Impact of stepwise hyperventilation on cerebral tissue oxygen saturation in anesthetized patients: a mechanistic study

B. S. Alexander¹, A. W. Gelb², W. W. Mantulin³, A. E. Cerussi³, B. J. Tromberg³, Z. Yu⁴, C. Lee⁵ and L. Meng⁶

¹Irvine School of Medicine, University of California, Irvine, CA, USA, ²Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA, ³Beckman Laser Institute, University of California, Irvine, CA, USA, ⁴Department of Statistics, University of California, Irvine, CA, USA, ⁵Department of Anesthesiology and Perioperative Care, University of California, Irvine, CA, USA and ⁶Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA

Background: While the decrease in blood carbon dioxide (CO₂) secondary to hyperventilation is generally accepted to play a major role in the decrease of cerebral tissue oxygen saturation (SctO₂), it remains unclear if the associated systemic hemodynamic changes are also accountable.

Methods: Twenty-six patients (American Society of Anesthesiologists I–II) undergoing nonneurosurgical procedures were anesthetized with either propofol-remifentanil (n = 13) or sevoflurane (n = 13). During a stable intraoperative period, ventilation was adjusted stepwise from hypoventilation to hyperventilation to achieve a progressive change in end-tidal CO₂ (ETCO₂) from 55 to 25 mmHg. Minute ventilation, SctO₂, ETCO₂, mean arterial pressure (MAP), and cardiac output (CO) were recorded.

Results: Hyperventilation led to a SctO₂ decrease from 78 ± 4% to 69 ± 5% (Δ = −9 ± 4%, P < 0.001) in the propofol-remifentanil group and from 81 ± 5% to 71 ± 7% (Δ = −10 ± 3%, P < 0.001) in the sevoflurane group. The decreases in SctO₂ were not statistically different between these two groups (P = 0.5). SctO₂ correlated significantly with ETCO₂ in both groups (P < 0.001). SctO₂ also correlated significantly with MAP (P < 0.001) and CO (P < 0.001) during propofol-remifentanil, but not sevoflurane (P = 0.4 and 0.5), anesthesia.

Conclusion: The main mechanism responsible for the hyperventilation-induced decrease in SctO₂ is hypocapnia during both propofol-remifentanil and sevoflurane anesthesia. Hyperventilation-associated increase in MAP and decrease in CO during propofol-remifentanil, but not sevoflurane, anesthesia may also contribute to the decrease in SctO₂ but to a much smaller degree.

Accepted for publication 3 December 2012

© 2013 The Acta Anaesthesiologica Scandinavica Foundation
Published by Blackwell Publishing Ltd.
agents possess intrinsic cerebral vasodilatory effect
while intravenous agents do not. In this study, it
was our hypothesis that the decrease in SctO2
induced by stepwise hyperventilation is due to both
changes in blood CO2 level and changes in systemic
hemodynamics. To test this hypothesis, we carried
out this mechanistic study in which SctO2, end-tidal
CO2 (ETCO2), mean arterial pressure (MAP), and
CO were continuously and simultaneously meas-
ured throughout a stepwise increase in minute ven-
tilation from hypoventilation (ETCO2 = 55 mmHg)
to hyperventilation (ETCO2 = 25 mmHg) in patients
anesthetized with either propofol-remifentanil or
sevoflurane.

Methods
The study was approved by the Institutional
Research Board at the University of California,
Irvine, California, USA. Nonneurosurgical adult
patients with an American Society of Anesthesiolo-
gists (ASA) physical status I–II were recruited.
Informed written consents for research were
obtained. Exclusion criteria were: neurological
disease, symptomatic cardiac and respiratory dis-
eases, systolic blood pressure ≥ 140 mmHg and/or
diastolic blood pressure ≥ 90 mmHg, and diabetes
mellitus.

A quantitative frequency-domain NIRS device,
Oxiplex TS cerebral oximeter (ISS Inc., Champaign,
IL, USA), was used to measure SctO2. The specifics
of this technology have been previously reported.
Minute ventilation and ETCO2 were determined
using the built-in spirometry and gas analyzer in
the anesthesia machine (Aisys, GE Healthcare,
Madison, WI, USA). MAP was monitored at the
external ear canal level via a 20-gauge catheter
placed in radial artery and connected to an arterial
pressure transduction system (Vigileo-FloTrac,
Edwards Lifesciences, Irvine, CA, USA). CO was
monitored using esophageal Doppler (CardioQ,
Deltex Medical, Chichester, West Sussex, UK). The
depth of anesthesia was monitored via the bispec-
tral index (BIS) monitor (S/5™ M-BIS, GE Health-
care, Madison, WI, USA).

