Splenomegaly is a clinical condition that can be caused by various underlying conditions. While it is commonly associated with diseases such as liver cirrhosis, it can also be a sign of systemic inflammatory response syndrome (SIRS) and multiple organ failure syndrome (MOFS). In this study, we aimed to evaluate the relationship between splenic volume and the risk of readmission for heart failure among patients with acute decompensated heart failure.

Methods

Summary

The spleen is associated with inflammation, and the size of the spleen is affected by hemodynamic congestion and sympathetic stimulation. However, the association between splenic size and prognosis in patients with heart failure remains unknown. Between January 2015 and March 2017, we analyzed 125 patients with acute decompensated heart failure who were assessed by computed tomography (CT) on the day of admission. The spleen was measured by 3-dimensional CT and then the patients were assigned to groups according to their median splenic volume indexes (SpVi; splenic volume/body surface area). We then compared their baseline characteristics and rates of readmission for heart failure after one year. The median SpVi was 63.7 (interquartile range: 44.7-95.3) cm³/m². Age did not significantly differ between the groups. Patients with a high SpVi had more significantly enlarged left atria and left ventricles. Multiple regression analysis identified significant positive correlations between SpVi and posterior wall thickness as well as left ventricular mass index. Kaplan-Meier analysis revealed lower event-free rates in the patients with a high, than a low SpVi (P = 0.041, log-rank test). After adjustment for potential confounding factors, SpVi was independently associated with readmission for heart failure (Hazard ratio, 2.25; 95% confidence interval, 1.01-5.02; P = 0.047). In conclusion, increased splenic volume is independently associated with readmission for heart failure among patients with acute decompensated heart failure.
Figure 1. Study flow chart. We assigned 125 patients with acute decompensated heart failure to groups based on splenic volume index. ADHF indicates acute decompensated heart failure; and CT, computed tomography.
Characteristics of the patients: We assessed data from 125 patients. The reason for performing CT scan upon admission was as follows: examination of the lung fields \((n = 84)\), searching for focus of infection/inflammation \((n = 21)\), searching for the cause of chest pain \((n = 7)\), ruling out acute pulmonary embolism \((n = 4)\), examination of elevated liver enzymes \((n = 4)\), searching for the cause of anemia \((n = 2)\), searching for malignant tumors \((n = 2)\), and other reasons \((n = 1)\).

The median splenic volume determined using 3D-CT volumetry was 103 (IQR, 68-147; range, 20-449) cm\(^3\) and the mean splenic volume was 123 ± 80 cm\(^3\). The median SpVi was 63.7 (IQR, 44.7-95.3; range, 13.6-231.1) cm\(^3\)/m\(^2\). Figure 3 shows the distribution of splenic volume and SpVi. Patients were assigned to groups according to whether they had a low or a high SpVi (< 63.7 cm\(^3\)/m\(^2\), \(n = 62\) and ≥ 63.7 cm\(^3\)/m\(^2\), \(n = 63\), respectively). Table I shows the demographic and clinical parameters of the patients. Age did not significantly differ between the 2 groups. The group with a high SpVi had more males and prior history of cardiac surgery than the low SpVi group. Laboratory data showed that values for potassium and B-type natriuretic peptide were lower for the group with a high, than a low SpVi. Complete blood counts including monocytes did not significantly differ between the groups. Echocardiographic parameters associated increased left atrial diameter, PWT, LVEDD and LVMI with a high SpVi, although left ventricular ejection fraction did not significantly differ between the groups. Medication with loop diuretics and mineralocorticoid receptor antagonists was more prevalent among the group with a high SpVi.

Comparison of calculated and CT-generated splenic volumes: The median splenic volumes calculated using the Prassopoulos and prolate ellipsoid formulae were 133 (IQR, 97-175) and 162 (IQR, 103-239) cm\(^3\), respectively. Both of these values closely correlated with the splenic

Results

Characteristics of the patients: We assessed data from

New York Heart Association classification, systolic blood pressure, creatinine, hemoglobin, and B-type natriuretic peptide were entered into a multivariate analysis because these variables can be associated with the risk of clinical events in patients with heart failure. Values with \(P < 0.05\) were considered statistically significant. All data were analyzed using JMP ver. 13.1.0 (SAS Institute, Cary, NC, USA).
Table 1. Baseline Clinical Characteristics

