Potenciais evocados auditivos de longa latência em crianças com gagueira

Long-latency auditory evoked potential in children with stuttering

Gislaine Machado Jerônimo1, Ana Paula Rigatti Scherer1, Pricila Sleifer1

1 Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.

DOI: 10.31744/einstein_journal/2020AO5225

RESUMO

Objetivo: Analisar os valores de latência e amplitude do Mismatch Negativity e potencial cognitivo P300 em crianças com gagueira, sem queixas auditivas, com limiares auditivos dentro dos padrões de normalidade, comparando aos achados de um Grupo Controle. Métodos: Estudo transversal, do qual participaram 50 crianças de ambos os sexos, sendo 15 com gagueira e 35 sem gagueira, entre 6 e 11 anos de idade, sem diagnóstico de patologias otológicas ou outras doenças. Todas as crianças realizaram avaliação audiológica periférica (meatoscopia, audiometria tonal, audiometria vocal e medidas de imitância acústica) e avaliação audiológica central (Mismatch Negativity e potencial cognitivo P300). Para avaliação da fluência, as crianças com gagueira realizaram anamnese específica, seguida da filmagem de uma fala espontânea, que foi transcrita e analisada quanto à severidade da gagueira. Resultados: Houve diferença significativa nas latências do Mismatch Negativity e do potencial cognitivo P300, assim como na amplitude do Mismatch Negativity. Conclusão: Verificou-se atraso nas latências do Mismatch Negativity e potencial cognitivo P300 nas crianças com gagueira, assim como aumento na amplitude do Mismatch Negativity, ao serem comparados com crianças do Grupo Controle. No Grupo com Gagueira foram igualmente identificadas alterações na morfologia das ondas.

Descritores: Eletrofisiologia; Potenciais evocados; Audição; Gagueira; Criança

ABSTRACT

Objective: To analyze the latency and the amplitude values of Mismatch Negativity and P300 cognitive potential in children with stuttering, with no auditory complaints, with auditory thresholds within the normality range, comparing them to the findings of a Control Group. Methods: A cross-sectional study involving 50 children of both sexes, 15 with stuttering and 35 without stuttering, aged 6 to 11 years, with no diagnosis of ear pathology or other diseases. All children were submitted to peripheral audiological evaluation (meatoscopy, pure tone testing, speech audiometry, and acoustic immittance measures) and a central audiological evaluation (investigation of the Mismatch Negativity and P300 cognitive potential). For the evaluation of fluency, all children with stuttering had a specific history taken and were video recorded in a spontaneous speech. Afterwards, the transcription was done, followed by speech analysis to classify children according the severity of stuttering. Results: There was a significant difference in the latencies of Mismatch Negativity and P300 cognitive potential, as well as in the amplitude of Mismatch Negativity. Conclusion: There was a significant delay in the latencies of Mismatch Negativity and P300 cognitive potential, as well as increase in the amplitude of the Mismatch Negativity in children with stuttering when compared to children in the Control Group. Changes in the morphology of the waves were found in the Stuttering Group.

Keywords: Electrophysiology; Evoked potentials; Hearing; Stuttering; Child
INTRODUÇÃO

Os potenciais evocados auditivos de longa latência (PEALL) são utilizados na investigação cognitiva, com destaque para o potencial cognitivo P300, um potencial endógeno, o qual mostra respostas bioelétricas que permitem distinguir a fluência da fala. A gagueira é um distúrbio da fluência, que envolve alterações no fluxo da fala, por meio de avaliação objetiva, bem como auxiliar em técnicas terapêuticas de reabilitação.

OBJETIVO

Analisar os valores de latência e amplitude dos potenciais evocados auditivos de longa latência, em crianças com gagueira, sem queixas auditivas, com limiares auditivos dentro dos padrões de normalidade, comparando aos achados aos de um Grupo Controle.

