Abstract:

Background
Whole genome shotgun re-sequencing of wheat is expensive because of its large, repetitive genome. Moreover, sequence data can fail to map uniquely to the reference genome making it difficult to unambiguously assign variation. Re-sequencing using target capture enables sequencing of large numbers of individuals at high coverage to reliably identify variants associated with important agronomic traits. Previous studies have implemented cDNA/exon or gene-based probe sets where promoter and intron sequence is largely missing alongside newly characterized genes from the recent improved reference sequences.

Results
We present and validate two gold standard capture probe sets for hexaploid bread wheat, a gene and a promoter capture, which are designed using recently developed genome sequence and annotation resources. The captures can be combined or used independently. We demonstrate that the capture probe sets effectively enrich the high confidence genes and putative promoter regions that were identified in the genome alongside a large proportion of the low confidence genes and promoters. Finally, we demonstrate successful sample multiplexing that allows generation of adequate sequence coverage for SNP calling while significantly reducing cost per sample for gene and promoter capture.

Conclusions
We show that a capture design employing an 'island strategy' can enable analysis of the large gene/promoter space of wheat with only 2x160 Mb probe sets. Furthermore, these assays extend the regions of the wheat genome that are amenable to analyses beyond its exome, providing tools for detailed characterization of these regulatory regions in large populations.

Corresponding Author:

Anthony Hall

UNITED KINGDOM

Corresponding Author Secondary Information:

Corresponding Author's Institution:
Corresponding Author's Secondary Institution:	
First Author:	Laura-Jayne Gardiner
First Author Secondary Information:	
Order of Authors:	Laura-Jayne Gardiner
	Thomas Brabbs
	Alina Akhunova
	Katherine Jordan
	Hikmet Budak
	Todd Richmond
	Sukhwinder Singh
	Leah Catchpole
	Eduard Akhunov
	Anthony Hall
Order of Authors Secondary Information:	
Response to Reviewers:	See attached document 'Response to editor and reviewers' with colour coded questions and responses. We have also attached the previous version of the manuscript that shows the corresponding tracked changes that we have made.

Additional Information:

Question	Response
Are you submitting this manuscript to a special series or article collection?	No
Experimental design and statistics	Yes
Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our Minimum Standards Reporting Checklist. Information essential to interpreting the data presented should be made available in the figure legends.	
Have you included all the information requested in your manuscript?	

Resources

A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly
encouraged to cite Research Resource Identifiers (RRIDs) for antibodies, model organisms and tools, where possible.

Have you included the information requested as detailed in our Minimum Standards Reporting Checklist?

Availability of data and materials	Yes
All datasets and code on which the conclusions of the paper rely must be either included in your submission or deposited in publicly available repositories (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the "Availability of Data and Materials" section of your manuscript.	
Have you have met the above requirement as detailed in our Minimum Standards Reporting Checklist?	Yes
Integrating genomic resources to present full gene and promoter capture probe sets for bread wheat

Authors: Laura-Jayne Gardiner¹, Thomas Brabbs¹, Alina Akhunova², Katherine Jordan², Hikmet Budak³, Todd Richmond⁴, Sukhwinder Singh⁵, Leah Catchpole¹, Eduard Akhunov² and Anthony Hall¹,⁶

Affiliations: ¹Earlham Institute, Norwich, UK; ²Kansas State University, Department of Plant Pathology, Manhattan, KS, USA; ³Montana State University, Department of Plant Sciences and Plant Pathology, Bozeman, MT, USA; ⁴Roche Sequencing Solutions, Madison, WI, USA; ⁵CIMMYT, Obregon, Mexico; ⁶School of Biological Sciences, University of East Anglia, Norwich, UK

Laura-Jayne Gardiner: Laura-Jayne.Gardiner@earlham.ac.uk
Thomas Brabbs: Thomas.Brabbs@earlham.ac.uk
Alina Akhunova: akhunova@ksu.edu
Katherine Jordan: kwjordan@ksu.edu
Hikmet Budak: hikmet.budak@montana.edu
Todd Richmond: todd.richmond@roche.com
Sukhwinder Singh: Suk.Singh@cgiar.org
Leah Catchpole: Leah.Catchpole@earlham.ac.uk
Eduard Akhunov: eakhunov@ksu.edu

Author for correspondence:
Prof. Anthony Hall
Tel: +44 1603 450 989
Email: Anthony.Hall@earlham.ac.uk
Abstract

Background

Whole genome shotgun re-sequencing of wheat is expensive because of its large, repetitive genome. Moreover, sequence data can fail to map uniquely to the reference genome making it difficult to unambiguously assign variation. Re-sequencing using target capture enables sequencing of large numbers of individuals at high coverage to reliably identify variants associated with important agronomic traits. Previous studies have implemented cDNA/exon or gene-based probe sets where promoter and intron sequence is largely missing alongside newly characterized genes from the recent improved reference sequences.

Results

We present and validate two gold standard capture probe sets for hexaploid bread wheat, a gene and a promoter capture, which are designed using recently developed genome sequence and annotation resources. The captures can be combined or used independently. We demonstrate that the capture probe sets effectively enrich the high confidence genes and putative promoter regions that were identified in the genome alongside a large proportion of the low confidence genes and promoters. Finally, we demonstrate successful sample multiplexing that allows generation of adequate sequence coverage for SNP calling while significantly reducing cost per sample for gene and promoter capture.

Conclusions

We show that a capture design employing an ‘island strategy’ can enable analysis of the large gene/promoter space of wheat with only 2x160 Mb probe sets. Furthermore, these assays extend the regions of the wheat genome that are amenable to analyses beyond its exome, providing tools for
detailed characterization of these regulatory regions in large populations.

Background

It is expensive to perform whole genome sequencing to depths sufficient for confident variant calling, particularly in species with large genome sizes. To reduce this complexity and to make re-sequencing more cost effective, we can utilize approaches such as: Restriction site Associated sequencing or RAD-seq (Baird *et al.*, 2008), transcriptome sequencing (De Wit *et al.*, 2015) and sequence capture. Sequence capture typically combines probe hybridization to capture specific genome sequences in solution with sequencing of the captured fragments. The ability to design and implement specifically targeted probe sets has clear advantages for the analysis of variation across the genome. Sequence capture is used in human medicine for diagnosis and to inform treatment (Warr *et al.*, 2015), in crops such as rice, barley, soybean and wheat to discover variants to aid agricultural improvement (Henry *et al.*, 2014; Mascher *et al.*, 2013; Bolon *et al.*, 2011) and in animals such as the pig *Sus scrofa* to identify genetic markers relating to animal health (Robert *et al.*, 2014).

It is particularly expensive to perform whole genome sequencing in wheat because of its vast genome, polyploid nature and high repetitive content. The allohexaploid (AABBDD) wheat genome is 17 Gb in size and derived from three diploid progenitor genomes. The AA genome is from *Triticum urartu*, the BB is likely to be of the Sitopsis section (includes *Aegilops speltoides*), and the DD from *Aegilops tauschii* (Brenchley *et al.*, 2012). AABB tetraploids appeared less than 0.5 million years ago after an initial hybridization event (Dvorak *et al.*, 2006). It is thought that Emmer tetraploid wheat developed from the domestication of such natural tetraploid populations. The hexaploid wheat that we have today formed around 8000 years ago by the hybridization of the unrelated diploid wild grass *Aegilops tauschii* (DD genome) with the tetraploid *Triticum turgidum* or Emmer wheat (AABB genome) (Dubcovsky and Dvorak, 2007).
With annotated high-quality wheat genome sequences now available, it has become possible to design capture probe sets for wheat and to use them to accurately analyze the genome (Clavijo et al., 2017; IWGSC). Sequence capture combines genotyping with de novo SNP discovery to allow allele mining and identification of rare variants. It has also been demonstrated that, using bespoke analysis tools such as CoNIFER and XHMM, Copy Number Variants (CNVs) can be identified from targeted sequence capture data (Fromer et al., 2012; Krumm et al., 2012). To date, such diversity has been profiled in wheat using capture probe sets that have not been able to make use of the recent advances in wheat genome sequencing and annotation. Most of the diversity studies have implemented either cDNA/exon-based probe sets of 56 and 84 Mb (Winfield et al., 2012; Krasileva et al., 2016) or the gene-based probe set of 107 Mb (Jordan et al., 2015; Gardiner et al., 2016). Aligning the 107 Mb capture probe set to the current wheat genome annotations (BLASTN, e-value 1e-05, identity 95%, minimum length 40 bp), we can see that it represents only 32.9% of the high confidence gene-set or 21.2% of the gene-set plus promoters defined as 2 Kbp upstream (Clavijo et al., 2017). Similarly aligning the 84 Mb capture probe set to the current wheat genome annotations, we can see that it represents only 32.6% of the high confidence gene-set or 20.4% of the gene-set plus promoters. Promoter and intron sequence has previously been largely missing from capture probe sets alongside the newly characterized genes that the recent improved reference sequences have defined. There is therefore a need for an updated “gold-standard” gene capture probe set for wheat, based on the current high confidence gene-models, that can be adopted by the community. High confidence gene models have been distinguished from low confidence models based on similarity to known plant protein sequences and supporting evidence from wheat transcripts (Clavijo et al., 2017).

Here, we present a gene capture probe set, which was created by integrating the current annotated wheat genome reference sequences to define a comprehensive “gold-standard” gene design space for wheat. We use an island strategy, carefully spacing probes with, on average, 120 bp gaps across the design space to maximize sequencing coverage of our targets. We have also developed a comprehensive putative promoter capture probe set for wheat that takes 2 Kb upstream of the annotated
genes and will facilitate global investigation to fully characterize these regulatory regions. Since approximately half of the genetic variation that associates with phenotypic diversity in maize is found in promoter regulatory regions (Li, X. et al., 2012), it is reasonable to expect a similar scenario for wheat promoter regions that are poorly defined on a global scale; these are regions that need to be explored and more precisely defined across the wheat genome. The gene and promoter captures can be combined or used independently.

