Various forms of tissue damage and danger signals following hematopoietic stem-cell transplantation

Abdulraouf Ramadan1,2 * and Sophie Paczesny1,2 *

1 Department of Pediatrics, Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
2 Department of Microbiology and Immunology, Indiana University, Indianapolis, IN, USA

INTRODUCTION
Hematopoietic cells that are capable of self-renewing and recon-stituting all types of blood cells along with allogeneic donor T-cells can be used to treat numerous malignant and non-malignant lethal diseases, including leukemias, lymphomas, inherited genetic diseases, and immune deficiencies. However, the success of allo-geneic hematopoietic stem-cell transplantation (HSCT) is unfor-tunately limited by transplant-associated toxicities related to the applied conditioning regimens and the immunologic consequence of donor T-cell recognition of recipient alloantigens, which causes graft-versus-host disease (GVHD). Acute GVHD is characterized by selective tissue damage to the mucosa, particularly of the skin, gastrointestinal (GI) tract, and liver. Other tissues and organs such as the bone marrow, thymus, lungs (1, 2), and brain (3) have also been shown to be potential GVHD targets. Chronic GVHD not only targets organs, including the ones mentioned above, but also can damage the connective tissue and exocrine glands.

The pathogenesis of GVHD can be summarized in three sequential steps: first, the conditioning regimen damages the tis-sues, causing production of danger signals, which are detailed in this review, and pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-6. The culmination of these events is what the field refers to as the “cytokine storm,” which activates host antigen-presenting cells (APCs) and the newly infused donor T-cells. The second phase involves proliferation and differentiation of donor T-cells in response to host APCs, which results in rapid intracellular biochemical cascades that induce pro-duction of T helper (TH) 1, TH17 (for CD4 T-cells), T cytotoxic (TC) 1, and TC17 cells (for CD8 T-cells) that secrete cytokines such as interferon (IFN)-γ, IL-2, IL-17, and TNF-α. The last step is a complex cascade of cellular mediators and soluble inflammatory molecules that work synergistically to amplify local tissue injury. These mediators further amplify inflammation and target tissue destruction. GVHD is also characterized by an imbalance between the effector T-cells and the regulatory T-cells (Tregs). At all of these steps, the inflammatory cascade and various types of tissue damage lead to the release of biomarkers of GVHD into the blood, the detection of which can be achieved via blood tests. Markers such as elafin (skin-specific), regenerating islet-derived 3-alpha (REG3α, gut-specific), suppressor of tumorigenicity 2 (ST2, a member of the IL-1 receptor family, binding IL-33), and others are detailed in this review. Figure 1 summarizes these events.

DANGER SIGNAL PROTEINS FOLLOWING HSCT
Following conditioning (radiation and/or chemotherapy), exoge-nous and endogenous “danger” signals released from damaged tissues orchestrate mesenchymal, epithelial, and immune cellular communications to attempt to restore homeostasis. These danger signals induce rapid changes in redox-sensitive proteins, leading to the activation of nuclear transcription factors including nuclear factor (NF)-κb (4), early growth response factor (Egr1), and activa-tor protein (AP)-1 (5), which are heavily involved in inflammatory

Hematopoietic stem-cell transplantation (HSCT) is the most potent curative therapy for many malignant and non-malignant disorders. Unfortunately, a major complication of HSCT is graft-versus-host disease (GVHD), which is mediated by tissue damage resulting from the conditioning regimens before the transplantation and the alloreaction of dual immune components (activated donor T-cells and recipient’s antigen-presenting cells). This tissue damage leads to the release of alarmins and the triggering of pathogen-recognition recep-tors that activate the innate immune system and subsequently the adaptive immune system. Alarmins, which are of endogenous origin, together with the exogenous pathogen-associated molecular patterns (PAMPs) elicit similar responses of danger signals and represent the group of damage-associated molecular patterns (DAMPs). Effector cells of innate and adaptive immunity that are activated by PAMPs or alarmins can secrete other alarmins and amplify the immune responses. These complex interactions and loops between alarmins and PAMPs are particularly potent at inducing and then aggravating the GVHD reaction. In this review, we highlight the role of these tissue damaging molecules and their signaling pathways. Interestingly, some DAMPs and PAMPs are organ specific and GVHD-induced and have been shown to be interesting biomarkers. Some of these molecules may represent potential targets for novel therapeutic approaches.

Keywords: graft-versus-host disease, danger signals, tissue damage, alarmins, pathogen-associated molecular patterns, damage-associated molecular patterns, innate immunity, biomarkers
cytokine production. Indeed, both radiation/chemotherapy effects and pro-inflammatory cytokines generate free reactive oxygen species (ROS) and reactive nitrogen species (RNS) such as superoxide, nitric oxide, hydroxyl radicals, peroxynitrite, and their products (6). Furthermore, inflammatory cytokines, including those of the IL-1 family, and TNF-α (7) require ROS for their activation. In contrast, anti-inflammatory cytokines [transforming growth factor (TGF)-β, IL-10, and IL-4] inhibit ROS/RNS-mediated effects and display anti-oxidative properties (8–10). Therefore, inflammatory and anti-inflammatory cytokines mutually influence each other through the production of ROS/RNS. Recently, it has been shown that mice exhibiting overexpression of ROS (mice deficient for negative regulator of ROS) develop more severe disease in an experimental autoimmune encephalomyelitis model (11), whereas mice deficient in ROS (NOX2 knockout mice) show less infiltration of neutrophils into the ileum and less tissue damage, leading to less severe GVHD (12).

Damage-associated molecular patterns (DAMPs) include exogenous pathogen-associated molecular patterns (PAMPs) as well as endogenous alarmins, each of which play a crucial role in the initiation of GVHD and are described in detail in subsequent paragraphs.

EXOGENOUS PAMPs DURING INFLAMMATION AND GVHD

Early studies in allogeneic murine chimeras induced by radiation showed that the mortality due to "secondary disease," later called GVHD, was significantly reduced in germ-free mice compared to conventional mice (13). Treating conventional mice with antibiotic prophylaxis also significantly delay mortality in comparison to that in the control group (14). Clinical studies have demonstrated the efficiency of GI decontamination in reducing GVHD (15, 16). PAMPs are conserved microbial molecules released by invading microorganisms (17, 18). They recognize pattern recognition receptors (PRRs), primarily toll-like receptors (TLRs), members of the cytosolic retinoic acid-inducible gene-I-like helicase family (19), and receptors with a nucleotide-binding domain (NOD) and leucine-rich repeats (NOD-like receptors, NLRs). These activate different pathways, resulting in the production of inflammatory cytokines through NF-κB activation. The main link between the PRRs and NF-κB activation/cytokine production during GVHD is the cytoplasmic myeloid differentiation primary response protein 88 (MyD88) in APCs (20). APCs, particularly recipient dendritic cells (DCs), primed by the conditioning are potent sensors of PAMPs, which leads to their activation and augmented major histocompatibility complex (MHC) presentation to T-cells (21).
Similar to TLRs, the NLR family has an impact on GVHD. The absence of NOD2 in recipients results in more severe GVHD in both MHC-mismatched and MHC-matched models (22). Single nucleotide polymorphisms of NOD2/CARD15 have also been associated with severe GVHD in patients receiving stem cells from either human leukocyte antigen (HLA)-identical or unrelated donors (23).

ALARINS AND ENDogenous DAMPs DURING INFLAMMATION AND GVHD

The term “alarmins” is used to describe the endogenous molecules equivalent to PAMPs. They rapidly produce a danger signal after non-programed cell death or a specific modality of programmed cell death (24). More recently, they are increasingly referred to as DAMPs, in reference to the term PAMPs, because they share structural and functional similarities with exogenous PAMPS. However, this definition of DAMPs is not used consistently, and sometimes endogenous alarmins and exogenous PAMPS are classified together as DAMPs.

High mobility group box 1

High mobility group box 1 (HMGB-1) is a nuclear protein that binds to nucleosomes and promotes DNA bending (25). It is expressed in most cells but at varying levels, and it is also present in the extracellular milieu after non-programed cell death (26, 27). It can be released in tumors (28). When under oxidative stress induced by irradiation, HMGB-1 acts as a DAMP and can mediate endotoxin lethality in mice (29). Persistence of a high level of HMGB-1 has been reported in chronic inflammatory disorders such as autoimmune disease (30), ischemia, and reperfusion injury (31). Targeted knockout or inhibition of HMGB-1 was shown to be able to increase apoptosis and suppress pancreatic cancer cell growth (32, 33). HMGB-1 has chemotactic activity toward monocytes, macrophage, neutrophils, and DCs (34, 35) in response to growth (32, 33). HMGB-1 has chemotactic activity toward monocytes, macrophage, neutrophils, and DCs (34, 35) in response to growth (32, 33).

S100 proteins

S100 proteins are among more than 20 members of a family of low molecular weight proteins (9–13 kDa). They are produced as monomers and form dimers or multimers spontaneously (40, 41) following calcium binding protein activation (42). The most studied members in this family are S100A7, S100A8, S100A9, S100A12, and S100A15, which are mainly expressed in phagocytes, where they show high antimicrobial activity (43). They are thus released in inflammatory sites (44). Both S100A7 and S100A15 are induced by TH1, TH17, and TH2 cytokines and play an important role in psoriasis pathogenicity and act as alarmins in priming keratinocytes, thereby enhancing IL-6, IL-8, and TNF-α production and amplifying inflammation in the skin (45). On the other hand, S100A8 and S100A9 show a pathogenic role in lung inflammation mediated by neutrophil recruitment (46). Another member, S100A12, has been shown to be positively correlated with increased *Escherichia coli* colonies in infants via disturbance of the homeostasis between the intestinal microbiome and host immunity (47). No studies have shown the impact of this family in GVHD yet, but all of the above findings suggest that these DAMPs may play a role in different types of tissue damage and the pathology of skin and GI GVHD. Moreover, proteomic analysis of saliva showed that healthy controls have low or non-detectable levels of S100A9 and S100A8 proteins, whereas patients after HSCT without GVHD showed augmented levels of these proteins. Interestingly, patients with GVHD show higher levels of S100A8 and S100A9 than patients without GVHD (48). Moreover, a new study found that released S100 proteins are involved in the pathogenesis of GI GVHD through stimulation of monocytes, which enhance TH17 cells in patients receiving allogeneic HSCT (49).

