Radial standing and self-similar waves for the hyperbolic cubic NLS in 2D

Panayotis Kevrekidis1, Andrea R Nahmod1,2 and Chongchun Zeng3

1 Department of Mathematics University of Massachusetts 710 N. Pleasant Street Amherst MA 01003, USA
2 Radcliffe Institute for Advanced Study, Harvard University Byerly Hall, 8 Garden Street Cambridge, MA 02138, USA
3 School of Mathematics Georgia Institute of Technology Atlanta, GA 30332, USA

E-mail: kevrekid@math.umass.edu, nahmod@math.umass.edu and zengch@math.gatech.edu

Received 10 June 2010, in final form 14 February 2011
Published 1 April 2011
Online at stacks.iop.org/Non/24/1523

Recommended by J Lega

Abstract
In this note we propose a new set of coordinates to study the hyperbolic or nonelliptic cubic nonlinear Schrödinger equation in two dimensions. Based on these coordinates, we study the existence of bounded and continuous hyperbolically radial standing waves, as well as hyperbolically radial self-similar solutions. Many of the arguments can easily be adapted to more general nonlinearities.

Mathematics Subject Classification: 35Q55

1. Introduction

The hyperbolic cubic NLS equation has been studied in [18–20] (see also [11, 12, 28] and references therein) and has received attention by both the physics and the applied mathematics communities. This model has been used for examining the evolution of optical pulses in normally dispersive (quasi-discrete) optical waveguide array structures [16, 24], as well as more generally in normally dispersive optical media [13, 14]. These studies have, in turn, motivated a number of works examining the type of coherent structures, such as the experimentally tractable X-waves [11, 13, 14], as well as more elaborate structures such as dark-bright [21] or vortex-bright solitary waves [17]. On the one hand, the spontaneous emergence of nonlinear structures such as the X-waves has been revealed by means of mechanisms such as the modulational instability [9] and their nonlinear dynamics has been considered [10], but also more recently studies have begun to systematically address their spatio-temporal interactions [25].

The equation arises when to the normally dispersive (1 + 1)-NLS, effects due to the diffraction (in the quasi-discrete setting) or anomalous dispersion (in the continuum setting)
are incorporated as an additional term. The $(2+1)$-dimensional quasi-discrete equation \cite{16, 24} is described as
\begin{equation}
\frac{i}{\alpha} \frac{\partial U_n}{\partial z} - \frac{\beta_2}{2} \frac{\partial^2 U_n}{\partial t^2} + C(U_{n+1} + U_{n-1}) + \gamma |U_n|^2 U_n = 0, \tag{1.1}
\end{equation}
where U is the complex amplitude that represents an envelope of the relevant wave field, z is the longitudinal direction along which propagation occurs; and n and t are the two transverse axes (which represent space and time, respectively). In that same vein, it is relevant to mention that very recently also $(3+1)$-dimensional generalizations of the above quasi-discrete setting have emerged, giving rise to the so-called discrete-continuous X-waves in photonic lattices \cite{22}.

The continuous version of the $(2+1)$-dimensional equation can be written as
\begin{equation}
iu_t + u_{xx} - u_{yy} + \gamma |u|^2 u = 0 \tag{3HNLS}
\end{equation}
and is related to both the Davey–Stewartson and Ishimori systems \cite{19, 28}. In fact, in \cite{18} Ghidaglia and Saut showed that (3HNLS) satisfies the same linear Strichartz estimates as its elliptic counterpart and relying on them, they proved the hyperbolic–elliptic Davey–Stewartson is locally well posed in $L^2(\mathbb{R}^2)$ with time of existence depending on the profile of the initial data and globally well posed for sufficiently small data. The same argument proves that (3HNLS) enjoys the same well posedness results. In \cite{20}, Ghidaglia and Saut showed that there are no nontrivial localized standing wave solutions to (3HNLS); more precisely they proved that there are no solutions of the form $e^{i\mu t} \phi(x)$ with $\phi \in H^1 \cap H^1_{loc}$ and any $\mu \in \mathbb{R}$ (regardless of dimension). From the physical point of view (3HNLS) or equation (2.1) represents the canonical model for the study (experimentally and also numerically) of X-waves, as considered in \cite{13, 14}; see also the earlier and more recent reviews of \cite{11, 12}. It should also be mentioned that the linear counterpart of the equation has also been considered extensively \cite{8, 11} and has given rise to interesting recent experimentally examined structures such as the linear alternative to light bullets proposed in \cite{7} in the form of Airy–Bessel wavepackets.

The major differences between the regular Laplacian $\Delta = \partial_{xx} + \partial_{yy}$ and the hyperbolic Laplacian $\square_{xy} = \partial_{xx} - \partial_{yy}$ include that (a) the latter has nontrivial characteristics, (b) the former is invariant under the Euclidean rotations on \mathbb{R}^2 while the latter is invariant under the hyperbolic rotations and (c) the former corresponds to the positive Dirichlet energy and the latter to the energy $E(u) := \int_{\mathbb{R}^2} |u_x|^2 - |u_y|^2 \, dx \, dy$ which is indefinite. Due to observation (a), this PDE system may have singularities forming along the characteristics and thus we first find some explicit compatibility conditions along the discontinuities of weak solutions which are piecewise smooth. Observation (b) naturally motivates us to consider the hyperbolic coordinates (a, α), given by $x = \pm a \cosh \alpha$ and $y = \pm a \sinh \alpha$. Since the hyperbolic NLS is invariant under the hyperbolic rotations $(a, \alpha) \to (a, \alpha + \alpha_0)$, it is natural to start our study with solutions with the corresponding symmetry—continuous and piecewise smooth hyperbolically radial (or equivariant) standing waves and hyperbolically radial (or equivariant) self-similar waves\footnote{By self-similar waves we mean standing waves in the self-similar variables; cf \cite{3.6} \cite{3.7}.}—as our initial attempts to further our understanding of this PDE. They also usually play important roles in studying the dynamics of (3HNLS). In particular, states which are hyperbolically radial share some similarity with the profiles of the two-dimensional analogues of the so-called X-waves observed in numerics; as a relevant example see e.g. figures 18.6–18.7 of \cite{12} (cf also \cite{11}). Since the measure $dx \, dy = |a| \, da \, d\alpha$, nonzero hyperbolic radial states do not belong to $L^2(\mathbb{R}^2)$. We do not view this as an extremely undesirable situation. On the one hand, some important elementary waves, such as plane waves and kinks, do have infinite L^2 norm. On the other hand, since the hyperbolic Laplacian \square_{xy} does not correspond to a positive energy and has characteristics, it is reasonable, at least as an initial step, to relax the
finite energy requirement and look for hyperbolically radial standing waves which may have
asymptotic values other than zero at spatial infinity in each hyperbolic quadrant.

In constructing these hyperbolically radial (or equivariant) waves, we encounter an ODE with a regular singular point. Although for this specific equation there are many standard results concerning the existence of local solutions, we provide a different proof based on the invariant manifold theory in dynamical systems which is a generalization of a trick used in [15]. Unlike the power series method or variational method, this approach requires minimal smoothness and no extra structure. Our aim in this paper is to use such techniques and, especially, the hyperbolic coordinate system in order to construct, for the first time to our knowledge, nontrivial standing wave solutions to the (3HNLS) equation. In addition, we also consider radial self-similar solutions in the same coordinate system. The introduction of the hyperbolic coordinates and the analysis on hyperbolically radial waves represent the first step in a longer term program to further our understanding of PDEs involving the hyperbolic Laplacian operator.

