Features of adaptive phase correction of optical wave distortion under conditions of intensity fluctuations

N N Botygina¹, O N Emaleev¹, V V Lavrinov¹, V P Lukin¹, A A Selin¹ and E L Soin¹

¹V.E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences, Zuev ave. 1, Tomsk, Russia, 634055

e-mail: lukin@iao.ru

Abstract. For the first time the reason of loss of efficiency of adaptive phase correction at propagation of optical waves in turbulent atmosphere under conditions of strong intensity fluctuations is experimentally explained. According to the data of experiments performed both on horizontal and vertical atmospheric routes, it was found that when the radius of coherence in the optical wave becomes less than the first Fresnel zone, intensity fluctuations begin to affect the data of phase measurements. This results in the fact that the main meter of the adaptive optics (AO) system - Hartmann's sensor - in the presence of deep amplitude modulation no longer provides the correctness of phase distribution measurements. Based on the study of the behavior of the modal components of the phase fluctuations reconstructed from the measurement data at different operating modes, it was found that, first of all, the lower modes of phase fluctuations decomposition - tilts, defocusing and astigmatism - are distorted and, as the analysis of these modes shows, they differ greatly from the classical modes corresponding to the mode of weak fluctuations.

1. Introduction
When analyzing the efficiency of phase correction systems, it is usually assumed that there are no intensity fluctuations. It is interesting to consider another limiting case - the case of strong intensity fluctuations, assuming that the adaptive system has an unlimited spatial and temporal resolution with respect to the correction of phase distortions.

It is known that the phase distortions acquired during the passage through the optically heterogeneous medium are transformed into the modulation of spatial intensity distribution as the wave propagates further. At sufficiently deep modulation points with zero intensity may appear. If we describe any optical wave in terms of complex amplitude \(U \), such points are formed at the intersection (or touch) of lines, where its real and imaginary parts are equal to zero. If \(\text{Re}U \) and \(\text{Im}U \) change the sign from positive to negative when passing through these lines, such intersection points are the dislocation points of the wave front. From the point of view of adaptive phase correction, it is important that the continuity of the two-dimensional phase distribution is disturbed when dislocations appear [1, 2]. When such gaps appear, the error of the wave front approximation by the adaptive mirror will increase significantly. Application of special correctors in general case will not give effect.
also, as at correction of turbulent distortions of dislocation arise in randomly located points of an aperture. Algorithms for drawing the reference wave aberration map, which are used today in most wavefront sensors, give a continuous function of transverse coordinates at the output. In fact, they filter the vortex part of the measurement vector.

2. Numerical experiments
Let us consider the results of [2-7] numerical experiments showing the influence of intensity fluctuations and dislocations on the correction of turbulent distortions. Two aspects are of practical and scientific interest. The first is how much the loss of amplitude information affects the efficiency of phase correction. The second is how much the loss of information contained in the vortex part of phase measurements reduces the efficiency of adaptation.

Numerical experiments were carried out for two correction schemes. The first is the distortion compensation scheme. The second one - adaptation scheme is the PC scheme. For each of the two schemes, two variants of the phase measurement algorithm were considered. In the first case, the ideal adaptive system instantly and accurately reproduces the phase of the reference wave on the entire plane of the cross-section, including special points of the wavefront (dislocation). In the second variant, only the component corresponding to the potential part of the vector field of local slopes of the wave front is corrected. Further on, we will call such correction a correction of the "potential" (or "eddeless") phase. Thus, in fact, we have implemented four schemes of numerical experiment:

1) an ideal compensation system,
2) a system of compensation only for the "potential" part of aberrations,
3) the ideal PC system,
4) the system of PC of the "potential" part of aberrations.

You can enter four numerical parameters of the task, which are the following values: trace length L, aperture diameter of the system D, wavelength λ, turbulence intensity $Cn2$. In accordance with the similarity theory, the problem of plane wave propagation in the turbulent atmosphere is characterized only by two scales: the coherence radius r_0 can be chosen as a transverse scale, and the length of diffraction at the coherence radius $L_t = kr_0*2$ can be chosen as a longitudinal scale. Then the problem will be characterized by the normalized length of the L/L_t trace and the normalized aperture diameter D/r_0. The scintillation index of the plane wave β_o*2 for the power spectrum of turbulence is unambiguously related to the ratio L/L_t: $\beta_o*2 = 2.9(L/L_t)*5/6$. It can be used as a parameter instead of the L/L_t ratio.

![Figure 1. Dependence of the ratio SR on the scintillation index for each of the correction schemes.](image)

The results of our numerical experiments [5-7] are shown in Fig. 1. This figure shows the dependence of the ratio SR on the flicker index for each of the correction schemes. The normalized aperture diameter was $D/r_0 = 10, 20, 30$. Therefore, each scheme corresponds to a family of three curves. For an ideal compensation scheme, the SR ratio practically does not depend on either the normalized aperture diameter or the trace length. The difference between the SR value and the
The efficiency of correction in the scheme of ideal phase conjugation (Fig.2) is not indifferent to the value of intensity fluctuations. However, the dependence is not as strong as one might expect. At $\beta_0^*2 = 3$ the SR parameter decreases to 0.8 and is practically independent of the aperture diameter.

