Effect of ventilation improvement during a tuberculosis outbreak in underventilated university buildings

Chun-Ru Du¹ | Shun-Chih Wang² | Ming-Chih Yu³,⁴ | Ting-Fang Chiu⁵ | Jann-Yuan Wang⁶ | Pei-Chun Chuang⁷ | Ruwen Jou⁸,⁹ | Pei-Chun Chan¹⁰,¹¹,¹² | Chi-Tai Fang⁶,¹²

¹Taipei Regional Center, Taiwan Centers for Disease Control, Taipei, Taiwan
²Institute of Labor, Occupational Safety and Health, Ministry of Labor, Taipei, Taiwan
³Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
⁴School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
⁵Department of Pediatrics, Taipei City Hospital, Zhongxiao Branch, Taipei, Taiwan
⁶Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
⁷Division of Planning and Coordination, Taiwan Centers for Disease Control, Taipei, Taiwan
⁸Center for Diagnostics and Vaccine Development, Taiwan Centers for Disease Control, Taipei, Taiwan
⁹Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
¹⁰Division of Chronic Infectious Diseases, Taiwan Centers for Disease Control, Taipei, Taiwan
¹¹Division of Pediatric Infectious Diseases, Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
¹²Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan

Abstract
The role of ventilation in preventing tuberculosis (TB) transmission has been widely proposed in infection control guidance. However, conclusive evidence is lacking. Modeling suggested the threshold of ventilation rate to reduce effective reproductive ratio (ratio between new secondary infectious cases and source cases) of TB to below 1 is corresponding to a carbon dioxide (CO₂) level of 1000 parts per million (ppm). Here, we measured the effect of improving ventilation rate on a TB outbreak involving 27 TB cases and 1665 contacts in underventilated university buildings. Ventilation engineering decreased the maximum CO₂ levels from 3204 ± 50 ppm to 591-603 ppm. Thereafter, the secondary attack rate of new contacts in university dropped to zero (mean follow-up duration: 5.9 years). Exposure to source TB cases under CO₂ >1000 ppm indoor environment was a significant risk factor for contacts to become new infectious TB cases (P < .001). After adjusting for effects of contact investigation and latent TB infection treatment, improving ventilation rate to levels with CO₂ <1000 ppm was independently associated with a 97% decrease (95% CI: 50%-99.9%) in the incidence of TB among contacts. These results show that
1 | INTRODUCTION

Tuberculosis (TB) is currently the leading global epidemic, causing more than 1.6 million deaths worldwide in 2017. Despite the advances in molecular diagnosis, effective drug treatment, and directly observed treatment, short-course (DOTS) program, the worldwide TB incidence declined very slowly, 2% per year at the present time—but is consistent with model predictions for the impact of the DOTS strategy. Additional strategies are urgently required to achieve the global End TB target.

Tuberculosis is an airborne disease which spread through infectious aerosol generated by patients during cough. In an indoor environment, infectious aerosol progressively accumulates and put everyone in the room at risk unless the indoor air is continuously replaced with the fresh outdoor air by ventilation. Poor ventilation is associated with increased risk of tuberculin skin test (TST) conversion. The role of ventilation in preventing TB transmission has been widely proposed in infection control guidance. However, conclusive evidence is lacking.

Theoretically, improving ventilation rate decreases the probability of TB transmission exponentially, but never to zero. Nevertheless, to stop the TB epidemic, it only needs to reduce the effective reproductive ratio (ratio between new secondary infectious cases and source cases) to less than one, rather than to zero. Modeling work, based on parameters from South Africa high schools, suggested that this threshold is 8.6 L/s per person, corresponding to an indoor carbon dioxide (CO$_2$) level of 1000 parts per million (ppm). However, this theoretical threshold has not been tested in real world.

Taiwan has advanced public health services. The national directly observed therapy program and contact investigation system ensure all TB patients and their contacts are diagnosed promptly and treated effectively. Nevertheless, a large outbreak involving 27 active TB cases and 1665 contacts occurred at a poorly ventilated university building during 2010-2013. Investigation found that the university building had an indoor CO$_2$ level up to 3204 ppm as the outbreak unfolded. We aimed to measure the effect of improving ventilation to levels with CO$_2$ <1000 ppm on this TB outbreak, focusing on the risk of contacts to become new secondary infectious TB cases.

