A State-of-the-Art Review of Laser Welding of Polymers — Part I: Welding Parameters

This paper reviews the influence of different processing parameters, including laser power, scanning speed, standoff distance, and clamping pressure

BY N. KUMAR, N. KUMAR, AND A. BANDYOPADHYAY

ABSTRACT

Polymers are widely used in automotive parts and fields like mechatronics and biomedical engineering because of their excellent properties, such as high durability and light weight. Welding of polymers has grown to be an important field of research due to its relevance among products of everyday life. Through transmission laser welding (TTLW) has been frequently selected by the contemporary researchers in the field of welding as it is relatively modern and more efficient than other welding processes. This paper reviews the influence of different processing parameters, including laser power, scanning speed, standoff distance, and clamping pressure. The present article is expected to provide the reader with a comprehensive understanding of TTLW and research on the aforementioned four welding parameters in TTLW. The significance of finite element modeling, a few simulation studies, different optimization approaches, morphological characteristics, and other behaviors of laser welded polymers will be included in the next part of the review.

KEYWORDS

• Polymers • Laser Welding • Optimization • Morphology • Finite Element Modeling

Introduction

The polymer is known to be an important engineering material due to several reasons. The combination of a wide range of properties like toughness, good strength-to-weight ratio, noncorrosive, good chemical resistance, moisture resistance, low thermal and electrical conductivity, ease of fabrication into complicated shapes, and so on are unattainable from any other materials. In addition, more desirable properties can be achieved by incorporating various compound-
Simultaneous Laser Welding. In this type of welding, heating and welding of the entire joint are done at the same time. Multiple lasers are designed into arrays using multiple fiber optic cables, and the beam itself is formed in the shape of the joint. This method has an advantage of faster welds. But the complexity involved in designing the arrangement with multiple laser tools results in higher costs.

Quasi-Simultaneous Laser Welding (QSLW). In this type of welding, the laser beam is fed into a mirror system, which will facilitate it to trace the joint multiple times rapidly. Since the joint is heated repeatedly at faster pace, the heating is almost simultaneous.

Hybrid Laser Welding. In this method, a halogen lamp is added to the contour welding in which the parts will be provided with extra heat. This will facilitate preheating and also stress relieving of the joining parts to allow a better gap filling.

Modes of Laser Welding (Ref. 5)

Conduction Mode. In this mode, the heat required for fusion is conducted from the surface with a beam of low energy density. The weld nugget formed is smooth and wide with a low depth of penetration.

Transition Mode. The beam in this method has a medium power density and produces more penetration than conduction mode. This mode is almost exclusively used by a pulsed Nd:YAG laser for many seam and spot welding applications.

Keyhole or Penetration Mode. In this mode, a high peak power density beam is used, which produces a narrow and deep hole in the part by melting the material. The hole gets filled with molten metal during the weld. With the aspect ratio higher than 1.5, this method is used for thick job parts.

The schematic heat transmission profiles for the three above mentioned welding modes can be seen in Fig. 1. The relative amount of heat propagation is proportional to the size of the arrow in the corresponding direction.

Transmission Welding by Incremental Scanning Technique (TWIST). This mode of welding is used to optimize the heat distribution throughout the weld zone to prevent the material damages occurring at the focal spot. The energy is provided using overlapping oscillations of the laser beam moving along the weld contour (Ref. 39).

The current study focuses on through transmission laser welding (TTLW), also referred to as laser transmission welding (LTW), a high-energy-density joining process. Initially, it was used to join molded thermoplastic articles or films. Nowadays, it has become an established process for welding polymer products, including composites (Refs. 2–4). They are widely used in industries like automotive, microelectronics, aerospace, medical, packaging, optoelectronics, microsystems, and so forth (Ref. 5). Welding of different materials having varying thicknesses and configurations is also possible using this technique (Ref. 6).

Through an industrial perspective, the key advantages of TTLW are reproducibility of the process without wear and tear of the tool combined with increased productivity and better quality. It is a noncontact, flexible, and easily controllable process with almost no contamination (Ref. 7). With the use of lasers, narrow and localized heat zones can be created. However, there are various investigations still going on in this field (Ref. 8).

The TTLW process is widely used with varying types of lasers for joining plastic parts (Ref. 9). A CO₂ laser produces an infrared (IR) light beam with wavelength bands at 10.6 μm (Ref. 10). These lasers are restricted to welding of thin films (micrometers to 1 mm) (Ref. 11), whereas the Nd:YAG laser and diode lasers are suitable for welding of thick parts due to the high transmission of polymers in the near IR field (Ref. 12). Diode lasers are the most widely used lasers in industries due to their compactness, modular setup, high energy efficiency, and relatively low cost per watt of photon energy (Refs. 13–16). The difficulty in joining plastic parts can be overcome using this innovative type of laser (Refs. 17–21). Apart from some research publications, little information is available in the field of TTLW of polymers. Although many experiments, process optimizations (Refs. 19, 22–43), modelings (Refs. 44–83) and analyses emphasizing morphology (Refs. 71–85), performance evaluations, etc., have been carried out, there are certain lapses observed during the literature survey.

