On Nonlinear Polynomial Selection and
Geometric Progression (mod N) for
Number Field Sieve

Namhun Koo, Gooc Hwa Jo, and Soonhak Kwon
Email: komaton@skku.edu, achimheasal@nate.com, shkwon@skku.edu
Dept. of Mathematics, Sungkyunkwan University, Suwon, S. Korea

Abstract

The general number field sieve (GNFS) is asymptotically the fastest known factoring algorithm. One of the most important steps of GNFS is to select a good polynomial pair. A standard way of polynomial selection (being used in factoring RSA challenge numbers) is to select a nonlinear polynomial for algebraic sieving and a linear polynomial for rational sieving. There is another method called a nonlinear method which selects two polynomials of the same degree greater than one. In this paper, we generalize Montgomery’s method [7] using small geometric progression (GP) (mod N) to construct a pair of nonlinear polynomials. We introduce GP of length $d+k$ with $1 \leq k \leq d-1$ and show that we can construct polynomials of degree d having common root (mod N), where the number of such polynomials and the size of the coefficients can be precisely determined.

Keywords: polynomial selection, number field sieve, geometric progression, LLL algorithm

1 Introduction

The number field sieve (NFS) [6, 11] is asymptotically the fastest known algorithm to factor a large composite integer N. One of the most exciting news on this topic is the factorization of RSA-768 by the collaboration of Kleinjung and many other researchers [3] using the technique of the general number field sieve (GNFS). Almost all of the factored RSA numbers with 100 digit size or more were tackled by using NFS algorithm so far. Recently the polynomial selection step of NFS is being studied widely since a good polynomial pair greatly reduces the entire running time of NFS algorithm.

Among several polynomial selection methods for NFS being proposed so far, the base-m method is one of the most standard ones. Murphy [9] proposed an improvement of the base-m method by refining the notion of polynomial yield. Murphy’s method focuses on root property, which is a measurement of the efficiency of polynomial pair having roots modulo small primes. Kleinjung [2] proposed an improvement of Murphy’s method to nonmonic linear polynomial. Both Murphy’s and Kleinjung’s methods were used on factorization of many RSA challenge numbers. We call all these polynomial selection methods linear method since it selects a nonlinear polynomial for algebraic sieving and a linear polynomial for rational sieving.

A nonlinear method refers the method of choosing two nonlinear polynomials (of degree ≥ 2) having a common zero (mod N). Several researchers focus on nonlinear polynomial selection methods. Montgomery [7] showed that one can find two nonlinear polynomials of degree d and size $O(N^{1/2d})$ having common root (mod N) if and only if one can find a geometric progression
(GP) \((\mod N)\) of length \(2d - 1\) and size \(O(N^{1-1/d})\). Montgomery succeeded in finding such \(\text{GP (mod }N)\) when \(d = 2\) but the case \(d \geq 3\) is still unresolved. The quadratic method \((d = 2)\) is not competitive to linear method when the integer \(N\) is over 120 digits \([9]\). Prest and Zimmermann \([12]\), and also Williams \([13]\) proposed other nonlinear polynomial selection methods using \(\text{GP (mod }N)\) of length \(d + 1\), however these methods produce polynomials which have larger coefficients than the optimal bound \(O(N^{1/2d})\) expected from Montgomery’s method.

In this paper, we propose a polynomial selection method using a \(\text{GP of length }d + k\) with \(1 \leq k \leq d - 1\) which generalizes Montgomery’s method of \(\text{GP with length }2d - 1\) (i.e., \(k = d - 1\)). Natural implication of our result is that one can generate polynomials with different degrees \(d\) for all \(l^2 < d < l\) having common root \((\mod N)\). We also introduce a method of finding a \(\text{GP of } (d + 1)\)-term with size \(O(N^{1-1/d})\) and show that the proposed method has flexibility than the usual \(\text{base-m method. GP with length }d + 2\) and size \(O(N^{1-1/d})\) is difficult to find in general but we show that such \(\text{GP can be found under certain conditions. We apply the result to GP of size }O(N^{2/3})\) to construct cubic polynomials having common roots \((\mod N)\).

The remaining part of this paper is organized as follows. We explain the existing polynomial selection methods in section 2. We introduce an extension of Montgomery’s \(\text{GP method and state generalized polynomial selection method given \(\text{GP of arbitrary length in section 3. We explain the method of constructing a \(\text{GP of length }d + 1\) and }d + 2\), and give explicit examples in section 4. Finally we give conclusive remarks in section 5.

2 Existing Polynomial Selection Methods

2.1 Linear polynomial selection method

2.1.1 Base-\(m\) method

Let \(N^{1/(d+1)} < m \leq N^{1/d}\) and let \(N = \sum_{i=0}^{d} a_im^i\) \((0 \leq a_i < m)\) be the base \(m\)-expansion of \(N\). Then

\[
f(x) = a_dx^d + a_{d-1}x^{d-1} + \cdots + a_0, \quad g(x) = x - m
\]

are two polynomials having common root \(m \,(\mod N)\). There are other improvements to reduce the size of coefficients of \(f\) with the property \(f(m) \equiv 0 \,(\mod N)\) being preserved. For example, if \(a_i > m/2\) then the substitution

\[
a_i \leftarrow a_i - m \quad \text{and} \quad a_{i+1} \leftarrow a_{i+1} + 1,
\]

makes \(|a_i| < m/2\) for every \(i\). For more detail, refer \([6, 9]\).

2.1.2 Murphy’s method

Murphy’s method \([9]\) is an improvement of the base-\(m\) method to generate skewed polynomials having good root property using rotations and translations. For given polynomial pair \((f(x), g(x))\) with common root \(m \,(\mod N)\), rotation by \(r(x)\) refers another polynomial pair \((f(x) + r(x)g(x), g(x))\). Also translation by \(t\) refers a polynomial pair \((f(x-t), g(x-t))\) having common root \(m + t \,(\mod N)\).

The root property measures the smoothness of given polynomial, i.e. it tells how many roots the polynomial has modulo small primes. To measure the root property of a polynomial
2.1.3 Kleinjung’s method

Kleinjung [2] proposed an improvement of Murphy’s method to nonmonic linear g. The method first selects a positive integer a_d which has many small prime factors. Next, one chooses an integer p such that $a_d x^d \equiv N \pmod{p}$ is solvable. Now let m be a solution of $a_d x^d \equiv N \pmod{p}$ close to $\tilde{m} = (N/a_d)^{1/d}$. Then there is an expression

$$N = a_d m^d + a_{d-1} m^{d-1} p + \cdots + a_1 m p^{d-1} + a_0 p^d,$$

with $|a_{d-1}| < da_d \frac{m-\tilde{m}}{p} + p$ and $|a_i| < m + p$ for $i = 0, \cdots, d - 2$ (see Lemma 2.1 of [2]). Thus

$$f(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0, \quad g(x) = px - m$$

is a polynomial pair having common root $p^{-1} m \pmod{N}$, where a_{d-1} and a_{d-2} can be bounded in terms of a_d, p and m. Considering plenty of triples (a_d, p, m), Kleinjung found polynomial pairs with nonmonic g having better yields than that of Murphy’s method. This method was used for the factorization of RSA-768 [3].