MÉTODOS

Estudo realizado ao longo do ano de 2017, observacional, transversal e comparativo, contemporâneo e individual, aprovado pelo Comitê de Ética em Pesquisa do Instituto de Psicologia da Universidade Federal do Rio Grande do Sul (UFRGS), sob o número 2011039. A amostra por conveniência consistiu de crianças de ambos os sexos, entre 6 e 11 anos de idade, divididas em dois grupos: Grupo Estudo com Gagueira Desenvolvimental (GE), composto por crianças com severidade de leve a muito grave, e Grupo Controle (GC), composto por crianças com desenvolvimento normal.

As informações sobre idade, sexo, preferência manual, escolaridade, comprometimento linguístico, social, neural e otológico, assim como ter ou não frequência de terapia fonaudiológica, foram obtidas por anamnese geral. Como critério de exclusão, foram consideradas queixas auditivas, de linguagem ou de aprendizagem, não saber contar de 1 a 50, qualquer tipo de perda auditiva, avaliação otorrinolaringológica alterada, apresentação de síndromes ou alterações psiquiátricas, ter participação em terapia fonaudiológica para gagueira e, por algum motivo, não ter realizado os procedimentos e nem concluído os exames. Todas as crianças realizaram avaliação auditiva periférica e avaliação eletrofisiológica central.

O GE foi previamente triado por duas fonaudiólogos. O diagnóstico de gagueira foi confirmado e confirmado por profissionais fonaudiólogos com experiência na área. Referente à análise de concordância sobre o diagnóstico, foi utilizada a medida de Kappa.

Para avaliação audiológica, foram realizadas anamnese, inspeção dos meatos auditivos externos, audiometria tonal limiar, logoaudiometria e imitanciometria. A pesquisa do MMN e P300 foi realizada por equipamento Masbe ATC Plus, da marca Contronics®, com uso de fone de inspeção earfone 3A e eletrodos de prata. A impedância elétrica foi inferior a 5Ω em cada derivação, e a diferença entre os três eletrodos não excedeu a 2Ω. Após a verificação da impedância, foi realizada a varredura do eletroencefalograma.

Os potenciais evocados auditivos de longa latência (PEALL) são utilizados na investigação cognitiva, com destaque para o potencial cognitivo P300, um potencial endógeno, o qual mostra respostas bioelétricas que permitem distinguir a fluência da fala. A gagueira é um distúrbio da fluência, que envolve alterações no fluxo da fala, por meio de avaliação objetiva, bem como auxiliar em técnicas terapêuticas de reabilitação.
Os parâmetros utilizados para a pesquisa do MMN foram estímulos auditivos apresentados de modo monaural, com frequência de 1.000Hz (50 ciclos), para o estímulo frequente, e 2.000Hz (50 ciclos), para o estímulo raro, em uma intensidade de 70 dBNA para ambos. A taxa de apresentação foi de 1,8 pulso por segundo (pps). As promediações foram de 2.000 estímulos e o paradigma de 90/10, com polaridade alternada. Na aquisição, o fundo de escala foi de 200µV, filtro passa-alta de 1Hz, filtro passa-baixa de 20Hz, Notch – SIM, janela temporal 500ms e amplitude do traçado até 7,5µV. Durante esse processo, os indivíduos foram condicionados a assistir um vídeo interessante e silencioso no tablet, com a intenção de desviar a atenção sobre os estímulos auditivos apresentados. Antes de iniciar o exame, a criança foi orientada sobre a execução do teste, no sentido de prestar atenção no vídeo.

