Effects of the COVID-19 pandemic on maternal and perinatal outcomes: a systematic review and meta-analysis

Barbara Chmielewska, Imogen Barratt, Rosemary Townsend, Erkan Kalafat, Jan van der Meulen, Ipek Gurrol-Urganci, Pat O’Brien, Edward Morris, Tim Draycott, Shakila Thangaratinam, Kirsty Le Doare, Shamez Ladhani, Peter von Dadelszen, Laura Magee, Asma Khalil

Summary
Background The COVID-19 pandemic has had a profound impact on health-care systems and potentially on pregnancy outcomes, but no systematic synthesis of evidence of this effect has been undertaken. We aimed to assess the collective evidence on the effects on maternal, fetal, and neonatal outcomes of the pandemic.

Methods We did a systematic review and meta-analysis of studies on the effects of the pandemic on maternal, fetal, and neonatal outcomes. We searched MEDLINE and Embase in accordance with PRISMA guidelines, from Jan 1, 2020, to Jan 8, 2021, for case-control studies, cohort studies, and brief reports comparing maternal and perinatal mortality, maternal morbidity, pregnancy complications, and intrapartum and neonatal outcomes before and during the pandemic. We also planned to record any additional maternal and offspring outcomes identified. Studies of solely SARS-CoV-2-infected pregnant individuals, as well as case reports, studies without comparison groups, narrative or systematic literature reviews, preprints, and studies reporting on overlapping populations were excluded. Quantitative meta-analysis was done for an outcome when more than one study presented relevant data. Random-effects estimate of the pooled odds ratio (OR) of each outcome were generated with use of the Mantel-Haenszel method. This review was registered with PROSPERO (CRD42020211753).

Findings The search identified 3592 citations, of which 40 studies were included. We identified significant increases in stillbirth (pooled OR 1.28 [95% CI 1.07–1.54]; P=0.03; 12 studies, 168 295 pregnancies during and 198 993 before the pandemic) and maternal death (1.37 [1.22–1.53]; P=0.001; two studies [both from low-income and middle-income countries], 1237 018 and 2 224 859 pregnancies) during versus before the pandemic. Preterm births before 37 weeks’ gestation were not significantly changed overall (0.94 [0.87–1.02]; P=0.75; 15 studies, 170 640 and 656 423 pregnancies) but were decreased in high-income countries (0.91 [0.84–0.99]; P=0.03; 12 studies, 159 987 and 635 118 pregnancies), where spontaneous preterm birth was also decreased (0.81 [0.67–0.97]; two studies, 4204 and 6818 pregnancies). Mean Edinburgh Postnatal Depression Scale scores were higher, indicating poorer mental health, during versus before the pandemic (pooled mean difference 0.42 [95% CI 0.02–0.81; three studies, 2330 and 6517 pregnancies). Surgically managed ectopic pregnancies were increased during the pandemic (OR 5.81 [2.16–15.6]; P=0.001; three studies, 37 and 272 pregnancies). No overall significant effects were identified for other outcomes included in the quantitative analysis: maternal gestational diabetes; hypertensive disorders of pregnancy; preterm birth before 34 weeks’, 32 weeks’, or 28 weeks’ gestation; iatrogenic preterm birth; labour induction; modes of delivery (spontaneous vaginal delivery, caesarean section, or instrumental delivery); postpartum haemorrhage; neonatal death; low birthweight (<2500 g); neonatal intensive care unit admission; or Apgar score less than 7 at 5 min.

Interpretation Global maternal and fetal outcomes have worsened during the COVID-19 pandemic, with an increase in maternal deaths, stillbirth, ruptured ectopic pregnancies, and maternal depression. Some outcomes show considerable disparity between high-resource and low-resource settings. There is an urgent need to prioritise safe, accessible, and equitable maternity care within the strategic response to this pandemic and in future health crises.

Funding None.

Introduction
The SARS-CoV-2 pandemic has had profound effects on health-care systems, societal structures, and the world economy.1 The adverse effects of the COVID-19 pandemic on maternal and perinatal health are not limited to the morbidity and mortality caused directly by the disease itself. Nationwide lockdowns, disruption of health-care services, and fear of attending health-care facilities might also have affected the wellbeing of pregnant people and their babies.2,3 Emerging evidence suggests that rates of stillbirth and preterm birth might have changed substantially during the pandemic.4,5 A reduction in health-care-seeking behaviour, as well as reduced provision of maternity services, has been suggested as a possible cause.4 Robust estimates of the indirect maternal health effects of the COVID-19 pandemic have not been undertaken, but the effects may be substantial.4,6 Robust evidence is needed to guide strategies to mitigate negative effects and ensure safe, equitable, and accessible care during future pandemics and other health crises.
Research in context

Evidence before this study
Before conducting this study, we electronically searched MEDLINE and Embase from Jan 1, 2020, to Jan 8, 2021, with no language restriction, to identify any previous systematic reviews and meta-analyses. Search terms included stillbirth, perinatal mortality, maternal mortality and morbidity, preterm birth, obstetric complications, mode of delivery, and COVID-19. Large systematic reviews have consistently reported that pregnant individuals infected with SARS-CoV-2 are more likely to require intensive care treatment and experience preterm birth. Although individual studies have reported pandemic-associated changes in pregnancy outcomes in the general maternity population, particularly for preterm birth and stillbirth, no global synthesis of this kind has previously been reported.

Added value of this study
This review provides a comprehensive assessment of the global effects of the COVID-19 pandemic on maternal, fetal, birth, and neonatal outcomes. We identified significant increases in maternal and fetal mortality (particularly in low-income and middle-income countries [LMICs]), ruptured ectopic pregnancies, and maternal symptoms of depression. Moreover, we found a reduction in preterm birth in high-income countries during the pandemic epoch.

Implications of all the available evidence
The disruption caused by the COVID-19 pandemic has led to avoidable deaths of both mothers and babies. Policy makers and health-care leaders must urgently investigate robust strategies for preserving safe and respectful maternity care, even during the ongoing global emergency. Our findings highlight a disproportionate impact on LMICs. Immediate action is required to avoid rolling back decades of investment in reducing mother and infant mortality in low-resource settings. There is also an unprecedented opportunity to investigate the mechanisms underlying the observed reduction in preterm birth and generate novel preventive interventions.

Methods
Overview
We did a systematic review and meta-analysis of studies on the effects of the pandemic on maternal, fetal, and neonatal outcomes. The review was registered with PROSPERO (CRD42020211753) and reported according to PRISMA guidelines. The study protocol is available online.

Search strategy, selection criteria, and data extraction
We electronically searched the MEDLINE and Embase databases from Jan 1, 2020, to Jan 8, 2021. The search included relevant medical subject heading terms, keywords, and word variants for stillbirth, perinatal mortality, maternal mortality and morbidity, preterm birth, obstetric complications, mode of delivery, and COVID-19 (appendix p 4). No language restrictions were applied. One article, which was subsequently excluded, was translated from Mandarin.

Abstracts and potentially relevant full texts were reviewed independently by three authors (BC, IB, and RT) with any conflicts resolved by consensus. Case-control studies, cohort studies, and brief reports were eligible for inclusion. Case reports, studies without comparison groups, narrative or systematic literature reviews, preprint papers, and studies reporting on overlapping populations were excluded. Studies of only SARS-CoV-2-infected women were excluded.

Data were extracted with use of Covidence systematic review software (version 2, Veritas Health Innovation, Melbourne, VIC, Australia). The following data were extracted: author's name, publication date, study design, sampling period, study period, study population, and location. The total number of pregnant women and the sum of adverse events in each group were extracted for categorical outcomes (eg, stillbirth, caesarean section). Mean, standard deviation, and the total number of pregnant women in each outcome group were extracted for outcomes reported on a continuous scale (Edinburgh Postnatal Depression Scale [EPDS] scores).

