Overweight, Obesity and Meningioma Risk: A Meta-Analysis

Chuan Shao¹, Li-Ping Bai², Zhen-Yu Qi¹*, Guo-Zhen Hui¹, Zhong Wang¹

¹Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China, ²Department of Biochemistry, Max-Planck Institute for Terrestrial Microbiology, Marburg, Hessen, Germany

Abstract

Background and Objectives: Studies of the association between excess body weight and risk of meningioma have produced inconsistent results. Therefore, a meta-analysis of published studies was performed to better assess the association between meningioma and excess body weight.

Methods: A literature search was conducted in the PubMed and EMBASE databases without any limitations. The reference lists of identified articles were also screened for additional studies. The summary relative risks (RRs) and 95% confidence intervals (CI) were calculated using fixed- or random-effects models.

Results: A total of 6 studies provided risk estimates for overweight or obesity. Overall, the combined RRs were 1.12 (95% CI = 0.98–1.28) for overweight and 1.45 (95% CI = 1.26–1.67) for obesity. After stratification by gender, no significant association was observed for obese men (RR = 1.30, 95% CI = 0.64–2.62), while significant association was detected for obese women (RR = 1.46, 95% CI = 1.26–1.69). No substantial differences emerged across strata of study design and geographic areas.

Conclusion: The results of this meta-analysis suggest that obesity but not overweight is associated with an increased risk of meningioma. Due to the limited number of studies, further research is needed to confirm the association.

Introduction

Meningiomas are the second most common brain neoplasms, representing approximately 20% of all intracranial tumors [1]. Most meningiomas are benign and rarely display biologically aggressive behavior [1,2]. Despite decades of research, the etiology of meningioma is poorly understood. Aside from certain rare genetic conditions (neurofibromatosis type I, Li Fraumeni syndrome), the only confirmed risk factor is exposure to high doses of ionizing radiation [3–5]. However, as the 2 types of exposures are uncommon, they can explain only a small number of the total cases. Furthermore, the incidence of meningioma has clearly risen in many Western countries [3]. Therefore, early intervention on modifiable risk factors of meningioma is very important.

Over the past several decades, obesity has emerged as a leading public health concern in the developed countries [6,7]. Previous studies have shown that obesity contributes to increase the incidence or death of colorectal adenomas, postmenopausal breast cancer, gallbladder cancer, endometrial cancer, pancreatic cancer, renal cancer, and liver cancer [8,9]. However, the relationship between meningioma and obesity is still unclear. In recent years, a number of studies have explored the association between the risk of meningioma and excess body weight, but the results were conflicting [10–16]. Whereas no significant association was reported in other studies [13,15,17–21]. This discrepancy in the results may result from different characteristics of subjects or study methodologies. Moreover, no quantitative summary of the evidence has ever been reported. Therefore, a meta-analysis of published cohort and case-control studies was conducted to quantify the effect of obesity and overweight on the occurrence of meningioma.

Materials and Methods

Search Strategy

Two reviewers (CS and ZYQ) independently performed a literature search of the PubMed and EMBASE databases without any limitations on language and publication date. The following search terms were used: “body mass index”, “overweight”, “obesity”, “body weight”, “body size”, “anthropometry”, and “adiposity” combined with “meningioma”, “brain cancer”, “brain tumor”, and “brain neoplasm”. We also reviewed the reference lists of included articles for additional studies. The last updated search was performed on August 23, 2013.

Study Selection

Studies were identified for this meta-analysis if they fulfilled all the following inclusion criteria: (1) used a case-control or cohort...
Table 1. Characteristic of the included studies in this meta-analysis.

