High internal quantum efficiency in fullerene solar cells based on crosslinked polymer donor networks

Bo Liu¹, Rui-Qi Png¹, Li-Hong Zhao², Lay-Lay Chua¹,², Richard H. Friend¹,³ & Peter K.H. Ho¹,⁴

The power conversion efficiency of organic photovoltaic cells depends crucially on the morphology of their donor–acceptor heterostructure. Although tremendous progress has been made to develop new materials that better cover the solar spectrum, this heterostructure is still formed by a primitive spontaneous demixing that is rather sensitive to processing and hence difficult to realize consistently over large areas. Here we report that the desired interpenetrating heterostructure with built-in phase contiguity can be fabricated by acceptor doping into a lightly crosslinked polymer donor network. The resultant nanotemplated network is highly reproducible and resilient to phase coarsening. For the regioregular poly(3-hexylthiophene):phenyl-C₆₁-butyrate methyl ester donor–acceptor model system, we obtained 20% improvement in power conversion efficiency over conventional demixed bilblend devices. We reached very high internal quantum efficiencies of up to 0.9 electron per photon at zero bias, over an unprecedentedly wide composition space. Detailed analysis of the power conversion, power absorbed and internal quantum efficiency landscapes reveals the separate contributions of optical interference and donor–acceptor morphology effects.

¹ Department of Physics, National University of Singapore, Lower Kent Ridge Road, Singapore S117542, Singapore. ² Department of Chemistry, National University of Singapore, Lower Kent Ridge Road, Singapore S117543, Singapore. ³ Cavendish Laboratory, University of Cambridge, JJ Thomson Road, Cambridge CB3 0HE, UK. ⁴ Solar Energy Research Institute of Singapore, National University of Singapore, Engineering Drive 1, Singapore S117574, Singapore. Correspondence and requests for materials should be addressed to R.-Q. P (email: phypngrq@nus.edu.sg) or to R. H. F. (email: rhf10@cam.ac.uk) or to P. K. H. (email: phyhop@nus.edu.sg).
The power conversion efficiency (PCE) of donor–acceptor (DA) photovoltaic (PV) cells depends on the spectral absorption and the bias-dependent internal quantum efficiency of the cell. To achieve a high internal quantum efficiency, the heterostructure needs to have the appropriate interface electronic structure combined with the appropriate morphology to give efficient exciton dissociation and transport of the charge carriers to the collection electrodes without recombination. The ideal morphology is widely believed to comprise donor and acceptor phases intimately mixed at the exciton diffusion length scale (~10 nm), but contiguously extended over the much larger photoactive layer thickness (100–250 nm). These two conflicting requirements however present a formidable challenge that has not yet been possible to address by design. In addition, there is a further challenge that the morphology needs to be stable and reliably manufacturable over large areas.

Although the standard approach of spontaneous DA demixing in films under thermal annealing, or in the presence of solvent additives, can provide, in some cases, a suitable ultrafine morphology, such as in the poly[(6-hexylthiophene)-phenyl-C61-butyrate methyl ester (P3HT:PCBM)] system, the morphology still cannot presently be predefined. Furthermore, the processing window is rather narrow and variable with the desired morphology itself being metastable and prone to over-coarsening that degrades cell performance.

We report here that by infiltrating or doping the molecular acceptor into a lightly crosslinked polymer donor network, the ideal interpenetrating DA heterostructure can be closely approached. This provides remarkably high internal quantum efficiencies to the solar cells with consistency across a wide composition space. The morphology produced is robust to further coarsening, and to film-processing conditions. We demonstrate this on the P3HT:PCBM system, and show that a further improvement in device performance can be obtained over the relatively high internal quantum efficiencies that are already reached in the usual demixed bilblend films. This improvement is traced to a more optimal morphology in the networks.

To crosslink the films, we used a recently developed steric-substituted bis(fluorinated phenyl azide; s-FPA) methodology. Its key advantage is the non-specificity that allows a wide variety of semiconductor polymers to be crosslinked at a sufficiently low crosslinker concentration that does not degrade their crucial semiconductor properties. We have previously demonstrated this provides viable new heterostructures for light-emitting diodes.

