This is the author's version of a work that was submitted/accepted for publication in the following source:

Smith, Graham & Wermuth, Urs D. (2014) Crystal structures and hydrogen bonding in the proton transfer salts of nicotine with 3,5-dinitrosalicylic acid and 5-sulfosalicylic acid. *Acta Crystallographica. Section E: Structure Reports Online*, 70, pp. 430-434.

This file was downloaded from: https://eprints.qut.edu.au/83148/

© Copyright 2014 International Union of Crystallography

License: Creative Commons: Attribution 4.0

Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source:

https://doi.org/10.1107/S1600536814023253
Crystal structures and hydrogen bonding in the proton-transfer salts of nicotine with 3,5-dinitrosalicylic acid and 5-sulfosalicylic acid

Graham Smith and Urs D. Wermuth

Acta Cryst. (2014). E70, 430–434
Crystal structures and hydrogen bonding in the proton-transfer salts of nicotine with 3,5-dinitrosalicylic acid and 5-sulfosalicylic acid

Graham Smith* and Urs D. Wermuth

Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia. *Correspondence e-mail: g.smith@qut.edu.au

The structures of the 1:1 anhydrous salts of nicotine (NIC) with 3,5-dinitrosalicylic acid (DNSA) and 5-sulfosalicylic acid (5-SSA), namely (1R,2S)-1-methyl-2-(pyridin-3-yl)-1H-pyrrolidin-1-ium 2-carboxy-4,6-dinitrophenolate, C_{10}H_{15}N_{2}+C_{7}H_{3}N_{2}O_{7}−, (I), and (1R,2S)-1-methyl-2-(pyridin-3-yl)-1H-pyrrolidin-1-ium 3-carboxy-4-hydroxybenzenesulfonate, C_{10}H_{15}N_{2}+C_{7}H_{5}O_{6}S−, (II), are reported. The asymmetric units of both (I) and (II) comprise two independent nicotinium cations (C and D) and either two DNSA or two 5-SSA anions (A and B), respectively. One of the DNSA anions shows a 25% rotational disorder in the benzene ring system. In the crystal of (I), inter-unit pyrrolidinium N—H/C1/C1/C1Npyridine hydrogen bonds generate zigzag NIC cation chains which extend along a, while the DNSA anions are not involved in any formal inter-species hydrogen bonding but instead form π–π-associated stacks which are parallel to the NIC cation chains along a [ring-centroid separation = 3.857 (2) Å]. Weak C—H/C1/C1/C1O interactions between chain substructures give an overall three-dimensional structure. In the crystal of (II), A and B anions form independent zigzag chains with C and D cations, respectively, through carboxylic acid O—H···Npyridine hydrogen bonds. These chains, which extend along b, are pseudocentrosymmetrically related and give π–π interactions between the benzene rings of anions A and B and the pyridine rings of the NIC cations C and D, respectively [ring centroid separations = 3.6422 (19) and 3.7117 (19) Å]. Also present are weak C—H···O hydrogen-bonding interactions between the chains, giving an overall three-dimensional structure.

1. Chemical context

Nicotine [3-(2S-1-methylpyrrolidin-2-yl)pyridine] is well known as a toxic liquid alkaloid which is found in the leaves of the tobacco plants Nicotiana tabacum and N. rustica (Rodgman & Parfetti, 2009). Because of these properties, nicotine and its compounds have been of commercial interest and have been used in the past as insecticides and as veterinary ectoparasiticides (usually as the sulfate) (Ujváry, 1999), as well as in limited medical applications as the bitartrate (Eudermol) for the treatment of smoking-withdrawal syndrome (Enzell et al., 1977). However, its veterinary use is restricted due to its toxicity with even topical applications, resulting in the total ban on its use in the USA early in 2014.

As a Lewis base, nicotine is potentially capable of forming both monocationic and dicationic species (pK_{a1} = 3.10 and pK_{a2} = 8.01) and the sulfate, dihydrochloride, bitartrate and bipicrate salts have been reported (O’Neil, 2001). However, the only example of a simple dicationic salt in the crystallographic literature is the dihydroiodide (Koo & Kim, 1965). Some metal complexes with the dication as a counter-ion are known, e.g. tetrachloridocopper(II) nicotinate (Choi et al.,...
5-SSA) (pK_a = 2.18) and 3-carboxyl-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid: 5-SSA) (pK_a < 1) are capable of forming salts with most Lewis bases and have been used for the formation of crystalline salts suitable for X-ray analysis, e.g. with 5-SSA (Baskar Raj et al., 2003; Smith et al., 2006) and with DNSA, where the majority of the salts formed are phenolates rather than carboxylates (Smith et al., 2007). The title salts C_{10}H_{15}N_2^+ C_7H_5O_6S^- (I) and C_{10}H_{15}N_2^+ C_7H_3O_7^- (II) were prepared from the reaction of nicotine (NIC) with DNSA and with 5-SSA, respectively, and the structures are reported herein.

2. Structural commentary

In both the nicotinium salts of DNSA (I) and 5-SSA (II), proton-transfer to the pyrrolidine N-atom of nicotine has occurred as expected, generating an N11(R) chiral centre relative to the known C21(S) centre. Also, in both (I) and (II) (Figs. 1 and 2), the asymmetric units comprise two independent NIC cations (C and D) and either, for (I), two DNSA phenolate monoanions or two 5-SSA carboxylate monoanions (A and B) (Figs. 1, 2). With (II), the two independent anion and cation pairs are pseudo-centrosymmetrically related but the presence of the inversion centre is obviated by the fact that both of the NIC cations have the same N11(R), C21(S) absolute configuration.

In (I), the nicotinium C and D cations are conformationally similar but in (II), they are different. However, in both, the pyrrolidinium plane is significantly rotated with respect to that of the benzene ring [the torsion angles C2/C/D/C3/C/D — C21/C/D — N11/C/D are —71.9 (4) (C) and —68.8 (4°) (D) in (I) and —45.7 (4) (C) and 125.7 (3°) (D) in (II)]. This conformation with the two rings anti-planar is usual for cationic nicotine structures, e.g. Arnaud et al. (2007). The substituent carboxyl and nitro groups of the DNSA anions in (I) are essentially coplanar with the benzene ring, with the maximum deviation among the three defining torsion angles for each anion (C2A/B — C1A/B — C11A/B — O2A/B, C2A/B — C3A/B — N3A/B — O32A/B and C4A/B — C5A/B — N5A/B — O52A/B) being for the C3B nitro group [173.7 (3°)]. In the B anion, there is 25% rotational disorder about the C1 · · · C4 ring vector, which generates a second phenolic O-component (O21B). This phenomenon has precedence in DNSA salt structures, e.g. with the nicotinamide salt (Koman et al., 2003; 24% disorder). The C3 nitro group is most often associated with deviation from planarity in the DNSA phenolate salts (Smith et al., 2007) and is the more interactive and sterically crowded group. In the case of (I), the uncommon planarity is probably associated with the presence of anion σ-bonding associations.

With the 5-SSA anions, the carboxylic acid group is essentially coplanar with the benzene ring, which is expected in this salicylic acid species, invariably having the short intramolecular carboxylic acid O—H · · · Ophenol hydrogen bond (Table 2) (Smith et al., 2006). This interaction is also present in the phenolate anion in (I) in which the carboxylic acid H-atom is anti-related (Table 1).

Figure 1

The molecular conformation and atom labelling for the two NIC cations (C and D) and the two DNSA anions (A and B) in the asymmetric unit of (I), with displacement ellipsoids drawn at the 40% probability level. Inter-species hydrogen bonds are shown as dashed lines (see Table 1).

Figure 2

The molecular conformation and atom labelling for the two NIC cations (C and D) and the two 5-SSA anions (A and B) in the asymmetric unit of (II), with displacement ellipsoids drawn at the 40% probability level. Inter-species hydrogen bonds are shown as dashed lines (see Table 2).
3. Supramolecular features

In the supramolecular structure of (I), the two independent NIC cations C and D interact through NIC – H···N11D' and N11D – H···N1IC hydrogen bonds (Table 1), giving zigzag chains extending along a (Fig. 3). With the DNSA anions, there are no formal hydrogen-bonding interactions either between A and B anions or with the NIC chain structures. Instead, these anions form π–π interactions (i) and with anion stacks in the structure of (I), viewed along the stacks in the unit cell.

The alternating hydrogen-bonded C–D cationic columns and π-bonded A–B anion stacks which are bonded links between the two chains, there are π–π interactions between 5-SSA anion A and B benzene rings and C and D NIC cation pyridine rings, respectively [ring-centroid separations = 3.6422 (19) and 3.7117 (19) Å] (Fig. 4). The presence of a number of intermolecular C–H···O hydrogen-bonding interactions to carboxyl, nitro and phenolic O-atom acceptors gives rise to an overall three-dimensional structure.