Clinical demographics	Small splenic volume index	Large splenic volume index	P value
Age, years	76 (73–83)	77 (68–82)	0.36
Male, n (%)	30 (48)	43 (68)	0.024
Height, cm	157.5 ± 8.4	161.0 ± 10.8	0.049
Body weight, kg	54.9 (47.4–64.2)	61.6 (52.9–73.4)	0.003
Body mass index, kg/m²	22.0 (19.6–24.9)	24.7 (21.2–27.3)	0.023
Hypertension, n (%)	50 (81)	55 (87)	0.31
Dyslipidemia, n (%)	37 (60)	39 (62)	0.80
Diabetes mellitus, n (%)	24 (39)	21 (33)	0.53
Smoking: never/past/current, n	34/23/5	27/30/5	0.42
Prior history of heart failure, n (%)	33 (53)	42 (68)	0.098
Coronary revascularization, n (%)	13 (21)	25 (40)	0.019
Prior cardiac surgery, n (%)	10 (16)	21 (34)	0.023
Systolic blood pressure, mmHg	132 ± 26	136 ± 31	0.48
Diastolic blood pressure, mmHg	79 ± 16	80 ± 20	0.81
Heart rate, beats/minute	88 (73–104)	84 (70–100)	0.25
NYHA classification II/III/IV, n	2/25/35	2/24/37	0.97
Atrial fibrillation, n (%)	27 (44)	33 (52)	0.32

Laboratory data

Parameter	Small splenic volume index	Large splenic volume index	P value
Albumin, g/dL	3.5 (3.2–3.8)	3.6 (3.2–4.0)	0.12
Estimated GFR, mL/minute/1.73 m²	43 (30–57)	44 (31–57)	0.91
Total bilirubin, mg/dL	0.7 (0.5–1.1)	0.8 (0.5–1.2)	0.57
Aspartate aminotransferase, U/L	34 (26–51)	24 (20–33)	< 0.001
Alanine aminotransferase, U/L	24 (17–44)	16 (13–27)	0.005
LDH, U/L	267 (215–336)	255 (208–316)	0.41
Gamma-glutamyl transferase, U/L	48 (24–84)	46 (30–85)	0.66
Alkaline phosphatase, U/L	278 (219–344)	251 (196–340)	0.35
Sodium, mEq/L	140 (137–142)	141 (139–143)	0.034
Potassium, mEq/L	4.4 (3.9–4.9)	4.1 (3.5–4.4)	0.008
Chloride, mEq/L	104 (101–107)	104 (100–107)	0.95
Iron, μg/dL	41 (28–66)	45 (26–83)	0.58
C-reactive protein, mg/dL	0.65 (0.17–3.17)	0.51 (0.15–1.88)	0.52
White blood cells, 10³/μL	8.25 (5.91–10.36)	6.37 (5.58–8.97)	0.066
Monocytes, μL/L	407 (295–571)	392 (308–508)	0.49
Red blood cells, 10¹²/μL	3.81 ± 0.69	3.80 ± 0.78	0.88
Hemoglobin, g/dL	11.9 ± 2.3	11.5 ± 2.2	0.34
Platelet count, 10⁹/μL	190 (134–256)	168 (134–219)	0.31
B-type natriuretic peptide, pg/mL	623 (366–1372)	453 (262–715)	0.015

Echocardiographic parameters

Parameter	Small splenic volume index	Large splenic volume index	P value
Left atrial diameter, mm	46.8 ± 8.1	52.4 ± 9.2	< 0.001
IVST, mm	9.6 ± 2.2	10.1 ± 2.0	0.20
PWT, mm	9 (8–11)	10 (9–11)	0.027
LVEDD, mm	51 (44–56)	56 (51–61)	< 0.001
LVESD, mm	39.3 ± 10.8	44.4 ± 11.4	0.013
LVMI, g/m²	105 (89–128)	130 (111–165)	< 0.001
LVEF, %	48.5 ± 15.0	45.8 ± 15.8	0.34
IVC at expiration, cm	1.8 ± 0.5	2.0 ± 0.6	0.018
TR-PG, mmHg	33 (24–45)	35 (25–47)	0.36
E/A	1.33 (0.76–2.10)	1.15 (0.76–2.51)	0.71
E/e’	12.5 (10.8–16.2)	12.6 (8.7–17.8)	0.76