Publication year	Country	Study period	Age	Sex	Cases/Cohort	Matching or adjustment	Case diagnosis	Case-control studies
Benson, 2008	USA	1996–2001	5-10	F	390/1,249	Age, height, strenuous exercise, smoking, alcohol intake, parity, age at first birth, OC	Cancer registry	Self-reported, Measured
Johnson, 2011	USA	1986–2004	55-85	F	125/291	Age	Medicare data	Self-reported
Michaud, 2011	USA	1991–2004	35-70	M/F	203/380	Age, country, sex, education.	Cancer registry	Self-reported, Measured
Wiedmann, 2013	Germany	1984–1986	>20	M/F	81/74	Age	Cancer registry	Measured
Claus, 2013	USA	2006–2011	29-70	F	1,127	Age, race, sex, education, residence, race, education, menopause status, age at menopause, smoking, alcohol use, breastfeeding, OC, HRT, number of FLB.	Cancer registry	Self-reported
Custer, 2006	USA	1995-1998	18	F	143/286	Age	Pathology reports	Self-reported

aStudies were conducted in: (1) USA, (2) Sweden, (3) Denmark, (4) Norway, (5) United Kingdom, (6) France, (7) Netherlands, (8) Spain, (9) Italy, (10) Germany, (11) Greece.

Overweight, Obesity and Meningioma

We defined body mass categories according to the World Health Organization (WHO) guidelines: underweight (BMI < 18.5 kg/m²), normal weight (BMI between 18.5 and < 25 kg/m²), overweight (BMI ≥ 25 and < 30 kg/m²), and obesity (BMI ≥ 30 kg/m²). In this meta-analysis, normal weight was used as the reference category. When non-standard categories of BMI were reported, we selected the category that most closely approximated those defined by the WHO guidelines. When more than one estimate in a study fell into the range representing overweight or obesity, we calculated a combined risk estimate using the method proposed by...
Hamling et al [28]. All statistical analyses were performed using STATA, version 11.0 (STATA, College Station, TX, USA).

Results

Literature Search and Study Characteristics

Fig. S1 shows a flow diagram for the selection process. A total of 2607 potentially relevant studies were identified from the initial search. After a careful review, the remaining 26 articles were considered of interest and their full-text was assessed for eligibility. Of 26 studies, 20 were excluded after reading the full-text [10,14,15,17,18,20,29–42]. The major reasons for excluding these studies were as follows: evaluating overweight and obesity together (n = 2) [15,18], no available data [20], obesity measured by Quetelet index, Cohen’s Kappa index or weight (n = 2) [10,17], non-obese people as the reference (n = 1) [14], and involving total brain tumor in their subjects (n = 14) [29–42]. Thus, a final total of 6 studies (4 cohort studies and 2 case-control studies) were included in this meta-analysis [11–13,16,19,21]. The range of publication periods for the included studies was 2006–2013. All studies were published in English. Of 6 studies, 3 were performed in North America [12,13,16] and 3 in Europe [11,19,21]. Two studies included women and men [19,21] and 4 studies included women only as subjects [11–13,16]. The data on weight and height were collected through self-reporting [11–13,16], measurement [21], or both of the 2 methods [19]. The definition of cases was based on the radiological criteria or pathology reports. Additional characteristics of the included studies are shown in Table 1. The quality of the included studies was evaluated by NOS. Table S1 shows the results of the assessment of methodological quality. All included studies obtained more than six stars, suggesting that the overall quality of the studies is good.

Meta-analysis Results

Figure 1 shows the forest plots for obesity versus normal weight. The summary RRs for case-control, cohort studies, and all studies were 1.33 (95% CI = 1.07–1.66, $I^2 = 0.0\%$, $P_{	ext{Heterogeneity}} = 0.590$), 1.55 (95% CI = 1.28–1.86, $I^2 = 0.0\%$, $P_{	ext{Heterogeneity}} = 0.450$), and 1.45 (95% CI = 1.26–1.67, $I^2 = 0.0\%$, $P_{	ext{Heterogeneity}} = 0.550$), respectively. In subgroup analyses by gender, a statistically significant link between the risk of meningioma and obesity was observed for females ($RR = 1.46, 95\% CI = 1.26–1.69, I^2 = 0.0\%$, $P_{	ext{Heterogeneity}} = 0.515$), but not for males ($RR = 1.30, 95\% CI = 0.64–2.62, I^2 = 0.0\%$, $P_{	ext{Heterogeneity}} = 0.427$). In subgroup analyses by geographic regions, the pooled results were significant in both North American studies ($RR = 1.47, 95\% CI = 1.21–1.78, I^2 = 48.7\%$, $P_{	ext{Heterogeneity}} = 0.142$) and European studies ($RR = 1.43, 95\% CI = 1.16–1.77, I^2 = 0.0\%$, $P_{	ext{Heterogeneity}} = 0.967$).

