ACOs and do not benefit from swallowing therapy, antiinflammatory therapy, myorelaxing and antireflux treatment. Surgery will improve the functional swallowing pathologies and will decrease the FOSS and PAS stages. Surgically, due to high postoperative pain and other morbidities, the transoral method is not advised, although it creates easier access to the spine for the physician. The side on which the surgery will be done can be decided based on the dominance of the osteophyte’s side. In addition, patients and anesthesia teams have to be informed that preoperative intubation difficulties may be experienced.

REFERENCES
1. Mader R. Diffuse idiopathic skeletal hyperostosis: time for a change. J Rheumatol 2008;35:377–379.
2. Parker MD. Dysphagia due to cervical osteophytes: a contro-versial entity revisited. Dysphagia 1989;3:157–160.
3. Mader R. Clinical manifestations of diVuse idiopathic skeletal hyperostosis of the cervical spine. Semin Arthritis Rheum 2002;32:130–135.
4. Castellano DM, Sinacori JT, Karakal DW. Dysphagia in diffuse idiopathic skeletal hyperostosis (DISH). Laryngoscope 2006;116:341–344.
5. Burkus J. Esophageal obstruction secondary to diffuse idiopathic skeletal hyperostosis. Orthopedics 1998;11:717–720.
6. Nelson RS, Urquhart AC, Faciszewski T. Diffuse idiopathic skeletal hyperostosis: a rare cause of dysphagia, airway obstruction, and dysphonia. J Am Coll Surg 2006;202:938–942.
7. Hirano H, Suzuki H, Sakakhita T, et al. Dysphagia due to hypertrophic cervical osteophytes. Clin Orthop Relat Res 1982;167:168–172.
8. Carlson MJ, Stauffer RN, Payne WS. Ankylosing vertebral hyperostosis causing dysphagia. Arch Surg 1974;109:567–570.
9. Marks B, Schober E, Swoboda H. Diffuse idiopathic skeletal hyperostosis causing obstructing laryngeal edema. Eur Arch Otorhinolaryngol 1998:255:256–258.
10. Stuart D. Dysphagia due to cervical osteophytes. A description of five patients and a review of the literature. Int Orthop 1999:13:95–99.
11. Salassa JR. A functional swallowing outcome scaling for staging oropharyngeal dysphagia. Dig Dis 1999;17:230–234.
12. Rosenbuc JK, Roberts JA, Roecker EB, et al. A penetration-aspiration scale. Dysphagia 1996;11:93–98.
13. Goh PY, Dobson M, Iseli T, et al. Forestier’s disease presenting with dysphagia and dysphonia. J Clin Neurosci 2010;17:1336–1338.
14. Lecerf P, Malard O. How to diagnose and treat symptomatic anterior cervical osteophytes. Eur Ann Otorhinolaryngol Head Neck Dis 2010;127:111–116.
15. Kos MP, van Royen BJ, David EF, et al. Anterior cervical osteophytes resulting in severe dysphagia and aspiration: two case reports and literature review. J Laryngol Otol 2009;123:1169–1173.
16. Carlson ML, Archibald D, Graner DE, et al. Surgical management of dysphagia and airway obstruction in patients with prominent ventral cervical osteophytes. Dysphagia 2011;26:34–40.
17. Robinson RA, Smith G. Anterolateral cervical disk removal and interbody fusion for cervical disk syndrome. Bull Johns Hopkins Hosp 1955;96:223–224.
18. Jeannin JP, Goldstein DP, Bachar G, et al. Forestier disease causing dysphagia. J Otolaryngol Head Neck Surg 2008;37:E11–E14.
19. OgruGezOB, Salassa JR, Reimer R, et al. Anterior cervical osteophyte dysphagia: manoeuflaerogue and functional outcomes after surgery. Head Neck 2010;32:588–593.
20. Merwin GE, Post JC, Sypert GW. Transoral approach to the upper cervical spine. Laryngoscope 1991;101:780–784.
21. Ebo DG, Uytterhaegen PL, Lagae PL, et al. Choking, sore throat with referred otalgia and dysphagia in a patient with diffuse idiopathic skeletal hyperostosis (DISH). Acta Clin Belg 2005:60:98–101.
22. Goh PY, Dobson M, Iseli T, et al. Forestier’s disease presenting with dysphagia and dysphonia. J Clin Neurosurg 2010;17:1336–1338.
23. Cheung KM, Mak KC, Luk KD. Anterior approach to cervical spine. Spine 2012;37:E297–E302.
24. Apuzzo ML, Weiss MH, Heiden JS. Transoral exposure of the atlantoaxial region. Neurosurgery 1978;3:201–207.
25. Blazier CJ, Hadley MN, Speiletz RF. The transoral surgical approach to craniovertebral pathology. J Neurosci Nurs 1986;18:57–62.
26. Ashraf J, Crockard HA. Transoral fusion for high cervical fractures. J Bone Joint Surg Br 1990;72:76–79.
27. Hsu W, Wolinsky JP, Gokaslan ZL, et al. Transoral approaches to the cervical spine. Neurosurgery 2010;66 (3 suppl):119–125.
28. Fang HSY, Ong GB. Direct anterior approach to the upper cervical spine. J Bone Joint Surg Am 1962;44:1588–1604.
29. Menezes AH, VanGilder JC. Transoral-transpharyngeal approach to the anterior craniovertebral junction. Ten-year experience with 72 patients. J Neurosurg 1988;69:895–903.
30. Miyamoto K, Sugiyama S, Hosoe H, et al. Postsurgical recurrence of osteophytes causing dysphagia in patients with diffuse idiopathic skeletal hyperostosis. Eur Spine J 2009;18:1652–1658.

