Actions of the Dipper-Donkin quantization $GL_2$ on the Clifford algebra $C(1, 3)$.

Suemi Rodríguez-Romo *
Centro de Investigaciones Teóricas,
Universidad Nacional Autónoma de México, Campus Cuautitlán,
Apdo. Postal 142, Cuautitlán Izcalli, Edo. de México,
54740 México

Abstract. Following the method already developed for studying the actions of $GL_q(2, C)$ on the Clifford algebra $C(1, 3)$ and its quantum invariants [1], we study the action on $C(1, 3)$ of the quantum $GL_2$ constructed by Dipper and Donkin [2]. We are able of proving that there exits only two non-equivalent cases of actions with nontrivial “perturbation” [1]. The spaces of invariants are trivial in both cases.

We also prove that each irreducible finite dimensional algebra representation of the quantum $GL_2$, $q^m \neq 1$, is one dimensional.

By studying the cases with zero “perturbation” we find that the cases with nonzero “perturbation” are the only ones with maximal possible dimension for the operator algebra $\mathcal{R}$.

* e-mail: suemi@servidor.unam.mx
1 Introduction.

In this paper we consider inner actions of the Dipper-Donkin quantization of \( GL_2 \) (see \[2\]) on the space-time Clifford algebra \( C(1, 3) \). The analogous problems for Manin quantization was considered in details in \[1\]. We prove that every irreducible finite dimensional algebra representation of \( GL_2 \), \( q \neq 1 \), is one dimensional and therefore triangular. Using this fact we show that only two particular cases have nonzero perturbation. Actions with trivial perturbation are also studied. From this, some consequences are derived.

This paper is organized as follows. In Section 2, we introduce elementary notions. In Section 3 we prove Theorem 1 which is fundamental to address our problem. This Theorem deals with \( q \)-spinor representations (\( q^3 \neq 1 \), \( q^4 \neq 1 \)), corresponding to representations of \( GL_2 \) with non zero perturbation. Since each irreducible finite dimensional algebra representation of Dipper-Donkin \( GL_2 \) is one dimensional, we can use the method of \[1\] in complete generality for the classification of inner actions. Finally, in Section 4 we present the representations of \( GL_2 \) by Dipper-Donkin with nonzero perturbation and some remarkable features related with the zero perturbation cases.

2 Preliminary notions.

The algebraic structure of Dipper-Donkin quantization \( GL_2 \) \[2\] is generated by four elements \( c_{ij} \), \( 1 \leq i, j \leq 2 \) with relations which can be presented by the following diagram.

![Diagram](image)

Figure 1. \( GL_2 \)
Here we denote by arrows the “quantum spinors” (or generators of the quantum plane \( \mathbb{Q} \)) \( xy = qyx \) by straight line the “classical spinors” \( xy = yx \) \( [1] \) and by dots a classical spinor with a nontrivial perturbation \( [1] \), \( xy - yx = p \) being \( p = (q - 1)c_{12}c_{21} \).

Here the quantum determinant \( d = c_{11}c_{22} - c_{12}c_{21} \) is noncentral and group-like. This, in contrast with Manin’s approach \( [3] \). In any Hopf algebra every group-like element is invertible, therefore the quantum \( GL_2 \) includes the formal inverse \( d^{-1} \).

The coalgebra structure is defined in the standard way for all quantizations and the antipode \( S \) is given in reference \( [2] \).

The Clifford algebra \( C(1, 3) \) is generated by the vector \( \gamma_\mu, \mu = 0, 1, 2, 3 \) with relations defined by the form \( g_{\mu\nu} = \text{diag}(1, -1, -1, -1) \), as follows:

\[
\begin{align*}
\gamma_\mu \gamma_\nu &= g_{\mu\nu} + \gamma_\mu \gamma_\nu, \\
\gamma_\rho \gamma_\mu \gamma_\nu &= g_{\rho\mu} \gamma_\nu - g_{\rho\nu} \gamma_\mu + \gamma_{\rho\mu\nu}, \\
\gamma_\lambda \gamma_\mu \gamma_\nu \gamma_\rho &= g_{\lambda\rho} \gamma_\mu \gamma_\nu - g_{\lambda\nu} \gamma_\mu \gamma_\rho + g_{\lambda\rho} \gamma_\mu \gamma_\nu + \gamma_{\lambda\mu\nu\rho}.
\end{align*}
\]

This algebra is isomorphic to the algebra of the \( 4 \times 4 \) complex matrix and it has the basis of matrix units reported in reference \( [1] \), among others.

An action of \( GL_2 \) on \( C(1, 3) \) is uniquely defined by actions of \( c_{ij} \) on the generators of \( C(1, 3) \) \( [4] \):

\[
c_{ij} \cdot \gamma_k = f_{ijk}(\gamma_0, \gamma_1, \gamma_2, \gamma_3),
\]

where \( f_{ijk} \) are some noncommutative polynomials in four variables. If \( [4] \) defines an action of quantum group \( GL_2 \) on \( C(1, 3) \) and \( \gamma'_0, \gamma'_1, \gamma'_2, \gamma'_3 \) is another system of generators of \( C(1, 3) \), with the same relations, then the formula

\[
c_{ij} \ast \gamma'_k = f_{ijk}(\gamma'_0, \gamma'_1, \gamma'_2, \gamma'_3),
\]

with the same polynomials \( f_{ijk} \), will also define an action of the quantum \( GL_2 \) on \( C(1, 3) \). Two actions of \( GL_2 \) on \( C(1, 3) \) are said to be equivalent if they can be presented as in \( [4] \) and \( [2] \) with the same polynomials \( f_{ijk} \). It is easy to show that two actions \( \cdot, \ast \) are equivalent if and only if \( c_{ij} \ast (uwu^{-1}) = u(c_{ij} \cdot w)u^{-1} \) for some invertible \( u \in C(1, 3) \) (see \( [4] \), formula (7)).
For every action $\cdot$ there exist an invertible matrix $M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \in C(1,3)_{2\times2}$, such that

$$c_{ij} \cdot v = \sum m_{ik} v^* m_{kj},$$

where $\begin{pmatrix} m_{11}^* & m_{12}^* \\ m_{21}^* & m_{22}^* \end{pmatrix} = M^{-1}$ (see Skolem-Noether theorem for Hopf algebras \[6\]. The action $\cdot$ is called inner if the map $c_{ij} \to m_{ij}$ defines an algebra homorphism $\varphi : GL_2 \to C(1,3)$. Since the algebra $C(1,3)$ is isomorphic to the algebra of $4 \times 4$ matrices, the homorphism $C(1,3)$ defines (and is defined by) a four dimensional module over (the algebraic structure of) $GL_2$, or, equivalently, a four dimensional representation of $GL_2$.

