Abstract

A major issue in organ transplantation is the development of a protocol that can preserve organs under optimal conditions. Damage to organs is commonly a consequence of flow deprivation and oxygen starvation following the restoration of blood flow and reoxygenation. This is known as ischemia-reperfusion injury (IRI): a complex multifactorial process that causes cell damage. While the oxygen deprivation due to ischemia depletes cell energy, subsequent tissue oxygenation due to reperfusion induces many cascades, from reactive oxygen species production to apoptosis initiation. Autophagy has also been identified in the pathogenesis of IRI, although such alterations and their subsequent functional significance are controversial. Moreover, proteasome activation may be a relevant pathophysiological mechanism. Different strategies have been adopted to limit IRI damage, including the supplementation of commercial preservation media with pharmacological agents or additives. In this review, we focus on novel strategies related to the ubiquitin proteasome system and oxidative stress inhibition, which have been used to minimize damage in liver transplantation.

Key words: Liver transplant; Ischemia-reperfusion injury; Oxidative stress; Proteasome; Redox regulation; Ubiquitin

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Ischemia-reperfusion injury is a complex multifactorial process that causes cell damage during liver transplantation. The role of the ubiquitin proteasome system during liver transplantation remains unclear. The
use of proteasome inhibitors is a new strategy aimed at improving organ preservation.

Alva N, Panisello-Roselló A, Flores M, Roselló-Catafau J, Carbonell T. Ubiquitin-proteasome system and oxidative stress in liver transplantation. World J Gastroenterol 2018; 24(31): 3521-3530 Available from: URL: http://www.wjgnet.com/1007-9327/full/v24/i31/3521.htm DOI: http://dx.doi.org/10.3748/wjg.v24.i31.3521

INTRODUCTION

The definitive treatment option for many liver diseases is liver transplantation; and in these cases, one important issue is the optimization of organ preservation.

During liver transplantation, damage is initiated by vascular occlusion during hepatic resections. This is aggravated by cold storage of the liver graft (usually at 4 °C) in the preservation solution; and finally by warm reperfusion and subsequent implantation into the recipient. During ischemia, a long period of tissue hypoxia can result in tissue injury and organ dysfunction; as the organ is deprived of oxygen, ATP and energy becomes depleted. Paradoxically, the reintroduction of oxygen during reperfusion aggravates the damage. The whole process has a plethora of consequences that are collectively known as ischemia-reperfusion injury (IRI)

While oxygen deprivation due to ischemia depletes cell energy, subsequent reoxygenation due to reperfusion induces many cascades, from induction of reactive oxygen species (ROS) to initiation of apoptosis (Figure 1).

Such events are, in part, responsible for organ failure. Variables related to the donor (age, steatosis) and surgery (prolonged ischemia times) are the most commonly reported risk factors for graft dysfunction. Other factors such as shear stress and small graft size have been recognized as important factors associated with oxidative stress, lack of primary function, early dysfunction allograft and biliary complications after liver transplantation. Together with the immunological mechanisms of graft rejection, IRI remains as one of the main clinical problems following organ transplantation.

Current strategies to prevent and modulate IRI include: ischemic pre- or post-conditioning protocols; static cold storage or machine perfusion and the use of pharmacological agents. The most common methods applied in liver surgery have recently been reviewed. Conventional hypothermic cold storage continues to be the main method for liver preservation, largely because of its cost-effectiveness, simplicity and logistics. However, hypothermia can have multiple side effects, including the induction of oxidative stress.

Because of the wide range of mechanisms that can contribute to cell damage in IRI (involving ROS, oxidized products, inflammatory mediators and cytokines), adoption of a specific therapeutic strategy often results in only limited improvements in organ transplantation. Given these circumstances, it is worthwhile to focus on the assessment of agents that can counteract the damage induced by oxidative stress. As oxidative stress is the result of an imbalance between the rate of ROS generation and the capacity to detoxify these reactive species, interventions that could result in ROS scavenging or the detoxifying of ROS products could protect against IRI.

Three lines of defence against oxidative stress have been reported. Antioxidant molecules (such as glutathione) represent the first line of antioxidant defence; the second line incorporates enzymatic antioxidants; and the third consists of repair system proteins, including the proteolytic pathways. In this third line, the ubiquitin-proteasome system (UPS) is widely recognized as the main system for degradation of cytosolic proteins

The purpose of this review is to present an update of effects of oxidative stress while summarizing recent findings on the role of the UPS in organ preservation and liver transplantation. In this review we outline the current data of the literature, previous search in databases - PubMed, Web of Science and Scopus - that support the hypothesis on the potential involvement of UPS and oxidative stress in IRI. We will focus on the new strategies used to minimize damage in liver transplantation.

STATIC COLD STORAGE, MACHINE PERFUSION AND STORAGE SOLUTIONS

The strategy most commonly adopted to reduce ischemic injury is the cooling of organs and the use of a preservation solution to minimize enzymatic activity and depletion of the energy substrate. Cold storage slows down cellular metabolism, but this can be responsible for further ATP and energy depletion. In addition, cold has adverse side effects due to the induction of cellular inflammation, alterations of the cytoskeleton, oxidative stress.

Protective strategies to reduce hepatic IRI include the use of the machine perfusion, which represents a new line of research opposed to static cold storage.

Perfusion machine involves a pulsatile perfusion of the liver with a cold (subnormothermic, hypothermic) perfusate; with normothermic perfusate, or with a gradual increase in of the perfusate temperature. These references confirm that machine perfusion protects against IRI damage in animal models. Livers preserved by subnormothermic machine perfusion at 20 °C showed significantly less liver damage at the end of reperfusion compared to cold storage. The release of LDH was reduced while the production of bile, ATP levels, glycogen and glutathione content increased in preserved livers by subnormothermic machine perfusion.
than livers submitted to cold storage\(^\text{[44]}\). Normothermic machine perfusion has also been assessed in discarded human liver grafts\(^\text{[45]}\). The reported data demonstrate the viability of normothermic perfusion, which results in the continuous production of bile, the fall of lactate levels and the preservation of hepatic morphology. However, the safety and efficacy of machine perfusion is yet to be assessed by randomized controlled clinical trials.

