GAMMA-RAY BURST AFTERGLOWS AS ANALOGS OF HIGH-FREQUENCY-PEAKED BL LAC OBJECTS

J. WANG and J. Y. WEI
National Astronomical Observatories, Chinese Academy of Science, 20A Datun Road, Chaoyang District, Beijing 100012, China; wj@bao.ac.cn
Received 2010 September 26; accepted 2010 November 12; published 2010 December 8

ABSTRACT

The spectral properties from radio-to-optical bands are compared between the 18 optically bright gamma-ray burst (GRB) afterglows and the well-established power-spectrum sequence in blazars. The comparison shows that the afterglows are in well agreement with the well-known blazar sequence (i.e., the vL_v–α_{Ro} correlation, where α_{Ro} is the broadband spectral slope from radio-to-optical bands). The afterglows are, however, clustered at the low-luminosity end of the sequence, which is typically occupied by high-frequency-peaked BL Lac objects (HBLs). The correlation suggests that GRB afterglows share a similar emission process with HBLs. We further identify a deviation at a significance level larger than 2σ from the sequence for three typical optically “dark” bursts. The deviation favors a heavy extinction in optical bands for the “dark” bursts. The extinction A_V is estimated to be larger than 0.5–0.6 mag from the vL_v–α_{Ro} sequence.

Key words: BL Lacertae objects: general – gamma-ray burst: general – methods: statistical

Online-only material: color figures

1. INTRODUCTION

With our current knowledge, gamma-ray bursts (GRBs) and blazars (a collective term for BL Lac objects and flat-spectrum radio quasars) share the similar observational phenomenon involving a relativistic jet on the line of sight of observers. In addition to the observational phenomena, both classes of the objects share a similar central engine—accretion onto a black hole with rapid spin—and similar emission processes—synchrotron and possible inverse Compton process (see Zhang 2007 for reviews; Urry & Padovani 1995). In spite of these similarities, the two classes of the objects differ from each other in following several respects: central engine mass, bulk Lorentz factor, and power spectral energy distribution sequence.

It is now well known that the relativistic jets are launched from a supermassive black hole with mass $\sim 10^8$–$10^9 M_\odot$ for blazars according to their spectroscopic observations (e.g., Lacy et al. 2001). Nevertheless, the popular “collapser” model indicates that long GRBs are produced by the death of young massive stars with masses $\gtrsim 25 M_\odot$ (see Woosley & Bloom 2006 for a review).

Direct measurements of bulk Lorentz factors (Γ) of jets are available for some blazars through the very long baseline interferometry observations of the superluminal velocity. The observations reveal a typical Lorentz factor $\Gamma \sim 10$ for blazars (e.g., Jorstad et al. 2001; Savolainen et al. 2010). However, the GRB fireball model requires a larger initial $\Gamma (>100)$ to ensure that the γ-ray photons are transparent to the $\gamma\gamma \rightarrow e^+e^-$ process (e.g., Piran 1999).

The power spectral sequence has been well established for blazars by Fossati et al. (1998) and was recently confirmed by the Fermi-detected blazars (Samburna et al. 2010), in which the two peaks of spectral energy distribution (SED) from radio to γ-rays shift toward lower frequency for more luminous objects. This sequence can be quantitatively described by the tight correlations between the photon frequency of the first peak of the SED and the luminosities in different bands. Several correlations have been found for GRB prompt emission in recent years (see Schaefer 2007 for a summary of these correlations).

Generally speaking, these correlations suggest that GRBs with more powerful prompt emission (or total released energy) tend to have higher peaked photon energy in their time-averaged γ-ray spectra (e.g., Amati et al. 2009).

In this Letter, we compare GRB’s radio–optical afterglow emission with the blazar sequence. The study is motivated by the fact that the Lorentz factors Γ in GRBs decrease with both time and radius of the jets as a power law, which means that the values of Γ in the late-time afterglows could be comparable to blazars. The Λ cold dark matter cosmology with parameter $h_0 = 0.73$, $\Omega_m = 0.24$, and $\Omega_\Lambda = 0.76$ is assumed throughout our calculations.

