Diabetes Mellitus and Tuberculosis Treatment Outcomes in Pune, India

Vidya Mave, MD1,2, Sanjay Gaikwad, MD1,3, Madhusudan Barthwal, MD4, Ajay Chandanwale, Ms1,3, Rahul Lokhande, MD1,3, Dileep Kadam, MD1,3, Sujata Dharmshale, PhD1,3, Renu Bharadwaj, MD1,3, Anju Kagal, MD1,3, Neeta Pradhan, MSc1, Sona Deshmukh, MBBS, MPH1, Sachin Atre, PhD4, Tushar Sahasrabudhe, MD4, Shailesh Meshram, MD4, Arjun Kakrani, MD4, Vandana Kulkarni, MS1, Swapnil Raskar, PG Diploma1, Nishi Suryavanshi, PhD1, Hardy Kornfeld, MD6, Kelly E Dooley, MD2, Sandy Chon, MPH2, Akshay Gupte, PhD5, Amita Gupta, MD1,2, Nikhil Gupte, PhD1,2, Jonathan E. Golub, PhD2,5

1Byramjee-Jeejeebhoy Medical College-Johns Hopkins University Clinical Research Site, Pune, India
2Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
3Byramjee-Jeejeebhoy Government Medical College, Pune, India
4Dr. D.Y. Patil Medical College, Hospital & Research Centre, Pune, India
5Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
6University of Massachusetts, Boston, Massachusetts, USA

Correspondence to: Vidya Mave, MD, MPH & TM
1st Floor, ENT department, Jai Prakash Narayan Road, Pune, Maharashtra, India-411001
Ph: (+91) 9503646148
Email: vidyamave@gmail.com

© The Author(s) 2021. Published by Oxford University Press on behalf of Infectious Diseases Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Alternate corresponding author: Jonathan Golub, PhD

1550 Orleans Street, Room 1M.07
Baltimore, Maryland 21231, USA
Ph: (443) 287 2969 / FAX (410) 955 0740,
email: jgolub@jhmi.edu

Key Points. In this prospective observational tuberculosis cohort in India, diabetes mellitus (DM) increased the risk of early mortality, but overall unfavourable tuberculosis treatment outcomes were similar between participants with and without DM.
Abstract

Background. Diabetes mellitus (DM) increases the risk of tuberculosis (TB) disease. Knowledge of the impact of DM on TB treatment outcomes is primarily based on retrospective studies.

Methods. We conducted a prospective cohort study of new pulmonary TB patients with and without DM (TB-DM and TB-only) in India. The association of DM with a composite unfavorable TB treatment outcome (failure, recurrence, mortality) over 18 months was determined and the effect of DM on all-cause mortality and early mortality (death during TB treatment) was assessed.

Results. Of 799 participants, 574(72%) had TB-only and 225(28%) had TB-DM. The proportion of patients with DM who experienced the composite outcome was 20% as compared to 21% for TB only participants (adjusted hazard ratio 1.13, 95% CI 0.75–1.70). Mortality was higher in participants with DM (10% vs. 7%), and early mortality was substantially higher among patients with DM (adjusted hazard ratio [aHR] 4.36; 95% CI:1·62–11.76).

Conclusion. DM was associated with early mortality in this prospective cohort study, but overall unfavorable outcomes were similar to participants without DM. Interventions to reduce mortality during TB treatment among people with TB-DM are needed.

Key words: Tuberculosis, Diabetes Mellitus, Unfavourable treatment outcomes, Mortality, India
Introduction

Tuberculosis (TB) has emerged as the most fatal infectious disease worldwide[1], and the burden of diabetes mellitus (DM), has risen steeply in low- and middle-income countries (LMIC)[2-4]. India contributes the world’s largest TB burden (over 2.7 million cases in 2019)[1, 5, 6] and among the largest burdens of DM (77 million adults)[3, 4, 6]. Convergence of the TB and DM epidemics in India may impede global TB control efforts[7], as it is well accepted that DM increases the risk of TB disease[8-10]. The relationship between DM and TB treatment outcomes remains less certain.

Evidence, mostly from retrospective studies, indicates that persons with TB and DM are at higher risk for unfavourable TB treatment outcomes including delayed sputum conversions, TB treatment failure, recurrence and death [8, 11-14]. However, the few prospective studies evaluating clinical consequences of DM and pre-DM among TB patients often have methodologic shortcomings (e.g. misclassification of DM, non-standardization of outcome definitions, and no adjustment for confounders) and few have been conducted in high TB-DM burden regions[15]. Prospective data from a high TB-DM burden setting are needed.

