Tomato powder and crude lycopene as a source of natural antioxidants in whole wheat flour cookies

Naseer Ahmad Bhat a, Idrees Ahmed Wani a,*, Afshan Mumtaz Hamdani a, b

a Department of Food Science & Technology, University of Kashmir, Srinagar, 190006, India
b Women's College, M.A. Road, Srinagar, 190006, India

1. Introduction

The demand for foods that offer health benefits beyond basic nutrition has increased to a large extent among the consumers. It necessitates the formulation of food products that have health promoting effects like antioxidant, anti-cancerous, anti-inflammatory and anti-diabetic properties. Foods with such attributes may also be used as an alternative to dietary supplements in terms of safety, consumption, delivery and effectiveness of bioactive compounds in vivo (Skrbic and Cvejanov, 2011).

Cereal-based bakery products are widely accepted and consumed by almost all people around the world. They have long shelf-lives which make them convenient for use (Arshad et al., 2007). In addition, the nutritional quality of these products can be improved by incorporating a number of bioactive ingredients into their formulation. In this way, bakery products like cookies, cakes etc. can be used as a medium for sufficing health promoting dietary needs. However, an important aspect in preparing cookies with improved nutritional quality is the preservation of their sensory attributes as consumer acceptability has the priority in determining the effective application of a newly developed product (Skrbic and Cvejanov, 2011).

Bakery products contain high amount of fats and oils which oxidize slowly during storage leading to rancidity and deterioration of sensory attributes of the product. However, the auto-oxidation of fats or oils in these products can be prevented by using antioxidants. The use of natural antioxidants derived from plants has received much attention in recent years (Dillard and German, 2000) due to the toxicity associated with the use of synthetic antioxidants such as butylated hydroxy anisole and butylated hydroxy toluene (Gazzani et al., 1998). In this context, tomato powder and its extract can be used as a source of natural antioxidants (Stajcic et al., 2015) in bakery products to prolong their shelf life as well as to increase their nutritional quality.

Tomato (Lycopersicon esculentum) is an important agricultural commodity containing high concentration of lycopene. It is regarded as an important contributor of carotenoids to human diet. Lycopene is an efficient radical scavenger with strong physical quenching rate for singlet oxygen. Additionally, it is known to induce cell to cell communication and modulate hormone system, immune system and other metabolic pathways (Navarro-González et al., 2011). Balasundram et al. (2006) reported that phenolic compounds present in tomatoes have several physiological properties such as antioxidant, anti-microbial,
antithrombotic, anti-inflammatory, anti-allergenic, cardioprotective and vasodilating. Limited studies have been carried out on incorporation of tomato powder and its extract in cookies. The objective of the present study was to prepare whole wheat flour cookies with added tomato powder and its extract and investigate the properties of the same during the storage period of nine months.

2. Material methods

2.1. Sample collection and preparation

Wheat cultivar HS-240 (*Triticum aestivum, L.*) was procured from Sheri-Kashmir University of Agricultural Sciences & Technology, Kashmir (SKUAST-K), Srinagar, India. The grains were ground into flour in a laboratory mill (Amar Industries, Amritsar, India) and sieved (50 mesh) to obtain the whole wheat flour with uniform particle size. The moisture, protein, fat, crude fiber and ash contents of the flour sample were observed as 10.5, 9.00, 2.00, 4.60 and 1.53 g/100 g (dw), respectively.

The tomato lycopene was extracted using modified method of Mayeux et al. (2006). 12 mL of each of petroleum ether and acetone were added to tomato powder (2 g) in the dark amber colored flask. The extraction of the sample was carried out at room temperature for 24 h, followed by addition of 8 mL of water. After extraction, the samples were centrifuged at 1500 g for 10 min to separate the sample extract into distinct polar and non-polar layers. The supernatant layer was transferred to round bottomed amber colored flask. This supernatant solvent was then evaporated using rotary vacuum evaporator (Equiton Roteva, India). The dried extract was kept in HPLC vial and stored under refrigeration (4 °C) till further analysis.

2.2. Preparation of cookies

Whole wheat flour cookies supplemented with crude lycopene (extracted from tomatoes) and tomato powder were prepared by mixing flour with the crude lycopene (50 & 100 mg/100 g of flour) and tomato powder (2 & 4/100 g of flour). The control cookies without any supplement were also prepared in order to check the contribution of supplements. Whole wheat flour (250 g) was mixed thoroughly with 100 g of shortening in a laboratory mixer. It was followed by the addition of 112.5 g of sugar, 30 g of skim milk powder, 1.5 g of salt, 1.5 g of baking powder, 25 g of egg white and water as per the requirement (approximately 10–12 %). The dough samples were represented as DC (control), DL50 (50 mg of lycopene/100 g), DL100 (100 mg lycopene/100 g), DT1 (2 g of tomato powder/100 g), and DT2 (4 g of tomato powder/100 g), sheeted to a uniform thickness of 6 mm and cut into round shapes using a round cutter of 5.00 cm diameter. After this, the cookies were placed on aluminum trays and baked at 160 °C for 10–15 min and then allowed to cool. The cookies were labeled as CC (control), CL50, CL100, CT1 and CT2, respectively. The cookies were packaged in air tight laminated pouches, stored under natural relative humidity conditions for storage studies (0–9 months).

