This is the accepted manuscript made available via CHORUS. The article has been published as:

Very Large and Reversible Stark-Shift Tuning of Single Emitters in Layered Hexagonal Boron Nitride
Niko Nikolay, Noah Mendelson, Nikola Sadzak, Florian Böhm, Toan Trong Tran, Bernd Sontheimer, Igor Aharonovich, and Oliver Benson
Phys. Rev. Applied 11, 041001 — Published 15 April 2019
DOI: 10.1103/PhysRevApplied.11.041001
Combining solid state single photon emitters (SPE) with nanophotonic platforms is a key goal in integrated quantum photonics. In order to realize functionality in potentially scalable elements, suitable SPEs have to be bright, stable, and widely tunable at room temperature. In this work we show that selected SPEs embedded in a few layer hexagonal boron nitride (hBN) meet these demands. In order to show the wide tunability of these SPEs we employ an AFM with a conductive tip to apply an electrostatic field to individual hBN emitters sandwiched between the tip and an indium tin oxide coated glass slide. A very large and reversible Stark shift of (5.5 ± 0.3) nm at a zero field wavelength of 670 nm was induced by applying just 20 V, which exceeds the typical resonance linewidths of nanodielectric and even nanoplasmonic resonators. Our results are important to further understand the physical origin of SPEs in hBN as well as for practical quantum photonic applications where wide spectral tuning and on/off resonance switching are required.

I. INTRODUCTION

Bright and tunable solid state single photon emitters (SPEs) are required for the realization of scalable quantum photonic technologies [1, 2]. Recently, SPEs in hexagonal boron nitride (hBN) have been extensively studied due to their promising optical properties. The hBN SPEs exhibit narrow-band linewidths, fast excited state lifetimes, polarized emission and operate at room temperature, which is attractive for many nanophotonics applications [3–9]. The layered nature of hBN also offers potential advantages for integrating the SPEs with other 2D materials, to achieve hybrid quantum devices based on 2D systems [10–12]. Furthermore, the nanoscale hBN flakes can be coupled with foreign photonic resonators, such as waveguides, microdisks, or photonic crystal cavities, a crucial prerequisite for integrated nanophotonics systems [13, 14].

In order to exploit the functionality of an SPE-cavity system, tuning the SPEs’ zero phonon line (ZPL) to a cavity’s resonance is essential. Therefore, the Stark tuning of various types of SPEs was demonstrated, with e.g. quantum dots [15, 16], color centers in diamond [17, 18], defects in WSe2 [11, 19] and defect in MoS2 [20]. First works on spectral tuning of hBN SPEs included strain or pressure tuning [21], as well as the application of an electric field by sandwiching the hBN flake between two graphene layers [12, 22].

However, at room temperature or for plasmonic resonators switching into and out of resonance requires a reversible and wide-range tuning on the order of one linewidth of such a resonance, which can be as narrow as 17 meV [23, 24]. Moreover, state of the art approaches to realize integrated elements for quantum nanophotonics often rely on the identification of pre-characterized SPEs and subsequent fabrication of photonic structures around it [25–27]. This requires a procedure to select individual SPEs from a larger ensemble.

In this work, we solve the critical issues mentioned above. We demonstrate the individually controlled and reversible tuning of SPEs in hBN using a high resolution conductive atomic force microscope (AFM) tip. Using this technique, high fields (up to 5 MV cm⁻¹) can be applied to a nano flake of choice. The few nanometer thickness of hBN is ideal for this method, as the generated electric fields, which are perpendicular to the substrate, are ultimately limited by the distance between the AFM tip and the surface. Under our experimental conditions, we were able to achieve record dynamic tuning of over (5.5 ± 0.3) nm at room temperature.

II. METHODS

In the following, the sample preparation, the experimental setup and a pre-characterization will be introduced first, followed by a discussion about the measurement of the dipole orientation and the applied electrostatic field strength and direction. Together with a measurement of the E-field-dependent Stark shift, lower limits for dipole moment and polarizability are determined.

