Primal–Dual Optimization Conditions for the Robust Sum of Functions with Applications

N. Dinh¹ · M. A. Goberna² · M. Volle³

Published online: 25 July 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
This paper associates a dual problem to the minimization of an arbitrary linear perturbation of the robust sum function introduced in Dinh et al. (Set Valued Var Anal, 2019). It provides an existence theorem for primal optimal solutions and, under suitable duality assumptions, characterizations of the primal–dual optimal set, the primal optimal set, and the dual optimal set, as well as a formula for the subdifferential of the robust sum function. The mentioned results are applied to get simple formulas for the robust sums of subaffine functions (a class of functions which contains the affine ones) and to obtain conditions guaranteeing the existence of best approximate solutions to inconsistent convex inequality systems.

Keywords Robust sum function · Duality · Optimality conditions · Existence of optimal solutions · Inconsistent convex inequality systems · Best approximation

Mathematics Subject Classification 90C46 · 49N15 · 65F20

1 Introduction

In our previous paper [8] we have introduced the so-called robust sum \(\sum_{i \in I} f_i \) of an infinite family \((f_i)_{i \in I} \) of proper functions from a given locally convex Hausdorff
topological vector space X to $\mathbb{R} \cup \{+\infty\}$. To this aim we denoted by $\mathcal{F}(I)$ the collection of all nonempty finite subsets of I and defined the \textit{robust sum} of $(f_i)_{i \in I}$ as

$$\sum_{i \in I}^R f_i(x) := \sup_{J \in \mathcal{F}(I)} \sum_{i \in J} f_i(x), \quad \forall x \in X.$$

In order to motivate this definition, consider the finite sum $\sum_{i \in J} f_i(x)$ for each $J \in \mathcal{F}(I)$ and interpret $\mathcal{F}(I)$ as an uncertainty set for the uncertain optimization problem

$$(P_I) \quad f(x) = \inf_{x \in X} \sum_{i \in J} f_i(x).$$

Then, the \textit{robust} (or \textit{pessimistic}) counterpart of this parametric problem is (see [1] and references therein) the deterministic problem

$$(RP) \quad \inf_{x \in X} \sup_{J \in \mathcal{F}(I)} \sum_{i \in J} f_i(x), \quad (1.1)$$

whose objective function $\sum_{i \in I}^R f_i$ cannot be exactly computed at a given x but can be approximated through the finite sums $\sum_{i \in J} f_i(x)$, with $J \in \mathcal{F}(I)$. Observe that the above uncertain problem only makes sense when I is infinite as, otherwise, $\sum_{i \in I} f_i(x)$ is computable at any $x \in \mathbb{R}^n$ and (P_I) is the deterministic problem to be solved. However, this uninteresting case allows to appreciate the pessimistic character of (RP) in comparison with (P_I). Indeed, defining $I(x) := \{i \in I : f_i(x) \geq 0\}$, the objective function of (RP) reads

$$f(x) = \begin{cases} \max_{i \in I} f_i(x), & \text{if } I(x) = \emptyset, \\ \sum_{i \in I(x)} f_i(x), & \text{else}, \end{cases}$$

with f being an upper estimate of $\sum_{i \in I} f_i$ (the difference $f - \sum_{i \in I} f_i$ may be quite large).

It is worth observing that, in contrast with the well-known \textit{limit sum}

$$\sum_{i \in I} f_i(x) := \lim_{J \in \mathcal{F}(I)} \sum_{i \in J} f_i(x), \quad \forall x \in X$$

[where $\mathcal{F}(I)$ and lim must be interpreted as a set directed by inclusion and the limit of the corresponding net, respectively], the robust sum $\sum_{i \in I}^R f_i$ is always well-defined on X.

In [8, Sect. 1] we gave two examples of optimization problems arising in extended regression and best approximate solution to inconsistent linear system which can be formulated as (RP), with $(f_i)_{i \in I}$ being families of quadratic functions and maxima of affine functions, respectively.

In this paper we assume that some element \bar{x}^* of the dual space X^* of X is given and introduce a dual problem for the \textit{linearly perturbed robust sum} $\sum_{i \in I}^R f_i - \langle \bar{x}^*, \cdot \rangle$.

\@ Springer
More precisely, we are concerned with the non-emptiness and the structure of the optimal sets of the dual pair of optimization problems

\[(\text{RP}) \quad \inf \{ f(x) - \langle \bar{x}^*, x \rangle : x \in X \}\]

and

\[(\text{RD}) \quad \sup \left\{ - \sum_{j \in J} f_j^*(x_j^*) : \left(J, (x_j^*)_{j \in J} \right) \in \mathcal{F}(\bar{x}^*) \right\},\]

where \(f := \sum_{i \in I} f_i \) represents the robust sum of the family \((f_i)_{i \in I}\), the objective function \(- \sum_{j \in J} f_j^*(x_j^*)\) of \((\text{RD})\) is well defined thanks to the properness of \(f_i \) (guaranteeing that its conjugate function \(f_i^* \) does not take the value \(-\infty\)) for all \(i \in I \), and the feasible set of the dual problem, \(\mathcal{F}(\bar{x}^*) \), is defined as

\[\mathcal{F}(\bar{x}^*) := \left\{ (J, (x_j^*)_{j \in J}) : J \in \mathcal{F}(I), (x_j^*)_{j \in J} \in (X^*)^J, \sum_{j \in J} x_j^* = \bar{x}^* \right\}.\]

When \(\bar{x}^* \) is the null functional, the pair formed by \((\text{RP})\) and \((\text{RD})\) collapses to the pair of dual problems analyzed in [8], for which we characterized weak duality, zero duality gap, and strong duality, and their corresponding stable versions, but without paying attention to their optimal solution sets.

Many works have been written on the numerical methods for the problem of best least squares solutions of inconsistent finite linear inequality systems (see, e.g., [21] and references therein), for which the existence of optimal solutions has been proved in three different ways in [5]. Unfortunately, as shown in [9], the existence of optimal solution for the best least squares approximation problems relies on the finiteness of the number of constraints and the type of norm used to measure the residual of an approximate solution. The novelties of Sect. 6, in comparison with its unique antecedent [9], is that, here, we consider convex systems instead of linear ones, describe the structure of the sets of best \(\ell_1 \) and \(\ell_\infty \) approximate solutions (instead of just an existence theorem for best \(\ell_\infty \) approximation problems), and provide strong duality theorems for best \(\ell_1 \) and \(\ell_\infty \) approximation problems.

This paper is organized as follows. Section 2 introduces the necessary notation and some preliminary results. Section 3 provides an existence theorem for primal optimal solutions. Section 4 characterizes the primal–dual optimal solutions with zero duality gap, as well as, under suitable assumptions, primal optimal solutions, dual optimal solutions and also provides a closed formula for the subdifferential of the robust sum function. Section 5 provides formulas for the robust sums of subaffine functions (concept introduced in Sect. 2). Finally, Section 6 provides existence theorems for best approximate solutions to inconsistent convex inequality systems with respect to the \(\ell_\infty \) and the \(\ell_1 \) pseudo-norms.
2 Preliminaries

We first recall some standard notation regarding locally convex spaces to be used in the sequel. We denote by 0_X and 0^*_X the null vectors of X and X^*, respectively. Given a set $A \subset X$, we denote by $\text{co} A$, cone A, aff A, \overline{A}, and $\overline{\text{co}} A$ the convex hull of A, the cone generated by $A \cup \{0_X\}$, the smallest linear manifold containing A, the closure of A, the closed convex hull A, and the closed conic hull of A, respectively. The same notation is used when either $A \subset X^*$ (by default equipped with the w^*-topology) or $A \subset X^* \times \mathbb{R}$ (equipped with the product topology). We represent by proj_{X^*} the mapping from $X^* \times \mathbb{R}$ to X^* such that $\text{proj}_{X^*}(x^*, r) = x^*$. When $X = \mathbb{R}^n$, we denote by $\text{ri} A$ the relative interior of A.

Given $A, B \subset X$, A is said [2] to be closed regarding to B if $B \cap \overline{A} = B \cap A$. Clearly, A is closed regarding B if and only if A is closed regarding each subset of B.

We denote by \mathbb{R} the extended real line with $\pm \infty$ and by \mathbb{R}^X the linear space of functions from X to \mathbb{R}. Given $h \in \mathbb{R}^X$, its lower level sets are $[h \leq r] := \{x \in X : h(x) \leq r\}$, with $r \in \mathbb{R}$, its domain is the set $\text{dom} h := \{x \in X : h(x) < +\infty\}$, its epigraph is $\text{epi} h := \{(x, r) \in X \times \mathbb{R} : h(x) \leq r\}$, its strict epigraph is $\text{epi} h := \{(x, r) \in X \times \mathbb{R} : h(x) < r\}$, and its Fenchel conjugate the function $h^* \in \mathbb{R}^{X^*}$ such that $h^*(x^*) := \sup\{\langle x^*, x \rangle - h(x) : x \in X\}$, $\forall x^* \in X^*$.

