Pasteurella multocida Bacteremia Secondary to Peritoneal Dialysis Associated Peritonitis: A Case Report and Literature Review

John M. Giacona 1, Maxwell Weiner 2, John Hanna 3, Tomasz Jodlowski 4, Roger Bedimo 3

Abstract

We report the fiftieth case in the literature of Pasteurella species peritoneal dialysis (PD)-related peritonitis and the third reported case of Pasteurella multocida bacteremia associated with PD-related peritonitis. Our review provides the most up-to-date collection of all fifty reported cases of PD-related peritonitis caused by Pasteurella species. A 77-year-old Caucasian male with a past medical history significant for new-onset left-ventricular systolic heart failure, severe mitral valve regurgitation, and end-stage renal disease on PD for six months presented to the emergency department with a one-week cloudy peritoneal effluent and intermittent abdominal pain. Pasteurella multocida was isolated from blood cultures and peritoneal fluid cultures. The patient was treated with intravenous piperacillin-tazobactam and intraperitoneal cefepime. The PD catheter was not removed or exchanged. A repeat blood culture on the third hospital day was negative. His hospital course was complicated by cardiogenic shock, atrial fibrillation, and gastrointestinal bleeding, and his goals of care changed to focus on comfort measures. This case report and literature review provide a resource for healthcare providers who may encounter this infection in the future. This case also serves as a reminder of the challenges of PD in patients at risk of acquired zoonotic infections from their pets. Based on the reviewed three cases of Pasteurella multocida bacteremia associated with PD-related peritonitis, blood cultures may be a prudent option for patients presenting with peritoneal dialysis associated peritonitis to ensure that concurrent bacteremia is not overlooked.

Categories:
Infectious Disease, Nephrology

Keywords:
zoonotic infection, sepsis, antibiotic therapy, bacteremia, peritoneal dialysis, end stage renal disease, pasteurella multocida, peritonitis

Introduction

Pasteurella multocida (P. multocida) is a non-motile cocccobacillus of the family *Pasteurellaceae*, first isolated in 1880 by Louis Pasteur [1]. This pathogen is a commensal of the respiratory tract and the oral cavity in 70-90% of cats and 66% of dogs [2]. The first human infection was reported in 1914. *P. multocida* is classically known to cause systemic infections following a cat bite. However, there is a subset of individuals who have experienced peritoneal dialysis (PD)-related peritonitis from *P. multocida*, most associated with having cats at home. Upon literature review, there are 49 reported cases of *Pasteurella* species peritonitis associated with PD catheter. Out of these 49 cases, 47 cases were caused by *P. multocida* [2], one case was caused by *Pasteurella pneumotropica* [3], and another was caused by *Pasteurella dagmatis* [4]. Bacteremia is reported to be a rare complication of PD-related peritonitis, and blood cultures are often not done in the absence of fever or suspected sepsis [5]. There are only two previously reported cases of *P. multocida* bacteremia associated with peritonitis [6,7]. We report the third case of *P. multocida* peritonitis in a 77-year-old patient who presented with cloudy peritoneal effluent and abdominal pain around the PD catheter insertion site, and *P. multocida* was isolated from both the blood cultures and the peritoneal fluid culture.

Case Presentation

The patient is a 77-year-old Caucasian male with a past medical history significant for end-stage renal disease (ESRD) who has been on chronic ambulatory PD for six months. The patient presented with intermittent peri-peritoneal dialysis catheter site pain that progressed to generalized abdominal pain. During his last dialysis session prior to the presentation, he noted that the dialysis effluent was cloudy, and he was referred to the emergency department. He did not have fever, chills, or night sweats.

His past medical history included type-2 diabetes mellitus, hypertension, coronary artery disease status after 3-vessel coronary artery bypass graft and percutaneous coronary intervention with drug-eluting stent placement, peripheral arterial disease post arterial bypass, recently diagnosed (before presentation's symptoms onset) new-onset systolic heart failure, severe mitral valve regurgitation, benign prostate hypertrophy, and hypothyroidism. He had no previous episodes of peritonitis. He has a cat at home and reported that the...
cat previously bit him when he was undergoing peritoneal dialysis.

At presentation, he was afebrile (96.8 degrees Fahrenheit), with a blood pressure of 85/39 mmHg, heart rate of 96, respiratory rate of 22, and oxygen saturation of 98% on room air. On physical exam, the patient was in no acute distress. Cardio-pulmonary examination revealed normal and clear breath sounds bilaterally with a murmur consistent with mitral valve regurgitation. His abdomen was soft and non-distended, and the peritoneal dialysis catheter was located in the hypogastric region with no surrounding erythema or warmth but mild tenderness. There were normal bowel sounds on auscultation in all four quadrants. The rest of his physical exam was unremarkable.

