Function of Conserved Acidic Residues in the PSST Homologue of Complex I (NADH:Ubiquinone Oxidoreductase) from Yarrowia lipolytica*

Pamela M. Ahlers, Klaus Zwicker, Stefan Kerscher, and Ulrich Brandt‡

From the Universitätsklinikum Frankfurt, Institut für Biochemie I, D-60590 Frankfurt am Main, Federal Republic of Germany

Proton-translocating NADH:ubiquinone oxidoreductase (complex I) is the largest and least understood enzyme of the respiratory chain. Complex I from bovine mitochondria consists of more than forty different polypeptides. Subunit PSST has been suggested to carry iron-sulfur center N-2 and has more recently been shown to be involved in inhibitor binding. Due to its pH-dependent midpoint potential, N-2 has been proposed to play a central role both in ubiquinone reduction and proton pumping. To obtain more insight into the functional role of PSST, we have analyzed site-directed mutants of conserved acidic residues in the PSST homologous subunit of the obligate aerobic yeast Yarrowia lipolytica. Mutations D136N and E140Q provided functional evidence that conserved acidic residues in PSST play a central role in the proton translocating mechanism of complex I and also in the interaction with the substrate ubiquinone. When Glu89, the residue that has been suggested to be the fourth ligand of iron-sulfur center N-2 was changed to glutamine, alanine, or cysteine, the EPR spectrum revealed an unchanged amount of this redox center but was shifted and broadened in the g, region. This indicates that Glu89 is not a ligand of N-2. The results are discussed in light of structural similarities to the homologous [NiFe] hydrogenases.

Proton-translocating NADH:ubiquinone oxidoreductase (EC 1.6.99.3, complex I) is the first complex of the mitochondrial respiratory chain. It couples the transfer of two electrons from NADH to ubiquinone to the translocation of four protons across the inner mitochondrial membrane (1, 2).

In bovine heart, this enzyme is made up of 43 different subunits (3) with a molecular mass of nearly 1000 kDa. The homologous prokaryotic complex I has a minimal number of 14 subunits with a total molecular mass of ~500 kDa (4). These 14 central subunits, seven of which are mitochondrially encoded, are well conserved among species.

Electron microscopic studies of Neurospora crassa (5), E. coli (6), and bovine complex I (7) show that both the bacterial and the mitochondrial complexes are L shaped with an intrinsically membrane arm extending into the lipid bilayer and a peripheral arm protruding into the mitochondrial matrix. The seven central, nuclear-coded subunits are part of the peripheral arm (8, 9) and include the subunits that bear all known redox groups of complex I, namely one noncovalently bound FMN and at least six iron-sulfur centers (10). The membrane arm contains the seven hydrophobic, mitochondrially encoded subunits.

The mechanism that couples proton translocation across the membrane to electron transfer from NADH through FMN and several iron-sulfur centers onto ubiquinone is unknown. All postulated mechanisms are rather speculative (11). However, it seems likely that iron-sulfur center N-2 is the immediate electron donor to ubiquinone. The pH-dependent midpoint potential of N-2 might indicate that this redox center is directly involved in proton pumping (11–13). However, the location of iron-sulfur center N-2 is still controversial because two approaches to resolve this issue gave contradictory results. Site-directed mutagenesis in E. coli suggests the PSST homolog (14), and a similar study in Rhodobacter capsulatus (15) suggests the TYKY homolog as the most likely candidates to bind N-2.

These studies suffer from the fact that prokaryotic complex I tends to be rather unstable (16) and is down-regulated in deficient mutants from E. coli, the only bacterium that has an enzyme stable enough to be purified (17). Pure complex I from mitochondria of bovine heart and the fungus Neurospora crassa can be easily obtained in large quantities. However, genetic manipulation in these organisms is either impossible or rather difficult (18). Therefore, we have established the obligate aerobic yeast Yarrowia lipolytica as a model to study the structure and function of complex I. In contrast to brewer’s yeast Saccharomyces cerevisiae, Y. lipolytica does contain complex I and most of the powerful genetic tools that are routinely used in S. cerevisiae are available (19). Here we report the first application of this novel yeast genetic system to study the function of complex I.

To identify functionally important residues in the PSST homologue subunit of the Y. lipolytica complex I, we have introduced a series of single amino acid exchanges and replaced acidic residues that are strictly conserved among all known sequences. The altered protein complexes were analyzed for complete assembly in mitochondrial membranes and as purified enzymes. Functional changes were analyzed by enzyme kinetics, inhibitor sensitivity, and EPR spectroscopy.

