Supporting data
Nitrophenyl-group-containing Heterocycles. Part I. Synthesis, Characterization, Crystal Structure, Anticancer Activity and Antioxidant Properties of Some New 5,6,7,8-Tetrahydroisoquinolines Bearing 3(4)-Nitrophenyl Group

Eman M. Sayed,1 Reda Hassanien,1 Nasser Farhan,1 Hanan F. Aly,2 Khaled Mahmoud,3 Shaaban K. Mohamed,4,5 Joel T. Mague,6 and Etify A. Bakhite7*

1Chemistry Department, Faculty of Science, New Valley University, 72511 El-Kharja, Egypt. 2Department of Therapeutic Chemistry, National Research Centre, El-Behooh St., 12622 Dokki, Cairo, Egypt. 3Pharmacognosy Department, National Research Centre, El-Behooh St., 12622 Dokki, Cairo, Egypt. 4Chemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England and 5Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, 6Department of Chemistry, Tulane University, New Orleans, LA 70118, USA, 7Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt.
Figure S1: 1H NMR Spectrum of 7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(3-nitrophenyl)-5,6,7,8-tetrahydroisoquinoline-3(2H)-thione (2a) in DMSO-d_6.
Figure S2: 1H NMR Spectrum of 7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(4-nitrophenyl)-5,6,7,8-tetrahydroisoquinoline-3(2H)-thione (2b) in DMSO-d_6.
Figure S3: IR Spectrum of 7-Acetyl-4-cyano-1,6-dimethyl-3-ethylthio-6-hydroxy-8-(4-nitrophenyl)-5,6,7,8-tetrahydroisoquinoline (3).
Figure S4: 1H NMR Spectrum of 7-Acetyl-4-cyano-1,6-dimethyl-3-ethylthio-6-hydroxy-8-(4-nitrophenyl)-5,6,7,8-tetrahydroisoquinoline (3) in CDCl$_3$.
Figure S5: IR Spectrum of 2-[(7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(3-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-yl)thio]acetamide (5a).
Figure S6: 1H NMR Spectrum of 2-[(7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(3-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-yl)thio]acetamide (5a) in CDCl₃.
Figure S7: 13C NMR Spectrum of 2-[(7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(3-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-yl)thio]acetamide (5a) in CDCl$_3$.
Figure S8: IR Spectrum of 2-[(7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(3-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-yl)thio]-N-phenylacetamide (5b) in DMSO-d_6.
Figure S9: 1H NMR Spectrum of 2-[(7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(3-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-yl)thio]-N-phenylacetamide (5b) in DMSO-d_6.
Figure S10: IR Spectrum of 2-[(7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(3-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-ylthio]-N-(4-tolyl)acetamide (5c).
Figure S11: 1H NMR Spectrum of 2-[(7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(3-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-yl)thio]-N-(4-tolyl)acetamide (5c) in DMSO-d_6.

Figure S12: 13C NMR Spectrum of 2-[(7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(3-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-yl)thio]-N-(4-tolyl)acetamide (5c) in DMSO-d_6.

S13
Figure S13: 1H NMR Spectrum of 2-[(7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(3-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-yl)thio]-N-(4-chlorophenyl)acetamide (5d) in DMSO-d_6.
Figure S14: 13C NMR Spectrum of 2-[(7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(3-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-yl)thio]-N-(4-chlorophenyl)acetamide (5d) in DMSO-d_6.
Figure S15: IR Spectrum of 2-[[7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(4-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-yl]thio]acetamide (5e)
Figure S16: 1H NMR Spectrum of 2-[(7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(4-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-yl)thio]acetamide (5e) in DMSO-d_6.
Figure S17: IR Spectrum of 2-[(7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(4-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-yl)thio]-N-phenylacetamide (5f).
Figure S18: 1H NMR Spectrum of 2-[(7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(4-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-ylthio]-N-phenylacetamide (5f) in DMSO-d$_6$.
Figure S19: 13C NMR Spectrum of 2-((7-Acetyl-4-cyano-6-hydroxy-1,6-dimethyl-8-(4-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-yl)thio)-N-phenylacetamide (5f) in DMSO-d_6.
Figure S20: IR Spectrum of 2-[(7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(4-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-yl)thio]-N-(4-tolyl)acetamide (5g).
Figure S21: \(^1\)H NMR Spectrum of 2-[(7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(4-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-yl)thio]-N-(4-tolyl)acetamide (5g) in DMSO-\(d_6\).
Figure S22: 1H NMR Spectrum of 2-[(7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(4-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-yl)thio]-N-(4-chlorophenyl)acetamide (5h) in DMSO-d_6.
Figure S23: 13C NMR Spectrum of 22-[(7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(4-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-yl)thio]-N-(4-chlorophenyl)acetamide (5h) in DMSO-d_6.
Figure S24: 1H NMR Spectrum of 2-[(7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8-(4-nitrophenyl)-5,6,7,8-tetrahydroisoquinolin-3-yl)thio]-N-(4-acetylphenyl)acetamide (5i) in DMSO-d_6.
Figure S25: IR Spectrum of 7-Acetyl-1-amino-5,8-dimethyl-8-hydroxy-6-(3-nitrophenyl)-N-phenyl-6,7,8,9-tetrahydrothieno[2,3-c]isoquinoline-2-carboxamide (6b).
Figure S26: 1H NMR Spectrum of 7-Acetyl-1-amino-5,8-dimethyl-8-hydroxy-6-(3-nitrophenyl)-N-phenyl-6,7,8,9-tetrahydrothieno[2,3-c]isoquinoline-2-carboxamide (6b) in DMSO-d_6.
Figure S27: 13C NMR Spectrum of 7-Acetyl-1-amino-5,8-dimethyl-8-hydroxy-6-(3-nitrophenyl)-N-phenyl-6,7,8,9-tetrahydrothieno[2,3-c]isoquinoine-2-carboxamide (6b) in DMSO-d_6.