2.2 Nonlinear polynomial selection method

2.2.1 Montgomery’s method

Montgomery [7] proposed a nonlinear method which finds two polynomials of the same degree d using a small GP (mod N). If there exists a GP (mod N) of length $2d - 1$ with $c_i = O(N^{1-1/d})$ written in vector notation as

$$\vec{c} = [c_0, c_1, \cdots, c_{2d-2}],$$

which is not a linear recurrence of order $d - 1$ over \mathbb{Q}, then by looking at the two dimensional sublattice of \mathbb{Z}^{d+1} which is orthogonal to $d - 1$ vectors in \mathbb{Z}^{d+1} spanned by

$$[c_0, c_1, \cdots, c_d], [c_1, c_2, \cdots, c_{d+1}], \cdots, [c_{d-2}, c_{d-1}, \cdots, c_{2d-2}],$$

one can construct two polynomials

$$f_1(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$$

and

$$f_2(x) = b_d x^d + b_{d-1} x^{d-1} + \cdots + b_0$$

of degree d with common root $r \pmod{N}$, where r is the geometric ratio of GP \vec{c} and the coefficients of f_1 and f_2 are of $O(N^{1/2d})$.

At this moment, it is still an open problem whether one can find such GP (mod N) with length $2d - 1$ and size $c_i = O(N^{1-1/d})$ for general d. However, when $d = 2$, Montgomery
presented a GP (mod N) satisfying the above conditions. That is, letting p be a prime satisfying
\[(i)\ p < \sqrt{N}, \quad (ii)\ \left(\frac{N}{p}\right) = 1,\]
Montgomery finds a solution c_1 of $x^2 \equiv N \pmod{p}$ with $|c_1 - \sqrt{N}| \leq p/2$, and thus
\[[c_0, c_1, c_2] = [p, c_1, (c_1^2 - N)/p] \tag{1}\]
is a desired GP (mod N) with ratio $r \equiv p^{-1}c_1 \pmod{N}$. It seems difficult to extend the idea of Montgomery to general $d \geq 3$. A positive answer for the case $d = 3$ would imply that we may replace the sieving polynomial pair $(f(x), l(x))$ with linear $l(x)$ and $\deg f = 5, 6$ by two cubic polynomials. For details, refer [9].

2.2.2 The method of Prest and Zimmermann

According to Montgomery’s idea, we need a GP (mod N) with length $2d - 1$ and size $O(N^{1-1/d})$ to generate two polynomials of degree d with common root (mod N) and coefficients of $O(N^{1/2d})$. In the case that we have only $(d + 1)$-term of GP, we may still generate two polynomials of degree d with common root (mod N). Williams [13] showed that a GP of length 4 (i.e., $d = 3$) of size $O(N^{2/3})$ gives two cubic polynomials having common root (mod N) with coefficients $O(N^{2/9})$. Therefore the resultant of two polynomials is $O(N^{4/3})$, while $O(N)$ is the optimal resultant size expected from two polynomials with coefficients $O(N^{1/2d})$. Prest and Zimmermann [12] considered the case of arbitrary degree to generate skewed polynomials. Choosing a GP of the form $[1, m, \ldots, m^{d-1}, m^d - N]$ with m near $N^{1/d}$, and applying LLL algorithm [5] on the lattice spanned by the column vectors of the following matrix
\[
\begin{pmatrix}
m & \cdots & m^{d-1} & m^d - N \\
s & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & s^{d-1} & 0 \\
0 & \cdots & 0 & s^d
\end{pmatrix}
\]
where s is the skewness parameter, they get two short vectors of the form
\[
\begin{bmatrix}
-a_0 \\
a_1 s \\
\vdots \\
a_d s^d
\end{bmatrix}.
\]
Thus the polynomials $a_0 + \cdots + a_d x^d$ have m as a common root (mod N). They showed that, by selecting $s = O\left(N^{\frac{2}{d^2-d+2}}\right)$, the skewed polynomials have medium coefficients of size $O\left(N^{\frac{2(d^2-2d+2)}{d^2-d+2}}\right)$ and resultant of size $O\left(N^{\frac{2(d^2-2d+2)}{d^2-d+2}}\right)$. When $d = 3$, this method gives two cubic polynomials whose resultant is of $O(N^{5/4})$ and medium coefficients of $O(N^{5/24})$.

3 Polynomial Selections from GP of Length $d + k$

To find a pair of nonlinear sieving polynomials, Montgomery [7] considers GP (mod N) $\vec{c} = [c_0, c_1, \ldots, c_{2d-2}]$ with length $2d - 1$ and size $c_i = O(N^{1-1/d})$. On the other hand, Prest and
Zimmermann [12] consider \(\vec{c} = [c_0, c_1, \cdots, c_d] \) with length \(d + 1 \) and size \(c_i = O(N^{1-1/d}) \).
Finding GP (mod \(N \)) with length \(d + 1 \) and size \(c_i = O(N^{1-1/d}) \) is easy because, if one choose
\(c_0 = \lfloor N^{1/d} \rfloor + j \) for small \(j \) and \(c_1 \equiv c_0^i \) (mod \(N \)), then one gets \(c_i = O(N^{1-1/d}) \). However it is not clear how one can find a GP (mod \(N \)) with bounded size for general length \(d + k \)
\[
\vec{c} = [c_0, c_1, \cdots, c_{d+k-1}].
\]
The most desirable case is \(k = d - 1 \) so that we have a GP of length \(2d - 1 \) and can find two independent polynomials of degree \(d \) having common root (mod \(N \)).

