Role of EBUS TBNA in Staging of Lung Cancer: A Clinician’s Perspective

Inderpaul Singh Sehgal, Ritesh Agarwal, Sahajal Dhooria, Kuruswamy Thurai Prasad, Ashutosh N. Aggarwal
Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India

Abstract

The treatment of non-small cell lung cancer (NSCLC) includes surgical resection with curative intent in early-stage disease and chemoradiation in the advanced stage disease. Therefore, an accurate preoperative mediastinal lymph node staging is required not only to offer the appropriate treatment but also to avoid unnecessary invasive procedures including thoracotomy. The mediastinal lymph nodes can be sampled using several techniques including mediastinoscopy, surgery (open or video-assisted thoracoscopic surgery), endobronchial ultrasound (EBUS)-guided transbronchial needle aspiration (TBNA), or endoscopic ultrasound (EUS)-guided fine needle aspiration (FNA). Currently, EBUS-TBNA/EUS-FNA is the preferred modality for sampling mediastinal lymph nodes because of its minimally invasive nature and high diagnostic yield. In this review, we discuss the utility of endosonographic procedures in mediastinal lymph node staging of NSCLC.

Keywords: Endobronchial ultrasound, endoluminal ultrasound, transbronchial needle aspiration, transbronchial needle aspiration

In general, staging in lung cancer is indicated in those with potentially resectable NSCLC including the following: (i) those who have discrete enlarged mediastinal lymph nodes on computed tomography (CT) of the chest; (ii) those who have high standardized uptake value (SUV)-positive mediastinal lymph nodes on positron emission tomography (PET)-CT; (iii) in large (>3 cm) central airway tumors; and, (iv) in those with adenocarcinoma with high SUV uptake on PET-CT.[8,9]

Utility of EBUS-TBNA/EUS-FNA in Clinical Stage N0/N1 NSCLC

In subjects with NSCLC, the initial workup for staging is undertaken using radiological methods such as CT thorax and whole-body PET-CT. A radiologically normal mediastinum is defined when the size of lymph nodes on CT thorax is less than 10 mm and there is no uptake on PET-CT. In those with radiologically normal mediastinum or in those with lymph nodes limited to ipsilateral pulmonary and hilar region (N0/
N1), surgical resection is the treatment of choice.[5,8] In clinical N0 disease, the current guidelines do not recommend mediastinal lymph node sampling. However, pathological upstaging (pN2) has been documented in up to 35% of clinical N0 status.[10,11] The most common lymph node stations that were upstaged were 4R and 7,[10] which are easily accessible by EBUS-TBNA. This sets up an argument for mediastinal staging in those with the clinical N0/N1 stage. In the preoperative staging of clinical N0/N1 lung cancer, a recent meta-analysis comprising nine studies demonstrated a pooled sensitivity and specificity of 49% [95% confidence interval (CI), 41%–57%] and 100% (95% CI, 99%–100%), respectively.[12] The sensitivity improved to 55% on pooling studies that provided information for lymph nodes accessible for EBUS-TBNA. EBUS-TBNA detected radiologically occult N2/N3 disease in 7.7% (88/1146) of subjects.[12] The number needed to perform EBUS-TBNA to upstage clinical N0/N1 disease was 14 (95% CI, 11–16). The combined use of EBUS-TBNA/EUS-FNA could further increase the sensitivity of endoluminal ultrasound-guided FNA to 73%. On combining EBUS-TBNA and EUS-FNA, the number of procedures (EBUS/EUS) needed to detect occult N2/N3 disease was 7, which underscores the need for mediastinal lymph node staging even in those with radiologically normal mediastinum.[12]