S28
Figure S28: IR Spectrum of 7-Acetyl-1-amino-5,8-dimethyl-8-hydroxy-6-(3-nitrophenyl)-N-(4-tolyl)-6,7,8,9-tetrahydrothieno[2,3-c]isoquinoline-2-carboxamide (6c).
Figure S29: 1H NMR Spectrum of 7-Acetyl-1-amino-5,8-dimethyl-8-hydroxy-6-(3-nitrophenyl)-N-(4-tolyl)-6,7,8,9-tetrahydrothieno[2,3-c]isoquinoline-2-carboxamide (6c) in DMSO-d_6.
Figure S30: 13C NMR Spectrum of 7-Acetyl-1-amino-5,8-dimethyl-8-hydroxy-6-(3-nitrophenyl)-N-(4-tolyl)-6,7,8,9-tetrahydrothieno[2,3-c]isoquinoline-2-carboxamide (6c) in DMSO-d_6.
Figure S31: IR Spectrum of 7-Acetyl-1-amino-N-(4-chlorophenyl)-5,8-dimethyl-8-hydroxy-6-(3-nitrophenyl)-6,7,8,9-tetrahydrothieno[2,3-c]isoquinoline-2-carboxamide (6d).
Figure S32: 1H NMR Spectrum of 7-Acetyl-1-amino-N-(4-chlorophenyl)-5,8-dimethyl-8-hydroxy-6-(3-nitrophenyl)-6,7,8,9-tetrahydrothieno[2,3-c]isoquinoline-2-carboxamide (6d) in DMSO-d_6.
Figure S33: 13C NMR Spectrum of 7-Acetyl-1-amino-N-(4-chlorophenyl)-5,8-dimethyl-8-hydroxy-6-(3-nitrophenyl)-6,7,8,9-tetrahydrothieno[2,3-c]isoquinoline-2-carboxamide (6d) in DMSO-d_6.
Figure S34: 1H NMR Spectrum of 7-Acetyl-1-amino-5,8-dimethyl-8-hydroxy-6-(4-nitrophenyl)-N-phenyl-6,7,8,9-tetrahydrothieno[2,3-c]isoquinoline-2-carboxamide (6f) in DMSO-d$_6$.
Figure S35: 13C NMR Spectrum of 7-Acetyl-1-amino-5,8-dimethyl-8-hydroxy-6-(4-nitrophenyl)-N-phenyl-6,7,8,9-tetrahydrothieno[2,3-c]isoquinoline-2-carboxamide (6f) in DMSO-d_6.
Figure S36: 1HNMR Spectrum of 7-Acetyl-1-amino-8-hydroxy-5,8-dimethyl-6-(4-nitrophenyl)-N-(4-tolyl)-6,7,8,9-tetrahydrothieno[2,3-c]isoquinoline-2-carboxamide (6g) in DMSO-d_6.
Figure S37: 13 C NMR Spectrum of 7-Acetyl-1-amino-8-hydroxy-5,8-dimethyl-6-(4-nitrophenyl)-N-(4-tolyl)-6,7,8,9-tetrahydrothieno[2,3-c]isoquinoline-2-carboxamide (6g) in DMSO-d_6.
Supporting Information

Table S1. Crystal and refinement data for 5d.

Identification code	5d
Chemical formula	\(\text{C}_{28}\text{H}_{25}\text{ClN}_4\text{O}_5\text{S} \)
Formula weight	565.03 g/mol
Temperature	170(2) K
Wavelength	0.71073 Å
Crystal size	0.188 x 0.379 x 0.423 mm
Crystal habit	colorless block
Crystal system	monoclinic
Space group	\(\text{P} 1 \ 21/c \ 1 \)
Unit cell dimensions	\(a = 17.7900(3) \ \text{Å} \ \ \ \alpha = 90^\circ \)
	\(b = 14.2484(3) \ \text{Å} \ \ \ \beta = 95.3460(10)^\circ \)
	\(c = 10.3782(2) \ \text{Å} \ \ \ \gamma = 90^\circ \)
Volume	\(2619.21(9) \ \text{Å}^3 \)
Z	4
Density (calculated)	1.433 g/cm\(^3\)
Absorption coefficient	0.273 mm\(^{-1}\)
F(000)	1176
Diffractometer	Bruker D8 QUEST PHOTON 3 diffractometer
Radiation source
- fine-focus sealed tube (MoKα, λ = 0.71073 Å)

