ABSTRACT

BACKGROUND: Sleep disturbance is a risk factor for somatic, psycho-social and spiritual dysfunction. It is also arguably the most deleterious effect of traffic noise pollution. Quantification of its burden is an anchor element of environmental policy making but no data are currently available for Bulgaria where the preponderance of dangerous nighttime noise exposure is highest in Europe. AIM: The aim of this study was to quantify the socio-economic burden of severe sleep disturbance due to traffic noise (road, aircraft and railway) in Bulgaria. MATERIAL AND METHODS: The official World Health Organization methodology used in Europe was applied in order to estimate this annual loss expressed as disability-adjusted life-years (DALYs) and their corresponding monetary value (assuming € 12 000 per DALY). RESULTS: Results showed that severe sleep disturbance due to all traffic sources was associated conservatively with 15 468 DALYs (8 839 - 22 097) and € 185 615 861 (€ 106 066 206 - € 265 165 516) lost in 2012, with road traffic being the single most important noise source. CONCLUSION: In conclusion, severe sleep disturbance due to traffic noise bears a heavy environmental and socio-economic burden in Bulgaria which prompts vigorous political action and greater involvement in environmental research. In order to increase the accuracy of future burden of disease analyses other studies would need to establish exposure-response functions based on population-based socio-acoustic surveys in the country.

Key words: traffic noise, sleep disturbance, burden of disease, disability-adjusted life-years, environmental economics

PEРИОМЕ

Установлено, что снарушением сна связано значительное ухудшение соматических, психосоциальных и духовных функций. Величина такого ухудшения является значительным фактором риска. Количество времени, потерянного в результате снарушения сна, может быть оценено с учетом социально-экономических факторов. В Болгарии, где ночное транспортное движение особенно интенсивно, потери составили 15 468 DALYs (8 839 - 22 097) и € 185 615 861 (€ 106 066 206 - € 265 165 516) в 2012 году. Важнейший источник шума был автомобильный транспорт. В заключение можно сказать, что снарушением сна связан значительный негативный эффект. В дальнейшем, для более точных оценок необходимы дополнительные исследования, включающие учет социально-экономических факторов и использование методов, основанных на данных, полученных в результате обследований на популяционном уровне.
INTRODUCTION

In the Modern World, which daily puts our nervous systems under stress, we fall victims of sensory overload, constantly coping with thinking, remembering, and planning. Sleep is one of the few havens that can soothe our overworked minds and bodies. It is essential for maintaining normal homeostasis, somatic and mental health; it can also be essential for spiritual growth, inner peace and harmony. Any disturbance of sleep structure, patterns or quality can result in cardio-metabolic impairment, alteration in neuro-hormone secretion and psycho-social dysfunction. In addition to social stress interfering with sleep, we face a plethora of environmental stressors pertinent to the modern lifestyle. Transportation noise is arguably one of the most daunting and pervasive of those stressors. In fact, sleep disturbance is considered the most deleterious non-auditory effect of noise pollution because it is associated with a wide array of non-communicable diseases.

In 2011 the WHO published its “Burden of Disease from Environmental Noise” report according to which at least 903 000 disability-adjusted life-years (DALYs) are lost annually to sleep disturbance due to environmental noise in Europe. Such quantitative evidence is essential for environmental health policy, preparation of national and international noise control agendas and adequate resource allocation. In Bulgaria, however, we lack substantive evidence of the socio-economic burden of traffic noise. It is true that at the time “Burden of Disease from Environmental Noise” was published data from South-East Europe were limited, but they are now readily available. Thus the issue needs to be addressed promptly given the major community nuisance that noise pollution has become for Bulgarians and its egregious preponderance in major agglomerations (> 100 000 inhabitants). According to the Noise Observation and Information Service for Europe (NOISE) (http://noise.cionet.europa.eu/), nearly 70% of the citizens of these aggregations are exposed to road traffic Lnight ≥ 55 dB, a threshold above which the WHO considers “[t]he situation […] increasingly dangerous for public health”. While other public health risk factors such as the low quality of life, dysfunctional healthcare system and high prevalence of metabolic syndrome in the country are well-understood and routinely evaluated, the actual contribution of noise pollution to the cumulative burden of disease (BoD) is unknown. Recently, an annual loss of 968 quality-adjusted life-years and € 11.6 million was estimated in the country as a result of road traffic noise-attributed myocardial infarction.

AIM

In this paper, we aimed to quantify the socio-economic burden of severe sleep disturbance due to traffic noise in Bulgaria.

