AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7-10
Matthew J Ovens, Andrew J Davies, Marieangela C Wilson, Clare M Murray, Andrew P Halestrap

To cite this version:
Matthew J Ovens, Andrew J Davies, Marieangela C Wilson, Clare M Murray, Andrew P Halestrap. AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7-10. Biochemical Journal, Portland Press, 2010, 425 (3), pp.523-530. 10.1042/BJ20091515 . hal-00479266
AR-C155858 is a potent inhibitor of Monocarboxylate Transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7-10

Matthew J. Ovens, Andrew J. Davies, Marieangela C. Wilson, Clare M. Murray* and Andrew P. Halestrap

Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK
*Bioscience Department, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leics LE11 5RH, UK

Running title: AR-C155858 inhibition of MCTs
Address correspondence to: Andrew P Halestrap, Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK
Tel. 44-117-3312118, Fax. 44-117-3312168, Email: a.halestrap@bristol.ac.uk

Key words: Erythrocytes, lactate transport, MCT1, MCT2, MCT4, chimeric transporters, Xenopus oocytes

ABBREVIATIONS
BCECF 2’-7’-bis(carboxyethyl)-5,6-carboxy-fluorescein; MCT, monocarboxylate transporter; TM, transmembrane domain; WT, wild-type
Abstract
In this paper we characterise the properties of the potent MCT1 inhibitor, AR-C155858. Inhibitor titrations of L-lactate transport by MCT1 in rat erythrocytes were used to determine the Ki value and number of AR-C155858 binding sites (Et) on MCT1 and the transporter’s turnover number (Kcat). Derived values were 2.3 ± 1.4 nM, 1.29 ± 0.09 nmoles per ml packed cells and 12.2 ± 1.1 s$^{-1}$ respectively. When expressed in *Xenopus laevis* oocytes MCT1 and MCT2 were potently inhibited by AR-C155858 whilst MCT4 was not. Inhibition of MCT1 was shown to be time-dependent, and the compound was also active when microinjected suggesting that AR-C155858 probably enters the cell before binding to an intracellular site on MCT1. Measurement of the inhibitor sensitivity of several chimeric transporters combining different domains of MCT1 and MCT4 revealed that the binding site for AR-C155858 is contained within the C-terminal half of MCT1, and involves transmembrane (TM) domains 7-10. This is consistent with previous data identifying F360 (in TM 10) and D302 plus R306 (TM 8) as key residues in substrate binding and translocation by MCT1. Measurement of the K_m values of the chimeras for L-lactate and pyruvate demonstrate that both the C- and N-terminal halves of the molecule influence transport kinetics consistent with our proposed molecular model of MCT1 and its translocation mechanism that requires K38 in TM1 in addition to D302 and R306 in TM 8 (Wilson et al (2009) J. Biol. Chem. 284:20011-20021).
Introduction
There are 14 members of the monocarboxylate transporter (MCT) family (SLC16) encoded by the human and mouse genomes [1]. Of these only MCT1, MCT2, MCT3 and MCT4 have been demonstrated to catalyse the bidirectional proton-linked transport of short chain monocarboxylates such as L-lactate and pyruvate across the plasma membrane of mammalian cells [2-6]. MCT1 is expressed in most tissues and facilitates lactic acid uptake for oxidation in heart and red skeletal muscle, and for gluconeogenesis in the liver and kidney of some species [7-11]. MCT1 is also used for lactic acid efflux by some cells that are exclusively glycolytic such as red blood cells and by all cells under hypoxic conditions [1,10,12]. MCT2 is a higher affinity transporter [3] whose expression is more restricted and highly species dependent [1]. In some species it is the dominant MCT isoform in kidney and liver where it facilitates lactic acid uptake for gluconeogenesis [9,13]. It is also expressed in neurons, especially at the post-synaptic density, and has been proposed to provide the uptake pathway for the oxidation of lactate produced by the more glycolytic astrocytes [14,15]. MCT3 expression is confined to the basal membrane of the retinal pigment epithelium and choroid plexus epithelia [16,17], but detailed information on its substrate and inhibitor specificity is lacking [4]. MCT4 is a lower affinity transporter [5,6] and is primarily expressed in highly glycolytic cells such as white muscle fibres where it is used to facilitate lactic acid efflux from the tissue [18,19]. Most cells can up-regulate MCT4 expression under hypoxic conditions when glycolytic flux is enhanced and this is mediated through transcriptional control by hypoxia inducible factor 1α (HIF-1α) [20].

In view of the importance of plasma membrane lactic acid transport in metabolism, it would be desirable to have a specific inhibitor of each isoform that could probe their individual metabolic roles. A range of inhibitors of MCTs have been described including the α-cyanocinnamate derivatives, stilbene disulphonates such as di-isothiocyanostilbene disulphonate (DIDS), phloretin, bioflavenoids such as quercetin and organomercurial reagents such as p-chlomercuribenzene sulphonate (see [1,21,22]). However, none of these is specific for inhibition of MCTs and thus they cannot be used with confidence in metabolic studies. This reservation applies particularly to α-cyano-4-hydroxycinnamate that some workers have used on the assumption that it is a specific MCT inhibitor (see for example [23-25]). However, this agent is at least two orders of magnitude more potent at inhibiting the mitochondrial pyruvate carrier than MCT1 [26-29]. Recently, a new class of specific and extremely high affinity inhibitors of MCT1 have been discovered by AstraZeneca [30-32]. These compounds were originally identified as potent inhibitors of T-lymphocyte proliferation that act as immunosuppressants and were subsequently shown to bind to MCT1 and MCT2 but not MCT4 [30]. Since T-lymphocyte activation and proliferation is accompanied by a large (up to fourteen-fold) stimulation of glycolysis, it would appear that inhibiting MCT1 and so preventing the efflux of the resulting lactic acid is responsible for the compounds’ immunosuppressive activity [30].

In this paper we seek to characterise the mode of action of one of these potent MCT1 inhibitors, AR-C155858. We have studied the concentration dependency of AR-C155858 inhibition of lactate transport into rat red blood cells mediated by endogenous MCT1, as well as its effects on the activity of MCT1, MCT2 and MCT4 expressed in *Xenopus laevis* oocytes. We show that AR-C155858 inhibits MCT1 and MCT2 with similar potency but is inactive against MCT4, and that inhibition is exerted by the drug binding to a site on MCT1 accessible from the cytosol. The use of MCT1/MCT4 chimeric transporters reveals that this binding site is contained within transmembrane helices 7-10 of MCT1. In rat red blood cells a detailed analysis of the inhibition of lactate transport by AR-C155858 has enabled us to determine the turnover number (kcat) of MCT1 (12.2 s⁻¹ at 6°C) and the Ki for AR-C155858 (2.3 nM).