In the rest of the paper radial always means hyperbolically radial.

2. Weak solutions and compatibility conditions

In the following, we give the compatibility conditions satisfied by weak solutions following the standard argument. Let us denote by $\Box_{xy} := \partial_x^2 - \partial_y^2$ and for $(x, y) \in \mathbb{R}^2$ suppose $u(t, x, y)$ is a solution of (3HNLS) with $\gamma = 1$; i.e. u satisfies

$$i\partial_t u + \Box_{xy} u + |u|^2 u = 0,$$

in the distribution sense and is smooth except on a surface $\Gamma \subset \mathbb{R}^{1+2}$, let us denote by Ω_{\pm} the two domains separated by Γ and by $N = (N_0, N_1, N_2)$ the unit outward normal vector of Ω_+. Let $f = f_+ - f_-$ where f_\pm is the one side limit of any quantity f on Γ. For any test function $\phi \in C_0^{\infty}(\mathbb{R}^{1+2})$ one may compute that

$$\int_{\Gamma} ((0, \nabla \phi) \cdot RN)[u] - \phi RN \cdot (i[u], [\nabla u]) \, dS = 0,$$

where ∇ denotes the spatial gradient and the matrix $R := \text{diag}(1, 1, -1)$ performs a reflection across the xt-plane. By taking ϕ identically zero on Γ, we obtain that, if u has a jump discontinuity along Γ, then

(C1) $N_1^2 = N_2^2$ or equivalently Γ is parallel to $x = y$ or $x = -y$ which are characteristics of \Box_{xy}.

Therefore, the surface takes the form of

$$\Gamma = \{(t, x_0(t) + \alpha_1 s, y_0(t) + \alpha_2 s) \mid t, s \in \mathbb{R}\} \quad \text{and} \quad N_0 = N_0(t)$$

where $\alpha_{1,2} = \pm 1$. For such smooth Γ, integrating by parts on the first integrand leads to

$$\int_{\Gamma} \phi RN \cdot (i[u], 2[\nabla u]) \, dS = 0$$

and thus we have

(C2) $\frac{1}{2}[u]N_0 + [u_\pm]N_1 - [u_\pm]N_2 = 0$.

Condition (C2) is equivalent to that $[u_\pm]$, $[u_\pm]$, $i[u]$ are collinear in the complex plane. In fact, if u is piecewise C^1 and $[u] = 0$, then, on the one hand, (C2) implies that the vector $(N_1, -N_2)$ lies in the kernel of the 2×2 matrix $[\nabla u]$. On the other hand, if $[\nabla u] \neq 0$, then its kernel is given exactly by the tangent space of Γ, i.e. the one-dimensional subspace spanned by $(N_2, -N_1)$, and thus $N_1^2 = N_2^2$ holds. This means that, even though (C1) follows from the
assumption \(|u| \neq 0\), it still follows from (C2) if \(|u| = 0\) and \(|V u| \neq 0\). Therefore, (C1) and (C2) should be imposed on weak solutions as long as \(u\) or \(\nabla u\) have a jump discontinuity along \(\Gamma\). Condition (C2) can also be viewed as a necessary condition for the singularity to propagate as a surface in \(\mathbb{R}^{1+2}\). If (C2) is not satisfied by some given initial data, then the singularity will not maintain a simple geometry for \(t > 0\).

Note that, according to (C1), the jump discontinuity can occur along lines in the directions of \((1, 1)\) or \((1, -1)\). To study the local behaviour of the weak solutions at the intersection of its lines discontinuity, we consider the case where

\[\Gamma_s = \{(x - x_0(t))^2 = (y - y_0(t))^2\}, \]

i.e. a cross in the \(xy\)-plane with a moving centre \(c(t) = (x_0(t), y_0(t))\). We will use \(u^\pm_{b,v}\) to denote the value of \(u\) in the cone either in the horizontal or vertical directions, opening in the positive or negative directions. In particular, \(u^\pm_{b,v}\) denote the limiting values of \(u^\pm_{b,v}\) on \(\Gamma\) in each quadrant. We use \(N\) to denote the unit outward normal of the horizontal cones \((x - x_0(t))^2 > (y - y_0(t))^2\). In this case, instead of (2.3), integrating by parts on the first integrand in (2.2) implies

\[
4 \int \phi(c(t))[u^+_b(c(t)) - u^+_v(c(t))] + u^+_b(c(t)) - u^+_v(c(t)) + u^+_b(c(t)) - u^+_v(c(t)) + u^+_b(c(t)) - u^+_v(c(t)) + u^+_b(c(t)) - u^+_v(c(t))
\]

\[
+ u^+_b(c(t)) - u^+_v(c(t)) \, dt - \int_{\Gamma} \phi R N \cdot (g[u], 2|\nabla u|) \, dS = 0. \tag{2.4}
\]

Therefore, in addition to (C2), we also obtain

(C3)

\[
u^+_b - u^+_v + u^+_b - u^+_v + u^+_b - u^+_v = 0 \quad \text{along } \quad c(t), \quad t \in \mathbb{R}.
\]

Remark 2.1. When a solution has singularity along a surface, the compatibility conditions (C1–C3) above are only necessary. In fact, one should be careful when talking about the propagation of the singularity as the system does not have finite propagation speed, which can be seen from the formula of the fundamental solution of the free equation [18]. For example, if the initial data has some simple jump discontinuity, this singularity might become unpredictable for \(t > 0\) except for highly symmetric cases. In what follows \(\Gamma\) will describe the cross \(X\) in \(\mathbb{R}^2\) defined by \([\{ |x| = |y| \} \). We will see in section 4 that the simplest example of data satisfying the compatibility conditions described above are those of the form \((f, g, -f, -g)\) given in each of the four cones of \(\mathbb{R}^2 \setminus X\).

3. Hyperbolic coordinates and radial solutions

Note that the regular Euclidean rotation does not keep \(\Box_{xy}\) invariant, and hence the usual polar coordinates may not be the most appropriate ones for this system. Instead, we introduce an alternative: we foliate \(\mathbb{R}^2 \setminus X\) by hyperbolas and consider the following change of variables:

\[
\begin{aligned}
&x := a \cosh \alpha \quad y := a \sinh \alpha \quad a^2 := x^2 - y^2 \quad \text{when } |x| > |y|, \\
x := a \sinh \alpha \quad y := a \cosh \alpha \quad a^2 := y^2 - x^2 \quad \text{when } |x| < |y|,
\end{aligned}
\]

(3.1)

where \(a, \alpha \in \mathbb{R}, a \neq 0\).

Under this change of variables we have that the area form \(dx \, dy = |a| \, da \, d\alpha\). Moreover, for any \(a \in \mathbb{R} \setminus \{0\}\) we have

\[
\nabla a = \left(\frac{x}{a}, \frac{y}{a} \right) \quad \text{and} \quad \Box a = \frac{1}{a} \quad \text{for } |x| > |y|,
\]

\[
\nabla a = \left(\frac{-x}{a}, \frac{y}{a} \right) \quad \text{and} \quad \Box a = -\frac{1}{a} \quad \text{for } |x| < |y|.
\]
Hyperbolic NLS

For \(\forall \alpha \) we need to distinguish whether \(a > 0 \) or \(a < 0 \). We have

\[
\nabla \alpha = \begin{cases}
\left(-\frac{y}{a^2}, 0 \right) & \text{for } |x| > |y| \text{ and } a > 0,
\left(\frac{y}{a^2}, 0 \right) & \text{for } |x| > |y| \text{ and } a < 0,
\left(0, -\frac{x}{a^2} \right) & \text{for } |x| < |y| \text{ and } a > 0,
\left(0, \frac{x}{a^2} \right) & \text{for } |x| < |y| \text{ and } a < 0,
\end{cases}
\]

\[\square \alpha = 0\] in all cases.

