La$_{1-x}$Ca$_x$MnO$_3$ semiconducting nanostructures: morphology and thermoelectric properties

Mario Culebras*, Raquel Torán, Clara M Gómez and Andrés Cantarero

Abstract
Semiconducting metallic oxides, especially perovskite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La$_{1-x}$Ca$_x$MnO$_3$ perovskite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has been obtained for a Ca content of $x = 0.5$. The electrical conductivity and Seebeck coefficient are strongly related to the calcium content.

Keywords: Nanostructures; Seebeck; Thermoelectricity; Perovskites

Background
Over the last decade, there has been an increasing interest in finding new highly efficient thermoelectric materials for electronic cooling [1-3] and power generation [4-6]. The energy demand in developed and under-developed countries is increasing due to the population growth and the improvement of the standard level of life in emerging countries. Unfortunately, reserves of fossil fuels are not unlimited, and their use generates huge amounts of CO$_2$ in the atmosphere. Many human activities (power plants, cement plants, steel mills, and vehicles engines as a few examples) are generating high amount of waste heat at different ranges of temperature. The conversion of this waste heat into electric energy would be an important contribution to the sustainable development as it would allow to reduce both the Greenhouse gas emissions and fossil fuel consumption. Thermoelectric generators are designed to convert a temperature difference into electricity (Seebeck effect) or, inversely, electric energy into a thermal gradient (Peltier effect). Thermoelectric materials must have a high conversion efficiency, and they must also be composed conveniently of non-toxic and abundantly available elemental species having high chemical stability in air. The performance of a thermoelectric material is determined by the dimensionless figure of merit ZT:

$$ZT = \frac{\sigma S^2}{\kappa T}$$

S being the Seebeck coefficient, σ the electrical conductivity, κ the thermal conductivity, and T the absolute temperature. The power factor (PF) defined as $PF \equiv \sigma S^2$ can be used to compare the relative efficiency when the thermal conductivity is similar in different samples.

Over the past 30 years, semiconductor alloys based on Bi$_2$Te$_3$, PbTe, and SiGe [7-9] have been extensively studied and optimized for their use in thermoelectric applications. However, most of these compounds present disadvantages related to the shortage of raw materials, toxicity, or high costs of production.

For these reasons, research on the new materials to build up efficient thermoelectric devices is a scientific subject of current interest [10,11]. Recently, several oxides such as NaCoO$_2$ [12], Ca$_3$Co$_4$O$_9$ [13], Sr$_{1-x}$La$_x$TiO$_3$ [14], La$_{1-x}$Sr$_x$CoO$_3$ [15], Nd$_{1-x}$Ca$_x$CoO$_3$ [16], or Ca$_{0.8}$Dy$_{0.2}$MnO$_3$ [17] have shown excellent thermoelectric properties. More precisely, perovskite-type transition metal oxide single crystals have depicted large thermoelectric responses [14]. The electrical properties of...
La$_{1-x}$A$_x$MnO$_3$ (A = Ca, Sr, Ba, and Pb) perovskite-type oxides are related to their stoichiometry [14]. Significant variations appear when the degree of substitution of the alkali-earth element for La varies from 0% to 50% [14]. The novelty of perovskite-type oxides is due to their low cost, non-toxicity, and possibility of being used for high-temperature applications. The origin of the thermoelectric properties in these oxides is not yet fully understood, but it could be related to the high spin-orbit interaction as well as the large electron effective mass [14].

In 1993, the work of Hicks and Dresselhaus [18] suggested that the morphology of a thermoelectric system can be used to improve both the electronic transport and the phonon scattering. Nanostructuration can increase ZT over unity by changing σ and S independently. The density of electronic states in a nanostructured system, when the Fermi energy is close to a maximum in the density of electronic states, depicts usually sharp peaks and theoretically larger Seebeck coefficients than the same material in bulk [19]. Furthermore, the phonon dynamics and heat transport in a nanostructured system can be suppressed by means of size effects. Nanostructures with one or more dimensions smaller than the phonon mean free path (a phonon glass) but larger than that of electrons (electron crystal) will noticeably reduce the thermal conductivity κ without affecting much the electrical transport. In other words, phonon transport will be strongly disturbed, while the electronic transport can remain bulk-like in nanostructured systems.