It should be mentioned that finding GP even in the cases \(k = 2, 3, \cdots, d - 2 \) satisfying suitable size property is supposed to be a difficult problem. Moreover, for given GP of length \(d + k \), we may find more than two polynomials having common roots (mod \(N \)), and the size of the coefficients of such polynomials will be determined by the size of \(\vec{c} \). Our aim is to generalize the idea of Montgomery to the case of GP \(\vec{c} \) (mod \(N \)) of arbitrary length \(d + k \) and also to provide an unified approach for the polynomials of degree \(d \) having common roots (mod \(N \)) arising from a GP \(\vec{c} \) of variable length such as \(d + 1 \) [12] and \(2d - 1 \) [7]. Moreover we will clarify the relations between the polynomials of different degree \(d \) having common root (mod \(N \)) for given GP \(\vec{c} \) of fixed length. For example, we will show that, for given 5-term GP of size \(O(N^{2/3}) \), we can generate 2 cubic polynomials and 4 polynomials of degree 4, all having coefficients of size \(O(N^{1/6}) \) and the same common root (mod \(N \)). To summarize the raised questions:

- **How many independent polynomials we may generate for given GP of fixed length?**
- **What are the possible degrees of such polynomials?**
- **How the size of the coefficients of such polynomials is related to the size of the given GP?**

We will answer all the questions in the following theorem below. For given polynomial \(f(x) = \sum a_i x^i \), let us define the norm of \(f \) as \(||f|| = \sqrt{\sum a_i^2} \).

Theorem 1. Let \(d \) and \(k \) be integers with \(d \geq 2 \) and \(1 \leq k \leq d - 1 \). Suppose that \(\vec{c} = [c_0, c_1, \cdots, c_{d+k-1}] \) is a GP (mod \(N \)) with length \(d + k \) such that the \(k \) vectors \([c_0, \cdots, c_d], [c_1, \cdots, c_{d+1}], \cdots, [c_{k-1}, \cdots, c_{d+k-1}] \in \mathbb{Z}^{d+1} \) are linearly independent over \(\mathbb{Q} \). Then we may generate \(d - k + 1 \) polynomials \(f_i \) of degree at most \(d \) having common root \(r \) (mod \(N \)) with \(r \) the ratio of the GP and satisfying

\[
||f_1|| \cdot ||f_2|| \cdots ||f_{d-k+1}|| = O \left(\frac{||\vec{c}||^k}{N^{k-1}} \right).
\]

Proof. Let \(\Lambda \) be the lattice in \(\mathbb{Z}^{d+1} \) spanned by the following \(k \) independent vectors
\[
\vec{v}_0 = [c_0, \cdots, c_d], \quad \vec{v}_1 = [c_1, \cdots, c_{d+1}], \cdots, \quad \vec{v}_{k-1} = [c_{k-1}, \cdots, c_{d+k-1}],
\]
obtained from \(d + 1 \) consecutive terms of \(\vec{c} \). Define \(\Omega \) to be the lattice in \(\mathbb{Z}^{d+k+1} \) spanned by the column vectors of the following \((d + k + 1) \times (d + 1)\) matrix

\[
\begin{pmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
Kc_0 & Kc_1 & \cdots & Kc_d \\
Kc_1 & Kc_2 & \cdots & Kc_{d+1} \\
\vdots & \vdots & \ddots & \vdots \\
Kc_{k-1} & Kc_k & \cdots & Kc_{d+k-1}
\end{pmatrix},
\]

(4)
where K is a constant. Then Theorem 4 of [10] says that, if $\{\vec{x}_1, \cdots, \vec{x}_{d-k+1}\}$ is an LLL-reduced basis of Ω and if one chooses K sufficiently large (i.e., if $K > 2^{d+k(d-k)/2} \text{vol}(\Lambda)$), then $\{\vec{x}_1, \cdots, \vec{x}_{d-k+1}\}$ is an LLL-reduced basis for Λ^\perp, where $\vec{x}_i \in \mathbb{Z}^{d+1}$ is the vector obtained by taking the first $(d+1)$-terms of \vec{x}_i and Λ^\perp is the orthogonal lattice of Λ. Therefore $\vec{x}_i = (a_0, a_1, \cdots, a_d) \in \Lambda^\perp$ satisfies

$$0 = a_0 c_0 + a_1 c_1 + \cdots + a_d c_d \equiv a_0 + a_1 r + a_2 r^2 + \cdots a_d r^d \pmod{N}$$

where $r \equiv c_0^{-1} c_1 \pmod{N}$, which implies that \vec{x}_i corresponds to a polynomial $f_i(x) = a_0 + a_1 x + \cdots + a_d x^d$ with degree at most d. Hence we may consider $\{f_1, f_2, \cdots, f_{d-k+1}\}$ is a basis for Λ^\perp over \mathbb{Q} of dimension $d+1-k$. A standard result of LLL-reduced basis says that

$$\text{vol}(\Lambda^\perp) \leq \prod_{i=1}^{d-k+1} ||f_i|| \leq 2^{d-k+1} \text{vol}(\Lambda^\perp),$$

where $\text{vol}(\Lambda^\perp) = \text{vol}(\overline{\Lambda})$ with $\overline{\Lambda} = \text{span}_{\mathbb{Q}}(\Lambda) \cap \mathbb{Z}^{d+1}$. Therefore, to estimate the size of f_i, we need to estimate the volume of Λ^\perp. Observe that $\vec{y} \in \mathbb{Z}^{d+1}$ is orthogonal to the vectors $\vec{v}_0, \vec{v}_1, \cdots, \vec{v}_{k-1}$ defined in (3) if and only if it is orthogonal to the lattice Λ' spanned by

$$\vec{v}_0, \frac{\vec{v}_1 - r \vec{v}_0}{N}, \frac{\vec{v}_2 - r \vec{v}_1}{N}, \cdots, \frac{\vec{v}_{k-1} - r \vec{v}_{k-2}}{N},$$

where r is the geometric ratio of GP \vec{c}. Since $\text{vol}(\Lambda^\perp) = \text{vol}((\Lambda')^\perp) = \text{vol}(\overline{\Lambda'}) \leq \text{vol}(\Lambda')$, to estimate the volume of Λ^\perp, we need to compute $\text{vol}(\Lambda') = \sqrt{\text{det}(A^T A)}$ where A is the $k \times k$ matrix with each column written as $\vec{v}_0, \frac{\vec{v}_1 - r \vec{v}_0}{N}, \frac{\vec{v}_2 - r \vec{v}_1}{N}, \cdots, \frac{\vec{v}_{k-1} - r \vec{v}_{k-2}}{N}$, Now

$$\text{det}(A^T A) = \left| \frac{\vec{v}_0}{N} \right| \left(\frac{\vec{v}_1 - r \vec{v}_0}{N} \right) \left(\frac{\vec{v}_2 - r \vec{v}_1}{N} \right) \cdots \left(\frac{\vec{v}_{k-1} - r \vec{v}_{k-2}}{N} \right)$$