In summary: we describe two new wheat NimbleGen SeqCap EZ probe sets (Roche NimbleGen Inc., WI, USA), the first that is tiled across the genic regions of the hexaploid bread wheat genome and the second that is tiled across the putative promoter regions; we integrate diverse wheat material into the design to allow broad applicability of the probe sets; we validate the capture probe sets using the reference variety Chinese Spring; and we demonstrate the probe sets application to diverse wheat accessions by enriching eight wheat accessions that were generated by International Maize and Wheat Improvement Center (CIMMYT), Mexico. Finally, multiplexing samples into a single capture before sequencing, using barcodes to identify individual samples in the pool, can further reduce costs; we demonstrate successful multiplexing of over 20 samples in a single capture, where we can generate adequate coverage per sample for SNP calling. Our capture probe set designs are publicly available and can also be ordered directly from NimbleGen via the Roche website (http://sequencing.roche.com/en/products-solutions/by-category/target-enrichment/shareddesigns.html).

Analyses

Targets of the capture probe sets (Figure 1)

The capture probe sets target high confidence genes and their associated promoters from the Chinese Spring reference genome. In addition, non-redundant gene sequences from Chinese Spring’s D-genome progenitor *Aegilops tauschii* and its AB-genome progenitor *Triticum turgidum* or Emmer wheat were
incorporated to allow broader applicability of the probe sets. For Chinese Spring-derived genes two genome sequence annotations were utilized; high confidence genes from The Genome Analysis Centre (TGAC)/Earlham Institute W2RAP pipeline derived reference sequence (Clavijo et al., 2017) 447,729,570 bp of target sequence across 114,247 genes and high confidence genes from the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq.v1 genome assembly 339,580,651 bp across 110,788 genes (IWGSC, 2018). For Aegilops tauschii genes the Luo et al. reference sequence was used with a high confidence annotated gene set of 111,466,178 bp of target sequence across 28,843 genes and for Emmer wheat, high confidence genes from the Avni et al. reference sequence were used, 252,137,485 bp across 65,005 genes. Only high confidence genes were selected and gene sequence was defined from the beginning of the 5’untranslated region (UTR) to the end of the 3’UTR sequence.

Promoter sequence was defined as per previous studies as 2000 bp upstream of the transcription start site (TSS) of the aforementioned high confidence genes as per Wicker et al., 2018. The target space for the promoter capture amounted to 223,409,786 bp of target sequence across 112,999 gene promoters and 221,681,783 bp across 110,788 gene promoters for the TGAC and IWGSC references respectively. Ae. tauschii derived promoters totalled 57,177,213 bp of target sequence associated with 28,843 genes and for Emmer 130,075,005 bp associated with 65,005 genes.

In total, the combined gene and promoter capture target spaces amounted to: 671,139,356 bp for the Chinese Spring TGAC reference, 561,262,434 bp for the IWGSC Chinese Spring reference, 168,643,391 bp for Ae. tauschii and 382,212,490 bp for Emmer (Figure 1, Step 1). Prior to probe placement across the target space the raw gene/promoter sequences were processed to remove redundancy, repetitive/low-complexity sequence and chloroplast/mitochondrial sequence (Figure 1, Steps 2-4; Methods) resulting in probe set design spaces of: 606,847,164 bp (TGAC), 490,375,105 bp (IWGSC), 328,407,758 bp (Emmer) and 146,980,738 bp (Ae. tauschii). Figure 1, Steps 5-6 show how the 606,847,164 bp of Chinese Spring TGAC sequence was used as the basis for the design and only those sequences found in Emmer, Ae. Tauschii or the IWGSC sequence set, which were not found with
high similarity in the Chinese Spring TGAC sequence, were added to the base design. As such, initially
unique Emmer/Ae. Tauschii sequences that amounted to 127,651,054 bp were combined with the
TGAC sequence. Finally, the Chinese Spring IWGSC sequence set was compared to the combined
TGAC/Emmer/Ae. Tauschii sequences and its unique sequence space of 51,758,271 bp was also
included. This ensured that gene annotation differences between the two main wheat references
sequences were accounted for in the capture design space. As anticipated, overlap between the two
Chinese Spring reference annotations was high.

After processing the final combined TGAC/Emmer/Tauschii/IWGSC gene and promoter design space
was 785,914,746 bp, of which, 508,889,665 bp was gene and 277,025,081 bp was promoter sequence
(Figure 1, Step 7). The promoter design space included additional micro RNA (miRNA) sequence
totalling 953 sequences (208,968 bp). N’s and low complexity space encompassed 56,648,010 bp of
the final design space, this sequence was included for probe design and later used to enable ranking of
more or less preferential probes.

Probe design

The final gene/promoter design space of 785,914,746 bp was used for probe design. Typically probes
overlap one another to most optimally cover the target design space, however from previous analyses
we observed that a single 120 bp probe can enrich up to 500 bp with adequate sequencing coverage
(Gardiner *et al.*, 2015). As such, we tiled probes (average size 75 bp), across our design space using an
“island strategy” i.e. at intervals of on average 120 bp, to most evenly cover the design-space
(Methods). The gene and promoter probe set’s predicted performance metrics and designs are
summarized in Table 1. Probes in solution bind to their complementary sequence within a DNA library
fragment that has typically been sheared to 200-300 bp, therefore we bioinformatically estimated
design space coverage of the probe set using shearing sizes for our simulated sequencing library of 200
bp (Methods). From this analysis we anticipate upwards of 90% coverage of both the promoter and
gene capture design-spaces with these capture probe sets. Additionally, we visualized the predicted
coverage of the Chinese Spring high confidence genes/promoters by their corresponding design spaces;
Supplementary Figure S1a and S1b highlight that the captures are likely to provide a comprehensive coverage of their respective targets. It is also evident that the collapse of the gene design space has been more widespread, with many regions of the capture design aligning closely to more than one target region. This is less common for the promoter capture design sequences that are more likely to align to a single target promoter with a longer alignment. This could be indicative of genes being more likely to have shared homology between the sub-genomes of wheat or within gene families compared to promoters that may be more divergent.

Sequencing coverage after capture of Chinese Spring

We firstly examined capture efficiency using the reference variety of wheat, Chinese Spring, which the majority of the capture design space was based on. We performed promoter and gene captures separately using Chinese Spring DNA from 21-day seedling leaf tissue and sequenced on the HiSeq4000 (Methods). Four technical replicate barcoded libraries were pooled for the gene capture and a further four were pooled for the promoter capture and here all four replicates were aligned as a single pool of reads to assess coverage (426,725,926 reads from gene and 232,437,854 from the promoter capture). It is clear from Table 2 that, irrespective of the reference genome implemented, the majority of reads can be aligned uniquely (average 77.9%) with a low duplicate rate observed (average 4.20%). The overall alignment rate when aligning to the full wheat reference genome was 99.8%.

Firstly, we aligned promoter and gene captured reads to their respective probe design spaces to determine enrichment efficiency in general i.e. how much of the sequencing data was likely to have been pulled down by the probes (Table 2). 75.2% and 71.9% of reads align to the gene and promoter probe design spaces respectively indicating high on-target enrichment efficiency. For the gene capture probe design space, we saw 94.6% and 92.8% of the design space with coverage at 1X and 5X or more respectively (excluding non-Chinese Spring design space from calculations). Similarly, for the promoter capture design space we saw 92.7% and 89.8% of the design space with coverage at 1X and 5X or more respectively. The performance of the promoter and gene capture platforms exceed our predictions of coverage of 90.2% and 91.6%. Coverage statistics for the probe design spaces were used...
to identify regions with excessively high coverage defined as coverage of more than 10 times the average maximum depth of coverage for a region. Only 0.17% of gene and 0.22% of promoter design space regions showed such high coverage and will be removed from subsequent versions of the capture probe sets.

Secondly, we focused on alignments to the full high confidence gene and promoter spaces of Chinese Spring, i.e. only our intended targets, to determine the efficacy of our island approach and design space collapse (Table 2 and Figure 2). For the gene capture we observed a highly comprehensive coverage of 96.97% and 95.25% at 1X and 5X or more respectively. Similarly, for the promoter capture we observed 97.25% and 94.36% coverage at 1X and 5X or more. This demonstrates exceptional performance of the island approach and Figure 2 highlights this ability of the short probes to generate comprehensive coverage using the island approach. We noted that coverage of the full gene and promoter sets actually exceeds that of the probe design space. This is likely due to the full gene and promoter space having a smaller number of contigs (up to 114,247) that are generally longer and encompass a larger base space compared to the probe design space, which has a larger number of contigs (up to 220,837) that are shorter in length and therefore likely to hinder successful mapping of properly paired reads.

Finally, to assess off-target sequencing carryover and to ensure unbiased sequencing alignment, we looked at read alignments to the full Chinese Spring genome (Table 2). Aligning reads to the full genome reference sequence is preferential to a subset e.g. the capture target space. This ensures correct alignment of off-target reads from sequence capture that could otherwise be incorrectly aligned to their ‘best fit’ location in the capture target space. Here we observe coverage across 97.4% and 93.8% of the high confidence genic regions, our targets, at 1X and 5X or more respectively. This exceeds statistics from alignment to the design space potentially due to the inclusion of additional read pairs that traverse the TSS or gene end. Furthermore, we see 93.1% and 78.2% coverage at 1X and 5X or more across all high confidence and low confidence genes, resulting in a truly comprehensive gene capture. 113,884 of the high confidence genes (99.7%) showed sequencing coverage, with each gene covered to an average
of 97.5% at 1X and 94.5% at 5X or more. The promoter capture performed comparably to the gene capture showing coverage across 95.4% and 87.2% of high confidence promoters at 1X and 5X or more and also coverage of 85.7% at 1X and 64.4% at 5X or more across promoters associated with both high and low confidence genes. Here, a slightly lower coverage of low confidence promoter sequences was observed than for genes, potentially due to more divergent or repetitive promoter associated sequences. 112,824 of high confidence promoters (99.8%) showed sequencing coverage, with each promoter covered to an average of 93.6% at 1X and 85.5% at 5X or more. Within the design space of the promoter capture we included miRNA sequence totalling 953 sequences (208,968 bp). We observed coverage across 92.72% of these sequences with an average depth of 34.99X with as little as 47 million sequencing paired-end reads (23.5 million read clusters).

Using the information from the Chinese Spring sequencing validation of the gene capture probe set, we were able to develop an extended version of the promoter capture probe set that includes 5'UTR sequence (Promoter-2). The 5'UTRs for which we gained coverage of >10X across >99% of the 5'UTR sequence were identified and up to 2 probes per 5'UTR were added to the promoter capture. This resulted in the addition of 5'UTR probes that were associated with 49,034 high confidence genes. This provides an enhanced promoter capture probe set that overlaps the first probe set with the addition of the 5'UTR.