Process Overview and Important Parameters of Transmission Welding

Extensive studies have been done in the process overview of laser welding of polymers (Refs. 12, 17–23, 24–114). The process overview is summarized in this section along with the important process parameters.
Process Overview of Through Transmission Laser Welding

The most basic configuration for TTLW of polymers is an overlap joint assembled by a transparent polymer workmaterial placed on the top of an absorbing polymer — Fig. 3 (Refs. 17, 19, 22, 23). The laser beam is transmitted through the upper transparent part and is converted into heat by the absorbing lower part (Ref. 25). Both the parts are to be clamped together during the process. Due to this clamping force, the two surfaces come in intimate contact with each other, and heat is conducted from the absorbing lower part to the transmissive part. This allows both parts to melt and create a joint only where the laser beam is directed. Nearly all thermoplastics can be welded using this technique. Special additives/pigments also allow TTLW of two opaque materials as well as two transparent workpieces (Refs. 85, 88, 90–93). To determine whether two polymers are weldable (i.e., weld compatible), weldability charts are available for six selected materials by Juhl et al. (Ref. 18). TTLW has various advantages as compared to conventional techniques, such as ultrasonic welding, hot plate welding, and adhesion. While these techniques have their own significance, each has limitations either related to the process or the materials besides dedicated tooling requirements. In terms of running costs, electrical efficiency of diode lasers is greater than 30% as compared to typical levels for CO₂ (10%) and Nd:YAG (4%) (Ref. 21).

The present study is primarily divided into three sections that are essential to formulate a complete working understanding of TTLW. The first section deals with the most significant process parameters of the TTLW, namely laser power, scanning speed, standoff distance, and clamping pressure. Each parameter is analyzed with respect to its effects on the weld quality. Weld quality is basically described through various output parameters, namely joint strength, weld geometry, heat-affected zone (HAZ), etc. The relationships between these aspects are rather complex and not proportional to each other. In addition, the quality of a weld is not dependent on one single parameter. Instead, it is the combined effect of all the output parameters to deliver the performance of the joint to the extent it is designed for.

Important Parameters of Through Transmission Laser Welding

It is clearly observed in various studies of TTLW of polymers (Refs. 12–114) that the main influencing factors are laser power, scanning speed, spot radius, standoff distance, clamping pressure, frequency, energy density, and more. In this subsection, the major parameters of TTLW have been discussed in brief.

Laser Power

The laser power is the main source of heat in TTLW (Ref. 114). In general, higher power allows greater travel speeds for welding and faster welds required higher power. The weld width increases with laser power (Refs. 23–27, 52). During through transmission laser (diode) welding of transparent acrylics to opaque ones (thickness = 4 mm), it is observed that joint strength increases with laser power (19–24 W) (Ref. 22). A similar result for TTLW of white thermoplastics to polycarbonate (PC), in terms of breaking load, and polyamide, in terms of maximum load, has been achieved by Mamuschkin et al. (Ref. 108) and Chen et al. (Ref. 113), respectively. It is also found from through transmission laser (Nd: YVO₄) welding of transparent acrylic (thickness = 0.5 mm) and transparent PC (thickness = 0.5 mm) that weld width increases and breaking load decreases with the laser power (7.6–11.6 W) (Ref. 23). The results of laser welding of acrylonitrile butadiene styrene (ABS) and PC-based polymers using a continuous wave diode laser with a laser power between 6 and 8 W, as well as a scanning speed of 1500, 3000, and 4500 mm/min, concluded that the weld width decreases as the total heat input decreases by increasing the scanning speed or lowering the input power. While no regular trend has been obtained between heat input and average shear strength (Ref. 24), it is observed during diode laser welding of natural and black (containing 0.2 wt-% carbon black as color pigment) acrylic plaques of dimensions 80 * 35 * 4 mm each that weld width and lap-shear strength increase with laser power (Ref. 25). Tao et al. (Ref. 123) obtained a maximum shear strength of 2052N with an optimum power of 700 W. They concluded that the optimum power resulted in a large interfacial joining area with no decomposition. It can be inferred from their observations that an increase in power results in an increased joining area up to a certain extent, and further increase in power results in decomposition, which in turn reduces the joint strength.

It is also found from the perturbation plot that the joint strength and weld width increase with the laser power in laser transmission joining of PC (thickness = 1 mm) while laser power has a nonsignificant effect on joint cost (Ref. 27). The penetration depth against laser power has been calculated for polypropylene (PP) and high-density and low-density polyethylene. It has been concluded that penetration depth increases with laser power for all types of polymers (Ref. 50). The results of TTLW of polyethylene terephthalate (PET) and PP showed that weld width and depth in absorbing PP increase with laser power (Ref. 52). The works of Chen et al. (Ref. 58) and Coelho et al. (Ref. 59) show that the weld strength of TTLW of polymers varies with the energy density. They have concluded that there is no regular trend between energy density and weld strength. Dwivedi and Sharma (Ref. 34) noticed that the joint strength of a
PET and 316 stainless steel weld increases with the increase of laser power. This is because in the laser transmission joining process, heat input increases with the laser power resulting in an increased weld seam width. The higher the weld width, the higher the melting joint area will be (Ref. 105), and, consequently, the joint strength. Literature by Ilie et al. (Ref. 61) reveals that the failure force of diode-laser-welded ABS first increases then decreases with laser power and, hence, is the trend for the joint strength concerning the line energy in the diode TTLW process (Refs. 106, 107, 112). This is because the heat induced to work materials increases until the line energy reaches a threshold value, which results in improving the joint strength. Above the threshold limit of line energy, the heat input to the material gets excessive, leading to the material burning and partial decomposition and, hence, lowering the joint strength. Ghasemi et al. (Ref. 105) developed a model that simply explains the effects of various process parameters on meltdown characteristics in QSLW. They found that an increase in power reduces induction time and overshoot and, therefore, produces higher meltdown when the number of passes is kept constant. Devrient et al. (Ref. 111) found that with an increase in the laser power, the cross section of the HAZ gets bigger and becomes more elliptical or lenticular in shape (losing the symmetry to the joining plane).

Choi et al. (Ref. 124) investigated the effect of laser power on the adhesion between a graphene layer and the PC surface. Later, they also studied the effect of bending on the capacitance of the laser irradiated supercapacitors.

