Altered body composition and increased visceral adipose tissue in premenopausal and late postmenopausal patients with SLE

Zhaoxia Li1 · Jingjie Shang2 · Shan Zeng1 · Huixia Wu1 · Yi Zhou1 · Hao Xu2

Received: 11 May 2019 / Revised: 2 July 2019 / Accepted: 15 July 2019 / Published online: 30 July 2019
© The Author(s) 2019

Abstract
Objective Visceral adipose tissue (VAT) is becoming a recognized cardiovascular (CV) risk factor. This study aimed to evaluate body composition, especially VAT, in systemic lupus erythematosus (SLE) and to explore the association between VAT and SLE disease-related factors.
Method Ninety-eight inpatients with SLE and 108 age- and body mass index (BMI)-matched healthy controls were included. Demographic and clinical parameters were recorded. The VAT was measured by dual-energy x-ray absorptiometry.
Result The mean age and disease duration of patients were 46.4 ± 13.0 years and 8.0 ± 7.0 years, respectively. Patients with SLE had higher VAT volume \((p = 0.0015) \) and mass \((p = 0.0017) \) than controls, especially in premenopausal and postmenopausal groups. The subanalysis of subjects with BMI less than 25 kg/m\(^2\) indicated that patients had lower lean mass \((p = 0.0005) \), fat-free mass \((p = 0.0005) \), and fat-free mass index \((p = 0.0001) \), but increased adiposity distribution than controls, including VAT volume and mass. However, overweight/obese patients had similar body composition with controls. The VAT volume correlated with BMI, age, menopausal status, hypertension, uric acid, creatinine, non-high-density lipoprotein cholesterol, and triglyceride in both groups. In the patient group, the VAT volume correlated with disease duration, Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SLICC/ACR-DI), and low serum complement, but not with SLEDAI and glucocorticoid dose.
Conclusion This study suggested that SLE patients had some traditional CV risk factors such as altered body composition and increased VAT. The higher VAT in patients with SLE was associated with traditional cardiometabolic risks, which may contribute to CV events in SLE populations.

Key Points
• Patients with SLE had increased VAT volume and mass than controls.
• The VAT volume correlated with traditional cardiometabolic risk factors.
• In SLE patient group, the VAT volume correlated with disease duration, SLICC/ACR-DI, and low serum complement C3/C4, but not with SLEDAI and glucocorticoid dose.

Keywords Body composition · Cardiovascular risk factors · DXA · Systemic lupus erythematosus · Visceral adipose tissue

Introduction
Systemic lupus erythematosus (SLE) is one of the most complicated autoimmune diseases, and it can affect any organ and present with diverse phenotypes. It affects women more frequently than men at a ratio of nearly 9 to 1. The prognosis of SLE patients has markedly improved due to the introduction of immunosuppressive regimens over the last decades. The 5-year survival rate of SLE has exceeded 90% in recent years [1].

However, as life expectancy increases, subsequent complications such as cardiovascular disease (CVD) are becoming a more and more serious clinical problem.
Subjects and methods

Subjects recruitment

Patient group

Ninety-eight women who fulfilled the 1997 revised American College of Rheumatology classification criteria for SLE were enrolled from the Department of Rheumatology, the First Affiliated Hospital of Jinan University since October 2016. Our research was approved by the Medical Ethics Committee of the First Affiliated Hospital of Jinan University. Patients with accompanying rheumatoid arthritis, mixed connective tissue disease, thyroid diseases, malabsorption, and other chronic inflammatory diseases were excluded. Pregnant and breastfeeding women were also excluded. Data including demographic, anthropometric, and clinical parameters were assessed by medical records review. The latest 5-year cumulative corticosteroid dose was calculated from medical records. The disease activity and severity were assessed using the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) and the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SLICC/ACR-DI) at the time of recruitment.

Healthy controls

The healthy control group consisted of 108 subjects recruited from hospital staff matched to the patient group by age, gender, and BMI. The same exclusion criteria were used for both groups. Their medical history and laboratory results were reassessed to exclude autoimmune, thyroid diseases, and other metabolic disorders.

Menopausal status

Menopausal status was assessed via a self-reported questionnaire including menstrual bleeding and its regularity. Premenopause was identified as menses in the 12 months prior to study entry without change in regularity [14, 15]. Late postmenopause was defined as no menstrual period for at least 5 years or more [16, 17]. From the beginning of women’s loss of menstrual cycle until the fifth year after no menstruation, this period is collectively referred to as perimenopause. Because of the complex changes in endocrine and body composition during this period, it is too difficult to further divide into subgroups.