To assess the compatibility of our capture probe set with different Chinese Spring reference genome sequences, we performed further read alignments to the full IWGSC Chinese Spring genome (RefSeqV1, Supplementary Table S1). 109,862 of high confidence genes (99.2%) showed sequencing coverage, with each gene covered to an average of 98.0% at 1X and 94.2% at 5X or more. In addition, 109,986 of high confidence promoters (99.3%) showed sequencing coverage, with each promoter covered to an average of 90.4% at 1X and 79.0% at 5X or more respectively. These statistics are highly comparable to the outcome using the TGAC reference and highlight the large degree of overlap that is seen between the TGAC and IWGSC Chinese Spring reference gene sets, aside from small regions of inverted duplications (Supplementary Figure S1c). Since we do not see a significant difference in
coverage between the TGAC and IWGSC reference sequences this confirms our ability to capture much of the regions differing between the two references.

Using the IWGSC Chinese Spring genome that is ordered into chromosome pseudomolecules we can visualize the genome-wide average coverage of genes and promoters (Supplementary Figure S2). We see no notable bias in coverage depth or distribution between the sub-genomes of wheat or otherwise. Coverage is consistent across the vast majority of the gene and promoter space with baseline averages of 34.7X and 21.0X coverage. For the gene capture, the coverage coefficient of variation (CV) is 0.87, while for the promoter capture it is 0.79; distributions with CV < 1 are considered low-variance and as such coverage is largely uniform across the respective target spaces.

Capturing and sequencing regions not included in the target space
Overall both captures perform well, we can typically gain >5X coverage across >90% of their intended targets and on average >20X coverage. It was noted across both captures that there was a significant proportion of low level coverage that fell outside of high and low confidence genes, promoters and sequences in their immediate vicinities (+/- 2000 bp). This is visible in the ~20% difference in reads aligning uniquely to the whole wheat genome but not to the TGAC gene/promoter targets. This sequence is thought to be non-enriched carryover contamination and as such could be limited with increased washes during the capture protocol. There is also the possibility that this may be a result of “over-sequencing” of the libraries and that as such the off-target sequence will become less prominent at lower sequencing depths; however, we only see an increase in on-target sequence of 1.1% as we decrease read coverage from 440 to 100 million sequencing reads for the gene capture.

Determination of minimum sequencing requirements
The Chinese Spring data that we have used to validate the capture probe sets originated from a single gene and a single promoter capture assay, however, each capture combined four barcoded technical replicate Chinese Spring libraries. Using different combinations of these four replicate libraries (all four, three, two or one) we were able to bioinformatically reduce the number of sequencing reads in
our analyses to determine the minimum sequencing requirements for coverage of the targets. Looking at the coverage of target regions with varying sequencing read numbers (Supplementary Table S2 and Supplementary Figure S3), it is evident that increasing the number of sequencing reads increases coverage of target regions. However, there are clear saturation points for each capture probe set where further sequencing input has little to no effect on increasing target coverage. These saturation points guide our recommended sequencing levels for optimal return on investment and comprehensive coverage of capture targets at a minimum of 5X, which is desirable for SNP calling: 200-300 million paired-end reads (100-150 million read clusters) for gene capture and 150-200 million paired-end reads for promoter capture (75-100 million read clusters). In Table 3 we have outlined a sliding scale of sequencing levels alongside the varying depths of coverage that they generate for the target sequences to guide user requirements (Table 3).

Multiplexing to generate comprehensive coverage

Multiplexing DNA from multiple wheat lines and enriching them in a single capture reaction before sequencing can decrease costs. It is important to determine if such a large capture probe set with the “island strategy” probe design will yield uniform coverage of multiple samples. Firstly, we multiplexed eight different samples per gene and promoter capture to compare performance metrics with our previous single sample capture. We used eight diverse wheat accessions that were generated by CIMMYT, Mexico (Singh et al., 2018) (Supplementary Table S3) and sequenced the gene capture multiplexed pool to a depth of 800 million paired-end reads (~ 100 million paired-end reads per sample or 50 million read clusters) and the promoter capture pool to 600 million paired-end reads (~ 75 million reads per sample or 37.5 million read clusters). We performed read alignments for the eight samples to the full Chinese Spring genome (Supplementary Table S4 and S5). Uniform and successful enrichment of the eight samples was observed with both the gene and promoter captures. All samples show a high percentage of reads aligned on target (77.25% and 58.47% on average for the gene and promoter captures respectively) with low variation between samples represented by interquartile ranges of less than 5% (Figure 3). CVs for the gene and promoter capture were 0.68 and 0.59 respectively; these values are considered low-variance and as such coverage is largely uniform across the respective target
spaces. All samples covered the gene target regions at a minimum of 5X to between 69.2-73.1% and the promoter target regions at a minimum of 5X to between 62.7-70.4% (Supplementary Tables S4 and S5). For each of the samples, coverage of target regions was higher than the expected coverage that was predicted based on the depth of sequencing from the Chinese Spring enrichment (Supplementary Figure S4).

Secondly, we validated our promoter-2 capture probe set that includes 5’UTR sequence whilst also multiplexing a larger number of samples for capture (22 samples). For this analysis we used a diverse set of wheat lines that were selected based on genotyping with the 9K iSelect array (Cavanagh et al., 2013). We sequenced the promoter-2 capture multiplexed pool to an average depth of ~46 million paired-end reads per sample (23 million read clusters) and aligned on average 85.5% of reads uniquely to the reference genome. Across a representative subset of the samples, the average depth of coverage for the promoter high confidence target regions ranged from 6.2-6.9X with 13.5-17.1% of this space covered at a minimum of 10X. These metrics surpass our expected depth of coverage on target using 50 million paired-end reads where we predicted an average coverage of 5.3X and 9.9% coverage at a minimum of 10X (Table 3). We also noted low variation between samples represented by interquartile ranges of less than 5% for coverage of the targets at a minimum of 1X, 5X and 10X. This analysis demonstrates uniform successful enrichment of the samples and that multiplexing more than 20 samples for capture has no detrimental effect.

Genotyping sensitivity of the capture probe sets

We focused on our 8-plex test, where we sequenced the samples to our recommended sequencing depth for SNP calling, and we identified homozygous SNPs in each of the samples at positions where we saw a minimum of 5X coverage (Methods). On average samples had 1,031,677 SNPs each from the gene capture and 968,640 SNPs each from the promoter capture. Furthermore, when we focus on locations where each of the eight samples either had a SNP identified or else had a minimum of 5X coverage with no SNP, i.e. the reference allele, this resulted in 1,019,556 positions that were available for comparison across the sample set for the gene capture and 869,954 for the promoter capture. This
highlights our ability for denovo SNP discovery with captured sequencing data, the high level of
diversity in the eight CIMMYT lines compared to the Chinese Spring reference and the successful
uniform enrichment of these samples despite this diversity.

Optimizing the capture protocol

Due to the large size of our capture probe sets we performed further optimization of the standard
NimbleGen capture protocol to focus our sequencing reads on target as much as possible. We again
used Chinese Spring for this analysis in a repeat of our initial quality control of the capture. Here, we
combined both the promoter and gene capture probe sets for analysis and increased the volume of
indexed blocking oligonucleotides used per capture (Methods). For this analysis we noted that 57% of
the mapped reads were on target i.e. aligned directly to the probe design. This is in line with what we
observed previously, with a range of 58.47-77.25% observed across the gene and promoter captures.
However, we noted that here, rather than enriching high and low confidence genes there was a bias
specifically towards high confidence genes with a 1.9-fold increase the sequence space aligning to
these genes compared to previous analyses. This allowed us to lower our original predictions of
sequencing requirements for adequate coverage of the high confidence gene set (Table 3).

Discussion

Sequence capture is rapidly becoming one of the main techniques employed by the wheat research
community for re-sequencing of the large complex wheat genome at reduced cost. It allows the
identification of previously uncharacterized genetic variation in the form of SNPs and indels in key
regions of interest that are typically gene-associated. To date, many studies have implemented either
exon or cDNA-based capture probes sets that have not been able to make use of the recent advances in
wheat genome sequencing and annotation. Furthermore, promoter and intronic sequence has largely
been missing from capture probe sets. Here, we present and validate a gene capture probe set, created
by integrating the current annotated wheat genome reference sequences to define a comprehensive
“gold-standard” gene design space for bread wheat. We have also developed a comprehensive putative promoter capture probe set for wheat that covers 2 Kb upstream of the annotated genes and will facilitate global investigation to fully characterize these regulatory regions. An updated version of the promoter capture probe set also includes gene 5’UTRs and so will capture regulatory elements within these regions.

We have demonstrated the use of the capture probe sets to analyze a diverse set of material including pure breeding lines that were generated by CIMMYT, Mexico. We studied the consistency of our data by correlating the sequence coverage depths between independent captures for multiple DNA samples. In addition, we successfully multiplex over twenty samples in a single capture with no drop out of capture efficiency despite the large size of our capture. From multiplexed captures, we can generate adequate coverage per sample for SNP calling resulting in a lower cost per sample for gene and promoter captures. This brings down the cost of re-sequencing the entirety of wheat’s gene associated space. Furthermore, it is likely that, since no reduced capture efficiency was observed with a 20-plex capture, more samples could be multiplexed without a detrimental effect. We have focused on generating a depth of coverage that is adequate for SNP calling, but the potential is there for skim sequencing samples. Skim sequencing generates low coverage for a larger number of lines to allow allele mining at reduced cost and this can be achieved using multiplexing or bulk segregant analysis that we have previously combined successfully with wheat exome capture (Gardiner et al., 2016).

