Investigation of the Electrical Conduction Mechanisms in P-type Amorphous Germanium (a-Ge) Used as a-Ge Contacts for Ge Detectors

S. Bhattarai, R. Panth, W.-Z. Wei, H. Mei, D.-M. Mei, M.-S. Raut, P. Acharya, and G.-J. Wang

Department of Physics, The University of South Dakota, Vermillion, South Dakota 57069, USA

(Dated: February 19, 2020)

Electrical conduction mechanisms in the disordered material system is experimentally studied for p-type amorphous germanium (a-Ge) used for high-purity Ge detector contacts. The localization length and the hopping parameters in a-Ge are determined using the surface leakage current measured from three high-purity planar Ge detectors. The temperature-dependent hopping distance and hopping energy are obtained for a-Ge fabricated as the electrical contact materials for high-purity Ge planar detectors. As a result, we find that the hopping energy in a-Ge increases as temperature increases while the hopping distance in a-Ge decreases as temperature increases. The localization length of a-Ge is on the order of $1.62^{+0.19}_{-0.19}$ Å to $2.83^{+0.46}_{-1.44}$ Å, depending on the density of states near the Fermi energy level within bandgap. Using these parameters, we predict that the surface leakage current from a Ge detector with a-Ge contacts can be much smaller than one yocto amp (yA) at helium temperature, suitable for rare-event physics searches.

I. INTRODUCTION

The nature of dark matter and the properties of neutrinos are the important questions of physics beyond the Standard Model of particle physics and remains elusive. Thus, understanding their properties has become an important aspect of underground physics. Numerous research groups are trying to understand their properties by various detection techniques and detection materials [1–9]. Interaction between dark matter and ordinary matter as a target occurs only through a weakly elastic scattering process, which leaves a very small energy deposition from nuclear or electronic recoils [10]. This requires detectors to have a very low-energy threshold. Germanium (Ge) detectors are excellent in the search for dark matter [6, 11–13], since Ge detectors offer the lowest energy threshold among the current detector technologies. Also, due to its excellent energy resolution and ability to minimize the background from two neutrino double-beta ($2\nu\beta\beta$) decay, Ge detectors are highly preferred for observing neutrinoless double-beta ($0\nu\beta\beta$) decay [14]. Hence, the high-purity Ge (HPGe) crystals are widely used as detectors for rare event physics. Many research groups like MAJORANA [4], GERDA [1], SuperCDMS [3], CoGeNT [13], CDEX [9] and EDELWEISS [6] are using HPGe detectors to detect dark matters and $0\nu\beta\beta$ decay. A new collaboration named LEGEND [7] will use tonne-scale 76Ge detectors in an ultra-low background environment to detect $0\nu\beta\beta$ decay. These reasons make the fabrication of Ge detectors from HPGe crystals and exploration of their properties an important part of underground physics. A group at the University of South Dakota (USD) has been working on HPGe crystal growth and detector development in order to improve the performance of Ge detectors for rare-event physics searches [15–24].

A HPGe crystal is fabricated into a planar detector, which is then reversely biased so that it is fully depleted allowing free charge carriers to move. The depletion region acts as an active volume for incident radiation. The energy deposition of incident radiation can be measured by analyzing the interactions in the detector volume [25, 26]. The exposed surface of a Ge crystal is sensitive to contamination. The contaminants deposited on the exposed crystal surface can change the electric field distribution in the detector volume that is in close proximity to the exposed surface and cause a reduction of the resistivity of the surface and hence increase in the surface leakage current. Therefore, a passivation layer is usually applied to protect the exposed surface. This layer should be thin to avoid a large dead layer and it should have large resistivity to prevent excessive leakage current [27, 28]. Amorphous Ge (a-Ge) [29] and amorphous silicon (a-Si) [30] are the most used and accepted passivation layers for semiconductor detectors.

