Insights into heat response mechanisms in *Clematis* species: physiological analysis, expression profiles and function verification

Hao Zhang1,2,3 · Changhua Jiang1 · Rui Wang2,3 · Long Zhang2,3 · Ruonan Gai2,3 · Siyuan Peng2,3 · Yi Zhang2,3 · Chanjuan Mao2,3 · Yuxia Lou2,3 · Jianbin Mo1 · Shucheng Feng1 · Feng Ming2,3

Received: 17 March 2021 / Accepted: 5 July 2021 / Published online: 14 July 2021 © The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract

Key message Our results provide insights into heat response mechanisms among *Clematis* species. Overexpressing *CvHSFA2* enhanced the heat resistance of yeast and silencing *NbHSFA2* reduced the heat resistance of tobacco.

Abstract *Clematis* species are commonly grown in western and Japanese gardens. Heat stress can inhibit many physiological processes mediating plant growth and development. The mechanism regulating responses to heat has been well characterized in *Arabidopsis thaliana* and some crops, but not in horticultural plants, including *Clematis* species. In this study, we found that *Clematis alpina ‘Stolwijk Gold’* was heat-sensitive whereas *Clematis vitalba* and *Clematis viticella ‘Polish Spirit’* were heat-tolerant based on the physiological analyses in heat stress. Transcriptomic profiling identified a set of heat tolerance-related genes (HTGs). Consistent with the observed phenotype in heat stress, 41.43% of the differentially expressed HTGs between heat treatment and control were down-regulated in heat-sensitive cultivar Stolwijk Gold, but only 9.80% and 20.79% of the differentially expressed HTGs in heat resistant *C. vitalba* and Polish Spirit, respectively. Co-expression network, protein–protein interaction network and phylogenetic analysis revealed that the genes encoding heat shock transcription factors (HSFs) and heat shock proteins (HSPs) may played an essential role in *Clematis* resistance to heat stress. Two clades of heat-induced *CvHSFs* were further identified by phylogenetic tree, motif analysis and qRT-PCR. Ultimately, we proposed that overexpressing *CvHSFA2-2* could endow yeast with high temperature resistance and silencing its homologous gene *NbHSFA2* reduced the heat resistance of tobacco. This study provides first insights into the diversity of the heat response mechanisms among *Clematis* species.

Keywords *Clematis* · Heat stress · Transcriptome · HSFs · HSPs · VIGS

Abbreviations

- **HTGs**: Heat tolerance-related genes
- **PPI**: Protein–protein interaction
- **HSFs**: Heat shock transcription factors
- **HSPs**: Heat shock proteins
- **TIR1**: Transport inhibitor response 1
- **ROS**: Reactive oxygen species
- **PS**: Polish spirit
- **SG**: Stolwijk gold
- **HT**: High-temperature
- **SOD**: Superoxide dismutase activity
- **DEGs**: Differentially expressed genes
- **AHA motifs**: Activator peptide motifs
- **MDA**: Malondialdehyde
- **NBT**: Nitro blue tetrazole
- **DAB**: Diaminobenzidine
- **GO**: Gene ontology
- **KEGG**: Kyoto encyclopedia of genes and genomes
- **RC**: Relative conductivity
- **RWC**: Relative water content
- **TRV**: Tobacco rattle virus
- **VIGS**: Virus-induced gene silencing
Introduction

Clematis is a genus that includes approximately 300 species belonging to the buttercup family (Ranunculaceae). *Clematis* species play an important role in western and Japanese gardens, and are commonly grown in botanical gardens, parks, and family gardens. However, the growth of some *Clematis* varieties is restricted because of their sensitivity to heat and increasing global warming. To date, most researches related to *Clematis* species have been focused on taxonomy and ecology (Paynter et al. 2006; Wanasinghe et al. 2014; Picciau et al. 2017; Redmond and Stout 2018). At present, researches on abiotic stress of horticultural plants are still few, for example, in grapevine (*Vitis vinifera*), among the identified plant genes and mechanisms, involved in temperature stress resistance, are included those controlling the synthesis of protective metabolites like osmolytes and polyamines (Paschalidis et al. 2009). Indeed, elevated polyamine levels are one of the most remarkable metabolic hallmarks in plants exposed to many abiotic stress conditions, such as heat, drought and salinity (Alcazar et al. 2020). These changes are mainly produced by alterations in polyamine metabolism in response to temperature stress (Tsanklidis et al. 2020).

Environmental changes have a broad range of influences on plant growth and development. For example, high temperatures lead to various changes of plant morphology including elongation of the hypocotyl and petiole, early flowering, and reduced stomata number (Li et al. 2018a). How plant cells perceive the thermal signal remains unclear (Zhang et al. 2019), although previous research has identified thermosensors such as H2A.Z-containing nucleosomes (Kumar and Wigge 2010) and phytochromes (Legris et al. 2016). Nevertheless, some key factors involved in heat-shock signal transduction were identified (Ding et al. 2020), for example, a heat activated calcium channel AtCNGC8 is involved in heat shock responses (Gao et al. 2012), molecular and genetic evidence support that AtCaM3 also plays a crucial part in heat-shock signal transduction in Arabidopsis (Liu et al. 2008; Zhang et al. 2009).

Heat stress can adversely affect plant protein structure, conformation, and activity, resulting in denatured and aggregated proteins as well as plant cell death due to biochemical damages and cytotoxicity (Li et al. 2018a; Zhang et al. 2019). Heat shock proteins (HSPs) are molecular chaperones that can stabilize and degrade unfolded proteins (Hendrick and Hartl 1993). Heat stress significantly increases the production of HSP90, which directly interacts with TRANSPORT INHIBITOR RESPONSE 1 (TIR1) to prevent protein degradation and regulate auxin-mediated plant growth (Wang et al. 2016). Heat shock transcription factors (HSFs) are conserved and have central roles in transcriptional regulation of plant thermotolerance. The *A. thaliana* genome encodes 21 HSFs, which have been divided into three classes: HSFA, HSFB, and HSFC (Scharf et al. 2018). It has been shown that decreased expression of these genes, such as HSFA2, HSFA3 and HSFB1 via T-DNA insertions or RNA interference significantly alters plant thermotolerance (Schramm et al. 2008; Ikeda et al. 2011; Liu et al. 2011; Liu and Charng 2013; Fang et al. 2015; Huang et al. 2016). More importantly, HSPs could regulate HSFs function by direct interactions and general HSF-HSP feedback proteostasis sensing mechanism as heat stress sensor was found (Hahn et al. 2011; Ohama et al. 2016). In addition to HSFs, other transcription factors were also reported to be responsive to heat stress. For example, emerging evidence indicates that DREB2A also plays a critical role in heat stress tolerance (Liu et al. 1998), OsSNAC3 expression is induced within a few hours of an exposure to heat and salt stresses, and the encoded protein regulates reactive oxygen species (ROS) homeostasis by directly activating many genes related to ROS clearance (Fang et al. 2015). Excess ROS which are produced under heat stress are also toxic to plants (Ding et al. 2020). A previous study revealed that OsANN1 is a calcium-binding membrane-bound protein that regulates H2O2 production by promoting the activities of superoxide dismutase and catalase, thereby making rice resistant to high temperatures (Qiao et al. 2015). In addition to its effects on transcription, protein homeostasis and ROS homeostasis, thermal stress also influences other nuclear regulatory processes, including chromatin modification, remodeling, RNA processing and polyamine homeostasis (Kumar and Wigge 2010; Toumi et al. 2010; Kumar et al. 2012; Gupta et al. 2016; Li et al. 2018b; Zhang et al. 2019). Polyamine and ROS homeostasis play a dual role by both accumulating and lessening the content of H2O2 within *V. vinifera* preserving an efficient ROS scavenging mechanism conferring plant heat and drought stress cross-tolerance (Toumi et al. 2010; Gupta et al. 2016). Thus, the maintenance of proper polyamine and ROS contents within the cells is of extreme significance for preserving normal developmental procedures and fighting heat stress conditions. However, the mechanism underlying heat resistance of horticultural plant species has not been characterized yet.