We, moreover, note that

\[
\begin{align*}
a^2 - a^2 & = 1 & \text{and} & \alpha^2 - \alpha^2 = -\frac{1}{a^2} & \text{for } |x| > |y|,
\end{align*}
\]

By changing coordinates \((x, y) \longrightarrow (a, \alpha)\) in \(\mathbb{R}^2 \setminus \{0\}\) the (3HNLS) equation transforms itself into the system\(^5\)

\[
\begin{cases}
i \partial_t u + \partial_{aa} u + \frac{1}{a} \partial_a u - \frac{1}{a^2} \partial_{aa} u + |u|^2 u = 0 & \text{for } |x| > |y| \quad (F)
\end{cases}
\]

\[
\begin{cases}
i \partial_t u - \partial_{aa} u - \frac{1}{a} \partial_a u + \frac{1}{a^2} \partial_{aa} u + |u|^2 u = 0 & \text{for } |x| < |y| \quad (D)
\end{cases}
\]

It is clear that (3.2) is invariant under the translation in \(\alpha\), or equivalently (3HNLS) is invariant under the rotation in the hyperbolic coordinates. Thus it motivates us to study radial or equivariant solutions. We will focus on radial standing wave solutions and thus \(v(a, \alpha) = u(t, a, \alpha)\). (See remark 3.9 for equivariant solutions.) In the rest of this note, we will consider radially symmetric solutions assuming \(u_h^\pm\) is \textit{a priori} smooth for \(a \in [0, \infty)\) except for some jump discontinuity across \(X\).

Note in what follows these facts will be used without any further mention. In other words we will be working with

\[
\begin{cases}
i \partial_t u + \partial_{aa} u + \frac{1}{a} \partial_a u + |u|^2 u = 0 & \text{for } |x| > |y| \quad (F)
\end{cases}
\]

\[
\begin{cases}
i \partial_t u - \partial_{aa} u - \frac{1}{a} \partial_a u + |u|^2 u = 0 & \text{for } |x| < |y| \quad (D)
\end{cases}
\]

The compatibility condition (C3) implies that at the origin \((0, 0) \in \mathbb{R}^2\)

\[
u_h^+(0) + u_h^+(0) = u_h^-(0) + u_h^-(0).
\]

Some obvious solutions of this type are \((u_h^- = -u_h^+, u_h^+ = u_h^- = 0)\) or \((u_h^+ = u_h^- = 0, u_h^- = -u_h^+)\) where \(u_h^+\) or \(u_h^-\) solves the above (F) or (D), respectively.

We are interested in the existence (construction) of radial standing wave solutions \(u(t, a) = e^{i|a|t} v(a)\) such that as \(a \rightarrow \pm \infty v \rightarrow v_{\pm \infty}\) with \(v_{\pm \infty}\) a constant.

\textbf{Remark 3.1.} If \(u(x, y)\) is \(C^1\) and (hyperbolically) radially symmetric, then the radial symmetry implies \(Du(0, 0) = 0\) and thus \(v_a(0) = 0\). We assume the latter from now on.

From (3.3) we then have that \(v\) satisfies

\[
\begin{cases}
\mu v + v_{aa} + \frac{1}{a} v_a + |v|^2 v = 0 & \text{for } |x| > |y| \quad (F)
\end{cases}
\]

\[
\begin{cases}
\mu v - v_{aa} - \frac{1}{a} v_a + |v|^2 v = 0 & \text{for } |x| < |y| \quad (D)
\end{cases}
\]

\(^5\) Note that in the first quadrant \(a > 0\) and \(\alpha > 0\); in the second quadrant \(a < 0\) and \(\alpha < 0\); in the third \(a < 0\) and \(\alpha > 0\); and in the fourth quadrant \(a > 0\) and \(\alpha < 0\).
Remark 3.2. We call \(v_d \) the solution to (D) and \(v_f \) the solution to (F) and \(v = (v_d, v_f) \) the solution to (3.5). Note that a radial solution to (3.5) is \(C^1 \) if and only if \(v_d \) and \(v_f \) have equal values at \(a = 0 \); i.e. \(v_d(0) = v_f(0) \).

Remark 3.3. Under the assumption \(v_d(0) = 0 \), without any loss of generality we consider \(v \) real valued only. In fact, suppose \(v(0) = \omega e^{ib_0} \) with \(\omega_0 \in \mathbb{R} \) and \(b_0 \in \mathbb{R} \). Let \(\tilde{v}(a) = v(a)e^{-ib_0} \), then \(\tilde{v}(0), \tilde{v}_a(0) \in \mathbb{R} \). Theorem 6 implies the solutions \(\tilde{v}(a) \) exist and are real.

Remark 3.4. In the analysis below we only consider \(a > 0 \) but corresponding results hold for \(a < 0 \).

Remark 3.5. By considering another coordinate change \(x' = a \cos \alpha \) and \(y' = a \sin \alpha \), (3.5) (F)(D) simply become \(\pm \Delta_{y'} v + \mu v + v^3 = 0 \). Solutions of this equation in \(L^2 \) have been studied extensively (see, for example, \([1–3, 26, 27]\)). Based on those results, it is obviously impossible to find solutions of (F) and (D) with \((u_f, u_d) \) simply become

\[\left\{ \begin{array}{ll}
\mu v - \frac{1}{2} v - \frac{1}{2} a v_a + v_{aa} + \frac{1}{a} v_a + |v|^2 v = 0 & \text{for } |x| > |y| \\
\frac{1}{2} v - a v_a - v_{aa} - \frac{1}{a} v_a + |v|^2 v = 0 & \text{for } |x| < |y|
\end{array} \right. \]

(3.7)

where now \(\tilde{u} = \tilde{u}(t, a, \alpha) \). Next we look for radial standing waves in the self-similar variables of the form \(\tilde{u} = e^{-\mu t} v(a) \), which satisfies

\[\left\{ \begin{array}{ll}
\mu v - \frac{1}{2} v - \frac{1}{2} a v_a + v_{aa} + \frac{1}{a} v_a + |v|^2 v = 0 & \text{for } |x| > |y| \\
\frac{1}{2} v - a v_a - v_{aa} - \frac{1}{a} v_a + |v|^2 v = 0 & \text{for } |x| < |y|
\end{array} \right. \]

(3.8)

The remarks we made for the radial standing waves are valid for radial self-similar waves except here we can no longer assume \(v \) has only real values.
Theorem 3.7 (Main theorem 2). For any \(\mu \in \mathbb{R} \), there exists \(v_* > 0 \) such that for any \(v_0 \in (-v_*, v_*) \), there exists a unique \(C^1 \) weak radial self-similar wave solution \((u_f, u_d)\) of (2.1) which is \(C^2 \) except at \(x^2 = y^2 \) (or equivalently \(a = 0 \)) and
\[
 u_f(t, 0) = u_d(t, 0) = v_0 t^{-\frac{1}{2}} e^{-i\mu \log |t|} \quad \text{and} \quad \partial_t u(t, 0) = 0.
\]