A planar Ge detector fabricated at USD is sketched in Figure 1. It consists of a HPGe crystal passivated
with a-Ge on the outer surface. The aluminum contact at the bottom is used to provide high voltage. The aluminum contacts on the top are designated for the measurements of the electrical signal including leakage current. The sources of leakage current are: (1) the bulk leakage current, I_{bulk}, which passes through the interior of the detector due to the injection of charge carriers from the contacts and the thermal generation of electron-hole pair inside the detector volume; and (2) the surface leakage current, I_S, which flows through the outer surface of the detector caused by inter-contact surface channels or carrier generation sites. While the bulk leakage current from the USD-fabricated detectors is discussed in detail by Wei et al. [31], the surface leakage current can be misread as the signal which can degrade the performance of the detector. A detector with a guard-ring structure can be used to separate the surface leakage current from the bulk leakage current, allowing us to study the electrical conduction mechanisms in the a-Ge contacts, as shown in Figure 2. The passivation material should have high resistivity on the order of greater than 10^9 Ohm-cm [32] to minimize the current flowing through the surface. However, even a small amount of current flow through the side surface of the detector can decrease the performance of the detector significantly. Efforts to reduce the surface leakage current require an understanding of the sources of the surface leakage current, which depends upon the electrical properties of the passivating material - a-Ge. Hence, studying the electrical property of a-Ge is crucial for making better passivating materials and reducing the surface leakage current for Ge detectors.

Higher resistivity is one of the main requirements for the passivating material used in HPGe detectors [33]. To create a-Ge with high resistivity, hydrogen (7%) is mixed with argon gas (93%) to form plasma ions that bombard the Ge target through a sputtering process during detector fabrication. The a-Ge created this way lacks the long-range crystalline order of Ge crystal. Despite having a disordered atomic arrangement, the main features of the electronic band structure are retained in the amorphous phase, including a bandgap quite comparable to the crystalline counterpart. Covalent a-Ge is commonly believed to have localized electronic states at the top of the valence band and the bottom of the conduction band. Unlike in crystalline Ge, the bandgap in a-Ge is occupied by a large number of defect states. Electrical conductivity of a-Ge is thought to be dictated by the hopping mechanism through localized defect states [34]. Figure 3 depicts an electron from a localized state i to a localized state j that is lower in energy. In this localized band, electrons cannot freely travel in space without exchanging some energy with the surrounding environment, usually with phonons, and jump from one state to another. Therefore, this type of conduction is strongly dependent on the density of defects near the Fermi level and the temperature of the material. Since the Ge detectors fabricated with a-Ge contacts are used in liquid nitrogen temperature, we are interested in knowing the properties of a-Ge at low temperatures. Generally, the conduction at low temperature in a-Ge occurs via variable range hopping between localized defect states near the Fermi level. Sir Nevill Mott was one of the first to give a theoretical description of low temperature hopping conductivity in strongly disordered systems [34, 35]. In 1969 he introduced the concept of Variable Range Hopping to describe how the long jumps govern the conductivity at sufficiently low temperatures. The electrical conductivity σ of amorphous semiconductors at low temperature (T) obey Mott's relation

$$\sigma = \sigma_0 e^{-\left(T_0/T\right)^{1/4}},$$

(1)
where σ_0 is the conductivity prefactor and T_0 is the characteristic temperature given by

$$T_0 = 16\alpha^3/kN(\epsilon_f),$$

(2)

where α is the inverse of localization length and $N(\epsilon_f)$ is the density of defect states near the Fermi level and k is the Boltzmann constant. If we take log of both sides of equation 1 and plot the log of conductivity on the y-axis and $T^{-1/4}$ on the x-axis, then we obtain a straight line, the slope of which gives the value of the characteristic temperature T_0 and the y-intercept gives the prefactor σ_0.

The energy between two localized states (hopping energy) at temperature T is given by

$$W_{HOP} = 1/4kT(T_0/T)^{1/4},$$

(3)

and the spatial distance between two hopping sites at temperature T (hopping distance) is

$$R_{HOP} = 3/8(T_0/T)^{1/4} \times 1/\alpha.$$

(4)

