Global analysis of community-associated methicillin-resistant *Staphylococcus aureus* exoproteins reveals molecules produced *in vitro* and during infection

Christopher Burlak,1 Carl H. Hammer,2 Mary-Ann Robinson,2 Adeline R. Whitney,1 Martin J. McGavin,3 Barry N. Kreiswirth4 and Frank R. DeLeo1*

1Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
2Research Technologies Branch, Mass Spectrometry Laboratory, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
3University of Toronto, Department of Laboratory Medicine and Pathobiology, and Sunnybrook Health Sciences Centre, Toronto, ON, Canada, M4N 3M5.
4Public Health Research Institute Tuberculosis Center, International Center for Public Health, Newark, NJ 07103, USA.

Summary

Community-associated methicillin-resistant *Staphylococcus aureus* (CA-MRSA) is a threat to human health worldwide. Although progress has been made, mechanisms of CA-MRSA pathogenesis are poorly understood and a comprehensive analysis of CA-MRSA exoproteins has not been conducted. To address that deficiency, we used proteomics to identify exoproteins made by MW2 (USA400) and LAC (USA300) during growth *in vitro*. Two hundred and fifty unique exoproteins were identified by 2-dimensional gel electrophoresis coupled with automated direct infusion-tandem mass spectrometry (ADI-MS/MS) analysis. Eleven known virulence-related exoproteins differed in abundance between the strains, including alpha-haemolysin (Hla), collagen adhesin (Cna), staphylokinase (Sak), coagulase (Coa), lipase (Lip), enterotoxin C3 (Sec3), enterotoxin Q (Seq), V8 protease (SspA) and cysteine protease (SspB). Mice infected with MW2 or LAC produced antibodies specific for known or putative virulence factors, such as autolysin (Atl), Cna, Ear, ferritin (Ftn), Lip, 1-phosphatidylinositol phosphodiesterase (Plc), Sak, Sec3 and SspB, indicating the exoproteins are made during infection *in vivo*. We used confocal microscopy to demonstrate aureolysin (Aur), Hla, SspA and SspB are produced following phagocytosis by human neutrophils, thereby linking exoprotein production *in vitro* with that during host–pathogen interaction. We conclude that the exoproteins identified herein likely account in part for the success of CA-MRSA as a human pathogen.

Introduction

Staphylococcus aureus causes a wide range of human diseases, including impetigo, cellulitis, food poisoning, toxic–shock syndrome, necrotizing pneumonia, endocarditis and sepsis (Lowy, 1998; Diekema *et al*., 2001). Decades of selective pressure with β-lactam antibiotics and close proximity of susceptible hosts have resulted in a high prevalence of methicillin-resistant *S. aureus* (MRSA) in hospitals worldwide (Chambers, 2001; Diekema *et al*., 2001). Although these factors logically explain the high incidence of hospital-associated MRSA infections, the molecular basis for the increased incidence and severity of community-acquired (or associated) MRSA (CA-MRSA) infections among healthy individuals remains incompletely defined (Chambers, 2001; 2005; McDougal *et al*., 2003; Fridkin *et al*., 2005; Miller *et al*., 2005; Zetola *et al*., 2005). Recent studies indicate strains that are the leading causes of CA-MRSA disease in the United States, represented by pulsed-field gel electrophoresis (PFGE) types USA300-0114 (McDougal *et al*., 2003; Fridkin *et al*., 2005; Kazakova *et al*., 2005; Diep *et al*., 2006) and USA400 (Centers for Disease Control and Prevention, 1999; Baba *et al*., 2002; McDougal *et al*., 2003; Adem *et al*., 2005), have enhanced virulence compared with leading causes of hospital infections (e.g. USA200) (Voyich *et al*., 2005). In addition to their distinct...
PFGE profiles (McDougal et al., 2003), these two CA-MRSA strains can be distinguished from one another and from other S. aureus strains on the basis of multilocus sequence typing (MLST or ST) and sequencing of the variable number tandem repeats in the staphylococcal protein A gene (spa); USA300-0114 is spa-type 1 (Shopsin et al., 1999) and multilocus sequence type ST8, while USA400 is ST1 (Enright et al., 2000). Both strains also have the type IV staphylococcal chromosomal cassette mec element, which is common among CA-MRSA but not typically found in hospital adapted nosocomial MRSA (Baba et al., 2000). Both strains have one or more common names, such as Los Angeles County clone (LAC) or FPR3757 (sequenced strain) used for USA300-0114 (Voyich et al., 2005; Diep et al., 2006), and MW2 for the prototype USA400 strain (Centers for Disease Control and Prevention, 1999; Baba et al., 2002). Enhanced virulence of USA300-0114 (referred to herein as either LAC or USA300) and USA400 (referred to herein as MW2) is linked in part to their ability to circumvent killing by neutrophils and cause host cell lysis (Voyich et al., 2005). It is likely that exoproteins (cell surface-associated and freely secreted proteins) produced by these strains are an important component of this enhanced virulence (Foster, 2005; Voyich et al., 2005; Diep et al., 2006).

Secreted virulence proteins of S. aureus can be categorized based on proven or putative function. Cytolytic toxins, such as haemolysins (Hla, Hlb, HlgABC) and leukocidins (LukD/E and Panton–Valentine leukocidin, PVL), oligomerize to form pores on the cell surface (Walev et al., 1993; Bhakdi et al., 1998). Destruction of leucocytes (especially neutrophils), which can be mediated by these toxins, is likely a key component of CA-MRSA pathogenesis. For example, PVL has high specificity for granulocytes and is linked by epidemiology to CA-MRSA disease (Lina et al., 1999), although our recent studies indicate the toxin has a limited role in virulence (Voyich et al., 2006). Staphylococcal enterotoxins are secreted superantigens (SAg) that bind to major histocompatibility complex (MHC) class II proteins, resulting in CD4+ T-cell activation and immune modulation (Malchiodi et al., 1995; McCormick et al., 2001; Orwin et al., 2002; Llewelyn et al., 2004). S. aureus also secretes numerous proteases and lipases that degrade host components, and proteins that sequester antibody or inactivate antibiotics (Foster, 2005). As a step towards understanding the role played by S. aureus exoproteins in virulence, previous proteomics-based studies identified immunogenic proteins produced by strain COL (Vytvytska et al., 2002), evaluated the role played by S. aureus agr and sigB on secretion of virulence factors (Ziebandt et al., 2001), and tested the effects of linezolid on production of virulence factors (Bernardo et al., 2004). However, a comprehensive analysis of the exoproteins produced by CA-MRSA has not been conducted.

To that end, we used a proteomic approach to identify exoproteins of LAC and MW2 during growth in vitro and evaluated immunogenicity of the proteins using sera from mice infected with each strain. In addition, we used confocal microscopy to determine that selected exoproteins were produced within phagocytic vacuoles of human neutrophils following uptake, a phenomenon accompanied by host cell lysis.

Results

Resolution and identification of culture supernatant proteins produced by CA-MRSA strains

As an initial step towards gaining a comprehensive understanding of exoproteins made by the most prominent CA-MRSA strains, we resolved/identified proteins in MW2 (USA400) and LAC (USA300) culture supernatants using 2-dimensional gel electrophoresis (2-DGE) coupled with automated direct infusion-tandem mass spectrometry (ADI-MS/MS). Three hundred and fifty-three and 270 protein spots were resolved from MW2 and LAC culture media, respectively, at mid-exponential phase of growth (Fig. 1A–D). By comparison, 625 MW2 and 581 LAC proteins were resolved from culture supernatants at stationary phase of growth (Fig. 1B). Of the resolved exoproteins, 153 (60.2 ± 18%) from cultures at mid-exponential growth and 436 (67.9 ± 6.6%) from cultures at stationary growth matched between strains, indicating MW2 and LAC produce numerous proteins that co-migrate during 2-DGE (Fig. 2). We note that this analysis fails to account for variations of same or similar proteins with slightly different migration by 2-DGE. Therefore, our estimate of the degree of similarity between the two strains at the level of exoprotein (60% to 68%) is relatively conservative.

