Results of comparative research methods for arsenic content in meat samples of broiler chickens

M B Rebezov¹,²,³, M A Shariati, İa K Shinkarev, A A Tarasova and E S Zubkova

¹V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 26 Talalikhina St., Moscow, 109316, Russian Federation
²Prokhorov General Physics Institute of the Russian Academy of Science, 38 Vavilova str., Moscow, 119991, Russian Federation
³K G Razumovsky Moscow State University of technologies and management (the First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation

E-mail: dr.rebezov.m@gmail.com

Abstract. The development of effective algorithms for optimizing the laboratory equipment base is one of the urgent tasks. Arsenic is classified as a toxicant of the highest hazard group; it is a highly toxic cumulative poison with a broad spectrum of action. The paper considers an assessment of the method for researching the content of arsenic in meat and meat products. The results of investigations (by the methods of photoelectric colorimetry and stripping voltammetry) on the operational control of the error using the method of additions and the assessment of precision were recognized as satisfactory. Comparative analysis of two methods of photoelectric colorimetry and stripping voltammetry in assessing the content of arsenic in samples of broiler chicken meat showed their relevance in the development of laboratory practice. 45.2% over other ranges. The least registered sample results (1.1%) with the range of obtained data - 0.1-1.0 mg/kg.

1. Introduction
The issues of the influence of nutrition on human health are discussed by many researchers [1-5], the level of exposure to xenobiotics entering the human body with food is constantly analyzed [6-9]. Research of food products and food raw materials for compliance with modern international quality standards is a component that determines the competitiveness of many laboratories [10-13]. The development of effective algorithms for optimizing the laboratory equipment base is one of the urgent tasks [12-18]. An important task is to ensure control of the quantitative content of heavy metals (including arsenic) [19-26].

This paper considers such a toxic element as arsenic, which is mandatory for control in meat and meat products, in accordance with the requirements of the Technical Regulations of the Customs Union 021/2011 (TR CU 021) "On food safety", as amended on August 8, 2019 (figure 1).
Figure 1. Permissible levels of arsenic in meat and meat products according to the requirements of technical regulations, mg/kg, not more.

Arsenic is classified as a toxicant of the highest hazard group; it is a highly toxic cumulative poison with a broad spectrum of action. Advantages and disadvantages of voltammetric methods of product testing is shown in figures 2 and 3.

Figure 2. Advantages of the method.

Figure 3. Disadvantages of the method.
The disadvantages and advantages of photoelectric colorimetry of products are shown in figures 4 and 5.

Figure 4. Advantages of the method.

Figure 5. Disadvantages of the method.

2. Material and Methods

Determination of arsenic (standards and laboratory equipment used are shown in figure 6.

Figure 6. Standards and applied laboratory equipment.

The object of research is samples of poultry meat (broiler chickens). Equipment for research of cadmium content in food raw materials and food products is shown in figure 7.
TEST LABORATORY EQUIPMENT

Voltammetric analyzer "Pan-arsenic"
Photocolorimeter "KFK-2 MP"

Figure 7. Research instrument base.

The normative base of standards for the determination of arsenic in these product studies is presented in figures 8 and 9.

Figure 8. Photoelectric colorimetry of food and food raw materials.

Figure 9. Stripping voltammetry on the analyzer "Pan-arsenic".

The main document of the research procedure is the test facility quality manual.

The control by the method of additions during the implementation of various methods in this work was carried out according to the approved research scheme.

During the operational control of the analysis procedure using the control procedure to control the error using the method of additions, the control means were working samples of a stable composition and the same samples with a known addition of arsenic.

Under the conditions of in-laboratory precision, the analysis of samples with and without added arsenic was carried out.
3. Results and discussion
In accordance with the requirements of the interstate standard GOST R ISO 5725-6, the acceptability of the results of determining arsenic in products was assessed. The critical range factor \(f(n) \) for the five results is 3.9. Repeatability standard deviation \(S_r \) for each measurement method:

- For "KFK-2MP": \((CR_{0.95}(5), \%) = f(5) \times S_r(As) = 3.9 \times 25 = 97.5 \% \)
- For "Pan-arsenic": \((CR_{0.95}(5), \%) = f(5) \times S_r(As) = 3.9 \times 17 = 66.3 \% \)

The absolute value of the critical range \(CR_{0.95}(5) \) is calculated by the formula:

\[
CR_{0.95}(5) = 0.01 \times (CR_{0.95}(5), \%) \times X_{avr}(5)
\]

If the range between the maximum and minimum values of five analysis results \((X_{max} - X_{min}) \) is equal to or less than the absolute value of the critical range \(CR_{0.95}(5) \), then the results of the analysis performed under conditions of repeatability and intermediate precision are considered satisfactory.

