Comparative Analysis of the Complete Mitochondrial Genomes for Development Application

Nwobodo Alexander Kenechukwu 1,2†, Man Li 1,2†, Lei An 3†, Miaomiao Cui 1,2†, Cailin Wang 1,2†, Aili Wang 4, Yulin Chen 1,2, Saijun Du 1,2, Chenyao Feng 5, Sijin Zhong 6, Yuying Gao 5, Xueyan Cao 5, Li Wang 5, Ezenwali Moses Obinna 6, Xinyu Mei 7,*, Yuanjian Song 1,2*, Zongyun Li 8* and Dashi Qi 1,2,4*

1 Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China, 2 Department of Genetics, Research Center for Neurobiology, Xuzhou Medical University, Xuzhou, China, 3 Huaie Hospital of Henan University, Henan University College of Medicine, Kaifeng, China, 4 Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai, China, 5 Department of Clinical, Xuzhou Medical University, Xuzhou, China, 6 Department of Applied Biochemistry, Enugu State University of Science and Technology, Enugu, Nigeria, 7 Interdisciplinary Research Center on Biology and Chemistry (iRCBC), Chinese Academy of Sciences, Shanghai, China, 8 School of Life Sciences, Jiangsu Normal University, Xuzhou, China

This present research work reports the comparative analysis of the entire nucleotide sequence of mitochondrial genomes of Serranochromis robustus and Buccochromis nototaenia and phylogenetic analyses of their protein-coding genes in order to establish their phylogenetic relationship within Cichlids. The mitochondrial genomes of S. robustus and B. nototaenia are 16,583 and 16,580 base pairs long, respectively, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, 22 transfer RNA genes, and one control region (D-loop) which is 888 and 887 base pairs long, respectively, showing the same gene order and identical number of gene or regions with other well-elucidated mitogenomes of Cichlids. However, with exception of cytochrome-c oxidase subunit-1 (COX-1) gene, all the identified PCGs were initiated by ATG-codons. Structurally, 11 tRNA genes in B. nototaenia species and 9 tRNA genes in S. robustus species, folded into typical clover-leaf secondary structure created by the regions of self-complementarity within tRNA. All the 22 tRNA genes in both species lack variable loop. Moreover, 28 genes which include 12-protein-coding genes are encoded on the H-strand and the remaining 9 genes including one protein-coding gene are encoded on the L-strand. Thirteen sequences of concatenated mitochondrial protein-coding genes were aligned using MUSCLE, and the phylogenetic analyses performed using maximum likelihood and Bayesian inference showed that S. robustus and B. nototaenia had a broad phylogenetic relationship. These results may be a useful tool in resolving higher-level relationships in organisms and a useful dataset for studying the evolution of the Cichlidae mitochondrial genome, since Cichlids are well-known model species in the study of evolutionary biology, because of their extreme morphological, biogeographical, parental care behavior for eggs and larvae and phylogenetic diversities.

Keywords: mitochondrial genome, Serranochromis robustus, Buccochromis nototaenia, development application, tRNA
INTRODUCTION

Serranochromis robustus and *Buccochromis nototaenia* are essential species in commercial fisheries that belong to the family of Cichilidae; both are commonly found in tropical freshwater in estuaries in Lake Malawi, upper Shire River, Luongo River in the Congo, and Zambia. They respond promptly to environmental alterations and are both carnivorous and oviparous maternal mouthbrooder fish. *Buccochromis* consists of four different subspecies, *B. rhoadesii*, *B. spectabilis*, *B. Lepturus*, and *B. nototaenia*, which stay at an average depth of 10 m in offshore sandy beaches. There are two subspecies of *serranochromis*, *S. robustus robustus* and *S. robustus jallae*. The latter is found in Cunene, Okavango, Kafue, upper and the middle Zambezi, Luangwa Luapula-Moero, Lualaba, and kassi-rivers and it has been transferred to Zimbabwe, Limpopo River and Natal, South Africa (Jellum, 1970; Kocher, 2004). The phylogenetic diversity of Cichlid fish, a vital tool in the study of evolutionary biology can be well-apprehended through proper investigation on mitochondrion, an evolutionary endosymbiont derived from bacteria (prokaryotes) (Sagan, 1967). The circular mitochondrial DNA (mtDNA) which can reproduce independent of its cell is an apparent cause of endosymbiosis. This is based on its close similarities with prokaryotes in their circular DNA, 70 ribosomes, 22 transfer RNAs, formyl-methionine initiating amino acid, and their susceptibility to tetracycline. The integral inner membrane proteins are synthesized from circular mtDNA, while proteins of the outer membrane of the mitochondria are translatinal products of nuclear mRNA. Since mitochondria are evolutionary endosymbionts that were derived from bacteria. The cellular injury will release mitochondria “damage-associated molecular patterns” DAMPs (formyl-peptides and circular mtDNA) into the circulation with functional critical immune consequences, and this is believed to be the link between trauma, inflammation, and systemic inflammatory response syndrome (SIRS) (Zhang et al., 2010). The mitochondrial genome of fish is a circular double-stranded molecule which is about 15 to 19 kb in length (Cui et al., 2017). Mitochondria play a central role in metabolism (Brand, 1997), including oxidative phosphorylation (Smetink et al., 2001), apoptosis (Kroemer et al., 1998), diseases (Graeber and Muller, 1998), aging (Wei, 1998), and also different other biochemical functions.