This assay brings re-sequencing of the entirety of the high confidence gene-associated portion of wheat within the reach of the wheat community. Our multiplexing analysis defined more than 1.8 million positions across eight diverse samples, where each of the samples had a minimum of 5X coverage to allow comparison, and variation was observed between samples. This level of SNP information will allow refinement of key genetic regions linked to traits and enable researchers to pinpoint phenotype-inducing SNPs more precisely. Current methods such as Genotyping-by-sequencing (GBS) typically yield far fewer usable SNPs with <20,000 reported (Alipour et al., 2017; Poland et al., 2012). In the case of SNP arrays, the largest commonly reported array for wheat is 819,571 SNPs although previous
analyses reported only a small proportion of these SNPs to be polymorphic in analysed accessions (112,723 in a diverse panel similar to that used here) and no indels or rearrangements can be profiled using this methodology (Winfield et al., 2016). Finally, we predict that our optimization of the protocol for this large-scale capture using an island approach will allow us to sequence >90% of the gene-space of up to four wheat accessions on a single HiSeq4000 lane and twenty accessions on a NovaSeq S1 flow cell to a minimum of 5X (>80% at >10X). Our capture probe set design is publicly available and can also be ordered directly from NimbleGen via the Roche website (http://sequencing.roche.com/en/products-solutions/by-category/target-enrichment/shareddesigns.html).

Potential Implications

We have previously demonstrated the use of sequence capture to allow the study of both genotype and DNA methylation across targeted regions in wheat (Gardiner et al., 2015). Using bisulfite treatment after sequence capture, DNA methylation analyses can be performed using the same probe sets that are implemented for genotyping (Olohan et al., 2018). Moreover, we have demonstrated the use of sequence capture that was designed using the reference wheat variety Chinese Spring to analyze diverse landraces from the Watkins collection (Gardiner et al., 2018) and even highly divergent ancient wheat diploid progenitors with high efficiency (Gardiner et al., 2014; Grewal et al., 2017). As such, it is likely that the capture probe sets defined here could not only effectively enable re-sequencing of the high confidence genes of bread wheat lines, they could be used to further epigenetics research and research across a broader variety of wheat accessions than we tested here. The integration of more diverse wheat diploid and tetraploid progenitor material into the design will also allow broad applicability of the probe sets to varieties beyond bread wheat and also to synthetic wheat lines, constructed from diploid and tetraploid progenitors, that are becoming increasingly popular in the wheat community.
Methods

Developing the capture probe design space from its target regions (Figure 1)

Initially the target gene/promoter sequences from each wheat reference genome (TGAC-Chinese Spring, IWGSC-Chinese Spring, *Ae. tauschii* and Emmer) were processed independently of one another. For each gene/promoter set (Figure 1) gene/promoter sequences were aligned to themselves using BLASTN (version 2.2.17) with a maximum e-value of 1e-5, minimum sequence identity of 95% and minimum match length of 100 bp. Here, non-redundant sequences with no BLASTN alignments were taken forward directly (known as NR-sequences). Any full or partial sequences that aligned to other sequences in the gene/promoter set were extracted and BLASTclust was used to cluster these redundant sequences by similarity allowing the longest representative sequence per alignment group to be identified and combined with the NR-sequences to be taken forward. Furthermore, if parts of otherwise NR-sequences were redundant and removed but were then outputted from the BLASTclust alignment as a representative non-redundant sequence, these fragments were then re-integrated back into their sequence of origin. This generated a complete, re-assembled where possible, set of NR-sequences.

The complete set of NR-sequences was aligned to the wheat chloroplast/mitochondria genomes using BLASTN, with the same parameters used previously, and regions or sequences showing hits were removed. Dustmasker (version 1.0.0) was then implemented to annotate and low-complexity regions as lower case; later during probe design, probes with low-complexity regions of 40 bp or more were disregarded. Finally, NR-sequences less than 120 bp in length were removed from the sequence set.
This yielded individual probe set design spaces for TGAC-wheat, IWGSC-wheat, Emmer and Ae. Tauschii.

These sequence sets were then compared to identify species overlap using a BLASTN alignment with the same parameters used previously. Emmer and Ae. Tauschii design spaces were compared to the TGAC wheat design space and to each other and any unique Emmer/Ae. Tauschii sequences were combined with the TGAC wheat design space. The Chinese Spring IWGSC design space was then compared to this TGAC/Emmer/Tauschii design space and unique sequences were combined. Finally, fragments of less than 75 bp in length were removed to generate a TGAC/Emmer/Tauschii/IWGSC gene and promoter design space.

Exonic mature miRNA selection

Pre-miRNA sequences that were annotated using IWGSC Refseq1.v1 were mapped using BLASTN onto the chromosome sequences of the same genome in order to obtain their exact genomic locations. The pre-miRNA start and end alignment positions were compared with the boundaries of the exons in the annotated set of genes from IWGSC and TGAC using an in-house python script. After classification, mature miRNAs that were identified from pre-miRNAs whose start and end sites were both located in the same exonic region were directly called as exonic miRNAs. In the case of pre-miRNAs with start and end sites located on different regions, mature miRNA locations were taken into account by comparing their start and end sites with exons. If the whole mature miRNA sequence was located within an exon, they were also called as exonic miRNAs. These sequences were added to the promoter capture design space.

Characteristics of the exome capture kit

The final gene and promoter capture design space (785,914,746 bp) was processed by NimbleGen for probe design. The NimbleGen probe set manufacturing platform has a maximum capacity of 2.16 million probes that are typically 50-100 nucleotides in length with an average of 75 bp i.e. maximum actual probe space ~162 Mb. Typically probes overlap one another to most optimally cover the target
design space, however from previous analyses we observed that a single 120 bp probe can enrich up to 500 bp routinely with adequate sequencing coverage (Gardiner et al., 2015). As such, we requested that probes be tiled across our design space using an “island strategy” where probes are spaced at intervals, to most evenly cover the design-space. This resulted in probes being tiled across our design space at an average spacing of 120 bp from the 5’ start of a probe to the 5’ start of the next probe. The best probe within a 20 bp window of this start location was selected to minimize low complexity sequence in probes and similarity to regions of the genome that were not in our target space. Low complexity sequence had been previously marked in lower case. Similarity of probes to non-target regions was defined using BLASTN alignment to the full wheat reference genome sequence alongside the capture design space.

Sample library preparation and in solution captures

Genomic DNA was extracted from Chinese Spring and the eight CIMMYT lines (21-day seedling leaf tissue) using the Qiagen DNeasy plant mini kit. For Chinese Spring, 1μg aliquots of the genomic DNA, each in a total volume of 55μl, were sheared for 2×60s using a Covaris S2 focused-ultrasonicator (duty cycle 10%, intensity 5 and 200 cycles per burst using frequency sweeping). For the eight CIMMYT samples, 1μg of each genomic DNA sample, in a total volume of 55 μl, was sheared for 1×60s using a Covaris S2 focused-ultrasonicator (duty cycle 5%, intensity 5 and 200 cycles per burst using frequency sweeping). The fragmented DNA was directly used as input for library preparation. The NimbleGen SeqCap EZ Library SR User’s Guide (Version 5.1, September 2015) was followed for all steps with the modifications listed below.

The dual size selection of the pre-capture libraries was adjusted to account for the larger shearing sizes. For Chinese Spring the volumes were 45 μl and 20 μl for right and left size selection, respectively. For the CIMMYT samples the volumes were 40 μl and 20 μl. Five cycles of amplification were used for the pre-capture PCR. The capture input for the Chinese Spring captures was 2 μg DNA and 1.4 μg for the CIMMYT captures. A higher input was used for Chinese Spring to increase final library yield, but it was subsequently found that 1.4μg was sufficient. Since the input DNA was derived from wheat, 1μl...
of Developer Reagent Plant Capture Enhancer (NimbleGen) was added per 100 ng input in the
hybridisation step instead of COT human DNA. The SeqCap HE Universal Oligo (NimbleGen) and
SeqCap HE Index Oligo pool (NimbleGen) were added separately and the volume of SeqCap HE
Universal Oligo was adjusted to 3.4 μl and 2.8 μl for the Chinese Spring and CIMMYT captures,
respectively. This increase in volume was to account for the higher DNA inputs. The volume of
SeqCap HE Index Oligo pool added was kept at 1 μl. Finally, for the final post-capture PCR, 14 cycles
were used for the Chinese Spring captures and 12 cycles for the CIMMYT captures. The cycle number
was reduced to 12 cycles as this still produced a high enough yield sequencing.

Quality control for the promoter and gene capture

An initial assessment of library yield was made using Qubit High Sensitivity double stranded DNA
assays (Invitrogen). Fragment size distribution was determined from Bioanalyzer High Sensitivity
DNA (Agilent) data. Prior to sequencing the libraries were quantified by qPCR, using an Illumina
Library Quantification Kit (KAPA) on an Applied Biosystems StepOne system.

To assist in the determination of enrichment efficiency post-capture, we designed qPCR primers that
cover probe targets. These are as follows for the gene capture; forward
“CCGAGCCTCATAGTCAGGAG” and reverse “TGGGAAAACTGATCCAGTC”. For the
promoter capture probe set the recommended primers are as follows; forward
“CTGTTTTGTGAGCGCGTC” and reverse “TGGCTTCGCAACTGAAAA”. The polymerase
master mix from the Illumina Quantification Kit and StepOne system were used to perform the
enrichment qPCR. The qPCR reaction conditions were as follows, 95 °C 10 minutes and forty cycles of
95 °C for 10 seconds, 72 °C for 30 seconds, and 60 °C for 30 seconds. The qPCR was performed on
aliquots of the capture library pre and post-capture; after first diluting the aliquots to the same ng/μl
concentration. The ΔCT between the pre- and post-capture of successful gene capture ranged from 4 to
5. For promoter captures the ΔCT ranged from 3 to 4.

Illumina DNA sequencing of gene and promoter captures
For the Chinese Spring sample, four technical replicate barcoded libraries were pooled for the gene capture and a further four were pooled for the promoter capture. The final two capture libraries were pooled using a ratio of 33%:66% promoter-to-gene to reflect the different size targets of the probe sets. This pool was then sequenced on a single HiSeq4000 lane. This generated 2x150 bp reads. For the eight CIMMYT lines, the same barcoded libraries were used for individual gene and promoter captures, therefore these captures were sequenced separately across multiple HiSeq4000 lanes. The read data produced was equivalent to 1½ and 2½ HiSeq4000 lanes for the promoter and gene capture, respectively.

Separate sequence capture experiments were conducted at KSU Integrated Genomics Facility using the promoter-2 capture assays following the same capture protocol with the following modifications. The capture reaction was performed on a set of 22 pooled samples barcoded using dual indexes. These samples were pooled into a larger pool of 96 barcoded sequence capture libraries and sequenced using 2 x 150 bp sequencing run on the S1 flow-cell of NovaSeq 6000 system.