Laboratory evaluation

All the tests were undertaken in a clinical laboratory and performed according to standard protocol. Laboratory evaluation
data included complete blood count, urinalysis, fasting plasma glucose, serum creatinine, uric acid, high-sensitivity C-reactive protein (hsCRP), erythrocyte sedimentation rate (ESR), lipid profile (i.e., triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C)), complement fragments C3 and C4, anti-nuclear antibody (ANA) (including anti-dsDNA), and anti-extractable nuclear antigen (ENA) profile (i.e., anti-Sm, anti-La, and anti-Ro).

Dual-energy X-ray absorptiometry analysis

The anthropometric and dual-energy X-ray absorptiometry (DXA) measurements were obtained for patients during the same visit. Weight was measured using a platform digital scale with a precision of 0.1 kg, and height was recorded with a stadiometer to the nearest 0.1 cm. BMI was calculated as body mass (weight) divided by height squared (kg/m²). Body composition including fat mass (FM), lean mass (LM), bone mineral content (BMC), VAT volume, and VAT mass was measured with a Lunar iDXA bone densitometer (GE Healthcare, Madison, WI), and data were analyzed using enCORE software (ver. 16.0, standard-array mode). Indices of body fat distribution including android (abdominal) fat (%), gynoid (peripheral depot) fat (%), and android/gynoid fat were also measured using the software. From these measurements, the following derivative values were calculated: fat mass index (FMI, total fat mass/height [2]) and fat-free mass (FFM, the sum of LM and BMC). The precision error (% CV) was less than 2% for total LM and total FM and less than 3% for regional (trunk, appendicular, android, gynoid) LM and FM, as determined by duplicate scans with repositioning between each measurement among 30 volunteer subjects. A daily quality assurance scan was conducted by scanning an aluminum spine phantom according to the manufacturer’s instructions. The same well-trained technologist performed all DXA measurements throughout the study and was blind to the clinical situation of the subjects (Fig. 1).

Statistical analysis

The descriptive results are expressed as either mean (standard deviation (SD)) or median (interquartile range), depending on the data distribution. Qualitative data were shown as percentages. Patients and controls were compared using the unpaired t test or chi-square test. Subgroup analysis was performed by the menopause state and VAT mass distribution. The associations between body composition and disease or treatment-related parameters among patients were tested using Spearmen correlations. A p < 0.05 indicated a statistically significant difference. All data analyses were performed by STATA 12.0.

Results

Clinical and demographic characteristics

Demographic and clinical characteristics of the patients and healthy controls are shown in Table 1. No significant difference was noticed between groups regarding age, menopausal status, height, weight, and BMI. With respect to complication, 28.57% of patients with SLE had hypertension (n = 28), 4.08% (n = 4) diabetes, 2.04% (n = 2) coronary heart disease, and 8.16% (n = 8) cerebrovascular disease. The prevalence of dyslipidemia was not different between the patients with SLE and controls (21.4% vs. 30.8%, p = 0.132). The mean disease duration of all the patients was 8.0 ± 7.0 years. The average SLEDAI-2K and SLICC/ACR-DI scores were 2.5 ± 4.0 and 0.6 ± 1.0, respectively. The mainly affected organ systems were (in descending order of prevalence) hematologic, musculoskeletal, mucocutaneous, and renal. Most of the patients were currently receiving systemic glucocorticoid (n = 79, average prednisone dose 6.9 ± 8.3 mg) and immunosuppressant therapy (n = 82, mainly cyclophosphamide, mycophenolate mofetil, and hydroxychloroquine). Only 9 patients in SLE groups used statins because they had cardiovascular or/and cerebrovascular diseases while none of the controls used anti-dyslipidemic agents.

Laboratory characteristics

The laboratory findings of the patients and healthy controls are shown in Table 2. The SLE patients had a lower level of serum TC (p = 0.0005), HDL-C (p = 0.0009), and LDL-C (p = 0.0001), but higher level of serum creatinine (p = 0.0256), TG (p = 0.0435), and TG/HDL-C (p = 0.0019) than controls. The majority of the patients were ANA positive, and the most common ENA antibody was anti-Ro. Thirty patients had low serum complement C3/C4.

Body composition

With regard to the body composition parameters (Table 3), patients with SLE had lower lean mass (p = 0.0009), FFM (p = 0.0010), and FFMI (p = 0.0007) than controls. However, the android fat% (p = 0.0010), A/G (p = 0.0345), VAT volume (p = 0.0015), and VAT mass (p = 0.0017) was higher in the patient group. The subanalysis of premenopausal SLE patients and controls showed only that SLE patients had a lower FFMI (p = 0.0288). The subanalysis of perimenopausal and late postmenopausal patients with SLE and controls demonstrated that patients with SLE were younger than controls. The late postmenopausal patients had an altered adiposity distribution, namely higher android fat% (p = 0.0223), gynoid fat% (p =
0.0367), VAT volume (p = 0.0113), and VAT mass (p = 0.0112).