The research results are presented in table 1.

Table 1. Results of studies of poultry meat for arsenic content.

№	Pan-arsenic	KFK-2MP	Pan-arsenic	KFK-2MP	Pan-arsenic	KFK-2MP
	Cд=0.1 stage sample preparation		Cд=0.1 measurement stage			
1	0.041	0.036	0.126	0.118	0.129	0.131
2	0.037	0.034	0.133	0.123	0.136	0.128
3	0.039	0.036	0.131	0.114	0.146	0.128
4	0.043	0.032	0.112	0.103	0.135	0.127
5	0.045	0.029	0.119	0.106	0.126	0.135
X\text{avr}	0.041	0.0334	0.1242	0.1128	0.1344	0.1298

Assessing the precision of results \((X_{max} - X_{min}) \leq CR_{0.95}(5) \)

\[
0.008<0.027 \quad 0.007<0.033 \quad 0.021<0.082 \quad 0.02<0.11 \quad 0.02<0.09 \quad 0.008<0.13
\]

3.1. Monitoring the stability of analysis results using the additive method
Operational control of the analysis procedure was carried out by the contractor by comparing the result of a separate control procedure Kk with the calculated control standard K. Operational control of the procedure for testing products for arsenic content provides for the following operations are shown in figure 10.

The means of control were working samples of the stable composition of arsenic and the same samples with a known addition of the arsenic determined by us during the operational control of the analysis procedure using the control procedure to assess the error using the addition method (according to the approved procedure).

In accordance with the methods of analysis, the results of control measurements of the concentration of arsenic in the averaged working sample \(- X_{(n)} \) and in the averaged working sample with a known addition of arsenic \(- X_{(n)+0} \).

The analysis procedure is considered satisfactory if the following conditions are met:

\[
| K_k | \leq K
\]
The results of the operational control of the analysis procedure using the control procedure to control the error using the addition method are summarized in tables 2 and 3.

Table 2. Results of investigations of samples for arsenic content using the addition method (addition of arsenic at the stage of sample preparation).

KFK-2MP	Pan-arsenic		
Kk	K	Kk	K
-0.142	0.1858	-0.1	0.24723
-0.0104	0.01865	-0.0074	0.01372
-0.0044	0.00538	-0.0042	0.00595
-0.0206	0.0247	-0.0168	0.01868

The condition $|K_{k}| \leq K$ is fulfilled for all measurement results.

The evaluation of the precision of the results obtained by different methods is carried out by calculating the relative error, which reflects the measurement accuracy, and comparing it with the standard deviation of the reproducibility of the result when implementing different research methods.

The analysis procedure is considered satisfactory if the condition: $\sigma \leq \sigma_{R}$.

Table 3. Results of studies of samples for arsenic content using the method of additions (additive at the stage of measurements).

KFK-2MP	Pan-arsenic		
Kk	K	Kk	K
-0.086	0.257219	-0.008	0.3411
-0.0046	0.019748	-0.0028	0.01431
-0.0004	0.006216	-0.003	0.00611
-0.0036	0.028146	-0.0066	0.02007

Table 4 shows the study of evaluating the precision of product test results for arsenic content, obtained by photoelectric colorimetry and voltammetry, by calculating the relative error and comparing it with the standard deviation of the reproducibility of the results.
Also, the stability of the results of testing products for arsenic content, obtained by photoelectric colorimetry and voltammetry, was monitored, and the operational error control was carried out using the additive method.

Operational control of the analysis procedure was carried out by comparing the result of a separate control procedure K_k with the calculated control standard K.

The values of $X_{cp(n)}$ and $X_{cp(n)+\vartheta}$ were taken as the average values of the averaged results of five measurements obtained by different methods (calculated by formula 3.10), in samples without an additive and in samples with an additive.