However, because of the conserved characteristics of coding content, location on Y-chromosomal DNA, rapid evolution, and low levels of intermolecular genetic recombination, mitogenomes are biomarkers for molecular research in such areas as phylogenetic molecular evolution, population genetics, and evolutionary genomics (Bentzen et al., 1998; Boore, 1999). A typical mitochondrial genome contains typically two ribosomal RNA genes (s-rRNA and l-rRNA), 22 transfer RNA genes (tRNAs), 13 protein-coding genes (PCGs), and two typical non-coding control regions {control region (CR) and origin of the light strand (OL)} with regulatory elements essential for transcription and replication (Miya and Nishida, 1999). In some mitochondrial genomes the genes are located on both strands, whereas in others, all genes are transcribed from one strand (Ojala et al., 1981). Twelve of the 13 protein-coding genes are located on the H-strand, and only ND6 gene is located on the L-strand. The energy values of foods are harnessed in the form of ATP through coupling of energy-releasing activities of electron transport chain, proton pump, and oxidative phosphorylation (Cadenas and Davies, 2000). The electron transport chain has been proven to be “leaky.” The leaky nature of the electron transport chain results in the conversion of molecular oxygen into superoxide anion radical (O$_2^-$) (www.ncbi.nlm.nih.gov). Dismutation of superoxide produces hydrogen peroxide (H$_2$O$_2$). Hydrogen peroxide may, in turn, be partially reduced to hydroxyl radical (HO$^-$) or entirely reduced to water. These free radicals generated from mitochondria or other sites inside or outside the cell leads to cell (destruction) damage through mtDNA, RNA, and protein modifications and lipid peroxidation (Cline, 2012). Mutated mitochondrial DNA molecules accumulate with age. This age-dependent accumulation of mutated mtDNA (Lagouge and Larsson, 2013), can in principle be explained by two primary mechanisms, replication error, and unrepaired damage. First, it has been suggested that the massive mtDNA replication occurring during embryogenesis will result in replication errors due to the inherent error rate of the mitochondrial DNA polymerase. The mtDNA mutations formed during embryogenesis will be subjected to segregation and clonal expansion in postnatal life. Secondly, the alternative proposal states that damage caused by ROS, may overwhelm the repair machinery and result in accumulation of mutated mtDNA (Larsson, 2010; Lagouge and Larsson, 2013). Over the last 10 years, these properties of mtDNA namely; high mutation rate, fast evolutionary rate, and non-significant genetic recombination have made it universally accepted biomarker for determination of genetic diversity among species (Galtier et al., 2009). Cichlids are universal accepted species model in the study of phylogenetic biology due to their extreme diversified morphological and biogeographic traits, parental care behavior for eggs and larvae (Klett and Meyer, 2002; Kocher, 2004; Salzburger and Meyer, 2004; Seehausen, 2006; Turner, 2007; Kuraku and Meyer, 2008). Fish of this family are popularly remarked with two distinct features; a single opening of the nostrils and an interrupted lateral line (Hartvigsen and Halvorsen, 1994; Khuda-Bukhsh and Chakrabarti, 2000). As economically important fish, some Cichlids are widely used extensively in aquaculture for several reasons. They are good source of “white fish” and fish products, they lack small bones in the muscle, and some species can grow quite large, allowing for the production of value-added products like filets. Most essentially, they depend on the lower food chain (aquatic plants and plankton) reducing their cost of feeding (Pulling, 1991). In this study, we sequenced the complete mitochondrial genome of the two Cichildae species and investigated the gene content and organization compared
Materials and Methods

Sampling and DNA Extraction

The samples of *S. robustus* and *B. nototaenia*, collected from a trawler catch in the Southeast Arm of Lake Malawi (between latitudes 9° and 18°S, and longitudes 32° and 36°E) by the Welcome Trust Sanger Institute (SC) in their private collection, were not endangered or protected species according to the IUCN Red List. The circular mitochondrial genomic DNAs were extracted from dorsal muscle tissue samples using the Animal Tissue Genomic DNA Extraction Kit (SangonBiotech China) according to the manufacturer's instructions. Every protocol were performed in accordance with the international guidelines concerning the care and treatment of experimental animals. A known volume (15 ml) of 95% ethanol were used to preserve all the samples at ~80°C until DNA extraction. Polymerase Chain Reaction was used to amplify the complete mitogenomes of the extracted DNA.

Mitochondrial DNA Amplification and Sequencing

Eppendorf Thermal Cycler (Eppendorf, Germany) was used to perform polymerase chain reaction with a fix reaction mixture of 50 µl (microliter) consisting of 2 units of Taq DNA polymerase, 5 µl PCR buffer (Tiangen products, China), 2 µl template DNA (50 ng/µl), 2 µl dNTP (0.4 mM), 4 µl primers (0.2 µM each), and 35 µl deionized/distilled water. After 3 min the reaction was denatured at 95°C, followed by 35 cycles of denaturation at 95°C for 30 s, annealing at 50°C for 30 s, and extension at 72°C for 1–5 min. All the PCR products were sequenced using the primer walking method with a 3730XL DNA Analyzer. The obtained sequences had 100% coverage of the PCR products.

