Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy

Kristian Daniel Ralph Roth¹, Esther Veronika Wenzel¹,², Maximilian Ruschig¹, Stephan Steinke¹, Nora Langreder¹, Philip Alexander Heine¹, Kai-Thomas Schneider¹, Rico Ballmann¹, Viola Führner¹, Philipp Kuhn³, Thomas Schirrmann³, André Frenzel³, Stefan Dübel¹,²,³, Maren Schubert¹, Gustavo Marçal Schmidt Garcia Moreira¹, Federico Bertoglio¹, Giulio Russo¹,² and Michael Hust¹,³*

¹ Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany, ² Abcalis GmbH, Braunschweig, Germany, ³ YUMAB GmbH, Braunschweig, Germany

Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.

Keywords: phage display, infectious disease, recombinant antibodies, scFv antibodies, VHH antibodies
INTRODUCTION

Antibodies are indispensable tools for basic research (Colwill and Graslund, 2011), diagnostics (Kourea and Kotoula, 2016) and therapy (Kaplon and Reichert, 2021). In the past - and still today - polyclonal antibodies (blood serum) are produced in animals like horses (von Behring and Kitasato, 1890). The hybridoma technology was a milestone in antibody generation because it allowed the production of monoclonal antibodies (Köhler and Milstein, 1975). Despite these antibodies are monoclonal, cell secreted antibodies are not always monospecific, as unveiled by the results of a multicentric study on the detrimental effects of genetic diversity in individual hybridoma clones (Bradbury et al., 2018). Of 185 randomly selected hybridomas analyzed in this study, almost one third was found to contain additional productive heavy or light chains, resulting in antibodies with reduced affinity and more than one specificity. Other limitations of the hybridoma technology are the possible instability of the tetraploid, but also often aneuploid hybridoma cell lines (Pauza et al., 1993), the restriction of the immune system which prevents the generation of antibodies against highly conserved or self-antigens and most important the limitations to directly generate human antibodies (Winter and Milstein, 1991). The hybridoma technology most commonly provides murine antibodies for use in research and diagnostics. But, the therapeutic applications of murine antibodies are very limited because repeated administration of murine antibodies can cause a human anti-mouse antibody reaction (HAMA), which can lead also to severe side effects such as anaphylactic shock (Courtenay-Luck et al., 1986). While various humanization strategies are available to reduce the immunogenicity, these approaches are often laborious (Almagro and Fransson, 2008; Lo K.-M. et al., 2014). The human hybridoma technology allows the generation of human antibodies, (Cole et al., 1984; Hammond, 2010), but this approach will not be able to deliver antibodies against any targets because specific B-cells from humans would be needed and this is limited by ethical constraints. An alternative for human antibody generation is the use of transgenic animals in which the animal antibody gene repertoire is substituted with the corresponding human gene repertoire, but also this technology is limited by the restrictions of the immune system. This approach was successfully used for several approved therapeutic antibodies (Jakobovits, 1995; Lonberg and Huszar, 1995; Fishwild et al., 1996; Nelson et al., 2010).

A technology which allows to generate fully human antibodies right away, hence avoiding the side effects originating from HAMA, is antibody phage display. Because this approach uses an in vitro selection process, it does not have to rely on immunization and associated limitations, and can use entirely human gene repertoires. Phage display is based on the work of Georg P. Smith on filamentous phage, which infects E. coli and it is the most commonly used antibody display approach nowadays (Smith, 1985). Referring to the pan and the method of gold diggers, the antibody selection process was called “panning” (Parmley and Smith, 1988).

Around 1990/91, the M13 phage display technology was further developed for human antibody generation in parallel at three research sites: DKFZ in Heidelberg (Germany), MRC Laboratory of Molecular Biology in Cambridge (UK) and at the Scripps Research Institute in La Jolla (USA) (McCafferty et al., 1990; Barbas et al., 1991; Breitling et al., 1991; Clackson et al., 1991). For the expression of the antibody::pIII (phage protein III) fusion proteins via phage display, two different genetic approaches have been developed. Initially, the antibody genes were directly inserted into the M13 phage genome and fused upstream of the wildtype pIII gene (gIII) (McCafferty et al., 1990). Due to a better genetic stability and opportunity for independent regulation of phage and antibodies production, today the most successful system is based on phagemids. These are independent plasmids which provide the genes encoding the antibody::pIII fusion proteins and contain a phage morphogenetic signal for packaging of the phagemid into the phage particles (Breitling et al., 1991). In both phage display systems, the antibody fragments are always displayed on the phage surface and the corresponding antibody gene is packaged into the same phage particle. This successful technology was awarded with the Nobel Prize for Chemistry in 2018. For antibody phage display, the most common used antibody formats are the single chain fragment variable (scFv) (Vaughan et al., 1996; Schofield et al., 2007; Hust et al., 2011) or fragment antigen binding (Fabs) (de Haard et al., 1999; Hoet et al., 2005). Other used formats are human VH domains (dAbs), immunoglobulins of sharks (IgNARs) and the variable domains of camel heavy chains (VHHs) (Muylldermans et al., 2001; Nuttall et al., 2001; Holt et al., 2003; Nuttall et al., 2004; Muylldermans et al., 2009). The use of immune camel, llama or alpaca libraries gained popularity in the last five years. For veterinary research, chicken antibody libraries are often used (Fehrsen et al., 2005; Foord et al., 2007; Wemmer et al., 2010). The diversity of chicken antibody genes is the result of gene conversion. Here, the N- and C-terminal parts of chicken’s VH and VL are always identical, which facilitates antibody gene amplification and library cloning (Parvari et al., 1988; Chiliza et al., 2008).

In the antibody selection process (panning), in most cases, the target molecules is immobilized on a solid surface, like plastic surfaces - normally used for ELISA - such as polystyrene tubes or microtiter plate wells, the latter of which is the most simple and commonly used method (Hust et al., 2002; Russo et al., 2018), affinity chromatography column matrices (Breitling et al., 1991) or magnetic beads (Sawyer et al., 1997). An alternative is the use of biotinylated targets for a selection in solution followed by a “pull-down” with streptavidin beads (Schütte et al., 2009; Wenzel et al., 2020b). After incubating the entire diversity of the phage display library with these immobilized antigens, the tremendous excess of non- or weak-binding antibody phage particles are removed by stringent washing. Afterwards, the bound antibody phage will be eluted, mainly by trypsinization or by pH shift, and used for E. coli infection. Subsequently, the phagemid bearing E. coli will be infected with a helperphage to produce new antibody phage particles with an enriched fraction of antigen specific antibody phage clones. Usually 3-5 panning rounds are performed before screening. Specific binders can be identified in a screening process using monoclonal soluble antibodies or...
monoclonal antibody phage by e.g. ELISA (Frenzel et al., 2014), WB (Hust et al., 2002) or flow cytometry (Ayriss et al., 2007). The antibody fragment genes can be subcloned to produce antibodies in any desired antibody format, e.g. IgG or scFv-Fc (Hoet et al., 2005; Dübel et al., 2010; Hust et al., 2011; Jäger et al., 2013; Frenzel et al., 2014). Figure 1 shows an overview on the phage display antibody selection process. An overview about phage display in comparison to other display technologies is given by Valdorff et al. (2021).

Depending the origin of the V-gene repertoires, there are two types of libraries: immune libraries and universal libraries. Immune libraries are constructed from convalescent patients or immunized donors. This library type is most used to obtain an antibody against a particular target, e.g. an infectious pathogen like Ebola virus (Maruyama et al., 1999a) or diphtheria toxin (Wenzel et al., 2020a). The advantage of this library type is that the V-genes contain hypermutations and are already affinity-matured for the targeted pathogen.

The alternatives are universal libraries - in the past also named “single-pot” libraries - made of naïve, semi-synthetic or synthetic gene repertoires. This library type allows to isolate antibody fragments binding to virtually every possible target without the need for an immunization or the availability of patients’ blood. (Winter et al., 1994; Dübel et al., 2010; Frenzel et al., 2017). In a pandemic situation, this provides a source for immediate antibody generation against a new arising pathogen, independently from the availability of material from patients (Bertoglio et al., 2021b). The Naïve libraries are cloned from rearranged V genes derived from B cells (IgM) of non-immunized donors. Examples for naïve libraries are the HAL scFv libraries (Hust et al., 2011; Kügler et al., 2015) and Fab library constructed by de Haard and colleagues (de Haard et al., 1999).

Semi-synthetic libraries are cloned from unrearranged V genes from pre-B cells (germline cells) (Griffiths et al., 1994) or in most cases from one antibody framework (Pini et al., 1998). In this defined framework one or several CDRs, but always the CDR H3, are randomized, e.g. by using DNA-primers covering the CDR H3 section. The semi-synthetic libraries Tomlinson I and J libraries are often used and are the best example for semi-synthetic libraries. These libraries have a VH3-23 and Kappa IKV1-39 framework combined with randomized CDR2 and CDR3 (de Wildt et al., 2000). For the FAB310 antibody gene library, a combination of naïve and synthetic repertoire was used. Here, the Fd fragment (VH+CH1) contains randomized CDR1 and CDR2 in the human VH3-23 framework and a naïve CDR3 regions from autoimmune patients. The Fd fragments were combined with light chains also from autoimmune patients (Hoet et al., 2005). The transition of semi-synthetic to synthetic libraries is not strict. In general, complete synthetic libraries are made of human frameworks and here all CDR cassettes are synthetic, the best examples are the HUCAL libraries (Hayashi et al., 1994; Knappik et al., 2000; Tiller et al., 2013). Universal libraries have a theoretical diversity higher than 10^{10} independent clones (Schofield et al., 2007; Glanville et al., 2009; Lloyd et al., 2009; Tiller et al., 2013; Kügler et al., 2015).

In vitro display methods, like phage display, differ from classical animal immunization approaches to obtain polyclonals or hybridomas, in the possibility to directly generate sequence defined monoclonal antibodies. Additionally, the phage display antibody selection process occurs entirely in vitro and its customization allows to pre-filter antibodies with the intended binding properties, such as epitope specificity, binding at defined pH and temperatures, or absence of unwanted cross-reactivities. An alternative method that allows to generate sequence defined

![Diagram](image.png)

FIGURE 1 | Schematic illustration of the antibody generation process. For the antibody generation, human phage display libraries or libraries from other species are used. These libraries will be used for the in vitro selection (panning) on a target molecule. In short: the antibody phage particles will be incubated with target molecule (in the illustration, a target molecule was immobilized in a microtitre plate well and a scFv phage display library is used), the non and weak binding antibody phage particles will be washed away and the binding antibody phage will be eluted (the procedure will be repeated 3-5 times) and further analyzed. In the next step, monoclonal binders will be identified, e.g. by ELISA. Finally, the selected antibody fragments can be recloned, because the corresponding gene is packaged in the phage particles, and produced in any antibody format tailored to the final application.
antibodies is the microfluidics-based B-cell selection method (Seah et al., 2018). B-cells secreted antibodies binding to labeled antigen material can be assessed at single cell level in droplets of buffer solution. This method, very laborious and technically demanding, is restricted to the availability of patient or immunized animal B-cells. Additionally, this approach provides a lower degree of flexibility in the number of assays which can be performed in the initial antibody screening phase. The upside of this method is the possibility to discover antibodies already in the IgG format. These features made this method particularly popular for the discovery of therapeutic antibodies from B-cells of disease-recovered patients. This is the case of the FDA approved Neutralizing antibodies to Ebola virus glycoprotein Ebanga (Ansuvimab-zykl) (https://www.fda.gov/drugs/drug-safety-and-availability/fda-approves-treatment-ebola-virus), the anti-HIV neutralizing antibodies under clinical evaluation (Spencer et al., 2021) or the anti-SARS-CoV-2 antibodies REGN10933 and REGN10987 (Hansen et al., 2020).

To date, 106 monoclonal antibodies and antibody conjugates have been approved by EMA and/or FDA (status March 2021), 87 antibodies are in clinical phase 2 or 3 and 122 antibodies are in phase 1 or IND filed (Source: antibodysociety.org, status April 2020). Most approved antibodies are for the treatment of autoimmune diseases and cancer. The annual sales of therapeutic antibodies exceeded 98 billion US$ in 2017 and the market will be predicted with 137-200 billion US$ in 2022 (Grilo and Mantalaris, 2019). The mode of action of therapeutic antibodies are numerous and include neutralization of substances e.g. cytokines like tumor necrosis factor alpha (TNF-α) (Alonso-Ruiz et al., 2008) or toxins (Rasetti-Escargueil et al., 2017), human cell binding and modulation of the host immune system (Chatenoud and Bluestone, 2007), blocking of receptors which are overexpressed on cancer cells like epidermal growth factor receptor (EGFR) (Peeters et al., 2009) or combinations of these mode of actions (Adams and Weiner, 2005). Currently, eight recombinant antibodies or antibody cocktails are approved for the direct treatment of pathogens or toxins. The first recombinant antibody approved for the treatment of an infectious disease was Palivizumab. It is a classical humanized antibody approved in 1998 for the treatment of Respiratory syncytial virus (RSV) bronchiolitis (Malley et al., 1998). For anthrax treatment, the human antibody Raxibacumab was developed. This antibody is derived from a human phage display library (made by Cambridge Antibody Technology in cooperation with Human Genome Science) and was approved in 2012 (Mazumdar, 2009; Kummerfeldt, 2014). A second antibody for post-exposure treatment of anthrax, the antibody Obiloxaximab, has been approved in 2020 (Henning et al., 2018). A further approved antibody against toxins is Bezlotoxumab, approved in 2016. This antibody neutralizes the Clostridioides difficile toxin TcdB (Babcock et al., 2006; Johnson and Gerding, 2019). The anti-HIV antibody Ibalizumab has been approved in 2018. The mode of action is very unique for an antiviral antibody, because it blocks cell entry by binding to the human receptor CD4 on the target cells instead of binding to the virus (Beccari et al., 2019). The anti-rabies antibody Rabishield to replace anti-rabies serum therapies has been approved 2018 in India (Wang et al., 2011; Gogtay et al., 2018). End of 2020, two products were approved for the treatment of Ebola: the three-antibody cocktail REGN-EB3 (Atolivimab/maftivimab/odesivimab) (Pascal et al., 2018) and the single antibody mAb114 (Ansuvimab-zykl) (Corti et al., 2016). These antibodies showed a good efficiency in clinical trials against Ebola virus especially in comparison to Remdesivir (Mulangu et al., 2019). In the COVID-19 pandemic, the anti-SARS-CoV-2 antibody cocktail Casirivimab (REGN10933)/Imdevimab (REGN10987) (Baum et al., 2020; Hansen et al., 2020) and the antibody Bamlanivimab (LY-CoV555) (Chen et al., 2021) got a conditional marketing authorization in Europe and an Emergency use authorization (EUA) in the USA for non-hospitalized patients with mild to moderate symptoms. The FDA also authorized the antibody cocktail Bamlanivimab and Etsevimab (JS016, CB6) (Shi et al., 2020) in the USA for the same indication. For the treatment of hospitalized patients with moderate to severe symptoms, phase play derived antibody COR-101 (STE90-C11) against SARS-CoV-2 (Bertoglio et al., 2021a) is in clinical phase I/II.

In the next sections, we provide an overview of recombinant antibodies derived from phage display against bacterial and viral pathogens, eukaryotic pathogens (parasites, fungi) and toxins, as well as detailed examples for diagnostics and therapy.

RECOMBINANT ANTIBODIES AGAINST BACTERIA

Toxins are the most frequent antigenic target of therapeutic antibodies used to fight bacterial pathogens. This topic is thoroughly discussed in a dedicated paragraph: "targeting of toxins with recombinant antibodies". Excluding toxin antigens, antibodies raised against bacteria are predominantly used in diagnostics (Skottrup et al., 2011; Ferrara et al., 2012) and to assess the presence of contamination in environmental samples (Gried et al., 1998; Mechaly et al., 2008). As of today, microbiologic bacteria identification by cultivation remains the benchmark approach for the diagnostic of several pathogenic bacterial species, including *Mycobacterium tuberculosis* (Norbis et al., 2014), *Salmonella* Typhimurium (Kuhn et al., 2012), or *Listeria monocytogenes* (Gasanov et al., 2005).

The many drawbacks of these methods are the low throughput and high costs caused by their inherently long experimental duration, the higher risk of exposure to pathogenic organisms and the need of highly trained personnel. Real-time PCR and other molecular diagnostics approaches have been introduced to reduce the time needed for the identification of many bacteria (Liang et al., 2018), while offering high detection sensitivity and specificity. Nevertheless, such methods most often depend on the availability of laboratory infrastructure and, if portable, are less amenable to high throughput parallelized measurements (Xu et al., 2020). Similarly, mass spectrometry is able to provide high sensitivity, however, this technology requires expensive devices and trained personnel (Dixon et al., 2015).
other hand, antibody-based detection methods such as ELISA and immunochromatography, are faster, simpler, and well-suited for high-throughput. These features, together with the lower costs compared to other techniques, contributed to the success of these diagnostic approaches world-wide, including developing countries, where resources may be scarce and laboratories sparsely distributed over the territory.

Up to date, a vast plethora of antibodies for diagnostic applications has been generated via phage-display against different bacterial proteins or carbohydrates (Table 1). Interestingly, research on this field seems to be in constant rise, as 44% of these antibodies have been generated only in the past five years.

In the following paragraphs, we offer detailed examples on antibodies against different bacterial pathogens that were generated using phage display.

Mycobacterium tuberculosis (Mtb) is the bacteria responsible for a lung infection known as Tuberculosis (TB). This pathogen specifically attacks and replicates inside the macrophage cells in the alveoli, causing fatigue, fever and coughing (Fu and Fu-Liu, 2002). As of 2021, this disease affected approximately 10 million people and caused 1.5 million deaths worldwide per year (World Health Organization, 2021). TB early diagnosis is essential to improve treatment and limit disease spread. The protein secreted by Mtb in the highest amounts, Antigen 85 (Ag85), represents an ideal target for diagnostics (Wiker and Harboe, 1992). Ag85 is an oligomeric protein composed of three relatively small (30-32 kDa) homologue proteins (Ag85A, Ag85B and Ag85C) (Wiker et al., 1992). In a novel approach described by Ferrara et al. (2012), a combination of antibody display techniques was successfully adopted to select Ag85 complex-specific antibodies. A universal phage display naive scFv-library with a nominal diversity of $\sim 10^{11}$ unique antibodies was used for initial selection on Ag85, obtaining a sub-library of 10^5 pre-selected antibodies. Second, the selected antigen-specific scFv genes were used for the generation of yeast-display antibody sub-library. Upon completion of yeast based antibody generation, each clone was tested in FACS for its ability to specifically recognize the antigen target resulting in the discovery of 192 clones having the desired properties. Sequence analysis revealed that 111 of these antibodies were unique and could be used in further Ab characterization. Chessboard antibody combination testing resulted in the identification of 7 antibody pairs that detect as little as 22.7 nM Ag85 in patient sera or 6.1 nM in serum free-conditions. The uniqueness of this work relies in the fact that each validated antibody was specific for the Ag85-complex only. Other approaches were aimed at discovering subunit-specific antibodies, as in the case of Fuchs et al. Here, the naive HAL7/8 phage display libraries were incubated with recombinant Ag85B subunit (Fuchs et al., 2014). The resulting antibodies were shown to have, in sandwich ELISA or lateral flow test, an antigen protein limit of detection of respectively 10 ng/mL and <5 ng/mL. Nevertheless, when using bacterial cell extracts or filtered culture material, immunodetection could be only performed in ELISA or western blot. The authors concluded that the absence of an antibody affinity improvement step may have been the reason for their results. This supposition found indirect confirmation in a different study by Sixholo and colleagues (Sixholo et al., 2011) describing the selection of antibodies against the Mtb 16 kDa heat shock protein X (HspX) from chicken semi-synthetic Nkuku antibody gene library. By the repetition of four panning rounds against recombinant antigen material, three unique scFv’s were confirmed to bind HspX in ELISA. On purpose, the clone with the weakest binding was chosen for *in vitro* affinity maturation by different methods. In the first approach, a mutant library of the parental antibody gene was generated by error-prone PCR, resulting in a diversity of $\sim 3 \times 10^7$ unique scFv clones. Repeating the antibody selection using this library under more stringent conditions, led to the discovery of three mutant scFv’s with increased binding affinity. Direct binding comparison in ELISA showed that the newly generated antibodies produced a signal ~ 11 times higher than the parental clone. The result was confirmed by the improved association and dissociation kinetics in SPR analysis. All affinity-improved antibody genes contained mutated amino acids in both CDR and framework regions. In the second approach, a glycine residue alone was replaced to the common 15-mer linker connecting the VH to VL, resulting in tetramer formation (Schmiedl et al., 2006). The avidity effect leading to cooperative binding resulted in a binding signal increase of ~ 14 times in ELISA. Antibodies against Mtb were also generated by Hamidon and colleagues (Hamidon et al., 2018) utilizing a different approach. A patient immune TB library with a nominal diversity of 10^9 different scFv antibodies could be generated starting from the B-cell material from six individuals infected with TB. This immune library was used to select antibodies against Mtb α-crystalline, resulting in three unique antigen-specific clones validated for antigen binding in ELISA and Western Blot assays.