Following anesthesia induction with fentanyl
(1.5–2 mcg/kg) and propofol (2–3 mg/kg), the
patient was intubated, and anesthesia was
maintained with either propofol-remifentanil or
sevoflurane at the discretion of the attending
anesthesiologist. The level of anesthesia was
adjusted to maintain a BIS value between 30 and 50,
and no further adjustment occurred during the
formal study period. Muscle relaxation was main-
tained with cisatracurium. Pressure-controlled ven-
tilation was used with the inspired oxygen
percentage of 50% in an air-oxygen mixture, inspira-	ory to expiratory time ratio of 1 : 2, and positive
end-expiratory pressure set to zero. During a stable
intraoperative period, the formal study began with
hypoventilation (ventilation pressure set between 8
and 12 cmH2O and the respiratory rate set between
4 and 6 breaths per minute) to achieve a starting
ETCO2 of 55 mmHg. Once this end-point of hypov-
entilation was achieved and stabilized for 10 min,
the first ventilatory adjustment was made by
increasing the ventilation pressure 2 cmH2O and
respiratory rate one breath per minute. The same
adjustment was repeated every 5 min to gradually
increase minute ventilation until the end-point of
hyperventilation, an ETCO2 of 25 mmHg, was
reached. Minute ventilation, ETCO2, SctO2, MAP,
CO, BIS, cerebral tissue oxy-hemoglobin concentra-
tion, cerebral tissue deoxy-hemoglobin concentra-
tion, cerebral tissue total hemoglobin concentration,
stroke volume, heart rate, and finger pulse oxygen
saturation (SpO2) were continuously monitored and
recorded at least every 60 s throughout the study
period.

Data were expressed as mean ± standard devia-
tion. Demographics were analyzed to ensure age,
gender, height, weight, and body mass index were
not significantly different between propofol-
remifentanil and sevoflurane groups. This was done
using both unpaired Student’s t-test and Mann–
Whitney test for quantitative variables, and both
Pearson’s chi-square test and Fisher’s exact test for
qualitative variables. Both unpaired Student’s t-test
and Mann–Whitney test were used to analyze
the difference of the changes in SctO2 (from ETCO2 of 55
to 25 mmHg) between propofol-remifentanil and
sevoflurane groups. P-values reported are agreeable
with both parametric and nonparametric analyses
when applicable. A repeated measures general
linear model (SPSS Version 20.0, IBM Corporation,
Armonk, NY, USA) was used to determine the sig-
nificance of hypocapnia, normocapnia, and hyper-
capnia on each physiologic parameter. Because our
data are longitudinal, linear mixed-effects models
were used to test whether there is a significant
correlation between a measured variable and its
explanatory variables. Specifically, we first fit a
linear mixed-effects model with random effects for
both intercept and slope; we then fit a reduced
model with the slope removed. The significance of a
correlation was determined by the likelihood ratio

Hyperventilation and brain oxygenation
test that compares the likelihood of two models. A similar procedure was used to test the significance of a particular variant or a particular set of variants in our multivariate analysis. \(P \)-values less than 0.05 were regarded as significant. The statistical analysis was conducted using the R package (http://cran.r-project.org/).

Results

Twenty-six patients (\(n = 13 \) for both propofol-remifentanil and sevoflurane groups) were included in data analysis from a total of 28 patients recruited. One patient was excluded because of incomplete CO data; the other was due to unanticipated surgical position change. Patient’s demographic and surgery data are summarized in Table 1. There were no significant differences in age, gender, height, weight, and body mass index between propofol-remifentanil and sevoflurane groups.

