shows a peripheral disposition and may protrude from the surface, possibly interacting with other cellular components or with neighbouring neurofilaments. The results presented here indicate that the function performed by the 200K protein is not rigidly required by every neurofilament, and is not needed at all stages of development. It should be possible to correlate the presence and absence of this protein with morphological and physiological attributes of particular neurones, and so elucidate the role of this protein in neuronal dynamics.

We thank E. Debuss for providing monoclonal antibody to the 200K neurofilament protein. G. S. was supported by a postdoctoral fellowship from the Max Planck Society.

Received 8 February; accepted 18 May 1982.

References

[1] Hoffman, P. N. & Lasek, R. J. J. Cell Biol. 66, 351–366 (1975).
[2] Mori, H., Komiy, A. & Kurokawa, M. J. Cell Biol. 82, 174–184 (1979).
[3] Lien, R. K. H., Yen, S.-H., Salomon, G. D. & Shelanski, M. L. J. Cell Biol. 79, 637–645 (1978).
[4] Anderson, B. H. J. Muscle Res. Cell Motility 2, 141–166 (1981).
[5] William, M. & Luo, J. C. J. Cell Biol. 89, 198–205 (1981).
[6] Dahl, D., Ruiger, F., C., Bigi, A., Weber, K. & Osborn, M. Eur. J. Cell Biol. 24, 191–196 (1981).
[7] Yoki, K., Mori, H. & Kurokawa, M. FEBS Lett. 135, 25–30 (1981).
[8] Shaw, G. & Osborn, M. Exp Cell Res. 136, 119–125 (1981).
[9] Debun, E., Flugger, G., Weber, K. & Osborn, M. EMBO J. 1, 41–45 (1982).
[10] Shaw, G., Osborn, M. & Weber, K. Eur. J. Cell Biol. 26, 68–82 (1981).
[11] Dohmen, P. N. & Lasek, R. J. Brain Res. 282, 317–333 (1980).
[12] Thorpe, M., Delacourte, A., Ayers, M., Bullock, C. & Anderton, B. H. Biochem. J. 181, 275–284 (1979).
[13] Delacourte, A., Filiastre, G., Boussette, F., Bierste, G. & Schrevel, J. Biochem. J. 191, 543–546 (1980).
[14] Shechet, G. & Lasek, R. J. J. Neurcum. 38, 1335–1344 (1980).
[15] Mori, H. & Kurokawa, M. Cell Struct. Function 4, 163–167 (1979).
[16] Shaw, G., Osborn, M. & Weber, K. Eur. J. Cell Biol. 24, 20–27 (1981).
[17] Shaw, G. A., Shaw, G. & Weber, K. Exp. Cell Res. 137, 403–413 (1982).
[18] Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, J. J. Biol. Chem. 193, 265–275 (1951).
[19] Towbin, H., Stoebehin, T. & Gordon, J. Proc. natn. Acad. Sci. U.S.A. 76, 4350–4354 (1979).

Virus persistence and recurring demyelination produced by a temperature-sensitive mutant of MHV-4

Robert L. Knobler†, Peter W. Lampert† & Michael B. A. Oldstone*

* Department of Immunopathology, Scripps Clinic and Research Foundation, La Jolla, California 92037, USA
† Department of Pathology, UCSD School of Medicine, La Jolla, California 92039, USA

Mouse hepatitis virus type 4 (MHV-4, the JHM strain), a positive-strand RNA virus of the coronavirus family, is well documented as an inducer of acute and chronic demyelination in mice, as well as subacute demyelination in rats, due to a cytopathic effect on oligodendrocytes. However, experiments to explore the role of virus and host factors in the production of chronic or recurrent demyelinating disease have been limited because MHV-4 usually produces demyelination in conditions that frequently induce a fatal necrotizing encephalomylitis. To circumvent this problem, we have made and selected mutant viruses that caused both a high incidence of demyelination and a low incidence of encephalitis-induced mortality. One such mutant, designated ts8, consistently caused acute demyelination in over 90% of intracerebrally injected 4–5-week-old mice from several susceptible strains within 6–10 days. In addition, ts8 typically did not cause fatal necrotizing encephalitis, showing a low mortality (<5%) when infected with a single dose of the virus. This unique tropism of ts8 for oligodendrocytes, but a limited one for neuronal cells, indicated that ts8 is also useful for delineating specific processes of primary infection and replication in oligodendrocytes, and so elucidate the role of this protein in neuronal dynamics.

Recurrent demyelination, usually occurring in small foci, was evident 365 days after inoculation. This reflected a tendency of this model now allows a detailed study of virus, and physiological attributes of particular neurones, and so elucidate the role of this protein in neuronal dynamics.

Received 8 February; accepted 18 May 1982.

