Efficacy of cetuximab plus PD-1 inhibitor differs by HPV status in head and neck squamous cell carcinoma: a systematic review and meta-analysis

Siqi Zhang,1 Mengge Zheng,1 Deheng Nie,1 Lili Xu,2 Huimin Tian,1 Mengmeng Wang,3 Wenjia Liu,1 Zhenbang Feng,1 Fujun Han1

ABSTRACT

Background The addition of cetuximab significantly increased the antitumor effect of programmed cell death protein 1 (PD-1) inhibitors in recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). However, preliminary analyses suggested that human papillomavirus (HPV)-positive disease benefited less than HPV-negative disease. Therefore, we conducted a meta-analysis to assess whether the efficacy of the combination therapy varied according to HPV status in HNSCC.

Methods We identified clinical trials of patients with recurrent or metastatic HNSCC who received PD-1 inhibitor monotherapy or the combination therapy of cetuximab plus a PD-1 inhibitor. The participants were divided into four groups based on the type of therapy (combination vs monotherapy) and HPV status (positive vs negative). We focused on three comparisons (monotherapy vs combination therapy by HPV status, HPV-positive vs HPV-negative disease in combination therapy). The primary and secondary endpoints were objective response rate (ORR) and 1-year overall survival (OS) rate, respectively. The ORR and 1-year OS rate were pooled using random-effects models for each group and were compared for the different comparisons.

Results Overall, 802 patients from seven trials were eligible for the ORR assessment; of which, 684 patients received PD-1 inhibitor monotherapy and 118 patients underwent the combination therapy. Compared with PD-1 inhibitor monotherapy, the addition of cetuximab improved the ORR in HPV-negative disease (pooled ORR in monotherapy vs combination therapy: 15% vs 46%, p<0.001) but not in HPV-positive disease (17% vs 18%, p=0.686). The efficacy of adding cetuximab was consistent in HPV-negative disease (17% vs 18%, p=0.686) but not in HPV-positive disease (pooled ORR: 36% vs 59%, p<0.001) and in HPV-positive disease (40% vs 55%, p=0.252). After the combination therapy, HPV-positive disease had a significantly lower ORR than HPV-negative disease (odds ratio: 0.29, p=0.004), but no differences were shown in the 1-year OS rate.

Conclusions Our meta-analysis suggests that the addition of cetuximab to a PD-1 inhibitor is more effective compared with PD-1 inhibitor monotherapy only in patients with HPV-negative HNSCC. Despite the retrospective nature of this meta-analysis, these findings should help in designing relevant clinical trials rationally.

BACKGROUND

Head and neck squamous cell carcinomas (HNSCCs) are two etiologically distinct types of human papillomavirus (HPV)-negative and HPV-positive disease, respectively. The HPV-positive tumor occurs primarily in the oropharynx. The HPV status is tested using HPV gene detection (eg, in situ hybridization or PCR assay) or, more frequently, using p16 (a surrogate biomarker) immunohistochemistry. Programmed cell death protein 1 (PD-1) inhibitors (eg, pembrolizumab and nivolumab) and epidermal growth factor receptor (EGFR) inhibitors (eg, cetuximab) are US Food and Drug Administration (US FDA) approved agents for recurrent or metastatic HNSCC, irrespective of HPV status. Monotherapy of these agents is associated with modest response rates (pembrolizumab: 16%–18%,1–4 nivolumab: 13%,5,6 and cetuximab: 6%–13%).7

Cetuximab prevents EGFR signal transduction leading to the promotion of antigen presentation and the increase of immunotherapy efficacy in preclinical models.8 Therefore, prior exposure to or combination with cetuximab may impact the efficacy of PD-1 inhibitors. In a post hoc analysis of the phase III CheckMate 141 trial of nivolumab versus single agent chemotherapy in recurrent or metastatic HNSCC post-platinum therapy, the overall survival (OS) benefit of nivolumab appeared lower in patients with prior cetuximab exposure than in those without prior cetuximab exposure.9 Afterwards, the combination therapy of cetuximab with a PD-1 inhibitor was tested in two clinical trials in patients with recurrent or metastatic HNSCC, with both demonstrating a markedly improved antitumor effect.10,11 Post hoc analyses of the two trials showed that HPV-negative disease was associated with a more favorable response.
rate relative to HPV-positive disease. However, neither had been adequately powered nor designed to reveal the difference in the response rates by HPV status. We identified all related clinical trials and assessed whether the efficacy of the combination therapy was increased compared with PD-1 inhibitor monotherapy by HPV status and whether the efficacy of the combination therapy varied by HPV status for HNSCC.

