Synthesis and biological evaluation of aminomethyl and alkoxy methyl derivatives as carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase inhibitors

Ilhami Gulci, Malahat Abbasova, Parham Taslimi, Zübeyir Huyut, Leyla Safarova, Afşin Sujayev, Vagif Farzaliyev, Şiükrü Beydemir, Saleh H. Alwasel and Claudiu T. Supuran

Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, Turkey; Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia; Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences, Baku, Azerbaijan; Department of Biochemistry, Faculty of Medical, Yüzüncü Yıl University, Van, Turkey; Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey; Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, Florence, Italy

ABSTRACT

Compounds containing nitrogen and sulfur atoms can be widely used in various fields such as industry, medicine, biotechnology and chemical technology. Therefore, the reactions of aminomethylation and alkoxy methylation of mercapto benzothiazole, mercaptobenzoxazole and 2-aminothiazole were developed. Additionally, the alkoxy methyl derivatives of mercaptobenzoxazole and 2-aminothiazole were synthesized by a reaction with hemiformals, which are prepared by the reaction of alcohols and formaldehyde. In this study, the inhibitory effects of these molecules were investigated against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) enzymes and carbonic anhydrase I, and II isoenzymes (hCA I and II). Both hCA isoenzymes were significantly inhibited by the recently synthesized molecules, with 5 Ki values in the range of 58–157 nM for hCA I, and 81–215 nM for hCA II. Additionally, the k values of these molecules for BChE and AChE were calculated in the ranges 23–88 and 18–78 nM, respectively.

Introduction

Chemists are interested in derivatives of mercaptobenzothiazole and mercaptobenzoxazole because a number of biologically and physiologically active compounds with bactericidal, fungicidal, tuberculostatic, anti-inflammatory, parasympatholytics and anesthetic properties have been synthesized based on them.1

The carbonic anhydrases (CAs, E.C.4.2.1.1) are a superfamily of metalloenzymes that catalyze a crucial and simple biochemical reaction, the reversible hydration of carbon dioxide (CO2) and water (H2O) to bicarbonate (HCO3) and protons (H+).2-5 This reaction, in the absence of CA cannot proceed with a perceptible rate under physiological conditions.

CO2 + H2O ⇌ H2CO3 ⇌ HCO3− + H+[6-8]

CAs are widely distributed in all kingdoms of life and are categorized in seven distinct classes: α, β, γ, δ, ε, η and θ-CAs. Each CA family demonstrates proper specific characteristics in the primary amino acid sequence.6,10 α-CAs are found in mammals. α-CAs, which have sixteen isoenzymes are expressed predominantly in vertebrates and are the only class observed in humans. They are catalytically active and differ in their subcellular localization, distribution in organs and tissues, kinetic properties, expression levels, and inhibitor binding affinities.11-13 Additionally, CAs play important roles in a multitude of physiological activities in eukaryotes, such as CO2 transport, respiration, photosynthesis and electrolyte secretion.14-16

The production of novel CA inhibitors (CAIs) is a growing priority for pharmaceutical research and discovery. In addition to the defined role of CAs as antiglaucoma drugs and diuretics, their potential as anti-obesity, anti-convulsant, anti-inflammatory and anti-cancer has been recently described.17,18 hCA II inhibitors has been widely studied from structural and design points-of-view and in dynamics simulations.19-21 In addition, it is the most widespread physiologically relevant CA isoenzyme.

Alzheimer’s disease (AD) is the most prevalent cause of dementia in elderly people.22-24 Recoveries in cognitive capabilities in AD patients were obtained by disrupting or blocking the acetylcholinesterase (AChE) activity with inhibitor compounds.25-27 Alkaloid compounds are some of the strongest acetylcholinesterase inhibitors (AChEIs); therefore searches for novel alkaloids with inhibitory compounds have been conducted.28-30 The AChE enzyme by prompting hydrolyses of the neurotransmitter acetylcholine (ACh), concluding an impulse transmissions at the cholinergic synapses in neurons.31,32 As can be seen in Figure 1, the active site of AChE consists of two parts: (i) the anionic part that accommodates the positively charged section of acetylcholine and (ii) the catalytic part where the ester bond is hydrolysed.33,34 AChE is the target of many drugs and neurotoxins that bind particularly to its active site.35,36 Inhibition of AChE is used for the treatment of senile dementia, AD, myasthenia gravis, ataxia and Parkinson’s disease.37-39 AChE can also serve as a probe for biosensors that are capable of binding to and potentially discovering new AChE inhibitor compounds; these compounds have applications as...
possible neurotoxins, such as nerve factors, pesticides and therapeutic drugs.46,47 X-ray structures have indicated that the although the butyrylcholinesterase (BChE) and AChE structures are similar, multiple structural discrepancies in the active-site gorges and the active sites have been observed.42,43 BChE has of toxicological and pharmacological importance because it scavenges ChEIs, including potent organophosphorus nerve factors, before they bind synapses and hydrolyzes ester-containing drugs.44 BChE is also important for drug metabolism such as cocaine.45 Both BChE and AChE, which have molecular roles beyond normal neurons and differentiated kinetics recorded in the brain, accumulate within tangles and amyloid plaques.46

The goal of this paper is to design and synthesize some novel aminomethyl and alkoxymethyl derivatives (1–17) and to generate more potent BChE and AChE enzymes, CA II and I isoforms.

