0. Introduction. The following observation, due to E. Trubowitz [7], illustrates an intimate relationship between spectral theory and Hamiltonian mechanics in the presence of constraints. Let \(q(s) \) be a real periodic function such that Hill’s operator,

\[
L = \left(\frac{d}{ds} \right)^2 - q(s),
\]

has only a finite number \(g \) of simple eigenvalues. There exist \(g + 1 \) periodic eigenfunctions \(x_0, \ldots, x_g \) and corresponding eigenvalues \(a_0, \ldots, a_g \) of \(L \) such that

\[
1 = \sum_{r=0}^{g} x_r^2 \quad \text{and} \quad q = -\sum_{r=0}^{g} (a_r x_r^2 + y_r^2),
\]

where \(y_r = dx_r/ds \). The equations \(L x_r = a_r x_r \) \((r = 0, \ldots, g) \) are equivalent to the classical Neumann system [7].

H. Flaschka [3] obtained similar results from a different point of view. His approach is based on the articles [2 and 5] of I. V. Cherednik and I. M. Krichever. The familiar Lax pairs, the constants of motion and the quadrics of the Neumann system emerge as consequences of the Riemann-Roch Theorem.

The purpose of our work is to apply Flaschka’s techniques to operators of order \(n \geq 2 \). We will be defining higher Neumann systems whose theory is closely tied to the spectral theory of linear differential operators of order \(n \).

C. Tomei [9], using scattering theory, obtained some of our \(n = 3 \) formulas.
assume that the genus g_R is related to m, n and l by the following important formula, $g_R = \frac{1}{2}(n-1)(2(m+1)-nN-(l+1))$. It is known that two rational functions on a Riemann surface satisfy a polynomial equation. Since that equation, it turns out, follows from the Baker function theory below, we need not discuss the existence of Riemann surfaces with the properties above.

Since n and l are relatively prime, there exist $r_j, s_j \in \mathbb{Z}$ such that $\lambda^j z^{s_j}$ has a pole of order j at ∞. Let $t = (t_j | j \in W)$ be a vector of g_R complex “time” parameters. Let $\theta = \sum_{j \in W} t_j \lambda^j z^{s_j}$.

(1.3) BAKER FUNCTIONS. Let δ be a positive nonspecial divisor of degree g_R that does not meet ∞ and satisfies $L(\delta - \infty) = \{0\}$. It is known that there exists a unique function $\psi = \psi_{\delta}(t, p)$, called the Baker function of δ, with the following two properties. ψ is meromorphic in $R - \infty$ and any pole of ψ lies in δ. Near ∞, ψ is given by $\psi e^{-\theta} = 1 + \xi_1(t) \kappa^{-1} + \xi_2(t) \kappa^{-2} + \cdots$, where the ξ_j are functions analytic on an open subset of \mathbb{C}^g containing $t = 0$.

(1.4) DUAL BAKER FUNCTION. By the Riemann-Roch Theorem there exists a unique abelian differential Ω and a positive nonspecial divisor δ' of degree g_R such that $(\Omega) = \delta + \delta' - 2\infty$ and $\Omega = -\kappa^2(1 + O(\kappa^{-2})) d\kappa^{-1}$ at ∞. Let $\phi = \psi_{\delta'}(-t, p)$. We will refer to ϕ as the Baker function dual to ψ and δ' will be called the dual divisor [2].

(1.5) NEUMANN SYSTEMS. There exists a linear differential operator L of order n in d/dt_1 and, for each $j \in W$, a linear differential operator L_j of order j in d/dt_1 such that

\begin{equation}
L(t) \psi(t, p) = \lambda(p) \psi(t, p) \quad \text{and} \quad \tilde{L}_j(t) \psi(t, p) = \frac{\partial \psi}{\partial t_j}(t, p).
\end{equation}

Let L^* be the formal real adjoint of L (for instance, $(qD^j)^* = (-1)^j D^j q$). The article [2] contains a clever proof of the following formulas:

\begin{equation}
L(t)^* \phi(t, p) = \lambda(p) \phi(t, p) \quad \text{and} \quad \tilde{L}_j(t)^* \phi(t, p) = \frac{\partial \phi}{\partial t_j}(t, p).
\end{equation}

We are now in position to define the main object of our analysis. Let $\rho_r = \text{Res}_{(r)}(z^r \Omega)$ and choose constants $\alpha_r, \beta_r \in \mathbb{C}^*$ such that $\rho_r = \alpha_r \beta_r$. We evaluate the Baker functions ψ and ϕ over the poles of z to make the following definitions:

\begin{equation}
x^r_1(t) = \alpha_r \psi(t, r) \quad \text{and} \quad u^r_n(t) = \beta_r \phi(t, r), \quad r = 0, \ldots, m.
\end{equation}

Let $m \in \mathbb{C}^{2n(m+1)}$ be the point whose coordinates are x^r_1, u^r_n and their first $n - 1$ derivatives with respect to t_1. We are concerned with the equations obtained from (1.5.1) by setting $p = (r), r = 0, \ldots, m$.