Table 1 Hydrogen-bond geometry (Å, °) for (I).
\(D - H \cdot \cdot \cdot A \)
O12A – H12A – O2A
O12B – H12B – O2B
N11C – H11C – N1D'
N11D – H11D – N1IC
C2C – H2C – O11A’
C4C – H4C – O31A’
C6C – H6C – O32A”
C11C – H13C – O32B’
C11D – H14D – O51A”
C21C – H21C – O2A’
C21D – H21D – O11B’
C51C – H52C – O11A”

Symmetry codes: (i) \(x, 1, y, z \); (ii) \(x - 1, y + \frac{1}{2}, z + \frac{1}{2} \); (iii) \(x + \frac{1}{2}, y, z \); (iv) \(x + 1, y + 1, z \). (v) \(x, y, 1, z \).

Table 2 Hydrogen-bond geometry (Å, °) for (II).
\(D - H \cdot \cdot \cdot A \)
O2A – H2A – O12A
O2B – H2B – O12B
O11A – H11A – N1D
O11B – H11B – N1C
N11C – H11C – O51B’
N11C – H11C – O53B’
N11D – H11D – O52A”
C2C – H2C – O53B’
C2C – H2C – O52A”
C11C – H12C – O2A’
C11C – H13C – O52B”
C11D – H14D – O51A”
C21C – H21C – O52B”

Symmetry codes: (i) \(-x + 1, y + \frac{1}{2}, -z \); (ii) \(x, y - 1, z \); (iii) \(-x, y, z \); (iv) \(-x + 1, y, -z + 1 \); (v) \(x + 1, y, z \); (vi) \(x + 1, y + 1, z \). (vii) \(x + 1, y + 1, z \).

Figure 3
The alternating hydrogen-bonded C–D cationic columns and π-bonded A–B anion stacks which are parallel to the NIC chains down a [ring-centroid separation = 3.857 (2) Å]. The presence of π–π stacking is unusual in DNSA cation structures. In the crystal, there is a number of intermolecular CC/D – H···O/A/B hydrogen-bonding interactions, which give an overall three-dimensional structure.

In the crystal of (II), the independent A and B 5-SSA anions form carboxylic acid O–H···Npyridine hydrogen bonds with the D and C NIC cations, respectively (Table 2) (see Fig. 2). These cation–anion subunits are then extended into independent chain structures through pyrrolidinium N–H···OSulfonate hydrogen bonds, which with anion C is three-centre (O51B’ and O53B’) and with anion D, linear (O52A”). These give independent zigzag chain substructures which extend along b. Although there are no formal hydrogen-
4. Synthesis and crystallization

The title salts (I) and (II) were prepared by refluxing equimolar quantities of nicotine (160 mg) and the respective acids, 3,5-dinitrosalicylic acid (230 mg) for (I) or 3-carboxy-4-hydroxybenzenesulfonic acid (220 mg) for (II) in 30 ml of ethanol for 10 min, after which room temperature evaporation of the solutions gave, for (I), thin yellow needles and for (II) colourless prisms, from which specimens were cleaved for the X-ray analyses.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms on all potentially intermolecular O—H and N—H groups in all molecular species, were located by difference-Fourier methods but these and the carbon-bound H-atoms were subsequently set as riding on the parent atoms in the refinement in calculated positions [O—H = 0.88, N—H = 0.94, C—H = 0.95–1.00 Å] and with $U_{	ext{iso}}$(H) = 1.5$U_{	ext{eq}}$(O or methyl-C) or 1.2$U_{	ext{eq}}$(C, N).

In both structures, the known C21(S) absolute configuration was invoked. The Flack parameter for (I) [0.2 (16)] has no physical meaning. The absolute structure of compound (II) was confirmed by resonant scattering [Flack parameter = −0.02 (9)].

References

Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
Altmare, A., Cascaran, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
Arnaud, V., Berthelot, M., Evain, M., Graton, J. & Le Questel, J. Y. (2007). Chem. Eur. J. 13, 1499–1510.
Barlow, R. B., Howard, J. A. K. & Johnson, O. (1986). Acta Cryst. C42, 853–856.
Baskar Raj, P., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Boccelli, A., Cantoni, A., Rychlew ska, M. & Warzajtis, B. (2003). CrystEngComm, 5, 70–76.
Choi, S.-N., Lee, Y.-M., Lee, H.-W., Kang, S. K. & Kim, Y.-I. (2002). Acta Cryst. E58, m583–m585.
Enzell, C. R., Wahlberg, I. & Asen, A. J. (1977). Isoprenoids and Alkaloids of Tobacco, in Progress in the Chemistry of Organic Natural Products, Vol. 34, pp. 1–74. Vienna: Springer-Verlag.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
Flack, H. D. (1983). Acta Cryst. A39, 876–881.
Kim, H. S. & Jeffrey, G. A. (1971). Acta Cryst. B27, 1123–1131.
Koman, M., Martiška, L., Valigura, D. & Glowiak, T. (2003). Acta Cryst. E59, o441–o442.
Koo, C. H. & Kim, H. S. (1965). *J. Korean Chem. Soc.* **9**, 134–141.

O’Neil, M. A. (2001). Editor. *The Merck Index*, 13th ed., p. 1169.

Whitehouse Station, NJ: Merck & Co. Inc.

Rodgman, A. & Parfetti, T. A. (2009). In *The Chemical Components of Tobacco and Tobacco Smoke*. Boca Raton, Florida, USA: CRC Press.

Sheldrick, G. M. (2008). *Acta Cryst.* **A64**, 112–122.

Smith, G., Wermuth, U. D. & Healy, P. C. (2006). *J. Chem. Crystallogr.* **36**, 841–849.

Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). *Aust. J. Chem.* **60**, 264–277.

Spek, A. L. (2009). *Acta Cryst.* **D65**, 148–155.

Ujváry, I. (1999). In *Nicotinoid Insecticides*, edited by I. Yamamoto & J. Casida. Tokyo: Springer-Verlag.
Crystal structures and hydrogen bonding in the proton-transfer salts of nicotine with 3,5-dinitrosalicylic acid and 5-sulfosalicylic acid

Graham Smith and Urs D. Wermuth

Computing details
For both compounds, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I); SIR92 (Altomare et al., 1993) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

(I) (1R,2S)-1-Methyl-2-(pyridin-3-yl)pyrrolidin-1-ium 2-carboxy-4,6-dinitrophenolate

Crystal data

C_{10}H_{15}N_{2}^{+}\cdotC_{7}H_{3}N_{2}O_{7}^{-}

F(000) = 1632

D_{x} = 1.470 Mg m^{-3}

Mo Kα radiation, λ = 0.71073 Å

Cell parameters from 1206 reflections

θ = 3.6–22.4°

µ = 0.12 mm^{-1}

T = 200 K

Needle, yellow

0.40 × 0.10 × 0.08 mm

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer

Radiation source: Enhance (Mo) X-ray source

Graphite monochromator

Detector resolution: 16.077 pixels mm^{-1}

ω scans

Absorption correction: multi-scan

(CrysAlis PRO; Agilent, 2013)

T_{min} = 0.807, T_{max} = 0.980

Refinement

Refinement on F^{2}

Least-squares matrix: full

R[F^{2} > 2σ(F^{2})] = 0.072

wR(F^{2}) = 0.122

S = 1.07

6476 reflections

508 parameters

2 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained
supporting information

\[w = \frac{1}{(\sigma^2 F^2_P + 0.0329 P^2)^2} \]

\[\text{where } P = \frac{(F^2_o + 2F^2_c)}{3} \]

\[\Delta \sigma_{\text{max}} = 0.001 \]

\[\Delta \rho_{\text{max}} = 0.44 \text{ e Å}^{-3} \]

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles.

Refinement. Refinement of \(F^2 \) against ALL reflections. The weighted \(R \)-factor \(wR \) and goodness of fit \(S \) are based on \(F^2 \), conventional \(R \)-factors \(R \) are based on \(F \), with \(F \) set to zero for negative \(F^2 \). The threshold expression of \(F^2 > \sigma(F^2) \) is used only for calculating \(R \)-factors(gt) etc and is not relevant to the choice of reflections for refinement. \(R \)-factors based on \(F^2 \) are statistically about twice as large as those based on \(F \), and \(R \)-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å\(^2\))