We illustrate this by performing detailed mapping of the PCE, power absorption and internal quantum efficiency landscapes of these cells.

Results

Fabrication of crosslinked P3HT network: PCBM films. P3HT films were spin-cast with three weight-to-weight (w/w) % of the s-FPA photocrosslinker ethylene bis(4-azido-2,3,5-trifluoro-6-isopropylbenzoate) onto the intended substrates (for chemical structures, see inset of Fig. 1a). The films were then exposed to 254-nm deep ultraviolet (DUV) in an N2 glove box to activate an efficient nitrene-mediated photo crosslinking through the alky side chains of P3HT. Figure 1a shows the film-retention characteristics plotted against the s-FPA concentration. These characteristics were measured after solvent washing (often called ‘development’ in the photolithography literature) with chlorobenzene (CB) to remove the uncrosslinked and low-molecular-weight (MW) fractions. As s-FPA exhibits a near-unity crosslinking efficiency, the crosslink density in the film closely follows the crosslinker concentration. The plot shows that film retention occurs above a critical threshold, called the gel point, where an infinite polymer network first emerges (here, \(\rho \approx 2 \times 10^{19} \text{ cm}^{-3} \)). The film retention increases towards unity with increasing \(\rho \). Hence network stiffness and porosity can be tuned by \(\rho \). In this work, we set \(\rho \approx 4\times10^{19} \text{ cm}^{-3} \) to stay in the lightly crosslinked regime, with roughly one crosslink per 35–50 polymer repeat units.

Figure 1b shows a schematic of the film-processing steps. The P3HT donor film is crosslinked and developed with CB as described above. The PCBM acceptor is then doped into this polymer network by spinning from solution. Figure 1c shows the evolution of molecular order in the P3HT network probed by electronic spectroscopy. The electronic spectrum of the crosslinked P3HT film (\(\rho = 3.7 \times 10^{19} \text{ cm}^{-3} \); red spectrum) is identical to the uncrosslinked one. Thus, its electronic structure is not perceptibly altered by the crosslinks. When this film is washed with CB, it loses 20% of its absorbance (orange spectrum), primarily because of extraction of the low MW fraction. The spectrum of this 65-nm-thick polymer film shows electronic features that are substantially unchanged in relative intensities at 517, 560 and 610 nm, corresponding to the 0 → 2, 0 → 1 and 0 → 0 vibronic transitions. Hence, the retained film exhibits similar molecular order as the initial spin-cast film.

When a PCBM solution (8 mg ml\(^{-1} \) in CB) is spun over this film, an amount equivalent to a 30-nm-thick film of PCBM is doped into the P3HT matrix. The polymer absorption diminishes and blue shifts, while the PCBM absorption emerges with onset at 450 nm (green spectrum). The blue shift arises from (i) disordering of a fraction of the P3HT segments owing to acceptor incorporation and (ii) redistribution of chain segments from in-plane to out-of-plane orientations. The film composition is established using the calibrated absorptivities of P3HT and PCBM, together with the measured initial and final film thicknesses. This is denoted by \(\text{d}_{\text{P3HT}} \) and \(\text{d}_{\text{PCBM}} \), where \(\text{d}_{\text{P3HT}} \) and \(\text{d}_{\text{PCBM}} \), respectively, the effective P3HT and PCBM thicknesses in the film, with total film thickness \(d \) given by \(d = \text{d}_{\text{P3HT}} + \text{d}_{\text{PCBM}} \). Some of these compositions have been verified using X-ray photoelectron spectroscopy.

This doping is fully reversible, as contact with the pure solvent removes the PCBM and restores the original polymer spectrum. The extent of PCBM doping can be controlled at will through its solution concentration (and spin speed). For example, Fig. 1c also shows the same P3HT film \((d_{\text{P3HT}} = 65 \text{ nm}) \) doped with increasing amounts of PCBM up to 50 vol% \((d_{\text{PCBM}} = 50 \text{ nm}, \text{light-blue}; 70 \text{ nm}, \text{dark-blue spectra}). \) In roll-to-roll processing, this could be achieved by film immersion into the requisite bath.

