PREVALENCIA DE VARIAÇÕES ARTERIAIS HEPÁTICAS COM IMPLICAÇÕES EM PANCREATODUODENECTOMIA

Prevalence of hepatic arterial variations with implications in pancreatoduodenectomy

Silvio Marcio Pegoraro Balzan1,2, Vinicius Grando Gava1, Sabrina Pedrotti1, Marcelo Arbo Magalhães2, Alex Schwengber1,2, Marcelo Luiz Dotto1,2, Carmela Reckziegel Krebs2

Como citar este artigo: Balzan SMP, Gava VG, Pedrotti S, Magalhães MA, Schwengber A, Dotto ML, Krebs CR. Prevalência de variações arteriais hepáticas com implicações em pancreatoduodenectomia. ABCD Arq Bras Cir Dig. 2019;32(3):e1455. DOI: /10.1590/0102-672020190001e1455

Resumo - Racionamento: Pancreatoduodenectomia consiste no procedimento cirúrgico usual para tratamento curativo de neoplasias periampulaires e apresenta mortalidade significativa. Variações arteriais do tronco celiaco não são inócuas e podem favorecer lesões iatrogênicas ou exigirem realização de ressecção/reconstrução arterial durante pancreatoduodenectomia. Objetivo: Determinar a prevalência de variações arteriais que apresentam implicações durante pancreatoduodenectomia. Métodos: A anatomia do tronco celiaco e sistema arterial hepático foi investigada retrospectivamente em 200 exames tomográficos contrastados do abdome. Resultados: Anatomia normal do sistema arterial hepático foi observada em 87% dos casos. Presença de uma artéria hepática direita anômala foi identificada em 13%. Em 12 casos houve uma artéria hepática direita substituta originária da artéria mesentérica superior, em dois uma artéria hepática direita acessória com origem similar. Tronco hepaticomesentérico foi identificado em sete casos e em cinco houve uma artéria hepática direita originária diretamente do tronco celiaco. Conclusões: Variações arteriais hepáticas, como artéria hepática direita anômala com trajeto posterior à veia porta, são frequentes (13%). Nestes pacientes, quando submetidos à pancreatoduodenectomia, pode ser necessária alteração na abordagem cirúrgica para ressecção adequada. Examens de imagem pré-operatórios podem claramente identificar estas variações e auxiliar na realização de disseção segura da cabeça do pâncreas com adequado planejamento cirúrgico.

ABSTRACT - Background: Pancreatoduodenectomy is the usual surgical option for curative treatment of periampillary cancer and carries a significant mortality. Arterial anomalies of the celiac axis are not uncommon and might lead to iatrogenic lesions or requiring arterial resection/reconstruction in a pancreatoduodenectomy. Aim: Determine the prevalence of arterial variations having implications in pancreatoduodenectomy. Methods: Celiac trunk and hepatic arterial system anatomy was retrospectively evaluated in 200 abdominal enhanced computed tomography studies. Results: Normal anatomy of hepatic arterial system was found in 87% of cases. An anomalous right hepatic artery was identified in 13% of cases. In 12 cases there was a substitute right hepatic artery arising from superior mesenteric artery and in two cases an accessory right hepatic artery with similar origin. A hepatomesenteric trunk was identified in seven cases and in five there was a right hepatic artery directly from the celiac trunk. Conclusions: Hepatic artery variations, such as anomalous right hepatic artery crossing posterior to the portal vein, are frequently seen (13%). These patients, when undergoing pancreatoduodenectomy, may require a change in the surgical approach to achieve an adequate resection. Preoperative imaging can clearly identify such variations and help to achieve a safer pancreatic head dissection with proper surgical planning.
MÉTODO

Pacientes
Duzentos pacientes consecutivos foram submetidos à tomografia computadorizada (TC) de abdome com contraste em uma unidade de radiologia terciária. TCs foram analisados retrospectivamente. Aqueles com história prévia de operação em abdome superior, com massa abdominal volumosa distorcendo o tronco celiaco ou seus ramos e aqueles menores de 18 anos, foram excluídos. Este estudo foi submetido e aprovado pelo comitê de ética institucional (número 2.755.349) e registrado na Plataforma Brasil.