2 | METHODS

2.1 | Study settings

University A, located at suburbs of Taipei, has around 10 000 students. The university building used a central mechanical ventilation and air-conditioning system to maintain temperature within a comfortable range in a hot and humid climate. The air circulates between classrooms. None of the classrooms has an independent ventilation system. To minimize electricity cost, no extractor ventilation machines had been installed for underground floors (Figure 1). The lack of air outflow created a positive indoor pressure that prevented the inflow of fresh hot air.
2.2 | The outbreak

The outbreak began at classrooms (Figure 2) in the underground floors of the Building C. Figure 1 shows a diagram of rooms in the floorplan. The index case (Case 0, a student who presented with a productive cough for 1 month) was diagnosed with smear-positive non-cavitary TB in November 2010. The index case was immediately put on sick leave and began treatment. Initial chest radiography (CXR) screening of 44 classmates, 3 teachers and 4 family members, found no additional cases. However, from April to September 2011, 11 new cases emerged. Most of these cases had been in the same classroom but never had close contact with the index case. The National Reference Laboratory of Mycobacteriology performed DNA fingerprinting with standard IS6110 restriction fragment length polymorphism, which showed an identical genotype for all collected strains isolated from the index case and the subsequent 11 cases, including 7 secondary cases related to the index case, 2 tertiary cases related to Case 3, and two cases of uncertain sources (Figure 3). The ongoing transmission, despite the early removal of the index case, prompted investigation of possible environmental factors.

2.3 | Study design

We used a retrospective cohort study of all contacts (n = 1665) involved in this outbreak (follow-up to July 31, 2018, with a mean follow-up time of 5.9 years) to examine the effect of ventilation improvement on the risk for contacts to become new infectious TB cases. We obtained cases, contacts, and follow-up data from the National Surveillance of Notifiable Contagious Diseases (NSNCD), a centralized cloud-based case management database to ensure that all new TB cases from the list of university students, employees, and TB patients’ contacts were included.

2.4 | Contact investigation

In addition to household contacts, all persons who had a cumulative 30-40-hour exposure to shared air (defined as staying in the same floor or within the same building with any infectious TB patients) were considered as contacts for whom clinical and radiographic evaluations and follow-up were provided to detect active TB. Public health nurses used lists of students/faculties/employee, curriculum, and class rosters to identify contacts as many as possible. To analyse the chain of transmission, all contacts were linked to the first source case he/she had been exposed to. Per national policy, contacts <13 years of age received a TST, using a cutoff point of 10 mm. In response to this outbreak, the authority expanded TST to all contacts regardless of age beginning in October 2011. Isoniazid preventive therapy (isoniazid 10 mg/kg once daily [max. 300 mg] for 9 months) was offered to all asymptomatic contacts with latent TB infection (LTBI, defined as having a positive TST >10 mm, and normal chest radiographs). However, LTBI contacts could choose not to receive treatment.

2.5 | Measurement of indoor CO₂ levels

Standard portable CO₂ meters, TSI-8760 (TSI Incorporated, with precision range of ±50 ppm) were used to measure CO₂ levels. The CO₂ meters were calibrated using the National Institute of Standards and Technology standard gases (0/910/3010 ppm). All CO₂ measurements were conducted during peak hours (10 AM to noon or 1 PM to 5 PM) when almost every classroom was occupied (20-50 students per class, Appendix S1). Measurements were taken beginning 30 minutes after the commencement of a class and lasted until the end of a class. One to four sites were sampled, based on classroom size. The measurement was repeated every 10 seconds for 5-15 minutes. The maximum, minimum, and average CO₂ levels, classroom population, and numbers of open windows and doors (at the time of measurement), were recorded (Appendix S1). Because indoor CO₂ in congregate settings rarely achieve steady state, we used the monthly maximum of daily averages of indoor CO₂ levels as the best estimate for the theoretical steady-state value in calculating the corresponding ventilation rate. We performed a sensitivity analysis which uses monthly median of daily averages of indoor CO₂ levels in estimating the effect of ventilation on infection risk.

2.6 | Estimation of ventilation rate

The relationship between the steady-state indoor CO₂ level (which represents the per person ventilation) and room ventilation rate Q is given by Issarow et al:

\[
\text{CO}_2\text{(steady state)} = C_E + npC_a/Q.
\]

Here, Q is ventilation rate (L/s), which we wanted to estimate. \(C_E\) is the CO₂ level of outdoor ambient air (400 ppm), \(n\) is the number of room occupants, \(p\) is the breathing rate, and \(C_a\) is the concentration in exhaled breath. For a standard classroom (180 m³)
with 30 students, substituting pC_a by average CO_2 generation rate (0.0048 L/s per person), a CO_2 level of 3204 ppm (before intervention) is equivalent to 1.7 L/s per person. After ventilation engineering, the CO_2 levels decreased to 591-603 ppm, equivalent to 23.6-25.1 L/s per person.

2.7 | Secondary attack rate

We compared the secondary attack rate in contacts of TB cases notiﬁed before the completion of ventilation engineering on January 16, 2012, (before intervention) and the secondary attack rate in contacts of TB cases notiﬁed after the completion of ventilation engineering on January 16, 2012, (after intervention). All contacts were followed up to July 31, 2018.

