Recognising suicidal messages in Dutch social media

Bart Desmet and Veronique Hoste
LT3 Language and Translation Technology Team, Ghent University
Groot-Britannielaan 45, 9000 Ghent, Belgium
bart.desmet@ugent.be, veronique.hoste@ugent.be

Abstract

Early detection of suicidal thoughts is an important part of effective suicide prevention. Such thoughts may be expressed online, especially by young people. This paper presents on-going work on the automatic recognition of suicidal messages in social media. We present experiments for automatically detecting relevant messages (with suicide-related content), and those containing suicide threats. A sample of 1357 texts was annotated in a corpus of 2674 blog posts and forum messages from Netlog, indicating relevance, origin, severity of suicide threat and risks as well as protective factors. For the classification experiments, Naive Bayes, SVM and KNN algorithms are combined with shallow features, i.e. bag-of-words of word, lemma and character ngrams, and post length. The best relevance classification is achieved by using SVM with post length, lemma and character ngrams, resulting in an F-score of 85.6% (78.7% precision and 93.8% recall). For the second task (threat detection), a cascaded setup which first filters out irrelevant messages with SVM, and then predicts the severity with KNN, performs best: 59.2% F-score (69.5% precision and 51.6% recall).

Keywords: suicide prevention, suicide detection, social media

1. Introduction

Suicide is a major public health concern worldwide, particularly among young people. In 2010, it was the third leading cause of death in US citizens aged between 1 and 44 years (Miniño and Murphy, 2012). Successful prevention hinges on early risk recognition and referral to appropriate support. Social media are increasingly becoming an outlet for suicidal thoughts, which suicide prevention stakeholders are keen not to ignore. Considering the volume of text produced in such media, manual monitoring is practically unfeasible. An automatic procedure for filtering out alarming messages would allow them to find and quickly react to suicide ideation or incitement online. The effectiveness of such short interventions has been proven (Christensen et al., 2004). Computational linguistics research on topics concerning suicide is fairly recent. Shapero (2011) offers a detailed analysis of the language in fake and genuine suicide notes, and Pestian et al. (2010) investigate whether they can be automatically distinguished for forensic or clinical purposes. A shared task on automatic emotion detection in suicide notes was organised in 2011 (Pestian et al., 2012). The geographic correlation between suicide mortality rates and the occurrence of risk factors in tweets is described in Jashinsky et al. (2013), along with potential implications for online suicide prevention. To our knowledge, no prior research exists on the annotation and recognition of potentially alarming messages in social media, that could be relevant for suicide prevention centers or website administrators. In this paper, we introduce a cascaded annotation strategy for recognising suicidal content, describe the collection and annotation of an evaluation corpus, and present experiments on automatic recognition.

2. Annotation of suicide risk

Suicide-related text can present itself in many forms, and not all of it is relevant for prevention purposes. In order to develop an annotation scheme that was motivated by practice, we collaborated with the Belgian Centre for Suicide Prevention (CPZ1). This resulted in a cascaded scheme where the depth of annotation depends on whether a text (which in social media terms could be a blog post, forum message, tweet, etc.) matches certain criteria. It allows to derive multiple classifications for various applications.

First, a text is judged on its relevance using a clinical definition of suicide. It can either match the definition, mention suicide differently (in hyperboles or in non-clinical senses, e.g. suicide terrorism), or be unrelated. Only texts that match the definition are annotated further. Next, the origin is annotated. Some texts are journalistic, informative or scientific (reports or research on suicide), others are personal in nature. For personal texts, we indicate whether they (partly) consist of a joke or other fictitious account, or one or more citations (e.g. the lyrics of a song).

In case of a non-fictitious personal text, the subject of the suicide content is determined as either the author, some other person, or both. Incitement to commit suicide is flagged. The severity of the suicide threat is annotated, depending on the presence of suicide thoughts or plans, and the language used to describe them.

For all text types, the presence of risk factors and protective factors are indicated. Risk factors are trivializations, motivations or methods for suicide. The detection of risk factors is not only relevant in text that is written personally, but in other text genres as well. Copycat behaviour is known to occur when risk factors are included in journalistic articles, for example. Protective factors are referrals to counsel, such as the CPZ emergency line.