Initial laboratory tests are summarized in Table 1. A computed tomography scan of his abdomen found no evidence of perforation, inflammation, fluid collections, or abscesses.

Laboratory test	Result
White blood cell (WBC) count	12.1 k/uL
Neutrophil count	9.67 k/uL
Hemoglobin	14.9 g/dL
Platelet count	284 k/uL
Sodium	134 mEq/L
Potassium	2.8 mEq/L
Anion gap	20
Lactic acid	3.7 mmol/L
Brain natriuretic peptide	>4900
Troponin I	0.2 ng/ml
Hemoglobin A1C	6.70%
Peritoneal fluid appearance	Cloudy
Peritoneal fluid WBC count	994/ uL

TABLE 1: Pertinent laboratory results on presentation

He empirically received one dose of vancomycin 1.25 grams and started on piperacillin-tazobactam 2.25 mg every eight hours. Blood cultures and peritoneal cultures were obtained prior to initiation of the antimicrobial therapy and returned positive the next day for gram-negative rods that subsequently were identified as *P. multocida*. The patient was continued on piperacillin-tazobactam 2.25 mg every 8 hours and was additionally given intraperitoneal cefepime 1 gram at a four-hour dwell daily while awaiting blood culture susceptibilities results that were sent out to a reference lab. On the third and fifth days after presentation, repeat blood cultures were negative. On the fourth and eighth days after presentation, repeat peritoneal fluid cultures were negative. Peritoneal fluid white blood cell (WBC) count also declined to 19/ul on the fourth day and 10/ul on the eighth day compared to the presentation with an initial count of 994/ul. The patient received a total of 10 days of intravenous piperacillin-tazobactam and 12 days of intraperitoneal cefepime that was optioned by nephrology to be continued post his peritoneal dialysis sessions. Ten days after presentation, *P. multocida* culture susceptibility results returned susceptible to penicillin (minimum inhibitory concentration [MIC] of 0.5 mcg/mL) and ceftriaxone (MIC of ≤0.12 mcg/mL).

On the fourth day of hospitalization, after the patient's initial clinical improvement, the patient underwent elective left-side and right-sided heart catheterization to evaluate for cardiomyopathy. He was found to be in cardiogenic shock with a cardiac index of 1.4, and Swan-Ganz was left in place post the procedure, which required his transfer to the cardiac intensive care unit. His hospital course was further complicated by gastrointestinal bleeding while he was on heparin infusion and dual anti-platelet therapy. Over the following few days of hospitalization, the patient encountered a rapid decline in his overall health; the patient was transitioned to hospice care based on goals of care discussion and his poor overall prognosis.

Discussion

P. multocida causes diverse infectious processes in humans, such as cellulitis, pulmonary infections,
meningitis, septic arthritis, and osteomyelitis. Bacteremia associated with PD-related peritonitis secondary to *P. multocida* is rare. The most attributable exposure in 90% of the previously reported *P. multocida* peritonitis cases is related to having cats at home. The transmission was previously reported to occur through licks, bites, and scratches by cats. Additionally, previous reports described contamination of the dialysis machine and tubes by the pets' oropharyngeal organism and colonization of the patients' oropharynx by *P. multocida* [1-50].

Bacteremia is a rare complication of PD-related peritonitis (Table 2) [1-50]. Of the two cases where the *P. multocida* peritonitis was complicated by bacteremia, the first case discussed a patient who presented in an immunocompromised state secondary to systemic lupus erythematosus steroid treatment. This patient suffered peritonitis and bacteremia that progressed to sepsis with vascular collapse, distal ischemia, and respiratory failure [6]. The second case was in an immunocompetent patient who had bacteremia with no signs of sepsis or circulatory shock [7]. Our patient was a host with significant cardio-pulmonary comorbidities and well-controlled diabetes mellitus.