If $\varphi(c_{12}c_{21})=0$, then by definition in Figure 1 the representation $\varphi$ is defined for an essentially more simple structure, generated by two commuting “quantum spinors” $(c_{21}, c_{11})$ and $(c_{22}, c_{12})$. Firstable we focus our attention on the case when $\varphi(c_{12}c_{21}) \neq 0$ and in this case we say that the inner action defined by $\varphi$ has nonzero perturbation.

If we add a formal inverse $c_{11}^{-1}$, then the algebraic structure of Dipper-Donkin quantization $GL_2$ is generated by the elements in the following diagram.

![Diagram](image)

Figure 2. $GL_2$

From here, it follows straightforward that, up to invertibility of $c_{11}$, the algebraic structure of $GL_2$ can be considered like a tensor product $\mathbb{R} \otimes \mathbb{R}$ where $\mathbb{R}$ is the quantum plane.

In the next Section we study $q$-spinors suitable of being used to represent
the quantum $GL_2$. Concretely speaking we consider in details the following triangle.

![Figure 3.](image)

Figure 3.

corresponding to

![Figure 4.](image)

Figure 4.

in Figure 1.

We say that the representation of the $q$-spinor $xy=qyx$, $x \to A$, $y \to B$ is *admissible* if there exists $C$ such that $x \to C$, $y \to B$ and $x \to C$, $y \to A$ are also a representation of $q$-spinor with $CB \neq 0$. In other words it means that $d \to A$, $c_{12} \to B$, $c_{21} \to C$ is a representation of the subalgebra of $GL_2$, generated by $d$, $c_{12}$, $c_{21}$ with $CB \neq 0$.

### 3 $q$-spinor representations.

Let $(x, y)$ be a $q$-spinor, $xy = qyx$. If $x \to A$, $y \to B$ is its representation by $4 \times 4$ matrices over complex numbers, then for every invertible $4 \times 4$ matrix $u$ and nonzero number $\alpha$, the map $x \to uAu^{-1}\alpha$, $y \to uBu^{-1}\alpha$ also defines a representation of the $q$-spinor. Following, [1], we consider
this two representations as *equivalent* ones. Thus, under investigation of representations of a q-spinor, we can suppose that the matrix $A$ has a Jordan Normal form and one of it’s eigenvalues is equal to 1 (if $A \neq 0$).

For a given matrix $A$, we denote by $B(A)$ the linear space of all matrices $B$, such that $AB=qBA$ and by $B'(A)$ the set of all matrices $B'$ such that $B'A=qAB'$.

**Theorem 1.** Every admissible representation of the q-spinor $(q^3, q^4 \neq 1)$ by $4 \times 4$ complex matrices, $x \to A$, $y \to B$, such that $A$ is an invertible matrix is equivalent to one of the following representations.

1. $A = \text{diag}(q^2, q, q, 1)$, $B = qe_{13} - \mu e_{24}$ \hspace{1cm} (3) $B' = e_{43} - \mu e_{21}$

2. $A = \text{diag}(q^2, q, q, 1)$, $B = qe_{12} + \mu e_{34}$ \hspace{1cm} (4) $B' = e_{42} + \mu e_{31}$

3. $A = \text{diag} \left( \begin{pmatrix} q & 1 \\ 0 & q \end{pmatrix}, q^2, 1 \right)$, $B_1 = e_{14}$; $B_2 = e_{32}$ \hspace{1cm} (5) $B'_1 = e_{13}$; $B'_2 = e_{42}$

**Proof.** If $B(A)^2 \neq 0$; then by Theorem 1 [1], we have seven different possibilities for $A$. Direct calculations show that only in the second case there exist representations with nonzero perturbation, these are (3) and (4) described in the theorem.

Let us now study the case $B(A)^2=0$. We assume that the matrix $A$ has a Jordan Normal form and one of its eigenvalues is equal to 1. By lemma 2 [1] the matrix $A$ cannot be a simplest Jordan Normal matrix; i.e. it has more than one block.

If $A=\text{diag}(\alpha_1, \alpha_2, \alpha_3, 1)$ is a diagonal matrix then $B'(A)$ evidently coincides with the space of transposed matrices $B(A)^T$. By Lemma 4 [1] the space $B(A)$ as well as $B(A)'$ are generated by matrix units and, by formula (20) [1], $e_{ij} \in B(A)$ if and only if $\alpha_i=\alpha_j$, (21) in [1]. Thus we have two main
cases with $B(A)^2=0$; $\alpha_1=q\alpha_2$, $\alpha_3=q$; $e_{12}$, $e_{34}\in B(A)$ and $\alpha_1=\alpha_2=\alpha_3=q$; $e_{12}$, $e_{13}$, $e_{14}\in B(A)$ while the others can be obtained from these by changing the numerations of indeces. In both cases $(B(A)\cdot B(A)^T)\cap (B(A)^T \cdot B(A))=0$ and so there is no admissible representations.

