Optimal Control of the Laplace-Beltrami operator on compact surfaces - concept and numerical treatment

Michael Hinze and Morten Vierling

Nr. 2011-01
January 2011
Optimal Control of the Laplace-Beltrami operator on compact surfaces – concept and numerical treatment

Michael Hinze∗ & Morten Vierling†

January 7, 2011

Abstract: We consider optimal control problems of elliptic PDEs on hypersurfaces Γ in \(\mathbb{R}^n \) for \(n = 2, 3 \). The leading part of the PDE is given by the Laplace-Beltrami operator, which is discretized by finite elements on a polyhedral approximation of Γ. The discrete optimal control problem is formulated on the approximating surface and is solved numerically with a semi-smooth Newton algorithm. We derive optimal a priori error estimates for problems including control constraints and provide numerical examples confirming our analytical findings.

Mathematics Subject Classification (2010): 58J32, 49J20, 49M15

Keywords: Elliptic optimal control problem, Laplace-Beltrami operator, surfaces, control constraints, error estimates, semi-smooth Newton method.

1 Introduction

We are interested in the numerical treatment of the following linear-quadratic optimal control problem on a \(n \)-dimensional, sufficiently smooth hypersurface \(\Gamma \subset \mathbb{R}^{n+1} \), \(n = 1, 2 \).

\[
\begin{aligned}
\min_{u \in L^2(\Gamma), y \in H^1(\Gamma)} & \quad J(u, y) = \frac{1}{2} \| y - z \|_{L^2(\Gamma)}^2 + \frac{\alpha}{2} \| u \|_{L^2(\Gamma)}^2 \\
\text{subject to} & \quad u \in U_{ad} \quad \text{and} \\
& \quad \int_{\Gamma} \nabla y \nabla \phi + cy \phi \, d\Gamma = \int_{\Gamma} u \phi \, d\Gamma, \forall \phi \in H^1(\Gamma)
\end{aligned}
\]

(1.1)

with \(U_{ad} = \{ v \in L^2(\Gamma) \mid a \leq v \leq b \} \), \(a < b \in \mathbb{R} \). For simplicity we will assume \(\Gamma \) to be compact and \(c = 1 \). In section 4 we briefly investigate the case \(c = 0 \), in section 5 we give an example on a surface with boundary.

Problem (1.1) may serve as a mathematical model for the optimal distribution of surfactants on a biomembrane \(\Gamma \) with regard to achieving a prescribed desired concentration \(z \) of a quantity \(y \).

∗Schwerpunkt Optimierung und Approximation, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany.
†Schwerpunkt Optimierung und Approximation, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany.
It follows by standard arguments that (1.1) admits a unique solution \(u \in U_{ad} \) with unique associated state \(y = y(u) \in H^2(\Gamma) \).

Our numerical approach uses variational discretization applied to (1.1), see [Hin05] and [HPUU09], on a discrete surface \(\Gamma^h \) approximating \(\Gamma \). The discretization of the state equation in (1.1) is achieved by the finite element method proposed in [Dzi88], where a priori error estimates for finite element approximations of the Poisson problem for the Laplace-Beltrami operator are provided. Let us mention that uniform estimates are presented in [Dem09], and steps towards a posteriori error control for elliptic PDEs on surfaces are taken by Demlow and Dziuk in [DD07]. For alternative approaches for the discretization of the state equation by finite elements see the work of Burger [Bur08]. Finite element methods on moving surfaces are developed by Dziuk and Elliott in [DE07]. To the best of the authors knowledge, the present paper contains the first attempt to treat optimal control problems on surfaces.

We assume that \(\Gamma \) is of class \(C^2 \) with unit normal field \(\nu \). As an embedded, compact hypersurface in \(\mathbb{R}^{n+1} \) it is orientable and hence the zero level set of a signed distance function \(d(x) = \text{dist}(x, \Gamma) \). We assume w.l.o.g. \(\nabla d(x) = \nu(x) \) for \(x \in \Gamma \). Further, there exists an neighborhood \(N \subset \mathbb{R}^{n+1} \) of \(\Gamma \), such that \(d \) is also of class \(C^2 \) on \(N \) and the projection

\begin{equation}
 a : N \rightarrow \Gamma, \quad a(x) = x - d(x)\nabla d(x) \tag{1.2}
\end{equation}

is unique, see e.g. [GT98, Lemma 14.16]. Note that \(\nabla d(x) = \nu(a(x)) \).

Using \(a \) we can extend any function \(\phi : \Gamma \rightarrow \mathbb{R} \) to \(N \) as \(\hat{\phi}(x) = \phi(a(x)) \). This allows us to represent the surface gradient in global exterior coordinates \(\nabla_{\Gamma} \phi = (I - \nu \nu^T) \nabla \hat{\phi} \), with the euclidean projection \((I - \nu \nu^T)\) onto the tangential space of \(\Gamma \).

