NOETHER DECOMPOSITION FOR BIRATIONAL MAPS

by

Julie Déserti

Abstract. — Let ϕ be a birational map of the complex projective plane. We know that ϕ can be written as a composition of automorphisms of $\mathbb{P}^2_{\mathbb{C}}$ and the standard quadratic birational map σ. This writing, that is non-unique, is minimal if the number $n(\phi)$ of σ is as small as possible. We prove that if ϕ is of degree $d \geq 2$, then $\left\lceil \frac{\ln d}{\ln 2} \right\rceil \leq n(\phi) \leq 2(2d - 1)$.

2010 Mathematics Subject Classification. — 14E07

1. Introduction

A rational map ϕ of $\mathbb{P}^2_{\mathbb{C}}$ is a map of the following type

$$\phi: \mathbb{P}^2_{\mathbb{C}} \rightarrow \mathbb{P}^2_{\mathbb{C}}, \quad (x : y : z) \rightarrow (\phi_0(x,y,z) : \phi_1(x,y,z) : \phi_2(x,y,z))$$

where the ϕ_i’s are homogeneous polynomials of the same degree, and without common factor. The degree of ϕ is the degree of the ϕ_i’s. A birational map ϕ of $\mathbb{P}^2_{\mathbb{C}}$ is a rational map of $\mathbb{P}^2_{\mathbb{C}}$ for which there exists a rational map ψ of $\mathbb{P}^2_{\mathbb{C}}$ such that $\phi \psi = \psi \phi = \text{id}$.

Examples 1.1. — if $d = 1$ then ϕ is a birational map given by linear forms, i.e. ϕ is an element of $\text{Aut}(\mathbb{P}^2_{\mathbb{C}}) = \text{PGL}(3; \mathbb{C})$.

– in the case $d = 2$ we have the following examples:

$\sigma: (x : y : z) \rightarrow (yz : xz : xy), \quad \rho: (x : y : z) \rightarrow (xy : z^2 : yz), \quad \tau: (x : y : z) \rightarrow (x^2 : xy : y^2 - xz)$.

As we will see these three maps play an important role in the description of the set of quadratic birational maps of $\mathbb{P}^2_{\mathbb{C}}$.

If ϕ denotes a birational map of the complex projective plane, we denote by $\mathcal{O}(\phi)$ the orbit of ϕ under the action of $\text{PGL}(3; \mathbb{C}) \times \text{PGL}(3; \mathbb{C})$

$$\mathcal{O}(\phi) = \{A_1 \phi A_2 \mid A_1, A_2 \in \text{PGL}(3; \mathbb{C})\}.$$

Theorem 1.2 ([3]). — Let ϕ be a birational map of $\mathbb{P}^2_{\mathbb{C}}$ of degree 2, then ϕ belongs to $\mathcal{O}(\sigma) \cup \mathcal{O}(\rho) \cup \mathcal{O}(\tau)$.
Their statement concerning this group is the following:

Theorem 1.3 ([2]). — The group Bir($\mathbb{P}^2_\mathbb{C}$) is generated by Aut($\mathbb{P}^2_\mathbb{C}$) and σ.

In other words any birational map ϕ of $\mathbb{P}^2_\mathbb{C}$ can be written

$$(A_1)\sigma A_2 \sigma \ldots \sigma A_{n-1}\sigma(A_n)$$

with A_i in PGL($3; \mathbb{C}$). This writing is of course non-unique, for example

$$\sigma = \sigma(2x : y : z/2)\sigma(2x : y : z/2)\sigma.$$

We will say that the writing of ϕ is minimal if the number of σ in this writing is as small as possible, and we will denote by $n(\phi)$ this number.

Examples 1.4. — If A denotes an automorphism of $\mathbb{P}^2_\mathbb{C}$, then $n(A) = 0$.

- One has

$$n(\sigma) = 1, \quad n(p) = 2, \quad n(\tau) = 4.$$

So, according to Theorem 1.3, if $\phi \in$ Bir($\mathbb{P}^2_\mathbb{C}$) is of degree 2, then $n(\phi) \leq 4$.