MATERIAL AND METHODS

This study adopts the official WHO methodology for estimating BoD from environmental noise. As such, it uses official data and was not subject to ethical evaluation by the University Committee. The sleep disturbance indicator of interest was “high sleep disturbance” (HSD) and the noise exposure indicator – night equivalent sound level (Lnight). The burden of HSD was expressed in DALYs lost to traffic noise (road, aircraft and railway). DALYs express “years of life lost to premature death and years lived with a disability of specified severity and duration” where “one DALY is […] one lost year of healthy life”. DALYs associated with severe sleep disturbance were calculated according to the formula:

\[\text{DALYs} = \frac{\text{severity} \times \text{duration}}{1000000} \]
DALYs lost = number of people highly sleep disturbed * disability weight (DW) * duration of exposure

The number of people exposed to different L_{night} noise bands in Bulgaria for 2012 (the most recent year that we had available data for) was extracted from NOISE. Although road traffic is the major source of environmental noise in Bulgarian agglomerations, aircraft and railway noise data were also used. Our analyses were restricted to the exposure range 55 dB to ≥ 75 dB, where the upper limit of the highest category was set at 80 dB. The percentage of high sleep disturbance ($\%\text{HSD}$) was calculated at the midpoint of each category as a function of L_{night}, according to the polynomial approximations reported by Miedema et al.13

Aircraft: $\%\text{HSD} = 18.147 - 0.956*(L_{\text{night}}) + 0.01482*(L_{\text{night}})^2$

Road traffic: $\%\text{HSD} = 20.8 - 1.05*(L_{\text{night}}) + 0.01486(L_{\text{night}})^2$

Railways: $\%\text{HSD} = 11.3 - 0.55*(L_{\text{night}}) + 0.00759(L_{\text{night}})^2$

$\%\text{HSD}$ above 70 dB was assumed to be constant (i.e., equal to the $\%\text{HSD}$ in the 65 – 69 dB category). Duration of exposure was set at one year and, since sleep disturbance does not directly result in premature death, years of life lost were set to zero.5 A disability weight (DW) of 0.07 was chosen with an uncertainty range 0.04 – 0.10.5 DW represents a value preference that scales a condition/state from 0 (full health) to 1 (death).12

Finally, we monetized the value of these DALYs by conservatively setting the value of one DALY at the gross domestic product (GDP) per capita in Bulgaria for 2012, according to the method proposed by Brown.14 This value was 12 000 Purchasing Power Standards (PPS)15, ("fictive 'currency' units that remove differences in purchasing power"16 and roughly equal to one euro in the EU-28). All formulae were entered in Microsoft Excel v. 2010 spreadsheet.

RESULTS

BoD was first quantified for each of the three traffic noise sources (road, aircraft and railway) expressed as DALYs and corresponding monetary value, and then summed to give a conservative estimate of the total socio-economic cost of severe sleep disturbance in Bulgarian urban population. Table 1 presents results on road traffic noise which is the dominant cause of traffic noise-attributed sleep disturbance in the country. People exposed to $L_{\text{night}} \geq 55$ dB constituted about 68% of the studied urban population. Eight percent of those people were highly sleep-disturbed. Even in the most conservative scenario (DW = 0.04), the latter were associated with

Table 1. Disability-adjusted life-years and monetary valuation for highly sleep-disturbed people due to road traffic noise in Bulgaria

Exposure category L_{night} [dB(A)]	People exposed in the population (%)	People highly sleep-disturbed in the category (%)	DALYs lost in the urban population of major agglomerations (n = 2 568 250)		
55 – 59	776 100 (30.22)	74 163 (9.56)	2 967	5 191	7 416
60 – 64	763 200 (29.72)	100 909 (13.22)	4 036	7 064	10 091
65 – 69	193 600 (7.54)	34 133 (17.63)	1 365	2 389	3 413
70 – 74	22 300 (0.87)	3 932 (17.63)a	157	275	393
≥ 75	1 200 (0.05)	212 (17.63)a	8	14	21
Total number of DALYs lost	8 534	14 934	21 335		
Monetary valuation of DALYs lost (in PPS euro)	102 407 580	179 213 265	256 018 951		

Note. Data are extracted from Noise Observation and Information System for Europe and refer to 2012. The monetary value of one DALY is set at € 12 000. Duration of exposure is assumed to be 1 year. aThe percentage of people highly sleep-disturbed above 70 dB is assumed to be the same as in the 65 – 69 dB category. The figures are rounded. DW – disability weight, DALYs – disability-adjusted life-years, L_{night} – nighttime equivalent sound level, PPS – Purchasing Power Standards.
Burden of Sleep Disturbance Due to Traffic Noise in Bulgaria

over 8 000 DALYs and more than € 100 million lost in 2012 alone. Relatively few DALYs could be attributed to air and railway noise, but even so, they translated into at least € 3 – 4 million. (See Tables 2 and 3). A summary estimate of DALYs annual loss is 15 468 with an uncertainty range 8 839 – 22 097; their monetary valuation is € 185 615 861 (€ 106 066 206 – € 265 165 516). These results are conservative and are based solely on data on approximately 2.57 million people (about 35% of the total Bulgarian population).