We use the Laplace-Beltrami operator \(\Delta_{\Gamma} = \nabla_{\Gamma} \cdot \nabla_{\Gamma} \) in its weak form i.e. \(\Delta_{\Gamma} : H^1(\Gamma) \rightarrow H^1(\Gamma)^* \)

\[y \mapsto -\int_{\Gamma} \nabla_{\Gamma} y \nabla_{\Gamma}(\cdot) \, d\Gamma \in H^1(\Gamma)^*. \]

Let \(S \) denote the prolongated restricted solution operator of the state equation

\[S : L^2(\Gamma) \rightarrow L^2(\Gamma), \quad u \mapsto y - \Delta_{\Gamma} y + cy = u, \]

which is compact and constitutes a linear homeomorphism onto \(H^2(\Gamma) \), see [Dzi88, 1. Theorem].

By standard arguments we get the following necessary (and here also sufficient) conditions for optimality of \(u \in U_{ad} \)

\[\langle \nabla u J(u, y(u)), v - u \rangle_{L^2(\Gamma)} = \langle \alpha u + S^*(Su - z), v - u \rangle_{L^2(\Gamma)} \geq 0 \quad \forall v \in U_{ad}, \tag{1.3} \]

We rewrite (1.3) as

\[u = P_{U_{ad}} \left(-\frac{1}{\alpha} S^*(Su - z) \right), \tag{1.4} \]

where \(P_{U_{ad}} \) denotes the \(L^2 \)-orthogonal projection onto \(U_{ad} \).

2 Discretization

We now discretize (1.1) using an approximation \(\Gamma^h \) to \(\Gamma \) which is globally of class \(C^{0,1} \).

Following Dziuk, we consider polyhedral \(\Gamma^h = \bigcup_{i \in I_h} T^i_h \) consisting of triangles \(T^i_h \) with corners
on \(\Gamma \), whose maximum diameter is denoted by \(h \). With FEM error bounds in mind we assume the family of triangulations \(\Gamma^h \) to be regular in the usual sense that the angles of all triangles are bounded away from zero uniformly in \(h \).

We assume for \(\Gamma^h \) that \(a(\Gamma^h) = \Gamma \), with \(a \) from (1.2). For small \(h > 0 \) the projection \(a \) also is injective on \(\Gamma^h \). In order to compare functions defined on \(\Gamma^h \) with functions on \(\Gamma \) we use \(a \) to lift a function \(y \in L^2(\Gamma^h) \) to \(\Gamma \):

\[
y'(a(x)) = y(x) \quad \forall x \in \Gamma^h,
\]

and for \(y \in L^2(\Gamma) \) and sufficiently small \(h > 0 \) we define the inverse lift

\[
y_h(x) = y(a(x)) \quad \forall x \in \Gamma^h.
\]

For small mesh parameters \(h \) the lift operation \((\cdot)_l : L^2(\Gamma) \to L^2(\Gamma^h) \) defines a linear homeomorphism with inverse \((\cdot)'_l \). Moreover, there exists \(c_{\text{int}} > 0 \) such that

\[
1 - c_{\text{int}} h^2 \leq \| (\cdot)_l \|_{L^2(\Gamma^h),L^2(\Gamma^h)}^2, \quad \| (\cdot)'_l \|_{L^2(\Gamma^h),L^2(\Gamma)}^2 \leq 1 + c_{\text{int}} h^2, \tag{2.1}
\]

as the following lemma shows.

Lemma and Definition 2.1. Denote by \(\frac{\partial}{\partial \Gamma^h} \) the Jacobian of \(a|_{\Gamma^h} : \Gamma^h \to \Gamma \), i.e. \(\frac{\partial}{\partial \Gamma^h} = |\det(M)| \) where \(M \in \mathbb{R}^{n \times n} \) represents the Derivative \(da(x) : T_x \Gamma^h \to T_{a(x)} \Gamma \) with respect to arbitrary orthonormal bases of the respective tangential space. For small \(h > 0 \) there holds

\[
\sup_{\Gamma^h} \left| 1 - \frac{\partial}{\partial \Gamma^h} \right| \leq c_{\text{int}} h^2,
\]

Now let \(\frac{\partial}{\partial \Gamma} \) denote \(|\det(M^{-1})| \), so that by the change of variable formula

\[
\left| \int_{\Gamma^h} v_l \, d\Gamma^h - \int_{\Gamma} v \, d\Gamma \right| = \left| \int_{\Gamma} v \, \frac{\partial}{\partial \Gamma^h} - v \, d\Gamma \right| \leq c_{\text{int}} h^2 \| v \|_{L^2(\Gamma)}.
\]

Proof. see [DE07, Lemma 5.1]

Problem (1.1) is approximated by the following sequence of optimal control problems

\[
\min_{u \in L^2(\Gamma^h), y \in H^1(\Gamma^h)} J(u, y) = \frac{1}{2} \| y - z_l \|_{L^2(\Gamma^h)}^2 + \frac{\alpha}{2} \| u \|_{L^2(\Gamma^h)}^2 \tag{2.2}
\]

subject to \(u \in U_{\text{ad}}^h \) and \(y = S_h u \),

with \(U_{\text{ad}}^h = \{ v \in L^2(\Gamma^h) \mid a \leq v \leq b \} \), i.e. the mesh parameter \(h \) enters into \(U_{\text{ad}} \) only through \(\Gamma^h \). Problem (2.2) may be regarded as the extension of variational discretization introduced in [Hin05] to optimal control problems on surfaces.

