ON INVESTIGATING EMD PARAMETERS
TO SEARCH FOR GRAVITALATIONAL WAVES

HIROTAKA TAKAHASHI
Department of Management and Information Systems Science,
Nagaoka University of Technology, Niigata 940-2188, Japan and
Earthquake Research Institute, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0032, Japan
hirotaka@kjs.nagaokaut.ac.jp

KEN-ICHI OOHARA, MASATO KANEYAMA, YUTA HIRANUMA
Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

JORDAN B. CAMP
Laboratory for Gravitational Physics, NASA Goddard Space Flight Center,
Greenbelt, Maryland 20771, USA

The Hilbert-Huang transform (HHT) is a novel, adaptive approach to time series analysis. It does not impose a basis set on the data or otherwise make assumptions about the data form, and so the time–frequency decomposition is not limited by spreading due to uncertainty. Because of the high resolution of the time–frequency, we investigate the possibility of the application of the HHT to the search for gravitational waves. It is necessary to determine some parameters in the empirical mode decomposition (EMD), which is a component of the HHT, and in this paper we propose and demonstrate a method to determine the optimal values of the parameters to use in the search for gravitational waves.

Keywords: Hilbert-Huang Transform; Gravitational Wave Data Analysis; Sifting Stoppage Criteria.

1. Introduction

The Hilbert-Huang transform (HHT), which consists of an empirical mode decomposition (EMD) followed by the Hilbert spectral analysis, was developed recently by [Huang et al. 1996, 1998, 1999]. It presents a fundamentally new approach to the analysis of time series data. Its essential feature is the use of an adaptive time-frequency decomposition that does not impose a fixed basis set on the data, and therefore, unlike Fourier or Wavelet analysis, its application is not limited by the time-frequency uncertainty relation. This leads to a highly efficient tool for the investigation of transient and nonlinear features. The HHT is applied in various fields, including materials damage detection [Yang et al. (2004)] and biomedical monitoring [Novak et al. (2004)], [Huang et al. (2005)].
Several laser interferometric gravitational wave detectors have been designed and built to detect gravitational waves directly. They include LIGO [Abbott et al. (2009)] in the US, VIRGO [Accadia et al. (2011)] in Europe, and KAGRA (LCGT) [Somiya et al. (2012)] in Japan. The direct detection of gravitational waves is important not only because it will help to investigate various unsolved astronomical problems and to find new objects that cannot be seen by other observational methods, but it will also be a new tool with which to verify general relativity and other theories in a strong gravitational field. These detectors are sensitive over a wide frequency band, a range of between about 10 Hz and a few kHz, and they have the ability to observe the waveform of a gravitational wave, which would contain astrophysical information. There are several kinds of data analysis schemes that are being developed and applied to observational data. Since gravitational waves are considered to be faint and gravitational wave detectors produce a great variety of nonlinear and transient noise, an efficient data analysis scheme is required. The HHT has the promise of being a powerful new tool to extract the signal from the noise of the detector.

In the HHT, the EMD first decomposes the data into intrinsic mode functions (IMFs), each representing a locally monochromatic frequency scale of the data. Summing over all the IMFs will recover the original data. Then, the Hilbert spectral analysis derives the instantaneous amplitude (IA) and instantaneous frequency (IF) from the analytical complex representation of each IMF; the IMF itself and the Hilbert transform of the IMF are the real and imaginary parts, respectively. The IA is obtained by taking the absolute value, and the IF is obtained by differentiating the phase.

We consider the application of the HHT to the search for the signal of gravitational waves [Camp et al. (2007); 2009; Stroeer et al. (2009); 2011]. It is necessary to determine some parameters in the EMD component of the HHT, and in this paper we propose and evaluate a method to determine the optimal values of the parameters to use in the search for gravitational waves.

This paper is organized as follows. In Sec. 2, we briefly give an overview of the HHT. In Secs. 3 and 4, we propose and demonstrate our method, as described above. We summarize our work in Sec. 5.

2. Brief Description of the Hilbert–Huang Transform

In this section, we offer a brief introduction of the two HHT components: the Hilbert spectral analysis and the EMD. We will show that the Hilbert transform can lead to an apparent time-frequency-energy description of a time series. However, this description may not be consistent with physically meaningful definitions of IF and IA, since the Hilbert transform is based on Cauchy’s integral formula of holomorphic functions that tend to zero sufficiently quickly at infinity. The EMD, however, can generate components of the time series for which the Hilbert transform can lead to physically meaningful definitions of these two instantaneous quantities. Hence,
the combination of the EMD and the Hilbert transform provides a more physically meaningful time-frequency-energy description of a time series.

We will assume that the input $h(t)$ is given by sampling a continuous signal at discrete times, $t = t_j$ for $j = 0, 1, \cdots, N - 1$.

2.1. Hilbert spectral analysis

The purpose of the development of the HHT is to provide an alternative view of the time-frequency-energy paradigm of data. In this approach, the nonlinearity and nonstationarity can be dealt with better than by using the traditional paradigm of constant frequency and amplitude. One way to express the nonstationarity is to find the IF and IA, which is why the Hilbert spectral analysis was included as a part of the HHT.

The Hilbert transform of a function $h(t)$ is defined by

$$v(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{h(\tau)}{t-\tau} d\tau = h(t) * \left(\frac{1}{\pi t} \right),$$

where P and $*$ denote the Cauchy principal value of the singular integral and the convolution, respectively. If a function $h(t)$ belongs the Lebesgue space L^p for $1 < p < \infty$, the Hilbert transform is well-defined and $F(t) = h(t) + iv(t)$ is the boundary value of a holomorphic function $F(z) = F(t + iy) = a_{HT}(t)e^{i\theta(t)}$ in the upper half-plane. Then the IA $a_{HT}(t)$ and the instantaneous phase function $\theta(t)$ are defined by

$$a_{HT}(t) = \sqrt{h(t)^2 + v(t)^2} \quad \text{and} \quad \theta(t) = \tan^{-1} \left\{ \frac{v(t)}{h(t)} \right\}.$$ (2)

The IF $f_{HT}(t)$ is given by

$$f_{HT}(t) = \frac{1}{2\pi} \frac{d\theta(t)}{dt} = \frac{1}{2\pi a_{HT}(t)^2} \left(h(t) \frac{dv(t)}{dt} - v(t) \frac{dh(t)}{dt} \right).$$ (3)