$$= \left| \frac{\vec{v}_0 \cdot \vec{v}_0}{N} \cdot \vec{v}_0 \right| \left(\frac{\vec{v}_1 - r \vec{v}_0}{N} \right) \left(\frac{\vec{v}_2 - r \vec{v}_1}{N} \right) \cdots \left(\frac{\vec{v}_{k-1} - r \vec{v}_{k-2}}{N} \right)$$

$$= \frac{1}{N^{2(k-1)}} \left| \left(\vec{v}_0 \cdot \vec{v}_0 \right) \left(\vec{v}_1 - r \vec{v}_0 \right) \left(\vec{v}_2 - r \vec{v}_1 \right) \cdots \left(\vec{v}_{k-1} - r \vec{v}_{k-2} \right) \right|$$

$$= \frac{1}{N^{2(k-1)}} \text{det}(B^T B),$$

where B is the matrix with each column vector written as $\vec{v}_0, \vec{v}_1 - r \vec{v}_0, \vec{v}_2 - r \vec{v}_1, \cdots, \vec{v}_{k-1} - r \vec{v}_{k-2}$. Since the base change matrix between the following two bases for \mathbb{Q}^{d+1},

$$\{\vec{v}_0, \vec{v}_1, \vec{v}_2, \cdots, \vec{v}_{k-1}\},$$

$$\{\vec{v}_0, \vec{v}_1 - r \vec{v}_0, \vec{v}_2 - r \vec{v}_1, \cdots, \vec{v}_{k-1} - r \vec{v}_{k-2}\},$$
is triangular and having 1 in all diagonal entries (in particular unimodular), they span the same lattice and thus we get \(\det(B^TB) = \det((\vec{v}_i \cdot \vec{v}_j)) = O(||\vec{c}||^{2k}) \). Consequently one gets

\[
\text{vol}(\Lambda^\perp) \leq \text{vol}(\Lambda') = O\left(\frac{||\vec{c}||^k}{N^{d-1}}\right)
\]

which completes the proof.

Corollary 1. With the same conditions in Theorem 1, suppose that \(k \) vectors \([c_0, c_1, \ldots, c_{d-1}], [c_1, c_2, \ldots, c_d], \ldots, [c_{k-1}, c_k, \ldots, c_{k+d-2}]\) of consecutive \(d \) terms are linearly independent over \(\mathbb{Q} \). Then we get at least one polynomial of degree \(d \) having \(r \) as a zero (mod \(N \)). Moreover if all \(f_i \) are \(O\left(\left(\frac{||\vec{c}||^k}{N^{d-1}}\right)^{1/(d-k+1)}\right) \), then we may choose all such polynomials having degree \(d \).

Proof. On the contrary, assume that all \(f_i \) found in Theorem 1 have degree \(< d \). This happens when the basis vectors \(\vec{x}_1, \ldots, \vec{x}_{d-k+1} \) for \(\Lambda^\perp \) have last coordinate 0 (i.e., \(\vec{x}_i = (a_0, a_1, \ldots, a_{d-1}, 0) \)). Then we may view \(\{\vec{x}_1, \ldots, \vec{x}_{d-k+1}\} \subset \mathbb{Z}^d \) which spans \((d-k+1)\)-dimensional orthogonal subspace to \(k \) independent vectors \([c_i, c_{i+1}, \ldots, c_{i+d-1}]\) (0 \(\leq i \leq k-1 \)) in \(\mathbb{Z}^d \), which is absurd. For the second assertion, let \(f \in \{f_1, f_2, \ldots, f_{d-k+1}\} \) be a polynomial of degree \(d \). Then for any \(f_i \) with deg \(f_i < d \), we may replace \(f_i \) by \(f_i + f \) so that the resulting polynomial has common root \(r \) (mod \(N \)) and the coefficients are of \(O\left(\left(\frac{||\vec{c}||^k}{N^{d-1}}\right)^{1/(d-k+1)}\right) \).

One can also think of the converse of Theorem 1 and it can be phrased as follows.

Theorem 2. Suppose \(1 \leq k \leq d-1 \) and \(j = \lceil \frac{d-1}{k} \rceil + 1 \). Assume that there exist degree \(d \) polynomials \(g_1(x), \ldots, g_j(x) \in \mathbb{Z}[x] \) having common root \(r \) (mod \(N \)) such that \(g_1, \ldots, g_j \) are linearly independent over \(\mathbb{Q} \). Then one can find GP \(\vec{c} = [c_0, \ldots, c_{d+k-1}] \) (mod \(N \)) of length \(d + k \) and \(||\vec{c}|| = O(||g||^{d+k-1}) \) where \(||g|| = \max||g_i|| \).

Proof. The condition \(j = \lceil \frac{d-1}{k} \rceil + 1 \) implies \((j-1)k < d + k - 1 \leq jk\). One may consider \((2d + 2k - 1) \times (d + k)\) matrix

\[
\mathcal{M} = \begin{pmatrix}
I_{d+k} \\
KG_1 \\
\vdots \\
KG_{j-1} \\
KG_j
\end{pmatrix},
\]

(5)

where \(I_{d+k} \) is the identity matrix of dimension \(d + k \) and \(KG_i (1 \leq i \leq j-1) \) is \(k \times (d + k) \) submatrix spanned by the \(k \) row vectors in \(\mathbb{Z}^{d+k} \).

The submatrix \(KG_j \) is defined similarly but the number of cyclic shifts (i.e., the number of rows) is \(d + k - 1 - (j - 1)k \). Now as in the case of the matrix in (4), one may think of LLL reduced basis of \(d + k \) column vectors of \(\mathcal{M} \). Theorem 4 in [10] again says that, if \(K \) is sufficiently large, we have one dimensional orthogonal lattice \(\vec{c} = [c_0, c_1, \ldots, c_{d+k-1}] \subset \mathbb{Z}^{d+k} \)
to the lattice of dimension \(d + k - 1 \) spanned by the row vectors of \(KG_1, \ldots, KG_j \). Since \([1, r, r^2, \ldots, r^{d+k-1}]\) is also orthogonal to all the row vectors of \(KG_1, \ldots, KG_j \) (mod \(N \)), one finds that \(\vec{c} \) and \([1, r, r^2, \ldots, r^{d+k-1}]\) spans the same space (mod \(N \)), and therefore the ratio of \(\vec{c} \) (mod \(N \)) is \(r \). Finally the volume of the lattice \(\vec{c} \) bounded by the volume of the lattice spanned by the \(d + k - 1 \) row vectors of \(KG_1, \ldots, KG_j \) and is of \(O(||g||^{d+k-1}) \).
Let \(f(x) = \sum_{i=0}^{d} a_i x^i \) be a polynomial of degree at most \(d \) such that \(h(r) \equiv 0 \pmod{N} \). Then there exist integers \(s_1, s_2, \ldots, s_{d-k+1} \) such that \(h(x) \equiv \sum_{i=1}^{d-k+1} s_i f_i(x) \pmod{N} \).