The subgroup analysis of subjects with a BMI less than 25 kg/m² indicated that patients had lower lean mass (p = 0.0005), FFM (p = 0.0005), and FFMI (p = 0.0001), especially premenopausal and late postmenopausal patients. Moreover, premenopausal and late postmenopausal patients with a BMI less than 25 kg/m² had a higher value of adiposity distribution than controls: FMI, android fat%, gynoid fat%, VAT volume, and VAT mass (Table 4).

However, the subanalysis of subjects with BMI of 25 kg/m² or higher showed that they had similar age (p = 0.5143), weight (p = 0.7629), height (p = 0.5411), body composition, and VAT characteristics (p > 0.05) (data not shown).

Associations of VAT with cardiometabolic risk factors by SLE status

In patients with SLE and healthy controls, VAT volume correlated strongly with BMI (r = 0.6819, p < 0.0001), correlated moderately with age (r = 0.4759, p < 0.0001), and correlated...
weakly with serum uric acid \((r = 0.3332, p < 0.0001) \), serum creatinine \((r = 0.2661, p = 0.0002) \), non-HDL-C level \((r = 0.2209, p = 0.0016) \), and serum TG level \((r = 0.2254, p = 0.0018) \).

Subgroup analysis

The subanalysis of SLE patients and controls with different menopausal status showed that the subjects in perimenopausal \((672.0 \pm 53.0 \text{ vs. } 445.7 \pm 28.8, p = 0.0001) \) and late postmenopausal status \((893.5 \pm 54.6 \text{ vs. } 445.7 \pm 28.8, p < 0.0001) \) had higher VAT volume than those in premenopausal status. The subanalysis of SLE patients with hypertension showed that they had higher VAT volume than those without hypertension \((1015.8 \pm 70.3 \text{ vs. } 598.3 \pm 46.0, p < 0.0001) \). Regardless of the use of statins, there was no significant difference in VAT volume in patients with SLE.

Association of SLE characteristics with VAT

In patients with SLE, VAT volume positively correlated with disease duration \((r = 0.3573, p = 0.0003) \) and SLICC/ACR-DI score \((r = 0.2499, p = 0.0131) \), and negatively correlated with low serum complement C3/C4 \((r = -0.2667, p = 0.0079) \), whereas VAT volume did not correlate with SLEDAI-2K.
Table 2 Laboratory characteristics of the patients with systemic lupus erythematosus and the control subjects

Characteristics	SLE patients
	Healthy control
	n = 98
TG, mmol/L	1.5 ± 0.9
TC, mmol/L	4.6 ± 1.3
HDL-C, mmol/L	1.2 ± 0.4
LDL-C, mmol/L	2.6 ± 0.9
Non-HDL-C	3.4 ± 1.1
TG/HDL-C	1.4 ± 1.1
Uric acid, umol/L	331.6 ± 126.7
Creatinine, umol/L	68.7 ± 44.8
ANA positive, n (%)	89 (94.7%)
Anti-Ro positive, n (%)	58 (61.7%)
Anti-dsDNA positive, n (%)	21 (22.3%)
Anti-La positive, n (%)	15 (16.0%)
Anti-Smith positive, n (%)	8 (0.5%)
Complement C3	933.8 ± 259.0
Complement C4	206.7 ± 94.8
ESR, mm/h	42.5 ± 32.9
HsCRP, mg/L	9.9 ± 21.5

score, hsCRP, ESR, serum antibody level (ANA, anti-dsDNA, Anti-Smith, anti-Ro, Anti-La), and current or cumulative glucocorticoid dose (p > 0.05).

Compared with SLE patients with the lower thirds of VAT, the ones with the upper third were more likely to be older, have a higher BMI, and have longer disease duration. In addition, they had a higher prevalence of hypertension and a higher level of serum uric acid, TC, TG, serum creatinine, and non-HDL-C. The SLICC/ACR-DI was also higher in the upper third group (Table 5).

Discussion

Although past studies observed that patients with SLE had increased CV risk, the specific mechanism was still unknown. Here, we focused on body composition, especially VAT, which may have an effect on the CV risk in SLE patients. The significant findings of the present study were that the patients with SLE did have higher VAT volume and mass in both premenopausal and late postmenopausal patients. Moreover, we also found that some disease-related factors correlate with VAT mass, which could be concluded as patients with longer disease duration, poor disease control, and organ damage may have a higher VAT mass. Other CV risk factors, such as hypertension, higher serum uric acid, TC, and TG level, were also related to higher VAT volume.