Figure 2 shows the forest plots for overweight versus normal weight. The pooled results based on all studies suggested there was no significant association between risk of brain tumor and overweight ($RR = 1.12, 95\% CI = 0.98–1.28, I^2 = 0.0\%$, $P_{	ext{Heterogeneity}} = 0.722$). In subgroup analyses, we found that the associations between overweight and risk of meningioma were not significantly modified by gender, geographic regions, or study design (Table 2).

Sensitivity Analysis

To assess the stability of the results of the meta-analysis, sensitivity analyses were conducted by excluding one study at a time. For overweight, a borderline significant association was found after omitting the Million Women Study [11] and the Iowa Women’s Health Study [16]. The pooled RRs were 1.17 (95% CI = 1.00–1.36, $I^2 = 0.0\%$, $P_{	ext{Heterogeneity}} = 0.752$) for excluding the Million Women Study and 1.14 (95% CI = 0.99–1.31, $I^2 = 0.0\%$, $P_{	ext{Heterogeneity}} = 0.550$) for excluding the Iowa Women’s Health Study.
ity = 0.728, I2 = 0.0% for excluding the Iowa Women’s Health Study (Figure 3). The other results of sensitivity analyses for overweight were not significantly altered (data not shown). For obesity, none of the results was significantly altered, indicating that our results were robust (Figure 4).

Publication Bias

The results of Egger’s test suggest that no evidence of publication bias was observed (P = 0.204 for obesity and P = 0.764 for overweight).

Discussion

This meta-analysis of 4 cohort studies and 2 case-control studies assessed the association of meningioma with obesity or overweight.

Table 2. Summary risk estimates of the association between BMI and meningioma risk.

Group	Overweight (25≤BMI≤29.9 kg/m2)	Obesity (BMI≥30 kg/m2)						
	Number of studies	RR(95% CI)	I2	P	Number of studies	RR(95% CI)	I2	P
All studies	6	1.12(0.98–1.28)	0.0%	0.722	6	1.45(1.26–1.67)	0.0%	0.550
Study design								
Case-control	2	1.14(0.92–1.43)	0.0%	0.839	2	1.33(1.07–1.66)	0.0%	0.590
Cohort	4	1.11(0.94–1.30)	0.0%	0.430	4	1.55(1.28–1.86)	0.0%	0.450
Gender								
Male	2	1.03(0.64–1.66)	0.0%	0.603	2	1.30(0.64–2.62)	0.0%	0.427
Female	6	1.13(0.98–1.29)	0.0%	0.573	6	1.46(1.26–1.69)	0.0%	0.515
Geographic area								
Europe	3	1.14(0.96–1.36)	0.1%	0.368	3	1.43(1.16–1.77)	0.0%	0.967
North America	3	1.09(0.90–1.33)	0.0%	0.682	3	1.47(1.21–1.78)	48.7%	0.142

doi:10.1371/journal.pone.0090167.t002
Our analysis identified an association between an increased risk of meningioma and obesity. However, no significant correlation with overweight was observed. In further analyses by gender and geographic area, similar trends were observed.