2.8 | Effect of ventilation improvement

The effect of ventilatory improvement on reducing TB incidence among contacts was estimated by the following formula:11

\[\text{Relative effect} = 1 - \left(\frac{1}{\text{adjusted hazard ratio for exposure under low ventilation}} \right) \]

2.9 | Statistical analysis

Proportions and rates were compared with chi-square (or Fisher’s exact test) and chi-score test, respectively. For time-to-event analysis, the zero time of follow-up for each contact is the diagnosis date of the source case (index date). The end of follow-up was the date when the contact was notiﬁed as an active TB case (event), the date of mortality due to non-TB-related causes (censored), or July 31, 2018 (censored). To control the effect of isoniazid preventive therapy (100% effective, none of the 173 [0%] contacts who received isoniazid preventive therapy acquired TB), person-time after the date of starting isoniazid preventive therapy was censored. Probabilities of TB were estimated by Kaplan-Meier method and compared using log-rank test. Cox regression and logistic regression were used to adjust for covariates. All analyses were conducted using SAS ver. 9.2 (SAS Institute). A two-sided $P < .05$ was considered statistically significant.

2.10 | Ethical statement

The Institutional Review Board of Taiwan Centers for Diseases Control (Taipei, Taiwan) approved the study procedure as public health surveillance, which does not require informed consent.

FIGURE 3 Epidemic curve by notification date of active tuberculosis (TB) cases and carbon dioxide (CO_2) concentration (the monthly maximum values of daily average) in the underground floors of Building C before and after ventilation engineering intervention. Index case (black), secondary cases (gray), and tertiary cases (diagonal) are shown by different color or pattern. Four additional cases caused by the same strain (white) were found by cross-checking 20 392 employees and students who had stayed at University A campus before the ventilation engineering was completed on January 16, 2012: Case 9 was exposed to Case 0 in the CB2 classroom for only 20 h, but exposed to Case 3 in Building M on the same ﬂoor (but not in the same room) for 62 h; Case 22 exposed to Case 0 for 32 h, to Case 3 for 39 h, to Case 8 for 14 h, and Case 23 was exposed to Case 0 for 30 h, Case 3 for 39 h, Case 8 for 14 h, Case 9 for 8 h, all in Building M on the same ﬂoor but not in the same room. The curriculum of Case 7 could not be matched to any TB cases. The ﬁnal four cases (one notiﬁed in 2016, 2017, and two in 2018, respectively, not shown in the Figure) were contacts of the index case (contact occurred in poorly ventilated environments before the ventilation engineering). All these four patients had been diagnosed to have latent TB infection in late 2011 but refused to receive isoniazid preventive therapy.
3 | RESULTS

3.1 | Epidemiological investigation

A total of 27 active TB cases (mean age: 23 years, all previously healthy) were identified. Fifteen cases were confirmed by sputum culture of strains with an identical DNA fingerprint. Twelve cases were confirmed by serial CXR findings and response to anti-TB treatment as well as epidemiological link to one of DNA fingerprinting-confirmed cases. Figure 3 shows the chains of transmission (index case, secondary cases, and tertiary cases). There were four DNA fingerprinting-confirmed active TB case whose source case was uncertain (see Figure 3 legend for details).

3.2 | Initial ventilation assessment

Ventilation specialists from the Taiwan Institute of Labor, Occupational Safety and Health (ILOSH) inspected the classrooms in the underground floors of Building C on October 13, 2011. The CO$_2$ level measured at Classroom CB307 (in B3 floor) where the index case had attended the class was as high as 3204 ppm. The CO$_2$ level measured at Classroom CB202 in B2 floor was 2926 ppm (Appendix S1). Furthermore, the CO$_2$ level measured at the inlet of air flow (see the floorplan in Figure 1) was 1600 ppm, which indicates that the airflow in underground floors were nearly 100% recirculation, with little inflow of fresh air from the outside. The authority enforced ventilation engineering.

3.3 | Ventilation engineering

The intervention consisted of: (a) for the ground floor and above, keeping the windows open (to serve as air outlets) to facilitate both natural and mechanical ventilation; and (b) for the underground floors, installing extractor ventilation machines to improve air outflow (see Figure 1 legend for details), along with constructing new ventilatory circuits for Building C to normalize the outflow of exhaled air so that the pre-existing inlet pipes from the roof could function as designed (see Figure 1 and Appendix S2). The above intervention decreased ground floor CO$_2$ levels to 700-800 ppm (measured on December 9, 2011), but the CO$_2$ levels on underground floors were still up to 1413 ppm (Appendix S1). A glass wall at the ground floor door in Building C (Figure 4A) blocked the outflow of exhaled air (through a stairway) from classrooms on the three underground floors. The outbreak coordination committee therefore recommended removing the aforementioned glass wall, which was subsequently removed on January 16, 2012 (Figure 4B). After these interventions, the ventilation levels in Building C improved to 370-400 ppm on the ground floor and 591-603 ppm (23.6-25.1 L/s per person) on the underground floors (Figure 3). The same ventilation engineering work were implemented in other buildings as well.