In the past decades, several methods have been used to find the value of Mott’s Parameter for a-Ge by preparing a thin film on a substrate. Yasuda et al. [36] found the value of the localization length to be in the range of 5 Å to 20 Å for the samples prepared on a glass substrate by the evaporation method. Tolunay et al. [37] also studied the electrical properties of evaporated a-Ge at low temperature and found the value of the localization length to be in the range of 8Å to 16Å using different models compared with the method used by Yasuda et al. [36]. Both experiments were performed by preparing the thin films by the evaporation method, the measurements were conducted on pure a-Ge. In fabricating amorphous contacts on the planar Ge detectors at USD, we use the sputtering method to create a thin film of a-Ge on the Ge detectors for our study. Our a-Ge contains a mixture of hydrogen and argon. Shrestha [38] and [39] studied the electrical properties of a-Si with different compositions of hydrogen mixtures. The localization length was found to be in the range of 1.2 Å to 2.2 Å for different compositions of hydrogen in a-Si. However, there is no report on the evaluation of Mott’s parameter for the a-Ge used to passivate HPGe detectors. We have obtained the values of the localization length ($1/\alpha$), the hopping energy, and the hopping distance of a-Ge for three detectors fabricated at USD. The purpose of this study is to characterize the a-Ge thin layer we created to passivate Ge detectors by comparing our results with the previous work done on similar materials. With such a characterization, we can revisit our fabrication process to improve the quality of the passivating material, thereby improving the detector performance.

II. EXPERIMENTAL PROCEDURE

Three HPGe detectors with guard structure, as shown in Figure 2, were fabricated with p-type a-Ge passivation in order to study the electrical properties of a-Ge. Since, the planar detector is easier to fabricate than other geometries and large size detectors are not required for our study, all detectors used in this work were fabricated into a planar geometry. A RF Sputtering Machine was used to sputter a-Ge on all surfaces of the crystal. The thickness of a-Ge, the gas composition of the sputtering process, the pressure, and the applied power can be changed in the fabrication. In this work, a precisely cut crystal in a planar geometry was placed on the jig and loaded into the chamber of the sputtering machine. The plasma was created in the chamber with a mixture of hydrogen and argon gas (7:93) at a pressure of 14 mTorr. The thickness of the a-Ge deposited on the surface of the crystal is in the range 250-350 nm.

After a-Ge was deposited on all surfaces of the crystal, then the detector USD-R02 was loaded into the chamber of an Edwards Electron Beam Evaporator to make the aluminium contacts. An electron beam produced from a tungsten filament bombards the aluminium target. Under high vacuum, the electron beam can reach the crucible without interference. A voltage of 4.89 kV and current around 35 mA was provided to have a stable data rate of 0.2 to 0.3 nm/s. Note that for the detectors USD-W03 and USD-R03, aluminium deposition was carried out by sputtering process. The plasma was created in the chamber with argon gas at a pressure of 3 mTorr. A typical thickness for the aluminium contacts was 100 nm. The details are described in an earlier publication from our group [40].

Only the top and bottom surfaces need aluminium contacts to test the electrical properties of a detector. To remove aluminium contacts from the sides, a mask of acid-resistant tape was placed on the top and bottom. Then, the detector was dipped into the acid solution with one percent of HF for a few minutes, until all of the aluminium was etched away from the sides. Note that HF does not remove the a-Ge layer beneath the aluminium.

To characterize the electrical properties of a detector, the Ge crystal was loaded into the cryostat, as depicted in Figure 1. After the pressure reaches the order of 10^{-6} mBar, LN$_2$ was added into the Dewar. The temperature of the detector was controlled by the Lakeshore temperature controller. The detector was started at a bias around 50 V and was biased up to 2500 V. The bias voltage was provided to the bottom contact of the detector and the signal is read out from the top contacts. Current-voltage (I-V) characteristic of the surface current for all three detectors was performed by using a transimpedance amplifier, which converts current into voltage. The voltage is then measured by a precision voltmeter. This voltage was then converted back to current, as described in a recent paper from our group [41]. The I-V characteristic of two detectors (USD-R03 and USD-W03) was done at three different temperatures 79K, 90K and 100K, while the I-V characteristic of the detector USD-R02 was done at 85K, 90K, 95K and 100K.
III. RESULT AND DISCUSSION

Utilizing the first order approximation, the reciprocal of the slope of the I-V curve measured at different temperatures gives the resistance (R) of the a-Ge contact layer. As an example, Figure 5 shows the surface leakage current versus the applied bias voltage for USD-W03 detector. Using this method, we obtained the values of the resistance corresponding to the measured temperatures for three detectors and the results are shown in Table I. The resistivity (ρ) for a layer of a-Ge with a thickness t on a detector, with length of sidewall l and a width w, was calculated using Ohm’s law:

\[\rho = 4Rtw/l + 4Rtw'/l', \]

where the constant 4 incorporates the four-side walls of the planar detector, w’ represents the width of the wing on the bottom surface of detector and l’ is the total length of the groove along which the current flows. A small distance on the top surface from the guard ring to the side surface which contains aluminium was neglected in this study due to the resistivity of aluminium is much less than that of a-Ge. The thickness and the width for USD-R02 are 0.65 cm and 1.4 cm, for USD-R03 are 1.6 cm and 0.81 cm, and for USD-W03 are 0.94 cm and 1.16 cm. For all detectors the value of t is 300 nm, w’ is 2 mm and l’ is 4.5 mm. The results for the calculated conductivity are shown in Table II.