Due to its cost-effectiveness and simplicity, cold storage with conventional hypothermia remains the main method for liver conservation. In fact, major advances in the field of organ preservation have included the development of new improved preservation solutions capable of reducing cold-induced cellular damage\(^\text{[46]}\). Euro-Collins solution was first developed in the 1970s; while more recently, University of Wisconsin (UW)\(^\text{[47]}\), Histidine-Ketoglutarate (HTK)\(^\text{[49]}\) and Institute Georges Lopez (IGL-1)\(^\text{[50]}\) solutions tend to be extensively used for liver transplantation. Commercial preservation solutions include oncotic agents, like hydroxy-ethyl starch (HES) in UW and polyethyleneglycol-35 (PEG-35) in IGL-1, which confer high viscosity to the media. They also contain metabolic precursors (adenosine and ketoglutarate) and antioxidants (glutathione, allopurinol). Although the use of commercial preservation solutions has improved conditions for liver graft preservation, with the urgent need to expand the donor pool and the subsequent use of suboptimal grafts, new additives have been proposed to combat oxidant and apoptotic damage with the aim of prolonging graft quality during cold storage.

THE ROLE OF OXIDATIVE STRESS IN IRI

ROS are highly reactive and capable of oxidizing lipids, proteins and DNA\(^\text{[51]}\), thereby leading to structural and cellular changes that may cause oxidative stress and cellular apoptosis. Abundant information has been published demonstrating that increased ROS production is involved in IRI pathology\(^\text{[28,50,52,53]}\). The involvement of ROS was initially observed based on the detection of enhanced production of chemical products generated by the reaction of ROS with cellular components. Lipid peroxidation products, such as malondialdehyde and hydroxynonenal\(^\text{[13,36,54-56]}\) have been widely used as a biomarkers of oxidative stress in IRI. The accelerated ROS production in post-ischemic tissues has been attributed to enzymes capable of reducing molecular oxygen and forming superoxide: xantine oxidase\(^\text{[57-59]}\), NADPH oxidase\(^\text{[60]}\) and nitric oxide synthase\(^\text{[11]}\). The contribution of each of these enzymes in IRI is assessed in the excellent review by Granger and Kviets\(^\text{[28]}\). All this indicates that radicals can be formed from different sources.

Figure 1 Ischemia-reperfusion injury: A complex multifactorial process that causes cell damage during liver transplantation. While the oxygen deprivation due to ischemia depletes cell energy, subsequent reoxygenation due to reperfusion induces many cascades, from production of reactive oxygen species to initiation of apoptosis. UPS: Ubiquitin-proteasome system; mPTP: mitochondrial permeability transition pore.
sources, and consequently several protective strategies to decrease liver IRI have targeted different sources of ROS: xanthine oxidase (using allopurinol\[^{59,61}\]) or NADPH oxidase\[^{62}\], for example. Other strategies have included pharmacological interventions with antioxidants resulting in the neutralization of ROS effects\[^{63-66}\].

As mentioned above, Jung et al\[^{29}\] describe three main lines of defence against oxidative stress. Thus, to those molecules widely recognized as antioxidants, such as glutathione, and enzymatic antioxidants, they add a third line of defence: repair systems. This system includes the proteolytic pathways, such as the UPS\[^{30,31}\]. The activity of the UPS is necessary so that the cells can cope with oxidative stress, but in turn, the activity of the UPS are also modulated by the redox state\[^{67}\].

THE UBIQUITIN-PROTEASOME SYSTEM

In order to eliminate damaged proteins, cells have highly regulated mechanisms, such as the autophagy-lysosome pathway and the UPS, which is recognized as the principal system for degrading oxidized cytosolic proteins. Proteasomes are protein complexes that, via proteolysis, degrade unnecessary or damaged proteins. It has always appeared that autophagy within lysosomes is involved in the pathogenesis of hepatic IRI, although the specific alterations it causes and their subsequent functional significance are highly controversial\[^{68}\]. The use of proteasome inhibitors has been demonstrated to enhance myocardial viability\[^{69,70}\] and protect liver against IRI\[^{4,71-73}\], which suggests this may be a promising strategy to reduce the damage inherent to transplantation protocols.

Ubiquitin

Ubiquitin is a highly conserved and small 76-amino-acid protein that acts as a post-translational protein modifier and regulates protein lifespan. Ubiquitin was isolated in the 1970s by Goldstein et al\[^{74}\] and since then has been identified in many cellular processes, including proteasomal proteolysis and also DNA damage repair. Ubiquitin can be attached covalently to a target protein in a process known as ubiquitination. Ubiquitin is conjugated to other proteins through a peptide bond between its C-terminal glycine residue and a primary amine on the substrate, most typically a lysine residue. Conjugation is dependent on the successive activities of enzymes named E1 (ubiquitin activating enzyme), E2 (ubiquitin conjugating enzyme), and E3 (ubiquitin ligase)\[^{75}\]. In the 1980s, biochemical studies elucidated the chemical reactions catalysed by these enzymes\[^{76,77}\]. E1 activates ubiquitin as a thioester of the active site cysteine residue at expenses of ATP\[^{78}\]. The activated ubiquitin molecule is then transferred to an E2 enzyme via the formation of a new thioester with the catalytic cysteine residue of the E2 enzyme. E2 transfers the activated ubiquitin moieties to the protein substrate that is specifically bound to a unique ubiquitin ligase: E3. Finally, an isopeptide bond is formed between the C-terminal glycine residue of the ubiquitin (Gly76) and the e-NH2 group of an internal lysine (Lys119) of the protein substrate. Several protein families have been discovered that are evolutionarily related to ubiquitin, as they share the characteristics of the ubiquitin-fold proteins and the capacity to become conjugated to substrates through the action of related E1, E2, and E3 enzymes\[^{79}\].