Elastase inhibitors (endogenous proteases inhibitors)

During infection, the activity of locally produced mucosal alarm antiproteases, such as elafin and secretory leukocyte peptidase inhibitor (SLPI), may add an extra edge to the host defense (50). SLPI and elafin alarm antiproteases have been isolated and characterized under a variety of names in adult and fetal tissues (51). They belong to the family of whey acidic proteins (WAPs). Elafin was isolated from the skin of psoriasis patients (52) and is produced by both epithelial cells and immune cells. Alarm antiproteases are generated locally in areas of infection or neutrophil infiltration and are upregulated by pathogen- and inflammation-associated factors, including cytokines and neutrophil elastases (NEs) (53). Elafin and SLPI have been proposed to possess “defensin/cathelicidin-like” properties (54). It has been shown that in the 117 amino acids encoded by the elafin gene, the first 22 amino acids represent hydrophobic signal peptide. Elafin is produced as a 9.9-kDa full-length non-glycosylated cationic protein (55, 56). Elafin expression *in vitro* can be enhanced by adding inflammatory cytokines (IL-1 and TNF-α) to cultured bronchial and alveolar epithelial cells (57). These cytokines induce a similar increase in elafin expression by keratinocytes in vitro (58). Interestingly, these cytokines increase expression of elafin more than that of SLPI *in vitro* (57). Thus, elafin may have greater significance during an inflammatory challenge to the lung, in keeping of the notion that elafin mRNA expression in bronchial epithelial cells is increased by free NE, which is found in abundance during inflammatory events (53, 59). In addition to its NE inhibitory and immunomodulatory activities, elafin possesses broad-spectrum antibacterial, antiviral, and antifungal properties. Elafin expression is increased in the plasma of patients with skin GVHD compared to that of patients without GVHD following allogeneic HSCT without T-cell depletion. Moreover, elafin concentrations have been positively correlated with the grade of skin GVHD. Importantly, elafin is not elevated in rashes caused by conditions other than GVHD, making it a specific biomarker for skin GVHD (60). This is because elafin is induced by inflammatory cytokines, which mediate GVHD by targeting keratinocytes (61).
Defensins

The defensins are short peptides with a characteristic β-sheet-rich fold and, like SLPI and elafin, are cysteine-rich, containing multiple disulfide bonds (62, 63). Defensins are classified into three sub-families (α, β, θ). The α-defensins are neutrophil peptides [human neutrophil peptides (HNP)s 1–4]. In humans, α-defensins [human defensin (HD)-5 and HD-6] are mostly expressed in Paneth cells in the small intestine (64, 65). HNP s 1–3 are expressed in B-cells, γδ T-cells, natural killer (NK) cells, and DCs. α-defensins exhibit wide spectrum antimicrobial coverage against Gram negative and Gram positive organisms and also have some antifungal activity against Candida albicans, as one example. β-defensins (four diverse human β-defensins, HBD 1–4) have been classified based on their function and genomic targeting. They are expressed by epithelial cells, macrophages, macrophage derived DCs, and monocytes (66). In murine models of haploidentical or minor mismatched BMT, it has been shown that the reduction in α-defensins following GVHD damages Paneth cells, resulting in a loss of variation in the gut microbiota composition (67). Consistently, clinical data show significant increases in Lactobacillales and decreases in Clostridiales in patients with GVHD after allogeneic HSCT (68, 69). In this cohort, overall survival was significantly worse in patients with lower intestinal diversity at engraftment as compared to intermediate and high diversity groups, respectively, even after adjustment for other clinical predictors (69).

Cathelicidins

Cathelicidins, which are recognized as a constitutive component of myeloid-derived cells (70), are the second major family of antimicrobial peptides (AMPs). Cathelicidins are highly heterogeneous (71–73), and as mediators of an effective system of host defense, they provide protection to intestinal epithelial cells against invading microorganisms and control the overgrowth of commensal bacteria (54). The human cathelicidin hCAP-18/LL-37 has a C-terminal peptide of α-helical type, which is present in all mammals. The widespread presence of this C-terminus suggests that the α-helical cathelicidin type is the progenitor molecule of this family (74). Even though it is considered a neutrophil-specific constituent distributed in all tissues, which is liberated as LL-37, it has also been shown to be produced by different immune cells, such as NK cells, γδ T-cells, B-cells, monocytes, mast cells, and immature neutrophils (75–77). LL-37 plays an important role in the prevention of oral bacterial infection, and it was found to be down-regulated in gut biopsies of patients infected with Shigella (78, 79). LL-37 expression is also induced after skin injury (80). In addition, its overexpression in human bronchial xenografts preserves the cystic fibrosis-specific bacterial killing defect (81). Recently, LL-37 has been shown to protect against arthritis in murine models through IL-32 suppression, and this observation was confirmed in human peripheral blood mononuclear cells (PBMCs) through decreases in pro-inflammatory cytokines such as TNF-α and IL-1β (82). In contrast, it also mediates immune cell recruitment by promoting chemotaxis, autophagy, and phagocytosis (83–87). It also enhances the adaptive immune responses (88, 89). LL-37 expression is decreased in Crohn’s disease and dermatitis, but elevated in psoriasis and systemic lupus erythematosus (90–92).

The regenerating protein family

The regenerating (Reg) III proteins were discovered in 1984 in pancreatitis experimental models (93). Later studies showed the presence of homologous proteins in human and mice (94–96). There are three different types of Reg III genes in mice (97) and all type III Reg genes appear to have diverged from a common ancestral gene. RegIIIα, RegIIIβ, and RegIIIγ have 60–70% homology and are all expressed in the intestine (97, 98). RegIIIα expression is increased in inflamed colonic mucosa and correlates with IL-22 expression (99). In inflammatory bowel disease (100), it has been reported that RegIIIα in humans or RegIIIγ, the homologous mouse protein, has an antimicrobial function, controlling bacterial proliferation (101, 102). In addition, following skin injury, RegIIIα expression increases in keratinocytes in response to IL-17 (103). In a haploidentical murine model of GVHD, it has been shown that RegIIIγ is upregulated, and this upregulation is not due to radiation-induced damage but due to the allogenic response (104). RegIIIα concentrations in plasma are increased by threefold in patients with GI GVHD compared to all other patients, including patients with non-GVHD enteritis following allogeneic HSCT. RegIIIα expression is also positively correlated with GI GVHD grade and volume of diarrhea, suggesting that RegIIIα represents a biomarker for the diagnosis of GI GVHD (105).

Heat shock proteins

The heat shock proteins (HSP) are a family of proteins that have an essential role as molecular chaperones, facilitating protein folding and intracellular transport (106). Expression of these proteins increases under various stress conditions such as infection, hypoxia, trauma, or exposure to toxic drugs, and high levels of HSPs are released by necrotic cells (107,108). HSP60 (60 kDa) is expressed mainly in mitochondria and on the cell surface of monocytes after IFN-γ stimulation as well as on apoptotic T-cells (109). HSP60 also is overexpressed in intestinal epithelium in Behcet’s disease and in keratinocytes in skin lesions (110,111). CD14/TLR acts as a coreceptor for HSPs (112). HSP70 expression correlates positively with GVHD grade (113). Another study showed that antibodies to 70 and 90-kDa HSPs are associated with GVHD in patients receiving allogeneic peripheral blood stem-cell (PBSC) transplantation (114).

Heparan sulfate proteoglycans

Heparan sulfate proteoglycans are proteins carrying one or more covalently bound heparan sulfate chain, a large anionic polysaccharide of glycosaminoglycan. These proteins show considerable diversity and interactive properties and are widely found in tissues within the extracellular matrix and are also found intracellularly (115). Functionally, heparin sulfate proteoglycans play critical roles in (i) mediating the formation of chemokine gradients for cell migration (116, 117); (ii) protecting cytokines such as IFN-γ against proteolysis (118); (iii) controlling the diffusion of their ligands (119). Heparan sulfate has also been shown to act as an endogenous TLR4 ligand and is a potent stimulator of T-cell alloreactivity in vitro (120). This action is dependent of the TLR4 pathway in DCs, but not in T-cells. Serum levels of heparan sulfate are elevated at the onset of GVHD and correlate to disease severity.
in an allogeneic mouse model and in patients received allogeneic HLA-matched HSCT (121).

Adenosine triphosphate

Adenosine triphosphate (ATP) is an essential purine base required for almost all physical responses. Extracellular ATP released from injured but not apoptotic cells is secreted rapidly after irradiation and mediates cellular responses through activation of purinergic receptors, which activate calcium channels (122). ATP activates caspase-1 and produces IL-1β, depending on the NLRP3 inflammasome (123). In GVHD, ATP is an endogenous danger signal released from necrotic cells (124, 125). Accumulation of ATP leads to upregulation of pro-inflammatory molecules (e.g., CD80, CD86) in vitro and in vivo, which activates pathogenic donor T-cells and reduces the number of Tregs, resulting in greater production of inflammatory cytokines and aggravation of GVHD severity in an allogeneic murine model (126).

Uric acid

Uric acid is a metabolite of purine nucleotides in humans and has been described as a DAMP released from dying cells (24). Soluble uric acid induces the production of inflammatory cytokines such as monocyte chemotactic protein-1 in rat vascular smooth muscle cells (127) and is recognized by TLR2 and TLR4 and signaled through MyD88 (128). It can also be sensed by NLRP3, a member of the NLRs, and induces IL-1β production via caspase-1 activation (129). Injection of uric acid into mice along with antigen results in activation of CD8 T-cells, whereas abolition of uric acid inhibits the cytotoxicity of T-cells (130). In vitro addition of uric acid upregulates co-stimulatory molecules on bone marrow-derived DCs and leads to T-cell activation (131). In patients with acute GVHD showing high levels of uric acid in serum during the pre-transplantation period, inhibition of uric acid activity may be one aspect of the treatment strategy for reducing the severity of GVHD as is discussed later in this review (132).

DANGER SIGNALING PATHWAYS IN GVHD

Individual danger signaling pathways involved in GVHD are detailed below and summarized in Table 1. Figure 2 summarizes TLRs and IL-1 receptor family signaling pathways. Figure 3 summarizes PAMPs and DAMPs common pathogen recognition receptors and their interactions with the signaling pathways.

TLR SIGNALING

The TLR family proteins are transmembrane receptors that were first described in humans in 1994 (141). In 1997, TLR4, which senses lipopolysaccharide (LPS) and activates innate cells, was described (142). TLRs play a key role in innate immunity by recognizing PAMPs. TLRs also recognize endogenous DAMPs (143). This family consists of 10 functional members in humans, where they are expressed on hematopoietic and non-hematopoietic cells (144). Their expression is either on the cell surface (TLR1, TLR2, TLR4, TLR5, and TLR6) or in endosomes (TLR3, TLR7, TLR8, and TLR9). Different TLRs recognize different PAMPs or DAMPS specifically. Among the surface TLRs, TLR2 recognizes Gram-positive lipoprotein [such as peptidoglycan (PGN)], and TLR4 with its coreceptor MD-2 recognizes the Gram negative component of the cell wall LPS. TLR5 recognizes bacterial flagellin, and TLR1 and TLR6 form a dimer with TLR2 to recognize PGN. The other members of the family are expressed in endosomes and recognize viral or bacterial nucleic acid components: TLR3 recognizes double-stranded viral RNA; TLR7 and TLR8 recognize single-stranded viral RNA; and TLR9 recognizes bacterial or viral RNA and CpG-containing DNA (145–152). TLR4 also recognizes DAMPs such as the HSP family (HSP70 and HSP90) and heparan sulfate proteoglycans. Upon activation, TLRs transmit the signal through adaptor molecules shared with the IL-1RI receptor family myeloid differentiation factor 88 (MyD88) with the exception of TLR3, TLR4, TLR5, and TLR9, which signals through TIR domain-containing adapter inducing IFN-β (TRIF). Only TLR4 can signal through both MyD88 and TRIF (143). Stimulation of TLRs activates NF-kB through a signaling cascade that is mostly MyD88-dependent.

Table 1	GVHD-related PAMPs and DAMPs along with their signaling pathways and effects in GVHD.		
Signaling pathway	**Effect**	**Reference**	
Lipopolysaccharide	TLR4/MyD88 or TRIF	Aggravation	(133)
TLR7 ligand (3M-011)	TLR7/MyD88	Aggravation	(134)
Flagellin	TLR5/MyD88	Reduction (mouse)	(135)
Intestinal microflora	TLR4/MyD88	Aggravation (translocation)	(136, 137)
Peptidoglycan	TLR2/MyD88 or NOD1	Aggravation	(138, 139)
ATP	NOD2	Aggravation	(126)
S100 proteins	NOD2	Aggravation	(48, 49)
HMGB-1	TLR2/4/MyD88	Aggravation	(38)
Reg III proteins	IL-22/IL-17/IL-1 family	Marker of intestinal GVHD	(104, 105)
HSP	CD14/TLR4/MyD88	Aggravation	(112)
Heparan sulfate	TLR4/MyD88	Aggravation	(120)
Elafin	NOD2/NLRP3	Aggravation	(129)
Defensins	Secreted	Protection	(67)
sST2 (IL-33r)	MyD88	Marker of treatment refractory GVHD	(140)
Toll-like receptor (TLR) and IL-1 receptor family signaling pathways. ST2L (IL-33r) and IL-1r signal through the MyD88, IRAK4, and TRAF6 pathway. ST2L and IL-1r share this pathway with most TLRs. Binding of ST2L, IL-1r, and TLRs activates NF-κB, resulting in the release of inflammatory cytokines. Most TLRs signal through MyD88 except for TLR3, which signals through the TRIF pathway. TLR4 can signal through both MyD88 and TRIF. TLR3, TLR7/TLR8, and TLR9 are expressed in the endosome while other TLRs are expressed on the cell surface. TLR1 and TLR6 recognize their ligand with TLR2 heterodimers.