The variation of conductivity with temperature is studied for three different detectors, as shown in Figure 6. The slope of the fitted straight lines are used to calculate the characteristic temperature (T) and the intercept are used to obtain the conductivity pre-factor (σ0) for three a-Ge layers used as the contacts for three Ge detectors.

The electrical conductivity of the a-Ge sputtered on a HPGe detector in the low temperature range was studied by Amman et al. The a-Ge contacts fabricated in this work are performed using a similar recipes (7% Hydrogen, 14 mTorr pressure). The values of conductivity found in this work are within a factor of 2 in agreement with the conductivity measured by Amman et al. The differences in the conductivity can affect the values of the Motts Parameter. Therefore, the Mott’s parameters should be determined for a-Ge fabricated with a specific machine. The three detectors used in this study show similar ranges of conductivity. Thus, the values of the localization length, the hopping energy and the hopping distance reported in this work are for the USD fabricated detectors. Table III shows the calculated characteristic temperature (T0) and the conductivity pre-factor (σ0) for three USD fabricated detectors.

The value of the characteristic temperature T0 is calculated for each detector from the slope of these plots in Figures 6. The variation of T0 reflects the difference in the density of states near the Fermi level for three different a-Ge layers. The values of the density of states near the Fermi level N(εf) for these detectors are obtained in a recent paper from our group. The value for USD-R02 is found to be N(εf) = (4.68 ± 3.32) × 1017 eV/cm³. The density of states near the Fermi level for USD-R03 when the detector was depleted from the top and bottom contacts are (4.34 ± 0.11) × 1018 eV/cm³ and (1.83 ± 0.33) × 1018 eV/cm³, respectively.
are two values of $N(\epsilon_f)$ corresponding to two contacts for USD-R03, we simply take the average of these two values to obtain the density of states near the Fermi level.

The values of the localization length obtained for the detectors USD-R02, USD-R03 and USD-W03 are 2

In addition, the hopping energy and the hopping distance are calculated for each of the detectors using equations [3] and [4] respectively. The variation of hopping energy W_{HOP} with temperature (T) is also studied for all three detectors, as shown in Figure 7.

The value of hopping energy increases with the increase...
in temperature. We obtain a larger value of T_0 as compared with a similar works for the a-Ge made without hydrogen. This indicates that the value of hopping energy is larger in our a-Ge. A larger hopping energy means that the charge carriers jumping from one defect state to another defect state for conduction require higher kinetic energy, which make the conduction process difficult and hence the material is highly resistive. Similarly, the variation of hopping length R_{HOP} with temperature (T) is also studied as shown in Figure 8.

From this study we find that the hopping length R_{HOP} decreases with the increase in temperature. R_{HOP}, as indicated in equation (4), is small for small values of localization length. Thus, the wave function is more localized for trapping charges, making it difficult for them to hop to other trap states, resulting in the increase of resistance and hence the resistivity. The calculated values of R_{HOP} and the localization length ($1/\alpha$) are lower than the similar works reported previously without hydrogen content. This suggests that the a-Ge created with hydrogen possesses has higher resistance and resistivity, suitable for passivating Ge crystals when making Ge detectors.

Using the values of T_0 and σ_0, we can estimate the amount of the surface leakage current in a HPGe detector with a-Ge contact at helium temperature, assuming both T_0 and σ_0 are temperature independent. For an a-Ge passivation of the thickness t on a HPGe P-type point contact (PPC) detector of length (l) and radius (r), the resistance R is given by

$$R = \frac{l}{\sigma \pi t (2r + t)}, \quad (6)$$

where $\pi t (2r + t)$ gives the cross-sectional area of the annular portion of a-Ge on the detector. By knowing the value of the conductivity σ from equation 1, we can find the resistance of the a-Ge at various temperatures. Thus,