In this study, by comparing the primary heat-related physiological indices before and after a high-temperature treatment, we identified a heat-sensitive *Clematis* variety (*C. alpina* ‘Stolwijk Gold’) and two heat-tolerant *Clematis* varieties (*C. vitalba* and *C. viticella* ‘Polish Spirit’). We also analyzed the transcriptomes of these varieties under normal and heat stress conditions. GO enrichment analyses...
revealed that heat stress mainly influences components of biological membrane and two heat-tolerant *Clematis* varieties have obvious positive regulation to heat stress whereas the heat-sensitive *Clematis* variety does not. Moreover, we compared the varieties regarding their responses to heat to clarify the differences in their heat resistance. Furthermore, we identified two HSF classes with potential different functions related to heat resistance and verified that overexpressing *CvHSFA2-2* enhanced the viability of yeast to survive in thermal stress and silencing its homologous gene *NbHSFA2* reduced the heat resistance of tobacco. The results of this study provide insights into the diversity of the heat response mechanisms among *Clematis* species and may be useful for breeding new heat-resistant ornamental *Clematis* varieties and future commercial *V. vinifera* varieties.

Materials and methods

Plant material growth conditions and high temperature treatment conditions

Triennial potted plants (~40 cm high) of three *Clematis* varieties (*C. vitalba*, Polish Spirit and Stolwijk Gold) were used in this study. Their seeds were derived from France Botanical Garden (France Jardin Botanique, 44,094 Nantes cedex 1, 47°22′N, 1°55′W), which were sown into autoclaved nutrient soil and grown for 3 years in 12-inch pots in greenhouse (25/20 °C day/night, 70% relative humidity, 14-h/10-h light/dark cycles) of Shanghai Botanical Garden (Shanghai, China, 31°09′N, 121°26′E). Experimental treatments and sample collection were conducted in July 5th, 2019 in Shanghai Botanical Garden. For each variety, eighteen plants randomly selected from one hundred potted plants with great and similar growth condition grown in the greenhouse were used and treated at 38 °C (treatment) and 22 °C (control) for 3 h, respectively (nine plants at every temperature). Each temperature treatment was performed and repeated in three growth chambers (38 °C, 70% relative humidity or 22 °C, 70% relative humidity). *Clematis* species are perennial and herbaceous vine plants with ternate pinnate leaves. The bilateral leaves with short petiole of ternate pinnate leaves (Supplementary Figure 1) were used subsequent physiological indexes analysis and RNA sequencing. The high temperature treatment of transgenic tobacco was consistent with the above methods.

Measurement of physiological indexes before and after high temperature treatment

For measurement of relative conductivity (RC), Leaves (0.2 g) were collected, rinsed three times using distilled water, and then placed into a 50 ml tubes with 30 ml distilled water. Initial conductivity (C) was measured using a conductivity meter (DDS-11A, Shanghai, China) after shaking for 24 h. The samples were then autoclaved for 30 min. The maximum conductivity (Cmax) was quantified when the tubes were cooled to room temperature. The RC was calculated as \[(C/C_{max})\times100\%\]. For relative water content (RWC) quantification, approximately 0.2 g fresh leaves were collected at each variety and immediately weighed as the fresh weight (FW). Leaf samples were then placed in an oven at 80 °C for 72 h prior to being weighted for dry weight (DW). The RWC was subsequently calculated using the following equation: \[RWC\% = \left(\frac{FW-DW}{FW}\right) \times 100\%\] (Flexas et al. 2006). The activity of SOD was quantified using an enzyme-linked immunosorbent assay (ELISA) kit (MSK BIO, China) following the manufacturer’s instructions. The MDA contents were measured with the thiobarbituric acid (TBA) chromotometry method (Bao et al. 2019). Leaf samples (0.5 g) were ground into a homogenate with 5 ml 10% trichloroacetic acid (TCA) solution. After centrifugation at 4000 rpm for 10 min, 2 ml of the supernatant was transferred to tubes and mixed with 2 ml 0.6% TBA solution. The mixture was immersed in boiling water for 15 min and then quickly cooled to room temperature. The absorbance at 450, 532 and 600 nm was then measured using Nanodrop2000. The content of soluble protein was determined by the Coomassie brilliant blue method (Bao et al. 2020). 0.1 g of leaves were ground into a homogenate with deionized water (5 ml), which was subsequently centrifuged for 10 min at 3000 rpm. 1 ml of the supernatant was transferred to a test tube and diluted 5 times with deionized water (4 ml). 1 ml of the diluted solution was mixed with 5 ml of Coomassie brilliant blue G-250 (Shanghai Huishi Biochemical Reagent Co., Ltd). The absorbance was measured at 595 nm after 2 min with Nanodrop2000, and the protein content was determined via a standard curve. Three biological replicates were performed for measurement of every physiological index.

Nitro blue tetrazole (NBT) and diaminobenzidine (DAB) staining

Leaves of three *Clematis* varieties and tobacco with normal and high temperature treatment were soaked in DAB staining solution at 25 °C for 24 h or NBT staining solution at 25 °C for 12 h both in the dark according to previously reported method (Cen et al. 2018), and then soaked in 95% ethanol to remove chlorophyll and took the photo.

RNA isolation and sequencing

Eighteen samples (Cv_NT_1, Cv_NT_2, Cv_NT_3, Cv_HT_1, Cv_HT_2, Cv_HT_3, PS_NT_1, PS_NT_2, PS_NT_3, PS_HT_1, PS_HT_2, PS_HT_3, SG_NT_1, SG_NT_2, SG_NT_3, SG_HT_1, SG_HT_2 and SG_HT_3)
from three *Clematis* varieties were used for RNA sequencing. For each variety, every sample was collected quickly stored at −80 °C after frozen in liquid nitrogen from leaves of three plants treated in different growth chambers after 38 °C or 22 °C treatment. RNA was isolated using TRIzol reagent, respectively. The extracted RNA was quantified using Nanodrop2000, and the RNA was electrophoresed on an agarose gel to check its integrity. Around 0.4 μg of total RNA was used for library construction and sequencing on an Illumina Novaseq 6000 (Illumina, San Diego, CA, USA) at Shanghai Majorbio Bio-pharm Technology Co., Ltd (Shanghai, China). Prior to library construction, an Agilent 2100 Bioanalyzer (Agilent, CA, USA) was used to confirm the quality and quantity of RNA such that the rRNA ratio (28 s/18 s) was > 1.5 and the RNA integrity number > 7. In brief, 0.1–0.4 μg total mRNA was purified and fragmented using PCR plates with a magnetic plate stand. Fragmented mRNA was reverse-transcribed to cDNA using random primers and Superscript II (Invitrogen, Carlsbad, CA). Blunt-ended cDNA was generated by end repair and then ligated to yield 30 adenine base overhangs. Oligonucleotide adapters with thymine overhangs were ligated to the cDNA and added to the adapter index for each library. The library fragments were enriched by PCR amplification and ~895 million raw pair-end reads were generated on an Illumina Novaseq 6000.

Trimming, de novo assembly and mapping of reads

Illumina sequence data were assessed using fastx-toolkit_0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/) and filtered using SeqPrep (https://github.com/jstjohn/SeqPrep) and Sickle (https://github.com/najoshi/sickle). All clean reads of each *Clematis* variety were used de novo assembly using Trinity (https://github.com/trinityrnaseq/trinityrnaseq). Assembly results were optimized using TransRate (http://hibberdlab.com/transrate/) and CD-HIT (http://weizhongli-lab.org/cd-hit/) and then assessed using BUSCO (Benchmarking Universal Single-Copy Orthologs, http://busco.ezlab.org). Clean reads of every samples were respectively mapped to de novo assembly sequence.

