Primordial nucleosynthesis with massive τ neutrinos

J. B. Rehm1, G. G. Raffelt2, and A. Weiss1

1 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85745 Garching, Germany
2 Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany

submitted to Astronomy & Astrophysics

Abstract. A massive long-lived τ neutrino in the MeV regime modifies the primordial light-element abundances predicted by big-bang nucleosynthesis (BBN) calculations. This effect has been used to derive limits on $m_{\nu_{\tau}}$. Because recently the observational situation has become somewhat confusing and, in part, intrinsically inconsistent, we reconsider the BBN limits on $m_{\nu_{\tau}}$. To this end we use our newly developed BBN code to calculate the primordial abundances as a function of $m_{\nu_{\tau}}$ and of the cosmic baryon density η. We derive concordance regions in the η-$m_{\nu_{\tau}}$-plane for several sets of alleged primordial abundances. In some cases a concordance region exists only for a nonvanishing $m_{\nu_{\tau}}$. At the present time BBN does not provide clear evidence for or against a τ neutrino mass.

Key words: Elementary particles — Nuclear reactions, nucleosynthesis, abundances — Cosmology: Early universe

Send offprint requests to: J. Rehm (jan@mpa-garching.mpg.de)
1 Introduction

The theory of big-bang nucleosynthesis (BBN) describes the creation of the light elements hydrogen, helium, lithium, and beryllium in the early universe. The standard version of this theory is based on three main assumptions. 1. The evolution of the universe is described by the homogeneous and isotropic Friedmann-Robertson-Walker model. 2. The standard model of particle physics is used. 3. The lepton asymmetry of the universe is of the same order as the baryon asymmetry so that the chemical potential of the neutrinos in the early universe is small relative to the temperature.

![Fig. 1. Predicted values for the primordial abundances of the light elements assuming 2 (dashed), 3 (solid), and 4 (dotted) light neutrino families. The boxes indicate observationally inferred limits (Sect. 2).](image)

Because the nuclear reaction rates and the neutron half-life are well known, there remains only one free parameter, namely the present-day cosmic number density η of baryons relative to photons. For a given η it is then possible to solve numerically a nuclear network in the expanding universe which gives the primordial light element abundances. In Fig. 1 we show the results of such a calculation for $10^{-10} < \eta < 10^{-9}$, based on our newly developed BBN-code which is documented in Rehm (1996).

The results agree very well with those of other groups (e.g. Yang et al. 1984; Smith et al. 1993).

In the past, BBN has become a cornerstone of the hot big bang scenario in that one could find a concordance interval for η where all observed light-element abundances agreed with the calculated values. Further, BBN has been used to constrain new particle-physics models, notably the properties of neutrinos, and thus has become a powerful tool in the field of particle astrophysics (e.g. Malaney & Mathews 1993). In particular, if m_{ν_τ}, the mass of the τ neutrino, is larger than a few 100 keV the cosmic expansion rate during the BBN epoch is modified enough to cause significant changes in the predicted light-element abundances. Therefore, one can derive constraints on a putative mass for the τ neutrino or other neutral leptons that might be present in the early universe (Dicus et al. 1978, Miyama & Sato 1978, Kolb & Scherrer 1982, Dolgov & Kirilova 1988).

Since this earlier works, the m_{ν_τ} question has been revisited by many groups of authors (Kolb et al. 1991, Dolgov & Rothstein 1993, Kawasaki et al. 1994, Dolgov et al. 1996, Hannestad & Madsen 1996a,b, Fields et al. 1997). The measured width of the Z^0 boson shows that there are exactly three neutrinos which are lighter than half the Z^0 mass so that the post-1990 works indeed focus on the question of a τ neutrino mass rather than on the number of light neutrino flavors or the mass of some arbitrary new lepton. One motivation for the post-1990 works was to understand the impact of certain approximations for the kinetic treatment of massive neutrino freeze-out. Another motivation was to include the latest observationally inferred primordial light-element abundances in the derivation of the constraints. While the treatments by the various groups differ in detail, they all agree that m_{ν_τ} above a few 100 keV is forbidden. A mass beyond a few 10 MeV would again be allowed by BBN, but is experimentally ruled out (ALEPH-collaboration Buskulic et al. 1995, Passalacqua 1996).

Meanwhile, the observational situation has changed in that the first direct measurements of deuterium in quasar absorption systems have become available. Unfortunately, the results by different authors and from different systems do not agree with each other, and do not necessarily agree with the classic interstellar-medium determination of the primordial abundance. In addition, a new determination of the primordial 4He abundance yields a significantly higher value than the previous “standard” result. Therefore, at the present time it is not clear which set of observational data (if any of the currently available ones) should be used to compare with the BBN calculations. It is not even clear whether there indeed exists any concordance interval for η, and if so, where exactly it lies. This constitutes the current debate about a possible “BBN crisis” (see Hata et al. 1995, Copi et al. 1995).