Using ADI-MS/MS and excluding protein isoforms and identifications from multiple gels, we identified 250 unique proteins from MW2 and LAC culture supernatants at the two phases of growth combined (98 at mid-exponential phase of growth and 228 at stationary phase) (Fig. 2 and Table 1). Proteins were separated into categories based on functional annotation to facilitate subsequent analyses (Fig. 1B and C, and Table 1).

Identification of CA-MRSA exoproteins associated with virulence

Twenty exoproteins (20%) identified at mid-exponential growth and 33 (15%) of those at early stationary phase of growth are known to be associated with virulence (Fig. 1 and Table 1). There were essentially three subcategories of virulence determinants found in culture.

Journal compilation © 2007 Blackwell Publishing Ltd, Cellular Microbiology, 9, 1172–1190
No claim to original US government works
media. Proteases or enzymes, including aminopeptidase (PepS), aureolysin (Aur), staphylokinase (Sak), V8 protease (SspA), cysteine protease (SspB), serine protease (SpIC), lipase (Lip) and Xaa-Pro dipeptidase, were produced by each strain at either phase of growth (Fig. 1 and Table 1). These enzymes degrade and/or modify proteins and lipids present in the growth environment (McGavin et al., 1997; Karlsson et al., 2001; Massimi et al., 2002; Imamura et al., 2005). For example, cysteine protease/staphopain B (SspB), which directly cleaves kininogen, also works in concert with staphopain A (SpA) to promote vascular leakage and lower blood pressure, thereby facilitating septic shock (Massimi et al., 2002; Imamura et al., 2005). SspA causes release of cell surface fibronectin-binding protein (FnB) and immunoglobulin G (IgG)-binding protein A (protein A,
Spa), modifying capacity for host interaction and increasing free FnB and Spa (McGavin et al., 1997; Karlsson et al., 2001).

A second group of molecules identified in CA-MRSA culture media were those involved in bacteria–host interaction or adhesion, such as coagulase (Coa), collagen adhesin (Cna), enolase (Eno), fibrinogen-binding protein, FnB, FnB, 1-phosphatidylinositol phosphodiesterase (Plc), Spa and IgG-binding protein (Sbi) (Figs 1 and 2, and Table 1). These molecules can activate the clotting cascade (Coa) (Panizzi et al., 2006), mediate binding to host tissues (Cna, Eno, FnB and FnB) (Patti et al., 1992; Greene et al., 1995; Carneiro et al., 2004), and sequester host antibody (Spa and Sbi) (Forsgren and Sjoquist, 1966; Zhang et al., 1998). Although the function of *S. aureus* Plc is uncharacterized, that of *Listeria monocytogenes* promotes adhesion to epithelial cells and mediates escape of the pathogen from phagosomes (Krawczyk-Balska and Bielecki, 2005; Wei et al., 2005).

The toxins and haemolysins, namely alpha-haemolysin (Hla), enterotoxin C3 (Sec3), enterotoxin H (Seh), enterotoxin K (Sek), enterotoxin L (Sel2) and enterotoxin Q (Seq), comprised at most 4% of the exoproteins produced by MW2 and/or LAC in mid-exponential or early stationary phases of growth (4/98 at mid-exponential phase and 6/229 at early stationary phase of growth respectively) (Fig. 1 and Table 1). Unexpectedly, we failed to detect gamma-haemolysin subunits (HlgA, HlgB and HlgC), LukD/E, LukM, or either component of PVL (LukS-PV and LukF-PV) in culture supernatants under the two growth conditions tested.

Proteins involved in metabolism, biosynthesis, transcription and replication are present in MW2 and LAC culture supernatants

CA-MRSA culture supernatants contained 73 proteins known to be involved in the transport and utilization of carbohydrates or amino acids for energy (Table 1). Thirty-five proteins known to participate in biosynthesis of nucleotides, proteins and fatty acids, and 51 proteins involved in cell division, transcription and replication, were also identified in culture media (Fig. 1 and Table 1). The observation that cytoplasmic proteins were found in culture supernatant is not unexpected, as numerous cycles of autolysis would have occurred thereby releasing proteins into culture medium (Lei et al., 2000; Chaussee et al., 2001; Trost et al., 2005).

Stress response proteins are present in culture supernatants

Twenty proteins associated with the response to environmental stress were identified in MW2 and LAC culture supernatants (Fig. 1 and Table 1). For example, alkyl hydroperoxide reductase (AhpC and AhpF), catalase (KatA), superoxide dismutase (SodA), thioredoxin (TrxA) and thioredoxin reductase (TrxB), proteins that function to inactivate reactive oxygen species, and heat shock proteins, GroES and DnaK, were identified in culture supernatants at both phases of growth (Fig. 1 and Table 1). Consistent with this
Table 1. MW2 and LAC culture supernatant proteins identified by ADI-MS/MS.

Protein name (Entrez protein name) a	Entrez protein a	MW b	pIE c	MP d	SC% e	MS/MS MOWSE score
Acetate kinase (AckA) C1,D1	13701506	44029	5.7	10	31	226
Acetoin reductase (ButA) C2	49482369	27199	5.0	3	15	104
Aconitate hydratase (AcmC) B1,C1,D1	49241672	98850	4.9	24	34	878
Adenylylcysteine synthetase, putative (PyrA) C1	49482270	47522	5.1	4	12	146
Alcohol dehydrogenase (AdhB) D5	14246373	30639	5.5	13	45	556
Alcohol dehydrogenase, zinc-containing (AdhE) C2	87162223	36244	5.3	4	13	93
Glucose 6-phosphate isomerase A (GpiA) B1	49484376	65839	5.0	6	15	227
Glucose 6-phosphate 1-dehydrogenase (Zwf) D1	49483245	56929	5.3	7	15	227
Phosphoglycerate kinase (Pgk) B1,D1	49483247	51368	5.7	20	44	678
Phosphoglycerate kinase (Pgk) B1,C2,D5	49483248	51368	5.7	20	44	678
Phosphoglycerate kinase (Pgk) B1,D1	49483248	51368	5.7	20	44	678

1176 C. Burlak et al.

Journal compilation © 2007 Blackwell Publishing Ltd, *Cellular Microbiology*, 9, 1172–1190