Pathogen-associated molecular patterns and DAMPs share the same pathogen recognition receptors. TLR4 recognizes LPS from Gram negative bacteria as well as DAMPS (i.e., HMGB-1, heat shock proteins HSP70/90, and heparan sulfate). NOD can recognize peptidoglycan, which is known as TLR2 ligand, and some DAMPs such as ATP, S100 proteins, and uric acid. These signaling pathways all end with activation of NF-κB.
developed less severe GVHD and experienced increased survival. This effect was achieved through the production of less IFN-γ by host APCs (136, 160). Moreover, repeated treatment with CpG (a TLR9 ligand) increased mortality and GVHD severity (134). One clinical study showed no differences in the incidence and severity of GVHD between patients with gene variants associated with TLR9 reduction and controls (161), but another study reported severe acute GVHD when patients received stem cells from an unrelated donor with the A1174 gene. The T1635C variant was found to have a protective effect against GVHD (162). Thus, the roles of TLRs in GVHD remain controversial, according to differences in the timing of administration, experimental settings, microbiota constitution, and other alternative danger signaling pathways.

NLR SIGNALING
Another family associated with PRRs is the cytoplasmic NLR family, which was first described in 1999 and 2001 studies of NOD1 (CARD4) (163) and NOD2 (CARD15) (164), respectively. NOD1 was shown to bind to z-gamma-glutamyl diaminopimelic acid derived from peptidoglycan (139), and NOD2 binds to muramyl dipeptide (MDP) (165). Activation of NOD1 and NOD2 enables the recruitment of kinase receptor-interacting protein 2 (RIP2) (RICK) through caspase recruitment domain (CARD)–CARD homotypic interaction (166). RIP2 engagement by NOD receptors leads to ubiquitination of K63-linked by cellular inhibitors of apoptosis (cIAP1) and cIAP2 (167), followed by recruitment of the TAK1/TAB2/TAB3 kinase complex to RIP2. X-linked inhibitor of apoptosis protein (XIAP) interacts with RIP2 and results in recruitment of the platform for the linear ubiquitination assembly complex (LUBAC), which mediates NF-κB activation. This signaling pathway converges on the induction of pro-inflammatory cytokines and initiates the innate immune response (168). Mutations in NOD2 leads to an inability for NF-κB activation after MDP stimulation in intestinal epithelial cells (169). However, NOD1 and NOD2 are able to induce direct autophagy through interaction with ATG16L1, and this mechanism is independent of both RIP2 and NF-κB (170). NOD2 showed the capacity to recognize single-stranded RNA virus and to elicit interferon regulatory factor 3 activation, producing IFN-β through interaction with anti-viral signaling factor mitochondrial adaptor proteins (171). NOD2 also plays an important anti-viral role via CD8 T-cell priming in influenza A virus infection (172). Other studies of the expression of NOD2 on CD4 T-cells showed that the absence of NOD2 signaling impairs Th1 proliferation and response upon Toxoplasma gondii infection (173). Interestingly, the NLR family not only recognizes PAMPs but also recognizes DAMPs, such as ATP and DNA released from dying cells and uric acid (174, 175). Activation of the NLR family occurs via the inflammasome, cleavage of caspase-1, and production of active IL-1β and IL-18 (176). In GVHD models, the absence of NOD2 on donor cells has no impact on GVHD pathogenicity, whereas NOD2 deficiency on only hematopoietic and not on non-hematopoietic recipient cells aggravates GVHD. In vitro experiments showed that the absence of NOD2 on DCs increases the expansion of alloreactive T-cells, indicating that NOD2 negatively regulates DC function and activity (22). Studies in humans proved that the relationship between this signaling pathway and GVHD is more complex. Polymorphisms in NOD2/CARD15 were identified as a risk factor in HSCT involving a HLA-identical sibling donor (177, 178), whereas in other studies of HLA-unrelated transplants, such polymorphisms adversely impacted disease relapse but not GVHD (179–181).

Overall, interactions between TLRs and NLRs have a crucial role in APC stimulation, subsequent alloreactive T-cell recruitment, and activation and aggravation of GVHD.

IL-1 RECEPTOR SIGNALING
The absence of TLR signaling in TLR-deficient mice does not completely abrogate GVHD (160, 182, 183). The counterpart of TLR in the TIR family is highly involved in different phases of GVHD pathogenesis. IL-1 is one of the most active pro-inflammatory cytokines in inflammatory diseases. The IL-1 receptor family contains 10 members in total. The first two members are IL-1α and IL-1β, both of which are synthesized as 31-kDa precursors (pro-IL-1α and pro-IL-1β). They are enzymatically cleaved into N-terminal prodomains (184) and are agonists for the IL-1 type 1 receptor (IL-1R1) (185). IL-1α and IL-1β seem to activate similar cellular responses upon binding IL-1R1 in vitro, and the main biological difference between these proteins seems to be associated with the source and presentation of the cytokine in vivo.

IL-1α has a central role in mediating sterile inflammation induced by cell necrosis, and it seems to be the dominant agonist in a response dependent on IL-1R1 and MyD88 signaling (186). IL-1α also has been shown to be released from dying cells (187, 188). In HSCT, IL-1α is also a dominant mediator of CD4 T-cell activation mediated by allogeneic endothelial cells expressing HLA-DR (189). IL-1β increases the expression of adhesion molecules on vascular endothelium and enhances the expression of chemokines on T-cells, thus attracting blood-borne inflammatory cells into target tissues. IL-1β also stimulates mucosal myofibroblasts and matrix metalloproteinase (MMP) release, causing tissue mucosal destruction (190–192). The IL-1 receptor antagonist (IL-1Ra) competes with the two agonist molecules for IL-1R1 binding. All three genes are located in a cluster on chromosome 2q. The fourth member of this family is IL-18, the gene for which is located on chromosome 11q (193). IL-18 was identified as a factor promoting IFN-γ production and activates TNF-α receptor-associated factor (194). It has been reported that many hematopoietic and non-hematopoietic cells produce IL-18 in inflammatory conditions (195). In HSCT, it was shown that IL-18 levels in plasma increase with acute GVHD in both human and animal models (196–199).

IL-33 AND ITS RECEPTOR (ST2) SIGNALING
IL-33 (also known as IL-1F11) was identified as a new member of the IL-1 cytokine family (200). Similar to IL-1α and HMGB-1, IL-33 has dual functions, acting both as a traditional cytokine and as an intracellular NF with transcriptional regulatory properties (201). IL-33 is widely expressed in tissues, but it appears that its expression in organs is restricted. Human and murine mRNA analysis showed that IL-33 is predominantly expressed in stromal cells including fibroblasts, smooth muscle cells, epithelial cells, and endothelial cells and is largely absent in hematopoietic cells (200). IL-33 may be produced during necrosis. In apoptosis,
IL-33 is cleaved by caspases-3/7, leading to inactivation of its pro-inflammatory properties. For this reason, IL-33 is considered an endogenous danger signal or alarmin (202). The only known receptor for IL-33 is ST2 (200). The ST2 gene is now known to encode at least three isoforms of ST2 proteins: the transmembrane form known as ST2L, variant ST2 (ST2V) that is mainly present in human gut (203), and secreted soluble ST2 (sST2), which serves as a decoy receptor for IL-33 to prevent IL-33 binding to and signaling through ST2L (204, 205). The strongest sST2 mRNA expression was detected in heart and lung tissues (206), the cardiovascular system, endothelial cells (207), cardiac myocytes, and fibroblasts (208). The secretory capacity of these cells for sST2 is enhanced by pro-inflammatory cytokines (TNF-α, IL-1β) or LPS (206). sST2 levels in serum were correlated with acute myocardial infarction (209) and pulmonary fibrosis (210). Recently, high levels of plasma sST2 were shown to be a risk factor of GVHD in patients after allogeneic HSCT; patients who were resistant to treatment showed elevated levels of sST2 and had higher mortality regardless of the grade of GVHD (140). This finding may allow physicians to predict disease and apply interventions earlier. It may also represent a novel therapeutic opportunity in GVHD and other related diseases.

ORGAN-SPECIFIC TISSUE DAMAGE FOLLOWING HSCT

SKIN

Frequently, the first presentation of GVHD involves the skin, typically manifesting initially as palmar and acral erythema, resembling a sunburn reaction, or an acute symmetric morbilliform eruption (211). The histopathology of GVHD is a lichenoid inflammatory process of the epidermis with variable numbers of lymphocytes arranged in a linear fashion along the basement membrane zone. The hallmark change is dead cells consisting of apoptotic keratinocytes, with tightly adherent lymphocytes observed in the epidermis with associated vacuolar interface changes (212). High-dose radiation activates skin DCs, which upregulates the expression of HLA-DR, adhesion molecules, co-stimulatory molecules (213), and PRRs, producing inflammatory cytokines and danger signals that contribute to skin GVHD by mediating memory T-cell recruitment to the skin (214). In cells undergoing programed cell death, activation of caspase-3 occurs as a downstream event that links both extrinsic (death receptor-mediated) and intrinsic (mitochondrial- or DNA damage-mediated) apoptotic pathways, which means that the presence of caspase-3 in the cell will not only identify it as apoptotic but also will indicate that the apoptotic machinery is involved in the premature demise of target cells. Labeling GVHD lesional skin using antibodies that recognize cleaved caspase-3 (215) identified apoptotic keratinocytes located at the base of rete ridges. Significant elevation of elastin plasma concentrations in patients with skin GVHD is due to keratinocyte damage (60).

