On the potential of sequential and non-sequential regression models for Sentinel-1-based biomass prediction in Tanzanian miombo forests

Sara Björk, Associate Member, IEEE, Stian Normann Anfinsen, Member, IEEE, Erik Næsset, Terje Gobakken and Eliakimu Zahabu

Abstract—This study derives regression models for aboveground biomass (AGB) estimation in miombo woodlands of Tanzania that utilise the high availability and low cost of Sentinel-1 data. The limited forest canopy penetration of C-band SAR sensors along with the sparseness of available ground truth restrict their usefulness in traditional AGB regression models. Therefore, we propose to use AGB predictions based on airborne laser scanning (ALS) data as a surrogate response variable for SAR data. This dramatically increases the available training data and opens for flexible regression models that capture fine-scale AGB dynamics. This becomes a sequential modelling approach, where the first regression stage has linked in situ data to ALS data and produced the AGB prediction map; We perform the subsequent stage, where this map is related to Sentinel-1 data. We develop a traditional, parametric regression model and alternative non-parametric models for this stage. The latter uses a conditional generative adversarial network (cGAN) to translate Sentinel-1 images into ALS-based AGB prediction maps. The convolution filters in the neural networks make them contextual. We compare the sequential models to traditional, non-sequential regression models, all trained on limited AGB ground reference data. Results show that our newly proposed non-sequential Sentinel-1-based regression model performs better quantitatively than the sequential models, but achieves less sensitivity to fine-scale AGB dynamics. The contextual cGAN-based sequential models best reproduce the distribution of ALS-based AGB predictions. They also reach a lower RMSE against in situ AGB data than the parametric sequential model, indicating a potential for further development.

Index Terms—Aboveground biomass (AGB), airborne laser scanning (ALS), conditional adversarial generative network (cGAN), Sentinel-1, sensor fusion, synthetic aperture radar (SAR).

I. INTRODUCTION

A consequence of climate change, there is an increasing need for accurate carbon accounting systems for measuring, reporting, and verification (MRV) on a national level. Through the REDD+ programme (officially named "Reducing emissions from deforestation and forest degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries"), developing countries are motivated to implement such an MRV system to monitor the potential reduction of carbon emissions from tropical forests [1]. The documentation of reduced deforestation on a national level could potentially result in a financial reward being released through the program for the countries associated with the REDD+ programme [2].

Forests are well known for being one of the major carbon sinks and need to be properly and accurately monitored by the MRV system. This can be achieved by accurately estimating the amount of forest aboveground biomass (AGB), as AGB is a primary variable related to the carbon cycle [3], [4]. To calibrate the MRV system, AGB data over the area of interest (AOI) is needed. It can be collected either through destructive or non-destructive in situ sampling. The former implies harvesting, drying, and weighing the plants to estimate the biomass. The latter does not involve harvesting trees but measuring parameters such as tree height, stem diameter, etc. Measured parameters from the non-destructive sampling can be used to predict AGB by allometric models developed for the AOI [4]. Unfortunately, AGB in situ measurements of both above categories are costly and time-demanding to collect manually. As a consequence, most research instead focuses on establishing a relationship between a small amount of AGB field data and remote sensing (RS) data using different sensors [2], [5]–[19].

Among different platforms and sensor types, airborne laser scanning (ALS) systems are shown to provide AGB models that are significantly more accurate than models developed using radar or passive optical data [20], [21]. The reason is probably that ALS can provide accurate data describing canopy cover density and canopy height, which is highly correlated with forest AGB [3], [21]. This result was also confirmed in [22], where the ALS-based regression model achieved the highest accuracy of AGB estimates in the miombo woodlands of Tanzania. However, airborne data are associated with high acquisition cost, which limits the use of ALS data in national MRV systems that require regular acquisitions to keep forest inventories up to date [3], [21].

One of the advantages of employing spaceborne SAR sensors to AGB estimation is that it provides data with extensive...
spatial coverage that can be acquired with high temporal frequency. SAR data can thus yield frequently updated AGB predictions over large areas. Another advantage is the SAR sensor’s ability to penetrate clouds, which makes it effective to monitor regions with a significant amount of cloud coverage. Unfortunately, the use of SAR data for AGB estimation is limited by the saturation level, the property that SAR intensity does not increase with AGB beyond a certain AGB level. This property is dependent on the specific wavelength used by the SAR sensor and implies, in general, that AGB at middle-to-high level cannot be distinguished in the SAR intensity data [3], [23]–[25]. Additionally, SAR data are strongly dependent on the environmental conditions on the ground, where a change in moisture conditions impacts the measured backscatter [23]. The former is a well known limitation of SAR data that may restrict its use in MRV systems of high precision, the latter might be circumvented by the use of SAR data acquired at e.g. dry seasons [24]. The different challenges of SAR and ALS have fostered studies on their combined use for forest AGB estimation. Several of these studies were reviewed in [3] and [21], which conclude that the combination of SAR and ALS may improve AGB estimation, especially when SAR data are used to upscale and extend accurate ALS measurements of forest height to obtain accurate AGB predictions over large areas [3].

Well-known regression models from statistics have traditionally been used to directly relate a small set of ground reference data of AGB to RS data from a single sensor. A popular choice among the conventional regression models is a variation of traditional linear regression: multiple linear regression and stepwise multiple regression, see e.g. [11], [14], [15], [17], [19], [26], [27]. The evolution of machine learning (ML) methods has introduced many alternative methods for AGB estimation, with random forests, artificial neural networks (ANNs) and support vector machines for regression (e.g. [36]–[38]), and ML-based models, such as random forest and support vector regression (e.g. [39]–[42]), have previously been applied in a sequential modelling fashion for AGB estimation. In this work we differentiate between sequential modelling and the traditional approach with a single-stage regression model by referring to the latter as a non-sequential modelling approach.

Both sequential and non-sequential regression models for AGB estimation have traditionally operated on an individual pixel level. That is, the prediction at a pixel location is based on regressors exclusively from the same location, without any use of spatial context of neighbouring pixels. However, a key feature of DNNs, that partly explains their success in many prediction and regression problems, is their use of convolutional filters. This implies that the prediction of any single pixel is based on regressors from a spatial neighbourhood that surrounds it. It also means that the prediction is done by processing blocks of pixels, with image layers of regressor variables in input and a corresponding layer for the response variable in output. This mapping of predictor images to a response variable image is equivalent to the operation known as image translation in DL. Isola et al. [35] define image translation as follows: Given sufficient training data, image-to-image translation is defined as the problem of translating one possible representation of a scene into another. Within DL, the family of generative models is known to enable cross-modal image translation by translating data from one known distribution to another target distribution. Amongst the generative models are the generative adversarial networks (GANs) [43] particularly popular, see e.g. [35], [44]–[50]. GANs are trained to capture the data distribution of a target domain in a minimax optimisation procedure. After training, the generator network, \(G \), can be used to map a random noise vector to a target output image. This idea was later extended to the conditional gen-
benefit by implementing an MRV system to monitor their forests. Therefore, the primary aim of this work is to develop forest AGB prediction models that could be implemented in an MRV system for Tanzania. For an AGB prediction model to be of practical use in the MRV system of Tanzania, the model should be able to provide frequently updated AGB predictions with extensive spatial coverage, of a high accuracy, and at a low cost. This puts some constraints on the data used:

1) We need to rely on remote sensing data, as large scale in situ sampling will be infeasible,
2) We cannot afford performing frequent ALS campaigns to frequently update a low-cost MRV system,
3) Due to its location, Tanzania experiences rain periods, which constrains the use of passive sensors, as they are not able to penetrate clouds.

The second constraint further limits the use of RS data from sensors that are neither freely available, nor easily accessible. Based on the constraints of this project, we have decided to utilise the Sentinel-1 sensor, as it provides us with freely available and frequently updated data with extensive spatial coverage. However, a simple SAR-based AGB prediction model may limit the precision of the MRV system and consequently the advantage of implementing the system for operational forest monitoring.

Both [3] and [52] advocate the potentials of combining ALS and SAR for large-scale AGB mapping with improved accuracy. Encouraged by this, we restrict the focus of this work to an AOI in the Liwale district in southeast Tanzania. Here, we have access to a small amount of ground reference vector data and continuous raster of ALS data, which has previously been used in combination with four other RS datasets: optical RapidEye and Landsat imagery, interferometric TanDEM-X radar imagery (X-band SAR), and ALOS-PALSAR (hereby PALSAR) radar imagery (L-band SAR), to develop five different traditional non-sequential regression models, see [22]. The ALS-based prediction model of Næsset et al. was further used in [22] to create a wall-to-wall map of ALS-based forest AGB predictions. Their ground reference dataset and the wall-to-wall map of ALS-based forest AGB predictions were provided to us for this work, and will be used together with Sentinel-1 data to develop low cost AGB prediction models for the AOI. However, since we aim to contribute with AGB prediction models that can be applied not only in the AOI, but also in extended areas, we put further restrictions on the focus of this work:

(i) To develop AGB prediction models of high accuracy and with potentially extensive spatial coverage, we wish to investigate if a sequential modelling approach is better than a traditional non-sequential regression model.
(ii) By utilising the wall-to-wall ALS-based AGB prediction map as a surrogate for AGB ground reference data, we are able to implement the second part of the sequential model with a deep neural network. Thus, in the case of sequential modelling, we additionally investigate the possible benefits of applying a DL-based model instead of a traditional regression model.

Our approach to sequential modelling is to co-register and
resample the SAR intensity image data to the same spatial resolution as the available wall-to-wall map of ALS-based AGB predictions, produced with the classical non-sequential regression model presented in [22]. Motivated by the achievements of image-to-image translation, we propose to utilise a cGAN model for the second model in the sequence. We train the cGAN model to synthesise ALS-based AGB maps from false colour SAR intensity images. As far as we know, this is the first time contextual DNNs, in the form of cGAN models, have been utilised in a sequential modelling strategy to upscale a limited amount of ground reference data and simulate AGB predictions. We see any modification of the ALS-based regression model as outside the scope of this work. Fig. 1 shows the overall view of the proposed cGAN-based sequential approach used to generate synthetic ALS-based AGB predictions from false colour Sentinel-1 image patches. We validate the proposed cGAN-based sequential model against two non-contextual Sentinel-1-based regression models, also proposed for this work; a non-sequential model and a traditional sequential model. The non-sequential regression model relates single pixels of Sentinel-1 data to the small set of AGB ground reference data. For the non-contextual sequential regression model, we trained the second model in the sequence to relate ALS-based AGB predictions to single pixels of Sentinel-1 data. For both non-contextual models, we use the state-of-the-art regression model in the AOI, i.e. a multiple linear regression model with square root transformation of the response variable. This is the same regression model as used by Næsset et al. in their work [22].

B. Contribution

To summarise, the contributions of this paper are:

1) We extend the work in [22] by developing a similar type of regression model based on Sentinel-1 data.
2) We propose to model forest AGB by a novel sequential modelling approach, in which the second model relates SAR data to ALS-based AGB predictions. We propose two different regression models for the second stage of regression:
 (i) one traditional regression model, similar to 1).
 (ii) one DL-based regression model based on image-to-image translation with a cGAN [35].
3) Since the application of cGANs as AGB regression models is uncommon, we provide a comprehensive study on different hyperparameters, objective functions, and G and D networks.
4) We empirically evaluate the three proposed AGB prediction models against previous results presented in [22] and against each other.
5) We demonstrate the potential of using Sentinel-1 data for AGB predictions and show that our C-band-based models performs better than some of the previously developed models for the AOI.

While we argue for the benefit of using Sentinel-1-based models to extend the spatial coverage of the AGB predictions, the scope for this study is to develop models for the AOI. We therefore see the construction of AGB prediction maps over an extended area as outside the scope of this work.

The remainder of this paper is organised as follows: In Sec. II we introduce our proposed sequential modelling approach for forest AGB prediction. Sec. III presents published research in related areas within non-sequential and sequential regression models for AGB prediction through sensor fusion, and related research on image translation through GANs. Sec. IV presents the datasets, and formally define the proposed non-sequential and sequential regression models. Results are presented and analysed in Sec. V, while we discuss our work in Sec. VI. Finally, we conclude our work in Sec. VII by summarising the most important findings. Additional experiments and methodological contributions are collected in the Appendix.

II. BACKGROUND

In this section, we introduce the proposed sequential modelling approach for forest AGB prediction in both general terms and with a particular emphasise on employing a cGAN for the second part of the sequential model. We continue with a general introduction to the concepts of the cGAN model and how it can be utilised for image-to-image translation in our sequential modelling approach.

A. Non-sequential modelling

As previously introduced, co-located ALS data \((y) \) and AGB ground reference data \((z) \) consisting of 88 field plots were in Næsset et al. [22] used to fit a traditional non-sequential regression model \(f : y \mapsto z \). The specific regression model from [22], denoted \(f \), uses a square root transformation of the response variable and was trained using ordinary least squares (OLS) regression with stepwise forward selection of the variables. It was used to map spatially continuous ALS measurements into what we refer to as a ALS-based AGB prediction map by:

\[
\hat{z}_y = f(y),
\]

where \(\hat{z}_y \) denotes each individual ALS-based AGB prediction. The regression coefficients are published in [22] and the resulting prediction map has been made available to us by the authors. The traditional non-sequential approach is illustrated on the left-hand side of Fig. 2, where a single regression model is trained to relate some remotely sensed predictor, such as SAR backscatter intensity (denoted \(x \)) or ALS data \((y) \), to a co-located set of sparse AGB ground reference data \((z) \). Here, \(\hat{z}_x \) refers to SAR-based AGB predictions obtained with the traditional non-sequential regression model. The ALS-based biomass prediction map, \(\hat{z}_y \), is of relatively high accuracy compared to maps made from other remote sensing data sources in the same work [22].

B. Sequential modelling

In the modelling strategy with two sequential regression models, we keep the regression model from [22], i.e. \(f \), as the first model in the sequence. We then propose the second regression model in the sequence to relate SAR backscatter
to exploit the contextual information between neighbouring predictions. As the cGAN model utilises convolutional filtering to be trained on the wall-to-wall map of ALS-based AGB due to the sequential modelling approach, which allows as the second regression model. The latter is only possible sequential regression setting we instead use a cGAN model root transformation of the response variable. In the DL-based form as

![Fig. 2](image)

Fig. 2. Illustration of the difference between a traditional non-sequential regression model and the proposed sequential regression models. We let \(x \) denote data from a SAR sensor, \(y \) denote ALS data and \(z \) denote AGB ground reference data. Regression models are represented by \(f, g \) and \(h \), where \(f \) is a regression model between \(y \) data and \(z \), \(h \) is a regression model between \(x \) data and \(z \), while \(g \) is a regression model between \(x \) data and ALS-based AGB predictions denoted \(\hat{z}_y \). Additionally, \(\hat{z}_x \) denote SAR-based AGB predictions from a traditional non-sequential regression model. In the sequential setting, \(\hat{z}_{y|x} \) denote the outcome from the second part of the two subsequent regression models, i.e. a generated synthetic ALS-based AGB predictions retrieved from \(x \) data.