Case No.	Author(s)	Year of publication	Age, gender	Blood culture reported?	Peritoneal culture organism	Animal exposure	Empiriic Antibiotics	Culture-driven antibiotics	Peritoneal catheter removed?	Comments
1	Paul and Rostand [18]	1987	55, female	Yes, negative	*P. multocida*	Cat	Vancomycin (IV) and gentamicin (IV)	Gentamicin (IV)	-	Cat punctured dialysis tubing
2	Elsey et al. [19]	1991	25, male	No	*P. multocida*	Cat	Cephradine (IP) and gentamicin (IP)	Cephradine (IP) and gentamicin (IP)	-	Cat sleeps with him during dialysis treatments
3	Frankel and Cassidy [20]	1991	55, male	No	*P. multocida*	Cat	Vancomycin (IP) and gentamicin (IP)	Gentamicin (IP) and ciprofloxacin (PO)	-	Cat plays with him during dialysis treatments
4	London and Bottone [21]	1991	54, male	No	*P. multocida*	Cat	Vancomycin (IV) and gentamicin (IV)	Cefazolin (PO)	-	Cat punctured dialysis tubing
5	Kitching et al. [22]	1996	75, male	No	*P. multocida*	Cat	Vancomycin (IV)	Cefamandole (IV)	-	Tubing punctured with claw from cat
6	Uribarri et al. [23]	1996	42, female	No	*P. multocida*	Cat and dog	Vancomycin (IV)	Gentamicin (IP) and penicillin (PO)	-	Cat bite most likely, assumed from history
7	Loghman [24]	1987	12, female	No	*P. multocida*	Cat	Cephalosporin (IP)	Gentamicin (IP)	-	Puncture of dialysis tubing from cat
8	Mackay, Brown and Hudson [25]	1997	73, male	No	*P. multocida*	Cat	Vancomycin (IP) and ceftazidime (IP)	Ceftazidime	-	Denies cat nearby during treatments
9	Joh et al. [26]	1998	55, male	Yes, negative	*P. multocida*	Cat	Vancomycin (IP), gentamicin (IV) and gent (IP)	Ampicillin-sulbactam (PO)	-	Cat playing with dialysis tubing
10	Musio and Tiu [27]	1998	46, female	No	*P. multocida*	Cat	Pipracillin-tazobactam and ciprofloxacin	Pipracillin-tazobactam and ciprofloxacin	-	Presumed cat exposure
11	Hamai et al. [28]	1999	49, male	No	*P. multocida*	Cat	Cefazolin (IP) and tobramycin (IP)	Cefazolin (IP) and tobramycin (IP)	-	Tubing punctured from cat bite
	Name and Reference	Year	Age	Sex	Infection Site	Pathogen	Treatment	Antibiotics	Outcome	
---	-------------------	------	-----	-----	----------------	----------	-----------	-------------	---------	
12	Chadah and Warady [29]	1999	18, male	No	P. multocida	Cat	Tubing punctured from cat bite	Vancomycin (IP) and amikacin (IP)	-	
13	Langenhove et al. [30]	2000	22, female	No	P. multocida	Cat	Tubing punctured from cat bite	Ciprofloxacin (PO)	-	
14	Martinez [31]	2000	-	-	-	-	-	-	-	
15	Martinez [31]	2000	-	-	-	-	-	-	-	
16	Martinez [31]	2000	-	-	-	-	-	-	-	
17	Campos, et al. [3]	2000	8, male	No	P. pneumotropica	Hamster	Tubing punctured from cat bite	Vancomycin (IP) and tobramycin (IP)	Yes	
18	Kanaan et al. [32]	2002	24, female	No	P. multocida	Cat and dog	Tubing punctured from cat bite	Ciprofloxacin (PO)	-	
19	Sillery et al. [33]	2004	48, female	No	P. multocida	Cat	Tubing punctured from cat bite	Cefazolin (IP) and gentamicin (IP)	-	
20	Cooke et al. [34]	2004	73, female	No	P. multocida	Cat	Tubing punctured from cat bite	Vancomycin (IP) and tobramycin (IP)	Gentamicin (IP)	-
21	Mat et al. [35]	2005	52, male	No	P. multocida	Cat	Tubing punctured from cat bite	Cefazolin (IP) and amikacin (IP)	Gentamicin (IP)	-
22	Malik et al. [36]	2005	58, male	No	P. multocida	Cat	Tubing punctured from cat bite	Gentamicin	Gentamicin	-
23	Malik et al. [36]	2005	21, female	No	P. multocida	Cat	Tubing punctured from cat bite	Gentamicin, cefazolin, and piperacillin-tazobactam	Gentamicin, cefazolin, and piperacillin-tazobactam	-
24	Olea et al. [37]	2006	46, female	No	P. multocida	Cat	Tubing punctured from cat bite	Vancomycin (IP) and ceftazidime (IP)	Cefazidime (IP)	-
25	Anthony et al. [38]	2007	48, female	No	P. multocida	Dog	Tubing punctured from cat bite	Gentamicin and Cefazolin	Gentamicin and Cefazolin	-
26	Kazuko et al. [4]	2008	41, male	No	P. dagmatic	Cat	Tubing punctured from cat bite	Cefazolin (IP) and tobramycin (IP)	Cefazolin (IP) and tobramycin (IP)	-
27	Kazuko et al. [4]	2008	29, female	No	P. multocida	Cat	Tubing punctured from cat bite	Cefazolin (IP) and tobramycin (IP)	Cefazolin (IP) and tobramycin (IP)	-
28	Satomura et al. [39]	2009	58, male	No	P. multocida	Cat	Tubing punctured from cat bite	Cefazolin (IP) and ceftazidime (IP)	Levofloxacin	-
ID	Authors	Year	Age	Gender	P. multocida	Inoculation Site	Antibiotics (IP)	Inoculation Source		
----	-----------------------------	------	-----	--------	-------------	-----------------	------------------	---		
29	Randon-Berrios et al. [40]	2010	38	male	No	P. multocida	Vancomycin (IP)	Cat playing with dialysis tubing		
30	Mugambi et al. [6]	2010	36	female	Yes, positive	P. multocida	Vancomycin (IP) and gentamicin (IP)	Yes		
31	Nishina et al. [41]	2011	45	male	No	P. multocida	Vancomycin (IV) and ceftazidime (IP)	Cat punctured dialysis tubing		
32	Weiss and Panesar [7]	2012	57	male	Yes, positive	P. multocida	Vancomycin (IP) and ceftazidime (IP)	Cat exposure, unknown of direct inoculation		
33	Sol et al. [42]	2013	7	female	No	P. multocida	Cefazolin (IP) and cefazolin (IP)	Cat exposure, unknown of direct inoculation		
34	Al-Fifi et al. [43]	2013	49	male	No	P. multocida	Cefazolin (IP) and tobramycin (IP)	Pet exposure, unknown of direct inoculation		
35	Kim et al. [44]	2014	25	female	No	P. multocida	Cefazolin (IP) and gentamicin (IP)	Cat exposure, unknown of direct inoculation		
36	Dresselaars et al. [45]	2014	62	female	No	P. multocida	Cefalexin (PO) and cefalotin (IP)	Cat exposure, unknown of direct inoculation		
37	Poliquin et al. [46]	2015	28	female	No	P. multocida	Cefazolin (IP) and tobramycin (IP)	Similar cat exposure histories		
38	Poliquin et al. [46]	2015	37	male	No	P. multocida	Cefazolin (IP) and tobramycin (IP)	Cat bite to the dialysate tubing		
39	Poliquin et al. [46]	2015	41	male	No	P. multocida	Cefazolin (IP) and tobramycin (IP)	Cat bite to the dialysate tubing		
40	Poliquin et al. [46]	2015	51	female	No	P. multocida	Cefazolin (IP) and tobramycin (IP)	Cat exposure, unknown of direct inoculation		
41	Poliquin et al. [46]	2015	37	female	No	P. multocida	Cefazolin (IP) and cefazidime (IP)	Cat exposure, unknown of direct inoculation		
							Cefazolin (IP) and amoxicillin (PO)	Cat exposure, unknown of direct inoculation		