As \(\frac{t}{\sqrt{\mu}} \to \infty \), there exist constants \(r_f \neq 0, r_d \neq 0, \theta_f, \) and \(\theta_d \) such that
\[
 u_f(t, a) = r_f a^{\frac{1}{2}} e^{(-\frac{1}{2} - \mu \log |t|)} \cos \left(\theta_f - \frac{a^2}{8t} - 2\mu \log \frac{a}{\sqrt{t}} \right) + O \left(\frac{t^2}{a^3} \right),
\]
\[
 u_d(t, a) = r_d a^{\frac{1}{2}} e^{(-\frac{1}{2} - \mu \log |t|)} \cos \left(\theta_d - \frac{a^2}{8t} + 2\mu \log \frac{a}{\sqrt{t}} \right) + O \left(\frac{t^2}{a^3} \right).
\]

Remark 3.8. From the asymptotic form of the above self-similar waves, for any \(a \neq 0 \), i.e. away from the cross \(|x| = |y| \), as \(t \) approaches the singular value \(0 \) (here \(t \) may be replaced by \(\pm(t - t_0) \)), the complex values of the solutions oscillate rapidly in both the angle and the magnitude. In particular, their magnitudes oscillate with an envelope proportional to \(\frac{1}{\sqrt{t}} \). At the cross \(|x| = |y| \), the magnitude of the solutions blows up like \(\frac{1}{\sqrt{t}} \). Therefore they strongly display a kind of profile of the X shape.

To prove these theorems, we first prove existence of solutions near \(a = 0 \) and next we study their properties as \(a \to +\infty \). Equations (3.5)(F)(D) and (3.7)(F)(D) have been extensively studied. To establish local existence of solutions near \(a = 0 \), well known methods include for example, power series or variational methods. Here we present (in the appendix) another method based on invariant manifold theory to study solutions near a regular singular point of a class of ODE system of which (3.5)(F)(D) and (3.7)(F)(D) are special cases. The advantage of this method is that it does not require either much smoothness as in the power series approach or variational structures. More specifically, for any \(v_0 \), let \(x_1 = v - v_0 \) and \(x_2 = a v_d \) in these four ODEs. Each of them turns into a form for which we may apply theorem 6. For example, for (3.5)(F), in the notation of theorem 6 we have that \(F(a, x, v_0) = (x_2, -\mu a^2(x_1 + v_0) - a^2(x_1 + v_0)^3)^T \) with the parameter \(v_0 \) and \(F(0, 0, v_0) = 0 \) for all \(v_0 \). Moreover \(F_t(0, 0, v_0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \) and thus \(E_\alpha = \{0\} \). Therefore, for any \(v_0 \), there exists a unique solution \(v(a) \) for small \(a > 0 \) so that \(v \) and \(a v_d \) are Hölder continuous in both \(a \) and \(v(0) = v_0 \). Moreover, the statement (4) in theorem 6 implies \(x_2 = a v_d = O(a^2) \) which implies \(v_d(0) = 0 \). The other equations are handled similarly.

Remark 3.9. The same theorem 6 can also be applied to study equivariant standing waves or equivariant self-similar solutions where the equivariance means \(u(t, a, \alpha) = e^{i\alpha c} e^{-i\mu t} u(a, \alpha) \), \(c, \mu \in \mathbb{R} \). In this case, for equivariant standing waves, (3.2) implies
\[
 \begin{cases}
 \mu v + v_{aa} + \frac{1}{a} v_a + \frac{c^2}{a^2} v + |v|^2 v = 0 & \text{for } |x| > |y| \quad \text{(F)} \\
 \mu v - v_{aa} - \frac{1}{a} v_a - \frac{c^2}{a^2} v + |v|^2 v = 0 & \text{for } |x| < |y| \quad \text{(D)}
 \end{cases}
\]
For \(c \neq 0 \), theorem 6 immediately implies that the only continuous solution on \([0, a_0] \), \(a_0 > 0 \), of either of the above has to be trivial. Therefore, there are no nontrivial continuous equivariant standing waves. The same argument applies to the self-similar case as well.

To complete the proof of the theorems, we will study the asymptotic properties of these systems as \(a \to \infty \) in the next two sections.
4. Radial standing wave solutions

Note that by considering \(a_1 = |\mu|^2 a \) and \(v = |\mu|^2 v_1 \), we only need to consider \(\mu = \pm 1, 0 \) for (3.5)(F)(D). To study the asymptotic properties of the solutions as \(a \to +\infty \) we proceed according to the sign of \(\mu \).

Case \(\mu > 0 \). First we show that all solutions \(v_f \) to (3.5) (F) go to zero like \(\frac{1}{\sqrt{a}} \cos(\gamma a + \sigma \log a + \beta) \) as \(a \to \infty \). Indeed, for nontrivial \(v \) satisfying \(v_{aa} + \frac{1}{a} v_a + \mu v + |v|^2 v = 0 \) and \(a > 0 \) define \(v = \frac{1}{\sqrt{a}} w \). Then \(w \) satisfies

\[
\left(\frac{1}{4a^2} + \mu \right) \frac{1}{\sqrt{a}} \ w + \frac{1}{a \sqrt{a}} w_{aa} + \frac{1}{a} \frac{1}{\sqrt{a}} |w|^2 w = 0. \tag{4.1}
\]

We want to first show that \(w \) is bounded. Multiply (4.1) by \(\sqrt{a} \) to obtain

\[
w_{aa} + \left(\frac{1}{4a^2} + \mu \right) w + \frac{1}{a} |w|^2 w = 0. \tag{4.2}
\]

Multiplying (4.2) by \(w_a \) and rewriting the resulting expression using ‘perfect derivatives’ we obtain

\[
\partial_a \left[\frac{1}{2} (w_a^2) + \frac{1}{8a^2} w^2 + \frac{\mu}{2} w^2 + \frac{1}{4a} w^4 \right] = -\frac{1}{4a^3} w^3 - \frac{1}{4a^2} w^4. \tag{4.3}
\]

Define

\[
E(a) := \frac{1}{2} (w_a^2) + \frac{1}{8a^2} w^2 + \frac{\mu}{2} w^2 + \frac{1}{4a} w^4 \geq 0. \tag{4.4}
\]

Then we have

\[
\partial_a E(a) = -\frac{1}{4a^3} w^3 - \frac{1}{4a^2} w^4 \leq 0. \tag{4.5}
\]

Hence \(E(a) \) is decreasing, which implies \(w \) and \(w_a \) are bounded and \(E_0 := \lim_{a \to \infty} E(a) \) exists. The boundedness of \(w \) and (4.5) again imply

\[
0 \geq \partial_a E \geq -\frac{C}{a} E
\]

for some \(C > 0 \) independent of \(a \). Therefore \(E_0 > 0 \) and \(E(a) - E_0 = O(\frac{1}{a}) \). Moreover, let us change the variables

\[
w = r \cos \theta, \quad w_a = r \sin \theta.
\]

Recall \(\mu = 1 \), we have \(r^2 - 2E_0 = O(\frac{1}{a}) \) and thus

\[
r = \sqrt{2E_0} + O \left(\frac{1}{a} \right) \tag{4.6}
\]

as \(a \to \infty \). One may compute

\[
r_a = -\frac{1}{4a^2} r \cos \theta \sin \theta - \frac{1}{a} r^3 \cos^3 \theta \sin \theta, \]

\[
\theta_a = -1 - \frac{1}{4a^2} \cos^2 \theta - \frac{1}{a} r^2 \cos^4 \theta \]

\[
= -1 - \frac{3E_0}{8a} + \frac{E_0}{a} \left(\frac{3}{8} - \cos^4 \theta \right) + \frac{E_0 - r^2}{a} \cos^4 \theta.
\]