The above features are annotated at the document level. Five types of text spans may also be marked in the text itself: risk and protective factors, citations, and passages that are alarming (e.g. This bullying needs to stop) or clearly suicidal (e.g. I want to sleep forever). Such spans may pro-

1http://www.preventiezelfdoding.be
vide valuable lexical evidence of what makes a text alarm-

3. Corpus
Two corpora of blog posts and forum messages were col-
lected from the Dutch section of Netlog2, a social networking
site that is popular amongst teenagers in particular.
The first was collected using four keywords: suicide and
its Dutch translations zelfdoding and zelfmoord.
This yielded 1,380 documents, most of which were suicide-
related. The second corpus contained 373,349 documents
that were selected randomly.
The annotation scheme described in Section 2. was imple-
mented in the online annotation tool brat (Stenetorp et al.,
2012). Some modifications were made to allow text-level
annotation. A team of trained crisis responders at CPZ were
tasked with annotating the keyword-selected corpus when-
ever they had the time, which resulted in 1,357 annotated
texts.
Of the 1,357 texts that were annotated, 1,024 were found to
be relevant (with content matching the clinical definition of
suicide). Of those, 221 presented a severe suicide risk.
A section of the reference corpus (1,317 texts) was also
screened for suicidal content, but none was found. This
reference corpus was combined with the annotated corpus,
to form the experimental corpus of 2,674 texts.

4. Experiments on automatic detection
The task of automatically detecting suicide-related content
can be defined in different ways, depending on the appli-
cation. In a broad sense, prevention workers may be inter-
ested in finding all suicide-related content, e.g. to moni-
tor for the presence of risk factors. With limited resources
however, it may be preferable to only filter out personal
messages that indicate a severe suicide risk and require im-
mediate attention. We present experiments on both tasks.

4.1. Experimental setup
The experimental corpus, a combination of an annotated
corpus and a reference corpus, provided 2,674 texts for clas-
sification (see 3.). For the relevance filtering task, this gave
a split of 1,024 positive versus 1,650 negative instances (ra-
tio ~1:1.6), the severity task had 221 positive versus 2,453
negative instances (ratio ~1:11). In reality, the proportions
would be skewed much more towards the negative classes.
Performance was measured with F-score on the minority
positive class. Because of the data skewness, measures such
as accuracy would favour negative classification. F-score
with a standard β of 1 was used to ensure a harmonic mean
between precision and recall. For our tasks, both are ex-
pected to have equal importance: to find what needs to be
found, but not flood the user with false positives. In cases
where recall is of particular importance (e.g. for cascaded
classifiers, see below), we also discuss F-scores with β=2,
such that recall has twice the weight of precision in the F-
score calculation.
We used Pattern, a Python package for web mining, NLP
and machine learning (De Smedt and Daelemans, 2012) to

2. http://nl.netlog.com/
Table 1: Results for the relevance filtering task, reported as 3-fold cross-validated F-score on the positive class. Feature sets can contain words (w), word bigrams (w2), lemmas (l), character ngrams (ch2, ch3, ch4) and post length (pl). For each feature set, the score and settings of the best classifier (after a hyperparameter gridsearch) is given for NB, SVM and KNN. Scores in italics are below the keyword baseline, the 2 strongest classifiers of each type are boldfaced.