Experimental

Chemistry

Synthesis of aminomethyl derivatives of benzothiazole and benzoxazolthiones (1–10)

Aminomethylation was carried out at the temperature of 10°C by adding the corresponding aminal to a solution of mercaptobenzothiazole (or mercaptobenzoxazole) in ethanol. The resulting product was recrystallized from methanol. The aminomethyl derivatives of benzothiazole and benzoxazolthiones 2–8 were reported in the literature.47–53 However, there is no information about the synthesis of compounds 9 and 10 in the literature.

Initial aminals were obtained by condensing of secondary amines with formaldehyde. The physico-chemical characteristics of the obtained products are shown in Table 1.

Formaldehyde was used as a form of paraformaldehyde. The reaction was carried out in an absolute ethanol solution. Hemiformals reacted immediately after its preparation without isolation. The resulting reaction water was separated by azeotropic distillation with benzene. The crystals were obtained after distilling the solvents, including ethanol and benzene, and recrystallizing. The melting points and yields are given in Table 2.

Synthesis of the alkoxymethyl derivatives of benzoxazolthione and 2-aminothiazole (11–17)

To do this, hemiformal was obtained from 0.05 mol of a formaldehyde (used as paraformaldehyde) and 40 mL of the corresponding alkanol (taken in excess as a solvent). Hemiformal reacted immediately after its preparation without isolation. Then, 0.05 mol of mercaptobenzoxazole (or 2-aminothiazole) dissolved in ethanol was added to hemiformal at the temperature of 10°C. The resulting reaction water was separated by azeotropic distillation with benzene. The crystalline substances were obtained after distilling off the solvent (ethanol, benzene) and recrystallization.

Biological studies

Purification of carbonic anhydrase I and II isoforms and inhibition studies

To observe of inhibition effects of novel aminomethyl and alkoxymethyl derivatives (1–17) on CA I, and II isoforms, which purified from fresh human erythrocyte using an affinity chromatography procedure.54,55 CA activity was determined using the previously described spectrophotometric procedure of Verpoorte et al.56 as explained previously.21,57,58 In this procedure, changes in activity were obtained during 3 min at 22°C. \(p\)-Nitrophenylacetate (PNA) compound was used as a substrate, and it was converted by both isoforms to \(p\)-nitrophenolate ions.59,60 The quantity of protein was measured according to the previously described by Bradford method61–64 and bovine serum albumin was used as the standard.55,66 After the purification method of the CA isoforms, samples were subjected to SDS polyacrylamide gel electrophoresis (SDS-PAGE).57–69 The change in activity was spectrophotometrically obtained at 348 nm.70,71 The I_{50} values were calculated from activity (%) against compounds inhibition.72–74 Three various concentrations were used to calculate \(K_i\) values.75–77

AChE/BChE activity determination and inhibition studies

The inhibitory effects of novel aminomethyl and alkoxymethyl derivatives (1–17) on AChE and BChE activities were measured according to Ellman \textit{et al.}78 Acetylthiocholine iodide (AChI) and butyrylthiocholine iodide (BChI) were used as substrates for the reaction. 5,5’-Dithio-bis-(2-nitro-benzoic)acid (DTNB) was used for the measurement of the AChE/BChE activities. Briefly, 1.0 mL of Tris/HCl buffer (1.0 M, pH 8.0), and 10 μL of sample solution were dissolved in deionized water at different concentrations and 50 μL AChE/BChE solution were mixed and incubated for 10 min at 25°C. Next 50 μL of DTNB (0.5 mM) was added. The reaction was then initiated by the addition of 50 μL of AChI or BChI. The hydrolysis of these substrates was monitored spectrophotometrically by the formation of the yellow 5-thio-2-nitrobenzoate anion, as a result of the reaction of DTNB with thiococholine, which released by enzymatic hydrolysis of AChI or BChI, with absorption maximum at 412 nm.
Results and discussion

Synthesis

Many physiologically active natural compounds contain > N-CH$_2$-O- > N-CH$_2$-N < structural fragments. This study sought to build a structure that combines physiologically active benzothiazole or benzoxazole groups with alkoxymethyl or aminomethyl fragments. Therefore, the aminomethylation and alkoxymethylation reactions of mercaptobenzothiazole, mercaptobenzoxazole and 2-aminothiazole are developed.

The structure of the products was established by NMR spectroscopy and the composition was confirmed by elemental analysis. Spectra were measured on a Bruker device in acetone. A singlet at 4.6 ppm corresponding to N-CH$_2$-N was observed in the 1H NMR spectra of all aminomethyl derivatives. A singlet at 5.2–5.8 ppm characterized the presence of the fragment N-CH$_2$-O in the 1H NMR spectra of alkoxymethyl derivatives. Methylene-bis-amines, which have good alkylation (amino-methylation) properties, were used as amino-methylation reagents.