Optimizing the capture protocol

Here the standard capture protocol described above is followed, but with the following modifications: the volume of SeqCap HE index oligo pool added to the hybridisation reaction was increased to 1.2µl for 1.4µg input captures and the number of post PCR amplification cycles was reduced to 10, but 8 should also yield sufficient final library for sequencing. Here, a combined gene and promoter probe set was used for the captures. An aliquot of the promoter-1 probe set was dried down using a vacuum concentrator at 60˚C. This was then resuspended by pipetting in two aliquots of the gene capture probe set. The combined probe set was then divided into two equal volume aliquots. Each aliquot could be used for a separate capture. The promoter-2 probe set can also be used, but will result in increased enrichment of the 5’UTR regions due to probes for these regions being present in the gene and promoter-2 probe sets.

Initial sequence data analysis
Mapping analyses of sequencing reads were carried out using BWAmem (version 0.7.10) (Li and Durbin, 2009) and HISAT2 (version 2.1.0) (Kim et al., 2015). Paired-end reads were mapped and only unique best mapping hits were taken forward. Mapping results were processed using SAMtools (version 0.1.18) (Li et al., 2009) and any non-uniquely mapping reads, unmapped reads, poor quality reads (< Q10) and duplicate reads were removed. SNP calling was carried out using the GATK Unified genotyper (after Indel realignment), which was used with a minimum quality of 50 and filtered using standard GATK recommended parameters, a minimum coverage of 5X and only homozygous SNPs were selected as defined by GATK (version 3.5.0) i.e. allele frequency in >80% of the sequencing reads (McKenna et al., 2010). Furthermore, if three or more SNPs occurred within a 10 bp window these were filtered out from the calls.

Availability of supporting data and materials

The sequencing data sets supporting the results of this article are available in the European Nucleotide Archive repository, study PRJEB27620. The final design space for the capture probes sets and the locations of the capture probes on this design space are available from the Grassroots Data Repository (http://opendata.earlham.ac.uk/wheat/under_license/toronto/Gardiner_2018-07-04_Wheat-gene-promoter-capture/). The target locations of the capture probe sets on the Chinese Spring IWGSC RefSeqv1 i.e. the high confidence gene and promoter sequences, are detailed in supporting files 2, 3 and 4. The NimbleGen order numbers for the probe sets are as follows; Gene Capture 4000026820, Promoter Capture v1 4000030160 and Promoter Capture v2 4000032530.

Supporting data

File 1: Supplementary_data.docx
Includes Supplementary Figures S1-S4, Supplementary Tables S1-S5

File 2: Gene-capture-HC-targets.bed

File 3: Prom-capture-HC-targets.bed
File 4: Prom-capture-HC+5UTR-targets.bed

Declarations

List of abbreviations

CIMMYT International Maize and Wheat Improvement Center (Centro Internacional de Mejoramiento de Maíz y Trigo)
IWGSC International Wheat Genome Sequencing Consortium
miRNA Micro RNA
NR Non-redundant
PCR Polymerase Chain Reaction
qPCR Quantitative Polymerase Chain Reaction
SNP Single Nucleotide Polymorphism
TGAC The Genome Analysis Centre (now known as the Earlham Institute)
TSS Transcription Start Site
UTR Untranslated Region

Consent for publication
All plants used in this study were grown in controlled growth chambers complying with Norwich Research Park guidelines.

Competing interests
The author(s) declare that they have no competing interests

Funding
This project was supported by the BBSRC via an ERA-CAPS grant BB/N005104/1, BB/N005155/1 (L.G, A.H) and BBSRC Designing Future Wheat BB/P016855/1 (A.H). Sequencing of the CIMMYT
accessions was supported by BBS/OS/NW/000017 (T.B). US group efforts were supported by the National Research Initiative Competitive Grants 2017-67007-25939 (Wheat-CAP) and 2016-67013-24473 from the USDA National Institute of Food and Agriculture.

Authors’ contributions
The capture probe set design, Chinese Spring and CIMMYT line bioinformatic validation and manuscript preparation was performed by LG. The project was designed, planned and conducted by LG and AH. Plant growth, DNA extractions, library prep and sequence capture were performed by TB with assistance from LC. TR assisted with capture probe design. The CIMMYT material was contributed by S.S. E.A. and H.B. contributed to the promoter capture assay design. A.A. conducted sequence capture and NGS sequencing, K.J. contributed to analysing promoter capture data for the 22-plex test. All authors read and approved the final manuscript.

Acknowledgements
We thank Genomic Pipelines at the Earlham Institute for DNA sequence generation and Cristobal Uauy for his advice regarding capture design. We would also like to thank Xingdong Bian, Simon Tyrrell and Robert Davey for their help adding our sequence data onto the Grassroots Data Repository.

References
Alipour H, Bhamta MR, Mohammadi V, Peyghambari SA, Bai G and Zhang G. 2017. Genotyping-by-Sequencing (GBS) Revealed Molecular Genetic Diversity of Iranian Wheat Landraces and Cultivars. Front. Plant Sci. 8; 1293

Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K et al. 2017. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357(6346): 93-97
Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA and
Johnson EA. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers, *PLoS ONE* 3:e3376

Bolon Y T, Haun W J, Xu W W, Grant D, Stacey M G et al. 2011. Phenotypic and genomic analyses of
a fast neutron mutant population resource in soybean. *Plant Physiol* **156**: 240–253

Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M,
Kerhornou A, Bolser D et al. 2012. Analysis of the bread wheat genome using whole-genome shotgun
sequencing. *Nature* **491**, 705–710

Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-
Guedira GLB, Akhunova A et al. 2013 Genome-wide comparative diversity uncovers multiple targets
of selection for improvement in hexaploid wheat landraces and cultivars. *PNAS*, **110**(20): 8057-8062

Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, Borril P, Kettleborough
G, Heavens D, Chapman H et al. 2017. An improved assembly and annotation of the allohexaploid
wheat genome identifies complete families of agronomic genes and provides genomic evidence for
chromosomal translocations, *Genome Research* **27**(5):885-896

De Wit P, Paspeni MH and Palubi SR. 2015. SNP genotyping and population genomics from expressed
sequences – current advances and future possibilities, *Mol Ecol*, 24:2310–2323.

Dubcovsky J and Dvorak J. 2007. Genome plasticity a key factor in the success of polyploid wheat
under domestication. *Science* **316**, 1862–1866

Dvorak J, Akhunov ED, Akhunov AR, Deal KR and Luo MC. 2006. Molecular characterization of a
diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild
tetraploid wheat to hexaploid wheat, *Mol. Biol. Evol.* **23**, 1386–1396

Fromer M, Moran J, Chambert K, Banks E, Bergen S et al. 2012. Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. *Am J Hum Genet.* **91**(4): 597-607

Gardiner, LJ., Gawronski, P., Olohan, L., Schnurbusch, T., Hall, N. and Hall, A., 2014. Using genic sequence capture in combination with a syntenic pseudo genome to map a deletion mutant in a wheat species. *The Plant Journal*, **80**(5), 895-904.

Gardiner LJ, Quinton-Tulloch M, Olohan L, Price J, Hall N and Hall A. 2015. A genome-wide survey of DNA methylation in hexaploid wheat. *Genome Biology* **16**: 273

Gardiner LJ, Bansept-Basler P, Olohan L, Joynson R, Brenchley R, Hall N, O’Sullivan DM and Hall A. 2016. Mapping-by-sequencing in complex polyploid genomes using genic sequence capture: a case study to map yellow rust resistance in hexaploid wheat. *The Plant Journal* **87**(4), 403-419

Gardiner LJ, Joynson R, Omony J, Rusholme-Pilcher R, Olohan L, Lang D, Bai C, Hawkesford M, Salt D, Spannagl M et al. 2018. Hidden variation in polyploid wheat drives local adaptation. bioRxiv: https://doi.org/10.1101/217828

Grewal S, Gardiner L, Ndreca B, Knight E, Moore G, King IP and King J. 2017. Comparative Mapping and Targeted-Capture Sequencing of the Gametocidal Loci in Aegilops sharonensis. *Plant Genome* 10. doi:10.3835/plantgenome2016.09.0090

Henry I M, Nagalakshmi U, Lieberman M, Ngo K J, Krasileva K V et al. 2014. Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. *Plant Cell* **26**: 1382–1397
IWGSC (The International Wheat Genome Sequencing Consortium). 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. *Science* **361**(6403): eaar7191

Jordan K, Wang S, Lun Y, Gardiner L, MacLachlan R, Hucl P, Wiebe K, Wong D, Forrest K, IWGSC et al. 2015. A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. *Genome Biol.* **16**, 48.

Kim D, Langmead B and Salzberg SL. 2015 HISAT: a fast spliced aligner with low memory requirements. *Nat. Methods*, **12**, 357–60.

Krasileva K, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F, Clissold L, Simmonds J, Ramirez-Gonzalez RH, Wang X, Borril P et al. 2017. Uncovering hidden variation in polyploid wheat. *PNAS*, **114** (6) E913-E921; doi:10.1073/pnas.1619268114

Krumm N, Sudmant P, Ko A, O’Roak B, Malig M et al. 2012. Copy number variation detection and genotyping from exome sequence data. *Genome Research* **22**(8): 1525-32

Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, Huo N, Zhu T, Wang L, Wang Y, McGuire PE et al. 2017. Genome sequence of the progenitor of the wheat D genome *Aegilops tauschii*, *Nature* **551**: 498-502

Li H and Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* **25**, 1754–1760

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R and 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078–2079
Li X, Zhu J, Hu F, Ge S, Ye M, Xiang H, Zhang G, Zheng X, Zhang H, Zhang S et al. 2012. Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. *BMC Genomics* **13**, 300

Mascher M, Richmond T, Gerhardt D, Himmelbach A, Clissold L. et al. 2013. Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. *Plant J.* **76**: 494–505

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M and DePristo MA. 2010. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res* **20**, 1297–1303

Poland J, Brown P, Sorrells M and Jannink J. 2012. Development of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-by-Sequencing Approach. *PLOS one* **7**(2): e32253

Robert C, Fuentes-Utrilla P, Troup K, Loecherbach J, Turner F, et al. 2014. Design and development of exome capture sequencing for the domestic pig (*Sus scrofa*). *BMC Genomics* **15**: 9.