EXPERIMENTAL PROCEDURES

Materials—Tag DNA polymerase was from Sigma, cloned *Pfu* DNA polymerase, and *PfuTurbo* DNA polymerase were obtained from Stratagene. Restriction endonucleases and DNA-modifying enzymes were

* This work was supported by Grant SFB 472-P2 from the Deutsche Forschungsgemeinschaft and by the Fond der Chemischen Industrie. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ To whom correspondence should be addressed: Universitätsklinikum Frankfurt, Institut für Biochemie I, ZBC Theodor-Stern-Kai 7, Haus 25B, D-60590 Frankfurt am Main, Germany, Tel.: 49 69 6301 6926; Fax: 49 69 6301 6970; E-mail: brandt@zbc.klinik.uni-frankfurt.de.

1 R. Djafarzadeh, S. Kerscher, K. Zwicker, M. Radermacher, M. Lindahl, H. Schägger, and U. Brandt, submitted for publication.
from New England Biolabs, and T4 DNA ligase was from Life Technologies, Inc. Hybond N+ membranes were obtained from Machery and Nagel. The ABI Prism dye terminator cycle sequencing kit was purchased from Perkin-Elmer. NBQ2 was synthesized according to the protocol of (20). N-methyl-N-v-3, 4-dimethoxybenzyl-4-(p-tert-butylphenoxy)-benzamide (21) was a kind gift from H. Miyoshi, Kyoto University.

Strains— Y. lipolytica strains E129 (MatA, lys1–23, ura3-1,2) and E150 (MatB, his-1, ura3-302, leu2-270, xpr2-322) and E150 (MatB, his-1, ura3-302, leu2-270, xpr2-322) were a kind gift from Prof. C. Gaillardin, INRA, Paris, France. The diploid strain GB1 was produced by mating E129 and E150. Y. lipolytica genes were carried out according to Ref. 19.

Deletion of NUKM, the Y. lipolytica Homologue of PSST— The NUKM gene was deleted by homologous recombination with a LEU2-marked deletion allele. A 3.5-kb genomic PsrU1 fragment was subcloned into a pBluescript 228 SK(–) derivative from which part of the polylinker region had been deleted by digestion with KpnI and HindIII, blunt ended using Klenow polymerase, and religation. A region of roughly 760 base pairs, encompassing nearly the complete NUKM open reading frame except for three amino acids at the 3′-end and about 140 base pairs of the 5′-flanking region were removed by digestion with HindIII and KpnI and replaced with a 1.9-kb fragment carrying the complete LEU2 gene from Y. lipolytica. The resulting 4.7-kb PstI fragment in which the orientation of the LEU2 gene was opposite to the original NUKM gene was used for transformation of diploid Y. lipolytica GB1 cells. 26 LEU2 colonies were screened for homologous recombination at the chromosomal NUKM locus by polymerase chain reaction using combinations of inward primers derived from sequences outside the 4.7-kb PstI fragment (nPSST1 and nPSST2) and outward primers derived from the LEU2 sequence (yileu2/1 and yileu2/ds) and by Southern blot analysis. Two heterozygous deletion mutant strains (PA1.1 and PA1.2) were identified.

Site-directed Mutagenesis of the PSST Homologue of Complex I— Point mutations were created using the QuikChange site-directed mutagenesis kit from Stratagene, using as a template a 2.3-kb EcoRI/EcoRI fragment subcloned into the replicative vector pINA43 carrying the selection marker URA3 (in the following termed pNUKMnu/URA3). Mutated plasmids were confirmed by DNA sequencing and used for transformation of the heterozygous deletion strain PA1.2. Haploid strains carrying the desired mutation were obtained by sporulation followed by random spore analysis. LEU2, URA3 spores were tested for the absence of the genomic copy of NUKM by polymerase chain reaction or Southern blotting and the mutation was reconfirmed by sequencing of the entire open reading frame on the plasmid.

Analytical Methods— Protein was determined according to a modified Lowry protocol (22). Blue native polyacrylamide gel electrophoresis was as described in Ref. 23.