3. The American experiment

There are limited experimental data with which to compare the results of the numerical analysis. Thus, one experiment was carried out at the Lincoln Laboratory in the United States on a 5.5 km long path [8]. The adaptive system included a Hartmann sensor and a deformable mirror. The phase coupling algorithm for the focused beam was used (Fig.3). The wavelength of the reference and corrected beams was 633 and 514 nm, respectively.

![Figure 3. Experimentally obtained dependence of SR on the variance of amplitude fluctuations of a spherical wave and that calculated in the Rytov approximation $\sigma^2 R$.](image)
The vertical axis shows the values of the Strehl parameter for the system. The horizontal axis shows the dispersion of fluctuations in the logarithmic amplitude for the spherical wave. It should be noted that the dispersion of intensity fluctuations is 4 times larger $\sigma^{*2}R$ and the scales of horizontal axes in Figures 1 and 2 practically coincide.

4. Conclusions

Based on the above [1-7], the following conclusions can be drawn:

1. The proposed numerical model of AO system, including the "filtering" algorithm of wave front reconstruction, allows adequately modeling and quantifying the effectiveness of the existing adaptive system under conditions of strong intensity fluctuations.

2. At correction of turbulent distortions efficiency of phase correction decreases approximately twice at increase of the normalized dispersion of fluctuation of intensity (shimmering index) $\beta^{*2} = 0.2$ from zero to one. In this range of values 0.2 correction efficiency practically does not depend on the ratio between aperture diameter and coherence radius. At further increase of intensity fluctuations the dependence of correction efficiency on aperture diameter begins to appear. The increase β^{*2} of 0.2 to 3 leads to a drop in the correction efficiency by an order of magnitude or more, and the SR parameter tends to the value obtained in the system without correction.

3. Since the level of $\beta^{*2} = 3$ approximately corresponds to the boundary of applicability of the method of smooth perturbations method (SPM), it can be assumed that the applicability of SPM is also associated with the occurrence of dislocations. Note that at the dislocation points, the intensity is equal to zero and the logarithm of the amplitude turns to infinity, while perturbation method is actually a perturbation method for the logarithm of the field.

4. The decrease in the efficiency of the adaptive correction of the "eddeless" phase with the growth of intensity fluctuations is approximately the same in both the phase compensation scheme and the phase conjugation scheme. The differences between the plane wave and beam are also insignificant, which follows from the comparison with the Lincoln Laboratory experiment.

It is interesting to note [7] that even at large amplitude fluctuations, the use of adaptive phase correction still provides a certain and quite significant benefit compared to the case without correction. The value of the SR parameter is compared here. Table 1 shows the ratio of the corrected SRc parameter to the uncorrected SRu parameter value for the scheme of compensation of the "eddeless" phase at the variance of $\beta^{*2} = 3$.

D/r_0	SR_u	SR_c	SR_c/SR_u
10	0.0324	0.129	3.98
20	0.0106	0.038	3.58
30	0.0051	0.025	4.90

Table 1 shows that for all values of D/r_0, the corrected value of the Strehl parameter is approximately four times greater than the unadjusted value.

5. Experiments in the field of «strong fluctuations»

We have carried out experiments with mock-ups of AO systems [9-14] in recent years, both on extended vertical and horizontal atmospheric routes. Measurements made with the WFS on the long paths along the surface layer of the atmosphere showed that in addition to seasonal and daily variations, there is a rapid [13, 14] variability in the intensity of turbulence, which leads to variability of its integral value even on extended horizontal paths (Fig.4).

A sharp seasonal variation [9-12] in the level of integral turbulence (Fig.5) was detected on the inclined astronomical trails: for summer, the coherence radius is 4.6 cm on average, and for winter - 1.5 cm.
Figure 4. Temporary changes of the coherence radius, measured by a wavefront sensor on a horizontal optical path 2 km long.

Figure 5. Seasonal changes of the coherence radius (for a wavelength of 0.535 µm) measured by a wavefront sensor on an astronomical optical path near lake Baikal.

Comparison of the behavior of the measured modal components of phase distortions at weak and strong intensity fluctuations shows that the appearance of intensity fluctuations leads to a parasitic modulation of the lower modes spectra, which causes the loss of efficiency of phase correction. And it, first of all, affects the data of phase measurements made with the help of the classical sensor of a wavefront - Shack-Hartmann.

It is known that the Shack-Hartmann sensor determines phase fluctuations from the positions of the focal spot system's centers of gravity. Under conditions of weak intensity fluctuations these values are measured with high accuracy (pixel fraction). Deep amplitude modulation in the optical wave causes strong fluctuations in the illumination of individual spots, up to their complete freezing, which leads to a loss of signal informativeness (Fig.6). From the measurement point of view, this means that the actual amplitude fluctuations influence the measurement data of phase fluctuations.

