PNe as observational constraints in chemical evolution models for NGC 6822.

Liliana Hernández-Martínez1,2, Leticia Carigi1, Miriam Peña1, and Manuel Peimbert1

1 Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70264, Méx. D. F., 04510 México.
2 Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro No. 1, Puebla, México.
e-mail: lilihe@inaoep.mx; carigi, miriam, peimbert@astroscu.unam.mx

Received xxxxxxxxxxx; accepted xxxxxxxxxxxx

ABSTRACT

Aims. Chemical evolution models are useful for understanding the formation and evolution of stars and galaxies. Model predictions will be more robust as more observational constraints are used. We present chemical evolution models for the dwarf irregular galaxy NGC 6822 using chemical abundances of old and young Planetary Nebulae (PNe) in H ii regions as observational constraints. Two sets of chemical abundances, one derived from collisionally excited lines (CELs) and one, from recombination lines (RLs), are used. We try to use our models as a tool to discriminate between both procedures for abundance determinations.

Methods. In our chemical evolution code, the chemical contribution of low and intermediate mass stars is time delayed, while for the massive stars the chemical contribution follows the instantaneous recycling approximation. Our models have two main free parameters: the mass-loss rate of a well-mixed outflow and the upper mass limit, \(M_{\text{up}} \), of the initial mass function (IMF). To reproduce the gaseous mass and the present-day O/H value we need to vary the outflow rate and the \(M_{\text{up}} \) value.

Results. We calculate two models with different \(M_{\text{up}} \) values that reproduce adequately the constraints. The abundances of old PNe are in agreement with our models and the star formation history derived independently from photometric data. In addition, by assuming a fraction of binaries producing SNIa of 1%, the models fit the Fe/H abundance ratio as derived from A supergiants. The first model (M4C), that assumes \(M_{\text{up}} = 40 \, M_{\odot} \), fits, within errors smaller than 2 \(\sigma \), the O/H, Ne/H, S/H, Ar/H and Cl/H abundances obtained from CELs, for old and young PNe and H ii regions. The second model (M1R), that adopts \(M_{\text{up}} = 80 \, M_{\odot} \), reproduces, within 2 \(\sigma \) errors, the O/H, C/H, Ne/H and S/H abundances adopted from RLs. Model M1R does not provide a good fit to the Cl/H and Ar/H ratios, because the SN yields of those elements for \(m > 40 \, M_{\odot} \) are not adequate and need to be improved (two sets of yields were tried). From these results we are not able to conclude which set of abundances (the one from CELs or the one from RLs) represents better the real abundances in the ISM. We discuss the predicted \(\Delta Y/\Delta O \) values, finding that the value from model M1R agrees better with data for other galaxies from the literature than the value from model M4C.

Key words. galaxies: individual: NGC 6822 (DDO 209) – ISM: Planetary nebulae: general – ISM: H ii regions – galaxies: chemical evolution

1. Introduction

Planetary Nebulae (PNe) constitute one of the most valuable chemical tracers of the past abundances in the interstellar medium (ISM). Their chemical compositions allow us to determine the abundances of some chemical elements present in the ISM when their progenitor stars were born. PNe are produced by stars with initial masses from \(1 \, M_{\odot} \) to \(8 \, M_{\odot} \) and also with a large age spread (from 0.1 to 9 Gyr, Allen et al. 1998). Therefore PN characteristics are important as observational constraints in chemical evolution models, allowing us to improve the inferred chemical history (Hernández-Martínez et al. 2009, hereafter HPCG09; Richer & McCall 2007; Buzzoni et al. 2006; Maciel et al. 2006). Despite the fact that PNe show some bright emission lines, deep observations are needed to determine their physical conditions and accurate chemical abundances, which are based on much fainter lines.

In addition, gaseous nebulae are an important key in the chemical abundances determination of noble gases (e.g., Ne and Ar) and other elements like Cl and, therefore, in the test of stellar yields of these elements. The determination of this type of elements in stars is not so reliable and, in previous papers (e.g., Timmes et al. 1995; Romano et al. 2010; Kobayashi et al. 2011), the authors were not able to test Ne, Cl, and Ar yields, due to the lack of stellar abundances.

The chemical evolution equations (e.g., Tinsley 1974) take into account many physical parameters: galactic infalls, galactic outflows, the initial mass function, the star formation rate, and a set of stellar yields for different masses. Therefore these equations are complex and have to be solved using numerical methods. However they can be simplified assuming the instantaneous recycling approximation (IRA, Talbot & Arnett 1971). For this approximation the lifetimes of all stars more massive than \(1 \, M_{\odot} \) are negligible compared with the age of the galaxies. This approximation allows us to solve the chemical evolution equations analytically. Despite its simplicity, IRA is a good first approximation for elements produced mainly by massive stars (MS), but not for the elements produced partially by low and intermediate mass stars (LIMS).

There are intermediate methods to calculate chemical evolution models, which consist in analytical approximations that consider the delays in chemical enrichment produced by LIMS. Several authors have presented their own analytical approximations (e.g., Serrano & Peimbert 1983; Pagel 1989; Franco & Carigi 2008). They propose some time-delay prescription for
the chemical enrichment produced by LIMS. These time-delay terms make the LIMS to bring out to the ISM the processed nuclear material at a single time after their formation, while the contribution due to MS is instantaneous, like in the IRA approximation.

In this paper we calculate chemical evolution models for the dwarf irregular galaxy NGC 6822 following the method used by Franco & Carigi (2008). This method was modified by Hernández-Martínez (2010) to include numerically infalls, outflows, and star formation rates. Also, in this new code we have increased the number of chemical elements considered, from 5 to 27.

NGC 6822, a galaxy of the Local Group, is located at 460 kpc from the Milky Way (Gieren et al. 2006). It presents a recent increase in the star formation rate as shown by its bright H α regions. These features make it easy to determine the present-day chemical abundances of the ISM. Thus, it is suitable for chemical evolution modeling.

Carigi et al. (2006, hereafter CCP06) performed chemical and photometric evolution models for NGC 6822. Based on a cosmological approach they obtained the gas infall rate adequate to form the galaxy and, based on the photometric properties, they derived a robust star formation history. Their chemical evolution models were built to reproduce the present component of the ISM, as given by the chemical abundances of the H II region HV, determined from recombination lines (RLs).

HPCG09 determined abundances from collisionally excited lines (CELs) for 11 PNe and one H II region. From these data, they confirmed the chemical homogeneity of the present component in the ISM and found the presence of two populations of PNe. Based on these results they built a preliminary chemical evolution model to reproduce the chemical behavior of NGC 6822. One of the aims of this work is to compute detailed chemical evolution models by using the abundances of the ISM past component (represented by PNe) as an additional restriction to the one posed by H II regions to the ISM current component.

Moreover, as it is known that abundances obtained from RLs are larger that those from CELs, by factors of about 2, a problem known as “the abundance discrepancy” (see §5), we also compute models to reproduce the chemical abundances as derived from RLs. Then, by means of these models we try to discriminate between the values of abundances obtained from both methods.

Also, chemical evolution models can be used to constrain the stellar yields, when the model results are compatible with accurate observations. In this work, we try to fit the observed Cl and Ar abundances, and derived SN yields for massive stars.

Furthermore, we also compute the He to O abundance enrichment ratio, ΔY/ΔO (in this expression Y and O are the chemical abundances of He and O, both by mass), which is an important parameter in chemical evolution discussions.

This paper is organized as follows: In §2 we describe the chemical evolution equations used by assuming a time-delay approximation for LIMS. The assumptions for the models are presented in §3. In §4 and §5 we present the results from our models, with observational restrictions obtained from CELs and RLs, respectively. In §6 we discuss the evolution of ΔY vs. ΔO. Finally, in §7 we discuss our results and present our conclusions.

2. Chemical evolution equations with a delayed contribution from LIMS

Franco & Carigi (2008) proposed an analytical solution for the chemical evolution equations, by considering that the enrichment produced by LIMS is delayed by the lifetime, τ, of a representative mass, while the MS enrich instantaneously the ISM. This solution was built only for a star formation rate proportional to the gas mass in a closed box model. They obtained results very similar to those found from numerical models that consider the lifetime of each star. Franco & Carigi studied the evolution of five elements: H, He, C, N, O, and the metallicity Z.

