Superconducting and normal-state interlayer-exchange-coupling in La$_{0.67}$Sr$_{0.33}$MnO$_3$-YBa$_2$Cu$_3$O$_7$-La$_{0.67}$Sr$_{0.33}$MnO$_3$ epitaxial trilayers.

K. Senapati and R. C. Budhani
Department of Physics, Indian Institute of Technology Kanpur, Kanpur - 208016, India

(Dated: March 23, 2022)

The issue of interlayer exchange coupling in magnetic multilayers with superconducting (SC) spacer is addressed in La$_{0.67}$Sr$_{0.33}$MnO$_3$ (LSMO) - YBa$_2$Cu$_3$O$_7$ (YBCO) - La$_{0.67}$Sr$_{0.33}$MnO$_3$ (LSMO) epitaxial trilayers through resistivity, ac-susceptibility and magnetization measurements. The ferromagnetic (FM) LSMO layers possessing in-plane magnetization suppress the critical temperature (T_c) of the c-axis oriented YBCO thin film spacer. The superconducting order, however, survives even in very thin layers (thickness d_Y ~ 50 Å, ~ 4 unit cells) at $T < 25$ K. A predominantly antiferromagnetic (AF) exchange coupling between the moments of the LSMO layers at fields < 200 Oe is seen in the normal as well as the superconducting states of the YBCO spacer. The exchange energy J_1 (∼ 0.08 erg/cm2 at 150 K for $d_Y = 75$ Å) grows down to T_c, followed by truncation of this growth on entering the superconducting state. The coupling energy J_1 at a fixed temperature drops exponentially with the thickness of the YBCO layer. The temperature and d_Y dependencies of this primarily non-oscillatory J_1 are consistent with the coupling theories for systems in which transport is controlled by tunneling. The truncation of the monotonic T dependence of J_1 below T_c suggests inhibition of single electron tunneling across the CuO$_2$ planes as the in-plane gap parameter acquires a non-zero value.

PACS numbers: 74.78.Fk, 75.60.-d, 75.70.Cn

I. INTRODUCTION

The oscillatory nature of exchange coupling between two ferromagnetic (FM) layers separated by a metallic but non-magnetic (NM) spacer as a function of the spacer thickness d_s is now well established in a variety of systems [1,2,3,4,5,6,7]. It is generally agreed that the coupling is driven by the Ruderma-Kittel-Kasuya-Yoshida (RKKY)-type exchange through the conduction electrons of the spacer. The period of oscillations predicted by the theories of exchange coupling is directly related to the extremal wave vectors connecting opposite sides of the Fermi Surface (FS) of the spacer material in the direction of the layer growth. Clearly, the nature of the Fermi surface of the spacer plays a key role in interlayer exchange. Sipr and Györfi first suggested that an experiment in which the Fermi surface could be altered while keeping all other material parameters the same, would allow a direct test of the exchange coupling theories based on extremal wave vectors of the FS. They proposed the use of a superconducting (SC) spacer in which an isotropic gap opens up at the FS on cooling below the critical temperature T_c. The zero-temperature numerical calculations of Sipr and Györfi show that the oscillatory coupling is strongly damped in the presence of a superconducting gap. Similarly, the analytical results of de Melo show that at $\Delta/T >> 1$ the coupling decays exponentially as $\exp (-k_F d_s \Delta / E_F)$, where k_F, d_s, Δ and E_F are the Fermi wave-vector, spacer thickness, gap parameter and Fermi energy respectively. Near T_c the large thermally excited quasiparticle density compensates for the loss of coupling seen at low temperatures.

Experimental verification of these predictions is, however, constrained by several materials related factors. First of all, since the oscillatory coupling is seen only when the spacer thickness is small (≤ 130 Å), one must ensure that superconductivity survives in such thin spacers in the presence of the strong pair-breaking effects of the ferromagnetic boundaries. Naturally, short coherence length ξ_0 and high critical temperature T_c of the superconductor, and small exchange energy of the ferromagnet are the desirable features to see the effect. In addition, one must also ensure that the interfaces between the ferromagnetic and superconducting layers are atomically smooth.

