The roles of lipid and glucose metabolism in modulation of β-amyloid, tau, and neurodegeneration in the pathogenesis of Alzheimer disease

Naoyuki Sato1,2* and Ryuichi Morishita1

1 Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Japan, 2 Department of Geriatric Medicine, Graduate School of Medicine, Osaka University, Suita, Japan

Diabetes is a risk factor for Alzheimer disease (AD). Apolipoprotein E (ApoE) and several genes related to AD have recently been identified by genome-wide association studies (GWAS) as being closely linked to lipid metabolism. Lipid metabolism and glucose-energy metabolism are closely related. Here, we review the emerging evidence regarding the roles of lipid and glucose metabolism in the modulation of β-amyloid, tau, and neurodegeneration during the pathogenesis of AD. Disruption of homeostasis of lipid and glucose metabolism affects production and clearance of β-amyloid and tau phosphorylation, and induces neurodegeneration. A more integrated understanding of the interactions among lipid, glucose, and protein metabolism is required to elucidate the pathogenesis of AD and to develop next-generation therapeutic options.

Keywords: cholesterol, diabetes, Aβ, tau, neurodegeneration

INTRODUCTION

Alzheimer disease (AD) is a progressive neurodegenerative disorder that is pathologically characterized by cerebral atrophy (particularly within the hippocampus and temporal and parietal lobes), senile plaques, neurofibrillary tangles (NFT), and neuronal cell death. Familial AD is caused by mutations in the amyloid precursor protein (Goate et al., 1991) and presenilin (Sherrington et al., 1995). These mutations cause overproduction of β-amyloid (Aβ), particularly its longer form, Aβ42, which aggregates in vitro (Jarrett et al., 1993) and forms the initial deposits in the brain (Iwatsubo et al., 1994) to form senile plaques. Apolipoprotein E (ApoE) is an essential regulator of brain cholesterol metabolism and is the strongest genetic risk factor for sporadic AD (Ashford, 2004). In addition to the ApoE gene, recent genome-wide association studies (GWAS) have identified novel risk genes for AD (Hollingworth et al., 2011; Olgiati et al., 2011), and some of these genes are closely associated with lipid metabolism. Moreover, numerous epidemiological studies have demonstrated that patients with diabetes in which glucose-energy metabolism is affected have a significantly higher risk of developing AD (Ott et al., 1999; Kopf and Frölich, 2009; Maher and Schubert, 2009; Matsuzaki et al., 2010). However, the roles of lipid metabolism and glucose-energy metabolism in the pathogenesis of AD are not fully understood (Figure 1). Here, we review the roles of lipid and glucose metabolism in modulating Aβ, tau, and neurodegeneration during the pathogenesis of AD (Table 1) and focus on novel therapy development.
THE ROLE OF LIPID METABOLISM IN \(\beta\)-AMYLOID MODULATION

ApoE is an essential regulator of cholesterol metabolism and is the strongest genetic risk factor for AD (Ashford, 2004). The ApoE\(\varepsilon\)4 allele increases the accumulation of senile plaques in patients with AD and in cognitively normal people (Reiman et al., 2009; Morris et al., 2010). Physiologically, ApoE is important for brain function through lipid transport of high-density lipoprotein-like particles (Raber et al., 2000; Ji et al., 2003; Bu, 2009; Filippini et al., 2009; Trachtenberg et al., 2011; Verghese et al., 2009; Wisdom et al., 2011). ApoE isoforms are believed to differentially regulate \(\beta\) aggregation and uptake, degradation, and phagocytic clearance in the brain, and each isoform has distinct functions in regulating brain lipid transport, glucose metabolism, and mitochondrial function (Koistinaho et al., 2004; Verghese et al., 2013).

Moreover, independently of ApoE\(\varepsilon\)4, high levels of low-density lipoprotein cholesterol and low levels of high-density lipoprotein cholesterol are associated with higher amyloid-PET indices (Reed et al., 2014). This observation may be partially explained by an in vitro experiment in which transient membrane cholesterol loading increased \(\beta\)42 secretion (Marquer et al., 2014). Interestingly, lipids also trigger the aggregation of \(\alpha\)-synuclein, a major component of Lewy bodies, by stimulating nucleation (Galvagnion et al., 2015). This evidence increases the possibility that lipids might promote protein aggregation.