x	y	z	\(U_{eq} \)	Occ. (<1)	
O2B	0.7440 (5)	-0.0370 (2)	0.16873 (13)	0.0543 (14)	0.750
O11B	0.7783 (6)	-0.17264 (18)	0.06034 (13)	0.0812 (15)	
O12B	0.7503 (5)	-0.16123 (18)	0.13451 (12)	0.0722 (15)	
O31B	0.7213 (6)	0.1013 (2)	0.19951 (11)	0.0867 (16)	
O32B	0.8016 (5)	0.19443 (18)	0.15674 (11)	0.0645 (14)	
O51B	0.9215 (5)	0.16351 (18)	0.00036 (11)	0.0653 (14)	
O52B	0.9011 (5)	0.05377 (19)	-0.03182 (10)	0.0614 (11)	
N3B	0.7691 (5)	0.1272 (2)	0.16280 (13)	0.0440 (14)	
N5B	0.8927 (5)	0.0950 (2)	0.00167 (12)	0.0433 (12)	
C1B	0.7883 (5)	-0.0493 (2)	0.09179 (14)	0.0327 (14)	
C2B	0.7715 (5)	-0.0035 (2)	0.13069 (13)	0.0337 (14)	
C3B	0.7884 (5)	0.0757 (2)	0.12439 (13)	0.0283 (12)	
C4B	0.8272 (5)	0.1069 (2)	0.08283 (13)	0.0300 (11)	
C5B	0.8439 (5)	0.0611 (2)	0.04550 (13)	0.0287 (12)	
C6B	0.8230 (5)	-0.0181 (2)	0.04906 (14)	0.0333 (12)	
C11B	0.7727 (7)	-0.1329 (3)	0.09462 (19)	0.0543 (19)	
O21B	0.8109 (16)	-0.0648 (7)	0.0169 (4)	0.0543 (14)	0.250
O2A	0.2427 (6)	0.14566 (18)	0.18109 (11)	0.0750 (14)	
O11A	0.1135 (5)	0.0131 (2)	0.28861 (10)	0.0655 (14)	
O12A	0.1240 (5)	0.1263 (2)	0.25992 (10)	0.0650 (12)	
O31A	0.3353 (5)	0.1552 (2)	0.09522 (11)	0.0723 (16)	
O32A	0.3389 (5)	0.0535 (2)	0.05553 (11)	0.0784 (15)	
O51A	0.2682 (6)	-0.18960 (19)	0.11877 (14)	0.0817 (16)	
O52A	0.2223 (6)	-0.20342 (18)	0.19127 (14)	0.0889 (15)	
N3A	0.3211 (5)	0.0872 (2)	0.09182 (13)	0.0470 (14)	
N5A	0.2457 (6)	-0.1639 (2)	0.15757 (18)	0.0603 (16)	
C1A	0.2002 (5)	0.0247 (2)	0.21164 (13)	0.0333 (12)	
C2A	0.2429 (5)	0.0748 (2)	0.17458 (14)	0.0333 (14)	
C3A	0.2821 (5)	0.0401 (2)	0.13212 (13)	0.0287 (12)	
C4A	0.2834 (5)	-0.0373 (2)	0.12566 (14)	0.0350 (16)	
C5A	0.2445 (5)	-0.0816 (2)	0.16347 (16)	0.0383 (14)	
C6A	0.2026 (5)	-0.0513 (2)	0.20552 (14)	0.0370 (16)	

Absolute structure: Flack (1983), 2983 Friedel pairs

Absolute structure parameter: −0.2 (16)
C11A 0.1438 (6) 0.0551 (3) 0.25629 (15) 0.0397 (16)
N1C 0.9322 (4) 0.46384 (19) 0.08412 (11) 0.0342 (11)
N11C 1.3932 (4) 0.34882 (17) 0.16230 (10) 0.0325 (10)
C2C 1.0225 (5) 0.4293 (2) 0.11887 (13) 0.0297 (12)
C3C 1.0826 (5) 0.3546 (2) 0.11738 (12) 0.0267 (12)
C4C 1.0488 (5) 0.3140 (2) 0.07781 (13) 0.0367 (12)
C5C 0.9526 (6) 0.3489 (3) 0.04199 (14) 0.0400 (16)
C6C 0.8990 (6) 0.4232 (3) 0.04661 (14) 0.0413 (16)
C11C 1.5274 (6) 0.3279 (3) 0.12449 (13) 0.0437 (17)
C21C 1.1861 (5) 0.3191 (2) 0.15719 (12) 0.0297 (12)
C31C 1.4563 (6) 0.3212 (3) 0.20791 (14) 0.0483 (17)
C41C 1.2739 (7) 0.3266 (3) 0.23712 (14) 0.0563 (18)
C51C 1.0999 (6) 0.3309 (3) 0.20426 (12) 0.0447 (16)
N1D 0.4269 (4) 0.50744 (17) 0.16513 (11) 0.0331 (10)
N11D 0.8855 (4) 0.62248 (19) 0.08623 (11) 0.0349 (11)
C2D 0.5212 (5) 0.5403 (2) 0.13071 (14) 0.0330 (12)
C3D 0.5708 (5) 0.6165 (2) 0.12973 (13) 0.0300 (12)
C4D 0.5191 (5) 0.6592 (2) 0.16646 (14) 0.0373 (14)
C5D 0.4196 (6) 0.6276 (2) 0.20240 (14) 0.0423 (17)
C6D 0.3794 (6) 0.5509 (2) 0.20076 (14) 0.0393 (14)
C11D 1.0141 (6) 0.6465 (3) 0.12373 (14) 0.0507 (16)
C21D 0.6765 (5) 0.6508 (2) 0.08995 (12) 0.0330 (12)
C31D 0.5957 (6) 0.6372 (3) 0.04297 (14) 0.0560 (17)
C41D 0.7691 (8) 0.6443 (3) 0.01105 (15) 0.075 (2)
C51D 0.9507 (7) 0.6480 (3) 0.03995 (14) 0.0557 (17)
H6B 0.83210 −0.04960 0.02280 0.0400* 0.750
H12B 0.73670 −0.12610 0.15360 0.1080* 0.750
H4B 0.84250 0.16020 0.07990 0.0360*
H2B 0.74970 −0.02470 0.16000 0.0410* 0.250
H11B 0.79170 −0.14500 0.03730 0.1220* 0.250
H4A 0.30970 −0.05920 0.09670 0.0420*
H6A 0.17520 −0.08390 0.23050 0.0450*
H12A 0.17450 0.14760 0.23720 0.0970*
H2C 1.04650 0.45760 0.14580 0.0360*
H4C 1.09110 0.26290 0.07530 0.0440*
H5C 0.92430 0.32190 0.01480 0.0480*
H6C 0.83470 0.44720 0.02180 0.0500*
H11C 1.38680 0.40140 0.16350 0.0390*
H12C 1.47550 0.34780 0.09570 0.0660*
H13C 1.53770 0.27260 0.12260 0.0660*
H14C 1.65760 0.34960 0.13010 0.0660*
H21C 1.19410 0.26330 0.15160 0.0350*
H31C 1.56270 0.35340 0.22040 0.0580*
H32C 1.50340 0.26820 0.20610 0.0580*
H41C 1.27900 0.37250 0.25650 0.0680*
H42C 1.26220 0.28150 0.25700 0.0680*
H51C 1.00240 0.29100 0.21130 0.0530*
H52C 1.03470 0.38100 0.20630 0.0530*
H2D 0.55660 0.50980 0.10530 0.0400*
H4D 0.55240 0.71140 0.16720 0.0450*
H5D 0.37950 0.65750 0.22760 0.0510*
H6D 0.31540 0.52800 0.22600 0.0470*
H11D 1.14600 0.62570 0.11900 0.0760*
H13D 0.96120 0.62770 0.15270 0.0760*
H14D 1.02080 0.70200 0.12450 0.0760*
H21D 0.68180 0.70690 0.09490 0.0400*
H31D 0.49390 0.67530 0.03550 0.0670*
H32D 0.53690 0.58600 0.04080 0.0670*
H41D 0.77510 0.60010 −0.00960 0.0900*
H42D 0.75700 0.69090 −0.00760 0.0900*
H51D 1.05380 0.61390 0.02780 0.0670*
H52D 1.00290 0.70030 0.04110 0.0670*

Atomic displacement parameters (Å²)