Relevance	NB (distribution, \(\alpha\))	SVM (kernel, \(C\))	KNN (distance, \(k\))
w	71.1 bernoulli, \(10^{-2}\)	80.6 linear, \(10^{-5}\)	76.1 cosine, 1
w2	46.7 bernoulli, \(10^{-1}\)	68.8 linear, \(10^{-2}\)	75.3 cosine, 1
w, w2	42.4 bernoulli, \(10^{-1}\)	80.9 linear, \(10^{-5}\)	75.7 cosine, 1
l	71.1 bernoulli, \(10^{-2}\)	81.2 linear, \(10^{-2}\)	77.6 cosine, 1
ch2	60.7 bernoulli, \(10^{-1}\)	80.8 linear, \(10^{-4}\)	75.3 cosine, 1
ch3	45.8 bernoulli, \(10^{-3}\)	82.8 linear, \(10^{-4}\)	77.2 cosine, 1
ch4	27.8 bernoulli, \(10^{-1}\)	82.5 linear, \(10^{-5}\)	79.0 cosine, 1
ch3, ch4	11.6 bernoulli, \(10^{-1}\)	83.4 linear, \(10^{-4}\)	77.8 cosine, 1
w, ch2	57.0 bernoulli, \(10^{-2}\)	81.1 linear, \(10^{-4}\)	74.9 cosine, 1
w, ch3	39.2 bernoulli, \(10^{-2}\)	84.0 linear, \(10^{-4}\)	76.9 cosine, 1
w, ch4	23.5 bernoulli, \(10^{-1}\)	83.9 linear, \(10^{-4}\)	79.3 cosine, 1
w, ch2, ch3	32.4 bernoulli, \(10^{-4}\)	82.3 linear, \(10^{-4}\)	75.3 cosine, 1
w, ch3, ch4	9.7 bernoulli, \(10^{-1}\)	84.4 linear, \(10^{-4}\)	77.6 cosine, 1
w, ch2, ch3, ch4	8.4 bernoulli, \(10^{-1}\)	82.7 linear, \(10^{-4}\)	74.9 cosine, 1
l, ch2	56.4 bernoulli, \(10^{-1}\)	80.5 linear, \(10^{-4}\)	74.8 cosine, 1
l, ch3	38.9 bernoulli, \(10^{-2}\)	82.7 linear, \(10^{-4}\)	77.9 cosine, 1
l, ch4	23.1 bernoulli, \(10^{-1}\)	82.9 linear, \(10^{-3}\)	80.0 cosine, 1
l, ch2, ch3	31.8 bernoulli, \(10^{-1}\)	82.1 linear, \(10^{-4}\)	75.2 cosine, 1
l, ch3, ch4	10.0 bernoulli, \(10^{-1}\)	82.9 linear, \(10^{-4}\)	78.0 cosine, 1
l, ch2, ch3, ch4	8.3 bernoulli, \(10^{-1}\)	82.4 linear, \(10^{-4}\)	75.5 cosine, 1
l, ch2, pl	56.3 bernoulli, \(10^{-1}\)	83.1 linear, \(10^{-5}\)	79.0 cosine, 1
l, ch3, pl	39.2 bernoulli, \(10^{-2}\)	82.9 linear, \(10^{-5}\)	82.1 cosine, 1
l, ch4, pl	22.5 bernoulli, \(10^{-1}\)	83.5 linear, \(10^{-5}\)	83.2 cosine, 1
l, ch2, ch3, pl	31.7 bernoulli, \(10^{-3}\)	84.6 linear, \(10^{-5}\)	79.0 cosine, 1
l, ch3, ch4, pl	10.0 bernoulli, \(10^{-1}\)	84.8 linear, \(10^{-5}\)	81.5 cosine, 1
l, ch2, ch3, ch4, pl	8.2 bernoulli, \(10^{-2}\)	85.6 linear, \(10^{-5}\)	78.6 cosine, 1
positive baseline		55.4	
keyword baseline		77.2	

	Precision	Recall	\(F(\beta=1)\)	\(F(\beta=2)\)
Positive baseline	38.3	100.0	55.4	75.6
Keyword baseline	81.7	73.0	77.2	74.6
SVM (l, ch3, ch4, pl)	78.6	92.1	84.8	89.0
SVM (l, ch2, ch3, ch4, pl)	78.7	93.8	85.6	90.4
KNN (l, ch3, pl)	73.5	92.9	82.1	88.2
KNN (l, ch4, pl)	77.4	89.9	83.2	87.1

Table 2: Precision, recall and F-scores (with \(\beta = 1\) and 2) for selected relevance classifiers (boldfaced in Table 1).

lower scores with words or lemmas versus character four-grams.

The best classifier, SVM with lemmas, all character ngrams and post length, achieves an F-score of 85.6%, with precision at 78.7% and recall at 93.8%. This means that ~6% of suicidal messages are missed, and the suggested positives contain ~20% noise. This is an improvement over the keyword baseline, which would fail to retrieve 27% of the messages, at the same level of noise. This improvement is reflected best in the F-scores with \(\beta=2\), which doubles the importance of recall of suicidal messages.

4.2.2. Severity task: one-shot

Tables 3 and 4 present the scores for the one-shot severity task. In this approach, a classifier needs to detect the presence of a suicide threat without filtering out irrelevant messages first.

As with the relevance task, NB struggles to beat the baseline, and is increasingly confused as the number of features goes up. Only word or lemma bag-of-words perform reasonably well.

We can make a number of observations from the results. Both SVM and KNN perform well, yielding promising scores in comparison to the baseline.

It is interesting to note that whereas KNN prefers longer character ngrams, SVM prefers shorter ones, in contrast with the findings for the previous task, which could be considered more of a topic detection task. The best combinations include lemma bag-of-words and post length as well.