GI TRACT AND LIVER

Gut tissue damage may be the first consequence of transplant conditioning and could be of particular significance for GVHD for two main reasons: the transplant conditioning regimen may deplete and/or alter the microbiota and epithelial barrier damage could allow for increased bacterial translocation, specifically in the gut. It is assumed that these processes lead to an increase in inflammation and exacerbate epithelial insult, as shown in an IBD model (216). Certain commensals such as *Bifidobacterium* strains may protect the host by improving the intestinal barrier. *Bifidobacterium* have carbohydrate transporters that can generate short-chain fatty acids, particularly acetate, which promotes defense functions in host epithelial cells in the distal colon (217). Recent GVHD studies have begun to analyze the dynamics of the gut flora during HSCT and how the innate immune receptors that recognize microbes may contribute to GVHD pathogenesis. In an experimental irradiation-independent non-myeloablative HSCT model, a gut microbial shift toward pro-inflammatory bacterial species was seen in mice that develop GVHD (136). It is still unclear whether the microbial changes in the gut are the cause or the result of GVHD, and whether these bacterial populations reflect endogenous microflora or overgrowth of pathogenic organisms due to the elimination of benign microbes. Endotoxin is a constituent of normal bowel flora that has the ability to stimulate the release of inflammatory cytokines that are known to be important mediators of clinical GVHD and most likely permeate the systemic circulation through the intestinal barrier, which is disrupted by the conditioning treatment (218). Also, microbial super antigens may activate B-cells by direct stimulation of MHC class II molecules (219). The early phases of changes in the GI tract have been described in animal models that do not use chemotherapy or radiation to condition the host; therefore, direct comparisons to clinical GVHD after bone marrow transplantation are not possible. The initial proliferative phase results in increased crypt cell mitotic activity, crypt lengthening, and the presence of intraepithelial lymphocytes. In experimental systems, this phase seems to be linked to IFN-γ production (220), which increases MHC class II expression and gut permeability by altering tight junction integrity and may modulate crypt stem-cell turnover (221). The histologic features of the GI tract in clinical GVHD and experimental GVHD after myeloablative conditioning are consistent with the destructive and atrophic phases, characterized by villus blunting, lamina propria inflammation, crypt destruction (with crypt stem-cell loss), and mucosal atrophy (222). Cytotoxic T lymphocytes do not appear to play a dominant role in experimental GVHD of the GI tract (215, 223–225), despite the ability of intraepithelial lymphocytes to induce Fas-mediated apoptosis of host-type tumor cells (226). It is clear, when these findings are considered in aggregate, that cytokines and cellular effectors combine to produce the specific damage to target organs as well as the systemic toxicity of acute GVHD. Furthermore, the absence of GVHD toxicity in other visceral organs, such as the kidney (currently debated), argues against circulating cytokines as the sole cause of tissue-specific damage. The infiltrates seen in GVHD target organs are generally thought to consist of T-cells responding to alloantigens presented by host tissues. LPS leakage through the skin or mucosa may act as an adjuvant to the antigens expressed in these tissues, attracting and activating alloreactive donor T-cells. In BMT models, LPS levels increase progressively during the first 4 weeks post-BMT. These levels lead to aggravated disease severity through TLR4 signaling, which induces inflammatory cytokine production. Deficiency of TLR4 on donor bone marrow cells reduces colonic GVHD severity. Interestingly, this reduction in GVHD severity was accompanied...
with a decrease of IL-23 levels. On the other hand, mice receiving allogeneic bone marrow from IL-23 knockout mice demonstrated less colonic pathology, and low levels of colonic LPS compared to wild-type controls. Interestingly, IL-17 was not detectable in the colon, while IFN-γ was markedly increased, in association with the LPS/IL-23 feedback loop (227). In consequence, IFN-γ activated macrophages after exposure to LPS release a significant amounts of inflammatory cytokines in GI tract but not in other target organs of GVHD (218). IL-23 could also enhance host IL-22-producing type 3 innate lymphoid cells (ILC3s) and promote gut recovery after conditioning. Alloreaction generated by donor T-cells damages the gut stem-cell compartment and eliminates recipient IL-22 producing ILC3, which are the main source of IL-22 in the gut and are known to protect intestinal stem cells (228). A deficiency in ILC3s leads to severe liver and GI GVHD and increases mortality. Moreover, a recent clinical study showed clear correlation between activation and expansion of intestinal ILC3s and the absence of acute GVHD (229).

Figure 4 shows a hypothetical model for the roles of IL-23 in GI GVHD. Thus, reductions in the doses of chemoradiotherapy to condition bone marrow transplant recipients have reduced the incidence of GVHD, as demonstrated in experimental models (230,231). This reduction is the result of reduced priming of mononuclear cells by lower doses of total body irradiation (TBI) and subsequent reductions in TNF-α production (224). Intestinal and liver tissue damage leads to the release of soluble mediators that correlate positively with GI and liver GVHD pathology. Significant augmentation of liver epithelial marker cytokeratin-18 protein (CK18) (232) has been demonstrated in serum from patients with hepatic and GI GVHD. Interestingly, CK18 levels begin to increase before the clinical manifestation of GVHD in some patients. Also, CK18 levels were correlated with bilirubin (liver function marker) levels. This correlation is specific to hepatointestinal GVHD (233). RegIIIα levels were also significantly increased in patients with GI GVHD as mentioned above (105,234). It is well known that Reg proteins act downstream of IL-22, which protects the function of intestinal mucosa, intestinal stem cells, and ILC3s (235,236).

THYMUS

Donor CD8 T-cells can damage medullary epithelial cells in the thymus and cause the generation of donor alloreactive CD4 T-cells (237), which suggests that GVHD autoimmunity can appear during acute GVHD after allogeneic HSCT. The thymic epithelial damage caused by anti-host reactive T-cells impairs negative selection in the thymus, consequently leading to the presence of autoreactive T-cells in the periphery (211,238, 239). These autoreactive T-cells are specific and able to recognize both self (donor) and host MHC class II antigens. Thus, they may participate in acute allogeneic GVHD and are thought to underlie the pathophysiology of chronic GVHD with its clinical autoimmune manifestations (214, 238). Animal studies revealed that the presence of the thymus is required for the development of autologous GVHD, based on comparisons with thymectomized rats before transplantation (240). The thymus is a primary target organ of GVHD. Thymus toxicity is generated further by regimen preparation (radiation) and age-associated thymus toxicities, resulting in thymus dysfunction and GVHD-induced damage of lymphopoietic microenvironments. However, keratinocyte growth factor (KGF) has promising effects...
for preventing GVHD-mediated thymic damage (241). Reduced thymic function is detrimental for thymopoiesis recovery, and insufficient recovery of thymopoiesis is directly linked to opportunistic infections and adverse clinical outcomes in recipients (242). Thymic GVHD damages the architecture and composition of the thymic environment (243). In the thymus stromal and epithelial cells, growth factors are produced locally including IL-7 and stem-cell factor (SCF), as are chemokines involved in T-cell precursor migration such as CCL9 and CCL21. Thymic GVHD affects T-cell renewal and differentiation, and in humans, it has been reported that when thymic function is transiently impaired in young patients because of acute GVHD, there are decreases in TCR-β chain rearrangement circles (244, 245).

ORAL

The overall incidence of oral complications after bone marrow transplantation is 80%. Most oral complications are resolved in autologous HSCT within 6 months post-transplantation. Oral complications in allogeneic transplantation include mucositis, oral dryness, taste change, and infection, and all symptoms are associated with GVHD (246–248). These oral changes are painful and impair patients’ quality of life (249, 250). The initiation of oral mucositis is induced by DNA and non-DNA damage caused by ROS generated by damaged basal epithelial cells, endothelial cells, and submucosal cells, in particular (251). This leads to NF-κB activation, inducing adhesion molecule expression, and MAPK and COX2 activation, resulting in the generation of IL-1β, IL-6, and TNF-α (252–254). This reinforces NF-κB activation and amplifies the response via the over-production of inflammatory cytokines (255–259). Perturbation in the immune response to the microbiota leads to spontaneous inflammation, and vice versa, changes in microbiota diversity are associated with pro-inflammatory states (260, 261). In HSCT recipients, substitution with coagulase-negative *Staphylococci* for *Streptococci* is associated with oral mucositis (137). It was suggested that subcutaneous administration of IL-11 reduces the severity of oral mucositis by maintaining keratin production in epithelial cells and reducing mucosal pro-inflammatory cytokine expression (262). However, it causes severe fluid retention and early mortality in clinical trials (263). Administration of TGF-β3 prior to chemotherapy down-regulates epithelial cell expansion and reduces oral mucositis in hamsters (264). KGF promotes upregulation of Bcl2 and cell survival (265) as well as upregulates IL-13 that attenuates TNF-α (266). KGF has beneficial effects on oral mucositis prevention in high-dose chemotherapy and TBI-treated patients (259, 267).

THERAPEUTIC APPROACHES TO TARGET DANGER SIGNALS

Since the late 1980s, different therapeutic approaches have been established to overcome GVHD (268, 269). These classical therapeutic strategies target only donor T-cells by inhibition or even depletion and may impact the immune reconstitution and graft-versus-leukemia effect. Recent therapeutic strategies have focused on PAMPs and/or DAMPs released by the host after tissue damage, which are the first triggers of activation of host APCs and donor T-cells. Therefore, targeting PAMPs and DAMPs may not impair donor cell function, immune reconstitution, or anti-tumoral activity. Here, we highlight therapeutic strategies targeting danger signal or alarmins.

SIGLEC-G LIGAND

Recently, it has been shown that conditioning inhibits the expression of Siglec-G, which could be activated by HMGB-1. The absence of Siglec-G ligand (CD24) increases susceptibility to GVHD in mice because of the response to DAMPs, but not PAMPs. Administration of CD24 fusion protein led to a reduction in GVHD severity and mortality. This approach reveals the importance of targeting DAMPs separately from exogenous PAMPs in GVHD therapy (39).

ALPHA-1 ANTITRYPSIN

Heparan sulfate, as described above, is detected in patient sera following HSCT. Murine studies showed that heparan sulfate levels are reduced significantly upon the use of the elastase inhibitor alpha-1 antitrypsin (270), and this reduction in heparan sulfate was correlated with reduced GVHD severity in murine models. The alteration of heparan sulfate in mice treated with alpha-1 antitrypsin subsequently led to a reduction in inflammatory cytokines such as TNF-α and IL-1β and enhanced IL-10 production and Treg expansion. Another study showed that alpha-1 antitrypsin treatment suppresses IL-32 expression in T-cells (271). Clinical trials using alpha-1 antitrypsin as GVHD prophylaxis are currently underway.

ILC3s

Many recent studies have emphasized the importance of RORγt ILCs in regulating mucosal immune responses via the control of intestinal microflora expansion and composition and regulation of CD4 T-cells (272). Depletion of Nfil3 in mice dramatically impairs the number of IL-22-producing ILC3s, which resulted in compromised innate intestinal immune defense against bacterial infection (273). IL-22-producing ILC3s have a beneficial impact on gut protection in metabolic disorders, improving insulin sensitivity as well as preserving the gut mucosal barrier and endocrine function (274). As mentioned before, IL-22-producing ILC3s have a crucial role in reducing epithelial and intestinal stem-cell damage and reducing GVHD severity and mortality (228). The same research group has demonstrated that daily administration of IL-22 for 3 weeks starting 1 week post-transplantation increases the survival and function of host radio-resistant ILC3s, subsequently reducing apoptosis in host intestinal stem cells and reducing GVHD severity through preservation of host cells from damage without compromising immune function or reconstitution (275). This makes IL-22 administration one of most promising therapies for GI GVHD. The transcription factor aryl hydrocarbon receptor (AhR) is highly expressed in ILC3s and is required for ILC3 development (276), particularly IL-22-producing ILC3s (277). Thus, using small molecules that activate AhR might be a promising future therapeutic strategy in preventing GI GVHD and ameliorating immune functions post-transplantation as well.

IL-1 RECEPTOR ANTAGONIST

Blockade of IL-1 with IL-1 receptor antagonist significantly reduces mortality from experimental GVHD and enhances...
engraftment of HSCs (278). In a clinical trial, IL-1 receptor antagonist reduced the severity of GVHD (279), but when used as prophylaxis, no significant impact on GVHD was observed (280).

ANTI-ST2 OR IL-33
A high level of sST2 is a risk factor for GVHD (140), with levels of sST2 positively correlating with high rates of mortality in patients with GVHD. Other studies reported that sST2 is associated with cardiovascular mortality. sST2 concentrations have been linked with inflammatory markers (281), and sST2 has been associated with disease severity in pulmonary arterial hypertension (282). sST2 is rapidly synthesized and released by endothelial cells in inflammatory conditions and in the setting of tissue damage (207). sST2 acts as a decoy receptor for IL-33, inhibiting signaling through membrane ST2 (ST2L) (283). In murine models, exposure of murine T-cells to sST2 inhibits TH2 cytokine production and shifts the cells toward a TH1 response (283). It is possible that high levels of sST2 after tissue damage induced by conditioning leads to activation of donor T-cells toward a type 1 response, thereby increasing GVHD responses. It is also possible that inhibition of sST2 decreases this phenomenon and thus increases type 2 T-cell responses. Another possible therapeutic approach would be to increase the expression of ST2L and make it more available for IL-33 binding and signaling. Both strategies should not impair the immune response of donor cells, but will work by limiting the effects of host tissue damage, opening new robust therapy options for GVHD.

MESENCHYMAL STEM CELLS
Mesenchymal stem cells (MSCs) are multipotent mesenchymal stromal cells with fibroblastic-like morphology that can differentiate into bone, cartilage, or fat cells (284). These cells have the capacity for non-specific immunosuppression and immunomodulation. It has been shown that infusion of MSCs in high-risk major-mismatched transplant recipients reduces the incidence of life-threatening GVHD (285, 286). Recent clinical studies showed that weekly infusion of MSCs with a fixed dose for 3 weeks reduced significantly the severity of the disease; specifically, patients with steroid-refractory acute GVHD experienced a complete response. Clinical response was correlated with a significant decline in RegIIIα and elafin GVHD biomarkers (287).