In addition to the ApoE gene, recent GWAS studies have identified novel risk genes for AD (Hollingworth et al., 2011; Olgiati et al., 2011). These genes include bridging integrator 1 (BIN1), clusterin (CLU, also called apolipoprotein J), ATP-binding cassette transporter A7 (ABCA7), triggering receptor expressed on myeloid cells 2 (TREM2), and phosphatidylinositol-binding clathrin assembly protein (PICALM). CLU is a primary brain cholesterol transport lipoprotein and may behave similarly to ApoE (Calero et al., 1999; Yu and Tan, 2012). ABCA7 is involved in lipid homeostasis (Tanaka et al., 2011b). Deletion of ABCA7 increases \(\beta\) accumulation in amyloid precursor protein transgenic (APP Tg) mice through reduced phagocytic clearance of \(\beta\) (Kim et al., 2013). TREM2 regulates the microglial response through lipid sensing around the senile plaque in an AD mouse model (Wang et al., 2015). BIN1 is involved in endocytosis and membrane trafficking (Itoh and De Camilli, 2006) through phosphatidylinositol binding (Lee et al., 2002; Kojima et al., 2004) and also modulates APP trafficking in neurons (Chapuis et al., 2013). BIN1 expression is also observed in microglia, suggesting a role for BIN1 in \(\beta\) phagocytosis (Chapuis et al., 2013). PICALM also plays important roles in clathrin-mediated endocytosis (Dreyling et al., 1996) through phosphatidylinositol binding (Ford et al., 2001), suggesting involvement in APP trafficking (Xiao et al., 2012). Indeed, \(\gamma\)-secretase is endocytosed in a PICALM-dependent manner (Kanatsu et al., 2014). Interestingly, altering the rate of clathrin-mediated endocytosis of \(\gamma\)-secretase increases \(\beta\)42 production (Kanatsu et al., 2014). ApoE also could modulate \(\gamma\)-secretase cleavage of APP, though all three isoforms of \(\varepsilon\)2, \(\varepsilon\)3, and \(\varepsilon\)4, have similar effects (Irizarry et al., 2004).

Recent whole-exome sequencing and functional data indicate that carriers of PLD3 (phospholipase D3) coding variants have a two-fold increased risk for late-onset AD and that PLD3 influences APP processing (Cruchaga et al., 2014).

Although clinical studies have indicated that statins have no beneficial effect on cognitive function (McGuinness et al., 2014), statins administered in midlife might prevent AD in late life by modifying the genetic and non-genetic risk factors for AD (Sato et al., 2012; Shinohara et al., 2014). In experimental settings in vivo and in vitro, statins reduced the \(\beta\) level in the brain.
Lipid and glucose metabolism are associated with the modulation of β-amyloid and tau and neurodegeneration.

TABLE 1

Lipid Metabolism	APP/β trafficking/cleavage	Aβ clearance	Tau	Neurodegeneration/dementia
Cholesterol	+; Marquer et al., 2014; Reed et al., 2014	+; Degradation /uptake Phagocytic clearance	+; Michikawa, Ohm and Meske, 2006; Maccioni et al., 2010; Glöckner and Ohm, 2014; Shibuya et al., 2015	+; Saher and Stumpf, 2015
APOE	+; Irizary et al., 2004	+; Verghese et al., 2013; Koistinaho et al., 2004	+; Ohm et al., 1999	+; Belinson et al., 2008
BIN1	+; Itoh and De Camilli, 2006	+; Chapuis et al., 2013	+; Chapuis et al., 2013; Tan et al., 2013; Holler et al., 2014; Zhou et al., 2014	
CLU	+; Yu and Tan, 2012	+; Kim et al., 2013		
ABCA7	+; Kanatsu et al., 2014	+; Wang et al., 2015		
PICALM	+; Kanatsu et al., 2014	+; Wang et al., 2015		
TREM2	+; Cruchaga et al., 2014	+; Wang et al., 2015		
PLD3	+; Kanekiyo et al., 2013; Ramanathan et al., 2015	+; Tanaka et al., 2011a,b	+; Boimel et al., 2009; Lu et al., 2010	
Statin	+; Shinohara et al., 2010	+; Shinohara et al., 2010	+; Liu et al., 2009; Sato and Morishita, 2014	+; Sato and Morishita, 2014

GLUCOSE Metabolism

Diabetes	Glucose	+; Macauley et al., 2015
Insulin	+; Vekrellis et al., 2000; Shiiki et al., 2004	
AMPK	+; Maires-Coello et al., 2013	
GSK3β	+; Hanger et al., 1992; Yang et al., 1993	
Pioglitazone	+; Mandrekar-Colucci et al., 2012	
Metformin	+; Kickstein et al., 2010	