Following the prescription given by Franco & Carigi (2008), we developed a numerical code which solves the differential equations of the evolution of the gas mass $M_{\text{gas}}(t)$ (eq. 1), and the evolution of the chemical abundance by mass in the ISM for the element i, $X_i(t)$ (eq. 2), respectively (Hernández-Martínez 2010).

This numerical code can solve 27 chemical species (H, He, C, N, O, F, Ne, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) for which we have a good collection of Z dependent integrated yields for LIMS (Y_{lims}), MS (Y_{ms}) and Type II supernovae, SNIa (Y_{snia}), for 6 initial stellar metallicities ($Z_i = 1.0 \times 10^{-8}, 1.0 \times 10^{-7}, 1.0 \times 10^{-6}, 4.0 \times 10^{-6}, 8.0 \times 10^{-6}, \text{and } 2.0 \times 10^{-5}$). These yields are described in detail in section 3.

In the delayed approximation the evolution of the gaseous mass is given by:

$$\frac{dM_{\text{gas}}(t)}{dt} = -(1 - R_m)\psi(t) + R_{\text{lims}}\psi(t - \tau_m) + f(t) - w(t),$$ (1)

here, R_m and R_{lims} are the masses returned to the ISM by massive and low-intermediate mass stars, respectively. τ_m is the time delay of LIMS for their total gas ejection to the ISM, and $\psi(t)$, $f(t)$ and $w(t)$ are the star formation, accretion and outflow rates as function of time, respectively.

In addition, the evolution of the gaseous mass in element i is:

$$\frac{dX_i(t)M_{\text{gas}}(t)}{dt} = -X_i(t)\psi(t) + E_i(t) + X_i^\prime(t)f(t) - X_i^\prime(t)w(t),$$ (2)

where, $X_i^\prime(t)$ and $X_i^\prime(t)$ are the abundances (by mass) of element i in the gas accreted and in the gas expelled from the galaxy, respectively. $E_i(t)$ is the gas rate, in the element i, returned to the ISM by MS, LIMS, and SNIa that die at a time t_i, and it is calculated by:

$$E_i = [R_{\text{ms}}X_i(t) + y_{\text{lims}}]\psi(t) + [R_{\text{lims}}X_i(t - \tau_i) + y_{\text{lims}}]\psi(t - \tau_i) + y_{\text{snia}}\psi(t - \tau_{\text{snia}}),$$

here, τ_i is the time delay when the group of LIMS enrich the ISM with the element i (see Franco & Carigi 2008) and τ_{snia} is the time delay of SNIa to pollute the gas mass of the galaxy.

In Appendix A we present, for the six initial stellar metallicities and two different upper mass limits of the initial mass function, τ_m, τ_i, R_{ms}, R_{lims}, y_{ms}, y_{lims}, and y_{snia} for the elements considered in this work.

3. Assumptions of the Chemical Evolution Models

In the following we describe in detail the assumptions included in our models.

1) We adopt the mass accretion rate proposed by CCP06, which was tailored to NGC 6822 from cosmological models of galaxy formation. Therefore, the accretion history is a better approximation for this galaxy than simple parametric equations. CCP06 described two families of cosmological models for the increase of baryonic mass: S (small-infall) and L (large-infall).
We have chosen the L-models because they adjust better the observational constrains presented by CCP06 (the S-models predict higher enrichment in O/H and C/H than the L-models). In addition, we have parametrized the accretion history of the baryonic mass as a function of time, derived by CCP06. Such a parametrization, which is used for our chemical evolution models, is presented in Fig. 1 (upper panel) and it is given by the expression:

\[f(t) = 131.4(e^{-0.31t} - e^{-0.32t}) \times 10^8 M_\odot \text{Gyr}^{-1}. \]

(3)

The accreted material is assumed to be primordial, that is, with a chemical composition given by: X = 0.752, Y = 0.248, and Z = 0.000 as derived from WMAP observations by Dunkley et al. (2009) and for metal poor irregular galaxies by Peimbert et al. (2007a).

2) We consider the history of the star formation rate (SFR) derived for NGC 6822 by CCP06 based on observed color-magnitude diagrams and photometric evolution models (Fig. 1 bottom panel). Interestingly it is observed that the accretion mass history (shown in the upper panel of Fig. 1) and the SFR do not follow the same trend and seem to be in contradiction in the last 3 or 4 Gyr, when the accretion diminishes while the SFR increases abruptly. It should be considered however that the SFR should not follow the gas accretion closely as this accretion is only one of the mechanisms for increasing the SFR. On large scales, the formation of stars is controlled by an interplay between self-gravity and supersonic turbulence, operating on the gas already accreted. It is not clear how star formation bursts are triggered in dwarf galaxies but, for NGC 6822, Gouliermis et al. (2010) suggest that turbulence on kpc scales is the major agent regulating star formation. Several mechanisms have been proposed as able to produce turbulence in large scales. In particular, for NGC 6822, a possible mechanism, that could have triggered at least the increase in the SFR during the last 100-200 Myr, has been found in the presence of an apparently independent stellar structure called the “northwestern” companion, which is considered to be currently interacting with the main body of NGC 6822 and causing the tidal arms in the southeast of the galaxy (de Block & Walter 2000, 2003). If such an interaction occurred in the past (which is possible if the northwestern companion is a satellite nearby NGC 6822) it could have been the mechanism for triggering different starbursts in NGC 6822.

3) We use the initial mass function (IMF) of Kroupa et al. (1993), in the 7.5 – 10 M_\odot mass range for Z < 10^{-5} and in the 0.1 – 3 M_\odot mass range for Z > 10^{-5}. M_up is a free parameter adjusted to reproduce the observed O/H abundance ratio.

4) We assume different stellar yields, dependent on initial stellar mass (m) and on initial stellar metallicity Z_i, provided by different authors. However they do not cover all the mass range. In the case of LIMS, we have a complete library from 1 M_\odot to 6 M_\odot and for MS, the mass range covered goes from 9 M_\odot to 80 M_\odot. In order to fill the mass gap (from 6 M_\odot to 9 M_\odot), we proceed as follows: for the 6 < m/M_\odot < 7.5 mass range we assigned the stellar yield values given by mass fraction (p_i) of the 6 M_\odot star. In the same way, for the 7.5 < m/M_\odot < 9 mass range we assigned the p_i values of the 9 M_\odot star.

Specifically.

4.1) For LIMS we adopt the stellar yields by Karakas & Lattanzio (2007), and the integrated yields used by our model are given by:

\[\psi_{\text{LIMS}} = \int_{M_\odot}^{7.5 M_\odot} m p_i(m) IMF(m) dm. \]

(4)

The results for ten elements, five initial stellar metallicities, and two different M_up values are presented in Tables 4 and 5.

4.2) For MS, we consider the stellar yields obtained from models for the pre-SN stage and the SN stage. The pre-SN yields are taken from the work of the Geneva group (Maeder 1992; Meynet & Maeder 2002; Hirschi et al. 2005; Hirschi 2007). The SN yields are taken from Woosley & Weaver (1995) adopting their models B for the 12 - 30 M_\odot range and their models C, for the 35 - 40 M_\odot range. We combine the Geneva group yields with the Woosley & Weaver yields using the prescription proposed by Carigi & Hernandez (2008) where they connect the mass of the carbon-oxygen cores (M_{CO}) from the Geneva group to M_{CO} from Woosley & Weaver, using the prescription given by Portinari et al. (1998). Under these assumptions the He, C,
The chemical abundances of several H ii regions, determined by diverse authors from collisionally excited lines (not corrected for dust depletion) were compiled by HPCG09, with the exception of C/H that comes from Peimbert et al. (2005). The average O/H abundance of those H ii regions is \(12+\log(O/H)=8.08\pm0.05\), and HPCG09 found no evidence of chemical inhomogeneities in this galaxy for the H ii regions located in a central area of about 3 kpc in diameter. In this work we will include a correction due to depletion in dust grains, by adding 0.08 dex to the O gaseous abundances of H ii regions, correction suggested by Peimbert et al. (2005) as adequate for NGC 6822. From this we obtain \(12+\log(O/H)=8.16\pm0.05\). On the other hand, from A-type supergiant stars, Venn et al. (2001) derived the chemical abundance of iron to be \(12+\log(Fe/H)=7.01\pm0.20\). These data will be used as observational constraints for the present component of the ISM.