ANTI-TLRs
The expression of PRRs at the epithelial surfaces is equally important as that in immune cells in combating or facilitating entry of organisms into the body, including bacterial translocation from the gut after irradiation (288). Activation of PRRs results in additional vascular damage and infiltration of inflammatory cells that creates a cascade of lesions in a pro-oxidant microenvironment, aggravating tissue damage and causing a “danger” zone (289). An antagonist of LPS, the TLR4 ligand, results in reduced intestinal damage and GVHD severity without altering donor T-cell activity to the host antigen (133). Novel anti-TLR antibodies particularly anti-TLR4 and anti-TLR2 are being developed (290) and will soon represent a novel class of potential therapeutics for GVHD treatment.

CHRONIC GVHD AND DANGER SIGNALS
Graft-versus-host disease studies have led to a decrease of early mortality in related-allogeneic HSCTs, but late long-term morbidity and mortality caused by chronic GVHD remains a major challenge (291). The pathogenesis of chronic GVHD is complex and poorly understood, but is likely to involve dysfunction of tolerance determining mechanisms similar to classic autoimmune diseases. Figure 5 summarizes some of the knowledge of the pathophysiology of chronic GVHD. Briefly, negative selection in the thymus...
is impaired by the immune reconstitution and T-cell responses against tumors.

ACKNOWLEDGMENTS
Sophie Paczysny is supported by the National Institutes of Health grants R01-CA174667 and R01-CA168814. Sophie Paczysny is an investigator of the Amy Stelzer Manasvict Research Program (grant #200513) and the Lilly Physician Scientist Initiative Program (grant #20091568000).

REFERENCES
1. Cooke KR, Kobzik L, Martin TR, Brewer J, Delmonte J Jr, Crawford JM, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation. I. The roles of minor H antigens and endotoxin. Blood (1996) 88(8):3230–9.
2. Yanik GA, Ho VT, Levine JE, White ES, Braun T, Antin JH, et al. The impact of soluble tumor necrosis factor receptor etanercept on the treatment of idiopathic pneumonia syndrome after allogeneic hematopoietic stem cell transplantation. Blood (2008) 112(8):3073–81. doi:10.1182/blood-2008-03-143512
3. Hartrampf S, Dudaakov JA, Johnson LK, Smith OM, Tsai J, Singer NV, et al. The central nervous system is a target of acute graft versus host disease in mice. Blood (2013) 121(10):1996–10. doi:10.1182/blood-2012-09-456590
4. Mikkelsen RB, Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene (2003) 22(37):5734–54. doi:10.1038/sj.onc.1206663
5. Granet C, Miossec P. Combination of the pro-inflammatory cytokines IL-1, TNF-alpha and IL-17 leads to enhanced expression and additional recruitment of AP-1 family members, Egr-1 and NF-kappaB in osteoblast-like cells. Cytokine (2004) 26(4):169–77.
6. Babici C, Papa S, Dean K, Franzoso G. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene (2006) 25(51):6711–18. doi:10.1038/sj.onc.1209936
7. Han D, Ybanez MD, Ahmadi S, Yeh K, Kaplowitz N. Redox regulation of tumor necrosis factor signaling. Antioxid Redox Signal (2009) 11(9):2245–63. doi:10.1089/ars.2009.2611
8. Liu RM, Gaston Pravia KA. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med (2010) 48(1):1–15. doi:10.1016/j.freeradbiomed.2009.09.026
9. Zhou W, Xie W, Xiao Q, Beers DR, Appel SH. Protective effects of an anti-inflammatory cytokine, interleukin-4, on motoneuron toxicity induced by activated microglia. J Neurochem (2006) 99(4):1176–87. doi:10.1111/j.1471-4159.2006.04172.x
10. Qian L, Hong JS, Flood PM. Role of microglia in inflammation-mediated degeneration of dopaminergic neurons: neuroprotective effect of interleukin 10. J Neuroimmunol (2006) 178:367–71. doi:10.1016/j.jneuroim.2006.04.005
11. Noubade R, Ota N, Rutz S, Eidenschenk C, Valdez PA, et al. NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature (2014) 509(750):235–9. doi:10.1038/nature13152
12. Schwab L, Dudaakov JA, Johnson LK, Smith OM, Tsai J, Singer NV, et al. Neutrophil granulocytes recruited upon translocation of intestinal bacterial decontamination using metronidazole and ciprofloxacin prevent enterocolitis in mice. J Infect Dis (2014) 209(6):648–55. doi:10.1093/infdis/jiu3517
13. Jones JM, Wilson R, Bealman PM. Mortality and gross pathology of secondary disease in germfree mouse radiation chimeras. Radiat Res (1971) 45(3):577–88. doi:10.2307/3570366
14. van Bekkum DW, Knaan S. Role of bacterial microflora in development of intestinal lesions from graft-versus-host reaction. J Natl Cancer Inst (1977) 58(3):787–90.
15. Storb R, Prentice RL, Buckner CD, Clift RA, Appelbaum FR, Deeg J, et al. Graft-versus-host disease and survival in patients with aplastic anemia treated by marrow grafts from HLA-identical siblings. Beneficial effect of a protective environment. N Engl J Med (1983) 308(6):302–7. doi:10.1056/NEJM198302033080602
16. Beelen DW, Elmaaggaci A, Muller KD, Hirche H, Schaefer UW. Influence of intestinal bacterial decontamination using metronidazole and ciprofloxacin or ciprofloxacin alone on the development of acute graft-versus-host disease after marrow transplantation in patients with hematologic malignancies: final results and long-term follow-up of an open-label prospective randomized trial. Blood (1999) 93(10):3267–75.
Medzhitov R, Janeway CA Jr. Decoding the patterns of self and nonself by the innate immune system. Science (2002) 296(5566):298–300. doi:10.1126/science.1068883

Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol (2002) 20:197–216. doi:10.1146/annurev.immunol.20.020301.134539

Onoguchi K, Yoneyama M, Fujita T. Retinoic acid-inducible gene-I-like receptors. J Interferon Cytokine Res (2011) 31(1):27–31. doi:10.1016/j.jinterf.2010.05.007

Janssens S, Beyaert R. A universal role for MyD88 in TLR/IL-1R-mediated signaling. Trends Biochem Sci (2002) 27(9):474–82. doi:10.1016/S0968-0004(02)01245-X

Banchereau J, Steinmann RM. Dendritic cells and the control of immunity. Nature (1998) 392(6673):245–52. doi:10.1038/35288

Penack O, Holler E, van den Brink MR. Graft-versus-host disease: regulation by microbe-associated molecules and innate immune receptors. Blood (2010) 115(10):1865–72. doi:10.1182/blood-2009-09-242794

Holler E, Rogler G, Herfarth H, Brennemoel J, Wild PT, Hahn J, et al. Both donor and recipient NOD2 CARD15 mutations associate with transplant-related mortality and GVHD following allogeneic stem cell transplantation. Blood (2004) 104(3):889–94. doi:10.1182/blood-2003-10-3543

Bianchi ME. DAMPs, PAMPS and alarmins: all we need to know about danger. J Leukoc Biol (2007) 81(1):1–5. doi:10.1189/jlb.0606164

Agresti A, Bianchi ME. HMGB proteins and gene expression. Curr Opin Genet Dev (2003) 13(2):170–8. doi:10.1016/S0959-437X(03)00023-6

Mul ler S, Ronfani L, Bianchi ME. Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J Intern Med (2004) 255(3):332–43. doi:10.1111/j.1365-2763.2003.01296.x

Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature (2002) 418(6894):191–5. doi:10.1038/nature00858

Ellerman JE, Brown CK, de Vera M, Zeh HJ, Billar T, Rubartelli A, et al. Masquerade: high mobility group box-1 and cancer. Clin Cancer Res (2007) 13(10):2836–48. doi:10.1158/1078-0432.CCR-06-1953

Wang H, Bloome O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, et al. HMGB1 as a late mediator of endotoxin lethality in mice. Science (1999) 285(5425):248–51. doi:10.1126/science.285.5425.248

Popovic K, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature (2002) 418(6894):191–5. doi:10.1038/nature00858

Brunner M, Brown CK, de Vera M, Zeh HJ, Billar T, Rubartelli A, et al. Masquerade: high mobility group box-1 and cancer. Clin Cancer Res (2007) 13(10):2836–48. doi:10.1158/1078-0432.CCR-06-1953

Evankovich J, Cho SW, Zhang R, Cardinal J, Dhupar R, Zhang L, et al. High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J Biol Chem (2004) 279(9):6666–76. doi:10.1074/jbc.C905570200

Breznicaneu ML, Volf K, Bosser S, Solbach C, Lichte r P, Joos S, et al. HMGB1 polymorphisms with outcome after allogeneic stem cell transplantation. J Invest Dermatol (2013) 138(9):1937–43. doi:10.1016/j.jid.2013.08.0303

Jenke AC, Postberg J, Marel R, Hensel K, Foell D, Dubritz J, et al. S100A12 and hBD2 correlate with the composition of the fecal microflora in ELBW infants and expansion of E. coli is associated with NEC. Biomed Res Int (2013) 2013:150372. doi:10.1155/2013/150372

Chiu spo lo P, Gi ammarco S, Falan ci G, Belllesi S, Metafuni E, Sica S, et al. Sali vary proteomic analysis and acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant (2013) 19(6):888–92. doi:10.1016/j.bbmt.2013.03.011

Rela mbari K, Foell D, Vogl T, Mezer G, Wittkowski M, Hend F, et al. Monocyte-induced development of Th17 cells and the release of S100 proteins are involved in the pathogenesis of graft-versus-host disease. J Immunol (2014) 193(7):3535–45. doi:10.4049.jimmunol.1400983

Zhu J, Nathan C, Jin W, Sim D, Ashcroft GS, Wahl SM, et al. Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell (2002) 111(5):678–87. doi:10.1016/S0092-8674(02)01141-8

Lee SK, Lee SS, Hirose S, Park SC, Chi JG, Chung SI, et al. Elafin expression in human fetal and adult submandibular glands. Histochem Cell Biol (2002) 117(5):423–30. doi:10.1007/s00418-002-0405-3

Schalkwijk J, van Vlijmen IM, Alkemade JA, de Jongh GJ. Immunohistochemical localisation of SKALP/elafin in psoriatic epidermis. J Invest Dermatol (1993) 100(4):390–5. doi:10.1111/1523-1747.ep12471990

Reid PT, Marsden ME, Cunningham GA, Haslett C, Sallenave JM. Human neutrophil elastase regulates the expression and secretion of elafin (elastase-specific inhibitor) in type II alveolar epithelial cells. FEBS Lett (1999) 457(1):337–43. doi:10.1016/S0014-5793(99)01004-2

Kolls JK, McCray PB Jr, Chan YR. Cytokine-mediated regulation of antimicrobial proteins. Nat Rev Immunol (2008) 8(11):829–35. doi:10.1038/nri2435

Saketa T, Ito H, Hagiwara H, Saito Y, Kuroki J, Tachibana S, et al. Primary structure of the human elafin precursor proelafin deduced from the nucleotide sequences of its gene and the presence of unique repetitive sequences in the prosequence. Biochem Biophys Res Commun (1992) 185(1):240–5. doi:10.1016/0006-291X(92)80981-7

Sallenave JM, Silva A. Characterization and gene sequence of the precursor of elafin. J Biol Chem (1992) 267(26):18069–73. doi:10.1002/jbc.26726069

Sallenave JM, Shulmann J, Crossey J, Jordan M, Gaudie J. Regulation of secretory leukocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor (ESI/elafin) in human airway epithelial cells by cytokines and neutrophilic enzymes. Am J Respir Cell Mol Biol (1994) 11(6):733–41. doi:10.1165/ajrccm.11.6.7946401
58. Tanaka N, Fujioka A, Tajima S, Ishibashi A, Hirose S. Elafin is induced in epidermis in skin disorders with dermal neutrophil infiltration: interleukin-1 beta and tumour necrosis factor-alpha stimulate its secretion in vitro. Br J Dermatol (2000) 143(4):728–32. doi:10.1046/j.1365-2133.2000.03766.x

59. van Weringer S, van der Linden AC, van Sterkenburg MA, Rabie KE, Slalkisch J, Hiemstra PS. Regulation of secretory leukocyte protease inhibitor (SLPI) production by human bronchial epithelial cells: increase of cell-associated SLPI by neutrophil elastase. J Invest Med (2000) 48(5):359–66.