Target proteins can be modified by mono- or poly-ubiquitination. The seven lysines in ubiquitin contribute to the assembly of various poly-ubiquitin chains that may be involved in different cellular processes\[^{80}\]. The K48-linked (Lys 48) poly-ubiquitin chain targets proteins for proteasomal degradation, while the K11-linked poly-ubiquitin chain is involved in endoplasmic reticulum-associated degradation\[^{81}\] and the K63-linked poly-ubiquitin chain can act in non-proteolytic events, including protein trafficking, DNA repair, and inflammation\[^{82}\]. Furthermore, ubiquitination can be reversed by the removal of ubiquitin from target proteins by de-ubiquitinating enzymes (DUBs).

Degradation of damaged proteins

The proteasome is a multicatalytic protease involved in the degradation of intracellular proteins. The processing of damaged proteins is mainly mediated by the 20S and 26S proteasomes\[^{76,77}\].

The 20S proteasome is a large complex, formed of four stacked rings: two alpha and two beta rings, each containing seven different subunits (from α1 to α7 or from β1 to β7). Three of the beta subunits are responsible for the proteolytic activity. β1 exhibits caspase-like activity, while β2 exhibits trypsin-like activity, and β5, chymotrypsin-like activity. Whereas the beta rings are responsible for proteolytic degradation, the alpha rings perform substrate recognition and regulate substrate access to the proteolytic active centre.

The 26S proteasome is formed by the addition of one or two regulatory 19S subunits to an alpha ring in the 20S core proteasome in an ATP-dependent manner. The binding to this regulator increases the proteasomal activity and allows the proteasome to degrade the substrate proteins that have been tagged through the binding of a chain of ubiquitin, as explained above. The ubiquitin chain acts as a labelled sequence to direct proteins to the 26S proteasome where they are degraded. The 19S subunits first remove the poly-ubiquitin "tags" of the targeted proteins and unfold those proteins. Then, the unfolded proteins are degraded by the 20S core of the 26S proteasome. In this way, while the 20S core proteasome can degrade unfolded proteins in an ATP-independent manner, the 26S proteasome is only capable of degrading natively folded and functional proteins in an ATP- and ubiquitin-
dependent manner\[^{65}\].

ACTIVATION OF THE PROTEASOME UBIQUITIN SYSTEM (UPS) AND PROTEOLYSIS IN IRI

It has been well established that proteolysis is an important regulatory mechanism that helps maintain homeostasis\[^{77}\]. The proteasome and the UPS are necessary for the control of protein concentrations, to prevent abnormal accumulations and to modulate regulatory proteins involved in cell metabolism. However, proteolysis can have detrimental effects on organs and tissues after transplantation\[^{84}\]. Free amino acids in the effluent from human livers was used as a marker to predict postoperative graft function. In fact, the prevention of liver graft proteolysis and proteasome activation can be modulated by the use of additives to organ preservation solutions\[^{85,86}\]. In this way, it has been demonstrated that lactobionate, a component of UW solution, prevents the release of metalloproteinases during cold preservation\[^{85}\]. Moreover, the UPS is an energy-dependent system and ATP levels affects 26S proteasome assembly, stability, and function\[^{87}\]. The following processes are dependent on ATP: The first step in ubiquitin conjugation by E1, which is required for the poly-ubiquitination of proteins; the assembly of alpha and beta rings and ATP-dependent proteases; and the degradation of poly-ubiquitinated proteins by the 26S proteasome\[^{79,87}\]. In addition, it is well known that oxygen deprivation leads to a significant decrease in ATP in liver grafts\[^{24}\], which could affect liver outcomes.

Therefore, during cold storage of organs, and because of the ATP decrease, the formation of 26S proteasomes and poly-ubiquitin-dependent protein degradation are expected to be impaired. However, it has been well established that a subset of 26S proteasomes appears to be activated as ATP levels decline\[^{79}\]. In that study, Geng et al\[^{79}\] demonstrated that the activation of the 26S proteasome is a pathophysiologically relevant mechanism in cold ischemic myocardial injury. Such observations imply that a subset of 26S is acting as a harmful protease that is activated when the cellular energy supply decreases. The finding that ATP negatively regulates proteasome activity is consistent with previous results concerning increased proteolysis during cold preservation of human liver grafts\[^{84}\]. Moreover, hypothermia also affects proteasome activity in isolated perfused rat liver, increasing chymotryptsin-like activity\[^{36}\].

Degradation of protein substrates by 26S proteasomes requires the 19S regulatory cap to recognize ubiquitin protein conjugates and to regulate the entry of the substrate into the proteolytic cavity of the 20S core. Covalent regulation via phosphorylation of a subunit in the 19S regulatory cap of the proteasome allows for a fast increase in the 26S proteasome activity, which becomes an important regulatory mechanism for proteasome control\[^{88-90}\]. In fact, we have previously reported that phosphorylation of the 19S subunit Rpt6 increases in cold perfused rat livers\[^{36}\].

The combination of proteasome and oxidative stress in IRI

ROS are capable of oxidatively modifying cell structures. Due to the abundance of proteins, the presence of oxidatively modified proteins and aggregates of oxidized proteins has been reported in the cytosol. There is a certain degree of consensus that proteasomal activity degrades oxidized proteins, although the attribution to 20S or 26S is yet to be elucidated. The 26S proteasome was found to be less active in the degradation of oxidatively damaged proteins\[^{91}\]. A growing body of evidence suggests that the degradation of oxidatively damaged proteins does not require ATP and polyubiquitination of the substrate\[^{92}\]. Alternatively, oxidative proteins are removed independently of ubiquitin by the ATP-independent 20S proteasome\[^{93}\].