No claim to original US government works
Protein name (Entrez protein name)*	Entrez protein*	MWf	pf	MP	SC%	MS/MS MOWSE score
Amino acid transport and metabolism (12)						
Alanine dehydrogenase 2 (Ald2)	49244722	40209	5.2	6	18	173
Amidophosphoribosyltransferase precursor, putative (PurF)	49244352	54363	6.1	12	23	426
Cysteine synthase (CysK)	82750220	32969	5.4	8	52	110
3-Deoxy-7-phosphoheptulonate synthase (MW1680)	49483977	40809	5.8	7	24	229
Glucosamine-fructose 6-phosphate aminotransferase	14247927	55785	4.9	5	30	119
Glutamine synthetase (GlnA)	88195154	17949	5.0	6	13	181
Imidazolonepropionase (HutI)	87162411	45011	5.2	5	15	101
Phosphoribosylformylglycinamidine synthase I (PurQ)	49428749	20617	4.5	4	33	144
Phosphotransferase system enzyme IIA-like protein (SH1484)	14245059	60502	5.0	4	12	181
SNO glutamine amidotransferase family protein (MW0475)	49482749	20617	5.7	6	43	211
Thiamine pyrophosphate enzyme, putative (MW0162)	88196118	15438	8.7	7	55	300
Virulence/defence mechanisms (31)						
Aminopeptidase PepS (PepS)	87161826	46805	4.8	8	19	226
Aurolysin (Aur)	6119705	56281	5.1	3	8	102
Chitinase (MW0945)	49483226	11338	6.6	2	32	75
Coagulase (Coa)	46540	71675	8.4	20	37	920
Collagen adhesin precursor (Cna)	21205785	132921	5.9	7	7	199
Esterase/lipase (MW2501)	14248355	30986	4.7	10	52	415
Fibrinogen-binding protein-related (MW1037)	49244345	12171	7.1	19	30	947
FmtB protein (FmtB)	49483948	25306	5.0	4	24	101
Fibronectin-binding protein A (FnbA)	87161146	111642	4.6	9	13	254
Fibronectin-binding protein B (FnbB)	87162339	103492	4.7	9	12	265
IgG-binding protein (Sbi)	49245643	50099	9.4	11	26	330
IgG-binding protein A precursor (Spa)	88195634	26082	6.3	7	27	212
Lipase (Lip)	1095875	76845	7.1	19	30	947
Lysophospholipase, putative (MW1732)	87162009	31019	5.1	9	53	306
Metallo-beta-lactamase superfamily protein (YycJ)	88196118	15438	8.7	7	55	300
Mrp protein (Mrp)	5834649	26287	4.6	9	4	250
1-Phosphatidylinositol phosphodiesterase (Plc)	1172527	35213	6.5	13	52	452
Putative sulfatase (MW0681)	21203924	20322	8.6	4	19	115
SspA, V8 protease (SspA)	87162009	31019	5.1	9	53	306
Serine protease SpIC (SpIC)	12025239	44491	5.7	15	44	738
Mrp protein (Mrp)	5834649	26287	4.6	9	4	250
Stress response proteins (20)						
Alkaline shock protein 23 (Asp23)	2914575	32327	7.9	14	51	666
Enterotoxin C3 (Sec3)	295149	27634	7.2	17	58	799
Enterotoxin H (SecH)	9955226	25128	5.2	7	38	282
Enterotoxin L, extracellular (Sel)	14247781	27479	9.0	6	27	252
Enterotoxin Q (Seq)	87161054	28129	7.7	8	43	358
Exotoxin (SAUSA300_0407)	49483779	39357	5.2	9	32	314
Toxins and haemolysins (7)						
Alpha-haemolysin, chain G (Hla)	3291475	33227	7.9	14	51	666
Enterotoxin C3 (Sec3)	295149	27634	7.2	17	58	799
Enterotoxin H (SecH)	9955226	25128	5.2	7	38	282
Enterotoxin L, extracellular (Sel)	14247781	27479	9.0	6	27	252
Enterotoxin Q (Seq)	87161054	28129	7.7	8	43	358
Exotoxin (SAUSA300_0407)	49483779	39357	5.2	9	32	314

Journal compilation © 2007 Blackwell Publishing Ltd, *Cellular Microbiology*, 9, 1172–1190
No claim to original US government works
Protein name (Entrez protein name)a	Entrez proteinb	MWc	pel	MP	SC%	MS/MS MOWSE score
GroES (GroES)d1	18028156	10453	5.1	2	26	68
NAD(P)H-flavin oxidoreductase, similar to (Frp)d1	14248297	25359	5.5	4	17	56
Nitric oxide dioxygenase (MW0216)d1	14260074	42932	5.2	4	12	104
OsmC-like protein (MW0781)d1	49244117	15320	4.8	3	25	113
Peroxiredoxin reductase (AhpF)d1	49243746	11325	6.4	3	42	67
SrrA (SrrAp)b1	37781574	28143	5.2	2	30	288
Superoxide dismutase (Soda)d1	49483802	22697	5.1	6	45	303
Thioredoxin (TrxA)d1	49483308	11433	4.4	5	23	56
Thioredoxin (MW1870)d1	49484170	21902	5.2	7	37	259
Thioredoxin reductase (TrxB)d1	32468851	33595	5.2	9	30	456
Universal stress protein, putative (MW1653)d1	49483951	18463	5.6	8	63	497
Cell division and maintenance (33)						
Aminoglycoside phosphotransferase (AphA)c1	11991167	30624	4.5	3	16	64
Autoinducer-2 production protein (LuxS)d1	49484358	17502	5.4	4	23	140
Cell division initiation protein DivIVA (MW1335)b1,d2	36804824	41413	4.4	11	11	114
Cell division protein FtsZ (FtsZ)	14247000	33628	4.9	5	23	109
Cytosol aminopeptidase family protein (PepA)d1	49483102	54140	5.7	9	27	108
Ferritin (Ftn)b3,d7	49242263	19590	4.7	6	31	450
Peptidoglycan hydrolase (LytM)c2,b5	2239274	35147	6.1	4	20	207
Putative 3-methyl-2-oxobutanoate hydroxymethyltransferase (PanB)d1	49245819	29237	5.6	8	30	348
Secretory antigen precursor SsaA (SsaAd1)	87159889	17388	5.8	1	9	73
Secretory antigen precursor SsaA (SsaAd1)	49240966	62312	5.1	7	16	220
Secretory antigen precursor SsaA (SsaAd1)	4937361	43191	4.9	3	22	93
Secretory antigen precursor SsaA (SsaAd1)	49483875	66527	5.0	10	17	163
Secretory antigen precursor SsaA (SsaAd1)	49242263	19590	4.7	6	31	450
Secretory antigen precursor SsaA (SsaAd1)	49483860	11941	3.9	2	10	84
Secretory antigen precursor SsaA (SsaAd1)	49483117	43444	5.4	11	31	543
Secretory antigen precursor SsaA (SsaAd1)	49245349	45144	5.8	10	29	422

Table 1. cont.