Integrating the \(\theta \) equation by parts and using \(\theta_a = -1 + O(\frac{1}{a}) \), one may show,

\[
\theta = \theta_0 + a + \frac{3E_0}{8} \log a + O \left(\frac{1}{a} \right). \tag{4.7}
\]
We next consider solutions \(v_d \) to (3.5) (D). Multiplying (D) by \(av \) and integrating on \([0, a]\), we obtain
\[
(v^2)_a = \frac{2}{a} \int_0^a \tilde{a} ((v_a)^2 + v^2 + v^4) \, d\tilde{a},
\]
which implies \(v^2 \geq O(\log a) \) as \(a \to \infty \) unless \(v \equiv 0 \). Therefore there are no nontrivial bounded solutions \(v_d \) to (3.5)(D).

All in all we conclude then that for the case \(\mu > 0 \) there are no bounded solutions other than \((v_f, 0, -v_f, 0)\), which can not be in \(C^0\) unless trivial.

Case \(\mu = 0 \). For (3.5) (F), letting \(v := a^{-\frac{1}{2}} w \) one may compute
\[
w_{aw} + \frac{1}{3a} w_a + \frac{1}{9a^2} w + a^{-\frac{1}{2}} w^3 = 0.
\]
Multiplying it by \(a^{-\frac{1}{2}} w_a \), we have
\[
\tilde{a} \left(\frac{1}{2} (w_a)^2 + \frac{1}{4} w^4 + \frac{1}{18} a^{-\frac{1}{2}} w^2 \right) = -\frac{2}{27} a^{-\frac{1}{2}} w^2 \leq 0.
\]
Therefore \(w = O(1) \) and \(w_a = O(a^{-\frac{1}{2}}) \) as \(a \to \infty \), which implies
\[
v_a = O(a^{-\frac{1}{2}}), \quad v = O(a^{-\frac{1}{2}}), \quad \text{as} \quad a \to \infty.
\]
In fact, for different values of \(v(0) \), the solution \(v(a) \) only differs by a scaling change.

Finally, the same argument as in the case of \(\mu > 0 \) shows that the only bounded solution \(v_d \) to (3.5)(D) is the trivial one.

We thus also conclude in the case \(\mu = 0 \) that there are no bounded solutions other than \((v_f, 0, -v_f, 0)\), which can not be in \(C^0\) unless is trivial.

Case \(\mu < 0 \) (\(\mu = -1 \)). From the uniqueness given in (4) of theorem 6 of solutions which are Hölder continuous at 0, clearly \(v_d, v_f \equiv 0, \pm 1 \) if \(v_d(0), v_f(0) = 0, \pm 1 \).

We first consider solutions \(v_d \) to (3.5) (D) and claim that if \(|v_d(0)| > 1\), then \(|v_d(a)| > 1\) and \(|v_d(a)| \to \infty \) as \(a \to \infty \). Indeed, without any loss of generality assume \(v_d(0) > 1 \) and \(v_d(a) = 1 + z(a) \). One may compute
\[
z_{aa} + \frac{1}{a} z_a - 2z - 3z^2 - z^3 = 0. \quad (4.8)
\]
Multiplying it by \(z_a \), we have
\[
\tilde{a} \left(\frac{1}{2} (z_a)^2 - \left(z^2 + z^3 + \frac{1}{4} z^4 \right) \right) = -\frac{1}{a} (z_a)^2,
\]
which implies
\[
0 > -(z(0)^2 + z(0)^3 + \frac{1}{2} z(0)^4) \geq \left(\frac{1}{2} (z_a(a))^2 - (z(a)^2 + z(a)^3 + \frac{1}{4} z(a)^4) \right).
\]
Therefore, \(z(a) \neq 0 \), for all \(a > 0 \) which yields \(z(a) > 0 \). Multiplying (4.8) by \(-az\) implies
\[
\tilde{a} (z^2) = \frac{2}{a} \int_0^a \tilde{a} ((z_a)^2 + 2z^2 + 3z^3 + z^4) \, d\tilde{a}
\]
which implies \(z^2 \geq c \log a \).

Thus we assume \(v_d(0) \in (-1, 1) \) and claim \(v_d \to 0 \) like \(\frac{1}{\sqrt{a}} \cos(\gamma a + \sigma \log a + \beta) \) as \(a \to +\infty \). Indeed, multiplying (3.5) (D) by \(v_a \) we obtain
\[
\tilde{a} \left(\frac{1}{2} (v_a)^2 + \frac{1}{2} v^2 - \frac{1}{4} v^4 \right) = -\frac{1}{a} (v_a)^2 \leq 0.
\]
Since $\frac{1}{2}v^2 - \frac{1}{4}v^4$ is strictly increasing in v^2 for $v^2 \in [0, 1]$, we have
\[v(0) \in (-1, 1) \Rightarrow v(a) \leq v(0)^2 < 1, \quad a > 0. \tag{4.9} \]
We will follow closely the procedure which we used to handle solutions to \((3.5)\) (F) in the case of $\mu > 0$. Define $v = \frac{1}{\sqrt{a}} w$. Then w satisfies
\[w_{aa} + \left(\frac{1}{4a^2} + 1 \right) w - \frac{1}{a} w^3 = 0. \tag{4.10} \]
Multiplying (4.10) by w_a and rewriting the resulting expression as `perfect derivatives' we obtain
\[\partial_a \left[\frac{1}{2} (w_a^2) + \frac{1}{8a^2} w^2 + \frac{1}{2} w^2 - \frac{1}{4a} w^4 \right] = -\frac{1}{4a^2} w^2 + \frac{1}{4a^2} w^4. \tag{4.11} \]
Define now
\[E(a) := \frac{1}{2} (w_a^2) + \frac{1}{8a^2} w^2 + \frac{1}{2} w^2 - \frac{1}{4a} w^4 \geq \frac{1}{2} (w_a^2) + \left(\frac{1}{2} - \frac{|v(0)|^2}{4} \right) w^2, \tag{4.12} \]
where we used $|a^{-\frac{1}{2}} w| = |v| \leq |v(0)|$. From (4.10) we have that
\[\partial_a E(a) = -\frac{1}{4a^2} w^2 + \frac{1}{4a^2} w^4 \leq \left(\frac{w^2}{4a^2} \right) w^2. \tag{4.13} \]
Using $|a^{-\frac{1}{2}} w| = |v| \leq |v(0)|$ and (4.9) again, we obtain from (4.13)
\[\partial_a E(a) \leq \frac{c}{a} E, \quad c = \frac{|v(0)|^2}{2} - |v(0)|^2 < 1. \tag{4.14} \]
The differential inequality (4.14) implies $E \leq O(a^c)$ and thus $w \leq O(a^\frac{c}{2})$ as $a \to \infty$. Now from (4.12) and (4.9) we obtain that
\[E(a) \geq \kappa_0 w^2 \quad \text{where} \quad \frac{1}{2} > \kappa_0 := \frac{1}{2} - \frac{|v(0)|^2}{4} > 0. \tag{4.15} \]
Using (4.13) and (4.15) we conclude that
\[\partial_a E(a) \leq O(a^{-\frac{c}{2}}) w^2 \leq O(a^{-\frac{c}{2}}) E. \tag{4.16} \]
Hence $E = O(1)$, which gives $w = O(1)$ and $w_a = O(1)$ from (4.12). The oscillatory asymptotic form of v then follows from the exactly same argument used in the case $\mu > 0$.