Outcomes of interest included maternal and perinatal mortality, maternal morbidity, pregnancy complications, and intrapartum and neonatal outcomes. We planned to record any additional maternal and offspring outcomes identified. Where papers described service configuration or resource-use changes without clinical outcomes, we excluded them from the analysis.

Pandemic mitigation response measures were extracted from the Oxford COVID-19 Government Response Tracker. We recorded the maximum restrictions implemented during the study timeframe. Quantitative assessment of the severity of mitigation measures was recorded according to the Government Response Stringency Index (GRSI) developed by the Blavatnik School of Government at the University of Oxford (Oxford, UK).

Quality assessment
Each study was scored according to the Newcastle-Ottawa Scale independently by two assessors (BC, IB)
on three broad characteristics: selection of study groups, comparability of groups, and ascertainment of the outcome of interest.

Statistical analysis

Quantitative meta-analysis was done for an outcome when more than one study presented relevant data. We excluded individual outcomes from studies reporting no adverse outcomes in one or both groups, and studies not satisfying the normality assumption for continuous variables. We divided studies according to World Bank classifications into high-income or low-income and middle-income contexts.

A random-effects estimate of the pooled odds of each outcome was generated with use of the Mantel-Haenszel method. Between-study heterogeneity was explored using the I^2 statistic, with substantial heterogeneity defined as an I^2 value greater than 50%. Meta-regression analyses were done for outcomes with substantial heterogeneity to investigate the relative contribution of the WHO Healthcare Efficiency Index\(^11\) and the stringency of lockdown measures (quantified with the GRSI).\(^9\) GRSI scores were scaled and regression coefficients corresponded to one standard unit change in the respective covariate. Positive regression coefficients indicate an increase in the effect size whereas negative coefficients show a decrease. We reported p values and the amount of accounted heterogeneity for each covariate.

Potential publication bias was assessed with Egger’s test and funnel plots for visual inspection when sufficient studies (n>10) were available.

Analyses were done with R software (version 4.0.2).

Role of the funding source

There was no funding source for this study.

Results

Of 3592 abstracts screened, 192 were relevant for full-text review and 40 met the inclusion criteria for systematic review (figure 1).\(^3\)\(^4\)\(^5\)\(^12\)\(^14\)\(^17\)\(^19\)\(^20\)\(^21\)\(^22\)\(^23\)\(^24\)\(^25\)\(^26\)\(^27\)\(^28\)\(^29\)\(^30\)\(^31\)\(^32\)\(^33\)\(^34\)\(^35\)\(^36\)\(^37\)\(^38\)\(^39\)\(^40\)\(^41\)\(^42\)\(^43\)\(^44\)\(^45\)\(^46\)\(^47\)\(^48\)\(^49\) A list of excluded studies with reasons for exclusion is provided in the appendix (p 6).

Reporting on resource use or service reconfiguration outcomes is summarised in the appendix (p 27). Of the 40 included studies, 31 for which comparable outcomes were also reported in at least one other study were included in the meta-analysis.\(^4\)\(^12\)\(^14\)\(^16\)\(^17\)\(^19\)\(^20\)\(^22\)\(^23\)\(^28\)\(^30\)\(^31\)\(^33\)\(^34\)\(^37\)\(^38\)\(^40\)\(^42\)\(^45\)\(^46\)\(^49\) Table 1 shows the characteristics of the 40 included studies, all of which used a historical cohort design. 17 countries were represented, with substantial variation in pandemic mitigation measures among countries. No study reported data from countries in the lowest WHO Healthcare Efficiency Index quartile, and the majority (28 studies)\(^12\)\(^13\)\(^14\)\(^16\)\(^17\)\(^19\)\(^20\)\(^21\)\(^23\)\(^24\)\(^26\)\(^27\)\(^29\)\(^30\)\(^36\)\(^37\)\(^38\)\(^40\)\(^41\)\(^42\)\(^45\)\(^46\)\(^49\) reported data from countries in the highest quartile (table 2). 21 of the 31 included studies in the quantitative analysis were from high-income countries (HICs) according to the World Bank classification.\(^12\)\(^13\)\(^14\)\(^16\)\(^17\)\(^19\)\(^20\)\(^21\)\(^23\)\(^24\)\(^26\)\(^27\)\(^29\)\(^30\)\(^36\)\(^37\)\(^38\)\(^40\)\(^41\)\(^42\)\(^45\)\(^46\)\(^49\) The reported outcomes and outcome measures are listed with the relevant studies in the appendix (p 31).

The majority of the included studies were of moderate methodological rigour (ie, 6–8 stars on the Newcastle-Ottawa Scale; table 1; appendix p 35). The main weaknesses were inconsistent definition and reporting of outcomes, inconsistency in selection of control groups, and retrospective study design. For example, although 18 papers\(^4\)\(^5\)\(^14\)\(^17\)\(^18\)\(^21\)\(^22\)\(^26\)\(^28\)\(^30\)\(^33\)\(^34\)\(^38\)\(^47\)\(^49\) reported on preterm birth, variation in the gestational age cutoffs and use of ranges limited their comparability.

There were five reports from national registries,\(^12\)\(^17\)\(^18\)\(^19\)\(^47\) six regional reports,\(^30\)\(^33\)\(^34\)\(^45\) and four multicentre studies;\(^28\)\(^37\)\(^43\)\(^45\) the remaining 23 were single-centre studies. 11 studies\(^12\)\(^13\)\(^15\)\(^19\)\(^23\)\(^24\)\(^33\)\(^39\)\(^42\)\(^45\)\(^49\) had a comparison group from the equivalent period in 2019, the year preceding the pandemic. Nine studies\(^16\)\(^17\)\(^20\)\(^28\)\(^30\)\(^32\)\(^35\)\(^47\) had a comparison group of annually matched periods from several preceding years (table 1). 18 studies\(^4\)\(^5\)\(^13\)\(^14\)\(^18\)\(^21\)\(^22\)\(^26\)\(^28\)\(^36\)\(^37\)\(^41\)\(^43\)\(^44\)\(^48\)\(^49\) had a comparison group from immediately before the lockdown period in the respective country. Exposed sample sizes varied from nine to 56720 pregnancies (table 2). Only 19 studies\(^4\)\(^5\)\(^14\)\(^21\)\(^22\)\(^23\)\(^26\)\(^36\)\(^37\)\(^38\)\(^40\)\(^42\)\(^47\) adjusted for
Country	Study population	Reported outcome categories	Sample size of exposed cohort	Total sample size	Data collection period	Newcastle-Ottawa Scale score
Ayaz et al, 2020	Turkey	Maternal anxiety and depression	63	NR	April 12 to May 27, 2020	6
Been et al, 2020	Netherlands	Preterm birth	56,720	1,599,547	Oct 3, 2010, to March 8, 2020	9
Berghella et al, 2020	USA	Overall preterm birth, spontaneous preterm birth, iatrogenic preterm birth, caesarean section, vaginal delivery, perinatal death	1197	2108	March 1 to July 31, 2020	8
Berthelot et al, 2020	Canada	Maternal emotions and concerns	1258	1,754	April 2 to April 23, 2020	6
Bhatia et al, 2020	UK	Caesarean rate	8,381	17,424	Similar period in 2019	7
Bornstein et al, 2020	USA	Vaginal delivery, caesarean section	5,877	11,710	Dec 8, 2019, to March 14, 2020	7
Canigla et al, 2020	Botswana	Stillbirth, preterm birth, neonatal death	10,751	64,848	Annual matched periods, 2012–19	9
Casadio et al, 2020	Italy	Ectopic pregnancy	9	201	Jan 1, 2014, to Feb 29, 2020	7
De Curtis et al, 2020	Italy	Preterm birth, caesarean section, stillbirth	7,755	16,808	March 1 to May 31, 2019	6
Dell’Utri et al, 2020	Italy	Ectopic pregnancy, vaginal delivery, induction of labour, stillbirth	3,647	9,291	Feb 23 to June 24, 2020	7
Goyal et al, 2020	India	Vaginal delivery, caesarean section, instrumental delivery, NICU admission, 5-min Apgar score, cord blood gas, preterm birth	920	1,936	Jan 1 to Feb 29, 2020	9
Gu et al, 2020	China	Gestational hypertension, gestational diabetes, preterm birth, caesarean section, vaginal delivery, stillbirth, 5-min Apgar score, NICU admission, maternal anxiety	271	582	Jan 1 to Feb 29, 2020	5
Handley et al, 2021	USA	Stillbirth, overall preterm birth, spontaneous preterm birth, iatrogenic preterm birth	3,007	8,914	Annual matched periods, 2018–19	9
Hedermann et al, 2021	Denmark	Preterm birth	5,162	31,180	Annual matched periods, 2015–19	7
Hui et al, 2020	Hong Kong	Vaginal delivery, caesarean section, instrumental delivery, post-partum depression	954	4,531	Jan 1, 2019, to Jan 4, 2020	5
Justman et al, 2020	Israel	Gestational hypertension, gestational diabetes, induction of labour, caesarean section, instrumental delivery, preterm birth, 5-min Apgar score, NICU admission, stillbirth, post-partum haemorrhage	610	1,352	March 1 to April 30, 2019	9
Kasuga et al, 2020	Japan	Preterm birth, gestational hypertension	153	713	Jan 1 to Feb 28, 2019	7
Kc et al, 2020	Nepal	Induction of labour, caesarean section, preterm birth, stillbirth, neonatal death	7,165	20,354	Annual matched periods, 2017–19	9
Khalil et al, 2020	UK	Gestational hypertension, gestational diabetes, stillbirth, preterm birth, caesarean section, NICU admission	1,718	3,399	Oct 1, 2019, to Jan 31, 2020	7
Kugelman et al, 2020	Israel	NICU admission, umbilical cord blood pH, 5-min Apgar score	398	942	March 15 to April 12, 2019	7
Kumar et al, 2021	India	Stillbirth	3610	9,771	March 1 to Sept 30, 2019	9
Kumani et al, 2020	India	Caesarean section, maternal death, stillbirth	3,527	9,736	Jan 15 to March 24, 2020	5