Preparation of Unsealed Mitochondrial Membranes— Unsealed mitochondrial membranes were prepared from haploid parental strain E150 and haploid mutant strains (nukm::LEU2, ura3, leu2, lys, pNUKMnu/URA3) as described previously (24). Cells were grown in complete YPD medium to early stationary phase (4–6 × 106 cells/ml), harvested by centrifugation for 10 min at 5000 × g (typical yield 30–35 g/liter wet weight), and resuspended in 150 ml of 400 mM sucrose, 20 mM Na3

Y. lipolytica	**TFGLCAVE**	**VLQYVDQMP**	**EPRVWMSG**	**CANGGGYY**	**FYSVVRGCDR**	**CPTTSEALMY**
B. taurus	**TFGLCAVE**	**ALRKVDQMP**	**EPFVVMGC**	**CANGGGYY**	**YFSVVRGCDR**	**CPTTSEALMY**
N. crassa	**TFGLCAVE**	**ALRKVDQMP**	**DPFVVMGA**	**CANGGGYY**	**YFSVVRGCDR**	**CPTTSEALMY**
P. denitrificans	**TFGLCAVE**	**ARLVDPQMP**	**EPRVWMSG**	**CANGGGYY**	**YFSVVRGCDR**	**CPTTSEALMY**
E. coli	**TFGLCAVE**	**VQRVLQCM**	**EPFKVWMS**	**CANGGGYY**	**YFSVVRGCDR**	**CPTTSEALMY**
T. aquaticus	**TFGLCAVE**	**VMRVRWEQMP**	**DPFKVWMS**	**CASSGMNF**	**N-YAIVQMVDS**	**CRPPEALMQ**

Fig. 1. Site-directed mutagenesis of acidic residues in the PSST-homologue of Y. lipolytica. The protein sequences from various organisms were aligned using the CLUSTAL program of the HUSAR 4.0 package, DKFZ Heidelberg, Germany. Identical amino acids are marked by asterisks, and similar residues are marked by dots. Residues forming the noncanonical binding motif that has been suggested to bind a Fe₃S₄ center are shaded in gray. Positions of point mutations in Y. lipolytica are marked with arrows.

Purification of Complex I— NADH:ubiquinone oxidoreductase was purified by stepwise extraction of the mitochondrial membranes with dodecyl maltoside followed by ion exchange and size exclusion chromatography.

EPR Spectroscopy— Low temperature EPR spectra were obtained on a Bruker ESP 300E spectrometer equipped with a liquid helium continuous flow cryostat, ESR 900 from Oxford Instruments. Samples were mixed with NADH in the EPR tube and frozen in liquid nitrogen after a 30-s reaction time. The protein concentration of purified complex I was 3–9 mg/ml.

Determination of Catalytic Activities— Steady state dNADH:NQ activity was recorded in a Shimadzu UV-300 spectrophotometer as NADH oxidation (+50–400 nm = 6.1 μM − cm⁻¹) using a thermostatted cuvette (30 °C). 100 μM dNADH and 50 μg/ml unresealed mitochondrial membranes were added to buffer containing 50 mM Tris/HCl, pH 7.4, and 2 mM KCN. The catalytic reaction was started by the addition of 60 μM NQ (25). Complex I activity could be selectively measured with dNADH as a substrate, because as previously shown for other species (26), it is not oxidized by alternative NADH:ubiquinone oxidoreductases. Inhibitors were added to the cuvette prior to NQ. Michaelis-Menten parameters were determined by varying the concentration of NQ (1–100 μM). The pH dependence of the catalytic rate was measured in a multibuffer containing 10 mM each of Mes, Mops, Caps, and Caps and 2 mM NaN₃ to cover a pH range from 5.0 to 10.0. The buffer was adjusted to the appropriate pH by adding NaOH. Data were fitted according to the following equation (27),

\[
 Rate = \frac{C \times \frac{1}{[H]} \times \frac{1}{H}}{1 + \frac{K_a}{[H]} + \frac{K_a}{[H]^2}} (\text{Eq. 1})
\]

where Rate is the observed catalytic rate in the presence of saturating substrate concentrations (100 μM dNADH, 60 μM NQ), [H]+ is the concentration of protons, K_a and K_a are the dissociation constants of two protonable groups A and B, and C is the optimal catalytic rate that would be observed if group A was deprotonated and group B was protonated in all enzyme molecules.

Detergent- and inhibitor-sensitive dNADH:HR activity was measured using 200 μM dNADH and 2 mM HAR, 2 mM NaN₃ in 20 mM Na⁺/Hepes, pH 8.0 at 30 °C (28). The reaction was started by the addition of 50 μg/ml unresealed mitochondrial membranes.

Kinetic data were analyzed using the Pispilot software package version 4.61 (Poly Software International). The numerical procedure used to fit experimental data was the Marquardt algorithm (29).