In this report, La$_{1-x}$Ca$_x$MnO$_3$ nanocrystals have been obtained by the hydrothermal method as a function of the Ca content. Several heat treatments have been made to determine the temperature when the perovskite phase is obtained. Scanning electron microscopy and X-ray diffraction studies have been used to determine the phase is obtained. Scanning electron microscopy and X-ray diffraction studies have been used to determine the phase is obtained. Scanning electron microscopy and X-ray diffraction studies have been used to determine the phase is obtained. Scanning electron microscopy and X-ray diffraction studies have been used to determine the phase is obtained.

Methods

Materials

The reactants MnCl$_2$·4H$_2$O, Ca(NO$_3$)$_2$, La(NO$_3$)$_3$, KMnO$_4$ and KOH were purchased from Sigma Aldrich Co., Madrid, Spain.

Synthesis of La$_{1-x}$Ca$_x$MnO$_3$ nanostructures

La$_{1-x}$Ca$_x$MnO$_3$ samples with $x = 0.005, 0.05, 0.1$ and 0.5 have been prepared by a conventional hydrothermal treatment [20-22]. Stoichiometric amounts of reactants were used to have an aqueous solution of 0.55 M in cations (Mn$^{2+}$, Mn$^{3+}$, Ca$^{2+}$, and La$^{3+}$) by keeping a molar ratio between KMnO$_4$ and MnCl$_2$·4H$_2$O according to the average valence of Mn ions in La$_{1-x}$Ca$_x$MnO$_3$. The pH of the solution was adjusted to 13 by adding KOH. After ultrasonic stirring, the solution was transferred into a Teflon autoclave and heated for 30 h at 230°C. Then, the reactor was cooled down to room temperature, and the obtained solid was washed with water and ethanol and dried at 230°C for 12 h. The powder was subjected to different temperatures, 650°C and 900°C for 12 h. The powder obtained after 900°C was pressed to form compact pellets (0.5-in. diameter) by using a pellet die at 490 MPa. Further, the pellet was sintered at 900°C for 24 h.

Characterization

The scanning electron microscopy (SEM) analysis was carried on a Hitachi 4800S microscope (Hitachi, Ltd., Tokyo, Japan) at an acceleration voltage of 20 kV and at a working distance of 14 mm for gold-coated surfaces. The wide-angle X-ray diffraction (WAXRD) patterns were acquired on a Bruker AXS D5005 diffractometer (Bruker AXS GmbH, Karlsruhe, Germany). The samples were scanned at 4°/min using Cu K$_\alpha$ radiation ($\lambda = 0.15418$ nm) at a filament voltage of 40 kV and a current of 20 mA. The diffraction scans were collected within the $2\theta = 20^\circ$ to 80° range with a 2θ step of 0.01°.

The electrical conductivity has been determined by means of the van der Pauw method [23,24], where four contacts are used to eliminate the effect of the contact resistance. The electrical conductivity can be obtained from two four-point resistance measurements independently either on contact resistances or on the specific geometry of the contact arrangement. For the first resistance measurement, a current I_{AC} is driven from two contacts, named A and C, and the potential difference V_{BD} between the other two contacts, B and D, was measured, giving the first resistance $R_1 = V_{BD}/I_{AC}$. The second resistance, $R_2 = V_{AB}/I_{CD}$, is obtained by driving the current from C to D and measuring the voltage between A and B. The conductivity of the sample is obtained by solving the van der Pauw equation:

$$e^{-\pi dR_1}\sigma + e^{-\pi dR_2}\sigma = 1,$$

where d is the sample thickness. A Keithley 2400 current source (Keithley Instruments Inc., Cleveland, OH, USA) was used as driving source.

The Seebeck coefficient has been measured with a homemade apparatus. In order to control the temperature, we used a Lakeshore 340 temperature controller, and to record the potential data, a Keithley 2750 Multime-
Switching System was used. The Seebeck coefficient can be determined as the ratio between the electrical potential, ΔV, and the temperature difference, ΔT, that is,

$$S = \frac{\Delta V}{\Delta T}.$$

(3)

Results and discussion

Scanning electron microscopy images show the evolution of the morphology as a function of temperature treatment (Figure 1A,B,C). The first temperature treatment was carried out at 230°C for 12 h (drying treatment); the resultant morphology after this treatment is shown in Figure 1C. A fibrillar morphology has been observed after this treatment, with an average diameter of 120 ± 50 nm.