Several potential mechanisms have been proposed to explain how obesity can contribute to the development of meningioma, although the exact biological mechanisms are unclear. Currently, the most well-known mechanism is the insulin-like growth factor (IGF) hypothesis of obesity-related cancer [8,43–45]. Obesity is associated with insulin resistance and hyperinsulinemia, which reduce the levels of insulin-like growth factor binding protein 1 (IGFBP-1) and insulin-like growth factor binding protein 2 (IGFBP-2). The decrease in these proteins leads to higher circulating concentrations of free or bioactive insulin-like growth factor 1 (IGF-1) and a change in cell environment that stimulates tumor growth and inhibits apoptosis. Furthermore, the involvement of the IGF system in brain development has been demonstrated by in vitro and in vivo studies [46,47]. Finally, laboratory studies have confirmed that IGF1, IGF2, and IGF1R genes are overexpressed in meningioma [46]. Other possible

![Figure 3](image-url)
Figure 3. Sensitivity analyses for overweight versus normal weight.

![Figure 4](image-url)
Figure 4. Sensitivity analyses for obesity versus normal weight.
mechanisms include chronic inflammation, alterations in adipokine concentrations and sex hormones, sharing genetic susceptibility, obesity-related hypoxia, and migrating adipose stromal cells [44,48].

In this meta-analysis, we further investigated the correlation with obesity separately for females and males. The results of subgroup analyses show that obesity was associated with a significantly elevated risk of meningioma in females, but not in males. The potential explanations for the sex difference might be related to the effect of sex hormones. Obesity is positively associated with circulating concentrations of testosterone in females [49,50], but inversely associated with testosterone concentrations in males [51,52]. There is evidence that testosterone promotes cell proliferation and local production of IGF-I and IGF-I-R [53]. Moreover, estrogens also interact with IGF, which stimulates tumor growth and prohibits cell apoptosis [44].

Recently, a meta-analysis of 11 studies has suggested that the use of hormone replacement therapy is correlated with an increased risk of meningioma in women [54]. In our meta-analysis, many studies have implied that they used female hormone when their menstrual cycle ended [12,13,16]. Thus, it is conceivable that obese females bear a larger risk of meningioma than obese males. An alternative explanation for observed gender differences is that these findings may have occurred by chance because a limited number of studies were involved in subgroup analyses. Therefore, further evaluation of obesity relative to risk of meningioma is needed with more attention to the influence of gender.

Two cohort studies have examined the association between waist-hip ratio (WHR) and risk of meningioma: the Iowa Women’s Health Study (IWHS) [16] and the European Prospective Investigation into Cancer and Nutrition (EPIC) [19]. Michaud and colleagues in the EPIC found that abdominal obesity (defined as WHR) was associated with an increased risk of meningioma, although these correlations were not statistically significant [19]. In the latter study, a similar trend was detected for meningioma [16]. Compared with BMI, WHR is considered to be a more accurate index of obesity because the WHR takes the anatomic distribution of body fat in account and distinguishes lean muscle mass from fat mass [55–57]. Therefore, both BMI and WHR should be considered in future studies.

When obesity was found to be closely related to a higher risk of meningioma, several researchers proposed the hypothesis that underweight is related to a low risk of meningioma. To our knowledge, only 3 studies to date have analyzed the relationship between the risk of meningioma and underweight [18,19,21]. A hospital-based case-control study with 479 participants found no significant positive association (OR = 1.3, 95% CI = 0.6–3.0) between meningioma and underweight (defined by BMI <19 kg/m²) [10]. However, an inverse result was observed in the Nord-Trøndelag Health Study [21]. This prospective study showed that underweight (defined by BMI<20 kg/m²) was not meaningfully correlated with a lower risk of meningioma (RR = 0.67, 95% CI = 0.29–1.56) [21]. In EPIC, no significant association was detected (RR = 1.00, 95% CI = 0.46–2.19) [19]. These findings may be chance results due to the limited number of subjects, various study designs, and non-standard definitions of underweight used. Hence, additional well-designed studies are warranted to better understand the association between underweight and the risk of meningioma.