However, the IF obtained using this method is not necessarily physically meaningful unless the time series data $h(t)$ is a monocomponent signal or a narrow-band signal [Cohen (2005); Huang et al. (2005)]. For example, if $h(t)$ is the sum of two sinusoidals, $h(t) = a_1 \cos \omega_1 t + a_2 \cos \omega_2 t$, where the amplitudes a_1 and a_2 are constants and ω_1 and ω_2 are positive constants, the IF varies with the time and may become negative although the signal is analytic. To explore the applicability of the Hilbert transform, [Huang et al. (1998)] showed that the necessary conditions to define a meaningful IF are that the functions are symmetric with respect to the local zero mean and that they each have the same number of zero crossings and extrema. Thus they applied the EMD to the original data $h(t)$ to decompose it into IMFs and a residual. A more detailed description is given in Sec. 2.2.
2.2. Empirical mode decomposition and ensemble empirical mode decomposition

The empirical mode decomposition (EMD) has an implicit assumption that, at any given time, the data may have many coexisting oscillatory modes of significantly different frequencies, one superimposed on the other. For each of these modes, we define an intrinsic mode function (IMF) that satisfies the following conditions:

1. For all the IMFs of the data set, the number of extrema and the number of zero crossings must either be equal or differ at most by one.
2. At any data point, the mean values of the upper and the lower envelopes defined by using the local maxima and the local minima, respectively, are zero.

With the above definition of an IMF, we can then decompose any function through the EMD, which, in a sense, is a sifting process using a series of high-pass filters. The algorithm is summarized in the following outline and Fig. 1 shows a schematic example of EMD sifting:

- $h_1(t) = h(t)$
- For $i = 1$ to i_{max}
 - For $k = 1$ to k_{max}
 - Identify the local maxima and minima of $h_{i,k}(t)$ (Fig. 1a).
 - $U_{i,k}(t) =$ the upper envelope joining the local maxima using a cubic spline (Fig. 1b).
 - $L_{i,k}(t) =$ the lower envelope joining the local minima using a cubic spline (Fig. 1b).
 - $m_{i,k}(t) = (U_{i,k}(t) + L_{i,k}(t))/2$ (Fig. 1b).
 - $h_{i,k+1}(t) = h_{i,k}(t) - m_{i,k}(t)$ (Fig. 1b).
 - Exit from the loop k if a certain stoppage criterion, which will be described below.
 - IMF$_i(t) = c_i(t) = h_{i,k}(t)$ (Fig. 1d).
 - $h_{i+1}(t) = h_i(t) - c_i(t)$ (Fig. 1d).
- Residual: $r(t) = h_{i_{\text{max}}+1}(t)$

The parameter i_{max} specifies the number of IMFs to be extracted from $h(t)$, which is usually based on the characteristics of the signal. The parameter k_{max} must be sufficiently large, several thousand or more, since it determines when the mode decomposition stops even if the stoppage criterion has not been satisfied.

The EMD starts with identifying all the local extrema and then connecting all the local maxima (minima) by a cubic spline to form the upper (lower) envelope. In Appendix A we review the details of the algorithm of extrema finder (XF 0, 1, and 2) that we use to identify the local extrema. The upper and lower envelopes usually encompass all the data between them. Their mean is $m_1(t)$. The difference between
the input $h(t)$ and $m_1(t)$ is the first proto-mode, $h_1(t)$, that is, $h_1(t) = h(t) - m_1(t)$. By construction, h_1 is expected to satisfy the definition of an IMF. However, that is usually not the case since changing a local zero from a rectangular to a curvilinear coordinate system may introduce new extrema, and further adjustments are needed. Therefore, a repeat of the above procedure is necessary. The EMD serves two purposes:

1. To eliminate the background waves on which the IMF is riding;
2. To make the wave profiles more symmetric.

The process of the EMD has to be repeated as many times as is necessary to make the extracted signal satisfy the definition of an IMF. In the iterating processes, $h_1(t)$ is treated as a proto-IMF, which is then treated as data in the next iteration: $h_1(t) - m_{11}(t) = h_{11}(t)$. After k iterations, the approximate local envelope symmetry condition is satisfied, and h_{1k} becomes the IMF c_1, that is, $c_1(t) = h_{1k}(t)$.

The approximate local envelope symmetry condition of the EMD is called the stoppage criterion. Several different types of stoppage criteria have been adopted.
One is a criterion determined by using the Cauchy type of convergence test, which was used in \cite{Huang et al. (1998)}:

$$\frac{1}{N-1} \sum_{j=0}^{N-1} |m_{1k}(t_j)|^2 < \sum_{j=0}^{N-1} |h_{1k}(t_j)|^2 < \varepsilon,$$

with a predetermined value ε. This stoppage criterion appears to be mathematically rigorous, but because how small is small enough begs an answer, it is difficult to implement.

The second type of criterion, termed the S stoppage, was proposed in \cite{Huang et al. (1999, 2003)}. With this type of stoppage criterion, the EMD stops only after the numbers of zero crossings and extrema are:

1. Equal or differ at most by one;
2. Stay the same for S consecutive times.

Extensive tests by \cite{Huang et al. (2003)} suggest that the optimal range for S should be between 3 and 8, but the lower number is favored. Obviously, any selection is ad hoc, and a rigorous justification is needed. Thus in Sec. 3, we propose a policy to justify the stoppage criteria.

The first IMF should contain the finest scale or the shortest-period oscillation in the signal, which can be extracted from the data by $h(t) - c_1(t) = r_1(t)$. The residue, r_1, contains the longer-period oscillations. This residual is then treated as a new data source and, in order to obtain the IMF of the next lowest frequency, it is subjected to the same process of the EMD as described above. The procedure is repeatedly applied to all subsequent r_n, and the result is $r_{n-1}(t) - c_n(t) = r_n(t)$. The decomposition process finally stops when the residue, r_n, becomes a monotonic function or a function with only one extremum from which no more IMF can be extracted. Thus, the original data are decomposed into n IMFs and a residue, r_n, which can be either the adaptive local median or trend: $h(t) = \sum_{l=1}^{n} c_l(t) + r_n(t)$.

The EMD can be applied to observed data in order to decompose it into signal and noise. In the original form of the EMD, however, mode mixing frequently appears. By definition, mode mixing occurs when either a single IMF consists of signals of widely disparate scale, or when signals of a similar scale reside in different IMF components. It is a consequence of signal intermittency, which can not only cause serious aliasing in the time-frequency distribution, but can also make the individual IMFs devoid of physical meaning. To overcome this drawback, \cite{Wu and Huang (2005)} proposed the ensemble EMD (EEMD), which defines the true IMF components as the mean of an ensemble of trials, each consisting of the signal plus a white (Gaussian) noise of finite standard deviation (finite amplitude).