![Fig. 3](image)

Fig. 3. Illustration of a GAN (upper) and cGAN (lower) model \(G \) and \(D \) denote the generator and discriminator networks. \(x \) represents images of SAR backscatter intensity from the input domain \(X \). ALS-based AGB predictions are in both models denoted as \(\hat{z}_y \). The subscript \(y \) indicates that the AGB predictions are retrieved from a model trained on ALS data. Generated synthetic ALS-based AGB predictions retrieved from \(X \) domain using a cGAN are denoted \(\hat{z}_{y|x} \). \(\hat{z}_x \) represents generated synthetic ALS-based AGB predictions retrieved from random noise; \(\beta \) in a GAN.

intensity data, \(x \), to wall-to-wall maps of ALS-based forest AGB predictions, \(\hat{z}_y \). We thereby utilise \(\hat{z}_y \) as a dense surrogate for \(z \). This gives rise to the second regression model, \(g : x \mapsto \hat{z}_y \), which in the prediction phase can be used to map SAR images, unseen by the model, to generate synthetic ALS-based AGB maps by:

\[
\hat{z}_{y|x} = g(x),
\]

where \(\hat{z}_{y|x} \) denotes each individual generated synthetic ALS-based AGB prediction. Thus, the two regression models \(f \) and \(g \) link SAR intensity data to AGB ground reference data in a sequential process. The main benefit of the sequential modelling approach is that the model \(g \) can be trained with a large amount of spatially continuous data instead of the few ground reference field plots. Consequently, our sequential modelling approach additionally facilitates for the full exploitation of convolutional DL models for AGB regression as they require access to spatially continuous data. Our proposed sequential modelling approach is shown on the right-hand side of Fig. 2. It should be noted that the described sequential approach is lacking in one respect: The SAR-based prediction, \(\hat{z}_y \), is regressed against a surrogate regression target \(\hat{z}_y \), which despite its relatively high accuracy must necessarily contain some uncertainty. Therefore, the sequential modelling could be followed by a calibration step step where the mean of \(g \) is calibrated against the original ground reference data, \(z \). This is discussed in footnote 3 on page 16.

We propose two different versions for model \(g \): a traditional sequential model and a DL-based sequential model. In the traditional sequential regression setting, we let \(g \) take the same form as \(f \), i.e. a multiple linear regression model with square root transformation of the response variable. In the DL-based sequential regression setting we instead use a cGAN model as the second regression model. The latter is only possible due to the sequential modelling approach, which allows \(g \) to be trained on the wall-to-wall map of ALS-based AGB predictions. As the cGAN model utilises convolutional filtering to exploit the contextual information between neighbouring pixels, it carries the potential to capture more information and possibly make better predictions of forest AGB compared to a non-contextual sequential regression model. We let \(\hat{z}_{y|x} \) denote generated synthetic ALS-based AGB predictions from the non-contextual sequential model, while \(\hat{z}_{y|x} \) denote generated synthetic ALS-based AGB predictions from the contextual sequential model. The bold font therefore specifies that both the input and the output of \(g \) is an image patch (i.e., a subimage from the AOI) and not a single pixel value. For the remaining of this work, we use plain font for variables representing single pixels while a notation in bold font represents a set of pixels.

C. Conditional generative adversarial networks

Cross-modal image translation based on generative adversarial networks (GANs) has drawn considerable attention since
the architecture was proposed in 2014 [43]. Image translation is achieved through a generative model, referred to as the generator G, that is trained to capture the data distribution of the target domain. Simultaneously, a discriminative model, referred to as the discriminator D, is trained to distinguish between image samples generated by G and images from the actual target domain. The GAN components G and D are trained in a minimax optimisation procedure, where they are adapted alternatingly while seeking to optimise conflicting performance criteria. The convergence of both benefits from the battle with the adversary as long as the alternating adaptation is appropriately balanced. After training, G can be utilised separately to generate data from the specific distribution.

In the standard GAN setting, the generative model G learns a mapping from a random noise vector to a target output image, while the discriminative model D is trained to distinguish between the generated output image and the corresponding target output image. The whole process, with respect to AGB estimation, is illustrated in Fig. 1 and the upper part of Fig. 3. Here, β denotes a random noise vector, the target output image, i.e. ALS-based AGB predictions, is represented by \hat{y}, while the generated synthetic output image is represented by \tilde{y}. Thus, \tilde{y} represent an approximation to \hat{y}, generated from random noise.

In the cGAN setting, the learned mapping to the target output image is conditioned on the distribution of an input image. Consequently, the discriminative model, D, instead learns to distinguish between a real pair or false pair of images. The training process of a cGAN, with respect to AGB estimation, is shown in the lower part of Fig. 3. When we let the second part of the sequential model, i.e. g, be represented by a cGAN model, we condition the regression model on a patch of SAR backscatter intensity data, \mathbf{x}. By the condition on SAR data, the generated synthetic output image of ALS-based AGB predictions is now denoted $\tilde{y}|\mathbf{x}$. In the cGAN setting, the aim of D is to distinguish between $\{\mathbf{x}, \tilde{y}\}$ and $\{\mathbf{x}, \hat{y}|\mathbf{x}\}$.

III. RELATED WORK

This section frames our work within related research literature on sensor fusion with a particular emphasis on fusion between ALS and radar, traditional non-sequential regression modelling, sequential regression modelling, and image translation through GANs.

A. Traditional non-sequential regression by sensor fusion

In this context, we refer to traditional non-sequential regression as the conventional process of relating ground reference data of AGB directly to RS data through a single regression model. This process is illustrated on the left-hand side of Fig. 2. Research on traditional regression models that map SAR backscatter to forest AGB has gained considerable research attention over the years. Two seminal and much-cited works from the year 1992 are the publications of Dobson et al. [53] and Le Toan et al. [54], which both investigate the dependence between forest AGB and SAR intensity data acquired with different frequencies. Since then, a natural research progression has been to investigate traditional non-sequential regression models by utilising sensor fusion, i.e. fusion of different RS data sources. Some popular models within traditional regression methods are linear regression, multiple linear regression and stepwise multiple regression [11], [14], [15], [17], [19], [26], [27] for fusion of different radar data sources [27], fusion of radar and optical data [11], [17], [19], [30] or fusion of ALS and optical data [14], [26].

Since [53] and [54] published their classical statistical approaches, the possibilities of using ML and DL models for forest AGB retrieval through sensor fusion have also been investigated widely. Within these fields have fusion of radar and optical data attracted considerable attention [9], [12], [15], [17], [28]–[30], but also fusion of ALS with a multitude of data sources [14], [16], [18], [31] and fusion of different radar data sources [10]. Among the different ML and DL algorithms, random forest-based algorithms are some of the most popular for AGB estimation, see for example [9], [10], [12], [14], [15], [17], [18], [28]–[30] in addition to ANNs (in particular multilayer perceptrons) [12], [16], [18], [28]–[31] and support vector machines for regression [14], [16], [18], [28]–[30]. Research on pure DL methods applied to sensor fusion within traditional non-sequential regression for AGB estimation is still limited. This can probably be explained by the sparsity of ground reference data, which makes it challenging to train deep learning models. However, one example is found in the work by Zhang et al. [14], where ALS data and optical Landsat 8 imagery are integrated to achieve both structural and spectral information predictors for forest AGB estimation. The DL-based model they consider is a stacked sparse autoencoder (SSAE) network, which consist of several sparse autoencoder networks (SAE), each consisting of an encoder and a decoder network. After training each individual SAE, they remove all decoder networks to establish an SSAE by stacking the remaining encoder networks layer-wise. The final SSAE regression network is obtained by adding an unspecified regression model to the end of the SSAE model. While not explicitly mentioned in [14], their SSAE model is a non-contextual model that operates on a single pixel level as it learns to relate RS predictor variables to single AGB measurements, retrieved from a total of 236 field plots. The SSAE network obtains the best performance in comparison with four other traditional regression models and ML models evaluated in [14].

B. Data fusion with sequential regression models

In this section, we review related research that, like us, applies a modelling strategy with sequential regression models. Characteristic for this review is that it does not focus on the choice of estimation technique. We instead emphasise research on forest AGB estimation through data fusion of different types of RS data sources, which all employs a chain of two models. Common for the research we identified is that the second model exploits predictions from the first model as a dependent variable in the second modelling stage, see right-hand side of Fig. 2. We found that research on AGB estimation applying this particular modelling strategy has been a topic
in several studies from year 2008 [55] until today, see for example [23], [36]–[42], [56]–[65]. While reviewing earlier research that applies two sequential regression models in their modelling strategy, we noted a variety of terms describing the same concept in the literature. While we choose to refer to this as a sequential regression approach, we additionally found the following use of terminology for similar, but not necessary identical approaches: two-stage modelling strategy [40], [57], [65], two-stage regression [41], [62], two-stage up-scaling method [23], [42], two-phase estimator [59], two-phase (or three-phase) sampling design [56], [61], hybrid and hierarchical model-based inference [60], [64], three-phase design [36]. Additionally, [37]–[39], [55], [58], [63] also apply a modelling approach with two sequential regression models without labelling it by any particular term. Most of the previous research that we identified focuses on relating ground reference data to ALS, and then relates ALS-derived AGB estimates to spaceborne LiDAR data [36], [55], [56], [58], [59], [61] or a combination of different sensors [23], [38], [42], [60], [63]–[65]. Some others relate the ALS-derived AGB estimates to a single sensor, such as Sentinel-2 [39], [41], Landsat [40], [62], GEDI Lidar [65], PALSAR, [57] or SRTM X-band radar [37].

In previous research that adopts a modelling strategy with two sequential regression models, we found traditional regression models to be most common [38], [55]–[57], [59]–[61], [64], [65], such as e.g. [38], which focuses on multiple linear regression for upscaling biomass estimates to large areas in the tropical forest of Indonesia. Although Englhart et al. [38] included neither ML nor DL, their overall idea has similarities with our modelling strategy. Their work starts by relating collected AGB sample plots to co-located ALS measurements, resulting in a regression model used to predict AGB on the whole ALS dataset. In the final stage, their second regression model relates X- and/or L-band SAR data to ALS-based AGB estimates to extend the AGB estimates to the spatial coverage of the SAR data.

Different ML models have also been applied for AGB estimation that involves data fusion and sequential modelling. As for traditional regression, we find that random forest is one of the most commonly used ML methods, see e.g. [39]–[42], [63], while e.g. [23], [63] can be consulted for some additional examples of ML-based methods. In the intersection between traditional regression models and ML models, we also find [58], which applies three different kriging methods [66]: co-kriging, regression kriging, and regression co-kriging, to extend ALS-derived biomass transects to wall-to-wall AGB maps by including L- and C-band data.

Among research that applies a modelling strategy with two sequential regression models, we notice an absence of research involving two sequential regression models, we found traditional regression models to be most common [36]–[38], [55]–[57], [59]–[61], [64], [65], such as e.g. [38], which focuses on multiple linear regression for upscaling biomass estimates to large areas in the tropical forest of Indonesia. Although Englhart et al. [38] included neither ML nor DL, their overall idea has similarities with our modelling strategy. Their work starts by relating collected AGB sample plots to co-located ALS measurements, resulting in a regression model used to predict AGB on the whole ALS dataset. In the final stage, their second regression model relates X- and/or L-band SAR data to ALS-based AGB estimates to extend the AGB estimates to the spatial coverage of the SAR data.

Different ML models have also been applied for AGB estimation that involves data fusion and sequential modelling. As for traditional regression, we find that random forest is one of the most commonly used ML methods, see e.g. [39]–[42], [63], while e.g. [23], [63] can be consulted for some additional examples of ML-based methods. In the intersection between traditional regression models and ML models, we also find [58], which applies three different kriging methods [66]: co-kriging, regression kriging, and regression co-kriging, to extend ALS-derived biomass transects to wall-to-wall AGB maps by including L- and C-band data.

Among research that applies a modelling strategy with two sequential regression models, we notice an absence of research using DL models for the regression task. Only one study was identified [63], which similarly to [14] employs an SSAE for the regression task1. While [63], like us, use a sequential modelling approach to establish a relationship between ALS-derived forest biomass predictions and satellite predictors from e.g. Sentinel-1 data, there are some distinct differences.

1See Sec. III-A for a discussion on the SSAE and reference [14].

Although Shao et al. consider some contextual predictor variables, their SSAE model is a non-contextual model that only considers single pixels in the training and prediction phase. A novelty of this work is that the cGAN model lets us exploit the contextual information between neighbouring pixels through its convolutional filters. Secondly, [63] adds a non-specified regression model to the end of the trained SSAE network to perform AGB predictions, as does [14]. In our case, the cGAN model is in itself the regression model and there is no need for additional models to accomplish AGB predictions. Thus, by letting one of our proposed sequential models employ a cGAN model we contribute with new insight on how DL and RS data can be combined for AGB prediction.

C. Image translation with generative adversarial networks

Image to image translation is the task of translating a representation of the imaged scene into another. Examples of this process can, for example, be to translate from a greyscale representation into an RGB image or translating an aerial photo into a map view of the same area [35]. In such a translation process, the G network is commonly conditioned on the first representation, i.e. the input signal or distribution, to achieve better translation. This makes the cGAN and the Pix2pix architecture [35], as one specific example, better suited for this task than a generator network conditioned on noise, as the traditional GAN [67]. In this work, we choose to condition the G network on SAR measurements of the backscatter coefficient in the same area, from which we wish to generate ALS-based biomass prediction maps.

Research on RS data simulation through image translation can be found in e.g. [48], [50], [67]. Li et al. [50] focus on change detection (CD) and propose a GAN-based deep translation network for translation between SAR and optical images. By translating images from both sensors into a common feature domain, image characteristics from both images become comparable and can aid the network in the CD task. Ao et al. [67] proposed a framework for translation between different SAR sensors. By condition their dialectical GAN on urban input images from the low-resolution (LR) Sentinel-1 sensor they enable generation of corresponding high-resolution TerraSAR-X images. The dialectical GAN uses a modification of the Pix2pix cGAN proposed in [35] and combines concepts of both the cGAN and traditional neural networks. In [48] are Bao et al. considering three non-conditioned GAN networks to simulate SAR data of vehicles from random noise. While [50] focuses on translating between instruments with different physical measurement principles, does neither of [48], [50], [50] focus on using image translation through GANs for regression purposes as we intend to.

In general, most of today’s research on semi-supervised learning through GANs focuses on solving a classification task, see e.g [49] which propose the DLR-GAN architecture to perform low resolution (LR) image classification. To improve classification on this challenging task they propose to let the G network learn to recover the LR components and the high-frequency components of the LR image. Only a very few studies were identified that apply their architecture to regression tasks [68]. Within the GAN literature,
Rezagholizadeh and Haidar presented one of the first models aimed at regression, named the Reg-GAN [68]. They use two different networks, where one learns data generation while the other predicts continuous labels. It is applied in a computer vision task for self-driving vehicles, where the GAN generates images of a road segment and a regression network predicts the matching steering angle. Olmschenk et al. [69] later proposed the feature contrasting loss function and outperformed [68] on the same semi-supervised GAN regression task. Additional examples were also shown in [69] on the combined task of face generation and age prediction as well as on crowd counting. The proposed work in our paper differs from earlier related research [68], [69], as we do not perform any additional regression on the image content of the generated synthetic patches. This is possible due to the nature of our proposed modelling strategy with two sequential regression models, which results in a cGAN-based model that is able to make predictions in new unseen areas through the image translation.

