Gene cloning, heterologous expression, and partial characterization of a novel cold-adapted subfamily I.3 lipase from *Pseudomonas fluorescence* KE38

Fulya Karakaş & Alper Arslanoğlu

A novel cold-active true lipase from *Pseudomonas* sp. KE38 was cloned, sequencing and expressed in *E. coli* by degenerate PCR and genome walking technique. The open reading frame of the cloned gene encoded a polypeptide chain of 617 amino acids with a confirmed molecular weight of 64 kD. Phylogenetic analysis of the deduced amino acid sequence of the lipase indicated that it had high similarity with lipases of subfamily I.3 of bacterial lipases. Recombinant lipase was purified in denatured form as inclusion bodies, which were then renatured by urea followed by dialysis. Lipase activity was determined titrimetrically using olive oil as substrate. The enzyme showed optimal activity at 25 °C, pH 8.5 and was highly stable in the presence of various metal ions and organic solvents. Low optimal temperature and high activity in the presence of methanol and ethanol make this lipase a potential candidate for transesterification reactions and biodiesel production.

Lipolytic enzymes catalyze the hydrolysis of long-chain triacylglycerols to glycerol and free fatty acids in the presence of excess water. In the absence of water, however, lipases can catalyze esterification, transesterification, acidolysis and aminolysis reactions. Lipolytic enzymes that act on glycerol esters with an acyl chain length of less than 10 carbon atoms are categorized as esterases. True lipases on the other can catalyze the hydrolysis of triacylglycerols with an acyl chain length ≥ 10 carbon atoms. Because of their activities in both aqueous and nonaqueous environments, lipases have specific applications in industry and medicine.

Lipases are produced by many animals, plants, and microorganisms including bacteria and fungi. Due to the great variety of biochemical activities and the ease of their isolation and production, microbial lipases received much attention. Among microbial lipases, bacterial enzymes are usually preferred over fungal enzymes due to their higher stabilities and higher activities at neutral or alkaline pH. Bacterial cells also have simpler nutritional needs, shorter generation times and their genetic manipulations are easier to be performed. Because of these properties, bacterial lipases have found immerse applications in chemical, food, detergent, pulp and paper, leather, environmental management and pharmaceutical industries.

Among bacterial lipases, special attention has been focused on *Pseudomonas* lipases due to their thermo-resistance and activity at alkaline pHs which are not common among the lipases produced by other microorganisms. *Pseudomonas* lipases are classified into three groups based on their amino acid homologies and some biological properties. Group I and II lipases share 60% amino acid homology consisting of approximately 285 and 320 amino acids with molecular weights of 30 and 33 kDa respectively, and they require the help of another protein called lipase-specific foldase for the correct folding and secretion. Group III lipases which do not require a lipase-specific foldase are composed of about 475 amino acids with a molecular weight of around 50–68 kDa.

Although the thermal stability of the lipases is considered as the most important feature for industrial usage, the low thermostability is also beneficial for some applications. For instance, cold-active enzymes can be easily inactivated via heat treatment with relatively low temperatures after they are used for the processing of food...
Figure 1. Multiple alignments of 8 different Pseudomonas fluorescens lipase genes. Only 5’, 3’, and middle sections of the lipase genes are shown. Binding sites for the degenerate primers are designated by arrows.

Results

Partial amplification of the Lipl.3_KE38 gene. DNA sequences of already sequenced lipase genes of Pseudomonas species that are phylogenetically closely related to P. fluorescens were aligned, and two degenerate primers (KE38Lip_F and KE38Lip_R) were designed to regions that showed a high level of sequence identities (Fig. 1). Although 5’ ends of the aligned lipase sequences contained a high level of identity, 3’ ends were poor in identity, forcing us to design the 3’ primer to a region around the middle of the sequence. Sequence homology analysis of a PCR amplified fragment of the expected size (1105 bp) cloned into pTZ57RT/A confirmed successful amplification of the 5’ region of a lipase gene.

In order to amplify the 3’ end of the Lipl.3_KE38 gene, genome walking technique was employed by using isolated genomic DNA. This technique is based on a nested PCR-based strategy for extending a known sequence region to its uncharacterized flanking region. A walker primer which is partially degenerate (Semi2) and a set of nested gene-specific primers (LIP7, LIP5, LIP4) were used in three successive rounds of nested PCR reaction (Fig. 2a). The walker primer was expected to bind randomly to several sites on the bacterial chromosome, potentially generating many nonspecific as well as specific PCR products. Specific products were then further amplified in the second and third round of PCR using second and third nested gene specific primers, respectively eliminating nonspecific artifacts.

During our genome walking attempt, no bands over 1000 bp were observed after the first and second-round PCR while the third round PCR produced a band of approximately 1600 bp (Fig. 2b), which was cut from eliminating nonspecific artifacts.