Técnica e interpretação de imagem
As imagens de TC foram obtidas com o uso de um scanner espiral de 16 detectores (LightSpeed Ultra Scanner, GE Medical Systems). Espessuras de corte de 3,0 mm ou menos foram utilizadas. Imagens dinâmicas foram obtidas após a injeção endovenosa de iopromide através de um cateter plástico de calibre 18-gauge colocado em uma veia antecubital. O escapeamento da fase arterial hepática obtido 9-15 s após o realce da aorta descendente com 100 Hounsfield Units (HU). O volume total de contraste usado variou de 1-1,5 ml por kg de peso corporal. As fases arterial hepática, venosa portal e de equilíbrio foram rotineiramente obtidas. As imagens Dicom foram analisadas por um radiologista e um cirurgião com experiência em operações pancreáticas e hepatobiliares, usando um visualizador de imagens médicas de código aberto (Horos 3.3.1 para MacOS, projeto Horos, 2018).

Anomalias arteriais
A anatomia arterial padrão foi considerada como: artéria hepática comum originada do tronco celiaco e denominada artéria hepática própria após originar a artéria gastroduodenal. Artérias hepáticas direita e esquerda originadas da artéria hepática própria. A presença de uma artéria hepática direita (RHA, substituta ou acessória) ou uma artéria hepática comum originada da artéria mesentérica superior são anomalias arteriais conhecidas que requerem cautela especial e/ou modificações técnicas durante a DP. Essas variações foram pesquisadas em cada estudo tomográfico e registradas em figuras esquemáticas. A classificação de Hiatt foi adotada para avaliar variações anatômicas arteriais9.

RESULTADOS
Um total de 214 pacientes foi inicialmente rastreado de junho a agosto de 2018 em uma unidade de radiologia terciária. Houve 14 exclusões devido a grandes tumores abdominais (quatro casos de neoplasias abdominais e um de doença hepática policística) distorcendo o tronco celiaco e 10 exclusões devido às operações prévias de abdome superior (cinco ressecções pancreáticas e outras cinco ressecções hepáticas maiores). O número de homens e mulheres foi semelhante (93 e 107, respectivamente).

RHA normal originada do tronco principal da artéria hepática própria (Figura 1A) foi encontrada em 174 casos (87%). Encontrou-se RHA aberrante em 26 (13%) casos. Dentre estes 26, 12 (6%) eram RHA substitutas provenientes da artéria mesentérica superior (SMA - Figura 1B e Figura 2); duas (1%) eram RHA acessórias proveniente da SMA (Figura 1C); em sete (3,5%) a origem da artéria hepática era um tronco hepatomesentérico (Figura 1D); e em cinco (2,5%) a RHA era substituta e oriunda diretamente do tronco celiaco (Figura 1E). Todas as RHA aberrantes (13%) tinham sua rota por trás da cabeça do pâncreas e depois, posteriormente e lateralmente, para a veia porta principal antes de chegar ao fígado.

Além disso, foram identificados oito casos (4%) de artéria hepática esquerda aberrante. Em sete, a artéria hepática direta substituta originada da artéria mesentérica superior (prevalência 6%); C) artéria hepática direita acessória originária da artéria mesentérica superior (prevalência 1%); D) artéria hepática direita originária de tronco hepatomesentérico (prevalência 3,5%); e E) origem da artéria hepática direita diretamente do tronco celiaco com trajeto retroportal (prevalência 2,5%).

FIGURA 1 - Representação diagramática das variações do sistema arterial hepático com implicações na duodenopancreatectomia observadas em 200 casos revisados. Variações da artéria hepática esquerda (n=7) não são mostradas: A) configuração arterial padrão; B) artéria hepática direita substituta originária da artéria mesentérica superior (prevalência 6%); C) artéria hepática direita acessória originária da artéria mesentérica superior (prevalência 1%); D) artéria hepática direita originária de tronco hepatomesentérico (prevalência 3,5%); e E) origem da artéria hepática direita diretamente do tronco celiaco.