Note: IP = intraperitoneal, IV = intravenous, PO = oral.
Case	Authors	Year	Age	Gender	Exposure	Organism	Antibiotics	Comments		
42	Poliquin et al. [46]	2015	59, female	No	P. multocida	Cat	(IP) and tobramycin (IP)	Cefazidime (IP)	Cat exposure, unknown of direct inoculation	
43	Poliquin et al. [46]	2015	69, female	No	P. multocida	Cat	Cefazolin (IP) and tobramycin (IP)	Cefazadime (IP) and amoxicillin-clavulanic acid (PO)	Cat bite to the dialysate tubing	
44	Giron et al. [47]	2017	72, male	No	P. multocida	Cat	Cefazidime (IP) and vancomycin (IP)	Ceftriaxone (IP)	Cat bite to the dialysate tubing	
45	Tamura et al. [48]	2018	3, female	No	P. multocida	Cat	Cefazolin (IP) and piperacillin (IV)	Cefazolin (IV)	Cat scratch to the dialysis bag	
46	Mirzai et al. [2]	2019	59, male	No	P. multocida	Cat	Vancomycin (IV) and ceftazidime (IV)	Ampicillin-sulbactam (IV) -> amoxicillin-clavulanic acid (PO)	Cat sleeping with him and inside house regularly	
47	Adapa et al. [15]	2019	58, male	No	P. multocida	Cat	Vancomycin (IP) and ceftazidime (IP)	Cefazidime (IP)	Cat exposure in house	
48	Mastrapasqua et al. [49]	2020	39, male	No	P. multocida	Cat	Vancomycin (IP) and gentamicin (IP)	Ceftriaxone (IP)	Yes	Cat exposure in house
49	Mu et al. [50]	2020	75, male	No	P. multocida	Cat	Levofloxacin (IV), ceftazidime (IP) and vancomycin (IP)	Meropenem (IV), ceftazidime (IP) and vancomycin (IP) -> cefoperazone-sulbactam (IV), amikacin (IP) and vancomycin (IP), imipenem-clastatin IP -> amoxicillin-sulbactam (IV) -> amoxicillin (PO)	No	Cat playing with tubing or contacted patient during continuous ambulatory peritoneal dialysis (CAPD)
50	Our case	2020	77, male	Yes, positive	P. multocida	Cat	Vancomycin (IV) and piperacillin-tazobactam (IV)	Piperacillin-tazobactam (IV) and cefepime (IP)	No	-