Medication at admission

Parameter	Small splenic volume index	Large splenic volume index	P value
ACE-I, n (%)	3 (5)	7 (11)	0.19
ARB, n (%)	23 (37)	29 (46)	0.31
β-blockers, n (%)	30 (48)	38 (60)	0.18
Loop diuretics, n (%)	30 (48)	48 (76)	0.001
MRA, n (%)	11 (17)	27 (43)	0.002
Tolvaptan, n (%)	3 (5)	9 (14)	0.073

ACE-I indicates angiotensin-converting-enzyme inhibitors; ARB, angiotensin II receptor blockers; E, early diastolic filling velocity; e’, early diastolic mitral annular velocity; IVC, inferior vena cava; IVST, interventricular septum thickness; LDH, lactate dehydrogenase; LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; LVESD, left ventricular end-systolic diameter; LVMI, left ventricular mass index; NYHA, New York Heart Association; PCI, percutaneous coronary intervention; MRA, mineralocorticoid receptor antagonists; PWT, posterior wall thickness; and TR-PG, tricuspid regurgitation pressure gradient.
Figure 4. Kaplan-Meier analysis of readmission for heart failure. High splenic volume index is associated with low event-free rates ($P = 0.041$, log-rank test).

Table II. Correlation and Multivariate Regression Analysis Between Splenic Volume Index and Patients’ Characteristics

	SpVi, Correlation	SpVi, Multivariate Model 1	SpVi, Multivariate Model 2					
	Correlation	P value	β	t value	P value	β	t value	P value
Age	-0.23	0.020	-0.060	-0.52	0.61	-0.15	-1.36	0.18
Height	0.15	0.15						
Body weight	0.24	0.020						
Systolic blood pressure	0.028	0.79						
Diastolic blood pressure	0.017	0.87						
Heart rate	-0.015	0.88						
Albumin	-0.10	0.34						
Total bilirubin	-0.018	0.86						
Aspartic aminotransferase	-0.16	0.12						
Alanine aminotransferase	-0.21	0.040	-0.13	-1.31	0.19	-0.13	-1.22	0.22
LDH	-0.14	0.17						
Creatinine	0.048	0.65						
Sodium	0.14	0.16						
Potassium	-0.31	0.002	-0.20	-2.01	0.048	-0.24	-2.27	0.027
Iron	-0.028	0.81						
C-reactive protein	-0.12	0.24						
White blood cells	-0.16	0.12						
Monocytes	0.089	0.39						
Hemoglobin	-0.13	0.21						
Platelet count	-0.110	0.29						
B-type natriuretic peptide	-0.17	0.10						
Left atrial diameter	0.32	0.002	0.24	2.48	0.015	0.22	2.08	0.041
IVST	0.16	0.12						
PWT	0.25	0.017	0.23	2.22	0.029			
LVEDD	0.28	0.010	0.11	0.95	0.35			
LVESD	0.12	0.24						
LVEF	0.011	0.92						
LVMI	0.32	0.005						
TR-PG	0.050	0.64						
IVC	0.15	0.16						
E/A	-0.12	0.45						
E/e'	0.013	0.91						

A indicates atrial filling velocity; E, early diastolic filling velocity; e’, early diastolic mitral annular velocity; IVC, inferior vena cava; IVST, interventricular septum thickness; LDH, lactate dehydrogenase; LVEDD, left ventricular end-diastolic diameter; LVESD, left ventricular end-systolic diameter; LVMI, left ventricular mass index; PWT, posterior wall thickness; and TR-PG, tricuspid regurgitation pressure gradient.

Univariate and multivariate analysis of correlations with SpVi: Table II shows the results of the correlation and multivariate analyses. Body weight and body mass index significantly and positively correlated with SpVi, although we adjusted splenic volume for BSA. White blood cells, hemoglobin, platelets and C-reactive protein values did not correlate with SpVi. The echocardiographic parameters of the diameters of the left atrium, PWT, LVEDD, and LVMI positively correlated with SpVi. Multiple regression analyses adjusted for variables with $P < 0.10$ in univariate analyses independently and significantly associated left atrial diameter, PWT and LVMI with SpVi. Endpoint: Forty-five patients were readmitted for heart failure within one year of follow-up. The primary endpoint was reached more frequently in the group with a high, than a low SpVi (44% versus 27%, $P = 0.047$). Kaplan-Meier analysis revealed a significantly lower volume determined by 3D-CT (Prassopoulos and prolate ellipsoid formulae: $r = 0.89$ and $r = 0.91$, respectively, $P < 0.001$ for both).

