The +2 oxidation state of Cr incorporated into the crystal lattice of UO₂

Mengli Sun¹,²,³, Joshua Stackhouse¹,²,⁴ & Piotr M. Kowalski¹,²✉

Doping by Cr is used to improve the performance of uranium dioxide (UO₂)-based nuclear fuel. However, the mechanism of structural incorporation of Cr remains unclear. Here, in order to understand this process on the atomic scale and the redox state of Cr in UO₂-based nuclear fuel, we performed intensive ab initio atomistic simulations of the Cr doped UO₂ matrix. We unexpectedly found that Cr in UO₂ exists as Cr²⁺ species and not as the widely claimed Cr³⁺. We re-evaluated previously published x-ray absorption near edge structure spectroscopy data and confirmed the computed redox state of Cr. Thermodynamic consideration shows that the favorable structural arrangement of Cr in UO₂ is given by a pair of associated Cr²⁺ and oxygen vacancy. The realism of this doping mechanism is further demonstrated by a match to the measured maximum Cr solubility and small lattice contraction.

¹Institute of Energy and Climate Research (IEK-13 & IEK-6), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany. ²JARA High-Performance Computing, Schinkelstraße 2, 52062 Aachen, Germany. ³School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, 730000 Lanzhou, China. ⁴Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401, USA. ✉email: p.kowalski@fz-juelich.de

https://doi.org/10.1038/s43246-020-0014-5
Nuclear reactors use mainly UO₂-based fuel elements. Additions of other trace elements, such as chromium, are considered to improve the microstructural and mechanical properties of fuel matrices\(^1,2\). Among other desired effects, chromium is known to significantly increase the grain sizes, which due to the elongation of bulk diffusion path limits the release of fission gas products such as xenon or krypton\(^3\), and increases the fission products retention capability by the fuel elements\(^3\). However, how Cr incorporates into the UO₂ matrix on the atomic level is not conclusively understood. The impact of Cr doping on the performance of UO₂ matrix depends also on the oxidation state of Cr in the nuclear fuel, which is claimed to be Cr\(^{3+},4,5\). Other oxidation states, however, are not excluded\(^6,7\). In particular, by analyzing X-ray absorption spectrum of Cr-doped UO₂ Mieszczynski et al.\(^7\) suggest existence of Cr\(^{2+}\), but express a need for the electronic structure calculations to confirm such a possibility.

The most common oxidation states of chromium are Cr\(^{3+}\) and Cr\(^{6+}\). However, the Cr\(^0\), Cr\(^{1+}\), Cr\(^{2+}\), Cr\(^{4+}\), or Cr\(^{5+}\) could be also realized\(^8\). The previous experimental studies of Cr-doped UO₂ show evidence of bulk Cr incorporation as Cr\(^{3+},4,9\). At the same time, only small amounts of Cr could be incorporated into UO₂, with maximum solubility at high temperature (\(T \approx 2300\) K) of up to 0.1 wt%UO₂\(^3,5,9\). The formed diluted solid solution shows a linear decrease in the matrix lattice parameter with content of Cr\(^{9}\), which however, is significantly smaller than the predictions by most theoretical models\(^1\).

Besides the experimental effort, the atomistic modeling studies have been used to understand the incorporation of Cr into the UO₂ matrix at atomic level. Most of these studies used force-fields approach, in which interatomic interactions are represented by analytical functions and charge/oxidation states of the involved species are fixed\(^10\), for chromium atom to Cr\(^{3+},1,1,1,1,1,2\). Middleburgh et al.\(^12\) and more recently Guo et al.\(^11\) found that Cr incorporates as a pair of Cr atoms with the formation of an oxygen vacancy (on the oxygen site that bridges the two Cr atoms) as a charge balance mechanism. The density functional theory (DFT)-based first principles studies of Middleburgh et al.\(^12\) consider formation of Cr\(^{3+}\) as dominant Cr species in the same structural arrangement as resulted from the force-field simulations, and discuss a less energetically favorable scenario of Cr\(^{4+}\). The more recent ab initio studies of Cooper et al.\(^8\) show the possibility of Cr in “\(+1\)” oxidation state. Interestingly, the “\(+2\)” state has never been considered as dominant at ambient or high-temperature synthesis conditions (\(T \approx 1500\) K). The oxidation state chemistry of uranium oxides is very interesting with different oxides realizing uranium in different oxidation states (U\(^{4+}\), U\(^{5+}\), or U\(^{6+}\)), for instance U\(_3\)O\(_7\) and U\(_4\)O\(_7\) as mixtures of (U\(^{6+}\), U\(^{5+}\)) and (U\(^{5+}\), U\(^{4+}\)) pairs, respectively\(^13,13,14\). Potential change in the cations redox states would have a significant impact on the evolution of nuclear fuel, including, for instance, its dissolution rates\(^15,16,17\). The real oxidation states are not always well constrained, but could be conclusively deducted by a combination of X-ray absorption near edge structure (XANES) measurements and first-principle atomistic modeling\(^15\). It is also not conclusively clear, how different impurities or defects affect oxidation states of the UO₂ matrix atoms.