Pune, India has a population of 7 million within the city and surrounding semi-urban/rural areas and TB notification incidence of 112–132/100,000 person-years (PY)[16]. In this setting, over half of TB cases are dysglycemic, and the mycobacterial burden before TB treatment initiation is four-fold higher in patients with DM[17]. We hypothesized that, due to higher baseline mycobacterial burden and altered immune response to TB[18], DM would lead to prolonged sputum culture positivity and higher risk of TB treatment failure, recurrence or death. We further hypothesized that magnitude of risk of unfavourable outcomes would correlate with level of hyperglycemia. To investigate these relationships fully, we established a prospective cohort of newly diagnosed pulmonary TB patients with and without DM.
Methods

Study Design and Study Sites

This prospective cohort study was conducted at the Byramjee-Jeejeebhoy Government Medical College-Sassoon General Hospitals (BJGMC-SGH) clinical research site, between December 2013 and May 2019. Dr. DY Patil Medical College (DYPMC), joined the study in 2016. BJGMC-SGH and DYPMC are tertiary care teaching hospitals serving low- and middle-income populations in and around Pune city in India. We conducted a concurrent DM prevalence survey among patients with TB to identify participants for the prospective study[17]. Eligible persons evaluated for TB at 11 Revised National TB Control Program (RNTCP) tuberculosis units (TU) in greater Pune region, representing >70% coverage of total active TB cases, were referred to study sites[17].

Study Eligibility

Eligibility criteria were age \(\geq \) 18 years; microbiologically confirmed pulmonary TB by either smear positive for acid-fast bacilli [AFB], GeneXpert [Xpert® MTB/RIF assay] or AFB culture; or clinical TB diagnosed using RNTCP clinical criteria; and known DM and HIV status[17]. Persons with prior TB history, rifampin-resistant TB, multi-drug resistant TB, people with HIV (WH) infection, or pregnancy were excluded. INH-monoresistance was not an exclusion criterion. Spot and early morning sputum specimens from individuals with possible TB in our concurrent prevalence study[17] underwent AFB, GeneXpert and culture using Mycobacterial Growth Indicator Tube [MGIT] liquid culture and Löwenstein-Jensen [LJ] solid media methods. Baseline fasting or random blood glucose test (Cobas c111, Roche Diagnostics Ltd, Switzerland), HbA1c (BioRad Laboratories Inc, Hercules, CA, USA) and HIV rapid test were also performed. All microbiologic and blood-based tests were performed at the BJGMC-SGH laboratory.

Study Procedures

Baseline information, including demographics, socioeconomic factors, co-morbidities, DM and TB history, current DM medications, and TB risk factors (e.g. tobacco exposure history, alcohol use, duration of TB symptoms) were collected via questionnaire. Follow-up visits
occurred biweekly in the intensive phase (first 8 weeks) of anti-TB treatment, every 4 weeks during the continuation phase (up to 6 months), and at 12 and 18 months. Spot sputum specimens collected at each visit underwent AFB staining and culture using both MGIT liquid and LJ solid media, in the BJGMC-SGH laboratory. Laboratory quality assurance was monitored externally by pSMILE laboratories. Phenotypic drug susceptibility testing was performed when *Mtb* growth was confirmed and if treatment failure or recurrence was suspected. TUs provided routine TB treatment as per national guidelines. The thrice weekly regimen via directly observed therapy (DOT) included 450mg (600mg for \(\geq 60\) kg body weight) rifampin (R), 600mg isoniazid (H), 1200mg ethambutol (E), and 1500mg pyrazinamide (Z) during intensive phase followed by rifampin and isoniazid at the same doses during continuation phase. On April 1 2017, self-administered daily TB treatment was rolled out in India – weight-based fixed drug combination (FDC) of HRZE (75/150/400/275mg; 2 tablets for 25-39kg, 3 tablets for 40-54kg, 4 tablets for 55-69kg and 5 tablets for \(\geq 70\)kg) during the intensive phase and weight-banded FDC of HRE in the continuation phase. The study clinician conducted a detailed review of potential causes of death via questionnaire.

Study Definitions

Microbiologically confirmed TB was defined as positive sputum smear for AFB, GeneXpert, or culture. DM was defined as: HbA1c \(\geq 6.5\)%, fasting blood glucose \(\geq 126\) mg/dl, random blood sugar \(>200\) mg/dl, self-reported DM diagnosis or current DM medication use. Known DM was defined as DM diagnosis prior to TB diagnosis and treatment initiation[19]. New DM was defined as DM diagnosis at TB diagnosis and/or treatment initiation.

Study Outcomes

The primary study outcomes were rate of composite unfavourable TB treatment outcome by DM status (TB-only and TB-DM) and impact of DM and one-unit increase of HbA1c on the composite outcome, defined as TB treatment failure (positive smear or culture at months 5 or 6), recurrence (new TB diagnosis after cure or TB treatment completion), or mortality (all-cause mortality by 18 months). (Supplementary Table 1). Secondary outcomes included
individual TB treatment outcomes- failure, recurrence, mortality and early mortality defined as mortality during TB treatment, time to culture conversion, and proportion with culture conversion at 2 months of TB treatment. All aforementioned analyses were repeated in sub-analyses, defined \textit{a priori}, by DM subtype, either new or known DM. Post-hoc exploratory analyses were conducted to further probe the impact of metformin use on TB treatment outcomes for the entire cohort and among patients with DM.