3.4 | Impact of ventilation on secondary attack rate in University A

After ventilation engineering, the secondary attack rate of university contacts dropped to zero (contacts of TB cases notified before January 16, 2012: 20/728 [2.7%] vs contacts of TB cases notified after January 16, 2012: 0/278 [0.0%], $P = .002$, follow-up to July 31, 2018, for a mean of 5.9 years). The drop in secondary attack rate was not due to CXR screening that may detect less infectious cases (20/634 [3.0%] vs 0/275 [0.0%], after excluding contacts of cases detected by mass CXR screening, $P < .001$), nor was it caused by treatment of LTBI (20/1 480 411 vs 0/544 752 person-days, after excluding person-time after starting isoniazid preventive therapy, $P = .007$).

3.5 | Ventilation levels and risk for contacts to become new infectious TB cases

Table 1 shows demographic and epidemiological information for 1665 contacts (including 1006 school contacts, 214 contacts at a private tutoring class [where Case 8 attended], 96 household contacts, and 352 contacts in other settings) involved in this outbreak. Exposure to source cases under indoor CO$_2$ >1000 ppm ($n = 942$, including the 728 school contacts exposed before January 16, 2012, and 214 contacts at a private tutoring class where an indoor CO$_2$ level of 1022 ppm, Table S4) was associated with a higher risk for the contacts to become
new infectious TB cases \((P < .001) \), median time from exposure to TB notification: 11 months, \(^{19}\) interquartile range: 6-18 months, person-time after the start of LTBI treatment was censored, Figure 5). One of the 214 contacts at the private tutoring class acquired active TB (Table 1). Therefore, CO\(_2\) level of 1022 ppm was not safe. The only one contact in the CO\(_2\) level <1000 ppm category who acquired active TB (Table 1) was the index patient’s younger sister, who had prolonged close household contact with the index patient.

3.6 Effect of ventilation improvement

After adjusting for exposure to “super spreader” (the index case, Case 0), proximity of contact (household) and LTBI treatment (by

TABLE 1 Characteristics of the 1665 contacts involved in the outbreak

Variables	Acquired TB (n = 22)	Did not acquire TB (n = 1643)	P value
Age (y), median (min, max)	20.0 (15.9-39.8)	21.8 (2.4-94.0)	.441
<15	0 (0)	14 (0.9)	
16-25	21 (95.5)	1227 (74.7)	
26-35	0 (0)	120 (7.3)	
36-45	1 (4.6)	73 (4.4)	
46-55	0 (0)	129 (7.9)	
56-65	0 (0)	62 (3.8)	
≥65	0 (0)	18 (1.1)	
Sex			
Male	8 (33.4)	855 (52.0)	.144
Female	14 (66.7)	788 (47.9)	
Source patient sputum smear results			
Negative or scanty	0 (0.0)	630 (38.3)	<.0001
Positive	22 (100.0)	1013 (61.7)	
Context of contacts			
University contacts	19 (86.4)	984 (60.0)	.031
Household contacts\(^{c}\)	2 (9.5)	94 (5.7)	
Private tutoring class	1 (4.8)	213 (13.0)	
Contacts in other settings\(^{d}\)	0 (0)	352 (21.4)	
Contacts of the index case			
No	3 (13.6)	1522 (92.6)	<.0001
Yes	19 (86.4)	121 (7.4)	
Isoniazid preventive therapy			
No	22 (100.0)	1470 (89.5)	.158
Yes	0 (0)	173 (10.5)	

Note: P value, by chi-square test or Fisher’s exact test (if the sample size is smaller than five).

Abbreviations: CO\(_2\), carbon dioxide; ppm, parts per million; TB, tuberculosis.

\(^{c}\)All student, staff, and faculty with a cumulative 30-40 h exposure to shared air (defined as staying in the same floor or within the same building with any infectious TB patient) were considered as contacts. Public health nurses used administrative data (lists of students/faculties/employee, curriculum, and class rosters) and results from a structured questionnaire to identify contacts as many as possible. Initially, 40 h were used. However, one contact with 30 h exposure to the index case became Case 3. Thereafter, the authority updated the operative definition for university contacts to a cumulative 30 h exposure to shared air, due to the severely underventilated environment in University A.

\(^{d}\)Three household contacts were also university contacts (one is the index case’s sister, who acquired active TB, and two are Case 5’s roommates who attended the same school).

\(^{e}\)Defined as having an indoor air CO\(_2\) level >1000 ppm at the time of exposure. Contacts in this category include the 728 university contacts who were exposed to TB patients in this outbreak before the ventilation engineering was completed on January 16, 2012. One TB patient (Case 8) attended a private tutoring class. Public health inspectors found the tutoring class had a CO\(_2\) level of 1022 ppm. Therefore, the 214 tutoring class attendees were also considered to have been exposed to TB patients in environment with a CO\(_2\) level >1000 ppm.

\(^{f}\)This is a household contact.