THE ROLE OF LIPID METABOLISM IN TAU MODULATION

Normal tau promotes the assembly and stabilization of microtubules. However, hyperphosphorylated tau sequesters normal tau and disrupts microtubules, forming NFT (Iqbal et al., 1994, 2009). In mice expressing mutant human tau, cellular cholesterol levels were higher in neurons affected by tau pathology (Glöckner and Ohm, 2014). Indeed, impaired cholesterol metabolism is involved in tau hyperphosphorylation (Michikawa, Ohm and Meske, 2006; Maccioni et al., 2010). Emerging data suggest that BIN1 modulates tau pathology in addition to Aβ (Chapuis et al., 2013; Tan et al., 2013; Holler et al., 2014; Zhou et al., 2014). BIN co-localizes and interacts with tau...
(Chapuis et al., 2013; Zhou et al., 2014). Therefore, BIN1 levels may correlate with NFTs in AD (Glennon et al., 2013; Holler et al., 2014). In addition to their effects on Aβ metabolism, statins suppress tau hyperphosphorylation induced by excess cholesterol in the brain (Lu et al., 2010) and also reduce NFTs in a tau pathology model (Boimel et al., 2009). Moreover, inhibition of cholesterol metabolism by blocking acyl-coenzyme A:cholesterol acyltransferase 1 activity reduces the amount of mutant human tau in neurons of triple transgenic mice (Shibuya et al., 2015). In comparison with ApoE3, the presence of the ApoE4 is reported to be associated with NFT formation (Ohm et al., 1999). These studies demonstrate that the regulation and dysregulation of cholesterol metabolism affect tau pathology in the brain.

THE ROLE OF LIPID METABOLISM IN NEURODEGENERATION MODULATION

As the largest pool of cholesterol resides in neuronal myelin membranes, disorders that impair sterol synthesis or intracellular trafficking of lipids in neurons cause hypomyelination and neurodegeneration (Saher and Stumpf, 2015). Glial lipid droplets induced by mitochondrial defects also promote neurodegeneration (Liu et al., 2015) suggesting a role for lipid metabolism in glial cells in neurodegeneration. Moreover, the human cortex demonstrates membrane protein oxidation (Granold et al., 2015) and altered phospholipid components during aging (Norris et al., 2015). Other than AD, impaired lipid metabolism has been reported in several neurodegenerative diseases. The huntingtin gene, which is causative for Huntington disease, also seems to play a regulatory role in lipid metabolism (Leoni and Caccia, 2015). Cholesterol metabolism impairment is proportion to the CAG repeat length and to the load of mutant huntingtin leading to neurodegeneration (Leoni and Caccia, 2015). Mucopolysacharidosis III type C, a progressive neurological pediatric disease, is caused by mutations in the heparan-α-glucosaminide N-acetyltransferase gene and leads to a deficiency in acetyl-CoA: α-glucosaminide N-acetyltransferase (Martins et al., 2015). These results further support the role of lipid metabolism in neurodegeneration. Although reversible, statins might transiently impair cognitive function, especially during the initial administration to patients older than 75 years (Orsi et al., 2001; King et al., 2003; Wagstaff et al., 2003). This effect is probably due in part to cholesterol’s modulation of NMDA receptor function (Korinek et al., 2015). Finally, activation of Aβ cascade in ApoE4 transgenic mice induces lysosomal activation and neurodegeneration resulting in marked cognitive deficits (Belinson et al., 2008). Taken together, these reports indicate that cholesterol metabolism is tightly linked to neurodegeneration.