Several potential limitations of this meta-analysis should be noted. First, our meta-analysis was based on the small number of studies. Indeed, a great number of studies have evaluated the relationship between obesity and the risk of brain tumors [29–42]. However, brain tumors are a heterogeneous group of tumors that vary in tissue origins, invasive potential and prognosis. Thus, these studies cannot be included in this meta-analysis and further evaluation of obesity with risk of brain tumors is needed with particular attention to stratification by the type of tumor. Second, as all included studies were observational, we cannot exclude the possibility that our findings could be due to unmeasured or residual variables. Third, the estimation of weight and height in most of included studies was based on subjects’ self-reporting. It is possible that the weight has been underreported, particularly by overweight or obese individuals, and that height has been overestimated. Thus, this factor might have resulted in a degree of underestimation of the true associations. Fourth, because no studies involved Chinese/Asian populations, additional investigations in non-Western countries are warranted to extend the current findings [56]. Fifth, obesity may not be the main causative factor because obesity could be a consequence of other causative factors, for example, sex hormones and unhealthy lifestyles (i.e., smoking, heavy alcohol consumption and less exercise). The involvement of female hormones in meningioma carcinogenesis has been demonstrated in experimental and histopathologic studies as well as observational studies [59–64]. Additionally, the unhealthy lifestyles listed above have generally been considered to increase the risk of cancer. Finally, publication bias is often a concern in a meta-analysis because null results tend to be unpublished.

In summary, the results of this meta-analysis show that obesity is positively associated with the risk of meningioma. These findings also indicate that maintaining a healthy body weight may, in part, prevent the occurrence of meningioma.

Supporting Information

Figure S1 Flow diagram of study selection.

Table S1 Methodological quality of included studies based on the Newcastle–Ottawa Scale.

Author Contributions

Conceived and designed the experiments: CS LPB ZYQ. Performed the experiments: CS LPB ZYQ. Analyzed the data: CS LPB ZYQ. Contributed reagents/materials/analysis tools: GZH ZW. Wrote the paper: CS LPB ZYQ GZH ZW.