\textbf{Sample Size and Statistical Analysis}

At the time of study design, the rate of unfavourable TB treatment outcomes in India was 15\%.[5] Assuming 15\% of patients with TB-only and 25\% of patients with TB-DM will have unfavourable TB treatment outcome, two-sided alpha of 0.05 and 10\% loss to follow up, we calculated a sample size of 675 participants (n=450 TB-only and n=225 TB-DM) to achieve 80\% power to assess a 10\% difference between groups. All study participants with at least 12 months of follow up or died before 12 months were included in the analysis. Baseline characteristics were summarized using proportions and medians with interquartile range (IQR) and compared by DM status using Fisher’s exact test or Wilcoxon rank-sum test, respectively. P-values <0.05 were deemed statistically significant. Risk of composite unfavourable treatment outcome for DM, including subcategories, was estimated using Poisson regression (\textit{Supplementary Table 1}). Time to culture conversion and proportion of 2-month culture conversion were compared by DM status using the log-rank test and Fisher’s exact test, respectively. Predictors of mortality and early mortality were assessed using Cox proportional hazards models, and bootstrap (100x) 95\% CIs for hazards rate ratios were estimated. Poisson regression determined the association of new DM, and known DM as predictors of unfavourable treatment outcome. Data were analyzed using Stata v14.2 (StataCorp, College Station, TX).
Ethics approval and patient consent statement.

The patient’s written consent was obtained for this study. The design of the work was approved by the Ethics Committees at BJGMC-SGH (FWA00005797) and DYPMC (FWA00027671) and the Institutional Review Board of Johns Hopkins School of Medicine (FWA00005752).

Results

Baseline characteristics by DM status

Of 1780 people with TB, 799 (n=574 TB-only and n=225 TB-DM) completed at least 12 months of follow up or died before 12 months and were included in this analysis (Figure 1). Compared to TB-only, TB-DM participants were more likely to be male (p=0.002), above age 40 years (p<0.001), anemic (p=0.001), have lower household income (p=0.007) and have normal body mass index (BMI) or be overweight (p<0.001) (Table 1). The thrice weekly DOT regimen was disproportionately received by TB-only patients (488 [85%] vs.131 [58%], p<0.001). Among the 225 TB-DM participants, 155 (69%) were diagnosed with DM prior to their TB diagnosis and 70 (31%) were newly diagnosed with DM at TB diagnosis. Of the 70 newly diagnosed with DM, 68 were diagnosed via elevated A1c and two were diagnosed via elevated fasting blood glucose. The median HbA1c was 9.7% (7.3% - 11.5%) among TB-DM.

DM and unfavourable TB treatment outcome

Incidence of unfavourable treatment outcome was 20.0 (17.1–23.4) per 100 PY overall and was comparable among TB-only and TB-DM (20.0 per 100 PY vs 20.1 per 100 PY, p=0.29). Neither DM (adjusted relative risk [aRR]:1.13; 95%CI:0.75–1.70) nor one-unit increase in HbA1c (aRR:0.96; 95%CI:0.88–1.04) were independently associated with unfavourable treatment outcome (Table 2); DM was not associated with unfavourable treatment outcome among patients on the thrice weekly (n=619; aRR:1.06; 95%CI:0.67–1.67) or daily (n=180; aRR:1.23; 95%CI:0.43–3.52) TB regimen. New DM had a higher risk of unfavourable TB treatment outcome than TB-only (RR:1.56; 95%CI:0.96–2.53), but the association did not reach statistical significance in our adjusted model (aRR:1.40; 95%CI:0.83–2.37). Overall,
low BMI (aRR:1.60; 95%CI:1.07–2.39) and alcohol use (aRR:1.87; 95%CI:1.20–2.90) were independently associated with unfavourable TB treatment outcome (Supplementary Table 2). In the stratified analysis by BMI, TB-DM participants with low BMI (RR, 1.24; 95% CI: 0.78 – 1.97), and normal BMI (RR, 1.66; 95% CI: 0.86 – 3.20) had higher likelihood of adverse outcomes while high BMI was protective (RR, 0.24; 95% CI: 0.04 – 1.29), but none reached statistical significance.

Secondary analyses

Proportion of 2-month culture conversion was comparable among TB-only and TB-DM (95% vs 96%), and median time to culture conversion on solid medium was 31 days in both groups. DM was not associated with delayed time to culture conversion on liquid medium (adjusted Hazard Ratio [aHR]:1.15; 95%CI:0.89–1.48) or any individual unfavourable TB outcome (Table 2). Overall, we observed 65(8%) deaths by 18 months – 42(7%) in TB-only and 23(10%) in TB-DM. Risk of overall mortality was 54% higher among TB-DM compared to TB-only (aHR:1.54 95%CI:0.85–2.79) but this finding was not statistically significant (Table 3). Time to mortality was shorter in TB-DM than TB-only (66 days vs 88 days, p=0.001; Figure 2a). Respiratory complications of TB were more commonly the cause of death among TB-DM patients compared to TB-only (50% vs 27%, p<0.001); events related to cardiovascular disease (CVD) were observed in 32% of TB-DM patients who died vs 15% of TB-only patients (p=0.09).