 Theta range for data collection
- 2.30 to 30.59°

 Index ranges
- -25 ≤ h ≤ 25, -20 ≤ k ≤ 20, -14 ≤ l ≤ 14

 Reflections collected
- 113030

 Independent reflections
- 7964 [R(int) = 0.0406]

 Coverage of independent reflections
- 98.8%

 Absorption correction
- Numerical μ Calculated

 Max. and min. transmission
- 0.9500 and 0.8930

 Structure solution technique
- direct methods

 Structure solution program
- SHELXT/5

 Refinement method
- Full-matrix least-squares on F²

 Refinement program
- SHELXL 2018/3

 Function minimized
- Σ w(Fo² - Fc²)²

 Data / restraints / parameters
- 7964 / 5 / 363

 Goodness-of-fit on F²
- 1.029

 Δ/σmax
- 0.001

 Final R indices
- 6810 data; R1 = 0.0401, wR2 = 0.1059
- I>2σ(I)
- all data R1 = 0.0485, wR2 = 0.1133

 Weighting scheme
- w=1/[σ²(Fo²)+(0.0586P)²+1.0979P]
where \(P = (\overline{F}^2 + 2\overline{F}^2) / 3 \)

Largest diff. peak and hole 0.553 and -0.695 e\(\text{Å}^{-3}\)

R.M.S. deviation from mean 0.051 e\(\text{Å}^{-3}\)

Table S2. Bond lengths (Å) and interbond angles (°) for 8c.

	Bond Lengths (Å)		Bond Lengths (Å)
C11-C26	1.7436(13)	N3-C23	1.4170(14)
S1-C21	1.7966(12)	N4-C15	1.4794(18)
O2-C5	1.4296(15)	C1-C10	1.5035(15)
O3-C22	1.2266(14)	C2-C3	1.5222(15)
O5-N4	1.2292(18)	C3-C4	1.5524(16)
N1-C1	1.3473(14)	C4-C17	1.5313(17)
N3-C22	1.3556(14)	C5-C19	1.5263(16)
N3-H3	0.895(9)	C7-C8	1.4004(15)
C1-C2	1.4063(15)	C8-C20	1.4386(15)
C2-C7	1.3976(14)	C11-C12	1.3943(17)
C3-C11	1.5259(15)	C12-C13	1.3935(18)
C4-C5	1.5453(16)	C13-C14	1.382(2)
C5-C6	1.5183(16)	C14-C15	1.378(2)
C6-C7	1.5036(15)	C15-C16	1.3875(17)
C8-C9	1.3994(15)	C17-C18	1.499(2)
C11-C16	1.3946(16)	C21-C22	1.5158(16)
S1-C9	1.7678(11)	C23-C24	1.3906(17)
O1-C17	1.214(2)	C23-C28	1.3922(16)
O2-H2	0.838(9)	C24-C25	1.3933(17)
O4-N4	1.220(2)	C25-C26	1.384(2)
N1-C9	1.3272(14)	C26-C27	1.378(2)
N2-C20	1.1449(17)	C27-C28	1.3856(18)
C9-S1-C21	99.91(5)	C5-O2-H2	107.2(14)
C9-N1-C1	118.95(9)	C22-N3-C23	123.45(10)
C22-N3-H3	119.6(11)	C23-N3-H3	115.4(11)
O4-N4-O5	124.03(14)	O4-N4-C15	118.36(13)
O5-N4-C15	117.60(16)	N1-C1-C2	122.69(10)
N1-C1-C10	114.43(10)	C2-C1-C10	122.86(10)
C7-C2-C1	117.75(10)	C7-C2-C3	121.57(9)
C1-C2-C3	120.60(9)	C2-C3-C11	114.07(9)
Table S3. Hydrogen bond distances (Å) and angles (°) for 8c.

Donor–H	Acceptor···H	Donor···Acceptor	Angle		
O2-H2	O1	0.838(9)	2.239(15)	2.9035(14)	136.3(17)
N3-H3	O3"	0.895(9)	2.208(12)	2.9175(13)	143.5(14)
C21-H21B	O2"	0.99	2.54	3.3068(14)	134.4
C27-H27"	O4"	0.95	2.49	3.4124(18)	164.9

Symmetry transformations used to generate equivalent atoms: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, -y+3/2, z+1/2.
Table S4: Probit Analysis and raw data for cytotoxicity of compound 3 against PACA2 (Pancreatic cancer cell line)

Parameter Estimates

Parameter	Estimate	Std. Error	Z	Sig.	Lower Bound	Upper Bound
PROBIT conc	3.588	.304	11.808	.000	2.993	4.184
Intercept	-6.202	.514	-12.056	.000	-6.716	-5.688

a. PROBIT model: PROBIT(p) = Intercept + BX (Covariates X are transformed using the base 10.000 logarithm.)

Chi-Square Tests

	Chi-Square	df \(^a \)	Sig.
PROBIT Pearson Goodness-of-Fit Test	3.513	6	.742 \(^b \)

a. Statistics based on individual cases differ from statistics based on aggregated cases.
b. Since the significance level is greater than .150, no heterogeneity factor is used in the calculation of confidence limits.