Moreover, the closed hull of h is the function $\overline{h} \in \mathbb{R}^X$ whose epigraph $\text{epi} \overline{h}$ is the closure of $\text{epi} h$ in $X \times \mathbb{R}$. The definitions are similar if $h \in \mathbb{R}^{X^*}$; in particular, \overline{h} is the w^*-closed hull of h. The subdifferential of h at $a \in X$ is

$$\partial h(a) := \begin{cases} \{x^* \in X^* : h(x) \geq h(a) + \langle x^*, x - a \rangle, \forall x \in X\}, & \text{if } h(a) \in \mathbb{R}, \\ \emptyset, & \text{else.} \end{cases}$$

The indicator function of $A \subset X$ is represented by δ_A [i.e. $\delta_A(x) = 0$ if $x \in A$, and $\delta_A(x) = +\infty$ if $x \notin A$]. The support function of $A \neq \emptyset$, $\sigma_A(x^*) := \sup_{x \in A} \langle x^*, x \rangle$, is the conjugate of its indicator, i.e., $\sigma_A = \delta_A^*$. The support functions are sublinear, i.e., they are subadditive and positively homogeneous.

We denote by $\Gamma(X)$ the cone of \mathbb{R}^X formed by the proper closed convex functions on X. For instance, $\delta_A \in \Gamma(X)$ if and only if A is a nonempty closed convex set while $\sigma_A \in \Gamma(X^*)$ for all nonempty $A \subset X$. The sublinear elements of $\Gamma(X)$ are the support functions of the nonempty w^*-closed convex subsets of X^*.

The continuous affine functions on X are the sums of continuous linear functionals with constants, i.e., functions of the form $\langle a^*, \cdot \rangle + r = \sigma_{|a^*|} + r$, with $a^* \in X^*$ and $r \in \mathbb{R}$. In the same vein, we define the subaffine functions on X as those functions which can be expressed as $\sigma_A + r$, with A being a nonempty w^*-closed convex subset of X^* and $r \in \mathbb{R}$. For instance, the polar A° of such a set A is the lower level set of some subaffine function. Indeed,

$$A^\circ := \{x \in X : \langle a^*, x \rangle \leq 1, \forall a^* \in A\} = [\sigma_A - 1 \leq 0].$$
Obviously, any continuous affine function is subaffine.

Remark 2.1 The above class of subaffine functions is not related with others types of functions introduced under the same name in different settings:

1. Generalized convexity (see, e.g., [16,19,20,22]): a function $f \in \mathbb{R}^X$ is called subaffine (or truncated affine) if it can be written as $f = \min\{x^* + r, s\}$, for $x^* \in X^*$ and $r, s \in \mathbb{R}$.

2. Elliptic PDEs (see, e.g., [11,18]): a function $f \in \mathbb{R}^n$ is called subaffine if it is upper semicontinuous and there exists a ball B such that for each affine function h, $f \leq h$ on $\text{bd}B$ implies that $f \leq h$ on B. A C^2 function is subaffine in this sense iff its Hessian matrix has at least one nonnegative eigenvalue at each point.

We now come back to the pair of problems (RP_{x^*}) and (RD_{x^*}), whose optimal sets are respectively denoted

$$\text{sol}(\text{RP}_{x^*}) = \{ x \in X : f(x) - \langle x^*, x \rangle = \inf(\text{RP}_{x^*}) \}$$

and

$$\text{sol}(\text{RD}_{x^*}) = \left\{ \left(J, (x^*_j)_{j \in J} \right) \in \mathbb{R}(\mathbb{R}^*) : - \sum_{j \in J} f^*_j(x^*_j) = \sup(\text{RD}_{x^*}) \right\}.$$

When $\text{sol}(\text{RP}_{x^*}) \neq \emptyset$ we write $\min(\text{RP}_{x^*})$ instead of $\inf(\text{RP}_{x^*})$. Similarly, we write $\max(\text{RD}_{x^*})$ instead of $\sup(\text{RD}_{x^*})$ if $\text{sol}(\text{RD}_{x^*}) \neq \emptyset$.

Adopting the robust optimization approach under uncertainty (as in [4,6,7,15], etc.) we have shown in [8] that (RP_{x^*}) may be interpreted as the robust optimization counterpart of some uncertain optimization problem and (RD_{x^*}) as its optimistic dual. In particular, the relation

$$\sup(\text{RD}_{x^*}) \leq \inf(\text{RP}_{x^*})$$

always holds [8, Proposition 3.1]. The characterization of the *strong duality*, namely

$$\inf(\text{RP}_{x^*}) = \max(\text{RD}_{x^*}),$$

involves the set

$$A := \bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} \text{epi} f^*_j.$$

As shown below, the set A may be convex in favorable circumstances.

Lemma 2.1 Let $(A_i)_{i \in I}$ be a family of convex subsets of a linear space Z such that $\bigcap_{i \in I} A_i \neq \emptyset$. Then $A := \bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} A_j$ is a convex subset of Z.

Proof Let $\bar{z} \in \bigcap_{i \in I} A_i$ and $B_i := A_i - \bar{z}$ for each $i \in I$. Then $(\sum_{j \in J} B_j)_{J \in \mathcal{F}(I)}$ is a family of convex subsets of Z which is filtered with respect to the inclusion. It follows that $B := \bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} B_j$ is convex. Since $A = B + \bar{z}$, A is convex too. \qed

© Springer
Example 2.1 Let \(A = \bigcup_{J \in F(I)} \sum_{j \in J} \text{epi} f_j^* \). Assume there exists \((a^*, r) \in X^* \times R\) such that \(f_i(x) \geq \langle a^*, x \rangle - r \) for all \((i, x) \in I \times X\), that is to say, the functions \(f_i \) admit a common continuous affine minorant. Then \((a^*, r) \in \bigcap_{i \in I} \text{epi} f_i^*\) and, by Lemma 2.1, \(A \) is convex. This is of course the case when all functions \(f_i \) are nonnegative.

Example 2.2 Let \(A := \bigcup_{J \in F(I)} \sum_{j \in J} \text{dom} f_j^* \). Assume there exist \(a^* \in X^* \) and \((r_i)_{i \in I} \subset R\) such that \(f_i(x) \geq \langle a^*, x \rangle - r_i \) for all \((i, x) \in I \times X\). Then, \(a^* \in \bigcap_{i \in I} \text{dom} f_i^* \) and \(A \) is convex. This is, in particular, the case when all functions \(f_i \) are bounded from below.

We have the following characterization of strong duality under convexity.

Theorem 2.1 (Strong zero duality gap under convexity). [8, Theorem 6.1] Assume the \(f_i \in \Gamma_1(X), i \in I \), and \(\text{dom} f \neq \emptyset \). The next statements are equivalent:

(i) \(\inf(RP_{\tau^*}) = \max(RD_{\tau^*}) \).

(ii) \(A \) is \(w^* \)-closed convex regarding \(\{x^*\} \times R \).

In particular, (i) holds for any \(x^* \in X^* \) if and only if \(A \) is \(w^* \)-closed convex.

3 Minimizing the Robust Sum: Existence of Primal Optimal Solutions

In this section we assume that \((f_i)_{i \in I} \subset \Gamma(X) \) and, unless specified otherwise, that \(f = \sum_{i \in I} f_i \) is proper. We thus have \(f \in \Gamma(X) \). Additionally, we suppose that

\[f \text{ is weakly inf-locally compact} \] \hspace{1cm} (3.1)

in the sense that the lower level set \([f \leq r]\) is weakly locally compact for each \(r \in R \).

Let us note that this condition is always satisfied if \(X \) is finitely dimensional. It is also satisfied if \(\sup_{i \in I} f_i \) is weakly inf-locally compact or, a fortiori, if there exists \(i \in I \) such that \(f_i \) is weakly inf-locally compact.