The proteasome is responsible for the selective degradation of oxidatively damaged proteins. In this sense it has been shown that certain oxidized proteins degrade faster than their native counterparts\[^{94}\], and, furthermore, it has been shown that inhibition of the proteasome stabilizes the oxidized proteins\[^{95}\]. During oxidative stress, the ratio of oxidized to reduced glutathione increases\[^{36}\] and this redox status of the cells can also modulate protein ubiquitination by reversible S-thiolation\[^{96,97}\]. This is concurrent with a decrease in the ubiquitin-activating enzyme, E-1 and ubiquitin conjugates. According to some models, glutathiolation of the E1 or E2 components of a ubiquitinated protein protects it from unnecessary degradation. Thus, S-glutathiolation can be regarded as a general mechanism of a redox signal controlling gene expression. In addition, direct oxidative modifications of the proteasome may also occur, including carbonylation, glycoxidation and modification with lipid peroxidation products. Although it is not clear to what extent these modifications affect the proteasome, they could modulate proteasomal activity. It should be noted that an inefficient proteasomal system would result in an accumulation of protein aggregates in the cytoplasm, as has been reported in brain due to aging or Alzheimer’s disease\[^{97}\]; while excessive protein depletion activity may have deleterious effects by affecting detoxifying systems, membranes, or RNA stability\[^{99,93}\].

PROTEASOME INHIBITION IN LIVER IRI

The use of proteasome inhibitors has been shown to offer protection and maintain the physiological ubiquitin-protein conjugate pool during cold organ preservation\[^{98}\]. Table 1 summarizes the protective effects of different proteasome inhibitors against IRI during organ preservation. The potential pharmacological role of proteasome inhibitors was first reported by Campbell et al\[^{99}\]. Those
authors demonstrated that proteasome inhibition can prevent loss of cardiac contractile function in isolated perfused rat heart. The adherence of polymorphonuclear leukocytes to the endothelium was also reduced. However, controversy regarding whether inhibiting the proteasome is beneficial or detrimental to cardiac function continues[96]. Few studies have examined the role of UPS inhibitors as a strategy to reduce damage in liver IRI. In rat liver subjected to warm IRI, the administration of the proteasome inhibitor MG132 decreased LDH and AST levels during ischemia and reperfusion[41]. In addition, the same authors studied whether MG132 can modulate the prooxidant and antioxidant status of rat liver. The results showed that MG132 did not significantly affect liver lipid peroxidation. However, MG132 increased protein carbonyls and decreased the main antioxidant enzyme activities (catalase and superoxide dismutase).

In contrast to that modulation of oxidative stress, the proteasome inhibitor Bortezomib, used at a non-toxic low dose, up-regulates liver antioxidant enzymes in chronic ethanol-fed rats[86]. Exposure to the proteasome inhibitor increased antioxidant defences by enhancing the levels of mRNA and protein expression transcripts of glutathione reductase, glutathione synthetase and glutathione peroxidase, as well as superoxide dismutase in rat liver. The increase in antioxidant defences was concomitant with enhanced 26S proteasome activity. As mentioned by those authors, the beneficial effects of the proteasome inhibitor Bortezomib could be due to the low dose used and to the reversibility of the drug.

In accordance with the previous research, we have recently demonstrated that the addition of the reversible UPS inhibitors Bortezomib and MG132 to UW solution improved steatotic and non-steatotic rat liver preservation in the face of cold IRI[71]. Both inhibitors prevented liver injury, decreasing AST and ALT, and prevented the release of the inflammatory cytokines IL-1 beta and TNF-alpha. The protective effect of Bortezomib was superior to that of MG132. Bortezomib increased bile production, decreased vascular resistance in fatty rat liver through an increase in nitric oxide generation, prevented lipid peroxidation and mitochondrial damage, and increased AMP-activated protein kinase (AMPK) phosphorylation. It is well known that AMPK phosphorylation is a key process in fatty liver graft preservation, as it can reduce inflammation[9,44].

The supplementation of IGL-1 preservation solution with Bortezomib has also been shown to have protective effects[72], reducing steatotic liver injury and decreasing liver apoptosis (cytochrome c and caspase 3 release) in the face of cold IRI. These effects were partially mediated through the activation of the Akt/mTOR signalling pathway, a key regulator in cell growth and proliferation, and through the phosphorylation of AMPK.

Besides its role in preventing inflammation, AMPK activation also keeps the liver in an energy-conserving state during cold storage. AMPK triggers ATP-producing pathways, balancing the metabolic process towards increasing energy homeostasis in the cell. We have recently found a correlation between AMPK activation, ATP levels, lower proteasome activity and decreased damage in fatty liver grafts preserved in different solutions[73]. As AMPK is regulated and degraded by the UPS, the use of proteasome inhibitors in the preservation solution could avoid AMPK depletion and may contribute to maintaining the beneficial effects of proteasome inhibition after IRI.

CONCLUSION

Remarkable progress has been made over the past few decades regarding the role of the UPS in many cellular processes. However, the function and regulation of the proteasome in organ transplantation still remains unclear. We have proposed that UPS inhibitors reduce IRI in liver grafts via up-regulation of AMPK phosphorylation and the consequent preservation of the energy state. As some proteasome inhibitors have been approved for the treatment of different diseases, we propose to explore their use in liver. Well-designed
randomized controlled trials will be needed to evaluate the use of proteasome inhibitors in liver transplantation. The supplementation of low and non-toxic doses of proteasome inhibitors offers a new opportunity for the improvement of organ preservation solutions.