Here, we present the atomistic modeling studies combined with an extensive analysis of the relevant experimental data (XANES, the maximum solubility and the lattice parameter), aimed at understanding the atomic structure and redox chemistry of Cr-doped UO₂ material. We have been especially interested in the resulting oxidation state of Cr and U cations, derivation of the conclusive structural model of Cr incorporation and testing the ability of such a model structure to match the measured solubility limit of Cr in UO₂ and the lattice parameter of Cr-doped UO₂ matrix.

Results

The computed Cr-doped UO₂. In order to perform the DFT+U calculations, we first derived the Hubbard \(U\) parameter for the \(d\) and \(f\) elements in the considered compounds (Cr and U oxides, see Fig. 1 for the computed structure of UO₂). The computed value of Hubbard \(U\) parameter for Cr in Cr\(_2\)O\(_3\) (i.e., Cr\(^{3+}\)) is 4.0 eV, which is consistent with the one used in previous studies of Cr-bearing systems (~3.5 eV, e.g., refs. \(6,18–21\)). For Cr\(^{2+}\) we used the value of 6.5 eV, which we derived for CrO. The same value we were getting for Cr\(^{3+}\) in UO₂ and we observed that the derived Hubbard \(U\) parameter depends strongly on the Cr oxidation state, but is weakly dependent on the local environment of Cr. Therefore, we decided to use the oxidation state-dependent values derived for Cr-oxides in all the calculations of Cr-doped UO₂. For UO₂ we used 1.7 eV derived for UO₂ by Beridze and Kwok\(^22\), which is also representative for U\(^{5+}\) species\(^15,22,23\).

The detailed information and discussion on the lattice parameter, the band gap and the X-ray related spectral signatures obtained for UO₂, as well as other uranium oxides with the applied computational methodology is provided in the previous studies\(^15,22\).

Initially, we computed the two most plausible cases of Cr-doped UO₂, namely: (1) the cation exchange with the formation of U\(^{5+}\) species and (2) the two neighboring site cation exchange with the formation of O-vacancy on the bridging oxygen site attached to the Cr atoms as proposed by Guo et al.\(^11\). Both configurations are visualized in Fig. 2 and are marked as 1Cr and 2Cr + 1Ov, respectively. Following the interpretation of XANES measurements by Riglet-Martial et al.\(^4\), in both cases we initially assumed formation of Cr\(^{3+}\) species. In the case (1) we assumed the charge balance through formation of one U\(^{5+}\) per one Cr atom. In addition, for the case (1) we tried to compute systems with Cr\(^{2+}\) and Cr\(^{4+}\) species, by enforcing the initial occupation of \(d\)-orbitals of Cr (4, 3, and 2 \(d\) electrons for Cr\(^{2+}\), Cr\(^{3+}\), and Cr\(^{4+}\), respectively). Surprisingly, in all the calculations, the resulting electronic configuration was always that of Cr\(^{2+}\) (i.e., four electrons), with charge balanced by the formation of U\(^{5+}\) species.