THE ROLE OF LIPID METABOLISM IN Aβ AMYLOID MODULATION

Several neuropathological studies suggest that the magnitude of NFTs in the brain at autopsy is not different between AD patients with and without diabetes (Kalaria, 2009). However, one report suggests that insulin resistance is associated with higher tau levels in the cerebrospinal fluid (Starks et al., 2015). Moreover, animal studies show that tau phosphorylation is increased in diabetes (Clodfelder-Miller et al., 2006; Jolivalt et al., 2008; Ke et al., 2009; Kim et al., 2009; Qu et al., 2011). For example, tau phosphorylation is increased in db/db mice (Kim et al., 2009), streptozotocin-treated wild type mice (Clodfelder-Miller et al., 2006; Jolivalt et al., 2008; Qu et al., 2011), and mutant human tau mice (Ke et al., 2009). Importantly, in humans, tau phosphorylation sites observed in AD are also increased in the diabetic brain (Liu et al., 2009). Conversely, CSF tau predicts changes in brain glucose metabolism, in turn causing longitudinal cognitive changes (Dowling et al., 2015). An energy-sensor, AMP-activated kinase (AMPK) activation is increased in the AD brain and AMPK phosphorylates Tau (Mairet-Coello et al., 2013). GSK3 also induces tau phosphorylation (Hanger et al., 1992; Yang et al., 1993). Anti-diabetic drug, metformin induces protein phosphatase 2A activity and reduces tau phosphorylation in vitro and in animal models (Kickstein et al., 2013).
Therefore, glucose-energy metabolism is closely related to modulation of tau.

THE ROLE OF GLUCOSE-ENERGY METABOLISM IN NEURODEGENERATION MODULATION

Diabetes causes structural deficits in the brain (Sato and Morishita, 2014) indicating that glucose-energy metabolism modulates neurodegeneration. Even in young adults, hyperglycemia is associated with subtle brain injury and impaired attention and memory (Weinstein et al., 2015). Indeed, diabetes reduces the volume of the hippocampus (Moran et al., 2013; Roberts et al., 2014), gray (Garcia-Casares et al., 2014) and white matter (Moran et al., 2013). Gray matter loss occurs in the temporal, anterior cingulate, and frontal lobes (Moran et al., 2013; Garcia-Casares et al., 2014; Roberts et al., 2014; Erus et al., 2015), while white matter loss appears in the frontal and temporal regions (Moran et al., 2013). In patients with AD, gray matter loss occurs in the temporal lobe, hippocampus, entorhinal and parietal lobes (Braak and Braak, 1991; Thompson et al., 2003; Andrade-Moraes et al., 2013), and white matter loss occurs in the temporal region (Mann, 1991). These studies indicate that diabetes causes neurodegeneration in the frontal and temporal lobes and other regions (Sato and Morishita, 2014). The molecular mechanism by which diabetes modulates neurodegeneration has not been fully elucidated, though several possible mechanisms have been proposed. Disturbance of glucose metabolism by GLUT1 deficiency causes neurodegeneration in APP Tg mice (Winkler et al., 2015). Another link between glucose hypometabolism and the progression of AD is the O-GlcNAcylation of proteins (Zhu et al., 2014). Decreased O-GlcNAcylation occurs in AD, which suggests that glucose hypometabolism may impair the protective roles of O-GlcNAc in neurons and lead to neurodegeneration (Zhu et al., 2014). AMPK is an energy-sensor, and AMPK over-activation is sufficient to cause dendritic spine loss (Mairet-Coello et al., 2013). Disturbed mTOR signaling affected by glucose-energy metabolism also causes neurodegeneration through mitochondrial dysfunction and autophagy (Perluigi et al., 2015). An observational study suggests that pioglitazone treatment is associated with a reduced dementia risk in diabetes patients (Heneka et al., 2015). Metformin is also reported to reduce the risk of cognitive decline in diabetes patients (Ng et al., 2014), though other group showed an opposite effect (Moore et al., 2013). These studies indicate that the molecular mechanism by which the dysregulation of glucose-energy metabolism causes neurodegeneration should be targeted to develop novel dementia therapies.

SUMMARY

Recent large, long-term, randomized controlled trials suggest that a multidisciplinary intervention, including exercise and diet, could improve or maintain cognitive function in at-risk elderly people (Ngandu et al., 2015). Exercise and diet alter glucose and lipid metabolism in subjects. As reviewed here, disruption of homeostasis of lipid and glucose metabolism affects production and clearance of β-amyloid and tau phosphorylation, and induces neurodegeneration. Therefore, a more integrated understanding of the interactions among lipid, glucose, and protein metabolism will be required to elucidate the pathogenesis of AD and to develop next-generation therapeutic options.

ACKNOWLEDGMENTS

This work was supported in part by grants-in-aid from Japan Promotion of Science; the Japanese Ministry of Education, Culture, Sports, Science and Technology and the Japan Science and Technology Agency (MEXT26293167 and MEXT15K15272 to NS); a Takeda Science Foundation Research Encouragement Grant; a SENSHIN Medical Research Foundation Research Grant; a Novartis Foundation for Gerontological Research Award; and an annual research award grant from the Japanese Society of Anti-aging Medicine (to NS).