EXPERIMENTAL
Materials
Xenopus laevis toads were obtained from Xenopus Express (Haute-Loire, France) and oocytes harvested as described previously [33]. All reagents were obtained from Sigma (Poole, UK) unless
otherwise stated. Polyclonal antibodies against the C-terminal 16 amino acids of rat MCT1, MCT2 and MCT4 and against a 17 amino acid sequence between TM7 and TM8 of MCT1 were raised in rabbits as described previously [9,18,34]. Anti-rabbit secondary antibodies for immunofluorescence microscopy were from Jackson ImmunoResearch. L-[14C]-Lactate was obtained from GE healthcare and [14C]-pyruvate from Perkin Elmer. AR-C155858 (whose structure is shown as an inset to Figure 1) was obtained from AstraZeneca and made up as a 10 mM stock in DMSO.

Methods

Generation of MCT chimeras of rat MCT1 and MCT4 was performed by PCR using pfu Taq polymerase (Roche). The two appropriate segments of MCT1 and MCT4 were produced with a region of overlapping sequence that was used to splice the two together to produce the desired chimera. For the MCT1/4 and MCT4/1 chimeras the switch occurs at the end of the loop between TMs 6 and 7 which contains the conserved sequence LDLS. For the MCT1/4TM11 and MCT4/1TM11 chimera the switch occurs at the beginning of TM11 containing the conserved sequence FSSA. However for the C-terminal chimeras MCT1/4c and MCT4/1c, where the switch occurs at the beginning of the C-terminus, there is no conserved sequence and thus a region of complementarity was manufactured using modified primers [35]. A C-terminal truncation of MCT1 was produced using PCR to amplify the MCT1 sequence minus the C-terminus and this was subsequently inserted into the oocyte expression vector pGHJ with the addition of a stop codon in the vector downstream of the MCT sequence. Sequences for all primers used are given in Supplementary data Table 1 and were designed to be between 15 and 30 bases in length. Typically, for an MCT fragment, thermocycling was performed using the following parameters: 30 s @ 95°C, 30 s @ 55°C and a 1.5 min extension at 72°C for 30 cycles. Subsequently, appropriate fragments of MCT1 and MCT4 with complimentary sequence in the crossover region were combined using PCR with primers to the 5'- and 3'-UTR of MCT1 and MCT4. Here, thermocycling was performed using the following parameters: 30 s @ 95°C, 30 s @ 55°C and a 1 min extension at 72°C for 10 cycles followed by; 30 s @ 95°C, 30 s @ 50°C and a 1 min extension at 72°C for 25 cycles. The MCT chimeras were subsequently ligated into the pGHJ oocyte expression vector. For the MCT1/4 and MCT4/1 C-terminal chimeras the C-terminal regions were brought into the correct reading frame by a single base deletion and addition respectively using site-directed mutagenesis with a QuikChange kit (Stratagene, UK) as described previously [36]. Confirmation that chimera constructs had been correctly engineered was provided by sequencing (The Sequencing Service, Dundee).

Measurement of MCT1 activity in rat erythrocytes L-lactate transport into rat erythrocytes was measured by monitoring the change in extracellular pH with a pH sensitive electrode as described previously [37,38]. The cells were used at 7% or 3.5% haematocrit in lightly buffered saline medium supplemented with 5 µM DIDS and 100 µM acetazolamide to prevent bicarbonate / CO₂ mediated proton movements [37,38]. The erythrocytes were pre-incubated for 1 hour at room temperature with or without AR-C155858 at the required concentration prior to assaying lactate transport. This was performed at 6°C with substrate uptake initiated by addition of 10 mM L-lactate. Initial rates of transport were calculated by first order regression analysis of the time course of pH change and converted into nmoles H⁺ per minute by determining the pH change induced by small additions of standardised NaOH.

Measurement of MCT transport activity in Xenopus oocytes cRNA was prepared by in vitro transcription from the appropriate linearised pGHJ plasmid (mMessage mMachine, Ambion, Texas, USA) and injected into Xenopus laevis oocytes as described previously [33]. For most assays 20 ng cRNA was injected, but for [14C] kinetic assays injection quantity was adjusted to ensure that uptake was linear with time. Further details can be found in Supplementary Table 2. Controls received the equivalent volume (9.2 nl) of water. Oocytes were then cultured in OR3 medium for 72 hrs with fresh medium each day. Rates of L-lactate transport by wild-type or chimeric MCTs were determined as described previously, either by following the change in intracellular pH using the ratiometric pH-sensitive fluorescent dye 2’-7’-bis(carboxyethyl)-5,6-carboxy-fluorescein (BCECF)
or by measuring uptake of [14C] substrate (L-lactate or pyruvate) [33]. For measurement of AR-C155858 sensitivity, 10 oocytes were placed in a 6-well plate containing 5 ml uptake buffer (75 mM NaCl, 2 mM KCl, 0.82 mM MgCl₂, 1 mM CaCl₂, 20 mM MES, pH 6.0) and allowed to pre-incubate for the required time (usually 45 min) with or without AR-C155858 as required. Five oocytes were removed and placed into 50 µl uptake buffer containing L-[14C]-lactate (0.5 mM, 7.4 MBq/ml) with or without AR-C155858 at the required concentration. Incubation at room temperature (22-25°C) was continued for the period over which uptake was linear with time; this varied with the construct employed as detailed in Supplementary Table 2. The oocytes were then rapidly washed five times with ice-cold uptake buffer and after the final wash each egg was transferred into a scintillation vial and homogenized in 100 µl 2 % (w/v) SDS by vigorous vortex mixing. Scintillation fluid (10 ml Emulsifier-Safe, Perkin Elmer) was then added and [14C] assayed by scintillation counting.

For the determination of Km values for pyruvate and L-lactate, oocytes were equilibrated in incubation buffer (75 mM NaCl, 2 mM KCl, 0.82 mM MgCl₂, 1 mM CaCl₂, 20 mM Tris/HEPES, pH 7.4) for 5 min and then 4 oocytes incubated with 40µl uptake buffer containing [14C]-labelled L-lactate or pyruvate (7.4 MBq/ml) at a final concentration of 0.2, 0.5, 1, 2, 5, 20, 50, and 75 mM. Incubation was continued for the period over which uptake was linear with time (detailed in Supplementary Table 2), following which oocytes were washed and prepared for scintillation counting as above. Net MCT1-mediated uptake of L-lactate was determined by subtracting the uptake by water injected oocytes determined at the same time.