	U¹¹	U¹²	U¹³	U²²	U²³	U³³
O2B	0.059 (2)	0.060 (3)	0.044 (2)	0.001 (2)	0.001 (2)	0.008 (2)
O11B	0.126 (3)	0.0287 (19)	0.089 (3)	−0.005 (2)	0.007 (3)	−0.007 (2)
O12B	0.093 (3)	0.0386 (19)	0.085 (3)	−0.010 (2)	−0.006 (2)	0.021 (2)
O31B	0.134 (3)	0.082 (3)	0.044 (2)	−0.006 (3)	0.031 (2)	−0.015 (2)
O32B	0.092 (3)	0.0375 (19)	0.064 (2)	0.0084 (19)	−0.008 (2)	−0.0172 (19)
O51B	0.101 (3)	0.039 (2)	0.056 (2)	−0.018 (2)	0.0012 (19)	0.0146 (18)
O52B	0.095 (2)	0.060 (2)	0.0291 (17)	0.011 (2)	0.0128 (17)	0.0013 (17)
N3B	0.040 (2)	0.053 (3)	0.039 (2)	0.003 (2)	−0.0037 (18)	−0.009 (2)
N5B	0.046 (2)	0.047 (2)	0.037 (2)	0.001 (2)	0.0006 (18)	0.008 (2)
C1B	0.030 (2)	0.028 (2)	0.040 (3)	0.0029 (19)	−0.0067 (19)	0.005 (2)
C2B	0.024 (2)	0.048 (3)	0.029 (2)	0.002 (2)	0.0015 (18)	0.013 (2)
C3B	0.023 (2)	0.033 (2)	0.029 (2)	0.0040 (18)	0.0008 (18)	−0.005 (2)
C4B	0.0269 (19)	0.026 (2)	0.037 (2)	0.0032 (18)	−0.0050 (19)	0.000 (2)
C5B	0.032 (2)	0.029 (2)	0.025 (2)	0.0009 (18)	0.0003 (17)	0.0052 (19)
C6B	0.035 (2)	0.027 (2)	0.038 (2)	0.0014 (19)	0.001 (2)	−0.008 (2)
C11B	0.056 (3)	0.031 (3)	0.076 (4)	−0.004 (3)	−0.008 (3)	0.013 (3)
O21B	0.059 (2)	0.060 (3)	0.044 (2)	0.001 (2)	0.002 (2)	0.008 (2)
O2A	0.110 (3)	0.0401 (19)	0.075 (2)	0.004 (2)	−0.011 (2)	0.006 (2)
O11A	0.081 (2)	0.078 (3)	0.0375 (19)	−0.013 (2)	0.0043 (18)	0.002 (2)
O12A	0.085 (2)	0.059 (2)	0.051 (2)	0.004 (2)	0.0026 (17)	−0.012 (2)
O31A	0.104 (3)	0.040 (2)	0.073 (3)	0.011 (2)	0.027 (2)	0.026 (2)
O32A	0.110 (3)	0.095 (3)	0.0302 (18)	−0.012 (3)	0.008 (2)	0.006 (2)
O51A	0.097 (3)	0.044 (2)	0.104 (3)	−0.001 (2)	0.008 (3)	−0.031 (2)
O52A	0.117 (3)	0.0316 (19)	0.118 (3)	0.004 (2)	0.024 (3)	0.019 (2)
N3A	0.035 (2)	0.062 (3)	0.044 (2)	0.006 (2)	0.0001 (18)	0.014 (2)
N5A	0.057 (3)	0.034 (2)	0.090 (3)	−0.002 (2)	0.006 (3)	−0.003 (3)
C1A	0.032 (2)	0.035 (2)	0.033 (2)	0.000 (2)	−0.0052 (19)	0.004 (2)
C2A	0.028 (2)	0.023 (2)	0.049 (3)	0.005 (2)	−0.010 (2)	0.005 (2)
C3A	0.028 (2)	0.033 (2)	0.025 (2)	0.0035 (19)	0.0006 (18)	0.011 (2)
----	-----	-----	-----	-----	-----	-----
C4A	0.023 (2)	0.043 (3)	0.039 (3)	0.005 (2)	−0.0039 (19)	0.002 (2)
C5A	0.031 (2)	0.025 (2)	0.059 (3)	0.001 (2)	−0.002 (2)	0.003 (2)
C6A	0.032 (2)	0.039 (3)	0.040 (3)	0.003 (2)	0.003 (2)	0.015 (2)
C11A	0.037 (2)	0.042 (3)	0.040 (3)	−0.004 (2)	−0.004 (2)	−0.003 (2)
N1C	0.0364 (18)	0.036 (2)	0.0303 (19)	0.00067 (16)	−0.00343 (17)	0.0030 (16)
C2C	0.036 (2)	0.030 (2)	0.023 (2)	0.0014 (19)	0.0002 (17)	0.001 (2)
C3C	0.028 (2)	0.020 (2)	0.032 (2)	−0.0048 (18)	0.0048 (17)	0.0000 (19)
C4C	0.042 (2)	0.029 (2)	0.039 (2)	−0.003 (2)	0.007 (2)	−0.006 (2)
C5C	0.050 (3)	0.041 (3)	0.029 (2)	0.000 (2)	−0.007 (2)	−0.003 (2)
C6C	0.045 (3)	0.045 (3)	0.034 (2)	0.008 (2)	−0.004 (2)	0.005 (2)
C11C	0.041 (3)	0.046 (3)	0.044 (3)	0.009 (2)	0.006 (2)	0.003 (2)
C21C	0.036 (2)	0.019 (2)	0.034 (2)	−0.0047 (17)	0.0022 (19)	0.0007 (19)
C31C	0.060 (3)	0.044 (3)	0.041 (3)	0.005 (2)	−0.017 (2)	0.010 (2)
C41C	0.087 (4)	0.053 (3)	0.029 (2)	−0.006 (3)	−0.004 (3)	0.003 (2)
C51C	0.061 (3)	0.042 (3)	0.031 (2)	0.007 (2)	0.008 (2)	0.009 (2)
N1D	0.0535 (17)	0.0241 (17)	0.040 (2)	−0.0021 (16)	−0.0002 (17)	0.0004 (18)
N11D	0.0427 (19)	0.0271 (18)	0.0349 (19)	−0.0011 (17)	0.0062 (16)	0.0028 (17)
C2D	0.033 (2)	0.029 (2)	0.037 (2)	0.003 (2)	0.0023 (19)	−0.003 (2)
C3D	0.029 (2)	0.026 (2)	0.035 (2)	0.0002 (19)	−0.0037 (19)	0.002 (2)
C4D	0.041 (2)	0.022 (2)	0.049 (3)	−0.0043 (19)	0.001 (2)	−0.005 (2)
C5D	0.049 (3)	0.038 (3)	0.040 (3)	0.000 (2)	0.009 (2)	−0.009 (2)
C6D	0.042 (2)	0.035 (2)	0.041 (3)	−0.004 (2)	0.008 (2)	−0.001 (2)
C11D	0.039 (2)	0.056 (3)	0.057 (3)	−0.008 (2)	−0.008 (2)	0.002 (3)
C21D	0.035 (2)	0.025 (2)	0.039 (2)	0.0035 (19)	0.0007 (19)	0.001 (2)
C31D	0.063 (3)	0.060 (3)	0.045 (3)	−0.012 (3)	−0.016 (3)	0.019 (3)
C41D	0.113 (4)	0.074 (4)	0.038 (3)	0.010 (4)	0.001 (3)	0.000 (3)
C51D	0.071 (3)	0.045 (3)	0.051 (3)	0.008 (3)	0.031 (3)	0.013 (3)

Geometric parameters (Å, °)