The infusion rates of propofol and remifentanil were 92 \(\pm \) 3 mcg/kg/min and 0.4 \(\pm \) 0.2 mcg/kg/min, respectively. The end-tidal sevoflurane level was 1.9 \(\pm \) 0.4%. The hyperventilation protocol caused a continuous and consistent change in both minute ventilation and ETCO\(_2\) from hypoventilation (ETCO\(_2\) = 55 mmHg) to hyperventilation (ETCO\(_2\) = 25 mmHg) in both propofol-remifentanil and sevoflurane groups. The time spent for the full range of change was 36 \(\pm \) 7 min for both groups. The physiological data were summarized in Table 2 (propofol-remifentanil group) and Table 3 (sevoflurane group).

Throughout the stepwise increase in minute ventilation, SctO\(_2\) gradually decreased from 78 \(\pm \) 4% to 69 \(\pm \) 5% (\(\Delta = -9 \pm 4\% \)) in the propofol-remifentanil group (Fig. 1A) and from 81 \(\pm \) 5% to 71 \(\pm \) 7% (\(\Delta = -10 \pm 3\% \)) in the sevoflurane group (Fig. 1B). Even though the decreases in SctO\(_2\) from hypoventilation to hyperventilation were significant in both groups (\(P < 0.001 \), Tables 2 and 3), the absolute decreases in SctO\(_2\) were not significantly different between these two groups (\(P = 0.5 \), -9 \(\pm \) 4% vs. -10 \(\pm \) 3%). Minute ventilation correlated significantly with ETCO\(_2\) in both anesthetic groups (\(P < 0.001 \)). Stepwise hyperventilation caused a consistent increase in MAP (Fig. 1C) and a consistent decrease in CO (Fig. 1E) in the propofol-remifentanil, but not the sevoflurane (Fig. 1D and F), group. Minute ventilation and BIS were not significantly correlated in both propofol-remifentanil (\(P = 0.7 \)) and sevoflurane (\(P = 0.7 \)) groups.

SctO\(_2\) correlated significantly with ETCO\(_2\) in both propofol-remifentanil (Fig. 2A) and sevoflurane (Fig. 2B) groups. SctO\(_2\) also correlated significantly with both MAP (Fig. 2C) and CO (Fig. 2E) in the propofol-remifentanil, but not the sevoflurane (Fig. 2D and F), group. Further multivariate analysis of the propofol-remifentanil group revealed the following: When ETCO\(_2\) and CO are taken into account, MAP is not significant (\(P = 0.3 \)); when ETCO\(_2\) and MAP are taken into account, CO is significant (\(P < 0.001 \)); and when ETCO\(_2\) is taken into account only, MAP and CO jointly are significant (\(P < 0.001 \)).

Discussion

This study showed that stepwise hyperventilation, from ETCO\(_2\) = 55 mmHg to ETCO\(_2\) = 25 mmHg,

Table 1 Demographic data.	Propofol-remifentanil (\(n = 13 \))	Sevoflurane (\(n = 13 \))
Age (years) 39 \(\pm \) 11	37 \(\pm \) 15	
Height (cm) 174 \(\pm \) 8	172 \(\pm \) 11	
Weight (kg) 81 \(\pm \) 17	87 \(\pm \) 31	
BMI 27 \(\pm \) 5	29 \(\pm \) 8	
Male : female (\(n : n \) 9:4	8:5	
Controlled hypertension (\(n \) 1	1	
Controlled type II DM (\(n \) 1	0	
ASA I (\(n \) 6	6	
ASA II (\(n \) 7	7	
Orthopedic surgery (\(n \) 4	10	
Gastrointestinal surgery (\(n \) 3	1	
Urological surgery (\(n \) 4	1	
Miscellaneous surgery (\(n \) 2	1	

Data are mean \(\pm \) standard deviation.

BMI, body mass index; DM, diabetes mellitus; ASA, American Society of Anesthesiologists.
caused a progressive decrease in SctO$_2$ in both propofol-remifentanil (ΔSctO$_2 = -9\%$) and sevoflurane (ΔSctO$_2 = -10\%$) anesthetized patients. As anticipated, SctO$_2$ correlated significantly with both minute ventilation and ETCO$_2$ in both groups. However, it also correlated significantly with MAP and CO during propofol-remifentanil, but not sevoflurane, anesthesia. This finding is in concordance with the result that the stepwise hyperventilation in this study also caused a consistent increase in MAP and a consistent decrease in CO in propofol-remifentanil, but not sevoflurane, anesthetized patients.