Periodontitis is a disease where inflammation of the dental gum results in its progressive retraction and, if not cured on time, loss of teeth. One of the major pathogens involved in gum infection is *Porphyromonas gingivalis* (Socransky et al., 1998). The RgpB cysteine proteases secreted by this pathogen is one of the causing factors of the gum inflammation and constitutes a valid biomarker candidate (Imamura, 2003). Skottrup et al. (2011) generated antibodies against immobilized RgpB from a naive library of camelid antibodies with a diversity of $\sim 5 \times 10^7$ different clones. Such antibodies consist of a monomeric VHH domain (~ 15 kDa), which offer multiple advantages for diagnostics, in particular high yields in *E. coli* production systems, good stability and small epitope accessibility. This library yielded an elite antibody clone with 362 pM affinity towards the recombinant RgpB, also specific to the antigen presented on cells. While not inhibiting RgpB catalytic activity, this antibody showed in subtractive inhibition ELISA a limit of detection equal to $\sim 8 \times 10^6$ cells/mL of saliva.

In the field of foodborne gastrointestinal infection causing pathogens, *Salmonella Typhimurium* is probably the most studied bacteria (Jacobsen et al., 2011). In the attempt to generate antibodies for the detection of this pathogen, Meyer et al. (2012) utilized ORFeome phage display for biomarker
TABLE 1 | Recombinant antibodies derived by phage display against pathogenic bacteria.

Bacteria	Target	Library Type	Antibody Format	Antibody Origin	Application	Reference
Acinetobacter baumanii	Bap	Immune	VHH	Camel	ELISA, WB, in vivo neutralization	(Payandeh et al., 2014)
Bacillus anthracis	S-layer protein EA1	Immune	VHH	Llama	ELISA, WB	(Walder et al., 2012)
Bacillus anthracis	live bacteria	Immune	scFv	Mouse	ELISA, WB, IF	(Andersen et al., 2018)
Bacillus anthracis	protective antigen (PA)	Naïve	scFv	Human	ELISA, Inhibition assay	(Ahn et al., 2019)
Bordetella pertussis	filamentous hemagglutinin, pertactin	Immune	scFv	Mouse	ELISA, in vitro inhibition, in vivo studies	(Hussein et al., 2007)
Brucella melitensis	radiated bacteria	Immune	scFv	Mouse	ELISA	(Hayhurst et al., 2003)
Campylobacter jejuni	whole cells	Immune	scFv	Rabbit	ELISA, WB	(Nzuma et al., 2018)
Chlamydia psittaci	2.4[2.8]linked Kdo tetrasaccharide	Immune	scFv	Mouse	ELISA, IF	(Gerstenbruch et al., 2010)
Chlamydia trachomatis	elementary bodies	Naïve	scFv	Human	ELISA, WB, IF	(Sheets et al., 1998;
Chlamydia trachomatis	unknown	Immune	VHH	Camel	ELISA	(Lindquist et al., 2002)
Clostridium botulinum	RhoA/B	Naïve	scFv	Human	WB, Immunofluorescence	(Rothbeck et al., 2016)
Clostridium difficile	different surface proteins	Semi	scFv	Human	ELISA, WB, in vitro motility assay	(Shivan and Aitken, 2016)
Clostridium difficile	(including FIC and FID)	Synthetic	scFv	Llama	ELISA, WB, in vitro motility assay	(Kandalaft et al., 2015)
Escherichia coli	Surface layer proteins (SLPs)	Immune	VHH	Camel	ELISA	(Sahil et al., 2020)
Francisella tularensis	live E. coli F17 +	Immune	VHH	Llama	ELISA, WB, in vitro motility assay	(Sahil et al., 2020)
Francissella tularensis	lipopolysaccharide (LPS)	Immune	scFv, IgG	Rabbit	ELISA, WB, IF, in vitro neutralization	(Mechaly et al., 2019)
Klebsiella pneumoniae	different strains of K. pneumonia	Naïve	scFv, scFv-Fc, IgG	Human	ELISA, OPK, IF, in vivo protection	(Wang Q. et al., 2016)
Haemophilus influenzae	capsular polysaccharide	Immune Semi	scFv	Human	ELISA	(Reason et al., 1997)
Helicobacter pylori	urease	Synthetic	Fab	Human	ELISA, WB, WB	(Fouladi et al., 2019)
Helicobacter pylori	bacterial lysate	Immune	scFv	Human	ELISA	(Reiche et al., 2002)
Lactobacillus acidophilus	S-layer protein	Naïve	scFv	Human	FACS, WB	(Close et al., 2013)
Lawsonia intracellularis	live bacteria	Semi	scFv	Human	ELISA, IF	(Dezortova-Tomanova et al., 2007)
Legionella pneumophila	whole cells	Naïve	scFv	Human	ELISA, Bioskensor	(Kuhn et al., 2017)
Leptospira spec.	Lpl21	Naïve	scFv	Human	ELISA	(Mohd Ali et al., 2021)
Listeria monocytogenes	internalin B	Immune/Naïve	VHH	Alpaca, llama, camel	ELISA	(Gene et al., 2015)
Listeria monocytogenes	pyruvate dehydrogenase complex-enzyme 2 (PDC-E2)	Naïve	scFv, scFv-Fc	Human	ELISA, WB, IF	(Moreira et al., 2020)
Listeria monocytogenes	heat-killed cells	Naïve	scFv	Llama	ELISA, WB	(Tu et al., 2018)
Moraxella catarrhalis	HMM-OMP	Naïve	Semi	Human	ELISA, FACS, WB, in vitro inhibition	(Boel et al., 1998)
Mycobacterium avium	cell lysate	Immune	scFv	Sheep	ELISA, WB, FACS, IF	(Berger et al., 2006)
Mycobacterium avium	HSP65	Immune	scFv, scFv-IgY-Fc	Chicken	ELISA, WB	(Wemmer et al., 2013)
Mycobacterium leprae	PGLI-M3	Naïve?	scFv	Human	ELISA, immunohistochemistry	(Lima et al., 2020)
Mycobacterium leprae	antigen 16kDa (HspX)	Semi	scFv	Chicken	ELISA	(Siholo et al., 2011)
Mycobacterium tuberculosis	antigen 85B	Naïve	scFv, scFv-Fc	Human	ELISA, WB, lateral flow strip assay	(Fuchs et al., 2014)
Mycobacterium tuberculosis	antigen 85	Naïve	scFv, scFv-Fc	Human	ELISA	(Ferrara et al., 2012)
Mycobacterium tuberculosis	LAM	Immune	scFv	Rabbit, chicken	Sandwich-ELISA	(Kawasaki et al., 2019)
Mycobacterium tuberculosis	α-crystalline antigen	Immune	scFv	Human	ELISA	(Hamid et al., 2018)
Mycobacterium tuberculosis	LAM	Immune	scFv	Rabbit	ELISA, WB, dot blot, flow cytometry	(Yan et al., 2020)
Neisseria meningitidis	NadA	Immune	VHH	Llama	Dot blot, WB, IHC, blocking assay, in vitro model	(Kukarni et al., 2020)
Porphyromonas gingivalis	RgpB	Naïve	VHH	Camel	ELISA	(Skottrup et al., 2011)
Pseudomonas aeruginosa	SpUE	Naïve	scFv	Human	ELISA	(Zhang Y. et al., 2019)
Pseudomonas aeruginosa	flagellar capping protein (FID)	Naïve	scFv, scFv-Fc	Human	WB	(Postel et al., 2018)
TABLE 1 | Continued

Bacteria	Target	Library Type	Antibody Format	Antibody Origin	Application	Reference
Ralstonia solanacearum	LPS	naive scFv	human	ELISA, IF, WB	(Griepe et al., 1998)	
Salmonella Typhimurium	OmpD	naive scFv	human	ELISA	(Meyer et al., 2011)	
Salmonella Typhimurium	5 different immunogenic proteins	immune scFv	bovine	ELISA, WB, inhibition assay	(Wang et al., 2015, Wang M. et al., 2016)	
Staphylococcus aureus	FrnBPA, O1A	immune scFv	human	ELISA, dot blot	(Nian et al., 2016)	
Staphylococcus aureus	cells	synthetic scFv	human	ELISA	(Kim et al., 2018)	
Streptococcus pneumoniae	Pep27	synthetic scFv	human	ELISA	(Kim et al., 2018)	
Streptococcus pneumoniae	PsP	synthetic scFv	human	WB	(Jang et al., 2017)	
Streptococcus mutans & sobrinus	live cells	synthetic Fab	human	ELISA, IF, Flow cytometry, in vitro biofilm assay, in vivo model	(Alam et al., 2018)	
Vibrio cholera	LPS	immune VHH	camel	ELISA, in vivo challenge	(Ebrahimizadeh et al., 2013)	
Vibrio parahaemolyticus	VP1694	immune scFv	mice	ELISA, WB	(Wang et al., 2014)	
Vibrio parahaemolyticus	OmpU	seriv- synthetic	human	ELISA, in vitro inhibition	(Yu et al., 2020)	
Yersinia pestis	F1	naive scFv	human	ELISA	(Jillo et al., 2011)	

ELISA, enzyme linked immunosorbent assays; IHC, immunohistochemistry; IF, immuno fluorescence; FACS, fluorescence-activated cell sorting; WB, western blot.

discovery. Starting from bacterial genomic material, a random protein fragments library was screened using sera from Salmonella infected animals. In a second step, the antigens corresponding to the newly discovered immunogenic proteins were used to select human antibodies from the naïve HAL gene libraries. Antibodies are also potent tools for the monitoring of a vaccination campaign and discrimination of infected from vaccinated subjects. For the development of DIVA (Differentiating Infected from Vaccinated Animals) vaccines against S. Typhimurium, Selke and colleagues (Selke et al., 2007) generated an engineered bacterial strain lacking the marker protein OmpD (outer membrane protein D). A serological test using OmpD-specific antibodies constitutes a tool to discriminate infected animal from vaccinated ones. Meyer et al. (2011) generated scFv antibodies against OmpD for antigen detection in competitive ELISA on swine serum.

Another very prominent foodborne pathogen is Listeria monocytogenes. This bacterial infection, listeriosis, can cause severe illness, including meningitis and sepsis when reaching the systemic circulation. As of today, 13 different L. monocytogenes serotypes have been discovered, of which type 4b, 1/2a and 1/2b have shown to be the most virulent (Datta and Burall, 2018). Contaminated food also contains non-pathogenic Listeria species, making the diagnosis more difficult. Indeed, their faster growth rate during the enrichment step required for bacteria detection is the major cause of false-negative results in Listeria monocytogenes food diagnostics (Besse et al., 2010). Hence, species-specific immunodiagnostic tools constitute a necessary resource to improve both L. monocytogenes as well as Listeria spp. detection. Gene and colleagues (Gene et al., 2015) used naïve and immune camelid antibody libraries for the selection via phage display of diagnostic nanobodies against internalin B (InIB), a protein which is strongly involved in host-cell invasion. Two of the five generated nanobodies, R3-03 and R3-30, showed picomolar binding affinities to InIB, representing a valuable resource for bacteria immunodetection in poorly concentrated samples. A recent study from Moreira et al. (2020) described the use in combination of different phage display techniques to identify new Listeria spp. protein biomarkers and rise antibodies against them. Initially, the human naïve antibody display phage library HAL9/10 was used to generate antibodies against different cell fractions from L. monocytogenes (cell wall, membrane, and cytoplasm). This way, four binders were isolated, which allowed the identification of a novel target for Listeria spp. detection named pyruvate dehydrogenase complex-enzyme 2 (PDC-E2) by using both immunomagnetic separation/mass spectrometry (IMS-MS) and ORFeome phage display. One of these antibodies was also used in immunofluorescence on non-permeabilized cells confirming the surface localization of the target. Antibody selection against PDC-E2 recombinant antigen yielded 16 additional antibodies. These 20 antibodies were finally tested in indirect ELISA against a panel of 17 Listeria species (including the most virulent L. monocytogenes serotypes 4b, 1/2a, and 1/2b) and 16 non-Listeria spp. species. Two antibodies, GSM313-E9 and GSM313-H8, provided 100% sensitivity and specificity for Listeria spp. detection. Moreover, the binding region (epitope) of 18 out of the 20 antibodies was identified via single-genie phage display for epitope mapping, enabling to define the lipoyl domains of PDC-E2 as the major contributors for the detection through this target.

RECOMBINANT ANTIBODIES AGAINST VIRUSES

Viruses are in every kind of environment and are able to infect any sort of host. New viral species are continuously discovered and therefore much research has been devoted during the recent
decades to generate vast sets of antibodies against viruses, both from universal and immune libraries using phage display technology. Target for selection of antibodies ranged from peptides and recombinant viral proteins to complete viral or pseudoviral particles, leading to the isolation of antibodies against human pathogenic viruses such as Sin nombre virus (Velappan et al., 2007), Dengue virus (Cabezás et al., 2008; Saokaew et al., 2014), Influenza virus (Lím et al., 2008; Sui et al., 2009), VEEV (Kirsch et al., 2008), Norovirus (Higó-Moriguchi et al., 2014), SARS coronavirus (Sui et al., 2004), SARS-CoV-2 (Bertoglio et al., 2021b) or Hepatitis C (Songsvilai and Dharakul, 1998) from naïve antibody gene libraries. Alternatively, another source of monoclonal antibodies has been immune antibody gene libraries constructed from hosts infected with e.g. Hantavirus (Liáng et al., 2001; Koch et al., 2003), VEEV (Hülsewelt et al., 2014), HIV (Mohammazadeh et al., 2014; Trott et al., 2014), SARS (Kang et al., 2006), Yellow fever virus (Daffís et al., 2005) or Influenza virus (Throsby et al., 2008; Sun et al., 2009). Additionally, semi-synthetic libraries have been used to generate antibodies against e.g. Influenza virus (Avnír et al., 2014). Plant viruses have also been addressed for antibody selections (Ziegler et al., 1995; Hust et al., 2002; Orecchia et al., 2008), beside human and animal viruses.

Virus-specific antibodies have also been selected from libraries originating from different species such as those from macaque (Rûlker et al., 2012), chimpanzee (González et al., 2008), llama (Fatima et al., 2014), mouse (Liu H. et al., 2014), chicken (van Wyngaardt et al., 2004) and human origin (Tikunova et al., 2012).

The predominant format harnessed for initial selection of antibodies against viruses has been scFv format (Gould et al., 2005; Wu et al., 2014), although Fab (Wyrzucki et al., 2014; Zhao et al., 2014) and VHHR libraries (Fatima et al., 2014) were often used. In a peculiar case, Xiao et al. used the antibody CH2 domain as scaffold to generate binders against gp120 of HIV (Xiao et al., 2009). In the case of HIV, some unique aspects could be highlighted as for example that the neutralizing anti-gp41 antibody HK20 has a higher neutralization potency as scFv or Fab compared to IgG, indicating that the IgG format has more difficult access to the epitope, due to the formats bigger steric hindrance (Sabin et al., 2010). Another noteworthy example is the anti-gp41 VHH 2H10, where a CDR3 tryptophan is not involved in epitope binding, but resulted essential for virus neutralization (Lutje Hulsik et al., 2013).

In the following paragraphs, we present detailed examples for antibody generation and engineering using phage display against different viral taxa.

Vaccinia virus is the archetypal virus within the genus of Orthopoxvirus. This virus is with 300x 230 nM a large DNA virus with a genome of about 0.2 Mb (Malkin et al., 2003). Among the species included in Orthopoxvirus genus, there are monkeypox virus, cowpox virus and especially variola virus, the causative agent of smallpox in humans. Occurrence of natural smallpox has been eradicated in 1977 thanks to a massive WHO vaccination program, which started ten years earlier. However, since no vaccination of the general population is nowadays conducted and the use of variola virus as potential threat following intentional release has renewed the research interest for safe and effective smallpox vaccines, due to case fatality rates of 30% or more among unvaccinated subjects (Henderson et al., 1999). It is assumed that immunity against one poxvirus provides broad immunity against most of the viral family members given the high similarity shared among orthopoxviruses (Earl et al., 2004; Berhanu et al., 2008). Using an immune scFv phage display library constructed from vaccinia virus immunized patients, human vaccinia specific antibodies were isolated. In vitro plaque-reduction neutralization tests proved that seven of these antibodies were able to neutralize both, vaccinia and cowpox virus. Five of them, additionally neutralized monkeypox virus (Tikunova et al., 2012). Another set of antibodies were selected from a Fab immune library derived from chimpanzee, vaccinated with vaccinia virus. After conversion into a chimeric chimpanzee/human IgG format, antibody 8AH8AL, binding to vaccinia protein B5, was neutralizing in vitro for vaccinia and smallpox virus. Its protective effect was assessed in mice challenged with vaccinia virus even when the monoclonal antibody was administered 2 days after challenge. In this model, 8AH8AL provided significantly greater protection than that of the previously isolated rat anti-B5 antibody 19C2 (Chen et al., 2006). Since experimental work with smallpox virus is extremely restricted and essentially not allowed, vaccinia had to be used as model.

Ebola Virus and Marburg Virus, two members of the Filoviridae family, cause severe hemorrhagic fevers and extremely high mortality of up to 90% in infected humans. Besides the obvious public health concern associated with its natural outbreaks, Ebola virus might be considered a potential agent of biological warfare and bio-terrorism (Goodchild et al., 2011). Phage display-derived human antibodies targeting Ebola virus were selected from an immune library originated from survivors of the 1995 Ebola virus outbreak in Kikwit, Democratic Republic of Congo (Maruyama et al., 1999b). Nucleoprotein, envelope glycoprotein and secreted envelope glycoprotein binders have been isolated in this study. Antibody (KZ52), recognizing the envelope glycoprotein, neutralized in vitro both, as Fab (50% neutralization at 0.4 µg/mL) as well as full IgG (90% neutralization at 2.6 µg/mL) (Maruyama et al., 1999a). Follow-up studies demonstrated effective protection in vivo in a guinea pig Ebola challenge model, upon administration of the antibody up to one hour post viral challenge (Parren et al., 2002). Unfortunately, KZ52 showed no protection in macaques challenged with Ebola, even though the antibody was given in a two-dose regimen with the first dose one day prior viral challenge and the second after three days the former dose (Oswald et al., 2007). Further examples of antibodies selected through phage display against Filoviridae family members encompass a murine scFv and two shark IgNAR V immune libraries generated against inactivated Zaire Ebola virus to yield several antibodies specific for the viral matrix protein VP40 and the viral nucleoprotein (Goodchild et al., 2011). Of note, this work is the first example of a successful targeted IgNAR V isolation from a shark immune library. The antibody
combination X10B1/X10H2 generated against the glycoprotein of Ebola Sudan virus (SUDV) showed 100% in vivo protection in scFv-Fc format in a mice challenge model. After 35 days post infection, the mice were challenged again with SUDV and all mice survived showing the development of an own protective immune answer against SUDV (Froude et al., 2017). These antibodies were also tested as IgG and the X10H2 antibody was successfully employed in a cocktail with the non-pha display derived antibody 16F6 (Herbert et al., 2020). Recombinant antibodies against Marburg virus were generated using human synthetic libraries (Amatya et al., 2019) or macaque immune libraries (Froude et al., 2017). The macaque antibodies showed in vitro neutralization and up to 100% in vivo protection against wt Ci67 Marburg virus in a prophylactic mice challenge model using 100 µg scFv-Fc/mice.

