Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
A Markovian model for the spread of the SARS-CoV-2 virus

Luigi Palopoli a, Daniele Fontanelli b, Marco Frego c, Marco Roveri a, ∗

a University of Trento, Department of Information Engineering and Computer Science, Via Sommarive 9 - Povo, 38123 Trento (TN), Italy
b University of Trento, Department of Industrial Engineering, Via Sommarive 9, 38122 Povo (TN), Italy
c Free University of Bozen-Bolzano, Faculty of Science and Technology, via Volta 13 – NOI TechPark, 39100 Bolzano (BZ), Italy

A R T I C L E I N F O

Article history:
Received 28 January 2021
Received in revised form 25 October 2022
Accepted 20 January 2023
Available online 15 February 2023

Keywords:
Modeling and control of biomedical systems
Healthcare management
Stochastic systems
SARS-CoV-2 Virus

A B S T R A C T

We propose a Markovian stochastic approach to model the spread of a SARS-CoV-2-like infection within a closed group of humans. The model takes the form of a Partially Observable Markov Decision Process (POMDP), whose states are given by the number of subjects in different health conditions. The model also exposes the different parameters that have an impact on the spread of the disease and the various decision variables that can be used to control it (e.g., social distancing, number of tests administered to single out infected subjects). The model describes the stochastic phenomena that underlie the spread of the epidemic and captures, in the form of deterministic parameters, some fundamental limitations in the availability of resources (hospital beds and test swabs). The model lends itself to different uses. For a given control policy, it is possible to verify if it satisfies an analytical property on the stochastic evolution of the state (e.g., to compute probability that the hospital beds will reach a fill level, or that a specified percentage of the population will die). If the control policy is not given, it is possible to apply POMDP techniques to identify an optimal control policy that fulfills some specified probabilistic goals. Whilst the paper primarily aims at the model description, we show with numeric examples some of its potential applications.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

The catastrophic outbreak of the COVID-19 pandemic caused by the SARS-CoV-2 virus has recently brought to the attention of academia, decisions makers, and common people the importance of reliable models to predict and control the evolution of the disease. Far from being an academic exercise, such models are key to define policies that reduce the risk of spreading the virus, minimising the impact on the economy and on the quality of social life. To be up to the task, a model has to meet a few requirements. First, it shall capture the multi-faceted nature of human relations. Most of human interactions take place within a limited circle of people (family members, colleagues, friends), and yet our lives are punctuated by random encounters and accidental events. A realistic model has to account both for the regularity and for the elements of randomness of human relations. Second, the level of details shall be sufficient to expose the impact of all the different parameters affecting the spread of the virus (e.g., use of masks, number of intensive care beds), and of the commands (e.g., social distance, number of tests administered) used to control its evolution. Finally, the model shall be analytically tractable for the synthesis of control policies and the evaluation of various scenarios.

Paper Contribution. In this paper, we propose a stochastic model for the evolution of a COVID-19-like epidemic. The model describes the evolution of a population of subjects, each one allowed to be in eight different states. Such parameters, as the probability of contracting the infection during a single meeting with asymptomatic subjects (which is directly connected to the use of protective masks) or the number of available beds in intensive care facilities, are first class citizens in the model. Besides, the model exposes two of the decision variables useable to control the evolution of the disease: social interaction limits and number of tests. Since part of the states are directly observable and part are not, the model takes the form of a partially observable Markov Decision Problem (POMDP). Our model is control-oriented, in that it exposes the impact of the command decisions on the transition probabilities, and hence on the evolution of the epidemic. Its main areas of applications are two-fold. First, given a control policy (e.g., a decision to apply lock-down depending on the estimated number of people affected by the disease), it is possible to exactly
compute the probabilities and properties of interest, ranging from the probability that the deceased individuals will be beyond an acceptable threshold, to more general properties expressed in propositional temporal logic (Browne, Clarke, & Grümberg, 1988). Second, it is possible to synthesise control policies where such properties are respected by construction (Ahmadi, Jansen, Wu, & Topcu, 2020). Both goals can be fulfilled by using PRISM, STORM or similar tools.

Such methods are based on the study of the analytical evolution of the POMDP, therefore they are guaranteed to provide probabilistically correct results, insofar as the model is sufficiently close to the reality. Our primary effort in this paper has been towards modelling with a sufficient level of details such effects as the transition between the different states and the resource limitations (e.g., hospital beds or daily availability of tests). A potential price to pay for a detailed model is its level of mathematical tractability.

Indeed, our model remains tractable for groups having a population in the range of a few tens of people, which is the typical size of a circle of people that have daily interactions.

The study of larger populations using the presented model is possible in different ways. A first possibility, discussed in the related work section, is by exploiting some recent results on scalable techniques for MDP analysis and design (Haksar & Schwager, 2018; Nasir, Baig, & Rafiq, 2020). Another possibility is by using a small size population model to develop a policy with guaranteed properties, and then recover the result on a heuristic basis for larger populations verifying its efficacy through Monte Carlo simulations, as shown in this paper.

Related work. The first pioneering work on mathematical epidemiology dates back to Bernoulli (1760) with his study of smallpox models. However, most of the theory was developed only in the last century with the introduction of compartmental models (Kermack, McKendrick, & Walker, 1927). The idea of a compartmental model is to break down a population into several compartments. The simplest is the Susceptible–Infected–Recovered (SIR) model, used under the assumption that a recovered subject is not infected again (in the short-term), while the Susceptible–Infected–Recovered–Susceptible (SIRS) model is used when a recovered subject can be infected again. The migration of subjects between the different compartments is ruled by a set of Differential Algebraic Equations (DAE), that is a set of Ordinary Differential Equations (ODEs) connected by an algebraic relation (the sum of the cardinality of the compartments yields the population). The outbreak of the SARS epidemic in 2002–2003 sparked a new interest in these models (Allen et al., 2008; Brauer, Castillo-Chavez, & Feng, 2019), with the main goal of the researchers being a strategy to keep in check the evolution of the epidemic leveraging the control variables. The use of deterministic models paves the way for a number of interesting control theoretical results such as models with many compartments (Giordano et al., 2020), flow control (Blanchin, Franco, Giordano, Mardanlou, & Montessoro, 2016; Ghezzi & Picardi, 1997) and stability (Khanafa, Basar, & Gharesifard, 2016), policies for COVID-19 based on Optimal Control (OC) (Yousefpour, Jahanshahi, & Bekiros, 2020). These models have an important role in the identification of key epidemiological features that indicate the progress of the disease, such as the basic reproduction number. However, they are only a rough approximation of the reality because random factors naturally influence the evolution of an epidemic (Anderson & May, 1992). While deterministic models represent the mean disease dynamics, a much richer set of information can be derived from stochastic models. As an example, stochastic models may converge to a disease-free state even if the corresponding deterministic models converge to an endemic equilibrium (Anderson & May, 1992). In addition, stochastic models produce a variety of important information, such as the probability of an outbreak, the distribution of the final size of a population or the expected duration of an epidemic (Brauer et al., 2019; Sattenspiel, 1990).

Extensions of these models have been developed to account for stochastic fluctuations in some of the parameters (Ji, Jiang, Yang, & Shi, 2012; Liu, Yang, & Jiang, 2012), but even so, these models do not entirely capture the natural randomness inherent in the very way humans interact.

The SARS-CoV-2/COVID-19 pandemic has given another boost to the research in the area, highlighting the importance of statistical techniques to elaborate the massive amount of data daily collected in most of the countries affected by the pandemics, in order to support the decision making process and the definition of long-term policies. A notable example is the work of Zardini et al. (2021), where the authors apply statistical methods to quantify the probability of transition between different state of COVID-19-affected patients based on the age class. Another interesting example is a statistical study to evaluate the effects of lock-down policies in Italy after the outbreak of the pandemic (Riccardo, Ajelli, ANDrianou, et al., 2020). Although these methods use compartmental models, they cannot directly be used for control design or to verify closed-loop properties.

An important class of models amenable to analytical analysis are the ones that respect the so-called Markov property, which we generally define Markov Processes (Allen et al., 2008; Cassandras & Lafontune, 2009). When we observe the system in discrete-time, Markov Models are called discrete-time Markov chains (DTMC). In continuous-time, we talk about continuous-time Markov chain (CTMC). Contrary to other stochastic models such as Stochastic Differential Equations (SDE), Markov models (DTMC and CTMC) adopt a numerable state space composed of discrete variables. When command variables become part of the model, Markov chains morph into Markov Decision Processes (MDP). Since we observe the system at periodic intervals, the modelling technique adopted in this paper is based on discrete-time MDPs and, since not all states are directly observable (e.g., asymptomatic persons), we have a partially observable MDP (POMDP).