We previously showed that hypoventilation correlated with a higher SctO$_2$ and hyperventilation correlated with a lower SctO$_2$ in propofol-remifentanil anesthetized patients.5,6 Even though hyperventilation-induced hypoventilation may have played a major role in the SctO$_2$ decrement, the full extent of its influence (magnitude and mechanism) remained unclear. The mechanism responsible for the hyperventilation-induced decrease in SctO$_2$ has both theoretical and practical implications and needs to be carefully considered.

Cerebral oximetry based on frequency-domain NIRS technology quantitatively measures oxy- and deoxymyoglobin concentrations in cerebral tissue and oxygen saturation. This method provides a non-invasive, continuous, and real-time assessment of cerebral oxygenation, which is essential for monitoring and managing cerebral oxygenation during anesthesia.

Table 2
Physiological data in propofol-remifentanil group.	Hypocapnia (ETCO$_2 = 25$ mmHg)	Normocapnia (ETCO$_2 = 40$ mmHg)	Hypercapnia (ETCO$_2 = 55$ mmHg)
SctO$_2$ (%)	69 ± 5	74 ± 5	78 ± 4
THC (µMol)	43 ± 11	44 ± 11	46 ± 11
Oxy-Hb (µMol)	30 ± 8	33 ± 8	36 ± 8
Deoxy-Hb (µMol)	13 ± 4	12 ± 4	10 ± 3
SV (ml/beat)	73 ± 10	85 ± 12	96 ± 16
HR (beat/min)	68 ± 16	71 ± 17	73 ± 17
CO (l/min)	5 ± 1	6 ± 2	7 ± 2
SVR [(dyne x s).cm$^{-5}$]	1305 ± 381	985 ± 294	756 ± 232
MAP (mmHg)	78 ± 12	71 ± 9	63 ± 9
MV (l/min)	12 ± 2	7 ± 2	3 ± 2
BIS	42 ± 12	41 ± 11	41 ± 12
SpO$_2$ (%)	100 ± 0.4	99 ± 1	99 ± 1

*P < 0.05; † P < 0.001.
SctO$_2$, cerebral tissue oxygen saturation; THC, total hemoglobin concentration (cerebral tissue); Oxy-Hb, oxy-hemoglobin (cerebral tissue); Deoxy-Hb, deoxy-hemoglobin (cerebral tissue); SV, stroke volume; HR, heart beat; CO, cardiac output; SVR, systemic vascular resistance ($SVR = 80*MAP/CO$); MAP, mean arterial pressure; MV, minute ventilation; BIS, bispectral index; SpO$_2$, pulse oxygen saturation.

Table 3
Physiological data in sevoflurane group.	Hypocapnia (ETCO$_2 = 25$ mmHg)	Normocapnia (ETCO$_2 = 40$ mmHg)	Hypercapnia (ETCO$_2 = 55$ mmHg)
SctO$_2$ (%)	71 ± 7	76 ± 6	81 ± 5
THC (µMol)	45 ± 10	47 ± 10	49 ± 10
Oxy-Hb (µMol)	32 ± 8	36 ± 8	40 ± 9
Deoxy-Hb (µMol)	13 ± 4	11 ± 4	9 ± 3
SV (ml/beat)	76 ± 20	78 ± 22	81 ± 27
HR (beat/min)	80 ± 11	81 ± 10	81 ± 10
CO (l/min)	6 ± 1	6 ± 2	7 ± 2
SVR [(dyne x s).cm$^{-5}$]	1013 ± 280	1018 ± 317	1053 ± 398
MAP (mmHg)	75 ± 12	74 ± 12	76 ± 13
MV (l/min)	12 ± 3	7 ± 2	3 ± 1
BIS	34 ± 12	34 ± 11	34 ± 11
SpO$_2$ (%)	99 ± 1	99 ± 1	99 ± 1