Protein name (Entrez protein name)a	Entrez proteinb	MWc	pel	MP	SC%	MS/MS MOWSE score
Protein synthesis (18)						
Acetyltransferase (GNAT) family protein (MW2324)d2	49483339	16991	4.9	5	32	174
Aminotransferase, putative (RocD)b1,c1	492241363	54376	6.1	7	19	229
Branched-chain amino acid aminotransferase (lnvE)d1	82750262	40061	5.0	5	20	220
Deblocking aminopeptidase, similar to (MW1253)d1	49483560	37848	5.3	1	3	58
Formimino glutamylas (HugC)d1	87160628	34491	5.4	6	29	223
Glutamine ammonia ligase (GlaN)c1,b1,c1	14247080	50825	5.1	9	34	314
3OS Ribosomal protein S1 (RpsA)d1,b1,c1,d2	49484274	43283	4.6	15	51	740
3OS Ribosomal protein S2 (RpsB)d2,c1,d1	57286011	29377	5.3	7	26	306
3OS Ribosomal protein S6 (RpsF)d2,b2,c2,d3	49482595	11588	5.1	6	58	268
50S Ribosomal protein L7/L12 (RplL)d1	49244067	22199	5.2	5	31	211
50S Ribosomal protein L10 (RplH)d1,c1	88194302	12704	4.6	7	72	352
50S Ribosomal protein L25 (RplY)d1	49243847	17672	4.8	5	51	242
O-acetylserine (thiol)-lyase, putative, cysteine synthase (CysK)b2,c1,d2	49243820	32955	5.4	11	58	500
Ornithine aminotransferase (RocD)c1,d3	49483117	44374	5.4	11	31	543
Secretory antigen precursor (SsaA)c3	49426248	16897	5.8	1	9	86
Secretory antigen precursor SsaA (MW0627)c1	49429380	28155	6.1	3	14	69
Serine hydroxymethyltransferase (GlyA)d1	49245349	45144	5.8	10	29	422
Protein name (Entrez protein name)*	Entrez protein*	MW	pI	MP	SC%	
-----------------------------------	----------------	----	----	----	-----	
Nucleotide biosynthesis (16)						
Adenylosuccinate lyase (PurB)^{D1}	49484149	49572	5.6	7	18	154
Adenylosuccinate synthase (PurA)^{B1,D2}	49482270	47522	5.1	5	14	217
Amidophosphoribosyltransferase precursor (PurF)^{B1,D2}	49424352	54363	6.1	12	23	426
Carbamoyl-phosphate synthase large chain (CarB)^{C1}	14246873	117089	4.8	3	3	54
GMP synthase (GuaA)^{B1}	38372353	58149	4.9	6	13	200
Inositol-monophosphate dehydrogenase (GuaB)^{A1,B1,C1,D1}	21203531	52790	5.6	10	35	338
Phosphoribosylamine-glycine ligase (PurD)^{D1}	14246844	41964	5.0	2	6	50
Phosphoribosylaminomimidazole-succinocarboxamide synthase (PurC)^{B1,D1}	88194764	26676	5.3	12	62	494
Phosphoribosylformylglycinamidine synthase (PurS)^{D2}	14246838	24541	5.0	7	43	215
Phosphoribosylformylglycinamidine synthase, PurS component (MW0950)^{B2}	49241360	9929	4.7	4	68	225
Polyribonucleotide nucleotidyltransferase (PnpA)^{B1,D1}	49484362	25892	4.9	14	23	530
Pyridoxine biosynthesis protein (MW0474)^{A1,C1,D1}	49482748	31972	5.1	8	31	267
Uric acid biosynthesis protein (MW0474)^{A1,C1,D1}	49484336	23035	6.1	9	58	496
Fatty Acid Biosynthesis (1)						
Trans-2-enoyl-ACP reductase (FabI)^{B1,D1}	56001093	24601	5.2	7	53	226
Transcription and Replication (18)						
2′-5′ RNA ligase (MW0896)^{A1,B1,D1}	49244233	19315	4.9	6	40	201
Accessory gene regulator A (AgrA)^{D1}	14247812	27903	5.9	5	18	92
DNA-directed RNA polymerase alpha chain (RpoA)^{C2}	49484440	34990	4.7	9	40	292
DNA polymerase III, beta chain (DnaN)^{C1,D1}	49482255	41888	4.7	8	25	194
DNA-directed RNA polymerase delta subunit (RpoE)^{C1}	49245364	20868	3.6	2	14	84
Translation elongation factor G (Efg)^{A1,B1,C1,D1}	49243855	76564	4.8	19	40	915
Elongation factor Tu (Tuf)^{A1,B1}	49243856	43077	4.7	16	59	871
Transposase (MW2398)^{B2,D2}	49468688	16446	5.6	4	33	191
Miscellaneous (13)						
IIIG9 protein, similar to- (LOC5776703)^{B1,D1}	72179405	52711	9.4	1	2	51
6,7-Dimethyl-8-ribityllumazine synthase (RibH)^{B1,D1}	49242141	16412	5.7	7	73	342
ABC transporter-associated protein, SuIB (MW0799)^{D1}	49483078	52512	5.1	7	18	139
Amylase (MalA)^{B1}	18145251	77435	5.9	1	1	54
Aldo/keto reductase family protein (MW2127)^{D1}	49482959	32339	5.2	4	12	114
Arsenate reductase family protein (MW0785)^{D1}	49483064	13591	6.7	3	49	133
Lipote synthase (LipA)^{D1}	27087337	16468	6.3	2	17	54
Cell wall surface anchor family protein (MW2416)^{C1,D1}	57285190	13626	5.7	16	16	804
Short chain dehydrogenase (MW2249)^{B1}	14248102	31777	4.7	2	7	52
Short chain dehydrogenase (MW2249)^{B1}	14248102	31777	4.7	2	7	52
Immunodominant antigen A (IsaA)^{A1,B1,C1,D2}	14248343	24189	5.9	4	23	259
N-Acetylglucosamine 6-phosphate deacetylase (NagA)^{B1}	87161324	43089	5.4	7	20	123
4-Nitrophenylphosphatase-probable (MW0811)^{D1}	82750544	27962	4.5	4	16	61
SufD (SufD)^{D1}	82750525	48518	5.4	5	18	69
Unknown (20)						
Conserved hypothetical protein (SAUSA300_0871)^{D1}	88194663	33093	4.8	9	42	282
Conserved hypothetical protein (SAUSA300_0916)^{B1,D1}	88194708	19314	5.0	7	47	249
Conserved hypothetical protein (SAUSA300_1856)^{B2,D1}	8195657	19356	6.1	7	46	247
Hypothetical exported protein (MW0347)^{B1,D1}	49243684	21261	5.7	3	14	115
Hypothetical exported protein (MW2060)^{B1,D1}	82752265	18700	4.7	3	25	147
Hypothetical cytosolic protein (MW0395)^{C1,D1}	14246202	55465	5.1	14	32	487
Hypothetical protein (MW0542)^{B1}	14246355	29371	5.1	3	14	97
Hypothetical protein (MW0819)^{B1,D1}	49244219	69762	5.1	4	30	604
Hypothetical protein (MW0206)^{B1,S}	4126874	22954	5.2	10	62	369
Hypothetical protein (SAUSA300_0408)^{B1,S}	57285506	56443	4.8	19	40	899
observation, genes encoding these proteins are induced in MW2 and LAC during phagocytosis by human neutrophils (Voyich et al., 2005). Further, heat shock proteins such as DnaK and GroEL have been shown to be immunogenic in patients with *S. aureus* endocarditis (Qoronfleh et al., 1993; 1998), suggesting they are exoproteins in vivo.

MW2 and LAC produced numerous exoproteins of unknown function

We identified 20 culture supernatant proteins with no characterized function, including four putative exported proteins (Fig. 1, Table 1 and Table S1) (Baba et al., 2002; Diep et al., 2006). Fourteen of these proteins were conserved across 10 sequenced strains of *S. aureus* (Table S1). Genes encoding MW0395 and MW1757 reside within Type II genomic islands of MW2 known as νSaα and νSaβ respectively, and each is located near or among putative virulence determinants (Baba et al., 2002). MW1884 is encoded by MW2 prophage ΦSa3 and is juxtaposed to the gene encoding staphylokinase (sak), a known virulence factor in *S. aureus* (Baba et al., 2002). Several other exoproteins with no characterized function, such as MW0542, MW1795, MW2068, SAUSA300_0871, SAUSA300_0916 and SAUSA300_2327, have homology to enzymes that participate in metabolism or replication, or respond to stress (Table S1). It will be important to determine whether some of these proteins have a role in virulence and/or if they are potential vaccine targets.

Selected MW2 and LAC exoproteins differ in abundance

Although MW2 and LAC produced many common exoproteins, 11 exoproteins detected at either phase of growth differed in abundance between the strains (Figs 3 and 4). Hla and a putative surface protein (SAUSA300_0408) were in greater abundance in LAC culture supernatants at mid-exponential growth phase, and multiple repeat polypeptide (Mrp), Sak, and Coa were found exclusively in the same supernatants (Fig. 3A). By comparison, Cna, Sec3 and a putative exported protein (MW0355) were identified as exoproteins only in MW2 culture supernatants at mid-exponential growth (Fig. 3B). At stationary phase of growth, Hla, Sak, Lip, Seq, SplC, SspA, SspB and Sek were either increased ≥2-fold in LAC supernatants or were found only in those supernatants (Fig. 3D). There was far more Cna (39.5-fold) in MW2 supernatants at this phase of growth, and Sec3 and MW0577, a protein of unknown function, were detected only in MW2 culture supernatants (Fig. 3D). There was far more Cna (39.5-fold) in MW2 supernatants at this phase of growth, and Sec3 and MW0577, a protein of unknown function, were detected only in MW2 culture supernatants (Fig. 3D).
Fig. 3. Quantitative analysis of CA-MRSA culture supernatant proteins produced during growth in vitro. Differential analysis of MW2 and LAC culture supernatant proteins was performed as described under Experimental procedures. Proteins more abundant in/found only in LAC (A and D) or MW2 (B and E) supernatants. Panels C and F represent proteins equally abundant in MW2 and LAC. The phase of growth at which the analysis was performed is indicted to the left of the panels. Results are the mean ± SD of three separate experiments at each phase of growth.
Exoproteins made during infection in vivo

To reconcile exoproteins produced by MW2 and LAC in vitro and those made during infection in vivo, we used a mouse abscess model to generate immune/convalescent sera from mice infected with MW2 and LAC (Voyich et al., 2006). Following 2-DGE and transfer to nitrocellulose, MW2 and LAC exoproteins were probed with convalescent serum from mice infected with either MW2 or LAC. Several proteins from these CA-MRSA strains were commonly immunogenic in mice (Fig. 4). For example, AhpC, Atl, formate tetrahydrofolate ligase (Fhs), glyceraldehyde 3-phosphate dehydrogenase (Gap), Lip and SspB were immunogenic in mice infected with either strain (Fig. 4 and Table 2). Cna, Sec3 and Sak are known virulence factors that were immunogenic in mice infected with either MW2 (Cna and Sec3) or LAC (Sak) (Fig. 4 and Table 2), findings consistent with the differential analysis of exoproteins produced in vitro (compare Figs 3 and 4). Although many other immunogenic proteins were detected by our analysis, many were cross-reactive with non-immune sera (unboxed, unmarked protein spots, Fig. 4) or could not be identified with absolute certainty (indicated by numbers, Fig. 4). Taken together, these data provide strong support to the idea that proven or putative virulence factors, such as Atl, Cna, Lip, Sak, Sec3 and SspB, are made during CA-MRSA infection in vivo.