2. SAMPLES

Frail et al. (2003a) presented a complete catalog of radio afterglows of 75 pre-Swift GRBs (between 1997 and 2001). The catalog contains the detections in the frequencies from 1.4 GHz to 650 GHz for 25 afterglows. In order to provide a full examination, we further performed a complete search from the GCN circulars and literature for the radio afterglow detections for the bursts triggered later than 2001. The corresponding optical light curves were also compiled from the public papers. Our GRB sample finally consists of the radio–optical afterglow detections of 18 GRBs with measured redshifts. The sample is tabulated in Table 1. For each GRB, Columns 1 and 2 list the GRB identification and measured redshift, respectively. The time in days at the observer frame since the trigger is listed in Column 3. The next two columns present the specific fluxes at 5 GHz and at 5500 Å (V band) that were observed at the time given in Column 3. The optical V-band flux is corrected for the corresponding Galactic absorption, but the local one, because the statistical studies indicate that the GRB optical afterglows have very small averaged extinction around $\langle A_V \rangle \sim 0.2$ mag (e.g., Kann et al. 2010).

The last column presents the calculated k-corrected monochromatic luminosity at 5 GHz. The monochromatic
luminosity is derived from the observed flux f_ν listed in Column 4 as $\nu L_\nu(5\,\text{GHz}) = 4\pi d_L^2 f_\nu(1 + z)^{-\alpha - 1}$, where d_L is the luminosity distance and α is the slope defined as $f_\nu \propto \nu^{-\alpha}$. A typical slope $\alpha = 1/3$ is adopted in the k-correction for the slow cooling, optically thin phase (Sari et al. 1998). The calculated $\nu L_\nu(5\,\text{GHz})$ is distributed in a very narrow range roughly from 10^{40} to 10^{42} erg s$^{-1}$, which quality agrees with the similar distribution of the luminosities at 8.5 GHz (Frail 2005).

Fossati et al. (1998) compiled a sample of blazars with well-sampled SEDs from radio to γ-ray. There are totally 110 blazars with measured redshifts. These objects are used as a comparison sample in our subsequent analysis. The authors k-corrected all the reported specific fluxes to the rest frame according to the empirical spectral slopes. Using the k-corrected fluxes, we then calculate the corresponding luminosities at 5 GHz for the blazars by the same method mentioned above.

3. RESULTS

Using the calculated average radio-to-γ-ray SEDs, Fossati et al. (1998) identified a blazar sequence in which there is a systematic trend of the SEDs as a function of the monochromatic luminosities (see also Sambruna et al. 2010). This trend results in a tight anti-correlation between the photon frequencies of the first peaks of the SEDs and the monochromatic luminosities. However, the frequencies of the first peaks are difficult to be derived for the GRB afterglows at the current stage, because the SED modeling requires multi-wavelength follow-up observations from radio to hard X-rays (even γ-rays). To compare the GRB afterglows with the blazar sequence, we use the radio-to-optical spectral slope α_{RO} as a proxy of the frequency, both because α_{RO} is correlated with the frequency for the blazars (e.g., Figure 8 in Fossati et al. 1998) and because α_{RO} can easily be derived for the GRB afterglows. The broadband spectral slope α_{RO} is estimated by following the definition

$$
\alpha_{\text{RO}} = -\frac{\log(f_\nu/f_{\nu_2})}{\log(\nu_1/\nu_2)},
$$

for both GRB afterglows and blazars, where $\nu_1 = 5\,\text{GHz}$, $\nu_2 = 5500\,\text{Å}$ (c is the light velocity). Similarly as done in the above section, the spectral slopes $\alpha = -1/3$ and $\alpha = 1.2$ are used to carry out k-correction in the radio and optical bands for the GRB afterglows, respectively (Sari et al. 1998).

Figure 1 shows the estimated α_{RO} plotted against the luminosities at 5 GHz. The blazars from Fossati et al. (1998) are plotted by the blue open circles, which are consistent with the sequence at the low-luminosity end. The solid line presents the unweighted least-squares fit to the data when the GRB afterglows and blazars are merged. The 1σ dispersion is marked by the two dashed lines. In particular, the three green open triangles and corresponding vertical arrows mark the lower limits for the three typical optically “dark” GRBs (i.e., GRB 970828, GRB 990506, and GRB 020819). The “dark” GRBs deviate from the sequence by their large spectral slopes at a significance level $>2\sigma$.

(A color version of this figure is available in the online journal.)