In most cases, the VAT measurements are performed by computed tomography (CT) or magnetic resonance tomography (MRI). However, because these imaging techniques are expensive, their use is limited in large-scale studies. Recently, some investigators used DXA to provide accurate quantitative assessments of both total and regional adiposity [18, 19]. The comparing study has shown that DXA correlated well with gold standard MRI and CT, and provides a low radiation, efficient, cost-effective option despite its underestimation of VAT to some extent [20, 21]; therefore, we used DXA to evaluate the VAT in this study.

Similar to other studies, we found that our patients had some traditional risk factors for CVD, such as higher serum creatinine and uric acid, and lower HDL-C. Wang et al. [22] reported that the frequency of CVD was high in Chinese patients with SLE, and higher serum creatinine levels and lower HDL-C were the risk factors for CVD. Yang et al. [23] also found that elevated serum creatinine was an independent risk factor for CVD. Daniele Machado et al. [22] reported that the most significant difference of lipid profile between adolescent females with juvenile SLE and healthy controls was lower HDL-C, whereas TC, LDL-C, TG, and non-HDL-C were not different between the two groups, and also suggested low HDL-C might contribute to an increased atherosclerotic risk. Studies demonstrated that the TG/HDL-C ratio was more useful than isolated lipid values, as it more closely reflects the complex interactions of lipoprotein metabolism [24]. Recent studies indicated a high level of the TG/HDL-C ratio had been associated with insulin resistance, obesity, and metabolic syndrome [25, 26]. We actually found that the TG/HDL-C ratio of our patients was higher than that of the control group, which may be associated with higher CVD risk. In 2018, a Brazilian cross-sectional study demonstrated that the TG/HDL-C ratio was higher in dyslipidemic SLE patients than the others and it was correlated with disease activity [27]. Our group of SLE patients had lower serum TC and LDL-C level than controls, which was not consistent with previous studies [23]. The possible reason was that most of our patients had a well-controlled disease and were under minimal glucocorticoid therapy and long-term hydroxychloroquine treatment. A longitudinal study demonstrated that antimalarials could significantly decrease TC and LDL-C in SLE patients [28].

According to our study, SLE patients likely had lower BMC and LM compared with the control group, especially in premenopausal patients. Accelerated rates of bone and muscle loss have reported before in patients with SLE [29, 30]. The inflammatory nature of SLE, decreased physical exercise, malnutrition, vitamin D supplementation, and glucocorticoid therapy have been found to be associated with this phenomenon [31].

So far, only two studies have examined the relationship between visceral fat and SLE. In 2013, Shields et al. [13] used
Parameter	SLE
	(n = 98)
	(n = 108)
	SLE
	(n = 44)
	(n = 53)
	(n = 19)
	(n = 27)
	(n = 35)
	(n = 24)
BMI, kg/m²	22.1 ± 2.6
Age	46.4 ± 13.2
Height, m	1.56 ± 0.05
Weight, kg	54.2 ± 7.5
FM, kg	19.3 ± 5.0
FMI, kg/m²	7.9 ± 2.0
Lean mass, kg	32.8 ± 4.1
FFM, kg	34.8 ± 4.3
FFMI, kg/m²²	14.2 ± 1.4
BMC, kg	2.0 ± 0.3
Android fat%	40.6 ± 9.2
Gynoid fat%	37.9 ± 5.1
A/G	1.1 ± 0.2
VAT volume, cm³	717.6 ± 424.4
VAT mass, g	675.0 ± 399.5

FM, fat mass; BMC, bone mineral content; FFM, fat-free mass; VAT, visceral adipose tissue; fat mass index (FMI) was calculated by dividing body fat mass by the square of the height (kg/m²); fat-free mass index (FFMI) by dividing fat-free mass by the square of the height (kg/m²²); A/G was calculated by dividing android fat by gynoid
Table 4 Body composition parameters, including VAT of SLE patients and controls with BMI < 25 kg/m2