In addition, HPCG09 obtained the chemical abundances of 11 PNe. They found that some of them are relatively young and their average O/H ratio \((12+\log(O/H)=8.11\pm0.10)\) is similar to the one of H ii regions. We tag these PNe as ‘young PNe’. Besides, there is a sample of PNe with much lower O, showing an average of \(12+\log(O/H)=7.72\pm0.10\). We tag these PNe as ‘old PNe’. The chemical abundances of both groups will be used in the chemical evolution models, as additional constraints corresponding to the past and recent-past component of the ISM. No correction for dust is considered for PNe.

At the bottom of Table 1 we present the O/H, N/O, Ne/O, S/O, C/O, and Ar/O abundance ratio averages for the best determined H ii regions (the correction for dust is included), young PNe and old PNe. There is no observational value for C/H obtained from CELs, so there is no observational constraint for C/O. Following Allen et al. (1998), we will assume the following ages for the two PN groups: between 0.1 and 1 Gyr for the young PN population and between 3 and 9 Gyr for the old one. The present age of the galaxy is assumed to be 13.5 Gyr. Also in this table we present the Fe/H value by Venn et al. (2001) from A-type supergiants. Since most of the Fe in H ii regions and PNe is trapped in dust grains (Peimbert & Peimbert 2010; Shields 1978; Delgado-Inglada et al. 2009) we do not present the gaseous Fe/H abundance. In this table we are not showing either He, C and N abundances for PNe because PN progenitors modify strongly these element abundances during their evolution, thus He, C and N abundances in the PN envelopes are not representative of those values in the ISM at the formation time of PN progenitors and cannot be considered as constraints for a chemical evolution model. Moreover, Cl abundances of PNe are not shown in Table 1, because they were not determined by HPCG09.

4. Models for abundances derived from collisionally excited lines

4.1. Observational constraints

NGC 6822 has been well studied along the years by different authors, therefore good observational constraints can be found in the literature. For instance, CCP0 derived its total dynamic, total baryonic, and gaseous masses. They amount to \(M_T = (2.0\pm0.5)\times10^{10} M_\odot\), \(M_{bar} = (4.3\pm0.2)\times10^8 M_\odot\) and \(M_{gas} = (1.98\pm0.2)\times10^8 M_\odot\), respectively.
in columns from 6 to 13, the predicted abundance ratios at the different times. As we mentioned in §4.1, in the three rows at the bottom of this table, we include the observed values for H ii regions, young PNe and old PNe, which are used as observational constraints.

For model M1C we adopted an M_{up} of 60 M$_\odot$ for the IMF (equal to the value adopted by CCP06 in their best model), and we did not include any outflow. From Table I it is evident that M1C grossly fails to fit M_{gas} as it predicts a gas mass \sim4.5 times higher than the observed value.

Thus, to reduce the enormous difference between the M_{gas} predicted by model M1C and the observed value, we have computed model M2C with a well-mixed outflow during the early history of the galaxy. This was originally proposed by CCP06 who computed the evolution of gaseous thermal energy in the galaxy provided by the SFR, under the assumption of no gas outflow (see their Fig. 5). They demonstrated that the accumulated thermal energy is much larger than the present binding energy, therefore much of that energy should have been thrown away through galactic winds. CCP06 gave several arguments to explain why the outflows, needed to eliminate this excess in thermal energy, likely occurred in the first few billion years of evolution ($t < 5$ Gyr) when the galaxy was less bounded (note that the binding energy of a galaxy is also a function of time and in the hierarchical cosmology, the potential wells of galaxies for a given present mass, were shallower in the past). The gas outflow should have stopped when the binding and thermal energy came to an equilibrium.

In our model, the well-mixed galactic wind is turned-on at t=1.2 Gyr, when the star formation starts and it lasts 5.3 Gyr, the time necessary for the ejected mass to be the maximum possible, leaving the minimum amount of gas required to maintain the SFR. During the wind phase, a value $\nu = 6.67$ in the outflow rate equation (Eq. 7) was required. The evolution of the total baryonic mass and the gaseous mass in the galaxy, as a function of time, is shown in Fig. 2. M_{up} These to quantities are directly related with the infall, SFR and galactic wind. The dashed line is the time evolution of the M_{gas} (Eq. 1) and the solid line in the time evolution of the total baryonic mass ($dM_{bar}/dt = f(t) - w(t)$).

The present-time O/H value predicted by model M2C is 4 σ higher than the observed values in H ii regions. Similarly the ISM O/H ratio found at $t=12.9$ Gyr is 2 σ higher than the observed values of the young PN population, and for the old PN population, the predicted ISM O/H value at $t=7.5$ Gyr is 2.6 σ higher than observed (see Table I).

Therefore, to better reproduce the O/H abundance ratios we constructed model M3C, by adding selective winds to the assumptions of model M2C. A selective wind, where only the material produced by MS is expelled to the IGM, might have been caused by the presence of a notable increase in the star formation rate in the last 600 Myr, as reported by CCP06 and Gouliermis et al. (2010, and references therein). Model M3C required a selective wind between 12.5 and 13.5 Gyr in order to reproduce the current O/H value given by H ii regions. Therefore this model is identical to model M2C for $t<12$ Gyr, but reproduces well the observed O/H ratio and it also reproduces well the O/H values for both PN populations. For the other elements which are produced by MS (Ne, Ar, Cl and S) the predicted X/O ratios are similar in both models, unlike those elements partially produced by LIMS (C and N), for which the abundance ratios relative to O are slightly larger than in M2C due to the loss of metals produced by MS in the selective wind phase (see Table I). Although model M3C succeeds in fitting the observed O/H abundances, we do not consider it a satisfactory model because the physical mechanism to produce a 1 Gyr selective wind, where all chemical elements ejected by all MS are expelled to the IGM before they can mix with the ISM, is unlikely.

Then, to fit the O/H ratios observed in H ii regions, we proposed a lower value for M_{up}, keeping the other assumptions of model M2C (a similar model was proposed by HPCG09). For model M4C we used an M_{up} = 40 M$_\odot$, including a well-mixed wind, starting at $t=1.2$ Gyr and lasting 5.3 Gyr. Figure 3 shows the evolution predicted by model M4C for O, C, N, Ne, S, Cl, Ar and Fe, relative to H, as a function of time. The thick lines (in the eight panels) represent the model results, the symbols represent the average values observed for H ii regions and the two PN populations as explained in the figure caption. We consider model M4C as our best model to reproduce the chemical abundances derived from CELs, therefore we will discuss its characteristics in the following subsection.

4.3. Our best model for abundances from CELs

Model M4C was tailored to fit the observed O/H abundance ratio by reducing M_{up} to 40 M$_\odot$. We find that it also reproduces well the present abundances of the elements heavier than O. This M_{up} may be considered a low value for an IMF; however it seems a plausible value since some authors (e.g., Goodwin & Pagel 2005 and references therein) have argued that dwarf galaxies could have smaller M_{up} values than that of the solar vicinity.

From the time evolution shown in Fig. 3 it is found that for all the elements, the temporal enrichment shows two minima, at 4 and 11 Gyr, due to the dilution caused by the large infall and to the decrease of the SFR (see Fig. 1). respectively. We find that the predicted abundances of all the elements at $t \sim 7$ Gyr agrees with the average abundances of old PNe, whose progenitors were formed at $t = 7.5 \pm 3.0$ Gyr (6.0 \pm3.0 Gyr old). This epoch coincides with the beginning of the second fast enrichment. Furthermore, the recent abundances predicted for all the elements matches within uncertainties (\sim0.1 dex) the average abundances of young PNe, whose progenitors were formed at $t = 12.9 \pm 0.5$ Gyr (0.6 \pm0.5 Gyr old). In addition, Fig. 3 shows that model M4C matches well the H ii region average data of all

![Fig. 2. Evolution of the total baryonic mass evolution (solid line) and gaseous mass (dashed line) used in our models M2C, M3C, M4C, and M1R. A well-mixed galactic wind occurs between 1.2 and 6.5 Gyr. Observational constraints are as in CCP06.](image-url)
elements within \(\sim 1.5 \sigma\) (which corresponds to the uncertainties in abundance determinations), except in the case of N where it fails grossly; this problem is discussed in more detail in the next paragraph. Finally, to fit the observed values of Fe/H, we needed to assume a fraction \(A\text{Fe}\) = 0.01.

