Effect of Weed Treatment on Cereal Yield in Direct Seeding: A Challenge Between Soil Pollution and Seeds Quality

Ryma Labad¹, Tark. Hartani², Gopal. Uttamrao Shinde³

ABSTRACT
The study was conducted at Technical Institute of Cereals (ITGC- Setif) during the years 2014-2018 for understanding the effect of weed treatment in direct seeding on cereal yield, soil and seeds quality. Two horizons were considered: horizon one (0-20 cm) and horizon two (20-40 cm) and four herbicide doses were applied: D₁ = 1080 g ha⁻¹, D₂ = 900 g ha⁻¹, D₃ = 720 g ha⁻¹ and D₄ = 540 g ha⁻¹. The yield results depended on the herbicide doses applied before seeding. The highest yield responded to the highest dose of herbicide applied (1080 g ha⁻¹). Study indicated that glyphosate reached soil during weed treatment and transferred in deep soil layer and to harvested seeds. Half-live values (DT₅₀) of glyphosate found under field conditions were high.

Key words: Direct seeding, Glyphosate, Seeds, Soil, Transfer, Yield.

INTRODUCTION
Food security was synonymous with the supply of high-calorie staples such as cereals and tubers to resolve problems of protein-energy malnutrition (Sage 2019). During the first decade of the twenty-first century, cereal prices rose to their highest levels in real terms since the early 1970s, reaching a peak in 2008. In Algeria, wheat durum represents 46% of grain crops (Benbelkacem and Kellou 2000). Moreover, the peak of cereal imports reached 7.4 million tons in 2011 and 6.9 million tons in 2012 (Touchan et al. 2016). The adoption of conservation agriculture worldwide as a sustainable cultivation system is a challenge to increase productivity (Hobbs et al. 2008). Sustainable agriculture involves optimizing agricultural resources and at the same time maintaining the quality of environment and sustaining natural resources (Kumari Aruna et al. 2018). In India, direct seeding played a greater role to improve rice yield (Kumari et al. 2017). It is considered as common practice before green revolution due to its potential to save water and labour (Gupta et al. 2006). In the other hand, 85% of the Brazilian soybean crop area was cultivated with no-tillage system to the expansion of soybean cultivation and for food security (Bohm et al. 2014). However, a rhythm of direct seeding adoption in Algeria is still very slow.

According to Rouabhi et al. (2018), no adoption of direct seeding is linked to technical and agronomic constraint as weeds control and proliferation of bromus. sp. Indeed, in the less developed areas of the world, the need for substantial increase in agricultural production is an urgent problem. On the other hand, direct seeding needs the use of agrochemical, so the increase in agrochemical use can be foreseen (Kumari Aruna et al. 2018). In direct seeding, the use of herbicides as “glyphosate” is the active matter; it will be imperative operation during first years of system adoption (Labad and Hartani 2016).

In the other ways, it was found that the use of glyphosate promoted high residual levels in soil and seeds...
Effect of Weed Treatment on Cereal Yield in Direct Seeding: A Challenge Between Soil Pollution and Seeds Quality

RESULTS AND DISCUSSION

Barley yield variation

According to our results, the yield recorded in S3 is more important than S2 (Fig 2). Hence, the yield values depend on the herbicide doses applied before seeding for weed treatment. Raunet et al. (1998) found that the use of herbicides in direct seeding involves weed control, especially before crops seeding and at the beginning of its cycle. Under control soil sample and the lowest dose applied (D4 = 540 g ha⁻¹), a significant decrease in yield was recorded (p<0.05). Soil was affected by weed development. Singh et al. (2014) were reported that weeds are a serious constraint to the productivity causing 100 per cent yield loss under uncontrolled conditions. On the other hand, the highest yield responses to the highest dose of herbicide applied (1080 g ha⁻¹) during S2 and S3. The average yield obtained during two crops seasons (S2 and S3) is 2.1 t ha⁻¹. Similar results were reported by Obour et al. (2016), where they recorded an increase in soybean yield applying a highest dose of glyphosate (840 g. ha⁻¹). Moreover, the yield variation was significant using D1 and D4 (P<0.05). These confirm that all yield parameters were affected by weed control treatment (Singh et al. 2015).