References

1. Claus EB, Bondy ML, Schildkraut JM, Wieners JL, Wrensch M, et al. (2005) Epidemiology of intracranial meningioma. Neurosurgery 57: 1088–95.
2. Ragel BT, Jensen RL (2005) Molecular genetics of meningiomas. Neurosurg Focus 19: E9.
3. Wrensch M, Minn Y, Chew T, Bondy M, Berger MS (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro Oncol 4: 276–99.
4. Coynpli-Bony A, Bouvier G, Rui M, Loiseau H, Vital A, et al. (2011) Brain tumors and hormonal factors: review of the epidemiological literature. Cancer Causes Control 22: 697–714.
5. Wrensch J, Wrensch M, Claus EB (2010) Epidemiology and etiology of meningioma. J Neurooncol 99: 307–14.
35. Oh SW, Yoon YS, Shin SA (2005) Effects of excess weight on cancer incidences.
33. Helseth A, Tretli S (1989) Pre-morbid height and weight as risk factors for cancer among men in the Norwegian Cancer Cohort Study. J Clin Epidemiol 42: 1113–21.
32. Cabaniols C, Giorgi R, Chinot O, Ferahta N, Spinelli V, et al. (2011) Links between overweight, obesity and cancer risk in Canada. Am J Epidemiol 173: 919–26.
31. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity and breast cancer: new perspectives. Annu Rev Public Health 24: 39–60.
30. Attner B, Landin-Olsson M, Lithman T, Noreen D, Olsson H (2012) Cancer in overweight and obese men: a large prospective cohort study. BMC Cancer 12: 13–21.
29. Guo SY, Cheng CY, He Y (2007) Risk factors for meningioma in postmenopausal women: a population-based case-control study. BMC Cancer 7: 326.
28. Wolk A, Gridley G, Svensson M, Nyren O, McLaughlin JK, et al. (2003) A prospective study of obesity and cancer risk (Sweden). Cancer Causes Control 14: 71–81.
27. Rennie KL, Jebb SA (2005) Prevalence of obesity in Great Britain. Obes Rev 6: 17–22.
26. Snowdon DA, Singhal S, Wing R, Blair S, Haynes L, et al. (2007) Body mass index, serum sex hormone concentrations, and risk of breast cancer. JAMA 297: 797–806.
25. Guyatt GH, Oxman AD, Guyatt G, Akl EA, Vist GE, et al. (2011) GRADE Working Group. GRADE guidelines: 7. Rating the quality of evidence. wwwGRADEguideline.org.
24. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21: 177–87.
23. Greenland S (1987) Quantitative methods in the review of epidemiologic studies. Epidemiol Rev 9: 1–30.
22. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, et al. (2009) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Available: http://www.oahp.ca/programs/clinical_epidemiology/oxford.htm. Accessed 1 May 2013.
21. Wiedmann M, Brunborg C, Lindemann K, Johannesen TB, Vatten L, et al. (2013) Anthropometric measures, physical activity, and risk of glioma and meningioma in a large prospective cohort study. Cancer Prev Res (Phila) 4: 3140–52.
20. Winkler EL, van Driel MJ, Moolenaar WJ, van Aswegen S, van der Walt A, et al. (2007) Sex hormone factors and primary glioma and meningioma tumours in the Million Women Study cohort. Br J Cancer 99: 106–10.
19. Michaud DS, Bove´ G, Gallo V, Schlehofer B, Tjønneland A, et al. (2011) Overweight, obesity and cancer mortality in the Asia-Pacific Cohort Studies Collaboration: pooled analyses of 424,519 participants. Lancet Oncol 12: 714–21.
18. Lee E, Grutsch J, Persky V, Glick R, Mendes J, et al. (2006) Association of menopausal hormone use, reproductive factors, and risk of intracranial meningiomas in females. J Neurosurg 104: 141–46.
17. Jacobs DH, McFarlane MJ, Holmes FF (1986) Meningiomas and obesity reconsidered. Ann Neurol 20: 376.
16. Johnson DR, Olson JE, Vierkant RA, Hammack JE, Wang AH, et al. (2011) Risk factors for meningioma in postmenopausal women: results from the Iowa Women’s Health Study. Neuro Oncol 13: 1011–9.
15. Jhawar BS, Fuchs CS, Colditz GA, Stampfer MJ (2003) Sex steroid hormone exposures and risk for meningioma. J Neurosurg 99: 848–53.
14. Hemminki K, Li X, Sundquist J, Sundquist K (2011) Obesity and familial risk of meningioma. J Neurosurg 115: 106–16.
13. Claus EB, Calvocoressi L, Bondy ML, Wrensch M, Wiemels JL, et al. (2013) Epidemiological and molecular mechanisms aspects linking obesity and cancer. Arq Bras Endocrinol Metabol 53: 213–26.
12. Claus EB, Calvocoressi L, Bondy ML, Wrensch M, Wiemels JL, et al. (2013) Epidemiological and molecular mechanisms aspects linking obesity and cancer. Arq Bras Endocrinol Metabol 53: 213–26.
11. Claus EB, Calvocoressi L, Bondy ML, Wrensch M, Wiemels JL, et al. (2013) Epidemiological and molecular mechanisms aspects linking obesity and cancer. Arq Bras Endocrinol Metabol 53: 213–26.
10. Claus EB, Calvocoressi L, Bondy ML, Wrensch M, Wiemels JL, et al. (2013) Epidemiological and molecular mechanisms aspects linking obesity and cancer. Arq Bras Endocrinol Metabol 53: 213–26.
9. Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4: 579–91.
8. Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4: 579–91.
7. Rennie KL, Jebb SA (2005) Prevalence of obesity in Great Britain. Obes Rev 6: 17–22.