By [12, Chap. 1, Proposition 5.4] or by [14, Theorem 7.7.6], (3.1) is equivalent to:

\[f^* \text{ is quasicontinuous with respect to the Mackey topology } \tau(X^*, X) \text{ on } X^*. \]

Let us recall that a convex function \(\xi : X^* \longrightarrow \overline{R} \) is said to be \(\tau(X^*, X)\)-quasicontinuous if the following four properties are satisfied [12–14]:

- \(\text{affdom} \xi \text{ is } \tau(X^*, X)\)-closed (or \(w^* \)-closed).
- \(\text{affdom} \xi \text{ is of finite codimension.} \)
- The \(\tau(X^*, X)\)-relative interior of \(\text{dom} \xi \), say \(\text{ridom} \xi \), is nonempty.
- The restriction of \(\xi \) to \(\text{affdom} \xi \) is \(\tau(X^*, X)\)-continuous on \(\text{ridom} \xi \).

Remark 3.1 A convex function majorized by a \(\tau(X^*, X)\)-quasicontinuous one is \(\tau(X^*, X)\)-quasicontinuous, too (see [17, Theorem 2.4], [23, Proposition 2.2.15]). If \(X = X^* = \mathbb{R}^n \), any extended real-valued convex function with nonempty domain is quasicontinuous.
Let us consider the subdifferential of f^* at $\bar{x}^* \in X^*$, namely,
\[
\partial f^*(\bar{x}^*) = \begin{cases}
\{ x \in X : f^*(x^*) \geq f^*(\bar{x}^*) + \langle x^* - \bar{x}^*, x \rangle, \forall x^* \in X^* \}, & \text{if } f^*(\bar{x}^*) \in \mathbb{R}, \\
\emptyset, & \text{else}.
\end{cases}
\]

For $\bar{x}^* \in \text{dom } f^*$, since $f \in \Gamma_1(X)$ entails $f^{**} = f$, one has
\[
\partial f^*(\bar{x}^*) = \text{argmin} (f - \langle x^*, \cdot \rangle) = \text{sol}(RP_{\bar{x}^*}). \quad (3.2)
\]

We are faced with the subdifferentiability of f^* at \bar{x}^*, for which the dual version [17, Theorem III.3] gives a very useful criterion:

Lemma 3.1 Assume that $g \in \Gamma_1(X)$ is weakly inf-locally compact and
\[
\text{cone}(\text{dom } g^{**} - \bar{x}^*) \text{ is a linear subspace of } X^*.
\]

Then $\partial g^*(\bar{x}^*)$ is the sum of a nonempty weakly compact convex set and a finitely dimensional linear subspace of X.

Remark 3.2 Condition (3.3) means that the sets $\text{dom } g^*$ and $\{ x^* \}$ are united in the sense that they cannot be properly separated (all weak*-closed hyperplanes which separate them contain both of them). A sufficient (in general not necessary) condition for this is that x^* belongs to the relative algebraic interior of $\text{dom } g^*$ (see [23, Proposition 1.2.8] for more details).

To exploit Lemma 3.1 in the case that $g = f = \sum_{i \in I} f_i$, we need an explicit formulation of the criterion (3.3) in terms of the functions f_i^*. To this end, let us consider the function φ defined on X^* by
\[
\varphi(x^*) := \inf \left\{ \sum_{j \in J} f_j^*(x_j^*) : \left(J, (x_j^*)_{j \in J} \right) \in \mathcal{F}(x^* + \bar{x}^*) \right\}, \forall x^* \in X^*.
\]

One has straightforwardly
\[
\varphi^*(x) = f(x) - \langle \bar{x}^*, x \rangle, \quad \forall x \in X,
\]
\[
\varphi^{**}(x^*) = f^*(x^* + \bar{x}^*), \quad \forall x^* \in X^*,
\]
and
\[
\text{dom } f^* - \bar{x}^* = \text{dom } \varphi^{**}. \quad (3.5)
\]

Since $\text{dom } \varphi^* = \text{dom } f \neq \emptyset$, the biconjugate function φ^{**} coincides with the w^*-closed convex hull $\overline{\text{co}} \varphi$ of φ, which satisfies
\[
\text{epi} \overline{\text{co}} \varphi = \overline{\text{co}} \text{epi } \varphi. \quad (3.6)
\]

Let us observe that
\[
\text{proj}_{X^*}(\text{coepi } \varphi) = \text{codom } \varphi. \quad (3.7)
\]
Now, by (3.6) and (3.7), one has
\[\text{dom} \, \overline{\text{co}} \phi = \text{proj}_{X^*} (\overline{\text{coepi}} \phi) \subset \text{proj}_{X^*} (\text{coepi} \phi) = \overline{\text{co} \text{dom}} \phi, \]
and, since \(\overline{\text{co} \text{dom}} \phi \) is \(w^* \)-closed,
\[\overline{\text{dom} \, \overline{\text{co}} \phi} \subset \overline{\text{co} \text{dom}} \phi. \]
Conversely, since \(\overline{\text{co}} \phi \leq \phi \), we have \(\text{dom} \phi \subset \overline{\text{co} \phi} \) and, since \(\text{dom} \overline{\text{co}} \phi \) is convex, \(\overline{\text{co} \phi} \subset \text{dom} \overline{\text{co}} \phi \). So, \(\overline{\text{co} \text{dom}} \phi = \overline{\text{co} \phi} \subset \overline{\text{co} \text{dom}} \phi \). Consequently,
\[\overline{\text{co} \text{dom}} \phi = \overline{\text{co} \text{dom}} \phi, \quad (3.8) \]
and hence, it follows from (3.5) that
\[\overline{\text{co} \text{cone}(\text{dom} f^* - x^*)} = \overline{\text{co} \text{cone} \phi^{**}} = \overline{\text{co} \text{cone} \text{co} \phi} \]
\[= \overline{\text{co} \text{cone}(\text{dom} \overline{\text{co}} \phi)} = \overline{\text{co} \text{cone}(\text{co} \text{dom} \phi)} \]
\[= \overline{\text{co} \text{cone}(\text{co} \text{dom} \phi)}. \]
Now, from the very definition of \(\phi \), one has
\[\text{dom} \phi = \left(\bigcup_{J \in F(I)} \sum_{j \in J} \text{dom} f_j^* \right) - x^*, \]
and the criterion (3.3) writes, for \(g = f \),
\[\overline{\text{co} \text{cone} \left\{ \left(\bigcup_{J \in F(I)} \sum_{j \in J} \text{dom} f_j^* \right) - x^* \right\}} \text{ is a linear subspace of } X^*. \quad (3.9) \]
Together with (3.2) and Lemma 3.1, we have thus proved the following result:

Theorem 3.1 (Existence of optimal solution) Assume that \((f_i)_{i \in I} \subset \Gamma(X), f = \sum_{i \in I}^R f_i \) is proper weakly inf-locally compact and (3.9) holds. Then \((\text{RP}_{x^*})\) admits at least an optimal solution. More precisely, \(\text{sol}(\text{RP}_{x^*}) \) is the sum of a nonempty convex weakly compact set and a finitely dimensional linear subspace of \(X \).

For nonnegative functions we obtain:

Corollary 3.1 Let \((f_i)_{i \in I} \) be a family of nonnegative \(\Gamma(X) \)-functions such that the infinite sum \(\sum_{i \in I} f_i \) is proper weakly inf-locally compact. Assume that
\[\overline{\text{co} \text{cone}} \left(\bigcup_{J \in F(I)} \sum_{j \in J} \text{dom} f_j^* \right) \text{ is a linear subspace of } X^*. \quad (3.10) \]
Then the optimal solution set of the problem
\[
\inf_{x \in X} \sum_{i \in I} f_i(x)
\]
is the sum of a nonempty convex weakly compact set and a finitely dimensional linear subspace of \(X\).

Proof Since the functions \(f_i, i \in I\) are nonnegative, their robust sum coincides with the infinite sum \(\sum_{i \in I} f_i\). Moreover, one has \(0_{X^*} \in \text{dom} f_i^*\) for each \(i \in I\), and the set \(\bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} \text{dom} f_j^*\) is convex (see Example 2.1). We conclude the proof with Theorem 3.1.

\(\Box\)

Remark 3.3 If \(I\) is finite and all functions \(f_i, i \in I\), are nonnegative, then
\[
\bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} \text{dom} f_j^* = \sum_{i \in I} \text{dom} f_i^*.
\]
and condition (3.10) becomes
\[
\overline{\text{cone}} \sum_{i \in I} \text{dom} f_i^* \text{ is a linear subspace of } X^*.
\]

Observe that, under the assumptions of Theorem 3.1, one has in particular \(\inf (\text{RP}_{X^*}) \in \mathbb{R}\). Observe also that when \(X = X^* = \mathbb{R}^n\), (3.3) writes \(x^* \in \text{ri}(\text{dom} g^*)\) and, in such a case, one has the next corollary.