Parameter	SLE ($n = 86$)	HC ($n = 90$)	p value	SLE ($n = 42$)	HC ($n = 47$)	p value	SLE ($n = 17$)	HC ($n = 22$)	p value	SLE ($n = 27$)	HC ($n = 21$)	p value
BMI, kg/m2	21.4 ± 1.8	21.5 ± 1.7	0.8098	21.3 ± 1.8	21.3 ± 1.7	0.8887	21.1 ± 1.8	21.6 ± 1.7	0.4172	21.8 ± 1.8	21.7 ± 1.9	0.8323
Age, year	45.9 ± 13.1	46.7 ± 13.4	0.7081	36.9 ± 8.7	37.2 ± 8.9	0.8406	45.4 ± 3.8	50.0 ± 4.2	0.0009	60.2 ± 9.2	64.1 ± 7.8	0.1226
Height, m	1.56 ± 0.05	1.57 ± 0.06	0.3283	1.58 ± 0.05	1.58 ± 0.05	0.6255	1.57 ± 0.04	1.57 ± 0.04	0.6516	1.54 ± 0.05	1.54 ± 0.06	0.8730
Weight, kg	52.4 ± 5.7	53.0 ± 5.0	0.4412	53.1 ± 5.6	53.5 ± 4.9	0.7048	52.0 ± 5.1	53.6 ± 5.4	0.3478	51.6 ± 6.2	51.3 ± 4.6	0.8571
FM, kg	18.2 ± 3.9	17.1 ± 3.2	0.0534	17.9 ± 3.7	16.7 ± 2.0	0.0963	17.5 ± 4.1	18.0 ± 3.9	0.6608	19.0 ± 4.0	17.1 ± 2.9	0.0611
FMI, kg/m2	7.4 ± 1.5	7.0 ± 1.3	0.0265	7.2 ± 1.4	6.7 ± 1.2	0.0729	7.1 ± 1.7	7.3 ± 1.5	0.7689	8.0 ± 1.5	7.2 ± 1.3	0.0606
Lean mass, kg	32.2 ± 3.7	34.1 ± 3.1	0.0005	33.2 ± 4.1	34.9 ± 3.2	0.0411	32.5 ± 3.1	33.9 ± 3.0	0.1637	30.5 ± 3.0	32.6 ± 2.5	0.0136
FFM, kg	34.2 ± 3.9	36.1 ± 3.3	0.0005	35.2 ± 4.1	37.0 ± 3.3	0.0356	34.6 ± 3.3	36.0 ± 3.2	0.1890	32.2 ± 3.2	34.3 ± 2.7	0.0206
FFMI, kg/m2	14.0 ± 1.2	14.6 ± 1.0	0.0001	14.1 ± 1.5	14.7 ± 1.0	0.0320	14.0 ± 0.9	14.5 ± 1.0	0.1352	13.6 ± 0.9	14.5 ± 0.9	0.0025
BMC, kg	1.9 ± 0.3	2.0 ± 0.3	0.0652	2.0 ± 0.2	2.2 ± 0.2	0.0372	2.0 ± 0.3	2.1 ± 0.3	0.8359	1.7 ± 0.3	1.7 ± 0.3	0.9604
Android fat%	39.2 ± 8.7	35.2 ± 6.7	0.0008	37.0 ± 7.7	32.8 ± 6.3	0.0060	37.7 ± 9.7	36.9 ± 6.4	0.7765	43.6 ± 8.3	39.0 ± 5.8	0.0263
Gynoid fat%	37.6 ± 4.9	36.1 ± 4.7	0.0364	37.7 ± 5.3	35.8 ± 4.6	0.0780	36.0 ± 4.3	37.1 ± 5.3	0.4851	38.5 ± 4.6	35.6 ± 4.5	0.0333
A/G	1.0 ± 0.2	0.9 ± 0.2	0.0352	1.0 ± 0.2	0.9 ± 0.2	0.0866	1.0 ± 0.2	1.0 ± 0.2	0.4936	1.1 ± 0.2	1.1 ± 0.03	0.5763
VAT volume, cm3	636.5 ± 347.2	465.0 ± 267.7	0.0003	493.8 ± 212.1	326.5 ± 208.1	0.0003	612.9 ± 385.6	571.9 ± 241.3	0.7039	873.2 ± 374.5	663.0 ± 243.7	0.0234
VAT mass, g	600.4 ± 327.6	438.7 ± 252.5	0.0003	465.9 ± 200.1	308 ± 196.0	0.0003	578.0 ± 363.8	539.6 ± 227.7	0.7061	823.8 ± 353.3	625.5 ± 229.9	0.0234

FM, fat mass; BMC, bone mineral content; FFM, fat-free mass; VAT, visceral adipose tissue; fat mass index (FMI) was calculated by dividing body fat mass by the square of the height (kg/m2) and fat-free mass index (FFMI) by dividing fat-free mass by the square of the height (kg/m2); A/G was calculated by dividing android fat by gynoid fat.
Comparison of the demographic, clinical, and laboratory data