Univariate and multivariate analysis of correlations with SpVi: Table II shows the results of the correlation and multivariate analyses. Body weight and body mass index significantly and positively correlated with SpVi, although we adjusted splenic volume for BSA. White blood cells, hemoglobin, platelets and C-reactive protein values did not correlate with SpVi. The echocardiographic parameters of the diameters of the left atrium, PWT, LVEDD, and LVMI positively correlated with SpVi. Multiple regression analyses adjusted for variables with $P < 0.10$ in univariate analyses independently and significantly associated left atrial diameter, PWT and LVMI with SpVi. Endpoint: Forty-five patients were readmitted for heart failure within one year of follow-up. The primary endpoint was reached more frequently in the group with a high, than a low SpVi (44% versus 27%, $P = 0.047$). Kaplan-Meier analysis revealed a significantly lower volume determined by 3D-CT (Prassopoulos and prolate ellipsoid formulae: $r = 0.89$ and $r = 0.91$, respectively, $P < 0.001$ for both).
event-free rate for the group with a high SpVi (Hazard ratio, 1.85; 95% confidence interval, 1.02–3.46, \(P = 0.041 \)) (Figure 4). Cox proportional hazards analyses after adjusting for potential cofounding factors selected SpVi as an independent prognostic factor for readmission due to heart failure (Table III).

Discussion

This study investigated associations between splenic volume measured by CT volumetry and cardiac functions or prognosis in patients with acute decompensated heart failure. We found that SpVi is independently associated with cardiac hypertrophy and that a large spleen is associated with readmission due to heart failure. Splenic volume has been assessed using various means including ultrasonography, magnetic resonance imaging and CT. Among these, all 3D-CT scans closely correlated with manual segmentation for splenic volume and the measurement requires approximately one minute.\(^{17,18}\) We determined splenic volume using 3D-CT volumetry within 3 minutes and the results closely correlated with the splenic volume estimated using standard formulae.

Kaneko, et al. described normal splenic volumes determined from CT images of 150\(^{19}\) and 238\(^{20}\) healthy Japanese donors for liver transplantation as 112 ± 40 (range, 32–209) and 123 ± 45 (range, 37–285) cm\(^3\), respectively. They found that splenic volume correlated negatively with age and positively with body mass or BSA.\(^{20}\) The mean splenic volume in the present study was 123 ± 80 (range, 20–449) cm\(^3\), which was similar to previous findings. However, the distribution differed and some of our patients had larger than normal spleens although they were older and had a smaller BSA than those previously described.\(^{19}\) This could account for differences in baseline characteristics such as comorbidities between the studies.

The size of the spleen in patients with acute heart failure is influenced by various factors, including activation of the sympathetic nervous system,\(^{21,22}\) hyperperfusion,\(^{20,21}\) and portal hypertension due to right heart failure.\(^{21}\) A study showed that spleen size assessed by ultrasound was larger in patients with heart failure than normal subjects.\(^{20}\) The same study revealed that spleen size was associated with right atrial pressure or right ventricular end-diastolic pressure. In the current study, the high SpVi group had a larger inferior vena cava and received diuretics more frequently than the low SpVi group. Moreover, the high SpVi group had a slightly higher prevalence of a history of heart failure. These findings suggested volume overload was associated with increased splenic volume. However, BNP was lower in the high SpVi group in our study. We believe this was because the high SpVi group had more men, higher body mass index and prevalence of a history of open-heart surgery. It is well known that being male,\(^{23}\) obesity,\(^{24,25}\) and a prior history of open-heart surgery\(^{26}\) are associated with low BNP. We speculate that increased splenic volume reflects venous congestion due to right heart failure, which might result in readmission for heart failure.