Cloning of Lipl.3_KE38 gene. Lipl.3_KE38 open reading frame of about 1900 bp in length was amplified by PCR using primer pairs Lip_Start, and Lip_Stop and cloned into pJET1.2/blunt vector as described in
the materials and methods section and sequenced. The open reading frame encoded a polypeptide chain of 617 amino acids with a predicted molecular weight of 64 kDa, lacked any cysteine residues, contained the highly conserved GXGXG motif, which includes the active site serine residue, a five residue conserved motif VTVVG involved in type I secretion of the lipase, and an extreme C-terminal motif DGIVA which is important for the stability of the enzyme, as in many of the subfamily I.3 lipases suggesting LipI.3_KE38 also belonged to the same subfamily. This was confirmed by multiple alignments and phylogenetic analysis of the deduced amino acid sequence, which showed 91% identity to Pseudomonas sp. 7323 lipase, and 87% identity to the lipases of Pseudomonas sp. CR-611, P. fluorescens Hu380, Acinetobacter sp. MBDD-4, and Pseudomonas sp. MIS38, all belonging to family I.3 lipases (Figs. 3, 4).

Expression of the recombinant LipI.3_KE38 gene. Lipase gene was cloned into E. coli expression vector, pET28a, to produce the expression construct pET28a-LipI.3_KE38, which was used for the transformation of the expression strain BL21(DE3) as described in the materials and methods section. Lipase production by E. coli BL21(DE3) pET28a-LipI.3_KE38 was verified by fluorescens plate assay using olive oil as a substrate (Fig. 5). IPTG induced E. coli BL21(DE3) pET28a-LipI.3_KE38 produced fluorescence indicative of lipase production, whereas IPTG induced E. coli BL21(DE3) harboring empty vector pET28a did not produce any fluorescens. However, E. coli BL21(DE3) pET28-LipI.3_KE38 growth hence fluorescens was much less compared to the positive control bacteria P. fluorescens KE38. This was possibly due to the formation of lipase inclusion bodies in the heterologous host. High-level expression of recombinant proteins in bacterial hosts such as E. coli often leads to the formation of inclusion bodies, which are composed of densely packed denatured protein molecules in the form of particles. They are insoluble and usually show little activity.

Partial purification of the recombinant lipase by inclusion body isolation. Culture supernatants of IPTG induced E. coli BL21(DE3) pET28-LipI.3_KE38 had low lipase activity compared to culture supernatants of P. fluorescens KE38 which displayed high levels of lipase activity on plate assays, indicative of the production of lipase as unsecreted inclusion bodies in E. coli BL21(DE3) pET28-LipI.3_KE38 (data not shown). Therefore, the expressed lipase was subjected to partial purification by inclusion body isolation from both the soluble and insoluble fractions of the lysed cells and analyzed by SDS-PAGE. As expected, inclusion bodies were only present in the insoluble fraction and had an estimated molecular weight of around 64 kDa (Fig. 6a). This was consistent with the predicted molecular weight of the LipI.3_KE38 encoded by the cloned lipase gene.

Determination of the optimum lipase production time. For the determination of optimum recombinant lipase production time, E. coli BL21(DE3) pET28a-LipI.3_KE38 cells were grown at 37 °C for 10 and then induced by IPTG. Samples were collected just before, and every 2 h after induction, and purified lipase from each sample were analyzed by SDS-PAGE. As expected, inclusion bodies were only present in the insoluble fraction and had an estimated molecular weight of around 64 kDa. The maximum production time was determined to be 6 h post-induction.

Partial characterization of the recombinant lipase. Determination of the optimum temperature and pH. The activity of the recombinant lipase was determined at various pH and temperature values. Consistent with most other subfamily I.3 lipases (Table 1), LipI.3_KE38 displayed its maximum activity towards olive oil at pH 8.5 and retained around 80% of its activity at pH 9.0, showing its alkaline nature (Fig. 7a). However, outside this range, activity quickly dropped down to around 20% at pH 8.0 and 10, and to less than 5% at pH 7.0 and 11. On the other hand, maximum activity of the enzyme was recorded at 25 °C and while it retained 80% of its maximum activity at 30 °C, the activity dropped to 50% below and above these values at 20 and 35 °C. However, the enzyme still retained 35–40% of its maximum activity at 10 and 15 °C (Fig. 7b).

Determination of the effects of organic solvents and metal ions on the activity of lipase. The activity of the recombinant lipase on olive oil was measured in the presence of various organic solvents (Fig. 8a). While methanol and acetone did not affect the activity of the lipase, the activity was increased to 125 and 135% in the presence of ethanol and acetonitrile respectively. Although the enzyme retained more than half of its activity in the presence of n-hexane, iso-propanol and ethyl acetate considerably diminished the activity of the enzyme to 10 and 30% of the maximum activity respectively. Among the metal ions tested (Fig. 8b), NaCl did not affect the activity of the enzyme. However, CuSO4, KNO3, and CaCl2 caused an increase of 160%, 118%, and 120% respectively in enzyme activity, whereas Pb(NO3)2, MgCl2, and ZnCl2 led to 25, 15 and 20% decrease respectively in the activity of the enzyme. EDTA (a metal chelator) on the other hand, led to a sharp decrease in enzyme activity as was expected since it is well known that subfamily I.3 lipases require the presence of calcium metal ions for proper folding and thus the activity of the enzyme.