No	Compound	The melting point (°C)	Yield (%)	C	H	N	S	Brutto formula	NMR spectra δ (ppm)
1		120–121	45	54.61	5.76	10.60	24.20	C$_{12}$H$_{14}$N$_2$O$_2$S	1.79 (kv. 2H, CH$_2$(CH$_3$)$_2$, 3.29(t, 2H, NCH$_2$), 3.9 (t, 2H, OCH$_3$), 4.357(t, 2H, NCH$_2$), 5.3 (s, 2H, NCH$_2$O), 6.8–7.6 (m, 4H, C$_6$H$_4$).
2		124–126	40	56.00	5.90	10.30	26.60	C$_{11}$H$_{12}$N$_2$O$_2$S	1.819 (kv. 2H, CH$_2$(CH$_3$)$_2$, 3.119(t, 2H, NCH$_2$), 3.9 (t, 2H, OCH$_3$), 4.357(t, 2H, NCH$_2$), 5.3 (s, 2H, NCH$_2$O), 7.1–7.3 m. 4H (C$_6$H$_4$).
3		134	40	54.9	5.55	11.01	24.56	C$_{12}$H$_{14}$N$_2$O$_2$S	1.7 (m, 2H, CH$_2$(CH$_3$)$_2$, 1.97 (m, 4H, CH$_2$(CH$_3$)$_2$), 3.01 (t, 4H, NCH$_2$), 3.9 (t, 4H, NCH$_2$), 5.26 (s, 2H, NCH$_2$O), 7.1–7.6 (m, 4H, C$_6$H$_4$).
4		152–152.5	42	57.6	7.5	11.3	28.8	C$_{13}$H$_{16}$N$_2$S$_2$	1.5 (m, 2H, CH$_2$(CH$_3$)$_2$, 1.7 (m, 4H, CH$_2$(CH$_3$)$_2$), 3.01 (t, 4H, NCH$_2$N), 3.01 (t, 4H, NCH$_2$N), 7.1–7.6 (m, 4H, C$_6$H$_4$).
5		128–130	35	54.4	5.98	8.2	27.0	C$_{12}$H$_{14}$N$_2$S$_2$	2.19 (kv. 2H, CH$_2$(CH$_3$)$_2$, 3.12 (t, 2H, NCH$_2$), 3.6 (t, 2H, OCH$_3$), 4.67 (t, 2H, NCH$_2$N), 5.20 s. 2H (NCH$_2$O), 7.1–7.5 m. 4H (C$_6$H$_4$).
6		105	65	59.87	5.98	10.85	13.03	C$_{13}$H$_{16}$N$_2$S$_2$	1.28 (m, 2H, CH$_2$(CH$_3$)$_2$, 3.04 (t, 2H, NCH$_2$), 3.69 t, (2H, CH$_2$), 4.59 (s, 2H, NCH$_2$N), 5.36 (s, 2H, NCH$_2$O), 6.9–7.9 (m, 4H, C$_6$H$_4$).
7		125	45	63.52	6.04	9.39	11.53	C$_{13}$H$_{16}$N$_2$S$_2$	1.88 (m, 2H, CH$_2$(CH$_3$)$_2$, 3.18 (t, 2H, NCH$_2$), 3.9 (t, 2H, CH$_2$), 4.39 (s, 2H, NCH$_2$N), 5.56 (s, 2H, NCH$_2$O), 7.4–7.7 (m, 4H, C$_6$H$_4$).
8		145–147	48	57.58	5.7	11.34	12.54	C$_{12}$H$_{14}$N$_2$O$_2$S	1.21 (d, 2H, CH$_2$(CH$_3$)$_2$, 3.23 (t, 2H, NCH$_2$), 3.7 (t, 2H, CH$_2$), 4.39 (s, 2H, NCH$_2$N), 5.86 (s, 2H, NCH$_2$O), 7.1–7.97 (m, 4H, C$_6$H$_4$).
9		115–118	60	55.84	5.25	11.65	13.87	C$_{12}$H$_{14}$N$_2$O$_2$S	1.38 (m, 2H, CH$_2$(CH$_3$)$_2$, 2.08 (t, 2H, NCH$_2$), 3.39 (t, 2H, CH$_2$), 3.59 (s, 2H, NCH$_2$N), 5.16 (s, 2H, NCH$_2$O), 7.1–8.7 (m, 4H, C$_6$H$_4$).
10		145–147	67.6	56.0	5.51	11.0	13.3	C$_{12}$H$_{14}$N$_2$O$_2$S	1.8 (m, 2H, CH$_2$(CH$_3$)$_2$, 3.08 (t, 2H, NCH$_2$), 3.9 (t, 2H, CH$_2$), 4.59 (s, 2H, NCH$_2$N), 5.56 (s, 2H, NCH$_2$O), 7.4–7.7 (m, 4H, C$_6$H$_4$).