A. Sample preparation, experimental setup and emitter characterization

The sample was prepared by first spin coating a colloidal solution of hBN-flakes (from Graphene Supermarket) onto a sacrificial Si substrate, which was then annealed at 850 °C for 1 hour in a 1 mTorr argon atmosphere. Poly(methyl methacrylate) (PMMA) (A5) was then coated on the sample, baked for 5 min at 90 °C, before the PMMA/hBN film was freed from the substrate by etching in 1 m KOH solution. After washing 3 times in milli-Q water, the sample was then transferred to a pre-prepared indium tin oxide (ITO) coated cover slip, heated to 120 °C to promote adhesion between the hBN and ITO slide, before the PMMA film was washed away by dissolving in warm acetone overnight, analogous to Ref. [29].
FIG. 1. Schematic representation of the experiment, electrostatic field distribution and $g^{(2)}$ function. a) An hBN flake is located on an ITO-covered glass substrate. The oil immersion objective lens below excites the hBN SPE and collects its emission as an atomic force microscope tip can be used to deliver an electrostatic field causing a Stark shift of the ZPL. b) The electrostatic field strength between AFM tip (hBN starts at $y = 125\,\text{nm}$) and ITO (starts at $y = 0$) caused by the application of 20 V is represented by the contour diagram. The superimposed stream flow chart shows the field orientation. The assumed SPE position (discussed in the text) is marked by the white rectangle. Points with the highest E^2 and $|E|^2$ within the assumed SPE area are marked by the triangle and the circle, respectively. c) The second order autocorrelation of the emitters fluorescence ($g^{(2)}(\tau)$) shows a clear antibunching at $\tau = 0$ that indicates for primarily single photon emission.

FIG. 2. Determination of the dipole orientation. a) Simulated degree of polarization δ with respect to the dipole out of plane angle θ. The orange circle represents the measured δ. In the inset, a corresponding polarization measurement of the fluorescence light (dots) and a fit (solid line) is shown. The signal was normalized to the total intensity detected by both APDs and corrected for its different detection efficiencies. b) Simulated Fourier image with a dipole orientation of $\theta = (59.9 \pm 0.2)^\circ$ and $\phi = (52.9 \pm 0.2)^\circ$ determined by the polarization measurement shown in a). c) Fourier image of the SPE taken with a NA = 1.4 objective lens. The striking similarity between b) and c) proves that the simulation is suited to derive the experimental results very well.

A schematic representation of the experimental setup is shown in Fig. 1 a). An hBN flake hosting SPEs was sandwiched between a conductive AFM tip and a conductive ITO coated cover slip. A Solea, PicoQuant laser with a central wavelength of 540 nm (15 nm bandwidth) and a repetition rate of 40 MHz was focused on the SPE from the substrate side via a high numerical aperture (1.4) oil immersion objective lens. SPE fluorescence was then collected by the same lens, passed through a 610 nm long pass filter, an optional confocal pinhole, and finally guided either into a spectrometer, a Hanbury Brown and Twiss (HBT) interferometer, or an EMCCD camera recording a real or a Fourier image of the sample plane. Without saturating the emitter to prevent photobleaching, a count rate of 75 kcps (kilo counts per second) was detected by the APDs. A photoluminescence (PL) lifetime measurement (shown in the supplemental material [28]) revealed an excited state lifetime of $\tau_{\text{hBN}} = (4.82 \pm 0.01)\,\text{ns}$, which is in the expected range for SPEs in hBN [30]. Since the linear Stark shift depends on the alignment of the dipole moment of the emitter with respect to the electrostatic field direction, we must ensure that only the shift of the ZPL of a single emitter with known orientation is investigated. Thus, a second order correlation ($g^{(2)}$) function was calculated from photon arrival times recorded in the HBT setup. Blue dots in Fig. 1 c) represent the $g^{(2)}$ function. The antibunching at $\tau = 0$ is below 0.5 and thus the emission can be considered as a predominantly single photon stream resulting from a SPE.
FIG. 3. Spectra of the Stark shifted hBN SPE fluorescence. a) Measured spectra and corresponding fits of the unshifted emission in blue (left peak) and shifted in orange (right peak), taken with an integration time of 2.5 s and binned to 1 nm bins. This shift of \((5.9 \pm 0.6) \) nm was recorded with a tip to substrate distance of \(\approx 125 \) nm and a voltage of \(20 \) V. b) hBN-ZPL spectra recorded while the electric field strength between tip and ITO-layer was lowered and increased again (from left to right, in 1 V steps). c) Blue dots are spectral shifts determined by fits of Eq. S4 (supplemental material [28]) to the data shown in b). The solid line shows Eq. 2 that was fit to the data points. d) Spectra recorded while a voltage of \(20 \) V was switched on and off. e) Spectral shifts determined by fits to the data in d) show an average shift of \((5.5 \pm 0.3) \) nm (\((15.4 \pm 0.8) \) meV).