For the further analysis of the situation the accuracy analysis of estimation of the position of the focal points of gravity in Hartmann's sensor with the use of various threshold values of illumination (Fig.7) up to the value of 1.5 times higher than their background value was made.

The next step in the development of the AR systems is to search for the possibilities of the AO system operation at "strong" amplitude manifestations. In our opinion, one of the methods of struggle [15] with the influence of flickers can be automatic rejection of individual subpertures in the sensor picture, which will not be used to restore the phase. In the process of calculating the phase fluctuations, only "good" subpertures will be used, where the illumination exceeds the threshold.

Fig.8 shows the sequence of frames in the realization of optical experiment, where the Shack-Hartmann sensor was used. The figure gives dependence of number of subpertures on which
illumination in a maximum appears below a threshold. Thus, it turns out that on some frames there is a "freeze" of illumination level almost to zero.

Figure 6. Characteristic appearance of the pattern of focal spots in the Hartmann sensor under different modes of weak (left) and strong (right) fluctuations.

Figure 7. Change of the maximum illumination values of the images formed by the wavefront sensor subapertures. \(E_{\text{max}} \) - the maximum illumination value of the image formed by the wavefront sensor subaperture, \(E_{\text{th}} \) - the threshold value of the maximum illumination of the image formed by the wavefront sensor subaperture, \(E_{\text{th}} = 1.5 E_0 \), where \(E_0 \) – maximum background illumination.

In addition to carrying out the culling of individual subapertures, it is also possible to use multistage phase correction with the use of non-phase sensors to measure the general inclination fluctuations and wave front defocusing to combat the influence of amplitude fluctuations.
Figure 8. N_1 - number of subapertures that form images with maximum illumination values below the threshold, N_0 - total number of fully illuminated wavefront sensor subapertures.

6. References

[1] Fortes B V, Kanev F Yu, Konyaev P A and Lukin V P 1994 Potential capabilities of aviation optical systems in the atmosphere Journ. Opt. Soc. Am. A 11(2) 903-907
[2] Lukin V P, Fortes B V 1998 Estimation of turbulent degradation and required spatial resolution of adaptive systems Proc. SPIE 3494 191-202
[3] Lukin V P, Fortes B V 2000 Adaptive correction of the focused beam under the conditions of the strong intensity fluctuations Atmospheric and Oceanic Optics 13(5) 515-520
[4] Lukin V P 2000 Anisoplanatic degradation of correction with real beacon SPIE Press. Selected Papers 4338 107-117
[5] Lukin V P, Sennikov V A and Tartakovski V A 2000 Optical vortices: creation, annihilation, and modeling SPIE Press. Selected Papers 4338 57-67
[6] Lukin V P, Fortes B V 2000 Adaptive correction of the focused beam in conditions with strong fluctuations of intensity Proc. SPIE 4034 176-183
[7] Lukin V P, Fortes B V 2002 Phase-correction of turbulent distortions of an optical wave propagating under strong intensity fluctuations Applied Optics 41(27) 5616-5624
[8] Primmerman C A, Price T R, Humphreys R A, Zollars B G, Barclay H T and Herrmann J 1995 Atmospheric-compensation experiments in strong-turbulence conditions Appl. Opt. 34 2081-2089
[9] Botygina N N, Emaleev O N, Konyaev P A, Kopylov E A and Lukin V P 2018 The development of the elements for creating adaptive optics system for solar telescope J. Appl. Remote Sensing 12(4) 042403 DOI: 10.1117/1.JRS.12.042403
[10] Kopylov E A, Lavrinov V V, Lukin V P and Selin A A 2018 Methods of image correction formed on horizontal long paths Proc. SPIE 10677 DOI: 10.1117/12.2309327
[11] Botygina N N, Emaleev O N, Konyaev P A, Kopylov E A and Lukin V P 2018 Development of elements for an adaptive optics system for solar telescope Proc. SPIE 10703 107032P
[12] Lukin V P, Lavrinov V V, Kopylov E A and Selin A A 2018 Adaptive image correction for long-path propagation Proceedings International Conference Laser Optics 8435596 185 DOI: 10.1109/LO.2018.8435596
[13] Botygina N N, Emaleev O N, Konyaev P A, Kopylov E A and Lukin V P 2018 Development of the element base for the creation of the adaptive optics system on the solar telescope Atmospheric and Oceanic Optics 31(2) 216-223 DOI: 10.1134/S1024856018020057
[14] Botygina N N, Kolobov D Yu, Kovadlo P G, Lukin V P, Chuprakov S A and Shikhovtsev A Yu 2018 Two-mirror adaptive system for correction of atmospheric disturbances of the Large Solar Vacuum Telescope Atmospheric and Oceanic Optics 31(6) 709-717 DOI: 10.1134/S1024856018060064
[15] Lukin V P 2019 Adaptive image correction for the incoherent source-object Quantum Electronics 49(2) 162-168 DOI: 10.1070/QEL16791

Acknowledgments
The work was carried out with funding from the project II.10.3.5. "Development of methods and systems for adaptive correction for the formation of coherent beams and optical images in the atmosphere" (AAAA-A17-117021310146-3).