Hyperhomocysteinemia accompany with metabolic syndrome increase the risk of left ventricular hypertrophy in rural Chinese

CURRENT STATUS: ACCEPTED

BMC Cardiovascular Disorders ■ BMC Series

Shasha Yu
the first hospital of china medical university

Yintao Chen
The first hospital of China medical university

Hongmei Yang
The first hospital of China Medical university

Xiaofan Guo
The First hospital of China Medical university

Liqiang Zheng
Shengjing Hospital of China Medical University

Yingxian Sun
China Medical University First Hospital

sunyingxian12@aliyun.com Corresponding Author
ORCiD: https://orcid.org/0000-0003-0592-2058

DOI:
10.21203/rs.2.17102/v1

SUBJECT AREAS
Cardiac & Cardiovascular Systems

KEYWORDS
Hyperhomocysteinemia; metabolic syndrome; left ventricular hypertrophy; predictor; rural
Abstract

Background: To investigate the influence of hyperhomocysteinemia (HHcy) and metabolic syndrome (MetS) on left ventricular hypertrophy (LVH) in residents in rural Northeast China. Methods: We performed a cross-sectional baseline data analysis of 6837 subjects (mean age: 54±10 years) recruited from a rural area of China. Anthropometric indicators were measured according to standard methods. MetS was defined by the modified ATP III criteria. HHcy was defined according to the WHO standard: an Hcy level >15 μmol/L representing HHcy. Four groups were defined: non-HHcy & non-MetS, HHcy & non-MetS, MetS & non-HHcy and HHcy & MetS. Results: The left ventricular mass index for height2.7 (LVMH2.7) in both sexes was significantly higher in the HHcy & MetS group than in the non-HHcy & non-MetS group (females: 51.23±16.34 vs. 40.09±10.55 gm-2.7, P<0.001; males: 48.67±12.24 gm-2.7 vs. 42.42±11.38 gm-2.7, P<0.001). A similar result was observed in those groups when using the left ventricular mass index for body surface area (LVMI) to define LVH (females: 103.58±31.92 gm-2 vs. 86.63±20.47 gm-2, P<0.001; males: 106.10±24.69 gm-2 vs. 98.16±23.29 gm-2, P<0.001). The results of multiple regression analysis indicated that the HHcy & MetS group had a higher risk of LVH than the other three groups (OR: 1.628 for LVMI, P<0.001, OR: 2.433 for LVMH2.7, P<0.001). Moreover, subjects in the HHcy & non-MetS group OR (95% CI): 1.297 (1.058, 1.591) for LVMI, P<0.05; OR (95% CI): 1.248 (1.044, 1.492) for LVMH2.7, P<0.05 also had a statistically greater risk of LVH than subjects in the non-HHcy & non-MetS group. The HHcy & non-MetS group was also found to be significantly and independently associated with LVH. Conclusion: Hyperhomocysteinemia has an independent effect on LVH. The combined effect of MetS and hyperhomocysteinemia might increase the strength of the abovementioned effects.

Background

Hyperhomocysteinemia has been reported to be relevant in cardiovascular diseases linked to atherosclerosis and has been considered to be an independent marker of many cardiovascular risk factors [1]. Zhao J and colleagues claimed that the combination of hyperhomocysteinemia and hyperuricemia could result in accelerated atherosclerosis [2]. In addition, Zhang Z and colleagues confirmed that the coexistent of hyper-homocysteinemia and elevated blood pressure increased the
risk of early atherosclerosis in carotid artery [3]. The possible mechanisms include changing the total antioxidant status and regenerating endothelial cell or decreasing the synthesis of high-density lipoprotein [4].