The best KNN classifier finds 111 out of 221 positive instances (recall 50.2%), with 77 false positives (precision 59.0%). The keyword baseline sacrifices precision to obtain better recall, finding 156 true positives at the expense
of 700 extra false negatives.

4.2.3. Severity task: cascaded
A possible drawback of the one-shot approach is that a classifier needs to make multiple decisions to arrive at the subset of alarming suicide-related messages. We therefore also experimented with severity classifiers that work on the output of a relevance filter.

As a filter, we used the two relevance classifiers with the highest F(β=2)-score, because precision mistakes can be addressed in the second step of the cascade, whereas recall mistakes cannot, because false negatives are not fed to the second classifier. These were both SVM classifiers.

As a cascaded severity classifier, we used KNN and SVM with all feature sets and hyperparameters (Table 5).

The cascaded approach improves the best F-scores for both SVM and KNN, by 2.7 and 4.9 percentage points, respectively. KNN still benefits from a large number of features, whereas SVM works best when it uses character fourgrams only.

The benefit of using a cascade is primarily improved precision, as can be seen in Table 6. A filter weeds out potential false positives, but does not help much to improve recall. The second classifier can be better tuned to the severity task however, which could provide better recall as well.

In our experiments, we observe significant gains in precision, and minor improvements in recall. The best cascaded KNN classifier finds 114 messages containing a suicide threat (three more than the best one-shot classifier), and produces 50 false positives (as opposed to 77 with one-shot classification).

Severity	NB (distribution, α)	SVM (kernel, C)	KNN (distance, k)
w	40.9 bernoulli, 10^{-3}	35.6 linear, 10^{-5}	48.1 cosine, 1
w2	13.9 bernoulli, 10^{-1}	14.8 linear, 10^{-2}	24.2 cosine, 1
w, w2	12.5 bernoulli, 10^{-4}	35.3 linear, 10^{-2}	44.5 cosine, 1
l	41.1 bernoulli, 10^{-5}	41.9 linear, 10^{-2}	47.4 cosine, 1
ch2	25.9 bernoulli, 10^{-6}	45.5 linear, 10^{-3}	39.7 cosine, 1
ch3	27.3 bernoulli, 10^{-6}	43.7 linear, 10^{-5}	47.8 cosine, 1
ch4	14.1 bernoulli, 10^{-5}	44.1 linear, 10^{-5}	51.1 cosine, 1
ch3, ch4	4.8 bernoulli, 10^{-3}	46.3 linear, 10^{-3}	51.4 cosine, 1
w, ch2	32.4 bernoulli, 10^{-6}	46.9 linear, 10^{-3}	36.7 cosine, 1
w, ch3	21.3 bernoulli, 10^{-5}	44.4 linear, 10^{-3}	49.8 cosine, 1
w, ch4	11.7 bernoulli, 10^{-3}	47.9 linear, 10^{-3}	52.2 cosine, 1
w, ch2, ch3	15.3 bernoulli, 10^{-6}	47.5 linear, 10^{-3}	41.3 cosine, 1
w, ch3, ch4	3.4 bernoulli, 10^{-2}	46.5 linear, 10^{-3}	51.0 cosine, 1
l, ch2	2.8 bernoulli, 10^{-3}	48.0 linear, 10^{-3}	42.6 cosine, 1
l, ch3	31.9 bernoulli, 10^{-6}	48.9 linear, 10^{-2}	38.8 cosine, 1
l, ch4	21.9 bernoulli, 10^{-6}	45.7 linear, 10^{-3}	49.6 cosine, 1
l, ch2, ch3	10.8 bernoulli, 10^{-3}	45.0 linear, 10^{-2}	52.0 cosine, 1
l, ch2, ch4	17.0 bernoulli, 10^{-6}	44.0 linear, 10^{-2}	46.2 cosine, 1
l, ch3, ch4	3.3 bernoulli, 10^{-1}	45.5 linear, 10^{-3}	52.1 cosine, 1
l, ch2, ch3, ch4	2.9 bernoulli, 10^{-2}	44.9 linear, 10^{-3}	43.8 cosine, 1
l, ch2, pl	31.8 bernoulli, 10^{-6}	49.4 linear, 10^{-2}	41.3 cosine, 1
l, ch3, pl	21.7 bernoulli, 10^{-6}	47.8 linear, 10^{-2}	53.1 cosine, 1
l, ch4, pl	11.1 bernoulli, 10^{-3}	48.3 linear, 10^{-2}	53.5 cosine, 1
l, ch2, ch3, pl	16.8 bernoulli, 10^{-6}	49.0 linear, 10^{-3}	43.6 cosine, 1
l, ch3, ch4, pl	3.4 bernoulli, 10^{-3}	47.1 linear, 10^{-3}	54.3 cosine, 1
l, ch2, ch3, ch4, pl	3.2 bernoulli, 10^{-4}	48.3 linear, 10^{-3}	43.5 cosine, 1