Corollary 3.2 Assume that \((f_i)_{i \in I} \subset \Gamma(\mathbb{R}^n), \text{ dom } f \neq \emptyset, \text{ and }
\]
\[
x^* \in \text{ri} \left(\bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} \text{dom} f_j^* \right).
\]

Then, \(\text{sol}(\text{RP}_{X^*})\) is the sum of a nonempty convex compact set and a linear subspace of \(\mathbb{R}^n\).

Remark 3.4 If the functions \(f_i\) satisfy the condition in Example 2.2, i.e., there exist \(a^* \in X^*\) and \((r_i)_{i \in I} \subset \mathbb{R}\) such that \(f_i(x) \geq \langle a^*, x \rangle - r_i\) for all \((i, x) \in I \times X\), then the set \(\bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} \text{dom} f_j^*\) is convex and the criteria (3.9) and (3.11) collapse respectively to
\[
\overline{\text{cone}} \left\{ \left(\bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} \text{dom} f_j^* \right) - x^* \right\} \text{ is a linear subspace of } X^*.
\]

and
\[
x^* \in \text{ri} \left(\bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} \text{dom} f_j^* \right).
\]
Note that the conclusion of Theorem 3.1 does not entail that
\[
\min (\text{RP}_{\bar{x}^*}) = \sup (\text{RD}_{\bar{x}^*}).
\] (3.12)

One has in fact, with \(\varphi \) defined as in (3.4), the following lemma.

Lemma 3.2 Assume that either \(\sup (\text{RD}_{\bar{x}^*}) = +\infty \) or \(\varphi \) is subdifferentiable at \(0_{X^*} \).

Then (3.12) holds.

Proof Since \(\inf (\text{RP}_{\bar{x}^*}) \geq \sup (\text{RD}_{\bar{x}^*}) \), (3.12) is obvious if \(\sup (\text{RD}_{\bar{x}^*}) = +\infty \).

Assume now that \(x \in \partial \varphi (0_{X^*}) \). Then \(\varphi (0_{X^*}) + \varphi^* (\bar{x}) = \langle 0_{X^*}, \bar{x} \rangle = 0 \) and we thus have
\[
\inf (\text{RP}_{\bar{x}^*}) \leq f (\bar{x}) - \langle \bar{x}^*, x \rangle = \varphi^* (\bar{x}) = -\varphi (0_{X^*}) = \sup (\text{RD}_{\bar{x}^*}) \leq \inf (\text{RP}_{\bar{x}^*}),
\]
and (3.12) follows. \(\square \)

Remark 3.5 Recall that \(A = \bigcup_{J \in F (I)} \sum_{j \in J} \text{epi} f_j^* \) and \(\text{dom} \varphi = \left(\bigcup_{J \in F (I)} \sum_{j \in J} \text{dom} f_j^* \right) - \bar{x}^*. \) From (3.4) one has
\[
\text{epi} \varphi \subset A - (\bar{x}^*, 0) \subset \text{epi} \varphi
\]
and, consequently,
\[
\varphi (\bar{x}^*) = \inf \{ t \in \mathbb{R} : (x^*, t) \in A - (\bar{x}^*, 0) \}.
\]

It follows that, if \(A \) is convex, then \(\varphi \) is convex too.

Theorem 3.2 (Primal attainment) Assume that \((f_i)_{i \in I} \subset \Gamma (X) \), \(\varphi \) defined by (3.4) is convex and Mackey-quasicontinuous, and that
\[
\overline{\text{cone}} \left\{ \left(\bigcup_{J \in F (I)} \sum_{j \in J} \text{dom} f_j^* \right) - \bar{x}^* \right\} \text{ is a linear subspace of } X^*. \] (3.13)

Then,
\[
\min (\text{RP}_{\bar{x}^*}) = \sup (\text{RD}_{\bar{x}^*}).
\]

Proof By Lemma 3.2 one may assume that \(\varphi (0_{X^*}) \neq -\infty \). By [17, Theorem 3.3] we have \(\partial \varphi (0_{X^*}) \neq \emptyset \) and by Lemma 3.2 again we are done. \(\square \)

Remark 3.6 Since for each \((i, x^*) \in I \times X^* \) one has \(\varphi (x^*) \leq f_i^* (x^* + \bar{x}^*) \), the function \(\varphi \) (assumed to be convex) is Mackey-quasicontinuous whenever there exists \(i_0 \in I \) such that \(f_{i_0} \) is weakly inf-locally compact (see Remark 3.1).
Corollary 3.3 Let \((f_i)_{i \in I} \subset \Gamma(\mathbb{R}^n) \) be such that \(\bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} \text{epi} f_j^\ast \) is convex and
\[
\bar{x}^* \in \text{ri} \left(\bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} \text{dom} f_j^\ast \right).
\] (3.14)

Then \(\min (\text{RP}_{\bar{x}^*}) = \sup (\text{RD}_{\bar{x}^*}) \).

Proof As \(A = \bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} \text{epi} f_j^\ast \) is convex, \(\varphi \) is convex, too (Remark 3.5). Moreover, as \(X = \mathbb{R}^n \) and \(\text{dom} \varphi \neq \emptyset \), \(\varphi \) is Mackey-quasicontinuous. Now, again, as \(X = \mathbb{R}^n \), (3.14) \(\Leftrightarrow \) (3.13), and the conclusion follows from Theorem 3.2. \(\square \)

4 Primal–Dual Optimality Relations

We need to introduce some additional notations. Given \(g : X \to \mathbb{R} \), we denote by \(M_g : X^* \rightrightarrows X \) the set-valued mapping defined, for each \(x^* \in X^* \), as
\[
(M_g)(x^*) = \begin{cases}
\{ \text{argmin}(g - \langle x^*, \cdot \rangle) \}, & \text{if } g^*(x^*) \in \mathbb{R}, \\
\emptyset, & \text{else}.
\end{cases}
\]

In fact, \(M_g \) is nothing else than the inverse of the subdifferential mapping \(\partial g : X \rightrightarrows X^* \), i.e.,
\[
x \in (M_g)(x^*) \iff x^* \in \partial g(x).
\]

One has \((M_g)(x^*) \subset \partial g^*(x^*) \) and equality holds whenever \(g = g^{**} \) [e.g., when \(g \in \Gamma(X) \)].

Given \(x \in X \), we denote by \(S_f(x) \) the (possibly empty) set of those \(J \in \mathcal{F}(I) \) that realize the supremum in the definition of the robust sum when \(f(x) \) is finite:
\[
S_f(x) = \begin{cases}
\{ J \in \mathcal{F}(I) : \sum_{j \in J} f_j(x) = f(x) \}, & \text{if } x \in \text{dom } f, \\
\emptyset, & \text{else}.
\end{cases}
\]

The inverse of the set-valued mapping \(S_f : X \rightrightarrows \mathcal{F}(I) \) is denoted by \(T_f \). One has \(T_f : \mathcal{F}(I) \rightrightarrows X \) and
\[
x \in T_f(J) \iff J \in S_f(x).
\]

If \(I \) is finite one has of course \(S_f(x) \neq \emptyset \) for each \(x \in \text{dom } f \). We now make explicit \(S_f(x) \) in different situations. To this aim, we introduce the supremum function \(f_0 := \sup_{i \in I} f_i \).

- If \(f_0(x) \leq 0 \) we have \(f(x) = f_0(x) \) [8, Lemma 2.5]. Then
\[
S_f(x) = \begin{cases}
\{ \{ j \} : j \in I, f_j(x) = f_0(x) \}, & \text{if } f_0(x) < 0, \\
\{ J \in \mathcal{F}(I) : f_j(x) = 0, \forall j \in J \}, & \text{if } f_0(x) = 0.
\end{cases}
\]
• If \(f_0(x) \in]0, +\infty[\) we have \(f(x) = \sum_{i \in I} f_i^+(x) := \sum_{i \in I} \max\{f_i(x), 0\} \) \[8\], Lemma 2.5\] and

\[
S_f(x) = \begin{cases} \{i \in I : f_i(x) > 0\}, & \text{if this set is finite,} \\ \emptyset, & \text{else.} \end{cases}
\]

Theorem 4.1 (Primal–dual optimality with zero duality gap) Assume that all functions \(f_i \) are proper and let \(x \in \text{dom} f \) and \((J, (x_j^*)_{j \in J}) \in F(\bar{x}^*)\). Next statements are equivalent:

(i) \(x \in \text{sol}(\text{RP}_{x^*}), (J, (x_j^*)_{j \in J}) \in \text{sol}(\text{RD}_{\bar{x}^*}), \text{and inf}(\text{RP}_{x^*}) = \sup(\text{RD}_{\bar{x}^*})\).