Scanning Speed

Scanning speed is one of the important parameters that increases the productivity of the welding process. In addition, weld width, joint strength, joint cost, and depth of penetration are affected by the welding speed (Refs. 22, 26–29, 48, 50, 52, 51, 61, 123). At low scanning speeds, a higher irradiation time is produced, which results in overheating and degradation of the polymers and, consequently, a lower joint strength. However, increasing the welding speed above threshold value results in a lower irradiation time (Ref. 112), thus causing a low heat input and incomplete joint penetration (Ref. 105), which decreases the joint strength (Ref. 22). During TTLW of polymers, it has been concluded that the velocity has a negative effect on the joint strength (Refs. 22, 27, 28), while the weld width and joint cost decrease with the welding speed. The velocity has a significant effect on the joint cost. The productivity rate can be increased by increasing velocity with acceptable joint strength and joint width (Ref. 27).

Experiments of carbon fiber reinforced thermoplastic (CFRTP)/stainless steel laser direct joining have been carried out by Jiao et al. (Ref. 28). They have concluded that the joining speed has a great effect on the thermal defect zone size and the joint strength. The weld soundness of polymers depends on several factors like the nonisothermal crystallization, the germs growth rate, and the dimensions of the HAZ induced by recrystallization. Increasing the welding speed caused reduction in the maximum temperature, consequently resulting in a faster cooling rate and vice versa (Ref. 61). During the welding process, the polymer is heated up to the temperature range of crystallization that is between the glass-transition temperature and the melting temperature. Crystallinity is strongly dependent on the heating/cooling rates of the polymers (Ref. 48). Casalino and Ghorbel (Ref. 50) investigated the effect of welding speed on the keyhole depth of CO₂ laser welding of PP in butt and lap joint configurations of 4 mm thickness. They observed the keyhole depth decreases with the welding speed due to a decrease in the line energy. The depth-to-width (D/W) ratio of the molten pool has a significant influence on the shear strength of TTLW of PET and PP. The weld width and depth increase with lower welding speed. However, the shear strength gradually increases first and then rapidly decreases with the increase of the D/W ratio (Ref. 52). Transmission laser welding of 0.5-mm-thick PET plate using TWIST mode and conventional contour welding mode was investigated by Wang et al. (Ref. 109). They have found that the welding speed has a negative effect on shear strength in TWIST mode, while there was a small change in the shear strength values of the weld seams obtained through conventional contour welding. This is because, in conventional contour welding, the effect of crystallization is counteracting the diffusion at a lower welding speed, while the sharp decrease in the melted and fused area decreases the shear strength in TWIST mode (Ref. 39). In the case of QS welding, when compensated with the number of passes, an increase in scanning speed was observed to reduce total weld time and in turn reduce total meltdown (Ref. 123).

Standoff Distance

Kumar et al. (Ref. 19) studied the influence of standoff distance (30–34 mm) on diode laser TTLW of acrylics. They found that with an increase in the standoff distance, weld width and joint strength decreases. It may indicate that the laser spot diameter decreases with increasing standoff distance and the weld width becomes narrower. Due to the decrease in weld width, a lesser amount of material is fused. Further, heat conduction between the materials is insufficient (Ref. 106). Thus, joint strength is decreased. In the work of Acharjee et al. (Ref. 22), diode laser TTLW of acrylics was conducted at varying standoff distances (6–15 mm). They found that joint strength increases with an increase in the focal distance up to 9 mm, and then it starts to decrease as the focal distance increases beyond this point. This is because the beam spot area was controlled by varying the focal distance of the beam. It can be observed from the perturbation plot in Ref. 25 that the weld-seam width varies positively with the standoff distance. Increasing standoff distance increases the laser beam spot size at the weld interface, which results in spreading the beam energy onto a wide area. Consequently, the base material of the weld zone being melted leads to an increase in weld-seam width. In the work of Wang et al. (Ref. 26), a statistical technique was applied to correlate the standoff distance and output variables, such as maximum temperature at the weld interface (Tₘₚ), the maximum temperature at the top surface of the transparent PET (Tₘₚ), weld width (WW), weld depth in the transparent PET (DT), etc. Also, the model was validated with the confirmatory tests. Wang et al. (Ref. 52) studied the effect of standoff distance on the depth of penetration of TTLW of PET and PP. It has been concluded that molten depths in-
crease as standoff distance decreases. This is because a decrease in standoff distance leads to an increase in localized laser energy density and also the molten depths.

Clamping Pressure

Clamping pressure is required to decrease the opening between two polymer plates/sheets, because heat conduction between the two plates is more important in the TTLW process. With an increase in the clamping pressure, the weld width increases (Ref. 27). This may be due to an increase in effectiveness of the intimate contact between the two plates. Kumar et al. (Ref. 19) found that clamping pressure has the most influencing effect on the weld width but no significant effect on joint strength or the joint cost of TTLW of PC, as mentioned by Wang et al. (Ref. 27). The effect of clamping pressure (0–0.8 MPa) on the joint strength of fiber laser welding of CFRTP and stainless steel was studied by Jiao et al. (Ref. 28). It was found that the polyphenylene sulfide (PPS) matrix melted adequately when the clamping pressure was in the range of 0.1–0.2 MPa. The melted PPS squeezed out from the CFRTP/stainless steel interface, and the melted PPS for bonding reduced when the clamping pressure was greater than 0.2 MPa. Consequently, the joint strength decreased slowly when the clamping pressure was greater than 0.2 MPa, and the highest shear stress was obtained at the clamping pressure of 0.15 MPa. A similar trend was obtained in the studies presented by Huang et al. (Ref. 106) and Liu et al. (Ref. 107), where the joint strength first increases and then decreases with the increase of clamping pressure in the diode TTLW process. The response surface plot for the failure force as a function of laser power (10–20 W) and clamping pressure (0.4–0.55 MPa) indicated that the optimal zone has to be searched toward low laser power and high pressure (Ref. 61). The meltdown rate did not change with pressure. However, the total meltdown increased with pressure (Rebs. 105, 112) in TTLW using a T-shaped test assembly. It is possible to form faultless welds using a dual clamping device by the use of proper welding parameters and, therefore, prevent the risk of downtime or poor weld seam quality due to contaminated clamping devices or improper clamped joining partners (Ref. 110). Clamping pressure was also observed to reduce induction time in QS welding (Ref. 123).