Discussion
In this study, we cloned and expressed a novel cold-active lipase enzyme in E. coli from Pseudomonas sp. KE38. We used degenerate PCR and genome walking technique to achieve the sequencing of the whole lipase gene. The deduced amino acid sequence of LipI.3_KE38 indicated that it had high similarity with lipases of subfamily I.3 of bacterial lipases according to the classification and properties of bacterial lipases. The N-terminal domain contained the GXGXG motif which included Ser207 Asp255, and His313 of the catalytic triad. The C-terminal domain contained the putative secretion signals and several repeats of the GXXGXXUX sequence that forms a β-roll motif in the presence of Ca²⁺, which was implicated to facilitate the correct folding of the enzyme.
Table 1. Comparison of the properties of LipI.3_KE38 with other lipases belonging to the same family, I.3. nd not determined, ne no effect on lipase activity. *Accession numbers from NCBI database. −: negative effect on lipase activity. +: positive effect on lipase activity.

LipI.3_KE38 showed high amino acid sequence identity to family I.3 lipases from *Pseudomonas* sp. 7323, *Pseudomonas* sp. CR-611, *Pseudomonas* sp. MIS38, *P. fluorescens* B52, *P. fluorescens* Hu380, and *Acinetobacter* sp. MBDD-4 (Fig. 3). Interestingly, a phylogenetic tree constructed using all family I.3 lipases, clustered LIPI.3_KE38 with other cold-active lipase members of the family from strains 7323, TK-3, B68, LipCE, and YY31 (Fig. 4) hinting to a common origin for cold-active lipases belonging to subfamily I.3.

Expression of the lipase involved the use of *E. coli* BL21(DE3) and pET28a system which adds histidine tags to the N-terminal of the expressed protein in order to facilitate its single-step purification through the affinity of the histidines to metal ions. However, our attempts using metal affinity failed probably due to the predominantly hydrophobic nature of the lipase protein and the formation of inclusion bodies due to the over-expression of the recombinant protein. Therefore, the expressed lipase was subjected to purification by inclusion body isolation with cellular contaminants so that they can be easily isolated from cells. Also, the expressed protein in the form of inclusion bodies is usually highly resistant to proteolytic cleavage by cellular proteases.

As we mentioned previously, LIPI.3_KE38 was clustered with cold-active lipase members of the subfamily I.3 lipases. Indeed, LipI.3_KE38 showed optimal activity at 25 °C which was similar to the cold-active members of the subfamily I.3 lipases, which had an optimal temperature range of 20–30 °C (Table 1). Although its activity sharply dropped below 10 °C, the enzyme also showed substantial activity (33–50%) at around 10–20 °C, an important property for reactions involving heat-labile substrates and/or products. On the other hand, the enzyme displayed about 80% and 50% of its maximum activity at 30 °C and 35 °C respectively making it a candidate enzyme even for warm temperature applications.

Previously reported subfamily I.3 lipases exhibited their highest activity at alkaline pH around 8–9 (Table 1) and LipI.3-KE38 was not an exception showing optimum activity at 8.5 and 80% of maximum at pH 9. Below and above these pH values, the activity of the enzyme declined sharply. High activity at alkaline pH is a desired property for candidate enzymes to be used in detergent industries.
Although the activity LipI.3_KE38 was increased in the presence of Ca$^{2+}$ (which is a common feature for all subfamily I.3 lipases), it was the only subfamily I.3 lipase with increased activity (over 150%) in the presence of Cu$^{2+}$. The activity of the lipase was not affected significantly in the presence of various other metal ions tested except Pb$^{2+}$. However, EDTA inhibited the activity of the enzyme which is reminiscent of all subfamily I.3 lipases. Moreover, LipI3_KE38 was able to retain a high level of activity in the presence of various organic solvents. Indeed, its activity was remarkably increased by ethanol and acetonitrile, while methanol and acetone did not have any effect on the activity of the lipase.

In recent years, there has been a considerable number of cold active subfamily I.3 lipase discoveries (Table 1). Although the main properties of LipI.3_KE38 is common with other cold active lipases, the nucleotide and amino acid sequence differences can provide valuable information for studies focused on lipase protein function and structure. We also believe that LipI.3_KE38 may have the potential to be used in biodiesel production using methanol and ethanol or in other transesterification or lipolysis reactions requiring the use of low temperature and alkaline pH.