(Table 1 continues on next page)
socioeconomic status, ethnic background, comorbidities, or other confounding factors.

A summary of the findings from included studies is shown in table 2. Meta-analysis was done for 21 outcomes for which more than one study was available for quantitative synthesis (table 3).

Three studies included data on maternal death, all of which reported an increase during the pandemic compared with before the pandemic, although this increase was statistically significant in only one study. Two studies in which statistical analysis was done, from India and Mexico, were included in the meta-analysis (1237018 pregnancies during and 2224859 before the pandemic), which showed a significant increase in maternal death during the pandemic (OR 1·37 [95% CI 1·22–1·53]; I²=0%; table 3, figure 2A), with findings dominated by a single study.
Government Response Stringency Index12	WHO Healthcare Efficiency Index14	Outcomes
		Statistically significant increase during pandemic
		Statistically significant decrease during pandemic
		Statistically non-significant change
Ayaz et al, 202022	77.78 0.734	Maternal anxiety (IDAS II score), moderate and severe maternal anxiety (BAI score)
		No maternal anxiety (BAI score), mild maternal anxiety (BAI score)
		Preterm birth before 37 weeks’ gestation post mitigation measures introduced on March 9
		Preterm birth before 37 weeks’ gestation
Been et al, 20205	79.63 0.928	None
		Preterm birth before 37 weeks’ gestation
		Preterm birth before 34 weeks’ gestation, preterm birth before 28 weeks’ gestation
Berghella et al, 202011	72.69 0.838	None
		Overall preterm birth before 37 weeks’ gestation
		Caesarean section, vaginal delivery, stillbirth, iatrogenic preterm birth before 37 weeks’ gestation
Berthelot et al, 202024	74.54 0.881	Depressive and anxiety symptoms, dissociative symptoms, symptoms of post-traumatic stress disorder, negative affectivity
		Positive affectivity
		None
Bhatia et al, 202011	79.63 0.925	Caesarean section
		None
Bormstein et al, 202014	72.69 0.838	None
		Caesarean section, vaginal delivery
Caniglia et al, 202013	86.11 0.388	None
		Preterm birth before 37 weeks’ gestation
		Neonatal death, stillbirth
Casadio et al, 202020	93.52 0.991	Ruptured ectopic pregnancy (needing surgical intervention)
		None
		None
De Curtis et al, 202015	93.52 0.991	Stillbirth
		Preterm birth before 37 weeks’ gestation
		Caesarean section
Dell’Utri et al, 202020	75.46 0.991	Stillbirth, induction of labour
		None
		Vaginal delivery, surgical management of ectopic pregnancy
Goyal et al, 202111	100.0 0.617	None
		None
Greene et al, 202014	72.69 0.838	None
		Vaginal delivery, caesarean section, instrumental delivery, NICU admission, 5-min Apgar score <7, umbilical cord blood pH
Gu et al, 202020	81.02 0.485	Gestational hypertension, gestational diabetes
		None
		Caesarean section, stillbirth, gestational diabetes, vaginal delivery, NICU admission, mean Apgar score <7, umbilical cord blood pH
Handley et al, 202121	72.69 0.838	None
		Stillbirth, preterm birth before 37 weeks’ gestation, spontaneous preterm birth, iatrogenic preterm birth
Hedermann et al, 202121	72.22 0.862	Preterm birth before 28 weeks’ gestation
		Preterm birth at 28–32 weeks’ gestation, preterm birth at 32–36 weeks’ gestation
Hui et al, 202020	66.67 0.485	Postnatal depression (EPDS score >10 1 day after delivery)
		None
		Vaginal delivery, caesarean section, instrumental delivery, postnatal depression (EPDS score)
Justman et al, 202020	94.44 0.884	Gestational diabetes, gestational hypertension
		None
		Caesarean section, induction of labour, instrumental delivery, stillbirth, preterm birth before 37 weeks’ gestation and before 32 weeks’ gestation, post-partum haemorrhage, 5-min Apgar score <7, umbilical cord blood pH, NICU admission
Kasuga et al, 202020	47.22 0.957	None
		Gestational hypertension, preterm birth before 27 weeks’ gestation
		Preterm birth (gestation not specified)
Kc et al, 202020	96.3 0.457	Caesarean section, induction of labour, stillbirth, neonatal death, preterm birth before 37 weeks’ gestation
		None
		Vaginal delivery, birthweight <2.5 kg
Khalil et al, 202020	79.63 0.925	Stillbirth
		Gestational hypertension
		Caesarean section, preterm birth before 37 weeks’ gestation, gestational diabetes, NICU admission
Kugelman et al, 202023	94.44 0.884	None
		NICU admission, umbilical cord blood pH <7, 5-min Apgar score <7
Kumar et al, 202124	100.0 0.617	Stillbirth
		None
Kumari et al, 202024	100.0 0.617	Caesarean section, maternal death, stillbirth
		None
		None
Li et al, 202024	81.94 0.485	Caesarean section
		None