Sequence Editing and Analysis

All the reads were mapped to full mitochondrial genome reference sequences of *A. geoffroyi* (NC_028033) by using SOAPaligner/soap2 (V2.21). Then we assembled the roads which could map to the reference genome by SPAdes3 (V3.1.0) and got the circular mitochondrial genome. Additionally, the location of the 13 PCGs and the two rRNAs for each species were primarily identified through Dual Organellar Genome Annotator (DOGMA) (Wyman et al., 2004). The tRNA-scan-SE1.21 identified most of the transfer RNA (tRNA) genes from the website http://lowelab.ucsc.edu/tRNAscan-SE/, using the default search mode and the “Mito/chloroplast” source (Lowe and Eddy, 1997). To infer the secondary structures of tRNA molecules, we used a widely scientifically accepted comparative approach to correct for unusual pairings with RNA-editing mechanisms that are well-known in fish mitogenomes. The software RNA structure was used in drawing the secondary structure of tRNA genes (Mathews, 2014). The skewness of the nucleotide compositions were measured according to the following formulas: AT skew [(A – T) / (A + T)] and GC skew [(G – C) / (G + C)] (Perola and Kocher, 1995). The full mitochondrial genomic DNA sequence of the *S. robustus* and the *B. nototaenia* were stored in the GenBank database with the following accession numbers, accession KX595333 and KX631426, respectively.

Phylogenetic Analysis

To establish evolutionary relationships between *S. robustus* and *B. nototaenia* mitogenomes within the family Cichlidae the complete mitogenome sequence of *S. robustus* and *B. nototaenia* and 13 other species available in GenBank were used. Both amino acid and nucleotide sequences for each of the 13 PCGs were aligned using default settings and concatenated, which were used for phylogenetic analysis through the Maximum Likelihood (ML) and Bayesian inference (BI) methods. Using raxmlGUI v 8.0.26 and MrBayes v 3.2.4, respectively (Ronquist et al., 2012; Silvestro and Michalak, 2012), which allowed different substitution models in individual partitions. Clustal X with default settings were used to align all the genes separately (Thompson et al., 2002). However, GTR + I + G was selected as the appropriate model for the nucleotide sequences by Modeltest 3.7 based on Akaike’s information criterion (AIC) (Beier et al., 2004). MtArt + I + G + F were the appropriate model for the amino acid sequence dataset according to ProtTest 3.4 based on AIC (Abascal et al., 2005). The resulting phylogenetic trees were drawn in Molecular Evolutionary Genetics Analysis (MEGA) version 6.0 (Lewis et al., 1994).

Results and Discussion

Mitochondrial Genome Organization and Composition

The structure of the mitochondrial genome of the newly sequenced *S. robustus* and *B. nototaenia* are similar to those of other cichlids characterized so far example., *F. rostatus*, and *A. geoffroyi* (Qi et al., 2016), they have the same types, number, and genomic features. The sequence data were deposited in GenBank under accession KX595333 and KX631426, respectively. The complete mitochondrial genomes were 16,583 bp long for *S. robustus* and 16,580 bp long for *B. nototaenia*, both were closed circular DNAs. The two species contain 13 protein-coding genes (ATP6, ATP8, Cytb, Cox1-3, ND1-6, and ND4L), 22 interspersed transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes (s-rRNA and l-rRNA), and one control region (CR; also termed displacement loop region or D-Loop) (Table 1). Among these genes, 28 including 12 protein-coding genes are encoded on the H-strand and the remaining 9 genes including one protein-coding gene are encoded on the L-strand (ND6, Gln, Ala, Asn, Cys, Try, Ser, Glu, and Pro). The overall base composition of the mitochondrial genome is highly similar between these two species: A=4,555 (27.47%), G = 2,599 (15.67%), T = 4,414 (26.62%) in *S. robustus* and A=4,555 (27.47%), G = 2,624 (15.83%), T = 4,409 (26.59%) in *B. nototaenia*, whereas C = 4,993 (30.11%) in both species. However, the C content is relatively lower when compared with
TABLE 1 | Characteristic constituents of the mitochondrial genome organization of *S. robustus* and in *B. nototaenia*. H and L refer to the heavy and light strand, respectively.