Summary

The basic concept and the technical aspects of the TTLW process have been overviewed. Different variants of TTLW processes have been briefly discussed. Four welding parameters — namely power, scanning speed, standoff distance, and clamping pressure — were chosen as the most significant for the present study and have been reviewed.

References

1. Klotzbuecher, T., Letschert, M., Braune, T., Drees, K. S., and Doll, T. 2006. Diode laser welding for packaging of transparent micro-structured polymer chips in laser-based micropackaging. International Society for Optics and Photonics, 610704.
2. Aden, M., Mamuschkin, V., and Olovinsky, A. 2015. Influence of carbon black and indium tin oxide absorber particles on laser transmission welding. Optics & Laser Technology 69: 87–91.
3. Sapuan, S. M., Haniffah, W. H., Al-Oqla, F. M., Nukman, Y., Hoque, M. E., and Sanyang, M. 2016. Effects of reinforcing elements on the performance of laser transmission welding process in polymer composites: A systematic review. International Journal of Performability Engineering. DOI: 10.23940/lpe.16.6.p535.mag
4. Kumar, N., Mukherjee, M., and Bandyopadhyay, A. 2017. Comparative study of pulsed Nd: YAG laser welding of AISI 304 and AISI 316 stainless steels. Optics and Laser Technology 88: 24–39.
5. Grewell, D., and Benatar, A. 2007. Welding of plastics: Fundamentals and new developments. International Polymer Processing 22: 43–60.
6. Coelho, J. P., Abreu, M. A., and Pires, M. C. 2000. High-speed laser welding of plastic films. Optics and Lasers in Engineering 34: 385–395.
7. Sari, F., Hoffmann, W. M., Haberstroh, E., and Poprawe, R. 2008. Applications of laser transmission processes for the joining of plastics, silicon and glass micro parts. Microsystems Technologies 14: 1879–1886.
8. Kaillas, S. V. 2009. Material Science. NPTEL online courses. nptel.ac.in/courses/112/108/121081850. Accessed January 10, 2020.
9. Reindl, S. 2013. Diode lasers used in plastic welding and selective laser soldering—applications and products. Physics Procedia 41: 234–240.
10. Hilton, P. A., Jones, I. A., and Sallavanti, R. 2000. Laser welding of fabrics using infrared absorbing dyes. ASM International Conference on Joining of Advanced and Specialty Materials III: 9–12.
11. Chen, M. 2009. Gap bridging in laser transmission welding of thermoplastics. Dissertation. University of Minnesota.
12. Visco, A., Scolaro, C., Quattrocchi, A., and Montanini, R. 2013. Response to fatigue stress of biomedical grade polyethylene joints welded by a diode laser. Journal of the Mechanical Behavior of Biomedical Materials 86: 390–396.
13. Ghorbel, E., Casalino, G., and Abed, S. 2009. Laser diode transmission welding of polypropylene: Geometrical and microstructure characterisation of weld. Materials & Design 30: 2745–2751.
14. Kurosaki, Y., and Satoh, K. 2010. A fiber laser welding of plastics assisted by transparent solid heat sink to prevent the surface thermal damages. Physics Procedia 5: 173–181.
15. Atanasov, P. A. 1995. Laser welding of plastics: Theory and experiments. Optical Engineering 34: 2976–2981.
16. Kocheny, S. A. 2002. Three approaches in utilizing high power diode laser to join thermoplastics. SPE ANTEC.
17. Juhl, T. B., Christiansen, J. C., and Jensen, E. A. 2013. Mechanical testing of polystyrene/polystyrene laser welds. Polymer Testing 32: 475–481.
18. Juhl, T. B., Bach, D., Larson, R. G., Christiansen, J. C., and Jensen, E. A. 2013. Predicting laser weldability of dissimilar polymers. Polymer 54: 3891–3897.
19. Kumar, N., Rudrapati, R., and Pal, P. K. 2014. Multi-objective optimisation in through laser transmission welding of thermoplastics using grey-based Taguchi method. Procedia Materials Science 5: 2178–2187.
20. Nakamura, H., and Masaki, T. 2003. Plastics welding with diode laser. Journal of the Japan Welding Society 72: 189–92.
21. Bryden, B. G. 2004. Welding of plastics with high power laser diodes. Industrial Robot: An International Journal 31: 30–33.
22. Acherjee, B., Kuar, A. S., Mitra, S., and Misra, D. 2000. Selection of process parameters for optimising the weld strength in laser transmission welding of acrylics. Journal of Engineering Manufacture 224: 1529–1536.
mization of pulsed Nd:YVO4 through transmission laser welding of transparent acrylic and polycarbonate. *Materials Today: Proceedings* 5: 5235–5243.
24. Shin, H. M., and Choi, H. W. 2014. Design of energy optimisation for laser polymer joining process. *International Journal of Advanced Manufacturing Technology* 75: 1569–1576.
25. Acherjee, B., Misra, D., Bose, D., and Venkadeshwaran, K. 2009. Prediction of weld strength and seam width for laser transmission welding of thermoplastic using response surface methodology. *Optics and Laser Technology* 41: 956–967.
26. Wang, X., Chen, H., Liu, H., Li, P., Yan, Z., Huang, C., Zhao, Z., and Gu, Y. 2013. Simulation and optimisation of continuous laser transmission welding between PET and titanium through FEM, RSM, GA and experiments. *Optics and Lasers in Engineering* 51: 1245–1254.
27. Wang, X., Zhang, C., Wang, K., Li, P., Hu, Y., Wang, K., and Liu, H. 2012. Multi-objective optimisation of laser transmission joining of thermoplastics. *Optics and Laser Technology* 44: 2393–2402.
28. Jiao, J., Xu, Z., Wang, Q., Sheng, L., and Zhang, W. 2018. CFRTP and stainless steel laser joining: Thermal defects analysis and joining parameters optimisation. *Optics and Laser Technology* 103: 170–176.
29. Katsiropoulos, C. H. V., Moraitis, G. A., Labes, G. N., and Pantelakis, S. P. G. 2009. Optimisation of laser welding process for thermoplastic composite materials with regard to component quality and cost. *Plastics, Rubber and Composites* 38: 153–161.
30. Rodriguez-Vidal, E., Quintana, I., Etxarri, J., Azkorbebeitia, U., Otaduy, D., Gonzalez, F., and Moreno, F. 2012. Optical design and development of a fiber coupled high-power diode laser system for laser transmission welding of plastics. *Optical Engineering* 51: 124301-1 to 124301-9.
31. Mazumdar, S. K., and Hoa, S. V. 1995. Application of Taguchi method for process enhancement of on-line consolidation technique. *Composites* 26: 669–673.
32. Amanat, N., Chaminade, C., Grace, J., James, N. L., and McKenzie, D. R. 2011. Optimal process parameters for thermoplastic polyetheretherketone joints fabricated using transmission laser welding and Lumogen® IR absorptive pigment. *Journal of Laser Applications* 23: 012003.
33. Labes, G. N., Moraitis, G. A., and Katsiropoulos, C. V. 2010. Optimization of laser transmission welding process for thermoplastic composite parts using thermo-mechanical simulation. *Journal of Composite Materials* 44: 113–130.
34. Dwivedi, S. P., and Sharma, S. 2014. Optimization on laser transmission joining process parameters on joint strength of PET and 316L stainless steel joint using response surface methodology. *Journal of Engineering Article ID 197060: 1–9.
35. Wang, X., Zhang, C., Li, P., Wang, K., Hu, Y., Zhang, P., and Liu, H. 2012. Modeling and optimization of joint quality for laser transmission joint of thermoplastic using an artificial neural network and a genetic algorithm. *Optics and Lasers in Engineering* 50: 1522–1532.
36. Coman, G., and Bahrim, G. 2011. Optimization of xylanase production by Streptomyces sp. P12-137 using response surface methodology and central composite design. *Annals of Microbiology* 61: 773–779.
37. Demirel, M., and Kayan, B. 2012. Application of response surface methodology and central composite design for the optimisation of textile dye degradation by wet air oxidation. *International Journal of Industrial Chemistry* 24: 1–10.
38. Acherjee, B., Mondal, S., Tudu, B., and Misra, D. 2011. Application of artificial neural network for predicting welding quality in laser transmission welding of thermoplastics. *Applied Soft Computing* 11: 2548–2555.
39. Boglea, A., Olowinsky, A., and Gillner, A. 2007. Fibre laser welding for packaging of disposable polymere microfluidic-

