The ordinary life of the γ-ray emitting narrow-line Seyfert 1 galaxy PKS 1502+036

F. D'Ammando1,2,3, M. Orienti3,4, A. Doi5,6, M. Giroletti3, D. Dallacasa3,4, T. Hovatta7, A. J. Drake8, W. Max-Moerbeck7, A. C. S. Readhead7, J. L. Richards9

1Dipartimento di Fisica, Università degli Studi di Perugia, Via A. Pascoli, I-06123 Perugia, Italy
2INFN Sezione di Perugia, Via A. Pascoli, I-06123 Perugia, Italy
3INAF - Istituto di Radioastronomia, Via Gobetti 101, I-40129 Bologna, Italy
4Dip. di Astronomia, Università di Bologna, Via Ranzani 1, I-40127 Bologna, Italy
5The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuow-ku, Sagamihara, Kanagawa 253-5210, Japan
6Department of Space and Astronautical Science, The Graduate University for Advanced Studies, 3-1-1 Yoshinodai, Chuow-ku, Sagamihara, Kanagawa 253-5210, Japan
7Cahill Center for Astronomy and Astrophysics, California Institute of Technology 1200 E. California Blvd., Pasadena, CA 91125, USA
8California Institute of Technology, 1200 E. California Blvd., CA 9125, USA
9Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907, USA

ABSTRACT

We report on multifrequency observations of the γ-ray emitting narrow-line Seyfert 1 galaxy PKS 1502+036 performed from radio to γ-rays during 2008 August–2012 November by Fermi-Large Area Telescope (LAT), Swift (X-Ray Telescope and Ultraviolet/Optical Telescope), Owens Valley Radio Observatory, Very Long Baseline Array (VLBA), and Very Large Array. No significant variability has been observed in γ-rays, with 0.1–100 GeV flux that ranged between $(3–7) \times 10^{-8}$ ph cm$^{-2}$ s$^{-1}$ using 3-month time bins. The photon index of the LAT spectrum ($\Gamma = 2.60 \pm 0.06$) and the apparent isotropic γ-ray luminosity ($L_{\gamma, 0.1-100\text{ GeV}} = 7.8 \times 10^{45}$ erg s$^{-1}$) over 51 months are typical of a flat spectrum radio quasar. The radio spectral variability and the one-sided structure, in addition to the observed γ-ray luminosity, suggest a relativistic jet with a high Doppler factor. In contrast to SBS 0846+513, the VLBA at 15 GHz did not observe superluminal motion for PKS 1502+036. Despite having the optical characteristics typical of a narrow-line Seyfert 1 galaxy, radio and γ-ray properties of PKS 1502+036 are found to be similar to those of a blazar at the low end of the black hole mass distribution for blazars. This is in agreement with what has been found in the case of the other γ-ray emitting narrow-line Seyfert 1 SBS 0846+513.

Key words: galaxies: active – galaxies: nuclei – galaxies: Seyfert – galaxies: individual: PKS 1502+036 – gamma-rays: general

1 INTRODUCTION

A small fraction of narrow-line Seyfert 1 (NLSy1) galaxies are known to be radio loud (Komossa et al. 2006). In these cases, the flat radio spectra and flux density variability suggest that several of them could host relativistic jets (e.g. Zhou et al. 2003, Doi et al. 2006). The detection by the Large Area Telescope (LAT) on-board the Fermi satellite of variable γ-ray emission from some radio-loud NLSy1 galaxies revealed the presence of a possible third class of γ-ray emitting active galactic nuclei (AGN; Abdo et al. 2009, D'Ammando et al. 2012a) in addition to blazars and radio galaxies, both hosted in giant elliptical galaxies (Blandford & Rees 1978). NLSy1s are usually hosted in spiral galaxies (e.g. Deo et al. 2006) and the presence of a relativistic jet in these sources seems to be in contrast to the paradigm that the formation of relativistic jets could happen in elliptical galaxies only (Böttcher & Dermer 2002, Marscher 2010). This discovery poses intriguing questions on the nature of these objects, the formation and development of relativistic jets, the mechanisms of high-energy emission, the AGN Unification model and the evolution of radio-loud AGNs.

PKS 1502+036 has been classified as an NLSy1 on ba-
sis of its optical characteristics: full width at half-maximum (FWHM) \((H/\beta) = 1082 \pm 113 \text{ km s}^{-1} \), \([\text{OIII}]/H\beta \sim 1.1\), and a strong Fe II bump. For this source, a radio loudness \(R = 1549 \) was estimated (Yuan et al. 2008). \(R \) being defined as the ratio between the 1.4 GHz and 4400 \(\text{Å} \) rest-frame flux densities. This is one of the highest radio-loudness parameters among the NLSy1s. With its convex radio spectrum peaking above 5 GHz, PKS 1502+036 was selected by Dallacasa et al. (2000) as part of the ‘bright’ high frequency peakers (HFPs) sample of young radio source candidates. However, its polarization properties, the flux density and spectral variability are typical of blazars and it was removed from the young radio source sample (Orienti et al. 2007, 2008). Snapshot very long baseline interferometry (VLBI) observations in the 1990’s showed a compact source (on scales of \(\sim 20 \text{ mas} \)) with inverted spectrum (Dallacasa et al. 1998).

In the \(\gamma \)-ray energy band PKS 1502+036 has been included in both the first and second Fermi-LAT source catalogues (1FGL and 2FGL; Abdo et al. 2010; Nolan et al. 2012). In the past, the source was not detected by the energetic gamma-ray experiment telescope (EGRET) at \(E > 100 \text{ MeV} \) (see Hartman et al. 1999).