Periocular Basal Cell Carcinoma Predictors for Recurrence and Infiltration of the Orbit
Alena Furdova, MD, PhD* and Pavol Lukacko, MD†

Purpose: To present the proportion of patients with periocular basal cell carcinoma (BCC) who underwent orbital exenteration and to evaluate the significance of the risk factors.

Design: Retrospective, comparative, interventional case series.

Methods: Data of all patients with BCC between 2008 and 2014 were reviewed for patient demographics, previous treatment options, tumor localization, and histopathologic subtype.

Results: In group of 256 patients, orbital exenteration underwent 7 patients (2.7%). For 2 patients (5.1%), orbital exenteration was the first procedure performed. In the exenterated group, the most common tumor site was the medial canthus and lower eyelid, whereas in the overall group, it was the lower eyelid (P = 0.011). The proportion of patients initially treated with histopathologic result of infiltration of 1 margin was significantly higher in patients undergoing exenteration (P = 0.282). During the 7-year period observership, the authors have...
seen 13 recurrences (5.08%). In patients with recurrent BCC after surgery, the authors applied adjutant high dose rate 192Ir brachytherapy. Neoadjuvant therapy with Vismodegib was effective in patient with biorbital infiltration after 1 side exenteration.

Conclusions: Orbital invasion may be clinically silent. Recurrence rate of BCC in our group 5% corresponds to date in the literature. The exenteration for BCC may be significantly higher when the lesion involves a medial canthal location and lower eyelid and initial surgery does not include margin-controlled excision.

Key Words: Exenteration of the orbit, eyelid basal cell carcinoma, HDR 192Ir brachytherapy, Vismodegib

Exenteration surgery indication in orbital and periorbital tumors is rare, about 40% to 50% of exenterations that present to ophthalmologists are required for tumors originating in the eyelid or periorcular skin. Tumors arising in the paranasal sinuses and nose may also require exenteration to achieve local control, but these tumors usually do not present to an ophthalmologist.