The EEMD algorithm contains the following steps:

1. Add a white (Gaussian) noise series to the targeted data;
2. Decompose the data with added white noise into IMFs;
(3) Repeat steps (1) and (2) multiple times but with a different white (Gaussian) noise series each time;
(4) Obtain the ensemble means of the corresponding IMFs of the decompositions.

The standard deviation of the white (Gaussian) noise \(\sigma_e \) is not necessarily small. On the other hand, the number of trials, \(N_e \), must be large.

With the EMD, the signal usually appears in the IMF \(c_i \) with a small value of \(i \), typically \(i = 1 \), while it shifts to \(i = 3 \) for the EEMD. Since in the EEMD \(c_1(t) \) and \(c_2(t) \) contain only noise, we specify \(i_{\text{max}} = 6 \) in this paper.

3. Proposed Method

We consider the application of HHTs to the search for gravitational waves. There are several decisions that must first be made before conducting either the EMD or the EEMD. First we compare three kinds of extrema finders, XF 0, 1 and 2 as algorithms to identify the local extrema, the details of which are described in Appendix A. We must also choose the stoppage criterion \(\varepsilon \) or \(S \) and, for the EEMD, the standard deviation \(\sigma_e \) of the white (Gaussian) noise to be added to each trial. Moreover, we need to find the optimal value of some of these parameters. Thus, in this section, we present a method to find the optimal values of the parameters.

3.1. Setup for the simulation

We prepared analytic time series data by combining Gaussian noise with a sine-Gaussian signal, which is often used to model gravitational wave bursts, as follows:

\[
h(t) = s(t) + n(t) = a_{SG} \exp \left[-(t/\tau)^2 \right] \sin \phi(t) + n(t),
\]

where we let \(\tau = 0.016 \) sec. For the frequency of the signal, we considered the two cases:

(1) Constant frequency, where the phase \(\phi(t) \) and frequency \(f_{SG} \) are given by

\[
\phi(t) = 6\pi t_{001} \quad \text{and} \quad f_{SG} = \frac{1}{2\pi} \frac{d\phi}{dt} = 300 \text{ Hz},
\]

where \(t_{001} = \frac{t}{0.01 \text{ sec}} \).

(2) Time-dependent frequency, where \(\phi(t) \) and \(f_{SG}(t) \) are given by

\[
\phi(t) = 2\pi (3.0 t_{001} + 0.24 t_{001}^2) \quad \text{and} \quad f_{SG}(t) = (300 + 48.0 t_{001}) \text{ Hz}.
\]

The noise \(n(t) \) was generated by Gaussian random variates with mean zero and standard deviation \(\sigma = 1.0 \). Figure 2 shows the signal \(s(t) \) of \(a_{SG} = 3.12 \), the noise of \(\sigma = 1 \) and time series \(h(t) \) for \(a_{SG} = 3.12 \) (SNR = 20) and \(a_{SG} = 1.56 \) (SNR = 10), where SNR is defined by \(\text{SNR} = \sqrt{\sum_j [s(t_j)]^2 / \sigma} \).

For both the EMD and EEMD of the signal given by Eq. (5), we wish to determine the optimal extrema finder (XF 0, 1, or 2), the optimal value of \(\sigma_e \) and the
optimal stoppage criterion (ε or S). To examine the accuracy in calculation of the IF, for each of algorithms and parameters with SNR = 10 and 20, we calculated the IF for 400 samples, each of which was generated by adding a Gaussian random variate with a different seed to the 0.5 second data. The sampling frequency of the data was 4096 Hz. A description of how we determined the accuracy of the IF is given in Sec. 3.2.

For the EEMD, we chose the size of the ensemble to be $N_e = 200$. We tried other values of N_e, and we verified that the results change little even with $N_e > 100$ but that $N_e \approx 50$ is too small.

3.2. Method to examine the accuracy of the IF

In this subsection, we present a method to examine the accuracy of the IF, which will determine the optimal values of the parameters.

First, we performed the EMD and EEMD procedures for 400 samples of each data set with the signal given by Eq. (5). We determined the optimal parameters for different signal-to-noise ratios (SNR; SNR = 10 or 20), the algorithm of extrema finder (XF 0, 1, or 2) to identify the local extrema, the stoppage criterion ($S = 2, 4, 6$ and $ε = 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}$) of the EMD, and the standard deviation ($σ_e = 0.5, 1.0, 1.5, 2.0, 3.0, 5.0, 10.0, 20.0$) of the white (Gaussian) noise to be added to each trial when we performed the EEMD.
On Investigating EMD Parameters to Search for Gravitational Waves

Figure 3 shows the instantaneous amplitudes IA of each IMF obtained using (XF, σe, ε) = (0, 2, 0, 10^{-4}) for f_{SG} = 300Hz (left) and f_{SG} = (300 + 48t_{001})Hz (right) with SNR=20. Note that only 30 samples are plotted. From Fig. 3, it is apparent that IMF3 has a peak for this parameter set. However, which of IMFs catches the signal depends on the SNR and the parameters used in the EMD procedure. Figure 4 shows the instantaneous frequencies IF of IMF3 for these data. Each of the lower figures shows a magnification of the upper one around the signal injection point (t = 0 sec). These figures indicate that the IF displays the characteristics of the injected signal when the IA dominates over the noise level, while the IF is physically
meaningless during the other period.

We make the linear and quadratic regression for the instantaneous frequency \(f_{\text{IMF}}(t) \) of each IMF using the least squares method with weights \(A^2(t) \), where \(A(t) \) is the IA of the IMF:

1. The linear regression: \(f_{\text{fit}}(t) = (a_1 + b_1 t_{001}) \text{Hz} \),
2. The quadratic regression: \(f_{\text{fit}}(t) = (a_2 + b_2 t_{001} + c_2 t_{001}^2) \text{Hz} \),

with fitting range \(-0.015 \text{sec} \leq t \leq 0.015 \text{sec}\) or \(-0.01 \text{sec} \leq t \leq 0.01 \text{sec}\), that is, \(-1.5 \leq t_{001} \leq 1.5\) or \(-1.0 \leq t_{001} \leq 1.0\), respectively.