RESULTS

Sequence Properties of the NUKM Gene Product— N-terminal sequencing by Edman degradation identified SAPAGT as the first six amino acids of the mature protein. Thus, 27 amino acids represented the mitochondrial imported sequence, and the molecular mass of the mature protein is 20.3 kDa. Fig. 1 shows a partial sequence alignment of the PSST homologue from Y. lipolytica with bovine, fungal, and bacterial proteins. As only one of the two adjacent conserved cysteins in positions 85 and 86 could serve as a ligand for steric reasons the motif CXXE-(X)₉₋₁-C-(X)₉₋₁-CP has been suggested to bind iron-sulfur center...
Deletion and Site-directed Mutagenesis of NUKM—The reading frame of the NUKM gene was deleted by homologous recombination with a LEU2 marked deletion allele (Fig. 2) in the diploid Y. lipolytica strain GB1. Replicative plasmids carrying site-directed mutations (Table I), which altered four conserved acidic residues, including the putative glutamic acid ligand for the iron-sulfur center N-2 (Glu89 in Y. lipolytica) were used to screen LEU2 colonies for marker insertion by homologous recombination. Restriction sites: E, EcoRI; H, HindIII; K, KpnI; P, PstI.

Complex I Content and Characterization of Mitochondrial Membranes from Y. lipolytica—Specific dNADH:HAR activities of Y. lipolytica mitochondrial membranes were in the same range for all seven strains (Table I). Among the representative membrane preparations listed in Table I, only the membranes from mutants E89C and E89A that were prepared in parallel batches exhibited a 45% higher activity. As the nonphysiological dNADH:HAR activity only depends on a functional 51-kDa complex I inhibitors. Whereas the I50 values for these three compounds were in the same range in Y. lipolytica membranes as for bovine heart sub mitochondrial particles (28), up to 10 μM of an efficient type C inhibitor, the capsaicin derivative N-(3, 4-dimethoxybenzyl)-4-(p-tert.-butylphenoxy)-benzamide (21), did not have any effect on the activity of complex I from Y. lipolytica (data not shown). Y. lipolytica complex I was efficiently inhibited (Table III) by the type A inhibitors piericidin A and DQA and the type B inhibitor rotenone (see Ref. 34 for the classification of complex I inhibitors). Whereas the I50 values for these three compounds were in the same range in Y. lipolytica membranes as for bovine heart sub mitochondrial particles (25), up to 10 μM of an efficient type C inhibitor, the capsaicin derivative N-methyl-N-(3, 4-dimethoxybenzyl)-4-(p-tert.-butylphenoxy)-benzamide (21), did not have any effect on the activity of complex I from Y. lipolytica (data not shown).

The pH dependence of specific activity. The steady-state rates of dNADH:NBQ oxidoreductase activity were measured covering a pH range from 5.0 to 10.0 using unsealed mitochondrial membranes (50 μg/ml total protein) at saturating substrate concentrations as described under "Experimental Procedures." The parameters used to plot the fitted curves are listed in Table II. For the parental strain, pH = 6.4 ± 0.1 and pKm = 8.8 ± 0.1 (Table II).

Y. lipolytica complex I was efficiently inhibited (Table III) by the type A inhibitors piericidin A and DQA and the type B inhibitor rotenone (see Ref. 34 for the classification of complex I inhibitors). Whereas the I50 values for these three compounds were in the same range in Y. lipolytica membranes as for bovine heart sub mitochondrial particles (25), up to 10 μM of an efficient type C inhibitor, the capsaicin derivative N-methyl-N-(3, 4-dimethoxybenzyl)-4-(p-tert.-butylphenoxy)-benzamide (21), did not have any effect on the activity of complex I from Y. lipolytica (data not shown).

We also monitored the low temperature EPR spectra of isolated complex I reduced with NADH (Fig. 4) that have been discussed in detail elsewhere.1

Under these test criteria, characteristic alterations could be detected in all mutants analyzed here (see below) with the notable exception of D168N (Tables I and II), which exhibited virtually the same properties as the parental strain. This demonstrated that full complementation was achieved by the copy of the NUKM gene on the plasmid.

TABLE I

Strain	HAR Activity	Kₘ (NBQ)	Vmax (NBQ)	NBQ normalized Vmax
	μmol min⁻¹ mg⁻¹	μM	μmol min⁻¹ mg⁻¹	%
Parental	1.1	14.1 ± 0.7	0.58 ± 0.02	100
D168N	1.1	21.1 ± 1.3	0.56 ± 0.02	97
D136N	1.1	17.6 ± 1.1	0.10 ± 0.02	17
E140Q	1.1	15.4 ± 0.9	0.27 ± 0.02	47
E89Q	1.1	9.3 ± 0.6	0.51 ± 0.02	88
E89C	1.6	17.8 ± 0.9	0.39 ± 0.02	67
E89A	1.6	18.6 ± 0.7	0.43 ± 0.02	74

*To account for variations of complex I content in different batches of mitochondrial membranes the dNADH:NBQ activities were normalized to dNADH:HAR activities that were not affected by the mutations and reflected the complex I content.