IV. Materials and Methodology

The related work presented in Sec. III positions our work with respect to published research in related areas. Based on this literature survey, and previous published research on AGB estimation in the AOI, we make the following methodological contributions:

1) By proposing our Sentinel-1-based non-sequential AGB regression model, we extend the work of Næsset et al. [22],

2) The two proposed sequential models extends previous work on sensor fusion in the AOI. Furthermore, by introducing the DL-based sequential model, this work also contribute with novel insight on the possibilities for AGB prediction by using DL models for sensor fusion. These deep neural networks have convolutional layers that extract contextual spatial information, which has been exploited both in other types of regression problems [70] and also for AGB prediction [71], but not in a sequential regression approach to upscaling and information enhancement.

3) The proposed method applies image translation to truly heterogeneous images and domains in a regression context. Similar image translation has previously been done for general purposes [72] and within image analysis tasks like change detection [73], but is new in the biomass estimation and regression setting.

We accomplish the mentioned novelties in 2) and 3) for the DL-based sequential model by using a modification of the Pix2Pix image translation architecture [35] to generate synthetic yet realistic ALS-based AGB predicted maps with SAR intensity data as input. We refer to the Appendix, i.e. Sec. A, for a list over these modifications and their motivation.

We will in the following describe the datasets used in this paper, the preprocessing steps applied to the data, and give an overview of the different models we consider.

A. Study area and dataset description

1) Study area: The AOI is a rectangular area with size 11.25×32.50 km (WGS 84/UTM zone 36S), located in the Liwale district in southeast Tanzania ($9^\circ52'\cdot9^\circ58'S$, $38^\circ19'\cdot38^\circ36'E$). Fig. 4 shows the relative location of the AOI in Tanzania. The Liwale district experiences two rain periods each year: a shorter period from late November to January and a longer period from March to May. Liwale’s main dry season occurs between July to October. The miombo woodlands of the Liwale districts is characterised by a large diversity of tree species, with Brachystegia sp. Julbernadia sp. and Pterocarpus angolensis being the most dominant ones [2], [7], [22].

2) Field data: The field data used in this work, from now on referred to as AGB ground reference data or z, were collected within 88 field plots during January-February 2014 [22]. These field plots were distributed in groups of eight in each of the 11 L-shaped clusters, shown with red dots in the Sentinel-1 scene in Fig. 4. The sample plots are circular, each of size 707m2, i.e. they have a radius of 15 m. We refer to [74] for a thorough work on the national level sampling design for Tanzania, and to e.g. [2], [7], [22] for reference work on e.g. the use of field data in the AOI for large-scale AGB estimation. Measured AGB in the AOI ranged from 0 to 213.4 Mg ha$^{-1}$ [22].

3) ALS-based AGB data: The ALS data were acquired in 2014, see [7], [22] for details of this process. Næsset et al. trained in [22] a regression model on the ALS data to make ALS-based AGB predictions on a grid with square pixels of size 707m2. Their model, referred to as f, is the first regression model in our proposed modelling strategy with two sequential regression models. The output from the ALS-based regression model in [22], i.e. ALS-based AGB predictions, \hat{z}_g, was made available for this work. These ALS-based AGB predictions will serve as a surrogate for the AGB ground reference data in the second regression model g, when SAR data is used with either a traditional regression model or a cGAN model for image translation to upscale the ALS-based AGB predictions. See right-hand side of Fig. 2 for an illustration of the sequential modelling strategy with notation.

4) SAR data: Our SAR data consists of a C-band SAR scene obtained from the Sentinel-1 sensor, which provides data in two bands, i.e. the VV and VH polarisation. This sensor was chosen since an AGB model trained on data from this...
sensor meet most of the needs listed in Sec. I-A; the data is frequently updated, it has extensive spatial coverage and is freely available. For this paper, we choose a Sentinel-1 scene acquired on 15 September 2015, as it fulfils three additional criteria: 1) it covers our area of interest, 2) it is closest in time to acquisition of the ALS data, and 3) it was acquired during one of the area’s two yearly dry seasons. The latter implies that the scene achieves optimal sensitivity to dynamic AGB levels. We initially aimed to create a multitemporal stack of Sentinel-1 scenes, but as only one scene meets all the three additional criteria, we had to settle for this single scene. The SAR data are obtained in a high-resolution Level-1 ground range detected (GRD) format, with a pixel size of 10 m. It was downloaded from Copernicus Sentinel Scientific Data Hub

B. SAR data processing and preparation of datasets

To process the Sentinel-1 GRD product, we used the ESA SNAP toolbox [75] and followed the workflow suggested in [76] with some modifications. The final processing workflow is summarised as:

1) apply orbit file,
2) thermal noise correction,
3) border noise removal,
4) calibration,
5) range Doppler terrain correction (bilinear interpolation),
6) (conversion to dB).

We also experimented with speckle filtering, using a refined Lee filter [77] with the SNAP default window size of 7 × 7 as an optional additional processing step between step 4) and step 5). However, since models trained on speckle filtered Sentinel-1 data experience higher variations in AGB predictions than models trained without speckle filtered Sentinel-1 data, we decided to omit speckle filtering in the processing workflow. See Sec. B in the Appendix for details. Step 6) was only applied to the cGAN-based sequential regression model. We provide an investigation of the impact that Sentinel-1 data on dB scale or linear scale have on AGB predictions for cGAN-based models in the Appendix, see Sec. E. During step 6) for the data used in the cGAN-based regression model or after step 5) for the two other models, we also applied the same map projection as in [22], i.e. WGS 84/UTM zone 36S, to make sure that the Sentinel-1 dataset and the ALS-based AGB prediction dataset are aligned.

After performing the above processing steps, our Sentinel-1 dataset was further processed in QGIS [78]. In QGIS, we first reprojected the Sentinel-1 dataset to the same projection that was used for the ALS-based AGB grid pixel dataset in [22]. Then, cubic convolution resampling was applied to resample the pixel size of the Sentinel-1 dataset from its original pixel spacing of 10 m × 10 m to the same pixel size as the grid pixels of the ALS-based AGB predictions, i.e. 26.6 m × 26.6 m. As a final step, a subset of the entire Sentinel-1 scene corresponding to the extension of the ALS-based AGB data was extracted.

For the image-to-image translation task, i.e. the cGAN-based model g, a false-colour image was created from the processed Sentinel-1 dataset. This was done since the chosen cGAN architecture, Pix2Pix, requires three-channel RGB images or greyscale images as input. The false-colour image was created as follows: red = VV, green = VH, and blue = VV-VH. The ALS-based AGB prediction dataset was kept as a greyscale image as each grid pixel in the dataset only consist of one feature, i.e. an AGB prediction. Fig. 5 shows the ALS-based AGB prediction dataset and the corresponding false-colour Sentinel-1 scene after performing all processing steps with the ESA SNAP toolbox and QGIS. For illustrative purposes, we choose to show the ALS-based AGB prediction dataset of Fig. 5 in pseudo-colours, where dark blue pixels indicate biomass closer to 0 Mg ha$^{-1}$ while green through yellow to red pixels indicates increasing biomass content (Mg ha$^{-1}$).

C. Traditional Sentinel-1A-based AGB regression models

In [22] several different models were explored to construct traditional non-sequential regression models for AGB relating different remotely sensed datasets and the 88 field plots. They settled for a model with square root transformation of the response variable for ALS, RapidEye, Landsat and PALSAR, since this model performed equally well as more complex models and since it always predicts values > 0. Inspired by their findings, we develop a similar baseline non-sequential regression model for AGB between Sentinel-1 and the same 88 field plots accordingly to

$$E[\sqrt{AGB}] = \alpha_0 + \sum_{j=1}^{J} \alpha_j x_j ,$$

where α_0 is the intercept, i.e. a constant, α_j are regression coefficients and x_j are explanatory variables. We followed the procedure in [22] and performed ordinary least-squares regression with step-wise forward selection of the variables. Our inclusion criteria focus on variables being significant at 5% level using an F-test. For the Sentinel-1 product, VH and VV backscatter coefficients on a linear scale plus square and square root transformations of these variables were subject to the step-wise selection. We follow the procedure from [22].
Table I

Symbol	Description		
β	Noise vector, input to the D of a GAN/cGAN		
D	Discriminator network of a GAN/cGAN		
G	Generator network of a GAN/cGAN		
\mathcal{X}	Represent the input domain, SAR data		
\mathcal{Y}	Represent the domain of ALS data		
Z	Represent the domain of AGB data		
\hat{z}_x, \tilde{z}_y	ALS-based AGB predictions, $\hat{z}_x \in Z$		
\tilde{z}_y	A patch of generated synthetic ALS-based AGB predictions from a GAN. Retrieved from β data, $\tilde{z}_y \in Z$		
$\tilde{z}_{y	x}$	Generated synthetic ALS-based AGB predictions from the baseline sequential regression model, trained with x data (SAR data) as the regressor, $\tilde{z}_{y	x} \in Z$
f	A regression function between y data and z		
g	A regression function between x data and \hat{z}_y		
h	A regression function between x data and z		
x, y	Data from the SAR sensor, i.e. $x \in \mathcal{X}$ and $y \in \mathcal{Y}$		
z	Ground reference AGB data, $z \in Z$		

and correct for bias when transforming our model to arithmetic scale in accordance with [79]:

$$AGB = (\bar{z}_0 + \Sigma_{j=1}^J \tilde{\alpha}_j x_j)^2 + MSE,$$

(2)

where MSE is the mean square error computed from the fitted model on square root form, i.e. from Eq. (1).

D. cGAN-based AGB regression models

This section formally introduces some popular choices of objective functions, the generator network, and the discriminator network of a cGAN, with a special focus on the Pix2Pix architecture [35]. We also relate the cGAN framework to model g in our sequential modelling strategy by using the same notation that was introduced in Sec. I-A. See Tab. I for a summary of the notation, and Fig. 2 and Fig. 3 for illustrations of how the different entities of Tab. I are used in the sequential modelling approach or in the cGAN network.

In our application the input domain consists of image patches from the Sentinel-1 scene, and the output domain of corresponding image patches from the ALS-based AGB wall-to-wall map. Thus, conditioned on images from the input domain, $x \in \mathcal{X}$, the generator network G of the cGAN aims to capture the data distribution of the output domain $\tilde{z}_y \in Z$, by generating corresponding synthetic image samples $\tilde{z}_{y|x} \in Z$. Image pairs are then presented to the discriminator network D of the cGAN, which aims to distinguish if it is presented with a real pair of images, $\{x, \hat{z}_y\}$, or a fake pair, $\{x, \tilde{z}_{y|x}\}$. The whole training process of a cGAN is illustrated in the lower part of Fig. 3. As G aims to fool D, its ultimate goal is to obtain $\tilde{z}_{y|x} \approx \hat{z}_y \approx z$, where $\hat{z}_{y|x}, \tilde{z}_y, z \in Z$. In words: At the position of each single AGB ground reference measurement, the generated synthetic ALS-based AGB predictions should resemble both z and the ALS-based AGB predictions well on a pixel basis. During adaption of the cGAN, both G and D are trained simultaneously to outperform each other, resulting in the following minimax objective function [43]:

$$\min_G \max_D V(D, G) = \mathbb{E}_x, \hat{z}_y [\log D(x, \hat{z}_y)] + \mathbb{E}_x [\log (1 - D(x, G(x))].$$

(3)

A cGAN network trained with the objective function in Eq. (3) is referred to as a Vanilla GAN. The least squares generative adversarial network (LSGAN) was proposed to overcome issues with stability during training of the Vanilla GAN [80]. Its objective functions in a conditional setting are

$$\min_D \mathbb{E}_x, \hat{z}_y [(D(x, \hat{z}_y) - b)^2] + \frac{1}{2} \mathbb{E}_x [(D(x, G(x)) - a)^2]$$

(4)

$$\min_G \mathbb{E}_x, \hat{z}_y [(D(x, G(x)) - c)^2],$$

where a and b are labels for fake and real data, while c denotes a value that G tricks D to believe for fake data [80]. Introduced in [81] for further stabilisation of training and high quality image generation, we also consider the Wasserstein GAN with gradient penalty (WGAN-GP). It considers real data, simulated data and a combination of these in its objective function, which in the conditional setting has the following form [81]:

$$\min_G \max_D V(D, G) = \mathbb{E}_x, \hat{z}_y [D(x, \hat{z}_y)] - \mathbb{E}_x, \tilde{z}_y [D(x, \tilde{z}_y)] + \lambda \mathbb{E}_z [(\|\nabla_{\hat{z}} D(\hat{z})\|_2 - 1)^2]$$

(5)

with

$$\hat{z} = \epsilon \tilde{z}_y + (1 - \epsilon)G(x).$$

(6)

\tilde{z}_y in Eq. (3), Eq. (4) and Eq. (5) denotes a real ALS-based AGB image patch from the Z domain while $G(x) = \tilde{z}_{y|x}$ represents a generated synthetic image patch.

1) Generator network: Three different G networks were tested, all based on the ResNet model [82]: ResNet-4, ResNet-5, and ResNet-6. ResNet-6 is a part of the original Pix2Pix architecture [35] and consists of 2 encoder blocks followed by 6 residual blocks and 2 decoder blocks. ResNet-4 and ResNet-5 consist of the same number of encoder-decoder blocks as ResNet-6, but only 4 and 5 residual blocks, respectively. The two smaller networks were proposed as we work with small image patches of 64×64 pixels, see Sec. V-B2.

2) Discriminator network: In [35] Isola et al. evaluate different variations of the neural network discriminator architecture by varying the patch size N of the discriminator receptive fields from a 1×1 PixelGAN to an $N \times N$ PatchGAN. Since we work with fairly small image patches in number of pixels we decide to settle for the following three discriminator networks:

- a 1×1 PixelGAN,
- a 16×16 PatchGAN,
- a 34×34 PatchGAN.

The two PatchGAN networks were designed by adjusting the depth of the GAN discriminator to obtain a receptive field of 16×16 or 34×34, respectively. In a PixelGAN the discriminator tries to classify each 1×1 pixel in the image
patch as real or fake, while for the two PatchGAN networks the discriminator tries to classify each $N \times N$ patch of pixels in the image patch as real or fake. The discriminator network is applied across an image patch in a convolutional manner during the discriminator phase to produce several classification responses. Eventually, all responses are averaged to provide the discriminator output with a real or false decision. Thus, for each image patch pair, (x, \hat{z}_y) or $(x, \hat{z}_{y|x})$, D outputs a binary prediction, based on D's belief of the input pair. Optimally, we wish D to predict a fake pair when the image patch consists of an image patch from x and another from $G(x)$, i.e. $(x, \hat{z}_{y|x})$.