The incidence of all skin malignancy is increasing worldwide. The relative incidence of periorcular skin malignancies varies with geographical area and racial group. Basal cell carcinoma (BCC) is universally the most common malignant skin tumor accounting for approximately 90% in most series; squamous cell and sebaceous gland carcinoma occur in approximately 4% to 6% each. Basal cell and squamous cell carcinoma occur most commonly in the lower lid and medial canthus, sebaceous gland carcinoma is most common in the upper lid, other eyelid malignancies are relatively rare. Any periorcular skin malignancy, if neglected, can invade the orbit and raise the probability of exenteration. The incidence of orbital invasion is about 2% to 4% and the risk factors include multiple recurrences, large size, aggressive histological subtype, perineural spread, canthal location particularly the medial canthus and age over 70. Perineural invasion occurs in <1% of BCCs.

In the beginning of BCC, there may be no sign of orbital invasion, but as the disease progresses fixation to bone, limitation of eye globe motility, and globe displacement may occur.

A multidisciplinary team must collaborate in planning management of orbital invasion. Radical surgery and adjuvant radiotherapy or chemotherapy may be needed.

The aim of exenteration is to achieve local control of the disease. Total exenteration removes all orbital tissue, including the periorbita, posterior to the orbital rim. The eyelids may be preserved in tumors placed posteriorly within the orbit and even some arising in periorcular skin. Most anteriorly placed tumors, however, require removal of all anterior orbital tissue and peri-orbita together with the eyelids, but the posterior orbital tissues may be preserved.

The exposed bone of the exenterated orbit may be treated in a variety of ways. The orbit heals by granulation in 3 to 4 months. Frequent dressings with antibacterial packs are needed. Healing by granulation results in a shallower socket than with split skin grafting. Split skin, with or without meshing, generally heals well.

Crusting and general cleanliness of the socket can be a problem. Careful attention to daily hygiene is necessary. After exenteration most patients prefer to wear a patch, rather than a prosthesis, especially with the larger reconstructions. If a standard postexenteration facial-type prosthesis is preferred to a patch, good cosmetic effect can be achieved. Patient satisfaction with implant-retained prostheses is generally high.

Amniotic membrane transplantation (AMT) is used in acute ophthalmological care, to treat chronic diseases of the surface of the eye, and as the newest development, using tissue engineering, as a biomatrix to treat severe stem cell deficiency of the ocular surface. It provides practicing ophthalmologists with a particularly multifaceted instrument to tackle the challenges posed by disorders of the surface of the eye successfully.

Although the first ophthalmological use of amniotic membrane documented in the international literature took place almost 70 years ago, AMT has only been performed in large numbers of patients since 1995, with promising results.

Various disorders of the ocular surface, including persistent epithelial defects of the cornea, acute chemical burns with long-term loss of integrity of the ocular surface epithelium or conjunctival scarring as a result of the healing of mucous membrane disorders still pose a clinical challenge in ophthalmic surgery.

MATERIALS AND METHODS

Retrospective, comparative, interventional case series to present the proportion of patients with periorcular BCC who underwent orbital exenteration and to evaluate the significance of the following risk factors: initial tumor site, pathologic features, and initial treatment. Charts of all patients with BCC referred to Department of Ophthalmology, Faculty of Medicine, Comenius University in Bratislava between 2008 and 2014 were reviewed for patient demographics, previous treatment options, tumor localization, and histopathologic subtype. The main outcomes were recurrence rate, tumor-related deaths, orbital infiltration, rate of exenteration, and treatment options in patients after exenteration.

The study has been submitted to a legally constituted ethics committee and deemed exempt from review and giving the name and study reference of the committee.

Authors do have the patient’s consent to print identifiable photographs for the purposes of the archive.

RESULTS

Data (including follow-up) were available for 256 patients. The average age was 58 years (52–82 years). Orbital exenteration underwent 7 patients (2.7%), average age 75 years. For 2 patients (5.1%), orbital exenteration was the first procedure performed. In the exenterated group, the most common tumor site was the medial canthus and lower eyelid, whereas in the overall group, it was the lower eyelid ($P = 0.011$). The proportion of patients initially treated with histopathologic result of infiltration of 1 margin of the excised tumor was significantly higher in patients undergoing exenteration ($P = 0.282$). During the 7-year period observeshhip, we have seen 13 recurrences (5.08%).