We want to remark that the model fails considerably in reproducing the presently observed N/H abundance ratio. This is found in several works on chemical evolution models (e.g., Chiappini et al. 2003; Carigi et al. 2005; Mollá et al. 2006; Romano et al. 2010; Kobayashi et al. 2011). The prediction of our model is 7.4 \(\sigma\) higher than the value observed in H\(\text{II}\) regions, therefore we consider that the N yields for LIMS adopted, in general, for the models have been overestimated.

In order to confirm the results given in the previous paragraphs, in Fig. 4 we present the C/O, N/O, Ne/O, S/O, Cl/O, Ar/O and Fe/O abundance ratios, as a function of 12+log(O/H), predicted by model M4C. Here we show the data for the best observed objects published by HPCG09. H\(\text{II}\) regions are presented as magenta filled circles, young-PNe are represented by green filled squares and old-PNe, by blue filled triangles. The open squares are the two type-I PNe, and the open triangle is PN6 (in HPCG09 nomenclature) catalogued as an old-PNe based mainly on its Ar/H abundance. We want to remark that in this figure we present the most complete set of observational constraints for NGC 6822 to be compared with our chemical evolution model.

In this figure, regarding N/O, we find again that the model predicts to much N (probably due to problems with N yields). Unfortunately, we cannot comment about the C/H abundance because there are no determinations of this element using CELs.

In the case of Ne, all Ne/O ratios in PNe are above the H\(\text{II}\) values and above model predictions. This could be due to the ionization correction factor used to derive Ne (Ne/O = Ne\(^+\)/O\(^+\) is commonly used) which is not adequate for low ionization H\(\text{II}\) regions or low density PNe (Peimbert et al. 1992, 1995b). Ne/O from the model agrees better (within uncertainties) with the values for H\(\text{II}\) regions which means that the Ne and O yields for massive stars up to 40 M\(_\odot\), assumed in our model, are reliable.

For S/O, the comparison is not good. In particular, the model predictions are 2 \(\sigma\) higher than the observed values in young PNe and H\(\text{II}\) regions. The uncertainties in S abundance determinations are very large, in particular for PNe, therefore it is difficult to draw any conclusion, regarding S yields.

For Cl/O our model is in good agreement with the present value of the ISM within the uncertainties. Similarly the evolution of Ar/O agrees, within the uncertainties, with the observational values.

We reproduce the present Fe/H value obtained from A-type supergiant stars by assuming that only 1% of all the stars between 3M\(_\odot\) and 15M\(_\odot\) become SNIa.

5. Models for abundances derived from recombination lines

It is well known that the C\(^+\) and O\(^+\) abundances determined from the faint C\(\text{II}\) and O\(\text{II}\) recombination lines in photoionized nebulae are systematically larger than abundances derived from collisionally excited lines of the same ion (e.g., Rola & Stasinska 1994; Peimbert et al. 1995; Liu et al. 2004; Esteban et al. 2004; Tsamis et al. 2004; Wesson et al. 2005; Peimbert & Peimbert 2011; Simón-Díaz & Stasinska 2011; Tsamis et al. 2011; Carigi & Peimbert 2011). Other ionic abundances such as O\(^+/\text{H}\) and N\(^+/\text{H}\), derived from recombination lines show the same behavior. This problem is known as the ”Abundance Discrepancy” and is generally parametrized by the abundance discrepancy factor (ADF) defined as:

\[
ADF(X^+) = \frac{(X^+/\text{H}^+)_{\text{RL}}}{(X^+/\text{H}^+)_{\text{CEL}}}. \tag{8}
\]

ADFs have commonly values of about 2. Then, trying to discriminate between the abundance ratios obtained from both, CELs and RLs, we have computed a model to reproduce the O/H abundance calculated from RLs and we compared it with our best model based on collisionally excited lines (model M4C).

5.1. Observational constraints

We used the abundances reported by Peimbert et al. (2005), from RLs, for the H\(\text{II}\) region HV. They obtained a value 12 + log(O/H)=8.42±0.06, where this determination includes the correction for dust depletion. Peimbert et al. (2005) considered dust corrections of 0.08 dex for O and 0.10 for C, these corrections have been adopted for H\(\text{II}\) regions throughout this paper. Abundance values for other elements are taken from Table 9 of Peimbert et al. (2005).

On the other hand, there is no abundance determinations based on RLs for PNe in NGC 6822 because these faint lines were not detected in these objects. Thus we have not direct observational constraints based on RLs for the past component of the ISM. Therefore we have used the determinations of chemical abundances derived from CELs as reported by HPCG09 and we have modified them by considering a certain constant value for the ADF. Due to this procedure, the RLs abundances for PNe should be considered only indicative.

Liu et al. (2006) report that for most galactic PNe, ADfs are in the range of 1.6 to 3. Likewise Peimbert et al. (1995a) determined ADFs for many galactic PNe and computed similar ADF values. Therefore we have applied an ADF=2 to the PN abundance determinations from CELs to derive a value for recombination lines. Note that the ratio of any heavy element to O in PNe, is not affected by the ADF correction because the abundances of both elements have been increased by the same amount.

In the bottom part of Table 2 we present the chemical abundances for H\(\text{II}\) regions obtained via recombination lines plus correction due to dust depletion. In addition we present the chemical abundances for the young and old PN populations calculated after using the ADF mentioned above for the abundance values by HPCG09.

5.2. The model

We computed a single chemical evolution model using similar assumptions to those described for model M4C. The model is labeled M1R and it was tailored to reproduce the O/H abundance obtained for the H\(\text{II}\) region HV, from recombination lines.

The same as in model M4C, model M1R required a well-mixed wind, starting at 1.2 Gyr and lasting 5.3 Gyr, to reproduce \(M\text{up}\). Now an \(M\text{up}=80 \text{ M}_\odot\) is needed to reproduce the current O/H value. In Table 2 (top part) we present the gaseous mass and the O/H, C/O, N/O, Ne/O, S/O, Cl/O, Ar/O, and Fe/H ratios predicted by model M1R for different times.

In this model, the computed O/H value at \(t = 7.5 \text{ Gyr}\) is in very good agreement with the adopted value for the old PN population. For the young PN population, the oxygen abundance calculated, is also in very good agreement with the adopted value which is very similar to the one in H\(\text{II}\) regions. To fit the observed Fe/H value we required to adopt, again, \(A\text{Fe}\) = 0.01,
Fig. 3. Chemical evolution of elements in NGC 6822 as predicted by model M4C. To reproduce the observed M_{gas} value and the different heavy element abundances obtained from collisionally excited lines for H II regions, a well-mixed galactic wind lasting from 1.2 to 6.5 Gyr and an $M_{\text{up}}=40 M_\odot$ are assumed in this model. The O/H value of H II regions has been corrected for dust depletion, as explained in §4.1. The filled circles, filled squares, and filled triangles represent the average observational values for H II regions, young, and old PN populations, respectively. The filled star in the Fe/H panel represents the value derived by Venn et al. (2001) for A-type supergiant stars. Observed C/H value is not shown because there is no observed value from CELs.

Fig. 5 shows the time evolution of the element abundances (O, C, N, Ne, S, Cl, Ar, and Fe) relative to H as predicted by model M1R. The thick lines in every panel represent our model results and the symbols are equal to those in Fig. 3. In this model the computed C/H value agrees well with the observational value obtained from RLs. The predicted N/H ratio is slightly closer to the observational constraint than in the model M4C, but it is still 3.6 σ higher than the observed value, again indicating that the N yields for LIMS have to be revised. The predicted evolution of Ne/H shows relatively good agreement with observed values of old PNe but not so good for young PNe and H II regions. In the case of S/H, the predicted evolution is in a good agreement with the PNe observed values but not with observations of H II regions. The predictions for Cl/H and Ar/H are significantly lower than the observed values, in all the cases.