The question is: if $\phi \in$ Bir($\mathbb{P}^2_\mathbb{C}$) is of degree d, can we bound $n(\phi)$?

Theorem A. — Let ϕ be a birational map of $\mathbb{P}^2_\mathbb{C}$ of degree $d \geq 2$ then

$$\left\lfloor \frac{\ln d}{\ln 2} \right\rfloor \leq n(\phi) \leq 2(2d - 1).$$

Acknowledgment. — I would like to thank Gilbert Levitt who asks me this question a long time ago and Dominique Cerveau for his constant support.

2. A first bound

We will first of all give a lower but "immediate" bound. Let ϕ be an element of Bir($\mathbb{P}^2_\mathbb{C}$); it is given by

$$(x : y : z) \mapsto (\phi_0(x, y, z) : \phi_1(x, y, z) : \phi_2(x, y, z))$$

for some homogeneous polynomials of the degree d, and without common factor. The linear system of ϕ is the preimage of the linear system of lines of $\mathbb{P}^2_\mathbb{C}$ and is denoted Λ_ϕ. The degree of the curves of Λ_ϕ is obviously d.

If ϕ has some points where ϕ is not defined, we choose one, that we denote $p_1 \in \mathbb{P}^2_\mathbb{C}$; let $\pi_1 : S_1 \to \mathbb{P}^2_\mathbb{C}$ be its blow-up. The map $\psi_1 = \phi \pi_1 : S_1 \to \mathbb{P}^2_\mathbb{C}$ is a birational one. If ψ_1 has at least one base point, we again choose one that we denote $p_2 \in S_2$ and $\pi_2 : S_2 \to S_1$ its blow-up. Again the map $\psi_2 = \phi \pi_2 : S_2 \to \mathbb{P}^2_\mathbb{C}$ is a birational one. We continue the process until ψ_n becomes a morphism. Let us justify the existence of such a n. The linear system Λ_ϕ consists of curves of degree d all passing through the p_i's with multiplicity m_i. Recall that a blow-up $\pi : Y \to X$ of a point $p \in X$ induces the map $\pi^* : \text{Pic}(X) \to \text{Pic}(Y)$, which sends a curve $C \subset X$ into $\pi^{-1}(C)$. Furthermore if $C \subset X$ is an irreducible curve, the strict transform of C, denoted \tilde{C}, is obtained by taking the closure of $\pi^{-1}(C \setminus \{p\})$. In $\text{Pic}(Y)$ we have

$$\pi^*(C) = \tilde{C} + m_p(C)E$$
where $E = \pi^{-1}(p)$. Applying this n times the members of Λ_{ψ_n} are equivalent to

$$dL - \sum_{i=1}^{n} m_i E_i$$

so these curves have self-intersection $d^2 - \sum_{i=1}^{n} m_i^2$ that has to be non-negative; therefore the number n exists.

Denote by $E_i \subset S_i$ the (-1)-curve $\pi_i^{-1}(p_i)$ and by

$$E_i = (\pi_{i+1} \ldots \pi_n)^* E_i \in \text{Pic}(S_n).$$

The points p_i are called base points of ϕ, some of them belong to \mathbb{P}^2_C (these are the common zeros of the ϕ_i often called the indeterminacy points of ϕ) some of them don’t; we say that these last one are infinitely near \mathbb{P}^2_C. We denote by $\text{Base}\phi$ the set of base points of ϕ.

By construction the map ψ_n is a birational morphism, let us denote it ξ. In fact any birational morphism between smooth projective surfaces is a sequence of blow-ups so

$$\xi = \xi_q \ldots \xi_1$$

where ξ_q is the blow-up of a point $q_i \in S_i'$ with $S_0' = \mathbb{P}^2_C$ and $S_q' = S_n$ (it follows from the computations of the rank of the Picard group that $q = n$).