(1.6) SOLITON EQUATIONS. The integrability condition of the simultaneous linear equations (1.5.1) is the partial differential equation

\begin{equation}
\frac{\partial L}{\partial t_j} = [\tilde{L}_j, L], \quad j \in W.
\end{equation}

The Lax equation usually suggests that certain spectral data associated to L are preserved in time. In the present setup it is the Riemann surface R that is preserved. Two of the equations (\ast) are important in their applications to soliton mathematics. If $n = 2$ and $j = 3$, (\ast) is the Korteweg-de Vries
equation. If \(n = 3 \) and \(j = 2 \), (*) is the Boussinesq equation in the form of a system of equations.

Results.

(2.1) SYMPLECTIC MANIFOLD AND TRACE FORMULAS. The differential
\[\eta = \psi_j^{(i)} \phi_j^{(i)} \Omega \]
is meromorphic because the exponents of \(\psi \) and \(\phi \) at \(\infty \)
cancel. The meromorphic differential \(\eta = \lambda^k z \eta \) has simple poles in \((z)_{\infty} \) and it may have a pole at \(\infty \). Let \(C_\eta = \sum_{p \in \mathbb{R}} \text{Res}_p(\eta) \). The classical formula
\[\sum_{p \in \mathbb{R} - \infty} \text{Res}_p(\eta) = -\text{Res}_\infty(\eta) \]
expresses \(\text{Res}_\infty(\eta) \) in terms of \(m \). If \(\text{Res}_\infty(\eta) \) is constant (in \(t \)) the equation \(C_\eta = 0 \) defines a hypersurface in \(C^{2n(m+1)} \).

The functions \(C_\eta \) with \(\text{Res}_\infty(\eta) \) constant are called constraints.

(2.1.1) THEOREM. The algebraic subset \(M \) of \(C^{2n(m+1)} \) defined in terms
of the quadratic constraints \(C_\eta = 0 \) is a symplectic manifold. The dimension
of \(M \) is given by \(\dim(M) = 2g_R + 2(m + 1) \).

(2.1.2) THEOREM. The coefficients of \(L \) are expressible in terms of the
point \(m \) associated with the Baker function and the poles of \(z \).

It follows then that the equations (1.5.1) with \(p = (r), r = 0, \ldots, m \), define
\(g_R \) autonomous vector fields \(X_j^*, j \in W, \) on \(M \). The \((n = 2) \) vector field \(X_1^* \)
is a generalization of the Neumann system [3 and 4].

(2.2) LAX EQUATIONS. One of the nicest results of Flaschka’s work is a
systematic derivation of the well-known Neumann-Lax pairs. The best expla­
nation for the existence of the Neumann-Lax pairs comes from Krichever’s
theory of commutative rings of matrix differential operators. The divisor
\(\Delta' = \delta' + (z)_{\infty} \) is nonspecial and its degree is \(g_R + m \). Following [4] we
call \(\Delta' \) the augmented dual divisor. According to [8], there exists a vector
function \(\Phi = (\Phi^0, \ldots, \Phi^m)^T \) with the following two properties. \(\Phi \) is meromorphic in \(R - (z)_{\infty} \) and any pole in \(\Phi \) lies in \(\Delta' \). Near \((r) \), \(\Phi^s \) is given by
\[\Phi^s e^{-\theta} = \alpha_r \delta_r, s + O(z^{-1}) \]
where \((; ; \) is the bilinear form associated to \(L \) by the Lagrange identity,
\[d(f; g)/dt_1 = Lf \cdot g - f \cdot L^* g. \]

H. Flaschka discovered the \(n = 2 \) version of the very beautiful formula,

\[(2.2.1) \quad \Phi^r(t, p) = (x_1^*(t); \phi(t, p)) \quad \frac{z^{-1}(p)}{\lambda(p)} e^{\theta(t, p)} \]

According to Krichever there exists an \((m + 1) \times (m + 1) \) matrix \(B_j \) that
depends polynomially on \(z \) such that \(\Phi_{t_j} = B_j \Phi \). Using Flaschka’s formula
(2.2.1) we are able to express \(B_j \) in terms of \(m \). The function \(\lambda z^n \)
belongs to the ring \(H^0(R - (z)_{\infty}, O_R) \). Thus according to Krichever there exists
an \((m + 1) \times (m + 1) \) matrix \(L \) that depends polynomially on \(z \) such that
\(L\Phi = \lambda z^n \Phi \). The Lax equation \(L_{t_j} = [B_j, L] \) is immediate. Our explicit
formulas show that \(L \) is a rank \(n \) perturbation of the diagonal matrix \(az^n \)
in that the range of \(L - az^n \) is spanned by \(x_1, \ldots, x_n \). The \((n = 2) \) and \(B_1 \)
generalize the Neumann-Lax pairs in [1, 3 and 4].