MCT expression at the plasma membrane was confirmed by immunofluorescence microscopy of oocytes sectioned by embedding in chicken liver as described previously [33,39].

RESULTS

Determining the Ki of AR-C155858 for MCT1 in rat erythrocytes

Rat erythrocytes support very rapid lactate transport that is mediated by three mechanisms. The majority is via MCT1 but a small proportion may occur via the anion exchanger AE1 and by free diffusion of the undissociated lactic acid [26,40]. Transport mediated by AE1 can be blocked by 5 µM DIDS, a concentration that has minimal effect on MCT1 [37,38]. Using a pH electrode to determine the extracellular increase in pH that accompanies the proton-linked transport of 10 mM L-lactate into erythrocytes at 6°C we have investigated the inhibition of MCT1 by AR-C155858. It was first established that inhibition by low (nM) concentrations of AR-C155858 reached equilibrium within 30-45 min incubation at room temperature (data not shown). Thus for detailed inhibitor titrations with increasing concentrations of AR-C155858 we used 60 min incubation of erythrocytes at both 3.5 and 7 % haematocrit. After incubation with inhibitor at room temperature, cell suspensions were cooled to 6°C before measurement of L-lactate transport and determination of initial rates. In Figure 1 we show that the concentration dependence of inhibition is almost linear up to 80% inhibition as predicted for a very tight binding inhibitor whose concentration is less than the concentration of the target protein (MCT1). By performing parallel experiments at two cell densities (3.5% and 7 % haematocrit) the data can be fitted by non-linear regression analysis to the equation for a tight binding non-competitive inhibitor using the total inhibitor concentration and the haematocrit as the 2 x-variables [41,42]. This allowed us to determine values (± S.E. for the fit shown) for the Ki (2.3 ± 1.4 nM), the number of binding sites (Et) for AR-C155858 inhibition (1.29 ± 0.09 nmoles per ml packed cells) and the turnover number (Kcat) of MCT1 in rat erythrocytes (12.2 ± 1.1 s⁻¹).

Time and concentration dependence of MCT inhibition by AR-C155858 in Xenopus oocytes

In order to perform accurate comparisons of the affinity of the different MCT isoforms towards AR-C155858 we expressed MCT1, MCT2 and MCT4 in Xenopus laevis oocytes. It was first necessary to ensure that the time of incubation of oocytes with inhibitor was sufficient to allow compound binding to the MCT to reach equilibrium. In Figure 2 the rate of [14C]-lactate uptake into MCT1-expressing oocytes was determined after incubation with 0.1 µM AR-C155858 for 15, 30, 45 and 60 min. For each time point mean data (± S.E.M.) for 10 separate oocytes are presented. The data show
that, as with the erythrocytes, 45 min incubation with inhibitor was sufficient to give maximal inhibition. As might be predicted, with 1 µM AR-C155858 inhibition occurred much more quickly and was almost maximal at 5 min. This was confirmed by BCECF assay of transport as shown in the inset to Fig. 2. From these data we chose to use a 45 min incubation time for comparing the relative potency of AR-C155858 as an inhibitor of MCT1, MCT2 and MCT4. In Figure 3 we show that the concentration dependence of MCT1 follows a linear trend up to 30 nM (70% inhibition) and then curves off towards 100% inhibition at 100 nM. Again, this behaviour is that predicted for a very high affinity inhibitor and thus consistent with the K_i for AR-C155858 of 2.3 nM determined using rat erythrocytes. By contrast, oocytes expressing MCT4 at levels supporting similar rates of lactate transport revealed no significant inhibition by 1 µM AR-C155858 and even at 10 µM AR-C155858 inhibition was only about 20%. In oocytes expressing MCT2 the initial rate of transport was less than for MCT1 and MCT4, consistent with the poorer expression of MCT2 at the plasma membrane as reported previously [38]. This is a consequence of MCT2 binding less well to the endogenous basigin expressed by Xenopus oocytes than does MCT1 and MCT4 [38,43]. Nevertheless, it is clear that MCT2 is potently inhibited by AR-C155858, and the 70% inhibition seen at 10 nM is followed by a gradually increasing inhibition can only be explained by a K_i value of significantly less than 10 nM.

Extrapolation of the linear portion of the plot shown for MCT1 inhibition to zero carrier-mediated rate (i.e. water injected rate) provided an estimated concentration of MCT1 in the incubation of 40 nM. Each egg was incubated in 10 µl so this represents 0.4 pmol of MCT1 per egg. The rate of L-lactate uptake was about 95 pmol per egg per min which gives a turnover number of 4 s$^{-1}$ for MCT1 in oocytes at 22°C with 0.5 mM L-lactate. Since the initial slope of the inhibitor plot for MCT2 cannot be accurately determined it is not possible to determine an accurate turnover number for this isoform. Nevertheless, linear extrapolation of the plot would give a maximal value for the concentration of MCT2 to be about 15 nM, corresponding to a maximal expression of MCT2 of 0.15 pmol per egg. This would yield a minimum estimate of the turnover number MCT2 in oocytes at 22°C with 0.5 mM L-lactate of 5 s$^{-1}$ which is similar to MCT1.

AR-C155858 probably binds to MCT1 from the cytosolic side
The slow time-dependence of inhibition by AR-C155858 could reflect slow binding to a site on the external surface or perhaps more likely, a slow permeation of the inhibitor into the cell where it binds to an internal site on MCT1. In order to discriminate between the two possibilities we microinjected 9.2 nl of 1 mM AR-C155858 into oocytes, corresponding to a total internal concentration of about 23 µM (assuming an internal volume of 0.4 µl per egg [44] and ignoring binding to intracellular components). Each oocyte (20 in total) was immediately transferred into 5 ml of pH6 transport buffer and then left for 5 min prior to washing once and determining the rate of [14C] L-lactate uptake. As a control, the same quantity of inhibitor (184 nl corresponding to 20 oocyte’s worth of inhibitor) was added to 5 ml buffer (36.8 nM final) prior to addition of 20 oocytes and 5 min incubation. These oocytes were subsequently washed and transport determined as for AR-C155858-injected oocytes. As an additional control, some oocytes were injected with 9.2 nl of DMSO. The data of Figure 4 show that the rate of L-lactate uptake was about 50% inhibited in the AR-C155858-injected oocytes whilst the same quantity of inhibitor added outside was without effect. It might also be argued that the slow time course of inhibition could reflect internalisation of MCT1. However, the immunofluorescence data of Figure 4 confirm that the expression of MCT1 at the plasma membrane was unchanged in oocytes incubated with 1 µM AR-C155858 for 1 hour to give full inhibition of transport.