In this paper, we discuss the characteristics of PKS 1502+036, one of the 5 NLSy1 detected by Fermi-LAT with high confidence, determined by means of new and archival radio-to-\(\gamma \)-ray data. The paper is organized as follows. In Section 2, we report the LAT data analysis and results, while in Section 3, we present the result of the Swift observations performed during 2009–2012. Optical data collected by the Catalina Real-Time Transient Survey (CRTS) are reported in Section 4. Radio data collected by the Karl G. Jansky Very Large Array (VLA), the Very Long Baseline Array (VLBA) interferometers, and the 40 m Owens Valley Radio Observatory (OVRO) single-dish telescope are presented and discussed in Section 5. In Section 6, we discuss the properties of the source and draw our conclusions. Throughout the paper, a cold dark matter (ΛCDM) cosmology with \(H_0 = 71 \text{ km s}^{-1} \text{ Mpc}^{-1} \), \(\Omega_M = 0.73 \) and \(\Omega_{\Lambda} = 0.27 \) is adopted. The corresponding luminosity distance at \(z = 0.4088 \) (i.e. the source redshift) is \(d_L = 2217 \text{ Mpc} \), and 1 arcsec corresponds to a projected distance of 5.415 kpc. In the paper, the quoted uncertainties are given at the 1\(\sigma \) level, unless otherwise stated, and the photon indices are parametrized as \(dN/dE \propto E^{\Gamma} \) with \(\Gamma = \alpha+1 \) (\(\alpha \) is the spectral index).

2 Fermi-LAT Data: Selection and Analysis

The Fermi-LAT is a pair-conversion telescope operating from 20 MeV to \(> 300 \text{ GeV} \). It has a large peak effective area (\(\sim 8000 \text{ cm}^2 \)) for 1 GeV photons, an energy resolution of typically \(\sim 10\% \), and a field of view of about 2.4 sr with an angular resolution (68\% containment angle) better than \(2' \) for energies above 1 GeV. Further details about the Fermi-LAT are given in Atwood et al. (2009).

1 It is worth noting that this definition of radio-loudness is related to that presented in Kellermann et al. (1989). \(R_{\text{em}} = f_6/(6 \text{ cm})/f_6/(4400 \text{ Å}) \), by means of \(R_{1.4\text{GHz}} = 1.9 R_6 \).

2 http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html

![Figure 1](image-url)
the model the sources having TS < 10 and/or the predicted number of counts based on the fitted model $N_{\text{pred}} < 3$. A second maximum-likelihood analysis was performed on the updated source model. The fitting procedure has been performed with the sources within 10° from PKS 1502+036 included with the normalization factors and the photon indices left as free parameters. For the sources located between 10° and 15° from our target, we kept the normalization and the photon index fixed to the values of the 2FGL catalogue.

The γ-ray point source localization by means of the gtfindsrc tool applied to the γ-rays extracted during the 51 months of observation (MJD 54682–56235) results in RA = 226.27°, Dec. = 3.45° (J2000), with a 95% error circle radius of 0.07°, at an angular separation of 0.01° from the radio position of PKS 1502+036. This implies a strict spatial association with the radio coordinates of the NLSy1 PKS 1502+036. Integrating over the entire period considered, the fit yielded a TS = 305 in the 0.1–100 GeV energy range, with an integrated average flux of $(4.0 \pm 0.4) \times 10^{-8}$ photons cm$^{-2}$ s$^{-1}$ and a photon index of $\Gamma = 2.60 \pm 0.06$. The corresponding apparent isotropic γ-ray luminosity is 7.8×10^{35} erg s$^{-1}$. In order to test for curvature in the γ-ray spectrum of PKS 1502+036, an alternative spectral model to the PL, a LP was used for the fit. We obtain a spectral slope $\alpha = 2.45 \pm 0.11$ at the reference energy $E_0 = 300$ MeV, a curvature parameter around the peak $\beta = 0.10 \pm 0.06$, with a TS = 307 and an integrated average flux of $(3.7 \pm 0.4) \times 10^{-8}$ photons cm$^{-2}$ s$^{-1}$. We used a likelihood ratio test to check the PL model (null hypothesis) against the LP model (alternative hypothesis). These values may be compared by defining the curvature test statistic $TS_{\text{curve}} = TS_{\text{LP}} - TS_{\text{PL}} = 2$ corresponding to $\sim 1.4 \sigma$, meaning that we have no statistical evidence of a curved spectral shape.

Fig. 1 shows the γ-ray light curve for the period 2008 August 4–2012 November 4 using a PL model and 3-month time bins. For each time bin, the spectral parameters of PKS 1502+036 are obtained for a good spectral fit. Source events were extracted from a circular region with radius of 50 pixels far away from the position of PKS 1502+036, and account for different extraction regions, vignetting, and point spread function corrections. We used the spectral redistribution matrices v013 in the Calibration data base maintained by HEASARC. Considering the low number of photons collected (< 200 counts) the spectra were rebinned with a minimum of 1 count per bin and we used Cash statistics (Cash 1979). We have fitted the spectrum with an absorbed power-law using the photoelectric absorption model tbabs (Wilms et al. 2000), with a neutral hydrogen column density fixed to its Galactic value $(3.93 \times 10^{20}$ cm$^{-2}$) (Kalberla et al. 2005). The results are reported in Table 1. In the past, the source has not been detected in X-rays during the ROSAT all-sky survey, with an upper limit of $< 2.1 \times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$ in the 0.1–2.4 keV energy range (Yuan et al. 2008). PKS 1502+036 seems to have been observed by Swift/XRT in a relatively bright state on 2009 July 25 in the 0.3–10 keV energy range. In addition a possible moderate change of the photon index was observed during 2009–2012 together with an increase of the count rate leading up to 2012 August 7–8, but no conclusive evidence can be drawn on consideration of the large uncertainties.