Remark 2. Letting \(\epsilon = 1 \), one has
\[
\prod_{i=1}^{2d-l+1} ||f_i|| = O(N^{2d-l+1}).
\]

Moreover, if all \(f_i \) have roughly the same size, we get \(||f_i|| = O(N^{1/2}) \). For example, if \(l = 2d - 1 \), we get two polynomials of degree at most \(d \) of size \(O(N^{1/2}) \) as expected in [7, 9].

The condition \(||f_i|| = O(N^{1/2}) \) implies that the size of \(f_i \) does not depend on the the degree \(\frac{1}{2} < d < l \) for fixed \(l \). For example, if we have a 5-term GP of \(O(N^{2/3}) \), then we may generate 2 polynomials of degree 3 for \((d, k) = (3, 2) \), and also 4 polynomials of degree 4 for \((d, k) = (4, 1) \), where all the coefficients are of \(O(N^{1/6}) \).

Corollary 3. With the same conditions in Theorem 1, suppose that \(r^{2d+2} - 1 \) is relatively prime to \(N \). Let \(h(x) \in \mathbb{Z}[x] \) be a polynomial of degree at most \(d \) such that \(h(r) \equiv 0 \pmod{N} \). Then there exist integers \(s_1, s_2, \ldots, s_{d-k+1} \) such that \(h(x) \equiv \sum_{i=1}^{d-k+1} s_if_i(x) \pmod{N} \).

Proof. For any polynomial \(f(x) = \sum_{i=0}^{d} a_i x^i \) of degree at most \(d \), define a vector \(\vec{f} = [a_0, \ldots, a_d] \) in \(\mathbb{Z}^{d+1} \). Since \(\mathbb{Z}^{d+1} \) is spanned by the basis vectors, \(\vec{f_1}, \vec{f_2}, \ldots, \vec{f_{d-k+1}}, \vec{v_0}, \vec{v_1}, \ldots, \vec{v_{k-1}} \) where \(\vec{v_i} \) are defined in (3), we have
\[
\vec{h} = \sum_{i=1}^{d-k+1} s_i \vec{f_i} + \sum_{j=0}^{k-1} t_j \vec{v}_j
\]
for some \(s_i, t_j \) in \(\mathbb{Q} \). Now letting \(\vec{r} = [1, r, \ldots, r^d] \) and noticing the ratio of the GP \(\vec{c} = [c_0, \ldots, c_{d+k-1}] \) (mod \(N \)) is \(r \), we get

\[
v_j^r = [c_j, c_{j+1}, \ldots, c_{d+j}] \equiv c_j \vec{r} \quad \text{(mod \(N \)).}
\]

Therefore

\[
0 \equiv h(r) \equiv \vec{h} \cdot \vec{r} \equiv \sum s_i f_i(r) + \sum t_j (\vec{v}_j \cdot \vec{r}) \equiv \sum t_j c_j (\vec{r} \cdot \vec{r}) = \sum t_j c_j (1 + r^2 + r^4 + \cdots + r^{2d}) \equiv \frac{r^{2d+2} - 1}{r^2 - 1} \sum t_j c_j \quad \text{(mod \(N \)).}
\]

Since \(r^{2d+2} - 1 \) is relatively prime to \(N \), we get \(\sum_{j=0}^{k-1} t_j c_j \equiv 0 \) (mod \(N \)). Consequently

\[
\vec{h} = \sum_{i=1}^{d-k+1} s_i \vec{f}_i + \sum_{j=0}^{k-1} t_j \vec{v}_j \equiv \sum_{i=1}^{d-k+1} s_i \vec{f}_i + \sum_{j=0}^{k-1} t_j c_j \vec{r} \equiv \sum_{i=1}^{d-k+1} s_i \vec{f}_i + \vec{r} (\sum_{j=0}^{k-1} t_j c_j) \equiv \sum_{i=1}^{d-k+1} s_i \vec{f}_i \quad \text{(mod \(N \)).}
\]

\[\square\]

4 Constructing GP (mod \(N \))

4.1 GP (mod \(N \)) with Length \(d + 1 \)

As is mentioned in Section 2.1.1, one finds such GP by the base-\(m \) method with \(m = \lfloor N^d \rfloor + j \) for small \(j \) so that the base-\(m \) expansion of \(N \), \(N = \sum_{i=0}^{d} a_i m^i \), gives a polynomial \(f(x) = \sum_{i=0}^{d} a_i x^i \) with \(f(m) \equiv 0 \) (mod \(N \)) and coefficients \(a_i = O(N^{\frac{d}{2}}) \). On the other hand, Theorem 1 says that we can find \(d \) such polynomials of degree \(d \) with coefficients \(O(N^{\frac{d-1}{2}}) \) having \(m \) as a common zero (mod \(N \)). It should be mentioned that \(d \) polynomials in Theorem 1 are obtained via LLL algorithm [5] not from the base-\(m \) method. Also since there are \(d \) polynomials, we have much freedom in manipulating those polynomials via rotations and translations to find optimal polynomials having good root property. By extending the idea of GP in (1) of Montgomery, we may generate GP (mod \(N \)) with length \(d + 1 \) as follows.

Proposition 1. Suppose \(p \) is a prime such that

(i) \(p < N^{1/d} \),
(ii) \(x^d \equiv N \quad \text{(mod \(p \))} \) is solvable.

Let \(r \) be a solution of \(x^d \equiv N \quad \text{(mod \(p \))} \) with \(|r - N^{1/d}| \leq \frac{p}{2} \). Then

\[
\vec{c} = [c_0, c_1, c_2, \ldots, c_d] = \left[p^{d-1}, p^{d-2} r, \ldots, p^0, r^{d-1}, \frac{r^d - N}{p} \right]
\]

is a \((d + 1) \)-term GP (mod \(N \)) of size \(O(N^{1-1/d}) \) with geometric ratio \(rp^{-1} \) (mod \(N \)).

Remark 3. Heuristic argument tells that, for randomly chosen prime \(p \) with \(p \equiv 1 \) (mod \(d \)), the probability that \(N \) is a \(d \)-th power residue (mod \(p \)) is \(\frac{1}{d} \). Therefore we may generate plenty of \(p \) and \(r \) satisfying the conditions of Proposition 1.
Remark 4. Letting $p = 1$, we get $\vec{c} = [1, r, r^2, \ldots, r^d - N]$ which is exactly the base-m method. Thus the proposed method is a generalization of the base-m method and has more flexibility. Note that p in the proposition need not necessarily be a prime as long as the solutions of $x^d \equiv N \pmod{p}$ are efficiently computable. One possible direction of this idea is to think of the solutions of $x^d \equiv N \pmod{\prod p_i}$ using Chinese Remainder Theorem from the solutions of $x^d \equiv N \pmod{p_i}$.