Left ventricular hypertrophy (LVH) has already been confirmed to be independently correlated with deterioration of health and increasing risk of cardiovascular death. Additionally, LVH statistically elevated the risk of myocardial infarction, dysfunction of heart, stroke and sudden cardiac death [5]. One study claimed that homocysteine levels were explicitly associated with cardiac systolic function in subjects with CAD [6]. Furthermore, Nesrin Sarıman et al. reported that, in all OSAS groups, homocysteine levels were elevated and accompanied by echocardiographic changes such as left ventricular (LV) hypertrophy and cardiac diastolic dysfunction [7]. All of the previous studies aiming to confirm the association between left ventricular hypertrophy and homocysteine were conducted in patients with specific clinical diseases. There is a lack of research that estimates the possible link between homocysteine and left ventricular hypertrophy among the general population. It is worthy to estimate this relationship in a general population with various backgrounds in terms of genetic predisposition, food customs, and environments different from those of previous studies. In rural China, the prevalence of MetS is 39.0% [8]. The relationship between MetS and LVH has already been reported [9, 10]. An epidemiological study named PAMELA (Pressioni Arteriose Monitorate E Loro Associazioni) confirmed that elevation of left ventricular mass index and increased rate of LVH is the major characters of MetS associated heart problems. Metabolic syndrome markedly increases the risk of CV and all-cause death (71% and 37%, respectively) [11]. However, whether the coexistence of HHcy and MetS has worse deteriorative effect on cardiac remodeling remains to be confirmed. We conducted research in rural Northeast China which enrolled general population in order to estimate whether HHcy is linked to LVH and whether HHcy combined with the presence of MetS might increase the risk of LVH.

Methods

Study population

In our previous paper, we described the characteristics of the study in detail [8]. From January 2001
to August 2003, we enrolled residents older than 35 years in order to evaluate the prevalence rate, morbidity rate and historical process of CVD in villages of Liaoning Province in the Northeast area of China. The excluded criteria has been mentioned previously [12].

Pregnant subjects and those who had a mental disorder or malignant tumors were excluded in the present research. We asked 14016 eligible residents from different villages who aged more than 35 years to attend our research. Of the 14016 residents, 85.3% responded, agreed to participate and completed the research. This research was proved by the Ethics Committee of the Chinese Medical University (China Shen Yang, AF-SDP-07-1,0-01). We performed the research procedures following the ethically normative criteria. Participants’ welfare, medical plans and confidentiality agreements associated to their contact details have been informed ahead of the research starting. Then written consent form was given to the participants. In the present study report, we only used the data from participants who were older than 65 years, so the final sample count was 6837 (3150 men and 3687 women).

Data Collecting and Measurements

Both cardiologist and nurses with skilled training will sit face to face with study subjects during the interview and retrieved data using a standardized questionnaire. An organized training meeting from training center was held to qualified investigators [8, 12]. After the training, trainers will have a test to figure out whether they are qualified as investigators to collect data. More guidance and backed up will be supplied to them during the investigation. The specific aspects acquired in the interview has been mentioned before, like family annual income, food habits, socioeconomic characteristics [8, 12]. The central steering committee and quality control committee are responsible to guide this study. In this research, we evaluated subject’s education situation, sleep during and annual family income and the specific categories have been described. We also estimated subjects’ daily frequency of beans or soy products consumption and tea consumption as previously reported [8]. As for blood pressure (BP) measurement, we used a standard protocol as many guidelines have recommended. Participants should be at rest for at least five minutes and without caffeinated drinks or exercise before BP measurement. Omron Healthcare automatic electronic sphygmomanometers (HEM-907; Omron
Healthcare, Kyoto, Japan) were used to measure participants BP. We used the average of three times BP measurements in all the analyses. While measuring height and weight, we asked subjects to wear light clothes and take off shoes. We took down the measurement of height and weight to the accuracy of 0.1 cm and 0.1 kg. Subjects’ waist circumference (WC) were also measured with nonelastic tape at the umbilicus (0.1 cm). BMI = body weight (kg)/ height (m) ^2.

Participants were required to fast at least twelve hours and taken fasting blood specimens in the morning. As previous described, we used enzymatic analysis to exam total cholesterol (TC), triglycerides (TGs), fasting blood glucose (FPG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) by an automatic biochemical analyzer and biochemical indicators [8, 9]. Technician calibrated the laboratory equipment before using and the specimen analyses were repeated by using blind specimens.

We took M-mode measurements at end diastole and end systole according to the American Society of Echocardiography (ASE) recommendations [13]. The detail of the procedures has been reported previously [8]. Average five consecutive cardiac cycles were used to calculate the echocardiographic data. A single cardiologist read those images under the circumstance that without knowing the subjects’ clinical characteristics.