AR-C155858 inhibition involves transmembrane helices 7-10 in the C-terminal half of MCT1
Since MCT1 is inhibited by AR-C155858 whilst MCT4 is not, we made MCT1/4 chimeras to establish the region on MCT1 to which the inhibitor binds. The structures of these MCT1/4 chimeras are shown schematically in panel A of each relevant Figure. We first created chimeras in which the N-terminal half and large intracellular loop were of MCT1 and the C-terminal half was from MCT4. This chimera (MCT1/4) was expressed at the plasma membrane of oocytes and...
transported L-lactate albeit at a greatly reduced rate (Figure 5B). However, like MCT4, it was insensitive to inhibition by AR-C155858 (Figure 5C). We also made the reverse chimera - MCT4/1. It too was expressed at the plasma membrane although there appeared to be a significant amount of the chimera that was in a vesicular compartment and not at the plasma membrane (Figure 5B). Nevertheless, this MCT4/1 chimera showed a sensitivity to AR-C155858 similar to MCT1 (Figure 5C). Thus our data imply that the binding site of MCT1 for AR-C155858 is contained within the C-terminal half of the molecule, beyond the intracellular loop between TMs 6 and 7.

In order to define the binding site of the inhibitor more precisely we created additional chimeras. We first made chimeras in which either the C-terminal tail of MCT1 was removed, or swapped for that of MCT4 as shown schematically in Figure 6A. Both the MCT1trnc and MCT1/4c were expressed at the plasma membrane of oocytes, although a significant amount of MCT1trnc remained intracellular. Nevertheless, this chimera still transported lactate with rates similar to that seen with normal MCT1 and MCT4. Although we did not perform detailed inhibitor titrations we showed that both the MCT1/4c chimera and MCT1trnc were strongly inhibited by 0.1 μM AR-C155858, like MCT1 itself. These data imply that the binding site for AR-C155858 does not require the C-terminal tail of MCT1. In order to establish which of the C-terminal TM helices might be important for inhibitor binding we compared the C-terminal TM sequences of MCT1, MCT2 and MCT4 and found that it was within TM 11 that MCT4 (inhibitor-insensitive) exhibited the greatest difference to MCT1 and MCT2 (inhibitor-sensitive). Thus we made chimeras in which the switch between MCT1 and MCT4 was performed at the start of TM11. Unfortunately, as shown in the inset to Figure 7B, the MCT1/4-TM11 chimera was not expressed properly at the plasma membrane and no enhancement of L-lactate transport over water injected eggs was detected. However, the MCT4/1TM11 chimera was expressed at the plasma membrane and did transport L-lactate, albeit very slowly (Figure 7B). Subtraction of the very low background rate of lactate transport by un.injected oocytes, which was inhibited by AR-C155858, revealed that the residual lactate transport activity mediated by MCT4/1TM11 was insensitive to inhibition by AR-C155858. This suggests that the binding site for AR-C155858 does not involve TMs 11 and 12 as we had initially reasoned and must therefore involve TMs 7-10.

Kinetic properties of the MCT1/4 and MCT4/1 chimeras
The relatively low rates of transport seen with the MCT4/1 and MCT1/4 chimeras may reflect a high K_m for L-lactate and thus low rates of transport when measured at 0.5 mM L-lactate. In order to investigate this possibility, and to provide some clues as to how the two halves of the MCT might be involved in substrate binding, the K_m values of the chimeras for L-lactate and pyruvate were determined (Table 1). The MCT4/1 chimera exhibited a K_m for L-lactate of 15 – 25 mM, depending on whether the BCECF or radioactive assay was used, whilst both techniques gave a K_m value for pyruvate of 8-9 mM. These K_m values are similar to that of MCT4 in the case of L-lactate but intermediate between MCT1 and MCT4 for pyruvate. In the case of the MCT4/1 chimera K_m values were too high to be determined radioactively, but using BCECF they were found to be 209 ± 72 mM for L-lactate and 27 ± 5 mM for pyruvate. Thus with this chimera also, the K_m for pyruvate was intermediate between MCT1 and MCT4 whilst the K_m for L-lactate was much higher than that for either isoform.

DISCUSSION
Recently, a new class of specific and extremely potent inhibitors of MCT1 have been discovered by AstraZeneca that were reported to show no binding to MCT4 and exhibit lower affinity binding to MCT2 [30-32]. The K_i values for these inhibitors binding to endogenous MCT1 in rat and human cells was found to be in the low nanomolar region or less, as was also found for MCT1 expressed in Ins-1 cells that contain little or no endogenous MCT1 [30,31]. Similar K_i values were determined for MCT1 expressed in Yeast [30] and the K_i value of AR-C155858 for MCT1 we have determined in rat erythrocytes of 2.3 ± 1.4 nM is entirely consistent with the K_i of 1.2nM for binding of AR-C155858 to human erythrocyte MCT1 derived from radioligand binding experiments [45].
The turnover number for MCT1 can be calculated using AR-C155858

The inhibitor titration in rat erythrocytes has allowed us to determine the concentration of MCT1 in these cells to be 1.29 ± 0.09 nmoles per ml of packed blood. Since the number of erythrocytes in 1 ml of packed blood is known to be about 10^{10} [26] it is possible to calculate that there are approximately 80,000 molecules of MCT1 per rat erythrocyte. This value is quite similar to the value of 46,000 ± 11,000 determined previously by [3H] inhibitor binding [30] and represents about 8% of the value for the anion exchanger AE1 [26]. Using the rate of L-lactate transport and the concentration of MCT1 we calculated the turnover number (Kcat) to be 12.2 ± 1.1 s^{-1} at 6°C. Since we have previously determined the temperature dependence of MCT1 [29] we are able to calculate that the rate of L-lactate transport by rat erythrocytes at room temperature (22°C) will be about 7 fold higher than at 6°C. This would bring the predicted turnover number for MCT1 in rat erythrocytes to about 85 s^{-1} which is similar to the value of 35 s^{-1} determined for the glucose transporter GLUT1 in rat erythrocytes at 20°C [46,47] but about 5-fold less than the Kcat determined for endogenous human GLUT1 in erythrocytes or when over-expressed in Xenopus oocytes [48].