In [Dzi88] it is explained, how to implement a discrete solution operator \(S_h : L^2(\Gamma^h) \to L^2(\Gamma^h) \), such that

\[
\| (\cdot)'_l S_h(\cdot)_l - S \|_{L^2(\Gamma^h),L^2(\Gamma)} \leq C_{\text{FE}} h^2, \tag{2.3}
\]

which we will use throughout this paper. See in particular [Dzi88, Equation (6)] and [Dzi88, 7. Lemma]. For the convenience of the reader we briefly sketch the method. Consider the space

\[
V_h = \left\{ \varphi \in C^0(\Gamma^h) \mid \forall i \in I_h : \varphi|_{T_{ih}} \in \mathcal{P}^1(T_{ih}) \right\} \subset H^1(\Gamma^h)
\]
of piecewise linear, globally continuous functions on Γ^h. For some $u \in L^2(\Gamma)$, to compute $y_h^l = (\cdot)^t P_h (\cdot) u$ solve

$$
\int_{\Gamma^h} \nabla y_h \nabla \varphi_i + c y_h \varphi_i \, d\Gamma^h = \int_{\Gamma^h} u_i \varphi_i \, d\Gamma^h, \quad \forall \varphi \in V_h
$$

for $y_h \in V_h$. We choose $L^2(\Gamma^h)$ as control space, because in general we cannot evaluate $\int_{\Gamma^h} v \, d\Gamma$ exactly, whereas the expression $\int_{\Gamma^h} v \, d\Gamma^h$ for piecewise polynomials v_l can be computed up to machine accuracy. Also, the operator S_h is self-adjoint, whereas the expression $(\cdot)^t S_h (\cdot)^* = (\cdot)^* S_h (\cdot)^t$ is not. The adjoint operators of $(\cdot)^t$ and $(\cdot)^* t$ have the shapes

$$
\forall v \in L^2(\Gamma^h) : ((\cdot)^* t v) = \frac{d\Gamma^h}{d\Gamma} v^t, \quad \forall v \in L^2(\Gamma) : ((\cdot)^t)^* v = \frac{d\Gamma}{d\Gamma^h} v_l,
$$

(2.4)
hence evaluating $(\cdot)^* t$ and $(\cdot)^t$ requires knowledge of the Jacobians $\frac{d\Gamma^h}{d\Gamma}$ and $\frac{d\Gamma}{d\Gamma^h}$ which may not be known analytically.

Similar to (1.1), problem (2.2) possesses a unique solution $u_h \in U^h_{ad}$ which satisfies

$$
u_h = P^{u^h}_{U^h_{ad}} \left(- \frac{1}{\alpha} p_h (u_h) \right).
$$

(2.5)

Here $P^{u^h}_{U^h_{ad}} : L^2(\Gamma^h) \to U^h_{ad}$ is the $L^2(\Gamma^h)$-orthogonal projection onto U^h_{ad} and for $v \in L^2(\Gamma^h)$ the adjoint state is $p_h(v) = S_h^* (S_h v - z_l) \in H^1(\Gamma^h)$.

Observe that the projections $P_{U_{ad}}$ and $P^{u^h}_{U^h_{ad}}$ coincide with the point-wise projection $P_{[a,b]}$ on Γ and Γ^h, respectively, and hence

$$
(P^{u^h}_{U^h_{ad}} (v_l))^t = P_{U_{ad}} (v)
$$

(2.6)

for any $v \in L^2(\Gamma)$.

Let us now investigate the relation between the optimal control problems (1.1) and (2.2).

Theorem 2.2 (Order of Convergence). Let $u \in L^2(\Gamma)$, $u_h \in L^2(\Gamma^h)$ be the solutions of (1.1) and (2.2), respectively. Then for sufficiently small $h > 0$ there holds

$$
\alpha \| u_h - u \|^2_{L^2(\Gamma)} + \| y_h^l - y \|^2_{L^2(\Gamma)} \leq \frac{1}{1 - c_{int} h^2} \left(\frac{1}{\alpha} \left(\| (\cdot)^t S_h (\cdot)^t - S^* \right) (y - z) \right)^2_{L^2(\Gamma)} \ldots
$$

$$
+ \left(\| (\cdot)^t S_h (\cdot)^t - S \right) u \|^2_{L^2(\Gamma)},
$$

(2.7)

with $y = Su$ and $y_h = S_h u_h$.