V. EXPERIMENTS AND RESULTS

In this section, the proposed Sentinel-1-based regression models for AGB prediction are presented: the non-sequential regression model, the baseline sequential regression model and the cGAN-based sequential regression model. The performance of the proposed models is evaluated by comparing predicted AGB to AGB ground reference data and the constructed AGB prediction maps to each other, and the AGB prediction maps of [22]. Qualitative and quantitative results are provided. We keep the notation introduced in Tab. I and let z denote ground reference AGB data. \hat{z}_x denotes AGB predictions from the Sentinel-1-based non-sequential regression model, \hat{z}_y denotes AGB predictions from the non-sequential ALS-based model [22], $\hat{z}_{y|x}$ denotes either generated synthetic ALS-based AGB predictions from the baseline sequential regression model or single predictions from the cGAN-based sequential regression model. In contrast, $\hat{z}_{y|x}$ denotes a patch of predictions from the cGAN-based sequential regression model. We refer to the Sentinel-1-based non-sequential regression model as h, the ALS-based non-sequential regression model from [22] as f and either of the sequential models, i.e. the baseline traditional sequential regression model or the cGAN-based sequential regression model, as g.

A. A traditional non-sequential regression model for AGB

We extend the work of [22] by developing a traditional non-sequential regression model, h, for the 88 field plots of AGB ground reference data (z) according to Eq. (2). To do so, we laid the circular field plots of z on top of the Sentinel-1 pixel grid. VH and VV backscatter values corresponding to z were found by computing the area-weighted mean of Sentinel-1 pixels intersecting the field plots. Only one explanatory variable, i.e. VV, was selected in the step-wise forward selection procedure. The achieved model h, for AGB per hectare, is listed in Tab. II. Since the model was fitted on the whole ground reference dataset z, we follow [22] and perform additional quantitative model assessment analysis through leave-one-out cross-validation (LOOCV) to compare the consistency of predicted AGB. We also compute the Pearson correlation coefficient (R), root mean squared error (RMSE) and mean absolute error (MAE) between model predicted AGB and z. These metrics are collected in Tab. II together with computed R and RMSE from the non-sequential regression model developed in [22]. Additionally, we qualitatively assessed our model against those developed in [22] by plotting model-predicted AGB against z in Fig. 6 and by illustrating model-derived AGB wall-to-wall maps in Fig. 7. Minor differences between the scatter plots in Fig. 6a-e and data reported in Tab. II, compared to the corresponding figures and table in [22] can be explained by differing pixel grids used in the area-weighting of remote sensing pixel values. In [22], Næsset et al. developed their traditional non-sequential regression models for InSAR, RapidEye, Landsat and PALSAR by using the original pixel grid of the satellite data. When reporting metrics, they further used each sensor’s original pixel grid to compute the area-weighted average of pixel values within the coverage of each field plot. After preprocessing the Sentinel-1 scene, both the Sentinel-1 dataset and the ALS-based AGB predictions are on the same grid with pixel size 707m2, representing an area of 26.6 m \times 26.6 m on the ground. In this work, we did not have access to the original pixel grids of the ALS, InSAR, RapidEye, Landsat and PALSAR data. Therefore, we chose
TABLE II
PEARSON CORRELATION COEFFICIENT, R, RMSE, LEAVE-ONE-OUT CROSS-VALIDATION RMSE (LOOCV RMSE) AND MEAN ABSOLUTE ERROR (MAE) COMPUTED BETWEEN GROUND REFERENCE PLOTS OF AGB, z, AND AREA-WEIGHTED MEANS OF PREDICTED AGB FROM EITHER THE FIVE NON-SEQUENTIAL REGRESSION MODELS [22] OR OUR SENTINEL-1-BASED NON-SEQUENTIAL REGRESSION MODEL. ALL UNITS ARE IN Mg ha\(^{-1}\).

Auxiliary data source	Modelling approach	Model	R	RMSE	LOOCV RMSE	MAE
ALS\(^a\)	Non-sequential (traditional)	c	0.68	33.39	c	24.61
InSAR\(^a\)	Non-sequential (traditional)	c	0.49	40.40	c	29.44
RapidEye\(^a\)	Non-sequential (traditional)	c	0.61	36.21	c	26.76
Landsat\(^a\)	Non-sequential (traditional)	c	0.33	43.03	c	33.10
PALSAR\(^a\)	Non-sequential (traditional)	c	0.27	43.96	c	33.18
Sentinel-1\(^b\)	Non-sequential (traditional)	h	0.54	38.52	39.6	30.04

\(^a\) Indication of which remote sensed data source that were used in [22] to train their non-sequential regression models.
\(^b\) The traditional non-sequential regression model developed between Sentinel-1 and AGB reference data.
\(^c\) See [22] for reference to specific models and computed LOOCV RMSE.

Fig. 7. Aboveground biomass prediction maps (in Mg ha\(^{-1}\)). Fig. (a)-(e) show results of the traditional non-sequential regression models presented in [22]. The AGB biomass map in (f) were constructed from the proposed non-sequential Sentinel-1-based AGB model in Tab. II.

to use the grid with pixel size 707m\(^2\) for also these models whenever area-weighted metrics were computed. The resulting differences to [22] must therefore be endured.

We observe from Tab. II that only two of the previously developed models in [22], i.e. the ALS-based (f) and the RapidEye-based models, experience lower RMSE and a higher Pearson correlation coefficient with respect to z than our model h. Surprisingly, the respective InSAR and PALSAR-based models perform worse than the proposed model h in terms of R and RMSE. The InSAR-based AGB model, used in [22] and developed by [83], uses mean InSAR heights as the only explanatory variable. As canopy heights are highly correlated with AGB [3], [21], this model was expected to correlate better with z than our model h. However, Næsset et al. [22] highlight the temporal mismatch between the acquisition of the InSAR data (2012) and the acquisition of the field work (2014) as a probable explanation for the model’s low performance. In one case, for example, they identified that a field plot recently had been harvested in 2014, while the InSAR data from 2012 identified biomass in the same area [22]. In theory, we expect a model based on the L-band ALOS PALSAR data to perform better than our C-band based
Sentinel-1 model, as C-band data is known to saturate at a lower biomass level than L-band data [5], [53], [54]. However Tab. II show that this is not the case. As the PALSAR data used in [22] consist of a mosaic of yearly scenes, the mosaic does not achieve optimal sensitivity to dynamic AGB levels as scenes from wet and dry seasons are mixed. The low dynamic range of the PALSAR-based and the Landsat-based models are also shown in Fig. 6 and the wall-to-wall maps in Fig. 7. Although most Sentinel-1 predictions on the ground reference AGB dataset are bounded between 25-75 Mg ha\(^{-1}\), see Fig. 6f, the model as a whole is able to predict AGB up to around 200 Mg ha\(^{-1}\), see Fig. 7f. The upper limit of the \(\hat{z}_g\)-based predictions Fig. 6f can probably be explained by the low saturation limit of C-band data. Nevertheless, our upper limit of C-band-based AGB predictions are still remarkable, compared to previous studies on biomass retrieval from C-band data, e.g. Imhoff [84] who showed that C-band data saturates around 20 Mg ha\(^{-1}\) in the tropical forests of Hawaii. We wish to highlight the fact that the proposed model \(h\) is not able to predict biomass close to 0 Mg ha\(^{-1}\), see Fig. 6f and Fig. 7f. This is probably due to the square root transform in Eq. (1) and the correction of bias in Eq. (2), the latter applied to achieve correct AGB predictions on arithmetic form, i.e. back-transformation from the \(\sqrt{\text{AGB}}\) domain. The InSAR-based model, on the other hand is able to predict AGB levels close to 0 Mg ha\(^{-1}\), see Tab. II and Fig. 6b and also achieves lower MAE than the proposed model \(h\).

B. Sequential regression models for AGB

This section presents the two alternatives for \(g\), the second model in the sequential modelling approach, i.e. the traditional baseline sequential model and the cGAN-based model. Since the regression model \(f\) achieves the highest correlation to \(z\), see [22], we train our two versions of \(g\) to use the ALS-based AGB predictions (on pixel-wise form: \(\hat{z}_y\)) or patch-wise form: \(\hat{z}_y\) as a surrogate for \(z\). Each AGB prediction, i.e. \(\hat{z}_y\), represents a square pixel of size 26.6 m \(\times\) 26.6 m on the ground. Qualitative and quantitative results from both models are presented and discussed in Sec. V-B3.

1) Baseline sequential regression model: The proposed baseline sequential regression modelling strategy utilises the traditional regression model in Eq. (2) for both stages in the sequence. In Sec. V-A, the small size of the \(z\) dataset constrained us to use all available data during both model fitting and evaluation. Reusing all available data for both model fitting and evaluation is not optimal, which also Tab. II shows, i.e. the RMSE computed for model \(h\) is lower than the corresponding LOOCV RMSE. In contrast to the situation in Sec. V-A, the sequential model setting provides access to 516,906 AGB predictions to be used as surrogate response variables. Thus, the dataset size enables us to fit and evaluate model \(g\) on different parts of the dataset.

We adopt a dataset split of 20% validation data and 80% test data. We use the validation data to select the models’ explanatory variables through stepwise forward selection. Contrary to the non-sequential model \(h\), which only selects VV as a regressor, all six explanatory variables are included in the

Model reference	Trained with:
Vanilla GAN	ResNet-6, BN, BS = 3 and PixelGAN discriminator
LSGAN	ResNet-6, BN, BS = 3 and PixelGAN discriminator
WGAN-GP	ResNet-6, BN, BS = 3 and PixelGAN discriminator

baseline model \(g\) by this method. The final baseline sequential regression model is shown in Tab. IV. The test dataset was divided into \(k = 5\) subsets for k-fold cross-validation (CV). The chosen test metric is CV RMSE (CV-RMSE), which is reported in addition to the Pearson correlation coefficient and the RMSE in Tab. IV. The latter two metrics are computed on the entire dataset. All reported metrics are computed between the surrogate, i.e. ˆ\(z_y\), and AGB predictions achieved from the baseline sequential model, i.e. \(\hat{z}_{y|x}\).

2) cGAN-based sequential regression models: Lastly, we approach the sequential modelling strategy from a DL perspective by applying a cGAN for the second regression model, \(g\). The cGAN-based model utilises convolutional filters in both the \(G\) and the \(D\) network. Therefore, the image-to-image translation requires the data we condition on, and the output data, to be represented by image patches instead of individual image pixels. Image patches were created from the input data, i.e. the processed Sentinel-1 image and the output dataset of 516,906 ALS-based AGB predictions, i.e. \(\hat{z}_y\), similarly and simultaneously. For simplicity, we only describe the process for the Sentinel-1 data. Firstly, non-overlapping image patches of size 64 \(\times\) 64 pixels were extracted in a grid manner from the Sentinel-1 scene in Fig. 5. Each patch corresponds to an area of approximately 289.6 ha on the ground. These non-overlapping image patches were randomly divided into five disjoint sets for 5-fold CV. For each of the five folds, one of the disjoint sets was considered the test set, while the remaining four folds were combined into a training set. To increase the number of image patches further, we extracted additional training patches in each training set by allowing a 50% overlap between adjacent patches. Finally, we applied data augmentation with flipping and rotation to the training image patches. Since we do not allow overlap between test and training image patches, it implies that the final five training sets, after data augmentation, range between 2264 and 2424 patches. Each test set consists of 22 image patches since no data augmentation was applied to the test sets.

By condition on Sentinel-1 image patches, we trained different cGAN-based models to generate realistic looking synthetic ALS-based AGB prediction image patches, \(\hat{z}_{y|x}\), of size 64 \(\times\) 64 pixels. Optimal translation would imply \(\hat{z}_{y|x} = \hat{z}_y\) or at least \(\hat{z}_{y|x} \approx \hat{z}_y\). All models were trained for 200 epochs with a learning rate of \(2 \times 10^{-4}\). We refer to Sec. B and Sec. C in the Appendix for an extensive evaluation of the impact that the choice of hyperparameters, objective function, and/or discriminator network have on the performance of the different cGAN models. For the remaining of this paper, we
only report results for the three optimal cGAN-based models listed in Tab. III, which were identified from the extensive evaluation. Despite the selected objective function, these three models were trained with identical generator architecture, discriminator architecture and hyperparameters. We therefore refer to them by their objective function, i.e. as the Vanilla GAN, LSGAN or WGAN-GP model.

As the input and output to each of the optimal cGAN-based sequential models are of size 64×64 pixels, we created synthetic ALS-based AGB prediction maps from the Sentinel-1 scene as follows: the whole AOI was first partitioned into 64×64 image patches with 50% overlap. For each of the optimal models, these patches were then fed into the trained G network to generate synthetic image patches with 50% overlap. The generated synthetic image patches were then merged to construct a $\hat{z}_{y|x}$ Prediction map. Due to the overlap between the generated synthetic image patches, most pixels in this intermediate prediction map constitute of a weighted average of pixels from neighbouring image patches. Therefore, as a last step to the final $\hat{z}_{y|x}$ prediction map, we apply mosaicking through linear image blending, using the p-norm with a heuristic value of $p = 5$. Different norms were also considered, however we conclude that the specific choice of the norm has little impact on the blended result.

After training, we evaluated the performance of the Vanilla GAN, LSGAN and WGAN-GP model against each other and the baseline sequential regression model defined in Sec. V-B1. We qualitatively and quantitatively compared $\hat{z}_{y|x}$ generated from the cGAN-based models against the 88 ground reference AGB plots, z, and the surrogate wall-to-wall map of AGB predictions, i.e. \hat{z}_{y}.

3) Sequential model evaluation: Here, we present results and evaluate the two subsequent models, g, that were proposed in Sec. V-B1 and Sec. V-B2. Note that the quantitative results in Tab. IV, and Fig. 9 are computed with respect to \hat{z}_{y}, since it in the sequential modelling strategy replace z.

Computed metrics between $\hat{z}_{y|x}$ and \hat{z}_{y}, i.e. the Pearson correlation coefficient (R), RMSE and CV-RMSE, for all four sequential models are collected in Tab. IV. Results in Tab. IV indicate that the baseline sequential model is preferred to the three cGAN-based models as it experiences both a smaller RMSE and CV-RMSE, and a higher R with respect to \hat{z}_{y}. Among the cGAN-based models, the Vanilla GAN is preferred as it achieves the highest correlation and the lowest RMSE to \hat{z}_{y}. However, the Vanilla GAN model also experiences the largest difference between RMSE and CV-RMSE, implying that AGB predictions retrieved from this model are less consistent.

Generated synthetic AGB prediction maps for the proposed sequential models are shown in Fig. 8. The prediction map from the baseline sequential model is shown in (b), while (c)-(e) show corresponding prediction maps constructed from the cGAN-based models, i.e. the Vanilla GAN, LSGAN and WGAN-GP model. The ultimate goal of the sequential model g is to achieve AGB prediction maps that resemble the \hat{z}_{y} prediction map in Fig. 8a. Although the computed metrics for the baseline sequential regression model indicate that this model is preferred to the cGAN-based models, it is unable to capture the dynamic range of ALS-based AGB predictions, see Fig. 8b. The model’s inability to predict near-zero biomass is particularly severe which, similar to model model h, can be explained by the square root transform and the bias correction applied. The cGAN-based models are, however, able to predict zero biomass. Their constructed biomass maps also exhibit a higher dynamic range in levels of predicted biomass. All sequential AGB models are generally underpredicting \hat{z}_{y}.