The doped Mott insulators of the perovskite oxide family meet some of these material specifications. For example, YBa$_2$Cu$_3$O$_7$ (YBCO) superconductor and La$_{0.67}$Sr$_{0.33}$MnO$_3$ (LSMO) ferromagnet can be grown epitaxially on top of each other. The cuprate has anisotropic but short coherence length and a high T_c, whereas the manganite with a Curie temperature of ≈ 360 K, has relatively small exchange energy J (~ 1 meV) as compared to the J of 3d transition metal ferromagnets such as Fe and Co which are strong pair-breakers. However, the cuprates also pose interesting challenges, such as the nodal gap parameters Δ and anomalous c-axis transport, not present in elemental superconductors. Reported measurements on high T_c superconductor (HTSC)-manganite heterostructures have primarily focused on the suppression of T_c spin injection [15,16,17] and the effects on magnetoresistance [8,9]. Recently, the aspect of exchange coupling across HTSC layers has been addressed by Przyslupski et al. [20] using (La$_{0.67}$Sr$_{0.33}$MnO$_3$)$_n$(YBa$_2$Cu$_3$O$_7$)$_m$ multilayers where $n = 16$ unit cells, and m varies from 1 to 8 unit cells. Measurements of field-cooled (FC) and zero-field-cooled
(ZFC) magnetization loops in these samples reveal exchange biasing effects, which have been argued to be an indicator of interlayer exchange coupling. However, this work also attributes the shift of the FC and ZFC loops to antiferromagnetism in LSMO. Here it needs to be pointed out that these multilayers have been deposited on LaAlO$_3$ substrates, which introduce large compressive stress in LSMO and YBCO epitaxial films due to its smaller lattice parameter (\sim 3.79 Å). In addition, LaAlO$_3$ is a heavily twinned material. Since both these factors are known to affect magnetic anisotropy of LSMO and superconducting properties of YBCO, intrinsic behavior of FM-SC-FM structure is likely to get masked by such stress and interface related effects. Further, the interface related non-intrinsic behavior is likely to get accentuated in superlattices due to the presence of a large number of interfaces in such structures.

Here we report the magnetic behavior of LSMO-YBCO-LSMO trilayers, synthesized on [001] SrTiO$_3$ substrates. The lattice parameter of SrTiO$_3$ (\sim 3.91 Å) compares well with the lattice parameter of L$_{0.67}$Sr$_{0.33}$MnO$_3$ (\sim 3.89 Å) and the average ab-plane lattice spacing of YBa$_2$Cu$_3$O$_y$ (\sim 3.85 Å). The scope for a stress-free layer-by-layer growth has been improved further through special chemical treatment of the substrate. We first describe the magnetic behavior of plane LSMO films of various thickness. High quality epitaxial layers of LSMO showing a soft magnetic character and in-plane anisotropy were integrated with YBCO in a trilayer form and the superconducting critical temperature of such structures was measured. The suppression in T_c has been attributed to the pair breaking effects at the FMS boundary. Finally, the issue of interlayer exchange coupling has been addressed through measurements of ZFC in-plane magnetization loops over a broad range of temperatures. These measurements reveal a long range antiferromagnetic coupling between LSMO layers decaying exponentially with the thickness of the YBCO spacer.

II. EXPERIMENTAL

Thin films of LSMO, and trilayers of LSMO-YBCO-LSMO and PrBa$_2$Cu$_3$O$_{7-\delta}$ - YBa$_2$Cu$_3$O$_{7-\delta}$ - PrBa$_2$Cu$_3$O$_7$ (PBCO-YBCO-PBCO) were deposited on chemically polished [001] oriented SrTiO$_3$ substrates. A multitarget pulsed laser deposition technique based on KrF excimer laser (λ= 248 nm) was used to deposit the films and trilayers at 800 °C and 200 mTorr O$_2$ partial pressure. Since the growth conditions for all three oxides were identical, the trilayers were deposited sequentially without changing the process parameters. A slow deposition rate (\sim 1 Å/sec) established through several calibration runs, was used to realize a layer-by-layer growth of LSMO, PBCO, and YBCO. While for the plane LSMO films we have studied the changes in transport and magnetic properties as a function of thickness from 50 Å to 1100 Å, the thickness of each LSMO layer in LSMO-YBCO-LSMO trilayers was fixed at 300 Å, and the thickness of the cuprate was varied from 50 Å to 300 Å. For the PBCO-YBCO-PBCO trilayers, a constant PBCO layer thickness of 100 Å was used. The crystallographic structure of the films was characterized with θ-29 X-ray diffraction. The SC and FM critical temperatures of the films were established through resistivity $\rho(T)$, ac-susceptibility $\chi(T)$ and magnetization M(T) measurements. We have used a home-built micro-Hall-probe based ac-susceptometer for detailed measurements of vortex dynamics in these films. The measurements of resistivity in the temperature range of 2 K to 370 K were carried out in the standard four-probe geometry. A superconducting quantum interference device (SQUID) based magnetometer (MPMS-XL5) operated in the RSO mode for higher sensitivity was used for detailed measurements of zero-field-cooled and field-cooled magnetization and M-H loops. The magnetic field in these measurements was in the plane of the film, aligned along one of the principal axes ([100] or [010]). Measurements were also performed with the field in the [110] direction to check for the in-plane anisotropy of magnetization.