Table 4. Results of studies of poultry meat for arsenic content.

	Pan-arsenic	KFK-2MP	Pan-arsenic	KFK-2MP	Pan-arsenic	KFK-2MP
			additive at the stage of sample preparation $c=0.1$		additive at measurement stage $c=0.1$	
$X(5)_{avr}$	0.041	0.0334	0.1242	0.1128	0.1344	0.1298
X_{avr}	0.0372	0.0372	0.1185	0.1185	0.1321	0.1321

Evaluation of the precision of results obtained by different methods

	10.2 % < 22 %	4.8 % < 22 %	1.7 % < 22 %
K_k	-0.0187	0.02295249	-0.0051
K	0.02536157	0.02536157	0.02536157

The results of investigations (by the methods of photoelectric colorimetry and stripping voltammetry) on the operational control of the error using the method of additions and the assessment of precision were recognized as satisfactory.

3.2. Research results monitoring

We monitored the results of studies on the content of arsenic in poultry meat from January 2019 to October 2020. We assessed the distribution of research results depending on the concentration of arsenic in poultry meat (figure 11).

![Figure 11. Distribution of test results depending on the concentration (mg / kg) of arsenic in chicken meat samples, %](image-url)
The obtained monitoring results indicate that in the range of less than 0.02 mg of arsenic per 1 kg of poultry meat, k prevails (45.2%) over other ranges. The least registered sample results (1.1%) with the range of obtained data - 0.1-1.0 mg/kg.

4. Conclusion
The analysis of the data obtained shows that all the results on the study of the arsenic content in the meat of broiler chickens on the assessment of precision and operational control of the error using the method of additions are satisfactory.
A comparative analysis of two methods of photoelectric colorimetry and stripping voltammetry in assessing the content of arsenic in samples of broiler chicken meat showed their relevance in the context of the development of laboratory practice.

Acknowledgements
The authors would like to express special gratitude to the engineer A M Chuprakova who carried out multi-stage tests of the designated products for compliance with the requirements of regulatory documents.

References
[1] Okuskhanova E, Assenova B, Rebezov M, Yessimbekov Zh, Kulushhtayeva B, Zinina O and Stuart M 2016 Mineral composition of deer meat Pate Pakistan Journal of Nutrition 15(3) 217-22 DOI: 10.3923/pjn.2016.217.222
[2] Varivoda A, Kenijz N, Rebezov M and Okuskhano E 2018 Development Of Dietary Food With The Use Of Soy Protein Research Journal of Pharmaceutical, Biological and Chemical Sciences 9(4) 1005-13 WOS:000438848100137
[3] Chernopolskaya N, Gavriloa N, Rebezov M, Harlap S, Nigmatyanov A, Peshcherov G, Bychkova T, Vlasova K and Karapetyan I 2019 Biotechnology of specialized fermented product for elderly nutrition International Journal of Pharmaceutical Research 11(1) 545-50 DOI: 10.35940/ijrte.B3158.078219
[4] Kazhibayeva G, Issaeva K, Mukhamejanova A, Khayrullin M, Kulikov D, Gribkova V and Rebezov M 2019 Development Of Formulation And Production Technology Of Fish Pate For Therapeutic And Prophylactic Purposes International Journal of Engineering and Advanced Technology 8(5C) 1355-9 DOI: 10.35940/ijeat.E1193.0585C19
[5] Kulushhtayeva B, Okuskhanova E, Rebezov M, Burakovskaya N, Kenijz N, Fedoseeva N, Artemeva I, Saranova O and Pershina O 2020 Bread with sesame seeds for gerodietic nutrition International Journal of Psychosocial Rehabilitation 24(7) 1661-5 DOI: 10.37200/IJPR/V24I7/PR270149
[6] Macleod C and Coughanowr C 2019 Heavy metal pollution in the derwent estuary: history, science and management Regional Studies in Marine Science 32 100866
[7] Larsen E H et al. 2005 Determination of inorganic arsenic in white fish using microwave-assisted al-kaline alcoholic sample dissolution and HPLC-ICP-MS Anal. and Bioanal. Chem 381(2) 339-46
[8] Ali MM et al. 2019 Heavy metal concentrations in commercially valuable fishes with health hazard inference from Karnaphuliriver, Bangladesh. Human and Ecological Risk Assessment An Int.J. 1-17
[9] Kaushik A, Kansal A, Santosh M, Kumari S and Kaushik C P 2009 Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediments Journal of Hazardous Materials 164(1) 265-70
[10] Mansour S A 2014 Monitoring and health risk assessment of heavy metal contamination in food Practical Food Safety: Contemporary Issues and Future Directions 235-55
[11] Mourya A, Mazumdar B and Sinha S K 2019 Determination and quantification of the heavy metal ion by electrochemical method Journal of Environmental Chemical Engineering 7(6)
103459