Transcriptome annotation, identification and enrichment analysis of differential expressed genes (DEGs)

Transcriptome assembly sequences were annotated by NR (ftp://ftp.ncbi.nlm.nih.gov/blast/db/), Swiss-Prot (http://web.expasy.org/docs/swiss-prot_guideline.html), Pfam (http://pfam.xfam.org/), COG (Clusters of Orthologous Groups of proteins, http://www.ncbi.nlm.nih.gov/COG/), GO (Gene Ontology, http://www.geneontology.org) and KEGG (Kyoto Encyclopedia of Genes and Genomes, http://www.genome.jp/kegg/) six databases, respectively. Gene expression levels were calculated as transcripts per million reads (TPM) using RSEM (http://deweylab.github.io/RSEM/). Differential expressed genes (DEGs) in three *Clematis* varieties were identified using DEseq2 (log2 FC(HT/NT)>2, p value < 0.05). The software Goatoools was used for GO enrichment analysis (FDR < 0.05) of DGEs with Fisher’s exact test. All of the DEGs were also subjected to KOBAS 2.0 analysis (http://kobas.cbi.pku.edu.cn/home.do) and significant pathways were selected at a corrected p value < 0.05.

Hierarchical cluster analysis

The hierarchical clustering and other statistical analyses were carried out using R software (http://www.r-project.org). Pearson correlation was used to calculate distance of different samples.

Identification of heat tolerance-related genes

On the one hand, we obtained protein sequences based on transcriptome assembly sequence using Transdecoder (https://github.com/TransDecoder) and construct local protein databases of three *Clematis* varieties. Then proteins homologous with previously reported heat tolerance-related genes (HTGs) (Supplementary Table 6) were identified using the local blastp program of BLAST+2.9.0 (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/) (E value < 1e-5, identity > 60%) in three *Clematis* varieties. On the other hand, genes of GO term related to heat-resistance in GO enrichment analysis were also regarded as heat-tolerant genes (HTGs). We combined both data to define heat tolerance-related genes (HTGs) (Supplementary Table 7) in three *Clematis* varieties, respectively.

Differentially expressed analysis of heat tolerance-related genes

TPM data of the overlap between DGEs and HTGs, that is, expression profiles of differentially expressed HTGs were visualized in R software (https://www.r-project.org/). Blue and red represented “down regulated” and “up regulated”, respectively.

Construction of co-expression network and protein–protein interaction network

We used differentially expressed HTGs for further network construction. Co-expression correlation coefficients of differentially expressed HTGs were obtained through Spearman algorithm (corrected p value < 0.05) based on gene expression data using R software (http://www.r-project.org) and visualized in Cytoscape v3.5.1 (Shannon et al. 2003).
PPI networks of differentially expressed HTGs were constructed based on PPIs of Aquilegia coerulea in STRING database (https://string-db.org) for three Clematis varieties. Networks were also visualized using Cytoscape v3.5.1. Number of edges directly connected with nodes were computed using Network Analyzer in Cytoscape v3.5.1 (Assenov et al. 2008).

Phylogeny and expression analysis of HSFs and HSPs

Phylogenetic trees of HSFs and HSPs from three Clematis species were constructed in IQ-TREE v2.0.6 (Minh et al. 2020) with JTT + I + G4 and VT + R3 model respectively. Support for each node was assessed by performing a bootstrap analysis with 1000 replicates. The phylogenetic analysis of HSFs from C. vitalba and A. thaliana was inferred by using the Maximum Likelihood method based on the JTT matrix-based model in MEGA-X (Jones et al. 1992; Kumar et al. 2018). The bootstrap consensus tree inferred from 1000 replicates is taken to represent the evolutionary history of the taxa analyzed (Felsenstein 1985). Fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position (partial deletion option). Expression profiles (TPM data) of differentially expressed HSFs and HSPs were visualized in iTOL (https://itol.embl.de/). Green and red represented “down regulated” and “up regulated” respectively.

Motif prediction and visualization of HSFs

Motif prediction and visualization of CvHSFA2-1, CvHSFA2-2 and CvHSFB2b were performed in HEATSTER (https://applbio.biologie.uni-frankfurt.de/hsf/heats ter/home.php).

RNA extraction and quantitative real-time PCR assay

Total RNA was extracted with TRIzol Reagent from leaves of C. vitalba grown under the normal condition and high temperature treatments with 0.5 h, 1 h, 1.5 h and 2 h. The cDNA was synthesized using the PrimeScript RT Reagent Kit with gDNA Eraser (Takara, Kyoto, Japan). PCR amplifications were performed using the TransStart Tip Green qPCR SuperMix (TransGen Biotech, Beijing, China) on the CFX96™ Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). Gene-specific primers used in the experiments are listed in Table S8. These fragments were cloned in vector pGADT7 for qRT-PCR analysis and heat shock phenotype analysis. Amplification conditions were: 2 min at 95 °C; 40 cycles of 15 s at 95 °C, 30 s at 58 °C, and 30 s at 72 °C. Fold changes of RNA transcripts were calculated by the 2−ΔΔCt method (Livak and Schmittgen 2001) with CvUBC2D as an internal control. The entire experiments were repeated three times.

Functional verification of eukaryotic host

The recombinant composed of the CvHSFA2-2 gene fragments and the pGADT7 vector was amplified using the primers in Table S8 and transferred into the eukaryotic yeast AH109 by PEG/LiCl method. The strain only transformed with plasmid pGADT7 was used as a negative control. AH109 recombinant cells were pre-cultivated aerobically for 12–14 h in SD/-Leu medium (28 °C, 250 rpm) to OD600 of 1.0–1.8. The cultures were centrifuged and washed once with 1X phosphate-buffered solution (PBS) and then inoculated in SD/-Leu medium of which the initial OD600 was adjusted to 0.05 and cultivated with a speed of 250 rpm at 28 °C, 37 °C or 42 °C for 12 h. In addition, 5 μl AH109 liquid from each treatment were drop on triplicate SD/-Leu medium and incubated at 28 °C for 2–3 d. Cell concentrations were calculated by optical density (OD600) spectrophotometric measurements.

Functional verification of VIGS with tobacco as host

Two cDNA fragments from different sites were selected to silence NbHSFA2 using the SGN VIGS Tool (Fernandez-Pozo et al. 2015) (https://vigs.solgenomics.net/), respectively (Supplementary Figure 6a). Using BLAST analysis in NCBI, these fragments are specific. Primers for constructs in plant transformation were designed using Primer Premier 5.0 and are listed in Table S8. These fragments were cloned into the TRV2 vector. Then transform the constructs into A. tumefaciens strain GV3101, and co-inoculate the culture with Agrobacterium carrying the TRV1 vector (1:1 ratio, syringe inoculation) onto 2-week-old plants (Senthil-Kumar and Mysore 2014). Use TRV:: NbPDS (NbPDS, tobacco octahydrolysin desaturase) as a positive control and TRV::GFP was used as vector control (Senthil-Kumar and Mysore 2014; Zhou et al. 2020). Silenced plants were used for qRT-PCR analysis and heat shock phenotype analysis (38 °C for 3 h) from 3 weeks after TRV inoculation. qRT-PCR primers were designed using Primer Premier 5.0 and are listed in Table S8. The experiment was repeated at least three times.

Results

Heat shock phenotype of different Clematis varieties

Clematis vitalba (Cv) is an original *Clematis* specie that produces branched and grooved stems as well as deciduous...
leaves and green-white flowers with fluffy underlying sepals. Because of its disseminatory reproductive system, vitality, and climbing behavior, *C. vitalba* is an invasive plant species in several regions, including New Zealand (http://www.iucngisd.org/gisd/species.php?sc=157). ‘Polish Spirit’ (PS) and ‘Stolwijk Gold’ (SG) are ornamental *Clematis* cultivars recognized by the Royal Horticultural Society of England (http://apps.rhs.org.uk/advicesearch/profile.aspx?id=97).