FIGURA 2 - Artéria hepática direita substituta (rRHA) surgindo da artéria mesentérica superior (SMA).
DISCUSSÃO

Após o desenvolvimento normal, a artéria hepática comum surge do tronco celiaco e continua como artéria hepática própria após originar a artéria gastroduodenal. As artérias hepáticas direita e esquerda geralmente são artérias hepáticas próprias. Entretanto, inúmeras variações arteriais anatômicas podem resultar de anomalias dos elementos embriológicos. De fato, um padrão arterial “normal” ou regular de ramos hepáticos arteriais é relatado com uma frequência de 62,5% a 90,5% dos casos. Algumas variações anatômicas do sistema arterial hepático têm importância crucial nas ressecções da cabeça do pâncreas, como na DP.

Desde a descrição inicial da DP por Whipple et al. em 1935, esse procedimento complexo evoluiu e sofreu várias alterações. No entanto, variações arteriais anatômicas permanecem um desafio. A ligadura de uma artéria hepática pode resultar em necrose hepática, abscessos hepáticos, lesão biliar isquêmica e/ou fistula anastomótica. Essas são complicações potencialmente fatais.

DP padrão e suas variações compreendem pelo menos a dissecação de artérias hepáticas comum e própria e da artéria gastroduodenal. Esta é geralmente ligada e seccionada em sua origem. Além disso, a linfadenectomia da artéria hepática comum e do tronco celiaco é indicada na DP para câncer. Adicionalmente, ramos arteriais pancreáticos da SMA (como as artérias pancreatoduodenais inferiores) são ligados durante a dissecação da lámina pancreática retroportal.

Uma artéria hepática direita anômala originada da SMA pode apresentar diferentes relações com o pâncreas e a veia porta. Ela está frequentemente em contato com a face posterior da cabeça do pâncreas e segue lateral e posteriormente à veia porta. Uma artéria hepática comum anômala que surge da SMA (situação conhecida como tronco hepatomesentérico) pode ter um curso semelhante. Achado importante do presente estudo é que em todos os casos de artéria hepática direita anômala - incluindo aqueles com origem diretamente da SMA e também do tronco hepatomesentérico - seu trajeto percorreu posteriormente à cabeça pancreática e veia porta, seguindo lateralmente à veia porta antes de chegar ao fígado. Esses vasos anômalos podem ocorrer de forma incidental e danificados durante a DP e/ou podem estar envolvidos por tumores da cabeça do pâncreas e causar sangramento intra ou pós-operatório.

A identificação das variações arteriais permite o planejamento e o manejo cirúrgico adequados em caso de envolvimento vascular ou lesão arterial. A simples ligadura e secção devem ser evitadas (exceto em casos de vasos acessórios) devido ao risco de necrose e abscesso hepáticos. Apesar de ser tecnicamente trabalhosa, a dissecação dos vasos para longe do pâncreas geralmente é possível sem comprometer a radicalidade da ressecção (Figura 3) e deve ser tentada. A ressecção e a reconstrução podem ser necessárias em certas variações arteriais (como no caso de curso intra-pancreatérico) ou no envolvimento tumoral (Figura 4). Foi demonstrado que a presença de uma RHA anômala em pacientes com adenocarcinoma de pâncreas não afeta a ressecabilidade. Foi sugerido que, em pacientes com tumores pancreáticos ressecáveis, a presença dessa variante não aumenta as taxas de ressecções R1 e não está associada a piores resultados pós-operatórios ou sobrevida global. Na maioria dos casos de DP com uma RHA aberrante, foi possível preservar essa artéria, a ressecção e reconstrução restringiram-se ao envolvimento tumoral arterial. Por outro lado, não está claro se o envolvimento arterial de uma RHA aberrante por um tumor pancreático tem o mesmo impacto clínico do que o envolvimento de outras artérias (como o tronco celiaco ou a artéria hepática comum). Assim, a ressecção de uma artéria hepática direita aberrante envolvida por tumor pode representar opção aceitável.