The described behaviors are clearly noticed in Fig. 6 where we present the predicted evolution of the C/O, N/O, Ne/O, S/O, Cl/O, Ar/O and Fe/O abundance ratios as a function of 12+log O/H and the individual values of the best observed objects (see §4.3). In this figure, many of the Ne/O observed values (in particular those of young PNe and H II regions) lie above the predictions, the S/O for H II regions is well predicted within 1σ level. The predicted Cl/O and Ar/O values are $\sim 2\sigma$ lower than the observed values. This latter problem is due to the flat extrapolation assumed for the SN yields for $m > 40 M_\odot$ (see §3). According to Woosley & Weaver (1995), Cl and Ar yields for $m = 40 M_\odot$ are lower than for $m = 35 M_\odot$ and therefore very massive stars would contribute less than massive stars to the ISM enrichment of those elements.

We consider that to make a better comparison between models and observations SN yields for $m > 40 M_\odot$ are necessary. Recall that the yields in this paper for $m > 40 M_\odot$ were extrapolated from the $m = 40 M_\odot$ yields and this extrapolation seems not adequate.

Finally, to fit the observed log $[\text{Fe/H}]=-0.49$ value we adopted $A_{\text{bin}}=0.01$, the same value used for CELs models.

5.3. The stellar yields problem

One of the most important elements in the chemical evolution models are the stellar yields. In the literature there are several works about stellar evolution models that present stellar yields computed from different codes. These stellar models include dif-
Fig. 4. Element abundance ratios relative to O as predicted for model M4C compared to observed values of PNe and H\textsc{\textit{i}}\textit{ii} regions as presented in HPCG09. The O/H abundance of H\textsc{\textit{i}}\textit{ii} regions has been corrected for dust depletion, as explained in §4.1. H\textsc{\textit{i}}\textit{ii} regions are represented by magenta filled circles, young-PNe by green filled squares and old-PNe, by blue filled triangles. The open squares are the two type-I PNe, and the open triangle is PN6 (see text or HPCG09). The magenta filled star in the Fe/O panel represents the value derived by Venn et al. (2001) for A-type supergiants. Observed C/O value is not shown because there is no observational C/H value from CELs.

Moreover, Cl/H and Ar/H values predicted by model M4C are in good agreement with observations, but this is not the case for model M1R. We blame this to the lack of SN yields for masses > 40 M\textsubscript{\odot} and the extrapolation made by us up to 80 M\textsubscript{\odot}. We have to keep in mind that M\textsubscript{up} of the model M4C is equal to 40 M\textsubscript{\odot} and no extrapolation for the yields was needed, while M\textsubscript{up} of M1R is equal to 80 M\textsubscript{\odot} and we have to extrapolate the yields.

Once we have these results, we did an exercise changing only the stellar yields of massive stars. We took the SN yields by Kobayashi et al. (2006) and the pre-SN yields by the Geneva’s group. We kept the rest of assumptions described in §3 and constructed two models, M4Ckoba (solid line) and M1Rkoba (dashed line) presented in Fig 7.

We plot the evolution of the O/H, Ne/H, S/H, Cl/H, and Ar/H in order to compare them with the observations. The predictions for the evolution of Ne/H and S/H abundances are in very good agreement with the observational constraints obtained from RLs only (dashed line and open symbols) but for CELs (solid line and filled symbols) the model predictions are ~ 3\sigma higher. Based on O/H, Ne/H and S/H, Kobayashi et al. (2006) yields produce a good model for observed RLs abundances but not for observed
Fig. 5. Chemical evolution of elements in NGC 6822 as predicted by model M1R. To reproduce the observed M_{gas} value and the different heavy element abundance ratios obtained from RLs for H\textsc{ii} regions, a well-mixed galactic wind lasting from 1.2 to 6.5 Gyr and an $M_{up}=80$ M$_\odot$ are assumed in this model. The observed O/H and C/H values have been corrected for dust depletion, as explained in §4.1. The filled circles, filled squares, and filled triangles represent the average observational values for H\textsc{ii} regions, young, and old PN populations, respectively. The filled star in the Fe/H panel represents the value derived by Venn et al. (2001) for A-type supergiant stars.

6. The $\Delta Y/\Delta O$ ratio and the IMF

Our chemical models predict the evolution of the He and O enrichment, both by mass, known as ΔY and ΔO, as a function of time. For convenience, and to compare with observations the $\Delta Y/\Delta O$ ratio is often used, where ΔO is equal to O and ΔY is equal to $Y - Y_p$. Here Y_p is the primordial He abundance and amounts to 0.248, the value derived from metal poor irregular galaxies and WMAP (Peimbert et al. 2007a; Dunkley et al. 2009). It is well known that ΔY versus ΔO mainly depends on the adopted yields and the IMF.

Fig. shows the ΔY vs. ΔO behavior for our models M4C (solid line, this model reproduces the O/H abundances given by CELs) and M1R (dashed line, reproducing the O/H abundances given by RLs). Both lines show a similar behavior (same form, different slope) which depends mainly on the history of the mass accretion, the variation of the SFR with time, and on the time delays assigned to the LIMS for their contribution to the chemical enrichment of He.

In Fig. the initial slope corresponds to the first epochs of the galaxy, where only infall and IRA from MS are the processes controlling the He and O abundances. The sudden discontinuity

 CELs abundances. If we want to force the M4Ckoba model to reproduce abundances from CELs, we must diminish even more M_{up} in the IMF (M4C has an $M_{up}=40$ M$_\odot$). The Cl/H and Ar/H predictions of both models are lower than the observational constraints, by ~ 0.75 and ~ 0.25 dex, respectively. In order to reproduce the Cl/H and Ar/H observed abundances in H\textsc{ii} regions, the Cl and Ar yields should be 5.6 and 1.8 times higher than those computed by Kobayashi et al. (2006). This is an important result, because previous works that test stellar yields (e.g., Timmes et al 1995; Romano et al. 2010; Kobayashi et al. 2011) cannot check the Cl and Ar yields due to the lack of abundance determinations of these elements in stars of the solar vicinity.

Based on this exercise, we prefer to keep the SN yields by WW for the model reproducing abundances from CELs ($M_{up} = 40$ M$_\odot$). Nevertheless, we prefer the SN yields by Kobayashi et al. (2006) for the model reproducing RLs abundances ($M_{up} = 80$ M$_\odot$) with Cl and Ar yields increased by factors of ~ 6 and ~ 2, respectively.
Fig. 6. Element abundance ratios, relative to O, as predicted for model M1R compared to observed values from recombination lines for the H\textsc{ii} region HV as presented in Peimbert et al. (2005) and the adopted values for PNe, as explained in §5.1. O and C abundances in HV have been corrected for dust depletion, as explained in §4.1. H\textsc{ii} region HV is presented in magenta filled circl, young-PNe are represented by green filled squares and old-PNe, by blue filled triangles. The open squares are the two type-I PNe and the open triangle is PN6 (see HPCG09). The magenta filled star, in the Fe/O panel, represents the value derived by Venn et al. (2001) for A-type supergiant stars.

with a large increase in He, occurs when LIMS start their contribution to the He enrichment of the ISM; these stars mainly produce He but not O. From this point onwards both curves evolve in a continuous increase of He and O, with an almost constant slope, perturbed only by a small loop which occurs when the SFR changes suddenly, in the epoch from 6.3 to 10.5 Gyr (see Fig. 1 bottom). At even later times both curves increase with an apparently constant slope.

Interestingly, although the behavior is similar, both curves showing the same perturbations due to the behavior of the SFR, the slopes are very different. As expected, the slope is larger for M4C, which has \(M_{\text{up}} \) of 40 \(M_{\odot} \), and thus in this model less oxygen is produced. The slope derived for model M4C, considering only the zone from \(\Delta O > 0.5 \times 10^{-3} \), is about 7.2, while for model M1R it is about 3.7.

In Fig. 8 we also include two observational points. The filled square represents the \((\Delta Y, \Delta O) \) values derived from the He\textsc{i} RLs by Peimbert et al. (2005) and the [O\textsc{iii}] CEL (HPCG09) under the assumption of a constant temperature given by the [O\textsc{iii}] CELs. The open square represents the values derived from abundances obtained through He\textsc{i} and O\textsc{ii} RLs, considering the presence of spatial temperature variations. It is observed that, in both cases, \(\Delta O \) is well fitted because the models were tailored to fit O/H. On the other hand, the observed \(\Delta Y \) shows huge uncertainties, because it is very difficult to derive a precise value for He abundances due to: i) the large statistical errors due to the faintness of the lines (represented in the Fig. 8 by the error bars), and ii) the possible presence of neutral He in the observed H\textsc{ii} regions, that would increase the derived \(\Delta Y \) value for both determinations. Both \(Y \) values are derived from RLs, one under the assumption of constant temperature and the other under the assumption of the presence of temperature variations, the second one gives a \(Y \) value smaller than the primordial value probably indicating the presence of neutral helium inside the observed H\textsc{ii} region.