During the Swift pointings, the UVOT instrument observed PKS 1502+036 in all its optical (v, b and u) and UV ($u1$, $m2$ and $u2$) photometric bands (Poole et al. 2004; Breeveld et al. 2011). We analysed the data using the uvotsource task included in the HEASoft package. Source counts were extracted from a circular region of 5 arcsec ra-

3 SWIFT DATA: ANALYSIS AND RESULTS

The Swift satellite (Gehrels et al. 2004) performed six observations of PKS 1502+036 between 2009 July and 2012 August. The observations were performed with all three onboard instruments: the X-ray Telescope (XRT; Burrows et al. 2005, 0.2–10.0 keV), the Ultraviolet/Optical Telescope (UVOT; Roming et al. 2003, 170–600 nm) and the Burst Alert Telescope (BAT; Barthelmy et al. 2003, 15–150 keV).

The hard X-ray flux of this source turned out to be below the sensitivity of the BAT instrument for such short exposures and therefore the data from this instrument will not be used. Moreover, the source was not present in the Swift BAT 70-month hard X-ray catalogue (Baumgartner et al. 2013).

The XRT data were processed with standard procedures (xrtpipeline v0.12.6), filtering, and screening criteria by using the HEASoft package (v6.12). The data were collected in photon counting mode in all the observations. The source count rate was low (< 0.5 counts s$^{-1}$); thus pile-up correction was not required. The data collected during 2012 August 7 and 8 were summed in order to have enough statistics to obtain a good spectral fit. Source events were extracted from a circular region with a radius of 20 pixels (1 pixel ~ 2.36”), while background events were extracted from a circular region with radius of 50 pixels far away from the source region. Ancillary response files were generated with xrtmkarf, and account for different extraction regions, vignetting and point spread function corrections. We used the spectral redistribution matrices v013 in the Calibration data base maintained by HEASARC. Considering the low number of photons collected (< 200 counts) the spectra were rebinned with a minimum of 1 count per bin and we used Cash statistics (Cash 1979). We have fitted the spectrum with an absorbed power-law using the photoelectric absorption model tbabs (Wilms et al. 2000), with a neutral hydrogen column density fixed to its Galactic value $(3.93 \times 10^{20}$ cm$^{-2}$) (Kalberla et al. 2005). The results are reported in Table 1. In the past, the source has not been detected in X-rays during the ROSAT all-sky survey, with an upper limit of $< 2.1 \times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$ in the 0.1–2.4 keV energy range (Yuan et al. 2008). PKS 1502+036 seems to have been observed by Swift/XRT in a relatively bright state on 2009 July 25 in the 0.3–10 keV energy range. In addition a possible moderate change of the photon index was observed during 2009–2012 together with an increase of the count rate leading up to 2012 August 7–8, but no conclusive evidence can be drawn on consideration of the large uncertainties.

During the Swift pointings, the UVOT instrument observed PKS 1502+036 in all its optical (v, b and u) and UV ($u1$, $m2$ and $u2$) photometric bands (Poole et al. 2004; Breeveld et al. 2011). We analysed the data using the uvotsource task included in the HEASoft package. Source counts were extracted from a circular region of 5 arcsec ra-
Table 1. Log and fitting results of Swift/XRT observations of PKS 1502+036 using a power-law model with N_H fixed to Galactic absorption.

Date (UT)	MJD	Net exposure time (sec)	Net count rate ($\times 10^{-3}$ cps)	Photon index (Γ)	Flux 0.3–10 keVa ($\times 10^{-13}$ erg cm$^{-2}$ s$^{-1}$)
2009-July-25	55037	4681	7.5 ± 1.3	1.2 ± 0.4	4.9 ± 1.1
2012-Apr-25	56042	4807	7.7 ± 1.3	1.7 ± 0.4	4.0 ± 0.9
2012-May-25	56072	4635	8.0 ± 1.3	1.9 ± 0.4	3.7 ± 0.9
2012-June-25	56103	5142	8.4 ± 1.3	2.2 ± 0.4	3.5 ± 0.7
2012-Aug-07/08	56146/7	4925	10.8 ± 1.5	2.2 ± 0.3	4.0 ± 0.6

aObserved flux.

The source has been monitored by the CRTS (http://crts.caltech.edu; Drake et al. 2009; Djorgovski et al. 2011), using the 0.68 m Schmidt telescope at Catalina Station, AZ, and an unfiltered CCD. The typical cadence is over a period of 1 night; this may be repeated up to four times per lunation, and compatible with the values observed in the past ($V=18.62–18.82$; $B=19.11–19.27$; $U=18.58–18.68$; Willis & Lynds 1978). Recently, optical intraday variability with amplitude as large as $\sim 10\%$ has been reported for PKS 1502+036 by Paliya et al. (2013). No evident infrared intraday variability has been found with Wide-field Infrared Survey Explorer (WISE) data, but a variation of 0.1–0.2 mag corrected for measurement errors during two epochs separated by about 180 d has been reported in Jiang et al. (2012).

4 CATALINA REAL-TIME TRANSIENT SURVEY

The source has been monitored by the CRTS (http://crts.caltech.edu; Drake et al. 2009; Djorgovski et al. 2011), using the 0.68 m Schmidt telescope at Catalina Station, AZ, and an unfiltered CCD. The typical cadence is to obtain four exposures separated by 10 min in a given night; this may be repeated up to four times per lunation, over a period of $\sim 6–7$ months each year, while the field is observable. Photometry is obtained using the standard Source-Extractor package (Bertin & Arnouts 1996), and roughly calibrated to the V band in terms of the magnitude zero-point. During the CRTS monitoring, the source showed a variability amplitude of 1 mag, changing between 18.7 and 17.7 mag.