O2B—C2B	1.277 (5)	C4A—C5A	1.383 (6)			
O11B—C11B	1.227 (7)	C5A—C6A	1.375 (6)			
O12B—C11B	1.283 (7)	C4A—H4A	0.9500			
O21B—C6B	1.256 (13)	C6A—H6A	0.9500			
O31B—N3B	1.215 (5)	C2C—C3C	1.381 (5)			
O32B—N3B	1.222 (5)	C3C—C21C	1.502 (5)			
O51B—N5B	1.225 (5)	C3C—C4C	1.384 (5)			
O52B—N5B	1.224 (5)	C4C—C5C	1.384 (6)			
O11B—H11B	0.8400	C5C—C6C	1.367 (7)			
O12B—H12B	0.8400	C21C—C51C	1.516 (5)			
O2A—C2A	1.265 (5)	C31C—C41C	1.512 (6)			
O11A—C11A	1.222 (6)	C41C—C51C	1.530 (6)			
O12A—C11A	1.268 (6)	C2C—H2C	0.9500			
O31A—N3A	1.208 (5)	C4C—H4C	0.9500			
O32A—N3A	1.226 (5)	C5C—H5C	0.9500			
O51A—N5A	1.236 (6)	C6C—H6C	0.9500			
O52A—N5A	1.221 (6)	C11C—H14C	0.9800			
Bond	Length (Å)	Bond	Length (Å)			
----------------------	------------	----------------------	------------			
O12A—H12A	0.8400	C11C—H12C	0.9800			
N3B—C3B	1.454 (5)	C11C—H13C	0.9800			
N5B—C5B	1.457 (5)	C21C—H21C	1.0000			
N3A—C3A	1.470 (5)	C31C—H32C	0.9900			
N5A—C5A	1.462 (5)	C31C—H31C	0.9900			
N1C—C6C	1.333 (6)	C41C—H41C	0.9900			
N1C—C2C	1.338 (5)	C41C—H42C	0.9900			
N11C—C11C	1.485 (5)	C51C—H52C	0.9900			
N11C—C21C	1.512 (4)	C51C—H51C	0.9900			
N11C—C31C	1.488 (5)	C2D—C3D	1.386 (5)			
N11C—H11C	0.9300	C3D—C21D	1.499 (5)			
N1D—C2D	1.330 (5)	C3D—C4D	1.362 (5)			
N1D—C6D	1.337 (5)	C4D—C5D	1.372 (6)			
N11D—C51D	1.499 (5)	C5D—C6D	1.381 (5)			
N11D—C11D	1.469 (5)	C21D—C31D	1.504 (5)			
N11D—C21D	1.512 (4)	C31D—C41D	1.513 (7)			
N11D—H11D	0.9300	C41D—C51D	1.501 (7)			
C1B—C6B	1.390 (6)	C2D—H2D	0.9500			
C1B—C11B	1.481 (6)	C4D—H4D	0.9500			
C1B—C2B	1.404 (5)	C5D—H5D	0.9500			
C2B—C3B	1.414 (5)	C6D—H6D	0.9500			
C3B—C4B	1.364 (5)	C11D—H12D	0.9800			
C4B—C5B	1.366 (5)	C11D—H13D	0.9800			
C5B—C6B	1.408 (5)	C11D—H14D	0.9800			
C2B—H2B	0.9500	C21D—H21D	1.0000			
C4B—H4B	0.9500	C31D—H31D	0.9900			
C6B—H6B	0.9500	C31D—H32D	0.9900			
C1A—C6A	1.353 (5)	C41D—H41D	0.9900			
C1A—C2A	1.432 (5)	C41D—H42D	0.9900			
C1A—C11A	1.468 (6)	C51D—H51D	0.9900			
C2A—C3A	1.414 (5)	C51D—H52D	0.9900			
C3A—C4A	1.379 (5)					
C11B—O11B—H11B	109.00	C3C—C21C—C51C	118.1 (3)			
C11B—O12B—H12B	110.00	N11C—C21C—C51C	102.9 (3)			
C11A—O12A—H12A	109.00	N11C—C31C—C41C	104.6 (3)			
O31B—N3B—O32B	122.9 (4)	C31C—C41C—C51C	106.4 (3)			
O31B—N3B—C3B	118.5 (3)	C21C—C51C—C41C	105.6 (3)			
O32B—N3B—C3B	118.6 (3)	N1C—C2C—H2C	118.00			
O52B—N5B—C5B	118.4 (3)	C3C—C2C—H2C	119.00			
O51B—N5B—O52B	123.6 (4)	C5C—C4C—H4C	120.00			
O51B—N5B—C5B	118.0 (3)	C3C—C4C—H4C	120.00			
O32A—N3A—C3A	116.3 (3)	C4C—C5C—H5C	121.00			
O31A—N3A—C3A	120.6 (4)	C6C—C5C—H5C	121.00			
O31A—N3A—O32A	123.1 (4)	C5C—C6C—H6C	118.00			
O51A—N5A—O52A	123.6 (4)	N1C—C6C—H6C	118.00			
O52A—N5A—C5A	118.1 (4)	N11C—C11C—H13C	110.00			
O51A—N5A—C5A	118.3 (4)	H12C—C11C—H13C	109.00			
Bond	Angle (°)	Torsion (°)				
-----------------------	-----------	-------------				
C2C—N1C—C6C	117.6 (4)	N11C—C11C—H12C 109.00				
C11C—N11C—C21C	114.4 (3)	H13C—C11C—H14C 110.00				
C11C—N11C—C31C	114.4 (3)	N11C—C11C—H14C 110.00				
C21C—N11C—C31C	104.2 (3)	H12C—C11C—H14C 109.00				
C21C—N11C—H11C	108.00	C51C—C21C—H21C 108.00				
C11C—N11C—H11C	108.00	C3C—C21C—H21C 108.00				
C31C—N11C—H11C	108.00	N11C—C21C—H21C 108.00				
C21C—N11C—C6D	117.5 (3)	C41C—C31C—H32C 111.00				
C21D—N11D—C51D	104.2 (3)	N11C—C31C—H31C 111.00				
C11D—N11D—C51D	114.6 (3)	C41C—C31C—H31C 111.00				
C11D—N11D—C21D	114.3 (3)	H31C—C31C—H32C 109.00				
C51D—N11D—H11D	108.00	N11C—C31C—H32C 111.00				
C21D—N11D—H11D	108.00	C51C—C41C—H41C 110.00				
C11D—N11D—H11D	108.00	H41C—C41C—H42C 109.00				
C2B—C1B—C6B	121.4 (3)	C31C—C41C—H42C 110.00				
C2B—C1B—C11B	121.5 (4)	C31C—C41C—H41C 110.00				
C6B—C1B—C11B	117.2 (4)	C51C—C41C—H42C 110.00				
C1B—C2B—C3B	117.1 (3)	H51C—C51C—H52C 109.00				
O2B—C2B—C3B	125.7 (4)	C21C—C51C—H51C 111.00				
O2B—C2B—C1B	117.2 (3)	C41C—C51C—H52C 111.00				
N3B—C3B—C2B	120.6 (3)	C41C—C51C—H51C 111.00				
N3B—C3B—C4B	117.3 (3)	C21C—C51C—H52C 111.00				
C2B—C3B—C4B	122.1 (3)	N1D—C2D—C3D 123.8 (4)				
C3B—C4B—C5B	119.7 (3)	C2D—C3D—C21D 121.6 (3)				
N5B—C5B—C6B	119.7 (3)	C2D—C3D—C4D 117.2 (3)				
C4B—C5B—C6B	121.2 (4)	C4D—C3D—C21D 121.2 (3)				
N5B—C5B—C4B	119.0 (3)	C3D—C4D—C5D 120.8 (3)				
O21B—C6B—C5B	127.0 (7)	C4D—C5D—C6D 118.0 (4)				
C1B—C6B—C5B	118.5 (3)	N1D—C6D—C5D 122.8 (4)				
O21B—C6B—C1B	114.1 (6)	C3D—C21D—C31D 118.3 (3)				
O12B—C11B—C1B	116.6 (4)	N11D—C21D—C31D 112.0 (3)				
O11B—C11B—O12B	122.0 (5)	N11D—C21D—C31D 103.0 (3)				
O11B—C11B—C1B	121.4 (5)	C21D—C31D—C41D 105.6 (3)				
C3B—C2B—H2B	121.00	C31D—C41D—C51D 107.2 (4)				
C1B—C2B—H2B	122.00	N11D—C51D—C41D 104.8 (4)				
C5B—C4B—H4B	120.00	N1D—C2D—H2D 118.00				
C3B—C4B—H4B	120.00	C3D—C2D—H2D 118.00				
C5B—C6B—H6B	121.00	C3D—C4D—H4D 120.00				
C1B—C6B—H6B	121.00	C5D—C4D—H4D 120.00				
C2A—C1A—C11A	120.4 (3)	C4D—C5D—H5D 121.00				
C2A—C1A—C6A	120.6 (4)	C6D—C5D—H5D 121.00				
C6A—C1A—C11A	119.0 (4)	N1D—C6D—H6D 119.00				
C1A—C2A—C3A	116.2 (3)	C5D—C6D—H6D 119.00				
O2A—C2A—C3A	124.2 (4)	N11D—C11D—H12D 109.00				
O2A—C2A—C1A	119.7 (4)	N11D—C11D—H13D 109.00				
N3A—C3A—C2A	119.9 (3)	N11D—C11D—H14D 109.00				
N3A—C3A—C4A	116.6 (3)	H12D—C11D—H13D 109.00				
C2A—C3A—C4A	123.5 (3)	H12D—C11D—H14D 110.00				
Bond/Angle/Dihedral	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6
---------------------	---------	---------	---------	---------	---------	---------
C3A—C4A—C5A	116.6					
C4A—C5A—C6A	122.7					
N5A—C5A—C4A	117.7					
N5A—C5A—C6A	119.6					
C1A—C6A—C5A	120.5					
O11A—C11A—O12A	121.2					
O11A—C11A—C1A	121.1					
O12A—C11A—C1A	117.7					
C3A—C4A—H4A	122.0					
C5A—C4A—H4A	122.0					
C5A—C6A—H6A	120.0					
C1A—C6A—H6A	120.0					
N1C—C2C—C3C	123.1					
C2C—C3C—C4C	118.1					
C4C—C3C—C21C	121.0					
C2C—C3C—C21C	120.8					
C3C—C4C—C5C	119.1					
C4C—C5C—C6C	118.5					
N1C—C6C—C5C	123.5					
N11C—C21C—C3C	111.7					
O32B—N3B—C3B—C2B	173.7					
O31B—N3B—C3B—C4B	175.0					
O32B—N3B—C3B—C4B	−5.0					
O31B—N3B—C3B—C2B	−6.3					
O52B—N5B—C5B—C6B	5.0					
O52B—N5B—C5B—C4B	−177.7					
O51B—N5B—C5B—C6B	−175.7					
O51B—N5B—C5B—C4B	1.7					
O31A—N3A—C3A—C2A	5.8					
O31A—N3A—C3A—C4A	−175.1					
O32A—N3A—C3A—C2A	−174.6					
O32A—N3A—C3A—C4A	4.5					
O51A—N5A—C5A—C6A	174.3					
O52A—N5A—C5A—C6A	−4.9					
O51A—N5A—C5A—C4A	−4.7					
O52A—N5A—C5A—C4A	176.0					
C2C—N1C—C6C—C5C	−0.2					
C6C—N1C—C2C—C3C	0.3					
C31C—N11C—C21C—C3C	168.2					
C31C—N11C—C21C—C51C	40.5					
C11C—N11C—C21C—C3C	−66.1					
C11C—N11C—C31C—C41C	−162.7					
C11C—N11C—C21C—C51C	166.3					
C21C—N11C—C31C—C41C	−36.9					
C6D—N1D—C2D—C3D	−0.5					
C2D—N1D—C6D—C5D	1.8					
C21D—N11D—C51D—C41D	−33.4					
C51D—N11D—C21D—C31D 39.4 (4) C4C—C3C—C21C—C51C −134.4 (4)
C11D—N11D—C21D—C3D −66.6 (4) C2C—C3C—C4C—C5C −1.6 (5)
C11D—N11D—C21D—C31D 165.2 (4) C21C—C3C—C4C—C5C 179.9 (3)
C51D—N11D—C21D—C3D 167.6 (3) C3C—C4C—C5C—C6C 1.8 (6)
C11D—N11D—C51D—C41D −159.0 (4) C4C—C5C—C6C—N1C −0.9 (6)
C6B—C1B—C11B—O11B −4.3 (6) C3C—C21C—C51C—C41C −129.0 (4)
C11B—C1B—C2B—C3B −180.0 (3) C3C—C21C—C51C—C41C 18.9 (5)
C11B—C1B—C2B—O2B 0.6 (5) C3C—C21C—C51C—C41C −154.1 (4)
C2B—C1B—C11B—O2B −2.5 (6) C21D—C3D—C4D—C5D 179.0 (3)
C6B—C1B—C2B—C3B 0.9 (5) C4D—C3D—C21D—C31D 50.8 (5)
C11B—C1B—C6B—C5B −178.3 (3) C4D—C3D—C21D—N11D −68.8 (4)
C2B—C1B—C6B—C5B 0.9 (5) C21D—C3D—C21D—C31D 111.4 (4)
C1B—C2B—C3B—C4B −2.6 (5) C21D—C3D—C21D—C31D 0.1 (5)
C1B—C2B—C3B—N3B 179.9 (3) C21D—C3D—C21D—C31D 111.4 (4)
C1B—C2B—C3B—O12B 179.6 (4) C3C—C21C—C51C—C41C 1.8 (6)
C1B—C2B—C3B—O2B −17.8 (3) C3C—C21C—C51C—C41C −28.2 (4)
C3B—C4B—C5B—N5B −177.7 (3) C3C—C21C—C51C—C41C 18.9 (5)
C3B—C4B—C5B—C6B −0.4 (5) C3C—C21C—C51C—C41C −154.1 (4)
C3B—C4B—C5B—C6B 0.9 (5) C3C—C21C—C51C—C41C 18.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O12A—H12A···O2A	0.84	1.71	2.475 (4)	150
O12B—H12B···O2B	0.84	1.63	2.411 (4)	152
N11C—H11C···N1D	0.93	1.89	2.809 (4)	169
N11D—H11D···N1C	0.93	1.90	2.817 (5)	168
N11D—H11D···N1C	0.93	1.90	2.817 (5)	168
C2C—H2C···O11A	0.95	2.42	3.228 (5)	143
C4C—H4C···O31A	0.95	2.59	3.452 (5)	151
C5D—H5D···O31B	0.95	2.46	3.071 (5)	122
C6C—H6C···O32A	0.95	2.27	3.054 (5)	139
C6D—H6D···O31B	0.95	2.55	3.136 (5)	120
C11C—H13C···O32B	0.98	2.48	3.151 (6)	126
C11D—H14D···O51A	0.98	2.55	3.373 (6)	141
C21C—H21C···O2A	1.00	2.27	3.163 (5)	148
C21D—H21D···O11B	1.00	2.44	3.307 (5)	144
C51C—H52C···O11A	0.99	2.54	3.534 (6)	177