TABLE 2: Reported cases of Pasteurella sp. peritoneal dialysis associated peritonitis

IV - intravenous; IP - intraperitoneal; PO - oral
When blood cultures are omitted.

Case and that of Weiss and Panesar suggest that episodes of concomitant bacteremia are probably missed. Our patient did suffer an acute worsening of his cardiac function, but as he had already cleared his infection before this deterioration, it’s less likely that his outcome is mainly contributed to by his infection. It’s more likely that the complex interaction between our patient’s various comorbid conditions accentuated by the acute onset of an unusual infection contributed to his decompensation and transition to hospice care compared to the complete recovery of the other two reported cases with bacteremia. Blood cultures are often not done in the evaluation of patients with PD peritonitis in the absence of fever or suspected sepsis. Our patient did suffer an acute onset of an unusual infection contributed to his decompensation and transition to hospice care.

Duration of therapy varies by host factors, the severity of illness, and indication, with at least 14 days recommended for bacteremia [10,14]. Interestingly, Pasteurella multocida peritonitis was previously successfully treated with a three-week course of intraperitoneal ceftazidime with the ability to salvage the dialysis catheter [15]. The use of intraperitoneal (IP) third cephalosporins, such as ceftazidime, opens up an intriguing option for susceptible Pasteurella multocida bacteremia and could potentially be considered for patients without reliable intravenous access based on pharmacokinetic data. The optimal dose is not clearly defined, but 1.5g IP Q24h has been suggested based on pharmacokinetic data [16,17]. The use of the loading dose as recommended by Cardone and colleagues for the indication of peritonitis (3 g IP once on day 1) requires clinical validation [17], but a systemic loading dose would be prudent in severe cases as therapeutic levels in the serum may be delayed due to diffusion and physiologic changes during the acute illness.

PD catheter removal is often indicated in cases of refractory or relapsing peritonitis. As this was our patient’s first episode of peritonitis, the patient rapidly demonstrated initial clinical improvement; with negative screening blood and peritoneal fluid cultures, along with a rapid decrease in the peritoneal fluid WBC count, a decision was made not to remove his peritoneal dialysis catheter. The PD catheter in Weiss and Panesar’s patient was also salvaged compared to Mugambi’s case, in which the PD catheter was removed. Both cases (our case and Weiss and Panesar’s) achieved negative blood cultures within the first three days of antibiotic therapy.

As shown in Table 3 [6,7], among the reported patients with associated bacteremia, our patient presented with the highest overall burden of comorbidities based on the Charlson Comorbidity Index with and without adjustments for ESRD [51-53]. However, the patient reported by Mugambi et al. had a more severe presentation based on the quick Sequential Organ Failure Assessment (qSOFA) and the Shock Index scores. Our patient did suffer an acute worsening of his cardiac function, but as he had already cleared his infection prior to this deterioration, it’s less likely that his outcome is mainly contributed to by his infection. It’s more likely that the complex interaction between our patient’s various comorbid conditions accentuated by the acute onset of an unusual infection contributed to his decompensation and transition to hospice care compared to the complete recovery of the other two reported cases with bacteremia. Blood cultures are often not done in the evaluation of patients with PD peritonitis in the absence of fever or suspected sepsis. Our case and that of Weiss and Panesar suggest that episodes of concomitant bacteremia are probably missed when blood cultures are omitted.
TABLE 3: Reported cases of P. multocida peritonitis complicated by bacteremia

Charlson Comorbidity Index [51]	Charlson ESRD-adjusted Comorbidity Index [51]	qSOFA score [52]	Shock Index [52]	Outcome	Empiric antibiotics	Culture driven antibiotics	Time to negative blood culture	Peritoneal catheter removed?	
Our case (2020)		7	6	2	1.1	Transition to hospice	Intravenous vancomycin and	Hospital day 3	No
							intravenous piperacillin-		
							tazobactam and intraperitoneal		
							ceftazidime x 10 days		
Weiss et al. (2012) [7]		2	0	Unable to calculate	Unable to calculate	Improved	Intrapertioneal vancomycin and	Hospital day 2	No
Mugambi et al. (2010) [6]		3	3	3	1.4	Improved	Intravenous and intraperitoneal	Intravenous ciprofloxacin x 14	Not reported
							vancomycin and gentamicin	days	Yes

qSOFA - quick Sequential Organ Failure Assessment; ESRD - end-stage renal disease