3.7 Risk of LTBI

LTBI was diagnosed in 302 of the 667 contacts who received TST. Exposure under CO\(_2\) >1000 ppm environment was associated with a significantly higher likelihood of LTBI (245/488 [50.2%] vs 57/179
sequent ventilation engineering. In retrospect, infectious aerosol
2011 prompted investigations of indoor ventilation and the sub-
year ago. The worsening situation in October
the ongoing occurrence of tertiary cases despite early removal
ventilation in this outbreak was discovered precisely because of
less successful than what should be expected. The role of poor
these chemotherapy-based interventions in University A were
LTBI are essential for the control of this outbreak. However,
was associated with a 97% decrease in risk for contacts to become new
[31.8%, P < .001]. Logistic regression revealed that after adjusting for
higher infectiousness of the index case, exposure to source cases
under CO₂ >1000 ppm in the university buildings before the interven-
tion was also a risk factor for contacts to have LTBI (adjusted odds ratio
1.6 [95% CI:1.1-2.3], P = .014) (Table 3). Ventilation improvement to lev-
evels with indoor CO₂ <1000 ppm was associated with a 38% decrease in
likelihood of LTBI among the contacts (95% CI: 9%-57%).

3.8 | Sensitivity analysis

Replacement of monthly maximum CO₂ value with monthly me-
dian CO₂ level (Figure S1) did not alter the exposure categories of
contacts in Tables 1-3, and Figure 5 and therefore did not alter the
analysis results.

4 | DISCUSSION

This study provides the first empirical data showing that improving in-
door ventilation to levels with CO₂ <1000 ppm is highly effective in
controlling a TB outbreak which occurred in poorly ventilated indoor
environment. Improving ventilation to indoor CO₂ levels <1000 ppm
was associated with a 97% decrease in risk for contacts to become new
infectious TB cases and helped to end the TB outbreak in University A.

Prompt diagnosis, isolation, and treatment for both TB and
LTBI are essential for the control of this outbreak. However,
these chemotherapy-based interventions in University A were
less successful than what should be expected. The role of poor
ventilation in this outbreak was discovered precisely because of
the ongoing occurrence of tertiary cases despite early removal
of the index case 1 year ago. The worsening situation in October
2011 prompted investigations of indoor ventilation and the sub-
sequent ventilation engineering. In retrospect, infectious aerosol
accumulated in the poorly ventilated environment. Without the
ventilation improvement, the outbreak in University A would be
more prolonged and more difficult to control. The limitation of
chemotherapy-based interventions is further highlighted by four
cases who did not have identifiable sources but nevertheless ac-
quired the outbreak TB strain (Figure 3). They may have entered
a classroom or a floor for unrecorded activity and breathed the
exhaled air from prior occupants. In such scenarios, TB transmis-
ion may occur even when the sources were not there. This makes
contact investigation and preventive therapy not the answer for
controlling of TB in congregate settings.

A major strength of this study is the comprehensive epidemi-
ological investigation. The outbreak investigation team found that TB
transmission can occur following an exposure to shared air as short
as 30 hours under poorly ventilated environments. Another strength
is the comprehensive contact tracing and long-term follow-up based on
Taiwan’s highly effective public health system.13 The TST and
clinical/radiographic evaluation to detect active TB also followed
standardized protocols. With the assistance of civil registration and
a centralized cloud-based contagious disease database, the NSNCD,
follow-up was nearly complete.

The NIOSH and other governmental agencies had recommended
indoor air quality standards based on CO₂ levels of 600-1500 ppm
for schools and workplaces.20–22 The considerations for these rec-
ommendations are for comfort and learning/working efficiency. Our
results support the hypothesis that there is a threshold of ventilation
rate that stop TB epidemic. However, our data are not precise enough
to exactly define this threshold, which could be in between 600 and
1000 ppm CO₂ in this outbreak. Moreover, the threshold could vary
across different TB outbreak—a higher ventilation rate would be re-
quired to neutralize the hazard from a more infectious index case.

In response to the nosocomial multidrug-resistant (MDR) TB
outbreaks crisis in 1990s, the United States Centers for Disease
Control and Prevention (CDC) issued a 3-tiered strategy: admin-
istrative control (prompt isolation of TB patients), environmental
control (isolation room, ventilation and germicidal ultraviolet), and
personal protective equipment (mask).6,7,23 CDC recommended
that airborne infection isolation rooms should have a ventila-
tion rate of at least 12 air changes per hour (ACH), based on en-
gineering specifications for removing airborne particles, with
high-efficient particulate air (HEPA) filtering for re-circulated air
if non-recirculating local exhaust ventilation is not feasible.6 After
implementation, no more new cases occurred.23,24 The respective
correlation from each tier in this strategy cannot be separately
evaluated. Nevertheless, this success is in keeping with our ob-
servation that improving ventilation rate to 23.6-25.1 L/s per per-
son (equivalent to 14-15 ACH) helped to end the TB outbreak in
University A.