(Table 2 continues on next page)
14 studies from nine countries provided data on the incidence of stillbirth during (168 295 births) and before the pandemic (165 118 births). Two of these studies were excluded (Gu et al because no adverse outcomes were reported and Khalil et al because of cohort overlap with another larger study in the analysis). Meta-analysis of the remaining 12 studies found a significant increase in the rate of stillbirth (pooled OR 1·28 [95% CI 1·07–1·54]; I²=63%; table 3, figure 2B). A subgroup analysis according to study setting produced similar findings, but only the subgroup of low-income and middle-income countries (LMICs) reached statistical significance (1·29 [1·06–1·58]; I²=64%), whereas HICs did not (1·38 [0·94–2·02]; I²=52%). Funnel plot asymmetry testing did not show a significant publication bias effect (p=0·12; appendix p 42). One study reported on antepartum and intrapartum stillbirth separately and found no difference in the proportion of antenatally diagnosed stillbirth, despite an overall increase in stillbirth in this tertiary centre in India. Three studies reported on neonatal death. The largest, from Nepal, found a statistically significant increase, but two smaller studies identified no significant change. The pooled OR for studies included in the meta-analysis (detailing 13 214 births during and 22 570 before the pandemic) was 1·01 (95% CI 0·38–2·67; I²=85%)

Table 2: Summary of findings of included studies

Government Response Stringency Index	WHO Healthcare Efficiency Index	Outcomes		
Statistically significant increase during pandemic	Statistically significant decrease during pandemic	Statistically non-significant change		
Lumbreras-Marquez et al, 2020	82·41	0·755	None	
Main et al, 2020	72·69	0·838	Preterm birth at 28–32 weeks’ gestation	None
Matvienko-Sikar et al, 2020	90·74	0·924	None	Pregnancy-specific stress (NuPDQ score)
McDonnell et al, 2020	90·74	0·924	None	Birthweight <2·5 kg, stillbirth, neonatal death (early and late), caesarean section, instrumental delivery (vacuum and forceps), vaginal delivery, induction of labour, gestational hypertension, pre-eclampsia, post-partum haemorrhage, preterm birth before 37 weeks’ gestation, preterm birth before 26 weeks’ gestation
Meyer et al, 2020	94·44	0·884	None	Preterm birth before 34 weeks’ gestation, NICU admission
Mor et al, 2020	94·44	0·884	Stillbirth, induction of labour, 5-min Apgar score <7	None
Pariente et al, 2020	94·44	0·884	None	Postpartum depression (EPDS score)
Philip et al, 2020	90·74	0·924	None	Very low birthweight (<1500 g) Extremely low birthweight (<1000 g)
Silverman et al, 2020	72·69	0·838	None	Postnatal depression (EPDS score) None
Stowe et al, 2021	79·63	0·925	None	None
Sun et al, 2020	81·02	0·573	No statistical analysis done	No statistical analysis done
Suzuki et al, 2020	47·22	0·957	Maternal depression (Whooley questions)	None
Werner et al, 2020	72·69	0·838	No statistical analysis done	None
Wu et al, 2020	77·31	0·485	Postnatal depression (EPDS score), maternal anxiety (EPDS-3A score)	None
Xie et al, 2021	81·94	0·485	Maternal depression, maternal anxiety (SCL-90-R score)	None
Zanardo et al, 2020	93·52	0·991	Postnatal depression (EPDS score)	Caesarean section

BDAS-II=Inventory of Depression and Anxiety Symptoms, Expanded Form. BAI=Beck Anxiety Inventory. NICU=neonatal intensive care unit. EPDS=Edinburgh Postnatal Depression Scale. NuPDQ=Revised Prenatal Distress Questionnaire. SCL-90-R=Symptom Checklist 90 Revised.
Studies	Pandemic	Pre-pandemic	Odds ratio or mean difference*	p value	I²			
	Events	Pregnancies	Events	Pregnancies				
Maternal and perinatal death								
Stillbirth	12	1099	168 295	1325	198 993	1·28 (1·07–1·54)	0·0082	63%
HICs only	8	625	150 404	640	165 118	1·38 (0·94–1·92)	0·099	52%
LMICs only	4	474	17 891	685	33 775	1·29 (1·06–1·58)	0·012	64%
Neonatal death	3	62	13 214	120	22 570	1·01 (0·38–2·67)	0·98	85%
HICs only	1	5	2538	6	1262	0·41 (0·13–1·36)	0·14	NA
LMICs only	2	57	10 576	114	21 308	1·37 (0·42–4·46)	0·59	90%
Maternal death	2	530	1 237 018	698	2 224 859	1·37 (1·22–1·53)	<0·0001	0%
HICs only	0	NA	NA	NA	NA	NA	NA	
LMICs only	2	530	1 237 018	698	2 224 859	1·37 (1·22–1·53)	<0·0001	0%
Maternal morbidity and complications								
Gestational diabetes	6	697	69 464	954	10 137	1·01 (0·86–1·19)	0·85	45%
HICs only	5	667	66 75	920	9826	1·02 (0·85–1·22)	0·86	56%
LMICs only	1	30	271	34	311	1·01 (0·60–1·71)	0·95	NA
Hypertensive disorders of pregnancy	6	293	69 464	434	10 137	1·16 (0·75–1·79)	0·50	81%
HICs only	5	279	66 75	431	9826	0·99 (0·67–1·46)	0·95	77%
LMICs only	1	14	271	3	311	5·59 (1·59–19·7)	0·0073	NA
EPDS score	3	NA	2330	NA	6517	0·42 (0·02–0·81)	0·038	79%
HICs only	1	NA	91	NA	101	2·16 (0·92–5·40)	0·0006	NA
LMICs only	2	NA	2239	NA	6416	0·22 (0·21–0·23)	<0·0001	0%
Early pregnancy outcomes								
Surgical treatment of ectopic pregnancy	3	27	37	73	272	5·81 (2·16–1·56)	0·0005	26%
HICs only	3	27	37	73	272	5·81 (2·16–1·56)	0·0005	26%
LMICs only	0	NA	NA	NA	NA	NA	NA	
Delivery outcomes								
Spontaneous vaginal delivery	11	17 305	26 494	27 011	40 639	0·98 (0·93–1·02)	0·25	25%
HICs only	6	9675	14 632	11 288	16 362	0·99 (0·94–1·05)	0·80	4%
LMICs only	5	7630	11 862	15 723	24 777	0·95 (0·90–1·04)	0·33	37%
Caesarean section	17	15 304	48 550	20 656	67 442	1·02 (0·99–1·05)	0·14	46%
HICs only	11	10 091	33 261	10 824	36 956	1·01 (0·97–1·04)	0·76	10%
LMICs only	6	5 225	15 389	9 832	30 486	1·07 (0·99–1·16)	0·072	55%
Induction of labour	7	4860	16 459	5208	24 592	1·15 (0·81–1·64)	0·43	98%
HICs only	6	2578	9 294	2950	11 403	1·03 (0·90–1·19)	0·64	74%
LMICs only	1	2282	7 165	2258	13 189	2·26 (2·12–2·42)	<0·0001	NA
Instrumental delivery	7	1045	16 287	1492	27 066	1·16 (0·97–1·35)	0·22	0%
HICs only	5	728	8 168	740	10 300	1·02 (0·95–1·20)	0·88	0%
LMICs only	2	317	8 119	752	16 766	1·02 (0·82–1·26)	0·25	0%
Preterm birth before 37 weeks’ gestation	15	13 466	170 640	49 596	656 423	0·94 (0·87–1·02)	0·13	75%
HICs only	12	11 600	159 987	46 149	635 118	0·91 (0·84–0·98)	0·035	63%
LMICs only	3	1866	10 653	3447	21 305	1·05 (0·91–1·25)	0·73	88%
Preterm birth before 34 weeks’ gestation	4	141	7 039	210	9872	0·76 (0·42–1·36)	0·35	85%
HICs only	4	141	7 039	210	9872	0·76 (0·42–1·36)	0·35	85%
LMICs only	0	NA	NA	NA	NA	NA	NA	
Preterm birth before 32 weeks’ gestation	6	2297	152 422	66 79	627 344	0·95 (0·64–1·39)	0·77	90%
HICs only	5	2198	148 974	6409	619 269	0·96 (0·61–1·52)	0·87	86%
LMICs only	1	99	3 448	270	8075	0·85 (0·68–1·08)	0·18	NA

(Table 3 continues on next page)
The substantial statistical heterogeneity (table 3) was explained by neither WHO Healthcare Efficiency Index quartile nor GRSI score (appendix p 39).