Biochips. *Applied Surface Science* 254: 1174–1178.
40. Tillmann, W., Erefeay, A., and Wojarski, L. 2010. Toward process optimisation in laser welding of metal to polymer. *Materialwissenschaft Und Werkstofftechnik* 41: 879–883.
41. Kagan, V. A. 2003. Innovations in laser welding of thermoplastics: This advanced technology is ready to be commercialised. *Proceedings of SAE 2003 World Congress Welding and Joining*: 1–20.
42. Nakhaei, M. R., Mostafa Arbab, N. B., Naderi, G., and Hosseinpour Gollo, M. 2013. Experimental study on optimisation of CO2 laser welding parameters for polypropylene-clay nanocomposite welds. *Journal of Mechanical Science and Technology* 27: 843–848.
43. Nakhaei, M. R., Mostafa Arbab, N. B., and Naderi, G. 2013. Application of response surface methodology for weld strength prediction in laser welding of polypropylene/clay nanocomposite. *Iranian Polymer Journal* 22: 351–360.
44. Chen, M., Zak, G., and Bates, P. J. 2013. Description of transmitted energy during laser transmission welding of polymers. *Weld World* 57: 171–178.
45. Chen, M., Zak, G., and Bates, P. J. 2009. 3D finite element modelling of contour laser transmission welding of polycarbonate. *Welding in the World* 53: R188–R197.
46. Aden, M. 2016. Influence of the laser-beam distribution on the seam dimensions for laser-transmission welding: A simulative approach. *Lasers in Manufacturing and Materials Processing* 3: 100–110.
47. Geiger, M., Frick, T., and Schmidt, M. 2009. Optical properties of plastics and their role for the modelling of the laser transmission welding process. *Production Engineering Research and Development* 3: 49–55.
48. Hadriche, I., Ghorbel, E., Masmoudi, N., and Casalino, G. 2010. Investigation on the effects of laser power and scanning speed on polypropylene diode transmission welds. *International Journal of Advanced Manufacturing Technology* 50: 217–226.
49. Lambiase, F., Genna, S., and Kant, R. 2018. Optimization of laser-assisted joining through an integrated experimental-simulation approach. *International Journal of Advanced Manufacturing Technology* 97: 2655–2666.
50. Casalino, G., and Ghorbel, E. 2008. Numerical model of CO2 laser welding of thermoplastic polymers. *Journal of Materials Processing Technology* 207: 63–71.
51. Zoubeir, T., and Elhem, G. 2011. Numerical study of laser diode transmission welding of a polypropylene mini-tank: Temperature field and residual stresses distribution. *Polymer Testing* 30: 23–34.
52. Wang, X., Chen, H., and Liu, H. 2014. Investigation of the relationships of process parameters, molten pool geometry and shear strength in laser transmission welding of polyethylene terephthalate and polylpropylene. *Materials and Design* 55: 343–352.
53. Aden, M., Liviany, F., and Olowinsky, A. 2013. Joint strength for laser transmission welding of thermoplastics: A simulation approach. *International Polymer Processing* XXVIII: 79–83.
54. Mayboudi, L. S., Birk, A. M., Zak, G., and Bates, P. J. 2007. Laser transmission welding of a lap-joint: Thermal imaging observations and three–dimensional finite element modeling. *Journal of Heat Transfer* 129: 1177–1186.
55. Beckar, F., and Potente, H. 2002. A step towards understanding the heating phase of laser transmission welding of polymers. *Polymer Engineering and Science* 42: 365–374.
56. Liu, H., Liu, W., Zhong, X., Liu, B., Guo, D., and Wang, X. 2016. Modeling of laser heat source considering light scattering during laser transmission welding. *Materials and Design* 99: 83–92.
57. Ilie, M., Kneip, J. C., Mattei, S., Nichici, A., Roze, C., and Girasole, T. 2007. Through-transmission laser welding of polymers—Temperature field modeling and infrared investigation. *Infrared Physics and Technology* 51: 73–79.
58. Chen, Z., Huang, Y., Han, F., and Tang, D. 2018. Numerical
and experimental investigation on laser transmission welding of fiberglass-doped PP and ABS. Journal of Manufacturing Processes 31: 1–8.