(ii) \(J \in S_f(x) \) and \(x_j^* \in \partial f_j(x) \) for all \(j \in J \).

(iii) \(x \in T_f(J) \cap \left(\bigcap_{j \in J} M_{f_j}(x_j^*) \right) \).

If \((f_i)_{i \in I} \subset \Gamma(X)\) we can add

(iv) \(x \in T_f(J) \cap \left(\bigcap_{j \in J} \partial f_j^*(x_j^*) \right) \).

Proof From the definitions of the set-valued mappings \(S_f, T_f, \) and \(M_{f_j} \) it is clear that (ii) \(\iff \) (iii) and (iii) \(\iff \) (iv) under the assumption that \((f_i)_{i \in I} \subset \Gamma(X)\).

[(i) \(\Rightarrow \) (ii)] Since \(x \in \text{dom} f \) we have \(\sum_{j \in J} f_j(x) \in \mathbb{R} \) and

\[
\sum_{j \in J} f_j(x) - \langle \bar{x}^*, x \rangle \leq f(x) - \langle \bar{x}^*, x \rangle = \text{inf}(\text{RP}_{x^*}) = \sup(\text{RD}_{\bar{x}^*}) = - \sum_{j \in J} f_j^*(x_j^*). \quad (4.1)
\]

By Fenchel and Young inequality we have

\[
- \sum_{j \in J} f_j^*(x_j^*) \leq \sum_{j \in J} f_j(x) - \langle \bar{x}^*, x \rangle. \quad (4.2)
\]

Since \((J, (x_j^*)_{j \in J}) \in F(\bar{x}^*)\) we have

\[
\sum_{j \in J} \left(f_j(x) - \langle x_j^*, x \rangle \right) = \sum_{j \in J} f_j(x) - \langle \bar{x}^*, x \rangle. \quad (4.3)
\]

Combining (4.1)–(4.3), we obtain \(\sum_{j \in J} f_j(x) = f(x) \), that means \(J \in S_f(x) \) and

\[
\sum_{j \in J} \left(f_j(x) + f_j^*(x_j^*) - \langle x_j^*, x \rangle \right) = 0.
\]

By Fenchel and Young inequality all terms of the above sum are nonnegative, hence equal to zero, that means \(x_j^* \in \partial f_j(x) \) for all \(j \in J \).
[(ii) \implies (i)] Since \(J \in S_f(x), \sum_{j \in J} x_j^* = \bar{x}^*, x_j^* \in \partial f_j(x) \) for all \(j \in J \), and \((J, (x_j^*)_{j \in J}) \in \mathbb{F}(\bar{x}^*) \), we have

\[
f(x) - \langle \bar{x}^*, x \rangle = \sum_{j \in J} f_j(x) - \langle x_j^*, x \rangle = \sum_{j \in J} \left(f_j(x) - \langle x_j^*, x \rangle \right) = - \sum_{j \in J} f_j^*(x_j^*) \leq \sup(\text{RD}_{\bar{x}^*}) \leq \inf(\text{RP}_{\bar{x}^*}) \leq f(x) - \langle \bar{x}^*, x \rangle.
\]

All terms of the above chain of inequalities are thus equal and this proves that (i) holds. \(\Box \)

Next corollary assumes that \(\inf(\text{RP}_{\bar{x}^*}) = \max(\text{RD}_{\bar{x}^*}) \) (i.e., strong duality), which is characterized (in the convex case) in Theorem 2.1.

Corollary 4.1 Assume that all functions \(f_i \) are proper and let \(x \in \text{dom} f \) and \(\inf(\text{RP}_{\bar{x}^*}) = \max(\text{RD}_{\bar{x}^*}) \). Next statements are equivalent:

(i) \(x \in \text{sol}(\text{RP}_{\bar{x}^*}) \).

(ii) For all \((J, (x_j^*)_{j \in J}) \in \text{sol}(\text{RD}_{\bar{x}^*}) \) one has \(J \in S_f(x) \) and \(x_j^* \in \partial f_j(x) \) for all \(j \in J \).

(iii) There exists \((J, (x_j^*)_{j \in J}) \in \text{sol}(\text{RD}_{\bar{x}^*}) \) such that \(J \in S_f(x) \) and \(x_j^* \in \partial f_j(x) \) for all \(j \in J \).

(iv) There exists \((J, (x_j^*)_{j \in J}) \in \mathbb{F}(\bar{x}^*) \) such that \(J \in S_f(x) \) and \(x_j^* \in \partial f_j(x) \) for all \(j \in J \).

Moreover, for any \((J, (x_j^*)_{j \in J}) \in \text{sol}(\text{RD}_{\bar{x}^*}) \) one has

\[
\text{sol}(\text{RP}_{\bar{x}^*}) = T_f(J) \cap \left(\bigcap_{j \in J} M_{f_j}(x_j^*) \right). \tag{4.4}
\]

Proof [(i) \implies (ii)] It follows from the statement [(i) \implies (ii)] in Theorem 4.1.

[(ii) \implies (iii)] It is obvious as \(\text{sol}(\text{RD}_{\bar{x}^*}) \neq \emptyset

[(iii) \implies (iv)] It is obvious.
[\textit{(iv)} \implies (i)] Since \(J \in S_f (x) \), \(\sum_{j \in J} x_j^* = \bar{x}^* \), and \(x \in M_{f_j} (x_j^*) \) for each \(j \in J \),

\[
\inf (\text{RP}_{\bar{x}^*}) \leq f (x) - \langle \bar{x}^*, x \rangle = \sum_{j \in J} f_j (x) - \langle \bar{x}^*, x \rangle
\]

\[
= \sum_{j \in J} \left(f_j (x) - \langle x_j^*, x \rangle \right)
\]

\[
= - \sum_{j \in J} f_j^*(x_j^*)
\]

\[
\leq \sup (\text{RD}_{\bar{x}^*}) \leq \inf (\text{RP}_{\bar{x}^*}).
\]

This ensures that \(f (x) - \langle \bar{x}^*, x \rangle = \inf (\text{RP}_{\bar{x}^*}) \) and \((i) \) holds.

Let us prove the last assertion of Corollary 4.1. Let \((J, (x_j^*)_{j \in J}) \in \text{sol}(\text{RD}_{\bar{x}^*}) \). From \[(i) \iff (ii) \] one has \(x \in \text{sol}(\text{RP}_{\bar{x}^*}) \) if and only if \(J \in S_f (x) \) and \(x_j^* \in \partial f_j (x) \) for all \(j \in J \) or, equivalently,

\[
x \in T_f (J) \cap \left(\bigcap_{j \in J} M_{f_j} (x_j^*) \right).
\]

\[\square \]

Notice that, if \((f_i)_{i \in I} \subset \Gamma (X) \), then \(M_{f_j} (x_j^*) = \partial f_j^*(x_j^*) \) for each \(j \in J \) and the Eq. (4.4) writes

\[
\text{sol}(\text{RP}_{\bar{x}^*}) = T_f (J) \cap \left(\bigcap_{j \in J} \partial f_j^*(x_j^*) \right).
\]

\textbf{Corollary 4.2} Assume that all functions \(f_i \) and \(f \) are proper and let \((J, (x_j^*)_{j \in J}) \in \mathbb{F}(\bar{x}^*) \) and \(\min (\text{RP}_{\bar{x}^*}) = \sup (\text{RD}_{\bar{x}^*}) \). Next statements are equivalent:

(i) \((J, (x_j^*)_{j \in J}) \in \text{sol}(\text{RD}_{\bar{x}^*}) \),

(ii) For all \(x \in \text{sol}(\text{RP}_{\bar{x}^*}) \) one has \(J \in S_f (x) \) and \(x_j^* \in \partial f_j (x) \) for all \(j \in J \),

(iii) There exists \(x \in \text{sol}(\text{RP}_{\bar{x}^*}) \) such that \(J \in S_f (x) \) and \(x_j^* \in \partial f_j (x) \) for all \(j \in J \),

(iv) There exists \(x \in X \) such that \(J \in S_f (x) \) and \(x_j^* \in \partial f_j (x) \) for all \(j \in J \).

Moreover, for any \((J, (x_j^*)_{j \in J}) \in \text{sol}(\text{RD}_{\bar{x}^*}) \) one has

\[
\text{sol}(\text{RD}_{\bar{x}^*}) = \left\{ (J, (x_j^*)_{j \in J}) \in \mathbb{F}(\bar{x}^*) : J \in S_f (x) \text{ and } x_j^* \in \partial f_j (x), \forall j \in J \right\}
\]

for either some (all) \(x \in \text{sol}(\text{RP}_{\bar{x}^*}) \) or for some \(x \in X \).