III. RESULTS

A. Magnetic ordering in thin La$_{0.67}$Sr$_{0.33}$MnO$_3$ films:

Figure 1 shows the ZFC and FC magnetization of a 600 Å thick LSMO film measured at 500 Oe. The onset of spontaneous magnetization at \sim 350 K on cooling marks the Curie temperature of the sample. The ZFC and FC branches of magnetization in granular and multi-domain magnetic films of large coercivity show a pronounced bifurcation at lower temperatures. In the

![FIG. 1: Zero-field-cooled (Δ) and field-cooled (O) magnetization of a 600 Å thick film of La$_{0.67}$Sr$_{0.33}$MnO$_3$ measured with 500 Oe in-plane field directed along the [100] axis. The solid line is a fit to the field-cooled curve using the Bloch law (Eq. 1) for the decay of magnetization at T\llTc. Inset: Zero-field-cooled hysteresis loop of the same film measured at 40 K in the same configuration as the measurement of M (T).]
ferromagnets like Fe is \(\sim -3/2 \) constant of \(t \)zation at \(T \) is seen when the field is along \([110]\). Whereas in the

\[M_s(T)/M_s(0) = 1 - AT^{3/2} \]

Here \(M_s(0) \) is the saturation magnetization at \(T = 0 \), and the coefficient \(A \) is expressed as \((C/S)(k_B/2JS)^{3/2} \), where \(C = 0.059 \) for a simple cubic magnetic lattice, \(S \) the total spin and \(J \) the exchange integral which is given by the formula \(k_B T_c/J = (5/96) (Z - 1) [11S(S + 1) - 1] \) of Rushbrooke and Wood. An excellent fit to the magnetization at \(T \ll T_{Curie} \) is seen with a dependence of the type \(1 - AT^{3/2} \), when the average spin \(S (= 1.835) \) per Mn site is used. The exchange energy deduced from the fits is \(\sim 2 \) meV, while the exchange energy of the strong ferromagnets like Fe is \(\sim 5.5 \) meV deduced from a Bloch constant of \(\sim 3.6 \times 10^{-6} \) deg \(^{-3} \). In order to check for a preferred in-plane axis of magnetization, we have measured the hysteresis loops with the external field aligned along the [100] and [110] directions of the [001] oriented films. Results of this measurement are shown in Fig. 2(a, b). A perfect hysteresis loop with the remanant magnetization \((M_r) \) equal to \(M_s \) is seen when the field is along [110]. Whereas in the

The exchange energy deduced from the formula \[J = (5/96) (Z - 1) [11S(S + 1) - 1] \] of Rushbrooke and Wood. An excellent fit to the magnetization at \(T \ll T_{Curie} \) is seen with a dependence of the type \(1 - AT^{3/2} \), when the average spin \(S (= 1.835) \) per Mn site is used. The exchange energy deduced from the fits is \(\sim 2 \) meV, while the exchange energy of the strong ferromagnets like Fe is \(\sim 5.5 \) meV deduced from a Bloch constant of \(\sim 3.6 \times 10^{-6} \) deg \(^{-3} \). In order to check for a preferred in-plane axis of magnetization, we have measured the hysteresis loops with the external field aligned along the [100] and [110] directions of the [001] oriented films. Results of this measurement are shown in Fig. 2(a, b). A perfect hysteresis loop with the remanant magnetization \((M_r) \) equal to \(M_s \) is seen when the field is along [110]. Whereas in the