Definitions

At present, there is no uniform definition of HHcy. According to the WHO standard, the average level of Hcy for healthy adults is 5–15 μmol/L, with an Hcy level >15 μmol/L representing HHcy [14]. MetS was diagnosed according to the modified NCEP ATP III criteria. At least 3 or more of the following 5 components were needed to diagnose MetS:

Components	Criteria
Elevated WC	≥ 90 cm (Male);
Elevated TG	≥ 80 cm (Female);
Reduced HDL-C	> 150 mg/dL (1.7 mmol/L)
Hypertension or elevated BP	< 40 mg/dL or 1.04 mmol/L (Male)
Diabetes or elevated FPG	< 50 mg/dL or 1.29 mmol/L (Female)
	≥ 130/85 mmHg
	≥ 5.6 mmol/L

WC ≥ 88 cm for females and WC ≥ 102 cm for males was defined as abdominal obesity [16].

TC ≥ 6.21 mmol/L (240 mg/dL) means high TC while high LDL-C was diagnosed as the concentration of LDL-C ≥ 4.16 mmol/L (160 mg/dL). According to the WHO criteria, FPG ≥ 7 mmol/L (126 mg/dL) and/or being on treatment for diabetes was diagnosed as diabetes [17].
The LVM was calculated according to the formula of Devereux and Reichek [18]:

\[
LVM (g) = 1.04 \times [(LV \text{ end-diastolic dimension (LVEDD))} + \text{end-diastolic interventricular septum thickness (IVSd}) + \text{end-diastolic LV posterior wall septum thickness (PWd)\})^3 \times \text{LVEDD}^3 - 13.6
\]

* LVEDD is the end-diastolic LV internal diameter; # IVSd is the ventricular septal thickness; $ PWd is the posterior LV wall thickness

It was indexed by both body surface area (LVMI) and by height raised to a power of 2.7 (LVMH^{2.7}), as suggested by De Simone et al. [18].

We used cutoff point of 51 gm^{-2.7} in either sex to separate normal left ventricular thickness from LVH due to its value was related to prognostics [19]. In line with the ASE recommendations, high LVMI was defined as LVMI larger than 115 g/m^2 for male patients and larger 95 g/m^2 for female patients. Participants who were never smoking or drinking defined as never smokers or never drinker and who are smoking presently were defined as current smokers or current drinkers. Physical activity was evaluated using questions that have been described in many previous studies which were similar to those used and validated in the “Seven Countries Study” [20].

Statistical Analysis

Continuous variables which were expressed using standard deviations and averages and categorical variables which were expressed using percentages and numbers were calculated using a nonparametric test, ANOVA, Student’s t-test, or the \(\chi^2 \)-test, as appropriate, to assess the differences among diverse groups. Multivariate logistic regression analysis was used to estimate the independent elements correlated with cardiac metabolic syndrome. The corresponding 95% confidence intervals (CIs) and odds ratios (ORs) were calculated to infer the possible relationship. Basic multivariate logistic regression models were used to estimate the relationship among different social hierarchies. All statistical analyses were carried out using SPSS version 17.0 software (SPSS Inc., Chicago, IL, US), and P values <0.05 were deemed to be of statistical value.

Results

The average age of the total eligible participants was 54.42 ± 10.73 years. The proportion of male and female was 46.1% and 53.9% separately. Of the 6837 subjects, 696 (10.2%) had diabetes, and
3576 (52.3%) had hypertension. The median homocysteine level was 17.34 μmol/L (IQR: 17.05-17.64). The proportion of hyperhomocysteinemia was 41.3% (2821/6837). Among the study subjects 2660 participants (38.9%) had MetS while 1057 (39.7%) had hyperhomocysteinemia (Table 1).

In Table 1, it shown the characteristics of the participants according to the elevated homocysteine level and MetS. The participants in the non-HHcy coexistent with non-MetS subgroups were younger in compared with the other groups. Participants with HHcy alone and with coexistent of HHcy and MetS were more likely to be men than the other group.

In hyperhomocysteinemia group, the rate of smoking and drinking habit were relatively higher compared with the rest groups, whereas the proportion of subjects with higher physical activity decreased in the normal group. Participants who have solely MetS have increased rate of elevated fast glucose levels, diabetes and abdominal obesity than those in the reference group. Coexistent of HHcy and MetS suffered a significantly higher proportion of elevated triglyceride levels, LDL-C and TC and exhibited a higher prevalence of high total cholesterol, high trigly, high LDL-C, low HDL-C and hyperuricemia than those in the reference group.

