A tight lower bound for convexly independent subsets of the Minkowski sums of planar point sets

Citation for published version (APA):
Bilka, O., Buchin, K., Fulek, R., Kiyomi, M., Okamoto, Y., Tanigawa, S., & Tóth, C. D. (2010). A tight lower bound for convexly independent subsets of the Minkowski sums of planar point sets. The Electronic Journal of Combinatorics, 17(1), N35-1/4.

Document status and date:
Published: 01/01/2010

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 10. Sep. 2020
A tight lower bound for convexly independent subsets of the Minkowski sums of planar point sets

Ondřej Bílka† Kevin Buchin‡ Radoslav Fulek§ Masashi Kiyomi¶ Yoshio Okamoto∥ Shin-ichi Tanigawa** Csaba D. Tóth††

Submitted: Jul 31, 2009; Accepted: Oct 13, 2010; Published: Oct 29, 2010
Mathematics Subject Classification: 52C35, 52A10

Abstract
Recently, Eisenbrand, Pach, Rothvoß, and Sopher studied the function $M(m, n)$, which is the largest cardinality of a convexly independent subset of the Minkowski sum of some planar point sets P and Q with $|P| = m$ and $|Q| = n$. They proved that $M(m, n) = O(m^{2/3}n^{2/3} + m + n)$, and asked whether a superlinear lower bound exists for $M(n, n)$. In this note, we show that their upper bound is the best possible apart from constant factors.

1 Introduction

Recently, Eisenbrand, Pach, Rothvoß, and Sopher [1] studied the function $M(m, n)$, which is the largest cardinality of a convexly independent subset of the Minkowski sum of some planar point sets P and Q with $|P| = m$ and $|Q| = n$. They proved that $M(m, n) = O(m^{2/3}n^{2/3} + m + n)$. They asked whether a superlinear lower bound exists for $M(n, n)$. In this note, we show that their upper bound is the best possible apart from constant factors.
$O(m^{2/3}n^{2/3} + m + n)$, and asked whether a superlinear lower bound exists for $M(n, n)$. The quantity $M(n, n)$ gives an upper bound for the largest convexly independent subset of $P \oplus P$, and it is related to the convex dimension of graphs, proposed by Halman, Onn, and Rothblum [3]. Figure 1 shows an example. In this note, we show that the upper bound presented in [1] is the best possible apart from constant factors.

Theorem 1. For every $m, n \in \mathbb{N}$, there exist point sets $P, Q \subseteq \mathbb{R}^2$ with $|P| = m, |Q| = n$ such that the Minkowski sum $P \oplus Q$ contains a convexly independent subset of size $\Omega(m^{2/3}n^{2/3} + m + n)$.

2 Definitions

The *Minkowski sum* of two sets $P, Q \subseteq \mathbb{R}^d$ is defined as $P \oplus Q = \{p + q \mid p \in P, q \in Q\}$. A point set $P \subseteq \mathbb{R}^d$ is *convexly independent* if every point in P is an extreme point of the convex hull of P.

3 Basic idea

Let n and m be integers. Let P be a planar point set that maximizes the number of point-line incidences between m points and n lines. Erdős [2] showed that for $m, n \in \mathbb{N}$, there exist a set P of m points and a set L of n lines in the plane with $\Omega(m^{2/3}n^{2/3} + m + n)$ point-line incidences. A *point-line incidence* is a pair of a point p and a line ℓ such that $p \in \ell$ (that is, p lies on ℓ). Szemerédi and Trotter [6] proved that this bound is the best possible, confirming Erdős’ conjecture (see [4] for the currently known best constant coefficients).

Sort the lines in L by the increasing order of their slopes (break ties arbitrarily). Denote by P_i the set of points in P that are incident to the ith line in L. Consider a polygonal chain C consisting of $|L|$ line segments such that the ith segment s_i has the same slope as the ith line of L. Since we sorted the lines in L by their slopes, C is a (weakly) convex chain. Set the length of each line segment to be at least the diameter of the point set P. The chain C has $n + 1$ vertices including two endpoints. Now we can
describe our point set $Q = \{q_1, \ldots, q_n\}$. The ith point q_i is placed on the plane so that the points in $P_i \oplus \{q_i\}$ all lie on s_i. This concludes the construction of Q. See Figure 2 for an illustration.

