FIELD EVALUATION OF A SYNTHETIC FEMALE SEX PHEROMONE FOR THE LEAFMINING MOTH PHYLLOCNISTIS CITRELLA (LEPIDOPTERA: GRACILLARIIDAE) IN FLORIDA CITRUS

STEPHEN L. LAPIONTE1, DAVID G. HALL1, YASUHIRO MURATA2, ANA LIA PARRA-PEDRAZZOLI3,4, JOSE MAURICIO S. BENTO5, EVALDO F. VILELA6 AND WALTER S. LEAL7

1USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Ft. Pierce, FL 34945
2Fuji Flavor Co. Ltd., 3-5-8 Midorigaoka, Hamura-city Tokyo 205-8503, Japan
3Depto de Entomologia, Fitopatologia e Zoologia Agrícola, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP 13418-900, Brazil
4Universidade Federal de Viçosa, Viçosa, MG 36571-000, Brazil
5Maeda-Duffley Laboratory, Department of Entomology, University of California, Davis, CA 95616

The leafmining moth, Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae), was discovered in southern Florida in 1993 (Heppner 1993) and has since spread to all Florida citrus-growing counties and the states of Alabama, Louisiana, Texas in 1994, and California (Gil 1999) and Hawaii in 2000 (Nagamine & Heu 2003). Damage includes loss of photosynthetic capacity from mining, stunting and malformation of leaves, and potential damage from increased susceptibility of leafminer-damaged leaves to the citrus canker pathogen (Bergamin-Filho et al. 2000; Cook 1988).

Ando et al. (1985) found attraction in Japanese populations of P. citrella to traps baited with (Z,Z)-7,11-hexadecadienal. Attempts to show attraction of this material to populations in other countries were not successful (Sant’ana et al. 2003). Leal et al. (2006) found the three active compounds (Z,Z,E)-7,11,13-hexadecatrienal [Z7Z11E13-16Ald], (Z,Z)-7,11-hexadecadienal [Z7Z11-16Ald], and (Z)-7-hexadecenal [Z7-16Ald] by electroantennograms (EAG) from female pheromone gland extracts of a Brazilian population of P. citrella in a ratio of 30:10:1, respectively (Fig. 1). They also demonstrated that traps baited with a mixture of the two major constituents caught more males than traps baited with virgin female P. citrella.

Here we report the results from two field trials. The first documents attraction to a binary lure consisting of the two major EAG-active components. In the second trial, we deployed a factorial design to determine the influence of trap height in a mature citrus grove on trap catch and the relative attraction of a binary and a tertiary lure. For the first trial, six traps (Pherocon 1C Wing Trap, Trecé, Inc., Adair, OK) were deployed in a citrus grove at the experimental farm of the U.S. Horticultural Research Laboratory, Ft. Pierce, FL. Three traps were baited with rubber septa impregnated with a binary pheromone mixture consisting of Z7Z11E13-16Ald (96% pure) and Z77Z11-16Ald (98% pure) in a ratio of 3:1, and three traps were left without lures as controls. Septa were loaded with 50 µg of the major and 17 µg of the minor compound in 100 µl hexane per septum. Traps were randomly assigned to orange trees (approximately 2 m tall) within a section of 6 rows of 29 trees/row naturally infested with citrus leafminer. Traps were rotated daily between trees and the adhesive cards were removed daily and examined for the presence of P. citrella. Traps were deployed and counted for 3 d in August, 2005.

For the second trial, a factorial design (3 × 3 × 6) was used to investigate the effect of trap height and pheromone lure composition on trap catch over 6 d. Traps were deployed at heights of 1.3, 1.7, and 2.0 m within the same section of orange trees used in Trial 1. Traps were baited with septa impregnated with either the binary mixture as in Trial 1, a tertiary blend consisting of Z7Z11E13-16Ald and Z7Z11-16Ald and Z7-16Ald in a ratio of 30:10:1, or control septa impregnated with 100 µl hexane. Three replications were used for a total of 27 traps per d and 162 (3 height × 3 lures × 6 d) total traps counted over 6 d. Traps were randomly assigned to trees within the section. Spacing of the trees was 4.6 m within rows...
A total of 391 baited traps with the exception of one adult on d differences were indicated by the ANOVA. When significant differences were based on transformed data to normalize residuals before analysis by using natural log (x + 1). All cm). We transformed data to normalize residuals presumably by Ageniaspis citricola (Hymenoptera: Encyrtidae), interfered with our attempts to rear virgin female leafminers to compare with the synthetic lures.

Counts were made of the entire card (23 × 28 cm). We transformed data to normalize residuals before analysis by using natural log (x + 1). All tests of significance were based on transformed data. Untransformed means are presented. Data were analyzed by ANOVA. When significant differences were indicated by the F statistic at α = 0.05, means were separated by Fisher’s protected least significant difference (LSD) (Abacus Concepts 1996).

No P. citrella adults were captured in the unbaited traps with the exception of one adult on d 3. A total of 391 P. citrella was captured in traps baited with the binary lure. There was no significant effect of d (F = 2.73; df = 2, 12; P = 0.106). More P. citrella were captured in traps baited with the binary lure (F = 9.92; df = 1, 16; P < 0.0001). The binary lure attracted a mean (± SEM) of 43.4 ± 7.8 compared with 0.4 ± 0.3 adults/trap/d in the control traps.