METHODS

Study selection and data extraction
We searched PubMed, Web of Science, Embase, ClinicalTrials.gov, and Chinese databases (Database for Chinese Technical Periodicals, Wan Fang, and China National Knowledge Infrastructure) on April 1, 2022, for clinical trials of PD-1 inhibitor monotherapy or of the combination therapy of cetuximab plus a PD-1 inhibitor. The search criteria included key terms “MK-3475” OR “pembrolizumab” OR “Keytruda” OR “BMS-936558” OR “nivolumab” OR “Opdivo” AND “recurrent” OR “metastatic” AND “head and neck squamous cell carcinoma” OR “HNSCC” OR “SCCHN”. To identify trials for the combination therapy, the following keywords “cetuximab” OR “Erbitux” were added to the above search terms. No limits were applied to the search for language or date. In addition, we manually searched the references of the retrieved review and primary articles for complete coverage. If a trial was reported by several publications, we included the most recent results.

Clinical trials eligible for inclusion met the following criteria: (1) squamous cell carcinoma originating from the oral cavity, oropharynx, larynx, or hypopharynx; (2) the treatment regimen was PD-1 inhibitor monotherapy or the combination of cetuximab plus a PD-1 inhibitor; and the PD-1 inhibitor must be US FDA approved for HNSCC (pembrolizumab or nivolumab); and (3) the study provided objective response rate (ORR) according to HPV or p16 status or reported information to calculate these measures.

Two authors independently conducted the literature search, study selection, and data extraction. Discrepancies were resolved by reaching a consensus among the authors, with an additional reference to a third reviewer whenever necessary. The trial name; phase; the PD-1 inhibitor used; the number of patients; clinical endpoint; inclusion criterion; prior therapy; HPV status; the number of patients with complete response, partial response, stable disease, and progressive disease; time for assessment of response; criteria for the assessment of reported response; duration of follow-up; and 1-year OS rate were obtained from each study that was included.

Statistical analysis
The primary endpoint was ORR, including the complete and partial response. The secondary endpoint was the 1-year OS rate. Patients were categorized into four groups by both therapy (combination vs monotherapy) and HPV status (positive vs negative). We conducted three different comparisons including monotherapy vs combination therapy stratified by HPV status and HPV-positive versus HPV-negative disease in the combination therapy. Exact binomial distribution was used to compute the 95% CIs of the ORR for the groups in every trial included in the study. The ORR and 1-year OS rate for each group were combined using a random-effects model (the DerSimonian and Laird method), separately. A forest plot was constructed, including the overall effect, Cochran’s Q test, and I² statistics. The Cochran’s Q test and I² statistics were used to determine heterogeneity across the included trials, and I² values of 25%, 50%, and 75% were considered to indicate low, moderate, and high inconsistencies, respectively. The Cochran-Mantel-Haenszel test, stratified by the PD-1 inhibitor, was used to compare ORRs between the different comparisons. The results were presented as odds ratios (ORs) with the corresponding 95% CIs. The Breslow-Day test was conducted to assess the homogeneity among the trials. The test of interaction proposed by Altman and Bland was used to compare the 1-year OS rate between the different comparisons. The results were presented as the ratio of the 1-year OS rate with its corresponding 95% CIs. Statistical analyses were performed using the STATA V.14.0 program (Stata Corporation). Statistical significance was defined as a two-sided p value <0.05.

RESULTS

Seven trials were identified, including 978 patients after PD-1 inhibitor monotherapy or PD-1 inhibitor plus cetuximab combined therapy (trial selection process shown in figure 1). The primary endpoint was the ORR in two phase 1b and two phase 2 trials, 1-year OS rate in one phase 2 trial (two cohorts), and OS in two phase 3 trials. HPV status was mostly assessed by p16 immunohistochemistry in all the trials.

