Supporting Information

[Cu$_{18}$H$_3$(S-Adm)$_{12}$(PPh$_3$)$_4$Cl$_2$]: fusion of Platonic and Johnson solids through a Cu(0) center and its photophysical properties

Anish Kumar Das,a Sourav Biswas,a Vaibhav S. Wani,a Akhil S. Nair,b Biswarup Pathak,b Sukhendu Mandala*

aSchool of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 69551, India. E-mail: sukhendu@iisertvm.ac.in

bDepartment of Chemistry, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India.
Table of contents

Name	Description	Page No.
Experimental		S3-S6
Table S1	Crystal data and structure refinement parameters	S7
Table S2	List of reported thiolate protected Cu NC	S8
Table S3	The obtained radiative, nonradiative rate constants, quantum yield and lifetime	S9
Fig. S1	Optical image of the Cu18 NC	S10
Fig. S2	The attachment of hydrides and chloride with the core	S11
Fig. S3	DFT optimized structure of the Cu18 NC	S12
Fig. S4	GIAO 1H NMR spectrum of the Cu18 NC	S13
Fig. S5	1H NMR spectra of the Cu18 NC and Cu18D NC	S14
Fig. S6, S7, S8	Different μ_1 and μ_2 bridging modes of S bonding between core and metal-ligand motifs	S15-S17
Fig. S9	Attachment of four P atoms with the metal-ligand motifs	S18
Fig. S10	31P NMR spectrum in CDCl3 of the Cu18 NC	S19
Fig. S11	The herringbone pattern of the crystal packing	S20
Fig. S12	Partial positive-mode ESI-MS spectrum of the Cu18 NC	S21
Fig. S13	Experimental and simulated isotopic patterns corresponding to the each fragment	S22
Fig. S14	Positive-mode ESI-MS spectra of the Cu18D NC	S23
Fig. S15	Thermogravimetric analysis of the Cu18 NC	S24
Fig. S16	HR-TEM image and SEM micrograph of the Cu18 NC crystal	S25
Fig. S17	EDS analysis of the Cu18 NC	S26
Fig. S18	Deconvoluted XPS spectra of each element of the Cu18 NC	S27
Fig. S19	Cyclic voltammogram data of the Cu18 NC	S28
Fig. S20	EPR spectrum of the Cu18 NC with respect to g-factor	S29
Fig. S21	Localized density of states (LDOS) of different types of Cu atoms in the Cu18 NC	S30
Fig. S22	Solid-state UV-vis absorbance spectrum of the Cu18 NC and its characteristic bandgap	S31
Fig. S23	Simulated absorbance spectrum of the Cu18 NC	S32
Fig. S24	Emission lifetime of Cu18 NC and Cu18 NC with β-CD	S33
Fig. S25	PL properties of solid and solution state of Cu18 NC and Cu18 NC with β-CD	S34
Fig. S26	1H NMR spectra in CDCl3 of β-CD attached Cu18 NC, and pure β-CD	S35
Fig. S27	UV-vis absorbance spectra of the Cu18 NC and Cu18 NC with β-CD	S36
Fig. S28	Temperature-dependent PL property of the Cu18 NC and Cu18 NC with β-CD	S37
Fig. S29	Cyclic voltammogram data of Cu18 NC with β-CD	S38
Fig. S30	I-V characteristic plot of the Cu18 NC	S39
Fig. S31	UPS data of the Cu18 NC	S40
References		S41
Experimental

Materials

Tetrakis(acetonitrile)copper(I) tetrafluoroborate (Cu(CH$_3$CN)$_4$BF$_4$), triphenylphosphine (PPh$_3$), 1-adamantane thiol (Adm-SH), sodium borohydride (NaBH$_4$), tetra-n-butylammonium hexafluorophosphate (TBAPF$_6$), β-cyclodextrin were procured from Sigma-Aldrich. HPLC grade solvents- chloroform, dichloromethane, acetonitrile, methanol, and n-hexane were purchased from Spectrochem. Milli-Q water was utilized throughout the experiments.

Synthesis of Cu$_{18}$ NC

Initially, 50 mg of Cu(CH$_3$CN)$_4$BF$_4$ and 50 mg of PPh$_3$ were dissolved in the mixture solution of 2 mL acetonitrile and 0.5 mL chloroform at room temperature. After 5 min of stirring, 20 mg of Adm-SH was added to the reaction mixture and continued stirring. After the addition of 50 mg NaBH$_4$ dissolved in 2.5 mL methanol, the color of the solution becomes red from colorless. The reaction was kept for another 1 h under continuous stirring. After completion, the reaction mixture was centrifuged and collected the red precipitate. After drying properly, the precipitate was dissolved in the solvent mixture of chloroform/hexane (volume ratio 1:1). The final clear solution was kept for crystallization at ambient conditions. After 7 days, red-colored cubic crystals were obtained.