For indices of the accuracy of fitting, we calculate the following quantities:

- The relative error of fitting against the exact frequency:
 \[
 \rho = 100 \times \frac{\text{WTSS}\left[f_{\text{fit}}(t) - f_{\text{SG}}(t)\right]}{\text{WTSS}\left[f_{\text{SG}}(t)\right]},
 \]
 \[(8)\]
 where the weighted total sum of squares (WTSS) is defined by
 \[
 \text{WTSS}\left[f(t)\right] = \sum_j A^2(t_j) f^2(t_j).
 \]
 \[(9)\]
- The deviation of the IF for each IMF \(f_{\text{IMF}} \) around the exact frequency:
 \[
 \delta = 100 \times \frac{\text{WTSS}\left[f_{\text{IMF}}(t) - f_{\text{SG}}(t)\right]}{\text{WTSS}\left[f_{\text{SG}}(t)\right]},
 \]
 \[(10)\]
- The coefficient of determination:
 \[
 R^2 = 1 - \frac{\text{WTSS}\left[f_{\text{fit}}(t) - f_{\text{IMF}}(t)\right]}{\text{WTSS}\left[f_{\text{IMF}}(t)\right]}.
 \]
 \[(11)\]

Which IMF includes the signal depends on the parameters. IMF 1 always includes the signal for the EMD, while IMF 2, 3 or 4 includes the signal for the EEMD. Thus, we consider the IMF to include the signal if the relative error \(\rho \) is the smallest for each parameter set.

The deviation \(\delta \) indicates how widely \(f_{\text{IMF}} \) fluctuates around the exact frequency. Even if the error of fitting \(\rho \) is small, the procedure is considered unstable when \(\delta \) is large.

The coefficient of determination \(R^2 \) is a measure of the goodness of fitting. In general, \(R^2 = 1 \) if the regression line perfectly fits the data and \(R^2 = 0 \) indicates no relationship between \(f_{\text{IMF}} \) and \(t \). That is, for the signal of time-dependent frequency, an \(R^2 \) near 1 indicates better fit. For the signal of constant frequency, on the other hand, \(R^2 \) approaches 0 as the fitting becomes better.

4. Results

In this section, we present the results of the simulation based on Sec.3. We calculate the IF by means of the HHT for 400 samples of each parameter set with each signal,
Table 1. The comparison of the EMD and the EEMD. The coefficients of the linear regression \((a_1, b_1) \) and the quadratic regression \((a_2, b_2, c_2) \), and the quantities \(\rho, \delta \) and \(R^2 \) defined by Eqs. (5)~(11) for signals of the constant frequency and the time-dependent frequency with \(\text{SNR}=20 \) and 10 are listed. The results of the linear regression are shown in rows in which no value is listed in columns headed \('c' \).

Fitting Range: \(-1.5 \leq t_{\Delta t} \leq 1.5 \)	\(\text{XF}=0, S=4, \sigma_o=2.0 \) (for EEMD)						
Constant Frequency: \(f_{\Delta t}=300 \text{Hz} \); \(a=300, b=0, c=0 \)	\(a \)	\(b \)	\(c \)	\(\rho \)	\(\delta \)	\(R^2 \)	
\(\text{SNR}=20 \)	EMD	300.4±2.2	0.2±5.3	1.0±0.8	6.4±2.1	0.02±0.03	
	EEMD	299.6±1.3	−0.2±2.4	0.6±0.4	2.9±0.6	0.04±0.05	
\(\text{SNR}=10 \)	EMD	307.0±18.4	0.6±25.4	6.1±4.2	16.8±6.2	0.09±0.12	
	EEMD	301.5±3.2	−0.5±5.5	1.5±0.8	5.3±1.3	0.06±0.06	
Time-Dependent Frequency: \(f_{\Delta t}=(300+48t_{\Delta t}) \text{Hz} \); \(a=300, b=48, c=0 \)	\(a \)	\(b \)	\(c \)	\(\rho \)	\(\delta \)	\(R^2 \)	
\(\text{SNR}=20 \)	EMD	301.1±4.5	45.2±9.2	1.4±1.3	7.4±2.7	0.65±0.22	
	EEMD	297.4±7.3	41.6±17.0	9.3±17.4	2.5±2.2	7.4±2.6	0.69±0.16
\(\text{SNR}=10 \)	EMD	309.8±23.3	27.9±32.1	7.4±5.4	17.7±6.5	0.24±0.22	
	EEMD	301.7±3.5	41.3±7.4	2.1±1.4	5.9±1.8	0.72±0.17	

make the linear and quadratic regression and compare calculated coefficients with the exact values, which are \(a_1 = a_2 = 300.0 \) and \(b_1 = b_2 = c_2 = 0 \) for the signal of the constant frequency given by Eq. (11) and \(a_1 = a_2 = 300.0, b_1 = b_2 = 48.0 \) and \(c_2 = 0 \) for the signal of the time-dependent frequency given by Eq. (11). Here we use the XF 0, 1 and 2 for the extrema finder and choose \(S = 2, 4, 6 \) or \(\varepsilon = 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}, 10^{-6} \) for the stoppage criteria. For the EEMD, we also used the standard deviation of the added white (Gaussian) noise of \(\sigma_o = 0.5, 1.0, 1.5, 2.0, 3.0, 5.0, 10.0, 20.0 \).

In the following tables, we show the mean values and the standard deviations for 400 samples of the coefficients of the fitting \(a, b \) and \(c \), the relative error \(\rho \), the deviation of the IF \(\delta \), and the coefficient of determination \(R^2 \).

First, to compare the EMD and the EEMD, the typical results of the linear and quadratic regression for signals of \(\text{SNR}=20 \) and 10 with the constant frequency defined by Eq. (5) and the time-dependent frequency defined by Eq. (7) are shown in Table 1. The results of the linear regression are listed if the column headed \(c \) is blank, while the results of the quadratic regression are listed otherwise.

The mean values of coefficients for \(\text{SNR}=20 \) using the EMD acceptably agree with the exact values, but the standard deviations of the coefficient and the value of \(\delta \) tend to be large. It means that the IFs fluctuate widely and sometimes an inaccurate estimate of the IF will be given. A typical example is illustrated in
Fig. 5. The IF obtained with the EMD fluctuate more widely than that with the EEMD, while the dashed lines, which represent the linear regression, match very well with the frequency of injected signals, especially for SNR=20. The accuracy of the EMD is inadequate for SNR=10. We found that the accuracy with the EMD is not improved even with other extrema finder or other stoppage criterion. On the other hand, the EEMD gives better results with smaller standard deviations for signals for SNR=20. Even for SNR=10, the results are similar to or better than those of the EMD for SNR=20. Thus, hereinafter we consider only the EEMD.