2.3. Proximate composition of cookies

The proximate composition of freshly prepared cookies including moisture (925.10), protein (984.13), crude fat (920.85) and ash (923.03) content of the cookies was determined using the standard methods of AOAC (1990).

2.4. Physical properties – Weight, diameter, thickness & spread ratio

Four cookie samples selected randomly were weighed using analytical balance and then were placed next to each other and the total diameter was measured using Vernier Caliper. The average of the two readings divided by four was taken as a diameter of a cookie. Thickness of the cookies was measured by stacking four cookies one above the other and restacking four times. Further, the spread ratio of the cookies was measured and expressed as diameter/thickness.

2.5. Texture

Hardness of cookies was measured by using TA.XT Plus, texture analyser (Stable MicroSystems, Vienna Court, UK) that was set with pre-test speed = 1 mm/s, test speed = 3 mm/s, post-test speed = 10 mm/s and trigger force = auto. Each cookie was centrally placed on the base plate and the blade was lowered to break the cookie at a distance of 5 mm. The peak force was measured that represented the hardness of cookies. The analysis of each sample was performed in triplicates.

2.6. Color

Hunter color L* (lightness), a* (redness) and b* (yellowness) values of the cookies were determined using Color Flex Spectrocolorimeter (Hunter Lab Colorimeter D-25, Hunter Associates Laboratory, Ruston, USA) after being standardized using Hunter Lab color standards.

2.7. Total phenolic content (TPC)

The TPC of the samples was determined using the Folin-Ciocalteu spectrophotometric method (Gao et al., 2002). Each sample (200 mg) was taken in a centrifuge tube and extracted by adding 4 mL of acidified methanol (HCl/methanol/water, 1:80:10, v/v/v) to it and kept at room temperature (25 °C) for 2 h. After this, 1.5 mL of freshly prepared (10 fold diluted) Folin-Ciocalteu reagent was added to 200 mL of this sample extract. The reagents were mixed, allowed to equilibrate for 5 min and neutralized with 1.5 mL of sodium carbonate solution (60 g/L). This was followed by incubation at room temperature (25 °C) for 90 min. The absorbance of the samples was taken at 725 nm (UV-Spectrophotometer, Model U-2900 2JJ-0003, Hitachi, Japan). Results are expressed as mg of gallic acid equivalents (GAE) per gram of sample using the gallic acid standard curve.

2.8. Antioxidant properties

2.8.1. DPPH (2, 2-diphenyl-1-picyrylhydrazyl) radical scavenging assay

DPPH radical scavenging activity was determined according to the procedure described by Brand-Williams et al. (1995) with minor modifications. 100 mg of sample was extracted with 1 mL of absolute methanol for 2 h and then centrifuged at 3000 × g for 10 min. The supernatant (100 μL) was collected and reacted with 3.9 mL of a 6 × 10−5 mol/L of DPPH solution. Absorbance (A) (UV–vis spectrophotometer, Model, UV-2450, Shimadzu, Japan) at 515 nm was read at 0 (control) and 30 min (samples) using a methanol blank. Antioxidant activity was measured as % scavenging activity of DPPH radical calculated as below:

\[
\text{DPPH radical scavenging activity} \% = \left[1 - \frac{A \text{ of sample } t = 30/A \text{ of control } t = 0}{100} \right] \times 100
\]

2.8.2. Reducing power

The reducing power of samples was determined by using the method of Zhao et al. (2008). Samples were extracted by adding 0.5 mL of 80% methanol to 500 mg (db) sample in polypropylene tubes. A standard curve was prepared using different concentrations of ascorbic acid and results are expressed as ascorbic acid equivalents (AAE)/g of sample.
450 nm. Total carotenoid content was calculated as:

\[
\text{Carotenoids content (µg/g)} = \frac{A \times V \text{(mL)} \times 10^4}{A_{\text{cm}}^\text{\%} \times P(g)}
\]

where, \(A = \) Absorbance; \(V = \) Total extract volume; \(P = \) sample weight; \(A_{\text{cm}}^\text{\%} = 2592\) (β-carotene Extinction Coefficient in petroleum ether).

2.9. Total carotenoids

Total carotenoid content was estimated by using the method of de Carvalho et al. (2012). Sample (15 g) was taken in a dark amber colored flask (prevent photo-degradation), to which 25 mL of acetone was added. The mixture was then homogenized for 1 min at maximum speed (WiseTec Homogenizer, Wise Laboratory Instruments, Seoul, Korea) to maximize the extraction of carotenoids and kept overnight on a magnetic stirrer in dark. This process was repeated several times until the sample became colourless. After extraction, the mixture was filtered using whatman filter paper No. 1. The filtered extract was then transferred to a separatory funnel (500 mL) already filled with 40 mL of petroleum ether, followed by steady addition of distilled water in order to remove acetone. The aqueous phase containing acetone was discarded. The procedure was followed by steady addition of distilled water for 1 h. After incubation, the reaction was terminated by the addition of 1 ml TCA (10%, w/v), followed by addition of TBA (1 ml, 1% w/v). The reaction mixture was placed in a boiling water bath for 20 min and then centrifuged at 5000 rpm for 10 min. Absorbance of the samples was measured at 353 nm against a blank. Lipid peroxidation was measured as % inhibition using the formula given below:

\[
\% \text{Inhibition} = \left| 1 - \left(\frac{A_{\text{of sample}}}{A_{\text{of control}}} \right) \right| \times 100
\]