Cell Counts and Residuals

Number	conc	Number of Subjects	Observed Responses	Expected Responses	Residual	Probability	
PROBIT	1	2.000	100	87	83.502	3.498	.835
	2	1.699	100	39	45.782	-6.782	.458
	3	1.398	100	13	11.780	1.220	.118
	4	1.097	100	2	1.172	.828	.012
	5	.787	100	0	.037	-.037	.000
	6	.494	100	0	.000	.000	.000
	7	.193	100	0	.000	.000	.000
	8	-.108	100	0	.000	.000	.000
Probability	95% Confidence Limits for conc	95% Confidence Limits for log(conc)					
-------------	-------------------------------	-----------------------------------					
	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound	
PROBIT							
0.01	12.027	8.973	14.922	1.080	.953	1.174	
0.02	14.326	11.035	17.387	1.156	1.043	1.240	
0.03	16.007	12.578	19.166	1.204	1.100	1.283	
0.04	17.401	13.875	20.629	1.241	1.142	1.314	
0.05	18.624	15.025	21.905	1.270	1.177	1.341	
0.06	19.732	16.077	23.057	1.295	1.206	1.363	
0.07	20.758	17.057	24.121	1.317	1.232	1.382	
0.08	21.722	17.982	25.118	1.337	1.255	1.400	
0.09	22.637	18.865	26.963	1.355	1.276	1.416	
0.1	23.514	19.714	26.968	1.371	1.295	1.431	
0.15	27.520	23.622	31.102	1.440	1.373	1.493	
0.2	31.184	27.218	34.908	1.494	1.435	1.543	
0.25	34.715	30.676	38.618	1.541	1.487	1.587	
0.3	38.225	34.086	42.367	1.582	1.533	1.627	
0.35	41.793	37.510	46.257	1.621	1.574	1.665	
0.4	45.487	40.996	50.377	1.658	1.613	1.702	
0.45	49.371	44.591	54.817	1.693	1.649	1.739	
0.5	53.517	48.349	59.677	1.728	1.684	1.776	
0.55	58.012	52.333	65.080	1.764	1.719	1.813	
0.6	62.965	56.628	71.184	1.799	1.753	1.852	
0.65	68.530	61.348	78.208	1.836	1.788	1.893	
0.7	74.928	66.661	86.477	1.875	1.824	1.937	
0.75	82.503	72.820	96.505	1.916	1.862	1.985	
0.8	91.844	80.255	109.177	1.963	1.904	2.038	
0.85	104.075	89.774	126.216	2.017	1.953	2.101	
0.9	121.803	103.231	151.690	2.086	2.014	2.181	
0.91	126.520	106.754	158.605	2.102	2.028	2.200	
0.92	131.851	110.710	166.486	2.120	2.044	2.221	
0.93	137.973	115.222	175.617	2.140	2.062	2.245	
0.94	145.146	120.469	186.423	2.162	2.081	2.270	
0.95	153.784	126.733	199.580	2.187	2.103	2.300	
0.96	164.591	134.496	216.252	2.216	2.129	2.335	
Table S5: Probit Analysis and raw data for cytotoxicity of compound 5c against PACA2 (Pancreatic cancer cell line)

Parameter Estimates	Estimate	Std. Error	Z	Sig.	95% Confidence Interval	
					Lower Bound	Upper Bound
PROBIT\(^a\) conc	2.034	.169	12.057	.000	1.704	2.365
Intercept	-3.619	.269	-13.470	.000	-3.887	-3.350

a. PROBIT model: PROBIT(p) = Intercept + BX (Covariates X are transformed using the base 10.000 logarithm.)

Chi-Square Tests	Chi-Square	df\(^a\)	Sig.
PROBIT Pearson Goodness-of-Fit Test	17.454	6	.008\(^b\)

a. Statistics based on individual cases differ from statistics based on aggregated cases.

b. Since the significance level is less than .150, a heterogeneity factor is used in the calculation of confidence limits.