Early mortality

Early mortality occurred in 17 (8%) TB-DM and 9 (2%) TB-only patients. DM was independently associated with early mortality (aHR:4.36; 95%CI:1.62–11.76) (Table 3), and time to death was shorter among new DM and known DM patients compared to TB-only patients (26 vs 44 vs 88 days, p=0.001; Figure 2b). Both new DM (aHR:6.56; 95%CI:2.18–19.71) and known DM (aHR 3.14; 95%CI:1.03–9.61) were independently associated with early mortality (Table 3). As shown in the Supplementary Table 3, bootstrapping method did not change the 95% confidence intervals of the associations between early mortality and TB-DM.
Exploratory analyses

Of the 225 TB-DM patients, 100% of the known DM (155) were on DM medication. Of the 70 newly diagnosed DM, 17 reported initiating DM medications following TB diagnosis, 14 reported seeking care for DM but did not report medication use, and 39 did not report receiving any DM medications or care. Specific to metformin, 95 of 155 (61%) with DM prior to TB diagnosis were receiving it and 10 of 70 (14%) newly diagnosed with DM initiated metformin use after TB diagnosis. Metformin reduced composite unfavourable TB treatment outcome by 50% (aRR 0.52; 95%CI:0.26–1.01) among TB-DM patients. Not receiving metformin increased risk of mortality (aHR:1.99; 95%CI:1.05–3.78) compared to TB-only patients and this risk persisted even after further adjustment for HbA1c (aHR:3.26; 95%CI:1.45–7.33) (Table 3). Furthermore, not receiving metformin increased risk of early mortality (aHR:6.17; 95%CI:2.24–17.04) compared to TB-only patients, and this risk was observed after further adjustment for HbA1c (aHR:12.69; 95%CI:4.06–39.67). Moreover, metformin reduced recurrence significantly (aHR, 0.18; 95% CI: 0.04-0.89)., but had little impact on treatment failure (HR=0.59; 95% CI: 0.26-1.33).

Discussion

Recent interest in the synergistic impact of the TB and DM epidemics has led to recommendations for bi-directional screening[20, 21]. The International Union Against Tuberculosis and Lung Disease (Union) and the World Diabetes Foundation (WDF) urge DM-TB co-management during TB treatment[22-24], yet implementation remains uneven, perhaps in part because evidence remains limited and inconsistent[8, 25, 26]. We prospectively followed 799 TB patients with and without DM in a setting with high TB and DM prevalence. In our cohort, DM did not increase risk of our composite unfavourable TB treatment outcome (failure, recurrence, death). However, patients with DM were more likely to die during TB treatment. Furthermore, as compared to TB-only participants, post-TB treatment mortality was lower by nearly one-half among patients with TB and DM (although not statistically significant). These results together with our finding that both newly diagnosed
and known DM patients were at higher risk for early mortality underscores the need for aggressive DM screening among TB patients and early initiation of treatment for newly diagnosed DM[17].

In contrast to several retrospective reports and a systematic review in LMICs[8, 11, 27], our prospective analysis does not indicate an independent association between DM and composite unfavourable TB treatment outcome, consistent with a recent report from South India[28]. Traditional risk factors such as low BMI[29, 30] and alcohol use[31] were associated with adverse outcomes, neither degree of hyperglycemia nor new DM were associated with unfavourable outcomes[28]. We found that low and normal BMI were more common among TB-DM participants than high BMI, a finding explained by studies which find Indians generally have higher visceral adiposity index than their western counterparts with the same body weight, leading to a high burden of insulin resistance, even among the normal or low bodyweight Indians.[28, 32] However, as reported previously, we also found a non-statistically significant directionality between low BMI and DM and adverse treatment outcomes.[28] Moreover, we postulate that metformin use by over half of DM patients in our cohort may have mitigated the previously reported higher risk of unfavourable TB treatment outcomes associated with DM. This is based on our exploratory analyses that TBDM patients not receiving metformin had twice the risk of all-cause mortality (by 18 months) and an increased risk of death during TB treatment by over 6-fold compared to patients with TB alone. Furthermore, metformin reduced the risk of recurrence among patients with TB-DM.[33] Metformin, the popular anti-DM drug, is being touted as a potential host-directed adjuvant in TB therapy, following reports of reduced Mycobacterium tuberculosis (Mtb) growth in macrophages in Mtb-infected mice[34, 35]. Furthermore, retrospective studies associate metformin use with reduced TB incidence among DM patients and reversal of DM-associated mortality during TB treatment[11, 36, 37] as well as reduced TB recurrence[33]. Taken together, these findings suggest that TB outcomes might improve with metformin use among TB-DM patients, but this needs further exploration.
Our cohort had 65 deaths during follow-up and 26 during TB treatment, and we further analyzed mortality risk in our cohort, arguably the most important negative outcome. Increased early mortality among patients with TB and DM is our most striking finding and was observed in patients with newly-diagnosed and known DM. Respiratory complications were the leading cause of death in TB-DM patients, and CVD events were common. This finding is consistent with prior research that showed higher risk of mortality due to CVD within three months of TB diagnosis among TB-DM than patients with TB alone[38, 39]. A South India study showed that endothelial inflammatory markers associated with increased risk of CVD were higher among patients with TB-DM at treatment initiation, providing a plausible biologic explanation for early mortality[40-42].