Let $A$ be of the form

$$A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$  \hspace{1cm} (6)

where $a$, $b$ are either invertible $2 \times 2$ matrices in Jordan Normal form or $a$ is an invertible simplest Normal Jordan $3 \times 3$ matrix and $b$ is a nonzero complex number (and therefore we can suppose that $b=1$).

If $B' = \begin{pmatrix} \alpha' \\ \beta' \\ \gamma' \\ \delta' \end{pmatrix}$ is a nonzero matrix from $B'(A)$ then by formula (23) changing $q$ by $q^{-1}$ we have that

$$a\alpha' = q^{-1}\alpha'a \hspace{1cm} a\beta' = q^{-1}\beta'b$$  \hspace{1cm} (7)

$$b\gamma' = q^{-1}\gamma'a \hspace{1cm} b\delta' = q^{-1}\delta'b.$$  \hspace{1cm} (8)

At first, let us consider when $a$ is a $3 \times 3$ matrix. In \[\text{[1]}\] we can see that in this case there exists only two possibilities with $B(A)\neq 0$;

$$A = \begin{pmatrix} q^{-1} & 1 & 0 & 0 \\ 0 & q^{-1} & 1 & 0 \\ 0 & 0 & q^{-1} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \hspace{1cm} B(A) = Ce_{43}$$

and

$$A = \begin{pmatrix} q & 1 & 0 & 0 \\ 0 & q & 1 & 0 \\ 0 & 0 & q & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \hspace{1cm} B(A) = Ce_{14}.$$  

In the first case, we have $B'(A)=Ce_{14}$ and in the second $B'(A)=Ce_{43}$. Thus the equality $Ce_{43} \cdot Ce_{14}=0$ shows that in both cases either $B(A)B'(A)=0$ or $B'(A)B(A) = 0$ and there exits no admissible representation.
Consider now the case when \(a, b, \alpha, \beta, \gamma, \delta\) are \(2 \times 2\) matrices. Here, we have defined \(B = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}\).

Let us start with the case when both matrices \(a\) and \(b\) have a simplest Jordan Normal Form i.e.

\[
a = \begin{pmatrix} \epsilon & 1 \\ 0 & \epsilon \end{pmatrix}, \quad b = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
\]  

(recall that we suppose that one of the eigenvalues of \(A = \text{diag}(a, b)\) is equal to 1).

We know that \([A, B]_q = 0\) (from this follows that \(\alpha = \delta = 0\)) and \([A, B']_{q^{-1}} = 0\) (from this follows that \(\alpha' = \delta' = 0\)). See Lemma 2 in reference [1]. Besides we require

\[
BB' = \begin{pmatrix} \beta \gamma' & 0 \\ 0 & \gamma' \beta \end{pmatrix} = q \begin{pmatrix} \beta' \gamma & 0 \\ 0 & \gamma' \beta \end{pmatrix} = qBB'.
\]  

Therefore the following formulas must be fulfilled.

\[
br' = q^{-1} \gamma a \quad a \beta' = q^{-1} \beta' b
\]

\[
\alpha \beta = q \beta b \quad b \gamma = q \gamma a
\]

\[
\beta \gamma' = q \beta' \gamma \quad \gamma \beta' = q \gamma' \beta.
\]

We have two cases.

I) For \(\epsilon = q\)

\[
\beta = \begin{pmatrix} \beta_{11} & \beta_{12} \\ 0 & q \beta_{11} \end{pmatrix}; \gamma = \beta' = 0; \gamma' = \begin{pmatrix} \gamma'_{11} & \gamma'_{12} \\ 0 & q^{-1} \gamma'_{11} \end{pmatrix}.
\]

Formulas (11) and (12) follow straightforward, to fulfill (13) we require

\[
\alpha) \beta = 0, \quad \gamma' = \begin{pmatrix} \gamma'_{11} & \gamma'_{12} \\ 0 & q^{-1} \gamma'_{11} \end{pmatrix} \quad \text{or}
\]

\[
b) \beta = \begin{pmatrix} \beta_{11} & \beta_{12} \\ 0 & q \beta_{11} \end{pmatrix}, \quad \gamma' = 0.
\]

8
In this case we conclude that either

\[ a) \beta = \begin{pmatrix} \beta_{11} & \beta_{12} \\ 0 & q\beta_{11} \end{pmatrix}, \quad \gamma = 0, \quad \beta' = 0, \quad \text{and} \quad \gamma' = 0, \]

(17)

this means \( B' = 0 \) and \( BB' = 0 \), or

\[ b) \beta = 0, \quad \gamma' = \begin{pmatrix} \gamma_{11}' & \gamma_{12}' \\ 0 & q^{-1}\gamma_{11}' \end{pmatrix}, \quad \gamma = 0 \quad \text{and} \quad \beta' = 0. \]

(18)

This also means \( BB' = 0 \).

II) For \( \epsilon = q^{-1} \)

\[ \beta' = \begin{pmatrix} \beta_{11}' & \beta_{12}' \\ 0 & q^{-1}\beta_{11}' \end{pmatrix}; \quad \gamma' = \beta = 0; \quad \gamma = \begin{pmatrix} \gamma_{11} & \gamma_{12} \\ 0 & q\gamma_{11} \end{pmatrix}. \]

(19)

Formulas (11) and (12) follow straightforward, to fulfill (13) we require

\[ a) \beta' = 0, \quad \gamma = \begin{pmatrix} \gamma_{11} & \gamma_{12} \\ 0 & q\gamma_{11} \end{pmatrix} \]

(20)

\[ b) \beta' = \begin{pmatrix} \beta_{11}' & \beta_{12}' \\ 0 & q^{-1}\beta_{11}' \end{pmatrix}, \quad \gamma = 0. \]

(21)

In this case we conclude that either

\[ a) \beta' = \begin{pmatrix} \beta_{11}' & \beta_{12}' \\ 0 & q^{-1}\beta_{11}' \end{pmatrix}, \quad \gamma = 0, \quad \beta = 0, \quad \text{and} \quad \gamma' = 0, \]

(22)

this means \( B = 0 \) and \( BB' = 0 \), or

\[ b) \beta = 0, \quad \gamma = \begin{pmatrix} \gamma_{11} & \gamma_{12} \\ 0 & q\gamma_{11} \end{pmatrix}, \quad \gamma' = 0 \quad \text{and} \quad \beta' = 0. \]

(23)

This means \( B' = 0 \) and \( BB' = 0 \).