To compare the heat resistance of three *Clematis* varieties, we observed heat shock phenotype of three Clematis varieties and analyzed several physiological parameters of the leaves from the plants treated with or without high-temperature (HT) treatment (Fig. 1, Supplementary Table 1). There was some difference on the background levels of different varieties. After heat treatment (38 °C for 3 h), Stolwijk Gold appeared obvious leaf wilting whereas *C. vitalba* and Polish Spirit not (Fig. 1a). Our data showed that the relative conductivity (RC) and malondialdehyde content were significantly higher in Stolwijk Gold than in *C. vitalba* and Polish Spirit, whereas the relative water content (RWC), soluble protein content, and superoxide dismutase activity (SOD) were lower in Stolwijk Gold than in *C. vitalba* and

![Fig. 1](image-url)
Polish Spirit (Fig. 1b). These results indicate that the heat-induced membrane damage and peroxidation were greater in Stolwijk Gold than in C. vitalba and Polish Spirit. Moreover, nitroblue tetrazolium and diaminobenzidine staining revealed that heat treatment led to the substantial accumulation of ROS in Stolwijk Gold leaves (Fig. 1c) but unchanged ROS content in C. vitalba and Polish Spirit, indicating that the antioxidant systems of Polish Spirit and C. vitalba remained active under heat stress conditions (Fig. 1d). These results reflected the heat resistance of C. vitalba and Polish Spirit as well as the sensitivity of Stolwijk Gold to heat stress.

Effect of heat stress on transcriptomic profiles of Clematis species

To reveal the molecular basis of the differences in the heat resistance of the three Clematis varieties, the leaf transcriptomes under normal (control) and heat stress conditions were analyzed by RNA-seq. Eighteen libraries corresponding to three biological replicates for the control and heat treatments of each variety were constructed and sequenced. A total of approximately 895 million paired-end reads (raw reads) were generated, filtered, and trimmed, with 40–60 million reads per library (Supplementary Table 2). The raw data have been deposited in the NCBI Sequence Read Archive (PRJNA664279). For each Clematis variety, all clean reads were used for a de novo sequence assembly using Trinity (https://github.com/trinityrnaseq/trinityrnaseq) (Supplementary Table 3). The obtained unigenes for the three Clematis varieties were annotated based on the following six databases: NR (ftp://ftp.ncbi.nlm.nih.gov/blast/db/), Swiss-Prot (http://web.expasy.org/docs/swiss-prot_guideline.html), Pfam (http://pfam.xfam.org/), COG (Clusters of Orthologous Groups of proteins, http://www.ncbi.nlm.nih.gov/COG/), GO (Gene Ontology, http://www.geneontology.org), and KEGG (Kyoto Encyclopedia of Genes and Genomes, http://www.genome.jp/kegg/) (Supplementary Table 4). For each variety, approximately half of the unigenes matched Aquilegia coerulea sequences (Supplementary Figure 2), reflecting the close genetic relationship between Clematis species and A. coerulea. The clean reads were then mapped to the assembled sequence (Supplementary Table 5). The gene expression levels (i.e., transcripts per million reads) were analyzed using RSEM (http://deweylab.github.io/RSEM/). The hierarchical cluster analysis of gene expression among the different samples for each variety indicated the data for the biological replicates were reliable and the error was within the allowable range (Fig. 2a). The expression profiles of differentially expressed genes (DEGs) among the three Clematis varieties were visualized (Fig. 2b, Supplementary Figure 3). There were 5344, 5749 and 6506 DEGs in C. vitalba, Polish spirit and Stolwijk Gold under normal and high temperature, respectively, which accounted for 6.4%, 9.0% and 10.6% of the respective total unigenes of three varieties (Fig. 2c). The number of DEGs and the ratio of the number of DEGs to the total number of genes were highest for Stolwijk Gold, and lowest for C. vitalba (Fig. 2c), implying that more biological processes were affected by heat stress in Stolwijk Gold than in C. vitalba and Polish Spirit. The GO enrichment analyses of the DEGs revealed that the heat treatment mainly altered membrane components, with some DEGs in C. vitalba and Polish Spirit related to heat responses (Fig. 3), indicating that the two heat-tolerant Clematis varieties conducted positive and effective regulation resistant to heat stress. The KEGG pathway enrichment analysis indicated that the pathways affected by heat were mainly associated with secondary metabolism, with fewer pathways affected in C. vitalba than in the other examined varieties (Supplementary Figure 4). Additionally, some signaling pathways in Stolwijk Gold were modulated by heat stress, including plant hormone signal transduction and the MAPK signaling pathway (Supplementary Figure 5). These results suggest that C. vitalba and Polish Spirit are more heat resistant than Stolwijk Gold.

Identification of heat tolerance-related genes and their differential expression

On the basis of previous research (Li et al. 2018a; Zhang et al. 2019; Ding et al. 2020), we found that there were some reported important genes (defined as heat tolerance-related genes in here) which have been verified to improved plant thermotolerance. 53 currently reported heat tolerance-related genes (HTGs) were carefully chosen in here that were involved in five regulatory processes mediating plant responses to high stress: heat signal transduction, transcriptional regulation, protein homeostasis, ROS homeostasis and RNA homeostasis (Supplementary Table 6). To further explain the difference in heat resistance of three analyzed Clematis varieties and elucidate their molecular mechanism underlying the heat responses, we identified the heat tolerance-related genes (HTGs) associated with the above-mentioned five regulatory categories in three varieties (Supplementary Table 7). It’s worth noting that the HTGs of three varieties were identified via a local blastp search using 53 previously reported HTGs in other species as queries (Supplementary Table 6) and GO term annotations. Additionally, their expression levels in the three examined Clematis varieties were compared (Table 1, Fig. 4 and Supplementary Table 7). Expression levels of some differentially expressed HTGs in each species were down-regulated. More specifically, 41.43% of the differentially expressed HTGs in Stolwijk Gold were significantly down-regulated under heat stress, whereas only 9.80% and 20.79% of the differentially expressed HTGs were down-regulated in C. vitalba
and Polish Spirit, respectively (Fig. 4a). Polish Spirit had the most up-regulated HTGs. Clematis vitalba had the fewest down-regulated HTGs (Fig. 4a). These results may help to explain the heat resistance of C. vitalba and Polish Spirit.

There were considerable differences in the expression of HTGs in the above-mentioned regulatory categories among the three Clematis species. Transcriptional regulation is critical for plant responses to high temperatures. The HSF family members as well as the ERF/AP2 family transcription factor DREB2A and the NAC transcription factor NAC019 positively affect the heat-activated transcriptional regulatory network (Sato et al. 2014; Guan et al. 2014). Genes encoding these transcription factors were identified in the Clematis transcriptomes (Fig. 4). In response to heat stress, HSF genes differentially expressed in C. vitalba were all significantly up-regulated, whereas only half of the HSF genes differentially expressed in Stolwijk Gold had up-regulated expression levels (the rest had down-regulated expression levels). Moreover, many of the DREB2A and NAC019 transcription factor genes were expressed at lower levels in Stolwijk Gold than in the other varieties. We speculated that the sensitivity of Stolwijk Gold to heat is primarily due to a weak heat-activated transcriptional regulatory network. Additionally, maintaining homeostasis, especially related to protein and ROS contents, is extremely important for stabilizing the biological activities of plants exposed to heat stress (Li et al. 2018b; Zhang et al. 2019). Heat shock proteins, which are molecular chaperones, are important for the stabilization, renaturation, and degradation of unfolded proteins. Following the heat treatment, an analysis of the differentially expressed HSP genes indicated that Polish Spirit had the most up-regulated HSP genes, whereas C. vitalba had the highest proportion of up-regulated HSP.
genes (Fig. 4b). These findings may be related to the differences in the heat resistance mechanisms of the evaluated Clematis varieties. In plants, ROS accumulation is a major cellular response to heat stress. However, high ROS contents lead to the oxidative damage of many cellular components (Vacca et al. 2006; Petrov et al. 2015). The HTGs related to ROS homeostasis were not differentially expressed in C. vitalba, but had down-regulated expression levels in Polish Spirit after the high-temperature treatment (Table 1 and Fig. 4b), indicating that the heat resistant mechanism prevents the excessive accumulation of ROS in C. vitalba and Polish Spirit. Although expression of the two HTGs related to ROS homeostasis was up-regulated in Stolwijk Gold, four other HTGs related to ROS homeostasis were down-regulated, indicative of ROS accumulation (Figs. 1c, d and 4b, Table 1). Additionally, the expression of some HTGs involved in heat signal transduction, such as CaM3, CNGC8 and CDPK2, was down-regulated in Stolwijk Gold, which may adversely affect downstream regulatory processes.
Table 1 Heat tolerance-related genes among different cellular processes and their differential expression under heat stress in three *Clematis* varieties