There are, historically, two paradigms for modelling a disease spread as a DTMC, the Reed–Frost model and the Greenwood model. They are called chain-binomial models because the transition probabilities are governed by binomial random variables. In these models, infectious (I) are indexed in generations capable of infecting susceptibles (S) for one generation after which they are not involved in the process. If the population has constant size \(N \), then the initial condition is \(S_0 + I_0 = N \) and \(S_{t+1} + I_{t+1} = S_t \), for times \(t = 0, 1, \ldots \). Hence \(S_t + \sum_{i=0}^{t} I_i = N \). The number of infectious at time \(t + 1 \) is given by a binomial random variable of parameters \(S_t \) and \(p(I) \) (the probability that a susceptible becomes infected if the infectious are \(I_t \)). The corresponding transition probability is given by the \(k \)th component of the Binomial probability mass function (pmf):

\[
P(I_{t+1} = k | S_t = x, I_t = y) = \binom{x}{k} p(I)^k (1 - p(I))^{x-k},
\]

which is trivially zero if \(k > x \). A difference between the Greenwood and the Reed–Frost models is that in the former \(p(y) = p \) is constant, while in the latter we have that \(p(y) = 1 - (1 - p)^y \), where \(p(1) \) is the probability that a susceptible is infected by one infective. Extensions of this model were presented by Gani and Jerwood (1971), Tuckwell and Williams (2007). As discussed in Section 3, the model adopted in this paper can be seen as a generalisation of the Reed–Frost model.
The use of stochastic models opens for the possibility to use Stochastic Model Checking in order to study probabilistic temporal properties to evaluate the effects of a strategy on a population during the evolution of a disease. As an example, Razzaq and Ahmad (2016) adapted a Susceptible–Exposed–Infectious–Recovered–Delayed–Quarantined (Susceptible/Recovered) CTMC model used to analyse the spread of internet worms using the PRISM model checker (Kwiatkowska, Norman, & Parker. Prism, 2011). The same tool was used to validate a model and to compute the minimum number of influenza hemagglutinin trimmers required for fusion to be between one and eight (Dobay, Dobay, Bantang, & Mendoza, 2011). Finally, Chauhan (2015) uses a stochastic simulation to compute timing parameters for a timed automaton, which is then verified against some temporal properties.

All the stochastic models mentioned are abstract and simplified. For instance, the use of three states (Susceptible, Infectious, Recovered) certainly makes the model tractable, but does not provide enough details on the parameters and the command variables influencing the evolution of the disease. Another simplification frequently adopted to make the model tractable by model checkers is to enforce that only one subject can change her/his state across one transition (which is unrealistic), or to avoid the possibility of defining command variables. Only recently have more sophisticated models emerged. An interesting example is the work of Viet et al. (2018), in which the authors use an MDP to model the spread of the Porcine Reproductive and Respiratory Syndrome (PPRS) and use it to synthesise a regional policy for its containment. A similar attempt has been made also for the SARS-CoV-2 by Nasir et al. (2020). The authors consider a segmented model for the population and model its evolution via a MDP with the purpose of synthesising an optimal policy for vaccination, hospitalisation and quarantine. The model is largely simplified and the paper omits any discussion on the computation of the transition probability as a function of the policy, which is essential for the definition of the MDP. Our work lies in this line of research. As in Nasir et al. (2020), we show how to construct a MDP describing the SARS-CoV-2 epidemics using a segmented model for the population, but our model is very detailed and contains an exhaustive discussion on how to compute the transition probabilities and on how to use the model for control design and analysis. Very interestingly, Nasir et al. (2020) discuss in alarming terms the problem of scalability of epidemic models based on MDPs. The technique that they suggest to deal with large populations is by abstraction, i.e., by considering a unit of population in the model as the representative of a number of people. This is essentially equivalent to a process of quantisation in which the accumulated error can be controlled and shown to be tolerable, for practical purposes. Clearly, the same line of reasoning potentially applies to the model presented in this paper.

Another interesting technique to address the problem of scalability has been recently suggested by Haksar and Schwager (2018) and is based on Graph Based MDPs. The authors consider a network of similar MDPs (i.e., MDP governed by the same update rules) that interact with their neighbours following a graph topology. By exploiting symmetry and the graph topologies, the authors show that the design of a sub-optimal policy for the MDPs can be achieved by approximate linear programming. This technique could be applied in our context considering the model proposed in this paper as the nodes of the graph.

Paper Organisation The paper is organised as follows. After introducing notation and definitions in Section 2, we describe the proposed stochastic model in Section 3, with the transition probabilities and computational remarks on the complexity of the model. The model checking techniques for the problem at hand and some numeric results to illustrate the potential application of the proposed model are reported in Section 4. Finally, Section 5 presents the discussion about the model and describes the lines of future work. In Appendix, related to the computational complexity, we propose also a simplified model that may be used for computational efficiency.

2. Definitions and notations

We model a population as a stochastic discrete-time system with a finite state. The evolution is observed at discrete time k and each subject can belong to one of eight possible states. We take into account the usual classes of susceptible, infected, recovered (SIR), the asymptomatic subjects A (i.e., a group of infected people that do not exhibit symptoms but are infective), hospitalised O and dead D people and we further add the group of people that recover from an asymptomatic state R and the case of swab-tested people, that are quarantined (Q) if they result positive. The subjects who are in a state at step k will be denoted by a calligraphic letter (e.g., S_k is the set of susceptible subjects). The table in Fig. 1 reports the symbols used to denote the different sets, their cardinality (e.g., S_k is the cardinality of S_k) and the different probabilities governing the transition of a subject between the different sets. Notice that, in order for the systems to be consistently defined, the following constraints shall hold on the probabilities: $C_{\beta,\delta} := (1 - \beta - \delta) \geq 0$, $C_{\psi,\xi} := (1 - \beta - \psi - \delta) \geq 0$, $C_{\sigma,\xi} := (1 - \sigma - \xi) \geq 0$, and $C_{\psi,\upsilon} := (1 - \psi - \upsilon - \delta) \geq 0$. These constraints will be used in the rest of the paper to prove the theorems. In our model two deterministic variables M and t are used as control variables, which represent respectively the number of meetings allowed in each period and the number of tests administered. In addition, two deterministic parameters (N, C) are demographic parameters related to the size of the population and to the availability of hospital beds. The other parameters are probabilities. For instance ω represents the probability for a subject to contract the infection in one meeting. Such probabilities depend on many factors (e.g., use of masks, masks, and some numeric results to illustrate the potential application of the proposed model are reported in Section 4. Finally, Section 5 presents the discussion about the model and describes the lines of future work. In Appendix, related to the computational complexity, we propose also a simplified model that may be used for computational efficiency.

2. Definitions and notations

We model a population as a stochastic discrete-time system with a finite state. The evolution is observed at discrete time k and each subject can belong to one of eight possible states. We take into account the usual classes of susceptible, infected, recovered (SIR), the asymptomatic subjects A (i.e., a group of infected people that do not exhibit symptoms but are infective), hospitalised O and dead D people and we further add the group of people that recover from an asymptomatic state R and the case of swab-tested people, that are quarantined (Q) if they result positive. The subjects who are in a state at step k will be denoted by a calligraphic letter (e.g., S_k is the set of susceptible subjects). The table in Fig. 1 reports the symbols used to denote the different sets, their cardinality (e.g., S_k is the cardinality of S_k) and the different probabilities governing the transition of a subject between the different sets. Notice that, in order for the systems to be consistently defined, the following constraints shall hold on the probabilities: $C_{\beta,\delta} := (1 - \beta - \delta) \geq 0$, $C_{\psi,\xi} := (1 - \beta - \psi - \delta) \geq 0$, $C_{\sigma,\xi} := (1 - \sigma - \xi) \geq 0$, and $C_{\psi,\upsilon} := (1 - \psi - \upsilon - \delta) \geq 0$. These constraints will be used in the rest of the paper to prove the theorems. In our model two deterministic variables M and t are used as control variables, which represent respectively the number of meetings allowed in each period and the number of tests administered. In addition, two deterministic parameters (N, C) are demographic parameters related to the size of the population and to the availability of hospital beds. The other parameters are probabilities. For instance ω represents the probability for a subject to contract the infection in one meeting. Such probabilities depend on many factors (e.g., use of masks, masks, and some numeric results to illustrate the potential application of the proposed model are reported in Section 4. Finally, Section 5 presents the discussion about the model and describes the lines of future work. In Appendix, related to the computational complexity, we propose also a simplified model that may be used for computational efficiency.

Sets

- $S_k = |S_k|$ N. of susceptible sub S_k at step k.
- $A_k = |A_k|$ N. of asymptomatic sub A_k at step k.
- $I_k = |I_k|$ N. of symptomatic sub I_k at step k.
- $R_k = |R_k|$ N. of recovered sub R_k at step k.
- $R_{nk} = |R_{nk}|$ N. of asympt. recovered sub. R_{nk} at step k.
- $O_k = |O_k|$ N. of hospitalised sub. O_k at step k.
- $D_k = |D_k|$ N. of deceased sub. D_k at step k.
- $Q_k = |Q_k|$ N. of quarantined sub. Q_k at step k.
- $Q_k^{(R)} = |Q_k^{(R)}|$ N. of quarantined sub. recovered $Q_k^{(R)}$ at step k.

Deterministic Parameters

- N Total number of subjects,
- C Available beds in hospital facilities.