Suppose now that one of the matrix \( a, b \) is a simplest Jordan matrix while the other is a diagonal matrix. A conjugation by \( T = \begin{pmatrix} 0 & E \\ E & 0 \end{pmatrix} \), where \( E \) is the identity \( 2 \times 2 \) matrix, changes \( A = \text{diag}(a, b) \) to \( \text{diag}(b, a) \), so we can suppose that

\[ a = \epsilon E + e_{12}, \quad b = \text{diag}(\mu, 1) \]

(24)
(recall that one of the eigenvalues of \( A \) is equal to 1 and \( A \) is an invertible matrix; i.e. \( \epsilon, \mu \neq 0 \)).

Firstable, let \( \mu \neq q, q^{-1}, \delta' = 0 \), then

\[
B = \begin{pmatrix} 0 & \beta \\ \gamma & 0 \end{pmatrix}; \quad B' = \begin{pmatrix} 0 & \beta' \\ \gamma' & 0 \end{pmatrix}
\]

We set \( BB' = qB'B \) and require formulas (11)- (12) to hold. From this we obtain the following four cases.

I) For \( \beta \);

A) \( \beta = 0 \) provided \( \epsilon \neq q\mu, \; \epsilon \neq \mu \),
B) \( \beta = \begin{pmatrix} 0 & \beta_{12} \\ 0 & 0 \end{pmatrix} \) provided \( \epsilon \neq q\mu, \; \epsilon = q \),
C) \( \beta = \begin{pmatrix} \beta_{11} & 0 \\ 0 & 0 \end{pmatrix} \) provided \( \epsilon = q\mu, \; \epsilon \neq q \),
D) \( \beta = \begin{pmatrix} \beta_{11} & \beta_{12} \\ 0 & 0 \end{pmatrix} \) provided \( \epsilon = q\mu, \; \epsilon = q \).

II) For \( \gamma \);

A) \( \gamma = 0 \) provided \( \epsilon \neq q^{-1}\mu, \; \epsilon \neq q^{-1} \),
B) \( \gamma = \begin{pmatrix} 0 & 0 \\ 0 & \gamma_{22} \end{pmatrix} \) provided \( \epsilon \neq q^{-1}\mu, \; \epsilon = q^{-1} \),
C) \( \gamma = \begin{pmatrix} 0 & \gamma_{12} \\ 0 & 0 \end{pmatrix} \) provided \( \epsilon = q^{-1}\mu, \; \epsilon \neq q^{-1} \),
D) \( \gamma = \begin{pmatrix} 0 & \gamma_{12} \\ 0 & \gamma_{22} \end{pmatrix} \) provided \( \epsilon = q^{-1}\mu, \; \epsilon = q^{-1} \).

III) For \( \beta' \);

A) \( \beta' = 0 \) provided \( \epsilon \neq q^{-1}\mu, \; \epsilon \neq q^{-1} \),
B) \( \beta' = \begin{pmatrix} 0 & \beta'_{12} \\ 0 & 0 \end{pmatrix} \) provided \( \epsilon \neq q^{-1}\mu, \; \epsilon = q \),
C) \( \beta = \begin{pmatrix} \beta'_{11} & 0 \\ 0 & 0 \end{pmatrix} \) provided \( \epsilon = q^{-1}\mu, \; \epsilon \neq q^{-1} \),
D) \( \beta' = \begin{pmatrix} \beta_{11}' & \beta_{12}' \\ 0 & 0 \end{pmatrix} \) provided \( \epsilon = q^{-1}\mu, \ \epsilon = q^{-1}. \)

IV) For \( \gamma' \),

\[ A) \quad \gamma' = 0 \quad \text{provided} \quad \epsilon \neq q\mu, \ \epsilon \neq q, \]
\[ B) \quad \gamma = \begin{pmatrix} 0 & 0 \\ 0 & \gamma_{22}' \end{pmatrix} \quad \text{provided} \quad \epsilon \neq q\mu, \ \epsilon = q, \]
\[ C) \quad \gamma = \begin{pmatrix} 0 & \gamma_{12}' \\ 0 & 0 \end{pmatrix} \quad \text{provided} \quad \epsilon = q\mu, \ \epsilon \neq q. \]
\[ D) \quad \gamma \begin{pmatrix} 0 & \gamma_{12}' \\ 0 & \gamma_{22}' \end{pmatrix} \quad \text{provided} \quad \epsilon = q\mu, \ \epsilon = q \]

We can reorganize cases I-IV in the following way.

i) Let \( \epsilon \neq q\mu, \epsilon \neq q \). Then we have

\[ i.1) \quad \beta_{12}' = 0 \ \text{or} \ \gamma_{22} = 0 \ \text{for} \ \epsilon \neq q^{-1}\mu; \epsilon = q^{-1}; \epsilon \neq q\mu, \]
\[ i.2) \quad \beta_{11}' = 0 \ \text{or} \ \gamma_{12} = 0 \ \text{for} \ \epsilon = q^{-1}\mu; \epsilon \neq q^{-1}; \epsilon \neq q\mu, \]
\[ i.3) \quad \gamma_{12}\beta_{11}' = -\beta_{12}'\gamma_{22} \ \text{for} \ \epsilon = q^{-1}\mu; \epsilon = q^{-1}, \]
\[ i.4) \quad \text{No extra condition for} \ \epsilon \neq q^{-1}\mu; \epsilon \neq q^{-1}; \epsilon \neq q\mu; \epsilon \neq q. \]

Studying \( i.1) \) we obtain two possible cases.

\[ a) \ \beta' = 0, \ B' = 0 \]
\[ b) \ \gamma = 0, \ B' = 0. \]

In both cases \( BB' = 0 \).