5 RADIO DATA: ANALYSIS AND RESULTS

5.1 VLA and VLBA data

Multi-epoch and multifrequency observations of PKS 1502+036 were carried out with both the VLA and VLBA between 1999 and 2007 as part of the monitoring campaign of the ‘bright’ HFP sample (Dallacasa et al. 2000). Results of the observations performed between 1999 and 2003 were presented in Dallacasa et al. (2000). The source has been monitored by the CRTS (http://crts.caltech.edu; Drake et al. 2009; Djorgovski et al. 2011) using the 0.68 m Schmidt telescope at Catalina Station, AZ, and an unfiltered CCD. The typical cadence is over a period of 1 night; this may be repeated up to four times per lunation, and compatible with the values observed in the past ($V=18.62–18.82$; $B=19.11–19.27$; $U=18.58–18.68$; Willis & Lynds 1978). Recently, optical intraday variability with amplitude as large as $\sim 10\%$ has been reported for PKS 1502+036 by Paliya et al. (2013). No evident infrared intraday variability has been found with Wide-field Infrared Survey Explorer (WISE) data, but a variation of 0.1–0.2 mag corrected for measurement errors during two epochs separated by about 180 d has been reported in Jiang et al. (2012).

5.1 VLA and VLBA data

Multi-epoch and multifrequency observations of PKS 1502+036 were carried out with both the VLA and VLBA between 1999 and 2007 as part of the monitoring campaign of the ‘bright’ HFP sample (Dallacasa et al. 2000). Results of the observations performed between 1999 and 2003 were presented in Dallacasa et al. (2000).

Simultaneous VLA observations were performed in L band (with the two intermediate frequencies, IFs, centred at 1.415 and 1.665 GHz), C band (with the two IFs centred at 4.565 and 4.935 MHz), X band (with the two IFs centred at 8.085 and 8.465 MHz), K band (22.460 GHz). At each frequency, the target source was observed for about 1 min, cycling through frequencies. During each run, the primary calibrator 3C 286 was observed for about 3 min at each frequency. The data reduction was carried out following the standard procedures for the VLA implemented in the National Radio Astronomy Observatory (NRAO) Astronomical Image Processing System (AIPS) package. The flux density at each frequency was measured on the final image produced after a few phase-only self-calibration iterations. In the L band, it was generally necessary to image a few confusing sources falling within the primary beam. The target source is unresolved at any frequency even with the VLA A-configuration. During one epoch, strong radio frequency interference at 1.665 GHz was present, and a measurement of the flux density was not possible. Uncertainties on the determination of the absolute flux density scale are dominated by amplitude errors, which are about 3% in L, C, and X bands, about 5% in U band, and about 10% in K band.

Simultaneous VLBA observations were performed in 2002 January at 15.3 and 22 GHz, and in 2006 July at 1.7 GHz, 2.3 GHz (S band), 5.0 GHz, 8.4 GHz and 15.3 GHz. The correlation was performed at the VLBA hardware correlator in Socorro and the data reduction was carried out with the NRAO AIPS package. After the application of system temperatures and antenna gains, the amplitudes were checked using data on 4C 39.25 (J0927+3902), which was used also as a bandpass calibrator. The error in the absolute flux density scale is generally within 3%-10%, being highest in value at the highest frequency.

The final images were obtained after a number of self-calibration iterations. Amplitude self-calibration was applied only once at the end of the process, using particular

The MOJAVE data archive is maintained at http://www.physics.purdue.edu/MOJAVE.

The correlation was performed at the VLBA hardware correlator in Socorro and the data reduction was carried out with the NRAO AIPS package. After the application of system temperatures and antenna gains, the amplitudes were checked using data on 4C 39.25 (J0927+3902), which was used also as a bandpass calibrator. The error in the absolute flux density scale is generally within 3%-10%, being highest in value at the highest frequency.

The final images were obtained after a number of self-calibration iterations. Amplitude self-calibration was applied only once at the end of the process, using particular

The MOJAVE data archive is maintained at http://www.physics.purdue.edu/MOJAVE.

The correlation was performed at the VLBA hardware correlator in Socorro and the data reduction was carried out with the NRAO AIPS package. After the application of system temperatures and antenna gains, the amplitudes were checked using data on 4C 39.25 (J0927+3902), which was used also as a bandpass calibrator. The error in the absolute flux density scale is generally within 3%-10%, being highest in value at the highest frequency.

The final images were obtained after a number of self-calibration iterations. Amplitude self-calibration was applied only once at the end of the process, using particular

The MOJAVE data archive is maintained at http://www.physics.purdue.edu/MOJAVE.
Table 2. Results of the Swift/UVOT data for PKS 1502+036. Upper limits are calculated when the analysis provided a significance of detection < 3σ.

Date (UT)	MJD	v	b	u	w1	m2	u2
2009-July-25	55037	> 18.78	19.31±0.28	18.68±0.23	18.57±0.18	18.25±0.16	18.49±0.12
2012-Apr-25	56042	18.65±0.33	> 18.80	18.98±0.27	18.98±0.22	18.85±0.10	18.58±0.11
2012-May-25	56072	18.72±0.31	19.28±0.22	18.74±0.06	18.32±0.14	18.60±0.17	18.35±0.10
2012-June-25	56103	> 18.76	19.12±0.27	18.67±0.27	18.51±0.08	18.25±0.15	18.62±0.13
2012-Aug-07/08	56146/7	19.39±0.30	20.12±0.28	18.90±0.14	18.79±0.10	18.61±0.08	18.65±0.06

Figure 2. 15 GHz radio light curve of PKS 1502+036 for the period 2008 August 7–2012 November 4 from the OVRO telescope.

Figure 3. Multi-epoch radio spectra of PKS 1502+036 observed with VLA and VLBA during the monitoring campaign of the ‘bright’ HFP sample. Epoch a: X symbol and solid line; epoch b: empty circle and dot line; epoch c: empty star and dot-dashed line; epoch l (VLBA): filled circle and dash-and-three-dot line; epoch d: triangle and dashed line.