2.10. Sensory evaluation

Sensory evaluation of the freshly prepared and stored whole wheat flour cookies was done in order to check the overall acceptability of the product after addition of tomato powder and its extract. The samples were presented to a total of 20 semi-trained panelists from the Department of Food Science and Technology, University of Kashmir, India. Five differently coded samples were presented to panelists. The panelists rinsed their mouth thoroughly with portable water and tasted the cookies one by one. Sensory attributes like appearance, texture, mouth feel, flavor and overall acceptability were recorded on the basis of 9-point hedonic scale (Bhat et al., 2018).

2.11. Statistical analysis

Results were expressed as averages of triplicate observations and mean ± standard deviation. An analysis of variance (ANOVA) with 5% level of significance was performed. Duncan’s test was used to calculate the differences between means using statistical package (SPSS, Inc, Chicago, IL, USA).

3. Results and discussion

3.1. Proximate composition

Proximate composition of freshly prepared cookies is presented in Table 1. Moisture, protein, crude fat and ash content of the cookies were observed in the range of 2.27–3.55 g/100 g, 6.11–7.62 g/100 g, 26.08–27.14 g/100 g and 1.71–2.03 g/100 g (dw), respectively. Protein content of the composite cookies i.e. cookies containing crude lycopene and tomato powder did not vary significantly (p < 0.05) compared to control. However, crude fat and ash content of the cookies were observed to increase significantly (p < 0.05) upon incorporation of crude lycopene and tomato powder. The highest and lowest fat content was found in CL100 (27.14 %) and CC (26.08 %) cookies, respectively. Increased fat content of the former may be due the incorporation of crude lycopene which forms micro globules with fat (Tan et al., 2014), thereby preventing it from oxidative deterioration. Bhat and Ahsan (2015) reported that the ash content of the cookies increased after incorporation of tomato powder which is consistent with the results observed in the present study.

3.2. Physical characteristics

Physical properties of the cookies are shown in Table 2. Diameter of the cookies was observed in the range of 5.30–6.04 cm. Enriched cookies exhibited significantly (p < 0.05) lower values of diameter and higher values of thickness in comparison to control cookies. Consequently, spread ratio of the enriched cookies was observed lower than the control cookies. Such behavior could be attributed to the better rising ability of the cookies containing tomato powder and crude lycopene (Olápade and Adeyemo, 2014). Decrease in the spread ratio of cookies containing tomato powder may be attributed to the high water absorption capacity of the later. Bhat and Ahsan (2015) have reported a decrease in the spread ratio of wheat flour cookies following the addition of tomato powder at a level of 7.5% and 10%, which is in line with the results obtained in the present study.

Spread ratio of the cookies was observed to decrease significantly (p < 0.05) upon addition of crude lycopene. Since lycopene is fat soluble, it is likely to reduce the amount of free fat available for wheat flour, thereby decreasing the spread ratio of cookies. According to Ayo et al. (2014), the fat content of cookies has a direct relationship with their spread ratio.

3.3. Texture of cookies

Effect of incorporation of crude lycopene and tomato powder during storage period of 0–9 months on the texture of cookies is presented in

Sample	Moisture (g/100 g)	Protein (g/100 g)	Crude fat (g/100 g)	Ash (g/100 g)
CC	2.36 ± 0.04s	6.13 ± 0.02s	26.08 ± 0.06s	1.71 ± 0.03s
CL50	2.39 ± 0.12s	6.14 ± 0.04s	26.63 ± 0.12s	1.81 ± 0.05b
CL100	2.27 ± 0.06s	6.11 ± 0.02s	27.14 ± 0.06s	1.86 ± 0.03bc
CT1	3.45 ± 0.05d	6.16 ± 0.08s	26.30 ± 0.14s	1.91 ± 0.02s
CT2	3.55 ± 0.05d	6.11 ± 0.14s	26.62 ± 0.03s	2.03 ± 0.07s

Results are expressed as means (n = 3) ± standard deviation. Values followed by same letter in a column do not differ significantly (p < 0.05). CC: Control cookie without any supplement; CL50: Cookie with added crude lycopene (50 mg/100g of flour); CL100: Cookie with added crude lycopene (100 mg/100 g of flour); CT1: Cookie with added tomato powder (2 g/100 g); CT2: Cookie with added tomato powder (4 g/100 g).