Flaviviridae family member Dengue virus (DENV) causes at least 100 million symptomatic infections each year and become a major health and economic burden in over 50 countries worldwide (Moreland et al., 2010; de Alwis et al., 2012; Moreland et al., 2012). Its genome encompasses a single open reading frame, contained in the ~11 kb positive strand RNA. The four circulating serotypes of DENV show approximately 70% sequence homology (Moreland et al., 2012; Zhao et al., 2014). DENV infection can result in clinical symptoms that include dengue fever, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) (Yamanaka et al., 2021), which is presumably promoted by antibody-dependent enhancement (ADE) (Taylor et al., 2015). ADE results from partially or non-neutralizing anti-dengue IgG antibodies from a former infection mainly of another dengue serotype. The presence of ADE is associated with the onset of DHF that can be fatal (Halstead, 2014). Two Fabs, namely 5H2 and 5D9, were isolated from a chimpanzee immune library and neutralized dengue type 4 virus in a plaque reduction neutralization test (Men et al., 2004). In another example, human scFv antibodies specific to dengue virus envelope protein were selected by panning against recombinant full length envelope protein and its domain III (Saokaew et al., 2014). Because DENV envelope protein plays an essential role in virion assembly and viral entry, scFvs selected in this study were shown to block DENV infection in vitro (Saokaew et al., 2014). Dengue nonstructural protein 5 (NS5) is involved in viral replication and host immune response modulation. A naïve human Fab-phage library was screened for NS5-specific antibodies using various NS5 variants from Dengue Virus serotypes 1-4 as antigens for panning and characterization (Zhao et al., 2014). Alternating the use of NS5 derived from different dengue serotypes for each selection round, this strategy allowed the identification of two monoclonals that are cross-reactive against all four dengue serotypes. Another study presented antibodies selected against antigen Dengue virus particles directly captured from supernatant of infected Vero cells. Here, highly serotype specific antibodies were generated. Seven out of nine antibodies were specific to only one DENV serotype. One Dengue-3 selected clone cross-reacted with Dengue 1, whereas another clone showed pancross-reactivity despite being selected on Dengue 2 particles. Interestingly, all of the obtained antibodies recognized several strains of distinct genotypes within the corresponding serotype (Cabezas et al., 2008). Antibody C9 was isolated after panning against dengue envelope protein using a mouse/human chimeric Fab library. The antibody crossreacts with DENV1-3 and neutralizes DENV2 in cell-based assays after conversion into full length IgG (Moreland et al., 2012). Besides scFv and Fab, also variable domain heavy-chain antibodies (VHH antibodies) have been selected using phage display technology to target DENV2 NS1 protein. After four rounds of panning, 20 hits were selected (Fatima et al., 2014). A VHH antibody combination was developed which allows the detection of NS1 of all four Dengue strains (Shriver-Lake et al., 2018). For the therapy of dengue, the application of full-length antibodies like IgG may not provide the best solution for dengue therapy in the context of ADE. Antibodies with a silent Fc part or antibody fragments would be the preferred option for the development of therapeutic antibodies against dengue.

Venezuelan equine encephalitis virus (VEEV), an alphavirus of the *Togoviridae* family, causes both equine epidemics and also encephalitis in humans (Johnson and Martin, 1974; Weaver et al., 2004). Much research addressed the generation of neutralizing antibodies against VEEV since it is classified as Category B agent by the Centers for Disease Control and Prevention (CDC). An immune library from human donors was used as source for selection of mAbs targeting both VEEV envelope glycoproteins E1 and E2 (Hunt et al., 2010). The isolated Fabs L1A7 and F5 were neutralizing in vitro, with F5 being 300 times more effective than L1A7. Subsequently, F5 in full IgG format was employed to generate neutralization-escape variants of VEEV for epitope mapping purposes. Another study harnessed an immune macaque library to generate human-like antibodies. Among these antibodies, scFv-Fc ToR67-3B4 was protective in mice when administered 6 h post viral challenge with VEEV Trinidad strain, allowing 80 to 100% survival after a challenge with 100-fold LD50. Counterruptively, scFv-Fc ToR67-3B4 was able to neutralize other VEEV strains in vitro, but not Trinidad one. This tests proved that in vitro neutralization is not mandatory for an antibody to be actually protective in more complex infection models (Rülker et al., 2012). A further study described the antibody selection from a human naïve scFv gene library using complete, active VEEV particles as target. Specific detection of the VEEV strains TC83, H12/93, and 230 by the isolated antibodies was verified. Remarkably, none of the selected scFv phage clones showed cross-reactivity with Alphavirus species of the Eastern equine encephalitis virus (EEEV) and Western equine encephalitis virus (WEEV) antigenic complex or with Chikungunya virus (CHIKV), making them ideal tools for immunological detection and diagnostic of Alphavirus species (Kirsch et al., 2008). From WEEV immunized macaques, two different scFv antibody gene libraries were constructed. Reformatted as scFv-Fc, three antibodies originating from these libraries specifically bound WEEV in ELISA with little or absent cross-reactivity with other alphaviruses. Additionally, their neutralization potency was assessed in vitro. This was indeed the first study in which
in vitro neutralizing antibodies against WEEV were developed. About 1 ng/mL of the best antibody (ToR69-3A2) neutralized 50% of 5 x 10^4 TCID50/mL WEEV (Hülseweh et al., 2014). Four anti-WEEV antibodies from this study were also tested in an in vivo WEEV aerosol challenge approach. A dose dependent protection was measured. Interestingly, not only the best neutralizing antibody ToR69-3A2 was protective in vivo, but also the non-neutralizing antibody ToR68-2C3. The mode of action of the non-neutralizing antibodies cannot be the blocking of the virus host cell receptor interaction, but protection may results from complement-mediated lysis, antibody-dependent cell-mediated lysis of infected cells or opsonization followed by uptake by phagocytes (Burke et al., 2018). Single domain antibodies generated against E3E2 of WEEV from a llama immune library allowed the development of a MagPlex sandwich immunoassay to detect specifically WEEV and discriminate from other alphaviruses (Liu et al., 2018).

Influenza viruses are the etiologic agents of seasonal flu, a worldwide spread disease. In recent years, the "bird flu" (H5N1) and the pandemic "swine flu" (a variant of H1N1) moved into the spotlight of public attention and also of research focus, given the global spread of these variants. Due to many genetic events, such as e.g. antigenic drift and shift, new influenza variants will keep occurring in the future and will challenge vaccine and diagnostic development (Webster and Gorykovka, 2014; Trombetta et al., 2015; Keilmann, 2019). Sui et al. (2009) selected antibodies from a naïve scFv library against the H5 hemagglutinin ectodomain. Hemagglutinin is a trimer and the extracellular part consist of a stalk domain and a globular head domain (Krammer and Palese, 2013). They identified ten antibodies binding to the trimeric H5, nine of which shared the same germline framework (VH1-69). These antibodies were converted into IgG1 and were protective in mice at dose of 10 or 15 mg/kg in both a prophylactic and therapeutic challenge models, respectively. Very remarkably, some antibodies cross-neutralized H1, H2, H5, H6, H8, and H9 influenza strains. These phage display derived antibodies are good candidates for broad-spectrum influenza immunotherapy (Sui et al., 2009).

Rabies is caused by the rabies virus which infects the central nervous system, always resulting in fatal disease, before Louis Pasteur developed the rabies vaccination. The current post-exposure therapy is based both on vaccination and polyclonal anti-rabies sera (Goudsmidt et al., 2006; Briggs, 2012; Crowcroft and Thompi, 2015). From two different immune scFv libraries, 147 unique recombinant antibodies were selected against the rabies glycoprotein (Kramer et al., 2005). The neutralization of the selected mAbs was tested in vitro using 27 different street rabies virus isolates and the best neutralizing antibodies were further investigated in vivo in a hamster rabies (Bakker et al., 2005). This antibody was further analyzed with another human antibody, termed CR57, derived by somatic cell hybridization technique, in combination (Dietzschold et al., 1990), both in in vitro and in vivo models (Goudsmidt et al., 2006). In a clinical phase 1 study, the safety and efficacy of the mAb cocktail (named CL184) was tested (Bakker et al., 2008) and subsequently in phase 2 studies. The antibodies were renamed Rafivirumab (CR57) and Foravirumab (CR4098). The in vivo efficacy in a hamster model was demonstrated with several rabies isolates (Franka et al., 2017). The antibody Rabishield, which is not derived by phage display, has been approved in 2018 (Wang et al., 2011; Gogtay et al., 2018).

The emergence of new viral species able to leak from their animal reservoirs and lastly infect the human host has been described several times in the last decades and has led to either local epemics or global pandemics. In this regard, Henipavirus and Betacoronavirus genera, respectively, are emblematic examples of zoonotic viral diseases that posed serious threats to human health. The generation of monoclonal antibodies through phage display targeting these pathogens has been mainly investigated towards the development of new therapeutic agents, even though in the case of SARS-CoV-2 monoclonal antibodies are of foremost interest also for diagnostic purposes.

Henipaviruses known to be pathogenic to the human host are Hendra virus (HeV) and Nipah virus (NiV), that caused small outbreaks in Australia and Malaysia, respectively, first recognized during 1990 (Weatherman et al., 2018). Bats are the animal reservoir of these viruses and their transmission to human beings is either mediated through amplifying hosts, like pigs or horses, or direct, as documented in NiV Bangladesh 2001 outbreak, through contact between same contaminated food (Hulpin et al., 2011; Weatherman et al., 2018). The infection of these negative-stranded RNA viruses causes mainly severe respiratory and neurological symptoms and sequelae with high mortality rate (Wong and Tan, 2012). The initial contact of these virus to host cells is mediated by attachment to glycoprotein G (also known as RBP -Receptor Binding Protein-), that binds the cellular surface proteins ephrinB2 or ephrinB3 (Bonaparte et al., 2005; Negrete et al., 2005; Negrete et al., 2006; Navaratnarajah et al., 2020). The soluble forms of HeV G protein was used to isolate 17 antibodies from a phage display human Fab naïve library (Zhu et al., 2006), to date the only report of phage display-derived anti-NiV/-HeV antibodies. Seven of them were further investigated and given the 80% sequence similarity between G proteins of HeV and NiV, some of them resulted in effective cross-recognition of the two viral species. Fab m102 was further improved through light chain shuffling, VH random mutagenesis and IgG1 conversion demonstrating cross-neutralization of both HeV and NiV and normal serum half-life in ferrets (Zhu et al., 2008). Further testing of this monoclonal antibody demonstrated its efficacy in NiV-infected ferrets (Bossart et al., 2009). For African green monkeys challenged with HeV (Bossart et al., 2011) and NiV (Geisbert et al., 2014), further evidence suggests that the therapeutic window in African green monkeys is different based on the NiV viral strain used (Mire et al., 2016). Its safety was also recently demonstrated in a Phase I first-in-human clinical trial (Playford et al., 2020), establishing the security criteria necessary to proceed to verify its effectiveness in infected humans in further clinical trials.

The Betacoronavirus genus (single-stranded, positive-sense RNA viruses) has clearly demonstrated its potential as source of worldwide health threats during the beginning of the new
millennium, with SARS-CoV and SARS-CoV-2, both emerging from China in late 2002 and late 2019, respectively (Książek et al., 2003; Lu et al., 2020). Furthermore, smaller outbreaks were caused by MERS virus in Saudi Arabia, during 2012 as it was first isolated, and South Korea (2015) (Zaki et al., 2012; Memish et al., 2020). Unlike the latter virus that keeps circulating in camels (Sabir et al., 2016; Kandle et al., 2019), SARS-CoV and SARS-CoV-2 originated from bats (Guan et al., 2003; Zhou et al., 2020) and spread worldwide. If the first SARS-CoV-caused pandemic was contained by summer 2003 (Cherry, 2004), COVID-19 pandemics is still lashing the entire world with recurring waves of infection. Phage display-derived antibodies are among the multiple approaches quickly deployed to generate monoclonal antibodies directed to SARS-CoV-2 (jiang et al., 2020). In this emergence scenario, anti-nucleocapsid protein antibodies have been generated through phage display for diagnostic purposes (Kim et al., 2021). However, the most efforts have been focused on spike protein, and specifically to the receptor binding domain (RBD), to directly block the interaction with the host receptor, aiming to select neutralizing antibodies for novel therapeutics development. Various formats, e.g. IgG, Fab, VH and bispecifics, from mainly human, either naïve or immune, libraries have been investigated and their neutralization efficiency was mostly studied in vitro, with some mAbs that were also tested in animal models (Li et al., 2020a; Li et al., 2020b; Noy-Porat et al., 2020; Sun Z. et al., 2020; Zeng et al., 2020; Bertoglio et al., 2021a; Bertoglio et al., 2021b; Bracken et al., 2021; Ku et al., 2021; Lim et al., 2021). At the moment of writing, the only anti-SARS-CoV-2 phage-display derived antibody known to enter clinical trials is STE90-C11 (COR-101) (ClinicalTrials.gov ID: NCT04674566) (Bertoglio et al., 2021a).

A summary of antibodies generated by phage display against viruses is presented in Table 2.

EUKARYOTIC PATHOGENS

A huge number of antibodies against a broad range of eukaryotic pathogens has been generated by phage display. These recombinant antibodies are directed against very different parasites, e.g. Taenia solium (Ribeiro et al., 2013), protozoa, e.g. Cryptosporidium parvum (Bouiller-Blitz et al., 2009; Bouiller-Blitz et al., 2010), Plasmodium falciparum (Roeffen et al., 2001; Lundquist et al., 2006) or Toxoplasma gondii (Hoe et al., 2005) and fungi such as Aspergillus fumigatus (Schütte et al., 2009). Beside human pathogens also veterinary pathogens like Myxobolus rotundus (Zhang J. Y. et al., 2006) (a fish pathogen) or Babesia gibsoni (a dog pathogen) (Hirose et al., 2009) and plant pathogens like Aspergillus niger (Ascione et al., 2004), Fusarium verticilloides (Hu et al., 2012) or Sclerotinia sclerotiorum (Yang et al., 2009) are of interest.

The majority of the antibodies to these targets are derived from human antibody gene libraries, but libraries derived also from mouse (Fu et al., 1997), chicken (Hu et al., 2012), camel (Saerens et al., 2008) or macaque (Schütte et al., 2009) have been successfully applied to select recombinant antibodies against eukaryotic pathogens.

Detailed examples for the recombinant antibodies against several eukaryotic pathogens derived from phage display are given in the following paragraphs.

Allergic bronchopulmonary aspergillosis, saprophytic aspergillosoma, chronic necrotizing aspergillosis and the invasive aspergillosis which is highly lethal are caused by Aspergillus fumigatus and are the most important Aspergillus-related diseases (Broderick et al., 1996; Latgé, 1999). As one possible consequence of a hematopoietic stem cell transplantation or solid organ transplantation, an invasive aspergillosis can occur in these immunocompromised patients (Rüping et al., 2008). Therefore, an early diagnosis of aspergillosis is crucial for a successful treatment. The development of a panel of human antibodies binding to Crf2 was described by Schütte et al. (2009). The glycosyl hydrolase Crf2 is located in the cell wall of the growing hyphae. Two kind of antibody gene libraries were used: a macaque immune library and the human naïve antibody libraries HAL4/7 (Hust et al., 2011). In addition, two different antibody selection strategies were performed: A) a panning on recombinant antigen immobilized on immunostrips. B) a panning in solution using biotinylated antigen. Six antibodies were selected from the human naïve libraries and ten from the macaque immune library. It was observed, that all antibodies generated by panning in solution bound to conformational epitopes and the antibodies generated on directly immobilized Crf2 bound to linear epitopes. Seven antibodies bound to the native antigen Crf2 on growing hyphae of Aspergillus fumigatus shown by histopathological immunofluorescence microscopy. These antibodies didn’t show cross reactions with other Aspergillus species or Candida albicans. It was shown that anti-Crf2 antibody MS112-IIB1 was able to neutralize the enzymatic activity of Crf2, but was not able to reduce the fungal growth in a rat model of invasive pulmonary aspergillosis (Chauvin et al., 2019).

Besides the diagnosis in patients, the preventive diagnosis of Aspergillus pathogens in agricultural products is of importance. Therefore, Wang et al. developed a nanobody-polyclonal antibody Sandwich-ELISA (Wang T. et al., 2017). To obtain polyclonal antibodies and for the construction of a camelid immune library, rabbits or alpacas, respectively, were immunized with extracellular antigens and mycelia lysate of A. flavus, a strain with high levels of aflatoxin. Panning resulted in one VHH nanobody against the extracellular antigens and two nanobodies against the mycelia lysate. The developed Sandwich-ELISA is detecting aflatoxin producing strains of the Aspergillus spp. in agricultural products before the fungi can produce high levels of aflatoxin and is therefore suited for early detection.

Malaria is one of the most common mosquito-borne diseases caused by five different species of Plasmodium, P. falciparum, P. vivax, P. malariae, P. ovale and P. knowlesi (Cox-Singh et al., 2008). In humans P. falciparum is responsible for most malaria-related deaths globally, while P. vivax is the most widespread parasite (Popovic and Ménard, 2015). The parasites infect erythrocytes and destroy these cells at the end of the
Virus	Target	Library Type	Antibody Format	Antibody Origin	Application	Reference
Australian bat Lyssavirus	possibly ABLV -G	naive	Fab, IgG	human	ELISA, in vitro neutralization	(Weir et al., 2021)
Avian influenza virus H7N2 (AI)	complete virus	immune	VHH	camel	ELISA	(Gong et al., 2016)
Blue tongue virus	complete virus	semi-	scFv, scFv-Fc	chicken	ELISA	(van Wyngaardt et al., 2004; Fehrsen et al., 2005)
Blue tongue virus	complete virus	semi-	scFv, VHH	human	ELISA	(Ten Haaf et al., 2017)
Broad bean mottle virus (BBMV)	complete virus	semi-	VHH	camel	ELISA, in vitro neutralization	(Ghannam et al., 2015)
Bovine viral diarrhoea virus	nonstructural protein 5 (NSSB)	immune	VHH	camel	ELISA, intrabodies	(Duan et al., 2020)
Chikungunya virus (CHIKV)	envelope protein E	naive	Fab, IgG	human	ELISA, in vitro neutralization	(Fong et al., 2014)
Chikungunya virus (CHIKV)	envelope protein E	naive	Fab, IgG	human	ELISA, Immunofluorescent assay, in vitro neutralization	(Sackaew et al., 2014)
Dengue	envelope protein E	naive	Fab	human	ELISA,WB, dot blot,	(Zhao et al., 2014)
Dengue	envelope protein E	naive	Fab, IgG	human, mouse	ELISA, WB, IHC	(Moreland et al., 2012)
Dengue	NS3	naive	Fab	human	ELISA, in vitro neutralization	(Moreland et al., 2010)
Dengue	NS1	immune	Fab, IgG	llama	ELISA, lateral flow immunochromatographic assay	(Fatima et al., 2014)
Dengue	n.d.	immune	Fab, IgG	chimpanzee	ELISA, immunoprecipitation, in vitro neutralization	(Men et al., 2004)
Dengue	NS1	immune	VHH	llama	ELISA (MagPlex assay)	(Shriver-Lake et al., 2018)
Dengue	NS1	naive	scFv, Fab	human	ELISA, IF	(Lebani et al., 2017)
Dengue	NS1	naive	scFv	human	ELISA, IF	(Pourngpairoj et al., 2014)
Dengue	DENV-2 RdRp	naive	scFv	human	ELISA, WB, in vitro inhibition	(Tunghirun et al., 2020)
Duck hepatitis A virus	VP1	immune	VHH	camel	ELISA, IF, dot-blot	(Xue et al., 2019)
Duck hepatitis A virus	VP3	immune	scFv	mice	ELISA, in vivo neutralization	(Wang et al., 2018)
Ebola	nucleoprotein, envelope glycoprotein	immune	Fab, IgG	human	ELISA, immunostaining,	(Maruyama et al., 1999a)
Ebola	nucleoprotein	synthetic	scFv, IgG	human	ELISA, WB	(Shingarova et al., 2007)
Ebola (Zaire)	viral matrix protein VP40,	immune	scFv, IgNAR	mice, shark	ELISA, WB	(Goodchild et al., 2011)
Ebola (Zaire)	nucleoprotein	semi-	scFv	human	ELISA, WB, intrabody	(Rego et al., 2019)
Ebola (Sudan)	glycoprotein (GP)	immune	scFv, scFv-Fc	macaque	ELISA, in vitro neutralization, in vivo protection	(Fréoule et al., 2018; Herbert et al., 2020)
Ebola (Zaire)	glycoprotein (GP)	immune	VHH	llama	ELISA	(Liu et al., 2017)
Ebola (Zaire)	VP3S, interferon inhibitory domain	immune	scFv	human	ELISA, IF, WB	(Seesuay et al., 2018)
Ectromelia virus (ECTV)	ECTV, variola virus, vaccinia virus, cow pox virus	immune	scFv	human	ELISA, in vitro neutralization, WB	(Khuevest et al., 2018)
Enterovirus 71 (EV71)	virion protein 2 (VP2)	naive	scFv	mouse	ELISA, WB	(Thanongsaksriruk et al., 2018)
Enterovirus 71	inactivated EV71 virions	immune	Fab	human	ELISA, in vitro neutralization	(Chen et al., 2017)