Phagocytosis of CA-MRSA by human neutrophils triggers production/secretion of virulence factors

To determine if production of selected exoproteins is triggered by interaction of *S. aureus* with host cells and/or if the proteins are made within phagosomes, we used confocal laser-scanning microscopy to evaluate production of Aur, Hla, SspA and SspB after phagocytosis by human polymorphonuclear leucocytes (PMNs) (Figs 5 and 6). Notably, there was a time-dependent increase in Aur, Hla, SspA and SspB produced by MW2 and/or LAC within neutrophil phagocytic vacuoles (Figs 5 and 6, yellow arrowheads). There was also redistribution of each molecule over time; at 15 or 60 min proteins were typically localized only to *S. aureus*, whereas at 3 or 4 h after phagocytosis each molecule was diffused within larger, more mature phagosomes or distributed throughout the cell (Figs 5 and 6, yellow arrowheads). Accumulation of these molecules late during phagocytosis correlates well with the noted PMN lysis caused by MW2 and LAC (Figs 5 and 6) (Voyich et al., 2005). Production of virulence factors within phagosomes is consistent with the notion that these proteins are made during infection in vivo.

Discussion

The striking increase in CA-MRSA infections over the past few years has prompted an intense search for the underlying molecular determinants. To date, few virulence factors are associated specifically with CA-MRSA disease and no single determinant appears to account for the increased incidence and severity of CA-MRSA infections (Lina et al., 1999; Baba et al., 2002; de Bentzmann et al., 2004; Diep et al., 2004; 2006; Fridkin et al., 2005; Voyich et al., 2006). It is almost certain that a combination of virulence determinants, including *S. aureus* exoproteins, and host susceptibility promote disease in otherwise healthy subjects. Inasmuch as exoproteins produced by
CA-MRSA probably facilitate evasion of innate host defence (Voyich et al., 2005) and thereby contribute to disease, we performed a comprehensive analysis of exoproteins produced by MW2 and LAC in vitro and during infection.

A limited number of proteomics-based studies have investigated exoproteins of S. aureus, typically using strain COL or laboratory-derived strains (Ziebandt et al., 2001; 2004; Nakano et al., 2002). For example, Ziebandt et al. recently compared S. aureus strains RN6390 and RN6911 and identified 43 exoproteins produced in vitro, including many controlled by accessory gene regulator (agr) and/or alternative sigma factor σ^B (sigB) (Ziebandt et al., 2004). Nakano et al. identified 29 exoproteins produced by MRSA strains using 2-DGE coupled with N-terminal peptide sequencing (Nakano et al., 2002). By comparison, numerous studies have reported individual S. aureus exoproteins that promote pathogenesis, including proteases (McGavin et al., 1997; Karlsson et al., 2001; Imamura et al., 2005), enterotoxins and exotoxins (Dinges et al., 2000; McCormick et al., 2001), and leukotoxins and haemolysins (Kaneko and Kamio, 2004).

Table 2. Immunogenic (in vivo expressed) exoproteins of MW2 and LAC.

Protein*	MW2	LAC	Immunoreactivity
AhpC, alkyl hydroperoxide reductase	ME, S	ME, S	NI, I
AroA, chorismate mutase	--	S	I
Asp23, alkaline shock protein 23	--	S	NI, I
Atl, autolysin	ME, S	ME, S	I
ClpP, ATP-dependent Clp protease	S	S	NI, I
Cna, collagen adhesin precursor	ME, S	--	I
Coa, coagulase	ME	--	NI, I
DeoD, purine nucleoside phosphorylase	ME	ME	NI, I
Ear	S	S	I
Eno, enolase	S	S	NI, I
Fba, fructose bisphosphate aldolase	S	--	NI, I
Fhs, formate tetrahydrofolate ligase	ME, S	ME, S	I
Ftn, ferritin	--	S	I
Gap, glyceraldehyde 3-phosphate dehydrogenase	ME, S	ME, S	I
GlyA, serine hydroxymethyltransferase	--	S	I
Gpi, glucose 6-phosphate isomerase	ME	ME	NI, I
GuaB, inositol-monophosphate dehydrogenase	ME	--	NI, I
Idh1, isocitrate dehydrogenase	--	S	NI, I
Lip, lipase	S	S	I
MW0525, hexulose 6-phosphate synthase	--	S	I
MW0896, 2'-5' RNA ligase	S	S	NI, I
MW1795, hypothetical protein	--	S	NI, I
MW1870, thioredoxin	--	S	NI, I
PdhA, pyruvate dehydrogenase subunit A	ME	ME	NI, I
PdhB, pyruvate dehydrogenase subunit B	S	S	NI, I
Pgd, phosphogluconate dehydrogenase	ME	ME	NI, I
Pgi, phosphoglucone isomerase	S	S	NI, I
Plc, 1-phosphatidylinositol phosphodiesterase	S	S	I
Pta, phosphate acetyltransferase	--	S	I
RocD, ornithine aminotransferase	S	--	NI, I
Sak, staphylokinase	ME	ME, S	I
Sec3, staphylococcal enterotoxin C3	S	--	I
Seq, staphylococcal enterotoxin Q	ME	ME	I
SodA, superoxide dismutase	S	S	I
Spa, immunoglobulin-binding protein A	ME, S	ME, S	NI, I
SspB, cysteine protease precursor	ME, S	ME, S	I
Sulfatase	S	--	NI, I
Tkt, transketolase	S	--	I
TpiA, triosephosphate isomerase	--	ME	I
Tsf, translation elongation factor Ts	ME	S	I
Tuf, translation elongation factor Tu	ME, S	ME, S	NI, I
Unknown 1	ME	--	I
Unknown 2	ME	--	I
Unknown 3	--	ME	I
Unknown 4	--	ME	I
Unknown 5	--	ME	I
Unknown 6	--	ME	I

* Protein identities were obtained by overlay analysis as described under Experimental procedures. Results are representative of three experiments using serum pooled from 10 to 15 mice.

ME, mid-exponential phase of growth; S, stationary phase of growth; NI, non-immune sera; I, immune sera.

Journal compilation © 2007 Blackwell Publishing Ltd, Cellular Microbiology, 9, 1172–1190

No claim to original US government works
Although progress has been made towards identification and characterization of many important *S. aureus* exoproteins, there is a noted paucity of information regarding exoproteins produced by CA-MRSA strains. Our analysis of MW2 (USA400) and LAC (USA300) culture supernatants identified 250 exoproteins (out of 600+ resolved protein spots) between two phases of growth *in vitro*, at present the single most comprehensive.