In Fig. 9 we visualise density plots between \hat{z}_{y} and predicted AGB from the proposed sequential AGB regression models. The white lines indicate a reference line for 100% correlation between \hat{z}_{y} and $\hat{z}_{y|x}$. While the baseline model achieves better RMSE and R, the Vanilla GAN model achieves the lowest MAE. We note that all four sequential models struggle to predict \hat{z}_{y} correctly at low AGB levels. They are generally biased towards overpredicting at low \hat{z}_{y}. While the cGAN based models manage to predict zero biomass, the baseline model can not. Since the baseline model only predicts AGB

Auxiliary data source	Modelling approach	Model	R	RMSE	CV-RMSE
Sentinel-1	Baseline sequentiala	$AGB = (-1.61 - 150.51VH - 29.92VV + 53.58\sqrt{VH} + 25.64\sqrt{VV} + 271.36VH^2 + 9.64V1^2 + 6.94)$	0.41	40.8	40.6
Sentinel-1	Sequentialb	Vanilla GAN	0.40	42.6	43.6
Sentinel-1	Sequentialb	LSGAN	0.39	43.0	43.7
Sentinel-1	Sequentialb	WGAN-GP	0.35	44.6	44.1

a Baseline sequential model, see Sec. V-B1
b cGAN-based sequential models, see Sec. V-B2

AGB prediction models based on	R	RMSE	MAE
ALSa	0.68	33.39	24.61
Baseline sequentialb	0.43	41.88	33.36
Vanilla GANc	0.46	41.33	32.82
LSGANd	0.50	39.84	31.46
WGAN-GPe	0.42	42.03	32.97

a The non-sequential ALS-based regression model proposed in [22].
b The baseline sequential regression model, proposed in Sec. V-B1.
c The cGAN-based sequential regression models, proposed in Sec. V-B2.
over 100 Mg ha\(^{-1}\) occasionally, it consequently underpredicts high \(\hat{z}_y\). The density plots of the three cGAN-based models indicate that they also underpredict high levels of \(\hat{z}_y\), but not to the same extent as the baseline sequential model.

We also compute the pixel-wise difference between \(\hat{z}_y\) and \(z_{y|x}\), i.e. \(\hat{z}_y - z_{y|x}\), for each proposed sequential model. The pixel-wise differences are visualised in Fig. 10, where (b) is the difference for the baseline model, (c) for the Vanilla GAN model, (d) for the LSGAN model and (e) for the WGAN-GP model. By comparing the AGB difference maps in Fig. 10 to the actual \(\hat{z}_y\) prediction maps in Fig. 8, we again show that all sequential models underpredict AGB in areas with high levels of \(\hat{z}_y\) (shown as pink or blue in (b)-(e)). We also highlight that at all sequential models overpredict AGB areas with low levels of \(\hat{z}_y\) (shown as green in (b)-(e)). The baseline sequential model’s inability to predict zero or low levels of biomass can probably explain the larger extent of green regions in (b), compared to (c)-(e).

For further comparison we provide sequential modelling results for the few ground reference AGB measurement we have available. We argue that achieving large-scale AGB maps that reflect the dynamic range of \(\hat{z}_y\) is one desired goal, but...
TABLE VI
OVERALL RMSE AND RMSE COMPUTED FOR EACH QUARTILE, I.E. RMSE(Q0,1), RMSE(Q1,2), RMSE(Q2,3) AND RMSE(Q3,4) (LOWER IS BETTER). THE RMSE METRICS ARE COMPUTED BETWEEN AGB PREDICTION MAPS CONSTRUCTED IN THIS WORK AND THE ALS-BASED AGB PREDICTION MAP. ALL METRICS ARE IN UNITS OF Mg ha\(^{-1}\).

Model	RMSE (Q0,1)	RMSE (Q1,2)	RMSE (Q2,3)	RMSE (Q3,4)	
Non-sequential	84.5	67.0	59.8	86.3	114.3
Baseline sequential	40.8	40.0	27.2	19.0	63.0
Vanilla GAN	42.6	32.4	29.0	27.6	67.7
LSGAN	43.0	31.7	27.6	27.3	69.8
WGAN-GP	44.6	34.0	30.7	30.4	70.3

TABLE VII
PEARSON CORRELATION COEFFICIENT COMPUTED BETWEEN PIXEL-WISE PREDICTIONS FOR PAIRS OF MAPS VISUALISED IN FIG. 7 (UPPER TABLE) AND FIG. 8 (LOWER TABLE). MODELS REFERRED TO AS ALS, INSAR, RAPIDEYE, LANDSAT AND PALSAR ARE RETRIEVED FROM [22]. REMAINING MODELS ARE DEVELOPED FOR THIS WORK.

	InSAR	RapidEye	Landsat	PALSAR	Sentinel-1 (non-sequential)
ALS	0.65	0.48	0.28	0.16	
InSAR	0.38	0.57	0.38	0.15	
RapidEye	0.31	0.22	0.34	0.13	
LANDSAT	0.34	0.34	0.34	0.02	
LSGAN	0.59	0.35	0.55	0.60	
WGAN-GP	0.53	0.53	0.53	0.59	

Fig. 10. AGB difference maps (in Mg ha\(^{-1}\)). Pixel-wise difference between the ALS-based AGB prediction map, shown in (a), and constructed AGB prediction maps achieved form the four sequential models: baseline sequential model (b), Vanilla GAN (c), LSGAN (d) and WGAN-GP (e).

more important is the ability of the AGB predictions to match \(z \) values. Thus, we computed the correlation between AGB predictions obtained with the proposed sequential modelling strategy and the 88 ground reference plots, shown with red markers in Fig. 4. Since the physical area of each ground reference plot could intersect with several of the grids with pixel size 707m\(^2\), we calculated the area-weighted mean of grid pixels intersecting with each separate ground reference plot. Fig. 11 shows scatter plots of the correlation between \(z \) and model-predicted AGB, retrieved from the sequential models, together with computed metrics: i.e. RMSE, R and MAE. Quantitative results derived from Fig. 11 are also summarised Tab. V together with computed metrics for model \(f \). Similar to the scatter plot for model \(h \), Fig. 11a also indicate that AGB predictions from the baseline sequential model are bounded between 25-75 Mg ha\(^{-1}\). Tab. V shows that neither of the proposed sequential models achieves as high correlation or low RMSE and MAE with respect to \(z \) that model \(f \) achieves. Nevertheless, it should be noted that \(f \) [22] was fitted against the available \(z \). The sequential models, on the other hand, were optimised to achieve \(\hat{z}_y = z_y \) as they were fitted against \(\hat{z}_y \). While Tab. IV indicates that the baseline sequential regression model predicts \(\hat{z}_y \) best. Tab. V indicates that both the LSGAN model and the Vanilla GAN model perform better than the baseline sequential model on all three metrics. Additionally, all cGAN-based models obtain lower MAE with respect to \(z \) than the baseline sequential model achieves. Among them, the LSGAN model performs best in predicting \(z \). Additionally, all cGAN-based models obtain lower MAE with respect to \(z \) than the baseline sequential model achieves. Interestingly, by comparing Tab. II to Tab. V we identify the LSGAN model, in terms of R and RMSE, to perform better in predicting \(z \) than the InSAR model. We therefore argue that the LSGAN and the Vanilla GAN model should be the first and second choice if one aims to achieve a model that reflects the dynamic range of the true AGB best.

\(^{3}\)In Sec. F in the Appendix, we experiment with an additional calibration step to further calibrate model \(g \) against \(z \). Results indicate that post-calibration of the output from \(g \) with either gamma or linear calibration increases the accuracy and the correlation by a small amount. Nevertheless, the possible improvement is modest and we omit this additional step as the non-sequential Sentinel-1-based model still outperforms the post-calibrated sequential models on computed RMSE, MAE and R.
C. Non-sequential and sequential modelling

To broaden the discussion, evaluate the suitability of the Sentinel-1 sensor as a data source for AGB regression models and enable further comparison of the non-sequential and sequential modelling strategies, we provide three additional results: Fig. 12, Tab. VI and Tab. VII.

In Fig. 12d we show histogram plots over predicted AGB values derived from the ALS-based regression model \(f \) together with AGB predictions from models proposed in this work: the non-sequential Sentinel-1 model Fig. 12b, the baseline sequential model Fig. 12c, the Vanilla GAN model Fig. 12e, the LSGAN model Fig. 12f and the WGAN-GP model Fig. 12g. We also show a histogram of measured ground reference AGB, \(z \), in Fig. 12a overlaid with a nonparametric estimate of the underlying probability density function. Note the similarities between the distributions of \(z \) and \(\tilde{z}_y \) [22] in (b). Besides not being able to predict low AGB values, see Fig. 12b and Fig. 12c, both the non-sequential Sentinel-1 model and the baseline sequential model predict some extreme AGB values of 15,640 Mg ha\(^{-1}\) in Fig. 12b and 1,751 Mg ha\(^{-1}\) in Fig. 12b, which neither of the cGAN-based models do. Instead, the maximum predicted AGB from the three cGAN-based AGB models are rather close to the maximum measured AGB in the field plots, i.e. 213.4 Mg ha\(^{-1}\) [22]. Also, all cGAN-based models behave more similar to \(z \) and \(f \) for middle-to-high levels of AGB, see Fig. 12e-g compared to Fig. 12a and Fig. 12d. This could indicate that the more complex cGAN-based models have learned AGB dynamics of \(z \) and \(f \) better in middle-to-high levels of AGB, than the simpler non-sequential and baseline sequential model manages.

To emphasise where the proposed models are more or less consistent with the ALS-based AGB prediction map, we evaluate AGB predictions from the five models against \(\tilde{z}_y|x \) in terms of overall RMSE, and RMSE computed for each quartile. Results provided in Tab. VI clearly show that AGB predictions from the non-sequential Sentinel-1 model deviate most from \(\tilde{z}_y|x \), both overall and in each quartile. The baseline sequential model is most similar to \(\tilde{z}_y|x \) in the second and third quartile and achieves the smallest RMSE among all five proposed models in the fourth quartile. As expected from the histograms in Fig. 12 and the constructed AGB prediction maps in Fig. 8, Tab. VI show that all cGAN-based models produce low RMSE in the first quarter quartile, with the LSGAN model being better than the Vanilla GAN model. Among the cGAN-based models, the Vanilla GAN model only receives the smallest RMSE in the fourth quartile. Once again, it is shown in Tab. VI that the WGAN-GP model is the worst among the cGAN-based models.

Tab. VII shows the Pearson correlation coefficient computed between pixel-wise AGB predictions for pairs of maps from either Fig. 7 or Fig. 8. Correlations computed between AGB predictions retrieved from the non-sequential models are listed in the upper part of Tab. VII, while correlations computed between AGB predictions from the sequential models and the surrogate regression target, i.e. \(\tilde{z}_y \), are combined in the lower part of the table. Previous results from [22] identified the ALS-based AGB prediction map and the InSAR-based AGB map to have the greatest correlation with each other, see Tab. VII, and with \(z \), see Tab. II. AGB predictions from the Landsat- and PALSAR-based models achieved the smallest correlation with \(z \), see Tab. II. The proposed non-sequential model \(h \) achieves by far the lowest correlations with any of the other five non-sequential AGB models, see Tab. VII. This is probably a consequence of the Sentinel-1-based model’s inability to predict low biomass levels. In e.g. the left part of the AOI, see Fig. 7, the ALS-, InSAR- and the RapidEye-based AGB models predict AGB around 0 Mg ha\(^{-1}\) in approximately the same areas, while predicted AGB levels retrieved from the non-sequential Sentinel-1-based model deviates highly in the same areas. Note that all sequential models achieve a much higher correlation with model \(f \) than what model \(h \) achieves. Logically, this could be explained by the fact that all sequential models were fitted against \(f \). While the non-sequential Sentinel-1-based model \(h \), the InSAR model and the ALS model \(f \) achieve the highest correlations and lowest RMSE with respect to \(z \), the surprisingly low correlation between \(h \) and \(f \) is notably. It could imply that model \(h \) is overconfident on the small set of \(z \) measurements. Among the sequential models, Tab. IV and Tab. VII show that the proposed baseline...
between AGB predictions from f and the PALSAR model, and similar to the correlation between AGB predictions from f and the Landsat model. In addition to the discovery that the LSGAN model performs better than the non-sequential InSAR model in predicting z, these results suggest that the cGAN-based sequential modelling approach and the use of Sentinel-1 data for AGB prediction are worth pursuing further.

VI. DISCUSSION

The focus of this work has been to develop non-sequential and sequential regression models based on C-band SAR for AGB prediction in Tanzania. One main advantages of utilising Sentinel-1 data as regressors is that it enables frequent and affordable updates of an AGB map with extensive coverage. This approach has a low cost compared to keeping the most accurate prediction model from [22] up-to-date by repeated acquisition of ALS data. Our results show that the proposed non-sequential Sentinel-1-based model h and the sequential LSGAN model best provide AGB predictions close to measured ground reference AGB, z. Only the ALS and the RapidEye-based model in [22] perform better on this task. Noteworthy, in terms of R and RMSE, both the model h and the sequential LSGAN model were identified to be more accurate than the InSAR-based non-sequential model on the same task. Since the InSAR-based model provides estimates of canopy height that are highly correlated with AGB [3], [21], we expected it to be superior in predicting z. We emphasise that we are training all our models using C-band SAR intensity data, which have previously been shown to suffer from much lower saturation levels than e.g. the L-band ALOS PALSAR sensor. As C-band data neither penetrates as deeply into the forest volume as L-band data, nor can it compete with the accuracy of AGB estimates produced from optical data [20], [52]–[54], it has traditionally been considered an inferior information source for AGB estimation. Thus, we have in this work demonstrated the potential of using Sentinel-1 data for AGB prediction and suggest further research on Sentinel-1-based models for AGB retrieval.

Formally, the proposed models were assessed in terms of their relative accuracy on AGB prediction with respect to model f, [22], and available AGB in situ measurements. However, whenever a certain methodology is implemented for operational purposes in an MRV system, the ultimate goal is to produce estimates of carbon stocks and changes. Among these, estimates for the AGB pool are essential. Further, the Intergovernmental Panel on Climate Change specifies that results should be reported as inferences in the form of confidence intervals [85] (p. 1.10). Thus, although the maps themselves can be useful, for example, to identify critical areas of carbon loss, the prediction map is just an intermediate product on the way to estimating the carbon budget. AGB can easily be estimated from the prediction maps constructed by the current methods by aggregating individual pixel values. Estimating the uncertainty of AGB estimates in the form of variances or confidence intervals for non-parametric methods such as ANNs, support vector machines, random forest regression and other techniques is a current research issue. To provide
such estimates was beyond the scope of the current study. Recent applications of e.g. bootstrap resampling for random forest-based prediction models demonstrate that such variance estimators may easily be adopted for ANN models as well, see e.g. [86]. However the computational burden will be substantial.