Next, we consider solutions v_f to (3.5) (F). We will show that for $v_f(0) \in (0, 2)$, solutions v_f to (3.5)(F) behave like $1 + \frac{1}{\sqrt{a}} \cos(\gamma a + \sigma \log a + \beta)$ as $a \to +\infty$. By the odd symmetry of the equation, the case when $v_f(0) \in (-2, 0)$ is the same. First, multiplying (3.5) (F) by v_a, we have
\[\partial_a \left(\frac{1}{2} (v_a^2) + \frac{1}{4} (v^2 - 1)^2 \right) = -\frac{1}{a} (v_a)^2, \]
which, along with $v_a(0) = 0$, implies that
\[|v(a)^2 - 1| \leq |v(0)^2 - 1|. \tag{4.17} \]
In particular, (4.17) yields $v(a) > 0$. Again, let $v = 1 + a^{-\frac{1}{2}} w$; then w satisfies
\[w_{aa} + \left(2 + \frac{1}{4a^2} \right) w + 3a^{-\frac{1}{2}} w^2 + \frac{1}{a} w^3 = 0. \tag{4.18} \]
Multiplying (4.18) by w_a, we have
\[\partial_a E = -\frac{1}{2} a^{-\frac{3}{2}} w^2 - \frac{1}{2} a^{-\frac{1}{2}} w^3 - \frac{1}{4} a^{-\frac{3}{2}} w^4 = -\frac{1}{4} a^{-1} w^2(a^{-2} + 2a^{-\frac{1}{2}} w + a^{-1} w^2), \tag{4.19} \]
where
\[
E = \frac{1}{4}(w_a)^2 + (1 + \frac{1}{4}a^{-2})w^2 + a^{-\frac{1}{2}}w^3 + \frac{1}{4}a^{-1}w^4
\]
\[
\geq \frac{1}{4}(w_a)^2 + \frac{1}{4}(1 + v)^2w^2 > \frac{1}{4}(w_a)^2 + \frac{1}{4}w^2.
\]
(4.20)

In the last two inequalities, we used the fact \(v(a) > 0\). For the same reason, we can estimate the right-hand side of (4.19) as
\[
\partial_a E \leq \frac{w^2}{4a}(1 - v^2) < c, \quad c = |v(0)^2| < 1.
\]

It implies \(E = O(a^\epsilon)\) and thus \(w = O(a^2)\) as \(a \to \infty\). Substituting this into (4.19) we obtain
\[
\partial_a E = O(a^{-\frac{3}{2}})E
\]
and thus \(E = O(1)\) and in fact \(E \to E_0 > 0\) as \(a \to \infty\) unless \(w \equiv 0\). The oscillatory asymptotic form of \(w\) can be obtained much as in the previous cases.

In fact, by a more careful analysis, one may show the behaviour of \(v_f\) at \(a \to \infty\) is always one of oscillatory convergence to \(\pm 1\) except maybe for a sequence of data \(v_f(0) = v_f, |v_f| > 2\) which make \(v_f\) converge to 0 exponentially. Since we seek bounded continuous solutions to (5.2) and we have already showed that solutions \(v_d\) to (3.5)(D) are unbounded if \(|v_d(0)| > 1\), the above result is sufficient for us.

From the above we conclude then that for the case \(\mu < 0\) there exist smooth \(v_d\) and \(v_f\) so that \(v_d(0) = v_f(0) \in (-1, 1), \partial_a v_d(0) = 0 = \partial_a v_f(0), v_f(\infty) = \pm 1\) and \(v_d(\infty) = 0\) where the convergence is like \(a^{-\frac{1}{2}} \cos(\gamma a + \beta \log a + \sigma + O(\frac{1}{a}))\).

5. Radial self-similar waves

To analyse the system (3.7) for self-similar solutions, we first change the independent variable to \(s = \frac{r^2}{2}\) and then change the unknown to \(w = s^{1/2}e^{\mp i}v\). Consequently, (3.7) becomes
\[
\begin{cases}
\frac{\partial}{\partial s}v + \left(\frac{1}{16} + \frac{1}{4s^2} \pm \frac{\mu}{2s}\right) w + \frac{1}{2s^2} |w|^2 w = 0 & \text{for } |x| > |y| \quad \text{(F)} \\
\frac{\partial}{\partial s}v + \left(\frac{1}{16} + \frac{1}{4s^2} \mp \frac{\mu}{2s}\right) w - \frac{1}{2s^2} |w|^2 w = 0 & \text{for } |x| < |y| \quad \text{(D)}
\end{cases}
\]
(5.1)

Without loss of generality (see remarks 3.1 and 3.3), we may assume \(w\) is real valued. It is clear that, as long as we obtain the boundedness of the solutions to the ODEs, their oscillatory asymptotic forms follow from the exactly same change of variables as in the previous section \(w = r \cos \theta\) and \(w = \frac{1}{2}r \sin \theta\) and similar arguments. So we focus only on the boundedness.

Multiplying (5.1) by \(v\) and letting
\[
E(s) = \frac{1}{2}w_s^2 + \left(\frac{1}{32} + \frac{1}{8s^2} \pm \frac{\mu}{4s}\right) w^2 \pm \frac{1}{8s^2} w^4
\]
(5.2)
we obtain
\[
\partial_s E(s) = -\left(\frac{1}{4s^3} \pm \frac{\mu}{4s^2}\right) w^2 \pm \frac{1}{4s^3} w^4,
\]
(5.3)
which we would like to control in terms of (5.2).

Focusing equation (F). In this case, for \(s > s_0 := 16(|\mu| + 1)\) we have \(E > 0\) and
\[
\partial_s E(s) \leq \frac{|\mu|}{4s^3} w^2 \leq \frac{16|\mu|}{s^3} E(s).
\]
Therefore $E(s) \to E_0 > 0$ as $s \to \infty$ which implies that w and w_s are bounded as desired.

Defocusing equation (D). In this case, we follow a standard bootstrap argument. For those solution $w(s)$ such that $|w(s_0)| \leq 1$, let

$$s_1 := \sup \{s \geq s_0 \mid |w(s')| \leq 1 \forall s' \in [s_0, s]\}.$$

For $s \in [s_0, s_1]$, we have from (5.2)

$$E(s) \geq \frac{1}{2} w^2_s + \frac{1}{64} w^2$$

and from (5.3) and (5.4) we obtain that

$$\partial_s E(s) \leq \frac{|\mu|}{4s^2} w^2 + \frac{1}{4s^3} w^4 \leq \frac{|\mu| + 1}{4s^2} w^2 \leq \frac{16(|\mu| + 1)}{s^2} E(s).$$

Therefore, if $|w(s_0)|$ and $|w_s(s_0)|$ are sufficiently small -which by the continuity in theorem 6 is guaranteed by taking $w(0)$ sufficiently small- we have that $s_1 = \infty$. It follows $w(s)$ and $w_s(s)$ are bounded.