Cell Counts and Residuals	Number	conc	Number of Subjects	Observed Responses	Expected Responses	Residual	Probability
PROBIT							
1	2.000	100	73	67.364	5.636	.674	
2	1.699	100	38	43.549	-5.549	.435	
3	1.398	100	20	21.922	-1.922	.219	
4	1.097	100	9	8.268	.732	.083	
Probability	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound	
-------------	----------	-------------	-------------	----------	-------------	-------------	
PROBIT							
0.01	4.318	1.338	7.899	.635	.126	.898	
0.02	5.879	2.122	10.039	.769	.327	1.002	
0.03	7.150	2.838	11.710	.854	.453	1.069	
0.04	8.284	3.528	13.165	.918	.548	1.119	
0.05	9.339	4.207	14.494	.970	.624	1.161	
0.06	10.341	4.882	15.744	1.015	.689	1.197	
0.07	11.308	5.559	16.942	1.053	.745	1.229	
0.08	12.250	6.240	18.103	1.088	.795	1.258	
0.09	13.175	6.927	19.242	1.120	.841	1.284	
0.1	14.089	7.621	20.365	1.149	.882	1.306	
0.15	18.593	11.225	25.971	1.269	1.050	1.414	
0.2	23.180	15.074	31.919	1.365	1.178	1.504	
0.25	28.007	19.163	38.591	1.447	1.282	1.586	
0.3	33.193	23.476	46.341	1.521	1.371	1.666	
0.35	38.851	28.009	55.543	1.589	1.447	1.745	
0.4	45.110	32.783	66.630	1.654	1.516	1.824	
0.45	52.124	37.854	80.135	1.717	1.578	1.904	
0.5	60.091	43.310	96.761	1.779	1.637	1.986	
0.55	69.275	49.277	117.488	1.841	1.693	2.070	
0.6	80.046	55.929	143.750	1.903	1.748	2.158	
0.65	92.942	63.514	177.739	1.968	1.803	2.250	
0.7	108.787	72.392	222.996	2.037	1.860	2.348	
0.75	128.929	83.139	285.639	2.110	1.920	2.456	
0.8	155.777	96.745	377.280	2.193	1.986	2.577	
0.85	194.206	115.147	523.152	2.288	2.061	2.719	
0.9	256.301	142.950	791.530	2.409	2.155	2.898	
Parameter	Estimate	Std. Error	Z	Sig.	95% Confidence Interval	49% Confidence Interval	
-----------	----------	------------	------	-------	-------------------------	-------------------------	
PROBIT*	conc	3.195	.222	14.394	.000	2.760	3.630
Intercept	-4.517	.317	-14.250	.000	-4.834	-4.200	

a. PROBIT model: \(\text{PROBIT}(p) = \text{Intercept} + BX \) (Covariates X are transformed using the base 10.000 logarithm.)

Chi-Square Tests

Test	Chi-Square	df	Sig.
PROBIT Pearson Goodness-of-Fit Test	10.858	6	.093

a. Statistics based on individual cases differ from statistics based on aggregated cases.

b. Since the significance level is less than .150, a heterogeneity factor is used in the calculation of confidence limits.

Table S6: Probit Analysis and raw data for cytotoxicity of compound 5h against PACA2 (Pancreatic cancer cell line).

a. Logarithm base = 10.

PROBIT dead OF total WITH conc
/LOG 10
/MODEL PROBIT
/PRINT FREQ CI
/CRITERIA P(0.15) ITERATE(20) STEPLIMIT(.1).
Cell Counts and Residuals

Number	conc	Number of Subjects	Observed Responses	Expected Responses	Residual	Probability	
PROBIT	1	2.000	100	100	96.951	3.049	.970
	2	1.699	100	82	81.905	.095	.819
	3	1.398	100	38	48.000	-10.000	.480
	4	1.097	100	17	15.576	1.424	.156
	5	.787	100	5	2.264	2.736	.023
	6	.494	100	0	.165	-1.165	.002
	7	.193	100	0	.005	-1.005	.000
	8	-.108	100	0	.000	.000	.000

Confidence Limits

y	95% Confidence Limits for conc	95% Confidence Limits for log(conc)				
	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound
PROBIT						
0.01	4.848	2.884	6.816	.686	.460	.834
0.02	5.901	3.703	8.036	.771	.569	.905
0.03	6.684	4.337	8.926	.825	.637	.951
0.04	7.341	4.882	9.665	.866	.689	.985
0.05	7.923	5.373	10.313	.899	.730	1.013
0.06	8.454	5.829	10.902	.927	.766	1.038
0.07	8.949	6.260	11.449	.952	.797	1.059
0.08	9.417	6.671	11.963	.974	.824	1.078
0.09	9.864	7.067	12.453	.994	.849	1.095
0.1	10.294	7.451	12.924	1.013	.872	1.111
0.15	12.282	9.258	15.100	1.089	.967	1.179
0.2	14.133	10.971	17.136	1.150	1.040	1.234
0.25	15.942	12.658	19.149	1.203	1.102	1.282
0.3	17.763	14.356	21.214	1.250	1.157	1.327
0.35	19.636	16.090	23.386	1.293	1.207	1.369
0.4	21.595	17.881	25.720	1.334	1.252	1.410
0.45	23.676	19.751	28.275	1.374	1.296	1.451
0.5	25.920	21.724	31.121	1.414	1.337	1.493
0.55	28.377	23.831	34.343	1.453	1.377	1.536
0.6	31.111	26.115	38.057	1.493	1.417	1.580
Table S7: Probit Analysis and raw data for cytotoxicity of compound 5i against PACA2 (Pancreatic cancer cell line).

Parameter Estimates
Parameter
PROBITa
conc
Intercept

a. PROBIT model: PROBIT(p) = Intercept + BX (Covariates X are transformed using the base 10.000 logarithm.)

Chi-Square Tests

Chi-Square Test	Chi-Square	dfb	Sig.
PROBIT	1.342	6	.969c

a. Logarithm base = 10.