\textbf{Proof} \[(i) \implies (ii) \] It comes from the statement \[(i) \implies (ii) \] in Theorem 4.1.

\[(ii) \implies (iii) \] It is obvious as \(\text{sol}(\text{RP}_{\bar{x}^*}) \neq \emptyset \).

\[(iii) \implies (i) \] It is obvious.
[(iv) \implies (i)] Since \((J, (x_j^*))_{j \in J} \in \mathcal{F}(\bar{x}^*), x_j^* \in \partial f_j(x)\) for all \(j \in J, \sum_{j \in J} x_j^* = \bar{x}^*\), and \(J \in \mathcal{S}_f(x)\), one has
\[
\sup(\text{RD}_{\bar{x}^*}) \geq -\sum_{j \in J} f_j^*(x_j^*)
= \sum_{j \in J} \left(f_j(x) - \langle x_j^*, x \rangle \right)
= \sum_{j \in J} f_j(x) - \langle \bar{x}^*, x \rangle
= f(x) - \langle \bar{x}^*, x \rangle
\geq \inf(\text{RP}_{\bar{x}^*})
\geq \sup(\text{RD}_{\bar{x}^*}).
\]

Consequently, \(\sup(\text{RD}_{\bar{x}^*}) = -\sum_{j \in J} f_j^*(x_j^*)\) and (i) holds.

The last assertion of Corollary 4.2 comes directly from the equivalences (i) \iff (ii) \iff (iii) \iff (iv).
\[\square\]

For the last result of this section we still assume \((f_i)_{i \in I} \subset (\mathbb{R} \cup \{+\infty\})^X\) is an infinite family of proper functions, but we do not consider a fixed element \(\bar{x}^* \in X^*\). Equation (4.5) is called stable strong duality in [3].

Corollary 4.3 Assume that
\[
\inf(\text{RP}_{\bar{x}^*}) = \max(\text{RD}_{\bar{x}^*}), \quad \forall x^* \in \bigcup_{x \in X} \partial f(x).
\tag{4.5}
\]

Then one has
\[
\partial f(x) = \bigcup_{J \in \mathcal{S}_f(x)} \sum_{j \in J} \partial f_j(x), \quad \forall x \in X.
\tag{4.6}
\]

Proof Let us show that the inclusion \(\supset\) always holds in (4.6).

Let \(x^* := \sum_{j \in J} x_j^*\) with \(J \in \mathcal{S}_f(x)\) and \(x_j^* \in \partial f_j(x)\) for all \(j \in J\). We thus have,
\[
f(x) - \langle x^*, x \rangle = \sum_{j \in J} \left(f_j(x) - \langle x_j^*, x \rangle \right)
= -\sum_{j \in J} f_j^*(x_j^*)
\leq \sup(\text{RD}_{\bar{x}^*})
\leq \inf(\text{RP}_{\bar{x}^*})
= -f^*(x^*)
\leq f(x) - \langle x^*, x \rangle.
\]

Finally, \(f(x) - \langle x^*, x \rangle = -f^*(x^*)\), that means \(x^* \in \partial f(x)\).
We now prove the reverse inclusion \(\subset \) in (4.6).

Let \(x^* \in \partial f(x) \). Then \(x \in \partial f^*(x^*) \) and, by (3.2), \(x \in \text{sol}(\text{RP}_{x^*}) \). By (4.5) and Corollary 4.1, there exists \((J, (x_j^*))_{j \in J} \in F(x^*)\) such that \(J \in S_f(x) \) and \(x_j^* \in \partial f_j(x) \) for all \(j \in J \). We thus have \(x^* = \sum_{j \in J} x_j^* \). \(\square \)

5 Robust Sum of Subaffine Functions

Let \((A_i)_{i \in I}\) be a family of nonempty, \(w^*\)-closed convex subsets of \(X^*\), \(t_i \in \mathbb{R}\) for all \(i \in I\) and the subaffine functions \(f_i := \sigma_{A_i} - t_i\), \(i \in I\). Then \((f_i)_{i \in I} \subset \Gamma(X)\) and we have \(f_i^* := \delta_{A_i} + t_i\) and \(\text{epi} f_i^* = A_i \times [t_i, +\infty[= A_i \times \{t_i\} + \{0_{X^*}\} \times \mathbb{R}_+\) for each \(i \in I\). The robust sum \(f\) of this family is

\[
 f(x) = \sum_{i \in I}^R f_i(x) = \sup_{J \in \mathcal{P}(I)} \sum_{j \in J} \left[\sigma_{A_j}(x) - t_j \right], \quad \forall x \in X
\]

and the set \(A\) defined by (2.2) now becomes

\[
 A := \left(\bigcup_{J \in \mathcal{P}(I)} \sum_{j \in J} \left[A_j \times \{t_j\} \right] \right) + \{0_{X^*}\} \times \mathbb{R}_+. \tag{5.1}
\]

Let us introduce the set-valued mapping

\[
 A : \mathcal{F}(I) \rightrightarrows X^* \quad \text{such that} \quad A(J) = \sum_{j \in J} A_j.
\]

Then the problem \((\text{RP}_{x^*})\) and its dual \((\text{RD}_{x^*})\) write as

\[
 \inf(\text{RP}_{x^*}) = \inf \{ f(x) - \langle x^*, x \rangle : x \in X \} = -f^*(x^*)
\]

and

\[
 \sup(\text{RD}_{x^*}) = \sup \left\{ -\sum_{j \in J} f_j^*(x_j^*) : J \in A^{-1}(x^*) \right\} = -\inf \left\{ \sum_{j \in J} t_j : J \in A^{-1}(x^*) \right\},
\]

and hence, the zero duality gap relation amounts to

\[
 f^*(x^*) = \inf \left\{ \sum_{j \in J} t_j : J \in A^{-1}(x^*) \right\}.
\]

We now briefly quote some remarkable properties on the duality and the convexity and closedness of the qualifying set \(A\):
• It is worth observing firstly that if $A^{-1}(\bar{x}^*) = \emptyset$ (i.e., $\bar{x}^* \notin \bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} A_j$), one has $\bar{x}^* \notin \text{dom } f^*$ and $\sup(\text{RD}_x^*) = -\infty$.

• In the case when $\text{dom } f \neq \emptyset$ (for instance, if $\sum_{i \in I} t_i \in \mathbb{R}$), Theorem 2.1 says that the stable strong duality of the pair $(\text{RP}_{x^*})-(\text{RD}_{x^*})$ holds, i.e.,

$$f^*(x^*) = \min \left\{ \sum_{j \in J} t_j : J \in A^{-1}(x^*) \right\}, \ \forall x^* \in \text{dom } f^* \quad (5.2)$$

if and only if the set

$$\mathcal{A} = \left(\bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} \left[A_j \times \{t_j\} \right] \right) + \{0_{X^*}\} \times \mathbb{R}_+ \text{ is } w^*\text{-closed and convex.} \quad (5.3)$$

• According to Lemma 2.1 and Example 2.1, we know that the set \mathcal{A} in (5.1) is convex if $\bigcap_{i \in I} A_i \neq \emptyset$ and $\sup_{i \in I} t_i < +\infty$. Moreover, the set \mathcal{A} is w^*-closed if $\bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} (A_j \times \{t_j\})$ is w^*-compact.

On the primal attainment and the strong duality of the robust sum for subaffine functions (RP_{x^*}), one has the following consequence of Theorem 3.1 and Lemma 2.1.

Proposition 5.1 Assume that $\bigcap_{i \in I} A_i \neq \emptyset$ and the robust sum $\sum_{i \in I} (\sigma_{A_i} - t_i)$ is proper and weakly inf-locally compact. Let $\bar{x}^* \in X^*$ be such that

$$\text{cone} \left(\bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} A_j - \bar{x}^* \right) \text{ is a linear subspace of } X^*. \quad (5.4)$$

Then the optimal solution set of the problem

$$(\text{RP}_{\bar{x}^*}) \inf_{x \in X} \left(\sum_{i \in I} (\sigma_{A_i}(x) - t_i) - \langle \bar{x}^*, x \rangle \right)$$

is the sum of a nonempty weakly compact set and a finitely dimensional linear subspace of X.