Our study is not without limitations. First, the sample size was powered to measure the independent impact of DM on the composite unfavourable TB treatment outcome, not individual TB treatment outcomes. However, our mortality analyses add depth to our understanding of the impact of DM on TB outcomes even if underpowered. Rollout of the new daily TB regimen in India during the study presents another limitation. Because more TB-DM patients received the daily regimen than TB-only participants, the effect of DM on outcomes may have been underestimated. Although the daily regimen decreased the composite unfavourable outcome in univariable analysis, adjusting for this variable in our primary model did not impact the results. Further, our stratified analysis indicates no association between DM and the composite outcome for either regimen (daily or thrice weekly).
In conclusion, clear evidence from India, a TB-DM epicenter with 27% of TB cases globally (a staggering 2.8 million cases) and high DM prevalence[1], is critical to guide management of DM-associated TB. In our prospective observational TB cohort in India, DM did not increase the risk of composite unfavourable TB treatment outcome, but significantly increased the risk of mortality, particularly during TB treatment – the most important outcome for patients and clinicians. Metformin appeared to mitigate this risk. These findings underline the importance of close monitoring and immediate treatment when DM is discovered during screening efforts[43, 44].
Funding

This work was supported by the National Institutes of Health [R01AI1097494 to J.G.]; Indo (Department of biotechnology)-US (National Institute of Health) [USB1-31147-XX-13 CRDF/NIH to A.G.]; and the National Institutes of Health- funded Johns Hopkins Baltimore-Washington-India Clinical Trials Unit for National Institute for Allergy and Infectious Diseases Networks [UM1AI069465 to V.M., N.G., A.G.]. R.L. was supported by the Byramjee Jeejeebhoy Government Medical College Johns Hopkins University HIV TB Program funded by the National Institutes of Health Fogarty International Center [D43TW009574]. The content of this paper is solely the responsibility of the authors and does not necessary represent the official views of the funders.

Author contributions VM, NG, AG1, NS, DK, AK2, KED, JEG conceived the study, and JEG obtained funding. VM, SG, RL, SD1, DK, RB, AK1, NP, SR, NS, SD2, SA, TS, MB, SM, AK2, SC, and VK ran the study and collected data. NG performed data analyses, and VM, NG, AK2, AG1, AG2, HK, KED, JEG conducted data interpretation. VM and JEG drafted the initial manuscript, and all authors assisted in manuscript preparation and approved the manuscript.

Acknowledgments

We thank the clinic and research staff of BJMC-SGH and Dr. DY Patil Medical College for their immense contributions. We acknowledge the Revised National Tuberculosis Control Program, Maharashtra, for participant referrals and support of research. We thank Katherine McIntyre for copyediting the manuscript.