Species	Cv	PS	SG	
Heat signal transduction	Identified	Differ	Up	Down
Heat transduction	21	0	0	0
Transcriptional regulation	41	11	9	2
Protein homeostasis	227	40	37	3
ROS homeostasis	11	0	0	0
RNA Homeostasis	1	0	0	0
Total	301	51	46	5

Identified: all identified HTGs, differ differentially expressed HTGs, up up-regulated HTGs, down down-regulated HTGs

Analysis of genetic regulatory networks reveals an essential role of HSPs and HSFs in heat resistance

To determine the genetic regulatory networks for heat resistance from the differentially expressed HTGs in the three *Clematis* varieties and to identify hub genes regulating heat resistance, we constructed co-expression and protein–protein interaction (PPI) networks (Fig. 5). These networks revealed that HSFs and HSPs, such as HSFA2, HSFB2b, HSP70, and HSP90, played key roles in the heat tolerance of the three *Clematis* varieties. We speculated that the down-regulated expression of many *HSF* and *HSP* (e.g., *HSP70* and *HSP90*) may be the main cause of the sensitivity of Stolwijk Gold to heat stress. Although *C. vitalba* and Polish Spirit were both resistant to heat stress, their genetic regulatory networks for heat resistance varied. Specifically, *C. vitalba* had a relatively small regulatory network, with almost no down-regulated HTGs, whereas Polish Spirit had a relatively large regulatory network with some down-regulated HTGs. Accordingly, there are at least two distinct heat resistance mechanisms in *Clematis* species. Furthermore, analysis of the gene co-expression network revealed several potential targets of heat-responsive transcription factors, including HSFs, DREB2A, and NAC019. The identified gene targets may be useful for future investigations on the heat resistant mechanism in *Clematis* species.

Differences in expression levels of the *HSF* and *HSP* genes is correlated to heat resistance in three *Clematis* varieties

Considering the importance of HSFs and HSPs for plant heat resistance, we analyzed the phylogenetic relationships of *HSF* and *HSP* genes and compared their expression levels to further characterize the differentially expressed *HSF* and *HSP* genes among three *Clematis* varieties (Fig. 6). The differentially expressed *HSF* genes were divided into three clades. Expression of Clade 1 genes and *PSHSFA1a* and *PSHSFA5* of Clade 2 was down-regulated by heat, suggesting these genes do not induce heat tolerance. All of the *CvHSF* genes were within Clades 2 and 3, and their expression was induced by heat, suggested that HSFs are related to heat tolerance of *C. vitalba*. Clade 3 were generally expressed with a higher level than Clade 2. Thus, heat stress differentially affects the expression of *HSF* genes in different phylogenetic clades. We divided the differentially expressed *HSP* genes into four clades. The 3, 8, and 13 down-regulated *HSP* genes in *C. vitalba*, Polish Spirit, and Stolwijk Gold were mainly clustered in Clades 1, 2, and 3, respectively. The expression levels of most of the *HSP* gene family members in Clade 4 were up-regulated, indicating this clade is important for the heat tolerance of *Clematis* varieties. The down-regulated expression of many *SGHSP* genes following the heat treatment may be related to the sensitivity of Stolwijk Gold to high temperatures. Although the expression of a substantial proportion of the *PSHSP* genes was down-regulated by an exposure to heat, the *HSP* genes were generally more highly expressed in Polish Spirit than in the other two varieties. Furthermore, our analysis revealed a clear expansion of the *HSP* gene family members in Clade 4, which may be beneficial to heat resistance of Polish spirit.

Classification and characterization of heat shock transcription factors in *Clematis vitalba*

Considering *C. vitalba* is an original *Clematis* species with a small and efficient heat resistance genetic regulatory network, we predicted it may be useful for breeding. To further classify and characterize the HSFs in *C. vitalba*, we analyzed the phylogenetic relationships, predicted motifs, and expression of *CvHSF* genes. A phylogenetic analysis revealed that Classes A and B each contained three *CvHSF* genes, which were closely related to the orthologous *AtHSF* genes (Fig. 7a). On the basis of the PPI network, gene co-expression network, and expression profiles, *CvHSFA2-1*, *CvHSFA2-2* and *CvHSFB2b* were identified as hub genes critical for the heat tolerance of *C. vitalba*. Meanwhile, to clarify the differences between the HSFs in Classes A and
Fig. 4 The proportion of differential expressed HTGs in all HTGs and expression profiles of differentially expressed HTGs in three *Clematis* varieties. **A** Pie charts of HTGs (nondifferential expressed HTGs, differential expressed HTGs, up regulated HTGs and down regulated HTGs). **B** Heatmap of differentially expressed HTGs belong to different regulation levels (heat signal transduction, transcriptional regulation, protein homeostasis, ROS homeostasis and RNA homeostasis).
B, the expression of these three genes was analyzed by qRT-PCR. An examination of the predicted motifs revealed that CvHSFA2 and CvHSFB2b have similar N-terminals, but diverse C-terminals, indicative of functional differences between these two HSFs. As representative HSFs of Classes A and B, CvHSFA2-2 has two activator peptide motifs (AHA motifs) and a nuclear export signal at the C-terminal, whereas CvHSFB2b has a repressor domain (Fig. 7b). The qRT-PCR data revealed the increasing expression levels of CvHSFA2-1 and CvHSFA2-2 in the first 3 h after a high-temperature treatment (38 °C). Moreover, both genes were more highly expressed than CvHSFB2b, suggesting that the HSF genes in Class A are important for the heat tolerance of Clematis species (Fig. 7c).

Overexpressing CvHSFA2 enhanced the viability of yeast to survive in thermal stress and silencing NbHSFA2 reduced the heat resistance of tobacco

Based on the above analysis, CvHSFA2-2 was critical for the heat tolerance of C. vitalba. Consequently, we chose CvHSFA2-2 to verify whether it can endow yeast with high temperature resistance. We constructed CvHSFA2-2 with yeast expression vector pGADT7 and transformed the recombinant plasmid into yeast AH109. There was no obvious difference in growth between strain harboring CvHSFA2-2 and the control (Supplementary Figure 5). Under heat stress of 37 °C and 42 °C, AH109 strain harboring CvHSFA2-2 grew better and had higher survival.
rate compared with the control (Fig. 8a, b). The results showed that CvHSFA2-2 could improve heat tolerance in yeast AH109 by heterologous expression. Furthermore, we used tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) to silence NbHSFA2, which is the highly homologous gene of CvHSFA2-2 in N. benthamiana (Supplementary Figure 6b). Silencing of the NbHSFA2 gene was achieved using two constructs (TRV::NbHSFA2① and TRV::NbHSFA2②), respectively, applied as independent treatments. Leaves inoculated with TRV::NbPDS showed photobleaching, while other plants inoculated with TRV didn’t show obvious chlorotic mosaic symptoms at 3 weeks post-inoculation (Fig. 8d), indicating that the TRV-induced gene silencing system was functional. NbHSFA2 expression in newly born leaves of N. benthamiana significantly decreased after inoculation (Fig. 8c). After heat treatment at 38 °C for 3 h, TRV::NbHSFA2 transgenic line showed perfect heat sensitive phenotype compared with TRV::GFP (Fig. 8d). By NBT and DAB staining, it was found that TRV::NbHSFA2 transgenic tobacco accumulated more ROS.

Fig. 6 Phylogenetic analysis and differential expression of HSF genes and HSP genes in three Clematis varieties. The trees of differential expressed HSFs and HSPs were both constructed in IQ-TREE v2.0.6 with JTT+I+G4 and VT+R3 model and could be divided into 3 and 4 clades, respectively. Support rates were labeled at corresponding branches. The heatmap was generated from the TPM data of transcriptomes. Green and red represented “down regulated” and “up regulated” respectively. Blue, green and yellow arrows pointed at down regulated HSFs or HSPs of Clematis vitalba, Polish Spirit and Stolwijk Gold, respectively.
that is, the contents of superoxide dismutase and peroxidase in TRV::NbHSFA2 were higher than those in TRV::GFP. The result verified that silence of NbHSFA2 improved heat sensitivity in *N. benthamiana*.