The second treatment was carried out at 650°C for 12 h, leading to a change in the morphology, from fibrillar to aggregated nanoparticles as shown in Figure 1B, although some parts of the powder retained the fibrillar morphology. Finally, the last treatment was carried out at 900°C for 12 h, as shown in Figure 1A; all the material depicts a nanoparticle structure. This evolution of the morphology with temperature is similar to that observed in other materials like La$_{1-x}$Sr$_x$CoO$_3$, previously reported in the literature [25].

The X-ray diffraction patterns for the La$_{1-x}$Ca$_x$MnO$_3$ ($x = 0.05$) powder, resulting from the thermal treatment at 230°C, 650°C, and 900°C are depicted in Figure 1D. Similar diffraction patterns are obtained for all the samples regardless the Ca content. X-ray diffraction analysis has been made in order to know when the orthorhombic perovskite phase appears because only this phase presents thermoelectric activity [26-28]. At 230°C, the perovskite phase was not obtained, resulting in an insulating material. The diffraction peaks observed at 230°C are related to segregated metallic oxides of Ca, La, and Mn (CaO, Mn$_3$O$_7$, CaMn$_2$O$_4$, etc.). At 650°C, the WAXDR spectrum indicates that the orthorhombic perovskite-type structure was present. The material obtained after this treatment was a semiconductor material. The WAXDR spectrum of the sample heated at 900°C is similar to that obtained at 650°C, indicating that most of the material has the perovskite phase. The perovskite phase is attained at 650°C; however, the electrical conductivity of the compacted powder (without sintering) obtained at 650°C and 900°C is very low (around 10$^{-3}$ S/cm). In addition, the sample size and shape are more homogeneous after treatment at 900°C. Thus, in order to use these materials for thermoelectric applications, we have realized a sintering process by keeping the compact pellet at 900°C for 24 h.

The electrical conductivity of the samples after the sintering process is plotted in Figure 2A. An increase of 3 orders of magnitude with respect to the samples before the sintering process is observed. This fact can be explained...
by the reduction of the interfaces and grain boundaries during the sintering process. The electrical conductivity increases with temperature; this trend is expected in semiconducting materials [29,30]. The maximum value of the electrical conductivity, 10 S/cm, has been obtained for La0.9Ca0.1MnO3 at 300 K. The increase of the calcium content in the nanostructured material produces an enhancement of the electrical conductivity, with the exception of La0.5Ca0.5MnO3. Figure 2B shows the variation of the Seebeck coefficient with the temperature and Ca content. The values estimated in this work are similar to those found in organic semiconductors [35-37].

Conclusions
La1−xCa₧MnO₃ perovskite nanostructures have been synthesized by the hydrothermal method. The perovskite-type structure has been obtained at 650°C and 900°C. The nanostructure morphology changes from fibrillar to nanoparticle type when increasing the temperature treatment. The electrical conductivity increases 3 orders of magnitude after the sintering process. The electrical conductivity depends on the calcium content. The sign of Seebeck coefficient changes from positive to negative. The best power factor of 0.16 μW/mK² has been obtained for the sample La0.5Ca0.5MnO3. The magnitude of PF indicates that these materials have a modest efficiency at room temperature. More research is needed in order to increase the thermoelectric efficiency.

Sample	σ (S/cm)	S (μV/K)	Power factor (μW/mK²)
La0.99Ca0.01MnO3	2.05	18.18	0.068
La0.99Ca0.01MnO3	2.13	-2.69	0.002
La0.95Ca0.05MnO3	4.57	-3.18	0.003
La0.9Ca0.1MnO3	10.00	-7.35	0.053
La0.5Ca0.5MnO3	6.85	-15.577	0.166
Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MC was in charge of the thermoelectric characterization, RT developed the synthesis of materials, CMG was in charge of X-ray analysis, and AC realized the discussion of the thermoelectric results. All authors read and approved the final manuscript.

Acknowledgements
We acknowledge the financial support of the Ministry of Finances and Competitiveness through the Grant CDS2010-00444 belonging to the ‘Consolider-Ingenio Programme’, Grant MAT2012-33483, and the FPU Programme for young researchers.