Na pesquisa do P300, foram utilizados estímulos binaurais com intensidade de 80 dBNA para ambas as orelhas. A frequência foi de 1.000Hz com 50 ciclos de duração e 20% de rise e decay time, com envelope trapezoidal, e a do estímulo raro foi tone burst de 2.000Hz, com 100 ciclos de duração com 20% de rise e decay time com envelope trapezoidal, apresentados em paradigma do tipo raro-frequente (odd ball), com probabilidade de 80% e 20% de aparecimento, respectivamente. Os estímulos foram apresentados na taxa de 0,8pps. Na aquisição, o fundo de escala foi de 200 µV, filtro passa-alta de 01Hz, filtro passa-baixa de 20Hz, Notch – SIM, e janela de leitura utilizada foi de 1.000ms. Durante este processo, as crianças tiveram que prestar atenção nos estímulos auditivos frequentes e raros apresentados, contando apenas os raros. A latência do P300 foi marcada no ponto de máxima amplitude da onda, e sua análise foi realizada por meio da onda resultante.

Os exames foram realizados duas vezes. Com objetivo de verificar a concordância da análise do MMN e P300, foram utilizados os métodos estatísticos de Kappa. Os resultados foram organizados sob forma de estatística descritiva. O teste Kolmogorov-Smirnov foi utilizado para avaliar a normalidade dos dados. Para comparar as orelhas em relação aos resultados de latência e amplitude, o teste t Student foi aplicado. O nível de significância adotado foi de 5% (p<0,05), e as análises foram realizadas pelo software (SPSS) para Windows, versão 17.0.

RESULTADOS

Foram selecionadas 15 crianças com gagueira, as quais tinham diferentes graus de severidade: 4 de leve para moderada, 6 moderada, 2 moderada para grave, 1 grave e 2 grave para muito grave. Ao total, 50 crianças participaram efetivamente do estudo. A tabela 1 apresenta a caracterização da amostra.

Variáveis	GE (n=15)	GC (n=35)
Sexo		
Masculino	12 (80)	20 (57,14)
Feminino	3 (20)	15 (42,96)
Preferência manual		
Destro	8 (53,3)	31 (88,6)
Canhoto	7 (46,7)	3 (8,6)
Ambidestro	0	1 (2,9)

Idade, mínimo/máximo	GE (n=15)	GC (n=35)
6-11	8,40±1,80	9,29±1,52

Orelha	GE (n=15)	GC (n=35)	Valor de p*	
Direita Latência MMN	15	332,01±77,65	185,24±43,57	<0,001*
Amplitude MMN	15	8,11±3,28	5,25±1,61	<0,001*
Esquerda Latência MMN	15	330,66±81,21	182,24±37,80	<0,001*
Amplitude MMN	15	7,75±3,30	5,65±2,21	0,011*

* Teste t de Student; p<0,05 significativo.

Na pesquisa de P300, foi observada resposta em 14 das crianças com gagueira, com exceção de 1. As diferenças de desempenho observadas entre os grupos estão ilustradas na tabela 3.
Na tabela 4, estão evidenciadas as médias e os desvios padrão da latência e da amplitude dos PEALL MMN e P300 das crianças canhotas em relação às destas.

Tabela 3. Resultados obtidos na avaliação do P300 para latência e amplitude

Variáveis	GE (n=14)	GC (n=35)	Valor de p*		
Latência P300	14	697,19±142,84	14	308,17±18,81	<0,001*
Amplitude P300	14	11,70±3,89	35	13,52±4,85	0,216

* Teste t de Student; p≤0,05 significativo.

GE: Grupo Estudo com Gagueira Desenvolvimento.

Contrário aos nossos achados, há relato na literatura de valores de amplitude do MMN menores em crianças com gagueira comparadas a um Grupo Controle. O fato de as meninas desenvolverem a linguagem mais cedo pode contribuir para esta diferença.

Tabela 4. Comparação da latência e da amplitude do Mismatch Negativity e P300, conforme preferência manual das crianças do Grupo Estudo com Gagueira Desenvolvimento

Variáveis	Destras	Canhotas	Valor de p*		
MMN orelha direita	8	322,40±85,83	7	342,99±72,17	0,880
Latência	8	7,99±3,18	7	8,26±3,63	0,627
Amplitude	8	314,04±74,85	7	349,65±99,84	0,065
MMN orelha esquerda	8	6,30±2,62	7	9,42±3,37	0,417
Latência	8	706,30±147,12	6	685,05±149,80	0,997
Amplitude	8	11,71±3,14	6	11,71±5,06	0,795

* Teste t de Student; p≤0,05 significativo.