Of the 978 patients included in this meta-analysis, 802 (82%) patients were eligible for tumor response assessment. Five trials with 684 patients (206 p16-positive and 478 p16-negative) investigated PD-1 inhibitor monotherapy. Two trials (three cohorts) with 118 patients (51 p16-positive and 67 p16-negative) investigated the combination therapy, including 29 (24.6%) patients with prior exposure to either checkpoint inhibitor or cetuximab. The pooled ORR after PD-1 inhibitor monotherapy was 17% (95% CI 11% to 23%) and 15% (95% CI 12% to 18%) in patients with p16-positive and p16-negative disease, respectively. The pooled ORR after the combination therapy was 18% (95% CI 5% to 30%) and 46% (95% CI 34% to 58%) in patients with p16-positive and p16-negative disease, respectively (figure 2). Low and moderate heterogeneity was observed in the meta-analysis of the monotherapy and the combination therapy in p16-positive disease, respectively. There was a significant difference in the pooled ORR between PD-1 inhibitor
monotherapy and the combination therapy in patients with p16-negative disease (OR: 5.45, 95% CI 2.79 to 10.64, p<0.001, table 2), whereas no differences were detected in patients with p16-positive disease (1.19, 95% CI 0.51 to 2.74, p=0.686). After the combination therapy, patients with p16-positive disease had a significantly lower ORR compared with that of patients with p16-negative disease (0.29, 95% CI 0.13 to 0.68, p=0.004). The Breslow-Day test detected no heterogeneity.

Six trials with 712 patients were eligible for the survival analysis. Four trials with 591 patients (182 p16-positive and 409 p16-negative) investigated PD-1 inhibitor monotherapy. Two trials with 121 patients (52 p16-positive and 69 p16-negative) investigated the combination therapy. The pooled 1-year OS rate after PD-1 inhibitor monotherapy was 40% (95% CI 32% to 49%) and 36% (95% CI 32% to 41%) in the p16-positive and p16-negative cohorts, respectively. The pooled 1-year OS rate after the combination therapy was 55% (95% CI 30% to 81%) and 59% (95% CI 47% to 71%) in the p16-positive and p16-negative cohorts, respectively (figure 2). Moderate and high heterogeneity was observed in the meta-analysis of the monotherapy and the combination therapy in p16-positive disease, respectively. There was a significant difference in the pooled 1-year OS rate between PD-1 inhibitor monotherapy and the combination therapy in the p16-negative cohort (ratio of 1-year OS rate: 1.62, 95% CI 1.26 to 2.07, p<0.001, table 2), whereas no differences were detected in the p16-positive cohort (1.37, 95% CI 0.80 to 2.36, p=0.252). After the combination therapy, the 1-year OS rate was not different between the p16-positive and p16-negative cohorts (0.95, 95% CI 0.55 to 1.62, p=0.850).

**DISCUSSION**

To the best of our knowledge, this is the first meta-analysis to evaluate the effectiveness of combining cetuximab, an EGFR inhibitor, with a PD-1 inhibitor based on
### Table 1  Characteristics of included trials