*P < 0.05; † P < 0.001.
SctO$_2$, cerebral tissue oxygen saturation; THC, total hemoglobin concentration (cerebral tissue); Oxy-Hb, oxy-hemoglobin (cerebral tissue); Deoxy-Hb, deoxy-hemoglobin (cerebral tissue); SV, stroke volume; HR, heart beat; CO, cardiac output; SVR, systemic vascular resistance ($SVR = 80*MAP/CO$); MAP, mean arterial pressure; MV, minute ventilation; BIS, bispectral index; SpO$_2$, pulse oxygen saturation.
deoxy-hemoglobin concentrations in pooled cerebral blood.8 A decrease in NIRS-measured SctO\textsubscript{2} is attributed to one or a combination of the following mechanisms: (1) increased cerebral metabolic rate of oxygen; (2) decreased oxygen delivery to the brain; and (3) decreased arterial and/or increased venous blood contribution(s) to NIRS measurement. Mechanism 1 is unlikely to be true because this study was conducted during a stable intraoperative period in anesthetized patients. Moreover, the BIS

Fig. 1. Correlations between minute ventilation and cerebral tissue oxygen saturation (SctO\textsubscript{2}, A and B), mean arterial pressure (MAP, E and F), and cardiac output (CO, G and H) in patients anesthetized with propofol-remifentanil (A, C, and E) and sevoflurane (B, D, and F). Lightly colored lines are individual patients and the dark bold lines are the average. The interval between adjacent data points for each patient is 60 s.
measurement remained stable throughout the study period.
Mechanism 2, decreased oxygen delivery to the brain, is most likely the major cause of the observed decrease in SctO₂. Oxygen delivery to the brain must have been decreased because of the decrease in CBF as a consequence of the hyperventilation-induced hypocapnia. However, the potential contri-
bution from hyperventilation-associated systemic hemodynamic changes cannot be ignored. Our data showed that stepwise hyperventilation caused a consistent increase in MAP and a consistent decrease in CO during propofol-remifentanil, but not sevoflurane, anesthesia. According to cerebral autoregulation, an increased MAP will cause an increase in CBF if the cerebral perfusion pressure (CPP) is below the lower limit or if the autoregulatory mechanism is impaired; on the other hand, an increased MAP will not cause any change in CBF if the CPP is above the lower limit (and below the upper limit) and the autoregulatory mechanism is intact. Therefore, the increased MAP during propofol-remifentanil anesthesia in this study, no matter the resultant CPP is below or above the lower limit of cerebral autoregulation, is unlikely to have caused a decrease in CBF and contributed to the decrease in oxygen delivery to the brain (mechanism 2). However, the decreased CO during propofol-remifentanil anesthesia in this study may have contributed to the decrease in SctO₂ due to a decrease in oxygen delivery to the brain because it has been previously shown that a decrease in CO can cause a decrease in CBF. Additionally, our published data have already demonstrated that SctO₂ decreases when CO is decreased, and there is a significant correlation between the decreases in SctO₂ and CO, after phenylephrine bolus treatment.

Interestingly, the increase in MAP and decrease in CO throughout stepwise hyperventilation only occurred in patients anesthetized with propofol-remifentanil, but not sevoflurane. Our results imply that the systemic hemodynamic changes are due to an increased systemic vascular resistance (SVR) during propofol-remifentanil anesthesia (Table 2). However, it is not clear why the effects of hyperventilation on SVR during propofol-remifentanil or sevoflurane anesthesia are different. It is also difficult to quantify or apportion the contributions from the decrease in CO₂ vs. the decrease in CO to the SctO₂ decrement in the propofol-remifentanil group. If the decrease in CO had made a major contribution to the decrease in SctO₂ during hyperventilation, we would have seen a lesser decrease in SctO₂ during sevoflurane anesthesia than propofol-remifentanil anesthesia because the former did not cause a decrease in CO. However, the decreases in SctO₂ are actually comparable between sevoflurane (~10%) and propofol-remifentanil (~9%). Therefore, we speculate that the contribution of the CO decrement to the decrease in SctO₂ during hyperventilation is minor under propofol-remifentanil anesthesia. Mechanism 3, decreased arterial and/or venous blood contribution(s) to NIRS measurement, is also a possible contributor to the observed decrease in SctO₂. A decreased arterial blood contribution to NIRS measurement, and thus a decrease in SctO₂, may have occurred if hypocapnia-mediated cerebral vasoconstriction occurs mainly at the arteriolar vascular bed. There is evidence supporting this mechanism using positron emission tomography in awake volunteers. Moreover, cerebral vasoconstriction must have occurred when MAP is progressively increased by stepwise hyperventilation during propofol-remifentanil anesthesia in order to maintain a constant CBF according to cerebral autoregulation. Therefore, a decreased arterial blood contribution to NIRS measurement may have also occurred if the autoregulatory vasoconstriction takes place primarily at the arterial/arteriolar vascular bed. It is worthwhile to emphasize that the decreased arterial blood contribution secondary to autoregulatory vasoconstriction does not occur during sevoflurane anesthesia because hyperventilation does not cause a consistent MAP increase in sevoflurane-anesthetized patients. Nonetheless, the contribution of the increased MAP to the decreased SctO₂ due to a decreased arterial blood contribution to NIRS measurement must be trivial, if any, because the arterial blood is a very small portion of the pooled cerebral blood targeted by NIRS.