Probabilistic Parameters

- ω Prob. to contract the infection in one meeting,
- β Prob. for an infectious sub. to recover,
- δ Prob. for an asympt. sub. to develop symptoms,
- μ Prob. for a symptomatic sub. to recover,
- α Prob. for a symptomatic sub. to die,
- σ Prob. for a hospitalised sub. to die,
- ξ Prob. for a hospitalised sub. to recover,
- ψ Prob. for a tested infectious sub. to be positive,
- υ Prob. for a symptomatic sub. to be hospitalised,
- ν Prob. that a quarantined sub. develop symptoms,
- ι Prob. that a quarantined sub. recovers.

Command Variables

- M Num. of people met by any subject*,
- t Num. of people tested*.

Fig. 1. Summary of symbols. *Can be variable with the state.
vaccination) and can be estimated by means of statistics, such as the one presented by Zardini et al. (2021). In the rest of the paper, we consider that the binomial coefficient \(\binom{n}{k} \) for generic \(a \geq 0 \) and \(b \geq 1 \) is equal to 0 when \(a = b = 0 \). Moreover, we recall the definition of the following quantities: (a) the dispositions counting the different ways of arranging \(k \) items from a set of \(n \) elements denoted with \(\binom{n}{k} = \frac{n!}{k!(n-k)!} \); (b) the permutations of \(n \) elements \(\mathcal{P}_n = n! \). Therefore, the binomial coefficient is defined as \(\binom{n}{a} = \frac{\mathcal{P}_b}{\mathcal{P}_a} \) and the multinomial coefficient (i.e., the permutations with repetitions obtained computing all the permutations of \(n \) elements taken from \(k \) sets with \(n_1, n_2, \ldots, n_k \) elements with \(n = \sum_{i=1}^{k} n_i \) is defined as \(\mathcal{M}_{n,n_1,n_2,...,n_k} = \frac{n!}{n_1!n_2!...n_k!} \).

3. Extended SIAROD Markov model

In this section we discuss our Markov model representing the spread of a COVID-19-like infection. We will make the following assumptions that reflect the best knowledge currently available on COVID-19 and on its management: (1) if a tested subject is found infectious, she/he becomes quarantined and is isolated from other people until recovery (or death), (2) quarantined persons are constantly monitored; (3) persons that are recovered cannot be re-infected by the virus in the short period. The first two assumptions are pretty natural and are typically enshrined within the regulation of most of the COVID-19-affected countries. The third one restricts our analysis to an interval of time in which virus variant forms do not materialise. Furthermore, we do not consider other external death causes, and that there are no false positives for the test outcomes. Should this assumption be invalidated, the results of our analysis would be conservative in terms of the probability of deaths and therefore acceptable. The possible states of a subject are the ones depicted in Fig. 2. Since we are observing the system at discrete-time and, under the assumptions made, the number of people in each state determines the evolution of the population regardless of how this configuration has been reached, our system can be conveniently modelled as a discrete-time Markov chain. The state of the Markov chain will be associated with the 8-tuple collected in the following vector

\[
\mathbf{v} = [S_k, A_k, I_k, R_k, O_k, D_k, Q_k, R_{ak}]^T,
\]

where the values of all the different quantities are non-negative integers representing the cardinality of their respective sets (see Fig. 1). The elements of the set are bound to respect the following constraints:

\[
S_k + A_k + I_k + R_k + R_{ak} + Q_k + O_k + D_k = N,
\]

\[
O_k \leq C,
\]

that is, the population cardinality is constant, and the number of hospitalised people is limited by a (positive) capacity \(C \). We assume that the presence of a virus can be detected either if the subject starts to develop symptoms of the disease or when the subject is tested positive. The subject can be traced in all the states in which the presence of the virus has been diagnosed: \(Q, X, O, D, R \). Such states are observable. On the contrary, since it is not possible to distinguish a subject who is susceptible, asymptomatic or recovered without having developed symptoms, the states \(S, A, R_{ak} \) are not observable. In the rest of this section, we show how to compute the transition probability:

\[
\Pr \{ \mathbf{v}_{k+1} = \mathbf{v'} | \mathbf{v}_k = \mathbf{v} \},
\]

where \(\mathbf{v} \) and \(\mathbf{v'} \) are (respectively) the state vector values before and after the transition. Let

\[
\Delta \mathbf{v} = \mathbf{v'} - \mathbf{v} = [\Delta S, \Delta A, \Delta I, \Delta R, \Delta Q, \Delta D, \Delta O, \Delta R_{ak}]^T
\]

and consider Fig. 2, where, by the notation \(\Delta_i \), we denote the flows of subjects between the different states (e.g., \(\Delta_I \) is the number of susceptible subjects who become infected). Each \(\Delta_i \) is a number defined in the set \(D = \{0, N\} \cap \mathbb{N} \). Thereby, we define a new vector \(\Delta = [\Delta_1, \ldots, \Delta_8] \) whose components respect the balance equations (4), labelled by \(B_i \) for \(i = 1, \ldots, 8 \) and collectively denoted as \(B \):

\[
B_1 : -\Delta_1 = \Delta_S,
\]

\[
B_2 : \Delta_1 - \Delta_2 - \Delta_3 - \Delta_9 = \Delta_A,
\]

\[
B_3 : \Delta_1 + \Delta_2 - \Delta_3 - \Delta_4 - \Delta_6 = \Delta_I
\]
B_1 : \Delta_1 \leq \Delta_k , \quad \Delta_2 + \Delta_3 + \Delta_9 \leq \Delta_k , \quad \Delta_4 + \Delta_5 + \Delta_8 \leq \Delta_k , \quad \Delta_7 + \Delta_8 \leq \Delta_k.

They ensure that the number of subjects remaining in the sets \(\mathcal{S}_k \), \(\mathcal{A}_k \), \(\mathcal{T}_k \), \(\mathcal{C}_k \) and \(\mathcal{Q}_k \) is always non-negative. These constraints are not necessary for the absorbing sets \(\mathcal{R}_k \), \(\mathcal{R}_k \) and \(\mathcal{R}_k \).

We denote by \(l(\cdot) \) an assignment of variables: \(\Delta_1 = \delta_1 \), for \(i = 1, \ldots, 11 \). For an assignment of variable \(l(\cdot) \) we use \(l(\cdot) \models \psi \) to mean that the assignment \(l(\cdot) \) satisfies formula \(\psi \). We say that an assignment is feasible if it satisfies the Eqs. (4).

For instance, \(l(\Delta_1 = \delta_1, \Delta_2 = \delta_2, \Delta_3 = \delta_3) \models B_2 \) means that the assignment \(\delta_1, \delta_2, \delta_3 \) to the variables \(\Delta_1, \Delta_2, \Delta_3 \) satisfies balance equation \(B_2 \). Likewise, \(\Delta \models B \) we mean that the vector \(\Delta = [\Delta_1, \ldots, \Delta_{11}]^T \) respects all the balance equations.

It is easy to re-write the definition of the transition probability (3) as follows:

\[
\Pr[\{V_{k+1} = v | V_k = v\}] = \Pr[\{l(\cdot) \models B | V_k = v\}].
\]

(6)

For notational simplicity, we assume that \(V_k \) has been assigned to a particular value \(v \) and use the following notation: \(\Pr[\{l(\cdot) \models B | V_k\}] \) as a shorthand for (3). Before stating and proving the theorem that allows us to compute the transition probability (6), let us introduce the following notations:

- \(l_2 \) is a function linking the variables \(\Delta_2, \Delta_3 \) and \(\Delta_9 \) (with the variable \(\Delta_5 \) obtained via equation \(B_2 \), and the variable \(\Delta_3 \) obtained via equation \(B_3 \)), defined as:
 \[
l_2: (\Delta_2 = \delta_2, \Delta_3 = \delta_3, \Delta_9 = -\Delta_3 - \Delta_8 - \Delta_9 - \delta_3);
\]
- \(l_1 \) is a function linking \(\Delta_4, \Delta_5, \Delta_6 \) and given by:
 \[
l_1: (\Delta_4 = \delta_4, \Delta_5 = \delta_5, \Delta_6 = \delta_6);
\]
- \(l_0 \) is an assignment linking the remaining variables defined as:
 \[
l_0: (\Delta_7 = \Delta_8 = \delta_7, \Delta_8 = \delta_8 - \Delta_7 - \Delta_8 - \Delta_9 - \delta_9);
\]
- \(l_1 \) is finally, assigns \((\Delta_2 = \delta_2, \Delta_3 = \delta_3, \Delta_9 = \delta_9)\).

We are now able to express (6) in a computable form.