5.2 OVRO

As part of an ongoing blazar monitoring programme, the OVRO 40 m radio telescope has observed PKS 1502+036 at 15 GHz regularly since the end of 2007 [Richards et al. 2011]. This monitoring programme includes over 1500 known and likely γ-ray loud blazars above declination −20°. The sources in this programme are observed in total intensity twice per week with a 4 mJy (minimum) and 3% (typical) uncertainty in their flux densities. Observations are performed with a dual-beam (each 2.5 arcmin FWHM) Dicke-switched system using cold sky in the off-source beam as the reference. Additionally, the source is switched between beams to reduce atmospheric variations. The absolute flux density scale is calibrated using observations of 3C 286, adopting the flux density (3.44 Jy) from Baars et al. (1977). This results in about a 5% absolute scale uncertainty, which is not reflected in the plotted errors. As shown in Fig. 2, PKS 1502+036 was highly variable at 15 GHz during the OVRO monitoring, with a flux density spanning 376 mJy (at MJD 55726) to 669 mJy (at MJD 56139).

5.3 Radio data: results

5.3.1 The radio spectrum

Simultaneous multifrequency VLA observations carried out at various epochs showed substantial spectral and flux density variability. To determine the change in the spectral peak, we follow the approach by Orienti et al. (2010) and we fit the simultaneous radio spectrum at each epoch with a purely analytical function:

\[\log S = a + \log \nu \times (b + c \log \nu) \] \hspace{1cm} (1)

where \(S \) is the flux density, \(\nu \) the frequency, and \(a, b \) and \(c \) are numeric parameters without any direct physical meaning. The best fits to the spectra are shown in Fig. 3 and the
derived peak frequencies at the various epochs are reported in Tables 3 and 5. Statistical errors derived from the fit are not representative of the real uncertainty on the estimate of the peak frequency. For this reason, we prefer to assume a conservative uncertainty on the peak frequency of 10%. In addition, we computed the spectral index in the optically thick (α_b) and thin part (α_a) of the spectrum. Both the spectral shape and the spectral peak change randomly among the various observing epochs, similar to what is found in blazars (e.g. Yuan et al. 2008; D’Ammando et al. 2012a).

Following the approach of Orienti et al. (2007), we estimated the spectral variability index by means of the variability index:

\[V = \frac{1}{m} \sum_{i=1}^{m} \frac{(S_i - \bar{S})^2}{\sigma_i^2}, \]

where \(S_i \) is the flux density at the ith frequency measured at one epoch, \(\bar{S} \) is the mean value of the flux density computed at the ith frequency measured at all the available epochs, \(\sigma_i \) is the root mean square (rms) on \(S_i - \bar{S} \), and \(m \) is the number of sampled frequencies. The variability index computed at the different epochs ranges between 112 and 122, indicating that this source is highly variable (Table 4). We prefer to compute the variability index for each epoch instead of considering all the epochs together in order to potentially detect small outbursts.

5.3.2 Radio structure

PKS 1502+036 is unresolved on arcsecond scales typical of the VLA (Fig. 3). However, when imaged with the parsec scale resolution provided by VLBA observations, its radio structure is marginally resolved and a second component seems to emerge from the core. In the VLBA images at 15 GHz, the radio structure is clearly extended, suggesting a core-jet-like morphology (Figs 5, 6 and 7). The radio emission is dominated by the core component, which is unresolved in the 15 GHz image with an angular size < 0.4 mas. The jet-like feature accounts for about 4% of the total flux density from extended, low surface brightness features. The jet-like feature seems to emerge from the core. In the VLBA images at 15 GHz, the radio structure is clearly extended, suggesting a core-jet-like morphology (Figs 5, 6 and 7).

To investigate possible changes in the radio structure, we modelled the performed visibility-based model fitting using the DIFMAP software. The radio structure consists of a bright compact core plus weak extended emissions westward.
Table 5. Multifrequency VLBA flux density. Column 1: code from Table 3; Columns 2-6: flux density at 1.7, 2.3, 5.0, 8.4, 15.3 GHz, respectively; Columns 7 and 8: peak frequency and peak flux density, respectively (see Section 5.3.1); Columns 9 and 10: spectral index below and above the peak frequency, respectively.

Code	$S_{1.7}$ (mJy)	$S_{2.3}$ (mJy)	$S_{5.0}$ (mJy)	$S_{8.4}$ (mJy)	$S_{15.3}$ (mJy)	ν_p (GHz)	S_p (mJy)	α_b	α_a
f	–	–	630	566	–	–	–	–	–
g	–	–	800	–	–	–	–	–	–
l	365	480	670	701	547	6.6 ± 0.7	704	−0.6	0.4

PKS 1502+036 showed no significant γ-ray variability during 2008 August 4–2012 November 4, with the 0.1–100 GeV flux ranging between $(3-7) \times 10^{-8}$ photons cm$^{-2}$ s$^{-1}$ using 3-month time bins. The average LAT spectrum accumulated over 51 months is well described by a power-law with a photon index of $\Gamma = 2.60 \pm 0.06$, which is similar to the mean value observed for flat spectrum radio quasars (FSRQs) during the first two years of Fermi-LAT operation ($\Gamma = 2.42 \pm 0.17$, Ackermann et al. 2012). In the same way, the average apparent isotropic γ-ray luminosity of PKS 1502+036 is 7.8×10^{35} erg s$^{-1}$ in the 0.1–100 GeV range, a typical value for a FSRQ (e.g. Grandi & Torresi 2012), and it is in agreement with what was found for SBS 0846+513 and PMN J0948+0022 (see discussion in D’Ammando et al. 2012a). This suggests the presence of a relativistic jet with Doppler factors (δ) as large as in blazars. Modelling of the spectral energy distribution (SED) of the radio-loud NLSy1s detected by Fermi-LAT indicates Doppler factors larger than 10 (Abdo et al. 2009, D’Ammando et al. 2012a), and in particular $\delta \sim 18$ for PKS 1502+036. However, the study of the proper motion could not detect any significant motion for this source, while the radio spectral variability and the one-sided structure further require the presence of boosting effects in a relativistic jet.