Fig. 1 The structure of computed UO₂ supercell. Arrows indicate the computed transverse 1k anti-ferromagnetic spin arrangement, which was found by Pegg et al.\(^32\) as the preferred magnetic structure in UO₂ and adopted in our studies.
The re-evaluation of the experimental XANES. The oxidation state of an atom in a solid matrix is usually measured with the help of XANES technique26. For that purpose, the measured data are compared to a set of reference data of a species in different oxidation state. In the previous studies of Riglet-Martial et al.3, the references for Cr0 (Cr metal), Cr3+ (Cr\textsubscript{2}O\textsubscript{3}, FeCrO\textsubscript{4}), and Cr6+ (CaCrO\textsubscript{4}) were used for analysis of XANES of Cr-doped UO\textsubscript{2}. The authors concluded that their XANES of Cr-doped UO\textsubscript{2} resembles best the reference for Cr3+, which they use as a definitive evidence for the existence of Cr3+ in UO\textsubscript{2}. The conclusion is mainly supported by the best match of the positions of two pre-edges, which follows from the in-depth characterization of XANES spectra of various Cr-bearing compounds by Farges27. However, the match to the reference XANES is not ideal, which suggest possible other interpretation. In similar studies, Mieszczynski et al.4, although assumed Cr3+, also discuss possibility of existence of Cr2+ state, which could be indicated by a shoulder feature at 5996 Å, marked by the arrow in Fig. 3. In order to confirm or reject the possible Cr2+ state scenario they expressed a need for ab initio calculations. As such simulations performed here show definitely the Cr2+ state, we made an extensive literature search for a relevant reference for Cr2+ state. We found such data on Cr2+ in synthetic enstatite (Mg\textsubscript{0.9}Cr\textsubscript{0.1}SO\textsubscript{3})28. With these, in Fig. 3 we plot the XANES of Cr-doped UO\textsubscript{2} of Riglet-Martial et al.4, which are consistent with the data of Mieszczynski et al.7, together with the reference data for Cr3+ (Cr\textsubscript{2}O\textsubscript{3}) and for the aforementioned Cr2+. The comparison of the entire spectra shows that the XANES measured by Riglet-Martial et al.4 resembles as closely the Cr3+ as Cr2+ references. This refers to the spectral shape and the distribution of peaks and dips, that are, anyway, not perfectly reproduced by the references. This “imperfectness” is rather expected and, as explained by Farges27, comes from the different local environments of Cr in all the considered phases. Following analysis of Farges27, applied also by Riglet-Martial et al.4, it is the positions of the two pre-edges, or weighted centroids (of the peaks located at ~5991 eV and ~5994 eV in the case of Cr\textsubscript{2}O\textsubscript{3}, Fig. 3) that discriminate between the different oxidation states of Cr. There is a significant and progressive shift in the second pre-edge peak (the higher energy peak) and centroid positions as a function of Cr oxidation state (~1 eV per increase in the oxidation state). For different Cr species, the centroid should be located as follows: ~5993 eV (Cr2+), ~5994 eV (Cr3+), ~5995 eV (Cr4+), ~5995.7 eV (Cr5+) and ~5996.7 eV (Cr6+) (see Fig. 4 of Farges27). We thus have checked the position of that centroid in XANES of Cr-doped UO\textsubscript{2} and compared it to the references for Cr2+ and Cr3+. The positions of the first, lower energy pre-edge peak are very similar for both oxidation states of Cr2+ (See Fig. 3 and Supplementary Fig. 1). We note that the comparison to the Cr2+ reference was not performed by Riglet-Martial et al.4.

For instance, in case (2) with the formation of two Cr2+ species we got a pair of U5+.

Such an unexpected theoretical result requires sounding justification and support from the experimental data. The simplest thing to do, when considering oxidation state of a species substituting another host matrix element, i.e., chromium substituting uranium atom in our case, is to check the sizes of involved cations. This is because it is easier to exchange cations of similar sizes due to minimization of the associated strain resulting from sizes mismatch. In Table 1, we list the ionic radii and volumes of the considered species24. Cr3+ is much smaller than U4+ (by 66% in volume) and even U5+ (by 51% in volume). The size of Cr2+ is much similar to that of U4+ (smaller by only 32 % in volume) and nearly the same as that of U5+. As excess strain effects arise as quadratic function of volume mismatch (e.g., Kowalski and Li25), considering the sizes of cations, the scenario with Cr2+ is more probable. However, even with appealing theoretical arguments in hand, one can not easily neglect the results of XANES studies of Riglet-Martial et al.4 that seem rather conclusive indicate formation of Cr3+ in Cr-doped UO\textsubscript{2}. Therefore, we decided to perform re-analysis of these data using the reference XANES for Cr2+, the case that is missing in the analysis of Riglet-Martial et al.4.

Table 1 The ionic radius (r), and volume (V) of Cr and U cations in different oxidation state.