Proof. From (2.6) it follows that the projection of $- \left(\frac{1}{\alpha} p (u) \right)_l$ onto U^h_{ad} is u_l

$$
u_l = P^{u^h}_{U^h_{ad}} \left(- \frac{1}{\alpha} p_h (u_h) \right),
$$

which we insert into the necessary condition of (2.2). This gives

$$
\langle \alpha u_h + p_h (u_h), u_l - u_h \rangle_{L^2(\Gamma^h)} \geq 0.
$$
On the other hand \(u_l \) is the \(L^2(\Gamma^h) \)-orthogonal projection of \(-\frac{1}{\alpha}p(u)_l\), thus

\[
\langle -\frac{1}{\alpha}p(u)_l - u_l, u_h - u_l \rangle_{L^2(\Gamma^h)} \leq 0.
\]

Adding these inequalities yields

\[
\alpha\|u_l - u_h\|_{L^2(\Gamma^h)}^2 \leq \langle (p_h(u_h) - p(u)_l), u_l - u_h \rangle_{L^2(\Gamma^h)}
\]

\[
= \langle p_h(u_h) - S_h^*(y - z)_l, u_l - u_h \rangle_{L^2(\Gamma^h)} + \langle S_h^*(y - z)_l - p(u)_l, u_l - u_h \rangle_{L^2(\Gamma^h)}.
\]

The first addend is estimated via

\[
\langle p_h(u_h) - S_h^*(y - z)_l, u_l - u_h \rangle_{L^2(\Gamma^h)} = \langle y_h - y_l, S_h u_l - y_h \rangle_{L^2(\Gamma^h)}
\]

\[
= -\|y_h - y_l\|_{L^2(\Gamma^h)}^2 + \langle y_h - y_l, S_h u_l - y_l \rangle_{L^2(\Gamma^h)}
\]

\[
\leq -\frac{1}{2}\|y_h - y_l\|_{L^2(\Gamma^h)}^2 + \frac{1}{2}\|S_h u_l - y_l\|_{L^2(\Gamma^h)}^2.
\]

The second addend satisfies

\[
\langle S_h^*(y - z)_l - p(u)_l, u_l - u_h \rangle_{L^2(\Gamma^h)} \leq \frac{\alpha}{2}\|u_l - u_h\|_{L^2(\Gamma^h)}^2 + \frac{1}{2\alpha}\|S_h^*(y - z)_l - p(u)_l\|_{L^2(\Gamma^h)}^2.
\]

Together this yields

\[
\alpha\|u_l - u_h\|_{L^2(\Gamma^h)}^2 + \|y_h - y_l\|_{L^2(\Gamma^h)}^2 \leq \frac{1}{\alpha}\|S_h^*(y - z)_l - p(u)_l\|_{L^2(\Gamma^h)}^2 + \|S_h u_l - y_l\|_{L^2(\Gamma^h)}^2
\]

The claim follows using (2.1) for sufficiently small \(h > 0 \).

Because both \(S \) and \(S_h \) are self-adjoint, quadratic convergence follows directly from (2.7). For operators that are not self-adjoint one can use

\[
\|((\cdot))^*S_h((\cdot))^* - S^*\|_{L^2(\Gamma),L^2(\Gamma)} \leq C_{FE}h^2.
\]

(2.8)

which is a consequence of (2.3). Equation (2.4) and Lemma 2.1 imply

\[
\|((\cdot))^* - (\cdot)^l\|_{L^2(\Gamma),L^2(\Gamma)} \leq c_{int}h^2, \quad \|((\cdot))^* - (\cdot)^l\|_{L^2(\Gamma),L^2(\Gamma)} \leq c_{int}h^2.
\]

(2.9)

Combine (2.7) with (2.8) and (2.9) to proof quadratic convergence for arbitrary linear elliptic state equations.

3 Implementation

In order to solve (2.5) numerically, we proceed as in [Hin05] using the finite element techniques for PDEs on surfaces developed in [Dzi88] combined with the semi-smooth Newton techniques from [HIK03] and [Ulb03] applied to the equation

\[
G_h(u_h) = \left(u_h - P_{[u,b]} \left(-\frac{1}{\alpha}p_h(u_h) \right) \right) = 0.
\]

(3.1)

Since the operator \(p_h \) continuously maps \(v \in L^2(\Gamma^h) \) into \(H^1(\Gamma^h) \), Equation (3.1) is semismooth and thus is amenable to a semismooth Newton method. The generalized derivative of \(G_h \) is given by

\[
DG_h(u) = \left(I + \frac{\lambda}{\alpha}S_h^*S_h \right),
\]
where \(\chi : \Gamma^h \to \{0, 1\} \) denotes the indicator function of the inactive set \(\mathcal{I}(-\frac{1}{\alpha}p_h(u)) = \{ \gamma \in \Gamma^h \mid a < -\frac{1}{\alpha}p_h(u)[\gamma] < b \} \):

\[
\chi = \begin{cases}
1 & \text{on } \mathcal{I}(-\frac{1}{\alpha}p_h(u)) \subset \Gamma^h \\
0 & \text{elsewhere on } \Gamma^h
\end{cases},
\]

which we use both as a function and as the operator \(\chi : L^2(\Gamma^h) \to L^2(\Gamma^h) \) defined as the point-wise multiplication with the function \(\chi \). A step semi-smooth Newton method for (3.1) then reads

\[
(I + \chi \alpha S^* S_h) u^+ = -G_h(u) + DG_h(u)u = P_{[a,b]} \left(-\frac{1}{\alpha}p_h(u) \right) + \chi \alpha S^* S_h u.
\]