(Continued)
Virus	Target	Library Type	Antibody Format	Antibody Origin	Application	Reference
Enterovirus 71/ coxsackievirus A16 (CVA16)	VP4	immune	scFv, IgG	mice	WB, in vitro neutralization	(Zhang et al., 2016)
Enterovirus 71	VP4	naive	scFv	human	ELISA, WB, IF, in vitro neutralization	(Pranithong et al., 2020)
Epstein-Barr virus	LMP1	naive	Fab	human	ELISA, WB, IF, FACS, in vitro inhibition	(Zhang et al., 2013)
Foot-and-mouth disease virus (FMDV)	3ABC	immune	scFv	chicken	ELISA, WB	(Foord et al., 2007)
Foot-and-mouth disease virus 146S	immune	VHH	llama	ELISA	(Harmsen et al., 2017)	
Foot-and-mouth disease virus VP2 capsid protein	immune	scFv	mice	ELISA	(Salem et al., 2019)	
Foot-and-mouth disease virus coat protein	immune	scFv	mice	ELISA	(Zhang et al., 2013)	
Foot-and-mouth disease virus grapevine leaffroll-associated virus 3	immune	VHH	camel	ELISA, IF	(Wang et al., 2019)	
Foot-and-mouth disease virus grapevine virus B	immune	semi-synthetic scFv	human	ELISA	(Zhang et al., 2013)	
Haematopoietic necrosis virus (HNWM)	n.d.	naive (non-immune)	scFv	mouse	ELISA, WB, IHC	(Liu et al., 2014)
Hantavirus nucleoprotein	immune	VHH	llama	ELISA, WB	(Pereira et al., 2014)	
Hantavirus virus particles	immune	Fab	human	IF, WB	(Koch et al., 2003)	
HCMV glycoprotein B and H	immune	scFv	human	ELISA, in vitro neutralization	(Nejatollahi et al., 2003)	
HCMV Gp55	immune	scFv	human	ELISA, in vitro neutralization	(Moxen et al., 2016)	
Hendra and Nipah virus attachment envelope glycoprotein G	immune	scFv	human	ELISA, immunoprecipitation, WB, in vitro neutralization	(Zhu et al., 2016)	
Hepatitis A	Hepatitis A Capsid	immune	Fab, IgG	chimpanzee	ELISA, in vitro neutralization	(Schofield et al., 2002)
Hepatitis A HBsAG	naive	scFv	human	ELISA	(Zhang et al., 2016)	
Hepatitis C	NS5B	naive	scFv	human	ELISA, IF, in vitro neutralization	(Thung-in et al., 2014)
Hepatitis C core, E1, E2	immune	scFv	human	ELISA	(Chan et al., 1998)	
Hepatitis C core protein	immune	Fab	human	ELISA	(Burian et al., 2000)	
Hepatitis C E2 glycoprotein	immune	Fab	human	ELISA	(Burioni et al., 2001)	
Hepatitis C NS5A	immune	scFv	human	ELISA, WB, IF, in vitro neutralization	(Glab-Ampai et al., 2017)	
Hepatitis C NS3/4A	immune	scFv (transbodies)	human	ELISA, IF, in vitro neutralization	(Jittavisuththikul et al., 2016)	
Hepatitis E ORF2 protein	immune	Fab (transbodies)	chimpanzee	ELISA, WB	(Schofield et al., 2003)	
Herpes simplex virus HSV1, -2 lysate	immune	Fab	human	in vitro inhibition, immune precipitation	(Burioni et al., 1994)	
Herpes simplex virus glycoprotein gD, gB	presumably immune	Fab	human	ELISA, immune precipitation	(Sanna et al., 1995)	
Herpes simplex virus virus lysate? Integrase	immune	scFv	rabbit	ELISA, IF	(Cattani et al., 1997)	
HIV-1 gp140	immune	scFv, scFv-Fc	human	ELISA, WB, IF, in vitro neutralization	(da Silva et al., 2012)	
HIV-1 gp140	immune	Fab, IgG	human	ELISA, WB, in vitro neutralization	(Trott et al., 2014)	
HIV-1 gp140	immune	VHH	llama	ELISA, in vitro neutralization	(Stokapse et al., 2012)	
HIV-1 gp120	immune	Ch2 domain	mouse	ELISA, in vitro neutralization	(Xiao et al., 2009)	
HIV-1 gp41	immune	scFv	human	ELISA, in vitro neutralization	(Mohammadzadeh et al., 2014)	
HIV-1 gp41	immune	Fab	human	ELISA, in vitro neutralization	(Gustchina et al., 2007)	
HIV-1 gp41	naive	scFv	human	ELISA, in vitro neutralization	(Miller et al., 2005)	

(Continued)
Virus	Target	Library Type	Antibody Format	Antibody Origin	Application	Reference	
HIV-1	gp120	immune	Fab	human	ELISA, in vitro neutralization, IF	(Sun et al., 2017)	
HIV-1	gp140	immune	VHH	camel	ELISA, in vitro neutralization	(Koch et al., 2017)	
HIV-1	gp140 trimer	immune	scFv	human	ELISA, in vitro neutralization	(He et al., 2017)	
HIV-1	RSC3 core protein	immune	scFv	human	ELISA, in vitro neutralization	(Kumar et al., 2017)	
HIV-2	gp12S protein	immune	Fab	human	ELISA, IF, in vitro neutralization, in vivo protection	(Björling et al., 1999)	
Human metapneumovirus	F ectodomain	presumably immune	scFv	human	ELISA, in vitro neutralization, in vivo protection	(Williams et al., 2007)	
Influenza A (IAV)	HA (stem region)	semi-synthetic	scFv	human	ELISA, Flow cytometry, immunoprecipitation, in vitro neutralization, in vivo protection	(Avnir et al., 2014)	
Influenza A	HA ectodomain	presumably	Fab	human	ELISA, in vitro neutralization	(Sui et al., 2009)	
Influenza A (H2N2)	HA (stem region)	presumably	Fab	human	ELISA, in vitro neutralization	(Wyrzucki et al., 2014)	
Influenza A	HA2	semi-synthetic	scFv	human	ELISA, WB, in vitro neutralization	(Li et al., 2016)	
Influenza A (H1N1)	HA	immune	scFv	mice	ELISA	(Rajput et al., 2015)	
Influenza A (H1N1/H5N1)	HA	immune	VHH, bivalent	alpaca	ELISA, in vitro neutralization	(Huffman et al., 2014)	
Influenza A (H5N1)	HA	semi-synthetic	scFv	human	ELISA	(Wu et al., 2014)	
Influenza A (H5N1)	HA	immune	scFv	chicken	IF, in vitro neutralization, WB	(Manoewatch et al., 2009)	
Influenza A (H5N1)	nucleoprotein (NP)	immune	scFv	mice	ELISA, WB, in vitro inhibition	(Singupta et al., 2014)	
Influenza A (H5N1)	HACleavage site	immune	Fab	mice	ELISA, IF	(Dong et al., 2013)	
Influenza A (H5N1)	NS1	naive	scFv	human	ELISA, in vitro neutralization, IF	(Yodsheewan et al., 2013)	
Influenza A (H5N2)	complete inactivated virus peptides (neutralizing epitope)	immune	VHH	camel	ELISA	(Zhu et al., 2014)	
Influenza A (H5N2)		semi-synthetic	scFv	human	ELISA	(Vashisht et al., 2019)	
Influenza A	M2-cyttoplasmatic domain	naive	scFvscFv-Fc	human	WB, IHC	(Velappan et al., 2023)	
Influenza B	HA	immune	VHH	alpaca	ELISA	(Ramage et al., 2019)	
Influenza B	whole virus domains I,II,III of envelope protein	immune	Fab	human	ELISA, WB, IF, in vitro neutralization	(Hirano et al., 2018)	
Influenza B	envelope Protein		Fab, IgG	chimpanzee	ELISA, immunoprecipitation, in vitro neutralization, in vivo protection	(Gonzalez et al., 2008)	
Japanese encephalitis virus	glycoprotein (GP)	immune	scFv, scFv-Fc	macaque	WB, in vitro neutralization, in vivo protection	(Arakawa et al., 2007)	
Japanese encephalitis virus	virus lysate	synthetic	immune	Fab	human	ELISA	(Froude et al., 2017)
Marburg virus	VP35		Fab	human	ELISA	(Amaya et al., 2019)	
Marburg virus	Measles virus	synthetic	immune	Fab	human	ELISA	(de Carvalho Nicacio et al., 2002)
MERS	S2 domain	synthetic	Fab, IgG	human	ELISA, IF, sandwich ELISA	(Kim et al., 2019)	
MERS	nucleoprotein (NP)		Fab	human	ELISA	(Lim et al., 2019)	
Norovirus	Norovirus VLPs		Fab	human	ELISA	(Huang et al., 2014)	
Norovirus	P-domain of the G1 major capsid protein		scFv	human	ELISA, dot-blot	(Herwitz et al., 2017)	
Norovirus	VLPs with VP1 and VP2		VHH	llama	ELISA, WB, in vitro inhibition, IF	(Garaicoechea et al., 2019)	
Norovirus	VLPs		scFv	human	ELISA, in vitro inhibition	(Higo-Moriguchi et al., 2014)	
Norwalk virus	glycoproteins F and HN		scFv	human	ELISA, FACs, IF, in vitro inhibition	(Chen et al., 2013)	
Paramyxovirus			Fab, IgG	human	ELISA, in vitro neutralization, immunoprecipitation	(Welch et al., 2014)	

(Continued)
Virus	Target	Library Type	Antibody Format	Antibody Origin	Application	Reference	
Plum pox virus	Nla protease	semi-synthetic	scFv	human	WB, dot blot	(Hust et al., 2002)	
Poliovirus	capsid proteins VP1 and VP3		Fab, IgG	chimpanzee	ELISA, in vitro neutralization, in vivo protection	(Chen et al., 2011)	
Poliovirus	capsid proteins VP1 and VP3		Fab, IgG	human	ELISA	(Chen et al., 2015)	
Poliovirus	capsid proteins VP1 and VP3		Fab, IgG	human	ELISA	(Mu et al., 2021)	
Porcine epidemic diarrhea virus	capsid proteins PEDV S1 domain of spike protein	synthetic	Immune	VHH	ELISA	(Bao et al., 2019)	
Porcine epidemic diarrhea virus	capsid proteins PEDV S1 domain of spike protein	synthetic	Immune	VHH	ELISA	(Bao et al., 2019)	
Porcine epidemic diarrhea virus	spike protein	immune	scFv	pig	ELISA, IF, in vivo protection	(Zhang et al., 2019a)	
Porcine reproductive and respiratory syndrome virus (PRRSV)	non-structural protein 4 (NSP4)	immune	VHH	camel	ELISA, IF, in vitro neutralization	(Liu et al., 2016)	
Puumala hantavirus	N protein, G2 protein	immune	Fab	human	ELISA	(Salonen et al., 1998)	
Puumala hantavirus	gycoprotein G2	immune	Fab	human	ELISA, WB	(de Carvalho Nicacio et al., 2000)	
Rabies virus	glycoprotein	semi-synthetic	scFv	human	ELISA, WB	(Ray et al., 2001)	
Rabies virus	glycoprotein	semi-synthetic	scFv	human	ELISA, WB	(Rodriguez-Diaz et al., 2004)	
Rabies virus	glycoprotein	semi-synthetic	scFv	human	ELISA, flow cytometry, in vitro neutralization	(Baiker et al., 2005; Kramer et al., 2005)	
Rabies virus	glycoprotein	semi-synthetic	scFv	human	ELISA, flow cytometry, in vitro neutralization	(Houimet, 2014)	
Rabies virus	inactivated RABV	naive	VHH	lama	ELISA, in vitro neutralization, in vivo protection	(Borah et al., 2013)	
Respiratory syncytial virus (RSV)	F protein	synthetic	Fab, IgG	human	ELISA	(Chen et al., 2016)	
Rotavirus	NSP4	semi-synthetic	scFv	human	ELISA, WB	(Monedero et al., 2004)	
Rotavirus	VP8*	semi-synthetic	scFv	human	ELISA, WB	(Monedero et al., 2004)	
SARS-CoV S domain of spike protein	S protein	naive	scFv	human	ELISA, IF, immunoblot, in vitro neutralization	(Sui et al., 2004)	
SARS-CoV S protein	S protein	immune	Fab, IgG	human	ELISA	(Li et al., 2005)	
SARS-CoV S protein	S protein (RBD)	immune	scFv	chicken	ELISA	(Lee et al., 2007)	
SARS-CoV S protein	S protein (RBD)	immune	scFv, scFv-Fc	human	ELISA, IF, in vitro inhibition, in vitro neutralization	(Bertoglio et al., 2021b)	
SARS-CoV S protein	S protein (RBD)	immune	scFv	IgG	ELISA, IF, in vitro inhibition, in vitro neutralization	(Bertoglio et al., 2021a)	
SARS-CoV S protein	S protein (RBD)	immune	scFv	IgG	ELISA, IF, in vitro inhibition, in vitro neutralization	(Noy-Porat et al., 2020)	
SARS-CoV S protein	S protein (antigenic site II)	immune	VHH	humanized	in vitro neutralization	(Chi et al., 2020)	
SARS-CoV S protein	S protein (antigenic site II)	immune	VHH	humanized	in vitro neutralization	(Chi et al., 2020)	
SARS-CoV S protein	S protein (antigenic site II)	immune	VHH	humanized	in vitro neutralization	(Chi et al., 2020)	
SARS-CoV S protein	S protein (antigenic site II)	immune	VHH	humanized	in vitro neutralization	(Chi et al., 2020)	
SARS-CoV S protein	S protein (antigenic site II)	immune	VHH	humanized	in vitro neutralization	(Chi et al., 2020)	
SARS-CoV S protein	S protein (antigenic site II)	immune	VHH	humanized	in vitro neutralization	(Chi et al., 2020)	
Virus	Target	Library Type	Antibody Type	Antibody Format	Antibody Origin	Application	Reference
-------------------------------------	-------------------------------	----------------	---------------	-----------------	-----------------	--	----------------------------
SARS-CoV-2	RBD	immune	Fab, IgG	human	ELISA, in vitro neutralization assay, in vivo protection,	(Zhou et al., 2021)	
SARS-CoV-2	RBD	semi-synthetic	Fab	human	ELISA, in vitro neutralization	(Slezak and Kossiakoff, 2021)	
SARS-CoV-2	RBD	immune	VHH	alpaca	ELISA, in vitro neutralization	(Gai et al., 2021)	
SARS-CoV-2	NP	immune	scFv, scFv-Fc	chicken	ELISA, dotblot, lateral flow strip assay	(Kim et al., 2021)	
SARS-CoV-2	NP	immune	Fab, IgG	rhesus macaque	ELISA, WB	(Zhang et al., 2020)	
SARS-CoV-2	gp120	naïve	scFv	human	ELISA, WB	(Glamann et al., 1998)	
Simian immunodeficiency virus (SIV)	gp120/gp140	immune	scFv, scFv-Fc	rhesus macaque	WB, in vitro neutralization	(Ita et al., 2017)	
Sin Nombre Virus	SIV-N	naïve	scFv	human	ELISA, WB, dot-blot	(Velappan et al., 2007)	
Swine Influenza Virus	SIV-NP	immune	VHH	camel	ELISA, WB	(Du et al., 2019)	
Transmissible gastroenteritis virus	TGEV whole virus	immune	scFv	pig	in vitro neutralization, IF, WB	(Zhang et al., 2019b)	
Usutu virus	USUV A, USUV B	immune	scFv	chicken	ELISA, WB, in vitro neutralization	(Schoenenwald et al., 2020)	
Vaccinia virus, Variola Virus	Vaccinia B5 envelope protein	immune	Fab, IgG	chimpanzee	ELISA, in vitro neutralization, in vivo protection	(Chen et al., 2006)	
Vaccinia virus, Variola Virus	virus particles	immune	scFv, IgG	human	inhibition ELISA, in vitro neutralization	(Shin et al., 2019)	
Vaccinia virus, Variola Virus	inactivated virus particles, L1	immune	VHH	llama	MAGPIX assay, FACS	(Waiper et al., 2014)	
VEEV	virus particles	naïve	scFv, scFv-Fc	mouse	ELISA, IHC	(Duggan et al., 2001)	
VEEV	E1	immune	scFv, scFv-Fc	human	ELISA, WB, IHC	(Kisch et al., 2008)	
WEEV	E2/E3E2	immune	scFv, scFv-Fc	macaque	ELISA, IHC, in vitro neutralization, in vivo protection	(Rüker et al., 2012)	
West Nile virus	domain I and II of WNV envelope protein	naïve	VHH	llama	ELISA (MagPlex assay)	(Lu et al., 2018)	
West Nile virus	envelope protein	naïve	scFv	human	ELISA, in vitro neutralization, in vivo protection	(Gould et al., 2005)	
West Nile virus	envelope (E)	naïve	scFv, scFv-Fc	human	ELISA, IF, in vitro neutralization, in vivo protection (failed)	(Duan et al., 2009)	
White spot syndrome virus	virus particles	immune	scFv	mice	ELISA, WB, in vitro neutralization	(Rizzo et al., 2020)	
Yellow fever virus	domain II of envelope protein	immune	scFv, IgG	human	ELISA, WB, immunoprecipitation, in vitro neutralization, in vivo protection	(Daffis et al., 2005;	
Zika virus	envelope domain III	naïve	Fab	human	ELISA, WB, in vitro neutralization	(Lu et al., 2019)	
Zika virus	envelope (E)	immune	scFv	chicken	ELISA, WB, FACS, in vitro inhibition	(Mwale et al., 2020)	
Zika virus	NS1	immune	VHH	llama	ELISA, WB	(Defin-Riela et al., 2020)	

ELISA: enzyme linked immunosorbent assays; **HA:** hemagglutinin; **HCMV:** Human cytomegalovirus; **HIV:** Human immunodeficiency virus; **IF:** immuno fluorescence microscopy; **IHC:** immunohistochemistry; **RABV:** Rabies virus; **MERS:** Middle East Respiratory Syndrome Coronavirus; **SARS:** Severe acute respiratory syndrome; **VLP:** virus like particle; **VEEV:** Venezuelan equine encephalitis virus; **WB:** western blot; **WEEV:** Western equine encephalitis virus.
replication cycle. In tropical and subtropical countries there are approximately 3.2 billion people at risk of malaria (Tolle, 2009; Muerhoff et al., 2010). Because the life cycle of Plasmodium consists of different development stages, different targets of P. falciparum were addressed for antibody generation. Roefßen et al. (2001) targeted Pfs48/45, a surface protein of P. falciparum which is expressed during macrogamete and zygote stages. Pfs48/45 is also a potential vaccine candidate because transmission-blocking anti-Pfs48/45 antibodies taken up by the mosquito during the blood meal and block the oocyte development within the mosquito’s intestinal tract (Rener et al., 1983; Kumar and Carter, 1984; Vermeulen et al., 1985). To generate anti-Pfs48/45 antibodies, two human immune libraries were constructed from B-lymphocytes derived from P. falciparum patients with transmission-blocking immunity.