Remarkably, a fraction of highly ordered P3HT segments persists in the doped P3HT network even at the highest PCBM volume fraction. This is shown by retention of the ordered 0 → 0 transition. This is attributed to a molecular ‘scaffolding’ effect.
with (30 mg ml⁻¹ orange), after PCBM doping at 8 mg ml⁻¹ further P3HT ordering in both the demixed biblend film and larger than suggest that the mobilities of both electrons and holes need to be thickness direction.

P3HT network that should facilitate hole transport in the film-mitigate the space-charge voltage penalty at 1 sun (unpublished structures. (NATURE COMMUNICATIONS| 3:1321 | DOI: 10.1038/ncomms2211 | www.nature.com/naturecommunications)

For comparison, the as-cast biblend film exhibits considerably less order at the same PCBM volume fraction (grey dashed spectrum). A subsequent heat treatment at 140°C promotes further P3HT ordering in both the demixed biblend film and the crosslinked network film, though the latter still generally achieves better order (Fig. 1d). This can be tuned by the crosslinking density of the network (Supplementary Fig. S1 and Supplementary Discussion). We expect that better order can give the higher carrier mobility needed for more efficient carrier dissociation and higher PV fill factors. Recent calculations suggest that the mobilities of both electrons and holes need to be larger than ca. 10⁻³ cm² V⁻¹ s⁻¹ in 220-nm-thick devices to mitigate the space-charge voltage penalty at 1 sun (unpublished results). The PCBM promotes an isotropic orientation of the P3HT network that should facilitate hole transport in the film-thickness direction.

High-resolution imaging of the nanotemplated polymer network. To characterize the P3HT morphology, we performed high-resolution transmission electron microscopy on ultrathin sections of the film before and after PCBM doping. For the latter, we removed the PCBM in situ on the TEM grid with hexane to avoid disrupting the polymer network (verified spectroscopically). Hexane is a non-solvent for the polymer. No sample staining or supporting film was used to avoid structural artefacts. The images were collected in the weak defocus regime (–100 nm), where the phase-contrast transfer function is well behaved down to spatial wavelengths of ca. 0.5 nm, to avoid phase artefacts. Figure 2 shows a representative set of images. The cross-section of the pristine P3HT film (Fig. 2a) shows the typical coarse texture characteristic of semicrystalline polymers. The diffractogram shows enhanced intensities at 3 nm and 10- to 20 nm spatial wavelengths, which are attributed to the lamellar order of P3HT and its crystalline domain size, respectively. In contrast, the cross-section of the network film gives an ultrafine ‘curly’ texture with no long-range correlation between neighbouring features. Its diffractogram shows the 10- to 20 nm spatial wavelength feature is fully suppressed to the background. Therefore, doping PCBM into the crosslinked P3HT film swells the network and destroys long-range order but not the local interchain stacking order. The observed texture is thus consistent with the proposed ultrafine contiguous polymer network, where network continuity is assured by crosslinking. In contrast, demixed biblend films exhibit a wildly variable texture from the ultrafine to the coarse depending on film-preparation conditions.

The nanotemplating mechanism. Figure 3 outlines a simple model of the nanotemplating mechanism that produces the ultrafine contiguous polymer network morphology. First, the P3HT chains are crosslinked just above the gel point through their alkyl side chains (Fig. 3a). This may be expected to occur primarily in the amorphous regions. Contact with a good solvent then causes the network to swell and expand to a mesh with length scale determined by ~ρ⁻¹, which is of the order of 50 repeat units here (Fig. 3b). This provides room for guest incorporation. As the solvent evaporates, the polymer network contracts around the PCBM phase. This appears to be determined by P3HT…P3HT and P3HT…PCBM interactions in the presence...
of the crosslinks that restricts long-range diffusion but allows
local ordering of the chain segments. PCBM has limited solubility
in the ordered P3HT stacks.4,9,21. Annealing this network further
improves P3HT order, but cannot cause the usual phase
coarsening and breakup. In this way, the conflicting demands
on length scales (ultrafine but contiguous) can be built into the
morphology, predefined to a large extent by the crosslink density.