| Trial identifier/name | Trial type | Therapy | No. of patients | Trial period | ORR | Inclusion criterion | HPV test | Median follow-up (months) |
|-----------------------|------------|---------|----------------|--------------|-----|---------------------|-----------|--------------------------|
| NCT03082534/not applicable<sup>2</sup> | Non-randomized, multicenter, phase 2 trial | Cetuximab+pembrolizumab | 33 | 2017–2019 | Primary endpoint, per RECIST 1.1 by investigators. | No previous immunotherapy or EGFR inhibition; platinum-resistant or platinum-ineligible. | Oropharyngeal tumors: (methods not specified) by local institution. Non-oropharyngeal tumors: HPV negative. | 7.3 (IQR: 3.9–10.9) |
| NCT03370276/not applicable Cohort A<sup>11</sup> | Non-randomized, multicenter, phase 1/2 trial | Cetuximab+nivolumab | 47<sup>*</sup> | 2017–2019 | Secondary endpoint, per RECIST 1.1 (not specified by investigators or central review). | Prior exposure to any systemic therapy including cetuximab or PD-1 inhibitors; platinum resistant. | p16 immunohistochemistry (no other information). | 32.1 |
| NCT03370276/not applicable Cohort B<sup>11</sup> | Non-randomized, multicenter, phase 2 trial | Cetuximab+nivolumab | 48† | Not report | Secondary endpoint, per RECIST 1.1 (not specified by investigators or central review). | No systemic therapy. | p16 immunohistochemistry (no other information). | 15.9 (95% CI 12.2 to 18.8)<sup>‡‡</sup> |
| NCT02105636/CheckMate 141<sup>2</sup> | Randomized, multicenter, phase 3 trial | Nivolumab versus single-agent systemic therapy | 240§ | 2014–2015 | Secondary endpoint, per RECIST 1.1 by investigators. | No previous immunotherapy; platinum resistant. | Oropharyngeal tumors: p16 immunohistochemistry by local institution. Non-oropharyngeal tumors: unknown HPV status. | ≥ 24.2<sup>¶</sup> |
| NCT02252042/KEYNOTE-040<sup>2</sup> | Randomized, multicenter, phase 3 trial | Pembrolizumab versus single-agent systemic therapy | 247†† | 2014–2016 | Secondary endpoint, per RECIST 1.1 by central review. | No previous immunotherapy; platinum resistant. | Oropharyngeal tumors: p16 immunohistochemistry by local institution. Non-oropharyngeal tumors: HPV negative. | 8.4 (range: 3.3–14.5) in the pembrolizumab group |
| NCT01848834/KEYNOTE-012<sup>2</sup> | Non-randomized, multicenter, phase 1b trial | Pembrolizumab | 60 hours‡‡ | 2013.6–2013.10 | Primary endpoint, per RECIST 1.1 by central review. | No previous immunotherapy. | Oropharyngeal tumors: mostly p16 immunohistochemistry by local institution. Non-oropharyngeal tumors: HPV negative. | 13 months (range: 1–26) |
| NCT01848834/KEYNOTE-012 expansion<sup>11</sup> | Non-randomized, multicenter, phase 1b trial | Pembrolizumab | 132§§ | 2014–2015 | Primary endpoint, per RECIST 1.1 by central review. | No previous immunotherapy. | Oropharyngeal tumors: mostly p16 immunohistochemistry by local institution. Non-oropharyngeal tumors: HPV negative. | 9 (IQR: 3–11) |

Continued
**Table 1 Continued**

| Trial identifier/name | Trial type | Therapy                        | No. of patients | Trial period | ORR       | Inclusion criterion                                                                 | HPV test                                                                 | Median follow-up (months) |
|-----------------------|-----------|--------------------------------|----------------|-------------|----------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------|
| NCT02255097/KEYNOTE-0553 | Non-randomized, multicenter, phase 2 trial | Pembrolizumab | 171          | 2014–2015   | Primary endpoint, per RECIST 1.1 by central review. | No previous immunotherapy; platinum-resistant; cetuximab-resistant. | Oropharyngeal tumors: mostly p16 immunohistochemistry by local institution. Non-oropharyngeal tumors: HPV negative. | 7 (range: 0–17) |

*Forty-three and 45 patients were evaluable for the ORR and the 1-year OS rate analysis, respectively.
†Forty-two and 43 patients were evaluable for the ORR and the 1-year OS rate analysis, respectively.
‡For patients including both cohort A and cohort B, and the duration of follow-up was not reported in the cohort B group.
§Among the 240 patients assigned to receive nivolumab monotherapy (121 to receive standard therapy), 120 patients were included for the ORR and the 1-year OS rate analysis, respectively.
**The relevant data was reported in the documents submitted to the European Medicines Evaluation Agency for approval.
††The 247 patients were assigned to receive pembrolizumab monotherapy.
‡‡Forty-two and 43 patients were evaluable for the ORR and the 1-year OS rate analysis, respectively.
¶¶168 patients were evaluable for the ORR and the 1-year OS rate analysis, respectively.
Ω, confidence interval; EGFR, epidermal growth factor receptor; HPV, human papillomavirus; IQR, interquartile range; ORR, objective response rate; PD-1, programmed cell death protein 1; RECIST v1.1, Response Evaluation Criteria in Solid Tumors, version 1.1.
The present analysis had several limitations. First, treatment lines were not uniform between the combination therapy groups and the PD-1 inhibitor monotherapy groups. Ninety (70.3%) out of the 128 patients received the combination therapy as the first-line treatment, whereas only 31 (3.7%) out of the 850 patients received the PD-1 inhibitor monotherapy as the first-line treatment. However, ORR did not differ between the various treatment lines in recurrent or metastatic HNSCC across the KEYNOTE trials: the ORR of pembrolizumab monotherapy was 17% in first-line treatment in KEYNOTE-048, 15% and 16% in second-line or beyond line treatment.