We did not measure jugular bulb oxygen saturation (SjO₂) in this study. Therefore, we cannot tell how SjO₂ would be decreased by stepwise hyperventilation. SjO₂ measures cerebral venous blood and is regarded as an invasive procedure. In contrast, SctO₂ measures an admixture of arterial, capillary, and venous blood and is regarded as a noninvasive technology. It is thus not surprising to see that the normal range of SjO₂ values is much lower than SctO₂ because of the lack of arterial blood contribution. The poor agreement between changes in SjO₂ and SctO₂ in various clinical situations may also be mainly caused by the distinct targets (venous vs. mixed blood) being measured by SjO₂ and SctO₂. In addition, we did not perform a power analysis at the outset of the study. As statistical power depends highly on sample size, the insignificant results in sevoflurane patients (correlations between SctO₂ and MAP or CO) could be due to the lack of statistical power of our current sample size. For example, using the effect size estimated from our data, the power for detecting a significant correlation between CO and minute ventilation in sevoflurane
would increase from 18% to 90% if we increase the sample size from 13 to 130. However, Fig. 2F shows that the effect is unlikely to be clinically significant despite the fact that statistical significance could occur if we increase our sample size. Another limit was that our study was not randomized between propofol-remifentanil and sevoflurane anesthesia. This was due to the fact that, at the outset of the study, we were mainly aiming at a mechanistic exploration of the effects of progressive hyperventilation, not a comparison between different agents. Even though the demographic characters were comparable between the two groups, randomization would have improved the quality of the study.

Clinical usage of cerebral oximetry based on NIRS technology is gaining popularity because of its potential value in improving patient’s outcome. Understanding the technical principles and the physiologic mechanisms behind the measured number is crucial for its appropriate clinical application. Among all factors which can affect SctO2 measurement, ventilation adjustments are one of the most common. To the best of our knowledge, this measurement, ventilation adjustments are one of the cation. Among all factors which can affect SctO2 number is crucial for its appropriate clinical appli-

In summary, this study shows that the main mechanism responsible for hyperventilation-induced decrease in SctO2 is hypocapnia in both propofol-remifentanil and sevoflurane-anesthetized patients. Hyperventilation causes a consistent increase in MAP and a consistent decrease in CO during propofol-remifentanil, not sevoflurane, anesthesia. It is possible that hyperventilation-induced increase in MAP and decrease in CO may both have contributed to the decrease in SctO2 based on different mechanisms; however, the contribution is most likely of small magnitude. The different responses of MAP and CO to stepwise hyperventilation during propofol-remifentanil or sevoflurane anesthesia may be due to their distinctive effects on SVR; however, the underlying mechanism is unknown.

Acknowledgements

We acknowledge the generous loan of the Oxiplex TX oximeter from ISS, Inc, USA. We also thank Guo Chen, MD (Chengdu, China), for her help in data collection.

Conflicts of interest: The authors (W. W. M., A. E. C., and B. J. T.) consult for ISS, Inc., USA.

Funding: Supported by the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH) through the following programs in the United States: the Institute for Clinical and Translational Science (ICTS) grant UL1 RR031985 (BJT, WWM); the Laser Microbeam and Medical Program [LAMMP; an NIH BRTP resource (P41-RR01192)] (BJT, AEC); the US Army SBIR Program (Contract W81XWH-09-C-0006, AEC); and the Laboratory for Fluorescence Dynamics (LFD) grant P41 RR03155 (WWM). Also supported by the Department of Anesthesiology and Perioperative Care, University of California, Irvine, California, USA.