Feature	Strand	Position Start/End	Length	Codon Start/Stop	G+C%	GC Skew	RNAstructure energy	Position Start/End	Length	Codon Start/Stop	G+C%	GC Skew	RNAstructure energy	
tRNA-Phe	H	1/69	69			−14.8		1/69	69			−14.9		
tRNA	S+RNA	70/1010	341					70/1010	941					
tRNA-Val	H	1013/1084	72			−17.7		1013/1084	72			−11.2		
tRNA	I-Rna	1085/2760	1,676					1085/2766	1,682					
tRNA-Leu	H	2778/2851	74			−18.6		2776/2849	74			−18.6		
Nad1	H	2852/3826	975				−14.8		2850/3824	975			−0.40299	
tRNA-11e	H	3830/3899	70			−17.9		3828/3897	70			−17.9		
tRNA-Gln	L	3899/3969	71			−17.1		3897/3967	71			−17.1		
tRNA-Met	H	3969/4037	69			−10.3		3967/4035	69			−10.3		
Nad2	H	4038/5084	1,047			−0.50826		4036/5082	1,047			−0.50826		
tRNA-Trp	H	5084/5155	72			−27.2		5082/5153	72			−27.2		
tRNA-Ala	L	5157/5225	69			−12.6		5155/5223	69			−12.6		
tRNA-Asn	L	5227/5299	73			−21.2		5225/5297	73			−21.2		
tRNA-Oys	L	5335/5401	67			−19.2		5333/5399	67			−19.2		
tRNA-Tyr	L	5402/5471	70			−19.7		5400/5469	70			−20.2		
Cox1	H	5473/7062	1,590			−0.21096		5471/7063	1,593			−0.20765		
tRNA-Ser	L	7066/7136	71			−17.7		7064/7134	71			−17.7		
tRNA-Asp	H	7140/7212	73			−23.3		7138/7210	73			−23.3		
Cox2	H	7218/7916	699			−0.26246		7216/7914	699			−0.27687		
tRNA-Leu	H	7909/7982	74			−14		7907/7980	74			−15		
Atp8	H	7984/8151	168			−0.46667		7982/8149	168			−0.49333		
Atp6	H	8142/8825	684			−0.46888		8140/8823	684			−0.46012		
Cox3	H	8825/9664	840			−0.3075		8823/9662	840			−0.30102		
tRNA-Gly	H	9609/9680	72			−14.4		9607/9678	72			−14.4		
Nad3	H	9681/10031	351			−0.39474		9679/10029	351			−0.39474		
tRNA-Arg	H	10030/10098	69			−10.7		10028/10096	69			−10.6		
Nad41	H	10099/10395	297			−0.46207		10097/10393	297			−0.44444		
Nad4	H	10389/11774	1,386			−0.38605		10387/11772	1,386			−0.38605		
tRNA-His	H	11170/11838	69			−8.2		11168/11836	69			−9.6		
tRNA-Ser	H	11839/11905	67			−14.8		11837/11903	67			−14.8		
tRNA-Leu	H	11910/11982	73			−16.6		11908/11980	73			−16.4		
Nad5	H	11983/13821	1,839			−0.42572		11981/13819	1,839			−0.42322		
Nad6	L	13818/14339	522			−0.55118		13816/14337	522			−0.54941		
tRNA-Glu	L	14340/14408	69			−10.5		14340/14408	69			−10.5		
Cob	H	14413/15609	1,197			−0.36968		14411/15607	1,197			−0.36395		
tRNA-Thr	H	15554/15625	72			−20.7		15552/15623	72			−20.7		
tRNA-Pro	L	15626/15695	70			−24.9		15624/15693	70			−22.3		
D-loop	H	15696/16583	888					15694/16580	887					
TABLE 2 | List of species used in this study and their corresponding accession numbers included in phylogenetic and comparative analyses.

Species	Kingdom	Phylum	Class	Order	Family	Genus	NCBI ID
Amblyraja radiata	Metazoa	Chordata	Chondrichthyes	Rajiformes	Rajidae	Amblyraja	NC_000893
Halocynthia roretzi	Metazoa	Chordata	Ascidiaea	Stolidobranchia	Pyuridae	Halocynthia	NC_002177
Huso dauricus	Metazoa	Chordata	Actinopteri	Acipenseriformes	Acipenseridae	Huso	NC_023837
Huso huso	Metazoa	Chordata	Actinopteri	Acipenseriformes	Acipenseridae	Huso	NC_005252
Hypoatherina tsurugae	Metazoa	Chordata	Actinopteri	Atheriniformes	Atherinidae	Hypoatherina	NC_004386
Menidia menidia	Metazoa	Chordata	Actinopteri	Atheriniformes	Atherinopsidae	Menida	NC_011174
Alticorpus geoffreyi	Metazoa	Chordata	Actinopteri	Cichliformes	Cichlidae	Alticorpus	NC_028033
Copadichromis quadrimaculatus	Metazoa	Chordata	Actinopteri	Cichliformes	Cichlidae	Copadichromis	KX272653
Coptodon zillii	Metazoa	Chordata	Actinopteri	Cichliformes	Cichlidae	Coptodon	NC_026110
Fossorochromis rostratus	Metazoa	Chordata	Actinopteri	Cichliformes	Cichlidae	Fossorochromis	NC_028089
Hemitilapia oxyrhynchus	Metazoa	Chordata	Actinopteri	Cichliformes	Cichlidae	Hemitilapia	KX594381
Leithrinops leithinus	Metazoa	Chordata	Actinopteri	Cichliformes	Cichlidae	Leithrinops	KX595334
Placidochromis longimanus	Metazoa	Chordata	Actinopteri	Cichliformes	Cichlidae	Placidochromis	NC_028156
Serranochromis robustus	Metazoa	Chordata	Actinopteri	Cichliformes	Cichlidae	Serranochromis	KX595333
Buccochromis nototaenia	Metazoa	Chordata	Actinopteri	Cichliformes	Cichlidae	Buccochromis	KX631426

TABLE 3 | Base composition of AT and GC skew of the mitochondrial genome.

Species	Length(bp)	A	T	C	G	A%	T%	C%	G%	A+T%	G+C%	AT skew	GC skew
Serranochromis robustus	16,583	4577	4414	4993	2599	27.60	26.62	30.11	15.67	54.22	45.78	0.0181	-0.315331928
Buccochromis nototaenia	16,580	4555	4409	4992	2624	27.47	26.59	30.11	15.83	54.07	45.93	0.0163	-0.31092437

P. managuensis (31.0%) (Liu et al., 2016). An illustration of the complete mitochondrial genome of S. robustus and B. nototaenia is shown in Figure 1.