[12] Li N et al. 2009 Determination of arsenic in foods by flow injection on-line sorption pre-concentration with hydride generation atomic fluorescence spectrometry Food Additives and Contaminants 26(6) 839-46

[13] Ma W, Zhao B and Ma J 2019 Comparison of heavy metal accumulation ability in rainwater by 10 sponge city plant species Environmental Science and Pollution Research 26(26) 26733-47

[14] Alaqouri H A A et al. 2020 The possibility of using scots pine needles as biomonitor in determination of heavy metal accumulation Environmental Science and Pollution Research 26(6) 1-22

[15] Rahimi G, Kolahchi Z and Bayat S 2019 Heavy metals' bio-accumulation and transfer in lemon balm (melissa officinalis l.) irrigated with industrial wastewater International Journal of Environment and Waste Management 23(3) 238-56

[16] Singh B R et al. 2011 Safety of food crops on land contaminated with trace elements J. Sci. Food Agric. 91(8) 1349-66

[17] Sizentsov A N, Kvan O V, Sizentsov Y A, Bibartseva E V and Osipova E A 2019 Comparative analysis of heavy metal sorption characteristics on laboratory animal models Research Journal of Pharmaceutical, Biological and Chemical Sciences 10(1) 1313-6

[18] Tumanyan A F, Tussaint F, Shcherbakova N A, Seliverstova A P and Tyutyuma N V 2019 Heavy metal contents in soils and vegetables of Southern Russia Chemistry and Technology of Fuels and Oils 54(6) 766-70

[19] Barsova N, Yakimenko O, Tolpeshta I and Motuzova G 2019 Current state and dynamics of heavy metal soil pollution in Russian Federation Environmental Pollution 249 200-7

[20] Kuramshina N, Rebezov M, Kuramshin E, Tretyak L, Topuria G, Kulikov D, Evtushenko A, Harlap S and Okuskhanova E 2019 Heavy metals content in meat and milk of Orenburg region of Russia International Journal of Pharmaceutical Research 11(1) 1301-5 DOI: 10.21668/health.risk/2019.2.04.engl

[21] Kuramshina N, Rebezov M, Kuramshin E, Krasnogorskaya N, Tretyak L, Somova Yu, Dolmatova I, Zaitseva T, Grigoryeva I and Bakirova G 2018 Heavy Metals Contamination of Soil in Urban Areas of Southern Ural Region of Russia International Journal of Engineering and Technology (UAE) 7(4.42) 14-8 DOI: 10.14419 / ijet.v7i4.2.25536

[22] Zykova I, Maksimuk N, Rebezov M, Kuznetsova E, Derkho M, Sereda T, Kazhibayeva G, Somova Yu and Zaitseva T 2019 Interaction between heavy metals and microorganisms during wastewater treatment by activated sludge Journal of Engineering and Applied Sciences 14(11) 2139-45

[23] Assenova B, Okuskhanova E, Rebezov M, Korzhikenvan N, Yessimbekov Zh and Dragoev S 2016 Trace and toxic elements in meat of maral (red deer) grazing in Kazakhstan Research Journal of Pharmaceutical, Biological and Chemical Sciences 7(1) 1425-33

[24] Barbosa JTP, Korn MGA, Santos CMM, Flores EMM, Peralva VN, Korn M and Nóbreza JA. 2015 Microwave-assisted diluted acid digestion for trace element analysis of edible soybean products. Food Chemistry 175 212-7

[25] Rebezov M et al. 2020 Improvement of Laboratory Services When using Sample Preparation in Microwave System International Journal of Current Research and Review 12(16) 29-33 doi:10.31782/IJCRR.2020.12167