Fig. 2. Construction of the nukmc:LEU2 deletion allele (A) and deletion of the genomic copy by homologous recombination (B). The NUKM open reading frame is shaded in dark gray. Polymerase chain reaction primer pairs ylleu2/as, nPSST/1 and ylleu2/bs, nPSST/2 were used to screen LEU2 colonies for marker insertion by homologous recombination. Restriction sites: E, EcoRI; H, HindIII; K, KpnI; P, PstI.

Fig. 3. pH dependence of specific activity. The steady-state rates of dNADH:NBQ oxidoreductase activity were measured covering a pH range from 5.0 to 10.0 using unsealed mitochondrial membranes (50 μg/ml total protein) at saturating substrate concentrations as described under "Experimental Procedures." The parameters used to plot the fitted curves are listed in Table II. ● parental strain; ■ mutant strain E140Q; ▲ mutant strain D136N.
Function of Complex I—The maximal dNADH:NBQ oxidoreductase activities at pH 7.4 for mitochondrial membranes from mutants D136N and E140Q were significantly decreased to about 20 and 50%, respectively, as compared with the parental strain, but the \(K_m \) for NBQ was only slightly affected (Table I). Mutations D136N and E140Q also resulted in a narrowed pH optimum for the steady-state activity (Table II). The \(pK_a \) values for DQA (type A inhibitor) shown in Table III revealed for both mutations a slight but significant resistance, whereas a 4–5-fold hypersensitivity was observed for rotenone (type B inhibitor). Exchanging these two conserved acidic residues with the corresponding amide had no effect on the EPR spectra of the reduced iron-sulfur centers of complex I (data not shown).

Glu\(^{89}\) Is Not a Ligand of Iron-Sulfur Center N-2—Exchanging Glu\(^{89}\), the glutamate that has been proposed as the forth ligand of iron-sulfur center N-2, with the corresponding amide had no effect on the EPR spectra of the reduced iron-sulfur centers of complex I (data not shown).

\[\text{Equation 1.} \]

Table II

Strain	\(pK_a \)	\(pK_b \)
Parental	6.4 ± 0.1	8.8 ± 0.1
D168N	6.4 ± 0.1	9.0 ± 0.1
D136N	7.0 ± 0.1	8.5 ± 0.1
E140Q	6.8 ± 0.1	8.3 ± 0.1
E89Q	6.4 ± 0.1	8.9 ± 0.1
E89C	6.4 ± 0.1	8.7 ± 0.1
E89A	6.3 ± 0.1	8.8 ± 0.1

Table III

Strain	\(I_{50} \)	\(K_m \) for DQA	\(K_m \) for Rotenone
Parental	3	550	na
D168N	3	600	na
D136N	5	100	na
E140Q	4	150	na
E89Q	2	620	na
E89C	8	630	na
E89A	5	590	na

DISCUSSION

With the work presented here we have established \emph{Y. lipolytica} as a powerful yeast genetic model for the analysis of mitochondrial complex I. We have demonstrated efficient deletion of a gene for a nuclear coded subunit of complex I by homologous recombination using the \emph{LEU2} marker gene and the introduction of site-directed mutations using a replicative plasmid.

PSST, the subunit studied here, is one out of five complex I subunits that are homologous to subunits of bacterial membrane-bound [NiFe] hydrogenases (35) (Fig. 5). Those two that are conserved between soluble (36, 37) and membrane-bound [NiFe] hydrogenases, and complex I may be regarded as the catalytic core of complex I. The large subunit of soluble [NiFe] hydrogenases harbors the binuclear [NiFe] active site and is homologous to the 49-kDa subunit of complex I, and the small iron-sulfur subunit is related to PSST. PSST can be labeled specifically with a photoreactive pyridaben derivative (38), ligand of iron-sulfur center N-2, with three different amino acids had only moderate effects on complex I activity in mitochondrial membranes (Table I). Complex I from all three mutants showed a normal pH profile that could be fitted with the same \(pK \) values as the enzyme from the parental strain (Table II).