REFERENCES

Andrade-Moraes, C. H., Oliveira-Pinto, A. V., Castro-Fonseca, E., da Silva, C. G., Guimarães, D. M., Szczupak, D., et al. (2013). Cell number changes in Alzheimer’s disease relate to dementia, not to plaques and tangles. *Brain* 136, 3738–3752. doi: 10.1093/brain/awt273

Ashford, J. W. (2004). APOE genotype effects on Alzheimer’s disease onset and epidemiology. *J. Mol. Neurosci.* 23, 157–165. doi: 10.1385/JMN:23:3:157

Belinson, H., Lev, D., Masliah, E., and Michaelson, D. M. (2008). Activation of the amyloid cascade in apolipoprotein E4 transgenic mice induces lysosomal activation and neurodegeneration resulting in marked cognitive deficits. *J. Neurosci.* 28, 4690–4701. doi: 10.1523/JNEUROSCI.5633-07.2008

Boimel, M., Grigoriadis, N., Lourbopoulos, A., Touloumi, O., Rosenmann, D., Abramsky, O., et al. (2009). Statins reduce the neurofibrillary tangle burden in a mouse model of tauopathy. *J. Neuropathol. Exp. Neurol.* 68, 314–325. doi: 10.1097/NEN.0b013e31819ac5eb

Braak, H., and Braak, E. (1991). Neuropathological staging of Alzheimer-related changes. *Acta Neuropathol.* 82, 239–259. doi: 10.1007/BF00308809

Bu, G. (2009). Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. *Nat. Rev. Neurosci.* 10, 333–344. doi: 10.1038/nrn2620

Burns, M. P., Igbavboa, U., Wang, L., Wood, W. G., and Duff, K. (2006). Cholesterol distribution, not total levels, correlate with altered amyloid precursor protein processing in statin-treated mice. *Neuromolecular Med.* 8, 319–328. doi: 10.1085/nmm.8.3.319

Calero, M., Tokuda, T., Rostagno, A., Kumar, A., Zlokovic, B., Frangione, B., et al. (1999). Functional and structural properties of lipid-associated apolipoprotein J (clusterin). *Biochem. J.* 344(Pt 2), 375–383. doi: 10.1042/bj340375

Chapuis, J., Hansmannel, F., Gistelinck, M., Mounier, A., Van Cauwenbergh, C., Kolen, K. V., et al. (2013). Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. *Mol. Psychiatry* 18, 1225–1234. doi: 10.1038/mp.2013.1

Glodfelder-Miller, B. J., Zmijewska, A. A., Johnson, G. V., and Jope, R. S. (2006). Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. *Diabetes* 55, 3320–3325. doi: 10.2337/db06-0485

Zhu et al., 2014). Exercise and diet alter glucose and lipid metabolism in subjects. As reviewed here, disruption of homeostasis of lipid and glucose metabolism affects production and clearance of β-amyloid and tau phosphorylation, and induces neurodegeneration. Therefore, a more integrated understanding of the interactions among lipid, glucose, and protein metabolism will be required to elucidate the pathogenesis of AD and to develop next-generation therapeutic options.

ACKNOWLEDGMENTS

This work was supported in part by grants-in-aid from Japan Promotion of Science; the Japanese Ministry of Education, Culture, Sports, Science and Technology and the Japan Science and Technology Agency (MEXT26293167 and MEXT15K15272 to NS); a Takeda Science Foundation Research Encouragement Grant; a SENSHIN Medical Research Foundation Research Grant; a Novartis Foundation for Gerontological Research Award; and an annual research award grant from the Japanese Society of Anti-aging Medicine (to NS).
Kojima, C., Hashimoto, A., Yabuta, I., Hirose, M., Hashimoto, S., Kanahou, Y., et al. (2004). Regulation of Bin1 SH3 domain binding by phosphoinositides. *EMBO J.* 23, 4413–4422. doi: 10.1093/emboj/edh044

Köpf, D., and Frolich, L. (2009). Risk of incident Alzheimer's disease in diabetic patients: a systematic review of prospective trials. *J. Alzheimers Dis.* 16, 677–685. doi: 10.3233/JAD-2009-1011