ACKNOWLEDGMENTS

We are grateful to Christopher Evans for language assistance.

REFERENCES

1. Nagano K, Gelman S, Bradley EL Jr, Parks D. Hypothermia, hepatic oxygen supply-demand, and ischemia-reperfusion injury in pigs. Am J Physiol 1990; 258: G910-G918 [PMID: 2360637 DOI: 10.1152/ajpgi.1990.258.6.G910]

2. Ilíñez M, Dotor J, Feijoó E, Goñi S, Prieto J, Berasain C, Avila MA. Novel pharmacologic strategies to protect the liver from ischemia-reperfusion injury. Recent Pat Cardiovasc Drug Discov 2008; 3: 9-18 [PMID: 18221124]

3. Duval M, Plin C, Elmaldi A, Vallerand D, Tillement JP, Morin D, Haddad PS. Implication of mitochondrial dysfunction and cell death in cold preservation—warm reperfusion-induced hepatocyte injury. Can J Physiol Pharmacol 2006; 84: 547-554 [PMID: 16902660 DOI: 10.1139/y06-014]

4. Alexandrova A, Petrov L, Georgieva A, Kessiova M, Tzvetanova E, Kirkova K, Mukan A. Effect of MG132 on proteasome activity and prooxidant/antioxidant status of rat liver subjected to ischemia/ reperfusion injury. Hepatol Res 2008; 38: 393-401 [PMID: 17927769 DOI: 10.1111/j.1877-0530.2007.00270.x]

5. Gurusamy KS, Gonzalez HD, Davidson BR. Current protective strategies in liver surgery. World J Gastroenterol 2010; 16: 6098-6103 [PMID: 21182224 DOI: 10.3745/wjg.v16.i48.6098]

6. Neves DB, Risi MB, Diaz LG, Salvalaggio P. Primary graft dysfunction of the liver: definitions, diagnostic criteria and risk factors. Einstein (Sao Paulo) 2016; 14: 567-572 [PMID: 27783749 DOI: 10.1590/s1679-45082016rw3585]

7. Hori T, Uemoto S, Waldin LB, Chen F, Baine AM, Hata T, Nguyen NH. Pretreatment of Small-For-Size Grafts In Vivo by
-aminobutyric Acid Receptor Regulation against Oxidative Stress-Induced Injury in Rat Split Orthotopic Liver Transplantation. Int J Hepatol 2013; 2013: 149123 [PMID: 24223309 DOI: 10.1155/2013/149123]

8. Verhoeven CJ, Farid WR, de Jonge J, Metselaar HJ, Kazemier G, van der Laan LJ. Biomarkers to assess graft quality during conventional and machine preservation in liver transplantation. J Hepatol 2014; 61: 672-684 [PMID: 24798616 DOI: 10.1016/j.jhep.2014.04.031]

9. Serafin A, Roselló-Catafau J, Prats N, Gelpi E, Rodés J, Peralta C. Ischemic preconditioning affects interleukin release in fatty livers of rats undergoing ischemia/reperfusion. Hepatology 2004; 39: 688-698 [PMID: 14999867 DOI: 10.1002/hep.20089]

10. Bejaoui M, Pazeri E, Zanetta A, Carracedo A, Roselló-Catafau J. Polyethylene Glycol Preconditioning: An Effective Strategy to Prevent Liver Ischemia Reperfusion Injury. Oxid Med Cell Longev 2016; 2016: 9069549 [PMID: 26981166 DOI: 10.1155/2016/9069549]

11. Peralta C, Closa D, Sola A, Arroyo V, Rodés J, Peralta C, Roselló-Catafau J, Prats N, Roselló-Catafau J. Liver ischemic preconditioning is mediated by the inhibitory action of nitric oxide on endothelin. Biochem Biophys Res Commun 1996; 229: 264-270 [PMID: 8954116]

12. Eipel C, Glanemann M, Nussler AK, Menger MD, Neuhaus P, Vollmar B. Ischemic preconditioning impairs liver regeneration in extended reduced-size livers. Ann Surg 2005; 241: 477-484 [PMID: 15729071]

13. LI JY, Gu X, Yin HZ, Zhou Y, Zhang WH, Qin YM. Protective effect of ischemic preconditioning on hepatic ischemia-reperfusion injury by advancing the expressive phase of survivin in rats. Hepatobiliary Pancreat Dis Int 2008; 7: 615-620 [PMID: 19073407]

14. Koti RS, Seifalian AM, Davidson BR. Protection of the liver by ischemic preconditioning: a review of mechanisms and clinical applications. Dig Surg 2003; 20: 383-396 [PMID: 12840597]

15. Amador A, Grande L, Martí J, Deulofeu R, Miquel R, Solá A, Rodriguez-Laiz G, Ferrer J, Fondevila C, Charco R, Fuster J, Hotter G, García-Valdecasas JC. Ischemic pre-conditioning in deceased donor liver transplantation: a prospective randomized clinical trial. Am J Transplant 2007; 7: 2180-2189 [PMID: 17692726 DOI: 10.1111/j.1600-6143.2007.01914.x]

16. Doepner TR, Doehring M, Kaltwasser B, Majid A, Lin F, Bähr M, Kilic E, Hermann DM. Ischemic Post-Conditioning Induces Post-Stoke Neuroprotection via Hsp70-Mediated Proteasome Inhibition and Facilitates Neuronal Progenitor Cell Transplantation. Mol Neurobiol 2017; 54: 6061-6073 [PMID: 27699598 DOI: 10.1007/s12035-016-0373-3]

17. Belzer FO, Southard JH. Principles of solid-organ preservation by cold storage. Transplantation 1988; 45: 673-676 [PMID: 2832474]