By approaching AGB prediction through sequential modelling with ALS-based predictions as a surrogate for \(z\), deep contextual models could be utilised for the regression task. As far as we know, this is the first time that contextual cGAN models have been used to simulate ALS-based AGB prediction maps from Sentinel-1 data. A natural question is whether DL-based approaches for AGB predictions are worth further investigation, especially since they are more complex to train than traditional statistical regression models. We would argue that more research is needed in utilising contextual DL models to retrieve biophysical parameters from RS data. We have shown that the LSGAN model performs well and reproduces dynamic AGB levels more realistically than simpler non-contextual models. Despite this, the cGAN-based models fall behind the traditional sequential and non-sequential models on RMSE with respect to ground reference data. The trade-off between perceptual quality and reconstruction accuracy is known from the research field of single image super-resolution (SR), [87]–[91]. SR in RS data has been studied in e.g. [92]–[94]. For future work on AGB prediction by DL regression, it appears relevant to incorporate ideas from the field of SR and investigate additional architectures and balancing of GAN losses against traditional \(L_1\) and \(L_2\) losses for reconstruction. The purpose would be to obtain a model that focuses on the reconstruction loss, yet produces AGB prediction maps that maintain local dynamics.

A. Error discussion

The accuracy of the proposed models is influenced by many factors, such as the radiometric accuracy of radar images, time lag, and error propagation through the model sequence. The latter was also pointed out in [38]. We refer to the time lag as the time difference between collecting the field inventory data in January-February 2014, the acquisition of ALS measurements in 2014 and the acquisition of the Sentinel-1 scene in September 2015. Possible inaccuracies may propagate, first when the ALS model upcales the field inventory data to a \(z_y\) map, and secondly when the sequential models are trained. Additional factors that may affect the overall accuracy is resampling of the Sentinel-1 scene to the same grid as the ALS-based AGB prediction map or the image blendingprocess which is applied to construct the full cGAN-based AGB prediction maps from a set of patches. Despite this, the advantage of using a sequential modelling approach on Sentinel-1 data is the ability to achieve biomass prediction maps with high update frequency on a national level. Our sequential approach also has potential use in biomass change detection, where the relative change of biomass from one time to another is of higher interest than the absolute AGB values.

As previously mentioned, \(z\) was collected within circular sample plots, the most common plot shape in boreal and temperate forest sampling [74]. However, all remotely sensed datasets used in [22] and this work are represented by square pixels. Therefore, using circular field plots is suboptimal, as each model’s correspondence to \(z\) needs to be computed by an area-weighted mean of neighbouring pixels. The sequential models are not directly related to the circular plots, but through the \(z_y\), which was trained against \(z\). Nevertheless, when computing the correspondence between the sequential model’s AGB predictions and \(z\), the above challenge arises when the area-weighted mean between square pixels intersecting a circular pixel is computed. In the end, this will influence the overall accuracy of the models. Note that the sampling design in [74] was optimised for field-based estimation of AGB given a limited budget for inventories, not for upsampling supported by RS, in which case the species diversity and spatial variability of AGB in the miombo woodlands imply that larger sample plots should be used. We sustain [95], which concludes that decisions regarding the sample plot size, and thereby its shape, is one of many parameters that have to be considered in future field-based surveys if one aims to enhance estimation through the use of remotely sensed data.

VII. Conclusion

The focus of this work was to investigate the suitability of Sentinel-1-based models for AGB prediction in an MRV system for miombo forests in Tanzania. Previously, Næsset et al. [22] developed traditional non-sequential regression models for AGB in a Tanzanian AOI using either ALS, TanDEM-X InSAR, RapidEye, Landsat or PALSAR data with a limited amount of ground reference AGB data. The ALS-based AGB predictions achieved the highest accuracy, but the cost and infrequent update of ALS data prevent this model from being of practical use in an MRV system. Therefore, we turned to freely available and easily accessible Sentinel-1 data for this work and developed three different models for AGB prediction from this source: a traditional non-sequential model, a baseline sequential model and a deep learning-based sequential model. We compared each model’s accuracy on the AGB prediction task. Additionally, maps of AGB predictions were compared and evaluated with respect to their ability to recreate realistic biomass dynamics. The model performances and most important results are summarised below.

1) Non-sequential Sentinel-1 model: This model was, as the models in [22], trained against the limited ground reference data. Its performance can therefore be directly compared to the results in [22]. Among all models proposed for this work, this model achieves the lowest RMSE and highest correlation coefficient (R) against ground reference data. Although this model cannot predict AGB levels between 0-20 Mg ha\(^{-1}\), it performs better than the InSAR-based model in terms of R and RMSE. It is only beaten by the ALS-based and the RapidEye-based models [22]. However, the non-sequential Sentinel-1 model achieves the highest RMSE in a pixel-by-pixel comparison with the ALS-predicted AGB map. Hence, we conclude that it sacrifices a more realistic prediction of the dynamic range and local variability of AGB values to meet the goal of producing a low RMSE against ground reference data.
2) Sequential models: These were developed to enable AGB prediction on a larger scale through a modelling strategy with two subsequent regression models. We propose to employ the ALS-based model [22] as the first model. The second model in the chain is trained to relate SAR backscatter images to ALS-based AGB prediction maps, which are used as a surrogate for ground reference data. The baseline sequential model applies a traditional statistical regression model also in the second stage. The alternative sequential model instead uses a deep neural network for cross-modal image-to-image translation, i.e. the Pix2Pix cGAN architecture [35] with some modifications warranted by the application. This cGAN architecture generates synthesised ALS-based AGB predictions during model fitting by conditioning on SAR backscatter data. In contrast to the other models, it uses contextual information from pixel neighbourhoods in its predictions. The baseline sequential model, followed by the Vanilla GAN model, achieve the highest R and lowest RMSE against the ALS-based AGB predictions. Conversely, the LSGAN model is best among the sequential models at reproducing ground reference data, and is only beaten by the ALS-based and RapidEye-based models from [22]. In this respect, the LSGAN model achieves slightly higher RMSE and lower R than the non-sequential Sentinel-1-based model. However, the LSGAN model can predict AGB levels around 0 Mg ha\(^{-1}\) and also achieves higher correlation with the ALS-based predictions. Thus, the contextual CGAN-based models seem to better capture the dynamic range and local variability of AGB.

We have in this research demonstrated the potential of utilising Sentinel-1 data for AGB prediction in Tanzania. Although C-band Sentinel-1 data traditionally have been considered an inferior information source for AGB estimation due to low penetration of the canopy, our results show that Sentinel-1-based models are a viable alternative for forest AGB retrieval, especially considering that the data are freely available.

ACKNOWLEDGMENTS

We gratefully acknowledge employees of the Tanzania Forest Services Agency, Sokoine University of Agriculture, Norwegian University of Life Sciences, and the Swedish University of Agricultural Sciences (SLU) for participation in field work and provision of in situ measurements, remote sensing data and derived AGB products. Special thanks to professor Håkan Olsson for providing access to ALS data acquired by SLU and for comments on the manuscript. S. Björk and S.N. Anfinsen further acknowledge discussions with and input from colleagues at the UiT Machine Learning Group.

REFERENCES

[1] “Report of the Conference of the Parties on its sixteenth session, held in Cancún from 29 November to 10 December 2010. Addendum. Part two: Action taken by the Conference of the Parties at its sixteenth session.” [Online]. Available: https://unfccc.int/documents/6527

[2] L. T. Ene, E. Nesset, T. Gabolken, O. M. Bollandás, E. W. Mauya, and E. Zahabu, “Large-scale estimation of change in aboveground biomass in miombo woodlands using airborne laser scanning and national forest inventory data,” Remote Sensing of Environment, vol. 188, pp. 106–117, Jan. 2017. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0034425716304254

[3] S. Kaasalainen, M. Holopainen, M. Karjalainen, M. Vastaranta, V. Kankare, K. Karila, and B. Osmanoglou, “Combining Lidar and Synthetic Aperture Radar Data to Estimate Forest Biomass: Status and Prospects,” Forests, vol. 6, no. 12, pp. 252–270, Jan. 2015. [Online]. Available: http://www.mdpi.com/1999-4097/6/1/252

[4] A. Bombelli, V. Avitabile, H. Balzter, L. Marchesini, M. Bernoux, M. Brady, R. Hall, M. Hansen, M. Henry, M. Herold, and others, “Biomass—assessment of the status of the development of the standards for the terrestrial essential climate variables,” Food and Agriculture Organization-Global Terrestrial Observation System. GTOS, Rome, p. 18, 2009.

[5] T. Le Toan, G. Picard, J.-M. Martinez, P. Melon, and M. Davidson, “On the relationships between forest structure and forest structure,” ESSAP, vol. 475, pp. 3–12, 2002.

[6] R. Hall, R. Skakun, E. Arsenault, and B. Case, “Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume,” Forest Ecology and Management, vol. 225, no. 1-3, pp. 378–390, Apr. 2006. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0378112706000235

[7] L. T. Ene, E. Nesset, T. Gabolken, E. W. Mauya, O. M. Bollandás, T. G. Gregoire, G. Ståhl, and E. Zahabu, “Large-scale estimation of aboveground biomass in miombo woodlands using airborne laser scanning and national forest inventory data,” Remote Sensing of Environment, vol. 186, pp. 626–636, Dec. 2016. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0034425716303185

[8] E. Santi, S. Palosco, S. Pettinato, G. Fontanelli, M. Mura, C. Zollo, F. Maselli, M. Chiesi, L. Bottai, and G. Chirici, “The potential of multifrequency SAR images for estimating forest biomass in Mediterranean areas,” Remote Sensing of Environment, vol. 200, no. 19, pp. 63–73, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0034425716303185

[9] S. M. Ghosh and M. D. Behera, “Aboveground biomass estimation using multi-sensor data synergy and machine learning algorithms in a dense tropical forest,” Applied Geography, vol. 96, no. 1, pp. 29–40, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0143622818303114

[10] M. A. Stelmaszczyk-Górski, M. Urbazaev, C. Schmullius, and C. Thiel, “Estimation of above-ground biomass over boreal forests in siberia using updated in situ, ALOS-2 PALSAR-2, and RADARSAT-2 data,” Remote Sensing, vol. 10, no. 10, p. 1550, 2018. [Online]. Available: https://www.mdpi.com/2072-4292/10/10/1550

[11] S. Sinha, S. Mohan, A. K. Das, L. K. Sharma, C. Jeganathan, A. Santra, S. S. Mitra, and M. S. Nathawat, “Multi-sensor approach integrating optical and multi-frequency synthetic aperture radar for carbon stock estimation over a tropical deciduous forest in India,” Carbon Management, vol. 11, no. 1, pp. 39–55, 2020, publisher: Taylor & Francis tex.eprint: https://doi.org/10.1080/17583004.2019.1686931. [Online]. Available: https://doi.org/10.1080/17583004.2019.1686931

[12] A. Debastiani, C. Sanquetta, A. Corte, N. Pinto, and F. Rex, “Evaluating SAR-optical sensor fusion for aboveground biomass estimation in a Brazilian tropical forest,” Annals of Forest Research, vol. 62, no. 2, pp. 109–122, 2019. [Online]. Available: http://afrrjournal.org/index.php/afrr/article/view/1267

[13] L. L. Narine, S. C. Popescu, and L. Malambo, “Synergy of ICESat-2 and Landsat for mapping forest aboveground biomass with deep learning,” Remote Sensing, vol. 11, no. 12, p. 1459, 2019. [Online]. Available: https://www.mdpi.com/2072-4292/11/12/1459

[14] L. Zhang, Z. Shao, J. Liu, and Q. Cheng, “Deep learning based retrieval of forest aboveground biomass from combined LiDAR and Landsat 8 data,” Remote Sensing, vol. 11, no. 12, p. 1459, 2019. [Online]. Available: https://www.mdpi.com/2072-4292/11/12/1459

[15] L. Chen, Y. Wang, C. Ren, B. Zhang, and Z. Wang, “Optimal combination of predictors and algorithms for forest above-ground biomass mapping from Sentinel and SRTM data,” Remote Sensing, vol. 11, no. 4, pp. 414, 2019. [Online]. Available: https://www.mdpi.com/2072-4292/11/4/414

[16] E. Santi, S. Palosco, S. Pettinato, G. Cuozzo, A. Padovano, C. Notarnicola, and C. Albinit, “Machine-learning applications for the retrieval of forest biomass from airborne p-band SAR data,” Remote Sensing, vol. 12, no. 5, p. 804, 2020. [Online]. Available: https://www.mdpi.com/2072-4292/12/5/804

[17] Y. Li, L. Li, M. Li, C. Li, Z. Li, W. Qi, “Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms,” Scientific Reports, vol. 10, no. 1, p. 9952, Jun. 2020. [Online]. Available: https://doi.org/10.1038/s41598-020-67024-3
[18] Y. Zhang, J. Ma, S. Liang, X. Li, and M. Li, “An evaluation of eight machine learning regression algorithms for forest aboveground biomass estimation from multiple satellite data products,” Remote Sensing, vol. 12, no. 24, p. 4015, 2020. [Online]. Available: https://www.mdpi.com/2072-4292/12/24/4015

[19] N. Nuthammachot, A. Askar, D. Stratosulis, and P. Wicaksono, “Comparative analysis of Sentinel-1 and Sentinel-2 data for improved aboveground biomass estimation,” Geocarto International, vol. 37, no. 2, pp. 366–376, 2022, doi:10.1080/10106049.2020.1726507 Publisher: Taylor & Francis. [Online]. Available: https://doi.org/10.1080/10106049.2020.1726507

[20] S. Zollo, S. Goetz, and R. Dubayah, “A meta-analysis of terrestrial aboveground biomass estimation using Lidar remote sensing,” Remote Sensing of Environment, vol. 128, pp. 206–216, Jan. 2013. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0034425712004051

[21] G. Galidakis, D. Zianis, I. Gittas, K. Radoglou, V. Karathanassi, M. Tsakiri–Strati, I. Woodhouse, and G. Mallinis, “Vegetation biomass estimation with remote sensing: focus on forest and other wooded land over the Mediterranean ecosystem,” International Journal of Remote Sensing, vol. 38, no. 7, pp. 1940–1966, Apr. 2017. [Online]. Available: https://www.tandfonline.com/full/10.1080/01431161.2016.1266613

[22] E. Nesselt, H. O. Orka, S. Solberg, O. M. Bollandås, E. H. Hansen, E. Mauya, E. Zabahu, R. Malimbwi, N. Chamuya, H. Olsson, and T. Gobakken, “Mapping and estimating forest area and aboveground biomass in mosaics of woodlands in Tanzania using data from airborne laser scanning,” TanDEM-X, RapidEye, and global forest maps: A comparison of estimated precision,” Remote Sensing of Environment, vol. 175, no. 15, pp. 282–300, Mar. 2016. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0034425716000062

[23] M. Urbazaev, Ch. Thiel, F. Cremer, R. Dubayah, M. Migliavacca, M. Reichstein, and C. Schmullius, “Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico,” Carbon Balance and Management, vol. 13, no. 1, p. 5, Feb. 2018. [Online]. Available: https://doi.org/10.1186/s13021-018-0093-5

[24] M. A. Tanase, M. Santoro, J. de la Riva, F. Pérez-Cabello, and T. Le Toan, “Sensitivity of X-, C-, and L-Band SAR Backscatter to Burn Severity in Mediterranean Pine Forests,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 10, pp. 3663–3675, 2010.