Utility of EBUS-TBNA/EUS-FNA in clinical N2/N3 stage NSCLC

Compared with the clinical N0/N1 stage where surgical resection is the definitive form of therapy, the treatment in clinical N2/N3 stage lung cancer is either combination chemoradiotherapy or surgery in those with ipsilateral mediastinal lymph node metastases.[5,8] In a meta-analysis of 11 studies with 1299 subjects who underwent EBUS-TBNA/EUS-FNA for staging before treatment, the pooled sensitivity and specificity of EBUS-TBNA/EUS-FNA to detect mediastinal lymph node metastasis were 93% (95% CI, 91%–94%) and 100% (95% CI, 99%–100%), respectively.[13] The median prevalence of mediastinal metastases in the studies included in the meta-analysis was 68%.[13] The pooled sensitivity was 94% in studies where EBUS-TBNA was performed in CT or PET-positive lymph nodes compared with a sensitivity of only 76% where CT or PET status was unknown.[13] The complication rate of EBUS-TBNA was negligible (0.007%).[13] However, this meta-analysis included studies with a retrospective study design, and only five studies used surgical specimen as the reference standard.[13]

In another meta-analysis studying the role of EBUS-TBNA in pretreatment mediastinal staging, the combined sensitivity and specificity of EBUS-TBNA for mediastinal staging were 90% (95% CI, 84%–96%) and 99%, respectively.[14] Only one complication of hypoxia was reported in one study. This meta-analysis included only studies that performed EBUS-TBNA and not EUS-FNA. Thus, in pretreatment mediastinal staging of NSCLC, endosonographic procedures are safe and have a high sensitivity and specificity.

Utility of EBUS-TBNA/EUS-FNA in mediastinal restaging after neoadjuvant therapy

In subjects with stage IIIa/N2 NSCLC, surgical resection with mediastinal lymph node dissection is a preferred modality after successful neoadjuvant therapy.[15] However, a repeat staging of mediastinum is essential before surgery can be performed as the outcomes following surgery depend on the presence or absence of mediastinal lymph node involvement. Performing surgical restaging after neoadjuvant therapy is challenging as there may be mediastinal fibrosis and adhesions because of either a prior intervention or treatment. Endosonographic procedures could also be used to successfully restage the mediastinal lymph nodes. A recent meta-analysis (10 studies with 574 subjects undergoing mediastinal restaging with EBUS-TBNA/EUS-FNA) demonstrated a pooled sensitivity and specificity of 67% and 99%, respectively.[16] This suggests that EBUS-TBNA combined with EUS/EUS-B-FNA can be reliably used to restage the mediastinum after neoadjuvant chemotherapy.

Utility of combining EBUS-TBNA and EUS/EUS-B-FNA

The specificity of EBUS and EUS in detecting mediastinal nodal metastases is high, but there remains a possibility of missing lymph nodes when either is performed alone. The combination of the two procedures provides a more comprehensive access to the mediastinum. While EBUS-TBNA provides an easy access to lymph nodes in the pretracheal and the paratracheal regions, EUS-FNA is useful for sampling the inferior mediastinum, the left paratracheal region, the left adrenal gland, and occasionally the aortopulmonary lymph node stations.[17,18] Thus, combining both the procedures increases the domain of lymph node stations that can be sampled thereby enhancing the diagnostic yield. EBUS-TBNA and EUS-FNA are performed using a dedicated echobronchoscope and an echoendoscope, respectively. EBUS scope provides access to the mediastinum through the transtracheal route, whereas EUS is used through transesophageal route. Generally, EBUS is performed by a pulmonologist or a thoracic surgeon, whereas EUS is performed by a gastroenterologist. Transesophageal EUS-guided FNA can also be performed using EBUS scope (EUS-B) thus obviating the need for two different types of scopes and operators. A meta-analysis of studies describing the yield of combined EBUS-TBNA and EUS-B-FNA for mediastinal lymph node sampling identified four studies (465 subjects).[20] The pooled sensitivity of EBUS-TBNA alone was 80% (95% CI, 74%–86%), whereas pooled sensitivity of the combined EBUS-TBNA and EUS-B-FNA was 91% (95% CI, 86%–95%).[20] The pooled specificity of EBUS-TBNA and the combined procedure (EBUS-TBNA and EUS-B-FNA) was 100%.[20] The number of combined procedure that needs to be performed to achieve one additional diagnosis was 10 (95% CI, 6–29).[20] In another recent meta-analysis, 13 studies (n = 2395 subjects) were identified
What Is the Current Place of Mediastinoscopy?