Protein Coding Genes

Protein-coding genes (PCGs) of the mitochondrial genome in S. robustus and B. nototaenia include 7 NDH dehydrogenase subunits (NAD1-6, NAD4l), 3 cytochrome c oxidase subunits (Cox1-3), 2 ATPase subunits (ATP6, ATP8), and one cytochrome b gene (Cob), ranging in size from 168 bp (ATPase6) to 1,839 bp (ND5). Frequently methionine (ATG) is the start codon for most PCGs genes, except for cox1, which utilizes GTG; this is an accepted canonical mitochondrial start codon for vertebrate mitogenomes (Yue et al., 2006; Yan et al., 2016;
The termination codons of the 13 PCG can be classified into distinct types, the stop codons (TAA, AGA, CAT, TTA, and TAG) are utilized in these PCGs, seven PCGs (nd2, atp8, atp6, cox3, nad4l, nd5, cob) are terminated with the typical stop codon TAA, while two PCGs (ND1, ND2) has, (COX2, ND4) has AGA stop codon and (ND6) has stop codon in both species and (COX1) has stop codon in S. robustus, TAA in B. nototaenia. The detection of various stop codon types is common among vertebrate mitochondrial genome, and TAA stop codon appears via post-transcription polyadenylation (Ojala et al., 1981). Twelve of the 13 PCGs are encoded on H-strand, whereas only the nd6 gene is encoded on the L-strand (Table 1). Four reading-frame overlaps were observed in the two species. In S. robustus, 10 nucleotides overlap between ATP8 and ATP6, seven nucleotides overlap between ND4L and ND4, four nucleotides between ND5 and ND6 (opposite strands), and one nucleotide overlap between ATP6 and COX3. The same overlaps were also observed in B. nototaenia. The overlapping of protein-coding genes suggests partial sharing of transcripts among neighboring coding regions, which is commonly found in bony fishes (Montoya et al., 1983).

The total nucleotide length of the 13 PCGs is 11,595 bp long for S. robustus, accounts for 69.92% of the whole lengths, and 11,598 bp long for B. nototaenia accounting for 69.95% of the whole length. The AT and GC skew values of the PCGs of the two species are shown in Table 2. The A+T base composition is 54.22% for S. robustus and 54.07% for B. nototaenia, respectively. These values are higher than the G+C base compositions (45.78% in S. robustus and 45.93% in B. nototaenia). Additionally, the AT skew (0.0181) for the S. robustus mitogenome and (0.0163) B. nototaenia mitogenome are slight greater occurrence of As to Ts, and its GC skew (−0.3153) and (−0.3109), respectively are negative, indicating a higher content of Cs than Gs. Among 13 PCGs examined in both species, the length of ND5 gene (1,839 bp) is the longest, whereas the shortest is ATP8 gene (1,686 bp) (Table 1). Both species contain nucleotide G least frequently in the third codon position. Our result indicates that more Ts and Cs are present in most PCGs, which is consistent with most previous observations (Hwang et al., 2013).

Transfer RNA (tRNA) and Ribosomal RNA (rRNA)

The secondary structures of 22 tRNA genes (typical clover-leaf secondary structure, including three for Leucine, two for Serine and one for each of the other amino acids) in the two fish mitogenomes are showed in Figures 2 and 3. The H-strand encodes Fourteen tRNAs, and the remaining 8 tRNAs are encoded by the L-strand (Table 1). All tRNAs varied in size from 67 bp (tRNA^{Cys}) to 74 bp (tRNA^{Met}) in both species. This tRNA genomic, the molecular structural design is similar in most fish species ever examined such as L. microptera and C. kumu (Cui et al., 2017). Eleven tRNA genes in B. nototaenia species namely, |Ser (7064-7134), Gly (9607-9678), Arg (10028-10096), Phe (1-69), Trp (5082-5153), Gln (3897-3967), Ala (5155-5253), and Tyr (5400-5469)| and nine tRNA genes in S. robustus species namely, |Ser (7066-7136), Gly (9609-9680), Arg (10030-10096), Trp (5084-5155), Tyr (5402-5471), Gln (3899-3969), Ala (5157-5255), Leu (11910-11982), and Val (1013-1084)|, folded into typical clover-leaf secondary structures created by the regions of self-complementarity within tRNA (Figure 2). The data obtained further indicate that all the 22 tRNA genes in both species lack variable loop (Mohanta et al., 2017). The absence of D-arm (D-stem and D-loop) in the secondary structure of these transfer RNA |His (11768-11836), Leu (7907-7980), Asn (5225-5297)| and |His (11770-11838), and Asn (5227-5299)| in B. nototaenia and S. robustus respectively, invariably altered their recognition potentials (Hartl et al., 1993). The formation of tRNA ribosomal complex by Val (1013-1084) in B. nototaenia and Asn (5227-5299) and Leu (7909-7982) in S. robustus during protein biosynthesis and translation will be greatly hindered because of the absence T-arm (T-stem and T-loop) in their secondary structures, since it serves as specialized recognition site (region) in the ribosome. Organisms with tRNA lacking T-loop exhibit a much lower level of aminoacylation and EF-TU-binding than in organisms which have the native tRNA (Griffith et al., 1999).