N.A. Bhat et al. Heliyon 6 (2020) e03042
of the freshly prepared cookies were observed in the range of 17.16–43.78 N. It increased significantly (p < 0.05) after the addition of tomato powder and crude lycopene. The highest and lowest values for hardness were observed in CT2 and CC, respectively. The increase in the hardness of CT1 and CT2 could be due to the increase in the amount of fiber upon addition of tomato powder when compared to control. It has been reported by Bhat and Ahsan (2015) that the hardness of cookies increased after the incorporation of tomato powder (5%), which is in line with the results of the present study. The hardness of cookies was reported as 49.69 N by Zouari et al. (2016) which is in agreement with the results obtained in the present study. Kaur et al. (2014) reported the hardness of cookies prepared from different wheat cultivars between 30.25 and 78.87 N. Incorporation of crude lycopene also increased the hardness of cookies. This might be due to the formation of micro globules between lycopene and fat as reported by Tan et al. (2010). A closer look at the hardness of cookies revealed that the incorporation of tomato powder (5%) increased after the incorporation of tomato powder (5%), which is in line with the results of the present study. The hardness of cookies was reported as 49.69 N by Zouari et al. (2016) which is in agreement with the results obtained in the present study. Kaur et al. (2014) reported the hardness of cookies prepared from different wheat cultivars between 30.25 and 78.87 N. Incorporation of crude lycopene also increased the hardness of cookies. This might be due to the formation of micro globules between lycopene and fat as reported by Tan et al. (2010). A closer look at the hardness of cookies revealed that the incorporation of tomato powder (5%) increased after the incorporation of tomato powder (5%), which is in line with the results of the present study. The hardness of cookies was reported as 49.69 N by Zouari et al. (2016) which is in agreement with the results obtained in the present study. Kaur et al. (2014) reported the hardness of cookies prepared from different wheat cultivars between 30.25 and 78.87 N. Incorporation of crude lycopene also increased the hardness of cookies. This might be due to the formation of micro globules between lycopene and fat as reported by Tan et al. (2010).

3.4. Color

Hunter color values L* (lightness), a* (redness) and b* (yellowness) of cookies are presented in Table 3. Results revealed that freshly prepared enriched cookies had lower L* value (45.4–54.8) which implies their darker appearance as compared to control. The highest L* value was found in CC (55.9) and lowest in CT2 cookie (45.4). Hunter color values i.e. a* and b* of the freshly prepared cookies were observed in the range of 4.53–6.21 and 32.5–35.4, respectively. However, the values of redness and yellowness were found higher in cookies containing tomato powder and crude lycopene when compared to control. Kaur et al. (2017) reported the L*, a* and b* values for whole wheat flour cookies as 61.66, 9.96 and 26.33, respectively, which is slightly more than the values observed in the present study. The values of the same parameters reported by Bhat and Ahsan (2015) for cookies containing tomato powder are in agreement with the results obtained in the current study.

3.5. Total phenolic content (TPC)

TPC of dough and cookies is shown in Table 4. TPC of the control dough varied non-significantly (p > 0.05) from DL50 and DL100. This might be due to the lesser amount of phenolic compounds in crude lycopene. However, TPC of DT1 and DT2 increased significantly (p < 0.05) due to the presence of tomato powder as compared to control and were observed in the range of 0.38–0.72 mg GAE/g. The increase in TPC might be due to the presence of phenolic compounds such as rutin, naringenin, chlorogenic acid, protocatechuic acid, caffeic acid, gentisic acid, p-coumaric acid, ferulic acid etc. in tomato powder (Georg et al., 2002). TPC of all cookies in general increased significantly (p < 0.05) upon baking. It may be a result of generation of Maillard reaction products during baking (Lindemayer and Hofmann, 2004).

Storage time of 0–9 months resulted in a non significant (p > 0.05) decrease in L* value while, a significant (p < 0.05) decrease in a* and b* values was observed in all the cookies. The decrease in a* and b* values may be attributed to the degradation of carotenoids upon storage. It has been reported by Chen et al. (1996) that decrease in the amount of α-carotene occurred from 25.4 to 20.7, 19.7 and 19.3 µg/mL respectively, at the temperatures of 4, 25 and 35 °C during the storage period of 3 months which might also be the case in our study.

Table 2. Hardness of the freshly prepared cookies were observed in the range of 17.16–43.78 N. It increased significantly (p < 0.05) after the addition of tomato powder and crude lycopene. The highest and lowest values for hardness were observed in CT2 and CC, respectively. The increase in the hardness of CT1 and CT2 could be due to the increase in the amount of fiber upon addition of tomato powder when compared to control. It has been reported by Bhat and Ahsan (2015) that the hardness of cookies increased after the incorporation of tomato powder (5%), which is in line with the results of the present study. The hardness of cookies was reported as 49.69 N by Zouari et al. (2016) which is in agreement with the results obtained in the current study. Kaur et al. (2014) reported the hardness of cookies prepared from different wheat cultivars between 30.25 and 78.87 N. Incorporation of crude lycopene also increased the hardness of cookies. This might be due to the formation of micro globules between lycopene and fat as reported by Tan et al. (2010) in a study related to incorporation of lycopene in liposomes. As fat hinders the formation of gluten network, its limited availability presumably increases the hardness of cookies.

Hardness of cookies decreased significantly (p < 0.05) during the storage period of 0–9 months. Decrease in the hardness of cookies during storage may be attributed to the increase in water activity (Chieh, 2006).

Table 3. Hunter color values of cookies supplemented with tomato powder and crude lycopene (n = 3).