We have \(\Delta' - (\phi)_{\infty} \geq 0 \) and therefore \(\phi e^{\theta} \) belongs to the linear space
of Baker functions spanned by the components of \(\Phi \). This observation led
Flaschka to the $n = 2$ version of the following formula:

$$\phi(t, p)e^\theta = \sum_{r=0}^{m} u_r^\ast(t) \Phi_r(t, p) = \langle u_n(t), \Phi(t, p) \rangle.$$

The formula has two applications. We use (2.2.2) to obtain explicit formulas for the operators \tilde{L}_j. Such formulas were one of Cherednik’s objectives [2]. When Φ is eliminated from (2.2.2) by use of (2.2.1) we obtain the following result.

Theorem. There exists an $n \times n$ matrix $Z = Z(m, \lambda)$, rational in λ, whose spectrum is independent of t. The algebraic relationship (1.2) between λ and z is given by the characterization polynomial $\det(Z - zI) = 0$.

Complete integrability. The $m + 1$ Hamiltonians $(x_r^\ast; u_r^\ast)$, $r = 0, \ldots, m$, are rather trivial involutive constants of motion. A reduction of M by these Hamiltonians defines a symplectic manifold which, by (2.1.1), has dimension $2g_R$. We use the fact that the eigenvalues of L and Z are constants of the motion to construct a Hamiltonian \tilde{H}_j^\ast for each vector field X_j^\ast, $j \in W$.

Theorem. The g_R Neumann vector fields X_j^\ast of (2.1.4) form a completely integrable Hamiltonian system.

It is known that the level surface $M_C \triangleq \{ m^\ast \in M | H_j(m) = c_j \}$ of a completely integrable system, if real and compact, is a torus. Our last result is concerned with the structure of these energy level sets.

Theorem. The level surface of the reduced manifold is locally isomorphic to the Zariski-open subset, Jacobian-(theta divisor) of the Jacobian variety of the algebraic curve given by $\det(Z(A) - zI)$.

The idea in the proofs of (2.3.1,2) is an algebro-geometrical version of the solitonic inverse scattering transform. Let M be one of the symplectic manifolds of Theorem (2.1.1). We assign to each point $m \in M$ an algebraic curve C and a divisor $\delta = \delta_m$ on C. The isomorphism of Theorem (2.3.2), called the divisor map, is given by

$$m \in M \rightarrow (C, \delta) \rightarrow (\text{Jac}(C), A(\delta))$$

where A is the Abel map. It contains a method for linearizing the equations of motion. The important ideas can be found in [1 and 5]. We apply McKean’s pole conditions [6, p. 624] to make certain results, especially the description of δ, more explicit.

References

1. M. Adler and P. van Moerbeke, *Completely integrable systems, Euclidean Lie algebras, and curves*, Adv. in Math. 38 (1980), 267–317; *Linearization of Hamiltonian systems, Jacobi varieties and representation theory*, Adv. in Math. 38 (1980), 318–379.

2. I. M. Cherednik, *Differential equations for the Baker Akhiezer functions of algebraic curves*, Funktsional Anal. i Prilozhen. 12 (1978), 45–54.

3. H. Flaschka, *Relations between infinite and finite dimensional isospectral equations*, Proc. of Rims. Symposium, Kyoto, Japan (1981).
4. ___, *Toward an algebro-geometrical interpretation of the Neumann system*, Tôhoku Math. J. **36** (1984), 407–426.

5. I. M. Krichever, *Integration of nonlinear equations by methods of algebraic geometry*, Funktsional Anal. i Prilozhen **11** (1977), 15–31.

6. H. P. McKean, *Boussinesq’s equation on the circle*, Comm. Pure Appl. Math. **34** (1981), 599–692.

7. J. Moser, *Geometry of quadrics and spectral theory*, Proc. Chern Symposium (1981), 147–188.

8. R. Schilling, *Baker functions for compact Riemann surfaces*, Proc. Amer. Math. Soc. (to appear).

9. C. Tomei, *The Boussinesq equation*, Ph.D. Thesis, Courant Institute, 1982.