Theorem 1. The transition probability (6) is rewritten as

\[
\Pr[\{l(\Delta) \models B | V_k = v\} = \Pr[\{l(\cdot) \models B | V_k \} = \sum_{l_2 \models B} \Pr[l_2(V_k \wedge l_1)] \sum_{l_1 \models B} \Pr(l_1(V_k \wedge l_2)}.
\]

(7)

Proof. By applying the theorem of total probability in the conditioned case to (6), we have:

\[
\Pr[\{l(\Delta) \models B | V_k = v\} = \sum_{l_2 \models B} \Pr[l_2(V_k \wedge l_1)] \sum_{l_1 \models B} \Pr(l_1(V_k \wedge l_2)}.
\]

From the first balance equation (4), we observe that

\[
l(\Delta_1) \models B \implies (\Delta_1 = \delta_1) \models B_1 \implies \delta_1 = -\Delta_5.
\]

When \(\delta_1 \neq -\Delta_5 \), it implies that

\[
\Pr[\{l(\Delta) \models B | V_k \wedge l_1 = l_2 \} = 0.
\]

which makes all the terms in the summation vanish but the term \(\Delta_1 = -\Delta_5 \). Applying the above introduced shorthand \(l_1 \), the transition probability is equal to

\[
\Pr[\{l(\Delta) \models B | V_k \wedge l_1 = l_2 \} = \Pr[l_1(V_k \wedge l_2)}.
\]

(8)

We can then iterate the application of the total probability theorem on the first term of (8) as follows

\[
\sum_{l_2 \models B} \Pr[l_2(V_k \wedge l_1 \wedge l_2) \cdot \Pr[l_2(V_k \wedge l_1 \wedge l_2)}.
\]

We can again observe that the triple summation is only apparent, since for the terms that do not satisfy \(B_2 \), that is, \((\Delta_1 = \delta_1, l_2) \not\models B_2 \), it holds that

\[
\Pr[\{l(\Delta) \models B | V_k \wedge l_1 \wedge l_2 \} = 0.
\]

As in the previous case, considering the second balance equation (4), we have introduced the shorthand \(l_2 \) which simplifies the notation for the above term to:

\[
\Pr[\{l(\Delta) \models B | V_k \wedge l_1 \wedge l_2 \} = \sum_{l_2 \models B} \Pr[l_2(V_k \wedge l_1 \wedge l_2) \cdot \Pr[l_2(V_k \wedge l_1 \wedge l_2)}.
\]

(6)
We can apply once again the theorem of total probability and enforce the validity of B_k in shorthand I_k:

$$
\Pr \left\{ \mathcal{I} \right\} = B \{ V_k \land I_1 \land I_2 \} \\
= \sum_{\delta_4=0}^{1} \sum_{\delta_3=0}^{1} \sum_{\delta_2=0}^{1} \Pr \left\{ I_3 \mid V_k \land I_1 \land I_2 \right\} .
$$

Our last iteration of the theorem of total probability that enforces the validity of B_k, B_k and B_k by means of the shorthand I_k, leads to:

$$
\Pr \left\{ \mathcal{I} \right\} = B \{ V_k \land I_1 \land I_2 \} = \sum_{\delta_3=0}^{1} \Pr \left\{ I_3 \mid V_k \land I_1 \land I_2 \land I_3 \right\} .
$$

It is easy to observe that $V_k \land I_1 \land I_2 \land I_3 \land I_4$ is a certain event, thus

$$
\Pr \left\{ \mathcal{I} \right\} = B \{ V \land I_1 \land I_2 \land I_3 \land I_4 \} = 1,
$$

which leads us to the final simplification and yields the theorem. □

In the following sections we will report the computations of the different probabilities that appear in (7).

3.1. Probability that a susceptible becomes infectious

A first step towards the computation of the different components of (7) is to compute the probability that a susceptible subject becomes infectious. To this end, we first introduce the following useful auxiliary events (the negated events are in parentheses) taking place at time k:

$${c_k}(\mathcal{T}_k) \quad \text{A subject meets one person and (does not) contracts the infection,}
\quad
{m_k}(\mathcal{M}_k) \quad \text{A subject meets one person and he/she is (not) infectious,}
\quad
{g_k}(\mathcal{G}_k) \quad \text{A person (does not) becomes infected after meeting an infectious person.}
$$

Hence, the event g_k can be defined as $g_k = \{ p \in S_k \land p \in A_k \}$, where p is a generic person. Since each subject has M different meetings during time k, we have

$$
\Pr \left\{ g_k \mid V_k \right\} = 1 - \Pr \left\{ \mathcal{C}_k \lor \mathcal{V}_k \right\} .
$$

The probability of contracting the infection is the complementary probability of remaining healthy after M meetings. It can be observed that a person remains healthy after one meeting either if the person met is herself healthy or if she is infectious but the infection is not transmitted in the meeting, i.e. $\mathcal{C}_k = \mathcal{M}_k \lor (\mathcal{M}_k \land \mathcal{C}_k)$. Thereby,

$$
\Pr \left\{ \mathcal{C}_k \mid V_k \right\} = \Pr \left\{ \mathcal{M}_k \lor (\mathcal{M}_k \land \mathcal{G}_k) \mid V_k \right\}
= \Pr \left\{ \mathcal{M}_k \mid V_k \right\} + \Pr \left\{ \mathcal{M}_k \land \mathcal{G}_k \mid V_k \right\}
= \Pr \left\{ \mathcal{M}_k \mid V_k \right\} + \Pr \left\{ \mathcal{G}_k \mid V_k \right\} \Pr \left\{ \mathcal{M}_k \mid V_k \right\} .
$$

Assuming a uniform distribution in the meetings across the different classes of subjects and recalling that $\Pr \left\{ \mathcal{M}_k \land \mathcal{V}_k \right\} = 1 - \omega$, we have:

$$
\Pr \left\{ \mathcal{C}_k \mid V_k \right\} = \frac{S_k + R_k + R_{\omega}}{N - D_k - I_k - O_k - Q_k} \left(1 - \omega \right)
+ \frac{A_k \left(1 - \omega \right)}{N - D_k - I_k - O_k - Q_k}
= 1 - \omega \frac{A_k}{N - D_k - I_k - O_k - Q_k} .
$$

where we applied (2). Therefore

$$
\Pr \left\{ g_k \mid V_k \right\} = 1 - \left(1 - \omega \frac{A_k}{N - D_k - I_k - O_k - Q_k} \right)^M
$$

3.2. Probability that a number of infected subjects are identified and quarantined

In our setting, t_k tests are administered to a set of subjects in the set $A_k = A_k \cup S_k \cup R_{\omega}$, i.e. on the population that is not in the known set $Q_k \cup T_k \cup R_k \cup D_k \cup O_k$.

Let the event $s_{[H]}$ be defined as: "H people are tested positive, given the state V_k." Assuming that each subject can be tested only once at time k (which implies $t_k \leq N_k = \left| A_k \right|$), our goal is to find the probability $\Pr \left\{ s_{[H]} \right\}$.

To this end, we first recall (1) and, by defining the event a_k "p infected subjects are tested", we immediately have that the probability that H subjects are found positive given that $p \in \{0, \ldots, A_k\}$ infected subjects are tested, is given by

$$
\Pr \left\{ H \mid a_k \right\} = B(p, g) .
$$

We are now in a position to prove the following theorem.

Theorem 2. Given $t_k \leq N_k = A_k + S_k + R_{\omega}$ and $H \leq t_k$, we have that

$$
\Pr \left\{ s_{[H]} \right\} = \left(N_k \right)_H \sum_{p=0}^{t_k} \left(S_k + R_{\omega} \right) \left(A_k \right)_p B(p, g) .
$$

Proof. The probability $\Pr \left\{ s_{[H]} \right\}$ is given by the sum of disjoint events (Total Probability Law) that enumerates all the possibilities of testing at most t_k infected in the set A_k, i.e. $\Pr \left\{ s_{[H]} \right\} = \sum_{p=0}^{t_k} \Pr \left\{ a_k \mid \Pr \left\{ H \mid a_k \right\} \right\}$, where $\Pr \left\{ H \mid a_k \right\}$ is given in (11). To determine $\Pr \left\{ a_k \right\}$, we first consider the number p as the "number of infected people tested at time k". Hence, we have that the probability of one possible sequence having exactly p infected people tested is equal to: the number of the different ways of arranging $t_k - p$ people from the negative set of people $S_k \cup R_{\omega}$ times the number of the different ways of arranging p people from the positive set of people A_k divided by the number of the different ways of arranging t_k people from the overall set of people N_k, i.e.

$$
\frac{D_{S_k + R_{\omega}} \cdot t_k - p \cdot D_{A_k} \cdot p}{D_{N_k} \cdot t_k} .
$$

This number has to be multiplied by the number of all the possible different sequences, which is given by all the permutations of t_k elements taken from the two sets with $t_k - p$ and p elements, i.e., $\left(\begin{array}{c} t_k \end{array} \right)$.

By substituting the definitions given previously, we have that

$$
\Pr \left\{ a_k \right\} = \frac{D_{S_k + R_{\omega}} \cdot t_k - p \cdot D_{A_k} \cdot p}{D_{N_k} \cdot t_k} \left(\begin{array}{c} t_k \end{array} \right) \frac{p}{t_k - p} \left(A_k \right)_p \left(S_k + R_{\omega} \right) \left(t_k - p \right) .
$$

Hence the proof follows. □

3.3. Probability of a state change

Instrumental to the construction of the transition matrix is to compute the probability that a given number of subjects simultaneously change their state, i.e. the different factors in Eq. (7) of Theorem 1. Considering Fig. 2, such probabilities are discussed next.