Remark 5. Another generalization of the Proposition 1 is using kN in place of N, where k is small and a product of small primes. Therefore if r is a solution of $x^d \equiv kN \pmod{p}$, then the GP $\vec{c} = \left[\frac{p^{d-1} - 1}{p}, \frac{p^{d-2} - 1}{p}, \ldots, \frac{r^{d} - kN}{p} \right]$ (7) produces polynomials $f_i(x)$ such that $f_i(p^{-1}r) \equiv 0 \pmod{kN}$, which implies that $f_i(x) \equiv 0 \pmod{q}$ has a solution for all primes q dividing k. In this way, one may find polynomials with good root properties. (See Example 2.)

Applying LLL algorithm on the $(d + 2) \times (d + 1)$ matrix in (4) with the GP in (6) or (7) gives d polynomials of degree d with coefficients size $O(N^{(d-1)/d})$ under the assumption of Corollary 1. All generated polynomials have $p^{-1}r$ as a common root (mod N) and the linear polynomial $px - r$ also has $p^{-1}r$ (mod N) as a root. We can also improve this method to select skewed polynomials following [12]. For given skewness s and GP \vec{c}, applying LLL algorithm on the column vectors of

$$
\begin{pmatrix}
1 & 0 & \cdots & 0 \\
0 & s & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & s^d \\
Kc_0 & Kc_1 & \cdots & Kc_d
\end{pmatrix}
$$

(8)
gives d skewed polynomials.

Example 1. Let

$$N = C59 = 716415207617514354551336164756670904340633228247871795429$$

and $d = 3$ as in [12]. We choose prime $p = 41532518328905334671$ near $N^{1/3}$. Then $x^3 - N \equiv 0 \pmod{p}$ has solution $r = 25417166874734771107$. Running LLL algorithm with the GP $\vec{c} = [p^d, pr, r^2, r^{d-1} - N]$ gives 3 polynomials of degree 3 having common root $p^{-1}r$ (mod N):

$$f_1(x) = 2294658610753x^3 + 959742943656x^2 - 1723025618025x - 771270274282,$$

$$f_2(x) = 11446806849070x^3 - 244248671393x^2 + 4093360192946x + 640959094515,$$

$$f_3(x) = 5816639714842x^3 + 718509494635x^2 - 13763827243329x + 12637580760070.$$

Since $l(x) = px - r$ has the common root $p^{-1}r$ (mod N) also, using the Corollary 3, we may express $l(x)$ as a linear combination

$$l(x) \equiv -232236f_1(x) + 1304425f_2(x) + 2658649f_3(x) \pmod{N}.$$

Example 2. Let N, d be the same as in Example 1. We choose prime $p = 15712338827$ near $N^{1/6}$. Then $x^3 \equiv 210N \pmod{p}$ has solution $r = 24686407793502193511$. Let $s = \ldots$
5000 \approx N^{\frac{1}{N}} be the skewness parameter. Running LLL algorithm on the matrix (8) with
\vec{c} = [p^2, pr, r^2, \frac{r^3 - 210N}{p}] gives 3 skewed polynomials of degree 3 having common root \(p^{-1}r \pmod{N} \):

\begin{align*}
 f_1(x) &= 115x^3 + 43124977x^2 + 1893281131859157x + 4083363045384283521, \\
 f_2(x) &= 100x^3 + 37499980x^2 + 1646332102153129x - 7182470305537674917, \\
 f_3(x) &= 2998982x^3 + 1127760117969x^2 + 374107139392334x - 2209056969433053257.
\end{align*}

The above polynomials have \(\alpha(f_1) = -1.50, \alpha(f_2) = -1.96, \alpha(f_3) = -0.09 \), of which two polynomials \(f_1 \) and \(f_2 \) have better \(\alpha \)-values than \(\alpha(f) = -0.41, \alpha(g) = -0.65 \) in page 9 of [12], where

\begin{align*}
 f(x) &= 42044x^3 - 58243x^2 + 216589713956652x + 309824665860518028, \\
 g(x) &= 189599x^3 - 262649x^2 - 11115144906243x - 312316518529540301.
\end{align*}

Moreover our resultant \(\text{Res}(f_1, f_2) = -26250N = N^{1.075} \) is just 64-digits while \(\text{Res}(f, g) = N^{1.22} \) in [12] is of 73 digits. Our resultant is 9-digits less than [12] and only 5-digits more than \(N \). Since we may try many possible candidates of \(p, r \) and \(k \) satisfying \(r^d \equiv kN \pmod{p} \), it is a more flexible method than that of the base-\(m \) method, so it is expected to get polynomials of better yields when combined with other techniques.

4.2 GP (mod N) with Length \(d + 2 \)

We introduce a form of \((d + 2)\)-term GP (mod \(N \)) of size \(O(N^{1/d}) \) which improves a GP introduced in Proposition 1.

Proposition 2. With the same conditions in Proposition 1, assume further \(N^{1/d} = O(p) \) and suppose that

\begin{equation}
 dr^{d-1}x \equiv -\frac{r^d - N}{p} \pmod{p} \tag{9}
\end{equation}

has a solution \(t \) with \(t = O(1) \). Then we can find a GP (mod \(N \)) with length \(d + 2 \) and size \(O(N^{1/d}) \).

Proof. Write \(r^* = r + tp \) where \(t \) is a solution of (9). By Hensel’s Lemma, \(r^* \) is a solution of \(x^d \equiv N \pmod{p^2} \) with \(|r^* - N^{1/d}| = O(p) \). Therefore the first \(d + 1 \) terms of the following GP

\[c^* = [c^*_0, c^*_1, \ldots, c^*_{d-1}, c^*_d, c^*_{d+1}] = \left[p^{d-1}, p^{d-2}r^*, \ldots, r^{*d-1}, \frac{r^{*d} - N}{p}, \frac{r^*r^{*d} - N}{p} \right]. \tag{10} \]

are of \(O(N^{1/d}) \), i.e., \(c^*_0, c^*_1, \ldots, c^*_d = O(N^{1/d}) \). Also the assumption \(N^{1/d} = O(p) \) implies \(r = O(p) \). Therefore \(\frac{r^*}{p} = \frac{r}{p} + t = O(1) \) and we get \(c_{d+1} = c^*_d \cdot \frac{r^*}{p} = O(N^{1/d}) \).