Received: 14 May 2014 Accepted: 7 July 2014

References
1. Kim M-Y, Oh T-S: Thermoelectric power generation characteristics of a thin-film device consisting of electrodeposited n-Bi2Te3 and p-Sb2Te3 thin-film legs. J Electron Mater 2013, 42(9):2752–2757.
2. Zhao D, Tan C, Gao R: A review of thermoelectric cooling: materials, modeling and applications. Appl Therm Eng 2014, 66:1–2:15–24.
3. Sharma S, Dwivedi VK, Pandit SN: Exergy analysis of single-stage and multi stage thermoelectric cooler. Int J Energy Res 2013, 38(2):213–222.
4. Yoon CK, Chitnis G, Ziae B: Impact-triggered thermoelectric power generator using phase change material as a heat source. J Micromech Microeng 2013, 23(11):14004.
5. Jo S-E, Kim M-S, Kim M-K, Kim Y-J: Power generation of a thermoelectric generator with phase change materials. Smart Mater Struct 2013, 22(11):113008.
6. Houndaili E, Nassistopoulos AG: A thermoelectric generator using porous Si thermal isolation. Sensors 2013, 13(10):13596–13608.
7. Saleemi M, Topkapi MS, Li S, Johnsson M, Mhammed M: Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi2Te3). J Mater Chem 2012, 22(2):725–730.
8. Semirozov A: A study of pressed thermoelectric materials based on Bi2Te3-Sb2Te3-Sb2Se3 solid-solutions. Inorg Mater 1995, 31(6):675–677.
9. Hasapis TC, Girard SN, Hatzkrianitis E, Paraskevopoulos KM, Kanatzidis MG: On the study of PbTe-based nanocomposite thermoelectric materials. J Nano Res 2012, 17:165–174.
10. Gharai N, Bouaicha M: Structural, morphological, and optical properties of TiO2 thin films synthesized by the electrophoretic deposition technique. Nanoscale Res Lett 2012, 7:2357.
11. Mula G, Manca L, Setzlu S, Pezzella A: Photovoltaic properties of P5i impregnated with eumelanin. Nanoscale Res Lett 2012, 7(1):11–9.
12. Terasaki I, Sasago Y, Uchiyama K: Large thermoelectric power in NaCoO2 single crystals. Phys Rev B 1997, 56:12685–12687.
13. Masset A, Michel C, Maqnam A, Hervieu M, Toulemonde O, Studer F, Raveau B, Hejtmanek J: Synthesis of Nd1−xSrxCa2O4 perovskite nanowires for thermoelectric applications. J Phys D Appl Phys 2003, 36:3116–175.
14. Okuda T, Nakashita K, Miyasaka S, Tokuda Y: Large thermoelectric response of metallic perovskites: Sr1−xLa1−xTiO3 (0 < x < 0.1). Phys Rev B 2004, 63:171301(R).
15. Beggold K, Kienert M, Zobel C, Reichl A, Reuthner M, Müller R, Freimuth A, Lorentz T: Thermal conductivity, thermopower, and figure of merit of La1−xSrxCa2O4. Phys Rev B 2010, 72:155116.
16. Culebras M, Gomez C, Gomez A, Sapina F, Cantareo A: Synthesis of Nd1−xCa2O4 perovskite nanowires for thermoelectric applications. J Electron Mater 2009, 38:263–9.
17. Park K, Lee GW: Thermoelectric properties of Ca0.8Dy0.2Mo3O12 synthesized by solution combustion process. Nanoscale Res Lett 2011, 6:548.
18. Hicks LD, Dresselhaus MS: Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 1993, 47(19):12727–12731.
19. Humphrey TE, Linke H: Reversible thermoelectric nanomaterials. Phys Rev Lett 2005, 94:096601.
20. Wang Y, Fan HJ: Improved thermoelectric properties of La1−xSrxCa2O4 nanowires. J Phys Chem C 2010, 114(32):13947–13953.
21. Zhang T, Jin C, Qian T, Lu X, Bai J, Li X: Hydrothermal synthesis of single-crystalline La0.5Ca0.5Mo3O12 nanowires at low temperature. J Mater Chem 2004, 14(18):2787–2789.