B. Electrostatic field between tip and ITO layer

In order to identify the field strength and direction experienced by the SPE, the electrostatic field distribution present in the conducted experiment was simulated using COMSOL Multiphysics ®. As parameters for the simulation an AFM tip radius of \(30 \) nm, a tip to ITO surface distance of \(125 \) nm (measured with the AFM), an hBN permittivity of \(4 \) [31] and a voltage of \(20 \) V were set. Fig. 1 b) shows the field strength and direction indicated by the color coding and the arrows, respectively. The exact SPE position within the hBN flake is unknown, but two assumptions can be made to reduce the possible residence volume marked by the white rectangle. When the approached tip was scanned over the SPE, an intensity drop of up to \(20 \% \) was observed. This drop is expected as the AFM tip alters the SPE radiation pattern, as well as the tip provides plasmonic decay channels potentially decreasing the external quantum efficiency. Simulations shown in the supplemental material [28] map the decrease in intensity to a SPE depth below the hBN flake surface. The experimentally obtained drop is reproduced by the simulation at a minimal depth of \(15 \) nm. Furthermore, a noticeable Stark shift could only be seen when the lateral tip position was within an area of \(40 \) nm in diameter. At the edge of this area the electric field strength should be at least halved compared to its maximum in the center in order to quarter a quadratic Stark shift, rendering any shift in the experiment invisible by naked eye. This leads to a maximal depth of \(40 \) nm. Just the volume within those constraints (marked by the white rectangle in Fig. 1 b) will be considered in the following discussions.

C. Dipole orientation measurement

Next, we discuss the extraction of the dipole orientation from polarization dependent intensity measurements, which is crucial to determine the vectorial SPE dipole moment. Two angles, the in plane angle \(\phi \) and the out of plane angle \(\theta \) fully characterize its orientation. To determine both angles, a polarimetric measurement was performed [32]. The horizontal and vertical polarization components of the SPE fluorescence are spatially separated using a polarizing beam splitter (PBS) and then individually detected via avalanche photodiodes (APDs) at the corresponding output port of the beam splitter. A \(\lambda / 2 \) -plate before the PBS enables us to rotate the SPE polarization by the angle \(\alpha \). To correct for intensity variations of the SPE during the measurement as well as for different detection efficiencies of each APD, we calculated the relative amount of the intensity detected by one APD as shown in the supplemental material [28], Eq. S3. The inset of Fig. 2 a) shows the resulting portion of the detected signal (dots), and
a fit (line) of the following formula [32]

\[f(\alpha) = I_{\text{min}} + (I_{\text{max}} - I_{\text{min}}) \sin^2 (\alpha + \phi), \]

(1)

with the fit parameters \(I_{\text{min}} = (0.262 \pm 0.003) \text{arb units}, \)
\(I_{\text{max}} = (0.740 \pm 0.005) \text{arb units} \) and the in plane angle \(\phi = (52.9 \pm 0.2)^\circ \).