60. Pacesnez S, Braun TM, Levine JE, Hogan J, Crawford J, Coffing B, et al. Elafin is a biomarker of graft-versus-host disease of the skin. Sci Transl Med (2010) 2(13):31ra2. doi:10.1126/scitranslmed.3004006

61. Pfundt R, Wingens M, Bergers M, Zeevers M, Frenken M, Slalkisch J. TNF-alpha and serum induce SKALP/elafin gene expression in human keratinocytes by a p38 MAPK-dependent pathway. Arch Dermatol Res (2000) 292(4):180–7. doi:10.1007/s004030050475

62. Schutte BC, McCray PB Jr. [delta]-defensins in lung host defense. Am J Physiol (2002) 283(1):L79–L87. doi:10.1152/ajplung.001180.2002

63. Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol (2003) 3(9):710–20. doi:10.1038/nri1180

64. Ho S, Pothoulakis C, Koon HW. Antimicrobial peptides and colitis. Curr Pharm Des (2013) 19(1):40–7. doi:10.2174/1381612138010108

65. Gwyer Findlay E, Currie SM, Davidson DJ. Cationic host defence peptides: potential as antiviral therapeutics. BioDrugs (2013) 27(5):479–93. doi:10.1007/s40259-013-0039-0

66. Gursoy UK, Pollanen M, Kononen E, Uitto VJ. A novel organotypic dentoepithelial culture model: effect of Fusobacterium nucleatum biofilm on B-defensin-2, -3, and LL-37 expression. J Periodontol (2012) 83(2):242–7. doi:10.1902/jop.2011.110177

67. Eriguchi Y, Takashima S, Oka H, Shimoji S, Nakamura K, Uryu H, et al. Cathelicidins, multifunctional peptides of the innate immunity. J Invest Dermatol (2006) 127(1):1–5. doi:10.1038/sj.jid.5501904

68. Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med (2012) 209(2):593–11. doi:10.1084/jem.20112408

69. Schutte BC, McCray PB Jr. [alpha]-defensins in lung host defense. Am J Physiol (2002) 283(1):L37–L47. doi:10.1152/ajplung.001180.2002

70. Zanetti M, Gennaro R, Romeo D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. J Exp Med (2012) 209(2):593–11. doi:10.1084/jem.20112408

71. Lehrer RI, Ganz T. Cathelicidins: a family of endogenous antimicrobial peptides. J Mol Med (Berl) (2002) 80(1):31–49. doi:10.1007/s00109-002-0350-6

72. Zaiou M, Gallo RL. Cathelicidins, essential gene-encoded mammalian antibacterial peptides. J Immunol (2002) 169(2):479–93. doi:10.4049/jimmunol.169.2.479

73. Gennaro R, Zanetti M. Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers (2000) 55(1):31–49. doi:10.1002/1097-0282(2000)55:1<31::AID-BIP10.3.3.CO;2-0

74. Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol (2004) 75(1):39–48. doi:10.1189/jlb.0403147

75. Agerberth B, Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, et al. The human antimicrobial cathelicidin peptide LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors. Int Arch Allergy Immunol (2006) 140(2):103–12. doi:10.1159/000092305

76. Stockmann M, Poulsen F, Hesselberg K, Oren F, Meegalla RL, Wilson JM. Human cathelicidin LL-37 is a biomarker of graft-versus-host disease of the skin. J Exp Med (2001) 194(7):771–80. doi:10.1084/jem.200110340

77. Bals R, Weiner DJ, Meegalla RL, Wilson JM. Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J Clin Invest (1999) 103(8):1113–7. doi:10.1172/JCI6570

78. Choi KY, Napper S, Mookherjee N. Human cathelicidin LL-37 and its derivate FG-19 regulate interleukin-32-induced inflammation. Immunology (2014) 143(1):68–80. doi:10.1111/imn.12291

79. Fang D, Chertov O, Oppenheim JJ. Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37). J Leukoc Biol (2001) 69(5):691–7.

80. Nosova SB, Iwabuchi K, Someya A, Hirata M, Matsuda H, Ogasawara H, et al. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology (2002) 106(1):20–6. doi:10.1046/j.1365-2567.2002.01398.x

81. Bandholtz L, Ekman GJ, Vilhelmsson M, Buentke E, Agerberth B, Scheynius A, et al. Antimicrobial peptide LL-37 internalized by immature human dendritic cells alters their phenotype. Scand J Immunol (2002) 63(6):410–9. doi:10.1046/j.1365-3083.2002.00175.x

82. Davidson DJ, Currie AJ, Reid GS, Bowdish DM, MacDonald KL, Ma RC, et al. The cationic antimicrobial peptide LL-37 internalizes by immature human dendritic cells alters their phenotype. Scand J Immunol (2006) 63(6):410–9. doi:10.1046/j.1365-3083.2002.00175.x

83. Bandholtz L, Ekman GJ, Vilhelmsson M, Buentke E, Agerberth B, Scheynius A, et al. Antimicrobial peptide LL-37 internalized by immature human dendritic cells alters their phenotype. Scand J Immunol (2006) 63(6):410–9. doi:10.1046/j.1365-3083.2002.00175.x

84. Tiberio G, Kasparis MA, Drijfhout JW, Rabie KE, Hiemstra PS. Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors. Int Arch Allergy Immunol (2006) 140(2):103–12. doi:10.1159/000092305
111. Imamura Y, Kurokawa MS, Yoshikawa H, Nara K, Takada E, Masuda C, et al. Protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. J Immunol (2012) 188(7):3383–9. doi:10.4049/jimmunol.1100742

119. Qu X, Pan Y, Carbe C, Powers A, Grobe K, Zhang X. Glycosaminoglycan-RGD complex activates the innate immune system: a signal of danger for dendritic cells. Purinergic Signal (2005) 1(3):205–9. doi:10.1007/s11302-004-0081-z

123. Gething MJ, Sambrook J. Protein folding in the cell. Science.1209791

125. Granstein RD, Ding W, Huang J, Holzer A, Gallo RL, Di Nardo A, et al. Activation of RAGE family proteins in colitis. Scand J Gastroenterol (2001) 36(10):1243–50. doi:10.1080/00365520110056312

131. Hu DE, Moore AM, Thomsen LL, Brindle KM. Uric acid promotes tumor regression in vivo. Cancer Res (2003) 63(22):7944–51. doi:10.1158/0008-5472.CAN-03-1566

132. Yeh AC, Brunner AM, Spitzer TR, Chen YB, Coughlin E, McAfee S, et al. Phase II study of urate oxidase in the reduction of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. J Clin Invest (2001) 107(12):1581–9. doi:10.1172/JCI112156

133. Cooke KR, Gerbitz A, Crawford JM, Teshima T, Hill GR, Tesolin A, et al. TLR agonists regulate alloresponses and uncover a critical role for donor APCs in allogeneic bone marrow rejection. J Immunol (2011) 187(10):5130–40. doi:10.4049/jimmunol.2011-02003

134. Heimasset MA, Nogai A, Bereswill S, Plickert R, Fischer A, Loddenkemper C, et al. MyD88/TRL9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease. Gut (2010) 59(8):1079–87. doi:10.1136/gut.2009.179434

135. Soga Y, Maeda Y, Ishimaru F, Tanimoto M, Maeda H, Nishimura F, et al. Bacterial subtilisin of coagulase-negative Staphylococcus for Streptococcus on the oral mucosa after hematopoietic cell transplantation. Support Care Cancer (2011) 19(7):995–1000. doi:10.1007/s00520-010-1923-9

136. Michelsen KS, Aicher L, Mohaupt M, Hartung T, Dimmeler S, Kirschning CJ, et al. The role of toll-like receptors (TLRs) in bacteria-induced maturation of dendritic cells. J Immunol (2004) 172(10):5130–40. doi:10.4049/jimmunol.172.10.5130

137. Soga Y, Maeda Y, Ishimaru F, Tanimoto M, Maeda H, Nishimura F, et al. Bacterial subtilisin of coagulase-negative Staphylococcus for Streptococcus on the oral mucosa after hematopoietic cell transplantation. Support Care Cancer (2011) 19(7):995–1000. doi:10.1007/s00520-010-1923-9

138. Michelsen KS, Aicher L, Mohaupt M, Hartung T, Dimmeler S, Kirschning CJ, et al. The role of toll-like receptors (TLRs) in bacteria-induced maturation of dendritic cells. J Immunol (2004) 172(10):5130–40. doi:10.4049/jimmunol.172.10.5130
murine dendritic cells (DCs). Pegaptanib and lipotetraose acid are inducers of DC maturation and require TLR2. J Biol Chem (2001) 276(28):25680–6. doi:10.1074/jbc.M111652000

139. Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, Viau J, et al. Nod1 detects a unique muropeptide from Gram-negative bacterial peptido- glycan. Science (2003) 300(5625):1584–7. doi:10.1126/science.1084677

140. Vander Lugt MT, Braun TM, Hanash S, Ritz J, Ho VT, Antin JH, et al. ST2 as a marker for risk of therapy-resistant graft-versus-host disease and death. N Engl J Med (2006) 355(9):529–39. doi:10.1056/NEJMoa0512999

141. Nomura N, Nagase T, Miyajima N, Sazuka T, Tanaka A, Sato S, et al. Prediction of the coding sequences of unidentified human genes. II. The cod- ing sequences of 40 new genes (KIAA0041-KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1 (supplement). DNA Res (1994) 1(5):251–62. doi:10.1093/dnares/1.5.223

142. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila toll protein signals activation of adaptive immunity. Nature (1997) 388(6640):394–7. doi:10.1038/41131

143. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol (2003) 21:335–76. doi:10.1146/annurev.immunol.21.120600.111412

144. O’Neill LA, Golenbock D, Bowie AG. The history of toll-like receptors – redefin- ing innate immunity. Nat Rev Immunol (2013) 13(6):453–60. doi:10.1038/nri3446

145. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective LPS signaling in mice lacking tumor necrosis factor receptor 1 and 2. Cell (1998) 94(6):569–77. doi:10.1016/S0092-8674(00)81067-0

146. Inohara N, Brint EK, O'Neill LA, Tong L. Crystal structure of the toll/interleukin- 1 receptor-mediated regulation of zinc homeostasis influences dendritic cell activation and cross-tolerance in dendritic cells. J Immunol (2007) 179(5):2987–92. doi:10.4049/jimmunol.179.5.2987

147. Hemmi H, Takeuchi O, Kaisho T, Akira S. T olr-like receptors. Annu Rev Biochem (2004) 73(1):103–67. doi:10.1146/annurev.biochem.73.012703.190109

148. Boneca IG, Torrecilla M, Hauw K, Viau J, et al. Innate immune response to bacterial flagellin is mediated by toll-like receptor 5. Nature (2001) 413(6857):732–8. doi:10.1038/35099560

149. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-specific expression of single-stranded RNA via toll-like receptor 7 and 8. Science (2004) 303(5663):1526–9. doi:10.1126/science.1093620

150. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The CpG oligodeoxynucleotide receptor recognizes bacterial DNA. Nature (2000) 401(6753):663–6. doi:10.1038/35079114

151. Tanabe T, Chamaillard M, Ogura Y, Zhu L, Quin S, Masumoto J, et al. Regu- latory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J (2004) 23(7):1587–97. doi:10.1093/emboj/dch235