Therefore, while the most recent papers on the m_{ν_τ} question have focused on various aspects of the kinetic...
treatment for these particles during and after freeze-out, the main current source of uncertainty for $m_{\nu_{\tau}}$ limits is actually the observational situation. The main purpose of the present note is to reconsider BBN limits on $m_{\nu_{\tau}}$ in the light of the current debate about the allowed primordial light-element abundances. In this regard our study is motivated by a similar discussion of the allowed number of massless neutrino species (Cardall & Fuller 1996).

These authors have calculated the primordial light-element abundances as a function of the cosmic baryon-to-photon ratio η, and of the equivalent number of massless neutrino species N_{eff} which characterizes the energy density and thus the expansion rate of the universe at the time of BBN. They have then derived detailed concordance regions in the η-N_{eff}-plane where different sets of observational data agree with the calculated abundances. However, these results cannot be trivially translated into concordance regions in the η-$m_{\nu_{\tau}}$-plane because the contribution of a massive tau neutrino to the expansion rate cannot be expressed in terms of an equivalent N_{eff}, as we will discuss below. Therefore, it is best to construct such concordance regions directly in the η-$m_{\nu_{\tau}}$-plane. Before the onset of the current observational debate this sort of analysis was performed by Kawasaki et al. (1994).

A rather complete numerical treatment of the ν_{τ} kinetics was performed in the works of Kawasaki et al. (1994) and Hannestad & Madsen (1996a,b). Together with the recent studies by Dolgov et al. (1996) and Fields et al. (1997) they indicate that the final concordance regions in the η-$m_{\nu_{\tau}}$-plane are rather insensitive to fine points of the ν_{τ} kinetics. Therefore, we limit ourselves to the simplest approximation in which kinetic equilibrium is assumed for ν_{τ} throughout so that an analytically integrated Boltzmann collision equation can be used. With this approach we can reproduce previous results with sufficient accuracy.

Of course, on a timescale much longer than the BBN epoch (approximately 200 seconds), the τ neutrinos have to decay into relativistic particles to prevent the universe from becoming overdense by τ neutrinos today (e.g. Kolb & Turner 1990). We will not discuss the impact of neutrino decays on BBN. Extensive previous discussions include those by Kawasaki et al. (1994) and Dodelson et al. (1994).

We begin our study in Sect. 2 with a short review of the current status of the observations. In Sect. 3 we describe the influence of a massive τ neutrino on the cosmic expansion rate, which is calculated by solving a simplified Boltzmann equation. In Sect. 4 the influence of a massive τ neutrino on the primordial abundances is studied. We derive concordance regions in the η-$m_{\nu_{\tau}}$-plane for different sets of observational data. Finally, we discuss and summarize our results in Sect. 5. Some details about the neutrino reaction rates are given in Appendix A.

2 Observations

In order to derive concordance intervals for the cosmic baryon density, or in order to derive BBN limits on novel particle-physics models, one must compare the calculated light-element abundances with observations. For most elements the difficulty is to derive the primordial abundances from values which are measured today in our vicinity. Even for 4He, where this appears to be relatively straightforward and model-independent, some controversy has emerged. Therefore, we begin with a discussion of the current observational situation.

Helium-4

A large number of measurements exist for the 4He as well as for the O and N abundances in low-metallicity HII regions. Using O or N as tracers, the 4He abundance is extrapolated to zero metallicity to obtain the primordial value. We quote the usual “standard” value (“low 4He” labeled $^4_{\text{H}}$ in Table 1) according to Olive & Scully (1996). Their results are very similar to those of Olive & Steigman (1995); the values and errors differ at most by 2×10^{-3}. In contrast, Izotov et al. (1997) have found a significantly higher value (h^4_{He} in Table 1) using a new set of emissivities and collisional enhancement factors for the analysis of the observed spectral lines and by using other selection criteria for the HII regions. Their method and interpretation of the differences, in turn, has

Abundance	Measurement	Adopted Range	Label	Reference
^7Li	$1.6 \pm 0.07_{\text{stat}} \pm 0.44_{\text{sys}}$	$0.9 - 3.7$	^7Li	Fields et al. (1996)
^9Be	$1.6 \pm 0.07_{\text{stat}} \pm 0.44_{\text{sys}}$	$0.9 - 3.7$	^9Be	Fields et al. (1996)
^8B	$1.6 \pm 0.07_{\text{stat}} \pm 0.44_{\text{sys}}$	$0.9 - 3.7$	^8B	Fields et al. (1996)
^4He	$1.6 \pm 0.07_{\text{stat}} \pm 0.44_{\text{sys}}$	$0.9 - 3.7$	^4He	Fields et al. (1996)

Table 1. Observationally inferred primordial light-element abundances. “Measured” values and the errors are taken from the given papers in which references to the original observations can be found. The errors are systematic except for those with the superscript “stat” (for statistical). For ^7Li two sets of systematic errors are given as explained in the text.
been critiqued by Olive et al. (1997), who reconfirm the above “low” value.