18. Ferrigno A, Rizzo V, Boncompagni E, Bianchi A, Gringeri E, Neri D, Richelmi P, Freitas I, Cillo U, Vairetti M. Machine perfusion at 20°C reduces preservation damage to livers from non-heart-beating donors. Cryobiology 2011; 62: 152-158 [PMID: 21315707 DOI: 10.1016/j.cryobiol.2011.02.004]

19. Schlegel A, Dukutowski P. Role of hypothermic machine perfusion in liver transplantation. Transpl Int 2015; 28: 677-689 [PMID: 24852621 DOI: 10.1111/tci.12354]

20. Hessheimer AJ, Fondevila C, García-Valdecasas JC. Extracorporeal machine liver perfusion: are we warming up? Curr Opin Organ Transplant 2012; 17: 143-147 [PMID: 22273595 DOI: 10.1097/莫.0b013e328351088a]

21. Sola A, Roselló-Catafau J, Gelpi E, Hotter G. Fructose-1,6-bisphosphate in rat intestinal preconditioning: involvement of nitric oxide. Eur J Clin Pharmacol 2001; 48: 168-175 [PMID: 11156636]

22. Padrià-Altés S, Franco-Gou R, BoiUot O, Serafin A, Rimola A, Arroyo V, Rodés J, Peralta C, Roselló-Catafau J. Effect of angiotensin II and bradykinin inhibition in rat reduced-size liver transplantation. Liver Transp 2009; 15: 313-320 [PMID: 19224996 DOI: 10.1016/j.tci.21693]
31 Shang F, Taylor A. Ubiquitin-proteasome pathway and cellular responses to oxidative stress. Free Radic Biol Med 2011; 51: 5-16 [PMID: 21506680 DOI: 10.1016/j.freeradbiomed.2011.03.031]

32 Guibert EE, Popko AN, Taljanovic M, Rodriguez JV, Fuller BJ. Organ Preservation: Current Concepts and New Strategies for the Next Decade. Transfus Med Hemother 2011; 38: 125-142 [PMID: 21566713 DOI: 10.1159/000327033]

33 Olschewski P, Gass P, Aiyrikaglou V, Jasae K, Hunold G, Menzel M, Schöning W, Schmitz V, Neuhaus P, Puhl G. The influence of storage temperature during machine perfusion on preservation quality of marginal donor livers. Cryobiology 2010; 60: 337-343 [PMID: 20233587 DOI: 10.1016/j.cryobiol.2010.03.005]

34 Vajdová K, Graf R, Clavien PA. ATP-supplies in the cold-preserved liver: A long-neglected factor of organ viability. Hepatology 2002; 36: 1543-1552 [PMID: 12447882 DOI: 10.1053/jhep.2002.37189]

35 Stefanovich P, Ezzell RM, Sheehan SJ, Tompkins RG, Yarmush ML, Toner M. Effects of hypothermia on the function, membrane integrity, and cytoskeletal structure of hepatocytes. Cryobiology 1995; 32: 389-403 [PMID: 7656752]

36 Carbonell T, Alva N, Sanchez-Nuño S, Dewey S, Gomes AV. Subnormothermic perfusion in the Isolated Rat Liver Preserves the Antioxidant Glutathione and Enhances the Function of the Ubiquitin Proteasome System. Oxid Med Cell Longev 2016: 9324692 [PMID: 27880122 DOI: 10.1155/2016/9324692]

37 Bruinsma BG, Yeh H, Ozer S, Martins PN, Farmer A, Wu W, Saeedi N, Op den Dries S, Berendtsen TA, Smith RN, Markmann JF, Porte RJ, Yarmush ML, Uygun K, Iamis ML. Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation. Am J Transplant 2014; 14: 1400-1409 [PMID: 24758155 DOI: 10.1111/ajt.12277]

38 Op den Dries S, Sutton ME, Karimian N, de Boer MT, Alva N, Sanchez-Nuño S, Dewey S, Gomes AV. Subnormothermic machine perfusion protects steatotic livers against ischemia-reperfusion injury: a potential for donor pool increase? Transplant Proc 2013; 45: 1400-1409 [PMID: 24758155 DOI: 10.1016/txr.2013.07.005]

39 Ferrigno A, Di Pasqua LG, Berardo C, Siciliano V, Rizzo V, Mannucci B, Richelmi P, Croce AC, Vairetti M. Liver Graft Susceptibility during Static Cold Storage and Dynamic Machine Perfusion: CDC versus Fatty Livers. Int J Mol Sci 2017; 19: [PMID: 29301219 DOI: 10.3390/ijms19010109]

40 Vairetti M, Ferrigno A, Carlucci F, Tabubachi A, Rizzo V, Boncompagni E, Neri D, Gringeri E, Ricci S, Cillo U. Subnormothermic machine perfusion protects steatotic livers against preservation injury: a potential for donor pool increase? Liver Transplant 2009; 15: 20-29 [PMID: 19109848 DOI: 10.1002/12181]

41 Brockmann J, Reddy S, Coussios C, Pigott D, Guiririo D, Hughes D, Morovat A, Roy D, Winter L, Friend PJ. Normothermic perfusion: a new paradigm for organ preservation. Ann Surg 2009; 250: 1-6 [PMID: 19561463 DOI: 10.1097/SLA.S0003181a16c310]

42 Ravikumar S, Leuvenink H, Friend PJ. Normothermic liver preservation: a new paradigm? Transplant Int 2015; 28: 690-699 [PMID: 25847684 DOI: 10.1111/tri.12576]

43 Hoyer DP, Paul A, Luer S, Reis H, Effertz P, Minor T. End- ischemic reconditioning of liver allografts: Controlling the rewarming. Liver Transplant 2016; 22: 1223-1230 [PMID: 27398133 DOI: 10.1002/12181]