Ion-sputtered X-ray photoemission spectroscopy shows that
these crosslinked P3HT network: PCBM films exhibit a markedly
smaller P3HT surface enrichment and PCBM subsurface
enrichment than the usual demixed bilbend films. Both the
amplitude and width of the composition wave are suppressed
(Supplementary Fig. S2 and Supplementary Discussion). Thus, the
usual formation of an unfavourable P3HT-rich surface layer upon
annealing of the bilbend films4,22 is greatly attenuated. This is yet
another benefit of the crosslinked network. Thus, these films can
advantageously produce high PCE (vide infra) even without post-
cathode annealing4,9.

The PCE landscape. Crosslinked P3HT network: PCBM solar
cells were fabricated with poly(3,4-ethylenedioxythiophene):
poly(styrenesulphonic acid) (PEDT:PSSH) as hole collector and
Ca/Al as electron collector. Figure 4a shows the current–voltage
characteristic of such a solar cell compared with one fabricated
with the usual demixed bilbend film. The cells have the same 1:1
weight-to-weight (w/w) P3HT:PCBM ratio (that is, d_{P3HT}/$d_{PCBM} = 0.65$) and film thickness (85 nm), and were measured
together under 1.2 sun illumination (this power setting was
chosen for historical reasons; reported PCE is normalised
and spectral-mismatch corrected). The network cell shows a
markedly higher short-circuit current density j_{sc} (12.6 versus
9.9 mA cm$^{-2}$), a marginally higher open-circuit voltage V_{oc} (0.63
versus 0.61 V), and a similar fill factor FF (0.63), as the bilbend
cell. As a result, this network cell gives a PCE of 4.2%, which
is 30% higher than the bilbend cell of 3.2% (averaged over 8
devices). As the devices were measured in the same simulator,
they are not subjected to calibration uncertainties.

To understand the origin of this improvement, we fabricated
solar cells over a wider composition space to map out the PCE
landscape, that is, the dependence of PCE on (d_{P3HT}, d_{PCBM}).
We used a simple combinatorial approach to dope predetermined
amounts of PCBM into various thicknesses of crosslinked P3HT
films. Figure 4b gives the measured PCE landscape as a colour-
coded image plot. The PCE data for the network cells are shown
without border. These are then fitted with a two-dimensional,
multi-Gaussian model to interpolate the PCE surface contours as
guide to the eye. Bilbend cells were also fabricated for compar-
ison, along the 1:1 w/w P3HT:PCBM composition ratio, which is
known to be nearly optimal23. Their PCE data are colour-coded
in the same way, but distinguished by a red border.

The PCE landscape reveals a high-efficiency composition ridge
that is oriented near, but not exactly on, the 1:1 composition line.
This ridge is characterized by a strong oscillation in the film-
thickness direction with rapid fall off to both sides. The first
and second PCE peaks on this ridge are located at (d_{P3HT},
d_{PCBM}) = (50 nm, 25 nm) and PCE = 4.5%, and (d_{P3HT},
d_{PCBM}) = (125 nm, 75 nm) and PCE = 4.0%, respectively.
separated by a relative saddle dip of 30%. These two peaks have similar PCEs. The PCE oscillation is widely anticipated from the oscillation of power absorbed within the photoactive layer due to optical interference.8,23–26 Because of this optical interference effect, devices need to be compared at matched \((d_{P3HT}, d_{PCBM})\) to determine whether there has been a relative improvement. This can be done using the interpolated PCE surface. The PCE of the biblend cell clearly falls below the PCE of the network cell at matched \((d_{P3HT}, d_{PCBM})\) by 10–30%. The biblend cells here show the best PCE of 3.4% in the vicinity of the first PCE peak. This is similar to the best results that have been widely reproduced (3.0–3.6%)4,5,8,9,14,21, although 4–5% have also been reported27,28. The general improvement in PCE here of ca. 20% in the network cells is remarkable, since the demixed biblend films already exhibit rather good internal quantum efficiencies. Achieving a high second PCE peak is beneficial for manufacturing because this peak is broad and has better defect tolerance.