MMN: Mismatch Negativity.

No P300, o GE obteve latências significativamente mais atrasadas do que o GC. Achados de adultos jovens com gagueira igualmente corroboram nossos dados de latência do P300, sendo evidenciada atenção auditiva reduzida. Em um dos estudos, além do P300, foi realizada avaliação comportamental do processamento temporal, por meio do Teste de Detecção de Intervalos Aleatórios (RGDT - Random Interval Detection Task), que detectou desempenho inferior a 20% nos grupos com gagueira. Esta diferença pode estar relacionada a uma dificuldade de sincronização da atividade neural das áreas auditivas, ocasionando resposta exacerbada.

A neuroimagem tem mostrado que deficit no processamento auditivo podem ser decorrentes de deficit no processamento temporal da informação. Além da GDP, atrasos na latência foram evidenciados em crianças com deficit específico de linguagem (DEL) e dislexia. Contrário aos nossos achados, há relato na literatura de valores de amplitude do MMN menores em crianças com gagueira comparadas a um Grupo Controle. A explicação dos pesquisadores foi de um processamento neural ineficaz das diferenças entre os sons de fala. O estímulo utilizado foi linguístico e não tom puro. Estes resultados sugerem dificuldades centrais generalizadas no processamento do som, bem como uma imprecisão na habilidade de discriminação auditiva.

Constatamos que a amplitude do MMN, nosso grupo com gagueira, foi significativamente menor que o grupo controle. Este resultado sugere processamento auditivo central alterado. A neuroimagem tem mostrado que déficit de processamento auditivo podem ser decorrentes de déficit no processamento temporal da informação, além da GDP, atrasos na latência foram evidenciados em crianças com déficit específico de linguagem (DEL) e dislexia.
Potenciais evocados auditivos de longa latência em crianças com gagueira

Gap Detection Test. Foi verificado que o atraso na latência do P300, bem como o baixo desempenho no RGDT, impactam na velocidade de processamento auditivo do som.

Além da gagueira, outras populações apresentaram latências atrasadas no P300 como, por exemplo, crianças com síndrome de Down. Com base no exposto, parece bem documentado que o atraso na latência da onda P300 pode fornecer indícios de alterações no processamento da informação auditiva.

A amplitude do P300 no GE foi reduzida, na comparação com o GC. Há a possibilidade de uma parcela do GE exibir deficit no processamento auditivo não linguístico, e estes estarem relacionados a uma alteração do processamento cortical. Resultados semelhantes na amplitude do P300 foram encontrados em adultos jovens com gagueira.

Tanto no MMN como no P300, a morfologia das ondas das crianças do GE mostrou-se alterada. Em indivíduos com audição dentro dos padrões de normalidade, espera-se morfologia das ondas mais definida a partir dos 8 anos de idade. No presente estudo, havia algumas crianças no GE com 6 anos, o que poderia justificar este achado. Contudo, esta hipótese pode ser questionada, uma vez que, no GC, também tinha crianças com 6 anos, e o grupo apresentou morfologia mais definida. Assim, parece haver relação entre a gagueira e as alterações na morfologia da onda dos PEALL investigados. Crianças sem queixas auditivas, mas com queixas de dificuldade de aprendizagem, também apresentam alterações na morfologia da onda P300.