Cation	r (Å)	V (Å3)
Cr2+	0.80	2.14
Cr3+	0.62	1.00
U4+	0.89	2.95
U5+	0.76	1.84

The values are given in Å and Å3, respectively. Cases of 6- and 8-fold coordinated cations are reported with coordination number given in parentheses.

Fig. 2 The computed supercells representing different considered Cr incorporation configurations. In cases of 1Cr+10V (a) and 2Cr+20V (a) Cr is shifted towards empty cation interstitial site and the two structures resulted from classical molecular simulation runs.
As shown in Fig. 3, the second pre-edge peak that discriminates the different Cr species is located at ~5993 eV for Cr$^{2+}$ and ~5994 eV for Cr$^{3+}$ species, and the offset of ~0.7 eV is clearly visible. On the other hand, that peak is barely visible, but clearly detectable (Fig. 3) in the spectra of Cr-doped UO$_2$ of Riglet-Martial et al.4. In order to check the right position of that pre-edge peak, we isolated the relevant peak from the spectra by subtracting out a linear baseline that spans the base of the feature. The obtained profiles of the peaks for the Cr$^{2+}$ and Cr$^{3+}$ references and the Cr-doped UO$_2$ XANES spectra are compared in Fig. 4. The three peaks extracted from XANES are symmetric, which is demonstrated with good fits by the Gaussian (see Supplementary Table 1 for the fitted parameters). This also validates the applied data processing procedure. It is clearly visible that the position and height of the peaks of Cr$^{2+}$ and the Cr-doped UO$_2$ are similar and the position of the peak in the case of Cr$^{3+}$ is significantly shifted rightwards by ~0.7 eV. The so derived second pre-edge positions obtained by fitting with Gaussian function are given in Table 2. Here, we also report the positions of centroid (i.e., a weighted average of the all pre-edge peaks) obtained using the multi-peaks fitting procedure proposed by Farges27 and Wilke et al.29 (see Supplementary Note 1 and Supplementary Tables 2 and 3 for details).

The obtained positions of the pre-edge centroid were then compared with the results obtained by Farges27 for the set of Cr-materials containing Cr in different oxidation states ranging from "+2" to "+6". The results are given in Fig. 5, which resembles Fig. 4 of Farges27. The positions of centroids we got for the Cr$^{2+}$ and Cr$^{3+}$ references (Table 2) fell within the given ranges of Farges27, indicating agreement with that data. The centroid position in the case of Cr-doped UO$_2$ falls in the range corresponding to Cr$^{2+}$. The careful analysis of the pre-edge XANES spectrum of Cr-doped UO$_2$ shows thus rather clearly the "2+" oxidation state of chromium in Cr-doped UO$_2$.

Both, the above-discussed atomistic simulations and the experimental XANES data thus clearly indicate incorporation of chromium into UO$_2$ matrix as Cr$^{2+}$ species. This must be associated with the formation of U$^{5+}$ species or O vacancies. This may affect the overall performance of such material, including its dissolution rate, which strongly depends on the U oxidation states. In order to predict the most probable structural arrangement of Cr in UO$_2$ matrix we computed a set of simple, different Cr incorporation arrangements involving single, as well as pair of dopants with charge balancing through formation of oxygen vacancies (Ov) or U$^{5+}$ species. The eight computed configurations are visualized in Fig. 2 and some of them (e.g., 1Cr$^{2+}$-1Ov (a) and 2Cr$^{2+}$Ov (a)) were obtained with the aid of classical molecular dynamics simulations. All the constructed supercells were then carefully analyzed regarding the enthalpy and the free energy of relevant cation exchange reaction and the change in the matrix lattice parameter. The obtained results were analyzed against the available experimental data on the maximum solubility (requiring the reaction enthalpy and the free energy as parameters) and change in the lattice parameter of Cr-doped UO$_2$.

The Cr solubility limit in UO$_2$. Riglet-Martial et al.4 derived a simple thermodynamic model of maximum Cr solubility in UO$_2$,

Fig. 3 The XANES spectra of the Cr-doped UO$_2$. a The spectra of the Cr-doped UO$_2$ (thick solid blue line) and (thin solid blue line), and reference phases for Cr$^{2+}$ and Cr$^{3+}$; b the pre-edge region of the spectra. The black solid and dotted lines in b represent the linear baselines used for extraction of the second pre-edge feature peak and positions of the two pre-edges as indicated by Riglet-Martial et al.4 (their Fig. 2b). We note very good agreement between the two independent measurements of the XANES spectra of the Cr-doped UO$_2$. The arrow indicates the pre-edge 5996 Å feature speculated by Mieszczynski et al.7 to be a signature of the Cr$^{2+}$.