For \( i.2) \) we again obtain two possible cases

\[ a) \ \beta_{11}' = 0 \ \text{then} \ B' = 0. \]
\[ b) \ \gamma_{12} = 0 \ \text{then} \ B = 0. \]

In both cases \( BB' = 0 \).
For \(i.3\) we obtain,
\[
B = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & \gamma_{12} & 0 & 0 \\
0 & \gamma_{22} & 0 & 0
\end{pmatrix}
\quad \text{and} \quad
B' = \begin{pmatrix}
0 & 0 & \beta_{11}' & \beta_{12}' \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]
From this, we conclude again that \(BB'=B'B=0\).

In the case \(i.4\) we have \(\beta=\gamma=\beta'=\gamma'=0\), thus \(BB'=0\).

ii) Let \(\epsilon \neq q\mu, \epsilon = q\). In this case we have
\[
B = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & \gamma_{12} & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\quad \text{and} \quad
B' = \begin{pmatrix}
0 & 0 & \beta_{11}' & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]
From this follows that
\[
A = \text{diag}\left(\begin{pmatrix}
q & 1 \\
0 & q
\end{pmatrix}, \begin{pmatrix}
q^2 & 0 \\
0 & 1
\end{pmatrix}\right)
\quad B_1 = e_{14}, \quad B_2 = e_{32}, \quad B_1' = e_{13}, \quad B_2' = e_{42}
\]
which corresponds to representation (3) in Theorem 1.

iii) Let \(\epsilon \neq q\mu, \epsilon \neq q\). In this case we have
\[
B = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & \beta_{11} & 0 & 0 \\
0 & \gamma_{22} & 0 & 0
\end{pmatrix}
\quad \text{and} \quad
B' = \begin{pmatrix}
0 & 0 & 0 & \beta_{12}' \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]
From this follows that
\[
A = \text{diag}\left(\begin{pmatrix}
q^{-1} & 1 \\
0 & q^{-1}
\end{pmatrix}, \begin{pmatrix}
q^{-2} & 0 \\
0 & 1
\end{pmatrix}\right), \quad B_1 = e_{13}, \quad B_2 = e_{42}, \quad B_1' = e_{14}, \quad B_2' = e_{32}
\]
By applying the maps \(q \rightarrow q^{-1}\) and \(B \rightarrow B'\) we obtain the representation (3) in Theorem 1.

iv). Let \(\mu = 1\) (namely \(\epsilon=q\mu, \epsilon=q\)). In this case we have
\[
B = \begin{pmatrix}
0 & 0 & \beta_{11} & \beta_{12} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\quad \text{and} \quad
B' = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & \gamma_{12}' & 0 & 0 \\
0 & \gamma_{22}' & 0 & 0
\end{pmatrix}
\]
12
From (13), follows that $BB'=0$, since $\beta_{11}\gamma'_{12} + \beta_{12}\gamma'_{22} = 0$.

Let us now consider the case $\mu = q^{-1}$, we can multiply matrices $A$ and $B$ by $q$ and conjugate them by the matrix

$$
diag(1, 1, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}).$$

We will obtain an equivalent representation with $\mu = q$. Thus, it is enough to consider the case

$$a = \epsilon E + e_{12}, \quad b = diag(q, 1)$$

where

$$\alpha = 0, \quad \delta = ce_{12}, \quad c \in \mathbb{C}.$$  

For $\beta = \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix}$, then we have $\alpha \beta = q \beta b$; i.e.

$$
\begin{pmatrix} \epsilon & 1 \\ 0 & \epsilon \end{pmatrix} \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix} = \begin{pmatrix} \epsilon \beta_{11} + \beta_{21} & \epsilon \beta_{22} \\ \epsilon \beta_{21} & \epsilon \beta_{22} \end{pmatrix} = q \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix} \begin{pmatrix} q & 0 \\ 0 & 1 \end{pmatrix} = q \begin{pmatrix} q \beta_{11} & \beta_{12} \\ q \beta_{21} & q \beta_{22} \end{pmatrix},
$$

which implies

$$(\epsilon - q^2)\beta_{11} = -\beta_{21}, (\epsilon - q)\beta_{12} = -\beta_{22} \quad (26)$$

$$(\epsilon - q^2)\beta_{21} = 0, (\epsilon - q)\beta_{22} = 0. \quad (27)$$

If $\epsilon = q^2$ then the first equality of (26) gives $\beta_{21} = 0$, and if $\epsilon \neq q^2$ then the first equality of (27) gives $\beta_{21} = 0$. Therefore $\beta_{21} = 0$ in any case. In the same way $\beta_{22} = 0$ and (26), (27) are equivalent to

$$(\epsilon - q^2)\beta_{11} = 0, (\epsilon - q)\beta_{12} = 0, \quad (28)$$

$$\beta_{21} = 0, \beta_{22} = 0. \quad (29)$$
Analogously for the matrix $\gamma = \begin{pmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{pmatrix}$ we have $b\gamma = q\gamma a$; i.e.

$$
\begin{pmatrix} q & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{pmatrix} = \begin{pmatrix} q\gamma_{11} & q\gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{pmatrix} =
q\begin{pmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{pmatrix} \begin{pmatrix} \epsilon & 1 \\ 0 & \epsilon \end{pmatrix} = q\begin{pmatrix} \epsilon\gamma_{11} & \gamma_{11} + \epsilon\gamma_{12} \\ \epsilon\gamma_{21} & \gamma_{21} + \epsilon\gamma_{22} \end{pmatrix}.
$$