Discussion

Heat is a major abiotic stress that plants have to adequately deal with (Li et al. 2018b; Zhang et al. 2019; Ding et al. 2020). The mechanism regulating the heat tolerance of *Clematis* species remains relatively uncharacterized, which is in contrast to the available information regarding the corresponding mechanisms in traditional model plant species, including *A. thaliana* and *O. sativa*. In this study, we first elucidated the molecular basis for the differences in the heat tolerance of three *Clematis* varieties based on a transcriptomic analysis of plant leaves under normal and heat stress conditions. GO enrichment analyses revealed that heat stress mainly influences components of biological membrane and two heat-tolerant *Clematis* varieties have obvious positive regulation to heat stress whereas the heat-sensitive *Clematis* variety does not. Then we identified HTGs and compared their expression levels during various regulatory activities (heat signal transduction, transcription regulation, protein homeostasis, ROS homeostasis and RNA homeostasis) (Table 1 and Fig. 4b). Compared with Polish Spirit, there were fewer differentially expressed HTGs, but more down-regulated HTGs, in Stolwijk Gold.

Fig. 7 Classification, motifs and qRT-PCR analysis of CvHSFs. **a** Phylogenetic analysis of differential expressed CvHSFs and HSF family members of *Arabidopsis thaliana*. The tree was constructed in MEGA X using the maximum likelihood method and divided into A, B and C three classes. Support rates were labeled at corresponding branches. **b** Motifs of CvHSFA2-1, CvHSFA2-2 and CvHSFB2b. Motif prediction and visualization were performed in HEATSTER (https://applbio.biologie.uni-frankfurt.de/hsf/heatster/home.php). **c** CvHSFA2-1, CvHSFA2-2 and CvHSFB2b qRT-PCR analysis from leaves of *Clematis vitalba* after different high temperature treatment times. The expression of *CvUBC2D* was used as an internal control. Data were mean ± SE from three biological replicates. *Indicate statistically significant differences by student *t* test: *P* < 0.05. ** P < 0.01.
to high temperatures. Although *C. vitalba* and Polish Spirit were both confirmed as heat-tolerant varieties, the underlying mechanisms differed. Although *C. vitalba* had fewer differentially expressed HTGs than Polish Spirit, nearly all of the differentially expressed *CvHTG* genes were up-regulated. In contrast, Polish Spirit had more differentially expressed HTGs, it also had a greater proportion of down-regulated differentially expressed HTGs compared with *C. vitalba* (Fig. 4a). Additionally, the differentially expressed HTGs in *C. vitalba* were associated with transcriptional regulation and protein homeostasis, but not heat signal transduction and ROS homeostasis (Fig. 4b). This suggests that *C. vitalba* may quickly respond to heat stress by modulating the activities of intracellular proteins. Moreover, heat stress does not substantially affect the ROS content of *C. vitalba* (Fig. 1c and d), likely because of changes to transcriptional regulation and protein homeostasis. The *C. vitalba* characteristics related to heat resistance may be relevant for breeding new varieties of *Clematis* species.

Gene co-expression and PPI networks revealed the core HSFs and HSPs contributing to the heat stress resistance of *Clematis* species (Fig. 5). Considering the importance of HSFs and HSPs for heat resistance, we analyzed the phylogenetic relationships of the differentially expressed *HSF* and *HSP* genes in three *Clematis* varieties. The diversity in the phylogenetic relationships among the differentially expressed *HSF* and *HSP* genes (Fig. 6) may be associated with the observed differences in heat resistance among the *Clematis* varieties. Orthologous family members often had similar expression profiles (Fig. 6). Notably, we detected a clear expansion of the Clade 4 *HSP* gene cluster in Polish Spirit, which may have influenced the heat resistance of this variety. The related genes should be further analyzed in the future. It is unclear why the expression levels of some *HSF* and *HSP* genes were down-regulated in Polish Spirit and even more so in Stolwijk Gold following the heat treatment. According to previous researches, calcium (Ca²⁺) signaling, ROS signaling, NO signaling and their considerable
crosstalk with each other make a difference in heat signal transduction of plant (Liu et al. 2003; Xuan et al. 2010; Finka et al. 2012; Gao et al. 2012; Wang et al. 2015; Petrov et al. 2015; Karpets et al. 2015; Shi et al. 2015; Wu et al. 2015; Hussain et al. 2016; Niu and Liao 2016; Choudhury et al. 2017; Yao et al. 2017). For example, CaM is one of the most important intracellular Ca2+ receptors. Knocking out the expression of AtCaM3 made the resulting mutant more susceptible to HS stress, whereas the overexpression of AtCaM3 resulted in enhanced plant thermotolerance (Liu et al. 2008; Zhang et al. 2009). We speculated that the down-regulated expression of HTGs related to heat signal transduction (e.g., CAM3, CNGC8 and CDPK2) may be an important reason for heat sensitiveness of Stolwijk Gold (Table 1, Fig. 4b). A more thorough functional characterization of these genes may further clarify the mechanism regulating the responses of Polish Spirit and Stolwijk Gold plants to heat stress.

Because of the obvious heat resistance of C. vitalba, the differentially expressed CvHSF genes were further classified and characterized. Plant HSF family members can be divided into three classes: HSFA, HSFB, and HSFC (Scharf et al. 2018). The differentially expressed CvHSF genes identified in this study are HSFA and HSFB genes. We examined CvHSFA2-1, CvHSFA2-2, and CvHSFB2b to predict the encoded motifs (Fig. 7b). Accordingly, we determined that CvHSFA2-1 and CvHSFA2-2 are A2-type HSFs, whereas CvHSFB2b is a B2-type HSF. Of the HSFA1s-targeted transcription factors/co-activators, HSFA2 is a key regulator of plant thermotolerance (Ogawa et al. 2007; Charng et al. 2007). A qRT-PCR experiment revealed the considerable increase in the CvHSFA2-1 and CvHSFA2-2 expression levels in the first 3 h following a high-temperature treatment (Fig. 7c), which is consistent with the results of previous research on other plants (Ding et al. 2020). Therefore, these two HSF genes are likely important for the heat resistance of C. vitalba. Additionally, a phylogenetic analysis indicated CvHSFB2b is an ortholog of AtHSFB2b (Fig. 7a). Earlier research proved that AtHSFB2b represses the expression of heat-inducible HSF genes, but positively regulates thermotolerance (Ikeda et al. 2011). Hence, CvHSFB2b may be relevant for the molecular breeding of heat-resistant Clematis varieties.

Considering that A2-type HSFs’ importance in heat resistance of C. vitalba, we selected CvHSFA2-2 to conduct further function exploration (Fig. 8). Firstly, because the genetic transformation system of C. vitalba has not been established, we overexpressed CvHSFA2-2 in yeast and found that CvHSFA2-2 enhanced heat resistance of yeast (Fig. 8a, b). Then, we wish to observe heat shock phenotype of CvHSFA2-2 knockdown C. vitalba lines by VIGS to verify CvHSFA2-2 functionality in reverse, however, the VIGS system of C. vitalba has also not been established before. Although we have made many attempts for this purpose, ideal gene silencing efficiency in C. vitalba by VIGS has not been received. We had to select NbHSFA2, a highly homologous gene of CvHSFA2-2 (Supplementary Fig. 6b), which had not been verified in N. benthamiana before. The results showed silencing NbHSFA2 could reduce tobacco’s heat resistance. Actually, HSFA2 is one of the most studied HSFs, with a plethora of published manuscripts in Arabidopsis, tomato and other species, which could positively regulate thermotolerance of plants (Ogawa et al. 2007; Liu et al. 2013; Gu et al. 2019; Singh et al. 2021). These results could provide indirect supports for CvHSFA2-2 function. In the future, the genetic transformation system of C. vitalba is of great urgency to be established for direct function verification.