Fig. 4 The extracted XANES pre-edges peaks for Cr-doped UO$_2$, and reference Cr$^{2+}$ and Cr$^{3+}$ structures. The energy resolution of the measured spectra of Cr-doped UO$_2$ is estimated at 0.3 eV. This permits accurate fits of the pre-edge peak positions and conclusive identification of the clear offsets from the reference spectra.
Table 2 The position of the second pre-edge peak feature obtained by fits by Gaussian function \(A \exp(B(x-C)^2)\) as illustrated in Fig. 4 and the position of the centroid.

Materials	Second pre-edge peak position	Centroid position
Cr-doped UO₂	5992.97 ± 0.10	5992.66 ± 0.02
Cr²⁺ enstatite	5993.13 ± 0.03	5992.16 ± 0.04
Cr³⁺Cr₂O₃	5993.74 ± 0.05	5993.50 ± 0.02

The values are given in eV. The errors of the fitted values are comparable to those obtained by Farges (0.05 eV).

Table 3 The computed solution enthalpy, \(\Delta H\), and free energy, \(\Delta G\), of Cr in UO₂.

Configuration	\(\Delta H\) (\(T = 1800\) K)	\(\Delta G\) (\(T = 1800\) K)	\(\Delta G\) (\(T = 2200\) K)
1Cr	82	333	344
2Cr+10Ov	168	168	168
1Cr + 10Ov (a)	327	95	84
1Cr+10Ov (b)	387	155	144
2Cr+20Ov (a)	384	152	141
2Cr+20Ov (b)	418	650	661
2Cr+11uO (a)	620	852	863

The values are given in kJ mol⁻¹ computed per single Cr atom. The bold face font indicates the thermodynamically favorable structure. The oxygen partial pressures used in the estimation of these energy are \(\log_{10}(P(O_2)) = -12.85\) (\(T = 1800\) K) and \(\log_{10}(P(O_2)) = -9.01\) (\(T = 2200\) K).

The derived reaction enthalpies suggest that the 2Cr+10Ov incorporation mechanism is the most preferable, which is in line with the prediction of Guo et al. However, the reaction free energy—a more relevant parameter—points towards 1Cr+10Ov and 2Cr+20Ov scenarios, with the 1Cr+10Ov being the most preferable. We thus assume that Cr incorporates as an associated pair of Cr and O₂, and focus on checking the performance of the two structures (1Cr+10Ov (a) and 1Cr+10Ov (b), Fig. 2) in matching the measured solubility data. For that case we consider the following cation exchange reaction:

\[
\frac{1}{2} \text{Cr}_2\text{O}_3 + (\text{UO}_2)_2ARDS (> (\text{Cr}: \text{UO}_2)_2ARDS + \text{UO}_2 + \frac{1}{4}\text{O}_2)
\]

The activity, \(a\), of Cr in UO₂ is related to the oxygen gas partial pressure and the cation exchange reaction enthalpy and entropy as (Riglet-Martial et al., Eq. (6)):

\[
\log_{10}(a(\text{Cr}: \text{UO}_2)) = \frac{1}{R} \ln \left(\frac{P(O_2)}{P(O_2)}\right) - \frac{1}{R} \ln(T) + \frac{1}{R} \ln(\Delta S) + \frac{1}{R} \ln(\Delta H/T)
\]

The 1Cr+10Ov structure represents a pair of Cr atom and associated O₂. In that case, for cubic fluorite structure, the activity of Cr in UO₂ is \(a(\text{Cr}: \text{UO}_2) = (y)^{12}\), where \(y\) is the concentration of Cr in UO₂. This is because an associated O₂ has eight possibilities to arrange around the Cr atom (the case of a cube with Cr atom in the center and eight oxygen atoms in the corners). This gives the following equation for the maximum solubility of Cr in the case of 1Cr+10Ov structural arrangements:

\[
\log_{10}(y) = -\frac{1}{12} \log_{10}(P(O_2)) - \frac{1}{R} ln(12) (S - H/T) + \log_{10}(8)
\]