The one-dimensional photonic structure effect revisited. The availability of a high quality PCE landscape prompts a re-evaluation of the optical interference effect. We used a standard transfer matrix formalism29 to compute the photon flux absorbed, \(\varphi_{abs}\), in the photoactive layer for the schematic cell structure shown in Fig. 5a, across the entire composition space. The reflective electrode causes optical field nodes and antinodes to emerge within the cell, as has previously been well known in organic light-emitting diodes.30 This systematically alters the efficiency of the cell in absorbing light, which needs to be determined. The complex dielectric functions \(\varepsilon(hv)\) of all the layers were known or measured, together with the spectral irradiance of the solar simulator and the composition dependence of \(\varepsilon(hv)\) for the photoactive layer.

Figure 5b shows the computed dependence of power absorbed \(P_{abs}\) on \((d_{P3HT}, d_{PCBM})\) at the spectral irradiance used in the experiments. The plot clearly shows a strong diagonal oscillation along the photoactive layer thickness direction and a weaker compositional dependence at fixed thicknesses, particularly for the thicker films. The first and second absorption peaks are located at \((d_{P3HT}, d_{PCBM}) = (60\ nm, 20\ nm)\), \(34\ mW\ cm^{-2}\), and \((130\ nm, 70\ nm)\), \(38\ mW\ cm^{-2}\), respectively. These correspond to the emergence, respectively, of one and two optical field antinodes in the photoactive layer. The second peak is within a few per cent of the theoretical maximum in the photoactive layer, after taking into account reflection and parasitic ITO and PEDT:PSSH losses. Despite the small \(d\) of 80 nm at the first optimum, the \(P_{abs}\) is only ca. 12% lower than the second optimum at 200 nm. This is because of strong optical field enhancement in the centre of the thin film. Furthermore, the computed plot explains the curious displacement of the first optimum towards the 2:1 P3HT-rich composition line. This is because the power absorbed scales strongly with absorptivity in this regime. It is evident that the PCE landscape bears the signatures of the \(P_{abs}\) surface. This provides first unambiguous evidence for the role of optical interference in determining the PCE of organic solar cells, through its influence on absorption in the photoactive layer.

The FF landscape. To probe the influence of controlled DA morphology in the network cells on the shape of their current-voltage characteristics, we plotted FF as a function of \((d_{P3HT}, d_{PCBM})\) in Fig. 5c. We found the FF decreases gently with increasing \(d\) but more strongly with increasing off-compositions from the 1:1 line. The gradual decrease with \(d\) arises from the space-charge voltage penalty that sets in when the carrier extraction distance becomes long,31 together with a possible (weak) field dependence of the charge-separation step.32 The strong composition-ratio dependence on composition, in particular its pronounced asymmetry, on the other hand, can be attributed to the underlying phase connectivity of the DA morphology. As the film composition becomes P3HT rich, the PCBM nanophase eventually becomes poorly connected. This causes the effective electron mobility to drop and the photocurrent to become space-charge limited. However, as the film composition becomes PCBM rich, the converse does not occur as readily, because the crosslinked P3HT network ensures built-in phase continuity for the hole carriers. This FF landscape thus reveals an interesting morphology aspect of these nanotemplated crosslinked networks. Detailed modelling of the current–voltage curves along the high-efficiency ridge reveals that the effective hole mobility is \(ca. 2 \times 10^{-4}\ cm^2 V^{-1} s^{-1}\), largely independent of film thickness. This shows that the morphology is indeed well regulated (Liu et al., unpublished).

The internal quantum efficiency landscape. Finally we analyse the landscape of the internal quantum efficiency \(\eta_{int}\) that is, electron collected per photon absorbed, of these cells at short-
circuit to reveal another feature of the DA morphology. The η_{int} is a measure of the photocurrent generation quantum yield of the photoactive layer. This can be phenomenologically written as

$$\eta_{int} = \eta_{gen} \cdot \eta_{coll},$$

where η_{gen} is the photo-carrier generation efficiency, that is, fraction of excitons dissociated to carrier pairs, and η_{coll} is their collection efficiency, that is, the fraction of carrier pairs collected at the electrodes without undergoing recombination. Since both these steps are strongly morphology dependent, η_{int} is a useful proxy to characterize the effectiveness of the DA heterostructure to generate photocurrent.