The 15 GHz light curve (Sec. 5.2) is highly variable. In particular, several outburst episodes are clearly present: the first peaks at MJD 54923, and the second peaks at MJD 56139. These outbursts seem to take place when a flux enhancement is also observed in γ-rays. Unfortunately, the statistics in γ-rays are not adequate to allow a study of the variability on time-scales short enough to be related to the radio monitoring, while in the optical and UV bands the time sampling was too poor. For this reason, we estimate the variability time-scale Δt on the basis of the radio data,
similarly to Valtoja et al. (1999). For \(\Delta t \), we assume the time interval of the flux density variation to be between the minimum and maximum flux density of a single outburst \(|\Delta S| \). This assumption implies that the minimum flux density corresponds to a stationary underlying component and the variation is due to a transient component. Taking into consideration the time dilation due to the cosmological redshift we find that the intrinsic time lag is \(\Delta \tau = \Delta t/(1+z) \), while the intrinsic flux density variation at the observed frequency is \(|\Delta S| = |\Delta S| \times (1+z)^{1+\alpha} \). The brightness temperature at a given frequency is

\[
T_b(\nu) = \frac{1}{2k} \frac{S(\nu)}{\Omega} \left(\frac{c}{\nu} \right)^2 ,
\]

where \(k \) is the Boltzmann constant, \(\Omega \) is the solid angle of the emitting region, and \(c \) is the speed of light. Using the causality principle, we can determine the angular size of the region responsible for the outburst

\[
\theta = \frac{c\Delta t}{(1+z)} \frac{(1+z)^2}{D_L} .
\]

Knowing that the solid angle is

\[
\Omega = \frac{\pi \theta^2}{4} \, ,
\]

we derive the rest-frame brightness temperature from

\[
T'_{\nu} = \frac{2}{\pi k} \frac{|\Delta S| D_L^2}{\Delta t^2 D_L^2(1+z)^{1+\alpha}} \, .
\]

During the two outburst episodes we have flux density variability \(\Delta S = 185 \) and \(216 \) mJy, respectively, while \(\Delta t = 75 \) and \(85 \) d, respectively. If in equation (7) we consider these values, and we assume \(\alpha = 0.3 \), i.e. the average value obtained by fitting the optically thin spectrum (Tables 1 and

Date (UT)	MJD	Restoring beam (mas x mas)	Image noise (mJy/beam)	VLBA total flux (mJy)	C1 position (mas)	C2 position (mas)
2001-Oct-06	52188	1.01 x 0.41	2.2	439 ± 22	0.29 ± 0.07	1.04 ± 0.17
2002-Jan-11	52285	1.06 x 0.44	5.2	565 ± 29	0.23 ± 0.07	1.21 ± 0.56
2006-Mar-20	53814	1.58 x 0.62	2.0	608 ± 30	0.38 ± 0.10	-
2006-Jun-27	53913	1.08 x 0.36	1.1	553 ± 28	0.18 ± 0.06	1.08 ± 0.13
2006-Jul-21	53937	1.60 x 0.71	0.8	547 ± 27	0.22 ± 0.11	1.13 ± 0.11
2010-Oct-15	55484	1.22 x 0.51	0.2	504 ± 25	0.30 ± 0.08	1.00 ± 0.09
2010-Oct-25	55494	1.33 x 0.52	0.2	487 ± 24	0.31 ± 0.08	0.97 ± 0.10
2011-May-26	55707	1.32 x 0.63	0.3	429 ± 21	0.32 ± 0.09	0.98 ± 0.13
2012-Jan-02	55928	1.26 x 0.53	0.2	444 ± 22	0.33 ± 0.08	0.94 ± 0.09
2012-Sep-27	56197	1.23 x 0.53	0.3	588 ± 29	0.17 ± 0.08	0.90 ± 0.12

Figure 5. VLBA image at 15.3 GHz of PKS 1502+036 collected on 2002 January 11. On the image, we provide the restoring beam, plotted in the bottom-left corner, the peak flux density in mJy/beam and the first contour (f.c.) intensity in mJy/beam, which is three times the off-source noise level. Contour levels increase by a factor of 2.

Figure 6. VLBA image at 15.3 GHz of PKS 1502+036 collected on 2006 July 21. On the image, we provide the restoring beam, plotted in the bottom-left corner, the peak flux density in mJy/beam and the first contour (f.c.) intensity in mJy/beam, which is three times the off-source noise level. Contour levels increase by a factor of 2.
Another way to derive a lower limit to the Doppler factor is by means of the jet/counter-jet brightness ratios. Assuming that both the jet and counter-jet have the same intrinsic power, the different brightness observed can be related to Doppler boosting by means of

\[R = \frac{B_j}{B_{cj}} = \left(\frac{1 + \beta \cos \theta}{1 - \beta \cos \theta} \right)^{\frac{\Gamma(1 - \alpha)}{\Gamma}} , \]

(9)

where \(B_j \) and \(B_{cj} \) are the jet and counter-jet brightnesses, respectively, \(\theta \) is the viewing angle, \(\beta \) is the bulk velocity in terms of the speed of light. We prefer to compare the surface brightness instead of the flux density because the jet has a smooth structure without clear knots. We measured the jet brightness as 20 mJy/beam in the 15 GHz image. In the case of the counter-jet, which is not visible, we assumed an upper limit for the surface brightness that corresponds to 0.15 mJy/beam, i.e. 1σ noise level measured on the image. From the brightness ratio estimated from equation (9) we obtain \(\beta \cos \theta > 0.8 \), implying that the minimum velocity is \(\beta > 0.8 \) (corresponding to a minimum bulk Lorentz factor \(\Gamma > 2.8 \)) and a maximum viewing angle \(\theta < 36^\circ \). From the minimum values derived, we can estimate a lower limit to the Doppler factor by means of

\[\delta = \frac{1}{\Gamma(1 - \beta \cos \theta)} \]