The linear system Λ_ϕ of ϕ corresponds to the strict pull-back by ξ of the system $O_{\mathbb{P}^2}(1)$. Let L be a general line, which does not pass through the p_i; its pull-back $\xi^{-1}(L)$ corresponds to a smooth curve on S_n which has self-intersection 1 and genus 0. By adjunction formula one gets

$$(\xi^{-1}(L))^2 = 1, \quad \xi^{-1}(L) \cdot K_{S_n} = -3.$$

Since the members of Λ_ξ are equivalent to $dL - \sum_{i=1}^{n} m_i E_i$ and since $K_{S_n} = -3L + \sum_{i=1}^{n} E_i$ one has

$$\left\{ \begin{array}{l}
 d^2 - \sum_{i=1}^{n} m_i^2 = 1 \\
 3d - \sum_{i=1}^{n} m_i = 3
\end{array} \right. \quad (2.1)$$
Remark that not all solutions of (2.1) correspond to the base points of a birational map of degree d. Nevertheless the solution $m_0 = d - 1$, $m_1 = \ldots = m_{2d - 2} = 1$ is realized, for example by (see [4])

$$f_d = (x^{d-1} + y^d ; y^{d-1} : z^d);$$

more precisely f_d has one indeterminacy point with multiplicity $d - 1$ and $2d - 2$ base points infinitely near each of them having multiplicity 1. Applying the previous construction one gets that to write it. Then

two sequences of

Lemma 2.1. — Let ϕ be a birational map of \mathbb{P}_C^2 of degree $d \geq 2$, then ϕ has at most $2d - 1$ base points.

Proof. — Let us denote by p_1, \ldots, p_n the base points of ϕ and by m_i the multiplicity of p_i.

The inequality $d \geq m_i + 1$ holds for any i. In fact if p_i belongs to \mathbb{P}_C^2, the pencil of lines passing through p_i has to intersect positively the linear system so $d \geq m_i + 1$. If p_j is infinitely near to a point p_i we have $m_j \leq m_i$ so $d \geq m_i + m_j + 1$.

Let us order the p_i's such that $m_1 \geq m_2 \geq \ldots \geq m_n$; the following inequality holds

$$m_1 + m_2 + m_3 \geq d.$$ \hspace{1cm} (2.2)

Indeed, from (2.1) we get

$$\sum_{i=1}^{n} m_i^2 - m_3 = d^2 - 1 - 3(d - 1)m_3$$

that gives

$$(d - 1)(m_1 + m_2 + m_3 - (d + 1)) = (m_1 - m_3)(d - (1 + m_1)) + (m_2 - m_3)(d - (1 + m_2)) + \sum_{i=4}^{n} m_i(m_i - m_3)$$

Of course $\sum_{i=4}^{n} m_i(m_i - m_3) \geq 0$ and as we just see $d \geq m_i + 1$ for any i; hence

$$m_1 + m_2 + m_3 - (d + 1) \geq 0.$$ \hfill \Box

We have established the following statement.

Proposition 2.2. — Let ϕ be a birational map of degree $d \geq 2$; then

$$n(\phi) \leq 4(2d - 1).$$

3. A bound for birational maps of \mathbb{P}_C^2 coming from polynomial automorphisms of \mathbb{C}^2

This section is based on [6]; in this article the author gives a geometric proof of JUNG’s Theorem:

Theorem 3.1 ([5]). — The group of polynomial automorphisms of \mathbb{C}^2 denoted $\text{Aut}(\mathbb{C}^2)$ has a structure of amalgamated product:

$$\text{Aut}(\mathbb{C}^2) = A \ast_S E$$

where

$$A = \{(x, y) \mapsto (a_1 x + b_1 y + c_1, a_2 x + b_2 y + c_2) | a_1 b_2 - a_2 b_1 \neq 0\},$$

$$E = \{(\alpha x + P(y), \beta y + \gamma) | \alpha, \beta, \gamma \in \mathbb{C}, \alpha \beta \neq 0, P \in \mathbb{C}[y]\}$$

and $S = A \cap E$.
Before giving the sketch of the proof, let us recall what are Hirzebruch surfaces, a Hirzebruch surface, denoted by \mathbb{F}_n, is a ruled surface over the projective line defined by

$$\mathbb{F}_n = \mathbb{P}^1 \langle \mathcal{O} \rangle \oplus \mathcal{O}(-n) \quad \forall n \geq 2.$$