When expressed in Xenopus oocytes MCT1 also showed time-dependent inhibition by AR-C155858 (Fig. 2) with the extent of inhibition being linear with respect to AR-C155858 concentration up to about 70% inhibition (Fig. 3). This is consistent with a very low (nM) K_i value determined in erythrocytes. By extrapolation of the linear portion of the inhibitor titration we were able to estimate that the amount of MCT1 expressed at the plasma membrane was about 0.4 pmol per oocyte. From this value and the rate of lactate transport the turnover number of MCT1 in oocytes at 22°C was calculated to be 4 s^{-1}. However, this value was determined at 0.5 mM L-lactate and thus cannot be compared directly with the value of 85 s^{-1} calculated for rat erythrocytes at 22°C with 10 mM L-lactate. The K_m for MCT1 in erythrocytes and oocytes is about 3.5 mM [6,29] and thus from Michaelis Menten kinetics the rate of transport at 10 mM L-lactate would be predicted to be six-fold higher than at 0.5 mM. This would increase the turnover number of MCT1 in oocytes to 24 s^{-1}, which is about 30% of the value determined for MCT1 in erythrocytes. However, we have shown previously that the rate of L-lactate uptake by oocytes determined radioactively underestimates the true transport rate determined with BCECF [6]. This is because of an unstirred layer effect that slows diffusion of [14C]-L-lactate taken up into the body of the oocyte. Thus, overall there is reasonable agreement between the values measured in erythrocytes and oocytes.

AR-C155858 is a potent inhibitor of MCT1 and MCT2 but not MCT4

In agreement with competition binding studies of MCTs expressed in Yeast for related compounds [30], we have shown that AR-C155858 inhibits both MCT1 and MCT2 but not MCT4 when expressed in oocytes (Fig. 3). Although we were unable to determine an accurate K_i value for inhibition of MCT2 by AR-C155858, we can conclude from the shape of the inhibitor titration that the value must be significantly less than 10 nM. In previous studies of inhibitor binding to MCT1 and MCT2 expressed in Yeast K_i values of 4.9 and 100 nM respectively were determined (unpublished data). For MCT1 this represents a reasonable agreement with the K_i values for endogenous MCT1 in rat and human cells derived here and previously [44]. However, this is not the case for MCT2 where the yeast binding data suggest that the affinity of MCT2 for AR-C155858 is more than an order of magnitude less than for MCT1. One explanation for this difference may be the absence of either basigin or embigin when MCTs are expressed in yeast, and this might affect inhibitor binding. In this context it may be noted that inhibition of MCT1 and MCT2 by the organomercurial reagent p-chloromercuribenzene sulphonate also depends on the associated ancillary protein [38]. Our data would also imply that interpretation of metabolic studies in which AR-C122982 has been used to discriminate between MCT1- and MCT2-mediated lactate transport [49] may not be straightforward.

The binding site for AR-C155858 involves TMs 7-10 of MCT1 and probably faces the cytosol

The use of MCT1/MCT4 chimeric transporters reveals that the binding site for AR-C155858 is contained within the C-terminal half of the transporter. Thus MCT1/4, like MCT4, was insensitive to inhibition by AR-C155858 whilst MCT4/1 was inhibitor-sensitive like MCT1 (Fig. 5).
terminal tail of MCT1 appears to have no major effect on the sensitivity to inhibition by AR-C155858 since potent inhibition by AR-C155858 was still observed when it was either removed or replaced with the tail of MCT4 (Fig. 6). However, the chimera containing TMs 1-10 of MCT4 and TMs 11 and 12 plus the C-terminal tail of MCT1 was insensitive to AR-C155858 (Fig. 7). These data demonstrate that the binding site for AR-C155858 is contained, at least in part, within TMs 7-10 of MCT1. The slow time dependence of inhibition by AR-C155858 (Fig. 2) could be explained either by the inhibitor having to enter the cell before binding to an intracellular site on MCT1 or by internalisation of MCT1 upon inhibitor binding. However, we showed that no MCT1 internalisation occurred even at full inhibition and that the inhibitor worked well if microinjected into oocytes (Fig. 4). These data imply that the binding site for AR-C15585 probably faces the cytosol where our molecular model of MCT1 predicts TMs 7 and 10 to form part of the inward facing substrate binding pocket [33,36]. This is also consistent with earlier observations that F360 in TM 10 is involved in substrate binding since its mutation to cysteine allows MCT1 to accommodate the larger monocarboxylate, mevalonate [7,50]. Furthermore, we have previously shown that D302 and R306 in TM8 are critical residues in the translocation cycle. However, analysis of the kinetics of MCT1/4 and MCT4/1 chimeras suggest that substrate binding may not be exclusively located within the C-terminal half of MCT1. Thus both the C- and N-terminal halves of the MCT influence the kinetics of transport (Table 1). This is entirely consistent with our recent molecular model of MCT1 that predicts that the substrate binding pocket and translocation channel involve helices from both the C- and N-terminal domains with critical roles for K38 in TM1 and D302 plus R306 in TM8 [33,36].

Acknowledgements
This work was funded by a Project Grant (079792/z/06/) from The Wellcome Trust. MJO was supported by a PhD studentship from the Medical Research Council. We thank Agnieszka Bierzynska for skilled technical support.
References