Mediastinoscopy has been considered as the reference standard for mediastinal lymph node staging of NSCLC. However, with mediastinoscopy only lymph node stations 2L/2R and 4L/4R can be sampled, whereas stations 10L/10R, 8, and 9 cannot be sampled. Also, mediastinoscopy requires general anesthesia and is an invasive procedure. In a recent meta-analysis comprising studies that compared EBUS/EUS procedures head to head with mediastinoscopy, the pooled risk difference of the sensitivity of endosonography versus mediastinoscopy was 0.11 (95% CI, −0.03 to 0.25) suggesting equivalence of the two procedures. Moreover, the complication rate was significantly lower with endosonographic procedures compared with mediastinoscopy, making EBUS not only equally effective but also a safer method of mediastinal staging of NSCLC. In those with a negative EBUS-TBNA/EUS-FNA, the current practice is to perform staging mediastinoscopy to rule out false-negatives. However, a negative EBUS does not always result in a high unforeseen N2 disease at surgical resection. Furthermore, by omitting mediastinoscopy, there is a possibility to reduce extra waiting time, general anesthesia, and hospitalization. Thus, in patients with a negative EBUS-TBNA, a one approach is to perform surgery directly without waiting for confirmation with a second staging procedure.

In conclusion, endosonographic procedures are the preferred first-line modality for mediastinal lymph node staging in those with clinical stage N0/N1, clinical stage N2/N3, and for mediastinal restaging after neoadjuvant chemotherapy for NSCLC. The endosonography enabled procedures have high sensitivity and specificity both for diagnosing and staging NSCLC. The endosonographic procedures are safe and reproducible. For a complete mediastinal staging, EBUS-TBNA should be combined with EUS-B/EUS-FNA for optimal results.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1. Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT. The Eighth Edition Lung Cancer Stage Classification. Chest 2017;151:193-203.
2. Nicholson AG, Chansky K, Crowley J, Beyruti R, Kubota K, Turrisi A, et al.: The International Association for the Study of Lung Cancer Lung Cancer Staging Project: Proposals for the Revision of the Clinical and Pathologic Staging of Small Cell Lung Cancer in the Forthcoming Eighth Edition of the TNM Classification for Lung Cancer. J Thorac Oncol 2016;11:300-11.
3. Sehgal IS, Dhooria S, Aggarwal AN, Behera D, Agarwal R. Endosonography versus mediastinoscopy in mediastinal staging of lung cancer: Systematic review and meta-analysis. Ann Thorac Surg 2016;102:1747-55.
4. Ramnath N, Dilling TJ, Harris LJ, Kim AW, Michaud GC, Balaikia AN, et al. Treatment of stage III non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013;143:e314S-40S.
5. Howington JA, Blum MG, Chang AC, Balaikia AN, Murthy SC. Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013;143:e278S-313S.
6. Dhooria S, Sehgal IS, Aggarwal AN, Agarwal R. Convex-probe endobronchial ultrasound: A decade of progress. Indian J Chest Dis Allied Sci 2016;58:21-35.
7. Dhooria S, Sehgal IS, Gupta N, Aggarwal AN, Behera D, Agarwal R. Diagnostic yield and complications of EBUS-TBNA performed under bronchoscopist-directed conscious sedation: Single center experience of 1004 subjects. J Bronchology Interv Pulmonol 2017;24:7-14.
8. Eberhardt WE, De Ruyscher D, Weder W, Le Pechoux C, De Leyn P, Hoffmann H, et al. 2nd ESMO Consensus Conference in Lung Cancer: Locally advanced stage III non-small-cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013;143:e278S-313S.
9. Van Schil PE, Benzenji L, Yogeswaran SK, Hendriks JM, Lauwers P. Surgical management of stage IIIA Non-Small Cell Lung Cancer: Front Oncol 2017;7:249.
10. Gomez-Caro A, Garcia S, Reguarr N, Arquis P, Sanchez M, Gimferrer JM, et al. Incidence of occult mediastinal node involvement in cN0 non-small-cell lung cancer patients after negative uptake of positron emission tomography/computer tomography scan. Eur J Cardiothorac Surg 2010; 37:1168-74.
11. Watanabe S, Asamura H, Suzuki K, Tsuchiya R. Problems in diagnosis and surgical management of clinical N1 non-small cell lung cancer. Ann Thorac Surg 2005;79:1682-5.
12. Leong TL, Loveland PM, Gorelik A, Irving L, Steinfeld DP. Preoperative staging by EBUS in cN0/N1 lung cancer: Systematic review and meta-analysis. J Bronchology Interv Pulmonol 2018: [In Press]. doi: 10.1097/LBR.0000000000000545.
13. Gu P, Zhao YZ, Jiang LY, Zhang W, Xin Y, Han BH. Endobronchial ultrasound-guided transbronchial needle aspiration for staging of lung cancer: A systematic review and meta-analysis. Eur J Cancer 2009;45:1389-96.
14. Dong X, Qiu X, Liu Q, Jia J. Endobronchial ultrasound-guided transbronchial needle aspiration in the mediastinal staging of non-small cell lung cancer: A meta-analysis. Ann Thorac Surg 2013;96:1502-7.
15. Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman J, Chirieac LR, et al. Non-small cell lung cancer, Version 5.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2017;15:504-35.