Quantitative synthesis was possible for gestational diabetes (OR 1·01 [95% CI 0·86–1·19]; p=0·56) and hypertensive disorders of pregnancy (1·16 [0·75–1·79]; p=0·020). The statistical heterogeneity in the meta-analysis of hypertensive disorders of pregnancy was partly explained by WHO Healthcare Efficiency Index quartile (p=0·023) but not GRSI score (p=0·89; appendix p 39).

Two studies reported on post-partum haemorrhage. Meta-analysis (including 3098 pregnancies during and 1978 before the pandemic) found no significant difference associated with the pandemic (OR 1·02 [95% CI 0·87–1·19]; p=0·82; table 3, appendix p 48). The statistical heterogeneity in the meta-analysis of hypertensive disorders of pregnancy was partly explained by WHO Healthcare Efficiency Index quartile (p=0·023) but not GRSI score (p=0·89; appendix p 39).

Tabelle 3: Results of the quantitative synthesis

Studies	Pandemic	Pre-pandemic	Odds ratio or mean difference*	p value	I²			
	Events	Pregnancies	Events	Pregnancies				
Preterm birth before 28 weeks’ gestation								
HICs only	3	605	135,606	2603	586,189	0·84 (0·46–1·53)	0·56	57%
LMICs only	0	NA	NA	NA	NA	0·84 (0·46–1·53)	0·56	86%
Iatrogenic preterm birth, any week	2	208	420,4	358	6818	0·92 (0·77–1·10)	0·38	0%
HICs only	2	208	420,4	358	6818	0·92 (0·77–1·10)	0·38	0%
LMICs only	0	NA	NA	NA	NA	0·92 (0·77–1·10)	0·38	0%
Spontaneous preterm birth, any week	2	192	420,4	374	6818	0·81 (0·67–0·97)	0·20	0%
HICs only	2	192	420,4	374	6818	0·81 (0·67–0·97)	0·20	0%
LMICs only	0	NA	NA	NA	NA	0·81 (0·67–0·97)	0·20	0%
Postpartum haemorrhage	2	603	309,8	318	1978	1·02 (0·87–1·19)	0·22	0%
HICs only	2	603	309,8	318	1978	1·02 (0·87–1·19)	0·22	0%
LMICs only	0	NA	NA	NA	NA	1·02 (0·87–1·19)	0·22	0%

Neonatal outcomes

Studies	Pandemic	Pre-pandemic	Odds ratio or mean difference*	p value	I²			
	Events	Pregnancies	Events	Pregnancies				
Birthweight <2500 g	3	919	9743	1510	14,492	0·99 (0·90–1·08)	0·75	0%
HICs only	1	144	2538	78	1262	0·91 (0·69–1·21)	0·53	NA
LMICs only	2	775	7205	1432	13,230	0·99 (0·91–1·09)	0·90	0%
NICU admission	7	446	8072	1604	37,557	0·90 (0·80–1·01)	0·084	0%
HICs only	6	413	7801	1555	37,246	0·91 (0·80–1·03)	0·14	0%
LMICs only	1	33	271	49	311	0·74 (0·46–1·19)	0·21	NA

Data are n or point estimate (95% CI). HICs=high-income countries. LMICs=low-income and middle-income countries. NA=not applicable. EPDS=Edinburgh Postnatal Depression Scale. NICU=neonatal intensive care unit. *Random-effects estimates calculated by Mantel-Haenszel method for during versus before pandemic; all values are odds ratios, except the estimate for EPDS scores (mean difference).

Table 3: Results of the quantitative synthesis

Generalised Anxiety Disorder 7 questionnaire, Inventory of Depression and Anxiety Symptoms (Expanded Form), Symptom Checklist 90 Revised, and Patient Health Questionnaire 9. Four studies gave mean EPDS scores (on a scale of 0–30). One study violated the normality assumption and was excluded from quantitative synthesis. For the remaining three studies, the pooled mean difference was 0·4 (95% CI 0·2–0·5; p=0·020; table 3, appendix p 49). There was significant statistical heterogeneity, not explained by either the WHO Healthcare Efficiency Index quartile (p=0·89) or GRSI score (p=0·023). When subdivided according to country income status, there was a statistically significant increase in mean EPDS score in LMICs (0·22 [0·21 to 0·23]). Of the 11 studies reporting on maternal mental health, seven reported a statistically significant increase in postnatal depression, maternal anxiety, or both.

Three studies reported on the surgical management of ectopic pregnancy. Meta-analytical summary of three studies found increased odds for surgical treatment of ectopic pregnancy during the pandemic (OR 5·81 [95% CI 3·06–11·14]; p=0·0001; table 3, appendix p 48).
Figure 2: Forest plot of pooled ORs for maternal death (A), stillbirth (B), surgical management of ectopic pregnancy (C), and preterm birth before 37 weeks’ gestation (D)

ORs are random-effects estimates calculated by Mantel-Haenszel method. HIC=high-income country, LMIC=low-income and middle-income country. NA=not applicable. OR=odds ratio. *All studies investigating this outcome fell into a single subgroup (either LMIC or HIC), therefore, the subgroup totals are the same as the overall totals.*

A. LMIC subgroup

Study	Pandemic Events	Pre-pandemic Events	Weight	OR (95% CI)
Kumar et al, 2020	7	1237018		0.99 (0.87–1.10)
Lumbereas-Marquez et al, 2020	523	3527		0.71 (0.50–1.00)
Overall total	530	1,233,491		1.54 (1.50–1.59)

B. HIC subgroup

Study	Overall total	Weight	OR (95% CI)
McDonnell et al, 2020	249	1312218	1.28 (1.26–1.30)
Handley et al, 2021	419	153	1.25 (1.23–1.28)
Justman et al, 2020	111	3610	1.22 (1.20–1.24)
Overall total	547	1,7876	1.27 (1.25–1.29)

C. HIC subgroup

Study	Overall total	Weight	OR (95% CI)
Casadio et al, 2020	76	3585	0.96 (0.93–0.99)
Kumar et al, 2021	153	7165	1.26 (1.23–1.29)
Overall total	229	10,903	1.26 (1.23–1.29)

D. LMIC subgroup

Study	Overall total	Weight	OR (95% CI)
Casadio et al, 2020	63	400	1.04 (1.02–1.05)
Kumar et al, 2021	111	3527	1.02 (1.00–1.04)
Overall total	174	4007	1.02 (1.00–1.04)

Notes:
- LMIC=low-income countries
- HIC=high-income countries
- CI=confidence interval
- df=degrees of freedom
- OR=odds ratio
- *P<0.05
- **P<0.01
- ***P<0.001

References:
- Sun et al, 2020
- McDonnell et al, 2020
- Dell'Utri et al, 2020
- Caniglia et al, 2020
- Justman et al, 2020
- Dell'Utri et al, 2020
- Lumbreras-Marquez et al, 2020
- Kumari et al, 2020
There was a significant decrease in preterm birth in specific subgroups. Preterm birth was reported in 18 articles including 4,12,14,15,19,21,23,31,32,38 with varying gestational age thresholds, and conflicting findings. Several large studies reported a local decrease in preterm birth, mostly in western European countries. A large study reported an increase in preterm birth in Nepal. Pooled analysis showed no overall effect for preterm birth before 37 weeks' gestation (OR 0.94 [95% CI 0.87–1.02]; P=0.13; appendix p 51) during versus before the pandemic. 17 studies, including 4,12,14,15,19,21,23,31,32,38 showed no significant change in caesarean section rate (1.03 [0.99–1.07]; P=0.46; table 3, appendix p 52), with consistent findings when subdivided into HICs and LMICs. Additionally, on the basis of seven studies, including 4,12,14,15,19,21,32 rates of instrumental delivery did not differ during versus before the pandemic (1.06 [0.97–1.15]; P=0.90; table 3, appendix p 53). The funnel plot asymmetry tests showed no significant publication bias in the included studies for vaginal birth (p=0.53) or caesarean section (p=0.61; appendix pp 64–65).