Given \(u \) the next iterate \(u^+ \) is computed by performing three steps

1. Set \((1 - \chi) u^+)[\gamma] = ((1 - \chi)P_{[a,b]}(-\frac{1}{\alpha}p_h(u) + m))[\gamma] \), which is either \(a \) or \(b \), depending on \(\gamma \in \Gamma^h \).

2. Solve

\[
(I + \chi \alpha S^* S_h) \chi u^+ = \chi \alpha (S^* z_l - S^* S_h (1 - \chi) u^+)
\]

for \(\chi u^+ \) by CG iteration over \(L^2(\mathcal{I}(-\frac{1}{\alpha}p_h(u))) \).

3. Set \(u^+ = \chi u^+ + (1 - \chi) u^+ \).

Details can be found in [HV11].

4 The case \(c = 0 \)

In this section we investigate the case \(c = 0 \) which corresponds to a stationary, purely diffusion driven process. Since \(\Gamma \) has no boundary, in this case total mass must be conserved, i.e. the state equation admits a solution only for controls with mean value zero. For such a control the state is uniquely determined up to a constant. Thus the admissible set \(U_{ad} \) has to be changed to

\[
U_{ad} = \{ v \in L^2(\Gamma) \mid a \leq v \leq b \} \cap L^2_0(\Gamma), \text{ where } L^2_0(\Gamma) := \{ v \in L^2(\Gamma) \mid \int_{\Gamma} v \, d\Gamma = 0 \},
\]

and \(a < 0 < b \). Problem (1.1) then admits a unique solution \((u, y)\) and there holds \(\int_{\Gamma} y \, d\Gamma = \int_{\Gamma} z \, d\Gamma \). W.l.o.g we assume \(\int_{\Gamma} z \, d\Gamma = 0 \) and therefore only need to consider states with mean value zero. The state equation now reads \(y = Su \) with the solution operator \(S : L^2_0(\Gamma) \to L^2_0(\Gamma) \) of the equation \(-\Delta y = u, \int_{\Gamma} y \, d\Gamma = 0 \).

Using the injection \(L^2_0(\Gamma) \hookrightarrow L^2(\Gamma) \), \(S \) is prolonged as an operator \(S : L^2(\Gamma) \to L^2(\Gamma) \) by \(S = iS \). The adjoint \(i^* : L^2(\Gamma) \to L^2_0(\Gamma) \) of \(i \) is the \(L^2 \)-orthogonal projection onto \(L^2_0(\Gamma) \). The unique solution of (1.1) is again characterized by (1.4), where the orthogonal projection now takes the form

\[
P_{U_{ad}}(v) = P_{[a,b]}(v + m)
\]

with \(m \in \mathbb{R} \) chosen such that

\[
\int_{\Gamma} P_{[a,b]}(v + m) \, d\Gamma = 0.
\]
If for $v \in L^2(\Gamma)$ the inactive set $\mathcal{I}(v + m) = \{ \gamma \in \Gamma \mid a < v[\gamma] + m < b \}$ is non-empty, the constant $m = m(v)$ is uniquely determined by $v \in L^2(\Gamma)$. Hence, the solution $u \in U_{ad}$ satisfies

$$u = P_{[a,b]} \left(-\frac{1}{\alpha} p(u) + m \left(-\frac{1}{\alpha} p(u) \right) \right),$$

with $p(u) = S^* (Su - v^* z) \in H^2(\Gamma)$ denoting the adjoint state and $m(-\frac{1}{\alpha} p(u)) \in \mathbb{R}$ is implicitly given by $\int_{\Gamma} u \mathrm{d}\Gamma = 0$. Note that v^* is the identity on $L_0^2(\Gamma)$.

In (2.2) we now replace U_{ad}^h by $U_{ad}^{h_a} = \{ v \in L^2(\Gamma^h) \mid a \leq v \leq b \} \cap L_0^2(\Gamma^h)$. Similar as in (2.5), the unique solution u_h then satisfies

$$u_h = P_{U_{ad}^{h_a}} \left(-\frac{1}{\alpha} p_h(u_h) \right) = P_{[a,b]} \left(-\frac{1}{\alpha} p_h(u_h) + m_h \left(-\frac{1}{\alpha} p_h(u_h) \right) \right),$$

with $p_h(v_h) = S_h^*(S_h v_h - v_h^* z_l) \in H^1(\Gamma^h)$ and $m_h(-\frac{1}{\alpha} p_h(u_h)) \in \mathbb{R}$ the unique constant such that $\int_{\Gamma^h} u_h \mathrm{d}\Gamma^h = 0$. Note that $m_h\left(-\frac{1}{\alpha} p_h(u_h)\right)$ is semi-smooth with respect to u_h and thus Equation (4.1) is amenable to a semi-smooth Newton method. The discretization error between the problems (2.2) and (1.1) now decomposes into two components, one introduced by the discretization of U_{ad} through the discretization of the surface, the other by discretization of S.