Korinek, M., Vyklicky, V., Borovska, J., Licherova, K., Kaniakova, M., Krausova, B., et al. (2015). Cholesterol modulates open probability and desensitization of NMDA receptors. *J. Physiol.* 593, 2279–2293. doi: 10.1113/jphysiol.2014.288209

Kurinami, H., Sato, N., Shinohara, M., Takeuchi, D., Takeda, S., Shimamura, M., et al. (2008). Prevention of amyloid β-induced memory impairment by fluvastatin, associated with the decrease in amyloid β accumulation and oxidative stress in amyloid β injection mouse model. *Int. J. Mol. Med.* 21, 531–537. doi: 10.3892/ijmm.21.5.531

Lee, E., Marcucci, M., Daniell, L., Weisz, O. A., Ochoa, G. C., Farsad, K., et al. (2002). Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. *Science* 297, 1193–1196. doi: 10.1126/science.1071362

Leoni, V., and Caccia, C. (2015). The impairment of cholesterol metabolism in Huntington disease. *Biochim. Biophys. Acta* 1851, 1095–1105. doi: 10.1016/j.bbalip.2014.12.018

Liu, L., Zhang, K., Sandoval, H., Yamamoto, S., Jaiswal, M., Sanz, E., et al. (2012). Mechanisms mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer's disease. *J. Neurochem.* 111, 242–249. doi: 10.1111/j.1471-4159.2009.06320.x

Lu, F., Li, X., Suo, A. Q., and Zhang, J. W. (2010). Inhibition of tau phosphorylation and mitochondrial function. *Acta Neurol. Scand.* 121, 226–231. doi: 10.1111/j.1600-0404.2010.01026.x

Macleay, S. L., Stanley, M., Caesar, E. E., Yamada, S. A., Raichle, M. E., Perez, R., et al. (2015). Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo. *J. Clin. Invest.* 125, 2463–2467. doi: 10.1172/JCI79742

Maccioni, R. B., Farias, G., Morales, I., and Navarrete, L. (2010). The revitalized tau hypothesis on Alzheimer's disease. *Arch. Med. Res.* 41, 226–231. doi: 10.1016/j.arcmed.2010.03.007

Maher, P. A., and Schubert, D. R. (2009). Metabolic links between diabetes and Alzheimer's disease. *Expert Rev. Neurother.* 9, 617–630. doi: 10.1586/ern.09.18

Mairet-Coello, G., Courchet, J., Pieraut, S., Courchet, V., Maximov, A., and Polleux, F. (2013). The CAMK2A-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through Tau phosphorylation. *Neuron* 78, 94–108. doi: 10.1016/j.neuron.2012.02.003

Mandrekar-Colucci, S., Karlo, J. C., and Landreth, G. E. (2012). Apolipoprotein E isoforms and the development of low and high Braak stages of Alzheimer's disease-related lesions. *Acta Neuropathol.* 98, 273–280. doi: 10.1007/s004010051080

Ng, T. P., Feng, L., Yap, K. B., Lee, T. S., Tan, C. H., and Winblad, B. (2014). Long-term metformin usage and cognitive function among older adults with diabetes. *J. Alzheimers Dis.* 41, 61–68. doi: 10.3233/JAD-131901

Ngandu, T., Lehtisalo, J., Solomon, A., Levälahti, E., Ahtiluoto, S., Antikainen, R., et al. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. *Lancet* 385, 2255–2263. doi: 10.1016/S0140-6736(15)60461-5

Norris, S. E., Friedrich, M. G., Mitchell, T. W., Truscott, R. J., and Else, P. L. (2015). Human prefrontal cortex phospholipids containing docosahexaenoic acid increase during normal adult aging, whereas those containing arachidonic acid decrease. *Neurobiol. Aging* 36, 1659–1669. doi: 10.1016/j.neurobiolaging.2015.09.033

Ohm, T. G., and Meske, V. (2006). Cholesterol, statins and tau. *Acta Neurol. Scand.* 185, 93–101. doi: 10.1080/0001604060060962x

Olgiati, P., Politis, A. M., Papadimitriou, G. N., De Ronchi, D., and Serretti, A. (2011). Genetics of late-onset Alzheimer's disease: update from the alzgene database and analysis of shared pathways. *Int. J. Alzheimers Dis.* 2011:832379. doi: 10.4061/2011/832379

Orsi, A., Sherman, O., and Woldeselassie, Z. (2001). Simvastatin-associated memory loss. *Pharmacotherapy* 21, 767–769. doi: 10.1592/phco.21.7.767.34577