Parameters	Lower thirds (n = 65)	Upper third (n = 33)	p value
Age, year	42.0 ± 10.5	55.0 ± 13.8	< 0.0001
Weight, kg	51.7 ± 5.6	59.0 ± 8.3	< 0.0001
Premenopausal	39(60.00%)	5(15.15%)	0.0001
BMI, kg/m²	21.0 ± 1.8	24.3 ± 2.7	< 0.0001
Disease duration, year	6.4 ± 5.2	10.9 ± 8.9	0.0021
Hypertension, n, %	7 (10.8%)	21 (63.64%)	< 0.0001
Serum uric acid, umol/L	292.0 ± 98.0	408.4 ± 141.6	< 0.0001
Creatinine, umol/L	55.7 ± 18.1	94.3 ± 66.5	< 0.0001
TC, mmol/L	4.4 ± 1.0	5.2 ± 1.5	0.0027
TG, mmol/L	1.3 ± 0.7	1.8 ± 1.2	0.0082
Non-HDL-C, mmol/L	3.2 ± 0.9	3.8 ± 1.3	0.0100
LDL-C, mmol/L	2.5 ± 0.7	2.9 ± 1.1	0.0158
SLICC/ACR-DI	0.3 ± 0.6	1.0 ± 1.3	< 0.001

The previous study demonstrated that long-term low-dose prednisone exposure was associated with increased visceral fat in patients with rheumatoid arthritis [33]. Glucocorticoid could preferentially upgrade lipoprotein lipase expression and activity in visceral adipose tissue, but not subcutaneous adipose tissue. Thereby, a higher rate of free fatty acid delivery from triglyceride-rich lipoproteins might contribute to the visceral fat accumulation [34]. We failed to find glucocorticoid exposure in SLE patients related to VAT; the possible reason was that the majority of patients were under long-term glucocorticoid therapy. And, because the dose of glucocorticoid varied in different periods among individuals, it was difficult to distinguish the influence of glucocorticoid on VAT in a cross-sectional study. According to the related studies, it is still safe to say that clinicians should minimize glucocorticoid use to the possible minimum dose to prevent underlying VAT-associated CV events.

There were some confounding factors that may have association with VAT which we did not explore in this study. A large community-based cross-sectional study demonstrated that patients who adhered to recommended dietary guidelines and physical activity (PA) had lower VAT volumes in White people [35]. Other studies also showed that PA intervention was negatively correlated with VAT in obese/overweight population [36–38]. Ethnicity was another confounding factor affecting VAT accumulation [39]. Iris A. Lesser et al. [40] found that when ethnic differences in PA were taken into account, there were no longer any differences in VAT between the Chinese and European groups, while VAT remained higher in South Asians than Europeans. Due to this was a preliminary study, we did not take all these factors into account. In the further study, an exercise intervention study is necessary to further elucidate the effects of PA on VAT in ethnic patients with SLE.
Some limitations of our study are the following: First, the sample size of our study was relatively small, and it was a single-center study. Second, the study was cross-sectional in nature, which made it difficult to explain the cause-and-effect correlation. Third, most of our patients had well-controlled disease and low glucocorticoid dose, which could not reflect the diversity of SLE disease. In addition, DXA was not the most accurate method to measure VAT, which may have some influence on the results. Besides, there were some confounders, such as PA and dietary quality, which affected VAT that we could not control. Notwithstanding its limitations, this study does suggest that patients with SLE in China have increased VAT, and it was associated with traditional CV risk factors and related to the disease itself. To fully identify the associations between SLE and VAT distribution, large-scale, long-term cohort studies should be performed to exclude other confounding factors, such as diet and exercise.

Conclusion

We actually found some traditional CV risk factors in SLE patients, such as low HDL-C, high TG/HDL-C, high serum creatinine, and high uric acid. Furthermore, this study suggested the VAT increases significantly in SLE patients, especially in a premenopausal and late menopause period. The increased VAT in patients with SLE was associated with traditional cardiometabolic risk factors, which may contribute to CV risk in SLE populations. Cohort studies are necessary to validate the long-term effect of VAT on CV complications in SLE. Some other confounding factors, such as PA, dietary quality, and ethnicity, should also take into account in the further study.

Compliance with ethical standards

Our research was approved by the Medical Ethics Committee of the First Affiliated Hospital of Jinan University.

Disclosure None.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Mok CC, Kwok CL, Ho LY, Chan PT, Yip SF (2011) Life expectancy, standardized mortality ratios, and causes of death in six rheumatic diseases in Hong Kong, China. Arthritis Rheum 63(5):1182–1189

2. Manzi S, Meilahn EN, Rairie JE, Conte CG, Medsger TA, Jansen-McWilliams L, D’Agostino RB, Kuller LH (1997) Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham Study. Am J Epidemiol 145(5):408–415

3. Jonsson H, Nived O, Sturfelt G (1989) Outcome in systemic lupus erythematosus: a prospective study of patients from a defined population. Medicine (Baltimore) 68(3):141–150

4. Hermansen ML, Lindhardsen J, Torp-Pedersen C, Faurschou M, Jacobsen S (2017) The risk of cardiovascular morbidity and cardiovascular mortality in systemic lupus erythematosus and lupus nephritis: a Danish nationwide population-based cohort study. Rheumatology (Oxford) 56(5):709–715