The alkoxymethyl derivatives of mercaptobenzoxazole and 2-aminothiazole were synthesized by reacting them with hemiformal, which were prepared by the reaction of alcohols.
with formaldehyde.

\[
\text{ROH} + \text{CH}_2\text{O} \rightarrow \text{ROCH}_2\text{OH}
\]

No	Compounds	Melting point (°C)	Yield (%)	C	H	N	S	Brutto Formula	NMR spectra δ (ppm)
11	![Structure](image1)	130	71.72	55.40	4.58	7.13	16.35	C4H8NO2S	2.06 (s., 3H, OCH3); 5.781 (s., 2H, NCH2O); 7.373–7.55 (m., 4H, C6H4).
12	![Structure](image2)	132–133	77	57.37	5.15	6.64	15.23	C8H11NO2S	2.06–2.096 (t., 3H, CH3); 3.07 (t., 2CH2CH3); 5.766 (s., 2H, NCH2O); 7.33–7.52 (m., 4H, C6H4).
13	![Structure](image3)	126–127	24	57.32	5.63	6.13	14.18	C12H15NO2S	2.01–2.16 (d., 6H, CH3); 2.999 (m., 1H, OCH3); 7.27 (s., 2H, NCH2O); 7.34–7.53 (m., 4H, C6H4).
14	![Structure](image4)	120–121	19	55.17	5.35	5.75	13.28	C12H15NO2S	1.06–2.01 (t., 3H, CH3); 3.072 (m., 4H, C6H4).
15	![Structure](image5)	120–121	30	43.52	6.28	14.78	17.15	C12H15NO2S	2.86 (s., 1H, NH); 5.11 (t., 4H, -OCH2CH2O-); 5.29 (s., 3H, -OCH3); 5.82 (s., 2H, NCH2O); 6.86 (d., 1H, SCH); 7.61 (d., 1H, SCH).
16	![Structure](image6)	118–122	118–120	39.78	6.35	15.97	17.80	C16H19NOS	1.11–2.10 (t., 3H, CH3); 3.10 (t., 2CH2CH3); 5.20 (s., 2H, NCH2O); 6.83–7.7 (m., 4H, C6H4).
17	![Structure](image7)	126–127	27	40.52	5.03	18.37	23.12	C10H13NO3S	2.86–2.47 (s., 1H, NH); 5.19 (t., 4H, -OCH2CH2O-); 5.19 (s., 3H, -OCH3); 5.12 (s., 2H, NCH2O); 6.68 (d., 1H, SCH); 7.71 (d., 1H, SCH).

Table 2. Physico-chemical characteristics of the alkoxymethyl derivatives of benzoxazolthione and 2-aminothiazoles.

Biological results

Sulfamate and sulfonamide CAIs demonstrated fundamental anti-glaucoma and anti-tumour activities in vivo and in vitro; therefore new therapeutic approaches targeting either hCA IX/XII (for antitumor activity) or hCA II (for antiglaucoma action) have been developed. Heterocyclic molecules with primitive sulfonamide compounds are the most extensively evaluated class of CAIs, which has led to the advancement of diverse classes of clinical drugs like methazolamide (MZA), acetazolamide (AZA) and others. In this work, both the Ki and IC50 of the aminomethyl and alkoxymethyl derivatives (1–17) were calculated and they are given in Table 3.

1. Cytosolic hCA I, and II isoenzymes are widely distributed throughout the human body and interference with these enzymes may cause side effects. For the cytosolic hCA I enzyme, aminomethyl and alkoxymethyl derivatives (1–17) had Ki values in the range of 58 ± 15 to 157 ± 38 nM (Table 3). Especially, compound 8 (Ki: 58 ± 15 nM); N-morfolinomethylbenzoxazoline-2-thion and compound 5 (Ki: 70 ± 15 nM); N-diethylaminomethylbenzothiazoline-2-thione) inhibited the hCA I isofrom more potently than the standard compound AZA (Ki: 333 ± 28 nM), which is used to treat glaucoma, cystinuria, periodic paralysis, epileptic seizure, dural estasia and central sleep apnea. hCA I is involved in retinal edema and cerebral and the inhibition of hCA I can be a significant factor for eliminating of these conditions.

2. The role of hCA II in diseases such as glaucoma has been well characterized. Indeed, HCO3− production serves as a mechanism to transport sodium ions (Na+) into the eye along with the influx of water, which leads to an increase in intraocular pressure. Inhibition of CA II decreases HCO3− production and
3. BChE and AChE were very significantly inhibited by novel AZA (ratio 0.9774) and AChE (ratio 0.9774) inhibitors. The most significant inhibition result was recorded by N-oxazinomethylbenzothiazoline-2-thione (ratio 1.285) and 2-(methoxy)methylaminothiazole (17) compounds were weaker inhibitors compared to other compounds for this isoform. The molecule 8 was shown to had the excellent inhibitory efficacy on hCA I isoenzyme activity while the molecule 1 was shown to had the excellent inhibitory efficacy on hCA II isoenzyme activity. For hCA II isoform, the best inhibitors of them were N-oxazinomethylbenzothiazoline-2-thione (1) and N-isopropoxymethylbenzoxazo- line-2-thione (13). The 2-(methoxyethoxy) methylaminothiazole (15) and 2-methoxymethylaminothiazole (17) molecules are weaker inhibitors compare with other molecules for this isoform. As seen in Table 3 and Figure 2(b), IC50 values are in the range of 89–187 nM towards hCA I, while for hCA II is in the range of 79–156 nM. The IC50 values for standard molecule TAC towards hCA II and I are 520 and 373 nM, respectively. All molecules have lower IC50 value compare with AZA towards hCA II and hCA I isoenzymes.