In patients with recurrent BCC of the lower eyelid after surgery, we applied adjutant HDR 192Ir brachytherapy. The isodose curve chosen to prescribe the dose was 5 mm away from the skin surface. For each patient was made individual or fit mask that bore plastic applicators. Tungsten eye shield applicator was applied to protect the eye globe. Treatment of 10 fractions of 4.5 Gy single dose (5 times weekly) were scheduled within 2 weeks. Patients received outpatient treatment.

Acute toxicity postradiation erythema of eyelid and skin around relieved by standard symptomatic treatment within a few days after completion of radiation therapy.

In 2-year interval after HDR 192Ir brachytherapy, we did not record the occurrence of late complications such as corneal ulcers. Our preliminary experience shows excellent early skin tolerance. After 2 to 7 years of follow-up we did not recognize relapse in our group of patients. The proposed technique of HDR 192Ir brachytherapy after surgery should be considered an effective clinical treatment in patients with recurrent nonmelanotic eyelid cancer. Its main advantage lies in the usefulness in all types of basal cell and squamous cell carcinoma and sebaceous carcinoma of the eyelids.
These include fistula formation into a Patient 3 exenteration of the other side for more than 1 year. In 2015, we enabled to protect the eye globe and prolonged the time before completely healed. Covering defects in contralateral side defects was applied on top of the membrane until the epithelial defect was facing down, and sutured with 10-0 sutures. A bandage contact lens technique by applying an amniotic membrane over the whole anesthesia, amniotic membranes were placed we performed a patch surgery was performed by 1 surgeon. After retrobulbar or topical anesthesia, conjunctiva and cornea were covered by amniotic membrane. All eye globe (Fig. 2). The defect due to infiltration of the inner angle and nasal part of the orbit resulted lagophthalmos of the other side. Conjunctiva and cornea were covered by amniotic membrane. All surgery was performed by 1 surgeon. After retrobulbar or topical anesthesia, amniotic membranes were placed we performed a patch technique by applying an amniotic membrane over the whole cornea and nasal conjunctiva with the basement membrane side facing down, and sutured with 10-0 sutures. A bandage contact lens was applied on top of the membrane until the epithelial defect was completely healed. Covering defects in contralateral side defects enabled to protect the eye globe and prolonged the time before exenteration of the other side for more than 1 year. In 2015, we invented neoadjuvant therapy with Vismodegib in 1 patient and it was effective in patient with biorbital infiltration after 1 side exenteration to reduce size of infiltration of the other orbit.

In patients after exenteration, an individual prosthesis is used to cover the defect (see Fig. 3).

DISCUSSION

Shields et al reported 56 exenterations. Four of the 9 skin tumors allowed some eyelid sparing; in 22 of the 24 conjunctival tumors and all of the 11 orbital tumors, the eyelids were spares. In Ben Simon et al reported 34 exenterations: 13 were subtotal, 14 were total, and 7 were extended. They reported complications in 23.5% of 34 exenterations. These include fistula formation into a sinus, the nose or the nasolacrimal duct, tissue necrosis with eschar formation, chronic drainage, infection, chronically exposed bone, cerebrospinal fluid leak, and pain. Large fistulae and exposed bone can be managed with a temporalis muscle flap or other local flap. The time taken for healing with granulation can occasionally far exceed the usual 3 to 4 months. Split skin usually takes well but occasionally some skin is lost owing to infection or hematoma or following irradiation.

In planning the surgery, the extent of orbital invasion which may have been underestimated by the investigations the biological behavior of the tumor, and the presence of perineural spread must be taken into account. Aggressive cell types and in particular the possibility of perineural invasion should prompt generous margins of excision.

Perineural tumor spread has a worse prognosis. Williams et al reported 35 patients with clinical perineural spread; 51.4% had positive evidence of perineural spread on imaging. The 5-year survival in this group was 50%. In the group without computed tomography or magnetic resonance confirmation of perineural spread, the 5-year survival was 86%.