Table 1

GRB Name	α	Δt (day)	$F_5\, \text{GHz}$ (μJy)	$F_5\, \text{GHz}$ (μJy)	$\nu L_\nu(5\,\text{GHz})$ (10^{40} erg s$^{-1}$)
970508	0.835	6.23	330	5.5	5.67
980703	0.966	1.22	146	10.8	3.59
990123	1.6	0.873	104	21.5	1.41
990510	1.619	0.72	110	57.5	9.66
991208	0.706	2.73	327	28.3	3.63
000911	1.058	4.06	60	3.7	1.82
000926	2.066	1.18	90	25.0	14.48
010222	1.477	0.26	77	85.0	5.45
010926	0.45	25.93	188	1.5	0.76
020405	0.69	3.35	160	3.6	1.68
030329	0.168	1.44	1050	693.1	0.41
050820	2.612	2.15	256	14.6	73.24
050416A	0.6535	5.6	260	21.9	2.39
070125	1.547	1.517	203	51.5	15.94
071003	1.60435	2.67	256	5.1	22.01
080319B	0.937	2.30	204	3.3	4.58
090323	3.57	4.99	105	2.3	64.01
090902B	1.882	1.31	111	9.0	14.18
Table 2
Radio/Optical Afterglow Emission of the Three Typical Optically “Dark” GRBs

GRB Name	z	Δt (days)	ν (GHz)	F_ν (\mu Jy)	$F_{\nu,\text{peak}}$ (\mu Jy)	νL_{ν} (\text{10}^{40} \text{erg s}^{-1})	A_V (mag)	Reference
970828	0.9578	5.6	4.86	99	<0.5	1.5	>0.63	Groot et al. (1998)
990506	1.3	1.66	8.46	447	<1.2	1.3	>0.58	Taylor et al. (2000)
020819	0.41	1.5	8.46	315	<4.4	0.74	>0.50	Jakobsson et al. (2005)

Figure 2. Solid blue circles show the SEDs from radio to soft X-ray of GRB 030329 afterglow detected at \sim6 day since the trigger. The multi-wavelength data are taken from 5 GHz, 8 GHz, 15 GHz, 23 GHz, and 43 GHz: Berger et al. (2003), 90 GHz: Kuno et al. (2005), 250 GHz: Sheth et al. (2003), 350 GHz: Smith et al. (2005), V band: Lipkin et al. (2004), and 1 keV: Willingale et al. (2004). The other symbols plot the average SEDs of the blazar sequence binned according to the radio luminosity, where the SEDs are taken from Fossati et al. (1998).

A color version of this figure is available in the online journal.

By combining the GRB afterglows and blazars, an unweighted least-squares fitting yields a relationship

$$\alpha_{\text{RO}} = (0.27 \pm 0.02) + (0.09 \pm 0.01) \log \left(\frac{\nu L_{\nu}(5 \text{ GHz})}{10^{42} \text{ erg s}^{-1}} \right),$$

with a 1\sigma dispersion of 0.09.

4. IMPLICATIONS

The blazar sequence was theoretically explained by Ghisellini et al. (1998). Only the very high energy electrons cool efficiently in a less powerful jet through synchrotron emission, which results in a break in the SED at high frequency. In contrast, an external seed photon injection (e.g., broad-line emission from active galactic nuclei) causes that the powerful jet could efficiently cool for low-energy electrons through the inverse Compton process. According to the unifying scheme, the low-luminosity end of the $\nu L_{\nu}(5 \text{ GHz})-\alpha_{\text{RO}}$ correlation is occupied by the high-frequency-peaked BL Lac objects (HBLs). Without strong external radiation field, the jets in HBLs mainly cool through the synchrotron emission for low-energy photons and weak synchrotron self-Compton (SSC) for very high energy photons, which predicts a very small Compton dominance, usually $\log(L_c/L_{\text{syn}}) < 0$.

Our study indicates that the GRB radio/optical afterglows follow the blazars in the $\nu L_{\nu}(5 \text{ GHz})-\alpha_{\text{RO}}$ diagram, which implies that the afterglows share the similar radiation process as that occurring in the HBLs, that is mainly the synchrotron cooling without external photons. In fact, the weak inverse Compton components at X-ray band have already been identified in a few GRB afterglows with well multi-wavelength detections from radio to X-ray (e.g., Harrison et al. 2001; Frail et al. 2003b). The synchrotron model predicates that the peak photon frequency is $\nu_{\text{peak}} \propto B \Gamma_{\text{r}}^{2}$, where B is the magnetic field, Γ is the Lorentz boost factor, and ν_{peak} is the energy of the electrons emitting at the peaks of the SED. Assuming that the recently updated theoretical blazar sequence $\nu_{\text{peak}} \propto U^{-1}$ ($U \propto L/(c r^2 \theta_j^2)$ is the radiation energy density, where L is the luminosity, and r and θ_j are the distance from the center and half opening angel of the jet, respectively) for low-luminosity blazars (Ghisellini 2003) is still available for GRBs yields a relationship $\nu_{\text{peak}} \propto B \Gamma r^3 \theta_j^2 / L^2$, which implies that $B \Gamma r^3 \theta_j^2 \sim B r^3 \theta_j^2 (\Gamma \sim \theta_j^{-1})$ might be a constant for GRB late-time afterglows taking into account the tight $\nu_{\text{peak}} \sim \nu L_{\nu}$ anti-correlation (see Figure 7 in Fossati et al. 1998).