Applying Theorem 3.2 we get

Proposition 5.2 Assume that $\bigcap_{i \in I} A_i \neq \emptyset$, $\sup_{i \in I} t_i < +\infty$, and there exists $i_0 \in I$ such that $\delta_{A_{i_0}}$ is Mackey quasicontinuous. Then for each $\bar{x}^* \in X^*$ satisfying (5.4) we have

$$\min_{x \in X} \left(\sum_{i \in I} (\sigma_{A_i}(x) - t_i) - \langle \bar{x}^*, x \rangle \right) = \sup \left\{ -\sum_{j \in J} t_j : J \in A^{-1}(\bar{x}^*) \right\}.$$
Proof By Lemma 2.1 (Example 2.1) the set \mathcal{A} is convex and the function φ is convex, too (Remark 3.5). On the other hand, by Remark 3.6, the function φ is Mackey quasicontinuous. The conclusion follows from Theorem 3.2.

In finite dimension we have (as an immediate consequence of Proposition 5.2):

Proposition 5.3 Let $(A_i)_{i \in I}$ be a family of closed convex subsets of \mathbb{R}^n such that $\bigcap_{i \in I} A_i \neq \emptyset$. Assume that $\sup_{i \in I} t_i \neq +\infty$. Then for any $\bar{x}^* \in \text{ri} \left(\bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} A_j \right)$ one has

\[
\min_{x \in X} \left(\sum_{i \in I} R_i (\sigma_{A_i}(x) - t_i) - \langle \bar{x}^*, x \rangle \right) = \sup \left\{ - \sum_{j \in J} t_j : J \in A^{-1}(\bar{x}^*) \right\}.
\]

We end this section with a formula on the subdifferential of the robust sum $f = \sum_{i \in I} (\sigma_{A_i} - t_i)$. Let us recall that for each $x \in X$ one has, by definition,

\[
S_f(x) = \left\{ J \in \mathcal{F}(I) : \sum_{j \in J} (\sigma_{A_j}(x) - t_j) = f(x) \right\}.
\]

We observe also that

\[
\partial \sigma_{A_i}(x) = \{ x^* \in A_i : \langle x^*, x \rangle = \sigma_{A_i}(x) \}
\]

or, in other words,

\[
\partial \sigma_{A_i}(x) = \text{argmax}_{A_i} \langle \cdot, x \rangle.
\]

We then have:

Proposition 5.4 Assume that $\bigcap_{i \in I} A_i \neq \emptyset$, $\sup_{i \in I} t_i < +\infty$, f is proper, and the set

\[
\left(\bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} [A_j \times \{t_j\}] \right) + \{0 \} \times \mathbb{R}_+,
\]

is w^*-closed regarding the set $\bigcup_{u \in X} \partial f(u)$. Then one has

\[
\partial f(x) = \bigcup_{J \in S_f(x)} \sum_{j \in J} \text{argmax}_{A_j} \langle \cdot, x \rangle, \forall x \in X.
\]

Proof Note that the set in (5.6) is nothing but

\[
\mathcal{A} = \bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} \text{epi}(\sigma_{A_j} - t_j)^* \text{,}
\]

which is convex. The conclusion now follows from Theorem 2.1, Corollary 4.3, and (5.5).
6 Approximate Solutions to Inconsistent Convex Inequality Systems

In this section \((f_i)_{i \in I} \subset \Gamma(X)\). We consider the system

\[
(S) \{ f_i(x) \leq 0, \ i \in I \},
\]

that we assume to be inconsistent. Defining

\[
f_0(x) := \sup_{i \in I} f_i(x),
\]

we have \(f_0(x) > 0\) for all \(x \in X\).

The \(i\)-th residual of \(x\) is given by \(f_i^+(x)\) and, in some sense, the infeasibility of \(x\) is measured by \(\sup_{i \in I} f_i^+(x)\), that is, \(f_0(x)\) too. We may also consider the cumulative infeasibility of \(x\), namely the infinite sum \(\sum_{i \in I} f_i^+(x)\) (see [9]). Since \(f_0(x) > 0\) we know that \(\sum_{i \in I} f_i^+\) coincides with the robust sum \(\sum_{i \in I} f_i\) of the family \((f_i)_{i \in I}\) (see [8, Lemma 2.5]).

In formal terms, let us define a best \(\ell_\infty\)-approximate solution of the inconsistent system \((S)\) as an optimal solution to the problem

\[
\inf_{x \in X} f_0(x) = \sup_{i \in I} f_i(x) = \sup_{i \in I} f_i^+(x)
\]

and, similarly, a best \(\ell_1\)-approximate solution of \((S)\) as an optimal solution to the problem

\[
\inf_{x \in X} \sum_{i \in I} f_i^+(x) = \sum_{i \in I} f_i(x).
\]

We denote by \(\ell_\infty\)-sol \((S)\) (resp., \(\ell_1\)-sol \((S)\)) the set of best \(\ell_\infty\) (resp., \(\ell_1\)) approximate solutions of the inconsistent system \((S)\).

In order to associate a suitable dual problem with \(\inf_{x \in X} f_0(x)\) we define, as in [10], the unit simplex in the linear space \(\mathbb{R}^I\) of real-valued functions \(\lambda \in \mathbb{R}^I\) with finite support set \(\text{supp} \lambda := \{ i \in I : \lambda_i \neq 0 \}\) as

\[
S_I := \left\{ \lambda \in \mathbb{R}^I : \sum_{i \in I} \lambda_i = 1, \lambda_i \geq 0, \forall i \in I \right\}
\]

and the modified Lagrangian function as \(L : X \times S_I\) such that

\[
L(x, \lambda) := \sum_{i \in \text{supp} \lambda} \lambda_i f_i(x), \forall (x, \lambda) \in X \times S_I.
\]

Proposition 6.1 (Structure of \(\ell_\infty\)-sol \((S)\) and strong duality) Assume that \(f_0\) is proper and weakly inf-locally compact, and that \(\bigcup_{i \in I} \text{dom} f_i^*\) is a linear subspace of \(X^*\). Then \(\ell_\infty\)-sol \((S)\) is the sum of a nonempty convex weakly compact set and a
finitely dimensional linear subspace of X. Moreover, one has

$$\inf_{x \in X} \sup_{i \in I} f_i(x) = \max \left\{ \inf_{x \in X} \sum_{i \in I} \lambda_i f_i(x) : \lambda \in S_I \right\}$$

if and only if

$$\bigcup_{\lambda \in S_I} \operatorname{epi} \left(\sum_{i \in I} \lambda_i f_i \right)^* \text{ is } w^*\text{-closed regarding } \{0_{X^*} \} \times \mathbb{R}.$$

Proof Since $f_0 \in \Gamma(X)$ one has $\ell_\infty - \text{sol} \ (S) = \partial f_0^*(0_{X^*})$. We intend to apply Lemma 3.1 for $g = f_0$ and $x^* = 0_{X^*}$. We have to make explicit the criterion (3.3) in terms of the conjugate of the data functions f_i. To this end consider the function $\Psi := \inf_{i \in I} f_i^*$. One has $\operatorname{dom} \Psi = \bigcup_{i \in I} \operatorname{dom} f_i^*$, $\Psi^* = f_0$ and, since $\operatorname{dom} f_0 \neq \emptyset$, $f_0^* = \mathcal{C} \Psi$. Now, as in (3.8), we have $\mathcal{C} \operatorname{dom} \Psi = \mathcal{C} \operatorname{dom} \Psi^*$ and, consequently,

$$\mathcal{C} \operatorname{dom} f_0^* = \mathcal{C} \operatorname{dom}(\mathcal{C} \Psi)) = \mathcal{C} \operatorname{co}(\operatorname{dom} \Psi) = \mathcal{C} \operatorname{co} \left(\mathcal{C} \bigcup_{i \in I} \operatorname{dom} f_i^* \right).$$

The strong duality theorem is consequence of [10, Corollary 3.4]. \qed

Observe that, if at least one of the functions f_i is weakly inf-locally compact, then f_0 is weakly inf-locally compact, too. The next corollary is an immediate consequence of Proposition 6.1.

Corollary 6.1 Assume that $(f_i)_{i \in I} \subset \Gamma(\mathbb{R}^n)$, $\operatorname{dom} f_0 \neq \emptyset$, and $0_{\mathbb{R}^n} \in \text{rico} \left(\bigcup_{i \in I} \operatorname{dom} f_i^* \right)$. Then ℓ_∞-sol (S) is the sum of a nonempty convex compact set and a linear subspace of \mathbb{R}^n.