Remark 6. An equivalent condition of Proposition 2 is that there exists a prime \(p \) with \(p \approx N^{1/d} \) such that \(x^d \equiv N \pmod{p^2} \) has a solution \(r^* \) with \(r^* \approx p \).

Next corollary shows that the GP introduced above gives polynomials with special properties.

Corollary 4. Let \(f(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_1 x + a_0 \) be a polynomial of degree \(d \) obtained by applying \((d + 2)\)-term GP in (10). Then we get \(a_{d-1} = 0 \).
Proof. From the orthogonality condition

\[[a_0, a_1, \ldots, a_d] \perp [c_0, \ldots, c_{d-1}, c_d], [c_1, \ldots, c_{d+1}], \]

we obtain two equations

\[
c_0a_0 + \cdots + c_{d-1}a_{d-1} + c_da_d = 0,
\]

\[
c_1a_0 + \cdots + c_{d-1}a_{d-1} + c_{d+1}a_d = 0.
\]

By cancelling \(a_d\) from the above two equations,

\[
0 = (c_1c_d^* - c_0c_{d+1}^*)a_0 + \cdots + (c_{d-1}c_d^* - c_d^*c_{d+1})a_{d-2} + (c_d^2 - c_{d+1}c_{d-1})a_{d-1}
\]

\[
= (c_d^2 - c_{d+1}c_{d-1})a_{d-1} + \sum_{i=0}^{d-2}(c_{i+1}c_d^* - c_i^*c_{d+1})a_i
\]

\[
= (c_d^2 - c_{d+1}c_{d-1})a_{d-1} + \sum_{i=0}^{d-2}(c_{i+1}c_d^* - c_i^* \frac{r^*}{p} c_d^*)a_i = (c_d^2 - c_{d+1}c_{d-1})a_{d-1}
\]

Since \(c_{d+1}c_{d-1} - c_d^2 \neq 0\), we have \(a_{d-1} = 0\). \(\square\)

Therefore if we can find a GP introduced in (10), then we may generate polynomials whose second highest coefficient is zero. It may give some possible advantage in NFS algorithms. In particular, when \(d = 3\), we can generate 2 cubic polynomials of coefficients size \(O(N^{1/6})\) with coefficient of \(x^2\) zero. Unfortunately, for large \(N\), it is not easy to find such \(p\) and \(r\).

Example 3. Let \(N = 393272847844337729633 = q_1q_2\) with \(q_1 = 198211041043\) and \(q_2 = 198411171131\). Letting \(m = \lceil N^{1/3} \rceil,\ \frac{m}{10} < p < m,\) and \(|t| < 10\), we find 3 tuples \([p, r^*, t]\) satisfying the condition of Proposition 2 (i.e., \(r^3 = N \mod p^2\)) with \(r^* \approx p\) :

\[
[p, r^*, t] = [6906203, -11939854, -2], \quad [6634469, -52235909, -8], \quad [3855949, 1149030, 0]
\]

Using the last example with \(p = 3855949, r^* = r = 1149030\) and \(t = 0\), we get a 5-term GP \((\mod N)\) as \(\tilde{c} = [p^2, pr^*, r^*x^2, r^3-N, r^*(r^3-N)]\). With this GP as an input, running LLL algorithm on the lattice in (4) produces 2 cubic polynomials

\[
47x^3 + 37753x + 20989, \quad 88x^3 - 11355x + 63746,
\]

for the case \(d = 3, k = 2\). If we let \(d = 4, k = 1\), then we obtain 4 polynomials of degree 4 as follows:

\[
3685x^4 - 1107x^3 + 6503x^2 - 4298x - 5409,
9189x^4 - 2744x^3 - 2619x^2 - 2363x - 3028,
1643x^4 - 477x^3 + 7085x^2 + 3355x + 7011,
710x^4 - 212x^3 - 3979x^2 - 10256x + 3116.
\]

All 6 generated polynomials have a common root \(p^{-1}r^* \mod N\). Therefore we obtain 1 polynomial pair of degree (3,3), 8 polynomial pairs of degree (3,4), 6 polynomial pairs of degree (4,4).
Similarly as in Section 4.1, we may extend the idea in Proposition 2 to more general case when \(x^d \equiv kN \) (mod \(p^2 \)) with small \(k \) has a solution \(r^* \approx p \) so that
\[
\left[p^{d-1}, p^{d-2} r^*, \ldots, r^{*d-1}, \frac{r^{*d} - kN}{p}, \frac{r^*(r^{*d} - kN)}{p^2} \right]
\]
is a \((d + 2)\)-term GP (mod \(N \)) of \(O(N^{1-1/d}) \).

Example 4. Let \(N \) be the same with Example 3. Let \(p = 5212793 \), then \(r^* = -2210554 \) is a solution of \(x^3 \equiv 10N \) (mod \(p^2 \)). From the 5-term GP \([p^2, pr^*, r^{*3} - N, r^*(r^{*3} - N)]\), we get 2 cubic polynomials
\[
34x^3 - 63279x + 67566, \quad 37x^3 + 84455x + 138544
\]
for \(d = 3, k = 2 \), and we get 4 polynomials of degree 4
\[
7410x^4 + 3146x^3 + 7470x^2 + 3237x + 10278, \\
6175x^4 + 2616x^3 + 6225x^2 + 13244x - 2696, \\
10797x^4 + 4578x^3 - 10220x^2 - 11459x - 4718, \\
71x^4 + 31x^3 + 21176x^2 - 4903x - 3412,
\]
where all 6 polynomials have common root \(p^{1-r^*} \) (mod \(N \)).

Using \(x^d \equiv kN \) (mod \(p^2 \)) for many small \(k \) increases the probability that the equation is solvable. In practice, the GP in (11) is much easier to find than the GP with \(k = 1 \). For instance, in Example 3 with \(k = 1 \), there are 3 pairs \((p, r^*)\) such that \(r^{*3} \equiv N \) (mod \(p^2 \)) with \(|r^*| \leq 10p \) and \(\frac{m}{10} < p < m \). If we extend our search range to \(1 \leq k \leq 10 \), then have 27 of \((p, r^*)\) such that \(r^{*3} \equiv kN \) (mod \(p^2 \)) with \(|r^*| \leq 10p \) and \(\frac{m}{10} < p < m \), which is not so cost effective because we get less than three times of \((p, r^*)\) even if we increased the range of \(k \) ten times. On the other hand, reducing the search range of \(p \) from \(\frac{m}{10} < p < m \) to \(\frac{m}{100} < p < \frac{10m}{100} \) produces 9 pairs of \((p, r^*)\) with \(1 \leq k \leq 10 \). That is, we still find more GP by reducing the range of \(p \) and increasing the range of \(k \), which seems more effective since we consider congruence equations (mod \(p^2 \)) for smaller values of \(p \).