The antibody selection was performed in immunotubes with immobilized extract of gametocytes. To specifically generate antibodies against Pfs48/45, the scFv-phage were eluted by competition using a cocktail of four rat monoclonal Abs recognizing distinct epitopes on Pfs48/45 (epitopes I, IIb, III and V). Remarkably, one epitope, the epitope III of Pfs48/45, was bound by all of the generated antibodies. Human monoclonal antibodies against the Block 2 region of Plasmodium falciparum merozoite surface protein-1 (PfMSP-1) were isolated by phage display from a scFv immune library of a malaria patient (Sowa et al., 2001). A Fab-immune library was constructed using lymphocytes of thirteen adults with acquired immunity to malaria. Finally, three Fabs (RAM1, 2 and 3) were isolated by panning on the merozoite surface protein 3 (MSP-3194-257) (Lundquist et al., 2006). This protein is involved in the binding of heme and the antibodies promote the depletion of Plasmodium by monocytes (Oeuvray et al., 1994; Imam et al., 2014). Therefore, the N-terminal fragment of MSP-3 was also tested in clinical vaccines trials (Audran et al., 2005). Binding of the antibodies to native parasite protein was demonstrated for all three antibodies in immunofluorescence microscopy and immunoblot. The native MSP-3 was bound by RAM1 and RAM2 in fixed and permeabilized cells. The anti-MSP-3 antibodies were produced as IgG1 and also in the IgG3 format and tested in an antibody-dependent cellular inhibition assay (ADCI). The IgG3 format of RAM1 showed an inhibition rate that is comparable to affinity-purified polyclonal anti-MSP-3211. 237 antibodies derived from human immune donors. In contrast, the IgG1 format also showed a lower inhibition in this assay compared to IgG3 (Lundquist et al., 2006). In 2021, Seidel-Greven et al. (2021) presented a monoclonal antibody directed against AMA-1, the apical membrane antigen 1. As anti-AMA-1 antibodies show a high prevalence in immune individuals it is not only an interesting target for therapeutics but also one of the major blood-stage vaccine candidates. A human malaria Fab-immune library was used to select antibodies against a set of three AMA-1 variants. To improve the affinity and functional activity a light chain shuffling was performed. After subcloning to IgG1/κ, affinity and competition studies were performed by surface plasmon resonance (SPR) spectroscopy. In addition to an immunofluorescence assay (IFA), the antibodies were tested in an in vitro growth assay. Here, all antibodies were able to inhibit the growth of four different P. falciparum strains including 3D7. Therefore, those antibodies might be the fundament for the development of an antibody cocktail for therapeutic or prophylactic anti-malaria approaches. In 2014, Leow et al. (2014) aimed to find new antibodies with higher thermal stability. As degradation of antibodies due to high temperatures in the endemic countries are affecting the shelf life of malaria rapid diagnostic tests (RDTs). Therefore, they performed a panning with a naïve human scFv library on the histidine-rich protein 2 (PfHRP2) of P. falciparum. PfHRP2 is a biomarker used in most RDTs, as it is abundantly expressed in erythrocytes across all asexual stages and is released during the rupture of the red blood cells. Additionally, it remains detectable in the blood for up to 28 days. Isolated binders were cloned into the IgG format, produced in CHO cells and were compared to a commercial antibody. The selected antibodies showed comparable specificity and sensitivity, with higher thermal stability, making them candidates for a field test in a prototype test kit. To further cope with the degradation issues, Leow et al. (2018) created a shark immune library consisting of VNARs. The variable domain of the shark antibodies is known to have a high thermal stability and therefore is a potential alternative for the RDTs. A wobbegong shark (Orectolobus ornatus) was immunized with different malaria proteins (PfHRP2, PfPldH and Pvdalodase), used for the construction of a VNAR single domain library and antibodies were selected against all three proteins. Pvdalodase and PldH are used for diagnosis of non P. falciparum malaria infections and P. vivax infections. Specificity and sensitivity of the anti-PfHRP2 antibodies were demonstrated by Sandwich-ELISA and dot blot analysis. Further engineering could lead to a new generation of RDTs.

Table 3 gives an overview of antibodies generated by phage display against eukaryotic pathogens.

Antibodies Against Toxins

The Center for Disease Control and Prevention (CDC) classifies several bacterial toxins and/or the pathogens producing these toxins as category A or B agent as they are a high risk to national security and public health (see: https://www.niaid.nih.gov/research/emerging-infectious-diseases-pathogens). Thus, these toxins are a relevant target for development of diagnostics and therapeutics (Froude et al., 2011). Here, antibody phage display technology is a powerful tool to select diagnostic as well as neutralizing antibodies against complete active toxins or certain domains by using human naïve antibody libraries with high diversity (Indrawattana et al., 2010; Amaro et al., 2011; Neri et al., 2011). The aim of such neutralizing antibodies is in most cases to block the interaction of the toxin to its cellular target, by binding to the cell binding domain of the toxin. However, neutralization of the toxicity is also possible by antibodies directed against other domains like the translocation domain or the enzymatic domain (Fühner et al., 2018; Wenzel et al., 2020a). Immunization of animals with toxoids, non-toxic
Eukaryotic pathogen	Target	Library Type	Antibody Format	Antibody Origin	Application	Reference
Alexandrium minutum	Whole cell/surface epitopes	naïve	nanobody/fluobody	lama	IF	(Mazzega et al., 2019)
Aspergillus flavus	extracellular antigens & mycelia lysate	immune	scFv; scFv-Fc	macaque; human	ELISA, IF	(Schütte et al., 2009)
Aspergillus fumigatus	Crf2	immune/naïve	scFv	human	ELISA	(Ascione et al., 2004)
Aspergillus niger	glucose oxidase	semi-synthetic	scFv	human	ELISA	
Babesia gibsoni		P50	scFv	human	ELISA, IF	(Hirose et al., 2009)
Balamuthia mandrillaris	whole cell/surface antigens	naïve	scFv	human	ELISA, IHC	(Siddiqui et al., 2016)
Botrytis cinerea	fungal glucosylceramides (fGlcCer)	immune	scFv	human	ELISA, in vitro activity assay	(De Coninck et al., 2017)
Brugia malayi	BmR1	naïve, immune	scFv	human	ELISA, WB	(Rahumatullah et al., 2017)
Brugia malayi	BmSXP	immune	scFv	human	ELISA, WB	(Rahumatullah et al., 2015; Rahumatullah et al., 2019)
Candida albicans	P50 and other	naïve	scFv	human	ELISA, IF, WB, in vitro neutralization	(Haidaris et al., 2001; Bliss et al., 2003; Laforce-Nesbitt et al., 2008)
Cryptosporidium parvum	P23	semi-synthetic	scFv	human	ELISA	
Cryptosporidium parvum	S16	semi-synthetic	scFv	human	ELISA	(Boultier-Bitzer et al., 2009)
Echinococcus granulosus	AgB	immune	scFv	human	ELISA, WB	(Rahumatullah et al., 2020)
Fasciola hepaticum	cathepsin L1	immune	scFv	rat	ELISA, WB	(Norbury et al., 2019a)
Fusarium oxysporum	cell wall-bound protein	immune	scFv	chicken	ELISA, IF, scFv-AP (anti-fungal peptide) fusion protein	(Peschen et al., 2004)
Fusarium verticillioides	cell wall-bound proteins	immune	scFv	chicken	ELISA, IF, WB	(Hu et al., 2012)
Fusarium verticillioides	soluble cell wall-bound proteins	immune	scFv; scFv-AP	chicken	ELISA, IF, WB	(Hu et al., 2013)
Haemonchus contortus	excretory/secretory (ES) products	immune	scAb	sheep	IF, transepithelial resistance assay	(Rehman et al., 2016)
Leishmania infantum	β-tubulin	naïve	scFv	human	ELISA, WB	(Costa et al., 2019)
Myxobolus rotundus	spore protein	immune	scFv	mouse	ELISA, in vitro neutralization	(Zhang J. Y. et al., 2006)
Neospora caninum	rNeSRS2	immune	Fab	mouse	ELISA, IF, WB, FACS	(Roeßen et al., 2001)
Onchocerca volvulus	Ov16	synthetic	Fab, IgG	human	ELISA, rapid diagnostic platform	(Golden et al., 2016)
Paranosema locustae	alpha/β-hydrolase	immune	scFv, mini antibody	mAb	WB, IF	(Dolgikh et al., 2017)
Plasmodium chabaudi	AMA-1	immune	scFv	mouse	ELISA, WB	(Fu et al., 1997)
Plasmodium falciparum	MSP-1	immune	scFv	human	ELISA, IF	(Sowa et al., 2001)
Plasmodium falciparum	MSP-3	immune	Fab; IgG	human	ELISA, IF, WB, FACS	(Lundquist et al., 2006)
Plasmodium falciparum	PfS48/45	immune	scFv	human	ELISA, IF, WB	(Roeßen et al., 2001)
Plasmodium falciparum	PfHRP2, PfLDH and Pvaldolase	immune/ sdAb	VNAR	shark	ELISA, dot blot	(Leow et al., 2018)
Plasmodium falciparum	PfHRP2	naïve	scFv	human	ELISA (sandwich), WB, dot blot	(Leow et al., 2014)
Plasmodium falciparum	AMA-1	immune	Fab, IgG	human	ELISA, IF, in vitro inhibition	(Seidel-Greven et al., 2021)
Plasmodium falciparum	MSP-1	immune	scFv	mouse	ELISA, WB, in vivo protection	(Vukovic et al., 2002)
Schistosoma japonicum	Schistosoma japonicum cercarialchistosomules	immune	scFv	buffalo	IF, WB, ELISA, protein microarray	(Hosking et al., 2015a; Hosking et al., 2015b)
Schizoplynum commune	rNIE	immune	scFv	mouse	ELISA	(Josewiak et al., 2017)
Strongyloides stercoralis	rNIE	immune	scFv	human	ELISA, WB	(Rahumatullah et al., 2021)
Sclerotinia sclerotiorum	SSG31d	immune	scFv	mouse	ELISA, WB	(Yang et al., 2009)
Strongyloides venezuelensis	rNIE	immune	scFv	human	ELISA, IF	(Levenhagen et al., 2015)
Taenia solium	TS14	naïve	scFv	human	ELISA, WB	(Deckers et al., 2009)
Taenia solium	T. solium metacestodes, peptides	naïve	VHH	camel	ELISA, IF	(Ribeiro et al., 2013)

(Continued)
subunits or selected toxin domains allows for the isolation of high-affinity antibodies with immune antibody libraries. Especially well-suited for the construction of such immune antibody libraries are macaques as there V-genes are very similar to their human counterparts (Chassagne et al., 2004; Pelat et al., 2007; Pelat et al., 2009; Rüller et al., 2012; Miethe et al., 2014; Miethe et al., 2015). Alternatively, also B-cells from vaccinated humans can be used in cases where an approved vaccine is available (Wenzel et al., 2020a).

So far, neutralizing antibodies have been successfully selected against several toxins, classified as category A agents, such as botulinum toxins causing botulism from *Clostridium botulinum* (Amersdorfer et al., 2002; Conway et al., 2010; Hu et al., 2010; Miethe et al., 2014) and anthrax toxins from *Bacillus anthracis* (Pelat et al., 2007) and also against different category B agents, such as staphylococcal enterotoxin B (Larkin et al., 2010; Chen et al., 2019). We focused on toxins produced by microorganisms and did not include e.g. plant toxins like the potential bioweapon ricin (Pelat et al., 2009) or anti-venom, e.g. anti-snake toxin, antibodies (Laustsen et al., 2018).

One microorganism with the high-risk to be potential used as a bioweapon is the Gram-positive, anaerobic, spore-forming bacterium *Clostridium botulinum* and other *Clostridium* spp. that produce the most toxic substances known: eight different serotypes (A-H) of botulinum neurotoxin (BoNT). Five of these serotypes (A, B, E, rarely F, only one case of H) cause human botulism. Human botulism results in flaccid muscle paralysis what requires intensive hospital care and passive immunization (Arnon et al., 2001; Barash and Arnon, 2014). The most toxic substance is serotype A with a LD50 of about 1 ng/kg by intravenous route, about 10 ng/kg by the pulmonary route and about 1 µg/kg for the oral route (Dembek et al., 2007). BoNTs consist of a 50 kDa light chain and a 100 kDa heavy chain linked by a disulfide bond. Receptor-mediated endocytosis followed by translocation of the light chain across the membrane into the neuronal cytosol is facilitated by two functional domains (Hc and Hn) of the heavy chain. The light chain contains the catalytic domain responsible for the BoNT toxicity. Currently botulism is treated by the application of anti-botulism immunoglobulins, such equine serum or the human serum BabyBIG against type A and B. Yet the availability of BabyBIG is limited while equine serum may cause serum sickness and hypersensitivity. Here, antibody phage display technology has been used to generate toxin-neutralizing antibodies against each serotype. One single domain antibodies (VHH) was selected by phage display of a llama immunized with a cocktail of seven BoNT toxins (A-F) (Conway et al., 2010; Shriver-Lake et al., 2017). Other VHH have been isolated from immunized alpacas and were produced as VHH-Fc fusion. These antibodies were protective against LD50 BoNT/A and showed protection over 14 days after antibody administration (Godakova et al., 2019). Furthermore, a human antibody gene library could be generated after *in vitro* immunization with BoNT/A (Hu et al., 2010). Macaque immune libraries were used to isolate neutralizing scFv against the light chains (Lc) and heavy chains (Hc) of BoNT/A, -B and -E with nM affinities against by the EU AntibotABE project (Chabboun et al., 2011; Miethe et al., 2014; Avril et al., 2015; Rasetti-Escargueil et al., 2015). These antibodies were germline-humanized and the *in vivo* protection was analyzed in non-lethal and lethal mice challenge experiments. For BoNT/A and BoNT/B neutralizing anti-Lc and anti-Hc antibody showed only limited protection, but the combination of anti-LC and anti-HC antibodies showed a synergistic effect and 100% protection when using 2.5 µg/mice (Miethe et al., 2016). Interestingly, no neutralizing antibodies against the Hc of BoNT/E were selected, but the neutralizing anti-Lc antibody alone showed full *in vivo* protection using only 2.5 ng IgG/mice (Derman et al., 2016).

Another serious infectious disease is anthrax caused by toxins of *Bacillus anthracis*, an aerobic, Gram-positive, spore-forming bacterium found in soils all over the world. *Bacillus anthracis* secretes the lethal toxin (LT) consisting of the lethal factor (LF) and the protective antigen (PA); while the edema toxin (ET) is formed by the edema factor (EF) and PA (Liu S. et al., 2014). In the pathogenesis of anthrax only LT is essential (Inglesby et al., 2002). Production and dissemination as aerosol of anthrax toxin is easily possible highlighting its potential as a bioweapon (Oncü et al., 2003). Vaccines are currently based on the subunit PA to induce the generation of neutralizing antibodies. For treatment, commercial monoclonal antibodies against PA, such as Raxibacumab, are commonly used in combination with antibiotics (Kummerfeldt, 2014). Raxibacumab was approved by the FDA in 2012 to treat inhalational anthrax. However, as PA could be mutated and modified to escape neutralizing PA antibodies while still maintaining biological activity, the use of anti-PA antibodies alone presents a security issue. An alternative and additional target presents the LF domain. Such an antibody

TABLE 3 | Continued

Eukaryotic pathogen	Target	Library Type	Antibody Format	Antibody Origin	Application	Reference
Trypanosoma cruzi	P2B	immune	scFv	human	ELISA, WB	(Grippo et al., 2011)
Trypanosoma evansi	different surface proteins	immune	VHH	camel	ELISA, FACS	(Saerens et al., 2008)
Trypanosoma evansi, *T. congoense*, *T. brucei*	different surface proteins	immune	VHH	alpaca	WB, IHC	(Obishakin et al., 2014)
Toxoplasma gondii	TgMIC2	immune	scFv	mice	ELISA, WB	(Hoe et al., 2005)
Toxoplasma gondii	tachyzoites	immune	scFv	mice	ELISA, WB, IF, *in vitro* invasion, attachment assays	(Lim et al., 2018)

ELISA, enzyme linked immunosorbent assays; IHC, immuno histo chemistry; IF, immuno fluorescence microscopy; FACS, fluorescence-activated cell sorting; WB, Western blot.
against the LF domain is 2LF, isolated from an immune library via antibody phage display technology (Pelat et al., 2007). Also a synergistic effect of the combination of an anti-PA together with an anti-LF antibody is to be expected and would improve the efficacy of the therapy.

Staphylococcal enterotoxin B (SEB) from Staphylococcus aureus is an example for a bacterial toxin classified as category B agent, that could potentially cause foodborne illness. Staphylococcus aureus produces in total twenty-one types of staphylococcal enterotoxins leading to food poisoning with abdominal cramps, diarrhea and vomiting (Thomas et al., 2006; Ono et al., 2008). The most potent toxin secreted by S. aureus is SEB, a single 28 kDa polypeptide. As a superantigen, it stimulates T cells leading to an overproduction of cytokines, resulting in fever, hypertension and in some cases death. Phage display was employed to identify the epitope of a SEB specific monoclonal antibody using a peptide phage library (Urushibata et al., 2010) and to generate recombinant antibodies from a murine immune library (Singh et al., 2010). Additionally, synthetic human Fab libraries was used to generate human monoclonal antibodies blocking SEB binding to MHC-II (Larkin et al., 2010) and neutralizing SEB in vitro and in vivo (Chen et al., 2019). In contrast to the therapeutic use, phage display was applied to generate nanobodies against SEB from camel immune and naive libraries useful as a diagnostic tool. These nanobodies were either directly coupled with alkaline phosphatase in a sandwich-ELISA (Sun T. et al., 2020), or used for western-blot and ELISA in an indirect detection system (Zanganeh et al., 2019).

In the late 1970ies, Clostridioides difficile was discovered as the pathogen causing antibiotic treatment associated diarrhea (CDAD) (Bartlett et al., 1978). Only strains expressing at least Toxin B (TcdB) mostly together with Toxin A (TcdA) result in disease and typical symptoms of CDAD (Bartlett et al., 1978). Only strains expressing at least Toxin B (TcdB), mostly together with Toxin A (TcdA), result in disease and typical symptoms of CDAD (Natarajan et al., 2013). TcdA and TcdB are homologous multidomain single-chain proteins of 308 and 270 kDa, respectively. Both toxins share the same domain architecture. The N-terminus harbors the catalytic domain, a glucosyltransferase (GTD) acting on small Rho-GTPases (Just et al., 1995; Busch et al., 1998), followed by a cysteine protease domain (CPD) catalyzing the proteolytic autoprocessing and upon translocation releasing the GTD into the cytosol (Egerer et al., 2007; Reineke et al., 2007). Pore formation and translocation of the N-terminal portion of the toxin is facilitated by the translocation domain (TLD) (Genisuyer et al., 2011). The C-terminus of TcdA and TcdB composes repetitive elements that combine long and short repeats in so called CROPs (Combined Repetitive Oligo Peptides). The CROPs are responsible for the first contact of the toxin with the target cells by interaction with carbohydrate structures on the cell surface (von Eichel-Streiber et al., 1992).