Referente à preferência manual, o GE apresentou percentual de canhotos maior do que o GC. No desenvolvimento típico, mesmo com algumas controvérsias, crianças com preferência manual direita têm apresentado melhor desempenho em testes que incluem habilidade motora da fala e em testes cognitivos de linguagem. Esta vantagem sugere lateralidade hemisférica esquerda para o processamento de fala e de fala. O hemisfério esquerdo seria responsável pela análise linguística do som, ao passo que o hemisfério direito seria responsável pela codificação de sons não linguísticos, como ritmo musical. Desse modo, esperava-se que crianças canhotas e destra apresentassem diferenças de desempenho em um mesmo teste. Nossos resultados corrobaram esta hipótese, em parte, pois, no MMN e P300, embora não tenha ocorrido diferença significativa entre os grupos, as crianças canhotas obtiveram latências mais atrasadas do que as destra. As amplitudes dos canhotos em relação aos destros foram maiores no MMN e iguais no P300. O número pequeno de crianças em cada um dos grupos pode ter interferido nos resultados estatísticos e um número maior de crianças poderia alterar os resultados. Entretanto, resultados semelhantes foram evidenciados na literatura.

CONCLUSÃO

Existe atraso significativo nas latências dos potenciais evocados auditivos de longa latência Mismatch Negativity e potencial cognitivo P300 das crianças com gagueira, ao serem comparados com crianças sem este tipo de acometimento.

INFORMAÇÃO DOS AUTORES

Jerônimo GM: http://orcid.org/0000-0001-9816-1221
Scherer AP: http://orcid.org/0000-0003-2171-0952
Sleifer P: http://orcid.org/0000-0002-6153-4765