Conclusions

Our case serves as a reminder to advocate for educating the peritoneal dialysis patients who have pets on the appropriate handling of PD equipment at home. Nevertheless, having pets at home can be beneficial for patients’ emotional well-being. We want to echo Weiss and Panesar that there is a need for appropriate guidelines specifically tailored for PD patients who have pets at home. We believe that PD and having pets can co-exist, considering the right boundaries, hygiene, and knowledge. On the other hand, a discussion of risks and benefits should take place before initiation of PD in this special patient population as there are multiple reported cases of P. multocida PD associated peritonitis in patients who have cats at home with no direct exposure.

Additional Information

Disclosures

Human subjects: Consent was obtained or waived by all participants in this study. **Conflicts of interest:** In compliance with the ICMJE uniform disclosure form, all authors declare the following: **Payment/services info:** All authors have declared that no financial support was received from any organization for the submitted work. **Financial relationships:** All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. **Other relationships:** All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

1. Pasteur L: The attenuation of the causal agent of fowl cholera. C R Acad Sci. 1880, 91:673-80.
2. Mirzai S, Rifai AG, Tidrick A, Huang Q, Hale J: A case report on pasteurella multocida peritoneal dialysis-associated peritonitis: when cats think medical equipment are toys. Case Rep Nephrol. 2019, 2019:5150695. 10.1155/2019/5150695
3. Campos A, Taylor JH, Campbell M: Hamster bite peritonitis: pasteurella pneumotropica peritonitis in a dialysis patient. Pediatr Nephrol. 2000, 15:51-2. 10.1007/s004670000452
4. Iwashima K, Tsujimoto Y, Tabata T, et al.: Two case reports of Pasteurella peritonitis in peritoneal dialysis (in Japanese). JSJD. 2008, 41:215-8. 10.4009/jisd.41.215
5. Morduchowicz G, Van Dyk Djm Winkler J, Boner G: Bacteremia complicating peritonitis in peritoneal dialysis patients. Am J Nephrol. 1995, 15:278-80. 10.1159/000168634
6. Mugambi SM, Ullian ME: Bacteremia, sepsis, and peritonitis with Pasteurella multocida in a peritoneal dialysis patient. Perit Dial Internat. 2010, 30:381-3. 10.3747/pdi.2009.00186
7. Weiss GA, Panesar M: Bacteremia complicating peritonitis in peritoneal dialysis. Perit Dial Internat. 2012, 32:563-4. 10.3747/pdi.2011.00191
8. Chiang AD, Zurlo JJ: Pasteurella species. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. Bennett JE, Dolin R, Blaser MI (ed): Elsevier, Philadelphia; 2020. 228:2774-8.
9. Goldstein EJ, Citron DM, Tyrrell KL, Leoncio ES: In vitro activity of pexiganan and 10 comparator
antimicrobials against 234 isolates, including 93 Pasteurella species and 50 anaerobic bacterial isolates recovered from animal bite wounds. Antimicrob Agents Chemother. 2017, 61:e0246-17. 10.1128/AAC.00246-17.

10. Weber DJ, Kaplan SL: Pasteurella infections. Post TW (ed): UpToDate Inc, Waltham; 2021.

11. Lion C, Conroy MC, Carpenter AM, Lozniowski A: Antimicrobial susceptibilities of Pasteurella strains isolated from humans. Int J Antimicrob Agents. 2006, 24:290-3. 10.1016/j.ijantimicag.2006.02.004

12. Li PK-T, Szeto CC, Piraino B, et al.: ISPD peritonitis recommendations: 2016 update on prevention and treatment. Perit Dial Internat. 2016, 56:281-508. 10.3747/pdi.2016.00078

13. Rhodes A, Evans LE, Alhazzani W, et al.: Surviving sepsis campaign: International Guidelines for Management of Septis and Septic Shock: 2016. Intensive Care Med. 2017, 43:504-77. 10.1007/s00134-017-4685-6

14. Narsana N, Farhat F: Septic shock due to Pasteurella multocida bacteremia: a case report. J Med Case Rep. 2015, 9:159. 10.1186/s13256-015-0643-3