We can compare also the slopes predicted by our models with observational data in the literature. For instance, Izotov et al. (2007) have derived chemical abundances for a large number of H\textsc{ii} galaxies of different metallicities. From these data they derived a slope \(\Delta Y/\Delta O = 3.6\pm0.7 \) or \(3.3 \pm 0.6 \), depending on the He\textsc{i} emissivities used, these numbers have not been corrected by the fraction of O atoms trapped in dust grains. By considering that such dust fraction amounts to 0.08 dex (Peimbert et al. 2005) we obtain from Izotov et al. (2007) data that \(\Delta Y/\Delta O = 3.0\pm0.6 \).
7. Discussion and conclusions

We have developed a code to calculate chemical evolution models for galaxies. The code includes the instant recycling approximation for MS, and a time delay for the contribution of LIMS. Such a time delay has been obtained for each element following the prescription given in Franco & Carigi (2008). Our code also includes the SN1a contribution to the chemical evolution in the galaxy. The code can be used for different SFRs, IMFs, yields, infalls and outflows. It predicts the evolution of 27 elements.

Using this code we calculated chemical evolution models for the dwarf irregular NGC 6822. The main characteristics of the models for this galaxy, are:

- A time dependent infall, parametrized from the one obtained by CCP06 from cosmological considerations, with a primordial abundance given by $X=0.752, Y=0.248$ and $Z=0.000$ (Fig. 1).
- The star formation history derived by CCP06, which is based on the photometric properties of the galaxy (Fig 1).
- The IMF by Kroupa et al. (1993) with different M_{up} values depending on the model.
- A set of metallicity dependent yields for 27 elements including H, He, C, N, O, Ne, S, Cl, Ar, Fe and others.
- 1% of the stars with masses between 3 and 15 M_\odot gives up binary systems and every one of these systems becomes a SN1a. The contribution of SN1a enrich the ISM with a time delay of 1 Gyr after the formation of the SN1a precursor.
- Two types of time dependent outflows can be used: well mixed and selective.

Our models for NGC 6822 were constructed to fit the following observational constraints: a) M_{star}, b) O/H chemical abundances of H ii regions and the Fe/H ratio of A-type supergiant stars representing the current abundances of the ISM, and c) chemical abundances of young (0.6 ± 0.5 Gyr) and old (6 ± 3 Gyr) planetary nebulae representing the abundances of the ISM at the time they were formed. The H ii abundances have been corrected for the fraction of C and O in dust grains. Two sets of chemical abundances were used: those derived from CELs (HPCG09) and those derived from RLs (Peimbert et al. 2005), they differ by an abundance discrepancy factor, ADF, of about 0.26 dex. As the RLs were not observed in PNe, we estimated their RL abundances based on abundances derived from CELs, and adopting an ADF of 2. Thus PNe abundances from RLs are only indicative.

The baryonic total mass captured by the system is given by the gas inflow estimated from cosmological considerations, and the amount of gas transformed into stellar mass is obtained from photometric data. From these two considerations only, the remaining gas turns out to be 4.5 times higher than observed. Therefore to reproduce the observed M_{star} value the models required a well mixed outflow lasting from $t = 1.2$ Gyr (which is the time when the star formation starts) to $t = 6.5$ Gyr (when the gas mass has diminished enough to fit the present gaseous mass but without interrupting the star formation, Fig. 2).

The SFR used in our models was derived from photometric data by CCP06, and it is in good agreement with the abundances obtained for old PNe (HPCG09). These two studies are independent and therefore old PNe data support the SFR based on photometric data.

The two best models obtained to reproduce the present day ISM O/H value required: a) an $M_{up} = 40 M_\odot$ for model M4C, which is based on abundances derived from CELs, and b) an $M_{up} = 80 M_\odot$ for model M1R, which is based on abundances derived from RLs.

Both models reproduce the O/H evolution of the past component of the ISM obtained from young and old PNe. This is par-
particularly true for model M4C based on CELs. This result implies that the adopted SFR, derived from photometric data, describes well the shape of the O/H evolution and that the inferred well mixed wind is consistent with the absolute O/H value.

The O/H ratio depends strongly on the use of RLs or CELs, but since the models are tailored to fit the observed values, it is not possible to decide which abundances are more adequate based on O/H alone.

We have tested the time evolution of other elements (C, N, Ne, S, Cl, Ar and Fe, relative to H). In general, the predictions of model M4C agree with the observations of H II regions and old and young PNe, indicating that the assumptions used for this model are correct and that the SN yields used in the 9 to 40 M☉ range, derived from WW, are adequate.

About 50% of C is produced by LIMS and about 50% by MS in the pre-SN phase. The C/O ratio is well fitted by model M1R, result that implies that the C and O yields are adequate.

On the other hand the time evolution of heavy elements other than O, produced by model M1R, are not always in agreement with the observations. Given that the predicted abundance ratios depend strongly on the yields, the adopted yields can then be tested. The C/O, S/O and Fe/O ratios predicted are in fair agreement with the observations. But since the models are tailored to fit the observed values, it is not possible to decide which abundances are more adequate for the other galaxies than the M4C model. A much more precise abundance determination of the H II regions in NGC 6822 is needed to advance in this topic.

Acknowledgements. We thank the referee Dr. G. Lanfranchi for his comments and suggestions which helped to largely improve this work. We are grateful to Fátima Robles-Valdez for useful discussions. M. Peña is grateful to DAS, Universidad de Chile, for hospitality during a sabbatical stay when part of this work was performed. L. H.-M. benefited from the hospitality of the DAS, Universidad de Chile for this work. L.-H.M. received a scholarship from CONACYT-México and DGAPA-UNAM. M. Peña gratefully acknowledges financial support from FONDAP-Chile and DGAPA-UNAM. This work received financial support from CONACYT-México (grants 60354, 129753) and DGAPA-UNAM (grants IN-112708 and IN-105511).