For the first error we need to investigate the relation between $P_{U_{ad}^{h_a}}(u)$ and $P_{U_{ad}}(u)$, which is now slightly more involved than in (2.6).

Lemma 4.1. Let $h > 0$ be sufficiently small. There exists a constant $C_m > 0$ depending only on Γ, $|a|$ and $|b|$ such that for all $v \in L^2(\Gamma)$ with $\int_{\mathcal{I}(v+m(v))} \mathrm{d}\Gamma > 0$ there holds

$$|m_h(v_l) - m(v)| \leq \frac{C_m}{\int_{\mathcal{I}(v+m(v))} \mathrm{d}\Gamma} h^2.$$

Proof. For $v \in L^2(\Gamma)$, $\epsilon > 0$ choose $\delta > 0$ and $h > 0$ so small that the set

$$\mathcal{I}_v^h = \left\{ \gamma \in \Gamma^h \mid a + \epsilon \leq v(\gamma) + m(\gamma) \leq b - \delta \right\}.$$

satisfies $\int_{\mathcal{I}_v^h} \mathrm{d}\Gamma^h (1 + \epsilon) \geq \int_{\mathcal{I}(v+m(v))} \mathrm{d}\Gamma$. It is easy to show that hence $m_h(v_l)$ is unique. Set $C = c_m \max(|a|, |b|) \int_\Gamma \mathrm{d}\Gamma$. Decreasing h further if necessary ensures

$$\frac{Ch^2}{\int_{\mathcal{I}_v^h} \mathrm{d}\Gamma^h} \leq (1 + \epsilon) \frac{Ch^2}{\int_{\mathcal{I}(v+m(v))} \mathrm{d}\Gamma} \leq \delta.$$

For $x \in \mathbb{R}$ let

$$M_h^v(x) = \int_{\Gamma^h} P_{[a,b]} (v_l + x) \mathrm{d}\Gamma^h.$$

Since $\int_{\Gamma} P_{[a,b]} (v + m(v)) \mathrm{d}\Gamma = 0$, Lemma 2.1 yields

$$|M_h^v(m(v))| \leq c_m \|P_{[a,b]} (v + m(v))\|_{L^1(\Gamma)} h^2 \leq Ch^2.$$

Let us assume w.l.o.g. $-Ch^2 \leq M_h^v(m(v)) \leq 0$. Then

$$M_h^v \left(m(v) + \frac{Ch^2}{\int_{\mathcal{I}_v^h} \mathrm{d}\Gamma^h} \right) \geq M_h^v (m(v)) + Ch^2 \geq 0.$$
implies $0 \leq m(v) - m_h(v) \leq C h^2 \int_{Z^+} \dd x \leq \frac{(1+e)C}{\int_{I^{(c+m(v))}} \dd x} h^2$, since $M_h(x)$ is continuous with respect to x. This proves the claim.

Because

$$\left(P_{U_{ad}}(v_i) \right)^{l} - P_{U_{ad}}(v) = P_{[a,b]}(v + m_h(v)) - P_{[a,b]}(v + m(v)),$$

we get the following corollary.

Corollary 4.2. Let $h > 0$ be sufficiently small and C_m as in Lemma 4.1. For any fixed $v \in L^2(\Gamma)$ with $\int_{I(v+m(v))} \dd \Gamma > 0$ we have

$$\left\| \left(P_{U_{ad}}(v_i) \right)^{l} - P_{U_{ad}}(v) \right\|_{L^2(\Gamma)} \leq C_m \sqrt{\frac{\int_{I^{(c+m(v))}} \dd \Gamma}{\int_{I^{(c+m(v))}} \dd \Gamma}} h^2.$$

Note that since for $u \in L^2(\Gamma)$ the adjoint $p(u)$ is a continuous function on Γ, the corollary is applicable for $v = -\frac{1}{\alpha} p(u)$.

The following theorem can be proofed along the lines of Theorem 2.2.