We emphasize that we do not give more weight to any of the two values; we merely quote what is currently discussed in the literature. In view of the disagreement between the lower deuterium value inferred from quasar observations (see below) it has been proposed that the systematic uncertainties might be substantially larger than commonly assumed (Sasselov & Goldwirth 1995). They argue that the primordial mass fraction of 4He might be as high as 0.26.

Deuterium

For deuterium, there is the canonical value from observations of deuterium in the solar system (Geiss 1993) and the interstellar medium (Linsky et al. 1993, Linsky & Wood 1996, Piskunov et al. 1997) which provide a lower limit on the primordial deuterium abundance. Based on the theory of galacto-chemical evolution for deuterium, an upper limit—usually about a factor of 2–3 higher (cf. Edmunds 1994)—can be inferred. The most recent analysis is that of Dearborn et al. (1996) which is labeled “ISM” in Table 1. In all canonical models of galacto-chemical evolution a strong overproduction of 3He with respect to observations in the solar system and the ISM is found. As long as this problem remains unsolved, limits based on an analysis of the sum of deuterium and 3He should not be used to constrain the primordial abundances. The value quoted here relies on deuterium depletion only. Non-canonical models for stellar evolution, including additional mixing on the Red Giant Branch avoid a net production of 3He in low mass stars and might provide a solution to this problem (Charbonnel 1995, Weiss et al. 1996).

In addition, deuterium is the only case where one believes to observe a primordial abundance directly. Deuterium lines were found in extragalactic HII clouds which lie on the line of sight to high redshift quasars (Quasar Absorption Systems or QAS). Unfortunately, the values found in different systems by different authors do not agree. Tytler et al. (1996) argue that the high QAS deuterium value is in fact not deuterium, but another hydrogen cloud at a different position which mimics the deuterium line, and that the systems used are not sensitive for abundances as low as 10^{-5}. This interpretation is rejected by Rugers & Hogan (1996). Clearly, more high redshift quasar spectra are needed to reveal the true primordial deuterium abundance.

Lithium-7

The chemical evolution of lithium in stars is not well understood and therefore the derivation of the primordial value is much more uncertain. We quote here a recent value from Fields et al. (1996), based on the observations by Molaro et al. (1995), for the so-called “Spite plateau”, which is the minimal 7Li abundance found in old Pop II halo stars of our galaxy. Since it is nearly constant in stars with a surface temperature of more than 5500 K and metallicities lower than about 5% solar, it is usually argued that this is the primordial value. Because the abundance depends on the modeling of the stellar atmosphere, the error is dominated by systematic effects (first set of systematic errors in Table 1). Furthermore, it has been suggested that 7Li might have been depleted significantly (Deliyannis et al. 1990, Pinsonneault et al. 1992), but the detection of the more fragile isotope 6Li in two of these stars may be taken as an indication against strong depletion (Steigman et al. 1993). The possible depletion effect is represented by the second set of systematic errors in the 7Li abundance.

The current observational evidence is summarized in Table 1. For each observation we also give a range for the relevant abundance which we have adopted to compare with the calculations below. The adopted range has been derived by adding the stated systematic error linearly with the 2σ statistical one. For lithium, both systematic errors have been linearly added. These procedures are somewhat arbitrary, but represent the common practice in this field.

3 Massive long-lived τ neutrinos in the early universe

As a further ingredient for our study of possible BBN limits on m_{ν}, we need to specify the contribution of a massive neutrino to the expansion rate of the early universe. In the radiation dominated phase the expansion rate is governed by the Friedmann equation without a curvature term1

$$H^2 = \frac{8\pi \, \rho}{3 \, m_{\nu}^2},$$

1 We always use the system of natural units where $\hbar = c = k_B = 1$.

\[H^2 = \frac{8\pi \, \rho}{3 \, m_{\nu}^2}\]
Fig. 2. Evolution of the parameter $g_*(t)$ for a Majorana τ neutrino with $m_{\nu_{\tau}} = 10, 20$, and 100 MeV (solid lines). For comparison, the evolution of g_* for 2 and 3 massless neutrino families is also shown (dotted lines).

Here, $H = \dot{R}/R$ is the expansion rate, m_{Pl} the Planck mass, and ϱ the energy density in radiation. It is commonly expressed in the form

$$\varrho = \frac{\pi^2}{30} g_* T^4$$

(2)

where T is the cosmic temperature and g_* the effective number of thermally excited relativistic degrees of freedom. This parameter is a function of temperature and thus of cosmic time. Just before the BBN epoch one finds

$$g_* = g_\gamma + \frac{7}{8} (g_e + 2 N_{\nu}) = 10.75$$

(3)

with $g_\gamma = 2$ for the photons, $g_e = 4$ for the electrons and positrons, and $N_{\nu} = 3$ for the number of neutrino families which are assumed to be massless.