59. Coelho, J. M. P., Abreu, M. A., and Rodrigues, F. C. 2008. Modeling the spot shape influence on high-speed transmission lap welding of thermoplastic films. Optics and Lasers in Engineering 46: 55–61.

60. Flock, D., Sickert, M., and Haberstroh, E. 2012. Temperature measurement in laser transmission welding of plastics. Gunmai Fasern Kunststoffe 11: 704–708.

61. Ilie, M., Cicala, E., Grevey, D., Mattei, S., and Stoica, V. 2009. Diode laser welding of ABS: Experiments and process modeling. Optics and Laser Technology 41: 608–614.

62. Hopmann, C., and Kreimeier, S. 2016. Modelling the heating process in simultaneous laser transmission welding of semicrystalline polymers. Journal of Polymers 2016: 1–10.

63. Sooriyapiragasam, S. K., and Hopmann, C. 2016. Modelling of the heating process during the laser transmission welding of thermoplastics and calculation of the resulting stress distribution. Weld World 60: 777–791.

64. Speka, M., Mattei, S., Pilloz, M., and Ilie, M. 2008. The infrared thermography control of the laser welding of amorphous polymers. NDTE International 41: 178–183.

65. Mayboudi, I. S., Birk, A. M., and Zak, G. 2009. Infrared observations and finite element modeling of a laser transmission welding process. Journal of Laser Applications 21: 111–118.

66. Van de Van, J. D., and Erdman, A. G. 2007. Laser transmission welding of thermoplastics — Part I: Temperature and pressure modeling. Journal of Manufacturing Science and Engineering 129: 849–858.

67. Fuller, J. J., and Marotta, E. E. 2001. Thermal contact conductance of metal/polymer joints: An analytical and experimental investigation. Journal of Thermophysics and Heat Transfer 15: 228–238.

68. Bronnikov, S. V., Vettegren, V. I., and Frenkel, S. Y. 2006. New approach to the description of Young’s modulus for highly oriented polymers. II. Relationship between Young’s modulus and thermal expansion of polymers over a wide temperature range. Journal of Macromolecular Science, Part B: Physics 42: 3171–3182.

69. Mikic, B. B. 1974. Thermal contact conductance; Theoretical considerations. International Journal of Heat and Mass Transfer 17: 205–214.

70. Kuroasaki, Y. 2005. Radiative heat transfer in plastic welding process. Journal of Quantitative Spectroscopy and Radiative Transfer 93: 25–41.

71. Mubarak, Y., Harkin-Jones, E. M. A., Martin, P. J., and Ahmad, M. 2001. Modeling of non-isothermal crystallization kinetics of isotactic polypolypropylene. Polymer 42: 3171–3182.

72. Albano, C., Papa, J., Gonzalez, E., Navarro, O., and Gonzalez, R. 2003. Temperature and crystallinity profiles in polyol einkorn isothermal and non-isothermal solidification processes. European Polymer Journal 39: 1215–1222.

73. Masubuchi, Y., Watanabe, K., Nagatake, W., Takimoto, J.-I., and Koyama, K. 2001. Thermal analysis of shear induced crystallization by the shear flow thermal rheometer: Isothermal crystallization of polypolypropylene. Polymer 42: 5023–5027.

74. Kneip, J. C., Martin, B., Loredo, A., Mattei, B., and Grevey, D. 2004. Heat transfer in semi-transparent materials during laser interaction. Journal of Materials Processing Technology 155: 156–1805: 1805–1809.

75. Majumdar, P., and Xia, H. 2007. A Green’s function model for the analysis of laser heating of materials. Applied Mathematical Modelling 31: 1186–1200.