Whereas normal amounts of iron-sulfur center N-2 could be detected by EPR spectroscopy in all three mutant enzymes, a clear shift of the \(g_z \) signal to higher and of the \(g_{xy} \) signal to lower values (Fig. 4A) was observed. The 16 K spectra shown in Fig. 4B also revealed that in parallel to this shift the \(g_z \) line of N-2 was significantly broadened. The corresponding line widths (\(L_z \)) are listed in Table IV. Moreover, the power saturation characteristics at 12 K of center N-2, expressed as half saturation parameters (\(P_{1/2} \)), were altered in all three Glu\(^{89}\) mutants (Table IV). Remarkably, the most conservative exchange E89Q had the most pronounced effect and was the only mutation that also caused a slight decrease of the \(K_m \) for ubiquinone (cf. Table II). In contrast, exchanging Glu\(^{89}\) for the potential iron-sulfur ligand cysteine and the small hydrophobic alanine caused much smaller but similar changes of the EPR parameters of center N-2 (Fig. 4 and Table IV). As replacing Glu\(^{89}\) by three different residues had only minor effects on the EPR spectra of the iron-sulfur center N-2, we conclude that it is not a ligand of this redox group.

FIG. 4. EPR spectra of purified complex I. EPR spectra of purified complex I from \emph{Y. lipolytica} strains carrying mutations of the putative N-2 ligand Glu\(^{89}\) are compared with spectra obtained with parental enzyme. Complex I was reduced with 6 mM NADH. A, EPR spectra of complex I obtained at 16 K; the \(g_z \) and \(g_{xy} \) signal positions for center N-2 are indicated; B, enlarged view of the \(g_z \) region for iron-sulfur center N-2. EPR conditions: microwave frequency, 9.48 GHz; microwave power, 2 milliwatts; modulation amplitude, 1 millitesla (mT).
whereas a piericidin A-resistant mutant of R. capsulatus was found to reside in the 49-kDa subunit (39).

In the present work, we have studied a series of site-directed mutations of acidic residues in the subunit of Y. lipolytica complex I homologous to PSST to gain insight into the proposed functional role of this critical subunit. Exchanging Asp136 with the corresponding amide resulted in fully assembled and stable complex I that exhibited specific functional alterations when compared with the parental enzyme, namely lowered catalytic activity, slight resistance to DQA and hypersensitivity to rotenone. Most notable was a pronounced narrowing of the pH profile for the steady-state activity that could be expressed as shifts of 0.3–0.6 units in two pK values fitted to an equation that quantitatively described the pH dependence of activity (Fig. 3). Qualitatively, mutation E140Q had the same but somewhat less pronounced effects. Global structural changes caused by the mutations could be ruled out, as the EPR spectra of all iron-sulfur centers and especially of center N-2 were not altered at all. The fact that removing either one of these two adjacent conserved acidic residues caused such well defined and similar changes seems to indicate that Asp136 and Glu140, which are not in the vicinity of any residues previously proposed to be functionally important within PSST, play a specific role in the mechanism of complex I. Although the limited effect on the catalytic rate excludes that these two residues correspond to the two pK\textsubscript{a} values controlling catalytic activity, it is tempting to speculate that they might contribute to a channel that transfers protons to or away from center N-2. The changed affinity for complex I inhibitors fits well with covalent labeling of this subunit with a derivative of pyridaben (38).

It is still controversial whether iron-sulfur center N-2 is located in subunit PSST or TYKY as removing the putative cysteine ligands by site-directed mutagenesis of TYKY in R. capsulatus (15) and PSST in E. coli (40) gave conflicting results. Subunit PSST lacks a canonical motif for Fe\textsubscript{4}S\textsubscript{4} coordination, because only three of the four cysteine residues ligation the corresponding iron-sulfur center in the small subunits of [NiFe] hydrogenases (36, 37) are conserved. However, it has been speculated that the conserved glutamic acid in position 89 downstream of the first cysteine may represent the fourth ligand for center N-2 (30) (see Fig. 1). This option can be excluded by the data presented here. If one assumes that despite the rather weak sequence homology between the small subunit of [NiFe] hydrogenases and PSST, the overall folding of the protein was preserved during evolution; the residue corresponding to Glu89 in the structure of the hydrogenase from Desulfovibrio fructosovorans (36), or Desulfovibrio gigas (37) is found to be close but on the “wrong” side with respect to the location of a potential iron-sulfur center. In fact, based on this structural homology it is very difficult to identify conserved residues in PSST that could replace the cysteine missing in position 83 of the Y. lipolytica protein. As deduced from the hydrogenase fold, Asp168 is the conserved acidic residue that comes closest to the correct position near the putative iron-sulfur center in PSST. However, we could not find that replacing this residue by an asparagine had any effect on complex I and its EPR spectra. Thus, if N-2 were to be in PSST, the fourth ligand has yet to be identified.