Materials and methods

Chemicals. DNA and protein molecular weight markers and DNA modifying enzymes were purchased from Thermo Scientific, and all chemicals used in the study were purchased from Applichem unless otherwise stated.

Bacterial strains, plasmids, and growth conditions. Both *P. fluorescens* KE38 and *Escherichia coli* strains were grown in Luria–Bertani (LB) broth with shaking at 25 °C and 37 °C respectively. *E. coli* strains DH5a [F− endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG purB20 q80dlacZΔM15 Δ(lacZYA-argF)U169,
Figure 3. Alignment of the amino acid sequences of KE35TrueLip and closely related subfamily I.3 lipase enzymes from different bacteria. The accession numbers of the related lipase sequences are given in Table 1.
Figure 4. Phylogenetic tree showing the evolutionary relatedness of KE38 lipase with other lipases belonging to family I.3. *Represents cold-active lipases. Bootstrap probabilities are shown on the tree.

Figure 5. Lipase expression on LB agar plus olive oil and IPTG plates. (a) Pseudomonas sp. KE38 as a positive control. (b) E. coli BL21(DE3) pET28a-LipI.3_KE38. (c,d) E. coli BL21(DE3) and E. coli BL21(DE3) pET28a as negative controls, respectively. Positive control P. fluorescens KE38 and E. coli BL21(DE3) pET28a-LipI.3_KE38 produced the lipase enzyme, which split the substrate olive oil resulting in the formation of fluorescence orange halos around colonies proved that activity. There was no fluorescence around the colonies of the negative controls, E. coli BL21(DE3) and E. coli BL21(DE3) pET28a as expected. Plates were incubated at 25 °C.

Accession numbers

Accession Number	Description
ABY86751	
AHB29478	
AAA81002	
AEW90242	
BAA02012	
-	
ADM87309	
AZL87721	
BAB64913	
BAK52029	
ABI94371	
AAU10321	
BAM05474	
MT344965	
CAJ76166	
ABG78617	
AKG92634	
AAC4728	
AFP20145	
BAC98498	
AAG22559	
BAA84997	
ABI48028	
where needed at the following concentrations: ampicillin at 100 µg/ml, and kanamycin at 50 µg/ml. Plasmids pTZ57RT/A, pJET1.2/blunt (both from Thermo Scientific) were used as cloning vectors, and pET-28a (Novagen) was used as the expression vector.

Lipase plate assay. Bacteria were plated on agar plates of LB medium supplemented with 1% v/v olive oil as substrate and 1% rhodamine B solution (0.1% w/v) 51. Lipase producing bacteria were identified on spread plates after several days of incubation at 25 °C by the formation of orange fluorescent halos around the colonies monitored by fluorescence with UV light at 350 nm. Olive oil is used as a lipase substrate and rhodamine B is the indicator of lipase activity. The fluorescence is related to the formation of rhodamine B-long chain fatty acid conjugate in this method.

General methods. Transformation of E. coli with plasmid DNA, agarose gel electrophoresis, restriction endonuclease digestions, DNA ligation with T4 DNA ligase, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed as described by Sambrook et al. 52. Commercial kits were used for the isolation of plasmid and genomic DNAs (GeneJET plasmid mini prep and Genomic DNA purification kits, Thermo Scientific), and purification of DNA fragments (GeneJET gel extraction, and PCR purification kits, Thermo Scientific) according to the manufacturers’ instructions. For DNA sequencing, facilities at the Biotechnology and Bioengineering Application and Research Center (BIYOMER) in Izmir Institute of Technology were used.

Cloning of the lipase gene. 5’ partial region of the extracellular lipase gene of *P. fluorescens* KE38 (LipI.3 KE38) was amplified by PCR, using two degenerate primers KE38Lip_F (5′-ATGG GTTNTATGACT CAA-3′) and KE38Lip_R (5′-TTGT GGTNTC GGGTTGCG-3′). The reaction mixture contained 1 µg of genomic DNA, 10 µM of each primer, and Taq polymerase in a volume of 50 µl. Thirty thermal cycles of 95 °C for 30 s, 58 °C for 1 min, and 72 °C for 2 min were performed. The resulting 1100 bp fragment was purified, cloned into pTZ57RT/A cloning vector according to the manufacturer's instructions, and then sequenced from both directions using vector-specific primers M13F and M13R.

