_d^l v_2(t, r)| \leq C_{k, l} t^{-k-r} \frac{\lambda(t)^{\frac{1}{2}}a^2(1 + R)}{\mu^2(t)}
\]

for all \(k, l \geq 0\).

Proof. Note that for any differentiable function \(f\) we have \(r \partial_r f(t, r) = a \partial_a f(t, at)\) and \(t \partial_t f(t, r) = (t \partial_t - a \partial_a) f(t, at)\). This implies

\[
|t^k r^\ell d^k_d^l v_2(t, r)| \leq \tilde{C}_{k, l} \max_{0 \leq m < k} t^{k-m} a^{\ell + m} |d^k_l d^m v_2(t, at)|
\]

(2.63)

Thus it is sufficient to show that

\[
t^k a^\ell d^k_d^l v_2(t, at) = O(t^{k} \frac{\lambda(t)^{\frac{1}{2}}a^2(1 + R)}{\mu^2(t)})
\]

(2.64)

for all \(k, \ell \geq 0\).

For \(\ell \leq 2\) this follows from (2.62). For \(\ell > 2\), we only need to show

\[
d^k_d^l v_2(t, at) = O(t^{-k} \frac{\lambda(t)^{\frac{1}{2}}a^2(1 + R)}{\mu^2(t)})
\]

By (2.61) it is sufficient to show that

\[
d^k_d^l q_1(a, t) = O(t^{-k}); \quad d^k_d^l q_2(a, t) = O(t^{-k})
\]

(2.65)
since $\partial_a R = a^{-1} R$ and $\partial_a^j R = 0$ for $j \geq 2$. By (2.39) we have for $j = 1, 2$

\[(1 - a^2) \partial_a^2 (aq_j(a, t)) = -(2\beta_j(t) a \partial_a - \beta_j^2(t) - \beta_j(t) - t \beta_j(t)) a q_j(a, t)\]

\[+ t^2 a q_j(a, t) + 2(\beta_j(t) + 1) t a q_j(a, t) - 2 a t \partial_a (aq_j(a, t)) + a^3 \partial_j c_j(t)\]

(2.66)

Note that $\partial_j^t \beta_j(t) = O(t^{-k})$, $\partial_j^t c_j(t) = O(t^{-k})$ (cf. (2.40)), and by Lemma 2.2 we have

\[\partial_j^t \partial_j^{\ell'} (aq_j(a, t)) = O(t^{-k}); \ 0 \leq \ell' \leq 2\]

(2.67)

Thus by differentiating (2.66) and using induction on ℓ' we obtain

\[\partial_j^t \partial_j^{\ell'} (aq_j(a, t)) = O(t^{-k}); \ \ell' > 2\]

(2.68)

Recall that $\partial_j^t \partial_j^{\ell'} (a q_j(a, t)) = O(a^{2-j} t^{-k})$ by Lemma 2.2. Thus by integrating (2.68) with $\ell' = 2$ we have

\[a \partial_j^2 (a q_j(a, t)) = \sum_{n=3-j}^{n+1} \partial_j^{(k)}(a, t) a^n + \partial_j^{(k)}(a, t)\]

(2.69)

where $c_j^{(k)} = O(t^{-k})$ and $\partial_j a q_j(a, t) = O(t^{-k} a^{2-m})$ for $0 \leq m \leq \ell + 2$. Thus by differentiating (2.69) we conclude that

\[|\partial_j^2 \partial_j^{\ell'} a q_j(a, t)| \leq |\partial_j^2 (a^{-2} q_j^{(k)}(a, t))| \leq t^{-k}\]

\[|\partial_j^2 \partial_j^{\ell'} a q_j(a, t)| \leq |\partial_j^{(k)}(a, t)| + |\partial_j^{(k)}(a^{-1} q_j^{(k)}(a, t))| \leq t^{-k}\]

i.e., (2.65) holds.

We set $u_2 := u_1 + v_2 = u_0 + v_1 + v_2$. Finally, (2.22) remains valid for u_2 as well since $R \leq \mu(t)$. In other words, u_0 gives the main shape of the profile as a function of R.

2.6. The error from u_2. We define

\[e_2 := L_{\text{quintic}}(u_2) = L_{\text{quintic}}(u_1 + v_2)\]

\[= L_{\text{quintic}}(u_1) + (v_1 + v_2)^5 + (\partial_t - \partial_r - \frac{2}{r} \partial_r) v_2\]

(2.70)

We determine $t^2 \lambda(t^{-1} e_2$. First, from (2.52)

\[t^2 \lambda(t^{-1}) (e_1 - e_0)(t, r)\]

\[= \mu^{-2}(t) \left[\log \frac{R}{\Phi_1(a, b, \rho \log \rho, \rho)} + \frac{1}{R} \Phi_2(a, b, \rho \log \rho, \rho) \right] \]

(2.71)

for $R \geq 1$. For $|R| < 1$ we read off from (2.28) and (2.33) that

\[t^2 \lambda(t^{-1}) (e_1 - e_0)(t, r) = O(\mu^{-2}(t))\]

(2.72)

This holds uniformly for small times, and $t \partial_t$ and $r \partial_r$ can be applied any number of times without changing this asymptotic behavior as $R \to 0$.
Next, for large R, by (2.22) and (2.62) we have

$$t^2 \lambda^{-\frac{1}{2}}(t) u_1^4 v_2 = O(a^2 R^{-3}) = O(R^{-1} \mu^{-2}(t))$$

The final nonlinear term contributes

$$t^2 \lambda^{-\frac{1}{2}}(t) v_2^5 = \mu^{-\frac{5}{2}}(t) O(R^5) = \mu^{-2}(t) R^{-1} O(\mu^{-6}(t) R^6) = O(R^{-1} \mu^{-2}(t))$$

Thus

$$t^2 \lambda^{-\frac{1}{2}}(t) u_1^k v_2^{5-k} = O(R^{-1} \mu^{-2}(t)) \quad (R \geq 1, 0 \leq k \leq 4) \quad (2.73)$$

For small R we have $u_1 = \lambda^\frac{1}{2}(t) O(1)$ by (2.22) and $v_2 = \lambda^\frac{1}{2}(t) \mu^{-2}(t) O(a^2)$ by (2.62). Thus (recall that $a = R \mu^{-1}(t)$)

$$t^2 \lambda^{-\frac{1}{2}}(t) u_1^4 v_2 = O(a^2) = O(\mu^{-2}(t))$$

$$t^2 \lambda^{-\frac{1}{2}}(t) u_1 v_2^4 = O(a^8 \mu^{-6}(t)) = O(\mu^{-2}(t))$$

and we have

$$t^2 \lambda^{-\frac{1}{2}}(t) u_1^k v_2^{5-k} = O(\mu(t)^{-2}) \quad (R \leq 1, 0 \leq k \leq 4) \quad (2.74)$$

By the preceding we gain a factor μ^{-2} for all R, and the decay is at least $\frac{\log R}{R}$ as $R \to \infty$.

Finally by (2.22) and Lemma 2.3 we see that the estimates (2.73) and (2.74) remain valid after one applies $i \partial_t$ or $r \partial_r$, any number of times if $0 \leq r \leq t/2$. Similarly by (2.22) and (2.62) we see that (2.73) and (2.74) remain valid after one applies $i \partial_t$ and $r \partial_r$ no more than twice, if $0 \leq r \leq t$.

2.7. Proof of Proposition 2.1

(iii) Smoothness of u_2 follows from (2.8), (2.21) (where f_j satisfies (2.19), which can be differentiated), and Lemma 2.2 which imply u_0, v_1, v_2 are all in $C^2([0 < t < t_0, 0 \leq r \leq t])$.

To show (2.4), it is sufficient to show that $v_{12} = \sqrt{\lambda(t)} \mu^{-2}(t) O(R)$ for both small and large R. This follows from (2.19) and (2.21) for v_1, and (2.62) for v_2. Similarly (2.6) follows from the fact that $\hat{\partial}_r^k \partial_t^l v_{12} = t^{-k} R^{-l} \sqrt{\lambda(t)} \mu^{-2}(t) O(R)$ by (2.19) (which is clearly differentiable in R), (2.21) and Lemma 2.3. For $k + j \leq 2$ and $0 \leq r \leq t$ we used (2.62) instead of Lemma 2.3.

Finally (2.5) and (2.7) follow from (2.70), where the different parts are estimated in (2.71), (2.72), (2.73), and (2.74), which remain valid after one applies $i \partial_t$ or $r \partial_r$ any number of times if $0 \leq r \leq t/2$, or if they are applied no more than twice and $0 \leq r \leq t$.

(iii) We let

$$\hat{u}_2(t, r) = \begin{cases} u_2(t, r), & \text{if } 0 < t < t_0, 0 \leq r \leq t \\ u_2(t, t) + (r - t) u_2^{(0,1)}(t, t) + \frac{1}{2}(r - t)^2 u_2^{(0,2)}(t, t), & \text{if } 0 < t < t_0, t < r \leq (1 + 2b_1)t \end{cases}$$