Fig. 5. Production and distribution of selected MW2 (USA400) virulence factors during phagocytosis by human PMNs. Following phagocytosis of MW2, aureolysin (Aur), SspA, and SspB were visualized by confocal laser-scanning microscopy. White arrowheads indicate bacteria. Yellow arrowheads indicate areas enriched with the *S. aureus* protein of interest. The image labelled ‘Merge’ illustrates distribution of neutrophil actin-related protein (ARP, green) and nuclei (blue). DIC, differential interference contrast.
view of *S. aureus* exoproteins. Differential analysis of MW2 and LAC exoproteins revealed key differences between the strains (Fig. 3). These differences were not due to differences in rate of growth between the strains, because MW2 and LAC have essentially identical growth curves *in vitro* (Fig. 1A). Although many of the differentially abundant exoproteins, including Atl, Coa, Hla, Lip, Mrp, Sak, Sek, Seq, Sec3, SspA, SspB and SplC, are

Fig. 6. Production and distribution of selected LAC (USA300) virulence factors during phagocytosis by human PMNs. Following phagocytosis of LAC, Hla, SspA and SspB were visualized by confocal laser-scanning microscopy. Labelling for this figure is otherwise identical to the legend for Fig. 5.
relatively ubiquitous among \textit{S. aureus}, it is possible that the observed variances in protein levels relate to distinct strain pathologies. For example, Cna is linked to necrotizing pneumonia (de Bentzmann et al., 2004) and there were higher levels of this exoprotein in MW2 culture supernatants (Fig. 3). MW2 is a strain known to cause lethal pneumonia (Centers for Disease Control and Prevention, 1999). Compared with MW2, more Hla was present in LAC culture supernatants (7.5 \pm 1.8- and 9.2 \pm 1.8-fold more Hla at mid-exponential and stationary phases of growth respectively). Consistent with that observation, Hla appeared to accumulate more rapidly in LAC-containing neutrophil phagosomes or was more highly diffused in and around deteriorating PMNs after phagocytosis of LAC compared with MW2 containing cells (accumulation of Hla typically occurred by 180 min in LAC-containing PMNs versus 240 min in those with MW2). We recently found dramatic differences in pathophysiology between MW2 and LAC in a mouse skin infection/abscess model (Voyich et al., 2006). LAC produced rapid and pronounced dermonecrosis in infected animals, whereas mice infected with MW2 developed intact abscesses (Voyich et al., 2006). Thus, differences in exoprotein abundance, such as that for Hla, may underlie the differences in strain pathology. Additional studies are needed to test this hypothesis.

We used sera from mice infected with MW2 or LAC to identify exoproteins made during infection \textit{in vivo} (Fig. 4). Previous serological proteome studies using strain COL identified 15 immunogenic proteins made during human infections, although only four of these proteins (alkaline shock protein, hexose 6-phosphate synthase, PdhB and Tuf) are common with our analysis (Table 2) (Vytvytska et al., 2002). In more recent work, Clarke et al. used bacteriophage expression libraries to identify \textit{S. aureus} antigens produced during human infections (Clarke et al., 2006). Several of those immunogenic proteins, i.e. chorismate mutase (AroA), autolysin (Atl), Coa, Fhs, Gap, transketolase (Tkt) and triosephosphate isomerase (Tpi), were also identified as \textit{in vivo} expressed \textit{S. aureus} antigens by our studies (Table 2). Our work revealed many additional exoproteins produced during infection, such as AhpC, Cna, Ear, ferritin (Ftn), Lip, Plc, phosphate acetyltransferase (Pta), Sak, Sec3, Seq and SspB (Fig. 4). Importantly, these proteins were immunoreactive only with sera from MW2- or LAC-infected animals (as opposed to sera from uninfected animals). Variances in antigenic exoproteins between MW2 and LAC are likely explained in part by differences in gene content or phase of growth used to test antigenicity (Fig. 4). The relative importance of these \textit{in vivo} expressed proteins remains to be determined.

At least four of the exoproteins identified by our proteomic analysis (Aur, Hla, SspA and SspB) were produced within phagosomes of human neutrophils following uptake (phagocytosis) (Figs 5 and 6). These findings are notable because MW2 and LAC are known to cause rapid lysis of PMNs (Voyich et al., 2005) and the factors responsible for the dramatic host cell lysis remain elusive (Voyich et al., 2006). Consistent with these data, we determined previously that the gene encoding Hla was upregulated during phagocytosis (Voyich et al., 2005). Although our studies do not demonstrate that Aur, Hla, SspA and SspB are directly related to the observed PMN lysis, increased accumulation of these virulence determinants accompanied initial stages of neutrophil destruction (Figs 5 and 6).

The \textit{S. aureus} genome consists of \textasciitilde 2600 proteins of which more than 40% have no similarity to proteins of known function (Kuroda et al., 2001). Moreover, 33% of identified proteins are unique to \textit{S. aureus} (Kuroda et al., 2001). Therefore, it is not surprising that 8.5% of the proteins identified in our study have no known function (Fig. 1). Some of these exoproteins are of significant interest based upon homology to known \textit{S. aureus} proteins (e.g. SAUSA300_0407 as an exotoxin homologue) or given their location within the genome (Table 1 and Table S1). Several exoproteins identified by our analysis are putative exported or surface proteins, e.g. SAUSA300_0408 and MW0355 (rather than metabolism enzymes, etc.) and also require characterization in the context of CA-MRSA pathogenesis (Fig. 3).

We used a proteomics-based approach to generate a comprehensive view of exoproteins made by prominent CA-MRSA strains, including identification of proteins that are immunogenic and thus produced during infection \textit{in vivo}. Identification of these exoproteins is an important first step towards development of vaccines, prophylactics, and enhanced therapeutics designed to control CA-MRSA infections.

Experimental procedures

Growth of \textit{S. aureus} and generation of culture supernatants

\textit{Staphylococcus aureus} strains MW2 (USA400) (Baba et al., 2002) and LAC (USA300-0114) (Karzakova et al., 2005; Miller et al., 2005; Voyich et al., 2005; Diep et al., 2006) were cultured in tryptic soy broth containing 0.25% dextrose (TSB, Becton, Dickenson, and Company, Franklin Lakes, NJ) filtered sequentially through 10 kDa cut-off and 0.22 \textmu m filters. Cultures were inoculated with a 1:200 dilution of overnight culture (500 \mu l of culture into 100 ml of TSB in a 1 l flask) and incubated at 37°C with shaking (250 rpm). All strains were cultured to mid-exponential (OD\textsubscript{600} = 0.75) or stationary (OD\textsubscript{600} = 2.0) phases of growth and placed on ice until used. Bacteria were removed from culture media by two sequential rounds of centrifugation at 2851 \textit{g} for 10 min at 4°C. This procedure yielded clarified culture supernatants for subsequent proteomic analyses.
Precipitation and preparation of culture supernatant proteins

Precipitation of proteins from clarified culture supernatants was performed in polypropylene flasks to reduce protein loss. One hundred millilitres of clarified supernatant was added to 300 ml of 100% ethanol (Molecular Grade, Sigma-Aldrich, St Louis, MO) and chilled at –20°C overnight. Precipitated protein was transferred to Oakridge centrifuge tubes and sedimented by centrifugation at 27 216 g for 30 min at 4°C. To optimize yield, protein in polypropylene flasks (residual) and centrifuge tubes was air-dried for approximately 1 h. Protein in the flasks were solubilized with 3 ml of 2-D solubilization solution (7 M urea, 2 M thiourea, 4% CHAPS) with gentle swirling. These samples were transferred to Oakridge tubes containing precipitated protein pellets and swirled gently to dissolve pellets. Polypropylene flasks were rinsed with an additional 600 µl of 2-D solubilization solution. Culture supernatant proteins were clarified further with a second precipitation in 30% trifluoroacetic acid (Sigma-Aldrich) and incubated on ice for a minimum of 30 min. Precipitated proteins were collected by centrifugation at 14 100 g for 5 min at room temperature. The protein pellet was dispersed by vortexing in 25 µl of distilled H2O for 10 s followed by the addition of 1 ml of acetone (~20°C). Proteins were washed in acetone for a minimum of 30 min at ~20°C and then pelleted by centrifugation at 14 100 g for 5 min at room temperature. Proteins were air dried for ~1 h or until pellets appeared dry. Pellets were solubilized in 400 µl of Destreak Rehydration Solution (GE Healthcare, Piscataway, NJ) containing tributylphosphine (200 mM) and ampholytes (pH 3–10, 4 µl of 100× solution) (Bio-Rad, Hercules, CA) at room temperature for 1 h with constant swirling. Samples were used immediately or stored briefly at –20°C.