5. Esdaile JM, Abrahamowicz M, Grodzicky T, Li Y, Panaritis C, Berger RD, Côte R, Grover SA, Fortin PR, Clarke AE, Senécal JL (2001) Traditional Framingham risk factors fail to fully account for accelerated atherosclerosis in systemic lupus erythematosus. Arthritis Rheum 44(10):2331–2337

6. Benvenuti F, Gatto M, Larosa M, Iaccarino L, Punzi L, Doria A (2015) Cardiovascular risk factors, burden of disease and preventive strategies in patients with systemic lupus erythematosus: a literature review. Expert Opin Drug Saf 14(9):1373–1385

7. Urowitz MB, Gladman DD, Tom BD, Ibanez D, Farewell VT (2008) Changing patterns in mortality and disease outcomes for patients with systemic lupus erythematosus. J Rheumatol 35(11): 2152–2158

8. Tselios K, Sheane BJ, Gladman DD, Urowitz MB (2016) Optimal monitoring for coronary heart disease risk in patients with systemic lupus erythematosus: a systematic review. J Rheumatol 43(1):54–65

9. Seguro LPC, Paupitz JA, Caparbo VF, Bonfa E, Pereira R (2018) Increased visceral adipose tissue and altered adiposity distribution in premenopausal lupus patients: correlation with cardiovascular risk factors. Lupon 27(6):1001–1006

10. Fujimoto WY, Bergstrom RW, Boyko EJ, Chen KW, Leonetti DL, Newell-Morris L, Shiref JB, Wahl PW (1999) Visceral adiposity and incident coronary heart disease in Japanese-American men. The 10-year follow-up results of the Seattle Japanese-American community diabetes study. Diabetes Care 22(11):1808–1812

11. Wajchenberg BL, Giannella-Neto D, da Silva ME, Santos RF (2002) Depot-specific hormonal characteristics of subcutaneous and visceral adipose tissue and their relation to the metabolic syndrome. Horm Metab Res 34(11–12):616–621

12. Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21(6):697–738

13. Shields KJ, Barinas-Mitchell E, Gingo MR, Tepper P, Goodpaster BH, Kao AH, Manzi S, Sutton-Tyrrell K (2013) Perivascular adipose tissue of the descending thoracic aorta is associated with systemic lupus erythematosus and vascular calcification in women. Atherosclerosis, 231(1):129–135

14. Sowers MR, Finkelstein JS, Ettinger B, Bondarenko I, Neer RM, Cauley JA, Sherman S, Greendale GA (2003) The association of endogenous hormone concentrations and bone mineral density measures in pre- and perimenopausal women of four ethnic groups: SWAN. Osteoporos Int 14(1):44–52

15. Sowers MR, Jannausch M, McConnell D et al (2006) Hormone predictors of bone mineral density changes during the menopausal transition. J Clin Endocrinol Metab 91(4):1261–1267

16. Harlow SD, Gass M, Hall JE, Lobo R, Makki P, Rebar RW, Sherman S, Sluss PM, de Villers TJ, STRAW 10 Collaborative Group (2012) Executive summary of the stages of reproductive aging workshop + 10. Menopause, 19(4):387–395

17. Calio CL, Sorprose IC, Abi Haidar M, Maciel GA, Baracat EC, Soares JM Jr (2013) Physiotherapeutic approach in early and late
post-menopausal Brazilian women. Gynecol Endocrinol 29(7): 670–673

18. Bantle AE, Bosch TA, Dengel DR, Wang Q, Mashek DG, Chow LS (2018) DXA-determined regional adiposity relates to insulin resistance in a young adult population with overweight and obesity. J Clin Densitom

19. Vasan SK, Osmond C, Canoy D, Christodoulides C, Neville MJ, di Gravio C, Fall CHD, Karpe F (2018) Comparison of regional fat measurements by dual-energy X-ray absorptiometry and conventional anthropometry and their association with markers of diabetes and cardiovascular disease risk. Int J Obes 42(4):850–857

20. Mohammad A, De Lucia Rolfe E, Sleight A et al (2017) Validity of visceral adiposity estimates from DXA against MRI in Kuwaiti men and women. Nutr Diabetes 7(1):e238

21. Cheung AS, de Rooy C, Hoermann R, Gianatti EJ, Hamilton EJ, Roff G, Zajac JD, Grossmann M (2016) Correlation of visceral adipose tissue measured by Lunar Prodigy dual X-ray absorptiometry with MRI and CT in older men. Int J Obes 40(8):1325–1328

22. Wang XY, Tang XQ, Huang YJ, Chen WY, Yu XQ (2012) Frequency of established cardiovascular disease and its risk factors in Chinese patients with systemic lupus erythematosus. Clin Rheumatol 31(2):312–315