This implies

$$
q(1 - \epsilon)\gamma_{11} = 0, \quad q(1 - \epsilon)\gamma_{12} = q\gamma_{11} \quad (30)
$$

$$
(1 - q\epsilon)\gamma_{21} = 0, \quad (1 - q\epsilon)\gamma_{22} = q\gamma_{21}. \quad (31)
$$

Again, if $\epsilon = 1$ then by the second equality of $(30)$, $\gamma_{11} = 0$ and if $\epsilon \neq 1$ then by the first one $\gamma_{11} = 0$. In the same way $\gamma_{21} = 0$ and $(30),(31)$ are equivalent to

$$
\gamma_{11} = 0, \quad (1 - \epsilon)\gamma_{12} = 0, \quad (32)
$$

$$
\gamma_{21} = 0, \quad (1 - q\epsilon)\gamma_{22} = 0. \quad (33)
$$

Now if $\epsilon \neq q^{-1}, 1, q, q^2$ then by $(28)$, $(29)$ and $(32)$, $(33) \beta = \gamma = 0$ and the representation has the form

$$
A = diag \left( \begin{pmatrix} \epsilon & 1 \\ 0 & \epsilon \end{pmatrix}, q, 1 \right), \quad B = e_{34}. \quad (34)
$$

In this case $(B(A) \cdot B'(A)) \cap (B(A)' \cdot B(A)) = 0$; namely the representation is not admissible.

Finally, let us consider four last possibilities.

1. $\epsilon = q^{-1}$. By $(28)$ and $(29)$ we have $\beta = 0$ and by $(32)$ and $(33), \gamma = ce_{22}$.

From this follows that

$$
A = diag \left( \begin{pmatrix} q^{-1} & 1 \\ 0 & q^{-1} \end{pmatrix}, q, 1 \right), \quad B_1 = e_{42}, \quad B_2 = e_{34}.
$$

If we multiply $A$ by $q$ and conjugate it by $T = \text{diag}(1, q^{-1}, 1, 1)$ we will obtain an equivalent representation $A = diag(1, 1, q^2, q) + e_{12}, B_1 = e_{42}, B_2 = e_{34}$. Using
conjugations by matrices $E - e_{ii} - e_{jj} + e_{ij} + e_{ji}$ we can change indices with the help of permutation $1 \to 3$, $2 \to 4$, $3 \to 1$, $4 \to 2$. Therefore, $e_{42} \to e_{24}$, $e_{34} \to e_{12}$ and we have the representation \( A = \text{diag}(q^2, q, 1, 1) + e_{34} \), 
\( B_1 = e_{24}, B_2 = e_{12}, B'_1 = e_{21}, B'_2 = e_{32} \). In this case \((B(A) \cdot B'(A))\cap (B(A)' \cdot B(A)) = 0\); namely the representation is not admissible.

2. $\epsilon = 1$. By (28) and (29) we again have $\beta = 0$ and by (32) and (33), $\gamma = C e_{12}$. From this the representation has the following form.

\[
A = \text{diag} \left( \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, q, 1 \right), \quad B = e_{32}, \quad B_2 = e_{34}.
\]

and therefore $B(A)^2 = 0$.

3. $\epsilon = q$. By (32) and (33) we have $\gamma = 0$ and by (28) and (29) $\beta = c e_{12}$. From this the representation has the form

\[
A = \text{diag} \left( \begin{pmatrix} q & 1 \\ 0 & q \end{pmatrix}, q, 1 \right), \quad B_1 = e_{14}, \quad B_2 = e_{34}
\]

and again $B(A)^2 = 0$.

4. $\epsilon = q^2$. By (32) and (33) we have $\gamma = 0$ and equalities (28) and (29) imply $\beta = c e_{11}$. So the representation has the form

\[
A = \text{diag} \left( \begin{pmatrix} q^2 & 1 \\ 0 & q^2 \end{pmatrix}, q, 1 \right), \quad B_1 = e_{13}, \quad B_2 = e_{34}.
\]

In this case \((B(A) \cdot B'(A))\cap (B(A)' \cdot B(A)) = 0\); namely the representation is not admissible. \(\square\)

4 \textit{GL}_2 \textit{ representations}.

\textbf{Theorem 2}. Each irreducible finite dimensional algebra representation of the quantum $GL_2$, $q^m \neq 1$, is one dimensional.

\textit{Proof}. Let $c_{ij} \to C_{ij}$ be a finite dimensional irreducible representation of the quantum $GL_2$, where $C_{ij}$ are $n \times n$ matrices acting on the $n$-dimensional
space $V$. This means that the matrices $C_{ij}$ satisfy the relations of $GL_2$:

$$
C_{11}C_{12} = C_{12}C_{11}, \quad C_{21}C_{11} = qC_{11}C_{21}, \quad (35)
$$

$$
C_{22}C_{12} = qC_{12}C_{22}, \quad C_{21}C_{22} = C_{22}C_{21}, \quad (36)
$$

$$
C_{21}C_{12} = qC_{12}C_{21}, \quad C_{22}C_{11} - C_{11}C_{22} = (q - 1)C_{12}C_{21} \quad (37)
$$

and the matrix $det_q = C_{11}C_{22} - C_{12}C_{21}$ is invertible.

From the relations (35)-(37) follow that $C_{12}V$ is an invariant subspace:

$$
C_{11}(C_{12}V) = C_{12}(C_{11}V) \subseteq C_{12}V, \quad (38)
$$

$$
C_{22}(C_{12}V) = qC_{12}C_{22}V = C_{12}(qC_{22}V) \subseteq C_{12}V, \quad (39)
$$

$$
C_{21}(C_{12}V) = qC_{12}(C_{21}V) = C_{12}(qC_{21}V) \subseteq C_{12}V. \quad (40)
$$

Therefore either $C_{12} = 0$ or $C_{12}$ is an invertible matrix. In the same way either $C_{21} = 0$ or $C_{21}$ is invertible.