Table 1 show a small numerical data for the number of the pair \((r^*, p)\) satisfying \(r^{*3} \equiv kN \) (mod \(p^2 \)) for all \(N \) which is a product of two primes \(q_1 \neq q_2 \) with \(10^4 < q_1, q_2 < 10^5 \). Note that each pair \((r^*, p)\) corresponds to a GP of length 5 which is either the form of (10) or (11). This result suggests that 5-term GP (10) and (11) exist with high probability, even though the number of GP is relatively small for each \(N \). Moreover it says that one is more likely to find solution of \(x^3 \equiv kN \) (mod \(p^2 \)) by increasing the range of \(k \) rather than that of \(p \). It should be mentioned that it also saves the time for the following reason. If we increase the range of \(k \) from \(k = 1 \) to \(1 \leq k \leq 10 \), the number of equations \(x^3 \equiv kN \) (mod \(p^2 \)) we need to consider is increased by the factor of 10. However if we increase the range of \(p \) from \(\frac{m}{10} < p < m \) to \(\frac{m}{100} < p < 100m \), the number of equations \(x^3 \equiv kN \) (mod \(p^2 \)) we need to consider is increased by the factor of \(\pi(m/100)/\pi(m) \approx 11 \) but the catch in this case is that we have to solve the congruence equation \(x^3 \equiv kN \) (mod \(p^2 \)) for ten times larger size of \(p \) which inevitably slow down the implementation time on PARI-GP, as is shown in the table.

5 Conclusions

We have presented a method of constructing polynomials of degree \(d \) for all \(\frac{1}{2} < d < l \) having common roots (mod \(N \)) given GP (mod \(N \)) of fixed length \(l \). We also give the estimation of the
The number of N such that $x^3 \equiv kN \pmod{p^2}$ has a solution $|r^*| \leq 5p$ is

$$\begin{array}{ccc}
\text{Average number of } (r^*, p) \text{ with } |r^*| \leq 5p \text{ for each } N & \text{for } m \text{ \(\leq \) } p < m & \text{for } m \text{ \(\leq \) } p < 10m \\
\text{The number of } N \text{ such that } x^3 \equiv kN \pmod{p^2} \text{ has a solution } |r^*| \leq 5p & 89.79\% & 98.04\% & 99.91\% \\
\text{Average number of } (r^*, p) \text{ with } |r^*| \leq 10p \text{ for each } N & 3.81 & 6.57 & 12.44 \\
\text{The number of } N \text{ such that } x^3 \equiv kN \pmod{p^2} \text{ has a solution } |r^*| \leq 10p & 97.75\% & 99.83\% & 100\% \\
\text{PARI-GP time estimation on Intel U7300 1.30GHz CPU laptop} & 2 \text{ days} & 18 \text{ days} & 2 \text{ days}
\end{array}$$

Table 1: Existence of GP (10) and (11)

size of the coefficients of the obtained polynomials in terms of the size of each term of given GP, which generalizes Montgomery’s method. We showed that the GP of length $d + 1$ can be constructed in more flexible way than the usual base-m method and we find corresponding polynomials of various degrees having common root (mod N). We also stated the conditions when special GP of length $d + 2$ exists.

Acknowledgements. The authors would like to thank Peter L. Montgomery for his helpful suggestions regarding a few questions related to this paper.

References

[1] J. Gower, “Rotations and translations of number field sieve polynomials”, Proceeding of Asiacrypt 2003, LNCS 2894, pp. 302–310, 2003.

[2] T. Kleinjung, “On polynomial selection for the general number field sieve”, Mathematics of Computation 75, 2037–2047, 2006.

[3] T. Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thome, J. Bos, P. Gaudry, A. Kruppa, P. Montgomery, D. Osvik, H. te Riele, A. Timofeev, P. Zimmermann, “Factorization of a 768-bit RSA modulus”, Proceeding of Crypto 2010, LNCS 6223, pp. 333–350, 2010.

[4] S. Cavallar, B. Dodson, A. K. Lenstra, W. Lioen, P. L. Montgomery, B. Murphy, H. te Riele, K. Aardal, J. Gilchrist, G. Guillem, P. Lelyland, J. Marchand, F. Morain, A. Muffett, Chris and Craig Putnam, and P. Zimmermann, “Factorization of a 512-Bit RSA modulus”, Proceeding of Eurocrypt 2000, LNCS 1807, pp. 1–18, 2000.

[5] A. K. Lenstra, H. W. Lenstra, Jr, and L. Lovász, “Factoring polynomials with rational coefficients”, Mathematische Ann., 261, 513–534, 1982.

[6] A. K. Lenstra, and H. K. Lenstra, Jr, “The Development of the Number Field Sieve”, LNM 1554, Springer, 1993.

[7] P. Montgomery, “Small geometric progressions modulo n”, Unpublished note of 2 pages, December 1993, revised 1995 and 2005. available through e-mail correspondence

[8] P. Montgomery, “Polynomial selection for number field sieve”, presentation slide, 2006. available at www.ipam.ucla.edu/publications/scws1/scws1_6223.ppt

[9] B. Murphy, “Polynomial Selection for the Number Field Sieve Integer Factorisation Algorithm”, PhD thesis, Australian National University, July 1999.
[10] P. Nguyen, and J. Stern, “Merkle-Hellman revisited: A cryptoanalysis of the Qu-Vanstone cryptosystem based on group factorizations”, *Proceeding of Crypto 1997, LNCS 1294*, pp. 198–212, 1997.

[11] R. Crandall, and C. Pomerance, “Prime Numbers: A Computational Perspective 2ed”, Springer, 2005.

[12] T. Prest, and P. Zimmermann, “Non-linear polynomial selection for the number field sieve”, 2010. available at http://hal.archives-ouvertes.fr/docs/00/54/04/83/PDF/polyselect.pdf

[13] R. S. Williams, “Cubic Polynomials in the Number Field Sieve”, *MSc Thesis*, Texas Tech University, 2010.

[14] M. Elkenbracht-Huizing, “A multiple polynomial general number field sieve”, *Proceeding of Algorithmic Number Theory 1996, LNCS 1122*, pp. 99–114, 1996.

[15] K. Aoki, J. Franke, T. Kleinjung, A. K. Lenstra, and D. A. Osvik, “A Kilobit special number field sieve factorization”, *Proceeding of Asiacrypt 2007, LNCS 4833*, pp. 1–12, 2007.

[16] RSA challenge. available at http://www.rsa.com/rsalabs/html/challenges.html