where $b_1 > 0$ and $u_2^{(n,m)}(t, r) := \partial_r^n \partial_t^m u_2(t, r)$. Clearly \hat{u}_2 is C^2 in r for fixed t.

```
By direct calculation using (2.6) we have for $0 \leq k + j \leq 2$

$$u_2^{(k,j)}(t,r) = O(r^{-j-1}t^{-k}\lambda^{-1/2}(t))$$

Thus for $t < r \leq (1 + 2b_1)t$ we have

$$\hat{u}_2(t,r) = O(t^{-1}\lambda^{-1/2}(t)); \quad \partial_t\hat{u}_2(t,r) = O(t^{-2}\lambda^{-1/2}(t)) \quad (2.75)$$

$$\partial_t\hat{u}_2(t,r) = O \left( \max_{0 \leq m \leq 1, 0 \leq n \leq 1} \left| (r-t)^n u_2^{(1-m,n+m)}(t,t) \right| + \left| (r-t)^2 \partial_t u_2^{(0,2)}(t,t) \right| \right)$$

where the first term is clearly of order $O(t^{-2}\lambda^{-1/2}(t))$. To estimate the second term, recall that $u_2 = u_1 + \hat{v}_2$ where by direct calculation $u_1^{(k,j)}(t,r) = O(r^{-j-1}t^{-k}\lambda^{-1/2}(t))$ for all $k, j \geq 0$. Thus

$$(r-t)^2 \partial_t u_1^{(0,2)}(t,t) = O(t^{-2}\lambda^{-1/2}(t))$$

Since $a = r/t$, we have

$$v_2^{(0,2)}(t,t) = t^{-2} \partial \hat{v}_2(t,t)$$

This and (2.62) imply

$$\partial_t v_2^{(0,2)}(t,t) = O(t^{-4}\lambda^{-1/2}(t))$$

Therefore

$$\partial_t \hat{u}_2(t,r) = O(t^{-2}\lambda^{-1/2}(t)) \quad (2.76)$$

Now we let $B_1$ be a smooth bump function satisfying

$$B_1(x) = \begin{cases} 1, & \text{if } x < 1 \\ 0, & \text{if } x > 1 + b_1 \end{cases}$$

and we let $u_2(t,r) = \hat{u}_2(t,r)B_1(r/t)$ for $r > t$. Clearly $u_2$ is $C^2$ in $r$ for fixed $t$. By direct calculation using (2.75) and (2.76) we have

$$u_2(t,r) = O(t^{-1}\lambda^{-1/2}(t)); \quad \partial_t u_2(t,r) = O(t^{-2}\lambda^{-1/2}(t)); \quad \partial^2 u_2(t,r) = O(t^{-2}\lambda^{-1/2}(t))$$

Therefore $b_1$ can be chosen small enough to ensure

$$\int_{t<r} u_2^6 \, dx \leq b_1 t^{-3}\lambda^{-3}(t) < \delta/3$$

$$\int_{t<r} (\partial_t u_2)^2 \, dx \leq b_1 t^{-1}\lambda^{-1}(t) < \delta/3$$

$$\int_{t<r} (\partial^2 u_2)^2 \, dx \leq b_1 t^{-1}\lambda^{-1}(t) < \delta/3$$

Thus their sum is less than $\delta$. 
3. Construction of an exact solution

Our aim next is to construct an energy class solution of (2.1) of the form

\[ u = u_2 + \varepsilon \]

in the backward light cone \( r \leq t, \, 0 < t < t_0 \). One immediately infers the equation

\[ \Box \varepsilon + 5u_0^4 \varepsilon = 5(u_0^4 - u_2^4)\varepsilon - N(u_2, \varepsilon) - e_2, \]  

(3.1)

where we have

\[ N(u_2, \varepsilon) = 10u_2^3 \varepsilon^2 + 10u_2^2 \varepsilon^3 + 5u_2 \varepsilon^4 + \varepsilon^5; \]

also, we shall denote by \( e_2 \) an extension of \( e_2 \) in the preceding section beyond the light cone satisfying the same asymptotics as in Proposition 2.1.

Proceeding exactly as in [2], we pass to the variables

\[ \tau = \int_{t_0}^t \lambda(s) \, ds, \quad R = \lambda(t)r, \quad v(\tau, R) = Re(t(\tau), r(\tau)), \]

Writing \[ \kappa(\tau) := \lambda(t(\tau)), \] as well as \[ \beta(\tau) := \frac{\kappa'(\tau)}{\kappa(\tau)}, \]

we get

\[ [D^2 + \beta(\tau)D + L]v = \kappa^{-2}(\tau)\left[ 5(u_0^4 - u_2^4)v + RN(u_2, \frac{\nu}{R}) + Re_2 \right] \]  

(3.2)

where \( L := -\partial^2_R - 5W^4(R) \), and we interpret \( u_2, u_0, e_2 \) as functions of \( \tau, R \). In fact, since it suffices to solve this problem in a dilate of the light cone, we replace it by

\[ [D^2 + \beta(\tau)D + L]v = \kappa^{-2}(\tau)\bar{\chi}(\frac{R}{\nu \tau})\left[ 5(u_0^4 - u_2^4)v + RN(u_2, \frac{\nu}{R}) + Re_2 \right] \]  

(3.3)

for some smooth cutoff \( \bar{\chi} \in C_0^\infty(\mathbb{R}^+) \) with \( \bar{\chi}|_{\nu \leq 1} = 1 \). In fact, the main work consists in solving the linear in-homogeneous problem

\[ [D^2 + \beta(\tau)D + L]v = f, \]

where \( f \) satisfies bounds like \( \kappa^{-2}(\tau)\bar{\chi}(\frac{R}{\nu \tau})Re_2 \). Our approach below is a general framework to solve such problems, applicable to much wider classes of scaling factors \( \lambda(t) \).

---

1We warn the reader that the symbols \( \beta \) and \( \kappa \) have a different meaning here than in Section 2.
3.1. **The distorted Fourier transformation.** Here we freely borrow facts from [11] as well as [2, 9]. We state

Theorem 3.1 (Spectral theory for \( L \)).

- The Schrödinger operator \( L \) is self-adjoint on \( L^2(0, \infty) \) with domain
  \[ \text{dom}(L) = \{ f \in L^2(0, \infty) : f, f' \in AC[0, R] \forall R > 0, \]  
  \[ f(0) = 0, \mathcal{L}f \in L^2(0, \infty) \] 
  \[ \text{and its spectrum is given by } \sigma(L) = \{ \xi_d \} \cup [0, \infty) \text{ where } \xi_d < 0. \] 
  The continuous part of the spectrum is absolutely continuous and the eigenfunction \( \phi(R, \xi_d) \) associated to the eigenvalue \( \xi_d \) is smooth and decays exponentially as \( R \to \infty \).

- The spectral measure \( \mu \) is of the form
  \[ d\mu(\xi) = \frac{\delta_{\xi_d}(\xi)}{||\phi(\cdot, \xi_d)||_{L^2(0, \infty)}^2} + \rho(\xi)d\xi \]
  where \( \delta_{\xi_d} \) denotes the Dirac measure centered at \( \xi_d \) and the function \( \rho \) satisfies \( \rho(\xi) = 0 \) for \( \xi < 0 \) as well as \( \rho(\xi) = \frac{1}{2\pi} |\xi|^{-\frac{1}{2}} [1 + O(\xi^\frac{1}{2})] \) for \( 0 < \xi \leq 1 \) and \( \rho(\xi) = \frac{1}{\sqrt{\pi}} |\xi|^{\frac{1}{2}} [1 + O(\xi^{-\frac{1}{2}})] \) for \( \xi \geq 1 \) where the \( O \)-terms behave like symbols under differentiation.

- There exists a unitary operator \( \mathcal{U} : L^2(0, \infty) \to L^2(\sigma(L), d\mu) \) which diagonalizes \( L \), i.e., \( \mathcal{U}L f(\xi) = \xi \mathcal{U} f(\xi) \) for all \( f \in \text{dom}(L) \). The operator \( \mathcal{U} \) is given explicitly by
  \[ \mathcal{U} f(\xi) = \lim_{b \to \infty} \int_0^b \phi(R, \xi) f(R) dR \]
  where the limit is understood in \( L^2(\sigma(L), d\mu) \). The function \( \phi(\cdot, \xi) \) is smooth and (formally) satisfies \( L\phi(\cdot, \xi) = \xi \phi(\cdot, \xi) \) as well as \( \phi(0, 0) = 0, \phi'(0, 0) = 1 \).

- For \( 0 < \xi \leq 1 \) we have the asymptotics
  \[ \phi(R, \xi) = \phi_0(R) [1 + O(\langle R \rangle^2 \xi)] \]  
  \[ \phi(R, \xi) = \frac{\sqrt{\pi}}{2} e^{i\sqrt{\pi} R} [1 + O(\xi^\frac{1}{2}) + O(\langle R \rangle^{-3} \xi^{-\frac{1}{2}})] \]  
  \[ + \frac{\sqrt{\pi}}{2} e^{-i\sqrt{\pi} R} [1 + O(\xi^\frac{1}{2}) + O(\langle R \rangle^{-3} \xi^{-\frac{1}{2}})] \]
  where all \( O \)-terms behave like symbols under differentiation and
  \[ \phi_0(R) := \frac{R(1 - \frac{1}{3} R^2)}{(1 + \frac{1}{3} R^2)^{3/2}}. \]

\[ ^2 \text{The conclusion for the asymptotics near } \xi = 0 \text{ is not optimal and one can replace } O(\xi^\frac{1}{2}) \text{ by } O(\xi^\frac{1}{3}), \text{ but we will not need this.} \]
In the case $\xi \geq 1$ we have
\[ \phi(R, \xi) = \frac{1}{2\pi} \xi^{-\frac{1}{2}} e^{i \sqrt{\xi} R} [1 + O(\xi^{-\frac{1}{2}} + O(\langle R \rangle^{-3} \xi^{-\frac{1}{2}}))] \]
\[ - \frac{1}{2\pi} \xi^{-\frac{1}{2}} e^{-i \sqrt{\xi} R} [1 + O(\xi^{-\frac{1}{2}} + O(\langle R \rangle^{-3} \xi^{-\frac{1}{2}}))] \]
for all $R \geq 0$ with symbol behavior of all $O$-terms.

- The inverse map $U^{-1} : L^2(\sigma(L), d\mu) \to L^2(0, \infty)$ is given by
\[ U^{-1} f(R) = \frac{\phi(R, \xi_d)}{\|\phi(\cdot, \xi_d)\|_{L^2(0, \infty)}^2} f(\xi_d) + \lim_{b \to \infty} \int_0^b \phi(R, \xi) f(\xi) \rho(\xi) d\xi \]
where the limit is understood in $L^2(0, \infty)$.

For the following it turns out to be more convenient to use a vector-valued version of $U$ which we denote by $F$ and call the “distorted Fourier transform”. Thus, we identify $L^2(\sigma(L), d\mu)$ with $C \times L^2_\rho(0, \infty)$ and define the mapping $F : L^2(0, \infty) \to C \times L^2_\rho(0, \infty)$ by
\[ F f = \left( \begin{array}{c} U f(\xi_d) \\ U f|_{[0, \infty)} \end{array} \right). \]

According to Theorem 3.1 the inverse map $F^{-1} : C \times L^2_\rho(0, \infty) \to L^2(0, \infty)$ is then given by
\[ F^{-1} \left( \begin{array}{c} a \\ f \end{array} \right) = \frac{\phi(R, \xi_d)}{\|\phi(\cdot, \xi_d)\|_{L^2(0, \infty)}^2} a + \lim_{b \to \infty} \int_0^b \phi(R, \xi) f(\xi) \rho(\xi) d\xi. \]

From now on we shall write
\[ v(\tau, R) = x_d(\tau) \phi(R) + \int_0^\infty x(\tau, \xi) \phi(R, \xi) \rho(\xi) d\xi \]
where the functions $x(\tau, \xi)$ are the (distorted) Fourier coefficients associated with $v(\tau, \cdot)$. We write
\[ x(\tau, \xi) := \left( \frac{x_d(\tau)}{x(\tau, \xi)} \right) = F(v)(\tau, \xi), \quad \xi := \left( \begin{array}{c} \xi_d \\ \xi \end{array} \right) \]
Then precisely as in [11], we obtain the relation
\[ \left( \hat{D}^2 + \beta(\tau) \hat{D} + \xi \right) x(\tau, \xi) = R(\tau, \xi) + f(\tau, \xi), \tag{3.4} \]
where we have
\[ R(\tau, \xi) = \left( -4\beta(\tau) \mathcal{K} \hat{x} - \beta^2(\tau) (\mathcal{K}^2 + [\mathcal{A}, \mathcal{K}] + \mathcal{K} + b' \beta^{-2} \mathcal{K}) \hat{x}(\xi) \right) \tag{3.5} \]
with $\beta(\tau) = \frac{\xi(\tau)}{\xi^2(\tau)}$, and
\[ f(\tau, \xi) = F \left( \kappa^{-2}(\tau) \left[ 5(u_{2k-1}^4 - u_0^4)v + RN(u_{2k-1}, v) + Re_2 \right] \right)(\xi) \tag{3.6} \]
as well as the operator

\[ \hat{D} = \partial_\tau + \beta(\tau) \mathcal{A}, \quad \mathcal{A} = \begin{pmatrix} 0 & 0 \\ 0 & \mathcal{A}_c \end{pmatrix} \]

with

\[ \mathcal{A}_c = -2\xi \partial_\xi - \left( \frac{5}{2} + \frac{\rho'(\xi)\xi}{\rho(\xi)} \right) \]

Finally, we observe that the “transference operator” \( \mathcal{K} \) is given by the following type of expression

\[ \mathcal{K} = \begin{pmatrix} \mathcal{K}_{dd} & \mathcal{K}_{dc} \\ \mathcal{K}_{cd} & \mathcal{K}_{cc} \end{pmatrix} \] (3.7)

where the matrix elements are certain non-local Hilbert type operators. Then we use the key observation, already made in [9], that the abstract problem (3.4) with \( \mathcal{R}(\tau, x) = 0 \) can be solved explicitly for the continuous part \( x(\tau, \xi) \). In fact, we have the relation

\[ x(\tau, \xi) = \int_\tau^\infty H_c(\tau, \sigma, \xi) f(\sigma, \frac{\kappa^2(\tau)}{\kappa^2(\sigma)} \xi) d\sigma \] (3.8)

with

\[ H_c(\tau, \sigma, \xi) = \xi^{-\frac{1}{2}} \frac{\kappa^2(\tau)}{\kappa^2(\sigma)} \frac{\rho^\frac{1}{2}(\frac{\kappa^2(\tau)}{\kappa^2(\sigma)} \xi)}{\rho^\frac{1}{2}(\xi)} \sin \left[ \kappa(\tau) \xi \int_\tau^\sigma \kappa^{-1}(u) du \right] \] (3.9)

Furthermore, letting (as in [2])

\[ \hat{\mathcal{D}}_c := \partial_\tau + \beta(\tau) \mathcal{A}_c, \]

one computes from the above parametrix representation that

\[ \hat{\mathcal{D}}_c x(\tau, \xi) = \int_\tau^\infty \hat{H}_c(\tau, \sigma, \xi) f(\sigma, \frac{\kappa^2(\tau)}{\kappa^2(\sigma)} \xi) d\sigma \] (3.10)

with

\[ \hat{H}_c(\tau, \sigma, \xi) = \frac{\kappa^2(\tau)}{\kappa^2(\sigma)} \frac{\rho^\frac{1}{2}(\frac{\kappa^2(\tau)}{\kappa^2(\sigma)} \xi)}{\rho^\frac{1}{2}(\xi)} \cos \left[ \kappa(\tau) \xi \int_\tau^\sigma \kappa^{-1}(u) du \right] \] (3.11)