However, the presence of unpaired 3 bases in the T-loops of |Pro (15624-15693), Cys (5333-5399), and Leu (2776-2849)| and |Cys (5335-5401), and Leu (2778-2851)| in both B. nototaenia
and *S. robustus*, respectively, shows high degree of instability in their T-loops, since the optimal loop length of stability of the T-loop is 7 base pair long (Mohanta et al., 2017). The absence of acceptor's arm in the secondary structures of these transfer RNAs [His (11768-11836) and Met (3967-4035)] and [His (11770-11838), Leu (7909-7982), and Met (3969-4037)] in *B. nototaenia* and *S. robustus*, respectively and Phe (1-69) with short acceptor arm of 2-base long in *S. robustus* may affect their aminoacylation (Schimmel et al., 1993). The presence of unpaired 3-bases in the Anticodon-loops of {Glu (14338-14406), Asp (7138-7210), Pro (15624-15693), Ile (3828-3897), and Cys (5333-5399)} and {Glu (14340-14408), Asp (7140-7212), Pro (15626-15695), Ile (3830-3899), and Cys (5335-5401)} in both *B. nototaenia* and *S. robustus*, respectively show the degree of instability in their anticodon-loops, since the optimal loop length for stability of the Anticodon loop is 5 base pair long.
The presence of two unusual tRNAs secondary structures, one with 4-loops and another without the T-arm and D loops (Leu (7907-7980), and Asn (5225-5297)) and (Leu (7909-7982), and Asn (5227-5299)) were identified in both *B. nototaenia* and *S. robustus*, respectively. The average A+T content of tRNA is 54.07% for *B. nototaenia* and 54.22% for *S. robustus* (Figures 4, 5). The mitochondrial genomes of *S. robustus* and *B. nototaenia* contain two subunits of ribosomal RNA, a small one (s-rRNA) and a large one (l-rRNA) (Figure 6). The two subunits were encoded in the same H strand, like other typical fishes and are separated by tRNAval. The length of the s-rRNA gene is 941 bp long in the two species; the length of the l-rRNA gene is 1,676 bp long for *S. robustus* and 1,682 bp long for *B. nototaenia*.
Non-coding Regions
The non-coding regions in the mitochondrial genomes of *S. robustus* and *B. nototaenia* were flanked by tRNAPro and tRNAThr genes (Table 1). This present observation is quite different from most typical mitogenome, in which non-coding (D-loop) region were located between tRNAPro and tRNAPhe genes (Lee et al., 1995; Yue et al., 2006). In this present study, the D-loop control regions were determined to be 888 and 887 bp in length for *S. robustus* and *B. nototaenia*, respectively. The non-coding region of both species is in agreement with observations in other species, with the D-Loop region divided into three primary domains. The first domain is hypervariable and consists of a termination-associated sequence (TAS), the second domain is the central conserved region, and the third domain comprises of three conserved blocks (CSB1, CSB2, and CSB3) (Kartavtsev et al., 2007).

Phylogenetic Analysis
To confirm the evolutionary position of *S. robustus* and *B. nototaenia*, we built a phylogenetic tree of 15 species of Cichlidae using published mitogenomes based on the concatenated nucleotide alignment of 13 PCGs via BI and ML methods (Figure 7 and Table 3). The results provide an excellent support for the monophyly of each family. This topology is mainly consistent with previously reported phylogenetic studies (Kartavtsev et al., 2007; Chen et al., 2017). The phylogenetic analysis using 13 concatenated mitochondrial protein-coding genes indicates that *S. robustus* and *B. nototaenia* had a broad phylogenetic relationship. However, in comparison with other 15 species of phylum chordate, *{L. lethrinus, H. oxyrhyncha, F. rostratus, B. nototaenia, C. quadrimaculatus, P. longimanus, S. robustus, A. geoffreyi, and C. zilli}* clustered in family Cichlidae, *S. robustus* and *A. geoffreyi* formed an independent monophyletic clade; therefore, the relationship between *S. robustus* and *A. geoffreyi* calls for further investigation. In further comparison with other established mitogenomes of *C. quadrimaculatus* and *P. longimanus*, our findings showed a close relationship between *B. nototaenia, C. quadrimaculatus*, and *P. longimanus* and a lineage of *S. robustus* and *A. geoffreyi* relatively distinct from *B. nototaenia*. This result is concordant with the evolutionary relationships inferred based on phylogenetic analysis.

CONCLUSION
The mitogenomes sequences of the two species (*S. robustus* and *B. nototaenia*) from the family Cichlidae were determined...
and compared alongside with those of other Chordata Species. Their complete mitogenomes indicate typical circular molecules and had similar genome organization and structure as those found in other Cichlids species. The length of the mitogenome sequences of \(S. \) robustus and \(B. \) nototaenia were 16,583 and 16,580 bp, respectively. Each mitogenome consists of a typical structure of 13 PCGs, 2 rRNAs, 22 tRNA genes, and one non-coding region. Similar to other vertebrate mitogenomes, most of the PCGs utilized as their initiation codons, except for \(\text{coxl} \) which utilizes GTG. Additionally, 11 tRNA genes in \(B. \) nototaenia and 9 tRNA genes in \(S. \) robustus species, folded correctly into typical clover-leaf secondary structures created by the regions of self-complementarity with the exception of \{His (11768-11836) and Met (3967-4035)\} and \{His (11770-11838), Leu (7909-7982), and Met (3969-4037)\} in \(B. \) nototaenia and \(S. \) robustus, respectively that lacked the acceptor arm and Phe (1-69) with short acceptor arm of 2-base long in \(S. \) robustus. The presence of two unusual tRNAs secondary structures, one with 4-loops and another without the T-arm and D-loop \{Leu (7907-7980), and Asn (5225-5297)\} and \{Leu (7909-7982), and Asn (5227-5299)\} were identified in both \(B. \) nototaenia and \(S. \) robustus, respectively. All the 22 tRNA genes in both species lacked variable loop. The phylogenetic analysis using 13 concatenated mitochondrial protein-coding genes indicates that \(S. \) robustus and \(B. \) nototaenia had wide phylogenetic relationship. Comparison with other established mitogenomes suggests a close relationship between \(B. \) nototaenia, \(C. \) quadrimaculatus, and \(P. \) longimanus and a lineage of \(S. \) robustus and \(A. \) geoffreyi relatively distinct from \(B. \) nototaenia.