Figure 5d shows the dependence of η_{int} on d_{P3HT} and d_{PCBM} extracted at zero bias from j_{sc} according to the following formula:

$$\eta_{int} = j_{sc} / (q \cdot \Phi_{ph}),$$

where q is the elementary charge and Φ_{ph} is the computed photon flux absorbed (cm$^{-2}$ s$^{-1}$) in the photoactive layer. The η_{int} landscape thus reveals a broad high-efficiency ridge (shaded magenta to guide the eye) that is disposed between the 1:1 and 2:1 P3HT:PCBM composition lines. However, unlike the PCE ridge, this is substantially free from oscillations. The η_{int} is 0.85 over most of the shaded region, rising marginally to 0.9 in the vicinity of the first PCE peak, but falling off strongly to its sides. Thus, the roll-off in the PCE for strongly off-optimal compositions is due to the sharp decline in η_{int}. This is caused by the very imbalanced donor and acceptor phase ratio. Hence, it is clear that the overall PCE surface can be separated into a photonic structure contribution and a DA morphology contribution.

The high η_{int} values found across a wide swathe of (d_{P3HT}, d_{PCBM}) space is noteworthy. It shows that both photo-carrier generation and collection efficiencies can approach near unity over a wider composition space than previously thought possible. Although high η_{int} values can also be reached in demixed biblend cells, for example, in the vicinity of the first PCE peak ($\eta_{int} \approx 0.8$), this drops quickly with d to ca. 0.6 in the vicinity of the second peak. We attribute this to a progressive drift in the DA morphology of thicker demixed films 33. Previous current-voltage modelling 33 and transient spectroscopy 32,34 have shown that the primary loss mechanisms in these films are geminate and non-geminate recombinations, each accounting for ca. 10% losses in thin films. The even higher efficiencies of the nanotemplated network cells reached here show these mechanisms can be further suppressed.

Although the above results have been established using CB as the processing solvent, we note that both the optical characteristics of the doped polymer network and the electrical characteristics of their cells are rather insensitive to the choice of processing solvent. For example, this could be changed to chloroform or 1,2-dichlorobenzene to cover two decades in solvent volatility and film drying time without causing any
significant change to the characteristics of the final films, according to electronic spectroscopy (Supplementary Fig. S3) and the solar cell characteristics (Supplementary Fig. S4; see also Supplementary Discussion). This is in marked contrast to the well-known sensitivity of the properties of spin-cast bilbend films.

Discussion

The novelty of this work lies in the demonstration that high η_{vis} (and PCE) can be achieved consistently across a wide swathe of the wavelength range. The dielectric functions of P3HT:PCBM layer were measured by variable angle spectroscopic ellipsometry on annealed bilbend films, with weight ratios 1:2, 1:1, and 2:1, and then interpolated by Bruggeman effective medium approximation to obtain the compositional dependence at 5 nm wavelength steps and on a 10-nm (d_{P3HT}, d_{PCBM}) grid. The fractional absorption of the photoactive layer was computed from the difference in Poynting vectors. The integrated absorbed power and photon flux for the experimental solar simulator were then computed at 2 nm steps using the measured incident spectral irradiance taking care of reflection at the air/glass interface.