(10)

and we obtain \(\delta > 1.7 \). We remark that the Doppler factors estimated by means of variability and jet/counter-jet brightness ratios are lower limits. The Doppler factor obtained in Abdo et al. (2009) by modelling the SED is much larger, \(\delta = 18 \). The discrepancy may be a consequence of the different emitting regions. The radio variability is likely produced in the core component instead of along the jet. Furthermore, the \(\gamma \)-ray emission can be produced in a very compact region, as suggested by the very short variability time-scale observed in some FSRQs (e.g. Tavecchio et al. 2010). Such a small region is usually self-absorbed at the typical radio frequencies (cm and mm wavelengths). Indeed, the fit used to model the SED in Abdo et al. (2009) does not take into consideration the radio data. On the other hand, the region responsible for the radio emission is related to regions of the jets that are further away from the central AGN, where the opacity is less severe.

A black hole mass of \(4 \times 10^6 \, M_\odot \) was estimated by Yuan et al. (2008) for PKS 1502+036 on the basis of the Hβ broad line. On the other hand, Abdo et al. (2009) derived a black hole mass of \(2 \times 10^7 \, M_\odot \) by means of the SED modelling of the source. As in the case of SBS 0846+513, radio and \(\gamma \)-ray properties of PKS 1502+036 seem to show the characteristics of a (possibly young) blazar at the low end of the black hole mass distribution. A core-jet structure has been resolved at 15 GHz in VLBA images of PKS 1502+036. The main difference with respect to SBS 0846+513 seems to be a fainter jet-like structure and no observed apparent superluminal motion.

In Fig. 7 we compare the \(\gamma \)-ray light curve collected by Fermi-LAT during 2008 August–2012 November to the X-ray (0.3–10 keV), UV (m2 filter), optical (u and V filters) and radio (15 GHz) light curves collected by Swift, CRTS and OVRO. No significant flaring activity was detected in \(\gamma \)-rays. The lack of significant \(\gamma \)-ray variability is not surprising taking into account that only 40% of the AGN in

Figure 7. VLBA image at 15.3 GHz of PKS 1502+036 collected on 2010 October 15. On the image, we provide the restoring beam, plotted in the bottom-left corner, the peak flux density in mJy/beam and the first contour (f.c.) intensity in mJy/beam, which is three times the off-source noise level. Contour levels increase by a factor of 2.

Figure 8. Angular separation between the jet components (C1 and C2, full and empty circles respectively) and the core in PKS 1502+036.
Figure 9. Multifrequency light curve for PKS 1502+036. The period covered is 2008 August–2012 November. The data sets were collected (from top to bottom) by Fermi-LAT (γ-rays), Swift-XRT (0.3–10 keV, in units of 10^{-13} erg cm$^{-2}$ s$^{-1}$), Swift-UVOT (u2 and u bands, in units of mJy), CRTS (V band, in units of mJy) and OVRO (15 GHz, in units of mJy).

the second LAT AGN Catalogue (2LAC) clean sample has shown a clear variability (Ackermann et al. 2012a). The continuous monitoring of the γ-ray sky provided by Fermi-LAT will allow us to catch, if it happens, a flaring activity from PKS 1502+036. Interestingly a slight increase from radio to UV was observed at the end of 2012 June during a period of relatively high γ-ray flux. Similarly, the maximum flux density in V band was observed when the γ-ray emission was increasing. However, the sparse coverage in optical-to-X-rays does not allow us to obtain conclusive evidence. A regular monitoring of this source, as well as the other γ-ray emitting NLSy1s, from radio to γ-rays will be fundamental for continuing to investigate the nature and the emission mechanisms of these objects. This will be crucial for revealing differences and similarities between γ-ray NLSy1s and blazars.

ACKNOWLEDGEMENTS

The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat à l’Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucléaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d’Études Spatiales in France. Part of this work was done with the contribution of the Italian Ministry of Foreign Affairs and Research for the collaboration project between Italy and Japan. We thank the Swift team for making these observations possible, the duty scientists, and science planners. The OVRO 40 m monitoring programme is supported in part by NASA grants NNX08AW31G and NNX11A043G, and NSF grants AST-0808050 and AST-1109911. The CSS survey is funded by the National Aeronautics and Space Administration under Grant No. NNG05GF22G issued through the Science Mission Directorate Near-Earth Objects Observations Programme. The CRTS survey is supported by the U.S. National Science Foundation under grants AST-0909182. The VLA and VLBA are operated by the National Radio Astronomy Observatory. The NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. F. D., M. O., M. G.
acknowledge financial contribution from grant PRIN-INAF-2011. We thank the referee, Dr. Dirk Grupe, and F. Schinzel for helpful comments and suggestions.