Example 6.1 Let $\{(a_i, x) \leq b_i, i \in I\}$ be an inconsistent linear system posed in \mathbb{R}^n. This is a particular case of system (S) above, with $f_i = \langle a_i, \cdot \rangle - b_i$, $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$ for all $i \in I$. Denoting by 0_n the null vector in \mathbb{R}^n, by Corollary 6.1, if $\operatorname{dom} f_0 \neq \emptyset$ and $0_n \in \text{rico} \{a_i, i \in I\}$, then ℓ_∞-sol (S) is the sum of a nonempty convex compact set and a linear subspace of \mathbb{R}^n ([9, Proposition 1(S)] only asserts that, under these assumptions, ℓ_∞-sol $(S) \neq \emptyset$). Moreover, since

$$\bigcup_{\lambda \in S_I} \operatorname{epi} \left(\sum_{i \in I} \lambda_i f_i \right)^* = \left\{ \sum_{i \in I} \lambda_i (a_i, b_i) : \lambda \in S_I \right\} + \{0_n\} \times \mathbb{R}_+,$$

the strong duality theorem becomes here

$$\inf_{x \in \mathbb{R}^n} \sup_{i \in I} (\langle a_i, x \rangle - b_i) = \max \left\{ \inf_{x \in \mathbb{R}^n} \sum_{i \in I} \lambda_i (\langle a_i, x \rangle - b_i) : \lambda \in S_I \right\},$$

\(\mathcal{C} \) Springer
if and only if
\[
\left\{ \sum_{i \in I} \lambda_i (a_i, b_i) : \lambda \in S_I \right\} + \{0_n\} \times \mathbb{R}_+ \text{ is closed regarding } \{0_n\} \times \mathbb{R}.
\]

Proposition 6.2 (Structure of \(\ell_1\)-sol (S) and strong duality) Assume that the robust sum \(\sum_{i \in I} f_i\) is proper, weakly inf-locally compact, and \(\text{cone} \left(\bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} \text{dom} f_j^* \right)\) is a linear subspace of \(X^*\). Then, \(\ell_1\)-sol (S) is the sum of a nonempty convex weakly compact set and a finitely dimensional linear subspace of \(X\). Moreover, one has
\[
\inf_{x \in X} \sum_{i \in I} f_i^+(x) = \max \left\{ - \sum_{j \in J} f_j^* (x_j^*) : J \in \mathcal{F}(I), (x_j^*)_{j \in J} \in (X^*)^J, \sum_{j \in J} x_j^* = 0_{X^*} \right\}
\]
if and only if
\[
\bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} \text{epi} f_j^* \text{ is } \mathcal{W}_*\text{-closed convex regarding } \{0_{X^*}\} \times \mathbb{R}.
\]

Proof It is direct consequence of Theorems 3.1 and 2.1 for \(x^* = 0_{X^*}\), due to the relation \(\sum_{i \in I} f_i = \sum_{i \in I} f_i^+\). \(\Box\)

Example 6.2 Consider again the linear system (S) in Example 6.1. By Proposition 6.2, if \(\sum_{i \in I} ((a_i, \cdot) - b_i)\) is proper and \(0_n \in \text{ri} \left(\bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} a_j \right)\), then \(\ell_1\)-sol (S) is the sum of a nonempty convex compact set and a finitely dimensional linear subspace of \(\mathbb{R}^n\). Observe that, for each \((x_j)_{j \in J} \in (\mathbb{R}^n)^J\), one has
\[
\sum_{j \in J} f_j^* (x_j) = \sum_{j \in J} (\delta_{\{a_j\}}^* (x_j) + b_j) = \begin{cases} \sum_{j \in J} b_j, & \text{if } x_j = a_j, \forall j \in J, \\ +\infty, & \text{else}. \end{cases}
\]
So, again by Proposition 6.2,
\[
\inf_{x \in \mathbb{R}^n} \sum_{i \in I} ((a_i, x) - b_i)^+ = \max \left\{ - \sum_{J \in \mathcal{F}(I)} b_j : J \in \mathcal{F}(I), \sum_{J \in \mathcal{F}(I)} a_j = 0_n \right\}
\]
if and only if
\[
\bigcup_{J \in \mathcal{F}(I)} \sum_{j \in J} ([a_i] \times [b_i, +\infty]) \text{ is closed convex regarding } \{0_n\} \times \mathbb{R}.
\]

Acknowledgements The authors wish to thank two anonymous referees for their valuable comments which helped to improve the manuscript. This research was supported by the National Foundation for Science and Technology Development (NAFOSTED), Vietnam, Project 101.01-2018.310 Some topics on systems with uncertainty and robust optimization, and by the Ministry of Science, Innovation and Universities of Spain and the European Regional Development Fund (ERDF) of the European Commission, Project PGC2018-097960-B-C22.
References

1. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)
2. Boţ, R.I.: Conjugate Duality in Convex Optimization. Springer, Berlin (2010)
3. Boţ, R.I., Grad, S.-M., Wanka, G.: Duality in Vector Optimization. Springer, Berlin (2009)
4. Boţ, R.I., Jeyakumar, V., Li, G.Y.: Robust duality in parametric convex optimization. Set Valued Var. Anal. 21, 177–189 (2013)
5. Contesse, L., Hiriart-Urruty, J.-B., Penot, J.-P.: Least squares solutions of linear inequality systems: a pedestrian approach. RAIRO Oper. Res. 51, 567–575 (2017)
6. Dinh, N., Goberna, M.A., López, M.A., Volle, M.: Characterizations of robust and stable duality for linearly perturbed uncertain optimization problems. In: Burachik, R., Li, G.Y. (eds.) From Analysis to Visualization: A Celebration of the Life and Legacy of Jonathan M. Borwein. Springer, Callaghan (2017)
7. Dinh, N., Goberna, M.A., López, M.A., Volle, M.: Convexity and closedness in stable robust duality. Opt. Lett. 13, 325–339 (2019)
8. Dinh, N., Goberna, M.A., Volle, M.: Duality for the robust sum of functions. Set Valued Var. Anal. (First Online, 20 June 2019)
9. Goberna, M.A., Hiriart-Urruty, J.-B., López, M.A.: Best approximate solutions of inconsistent linear inequality systems. Vietnam J. Math. 46, 271–284 (2018)
10. Goberna, M.A., López, M.A., Volle, M.: Modified Lagrangian duality for the supremum of convex functions. Pac. J. Optim. 13, 501–514 (2017)
11. Harvey, F.R., Lawson Jr., H.B.: Dirichlet duality and the nonlinear Dirichlet problem. Commun. Pure Appl. Math. 62, 396–443 (2009)
12. Joly, J.L.: Une famille de topologies et de convergences sur l’ensemble des fonctionnelles convexes (French). PhD Thesis, IMAG - Institut d’Informatique et de Mathématiques Appliquées de Grenoble (1970)
13. Joly, J.L., Laurent, P.-J.: Stability and duality in convex minimization problems. Rev. Fr. Inf. Rech. Opération. 5, 3–42 (1971)
14. Laurent, P.-J.: Approximation et Optimization (French). Hermann, Paris (1972)
15. Li, G.Y., Jeyakumar, V., Lee, G.M.: Robust conjugate duality for convex optimization under uncertainty with application to data classification. Nonlinear Anal. 74, 2327–2341 (2011)
16. Martinez-Legaz, J.-E.: On lower sub differentiable functions. In: Hoffmann, K.H., et al. (eds.) Trends in Mathematical Optimization, Int. Series Numer. Math., vol. 84, pp. 197–23. Birkhauser, Basel (1988)
17. Moussaoui, M., Volle, M.: Quasiconvexity and united functions in convex duality theory. Commun. Appl. Nonlinear Anal. 4, 73–89 (1997)
18. Nadirashvili, N., Vlăduţ, S.: Singular solution to special Lagrangian equations. Ann. Inst. H. Poincaré Anal. Non Linéaire. 27, 1179–1188 (2010)
19. Penot, J.-P.: Are generalized derivatives useful for generalized convex functions? In: Crouzeix, J.-P., Martinez-Legaz, J.-E., Volle, M. (eds.) Generalized Convexity, Generalized Monotonicity: Recent Results. Nonconvex Optimization and Its Applications, vol. 27, pp. 3–59. Kluwer, Dordrecht (1998)
20. Penot, J.-P., Volle, M.: Dualité de Fenchel et quasi-convexe (French). C.R. Acad. Sci. Paris I 304, 269–272 (1987)
21. Popa, C., Şerban, C.: Han-type algorithms for inconsistent systems of linear inequalities—a unified approach. Appl. Math. Comput. 246, 247–256 (2014)
22. Rubinov, A., Dutta, J.: Abstract Convexity. In: Hadjisavvas, N., Komlós, S., Schaible, S. (eds.) Handbook of Generalized Convexity and Generalized Monotonicity. Nonconvex Optimization and Its Applications, vol. 76, pp. 293–333. Springer, New York (2005)
23. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, River Edge (2002)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.