As seen in Table 3 and Figure 2(c), IC50 amounts were in the range of 36–89 nM towards AChE, while they were in the range of 48–145 nM towards BChE (Figure 2(d)). The IC50 amounts of the entire compounds are shown in Table 3 and Figure 2(b). All inhibitors except for 17 and 13 have lower IC50 amount than TAC towards AChE and BChE. CHEs have shown excellent efficacy than placebo in clinical tests and are extensively prescribed as symptomatic therapy to ameliorate behavior and recognition in AD patients with moderate dementia. TAC (9-Amino-1,2,3,4-tetrahydroacridine) compound is a reversible inhibitor of BChE and AChE and the first drug to be agreed by the Drugs and Foods Administration of America for the placative therapy of AD.

For AChE and BChE enzymes were good inhibited by entire of AzA and TAC. The most promising compound 14 obtained 2.2-fold of inhibitory activity against AChE/BChE than that of TAC. It can be as a potential factor for the therapy of AD. Also, as shown in Table 3, the compound 14 (N-(methoxyethoxy)methylbenzoxazole-2-thione) showed the highest selectivity for AChE over BChE (ratio: 0.388) and weakest compound was 6 (N-diethylaminomethylbenzoxazole-2-thione) (ratio 1:500).

Discussion

The synthesized molecules are shown to inhibit hCA II and I isoenzymes by the interplay of aminomethyl and alkoxymethyl derivatives (1–17) with cofactor Zn\(^{2+}\) ions in the structure of the isozymes. For hCA I isoform (generally defined an important isoform when CAIs for anticancer activity or antiglaucoma are encountered) was good inhibited by entire of the evaluated molecules, the best inhibitors of them were N-diethylaminomethylbenzothiazoline-2-thione (5), N-morfolinomethylbenzoxazole-2-thion (8) and N-oxazolinomethylbenzoxazole-2-thione (9) (Figure 2(a)). The 2-isopropoxymethylaminothiazole (16) and 2-(methoxy)methylaminothiazole (17) compounds are weaker inhibitors compared to other compounds for this isoform. The molecule 8 was shown to had the excellent inhibitory efficacy on hCA I isoenzyme activity while the molecule 1 was shown to had the excellent inhibitory efficacy on hCA II isoenzyme activity. For hCA II isoform, the best inhibitors of them were N-oxazinomethylbenzothiazoline-2-thione (1) and N-isopropoxymethylbenzoxazoline-2-thione (13). The 2-(methoxyethoxy) methylaminothiazole (15) and 2-methoxymethylaminothiazole (17) molecules are weaker inhibitors compare with other molecules for this isoform. As seen in Table 3 and Figure 2(b), IC50 values are in the range of 89–187 nM towards hCA II, while for hCA I is in the range of 79–156 nM. The IC50 values for standard molecule TAC towards hCA II and I are 520 and 373 nM, respectively. All molecules have lower IC50 value compare with AZA towards hCA II and hCA I isoenzymes.

As seen in Table 3 and Figure 2(c), IC50 amounts were in the range of 36–89 nM towards AChE, while they were in the range of 48–145 nM towards BChE (Figure 2(d)). The IC50 amounts of the entire compounds are shown in Table 3 and Figure 2(b). All inhibitors except for 17 and 13 have lower IC50 amount than TAC towards AChE and BChE. CHEs have shown excellent efficacy than placebo in clinical tests and are extensively prescribed as symptomatic therapy to ameliorate behavior and recognition in AD patients with moderate dementia. TAC (9-Amino-1,2,3,4-tetrahydroacridine) compound is a reversible inhibitor of BChE and AChE and the first drug to be agreed by the Drugs and Foods Administration of America for the placative therapy of AD.

For AChE and BChE enzymes were good inhibited by entire of the evaluated compounds, the best inhibitors of AChE were N-Piperidinomethylbenzothiazoline-2-thione (4), N-(methoxyethoxy)methylbenzoxazole-2-thione (14) and also for BChE were N-diethylaminomethylbenzoxazole-2-thione (6) and N-morfolinomethylbenzoxazole-2-thione (8), respectively.

Conclusions

In this paper, nanomolar levels of IC50 amounts were obtained for entire novel aminomethyl and alkoxymethyl derivatives (1–17) and subsequently aqueous humor secretion, which leads to decreased pressure in the eye. For the ubiquitous cytosolic isoform hCA II, novel aminomethyl and alkoxymethyl derivatives (1–17) had Ki values ranging from 81 ± 19–215 ± 40 nM. In addition, AZA compound applied as a standard CA inhibitor, which obtained Ki value of 353 ± 60 nM. As can be observed in hCA II, the most considerable inhibition result was recorded by N-oxazinomethylbenzothiazoline-2-thione (1) (81 ± 19) (Table 3).