Seven studies, including 4,12,14,15,19,21,32 reported a local decrease in spontaneous preterm birth before 34 weeks' gestation (0.76 [0.68–0.84]; P=0.0001) but no difference in the rate of spontaneous preterm birth before 37 weeks' gestation (0.81 [0.73–0.90]; P=0.03). The funnel plot asymmetry test showed no significant publication bias in the included studies for neonatal asphyxia (p=0.12). Meyer and colleagues reported on a composite score for adverse neonatal outcomes and found no difference between pandemic and pre-pandemic cohorts (p=0.12).

Discussion

This systematic review summarises the available global data on the effects of the COVID-19 pandemic on maternal and perinatal outcomes. We found increased maternal mortality and stillbirth, maternal stress, and ruptured ectopic pregnancies during the pandemic compared with before the pandemic. Stillbirth might be particularly increased in LMIC settings. There was no overall difference in preterm birth, but analyses of HIC data only suggested that both preterm birth before 37 weeks' gestation and spontaneous preterm birth might be reduced. WHO Healthcare Efficiency Index explained some of the observed between-study heterogeneity, but GRSI scores did not. This finding suggests that the increased rate of adverse outcomes might be driven mainly by the inefficiency of health-care systems and...
their inability to cope with the pandemic, rather than by the stringency of pandemic mitigation measures.

The strengths of this review include the comprehensive search not restricted by language, and the inclusion and synthesis of a broad range of literature. We used meta-regression to adjust for between-study heterogeneity in important outcomes, and analysed HIC and LMIC settings separately to clarify the differential effects of the pandemic by country income.

The main limitations are the retrospective design of the included studies, as well as the heterogeneity of the study populations and the definitions and ways of measuring outcomes, thereby limiting the comparability of results. There were fewer studies from LMIC settings than from HIC settings, which is concerning because our analysis showed substantial variation in outcomes between high-income and low-income settings. With regard to stillbirth, only one study reported on antepartum and intrapartum stillbirth separately, limiting our ability to speculate on the probable mechanism of this change. Few studies reported both stillbirth and preterm birth in the same cohort, which would be necessary to ascertain whether the cost of a reduction in preterm birth was an increase in stillbirth. Finally, we could not exclude the risk of publication bias against studies reporting negative findings, although funnel plot asymmetry testing for such bias was negative.

Early evidence suggested that the pandemic period was marked by a substantial decrease in preterm birth. Our findings from HICs supported this decrease, whereas those from LMICs did not. The report of a significant reduction in very low birthweight birth in Ireland further supports the hypothesis that preterm birth in HICs was reduced during the pandemic.11 Although no significant overall difference in neonatal death was observed, the data suggested that neonatal death might be increased in LMICs and decreased in HICs, consistently with the observed trends in preterm birth, a leading cause of neonatal mortality. This reduction in HICs appears to be driven by a reduction in spontaneous preterm birth, and is, therefore, not likely to be explained by reduced iatrogenic delivery. It is more likely that changes in health-care delivery and population behaviours are contributing factors. If a decrease in preterm birth has been achieved without a corresponding increase in fetal loss in some regions, there are valuable lessons to be learned from understanding the mechanisms underlying this effect.

The observed increase in maternal death is based only on data from LMICs. However, our findings are particularly concerning because these areas already carry the majority of the global burden of maternal mortality. This finding is supported by national data from Kenya not yet formally published,51 and we call for further investigation of maternal mortality as a matter of urgency, particularly in LMIC settings. Data from the MBRRACE-UK rapid report are reassuring; in the first wave of the pandemic (March–May, 2020), there were 16 maternal deaths (ten associated with SARS-CoV-2) of an estimated 162,344 births, corresponding to a maternal mortality rate of 9.9 per 100,000,31 compared with a pre-pandemic rate of 9.7 per 100,000 in 2016–18.

One proposed explanation for the increase in adverse pregnancy outcomes is that such outcomes could be linked to reduced access to care. Although maternal anxiety was consistently shown to be increased during the pandemic, health-care providers around the world have reported reduced attendance for routine31,33,35–37 and unscheduled pregnancy care.30,31,33,35–37 This reduction could be driven by concern about the risk of acquiring COVID-19 in health-care settings, governmental advice to stay at home, or reduced public transport and childcare access during lockdowns.11,32 In HICs, much of routine care was rapidly restructured and delivered remotely using diverse models, including telephone or video-based appointments. Although technology can provide a COVID-19-secure path to continuity of antenatal care, there remains inequality of access for people without regular access to high-speed internet or privacy in their living space.33,34 In LMICs, where remote consultations are less feasible, people might simply miss out on preventive antenatal care entirely.11,31

In all settings, the impact is greatest on the most vulnerable individuals in the population: in Nepal, hospital deliveries decreased, most markedly among disadvantaged groups;31 and in the UK, 88% of pregnant women who died during the first wave of the pandemic were from black and minority ethnic groups.11

Reduced access to care is not the sole factor to consider in our continuing response to this global emergency. During its peak prevalence, maternity staff have been redeployed to support critical care and medical teams, reducing the staffing available for maternity care. Following the first wave in the UK, the Royal College of Obstetricians and Gynaecologists argued strongly for excluding maternity staff from redeployment wherever possible. We strongly recommend the prioritisation of safe staffing for maternity services throughout all phases of the pandemic response and in response to future health system shocks.

Wider societal changes are also echoed in observed changes in maternal health. Intimate-partner violence, already a leading cause of maternal death, has increased during the pandemic11 and has already been highlighted31 as a contributor to increased maternal mortality. Women have been disproportionately more likely to both become unemployed31 and take on more childcare because of nursery and school closures. The resultant financial and time constraints are likely to have far-reaching consequences for mothers’ physical, emotional, and financial health during pregnancy and in the future.

Health-care providers planning for service delivery in the ongoing pandemic must consider how to establish robust antenatal care pathways that explicitly reach out to vulnerable individuals and communities. Public health
messaging must emphasise the importance of antenatal care, and provide avenues of support for those at risk of intimate-partner violence. National governments must consider how to support financially vulnerable and socially isolated individuals, considering that each intersecting vulnerability magnifies risk across all contexts.14,42

It is clear that pregnant individuals and babies have been subjected to harm during the pandemic, and the onus is on the academic community, health-care providers, and policy-makers to learn from it. Women’s health-care is often adversely affected in humanitarian disasters41 and our findings highlight the central importance of planning for robust maternity services in any emergency response.

There remain opportunities to be seized as well as challenges to be faced as we work to end the grip of the pandemic on our global community. Rapid restructuring of maternity care has shown that high-quality remote care can be facilitated, reductions in hospital stay can be achieved, and apparently intractable and entrenched problems can be transformed by the concerted application of funding, scientific enquiry, and political will. We can prioritise safe and accessible maternity care during the pandemic and the aftermath, while planning for a future of radically inclusive and equitable maternity care that will draw on the lessons of this pandemic to reduce preterm birth, stillbirth, and maternal mortality worldwide.