References

1. Curley G, Kavanagh BP, Laffey JG. Hypocapnia and the injured brain: more harm than benefit. Crit Care Med 2010; 38: 1348–59.
2. Gelb AW, Craen RA, Rao GS, Reddy KR, Megyesi J, Mohanty B, Dash HH, Choi KC, Chan MT. Does hyperventilation improve operating condition during supratentorial craniotomy? A multicenter randomized crossover trial. Anesth Analg 2008; 106: 585–94, table of contents.
3. Ni Chonghaile M, Higgins B, Laffey JG. Permissive hypocapnia: role in protective lung ventilatory strategies. Curr Opin Crit Care 2005; 11: 56–62.
4. Harper AM, Glass HL. Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial blood pressures. J Neurol Neurosurg Psychiatry 1965; 28: 449–52.
5. Meng L, Gelb AW, Alexander BS, Cerussi AE, Tromberg BJ, Yu Z, Mantulin WW. Impact of phenylephrine administration on cerebral tissue oxygen saturation and blood volume is modulated by carbon dioxide in anaesthetized patients. Br J Anaesth 2012; 108: 815–22.
6. Meng L, Mantulin WW, Alexander BS, Cerussi AE, Tromberg BJ, Yu Z, Laning K, Kain ZN, Cannesson M, Gelb AW. Head-up tilt and hyperventilation produce similar changes in cerebral oxygenation and blood volume: an observational comparison study using frequency-domain near-infrared spectroscopy. Can J Anaesth 2012; 59: 357–65.
7. Matta BF, Heath KJ, Tipping K, Summors AC. Direct cerebral vasodilatory effects of sevoflurane and isoflurane. Anesthesiology 1999; 91: 677–80.
8. Fantini S, Franceschini MA, Maier JS, Walker SA, Barbieri B, Gratton E. Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry. Opt Eng 1995; 34: 32–42.
9. Meng L, Cannesson M, Alexander BS, Yu Z, Kain ZN, Cerussi AE, Tromberg BJ, Mantulin WW. Effect of phenylephrine and ephedrine bolus treatment on cerebral oxygenation in anaesthetized patients. Br J Anaesth 2011; 107: 209–17.
10. Paulson OB, Strandgaard S, Edvinsson L. Cerebrovascular Brain Metab Rev 1990; 2: 161–92.
11. Ogoh S, Brothers RM, Barnes Q, Eubank WL, Hawkins MN, Purkayastha S, O-Yurvati A, Raven PB. The effect of changes in cardiac output on middle cerebral artery mean blood velocity at rest and during exercise. J Physiol 2005; 569: 697–704.

12. Ito H, Ibaraki M, Kanno I, Fukuda H, Miura S. Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J Cereb Blood Flow Metab 2005; 25: 852–7.

13. Watzman HM, Kurth CD, Montenegro LM, Rome J, Steven JM, Nicolson SC. Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology 2000; 93: 947–53.

14. Chieregato A, Calzolari F, Trasforini G, Targa L, Latronico N. Normal jugular bulb oxygen saturation. J Neurol Neurosurg Psychiatry 2003; 74: 784–6.

15. Davie SN, Grocott HP. Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies. Anesthesiology 2012; 116: 834–40.

16. Jeong H, Jeong S, Lim HJ, Lee J, Yoo KY. Cerebral oxygen saturation measured by near-infrared spectroscopy and jugular venous bulb oxygen saturation during arthroscopic shoulder surgery in beach chair position under sevoflurane-nitrous oxide or propofol-remifentanil anesthesia. Anesthesiology 2012; 116: 1047–56.

17. Yoshitani K, Kawaguchi M, Iwata M, Sasaoka N, Inoue S, Kurumatani N, Furuya H. Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia. Br J Anaesth 2005; 94: 341–6.

18. Vohra HA, Modi A, Ohri SK. Does use of intra-operative cerebral regional oxygen saturation monitoring during cardiac surgery lead to improved clinical outcomes? Interact Cardiovasc Thorac Surg 2009; 9: 318–22.

19. Al-Rawi PG, Kirkpatrick PJ. Tissue oxygen index: thresholds for cerebral ischemia using near-infrared spectroscopy. Stroke 2006; 37: 2720–5.

Address:
Lingzhong Meng
Department of Anesthesiology
Duke University Medical Center
Box 3094
Durham
NC 27710
USA
e-mail: meng.lingzhong@gmail.com