According to the widely accepted unification scheme for radio-loud sources, the weak blazars are the beamed counterpart of FR I radio galaxies (Urry & Padovani 1995). The unification scheme motivate us to suspect that the radio emission of GRB afterglow is still detectable even though the strongly beamed GRB high-energy emission does not point us. These afterglows without high-energy prompt emission are called as orphan GRB afterglows. In fact, Bower et al. (2007) claimed that they identified a single candidate of radio orphan afterglow by examining the radio transient sources observed by Very Large Array.

The nature of optically “dark” bursts is still an open issue (e.g., Lamb et al. 2004). The dark bursts are now empirically defined as the events whose afterglow flux ratio of optical bands to soft X-ray at 3 keV, ρ_{OX}, is less than 0.5 (Jakobsson et al. 2004). At the present, the debate on the optical darkness mainly focuses on two plausible scenarios: the afterglow optical emission is intrinsic faint due to low efficiency (e.g., Jakobsson et al. 2005; Urata et al. 2007) or is heavily extincted by the dust (e.g., Zheng et al. 2009; Hashimoto et al. 2010).

It is emphasized that none of the GRBs listed in Table 1 can be classified as a “dark” burst. Table 2 lists the radio and optical properties of three typical “dark” GRBs: GRB 970828, GRB 990506, and GRB 020819. For each burst, we list the GRB identification, measured redshift, observing frequency in radio, observation time elapsed since the trigger, observed flux density in radio, upper limit of R-band flux density, and the calculated monochromatic luminosity at the corresponding radio frequency. The data are compiled from literature as well. Along with the k-correction, (1) the flux densities (and also...
ν Lν at 5 GHz are transformed from that at 8.5 GHz by assuming a power-law spectral shape with slope α = −1/3 for GRB 990506 and GRB 020819 and (2) the upper limits of R-band flux densities are transformed to V-band values by assuming a spectral slope α = 1.2 for all the three events. The three bursts are then overplotted in Figure 1 by the green open triangles. The overplotted vertical arrows show that the calculated spectral slope αRO are underestimated because of the R-band upper limits.

One can clearly see from Figure 1 that all of the three “dark” bursts significantly deviate from the well-established correlation (both optically bright GRB afterglows and blazars) at a significant level larger than 2σ due to their large αOR. The deviation means that these bursts are faint in optical bands with respect to not only X-ray emission, but also radio radiation.

Briefly, there are two approaches that are widely adopted to interpret the optically “dark” burst puzzle: one is to reduce the value of βBOX by enhancing the X-ray emission, including long-lived reverse shock for X-ray (e.g., Dai 2004; Genet et al. 2007), late X-ray prompt emission (Ghisellini et al. 2007), and inverse Compton scattering (Panaiteacu 2008); an alternative approach is to suppress the optical radiation through heavy dust extinction or intrinsic faintness in optical bands. The larger αOR suggests that both X-ray and radio emission should be enhanced simultaneously for the optically “dark” bursts in the first approach. In contrast, the faint optical emission in the “dark” bursts could be plausibly explained by the heavy dust extinction (e.g., Djorgovski et al. 2001), because the radio emission is believed to be free of the dust extinction. The extinction scenario was recently supported by Zheng et al. (2009, and references therein) who found that the natural hydrogen column density is generally speaking, the required extinctions are estimated for all the three “dark” GRBs and listed in Column 8 in Table 2. Generally speaking, the required extinctions Aν > 0.5–0.6 mag, which is obviously larger than the averaged value (Aν) ∼ 0.2 obtained from a large sample of GRB optical afterglows (e.g., Kann et al. 2010). In fact, a typical dust extinction Aν ∼ 1 mag is identified for some optically “dark” GRBs (e.g., Perley et al. 2009). Recent near-infrared observations indicate that the line of sight of afterglow of “dark” GRB 080325 shows heavy extinction with an amount Aν > 2 mag (Hashimoto et al. 2010).

5. SUMMARY

We compile a sample of 18 GRB afterglows with multi-wavelength detections from radio-to-optical bands. Comparing the afterglows with blazars shows that the afterglows are well consistent with the firmly established blazar sequence (i.e., the νLν (5 GHz)–αRO). The afterglows are only distributed at the low-luminosity end of the sequence, which suggests that the GRB afterglows have similar emission mechanism with the HBLs. The implication on “dark” GRBs is also discussed.