[25] M. Tanase, J. de la Riva, M. Santoro, F. Pérez-Cabello, and E. Kasischke, “Sensitivity of SAR data to post-fire forest regrowth in Mediterranean and boreal forests,” Remote Sensing of Environment, vol. 115, no. 8, pp. 2075–2085, Aug. 2011. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0034425711001192

[26] M.-H. Phua, S. A. Johari, O. C. Wong, K. Ioki, M. Mahali, R. Nilsus, D. Coomes, R. Maycock, and M. Hashim, “Synergistic use of Landsat 8 OLI image and airborne LiDAR data for above-ground biomass estimation in tropical lowland rainforests,” Forest Ecology and Management, vol. 406, pp. 163–171, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925857417307247

[27] S. Sinha, “Assessment of vegetation vigor using integrated synthetic aperture radars,” in Remote sensing and GIScience, Springer, 2021, pp. 35–58. [Online]. Available: https://doi.org/10.1007/978-3-030-55092-9_3

[28] L. Chen, C. Ren, B. Zhang, Z. Wang, and Y. Xi, “Estimation of forest above-ground biomass by geographically weighted regression and learning with Sentinel imaging,” Forests, vol. 9, no. 10, p. 582, 2018. [Online]. Available: https://www.mdpi.com/1999-4907/9/10/582

[29] S. S. J. Soosani, K. Adeli, H. Fadaei, H. Naghavi, T. D. M. Tsakiri–Strati, I. Woodhouse, and G. Mallinis, “Vegetation biomass estimation in tropical forests — The potential of combined X- and L-band SAR data use,” Remote Sensing of Environment, vol. 115, no. 5, pp. 1260–1271, May 2011. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0034425710001513

[30] D. Wang, B. Wan, J. Liu, Y. Su, Q. Guo, P. Qiu, and X. Wu, “Estimating aboveground biomass of the mangrove forests on northeast Hainan Island in China using an upscaling method from field plots, UAV-LiDAR data and Sentinel-2 imagery,” International Journal of Applied Earth Observation and Geoinformation, vol. 85, p. 101860, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0303243419306440

[31] A. T. Hudak, P. A. Fekety, V. R. Kane, R. E. Kennedy, S. K. Filippelli, M. J. Fulkowski, W. T. Tinkham, A. M. Smith, N. L. Crookston, G. M. Domke, M. V. Corrao, B. C. Bright, D. J. Churchill, P. J. Gould, R. J. M. Gaughey, J. T. Kane, and J. Dong, “A carbon monitoring system for mapping regional, annual aboveground biomass across the northwestern USA,” Environmental Research Letters, vol. 15, no. 9, p. 095003, Aug. 2020, publisher: IOP Publishing. [Online]. Available: https://iopscience.iop.org/article/10.1088/1748-9326/ab93f9

[32] D. Wang, B. Wan, P. Qiu, Z. Zuo, R. Wang, and X. Wu, “Mapping height and aboveground biomass of mangrove forests on Hainan island using UAV-LiDAR sampling,” Remote Sensing, vol. 11, no. 18, p. 2156, 2019. [Online]. Available: https://www.mdpi.com/2072-4292/11/18/2156

[33] O. Cartus, J. Kellendorfer, M. Rombach, and W. Walker, “Mapping canopy height and growing stock volume using airborne Lidar, ALOS PALSAR and landsat ETM+,” Remote Sensing, vol. 4, no. 11, pp. 3320–3345, 2012. [Online]. Available: https://mdpi.com/2072-4292/4/11/3320

[34] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Proceedings of the 27th international conference on neural information processing systems - volume 2, ser. NIPS’14. Cambridge, MA, USA: MIT Press, 2014, pp. 2672–2680. ISBN: 9780262016523 125 Number of pages: 9 Place: Montreal, Canada.

[35] Y. Choi, Y. U. Jh, Y. Joo, and J.-W. Ha, “StarGAN v2: Diverse Image Synthesis for Multiple Domains,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 8188–8197.

[36] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing and Improving the Image Quality of StyleGAN,” in IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 8107–8116.

[37] T. Karras, S. Laine, and T. Aila, “A Style- Based Generator Architecture for Generative Adversarial Networks,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, vol. 43, 2019, pp. 484–493, ISBN: 9781728123982.

[38] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.
S. Saarela, S. Holm, A. Grafström, S. Schnell, E. Næsset, T. G. Gregoire, and G. Ståhl, “Hierarchical model-based inference for forest inventory utilizing three sources of information,” *Annals of Forest Science*, vol. 73, no. 4, pp. 895–910, 2016, publisher: Springer.

S. Holm, R. Nelson, and G. Ståhl, “Hybrid three-phase estimators for large-area forest inventory using ground plots, airborne lidar, and space data,” *Remote Sensing of Environment*, vol. 197, pp. 85–97, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0038764617310514

T. Kauranne, A. Joshi, B. Gautam, U. Manandhar, S. Nepal, J. Peuhkurinen, J. Hämäläinen, V. Junttila, K. Gunia, P. Latva-Kääriä, A. Kolesnikov, K. Tegel, and V. Leppänen, “LiDAR-Assisted multi-source GAN (MSGAN) for measuring above ground biomass and forest carbon,” *Remote Sensing*, vol. 9, no. 2, p. 154, 2017. [Online]. Available: https://www.mdpi.com/2072-4292/9/2/154

Z. Shao, L. Zhang, and L. Wang, “Stacked sparse autoencoder modeling using the synergy of airborne LiDAR and satellite optical and SAR data to map forest above-ground biomass,” *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, vol. 10, no. 12, pp. 5569–5582, 2017.

S. Saarela, S. Holm, S. P. Healey, H.-E. Andersen, H. Petersson, W. Prenius, P. L. Patterson, E. Næsset, T. G. Gregoire, and G. Ståhl, “Generalized hierarchical model-based estimation for aboveground biomass assessment using GEDI and Landsat data,” *Remote Sensing*, vol. 10, no. 11, p. 1832, 2018, publisher: Multidisciplinary Digital Publishing Institute.

W. Qi, S. Saarela, J. Armstrong, G. Ståhl, and R. Dubayah, “Forest biomass estimation over three distinct forest types using TanDEM-X InSAR data and simulated GEDI lidar data,” *Remote Sensing of Environment*, vol. 232, p. 111283, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0034427919303025

D. Kriie, “Two-dimensional weighted moving average trend surfaces for ore-evaluation,” *Journal of the South African Institute of Mining and Metallurgy*, vol. 66, pp. 13–38, 1966, publisher: South African Institute of Mining and Metallurgy.

D. Ao, C. O. Dhimutu, G. Schwarz, and M. Datcu, “Dialectical GAN for SAR image translation: From Sentinel-1 to TerraSAR-X,” *Remote Sensing*, vol. 10, no. 10, p. 1597, Oct. 2018. [Online]. Available: http://dx.doi.org/10.3390/rs10101597

M. Rezagholifard and M. A. Haidar, “Reg-GAN: Semi-Supervised Learning Based on Generative Adversarial Networks for Regression,” in 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP), 2018, pp. 2806–2810.

G. Olmschenk, Z. Zhu, and H. Tang, “Generalizing semi-supervised generative adversarial networks to regression using feature contrasting,” *Computer Vision and Image Understanding*, vol. 186, no. C, pp. 1–12, Sep. 2019. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0923190419300702

J. Peuhkurinen, J. Hämäläinen, V. Junttila, K. Gunia, P. Latva-Kääriä, and M. A. Wulder, “Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America,” *Remote Sensing of Environment*, vol. 179, pp. 14–34, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0034425719300395

M. Fuentes Reyes, S. Auer, N. Merkle, C. Henry, and M. Schmitt, “SAR-to-Optical image translation based on conditional generative adversarial networks—Optimization, opportunities and limits,” *Remote Sensing*, vol. 11, no. 17, p. 2067, 2019, tex.article-number: 2067. [Online]. Available: https://www.mdpi.com/2072-4292/11/17/2067

L. T. Luppino, M. Kampffmeyer, F. M. Bianchi, G. Moser, S. B. Serpico, R. Jenssen, and S. N. Anfinsen, “Deep image translation with an affinity-based change detection prior for unsupervised multimodal change detection,” *IEEE Transactions on Geoscience and Remote Sensing*, vol. 60, pp. 1–22, 2021.

F. Tompso, R. Malimbwi, M. Katila, K. Miskasira, H. M. Henttonen, N. Chamuya, E. Zahabu, and J. Otieno, “A sampling design for a large area forest inventory: case Tanzania,” *Canadian Journal of Forest Research*, vol. 44, no. 8, pp. 931–948, 2014, publisher: NRC Research Press.

“SNAP – ESA Sentinel Application Platform v.8.0.” [Online]. Available: http://step.esa.int

F. Filippini, “Sentinel-1 GRD preprocessing workflow,” *Proceedings*, vol. 18, no. 1, p. 11, 2019. [Online]. Available: https://www.mdpi.com/2504-3900/18/1/11

J.-S. Lee, “Refined filtering of image noise using local statistics,” *Computer graphics and image processing*, vol. 15, no. 4, pp. 380–389, 1981, publisher: Elsevier tex.timestamp: 2020.11.26.

“QGIS Development Team (2019). QGIS Geographic Information System, Open Source Geospatial Foundation Project.” [Online]. Available: http://qgis.osgeo.org

T. G. Gregoire, Q. F. Lin, J. Boudreau, and R. Nelson, “Regression estimation following the square-root transformation of the response,” *Forest Science*, vol. 54, no. 6, pp. 597–606, 2008, publisher: Oxford University Press.

X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, “Least Squares Generative Adversarial Networks,” in 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017, pp. 2813–2821.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved Training of Wasserstein GANs,” in *2017 IEEE International Conference on Computer Vision (ICCV)*. IEEE, 2017, pp. 2813–2821.

T. G. Gregoire, Q. F. Lin, J. Boudreau, and R. Nelson, “Regression estimation following the square-root transformation of the response,” *Forest Science*, vol. 54, no. 6, pp. 597–606, 2008, publisher: Oxford University Press.

X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, “Least Squares Generative Adversarial Networks,” in 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017, pp. 2813–2821.

I. Gulrajani, A. Metz, P. Courville, and Y. Bengio, “Improved Training of Wasserstein GANs,” in *2017 IEEE International Conference on Computer Vision (ICCV)*. IEEE, 2017, pp. 2813–2821.

T. G. Gregoire, Q. F. Lin, J. Boudreau, and R. Nelson, “Regression estimation following the square-root transformation of the response,” *Forest Science*, vol. 54, no. 6, pp. 597–606, 2008, publisher: Oxford University Press.

X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, “Least Squares Generative Adversarial Networks,” in 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017, pp. 2813–2821.

I. Gulrajani, A. Metz, P. Courville, and Y. Bengio, “Improved Training of Wasserstein GANs,” in *2017 IEEE International Conference on Computer Vision (ICCV)*. IEEE, 2017, pp. 2813–2821.

T. G. Gregoire, Q. F. Lin, J. Boudreau, and R. Nelson, “Regression estimation following the square-root transformation of the response,” *Forest Science*, vol. 54, no. 6, pp. 597–606, 2008, publisher: Oxford University Press.

X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley, “Least Squares Generative Adversarial Networks,” in 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017, pp. 2813–2821.

I. Gulrajani, A. Metz, P. Courville, and Y. Bengio, “Improved Training of Wasserstein GANs,” in *2017 IEEE International Conference on Computer Vision (ICCV)*. IEEE, 2017, pp. 2813–2821.

T. G. Gregoire, Q. F. Lin, J. Boudreau, and R. Nelson, “Regression estimation following the square-root transformation of the response,” *Forest Science*, vol. 54, no. 6, pp. 597–606, 2008, publisher: Oxford University Press.
APPENDIX

This appendix includes a specification of the modifications done to the Pix2Pix architecture [35] to make it suitable for generation of synthetic ALS-based AGB image patches in our sequential modelling strategy. It also provides additional experiments and results that were conducted for this work.

A. Modified Pix2Pix architecture

The cGAN-based sequential model used for generation of synthetic ALS-based AGB image patches, \(\hat{z}_{y|x} \), is based on the image-to-image translation framework Pix2Pix [35]. To meet our needs, we modified it in the following ways:

1) We enable the use of calibrated pixel values read from image files in GeoTIFF format. This is necessary since we work with images with pixel values that carry information about physical entities and represent either calibrated \(\sigma_0 \) values (backscatter coefficients) or AGB predictions measured in Mg ha\(^{-1}\).

2) We change the activation function in the output layer from a hyperbolic tangent (tanh) function used in [35] to a rectified linear unit (ReLU) activation function. In an earlier phase of this work [96], we noticed that the tanh activation function we used in the output layer generated AGB values that overestimated the ALS-based AGB predictions from [22], and particularly failed to predict AGB values close to zero. An essential criterion for our cGAN regression model is that it should be able to predict zero biomass to correlate well with AGB ground reference data, \(z \), in non-vegetated areas. The overprediction observed in [96] can be explained by the nature of the tanh activation function. As the range of the tanh function is \([0.0, 1.0]\), it implies that all data introduced to the cGAN need to be normalised to the same range. The tanh function must output exactly zero to predict zero biomass, which only happens when the action potential goes to \(-\infty\). This explains why prediction with the tanh function seems to clip the AGB values at a level higher than zero.

In conclusion, by substituting the tanh activation function with a ReLU function in the output layer and allowing the regression target to be calibrated AGB values in Mg ha\(^{-1}\) units, instead of being normalised to \([0.0, 1.0]\), our modified Pix2Pix architecture no longer overestimates AGB that should be close to zero.

B. Experiment 1: A study of the impact of speckle filtering and choice of discriminator network

A common preprocessing step for SAR products is speckle filtering. Speckle filters reduce the effects of the inherent speckle phenomenon on the product and smooths the pixel values. In this experiment, we evaluate if speckle filtering of the Sentinel-1 product affects the accuracy and the quality of cGAN-generated AGB predictions. To this end, we created two different datasets from the Sentinel-1 GRD product: The first was produced by following the SAR processing workflow defined in Sec. IV-B; For the second dataset, we used the refined Lee filter [77] with SNAP’s default window size of \(7 \times 7\) to apply speckle filtering between step 4) and 5) in the same workflow. We refer to them as the Sentinel-1 dataset with and without speckle filtering. A separate cGAN network was trained on each.