Compounds	hCA I	IC50 (nM)	hCA II	IC50 (nM)	AChE	IC50 (nM)	BChE	IC50 (nM)
1	79	0.9639	0.9527	51	0.9762	99	0.9694	
2	79	0.9852	0.9839	39	0.9885	89	0.9773	
3	83	0.9597	0.9555	54	0.9670	75	0.9619	
4	86	0.9588	0.9774	36	0.9852	82	0.9630	
5	82	0.9755	0.9670	52	0.9699	83	0.9539	
6	102	0.9359	0.9649	44	0.9857	80	0.9750	
7	79	0.9597	0.9457	65	0.9874	79	0.9520	
8	94	0.9533	0.9619	38	0.9484	49	0.9911	
9	103	0.9652	0.9440	62	0.9769	84	0.9904	
10	98	0.9350	0.9452	50	0.9819	94	0.9710	
11	112	0.9607	0.9711	89	0.9865	133	0.9621	
12	119	0.9752	0.9695	63	0.9908	93	0.9947	
13	105	0.9664	0.9483	63	0.9859	83	0.9807	
14	112	0.9426	0.9556	38	0.9860	68	0.9704	
15	128	0.9783	0.9644	43	0.9888	109	0.9752	
16	156	0.9757	0.9659	76	0.9949	127	0.9590	
17	142	0.9774	0.9562	80	0.9912	144	0.9749	
Aza	373	0.9774	0.9616	520	0.9016	174	0.9513	
TACb	—	—	—	—	—	—	—	

TAC (TAC) was used as a standard inhibitor for BChE and AChE enzymes.

\(^{a}\)Acetazolamide (AZA) was used as a standard inhibitor for both carbonic anhydrase I, and II isoenzymes (hCA I and II).

\(^{b}\)Calculated that TAC (ratio 1:500).
these molecules can be considerable inhibitor of AChE, BChE enzymes and both hCA isoforms. The molecules 5 and 8 towards hCA I and molecules 1 and 13 towards hCA II and molecules 4 and 14 towards AChE and molecules 6 and 8 towards BChE enzymes recorded which can to be the leader molecules of the parts for subsequent evaluations.

Acknowledgements
S. Alwasel would like to thank the Distinguished Scientist Fellowship Program, King Saud University for their support.

Disclosure statement
The authors declare no conflict of interest.