The authors thank the anonymous referee for his/her comments that improve the Letter. This work was funded by the National Science Foundation of China (Grant No. 10803008) and the National Basic Research Program of China (Grant 2009CB824800), supported by the Chinese Academy of Sciences (Grant KJCXZ-YWT19).

REFERENCES

Amati, L., Frontera, F., & Guidorzi, C. 2009, A&A, 508, 17
Bberger, E., et al. 2003, Nature, 426, 154
Bower, G. C., Saul, D., Bloom, J. S., Bolatto, A., Filippenko, A. V., Foley, R. J., & Perley, D. 2007, ApJ, 666, 346
Dai, Z. G. 2004, ApJ, 606, 1000
Djorgovski, S. G., et al. 2001, ApJ, 562, 654
Fossati, G., Maraschi, L., Celotti, A., Comastri, A., & Ghisellini, G. 1998, MNRAS, 299, 433
Frail, D. A. 2005, in Proc. IAU Colloq. 192, Cosmic Explosions, On the 10th Anniversary of SN1993J, ed. J. M. Marcaide & K. W. Weiler (Berlin: Springer), 451
Frail, D. A., Kulkarni, S. R., Berger, E., & Wieringa, M. H. 2003a, AJ, 125, 2299
Frail, D. A., et al. 2003b, ApJ, 590, 992
Genet, F., et al. 2007, MNRAS, 381, 732
Ghisellini, G. 2003, New Astron., 47, 411
Ghisellini, G., Celotti, A., Fossati, G., Maraschi, L., & Comastri, A. 1998, MNRAS, 301, 451
Ghisellini, G., et al. 2007, ApJ, 658, 75
Groot, P. J., et al. 1998, ApJ, 493, 27
Harrison, F. A., et al. 2001, ApJ, 559, 123
Hashimoto, T., et al. 2010, ApJ, 719, 378
Jakobsson, P., et al. 2004, ApJ, 617, 21
Jakobsson, P., et al. 2005, ApJ, 629, 45
Jorstad, S. G., Marscher, A. P., Mattox, J. R., Wehrle, A. E., Bloom, S. D., & Yurchenko, A. V. 2001, ApJS, 134, 181
Kann, D. A., et al. 2010, ApJ, 720, 1513
Kuno, N., Nakai, S., Sato, N., Nakamishi, H., Yamauchi, A., & Kawai, N. 2005, ARA&A, 7, 21
Lacy, M., Laurent-Muehleisen, S. A., Ridgway, S. E., Becker, R. H., & White, R. L. 2001, ApJ, 551, 17
Lamb, D. Q., et al. 2004, New Astron. Rev., 48, 423
Levesque, E. M., Kewley, L. J., Graham, J. F., & Frushter, A. S. 2010, ApJ, 712, 26
Lipkin, Y. M., et al. 2004, ApJ, 606, 381
Panaiteacu, A. 2008, MNRAS, 385, 1628
Perley, D. A., et al. 2009, AJ, 138, 1690
Piran, T. 1999, Phys. Rep., 314, 575
Sambruna, R. M., et al. 2010, ApJ, 710, 24
Sari, R., Piran, T., & Narayan, R. 1998, ApJ, 497, 17
Savolainen, T., Homan, D. C., Hovatta, T., Kadler, M., Koyalev, Y. Y., Lister, M. L., Ros, E., & Zensus, J. A. 2010, A&A, 512, 24
Schaefer, B. E. 2007, ApJ, 660, 16
Sheth, K., Frail, D. A., White, S., Das, M., Bertoldi, F., Walter, F., Kulkarni, S. R., & Berger, E. 2003, ApJ, 595, 33
Smith, I. A., Tanus, R. J., Tanvir, N., Wijers, R. A. M. J., Vreeswijk, P., Rol, E., & Kouveliotou, C. 2005, A&A, 439, 981
Taylor, G. B., Bloom, J. S., Frail, D. A., Kulkarni, S. R., Djorgovski, S. G., & Jacoby, B. A. 2000, ApJ, 537, 17
Utrata, Y., et al. 2007, PASJ, 59, L29
Urry, C. M., & Padovani, P. 1995, PASP, 107, 803
Willingale, R., Osborne, J. P., O’Brien, P. T., Ward, M. J., Levan, A., & Page, K. L. 2004, MNRAS, 349, 31
Woosley, S. E., & Bloom, J. S. 2006, ARA&A, 44, 507
Zhang, B. 2007, Chin. J. Astron. Astrophys., 7, 1
Zheng, W. K., Deng, J. S., & Wang, J. 2009, Res. Astron. Astrophys., 9, 1103