Transition from State S. The probability of the event "exactly A_1 susceptible subjects become infected at step k given the state
\(\mathbf{V}_k \) and a choice for \(M^* \) is approximated by \(\mathbf{E}(S_k, \Pr(\mathbf{g}_k | \mathbf{V}_k)M) \). Hence, the probability of the assignment \(l_1 \) is approximated by
\[
\Pr \{ l_1 | \mathbf{V}_k \} = \mathbf{E}(S_k, \Pr(\mathbf{g}_k | \mathbf{V}_k)M) - C_{\beta, \delta}.
\] (12)

Transition from State \(A \). Consider the event \(r_{2, \delta_1, \delta_2} \) defined as "exactly \(\delta_1 \) asymptomatic infected subjects recover at step \(k \) without being quarantined, \(\delta_2 \) subjects become symptomatic and \(\lambda_5 \) out of \(\tau_k \) are tested positive and become quarantined given the state \(\mathbf{V}_k^* \)." Let \(\rho^E(\delta_2, \delta_3, \mathbf{V}_k) \) be the probability of this event given \(\mathbf{V}_k \) and \(\tau_k \). Instrumental to the computation of this probability, the following theorem proves useful.

Theorem 3. Let \(\rho(\delta_2, \delta_3, \mathbf{V}_k) \) be the probability of the event \(\text{"exactly } \delta_1 \text{ asymptomatic infected subjects recover at step } k \text{ and } \delta_2 \text{ subjects become symptomatic."} \) Hence, \(\rho(\delta_2, \delta_3, \mathbf{V}_k) = 0 \) if \(\delta_2 + \delta_3 > A_k \), otherwise
\[
\rho(\delta_2, \delta_3, \mathbf{V}_k) = M_{A_k, \delta_2, \delta_3} F^{\delta_2} \delta_{\nu_1}^{\delta_2 - \delta_3}. \]

Proof. In order to define \(\rho(\delta_2, \delta_3, \mathbf{V}_k) \) by using a combinatorial approach, we first need to compute all the possible combinations of \(\delta_2 + \delta_3 \) subjects out of the set \(A_k \), which is given by the multinomial \(M_{A_k, \delta_2, \delta_3} = \binom{A_k}{\delta_2, \delta_3} \). Then, recalling that \(\beta \) is the probability for an infectious asymptomatic subject to recover, we have that the probability that exactly \(\delta_3 \) subjects recover is given by \(\beta^{\delta_3} \). Similarly, since \(\delta \) is the probability for an asymptomatic subject to develop symptoms, we have that the probability that exactly \(\delta_2 \) subjects recover is given by \(\delta^{\delta_2} \). Finally, given \(C_{\beta, \delta} \geq 0 \) defined in Section 2, the probability that exactly \(\delta_2 - \delta_3 \) subjects do not recover nor develop symptoms, is immediately given by \(C_{\beta, \delta}^{\delta_2 - \delta_3} \). Therefore
\[
\rho(\delta_2, \delta_3, \mathbf{V}_k) = M_{A_k, \delta_2, \delta_3} F^{\delta_2} \delta_{\nu_1}^{\delta_2 - \delta_3}. \]

Notice that, when \(\delta_2 + \delta_3 > A_k \), we have by definition that \(M_{A_k, \delta_2, \delta_3} = 0 \), which concludes the proof. \(\square \)

We can now show the probability of the event \(r_{2, \delta_1, \delta_2}^E(\mathbf{V}_k) \).

Theorem 4. The probability \(\rho_{2}^E(\delta_2, \delta_3, \lambda_5, \mathbf{V}_k) \) is zero in the trivial conditions given by
\[
\rho_{2}^E(\delta_2, \delta_3, \lambda_5, \mathbf{V}_k) = \sum_{H=0}^{A_k} \Pr \{ \mathbf{S}_t \} \sum_{i=0}^{A_i} \Pr \{ \mathbf{S}_t, \mathbf{V}_k | M \} \left(A_k + \delta_3 + F \right)^{-1} K, \] (13)
where
\[
K = \binom{\delta_3 + F}{\delta_3 + F} \left(A_k - (\delta_2 + \delta_3 + F) \right)^{-1} \binom{\delta_2 + \delta_3 + F}{\delta_2 + \delta_3 + F} \left(H - \lambda_5 \right). \] (14)

Proof. Recalling the definition of the event \(\mathbf{S}_t \) (i.e., \(H \) subjects are tested positive given the state \(\mathbf{V}_k \)), thus, conditioning over \(\mathbf{S}_t \), we have
\[
\rho_{2}^E(\delta_2, \delta_3, \lambda_5, \mathbf{V}_k) = \Pr \{ r_{2, \delta_1, \delta_2}^E(\mathbf{V}_k) \} = \sum_{H=0}^{A_k} \Pr \{ \mathbf{S}_t \} \Pr \{ r_{2, \delta_1, \delta_2}^E(\mathbf{V}_k) | \mathbf{S}_t \}, \]
where the first equality follows by definition. Introduce the event \(r_{2, \delta_1} \), described as "exactly \(\delta_1 \) asymptomatic infected subjects recover at step \(k \) and \(\delta_2 \) subjects become symptomatic given the state \(\mathbf{V}_k \)." which, according to Theorem 3, has probability \(\rho(\delta_2, \delta_3, \mathbf{V}_k) \). It is important to observe that the \(\delta_2 \) subjects will entirely move to state \(I \), while among the \(\delta_3 \) subjects, \(\delta_3 \) that are not tested positive move to the state \(\mathbf{R}_n \), whilst
\[F = \bar{\delta}_3 - \delta_3 \text{ are tested positive and move to the state } Q. \]
The number of the subjects \(F \) that recover and that are tested positive ranges from 0 to \(\min(\bar{\delta}_3, \lambda_5) \), with \(\lambda_5 \) the positive tested out of \(\tau_k \). Thereby,
\[
\Pr \{ r_{2, \delta_1, \delta_2}^E(\mathbf{V}_k) \} = \sum_{F=0}^{\lambda_5} \Pr \{ r_{2, \delta_1, \delta_2}^E(\mathbf{V}_k) | \mathbf{S}_t \} \Pr \{ r_{2, \delta_1, \delta_2}^E(\mathbf{V}_k) | \mathbf{S}_t \}. \]

The event \(r_{2, \delta_1, \delta_2}^E(\mathbf{V}_k) \) is independent from the event \(\mathbf{S}_t \), thus, testing and healing are independent, hence
\[
\Pr \{ r_{2, \delta_1, \delta_2}^E(\mathbf{V}_k) \} = \Pr \{ r_{2, \delta_1, \delta_2}^E(\mathbf{V}_k) | \mathbf{S}_t \} \Pr \{ r_{2, \delta_1, \delta_2}^E(\mathbf{V}_k) | \mathbf{S}_t \}. \]
Transition from State O: Consider the event “exactly δ_8 hospitalised subjects recover at step k and δ_8 hospitalised subjects die” and let $\zeta(\delta, \delta_8, V_k)$ be its probability, given V_k, which is obviously zero if $\delta_8 + \delta_8 > O_k$. The remaining cases show again a multinomial coefficient, i.e.,
\[
\zeta(\delta, \delta_8, V_k) = M_{O_k, \delta, \delta_8} \frac{\delta_8!}{\delta!} \frac{\delta_8!}{\delta_8!} f_{\sigma, \xi}^{O_k - \delta - \delta_8}.
\] (18)

Transition from State Q. The transitions from state Q is similar to the previous case from state O, hence it is given by
\[
\chi(\delta_{10}, \delta_{11}, V_k) = M_{Q_k, \delta_{10}, \delta_{11}} \frac{\delta_{10}!}{\delta!} \frac{\delta_{11}!}{\delta_{11}!} f_{\sigma, \xi}^{Q_k - \delta - \delta_{10} - \delta_{11}}.
\] (19)

We can now compute the term $\Pr_{i_k}(l_1, l_2, l_3)$ that connects together the transitions from states O and Q:
\[
\Pr_{i_k}(l_1, l_2, l_3) = \zeta(\delta_0, \delta_1, V_k) \chi(\delta_{10}, \delta_{11}, V_k)
\] (20)

The computation of the transition probabilities defined in Theorem 1 is thus obtained by plugging (12), (15), (17) and (20) into (7).

3.4. Complexity analysis

For the analysis of the complexity, we will consider the overall number of states that can be generated by the model, assuming an arbitrary number of model configurations n, i.e., susceptible, asymptomatic, etc. Let N be the subjects in the population, we may assume that the overall number of states m that can be generated is given by $m = (N + 1)^n$. However, this is a large upper bound to the states that can be actually reached: indeed, given α_i, $i = 1, \ldots, n$, the number of subjects in the ith configuration, we have the constraint $\sum_{i=1}^n \alpha_i = N$. To account for this simplifying constraint, we first define $m = f(n, N)$, i.e., the overall number of possible states m given the n configurations and N subjects. The number m can be computed considering that the nth configuration accounts for an arbitrary number $0 \leq i \leq N$ of subjects, while the remaining population of $N - i$ are allocated in the other $n - 1$ configurations. Therefore
\[
m = f(n, N) = \sum_{i=0}^N f(n - 1, N - i)
\]

Hence, by simply considering that $f(1, N) = 1$, we have
\[
f(2, N) = N + 1,
\]
\[
f(3, N) = \frac{(N + 2)(N + 1)}{2} = \binom{N + 2}{2} = \binom{N + 2}{N},
\]

we end up with
\[
m = f(n, N) = \binom{N + n - 1}{n - 1} = \binom{N + n - 1}{N},
\]

which is the Bose–Einstein statistics. Since the complexity is proportional to the number of reachable states, we have immediately the complexity figure for the presented algorithm.