The surface \mathbb{F}_0 is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$, and \mathbb{F}_1 is isomorphic to \mathbb{P}^2 blown up at a point. Hirzebruch surfaces for $n > 0$ have a special rational curve $s_\infty(\mathbb{F}_n)$ on them: \mathbb{F}_n is the projective bundle of $\mathcal{O}(-n)$ and the curve $s_\infty(\mathbb{F}_n)$ is the zero section. This curve has self-intersection $-n$, and this is the only irreducible curve with negative self-intersection. The only irreducible curves with zero self-intersection are the fibers $f_\infty(\mathbb{F}_n)$ of \mathbb{F}_n.

We say that a birational map $\phi : S \rightarrow \mathbb{P}^2_\mathbb{C}$ from a surface S to $\mathbb{P}^2_\mathbb{C}$ comes from a polynomial automorphism of \mathbb{C}^2 if

1. $S = \mathbb{C}^2 \cup D$ where D is a union of irreducible curves called divisor at infinity;
2. $\mathbb{P}^2_\mathbb{C} = \mathbb{C}^2 \cup L$ where L is a line;
3. ϕ induces an isomorphism between $S \setminus D$ and $\mathbb{P}^2_\mathbb{C} \setminus L$.

This situation implies strong constraints on the base points of ϕ:

Lemma 3.2 ([6], Lemma 9). Let $\phi : S \rightarrow \mathbb{P}^2_\mathbb{C}$ be a birational map from a surface S to $\mathbb{P}^2_\mathbb{C}$ that comes from a polynomial automorphism of \mathbb{C}^2. Then

1. ϕ has only one base point in $\mathbb{P}^2_\mathbb{C}$ on the divisor at infinity of S;
2. ϕ has base points p_1, \ldots, p_n, with $n \geq 1$, such that
 - p_1 is the indeterminacy point in $\mathbb{P}^2_\mathbb{C}$;
 - for any $i = 2, \ldots, n$ the point p_i belongs to the exceptional divisor obtained by blowing up p_{i-1};
3. any of the irreducible curves contained in the divisor at infinity of S is contracted onto a point by ϕ;
4. the first curve contracted by p_2 is the strict transform of a curve contained in the divisor at infinity of S;
5. in particular if $S = \mathbb{P}^2_\mathbb{C}$ then the first curve contracted by p_2 is the strict transform of the line at infinity.

Let us explain the strategy used by LAMY to prove JUNG’s Theorem. Let ϕ be a birational map of $\mathbb{P}^2_\mathbb{C}$ coming from a polynomial automorphism of \mathbb{C}^2 of degree n.

The first step is the blow up the only indeterminacy point of ϕ, one thus gets the following diagram:

$$\begin{array}{c}
\mathbb{P}^2_\mathbb{C} \\
\phi \downarrow \downarrow \phi_1 \\
\mathbb{P}^1_1 \\
\end{array}$$

where ϕ_1^{-1} is the blow up to $(1 : 0 : 0)$, and $\#\text{Base} \phi_1 = \#\text{Base} \phi - 1$. According to Lemma 4.1 the only indeterminacy point of ϕ_1 is $f_\infty(\mathbb{F}_1) \cap s_\infty(\mathbb{F}_1)$.