We can immediately formulate the following

**Lemma 3.2.** Denoting \( \omega_\nu(\tau) := \tau^{1 + \frac{1}{\nu}} \), and letting \( \kappa(\tau) = \lambda(t(\tau)) \) as in the preceding, we have the kernel bounds

\[ |H_c(\tau, \sigma, \xi)| \leq \min\{\omega_\nu(\frac{\tau}{\sigma}) \xi^{-\frac{1}{2}}, \nu \omega_\nu(\frac{\tau}{\sigma})\sigma\} \]

\[ |\hat{H}_c(\tau, \sigma, \xi)| \leq \omega_\nu(\frac{\tau}{\sigma}) \]
Indeed, this is a simple consequence of the fact that
\[ \kappa(\tau) \sim \tau^{1+\frac{1}{2}}. \]
For the discrete part \( x_d(\tau) \) of the solution of (3.4) with \( R(\tau, x) = 0 \), we obtain the implicit equation
\[ x_d(\tau) = \int_{\tau}^{\infty} H_d(\tau, \sigma) f_d(\sigma) d\sigma, \quad H_d(\tau, \sigma) = -\frac{1}{2} |\xi_d|^{-\frac{1}{2}} e^{-|\xi_d| |\tau - \sigma|}, \]
(3.12)
In order to solve the problem (3.4) via a fixed point argument, we shall utilize the functional framework developed in [2]:

\[ \text{Definition 3.1.} \]
For the continuous spectral part \( x(\tau, \xi) \), we shall use the following norms:
\[ \|f\|_X := \left\| (1 \cdot |\cdot|^{-\frac{1}{2}})^{\frac{1}{2}} f \right\|_{L^p(0, \infty)} + \left\| 1 \cdot |\cdot|^{\frac{1}{2}} \tilde{f} \right\|_{L^2(0, \infty)} \]
\[ \|f\|_Y := \left\| f \right\|_{L^p(0, \infty)} + \left\| |\cdot|^{\frac{1}{2}} \tilde{f} \right\|_{L^2(0, \infty)} \]
as well as
\[ \|u\|_{X^\delta} := \sup_{\tau > \tau_0} \tau^\delta \|u(\tau, \cdot)\|_X, \quad \|u\|_{Y^\delta} := \sup_{\tau > \tau_0} \tau^\delta \|u(\tau, \cdot)\|_Y \]
Then for the vector valued function \( \underline{x}(\tau, \xi) \), we put
\[ \|\underline{x}\|_{X^\alpha^\delta} := \sup_{\tau > \tau_0} \tau^\alpha |x_d(\tau)| + \|x(\tau, \cdot)\|_{X^\delta} \]
\[ \|\underline{x}\|_{Y^\alpha^\delta} := \sup_{\tau > \tau_0} \tau^\alpha |x_d(\tau)| + \|x(\tau, \cdot)\|_{Y^\delta} \]
We remark that in the following \( \delta > 0 \) is assumed to be small and \( p > 1 \) is assumed to be large, depending on \( \delta \).

To proceed, we first need to study the linear inhomogeneous problem
\[ \left( \hat{D}^2 + \beta(\tau) \hat{D} + \Delta \right) \underline{x}(\tau, \xi) = f(\tau, \xi) \]
(3.13)
To prepare for this task, we have

\[ \text{Lemma 3.3.} \]
Let \( \kappa(\tau) = \lambda(t(\tau)) \) as in the preceding. Let \( a, b, \gamma \in \mathbb{R} \), \( q \in (1, \infty) \), and
\[ \alpha > 1 + 2 \left( \frac{1}{q} + \max(|a|, |a + b|) \right) (1 + \frac{1}{q}) - \gamma. \]
Suppose further that the operator \( \mathcal{B} \) is given by
\[ \mathcal{B}x(\tau, \xi) = \int_{\tau}^{\infty} B(\tau, \sigma, \xi) x(\sigma, \omega(\tau, \sigma)^2 \xi) d\sigma, \]
where \( \omega(\tau, \sigma) := \kappa(\tau)^{-1}(\sigma) \), and the kernel \( B \) satisfies
\[ |B(\tau, \sigma, \xi)| \lesssim \sigma^{-\gamma} \]
for all $0 < \tau_0 \leq \tau \leq \sigma, \xi \geq 0$. Then we have the bound
\[ \| B_\xi(x, \cdot) \cdot \| \cdot \|^b \|_{L^q(0, \infty)} \leq \tau^{-\alpha - \gamma + 1} \sup_{\sigma > \tau} \| \sigma^a x(\sigma, \alpha^2 \xi) \|_{L^q}. \]

Proof. First, we consider the case $a = b = 0$. By Hölder’s inequality we obtain
\[ |B_\xi(x, \xi)| \leq \left( \int_\tau^\infty \sigma^{-1 - \varepsilon} \, d\sigma \right)^{1/q'} \left( \int_\tau^\infty \sigma^{\delta (1 + \varepsilon - \gamma - \alpha)} \| \sigma^a x(\sigma, \alpha) \|^q \, d\sigma \right)^{1/q} \]
for any $\varepsilon > 0$. This implies
\[ \| B_\xi(x, \cdot) \|_{L^q} \leq \tau^{-\delta} \left( \int_\tau^\infty \sigma^{\delta (1 + \varepsilon - \gamma - \alpha)} \| \sigma^a x(\sigma, \alpha) \|^q \, d\sigma \right)^{1/q} \]
\[ \leq \tau^{-\delta} \left( \sup_{\sigma > \tau} \| \sigma^a x(\sigma, \cdot) \|_{L^q} \right) \left( \int_\tau^\infty \sigma^{\delta (1 + \varepsilon - \gamma - \alpha)} \, d\sigma \right)^{1/q} \]
\[ \leq \tau^{-\alpha - \gamma + 1} \sup_{\sigma > \tau} \| \sigma^a x(\sigma, \cdot) \|_{L^q} \]
provided $q(\frac{1}{q'} - \gamma - \alpha) + 2(1 + \frac{1}{q}) < -1$ and $\varepsilon > 0$ is chosen sufficiently small. The case for general $a, b$ follows immediately by noting that
\[ \| x(\sigma, \alpha^2 \xi) \cdot \| \cdot \|^b \|_{L^q} \leq \omega_c(\xi)^{-2q \max(|a|, |b|)} \| x(\sigma, \cdot) \cdot \| \cdot \|^b \|_{L^q} \]
which entails the integrability condition
\[ q(\frac{1}{q'} - \gamma - \alpha) + 2(1 + \frac{1}{q} \max(|a|, |b|)) (1 + \frac{1}{q}) < -1. \]

We can now solve (3.13) by the following

**Lemma 3.4.** Let $\alpha_d \in \mathbb{R}$ and $\alpha_c > 1 + \frac{3}{4}(1 + \frac{1}{q})$. Then given $f \in Y_{\alpha_d, \alpha_c}$, there exists a solution $x \in X_{\alpha_d, \alpha_c - 1 - 2\delta}$ for (3.13). Denoting this solution by
\[ x = \begin{pmatrix} \mathcal{H}_d f_d \\ \mathcal{H}_c f \end{pmatrix} = : \mathcal{H} f, \]
we have the estimates
\[ \| \mathcal{H} x \|_{X_{\alpha_d, \alpha_c - 1 - 2\delta}} \leq \nu^{2\delta} \| x \|_{Y_{\alpha_d, \alpha_c}} \]
\[ \| \mathcal{D} \mathcal{H} x \|_{Y_{\alpha_d, \alpha_c - 1}} \leq \| x \|_{Y_{\alpha_d, \alpha_c}} \]
where $\delta > 0$ is the parameter in Definition 3.1.

Proof. We can explicitly define the continuous spectral part $x(\tau, \xi)$ via (3.8), (3.9), and the discrete part $x_d(\tau)$ implicitly via (3.12). Combining (3.10), (3.11), Lemma 3.2, as well as Lemma 3.3, we get $\| \mathcal{D} \mathcal{H} x \|_{\alpha_c - 1} \leq \| x \|_{\alpha_c}$. On the other hand, using
\[ |H_c(\tau, \sigma, \xi)| \leq \nu^{2\delta} \omega_c(\xi) \sigma^{2\delta} \xi^{-\frac{1}{2} + \delta} \]
which follows from Lemma 3.2 by interpolation, as well as Lemma 3.3, we have
\[ \| \cdot \|_{L^{\nu}(\tau, \infty)} \lesssim \nu^{20} \tau^{-\alpha_c + 1 + 2\beta} \| x \|_{Y^{\alpha_c}}. \]

Further, Lemma 3.3 gives
\[ \| \cdot \|_{L^2(\tau, \infty)} \lesssim \| \cdot \|_{Y} \lesssim \tau^{-\alpha_c + 1} \| x \|_{Y^{\alpha_c}}. \]

This completes the desired bounds for the continuous part \( x(\tau, \cdot) \). To control the discrete part, we observe that, see (3.12)
\[
\begin{align*}
\sup_{\tau > \tau_0} \int_{\tau}^{\infty} H_d(\tau, \sigma) f(\sigma) d\sigma &\lesssim \sup_{\tau > \tau_0} \tau^{\alpha_d} |f(\tau)|, \\
\sup_{\tau > \tau_0} \int_{\tau}^{\infty} \partial_{\tau} H_d(\tau, \sigma) f(\sigma) d\sigma &\lesssim \sup_{\tau > \tau_0} \tau^{\alpha_d} |f(\tau)|,
\end{align*}
\]
In light of the fact that
\[ \beta_v(\tau) \sim \frac{1}{\tau}, \]
the implicit equation
\[ x_d(\tau) = \int_{\tau}^{\infty} H_d(\tau, \sigma) \left( f_d(\sigma) - \beta_v(\sigma) \partial_{\sigma} x_d(\sigma) \right) d\sigma \]
is then solved via straightforward iteration provided \( \tau > \tau_0 \) with \( \tau_0 \) sufficiently large, and the limit satisfies
\[ \sup_{\tau > \tau_0} \tau^{\alpha_d} |x_d(\tau)| \lesssim \sup_{\tau > \tau_0} \tau^{\alpha_d} |f_d(\tau)|. \]
This completes the proof of the lemma. \( \square \)

3.2. Solving the main equation. Abstractly speaking, Eq. (3.4) is of the form
\[ Lx = x_0 + Ax + F(x) \quad (3.15) \]
where \( x_0 \) is a given element in a Banach space \( X \), \( A \) is a bounded linear operator on \( X \), and \( F \) is a nonlinear mapping from \( X \) to \( X \). Furthermore, the operator \( L \) is linear and invertible with bounded inverse \( H \), in light of Lemma 3.4. The goal is to find a solution \( x \in X \). Compared to Eq. (3.4), this is a slightly simplified model case but it captures the essentials. By applying \( H \), one rewrites Eq. (3.15) as
\[ x = Hx_0 + HAx + HF(x). \quad (3.16) \]
The point is to find a method to solve Eq. (3.16), even if the operator norm of \( HA \) is not small, i.e., if one cannot apply the Banach fixed point theorem directly. The idea is to perform an iteration procedure. This means that one first proves the existence of \( (1 - HA)^{-1} \) which amounts to showing the norm-convergence of the Neumann series
\[ \sum_{n=0}^{\infty} (HA)^n. \]
Thus, one has to consider \( \| (HA)^n \| \) and prove an appropriate bound that makes the Neumann series convergent. The point is, of course, that only very large \( n \) are relevant here and hence, one may exploit a smallness property which only shows up after sufficiently many iterations. This is exactly the idea which is used to solve Volterra equations. Once one has obtained the existence of \((1 - HA)^{-1}\), one rewrites Eq. (3.16) as

\[
x = (1 - HA)^{-1} Hx_0 + (1 - HA)^{-1} HF(x)
\]

and if the nonlinearity \( F \) is suitable, it is possible to solve Eq. (3.17) by a fixed point argument. This is roughly speaking the program we are going to follow in order to solve Eq. (3.4).

### 3.3. Time decay of the inhomogeneous term.

According to the program outlined at the beginning of subsection 3.2, we first focus on the difficult linear terms on the right-hand side of Eq. (3.4). In fact, the linear term with the least decay is the one containing the derivative \( \hat{D}x \) since the other one comes with a prefactor of \( \tau^{-2} \) which is enough to treat it directly with the Banach fixed point theorem. Thus, for the moment we focus on the equation

\[
[\hat{D}^2 + \beta \hat{D} + \xi]_x = e - 2\beta K \hat{D}x
\]

where

\[
e(\tau, \xi) := \kappa(\tau)^{-2} F[|\hat{\chi}(\tau, \cdot)e_2(\tau, \cdot)|](\xi)
\]

is the inhomogeneous term on the right-hand side of Eq. (3.4). The first step, however, is to identify suitable spaces in which we intend to solve Eq. (3.18). It is clear that we have to solve for the pair \((x, \hat{D}x)\) since both terms \( x \) and \( \hat{D}x \) appear on the right-hand side of Eq. (3.4). The estimates in Lemma 3.5 suggest to place \((x, \hat{D}x)\) in \( X^{\alpha_1, \beta_1} \times Y^{\beta_2, \beta_2} \) where the decay rates \( \alpha_j \) and \( \beta_j, j = 1, 2 \), are dictated by the inhomogeneous term \( e \). For the latter we have

**Lemma 3.5.** We have the estimates

\[
|\kappa(\tau)^{-2} U(\cdot|\hat{\chi}(\tau, \cdot)e_2(\tau, \cdot))(\xi_d)| \leq C_\nu \tau^{-3\frac{1}{2}(1+\frac{1}{\nu})+\varepsilon}
\]

\[
|\kappa(\tau)^{-2} U(\cdot|\hat{\chi}(\tau, \cdot)e_2(\tau, \cdot))(\xi)| \leq C_\nu \tau^{-3\frac{1}{2}(1+\frac{1}{\nu})+\varepsilon} \langle \xi \rangle^{-1}
\]

for all \( \tau \geq 1, \xi \geq 0 \) and any fixed \( \varepsilon > 0 \).

**Proof.** According to Proposition 2.1 we have the bound

\[
|\kappa(\tau)^{-2} \hat{\chi}(\tau, R) Re_2(\tau, R)| = |\kappa(\tau)^{-2} \hat{\chi}(\frac{R}{\tau^{\nu}}) Re_2(\frac{\tau^{\nu}}{\kappa(\tau)}, \frac{R}{\kappa(\tau)})|
\]

\[
\leq C_\nu \kappa(\tau)^{\frac{1}{2}} \tau^{-4}(R)^\varepsilon
\]

for some fixed (but arbitrary) \( \varepsilon > 0 \) and with symbol behavior of the derivatives of degree at most two. If \( 0 < \xi < 1 \) or \( \xi = \xi_d \) we have from Theorem