Secondly, we compare the algorithm of extrema finder XF 0, 1 and 2. Some of the fitting coefficients for the signal calculating using the EEMD with $\sigma_e = 2.0$ and the stoppage criterion with $S = 4$ are listed in Table 2. There is little significant difference among XF 0, 1 and 2 for simple signals as we considered here. As shown in Fig. 6 the difference between XF 0 and 1 is very small in particular. We found, however, that XF 2 sometimes becomes unstable with a small SNR and a strict stoppage criterion, that is, a small value of ε for the Cauchy type of convergence or a large value of S for the S stoppage. Although we show the results for the linear regression and the fitting range of $-1.5 \leq t_{001} \leq 1.5$ with a specific parameter set in Table 2 it is generally the case with the quadratic regression, with fitting range of $-1.0 \leq t_{001} \leq 1.0$ or with other parameter sets.

Next, let us consider effects of σ_e, the standard deviation of the white Gaussian noise to be added to make ensembles for the EEMD. The coefficients of the linear regression for the signal of the constant frequency and the time-dependent frequency calculating using the EEMD with $\sigma_e = 0.5$ through 20.0 are listed in Table 3. Those for the signal of the time-dependent frequency are plotted in Fig. 7. Although the dependence of the accuracy on σ_e is rather weak, the best value of σ_e is near 3.0 for SNR=20, while it is 1.5 for SNR=10. Each of them corresponds to the amplitude a_{SG} of the signal defined by Eq. 5.
This result implies that we should perform the EEMD with some different values of the SNR=10 signal of the time-dependent frequency. The fact that the IAs get worse with more rigid criterion, or with small value of ε, the IAs of IMF3 and IMF4 calculated with ε = 10^{-3}, 10^{-4}, 10^{-5}, and 10^{-6}, and S = 4 and 6 for the SNR=10 signal of the time-dependent frequency. The fact that the IAs

Table 2. The comparison of the extrema finder XF 0, 1 and 2. The coefficients of the linear regression (a_1, b_1), and the quantities ρ, δ and R_2^2 are listed.

EEMD: XF = 0, S = 4; Fitting Range: -1.5 ≤ t_{001} ≤ 1.5	Constant Frequency: f_{SG} = 300Hz; a = 300, b = 0, c = 0	Time-Dependent Frequency: f_{SG} = (300 + 48t_{001})Hz; a = 300, b = 48, c = 0																										
XF	a	b	ρ	δ	R^2	XF	a	b	ρ	δ	R^2																	
SNR=20	0	299.6±1.3	-0.2±2.4	0.6±0.4	2.9±0.6	SNR=20	0	299.1±1.2	46.6±2.7	0.7±2.4	0.7±0.4	3.2±0.7	SNR=20	0	300.4±1.3	30.6±2.8	0.1±2.6	0.7±0.4	3.3±0.7	SNR=20	0	301.5±3.2	4.0±2.6	0.0±2.6	6.3±0.8	0.0±2.6	0.0±2.6	0.0±2.6
1	299.7±1.3	-0.3±2.5	0.6±0.4	2.9±0.6	7.0±0.7	1	302.0±3.3	-0.3±2.5	1.6±2.0	5.4±1.4	0.0±2.6	0.0±2.6	SNR=10	0	300.5±4.5	1.0±2.6	2.6±1.7	7.0±2.2	SNR=10	0	305.9±4.5	1.0±2.6	2.6±1.7	7.0±2.2	0.0±2.6	0.0±2.6		
2	300.4±1.3	46.6±2.8	0.7±2.5	0.7±0.5	3.5±0.9	2	301.3±3.5	41.3±7.4	2.1±2.1	5.9±1.8	0.0±2.6	0.0±2.6	0.0±2.6	0.0±2.6	0.0±2.6													

Fig. 6. A sample of the instantaneous frequency IF obtained with the EEMD using XF 0, 1 and 2 for f_{SG} = 300Hz (left) and f_{SG} = (300 + 48t_{001})Hz (right) with SNR=20 (top) and 10 (bottom).

that is, a_{SG} = 3.12 and 1.56 for SNR=20 and 10, respectively. It is the case with the quadratic regression and/or with the fitting range of −0.1 ≤ t_{001} ≤ 0.1, too. This result implies that we should perform the EEMD with some different values of ε to search and analyze a signal whose amplitude is not known in advance.

Finally, we will compare stoppage criteria. The coefficients for the same signal as Table 1 calculated with XF 0, σ_e = 2.0 adopting the S stoppage criteria of S = 2, 4 and 6, and the Cauchy type of convergence test with ε = 10^{-1} ∼ 10^{-6} are shown in Table 2. Inadequate accuracies are obtained with ε ≥ 10^{-2}. The accuracy sometimes get worse with more rigid criterion, or with small value of ε, especially for SNR=10. It is because mode mixing occurs to a certain extent as shown in Fig. 8 which plots the IAs of IMF3 and IMF4 calculated with ε = 10^{-4}, 10^{-5} and 10^{-6}, and S = 4 and 6 for the SNR=10 signal of the time-dependent frequency. The fact that the IAs
Table 3. The comparison of σ_c.

SNR=20	a_1	b_1	ρ	δ	R^2
0.5	300.7±1.7	0.2±4.4	0.9±0.6	5.4±1.6	0.02±0.03
1.0	299.5±3.0	-0.0±3.7	1.1±0.6	4.8±1.6	0.03±0.05
1.5	299.2±1.4	-0.1±2.6	0.7±0.4	3.1±0.8	0.04±0.06
2.0	299.6±1.3	-0.2±2.4	0.6±0.4	2.9±0.6	0.04±0.05
3.0	300.1±1.3	-0.3±2.5	0.6±0.3	2.8±0.6	0.04±0.05
5.0	300.9±1.3	-0.4±2.6	0.7±0.4	3.1±0.7	0.04±0.05
10.0	302.6±1.7	0.3±3.3	1.1±0.6	4.6±1.0	0.03±0.04
20.0	309.6±4.1	8.7±7.7	4.0±2.0	10.2±2.3	0.07±0.07

SNR=10	a_1	b_1	ρ	δ	R^2
0.5	294.7±8.1	-0.4±9.1	3.2±2.0	1.6±3.0	0.06±0.08
1.0	299.1±3.1	-0.5±5.3	1.4±0.8	5.2±1.2	0.06±0.07
1.5	300.5±3.1	-0.5±5.3	1.4±0.8	5.2±1.3	0.05±0.06
2.0	301.5±3.2	-0.5±5.5	1.5±0.8	5.3±1.3	0.06±0.06
3.0	302.8±3.5	-0.1±6.1	1.7±1.0	5.7±1.6	0.06±0.07
5.0	304.8±4.3	1.1±8.1	2.4±1.5	6.7±2.1	0.06±0.08
10.0	311.4±6.8	7.9±11.7	4.9±2.6	11.2±3.0	0.08±0.09