Symmetry codes: (i) x+1, y, z; (ii) −x+1, y+1/2, −z+1/2; (iii) x+1/2, −y+1/2, −z; (iv) x+1, y+1, z; (v) x, y+1, z.
(II) (1R,2S)-1-Methyl-2-(pyridin-3-yl)pyrrolidin-1-ium 3-carboxy-4-hydroxybenzenesulfonate

Crystal data

C₁₀H₁₅N₂⁺·C₇H₅O₆S⁻

\(M_r = 380.41 \)

Monoclinic, \(P 2_1 \)

Hall symbol: P 2yb

\(a = 7.1568 (3) \) Å

\(b = 12.6416 (5) \) Å

\(c = 19.1519 (8) \) Å

\(\beta = 93.729 (4)° \)

\(V = 1729.07 (12) \) Å³

\(Z = 4 \)

Data collection

Oxford Diffraction Gemini-S CCD-detector
diffractometer

Radiation source: Enhance (Mo) X-ray source

Graphite monochromator

Detector resolution: 16.077 pixels mm⁻¹

\(\omega \) scans

Absorption correction: multi-scan

(CrysAlis PRO; Agilent, 2013)

\(T_{\text{min}} = 0.909, T_{\text{max}} = 0.981 \)

Refinement

Refinement on \(F^2 \)

Least-squares matrix: full

\(R(F^2 > 2\sigma(F^2)) = 0.046 \)

\(wR(F^2) = 0.108 \)

\(S = 1.01 \)

5104 reflections

469 parameters

1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

\(\Delta / \sigma = 0.001 \)

\(\Delta \rho_{\text{max}} = 0.49 \) e Å⁻³

\(\Delta \rho_{\text{min}} = -0.36 \) e Å⁻³

Absolute structure: Flack (1983), 4361 Friedel pairs

Absolute structure parameter: −0.02 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	U₁₁	U₂₂	U₃₃
S5A	0.68704 (12)	0.55842 (7)	0.41012 (4)	0.0263 (3)		
O2A	0.3397 (4)	0.3912 (2)	0.14516 (12)	0.0340 (8)		
O11A	0.3204 (4)	0.2139 (2)	0.32641 (13)	0.0348 (8)		

Supporting information

Acta Cryst. (2014). E70, 430-434
Atom	U1	U2	U3	U12
O12A	0.2584 (4)	0.2236 (2)	0.21069 (13)	0.0337 (8)
O51A	0.8728 (4)	0.5131 (3)	0.41339 (15)	0.0508 (10)
O52A	0.6922 (4)	0.6735 (2)	0.40180 (14)	0.0422 (9)
O53A	0.5792 (4)	0.5253 (2)	0.46723 (12)	0.0393 (9)
C1A	0.4129 (4)	0.3676 (3)	0.26886 (17)	0.0221 (9)
C2A	0.4124 (5)	0.4284 (3)	0.20674 (17)	0.0222 (10)
C3A	0.4845 (5)	0.5304 (3)	0.20917 (17)	0.0240 (10)
C4A	0.5643 (4)	0.5705 (3)	0.27120 (17)	0.0239 (9)
C5A	0.5696 (4)	0.5108 (3)	0.33217 (17)	0.0211 (9)
C6A	0.4930 (5)	0.4106 (3)	0.33044 (18)	0.0234 (10)
C11A	0.3243 (5)	0.2614 (3)	0.26686 (19)	0.0259 (11)
S5B	0.30149 (14)	−0.14181 (8)	0.08257 (5)	0.0345 (3)
O2B	0.6834 (4)	0.0076 (2)	0.34578 (12)	0.0344 (8)
O11B	0.7029 (4)	0.1928 (2)	0.16767 (13)	0.0347 (8)
O12B	0.7680 (4)	0.1780 (2)	0.28273 (13)	0.0335 (8)
O51B	0.1062 (4)	−0.1205 (3)	0.09470 (17)	0.0625 (11)
O52B	0.3307 (4)	−0.2529 (2)	0.07618 (16)	0.0480 (10)
O53B	0.3571 (6)	−0.0759 (3)	0.02651 (16)	0.0801 (15)
C1B	0.6053 (4)	0.0375 (3)	0.22345 (17)	0.0206 (9)
C2B	0.6058 (5)	−0.0256 (3)	0.28333 (17)	0.0233 (10)
C3B	0.5299 (5)	−0.1274 (3)	0.28007 (18)	0.0255 (10)
C4B	0.4433 (5)	−0.1631 (3)	0.21848 (19)	0.0261 (10)
C5B	0.4331 (5)	−0.0982 (3)	0.15869 (17)	0.0231 (10)
C6B	0.5145 (4)	0.0004 (3)	0.16130 (17)	0.0222 (10)
C11B	0.6976 (5)	0.1427 (3)	0.22658 (19)	0.0260 (11)
N1C	0.8536 (4)	0.3758 (3)	0.18074 (15)	0.0270 (9)
N11C	0.9801 (4)	0.5668 (3)	−0.00002 (14)	0.0295 (9)
C2C	0.8558 (5)	0.4408 (3)	0.12534 (19)	0.0253 (10)
C3C	0.9371 (4)	0.5393 (3)	0.12903 (18)	0.0257 (10)
C4C	1.0161 (5)	0.5724 (3)	0.19371 (18)	0.0294 (10)
C5C	1.0065 (5)	0.5074 (3)	0.25102 (18)	0.0296 (11)
C6C	0.9288 (5)	0.4092 (3)	0.24258 (19)	0.0297 (11)
C11C	1.1769 (5)	0.5314 (4)	−0.0030 (2)	0.0392 (14)
C21C	0.9336 (5)	0.6148 (3)	0.06816 (18)	0.0290 (11)
C31C	0.7439 (6)	0.6662 (4)	0.0489 (2)	0.0493 (16)
C41C	0.7621 (7)	0.7097 (4)	−0.0242 (2)	0.0529 (17)
C51C	0.9232 (6)	0.6511 (4)	−0.0534 (2)	0.0476 (16)
N1D	0.1735 (4)	0.0297 (2)	0.31881 (15)	0.0257 (8)
N11D	−0.0524 (4)	−0.2131 (3)	0.48368 (14)	0.0327 (10)
C2D	0.1839 (5)	−0.0236 (3)	0.37895 (18)	0.0239 (10)
C3D	0.1071 (4)	−0.1235 (3)	0.38558 (16)	0.0211 (9)
C4D	0.0196 (5)	−0.1695 (3)	0.32573 (17)	0.0256 (10)
C5D	0.0119 (5)	−0.1153 (3)	0.26338 (18)	0.0283 (11)
C6D	0.0898 (5)	−0.0152 (3)	0.26175 (19)	0.0284 (11)
C11D	−0.1872 (6)	−0.1290 (4)	0.4998 (2)	0.0430 (14)
C21D	0.1287 (5)	−0.1769 (3)	0.45539 (17)	0.0267 (10)
C31D	0.2434 (6)	−0.2778 (4)	0.4595 (2)	0.0442 (14)
C41D	0.1992 (8)	−0.3244 (4)	0.5301 (2)	0.0626 (19)
Atomic displacement parameters (Å²)