152. Taitt I, Travisso LH, Carneiro LA, Magalhaes JG, Girardin SE. The nodosome: Nod1 and Nod2 control bacterial infections and inflammation. Semin Immunopathol (2007) 29(3):289–301. doi:10.1007/s00281-007-0083-2

153. Bertrand MI, Doiron K, Babich K, Muir AC, Barker PA, Saleh M. Cellular receptors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity (2009) 30(6):789–801. doi:10.1016/j.immuni.2009.04.011

154. Damgaard RB, Nachur B, Yahal M, Wong VW, Filk BK, Kastir M, et al. The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immune. Mol Cell (2012) 46(6):746–58. doi:10.1016/j.molcel.2012.04.014

155. Baincich N, Aguirre JE, Reinecker HC, Xavier R, Podolsky DK. Membrane at the site of bacterial entry. J Cell Biol (2005) 169(1):21–6. doi:10.1083/jcb.200502153

156. van der Velde WJ, Blijlevens NM, Maas FM, Schaap NP, Jansen JH, van der Maarel SM, et al. Effect of NOD2/CARD15 variants in T-cell depleted allogeneic HSCT setting without polymorphisms in the TLR4 and NOD2 genes. Bone Marrow Transplant (2014) 49(2):241–7. doi:10.1038/bmt.2013.160

157. Inohara N, Koseki T, del Peso L, Hu Y, Yee C, Chen S, et al. Nod1- like activator of caspase-9 and nuclear factor-kappaB. J Biol Chem (1999) 274(21):14560–7. doi:10.1074/jbc.274.21.14560

158. Ogura Y, Bosen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohns disease. Nature (2001) 411(6837):663–6. doi:10.1038/35079114

159. Sawitzki B, Brunstein C, Meisel C, Schumann J, Vogt K, Appelt C, et al. Critical role of TLR9 in acute graft-versus-host disease. J Immunol (2008) 181(9):6132–9. doi:10.4049/jimmunol.181.9.6132

160. Deganacchi AH, Kolden M, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, et al. Improved outcome of hematopoietic SCT in patients with homoygeneous gene variant of toll-like receptor 9. Bone Marrow Transplant (2009) 44(5):395–302. doi:10.1038/bmt.2009.32

161. Xiao HW, Luo Y, Lai XY, Shi JM, Tan YM, He JS, et al. Donor TLR9 gene tagSNPs influence susceptibility to aGVHD and CMV reactivation in the allo- HSCT setting without polymorphisms in the TLR4 and NOD2 genes. Bone Marrow Transplant (2014) 49(2):241–7. doi:10.1038/bmt.2013.160

162. Xiao HW, Luo Y, Lai XY, Shi JM, Tan YM, He JS, et al. Donor TLR9 gene tagSNPs influence susceptibility to aGVHD and CMV reactivation in the allo- HSCT setting without polymorphisms in the TLR4 and NOD2 genes. Bone Marrow Transplant (2014) 49(2):241–7. doi:10.1038/bmt.2013.160
transplantation. *Bone Marrow Transplant* (2009) 44(4):243–8. doi:10.1038/bmt.2009.21

179. van der Strooten HM, Paquay MM, Tilanus MG, van Geloven N, Verdonck LF, Huisman C. NO2/CD25 variants are not a risk factor for clinical outcome after nonmyeloablative allogeneic stem cell transplantation. *Biol Blood Marrow Transplant* (2011) 17(8):1231–6. doi:10.1016/j.bbmt.2010.12.709

180. Sairafi D, Uruenal M, Remberger M, Ringden O, Mattsson J. No impact of NO2/CD25 variants on outcome after SCT. *Bone Marrow Transplant* (2008) 41(11):961–4. doi:10.1038/bmt.2008.9

181. Mayor NP, Shaw BE, Hughes DA, Maldonado-Torres H, Madrigal JA, Keshav S, et al. Single nucleotide polymorphisms in the NO2/CD25 gene are associated with an increased risk of relapse and death for patients with acute leukemia after hematopoietic stem-cell transplantation with unrelated donors. *J Clin Oncol* (2007) 25(27):4262–9. doi:10.1200/JCO.2007.12.1897

182. Slomchik WD. Graft-versus-host disease. *Nat Rev Immunol* (2007) 7(5):340–52. doi:10.1038/nri2000

183. Garantziotis S, Palmer SM, Snyder LD, Ganous T, Chen BJ, Wang T, et al. Identification and gene organization of three novel members of the IL-1 family on human chromosome 2. *Genomics* (2001) 70(3):213–6. doi:10.1006/geno.2000.6184

184. Mousel SB, Kianian PL, Lewis JC, Paganelli KA, Chizzonite RA. The interleukin 1-mediated function. *Eur J Immunol* (1987) 18(9):2906–12.

185. Dinarello CA. Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. *Int Rev Immunol* (1998) 16(5–6):457–99. doi:10.3109/08830189809043005

186. Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL. Identification of a IL-1 receptor accessory protein (AP) is required for IL-33 signaling and soluble AP enhances the ability of soluble ST2 to inhibit IL-33. *Cytokine* (2008) 42(1):358–64. doi:10.1016/j.cyto.2008.03.008

187. Lipsky BP, Trad BC, Sipe DA. Graft-versus-host disease associated thymic damage in patients in the appearance of T cell clones with anti- host reactivity. *Transplantation* (2000) 69(3):446–9. doi:10.1097/00001176-200009010-00026

188. Meves A, el-Azhary RA, Talwalkar JA, Moore SB, Brewer JD, Motsonelidze C, et al. Isolated peripheral blood cells activate the neutrophil chemoattractant CXCL7 from intestinal epithelial cells. *Stem Cell Res* (2001) 84(2):1863–9. doi:10.1016/s1872-2097(01)000028-6

189. van der Strooten HM, Paquay MM, Tilanus MG, van Geloven N, Verdonck LF, Huisman C. NO2/CD25 variants are not a risk factor for clinical outcome after nonmyeloablative allogeneic stem cell transplantation. *Bone Marrow Transplant* (2011) 17(8):1231–6. doi:10.1016/j.bbmt.2010.12.709

190. Pender SL, MacDonald TT. Matrix metalloproteinases and the gut – new roles in physiology and disease. *J Clin Pathol* (2005) 23(5):479–90. doi:10.1111/j.1440-1714.2005.00915.x

191. Qin JZ, Chaturvedi V, Denning MF, Bacon P, Panella J, Choubey D, et al. The interleukin-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel alarmin? *PLoS One* (2008) 3(10):e3331. doi:10.1371/journal.pone.0003331

192. Heuschkel RB, MacDonald TT. Matrix metalloproteinases and the gut – new roles in physiology and disease. *J Immunol* (2007) 181(12):8194–8.

193. Qin JZ, Chaturvedi V, Denning MF, Bacon P, Panella J, Choubey D, et al. The interleukin-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. *Proc Natl Acad Sci U S A* (2007) 104(1):282–7. doi:10.1073/pnas.060851401

194. Zecchina G, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel alarmin? *PLoS One* (2008) 3(1):e3331. doi:10.1371/journal.pone.0003331

195. Fujimori Y, Takatsuka H, Takemoto Y, Hara H, Okamura H, Nakanishi K, et al. Fas ligand-induced caspase-1-dependent accumulation of interleukin-18 in mice with acute graft-versus-host disease. *Blood* (2001) 98(1):235–7. doi:10.1182/blood.V98.1.235

196. Schmitz J, Owanyang A, Oldham E, Song Y, Murphy E, McClanahan TK, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. *Immunity* (2005) 23(5):479–90. doi:10.1016/j.immuni.2005.09.015

197. van der Strooten HM, Paquay MM, Tilanus MG, van Geloven N, Verdonck LF, Huisman C. NO2/CD25 variants are not a risk factor for clinical outcome after nonmyeloablative allogeneic stem cell transplantation. *Bone Marrow Transplant* (2011) 17(8):1231–6. doi:10.1016/j.bbmt.2010.12.709

198. Furumoto Y, Takatsuka H, Takemoto Y, Hara H, Okamura H, Nakanishi K, et al. Elevated interleukin-18 levels during acute graft-versus-host disease after allogeneic bone marrow transplantation. *Br J Haematol* (2000) 109(3):652–7. doi:10.1046/j.1365-2141.2000.02095.x

199. Nakamura H, Komatsu K, Araki M, Kawamoto S, Murakami M, Uoshima N, et al. Serum levels of soluble IL-2 receptor, IL-12, IL-18, and IFN-gamma in patients with acute graft-versus-host disease after allogeneic bone marrow transplantation. *J Allergy Clin Immunol* (2000) 106(1 Pt 2):545–50. doi:10.1067/mcl.2000.106774

200. Zecchina G, Novick D, Rubinstein M, Barak V, Dinarello C, Nagler A. Interleukin-18 binding protein in acute graft versus disease and engraftment following allogeneic peripheral blood stem cell transplantation. *J Hematother Stem Cell Res* (2001) 10(6):769–76. doi:10.1080/105281610131721083

201. Pender SL, MacDonald TT. Matrix metalloproteinases and the gut – new roles in physiology and disease. *J Immunol* (2007) 181(12):8194–8.

202. Carriere V, Rousel L, Ortega N, Lacorra DA, Americh L, Aguilar L, et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. *Proc Natl Acad Sci U S A* (2007) 104(1):282–7. doi:10.1073/pnas.060851401

203. Fujimori Y, Takatsuka H, Takemoto Y, Hara H, Okamura H, Nakanishi K, et al. Fas ligand-induced caspase-1-dependent accumulation of interleukin-18 in mice with acute graft-versus-host disease. *Blood* (2001) 98(1):235–7. doi:10.1182/blood.V98.1.235
216. McGuckin MA, Eri R, Simms LA, Florin TH, Radford-Smith G. Intestinal barrier dysfunction in inflammatory bowel diseases. *Inflamm Bowel Dis* (2009) 15(1):108–13. doi:10.1002/ibd.20539

217. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshinuma K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. *Nature* (2011) 469(7331):543–7. doi:10.1038/nature09646

218. Nestel FP, Price RS, Seemayer TA, Lapp WS. Macrophage priming and lipopolysaccharide-triggered release of tumor necrosis factor alpha during graft-versus-host disease. *J Exp Med* (1992) 175(2):405–13. doi:10.1083/jem.175.2.405

219. Scholl PR, Geha RS. MHC class II signaling in B-cell activation. *Immunol Today* (1994) 15(9):418–22. doi:10.1016/0167-5699(94)90271-2

220. Madara JL, Stafford J. Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers. *J Clin Invest* (1989) 83(2):74–7. doi:10.1172/JCI11398

221. Garside P, Bunce C, Tomlinson RC, Nichols BL, Mowat AM. Differential cytokine production associated with distinct phases of murine graft-versus-host reaction. *Immunology* (1994) 82(2):211–4.

222. Garside P, Reid S, Steel M, Mowat AM. Differential cytokine production associated with distinct phases of murine graft-versus-host reaction. *Immunology* (1994) 82(2):211–4.