6. Conclusions and future directions

In conclusion, in this work, we have considered the two-dimensional hyperbolic NLS equation. We have illustrated the relevance of the use of the so-called hyperbolic variables in the context of this PDE model (relevant to optical media combining normal dispersion—typically in the time variable—to anomalous one—typically in the continuous spatial variables). We have discussed the context of weak solutions within the model and how relevant compatibility conditions naturally arise along the characteristic lines of the hyperbolic operator. We have subsequently elucidated the prototypical weak standing wave solutions that the model supports establishing that they only exist for negative values of the propagation constant μ and characterizing their weak modulated power law decay on the basis of energy-type methods (in the radial hyperbolic variable). Also, similar techniques but in appropriately rescaled variables have been used to discuss the existence of radial, self-similar wave solutions to the PDE for all $\mu \in \mathbb{R}$.

It would be particularly interesting to revisit the numerical computations of earlier works [11, 13, 14, 16, 17] in the context of weak solutions and to examine whether for appropriately crafted initial conditions the relevant direct numerical computations support the decay rates analytically obtained herein. Preliminary computations with radial initial data such as $u(x, y, 0) = \tanh(a)$ for $|x| > |y|$ (and zero otherwise) seem to support the radial evolution of the solution profile and the development of oscillations around the unit asymptotic state, as suggested by our main theorem (see figure 1). In particular, this initial profile provides a vanishing solution in the (D) region, as well as a radial solution asymptoting to unity in the (F) region. The observation that can be made based on these preliminary results is that in the latter region the data indeed remains radial in nature (since the hyperbolae forming in the middle panel are equi-a lines) yet it also develops an oscillatory dynamics associated with the decay to the stationary state, which is reminiscent of the oscillatory convergence suggested by our main theorem. It should also be noted that the numerical method used here was a 4th order Runge–Kutta for marching the system in time, combined with a centred-difference in space scheme in a sufficiently fine spatial grid. However, detailed numerical investigations are relevant to establish the relevant decay; these will be deferred to a future publication. From the point of view of analytical considerations, it would be relevant to generalize the results obtained herein to the more experimentally tractable directions of three-dimensional media.
Figure 1. Evolution of equation (2.1) for $\gamma = 1$ (a factor of $1/2$ is also used in front of the $\Box_{x,y}$ as is often done in the physics literature). The top panel shows the initial condition and the middle panel shows the result of the evolution at $t = 1$. Both panels show contour plots of $|u|^2$. Notice the hyperbolic $\text{eq}-\text{a}$ contours forming in the middle panel. The bottom panel shows a radial cross-section (at $y = 0$) of the dynamics, illustrating the oscillations around the asymptotic state that spontaneously develop in the dynamics (as suggested by our main theorem). The dashed line shows the initial density profile, the dashed–dotted one shows its evolution at $t = 0.5$ and the solid one its evolution at $t = 1$.

(This figure is in colour only in the electronic version)

(with two focusing and one defocusing direction) as in [11–14]. In that setting, it would be relevant to connect generalizations of the present results to the rapidly evolving literature on the nonlinear X-waves of the above works. Another highly promising direction is that of the quasi-discrete waveguide array setting of equation (1.1) in 2 + 1-dimensions or of [22] in 3 + 1-dimensions. Notice, however, that even the setting of equation (3HNLS) considered herein may be of relevance to physical applications of light propagation within planar waveguides in glass membrane fibers, where already some interesting phenomena such as linear and nonlinear guidance with ultralow optical attenuation have been observed; see, e.g. [23].
Appendix. An ODE blow-up theorem near a regular singular point

Consider
\[x' = \frac{1}{t} F(t, x), \quad t > 0, \quad x \in \mathbb{R}^n, \quad F \in C^k(\mathbb{R}^{n+1}, \mathbb{R}^n). \]
(7.1)

Here \(t = 0 \) is a so-called regular singular point of the system and we are interested in solutions continuous or smooth at \(t = 0 \). A subcategory of this system is a scalar valued equation
\[y^{(n)} = \frac{1}{t^n} H(t, y, ty', \ldots, t^{n-1}y^{(n-1)}), \]
which include (3.5)(F)(D) and (3.7)(F)(D) as special cases. In fact, by setting \(x_j = t^{j-1}(y^{(j-1)} - c_j) \) for \(j = 1, \ldots, n \) and arbitrary constants \(c_1, \ldots, c_n \), the above equation turns into the form of (7.1).

Let \(B(X, r) \) denote the ball centred at 0 and with the radius \(r \) in a Banach space \(X \).

Theorem 7.1. Assume \(k \geq 1 \).

1. There exists a solution \(x(t) \) to (7.1) which is continuous on \(t \in [0, \varepsilon] \) for some \(\varepsilon > 0 \) and \(x(0) = x_0 \) if and only if \(F(0, x) \equiv 0 \);
2. Suppose \(F(0, x_0) = 0 \). Let \(E_+ \) be the generalized eigenspace of \(F_0(x_0) \) corresponding to all eigenvalues whose real parts are greater than 0. Then there exists \(\varepsilon > 0 \) and a \(C^k \) mapping \(h : B(E_+, \varepsilon) \to B((E_+)^\perp,\varepsilon) \) so that: \(x(t) \) is a solution of (7.1) on \([0, \varepsilon] \) with \(x(\varepsilon) \in B(E_+, \varepsilon) + B((E_+)^\perp,\varepsilon) \) and Hölder continuous for \(t \in [0, \varepsilon] \) and \(x(0) = x_0 \) if and only if \(x(\varepsilon) \in \text{graph}(h) \);
3. The above solutions are of order \(O(t^\beta) \) where \(\beta \in (0, \beta_0) \) and \(\beta_0 = \min\{1, \inf[\text{Re} \lambda | \lambda \text{ is an eigenvalue of } F_0(x_0) \text{ and } \text{Re} \lambda > 0]\} \);
4. If \(k \geq 2 \) and \(E_+ = [0] \), there exists only a unique solution \(x(t) \) on \([0, \varepsilon] \) so that it is Hölder continuous in \(t \) on \([0, \varepsilon] \) and \(x(0) = x_0 \). Moreover, if \(F_0(0, x_0) = 0 \), \(x(t) = O(t^2) \) as \(t \to 0 \);
5. If \(F = F(t, x, \alpha) \) with a external parameter \(\alpha, F \in C^k \), and \(F(0, x_0, \cdot) \equiv 0 \), the mapping \(h \) in item (2) is also \(C^{k-1} \) in \(\alpha \).

Proof. To blow up the system to analyse solutions near \(t = 0 \), we create an auxiliary independent variable \(\tau \) so that \(\frac{dx}{d\tau} = t \), use \(\tilde{x} \) to denote the differentiation in \(\tau \), and rewrite (7.1) as

\[
\begin{align*}
\dot{i} &= t \\
\dot{x} &= \tilde{F}(\tilde{x})
\end{align*}
\]
(7.2)