Additionally, we evaluated the three discriminator networks \(D \) presented in Sec. IV-D2 against each other to assess their effect on cGAN performance for data generation. For all experiments in this section, we trained the cGAN for 200 epochs using a ResNet-6 network, WGAN-GP objective function, batch size (BS) of 2, layer normalisation (LN) for \(D \) and batch normalisation (BN) for \(G \). These settings were determined by the model validation results presented in [96].

![Fig. 13. Boxplot comparison between models trained with different types of \(D \) on datasets produced with or without speckle filtering. Green triangles indicate the mean value computed over the five folds, while orange horizontal lines indicate the median.](image)

Results: A boxplot of average RMSE, computed between \(\hat{z}_y \) and \(\hat{z}_{y|x} \) for the different models trained with 5-fold cross-validation (5-fold CV), is shown in Fig. 13. Light blue bars indicate results obtained with models trained on speckle filtered data, while dark blue bars represent models trained on unfiltered data. Within a specific colour, the left, middle and right-most bar represent models trained with a PixelGAN, a 16 × 16 PatchGAN, and a 34 × 34 PatchGAN, respectively. Overall, Fig. 13 shows less spread and tighter boxes for models trained on the dataset where speckle filtering was omitted. Thus, during preprocessing of the Sentinel-1 product, speckle filtering should be skipped to achieve slightly smaller RMSE between \(\hat{z}_y \) and \(\hat{z}_{y|x} \). In general, Fig. 13 also show that the specific type of discriminator has little impact on the average RMSE for the dataset without speckle filtering. As the PixelGAN discriminator produces slightly less spread than the two other discriminator networks, we applied it to all remaining experiments in this work and choose to omit speckle filtering in the processing of the Sentinel-1 product.
C. Experiment 2: A comparison of model architectures, normalisation methods and objective functions

Here, we investigated if any combination of model architecture, normalisation method and cGAN objective function improves the accuracy of $\hat{z}_{y|x}$ with respect to \hat{z}_y. Based on the results in Sec. B we kept the dataset fixed, i.e. we used the Sentinel-1 product processed without speckle filtering and applied the 1×1 PixelGAN discriminator for all models trained in this section. Nine different cGAN generator architectures G were trained by combining the three ResNet networks and the three objective functions from Sec. IV. We also applied BN or instance normalisation (IN) for Vanilla GAN and LSGAN, while for WGAN-GP we applied LN for D and either BN or IN the G network, as suggested in [81]. We additionally experimented with a BS between 1 and 4. For each model, we applied 5-fold CV, and trained it for 200 epochs. We evaluate the different models on the 5-fold CV test sets by visualising boxplots of average RMSE computed between \hat{z}_y and $\hat{z}_{y|x}$.

Results: Fig. 14 visualises models trained on the three different objective functions in separate columns, i.e. Vanilla GAN in the left column, LSGAN in the middle column and WGAN-GP in the right column. We show models trained with BN in light blue colour, while models trained with IN are shown in dark blue colour. For all three objective functions, models trained with BN achieve a smaller average RMSE. Additionally, Fig. 14 shows that most models trained with BN also experience a smaller spread in average RMSE over the 5-fold CV dataset. Thus, we conclude from Fig. 14 that applying BN is preferable to produce $\hat{z}_{y|x}$ predictions with smaller average RMSE.

In Fig. 15 we compare models trained with different ResNet architectures and BS values to each other. In the left column, the models are first sorted by objective function, then by ascending BS, and finally by ascending ResNet model order. The grouping by BS is indicated with colours. In the middle column, models are again first sorted by objective function, but then by ascending ResNet model order (colour coded groups), and finally by ascending BS. In the right column, models are first sorted by ascending ResNet model order, then by ascending BS (colour coded groups), and lastly by objective function. Overall, Fig. 15 shows that the choice of objective function has little influence on the average RMSE, as the group of bins for the different objective functions look very similar to each other. Neither does the choice of ResNet model order have a significant impact on the average RMSE, although the positions of the green triangles in the left column of Fig. 15 indicate that ResNet-6 has a slightly smaller mean value than ResNet-5 and ResNet-4. What influences the average RMSE the most, is the choice of BS. All columns show that BS = 1 yields a smaller spread of average RMSE, but also a higher mean value. Models trained on BS = 2, 3 or 4 achieve a similar spread of average RMSE for all three objective functions, although the WGAN-GP shows slightly less spread. To summarise, the choice of normalisation method and batch
size has the largest impact on the RMSE, compared to other hyperparameters and the objective functions for the G or D networks. We recommend that BN should be chosen instead of IN, and that BS = 1 should be avoided.

D. Image patch generation

In this experiment, we evaluated the correspondence between generated image patches $\hat{z}_{y|x}$ to \hat{z}_y. Tab. III lists the implementational choices for each cGAN variant used in this experiment, these are based on the validation described above, see Sec. B and Sec. C. Each cGAN variant were trained on a training set, while the test set were kept aside. After training, we allowed the trained G network of each model to generate $\hat{z}_{y|x}$ image patches from Sentinel-1 image patches. These Sentinel-1 image patches were from the test set, and had therefore not been seen by the network during training. Since the test set also contain the corresponding target, i.e. z_y, these were used to evaluate the generator’s performance quantitatively and qualitatively.

Results: For each of the models in Tab. III, we select test patches, i.e. $\hat{z}_{y|x}$ and corresponding \hat{z}_y, having the smallest and greatest RMSE ($Mg ha^{-1}$) to investigate the worst and best case scenarios. The RMSE is computed over all pixels within the image test patch. Fig. 16 shows a qualitative comparison of the identified test patch with the smallest and greatest RMSE for the three models. The first row of Fig. 16 visualises patches from the input domain i.e. Sentinel-1, the middle row from the target domain, i.e. \hat{z}_y, and the third row from the generated domain, i.e. $\hat{z}_{y|x}$. Columns with caption Min indicate an image patch with the smallest RMSE for a specific model, while caption Max instead indicates an image patch with the largest RMSE. Columns (a) and (b) correspond to patches from the optimal Vanilla GAN, (c) and (d) from the optimal LSGAN, while (e) and (f) are from the optimal WGAN-GP. Quantitative comparisons of RMSE for the patches in Fig. 16 are shown in Tab. VIII.

As the same patch was identified as easiest to translate by both the Vanilla GAN and the LSGAN model, these two cGAN variant must have learned similar translation dynamics between the input and output domains. See columns (a) and (c) of Fig. 16. The results provided in Sec. V-B3 also points to the same direction; overall the Vanilla GAN and the LSGAN models perform more similar to each other and achieves higher accuracy than the WGAN-GP model. Tab. VIII clearly shows that the WGAN-GP model is the worse among the three, having an RMSE which is almost twice as high as for the
Vanilla GAN or LSGAN. From Fig. 16, it can be noted that all three objective functions seem to be approximately equally appropriate for translating from \mathcal{X} to $\hat{\mathcal{Y}}_{y|x} \in \mathcal{Z}$ when patches from the two domains have similar appearance, but struggle when the \mathcal{X} and $\hat{\mathcal{Y}}_{y|x} \in \mathcal{Z}$ domains deviate from each other in appearance. Visually, all three objective functions generate synthetic patches which are somewhat more blurry than \mathcal{Y} predictions. Blurriness is a known weakness with generative models, such as GANs [97], [98]. Several possible explanations to it exists, for example that blurriness can be related to the transposed convolution up-sampling method used in the second part of the G network. These up-sampling methods affect the model’s ability to correctly reproduce the spectral distribution in images, or to generate new images with sharp high frequent components such as edges [98].

Model	Min [Mg ha$^{-1}$]	Max [Mg ha$^{-1}$]
Vanilla GAN; ResNet-6 BN, BS=3	11.03	27.04
LSGAN; ResNet-6 BN, BS=3	10.92	27.34
WGAN-GP; ResNet-6 BN, BS=3	22.23	57.27

E. Comparison of linear or dB scale SAR input

In the Sentinel-1 processing workflow we settled for, see Sec. IV-B, conversion to dB scale was only applied if the Sentinel-1 scene was used by the cGAN-based sequential models. The use of dB scale on the Sentinel-1 data for these models was decided by the results of the experiments provided in this section. We evaluated the impact of keeping the Sentinel-1 input data on linear scale versus to transform it to a logarithmic decibel (dB) scale. This was done by creating two versions of the Sentinel-1 dataset, where conversion to dB was applied to one of these. Except for this step, both Sentinel-1 datasets, referred to as Sentinel-1 linear or Sentinel-1 dB, were identically processed. For each of the optimal model implementations listed in Tab. III, we trained one model on the Sentinel-1 linear dataset and another on the Sentinel-1 dB dataset. This yielded six different possibilities to generate $\hat{\mathcal{Y}}_{y|x}$, i.e. three different linear cGAN-based models and three different dB cGAN-based models. From each of these six models, we extracted $\hat{\mathcal{Y}}_{y|x}$ predictions corresponding to the position of each AGB ground reference measurement z.

Results: We provide scatter plots of $\hat{\mathcal{Y}}_{y|x}$ predictions and z in Fig. 17, where (b)-(d) represent results from the cGAN models trained on linear scale, while (e)-(g) represent corresponding results from the cGAN models trained on dB scale. For comparison with the baseline sequential Sentinel-1 model, we also show a corresponding scatter plot of it in (a) (it is the same figure as in Fig. 11 (a)). We also provide computed RMSE, R and MAE in each scatter plot. Overall, Fig. 17 shows that R decreases while both RMSE and MAE increase if any of the cGAN models are trained on linear scale as compared to dB scale. We conclude that the conversion of calibrated σ_0 values to dB scale, which increases the dynamic range of the pixel values in the image, is advantageous for achieving more accurate image-to-image translation through the cGAN architecture.

F. Post-calibration of sequential models

Although the non-sequential Sentinel-1 model cannot predict AGB between 0-20.3 Mg ha$^{-1}$, it still achieves a higher correlation coefficient R and a lower RMSE/MAE with respect to z than any of the proposed sequential models. One explanation can be that the non-sequential model had access to the ground reference data z during model fitting. By contrast, the sequential models were only using $\hat{\mathcal{Y}}_{y}$ during model fitting and have therefore not been calibrated against z. In this experiment, we investigated if the accuracy of the sequential regression models could improve if we after constructing the synthetic AGB prediction maps calibrated them against z. As the original LSGAN model achieved the highest correlation with z, we focus the experiments in this section on this model and the baseline sequential Sentinel-1 model. Furthermore, for the LSGAN we considered both Sentinel-1 data on linear scale and dB scale. Overall, we investigated five common calibration methods, i.e. linear, exponential, gamma, nth-root and logarithmic calibration. Among these, we choose to show gamma and linear calibration results, as we obtained the best results with these methods.

Results: Fig. 18 shows results from the experiment with post-calibration of $\hat{\mathcal{Y}}_{y|x}$, i.e. scatter plots between z and calibrated model-predicted AGB. To ease the comparison, we have provided some reference images, which are retrieved from the results presented in Sec. V, i.e. scatter plots for the ALS-based model (a), the non-sequential Sentinel-1-based model (b), LSGAN on dB scale (c), LSGAN on linear scale (f) and the baseline sequential Sentinel-1 model (i). We show results for the calibrated LSGAN model on dB scale using gamma calibration in Fig. 18 (d) and linear calibration in (e). Furthermore, we show results for the calibrated LSGAN model on linear scale using gamma calibration in (g) and linear calibration in (h). Fig. 18 (j) and (k) show results for the calibrated baseline sequential Sentinel-1 model on linear scale using gamma calibration (j) and linear calibration (k).

We note from the figure that the gamma and linearly calibrated models yield slightly lower or lower RMSE/MAE for all models included in the evaluation. For the LSGAN models, the gamma calibration reduces R some, while the correlation coefficient is unchanged for the linear calibration. For the baseline sequential model, R is unchanged for both the gamma and the linear calibration. Unfortunately, neither of the models achieve as high R and low RMSE/MAE as the non-sequential Sentinel-1-based model, nor the non-sequential ALS-based model. However, the LSGAN models, with or without calibration, can still predict 0 AGB, while neither of the baseline sequential models, with or without calibration, can produce such low AGB predictions. We conclude from this experiment that post-calibrating sequential AGB predictions against z can yield some modest improvements to higher accuracy. However, as these possible modest improvements come with the cost of applying an extra step to the prediction
Fig. 16. First row: Sentinel-1 patches. Second row: Target image patches, i.e. ALS-based AGB predictions \(\hat{z}_{y} \). Third row: Generated synthetic image patches, i.e. \(\hat{z}_{y} | x \). Column (a) and (b): Vanilla GAN; (c) and (d): LSGAN; (e) and (f): WGAN-GP. Columns with caption Min and Max respectively refer to an image patch within the test set that achieves minimum and maximum RMSE, computed over all 64 × 64 pixels in the test patch (Mg ha\(^{-1}\)).

Fig. 17. Scatter plots between AGB ground reference data, \(z \), and model-predicted AGB. **Upper row,** models trained with Sentinel-1 data on dB scale, i.e. the proposed Vanilla GAN (b), LSGAN (c) and WGAN-GP (d) models. **Lower row,** same models as above, but trained with Sentinel-1 on linear scale. Fig. (a) model-predicted AGB values from the baseline sequential regression model given in Eq. (2) trained with Sentinel-1 data on linear scale. The black lines are reference lines indicating 100% correlation between \(z \) and AGB predictions. Units are in Mg ha\(^{-1}\).

process, we choose to omit it in the results provided in Sec. V-B3.
z transform. The black lines are reference lines indicating 100% correlation between predictions from respective model after calibration with gamma transform, while model trained with dataset on linear scale and the baseline sequential Sentinel-1 model trained with dataset on linear scale. Fig. 18. Scatter plots between predicted AGB and ground reference AGB data, (a)-(e), (f) and (i) are reference images, corresponding to AGB predictions from the ALS-based regression model, the non-sequential Sentinel-1 model, the LSGAN model trained with dataset on dB scale, the LSGAN and predictions. Units are in Mg ha\(^{-1}\).

Ground Reference biomass (Mg ha\(^{-1}\))

Fig. 18. Scatter plots between predicted AGB and ground reference AGB data. (a) (e), (f) and (i) are reference images, corresponding to AGB predictions from the ALS-based regression model, the non-sequential Sentinel-1 model, the LSGAN model trained with dataset on dB scale, the LSGAN model trained with dataset on linear scale and the baseline sequential Sentinel-1 model trained with dataset on linear scale. Fig. 18. Scatter plots between predicted AGB and ground reference AGB data, (a)-(e), (f) and (i) are reference images, corresponding to AGB predictions from the ALS-based regression model, the non-sequential Sentinel-1 model, the LSGAN model trained with dataset on dB scale, the LSGAN model trained with dataset on linear scale and the baseline sequential Sentinel-1 model trained with dataset on linear scale. Fig. 18. Scatter plots between predicted AGB and ground reference AGB data, (a)-(e), (f) and (i) are reference images, corresponding to AGB predictions from the ALS-based regression model, the non-sequential Sentinel-1 model, the LSGAN model trained with dataset on dB scale, the LSGAN model trained with dataset on linear scale and the baseline sequential Sentinel-1 model trained with dataset on linear scale.