case of \(H \parallel [100] \) (Fig. 2a), \(M_r = M_s/\sqrt{2} \). This observation clearly indicates that [110] is the easy axis of magnetization and [100] is the hard axis. However, the small value of the switching field suggests that the energy barrier for rotation of magnetization is not large. This result is consistent with the earlier measurements of magnetization loops in films of LSMO deposited on STO substrates. An excellent fit to the magnetization at \(T \ll T_{Curie} \) is seen with a dependence of the type \(1 - AT^{3/2} \), when the average spin \(S (= 1.835) \) per Mn site is used. The exchange energy deduced from the fits is \(\sim 2 \) meV, while the exchange energy of the strong ferromagnets like Fe is \(\sim 5.5 \) meV deduced from a Bloch constant of \(\sim 3.6 \times 10^{-6} \) deg \(^{-3} \). In order to check for a preferred in-plane axis of magnetization, we have measured the hysteresis loops with the external field aligned along the [100] and [110] directions of the [001] oriented films. Results of this measurement are shown in Fig. 2(a, b). A perfect hysteresis loop with the remanant magnetization \((M_r) \) equal to \(M_s \) is seen when the field is along [110]. Whereas in the

Unlike the other double exchange manganites such as \(La_{0.67}Ca_{0.33}MnO_3 \), the resistivity of LSMO with 30 to 40 % Sr is metallic in the paramagnetic state. This metallic conduction is seen in our films as well. The resistivity of these films at room temperature is low \((\sim 2 \Omega \cdot cm) \), and remains metallic down to 2 K. Fig. 3 displays the zero-field resistivity of LSMO films spanning over a thickness range of 100 Å to 350 Å in the temperature window of 2 K - 370 K. The paramagnetic metallic phase above \(T_{Curie} \) which transits to a ferromagnetic metallic phase at \(T < T_{Curie} \), is clearly identifiable for all films. \(T_{Curie} \) acquires the near bulk value \((\sim 350 \) K) for films thicker than 200 Å, while thinner films show a slight drop in the Curie temperature. The resistivity at the lowest temperature normalized with respect to its value at 10 K, is shown in the inset of Fig. 3. A small upturn in resistivity, which can be attributed to weak localization and electron-electron interaction effects in 2D, is observed only for the thinnest films \((\leq 200 \) Å). These features indicate the growth of a high quality thin film of LSMO. The magnetic and electrical characteristics of LSMO dominate the behavior of \(\rho(T) \) and \(M(T) \) in

FIG. 2: Zero-field-cooled magnetization loops at 100 K measured with in-plane applied field along the [100] (panel ‘a’) and [110] (panel ‘b’) directions. In both cases the data are corrected for a small diamagnetic contribution from the STO substrate.

FIG. 3: Resistivity \((\rho(T)) \) of LSMO films deposited on STO in the temperature range of 2 K - 370 K. Thickness of the films varies from 100 Å to 350 Å. Inset shows a magnified view of the low temperature section of the \(\rho(T) \) curves. These data have been normalized with respect to the resistivity at 10 K in order to emphasize the upturn in the resistivity of the thinnest films.
order to estimate the effects of magnetic boundaries on T_c, we have also measured the superconducting transition temperature of PBCO-YBCO-PBCO trilayers. Results of these measurements are also shown in Fig. 4(a). For this non-magnetic system, the T_c drops as the thickness of the YBCO layer (d_Y) is reduced. The variation of T_c with d_Y in PBCO-YBCO-PBCO multilayers has been studied extensively by several groups, and various reasons have been given for the drop \cite{34,35}. These include interfacial stress, a drop in c-axis coupling of the condensate as the number of CuO$_2$ planes is reduced etc. However, the effect of uniaxial stress applied along the a-axis and b-axis of the YBCO crystal on its T_c is nearly equal and opposite \cite{36}. This result rules out any direct effect of the lattice mismatch induced stress on T_c. However, Varela et al. \cite{37} have shown that the overall stress pattern also gives rise to very significant and non-uniform changes within YBCO unit cell, which may reduce the hole concentration in the CuO$_2$ planes located close to the interfaces. We may write this interface driven reduction in T_c as $\Delta T_c(d_Y)_{interface}$. Since the lattice parameters of La$_{0.67}$Sr$_{0.33}$MnO$_3$ and PrBa$_2$Cu$_3$O$_7$ are identical within 0.5%, we assume the effect of the interface on T_c to be similar for YBCO films sandwiched between the LSMO layers. The LSMO layers, however, also affect the T_c through pair-breaking. We can therefore argue that the larger drop in T_c of LSMO-YBCO-LSMO trilayers of a given d_Y as compared to the T_c of PBCO-YBCO-PBCO of the same d_Y is due to the magnetic pair-breaking effects. A rigorous treatment of pair breaking effects of a ferromagnetic film deposited on top of a superconductor requires solution of the Usadel equation for different degree of interface transparency for Cooper pair tunneling \cite{37,38}.