The subcapsular red pulp of the spleen stores monocytes\(^{27}\) that modulate inflammatory processes by producing inflammatory cytokines or chemokines,\(^{27}\) and thus might contribute to systemic inflammation in patients with heart failure.\(^{28,29}\) One clinical study has shown positive correlations between diastolic dysfunction and cardiac inflammation as well as fibrosis in patients with heart failure and preserved ejection fraction.\(^{28}\) Others have shown that monocytes play a role in cardiac remodeling after myocardial infarction.\(^{30,31}\) Inflammatory mediators including cytokines or chemokines released from monocytes and monocytes themselves cause inflammation and ventricular dilatation or the development of heart failure.\(^{30,31}\) Thus, the spleen appears to be closely associated with cardiac remodeling or diastolic function. The present study did not find a correlation between the numbers of monocytes upon admission and splenic volume. This was because the cells that initially respond to inflammation during the hyperacute phase are neutrophils, not monocytes.\(^{32}\) Cardiac remodeling can be caused by cardiac stress or injury such as volume overload and ischemia,\(^{33}\) resulting in worse clinical outcomes in patients with heart failure.\(^{30}\) In the current study, increased splenic volume was associated with greater prevalence of heart failure, coronary revascularization, and open-heart surgery. Furthermore, left atrial diameter, PWT, LVEDD, LVESD, and LVMI were significantly higher in high SpVi, and multiple regression analyses showed left atrial diameter, PWT, and LVMI were significantly associated with SpVi. These results may suggest that increased splenic volume reflects cardiac damage and progression of cardiac remodeling, leading to poor prognosis in patients with heart failure. In summary, increased splenic volume may reflect systemic congestion or progression of cardiac remodeling in acute heart failure; therefore, patients with an increased spleen size may need strict decongestion therapy, more renin-angiotensin-aldosterone system inhibitors, or careful follow-up. We think clinicians should take notice of the size of spleen in patients with heart failure.

This study has several limitations including those imposed by the retrospective design with respect to selection bias and the small cohort of patients. Some patients might have had systemic disorders that affected spleen size. We did not fully exclude patients with cancer or liver/spleen diseases. Thus, the possibility that extracardiac diseases

Table III. Cox Proportional Hazard Model of Heart Failure Readmission

Splenic volume index as categorical variable	Hazard ratio	95% CI	\(P \) value
Non-adjusted model	1.85	1.02–3.46	0.041
Adjusted model*	2.25	1.01–5.02	0.047

*Adjusted for age, sex, a history of heart failure, prior coronary revascularization, a history of cardiac surgery, atrial fibrillation, NYHA classification, systolic blood pressure, creatinine, hemoglobin and log B-type natriuretic peptide.
influenced the prognosis cannot be ruled out. We did not evaluate sympathetic nerve system activation (such as 123I-metaiodobenzylguanidine or plasma norepinephrine) which can affect the size of the spleen. Because there is scant evidence about the association between splenic volume and heart failure, the current study is an exploratory study. Therefore, it was necessary to test the relationships between many variables and splenic volumes, which may lead to multiplicity. In addition, the relationships between echocardiographic parameters and splenic volumes were not strong in the current study; thus, there may be unknown factors which are more intimately associated with splenic volumes. Finally, we did not examine the size of the spleen in the “chronic phase”. Further studies are needed to evaluate the associations of the spleen with hemodynamics or prognosis in patients with heart failure.

Conclusion

Some patients with acute decompensated heart failure had larger than normal splenic volumes at the time of admission. Increased splenic volume might be associated with cardiac remodeling and it could serve as a prognostic factor for patients with acute decompensated heart failure.

Disclosure

Conflicts of interest: None declared.