Herbicide kinetics in the soil

Soil analyses done during S1 showed that fractions of glyphosate reached soil during weed treatment by D1 applied on December, 2014. After 319 days, herbicide was not totally degraded and concentration recorded in H1 was 0.380 µg.kg⁻¹. The follow up of this concentration have continued in S2 as control soil. Thus, four soil sampling were done on

Parameters	First horizon 0-20 cm (H1)	Second Horizon > 20 cm (H2)
Particle size distribution		
<0.002 mm (clay) (%)	35.72	37.82
0.002-0.05 mm (silt) (%)		
> 0.05 mm (sand) (%)	26.45	26.45
Porosity (%)	51	47
Organic matter (OM) (%)	3.95	3.80
Organic carbon (OC) (%)	2.296	2.209
Nitrogen (N) (%)	0.22	0.198
C/N ratio	10.436	11.156
pH water	7.44	7.45
CEC (meq. 100 g⁻¹)	24.583	24.418
CaCO₃ (%)	21.56	26.99
373 days, 436 days, 476 days and 506 days. In control soil, herbicide concentrations decline to 0.267 µg.kg\(^{-1}\) over a period of 506 days in H\(_1\) (Fig 3). Otherwise, in H\(_2\), the amount of glyphosate was under LQ (LQ= 0.264 µg.kg\(^{-1}\)).

The variability of glyphosate concentrations in H\(_1\) during S\(_2\) and S\(_3\) from December to May (140 days) were given in Fig 4 (a/b). Glyphosate dynamic in soils depends on soil physical chemical and biological characteristics (Giesy et al. 2000; Duke et al. 2012).

The results showed that herbicide residues were more important in S\(_3\) than S\(_2\) and depend on the doses applied. Kinetics dissipation showed significant decline of herbicide concentration linked to high values of DT\(_{50}\) (Table 3). DT\(_{50}\) values calculated through SFO kinetics explain the persistence of molecule in the soil even using lowest doses, well half-live values of glyphosate found under field conditions were high compared to the results of literature (Grunewald et al. 2001).

On the other hand, a significant effect of rainfall on glyphosate in soil deep layer was observed analysing results of H\(_2\) presented in Fig 5 (a/b). Herbicide concentrations transferred in soil deep layer via soil structure were more important in S\(_3\) than S\(_2\), when 442 mm of rainfall were recorded. Borggaard and Gimsing (2008), mentioned that...
soil with high macro porosity may increase the leaching risk, but only when a large precipitation occurs close to the application. Similar results were reported by Peruzzo et al. (2008) about significant effect of rainfall on glyphosate dissipation in the soil.

Seeds quality

The analyses of grains after harvesting showed significant negative relationship between doses applied and herbicide accumulation in grains in two crops seasons (Fig 6 a/b). It was found that the accumulation of glyphosate in barley grains is more important applying highest doses (D₁ and D₂). On other hand, glyphosate concentration was under LQ in grains harvested in soil sample without treatment in S₃. It is important to highlight that analyses of soil sample without weed treatment showed the values under LQ in S₃. On the other hand, the concentration of glyphosate in the soil has a significant effect on herbicide accumulation in grains (P<0.05). High quantity accumulated varied between: 15.6 µg.kg⁻¹, 13.8 µg.kg⁻¹ for S₂ and 18.22 µg.kg⁻¹, 17.08 µg.kg⁻¹ for S₃. These results partially agree with Bohm et al. (2008), when the high residual levels of glyphosate were detected in soybean seeds after applying the recommended rate. Many authors explain high residual levels of glyphosate in grains by multiple factors as: soil and crop conditions, doses applied and season when glyphosate applications were performed (Busse et al. 2001; Araújo et al. 2003a; Duke et al. 2003; Reddy et al. 2004; Zablotowicz and Reddy 2007). On the other hand, Duke and Powles (2008) have explained accumulation of glyphosate on wheat seeds in relation with its systemic characteristics. When glyphosate is applied on the leaf surface, it will be relocated to the roots.

Table 3: Half-life values of glyphosate and remaining residues under field conditions during 140 days.

	S₂		S₃	
DT₅₀ (days)	RR (%)	DT₅₀ (days)	RR (%)	
T₁	59	18	39	29
T₂	55	18	46	38
T₃	61	23	46	17
T₄	75	23	58	23

DT₅₀: half life values, RR: remaining residues, T₁: treatment with D₁ = 1080 g.ha⁻¹, T₂: treatment with D₁ = 900 g.ha⁻¹, T₃: treatment with D₁ = 720 g.ha⁻¹, T₄: treatment with D₁ = 540 g.ha⁻¹.
stems and seeds. Seeds physiological quality is an essential factor for crop performance in the field.