C. Magnetic coupling in LSMO - YBCO - LSMO trilayers:

Having established the existence of ferromagnetic and superconducting orders in these trilayers, we now discuss the behavior of interlayer magnetic coupling between the LSMO layers separated by YBCO below and above the T_c. Fig. 5 shows a series of M-H loops of a LSMO-YBCO-LSMO trilayer with d_Y = 100 Å taken at various temperatures with the external magnetic field aligned along [100] direction. In the loops measured at $T > 100$ K, one can easily identify a critical field $|H_{c1}|$ up to which the magnetic moment of the trilayer remains close to zero, and then quickly achieves the saturation value once the field $|H|$ exceeds $|H_{c1}|$. The magnetization of the sample below the superconducting transition drops rapidly at low fields because of the diamagnetic signal from the YBCO layer. The reverse branch of the hysteresis loops shows a large irreversibility due to pinning of the magnetic flux. However, the ferromagnetic component of the magnetization is also found to persist in the superconducting state. A careful look at the magnetizing

FIG. 4: Panel (a) : T_c (open symbols) plotted as a function of d_Y in LSMO-YBCO-LSMO and PBCO-YBCO-PBCO trilayers. Inset shows $R(T)$ and zero-field-cooled $M(T)$ of a LSMO-YBCO-LSMO sample with d_Y = 100 Å. An enlarged view of $M(T)$ near T_c is also shown. Panel (b): Temperature dependence of the zero-field-cooled magnetization of LSMO-YBCO-LSMO trilayers with 100, 200, 300 and 500 Å thick SC layers. The measurement field of 500 Oe was applied along the [100] direction in the plane of the films.

LSMO-YBCO-LSMO trilayers at $T > 100$ K as described in the following section.

B. Superconductivity in LSMO - YBCO - LSMO trilayers:

In the inset of Fig. 4(a) we plot the magnetization and resistivity of a LSMO-YBCO-LSMO trilayer with YBCO layer thickness (d_Y) of 100 Å. At $T \leq 360$ K a metallic behavior is evident in the resistivity plot. This becomes pronounced at $T < T_{Curie}$. At lower temperatures however, the resistance of the sample drops to zero as the current path is shorted by the superconducting YBCO layer. Correspondingly, there is a non-zero diamagnetic contribution to magnetization due to the Meissner effect. In trilayers with thicker YBCO film, the magnetization actually crosses the zero-line and becomes negative. This is seen in Fig. 4(b) where we have plotted the ZFC magnetization of some trilayers with different YBCO thickness. The superconducting transition temperature (T_c) in these heterostructures is a strong function of YBCO layer thickness. In Fig. 4(a) we show the variation of T_c as a function of d_Y in LSMO-YBCO-LSMO trilayers. In
A YBCO interlayer, A thick single layer LSMO film, a LSMO-PBCO-LSMO trilayer and a LSMO-YBCO-LSMO trilayer. In all three cases the measuring field was along the [100] direction. Fig. 7(d) shows the M-H loop of the LSMO-YBCO-LSMO trilayer measured with H || [110] for comparison. It is evident from these data that the hysteresis with the characteristic magnetizing field H_s is seen only in the case of LSMO-YBCO-LSMO trilayers. This observation rules out the role of uncompensated copper spins, as these factors are present in LSMO-PBCO-LSMO as well. Some signatures of the type of M-H curve seen in Figs. 5 and 6, have also been observed by Przyslupski et al20 in $La_{0.67}Sr_{0.33}MnO_3 - YBa_2Cu_3O_7$ superlattices with thin (~ 60 Å) LSMO layers. They have presented a scenario where migration of holes from the YBCO into the LSMO converts a few unit cells of the latter into an antiferromagnet. This AF ordered layer pins the magnetic moment of the remaining ferromagnetic portion. Since the LSMO layer is on both sides of the YBCO, this effect should lead to two pinned magnetization vectors whose relative orientation can be anywhere from 0 to 180°. However, the observation of a net zero magnetization at $H < |H_s|$ demands that this angle is 180°. This is possible only when there is an exchange coupling across the YBCO. The magnetic behavior of ferromagnetic and antiferromagnetic LSMO couples has been studied in detail by Izumi et al40, for the case of $La_{0.6}Sr_{0.4}MnO_3$ / $La_{0.45}Sr_{0.55}MnO_3$ superlattices, where the latter compound is a metallic A-type antiferromagnet. The Mn