The second step is based on the following statement:

Lemma 3.3. Let $k \geq 1$, and let $\psi : \mathbb{F}_k \rightarrow \mathbb{P}^2_\mathbb{C}$ be a birational map that comes from a polynomial automorphism of \mathbb{C}^2. Assume that the unique proper indeterminacy point of ψ is the point $p = s_\infty(\mathbb{F}_k) \cap f_\infty(\mathbb{F}_k)$. Let
us consider the following commutative diagram

\[
\begin{array}{c}
\mathbb{P}^2 \xrightarrow{\psi'} \mathbb{P}^2 \\
\mathbb{P}^2 \xrightarrow{\psi} \mathbb{P}^2 \\
\end{array}
\]

where \(\psi \) is the blow up of the point \(p \) composed with the contraction of the strict transform of \(f_\infty(\mathbb{F}_k) \). Then the birational map \(\psi' = \psi \phi^{-1} \) satisfies the following properties:

1. \(\# \text{Base}(\psi') = \# \text{Base}(\psi) - 1 \);
2. the indeterminacy point of \(\psi' \) is on \(f_\infty(\mathbb{F}_k) \).

After the first step we are under the assumptions of Lemma 3.3 with \(k = 1 \). We get a map \(\psi' : \mathbb{F}_2 \rightarrow \mathbb{F}_2 \) with a unique indeterminacy point; this point lies on \(f_\infty(\mathbb{F}_2) \). Repeating this process as soon as we satisfy assumptions of Lemma 3.3 one gets the following diagram

\[
\begin{array}{c}
\mathbb{P}^2 \xrightarrow{\phi_2} \mathbb{P}^2 \\
\mathbb{P}^2 \xrightarrow{\phi_1} \mathbb{P}^2 \\
\end{array}
\]

where \(\phi_2 \) is obtained by applying \(n - 1 \) times Lemma 3.3. Furthermore one has

\[\# \text{Base}(\phi_2) = \# \text{Base}(\phi_1) - n + 1 \]

and the indeterminacy point of \(\phi_2 \) is on \(f_\infty(\mathbb{F}_n) \) but not on \(s_\infty(\mathbb{F}_n) \).

The third step relies on the following result:

Lemma 3.4. — Let \(k \geq 2 \), and let \(\psi : \mathbb{F}_k \rightarrow \mathbb{P}^2 \) be a birational map that comes from a polynomial automorphism of \(\mathbb{C}^2 \). Assume that the unique indeterminacy point \(p \) of \(\psi \) lies on \(f_\infty(\mathbb{F}_k) \) but not on \(s_\infty(\mathbb{F}_k) \). Let us consider the following diagram

\[
\begin{array}{c}
\mathbb{P}^2 \xrightarrow{\phi_2} \mathbb{P}^2 \\
\mathbb{P}^2 \xrightarrow{\phi_1} \mathbb{P}^2 \\
\end{array}
\]

where \(\phi_2 \) is the blow up of \(p \) composed with the contraction of the strict transform of \(f_\infty(\mathbb{F}_n) \). Then the map \(\psi' \) satisfies the two following properties

1. \(\# \text{Base}(\psi') = \# \text{Base}(\psi) - 1 \);
2. the proper indeterminacy point of \(\psi' \) lies on \(f_\infty(\mathbb{F}_{k-1}) \) but not on \(s_\infty(\mathbb{F}_{k-1}) \).

After the second step the assumptions of Lemma 3.4 are satisfied. Moreover as soon as \(k \geq 3 \), the map \(\psi' \) given by Lemma 3.4 still satisfies the assumption of this lemma. So after applying \(n - 1 \) times Lemma 3.4 we get

\[
\begin{array}{c}
\mathbb{P}^2 \xrightarrow{\phi_3} \mathbb{P}^2 \\
\mathbb{P}^2 \xrightarrow{\phi_2} \mathbb{P}^2 \\
\end{array}
\]
with \#Baseφ3 = #Baseφ2 − n + 1, and the only proper indeterminacy point of φ3 lies on \(f_\infty(\mathbb{P}_1) \) but not on \(s_\infty(\mathbb{P}_1) \). According to Lemma 4.1 and ZARISKI’s Theorem we get

\[
\begin{array}{c}
\mathbb{P}_1 \xrightarrow{\phi_4} \mathbb{P}_1 \xrightarrow{\phi_4} \mathbb{P}_1 \\
\phi_4
\end{array}
\]

where \(\phi_4 \) is the blow up of some point \(q \) whose exceptional divisor is \(s_\infty(\mathbb{P}_1) \). Since \(\phi_4 \) is defined up to isomorphism one can assume that \(q = (1 : 0 : 0) \). Furthermore #Baseφ3 = #Baseφ4.