DISCUSSION

Traffic noise-attributed severe sleep disturbance in Bulgaria was associated with 15 468 DALYs (8 839 – 22 097) and € 185 615 861 (€ 106 066 206 – € 265 165 516) lost in 2012, with road traffic being the single most important source of noise pollution.

Table 2. Disability-adjusted life-years and monetary valuation for highly sleep-disturbed people due to air traffic noise in Bulgaria

Exposure category L_{night} [dB(A)]	People exposed in the population (%)	People highly sleep-disturbed in the category (%)	DALYs lost in the urban population of major agglomerations (n = 2 568 250)
55 – 59	35 100 (1.55)	4 274 (12.18)	171 299 427
60 – 64	13 000 (0.57)	2 117 (16.29)	85 148 212
65 – 69	0 (0)	0 (0)	0 0 0
70 – 74	0 (0)	0 (0)	0 0 0
≥ 75	0 (0)	0 (0)	0 0 0
Total number of DALYs lost	256 447 639	Monetary valuation of DALYs lost (in PPS euro)	3 067 697 5 368 470 7 669 243

Note. Data are extracted from Noise Observation and Information System for Europe and refer to 2012. The monetary value of one DALY is set at € 12 000. Duration of exposure is assumed to be 1 year. The figures are rounded. DW – disability weight, DALYs – disability-adjusted life-years, L_{night} – nighttime equivalent sound level, PPS – Purchasing Power Standards.

Table 3. Disability-adjusted life-years and monetary valuation for highly sleep-disturbed people due to railway traffic noise in Bulgaria

Exposure category L_{night} [dB(A)]	People exposed in the population (%)	People highly sleep-disturbed in the category (%)	DALYs lost in the urban population of major agglomerations (n = 2 568 250)
55 – 59	16 900 (0.66)	806 (4.77)	32 56 81
60 – 64	6 200 (0.24)	408 (6.57)	16 29 41
65 – 69	200 (0.01)	18 (8.76)	0.7 1 2
70 – 74	0 (0)	0 (0)	0 0 0
≥ 75	0 (0)	0 (0)	0 0 0
Total number of DALYs lost	49 86 123	Monetary valuation of DALYs lost (in PPS euro)	590 929 1 034 126 1 477 322

Note. Data are extracted from Noise Observation and Information System for Europe and refer to 2012. The monetary value of one DALY is set at € 12 000. Duration of exposure is assumed to be 1 year. The figures are rounded. DW – disability weight, DALYs – disability-adjusted life-years, L_{night} – nighttime equivalent sound level, PPS – Purchasing Power Standards.
If we compare the estimated burden of severe sleep disturbance to that of myocardial infarction, we fathom the real threat that traffic noise pollution has become in the country. These figures are quite alarming and mostly due to the high proportion of people exposed to extreme nighttime road traffic noise in major agglomerations. In fact, according to NOISE, Bulgaria has the highest proportion (68%) of people exposed to L\text{night} \geq 55$ dB in Europe. For comparison, in Germany this it is about 15% and in neighboring Romania, just below 40%, with an average of around 25% in Europe.

This study fills a gap in the literature from South-East Europe. A recent review of environmental noise-attributed sleep disturbance in South-East Europe did not identify any research from Bulgaria, but rather from neighboring countries like Macedonia and Serbia. Those studies, however, could not report population-based results on burden of sleep disturbance, since they lacked national level exposure data. Paunovic and Belojević, for example, recently looked at DALYs associated with myocardial infarction attributable to road-traffic noise, noise, but their inferences were limited to Belgrade, due to the small-scale empirical study they conducted. Our results give population estimates and further extend the official WHO methodology by assigning a monetary value to DALYs lost.

However, several limitations of this study should be discussed. First, the WHO methodology is imprecise and gives only a rough estimate of the BoD. Its inherent uncertainties refer to the extrapolation of exposure-response functions to different populations, validity of self-reported sleep disturbance, accuracy of noise mapping across countries, selection of appropriate DWs, etc. There have been both conceptual and ethical critiques of DALYs, DWs and, generally, putting a quantitative estimate to people’s life. Other issues arise from setting the value of one quality-adjusted life year at € 12 000, quality of noise mapping in Bulgaria and the applicability of Miedema et al.’s polynomials in Bulgaria. Nevertheless, the assumptions made were conservative, including the monetary valuation of DALYs, adopting recommended exposure-response functions, holding %HSD constant above 70 dB, and disregarding people exposed to < 55 dB due to insufficient data, all of which yielded lower estimates than those that would have been derived from a field survey, and therefore rendered our calculations compliant with the conservative principle. Despite the outlined above methodological limitations, the policy on environmental hazards should be based on the precautionary principle stating that “in cases of serious or irreversible threats to the health of humans or ecosystems, acknowledged scientific uncertainty should not be used as a reason to postpone preventive measures”.