Foi encontrada uma artéria hepática direita anômala (seja uma RHA acessória ou substituta originária da SMA ou uma RHA saindo de um tronco mesentericohepático) em 26 casos (13%), todos com um trajeto posterior à veia porta e em contato com a cabeça do pâncreas. Além disso, foram encontrados dois casos de RHA originária diretamente do tronco celiaco, também com trajeto retroportal. Esses achados estão de acordo com a literatura, com taxa relatada de RHA anômalas de 13-26%.

Definição da anatomia vascular arterial no pré-operatório ou no início de uma DP é crucial. Ela pode evitar sangramento e complicações pós-operatórias decorrentes de lesões arteriais. Conjuntamente com as técnicas de imagem atuais, a dissecação da SMA como etapa inicial da DP pode ser usada de maneira muito seletiva.

FIGURA 3 - Visão operatória mostrando a dissecação de uma artéria hepática direita substituta (RHA) durante duodenopancreatectomia: observar o curso da RHA posterior à veia porta (PV) e depois lateral à ela.

FIGURA 4 - Visão operatória durante duodenopancreatectomia: A) observar a presença de artéria hepática direita substituta (RHA) originária da artéria mesentérica superior, cruzando posteriormente à veia porta (PV) e envolvida por um tumor pancreático (asteriscos); B) ressecção segmentar da RHA envolvida com segmento distal preparado para ser anastomosado com o coto da artéria gastroduodenal (GDA)
CONCLUSÃO

Variações da artéria hepática, como artéria hepática direita anômala cruzando posteriormente a veia porta, são frequentemente vistas. Nestes pacientes, quando submetidos à duodenopancreatectomia, pode ser necessária mudança na abordagem cirúrgica para ser obtida ressecção adequada. A imagem pré-operatória pode identificar claramente essas variações e ajudar a obter dissecação segura da cabeça pancreática com planejamento cirúrgico adequado.

REFERÊNCIAS

1. Amano H, Miura F, Toyota N, et al. Is pancreatectomy with arterial reconstruction safe and useful procedure for locally advanced pancreatic cancer? J Hepatobiliary Pancreat Surg. 2009;16(6):850-857. doi:10.1007/s00534-009-0190-7.

2. El Amrani M, Pruvo F-R, Truant S. Management of the right hepatic artery in pancreatectoduodenectomy: a systematic review. J Gastrointest Oncol. 2016;7(2):298-305. doi:10.3978/j.issn.2078-6891.2015.093.

3. Ave C, Dhir M, Ravepali L. History of pancreatectoduodenectomy: Early misconceptions, initial milestones and the pioneers. HPB. 2011;13(6):377-384. doi:10.1111/j.1477-2578.2011.00305.x.

4. Cheung TP, Poon RTP, Chok KSH, et al. Pancreatectoduodenectomy with vascular reconstruction for adenocarcinoma of the pancreas with borderline resectability. World J Gastroenterol. 2014;20(4):17448-17455. doi:10.3748/wjg.v20.i46.17448.

5. Eshuis WJ, Olde Loohuis KM, Busch ORC, van Gulik TM, Gouma DJ. Influence of aberrant right hepatic artery on perioperative course and long-term survival after pancreatectoduodenectomy. HPB. 2011;13(3):161-167. doi:10.1111/j.1477-2578.2010.00258.x.

6. Gong Y, Zhang L, He T, et al. Pancreatectoduodenectomy Combined with Vascular Resection and Reconstruction for Patients with Locally Advanced Pancreatic Cancer: A Multicenter, Retrospective Analysis. PLoS One. 2013;8(8). doi:10.1371/journal.pone.0070340.

7. Hartwig W, Werner J, Jäger D, Debus J, Büchler MW. Improvement of surgical results for pancreatic cancer. Lancet Oncol. 2013;14(11). doi:10.1016/S1470-2045(13)70172-4.

8. He C, Mao Y, Wang J, Duan F, Lin X, Li S. Nomograms predict long-term survival for patients with peripancreatic adenocarcinoma after pancreatectoduodenectomy. BMC Cancer. 2018;18(1):327. doi:10.1186/s12885-018-4240-x.