the bound $|\phi(R, \xi)| \leq 1$ for all $R \geq 0$ and thus,
\[
|\kappa(\tau)^{-2}u(\cdot, \xi)\phi(\tau, \cdot)|(\xi)\leq C_v \kappa(\tau)^{-2/3}\tau^{-4} \int_0^{3\tau} |\phi(R, \xi)|(R) dR \leq C_v \tau^{-3+\frac{1}{2}(1+\frac{1}{v})+\epsilon}.
\]
If $\xi \gtrsim 1$ we exploit the oscillatory behavior of $\phi(R, \xi)$ given in Theorem 3.1 and perform one integration by parts to gain an additional factor $\xi^{-\frac{1}{2}}$. This yields the bound
\[
|\kappa(\tau)^{-2}u(\cdot, \xi)\phi(\tau, \cdot)|(\xi) \leq C_v \tau^{-4+\frac{1}{2}(1+\frac{1}{v})+\epsilon} \xi^{-1}
\]
which implies the claim. \[\square\]

**Lemma 3.6.** Let $\alpha, \beta < 3 - \frac{1}{2}(1 + \frac{1}{v})$. Then the function $e$ belongs to the space $Y^{\alpha, \beta}$.

**Proof.** The stated time decay (which implies the conditions on $\alpha$ and $\beta$) is an immediate consequence of Lemma 3.5. Based on the estimate in Lemma 3.5 it therefore suffices to prove that $\langle \cdot \rangle^{-\frac{1}{2}} \in Y^{\alpha, \beta}$. It is clear that $\langle \cdot \rangle^{-\frac{1}{2}} \in L^p(0, \infty)$ for $p$ large and for the $L^2$-based component we distinguish between small and large $\xi$. For small $\xi$ we recall that $\rho(\xi) \approx \xi^{-\frac{1}{2}}$ (Theorem 3.1) which is integrable near 0 and for large $\xi$ we have
\[
|\langle \xi \rangle^{-\frac{1}{2}}\langle \xi \rangle^\frac{1}{2} \rho(\xi)| \leq \langle \xi \rangle^{-\frac{5}{4}}
\]
since $\rho(\xi) \approx \xi^\frac{1}{2}$ for $\xi \geq 1$ again by Theorem 3.1. \[\square\]

Lemma 3.6 shows that $e \in Y^{\frac{3}{2}+\epsilon, \frac{7}{2}+\epsilon}$ for a sufficiently small $\epsilon > 0$ provided $v$ is sufficiently large which we assume from now on. Consequently, Lemma 3.4 yields
\[
H\xi \in X^{\frac{3}{2}+\epsilon, \frac{7}{2}+\epsilon-2\delta}, \quad \hat{\mathcal{D}}H\xi \in Y^{\frac{3}{2}+\epsilon, \frac{7}{2}+\epsilon}
\]
and thus, if we choose $X^{\frac{3}{2}-2\delta, \frac{7}{2}-2\delta} \times Y^{\frac{3}{2}+\epsilon}$ as our solution space, we even obtain smallness for the inhomogeneous term, i.e.,
\[
\|H\xi\|_{X^{\frac{3}{2}-2\delta, \frac{7}{2}-2\delta}} \leq v^{2\delta} \tau^{-\epsilon}, \quad \|\hat{\mathcal{D}}H\xi\|_{Y^{\frac{3}{2}+\epsilon}} \leq \tau^{-\epsilon}.
\]

By applying the operator $H$ followed by $\hat{\mathcal{D}}$ to Eq. (3.18), we obtain
\[
\hat{\mathcal{D}}x = \hat{\mathcal{D}}H\xi - 2\hat{\mathcal{D}}H\beta K\hat{\mathcal{D}}x.
\]
Solving this equation for $\hat{\mathcal{D}}x \in Y^{\frac{3}{2}+\epsilon}$ amounts to proving existence (and boundedness) of the operator $(1 + 2\hat{\mathcal{D}}H\beta K)^{-1}$ on $Y^{\frac{3}{2}+\epsilon}$. As in [11] and [2] we write
\[
\mathcal{K} = \begin{pmatrix}
\mathcal{K}_{dd} & \mathcal{K}_{dc} \\
\mathcal{K}_{cd} & \mathcal{K}_{cc}
\end{pmatrix}
\]
for the matrix components of $\mathcal{K}$. With this notation we have
\[
\hat{D}\mathcal{H}\beta \mathcal{K} = \begin{pmatrix}
\hat{D}_d\mathcal{H}_d & 0 \\
0 & \hat{D}_c \mathcal{H}_c 
\end{pmatrix}
\begin{pmatrix}
\beta \mathcal{K}_{dd} & \beta \mathcal{K}_{dc} \\
\beta \mathcal{K}_{cd} & \beta \mathcal{K}_{cc}
\end{pmatrix}
\] (3.21)
where $\hat{D}_d$ is just $\partial \tau$. We start by inverting the diagonal elements of $1 + 2\hat{D}\mathcal{H}\beta \mathcal{K}$. Since $\mathcal{K}_{dd}$ is a linear map from $\mathbb{C}$ to $\mathbb{C}$, it is just given by a number (to be precise, we have $\mathcal{K}_{dd}a = \frac{3}{2}a$ for all $a \in \mathbb{C}$, see [2]). Furthermore, by Lemma 3.4 we have
\[
|\hat{D}_d\mathcal{H}_d\beta \mathcal{K}_{dd}\mathcal{X}_d(\tau)| \leq \tau^{-1}|\mathcal{X}_d(\tau)| \leq \tau_0^{-1}|\mathcal{X}_d(\tau)|
\]
since $\beta(\tau) \approx \tau^{-1}$. This shows that $(1 + 2\hat{D}_d\mathcal{H}_d\beta \mathcal{K}_{dd})^{-1}$ exists.

3.4. Structure and properties of $\mathcal{K}$. In order to proceed, we need more detailed information on the operator $\mathcal{K}$. The operator $\mathcal{K}$ has been analysed in detail in [11] and [2]. It is easy to see that $\mathcal{K}_{cd} : \mathbb{C} \rightarrow L^2_p(0, \infty)$ is given by
\[
\mathcal{K}_{cd} a (\xi) = \frac{a}{\|\phi(\cdot, \xi_d)\|_{L^2(0, \infty)}^2} \int_0^\infty \phi(R, \xi) [R \partial_R - 1] \phi(R, \xi_d) dR
\]
with $\phi$ from Theorem 3.1. For $\mathcal{K}_{dc}$ and $\mathcal{K}_{cc}$ we recall the following result.

**Theorem 3.7.** The operator $\mathcal{K}_{cc} : L^2_p(0, \infty) \rightarrow L^2_p(0, \infty)$ is given by
\[
\mathcal{K}_{cc} f(\xi) = \int_0^\infty \mathcal{K}_{cc}(\xi, \eta) f(\eta) d\eta
\]
where the kernel $\mathcal{K}_{cc}$ is of the form
\[
\mathcal{K}_{cc}(\xi, \eta) = \frac{\rho(\eta)}{\xi - \eta} F(\xi, \eta)
\]
with a symmetric function $F \in C^2((0, \infty) \times (0, \infty))$. Furthermore, for any $N \in \mathbb{N}$, $F$ satisfies the bounds
\[
|F(\xi, \eta)| \leq C_N \begin{cases}
\xi + \eta & \xi + \eta \leq 1 \\
(\xi + \eta)^{-1}(1 + |\xi^\# - \eta^\#|)^{-N} & \xi + \eta \geq 1
\end{cases}
\]
\[
|\partial_{\xi} F(\xi, \eta) + \partial_{\eta} F(\xi, \eta)| \leq C_N \begin{cases}
1 & \xi + \eta \leq 1 \\
(\xi + \eta)^{-2}(1 + |\xi^\# - \eta^\#|)^{-N} & \xi + \eta \geq 1
\end{cases}
\]
\[
\max_{j+k=2} |\partial_{\xi}^{j} \partial_{\eta}^{k} F(\xi, \eta)| \leq C_N \begin{cases}
(\xi + \eta)^{-\frac{2}{j}} & \xi + \eta \leq 1 \\
(\xi + \eta)^{-2}(1 + |\xi^\# - \eta^\#|)^{-N} & \xi + \eta \geq 1
\end{cases}
\]
Finally, the operator $\mathcal{K}_{dc} : L^2_p(0, \infty) \rightarrow \mathbb{C}$ is of the form
\[
\mathcal{K}_{dc} f = \int_0^\infty \mathcal{K}_{dc}(\xi) f(\xi) \rho(\xi) d\xi
\]
with a smooth and rapidly decreasing function $\mathcal{K}_{dc}$.

**Proof.** See [11], Theorem 5.1. \qed
As a consequence of Theorem 3.7 we have the following mapping properties of $\mathcal{K}_{cc}$ and the commutator $[\mathcal{A}_c, \mathcal{K}_{cc}]$ where we recall that

$$\mathcal{A}_c f(\xi) = -2\xi f'(\xi) - \left(\frac{2}{\xi} + \frac{\xi \rho'(\xi)}{\rho(\xi)}\right)f(\xi).$$

**Proposition 3.8.** We have the bounds

$$\|\mathcal{K}_{cc} f\|_X \lesssim \|f\|_X \quad \|[\mathcal{A}_c, \mathcal{K}_{cc}] f\|_X \lesssim \|f\|_X \quad \|\mathcal{K}_{cc} g\|_Y \lesssim \|g\|_Y \quad \|[\mathcal{A}_c, \mathcal{K}_{cc}] g\|_Y \lesssim \|g\|_Y$$

for all $f \in X$ and $g \in Y$.

**Proof.** This follows from the representation in Theorem 3.7 but requires some harmonic analysis. We refer the reader to [2], Propositions 5.5 and 5.8 for the proof. We remark that the bounds for $[\mathcal{A}_c, \mathcal{K}_{cc}]$ can be obtained in the same fashion as the ones for $\mathcal{K}_{cc}$ by noting that the kernel of $[\mathcal{A}_c, \mathcal{K}_{cc}]$ is of the form

$$\rho(\eta) \hat{F}(\xi, \eta)$$

with

$$\hat{F}(\xi, \eta) = \frac{\eta \rho'(\eta)}{\rho(\eta)} F(\xi, \eta) + [\xi \partial_\xi + \eta \partial_\eta] F(\xi, \eta),$$

see [11], p. 52. □

In what follows it is necessary to split the operator $\mathcal{K}_{cc}$ into a diagonal and an off-diagonal part. Thus, for $n_0 \in \mathbb{N}$ we set

$$K_{cc}^{nd}(\xi, \eta) = \chi \left(n_0 (\xi \eta - 1)\right) K_{cc}(\xi, \eta)$$

where $\chi$ is a standard smooth cut-off with $\chi(x) = 1$ for $|x| \leq 1$ and $\chi(x) = 0$ for $|x| \geq 2$. Furthermore, we denote by $K_{cc}^{d}$ the corresponding operator and write

$$K_{cc}^{nd} := K_{cc} - K_{cc}^{d}$$

for the off-diagonal part. First, we establish a smoothing estimate for the off-diagonal part at small frequencies.

**Lemma 3.9.** With $p$ from Definition 3.1 we have the bounds

$$\|\cdot\|_X \lesssim \|\cdot\|_Y$$

for all $n_0 \in \mathbb{N}, n_0 \geq 100$.

**Proof.** Explicitly, the operator $K_{cc}^{nd}$ is given by

$$K_{cc}^{nd} f(\xi) = \int_0^\infty K_{cc}^{nd}(\xi, \eta) f(\eta) d\eta$$

with

$$K_{cc}^{nd}(\xi, \eta) = \left[1 - \chi \left(n_0 \left(\frac{\xi}{\eta} - 1\right)\right)\right] K_{cc}(\xi, \eta).$$
Note that on the support of $K_{n_0}^{nd}$ we have $|\tilde{\xi} - 1| \geq \frac{1}{n_0}$ and thus, either $\eta \leq \frac{1}{1 + n_0} \xi$ or $\eta \geq \frac{1}{1 - n_0} \xi$. In the former case we obtain

$$\xi - \eta \geq \left( 1 - \frac{1}{1 + n_0} \right) \xi \simeq \frac{1}{n_0} \xi \simeq \frac{1}{n_0} (\xi + \eta)$$

and in the latter, $\eta - \xi \geq \frac{1}{n_0} (\xi + \eta)$. Thus, we have $|\xi - \eta| \geq \frac{1}{n_0} |\xi + \eta|$ and from Theorem 3.7 we obtain the bound $|K_{n_0}^{nd}(\xi, \eta)| \leq n_0 \eta^{-\frac{1}{2}}$ provided $\xi + \eta \leq 1$. If $\xi + \eta \geq 1$ we note that, as before, $|\xi - \eta| \geq n_0^{-\frac{1}{2}} \xi^{\frac{1}{2}}$ and also $|\xi - \eta| \geq n_0^{-\frac{1}{2}} \eta^{\frac{1}{2}}$. Thus, from Theorem 3.7 we obtain the bound $|K_{n_0}^{nd}(\xi, \eta)| \leq n_0^2 \langle \xi \rangle^{-1} \langle \eta \rangle^{-2}$. We conclude that

$$|\tilde{K}(\xi, \eta)| := |\xi^{-\frac{1}{2}} \langle \xi \rangle^{\frac{5}{2}} K_{n_0}^{nd}(\xi, \eta)| \leq n_0^2 \xi^{-\frac{1}{2}} \langle \xi \rangle^{\frac{5}{2}} \langle \xi \rangle^{-1} \eta^{-\frac{1}{2}} \langle \eta \rangle^{\frac{5}{2}}$$

for all $\xi, \eta \geq 0$ and thus,

$$\|\tilde{K}\|_{L_p(0, \infty)} \leq n_0^2$$

which implies

$$\| 1 \cdot \langle \cdot \rangle^{\frac{1}{2}} K_{n_0}^{nd} f \|_{L_p(0, \infty)} \leq n_0^2 \|f\|_{L_p(0, \infty)}.$$
Lemma 3.10. Let $H_n$, $n \in \mathbb{N}$, be given by

$$H_n f(\xi) := \int_0^\infty \frac{\chi(n(\frac{\xi}{\eta} - 1))}{\xi - \eta} f(\eta) d\eta, \quad \xi \geq 0$$

where $\chi$ is a smooth cut-off function satisfying $\chi(x) = 1$ for $|x| \leq 1$ and $\chi(x) = 0$ for $|x| \geq 2$. Then $H_n$ extends to a bounded operator on $L^q(0, \infty)$ for any $q \in (1, \infty)$ and we have

$$\|H_n f\|_{L^q(0, \infty)} \lesssim \|f\|_{L^q(0, \infty)}$$

for all $f \in L^q(0, \infty)$ and all $n \geq 100$.

Proof. We use

$$\chi(n(\frac{\xi}{\eta} - 1)) = 1 + \frac{n(\xi - \eta)}{\eta} \int_0^1 \chi'(n(\frac{\xi}{\eta} - 1)) ds$$

to decompose the kernel according to

$$\frac{\chi(n(\frac{\xi}{\eta} - 1))}{\xi - \eta} = \frac{1}{\xi - \eta} + \frac{n}{\eta} O(1). \quad (3.22)$$

Let $I^n_{jk} := \left[2^{j-1} + \frac{3k-1}{n} 2^{j-1}, 2^j + \frac{3k}{n} 2^{j-1}\right]$ and observe that

$$[2^{j-1}, 2^{j+1}] = \bigcup_{k=1}^n I^n_{jk}.$$ 

Furthermore, set $\Delta_n := \{(\xi, \eta) \in [0, \infty)^2 : \chi(n(\frac{\xi}{\eta} - 1)) \neq 0\}$. Since we have $|\xi - \eta| \leq \frac{2}{n} \eta$ for all $(\xi, \eta) \in \Delta_n$, $\eta \in I^n_{jk}$ implies $\xi \in \tilde{I}^n_{jk}$ for all $(\xi, \eta) \in \Delta_n$ where $\tilde{I}^n_{jk}$ are suitable (overlapping) intervals with $|\tilde{I}^n_{jk}| \approx \frac{2}{n}$ and $[2^{j-2}, 2^{j+2}] = \bigcup_{k=1}^n \tilde{I}^n_{jk}$. As a consequence, we infer