Fig 1. shows that, in the HHcy alone group and the HHcy and MetS group, the highest prevalence of LVH was in the 55-65 age group in both sexes (30.2% for males; 27.7% for females vs. 35.4% for males; 40.4% for females). For the MetS alone group, the highest prevalence was in the 45-55 age group in males (33.9%) and in the 55-65 age group in females (35.8%). Males with HHcy alone and females with MetS alone had the lowest prevalence in the 35-45 age group (19.4%, 5.9%). Similarly, females with HHcy alone and males with MetS alone had the lowest prevalence in the 45-55 age group (7.8%, 8.6%). In the MetS alone group, both males and females had the lowest rate in the >65 age group (10.2%, 14.7%).

The prevalence of LVH in the total subgroups exhibited in Figure 2. The highest proportion of LVH in males (19.1% for LVMI; 31.6% for LVMH2.7) and females (37.3% for LVMI; 40.6% for LVMH2.7) was existed in different subgroups with coexistent of HHcy and MetS, showing a descending trend in females by the subgroup with MetS alone (23.5% for LVMI; 34.0% for LVMH2.7) and the subgroup with
HHcy alone (17.5% for LVMI; 21.5% for LVMH). In male, the rate of LVH increased in the HHcy alone group (14.8%) in comparing with the MetS alone group (13.9%) according to the LVMI definition, and using the LVMH criteria, there were opposite results (21.0% vs. 30.7%).

The cardiac indexes of the study participants subdivided with the presence or absence of HHcy or MetS are shown in Table 2. The data show that the highest values of all cardiac indexes were found in the group with both HHcy and MetS (all P<0.001). Except for the end-diastolic LV internal dimension and LV mass indexed for BSA, all mean values gradually increased according to the following sequence: the HHcy alone group, the MetS alone group and the HHcy and MetS group.

Table 3 shows the effect of coexistence of HHcy and MetS on LVH with the crude and adjusted ORs and 95% CIs. The risk of LVH increased in the group with HHcy (OR: 1.175, 95% CI: 1.002-1.377) and with MetS (OR: 1.615, 95% CI: 1.393-1.873) and showed highest risk in the coexistent of HHcy and MetS (OR: 1.628, 95% CI: 1.364-1.944) after adjusting for all confounders. Similar associations were observed when using LVMH to diagnose LVH. The risk of the presence of LVH was significantly augmented in the group with HHcy (OR: 1.248, 95% CI: 1.044-1.492) and MetS (OR: 2.567, 95% CI: 2.174-3.032) and in the group with coexistent of HHcy and MetS (OR: 2.433, 95% CI: 2.019-2.932) compared with the reference group. The interaction of HHcy and MetS had the greatest risk effect on LVH according to the different diagnostic criteria.

Discussion

The current study reconfirmed that MetS alone increased the risk of LVH in rural Northeast China. Similarly, we demonstrated that HHcy alone was associated with a higher risk of LVH than the other groups. We observed the greatest interaction effect of the HHcy and MetS group on LVH compared with the non-HHcy & non-MetS group and the HHcy or MetS alone group. Therefore, the results from the present study support the hypothesis that HHcy may enhance the risk of developing LVH among MetS residents.

The prevalence of HHcy in the present study was 41.3% in the general population (59.3% for males and 25.9% for women). These data were significantly higher than the overall pooled prevalence in China (27.5%) [21]. Although studies have claimed that the prevalence of HHcy is higher in northern
areas (34.4%), the results from our study still showed an even higher rate. In addition, the prevalence was higher than many other places in the world, such as Brazil [22], Lebanon [23], Korea [24] and West Africa [25]. One of the major possible reasons for the high prevalence of HHcy might be the different dietary habits in rural Northeast China. In rural Northeast China, especially during the winter season, the major vegetable intake is pickled cabbage, which is easy to store and does not easily deteriorate [8]. Since the pickling method would easily destroy the folate and vitamin B12 in vegetables, it ultimately results in HHcy. Another reason that could possibly explain this might be the relatively higher prevalence of alcohol consumption in the HHcy group than in the other groups. As shown in Table 1, residents with hyperhomocysteinemia with and without metabolic syndrome had a higher prevalence of alcohol consumption than residents without hyperhomocysteinemia. Choi SH and colleagues reported that hyperhomocysteinemia is related to heavy alcohol consumption and low serum levels of folate and vitamin B12 in patients who have had a stroke [26]. Similarly, Coppola M confirmed that plasma homocysteine concentration is associated with craving hazardous and harmful patterns of alcohol consumption [27].