Due to increasing CDAD case numbers and epidemic outbreaks (Rupnik et al., 2009; Depestel and Aronoff, 2013), these two toxins were targets of several antibody-generation-campaigns (Babcock et al., 2006; Marozsan et al., 2012). In 2011, Hussack and coworkers were the first to report the successful generation of anti TcdA antibodies by phage display using a llama derived immune library. Four VHH antibodies (A4.2, A5.1, A20.1, and A26.8), showed potent neutralization of the cytopathic effects of TcdA on fibroblast cells in an in vitro assay (Hussack et al., 2011). Similarly, Yang et al. used an alpaca derived immune library to generate six and eleven unique VH3 antibodies against TcdA and TcdB, respectively. The single domain antibodies showing the most potent neutralizing activity and highest affinity to non-overlapping epitopes were combined in a tetravalent bispecific antibody format designated as “ABA”. The heterotetramer ABA consists of two copies of the anti TcdB VH3 E3 as well as the one copy of each of the anti TcdA VH3s AH3 and AA6 in the following order: AH3/E3/E3/AA6. ABA was shown to bind to TcdA and TcdB simultaneously and one single injection of ABA was enough to reverse fulminant CDAD in mice. In another antibody generation campaign, the naïve scFv libraries HAL9/10 (Kügler et al., 2015) were used to isolate the first fully human, phage display derived antibodies against TcdB. Using various TcdB fragments for the panning process, partially combined with preincubation steps, 31 unique antibodies were generated directed against a broad range of epitopes. The antibodies were tested in an in vitro neutralization assay using Vero cells. Interestingly, the two most potent antibodies bound to the same, formerly unknown, epitope within the glycosyltransferase domain of TcdB (Fürhner et al., 2018).

Diphtheria toxin (DT) is a typical A-B-toxin with an A subunit (catalytic domain) and a B subunit that contains the cell binding domain and the translocation domain. DT is produced by a corynephage β infected pathogenic Corynebacterium diphtheriae, mainly Corynebacterium diphtheriae (Murphy, 1996). To date, the only approved therapeutic is a serum from horses immunized with diphtheria toxin, as invented by Emil von Behring and Shibasaburo Kitasato over 100 years ago (von Behring and Kitasato, 1890). Antibodies were generated by phage display from immune libraries of boost vaccinated donors. Neutralizing antibodies against all three domains of DT were selected. The best antibodies showed an in vitro neutralizing antibody with a relative potency of 454 IU/mg at 4xMCDt (minimal cytopathic dose). When using higher toxin concentration, the neutralization efficacy was highly reduced, but when using two or three antibodies in combinations the neutralization was restored. An in vivo potency of 79.4 IU/mg was achieved in an intradermal challenge assay (Wenzel et al., 2020a).

An Overview of recombinant antibodies against toxins are given in Table 4.

CONCLUSION

A large number of recombinant antibodies for application in diagnostics and therapy were already generated by phage display against viral, bacterial and eukaryotic pathogens as well as toxins. Antibody phage display allows the generation of antibodies originating from several species, including human, camel, llama, alpaca, chimpanzee, macaque, pig, mice, chicken or shark. These antibodies are derived from two types of library
Toxin	Species	Target	library type	Antigen Format	Antibody Origin	Application	Reference
Adenylate cyclase	Bordetella pertussis	C-terminal repeat-in- toxin (RTX) domain of ACT	immune	scFv	mice	ELISA, in vitro inhibition	(Wang X. et al., 2015)
Alpha-toxin	Clostridium	type A alpha-toxin	semi-synthetic	scFv	human	ELISA, in vitro inhibition, in vivo protection	(Wang D. et al., 2017)
Anthrax toxin	Bacillus anthracis	lethal factor (LF)	immune	scFv	macaque	ELISA, in vitro toxin neutralization, in vivo protection	(Pelat et al., 2007)
Anthrax toxin	Bacillus anthracis	protective antigen (PA)	naive	scFv	human	ELISA, in vitro toxin neutralization, in vivo protection	(Mazumdar, 2009)
Anthrax toxin	Bacillus anthracis	protective antigen (PA)	immune	VH-H	camel	ELISA	(Shali et al., 2018)
Anthrax toxin	Bacillus anthracis	lethal factor (LF)	immune	VH-H bispecific	alpaca	ELISA, WB, in vivo protection	(Vrentas et al., 2016)
Anthrax toxin	Bacillus anthracis	protective antigen (PA)	immune	VH-H bispecific	alpaca	ELISA, in vitro inhibition	(Moayeri et al., 2015)
Botulinum	Clostridium	serotype A - light chain	immune	scFv	macaque	ELISA	(Chahboun et al., 2011)
Neurotoxin	Clostridium	serotype A - light chain	immune	scFv,Fc,Fc	macaque	ELISA, WB, in vitro toxin inhibition, ex vivo toxin neutralization	(Miethe et al., 2014)
Neurotoxin	Clostridium	serotype A - heavy chain	immune	scFv	murine	ELISA, ex vivo toxin neutralization	(Amersdorfer et al., 1997)
Botulinum	Clostridium	serotype A - heavy chain	immune	VH-H	alpaca	ELISA, ex vivo toxin neutralization	(Amersdorfer et al., 2002)
Botulinum	Clostridium	serotype A - heavy chain	immune	scFv	human	ELISA, ex vivo toxin neutralization	(Amersdorfer et al., 2002)
Botulinum	Clostridium	serotype A - heavy chain	immune	scFv	camel	ELISA, ex vivo toxin neutralization	(Avril et al., 2015)
Botulinum	Clostridium	serotype A + B	immune	scFv,Fc,IgG	macaque	ELISA, in vivo toxin neutralization, ex vivo toxin neutralization	(Miethe et al., 2016)
Botulinum	Clostridium	serotype A	immune	VH-H, VH-H-Fc	alpaca	ELISA, in vivo mouse paralysis assay, in vivo protection	(Godaikova et al., 2019)
Botulinum	Clostridium	serotype B - light chain/heavy chain	immune	scFv,scFv-Fc	macaque	ELISA, in vitro toxin inhibition, ex vivo toxin neutralization, in vivo protection	(Rasetti-Escargueil et al., 2015)
Botulinum	Clostridium	serotype E - light chain	immune	scFv,scFv-Fc	macaque	ELISA, in vitro toxin inhibition, ex vivo toxin neutralization, in vivo protection	(Miethe et al., 2015)
Botulinum	Clostridium	serotype E - light chain	immune	scFv-Fc, IgG	macaque	ELISA, in vivo mouse paralysis assay, in vivo protection	(Derman et al., 2016)
Botulinum	Clostridium	serotype E - heavy chain	immune	VH-H	dromedary	ELISA, in vivo toxin neutralization	(Bakker-H et al., 2013)
Botulinum	Clostridium	serotype A/B/C/D/E/F	immune	VH-H	llama	ELISA, in vivo toxin inhibition	(Conway et al., 2010; Shriver-Lake et al., 2017)
C. difficile toxin	Clostridoides difficile	TcdA	immune	VH-H	llama	ELISA, WB, in vitro neutralization	(Hussack et al., 2011)
C. difficile toxin	Clostridoides difficile	TcdA, TcdB	immune	VH-H, bispecific	alpaca	ELISA, in vitro toxin neutralization, in vivo protection	(Yang et al., 2014)
C. difficile toxin	Clostridoides difficile	TcdB	naive	scFv-Fc	human	dot blot, in vitro neutralization	(Chung et al., 2018)
C. difficile toxin	Clostridoides difficile	TcdB	naive	scFv,scFv-Fc	human	ELISA, in vitro neutralization	(Füehrer et al., 2016)
C. difficile toxin	Clostridoides difficile	binary CDT toxin	immune	VH-H, VH-H-Fc	llama	ELISA, in vitro toxin inhibition, IF	(Linger et al., 2015)
Cry toxin	Bacillus thuringiensis	Cry1Aa, Cry1Ab, Cry1Ac, Cry1B, Cry1C, Cry1F	immune	scFv	mice	ELISA, sandwich ELISA	(Dong et al., 2018)
Cry toxin	Bacillus thuringiensis	Cry1E	immune	dAb	human	ELISA, in vitro inhibition	(Ku et al., 2017a)

(Continued)
Toxin	Species	Target	library type	Antibody Format	Antibody Origin	Application	Reference
Cry toxin	*Bacillus thuringiensis*	Cry1F	immune	scFv	rabbit	ELISA	(Xu et al., 2017b)
Cry toxin	*Bacillus thuringiensis*	Cry3A	immune	VHH	llama	ELISA	
Cry toxin	*Bacillus thuringiensis*	Cry1Fa	immune	VHH	camel	sandwich ELISA	(Wang P. et al., 2014)
Cry toxin	*Bacillus thuringiensis*	Cry1C d-endotoxins	semi-synthetic	scFv	human	ELISA, in vitro toxin inhibition	(Wang Y. et al., 2012)
Cry toxin	*Bacillus thuringiensis*	Cry1B toxin	immune	VHH	camel	ELISA	(Zhong et al., 2018)
CyaA-hemolysin	*Bordetella pertussis*	CyaA-Hly	semi-synthetic	VHH	humanized camel	ELISA, WB, in vitro neutralization	(McKee et al., 2016)
Diphtheria toxin	*Corynebacterium diphtheriae*	DT	immune	scFv, scFv-Fc, IgG	human	ELISA, in vitro neutralization, in vivo neutralization	(Wenzel et al., 2020a)
Enterotoxin B	*Escherichia coli*	EtxB	semi-synthetic	scFv	human	ELISA, in vitro toxin inhibition	(Chung et al., 2008)
Epsilon toxin	*Clostridium perfringens*	Epsilon toxoid	semi-synthetic	scFV, dAb	human	ELISA	(Albeiki et al., 2020)
Mycotoxin	*Fusarium verticillioides*	fumonisin B1	semi-synthetic	scFv	human	–	(Lauer et al., 2005)
Mycotoxin	*Fusarium spp.*	trichothecenes HT-2	immune	Fab	mouse	TR-FRET Assay	(Arola et al., 2016)
Mycotoxin	*Aspergillus flavus*	aflatoxin B1	immune	VHH	alpaca	ELISA	(He et al., 2014)
Mycotoxin	*Fusarium spp.*	deoxynivalenol	semi-synthetic	scFv	human	ELISA	(Leivo et al., 2020)
Microcystin	*Microcystis aerogenosa*	ADDA	semi-synthetic	scFv	human	ELISA	(McElhiney et al., 2003)
Microcystin	*Microcystis aerogenosa*	microcystin-LR	immune	VHH	alpaca	ELISA, inhibition ELISA	(Xu et al., 2018)
Mycolactone	*Mycobacterium ulcerans*	lipidic toxin A	naive	scFv, scFv-Fc	human	ELISA, flow cytometry, competition assay	(Naranjo et al., 2019)
Nodularin	*Nodularia spumigena*	NOD	semi-synthetic	scFv	human	ELISA	
Pseudomonas	*Pseudomonas aeruginosa*	ETA	naive	scFv, scFv-alkaline phosphatase	human	ELISA, WB, in vitro inhibition	(Santajit et al., 2019)
Pseudomonas	*Pseudomonas aeruginosa*	ExoA-DI	semi-synthetic	scFv	human	ELISA, WB	(Shadman et al., 2021)
Salmonella Typhi	*Salmonella Typhi*	hemolysin E antigen	naive	scFv	human	ELISA, WB, in vitro neutralization	(Lim et al., 2016)
Shiga toxin	*E. coli* (STEC)	Stx2	semi-synthetic	Fab	human	ELISA, WB, in vitro neutralization	(Luz et al., 2015)
Shiga toxin	*E. coli* (EHEC)	Stx1, Stx2	naive	scFv	ELISA, FACS, in vitro toxin neutralization	(Neri et al., 2011)	
Shiga toxin	*E. coli* (STEC)	Stx1, Stx2	immune	VHH	alpaca	ELISA, in vitro toxin inhibition, in vivo protection	(Tremblay et al., 2013)
Shiga toxin	*E. coli* (STEC)	Stx2e	immune	VHH	llama	ELISA, in vitro neutralization	(Lo A. W. H. et al., 2014)
Staphylococcus enterotoxin B	*Staphylococcus aureus*	SEB	immune	scFv	mice	ELISA	(Singh et al., 2010)
Staphylococcus enterotoxin B	*Staphylococcus aureus*	SEB	synthetic	Fab	human	ELISA, WB, in vitro toxin inhibition	(Larkin et al., 2010)
Staphylococcus enterotoxin B	*Staphylococcus aureus*	SEB	synthetic	Fab, IgG	human	ELISA, in vivo protection	(Chen et al., 2019)
Staphylococcus enterotoxin B	*Staphylococcus aureus*	SEB	naive	VHH, VHH-alkaline phosphatase fusion	camel	ELISA, chemiluminescent immunoassay	(Sun T. et al., 2020)
Staphylococcus enterotoxin B	*Staphylococcus aureus*	SEB	immune	VHH	camel	ELISA	(Zanganeh et al., 2019)
TABLE 4 | Continued

Toxin	Species	Target	library type	Antibody Format	Antibody Origin	Application	Reference
Tetanus neurotoxin	Clostridium tetani	tetanus toxoid	immune Fab		macaque	ELISA	(Chassagne et al., 2004)
Tetanus neurotoxin	Clostridium tetani	tetanus toxoid	naive scFv		human	ELISA, in vitro toxin inhibition	(Indrawattana et al., 2010)
Tetanus neurotoxin	Clostridium tetani	TeNT heavy chain	immune scFv, IgG		human	ELISA, immunofluorescence, in vitro inhibition	(Wang H. et al., 2016)
Tetanus neurotoxin	Clostridium tetani	tetanus neurotoxin		scFv	human	in vitro inhibition	(Khalili et al., 2015)
Tetanus neurotoxin	Clostridium tetani	tetanus toxoid	naive Fab		human	ELISA, in vitro neutralization	(Neelakantam et al., 2014)
Tetanus neurotoxin	Clostridium tetani	TeNT	immune ScFv, IgG		human	ELISA	(Sadreddini et al., 2015)
Tetanus neurotoxin	Clostridium tetani	TeNT			human	ELISA, in vitro neutralization	(Rukka et al., 2010)
Toxic shock syndrome toxin-1	Staphylococcus aureus	TSST-1	naive scFv		human	T-cell activation assay, interleukine gene expression	(Wang R. et al., 2012)
Vacciucating cytotoxin A	Helicobacter pylori	p55 domain of VacA	semi-synthetic	scFv	human	ELISA, WB, FACS	(Fahimi et al., 2018)
Vibrio parahaemolyticus	Vibrio parahaemolyticus	TLH	immune scFv		mice	ELISA, FACS, in vitro neutralization	
Vibrio vulnificus toxin	Vibrio vulnificus	VvRtxA	semi-synthetic	scFv	human	ELISA, in vitro toxin inhibition, IF	(Hsu et al., 2011)

ELISA, enzyme linked immunosorbent assays; MS, mass spectrometry; WB, western blot.

sources: immune or universal libraries. Immune libraries are preferred when convalescent patients or immunized animals/human donors are available. This approach offers the advantage to directly isolate affinity matured antibodies. Universal antibody gene libraries offer an alternative if immunization is not possible, ethically not feasible or patient samples are not available.

The COVID-19 pandemic should teach us to be prepared for the next pandemic, which beyond any doubt will come. We need permanent preparedness platforms which will react on novel pathogens arising worldwide and provide antibodies for diagnostics and as potential therapeutic lead candidates. This preparedness platforms should also have a budget for immediate start of GMP production and clinical phase I/II studies. In the most cases, new pathogens may have only a local impact, but this cannot be assured. Also these antibodies are always valuable tools for research and diagnostics of the pathogens.

We do not build a fire department when the house is already burning, we need to establish it in advance and maintain this service also in times without emergency. We have to think in the same way about infectious diseases and potential pandemics.

REFERENCES

Adams, G. P., and Weiner, L. M. (2005). Monoclonal Antibody Therapy of Cancer. Nat. Biotechnol. 23, 1147–1157. doi: 10.1038/nbt1137
Ahn, B.-E., Bae, H.-W., Lee, H.-R., Woo, S.-J., Park, O.-K., Jeon, J. H., et al. (2019). A Protective Human Antibody Against the Domain 4 of the Bacillus Anthracis Protective Antigen Shows Protective Efficacy in a Mouse Model. Biochem. Biophys. Res. Commun. 509, 611–616. doi: 10.1016/j.bbrc.2018.12.146
Akter, S., Vehniäinen, M., Kankaanpää, H. T., and Lamminmäki, U. (2017). Rapid and Highly Sensitive Non-Competitive Immunoblot for Specific Detection of Nodularin. Microorganisms 5, doi: 10.3390/microorganisms5030058

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.

FUNDING

We acknowledge funding from the European Community’s Seventh Framework Program (FP7/2007-2013) under agreement no. 241832 granted to the AntiBotABE project (http://www.antibotabe.com) and funding received from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101003650, funding from Federal State of Lower Saxony, Niedersächsisches Vorab (VWZN2889) and financial support of MWK Niedersachsen (14-76103-184 CORONA-2/20). We thank CNPq for supporting the scholarship of GMSGM. This review is an updated and revised version of a formerly published review (Kuhn et al., 2016).
Recombinant Antibodies Against Infectious Diseases

Chatenoud, L., and Bluemone, J. A. (2007). CD3-Specific Antibodies: A Portal to the Treatment of Autoimmunity. Nat. Rev. Immunol. 7, 622–632. doi: 10.1038/ nri2134

Chauvin, D., Hust, M., Schütte, M., Chesnay, A., Parent, C., Moreira, G. M. S. G., et al. (2019). Targeting Aspergillus Fumigatus Crf Transglycosylases With Neutralizing Antibody Is Relevant But Not Sufficient to Erase Fungal Burden in a Neutropenic Rat Model. Front. Microbiol. 10, 600. doi: 10.3389/ fmicb.2019.00600

Chen, Z., Chumakov, K., Dragunsksy, E., Kouaviaskia, D., Makiya, M., Neverov, A., et al. (2011). Chimpanzee-Human Monoclonal Antibodies for Treatment of Chronic Poliovirus Excretors and Emergency Postexposure Prophylaxis. J. Virol. 85, 4354–4362. doi: 10.1128/JVI.02555-10

Chen, Z., Earl, P., Americo, J., Damon, I., Smith, S. K., Zhou, Y.-H., et al. (2006). Chimpanzee/human Mabs to Vaccinia Virus B5 Neutralize Vaccinia and Smallpox Viruses and Protect Mice Against Vaccinia Virus. Proc. Natl. Acad. Sci. U. S. A. 103, 1882–1887. doi: 10.1073/pnas.0510598103

Chen, G., Gorelik, L., Simon, K. J., Pavlenko, A., Cheung, A., Brickemaier, M., et al. (2015). Synthetic Antibodies and Peptides Recognizing Progressive Multifocal Leuкоencephalopathy-Specific Point Mutations in Polyomavirus JC Capsid Viral Protein 1 mAbs. 7, 681–692. doi: 10.1094/21020862.2015.1038447

Chen, G., Karauzum, H., Long, H., Carranza, D., Holtsberg, F. W., Howell, K. A., et al. (2019). Potent Neutralization of Staphylococcal Enterotoxin B In Vivo by Antibodies That Block Binding to the T-Cell Receptor. J. Mol. Biol. 431, 4354–4363. doi: 10.1016/j.jmb.2019.03.017

Chen, P., Nirula, A., Heller, B., Gottlieb, R. L., Boscia, J., Morris, J., et al. (2021). SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients With Covid-19. N Engl. J. Med. 384, 229–237. doi: 10.1056/NEJMoas209849

Chen, Z., Ren, X., Yang, J., Dong, J., Xue, Y., Sun, L., et al. (2017). An Elaborate Landscape of the Human Antibody Repertoire Against Enterovirus 71 Infection Is Revealed by Phage Display Screening and Deep Sequencing. mAbs 9, 342–349. doi: 10.1080/19420266.2016.1267086

Chen, Z., Ososnovic, S. V., Bok, K., Parra, G. L., Makiya, M., Agulto, L., et al. (2013). Development of Norwalk Virus-Specific Monoclonal Antibodies With Therapeutic Potential for the Treatment of Norwalk Virus Gastroenteritis. J. Virol. 87, 9547–9557. doi: 10.1128/JVI.01376-13

Chen, Z., Zhang, L., Tang, A., Callahan, C., Pratstaks, P., Swoyer, R., et al. (2016). Discovery and Characterization of Phage Display-Derived Human Monoclonal Antibodies Against RVF G Glycoprotein. PLoS One 11, e0156798. doi: 10.1371/ journal.pone.0156798

Cherry, J. D. (2004). The Chronology of the 2002-2003 SARS Mini Pandemic. Paeudatr. Respir. 5, 262–269. doi: 10.1016/j.prr.2004.07.009