44 Vairetti M, Ferrigno A, Rizzo V, Richelmi P, Boncompagni E, Neri D, Freatas I, Cillo U. Subnormothermic machine perfusion protects against liver preservation injury: a comparative evaluation with conventional cold storage. Transplant Proc 2007; 39: 1765-1767 [PMID: 17692606 DOI: 10.1016/j.transproceed.2007.06.002]

45 op den Dries S, Karimian N, Sutton ME, Westerkamp AC, Nijsten MW, Gouw AS, Wiersema-Buist J, Lissman T, Leuvenink HG, Porte RJ. Ex vivo normothermic machine perfusion and viability testing of discarded human donor livers. Am J Transplant 2013; 13: 1327-1335 [PMID: 23468390 DOI: 10.1111/ajt.12187]

46 Duret C, Moreno D, Balasiddaiah A, Roux S, Bristoli P, Rualet E, Herrero A, Ramet H, Biron-Andreani C, Gerbal-Chaloin S, Ramos J, Navarro F, Hardwigen J, Maurel P, Aldeba R, Daugat-Chauvaine M. Cold Preservation of Human Adult Hepatocytes for Liver Cell Therapy. Cell Transplant 2015; 24: 2541-2555 [PMID: 25526296 DOI: 10.3727/068639115X752070]

47 Ben Abdennabi H, Steghens JP, Margonari J, Ramella-Virieux S, Barbireux A, Boillot O. High-Na+-Low-K+ UW cold storage solution reduces reperfusion injuries of the rat liver graft. Transpl Int 1998; 11: 223-230 [PMID: 9638853]

48 Boudjemaa K, Grandadam S, Compagnon P, Salamé E, Wolf P, Ducet C, Le Treut P, Soubanne O, Cherqui D, Mouchel C, Renault A, Bellissant E. Efficacy and safety of Celsior preservation fluid in liver transplantation: one-year follow up of a prospective, multicenter, non-randomized study. Clin Transplant 2012; 26: 199-207 [PMID: 21517997 DOI: 10.1111/j.1399-0012.2011.01447.x]

49 Stewart ZA, Cameron AM, Singer AL, Montgomery RA, Segev DL. Histidine-Tryptophan-Ketoglutarate (HTK) is associated with reduced graft survival in deceased donor livers, especially those donated after cardiac death. Am J Transplant 2009; 9: 286-293 [PMID: 19067658 DOI: 10.1111/j.1600-6143.2008.02478.x]

50 Jaffe HP, Oakley FD, Zhou W, Luo M, Jia HP, McCray PB Jr, Yaniv M, Weitzman JB, Engelhardt JF. JunD
proteins protects the liver from ischemia/reperfusion injury by dampening AP-1 transcriptional activation. J Biol Chem 2008; 283: 6687-6695 [PMID: 18182393 DOI: 10.1074/jbc.M705662000]

63 Shi S, Xue F. Current Antioxidant Treatments in Organ Preservation. Oxid Med Cell Longev 2016; 2016: 8678510 [PMID: 27403232 DOI: 10.1155/2016/8678510]

64 Junnarkar SP, Tapuria N, Dutt N, Fuller B, Seifalian AM, Davidson BR. Bucillamine improves hepatic microcirculation and reduces hepatic infarct injury after liver warm ischaemia-reperfusion injury. HBP (Oxford) 2009; 11: 264-273 [PMID: 19590658 DOI: 10.1111/j.1477-2578.2009.00054.x]

65 de Oca J, Cuadrado S, Valtell J, Benascea C, Martin E, Ardanuy C, Closa D, Hetter G, Jaurrieta E. Protective effects of lazazolid U74389G on intestinal graft after heterotopic small bowel transplantation in rats. J Surg Res 1998; 75: 18-23 [PMID: 9614851 DOI: 10.1006/jscr.1997.5244]

66 Yilmaz HR, Uez T, Yuel N, Altuntas I, Ozcelik N. Protective effect of caffeic acid phenethyl ester (CAPE) on lipid peroxidation and antioxidant enzymes in diabetic rat liver. J Biochem Mol Toxicol 2004; 18: 234-238 [PMID: 15452882 DOI: 10.1002/jbt.20028]

67 Demasi M, Netto LE, Silva GM, Hand A, de Oliveira CL, Bicez RN, Gogez F, Barros MH, Leme JM, Ohara E. Redox regulation of the proteasome via S-glutathionylation. Redox Biol 2013; 2: 44-51 [PMID: 24396728 DOI: 10.1016/j.redox.2013.12.003]

68 Zhou H, Zhu J, Yue S, Lu L, Busuttil RW, Kupiec-Weglinski JW, Wang X, Zhai Y. The Dichotomy of Endoplasmic Reticulum Stress Response in Liver Ischemia-Reperfusion Injury. Transplantation 2016; 100: 365-372 [PMID: 26683513 DOI: 10.1097/TP.0000000000001032]

69 Baker TA, Geng Q, Romero J, Picken MM, Gamelli RL, Majetschak M. Prolongation of myocardial viability by proteasome inhibition during hypothermic organ preservation. Biochem Biophys Res Commun 2010; 401: 548-553 [PMID: 20875792]

70 Geng Q, Romero J, Saini V, Baker TA, Picken MM, Gamelli RL, Majetschak M. A subset of 26S proteasomes is activated at critically low ATP concentrations and contributes to myocardial injury during cold ischemia. Biochem Biophys Res Commun 2009; 390: 1136-1141 [PMID: 19944202 DOI: 10.1016/j.bbrc.2009.10.067]

71 Zaouali MA, Bardag-Gorce F, Carbonell T, Oliva J, Pantazi E, Bejaoui M, Abdennobi H, Rimola A, Roselló-Catafau J. Proteasome inhibitors protect the neutotic and non-neutotic liver graft against cold ischemia reperfusion injury. Exp Mol Pathol 2013; 94: 352-359 [PMID: 2395864]