Isolation of human neutrophils

Human polymorphonuclear leucocytes were isolated from fresh venous blood of healthy individuals using a published method (Kobayashi et al., 2002; Burlak et al., 2006). Studies were performed in accordance with a protocol approved by the Institutional Review Board for Human Subjects, National Institute of Allergy and Infectious Diseases. PMN preparations typically contained ~94% neutrophils, with the remaining cells being predominantly eosinophils. All reagents used contained < 25.0 pg ml⁻¹ endotoxin (Limulus Amebocyte Lysate assay, Fisher Scientific, Suwannee, GA).

Neutrophil phagocytosis

MW2 and LAC were cultured to mid-exponential phase of growth and phagocytosis experiments were performed with opsonized bacteria as described (Kobayashi et al., 2003; Voyich et al., 2005). At the indicated times, phagocytosis was terminated either by chilling PMNs on ice or adding cold paraformaldehyde (4%) to assay wells.

Generation of immune sera

Female Crl:SKH1-hBR mice (Charles River Laboratories, Wilmington, MA) were anaesthetized with isoflurane and inoculated with 50 µl of DPBS containing 10⁷ cfu of MW2 or LAC by subcutaneous injection in the right flank. Abscesses typically formed within 4 days and resolved 14 days after infection (Voyich et al., 2006). At 28 days post infection, mice were euthanized and blood was collected from 10 to 15 mice to prepare pooled immune serum. Blood from uninfected animals was processed in parallel (non-immune serum). All studies conformed to guidelines set forth by the National Institutes of Health and were reviewed and approved by the Animal Use Committee at Rocky Mountain Laboratories, NIAID.

Isoelectric focusing and second-dimension SDS-PAGE

Culture supernatant proteins were precipitated in cold acetone and then solubilized with isoelectric focusing (IEF) buffer (7% urea, 2% thiourea, 4% CHAPS and 200 mM tributyolphosphine) as described (Burlak et al., 2006). Protein concentration was measured with the 2-D Quant kit (GE Healthcare) and purified proteins were stored at ~80°C.

For IEF, samples were treated with Destreak Rehydration solution (25% of total sample volume) (GE Healthcare), 200 mM tributyolphosphine and 1% ampholytes. IEF was performed with 11 cm IPG Ready Strips for 40 kVh. IPG Ready Strips were rehydrated actively at 50 V overnight prior to first dimension separation. Moistened filter paper wicks (Whatman no. 1 paper, Whatman, Florham Park, NJ) were added between each electrode and strip prior to focusing (after rehydration). Wicks were changed four times in the first 4 h of IEF, after which the voltage was maintained at 8000 V (11 cm IPG Ready Strips). Following IEF, IPG Ready Strips were stored at ~80°C until used for SDS-PAGE.

Second-dimension SDS-PAGE was performed essentially as described (Burlak et al., 2006), except electrophoresis was performed at 50 mA per gel until the dye front reached the bottom of each gel (~1 h for 11 cm gels). Protein spots were excised and peptides were prepared for ADI-MS/MS analysis as described previously for liquid chromatography-tandem mass spectrometry (LC-MS/MS) (Burlak et al., 2006). For simplicity, the combination of IEF and second-dimension SDS-PAGE is abbreviated as 2-DGE.

Mass spectrometry

Peptide samples (tryptic digests, as described/referenced above) were analysed by automated direct infusion (ADI) using Nanomate (Advinion BioSciences, Ithaca, NY), an automated chip-based nano-electrospray interface source, coupled to a quadrupole-time of flight mass spectrometer, QStarXL MS/MS System (Applied Biosystems/Sciex, Framingham, MA). Computer-controlled data-dependent automated switching to MS/MS provided peptide sequence information. AnalystQS software (Applied Biosystems/Sciex) was used for data acquisition. Data processing and databank searching were performed with Mascot software version 2.1 (Matrix Science, Beachwood, OH). The National Center for Biotechnology Information non-redundant protein database (NCBI, updated 12 May, 2006 at 18:01:48 GMT), National Library of Medicine, NIH was used for the search analysis. Search criteria were limited to double- and triple-charge ions and included monoisotopic masses, analysis of peptides for carbamidomethylation and/or propionamidylation of...
cysteine, oxidation of methionine, peptide and MS/MS tolerances of 0.2 Da and 0.8 Da respectively, and a maximum of one missed tryptic cleavage. Significance threshold for positive identification was determined by the Mascot Search program.

Amino acid sequence analysis

Proteins involved in virulence/defence mechanisms, stress response proteins, toxins, haemolysins and proteins of unknown function were evaluated for presence of an LPXTG motif, which predicts a cell wall anchor, and/or for sequences that predict an N-terminal signal peptide or transmembrane region(s). We used the NCBI database to query the full sequence of each protein identified by ADI/MS/MS for the presence of LPXTG motifs. The presence of membrane spanning domains and N-terminal signal peptide sequences was deduced by searching protein sequences with PSORT software provided by the PSORT WWW server (http://psort.nibb.ac.jp/). Although none of the 20 hypothetical proteins identified in this study contain LPXTG motifs, eight proteins contain probable N-terminal signal peptide sequences and five have predicted transmembrane regions (Table 1 and Table S1).

In addition, sequences of the hypothetical proteins were compared to 902 genomes (Bacterial, Archaea, Viral, and Eukarya) using NCBI and ERGO, a curated NIAID database containing public and proprietary DNA.

SDS-PAGE and immunoblotting

Proteins were separated by SDS-PAGE, transferred to nitrocellulose membranes, and membranes were blocked with 10% normal goat serum in Tris buffered saline 150 mM NaCl, 10 mM Tris base, pH 7.5, 1% Tween 20 and 0.02% sodium azide (Sigma-Aldrich) overnight at 4°C. Blots were probed with immune or non-immune mouse sera for 1–2 h at ambient temperature or overnight at 4°C. Blots were washed in buffer containing 250 mM NaCl, 10 mM Hepes and 2% Tween 20 (Sigma-Aldrich) and incubated with secondary antibodies conjugated to horseradish peroxidase for 1–2 h at ambient temperature. Immunoreactive proteins were visualized with enhanced chemiluminescence (SuperSignal West Pico, Pierce Biotechnology, Rockford, IL) using Kodak X-Omat film (Eastman Kodak, Rochester, NY).

Immunofluorescence and confocal laser-scanning microscopy

Acid washed coverslips (No. 1, 13 mm, round) were flamed and coated with 100% normal human serum in 24 well tissue culture plates for 1 h. Coverslips were washed twice with DPBS and synchronized phagocytosis was performed in 24 well plates as described above. Fixed PMNs were washed three times in DPBS and then permeabilized with 0.2% Triton X-100 for 5 min. After three more washes in DPBS, cells were incubated with blocking buffer (DPBS containing 5% BSA, 0.02% sodium azide) for 1 h. Samples were labelled with a 1:1000 dilution of rabbit anti serum containing antibodies specific for Hla (Sigma-Aldrich), SspA, SspB, Aur and 2 μg ml⁻¹ of goat polyclonal antibodies specific for human actin-related protein 2 μg ml⁻¹ (Santa Cruz Biotechnologies, Santa Cruz, CA) overnight at 4°C. Samples were washed and subsequently labelled with donkey anti-rabbit antibody conjugated with phycoerythrin 1:1000 (Jackson ImmunoResearch, West Grove, PA) or donkey anti-goat antibody conjugated to AlexaFluor488 (1:1000) (Molecular Probes, Eugene, OR). PMNs were stained with DAPI (300 nM in DPBS, Molecular Probes) and DRAQ5 (1.25 μM in DPBS, Biostatus Limited, Leicestershire, UK) prior to mounting coverslips onto slides. Slides were analysed with a Zeiss LSM510 confocal laser-scanning microscope coupled to an Axiovert 200M inverted microscope (Carl Zeiss, Thornwood, NY). Images were acquired using a 100× Plan-Apochromat oil immersion objective (1.4 NA) at 512 × 512 pixel resolution with 2.7× digital magnification. Images were adjusted equally for brightness and contrast in Adobe Photoshop CS (Adobe Systems Incorporated, San Jose, CA).

Acknowledgements

This research was supported by the Intramural Research Program of the NIH, National Institutes of Allergy and Infectious Diseases.