1 Halestrap, A. P. and Meredith, D. (2004) The SLC16 gene family - from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch. 447, 619-628
2 Bröer, S., Schneider, H. P., Bröer, A., Rahman, B., Hamprecht, B. and Deitmer, J. W. (1998) Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem. J. 333, 167-174
3 Bröer, S., Bröer, A., Schneider, H. P., Stegen, C., Halestrap, A. P. and Deitmer, J. W. (1999) Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes. Biochem. J. 341, 529-535
4 Grollman, E. F., Philp, N. J., McPhie, P., Ward, R. D. and Sauer, B. (2000) Determination of transport kinetics of chick MCT3 monocarboxylate transporter from retinal pigment epithelium by expression in genetically modified yeast. Biochemistry 39, 9351-9357
5 Dimmer, K. S., Friedrich, B., Lang, F., Deitmer, J. W. and Bröer, S. (2000) The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem. J. 350, 219-227
6 Manning Fox, J. E., Meredith, D. and Halestrap, A. P. (2000) Characterisation of human Monocarboxylate Transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J. Physiol. 529, 285-293
7 Kim-Garcia, C., Goldstein, J. L., Pathak, R. K., Anderson, R. G. W. and Brown, M. S. (1994) Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates - implications for the Cori Cycle. Cell 76, 865-873
8 McCullagh, K. J. A., Poole, R. C., Halestrap, A. P., O'Brien, M. and Bonen, A. (1996) Role of the lactate transporter (MCT1) in skeletal muscles. Am. J. Physiol. 271, E143-E150
9 Jackson, V. N., Price, N. T., Carpenter, L. and Halestrap, A. P. (1997) Cloning of the monocarboxylate transporter isoform MCT2 from rat testis provides evidence that expression in tissues is species-specific and may involve post-transcriptional regulation. Biochem. J. 324, 447-453
10 Halestrap, A. P., Wang, X. M., Poole, R. C., Jackson, V. N. and Price, N. T. (1997) Lactate transport in heart in relation to myocardial ischemia. Am. J. Cardiol. 80, A17-A25
11 Halestrap, A. P. and Price, N. T. (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem. J. 343, 281-299
12 Poole, R. C. and Halestrap, A. P. (1994) N-Terminal protein sequence analysis of the rabbit erythrocyte lactate transporter suggests identity with the cloned monocarboxylate transport protein MCT1. Biochem. J. 303, 755-759
13 Garcia, C. K., Brown, M. S., Pathak, R. K. and Goldstein, J. L. (1995) cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J. Biol. Chem. 270, 1843-1849
14 Pierre, K. and Pellerin, L. (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J. Neurochem. 94, 1-14
15 Bergersen, L. H. (2007) Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 145, 11-19
16 Yoon, H. Y., Fanelli, A., Grollman, E. F. and Philp, N. J. (1997) Identification of a unique monocarboxylate transporter (MCT3) in retinal pigment epithelium. Biochem. Biophys. Res. Commun. 234, 90-94
17 Philp, N. J., Yoon, H. Y. and Lombardi, L. (2001) Mouse MCT3 gene is expressed preferentially in retinal pigment and choroid plexus epithelia. Am. J. Physiol. 280, C1319-C1326
18 Wilson, M. C., Jackson, V. N., Heddle, C., Price, N. T., Pilegaard, H., Juel, C., Bonen, A., Montgomery, I., Hutter, O. F. and Halestrap, A. P. (1998) Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3. J. Biol. Chem. 273,
19 Juel, C. and Halestrap, A. P. (1999) Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter. J. Physiol. 517, 633-642
20 Ullah, M. S., Davies, A. J. and Halestrap, A. P. (2006) The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1 alpha-dependent mechanism. J. Biol. Chem. 281, 9030-9037
21 Poole, R. C. and Halestrap, A. P. (1993) Transport of Lactate and Other Monocarboxylates Across Mammalian Plasma Membranes. Am. J. Physiol. 264, C761-C782
22 Meredith, D. and Christian, H. C. (2008) The SLC16 monocarboxylate transporter family. Xenobiotica 38, 1072-1106
23 Sonveaux, P., Vegran, F., Schroeder, T., Wergin, M. C., Verrax, J., Rabbani, Z. N., De Saedeleer, C. J., Kennedy, K. M., Diepart, C., Jordan, B. F., Kelley, M. J., Gallez, B., Wahl, M. L., Feron, O. and Dewhirst, M. W. (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930-3942
24 Fang, J., Quinones, Q. J., Holman, T. L., Morowitz, M. J., Wang, Q., Zhao, H., Sivo, F., Maris, J. M. and Wahl, M. L. (2006) The H+-linked monocarboxylate transporter (MCT1/SLC16A1): a potential therapeutic target for high-risk neuroblastoma. Mol. Pharmacol. 70, 2108-2115
25 Erlichman, J. S., Hewitt, A., Damon, T. L., Hart, M., Kurascz, J., Li, A. and Leiter, J. C. (2008) Inhibition of monocarboxylate transporter 2 in the retrotangyzaud nucleus in rats: a test of the astrocyte-neuron lactate-shuttle hypothesis. J. Neurosci. 28, 4888-96
26 Halestrap, A. P. (1976) Pyruvate and lactate transport into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride independent carrier. Biochem. J. 156, 193-207
27 Halestrap, A. P. and Denton, R. M. (1974) Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by α-cyano-4-hydroxycinnamate. Biochem. J. 138, 313-316
28 Halestrap, A. P. (1975) The mitochondrial pyruvate carrier - Kinetics and specificity for substrates and inhibitors. Biochem. J. 148, 85-96
29 Carpenter, L. and Halestrap, A. P. (1994) The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF. Biochem. J. 304, 751-760
30 Murray, C. M., Hutchinson, R., Bantick, J. R., Belfield, G. P., Benjamin, A. D., Brazma, D., Bundick, R. V., Cook, I. D., Craggs, R. I., Edwards, S., Evans, L. R., Harrison, R., Holness, E., Jackson, A. P., Jackson, C. G., Kingston, L. P., Perry, M. W. D., Ross, A. R. J., Rugman, P. A., Sidhu, S. S., Sullivan, M., TaylorFishwick, D. A., Walker, P. C., Whitehead, Y. M., Wilkinson, D. J., Wright, A. and Donald, D. K. (2005) Monocarboxylate transporter MCT1 is a target for immunosuppression. Nature Chemical Biology 1, 371-376
31 Guile, S. D., Bantick, J. R., Cheshire, D. R., Cooper, M. E., Davis, A. M., Donald, D. K., Evans, R., Eyssade, C., Ferguson, D. D., Hill, S., Hutchinson, R., Ingall, A. H., Kingston, L. P., Martin, I., Martin, B. P., Mohammed, R. T., Murray, C., Perry, M. W. D., Reynolds, R. H., Thorne, P. V., Wilkinson, D. J. and Withnall, J. (2006) Potent blockers of the monocarboxylate transporter MCT1: Novel immunomodulatory compounds. Bioorganic & Medicinal Chemistry Letters 16, 2260-2265
32 Ekberg, H., Qi, Z., Pahlman, C., Veress, B., Bundick, R. V., Craggs, R. I., Holness, E., Edwards, S., Murray, C. M., Ferguson, D., Kerry, P. J., Wilson, E. and Donald, D. K. (2007) The specific monocarboxylate transporter-1 (MCT-1) inhibitor, AR-C117977, induces donor-specific suppression, reducing acute and chronic allograft rejection in the rat. Transplantation 84, 1191-1199
33 Manoharan, C., Wilson, M. C., Sessions, R. B. and Halestrap, A. P. (2006) The role of charged residues in the transmembrane helices of monocarboxylate transporter 1 and its ancillary protein basigin in determining plasma membrane expression and catalytic activity. Mol. Membr. Biol. 23, 486-498
34 Poole, R. C., Sansom, C. E. and Halestrap, A. P. (1996) Studies of the membrane topology of...
the rat erythrocyte H+/lactate cotransporter (MCT1). Biochem. J. 320, 817-824
35 Choi, M. Y., Fuerst, M. J., Rafaeli, A. and Jurenka, R. Role of extracellular domains in PBAN/pyrokinin GPCRs from insects using chimera receptors. Insect Biochem. Mol. Biol. 37, 296-306
36 Wilson MC, Meredith D, Bunnun C, Sessions RB and Halestrap AP (2009) Studies on the DIDS binding site of monocarboxylate transporter 1 suggest a homology model of the open conformation and a plausible translocation cycle. J. Biol. Chem. 284, 20011-20021
37 Poole, R. C. and Halestrap, A. P. (1991) Reversible and irreversible inhibition by stilbenedisulphonates of lactate transport into rat erythrocytes - identification of some new high-affinity inhibitors. Biochem. J. 275, 307-312
38 Wilson, M. C., Meredith, D., Fox, J. E. M., Manoharan, C., Davies, A. J. and Halestrap, A. P. (2005) Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4 - The ancillary protein for the insensitive MCT2 is embigin (Gp70). J. Biol. Chem. 280, 27213-27221
39 Friesema, E. C. H., Ganguly, S., Abdalla, A., Fox, J. E. M., Halestrap, A. P. and Visser, T. J. (2003) Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J. Biol. Chem. 278, 40128-40135
40 Deuticke, B., Beyer, E. and Forst, B. (1982) Discrimination of three parallel pathways of L-lactate transport in the human erythrocyte membrane by inhibitors and kinetic properties. Biochim. Biophys. Acta 684, 96-110
41 Shearman, M. S. and Halestrap, A. P. (1984) The concentration of the mitochondrial pyruvate carrier in rat liver and heart mitochondria determined with α-cyano-β-(1-phenylindol-3-y)acrylate. Biochem. J. 223, 673-676
42 Davidson, A. M. and Halestrap, A. P. (1990) Partial Inhibition by Cyclosporin A of the swelling of liver mitochondria in vivo and in vitro induced by sub-micromolar [Ca2+] but not by butyrate Evidence for two distinct swelling mechanisms. Biochem. J. 268, 147-152
43 Kirk, P., Wilson, M. C., Heddle, C., Brown, M. H., Barclay, A. N. and Halestrap, A. P. (2000) CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J 19, 3896-3904
44 Stegen, C., Matskevich, I., Wagner, C. A., Paulmichl, M., Lang, F. and Bröer, S. (2000) Swelling-induced taurine release without mitochondrial channel activity in Xenopus laevis oocytes expressing anion channels and transporters. Biochim. Biophys. Acta 1467, 91-100
45 Guile, S. D., Bantick, J. R., Cooper, M. E., Donald, D. K., Eyssade, C., Ingall, A. H., Lewis, R. J., Martin, B. P., Mohammed, R. T., Potter, T. J., Reynolds, R. H., St-Gallay, S. A. and Wright, A. D. (2007) Optimization of Monocarboxylate Transporter 1 Blockers through Analysis and Modulation of Atropisomer Interconversion Properties. J. Med. Chem. 50, 254-263
46 Helgerson, A. L. and Carruthers, A. (1989) Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport. Biochemistry 28, 4580-4594
47 Carruthers, A. (1990) Facilitated diffusion of glucose. Physiol. Rev. 70, 1135-1176
48 Nishimura, H., Pallardo, F., Seidner, G., Vannucci, S., Simpson, I. and Birnbaum, M. (1993) Kinetics of GLUT1 and GLUT4 glucose transporters expressed in Xenopus oocytes. J. Biol. Chem. 268, 8514-8520
49 Rae, C., Nasrallah, F. A. and Broer, S. (2009) Metabolic effects of blocking lactate transport in brain cortical tissue slices using an inhibitor specific to MCT1 and MCT2. Neurochem. Res. 34, 1783-1791
50 Kim, C. M., Goldstein, J. L. and Brown, M. S. (1992) cDNA cloning of MEV, a mutant protein that facilitates cellular uptake of mevalonate, and identification of a point mutation responsible for its gain in function. J. Biol. Chem. 267, 23113-23121
Table 1