Contributors

BC, IB, RT, EK, and AK participated in the data curation, formal analysis, and validation. LM, JvdM, IG-U EM, TD, ST, KLD, and SL participated in the investigation and visualisation. PvD and PO’B participated in the investigation, validation, and visualisation. All authors participated in the conceptualisation, visualisation, and writing, reviewing, and editing of the manuscript, and have read and agreed to the published version of the manuscript. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication. BC, IB, RT, and EK accessed and verified the data underlying the study.

Declaration of interests

We declare no competing interests.

Data sharing

All datasets generated and analysed, including the study protocol, search strategy, list of the included and excluded studies, data extracted, analysis plans, quality assessment, and assessment of the publication bias, are available in the Article and upon request from the corresponding author.

Acknowledgments

We thank Prof Paul Heath for his valuable critical appraisal of the systematic review.

References

1 World Bank. The global economic outlook during the COVID-19 pandemic: a changed world. June 8, 2020. https://www.worldbank.org/en/news/feature/2020/06/08/the-global-economic-outlook-during-the-covid-19-pandemic-a-changed-world (accessed Nov 14, 2020).

2 Burki T. The indirect impact of COVID-19 on women. Lancet Infect Dis 2020; 20: 904–05.

3 Robertson T, Carter ED, Chou VB, et al. Early estimates of the indirect effects of the COVID-19 pandemic on maternal and child mortality in low-income and middle-income countries: a modelling study. Lancet Glob Health 2020; 8: e901–08.

4 Khalil A, von Dadelszen P, Draycott T, Ugwumadu A, O’Brien P, Magee L. Change in the incidence of stillbirth and preterm delivery during the COVID-19 pandemic. JAMA 2020; 324: 705.

5 Been JV, Burgos Ochoa L, Bertens LCM, Schoenmakers S, Steegers EAP, Reissig IKM. Impact of COVID-19 mitigation measures on the incidence of preterm birth: a national quasi-experimental study. Lancet Public Health 2020; 5: e604–11.

6 Khalil A, von Dadelszen P, Kalafat E, et al. Change in obstetric attendance and activities during the COVID-19 pandemic. Lancet Infect Dis 2020; published online Oct 5. https://doi.org/10.1016/S1473-3099(20)30779-9.

7 Woolf SH, Chapman DA, Sabo RT, Weinberger DM, Hill L, Taylor DDH. Excess deaths from covid-19 and other causes, March–July 2020. JAMA 2020; 324: 1562–64.

8 Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097.

9 Blavatnik School of Government, University of Oxford. Coronavirus government response tracker. https://www.ox.ac.uk/coronavirus-government-response-tracker (accessed Nov 14, 2020).

10 Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed Nov 14, 2020).

11 Tandon A, Murray CJL, Lauer JA, Evans DB. Measuring overall health system performance for 191 countries. Geneva: World Health Organization, 2009. https://www.who.int/healthinfo/paper10.pdf (accessed Nov 14, 2020).

12 Dell’Utri C, Manzano E, Cipriani S, et al. Effects of SARS-CoV-2 epidemic on the obstetrical and gynaecological emergency service accesses. What happened and what shall we expect now? Eur J Obstet Gynecol Reprod Biol 2020; 254: 64–68.

13 Goyal M, Singh P, Singh K, Shekhar S, Agrawal N, Misra S. The effect of the COVID-19 pandemic on maternal health due to delay in seeking health care: experience from a tertiary center. Int J Gynecol Obstet 2021; 152: 231–35.

14 Greene NH, Kilpatrick SJ, Wong MS, Ozimek JA, Naqvi M. Impact of labor and delivery unit policy modifications on maternal and neonatal outcomes during the coronavirus disease 2019 pandemic. Am J Obstet Gynecol MFM 2020; 2: 100234.

15 Gu XX, Chen K, Yu H, Liang GY, Chen H, Shen Y. How to prevent in-hospital COVID-19 infection and reassure women about the safety of pregnancy: experience from an obstetric center in China. J Int Med Res 2020; 48: 300060520939337.

16 Handley SC, Mullin AM, Elvowitz MA, et al. Changes in preterm birth phenotypes and stillbirth at 2 Philadelphia hospitals during the SARS-CoV-2 pandemic, March–June 2020. JAMA 2021; 325: 87–89.

17 Hedemann G, Hedley PL, Bækvad-Hansen M, et al. Danish premature birth rates during the COVID-19 lockdown. Arch Dis Child Fetal Neonatal Ed 2021; 106: 91–95.

18 Hui PW, Ma G, Seto MTY, Cheung KW. Effect of COVID-19 on delivery plans and postnatal depression scores of pregnant women. Hong Kong Med J 2020; published online Nov 5. https://doi.org/10.12969/hkmj208774.

19 Justman N, Shahak G, Gutzeit O, et al. Lockdown with a price: the impact of the COVID-19 pandemic on prenatal care and perinatal outcomes in a tertiary care center. Int Med Assoc J 2020; 22: 513–37.

20 Kasuga Y, Tanaka M, Ochiya D. Preterm delivery and hypertensive disorder of pregnancy were reduced during the COVID-19 pandemic: a single hospital-based study. J Obstet Gynecol Res 2020; 46: 2703–04.

21 Ke A, Gurung R, Kinney MV, et al. Effect of the COVID-19 pandemic response on intrapartum care, stillbirth, and neonatal mortality outcomes in Nepal: a prospective observational study. Lancet Glob Health 2020; 8: e1273–81.

22 Ayaz R, Hocaoglu M, Gürüz Y, Yardımcı OD, Turgut A, Karateke A. Anxiety and depression symptoms in the same pregnant women before and during the COVID-19 pandemic. J Perinat Med 2020; 48: 965–70.

23 Kugelmann N, Lavie O, Assaf W, et al. Changes in the obstetrical emergency department profile during the COVID-19 pandemic. J Matern Fetal Neonatal Med 2020; published online Nov 16. https://doi.org/10.1080/14767058.2020.1876702.

24 Kumar M, Purt M, Yadav R, et al. Stillbirths and the COVID-19 pandemic: looking beyond SARS-CoV-2 infection. Int J Gynecol Obstet 2020; published online Dec 23. https://doi.org/10.1002/ijgo.13564.
Kumari V, Mehta K, Choudhary R. COVID-19 outbreak and decreased hospitalization of pregnant women in labour. *Lancet Glob Health* 2020; 8: e116–12.

Li M, Yin H, Jin Z, et al. Impact of Wuhan lockdown on the indications of cesarean delivery and newborn weights during the epidemic period of COVID-19. *PLoS One* 2020; 15: e0237420.

Lumbereiras-Marques MI, Campos-Zamora M, Seifert SM, et al. Excess maternal deaths associated with coronavirus disease 2019 (COVID-19) in Mexico. *Obstet Gynecol* 2020; 136: 1114–16.

Main EK, Chang SC, Carpenter AM, et al. Singleton preterm birth rates for racial and ethnic groups during the coronavirus disease 2019 pandemic in California. *Am J Obstet Gynecol* 2020; 224: 219–41.

Matvienko-Sikar K, Pope J, Cremin A, et al. Differences in levels of stress, social support, health behaviours, and stress-resolution strategies for women pregnant before and during the COVID-19 pandemic in based phases of pandemic restrictions, in Ireland. *Women Birth* 2020; published online Oct 23. https://doi.org/10.1016/j.wombi.2020.10.010.

McDonnell S, McNamara E, Lindow SW, O’Connell MP. The impact of the COVID-19 pandemic on maternity services: a review of maternal and neonatal outcomes before, during and after the pandemic. *Eur J Obstet Gynecol Reprod Biol* 2020; 255: 172–76.

Meyer R, Bart Y, Tour A, et al. A marked decrease in preterm deliveries during the coronavirus disease 2019 pandemic. *Am J Obstet Gynecol* 2020; 224: 234–37.