$$\Delta_n \subset \bigcup_{j \in \mathbb{Z}} \bigcup_{k=1}^n \tilde{I}^n_{jk} \times I^n_{jk}$$

for any $n \geq 100$. Thus, we obtain

$$H_n f(\xi) = \frac{1}{2} \sum_{j \in \mathbb{Z}} \sum_{k=1}^n \int_0^\infty \frac{\chi(n(\frac{\xi}{\eta} - 1))}{\xi - \eta} 1^n_{jk}(\eta) f(\eta) d\eta$$

$$= \frac{1}{2} \sum_{j \in \mathbb{Z}} \sum_{k=1}^n 1^n_{jk}(\xi) \int_0^\infty \frac{\chi(n(\frac{\xi}{\eta} - 1))}{\xi - \eta} 1^n_{jk}(\eta) f(\eta) d\eta$$

$$= \frac{1}{2} \sum_{j \in \mathbb{Z}} \sum_{k=1}^n 1^n_{jk}(\xi) H_n(1^n_{jk} f)(\xi).$$
Consequently, it suffices to bound the operator $f \mapsto 1_{jk}^n H_n(1_{jk}^n f)$ on $L^q := L^q(0, \infty)$, uniformly in $n \geq 100$ and $j \in \mathbb{Z}$, because then we can conclude that

$$
\|H_n f\|_{L^q}^q \leq \sum_{j=1}^{n} \sum_{k=1}^{n} \|1_{jk}^n H_n(1_{jk}^n f)\|_{L^q}^q = \sum_{j=1}^{n} \sum_{k=1}^{n} \|1_{jk}^n H_n(1_{jk}^n 1_{jk}^n f)\|_{L^q}^q \leq \sum_{j=1}^{n} \sum_{k=1}^{n} \|1_{jk}^n f\|_{L^q}^q \leq \|f\|_{L^q}^q.
$$

According to Eq. (3.22), the kernel of the operator $f \mapsto 1_{jk}^n H_n(1_{jk}^n f)$ is of the form

$$
1_{jk}^n(\xi)1_{jk}^n(\eta)\frac{\chi(n(\xi,\eta) - 1)}{\xi - \eta} = 1_{jk}^n(\xi)1_{jk}^n(\eta) + n2^{-j}1_{jk}^n(\xi)1_{jk}^n(\eta)O(1).
$$

Thus, we obtain the decomposition

$$
1_{jk}^n H_n(1_{jk}^n f) = \pi 1_{jk}^n H(1_{jk}^n f) + B_{jk}^n f
$$

with the standard Hilbert transform $H$ and the kernel of $B_{jk}^n$ is pointwise bounded by $Cn^{-j}1_{jk}^n(\xi)1_{jk}^n(\eta)$ for some absolute constant $C > 0$. We immediately obtain $\|1_{jk}^n H(1_{jk}^n f)\|_{L^q} \leq \|f\|_{L^q}$ by the $L^q$-boundedness of the Hilbert transform for $q \in (1, \infty)$ and the operator norm of $B_{jk}^n$ is bounded by

$$
\|B_{jk}^n\|_{L^q} \leq n2^{-j} \left( \int_{0}^{\infty} 1_{jk}^n(\xi) d\xi \right)^{1/q} \left( \int_{0}^{\infty} 1_{jk}^n(\eta) d\eta \right)^{1/q'} \leq 1
$$

for all $n \geq 100$, $j \in \mathbb{Z}$ and $k \in \{1, 2, \ldots, n\}$ since $|\xi| \approx |\eta| \approx \frac{2}{n}$.

With this result at our disposal, we can now prove the desired smoothing property of $\mathcal{K}_{n_0}^d$.

**Lemma 3.11.** For any $\epsilon > 0, a, b \in \mathbb{R}$, and $q \in (1, \infty)$ we have the bound

$$
\left\| | \cdot |^{-a} \langle \cdot \rangle^{1-2\epsilon} \mathcal{K}_{n_0}^d f \cdot | \cdot |^{b} \langle \cdot \rangle^{b} \right\|_{L^q(0,\infty)} \leq \|f\|_{L^1(\mathbb{R})} \langle \cdot \rangle^{b} \|_{L^q(0,\infty)}
$$

for all $n_0 \geq 100$.

**Proof.** Consider the operator $\mathcal{J}$ with kernel

$$
\xi^{-\frac{1}{2}+\epsilon} \langle \xi \rangle^{1-2\epsilon} \mathcal{K}_{n_0}^d(\xi, \eta) \eta^{-a} \langle \eta \rangle^{-b}.
$$

In order to prove the assertion it suffices to show that $\mathcal{J}$ extends to an operator on $L^q := L^q(0, \infty)$ for $q \in (1, \infty)$ which is uniformly bounded in $n_0 \geq 100$. According to Theorem 3.7, the kernel of $\mathcal{J}$ can be written in the form

$$
\xi^{-\frac{1}{2}+\epsilon} \langle \xi \rangle^{1-2\epsilon} \mathcal{K}_{n_0}^d(\xi, \eta) \eta^{-a} \langle \eta \rangle^{-b} = \chi(n_0(\xi, \eta) - 1) \frac{G(\xi, \eta)}{\xi - \eta}.
$$
where
\[ G(\xi, \eta) = \frac{\xi^{-1/2-\varepsilon} \xi^{1-2s} \xi^a b \rho(\xi) F(\xi, \eta) \eta^{-a}}{\xi - \eta}. \]

We decompose \( J = J_1 + J_2 \) where
\[ J_1 f(\xi) = \int_0^\infty \chi(n_0(\xi - 1)) \frac{G(n_0, \eta)}{\xi - \eta} f(\eta) d\eta \]
\[ J_2 f(\xi) = \int_0^\infty \chi(n_0(\xi - 1)) \frac{G(\xi, \eta) - G(n_0, \eta)}{\xi - \eta} f(\eta) d\eta. \]

By setting \( g(\eta) := G(n_0, \eta) \) we see that \( J_1 f = H_{n_0}(gf) \) where \( H_{n_0} \) is the truncated Hilbert transform from Lemma 3.10. Note that Theorem 3.7 implies \( \|g\|_{L^\infty(0, \infty)} \leq 1 \) and thus,
\[ \|J_1 f\|_{L^q} = \|H_{n_0}(gf)\|_{L^q} \leq \|gf\|_{L^q} \leq \|f\|_{L^q} \]
for all \( n_0 \geq 100 \) by Lemma 3.10. Consequently, it suffices to consider the operator \( J_2 \).

First, we study the case \( \xi, \eta \leq 4 \). Since
\[ |G(\xi, \eta) - G(n_0, \eta)| \leq |\xi - \eta| \int_0^1 |\partial_1 G(\eta + s(\xi - \eta), \eta)| ds \]
we obtain from Theorem 3.7 the estimate
\[ A_1(\xi, \eta) := 1_{[0, 4]}(\xi) 1_{[0, 4]}(\eta) \chi(n_0(\xi - 1)) \left| \frac{G(\xi, \eta) - G(n_0, \eta)}{\xi - \eta} \right| \]
\[ \leq 1_{[0, 4]}(\xi) 1_{[0, 4]}(\eta) \chi(n_0(\xi - 1)) \eta^{-1+\varepsilon} \]
\[ \leq 1_{[0, 4]}(\xi) 1_{[0, 4]}(\eta) \xi^{1/2-\varepsilon} \eta^{1+\varepsilon} \]
which yields \( \|A_1\|_{L^q L^r} \leq 1 \) for all \( n_0 \geq 100 \) and any \( q \in (1, \infty) \).

It remains to study the case \( \xi, \eta \in \Omega := [0, \infty)^2 \setminus [0, 4]^2 \). Here we further distinguish between \( |\xi - \eta| \leq 1 \) and \( |\xi - \eta| \geq 1 \). In the former case we obtain from Theorem 3.7 the bound
\[ A_2(\xi, \eta) := 1_{[-1, 1]}(\xi - \eta) 1_{\Omega}(\xi, \eta) \chi(n_0(\xi - 1)) \left| \frac{G(\xi, \eta) - G(n_0, \eta)}{\xi - \eta} \right| \]
\[ \leq 1_{[-1, 1]}(\xi - \eta) 1_{\Omega}(\xi, \eta) \eta^{-\varepsilon}. \]

We define \( J_k := [k + 1, k + 3], J_k := [k, k + 4] \) and note that
\[ \Delta = \bigcup_{k=1}^\infty J_k \times J_k \]
where \( \Delta := \{(\xi, \eta) \in \Omega : |\xi - \eta| \leq 1 \} \). Since
\[ 1_{J_k}(\eta) 1_{[-1, 1]}(\xi - \eta) = 1_{J_k}(\xi) 1_{J_k}(\eta) 1_{[-1, 1]}(\xi - \eta) \]
it suffices to consider the kernel \( A_2 \) on \( J_k \times J_k \) (cf. the proof of Lemma 3.10). We obtain \( \|A_2\|_{L^q L^r L^s} \leq 1 \) for all \( k \in \mathbb{N} \) and all \( n_0 \geq 100 \) which settles the case \( |\xi - \eta| \leq 1 \). Finally, if \( |\xi - \eta| \geq 1 \), we define dyadic intervals
of this operator can be made small by choosing $\tau$. More precisely, we have the following result. Let $A_{\beta}(\xi, \eta) := 1_{[1, \infty)}(|\xi - \eta|)1_{I_N}(\xi)1_{I_N}(\eta)\chi(n_0(\xi - 1))\frac{G(\xi, \eta) - G(\eta, \eta)}{\xi - \eta}$, uniformly in $N \in \mathbb{N}$. Note that $1 \leq |\xi - \eta| \leq 2n \leq 2^{N+2}$ on the support of $A_{\beta}$. We further subdivide this interval by $[1, 2^{N+2}] = \bigcup_{j=1}^{N+1} I_j$ and from Theorem 3.7 we obtain the bound

$$|A_{3}(\xi, \eta)| \lesssim 2^{-\nu N} \sum_{j=1}^{N+1} A_{3j}(\xi, \eta) \quad (3.23)$$

where

$$A_{3j}(\xi, \eta) = 1_{I_j}(|\xi - \eta|)1_{I_N}(\xi)1_{I_N}(\eta)\chi(n_0(\xi - 1))2^{-j}.$$

Thanks to the cut-off $1_{I_j}(|\xi - \eta|)$ it suffices to bound $A_{3j}$ on squares $Q_j$ of area $\simeq 2^j$ which yields $\|A_{3j}\|_{L^2(Q_j)} \lesssim 1$ for all $j \in \{1, 2, \ldots, N+1\}$ and any $q \in (1, \infty)$. Consequently, by Eq. (3.23) we obtain

$$\|A_{3}\|_{L^2(I_N)\times I_N(\xi)} \lesssim N2^{-\nu N} \lesssim 1$$

for all $N \in \mathbb{N}$ which finishes the proof. \hfill \Box

### 3.5. Estimates for the off-diagonal part

Recall that our aim is to prove smallness of $(\hat{D}_c^\tau H_\tau^\beta K_\tau^\beta)^n$ for sufficiently large $n$. As suggested by the decomposition $K_{cc} = K_{00}^d + K_{00}^{nd}$ we consider the diagonal and off-diagonal parts separately. In fact, it turns out that for the off-diagonal part it suffices to consider the operator $\hat{D}_c^\tau H_\tau^\beta K_{00}^{nd} \hat{D}_c^\tau H_\tau^\beta$, i.e., $K_{00}^{nd}$ gets “sandwiched” between two copies of $\hat{D}_c^\tau H_\tau^\beta$. Our goal is to show that the norm (on $Y_0^n$) of this operator can be made small by choosing $\tau_0$ in Definition 3.1 large. More precisely, we have the following result.

**Lemma 3.12.** Let $\alpha > \frac{2}{3}(1 + \frac{1}{\beta})$. Then there exists an $\epsilon > 0$ such that

$$\|\hat{D}_c^\tau H_\tau^\beta K_{00}^{nd} \hat{D}_c^\tau H_\tau^\beta\|_{Y_0^n} \lesssim n_0^\alpha \tau_0^{-\epsilon}$$

for all $n_0 \in \mathbb{N}$ where $\tau_0$ is from Definition 3.1.

**Proof.** We have

$$\hat{D}_c^\tau H_\tau^\beta K_{00}^{nd} \hat{D}_c^\tau H_\tau^\beta x(\tau, \xi)$$

$$= \int_\tau^\infty \hat{H}_c(\tau, \sigma_1, \xi) \beta(\sigma_1) \int_0^\infty K_{00}^{nd}(\omega(\tau, \sigma_1)^2 \xi, \eta)$$

$$\times \int_{\sigma_1}^\infty \hat{H}_c(\sigma_1, \sigma_2, \eta) \beta(\sigma_2) x(\sigma_2, \omega(\sigma_1, \sigma_2)^2 \eta) d\sigma_2 d\eta d\sigma_1 \quad (3.24)$$

where $\omega(s_1, s_2) = \kappa(s_1)\kappa^{-1}(s_2)$ and $K_{00}^{nd}$ is the kernel of the operator $K_{00}^{nd}$. We split the integral over $\sigma_1$ in two parts by distinguishing between the cases $\sigma_1 \xi \leq 1$ and $\sigma_1 \xi \geq 1$. In the former case we exploit the smoothing
property from Lemma 3.9 in order to gain a small factor. Thus, we write
\[ y(\sigma, \xi) := \hat{\mathcal{H}}_c \mathcal{H}_c \beta x(\sigma, \xi) \] and note that \( y \in \mathcal{Y}^a \) by Lemma 3.4. We have to estimate
\[ J_1 y(\tau, \xi) := \int_{-\infty}^{\infty} \chi(\sigma \xi) \hat{H}_c(\tau, \sigma, \xi) \beta(\sigma) \mathcal{K}^{nd}_{\mathcal{H}_c} y(\sigma, \omega(\tau, \sigma)^2 \xi) d\sigma. \]
Recall that
\[ \hat{H}_c(\tau, \sigma, \xi) = -\omega(\tau, \sigma)^2 \rho(\xi)^{-\frac{1}{2}} \rho \left( \omega(\tau, \sigma)^2 \xi \right)^{\frac{1}{2}} \cos \left( \kappa(\tau) \xi^2 \int_{\tau}^{-\infty} \kappa^{-1}(u) d\nu \right) \]
and, since \( \omega(\tau, \sigma) \leq 1 \), we obtain from the asymptotics of \( \rho \) in Theorem 3.1 the bound \( |\hat{H}_c(\tau, \sigma, \xi)| \lesssim \omega(\tau, \sigma) \). Consequently, with \( p \) from Definition 3.4, we have
\[ |J_1 y(\tau, \xi)| \leq \int_{-\infty}^{\infty} \chi(\sigma \xi) \omega(\tau, \sigma) \left[ \omega(\tau, \sigma)^2 \xi \right]^{\frac{1}{2}} \left[ \omega(\tau, \sigma)^2 \xi \right]^{-\frac{1}{2}} |\mathcal{K}^{nd}_{\mathcal{H}_c} y(\sigma, \omega(\tau, \sigma)^2 \xi)| d\sigma \]
and Lemmas 3.3, 3.5 yield
\[ \|J_1 y\|_{\mathcal{Y}^a} \leq \tau_0^{-\frac{1}{2}} \sup_{\tau > \tau_0} ||| \cdot |^{-\frac{1}{2}} \mathcal{K}^{nd}_{\mathcal{H}_c} y(\tau, \cdot) |||_{\mathcal{Y}^a} \leq n_0^{1/2} \tau_0^{1/2} \|y\|_{\mathcal{Y}^a}. \]
Thus, by Lemma 3.4, we obtain \( \|J_1 y\|_{\mathcal{Y}^a} \leq n_0^{1/2} \tau_0^{1/2} \|x\|_{\mathcal{Y}^a}. \)

It remains to consider the case \( \sigma_1 \xi \gtrsim 1 \). Unfortunately, this is more complicated and we have to exploit the oscillation of the kernel. After the change of variable \( \eta \to \omega(\sigma_1, \sigma_2)^{-2} \eta \) and an application of Fubini it remains to study the operator
\[ J_2 x(\tau, \xi) := \int_{0}^{\infty} \int_{\tau}^{\infty} \int_{0}^{\infty} \left[ 1 - \chi(\sigma_1 \xi) \right] \hat{H}_c(\tau, \sigma_1, \xi) \hat{H}_c(\sigma_1, \sigma_2, \omega(\sigma_1, \sigma_2)^{-2} \eta) \times \beta(\sigma_1) \beta(\sigma_2) \omega(\sigma_1, \sigma_2)^{-2} \mathcal{K}^{nd}_{\mathcal{H}_c} \left( \omega(\sigma_1)^2 \xi, \omega(\sigma_1, \sigma_2)^{-2} \eta \right) \times \chi(\sigma_2, \eta) d\sigma_2 d\sigma_1 d\eta, \]