References

1. Blom, P. W. M., Mihaiiletchi, V. D., Koster, L. J. A. & Markow, D. E. Device physics of polymer/fullerene bulk heterojunction solar cells. *Adv. Mater.*, 19, 1551–1566 (2007).
2. Brabec, C. J. et al. Polymer-fullerene bulk-heterojunction solar cells. *Adv. Mater.*, 22, 3839–3856 (2010).
3. Moule, A. J. & Meerholz, K. Morphology control in solution-processed bulk-heterostructure solar cell mixtures. *Adv. Funct. Mater., 19*, 3028–3036 (2009).
4. Mihaiiletchi, V. D., Xie, H., de Boer, B., Koster, L. J. A. & Blom, P. W. M. Charge transport and photocurrent generation in poly(3-hexylthiophene):methanofullerene bulk-heterojunction solar cells. *Adv. Funct. Mater.* 16, 699–708 (2006).
5. Li, G. et al. Solvent annealing effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. *Adv. Funct. Mater.* 17, 1634–1644 (2007).
6. Peet, J. et al. Efficiency enhancement in band-gap polymer solar cells by processing with alkane diethils. *Nat. Mater.* 6, 497–500 (2007).
7. Chirvase, D., Parisi, J., Hummelen, J. C. & Dyakonov, V. Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites. *Nat. Nanotechnol.* 15, 1317–1323 (2004).
8. Moule, A. J., Bonekamp, J. B. & Meerholz, K. The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells. *J. Appl. Phys.* 100, 094503 (2006).
9. Chen, D. A., Nakahara, A., Wei, D. G., Nordlund, D. & Russell, T. P. P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology. *Nat. Mater.* 11, 561–567 (2011).
10. Kim, Y. Y. et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. *Nat. Mater.* 5, 197–203 (2006).
11. Coffey, D. C. & Ginger, D. S. Time-resolved electrostatic force microscopy of polymer solar cells. *Nat. Mater.* 5, 735–740 (2006).
12. Campoy-Quiles, M. et al. Morphology evolution via self-organization and lateral an vertical diffusion in polymer:fullerene solar cell blends. *Nat. Mater.* 7, 158–164 (2008).
13. Burkhard, G. F., Hoke, E. T., Scully, S. R. & McGhee, M. D. Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells. *Nano Lett.* 9, 4037–4041 (2009).
14. van Bavel, S. S., Bärenklau, M., de With, G., Hoppe, H. & Loos, J. P3HT/PCBM bulk heterojunction solar cells: impact of blend composition and 3D morphology on device performance. *Adv. Funct. Mater.* 20, 1458–1463 (2010).
15. Khong, S. H. et al. General photo-patterning and post-deposition modification of polyelectrolyte thin films via efficient ionization of alkanedithiyl (phenyl azide) photo-crosslinkers. *Adv. Funct. Mater.* 17, 2490–2499 (2007).
16. Peng, R. Q. et al. High-performance polymer semiconductor heterostructure devices by nitrene-mediated photocrosslinking of alkyl side-chains. *Nat. Mater.* 9, 152–158 (2010).
17. Clark, J., Silva, C., Friend, R. H. & Spano, F. C. Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. *Phys. Rev. Lett.* 98, 206406–1–4 (2007).
18. Koster, L. J. A., Smits, E. C. P., Mihaiiletchi, V. D. & Blom, P. W. M. Device model for the operation of polymer/ fullerene bulk heterojunction solar cells. *Phys. Rev. B* 72, 085205 (2005).
19. Ho, P. K. H., Kim, J. S., Tesler, N. & Friend, R. H. Photoluminescence of poly-(p-phenylenevinylene)-silica nanocomposites: evidence for dual emission by Franck-Condon analysis. *J. Chem. Phys.* 115, 2709–2720 (2001).
20. Kline, R. J., McGehee, M. D. & Toney, M. F. High oriented crystals at the buried interface in polythiophene thin-film transistors. *Nat. Mater.* 5, 222–226 (2006).
21. Müller, C. et al. Binary organic photovoltaic blends: a simple rationale for optimum compositions. *Adv. Mater.* 20, 3510–3515 (2008).
22. Vaynzof, Y. et al. Surface-directed spinodal decomposition in poly(3-hexylthiophene) and C61-butyric acid methyl ester blends. *ACS Nano* 5, 329–336 (2011).
23. Dennler, G., Scharber, M. C. & Brabec, C. J. Polymer/fullerene bulk-heterojunction solar cells. *Adv. Mater.* 2009, 1323–1338 (2009).
24. Hoppe, H., Arnold, N., Meissner, D. & Sariciftci, N. Monitoring of optical absorption in conjugated polymer/fullerene bulk-heterojunction plastic solar cells. *Thin Solid Films* 451, 589–592 (2004).
25. Sievers, D. W., Shrotriya, V. & Yang, Y. Modeling optical effects and thickness
dependent current in polymer bulk-heterojunction solar cells. J. Appl. Phys. 100, 114509 (2006).