4. Numeric examples

To show the potential applications of the formalised model, we have developed in C++ a proof of concept open-source tool. The tool operates both in the case t_k is set to zero (i.e., no people ever get quarantined) or not. For the rest of the section we consider the case where $t_k = 0$. In this simplified situation, the model takes a simpler form (see Appendix). For this model, we could generate and analyse the Markov model for populations of size comparable to a typical circle of people who meet on a regular basis. What is more, the tool can be interfaced with the PRISM stochastic model checker (Kwiatkowska et al., 2011). The analysis of a system goes through the following steps. 1. reachability analysis: starting from an initial set of states and from a complete specification of the system’s parameters (e.g., the different probabilities, the population size), compute all the states that are reachable and construct a transition table that associates each state–action pair (C, A) with the next state nS and probability p to reach that state, where the n is associated with the number M of people that are allowed to be met for that state C. 2. application of a policy: apply a control law associating each state with one of the actions that are possible for that state generating a DTMC. After the completion of the second step, it is possible to either solve the DTMC (i.e., given a set of initial states and a known initial probability, compute the evolutions for different steps and/or at the steady-state), or apply the PRISM model checker to verify some Probabilistic Linear Temporal Logic (PLTL) properties (Hansson & Jonsson, 1994).

Hereafter, we will use numeric examples to expose some interesting facts related to the properties of the formalised model. We used the following choice of probabilities (α, β, δ, μ, σ, ψ, ρ, ξ): $[0.25, 0.45, 0.25, 0.4, 0.5, 0.35, 0.10, 0.65]$. We executed the experiments on a Linux PC equipped with 256Gb of RAM, Intel® Xeon® 2.20 GHz with 12 cores.

Equilibrium and Convergence. When we apply a policy, the system reduces to a DTMC. The presence of multiple absorbing states prevents the existence of a single steady-state equilibrium (trivially, any initial state such that all elements are zero but the absorbing states is an equilibrium point). The initial states worth to consider are those where most of the subjects are susceptible and a few of them are asymptomatic and they start spreading the infection. In this case, our question is to compute the probability that no more than a given percentage of the population (e.g., 20%) will eventually die owing to the virus. We considered a population of $N = 20$ subjects with the following three initial states: $IS_1 = (19, 1, 0, 0, 0), IS_2 = (17, 3, 0, 0, 0), IS_3 = (15, 5, 0, 0, 0)$. Each initial state is represented with a tuple $(S_0, A_0, I_0, R_0, O_0, D_0)$, where each element corresponds to the population in the respective state at step 0. In order to emphasise the impact of the choice of M on the equilibrium, we fixed parameter C (i.e., the capacity of the intensive care facility) to a relatively high value: $C = 5$. The result of the benchmark probability lim$_{m \to \infty}$Pr $[D_k \geq 0.2N]$ is reported in Fig. 3. The figure reveals that the system converges to its equilibrium in a relatively small number of iterations (around 10). Another important fact is that the choice of a different initial
The following equation:

\[\lambda(V_k) = \begin{cases} M_t, & \text{if } f(V_k) \leq T_1, \\ M_t + (M_1 - M_t), & \text{if } f(V_k) \geq T_1 \\ \end{cases} \]

(21)

The two defined heuristics differ for the choice of the function \(f(V_k) \). The first one set \(f(V_k) = I_k + O_k/(N - D_k) \) and the rational is as follows. When the percentage of the number of symptomatic and hospitalised patients over the living population is below the threshold \(T_1 \), we are allowed to use the maximum value \(M_t \) for \(M \) (meaning the least restrictions for social life). If this number is above a threshold \(T_1 \), we are forced to adopt the maximum restriction (the minimum value \(M_1 \) for \(M \)). If the number is in between the two thresholds we perform a linear interpolation between the minimum and the maximum values of \(M \). The second heuristic sets \(f(V_k) = A_0/(N - D_k) \), i.e., we make the choice as for the first option but this time considering the ratio between asymptomatic infected subjects and the living population. Clearly, it is not possible to implement this policy (although \(A_0 \) could be estimated by statistic means using tests), but still we believe it is useful to have it as a performance baseline. We performed a set of tests, considering the same scenario as in assuming the worst-possible case scenario for hospital beds: \(C = 1 \). The parameters for the adaptive policies were chosen as \(T_1 = 0.05, T_1 = 0.15, M_1 = 1 \) and \(M_5 = 5 \). For the sake of completeness, we also compared the performance of the adaptive policies setting \(M \) to a constant value (the minimum and the maximum). The results are shown in Fig. 6: on the left we report the benchmark probability \(Pr[D_k \geq 0.2N] \) for the different iterations; on the right we show the value of the average \(M \) (i.e., \(\sum V_k \lambda(V_k)Pr[V_k] \)). The Adaptive Symptomatic (AS) policy using asymptomatic subjects shows an excellent performance: the probability of the deceased subjects is very close to the one for \(M = 1 \), but the average value of \(M \) is higher (it starts from 2.5 and tends to 5 after a few iterations). The Adaptive Asymptomatic (AA) policy using symptomatic subjects has a worse performance in terms of probability, and in the average applies more social restrictions (smaller \(M \)). This happens since the AA policy anticipates the restrictions at the first two steps, while the AS policy defers the decision after it can observe a growth of symptomatic subjects, too late to prevent many deaths. We also run 1000 Monte Carlo simulations with a depth of 100 on a population of 100 individuals proportionally scaling \(M \), the hospital capacity, and the individuals in the different states in the initial conditions. The \(Pr[D_k \geq 0.2N] \) is 0.0143 for AS, 0.0091 for AA, 0.0084 for the constant policy with \(M = 5 \), and 0.0143 for the constant policy with \(M = 25 \). Although the probabilities are lower than for the case \(N = 25 \), the results shows a similar trend.

We remark that, as shown in Section 3.4, an upperbound for the number of reachable states for a population of \(N = 25 \) can be computed as \(f(N, n) = \left(3 + n + 1 \right) / \left(3 + n \right) \). Thus, it amounts to 142506 states for the simplified model \(n = 6 \), and 3365856 states for the complete model \(n = 8 \). The transitions are of the order of \(f(N, n) \), thus \(2,0308 \times 10 \) transitions for \(n = 6 \), and \(1,1392 \times 13 \) transitions for \(n = 8 \).

4.1. Analysis using probabilistic model checking

Background on Probabilistic Model Checking (PMC). PMC (Fortej, Kwiatkowska, Norman, & Parker, 2011) is an effective formal verification method (Baier & Katoen, 2008) used for analysing stochastic transitions systems such as MDP, DTMC or CTMC. The analysis is performed by verifying whether the stochastic model of the system (in our case a policy) meets the requirements encoded in PLTL (Hansson & Jonsson, 1994), which allows to express very rich properties. For instance, \(p_{< 0.25}[\text{FO}_{k} = C] \) means the

Impact of Social Distancing. In order to design adaptive policies, it is of paramount importance to look at the impact of the input variable \(M \), i.e., the number of people that each one is allowed to meet at each step. For this experiment we assumed that at time 0 the system could be either in \((15,3,0,0,0)\) or in \((17,1,0,0,0)\) with equal probability 0.5, and the capacity of the intensive care \(C \) was chosen in the set \([1, 2, 3, 5]\). The plot of the probability of having more than 20% casualties is shown in Fig. 5. The dependence is monotonic in \(M \), but the amount of change clearly depends on the hospital capacity \(C \). For \(C = 1 \) and \(M = 5 \), this probability is beyond 9%. Increasing the number of beds in the hospital has obvious benefits, but for the system at hand the performance gain flattens for \(C \geq 3 \), meaning that additional growths in the beds are not worth the effort.

Adaptive Policies. An adaptive policy is a feedback control law that decides the social distance \(M \) based on the current value \(V_k \). Adaptive policies for a system like the one described in this paper can be synthesised using the theory of POMDPs (Feinberg & Shwartz, 2012; Kaelbling, Littman, & Cassandra, 1998). The efficient synthesis of a POMDP tailored to the model is far from obvious and is reserved for future work. In this section, we opt for a simpler choice and present two heuristics, both based on
Fig. 5. Probability that more than 20% of the population will die as a function of M for different capacities C.