Singh S, Vikram P, Sehgal D, Burgueno J, Sharma A et al. 2018. Harnessing genetic potential of wheat germplasm banks that impact-orientated-prebreeding for future food and nutritional security. *Sci. Rep.* **8**: 12527

Warr A, Robert C, Hume D, Archibald A, Deeb N and Watson M. 2015. Exome Sequencing: Current and Future Perspectives. *G3* **5**(8) , 1543-1550

Wicker T, Gundlach H, Spannagl M, Uaay C, Borrill P, Ramirez-Gonzalez R, De Oliveira R, IWGSC, Mayer K, Paux E and Choulet F. 2018. Impact of transposable elements on genome structure and evolution in bread wheat. *Genome Biology* **19**:103
Winfield MO, Allen AM, Burridge AJ, Barker GLA, Benbow H et al. 2016. High density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. *Plant Biotechnol J.* **14**(5): 1195-1206

Winfield MO, Allen AM, Wilkinson PA, Burridge AJ, Barker GLA, Coghill J, Waterfall C, Wingen LU, Griffiths S and Edwards KJ. 2017. High density genotyping of the A.E. Watkins Collection of hexaploid landraces identifies a large molecular diversity compared to elite bread wheat, *Plant Biotechnology Journal,* **16**(1): 165-175

Figure Legends

Figure 1. Design of the wheat gene and promoter capture probe sets. Processing of the TGAC Chinese Spring, IWGSC Chinese Spring, Emmer and Ae. tauschii reference sets of gene/promoter sequences to generate a final design space for the wheat gold standard promoter/gene capture probe set that is; non-redundant and high complexity (Methods).

Figure 2. Highlighting coverage of the MYB transcription factor gene triplet using an island probe design approach. The depth of sequencing coverage is shown per base pair across three chromosomal intervals corresponding to a trio of homoeologous genes for the Myb transcription factor (TraesCS7A01G179900 on chr7A at 134491245-134492378 bp, TraesCS7B01G085100 on chr7B at 97192168-97193300 bp and TraesCS7D01G181400 on chr7D at 135357355-135358494 bp).

Figure 3. Summary statistics for the 8-plex gene and promoter capture tests. We performed read alignments for the eight CIMMYT samples to the full Chinese Spring genome. For the (a) gene capture and (b) promoter capture probe sets, from left to right, we show box and whisker plots for: the percentage of sequencing reads per sample that were identified as duplicates, the percentage of reads...
mapping uniquely to the whole genome reference sequence, the percentage of reads defined as ‘on-target’ i.e. align to the capture probe design space, the mean depth of coverage per sample and the coefficient of variation per sample.

Tables

Table 1. Probe set designs and predicted performance metrics.

Probe Set	Design Space (bp)-Ns removed	Probe Space (bp)	% design space covered by probes	Estimated design space coverage if 75 bp probe captures 200 bp (bp)	% Estimated design space coverage if 75 bp probe captures 200 bp
Promoter	277,010,676	154,920,447	55.93	249,749,794	90.16
Promoter-2	282,328,008	160,237,779	56.8	247,535,534	87.68
Gene	508,560,490	161,796,494	31.81	465,988,638	91.63

Detailing the size of the promoter/gene capture design space and probe space. Estimations of the percentage coverage of the design space after sequencing if each probe captures DNA sequencing library fragments of 200 bp.
Table 2. Coverage statistics for Chinese Spring.

Probe design space

Reference	Reference size (bp)	% Reads aligned uniquely post remove duplicates	% Reads duplicates	Number of ref contigs	Number of ref contigs mapped	% ref contigs mapped	Average depth of coverage per ref contig	Bp mapped at >=1X (% reference covered)	Bp mapped at >=5X (% reference covered)	Bp mapped at >=10X (% reference covered)
TGAC gene targets	440,066,424	71.9	5.37	114,247	112,275	98.27	73.83	426,719,705 (96.97%)	419,176,417 (95.25%)	400,456,907 (91.00%)
TGAC whole genome	13,427,354,022	89.9	3.34	735,943	733,488	99.67	5.95	10,258,685,302 (97.4%*)	2,361,028,858 (93.8%*)	996,680,117 (87.6%*)

Promoter capture: Chinese Spring 232,437,854 Reads

Reference	Reference size (bp)	% Reads aligned uniquely post remove duplicates	% Reads duplicates	Number of ref contigs	Number of ref contigs mapped	% ref contigs mapped	Average depth of coverage per ref contig	Bp mapped at >=1X (% reference covered)	Bp mapped at >=5X (% reference covered)	Bp mapped at >=10X (% reference covered)
Probe design space	232,172,120	71.9	4.32	249,698	210,176	84.17	91.39	215,230,363 (92.7%)	208,842,502 (89.8%)	194,378,612 (83.7%)
TGAC promoter targets	219,982,922	68.1	4.64	112,999	112,600	99.65	97.51	213,924,917 (97.25%)	207,575,996 (94.36%)	194,868,834 (88.58%)
TGAC whole genome	13,427,354,022	90.4	3.02	735,943	720,291	97.87	3.83	7,746,539,630 (95.4%*)	1,221,249,873 (87.2%*)	620,781,923 (78.2%*)

Sequencing reads from the gene and promoter captures were individually aligned to their respective design spaces, targets and the full TGAC wheat genome assembly. For alignments to the probe design...
space percentages are shown excluding non-Chinese Spring based sequence. For alignments to the
gene and promoter targets percentages are shown using non-redundant sequence. For alignments to the
full wheat genome, metrics are shown for coverage of: high confidence genes (Gene HC\(^a\)), high
confidence genes with 2000 bp upstream and downstream (Gene HC+- 2000 bp\(^b\)), high and low
confidence genes (Gene HC LC\(^c\)), high and low confidence genes with 2000 bp upstream and
downstream (Gene HC LC +- 2000 bp\(^d\)), high confidence promoter sequences (Prom HC\(^e\)), high
confidence promoters with 2000 bp upstream and downstream (Prom HC+- 2000 bp\(^f\)), high and low
confidence promoters (Prom HC LC\(^g\)), high and low confidence promoters with 2000 bp upstream and
downstream (Prom HC LC +- 2000 bp\(^h\)), high confidence promoters with 1000 bp downstream (Prom
HC +1000DS\(^i\)) and finally high and low confidence promoters with 1000 bp downstream (Prom HC
LC +1000 bp DS\(^j\)).
Table 3. Sequencing recommendations for gene and promoter capture probe sets.

Capture Probe set	Approximate Read Number Required with standard protocol	Approximate Read Number Required with optimized protocol	Expected % coverage of target (>=1X)	Expected % coverage of target (>=5X)	Expected % coverage of target (>=10X)	Average coverage across target region*
Gene	100,000,000	55,000,000	94.3	69.8	35.4	9.05
Gene	200,000,000	105,000,000	96.4	86.9	68.3	17.13
Gene	300,000,000	160,000,000	97.1	91.8	81.6	25.42
Gene	400,000,000	210,000,000	97.4	93.8	87.6	34.06
Promoter	50,000,000	30,000,000	87.3	43.4	9.9	5.27
Promoter	100,000,000	55,000,000	93.2	78.2	52.6	12.05
Promoter	150,000,000	80,000,000	94.2	83.3	66.3	15.82
Promoter	200,000,000	105,000,000	95.4	87.2	78.2	21.59

Projected coverage of gene and promoter capture target sequence (high confidence gene and promoter sequences respectively) with varying numbers of sequencing reads. Also shown is the predicted read number requirements to achieve the same coverage using our optimized capture protocol (numbers rounded to the nearest 5 million reads). Read numbers are for total number of paired-end reads and should be halved to get the number of read clusters. *Target region is defined as all gene or promoter sequences that the probe sets are tiled across i.e. including padding between probes.
1. **4 Reference sequences processed individually**

 - Extract genes + 2000 bp upstream
 - Enriched for annotated genes

 - 671 Mb
 - 168 Mb
 - 382 Mb
 - 561 Mb
 - 114,047 genes
 - 110,788 genes

2. **Self alignment to collapse redundancy**

 - Non-redundant sections taken to next step directly
 - Redundant sequence sections processed:
 - BLASTclust used to cluster sequences
 - Longest representative single sequence taken to next step
 - 607 Mb
 - 147 Mb
 - 328 Mb
 - 490 Mb

3. **Alignment against TREP/Chloroplast/Mitochondria to remove hits**

4. **Dustmasker to mask low complexity and remove short sequences < 120 bp**

5. **Alignment to identify reference overlap:**
 - Emmer v TGAC
 - Ae. tauschii v TGAC
 - Emmer v Ae. tauschii
 - IWGSC v all

 - TGAC sequence used as base for design
 - Sequence unique to Emmer/Ae. tauschii v TGAC is added: 128 Mb
 - Sequence unique to IWGSC v TGAC/Emmer/Ae. tauschii is added: 52 Mb

6. **Combine TGAC, Emmer, Ae. tauschii and IWGSC**

7. **Final Design space:**
 - ~786 Mb
 - 277 Mb promoter/509 Mb genic

Legend

- **TGAC gene set:** X
- **IWGSC gene set:** X
- **Emmer gene set:** X
- **Ae. tauschii gene set:** X

Alignment similarity required:
- ID 95%
- Length >= 100bp
- E-Value <= 1e-5

Includes 56,648,010 bp of low complexity sequence (marked as lower case)
Figure 2

- **20x coverage base line**
- **Probe sequence**
- **Data point sub-genome A**
- **Data point sub-genome B**
- **Data point sub-genome D**
Click here to access/download

Supplementary Material
Gene-capture-HC-targets.bed
Click here to access/download

Supplementary Material
Prom-capture-HC-targets.bed
File 4: Promoter capture HC+5UTR targets

Click here to access/download
Supplementary Material
Prom-capture-HC+5UTR-targets.bed
Click here to access/download

Supplementary Material
Wheat_gene-prom_capture_paper_to-go-track-changes.docx
Dear editor,

RE: GIGA-D-18-00253, Integrating genomic resources to present full gene and promoter capture probe sets for bread wheat. Laura-Jayne Gardiner; Thomas Brabbs; Alina Akhunova; Katherine Jordan; Hikmet Budak; Todd Richmond; Sukhwinder Singh; Leah Catchpole; Eduard Akhunov; Anthony Hall

We are submitting a revised version of our to Gigascience as we feel that we have been able to address all of the reviewer and editorial comments. We would like to thank you very much for the time and effort that has gone into reviewing this paper.