The 2Cr+20Ov structure represents a pair of associated Cr atoms with removed two oxygen atoms that bridge the Cr atoms. In that case, for cubic fluorite structure, the activity of Cr in UO₂ is \(a(\text{Cr}: \text{UO}_2) = (y)^{12}\). This is because for a pair of associated Cr atoms, second Cr atom has 12 possibilities to be arranged around the first Cr atom (the two Cr atoms are connected by a cube edge and there are 12 such arrangements (edges)), and the activity of a single atom is just the square root of the activity of a pair. This gives the following equation for the maximum solubility of Cr in the case of 2Cr+20Ov structural arrangement:

\[
\log_{10}(y) = -\frac{1}{12} \log_{10}(P(O_2)) - \frac{2}{R} ln(12) (S - H/T) + \log_{10}(48)
\]

In addition, in Table 3 we report an estimate for the Cr solution free energy (\(\Delta G\)), which we derived by adding/subtracting the high-temperature entropy of molecular oxygen gas (\(S(O_2) = 270 J mol^{-1} K^{-1}\), Chase⁵⁴) and the oxygen partial pressure contribution to the free energy. Depending on the involvement of molecular oxygen as product or reactant, the free energy is estimated from:

\[
G = H - TS + q(\ln 10)\log_{10}(P(O_2))
\]

where \(\Delta S \approx qS (O_2)\) and \(\Delta H\) is the enthalpy of single cation exchange reaction (Eq. (1)). The temperature dependent oxygen partial pressure was estimated using the model of Toker et al.⁵⁵ and the values used in the calculations are reported in caption of Table 3.
measured solubilities and that the perfect match could be obtained with the reaction enthalpy increased by only ~21 kJ mol\(^{-1}\). This is an excellent agreement, keeping in mind computational uncertainty of ~50 kJ mol\(^{-1}\). On the other hand, in the case of 2Cr +2Ov model, the computed \(\Delta H\) is by ~90 kJ mol\(^{-1}\) larger than the value that matches the maximum solubility data. The good description of the Cr solubility data with the 1Cr +1Ov model is yet another argument supporting the Cr\(^{2+}\) scenario found in our atomistic modeling studies and by re-evaluation of the XANES data, pointing towards 1Cr+1Ov structural arrangements as a realistic case. In the next step, we will check how that structure matches the measured lattice parameters of Cr-doped UO\(_2\).

Lattice parameter of Cr-doped UO\(_2\)

It is established experimentally that the UO\(_2\) matrix doped with Cr undergoes contraction. The two available experimental studies of Leenaers et al.\(^9\) and Cardinaels et al.\(^1\) show linear decrease of the lattice parameter with content of Cr, with the amount of incorporated chromium of up to 1000 \(\mu\)g g\(^{-1}\). The measured relative decrease of lattice parameter, reported in Table 5, varies by a factor of 2 between the two experimental studies, but in both cases is smaller than the one expected from consideration of sizes of the involved species\(^6\). In Table 5 we also report the simulated change in the lattice parameter obtained for all the considered structures (Fig. 2). Interestingly, the 1Cr +1Ov (a) and 2Cr +2Ov (a) structures result in very small shift and the result obtained for 1Cr +1Ov (a) structure matches the measured data. The other structures, including the 2Cr +1Ov configuration, result in significantly, at least order of magnitude larger change. We note however, that most of the configurations, except 2Cr +1Uv and 2Cr +2Ov (a) cases, predict decrease of the lattice parameter. The small, and well consistent with the measurements, lattice contraction with 1Cr +1Ov (a) structure is thus yet another argument that this is the correct Cr incorporation model.