Taken together, in this research, a heat-sensitive Clematis variety (C. alpina ‘Stolwijk Gold’) and two heat-tolerant Clematis varieties (C. vitalba and C. viticella ‘Polish Spirit’) were identified according to primary heat-related physiological indices before and after a high-temperature treatment. Gene expression profiles of three Clematis varieties under normal and high temperature based on transcriptome data were reported, which provided valuable resources for the research of Clematis species. Moreover, we compared the varieties regarding their responses to heat to clarify the differences in their heat resistance based on HTGs that we identified. Furthermore, to characterize the considerable heat resistance of C. vitalba, we identified two HSF classes, which may have various functions related to heat resistance. By heterologous expression and VIGS, we found CvHSFA2-2 significantly enhanced the viability of yeast to survive in thermal stress and silencing its highly homologous gene NbHSFA2 could reduce tobacco’s heat resistance. Our study provided first insights into the diversity of heat response mechanisms of Clematis species, with implications for the breeding of heat-resistant and ornamental Clematis varieties.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11103-021-01174-4.

Acknowledgements We thank France Jardin Botanique for providing seeds of three Clematis varieties and Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac) for editing the English text of a draft of this manuscript.

Authors contribution FM and HZ conceived the project and designed the study; HZ conducted transcriptome analysis based on RNA-seq; CJ, HZ, JM and LZ collected the samples; HZ, RW, LZ, RG, SP and YZ performed physiological experiments, qRT-PCR and function verification; HZ wrote the manuscript; YL, JM and CM contributed to the discussion of the manuscript. All of the authors discussed the results and commented on the manuscript.

Funding This work was supported by Science and Technology Commission of Shanghai Municipality (Grant No. 18DZ2283500),
Shanghai Engineering Research Center of Plant Germplasm Resources (17DZ2252700), Science and Technology Commission of Shanghai Municipality (18DZ2260500), Shanghai Key Laboratory of Plant Molecular Sciences and National Key R&D Program of China (2018YFD1000400). The funding sources were not involved in any process of this study.

Data availability The datasets supporting the conclusions of this article are included within the article and its supplementary information files. The RNA-seq data are available from NCBI of sequence Read Archive (SRA Project: PRJNA664279).

Declarations

Conflict of interest The authors declare that they have no conflict of interest in this paper.

References

Alcazar R, Bueno M, Tiburcio AF (2020) Polyamines: small amines with large effects on plant abiotic stress tolerance. Cells 9(11):20. https://doi.org/10.3390/cells9112373

Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M (2008) Computing topological parameters of biological networks. Bioinformatics 24(2):282–284. https://doi.org/10.1093/bioinformatics/btm554

Bao G, Tang W, An Q, Liu Y, Tian J, Zhao N, Zhu S (2020) Physiological effects of the combined stresses of freezing-thawing, acid precipitation and deicing salt on alfalfa seedlings. BMC Plant Biol 20(1):204. https://doi.org/10.1186/s12870-020-02413-4

Bao G, Zhang M, Li Y, Chang Y, Tang W, Zhu S, Fan C, Ding X (2019) Physiological responses of alfalfa seedlings to freeze-thaw cycles and alkaline salt stress. Fresenius Environ Bull 28(5):4114–4122

Cen WJ, Liu JB, Lu SY, Jia PL, Yu K, Han Y, Li RB, Luo JJ (2018) Cyclic nucleotide-gated calcium channels control land plant thermal sensing and acquired thermotolerance. Plant Cell 24(8):3333–3348. https://doi.org/10.1105/tpc.112.095844

Flexas J, Ribas-Carbo M, Bota J, Galmes J, Henkle M, Martinez-Canellas S, Medrano H (2006) Decreased rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol 171(2):73–82. https://doi.org/10.1111/j.1469-8137.2006.01794.x

Gao F, Han XW, Wu JH, Zheng SZ, Shang ZL, Sun DY, Zhou RG, Li B (2012) A heat-activated calcium-permeable channel - Arabidopsis cyclic nucleotide-gated ion channel 6 - is involved in heat shock responses. Plant J 70(6):1056–1069. https://doi.org/10.1111/j.1365-313X.2012.04969.x

Guo L, Jiang T, Zhang CX, Li XD, Wang CM, Zhang YM, Li T, Dirk LMA, Downie AB, Zhao TY (2019) Maize HSF2 and HSBP2 antagonistically modulate raffinose biosynthesis and heat tolerance in Arabidopsis. Plant J 100(1):128–142. https://doi.org/10.1111/tpj.14434

Guan QM, Yue XL, Zeng HT, Zhu JH (2014) The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis. Plant Cell 26(1):438–453. https://doi.org/10.1105/tpc.113.118927

Gupta K, Sengupta A, Chakraborty M, Gupta B (2016) Hydrogen peroxide and polyamines act as double edged swords in plant abiotic stress responses. Front Plant Sci 7:19. https://doi.org/10.3389/fpls.2016.01343

Hahn A, Bublak D, Schleiff E, Scharf KD (2011) Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 23(2):741–755. https://doi.org/10.1105/tpc.110.1076018

Hendrick JP, Hartl FU (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62:349–384. https://doi.org/10.1146/annurev.bi.62.070193.002025

Huang YC, Niu CY, Yang CR, Jinn TL (2016) The heat stress factor HSFα6b connects aba signaling and aba-mediated heat responses. Plant Physiol 172(2):1182–1199. https://doi.org/10.1104/pp.16.00860

Hussain A, Mun BG, Imran QM, Lee SU, Adamu TA, Shahid M, Kim KM, Yun BW (2016) Nitric oxide mediated transcriptome profiling reveals activation of multiple regulatory pathways in Arabidopsis thaliana. Front Plant Sci 7:18. https://doi.org/10.3389/fpls.2016.00975

Ikeda M, Mitsuda N, Ohme-Takagi M (2011) Arabidopsis HsfB1 and HsfB2 act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol 157(3):1243–1254. https://doi.org/10.1104/pp.111.179036

Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8(3):275–282. https://doi.org/10.1093/bioinformatics/8.3.275

Karpets Y, Kolupaev Y, Vyayner A (2015) Functional interaction between nitric oxide and hydrogen peroxide during formation of wheat seedling induced heat resistance. Russ J Plant Physiol 62(1):65–70. https://doi.org/10.1111/rjpp.1244371/0606900

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

Kumar SV, Lycusyshyn D, Jaeger KE, Alos E, Alvey E, Harberd NP, Wigge PA (2012) Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484(7393):242-247 U127. https://doi.org/10.1038/nature10928
Kumar SV, Wigge PA (2010) H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140(1):136–147. https://doi.org/10.1016/j.cell.2009.11.006

Legris M, Klose C, Burgie ES, Rojas CC, Neme M, Hiltbrunner A, Wigge PA, Schafer E, Vierstra RD, Casal JJ (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354(6314):897–900. https://doi.org/10.1126/science.aaf5650

Li B, Gao K, Ren H, Tang W (2018a) Molecular mechanisms governing plant responses to high temperatures. J Integr Plant Biol 60(9):757–779. https://doi.org/10.1111/jipb.12701

Li XR, Deb J, Kumar SV, Ostergaard L (2018b) Temperature modulates tissue-specification program to control fruit dehiscence in Brassicaceae. Mol Plant 11(4):596–606. https://doi.org/10.1016/j.molp.2018.01.003

Liu H-T, Gao F, Li G-L, Han J-L, De-Long L, Sun D-Y, Zhou R-G (2003) Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiology (Rockville) 132(3):1186–1195. https://doi.org/10.1104/pp.102.181864

Liu HC, Chang YY (2013) Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol 163(1):276–290. https://doi.org/10.1104/pp.112.221168

Liu HC, Liao HT, Chang YY (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ 34(5):738–751. https://doi.org/10.1111/j.1365-3040.2011.02278.x

Liu JJ, Sun N, Liu M, Liu JC, Du BJ, Wang XJ, Qi XT (2013) An autoregulatory loop controlling Arabidopsis HsfA2 expression: role of heat shock-induced alternative splicing (1 C). Plant Physiol 162(1):512–521. https://doi.org/10.1104/pp.112.205864