cf. Eq. (3.24). We have
\[ \hat{H}_c(\tau, \sigma_1, \xi) \hat{H}_c(\sigma_1, \sigma_2, \omega(\sigma_1, \sigma_2)^{-2} \eta) = A(\tau, \sigma_1, \sigma_2, \xi, \eta) \times \cos \left( \kappa(\tau) \xi^2 \int_{\tau}^{\sigma_1} \kappa^{-1}(u) d\nu \right) \cos \left( \kappa(\sigma_2) \eta^2 \int_{\sigma_1}^{\sigma_2} \kappa^{-1}(u) d\nu \right) \]
where
\[ A(\tau, \sigma_1, \sigma_2, \xi, \eta) = \omega(\tau, \sigma_2)^2 \rho(\xi)^{-\frac{1}{2}} \rho \left( \omega(\tau, \sigma_1)^2 \xi \right)^{\frac{1}{2}} \rho \left( \omega(\sigma_1, \sigma_2)^{-2} \eta \right)^{-\frac{1}{2}} \rho(\eta)^{\frac{1}{2}}. \]
By the asymptotics of \( \rho \) given in Theorem 3.1 and the fact that \( \tau \leq \sigma_1 \leq \sigma_2 \), we obtain the estimate \( |A(\tau, \sigma_1, \sigma_2, \xi, \eta)| \lesssim \omega(\tau, \sigma_2) \) with symbol behavior under differentiation with respect to each variable. Furthermore, by using
the trigonometric identity $2 \cos a \cos b = \cos(a + b) + \cos(a - b)$ we observe that the operator in question decomposes as $\mathcal{J}_2 = \mathcal{A}_+ + \mathcal{A}_-$ where

$$\mathcal{A}_+ x(\tau, \xi) = \frac{1}{2} \int_0^\infty \int_\sigma^\infty \int_\sigma^\infty \left[ 1 - \chi(\sigma_1 \xi) \right] \beta(\sigma_1) \beta(\sigma_2) \omega(\sigma_1, \sigma_2)^2 A(\tau, \sigma_1, \sigma_2, \xi, \eta)$$

$$\times \cos \left( \xi^2 \kappa(\tau) \int_\tau^{\sigma_1} \kappa^{-1}(u) \, du \pm \eta^2 \kappa(\sigma_2) \int_{\sigma_1}^{\sigma_2} \kappa^{-1}(u) \, du \right)$$

$$\times K^{nd}_{\eta_0}(\omega(\tau, \sigma_1)^2 \xi, \omega(\sigma_1, \sigma_2)^{-2} \eta) x(\sigma_2, \eta) \, d\sigma_2 \, d\sigma_1 \, d\eta.$$

It suffices to consider $\mathcal{A}_+$. We abbreviate

$$\mu := \xi^2 \kappa(\tau) \kappa^{-1}(\sigma_1) - \eta^2 \kappa(\sigma_2) \kappa^{-1}(\sigma_1)$$

and since $\partial_{\sigma_1} \mu = -c(\sigma_1)(1 + \frac{1}{\tau}) \sigma_1^{-1} \mu, c(\sigma_1) \in [2^{-1}, 2]$, we obtain the identity

$$\cos(\Omega) = \partial_{\sigma_1} \left( \mu^{-1} \sin(\Omega) \right) - c(\sigma_1)(1 + \frac{1}{\tau}) \sigma_1^{-1} \sin(\Omega),$$

$$\Omega = \xi^2 \kappa(\tau) \int_\tau^{\sigma_1} \kappa^{-1}(u) \, du + \eta^2 \kappa(\sigma_2) \int_{\sigma_1}^{\sigma_2} \kappa^{-1}(u) \, du$$

Then we use the integration by parts formula

$$\int_\tau^\infty \int_{\sigma_1}^\infty \partial_{\sigma_1} f(\sigma_1, \sigma_2) g(\sigma_1, \sigma_2) \, d\sigma_2 \, d\sigma_1 = \int_\tau^\infty f(\sigma_1, \sigma_1) g(\sigma_1, \sigma_1) \, d\sigma_1$$

$$- \int_\tau^\infty f(\tau, \sigma_1) g(\tau, \sigma_1) \, d\sigma_1 - \int_\tau^\infty \int_{\sigma_1}^\infty f(\sigma_1, \sigma_2) \partial_{\sigma_1} g(\sigma_1, \sigma_2) \, d\sigma_2 \, d\sigma_1$$

to conclude that the operator $\mathcal{A}_+$ decomposes into four types of terms, $\mathcal{A}_+ = \sum_{j=1}^4 \mathcal{A}_j$, of the form

$$\mathcal{A}_1 x(\tau, \xi) = \int_\tau^\infty \int_0^\infty \tilde{K}^{nd}_{\eta_0}(\omega(\tau, \sigma_1)^2 \xi, \eta)$$

$$\times \int_{\sigma_1}^\infty O(\sigma_1^{-\frac{1}{2}}) \omega(\tau, \sigma_2) x(\sigma_2, \omega(\sigma_1, \sigma_2)^{-2} \eta) \, d\sigma_2 \, d\eta \, d\sigma_1,$$

$$\mathcal{A}_2 x(\tau, \xi) = \int_\tau^\infty \int_0^\infty O(\sigma_1^{-\frac{1}{2}}) \omega(\tau, \sigma_1) \tilde{K}^{nd}_{\eta_0}(\omega(\tau, \sigma_1)^2 \xi, \eta) x(\sigma_1, \eta) \, d\eta \, d\sigma_1$$

as well as

$$\mathcal{A}_3 x(\tau, \xi) = \int_0^\infty \tilde{K}^{nd}_{\eta_0}(\xi, \eta) \int_\tau^\infty O(\tau^{-\frac{1}{2}}) \omega(\tau, \sigma_1) x(\sigma_1, \omega(\tau, \sigma_1)^{-2} \eta) \, d\sigma_1 \, d\eta,$$

$$\mathcal{A}_4 x(\tau, \xi) = \int_\tau^\infty \int_0^\infty \partial_{\sigma_1} \tilde{K}^{nd}_{\eta_0}(\omega(\tau, \sigma_1)^2 \xi, \omega(\sigma_1, \sigma_2)^{-2} \eta)$$

$$\times \int_{\sigma_1}^\infty O(\sigma_1^{-\frac{1}{2}}) \omega(\tau, \sigma_2) \omega(\sigma_1, \sigma_2)^{-2} \omega(\sigma_1, \sigma_2)^{-2} x(\sigma_2, \eta) \, d\sigma_2 \, d\eta \, d\sigma_1.$$
with
\[ \tilde{K}_{n_0}^{\text{nd}}(\xi, \eta) := \xi^{\frac{1}{2}} \frac{K_{n_0}^{\text{nd}}(\xi, \eta)}{\xi^{\frac{1}{2}} - \eta^{\frac{1}{2}}} \]

where we have used the fact that \( \sigma_1^{-\frac{1}{2}} \leq \xi^{\frac{1}{2}} \) on the support of the cut-off \( 1 - \chi(\sigma_1 \xi) \) and performed the change of variable \( \eta \mapsto \omega(\sigma_1, \sigma_2)^2 \eta \) in the first three terms. Since
\[ \left| \frac{\eta^{\frac{1}{2}}}{\xi^{\frac{1}{2}}} - 1 \right| \geq \frac{1}{n_0} \]
on the support of \( K_{n_0}^{\text{nd}} \) (cf. the proof of Lemma 3.9), we observe that
\[ |\tilde{K}_{n_0}^{\text{nd}}(\xi, \eta)| \lesssim n_0 |K_{n_0}^{\text{nd}}(\xi, \eta)| \]

and thus, Lemmas 3.3 and 3.9 yield \( \|A_j x\|_{Y^\alpha} \lesssim n_0^{\frac{1}{2}} \|x\|_{Y^\alpha} \) for \( j = 1, 2, 3 \). Finally, after the change of variables \( \eta \mapsto \omega(\tau, \sigma_1, \sigma_2)^2 \eta \), the operator \( A_4 \) can be written as
\[ A_4 x(\tau, \xi) = \int_{\tau}^{\infty} \int_{0}^{\infty} [\xi \partial_\xi + \eta \partial_\eta] \tilde{K}_{n_0}^{\text{nd}} \left( \omega(\tau, \sigma_1)^2 \xi, \eta \right) \]
\[ \times \int_{\sigma_1}^{\infty} O(\sigma_1^{-\frac{1}{2}}) \sigma_2^{-1} \omega(\tau, \sigma_2) x(\sigma_2, \omega(\sigma_1, \sigma_2)^2 \eta) d\sigma_2 d\eta d\sigma_1 \]

and since \( \|\xi \partial_\xi + \eta \partial_\eta\| \tilde{K}_{n_0}^{\text{nd}}(\xi, \eta) \| \lesssim n_0^{\frac{1}{2}} |K_{n_0}^{\text{nd}}(\xi, \eta)| \) by Theorem 3.1, we obtain
\[ \|A_4 x\|_{Y^\alpha} \lesssim n_0^{\frac{1}{2}} \|x\|_{Y^\alpha} \]
as before by Lemmas 3.3 and 3.9.

\[ \square \]

3.6. Estimates for the diagonal term. Next, we consider the diagonal operator \( K_{n_0}^d \). We further decompose \( K_{n_0}^d \) in the following way. We set
\[ K_1^d(\xi, \eta) := 1_{[0, \xi)}(\xi) K_{n_0}^d(\xi, \eta) \]
\[ K_2^d(\xi, \eta) := 1_{(\xi, \infty)}(\xi) K_{n_0}^d(\xi, \eta) \]
where \( K_{n_0}^d \) is the kernel of \( K_{n_0}^d \). Following our usual scheme, we denote the operator with kernel \( K_j^d \) by \( K_j^d \), \( j = 1, 3 \). Furthermore, we define \( K_2^d \) by
\[ K_{n_0}^d = \sum_{j=1}^{3} K_j^d \]
which yields the desired decomposition. We bear in mind that the operators \( K_j^d \) depend on \( n_0 \) but suppress this dependence in the notation. Finally, we
and analogously, \( \|K_c\|_{\mathcal{Y}\sigma} \leq e^{1/4} \), uniformly in \( n_0 \geq 100 \). With \( \omega(s) := s^{1+1/4} \) we have

\[
\mathcal{A}_c x(\tau, \sigma) = 2 \int_\tau^\infty \hat{\mathcal{H}}_c(\tau, \sigma, \xi) \beta(\sigma) \mathcal{K}_1^d x(\sigma, \omega(\tau, \sigma)^2 \xi) d\sigma
\]

and \( |\hat{\mathcal{H}}_c(\tau, \sigma, \xi)\beta(\sigma)| \leq \omega(\tau, \sigma)^{-1} \) (cf. the proof of Lemma 3.12). Consequently, Lemma 3.3 yields the stated estimate for \( \mathcal{A}_c \) and the proof for \( \mathcal{C}_c \) is identical.

In order to prove the remaining estimate note first that

\[
\left( \prod_{j=0}^{n_0-1} \mathcal{B}_{\mu_-/e} \right) x(\sigma_0, \eta_0) = \int_{\sigma_0}^{\infty} \cdots \int_{\sigma_{n_0-1}}^{\infty} x(\sigma_{n_0}, \eta_{n_0}) \prod_{j=0}^{n_0-1} \left( 2\hat{\mathcal{H}}_c(\sigma_j, \sigma_{j+1}, \eta_j) \beta(\sigma_{j+1}) \right) \beta(\sigma_j) d\sigma_{n_0} \cdots d\eta_{n_0} d\sigma_1.
\]

(3.25)

Now we are going to exploit the following observation. Consider the expression

\[
K_2^2(\omega(\sigma_0, \sigma_1)^2 \eta_0, \eta_1) K_2^{\mu_-/e}(\omega(\sigma_1, \sigma_2)^2 \eta_1, \eta_2)
\]

(3.26)
which appears in the integrand of \((3.25)\). Assume \(\sigma_0, \sigma_1\) to be fixed and suppose we want to perform the integration with respect to \(\sigma_2\). As \(\sigma_2 \to \infty\) we must have \(\eta_1 \to \infty\) in order to stay in the support of \((3.26)\). However, since \(K^c\) is supported near the diagonal, this also entails \(\omega(\sigma_0, \sigma_1)^2 \eta_0 \to \infty\) and we therefore necessarily leave the support of \((3.26)\). Hence, it is not necessary to integrate all the way up to infinity. In order to quantify this argument we return to Eq. \((3.25)\) and note that on the support of the integrand we have \(\omega(\sigma_j, \sigma_{j+1})^2 \eta_j \geq 1 - \frac{2}{\eta_0}\) for all \(j \in \{0, 1, \ldots, n_0 - 1\}\). This implies

\[
(1 - \frac{2}{\eta_0})^{n_0 - 1} \leq \prod_{j=0}^{n_0 - 2} \omega(\sigma_j, \sigma_{j+1})^2 \frac{\eta_j}{\eta_{j+1}} = \omega(\sigma_0, \sigma_{n_0 - 1})^2 \frac{\eta_0}{\eta_{n_0 - 1}}. \tag{3.27}
\]

On the other hand, we have \(\omega(\sigma_{n_0 - 1}, \sigma_{n_0})^2 \eta_{n_0 - 1} \geq \mu^{-\eta_{n_0 - 1}}\nu^2\) and \(\omega(\sigma_0, \sigma_1)^2 \eta_0 \leq \nu^{-1}\) on the support of the integrand in Eq. \((3.25)\). By inserting these two estimates into \((3.27)\) we find

\[
(1 - \frac{2}{\eta_0})^{n_0 - 1} \leq \omega(\sigma_0, \sigma_{n_0 - 1})^2 \nu^2 \nu^{-1} e^{-2}
\]

which yields \(\sigma_{n_0}^{2(n_0 + \frac{1}{2})} \leq \sigma_1 e^{-2}\) for all \(n_0 \geq 100\). Hence, we obtain the crude bound \(\sigma_{n_0} \leq \sigma_1 e^{-1}\) for all \(n_0 \geq 100\) (provided \(\nu > 0\) is sufficiently small) and, since \(\sigma_0 \leq \sigma_1 \leq \cdots \leq \sigma_{n_0}\), we have in fact \(\sigma_j \leq \sigma_1 e^{-1}\) for all \(j \in \{2, 3, \ldots, n_0\}\).

Consequently, upon writing

\[
\mathcal{J}_\alpha x(\tau, \xi) := 2 \int_\tau^\infty \hat{H}_\tau(\tau, \sigma, \xi) \beta(\sigma) x(\sigma, \omega(\tau, \sigma)^2 \xi) d\sigma
\]

and by defining

\[
y(\tau, \xi) := \prod_{j=1}^{n_0 - 1} \left( \mathcal{J}_\alpha x(\tau, \eta_j) \right)
\]

we obtain

\[
\left( \prod_{j=0}^{n_0 - 1} \mathcal{B}_{\beta^{-1/\nu}} \right) x(\tau, \xi) = \mathcal{B} y(\tau, \xi).
\]

Therefore, it suffices to prove an appropriate bound for \(y(\tau, \xi)\). By H"older’s inequality, Fubini, and the fact that \(|\hat{H}_\tau(\tau, \sigma, \xi)| \leq \omega_\nu(\frac{\xi}{\sigma})\), we infer

\[
||\mathcal{J}_{\alpha^{-1/\nu}} x(\tau, \cdot)||_L^p \leq \tau^{-1} \int_\tau^{\infty} \omega_\nu(\frac{\xi}{\sigma}) \sigma^{-2} ||x(\sigma, \cdot)||_L^p d\sigma \tag{3.28}
\]

and similarly,

\[
||\mathcal{J}_{\alpha^{-1/\nu}} x(\tau, \cdot)||_L^p \leq \tau^{-\delta_0} \int_\tau^{\infty} \omega_\nu(\frac{\xi}{\sigma}) \sigma^{-2} \sigma^{-1-\delta_0} ||x(\sigma, \cdot)||_L^p d\sigma \tag{3.29}
\]
where $\delta_0 > 0$ is chosen such that $\alpha > \frac{3}{4}(1 + \frac{1}{4}) + \delta_0$, i.e., such that the integral converges (cf. the proof of Lemma 3.3). By Lemma 3.11 we have the same bounds for $J^\infty \mathcal{K}_{\frac{e^{-} \tau}}^{\mu, c}$, $j \in \{0, \ldots, n_0 - 1\}$. Consequently, (3.28) implies