A particle species no longer contributes when T falls below its mass because then its number density is suppressed and therefore the contribution to the cosmic energy density in the early radiation dominated phase of the universe is negligible. The evolution of g_* in the temperature range 10^2 to 10^{-2} MeV is shown in Fig. 2 (dashed lines) for a scenario with 2 and 3 light neutrino families. At a temperature of about 1 MeV the electrons get nonrelativistic and annihilate to photons. Therefore they drop out of Eq. (3), g_* decreases, and their entropy is transferred to the photons, which dominate the energy density from now on.

Massive neutrinos contribute differently to the cosmic energy density than massless ones. Therefore, the expansion rate as a function of temperature and thus the time-temperature relation is modified, leading to changed light-element abundances in a BBN calculation. We examine a scenario where the τ neutrino is massive whereas the other two neutrinos are taken to be massless. Thermodynamic equilibrium is maintained as long as reactions such as

$$\nu_{\tau} + \bar{\nu}_{\tau} \leftrightarrow a + \bar{a}$$

(4)

are fast compared to the expansion of the universe. Here, a stands for any fermion which is kinematically allowed. As the universe expands, this reaction slows down and eventually the number density of τ neutrinos freezes out and stays constant thereafter (Fig. 3).

Fig. 3. Number density (upper panel) and energy density (lower panel) as a function of the cosmic temperature for a 10 MeV Majorana τ neutrino. The contribution of a massless neutrino is shown for comparison. The densities are relative to those of photons and normalized to 1 at high temperatures. At e^+e^- annihilation the photon density increases and the relative neutrino densities take a downward step as indicated. The curves marked “Equilibrium” represent the ν_τ densities if the $\nu_\tau\bar{\nu}_\tau$ annihilations would not freeze out.

The process of freeze-out is described by the Boltzmann collision equation. This integro-differential equation is very difficult to solve in general, but it can be simplified by making the following approximations: 1. The annihilation products are in thermodynamic equilibrium due to...
effective interactions with the cosmic plasma. 2. Classical instead of quantum statistics is used, i.e. a Maxwell-Boltzmann distribution instead of a Fermi-Dirac or a Bose-Einstein one. 3. Even after annihilations the τ neutrinos are kept in kinetic equilibrium by effective elastic scatterings with electrons and massless neutrinos which are far more abundant. Other authors have dropped some or all of these assumptions, but the results do not change drastically, as we will discuss in Sect. 4. Because of the assumed kinetic equilibrium, the distribution function of the massive τ neutrinos can be expressed in terms of the so-called pseudo chemical potential z_i,\[f_{\nu_i} = \exp \left(z_i - \frac{E_i}{T} \right). \] (5) Furthermore, the Boltzmann equation is integrated over the phase space of one of the incoming τ neutrinos. Because we assumed classical statistics, this can be done in a closed form and one arrives at one single ordinary differential equation for the ν_τ number density,\[\frac{dn_{\nu_\tau}}{dt} + 3Hn_{\nu_\tau} = \langle \sigma v \rangle \left[n_{\nu_\tau}(t)^2 - n_{\nu_\tau}^{eq}(t)^2 \right]. \] (6) Here, H is the expansion rate, n_{ν_τ} the actual and $n_{\nu_\tau}^{eq}$ the equilibrium number density of τ neutrinos. The thermally averaged reaction rate $\langle \sigma v \rangle$ is given in Appendix A.

For a Dirac neutrino we are confronted with another difficulty because it has four degrees of freedom. In the massless case, only two of them interact with other particles, namely the helicity-minus neutrino and the helicity-plus antineutrino. The other two degrees of freedom are sterile and have no impact at all. If neutrinos have a mass, their helicity eigenstates are no longer eigenstates of chirality and thus are no longer completely sterile. The strength of the weak interaction for “wrong-helicity” neutrinos is suppressed by a factor of about $(m_\nu/E_\nu)^2$ relative to the usual rates, provided that $m_\nu \ll E_\nu$. In this case the quasi-sterile states remain essentially unexcited, leaving us with two degrees of freedom which are relevant for the cosmic expansion (for a recent discussion of cosmic abundances of right-handed neutrinos with masses up to 200 keV see Enqvist et al. 1997). Conversely, for nonrelativistic neutrinos all four degrees of freedom interact with the full strength. Therefore, if the neutrino mass exceeds about 1 MeV so that they are nonrelativistic at the time of freeze-out, all four degrees of freedom would be fully excited and would thus contribute to the expansion rate of the universe

A correct treatment of the intermediate-mass regime requires a detailed kinetic treatment of neutrino helicities (e.g. Fields et al. 1997). Because this is a very significant complication we have limited ourselves to an approximation where it is assumed that all available helicity states are always fully populated, an assumption that we shall refer to as the “helicity approximation”. It implies that the

number and energy density of light ($m_\nu \lesssim 1$ MeV) massive Dirac neutrinos is overestimated by a factor of 2. In the mass range from 1 – 10 MeV the number and energy density is still overestimated, but now by a factor less than 2; for $m_\nu \gtrsim 10$ MeV our approximation yields the correct result.