To obtain the complete sequence of the lipase gene, genome walking technique described by Guo and Xiong was employed in three rounds of PCR reactions using lipase specific forward nested primers LIP7 (5′-TGA TGCTACGGCA GCACTGCTGG-3′), LIP5 (5′-CAATGGCTTGTCGGAAAG-3′) and LIP4 (5′-CAAGAGACT CGGCCACCG-3′), and a common degenerate reverse walker primer Semi-2 (5′-GCTTAA GGCTANGARM-SC NCNAG-3′). First-round PCR was performed as follows: 50 ng of plasmid pTZ57R-5′Lip (template DNA), 10 µl of each of LIP7-Semi2 primers (2 µM), 10 µl of dNTP mix (2 µM), 10 µl of 10X Taq DNA Polymerase buffer, 12 µl of MgCl2 (25 µM), 0.5 µl of Taq DNA Polymerase (5U/µl) and finally 46.5 µl dH2O were mixed in a total volume of 100 µl. The conditions for PCR amplification were as follows: an initial denaturation step at 94 °C for 2 min; followed by 30 cycles including denaturation at 94 °C for 30 s, gradient primer annealing at 55 °C for 1 min and elongation at 72 °C for 2 min and also final elongation at 72 °C for 10 min. Then, 1 µl of the first-round PCR mixture was used as a template for the second round PCR amplification. The reaction mixture...
and PCR conditions were the same as first-round PCR, except the LIP5-Semi2 primer pair was used instead of LIP7-Semi2. Two μl of the second round PCR mixture was used as a template for the third round PCR in which the LIP4-Semi2 primer pair was used. A DNA band over 1 kb obtained after the 3rd round of PCR was cut from agarose gel, purified, and directly sequenced at both directions using primers LIP4, and Semi-2. The complete lipase sequence was deposited in GenBank with accession number MT344965.

Complete lipase gene was amplified by PCR using primers LIP_Start (5′-CAT ATG GGT GTG TAT GAC TAC AAG AAC-3′), and LIP_Stop (5′-TCAGGCAATCACAATCCCTGTACC-3′) containing the recognition sequences for the restriction enzymes Bgl II and BamH I respectively as follows: 100 ng of genomic DNA, 5 μl each of each primer (2 μM), 5 μl of dNTP mix (2 μM), 5 μl of 10× Pfu DNA Polymerase Buffer, 1 μl of Pfu DNA Polymerase (5U/ μl) and finally 26 μl of dH2O were mixed in a total volume of 50 μl. The conditions for PCR amplification were as follows: an initial denaturation step at 94 °C for 2 min; followed by 30 cycles including denaturation at 94 °C for 30 s, primer annealing at 55 °C for 1 min and elongation at 72 °C for 5 min with final elongation at 72 °C for 15 min. The band at 1800 bp corresponding to the size of the lipase gene was purified, cloned into pJET1.2/blunt cloning vector according to the manufacturer’s instructions, and sequenced.

Then, the lipase gene was removed from this construct by Nde I/Bgl II double digestion and ligated into BamH I/Nde I double digested and gel purified pET28a expression vector. Ligated products were used for the transformation of E. coli DH5α. Plasmid pET28a bearing KE38 Lipase gene (pET28a-LipI.3 KE38) was then purified and used for the transformation of E. coli BL21(DE3) cells for the expression of the lipase gene by induction with IPTG.

Partial purification of recombinant lipase by inclusion body isolation. Inclusion body isolation was performed by the slight modification of a previously described method46. Two milliliters of an overnight culture of the E. coli BL21(DE3) pET28a-LipI.3 KE38 supplemented with kanamycin was used to seed 1 L culture and incubated overnight at 37 °C. Recombinant lipase expression was induced by the addition of IPTG at the final concentration of 1 mM after the optical density (OD) of the culture medium at 600 nm was reached to

Figure 7. Relative enzyme activity graphs at different pH (a) and temperature (b) values. The enzyme activity was assayed as described in the materials and methods section. Enzyme activity was zero at 40 °C, thus it was not shown in the graph. Data are expressed as mean ± SD of triplicate experiments.
around 0.6. Following an overnight incubation, cells were pelleted by centrifugation (10,000×g, 10 min, 4 °C), and resuspended in 10 ml of 1 mM EDTA solution prepared in Tris–HCl buffer (100 mM, pH 8). The cells were lysed with 15 cycles of 30 s ultrasonication, followed by centrifugation at 12,000×g for 20 min at 4 °C, to achieve the collection of the supernatant and the precipitate separately as soluble and insoluble fractions, respectively. To remove the impurities from the inclusion bodies, cell pellet was washed three times with 10 ml Tris–HCl buffer (100 mM, pH 8.0). Insoluble proteins within the inclusion bodies were solubilized by resuspension and stirring at 37 °C for 60 min in 100 ml of 50 mM Tris–HCl buffer (pH 8) containing 10 mM DDT and 8 M urea. The supernatant volume was reduced to 10 ml by centrifugation at 12,000×g, for 20 min (4 °C) using Sartocon Slice 200-Hydrosart ultrafilter with a molecular weight cut off (MWCO) value of 10 kD (Sartorius Stedim) and then was dialyzed using cellulose membrane with a MWCO value of 12 kD (Sigma Aldrich) against Tris–HCl buffer (50 mM, pH 8.0) for 2 nights in order to facilitate the refolding of the recombinant lipases. Finally, the dialyzed sample was concentrated with 20 kD MWCO protein concentrators (Pierce) and used for lipase assays.