![Figure 5: Low-field section of isothermal hysteresis loops of a LSMO-YBCO-LSMO trilayer with 100 Å YBCO interlayer, measured at 20, 40, 60, 80, 100, and 120 K. All measurements were performed on zero-field-cooled samples and with in-plane applied field along the [100] direction. The switching field has been marked as H_s (see text for details).](image1)

![Figure 6: Panels ‘a’, ‘b’, ‘c’ and ‘d’, display the results of isothermal magnetization measurements at 100 K for trilayers with 75, 100, 200 and 300 Å thick YBCO interlayer, respectively. The measurement field was directed along the [100] direction in the plane of the trilayers. The low field region is magnified in order to emphasize the antiferromagnetic coupling between the LSMO layers below 200 Oe.](image2)
energy expression for two magnetic layers of equal thickness and its temperature dependence. The free nature of antiferromagnetic coupling between the LSMO layers on both sides, is shown superposed on the main magnetization curve. The measurement was performed at 100 K after cooling the sample in zero-field. Noting that the hysteresis seen in Figs. 6 and 7 is a signature of antiferromagnetic coupling between the LSMO layers in our trilayers, we have plotted a minor loop for a sample with $d_Y = 100 \text{ Å}$. Starting from saturation magnetization in the forward direction, the field was decreased to a value $|H| < |H_s|$ in the negative direction and then increased again. In the presence of exchange biasing, the minor loop obtained in this way should be shifted along the field axis by an amount equal to the biasing field. However, the minor loop in Fig. 8 shows no shift within an accuracy of 5 Oe.

Noting that the hysteresis seen in Figs. 6 and 7 is a signature of antiferromagnetic coupling between the LSMO layers, we now proceed to estimate the exchange energy and its temperature dependence. The free energy expression for two magnetic layers of equal thickness coupled by bilinear coupling can be written as:

$$F = F_c + F_a - H \cdot (\vec{M}_1 + \vec{M}_2)t$$

where \vec{M}_1 and \vec{M}_2 are the magnetizations of the top and bottom LSMO layers, F_c is the coupling energy per unit area, and t the thickness of one LSMO layer. The anisotropy energy F_a derives contributions from the magneto-crystalline anisotropy as well as in-plane uniaxial anisotropy of the film. Under the assumption of a bilinear coupling, F_c can be written as:

$$F_c = -J_1(\vec{M}_1, \vec{M}_2)$$

Here \vec{M}_1 and \vec{M}_2 are unit magnetization vectors, and $J_1 < 0$ corresponds to antiferromagnetic coupling between the FM layers. The equilibrium orientation of \vec{M}_1 and \vec{M}_2 are found by minimization of the free energy with respect to variations in the orientations of these two vectors. In a special case, when the interlayer exchange $J_1(\vec{M}_1, \vec{M}_2)$ is $< F_a$, the magnetization jumps slowly in small field and then at a critical value of the field jumps to the saturation M_s.

The behavior of magnetization seen in Figs. (5, 6, and 7) corresponds to this situation. We have made an estimate of J_1 from the measured H_s and magnetization density M_s using Eq. 4. Fig. 9 shows the variation of J_1 as a function of temperature for trilayers of different YBCO layer thickness. In the figure we note that the coupling energy at $T > T_c$ is small, non-oscillatory and decreases...
exponentially with the thickness of the superconductor. In all cases however, J_1 increases monotonically as the temperature is lowered to T_c. Below this temperature a truncation of the monotonic growth of J_1 is evident in all samples.