REFERENCES

Abdo, A. A., et al. 2009, ApJ, 707, L142
Abdo, A. A., et al. 2010, ApJS, 188, 405
Ackermann, M., et al. 2012a, ApJ, 743, 171
Ackermann, M., et al. 2012b, ApJ, 747, 104
Atwood, W. B., et al. 2009, ApJ, 697, 1071
Baars, W. M., Genzel, R., Pauliny-Toth, I. I. K., Witzel, A. 1977, A&A, 61, 99
Barthelmy, S. D., et al. 2005, Space Sci. Rev., 120, 143
Baumgartner, W. H., Tueller, J., Markwardt, C. B., Skinner, G. K., Barthelmy, S., Mushotzky, R. F., Evans, P., Gehrels, N. 2013, ApJS preprint ([arXiv:1212.3336])
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Blandford, R. D., & Rees, M. J. 1978, in Pittsburgh Conference on BL Lac Objects, ed A. M. Wolfe, University Pittsburgh Press, 328
B"{o}ttcher, M., & Dermer, C. D. 2002, ApJ, 564, 86
Cash, W. 1979, ApJ, 228, 939
Deo, R. P., Crenshaw, D. M., Kraemer, S. B. 2006, AJ, 132, 321
D'Ammando, F., Orienti, M., Finke, J. 2012b, 5th International Meeting on High Energy Gamma-Ray Astronomy, ed. F. A. Aharonian, F. M. Rieger, AIP Conf. Ser. Vol. 1505, Am. Inst. Phys., New York, p. 570
Dallacasa, D., Stanghellini, C., Centonza, M., Fanti, R. 2000, A&A, 363, 887
Dallacasa, D., Bondi, M., Alef, W., Mantovani, F. 1998, A&AS, 129, 219
Doi, A., Nagai, H., Asada, K., Kameno, S., Wajima, K., & Inoue, M. 2006, PASJ, 58, 829
D'Ammando, F., et al. 2012a, MNRS, 426, 317
Drake, A. J., et al. 2009, ApJ, 696, 870
D'Ammando, F., Orienti, M., Finke, J. 2012b, 5th International Meeting on High Energy Gamma-Ray Astronomy, ed. F. A. Aharonian, F. M. Rieger, AIP Conf. Ser. Vol. 1505, Am. Inst. Phys., New York, p. 570
D'Ammando, F., et al., 2011, in The First Year of MAXI: Monitoring Variable X-ray Sources, eds. T. Mihara & N. Kawai. JAXA Special Publication, Tokyo (arXiv:1102.5004)
Doi, A., Nagai, H., Asada, K., Kameno, S., Wajima, K., & Inoue, M. 2006, PASJ, 58, 829
D'Ammando, F., et al. 2011, in The First Year of MAXI: Monitoring Variable X-ray Sources, eds. T. Mihara & N. Kawai. JAXA Special Publication, Tokyo (arXiv:1102.5004)
Eisenhardt, P. R., et al. 2009, ApJ, 707, L142
Foschini, L., et al. 2011, MNRAS, 413, 1671
Franceschini, L., et al. 2011, MNRS, 413, 1671
Gehrels, N., et al. 2004, ApJ, 611, 1005
Grandi, P., & Torresi, E. 2012, Proceedings 2001 Fermi & Jansky: Our Evolving Understanding of AGN, St. Michaels, MD, Nov. 10-12 - eConf C1111101 (arXiv:1205.1686)
Hartman, R. C., et al. 1999, ApJS 123, 79
Hovatta, T., Valtaoja, E., Tornikoski, M., Lähteenmäki, A. 2009, A&A, 494, 527
Kabara, P. M. W., Burton, W. B., Hartmann, D., Arnaud, S., Bajaja, E., Morras, R., Pöppel, W. G. L 2005, A&A, 440, 775
Kellermann, K. I., Sramek, R., Schmidt, M., Shaffer, D. B., Green, R. 1989, AJ, 98, 1195
Komossa, S., Voges, W., Xu, D., Mathur, S., Adorf, H.-M., Limson, G., Duschl, W. J., Grupe, D. 2006, AJ, 132, 531
Jiang, N., et al. 2012, ApJ, 759, L31
Lähteenmäki, A., & Valtaoja, E. 1999, ApJ, 521, 493
Landau, R., et al. 1986, ApJ, 308, 78
Lister, M. L., et al. 2009, AJ, 137, 3718
Marscher, A. 2010, in Lecture Notes in Physics 794, ed. T. Belloni (Berlin:Springer), 173
Massaro, E., Perri, M., Giommi, P., Nesci, R. 2004, A&A, 413, 489
Mattson, J. R., et al. 1996, ApJ, 461, 396
Nolan, P., et al. 2012, ApJS, 199, 31
Orienti, M., Dallacasa, D., Tinti, S., Stanghellini, C. 2006, A&A, 450, 950
Orienti, M., Dallacasa, D., Stanghellini, C. 2007, A&A, 475, 813
Orienti, M., Dallacasa, D. 2008, A&A, 479, 409
Orienti, M., Dallacasa, D., Stanghellini, C. 2010, MNRS, 408, 1075
Paliya, V. S., Stalin, C. S., Kumar, B., Kumar, B., Bhatt, V. K., Pandey, S. B., Yadav, R. K. S. 2013, MNRS, 428, 2450
Polidis, A. G., & Conway, J. E. 2003, Publ. Astron. Soc. Aust., 20, 69
Poole, T. S., et al. 2008, MNRS, 383, 627
Readhead, A. C. S. 1994, ApJ, 426, 51
Richards, J. L., et al. 2011, ApJS, 194, 29
Roming, P. W. A., et al. 2005, Space Sci. Rev., 120, 95
Tavecchio, F., Ghisellini, G., Bonnoli, G., Ghirlanda, G. 2010, MNRS, 405, 94
Tinti, S., Dallacasa, D., De Zotti, G., Stanghellini, C., Celotti, A. 2005, A&A, 432, 31
Torniainen, I., Tornikoski, M., Lähteenmäki, A., Aller, M. F., Aller, H. D., Mingaliev, M. G. 2007, A&A, 469,451
Valtaoja, E., Lähteenmäki, A., Teräsranta, H., Lainela, M. 1999, ApJS, 120, 95
Wills, D., Lynds, R. 1978, ApJS, 36, 317
Wilms, J., Allen, A., McCray, R. 2000, ApJ, 542, 914
Yuan, W., et al. 2008, ApJ, 685, 801
Zhou, H.-Y., Wang, T.-G., Dong, X.-B., Zhou, Y.-Y., Li, C. 2003, ApJ, 584, 147