CONCLUSION

During the study crop cycles and under field conditions, the following findings were tired:

- The use of herbicides in pre-direct seeding for weeds management is indispensable to save cereal yields.
- Glyphosate as total herbicide used can reduce weed development even with low dose applied (D_4). Nevertheless, to enhance productivity highest doses are required.
- Highest doses applied involve important level of residues in soil surface, which they transferred in soil deep layer and accumulate in cereal seeds.

In addition, it is clear via our findings that low DT_{50} value corresponds to the highest doses, because glyphosate can be degraded biologically, but transfer and accumulation phenomena persisted. For these reasons, further investigations are needed to manage weed treatment in direct seeding for safety environment.

REFERENCES

Aparicio, V.C., De Geronimo, E., Marino, D., Primost, J., Carriquiriborde, P., Costa, J.L. (2013). Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere. 93: 1866-1873.

Araújo, A.S.F., Monteiro, R.T.R., Abarkeli, R.B. (2003a). Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere. 52: 799–804.

Battaglin, W.A., Meyer, M.T., Kuivila, K.M., Dietze, J.E. (2014). Glyphosate and its degradation product AMPA occur frequently and widely in U.S. soils, surface water, groundwater and precipitation. J. Am. Water Resour. Assoc. 50: 729-804.

Benbelkacem, A., Keliou, K. (2000). Evaluation du progrès génétique chez quelques variétés de blé dur (Triticum turgidum L. Var durum) cultivées en Algérie. In: Royo, C., Nachit, M., Di Fonzo, N., Araus, J.L. (Eds.), Durum Wheat Improvement in the Mediterranean Region: New Challenges. CEHEAM, Zaragoza, pp. 105e110 (Options méditerranéennes: Série A. Séminaires méditerranéens: n. 40).

Bohm, G.M.B., Genovese, M.I., Pigosso, G., Trichez, D., Rombaldi, C.V. (2008). Resíduos de gílhosato e ácido aminometil-fosfónico teores de isoflavonas em soja BRS 244 RR e BRS 154 cultivadas em Planoassolo. Revista Brasileira de Ciência e Tecnologia de Alimentos. 28:192–197.

Borggaard, O.K., Gimsing, A.L. (2008). Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag. Sci. 64(4) : 441-456.

Buus, M.D., Ratcliff, G.A., Shestak, C.J., Powers, R.F. (2001). Glyphosate toxicity and the effects of long-term vegetation control and soil on soil microbial communities. Soil Biol. Biochem. 33: 1777-1789.

Duke, S.O., Powles, S. B. (2008). Glyphosate: a once in a century herbicide. *Pest Management Science* : Special Issue : Glyphosate Resistant Weeds and Crops. 64 (4): 3019-325.

Duke, S.O., Reddy, K.N., Bu, K., Cizdziel, J.V. (2012). Effects of glyphosate on the mineral content of glyphosate-resistant soybeans (glycine max). J. Agric. Food Chem. 60: 6764-6771.

Giaccio, G.C.M., Laterra, P., Aparicio, V.C., Costa, J.L. (2016). Glyphosate retention in grassland riparian areas is reduced by the invasion of exotic trees. J. Exp. Bot. 85: 108-116.

Giesy, J. P., Dobson, S., Solomon, K. R. (2000). Ecotoxicological risk assessment for Roundup herbicide. Reviews of Environmental Contamination and Toxicology. Springer. 35:120.

Grunevald, K., Schmidt, W., Unger, C., Hanschmann, G. (2001). Behaviour of glyphosate and aminomethylphosphonic acid (AMPA) in soils and water of reservoir Radeburg II catchment (Saxony/ Germany). Journal of Plant Nutrition and Soil Science. 164: 65-70.
Effect of Weed Treatment on Cereal Yield in Direct Seeding: A Challenge Between Soil Pollution and Seed Quality

Gupta, R. K., Ladha, J. K., Singh, S., Singh, R., Jat, M. L., Saharawat, Y., Singh, V. P., et al. (2006). Production Technology for Direct Seeded Rice. Technical Bulletin Series 8. In “Rice–Wheat Consortium for the Indo-Gangetic Plains, New Delhi, India,” 14pp.

Hobbs, P.R., Sayre, K., Gupta, R. (2008). The role of conservation agriculture in sustainable agriculture. Phil. Trans. R. Soc. B. 363: 543–555.