Conclusion: finally

\[
\begin{array}{c}
\mathbb{P}_1 \xrightarrow{\phi_4 \phi_2 \phi_1} \mathbb{P}_1 \xrightarrow{\phi_4} \mathbb{P}_1 \\
\phi = \phi_4 \phi_2 \phi_1
\end{array}
\]

where \(\phi = \phi_4 \phi_2 \phi_1 \) is an element of \(\text{Aut}(\mathbb{C}^2) \) that preserves the pencil of lines through \((1 : 0 : 0) \), i.e. \(\phi \in E \), and #Baseφ4 = #Baseφ − 2n + 1.

Hence a birational map \(\phi \) of \(\mathbb{P}_2^2 \) of degree \(d \) that comes from a polynomial automorphism of \(\mathbb{C}^2 \) can be written as follows

\[
\phi = \phi \psi
\]

where \(\psi \) is an affine automorphism, \(\phi \) is a sequence of \(2d − 1 \) blow-ups. Since a blow-up can be written with \(2 \sigma \), the map \(\phi \) can be written \(2(2d − 1) \sigma \).

Remark 3.5. — For \(d = 2 \), we need \(4 \sigma \): the map \(\tau = (x^2 : xy : y^2 − xz) \) can be written \(\ell_1 \sigma \ell_2 \sigma \ell_3 \sigma \ell_2 \sigma \ell_4 \) with

\[
\begin{align*}
\ell_1 &= (y − x : 2y − x : z − y + x), & \ell_3 &= (−y : x + z − 3y : x), \\
\ell_2 &= (x + z : x : y), & \ell_4 &= (y − x : z − 2x : 2x − y),
\end{align*}
\]

and our bound gives \(6 \sigma \).

For \(d = 3 \), we need \(8 \sigma \): the map \(\psi = (x^2 + y^3 : y^2 z : z^3) \) can be written \(\ell_1 \sigma \ell_2 \sigma \ell_3 \sigma \ell_4 \sigma \ell_5 \sigma \ell_4 \sigma \ell_6 \sigma \ell_2 \sigma \ell_7 \) with

\[
\begin{align*}
\ell_1 &= (z − y : y : y − x), & \ell_2 &= (y + z : z : x), & \ell_3 &= (−z : −y : x − y), \\
\ell_4 &= (x + z : x : y), & \ell_5 &= (−y : x − 3y + z : x), & \ell_6 &= (−x : −y − z : x + y), \\
\ell_7 &= (x + y : z − y : y),
\end{align*}
\]

and our bound gives \(10 \sigma \).

4. Proof of NOETHER Theorem and consequences

4.1. NOETHER Theorem (I). — An element of Bir(\(\mathbb{P}_2^2 \)) which preserves a pencil of rational curves is classically called JONQUIÈRES transformation. If \(\phi \) is a JONQUIÈRES map of degree \(d \), it has a base point of multiplicity \(d − 1 \) and \(2d − 2 \) base points of multiplicity 1.

Let \(\phi \) be a birational map of \(\mathbb{P}_2^2 \) of degree \(d \). Let \(p_1, \ldots, p_n \) denote the base points of \(\phi \) and \(m_i \) the multiplicity of \(p_i \). Assume that the \(p_i \) are ordered such that \(m_1 \geq m_2 \geq \ldots \geq m_n \). Set \(f_\phi = \frac{d − m_1}{2} \) and let \(h_\phi \) be
the number of p_{i}, with $i \neq 1$, such that $m_{i} > j_{0}$. The integer $2j_{0}$ measures the complexity of Λ_{q}. Remark that $j_{0} \geq \frac{1}{2}$ with equality if and only if ϕ is a JONQUIÈRES transformation.