Similarly, from the observed shift and broadening of the EPR line shape of iron-sulfur center N-2 by mutations in position Glu89 it does not follow that N-2 is in PSST as this could also be interpreted as an indirect effect on the redox-center residing in TYKY. The membrane-bound [NiFe] hydrogenase from Methanosarcina barkeri (35) contains homologues of both of these subunits (Fig. 5), which both carry iron-sulfur centers, one Fe\textsubscript{4}S\textsubscript{4} center in the PSST and two Fe\textsubscript{4}S\textsubscript{4} center in the TYKY homolog. Apparently, already acquisition of a subunit homologous to TYKY by these membrane-bound hydrogenase was accompanied by the loss of two of the iron-sulfur centers found in the PSST homologous subunit of soluble hydrogenases. Therefore, the two Fe\textsubscript{4}S\textsubscript{4} centers in TYKY could have taken over the function of these iron-sulfur centers. This hypothetical arrangement is likely to be found in complex I and makes it very likely that TYKY and PSST are in close contact to each other. This would position the Fe\textsubscript{4}S\textsubscript{4} centers in TYKY within a couple of angstroms to Glu89 in complex I and may also explain why studies with site-directed mutations in the more fragile bacterial enzymes lead to contradictory results.

Overall, our analysis of site-directed mutants of conserved acidic residues in the PSST subunit provides additional strong

Table IV

Characteristic features of the EPR spectra of center N-2 of mutant strains Glu89 in comparison with parental strain

Strain	g\textsubscript{a}	g\textsubscript{b}	g\textsubscript{c}	P\textsubscript{1/2}	P\textsubscript{a}
	millitesla	millitesla	millitesla	milliwatt	milliwatt
Parental	2.052	1.26	2.054	1.1	17.2 ± 1.1
E89Q	2.057	2.04	2.054	1.1	26.1 ± 3.9
E89C	2.054	1.65	2.054	1.0	11.9 ± 1.0
E89A	2.054	1.51	2.054	0.4	10.7 ± 0.4

\(^a \) g\textsubscript{a} and g\textsubscript{c} values were taken from Fig. 4.

\(^b \) P\textsubscript{1/2} values were determined at 12 K.

![Fig. 5](image-url)

Fig. 5. Homologous subunits from complex I and [NiFe] hydrogenases. A schematic model for the arrangement of homologous subunits of (A) complex I and (B) membrane-bound [NiFe] hydrogenase from M. barkeri (35) is shown. EchE and the 49-kDa subunit are homologous to the large subunit, and EchC and PSST are homologous to the small subunit of soluble [NiFe] hydrogenases.
evidence that this subunit plays a critical role in the catalytic mechanism of complex I. However, there is still no definite answer whether it contains iron-sulfur center N-2. Because we could exclude Glu89 as the forth ligand for center N-2, models proposing that N-2 resides in PSST now have to solve the problem of the missing fourth ligand.

Acknowledgments—We are indebted to Claude Gaillardin and colleagues for the gift of Y. lipolytica strains E128 and E150, the replicative Y. lipolytica plasmids pINA240 and pINA443, and for constant support and many helpful suggestions. Piericidin A was a kind gift from Alain Dupuis, Grenoble; N-methyl-N-(3, 4-dimethoxybenzyl)-4-(p-tert-butylphenoxy)benzamide was from Hideto Myoshi, Kyoto; and DQA was from AgrEvo GmbH, Biochemical Research. We thank Dr. Jürgen G. Okun andORG Djafzarzadeh Andabili for their help with the isolation of complex I, and Gudrun Beyer and Franz J. Streb for excellent technical assistance.