	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
S5A	0.0295 (4)	0.0253 (5)	0.0232 (4)	−0.0031 (4)	−0.0062 (3)	0.0026 (4)
O2A	0.0467 (15)	0.0280 (15)	0.0261 (13)	−0.0022 (13)	−0.0058 (11)	−0.0012 (11)
O11A	0.0456 (15)	0.0234 (14)	0.0352 (14)	−0.0115 (13)	0.0018 (11)	0.0042 (12)

Acta Cryst. (2014). E70, 430-434
Supporting Information

	O12A	O13A	O14A	O15A	O16A
	0.0397 (14)	0.0249 (14)	0.0360 (14)	-0.0065 (13)	-0.0013 (11)
	0.0347 (14)	0.073 (2)	0.0424 (16)	0.0124 (17)	-0.0146 (12)
	0.0580 (18)	0.0242 (14)	0.0417 (16)	-0.0116 (14)	-0.0180 (13)
	0.0496 (15)	0.0460 (17)	0.0219 (12)	-0.0115 (15)	-0.0002 (10)
C1A	0.0201 (16)	0.0212 (17)	0.0249 (16)	0.0028 (16)	0.0010 (12)
C2A	0.0238 (17)	0.0227 (18)	0.0197 (16)	0.0035 (15)	-0.0009 (13)
C3A	0.0271 (17)	0.0256 (18)	0.0193 (16)	0.0050 (16)	0.0008 (13)
C4A	0.0213 (15)	0.0197 (17)	0.0305 (17)	-0.0002 (16)	0.0009 (13)
C5A	0.0221 (16)	0.0196 (17)	0.0210 (16)	-0.0011 (16)	-0.0025 (12)
C6A	0.0264 (18)	0.0203 (18)	0.0233 (17)	0.0010 (16)	0.0002 (13)
C11A	0.0231 (17)	0.0221 (19)	0.0326 (19)	0.0001 (15)	0.0022 (14)
S5B	0.0201 (15)	0.0212 (17)	0.0249 (16)	-0.0116 (14)	-0.0180 (13)
O2B	0.0499 (15)	0.0292 (14)	0.0227 (12)	-0.0051 (14)	-0.0078 (11)
O11B	0.0440 (15)	0.0269 (15)	0.0330 (14)	-0.0111 (13)	0.0007 (11)
O12B	0.0442 (15)	0.0270 (14)	0.0286 (14)	-0.0052 (13)	-0.0029 (11)
O51B	0.0379 (16)	0.070 (2)	0.075 (2)	-0.0237 (18)	-0.0305 (15)
O52B	0.0379 (16)	0.070 (2)	0.075 (2)	-0.0237 (18)	-0.0305 (15)
O53B	0.0379 (16)	0.070 (2)	0.075 (2)	-0.0237 (18)	-0.0305 (15)

Acta Cryst. (2014). E70, 430-434
Geometric parameters (Å, °)