Mor M, Kugler N, Naumias E, et al. Impact of the COVID-19 Pandemic on Excess Perinatal Mortality and Morbidity in Israel. *Am J Perinatol* 2020; published online Dec 10. https://doi.org/10.1055/s-0040-1721515.

Bergbella V, Boeigl R, Roman A, Burd J, Anderson K. Decreased incidence of preterm birth during coronavirus disease 2019 pandemic. *Am J Obstet Gynecol MFM* 2020; 2: 100258.

Pariente G, Wissotszky Broder O, Sheiner E, et al. Risk for probable post-partum depression among women during the COVID-19 pandemic. *Arch Women Ment Health* 2020; 23: 767–73.

Philip RK, Purtil H, Reedy E, et al. Unprecedented reduction in births of very low birthweight (VLBW) and extremely low birthweight (ELBW) infants during the COVID-19 lockdown in Ireland: a ‘natural experiment’ allowing analysis of data from the prior two decades. *BMJ Glob Health* 2020; 5: e003075.

Silverman ME, Medeiros C, Burgos L. Early pregnancy mood before the COVID-19 pandemic. *Arch Womens Ment Health* 2020; 23: 779–82.

Stowe J, Smith H, Thruland K, Ramsay ME, Andrews N, Ladhanani SN. Stillbirths during the COVID-19 pandemic in England, April–June 2020. *JAMA* 2021; 325: 86–87.

Sun SY, Guazzelli CAF, de Morais LR, et al. Effect of delayed obstetric labor care during the COVID-19 pandemic on perinatal outcomes. *Int J Gynaecol Obstet* 2020; 151: 287–89.

Suzuki S. Psychological status during the first trimester of pregnancy under the COVID-19 epidemic in Japan. *J Matern Fetal Neonatal Med* 2020; published online July 17. https://doi.org/10.1080/14767058.2020.1793319.

Werner S, Katz A. Change in ectopic pregnancy presentations during the COVID-19 pandemic. *Int J Clin Pract* 2020; published online Dec 27. https://doi.org/10.1111/ijcp.13925.

Wu Y, Zhang C, Liu H, et al. Perinatal depressive and anxiety symptoms of pregnant women during the coronavirus disease 2019 outbreak in China. *Am J Obstet Gynecol* 2020; 223: 240.e1–9.

Zanardo V, Manghina V, Giliberti L, Vettore M, Severino L, Straface G. Psychological impact of COVID-19 quarantine measures in northeastern Italy on mothers in the immediate postpartum period. *Int J Gynaecol Obstet* 2020; 158: 184–88.

Xie M, Wang M, Wang X. Alteration in the psychologic status and family environment of pregnant women before and during the COVID-19 pandemic. *Int J Gynaecol Obstet* 2021; published online Jan 5. https://doi.org/10.1002/ijgo.15575.

Berthelot N, Lemieux R, Caron-Bissommette J, Drouin-Maziade C, Martel E, Maziade M. Uptrend in distress and psychiatric symptomatology in pregnant women during the coronavirus disease 2019 pandemic. *Acta Obstet Gynecol Scand* 2020; 99: 848–55.

Bhatia K, Columb M, Bewlay A, et al. The effect of COVID-19 on general anaesthesia rates for caesarean section. A cross-sectional analysis of six hospitals in the north-west of England. *Anaesthesia* 2021; 76: 312–19.

Bornstein G, Gulerseren M, Husk G, et al. Early postpartum discharge during the COVID-19 pandemic. *J Perinat Med* 2020; 48: 1008–12.

Caniglia EC, Magosi LE, Zash R, et al. Modest reduction in adverse birth outcomes following the COVID-19 lockdown. *Am J Obstet Gynecol* published online Dec 18. https://doi.org/10.1016/j.ajog.2020.12.11989.

Casado P, Youssell A, Arena A, Gamal N, Pilu G, Seraccioli R. Increased rate of ruptured ectopic pregnancy in COVID-19 pandemic: analysis from the North of Italy. *Ultrasound Obstet Gynecol* 2020; 56: 289.

De Curtis M, Villani L, Polo A. Increase of stillbirth and decrease of late preterm infants during the COVID-19 pandemic lockdown. *Arch Dis Child Fetal Neonatal Ed* 2020; published online Oct 21. https://doi.org/10.1136/archdischild-2020-316682.

Shikuku DN, Nyako I, Gichuru S, et al. Early indirect impact of COVID-19 pandemic on utilization and outcomes of reproductive, maternal, newborn, child and adolescent health services in Kenya. *medRxiv* 2020; published online Sept 7. https://doi.org/10.1101/2020.09.09.20191247 (preprint).

Knight M, Bunch J, Cairns A, et al. Saving lives, improving mothers’ care. Rapid report: learning from SARS-CoV-2-related and associated maternal deaths in the UK. March–May, 2020. https://www.npeu.ox.ac.uk/assets/downloads/mbrace-uk/reports/MBRACE-UK_Maternal_Report_2020_V10_FINAL.pdf (accessed Nov 14, 2020).

Bivi-Roig G, La Rosa VL, Gómez-Tébar M, et al. Analysis of the impact of the confinement resulting from covid-19 on the lifestyle and psychological wellbeing of Spanish pregnant women: an internet-based cross-sectional survey. *Int J Environ Res Public Health* 2020; 17: 5933.

Abdela SG, Berhanu AB, Ferede LM, van Griensven J. Essential healthcare services in the face of COVID-19 prevention: experiences from a referral hospital in Ethiopia. *Am J Trop Med Hyg* 2020; 103: 1198–200.

Peah AF, Powell A, Berlin H, et al. Patient and provider perspectives of a new prenatal care model introduced in response to the coronavirus disease 2019 pandemic. *Am J Obstet Gynecol* 2020; published online Oct 8. https://doi.org/10.1016/j.ajog.2020.10.008.

Jegnathan S, Prasannan L, Blitz MJ, Vohra N, Rochelson B, Meirowitz N. Adherence and acceptability of telehealth appointments for high-risk obstetrical patients during the coronavirus disease 2019 pandemic. *Am J Obstet Gynecol MFM* 2020; 2: e002974.

Jardine J, Relph S, Magee LA, et al. Maternity services in the UK during the coronavirus disease 2019 pandemic: a national survey of modifications to standard care. *BJOG* 2020; published online Sept 29. https://doi.org/10.1111/1471-0528.16547.

Holomeh D, Faucher MA, Bouzid J, Quint-Bouzid M, Nelson DB, Dureya E. Patient perspectives on audio-only virtual prenatal visits amidst the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. *Obstet Gynecol* 2020; 136: 317–22.

Madden N, Emeruwa UN, Friedman AM, et al. Telehealth uptake into prenatal care and provider attitudes during the COVID-19 pandemic in new york city: a quantitative and qualitative analysis. *Am J Perinatol* 2020; 37: 1005–14.

Bradley NL, DiPasquale AM, Dillabough K, Schneider PS. Health care practitioners’ responsibility to address intimate partner violence related to the COVID-19 pandemic. *CMAJ* 2020; 192: E609–10.

Gewin V. The career cost of COVID-19 to female researchers, and how science should respond. *Nature* 2020; 583: 867–69.

Pérez-Escamilla R, Cunningham K, Moran VH. COVID-19 and maternal and child food and nutrition insecurity: a complex syndemic. *Matern Child Nutr* 2020; 16: e13036.

Bottan N, Hoffmann B, Vera-Cossio D. The unequal impact of the coronavirus pandemic: evidence from seventeen developing countries. *PLoS One* 2020; 15: e0239972.

Yerger P, Jalloh M, Coltart CEM, King C. Barriers to maternal health services during the Ebola outbreak in three West African countries: a literature review. *BMJ Glob Health* 2020; 5: e002974.