Time-Dependent Frequency: $f_{BG} = (300 + 48001)\text{Hz}$; $a = 300, b = 48, c = 0$

SNR=20	a_1	b_1	ρ	δ	R^2
0.5	301.5±2.8	44.9±7.0	1.2±1.1	6.3±2.3	0.67±0.19
1.0	300.1±6.2	43.5±6.0	1.7±1.0	5.9±1.9	0.67±0.20
1.5	298.2±1.6	46.3±3.0	1.0±0.5	3.6±0.8	0.90±0.06
2.0	299.1±1.2	46.7±2.7	0.7±0.4	3.2±0.7	0.92±0.04
3.0	299.9±1.2	46.6±2.7	0.7±0.4	3.0±0.7	0.92±0.04
5.0	300.9±1.3	46.6±2.7	0.7±0.4	3.1±0.7	0.92±0.04
10.0	302.0±1.7	46.7±3.2	1.0±0.6	4.0±0.9	0.88±0.06
20.0	303.9±3.2	46.2±5.0	1.6±1.0	6.9±1.4	0.73±0.11

SNR=10	a_1	b_1	ρ	δ	R^2
0.5	295.3±19.2	31.0±16.0	5.5±3.5	10.6±4.5	0.45±0.28
1.0	298.2±3.3	41.3±7.2	2.1±1.4	6.1±1.7	0.73±0.15
1.5	300.4±3.3	41.4±7.2	2.0±1.4	5.9±1.7	0.73±0.16
2.0	301.7±3.5	41.3±7.4	2.1±1.4	5.9±1.8	0.72±0.17
3.0	303.2±3.7	41.2±7.6	2.3±1.5	6.2±1.9	0.72±0.17
5.0	304.8±4.3	41.5±8.2	2.5±1.7	6.7±2.2	0.70±0.18
10.0	307.8±6.6	40.3±9.9	3.3±2.3	8.9±2.6	0.59±0.20

Fig. 7. The coefficients a_1 and b_1 (left), and the relative error ρ, the deviation of the IF δ and the coefficient of determination R^2 (right) of the linear regression for the signal of the time-dependent frequency for various σ_c. The dots and the error bars indicate the mean value and the standard deviation of 400 samples.
Table 4. The comparison of stoppage criteria.

| EEMD: XF = 0, S = 4; Fitting Range: −1.5 ≤ t01 ≤ 1.5 |
|---|---|---|---|---|
| Constant Frequency: f_{SG} = 300Hz; a = 300, b = 0, c = 0 |
SNR=20	S = 2	a_{1}	b_{1}	ρ	δ	R^{2}
4	299.6±1.3	−0.2±2.4	0.6±0.4	2.9±0.6	0.04±0.05	
6	300.0±1.3	−0.2±2.5	0.6±0.3	3.0±0.6	0.04±0.05	
ε = 10^{-1}	302.1±1.9	−0.0±4.0	1.1±0.7	3.7±1.2	0.04±0.05	
10^{-2}	299.9±4.3	−0.1±3.6	1.5±0.7	4.7±1.2	0.03±0.04	
10^{-3}	300.2±1.4	−0.1±2.5	0.7±0.4	2.9±0.7	0.05±0.06	
10^{-4}	301.3±2.0	−0.3±3.1	0.9±0.5	4.3±1.0	0.02±0.03	
10^{-6}	299.5±1.3	−0.3±2.4	0.7±0.4	2.7±0.7	0.05±0.07	

SNR=10	S = 2	298.5±3.2	−0.8±5.7	1.5±0.9	5.1±1.3	0.06±0.07
4	301.5±3.2	−0.5±5.5	1.5±0.8	5.3±1.3	0.06±0.06	
6	303.4±3.6	−0.3±6.4	1.9±1.1	5.9±1.6	0.06±0.06	
ε = 10^{-1}	311.8±16.7	2.2±16.6	6.8±39.2	12.1±53.3	0.10±0.10	
10^{-2}	292.2±5.4	−1.1±8.6	3.3±19.0	6.8±22.2	0.08±0.10	
10^{-3}	299.4±3.1	−0.7±5.4	1.4±0.8	4.9±1.2	0.06±0.07	
10^{-4}	305.2±4.1	0.4±7.9	2.4±1.4	6.6±2.0	0.06±0.07	
10^{-5}	295.1±4.6	−0.9±6.0	2.3±1.2	5.4±1.6	0.07±0.09	
10^{-6}	301.4±2.8	−0.5±5.2	1.4±0.8	4.7±1.1	0.06±0.07	

Time-Dependent Frequency: f_{SG} = (300 + 48t_{01})Hz; a = 300, b = 48, c = 0

SNR=20	S = 2	a_{1}	b_{1}	ρ	δ	R^{2}
4	299.6±1.2	46.7±2.7	0.7±0.4	3.2±0.7	0.92±0.04	
6	300.7±1.2	46.7±2.7	0.7±0.4	3.2±0.7	0.92±0.04	
ε = 10^{-1}	303.1±2.4	44.0±5.5	1.4±1.0	4.5±1.9	0.80±0.16	
10^{-2}	300.4±8.0	42.2±6.3	2.2±1.2	5.4±2.0	0.74±0.18	
10^{-3}	299.8±1.6	46.3±2.9	1.0±0.5	3.3±0.8	0.92±0.05	
10^{-4}	300.1±1.3	46.6±2.9	0.7±0.4	3.3±0.8	0.90±0.05	
10^{-5}	302.6±3.3	43.5±4.7	1.4±0.8	4.9±1.6	0.74±0.14	
10^{-6}	297.7±2.0	45.4±2.9	1.0±0.5	3.4±0.9	0.90±0.07	

SNR=10	S = 2	297.4±3.5	41.2±7.2	2.2±1.5	5.8±1.8	0.75±0.15
4	301.7±3.5	41.3±7.4	2.1±1.4	5.9±1.8	0.72±0.17	
6	304.3±4.2	40.1±8.3	2.5±1.7	6.6±2.2	0.67±0.19	
ε = 10^{-1}	314.2±22.7	25.8±18.8	8.2±4.6	13.4±5.5	0.33±0.26	
10^{-2}	288.5±10.4	34.1±12.1	5.1±3.2	8.7±3.7	0.58±0.26	
10^{-3}	298.7±3.2	41.6±6.7	2.0±1.3	5.6±1.6	0.76±0.14	
10^{-4}	306.9±5.9	37.9±10.2	3.2±2.2	7.4±2.7	0.60±0.22	
10^{-5}	293.5±10.7	34.7±9.9	4.2±2.5	7.6±3.0	0.61±0.23	
10^{-6}	301.8±3.3	41.3±6.8	2.0±1.4	5.5±1.7	0.75±0.15	

of IMF4 for ε = 10^{-5} and 10^{-6} are comparable to those of IMF3 indicates mode mixing. The S stoppage criteria of S = 4 and 6 is likely to be stable.