Liu Q, Kasuga M, Sakuma Y, Ahe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively. Arabidopsis the Plant Cell 10(8):1391–1406. https://doi.org/10.1105/tpc.107.070648

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression using real-time quantitative PCR and the 2-ΔΔC(T) Method. Methods 25(4):402–408. https://doi.org/10.1016/s1046-2023/00334.x

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Hae塞尔 A, Lanfear R (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37(5):1530–1534. https://doi.org/10.1093/molbev/msaa015

Niu LJ, Liao WB (2016) Hydrogen peroxide signaling in plant development and abiotic responses: crosstalk with nitric oxide and calcium. Front Plant Sci 7:14. https://doi.org/10.3389/fpls.2016.00230

Ogawa D, Yamaguchi K, Nishiuchi T (2007) High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased thermal tolerance but also salt/osmotic stress tolerance and enhanced cal- lus growth. J Exp Bot 58(12):3373–3383. https://doi.org/10.1093/jxb/erm184

Ohama N, Kusakabe K, Mizoi J, Zhao HM, KidoKoro S, Kozumi S, Takahashi F, Ishida T, Yanagisawa S, Shinozaki K, Yamaguchi-Shinozaki K (2016) The transcriptional cascade in the heat stress response of Arabidopsis is strictly regulated at the level of transcription factor expression. Plant Cell 28(1):181–201. https://doi.org/10.1105/tpc.15.00435

Paschalidis KA, Moschou PN, Touni I, Roubelakis-Angelakis KA (2009) Polyanine anabolic/catabolic regulation along the woody grapevine plant axis. J Plant Physiol 166(14):1508–1519. https://doi.org/10.1016/j.jplph.2009.03.013

Paynter Q, Waipara N, Peterson P, Hona S, Fowler S, Gianotti A, Wilkie P (2006) The impact of two introduced biocontrol agents, Phytomyza vitulinae and Phoma clematidina, on Clematis vitalba in New Zealand. Biol Control 36(3):350–357. https://doi.org/10.1016/j.biocontrol.2005.09.011

Petrov V, Hillé J, Mueller-Roemer B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:16. https://doi.org/10.3389/fpls.2015.00069

Picciare R, Porceddu M, Bacchetta G (2017) Can alternating temperature, moist chilling, and gibberellin interchangeably promote the completion of germination in Clematis vitalba seeds? Botany 95(8):847–852. https://doi.org/10.1119/jxb/2017-0039

Qiao B, Zhang Q, Liu DL, Wang HQ, Yin JY, Wang R, He ML, Cui M, Shang ZL, Wang DK, Zhu ZG (2015) A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2. J Exp Bot 66(19):5853–5866. https://doi.org/10.1093/jxb/erv294

Redmond CM, Stout JC (2018) Breeding system and pollination ecology of a potentially invasive alien Clematis vitalba L. in Ireland. J Plant Ecol 11(1):56–63. https://doi.org/10.1093/jpe/rtw137

Sato H, Mizoji J, Tanaka H, Maruyama K, Qin F, Osakabe Y, Morimoto K, Ohori T, Kusakabe K, Nagata M, Shinozaki K, Yamaguchi-Shinozaki K (2014) Arabidopsis DBP3–1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell 26(12):4954–4973. https://doi.org/10.1105/tpc.114.132928

Scharf KD, Berberich T, Ebersberger I, Nover L (2018) The plant heat stress transcription factor (Hsf) family: Structure, function and evolution (vol 1819, pg 104, Year 2017). Biochim Biophys Acta-Genes Regul Mech 1861(1):60. https://doi.org/10.1016/j.bbagrm.2017.12.005

Schramm F, Larkindale J, Kiehlmann E, Ganguli A, English G, Vierstra RD, Casal JJ (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53(2):264–274. https://doi.org/10.1111/j.1365-313X.2007.03334.x

Senhil-Kumar M, Mysore KS (2014) Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nat Protoc 9(7):1549–1562. https://doi.org/10.1038/nprot.2014.092

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Pellegrini M, Acosta기방/GR. 1239303

Shang ZL, Wang DK, Zhu ZG (2015) A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2. J Exp Bot 66(19):5853–5866. https://doi.org/10.1093/jxb/erv294

Shi CY, Qi C, Ren HY, Huang AX, Hei SM, She XP (2015) Ethylene mediates brassinosteroid-induced stomatal closure via G alpha protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis. Plant J 82(2):280–301. https://doi.org/10.1111/tpj.12815

Singh G, Sarkar NK, Grover A (2021) Tago between ethylene and HSFAsa2 sets heat tolerance. Trends Plant Sci 26(5):429–432. https://doi.org/10.1016/j.tplants.2021.03.003

Toumi I, Moschou PN, Paschalidis KA, Bouazama B, Ben Salem-Frayerou A, Ghorbel AW, Mliki A, Roubelakis-Angelakis KA (2010) Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. J Plant Physiol 167(7):519–525. https://doi.org/10.1016/j.jplph.2009.10.022

Tsankiklidis G, Pappi P, Tsafouros A, Charova SN, Nikoloudakis NL, Roussos PA, Paschalidis KA, Delis C (2020) Polyamine...
homeostasis in tomato biotic/abiotic stress cross-tolerance. Gene 727:11. https://doi.org/10.1016/j.gene.2019.144230
Vacca RA, Valenti D, Bobba A, Merafina RS, Passarella S, Marra E (2006) Cytochrome c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in tobacco bright-yellow 2 cells en route to heat shock-induced cell death. Plant Physiol 141(1):208–219. https://doi.org/10.1104/pp.106.078683
Wanasinghe DN, Jones EBG, Camporesi E, Boonmee S, Ariyawansa HA, Wijayawardene NN, Mortimer PE, Xu J, Yang J-B, Hyde KD (2014) An exciting novel member of lentitheciaceae in Italy from Clematis vitalba. Cryptogam, Mycol 35(4):323–337. https://doi.org/10.7872/crym.v35.iss4.2014.323
Wang RH, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M (2016) HSP90 regulates temperature dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1 (vol 7, pg 1026, 2016). Nat Commun 7:1. https://doi.org/10.1038/ncomms11677
Wang X, Ma XL, Wang H, Li BJ, Clark G, Guo Y, Roux S, Sun DY, Tang WQ (2015) Proteomic study of microsomal proteins reveals a key role for Arabidopsis Annexin 1 in mediating heat stress-induced increase in intracellular calcium levels. Mol Cell Proteomics 14(3):686–694. https://doi.org/10.1074/mcp.M114.042697
Wu D, Chu HY, Jia LX, Chen KM, Zhao LQ (2015) A feedback inhibition between nitric oxide and hydrogen peroxide in the heat shock pathway in Arabidopsis seedlings. Plant Growth Regul 75(2):503–509. https://doi.org/10.1007/s10725-014-0014-x
Xuan Y, Zhou S, Wang L, Cheng YD, Zhao LQ (2010) Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. Plant Physiol 153(4):1895–1906. https://doi.org/10.1104/pp.110.160424
Yao Y, He RJ, Xie QL, Zhao XH, Deng XM, He JB, Song L, He J, Marchant A, Chen XY, Wu AM (2017) ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytol 213(4):1667–1681. https://doi.org/10.1111/nph.14278
Zhang J, Li XM, Lin HX, Chong K (2019) Crop improvement through temperature resilience. Annu Rev Plant Biol 70:753–780. https://doi.org/10.1146/annurev-arplant-050718-100016
Zhang W, Zhou RG, Gao YJ, Zheng SZ, Xu P, Zhang SQ, Sun DY (2009) Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol 149(4):1773–1784. https://doi.org/10.1104/pp.108.133744
Zhou XY, Zhu XG, Shao WN, Song JH, Jiang WQ, He YQ, Yin JL, Ma DF, Qiao YL (2020) Genome-wide mining of wheat DUF966 gene family provides new insights into salt stress responses. Front Plant Sci 11:12. https://doi.org/10.3389/fpls.2020.569838

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.