CONCLUSIONS

Severe sleep disturbance due to traffic noise bears a heavy environmental and socio-economic burden in Bulgaria, being associated with an annual loss of approximately 15 468 DALYs and € 186 million. For a country with limited resources for healthcare, these costs are unacceptable and should prompt vigorous political action and greater involvement in environmental health research. In order to increase the accuracy of future BoD analyses other studies would need to establish exposure-response functions based on population-based socio-acoustic surveys in the country.

CONFLICT OF INTEREST STATEMENT

The authors declare that, with respect to this study, they do not have any potential conflict of interest.

REFERENCES

1. Wallace BA. The Attention Revolution: Unlocking the Power of the Focused Mind. Wisdom Publications, Somerville, MA; 2006.
2. LaBerge S, Rheingold H. Exploring the World of Lucid Dreaming. Ballantine Books: New York; 1991.
3. WHO Regional Office for Europe. Night Noise Guidelines for Europe. Copenhagen; 2009.
4. Kim EJ, Dimsdale JE. The effect of psychosocial stress on sleep: a review of polysomnographic evidence. Behav Sleep Med 2007;5(4):256-78.
5. WHO Regional Office for Europe. Burden of Disease from Environmental Noise. Quantification of Healthy Life Years Lost in Europe. Copenhagen; 2011.
6. Halperin D. Environmental noise and sleep disturbances: A threat to health? Sleep Science 2014; 7(4):209-12.
7. Monitor. Noise terrorizes two million Bulgarians. [Newspaper article from September 17, 2014]. [displayed February 18 2015]. Available at http://www.webcitation.org/6WMOVXGnk. Accessed: February 12, 2015 (in Bulgarian).
8. Marginian I, Precupetu I, Tzanov V, Preoteasa AM, Voicu B. First European Quality of Life Survey: Quality of life in Bulgaria and Romania. Luxembourg: Office for Official Publications of the European Communities; 2006.
9. Dimova A, Rohova M, Moutafova E, Atanasova E,
Burden of Sleep Disturbance Due to Traffic Noise in Bulgaria

Koeva S, Panteli D, van Ginneken E. Bulgaria health system review. Health Syst Transit 2012;14:1-186.

10. Stefanov TS, Temelkova-Kurktschiev TS. The metabolic syndrome in Bulgaria. Folia Med (Plovdiv) 2011;53:5-14.

11. Dzhambov AM, Dimitrova DD. Evaluation of the social and economic burden of road traffic noise-attributed myocardial infarction in Bulgarian urban population. Arh Hig Rada Toksikol 2015;66(1):15-21.

12. Murray CLM, Lopez AD: The Global Burden of Disease. Boston: Harvard School of Public Health; 1996.

13. Miedema HME, Passchier-VermeerW, Vos H. Elements for a position paper on night-time transportation noise and sleep disturbance. Delft: TNO;2003 (Inro Report 2002-59).

14. Brown DW. Economic value of disability-adjusted life years lost to violence: estimates for WHO Member States. Rev Panam Salud Publica 2008;24(3):203-9.

15. European Commission, EUROSTAT. GDP and beyond, Measuring quality of life in the EU; 2014 [displayed 22 July 2014]. Available at http://epp.eurostat.ec.europa.eu/cache/ITY_PUBLIC/3-19032014-CP/EN/3-19032014-CP-EN.PDF

16. European Commission, EUROSTAT. Annual national accounts (nama) [displayed 22 July 2014]. Available at http://epp.eurostat.ec.europa.eu/cache/ITY_PUBLIC/3-19032014-CP/EN/3-19032014-CP-EN.PDF

17. Ristovska G, Lekaviciute J. Environmental noise and sleep disturbance: Research in central, eastern and south-eastern Europe and newly independent states. Noise Health 2013;15:6-11.

18. Paunovic K, Belojević G. Burden of myocardial infarction attributable to road-traffic noise: A pilot study in Belgrade. Noise Health 2014;16:374-9.

19. Anand S, Hanson K. Disability-adjusted life years: a critical review. J Health Econ 1997;16:658-702.

20. Arnesen T, Nord E. The value of DALY life: problems with ethics and validity of disability adjusted life years. BMJ 1999; 319:1423-5.

21. Salomon JA. New disability weights for the global burden of disease. Bull World Health Organ. 2010; 88(12):879.

22. Martuzzi M, Tickner JA. (Eds.). The precautionary principle: protecting public health, the environment and the future of our children. Copenhagen: WHO; 2004.