The temperature dependence of the interlayer exchange coupling in metallic multilayers has been worked out theoretically43,44. Following Bruno44, the amplitude of the linear exchange coupling coefficient J_1 increases with the decreasing temperature in the following manner,

\begin{equation}
J_1 (T) = J_1 (0) \left(\frac{T / T_0}{\sinh(T / T_0)} \right) \tag{5}
\end{equation}

where the characteristic temperature T_0 depends on Fermi wave-vector k_F and spacer thickness d_n through the relation $T_0 = \hbar k_F / 2 \pi k_B d_n m$, where m is the free electron mass and \hbar and k_B are Planck and Boltzmann constants, respectively. The calculations of Edwards et al43 also yield a similar temperature dependence of J_1. Since the transport in the present case is along the c-axis of the YBCO, the relevant Fermi wave-vector is $k_{F_z} = \pi / 2 c$, where c is the c-axis lattice parameter (~ 12 Å10). We have fitted the temperature dependence of J_1 shown in Fig. 9 to Eq. 5. However, the average value of k_{F_z} obtained from these fits is larger by a factor of ~ 4 compared to the k_{F_z} expected for YBCO10. In Fig. 9 we show a theoretical curve for $J_1(T)$ generated using Eq. 5 with $k_{F_z} = \pi / 2 c$, $d_Y=100$ Å and $J_1(T)$ such that the experimental and calculated values of J_1 at 120 K are the same. The calculated $J_1(T)$ shows a steep increase at the lower temperatures where the experimental data reach saturation. This truncation of the theoretically expected growth of J_1 below T_c is suggestive of a superconducting gap.

IV. DISCUSSION

Although the physics of magnetic coupling across a superconducting spacer of anisotropic order parameter is an enormously complicated problem to analyze, the following arguments can be made on the basis of the data shown in Fig. 5 through Fig. 9. We first consider the case when YBCO is in the normal state. The coupling in this situation is mediated by the transport of carriers perpendicular to CuO$_2$ planes in these c-axis-oriented films. While the resistivity of YBCO along the c-axis shows a variety of behaviors depending on doping concentration and defect structure, for optimally doped YBCO it is metallic, but larger by a factor of ~ 50 compared to the in-plane resistivity45. The c-axis transport in optimally doped and overdoped YBCO involves blocking of coherent interplanar tunneling by the in-plane scattering. This leads to $\rho_c \propto \rho_{xy}46,47$. In underdoped systems diffusive tunneling dominates the transport, leading to a semiconductor-like resistivity48. The non-oscillatory and predominantly antiferromagnetic IEC seen here is analogous to the behavior of exchange coupling in Fe-FeSi49 and Fe-Si-Fe50 heterostructures. The IEC in this case is strongly antiferromagnetic ($J_1 \sim 2$ erg/cm2) for a thin spacer, and decays exponentially with the increasing spacer thickness. Furthermore, the exchange energy J_1 shows a monotonic drop with the increasing temperature, a behavior similar to the data shown in Fig. 9. A bias towards antiferromagnetic IEC has been predicted theoretically as well. Shi, Levy and Fr"{u}hl have shown that this bias for AF-coupling arises from a competition between the RKKY–like exchange and superexchange, and a non-cancellation of the non-oscillatory parts of these two contributions. An AF coupling, which decays exponentially with the spacer thickness, has been predicted by Slonczewski51,52 and Bruno44 using an electron tunneling picture. The theory53 predicts a d_s dependence of the type $J_1 \sim (1/d_s^n) \exp (-d_s/\lambda)$. The calculated value of the coupling energy J_1 for our trilayers is plotted in the inset of Fig. 9 as a function of the spacer layer thickness. We have fitted these data to a first-order exponential decay of the type given by Bruno et al44. Result of this fitting is shown as solid-lines in the inset. The characteristic decay length λ inferred from the fit is ~ 150 Å. Since the c-axis transport in YBCO is controlled by a delicate balance between single electron tunneling and

intralayer electron - electron scattering processes, a tunneling picture for IEC is applicable, albeit with the caveat that it is unlike the tunneling through a semi-conducting barrier where thermally induced carriers can enhance IEC at higher temperatures. The IEC in this case is expected to decay with temperature as the c-axis resistivity shows a linear temperature dependence.

The truncation of the monotonous growth of the exchange coupling energy when the YBCO layer becomes superconducting (as seen in Fig. 9) is in agreement with the predictions of Šipr and Györfy, and of de Melo. However, the extent of the drop in the coupling energy in the $T = 0$ limit depends on the strength of the superconducting gap parameter. For a weak ferromagnet and an isotropic superconductor, de Melo has derived an analytic expression for the effective coupling Hamiltonian:

$$H_{\text{eff}} \sim \frac{\cos (2k_F d_s)}{(2k_F d_s)^2} \exp \left(- \frac{k_F d_s \Delta}{E_F^\text{c}} \right)$$