Conflict of interest

All authors declare no conflict of interest for this work.
References

1. World Health Organization. Global tuberculosis report 2020. http://www.who.int/tb/publications/global_report/en/. Accessed 20th October 2020.
2. Djousse L, Driver JA, Gaziano JM, Buring JE, Lee IM. Association between modifiable lifestyle factors and residual lifetime risk of diabetes. Nutrition, metabolism, and cardiovascular diseases: NMCD 2013; 23(1): 17-22.
3. International Diabetes Federation. Diabetes Atlas. 9th ed. Available at: https://www.diabetesatlas.org/data/en/country/93/in.html 2020. Accessed January 7, 2021.
4. Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes research and clinical practice 2018; 138: 271-81.
5. Central Tuberculosis Division GoI. Annual report, TB India 2016_Part1. http://tbcindia.nic.in/showfile.php?id=3180. Accessed January 23rd, 2017.
6. Mave V, Nimkar S, Prasad H, et al. Tuberculosis screening among persons with diabetes mellitus in Pune, India. BMC infectious diseases 2017; 17(1): 388.
7. Odone A, Houben RM, White RG, Lonnroth K. The effect of diabetes and undernutrition trends on reaching 2035 global tuberculosis targets. The lancet Diabetes & endocrinology 2014; 2(9): 754-64.
8. Baker MA, Harries AD, Jeon CY, et al. The impact of diabetes on tuberculosis treatment outcomes: a systematic review. BMC medicine 2011; 9: 81.
9. Harries AD, Kumar AM, Satyanarayana S, et al. Diabetes mellitus and tuberculosis: programmatic management issues. The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease 2015; 19(8): 879-86.
10. Jeon CY, Harries AD, Baker MA, et al. Bi-directional screening for tuberculosis and diabetes: a systematic review. Tropical medicine & international health: TM & IH 2010; 15(11): 1300-14.
11. Degner NR, Wang JY, Golub JE, Karakousis PC. Metformin Use Reverses the Increased Mortality Associated With Diabetes Mellitus During Tuberculosis Treatment. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 2018; 66(2): 198-205.
12. Ruslami R, Aarnoutse RE, Alisjahbana B, van der Ven AJ, van Crevel R. Implications of the global increase of diabetes for tuberculosis control and patient care. Tropical medicine & international health: TM & IH 2010; 15(11): 1289-99.
13. Dooley KE, Tang T, Golub JE, Dorman SE, Cronin W. Impact of diabetes mellitus on treatment outcomes of patients with active tuberculosis. The American journal of tropical medicine and hygiene 2009; 80(4): 634-9.
14. Huangfu P, Ugarte-Gil C, Golub J, Pearson F, Critchley J. The effects of diabetes on tuberculosis treatment outcomes: an updated systematic review and meta-analysis. The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease 2019; 23(7): 783-96.
15. Huangfu P, Pearson F, Ugarte-Gil C, Critchley J. Diabetes and poor tuberculosis treatment outcomes: issues and implications in data interpretation and analysis. The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease 2017; 21(12): 1214-9.
16. Program. RNTC. India TB report 2019. https://tbcindia.gov.in/index1.php?lang=1&level=2&sublinkid=5358&lid=3450. Accessed 23rd August 2020.
17. Mave V, Meshram S, Lokhande R, et al. Prevalence of dysglycemia and clinical presentation of pulmonary tuberculosis in Western India. The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease 2017; 21(12): 1280-7.
18. Martinez N KH. Diabetes and immunity to tuberculosis. Eur J Immunol 2014; 44(3): 617-26.
19. Kornfeld H, West K, Kane K, et al. High Prevalence and Heterogeneity of Diabetes in Patients With TB in South India: A Report from the Effects of Diabetes on Tuberculosis Severity (EDOTS) Study. Chest 2016; 149(6): 1501-8.
20. Kapur A, Harries AD, Lonroth K, Wilson P, Sulistiyowati LS. Diabetes and tuberculosis co-epidemic: the Bali Declaration. The lancet Diabetes & endocrinology 2016; 4(1): 8-10.
21. Harries AD, Kumar AM, Satyanarayana S, et al. Addressing diabetes mellitus as part of the strategy for ending TB. Transactions of the Royal Society of Tropical Medicine and Hygiene 2016; 110(3): 173-9.
22. Riza AL PF, Ugarte-Gil C, et al. Clinical management of concurrent diabetes and tuberculosis and the implications for patient services. Lancet Diabetes Endocrinol 2014; 2: 740-753.
23. Critchley JA, Restrepo BI, Ronacher K, et al. Defining a Research Agenda to Address the Converging Epidemics of Tuberculosis and Diabetes: Part 1: Epidemiology and Clinical Management. Chest 2017; 152(1): 165-73.
24. Lin Y HAD, Kumar A M V, Critchley J A, van Creval R, Owiti P, Dlodlo R A, Deijgaaard A. Management of diabetes mellitus-tuberculosis: a guide to the essential practice. Paris, France: International Union Against Tuberculosis and Lung Disease, 2018.
25. Jeon CY, Murray MB. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS medicine 2008; 5(7): e152.
26. Al-Rifai RH, Pearson F, Critchley JA, Abu-Raddad LJ. Association between diabetes mellitus and active tuberculosis: A systematic review and meta-analysis. PLoS one 2017; 12(11): e0187967.
27. Siddiqui AN, Khayyam KU, Sharma M. Effect of Diabetes Mellitus on Tuberculosis Treatment Outcome and Adverse Reactions in Patients Receiving Directly Observed Tuberculosis Treatment Strategy in India: A Prospective Study. BioMed research international 2016; 2016: 7273935.
28. Kornfeld H, Sahukar SB, Procter-Gray E, et al. Impact of Diabetes and Low Body Mass Index on Tuberculosis Treatment Outcomes. Clin Infect Dis. 2020 Dec 3;71(9):e392-e398..
38. Faurholt-Jepsen D, Range N, PrayGod G, et al. Diabetes is a strong predictor of mortality during tuberculosis treatment: a prospective cohort study among tuberculosis patients from Mwanza, Tanzania. Tropical medicine & international health: TM & IH 2013; 18(7): 822-9.

39. Reed GW, Choi H, Lee SY, et al. Impact of diabetes and smoking on mortality in tuberculosis. PloS one 2013; 8(2): e58044.

40. Kumar NP, Moideen K, Sivakumar S, et al. Tuberculosis-diabetes co-morbidity is characterized by heightened systemic levels of circulating angiogenic factors. The Journal of infection 2017; 74(1): 10-21.

41. Kumar NP, Sridhar R, Banurekha VV, et al. Type 2 diabetes mellitus coincident with pulmonary tuberculosis is associated with heightened systemic type 1, type 17, and other proinflammatory cytokines. Ann Am Thorac Soc 2013; 10(5): 441-9.

42. Kato M, Natarajan R. Diabetic nephropathy--emerging epigenetic mechanisms. Nature reviews Nephrology 2014; 10(9): 517-30.

43. Tiberi S, du Plessis N, Walzl G, et al. Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. The Lancet Infectious diseases 2018; 18(7): e183-e98.

44. Wallis RS, Maeurer M, Mwaba P, et al. Tuberculosis--advances in development of new drugs, treatment regimens, host-directed therapies, and biomarkers. The Lancet Infectious diseases 2016; 16(4): e34-46.
Figure Legends

Figure 1. Study flowchart illustrating flow of study participants from screening to enrollment to the prospective tuberculosis cohort by diabetes mellitus status.

Figure 2a. Kaplan-Meier curve showing time to early mortality (death during the period of tuberculosis treatment) among patients with tuberculosis (TB) by diabetes mellitus (DM) status. The red line represents patients with DM, and the blue line represents patients without DM.