We think our gene and promoter capture probe sets are a gold standard resource that is of broad interest to the wheat research and breeding community. Furthermore, the methods to develop the probe set are of interest to the crop research community more generally, where genomes can be complex, similarly to wheat, and whole genome re-sequencing is prohibitively expensive. The work is timely, integrating and comparing the recent advances in wheat genomic to develop and validate sequence capture probe sets that will allow detailed characterization of the largely unexplored regulatory regions of wheat. These assays bring re-sequencing of the high confidence gene-associated portion of wheat within the reach of the wheat community. This level of SNP information will allow refinement of key genetic regions linked to traits and enable researchers to pinpoint phenotype-inducing SNPs more precisely. This opens the door for a whole series of important biological questions about domestication and adaptation of crops. We see this becoming a popular tool for the community and expect the manuscript to be highly cited. It’s clear that the reviewers recognize this.

We have been carefully through the paper, breaking down some of the complexity and highlighting the key points. We are submitting a revised copy of our original manuscript and we have listed the editor and reviewer comments below stating how we have addressed each comment. We also have attached a copy of the amended version of our manuscript with “track changes” showing to allow easier identification of our specific amendments. We now have a robust paper describing the gene and promoter capture probe sets. Furthermore, the technology described will underpin research exploring an agriculturally important and complex polyploid genome where whole genome sequencing is prohibitively expensive.

Yours Sincerely

Prof. Anthony Hall (Head of Plant Genomics)
Editorial comments:

The presentation of this manuscript was not very clearly organized and can be very confusing to read through specifically with so many different numbers (without too much interesting meanings) in the manuscript

Some specific comments are below:

1. Background didn’t introduce the exome-seq applications in other species, but it introduced only the technology and a large amount of the summary of the current research, which should be in the abstract. Thus the background of this research was not comprehensively presented in the background. We agree that in our focus on wheat we have not mentioned the extensive use of exome-seq in other species. Firstly, as suggested we have added text to the abstract to summarize the limitations of the gene capture probe sets used in current research. We have then added text to the background introducing the use of exome-seq in a wide range of organisms before we move on to talk about wheat.

2. The organization of the first three sections in the ANALYSIS (page 5-7) was very confusing. The design space recruiting should be described first, then the capture probe sets (number and distribution) should be clearly described, then followed by the description of target sequences.

3. When read the target sequencing part (page 5), the questions are: Where did the target sequences come from? (no description) We have re-worked this section to address the two points above. We describe the design space first, as suggested, and detail where the relevant target sequences come from more clearly. We think that the confusion has come from us processing the design space sequences significantly prior to probe design (integrating multiple references, collapsing homoeologues etc) so these steps have now been detailed more clearly followed by the description of probe design themselves and finally target sequences. Furthermore, part of this issue links to queries 5 & 6 below also where we have re-worked figure 1 adding in numbered steps to further aid our clarification of methodology.

4. When read the target sequencing part (page 5), the questions are (continued...): How many samples were used for the capture sequencing? How many reads were generated in total?
 We think that here we have not been clear that the initial stats to predict what coverage we would get using the probe set (Table 1) were determined prior to sequencing i.e. bioinformatically, so we have clarified this in the text: “Probes in solution bind to their complementary sequence within a DNA library fragment that has typically been sheared to 200-300bp, therefore we bioinformatically estimated design space coverage of the probe set using shearing sizes for our simulated sequencing library of 200 bp (Methods). From this analysis we anticipate upwards of 90% coverage of both the promoter and gene capture design-spaces with these capture probe sets.”
 Further on in the text we only stated sample and read numbers for Chinese Spring in later sections so we have now clarified this in the text “We performed promoter and gene captures separately using Chinese Spring DNA from 21-day seedling leaf tissue and sequenced on the HiSeq4000 (Methods). Four technical replicate barcoded libraries were pooled for the gene capture and a further four were pooled for the promoter capture and here all four replicates were aligned as a single pool of reads to assess coverage (426,725,926 reads from gene and 232,437,854 from the promoter capture).”

5. Key information in the table and figures should be mentioned in the ms text with corresponding table/figure cited. A lot of critical information were only in the tables or figures, and not described in the text. It was not convenient to slip the pages back and forth between the text and tables to decipher the meanings of the sentences in the text. For example, the
probe design space should be clearly described in text. However, it was mostly missing in text and readers have to read Figure 1 to get the information.

6. The four sequence target sources had identified 607, 147, 328, and 490 Mb unique space (after 5 steps) (Figure 1). Why after combination, the final design space is only 786 Mb? What cause this space reduction? Suggest to number the steps on Figure 1. Clarify all the discrepancies between all the numbers presented at different places (back and forth, text and tables/figures). Another example: In Figure 1, the final design space is 729Mb. However, in the text, it stated that “The final TGAC/Emmer/Tauschii/IWGSC gene and promoter design space was 785,914,746 bp,… page 6) . Inconsistent numbers were presented between the text and Figure 1.

We have amended Figure 1 and numbered the steps as suggested. We have now been through the text clearly stating what each step comprises. We had perhaps not been clear in the main text, only in the methods, that we used the 607 Mb as our backbone for the design and only the sequence from the 147, 328 and 490 Mb sets that had no clear homology in the 607 Mb was included. Therefore the other Chinese Spring annotation plus two progenitors added the extra space to the 607 Mb to generate 786 Mb. This should now be clearly indicated in the text and figure. We have also removed what was step 8 from figure 1; in step 7 we said we had a design space of 786 Mb then we went on to say in step 8 that this 786 was comprised of some low complexity sequence which after removal left 729Mb. This is unnecessarily confusing, particularly since we don’t remove low complexity sequence we simply mark it for future reference, as such, we have removed step 8 and added text next to step 7 simply stating that 56.6Mbp of the 786Mb final design space was marked as low complexity-this removes the additional unnecessary step and confusion. This information is also stated in the manuscript to ease the inconvenience of the reader having to go back and forth to the figure.

• High coverage was defined as more than 10X the average maximum depth of coverage for a region. (page 7) Why the high coverage was defined like this? 10x is not high at all for sequencing variant calling. Page 9. “Coverage is consistent across the vast majority of the gene and promoter space with baseline averages of 34.7X and 21.0X coverage”. “Overall both captures perform well, we can typically gain >5X coverage across >90% of their intended targets and on average >20X coverage.” Should these type of high coverage been removed?

We have amended the text as our statement here may have been misleading-we do not mean 10X coverage but “coverage of more than 10 times the average maximum depth of coverage for a region.” This is a considerably higher figure as you can imagine and since we use10X to describe 10X coverage this statement may have previously added confusion.

• On page 5. “The 2 Kb distance was based on the median distance between the TSS and the first transposon, 1.52 Kb to allow a high likelihood of full promoter sequence capture (Wicker et al., 2018).” What is the first transposon? Here we describe the study by Wicker et al study where they define promoter sequence for wheat also as 2 Kb upstream of the TSS during their analysis of transposable elements. We added a little more background as to why they chose this distance specifically but this may be unnecessarily confusing things. We have amended the text to say “Promoter sequence was defined as per previous studies as 2000 bp upstream of the transcription start site (TSS) of the aforementioned high confidence genes as per Wicker et al., 2018.” We have made sure to clearly state the study where further full description is available.

• Page 7, the uniquely alignment rate is 77.9% and the duplicated rate is 4.2%, then what happened to the unaligned reads? What is the overall alignment rate?

The overall alignment rate is detailed in Table S2 when we detail the 4 technical replicate libraries separately and we have added the overall % here for completeness: “The overall alignment rate when aligning to the full wheat reference genome was 99.8%.” We focus only on the uniquely mapped reads downstream for confident variant calling.
“We saw 94.6% and 92.8% of the design space with coverage at 1X and 5X or more” at page 7 and then “We observe coverage across 97.4% and 93.8% of the high confidence genic regions at 1X and 5X or more respectively” on page 8. The difference of the numbers may come from the different set of genes. This should be made clear or presented side by side in description. Or to avoid confusion, just mention one set of genes you are using for the evaluation if there is no points for the comparison.

This observed difference is due to a different mapping reference. We have clarified the purpose of this additional examination of the coverage of the high confidence gene targets. In the first instance we “Firstly, we aligned promoter and gene captured reads to their respective probe design spaces to determine enrichment efficiency in general i.e. how much of the sequencing data was likely to have been pulled down by the probes (Table 2).” Here we see the 94.6% and 92.8% coverage at 1X and 5X or more.

Then we say “Finally, to assess off-target sequencing carryover and to ensure unbiased sequencing alignment, we looked at read alignments to the full Chinese Spring genome (Table 2). Aligning reads to the full genome reference sequence is preferential to a subset e.g. the capture target space. This ensures correct alignment of off-target reads from sequence capture that could otherwise be incorrectly aligned to their ‘best fit’ location in the capture target space. Here we observe coverage across 97.4% and 93.8% of the high confidence genic regions, our targets, at 1X and 5X or more. This exceeds statistics from alignment to the design space potentially due to the inclusion of additional read pairs that traverse the TSS or gene end.”

Page 10. “There is also the possibility that this may be a result of our high level "over-sequencing" of the libraries here”. What is considered as over-sequencing? What’s the evidence there to support this deduction? 1.1% increase of on-target rate due to the reduced amount of sequence is significant enough?

We agree with this statement and have amended the text as such. It is much more likely that non-enriched carryover contamination can be further limited with washes during the capture protocol rather than that over-sequencing is to blame, particularly with the limited difference it made (1.1%) with a more than 4 fold change in read depth. We now state: “There is also the possibility that this may be a result of “over-sequencing” of the libraries and that as such the off-target sequence will become less prominent at lower sequencing depths; however, we only see an increase in on-target sequence of 1.1% as we decrease read coverage from 440 to 100 million sequencing reads for the gene capture.”

Page 10 “Using barcodes to label individual samples in the multiplexed pool” for single capture reaction is not new and have been conducted with other species. The important step is the equal molar pooling of the library samples from same species for an even sequencing distribution according to each sample. Is it worthy to describe it in a whole section?