Kumari Aruna, J., A., Rao, P. C., Madhavi, M., Padmaja, G. (2018). Effect of herbicides on the activity of soil enzymes urease in maize crop. Indian J. Agric. Res. 52(3): 300-304.

Kumari, P., Kumar, P.V., Kumar, R., Wadood, A., Tirkey, D.A. (2017). Effect of weather on grain yield of direct seeded upland rice varieties in Jharkhand, India. Indian J. Agric. Res. 51(6): 562-567.

Labad, R., Hartani, T. (2016). Analyse des performances de quelques exploitations agricoles céréalières en semis direct dans la wilaya de Sétif. Revue Agriculture. Numéro spécial. 1: 78–81.

Labad, R., Hartani, T., Belguet, H., Bendada, H., Louahdi, N., Taibi, M. (2018). Evaluation de la biologie du sol sous l’effet du traitement chimique en semis direct dans une zone semi-aride de l’Algérie. Agriculture Journal. 46-55.

Lupi, L., Miglioranza, K.S.B., Aparicio, V.C., Marino, D., Bedmar, F., Wunderlin, D.A. (2015). Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina. Sci. Total Environ. 536: 687-694.

Moura, F.R., Lima, R.R.S., Marisco, P.C., Aguilar, D.H., Sugui, M.M., Sinhorin, A.P., Sinhorin, V.D. G. (2017). Effects of glyphosate-based herbicide on pintado da Amazônia: hematological, histological aspects, metabolic parameters and genotoxic potential. Environ. Toxicol. Pharmacol. 56: 241-248.

Obour Augustine, K., Stahilman Phillip, W., Holman Johnnathan, D. (2016). Soil chemical properties as influenced by long-term glyphosate-resistant corn and soybean production in the central Great Plains, USA. Geoderma. 277: 1-9.

Peruzzo, P. J., Porta, A. A., Ronco, A. E. (2008). Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pamapic region of Argentina. Environmental Pollution. 156(1): 61-66.

Poiger, T., Buerge, I.J., Bachli, A., Muller, M.D., Balmer, M.E. (2017). Occurrence of the herbicide glyphosate and its metabolite AMPA in surface waters in Switzerland determined with online solid phase extraction LC-MS/MS. Environ. Sci. Pollut. Res. 24: 1588-1596.

Primost, J.E., Marino, D.J.G, Aparicio, V.C., Costa, J.L., Carriquiriborde, P. (2017). Glyphosate and AMPA, "pseudo-persistent" pollutants under real world agricultural management practices in the Mesopotamic Pampas agroecosystem, Argentina. Environ. Pollut. 229: 771-779.

Raunet, M., Seguy, L., Rabots Fovet, C. (1998). Semis direct sur couverture végétale permanente du sol : de la technique au concept. http://agroecologie.cirad.fr.

Reddy, K.N., Rimando, A.M., Duke, S.O. (2004). Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. J. Agric. Food Chem. 52: 5139-5143.

Rouabhi, A., Laouar, A., Melkhlouf, A., Dhehibi, B. (2018). What are the factors affecting no-till adoption in the farming system of Sétif Province in Algeria? Turkish Journal of Agriculture - Food Science and Technology. 6(6): 636-641.

Sage, C. (2019). Food security. University College Cork, Ireland. pp 1-11 (researchgate).

Silva, A.F.M., Albrecht, A. J. P., Pellicci, V.A., Giovanelli, B.F., Girardello, G.A., Viana, H.R.M., Filho, R.V. (2018). Glyphosate in agronomic performance and seed quality of soybean with cp4-EPSPs and cry1Ac genes. Journal of Plant Protection Research. 1-10.

Singh, M., Bhullar, M.S., Chauhan, B.S. (2015). Influence of tillage, cover cropping and herbicides on weeds and productivity of dry direct-seeded rice. Soil & Tillage Research. 147: 39-49.

Singh, M., Bhullar, M.S., Chauhan, B.S. (2014). The critical period for weed control in dry-seeded rice. Crop Prot. 66: 80-85.

Touchan, R., Kherchouche, D., Ouajehli, B., Touchan, H. (2016). Dendroclimatology and wheat production in Algeria. Journal of Arid Environments. 124: 102-110.

Zablotowicz, R.M., Reddy K.N. (2007). Nitrogenase activity, nitrogen content and yield responses to glyphosate in glyphosate-resistant soybean. Crop Prot. 26: 370-376.