Bond	Length (Å)	Angle (°)	Length (Å)	Angle (°)
S5A—O51A	1.445 (3)		C3B—H3B	0.9500
S5A—O52A	1.464 (3)		C4B—H4B	0.9500
S5A—O53A	1.441 (3)		C6B—H6B	0.9500
S5A—C5A	1.770 (3)		C2C—C3C	1.374 (5)
S5B—O51B	1.457 (3)		C3C—C21C	1.506 (5)
S5B—O52B	1.434 (3)		C3C—C4C	1.392 (5)
S5B—O53B	1.436 (4)		C4C—C5C	1.374 (5)
S5B—C5B	1.771 (4)		C5C—C6C	1.375 (5)
O2A—C2A	1.343 (4)		C21C—C31C	1.529 (6)
O11A—C11A	1.291 (4)		C31C—C41C	1.518 (6)
O12A—C11A	1.242 (4)		C31C—C51C	1.508 (7)
O2A—H2A	0.8400		C2C—H2C	0.9500
O11A—H11A	0.9500		C4C—H4C	0.9500
O2B—C2B	1.352 (4)		C5C—H5A	0.9500
O11B—C11B	1.297 (4)		C6C—H6C	0.9500
O12B—C11B	1.241 (4)		C11C—H134	0.9800
O2B—H2B	0.8400		C11C—H12C	0.9800
O11B—H11B	0.9500		C11C—H13C	0.9800
N1C—C6C	1.337 (5)		C21C—H21C	1.0000
N1C—C2C	1.343 (5)		C31C—H32C	0.9900
N11C—C11C	1.483 (5)		C31C—H31C	0.9900
N11C—C51C	1.514 (6)		C41C—H41C	0.9900
N11C—C21C	1.497 (5)		C41C—H42C	0.9900
N11C—H11C	0.9300		C51C—H52C	0.9900
N1D—C2D	1.332 (4)		C51C—H51C	0.9900
N1D—C6D	1.338 (5)		C2D—C3D	1.386 (5)
N11D—C51D	1.503 (5)		C3D—C21D	1.497 (5)
N11D—C11D	1.482 (6)		C3D—C4D	1.397 (5)
N11D—C21D	1.508 (5)		C4D—C5D	1.375 (5)
N11D—H11D	0.9300		C5D—C6D	1.384 (5)
C1A—C2A	1.416 (5)		C21D—C31D	1.516 (6)
C1A—C11A	1.484 (5)		C31D—C41D	1.527 (6)
C1A—C6A	1.388 (5)		C41D—C51D	1.506 (7)
C2A—C3A	1.389 (5)		C2D—H2D	0.9500
C3A—C4A	1.381 (5)		C4D—H4D	0.9500
C4A—C5A	1.389 (5)		C5D—H5D	0.9500
C5A—C6A	1.380 (5)		C6D—H6D	0.9500
C3A—H3A	0.9500		C11D—H12D	0.9800
C4A—H4A	0.9500		C11D—H13D	0.9800
C6A—H6A	0.9500		C11D—H14D	0.9800
C1B—C6B	1.399 (5)		C21D—H21D	1.0000
C1B—C11B	1.484 (5)		C31D—H31D	0.9900
C1B—C2B	1.397 (5)		C31D—H32D	0.9900
C2B—C3B	1.397 (5)		C41D—H41D	0.9900
Bond	Distance (Å)	Bond	Distance (Å)	Distance (Å)
--------------	--------------	--------------	--------------	--------------
C3B—C4B	1.373 (5)	C41D—H42D	0.9900	
C4B—C5B	1.407 (5)	C51D—H51D	0.9900	
C5B—C6B	1.375 (5)	C51D—H52D	0.9900	
O51A—S5A—O52A	111.65 (19)	N11C—C21C—C31C	101.9 (3)	
O51A—S5A—O53A	112.86 (17)	C21C—C31C—C41C	104.4 (3)	
O51A—S5A—C5A	106.66 (17)	C31C—C41C—C51C	106.1 (4)	
O52A—S5A—O53A	112.94 (16)	N11C—C51C—C41C	105.9 (3)	
O52A—S5A—C5A	105.07 (17)	N1C—C2C—H2C	119.00	
O53A—S5A—C5A	107.03 (15)	C3C—C2C—H2C	119.00	
O51B—S5B—C5B	105.99 (18)	C5C—C4C—H4C	120.00	
O51B—S5B—O52B	111.8 (2)	C3C—C4C—H4C	120.00	
O51B—S5B—O53B	109.1 (2)	C4C—C5C—H5A	121.00	
O53B—S5B—C5B	106.1 (2)	C6C—C5C—H5A	121.00	
O52B—S5B—O53B	116.4 (2)	C5C—C6C—H6C	119.00	
O52B—S5B—C5B	106.70 (18)	N1C—C6C—H6C	119.00	
C2A—O2A—H2A	109.00	N11C—C11C—H13C	109.00	
C11A—O11A—H11A	113.00	H12C—C11C—H13C	109.00	
C2B—O2B—H2B	109.00	N11C—C11C—H12C	109.00	
C11B—O11B—H11B	112.00	H13C—C11C—H134	109.00	
C2C—N1C—C6C	118.8 (4)	N11C—C11C—H134	109.00	
C11C—N11C—C21C	114.9 (3)	H12C—C11C—H134	109.00	
C11C—N11C—C51C	113.6 (3)	C31C—C21C—H21C	108.00	
C21C—N11C—C51C	103.8 (3)	C3C—C21C—H21C	108.00	
C51C—N11C—H11C	108.00	N11C—C21C—H21C	108.00	
C21C—N11C—H11C	108.00	C41C—C31C—H32C	111.00	
C11C—N11C—H11C	108.00	C21C—C31C—H31C	111.00	
C2D—N1D—C6D	119.2 (3)	C41C—C31C—H31C	111.00	
C11D—N11D—C51D	114.2 (3)	H31C—C31C—H32C	109.00	
C11D—N11D—C21D	116.3 (3)	C21C—C31C—H32C	111.00	
C21D—N11D—C51D	103.6 (3)	C51C—C41C—H41C	110.00	
C51D—N11D—H11D	107.00	H41C—C41C—H42C	109.00	
C11D—N11D—H11D	107.00	C31C—C41C—H42C	111.00	
C21D—N11D—H11D	107.00	C31C—C41C—H41C	110.00	
C6A—C1A—C11A	121.9 (3)	C51C—C41C—H42C	110.00	
C2A—C1A—C11A	119.4 (3)	H51C—C51C—H52C	109.00	
C2A—C1A—C6A	118.7 (3)	N11C—C51C—H51C	111.00	
O2A—C2A—C1A	121.8 (3)	C41C—C51C—H52C	111.00	
O2A—C2A—C3A	118.5 (3)	C41C—C51C—H51C	111.00	
C1A—C2A—C3A	119.7 (3)	N11C—C51C—H52C	111.00	
C2A—C3A—C4A	120.1 (3)	N1D—C2D—C3D	122.7 (3)	
C3A—C4A—C5A	120.7 (3)	C2D—C3D—C21D	118.3 (3)	
C4A—C5A—C6A	119.3 (3)	C2D—C3D—C4D	117.6 (3)	
S5A—C5A—C4A	120.7 (3)	C4D—C3D—C21D	124.1 (3)	
S5A—C5A—C6A	119.9 (3)	C3D—C4D—C5D	119.7 (3)	
C1A—C6A—C5A	121.4 (3)	C4D—C5D—C6D	118.8 (3)	
O11A—C11A—C1A	115.6 (3)	N1D—C6D—C5D	121.9 (3)	
O12A—C11A—C1A	120.5 (3)	C3D—C21D—C31D	116.7 (3)	
Bond	Angle (°)	Bond	Angle (°)	
----------------------	------------	----------------------	------------	
O11A—C11A—O12A	123.9 (3)	N11D—C21D—C3D	114.6 (3)	
C2A—C3A—H3A	120.00	N11D—C21D—C31D	101.6 (3)	
C4A—C3A—H3A	120.00	C21D—C31D—C41D	103.2 (3)	
C3A—C4A—H4A	120.00	C31D—C41D—C51D	105.7 (4)	
C5A—C4A—H4A	120.00	N11D—C51D—C41D	106.4 (3)	
C5A—C6A—H6A	119.00	N1D—C2D—H2D	119.00	
C1A—C6A—H6A	119.00	C3D—C2D—H2D	119.00	
C6B—C1B—C11B	121.0 (3)	C3D—C4D—H4D	120.00	
C2B—C1B—C11B	120.1 (3)	C5D—C4D—H4D	120.00	
C2B—C1B—C6B	118.9 (3)	C4D—C5D—H5D	121.00	
C1B—C2B—C3B	120.6 (3)	C6D—C5D—H5D	121.00	
O2B—C2B—C3B	117.5 (3)	N1D—C6D—H6D	119.00	
O2B—C2B—C1B	121.9 (3)	C5D—C6D—H6D	119.00	
C2B—C3B—C4B	119.6 (3)	N11D—C11D—H12D	109.00	
C3B—C4B—C5B	120.3 (3)	N11D—C11D—H13D	110.00	
C4B—C5B—C6B	120.0 (3)	N11D—C11D—H14D	109.00	
S5B—C5B—C4B	119.0 (3)	H12D—C11D—H13D	109.00	
S5B—C5B—C6B	120.9 (3)	H12D—C11D—H14D	109.00	
C1B—C6B—C5B	120.5 (3)	H13D—C11D—H14D	109.00	
O12B—C11B—C1B	120.8 (3)	N11D—C21D—H21D	108.00	
O11B—C11B—C1B	116.1 (3)	C3D—C21D—H21D	108.00	
O11B—C11B—O12B	123.1 (3)	C3D—C21D—H21D	108.00	
C2B—C3B—H3B	120.00	C21D—C31D—H31D	111.00	
C4B—C3B—H3B	120.00	C21D—C31D—H32D	111.00	
C3B—C4B—H4B	120.00	C41D—C31D—H31D	111.00	
C5B—C4B—H4B	120.00	C41D—C31D—H32D	111.00	
C5B—C6B—H6B	120.00	H31D—C31D—H32D	109.00	
C1B—C6B—H6B	120.00	C31D—C41D—H41D	111.00	
N1C—C2C—C3C	122.7 (3)	C31D—C41D—H42D	111.00	
C2C—C3C—C4C	117.7 (3)	C51D—C41D—H41D	111.00	
C4C—C3C—C21C	118.9 (3)	C51D—C41D—H42D	111.00	
C2C—C3C—C21C	123.3 (3)	H41D—C41D—H42D	109.00	
C3C—C4C—C5C	119.9 (3)	N11D—C51D—H51D	110.00	
C4C—C5C—C6C	118.8 (3)	N11D—C51D—H52D	111.00	
N1C—C6C—C5C	122.1 (3)	C41D—C51D—H51D	110.00	
N11C—C21C—C3C	115.2 (3)	C41D—C51D—H52D	110.00	
C3C—C21C—C31C	115.2 (3)	H51D—C51D—H52D	109.00	
O51A—S5A—C5A—C4A	−95.6 (3)	C6B—C1B—C2B—O2B	−176.9 (3)	
O51A—S5A—C5A—C6A	80.1 (3)	C6B—C1B—C2B—C3B	5.0 (5)	
O52A—S5A—C5A—C4A	23.0 (3)	C11B—C1B—C2B—C3B	−175.9 (3)	
O52A—S5A—C5A—C6A	−161.3 (3)	C2B—C1B—C6B—C5B	−2.3 (5)	
O53A—S5A—C5A—C4A	143.4 (3)	C11B—C1B—C6B—C5B	178.6 (3)	
O53A—S5A—C5A—C6A	−41.0 (3)	C2B—C1B—C11B—O11B	175.1 (3)	
O53B—S5B—C5B—C6B	19.4 (4)	C2B—C1B—C11B—O12B	−3.5 (5)	
O52B—S5B—C5B—C4B	−40.0 (3)	C6B—C1B—C11B—O11B	−5.8 (5)	
O51B—S5B—C5B—C4B	79.3 (3)	C11B—C1B—C2B—O2B	2.2 (5)	
O51B—S5B—C5B—C6B	−96.5 (3)	C6B—C1B—C11B—O12B	175.6 (3)	
Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O2A—H2A···O12A	0.84	1.80	2.549 (4)	147
O2B—H2B···O12B	0.84	1.82	2.561 (4)	146
O11A—H11A···N1D	0.95	1.60	2.555 (4)	179
O11B—H11B···N1C	0.95	1.61	2.558 (4)	179
N11C—H11C···O51B	0.93	2.32	3.022 (5)	132
N11C—H11C···O53B	0.93	2.15	3.029 (5)	157
N11D—H11D···O52A	0.93	1.85	2.735 (4)	158
C11D—H12D···O2B	0.98	2.51	3.491 (5)	174
C2C—H2C···O53B	0.95	2.29	3.201 (5)	160
	d (Å)	e (Å)	d (Å)	
------------------	-------	-------	--------	----
C2D—H2D···O53Aiv	0.95	2.45	3.359 (4)	160
C4A—H4A···O52A	0.95	2.54	2.914 (4)	103
C6B—H6B···O53B	0.95	2.54	2.913 (5)	103
C11C—H12C···O2Av	0.98	2.52	3.481 (5)	165
C11C—H13C···O52Bvi	0.98	2.46	3.290 (5)	142
C11D—H13D···O51Av	0.98	2.37	3.251 (5)	150
C21C—H21C···O52Bvi	1.00	2.42	3.331 (5)	151

Symmetry codes: (i) −x+1, y+1/2, −z; (ii) x−1, y, z; (iii) x−1, y, z; (iv) −x+1, y−1/2, −z+1; (v) x+1, y, z; (vi) x+1, y+1, z.