(6)

where, k_F and d_s are the Fermi momentum and thickness of the S-layer respectively. Δ is the superconducting gap and E_F is the Fermi energy. This expression shows that the superconducting order does not actually contribute to the oscillating part of the interaction, it only induces a relative decrease in the strength of interaction as compared to the interaction for a normal metallic spacer. However, the low temperature calculations in Refs. 8 and 9 are valid only for an isotropic gap parameter. de Melo has recently considered the case of IEC through a d-wave superconductor whose order parameter lies in the plane of the multilayer. The main contribution to coupling in this case comes from the wave vectors connecting points at the Fermi surface along the [001] direction and for k_F^\parallel lying along the direction of nodes. A distinct suppression, although not as much as in the case of a fully gapped system, has been seen in the superconducting state.

V. CONCLUSIONS

In summary, we have studied the magnetic and superconducting states of epitaxial thin film heterostructures consisting of two La$_{0.67}$Sr$_{0.33}$MnO$_3$ layers separated by a layer of YBa$_2$Cu$_3$O$_y$, whose c-axis is perpendicular to the plane of the heterostructure. We see a distinct influence of the ferromagnetic boundaries on the T_c of the YBCO layer. This is attributed to the pair-breaking phenomena near the F-S interface. The hysteresis loops for in-plane magnetization of the heterostructures show signatures of an antiferromagnetic coupling between the moments of the two LSMO layers in the superconducting as well as the normal state of the spacer. The temperature dependence of the exchange coupling energy shows a monotonic growth followed by saturation on lowering the temperature. The long range coupling was found to decrease exponentially with the increasing thickness of the spacer layer. The suppression of J_1 at $T < T_c$ suggests inhibition of single electron tunneling along the c-axis of YBCO as the in-plane superconducting order parameter becomes non-zero.

Acknowledgments

This research has been supported by a grant from the Defense Research and Development Organization, Government of India, and the internal funding of I.I.T. Kanpur.

* Electronic address: rebs@iitk.ac.in

1 See, for example, “Ultrathin Magnetic Structures II,” ed. B. Heinrich and J. A. C. Bland, (Springer-Verlag, Berlin, 1994).

2 P. Grunberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers, Phys. Rev. Lett. 57, 2442 (1986).

3 M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

4 S. S. P. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett. 64, 2304 (1990).

5 A. Orozco, S. B. Ogale, Y. H. Li, P. Fournier, Eric Li, H. Asano, V. Smolianinova, R. L. Greene, R. P. Sharma, R. Ramesh, and T. Venkatesan, Phys. Rev. Lett. 83, 1680 (1999).

6 K. R. Nikolaev, A. Yu. Dobin, I. N. Krivorotov, W. K. Cooley, A. Bhattacharya, A. L. Kobrinskii, I. I. Glazman, R. M. Wentzovich, E. Dan Dahlberg, and A. M. Goldman, Phys. Rev. Lett. 85, 3728 (2000).

7 P. Padhan, R. C. Budhani, and R. P. S. M. Lobo, Europhys. Lett. 63, 771 (2003).

8 O. Šipr and B. L. Györfy, J. Phys: Condens. Matter 7, 5239 (1995).

9 C. A. R. Sá de Melo, Phys. Rev. Lett. 79, 1933 (1997); Phys. Rev. B 62, 12303 (2000).

10 C. A. R. Sá de Melo, Physica C 387, 17 (2003).

11 J. J. Hauser, H. C. Theuerer, and N. R. Werthamer, Phys. Rev. 142, 118 (1966).

12 H.-U. Habermeier, G. Cristiani, R. K. Kremer, O. Lebedev, and G. van Tendeloo, Physica C 364-365, 298 (2001).

13 Z. Sefrioui, D. Arias, V. Peña, J. E. Villegas, M. Varela, P. Prieto, C. León, J. L. Martínez, and J. Santamaria, Phys. Rev. B 67, 214511 (2003).

14 B. S. H. Pang, R. I. Tomov, and M. G. Blamire, Supercond. Sci. Technol. 17, 624 (2004).

15 Z. W. Dong, R. Ramesh, T. Venkatesan, M. Johnson, Z. Y. Chen, S. P. Pai, V. Talyanski, R. P. Sharma, R. Shreekala, C. J. Lobb, and R. L. Greene, Appl. Phys. Lett. 71, 1718 (1997).

16 A. M. Goldman, V. Vasko, P. Kraus, K. Nikolaev, and V.