PROBIT dead OF total WITH conc
/LOG 10
/MODEL PROBIT
/PRINT FREQ CI
/CRITERIA P(0.15) ITERATE(20) STEPLIMIT(.1).
a. Statistics based on individual cases differ from statistics based on aggregated cases.

b. Since the significance level is greater than .150, no heterogeneity factor is used in the calculation of confidence limits.

Number	conc	Number of Subjects	Observed Responses	Expected Responses	Residual	Probability	
PROBIT	1	2.000	100	65	62.559	2.441	.626
	2	1.699	100	32	34.590	-.250	.346
	3	1.398	100	12	13.285	-1.285	.133
	4	1.097	100	4	3.365	.635	.034
	5	.787	100	1	.513	.487	.005
	6	.494	100	0	.055	-.055	.001
	7	.193	100	0	.003	-.003	.000
	8	-.108	100	0	.000	.000	.000

Probabil	95% Confidence Limits for conc	95% Confidence Limits for log(conc)*				
y	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound
PROBIT						
0.01	7.731	5.060	10.449	.888	.704	1.019
0.02	10.064	6.958	13.116	1.003	.842	1.118
0.03	11.897	8.509	15.163	1.075	.930	1.181
0.04	13.492	9.895	16.921	1.130	.995	1.228
0.05	14.946	11.181	18.508	1.175	1.048	1.267
0.06	16.307	12.403	19.983	1.212	1.094	1.301
0.07	17.602	13.579	21.380	1.246	1.133	1.330
0.08	18.848	14.722	22.720	1.275	1.168	1.356
0.09	20.058	15.839	24.019	1.302	1.200	1.381
0.1	21.240	16.938	25.288	1.327	1.229	1.403
0.15	26.923	22.280	31.406	1.430	1.348	1.497
0.2	32.505	27.546	37.523	1.512	1.440	1.574
0.25	38.209	32.861	43.955	1.582	1.517	1.643
0.3	44.178	38.301	50.934	1.645	1.583	1.707
0.35	50.540	43.933	58.664	1.704	1.643	1.768
0.4	57.421	49.838	67.354	1.759	1.698	1.828
Parameter Estimate	Std. Error	Z	Sig.			
--------------------	------------	------	-------			
PROBIT conc	2.419	.169	14.331	.000		
Interception	-3.731	.254	-14.685	.000		

Chi-Square Tests

Chi-Square	df^b	Sig.		
PROBIT	Pearson Goodness-of-Fit Test	8.623	6	.196^a

^a Statistics based on individual cases differ from statistics based on aggregated cases.

Table S8: Probit Analysis and raw data for cytotoxicity of compound 6b against A549 (Lung carcinoma cell line)

a. PROBIT model: PROBIT(p) = Intercept + BX (Covariates X are transformed using the base 10.000 logarithm.)

a. Logarithm base = 10.

/LOG 10
/MODEL PROBIT
/PRINT FREQ CI
/CRITERIA P(0.15) ITERATE(20) STEPLIMIT(.1).

PROBIT dead OF total WITH conc

Parameter	Estimate	Std. Error	Z	Sig.
PROBIT	2.419	.169	14.331	.000
Intercept	-3.731	.254	-14.685	.000

Parameter	Estimate	Std. Error	Z	Sig.	Lower Bound	Upper Bound
PROBIT	2.419	.169	14.331	.000	2.088	2.750
Intercept	-3.731	.254	-14.685	.000	-3.986	-3.477

a. Statistics based on individual cases differ from statistics based on aggregated cases.
a. Statistics based on individual cases differ from statistics based on aggregated cases.

b. Since the significance level is greater than .150, no heterogeneity factor is used in the calculation of confidence limits.

Cell Counts and Residuals

Number	conc	Number of Subjects	Observed Responses	Expected Responses	Residual	Probability
PROBIT						
1	2.000	100	89	86.568	2.432	.866
2	1.699	100	68	64.730	3.270	.647
3	1.398	100	27	36.314	-9.314	-.363
4	1.097	100	14	14.047	-.047	-.140
5	.787	100	4	3.381	.619	.034
6	.494	100	2	.560	1.440	.006
7	.193	100	0	.055	-.055	-.001
8	-.108	100	0	.003	-.003	-.000

Confidence Limits

Probability	95% Confidence Limits for conc	95% Confidence Limits for log(conc)*				
	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound
PROBIT						
0.01	3.810	2.698	4.983	.581	.431	.698
0.02	4.939	3.631	6.284	.694	.560	.798
0.03	5.823	4.382	7.283	.765	.642	.862
0.04	6.590	5.046	8.141	.819	.703	.911
0.05	7.289	5.658	8.915	.863	.753	.950
0.06	7.941	6.236	9.634	.900	.795	.984
0.07	8.561	6.790	10.314	.933	.832	1.013
0.08	9.158	7.326	10.965	.962	.865	1.040
0.09	9.736	7.849	11.594	.988	.895	1.064
0.1	10.300	8.363	12.206	1.013	.922	1.087
0.15	13.007	10.853	15.133	1.114	1.036	1.180
0.2	15.658	13.317	17.998	1.195	1.124	1.255
0.25	18.358	15.833	20.936	1.264	1.200	1.321
0.3	21.178	18.451	24.038	1.326	1.266	1.381
0.35	24.175	21.210	27.388	1.383	1.327	1.438
0.4	27.412	24.152	31.071	1.438	1.383	1.492
Table S9: Probit Analysis and raw data for cytotoxicity of compound 6d against A549 (Lung carcinoma cell line).