Discussion

Using the accurate first principles method we performed intensive ab initio calculations of chromium-doped UO\(_2\) matrix that represents an enhanced nuclear fuel case. In spite of trying to obtain the Cr\(^{3+}\) oxidation state, either by co-formation of U\(^{5+}\) or creation of oxygen vacancies, we always ended up with the Cr\(^{2+}\) state. The consideration of U\(^{4+}\), Cr\(^{3+}\), and Cr\(^{2+}\) cations sizes shows that Cr\(^{2+}\) has much similar size to U\(^{4+}\) and Cr\(^{3+}\) is much smaller, indicating plausibility of Cr\(^{2+}\) scenario. The goodness of such, nevertheless, rather-unexpected prediction has been further demonstrated by the re-evaluation of the measured XANES with the previously omitted reference for Cr\(^{2+}\) species. The calculations show that the most thermodynamically favorable structure is with an associated pair of Cr atom and oxygen vacancy. In such a configuration, Cr atom is shifted towards cations sublattice vacant site, which results in reduced, pseudo sixfold coordination, as opposite to the eightfold coordinated uranium site. The thermodynamic consideration of such a structure results in a good match to the measured maximum solubility of Cr in UO\(_2\) and the small lattice contraction of Cr-doped UO\(_2\). This strongly indicates that we not only obtained a correct description of Cr oxidation state as “\(^{3+}\)” valence state, but also good understanding of the structural incorporation of Cr into the UO\(_2\) matrix. In these aspects the obtained results should be very helpful for correct interpretation of the measurements of Cr-doped UO\(_2\) nuclear fuel. We hope that our studies will trigger supplementary investigations of not always intuitive redox solid state chemistry and structural/thermodynamic parameters of doped nuclear fuel matrices.

Methods

Density functional theory (DFT) simulations

The DFT-based ab initio calculations were performed with the DFT-based plane-wave Quantum-ESPRESSO package\(^7\). In DFT calculations, we specifically applied the gradient-corrected PBEsol exchange correlation functional\(^8\) because it results in a good description of structures of f-element-bearing materials\(^22,38,39\) and a good prediction of their vibrational\(^19,41\) and thermodynamic parameters\(^25,42\). We applied the scalar
relativistic ultrasoft pseudopotentials to mimic the presence of core electrons of the considered atoms. We note that in the case of uranium, the spin-orbit effects are of secondary importance and can be neglected. As a result of our previous extensive tests studies, we applied the plane-wave cut-off energy of 50 Ryd. The computed 2 x 2 x 2 supercell of UO₂ contained 96 atoms and the Brillouin zone was sampled with the 2 x 2 x 2 Methfessel-Paxton k-points grid. The size of the computed system and the k-points sampling are similar to the simulation setup used in the previous studies. The lattice parameters and the atomic positions in all the computed structures were relaxed to the equilibrium positions, assuming constant pressure of P = 0 GPa with a tolerance of 0.1 GPa. The computed atomic structure is visualized in Fig. 1. It is of cubic fluorite-type with eightfold coordinated U. As U and Cr atoms contain strongly correlated electrons, 5d and 3d, respectively, we applied the DFT+U method and derived the Hubbard U parameter from first principles using the linear response method. This method is known to give accurate values for 3d elements and has been extensively tested by us for elements and subsequently applied to describe the electronic structure of uranium oxides, including UO₂(e.g., refs. 12,13). Following the recent studies of Pegg et al., all the calculations were performed assuming anti-ferromagnetic transverse 1k spins arrangement in UO₂. This resulted in a small distortion towards tetrahedral symmetry (~0.3% of the lattice parameter value). Computation of the correct ground state of UO₂ is a challenge by itself and to assure the convergence to the correct ground state we applied the occupation matrix control technique. After the tests performed by Beridze and Kowalski for uranium-based compounds, we estimate the uncertainty of the so computed solid state reaction enthalpies at the level of ~50 kJ mol⁻¹.

Molecular dynamic simulations. In order to probe the possible structural arrangements of Cr atoms within the UO₂ matrix, focusing on the potential distortions of the computed atomic arrangements, we performed a set of test, qualitative classical molecular dynamics simulations run using GULP code. For such purpose we applied the simple Buckingham-type pair potentials of Lewis and Catlow for the Cr₂⁺–O, Cr³⁺–O and O–O interactions. We also performed simulations with the more accurate Embedded Atom Model (EAM) force fields developed specifically for UO₂ system by Cooper and Grimes. In the second case we adjusted the parameters of Cr₂⁺–O Buckingham-type pair potential to match the lattice parameters and the atomic arrangements of CrO₂ solid, for the charge of Cr²⁺ of ~1.1104 imposed by the charges of U (2.2208) and O (~1.1104) in the EAM potential of Cooper and Grimes. We note that simple Buckingham-type potentials can not be expected to provide accurate (e.g., at ab initio calculations level) structural parameters or energies and that mixing of the interaction potentials of different types is not always well grounded. However, we used the molecular dynamics simulations only to explore potential structural distortions of the computed structural arrangements of Cr in UO₂ and these simulations were not used to derive any numbers or structural/thermo-dynamic parameters discussed in the paper. The molecular dynamics NPT (constant pressure-temperature) runs were performed using standard approach (e.g., ref. 12). These were 20 ps long, with time step of 0.001 ps, and were performed at T = 1000 K and P = 0 GPa, both controlled by the thermostat.