Figure 2b. Kaplan-Meier curve showing time to early mortality by newly diagnosed diabetes mellitus (DM) and known DM among patients with tuberculosis (TB). The blue line represents patients with TB without DM, the green line represents newly diagnosed DM and the red line represents known DM.
Table 1. Baseline sociodemographic and clinical characteristics of newly diagnosed tuberculosis patients by diabetes mellitus status in Pune, India

Characteristic	Overall	TB-only	TB-DM	P-value
	n=799	n=574	n=225	
Sociodemographic				
Sex				
Female	269 (34)	212 (37)	57 (25)	0.002
Male	530 (66)	362 (63)	168 (75)	
Age, y				
<25	251 (31)	242 (42)	9 (4)	
25 – 40	281 (35)	231 (40)	50 (22)	<0.001
>40	267 (33)	101 (18)	166 (74)	
Residence				
Rural	84 (11)	54 (9)	30 (13)	0.12
Urban	715 (89)	520 (91)	195 (87)	
Family Type				
Nuclear	454 (57)	333 (58)	121 (54)	0.30
Joint	345 (43)	241 (42)	104 (46)	
Employment				
Unemployed	383 (48)	272 (48)	110 (49)	0.75
Employed	416 (52)	301 (52)	115 (51)	
Household income, Indian rupees				
>10,000	274 (36)	232 (38)	42 (26)	0.007
<10,000	494 (64)	377 (62)	117 (74)	
Anemia*				
No	678 (86)	471 (83)	207 (92)	0.001
Yes	115 (15)	97 (17)	18 (8)	
Smoking				
Non-smoker	648 (81)	471 (82)	177 (79)	0.27
Smoker	151 (19)	103 (18)	48 (21)	
Alcohol				
No	561 (70)	405 (71)	156 (69)	0.73
Yes	238 (30)	169 (29)	69 (31)	
-----	----------	----------	---------	

Clinical characteristics

Smear grade

Negative	236 (30)	168 (29)	68 (30)	
1+	283 (35)	203 (35)	80 (36)	0.96
2+	154 (19)	110 (19)	44 (20)	
3+	126 (16)	93 (16)	33 (15)	

Body mass index

Normal	257 (32)	140 (24)	117 (52)	
Underweight	503 (63)	421 (73)	82 (36)	<0.001
Overweight	39 (5)	13 (2)	26 (12)	

Cavity on X-ray

Absent	360 (54)	262 (55)	98 (52)	0.49
Present	303 (46)	213 (45)	90 (48)	

Glycated Hemoglobin (HbA1c)

<5.6	357 (45)	354 (62)	3 (1)	
5.6 – 6.5	238 (30)	217 (38)	21 (9)	<0.001
≥ 6.5	200 (25)	0	200 (89)	

Diabetes mellitus

No DM	574 (72)	574 (100)	0	
New DM	70 (9)	0	69 (31)	<0.001
Known DM	155 (19)	0	155 (69)	

Abbreviations: DM, diabetes mellitus; HH, household; TB, tuberculosis.

All data presented as n(%).

a Defined as hemoglobin < 8 mg/dl for women and < 8.5 mg/dl for men.

b Calculated as weight (kg)/ (height (m))^2 and categorized as underweight (<18.5 kg/m^2), normal (18.5–24.9 kg/m^2), or overweight (>25–29.9 kg/m^2).
Table 2. Estimated risk of tuberculosis outcomes by diabetes mellitus status among a prospective tuberculosis cohort in Pune, India.

Outcome	Rate (95% CI)	Univariable Analysis	Multivariable Analysis*		
		Ratio b (95% CI)	p-value	Ratio b (95% CI)	p-value
Composite unfavorable outcome					
TB-only (n=574)	20.0 (16.6–24.0)	Ref	Ref		
TB-DM (n=225)	20.1 (14.6–27.0)	1.01 (0.71–1.42)	>0.95	1.13 (0.75–1.70)	0.56
HbA1c	–	0.94 (0.87–1.01)	0.10	0.96 (0.88–1.04)	0.31
Treatment failure					
TB-only (n=574)	21.8 (16.5–28.3)	Ref	Ref		
TB-DM (n=225)	14.0 (7.4–23.8)	0.56 (0.30–1.06)	0.08	0.75 (0.36–1.58)	0.46
Recurrence					
TB-only (n=424)	12.2 (8.7–16.5)	Ref	Ref		
TB-DM (n=159)	7.5 (3.4–14.2)	0.62 (0.30–1.27)	0.19	0.73 (0.31–1.70)	0.46
Mortality					
TB-only (n=574)	6.5 (4.7–8.8)	Ref	Ref		
TB-DM (n=225)	9.9 (6.3–14.9)	1.55 (0.93–2.59)	0.09	1.54 (0.85–2.79)	0.16
2-month culture conversion					
TB-only (n=478)	94.6 (92.5–96.6)	Ref	Ref		
TB-DM (n=184)	96.2 (93.4–99.0)	0.69 (0.29–1.61)	0.39	0.56 (0.20–1.57)	0.27
Median time to culture conversion, days					
	(IQR)	Ref	Ref		
------------------	----------------	--------------	--------------		
TB-only (n=453)	1.8 (1.7–2.0)	Ref	Ref		
TB-DM (n=166)	2.5 (2.1–2.9)	1.18 (0.98–1.43)	0.08	1.15 (0.89–1.48)	0.29

Abbreviations: CI, confidence interval; DM, diabetes mellitus; IQR, interquartile range; TB, tuberculosis.