76. Coluccelli, N. 2010. Nonsequential modeling of laser diode stacks using Zemax: Simulation, optimization, and experimental validation. Optical Society of America 49: 4237–4245.

77. Naqvi, A., and Durst, F. 1990. Focusing of diode laser beams: a simple mathematical model. Applied Optics 29: 1780–1785.

78. Ai, Y., Zheng, K., Shin, Y. C., and Wu, B. 2018. Analysis of weld geometry and liquid flow in laser transmission welding between polyethylene terephthalate (PET) and Ti6Al4V based on numerical simulation. Optics and Laser Technology 103: 99–108.

79. Wang, X., Guo, D., Chen, G., Jiang, H., Meng, D., Yan, Z., and Liu, H. 2016. Thermal degradation of PA66 during laser transmission welding. Optics and Laser Technology 83: 35–42.

80. Mayboudi, L. S., Birk, A. M., Zak, G., and Bates, P. J. 2006. A two-dimensional thermal finite element model of laser transmission welding for T joint. Journal of Laser Applications 18: 192–198.

81. Wilke, L., Potente, H., and Schnieders, J. 2008. Simulation of quasi-simultaneous and simultaneous laser welding. Welding in the World 52: 56–66.

82. Potente, H., Fiegler, G., Haferkamp, H., Fargass, M., von Busse, A., and Bunte, J. 2008. An approach to model the melt displacement and temperature profiles during the laser through transmission welding of thermoplastics. Polymer Engineering and Science 46: 1565–1575.

83. Wang, X., Chen, H., and Liu, H. 2014. Numerical-simulation-driven optimisation of a laser transmission welding process under consideration of scattering. Journal of Applied Polymer Science 131: 1–12.

84. Ghorbel, E., Casalino, G., and Abed, S. 2009. Laser diode transmission welding of polypropylene: Geometrical and microstructure characterisation of weld. Materials and Design 30: 2745–2751.

85. Wang, C. Y., Bates, P. J., Aghamirian, M., Zak, G., Nicholls, R., and Chen, M. 2007. Quantitative morphological analysis of carbon black in polymers used in laser transmission welding. Welding in the World 51: 85–90.

86. Abed, S., Laurens, P., Carretto, C., Deschamps, J. R., and Duval, C. 2001. Diode laser welding of polymers: Microstructures of the welded zone for polypropylene. Proceedings of ICALCEO. DOI: 10.2551/1.5059820

87. Ma, L., Song, L., Wang, H., Fan, L. and Liu, B. 2018. Synthesis and characterisation of poly(propylene carbonate) glycol-based waterborne polyurethane with a high solid content. Progress in Organic Coatings 122: 38–44.

88. Hansch, D., Haf, D., Putz, H., Treusch, H. G., Gillner, A., and Poprawe, R. 1998. Welding of plastics with diode laser. Proceedings of ICALCEO: 81–86.

89. Xu, X. F., Bates, P. J., and Zak, G. 2015. Effect of glass fibre and crystallinity on light transmission during laser transmission welding of thermoplastics. Optics and Laser Technology 69: 133–139.

90. Grewell, D., and Rooney, P. 2004. Relationship between optical properties and optimised processing parameters for through transmission laser welding of thermoplastics. Journal of Reinforced Plastics and Composites 23: 13–18.

91. Wehner, M., Jacobs, P., and Poprawe, R. 2007. Rapid prototyping of micro-fluidic components by laser beam processing. Proceedings of SPIE 6459: 1–12.

92. Haberstorh, E., Hoffman, W. M., Poprawe, R., and Sari, F. 2006. Laser transmission welding in microtechnology. Microsystem Technology 12: 632–639.

93. Bray, R. G., Kagan, V., and Chambers, A. 2003. Forward to better understanding of optical characterisation and development of coloured polymides for the infra-red/laser welding: Part 1 – Efficiency of polymides for infra-red welding. Journal of Reinforced Plastics and Composites 22: 533–547.

94. Zhu, X., Li, Y., Yan, D., and Fang, Y. 2001. Crystallization behaviour of partially melting isotactic polypropylene. Polymer 42: 9217–9222.

95. Jonas, A., and Kegras, R. 1991. Thermal stability and crystallization of poly(aryl ether ether ketone). Polymer 32: 2691–2706.
mission welding of thermoplastics with dual clamping devices. Laser transmission welding of clearweld-coated polyethylene glycol lengths. Transmission welding of white thermoplastics with adapted wave-sorber. 2018. Clear plastic transmission laser welding using a metal ab-}

96. Katayama, S., and Kawahito, Y. 2008. Laser direct joining of metal and plastic. *Scripta Materialia* 59: 1247–1250.

97. Azhiakannical, E., Bates, P. J., and Zak, G. 2012. Laser light transmission through thermoplastics as a function of thickness and laser incidence angle: Experimental and modeling. *J. Manuf. Sci. Eng.* DOI: 10.1115/1.4007619

98. Amanat, N., Chaminade, C., Grace, J., McKenzie, D. R., and James, N. I. 2010. Transmission laser welding of amorphous and semi-crystalline poly-ether–ether–ketone for applications in the medical device industry. *Materials and Design* 31: 4823–4830.

99. Bagheriasl, D., Carreau, P. J., Dubois, C., and Riedl, B. 2015. Effect of cellulose nanocrystals (CNCs) on crystallinity, mechanical and rheological properties of polypropylene/CNCs nanocomposites. *AIP Conference Proceedings.* DOI: 10.1063/1.4918445

100. Xu, X. F., Parkinson, A., Bates, P. J., and Zak, G. 2015. Effect of part thickness, glass fiber and crystallinity on light scattering during laser transmission welding of thermoplastics. *Optics and Laser Technology* 75: 123–131.