We understand the editors concerns here, as such we have minimized the length of this section and clarified in the text why this is an important step. We were initially informed by NimbleGen that they would not expect such a large probe set with island strategy design to allow multiplexing-so it was key to try this and establish if it could work efficiently. We state; “It is important to determine if such a large capture probe set with the “island strategy” probe design will yield uniform coverage of multiple samples. Firstly, we multiplexed eight different samples per gene and promoter capture to compare performance metrics with our previous single sample capture.....” This section is now shorter and also validates our promoter-2 design.

Reviewer 1 report:

Due to its huge genome size, high repeat content and allohexaploid genome structure, it is expensive to re-sequence the whole genome of bread wheat, therefore, development of an
affordable genotyping method is valuable for wheat molecular improvement and related studies. In this manuscript, the authors used sequence capture and developed two wheat NimbleGen SeqCap EZ probe sets. As the sequencing fragments targeted mostly annotated genes and putative promoter regions, higher coverage for specific genomic regions and accurate mapping can be reached with lower price. Overall, this MS provides some interesting data and their probe sets can serve important resource for wheat genotyping. However, I feel that this MS still need to be modified and some missing information should be included, please see my comments below:

We thank reviewer 1 for their comments and have gone through their points with responses one by one below.

1) As the authors mentioned, the wheat genome is highly repetitive and harbors various repeats including transposons. During the development of gene probe sets, they extracted annotated gene sequences and conducted BLASTN searches against themselves as well as the chloroplast and mitochondria sequences to remove the redundant sequences. My question is that why the authors didn’t search against the whole wheat genome sequences? I guess some genic sequences may be unique with their searches, but highly identical hits may be found in other regions. I would ask the authors to conduct BLASTN searches against the whole genome with their probe sequences to identify the gene sequences that shows significant sequence similarity to other sequences located in intergenic or heterochromatic regions. This is a good observation and something that we have not made clear in the text so have now amended. This investigation that the reviewer suggests is something that we did perform because probes binding to off target sequences in, for example, repetitive regions, could result in excessive off target sequence. Our target space development was focused on removal of redundancy from within the high confidence gene set so as to only have, for example, one probe for three homoeologs. This was due to our restriction on the size of the capture probe set that it was practical to use. Our priority at this stage was to include all gene sequences where possible though so here we did not BLAST against the whole genome to remove redundancy. The BLAST against the whole genome was performed later during the actual probe placement across our design spaces; each probe was compared to the wheat genome and if it had multiple hits outside of our intended space then it would be discarded and/or replaced with the closest superior probe for the region if available. This way we pull out as much of our target as possible. We have clarified this in the text: "The best probe within a 20 bp window of this start location was selected to minimize low complexity sequence in probes and similarity to regions of the genome that were not in our target space. Low complexity sequence had been previously marked in lower case. Similarity of probes to non-target regions was defined using BLASTN alignment to the full wheat reference genome sequence alongside the capture design space."

2) The Figure 2 shows an example for a specific gene, but I would like to know the average coverage for all other genes at genome level. How much percent of genes cannot be sequenced and mapped to the reference genome? What areas of the unsequenced genes are located at? To address this question we state “113,884 of the high confidence genes (99.7%) showed sequencing coverage, with each gene covered to an average of 97.5% at 1X and 94.5% at 5X or more......112,824 of high confidence promoters (99.8%) showed sequencing coverage, with each promoter covered to an average of 93.6% at 1X and 85.5% at 5X or more......with an average depth of 34.99X with as little as 47 million sequencing paired-end reads (23.5 million read clusters).” Therefore we actually only miss 0.3% of annotated high confidence genes.

3) They need to compare their methods previous genotyping platform including SNP Chip and GBS, is their method cheaper, more easily operated or can reveal more variations than other methods? We agree with the reviewer that this should be in the manuscript. This method gives a higher resolution of profiling of the gene-space of wheat accessions that will be invaluable. As such it adds value and the key is our ability to screen the full gene space of wheat and identify more information, in this case we gave an example in the form of SNPs
identified; “Our multiplexing analysis defined more than 1.8 million positions across eight diverse samples, where each of the samples had a minimum of 5X coverage to allow comparison, and variation was observed between samples.” We have added text in the discussion after this text to highlight how this compares to other methods such as GBS/SNP chips: “Current methods such as Genotyping-by-sequencing (GBS) typically yield far fewer usable SNPs with <20,000 reported (Alipour et al., 2017; Poland et al., 2012). Furthermore, in the case of SNP arrays, the largest commonly reported array for wheat is 819,571 SNPs although previous analyses reported only a small proportion of these SNPs to be polymorphic in analysed accessions (112,723 in a diverse panel similar to that used here) and no indels or rearrangements can be profiled using this methodology (Winfield et al., 2016).”

4) The authors used eight CIMMYT lines for multiplexing and sequencing analysis, but I missed the information about the eight lines, why they used these eight genotypes? What are the genomic or phenotypic variation for these lines? We agree with the reviewer that this was not stated clearly and have as such added the relevant information; we added a table Supplementary Table S3 with more detailed information regarding the accessions used and we have also referenced a previous publication where these lines were presented and detailed more comprehensively Singh et al 2018.

5) It is not clear for me about the high confidence gene and low confidence gene, can the authors described more about these? This is reflective of the state of the current annotations of the wheat genome; each independent annotation has categorized genes as high or low confidence according to the level of evidence that was available to fully characterize the gene. In the interest of only capturing relevant material we targeted high confidence genes. We have clarified this in the text: “High confidence gene models have been distinguished from low confidence models based on similarity to known plant protein sequences and supporting evidence from wheat transcripts (Clavijo et al., 2017).”

6) The authors defined 2-Kb region upstream of annotated genes as promoters, it may be true for many genes. However, some promoters are likely located far away from the genes that they regulate. Even promoters are located at the 2-Kb regions, how can we know what are promoter sequences? I would use "putative promoter regions" instead of "promoters". We agree with the reviewer that, particularly with the current extent of our knowledge about the wheat genome, the definition of wheat promoter regions has to be considered in this way. Of course we hope that our probe sets will allow further definition of promoter sequence. As such, we have amended in the abstract, main text introduction and discussion our primary definition of promoter sequence to putative promoter regions.

7) The authors need to polish the MS as I can see many typos, such as “100bp” should be “100 bp” and “17Gb” should be “17 Gb”. We have been through the manuscript and amended errors of this sort that have slipped through.

Reviewer 2 report:

Gardiner et al. present two sets of high-quality targeted capture probes for genic and promoter regions of the wheat genome. Whole genome resequencing in wheat is prohibitively expensive given the large genome size (~17 Gb). GBS and other reduced representation based approaches are ill suited for wheat because of the high repeat content. The two probe sets reported here span most of the gene and promoter sequences respectively and their design using multiple reference genomes ensures the probe sets are comprehensive. These probe sets will be more expensive to use than other genotyping platforms in wheat, but the higher resolution will be useful to the community. I have a few minor suggestions that I feel will improve this manuscript prior to publication. We thank
reviewer 2 for their comments and have gone through their points with responses one by one below.

1. This probe set is clearly superior in terms of gene and promoter space compared to previous exon and cDNA based captures, but it is unclear how this translates to informative positions compared to previous efforts. Roughly 1.8 million high-confidence positions were comparable across the 8 sequenced CIMMYT lines with ~100 million reads per line. More discussion of how this compares to other reduced representation approaches would be useful. We agree with the reviewer that this is needed (and it also echoes the sentiments of reviewer 1) it is key that we have the ability to screen the full gene space of wheat and identify more information, in this case we gave an example in the form of SNPs identified; “Our multiplexing analysis defined more than 1.8 million positions across eight diverse samples, where each of the samples had a minimum of 5X coverage to allow comparison, and variation was observed between samples.” We have added text in the discussion after this text to highlight how this compares to other methods such as GBS/SNP chips: “Current methods such as Genotyping-by-sequencing (GBS) typically yield far fewer usable SNPs with <20,000 reported (Alipour et al., 2017; Poland et al., 2012). Furthermore, in the case of SNP arrays, the largest commonly reported array for wheat is 819,571 SNPs although previous analyses reported only a small proportion of these SNPs to be polymorphic in analysed accessions (112,723 in a diverse panel similar to that used here) and no indels or rearrangements can be profiled using this methodology (Winfield et al., 2016).”

2. The uniform distribution and comprehensive coverage of probes should allow for high-confidence CNV detection (provided sequencing coverage is sufficient). Were CNVs detectable in the high-coverage Chinese Spring data or the 8 sequenced CIMMYT lines? We agree with the reviewer that CNV identification is an interesting area of research. Previous studies have used and developed softwares to enable the identification of CNVs in targeted sequence capture data, they tackle the complexities of accounting for incomplete coverage of the genome and the potential for uneven enrichment between probes. These analyses are challenging to perform and not an avenue that we pursued for this paper, however, we have added information regarding these analyses and links to the tools and analyses that demonstrate the identification of CNV in capture data: “It has also been demonstrated that, using bespoke analysis tools such as CoNIFER and XHMM, Copy Number Variants (CNVs) can be identified from targeted sequence capture data (Fromer et al., 2012; Krumm et al., 2012).”

Minor:
Page 5 line 16. The IWGSC) RefSeq.v1 sequence was recently published and should be cited here. Done

Version of bioinformatics tools used for read processing and alignment should be provided. We have updated versions of the tools used in the methods section.

In Table 3, it would be useful to report the expected coverage with fewer reads (such as 50 million or 25 million for gene and promoter sets respectively). We understand the value that this could add and therefore why the reviewer has suggested this, however, our current predictions in Table 3 are based on actual sequencing experiments that we did i.e. individual sequencing libraries that we combine to deduce coverage at higher depths or we focus on a single library for our prediction at 50M reads. To predict for a lower read number e.g. 25M we would then be extrapolating from our data to estimate. Of course we can do this if needed and this could be relatively accurate, however we can make no guarantee of such extrapolation. We would therefore prefer to keep only those values that we actually tested in Table 3 where possible.

The font on figure 3 is too small to read. This figure could also be reorganized so it is easier
to interpret (e.g. use different colors for gene vs promoter and label the Y axis). We agree with the reviewer that this may not be the easiest figure to read—we have therefore amended the figure as suggested increasing the font size on the axes, and labelled the Y axes.