References

Allen, C., Carigi, L., & Peimbert, M. 1998, ApJ, 494, 247
Bzowski, A., Azzopardi, M., & Corradi, R. L. M. 2006, MNRAS, 368, 877
Carigi, L., Colin, P., & Peimbert, M. 2006, ApJ, 644, 924 (CCP06)
Carigi, L., & Hernández-Martínez, X. 2008, MNRAS, 390, 582
Carigi, L., & Peimbert, M. 2011, RMxAA, 47, 139
Carigi, L., Peimbert, M., Esteban, C., García-Rojas, J., 2005, ApJ, 623, 213
Chauvigné, C., Romano, D. & Matteucci, F., 2003 MNRAS, 339, 63.
de Blok, W. J. G., & Walter, F., 2000, ApJ, 537, 95.
de Blok, W. J. G., & Walter, F., 2003, MNRAS, 341, 39.
Delgado-Inglada, G., Rodríguez, M., Mampaso, A., & Vironen, K. 2009, ApJ, 694, 1335
Dunkley, J., Komatsu, E., Nolta, M. R., et al. 2009, ApJS, 180, 306.
Esteban, C., Peimbert, M., García-Rojas, J., Ruiz, M. T., Peimbert, A., & Rodríguez, M. 2004, MNRAS, 355, 229
Franco, I., & Carigi, L. 2008, RMxAA, 44, 311
Gieren, W., Przybyszewska, G., Nowakowski, K., et al. 2006, ApJ, 647, 1056
Goodwin, S. P., & Pagel, B. E. J. 2005, MNRAS, 359, 707.
Gouliermis, D. A., Schmeja, S., Klessen, R. S., de Blok, W. J. G., & Fabian, W. 2010, ApJ, 725, 1717
Hernández-Martínez, L., Peña, M., Carigi, L., & García-Rojas, J. 2009, A&A, 505 1027 (HPCG09)
Hirschi, R. 2007, A&A, 461, 571
Hirschi, R., Meynet, G., & Maeder, A. 2005, A&A, 433, 1013
Izotov, Y. I., Thuan, T. X., & Storri, O. 2007, ApJ, 662, 15
Karakas, A., & Lattanzio, J. C. 2007, PASA 24, 103
Kobayashi, C., Karakas, A. I., Umeh, H. 2011 MNRAS, 414, 3231
Kobayashi, C., Umeh, H., Nomoto, K., Tominaga, N., Ohkubo, T. 2006 ApJ653, 1145
Kroupa, P., Tout, C. A., & Gilmore, G. 1993, MNRAS, 262, 545
Liu, X.-W., Barlow, M. J., Zhang, Y., Bastin, R. J., & Storey, P.J. 2006, MNRAS, 368, 1959
Liu, Y., Liu, X.-W., Barlow, M. J., & Lou, S.-G. 2004, MNRAS, 353, 1251
Maciej, W. J., Lago, L. G. & Costa, R. D. D., 2006, A&A, 453, 587
Maeder, A. 1992, A&A, 264, 105
Meynet, G., & Maeder, A. 2002, A&A, 390, 561
Mollá, M., Vilchez, J. M., Gavilán, M., Díaz, A. I. 2006 MNRAS7, 1069
Nomoto, K., Iwamoto, K., Nakasato, N. et al. 1997, NuPhA, 621, 467
Pagel, B. E. J. 1989, RMxAA, 18, 161
Peimbert, A., & Peimbert, M. 2010, ApJ, 724, 791
Peimbert, A., Peimbert, M., & Ruiz, M. T. 2005, ApJ, 634, 1056
Peimbert, M., Turidiana, V., & Peimbert, A. 2007a, ApJ, 666, 636
Peimbert, M., Turidiana, V., Peimbert, A., & Carigi, L. 2007b, ASPC, 374, 81
Peimbert, M., & Turidiana, V. & Torres-Peimbert, S. 1995b, RMxAA, 31, 147
Peimbert, M., & Peimbert, A. 2011, RMxAA, in press (arXiv0912.3781).
Peimbert, M., Torres-Peimbert, S., & Turidiana, V. 1995a, RMxAA, 31, 131
Peimbert, M., Torres-Peimbert, S., & Ruiz, M. T. 1992 RMxAA, 24, 155
Portinari, L., Chiosi, C., & Bressan, A. 1998, A&A, 334, 505
Richer, M. G., & McCall, M. 2007, ApJ, 658, 328
Rola, C., & Stasińska, G. 1994, A&A, 282, 199
Romano, D., Karakas, A. I., Toi, M., & Matteucci, F. 2010 A&A, 522, 32
Serrano, A., & Peimbert, M., 1983, RMxAA, 8, 117
Sheilds, G. A. 1978, ApJ, 219, 559
Sinnó-Díaz, S., & Stasińska, G. 2011, A&A, 526, A48
Talbot, R. J. Jr., & Arnett, W. D. 1971, ApJ, 170, 409
Tummes, F. X., Woosley, S. E., Weaver, Thomas A. 1995 ApJSS 98, 617
Tinsley, B. M. 1974, ApJ, 192, 629
Tsamiis, Y. G., Barlow, M. J., Liu, X.-W., Storey, P. J., & Danziger, I. J. 2004, MNRAS, 353, 953

II regions in NGC 6822 is
Tsamis, Y. G., Walsh, J. R., Vilchez, J. M., & Péquignot, D. 2011, MNRAS, 412, 1367
Venn, K. A., Lennon, D. J., Kaufer, A., et al. 2001, ApJ, 625, 754
Wesson, R., Liu, X.-W., & Barlow, M. J., 2005, MNRAS, 362, 424
Woosley, S. E., & Weaver, T. A. 1995, ApJS, 101, 181
Table 1. Models that reproduce abundances calculated via collisional excited lines. The ‘W’ and ‘S’ are for well-mixed and selective wind prescription, respectively.

Model	M_{up} (M$_\odot$)	M_{gas} (109M$_\odot$)	t (Gyr)	O/Ha	log(C/O)	log(N/O)	log(Ne/O)	log(S/O)	log(Cl/O)	log(Ar/O)	log(Fe/O)
M1C	60	8.99									
	-	7.95	13.50	-0.08	-0.44	-0.85	-1.63	-3.87	-2.45	-1.20	
		7.90	12.90	-0.08	-0.43	-0.85	-1.63	-3.87	-2.45	-1.20	
		7.68	7.50	-0.09	-0.39	-0.84	-1.63	-3.89	-2.44	-1.21	
M2C	60 W	2.08									
		8.32	13.50	-0.15	-0.63	-0.88	-1.65	-3.81	-2.47	-1.20	
		8.25	12.90	-0.14	-0.61	-0.88	-1.65	-3.81	-2.46	-1.20	
		7.96	7.50	-0.17	-0.50	-0.87	-1.65	-3.84	-2.45	-1.21	
M3C	60 W-S	2.08									
		8.19	13.50	-0.06	-0.52	-0.88	-1.63	-3.81	-2.46	-1.17	
		8.20	12.90	-0.14	-0.60	-0.88	-1.65	-3.82	-2.46	-1.20	
		7.96	7.50	-0.17	-0.50	-0.87	-1.65	-3.84	-2.45	-1.21	
M4C	40 W	2.08									
		8.13	13.50	0.04	-0.40	-0.87	-1.45	-3.64	-2.27	-1.00	
		8.05	12.90	0.05	-0.37	-0.87	-1.45	-3.64	-2.27	-1.01	
		7.76	7.50	0.02	-0.27	-0.84	-1.43	-3.67	-2.26	-1.00	

Observational constraints

- H ii region, A stars
- PN young
- PN old

a Abundances in units of 12 + log(O/H).
b CCP06.
c Adding 0.08 dex to O gaseous value due to depletion in dust grains.
d Peimbert, Peimbert & Ruiz (2005).
e Fe/H from A-stars by Venn et al. (2001) and CEL O/H from H ii regions.
Table 2. Model that reproduces abundances calculated via recombination lines plus correction for dust depletion. In column 3, ‘W’ is for well mixed wind prescription.

Model	M_{up} (M$_\odot$)	wind	M_{gas} (108M$_\odot$)	t (Gyr)	O/Ha	log(C/O)	log(N/O)	log(Ne/O)	log(S/O)	log(Cl/O)	log(Ar/O)	log(Fe/O)
M1R	80	W	2.08	13.50	-0.24	-0.75	-0.91	-1.74	-3.89	-2.50	-1.29	
				12.90	-0.24	-0.74	-0.91	-1.74	-3.90	-2.56	-1.29	
				7.50	-0.27	-0.63	-0.89	-1.74	-3.93	-2.55	-1.30	

Observational constraints

H$_\alpha$ regions, A stars	$1.98^{+0.20}_{-0.20}$	13.50	8.42±0.06	-0.31±0.13	-1.37±0.17	-0.79±0.09	-1.62±0.09	-3.71±0.10	-2.36±0.08	-1.41±0.20
PN young	12.90±0.50	8.41±0.10	-0.77±0.14	-1.80±0.20	-2.26±0.16					
PN old	7.50±3.00	8.02±0.10	-0.74±0.16	-1.62±0.20	-2.26±0.16					

a Abundances in units of 12 + log(O/H).
b CCP06.
c Peimbert, Peimbert, & Ruiz (2005).
d Fe/H from A-stars by Venn et al. (2001) and RL O/H from H$_\alpha$ regions.
8. Appendix A

In this section we present the returned masses, time delays, and integrated yields for the chemical elements considered in this work.

In Table 3 we show the time delays of LIMS for the returned mass and for the integrated yields of eight chemical elements. These data are independent of the M_{up} value adopted in the IMF, but they are dependent on the initial stellar metallicity Z_i.