Previously, there are studies estimate the relationship between homocysteine and LVH. Kharlamova UV and colleagues claimed that a positive relationship was found between the concentrations of homocysteine and LV mass (LVM), suggesting that homocysteine has an unfavorable effect on LV structure and function [30]. Peer M and colleagues also determined that homocysteine as well as CRP was significantly positively associated with LVM and LVMI in females [29]. Many of the previous studies confirmed the possible relationship between homocysteine and LVH. However, all of those previous studies enrolled subjects with programmed hemodialysis or with hypertension, and the coexistence of other conditions or diseases may change the effect of homocysteine on LVH. In the Framingham Heart Study, data from women participants who did not have heart failure or a previous myocardial infarction had homocysteine levels that were directly related to left ventricular mass and wall thickness [30]. In our present study, we also found that HHcy alone could increase the risk of LVH in general rural Northeast Chinese residents, which coincides with many other previous studies. The possible reasons for the hyperhomocysteinemia-induced cardiac hypertrophy might be the increase in oxidative stress and density of mast cells caused by
hyperhomocysteinemia in the heart [31] or the activation of protein kinase C [32] and alteration of collagen metabolism [33]. As far as we know, there are limited researches aiming to establish the possible effect of coexistence of HHcy and MetS on LVH using different sonographic clinical indicators. Studies have aimed to estimate the relationship between HHcy, MetS and LVH separately [34, 35]. To the best of our knowledge, our present study is the first to evaluate the combined effect of HHcy and MetS on LVH. The results showed that both HHcy alone and MetS alone increase the risk of LVH in the general population from rural Northeast China. Furthermore, the combination of HHcy and MetS had the greatest risk on LVH.

There are some limitations of our investigation. First, there is no causal relationship from the present study can be infer due to the innate drawbacks of cross-sectional studies. Second, we did not evaluate whether the participants had ever taken folic acid fortification treatment. Third, selection bias may exist because there were some participants excluded due to the lack of laboratory assessments and ultrasonic data.

Conclusion
The results of this community-based population study demonstrate that HHcy has either an independent or a combined effect with MetS on the presence of LVH.

Abbreviations
WC: Waist circumference; BMI: Body mass index; EDTA: ethylenediaminetetraacetic acid; FPG: Fasting plasma glucose; TC: total cholesterol; LDL: low-density lipoprotein cholesterol; HDL: high-density lipoprotein cholesterol; TG: triglycerides;

Declarations

Acknowledgements
None

Authors’ Contributions
SSY contributed to the data collection, analysis and interpretation. YTC and HMY contributed to data collection. XFG and LQZ contributed to data analysis. YXS contributed to the study conceptions and design. All authors read and approved the final version of the manuscript.

Funding
This study was supported by grants from the "Liaoning Research Center for Translational Medicine of Cardiovascular disease" project funds (Grant # 2014225017) which contributed to the data collection job.

Availability of data and materials

Enquiries regarding the availability of primary data should be directed to the principal investigator Professor Yingxian Sun (sunyingxian12@aliyun.com).

Ethic approval and consent to participate

The study was approved by the Ethics Committee of China Medical University (Shenyang, China AF-SDP-07-1, 0-01). All procedures were performed in accordance with ethical standards. Written consent was obtained from all participants after they had been informed of the objectives, benefits, medical items and confidentiality agreement regarding their personal information.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Author details

1Department of Cardiology, The First Hospital of China Medical University, Shenyang 110001, China; 2Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 117004, China;

References

1. Alter P, Rupp H, Rominger MB, Figiel JH, Renz H, Klose KJ, et al. Association of hyperhomocysteinemia with left ventricular dilatation and mass in human heart. CLIN CHEM LAB MED 2010; 48:555-60.

2. Zhao J, Chen H, Liu N, Chen J, Gu Y, Chen J, et al. Role of Hyperhomocysteinemia and Hyperuricemia in Pathogenesis of Atherosclerosis. J Stroke Cerebrovasc Dis 2017; 26:2695-99.
3. Zhang Z, Fang X, Hua Y, Liu B, Ji X, Tang Z, et al. Combined Effect of Hyperhomocysteinemia and Hypertension on the Presence of Early Carotid Artery Atherosclerosis. J Stroke Cerebrovasc Dis 2016; 25:1254-62.