Ostrowski, S. M., Wilkinson, B. L., Golde, T. E., and Landreth, G. (2007). Statins reduce amyloid-β production through inhibition of protein isoprenylation. *J. Biol. Chem.* 282, 26832–26844. doi: 10.1074/jbc.M702602020

Ott, A., Stolk, R. P., van Harskamp, F., Pols, H. A., Hofman, A., and Breteler, M. M. (1999). Diabetes mellitus and the risk of dementia: the rotterdam study. *Neurology* 53, 919–1942. doi: 10.1212/WNL.53.19.9193

Papadopoulos, P., Tong, X. K., and Hamel, E. (2014). Selective benefits of simvastatin in bitransgenic APPSwe, Ind/TGf-β1 mice. *Neurobiol. Aging* 35, 203–212. doi: 10.1016/j.neurobiolaging.2013.07.010

Perluigi, M., Di Domenico, F., and Butterfield, D. A. (2015). mTOR signaling in aging and neurodegeneration: at the crossroad between metabolism dysfunction and impairment of autophagy. *Neurobiol. Dis.* 67, 201–212. doi: 10.1016/j.nbd.2015.03.014. [Epub ahead of print].

Phiel, C. J., Wilson, C. A., Lee, V. M., and Klein, P. S. (2003). GSK-3α regulates production of Alzheimer's disease amyloid-β peptides. *Nature* 423, 435–439. doi: 10.1038/nature01640

Qu, Z., Jiao, Z., Sun, X., Zhao, Y., Ren, J., and Xu, G. (2011). Effects of streptozotocin-induced diabetes on tau phosphorylation in the rat brain. *Brain Res.* 1383, 300–306. doi: 10.1016/j.brainres.2011.01.084

Raber, J., Wong, D., Yu, Q. G., Buttini, M., Mahley, R. W., Pitas, R. E., et al. (2009). Apolipoprotein E and cognitive performance. *Nature* 404, 352–354. doi: 10.1038/35006165
Son, S. M., Song, H., Byun, J., Park, K. S., Jang, H. C., Park, Y. J., et al. (2012). Lipid and glucose metabolism in AD. *Front. Aging Neurosci.* 4, 321–331. doi: 10.3389/fnagi.2012.00304

Reimann, M. E., Kung, K., Liu, X., Bandy, D., Yu, M., Lee, W., et al. (2009). Fibrillar amyloid-β burden in cognitively normal people at 3 levels of genetic risk for Alzheimer's disease. *Proc. Natl. Acad. Sci. U.S.A.* 106, 6820–6825. doi: 10.1073/pnas.0900345106

Roberts, R. O., Knopman, D. S., Przybelski, S. A., Mielke, M. M., Kantarci, K., Preboske, G. M., et al. (2014). Association of type 2 diabetes with brain atrophy and cognitive impairment. *Neurology* 82, 1132–1141. doi: 10.1212/WNL.0000000000010269

Saher, G., and Stumpf, S. K. (2015). Cholesterol in myelin biogenesis and hypomyelinating disorders. *Biochim. Biophys. Acta* 1851, 1083–1094. doi: 10.1016/j.bbalip.2015.02.010

Sato, N., and Morishita, R. (2013a). Plasma apoE influences amyloid-β clearance despite minimal apoE/Aβ association in physiological conditions. *Proc. Natl. Acad. Sci. U.S.A.* 110, E1807–E1816. doi: 10.1073/pnas.1220484110

Sato, N., and Morishita, R. (2013b). Roles of vascular and metabolic components in cognitive dysfunction of Alzheimer disease: short- and long-term modification by non-genetic risk factors. *Front. Aging Neurosci.* 5:64. doi: 10.3389/fnagi.2013.00064

Sato, N., and Morishita, R. (2014). Brain alterations and clinical symptoms of dementia in diabetes: apoE-dependent and independent mechanisms. *Front. Endocrinol.* (Lausanne) 5:143. doi: 10.3389/fendo.2014.00143

Sato, N., Shimohara, M., Rakugi, H., and Morishita, R. (2012). Dual effects of statins on Aβ metabolism: upregulation of the degradation of APP-CTF and Aβ clearance. *Neurodegener. Dis.* 10, 305–308. doi: 10.1159/000334534

Sahni, P. B., Castellano, J. M., Garai, K., Wang, Y., Jiang, H., Shah, A., et al. (2013). ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. *Proc. Natl. Acad. Sci. U.S.A.* 110: E1807–E1816. doi: 10.1073/pnas.1220484110