ORCID
Ilhami Gulcin http://orcid.org/0000-0001-5993-1668

References
1. Cressier D, Procullac C, Hernande P, et al. Synthesis, antioxidant properties and radioprotective effects of new benzothiazoles and thiadiazoles. Bioorg Med Chem 2009;17: 5275–84.
2. Kocyigit UM, Budak Y, Gürdere MB, et al. Synthesis, characterization, anticancer, antimicrobial and carbonic anhydrase inhibition profiles of novel (3aR,4S,7R,7aS)-2-{4-[(E)-3-(3-aryliacryloyl) phenyl]-3a,4,7,7a-tetrahydro-1H-4,7-methanoi- soindole-1,3(2H)-dione derivatives. Bioorg Chem 2017;70: 118–25.
3. Gokcen T, Al M, Topal M, et al. Synthesis of some natural sulphonamide derivatives as carbonic anhydrase inhibitors. Org Commun 2017;10:15–23.
4. Karali N, Akdemir A, Göktaş F, et al. Novel sulfonamide-containing 2-indolines that selectively inhibit tumor-associated alpha carbonic anhydrases. Bioorg Med Chem 2017; 25:3714–8.
5. Aksu K, Ozgeris B, Taslimi P, Naderi A, et al. Antioxidant activity, acetylcholinesterase, and carbonic anhydrase inhibitory properties of novel ureas derived from phenethylamines. Arch. Pharm. (Weinheim) 2016; 349:944–54.
6. Topal F, Gulcin I, Dastan A, Guney M. Novel eugenol derivatives: potent acetylcholinesterase and carbonic anhydrase inhibitors. Int J Biol Macromol 2017;94:845–51.
7. Ceylan M, Kocyigit UM, Usta NC, et al. Synthesis, carbonic anhydrase I and II isoenzymes inhibition properties and antibacterial activities of novel tetralone based 1,4-benzothiazepine derivatives. J Biochem Mol Toxicol 2017;31:e21872.
8. Del Prete S, Vullo D, Osman SM, et al. Sulfonamide inhibition profiles of the b-carbonic anhydrase from the pathogenic bacterium Francisella tularensis responsible for the febrile illness tularemia. Bioorg Med Chem 2017;25:3555–61.
9. Oktay K, Polat Kose L, Sendil K, et al. Synthesis of 3-chloro-1-substituted aryl pyridoline-2,5-dione derivatives: discovery of potent human carbonic anhydrase inhibitors. Med Chem Res 2017;26:1619–27.
10. Bayrak Ç, Taslimi P, Gülcin İ, Menzek A. The first synthesis of 4-phenylbutenone derivative bromophenols including natural products and their inhibition profiles for carbonic
anhydrase, acetylcholinesterase and butyrylcholinesterase enzymes. Bioorg Chem 2017;72:359–66.
11. Supuran CT, Capasso C. The \(\eta \)-class carbonic anhydrases as drug targets for antimalarial agents. Expert Opin Ther Targets 2015;19:551–63.
12. Akocak S, Lolak N, Nocentini A, et al. Synthesis and biological evaluation of novel aromatic and heterocyclic bis-sulfonamide Schiff bases as carbonic anhydrase I, II, VII and IX inhibitors. Bioorg Med Chem 2017;25:3093–7.
13. Koçyiğit UM, Aslan OM, Gülçin İ, et al. inhibition of novel 2-(4-(aryl)thiazole-2-yl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione derivatives. Arch Pharm 2016;349:955–63.
14. Akbaba Y, Bastem E, Topal F, et al. Synthesis and carbonic anhydrase inhibitory effects of novel sulfamides derived from 1-aminoindanes and anilines. Arch. Pharm. (Weinheim) 2014;347:950–7.
15. Innocenti A, Gülçin I, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Antioxidant polyphenol natural products effectively inhibit mammalian isoforms I-XV. Bioorg Med Chem Lett 2010;20:5050–3.
16. Şentürk M, Gülçin I, Beydemir Ş, et al. \textit{In vitro} inhibition of human carbonic anhydrase I and II isoforms with natural phenolic compounds. Chem Biol Drugs Des 2011;77:494–9.
17. Çoban TA, Beydemir S, Gülçin İ, Ekinci D. Morphine inhibits erythrocyte carbonic anhydrase \textit{in vitro} and \textit{in vivo}. Biol Pharm Bull 2007;30:2257–61.
18. Çoban TA, Beydemir S, Gülçin İ, Ekinci D. The effect of ethanol on erythrocyte carbonic anhydrase isoforms activity: an \textit{in vitro} and \textit{in vivo} study. J Enzyme Inhib Med Chem 2008;23:266–70.
19. Topal F, Topal M, Gocer H, et al. Antioxidant activity of taxifolin: an activity-structure relationship. J Enzyme Inhib Med Chem 2016;31:674–83.
20. Innocenti A, Öztürk Sankaya SB, Gülçin İ, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I-XIV with a series of natural product polyphenols and phenolic acids. Bioorg Med Chem 2010;18:2159–64.
21. Şentürk M, Gülçin I, Daştan A, et al. Carbonic anhydrase inhibitors. Inhibition of human erythrocyte isozyymes I and II with a series of antioxidant phenols. Bioorg Med Chem 2009;17:3207–11.
22. Göçer H, Akınçoğlu A, Öztaşkin N, et al. Synthesis, antioxidant, and anticarbamyliholinesterase activities of sulfonamide derivatives of dopamine-related compounds. Arch. Pharm. (Weinheim) 2013;346:783–92.
23. Akınçoğlu A, Topal M, Gülçin İ, Göksu S. Novel sulfamides and sulfonamides incorporating tetralin scaffold as carbonic anhydrase and acetylcholine esterase inhibitors. Arch Pharm 2014;347:68–76.
24. Göçer H, Akınçoğlu A, Göksu S, et al. Carbonic anhydrase and acetylcholine esterase inhibitory effects of carbamates and sulfamoylcarbamates. J Enzyme Inhib Med Chem 2015;30:316–20.
25. Aksu K, Topal F, Gülçin I, et al. Acetylcholinesterase inhibition and antioxidant activities of novel symmetric sulfamides derived from phenethylamines. Arch. Pharm. (Weinheim) 2015;348:446–55.
26. Akınçoğlu A, Akınçoğlu H, Gülçin I, et al. Discovery of potent carbonic anhydrase and acetylcholine esterase inhibitors: Novel sulfamoylcarbamates and sulfamides derived from acetophenones. Bioorg Med Chem 2015;23:3592–602.
43. Gul HI, Demirtas A, Ucar G, et al. Synthesis of Mannich bases by two different methods and evaluation of their acetylcholine esterase and carbonic anhydrase inhibitory activities. Lett Drug Des Discov 2017;14:573–80.

44. Woreka F, Schilha M, Neumaier K, et al. On-site analysis of acetylcholinesterase and butyrylcholinesterase activity with the ChE check mobile test kit: determination of reference values and their relevance for diagnosis of exposure to organophosphorus compounds. Toxicol Lett 2016;249:22–8.

45. Chen X, Zheng X, Zhou Z, et al. Effects of a cocaine hydrolase engineered from human butyrylcholinesterase on metabolic profile of cocaine in rats. Chem Biol Interact 2016;259:104–9.

46. Taslimi P, Sujayev A, Mamedova S, et al. Synthesis and bioactivity of several new hetaryl sulfamides. J Enzyme Inhib Med Chem 2017;32:137–45.

47. Sorokin VG. Izvestiya Vysshikh Uchebnykh Zavedenii. Khimiya I Khimicheskaya Tekhnologiya 1975;18:74–6.

48. Franklin S, Tamlivendan D, Venkatesa Prabhu G, Balasubramanian T. Structural and spectral analysis of a Mannich Base: 3-(Morpholin-4-ylmethyl)-1,3-benzothiazole-2-thione. J Chem Crystallog 2012;42:29–33.