101. Liangbin, L., Shiming, H., and Rui, H. 2002. Effect of pressure on the crystallization behaviour of polyethylene terephthalate. *Journal of Physics: Condensed Matter* 14: 11195–11198.

102. Jaeschke, P., Herzog, D., Haferkamp, H., Peters, C., and Herrmann, A. S. 2010. Laser transmission welding of high-performance polymers and reinforced composites – A fundamental study. *Journal of Reinforced Plastics and Composites* 29: 3083–3094.

103. Pelsmaeker, J. D., Graulus, G. J., Vlieberghoeve, S. V., Thiendon, H., Hemelrijk, D. V., Dubrueel, P., and Ottevaere, H. 2018. Clear to clear laser welding for joining thermoplastic polymers: A comparative study based on physicochemical characterization. *Journal of Materials Processing Technology* 255: 808–815.

104. Jaeschke, P., Wippop, V., Suttmann, O., and Herrmann, L. 2015. Advanced laser welding of high-performance thermoplastic composites. *Journal of Laser Applications.* DOI: 10.2351/1.4906379

105. Ghasemi, H., Zhang, Y., Bates, P. J., Zak, G., and DuQuesnay, D. I. 2018. Effect of processing parameters on meltflow down in quasi-simultaneous laser transmission welding. *Optics and Laser Technology* 107: 244–252.

106. Huang, C., Gao, Y., Liu, H., Chen, H., Li, P., and Wang, X. 2014. Multi-factors interaction effects of process parameters on the joint strength of laser transmission joining between PC and PA66. *Key Engineering Materials* 579–580: 91–96.

107. Liu, M., Ouyang, D., Zhao, J., Li, C., Sun, H., and Ruan, S. 2018. Clear plastic transmission laser welding using a metal ab-sorber. *Optics and Laser Technology* 105: 242–248.

108. Mamuschkin, V., Roesner, A., and Aden, M. 2013. Laser transmission welding of white thermoplastics with adapted wave-lengths. *Physics Procedia* 41: 172–179.

109. Wang, Y. Y., Wang, A. H., Weng, Z. K., and Xia, H. B. 2016. Laser transmission welding of clearweld-coated polyethylene glycol terephthalate by incremental scanning technique. *Optics and Laser Technology* 80: 153–161.

110. Devrient, M., Knoll, B., and Geiger, R. 2013. Laser transmission welding of thermoplastics with dual clamping devices. *Physics Procedia* 41: 70–80.

111. Devrient, M., Frick, T., and Schmidt, M. 2011. Laser transmission welding of optical transparent thermoplastics. *Physics Procedia* 12: 157–165.

112. Prabhakaran, R., and Kontopoulou, M. 2006. Contour laser – Laser-transmission welding of glass reinforced nylon 6. *Journal of Thermoelastic Composite Materials* 19: 427–439.

113. Chen, M., Zak, G., Bates, P. J., Baylis, B., and McLeod, M. 2011. Experimental study on gap bridging in contour laser transmission welding of polycarbonate and polyamide. *Polymer Engineering and Science* 51: 1626–1635.

114. Acharjee, B. 2018. Hybrid laser arc welding: State-of-art review. *Optics and Laser Technology* 99: 60–71.

115. Pawar, S. M., Moholkar, A. V., Kim, I. V., Shin, S. W., Moon, J. H., Rhee, J. I., and Kim, J. H. 2010. Effect of laser incident ener-gy on the structural, morphological and optical properties of CuZnSnS4 (CZTS) thin films. *Current Applied Physics* 10: 565–569.

116. Kurosaki, Y., and Satoh, S. K. 2010. A fiber laser welding of plastics assisted by transparent solid heat sink to prevent the surface thermal damages. *Physics Procedia* 5: 173–181.

117. Prabhakaran, R., Kontopoulou, M., Zak, G., Bates, P. J., and Baylis, B. 2003. Laser transmission welding of glass reinforced nylon 6. No. 2003-01-1133. *SAE Technical Paper.*

118. Kagan, V. A., Bray, R. G., and Kuhn, W. P. 2002. Laser transmission welding of semi-crystalline thermoplastics — Part I: Optical characterization of nylon based plastics. *Journal of Reinforced Plastics and Composites* 21: 1101–1122.

119. Kagan, V. A., and Pinho, G. P. 2004. Laser transmission welding of semicrystalline thermoplastics — Part II: Analysis of mechanical performance of welded nylon. *Journal of Reinforced Plastics and Composites* 23: 95–107.

120. Acherjee, B., Kaur, A. S., Mitra, S., and Misra, D. 2012. Effect of carbon black on temperature field and weld profile during laser transmission welding of polymers: A FEM study. *Optics & Laser Technology* 44: 514–521.

121. Hsu, S. T., Tan, H., and Yao, Y. I. 2012. Effect of excimer laser irradiation on crystallinity and chemical bonding of biodegradable polymer. *Polymer Degradation and Stability* 97: 88–97.

122. Schmailzl, A., Quandt, B., Schmidt, M., and Hierl, S. 2018. In-situ process monitoring of laser transmission welding of PA6-GF30. *Procedia CIRP* 74: 524–527.

123. Tao, W., Su, X., Chen, Y., and Tian, Z. 2019. Joint formation and fracture characteristics of laser welded CFRP/TC4 joints. *Journal of Manufacturing Processes* 45: 1–8.

124. Choi, H., Nguyen, P. T., and In, J. B. 2019. Laser transmission welding and surface modification of graphene film for flexible supercapacitor applications. *Applied Surface Science* 483: 481–488.