Data availability
All the relevant data are available from the authors upon request.

Received: 13 November 2019; Accepted: 26 February 2020; Published online: 23 March 2020

References
1. Cardinaels, T. et al. Chromia doped uo₂ fuel: investigation of the lattice parameter. J. Nucl. Mater. 424, 252–260 (2012).
2. Arborelius, J. et al. Advanced doped uo₂ pellets in lwr applications. J. Nucl. Sci. Technol. 43, 967–976 (2006).
3. Peres, V. et al. High temperature chromium volatilization from cr₂o₃ powder and cr₂o₃-doped uo₂ pellets in reducing atmospheres. J. Nucl. Mater. 423, 93–101 (2012).
4. Riglet-Martial, C. et al. Thermodynamics of chromium in uo₂ fuel: a solubility model. J. Nucl. Mater. 447, 63–72 (2014).
5. Yang, J. H. et al. Effect of step wise variation of oxygen potential during the isothermal sintering on the grain growth behavior in cr₂o₃ doped uo₂ pellets. J. Nucl. Mater. 429, 25–33 (2012).
6. Cooper, M., Stanek, C. R. & Andersson, D. The role of dopant charge state on defect chemistry and grain growth of doped uo₂. Acta Mater. 150, 403–413 (2018).
7. Mieszczynski, C. et al. Microbeam x-ray absorption spectroscopy study of chromium in large-grain uranium dioxide fuel. J. Phys. Condens. Matter 26, 355809 (2014).
8. Lunk, H.-J. Discovery properties and applications of chromium and its compounds. ChemTexts 1, 6 (2015).
9. Leenaers, A., de Tollenaere, L., Defalory, C. & den Berghere, S. V. On the solubility of chromium sesquisoxide in uranium dioxide fuel. J. Nucl. Mater. 265, 62–68 (2003).
10. Jahn, S. & Kowalski, P. M. Theoretical approaches to structure and spectroscopy of earth materials. Rev. Mineral. Geochem. 78, 691 (2014).
11. Guo, Z., Nagayama, R., Krack, M. & Pauzat, A. Atomic-scale effects of chromium-doping on defect behaviour in uranium dioxide fuel. J. Nucl. Mater. 488, 160–172 (2016).
12. Middleburgh, S. et al. Solution of trivalent cations into uranium dioxide. J. Nucl. Mater. 420, 258–261 (2012).
13. Kvashnina, K. O., Butorin, S. M., Martin, P. & Glatzel, P. Chemical state of uranium oxides, including UO₂(e.g., refs. 15,22,38). Following the recent studies of Cooper, M., Stanek, C. R. & Andersson, D. The role of dopant charge state on defect chemistry and grain growth of doped uo₂.

COMMUNICATIONS MATERIALS | (2020) 1:13 | https://doi.org/10.1038/s43246-020-0014-5 | www.nature.com/commsmat

7
Acknowledgements

M.S. thanks CSC-China Scholarship Council for funding her Ph.D studies at Forschungszentrum Jülich in Germany. J.S. thanks DAAD-German Academic Exchange Service for funding his research stay at Forschungszentrum Jülich in Germany. We thank Victor Vinograd for comments on thermodynamic modeling used in this paper. Funded by the Excellence Initiative of the German federal and state governments and the Jülich Aachen Research Alliance-High-Performance Computing. We thank the JARA-HPC awarding body for time on the RWTH and Forschungszentrum Jülich computing resources awarded through JARA-HPC Partition.

Author contributions

The ab initio calculations and analysis of the results were performed by M.S., P.M.K., and J.S. The re-evaluation of the XANES data, including fitting procedure and the analysis, was performed by M.S. and J.S. P.M.K. performed the thermodynamic modeling and leaded the project. All parties participated in writing the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s43246-020-0014-5.

Correspondence and requests for materials should be addressed to P.M.K.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.