16. Muthu V, Sehgal IS, Dhooria S, Aggarwal AN, Agarwal R. Efficacy of endosonographic procedures in mediastinal restaging of lung cancer after neoadjuvant therapy: A systematic review and diagnostic accuracy meta-analysis. Chest 2018;154:99-109.

17. Mehta RM, Biraria PR, Pattabhiraman V, Srinivasan A, Singla A, Kumar S, et al. Defining expanded areas in EBUS sampling: EBUS guided trans- and intra-pulmonary artery needle aspiration, with review of transvascular EBUS. Clin Respir J 2018;12:1958-63.

18. Meena N, Hulett C, Jeffius S, Barter T. Left adrenal biopsy using the convex curvilinear ultrasound scope. Respiration 2015;89:57-61.

19. Meena N, Hulett C, Patolia S, Barter T. Exploration under the dome: Esophageal ultrasound with the ultrasound bronchoscope is indispensable. Endosc Ultrasound 2016;5:254-7.

20. Dhooria S, Aggarwal AN, Gupta D, Behera D, Agarwal R. Utility and safety of endoscopic ultrasound with bronchoscope-guided fine-needle aspiration in mediastinal lymph node sampling: Systematic review and meta-analysis. Respir Care 2015;60:1040-50.

21. Korevaar DA, Crombag LM, Cohen JF, Spijker R, Bossuyt PM, Annema JT. Added value of combined endobronchial and oesophageal endosonography for mediastinal nodal staging in lung cancer: A systematic review and meta-analysis. Lancet Respir Med 2016;4:960-8.

22. Kang HJ, Hwangbo B, Lee GK, Nam BH, Lee HS, Kim MS, et al. EBUS-centred versus EUS-centred mediastinal staging in lung cancer: A randomised controlled trial. Thorax 2014;69:261-8.

23. Ettinger DS, Wood DE, Akerley W, Bazhenova LA, Borghaei H, Camidge DR, et al. NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 4.2016. J Natl Compr Canc Netw 2016; 14:255-64.

24. Bousema JE, Dijkgraaf MGW, Papen-Botterhuis NE, Schreurs HW, Maessen JG, van der Heijden EH, et al. MEDIASTrial: endobronchial and endoscopic ultrasonography with or without additional surgical mediastinoscopy (MEDIASTrial): Study protocol of a multicenter randomised controlled trial. BMC Surg 2018;18:27.

Announcement of New Award Instituted by Indian Academy of Cytologists in 2017 for Best Published Article in Journal of Cytology

Dr. Panna Choudhury Memorial Award

1. This award shall be given to the best original article published in the Journal of Cytology during the past one year.
2. The award comprises of a gold plated silver medal and a certificate.
3. Only IAC members are eligible for this award.
4. The following criteria shall be followed in selection of the awardee:-
 (a) Publication should be in Journal of Cytology.
 (b) Publication should be during the past one year and shall comprise of papers from Issues 3 and 4 of previous year and Issues 1 and 2 of current year.
 (c) Ahead of print articles shall not be considered for the award.
 (d) Publication should be an original article.
 (e) The awardee shall be the first author of the published paper.