Because we have assumed kinetic equilibrium, the energy density of the τ neutrinos can be calculated from their number density. As an example we show in Fig. 3 the evolution of the number and energy density, respectively, for a 10 MeV Majorana τ neutrino. Even though the neutrino mass causes the universe to become quickly matter dominated, we continue to parameterize the impact on the expansion rate by g_* which thus no longer represents the effective number of relativistic degrees of freedom. It is merely a time-dependent proportionality factor between T^4 and the energy density according to the definition in Eq. (2).

4 BBN with massive τ neutrinos

4.1 The number of effective light neutrino species

It is common practice in the literature to parameterize the influence on BBN of a new particle by the equivalent number N_{eff} of light neutrino species. This is a useful parameterization for a particle which is relativistic during the entire period of BBN, i.e. down to $T \approx 40$ keV or until about 200 seconds after the big bang. Such a particle contributes a fixed amount to the parameter g_* during the relevant epoch. On the other hand, a particle which is or becomes nonrelativistic during the BBN epoch contributes to the expansion rate in the way discussed in the previous section and displayed in Fig 2, i.e. its contribution to g_* varies with time. Evidently, the effect of a massive τ neutrino cannot be mapped on a constant shift of g_* or on a fixed modification of N_{eff}.

One can still define a useful N_{eff} parameter indirectly by comparing the modification of the calculated abundance of a certain light element, for example 4He, caused by a massive neutrino with that caused by a fixed modification of g_*. The synthesis of the light elements peaks at different times for the different elements. Therefore, defining N_{eff} in this way depends on the chosen isotope. In Fig. 4 we show N_{eff} based on the equivalent impact on the abundances of deuterium and the two helium isotopes. (Note that in the Dirac case the low-mass range does not converge to the correct value of 3 light families, but to 4. This represents the abovementioned helicity approximation.)

In the previous literature N_{eff} has always been defined by the equivalent impact on 4He. However, if one wishes to perform a more direct comparison with different sets of observational data, there is no reason to introduce N_{eff}. We will present all of our results directly as
Fig. 4. Number of effective light neutrino families N_{eff} equivalent to the contribution of a massive neutrino. The value of N_{eff} depends on the light element it is based upon. For Dirac neutrinos, our “helicity approximation” causes N_{eff} to be overestimated for $m_{\nu_\tau} \lesssim 10$ MeV; this region has been hatched as a warning.

4.2 Validity of the approximated Boltzmann equation

The N_{eff} parameter remains very useful to compare our results with those of other authors who have dropped some or all of the simplifying assumptions made in Sect. 3 to calculate the neutrino freeze-out. Fields et al. (1997) used the integrated version of the Boltzmann equation, but with correct Fermi-Dirac statistics for the neutrinos. Furthermore, they did not assume thermodynamic equilibrium for the electron neutrinos, but solved the coupled Boltzmann equation for all three neutrino families and took into account the influence of the increased ν_e number density on the weak reaction rates. This changes the maximum value of N_{eff} by about 0.5, but the limits on the allowed τ neutrino mass are hardly affected, because below $N_{\text{eff}} = 4$ the results practically coincide.

Hannestad & Madsen (1996a,b) solved the full Boltzmann equation for all neutrino species without any simplifying assumptions. In addition they calculated the influence of the deviation from equilibrium of the electron neutrino distribution function on the weak reaction rates. Their results deviate at most by 0.2 neutrino families compared to Fields et al. (1997).

Dolgov et al. (1996) solved the integrated Boltzmann equation with the method of the pseudo chemical potential only for the τ neutrinos, but calculated the deviation from equilibrium of the electron neutrino distribution function on the weak reaction rates. In this paper they do not present values for N_{eff}, but only for ΔN_{eff} relative to their earlier paper (Dolgov & Rothstein 1993) for the results without ν_e-heating. There, very large values for N_{eff} were shown with $N_{\text{eff,max}}^{\text{Dirac}} \approx 11$ and $N_{\text{eff,max}}^{\text{Majorana}} \approx 8$. Their results for ΔN_{eff} are opposite to those of the other groups. They argue that this is because Fields et al. (1997) did not take into account the deviation from equilibrium for the distribution function of the electron neutrinos, but Kainulainen (1996) showed in an update to Fields et al. (1997) that this would change their bounds by less than half a neutrino family.