The degree of polarization, given by \(\delta = (I_{\text{max}} - I_{\text{min}})/(I_{\text{max}} + I_{\text{min}}) \), is related to the out of plane angle \(\theta \). We simulated a dipole with an orientation given by \(\phi \) and \(\theta \), located in an hBN flake (125 nm in diameter, measured with the AFM) on top of a glass cover slide with JCM wave, a 3D finite element Maxwell solver [33]. From this simulation, we extracted the degree of polarization \(\delta \) for any \(\theta \) and compared it with the measured data, shown in Fig. 2 a), a detailed discussion can be found in the supplemental material [28]. In this way we determined \(\theta = (59.9 \pm 0.2)^\circ \). To verify whether the simulated geometry is suitable to model the present experimental conditions, we quantitatively compare a simulated with a measured Fourier image, shown in Fig. 2 b) and Fig. 2 c) respectively. The dipole orientation in the simulation was given by the just determined angles \(\phi \) and \(\theta \), no free parameters were used. A clear similarity of both Fourier images can be seen.

D. Determining the resonance energy

To quantify relative spectral shifts, the ZPL central energy had to be determined. In order to account for the asymmetric nature of the ZPL at room temperature, resulting from acoustic phonons [3], we fitted a sum of two Lorentzian distributions. Fit parameters and the fitted distribution function are shown in the supplemental material. Fig. 3 a) shows PL spectra from the sandwiched SPE in few layer hBN (dots) and corresponding fits (solid lines) without voltage (blue) and 20 V (orange) applied. A clear shift of \((5.9 \pm 0.6) \text{ nm}\) could be quantified in this way.

III. RESULTS

We now proceed to study in detail the Stark shift behavior and the modulation of the emission. Fig. 3 b) shows the ZPL spectra of a SPE as a function of the applied voltage. This experiment was done without readjusting the tip position, each spectrum was recorded for 5 s. First, the voltage was reduced, resulting in a blue shifted emission. Then, the voltage was increased back to its initial value, resulting in a red shift back to the original ZPL central energy, which indicates for a fully reversible shift. Fits of the double Lorentzian distribution to the averaged spectra (i.e. spectra taken at the same voltage were averaged) reveal central energies with respect to the applied voltage, shown in Fig. 3 c) as relative shifts. From this we can determine the dipole moment \(\mu \) and the polarizability \(\alpha \) by fitting the following formula adapted from Ref. [12, 34, 35]:

\[\Delta(\hbar \omega) = -|\mu| |\vec{E}| \cos(\angle(\mu, \vec{E})) - \frac{1}{2} |\mu||\vec{E}|^2. \]

(2)

For this, the applied voltage must be related to an electric field seen by the SPE. As discussed before, the exact SPE position is unknown, and thus we are limited to estimating the minimum values for \(|\mu| \) and \(\alpha \). Two points in the electrostatic vector field (represented in Fig. 1 b) were selected to relate the voltage to the electric field: one at which the scalar product \(|\mu| \vec{E} | \) is maximum (marked by a triangle in Fig. 1 b) and one at which \(|\vec{E}|^2 \) is maximum (marked by a circle). The direction of \(|\mu| \) is given by the previously determined dipole orientation. At each point, a minimum value was determined by fitting Eq. 2 to the data points, where the x-axis was scaled for each maximum point according to the \(E \) field simulation. In Fig. 3 c) the upper x-axis was exemplary scaled for the case of minimal \(|\mu| \), i.e. the triangle in Fig. 1 b). The minimum values are given by \(|\mu|_{\text{Min}} = (2.1 \pm 0.2) \text{D} \), corresponding to a charge separation of \(r_{\text{Min}} = (0.44 \pm 0.04) \text{Å} \) (with \(|\mu|_{\text{Min}} = e r_{\text{Min}} \)) and \(\alpha_{\text{Min}} = (770 \pm 50) \text{ Å}^3 \), both given in centimeter–gram–second system of units. They are in contrast to what was stated in the literature for hBN Stark tuning, where maximum values were given by \(|\mu|_{\text{Lit}} = 0.9 \text{D} \) and \(\alpha_{\text{Lit}} = 150 \text{ Å}^3 \) [12]. The discrepancy may result from the different dipole orientation with respect to the electric field, or the SPEs are of different atomic origin.