49. Hatayama, Kazuya Jpn. Kokai Tokkyo Koho. 1995; JP 07041604 A 19950201.

50. Valiulienne S, Kuodis Z, Rutavičius A, Chemija. 1994;(2):81-5n.

51. Dhal PN, Nayak A. Ind J Pharm 1975;37:92–4.

52. Yamaguchi J, Washisu S, Jpn. Kokai Tokkyo Koho. 1989; JP 01017048 A 19890120.

53. Erdogan B, Seyhan E, Atay O, Isikdag I. Gazi Universitesi Eczacilik Fakultesi Dergisi 1989;6:163–72.

54. Öztürk Sarıkaya SB, Topal F, Şentürk M, et al. In vitro inhibition of α-carbonic anhydrase isozymes by some phenolic compounds. Bioorg Med Chem Lett 2011;21:4259–62.

55. Nar M, Çetinkaya Y, Gülçin İ, Menzek A. (3,4-Dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and its derivatives as carbonic anhydrase isozymes inhibitors. J Enzyme Med Chem 2013;28:402–6.

56. Verpooorte JA, Metha S, Edsall JT. Esterase activities of human carbonic anhydrase B and C. J Biol Chem 1967;242:4221–9.

57. Coban TA, Beydemir S, Gülcin İ, et al. Sildenafil is a strong carbonic anhydrase isoenzymes inhibitor. Turk J Chem 2014;38:894–902.

58. Genç M, Koşkun A, Topal F, et al. Oxidation of cyanobenzocycloheptatienes: synthesis, photooxygenation reaction and carbonic anhydrase isozymes inhibition properties of some new benzotropine derivatives. Bioorg Med Chem 2014;22:3537–43.

59. Gökşu S, Naderi A, Akbaba Y, et al. Carbonic anhydrase inhibitory properties of novel benzylsulfamides using molecular modeling and experimental studies. Bioorg Chem 2014;56:75–82.

60. Arabaci B, Gülçin İ, Alwassel S. Capsaicin: a potent inhibitor of carbonic anhydrase isozymes. Molecules 2014;19:10103–14.

61. Öztürk Sarıkaya SB, Siseçioğlu M, Cankaya M, et al. Inhibition profile of a series of phenolic acids on bovine lactoperoxidase enzyme. J Enzyme Inhib Med Chem 2015;30:479–83.

62. Boztas M, Çetinkaya Y, Topal M, et al. Synthesis and carbonic anhydrase isozymes I, II, IX, and XII inhibitory effects of dimethoxy-bromophenol derivatives incorporating cyclopropane moieties. J Med Chem 2015;58:640–50.

63. Yıldırım A, Atmaca U, Keskın A, et al. N-Acylsulfonamides strongly inhibit human carbonic anhydrase isozymes I and II. Bioorg Med Chem 2015;23:2598–605.

64. Scozzafava A, Passaponti M, Supuran CT, et al. Carbonic anhydrase inhibitors: Guaiacol and catechol derivatives effectively inhibit certain human carbonic anhydrase isozymes (hCA I, II, IX, and XII). J Enzyme Inhib Med Chem 2015;30:586–91.

65. Aydin B, Gülçin I, Alwassel SH. Purification and characterization of polyphenol oxidase from Hemsin apple (Malus communis L.). Int J Food Propert 2015;18:2735–45.

66. Ellman GL, Courtney KD, Andres V, Featherston RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95.

67. Gocer H, Aşlan A, Gülçin İ, Supuran CT. Spirobisnaphthalenes effectively inhibit carbonic anhydrase. J Enzyme Inhib Med Chem 2016;31:503–7.

68. Küçük M, Gülçin İ. Purification and characterization of carbonic anhydrase enzyme from black sea trout (Salmo trutta Labrax Coruhensis) kidney and inhibition effects of some metal ions on the enzyme activity. Environ Toxicol Pharmacol 2016;44:134–9.
81. Gökşu H, Topal M, Keskin A, et al. 9,10-Dibromo-N-aryl-9,10-dihydro-9,10-[3,4]epipyrranoanthracene-12,14-diones: synthesis and investigation of their effects on carbonic anhydrase isozymes I, II, IX, and XII. Arch Pharm 2016;349:466–74.

82. Polat Kose L, Gülçin I, Özdemir H, et al. The effects of some avermectins on bovine carbonic anhydrase enzyme. J Enzyme Inhib Med Chem 2016;31:773–8.

83. Sujayev A, Polat Kose L, Garibov E, et al. Synthesis of N-alkyl (aril)-tetra pyrimidine thiones and investigation of their human carbonic anhydrase I and II inhibitory effects. J Enzyme Inhib Med Chem 2016;31:1192–7.

84. Supuran CT. Structure and function of carbonic anhydrases. Biochem J 2016;473:2023–32.

85. Rogez-Florent T, Foulona C, Drucbert AS, et al. Chiral separation of new sulfonamide derivatives and evaluation of their enantioselective affinity for human carbonic anhydrase II by microscale thermophoresis and surface plasmon resonance. J Pharm Biomed Anal 2017;137:113–22.