\(^a\) Adjusted for sex, age, household income, smoking, alcohol, body mass index, daily vs. intermittent TB regimen, and smear grade.

\(^b\) Measure of association: Relative Risk (Composite unfavourable treatment outcome); Odds Ratio (Treatment failure); Hazard Ratio (Recurrence, Mortality, 2-month culture conversion).

\(^c\) Defined as treatment failure, recurrence or all-cause mortality.
Table 3. Estimated risk of mortality and early mortality by diabetes subtype (new or known) among a prospective tuberculosis cohort in Pune, India

Outcome	Rate (95% CI)	Univariable Analysis	Multivariable Analysis^a		
		HR (95% CI)	p-value	aHR (95% CI)	p-value
All-cause mortality					
TB-only (n=574)	6.5 (4.7–8.8)	Ref		Ref	
TB-DM (n=225)	9.9 (6.3–14.9)	1.55 (0.9–2.59)	0.09	1.54 (0.85–2.79)	0.16
New DM (n=70)	13.5 (7.0–25.8)	2.13 (1.04–4.36)	0.04	1.73 (0.80–3.76)	0.17
Known DM (n=155)	8.5 (5.0–14.4)	1.33 (0.72–2.43)	0.36	1.41 (0.70–2.88)	0.34
DM on metformin (n=117)	6.22 (3.11–12.43)	0.96 (0.45–2.05)	0.92	0.96 (0.40–2.31)	0.93
DM no metformin (n=108)	14.57 (8.78–24.17)	2.32 (1.28–4.19)	0.005	1.99 (1.05–3.78)	0.04
Early mortality^b					
TB-only (n=574)	3.4 (1.6–6.5)	Ref		Ref	
TB-DM (n=225)	17.5 (10.2–28.0)	5.06 (2.26–11.35)	<0.001	4.36 (1.62–11.76)	0.004
New DM (n=70)	24.7 (10.0–51.0)	7.17 (2.67–19.27)	<0.001	6.56 (2.18–19.71)	0.001
Known DM (n=155)	14.53 (6.9–26.7)	4.20 (1.70–10.33)	0.002	3.14 (1.03–9.61)	0.045
DM on metformin (n=117)	11.37 (4.17–24.75)	3.30 (1.18–9.28)	0.02	2.32 (0.67–8.08)	0.20
DM no metformin (n=108)	24.82 (12.39–44.41)	7.13 (2.96–17.21)	<0.001	6.17 (2.24–17.04)	<0.001
Post ATT Mortality^c					
TB-only (n = 487)	8.6 (5.9–12.1)	Ref		Ref	
TB-DM (n = 176)	4.5 (1.6–9.7)	0.54 (0.22–1.28)	0.16	0.58 (0.22–1.51)	0.27
Group	Median (95% CI)	HR (95% CI)	aHR (95% CI)	CI (95% CI)	
-------------------------------------	----------------	-------------	--------------	-------------	
New DM (n = 49)	5.3 (0.6 – 19.1)	0.64 (0.15 – 2.69)	0.55	0.42 (0.10 – 1.6)	0.25
Known DM (n = 126)	4.2 (1.1 – 10.7)	0.50 (0.18 – 1.41)	0.19	0.72 (0.23 – 2.22)	0.57
DM on Metformin (n = 98)	2.6 (0.3 – 9.5)	0.31 (0.07 – 1.29)	0.11	0.47 (0.10 – 2.17)	0.33
DM no Metformin (n = 78)	6.8 (1.9 – 17.5)	0.84 (0.30 – 2.39)	0.75	0.65 (0.22 – 1.96)	0.45

Abbreviations: aHR, adjusted hazards ratio; CI, confidence interval; DM, diabetes mellitus; HR, hazards ratio; TB, tuberculosis; ATT, anti-TB treatment

a Adjusted for sex, age, household income, smoking, alcohol, body mass index, daily vs. intermittent TB regimen, and smear grade.

b Defined as death during the 6 months of TB treatment.

c Participants who died on ATT or were lost to follow-up before treatment completion (prior to 6 months) were not included in this analysis.
Figure 1

Diagram showing the flow of patients through the screening and enrollment process:

- Total Screened (2577)
 - Diagnosed with TB (1780)
 - Provisionally enrolled in the Cohort (832)
 - Excluded (12)
 - MDR TB at screening (8)
 - Consent withdrawn (4)
 - TB-DM (245)
 - TB (587)
 - Excluded (13)
 - MDR TB at screening (4)
 - Consent withdrawn (9)
 - Not enrolled (948)
 - Primary Reasons
 - MDR TB: 87
 - HIV seropositive: 98
 - Refused: 224
 - Ineligible: 188
 - Not DM & Controls fully enrolled: 283
 - Other: 68

- Total enrolled in the cohort (807)
 - Considered for analysis (799)
 - TB-DM (225)
 - TB (574)

Completed 12 months of follow-up
Figure 2a

Figure 2b