The data shown in Tables 4 and 5 were obtained by assuming $M_{up} = 40 \, M_\odot$ and $M_{up} = 80 \, M_\odot$, respectively.
Table 3. Time delay (Gyr) of LIMS.

| Z_i | τ_m | τ_H | τ_N | τ_C | τ_O | τ_S | τ_Fe | τ_He | τ_C | τ_N | τ_O | τ_S | τ_Fe |
|-------------|------|-----|-----|-----|-----|-----|------|------|-------|-------|-------|-------|-------|-------|
| 1.0×10^{-3} | 1.699| 0.630| 0.565| 1.805| 0.212| 0.234| 0.179| 0.790|
| 1.0×10^{-4} | 1.699| 0.630| 0.565| 1.805| 0.212| 0.234| 0.179| 0.790|
| 4.0×10^{-3} | 1.601| 0.409| 0.389| 0.717| 0.102| 0.058| 0.083| 0.205|
| 8.0×10^{-3} | 1.699| 0.365| 0.365| 0.500| 0.095| 0.076| 0.153| 0.184|
| 2.0×10^{-2} | 1.699| 0.254| 0.249| 0.264| 0.168| 0.113| 0.092| 0.166|
Z_\odot	R	Y_H	Y_H	Y_C	Y_N	Y_O	Y_{Ne}	Y_S	Y_{CI}	Y_{NS}	Y_{FZ}
LIMS	1.0×10⁻³	2.034×10⁻¹	-2.252×10⁻²	1.796×10⁻²	2.467×10⁻³	1.593×10⁻³	6.847×10⁻⁵	1.220×10⁻⁷	9.724×10⁻⁸	-	-
	1.0×10⁻⁴	2.034×10⁻¹	-2.252×10⁻²	1.796×10⁻²	2.467×10⁻³	1.593×10⁻³	6.847×10⁻⁵	1.220×10⁻⁷	9.724×10⁻⁸	-	-
	4.0×10⁻⁵	2.035×10⁻¹	-1.175×10⁻²	9.680×10⁻³	1.357×10⁻³	5.579×10⁻⁵	-1.516×10⁻⁵	2.804×10⁻⁶	-2.678×10⁻⁷	-	-
	8.0×10⁻⁵	2.099×10⁻¹	-9.427×10⁻³	7.826×10⁻³	1.059×10⁻³	4.329×10⁻⁴	-3.745×10⁻⁵	1.568×10⁻⁶	-3.084×10⁻⁷	-	-
	2.0×10⁻²	2.132×10⁻¹	-5.768×10⁻³	5.115×10⁻³	2.073×10⁻⁴	4.059×10⁻⁴	-7.928×10⁻⁵	1.690×10⁻⁷	-1.538×10⁻⁷	-	-
MS	1.0×10⁻³	7.975×10⁻¹	-2.367×10⁻¹	1.412×10⁻¹	2.451×10⁻²	1.787×10⁻²	4.602×10⁻²	7.030×10⁻³	1.645×10⁻³	4.226×10⁻⁸	3.318×10⁻⁸
	1.0×10⁻⁴	5.287×10⁻¹	-1.255×10⁻²	8.408×10⁻³	5.677×10⁻⁴	8.739×10⁻⁶	1.887×10⁻³	4.606×10⁻⁴	1.489×10⁻⁴	5.211×10⁻⁷	3.165×10⁻⁵
	1.0×10⁻⁵	5.289×10⁻¹	-1.276×10⁻²	8.310×10⁻³	5.457×10⁻⁴	3.400×10⁻⁵	2.131×10⁻³	4.370×10⁻⁴	1.500×10⁻⁴	8.336×10⁻⁷	3.236×10⁻⁵
	4.0×10⁻⁶	5.289×10⁻²	-1.307×10⁻²	8.127×10⁻³	5.110×10⁻⁴	7.448×10⁻⁵	2.515×10⁻³	3.997×10⁻⁴	1.517×10⁻⁴	1.336×10⁻⁶	3.358×10⁻⁵
	8.0×10⁻⁷	5.287×10⁻²	-1.336×10⁻²	7.655×10⁻³	7.458×10⁻⁴	1.309×10⁻⁴	2.974×10⁻³	4.483×10⁻⁴	1.493×10⁻⁴	1.250×10⁻⁶	3.041×10⁻⁵
	2.0×10⁻⁸	5.282×10⁻²	-1.386×10⁻²	6.922×10⁻³	1.120×10⁻³	2.211×10⁻⁴	3.707×10⁻³	5.261×10⁻⁴	1.458×10⁻⁴	1.109×10⁻⁶	2.531×10⁻⁵

SNIa

- - - - 1.457×10⁻⁶ | 3.501×10⁻⁸ | 4.315×10⁻⁸ | 6.096×10⁻⁷ | 2.538×10⁻⁸ | 4.044×10⁻⁸ | 3.802×10⁻¹² | 1.850×10⁻⁴

* SNIa yields are independent of the initial metallicity.
Table 5. Returned mass and Integrated Yields assuming $M_{ap} = 80 \, M_\odot$.

Z	R	Y_H	Y_{He}	Y_C	Y_N	Y_O	Y_{Ne}	Y_S	Y_Cr	Y_{Ar}	Y_{Fe}
LIMS											
1.0×10^{-3}	2.018×10^{-1}	-2.234×10^{-2}	1.781×10^{-2}	2.447×10^{-3}	1.579×10^{-3}	6.790×10^{-5}	1.210×10^{-3}	9.641×10^{-8}	-	-	-2.018×10^{-6}
1.0×10^{-4}	2.018×10^{-1}	-2.234×10^{-2}	1.781×10^{-2}	2.447×10^{-3}	1.579×10^{-3}	6.790×10^{-5}	1.210×10^{-5}	9.641×10^{-8}	-	-	-2.018×10^{-8}
4.0×10^{-3}	2.039×10^{-1}	-1.165×10^{-2}	9.600×10^{-3}	1.346×10^{-3}	5.531×10^{-4}	-1.503×10^{-5}	2.780×10^{-6}	-2.655×10^{-7}	-	-	-1.776×10^{-6}
8.0×10^{-3}	2.082×10^{-1}	-9.349×10^{-3}	7.761×10^{-3}	1.050×10^{-3}	4.292×10^{-4}	-3.713×10^{-5}	1.555×10^{-6}	-3.057×10^{-7}	-	-	-2.091×10^{-6}
2.0×10^{-2}	2.115×10^{-1}	-5.720×10^{-3}	5.073×10^{-3}	2.055×10^{-4}	4.025×10^{-4}	-7.861×10^{-5}	1.676×10^{-7}	-1.525×10^{-7}	-	-	-1.117×10^{-6}
MS											
1.0×10^{-3}	6.868×10^{-4}	-2.794×10^{-3}	1.535×10^{-3}	3.115×10^{-4}	2.351×10^{-4}	6.784×10^{-2}	8.776×10^{-3}	1.570×10^{-3}	4.052×10^{-6}	3.167×10^{-4}	7.244×10^{-4}
1.0×10^{-5}	6.089×10^{-2}	-1.668×10^{-2}	9.997×10^{-3}	6.676×10^{-4}	9.123×10^{-6}	3.865×10^{-3}	8.106×10^{-4}	1.492×10^{-4}	5.208×10^{-7}	3.164×10^{-5}	5.628×10^{-4}
1.0×10^{-4}	6.956×10^{-2}	-1.686×10^{-2}	9.759×10^{-3}	6.552×10^{-4}	3.807×10^{-5}	4.226×10^{-3}	7.751×10^{-4}	1.493×10^{-4}	8.416×10^{-7}	3.215×10^{-5}	6.192×10^{-4}
4.0×10^{-3}	6.103×10^{-2}	-1.712×10^{-2}	9.350×10^{-3}	6.357×10^{-4}	8.446×10^{-5}	4.791×10^{-3}	7.188×10^{-4}	1.494×10^{-4}	3.304×10^{-5}	7.105×10^{-4}	
8.0×10^{-3}	6.110×10^{-2}	-1.727×10^{-2}	9.075×10^{-3}	1.075×10^{-3}	1.539×10^{-4}	4.749×10^{-3}	7.163×10^{-4}	1.469×10^{-4}	1.286×10^{-6}	2.983×10^{-5}	5.987×10^{-4}
2.0×10^{-2}	6.119×10^{-2}	-1.754×10^{-2}	8.659×10^{-3}	1.776×10^{-3}	2.649×10^{-4}	4.689×10^{-3}	7.120×10^{-4}	1.431×10^{-4}	1.168×10^{-6}	2.467×10^{-5}	4.197×10^{-4}
SNIa											
	-	-	-	1.445×10^{-3}	3.470×10^{-10}	4.278×10^{-3}	6.043×10^{-7}	2.516×10^{-5}	4.009×10^{-8}	3.769×10^{-13}	1.834×10^{-4}

*a SNIa yields are independent of the initial metallicity.