If both matrices $C_{12}, C_{21}$ are equal to zero, then the matrices $C_{11}, C_{22}$ commute therefore they have a common eigenvector $v$ and $ Cv $ is an invariant subspace, so $Cv = V$, $dim V = 1$.

Suppose that $C_{21} = 0$ and $C_{12}$ is invertible. Then $det_q = C_{11}C_{22}$ and both matrices $C_{11}, C_{22}$ are invertible. Now $x \rightarrow C_{22}, y \rightarrow C_{12}$ is a representation of the $q$-spinor with invertible matrices which is a contradiction. Recall that if $q^m \neq 1$, and one of the matrices in the $q$-spinor is invertible; then the second one must be nilpotent.

Suppose that $C_{12} = 0$ and $C_{21}$ is invertible. Then $det_q = C_{11}C_{22}$ and both matrices $C_{11}, C_{22}$ are invertible. Now $x \rightarrow C_{11}, y \rightarrow C_{21}$ is a representation of the $q^{-1}$-spinor with invertible matrices which is a contradiction.

Finally, let $C_{12}, C_{21}$ be invertible matrices and $C_{11}, C_{22}$ be nilpotent ones. We have the following relation

$$
[C_{11}, C_{22}] = (q - 1)C_{12}C_{21} = \epsilon, \quad (41)
$$

here $\epsilon$ is an invertible matrix, such that

$$
\epsilon C_{11} = qC_{11}\epsilon. \quad (42)
$$
Using this relation and induction by $k$ we can prove that,

$$[C_{11}^k, C_{22}] = q^{[k]} C_{11}^{k-1} \epsilon,$$  \hspace{1cm} (43)

where

$$x^{[k]} = 1 + x + ... + x^{k-1} = \frac{x^k - 1}{x - 1} = x^{[k-1]} \cdot x + 1.$$ \hspace{1cm} (44)

Indeed, if $k$ is the smallest number such that $C_{11}^k = 0$, then (43) gives a contradiction: $[C_{11}^k, C_{22}] = q^{[k]} C_{11}^{k-1} \epsilon = 0$ and $C_{11}^{k-1} = 0$ since $q^{[k]}=\frac{1-q^k}{1-q} \neq 0$ and $\epsilon$ is invertible.

From this follows straightforward that every finite dimensional representation of the quantum $GL_2, q^m \neq 1$, is triangular; i.e. it is equivalent to a representation by triangular matrices $c_{ij} \rightarrow C_{ij}$.

**Corollary 1.** For every finite dimensional representation $c_{ij} \rightarrow C_{ij}$ of the quantum $GL_2, q^m \neq 1$, the elements $C_{11}, C_{22}$ are invertible, while $C_{12}, C_{21}$ are nilpotent.

**Proof.** We can suppose that $C_{ij}$ are triangular matrices. In this case the matrix

$$(1 - q)^{-1}(C_{11}C_{22} - C_{22}C_{11})$$ \hspace{1cm} (45)

has only zero entries on the main diagonal. This matrix is equal to $C_{12}C_{21}$. From this follows that the main diagonal of $C_{11}C_{22}$ and that of the invertible matrix $det_q = C_{11}C_{22} - C_{12}C_{21}$ coincide. This means that $C_{11}$ and $C_{22}$ have no zero terms on the main diagonal and therefore they are invertible. \hfill$\square$

**Theorem 3.** Let $c_{ij} \rightarrow C_{ij}$ and $c_{ij} \rightarrow C'_{ij}$ be two representations of $GL_2$ in $C(1,3)$. Then Hopf algebra actions

$$c_{ij} \cdot v = \sum_k C_{ik} v C'_{kj}$$ \hspace{1cm} (46)

and

$$c_{ij} * v = \sum_k C'_{ik} v C''_{kj}$$ \hspace{1cm} (47)
are equivalent if and only iff

\[ C'_{11} = uC_{11}u^{-1}\alpha_1, \quad C'_{12} = uC_{12}u^{-1}\alpha_2, \]
\[ C'_{21} = uC_{21}u^{-1}\alpha_1, \quad C'_{22} = uC_{22}u^{-1}\alpha_2, \]  

(48)

for some nonzero complex numbers \( \alpha_1, \alpha_2 \) and invertible \( u \in C(1,3) \). If \( u = 1 \), then the actions coincide.

**Proof.** The proof follows like in Theorem 2, reference [1].

In terms of modules, this result says that the equivalence of representations means that corresponding modules \( V_1, V_2 \) are related by formula \( V_1 \simeq V_2 \otimes U \), where \( U \) is any one dimensional module.

## 5 Invariants and the operator algebra.

For a given representation \( c_{ij} \rightarrow C_{ij} \) we denote by \( \mathcal{R} \) an operator algebra i.e. a subalgebra of \( C(1,3) \) generated by \( C_{ij} \). Recall that the algebra of invariants of an action is defined in the following way

\[ \text{Inv} = \{ v \in C | \forall h \in H \quad h \cdot v = \varepsilon(h)v \}. \]

(49)

being \( H \) any Hopf algebra and \( \varepsilon(h) \) the corresponding counit. On the other hand the Invariant algebra equals the centralizer of \( \mathcal{R} \) in \( C(1,3) \).

In this Section we present five ingredients for every representation of the quantum \( GL_2 \) by Dipper-Donkin with nonzero perturbation: the values of \( C_{ij} \), the matrix form of the operator algebra \( \mathcal{R} \), its dimension, the invariants of the inner action defined by this representation \( I \), and the value of the quantum determinant.

To obtain the full classification presented in reference [10], from where we extract the representations given in this Section, Theorem 1 and Figure 2 are used. Additional information (i.e. \( \mathcal{R}, I, \) etc) are derived from Theorem 2 and Corollary 1. Theorem 3 is intended to address the question about minimal
nonequivalent representation for $GL_2$ by Dipper and Donkin on $C(1, 3)$, this question remains open, so far.