223. Deguchi M, Whitaker-Menezes D, Jones SC, Alia S, Nakagawa S, Tagami H, et al. 12E2: a cloned murine dermal cell with features of dermal dendrocytes and potential involvement in mucosal injury associated with subsequent histopathological changes. *Int J Radiat Oncol Biol Phys* (2003) 57(1):293–302. doi:10.1016/S0360-3016(02)00795-9

224. Whitaker-Menezes D, Jones SC, Friedman TM, Korngold R, Murphy GF. An epithelial target site in experimental graft-versus-host disease and cytokine-mediated cytotoxicity is defined by cytokteratin 15 expression. *Blood Marrow Transplant* (2003) 9(3):559–70. doi:10.1038/sj.bmt.1703833

225. Noga SJ, Vogelsang GB, Seber A, Davis JM, Schepers K, Hess AD, et al. CD34+ stem cell augmentation of alligic, eltiriated marrow grafts improves engraftment but cyclosporine A is still required to reduce GVHD and morbidity. *Transplant Proc* (1997) 29(1–2):728–32. doi:10.1016/S0041-1345(96)00042-3

226. Lin T, Brunner T, Tietz B, Madsen J, Bonfoco E, Reaves M, et al. Fas ligand-mediated killing by intestinal intraepithelial lymphocytes. Participation in intestinal graft-versus-host-disease. *J Clin Invest* (1998) 101(5):750–7. doi:10.1172/JCI100060-9

227. Das R, Chen X, Komorowski R, Hesner MJ, Drobyski WR. Interleukin-23 secretion by donor antigen-presenting cells is critical for organ-specific pathology in graft-versus-host disease. *Blood* (2009) 113(10):2352–62. doi:10.1182/blood-2008-08-175448

228. Hanash AM, Dudakov JA, Hua G, O’Connor MH, Young LF, Singer NV, et al. Interleukin-1 and TNF-alpha on graft-versus-host disease and graft versus leukemia. *J Exp Med* (1986) 164(5):1615–25. doi:10.1083/jem.164.5.1615

229. Reddy P, Arora M, Guimond M, Mackall CL. GVHD: a continuing barrier to the safety of allogeneic transplantation. *Blood Marrow Transplant* (2009) 15(1 Suppl):162–8. doi:10.1038/bmt.2008.1014

230. Wils EJ, Romhouff EJ, van Mourik I, Spits H, Legrand N, Braeckman E, et al. Stem cell factor consistently improves thymopoiesis after experimental transplantation of murine or human hematopoietic stem cells in immunodeficient mice. *J Immunol* (2011) 187(6):2974–81. doi:10.4049/jimmunol.1004239

231. Hauri-Hohl MM, Keller MP, Gill J, Hafen K, Pachlaitko E, Boulay T, et al. Donor T-cell alloreactivity against host thymus epithelium limits T-cell development after bone marrow transplantation. *Blood* (2007) 109(4):4908–10. doi:10.1182/blood-2006-07-034157

232. Zlotoff DA, Zhang SL, De Oballa ME, Hess PR, Todd SP, Logan TD, et al. Delivery of progenitors to the thymus limits T-lineage reconstitution after bone marrow transplantation. *Blood* (2011) 118(7):1962–70. doi:10.1182/blood-2010-12-324954

233. Flame E, Busson M, Dousay C, Peufait de Latour R, Berrou J, Rabian C, et al. Acute graft-versus-host disease transiently impairs thymic output in young patients after allogeneic hematopoietic stem cell transplantation. *Blood* (2009) 113(25):6477–84. doi:10.1182/blood-2008-09-176594

234. Barker GJ, Epstein JB, Williams KB, Gorsky M, Raber-Durlacher JF. Current practice and knowledge of oral care for cancer patients: a survey of supportive health care providers. *Support Care Cancer* (2005) 13(1):32–41. doi:10.1007/s00520-004-0091-5

235. Brennan MT, Elting LS, Spikervert FK. Systematic reviews of oral complications from cancer therapies, oral care study group, MASCC/ISOO: methodology and quality of the literature. *Support Care Cancer* (2010) 18(8):979–84. doi:10.1007/s00520-010-0856-6

236. Barasch A, Epstein JB. Management of cancer therapy-induced oral mucositis. *Dermatol Ther* (2011) 24(4):424–31. doi:10.1111/j.1529-8019.2011.01434.x

237. Bellm LA, Epstein JB, Rose-Ped A, Martin P, Fuchs HJ. Patient reports of current practice and knowledge of oral care for cancer patients: a survey of supportive health care providers. *Support Care Cancer* (2000) 8(1):33–9.

238. Schubert MM, Correa ME. Oral graft-versus-host disease. *Dent Clin North Am* (2008) 52(2):179–199. doi:10.1016/j.cden.2007.10.004

239. Denham JW, Hauer-Jensen M. The radiotherapeutic injury – a complex ‘wound’. *Radiother Oncol* (2002) 63(2):129–45. doi:10.1016/S0167-8140(02)00069-0

240. Sonis ST. The pathobiology of mucositis. *Nat Rev Cancer* (2004) 4(4):277–84. doi:10.1038/nrc1131

241. Yash AS, Bowen JM, Gibson RJ, Keefe DM. Nuclear factor kappaB (NFkappaB) and cyclooxygenase-2 (COX-2) expression in the irradiated colorectum is associated with subsequent histopathological changes. *Int J Radiat Oncol Biol Phys* (2003) 58(4):1295–303. doi:10.1016/j.ijrobp.2004.06.012

242. Sonis ST. The biologic role for nuclear factor-kappaB in disease and its potential involvement in mucosal injury associated with anti-neoplastic therapy. *Crit Rev Oral Biol Med* (2002) 13(5):389–96. doi:10.1177/154411320301300502

243. Lima V, Brito CA, Cunha FQ, Falcao RA, Augusto RF, et al. Effects of the tumour necrosis factor-alpha inhibitor pentoxifylline and thalidomide in short-term experimental oral mucositis in hamsters. *Eur J Oral Sci* (2005) 113(5):210–7. doi:10.1111/j.1600-0722.2005.00216.x
Marcondes AM, Li X, Tabellini L, Bartenstein M, Kabacka J, Sale GE, et al. Protein fraction of Calothrix pacaure latex protects against 5-fluorouracil-induced oral mucositis associated with downregulation of pro-inflammatory mediators. *Nanosci Schmedeberg Arch Pharmacol* (2012) 385(10):981–90. doi:10.1007/s00210-012-0778-3

Curra M, Martins MA, Lauzen IS, Pelliccioli AC, Sant’Ana Filho M, Pavesi VC, et al. Effect of topical chamomile on immunohistochemical levels of IL-betax and TNF-alpha in 5-fluorouracil-induced oral mucositis in hamsters. *Cancer Chemother Pharmacol* (2013) 71(2):293–9. doi:10.1007/s00220-012-2139-3

Nomura M, Kamata M, Knijima H, Hayashi K, Sawada S. Irogladine maleate reduces the incidence of fluorouracil-based chemotherapy-induced oral mucositis. *Ann Oncol* (2013) 24(4):1062–6. doi:10.1093/annonc/mds584

Raber-Durlacher JE, von Bultzingslowen I, Logan RM, Bowren J, Al-Azri AR, et al. Reciprocal interactions of the intestinal microbiota and immune system. *Nature* (2012) 489(7415):231–41. doi:10.1038/nature11551

Brown EM, Sadarangani M, Finlay BB. The role of the immune system in bone marrow transplantation. *Clin Cardiol* (2014) 37(6):365–70. doi:10.1002/ccd.22622

Spielberger R, Stiff P, Bensinger W, Gentile T, Weisdorf D, Kewalramani T, et al. Interleukin-1 blockade does not prevent acute graft-versus-host disease: results of a randomized, double-blind, placebo-controlled trial of interleukin-1 receptor antagonist in allogeneic bone marrow transplantation. *Blood* (2002) 100(10):3479–82. doi:10.1182/blood-2002-03-0985

Chen LQ, de Lemos JA, Das SR, Ayers CR, Rohatgi A. Soluble ST2 is associated with all-cause and cardiovascular mortality in a population-based cohort: the Dallas Heart Study. *Clin Chem* (2013) 59(3):536–46. doi:10.1373/clinchem.2012.191186

Zheng YG, Yang T, He JG, Chen G, Liu ZH, Xiong CM, et al. Plasma soluble ST2 levels correlate with disease severity and predict clinical worsening in patients with pulmonary arterial hypertension. *Clin Cardiol* (2014) 37(6):365–70. doi:10.1002/ccd.22622

Trjakovic V, Sweet MJ, Xu D. T1/ST2 – an IL-1 receptor-like modulator of immune responses. *Cytokine Growth Factor Rev* (2004) 15(2–3):87–95. doi:10.1016/j.cytogfr.2004.02.004

Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. *Nat Rev Immunol* (2008) 8(7):726–36. doi:10.1038/nri2395

Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, et al. Rapid hematopoietic recovery after confusion of autologous blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. *J Clin Oncol* (2000) 18(2):307–16.

Baron F, Lechanteur C, Willems E, Bruck F, Baudoux E, Seidel L, et al. Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. *Blood* (2010) 116(8):383–47. doi:10.1182/blood-2010-01-290711

Finn T, Battiwalla M, Ito S, Feng X, Chinnan F, Melenhorst JJ, et al. Bone marrow mesenchymal stromal cells to treat tissue damage in allogeneic stem cell transplant recipients: correlation of biological markers with clinical responses. *Stem Cells* (2013) 32(5):1278–88. doi:10.1002/stem.1638

Santosaola R, Abreu MT. Innate immunity in the small intestine. *Carr Opin Gastroenterol* (2012) 28(2):124–9. doi:10.1097/MOG.0b013e3283506559

Jones GR. Free radicals in immunological killing: the case of tumor necrosis factor (TNF). *Med Hypotheses* (1986) 21(3):267–71. doi:10.1016/0306-9042(86)90019-8

Komai-Koma M, Li D, Wang E, Vaughan D, Xu D. Anti-toll-like receptor 2 and 4 antibodies suppress inflammatory response in mice. *Immunology* (2014) 143(3):354–62. doi:10.1111/imm.12312

Socie G, Ritz J. Current issues in chronic graft-versus-host disease. *Blood* (2014) 123(4):374–84. doi:10.1182/blood-2014-01-514752

Cowdy KM, Nugent JL, Martinu T, Potts E, Snyder LD, Foster WM, et al. Protective role of T-bet and Th1 cytokines in pulmonary graft-versus-host disease and peribronchial fibrosis. *Am J Respir Cell Mol Biol* (2012) 46(2):249–56. doi:10.1165/rcmb.2011-0131OC

Bruggen MC, Klein I, Greinix H, Bauer W, Kuzmina Z, Rabitsch W, et al. Diverse T-cell responses characterize the different manifestations of cutaneous graft-versus-host disease. *Blood* (2014) 123(2):259–60. doi:10.1182/blood-2013-07-514372

www.frontiersin.org January 2015 | Volume 6 | Article 14 | 19
294. Krenger W, Blazar BR, Hollander GA. Thymic T-cell development in allogeneic stem cell transplantation. *Blood* (2011) 117(25):6768–76. doi:10.1182/blood-2011-02-334623

295. Matsuoka K, Kim HT, McDonough S, Bascug G, Warshauer B, Koreth J, et al. Altered regulatory T cell homeostasis in patients with CD4+ lymphopenia following allogeneic hematopoietic stem cell transplantation. *J Clin Invest* (2010) 120(5):1479–93. doi:10.1172/JCI41072

296. Allen JL, Fore MS, Wooten J, Roehrs PA, Bhuiya NS, Hoffert T, et al. B cells from patients with chronic GVHD are activated and primed for survival via BAFF-mediated pathways. *Blood* (2012) 120(12):2529–36. doi:10.1182/blood-2012-06-438911

297. Caro-Maldonado A, Wang R, Nichols AG, Kuraoka M, Milasta S, Sun LD, et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. *J Immunol* (2014) 192(8):3626–36. doi:10.4049/jimmunol.1302062

298. Sarantopoulos S, Blazar BR, Cutler C, Ritz J. B cells in chronic graft-versus-host disease. *Biol Blood Marrow Transplant* (2014) 21(1):16–23. doi:10.1016/j.bbmt.2014.10.029

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 26 September 2014; paper pending published: 17 November 2014; accepted: 08 January 2015; published online: 28 January 2015.

Citation: Ramadan A and Paczesny S (2015) Various forms of tissue damage and danger signals following hematopoietic stem-cell transplantation. *Front. Immunol.* 6:14. doi:10.3389/fimmu.2015.00014

This article was submitted to Alloimmunity and Transplantation, a section of the journal *Frontiers in Immunology*.

Copyright © 2015 Ramadan and Paczesny. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.