It is not always possible to achieve complete clearance of a tumor despite radical surgery. Incomplete clearance was found in 50% of total and 17% of subtotal exenterations by Goldberg et al. Perineural invasion may indicate more extensive spread than anticipated, the risk of incomplete clearance is higher and the prognosis is worse. Exenteration is a radical operation for progressive BCC invading the orbital tissues; clearance is achieved in more than 60% of total exenterations and more than 80% of subtotal exenterations. The 5-year survival was 86% to 65% for exenterations that present to ophthalmologists: tumors arising in the skin, globe, or orbital tissues. Good cosmetic rehabilitation can be achieved with a facial prosthesis.

Orbital invasion by periocular BCC may be associated with significant ocular morbidity and, rarely, death. Orbital invasion may often be clinically silent, clinicians need to be alert to the possibility in high-risk tumors and consider appropriate imaging. Surgical treatment with exenteration is mutilating procedure. Recurrence rate of BCC in our group 5% corresponds to date in the literature.
The exenteration for BCC may be significantly higher when the lesion involves a medial canthal location and lower eyelid and initial surgery does not include margin-controlled excision.

The amniotic membrane remains a useful tool in the treatment of several ophthalmic conditions, especially those related to the ocular surface and in patients after radiotherapy to protect the eye surface. In biorbital infiltration after exenteration of one side, it is possible to treat the surface of the other side eye with amniotic membrane to prolong the interval before exenteration of the other side.16

In patients with recurrent nonmelanotic eyelid cancer, HDR 192Ir brachytherapy after surgery should be considered an effective clinical treatment, it can be used in all types of basal cell and squamous cell carcinoma and sebaceous carcinoma of the eyelids, without restriction by site, dimension, clinical or histological type, or the patient’s general status.

Iuliano et al reported more than 500 patients and the need for exenteration for BCC may be significantly higher when the lesion involves a medial canthal location. Initial management does not include margin-controlled excision, or pathologic analysis reveals an infiltrative subtype. Margin-controlled excision for periorcular BCC and close follow-up after excision for medial canthal BCC is necessary.24

According to our experience, the most common tumor site was the medial canthus and lower eyelid infiltrative BCC as the indication of exenteration of the orbit. Due to our experience, infiltration of the orbit might be without pain more than 1 year and it can happen, that patient is coming late in T4 stage, when only radical surgery is necessary. Cosmetic defects after exenteration of the orbit are covered by prostheses to enable the patients to be involved into everyday life.

Though there are various options available for reconstruction after orbital exenteration, a split skin graft and orbital prosthesis provide a simple solution for a very difficult problem of advanced periorbital skin cancer in the elderly population with significant comorbidities. The final outcome is comparable to that of more complex flap reconstruction with comparable satisfaction rates.25

REFERENCES

1. de Vries E, van de Poll-Franse LV, Louwman WJ, et al. Predictions of skin cancer incidence in the Netherlands up to 2015. Br J Dermatol 2005;152:481–488
2. Frezzotti R, Bonanni R, Nuti A, et al. Radical orbital resections. Adv Ophthalm Plast Reconstr Surg 1992;9:175–192
3. Goldberg RA, Kim JW, Shorr N. Orbital exenteration: results of an individualized approach. Ophthal Plast Reconstr Surg 2003;19:229–236
4. Brown CI, Perry AE. Incidence of perineural invasion in histologically aggressive types of basal cell carcinoma. Am J Dermatopathol 2000;22:123–125
5. Chao AN, Shields CL, Krema H, et al. Outcome of patients with periorcular sebaceous gland carcinoma with and without intraepithelial invasion. Ophthalmology 2001;108:1877–1883
6. Walling HW, Fosko SW, Geramimnejad PA, et al. Aggressive basal cell carcinoma: presentation, pathogenesis and management. Cancer Metastasis Rev 2004;23:389–402
7. Collins GL, Nickoanahand N, Morgan MB. Changing demographics and pathology of non-melanoma skin cancer in the last 30 years. Semin Cutaneous Med Surg 2004;23:80–83
8. Doxanas MT, Green WR. Sebaceous gland carcinoma. Review of 40 cases. Arch Ophthalmol 1984;102:245–249
9. Howard GR, Neral JA, Carter KD, et al. Clinical characteristics associated with orbital invasion of cutaneous basal cell and squamous cell tumours of the eyelid. Am J Ophthalmol 1992;113:123–133
10. Leibovitch I, McNab A, Sullivan T, et al. Orbital invasion by periorcular basal cell carcinoma. Ophthalmology 2005;112:717–723