Theorem 4.3. Let $u \in L^2(\Gamma)$, $u_h \in L^2(\Gamma_h)$ be the solutions of (1.1) and (2.2), respectively, in the case $c = 0$. Let $\hat{u}_h = \left(P_{U_{ad}}(\frac{1}{\alpha} p(u)) \right)^{1}$. Then there holds for $\epsilon > 0$ and $0 \leq h < h_c$

$$\alpha \| u_h^l - \hat{u}_h \|_{L^2(\Gamma)} \leq \sqrt{\frac{\int_{I^{(c+m(v))}} \dd \Gamma}{\int_{I^{(c+m(v))}} \dd \Gamma}} h^2.$$

Using Corollary 4.2 we conclude from the theorem

$$\| u_h^l - u \|_{L^2(\Gamma)} \leq \left(\frac{1}{\alpha} \| \left(\cdot \right)^{1} S_h^l (\cdot) - S^l \|_{L^2(\Gamma)} \right) \| u - \hat{u}_h \|_{L^2(\Gamma)} + \frac{1}{\sqrt{\alpha}} \| \left(\cdot \right)^{1} S_h (\cdot) - S \|_{L^2(\Gamma)} \| u \|_{L^2(\Gamma)} \leq \frac{C_m \sqrt{\int_{I} \dd \Gamma} h^2}{\sqrt{\alpha}} \left(\frac{1 + \| S \|_{L^2(\Gamma),L^2(\Gamma)}}{\sqrt{\alpha}} \right) \left(\frac{1 + \| S \|_{L^2(\Gamma),L^2(\Gamma)}}{\sqrt{\alpha}} \right)$$

the latter part of which is the error introduced by the discretization of U_{ad}. Hence one has h^2-convergence of the optimal controls.

5 Numerical Examples

The figures show some selected Newton steps u^+. Note that jumps of the color-coded function values are well observable along the border between active and inactive set. For all examples Newton’s method is initialized with $u_0 \equiv 0$.

The meshes are generated from a macro triangulation through congruent refinement, new nodes are projected onto the surface Γ. The maximal edge length h in the triangulation is not exactly halved in each refinement, but up to an error of order $O(h^2)$. Therefore we just compute our estimated order of convergence (EOC) according to

$$EOC_i = \frac{\ln \| u_{h_{i-1}} - u \|_{L^2(\Gamma_{h_{i-1}})} - \ln \| u_{h_i} - u \|_{L^2(\Gamma_{h_i})}}{\ln(2)}.$$
Figure 1: Selected full Steps \(u^+ \) computed for Example 5.1 on the twice refined sphere.

reg. refs.	0	1	2	3	4	5
\(L^2 \)-error	5.8925e-01	1.4299e-01	3.5120e-02	8.7123e-03	2.2057e-03	5.4855e-04
EOC	-	2.0430	2.0255	2.0112	1.9818	2.0075
\# Steps	6	6	6	6	6	6

Table 1: \(L^2 \)-error, EOC and number of iterations for Example 5.1.

For different refinement levels, the tables show \(L^2 \)-errors, the corresponding EOC and the number of Newton iterations before the desired accuracy of \(10^{-6} \) is reached.

It was shown in [HU04], under certain assumptions on the behaviour of \(-\frac{1}{\alpha} p(u)\), that the undamped Newton Iteration is mesh-independent. These assumptions are met by all our examples, since the surface gradient of \(-\frac{1}{\alpha} p(u)\) is bounded away from zero along the border of the inactive set. Moreover, the displayed number of Newton-Iterations suggests mesh-independence of the semi-smooth Newton method.

Example 5.1 (Sphere I). We consider the problem

\[
\min_{u \in L^2(\Gamma), y \in H^1(\Gamma)} J(u, y) \quad \text{subject to} \quad -\Delta \Gamma y + y = u - r, \quad -1 \leq u \leq 1 \tag{5.1}
\]

with \(\Gamma \) the unit sphere in \(\mathbb{R}^3 \) and \(\alpha = 1.5 \cdot 10^{-6} \). We choose \(z = 52 \alpha x_3(x_1^2 - x_2^2) \), to obtain the solution

\[
\bar{u} = r = \min (1, \max (-1, 4x_3(x_1^2 - x_2^2)))
\]

of (5.1).

Example 5.2. Let \(\Gamma = \{(x_1, x_2, x_3)^T \in \mathbb{R}^3 \mid x_3 = x_1x_2 \land x_1, x_2 \in (0, 1)\} \) and \(\alpha = 10^{-3} \). For

\[
\min_{u \in L^2(\Gamma), y \in H^1(\Gamma)} J(u, y) \quad \text{subject to} \quad -\Delta \Gamma y = u - r, \quad y = 0 \text{ on } \partial \Gamma \quad -0.5 \leq u \leq 0.5
\]

we get

\[
\bar{u} = r = \max (-0.5, \min (0.5, \sin(\pi x) \sin(\pi y)))
\]

by proper choice of \(z \) (via symbolic differentiation).

Example 5.2, although \(c = 0 \), is also covered by the theory in Sections 1-3, as by the Dirichlet boundary conditions the state equation remains uniquely solvable for \(u \in L^2(\Gamma) \). In the last two examples we apply the variational discretization to optimization problems, that involve zero-mean-value constraints as in Section 4.
Figure 2: Selected full steps u^+ computed for Example 5.2 on the twice refined grid.

reg. refs.	0	1	2	3	4	5
L^2-error	3.5319e-01	6.6120e-02	1.5904e-02	3.6357e-03	8.8597e-04	2.1769e-04
EOC	-	2.4173	2.0557	2.1291	2.0369	2.0250
# Steps	11	12	12	11	13	12

Table 2: L^2-error, EOC and number of iterations for Example 5.2.