Sample	Storage (Months)	Storage (Months)	Storage (Months)										
	0	3	6	9	0	3	6	9	0	3	6	9	
	C	a	b	a	b	a	b	a	b	a	b	a	b
CC	55.9 ± 0.4*	55.9 ± 0.2*	56.2 ± 0.5*	4.5 ± 0.4*	4.5 ± 0.3*	3.5 ± 0.2*	3.1 ± 0.1*	32.5 ± 0.6*	30.5 ± 0.1*	30.2 ± 0.4*	29.1 ± 0.1*		
CL50	54.8 ± 0.5*	54.9 ± 0.2*	55.8 ± 0.8*	5.2 ± 1.7*	4.7 ± 0.1*	4.1 ± 0.7*	4.0 ± 0.3*	33.7 ± 0.3*	32.5 ± 0.3*	32.3 ± 0.2*	31.4 ± 0.0*		
CL100	51.7 ± 1.4*	51.9 ± 0.4*	52.6 ± 0.0*	5.2 ± 0.5*	4.9 ± 0.0*	3.4 ± 0.0*	3.3 ± 0.0*	35.4 ± 0.5*	34.9 ± 0.6*	32.5 ± 0.1*	31.6 ± 0.1*		
CT1	50.7 ± 0.9*	50.8 ± 0.1*	50.9 ± 1.4*	5.1 ± 0.2*	4.5 ± 0.1*	4.4 ± 0.1*	4.1 ± 0.2*	33.2 ± 1.4*	32.8 ± 0.0*	31.5 ± 0.3*	30.0 ± 0.2*		
CT2	45.4 ± 1.1*	45.9 ± 2.1*	51.2 ± 0.3*	5.1 ± 0.0*	4.2 ± 0.4*	4.3 ± 0.1*	4.9 ± 1.0*	4.8 ± 0.4*	33.4 ± 0.5*	32.9 ± 1.1*	32.2 ± 0.1*	31.2 ± 0.4*	

Results are expressed as means (n = 3) ± standard deviation.

Values followed by same letter in a row & in the column do not differ significantly (p < 0.05).
with added crude lycopene (100 mg/100 g); CT2: Cookie with added tomato powder (4 g/100 g).

Reducing power decreased during the storage period of 0–9 months. A similar trend was observed in other antioxidant assays like TPC and DPPH radical scavenging activity. However, reducing power of enriched cookies was observed to remain high throughout the storage period when compared to control.

Table 4. Antioxidant properties of cookies supplemented with tomato powder and crude lycopene (n = 3).

Sample	DC	CC	DL50	DL100	CL50	CL100	DT1	DT2	CT1	CT2
Storage (Months)	TPC (mg GAE/g)									
0	0.38 ± 0.06	0.80 ± 0.03	0.46 ± 0.07	0.59 ± 0.04	0.84 ± 0.01	0.86 ± 0.01	0.54 ± 0.12	0.72 ± 0.12	1.22 ± 0.05	1.27 ± 0.09
3	-	0.77 ± 0.07	-	-	0.82 ± 0.01	0.84 ± 0.10	-	-	1.17 ± 0.10	1.25 ± 0.08
6	-	0.73 ± 0.02	-	-	0.77 ± 0.04	0.83 ± 0.04	-	-	1.10 ± 0.07	1.08 ± 0.05
9	-	0.71 ± 0.01	-	-	0.74 ± 0.07	0.77 ± 0.03	-	-	1.03 ± 0.02	0.91 ± 0.04

DPPH scavenging assay (%)
0 15.3 ± 1.0 | 20.7 ± 0.51 | 22.9 ± 1.14 | 26.1 ± 2.25 | 32.6 ± 2.81 | 34.5 ± 0.60 | 21.1 ± 1.70 | 24.9 ± 2.40 | 29.5 ± 1.90 | 32.8 ± 1.80
3 | - | 18.3 ± 0.90 | - | - | 31.3 ± 0.51 | 32.9 ± 0.90 | - | - | 27.7 ± 1.30 | 31.2 ± 1.60
6 | - | 17.4 ± 0.82 | - | - | 23.6 ± 0.26 | 23.9 ± 0.81 | - | - | 21.9 ± 0.50 | 24.5 ± 1.00
9 | - | 12.2 ± 0.80 | - | - | 15.9 ± 0.60 | 14.8 ± 1.04 | - | - | 16.1 ± 0.30 | 17.8 ± 0.44 |

Reducing power (mg AAE/g)
0 0.23 ± 0.1 | 0.34 ± 0.04 | 0.31 ± 0.04 | 0.38 ± 0.01 | 0.57 ± 0.01 | 0.63 ± 0.05 | 0.30 ± 0.07 | 0.50 ± 0.04 | 0.56 ± 0.00 | 0.68 ± 0.02
3 | - | 0.30 ± 0.05 | - | - | 0.53 ± 0.01 | 0.59 ± 0.08 | - | - | 0.52 ± 0.02 | 0.63 ± 0.05
6 | - | 0.31 ± 0.00 | - | - | 0.48 ± 0.03 | 0.37 ± 0.04 | - | - | 0.47 ± 0.01 | 0.50 ± 0.51
9 | - | 0.22 ± 0.01 | - | - | 0.44 ± 0.02 | 0.25 ± 0.02 | - | - | 0.42 ± 0.02 | 0.36 ± 0.03 |