Since 2009, World Health Organization (WHO) recommend
healthcare facilities should be built to have a natural ventilation
rate of at least 12 ACH.8,22 WHO recently reviewed evidence on
effect of ventilation in TB control and identified 10 observational
studies which reported the impact of multi-tiered control strategy

![FIGURE 5 Kaplan-Meier estimates for the risk of contacts
to become new infectious tuberculosis (TB) cases, by ventilation
status at the time of exposure to source cases (person-time after
the start of isoniazid preventive therapy was censored)](image)
on TST conversion rate among healthcare workers. High heterogeneity in study design and compliance to environmental control guidelines precluded a meta-analysis. WHO considered further assessment on the effect of ventilation in TB control as a research priority. Our results show that improving indoor ventilation rate to levels equivalent to 14-15 ACH is highly effective in controlling a TB outbreak. Our findings strengthen the evidence base for the current WHO recommendation on the ventilation requirement for healthcare facilities.

One limitation of our study is the lack of baseline TST data prior to the outbreak. Taiwan is a middle-burden country with an annual TB incidence of 53.0 cases per 100,000 residents in 2012. TST is not required for new students upon admission to universities in Taiwan. The lack of baseline TST data before this outbreak makes it impossible to use TST conversion to measure the impact of ventilation improvement on TB transmission. Given the limitation in interpretation, the analyses still show that the ventilation improvement was associated with a 38% decrease in likelihood of LTBI. Another limitation of this study is the lack of information on Bacillus Calmette-Guerin (BCG) vaccine history, HIV status, comorbidities such as diabetes mellitus or rheumatoid arthritis for the contacts. This information is considered private and therefore inaccessible by public health surveillance in Taiwan; however, the above-stated host conditions were unlikely to confound the analyses. First, BCG has been a universal vaccination at birth in Taiwan since 1965, with more than a 95% vaccination rate in this generation of college students. The student cohort in this outbreak only received single dose of BCG at their birth, although some teachers or employees might have received a booster dose while in elementary school. Second, the HIV prevalence is very low in Taiwan (approximately 0.1%) and is concentrated in specific high-risk groups, that is, people who inject drug and men who have sex with men. Third, an overwhelming majority of the contacts and the patients were healthy and healthy.

TABLE 2 Risk factors for 1035 smear-positive contacts to acquire active TB

Variates	No. of TB cases* in each category of the contact (%)	Univariable	Multivariable					
		HR	95% CI	P value	Adjusted HR	95% CI	P value	
Contacts of index case								
No	3/395 (0.3)	1.0	1.0		1.0	1.0		
Yes	19/140 (13.6)	46.5	38.7-157.7	<.0001	27.9	8.1-96.9	<.0001	
Household contacts								
No	20/995 (2.0)	1.0	1.0		1.0	1.0		
Yes	2/40 (5.0)	2.7	0.6-11.7	.1796	57.5	6.8-487.1	.0002	
Contact under CO\textsubscript{2} level >1000 ppm								
No	1/449 (0.2)	1.0	1.0		1.0	1.0		
Yes	21/586 (3.6)	14.3	1.9-107.0	.0095	32.8	2.0-540.3	.0145	

Abbreviations: CO\textsubscript{2}, carbon dioxide; HR, hazard ratio; ppm, parts per million; TB, tuberculosis.

*pWe used Cox regression to estimate the hazard ratio associated with exposure to source cases under poorly ventilated (operatively defined as CO\textsubscript{2} levels >1000 ppm) environments among the contacts, adjusting for infectiousness of source cases (index case) or proximity of contact (household). For each contact, the zero time was the diagnosis date of the source case. The end of follow-up was the date when the contact was notified as an active TB case (event), the date of starting isoniazid preventive therapy (censored), the date of any mortality due to non-TB-related causes (censored), or July 31, 2018 (censored).

TABLE 3 Risk factors for 667 contacts to have latent TB infection

Variates	No. of LTBI cases* in each category of the contact (%)	Univariable	Multivariable					
		OR	95% CI	P value	Adjusted OR	95% CI	P value	
Contacts of index case								
No	222/565 (39.3)	1.0	1.0		1.0	1.0		
Yes	80/102 (78.4)	5.6	3.4-9.3	<.0001	4.9	2.9-8.1	<.0001	
Contact under CO\textsubscript{2} level >1000 ppm								
No	57/179 (31.8)	1.0	1.0		1.0	1.0		
Yes	45/488 (50.2)	2.2	1.5-3.1	<.0001	1.6	1.1-2.3	.014	

Abbreviations: CO\textsubscript{2}, carbon dioxide; LTBI, latent TB infection; OR, odds ratio; ppm, parts per million; TB, tuberculosis.

*pNumber of latent TB infection cases, defined as a positive tuberculin skin test using a cutoff point of 10 mm.

*bAll 102 contacts of the index case were exposed under poorly ventilated environment (CO\textsubscript{2} levels >1000 ppm).
active 18-22-year-old young college students (Table 1), an age range during which comorbidities should be rare.