AUTHOR CONTRIBUTIONS

XM, ZL, YS, and DQ conceived and designed the study. MC, AW, LW, NA, CW, ML, MM, and LA conducted the molecular work and data analysis. NA drafted the manuscript. YC, SD, CF, AL, SZ, XC, and YG prepared all figures and tables. ML and LA performed the phylogenetic analyses. EO and ZL analyzed the tRNA and contributed in drafting the manuscript.

ACKNOWLEDGMENTS

This work was sponsored by the National Natural Science Foundation of China (NO. 81500977), National Science Foundation of Jiangsu Province (NO. BK20161154) and and the Key Laboratory of Brain Disease Bioinformation of Jiangsu Province (No. JSBL1505). We thank welcome Trust Sanger Institute (SC) for generating the raw sequencing dates in this study.
REFERENCES

Abascal, F., Zardoya, R., and Posada, D. (2005). ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104–2105. doi: 10.1093/bioinformatics/bti263

Beier, B. A., Nylander, J. A., Chase, M. W., and Thulin, M. (2004). Phylogenetic relationships and biogeography of the desert plant genus Fagonia (Zygophyllaceae), inferred by parsimony and Bayesian model averaging. Mol. Phylogenet. Evol. 33, 91–108. doi: 10.1016/j.ympev.2004.05.010

Bentzen, P., Wright, J. M., Bryden, L. T., Sargent, M., and Zwanenburg, K. C. (1998). Tandem repeat polymorphism and heterolysosome in the mitochondrial control region of redfishes (Sebastes: Scorpaenidae). J. Hered. 89, 1–7.

Boore, J. L. (1999). Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767–1780.

Brand, M. D. (1997). Regulation analysis of energy metabolism. J. Exp. Biol. 200, 193–202.

Cadenas, E., and Davies, K. J. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 29, 222–230. doi: 10.1016/S0891-5849(00)00317-8

Chen, S., Shi, P., Zhang, D., Lu, Z., and Li, L. (2017). Complete mitochondrial genome of Hepatus xiaojiaensis (Lepidoptera: Hepialidae). Mitochondrial DNA A DNA Mapp. Seq. Anal. 28, 305–306. doi: 10.3109/19401736.2015.1180048

Cline, S. D. (2012). Mitochondrial DNA damage and its consequences for mitochondrial gene expression. Biochim. Biophys. Acta 1819, 979–991. doi: 10.1016/j.bbadg.2012.06.002

Cui, L., Dong, Y., Liu, F., Gao, X., Zhang, H., Li, L., et al. (2017). The complete mitochondrial genome of Sebastes bhagonlensis (Sebastes: Scorpaenidae). Mol. Biol. Evol. 34, 151–159.

Cuéllar, J., and Altshuler, S. (2013). RNA folding and model choice across a large model space. Curr. Opin. Genet. Dev. 23, 529–543. doi: 10.1016/j.gde.2013.08.007

Duffy, J. P., and Allendorf, J. F. (2015). Accurate Mitochondrial DNA Assembly and Genotyping with the RADxR tool. Mol. Ecol. Resour. 15, 1261–1270. doi: 10.1111/1755-0998.12532

Elliott, P., and Jordan, M. (2013). The phylogenetic relationships of Spheniscus (Phoebastria, Puffinus, and Spheniscus) are driven by mitochondrial DNA. Mol. Phylogenet. Evol. 74, 372–384. doi: 10.1016/j.ympev.2013.09.029

Felsenstein, J. (1985). Phylogenies from molecular sequences: inference and reliability. Annu. Rev. Ecol. Syst. 16, 59–75. doi: 10.1146/annurev.es.16.110185.000355

Garrigan, D., and Excoffier, L. (2000). A Coalescent-based method for the analysis of population structure and gene flow using DNA sequence data. Genetics 154, 491–503. doi: 10.1534/genetics.154.1.491

Guscetti, T., Rizzi, G., and Tampone, C. (2012). Mitochondrial DNA sequence variations providing evidence for the boar introduction in Italy in the last centuries. J. Hum. Evol. 63, 244–254. doi: 10.1016/j.jhevol.2012.05.002

Hardt, W. D., Schlegl, J., Erdmann, V. A., and Hartmann, R. K. (1993). Role of the D arm and the anticodon arm in tRNA recognition by eubacterial and eukaryotic RNase P enzymes. J. Theor. Biol. 163, 201–214. doi: 10.1006/jtbi.2001.2558

Hardy, W. J., Conroy, J., Howell, W. H., and Kocher, T. D. (1995). Structure and evolution of teleost mitochondrial control regions. J. Mol. Evol. 41, 16–42.

Hartvigsen, R., and Halvorsen, O. (1994). Spatial patterns in the abundance and distribution of parasites of freshwater fish. Parasitol. Today 10, 28–41.