22. Zhu X, Wang J, Zhang Z, Zhu J, Zhou S, Liu Z, Ming N: Perovskite nanoparticles and nanowires: microwave-hydrothermal synthesis and structural characterization by high-resolution transmission electron microscopy. J Am Ceram Soc 2008, 91(10):2685–2689.
23. Van Der Pauw LJ: A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Tech Rev 1958, 20:220–224.
24. de Boor J, Schmidt V: Complete characterization of thermoelectric materials by a combined van der Pauw approach. Adv Mater 2010, 22(38):4301–4307.
25. Deng J, Zhang L, Dai H, He H, Au CT: Single-crystalline La0.5Sr0.5CoO3−δ nanowires derived hydrothermally without the use of a template: catalysts highly active for tolune complete oxidation. Catal Lett 2008, 123(3–4):294–300.
26. Mahendiran R, Tiwary S, Raychaudhuri A, Ramakrishnan T, Mahesh R, Ranjavivallal N, Rao C: Structure, electron-transport properties, and giant magnetoresistance of hole-doped LaMnO3 systems. Phys Rev B 1996, 53(6):3348–3358.
27. Mizusaki J, Yonemura Y, Kamata H, Ohyama K, Mori N, Takai H, Tagawa H, Dokoya M, Naraya K, Sasamoto T, Inaba H, Hashimoto T: Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1−xSr0.5xMo3O12. Solid State Ion 2000, 123(4–6):167–180.
28. Shimura T, Hayashi T, Inaguma Y, Itoh M: Magnetic and electrical properties of La1−x(Ax)(Me)3(Mn)O3 (A=Na, K, Rb, and Sr) with perovskite-type structure. J Solid State Chem 1996, 124(2):250–263.
29. Huang XY, Miyazaki Y, Kajitani T: High temperature thermoelectric properties of La1-xBi0.5Sr0.5Mo3−yV0.23O3 (0 ≤ x ≤ y ≤ 0.08). Sol State Commun 2008, 145(3):132–136.
30. Koc R, Anderson H: Electrical conductivity and Seebeck coefficient of (La, Ca)(Cr, Co)O3. J Mater Sci 1992, 27(20):5477–5482.
31. Kuo J, Anderson H, Sparlin D: Oxidation reduction behavior of undoped and Sr-doped LaMnO3: defect structure, electrical conductivity, and thermoelectric power. J Solid State Chem 1990, 87:55–63.
32. Ritter C, Ibarra M, DeTeresa J, Alragabel P, Marquina C, Boschia J, Garcia J, Oseroff S, Cheong S: Influence of oxygen content on the structural, magnetotransport, and magnetic properties of LaMnO3+δ. Phys Rev B 1997, 56:14.
33. Mizusaki J, Mori N, Takai H, Yonemura Y, Minamiue H, Tagawa H, Dokoya M, Inaba H, Naraya K, Sasamoto T, Hashimoto T: Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides Laδ−ySr1−yMo3O12. Solid State Ion 2000, 129(3–4):163–177.
34. Zeng Z, Greenblatt M, Croft M: Large magnetoresistance in antiferromagnetic CaMnO3−δ. Phys Rev B 1999, 59(13):8784–8788.
35. Taylor FS, Konigic-Karas L, Wilusz E, Lahti PM, Karasz FE: Thermoelectric studies of oligophenylenevinylene segmented block copolymers and their blends with MEH-PPV. Synth Met 2013, 185:109–114.
36. Shi H, Liu C, Xu J, Song H, Lu B, Jiang F, Zhou W, Zhang G, Jiang Q: Facile fabrication of PEDOT:PSS/polypyrrole bilayered nanofilms on pure organic electrodes and their thermoelectric performance. ACS Appl Mater Interfaces 2013, 5(24):12811–12819.
37. Culebras M, Kim J, Sung H, Lee H: Electrical conductivity and thermopower of phosphoric acid doped polyaniline. Synth Met 1997, 84(1–3):789–790.

http://www.nanoscalereslett.com/content/9/1/415

Cite this article as: Culebras et al. La1−xSrxCa2O4 semiconducting nanostructures: morphology and thermoelectric properties. Nanoscale Research Letters 2014 9:415.

doi:10.1186/1556-276X-9-415