$$\|y(\sigma_{1, \cdot})\|^p_{L^p} \leq C^{n_0 - 1} \int_{\sigma_1}^{e^{-} \sigma_1} \int_{\sigma_2}^{e^{-} \sigma_2} \cdots \int_{\sigma_{n_0 - 1}}^{e^{-} \sigma_{n_0 - 1}} \prod_{j=1}^{n_0 - 1} \left( \omega_{\nu(\sigma_{j+1})}^2 \sigma_{j+1}^{-1} \right) \times \|x(\sigma_{n_0})\|^p_{L^p} d\sigma_n d\sigma_{n_0 - 1} \cdots d\sigma_2 \leq C^{n_0 - 1} e^{-(n_0 - 1)} \sigma_1^{-\rho} \|x\|^p_{y^2},$$

where $C > 0$ is some absolute constant. By the same argument one obtains an analogous estimate for $\|y(\sigma_{1, \cdot})\|^p_{L^p}$ and the proof is finished. \qed

Next, we prove the following crucial orthogonality relations.

**Lemma 3.14.** For any sufficiently small $\epsilon > 0$ and $n_0 \geq 4$ we have

$$\mathcal{A}_\epsilon \mathcal{B}_{\mu, c} = 0, \quad \mathcal{B}_{\mu, c} \mathcal{C}_\epsilon = 0$$

as well as

$$\mathcal{A}_\epsilon \mathcal{C}_\epsilon = \mathcal{A}_{\mu, c} \mathcal{C}_\epsilon = \mathcal{A}_\epsilon \mathcal{C}_{\mu, c} = 0$$

where $\mu := 1 + \frac{4}{n_0}$.

**Proof.** Explicitly, we have

$$\mathcal{B}_\epsilon \chi(\tau, \xi) = 2 \int_{-\infty}^{\infty} \hat{h}_c(\tau, \sigma, \xi) \beta(\sigma) \int_{0}^{\infty} K_2^\epsilon(\omega(\tau, \sigma)^2 \xi, \eta_2) x(\sigma, \eta_2) d\eta_2 d\sigma$$

where, as before, $\omega(s_1, s_2) = \kappa(s_1) \kappa^{-1}(s_2)$. Furthermore,

$$\mathcal{K}_1 \mathcal{B}_{\mu, c} \chi(\tau, \xi) = \int_{0}^{\infty} K_1^\epsilon(\xi, \eta_1) \mathcal{B}_{\mu, c} \chi(\tau, \eta_1) d\eta_1$$

and thus, in order to prove $\mathcal{A}_\epsilon \mathcal{B}_{\mu, c} = 0$ it suffices to show that

$$K_1^\epsilon(\xi, \eta_1) K_{2, c}^\epsilon(\omega(\tau, \sigma)^2 \eta_1, \eta_2) = 0$$

(3.30)

for all $\xi, \eta_1, \eta_2 \geq 0$ and $\tau \leq \sigma$. Recall that

$$K_1^\epsilon(\xi, \eta_1) = I_{[0, \epsilon]}(\xi) \chi(n_0(\frac{\xi}{n_0} - 1)) K_{cc}(\xi, \eta_1)$$

where $\chi(x) \neq 0$ only if $|x| \leq 2$ and thus, $K_1^\epsilon(\xi, \eta_1) \neq 0$ only if

$$\eta_1 \leq (1 - \frac{2}{n_0})^{-1} \xi < (1 - \frac{2}{n_0})^{-1} \epsilon.$$  \hspace{1cm} (3.31)

On the other hand, we have $K_{2, c}^\epsilon(\omega(\tau, \sigma)^2 \eta_1, \eta_2) \neq 0$ only if $(1 + \frac{4}{n_0}) \epsilon \leq \omega(\tau, \sigma)^2 \eta_1 \leq \eta_1$ and since $1 + \frac{4}{n_0} \geq (1 - \frac{2}{n_0})^{-1}$ for all $n_0 \geq 4$, this condition is incompatible with (3.31) which proves (3.30).

Similarly, to see that $\mathcal{B}_{\mu, c} \mathcal{C}_\epsilon = 0$, we consider the product kernel

$$K_{2, c}^\epsilon(\xi, \eta_1) K_{2, c}^\epsilon(\omega(\tau, \sigma)^2 \eta_1, \eta_2).$$
The second factor is non-vanishing only if \( \eta_1 > \epsilon^{-1} \) whereas on the support of the first factor we have
\[
\eta_1 \leq (1 - \frac{2}{n_0})^{-1} \xi \leq (1 - \frac{2}{n_0})^{-1} (1 + \frac{1}{n_0})^{-1} \epsilon^{-1}
\]
and \( (1 - \frac{2}{n_0})^{-1} (1 + \frac{1}{n_0})^{-1} \leq 1 \) for all \( n_0 \geq 4 \). This implies the desired \( B_{\mu \epsilon} C_{\epsilon} = 0 \). The remaining assertions are immediate provided \( \epsilon > 0 \) is sufficiently small. □

Now we can show that \( (2 \hat{\partial}_c H_c \beta K_{n_0}^d)^{2n_0} \) has small operator norm on \( Y^\alpha \) provided \( n_0 \) is sufficiently large.

**Lemma 3.15.** Let \( \alpha > \frac{3}{4} (1 + \frac{1}{\nu}) \) and \( \delta_0 > 0 \). Then
\[
\| (2 \hat{\partial}_c H_c \beta K_{n_0}^d)^{2n_0} \|_{Y^\alpha} < \delta_0
\]
provided \( n_0 \in \mathbb{N} \) is sufficiently large.

**Proof.** For brevity we write \( J := 2 \hat{\partial}_c H_c \beta K_{n_0}^d \). We have
\[
J^{2n_0} = (A_{\epsilon} + B_{\epsilon} + C_{\epsilon}) J^{2n_0-1}
= A_{\epsilon} J^{2n_0-1} + B_{\epsilon} J^{2n_0-1} + C_{\epsilon} J^{2n_0-1}
\]
and consider each term separately. Furthermore, we set \( \mu := 1 + \frac{4}{n_0} \). For the first term we note that
\[
A_{\epsilon} J^{2n_0-1} = A_{\epsilon} (A_{\mu \epsilon} + B_{\mu \epsilon} + C_{\mu \epsilon}) J^{2n_0-2} = A_{\epsilon} A_{\mu \epsilon} J^{2n_0-2}
\]
by Lemma 3.14. Thus, inductively we find
\[
A_{\epsilon} J^{2n_0-1} = \prod_{j=0}^{2n_0-1} A_{\mu \epsilon}^{j}
\]
(3.32)
and Lemma 3.13 yields
\[
\| A_{\epsilon} J^{2n_0-1} \|_{Y^\alpha} \leq \left( C_{\mu \epsilon}^{2n_0} \right)^{2n_0}.
\]
For the second term we obtain
\[
B_{\epsilon} J^{2n_0-1} = B_{\epsilon} (A_{\mu^{-1} \epsilon} + B_{\mu^{-1} \epsilon} + C_{\mu^{-1} \epsilon}) J^{n_0-2}
= B_{\epsilon} A_{\mu^{-1} \epsilon} J^{2n_0-2} + B_{\epsilon} B_{\mu^{-1} \epsilon} J^{2n_0-2}
= B_{\epsilon} \prod_{j=0}^{2n_0-2} A_{\mu^{-1} \epsilon}^{j} + B_{\epsilon} B_{\mu^{-1} \epsilon} J^{2n_0-2}
\]
by Lemma 3.14 and Eq. (3.32). Inductively we see that this is a sum of \( 2n_0 \) terms which consist of products of consecutive \( B \)'s and consecutive \( A \)'s.
We thus may write $B_c J^{2n_0-1} = S_1 + S_2$ where $S_1$ contains all the terms with at most $n_0$ $B$'s. From Lemma 3.13 we obtain the bounds

$$\|S_1\|_y \leq \left( C_{\mu} \tau e^{\frac{1}{t}} \right)^{n_0}, \quad \|S_2\|_y \leq \left[ \frac{C_{n_0} e^{-n_0}}{n_0!} \right]^\frac{1}{2}$$

provided $n_0$ is sufficiently large. Finally, we have

$$C_c J^{2n_0-1} = C_c A_c J^{2n_0-2} + C_c B_c J^{2n_0-2} + C_c^2 J^{2n_0-2}$$

and thus, by the exact same token as before we obtain a decomposition $C_c J^{2n_0-1} = S_3 + S_4$ with the bounds

$$\|S_3\|_y \leq \left( C_{\mu} \tau e^{\frac{1}{t}} \right)^{n_0}, \quad \|S_4\|_y \leq \left[ \frac{C_{n_0} e^{-n_0}}{n_0!} \right]^\frac{1}{2}$$

for sufficiently large $n_0$. Hence, by first choosing $\epsilon > 0$ sufficiently small and then $n_0$ sufficiently large, the claim follows. \hfill \Box

Now we can conclude the existence of $(1 + 2 \hat{D}_c H_c \beta K_{cc})^{-1}$.

**Corollary 3.16.** If $\alpha > \frac{3}{4}(1 + \frac{1}{t})$ then the operator $1 + 2 \hat{D}_c H_c \beta K_{cc}$ has a bounded inverse on $Y^a$.

**Proof.** For brevity we write $J := 2 \hat{D}_c H_c \beta K_{cc}$ and decompose

$$J^{2n_0} = (2 \hat{D}_c H_c \beta K_{cc}^d + 2 \hat{D}_c H_c \beta K_{cc}^d)^{2n_0}$$

where $S$ consists of $2^{2n_0} - 1$ terms, each of which containing the operator $\hat{D}_c H_c \beta K_{cc}^d \hat{D}_c H_c \beta$. Hence, by first choosing $n_0$ sufficiently large and then $\tau_0$ sufficiently large (depending on $n_0$), we obtain from Lemmas 3.12 and 3.15 the bound

$$\|J^{2n_0}\|_y < 1.$$  

This implies

$$\sum_{n=0}^{\infty} \|J^n\|_y = \sum_{k=0}^{\infty} \sum_{\ell=0}^{2^{2n_0}-1} \|J^{2n_0k+\ell}\|_y \leq \sum_{k=0}^{\infty} \|J^{2n_0}\|_y^k \leq 1$$

and the claim follows. \hfill \Box

**3.7. The inverse of $1 + 2 \hat{D} H \beta K$.** Finally, we consider the matrix operator $1 + 2 \hat{D} H \beta K$ which explicitly reads

$$1 + 2 \hat{D} H \beta K = \begin{pmatrix} 1 + 2 \hat{D}_d H_d \beta K_{dd} & 2 \hat{D}_d H_d \beta K_{dc} \\ 2 \hat{D}_c H_c \beta K_{cd} & 1 + 2 \hat{D}_c H_c \beta K_{cc} \end{pmatrix},$$

cf. Eq. (3.21).

**Lemma 3.17.** Let $\alpha_c > \frac{3}{4}(1 + \frac{1}{t})$ and $\alpha_c \leq \alpha_d < \alpha_c + 1$. Then the operator $1 + 2 \hat{D} H \beta K$ has a bounded inverse on $Y^{a_d,ac}$. 

Proof. For brevity we write
\[ J_{dd} := 1 + 2 \tilde{H}_d \mathcal{H}_d \beta K_{dd} \quad J_{dc} := 2 \tilde{H}_d \mathcal{H}_d \beta K_{dc} \]
\[ J_{cd} := 2 \tilde{H}_c \mathcal{H}_c \beta K_{cd} \quad J_{cc} := 1 + 2 \tilde{H}_c \mathcal{H}_c \beta K_{cc}. \]
From Corollary 3.16 and the comment following Eq. (3.21) we know that \( \operatorname{diag}(J_{dd}, J_{cc})^{-1} = \operatorname{diag}(J_{dd}^{-1}, J_{cc}^{-1}) \) exists as a bounded operator on \( \mathcal{Y}^{\alpha_d, \alpha_c} \). Consequently, the equation
\[
\begin{pmatrix}
J_{dd} & J_{dc} \\
J_{cd} & J_{cc}
\end{pmatrix}
\begin{pmatrix}
x_d \\
x
\end{pmatrix}
= \begin{pmatrix} y_d \\ y \end{pmatrix}
\]
implies
\[
(1 - J_{dd}^{-1} J_{dc} J_{cc}^{-1} J_{cd}) x_d = J_{dd}^{-1} (y_d - J_{dc} J_{cc}^{-1} y) \]
\[
(1 - J_{cc}^{-1} J_{cd} J_{cc}^{-1} J_{dc}) x = J_{cc}^{-1} (y - J_{cd} J_{dd}^{-1} y_d)
\]
and it suffices to prove smallness of \( J_{dc} \). From Theorem 3.7 and Lemma 3.4 we obtain
\[
|J_{dc} x(\tau)| = 2 |\tilde{H}_d \mathcal{H}_d \beta K_{dc} x(\tau)| \leq \tau^{-\alpha_c} \sup_{\tau > \tau_0} \|x(\tau, \cdot)\|_{\mathcal{Y}}
\]
which yields
\[
\sup_{\tau > \tau_0} \tau^{\alpha_d} |J_{dc} x(\tau)| \leq \tau_0^{\alpha_d - \alpha_c - 1} \|x\|_{\mathcal{Y}^{\alpha_c}}
\]
and we obtain smallness by choosing \( \tau_0 \) sufficiently large since \( \alpha_d - \alpha_c - 1 < 0 \) by assumption. \( \square \)

3.8. The inverse of \( 1 + 2 H \beta K \tilde{D} \). For the following it is also necessary to invert the operator \( 1 + 2 H \beta K \tilde{D} \). As before, we first consider the difficult continuous component \( \mathcal{H}_c \beta K_c \tilde{D}_c \) which is explicitly given by
\[
\mathcal{H}_c \beta K_c \tilde{D}_c x(\tau, \xi) = \int_{\tau}^{\infty} H_c(\tau, \sigma, \xi) \beta(\sigma) K_c \tilde{D}_c x(\sigma, \omega(\tau, \sigma) \xi) d\sigma
\]
\[
= \int_{\tau}^{\infty} H_c(\tau, \sigma, \xi) \beta(\sigma) \int_{0}^{\infty} K_c(\omega(\tau, \sigma) \xi, \eta) \tilde{D}_c x(\sigma, \eta) d\eta d\sigma
\]
(3.33)
with \( \omega(s_1, s_2) = \kappa(s_1)^{-1}(s_2) \). Now recall that
\[
\tilde{D}_c x(\tau, \xi) = \partial_1 x(\tau, \xi) + \beta(\tau) \left[-2 \xi \partial_2 x(\tau, \xi) - \left(\frac{\xi}{\tau} + \frac{\xi \rho'(\xi)}{\rho(\xi)}\right) x(\tau, \xi)\right]
\]
and
\[
\tilde{D}_c x(\tau, \xi) = \kappa(\tau)^{\frac{\xi}{\tau}} \rho(\xi)^{-\frac{1}{2}} \left[\partial_\tau - 2 \beta(\tau) \xi \partial_\xi\right] \left[\kappa(\tau)^{-\frac{\xi}{\tau}} \rho(\xi)^{\frac{1}{2}} x(\tau, \xi)\right]
\]
where
\[
\beta(\tau) = \frac{\kappa'(\tau)}{\kappa(\tau)} \sim \tau^{-1}.
\]
Hence, if we set \( y(\tau, \xi) := \kappa(\tau)^{-\frac{\xi}{\tau}} \rho(\xi) x(\tau, \xi) \) we may write
\[
\tilde{D}_c x(\tau, \xi) = \kappa(\tau)^{\frac{\xi}{\tau}} \rho(\xi)^{-\frac{1}{2}} \tilde{D}_c y(\tau, \xi)
\]
(3.34)
where \( \mathcal{D}_c y(\tau, \xi) := \partial_1 y(\tau, \xi) - 2\beta(\tau)\partial_2 y(\tau, \xi) \). Now observe that
\[
\mathcal{D}_c y(\sigma, \omega(\tau, \sigma)^2 \eta) = \partial_\sigma y(\sigma, \omega(\tau, \sigma)^2 \eta)
\]
since \( \partial_\sigma \omega(\tau, \sigma)^2 = -2\beta(\sigma)\omega(\tau, \sigma)^2 \). Thus, from the definition of \( y \) and Eq. (3.34) we infer the identity
\[
\mathcal{D}_c x(\sigma, \omega(\tau, \sigma)^2 \eta) = \kappa(\sigma)^{\frac{5}{2}} \rho \left( \omega(\tau, \sigma)^2 \eta \right)^{-\frac{1}{2}} \times \partial_\sigma \left[ \kappa(\sigma)^{-\frac{5}{2}} \rho \left( \omega(\tau, \sigma)^2 \eta \right)^{\frac{1}{2}} x(\sigma, \omega(\tau, \sigma)^2 \eta) \right].