Fig. 6. Probability that more the 20% of the population will die, average value of the action M used in the different iterations.

probability of reaching a state where the intensive care facility is fully utilised is less than 0.25. $P_{\rightarrow s}[GF O_k < C]$ is an example of a quantitative property, PRISM computes the probability of visiting infinitely often states where the intensive care facility is not fully utilised. Intuitively, PMC amounts to automatically check whether all the computations starting from a given set of initial states of an MDP, DTMC or CTMC satisfy a given PLTL formula. As a result of the check, PMC produces two kinds of outputs: a) qualitative answers to indicate whether the property holds or is violated (in this case generating a witness of the violation), b) quantitative answers to indicate the probability of satisfaction of the given PLTL formula. Moreover, PMC allows to compute the vector of steady-states with the corresponding probabilities, compute the transient probabilities after a given time, as well as compute the probability a certain condition holds in the steady-states.\[^2\]

Applications of PMC to verify DTMC model. We performed a preliminary analysis, using the PRISM (Kwiatkowska et al., 2011) model checker, to verify some PLTL properties on the DTMC model resulting from the application of the AA policy to our model. In this analysis, we considered a population of $N = 10$ persons, and all possible states (i.e. all possible consistent configurations for V) as initial. PRISM proved that (i) $P_{\rightarrow s}[GF O_k < C]$ holds (the computed probability is 1) in about 5.0 s; (ii) $P_{\rightarrow s}[GF O_k = C]$ is false (the computed probability is 0) in about 5.3 s; (iii) $P_{\rightarrow s}[F O_k = C]$ holds for about 42% of the initial states, does not hold for 4% of the initial states, and has a probability $p \in (0, 1)$ in the remaining 54% of the initial states. The last two properties aim at computing the probability to reach a state where the number of hospitalised is different/equal (resp.) to the number of available beds in the hospital. We also asked PRISM to compute the vector of steady-states with the corresponding probabilities (it took about 133.0 s) as well as the transient probabilities after 1000 time units (about 7.75 s).

Scaling to large population size. These experiments have been carried out with a small population. However, we remark that the population can be scaled using quantisation, as in Nasir et al. (2020). The price to pay in this case is an accuracy reduction due to the quantisation error. Indeed, approximating a population of \hat{N} with N representatives, accounts for \hat{N}/N subjects per representative. Since each representative can be either one or zero, we have a maximum approximation error of $\hat{N}/(2N)$ subjects. As an example, modelling with $N = 20$ representatives (as discussed above) a population of one million (a medium sized city), we can estimate a maximum error of $2.5 \cdot 10^4$ subjects, which corresponds to an error of less than 2.5% of the population, i.e., a relative error of $\hat{N}/(2N) \cdot 1/N = 1/(2N)$.

5. Conclusions and future work

A new stochastic model for epidemiology has been proposed. Starting from the classic susceptible, infected, recovered (SIR)
model, we have added additional states, i.e. asymptomatic A, hospitalised O, dead D, recover from asymptomatic Ra and quarantined Q, in order to model the peculiarities of a COVID-19-like infection. The key advantages of the model are: 1. the model is control oriented and is analytical, therefore it exposes all parameters and decision variables that make for design and evaluation of control laws; 2. the model captures in a detailed way the stochastic nature of the virus transmission and the impact of resource limitations (hospital beds, number of test swabs). The price to pay for this level of detail is the scalability of the analysis. For illustrative purposes, we have shown numeric examples related to the evolution of a small population and to the application of PMC to assess the validity of PLTL properties.

This work poses the basis for several future works in different directions. At model level, the command variables M and t (assumed deterministic in this paper) could be generalised to stochastic variables with “controllable” mean. Second, the people in need of intensive care who are denied access to the hospital because of a saturation of the available sets currently remain in the I_x set (see (16)). A different possibility is to introduce a new state to express people in urgent need of care with high probability of death. This choice will have to be validated by considering the closest match with the existing data. Third, our model considers a restricted circle of people with no interactions with the remaining population. We will explore different possibilities to guarantee scalability in the analysis. A first possibility is to model a number of groups that evolve “almost” independently, except for a few possible interactions that could take place in mild lock-down situations (e.g., schools, sport activities, outdoor recreational activities, museums, cinemas, etc.). Such interactions could affect only the unobservable part of the different circles (i.e., the sets S, A, and Ra). In this case we can expect the probability transition matrix would have dominant diagonal blocks and a few off diagonal terms accounting for the interaction. The synthesis of the optimal control policy could be done applying the technique suggested by Haksar and Schwager (2018). A second possibility is to consider the abstraction technique suggested (Nasir et al., 2020). In this case each individual would be considered as the representative of a few tens of people. A key issue would be in this case to produce a realistic analytical evaluation of the error made in probability. Third, carry out an accurate tuning of the probabilities, given the historical series that are now available. However, due to the heterogeneity of the aggregated data and the partial coverage with respect to the model state, this is a non trivial task. An additional possibility is to consider continuous-time finite state stochastic processes in which the state of the patient could switch at arbitrary times. In this class fall semi-Markov models and continuous-time Markov chains. While the former could be more general, the latter are based on exponentially distributed state-transitions and preserve the memory-less (Markov) property. We expect that this fact could significantly simplify the analysis and reduce the complexity of the approach. From a technological point of view, we aim at a tighter integration of our proof of concept tool with PRISM to avoid the generation and parsing of large files making the analysis of the full model tractable for meaningful population sizes. Preliminary results are in Roveri, Ivanovici, Palopoli, and Fontanelli (2023). Moreover, we want to investigate the use of abstraction techniques to improve performance and, thus, including in the picture the vaccinated population, which may be studied to establish the interventions to reach, e.g., herd immunity. Finally, we want to investigate the use of POMDP and the PLTL automatic policy synthesis.

Appendix. Simplified Markov model: the case of untested subjects

In this section, we focus on the case in which subjects are not tested (and hence are not quarantined), which is usually the situation at the beginning of a disease as COVID-19 where no clear medical test were known or developed. The possible states of a subject are the ones depicted in Fig. 2 where $\Delta_3 = \Delta_9 = \Delta_{10} = \Delta_{11} = 0$ and where $|Q_k| = |R_{x,k}| = 0, V_k$. Hence, the state of the Markov chain will be only associated to the 6-tuple given by $(S_k, A_k, I_k, R_k, O_k, D_k)$, while the constraints (2), the balance equations (4) and the flow constraints (5) are still valid under the previously reported assumption. As a consequence, the dynamic of the state vector $V_k = [S_k\ A_k\ I_k\ R_k\ O_k\ D_k]^T$.

will obey the transition probability rules in (3), where of course $\Delta V = \nu - \nu = [\Delta_S, \Delta_A, \Delta_I, \Delta_R, \Delta_O, \Delta_D]^T$.

With the same steps of the previous case and besides the variable assignment $I_i(\cdot)$, we introduce the shorthand notations for the variable assignments:

- l_2, defined as a function depending of δ_2 and δ_3, with the variable δ_3 obtained via equation B_2, that is $l_2 : (\Delta_2 = \Delta_3 = -\Delta_A - \Delta_D - \delta_2)$;
- l_4, defined as a function depending of $\delta_4, \delta_5, \delta_6$, that is $l_4 : (\delta_4, \delta_5, \delta_6)$, and with δ_6 obtained via equation B_3;
- l_5, defined as a function depending of $\delta_2, \delta_4, \delta_5$, with the relations obtained from B_4 and B_5, $l_5 : (\Delta_4 = \delta_4 + \delta_5 = \delta_6 = \delta_2 - \Delta_1 - \delta_4)$.

Proceeding as in Section 3, we can state the following:

Theorem 5. The transition probability (6) is re-written as

\[
\operatorname{Pr}\{\Delta \mid |B[V_k = \nu] = \nu\} = \sum_{\delta_2=0}^{\delta_2=\delta_3} \operatorname{Pr}\{l_2 | V_k \wedge l_1\} \cdot \sum_{\delta_4=0}^{\delta_4=\delta_5} \sum_{\delta_5=0}^{\delta_5=\delta_6} \sum_{\delta_6=0}^{\delta_6=\delta_2} \operatorname{Pr}\{l_4 | V_k \wedge l_1 \wedge l_2\}. \quad (A.1)
\]

The proof is a simplified version of Theorem 1. We can now move to the computation of the four different probabilities that appear in (A.1).

A.1. Probability that a susceptible subject becomes infectious

The probability of $\Pr\{g_k | V_k\}$ in this simplified case follows exactly the same lines of Section 3.1, where, obviously, (10) turns to

\[
\operatorname{Pr}\{g_k | V_k\}_M = 1 - \left(1 - \omega \frac{A_k}{N - D_k - I_k - O_k}\right)^M.
\]

A.2. Probability of state change for a number of subjects

The probabilities of state change in (A.1) can be computed considering as reference Fig. 2, where $\Delta_3 = \Delta_9 = \Delta_{10} = \Delta_{11} = 0$ and where $|Q_k| = |R_{x,k}| = 0, V_k$.

Transition from State S. Nothing changes with respect to Section 3. Hence, the term $\Pr\{l_1 | V_k\}$ is the same as in Eq. (12).

Transition from state A. Since the probability of the event “exactly δ_2 asymptomatic infected subjects recover at step k and δ_2
subjects become symptomatic" is given by \text{Theorem 3}, for the assignment \(i_0\), we have
\[
\Pr \{ l_2 | \{ V_0 \land I_1 \} \} = \rho(\delta_2 - \delta_1 - \Delta k - \delta_2, V_b). \quad (A.2)
\]

Transition from state I: With respect to the case considered in Section 3, the only difference is given by the constrained value of \(\delta_i\), i.e.
\[
\Pr \{ l_1 | \{ V_0 \land I_1 \land I_2 \} \} = \phi(\delta_1, \delta_2, \delta_3 - \delta_4 - \delta_5 - \delta_1, V_c). \quad (A.3)
\]

Transition from state O: This is identical to the previous case of Section 3, so we have
\[
\Pr \{ l_0 | \{ V_0 \land I_1 \land I_2 \} \} =
\begin{align*}
\zeta(\delta_0 + \delta_1 - \delta_2 + \delta_4 + \delta_5, \\
\delta_2 - \delta_4 - \delta_3 - \delta_1 - \delta_0, V_c).
\end{align*}
\quad (A.4)
\]

The computation of the transition probabilities is thus obtained by plugging (12), (A.2), (A.3) and (A.4) into (A.1).