References

[1] Hoffman, P. N. & Lasek, R. J. J. Cell Biol. 66, 351–366 (1975).
[2] Mori, H., Komy, A. & Kurokawa, M. J. Cell Biol. 82, 174–184 (1979).
[3] Lien, R. K. H., Yen, S.-H., Salomon, G. D. & Shelanski, M. L. J. Cell Biol. 79, 637–645 (1978).
[4] Anderson, B. H. J. Muscle Res. Cell Motility 2, 141–166 (1981).
[5] William, M. & Luo, J. C. J. Cell Biol. 89, 198–205 (1981).
[6] Dahl, D., Ruiger, F., C., Bigi, A., Weber, K. & Osborn, M. Eur. J. Cell Biol. 24, 191–196 (1981).
[7] Yoki, K., Mori, H. & Kurokawa, M. FEBS Lett. 135, 25–30 (1981).
[8] Shaw, G. & Osborn, M. Exp Cell Res. 136, 119–125 (1981).
[9] Debun, E., Flugger, G., Weber, K. & Osborn, M. EMBO J. 1, 41–45 (1982).
[10] Shaw, G., Osborn, M. & Weber, K. Eur. J. Cell Biol. 26, 68–82 (1981).
[11] Dohmen, P. N. & Lasek, R. J. Brain Res. 282, 317–333 (1980).
[12] Thorpe, M., Delacourte, A., Ayers, M., Bullock, C. & Anderton, B. H. Biochem. J. 181, 275–284 (1979).
[13] Delacourte, A., Filiastre, G., Boussette, F., Bierste, G. & Schrevel, J. Biochem. J. 191, 543–546 (1980).
[14] Shechet, G. & Lasek, R. J. J. Neurcum. 38, 1335–1344 (1980).
[15] Mori, H. & Kurokawa, M. Cell Struct. Function 4, 163–167 (1979).
[16] Shaw, G., Osborn, M. & Weber, K. Eur. J. Cell Biol. 24, 20–27 (1981).
[17] Shaw, G. A., Shaw, G. & Weber, K. Exp. Cell Res. 137, 403–413 (1982).
[18] Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, J. J. Biol. Chem. 193, 265–275 (1951).
[19] Towbin, H., Stoebehin, T. & Gordon, J. Proc. natn. Acad. Sci. U.S.A. 76, 4350–4354 (1979).
Fig. 2 a, Remyelinated axons were evident at 28 days after infection. They are characterized by thin myelin sheaths around large axonal profiles (see arrows). ×5,760. b, Recurrent demyelination is evident on an axon previously remyelinated (thin myelin sheath around a large axonal profile) shown at 57 days after infection. ×14,400. c, A small focus of demyelination surrounded by intact myelinated axons is shown in a portion of the lateral column of the spinal cord at 365 days after infection. ×576. d, An example of a completely demyelinated axon at 365 days after infection. ×14,400. e, An MHV virion, with its characteristic corona, is demonstrated within a cytoplasmic vacuole, in an oligodendrocyte located near demyelinated axons at 365 days after infection. ×108,000.

The aetiology and pathogenic mechanism(s) of injury in multiple sclerosis, the most common demyelinating disease of man, is unknown. A large body of epidemiological and experimental evidence suggests that this disorder is due to an autoimmune and/or viral disorder. The availability of the ts8 model should help to further our understanding of the pathogenic mechanism and genetic control of virus-induced acute and recurrent demyelination.

We thank Linda A. Tunison and Robert Garrett for technical assistance and Susan Edwards for manuscript preparation. This work was supported by USPHS grants NS 12428 and NS 14068. R.L.K. is a recipient of a postdoctoral fellowship from the National Multiple Sclerosis Society.

Received 15 February; accepted 10 May 1982.

1. Bailey, O. T., Pappenheimer, A. M., Cheever, F. S. & Daniels, J. B. J. exp. Med. 90, 195-212 (1949).
2. Waksman, B. H. & Adams, R. D. J. Neuropath. exp. Neurol. 21, 491-518 (1962).
3. Lampert, P. W., Sens, J. K. & Kinkead, A. J. Acta Neuropath. 24, 76-85 (1973).
4. Weiner, L. P. Archs Neurol. 28, 298-303 (1973).
5. Herndon, R. M., Griffio, D. E., McCormick, V. & Weiner, L. P. Archs Neurol. 32, 32-35 (1975).
6. Stohlman, S. A. & Weiner, L. P. Neurology 31, 38-44 (1981).
7. Nagashima, K., Wege, H., Meyermann, R. & ter Meulen, V. Acta neuropath. 44, 63-70 (1978).
8. Sorensen, O., Perry, D. & Dales, S. Archs Neurol. 37, 478-484 (1980).
9. Haspel, M. V., Lampert, P. W. & Oldstone, M. B. A. Proc. natn. Acad. Sci. U.S.A. 75, 4033-4036 (1978).
10. Lampert, P. W., Haspel, M. V. & Oldstone, M. B. A. in Progress in Multiple Sclerosis Research (eds Bauer, H. J., Poser, S. & Ritter, G.) 35-39 (Springer, Berlin, 1980).
11. Knobler, R. L. et al. J. Neuroimmun. 1, 81-92 (1981).
12. Knobler, R. L., Haspel, M. V. & Oldstone, M. B. A. J. exp. Med. 153, 832-843 (1981).
13. Maugh, T. H. II, Science 195, 667-669, 768-771, 969-971 (1977).