Lemma 4.1 (1). — If ϕ is a birational map of $\mathbb{P}_{\mathbb{C}}^{2}$ of degree $d \geq 2$, the integer h_{q} satisfies the following properties:

1. $h_{q} \geq 2$;
2. if $h_{q} \geq 3$, then $\sum_{i=1}^{h} m_{i} > d$;
3. if $h_{q} \geq 3$ and if the points $p_{1}, \ldots, p_{h_{q}}$ are in $\mathbb{P}_{\mathbb{C}}^{2}$, then they are not all aligned.

Proof. — To see that $h_{q} \geq 2$, it is sufficient to prove that the following inequality holds: $\sum_{i=1}^{h} (m_{i} - j_{0}) > m_{0} - j_{0}$. By definition of h_{q} we have

$$\sum_{i=1}^{h_{q}} m_{i}(m_{i} - j_{0}) \geq \sum_{i=1}^{n} m_{i}(m_{i} - j_{0}).$$

But

$$\sum_{i=1}^{n} m_{i}(m_{i} - j_{0}) = \sum_{i=1}^{n} m_{i}^{2} - j_{0} \sum_{i=1}^{n} m_{i} = (d - 1)(d - 3j_{0} + 1) = d(d - 3j_{0}) + 3j_{0} - 1 = d(m_{1} - j_{0}) + 3j_{0} - 1$$

i.e. $\sum_{i=1}^{n} m_{i}(m_{i} - j_{0}) > 2 j(m_{1} - j_{0})$. But for any i the integer m_{i} is smaller than $2j_{0}$ hence $\sum_{i=1}^{h} m_{i} - j_{0} > m_{1} - j_{0}$.

From $\sum_{i=1}^{h_{q}} m_{i} - j_{0} > m_{1} - j_{0}$ one gets $\sum_{i=1}^{h_{q}} m_{i} > hj_{0} + m_{1} - j_{0}$. But $h_{q}j_{0} + m_{1} - j_{0} = d + j(h_{q} - 3)$ therefore

$$\sum_{i=1}^{h_{q}} m_{i} > d + j_{0}(h_{q} - 3).$$

As a consequence $\sum_{i=1}^{h_{q}} m_{i} > d$ as soon as $h_{q} \geq 3$. \hfill \square

Let q be a quadratic birational map whose indeterminacy points are p_{1}, A and B, we also say that q is a quadratic birational map centered at p_{1}, A and B. Set $\phi' = \phi q$ and $d' = \deg \phi'$. The idea is the following: choose A and B such that $(j_{0}, h_{q}) > (j_{0}', h_{q}')$ for the lexicographic order. After a finite number of such steps, one obtains an automorphism of $\mathbb{P}_{\mathbb{C}}^{2}$.

Let us first assume that p_{1} is not the point of largest multiplicity of ϕ'. If Λ and Λ' are two linear systems of $\mathbb{P}_{\mathbb{C}}^{2}$, the free intersection of Λ and Λ' is a non-negative integer, which counts the number of free points, that is points which are not base points of Λ, Λ' in the intersection of a general member of Λ and a general member of Λ'.
The free intersection of a generic line through p_1 and ϕ^*L, where L denotes a pencil of lines of \mathbb{P}_C^2, is $d - m_1 = 2j_0$. If p_1 is a base point of multiplicity m_1^* for ϕ' we have $d' - m_1^* = d - m_1 = 2j_0$. If P denotes the base point of largest multiplicity m_P for ϕ' then

$$2j_0 = d' - m_P < d' - m_1^* = 2j_0.$$

In other words if there exist A and B two points in \mathbb{P}_C^2 such that after composed ϕ with a quadratic birational map centered at A, B and p_1 the point p_1 is not of largest multiplicity then $j_0 < j_0'$. Suppose now that p_1 is the point of largest multiplicity of ϕ'. The point p_1 is the point of largest multiplicity of ϕ'. As we just see, then $j_0 = j_0'$. One of the following holds:

a) there are two points of indeterminacy p_2 and p_3 with multiplicity $m_2 > j_0$ and $m_3 > j_0$;

b) there is at most one indeterminacy point with multiplicity $> j_0$ and no base point infinitely near p_1;

c) there is at most one indeterminacy point with multiplicity $> j_0$ and at least one base point infinitely near p_1.