72 Bejaoui M, Zaouali MA, Carbonell F, Pantazi E, Bardag-Gorce F, Carbonell T, Oliva J, Rimola A, Abdennobi H, Roselló-Catafau J. Bortezomib enhances fatty liver preservation in Institut George Lopez-1 solution through adenosine monophosphate activated protein kinase and Akt/mTOR pathways. J Pharm Pharmacol 2014; 66: 62-72 [PMID: 24127984 DOI: 10.1111/jphp.12154]

73 Panisello-Roselló A, Verde E, Amine Zaouali M, Flores M, Alva N, Lopez A, Folch-Puy E, Carbonell T, Hetter G, Adam R, Roselló-Catafau J. The relevance of the UPS in Fatty Liver Graft Preservation: A New Approach for IGL-1 and HTK Solutions. J Biol Mol Toxicol 2013; 27: 15504-15509 [PMID: 23709579 DOI: 10.11152/jbmt.2013.12.004]

74 Calmus Y, Cyrober L, Dousset B, Lim SK, Soubrane O, Conti F, Houssin D, Giboudeau J. Evidence for the detrimental role of proteolysis during liver preservation in humans. Gastroenterology 1995; 108: 1510-1516 [PMID: 7729644 DOI: 10.1016/0016-5085(95)90701-7]

75 Adam R, Delvert V, Karam V, Ducerf C, Navarro F, Letoublon C, Belghiti J, Pezet D, Castaing D, Le Treut YP, Gugemhen J, Bachelier P, Pirenne J, Muiseman P; ELTR contributing centres, the European Liver, Intestine Transplant Association (ELITA). Compared efficacy of preservation solutions in liver transplantation: a long-term graft outcome study from the European Liver Transplant Registry. Am J Transplant 2013; 15: 395-406 [PMID: 25612492 DOI: 10.1111/j.1399-8756.2013.02060.x]

76 Zaouali MA, Panisello-Roselló A, Lopez A, Castro Benítez C, Folch-Puy E, García-Gil A, Carbonell T, Adam R, Roselló-Catafau J. Relevance of proteolysis and proteasome activation in fatty liver graft preservation: An Institut Georges Lopez-1 vs University of Wisconsin appraisal. World J Gastroenterol 2017; 23: 4211-4221 [PMID: 28694661 DOI: 10.3748/wjg.v23.i23.4211]

77 Majetschak M. Regulation of the proteasome by ATP: implications for ischemic myocardial injury and donor heart preservation. J Am Physiol Heart Circ Physiol 2013; 305: H267-H278 [PMID: 23709579 DOI: 10.1152/ajpheart.00206.2012]

78 Zhang F, Hu Y, Huang P, Toleman CA, Paterson AJ, Kudlow JE. Proteasome function is regulated by cyclic AMP-dependent protein kinase via phosphorylation of Rpt6. J Biol Chem 2007; 282: 22460-22471 [PMID: 17565987]

79 Djakovic SN, Marquez-Loma EM, Jakawich SK, Wright R, Chu C, Sutton MA, Patrick GN. Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons. J Neurosci 2012; 32: 5126-5131 [PMID: 22496558]

80 Jarome TJ, Kwapis JL, Ruengzel WL, Helmstetter FJ, CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the formation of long-term memories. Front Behav Neurosci 2013; 7: 115 [PMID: 24005966]

81 Grune T, Reineckel T, Davies KJ. Degradation of oxidized proteins in K562 human hematopoietic cells by proteasome. J Biol Chem 1996; 271: 15504-15509 [PMID: 8663134]

82 Hölz TJ, Grune T. The proteasome and the degradation of oxidized proteins: part III-Redox regulation of the proteasome system. Redox Biol 2014; 2: 388-394 [PMID: 24563857 DOI: 10.1016/j.redox.2013.12.029]

83 Davies KJ. Degradation of oxidized proteins by the 20S proteasome. Biochemin 2001; 83: 301-310 [PMID: 11295490]

84 Shang F, Nowell TR Jr, Taylor A. Removal of oxidatively damaged proteins from lens cells by the ubiquitin-proteasome
Alva N et al. Proteasome in liver transplantation

pathway. Exp Eye Res 2001; 73: 229-238 [PMID: 11446773 DOI: 10.1006/exer.2001.1029]

95 Gomes AV, Zong C, Ping P. Protein degradation by the 26S proteasome system in the normal and stressed myocardium. Antioxid Redox Signal 2006; 8: 1677-1691 [PMID: 16987021 DOI: 10.1089/ars.2006.8.1677]

96 Jahngen-Hodge J, Obin MS, Gong X, Shang F, Nowell TR Jr, Gong J, Abasi H, Blumberg J, Taylor A. Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress. J Biol Chem 1997; 272: 28218-28226 [PMID: 9353272 DOI: 10.1074/jbc.272.45.28218]

97 Bonet-Costa V, Pomatto LC, Davies KJ. The Proteasome and Oxidative Stress in Alzheimer’s Disease. Antioxid Redox Signal 2016; 25: 886-901 [PMID: 27392670 DOI: 10.1089/ars.2016.6802]

98 Majetschak M, Patel MB, Sorell LT, Liotta C, Li S, Pham SM. Cardiac proteasome dysfunction during cold ischemic storage and reperfusion in a murine heart transplantation model. Biochem Biophys Res Commun 2008; 365: 882-888 [PMID: 18053796]

99 Campbell B, Adams J, Shin YK, Lefer AM. Cardioprotective effects of a novel proteasome inhibitor following ischemia and reperfusion in the isolated perfused rat heart. J Mol Cell Cardiol 1999; 31: 467-476 [PMID: 10093058]

P- Reviewer: Chedid MF, Hori T, Rubbini M, Smyrniotis V, Tao R
S- Editor: Gong ZM L- Editor: A E- Editor: Huang Y