Figure 3: Selected full steps u^+ computed for Example 5.3 on once refined sphere.

reg. refs.	0	1	2	3	4	5
L^2-error	6.7223e-01	1.6646e-01	4.3348e-02	1.1083e-02	2.7879e-03	6.9832e-04
EOC	-	2.0138	1.9412	1.9677	1.9911	1.9972
# Steps	8	8	7	7	6	6

Table 3: L^2-error, EOC and number of iterations for Example 5.3.

Figure 4: Selected full steps u^+ computed for Example 5.4 on the once refined torus.
Example 5.3 (Sphere II). We consider
\[
\min_{u \in L^2(\Gamma), y \in H^1(\Gamma)} J(u, y) \quad \text{subject to} \quad -\Delta \Gamma y = u, \quad -1 \leq u \leq 1, \quad \int_{\Gamma} y \, d\Gamma = \int_{\Gamma} u \, d\Gamma = 0,
\]
with \(\Gamma\) the unit sphere in \(\mathbb{R}^3\). Set \(\alpha = 10^{-3}\) and
\[
z(x_1, x_2, x_3) = 4\alpha x_3 + \begin{cases}
\ln(x_3 + 1) + C, & \text{if } 0.5 \leq x_3 \\
x_3 - \frac{1}{4} \arctanh(x_3), & \text{if } -0.5 \leq x_3 \leq 0.5 \\
-C - \ln(1 - x_3), & \text{if } x_3 \leq -0.5
\end{cases}
\]
where \(C\) is chosen for \(z\) to be continuous. The solution according to these parameters is
\[
\bar{u} = \min \left(1, \max \left(-1, 2x_3 \right) \right).
\]

Example 5.4 (Torus). Let \(\alpha = 10^{-3}\) and
\[
\Gamma = \left\{ (x_1, x_2, x_3)^T \in \mathbb{R}^3 \left| \sqrt{x_1^2 + \left(\sqrt{x_1^2 + x_2^2} - 1 \right)^2} = \frac{1}{2} \right. \right\}
\]
the 2-Torus embedded in \(\mathbb{R}^3\). By symbolic differentiation we compute \(z\), such that
\[
\min_{u \in L^2(\Gamma), y \in H^1(\Gamma)} J(u, y) \quad \text{subject to} \quad -\Delta \Gamma y = u - r, \quad -1 \leq u \leq 1, \quad \int_{\Gamma} y \, d\Gamma = \int_{\Gamma} u \, d\Gamma = 0
\]
is solved by
\[
\bar{u} = r = \max \left(-1, \min \left(1, 5xyz \right) \right).
\]
As the presented tables clearly demonstrate, the examples show the expected convergence behaviour.

Acknowledgement

The authors would like to thank Prof. Dziuk for the fruitful discussion during his stay in Hamburg in November 2010.
References

[Bur08] M. Burger. “Finite element approximation of elliptic partial differential equations on implicit surfaces.” English. In: Comput. Vis. Sci. 12.3 (2008), pp. 87–100.

[DD07] A. Demlow and G. Dziuk. “An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces.” English. In: SIAM J. Numer. Anal. 45.1 (2007), pp. 421–442.

[DE07] G. Dziuk and C. Elliott. “Finite elements on evolving surfaces.” In: IMA J. Numer. Anal. 27.2 (2007), pp. 262–292.

[Dem09] A. Demlow. “Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces.” English. In: SIAM J. Numer. Anal. 47.2 (2009), pp. 805–827.

[Dzi88] G. Dziuk. Finite elements for the Beltrami operator on arbitrary surfaces. Partial differential equations and calculus of variations, Lect. Notes Math. 1357, 142-155. 1988.

[GT98] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. English. Berlin: Springer., 1998.

[HIK03] M. Hintermüller, K. Ito, and K. Kunisch. “The primal-dual active set strategy as a semismooth Newton method.” English. In: SIAM J. Optim. 13.3 (2003), pp. 865–888.

[Hin05] M. Hinze. “A variational discretization concept in control constrained optimization: The linear-quadratic case.” English. In: Comput. Optim. Appl. 30.1 (2005), pp. 45–61.

[HPUU09] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE constraints. English. Mathematical Modelling: TheoryApplications 23. Dordrecht: Springer. xi, 270 p., 2009.

[HU04] M. Hintermüller and M. Ulbrich. “A mesh-independence result for semismooth Newton methods.” English. In: Mathematical Programming 101 (2004), pp. 151–184.

[HV11] M. Hinze and M. Vierling. “A globalized semi-smooth Newton method for variational discretization of control constrained elliptic optimal control problems”. In: Constrained Optimization and Optimal Control for Partial Differential Equations. Birkhäuser, 2011, to appear.

[Ulb03] M. Ulbrich. “Semismooth Newton methods for operator equations in function spaces.” English. In: SIAM J. Optim. 13.3 (2003), pp. 805–841.