9. Hiatt JR, Gabbay J, Busuttil RW. Surgical anatomy of the hepatic arteries in 1000 cases. Ann Surg. 1994;220(1):50-52. http://www.ncbi.nlm.nih.gov/published/6024358.

10. Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet. 2016;388(10037):73-85. doi:10.1016/S0140-6736(16)00141-0.

11. Kim JH, Gonzalez-Heredia R, Daskalakis D, Rashdan M, Masrur M, Giulianiotti PC. Totally replaced right hepatic artery in pancreatectoduodenectomy: is this anatomical condition a contraindication to minimally invasive surgery? HPB. 2016;18(7):580-585. doi:10.1016/j.hpb.2016.04.009.

12. Kim PTW, Temple S, Atanufo EG, et al. Aberrant right hepatic artery in pancreatectoduodenectomy for adenocarcinoma: impact on resectability and postoperative outcomes. HPB (Oxford). 2014;16(3):204-211. doi:10.1111/hpb.12120.

13. Kleive D, Sahakyan MA, Khan A, Fosby B, Line PD, Labori KJ. Incidence and management of arterial injuries during pancreatectomy. Langenbeck’s Arch Surg. 2016;408(3):341-348. doi:10.1007/s00423-018-1666-1.

14. Landen S, Ursaru D, Delugeau V, Landen C. How to deal with hepatic artery injury during pancreatectoduodenectomy. A systematic review. J Visc Surg. 2017;154(4):261-268. doi:10.1016/j.jviscsurg.2017.05.013.

15. Marcon-Clement I, Martinez-Barco A, Ahumada N, et al. Anatomical variations of the hepatic trunk: cadaveric and radiological study. J Radiol Anat. 2016;38(4):501-510. doi:10.1016/s0027-015-1542-4.

16. Miyazaki M, Yoshitomi H, Takano S, et al. Combined hepatic arterial resection in pancreatic resections for locally advanced pancreatic cancer. Langenbeck’s Arch Surg. 2017;402(3):447-456. doi:10.1007/s00423-017-1578-5.

17. Narayanan S, Martin AN, Turrentine FE, Bauer TW, Adams RB, Zaydfudim VM. Mortality after pancreatectoduodenectomy: assessing early and late causes of patient death. J Surg Res. 2018;231:304-308. doi:10.1016/j.jss.2018.11.007.

18. Sabetas A, Gough BL, Anderson C, Abdel-Misir R, Petrelli NJ, Bennett JJ. High volume pancreatectoduodenectomy performed at an academic community cancer center. Am J Surg. October 2018. doi:10.1016/j.amjsurg.2018.10.041.

19. Santos PV, et al. Anatomical variations of the celiac trunk: systematic review. ABCD Arq Bras Cir Dig (São Paulo). 2018;31(4):e1403. doi:10.5152/tjg.2014.5406.

20. Strobel O, Neoptolemos J, Jäger D, Büchler MW. Optimizing the outcomes of pancreatic cancer surgery. Nat Rev Clin Oncol. October 2018. doi:10.1038/s41571-018-0112-1.

21. Sulis JP, Rayan M, Paquette C, et al. Does an aberrant right hepatic artery really influence the short-and long-term results of a pancreatectomy for malignant disease? A matched case-controlled study. J Surg Res. 2013;185(2):620-625. doi:10.1016/j.jss.2013.07.015.

22. Whipple AO, Parsons WB, Mullins CR. Treatment of carcinoma of the ampulla of vater. Ann Surg. 1935;102(4):763-779. http://www.ncbi.nlm.nih.gov/published/17856666. Accessed January 1, 2019.

23. Zagyapan R, Kurkcuoglu A, Bayraktar A, Pelin C, Aytekin C. Anatomical variations of the celiac trunk and hepatic arterial system with digital subtraction angiography. Turkish J Gastroenterol. 2015;25(1):104-109. doi:10.5152/tjg.2014.5406.