Parameter	Estimate	Std. Error	Z	Sig.	95% Confidence Interval	
PROBIT^a conc	2.130	.174	12.211	.000	1.788	2.472
Intercept	-3.751	- .278	-13.487	.000	-4.029	-3.473

a. PROBIT model: PROBIT(p) = Intercept + BX (Covariates X are transformed using the base 10.000 logarithm.)
Chi-Square Tests

	Chi-Square	df	Sig.	
PROBIT	Pearson Goodness-of-Fit Test	9.161	6	.165

a. Statistics based on individual cases differ from statistics based on aggregated cases.

b. Since the significance level is greater than .150, no heterogeneity factor is used in the calculation of confidence limits.

Cell Counts and Residuals

Number	conc	Number of Subjects	Observed Responses	Expected Responses	Residual	Probability
PROBIT	1	2.000	100	77	69.481	7.519 .695
	2	1.699	100	38	44.762	-6.762 .448
	3	1.398	100	18	21.979	-3.979 .220
	4	1.097	100	7	7.866	-3.866 .079
	5	.787	100	4	1.904	2.096 .19
	6	.494	100	1	.349	.651 .003
	7	.193	100	0	.042	-.042 .000
	8	-.108	100	0	.003	-.003-.000

Confidence Limits

Probability	95% Confidence Limits for conc	95% Confidence Limits for log(conc)				
	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound
PROBIT						
0.01	4.663	3.073	6.358	.669	.488	.803
0.02	6.261	4.345	8.234	.797	.638	.916
0.03	7.548	5.409	9.710	.878	.733	.987
0.04	8.688	6.374	10.997	.939	.804	1.041
0.05	9.741	7.282	12.175	.989	.862	1.085
0.06	10.737	8.153	13.281	1.031	.911	1.123
0.07	11.694	8.999	14.337	1.068	.954	1.156
0.08	12.623	9.828	15.358	1.101	.992	1.186
0.09	13.532	10.645	16.354	1.131	1.027	1.214
x	y1	y2	y3	y4	y5	y6
----	------	------	------	------	------	------
0.1	14.426	11.455	17.332	1.159	1.059	1.239
0.15	18.803	15.466	22.116	1.274	1.189	1.345
0.2	23.210	19.536	26.977	1.366	1.291	1.431
0.25	27.806	23.757	32.145	1.444	1.376	1.507
0.3	32.704	28.189	37.799	1.515	1.450	1.577
0.35	38.010	32.889	44.111	1.580	1.517	1.645
0.4	43.838	37.927	51.267	1.642	1.579	1.710
0.45	50.326	43.393	59.489	1.702	1.637	1.774
0.5	57.649	49.404	69.055	1.761	1.694	1.839
0.55	66.036	56.120	80.344	1.820	1.749	1.905
0.6	75.810	63.758	93.884	1.880	1.805	1.973
0.65	87.435	72.630	110.459	1.942	1.861	2.043
0.7	101.620	83.204	131.284	2.077	1.920	2.118
0.75	119.520	96.228	158.381	2.077	1.983	2.200
0.8	143.187	113.013	195.412	2.156	2.053	2.291
0.85	176.750	136.151	249.927	2.247	2.134	2.398
0.9	230.375	171.886	341.058	2.362	2.235	2.533
0.91	245.601	181.809	367.715	2.390	2.260	2.566
0.92	263.284	193.22	399.065	2.420	2.286	2.601
0.93	284.200	206.599	436.660	2.454	2.315	2.640
0.94	309.531	222.611	482.885	2.491	2.348	2.684
0.95	341.188	242.373	541.655	2.533	2.384	2.734
0.96	382.541	267.813	619.971	2.583	2.428	2.792
0.97	440.311	302.736	732.037	2.644	2.481	2.865
0.98	530.830	356.235	913.162	2.725	2.552	2.961
0.99	712.741	460.214	1294.332	2.853	2.663	3.112

a. Logarithm base = 10.

PROBIT dead OF total WITH conc
/LOG 10
/MODEL PROBIT
/PRINT FREQ CI
/CRITERIA P(0.15) ITERATE(20) ST
EPLIMIT(.1).
Table S10: Probit Analysis and raw data for cytotoxicity of compound 6g against A549 (Lung carcinoma cell line).

Parameter Estimates

Parameter	Estimate	Std. Error	Z	Sig.	95% Confidence Interval
PROBIT\(^a\) conc	2.312	.179	12.925	.000	1.961 - 2.662
Intercept	-3.851-	.282	-13.649-	.000	-4.133- - 3.568-

a. PROBIT model: PROBIT(p) = Intercept + BX (Covariates X are transformed using the base 10.000 logarithm.)

Chi-Square Tests

PROBIT Pearson Goodness-of-Fit Test	Chi-Square	df\(^a\)	Sig.
PROBIT	1.164	6	.979\(^b\)

a. Statistics based on individual cases differ from statistics based on aggregated cases.

b. Since the significance level is greater than .150, no heterogeneity factor is used in the calculation of confidence limits.