Lipase activity assay. Lipase activity was determined titrimetrically using olive oil as substrate. 100 µl purified enzyme solution was added to the 20 ml assay substrate containing 5% (w/v) olive oil and 50 mM Tris–HCl, pH 8.5, and incubated at 25 °C for 20 min while liberated fatty acids were continuously titrated with 0.01 mol/l NaOH using automatic titration instrument TitraLab 854 (Radiometer Analytical). The reaction mixture without the enzyme was titrated in the same way and used as blank. One ‘lipase unit’ was defined as the amount of the enzyme that released one μmol fatty acid per min under standard assay conditions of triplicate experiments All the assays were done in triplicate, and data were expressed as mean ± SD.
Determination of temperature and \(\text{pH} \) optima of the lipase. To determine the optimum temperature of the purified extracellular lipase, which was performed prior to optimum \(\text{pH} \) determination, enzyme activity was assayed at temperatures ranging from 5 to 40 \(^{\circ} \text{C} \) for 30 min, at otherwise standard conditions. To determine the optimum \(\text{pH} \) activity was assayed using standard conditions for 30 min at various \(\text{pH} \) from 6 to 10 using different buffers (potassium phosphate for \(\text{pH} \) 5–7, Tris–HCl for \(\text{pH} \) 7–9, and Glycine–NaOH for \(\text{pH} \) 9–10).

Effect of various metal ions and organic solvents on lipase activity. The effects of metal ions (\(\text{Na}^{+}, \text{K}^{+}, \text{Mg}^{2+}, \text{Ca}^{2+}, \text{Zn}^{2+} \)) and metal chelator EDTA, each at 1 mM, and organic solvents (methanol, ethanol, acetone, acetonitrile, n-hexane, and 2-propanol at a concentration of 30\% (v/v)) on lipase activity were investigated at standard assay conditions.

Data availability
No datasets were generated or analysed during the current study.

Received: 25 June 2020; Accepted: 2 December 2020
Published online: 16 December 2020