REFERENCES
1. Wikstro¨m, M. K. F. (1984) FEBS Lett. 169, 300–304
2. Weiss, H., and Friedrich, T. (1991) J. Bioenerg. Biomembr. 23, 743–771
3. Skehel, J. M., Fearnley, I. M., and Walker, J. E. (1996) FEBS Lett. 438, 301–305
4. Yagi, T. (1993) Biochim. Biophys. Acta 1141, 1–17
5. Guenebaut, V., Vincentelli, R., Mills, D., Weiss, H., Leonard, K. R. (1997) J. Mol. Biol. 265, 409–418
6. Guenebaut, V., Schlitt, A., Weiss, H., Leonard, K., and Friedrich, T. (1998) J. Mol. Biol. 276, 105–112
7. Grigorieff, N. (1996) J. Mol. Biol. 277, 1033–1046
8. Schulte, U., Fecke, W., Krull, C., Nehls, U., Schmiede, A., Schneider, R., Ohnishi, T., and Weiss, H. (1994) Biochim. Biophys. Acta 1187, 121–124
9. Finel, M., Majander, A. S., Tynnela, J., de Jong, A. M. P., Albracht, S. P. J., and Wikstrom, M. K. F. (1994) Eur. J. Biochem. 226, 237–242
10. Ohnishi, T. (1998) Biochim. Biophys. Acta 1364, 186–206
11. Brandt, U. (1997) Biochim. Biophys. Acta 1318, 79–91
12. Ingledew, W. J., and Ohnishi, T. (1980) Biochim. J. 186, 111–117
13. Okun, J. G., Zickermann, V., and Brandt, U. (1999) Biochim. Biophys. Soc. Trans. 27, 596–601
14. Friedrich, T., Abelmann, A., Brors, B., Guenebaut, V., Kintscher, L., Leonard, K., Rasmussen, T., Scheide, D., Schlitt, A., Schulte, U., and Weiss, H. (1998) Biochim. Biophys. Acta 1365, 215–219
15. Chevallet, M., Dupuis, A., Lunardi, J., van Belzen, R., Albracht, S. P. J., and Issartel, J. P. (1997) Eur. J. Biochem. 250, 451–458
16. Dupuis, A., Chevallet, M., Darrouzet, E., Duborjal, H., Lunardi, J., and Issartel, J. P. (1998) Biochim. Biophys. Acta 1364, 174–185
17. Leif, H., Sled, V. D., Ohnishi, T., Weiss, H., and Friedrich, T. (1995) Eur. J. Biochem. 230, 538–548
18. Schulte, U., and Weiss, H. (1995) Methods Enzymol. 260, 3–14
19. Barth, G., and Gaillardin, C. (1996) in Non-conventional Yeasts in Biotechnology (Wolf, K., ed) pp. 313–388, Springer, Berlin
20. Wan, Y.-P., Williams, R. H., Polkers, K., Leung, K. H., and Racker, E. (1975) Biochim. Biophys. Res. Commun. 63, 11–15
21. Satoh, T., Miyoshi, H., Sakamoto, K., and Iwamura, H. (1996) Biochim. Biophys. Acta 1273, 21–30
22. Lowry, O. H., Rosebrough, N. R., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem. 193, 265–275
23. Schagger, H., and von Jagow, G. (1991) Anal. Biochem. 199, 223–231
24. Kerscher, S., Okun, J. G., and Brandt, U. (1999) J. Cell Sci. 112, 2347–2354
25. Okun, J. G., Lummen, P., and Brandt, U. (1999) J. Biol. Chem. 274, 2625–2630
26. Matsushita, K., Ohnishi, T., and Kacab, H. R. (1987) Biochemistry 26, 7732–7737
27. Brandt, U., and Okun, J. G. (1997) Biochemistry 36, 11234–11240
28. Sled, V. D., and Vinogradov, A. D. (1993) Biochim. Biophys. Acta 1141, 262–268
29. Marquardt, D. W. (1963) J. Soc. Ind. Appl. Math. 11, 431–441
30. Ohnishi, T. (1993) J. Bioenerg. Biomembr. 25, 225–229
31. Gavrikova, E. V., Grivennikova, V. G., Sled, V. D., Ohnishi, T., and Vinogradov, A. D. (1995) Biochim. Biophys. Acta 1230, 23–30
32. Fecke, W., Sled, V. D., Ohnishi, T., and Weiss, H. (1994) Eur. J. Biochem. 220, 551–558
33. Bikling, S. J., Arizmendi, M. J., Fearnley, I. M., Runswick, M. J., Skehel, J. M., and Walker, J. E. (1993) Biochem. Soc. Trans. 21, 26–31
34. Degi Esposito, M., Crimi, M., and Ghelli, A. X. (1994) Biochim. Biophys. Soc. Trans. 22, 209–213
35. Kunkel, A., Vorholt, J. A., Thauer, R. K., and Hedderich, R. (1998) Eur. J. Biochem. 252, 467–476
36. Montet, Y., Amara, P., Volbeda, A., Verneve, X., Hatchikian, E. C., Field, M. J., Frey, M., and Fontecilla-Camps, J. C. (1997) Nat. Struct. Biol. 4, 523–526
37. Volbeda, A., Charon, M. H., Piras, C., Hatchikian, E. C., Frey, M., and Fontecilla-Camps, J. C. (1995) Nature 373, 580–587
38. Schuler, F., Yano, T., Di Bernardo, S., Yagi, T., Yankovskaya, V., Singer, T. P., and Casida, J. E. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 4149–4153
39. Darrouzet, E., Issartel, J. P., Lunardi, J., and Dupuis, A. (1998) FEBS Lett. 451, 34–38
40. Friedrich, T. (1998) Biochim. Biophys. Acta 1364, 134–146