4. Xiao W, Bai Y, Ye P, Luo L, Liu D, Wu H, et al. Plasma homocysteine is associated with aortic arterial stiffness but not wave reflection in Chinese hypertensive subjects. PLOS ONE 2014; 9:e85938.

5. Stewart MH, Lavie CJ, Shah S, Englert J, Gilliland Y, Qamruddin S, et al. Prognostic Implications of Left Ventricular Hypertrophy. Prog Cardiovasc Dis. 2018; 61:446-55.

6. Bokhari SW, Bokhari ZW, Zell JA, Lee DW, Faxon DP. Plasma homocysteine levels and the left ventricular systolic function in coronary artery disease patients. Coron Artery Dis 2005;16:153-61.

7. Sariman N, Levent E, Aksungar FB, Soylu AC, Bektas O. Homocysteine levels and echocardiographic findings in obstructive sleep apnea syndrome. RESPIRATION 2010;79:38-45.

8. Yu S, Guo X, Yang H, Zheng L, Sun Y. An update on the prevalence of metabolic syndrome and its associated factors in rural northeast China. BMC PUBLIC HEALTH 2014; 14:877.

9. Ratto E, Viazzi F, Verzola D, Bonino B, Gonnella A, Parodi EL, et al. Metabolic syndrome is associated with left ventricular dilatation in primary hypertension. J HUM HYPERTENS 2016; 30:158-63.

10. Al-Daydamony MM, El-Tahlawi M. What Is the Effect of Metabolic Syndrome without Hypertension on Left Ventricular Hypertrophy? Echocardiography 2016; 33:1284-9.

11. Bombelli M, Toso E, Peronio M, Fodri D, Volpe M, Brambilla G, et al. The Pamela study: main findings and perspectives. Curr Hypertens Rep. 2013; 15:238-43

12. Guo X, Li Z, Guo L, Zheng L, Yu S, Yang H, et al. An update on overweight and obesity
in rural Northeast China: from lifestyle risk factors to cardiometabolic comorbidities.

BMC PUBLIC HEALTH. 2014; 14:1046.

13. Sahn DJ DAKJ. The committee on M-mode standardization of the American Society of Echocardiography. In., vol. 58: Circulation; 1978: 1072-1073.

14. Wang B, Homocysteine ZP. H-type hypertension. Chin J Health Lab Technol 2012;22:2255-57.

15. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome. An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Executive summary. CARDIOL REV 2005; 13:322-7.

16. WHO/FAO: Expert Consultation on Diet, Nutrition and the Prevention of Chronic Diseases, Report of the Joint WHO/FAO Expert Consultation. Geneva: World Health Organization; 2003.

17. World Health Organization and International Diabetes Federation: Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation. Geneva, Switzerland: World Health Organization; 2006.

18. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. AM J CARDIOL 1986: 57:450-8.

19. Liao Y, Cooper RS, Durazo-Arvizu R, Mensah GA, Ghali JK. Prediction of mortality risk by different methods of indexation for left ventricular mass. J AM COLL CARDIOL 1997;29:641-47.

20. Hu G, Tuomilehto J, Silventoinen K, Barengo N, Jousilahti P. Joint effects of physical activity, body mass index, waist circumference and waist-to-hip ratio with the risk of cardiovascular disease among middle-aged Finnish men and women. EUR HEART J
21. Yang B, Fan S, Zhi X, Wang Y, Wang Y, Zheng Q, Sun G. Prevalence of hyperhomocysteinemia in China: a systematic review and meta-analysis. NUTRIENTS 2014; 7:74-90.

22. Mello AL, Cunha SF, Foss-Freitas MC, Vannucchi H. Evaluation of plasma homocysteine level according to the C677T and A1298C polymorphism of the enzyme MTHRF in type 2 diabetic adults. Arq Bras Endocrinol Metabol 2012; 56:429-34.

23. Mahfouz RA, Cortas NK, Charafeddine KM, Abdul KR, Sarieddine DS, Kadi RH, et al. Correlation of methylenetetrahydrofolate reductase polymorphisms with homocysteine metabolism in healthy Lebanese adults. GENE 2012; 504:175-80.

24. Moon HW, Whang DH, Ko YJ, Joo SY, Yun YM, Hur M, et al. Reference interval and determinants of the serum homocysteine level in a Korean population. J CLIN LAB ANAL 2011; 25:317-23.