Finally, we demonstrate the reversibility of the shift and the stability of the emission over 10 cycles. For this purpose, we apply a square wave voltage between the AFM tip and the ITO-layer with an amplitude of 20 V, a 50% duty cycle and a period time of 5 s. Note that the AFM tip position was fixed during the whole measurement run. Again, the emission spectrum was recorded during this experiment, shown in Fig. 3 d). As before, fitting the double Lorentzian distribution to these spectra gives central positions shown in Fig. 3 e) as relatives shifts. A reversible shift of \((5.5 \pm 0.3) \text{ nm} \) (15.4 ± 0.8 meV) in average was observed over 10 cycles. In the performed experiment, the ultimate limitation of the switching speed is given by the capacitance of the capacitor formed by the ITO surface and the AFM tip. With the analytical model described in Ref. [36] and our instrument specific parameters shown in Ref. [37], the estimated capacity of our system is \(C = 6 \mu\text{F} \).

A possible application of the examined method could be the accurate determination of the SPE position. Once the dipole orientation and the electric field dependent Stark shift are determined, it would be possible to calculate at which lateral tip SPE displacement the highest Stark shift is found. By scanning the tip while simultaneously monitoring the Stark shift and the topography, the SPE position could be determined accurately.

IV. SUMMARY

In summary, we sandwiched an hBN flake hosting SPEs between a transparent conductive ITO layer and a conductive AFM tip. By applying a voltage between the two, a very large reversible Stark shift of \((5.5 \pm 0.3) \text{ nm} \) (15.4 ± 0.8 meV) exceeding the resonance linewidth of typical nanodielectric
found a linear and a quadratic Stark shift, described by the dipole moment of $|\mu| = (2.1 \pm 0.2) \text{D}$ and the polarizability of $\alpha_{\text{lin}} = (770 \pm 50) \text{Å}^3$. We could show that this very large Stark shift of the ZPL line is reversible and can be applied arbitrarily. This displays the potential to integrate selected SPEs in hBN in bisected plasmonic resonators, such as nanoparticle-on-metal plasmonic antennas [39]. Such a configuration would represent a tunable plasmonic cavity quantum electrodynamic (CQED) system at room temperature.

V. ACKNOWLEDGMENTS

Financial support from the German Ministry of Education and Research (BMBF) project "NANO-FILM", the Australian Research council (via DP180100077), the Asian Office of Aerospace Research and Development grant FA2386-17-1-4064, the Office of Naval Research Global under grant number N62909-18-1-2025 are gratefully acknowledged. I.A. is grateful for the Humboldt Foundation for their generous support. O.B. acknowledges the UTS Distinguished Visiting Scholars scheme.
Yongzhou Xue, Hui Wang, Qinghai Tan, Jun Zhang, Tongjun Yu, Kun Ding, Desheng Jiang, Xiuming Dou, Jun-jie Shi, and Bao-quan Sun, "Anomalous Pressure Characteristics of Defects in Hexagonal Boron Nitride Flakes," ACS Nano 12, 7127–7133 (2018).

Gabriele Grosso, Hyowon Moon, Benjamin Lienhard, Sajid Ali, Dmitri K. Efetov, Marco M. Furchi, Pablo Jarillo-Herrero, Michael J. Ford, Igor Aharonovich, and Dirk Englund, "Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride," Nature Communications 8, 705 (2017).

Shunping Zhang and Hongxing Xu, "Tunable dark plasmons in a metallic nanocube dimer: toward ultimate sensitivity nanoplasmonic sensors," Nanoscale 8, 13722–13729 (2016).