The PD-1 inhibitor monotherapy was the first-line treatment. However, ORR did not differ between the various treatment lines in recurrent or metastatic HNSCC across the KEYNOTE trials: the ORR of pembrolizumab monotherapy was 17% in first-line treatment in KEYNOTE-048, 15% and 16% in second-line or beyond line treatment.
in KEYNOTE-048 and KEYNOTE-055 respectively, and 18% in mixed-line treatment in both KEYNOTE-012 and KEYNOTE-012 expansion. Second, caution should be taken when interpreting the results of the 1-year OS rate analyses. A larger sample size is needed for the OS analysis than for the ORR analysis in a clinical trial. The sample size (n=121) of the two trials (three cohorts) of the combination therapy was unlikely to have sufficient power for a definite conclusion to be drawn from the analyses of the 1-year OS rate. In addition, there was moderate to high heterogeneity in the meta-analyses of the 1-year OS rate in HPV-positive disease. The small sample size prohibited any investigations on sources of heterogeneity. Nonetheless, the 1-year OS rate was 49% in the total population with any HPV status after the first-line treatment of pembrolizumab monotherapy in KEYNOTE-048, compared with the 1-year OS rate of 59% in the HPV-negative group after the combination therapy in our meta-analysis. Because 238 (79%) out of 301 patients had HPV-negative tumors in the pembrolizumab monotherapy group in KEYNOTE-048, the difference between the 1-year OS rates, at least in part, supported our findings that the addition of cetuximab was associated with a better 1-year OS rate than PD-1 inhibitor monotherapy in HPV-negative disease. Third, no clinical trials have been conducted to compare the efficacy of the combination therapy of cetuximab plus a PD-1 inhibitor with that of PD-1 inhibitor monotherapy; therefore, we conducted across-trial comparisons. Although across-trial comparisons are prone to bias, the tests of heterogeneity showed no significant heterogeneity in the analyses of ORR, thereby suggesting the reliability of these results. Finally, the present meta-analysis was based on summarized data instead of individual patient data. However, results from summarized data are generally in agreement with those from individual patient data.

Although clinical trials suggested a synergistic effect from cetuximab plus a PD-1 inhibitor compared with PD-1 inhibitor monotherapy in recurrent or metastatic HNSCC, preliminary analyses showed a more favorable response rate in HPV-negative disease than HPV-positive disease. Our meta-analysis confirms these results and furthermore showed that the combination therapy was likely to be effective in terms of response rate and 1-year OS rate only in patients with HPV-negative disease. These findings support that tumor HPV status should be an important consideration, for example, as a standard stratification factor, in future trials of cetuximab plus a PD-1 inhibitor in patients with HNSCC.

Acknowledgements We would like to thank Dr Hui Li from MSD China Medical Affair oncology team for critical comments on the manuscript.

Contributors SZ, MZ and DN contributed equally. SZ, MZ, DN, and FH wrote the manuscript; HT, MW, SZ, MZ, and DN collected related literature and extracted the data; SZ, MZ, DN, and LX performed the data analysis; WL and ZF helped in drafting figures; FH designed and guided this work. All authors reviewed and approved the manuscript.

Funding This work was supported by the Scientific and Technological Developing Scheme of Jilin Province (20200201603JC) and Jilin Province Medical and Health Talents Special Project (JLSWSRJC2021-110).

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information. Data were extracted from the references and were included in this article.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD Fujian Han http://orcid.org/0000-0003-2926-5398