REFERÊNCIAS

1. Panassol PS, Costa-Ferreira MI, Sleifer P. Avaliação eletrofisiológica: aplicabilidade em neurodiagnóstico e nos resultados da reabilitação. In: Costa-Ferreira MI. Reabilitação auditiva: fundamentos e proposições para a atuação no Sistema Único de Saúde (SUS). Ribeirão Preto: Book Toy; 2017. p.123-41.
2. Reis AC, Frizzo AC. Potencial Evocado Auditivo Cognitivo. In: Boéchat EM, Menezes PL, Couto CM, Frizzo AC, Scharlach RC, Anastacio AR. Tratado de Audiologia. 2a ed. Rio de Janeiro: Guanabara Koogan; 2015. p.140-50.
3. Roggia SM. Mismatch Negativity. In: Boéchat EM, Menezes PL, Couto CM, Frizzo AC, Scharlach RC, Anastacio AR. Tratado de Audiologia. 2a ed. Ampliada e Revisada. Rio de Janeiro: Guanabara Koogan; 2015. p.151-9.
4. Schwade LF, Didoné DQ, Sleifer P. Auditory evoked potential mismatch negativity in normal-hearing adults. Int Arch Otorhinolaryngol. 2017;21(3):232-8.
5. Nättäinen R, Astikainen P, Ruusuvirta T, Huotilainen M. Automatic auditory intelligence: an expression of the sensory-cognitive core of cognitive processes. Brain Res Rev. 2010;64(1):123-36. Review.
6. Sleifer P. Avaliação eletrofisiológica da audição em crianças. In: Cardoso MC. Fonoaudiologia na infância: avaliação e tratamento. Rio de Janeiro: Revinter; 2015. p.171-94.
7. Kaganovich N, Wray AH, Weber-Fox C. Non-linguistic auditory processing and working memory update in pre-school children who stutter: an electrophysiological study. Dev Neuropsychol. 2010;35(6):712-36.
8. Ferreira DA, Bueno CD, Costa SS, Sleifer P. Applicability of Mismatch Negativity in the child population: systematic literature review. Audiol Commun Res. 2017;22:e1831.
9. Regaçone SF, Stenico MB, Guçcio AC, Rocha AC, Romero AC, Oliveira CM, et al. Electrophysiological assessment of auditory system in individuals with development persistent stuttering. Rev CEFAC. 2015;17(6):1838-47.
10. Chang SE, Zhu DC. Neural network connectivity differences in children who stutter. Brain. 2013;136(Pt 12):3709-26.
11. Oliveira CM, Bohnen AJ. Diagnóstico Diferencial dos Distúrbios de Fluência. In: Lamônica AP; Britto DB. Tratado de linguagem: perspectivas contemporâneas. Ribeirão Preto: Book Toy; 2017. p.17 5-82.
12. Ibraheem QA, Quirba AS. Auditory neural encoding of speech in adults with persistent developmental stuttering. Egypt J Otolaryngol. 2014;30(2):157-65.
13. Andrade CR. Gagueira desenvolvemental persistente. In: Andrade CR. Adolescentes e adultos com gagueira: fundamentos e aplicações clínicas. Barueri: Pró-Fono; 2017. v. 1. p. 5-10.
14. Jansson-Verkasalo E, Eggers K, Järvenpää A, Suominen K, Van den Bergh B, De Nil L, et al. Atypical central auditory speech-sound discrimination in children who stutter as indexed by the mismatch negativity. J Fluency Disord. 2014;41:1-11.
15. Choo AL, Burnham E, Hicks K, Chang SE. Dissociations among linguistic, cognitive, and auditory-motor neuroanatomical domains in children who stutter. J Commun Disord. 2016;61:29-47.
16. Etchell AC, Civier O, Ballard KJ, Sowman PF. A systematic literature review of neuroimaging research on developmental stuttering between 1995 and 2016. J Fluency Disord. 2018;55:6-45.
17. Rocha-Muniz CN, Benvi-Lopes DM, Schochat E. Mismatch negativity in children with specific language impairment and auditory processing disorder. Braz J Otorhinolaryngol. 2015;81(4):408-15.
18. Žarić G, Fraga González G, Tijms J, van der Molen MW, Blomert L, Bonte M. Reduced neural integration of letters and speech sounds in dyslexic children scales with individual differences in reading fluency. PLoS One. 2014;9(10):e110337.
19. Corbera S, Corral MJ, Escera C, Idiazábal MA. Abnormal speech sound representation in persistent developmental stuttering. Neurology. 2005;65(8):1246-52.
20. Lu C, Zheng L, Long Y, Yan Q, Ding G, Liu L, et al. Reorganization of brain function after a short-term behavioral intervention for stuttering. Brain Lang. 2017;168:12-22.
21. Prestes R, de Andrade AN, Santos RB, Marangoni AT, Schiefer AM, Gil D. Temporal processing and long-latency auditory evoked potential in stutterers. Braz J Otorhinolaryngol. 2017;83(2):142-46.
22. Maxfield ND, Olsen WL, Kleinman D, Frisch SA, Ferreira VS, Lister JJ. Attention demands of language production in adults who stutter. Clin Neurophysiol. 2016;127(4):1942-60.
23. Kazan HM, Samelli AG, Neves-Lobo IF, Magliaro FC, Limongi SC, Matas CG. Electrophysiological characterization of hearing in individuals with Down syndrome. Codas. 2016;28(6):717-23.
24. Hampton A, Weber-Fox C. Non-linguistic auditory processing in stuttering: evidence from behavior and event-related brain potentials. J Fluency Disord. 2008;33(4):253-73.
25. Sassi FC, Matas CG, de Mendonça Ll, de Andrade CR. Reprint of: stuttering treatment control using P300 event-related potentials. J Fluency Disord. 2011;36(4):308-17.
26. Matas CG, Silva FB, Carrico B, Leite RA, Magliaro FC. Long-latency auditory evoked potentials in sound field in normal-hearing children. Audiol Commun Res. 2015;20(4):305-12.
27. Souza J, Rocha VO, Bertieli AZ, Didoné DD, Sleifer P. Auditory Latency Response – P3 in children with and without learning complaints. Audiol Commun Res. 2017;22:e1690.
28. Langel J, Hakun J, Zhu DC, Ravizza SM. Functional specialization of the left ventral parietal cortex in working memory. Front Hum Neurosci. 2014;8:440.
29. Silva TR, Dias FA. Differences on interhemispherical auditory integration between female and male: preliminary study. Rev Soc Bras Fonoaudiol. 2012;17(3):260-5.