In the second trial, a total of 6 adult P. citrella over 6 d was found in traps baited without pheromone. Traps baited with the binary mixture caught a total of 508 P. citrella and the tertiary mixture caught 605 P. citrella. There was no effect of trap height on trap catch (F = 1.02; df = 2, 108; P = 0.366). There was a significant effect of d on trap catch (F = 6.90; df = 5, 144; P < 0.0001) (Table 1) with a significant lure × day interaction (F = 1.96; df = 10, 144; P = 0.042). The effect of lure was significant (F = 358.52; df = 2, 144; P < 0.0001). There was no significant difference between the binary and tertiary lures for any of the days tested except for d 1 when there was a significant height effect (F = 3.90; df = 2, 18; P = 0.039) and a significant interaction between height and lure (F = 3.90; df = 4, 18; P = 0.019). This was due to a higher capture in the traps baited with the tertiary lure at 2 m (39.3 ± 7.4) compared with 13.7 ± 2.0 at 1.3 m and 17.7 ± 7.4 at 0.7 m. On all subsequent days there was no effect of height, no significant difference between binary and tertiary lures, nor was there a significant interaction between height and lure (α = 0.05) (Table 1).

Table 1. Mean (± SEM, n = 3) Number of P. Citrella Adults Captured in Traps Baited with Rubber Septa Impregnated with a Binary Lure, a Tertiary Lure, or Unbaited (Control) over 6 d At Ft. Pierce, FL.

Day	Lure	Catch
1	Control	0.2 ± 0.1 a
	Binary	15.0 ± 2.4 b
	Tertiary	23.6 ± 4.8 c
2	Control	0.2 ± 0.1 a
	Binary	6.6 ± 1.5 b
	Tertiary	7.0 ± 1.5 b
3	Control	0.1 ± 0.1 a
	Binary	8.4 ± 1.1 b
	Tertiary	12.3 ± 3.7 b
4	Control	0.0 ± 0.0 a
	Binary	7.3 ± 1.8 b
	Tertiary	6.9 ± 1.6 b
5	Control	0.0 ± 0.0 a
	Binary	10.4 ± 1.6 b
	Tertiary	9.9 ± 1.9 b
6	Control	0.1 ± 0.1 a
	Binary	8.7 ± 1.2 b
	Tertiary	7.6 ± 1.2 b

Means grouped by d followed by the same letter are not significantly different (α = 0.05, Fisher’s protected LSD).

Summary

Traps baited with a binary mixture in the ratio of 30:10 of two EAG-active compounds, (Z,Z,E)-7,11,13-hexadecatrienial and (Z,Z)-7,11-hexadecadienial, attracted significantly more moths of the leafmining moth P. citrella compared with unbaited traps in a Florida citrus grove. The addition of a third EAG-active compound, (Z)-7-hexadecenal, did not increase trap catch. Trap height, at 0.7, 1.3, and 2 m did not significantly affect daily trap catch on 5 of 6 d. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that also may be suitable.

References Cited

Abacus Concepts. 1996. StatView Reference. Berkeley, CA.

Ando, T., K. Y. Taguchi, M. Uchiyama, T. Ujiye, and H. Kuroko. 1985. (7Z-11Z)-7,11-hexadecadienal: sex attractant of the citrus leafminer moth, *Phyllocnistis citrella* Stainton (Lepidoptera, Phyllocnistidae). Agric. Biol. Chem. Tokyo 49: 3633-3653.

Bergamin-Filho, A., L. Amorim, F. Laranjeira, and T. R. Gottwald. 2000. Epidemiology of citrus canker in Brazil with and without the Asian citrus leafminer. (Abstr.) In Proceedings of the International Citrus Canker Research Workshop, Ft. Pierce FL, June 20-22, 2000. Online. Division of Plant Industry,
Florida Department of Agriculture and Consumer Services.

COOK, A. A. 1988. Association of citrus canker pustules with leafminer tunnels in North Yemen. Plant Dis. 72: 546.

GIL, R. J. 1999. Citrus leafminer found in California. California Department of Food and Agriculture, California Plant Pest & Disease Report 18: 79-80.

HEPPNER, J. B. 1993. Citrus leafminer, Phyllocnistis citrella, in Florida (Lepidoptera: Gracillariidae: Phyllocnistinae). Trop. Lepid. 4: 49-64.

LEAL, W. S., A. L. PARRA-PEDRAZZOLI, A. A. COSSE, Y. MURATA, J. M. S. BENTO, AND E. F. VILELA. 2006. Identification, synthesis, and field evaluation of the sex pheromone from the citrus leafminer, Phyllocnistis citrella. J. Chem. Ecol. 32(1): 155-168.

NAGAMINE, W. T., AND R. A. HEU. 2003. Citrus leafminer Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae). State of Hawaii, Department of Agriculture, New Pest Advisory No. 00-01, available at http://www.hawaiiag.org/hdoa/npa/npa00-01-clminer2.pdf

SANT’ANA, J., E. CORSEUIL, A. G. CORREA, AND E. F. VILELA. 2003. Evaluation of Phyllocnistis citrella Stainton (Lepidoptera, Gracillariidae) attraction to (Z,Z) and (Z,E)-7,11-hexadecadienal in citrus orchards in Brazil. BioCiencias. 11: 177-181.