Hwang, D. S., Byeon, H. K., and Lee, J. S. (2013). Complete mitochondrial genome of the freshwater sculpin Cottus koreanus (Scorpaeniformes, Cottidae). Mitochondrial DNA 24, 490–491. doi: 10.3109/19401736.2013.70500

Jellum, M. D. (1970). Plant introductions of maize as a source of oil with unusual distribution of parasites of freshwater fish. Parasitol. Today 13, 57–62.

Qi, D. S., Zhang, S. C., Jiang, J., Zhang, L. Q., Fu, Y. Y., Du, Z. M., et al. (2016). Complete mitochondrial genome of the deep-sea fish, Goniostoma gracile (Teleostei: Stomiiformes): first example of transfer RNA gene rearrangements in bony fishes. Mar. Biotechnol. 1, 416–426.

Mohanta, T. K., Syed, A. S., Ameen, F., and Bae, H. (2017). Novel genomic and evolutionary perspective of cyanobacterial tRNAs. Front. Genet. 8, 2020. doi: 10.3389/fgene.2017.00200

Montoya, J., Gaines, G. L., and Attardi, G. (1983). The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units. Cell 34, 151–159.

Ojala, D., Montoya, J., and Attardi, G. (1981). tRNA punctuation model of RNA processing in human mitochondria. Nature 290, 470–474.

Perna, N. T., and Kocher, T. D. (1995). Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41, 353–358.

Pulling, C. A. (1991). The relationship between critical care nurses’ knowledge about sleep, and the initiation of sleep promoting nursing interventions. Axone 13, 57–62.

Qi, D. S., Zhang, S. C., Jiang, J., Zhang, L. Q., Fu, Y. Y., Du, Z. M., et al. (2016). The complete mitochondrial genome of the Fossorochromis rostratus. Mitochondrial DNA A DNA Mapp. Seq. Anal. 27, 4284–4285. doi: 10.3109/19401736.2015.1082097

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. doi: 10.1093/sysbio/sys029

Sagan, L. (1967). On the origin of mitosing cells. J. Theor. Biol. 14, 25–774.

Salzburger, W., and Meyer, A. (2004). The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics. Naturwissenschaften 91, 277–290. doi: 10.1007/s00114-004-0528-6

Schimmel, P., Giege, R., Moras, D., and Yokoyama, S. (1993). An operational RNA code for amino acids and possible relationship to genetic code. Proc. Natl. Acad. Sci. U.S.A. 90, 8763–8768.

Seehausen, O. (2006). African cichlid fish: a model system in adaptive radiation research. Proc. Biol. Sci. 273, 1987–1998. doi: 10.1098/rspb.2006.3539

Silvestro, D., and Michalak, I. (2012). raxmlGUI: a graphical front-end for RAxML. Biochim. Biophys. Acta 1819, 979–991.

Silvestro, D., and Michalak, I. (2012). raxmlGUI: a graphical front-end for RAxML. Org. Divers. Evol. 12, 1–3. doi: 10.1111/j.1365-2009.2011.00111.x

Smid, A. Y., and Bae, H. (2017). Novel genomic and evolutionary perspective of cyanobacterial tRNAs. Front. Genet. 8, 2020. doi: 10.3389/fgene.2017.00200

Smetnink, J., van den Heuvel, L., and DiMauro, S. (2001). The genetics and pathology of oxidative phosphorylation. Nat. Rev. Genet. 2, 342–352. doi: 10.1038/sj.nrg3006

Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2002). Multiple sequence alignment using Clustal W and Clustal X. Curr. Protoc. Bioinformatics Chapter 2: Unit 2.3. doi: 10.1002/0471250953.bi0203s00

Turner, G. F. (2007). Adaptive radiation of cichlid fish. Curr. Biol. 17, R827–R831. doi: 10.1016/j.cub.2007.07.026
Wei, Y. H. (1998). Oxidative stress and mitochondrial DNA mutations in human aging. *Proc. Soc. Exp. Biol. Med.* 217, 53–63.

Wyman, S. K., Jansen, R. K., and Boore, J. L. (2004). Automatic annotation of organellar genomes with DOGMA. *Bioinformatics* 20, 3252–3253. doi: 10.1093/bioinformatics/bth352

Yan, W., Xiao, X., and Zhang, Y. (2016). Complete genome sequence of the Sporosarcina psychrophila DSM 6497, a psychrophilic Bacillus strain that mediates the calcium carbonate precipitation. *J. Biotechnol.* 226, 14–15. doi: 10.1016/j.jbiotec.2016.03.036

Yang, X., Wang, L., Feng, H., Qi, M., Zhang, Z., Gao, C., et al. (2016). Characterization of the complete mitochondrial genome sequence of *Homalogaster paloniae* (Gastropodiscidae, Trematoda) and comparative analyses with selected digeneans. *Parasitol. Res.* 115, 3941–3949. doi: 10.1007/s00436-016-5160-9

Yue, G. H., Liew, W. C., and Orban, L. (2006). The complete mitochondrial genome of a basal teleost, the Asian arowana (*Scleropages formosus, Osteoglossidae*). *BMC Genomics* 7:242. doi: 10.1186/1471-2164-7-242

Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., et al. (2010). Circulating mitochondrial DAMPs cause inflammatory responses to injury. *Nature* 464, 104–107. doi: 10.1038/nature08780

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Alexander Kenechukwu, Li, An, Cai, Wang, Wang, Chen, Du, Feng, Zhong, Gao, Cao, Wang, Obinna, Mei, Song, Li and Qi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.