Detector	USD-R03	USD-R02	USD-W03						
Temperature	$1/\alpha(A^\dagger)$	$W_{HOP}(meV)$	$R_{HOP}(A^\dagger)$	$1/\alpha(A^\dagger)$	$W_{HOP}(meV)$	$R_{HOP}(A^\dagger)$	$1/\alpha(A^\dagger)$	$W_{HOP}(meV)$	$R_{HOP}(A^\dagger)$
79	$1.62_{-0.45}^{+0.19}$	197.24	70.46	$2.83_{-1.44}^{+0.38}$	-	-	$1.97_{-0.05}^{+0.06}$	186.37	80.96
85	$1.62_{-0.45}^{+0.19}$	-	-	$2.83_{-1.44}^{+0.38}$	219.16	127.12	$1.97_{-0.05}^{+0.06}$	-	-
90	$1.62_{-0.45}^{+0.19}$	217.49	68.20	$2.83_{-1.44}^{+0.38}$	228.76	125.31	$1.97_{-0.05}^{+0.06}$	205.51	78.37
95	$1.62_{-0.45}^{+0.19}$	226.50	67.28	$2.83_{-1.44}^{+0.38}$	238.22	123.63	$1.97_{-0.05}^{+0.06}$	214.02	77.32
100	$1.62_{-0.45}^{+0.19}$	-	-	$2.83_{-1.44}^{+0.38}$	247.57	122.04	$1.97_{-0.05}^{+0.06}$	-	-

TABLE IV. The measured values of the localization length, the hopping energy and the hopping distance for three USD detectors.
for a given bias voltage, V, we can estimate the value of the surface leakage current, I_s, at different temperatures. We are particularly interested in the surface leakage current at very low temperature such as liquid helium temperature.

To predict the surface leakage current at helium temperature, we assume a PPC detector of 1.02 Kg mass with 7 cm in diameter and 5 cm in length. The thickness of the a-Ge passivation layer is assumed to be 300 nm. Using the values of σ_0 and T_0 from Table [11] we estimate the surface leakage current and resistance in the low temperature regime, as shown in Figures [9] and [10]. It is clear that the surface leakage current is extremely small (nearly zero) at helium temperature of 4 K.

IV. CONCLUSION

We have determined the values of the Mott’s parameters for three a-Ge layers used as planar Ge detector contacts fabricated at USD. As a result, we find that the localization length of a-Ge is on the order of $1.62^{+0.43}_{-0.46} \times 10^7$ cm$^{-1}$, depending on the density of states near the Fermi energy level within bandgap. The hopping energy ranges from 186.37 meV to 247.57 meV and the hopping distance varies from 67.28 Å to 127.12 Å, depending largely on temperature. We find that the hopping energy in a-Ge increases as temperature increases while the hopping distance in a-Ge decreases as temperature increases. Our results are different from that of pure a-Ge fabricated without hydrogen content, but comparable to a-Si fabricated with hydrogen content. This study confirms that the amount of hydrogen can reduce the density of defect states near the Fermi level significantly and hence can increase the resistivity of a-Ge. Subsequently, the values of the characteristic temperature T_0 and the localization length ($1/\sigma_0$) obtained in this study indicate a high resistivity of the a-Ge fabricated with hydrogen content at USD. The high resistivity of a-Ge is an essential characteristic of good passivating material for HPGe detectors. The variation of the hopping energy, the hopping distance, and the localization length in three different a-Ge layers corresponds to the difference in the density of states near the Fermi level, which reflects the variation of the fabrication process for making a-Ge layers. The values of the parameters calculated in this study shows that the a-Ge fabricated at USD to passivate Ge detectors meet the criteria for passivation. Using the parameters of the localization length, the hopping energy, and the hopping distance, we predict that the surface leakage current for a PPC detector with a-Ge contacts at helium temperature (4 K) is nearly zero, suitable for light dark matter searches.