K_m values of MCT chimeras for L-lactate and pyruvate. The K_m values reported were derived using either $[^{14}\text{C}]$-lactate uptake or by monitoring changes in intracellular pH with BCECF as described in the Experimental Section. Data are given ± S.E. derived from the fit of the mean data to the Michaelis-Menten equation by non-linear least squares analysis. The n values given represent the number of separate eggs used for each substrate concentration. *BCECF data for MCT1 and MCT4 are taken from [6]. No $[^{14}\text{C}]$-L-lactate uptake data are provided for the MCT4/1 chimera because the very high K_m values required the use of high substrate concentrations for which the specific activity became too low to measure uptake of $[^{14}\text{C}]$-lactate accurately.

	K_m value (mM) using $[^{14}\text{C}]$-substrate	K_m value (mM) using BCECF		
	Lactate	Pyruvate	Lactate	Pyruvate
MCT1	5.7 ± 1.2 (16)	1.2 ± 0.2 (16)	3.5*	1*
MCT4	12.9 ± 2 (16)	103 ± 28 (n24)	28*	150*
MCT4/1	26.5 ± 5.7 (16)	8.9 ± 2 (n16)	15.8 ± 2.6 (7)	8.5 ± 1.9 (9)
MCT4/1	-	-	209.2 ± 71.9 (7)	27.3 ± 5.2 (8)
Figure 1 Inhibition of L-lactate uptake into rat erythrocytes by AR-C155858. Rat erythrocytes were freshly isolated and resuspended at the specified haematocrit as outlined under “Experimental procedures”. Cells were pre-incubated for 1 hour at room temperature in the presence or absence of the specified concentration of AR-C155858 (structure shown). Transport was measured by continuous monitoring of the extracellular pH and calibration of pH changes in terms of proton uptake was achieved by addition of standardised NaOH (10 µM final) just before addition of 10 mM L-lactate to initiate transport. Initial rates of transport were calculated by first order regression analysis of the time course of pH change. The data were then fitted by non-linear least squares inhibition to the equation for a tight binding non-competitive inhibitor using inhibitor concentration and haematocrit as the two x-variables [41,42]. The derived values (± S.E. of the fit shown) for the Ki and concentration of binding sites were 2.3 ± 1.4 nM, 1.29 ± 0.09 nmoles per ml packed cells respectively.