References

Ahmadi, M., Jansen, N., Wu, B., & Topcu, U. (2020). Control theory meets pomdps: A hybrid systems approach. IEEE Transactions on Automatic Control. Allen, L., Brauer, F., van den Driessche, P., Bauch, C., Wu, J., Castillo-Chavez, C., et al. (2008). Mathematical epidemiology. In Lecture notes in mathematics. Springer Berlin Heidelberg, ISBN: 9783540791090.

Anderson, R., & May, R. (1992). Infectious diseases of humans: Dynamics and control. In Dynamics and control. OUP Oxford, ISBN: 9780198540403.

Baier, C., & Katoen, J. (2008). Principles of model checking. MIT Press, ISBN: 978-0-262-02649-9.

Bernoulli, D. (1760). Essai d’une nouvelle analyse de la mortalite causee par la petite-vérole, et des avantages de l’inoculation pour la prevent. Memoirs Physics Academy Royal Science, 1(6).

Blanchini, F., Franco, E., Giordano, G., Mardanlou, V., & Montessoro, P. L. (2016). Compartmental flow control: Decentralization, robustness and optimality. Formal Aspects of Computing, 28(5–6), 641–671.

Brauer, F., Castillo-Chavez, C., & Feng, Z. (2019). Mathematical models in epidemiology. Texts in applied mathematics. New York: Springer, ISBN: 9781493998289.

Browne, M. C., Clarke, E. M., & Grimberg, O. (1988). Characterizing finite kripke structures in propositional temporal logic. Theoretical Computer Science, 59(1-2), 115–131.

Cassandras, C. G., & Laforet, S. (2009). Introduction to discrete event systems. Springer Science & Business Media.

Chauhan, K. (2015). Epidemic analysis using traditional model checking and stochastic simulation [Master’s thesis], IIT Delhi, India.

Dobaj, M. P., Dobaj, A., Bantaj, J., & Mendoza, E. (2011). How many trimer’s modeling influenza virus fusion yields a minimum aggregate size of six trimers, three of which are fusogenic. Mol. Biol. Syst., 7, 2741–2749.

Feinberg, E. A., & Shwartz, A. (2012). vol. 40, Handbook of Markov decision processes: Methods and applications. Springer Science & Business Media.

Forejt, V., Kwiatkowska, M., Norman, G., & Parker, D. (2011). Automated verification techniques for probabilistic systems. In M. Bernardo, & V. Issaroy (Eds.), LNCS: vol. 6659, Formal methods for eternal networked software systems (pp. 33–113, Springer).

Gani, J., & Jerwood, D. (1971). Markov chain methods in chain binomial epidemic models. Biometrics, 591–603.

Ghezzi, L. L., & Piccardi, C. (1997). Pid control of a chaotic system: An application to an epidemiological model. Automatica, [ISSN: 0005-1098] 33(2), 181–186.

Giordano, G., Blanchini, F., Bruno, R., Colaneri, P., Di Filippo, A., Di Matteo, A., et al. (2020). Modelling the covid-19 epidemic and implementation of population-wide interventions in italy. Nature Medicine, 1–6.

Haksar, R. N., & Schwager, M. (2018). Controlling large, graph-based mdps with global control capacity constraints: An approximate ip solut. In 2018 IEEE conference on decision and control (pp. 35–42), doi:10.1109/CDC.2018.8618745.

Hansson, H., & Jonsson, B. (1994). A logic for reasoning about time and reliability. Formal Aspects of Computing, 6(5), 512–535.

Ji, C., Jiang, D., Yang, Q., & Shi, Y. (2012). Dynamics of a multigroup sir epidemic model with stochastic perturbation. Automatica, [ISSN: 0005-1098] 48(1), 121–131.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101(1–2), 99–134.

L. Palopoli, D. Fontanelli, M. Frego et al. Automatica 151 (2023) 110921

Kermack, W. O., McKendrick, A. G., & Walker, G. T. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of A Mathematical and Physical Character, 115(772), 700–721.

Khaanfer, A., Basar, T., & Charesifard, B. (2016). Stability of epidemic models over directed graphs: A positive systems approach. Automatica, [ISSN: 0005-1098] 74, 126–134.

Kwiatkowska, M., Norman, G., & Parker, D. (2011). 4.0: Verification of probabilistic real-time systems. In International conference on computer aided verification (pp. 585–591). Springer.

Liu, H., Yang, Q., & Jiang, D. (2012). The asymptotic behavior of stochastically perturbed sir epidemic models with saturated incidences. Automatica, [ISSN: 0005-1098] 48(5), 1247–1252.

Nasir, A., Baig, H. R., & Rafiq, M. (2020). Epidemics control model with consideration of seven-segment population model. SN Applied Sciences, 1(10), 1–9.

Razzaz, M., & Ahmad, J. (2016). Petri net and probabilistic model checking based approach for the modelling, simulation and verification of internet worm propagation. PLOS ONE, 10(12), 1–22.

Raccardo, F., Ajelli, M., Andrainou, X., D., et al. (2020). vol. 25, Epidemiological characteristics of Covid-19 cases and estimates of the reproductive number. 1 month into the epidemic, Italy, 28 January To 31 March 2020. (49), Eurosurveillance.

Razzaq, M., & Ahmad, J. (2016). Petri net and probabilistic model checking based approach for the modelling, simulation and verification of internet worm propagation. PLOS ONE, 10(12), 1–22.

———. (2021). A quantitative assessment of epidemiological parameters required to investigate covid-19 burden. Epidemics, [ISSN: 1755-4365] 37, Article 100530.

Luigi Palopoli received his Ph.D. degree in Computer Engineering from the Scuola Superiore Sant’Anna in 2002. He is Professor in Computer Engineering and robotics at the Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento, where he is currently dean of the Master course in Artificial Intelligence Systems. His main research activities are in Robotics (with a particular focus on Assistive Robotics), embedded system design (with a particular focus on language solutions and probabilistic techniques for soft real-time systems). He has led several industrial and academic research projects, including H2020 ACANTO and FP7 DAII. He has also served in the program committees of different conferences in the area of real-time and control systems. He is currently associate editor of the IEEE transactions on automatic control and of the Elsevier Journal of System Architecture.

Daniele Fontanelli (M’10, SM’19) received the M.S. degree in Information Engineering in 2001, and the Ph.D. degree in Automation, Robotics and Bioengineering in 2006, both from the University of Pisa, Pisa, Italy. He was a Visiting Scientist with the Vision Lab of the University of California at Los Angeles, Los Angeles, US, from 2006 to 2007. From 2007 to 2008, he has been an Associate Researcher with the Interdepartmental Research Center “E. Piaggio”, University of Pisa. From 2008 to 2013 he joined as an Associate Researcher the Department of Information Engineering and Computer Science and from 2014 the Department of Industrial Engineering, both at the University of Trento, Trento, Italy, where he is now an Associate Professor and he is leading the EIT-Digital International Master on “Autonomous Systems”. He has authored and co-authored more than 150 scientific papers in peer-reviewed top journals and conference proceedings. He is currently an Associate Editor in Chief for the IEEE Transactions on Instrumentation and Measurement and an Associate Editor for the IEEE Robotics and Automation Letters and for the IET Control Theory & Applications Journal. He has been serving on the program committee of different conferences in the area of measurements and robotics. His research interests include distributed and real-time estimation and control, human motion models, localisation algorithms, synchronophor estimation, clock synchronisation algorithms, resource aware control, wheeled mobile robots control and service robotics.
Marco Frego received the M.S. degree in mathematics and the Ph.D. degree in mechatronics from the University of Trento, Trento, Italy, in 2010 and 2014, respectively. He was an Assistant Professor from 2014 to 2015 with the Hamburg University of Technology (TUHH), Hamburg, Germany, before moving to the Department of Information Engineering and Computer Science (DISI) and the Department of Industrial Engineering (DII) of the University of Trento. He joined the Faculty of Science and Engineering of the Free University of Bolzano, in 2020. His current research interests include optimisation, optimal control and clothoid curves for the planning of autonomous and assistive robots.

Marco Roveri received a Ph.D. degree in Computer Science from the University of Milano, Italy in 2002. He is an Associate Professor in the Information Engineering and Computer Science Department of the University of Trento, Italy. He was Senior Researcher in the Embedded Systems Unit of Fondazione Bruno Kessler in Trento, and before a researcher in the Automated Reasoning Division of the Istituto Trentino di Cultura also in Trento. His research interests include automated formal verification of hardware and software systems, formal requirements validation of embedded systems, model based predictive maintenance, and automated model based planning, and application of such techniques in industrial settings.