Chi, X., Liu, X., Wang, C., Zhang, X., Li, X., Hou, J., et al. (2020). Humanized Single Domain Antibodies Neutralize SARS-CoV-2 by Targeting the Spike Receptor Binding Domain. Nat. Commun. 11, 4528. doi: 10.1038/s41467-020-3367-7

Chiliza, T. E., Van Wyngaardt, W., and Du Plessis, D. H. (2008). Single-Chain Antibody Fragments From a Display Library Derived From Chickens Immunized With a Mixture of Parasite and Viral Antigens. Hybrid 27, 413–421. doi: 10.1098/hyb.2008.0651

Choudhry, V., Zhang, M.-Y., Sidorov, I. A., Louis, J. M., Harris, I., Dimitrov, A. S., et al. (2007). Cross-Reactive HIV-1 Neutralizing Monoclonal Antibodies Selected by Screening of an Immune Human Phage Library Against an Envelope Glycoprotein (Gp140) Isolated From a Patient (R2) With Broadly HIV-1 Neutralizing Antibodies. Virology 363, 79–90. doi: 10.1016/j. virology.2007.01.015

Chung, W. Y., Sack, M., Carter, R., Spiegel, H., Fischer, R., Hirst, T. R., et al. (2008). Phage-Display Derived Single-Chain Fragment Variable (scFv) Antibodies Recognizing Congenital Epithelial of Escherichia Coli Heat-Labile Enterotoxin B-Subunit. J. Immunol. Methods 339, 115–123. doi: 10.1016/ j.jim.2008.08.005

Chung, S.-Y., Schottelndreier, D., Tatge, H., Fühner, V., Hust, M., Beer, L.-A., et al. (2018). The Conserved Cys-2232 in Clostidiodes Difficile Toxin B Modulates Receptor Binding. Front. Microbiol. 9, 2314. doi: 10.3389/fmicb.2018.02314

Clackson, T., Hoogenboom, H. R., Griffiths, A. D., and Winter, G. (1991). Making Antibody Fragments Using Phage Display Libraries. Nature 352, 624–628. doi: 10.1038/352624a0

Close, D. W., Ferrara, F., Dichosa, A. E. K., Kumar, S., Daughton, A. R., Daligault, H. E., et al. (2013). Using Phage Display Selected Antibodies to Dissect...
Microbiomes for Complete De Novo Genome Sequencing of Low Abundance Microbes. BMC Microbiol. 13, 270. doi: 10.1186/1471-2180-13-270

Cote, S. P., Campling, B. G., Aitlaw, T., Kosbor, D., and Rodier, J. C. (1994). Human Monoclonal Antibodies. Mol. Cell. Biochem. 62, 109–120. doi: 10.1007/BF00223301

Colwill, K., and Graslund, S. (2011). A Roadmap to Generate Renewable Protein Binders to the Human Proteome. Nat. Methods 8, 551–558. doi: 10.1038/nmeth.1607

Conway, J. O., Sherwood, L. J., Collazo, M. T., Garza, J. A., and Hayhurst, A. (2010). Lamma Single Domain Antibodies Specific for the 7 Botulinum Neurotoxin Serotypes as Hepatoplex Immunoreagents. PLoS One 5, e8818. doi: 10.1371/journal.pone.0008818

Corti, D., Misasi, J., Mulang, S., Stanley, D. A., Kanekoju, M., Wollen, S., et al. (2016). Protective Monotherapy Against Lethal Ebola Virus Infection by a Potently Neutralizing Antibody. Science 351, 1339–1342. doi: 10.1126/science.aad5524

Costa, L. E., Alves, P. T., Carneiro, A. P., Dias, A. C. S., Fujimura, P. T., Araujo, G. R., et al. (2019). Leishmanin Infantium β-Tubulin Identified by Reverse Engineering Technology Through Phage Display Applied as Theranostic Marker for Human Visceral Leishmaniasis. Int. J. Mol. Sci. 20. doi: 10.3390/ijms20081812

Courtney-Luck, N. S., Epenetos, A. A., Moore, R., Larche, M., Pectasides, D., Dhokia, B., et al. (1986). Development of Primary and Secondary Immune Responses to Recombinant Antibodies Used in the Diagnosis and Therapy of Malignant Neoplasms. Cancer Res. 46, 6489–6493.

Cox-Singh, J., Davis, T. M. E., Lee, K.-S., Shamsul, S. S. G., Matusop, A., Ratnam, Courtenay-Luck, N. S., Epenetos, A. A., Moore, R., Larche, M., Pectasides, D., Costa, L. E., Alves, P. T., Carneiro, A. P., Dias, A. C. S., Fujimura, P. T., Araujo, Deckers, N., Saerens, D., Kanobana, K., Conrath, K., Victor, B., Wernery, U., et al. (2009). Highly Sensitive Detection of Zika Virus Nonstructural Protein 1 in Serum Samples by a Two-Site Nanobody ELISA. Biomolecules. 10 (12), 1652. doi: 10.3390/biom10121652

Dembek, Z. F., Smith, L. A., and Rusnak, J. M. (2007). Botulism: Cause, Effects, Diagnosis, Clinical and Laboratory Identification, and Treatment Modalities. Disaster Med. Public Health Prep. 1, 122–134. doi: 10.1097/DMP.0b013e318158c5d6

Depested, D. D., and Aronoff, D. M. (2013). Epidemiology of Clostridium Difficile Infection. J. Pharm. Pract. 26, 464–475. doi: 10.1177/0197453413495921

Derman, Y., Selby, K., Miethe, S., Frenzel, A., Liu, Y., Rasetti-Escargueil, C., et al. (2016). Neutralization of Botulinum Neurotoxin Type E by a Humanized Antibody. Toxins 8 (9), 257. doi: 10.3390/toxins8090257

de Wildt, R. M., Mundy, C. R., Gorick, B. D., and Tomlinson, I. M. (2000). Antibody Arrays for High-Throughput Screening of Antibody-Antigen Interactions. Nat. Biotechnol. 18, 989–994. doi: 10.1038/794994

Dezorozová-Tomanová, K., Molinková, D., Pekarová, M., Celer, V., and Smola, J. (2007). Isolation of Lawsonia Intracellularis Specific Single-Chain Fv Antibody Fragments From Phage Display Library. Rev. Vet. Sci. 83, 85–90. doi: 10.1016/j.jrvc.2006.11.002

de Wildt, R. M., Mundy, C. R., Gorick, B. D., and Tomlinson, I. M. (2000). Antibody Arrays for High-Throughput Screening of Antibody-Antigen Interactions. Nat. Biotechnol. 18, 989–994. doi: 10.1038/794994

Dezorozová-Tomanová, K., Molinková, D., Pekarová, M., Celer, V., and Smola, J. (2007). Isolation of Lawsonia Intracellularis Specific Single-Chain Fv Antibody Fragments From Phage Display Library. Rev. Vet. Sci. 83, 85–90. doi: 10.1016/j.jrvc.2006.11.002

Dietzschold, B., Gore, M., Casali, P., Ueki, Y., Rupprecht, C. E., Notkins, A. L., et al. (1990). Biological Characterization of Human Monoclonal Antibodies to Rabies Virus. J. Virol. 64, 3087–3090. doi: 10.1128/jvi.64.11.3087-3090.1990

Dixon, P., Davies, P., Hollingworth, W., Stoddart, M., and MacGowan, A. (2015). A Systematic Review of Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight Mass Spectrometry Compared to Routine Microbiological Methods for the Time Taken to Identify Microbial Organisms From Positive Blood Cultures. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc Clin. Microbiol. 34, 863–876. doi: 10.1007/s10096-015-2232-0

Dolgikh, V. V., Tserav, A. V., Senderskyi, I. V., and Timofeev, S. A. (2017). Production of Single Chain Fragment Variable (ScFv) Antibody Against Panarosena Locustae Alpha/ Beta-Hydrolase and Immunocalization Of Microsporidian Enzyme in The Infected Host Cell. Tzitologia 59, 298–305.

Dong, S., Bo, Z., Zhang, C., Feng, J., and Liu, X. (2018). Screening for Single-Chain Variable Fragment Antibodies Against Multiple Cry1 Toxins From an Immunized Mouse Phage Display Antibody Library. Appl. Microbiol. Biotechnol. 102, 3363–3374. doi: 10.1007/s00253-018-8797-8

Dong, J., Otsuki, T., Kato, T., and Park, E. Y. (2014). Tracking Neospora Caninum Parasites Using Chimera Monoclonal Antibodies Against Its Surface Antigen-Related Sequences (Rncsrs2). J. Biosci. Bioeng. 117, 351–357. doi: 10.1016/j.jbiosc.2013.09.003

Dong, J., Sakurai, A., Nomura, N., Park, E. Y., Shibasaki, F., and Ueda, H. (2013). Isolation of Recombinant Phage Antibodies Targeting the Hemaggulitin Cleavage Site of Highly Pathogenic Avian Influenza Virus. PLoS One 8, e61158. doi: 10.1371/journal.pone.0061158

Duan, T., Ferguson, M., Yuan, L., Xu, F., and Li, G. (2009). Human Monoclonal Antibodies Against West Nile Virus and its Neutralizing Activity Analyzed in Vitro and in Vivo. J. Infectr. Antiretrovir. 1, 36–42. doi: 10.4172/jiav.1000005

Duan, H., Ma, Z., Xu, L., Zhang, A., Li, Z., and Xiao, S. (2020). A Novel Intracellularly Expressed NSSB-Specific Nanobody Suppresses Bovine Viral Diarrhea Virus Replication. Vet. Microbiol. 240, 108449. doi: 10.1016/j.jvi.vetmic.2019.108449

Dubel, S., Stovesandt, O., Taussig, M. I., and Hust, M. (2010). Generating Recombinant Antibodies to the Complete Human Proteome. Trends Biotechnol. 28, 333–339. doi: 10.1016/j.tibtech.2010.05.001

Duggan, J. M., Coates, D. M., and Uaeto, D. O. (2011). Isolation of Single-Chain Antibody Fragments Against Venezuelan Equine Encephalomyelitis Virus From Two Different Immune Sources. Viral Immunol. 14, 263–273. doi: 10.1098/rspb20110732

Du, T., Zhu, G., Wu, X., Fang, J., and Zhou, E.-M. (2019). Biotinylated Single-Chain Antibody-Based Blocking ELISA for Detection of Antibodies Against Swine Influenza Virus. Int. J. Nanomed. 14, 9337–9349. doi: 10.2147/IJN.S218458

Earl, P. L., Americo, J. L., Wyatt, L. S., Eller, L. A., Whitbeck, J. C., Cohen, G. H., et al. (2014). Identification and Characterization of Protective Anti-LPS Nanobody Against V. Cholerae O1 Recognizing Inaba and Ogawa Serotypes. Appl. Microbiol. Biotechnol. 97, 4457–4466. doi: 10.1007/s00253-012-4518-x
Pelat, T., Hurt, M., Hale, M., Lefranç, M.-P., Dubel, S., and Thullier, P. (2009). Isolation of a Human-Like Antibody Fragment (scFv) That Neutralizes Ricin Biological Activity. BMC Biotechnol. 9, 60. doi: 10.1186/1472-6750-9-60

Pelat, T., Hurt, M., Laffy, E., Condemine, F., Botton, C., Vidal, D., et al. (2007). High-Affinity, Human Antibody-Like Antibody Fragment (Single-Chain Variable Fragment) Neutralizing the Lethal Factor (LF) of Bacillus Anthracis by Inhibiting Protective Antigen-LF Complex Formation. Antimicrob. Agents Chemother. 51, 2758–2764. doi: 10.1128/AAC.01528-06

Pereira, S. S., Moreira-Dill, L. S., Morais, M. S. S., Prado, N. D. R., Barros, M. L., Koishi, A. C., et al. (2014). Novel Camelid Antibody Fragments Targeting Recombinant Nucleoprotein of Araucaria Hantavirus: A Prototype for an Early Diagnosis of Hantavirus Pulmonary Syndrome. PLoS One 9, e108067. doi: 10.1371/journal.pone.0108067

Peschel, D., Li, H.-P., Fischer, R., Kreuzaler, F., and Liao, Y.-C. (2004). Fusion Proteins Comprising a Fusarium-Specific Antibody Linked to Antifungal Peptides Protect Plants Against a Fungal Pathogen. Nat. Biotechnol. 22, 732–738. doi: 10.1038/nb970

Phanthong, S., Densunmee, J., Seesuay, W., Thansongsakritkul, J., Teimoori, S., Sookrung, N., et al. (2020). Human Antibodies to VP4 Inhibit Replication of Enteroviruses Across Subgenotypes and Serotypes, and Enhance Host Innate Immunity. Front. Microbiol. 11, 3389. doi: 10.3389/fmicb.2020.562768

Pini, A., Viti, F., Santucci, A., Carmellola, B., Zardi, L., Neri, P., et al. (1998). Design and Use of a Phage Display Library. Human Antibodies With Subneutralizing Affinity Against a Marker of Angiogenesis Eluted From a Two-Dimensional Gel. J. Biol. Chem. 273, 21769–21776. doi: 10.1074/jbc.273.34.21769

Pitakasijakul, P., Lekcharoensuk, P., Upagarin, N., Barbas, C. F., Ibrahim, M. S., Ikuta, K., et al. (2010). Fab MAbs Specific to HA of Influenza Virus With H5N1 Neutralizing Activity Selected From Immunized Chicken Phage Library. Biochem. Biophys. Res. Commun. 395, 496–501. doi: 10.1016/j.bbrc.2010.04.040

Playford, E. G., Munro, T., Mahler, S. M., Elliott, S., Gerometta, M., Hoger, K. L., et al. (2020). Safety, Tolerability, Pharmacokinetics, and Immunogenicity of a Human Monoclonal Antibody Targeting the G Glycoprotein of Henipaviruses in Healthy Adults: A First-in-Human, Randomised, Controlled, Phase 1 Study. Lancet Infect. Dis. 20, 445–454. doi: 10.1016/S1473-3099(19)30634-6

Popovic, J., and Menard, D. (2015). Challenges in Antimalarial Drug Treatment for Vivax Malaria Control. Trends Med. Mol. Med. 21, 776–788. doi: 10.1016/j.jmm.2015.10.004

Postel, S., Derede, D., Bonsor, D. A., Yu, X., Diederichs, K., Helmsing, S., et al. (2016). Bacterial Flagellar Capping Proteins Adopt Diverse Oligomeric States. eLife 5. doi: 10.7554/eLife.18857

Poungvarirat, O., Bangphoomi, K., Chaowell, P., Sawasdee, N., Saokaew, N., Chawalit, P., et al. (2014). Generation of Human Single-Chain Variable Fragment Antibodies Specific to Dengue Virus non-Structural Protein 1 That Interfere With the Virus Infectious Cycle. mAbs 6, 474–482. doi: 10.4161/mabs.27874

Rahumatullah, A., Abdul Karim, I. Z., Noordin, R., and Lim, T. S. (2017). Antibody-Based Protective Immunity Against Helmint Infections: Antibody Phage Display Derived Antibodies Against BM12 Antigen. Int. J. Mol. Sci. 18. doi: 10.3390/ijms18112376

Rahumatullah, A., Ahmad, A., Noordin, R., Lal, J. Y., Baharudeen, Z., and Lim, T. S. (2020). Applicability of Brugia Malayi Immune Antibody Library for the Isolation of a Human Recombinant Monoclonal Antibody to Echinococcus Granulosis Antigen B. Exp. Parasitol. 219, 108029. doi: 10.1016/j.exppara.2020.108029

Rahumatullah, A., Ahmad, A., Noordin, R., and Lim, T. S. (2015). Delineation of BmSXP Antibody V-Gene Usage From a Lymphatic Filariasi Based Immune scFv Library. Immunol. Med. 67, 512–523. doi: 10.1016/j.immm.2015.07.040

Rahumatullah, A., Balachandra, D., Noordin, R., Baharudeen, Z., Lim, Y. Y., Cheong, Y. S., et al. (2021). Broad Specificity of Immune Helminth scFv Library to Identify Monoclonal Antibodies Targeting Strongylodes. Sci. Rep. 11, 2502. doi: 10.1038/s41598-021-82152-3

Rahumatullah, A., Lim, T. S., Yunus, M. H., and Noordin, R. (2019). Development of an Antigen Detection ELISA For Bancroftian Filariasi Using BmSXP-Specific Recombinant Monoclonal Antibody. Am. J. Trop. Med. Hyg. 101, 436–440. doi: 10.4269/ajtmh.19-0034
Rehman, Z. U., Deng, Q., Umair, S., Savoian, M. S., Knight, J. S., Pernthaner, A., Rener, J., Graves, P. M., Carter, R., Williams, J. L., and Burkot, T. R. (1983). Target Ray, K., Embleton, M. J., Jailkhani, B. L., Bhan, M. K., and Kumar, R. (2001). Rasetti-Escargueil, C., Avril, A., Miethe, S., Mazuet, C., Derman, Y., Selby, K., et al. (2010). Crystal Structure and Size-Dependent Neutralization Properties of HK20, a Human Monoclonal Antibody Binding to the Highly Conserved Heptad Repeat 1 of Gp1. PLoS Pathog. 6, e1001195. doi: 10.1371/journal.ppat.1001195

Sabin, J. S., Lam, T. T.-Y., Ahmed, M. M. M., Li, L., Shen, Y., Abo-Ab, S. E. M., et al. (2016). Co-Circulation of Three Camel Coronavirus Species and Recombination of MERS-CoVs in Saudi Arabia. Science 351, 81–84. doi: 10.1126/science.aed8068

Sadreddini, S., Seifi-Najmi, M., Ghassemi, B., Kafil, H. S., Alinejad, V., Sadreddini, S., et al. (2015). Design and Construction of Immune Phage Antibody Library Against Tatanus Neurotoxin: Production of Single Chain Antibody Fragments. Hum. Antibodies 23, 73–79. doi: 10.3233/HAB-150287

Saerens, D., Stijlemans, B., Baral, T. N., Nguyen Thi, G. T., Wernery, U., Magez, S., et al. (2008). Parallel Selection of Multiple Anti-Infectome Nanobodies Without Access to Purified Antigens. J. Immunol. Methods 329, 138–150. doi: 10.1016/j.jim.2007.10.005

Sartorelli, B., Keller, H., De Ferrari, M., Schots, A., Elio, V., and Minafra, A. (2005). Isolation of Recombinant Antibodies (ScFvs) to Grapevine Virus B. J. Virol. Methods 124, 191–195. doi: 10.1016/j.jviromet.2004.11.021

Salem, R., El-Kholy, A. A., and Ibrahim, M. (2019). Eight Novel Single Chain Antibody Fragments Recognising VP2 of Foot-and-Mouth Disease Virus Serotypes A, O, and SAT 2. Virology 533, 145–154. doi: 10.1016/j.virol.2019.05.012

Salihi, I., Bessalah, S., Snoun, D., Khorchani, T., and Hammadi, M. (2020). Construction of a Nanobodies Phage Display Library From an Escherichia Coli Immunodized Mordemam. Iran. J. Biotechnol. 18, e2247. doi: 10.30498/JIB.2020.127753.2247

Salonen, E. M., Parren, P. W., Graus, Y. F., Lundkvist, A., Fiscaro, P., Yapalapti, O., et al. (1998). Human Recombinant Puumala Virus Antibodies: Cross-Reaction With Other Hantaviruses and Use in Diagnostics. J. Gen. Virol. 79 (Pt 4), 659–665. doi: 10.1099/0022-1377-99-4-659

Sanna, P. P., Williamson, R. A., De Logu, A., Bloom, E. F., and Burton, D. R. (1995). Directed Selection of Recombinant Human Monoclonal Antibodies to Herpes Simplex Virus Glycoproteins From Phage Display Libraries. Proc. Natl. Acad. Sci. U. S. A. 92, 6439–6443. doi: 10.1073/pnas.92.14.6439

Santajit, S., Seesuay, W., Mahasongkram, K., Sookrung, N., Ampawong, S., Reangong, O., et al. (2019). Human Single-Chain Antibodies That Neutralize Pseudomonas Aeruginosa Exotoxin A-Mediated Cellular Apoptosis. Sci. Rep. 9, 14928. doi: 10.1038/s41598-019-51089-w