Until now, Global End TB Strategy has focused on early diagnosis and effective treatment of active TB and preventive therapy for LTBI in high burden resource-limited countries, and so far had a limited impact on TB epidemic trajectory. As a comparison, in developed countries, the improvement in indoor ventilation as part of a general improvement in public health from the nineteenth to twentieth centuries was followed by a dramatic reduction in TB incidence before the era of anti-TB chemotherapy. Interventions to maintain adequate indoor ventilation (to decrease airborne TB transmission) act at an earlier stage in the chain of events and therefore would be synergistic in the current global effort to end TB by greatly reducing the task and burden of subsequent diagnosis and treatment.

In conclusion, the present study shows that maintaining adequate indoor ventilation could be a highly effective strategy for controlling TB outbreaks. Our findings highlight the need to assess indoor ventilation status in TB outbreak investigation. In congregate settings where there is known to be a high risk of TB, it may be beneficial to make pre-emptive improvements to building ventilation. A focusing on the importance of adequate ventilation in TB control may prevent hundreds of thousands of TB cases from occurring and therefore could be the game changer for achieving the global End TB target.

ACKNOWLEDGEMENTS

We thank the public health workers in Taipei City, New Taipei City, Keelung City, and the Centers for Diseases Control, Taiwan, who were involved in investigating and controlling this outbreak. We thank Geoff Hughes for assistance in copyediting. The findings and conclusions in this article are those of the authors and do not necessarily represent the official position of Taiwan Centers for Disease Control (Taipei, Taiwan). Preliminary follow-up data and analyses till the end of 2013 were part of the Master thesis of the first author, Chun-Ru Du, at the National Taiwan University (2015). Some of this study’s initial findings have been accepted in the form of an abstract at the 47th Union World Conference on Lung Health and were reported to attendees on October 26, 2016, in Liverpool, United Kingdom. There was no funding for this investigation.

CONFLICT OF INTEREST

All authors have no conflict of interest.

AUTHOR CONTRIBUTIONS

C-TF designed the study. C-RD oversaw the outbreak investigation and intervention. S-CW assessed the ventilation situation at University A and made critical recommendations. M-CY, T-FC, J-YW, and P-C Chan read chest radiographs of the patients and contacts, diagnosed active and latent TB, and treated the patients and contacts with latent TB. P-C Chuang and RWJ performed DNA fingerprinting. C-RD obtained ethical approval and verified baseline and follow-up information of patients and contacts. P-C Chan and C-RD did the statistical analysis. C-TF, P-C Chan, and C-RD wrote the manuscript. All authors read and approved the submitted version of the manuscript. P-C Chan and C-TF contributed equally to the study.

ORCID

Jann-Yuan Wang https://orcid.org/0000-0003-3406-366X
Pei-Chun Chan https://orcid.org/0000-0001-7424-1868
Chi-Tai Fang https://orcid.org/0000-0002-7380-1699