Lipid peroxidation (% inhibition)
0 10.9 ± 0.3 | 6.4 ± 0.36 | 12.2 ± 0.70 | 22.9 ± 2.25 | 10.7 ± 0.72 | 7.70 ± 0.72 | 30.3 ± 1.70 | 37.0 ± 0.40 | 9.27 ± 0.30 | 13.4 ± 0.80
3 | - | 5.1 ± 0.24 | - | - | 9.34 ± 0.83 | 5.32 ± 0.90 | - | - | 7.02 ± 0.50 | 10.2 ± 0.20
6 | - | 3.2 ± 0.62 | - | - | 6.54 ± 0.23 | 4.50 ± 0.80 | - | - | 3.54 ± 1.50 | 8.18 ± 0.05
9 | - | 1.7 ± 0.31 | - | - | 4.36 ± 0.51 | 3.00 ± 0.85 | - | - | 1.43 ± 0.20 | 2.25 ± 0.23 |

Results are expressed as means (n = 3) ± standard deviation.

Values followed by same letter in a row & the column do not differ significantly (p ≤ 0.05). The letters ‘a, b, c, d’ denote difference within a row and ‘p, q, r, s’ within a column.

DC: Control dough without any supplement; CC: Control cookie without any supplement; DL50: Dough with added crude lycopene (50 mg/100 g of flour); DL100: Dough with added crude lycopene (100 mg/100 g of flour); CL50: Cookie with added crude lycopene (50 mg/100 g of flour); CL100: Cookie with added crude lycopene (100 mg/100 g of flour); DT1: Dough with added tomato powder (2 g/100 g); DT2: Dough with added tomato powder (4 g/100 g); CT1: Cookie with added tomato powder (2 g/100 g); CT2: Cookie with added tomato powder (4 g/100 g).

3.6. Antioxidant properties

3.6.1. DPPH scavenging assay

DPPH radical scavenging activity of dough containing crude lycopene and tomato powder was significantly (p < 0.05) higher than control (Table 4). The possible reason for the increased DPPH radical scavenging activity could be the presence of phenolic antioxidants i.e. caffeic and chlorogenic acid in tomatoes (Takeoka et al., 2001).

Baking resulted in an increase in the DPPH radical scavenging activity of cookies. It may be due to the formation of malonoids generated in Maillard reaction at elevated temperature (Xu and Chang, 2008). In addition, it may also be due to the trans-cis-isomerization of lycopene that takes place at higher temperature increasing its ability to scavenge the DPPH radicals (Phan-Thi and Waché, 2014).

A significant (p < 0.05) decrease in DPPH radical scavenging activity of control cookies and the cookies with added crude lycopene and tomato powder was observed during storage, except the cookies stored for 3 months where the decrease was non-significant (p > 0.05). The decrease in DPPH radical scavenging activity may be attributed to degradation of phenolic compounds upon storage.

3.6.2. Reducing power

Reducing power of dough was observed to increase significantly (p < 0.05) from 0.23 to 0.50 mg AAE/g upon addition of crude lycopene and tomato powder (Table 4). The reducing power of dry tomato powder has been previously reported by Kim and Chin (2016).

In freshly prepared cookies, reducing power increased significantly (p < 0.05) upon baking and was observed in the range of 0.34–0.68 mg AAE/g. The highest and the lowest reducing power were observed in CT2 and CC, cookies respectively. The formation of Maillard reaction products upon baking might have increased the reducing power of cookies. A similar increase in reducing power of wheat flour cookies on baking has been reported by Sharma and Gujral (2014).
3.8. Total carotenoids content (TCC)

TCC of dough and cookies is shown in Figure 1. Incorporation of crude lycopene and tomato powder significantly (p < 0.05) increased the TCC of the dough. It increased in the range of 1.71–7.06 μg/g, being highest in DL50 and lowest in DC. Ndolo and Beta (2013) reported the TCC of whole wheat grain as 2.57 μg/g, which is close to the results obtained for control dough in the current study.

Baking of cookies significantly (p < 0.05) reduced the levels of TCC. Maximum reduction in TCC was observed in cookies containing tomato powder (38–38.41%) reduction. However, in case of control cookies and cookies with added crude lycopene the reduction in TCC upon baking was around 28.65% and 20–27.19%, respectively. This might be because of higher stability of lycopene compared to tomato powder. It has been reported by Ranhotra et al. (1995) that upon baking of whole wheat bread carotene losses are 4–5%. In a similar study conducted by Leehardt et al. (2006), a loss of 40% in TCC of bread was observed during baking which is in agreement with the results of the present study.

Storage time (0–9 months) had an adverse effect on TCC. Results revealed a significant (p < 0.05) decrease in TCC of cookies, presumably due to degradation of carotenoids during storage. Mellado-Ortega and Hornero-Méndez (2016) have also found a significant decrease in TCC of durum wheat during storage.