References

Adem, P.V., Montgomery, C.P., Husain, A.N., Koogler, T.K., Arangelovich, V., Humilier, M., et al. (2005) *Staphylococcus aureus* sepsis and the Waterhouse–Friderichsen syndrome in children. *N Engl J Med* 353: 1245–1251.

Baba, T., Takeuchi, F., Kuroda, M., Yuzawa, H., Aoki, K., Oguchi, A., et al. (2002) Genome and virulence determinants of high virulence community-acquired MRSA. *Lancet* 359: 1819–1827.

de Bentzmann, S., Tristan, A., Etienne, J., Brousse, N., Van-denesch, F., and Lina, G. (2004) *Staphylococcus aureus* isolates associated with necrotizing pneumonia bind to basement membrane type I and IV collagens and laminin. *J Infect Dis* 190: 1506–1515.

Bernardo, K., Pakulat, N., Fleer, S., Schnaith, A., Utermoehlen, O., Krut, O., et al. (2004) Subinhibitory concentrations of linezolid reduce *Staphylococcus aureus* virulence factor expression. *Antimicrob Agents Chemother* 48: 546–444.

Bhakdi, S., Valeva, A., Walev, I., Zitzer, A., and Palmer, M. (1998) Pore-forming bacterial cytolysins. *Symp Ser Soc Appl Microbiol* 27: 155–255.

Burlak, C., Whitney, A.R., Mead, D.J., Hackstadt, T., and DeLeo, F.R. (2006) Maturation of human neutrophil phagosomes includes incorporation of molecular chaperones and endoplasmic reticulum quality control machinery. *Mol Cell Proteomics* 5: 620–634.

Carneiro, C.R., Postol, E., Nomizo, R., Reis, L.F., and Bento-tani, R.R. (2004) Identification of enolase as a laminin-binding protein on the surface of *Staphylococcus aureus*. *Microbes Infect* 6: 604–608.

Centers for Disease Control and Prevention (1999) Four pediatric deaths from community-acquired methicillin-resistant *Staphylococcus aureus* – Minnesota and North Dakota, 1997–99. *JAMA* 282: 1123–1125.

Chambers, H.F. (2001) The changing epidemiology of *Staphylococcus aureus*? *Emerg Infect Dis* 7: 178–182.
Chambers, H.F. (2005) Community-associated MRSA − resistance and virulence converge. *N Engl J Med* **352**: 1485–1487.

Chaussee, M.S., Watson, R.O., Smit, J.C., and Musser, J.M. (2001) Identification of Rgg-regulated exoproteins of *Streptococcus pyogenes*. *Infect Immun* **69**: 822–831.

Clarke, S.R., Brummell, K.J., Horsburgh, M.J., McDowell, P.W., Mohamad, S.A., Stapleton, M.R., et al. (2006) Identification of *in vivo*-expressed antigens of *Staphylococcus aureus* and their use in vaccinations for protection against nasal carriage. *J Infect Dis* **193**: 1098–1108.

Diekema, D.J., Pfaller, M.A., Schmitz, F.J., Smayevsky, J., Bell, J., Jones, R.N., and Beach, M. (2001) Survey of infections due to *Staphylococcus aureus*: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–99. *Clin Infect Dis* **32** (Suppl. 2): S114–S132.

Diep, B.A., Sensabaugh, G.F., Somboona, N.S., Carleton, H.A., and Perdue-Remington, F. (2004) Widespread skin and soft-tissue infections due to two methicillin-resistant *Staphylococcus aureus* strains harboring the genes for Panton-Valentine leucocidin. *J Clin Microbiol* **42**: 2080–2084.

Ding, B., Miller, L., and Schlievert, P.M. (2000) Exotoxins of *Staphylococcus aureus*. *Clin Microbiol Rev* **13**: 16–34.

Enright, M.C., Day, N.P., Davies, C.E., Peacock, S.J., and Spratt, B.G. (2000) Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of *Staphylococcus aureus*. *J Clin Microbiol* **38**: 1008–1015.

Forssgren, A., and Sjoquist, J. (1966) ‘Protein A’ from *S. aureus*. I. Pseudo-immune reaction with human gamma-globulin. *J Immunol* **97**: 822–827.

Foster, T.J. (2005) Immune evasion by staphyloccoci. *Nat Rev Microbiol* **3**: 948–958.

Fridkina, S.K., Hageman, J.C., Morrison, M., Sanza, L.T., Como-Sabetti, K., Jernigan, J.A., et al. (2005) Methicillin-resistant *Staphylococcus aureus* disease in three communities. *N Engl J Med* **352**: 1436–1444.

Greene, C., McDevitt, D., Francois, P., Vaudaux, P.E., Lew, D.P., and Foster, T.J. (1995) Adhesion properties of methicillin-resistant *Staphylococcus aureus* defective in fibronectin-binding proteins and studies on the expression of fnb genes. *Mol Microbiol* **17**: 1143–1152.

Imamura, T., Tanase, S., Szymy, G., Kozik, A., Travis, J., and Potempa, J. (2005) Induction of vascular leakage through release of bradykinin and a novel kinin by cysteine proteinases from *Staphylococcus aureus*. *J Exp Med* **201**: 1669–1676.

Kanejo, K., and Kamio, Y. (2004) Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. *Biosci Biotechnol Biochem* **68**: 981–1003.
Voyich, J.M., Braughton, K.R., Sturdevant, D.E., Whitney, A.R., Said-Salim, B., Porcella, S.F., et al. (2005) Insights into mechanisms used by *Staphylococcus aureus* to avoid destruction by human neutrophils. *J Immunol* **175**: 3907–3919.

Voyich, J.M., Otto, M., Mathema, B., Braughton, K.R., Whitney, A.R., Welty, D., et al. (2006) Is Panton-Valentine leukocidin the major virulence determinant in community-associated methicillin-resistant *Staphylococcus aureus* disease? *J Infect Dis* **194**: 1761–1770.

Vytvytska, O., Nagy, E., Bluggel, M., Meyer, H.E., Kurzbauer, R., Huber, L.A., and Klade, C.S. (2002) Identification of vaccine candidate antigens of *Staphylococcus aureus* by serological proteome analysis. *Proteomics* **2**: 580–590.

Walev, I., Martin, E., Jonas, D., Mohamadzadeh, M., Muller-Klieser, W., Kunz, L., and Bhakdi, S. (1993) Staphylococcal alpha-toxin kills human keratinocytes by permeabilizing the plasma membrane for monovalent ions. *Infect Immun* **61**: 4972–4979.

Wei, Z., Schnupf, P., Poussin, M.A., Zenewicz, L.A., Shen, H., and Goldfine, H. (2005) Characterization of *Listeria monocytogenes* expressing anthrolysin O and phosphatidylinositol-specific phospholipase C from *Bacillus anthracis*. *Infect Immun* **73**: 6639–6646.

Zetola, N., Francis, J.S., Nuermberger, E.L., and Bishai, W.R. (2005) Community-acquired meticillin-resistant *Staphylococcus aureus*: an emerging threat. *Lancet Infect Dis* **5**: 275–286.

Zhang, L., Jacobsson, K., Vasi, J., Lindberg, M., and Frykberg, L. (1998) A second IgG-binding protein in *Staphylococcus aureus*. *Microbiology* **144**: 985–991.

Ziebandt, A.K., Weber, H., Rudolph, J., Schmid, R., Hoper, D., Engelmann, S., and Hecker, M. (2001) Extracellular proteins of *Staphylococcus aureus* and the role of SarA and sigma B. *Proteomics* **1**: 480–493.

Ziebandt, A.K., Becher, D., Ohslen, K., Hacker, J., Hecker, M., and Engelmann, S. (2004) The influence of agr and sigmaB in growth phase dependent regulation of virulence factors in *Staphylococcus aureus*. *Proteomics* **4**: 3034–3047.

Supplementary material

The following supplementary material is available for this article online:

Table S1. Inter-strain conservation of proteins of unknown function.

This material is available as part of the online article from http://www.blackwell-synergy.com