Let us consider all these cases.

a) Let us consider the quadratic birational map q centered at p_1, p_2 and p_3 and set $\phi' = \phi q$. The multiplicity m_2^* of p_2 for ϕ' is equal to the number of free points of an element of ϕ^*L and the line through p_1 and p_3.

By Bezout one has

$$d = m_1 + m_3 + m_2^*.$$

As $d - m_1 = m_3 + m_2^*$ and $d - m_1 = 2j_0$ one has $j_0 > m_2^*$. Similarly $j_0 > m_3$. Thus $h_0 = h_0 - 2$.

b) Assume that the base points p_1, p_2 and p_3 of ϕ satisfy the following conditions:

- p_1 is of largest multiplicity,
- p_2 belongs to \mathbb{P}_C^2,
- p_3 is infinitely near p_2.

Let us choose a point P in \mathbb{P}_C^2 such that the line through P and p_1 (resp. m and p_2) does not contain base point of ϕ distinct from p_1 (resp. p_2). Let us compose ϕ with the quadratic birational map centered at p_1, p_2 and P. The point P (resp. p_1) becomes a base point of multiplicity $< j_0$ (resp. of multiplicity $2j_0$) and p_2 an indeterminacy point of multiplicity $m_2 > j_0$. Hence h is constant and there is one more indeterminacy point with multiplicity $> j_0$. Iterating this process we can assume that all the base points of multiplicity $> j_0$ are in \mathbb{P}_C^2. Since $h_0 \geq 2$ we thus are in case a).

c) Let A and B be two generic points of \mathbb{P}_C^2. After having composed ϕ with the quadratic birational map centered at A, B and p_1, the integer h has increased by 2 as A and B are of multiplicities $2j_0$; in particular $h_0 \geq 4$. Nevertheless there is no more base point infinitely near p_1. According to b) we can assume that p_1, \ldots, p_h are in \mathbb{P}_C^2. These points are not all aligned (Lemma 4.1); hence we can apply a) at least two times and h_0 decreases by 2. Finally h_0 has decreased by 2.

After repeating a) a finite number of times, we obtain a map ψ such that $h_\psi < 2$ then from Lemma 4.1 we get either $\psi \in \text{Aut}(\mathbb{P}_C^2)$ or $j_0 < j_0'$.

4.2. Proof of Theorem [A] — The configuration that needs the most σ is the configuration of birational maps coming from polynomial automorphisms of \mathbb{C}^2 (see [4.1]).

References

[1] J. W. Alexander. On the factorization of Cremona plane transformations. *Trans. Amer. Math. Soc.*, 17(3):295–300, 1916.

[2] G. Castelnuovo. Le trasformazioni generatrici del gruppo cremoniano nel piano. *Atti R. Accad. Sci. Torino*, 36:861–874, 1901.
[3] D. Cerveau and J. Déserti. *Transformations birationnelles de petits degré*, volume 19 of *Cours Spécialisés*. Société Mathématique de France, Paris, À paraître.

[4] J. Déserti and J. Grivaux. Automorphisms of rational surfaces with positive topological entropy. *Indiana Univ. Math. J.*, 60(5):1589–1622, 2011.

[5] H. W. E. Jung. Über ganze birationale Transformationen der Ebene. *J. Reine Angew. Math.*, 184:161–174, 1942.

[6] S. Lamy. Une preuve géométrique du théorème de Jung. *Enseign. Math. (2)*, 48(3-4):291–315, 2002.