23. Yang L, Tao J, Tang X, Wang Y, He X, Xu G, Ren Y, Tu Y (2012) Prevalence of conventional and lupus-specific risk factors for cardiovascular disease in Chinese systemic lupus erythematosus patients. J Eur Acad Dermatol Venereol 26(1):95–101

24. Millan J, Pinto X, Munoz A et al (2009) Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular prevention. Vasc Health Risk Manag 5:757–765

25. Karels AD, Pasternyk SM, Messier L, St-Pierre DH, Lavoie JM, Garrel D, Rabasa-Lhoret R (2007) Relationship between insulin sensitivity and the triglyceride-HDL-C ratio in overweight and obese postmenopausal women: a MONET study. Appl Physiol Nutr Metab 32(6):1089–1096

26. Gonzalez-Chavez AS, Simental-Mendia L, Elizondo-Argueta S (2011) Elevated triglycerides/HDL-cholesterol ratio associated with insulin resistance. Cir Cir 79(2):126–131

27. Atta AM, Silva J, Santiago MB, Oliveira IS, Oliveira RC, Sousa Atta MLB (2018) Clinical and laboratory aspects of dyslipidemia in Brazilian women with systemic lupus erythematosus. Clin Rheumatol 37(6):1539–1546

28. Cairoli E, Rebella M, Danese N, Garra V, Borba EF (2012) Hydroxychloroquine reduces low-density lipoprotein cholesterol levels in systemic lupus erythematosus: a longitudinal evaluation of the lipid-lowering effect. Lupus. 21(11):1178–1182

29. Santos MJ, Vinagre F, Canas da Silva J, Gil V, Fonseca JE (2011) Body composition phenotypes in systemic lupus erythematosus and rheumatoid arthritis: a comparative study of Caucasian female patients. Clin Exp Rheumatol 29(3):470–476

30. Liyanage A, Lekamwasam S, Disserayake S, Muniadas D (2013) Factors that determine body composition of female systemic lupus erythematosus (SLE) patients in Sri Lanka: a comparative study using dual-energy x-ray absorptiometry. Lupus 22:972–976

31. Mok CC, To CH, Ma KM (2008) Changes in body composition after glucocorticoid therapy in patients with systemic lupus erythematosus. Lupus 17(11):1018–1022

32. Kravariti E, Konstantonis G, Siokakis PP, Tektonidou MG (2018) Progression of subclinical atherosclerosis in systemic lupus erythematosus versus rheumatoid arthritis: the impact of low disease activity. Rheumatology (Oxford) 57(12):2158–2166

33. Giles JT, Allison M, Blumenthal RS, Post W, Gelber AC, Petri M, Tracy R, Szko M, Bathon JM (2010) Abdominal adiposity in rheumatoid arthritis: association with cardiometabolic risk factors and disease characteristics. Arthritis Rheum 62(11):3173–3182

34. Fried SK, Russell CD, Grauso NL, Brolin RE (1993) Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men. J Clin Invest 92(5):2191–2198

35. Molenar EA, Massaro JM, Jacques PF, Pou KM, Ellison RC, Hoffmann U, Pencina K, Shadwick SD, Vasan RS, O'Donnell CJ, Fox CS (2009) Association of lifestyle factors with abdominal subcutaneous and visceral adiposity: the Framingham heart study. Diabetes Care 32(3):505–510

36. Sasai H, Katayama Y, Nakata Y, Eto M, Tsujimoto T, Ohkubo H, Tanaka K (2010) The effects of vigorous physical activity on intra-abdominal fat levels: a preliminary study of middle-aged Japanese men. Diabetes Res Clin Pract 88(1):34–41

37. Irving BA, Davis CK, Brock DW et al (2008) Effect of exercise training intensity on abdominal visceral fat and body composition. Med Sci Sports Exerc 40(11):1863–1872

38. Slentz CA, Aiken LB, Houmard JA, Bales CW, Johnson JL, Tanner CJ, Duscha BD, Kraus WE (2005) Inactivity, exercise, and visceral fat. STIRRIDE: a randomized, controlled study of exercise intensity and amount. J Appl Physiol (1985) 99(4):1613–1618

39. Lear SA, Humphries KH, Kohli S, Chockalingam A, Frohlich JJ, Birmingham CL (2007) Visceral adipose tissue accumulation differs according to ethnic background: results of the Multicultural Community Health Assessment Trial (M-CHAT). Am J Clin Nutr 86(2):353–359

40. Lesser IA, Yew AC, Mackay DC, Lear SA (2012) A cross-sectional analysis of the association between physical activity and visceral adipose tissue accumulation in a multiethnic cohort. J Obes 2012: 703941

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.