Verghese, P. B., Castellano, J. M., Garai, K., Wang, Y., Jiang, H., Shah, A., et al. (2013). ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. *Proc. Natl. Acad. Sci. U.S.A.* 110:E1807–E1816. doi: 10.1073/pnas.1220484110

Trachtenberg, A. J., Filippini, N., Cheseeman, J., Duff, E. P., Neville, M. J., Ebmeier, K. P., et al. (2011). The effects of APOE on brain activity do not simply reflect the risk of Alzheimer's disease. *Neurobiol. Aging* 33, e161–e168. doi: 10.1016/j.neurobiolaging.2010.11.011

Vekrellis, K., Ye, Z., Qu, W. Q., Walsh, D., Hartley, D., Chesneau, V., et al. (2000). Neurons regulate extracellular levels of amyloid β-protein via proteolysis by insulin-degrading enzyme. *J. Neurosci.* 20, 1657–1665.

Verghese, P. B., Castellano, J. M., Garai, K., Wang, Y., Jiang, H., Shah, A., et al. (2013). ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. *Proc. Natl. Acad. Sci. U.S.A.* 110:E1807–E1816. doi: 10.1073/pnas.1220484110

Wagstaff, L. R., Mitton, M. W., Arivick, B. M., and Doraissamy, P. W. (2003). Stain-associated memory loss: analysis of 60 case reports and review of the literature. *Pharmacotherapy* 23, 871–880. doi: 10.1592/phco.23.7.871.32720

Wang, Y., Cella, M., Mallinson, K., Ulrich, J. D., Young, K. L., Robinette, M. L., et al. (2015). TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. *Cell* 160, 1061–1071. doi: 10.1016/j.cell.2015.01.049

Weinstein, G., Maillard, P., Himali, J. J., Beiser, A. S., Au, R., Wolf, P. A., et al. (2015). Glucose indices are associated with cognitive and structural brain measures in young adults. *Neurology* 84, 2329–2337. doi: 10.1212/WNL.00000000001655

Winkler, E. A., Nishida, Y., Sagare, A. P., Rege, S. V., Bell, R. D., Perlmuter, D., et al. (2015). GLUT1 reductions exacerbate Alzheimer’s disease vascular-neuronal dysfunction and degeneration. *Nat. Neurosci.* 18, 521–530. doi: 10.1038/nn.3966

Wisdom, N. M., Callahan, J. L., and Hawkins, K. A. (2011). The effects of apolipoprotein E on non-impaired cognitive functioning: a meta-analysis. *Neurobiol. Aging* 32, 63–74. doi: 10.1016/j.neurobiolaging.2009.02.003

Xiao, Q., Gil, S. C., Yan, P., Wang, Y., Han, S., Gonzales, E., et al. (2012). Role of phosphatidylinositol clathrin assembly lymphoid-myeloid leukemia (PICALM) in intracellular amyloid precursor protein (APP) processing and amyloid plaque pathogenesis. *J. Biol. Chem.* 287, 21279–21289. doi: 10.1074/jbc.M111.383756

Yang, S. D., Song, J. S., Yu, J. S., and Shah, S. G. (1993). Protein kinase FA/GSK-3 β phosphorylates tau on Ser235-Pro and Ser404-Pro that are abnormally phosphorylated in Alzheimer’s disease brain. *J. Neurochem.* 61, 1742–1747. doi: 10.1111/j.1471-4159.1993.tb09811.x
Yu, J. T., and Tan, L. (2012). The role of clusterin in Alzheimer's disease: pathways, pathogenesis, and therapy. *Mol. Neurobiol.* 45, 314–326. doi: 10.1007/s12035-012-8237-1

Zhou, Y., Hayashi, I., Wong, J., Tugusheva, K., Renger, J. J., and Zerbinatti, C. (2014). Intracellular clusterin interacts with brain isoforms of the bridging integrator 1 and with the microtubule-associated protein Tau in Alzheimer’s disease. *PLoS ONE* 9:e103187. doi: 10.1371/journal.pone.0103187

Zhu, Y., Shan, X., Yuzwa, S. A., and Vocadlo, D. J. (2014). The emerging link between O-GlcNAc and Alzheimer disease. *J. Biol. Chem.* 289, 34472–34481. doi: 10.1074/jbc.R114.601351

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Sato and Morishita. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.