References
1. Jaeger, K. E., Dijkstra, B. W. & Reetz, M. T. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. *Annu. Rev. Microbiol.* 53, 315 (1999).
2. Gupta, R., Gupta, N. & Rathi, P. Bacterial lipases: an overview of production, purification and biochemical properties. *Appl. Microbiol. Biotechnol.* 64, 763–781 (2004).
3. de Pascale, D. et al. The cold-active LipI lipase from the Antarctic bacterium *Pseudoalteromonas haloplanktis* TAC125 is a member of a new bacterial lipolytic enzyme family. *Extremophiles* 12, 311–323 (2008).
4. Arpigny, J. L. & Jaeger, K. E. Bacterial lipolytic enzymes: classification and properties. *Biochem. J.* 343, 177–183 (1999).
5. Jensen, R. G. Detection and determination of lipase (acylglycerol hydrolase) activity from various sources. *Lipids* 18, 650–657 (1983).
6. Sharma, R., Chisti, Y. & Banerjee, U. C. Production, purification, characterization, and applications of lipases. *Biotechnol. Adv.* 19, 627–662 (2001).
7. Jaeger, K. E. et al. *Bacterial lipases.* *Fems Microbiol. Rev.* 15, 29–63 (1994).
8. Jaeger, K. E. & Reetz, M. T. Microbial lipases form versatile tools for biotechnology. *Trends Biotechnol.* 16, 396–403 (1998).
9. Hasan, F., Shah, A. A. & Hameed, A. Industrial applications of microbial lipases. *Enzyme Microb. Technol.* 39, 235–251 (2006).
10. Soberonchavez, G. & Palmeros, B. *Pseudomonas* lipases—molecular-genetics and potential industrial applications. *Crit. Rev. Microbiol.* 20, 95–105 (1994).
11. Joseph, B., Ramteke, P. W. & Thomas, G. Cold active microbial lipases: some hot issues and recent developments. *Biotechnol. Adv.* 26, 457–470 (2008).
12. Cavicchioli, R., Siddiqui, K. S., Andrews, D. & Sowers, K. R. Low-temperature extremophiles and their applications. *Curr. Opin. Biotechnol.* 13, 253–261 (2002).
13. Gerday, C. et al. Cold-adapted enzymes: from fundamentals to biotechnology. *Trends Biotechnol.* 18, 103–107 (2000).
14. Aoyama, S., Yoshida, N. & Inouye, S. Cloning, sequencing and expression of the lipase gene from *Pseudomonas fragi* Ilfo-12049 in *Escherichia coli*. *Fems Lett.* 242, 36–40 (1988).
15. Tan, S., Apenten, R. K. O. & Knapp, J. Low temperature organic phase biocatalysis using cold-adapted lipase from psychrotrophic *Pseudomonas* P38. *Food Chem.* 57, 415–418 (1996).
16. Choo, D. W., Kurihara, T., Suzuki, T., Soda, K. & Esaki, N. A cold-adapted lipase of an Alaskan psychrotroph, *Pseudomonas* sp. strain B11–1: gene cloning and enzyme purification and characterization. *Appl. Environ. Microbiol.* 64, 486–491 (1998).
17. Rashid, N., Shimada, Y., Ezaki, S., Atomi, H. & Imanaka, T. Low-temperature lipase from psychrotrophic *Pseudomonas* sp strain KB700A. *Appl. Environ. Microbiol.* 67, 4064–4069 (2001).
18. Dieckelmann, M., Johnson, L. A. & Beacham, I. R. The diversity of lipases from psychrotrophic strains of *Pseudomonas*: a novel lipase from a highly lipolytic strain of *Pseudomonas fluorescens*. *J. Appl. Microbiol.* 85, 527–536 (1998).
19. Alquati, C. et al. The cold-active lipase of *Pseudomonas fragi*—heterologous expression, biochemical characterization and molecular modeling. *Eur. J. Biochem.* 269, 3321–3328 (2002).
20. Zhang, J. W. & Zeng, R. Y. Molecular cloning and expression of a cold-adapted lipase gene from an Antarctic deep sea psychrotrophic bacterium *Pseudomonas* sp. 7323. *Mar. Biotechnol.* 10, 612–621 (2008).
21. Adan Gokbulut, A. & Arslanoglu, A. Purification and biochemical characterization of an extracellular lipase from psychrotolerant *Pseudomonas fluorescens* KE38. *Turk. J. Biol.* 37, 538–546 (2013).
22. Beven, C. A., Dieckelmann, M. & Beacham, I. R. A strain of *Pseudomonas fluorescens* with two lipase-encoding genes, one of which possibly encodes cytoplasmic lipolytic activity. *J. Appl. Microbiol.* 90, 973–987 (2001).
23. Shimizu, S., Kojima, Y. & Kobayashi, M. A novel lipase from *Pseudomonas fluorescens* HU380: gene cloning, overproduction, renaturation-activation, two-step purification, and characterization. *J. Biosci. Bioeng.* 96, 242–249 (2003).
24. Panizza, P., Syfantou, N., Pastor, F. I. J., Rodriguez, S. & Diaz, P. Acidic lipase Lip I from a *Pseudomonas fluorescens*-like strain displays unusual properties and shows activity on secondary alcohols. *J. Microbiol. Biochem.* 114, 722–732 (2013).
25. Morikawa, M., Daicho, H., Pongpootpibool, S. & Imanaka, T. Construction of a new host-vector system in *Arthrobacter* sp. and cloning of the lipase gene. *Appl. Microbiol. Biotechnol.* 42, 300–303 (1994).
26. Ma, Y. S. et al. Cloning and expression of a novel lipase gene from *Pseudomonas fluorescens* BS2. *Mol. Biotechnol.* 31, 95–101 (2005).
27. Kim, H. J. et al. Characterization of novel family IV esterase and family III lipase from an oil-polluted mud flat metagenome. *Mol. Biotechnol.* 57, 781–792 (2015).
28. Yan, Y. J., Yang, J. K. & Zhang, B. Cloning and expression of *Pseudomonas fluorescens* 26–2 lipase gene in *Pichia pastoris* and characterizing for transesterification. *Appl. Biochem. Biotechnol.* 159, 355–365 (2009).
29. Yamashiro, Y., Sakatoku, A., Tanaka, D. & Nakamura, S. A cold-adapted and organic solvent-tolerant lipase from a psychrotrophic bacterium *Pseudomonas* sp. strain Y331: identification, cloning, and characterization. *Appl. Biochem. Biotechnol.* 171, 989–1000 (2013).