	Precision	Recall	F (β=1)	F (β=2)
Positive baseline	8.3	100.0	15.3	31.1
Keyword baseline	17.0	70.6	27.5	43.4
SVM (l, ch2, pl)	50.5	48.4	49.4	48.8
SVM (l, ch2, ch3, pl)	57.7	42.5	49.0	44.9
KNN (l, ch4, pl)	60.6	48.0	53.5	50.0
KNN (l, ch3, ch4, pl)	59.0	50.2	54.3	51.8

Table 3: Results for the one-shot severity filtering task, reported as 3-fold cross-validated F-score on the positive class. Feature sets can contain words (w), word bigrams (w2), lemmas (l), character ngrams (ch2, ch3, ch4) and post length (pl). For each feature set, the score and settings of the best classifier (after a hyperparameter gridsearch) is given for NB, SVM and KNN. Scores in italics are below the keyword baseline, the 2 strongest classifiers of each type are boldfaced.

Table 4: Precision, recall and F-scores (with β 1 and 2) for selected one-shot severity classifiers (boldfaced in Table 3).
was important: regardless of feature set, classifiers with \(k=1 \) outperformed those with \(k=5 \).

5. Conclusions and future work

This paper introduced an annotation scheme and corpus for the detection of various types of suicide-related content. The cascaded annotation approach may be of interest for other annotation tasks aimed at monitoring harmful online content, such as cyberbullying or sexual harassment.
The first classification experiments show that detecting posts on suicide is feasible (85.6% F-score), with SVM classifiers performing best with lemmas, character trigrams and fourgrams, and post length. Almost no relevant messages are missed, but with ~20% noise, the system would become increasingly flawed with larger reference corpora, where the number of suicidal messages would be much lower. In future work, we plan to do scaling experiments and focus on improving precision.

The second task, correctly filtering alarming texts that contain a severe suicide threat, is non-trivial (59.2% F-score). KNN classifiers perform best. Cascading classifiers is worthwhile, and produces consistently better scores than using one-shot classifiers. It is beneficial for precision in particular, with recall hovering around 50%. Although precision becomes more important as the skewness of the data increases, we would like to improve recall, for example by using only high-recall filters in the first step of the cascade.

Because of the reliance on shallow features, it would be interesting to assess the impact of normalization techniques to correct the often noisy content found in social media. Cleaner input would also allow the use of more advanced features, which require deeper preprocessing.

In conclusion, we believe this work presents a promising approach to suicide prevention in social media, where the potential of using NLP techniques is still largely untapped.

6. Acknowledgements

The work presented in this paper was carried out in the framework of the SubTLe project, funded by the University College Ghent Research Fund. Corpus annotation was done by the Centre for Suicide Prevention (CPZ).

7. References

Christensen, H., Griffiths, K. M., and Jorm, A. F. (2004). Delivering interventions for depression by using the internet: randomised controlled trial. *British Medical Journal*, 328(7434):265, January.

De Smedt, T. and Daelemans, W. (2012). Pattern for Python. *Journal of Machine Learning Research*, 13:2063–2067.

Jashinsky, J., Burton, S. H., Hanson, C. L., West, J., Giraud-Carrier, C., Barnes, M. D., and Argyle, T. (2013). Tracking Suicide Risk Factors Through Twitter in the US. *Crisis*, pages 1–9, October.

Miniño, A. M. and Murphy, S. L. (2012). Death in the United States, 2010. Technical Report 99, National Center for Health Statistics, July.

Pestian, J., Nasrallah, H., Matykiewicz, P., Bennett, A., and Leenaars, A. (2010). Suicide Note Classification Using Natural Language Processing : A Content Analysis. *Biomedical Informatics Insights*, 3:19–28.

Pestian, J., Matykiewicz, P., Linn-Gust, M., South, B., Uzuner, O., Wiebe, J., Cohen, K. B., Hurdle, J., and Brew, C. (2012). Sentiment Analysis of Suicide Notes: A Shared Task. *Biomedical Informatics Insights*, 5:3–16, January.

Shapero, J. J. (2011). *The Language of Suicide Notes*. Ph.D. thesis.