Note that b_1 (the first derivative of frequency) in the case of time-dependent frequency for the SNR=10 is always estimated smaller because of the noise effects and lower SNR.

Although we presented the results of the linear regression with fitting range −0.015sec ≤ t ≤ 0.015sec for the most part, they are the same in all essentials as those of the quadratic regression and/or with fitting range −0.01sec ≤ t ≤ 0.01sec. For further tables of all results, refer to [Takahashi et al. (2013)].
Fig. 8. Instantaneous amplitudes of IMF3 and IMF4 calculated with various stoppage criteria for the SNR=10 signal of the time-dependent frequency.

Table 5. Relative CPU time required by calculation of EEMD with each parameter set. Values are shown in units of the CPU time for XF 0 and \(S = 4 \).

Stoppage Criterion	\(S = 2 \)	\(S = 4 \)	\(S = 6 \)	\(\varepsilon = 10^{-3} \)	\(\varepsilon = 10^{-4} \)	\(\varepsilon = 10^{-5} \)	\(\varepsilon = 10^{-6} \)
XF 0	0.6	3.0	1.4	0.8	2.4	23.0	35.0
XF 1	1.6	2.9	4.1	2.1	6.0	23.4	76.7
XF 2	5.5	10.6	14.7	4.4	12.8	39.4	118.6

5. Summary

We investigated the possibility of the application of the HHT to the search for gravitational waves. Since EMD and EEMD are an empirical method, there are some parameters to be chosen. In this paper, we proposed and demonstrated a method to look for optimal values of these parameters.

We found that the most important parameter is the stoppage criterion \(\varepsilon \) or \(S \) for EMD and EEMD. The strict criterion is generally adequate. However, it sometimes causes mode mixing and always requires long CPU time, as shown in Table 5.

Selection of extrema finder XF affects required CPU time considerably, while it does not affect calculated IFs so much. CPU time with XF 1 is twice or more as long as that with XF 0, and XF 2 requires still longer CPU time.

The dependence of the accuracy of the IFs on \(\sigma_e \), the magnitude of the Gaussian noise to be added to each trial of the EEMD, is weak. The best value of \(\sigma_e \) is determined by the amplitude of the signal rather than by the noise level.

As a result, EEMD with the following optimal parameter ranges may be promising: extrema finder of XF 0; the stoppage criterion of \(S = 2 \)–4, or \(\varepsilon = 10^{-4} \); the standard deviation of the Gaussian noise \(\sigma_e = 1.0\)–3.0.

We used a time series data that combined Gaussian noise with a sine-Gaussian
signal, but the time series data from the detectors of gravitational waves have many non-Gaussian and nonstationary noise. Therefore, the parameter ranges discussed in this paper cannot be used in a straightforward manner in the search for real gravitational waves. However, using the ‘playground data’ method (which usually uses 10% of the real data to fix the search parameters and to estimate the noise background), we can determine the optimal values of these parameters using our proposed method.

Based on this research, we will investigate the possibility of constructing an alert system using the HHT for the search for gravitational waves [Kaneyama et al. (2013)]. This alert system will be discussed elsewhere.

Acknowledgments

The authors would like to thank Alexander Stroeer for many discussions about topics related to the research presented here. This work was supported in part by JSPS KAKENHI, a Grant-in-Aid for Scientific Research (No. 23540293; K. Oohara and H. Takahashi) and a Grant-in-Aid for Young Scientists (No. 23740207; H. Takahashi). This work was also supported in part by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 24103005; K. Oohara and H. Takahashi) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Appendix A. Algorithms to identify the local extrema

In EMD sifting, we need to identify local extrema. Here we review the details of the algorithms that we used.

We assume here that the time series data $h(t)$ is produced by sampling a continuous signal at a discrete time, $t = t_j$ for $j = 0, 1, \cdots, N - 1$. Thus, the value of $h(t)$ is given by $h_j = h(t_j)$.

A.1. Extrema finder 0 (XF 0) : EMD classic

We extract local maxima using the following simple algorithm:

1. If $h_{j-1} < h_j$ and $h_j > h_{j+1}$, then h_j is a local maximum at $t = t_j$.
2. If $h_{j-1} < h_j = h_{j+1}$ and $h_{j+1} > h_{j+2}$, we take the point $t = (t_j + t_{j+1})/2$, $h = h_j + (h_j - h_{j-1})/2$ as a local maximum.

The regions where $h_{j-1} = h_j = h_{j+1}$ are ignored in searching local maxima. Then we calculate upper envelope by interpolating the extracted local maxima (\hat{t}_p, \hat{h}_p), $1 \leq p \leq N_U$, where N_U is the number of the local maxima. In general, however, $t_0 = \hat{t}_1$ and $t_N > \hat{t}_{N_U}$. Thus we add an interpolation point (\hat{t}_0, \hat{h}_0), where $\hat{t}_0 = t_0$ and \hat{h}_0 is calculated by a quadratic interpolation using (\hat{t}_k, \hat{h}_k), $k = 1, 2$ and 3. An interpolation point $(\hat{t}_{N_U+1}, \hat{h}_{N_U+1})$ is also added similarly. Then upper envelope $U(t)$ is calculated by a cubic spline interpolation with (\hat{t}_p, \hat{h}_p), $0 \leq p \leq N_U + 1$.

A similar procedure is followed to extract the local minima and calculate lower envelope \(L(t) \).