**CASE 1).**

\[
\begin{align*}
  d &= \text{diag}(q^2, q, q, 1) \\
  C_{12} &= qe_{13} - \mu e_{24} \\
  C_{21} &= -\mu e_{21} + e_{43} \\
  C_{11} &= \text{diag}(1, q^{-1}, 1, q^{-1}) \\
  C_{22} &= \text{diag}(q^2, q^2, q, q) - q\mu e_{23}
\end{align*}
\]

\[
\mathcal{R} \cong \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \otimes \begin{pmatrix} * & * \\ 0 & * \end{pmatrix};
\]

\[
dim \mathcal{R} = 9; \quad \text{Invariants} \cong C.
\]

This corresponds to CASE 4) in Theorem 1.

**CASE 2).**

\[
\begin{align*}
  d &= \text{diag}(q^2, q, q, 1) \\
  C_{12} &= qe_{12} + \mu e_{34} \\
  C_{21} &= \mu e_{31} + e_{42} \\
  C_{11} &= \text{diag}(1, 1, q^{-1}, q^{-1}) \\
  C_{22} &= \text{diag}(q^2, q^2, q, q) + q\mu e_{32}
\end{align*}
\]

\[
\mathcal{R} \cong \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \otimes \begin{pmatrix} * & * \\ 0 & * \end{pmatrix};
\]

\[
dim \mathcal{R} = 9; \quad \text{Invariants} \cong C.
\]

This corresponds to CASE 5) in Theorem 1.

For CASE 6), in Theorem 1, we find that there exist no set \{c_{ij}, d\}, $1 \leq i, j \leq 2$, that fulfills the algebra in Figure 1.

All the possible representations for the quantum $GL_2$ by Dipper-Donkin are reported elsewhere [10]. From there, we can deduce the following.

a) Only for nonzero perturbation representations of $GL_2$, $\dim \mathcal{R} = 9$; which turns out to be the maximal possible dimension of $\mathcal{R}$ for the action of
GL_2 on C(1, 3).

b) The maximal dimension for I is 6.

c) There is only one, zero perturbation, possible case in the set of all representations of GL_2 by Dipper-Donkin, on C(1, 3), for which dimR=8. This is as follows
\[
d = \text{diag}(q^2, q, 1, 1) \quad C_{12} = \alpha e_{12} + \beta e_{23} + \gamma e_{24} \\
C_{21} = 0 \quad C_{11} = 1 \\
C_{22} = q^2 e_{11} + q e_{22} + e_{33} + e_{44}.
\]

Besides, for this case we know that
\[
R = \begin{pmatrix}
0 & * & * & * \\
0 & * & * & * \\
0 & 0 & \epsilon & 0 \\
0 & 0 & 0 & \epsilon
\end{pmatrix} ; \quad I = C.
\]

d) There is only one, zero perturbation, possible case in the set of all representations of GL_2 by Dipper-Donkin, on C(1, 3), for which dimR=3. This is as follows
\[
d = \text{diag}(q^3, q, q, 1) \quad C_{12} = 0 \\
C_{21} = 0 \quad C_{11} = \epsilon_{11} + \alpha_1 e_{22} + m \alpha_2 e_{33} + \alpha_3 e_{44} \\
C_{22} = q^2 e_{11} + q \alpha_1^{-1} e_{22} + \alpha_2^{-1} e_{33} + \alpha_3^{-1} e_{44}.
\]

Besides, for this case we know that
\[
R = \begin{pmatrix}
* & 0 & 0 & 0 \\
0 & \epsilon & 0 & 0 \\
0 & 0 & \epsilon & 0 \\
0 & 0 & 0 & *
\end{pmatrix} ; \quad I = \begin{pmatrix}
\alpha & 0 & 0 & 0 \\
0 & \beta & \gamma & 0 \\
0 & \delta & \epsilon & 0 \\
0 & 0 & 0 & *
\end{pmatrix}.
\]

e) For the representations wherein \(d = \text{diag}(\alpha, q^2, q, 1)\), \(\alpha \neq 0\), \(q^{-1}\), 1, \(q\), \(q^2\), \(q^3\), which correspond to CASE 5) in Theorem (1) [1], always \(dimR=6\) and \(I = C \oplus C\).

f) For the representations wherein \(d = \text{diag}(q^3, q^2, q, 1)\) which correspond to CASE 4) in Theorem 1 [1], always \(dimR=7\) and \(I = C\).
6 Acknowledgments.

The author wishes to thank CONACYT for partial support under grant 4336-E, and Vladislav Kharchenko for helpful discussion.

References

[1] Vladislav Kharchenko, Jaime Keller and Suemi Rodríguez-Romo: “Actions of $GL_q(2,C)$ on $C(1,3)$ and its four dimensional representations” to appear in Communications in Algebra.

[2] Dipper, R., Donkin, S.: Quantum $GL_n$. Proc. London Math. Soc. (3), 63, 165–211 (1991).

[3] Manin, Yu.I.: Quantum groups and non-commutative geometry. CRM, Université de Montreal 1988.

[4] Cohen, M., and Fishman, D.: Hopf algebra actions. Journal of Algebra, 100, 363-379 (1986).

[5] Shnider, S., and Stenberg, S.: Quantum Groups. International Press, Boston, 1993.

[6] Koppinen, M.: A Skolem-Noether theorem for coalgebra measurings, Arch. Math. 57 (1991), 34-40.

[7] Montgomery, S.: Hopf Algebras and their Actions on Rings, CBMS, AMS Regional Conference Series in Mathematics, w. 82, 1992.

[8] Min, K.: Simple modules over the coordinate rings of quantum affine space. Bull. Austral. Math. Soc. 52, 231-234 (1995).

[9] Smith, S.P.: Quantum groups: An introduction and survey for ring theorists. In: Montgomery, S.(ed.). Noncommutative rings. NSR Publ. 24, 131-178. New York: Springer 1992.
[10] Rodríguez-Romo, S.: math.QA/9805017