15. Adapa S, Naramala S, Madhira BR, Gayam V, Sahasranam P, Konala VM: Peritonitis secondary to uncommon gram-negative cocobacillus transmitted from a cat in a patient on peritoneal dialysis. J Investig Med High Impact Case Rep. 2019, 7:1-5. 10.32267/jimhicr.1907063

16. Stea S, Bachelor T, Cooper M, de Souza P, Koening K, Bolton WK: Disposition and bioavailability of ceftazidime after intraperitoneal administration in patients receiving continuous ambulatory peritoneal dialysis. J Am Soc Nephrol. 1996, 7:2399-402. 10.1681/ASN.1996072399

17. Cardone KE, Grabe DW, Zasowski EI, Ludise TP: Reevaluation of ceftazidime dosing recommendations in patients on continuous ambulatory peritoneal dialysis. Antimicrob Agents Chemother. 2014, 58:19-26. 10.1128/AAC.00873-15

18. Paul RV, Rostandand SG: Cat-bite peritonitis: Pasteurella multocida peritonitis following feline contamination of peritoneal dialysis tubing. Am J Kidney Dis. 1987, 10:318-9. 10.1016/0272-6386(87)90029-x

19. Elsey RM, Carson RW, DuBose TD: Pasteurella multocida peritonitis in an HIV-positive patient on continuous cycling peritoneal dialysis. Am J Nephrol. 1991, 11:61-5. 10.1159/000168274

20. Frankel AH, Cassidy MJ: Pasteurella multocida peritonitis in CAPD: beware of the cats . Perit Dial Internat. 1991, 11:184-5. 10.1159/000168274

21. London RD, Bottone EI: Pasteurella multocida: zoonotic cause of peritonitis in a patient undergoing peritoneal dialysis. Am J Med. 1991, 91:202-4. 10.1002/0002-9535(199108)91:4<202::AID-AJEM13>3.0.CO;2-I

22. Kitching AR, Macdonald A, Hatfeld PJ: Pasteurella multocida peritonitis in continuous ambulatory peritoneal dialysis. N Z Med J. 1996, 109:59.

23. Urbarri J, Bottone EI, London RD: Pasteurella multocida peritonitis: are peritoneal dialysis patients on cyclers at increased risk?. Perit Dial Internat. 1996, 16:648-9. 10.1177/089686089601600614

24. Loganhan-Adham M: ku Pasteurella multocida peritonitis in patients undergoing peritoneal dialysis . Pediatr Nephrol. 1997, 11:355-4. 10.1007/s004670050295

25. Mackay K, Brown L, Hudson F: Pasteurella multocida peritonitis in peritoneal dialysis patients: beware of the cat. Perit Dial Internat. 1997, 17:608-10. 10.1159/000689701700614

26. Jot J, Padmanabhan R, Bastani B: Pasteurella multocida peritonitis following cat bite of peritoneal dialysis tubing. Am J Nephrol. 1998, 18:258-9.

27. Musio F, Tiu A: Pasteurella multocida peritonitis in peritoneal dialysis . Clin Nephrol. 1998, 49:259-61.

28. Hamal K, Imai H, Ohtani H, et al.: Repeated cat-associated peritonitis in a patient on automated nocturnal intermittent peritoneal dialysis. Cln Exp Nephrol. 1999, 3:59-61. 10.1007/101570050011

29. Chadhia V, Warady BA: Capnocytophag acanimorcrus peritonitis in a pediatric peritoneal dialysis patient . Pediatr Nephrol. 1999, 13:646-8. 10.1007/s004670050673

30. Van Langenhove G, Daemelans R, Zachee P, Lins RL: Pasteurella multocida as a rare cause of peritonitis in peritoneal dialysis. Nephron. 2000, 85:283-4.

31. Berton MR, Salavert LM, Viudes FA, Peres BC, Gobernado SM: Abdominal infection by Pasteurella spp. A report of 3 cases. Rev Clin Esp. 2000, 200:159-142.

32. Kanan A, Gavage P, Jensusa M, Avesani V, Gigi J, Gofs E: Pasteurella multocida in peritoneal dialysis: a rare cause of peritonitis associated with exposure to domestic cats. Acta Clin Belg. 2002, 57:254-6. 10.1179/ach.2002.050

33. Sillery J, Hargreaves J, Marin P, Lemna E, Kuznia C, Abbe C: Pasteurella multocida peritonitis: another risk of animal-assisted therapy. Infect Control Hosp Epidemiol. 2004, 25:5-6. 10.1086/355486

34. Cooke FJ, Kodo A, Chatterbuck AJ, Bamford KB: A case of Pasteurella multocida peritonitis dialysis-associated peritonitis and review of the literature. Int J Infect Dis. 2004, 8:171-4. 10.1016/S1201-9068(04)00012-x

35. Mat O, Moens F, Beuvenens R: Indolent Pasteurella multocida peritonitis in a CCPD patient. 25 years of "cat-bite peritonitis": a review. Perit Dial Internat. 2005, 25:88-90. 10.1159/000168274

36. Malik A, Mailey KS, Bastani B: Pasteurella multocida peritonitis in CAPD: another case of a new syndrome. Perit Dial Internat. 2005, 18:791-3.