3.9. Sensory analysis

The results of sensory analysis of cookies are presented in Table 5. Analysis was made in terms of appearance, mouth feel, flavour and overall acceptability of control and composite cookies. The results of sensory analysis showed highest rating for texture of freshly prepared CC as compared to those containing tomato powder and crude lycopene. Appearance of the cookies containing lycopene gained maximum score as compared to control and cookies with added tomato powder. The appearance score was based on the number of cracks on the surface of cookies. In general, the overall acceptability of enriched cookies was comparable to control except for CT2 cookie. The later rated lowest for all the sensory attributes. It depicts that addition of tomato powder (2g/100 g) and crude lycopene (50 and 100 mg/100 g) to cookies have the potential to provide desirable sensory properties to the final product, in addition to improving its antioxidant profile. The sensory attributes reported by Bhat and Ahsan (2015) for cookies prepared by incorporating tomato powder were lower as compared to that obtained in the present study. It may be because of the reduced particle size of tomato powder used in present study unlike the ones used in the previous study.

The sensory score of cookies decreased significantly (p < 0.05) with the increase in storage period. However, the product was moderately liked by panelists as per the 9-point hedonic scale ratings following six months of storage.

4. Conclusion

The present study demonstrated that considerable improvement in the physical characteristics and antioxidant properties of whole wheat flour cookies could be attained by the addition of tomato powder and crude lycopene. Results revealed that spread ratio of the cookies decreased after incorporation of tomato powder and crude lycopene thereby indicating a better rising ability of the enriched cookies. Texture analysis of the cookies showed that the cookies supplemented with tomato powder and crude lycopene were hard as compared to control cookies. The Hunter color values a’ and b’ of the enriched cookies were also comparable to control cookies. The results of this study suggest that novel cookies with added tomato powder and crude lycopene can be produced with improved antioxidant properties without having any adverse effect on their physical and organoleptic properties.

Table 5. Sensory scores of cookies supplemented with tomato powder and crude lycopene.

Storage (Months)	CC	CL50	CL100	CT1	CT2
Texture					
CC	0	8.25	4.11	7.00	5.62
CL50	1	7.60	4.22	6.83	5.91
CL100	2	7.50	4.12	7.25	5.41
CT1	3	7.00	4.07	7.25	5.11
CT2	4	6.75	4.00	7.12	4.81
Appearance					
CC	0	7.75	0.78	7.25	0.78
CL50	1	7.50	0.22	7.25	0.22
CL100	2	7.50	0.22	7.25	0.22
CT1	3	7.00	0.22	7.25	0.22
CT2	4	6.75	0.22	7.12	0.22
Flavour					
CC	0	7.50	0.11	7.51	0.11
CL50	1	7.50	0.11	7.51	0.11
CL100	2	7.50	0.11	7.51	0.11
CT1	3	7.00	0.11	7.25	0.11
CT2	4	6.75	0.11	7.12	0.11
Overall acceptability					
CC	0	7.62	0.11	7.59	0.11
CL50	1	7.59	0.11	7.60	0.11
CL100	2	7.59	0.11	7.60	0.11
CT1	3	7.21	0.11	7.25	0.11
CT2	4	6.99	0.11	7.25	0.11

Results are expressed as means (n = 3) ± standard deviation. Values followed by same letter in a row & the column do not differ significantly (p < 0.05). The letters ‘a, b, c, d...’ denote difference within a row and ‘p, q, r, s...’ within a column.

CC: Control cookie without any supplement; CL50: Cookie with added crude lycopene (50 mg/100g of flour); CL100: Cookie with added crude lycopene (100 mg/100 g of flour); CT1: Cookie with added tomato powder (2 g/100 g); CT2: Cookie with added tomato powder (2 g/100 g); CT2: Cookie with added tomato powder (4 g/100 g).
De Carvalho, L.M.J., Gomes, P.B., Godoy, R.L.O., Pacheco, S., do Monte, P.H.F., de Brand-Williams, W., Cuvelier, M.E., Berset, C., 1995. Use of a free radical method to
measure antioxidant activity in tomato pomace powder. Food Processing Technology 7, 1.

Gao, L., Wang, S., Oomah, B.D., Mazza, G., 2002. Wheat quality: antioxidant activity of
wheat millstream. AACc Int. 219–233.

Georgé, S., Tourniaire, F., Gautier, H., Goupy, P., Rock, E., Caris-Veyrat, C., 2011. Changes in the contents of carotenoids, phenolic compounds and vitamin C during
tomato processing and lycopene in red and yellow tomatoes. Food Chem. 124, 1603–1611.

Gazzani, G., Papetti, A., Masolulin, G., Doglia, M., 1998. Anti- and prooxidant activity of
water soluble components of some common diet vegetables and the effect of thermal
processing. J. Agric. Food Chem. 46, 4118–4122.

Kaur, A., Singh, N., Kaur, S., Ablawat, A.K., Singh, A.M., 2014. Relationships of flour
solvent retention capacity, secondary structure and rheological properties with the
cake making characteristics of wheat cultivars. Food Chem. 158, 48–55.

Kaur, M., Singh, V., Kaur, R., 2017. Effect of partial replacement of wheat flour with
varying levels of flaxseed flour on physiochemical, antioxidant and sensory
characteristics of cookies. Bioact. Carbohydr. Diet. Fiber 9, 14–20.

Kim, H.S., Chin, K.B., 2016. Effects of drying temperature on antioxidant activities of
tomato powder and storage stability of Pork Patties. Kor. J. Food Sci. Anim. Res. 36 (1), 51–60.

Kumar, N., Singh, O.P., 1992. Effect of processing conditions on the oxidation of
cholesterol in ghee. J. Sci. Food Agric. 58, 267–273.