The number of points in $P \oplus Q$ that lie on C is $\Omega(m^{2/3}n^{2/3} + m + n)$ since if $p \in P$, then $p + q_i \in s_i \subseteq C$. Thus in the above construction, $(P \oplus Q) \cap C$ is a subset of $P \oplus Q$ that contains $\Omega(m^{2/3}n^{2/3} + m + n)$ points in (weakly) convex position.

4 Fine tuning

The point set $(P \oplus Q) \cap C$ is not necessarily convexly independent for two reasons:

1. Some of the lines in L may be parallel.
2. For each i, the points in $(P \oplus Q) \cap s_i$ are collinear.

We next describe how to overcome these issues.

For the first issue, we apply a projective transformation to P and L (see e.g. [5]). A generic projective transformation maps P to a set of real points, and L to a set of pairwise nonparallel lines. Since projective transformations preserve incidences, the number of incidences remains $\Omega(m^{2/3}n^{2/3} + m + n)$. By applying a rotation, if necessary, we may assume that no line in L is vertical. Therefore, without loss of generality we may assume that all lines of L have different non-infinite slopes. As before we sort the lines in L in the increasing order by their slopes.

For the second issue, we apply the following transform to P and L (after the projective transformation and the rotation above): Each point (x, y) in the plane is mapped to $(x, y + \varepsilon x^2)$ for a sufficiently small positive real number ε. Then the ith line $y = a_i x + b_i$ is mapped to the convex parabola $y = \varepsilon x^2 + a_i x + b_i$. By scaling the whole configuration, we may assume that the x-coordinates of all points of P are properly between 0 and 1. Then, the gradient of the ith parabola is a_i at $x = 0$ and $a_i + 2\varepsilon$ at $x = 1$. Let ε be so small that the intervals $[a_i, a_i + 2\varepsilon]$ are all disjoint: Namely, the gradient of the ith parabola at $x = 1$ is smaller than the gradient of the $(i + 1)$st parabola at $x = 0$ (or more specifically it is enough to choose $\varepsilon = \min\{(a_i - a_{i-1})/3 \mid i = 2, \ldots, n\}$). Therefore, instead of constructing a convex chain by line segments, we construct a convex chain C consisting
of convex parabolic segments: The ith segment is a part of an expanded copy of the ith parabola (containing the piece between $x = 0$ and $x = 1$). From the discussion above, these parabolic segments together form a strictly convex chain and we can construct the point set Q in the same way as the previous case. Thus, for these P and Q, the set $(P \oplus Q) \cap C$ is a convexly independent subset in $P \oplus Q$ of size $\Omega(m^{3/2}n^{3/2} + m + n)$. Q.E.D.

5 An open problem

Let $M_k(n)$ denote the maximum convexly independent subset of the Minkowski sum $\bigoplus_{i=1}^{k} P_i$ of k sets $P_1, P_2, \ldots, P_k \subset \mathbb{R}^2$, each of size n. Our lower bound in the case $m = n$, combined with the upper bound in [1] shows that $M_2(n) = \Theta(n^{4/3})$. Determine $M_k(n)$ for $k \geq 3$.

References

[1] F. Eisenbrand, J. Pach, T. Rothvoß, and N. B. Sopher. Convexly independent subsets of the Minkowski sum of planar point sets. The Electronic Journal of Combinatorics 15 (2008), N8.

[2] P. Erdős. On a set of distances of n points. The American Mathematical Monthly 53 (1946) 248–250.

[3] N. Halman, S. Onn, and U. G. Rothblum. The convex dimension of a graph. Discrete Applied Mathematics 155 (2007) 1373–1383.

[4] J. Pach, R. Radoicic, G. Tardos, and G. Tóth. Improving the crossing lemma by finding more crossings in sparse graphs. Discrete and Computational Geometry 36:4 (2006) 527–552.

[5] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer Verlag, New York, 1985.

[6] E. Szemerédi and W. Trotter, Jr. Extremal problems in discrete geometry. Combinatorica 3 (1983) 381-E92.