37. Olea T, Hevia C, Bajo MA, Selgas R: Pasteurella multocida and Candida albicans peritonitis. Nefrologia. 2006, 26:156-8.

38. Antony SJ, Oglesby KA: Peritonitis associated with Pasteurella multocida in peritoneal dialysis patients: case report and review of the literature. Clin Nephrol. 2007, 68:52-6.

39. Satomura A, Yanai M, Fujita T, et al.: Peritonitis associated with Pasteurella multocida: molecular evidence of zoonotic etiology. Ther Apher Dial. 2010, 14:373-6. 10.1111/j.1714-9987.2009.00788.x

40. London-Beriro H, Trevejo-Nunezand GJ: Pets or pest: peritoneal dialysis-related peritonitis due to Pasteurella multocida. J Microbiol Immunol Infect. 2010, 43:155-8.

41. Nishina M, Yanagi H, Koizumi M, et al.: Pasteurella multocida peritonitis associated with a cat in a peritoneal dialysis patient using an automated cycle device. CEN Case Rep. 2012, 1:73-5. 10.1007/s13730-012-0016-5

42. Sol PM, van de Kar NC, Schreuder MF: Cat induced Pasteurella multocida peritonitis in peritoneal dialysis: a case report and review of the literature. Int J Hyg Environ Health. 2013, 216:211-3.
43. Al-Fif YS, Sathianathan C, Murray BL, Alfa MJ: Pets are risky business for patients undergoing continuous ambulatory peritoneal dialysis. Can J Infect Dis Med Microbiol. 2013, 24:96-8. 10.1155/2013/829534
44. Kim J, Kim YW, Chung S, Yoon HE, Shin SJ: Cat-induced Pasteurella multocida peritonitis in continuous ambulatory peritoneal dialysis. Kidney Res Clin Pract. 2014, 33:65-7. 10.1016/j.krcp.2013.11.003
45. Dresseelaars HF, Zwart B, Pettersson AM, Rijnsburger MC, Ho-dac-Pannekeet MM: Peritoneal dialysis-associated peritonitis of zoonotic origin, when minor gets major. Neth J Med. 2014, 72:551-5.
46. Poliquin PG, Lagacé-Wiens P, Verrelli M, Allen DW, Embil JM: Pasteurella species peritoneal dialysis-associated peritonitis: household pets as a risk factor. Can J Infect Dis Med Microbiol. 2015, 26:52-5. 10.1155/2015/589467
47. Girón FF, Martín JMS, Gómez ER, et al.: Simultaneous Streptococcus canis and Pasteurella. Perit Dial Internat. 2017, 37:483–6. 10.3747/peri.2016.00286
48. Tamura H, Kuraoka S, Nishi T, Hidaka Y, Nagata H, Nakazato H: Pasteurella multocida peritonitis in a 3-year-old patient undergoing peritoneal dialysis: case report and review of the literature. Am J Pediatr. 2018, 4:52-5. 10.1168/j.ajp.20180403.12
49. Mastrapaqu S, Martínez MC, Califuno D: Pasteurella multocida peritonitis in a CAPD patient case report and a review of literature. Urol Nephrol Open Access J. 2020, 8:599–604. 10.15406/unoaj.2020.08.00284
50. Mu H, Yang M, Zhang Y, Zhang Y, Wang J, Yuan W, Rong S: Pet-related Pasteurella multocida induced peritonitis in peritoneal dialysis: a case report and review of the literatures. BMC Nephrol. 2020, 21:1-2. 10.1186/s12882-020-01765-1
51. Hemmelgarn BR, Manns BJ, Quan H, Ghali WA: Adapting the Charlson Comorbidity Index for use in patients with ESRD. Am J Kidney Dis. 2005, 42:125–32. 10.1016/S0272-6386(05)00415-5
52. Marik PE, Taeb AM: SIRS, qSOFA and new sepsis definition. J Thorac Dis. 2017, 9:943-5. 10.21037/jtd.2017.03.152
53. Allgöwer M, Burri C: Shockindex. German Med Monthly. 1967, 92:1947–50. 10.1055/s-0028-1106070