Leehardt, F., Lyon, B., Rock, E., Boxsaard, A., Potus, J., Chanlalad, E., Remyes, C., 2006. Wheat lipoxygenase activity induces greater loss of carotenoids than vitamin E during
baking. J. Agric. Food Chem. 54, 1710–1715.

Lindermeier, M., Hofmann, T., 2004. Influence of baking conditions and precursor
supplementation on the amounts of the antioxidant punyl-l-lyxine in bakery
products. J. Agric. Food Chem. 52, 350–354.

Mayeaux, M., Xu, Z., King, J.M., Prinyawiwatkul, W., 2006. Effects of cooking conditions
on the lycopene content in tomatoes. J. Food Sci. 71, 461–464.

Mellado-Ortega, E., Hornero-Mendez, D., 2016. Carotenoid evolution during short-
storage period of durum wheat (Triticum turgidum conv. durum) and tritordeum
(Triticum-Avena Schergon et Greifbauer) whole-grain flours. Food Chem. 192, 714–723.

Mesias, M., Holgado, F., Marquez-Ruiz, G., Morales, F.J., 2015. Effect of sodium
replacement in cookies on the formation of process contaminants and lipid oxidation.
LWT Food Sci Technol. 62, 633–639.

Navarro-González, I., García-Valverde, V., García-Alonso, J., Periago, M.J., 2011.
Chemical profile, functional and antioxidant properties of tomato peel fiber. Food
Res. Int. 44, 1528–1535.

Nidolo, V.U., Beta, T., 2013. Distribution of carotenoids in endosperm, germ, and aleurone
fractions of cereal grain kernels. Food Chem. 139, 663–667.

Olupade, A.A., Adeyemo, A.M., 2014. Evaluation of cookies produced from blends of
wheat, casava and cowpea flours. Int. J. Food Stud. 3, 175–185.

Phan-Thi, H., Wache, Y., 2014. Isomerization and increase in the antioxidant properties of
lycopene from Monarda cochinchenensis (ga) by moderate heat treatment with UV-Vis spectra as a marker. Food Chem. 156, 58–65.

Ranhotra, G.S., Gelroth, J.A., Langemeier, J., Rodgers, D.E., 1995. Stability and
contribution of beta carotene added to whole wheat bread and crackers. Cereal
Chem. 72, 139–141.

Saponjaci, V.T., Četković, G., Canadanovic-Brunet, J., Simin, D., 2015. Tomato waste: carotenoids content, antioxidant and cell growth
inhibitory activities of tomato pomace powder. Food Processing Technology 7, 1.

Bhat, M.A., Ahsan, H., 2015. Physico-chemical characteristics of cookies prepared with
tomato pomace powder. Food Processing Technology 7, 1.

Bhat, N.A., Bhamandi, A.M., Masoodi, F.A., 2018. Development of functional cookies using
saffron extract. J. Food Sci. Technol. 55, 301–307.

Skrbic, B., Cvejanov, J., 2011. The enrichment of wheat cookies with high-oleic sun
flower oil: impact on nutritional composition, content of heavy elements and physical properties. Food Chem. 124, 1416–1422.

Stajcic, S., Četković, G., Canadanovic-Brunet, J., Simin, D., Mandic, A., Cetojevic-
Simin, D., 2015. Tomato waste: carotenoids content, antioxidant and cell growth
activities. Food Chem. 172, 225–232.

Tan, C., Xue, J., Liu, X., Abbas, S., Guan, Y., Feng, B., Zhang, X., Xia, S., 2014. Liposomes
as delivery systems for carotenoids: comparative studies of loading ability, storage
stability and in vitro release. Food Funct. 5, 1232–1240.

Takosek, G.R., Doo, I., Flessa, S., Gillipie, D.M., Jewell, W.T., Huerber, B., Bertow, D.,
Ebel, S.E., 2001. Processing effects on lycopene content and antioxidant activity of
tomatoes. J. Agric. Food Chem. 49 (8), 3713–3717.

Wright, J.R., Colby, H.D., Miles, P.R., 1981. Cytosolic factors which affect microsomal
lipid peroxidation in lung and liver. Arch. Biochem. Biophys. 206 (2), 296–304.

Wright, J.R., Colby, H.D., Miles, P.R., 1981. Cytosolic factors which affect microsomal
lipid peroxidation in lung and liver. Arch. Biochem. Biophys. 206 (2), 296–304.

Xu, B., Chang, S.K.C., 2008. Total phenolics, phenolic acids, isoflavones, and
anthocyanins and antioxidant properties of yellow and black soybeans as affected by
thermal processing. J. Agric. Food Chem. 56, 7165–7175.

Zhao, H., Fan, W., Dong, J., Lu, J., Chen, J., Shan, L., 2008. Evaluation of antioxidant
activities and total phenolic contents of typical malting barley varieties. Food
Chem. 107, 296–304.

Zouari, R., Beshes, S., Ellouze-Chaabouni, S., Ghribi-Aydi, D., 2016. Cookies from
composite wheat–sesame peels flours: Dough quality and effect of Bacillus subtilis
SPB1 biosurfactant addition. Food Chem. 194, 758–769.