\] (3.35)

Consequently, after the change of variable \( \eta \mapsto \omega(\tau, \sigma)^2 \eta \), Eq. (3.33) can be rewritten as
\[
\mathcal{H}_c \beta \mathcal{K}_{cc} \mathcal{D}_c x(\tau, \xi) = \int_0^\infty \int_0^\infty H_c(\tau, \sigma, \xi) \beta(\sigma)\omega(\tau, \sigma)^2 K_{cc}(\omega(\tau, \sigma)^2 \xi, \omega(\tau, \sigma)^2 \eta) \times \kappa(\sigma)^{\frac{5}{2}} \rho \left( \omega(\tau, \sigma)^2 \eta \right)^{-\frac{1}{2}} \partial_\sigma \left[ \kappa(\sigma)^{-\frac{5}{2}} \rho \left( \omega(\tau, \sigma)^2 \eta \right)^{\frac{1}{2}} x(\sigma, \omega(\tau, \sigma)^2 \eta) \right] d\eta d\sigma.
\] (3.36)

**Lemma 3.18.** Let \( \alpha > 1 + \frac{3}{4}(1 + \frac{1}{\gamma}) \). Then the operator \( 1 + 2\mathcal{H}_c \beta \mathcal{K}_{cc} \mathcal{D}_c \) has a bounded inverse on \( \mathcal{X}^\alpha \).

**Proof.** Performing an integration by parts with respect to \( \sigma \) in Eq. (3.36) and noting that
\[
\partial_\sigma \left[ \xi^\frac{5}{2} \sin \left( \xi^\frac{5}{2} \kappa(\tau) \int_\tau^\sigma \kappa^{-1}(u) du \right) \right] = \omega(\tau, \sigma) \cos \left( \xi^\frac{5}{2} \kappa(\tau) \int_\tau^\sigma \kappa^{-1}(u) du \right)
\]
we obtain the decomposition \( \mathcal{H}_c \beta \mathcal{K}_{cc} \mathcal{D}_c = \mathcal{A}_1 + \mathcal{A}_2 \) where
\[
\mathcal{A}_1 x(\tau, \xi) = -\int_\tau^\infty \omega(\tau, \sigma) \mathcal{H}_c(\tau, \sigma, \xi) \beta(\sigma) \mathcal{K}_{cc} x(\sigma, \omega(\tau, \sigma)^2 \xi) d\sigma
\]
and
\[
\mathcal{A}_2 x(\tau, \xi) = \int_\tau^\infty H_c(\tau, \sigma, \xi) O(\sigma^{-2}) \mathcal{K}_{cc} x(\sigma, \omega(\tau, \sigma)^2 \xi) d\sigma.
\]
The kernel of the operator \( \mathcal{K}_{cc} \) consists of a linear combination of \( \sigma \)-derivatives of \( K_{cc}(\omega(\tau, \sigma)^2 \xi, \omega(\tau, \sigma)^2 \eta) \) and is therefore of the same type as the kernel of the commutator \([\mathcal{A}_c, \mathcal{K}_{cc}]\) (cf. the proof of Proposition 3.8). In particular, \( \mathcal{K}_{cc} \) maps the space \( X \) to \( Y \) (Proposition 3.8) and Lemma 3.4 immediately yields
\[
||\mathcal{A}_2 x||_{\mathcal{X}^\alpha} \lesssim \nu^{2\beta} \tau_0^{-1+2\beta} ||x||_{\mathcal{X}^\alpha}.
\]
Consequently, smallness can be achieved by choosing \( \tau_0 \) sufficiently large (depending on \( \nu \)). The operator \( \mathcal{A}_1 \), on the other hand, is of the same type as \( \mathcal{D}_c \mathcal{H}_c \beta \mathcal{K}_{cc} \) but this time viewed as a map from \( \mathcal{X}^\alpha \) to \( \mathcal{X}^\alpha \). However, this does not make any difference since the crucial Lemmas 3.3, 3.9 and 3.11 are valid for the space \( \mathcal{X}^\alpha \) (respectively \( X \)) as well. Note carefully that the stronger requirement \( \alpha > 1 + \frac{11}{4}(1 + \frac{1}{\gamma}) \) in Lemma 3.3 is exactly compensated by
the additional factor $\omega(\tau, \sigma)$ in $A_1$. Hence, the operator $A_1$ can be treated in the exact same fashion as $\hat{D}_c^* H_c^0 K_{cc}$ and in particular, Lemmas 3.12 and 3.15 hold accordingly for $A_1$ on $X^\alpha$. □

As in the case of Lemma 3.17, Lemma 3.18 implies the invertibility of the matrix operator $1 + 2H^0 \beta^0 K^0 \hat{D}$.

Lemma 3.19. Let $\alpha_c > \frac{3}{4}(1 + \frac{1}{\nu})$ and $\alpha_c \leq \alpha_d < \alpha_c + 1$. Then the operator $1 + 2H^0 \beta^0 K^0 \hat{D}$ has a bounded inverse on $X^{\alpha_d, \alpha_c}$.

Proof. The proof is completely analogous to the proof of Lemma 3.17 and therefore omitted. □

3.9. Solution of the main equation. Now we are ready to solve the main equation (3.4). By setting $N := \sum_{j=1}^{5} N_j$ and $\hat{K} := K^2 + [A, K] + K + \beta^0 \hat{K}$ we rewrite Eq. (3.4) as

$$[\hat{D}^2 + \beta^1 \hat{D} + \xi]x = \xi + N(x) - 2\beta^0 \hat{D} \hat{K} x - \beta^2 \hat{K} x$$

(3.37)

where $g(\tau, \xi) = \kappa(\tau)^{-2} \mathcal{F}[\eta(\tau, \cdot)e_2(\tau, \cdot)](\xi)$. By applying $H$ we find that Eq. (3.4) is equivalent to

$$x = \Phi(x) := (1 + 2H^0 \beta^0 K^0 \hat{D})^{-1} H [\xi + N(x) - \beta^2 \hat{K} x]$$

(3.38)

We claim that Eq. (3.38) has a solution $(x, \hat{D} x) \in X^{\frac{4}{4} - 2\delta, \frac{4}{4} - 2\delta} \times Y^{\frac{4}{4}, \frac{4}{4}}$ with $\delta$ from Definition 3.1. In order to prove this we have to recall some mapping properties from [2].

Proposition 3.20. We have the estimate

$$\|N(x) - N(y)\|_{Y} \lesssim \|x - y\|_{X^{\frac{4}{4} - 2\delta, \frac{4}{4} - 2\delta}}$$

for all $x, y$ in the unit ball in $X^{\frac{4}{4} - 2\delta, \frac{4}{4} - 2\delta}$.

Proof. This follows by inspection of the proofs of the corresponding results in [2], in particular Lemmas 4.4 – 4.10. Note also that the loss of $\tau^{\frac{1}{4}}$ discussed in Remark 4.8 in [2] does not occur in our case since $\kappa(\tau)^{-2}$ is bounded for all $\tau \geq \tau_0$ (unlike the corresponding $\lambda(\tau)^{-2}$ in [2]). In fact, as in [2] one proves that the nonlinearity maps the space $X$ to $Y$ and for the time decay one gains at least $\tau^{-1(\frac{4}{4} - 2\delta)}$ (from the quadratic part $N_2$, all other contributions are even better; the linear part $N_1$ yields a gain of $\tau^{-2}$, cf. Lemma 4.5 in [2]). Since $\delta > 0$ is assumed to be small, the stated bound follows. □

Another result from [2] which we require concerns the mapping properties of $K$ and $\hat{K}$.
Proposition 3.21. The operators $\mathcal{K}$ and $\hat{\mathcal{K}}$ satisfy the bounds
\[
\|\mathcal{K}(a, f)\|_{C^X} \lesssim \|(a, f)\|_{C^X}
\]
\[
\|\mathcal{K}(a, f)\|_{C^X} \lesssim \|(a, f)\|_{C^X}
\]
\[
\|\hat{\mathcal{K}}(a, f)\|_{C^Y} \lesssim \|(a, f)\|_{C^X}.
\]

Proof. This follows from Corollaries 5.7 and 5.10 in [2]. □

Now we can prove the existence of a solution to Eq. (3.38).

Theorem 3.22. The function $\Phi$ as defined in Eq. (3.38) maps the closed unit ball of $\chi_{\frac{4}{3} - 2\delta, \frac{4}{3} - 2\delta}$ to itself and is contractive. As a consequence, there exists a unique solution $x$ of Eq. (3.38) in the closed unit ball of $\chi_{\frac{4}{3} - 2\delta, \frac{4}{3} - 2\delta}$.

Proof. From Lemma 3.4 and Proposition 3.20 we infer
\[
\|H\mathcal{N}(\mathcal{N}(x) - \mathcal{N}(y))\|_{\chi_{\frac{4}{3} - 2\delta, \frac{4}{3} - 2\delta}} \lesssim \tau_0 \|x - y\|_{\chi_{\frac{4}{3} - 2\delta, \frac{4}{3} - 2\delta}}
\]
for all $x, y$ in the unit ball in $\chi_{\frac{4}{3} - 2\delta, \frac{4}{3} - 2\delta}$ and some $\delta > 0$. Thus, in view of Lemma 3.19 and the contraction mapping principle it suffices to prove smallness of the remaining terms in the appropriate spaces. In the discussion following Lemma 3.6 we have already noted that
\[
\|H\hat{\mathcal{K}}x\|_{\chi_{\frac{4}{3} - 2\delta, \frac{4}{3} - 2\delta}} \lesssim \nu^{2\delta} \tau_0^{-\epsilon}
\]
for some $\epsilon > 0$. Furthermore, we have
\[
\|H\beta^2\hat{\mathcal{K}}x\|_{\chi_{\frac{4}{3} - 2\delta, \frac{4}{3} - 2\delta}} \lesssim \nu^{2\delta} \tau_0^{-1 + 2\delta} \|x\|_{\chi_{\frac{4}{3} - 2\delta, \frac{4}{3} - 2\delta}}
\]
by Lemma 3.4 and Proposition 3.21. □

Finally, we consider the derivative $\hat{\mathcal{D}}x$.

Corollary 3.23. Let $x$ be the solution from Theorem 3.22. Then $\hat{\mathcal{D}}x$ belongs to the closed unit ball of $y_{\frac{3}{4}, \frac{1}{4}}$.

Proof. The claim follows by noting that Eq. (3.37) implies
\[
\hat{\mathcal{D}}x = (1 + 2\hat{\mathcal{D}}\mathcal{H}\beta^2\mathcal{K})^{-1}\hat{\mathcal{D}}\mathcal{H}[\mathcal{N}(x) - \beta^2\hat{\mathcal{K}}x]
\]
and by Propositions 3.20, 3.21 as well as Lemmas 3.6, 3.4, 3.17 we see that $\hat{\mathcal{D}}x$ belongs to the unit ball of $y_{\frac{3}{4}, \frac{1}{4}}$. □

In light of Lemma 4.3 in [2], we infer that
\[
\epsilon(\tau, R) := R^{-1}\left[x_d(\tau)\phi_d(R) + \int_0^\infty x(\tau, \xi)\phi(R, \xi)\rho(\xi) d\xi\right]
\]
satisfies $(\epsilon(\tau, \cdot), \epsilon(\tau, \cdot)) \in H^{\frac{3}{2}} \times H^{\frac{1}{4}}$, with norm vanishing as $\tau \to +\infty$. We have thus proved
Theorem 3.24. Let $\lambda(t)$ be as in (1.5). Then the equation (2.1) admits a solution $u(t, r)$ of the form
\[
u(t, r) = \lambda^{\frac{1}{2}}(t)W(\lambda(t)r) + \varepsilon(t, r), \quad t \in (0, t_0),
\]
with $(\varepsilon(t, \cdot), \varepsilon_t(t, \cdot)) \in H^\frac{3}{4} \times H^\frac{1}{4}$. Given $\delta > 0$, one may arrange
\[
\|(\varepsilon, \varepsilon_t)\|_{(H^\frac{1}{4}, L^2)(r \geq t)} < \delta.
\]
Proof. This follows from Theorem 3.22 as in [11] by exploiting energy conservation and smallness of energy outside the light cone.

References

[1] P. Bizoń, T. Chmaj, Z. Tabor On blowup for semilinear wave equations with a focusing nonlinearity. Nonlinearity 17 (2004), no. 6, 2187–2201.
[2] R. Donninger, J. Krieger Nonscattering solutions and blow up at infinity for the critical wave equation. preprint, arXiv: 1201.3258v1, to appear in Math. Ann.
[3] T. Duyckaerts, C. Kenig, F. Merle Universality of blow-up profile for small radial type II blow-up solutions of energy-critical wave equation. J. Eur. Math. Soc., no. 3, 13 (2011), 533–599.
[4] T. Duyckaerts, C. Kenig, F. Merle Universality of the blow-up profile for small type II blow-up solutions of energy-critical wave equation: the non-radial case. J. Eur. Math. Soc. (JEMS) 14 (2012), no. 5, 1389–1454.
[5] T. Duyckaerts, C. Kenig, F. Merle Profiles of bounded radial solutions of the focusing, energy-critical wave equation. preprint, arXiv:1201.4986, to appear in GAFA.
[6] T. Duyckaerts, C. Kenig, F. Merle Classification of radial solutions of the focusing, energy-critical wave equation. preprint, arXiv:1204.0031.
[7] M. Hillairet, P. Raphael Smooth type II blow up solutions to the four dimensional energy critical wave equation. preprint, arXiv:1010.1768.
[8] J. Krieger, W. Schlag On the focusing critical semi-linear wave equation. Amer. J. Math. 129 (2007), no. 3, 843–913.
[9] J. Krieger, W. Schlag, Full range of blow up exponents for the quintic wave equation in three dimensions. Preprint 2012.
[10] J. Krieger, W. Schlag, D. Tataru Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math. 171 (2008), no. 3, 543–615.
[11] J. Krieger, W. Schlag, D. Tataru Slow blow-up solutions for the $H^1(\mathbb{R}^3)$ critical focusing semilinear wave equation. Duke Math. J., no. 1, 147 (2009), 1–53.
[12] J. Krieger, W. Schlag, D. Tataru Renormalization and blow up for the critical Yang-Mills problem. Adv. Math. 221 (2009), no. 5, 1445–1521.
[13] P. Raphaël, I. Rodnianski Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems. Publ. Math. Inst. Hautes Études Sci. 115 (2012), 1–122.