REFERENCES

1. World Health Organization. Global Tuberculosis Report 2018. Geneva: World Health Organization; 2018. Licence: CC BY-NCSA 3.0 IGO.
2. Yates TA, Tanser F, Abubakar I. Plan Beta for tuberculosis: it’s time to think seriously about poorly ventilated congregate settings. Int J Tuberc Lung Dis. 2016;20(1):5-10.
3. Riley RL, Mills CC, Nyka W, et al. Aerial dissemination of pulmonary tuberculosis. A two-year study of contagion in a tuberculosis ward. 1959. Am J Epidemiol. 1995;142(1):3-14.
4. Escombe AR, Oesser CC, Gilman RH, et al. Natural ventilation for the prevention of airborne contagion. PLoS Med. 2007;4(2):e68.
5. Menzies D, Fanning A, Yuan L, FitzGerald JM. Hospital ventilation and risk for tuberculous infection in Canadian health care workers. Canadian Collaborative Group in Nosocomial Transmission of TB. Ann Intern Med. 2000;133(10):779-789.
6. Sehulster L, Chinn RY. Guidelines for environmental infection control in health-care facilities. Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC). MMWR Recomm Rep. 2003;52(RR-10):1-42.
7. Jensen PA, Lambert LA, Iademarco MF, Ridzon R. Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care settings, 2005 (US Department of Health and Human Services: Public Health Service, Centers for Disease Control and Prevention). MMWR Recomm Rep. 2005;54:1-141.
8. World Health Organization. WHO Guidelines on Tuberculosis Infection Prevention and Control, 2019 Update. Geneva: World Health Organization; 2019. License: CC BY-NC-SA 3.0 IGO.
9. Li Y, Leung GM, Tang JW, et al. Role of ventilation in airborne transmission of infectious agents in the built environment – a multidisciplinary systematic review. Indoor Air. 2007;17(1):2-18.
10. Nardell EA, Keegan J, Cheney SA, Etkind SC. Airborne infection: theoretical limits of protection achievable by building ventilation. Am Rev Respir Dis. 1991;144(2):302-306.
11. Rothman KJ. Epidemiology: An Introduction. New York, NY: Oxford University Press; 2012.
12. Richardson ET, Morrow CD, Kalil DB, Ginsberg S, Bekker LG, Wood R. Shared air: a renewed focus on ventilation for the prevention of tuberculosis transmission. PLoS ONE. 2014;9(5):e96334.
13. Chan PC, Shinn-Forng Peng S, Chiou MY et al. Risk for tuberculosis in child contacts. Development and validation of a predictive score. Am J Respir Crit Care Med. 2014;189(2):203-213.
14. Van Embden J, Cave MD, Crawford JT, et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993;31(2):406-409.
15. TSI. Model 8760/8762 IAQ-CALCTM Indoor Air Quality Meters — Operation and Service Manual 1980406m Revision G; 2004.
16. Rudnick SN, Milton DK. Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air. 2003;13(3):237-245.
17. Issarow CM, Mulder N, Wood R. Modelling the risk of airborne infectious disease using exhaled air. *J Theor Biol*. 2015;372:100-106.
18. Persily A, De Jonge L. Carbon dioxide generation rates for building occupants. *Indoor Air*. 2017;27(5):868-879.
19. Behr MA, Edelstein PH, Ramakrishnan L. Revisiting the timetable of tuberculosis. *BMJ*. 2018;362:k2738.
20. National Institute for Occupational Safety and Health, USA (2015) Indoor environmental quality. http://www.cdc.gov/niosh/topics/indoorenv/hvac.html. Accessed December 1, 2019.
21. Bakó-Biró Z, Clements-Croome DJ, Kochhar N, Awbi HB, Williams MJ. Ventilation rates in schools and pupils’ performance. *Build Environ*. 2012;48:215-223.
22. Indoor Air Quality Promotion Center, Environmental Protection Department, Environment Bureau, Hong Kong (November 19, 2015) Indoor air quality management programme. http://www.iaq.gov.hk/en/faq.aspx. Accessed December 1, 2019.
23. Blumberg HM, Watkins DL, Berschling JD et al. Preventing the nosocomial transmission of tuberculosis. *Ann Intern Med*. 1995;122(9):658-663.
24. Wenger PN, Beck-Sague CM, Jarvis WR, Otten J, Breeden A, Orfas D. Control of nosocomial transmission of multidrug-resistant *Mycobacterium tuberculosis* among healthcare workers and HIV-infected patients. *Lancet*. 1995;345(8944):235-240.
25. World Health Organization (2009). Natural ventilation for infection control in health-care settings. http://www.who.int/water_sanitation_health/publications/natural_ventilation/en/. Accessed December 1, 2019.
26. Taiwan Centers for Disease Control (2014) Taiwan tuberculosis control report 2013. https://www.cdc.gov.tw/InfectionReport/Info/upxJr9t9iKeSbo_Wpacpuw7infoId=3ucTy67l0YAVwdKC3dTBag. Accessed December 1, 2019.
27. Chan PC, Yang CH, Chang LY et al. Lower prevalence of tuberculosis infection in BCG vaccinees: a cross-sectional study in adult prison inmates. *Thorax*. 2013;68(3):263-268.
28. Selwyn PA, Hartel D, Lewis VA et al. A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. *N Engl J Med*. 1989;320(9):545-550.
29. Jeon CY, Murray MB. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. *PLoS Medicine*. 2008;5(7):e152.
30. Dixon WG, Hyrlik KL, Watson KD et al. Drug-specific risk of tuberculosis in patients with rheumatoid arthritis treated with anti-TNF therapy: results from the British Society for Rheumatology Biologics Register (BSRBR). *Ann Rheum Dis*. 2010;69(3):522-528.
31. Taiwan Centers for Disease Control. Statistics of HIV/AIDS. https://www.cdc.gov.tw/Category/Page/pcV9N1rGUz9wNri8lggsh2Q. Accessed December 1, 2019.
32. World Health Organization (2016) The End TB Strategy: global strategy and targets for tuberculosis prevention, care and control after 2015. http://www.who.int/tb/post2015_TBstrategy.pdf. Accessed December 1, 2019.
33. Dubos R, Dubos J. *The White Plague: Tuberculosis, Man, and Society*. New Brunswick, NJ: Rutgers University Press; 1952.
34. Lienhardt C. From exposure to disease: the role of environmental factors in susceptibility to and development of tuberculosis. *Epidemiol Rev*. 2001;23(2):288-301.
35. Taylor JG, Yates TA, Mthethwa M, Tanser F, Abubakar I, Altamirano H. Measuring ventilation and modelling *M tuberculosis* transmission in indoor congregate settings, rural KwaZulu-Natal. *Int J Tuberc Lung Dis*. 2016;20(9):1155-1161.
36. Andrews JR, Morrow C, Wood R. Modeling the role of public transport in sustaining tuberculosis transmission in South Africa. *Am J Epidemiol*. 2013;177(6):556-561.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Du C-R, Wang S-C, Yu M-C, et al. Effect of ventilation improvement during a tuberculosis outbreak in underventilated university buildings. *Indoor Air*. 2020;30:422–432. https://doi.org/10.1111/ina.12639