In summary, the modifications of N_{eff} brought about by a more complete kinetic treatment of neutrino freeze-out and the weak interaction rates appear to be small enough to justify our simple treatment with the integrated Boltzmann equation.

In the study of Kawasaki et al. (1994) the N_{eff} parameter was not introduced, and they performed a rather complete numerical treatment of the ν_τ kinetics. We have constructed a contour plot with the observational data used by Kawasaki et al. (1994) in order to be able to compare directly with their Figure 5(e) which refers to the stable Majorana neutrino case. Our contours agree with theirs better than we would have expected, corroborating that our simple approximation is entirely justified for the task at hand.
4.3 Concordance Regions

In Figs. 5 and 6 we present our results as isoabundance contours in the plane of baryon density vs. neutrino mass. In each panel, contours are drawn for ^4He (solid), deuterium (dashed) and ^7Li (dotted). The contour levels correspond to the adopted observational ranges listed in Table 1. Each panel corresponds to a specific combination of observational results as described in the figure. Concordance regions in the η-m_{ν_τ}-plane are shaded. In the Dirac case (Fig. 6) the area below about 10 MeV has been hatched because there our results are not quantitatively meaningful because of our helicity approximation. Qualitatively, the Dirac and Majorana cases, of course, yield rather similar results.

The Dirac τ neutrino results have to converge to the ones for the Majorana case in the small mass regime ($m_{\nu_\tau} \lesssim 1$ MeV), since the “wrong-helicity” states are not populated there. In the intermediate mass range from 1 –
Fig. 6. Isoabundance contours as in Fig. 5 if the neutrino mass is of Dirac nature. In the hatched area the results are not quantitatively correct because of our “helicity approximation”.

10 MeV our approximation still overestimates the contribution of the Dirac τ neutrino energy density to the cosmic expansion rate; the correct results for the light element abundances lie somewhere between the two cases. (For the 4He abundance in the presence of a massive Dirac τ neutrino with the correct treatment of the helicity states see Fields et al. 1997.) The correct treatment of both helicity states does not open up new concordance regions in this mass range.

The most recent experimental limit on the τ neutrino mass is $m_{\nu_\tau} < 18$ MeV (ALEPH-collaboration, Passalacqua 1996), somewhat lower than the previously published limit (ALEPH–collaboration, Buskulic et al. 1995). Therefore, the concordance regions above this mass limit are already ruled out.

If the classic ISM determination of the primordial deuterium abundance were correct after all (top row in Figs. 5 and 6) we would be left with a concordance region in the low-mass regime; in fact the neutrino mass may well be zero in this case. Even though the concordance region does not show up in the Dirac case because of our helicity ap-
proximation, it would be there because for low-mass neutrinos the Dirac and Majorana cases are equivalent. The concordance region is almost independent of which \(^4\)He result is used because of the constraints provided by the deuterium and lithium contours. A mass range between a few hundred keV and few tens of MeV is excluded.

If the high QAS deuterium abundance is correct (middle row in Figs. 5 and 6), the result depends on the assumed \(^4\)He abundance. If the low value is right, the situation is similar to that discussed in the previous paragraph, except that the inferred cosmic baryon abundance is smaller by a factor of 3. If the high helium abundance is the true value, then in the Majorana case there remains a small concordance region which actually requires a neutrino mass somewhat below 1 MeV. In the Dirac case, the situation is unclear because of our helicity approximation.

If the low QAS deuterium abundance is taken to be the primordial one (bottom row in Figs. 5 and 6), there is essentially no concordance region whatsoever, independently of the neutrino mass. This situation would constitute a true “crisis for BBN” as there would be no consistency between observations and calculations. Some other novel ingredient would be needed besides a massive neutrino.

5 Summary

We have studied the influence of a massive \(\tau\) neutrino in the MeV range on the primordial abundances of the light elements. Several recent studies indicate that our simple approximate treatment of the Boltzmann collision equation for the neutrinos is quite adequate. We have focussed on a comparison between the calculated light-element abundances with current observational data by virtue of contour plots in the \(\eta-m_{\nu,\tau}\)-plane. This method avoids the use of an effective number of neutrino families \(N_{\text{eff}}\) which cannot be defined simultaneously for all light element abundances.

We find that the existence and location of concordance regions where all observations can be reproduced depends dramatically on the assumption of which of the abundances currently offered as the “observed primordial” ones are actually correct. Depending on one's choice or judgment one may find that BBN is in crisis (no concordance region at all), that a nonvanishing neutrino mass is required, or that there are concordance regions even for a vanishing neutrino mass.

In each case one finds that a neutrino mass between the experimental limit of 18 MeV and about 1 MeV (and a bit below) is ruled out. In this regard our conclusions agree with those of previous authors. In spite of the great uncertainty of the observational situation, this conclusion is rather stable because of the opposite curvature of the deuterium and the helium contours which peak in opposite \(\eta\)-directions for neutrino masses of a few MeV.