25. Amouzou EK, Chabi NW, Adjalla CE, Rodriguez-Gueant RM, Feillet F, Villaume C, et al. High prevalence of hyperhomocysteinemia related to folate deficiency and the 677C-->T mutation of the gene encoding methylenetetrahydrofolate reductase in coastal West Africa. AM J CLIN NUTR 2004; 79:619-24.

26. Choi SH, Choi-Kwon S, Kim MS, Kim JS. Poor nutrition and alcohol consumption are related to high serum homocysteine level at post-stroke. Nutr Res Pract. 2015; 9:503-10.

27. Coppola M, Mondola R. Correlation between plasma homocysteine levels and craving in alcohol dependent stabilized patients. Clin Nutr. 2018; 37:1061-65.

28. Kharlamova UV, Il'icheva OE. Effect of homocysteine on left ventricular structural and functional parameters in patients on programmed hemodialysis. Ter Arkh 2013; 85:90-93.
29. Peer M, Boaz M, Zipora M, Shargorodsky M. Determinants of left ventricular hypertrophy in hypertensive patients: identification of high-risk patients by metabolic, vascular, and inflammatory risk factors. Int J Angiol 2013; 22:223-28.

30. Sundstrom J, Sullivan L, Selhub J, Benjamin EJ, D'Agostino RB, Jacques PF, et al. Relations of plasma homocysteine to left ventricular structure and function: the Framingham Heart Study. EUR HEART J 2004; 25:523-30.

31. Singh AP, Singh M, Balakumar P. Effect of mast cell stabilizers in hyperhomocysteinemia-induced cardiac hypertrophy in rats. J Cardiovasc Pharmacol 2008; 51:596-604.

32. Dalton ML, Gadson PJ, Wrenn RW, Rosenquist TH. Homocysteine signal cascade: production of phospholipids, activation of protein kinase C, and the induction of c-fos and c-myb in smooth muscle cells. FASEB J 1997; 11:703-11.

33. Torres L, Garcia-Trevijano ER, Rodriguez JA, Carretero MV, Bustos M, Fernandez E, et al. Induction of TIMP-1 expression in rat hepatic stellate cells and hepatocytes: a new role for homocysteine in liver fibrosis. Biochim Biophys Acta 1999; 1455:12-22.

34. Catena C, Colussi G, Nait F, Capobianco F, Sechi LA. Elevated Homocysteine Levels Are Associated With the Metabolic Syndrome and Cardiovascular Events in Hypertensive Patients. AM J HYPERTENS 2015; 28:943-50.

35. Zendjabil M, Abbou O, Chellouai Z. Association between metabolic syndrome and hyperhomocysteinemia in an Algerian population. Ann Pharm Fr 2017; 75:54-58.

Tables
Table 1. Demographic and clinical data of the study population subdivided according to the presence or the absence of Metabolic syndrome and Hyperhomocysteinemia in rural Northeast China.

Variables	Overall (n=6837)	MetS (-) (n=4177)	MetS (+) (n=2660)
Age, years	54.42±10.73	51.25±9.84	56.53±11.69
Homocysteine (μmol/L)	17.34±12.37	11.35±2.39	25.63±15.11
Gender, male (%)	3150 (46.1)	902 (37.4)	1266 (71.8)
Diabetes (%)	696 (10.2)	82 (3.4)	51 (2.9)
Hypertension (%)	3576 (52.3)	841 (34.9)	834 (47.3)
Gender, female (%)	3687 (53.9)	1548 (62.6)	994 (57.2)
High TC (%)	874 (12.8)	232 (9.6)	160 (9.1)
High TG (%)	1204 (17.6)	105 (4.4)	85 (4.8)
Low HDL-C (%)	791 (11.6)	93 (3.9)	70 (4.0)
Hyperuricemia (%)	772 (11.3)	116 (4.8)	96 (5.4)
Abdominal obesity (%)	1212 (17.7)	194 (8.0)	88 (5.0)
Body mass index (kg/m²)	24.79±3.79	23.51±3.44	23.48±3.30
Waist circumference (cm)	83.52±9.85	79.03±8.52	80.27±8.43
Fast glucose (mmol/L)	5.87±1.73	5.44±1.17	5.42±0.86
Total cholesterol (mmol/L)	5.08±1.03	4.93±0.95	4.95±0.95
Triglycerides (mmol/L)	1.65±1.61	1.14±1.02	1.17±0.74
HDL cholesterol (mmol/L)	1.44±0.41	1.56±0.38	1.55±0.45
LDL cholesterol (mmol/L)	2.83±0.78	2.71±0.71	2.77±0.73
Serum creatinine (mmol/L)	70.07±21.65	65.80±11.81	74.84±31.29
Systolic blood pressure (mmHg)	142.91±24.58	133.8±22.22	141.3±24.30
Diastolic blood pressure (mmHg)	81.73±11.88	77.86±10.63	80.67±11.75
Current smoker (%)	2547 (37.3)	782 (32.4)	922 (52.3)
Current drinker (%)	1534 (22.4)	506 (21.0)	575 (32.6)
Exercised status (%)	1628 (23.8)	455 (18.9)	419 (23.8)
Low	4772 (69.8)	1819 (75.4)	1250 (70.9)
High	437 (6.4)	139 (5.8)	95 (5.4)
Educational status	3383 (49.5)	1065 (44.1)	885 (50.2)
Primary school or below	2844 (41.6)	1140 (47.2)	730 (41.4)
Middle school	610 (8.9)	208 (8.6)	149 (8.4)
Abbreviations: TC total cholesterol; TG triglyceride; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MetS, metabolic syndrome. * P<0.001; # P<0.05			
Table 2. Cardiac parameters of the study population subdivided according to the presence or the absence of Metabolic syndrome and Hyperhomocysteinemia:

	HHcy (-)	HHcy (+)	HHcy (-)	HHcy (+)
End-diastolic LV	4.61±0.41	4.74±0.43	4.72±0.42	4.85±0.44*
internal dimension(mm)				
End-diastolic posterior	0.83±0.08	0.86±0.11	0.88±0.12	0.90±0.11*
wall thickness(mm)				
End-diastolic	0.85±0.11	0.89±0.15	0.90±0.12	0.94±0.14*
interventricular septum(mm)				
LV mass(g)	144.60±38.59	162.44±47.21	165.74±47.11	181.69±50.27*
LV mass indexed for BSA(cm²)	90.93±22.27	99.19±26.93	98.77±26.92	105.01±28.06*
LV mass indexed for height²(g/m²)	40.96±10.93	43.78±13.10	47.96±13.94	49.77±14.21*

Abbreviations: LV, left ventricular; MetS, metabolic syndrome.

Table 3. Association between the presence or the absence of Metabolic syndrome and Hyperhomocysteinemia and LVH.

	Unadjusted	Model 1	Model 2	Model 3
	OR 95%CI	OR 95%CI	OR 95%CI	OR 95%CI
Non-MetS & normal Hcy	ref	ref	ref	ref
HHcy & Non-MetS	1.208* 1.049-1.391	1.201# 1.025-1.407	1.201# 1.025-1.407	1.175# 1.002-1.377
Normal & MetS	2.300* 2.006-2.638	1.820* 1.575-2.103	1.817* 1.572-2.100	1.615* 1.393-1.873
HHcy & MetS & HHcy	2.284* 1.957-2.666	1.929* 1.627-2.286	1.921* 1.620-2.278	1.628* 1.364-1.944
LVMH²² ²	OR 95%CI	OR 95%CI	OR 95%CI	OR 95%CI
Non-MetS & normal Hcy	ref	ref	ref	ref
HHcy & Non-MetS	1.760* 1.494-2.074	1.291# 1.082-1.541	1.291# 1.081-1.541	1.248# 1.044-1.492
Normal & MetS	3.261* 2.787-3.815	2.974* 2.528-3.499	2.951* 2.508-3.473	2.567* 2.174-3.032
HHcy & MetS & HHcy	4.143* 3.492-4.915	3.013* 2.519-3.603	2.960* 2.519-3.603	2.433* 2.019-2.932

Model 1 adjusted for gender, age, current smoking, current drinking, activity, education
Model 2 adjusted for gender, age, current smoking, current drinking, activity, education, high LDL-C.
Model 3 adjusted for gender, age, current smoking, current drinking, activity, education, high LDL-C, hyperuricemia and medication treatment of hypertension or dyslipidemia.
* means P<0.001, # means P<0.05
Abbreviations: LVH, left ventricular hypertrophy; MetS, metabolic syndrome.

Figures
Figure 1
The prevalence of different subgroups of HHcy and MetS according to gender and age groups.

Figure 2
The prevalence of LVH in different gender and different subgroups with or without HHcy or MetS according to different diagnostic criteria.