REFERENCES

1. Cohen EEW, Soulilères D, Le Tourneau C, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet 2019;393:156–67.
2. Seiwert TY, Burtness B, Mehran R, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 2016;17:856–65.
3. Bauml J, Seiwert TY, Pfister DG, et al. Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: results from a single-arm, phase II study. J Clin Oncol 2017;35:1542–9.
4. Burtness B, Harrington KJ, Orel R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 2019;394:1915–28.
5. Ferris RL, Blumenschein G, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016;375:1856–67.
6. Ferris RL, Blumenschein G, Fayette J, et al. Nivolumab vs investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol 2018;81:45–51.
7. Seiwert TY, Fayette J, Cupissol D, et al. A randomized, phase II study of afatinib versus cetuximab in metastatic or recurrent squamous cell carcinoma of the head and neck. Ann Oncol 2014;25:1813–20.
8. Lizotte PH, Hong R-L, Luster TA, et al. A high-throughput Immune-Oncology screen identifies EGFR inhibitors as potent enhancers of antigen-specific cytotoxic T-lymphocyte tumor cell killing. Cancer Immunol Res 2018;6:1511–23.
9. Ferris RL, Licitra L, Fayette J, et al. Nivolumab in patients with recurrent or metastatic squamous cell carcinoma of the head and neck: efficacy and safety in CheckMate 141 by prior cetuximab use. Clin Cancer Res 2019;25:5221–30.
10. Sacco AG, Chen R, Worden FP, et al. Pembrolizumab plus cetuximab in patients with recurrent or metastatic head and neck squamous cell carcinoma: an open-label, multi-arm, non-randomised, multicentre, phase 2 trial. Lancet Oncol 2021;22:883–92.
11. Chung CH, Li J, Steuer CE, et al. Phase II multi-institutional clinical trial result of concurrent cetuximab and nivolumab in recurrent and/or metastatic head and neck squamous cell carcinoma. Clin Cancer Res 2022;28:2329–38.
12. Altman DG, Bland JM. Interaction revised: the difference between two estimates. BMJ 2003;326:219.
13. Chow LQM, Haddad R, Gupta S, et al. Antitumor activity of pembrolizumab in Biomarker-Untselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase IIb KEYNOTE-012 expansion cohort. J Clin Oncol 2016;34:3384–45.
14. Machiels J-PH, Haddad R, Fayette J, et al. Afatinib versus methotrexate as second-line treatment in patients with recurrent
or metastatic squamous-cell carcinoma of the head and neck progressing on or after platinum-based therapy (LUX-Head & Neck 1): an open-label, randomised phase 3 trial. *Lancet Oncol* 2015;16:583–94.

15 Fayette J, Wirth L, Oprean C, et al. Randomized phase II study of Duligotuzumab (MEHD7945A) vs. cetuximab in squamous cell carcinoma of the head and neck (MEHGAN study). *Front Oncol* 2016;6:232.

16 Kochanny SE, Worden FP, Adkins DR. A randomized phase II trial of the Met inhibitor tivantinib + cetuximab versus cetuximab alone in patients with recurrent/metastatic head and neck cancer. *Clin Oncol* 2015;33.

17 Rosenthal DI, Harari PM, Giralt J, et al. Association of human papillomavirus and p16 status with outcomes in the IMCL-9815 phase III registration trial for patients with locoregionally advanced oropharyngeal squamous cell carcinoma of the head and neck treated with radiotherapy with or without cetuximab. *J Clin Oncol* 2016;34:1300–8.

18 Vermorken JB, Psyrri A, Mesía R, et al. Impact of tumor HPV status on outcome in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck receiving chemotherapy with or without cetuximab: retrospective analysis of the phase III extreme trial. *Ann Oncol* 2014;25:801–7.

19 Vermorken JB, Stöhlmacher-Williams J, Davidenko I, et al. Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (spectrum): an open-label phase 3 randomised trial. *Lancet Oncol* 2013;14:697–710.

20 NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Head and Neck Cancers, Version 1.2021 - November 9, 2020

21 Kao H-F, Liao B-C, Huang Y-L, et al. Afatinib and pembrolizumab for recurrent or metastatic head and neck squamous cell carcinoma (alpha study): a phase II study with biomarker analysis. *Clin Cancer Res* 2022;28:1560–71.

22 Castellsague X, Alemany L, Quer M, et al. HPV involvement in head and neck cancers: comprehensive assessment of biomarkers in 3680 patients. *J Natl Cancer Inst* 2016;108:dvj403.

23 Steinberg KK, Smith SJ, Stroup DF, et al. Comparison of effect estimates from a meta-analysis of summary data from published studies and from a meta-analysis using individual patient data for ovarian cancer studies. *Am J Epidemiol* 1997;145:917–25.

24 European Medicines Agency. Amsterdam: European Union; c1995-2022 [cited 2022 Aug 20]. Assessment report EMA/543713/2018. Available: https://www.ema.europa.eu/en/documents/variation-report/keytruda-h-c-3820-ii-0042-epar-assessment-report-variation_en.pdf

25 Anderson JR, Bernstein L, Pike MC. Approximate confidence intervals for probabilities of survival and quantiles in life-table analysis. *Biometrics* 1982;38:407–16.