11. Menon NG, Girota JA, Goldberg NH, et al. Orbital reconstruction after exenteration: use of a transorbital temporal muscle flap. Ann Plast Surg 2005;50:38–42
12. Shields JA, Shields CL, Demirci H, et al. Experience with eyelid sparing orbital exenteration: the 2000 Tullos O Coston Lecture. Ophthal Plast Reconstr Surg 2001;17:355–361
13. Ben Simon GI, Schwartz RM, Douglas R, et al. Orbital exenteration: one size does not fit all. Am J Ophthalmol 2005;139:11–17
14. de Conciliis C, Bonavolonta G. Incidence and treatment of dural exposure and CSF leak during orbital exenteration. Ophthal Plast Reconstr Surg 1987;3:61–64
15. Chen YS, Kim JY, Wic W, et al. Application of amniotic membrane on corneal wound healing after excimer laser PRK. Invest Ophthalmol Vis Sci 1997;38:8536
16. Dua H. Amniotic membrane transplantation. Br J Ophthalmol 1999;83:746–752
17. Meller D, Pauklin M, Thomasen H, et al. Amniotic membrane transplantation in the human eye. Dtsch Arztebl Int 2011;108:243–248
18. Shimazaki J, Shinozaki N, Tsubota K. Transplantation of amniotic membrane and limbal autograft for patients with recurrent pterygium associated with symblepharon. Br J Ophthalmol 1998;82:235–240
19. Tseng SCG, Prabhasawat P, Barton K, et al. Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Arch Ophthalmol 1998;116:431–441
20. Tseng SCG, Prabhasawat P, Lee S-H. Amniotic membrane transplantation for conjunctival surface reconstruction. Am J Ophthalmol 1997;124:765–774
21. Williams LS, Mancuso AA, Mendenhall WM. Perineural spread of cutaneous squamous and basal cell carcinoma: CT and MR detection and its impact on patient management and prognosis. Int J Radiol Oncol Biol Phys 2001;49:1061–1069
22. Furdová A, Lukačko P, Lederleiter D. HDR 192Ir brachytherapy in treatment of basal cell carcinoma of the lower eyelid and inner angle—our experience. Cesk Slov Oftalmol 2013;69:75–79
23. Furdová A, Horkovicová K, Krcova I, et al. Exenteration of the orbit for basal cell carcinoma. Cesk Slov Oftalmol 2015;71:209–216
24. Iuliano A, Strianese D, Uccello G, et al. Risk factors for orbital exenteration in periorbital basal cell carcinoma. Am J Ophthalmol 2012;153:238–241
25. Nassab RS, Thomas SS, Murray D. Orbital exenteration for advanced periorbital skin cancers: 20 years experience. J Plast Reconstr Aesthet Surg 2007;60:1103–1109

External Auditory Canal Stenosis After Traumatic Auricular Amputation

Justin E.R.E. Wong Chung, MD,* Deseradies C. Chussi, MD,1 and Niels van Heerbeek, MD, PhD

Background: The auricles are easily injured or amputated in case of head trauma. Inadequate treatment of the external auditory canal (EAC) after auricular injury is often seen and can lead to significant complications of the EAC.

Case Report: The authors report 4 cases of auricular injury or amputations. In all patients inadequate first treatment led to stenosis of the EAC. Three patients required recanalization of the EAC because of hearing loss and the risk of further complications.