Rohit Chikkaraddy, Bart de Nijs, Felix Benz, Steven J. Barrow, Oren A. Scherman, Edina Rosta, Angela Demetriadiou, Peter Fox, Ortwin Hess, and Jeremy J. Baumberg, "Single-molecule strong coupling at room temperature in plasmonic nanocavities," Nature 535, 127–130 (2016).

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Nabar, O. Benson, and M. Wegener, "Wiring up pre-characterized single-photon emitters by laser lithography," Scientific Reports 6, 31135 (2016).

M. Oszchrey, F. Gericke, A. Schüßler, R. Schmidt, J.-H. Schulze, T. Heindel, S. Rodt, A. Strittmatter, and S. Reitzenstein, "In situ/i¿ electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy," Applied Physics Letters 102, 251113 (2013).

A. Dousse, L. Lanco, J. J. Suffczyński, E. Semenova, A. Miar, A. Lemaitre, I. Sagnes, C. Robin, J. Bloch, and P. Senellart, "Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography," Physical Review Letters 101, 267404 (2008).

"See Supplemental Material at ????? for the description of the lifetime measurement, the determination of the dipole - AFM tip distance, the normalization of the polarization intensity, the function and fit values used to fit the recorded spectra, and the spectral shifts of another single photon emitter in hBN."

Toan Trong Tran, Danqing Wang, Zai-Quan Xu, Ankun Yang, Milos Toth, Teri W. Odom, and Igor Aharonovich, "Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays," Nano Letters 17, 2634–2639 (2017).

Toan Trong Tran, Christopher Elbadawi, Daniel Totonjian, Charlene J. Lobo, Gabriele Grosso, Hyowon Moon, Dirk R. Englund, Michael J. Ford, Igor Aharonovich, and Milos Toth, "Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride," ACS Nano 10, 7331–7338 (2016).

Terence E. Warner, Synthesis, Properties and Mineralogy of Important Inorganic Materials (John Wiley & Sons, Ltd, Chichester, UK, 2011) p. 550.

Clotilde Lethiec, Julien Laverdant, Henri Vallon, Clémentine Javaux, Benoît Dubertret, Jean-Marc Frigerio, Catherine Schwob, Laurent Coolen, and Agnès Maître, "Measurement of Three-Dimensional Dipole Orientation of a Single Fluorescent Nanoemitter by Emission Polarization Analysis," Physical Review X 4, 021037 (2014).

JCMwave GmbH, "JCM wave," (2018).

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, "Inverted Electron-Hole Alignment in InAs-GaAs Self-Assembled Quantum Dots," Physical Review Letters 84, 733–736 (2000).

J. A. Barker and E. P. O’Reilly, "Theoretical analysis of electron-hole alignment in InAs-GaAs quantum dots," Physical Review B 61, 13840–13851 (2000).

J. Colchero, A. Gil, and A. M. Baró, "Resolution enhancement and improved data interpretation in electrostatic force microscopy," Physical Review B 64, 245403 (2001).

Niko Nikolay, Nikola Sadzak, Alexander Dohms, Boaz Lubotzky, Hamza Abudayyeh, Ronen Rapaport, and Oliver Benson, "Accurate placement of single nanoparticles on opaque conductive structures," Applied Physics Letters 113, 113107 (2018).

Mikhail V. Rybin, Kirill L. Koshelev, Zarina F. Sadrieva, Kirill B. Samusev, Andrey A. Bogdanov, Mikhail F. Limonov, and Yuri S. Kivshar, "High-Q Supercavity Modes in Subwavelength Dielectric Resonators," Physical Review Letters 119, 243901 (2017).

Bart de Nijs, Richard W. Bowman, Lars O. Herrmann, Felix Benz, Steve J. Barrow, Jan Mertens, Daniel O. Sigle, Rohit Chikkaraddy, Anna Eiden, Andrea Ferrari, Oren A. Scherman, and Jeremy J. Baumberg, "Unfolding the contents of sub-nm plasmonic gaps using normalising plasmon resonance spectroscopy," Faraday Discussions 178, 185–193 (2015).