Figure 2 MCT1 expressed in Xenopus oocytes is inhibited by AR-C155858 in a time- and concentration-dependent manner. Xenopus oocytes were injected with the appropriate cRNA and after 72 hours expression were pre-incubated in pH 6 oocyte transport buffer in the presence or absence of 0.1 µM or 1 µM AR-C155858 for the times shown. The uptake of 0.5 mM L-[¹⁴C]-lactate uptake was then determined after 2.5 min over which period it was found to be linear with time. Data are shown as means ± S.E.M of 10 separate oocytes. The inset shows the uptake of 20 mM L-lactate measured at pH7.4 using the pH-sensitive dye BCECF. Data are presented for the same oocyte in the absence of inhibitor and then after 20 minutes superfusion with 0.1 µM and 1 µM AR-C155858.

Figure 3 When expressed in Xenopus oocytes MCT1 and MCT2, but not MCT4, are sensitive to inhibition by AR-C155858. Xenopus oocytes were injected with appropriate cRNA or water and after 72 hours expression they were incubated with the concentration of AR-C155858 shown for 45 min prior to measurement of L-[¹⁴C]-lactate uptake over 2.5 min. Data are shown as the means ± S.E.M of 15-40 separate oocytes for each inhibitor concentration. The inset images show the expression of the relevant MCT in oocytes sections revealed using immunofluorescence microscopy with C-terminal antibodies to the relevant MCT. Arrows indicate the location of the plasma membrane. Note that for MCT2 a significant proportion of the MCT remains in an intracellular compartment.

Figure 4 Microinjection of AR-C155858 inhibits MCT1 expressed in Xenopus oocytes. MCT1 was expressed in Xenopus oocytes for 72 hours prior to inhibitor treatment and assay of L-[¹⁴C]-lactate uptake over 2.5 min. For addition of AR-C155858 internally, 20 oocytes were individually injected with 9.2 nl of 1 mM AR-C155858 or DMSO as control, incubated for 5 minutes in 5 ml pH 6 transport buffer and washed once prior to transport assay. For incubation with the equivalent amount of AR-C155858 added externally, 20 aliquots (9.2 nl) of 1 mM AR-C155858 were added to 5 ml pH6 transport buffer (final concentration 35 nM) and incubated with the oocytes for 5 min prior to a single wash and transport assay as above. Uptake was corrected for the uptake by water-injected eggs under the same conditions and are presented as means ± S.E.M (error bars) of 18-20 separate oocytes. The 2 inset images show the plasma membrane expression of MCT1 in control oocytes and those incubated for 1 hour with 1 µM AR-C155858 revealed by immunofluorescence microscopy.

Figure 5 The binding site of MCT1 for AR-C155858 resides within the C-terminal half of the transporter. Panel A shows a schematic of the MCT1/4 and MCT4/1 chimeras used with MCT1 sequence being shown in black and MCT4 sequence in grey. The numbered arrows indicate the position the switch was made between MCT1 and MCT4. Native and chimeric MCTs were expressed in oocytes for 72 hours prior to incubation with AR-C155858 after which assay of [¹⁴C]-L-lactate uptake was determined as described in Figs. 2 and 3. Note that different times of uptake were
employed depending on the activity of the chimera as detailed in Supplementary Table 2. Panel B provides data on the absolute rate of transport of each chimera in the absence of inhibitor whilst Panel C shows the activity at each inhibitor concentration expressed as a percentage of the uninhibited rate, after the background uptake rate of water-injected oocytes was subtracted. The data are shown as the means ± S.E.M of 20-50 separate oocytes for each condition. The inset images of Panel B show the plasma membrane expression of each native and chimeric MCT revealed by immunofluorescence microscopy.

Figure 6 The C-terminus of MCT1 is not involved in AR-C155858 sensitivity Panel A shows a schematic of the MCT1/4 and MCT4/1 chimeras used with MCT1 sequence being shown in black and MCT4 sequence in grey. The numbered arrows indicate the position the switch was made between MCT1 and MCT4. Native and chimeric MCTs were expressed in oocytes for 72 hours prior to incubation with or without 0.1 µM AR-C155858 for 45 min, after which assay of $[^{14}C]$-L-lactate uptake was determined over 2.5 min as described in Figs. 2 and 3. Panel B provides mean data (± S.E.M for 10 oocytes) on the absolute rate of transport of each chimera in the absence and presence of inhibitor. The inset images show the plasma membrane expression of each native and chimeric MCT revealed by immunofluorescence microscopy.

Figure 7 A region within TMs 7-10 of MCT1 is required for sensitivity to AR-C155858 Panel A shows a schematic of the MCT1/4 and MCT4/1 chimeras used with MCT1 sequence being shown in black and MCT4 sequence in grey. The numbered arrows indicate the position the switch was made between MCT1 and MCT4. Native and chimeric MCTs were expressed in oocytes for 72 hours prior to incubation with or without 0.1 µM AR-C155858 for 45 min, after which assay of $[^{14}C]$-L-lactate uptake was determined over 1 hour. This prolonged uptake period was required because of the low rates of transport being measured. Panel B provides mean data (± S.E.M for 10 oocytes) on the absolute rate of transport of each chimera in the absence and presence of inhibitor. The inset images show the plasma membrane expression of each native and chimeric MCT revealed by immunofluorescence microscopy.
Fig. 2

![Graph showing lactate uptake over pre-incubation time with different concentrations of AR-C155858.](image)

- **Control**
- **0.1µM - 20 min**
- **1µM - 20 min**

Lactate uptake (pmol per min)

Pre-incubation time (min)

ΔF440/490 0.3

- 50 sec
Fig. 4

Lactate uptake (pmol)

Control External inhibitor Injection control Inhibitor injected

0 50 100 150 200 250 300 350

MCT1

MCT1+AR-C155858

50 μm

50 μm
Fig. 5

A

B

C

Lactate uptake (pmol per min)

[AR-C155858] (µM)

Biochemical Journal Immediate Publication. Published on 20 Nov 2009 as manuscript BJ20091515

THIS IS NOT THE VERSION OF RECORD - see doi:10.1042/BJ20091515

Accepted Manuscript

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law.
© 2009 The Authors Journal compilation © 2009 Portland Press Limited
Fig. 6

A

B

MCT1

MCT1trnc

MCT1/4c

Lactate uptake (pmol per min)

Control

0.1µM AR-C155858
Fig. 7

A

N

TM1-6

TM7-12

C

MCT1

N

TM1-6

TM7-12

C

MCT4

N

TM7-12

C

MCT1/4TM11

N

TM7-12

C

MCT4/1TM11

N

TM7-12

C

MCT4/1C-term

B

Lactate uptake (pmol)

Water MCT1/4TM11 MCT4/1TM11 MCT4/1C

Control

0.1µM AR-C155858

Minus water