30. Tanaka, D. et al. Characterization of a new cold-adapted lipase from *Pseudomonas* sp. TK-3. *Appl. Biochem. Biotechnol.* 168, 327–338 (2012).
31. Ali, M. M. S. et al. Cold-adapted RTX lipase from an Antarctic *Pseudomonas* sp. strain AMS8: isolation, molecular modeling and heterologous expression. *Protein J.* 32, 317–325 (2013).
32. Li, X. L., Li, S., Lin, L. B., Zhang, Q. & Wei, Y. L. Gene cloning, sequence analysis and heterologous expression of a novel cold-active lipase from Pseudomonas sp. PF16. Technol. Health Care 23, S109–S117 (2015).
33. Salwoom, L. et al. New recombinant cold-adapted and organic solvent tolerant lipase from psychrophilic Pseudomonas sp. LSK25, isolated from Signy Island Antarctica. Int. J. Mol. Sci. 20, 1264 (2019).
34. Luo, Y., Zheng, Y. T., Jiang, Z. B., Ma, Y. S. & Wei, D. X. A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification. Appl. Microbiol. Biotechnol. 73, 349–355 (2006).
35. Elend, C., Schmeisser, C., Hoebenreich, H., Steele, H. L. & Streit, W. R. Isolation and characterization of a metagenome-derived and cold-active lipase with high stereospecificity for (R)-ibuprofen esters. J. Biotechnol. 130, 370–377 (2007).
36. Chung, G. H., Lee, Y. P., Jeohn, G. H., Yoo, O. J. & Rhee, J. S. Cloning and nucleotide-sequence of thermostable lipase gene from Pseudomonas fluorescens sik-W1. Agric. Biol. Chem. Tokyo 55, 2359–2365 (1991).
37. Li, X. Y., Tetling, S., Winkler, U. K., Jaeger, K. E. & Benedik, M. J. Gene cloning, sequence-analysis, purification, and secretion by Escherichia coli of an extracellular lipase from Serratia marcescens. Appl. Environ. Microb. 61, 2674–2680 (1995).
38. Khan, M. & Jithesh, K. Expression and purification of organic solvent stable lipase from soil metagenomic library. World J. Microb. Biotechnol. 28, 2417–2424 (2012).
39. Yu, H. W., Han, J., Li, N., Qie, X. S. & Jia, Y. M. Fermentation performance and characterization of cold-adapted lipase produced with Pseudomonas Lip35. Agric. Sci. China 8, 956–962 (2009).
40. Yang, W. J., Cao, H., Xu, L., Zhang, H. J. & Yan, Y. J. A novel eurythermic and thermostable lipase LipM from Pseudomonas moraviensis M9 and its application in the partial hydrolysis of algal oil. BMC Biotechnol. 15, 94 (2015).
41. Guo, H. T. & Xiong, J. A specific and versatile genome walking technique. Genie 381, 18–23 (2006).
42. Angkawidjaja, C. & Kanaya, S. Family I.3 lipase: bacterial lipases secreted by the type I secretion system. Cell Mol. Life Sci. 63, 2804–2817 (2006).
43. Kuwahara, K., Angkawidjaja, C., Koga, Y., Takano, K. & Kanaya, S. Importance of an extreme C-terminal motif of a family I.3 lipase for stability. Protein Eng. Des. Sel. 24, 411–418 (2011).
44. Amada, K., Haruki, M., Imanaka, T., Morikawa, M. & Kanaya, S. Overproduction in Escherichia coli, purification and characterization of a family I.3 lipase from Pseudomonas sp. MIS38. Bba-Protein Struct. Mol. Biol. 1478, 201–210 (2000).
45. Kojima, Y., Kobayashi, M. & Shimizu, S. A novel lipase from Pseudomonas fluorescens HU380: gene cloning, overproduction, renaturation-activation, two-step purification, and characterization. J. Biosci. Bioeng. 96, 242–249 (2003).
46. Akbari, N. et al. High-level expression of lipase in Escherichia coli and recovery of active recombinant enzyme through in vitro refolding. Protein Expr. Purif. 70, 75–80 (2010).
47. Angkawidjaja, C. et al. Crystal structure of a family I.3 lipase from Pseudomonas sp. MIS38 in a closed conformation. Fems Lett. 581, 5060–5064 (2007).
48. Meier, R., Dropper, T., Svensson, V., Jaeger, K. E. & Baumann, U. A calcium-gated lid and a large beta-roll sandwich are revealed by the crystal structure of extracellular lipase from Serratia marcescens. J. Biol. Chem. 282, 31477–31483 (2007).
49. Singh, S. M. & Panda, A. K. Solubilization and refolding of bacterial inclusion body proteins. J. Biosci. Bioeng. 99, 303–310 (2005).
50. Fujinami, S. & Fujisawa, M. Industrial applications of alkaliphiles and their enzymes—past, present and future. Environ. Technol. 31, 845–856 (2010).
51. Kouder, G. & Jaeger, K. E. Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microb. 53, 211–213 (1987).
52. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual 2nd edn. (Cold Spring Harbor Laboratory, Cold Spring Harbor, 1989).

Acknowledgements
The authors would like to thank to the Biotechnology and Bioengineering Application and Research Center of Izmir Institute of Technology for their help and technical support.

Author contributions
Study conception and design were performed by A.A. Material preparation, data collection and analysis were performed by A.A. and F.K. The first draft of the manuscript was written by A.A. All authors read and approved the final manuscript.

Funding
The research was funded by Izmir Institute of Technology, Scientific Research Projects Coordination Unit (IYTE-BAP), Grant No.: 2016IYTE25.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-020-79199-w.

Correspondence and requests for materials should be addressed to A.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