A.2. Extrema finder 1 (XF 1) : EMD TRUMAX1

When we calculate upper and lower envelope, \(U(t) \) and \(L(t) \) as described above (EMD Classic), the time series data \(h(t) \) sometimes crosses \(U(t) \) or \(L(t) \). That is, there may be points where \(h(t_j) > U(t_j) \) or \(h(t_j) < L(t_j) \). This is because we did not identify the local extrema exactly. Thus, we make the following revision: We extract candidates of local maxima (\(\hat{h}_{p}, \tilde{h}_{p} \)) and minima (\(\hat{h}_{q}, \tilde{h}_{q} \)) using the similar algorithm to EMD Classic, but the step (2) in EMD Classic is modified as

\[
\text{(2)'} \quad \text{If } h_{j-1} < h_j = h_{j+1} \text{ and } h_{j+1} > h_{j+2}, \text{ we take the point } t = t_j, \ h = h_j \text{ as a candidate of a local maximum.}
\]

Since each point of local extrema \(\hat{t}_p \) or \(\tilde{t}_q \) is equal to one of the sample, or observed, points \(t_j \) of the time series data \(h(t) \), we calculate a cubic spline function of \(h(t) \) with 3 to 7 interpolation points near \(t = t_j \). It is a piecewise cubic polynomial as

\[
H(t) = a_k \Delta t^3 + b_k \Delta t^2 + c_k \Delta t + \hat{h}_k \quad \text{for } \hat{t}_{k-1} \leq t \leq \hat{t}_k,
\]

where \(\max(j-3,0) \leq k \leq \min(j+3,N-1) \) and \(\Delta t = t - \hat{t}_k \). Then we take the point where \(H'(t) = 0 \) and \(H''(t) < 0 \) as ‘true’ local maximum near \(\hat{t}_p \). Note that ‘\(\text{'} \)’ means the derivative with respect to \(t \). Such a point is certainly found in the region between \(t_{j-1} \) and \(t_j \) (\(= t_q \)) or between \(t_j \) and \(t_{j+1} \). Similarly the point where \(H'(t) = 0 \) and \(H''(t) > 0 \) is taken as ‘true’ local minimum near \(\tilde{t}_q \).

Connecting these ‘true’ local extrema by a cubic spline, we obtain the upper and lower envelope \(U(t) \) and \(L(t) \).

A.3. Extrema finder 2 (XF 2) : EMD TRUMAX2

Even if we calculate the envelope using EMD TRUMAX1, we sometimes found that the time series data \(h(t) \) still crosses the upper envelope \(U(t) \) or the lower envelope \(L(t) \). Thus we replace the position of local maxima and minima as follows:

1. Extract the revised maxima (\(\hat{t}_p, \tilde{h}_p \)) through the same procedure as EMD TRUMAX1 and connect these points to calculate the revised candidate of upper envelope \(U_c(t) \).
2. Calculate the difference \(\Delta h(t) = h(t) - U_c(t) \). Note that \(\Delta h(\hat{t}_p) = 0 \) and \(\Delta h(t) \) becomes positive if crossing of \(h(t) \) and \(U_c(t) \) takes place.
3. Under the procedure similar to EMD TRUMAX1, calculate a cubic spline function \(\Delta H(t) \) near \((\hat{t}_p, \tilde{h}_p) \) and identify the local maxima \((\hat{t}_p, \tilde{h}_p) \) of \(\Delta h(t) \), where \(\Delta H'(t) = 0 \) and \(\Delta H''(t) < 0 \).
4. Move the local maximum points \(\hat{t}_p \) given at step (1) to \(\hat{t}_p \) obtained at step (3) and \(\tilde{h}_p = \tilde{h}_p \) (of step (1)) + \(\Delta H(\hat{t}_p) \), which can be considered to be the interpolation value of \(h(t) \) at \(t = \hat{t}_p \).
(5) Connecting these local maxima to obtain the new upper envelope $U(t)$.

A similar procedure is followed to obtain the new lower envelope $L(t)$.

References

Abbott B. P. et al. (2009). LIGO: the Laser Interferometer Gravitational-Wave Observatory. Rep. Prog. Phys., 72: 076901.

Accadia T. et al. (2011). Calibration and sensitivity of the Virgo detector during its second science run. Class. Quantum Grav., 28: 025005.

Camp J. B., Cannizzo J. K. and Numata K. (2007). Application of the Hilbert–Huang transform to the search for gravitational waves. Phys. Rev. D, 75: 061101(R).

Camp J. B. et al. (2009). Search for gravitational waves with the Hilbert–Huang Transform. Adv. in Adap. Data Anal., 1 (4): 643–666.

Cohen, L. (2005). Time-Frequency Analysis. Prentice Hall, Englewood Cliffs, N. J.

Huang, N. E., Long, S. R. and Shen, Z. (1996). The mechanism for frequency downshift in nonlinear wave evolution. Adv. Appl. Mech., 32: 59–111.

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C. and Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London, Ser. A, 454: 903–993.

Huang, N. E., Shen, Z., and Long, S. R. (1999). A new view of nonlinear water waves — The Hilbert spectrum. Annu. Rev. Fluid Mech., 31: 417–457.

Huang, N. E., Wu, M. L., Long, S. R., Shen, S. S., Qu, W. D., Gloersen, P. and Fan, K. L. (2003). A confidence limit for the position empirical mode decomposition and Hilbert spectral analysis. Proc. R. Soc. London, Ser. A, 459: 2317–2345.

Huang, N. E. et al. (2005). Hilbert–Huang Transform and its Applications, World Scientific, Singapore.

Kaneyama, M, Oohara, K., Takahashi, H., Camp, J., B. (2013). Towards constructing an Alert System with the Hilbert-Huang Transform – Search for signals in noisy data–. submitted to ICIC Express Letters.

Novak, V., Yang, A. CC., Lepicovsky, L., Goldberger, A. L., Lipsitz, L. A. and Peng, C. K. (2004). Multimodal pressure–flow method to assess dynamics of cerebral autoregulation in stroke and hypertension. Biomed. Eng. Online, 3: 39.

Somiya, K. for the KAGRA Collaboration. (2012). Detector configuration of KAGRA – the Japanese cryogenic gravitational-wave detector. Class. Quantum Grav., 29: 124007.

Stroeer, A., Cannizzo, J., K. and Camp, J., B. (2009). Methods for detection and characterization of signals in noisy data with the Hilbert–Huang transform. Phys. Rev. D, 79: 124022.

Stroeer, A., Blackburn, L. and Camp, J., B. (2011). Comparison of signals from gravitational wave detectors with instantaneous time–frequency maps. Class. Quantum Grav, 28: 155001.

Takahashi, H., Oohara, K., Kaneyama, M., Hiranuma, Y. and Camp, J., B. (2013). On Investigating EMD Parameters to Search for Gravitational Waves – All Results –. http://astrol.sc.niigata-u.ac.jp/~oohara/HHT/ws-aada-AllResults.pdf (accessed 2013.06.04)

Yang, J. N., Lei, Y., Lin, S. and Huang, N. E. (2004). Hilbert–Huang Based Approach for Structural Damage Detection. Journal of Engineering Mechanics American Society of Civil Engineers 130, 85.

Wu, Z. and Huang, N. E. (2005). Ensemble Empirical Mode Decomposition: A Noise
Hirotaka Takahashi, Ken-ichi Oohara et al.

Assisted Data Analysis Method, COLA Tech. Rep. 193, Center for Ocean-Land-Atmosphere Studies, Calverton, Md.