References

1. Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol 2005; 5: 606-16.
2. Swirski FK, Nahrendorf M, Etzrodt M, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009; 325: 612-6.
3. Dutta P, Courties G, Wei Y, et al. Myocardial infarction accelerates atherosclerosis. Nature 2012; 487: 325-9.
4. Leuschner F, Panizzi P, Chico-Calero I, et al. Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. J Exp Med 2010; 117: 1364-73.
5. Nahrendorf M, Pittet MJ, Swirski FK. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 2010; 112: 2437-45.
6. Hulsmans M, Sam F, Nahrendorf M. Monocyte and macrophage contributions to cardiac remodeling. J Mol Cell Cardiol 2016; 93: 149-55.
7. Tarrant AM, Ryan MF, Hamilton PA, et al. A pictorial review of hypovolemic shock in adults. Br J Radiol 2008; 81: 252-7.
8. Kanki A, Ito K, Yamada T, et al. Dynamic contrast-enhanced CT of the abdomen to predict clinical prognosis in patients with hypovolemic shock. AJR Am J Roentgenol 2011; 197: W980-4.
9. Pozo AL, Godfrey EM, Bowles KM. Splenomegaly: investigation, diagnosis and management. Blood Rev 2009; 23: 105-11.
10. Kiguchi T, Higuchi T, Takahashi N, et al. CT measurement of splenic volume changes as a result of hypovolemic shock. Jpn J Radiol 2015; 33: 645-9.
11. Corradi F, Brusasco C, Garlaschi A, et al. Splenic Doppler resistive index for early detection of occult hemorrhagic shock after polytrauma in adult patients. Shock 2012; 38: 466-73.
12. Ayers AB, Davies BN, Withrington PG. Responses of the isolated, perfused human spleen to sympathetic nerve stimulation, catecholamines and polypeptides. Br J Pharmacol 1972; 44: 17-30.
13. McKee PA, Castelli WP, McNamara PM, et al. The natural history of congestive heart failure: the Framingham study. N Engl J Med 1971; 285: 1441-6.
14. Devereux RB, Alonso DR, Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986; 57: 450-8.
15. Prassopoulos P, Daskalogiannaki M, Raissaki M, et al. Determination of normal splenic volume on computed tomography in relation to age, gender and body habitus. Eur Radiol 1997; 7: 246-8.
16. Yetter EM, Acosta KB, Olson MC, et al. Estimating splenic volume: sonographic measurements correlated with helical CT determination. AJR Am J Roentgenol 2003; 181: 1615-20.
17. Xu Z, Gertz AL, Burke RP, et al. Improving spleen volume estimation via computer-assisted segmentation on clinically acquired CT scans. Acad Radiol 2016; 23: 1214-20.
18. Kaneko J, Sugawara Y, Matsuyi T, et al. Normal splenic volume in adults by computed tomography. Hepatogastroenterology 2002; 49: 1726-7.
19. Kaneko J, Sugawara Y, Matsuyi T, et al. Spleen size of live donors for liver transplantation. Surg Radiol Anat 2008; 30: 515-8.
20. Watanabe Y, Todani T, Noda T. Changes in spleen volume after partial splenic embolization in children. J Pediatr Surg 1996; 31: 241-4.
21. Helaly AZ, Al-Warraky MS, El-Azab GI, et al. Portal and splanchnic hemodynamics after partial splenic embolization in cirrhotic patients with hypersplenism. APMIS 2015; 123: 1032-9.
22. Bolognesi M, Quaglio C, Bombonato G, et al. Splenic Doppler impedance indices estimate splenic congestion in patients with right-sided or congestive heart failure. Ultrasound Med Biol 2012; 38: 21-7.
23. Redfield MM, Rodeheffer RJ, Jacobsen SJ, et al. Plasma brain natriuretic peptide concentration: impact of age and gender. J Am Coll Cardiol 2002; 40: 976-82.
24. Daniels LB, Cl potion P, Bhalla V, et al. How obesity affects the cut-points for B-type natriuretic peptide in the diagnosis of acute heart failure. Results from the Breathing Not Properly Multinational Study. Am Heart J 2006; 151: 999-1005.
25. Horwich TB, Hamilton MA, Fonarow GC. B-type natriuretic peptide levels in obese patients with advanced heart failure. J Am Coll Cardiol 2006; 47: 85-90.
26. Shimamoto K, Koike N, Mizuochi K, et al. Characteristics of acute congestive heart failure with normal ejection fraction and less elevated B-type natriuretic peptide. BMC Cardiovasc Disord 2009; 9: 2.
27. Hulsmans M, Sager HB, Roh JD, et al. Cardiac macrophages promote diastolic dysfunction. J Exp Med 2018; 215: 423-40.
28. Yndestad A, Damås JK, Oie E, et al. Systemic inflammation in heart failure — the whys and wherefores. Heart Fail Rev 2006; 11: 83-92.
29. Apostolakis S, Lip GY, Shantsila E. Monocytes in heart failure: relationship to a deteriorating immune overreaction or a desperate attempt for tissue repair? Cardiovasc Res 2010; 85: 649-60.
30. Westernman D, Lindner D, Kasner M, et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail 2011; 4: 44-52.
31. Pinizzi P, Swirski FK, Figueiredo JL, et al. Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytes. J Am Coll Cardiol 2010; 55: 1629-38.
32. Teague HL, Ahlman MA, Aliavi A, et al. Unraveling Vascular Inflammation: From Immunology to Imaging. J Am Coll Cardiol 2017; 70: 1403-12.
33. Tham YK, Bernardo BC, Ooi JY, et al. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 2015; 89: 1401-38.
34. Konstam MA, Kramer DG, Patel AR, et al. Left ventricular remodeling in heart failure: current concepts in clinical signifi-
cance and assessment. JACC Cardiovasc Imaging 2011; 4: 98-108.