Still, given the unclear observational situation one cannot be confident in the reliability of such limits. After all, if there were no concordance region whatsoever so that a new ingredient for BBN would be required, the possible impact of this new physics on the present results is entirely unknown. One clearly has to wait until the mutual inconsistencies of the observationally inferred abundances have been sorted out before one can arrive at far-reaching cosmological conclusions about the properties of elementary particles.

Acknowledgements. This work was supported by the “Sonderforschungsbereich 375-95 für Astro-Teilchenphysik” der Deutschen Forschungsgemeinschaft. J.R. has submitted this work to the Ludwig-Maximilians-Universität München in partial fulfillment of the requirements for his Diplom (Master of Science) degree. We thank A. Dolgov, G. Steigman, and K. Kainulainen for critical comments on earlier versions of this manuscript.

A Annihilation rates for massive \(\tau\) neutrinos

The reaction rate for \(\tau\) neutrinos annihilating to fermions is given by the thermal average over the cross section \(\sigma\) times the relativistic invariant relative velocity \(v\) (Gondolo & Gelmini 1991)

\[
\langle \sigma v \rangle = \frac{1}{4m_{\nu,\tau}^4 T} K_2^2 (m_{\nu,\tau}/T) \int_{4m_{\nu,\tau}^2}^{\infty} ds \sigma v E_{\nu,\tau} E_{\bar{\nu},\tau} \sqrt{s - 4m_{\nu,\tau}^2} K_1 (\sqrt{s}/T).
\]

\(K_i\) is the modified Bessel function of the second kind of order \(i\) as defined in Abramowitz & Stegun (1972), \(E_i\) are the particle energies, \(s = (P_{\nu,\tau} + P_{\bar{\nu},\tau})^2\) is the center of mass energy, and \(P\) are the four momenta. We borrowed the expression \(\sigma v E_{\nu,\tau} E_{\bar{\nu},\tau}\) from Dolgov & Rothstein (1993). The expressions given there are misprinted in several ways as confirmed by the authors (private communication). The correct expressions must read for Dirac neutrinos

\[
\sigma^D v E_{\nu,\tau} E_{\bar{\nu},\tau} = \frac{1}{4} \frac{1}{g_{\nu,\tau} g_{\bar{\nu},\tau}} \sum_a \sum_a' \left| M_{\nu,\tau,\bar{\nu},\bar{\nu}} \right|^2 D
\]

\[
\int (2\pi)^4 \delta^4 (P_{\nu,\tau} + P_{\bar{\nu},\tau} - P_{a_1} - P_{a_2}) \frac{d^3 p_a}{2E_a (2\pi)^3} \frac{d^3 p_{\bar{\nu},\tau}}{2E_{\bar{\nu},\tau}(2\pi)^3}
\]

\[
= \frac{G_F^2 \langle a \rangle}{4\pi} \sum_a \left[\frac{1}{6} (C_{\nu,a}^2 + C_{\bar{\nu},a}^2) \left(s - m_{\nu,\tau}^2 - m_{\bar{\nu},\tau}^2 \right) \right.
\]

\[
+ \frac{m_{\nu,\tau}^2}{s} (C_{\nu,a}^2 - C_{\bar{\nu},a}^2) \left(\frac{s}{2} - m_{\nu,\tau}^2 \right),
\]

and for Majorana neutrinos

\[
\sigma^M v E_{\nu,\tau} E_{\bar{\nu},\tau} = \frac{m_{\nu,\tau}^2}{s} (C_{\nu,a}^2 - C_{\bar{\nu},a}^2) \left(\frac{s}{2} - m_{\nu,\tau}^2 \right),
\]

\((A3)\)
Here, $\nu\bar{\nu}$ are the three momenta, G_F the Fermi-constant, m_a, $C_{V,a}$, and $C_{A,a}$ are the mass and the vector and axial couplings for the final state fermions. Further we have defined $w = (s^2 - 4sm_a^2)^{1/2}$. The squared matrix element $|M_{\nu\bar{\nu} \rightarrow \nu\bar{\nu}}|^2$ is summed over the kinematically allowed reaction channels ($\nu\bar{\nu} \rightarrow e^+e^-, \nu\bar{\nu} \nu\bar{\nu}$, and $\nu_\mu \bar{\nu}_\mu$) and averaged over the spins.