Cell Counts and Residuals

Number	conc	Number of Subjects	Observed Responses	Expected Responses	Residual	Probability
PROBIT	1	2.000	100	77	78.013	-1.013- .780
	2	1.699	100	54	53.059	.941 .531
	3	1.398	100	28	26.793	1.207 .268
	4	1.097	100	8	9.426	-1.426-.094
	5	.787	100	3	2.112	.888 .021
	6	.494	100	0	.338	-.338-.003
	7	.193	100	0	.033	-.033-.000
	8	-.108-	100	0	.002	-.002-.000

Confidence Limits

Probability \(y\)	95% Confidence Limits for conc	95% Confidence Limits for log(conc)\(^a\)																																			
PROBIT	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound																															
--------	----------	-------------	-------------	----------	-------------	-------------																															
0.01	4.564	3.102	6.111	.659	.492	.786																															
0.02	5.988	4.255	7.765	.777	.629	.890																															
0.03	7.114	5.198	9.046	.852	.716	.956																															
0.04	8.099	6.040	10.150	.908	.781	1.006																															
0.05	8.999	6.822	11.151	.954	.834	1.047																															
0.06	9.844	7.565	12.083	.993	.879	1.082																															
0.07	10.650	8.281	12.967	1.027	.918	1.113																															
0.08	11.427	8.978	13.816	1.058	.953	1.140																															
0.09	12.183	9.661	14.638	1.086	.985	1.165																															
0.1	12.923	10.333	15.442	1.111	1.014	1.189																															
0.15	16.497	13.623	19.307	1.217	1.134	1.286																															
0.2	20.030	16.913	23.137	1.302	1.228	1.364																															
0.25	23.658	20.295	27.112	1.374	1.307	1.433																															
0.3	27.473	23.825	31.363	1.439	1.377	1.496																															
0.35	31.555	27.552	36.014	1.499	1.440	1.556																															
0.4	35.989	31.527	41.192	1.556	1.499	1.615																															
0.45	40.870	35.812	47.048	1.611	1.554	1.673																															
0.5	46.319	40.490	53.765	1.666	1.607	1.731																															
0.55	52.496	45.671	61.587	1.720	1.660	1.789																															
0.6	59.616	51.510	70.846	1.775	1.712	1.850																															
0.65	67.991	58.225	82.030	1.832	1.765	1.914																															
0.7	78.095	66.146	95.883	1.893	1.821	1.982																															
0.75	90.688	75.797	113.634	1.958	1.880	2.056																															
0.8	107.115	88.091	137.479	2.030	1.945	2.138																															
0.85	130.055	104.818	171.891	2.114	2.020	2.235																															
0.9	166.023	130.253	228.019	2.220	2.115	2.358																															
0.91	176.108	137.244	244.171	2.246	2.137	2.388																															
0.92	187.760	145.254	263.037	2.274	2.162	2.420																															
0.93	201.464	154.590	285.489	2.304	2.189	2.456																															
0.94	217.954	165.714	312.864	2.338	2.219	2.495																															
0.95	238.415	179.363	347.340	2.377	2.254	2.541																															
0.96	264.922	196.819	392.776	2.423	2.294	2.594																															
0.97	301.580	220.588	456.929	2.479	2.344	2.660																															
0.98	358.281	256.628	558.844	2.554	2.409	2.747																															
0.99	470.058	325.617	767.882	2.672	2.513	2.885																															
conc	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99		
------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------		
	4.564	5.988	7.114	8.099	8.999	9.844	10.650	11.427	12.183	12.923	16.497	20.030	23.658	27.473	31.555	35.989	40.870	46.319	52.496	59.616	67.991	78.095	90.688	107.115	130.055	166.023	176.108	187.760	201.464	217.954	238.415	264.922	301.580	358.281	470.058		
	3.102	4.255	5.198	6.040	6.822	7.565	8.281	8.978	9.661	10.333	13.623	16.913	20.295	23.825	27.552	31.527	35.812	40.490	45.671	51.510	58.225	66.146	75.797	88.091	104.818	130.253	137.244	145.254	154.590	165.714	179.363	196.819	220.588	256.628	325.617	376.882	
	6.111	7.765	9.046	10.150	11.151	12.083	12.967	13.816	14.638	15.442	19.307	23.137	27.112	31.363	36.014	41.192	47.048	53.765	61.587	70.846	82.030	95.883	113.634	137.479	171.891	228.019	244.171	263.037	285.489	312.864	347.340	392.776	456.929	558.844	767.882	2.672	
	.659	.777	.852	.908	.954	.993	1.027	1.058	1.086	1.111	1.217	1.302	1.374	1.439	1.499	1.556	1.611	1.666	1.720	1.775	1.832	1.893	1.958	2.030	2.114	2.220	2.246	2.274	2.304	2.338	2.377	2.423	2.479	2.554	2.672	2.513	2.885
a. Logarithm base = 10. PROBIT dead OF total WITH conc /LOG 10																																					