where \(\tilde{x} = (t, x)^T \). A solution of (7.1) is continuous at \(t = 0 \) equivalent to that its corresponding solution of (7.2) converges as \(\tau \to -\infty \). On the one hand, it is clear that \(x_0 = \lim_{\tau \to -\infty} x(\tau) \) only if \(\tilde{x}_0 = (0, x_0) \) is a fixed point of (7.2). On the other hand, suppose \(F(0, x_0) = 0 \), we notice 1 is an eigenvalue of \(D\tilde{F}(\tilde{x}_0) \) with a generalized eigenvector \(T = (1, w)^T \), for some \(w \in \mathbb{R}^n \), and \(E_+ = E_+ \oplus \text{span} \{T\} \) is the generalized eigenspace of \(D\tilde{F}(\tilde{x}_0) \) corresponding to all eigenvalues whose real parts are greater than 0. From the standard unstable manifold theorem (cf for example [4–6]), there exists a \(C^k \) manifold \(W^u \subset \mathbb{R}^{n+1} \) in a neighbourhood of \(\tilde{x}_0 \) so that (a) \(\tilde{x}_0 \in W^u \); (b) \(\partial_{\tilde{x}} W^u = E_+ ; \) (c) it is locally invariant under the flow of (7.2); and (d) \(\tilde{x} \in W^u \) if and only if the solution \(\tilde{x}(\tau) \) of (7.2) with \(\tilde{x}(0) = \tilde{x} \) stays close to \(\tilde{x}_0 \) for all \(\tau \in (-\infty, 0] \) and \(\tilde{x}(\tau) \to \tilde{x}_0 \) exponentially as \(\tau \to -\infty \). Changing the variable back from \(\tau \) to \(t \), the exponential rate \(O(e^{\gamma \tau}) \) as \(\tau \to -\infty \) becomes \(O(t^\beta) \). Therefore,
for equation (7.1), solutions on $W^u\setminus\{t = 0\}$ exactly correspond to solutions which are Hölder in t and converge to x_0 as $t \to 0$. This proves statement (2). Statement (3) is obvious when one notices that $t = ce'$. Statement (4) is a consequence of the tangency of W^u to E_+, which is equal to $\mathbb{R}^2 = \mathbb{R}(1, 0)^T$ in this case, at x_0. Statement (5) follows directly from the standard result that unstable manifolds are smooth in the external parameters [6]. □

Acknowledgments

The first author is funded in part by NSF-DMS-0349023, NSF DMS-0806762, NSF-CMMI-1000337 and by the Alexander von Humboldt and Alexander S Onassis Foundations. He also acknowledges numerous discussions on this theme with Kody J H Law.

The second author is funded in part by NSF DMS 0803160 and a 2009-2010, Radcliffe Institute for Advanced Study Fellowship. She also acknowledges an interesting discussion with J Colliander and C Sulem on (3HNLS).

The third author is funded in part by NSF-DMS 0801319.

References

[1] Berestycki H and Lions P L 1980 Une méthode locale pour l’existence de solutions positives de problèmes semi-linéaires elliptiques dans \mathbb{R}^N J. Anal. Math. 38 144–87
[2] Berestycki H and Lions P L 1983 Nonlinear scalar field equations. I. Existence of a ground state Arch. Ration. Mech. Anal. 82 313–45
[3] Berestycki H, Lions P L and Peletier L A 1981 An ODE approach to the existence of positive solutions for semilinear problems in \mathbb{R}^N Indiana Univ. Math. J. 30 141–57
[4] Chow S-N, Li C and Wang D 2008 Normal Forms and Bifurcation of Planar Vector Fields (Cambridge: Cambridge University Press) viii+472pp ISBN: 978-0-521-10223-0 (Reprint of the 1994 original)
[5] Chow S-N and Lu K 1988 Invariant manifolds for flows in Banach spaces J. Diff. Eqns 74 285–317
[6] Chow S-N, Lin X-B and Lu K 1991 Smooth invariant foliations in infinite-dimensional spaces J. Diff. Eqns 94 266–91
[7] Chong A, Remminger W H, Christodouides D N and Wise F W 2010 Airy-Bessel wave packets as versatile linear light bullets Nature Photon. 4 103–6
[8] Christodouides D N, Efremidis N K, Di Trapani P and Malomed B A 2004 Bessel X-waves in two and three dimensional bidispersive optical systems Opt. Lett. 29 1445–8
[9] Conti C 2003 X-wave-mediated instability of plane waves in Kerr media Phys. Rev. E 68 016606
[10] Conti C 2004 Generation and nonlinear dynamics of X waves of the Schrödinger equation Phys. Rev. E 70 046613
[11] Conti C and Trillo S 2007 Nonlinear X waves Localized Waves ed H E Hernandez-Figueroa, M Zamboni-Rached and E Recami (Hoboken, NJ: John Wiley & Sons Inc.) chapter 9, pp 243–72 (doi:10.1002/9780470470168981)
[12] Conti C, Di Trapani P and Trillo S 2009 X-Waves in Self-focusing of ultra-short pulses Self-Focusing: Past and Present—Fundamentals and Prospects (Topics in Applied Physics vol 114) (Berlin: Springer) pp 439–56
[13] Conti C, Trillo S, Di Trapani P, Piskarkas A, Jedrkiewicz O and Trull J 2003 Nonlinear electromagnetic X waves Phys. Rev. Lett. 90 170406
[14] Di Trapani P, Vääläinen G, Piskarkas A, Jedrkiewicz O, Trull J, Conti C and Trillo S 2003 Spontaneously generated X-shaped light bullets Phys. Rev. Lett. 91 093904
[15] Ding W, Tang H and Zeng C 2009 Self-similar solutions of Schrödinger flows Calc. Var. Partial Diff. Eqns 34 267–77
[16] Droulias S, Hizanidis K, Meier J and Christodouides D N 2005 X-Waves in nonlinear normally dispersive waveguide arrays Opt. Express 13 1827–32
[17] Efremidis N, Hizanidis K, Malomed B and Di Trapani P 2007 Three dimensional vortex solitons in self-defocusing media Phys. Rev. Lett. 98 113901
[18] Ghidaglia J M and Saut J C 1990 On the initial value problem for the Davey-Stewartson systems Nonlinearity 3 475–506
[19] Ghidaglia J M and Saut J C 1993 Nonelliptic Schrödinger Equations J. Nonlinear Sci. 3 169–95
[20] Ghidaglia J M and Saut J C 1996 Nonexistence of traveling wave solutions to nonelliptic Schrödinger equations J. Nonlinear Sci. 6 139–45
[21] Hayata K and Koshiba M 1993 Bright-dark solitary wave solutions of a multidimensional nonlinear Schrödinger equation Phys. Rev. E 48 2312–5
[22] Heinrich M, Szameit A, Dreisow F, Keil R, Minardi S, Pertsch T and Lederer F 2009 Observation of three-dimensional discrete-continuous X waves in photonic lattices Phys. Rev. Lett. 103 113903
[23] Joly N Y, Birks T A, Yulin A, Knight J C and Russel P St J 2005 Linear and nonlinear guidance in an ultralow loss planar glass membrane Opt. Lett. 30 2469–71
[24] Lahini Y, Frumker E, Silberberg Y, Droulias S, Hizanidis K, Morandotti R and Christodoulides D 2007 Discrete X-wave formation in nonlinear waveguide arrays Phys. Rev. Lett. 98 023901
[25] Moshonas N, Kominis Y, Papagiannis P, Hizanidis K and Christodoulides D N 2009 Spatiotemporal interaction of optical beams in bidispersive media J. Opt. Soc. Am. B 26 1479–83
[26] Pohozaev S I 1965 Eigenfunctions of the equations $\Delta u + \lambda f (u) = 0$ Sov. Math.—Dokl. 5 1408–11
[27] Strauss W 1977 Existence of solitary waves in higher dimensions Commun. Math. Phys. 55 149–62
[28] Sulem C and Sulem J P 1999 Nonlinear Schrödinger Equations: Self-Focusing and Wave Collapse (Applied Mathematical Sciences vol 139) (Berlin: Springer)