References

Abramowicz M., Stegun I.S. (eds.), 1972, Handbook of mathematical functions, Dover Publications Inc., New York
Buskulic D. et al., 1995, Phys. Lett. B 349, 585, (ALEPH Collaboration)
Cardall C., Fuller G.M., 1996, ApJ 472, 435
Carswell R.F., Weymann R.J., Cooke A.J., Webb K.J., 1994, Mon. Not. R. Astron. Soc. 268, L1
Charbonnel C., 1995, ApJ 453, L51
Copi C.J., Schramm D.N., Turner M.S., 1995, Phys. Rev. Lett. 75, 3981
Dearborn D., Steigman G., Tosi M., 1996, ApJ 465, 887
Deliyannis C.P., Demarque P., Kawaler S.D., 1990, ApJ Suppl. Ser. 73, 21
Dick D.A., Kolb E.W., Teplitz V.L., Wagoner R.V., 1978, Phys. Rev. D 17, 1529
Dodelson S., Gyuk G., Turner M.S., 1994, Phys. Rev. D 49, 5068
Dolgov A.D., Kirilova D., 1988, Int. J. Mod. Phys. A 3, 267
Dolgov A.D., Pastor S., Valle J., 1996, Phys. Lett. B 383, 193
Dolgov A.D., Rothstein I.Z., 1993, Phys. Rev. Lett. 71, 476
Edmonds M.G., 1994, Mon. Not. R. Astron. Soc. 270, L37
Engquist K., Keränen P., Maalampi J., Uibo H., 1997, Nucl. Phys. B 484, 403
Fields B.D., Kainulainen K., Olive K.A., 1997, Astropart. Phys. 6, 169
Fields B.D., Kainulainen K., Olive K.A., Thomas D., 1996, New Astronomy 1, 77
Galli D., Palla F., Ferrini F., Penco U., 1995, ApJ 443, 536
Geiss J., 1993, in: Origin and Evolution of the Elements (Edited by Prantzos N., Vagioni-Flam E., Cassé M.), p. 89, Cambridge, UK, Cambridge University Press
Gondolo P., Gelmini G., 1991, Nucl. Phys. B 360, 145
Hannestad S., Madsen J., 1996a, Phys. Rev. Lett. 76, 2848
Hannestad S., Madsen J., 1996b, Phys. Rev. D 54, 7894
Hata N. et al., 1995, Phys. Rev. Lett. 75, 3977
Izotov Y.I., Thuan T.X., Lipovetsky V.A., 1997, ApJ Suppl. Ser. 108, 1

Kainulainen K., 1996, hep-ph/9608215, Talk given at Neutrino 96, Helsinki, June 1996
Kawasaki M. et al., 1994, Nucl. Phys. B 419, 105
Kolb E.W., Scherrer R.J., 1982, Phys. Rev. D 25, 1481
Kolb E.W., Turner M.S., 1990, The Early Universe, Frontiers in Physics, Addison-Wesley, Reading, MA
Kolb E.W., Turner M.S., Chakravarty A., Schramm D.N., 1991, Phys. Rev. Lett. 67, 533
Linsky J.L. et al., 1993, ApJ 402, 694
Linsky J.L., Wood B.E., 1996, ApJ 463, 254
Malaney R.A., Mathews G.J., 1993, Phys. Rev. 229, 145
Miyama S., Sato K., 1978, Prog. Theor. Phys. 60, 1703
Molaro P., Primas F., Bonifacio P., 1995, A & A 295, L47
Olive K.A., Scully S.T., 1996, Int. J. Mod. Phys. A 11, 409
Olive K.A., Skillman E., Steigman G., 1997, ApJ 483, 788
Oliva K.A., Steigman G., 1995, ApJ Suppl. Ser. 97, 49
Passalacqua L., 1996, to appear in the proceedings of “The Fourth International Workshop on Tau Lepton Physics (TAU96)” held at Estes Park, Colorado, Sept. 16-19, 1996, available at: http://tau96.colorado.edu/tau96/ps/passalacqua.ps
Pinsoneault M.H., Deliyannis C.P., Demarque P., 1992, ApJ Suppl. Ser. 78, 179
Piskunov N. et al., 1997, ApJ 474, 315
Rehm J.B., 1996, Der Einfluß neuer Neutrinoeigenschaften auf die Kernsynthese im frühen Universum, Diplom Thesis, Ludwig-Maximilians-Universität, München, Germany
Rugers M., Hogan C.J., 1996, ApJ 459, L1
Sasselov D., Goldwirth D., 1995, ApJ 444, L5
Smith M.S., Kawano L.H., Malaney R.A., 1993, ApJ Suppl. Ser. 85, 219
Songaila A., Cowie L.L., Hogan C., Rugers M., 1994, Nature 368, 599
Steigman G., 1994, Mon. Not. R. Astron. Soc. 269, L53
Steigman G. et al., 1993, ApJ 415, L35
Tytler D., Fan X.M., Burles S., 1996, Nature 381, 207
Weiss A., Wagenhuber J., Denissenkov P.A., 1996, A & A 313, 581
Yang J. et al., 1984, ApJ 281, 493

This article was processed by the author using a modified version of the Springer-Verlag \\LaTeX A\&A style file L-\texttt{AA} version 3.