ACKNOWLEDGMENTS

The authors would like to thank Mark Amman for his instructions on fabricating planar detectors and Christina Keller for a careful reading of this manuscript. We would also like to thank the Nuclear Science Division at Lawrence Berkeley National Laboratory for providing us a testing cryostat. This work was supported in part by NSF NSF OISE 1743790, NSF PHYS 1902577, NSF OIA 1738695, DOE grant DE-FG02-10ER46709, de-SC0004768, the Office of Research at the University of South Dakota and a research center supported by the State of South Dakota.
[14] M. Agostini, M. Allardt, E. Andreotti, A. Bakalyarov, M. Balata, I. Barabanov, N. Barros, L. Baudis, C. Bauer, N. Becerici-Schmidt, et al., The European Physical Journal C 75, 39 (2015).
[15] D. M. Mei, Z. B. Yin, and S. R. Elliott, Astroparticle Physics 31, 417 (2009), arXiv:0903.2273 [nucl-ex].
[16] G. Wang, Y. Sun, G. Yang, W. Xiang, Y. Guan, D. Mei, C. Keller, and Y.-D. Chan, Journal of Crystal Growth 352, 27 (2012).
[17] G. Wang, Y. Sun, Y. Guan, D. Mei, G. Yang, A. A. Chiller, and B. Gray, Journal of Crystallization Process and Technology 3, 60 (2013).
[18] D. Mei, C. Keller, Y. Wang, and D. Xu, American Journal of Modern Physics 4, 23 (2015).
[19] G. Wang, Y. Guan, H. Mei, D. Mei, G. Yang, J. Govani, and M. Khizar, Journal of Crystal Growth 393, 54 (2014).
[20] G. Yang, Y. Guan, F. Jian, M. Wagner, H. Mei, G. Wang, S. Howard, D. Mei, A. Nelson, J. Marshal, et al., in Journal of Physics: Conference Series, Vol. 606 (IOP Publishing, 2015) p. 012014.
[21] G. Wang, M. Amman, H. Mei, D. Mei, K. Irmscher, Y. Guan, and G. Yang, Materials Science in Semiconductor Processing 39, 54 (2015).
[22] G. Wang, H. Mei, X. Meng, D. Mei, and G. Yang, Materials Science in Semiconductor Processing 74, 342 (2018).
[23] D.-M. Mei, R. Mukund, W.-Z. Wei, R. Pauth, J. Liu, H. Mei, Y.-Y. Li, P. Acharya, S. Bhattarai, K. Kooi, et al., arXiv preprint arXiv:1909.05806 (2019).
[24] W.-Z. Wei, X.-H. Meng, Y.-Y. Li, J. Liu, G.-J. Wang, H. Mei, G. Yang, D.-M. Mei, and C. Zhang, Journal of Instrumentation 13 (12), P12026.
[25] R. Baertsch and R. Hall, IEEE Transactions on Nuclear Science 17, 235 (1970).
[26] J. Llacer, Nuclear Instruments and Methods 98, 259 (1972).
[27] R. Baertsch, IEEE Transactions on Nuclear Science 21, 347 (1974).
[28] A. Tavendale, Annual review of nuclear science 17, 73 (1967).
[29] E. L. Hull and R. H. Pehl, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 538, 651 (2005).
[30] J. Walton, R. Pehl, Y. Wong, and C. Cork, IEEE Transactions on Nuclear Science 31, 331 (1984).
[31] W.-Z. W. et al., archive arXiv:2002.04462, xxxx (2020).
[32] P. N. Luke, C. S. Tindall, and M. Amman, IEEE Transactions on Nuclear Science 56, 808 (2009).
[33] M. Amman, arXiv preprint arXiv:1809.03046 (2018).
[34] N. F. Mott, Philosophical Magazine 19, 835 (1969).
[35] N. Mott and E. Davis, Electron process in non-crystalline materials. clarendon (1979).
[36] K. Yasuda, A. Yoshida, and T. Arizumi, physica status solidi (a) 41, K181 (1977).
[37] A. Eray, H. Tolunay, and Ö. Öktü, Journal of Non-crystalline solids 122, 193 (1990).
[38] K. Shrestha, T. Beig, P. Gali, P. Nukala, C. Littler, V. Lopes, U. Philipose, and A. Syllaios, in APS Texas Sections Fall Meeting Abstracts (2011).
[39] K. Shrestha, Electrical Conduction Mechanism In The Disordered Material System p-Type Hydrogenated Amorphous Silicon, Ph.D. thesis, University of North Texas (2014).
[40] X.-H. M. et al., Journal of Instrumentation 14, P02019.
[41] A. Szpilka and P. Viščor, Philosophical Magazine B 45, 485 (1982).
[42] Q. Looker, Fabrication Process Development for High-Purity Germanium Radiation Detectors with Amorphous Semiconductor Contacts, Ph.D. thesis, University of California, Berkeley (2014).