Saowaek, N., Poungpair, O., Panya, A., Tarasuk, M., Sawasdee, N., Limjudaporn, T., et al. (2014). Human Monoclonal Single-Chain Antibodies Specific to Dengue Virus Envelope Protein. Lett. Appl. Microbiol. 59, 287–290. doi: 10.1111/lam.12186

Sawyer, C., Embleton, J., and Dean, C. (1997). Methodology for Selection of Human Antibodies to Membrane Proteins From a Phage-Display Library. J. Immunol. Methods 204, 193–203. doi: 10.1016/S0022-1759(97)00048-3

Schmiedl, A., Zimmermann, J., Scherberich, J. E., Fischer, P., and Dübel, S. (2006). Recombinant Variants of Antibody 138H11 Against Human Gamma-Toxin Serotype B. J. Immunol. Methods 311, 35–43. doi: 10.1016/j.jibiotec.2020.02.004

Rodriguez-Diaz, J., Monedero, V., Perez-Martinez, G., and Buesa, J. (2004). Single-Chain Variable Fragment (scFv) Antibodies Against Rotavirus NSP4 Enterotoxin Generated by Phage Display. J. Virol. Methods 121, 231–238. doi: 10.1016/j.jviromet.2004.07.002

Roefen, W. F., Raats, J. M., Teelen, K., Hoet, R. M., Eling, W. M., van Venrooj, W. J., et al. (2001). Recombinant Human Antibodies Specific for the Plasmodium falciparum Malaria Antigen Pfs48/45 Protein. J. Biol. Chem. 276, 19807–19811. doi: 10.1074/jbc.M100562200

Rohrbach, A., Fühner, V., Schröder, A., Hagemann, S., Vu, X.-K., Berndt, S., et al. (2016). Detection and Quantification of ADP-Ribosylated RhoA/B by Monoclonal Antibody. Toxins 8, 100. doi: 10.3390/toxins8040100

Rukkawatkanaluk, T., Sookrong, N., Seesuay, W., Onamlo, N., Dirapat, P., Chaiumpaww, W., et al. (2017). Human ScFvs That Counteract Bioactivities of Staphylococcus Aureus TSST-1. Toxins 9, 390. doi: 10.3390/toxins9020050

Rüping, M. J. G., T. F., Vehreschild, J. I., and Connelly, O. A. (2008). Patients at High Risk of Invasive Fungal Infections: When and How to Treat. Drugs 68, 1941–1962. doi: 10.2165/00003495-20080814-0-00002

Rupnik, M., Wilcock, M. H., and Gerding, D. N. (2009). Clostridium Difficile Infection: New Developments in Epidemiology and Pathogenesis. Nat. Rev. Microbiol. 7, 526–536. doi: 10.1038/nrmicro2164

Russo, G., Meier, D., Helmsing, S., Wenzel, E., Oberle, F., Frenzel, A., et al. (2018). Parallelized Antibody Selection in Microtiter Plates. Methods Mol. Biol. Clifton N. J. 1701, 273–284. doi: 10.1007/978-1-4939-7447-4_14

Sabin, C., Corti, D., Buzon, V., Seaman, M. S., Latife Hulsik, D., Hinz, A., et al. (2010). Structure and Size-Dependent Neutralization Properties of HK20, a Human Monoclonal Antibody Binding to the Highly Conserved Heptad Repeat 1 of Gp4. PLoS Pathog. 6, e1001195. doi: 10.1371/journal.ppat.1001195

Roth et al. Recombinant Antibodies Against Infectious Diseases
Detection of Bluetongue Virus 8 in Infected Animals. *J. Virol. Methods* 243, 172–176. doi: 10.1016/j.jviromet.2017.02.003

Thanongsaksrilikul, J., Srimanote, P., Tongtawe, P., Glab-Ampai, K., Malik, A. A., Suparote, O., et al. (2018). Identification and Production of Mouse mScFv to Specific Epitope of Enterovirus-71 Virion Protein-2 (VP2). *Arch. Virol.* 163, 1141–1152. doi: 10.1007/s00705-018-3731-z

Thomas, D. Y., Jarraud, S., Lemercur, B., Cozon, G., Echasserieau, K., Etienne, J., et al. (2006). Staphylococcal Enterotoxin-Like Toxins U2 and V, Two New Staphylococcal Superantigens Arising From Recombination Within the Enterotoxin Gene Cluster. *Infect. Immun.* 74, 4724–4734. doi: 10.1128/IAI.00132-06

Throsby, M., van den Brink, E., Jongeneelen, M., Poon, L. L. M., Alard, P., Cornelissen, L., et al. (2008). Heteroantibody Neutralizing Monoclonal Antibodies Cross-Protective Against H5N1 and H1N1 Recovered From Human IgM+ Memory B Cells. *PLoS One* 3, e3942. doi: 10.1371/journal.pone.0003942

Thueng-in, K., Thanongsaksrikul, J., Jittavivit, S., Chulanetra, M., Srimanote, P., Tongtawe, P., et al. (2013). A Single VHH-Based Toxin-Neutralizing Agent and an Effector Glucosyltransferases. *Mol. Immunol.* 55, 114-120. doi: 10.1016/j.molimm.2013.07.009

Tille, T., Schuster, I., Deppe, D., Siegers, K., Strohner, R., Herrmann, T., et al. (2013). A Fully Synthetic Human Fab Antibody Library Based on Fixed VH/ VL Framework Pairs With Favorable Biophysical Properties. *mAbs* 5, 445–470. doi: 10.4161/mabs.24218

Tillib, S. V., Morgounova, E. Y., Ivanova, T. I., Koroleva, E. A., Rutsivokaya, M. V., and Zigangirova, N. A. (2017). Single-Domain Adapted Antibodies Against Chlamydia Trachomatis, Preserving the Development of Chlamidic Infection by Phage Display Technology. *J. Biol. Chem.* 292, 466-467. doi: 10.18097/PBMC20176305461

Tolle, M. A. (2009). Mosquito-Borne Diseases. *Curr. Probl. Pediatr. Adolesc. Health Care* 39, 97–140. doi: 10.1016/j.cppeds.2009.01.001

Tremblay, J. M., Mukherjee, J., Leysath, C. E., Debatis, M., Ofori, K., Baldwin, K., et al. (2019). Cross-Clade Antibody Reactivity may Attenuate the Ability of Influenza Virus to Evade the Immune Response. *Mol. Immunol.* 114, 149–161. doi: 10.1016/j.molimm.2019.07.010

Vashisht, S., Meria, S., and Salunke, D. M. (2019). Cross-Clade Antibody Reactivity may Attenuate the Ability of Influenza Virus to Evade the Immune Response. *Mol. Immunol.* 114, 149–161. doi: 10.1016/j.molimm.2019.07.010

Veena, A. N., Ponndurrad, T., Beckers, P. J., Verhave, J. P., Smits, M. A., and Meuwissen, H. J. (1985). Sequential Expression of Antigens on Sexual Stages of Plasmodium Falciparum Accessible to Transmission-Blocking Antibodies in the Elements of the Repetitive Carbohydrate-Containing, C-Terminal Carbohydrate-Like Domain. *Dtsch. Med. Wochenzeitschrift* 116, 1113–1114. doi: 10.1055/s-0029-1207589

Vreuls, H. P., Muster, P., and Bree, H. J. (1987). The Neutralizing Human Recombinant Antibodies to the L1 Antigen. *J. Virol. Methods* 17, 133–139. doi: 10.1016/0166-0934(87)90072-0

von Behring, E., and Kitasato, S. (1890). Über Das Zustandekommen Der Diphtherie-Immunität Und Der Tetanus-Immunität Bei Thieren. *Dtsch. Med. Wochenschrift* 16, 1111–1114. doi: 10.1055/s-0029-1207589

von Behring, E., and Kitasato, S. (1890). Über Das Zustandekommen Der Diphtherie-Immunität Und Der Tetanus-Immunität Bei Thieren. *Dtsch. Med. Wochenschrift* 16, 1111–1114. doi: 10.1055/s-0029-1207589

Wang, X., Gray, M. C., Hewlett, E. L., and Maynard, J. A. (2015). The Bordetella Parahaemolyticus O139 Phage Display Library Elicits Neutralizing Antibodies. *J. Infect. Dis.* 212, 1049–1056. doi: 10.1093/infdis/jiv087

Wang, Q., Chang, C.-S., Pennini, M., Pelletier, M., Rajan, S., Zha, J., et al. (2016). Recombinant Antibodies Against Infectious Diseases. *Frontiers in Cellular and Infection Microbiology* 7, 285. doi: 10.3389/fcimb.2020.00377

Wang, Q., Chang, C.-S., Pennini, M., Pelletier, M., Rajan, S., Zha, J., et al. (2016). Recombinant Antibodies Against Infectious Diseases. *Frontiers in Cellular and Infection Microbiology* 7, 285. doi: 10.3389/fcimb.2020.00377

van Wyngaardt, W., Malati, T., Mashau, C., Fehrenk, J., Jordaan, F., Mhladiou, D., et al. (2004). A Large Semi-Synthetic Single-Chain Fv Phage Display Library Based on Chicken Immunoglobulin Genes. *BMC Biotechnol.* 4, 6. doi: 10.1186/1472-6750-4-6

Washburn, S., Meria, S., and Salunke, D. M. (2019). Cross-Clade Antibody Reactivity may Attenuate the Ability of Influenza Virus to Evade the Immune Response. *Mol. Immunol.* 114, 149–161. doi: 10.1016/j.molimm.2019.07.010

Wang, R., Fang, S., Wu, D., Lian, J., Fan, J., Zhang, Y., et al. (2012). Screening for a Single-Chain Variable-Fragment Antibody That Can Effectively Neutralize the Cytotoxicity of the Vibriob Paraehaemolyticus Thermolabile Hemolysin. *Appl. Environ. Microbiol.* 78, 4967–4975. doi: 10.1128/AEM.00435-12

Wang, R., Fang, S., Xiang, S., Ling, S., Yuan, J., and Wang, S. (2014). Generation and Characterization of a scFv Antibody Against T3SS Needle of Vibriob Paraehaemolyticus. *J. Microbiol.* 54, 143–150. doi: 10.1007/s12028-013-0428-6

Wang, X., Grey, M. C., Hewlett, E. L., and Maynard, J. A. (2015). The Bordetella Adenylate Cyclase Repeat-in-Toxin (RTX) Domain Is Immunodominant and Elicits Neutralizing Antibodies. *J. Biol. Chem.* 290, 3576–3591. doi: 10.1074/jbc.M114.585281

Wang, Q., Chang, C., Pennini, M., Pelletier, M., Rajan, S., Zha, J., et al. (2016). Target-Agnostic Identification of Functional Monoclonal Antibodies Against Klebsiella Pneumoniae Multimeric MrkA Fimbrial Subunit. *J. Infect. Dis.* 213, 1800–1808. doi: 10.1093/infdis/jiv021

Wang, Y., Cui, P., Zhu, S., Meng, T., Hao, F., Zhu, G., et al. (2018). Preparation of Single-Chain Antibody Against VP3 Protein of Duck Hepatitis Virus Type 1 by Phage Display Technology. *J. Virol. Methods* 257, 73–78. doi: 10.1016/j.jviromet.2018.04.010

Wang, R., Fang, S., Wu, D., Lian, J., Fan, J., Zhang, Y., et al. (2012). Screening for a Single-Chain Variable-Fragment Antibody That Can Effectively Neutralize the Cytotoxicity of the Vibriob Paraehaemolyticus Thermolabile Hemolysin. *Appl. Environ. Microbiol.* 78, 4967–4975. doi: 10.1128/AEM.00435-12
Wang, P., Li, G., Yan, J., Hu, Y., Zhang, C., Liu, X., et al. (2014). Bactrian Camel Nanobody-Based Immunoadsorbent for Specific and Sensitive Detection of Cry1Fa Toxin. Food Chem. 159, 160–162. doi: 10.1016/j.foodchem.2014.10.024

Wang, T., Li, P., Zhang, Q., Zhang, W., Zhang, Z., Wang, T., et al. (2017). Determination of Aspergillus Pathogens in Agricultural Products by a Specific Nanobody-Polyclonal Antibody Sandwich ELISA. Sci. Rep. 7, 4348. doi: 10.1038/s41598-017-04195-6

Wang, Y., Rowley, K. J., Booth, B. J., Sloan, S. E., Ambrosino, D. M., and Babcock, G. J. (2011). G Glycoprotein Amino Acid Residues Required for Human Monoclonal Antibody RABI Neutralization are Conserved in Rabies Virus Street Isolates. Antiviral Res. 91, 187–194. doi: 10.1016/j.antiviral.2011.06.002

Wang, D., Yang, S., Yin, S., Shang, Y., Du, P., Guo, J., et al. (2015). Characterization of Single-Domain Antibodies Against Foot and Mouth Disease Virus (FMDV) Serotype O From a Camelid and Imaging of FMDV in Baby Hamster Kidney-21 Cells With Single-Domain Antibody–Quantum Dots Probes. BMC Vet. Res. 11, 120. doi: 10.1186/s12917-015-0437-2

Wang, D., Yue, Y., Wu, G., Tian, Y., Liu, Y., Yu, J., et al. (2017). Preparation and Characterization of a Human scFv Against the Clostridium Perfringens Type A Alpha-Toxin. Toxicon 130, 79–86. doi: 10.1016/j.toxicon.2017.02.021

Wang, H., Yu, R., Fang, T., Yu, T., Chi, X., Zhang, X., et al. (2016). Tetanus Neurotoxin Neutralizing Antibodies Screened From a Human Immunogenic scFv Antibody Phage Display Library. Toxins 8: doi: 10.3390/toxins8090266

Wang, M., Zhang, Y., Li, B., and Zhu, J. (2015). Construction of scFv That Bind Both Fibronectin Type II Domain and Chimeric A2 Protein. A P-Containing Single-Staphylococcus Aureus. Res. Vet. Sci. 100, 109–114. doi: 10.1016/j.resv.2015.02.012

Wang, Y., Zhang, X., Zhang, C., Liu, Y., and Liu, X. (2012). Isolation of Single Chain Variable Fragment (scfV) Specific for Cry1C Toxin From Human Single Fold scFv Libraries. Toxicon 60, 1290–1297. doi: 10.1016/j.toxicon.2012.08.014

Wang, M., Zhang, Y., and Zhu, J. (2016). Anti-Staphylococcus Aureus Single-Chain Variable Region Fragments Provide Protection Against Mastitis in Mice. Appl. Microbiol. Biotechnol. 100, 2153–2162. doi: 10.1007/s00253-015-7045-4

Weatherman, S., Feldmann, H., and de Wit, E. (2018). Transmission of H9N2 with a Panel of Synthetic Antibodies. J. Virol. 92, doi: 10.1128/JVI.00178-14

Wexler, B. D., Paduch, M., Leser, G. P., Bergman, Z., Kors, C. A., Paterson, R. G., et al. (2014). Probing the Functions of the Paramyxovirus Glycoproteins F and HN With a Panel of Synthetic Antibodies. J. Virol. 88, 11713–11725. doi: 10.1128/JVI.01707-14

Wexler, H. G., and Harboe, M. (1992). The Antigen 85 Complex: A Major Secretion Product of Mycobacterium Tuberculosis. Microbiol. Rev. 56, 407–414. doi: 10.1128/MBR.56.4.648-661.1992

Wick, V. E., Bosnak, M., Tierney, R., Schubert, M., Brown, J., Dubel, S., et al. (2020a). Human Antibodies Neutralizing Diphtheria Toxin In Vitro and In Vivo. J. Insect Sci. 20: doi: 10.1017/jias.2020022

Wick, V. E., Roth et al. Recombinant Antibodies Against Infectious Diseases

Wright, D. W., Keefer, C. J., Tollefson, S. J., and Tollefson, J. P. (2011). The Binding Protein A Binding Protein A-Containing Human Monoclonal Antibody to Human Metapneumovirus Fusion Protein That Neutralizes Virus In Vitro and is Effective Therapeutically In Vivo. J. Virol. 81, 8315–8324. doi: 10.1128/JVI.00106-07

Winter, G., Griffiths, A. D., Hawkins, R. E., and Hoogenboom, H. R. (1994). Making Antibodies by Phage Display Technology. Annu. Rev. Immunol. 12, 433–455. doi: 10.1146/annurev.immunol.12.04.1994.002245

Xiao, X., Peng, Y., Yu, B. K., Ishima, R., and Dimitrov, D. S. (2009). A Large Library Based on a Novel (CH2) Scaffold: Identification of HIV-1 Inhibitors. Biochem. Biophys. Res. Commun. 387, 387–392. doi: 10.1016/j.bbrc.2009.07.044

Xue, W., Zhao, Q., Li, P., Zhang, R., Lan, J., Wang, J., et al. (2019). Identification and Characterization of a Novel Monoclonal Antibody Against Hepatitis A Virus Type 1. Virology 528, 101–109. doi: 10.1016/j.virology.2018.12.013

Yan, Z.-H., Zhao, B., Pang, Y., Wang, X.-J., Yi, L., Wang, H.-L., et al. (2020). Establishment of a Sensitive Time-Resolved Fluorimunonassay for Detection of Bacillus Thuringiensis Cry1E Toxin Based Monoclonal Antibody Form a Phage Display Library. Anal. Biochem. 518, 53–59. doi: 10.1016/j.ab.2016.11.006

Yan, Z., Zhang, C., Zhang, X., Zhong, J., Liu, Y., et al. (2017a). A Large Library Based on a Novel (CH2) Scaffold: Identification of HIV-1 Inhibitors. Biochem. Biophys. Res. Commun. 387, 387–392. doi: 10.1016/j.bbrc.2009.07.044

Yuan, L., Zhang, X., Xiao, N., Dai, L., Chen, W., Jia, C., et al. (2006). Identification and Characterization of HIV-1 Inhibitors. J. Med. Chem. 49, 648–661. doi: 10.1021/jm051732g

Yu, W., Zeng, X.-Q., Zhang, H.-R., Ni, H.-Z., Pei, L., Zou, I.-R., et al. (2014). Novel Phage Display-Derived H5N1-Specific ScFvs With Potential Use in Rapid Avian Flu Diagnosis. J. Microbiol. Biotechnol. 24, 704–713. doi: 10.4014/jmib.1311.111017

Yuzuruki, A., Dreyfus, C., Kohler, I., Steck, M., Wilson, I. A., and Hangartner, L. (2014). Alternative Recognition of the Conserved Stem Epitope in Influenza A Virus Hemagglutinin by a VH3-30-Encoded Heterosubtypic Antibody. J. Virol. 88, 7083–7092. doi: 10.1128/JVI.00178-14

Yi, J., Liu, Y., and Liu, Z. (2013). Isolation and Characterization of Cross-Reactive Human Monoclonal Antibodies That Potently Neutralize Australian Bat Lyssavirus Variants and Other Phylodogroup 1 Lyssaviruses. Viruses 13. doi: 10.3390/v13030391

Yokota, A., Matsumoto, S., Endo, T., and Kato, U. (2008). Mycobacterium Tuberculosis and Its Antigenic Determinants. Annu. Rev. Immunol. 26, 477–518. doi: 10.1146/annurev.immunol.26.021307.164542

Yuan, L., Zhang, X., Xiao, N., Dai, L., Chen, W., Jia, C., et al. (2006). Identification and Characterization of HIV-1 Inhibitors. J. Med. Chem. 49, 648–661. doi: 10.1021/jm051732g

Yukawa, K., and Murayama, T. (2000). In Vitro Analysis of Virophilin Using Immunoblotting and Other Methods. Annu. Rev. Immunol. 18, 795–833. doi: 10.1146/annurev.immunol.18.1.795

Yugodskaya, G. N., Marchuk, E. V., and Khokhlov, S. V. (2014). Human Monoclonal Antibody Inhibits Replication of Influenza Viruses Across Types and Subtypes. J. Virol. 88, 2162–2170. doi: 10.1128/JVI.00106-07

Yuan, L., Zhang, X., Xiao, N., Dai, L., Chen, W., Jia, C., et al. (2006). Identification of a WSSV Neutralizing scFv Antibody by Phage Display Technology and In Vitro Screening. Dis. Aquat. Organ. 72, 93–99. doi: 10.3354/dao072093