26. Kotlarski, J. D., Blom, P. W. M., Koster, L. J. A., Lenes, M. & Slooff, L. H.
Combined optical and electrical modeling of polymer: fullerene bulk
heterojunction solar cells. J. Appl. Phys. 103, 084502 (2008).

27. Ma, W., Yang, C., Gong, X., Lee, K. & Heeger, A. J. Thermally stable, efficient
depth polymer solar cells with nanoscale control of the interpenetrating network
morphology. Adv. Funct. Mater. 15, 1617–1622 (2005).

28. Irwin, M. D., Buchholz, D. B., Hains, A. W., Chang, R. P. H. & Marks, T. J.
P-Type semiconducting nickel oxide as an efficiency-enhancing anode
interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl Acad. Sci.
USA 105, 2783–2787 (2008).

29. Pettersson, L. A. A., Roman, L. S. & Ingana¨s, O. Modeling photocurrent action
of organic thin films. J. Appl. Phys. 86, 487 (1999).

30. Kim, J. S., Ho, P. K. H., Greenham, N. C. & Friend, R. H. Electro luminescence
emission pattern of organic light-emitting diodes: Implications for device
efficiency calculations. J. Appl. Phys. 88, 1073–1081 (2000).

31. Mihajlechti, V. D., Wildeman, J. & Blom, P. W. M. Space-charge limited
photocurrent. Phys. Rev. Lett. 94, 126602 (2005).

32. Marsh, R. A., Hodgkiss, J. M. & Friend, R. H. Direct measurement of electric
field-assisted charge separation in polymer:fullerene photovoltaic diodes. Adv.
Mater. 22, 3672–3676 (2010).

33. Mihailetchi, V. D. et al. Origin of the enhanced performance in poly
(3-hexylthiophene):[6, 6]-phenyl C-butyric acid methyl ester solar
cells upon slow drying of the active layer. Appl. Phys. Lett. 89, 012107
(2006).

34. Howard, I. A., Mauer, R., Meister, M. & Laquai, F. Effect of morphology on
ultrafast free carrier generation in polythiophene: fullerene organic solar
cells. J. Am. Chem. Soc. 132, 14866–14876 (2010).

35. Hugger, S., Thomann, R., Heinzel, T. & Thurn-Albrecht, T. Semicrystalline
morphology in thin films of poly(3-hexylthiophene). Colloid Polym. Sci. 204,
932–938 (2004).

36. Rispens, M. T. et al. Influence of the solvent on the crystal structure of PCBM
and the efficiency of MDMO-PPV: PCBM ‘plastic’ solar cells. Chem. Commun.
2116–2118 (2003).

Acknowledgements
We thank the Ministry of Education, Singapore, for financial support (MOE2010-T2-2-
112, grants R-144-000-293-112 and R-145-000-471-112). We thank Mdm Gek-Luan Loy
(Department of Biological Science, NUS) for expert assistance with transmission electron
microscopy, and Han Guo and How-Kwong Wong (both at Department of Physics,
NUS) for expert assistance with X-ray photoelectron spectroscopy described in
Supplementary Figure S2 and Supplementary Discussion.

Author contributions
B.L. carried out the experimental and computational work and data analysis; L.H.Z.
assisted with some of the experiments; R.Q.P., R.H.F. and P.K.H.H. guided the work and
the analysis; L.L.C. provided materials and processing insights. B.L., R.Q.P., R.H.F. and
P.K.H.H. wrote the paper.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Liu, B. et al. High internal quantum efficiency in fullerene solar
cells based on crosslinked polymer donor networks. Nat. Commun. 3:1321 doi: 10.1038/
ncomms2211 (2012)

License: This work is licensed under a Creative Commons Attribution-NonCommercial-
Share Alike 3.0 Unported License. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-sa/3.0/