The synthesis of atomically precise Cu NCs is much more challenging compared to the Ag NCs and Au NCs due to the low reduction potential and the high reactivity of the Cu with respect to Ag and Au. Hence, the synthesis of Cu NCs containing zero-valent Cu atoms in the core experiences more complications. In the synthesis of reported [Cu$_{32}$(PET)$_2$H$_8$Cl$_2$][PPh$_4$]$_2$, it had been shown that tetramethylethylenediamine was an important reagent for the synthesis where in the first step Cu(I) complex was formed, followed by the reduction of the complex was occurred under Ar atmosphere, though the tetramethylethylenediamine is not attached in the final product.31 Doubly charged Cu$_{32}$ NCs stabilized by PPh$_4^+$ were formed where no Cu(0) is present. In the synthesis of [Cu$_{25}$H$_{10}$(SPhCl)$_{18}$]3, Cu(II) salt was used as a precursor and after reduction by NaBH$_4$, ended up with the anionic NCs with again all Cu is in +1 state.32 In both cases, the single crystals were obtained at low temperatures. In the synthesis of reported [Cu$_{61}$S(Bu)$_{26}$S$_6$Cl$_6$H$_{14}$]$^+$, a mild
reducing agent borane tert-butylamine complex was used instead of the strong reducing agent NaBH₄ to make the largest Cu(0)-containing core-shell copper NCs. In the synthesis of [Cu₁₅(PPh₃)₆(PET)₁₃]²⁺, [Cu₃₆H₁₀(PET)₂₄(PPh₃)₁₆Cl₂], and [Cu₈₁(PhS)₄₆(‘BuNH₂)₁₀(H)₃₂]³⁺, a one-pot direct reduction strategy had been followed. In the case of Cu₁₅ NC and Cu₃₆ NC, NaBH₄ was used and in the case of Cu₈₁ NC, ‘BuNH₂·BH₃ was used as reducing agents, though in all cases, Cu(I) salts were taken as a metal precursor. It has been observed that in the case of the mild reducing agent which gives rise to high-nuclearity Cu NC compared to the strong reducing agent under ambient conditions. In both cases, there is no Cu(0) atom. But in this work, Cu₁₈ NC was synthesized by a facile one-pot synthetic strategy. This synthetic procedure is almost the same as the procedure of Cu₃₆ NC. Only we have changed the PET ligand with the bulky adamantane thiol ligand in our synthesis and that bulkiness of the ligand may induce the stability of the Cu(0) atom at the center of the Cu₁₀ core.

Synthesis of Cu₁₈D NC

The same procedure was adopted whatever was mentioned for the synthesis of the Cu₁₈ NC. Instead of NaBH₄, we have used NaBD₄ as a reducing agent.

Synthesis of Cu₁₈ ∩ β-CD₁

Initially, 3 mg of Cu₁₈ NC was dissolved in 5 mL of tetrahydrofuran and then a 2 mL aqueous solution of β-CD (2 mg/mL) was added. The resultant reaction mixture was then sonicated for 15 min and kept for stirring for 1 h with a recurrent sonication for 2 min at every 15 min intervals. The obtained solution was washed several times with water. Finally, the aqueous phase was removed and the organic phase was dried.

X-ray Crystallography details

Single-crystal data of Cu₁₈ NC was collected on a Rigaku Oxford Diffraction XtaLAB Synergy-S diffractometer equipped with a HyPix-6000HE Hybrid Photon Counting (HPC) detector operating in shutter less mode and an Oxford Cryosystems Cryostream 800 Plus at 173 K using Cu Kα (λ = 1.54184 Å) from PhotonJet micro-focus X-ray Source. Data were processed using the CrystAlisPro software suite. The structure was solved using the charge-flipping algorithm, as implemented in the program SUPERFLIP and refined by full-matrix
least-squares techniques against Fo² using the SHELXL program⁹ through the OLEX2 interface.¹⁰

Computational details

The DFT calculations were done using Gaussian 09 D.01 program.¹¹ B3LYP functional with Pople’s 6–31G* basis set¹²,¹³ was used for non-metal elements, and LANL2DZ-ECP (effective core potential)¹⁴,¹⁵ was employed for Cu atoms, respectively. Chloroform solvent was considered to simulate the experimental non-polar solvent scenario. The TD-DFT calculations considered 300 singlet-to-singlet excitation energies. The -PPh₃ ligand is simplified to -PMe₃ during the calculation. Kohn-Sham orbital analysis has been performed for identifying the orbital contribution in molecular orbitals and corresponding energies by using the multi wave function 3.6 program.¹⁶,¹⁷ The NMR spectrum is simulated by using the GIAO method implemented in Gaussian 09 D.01 program.¹⁸

The projected density of states (PDOS) calculation for the compounds at the bulk level is carried out using Vienna Ab-Initio Simulation Package (VASP) by using Generalized gradient approximation of Perdew–Burke–Ernzerhof (PBE) functional.¹⁹,²⁰ Projector augmented wave (PAW) method is used for treating ion-electron interactions.²¹ The ionic relaxations have been carried out using a Conjugate gradient algorithm with convergence criteria of 10⁻⁴ eV for minimum energy and 0.05 eV Å⁻¹ for Hellmann-Feynman forces on atoms. Due to the large size of the unit cells of the compounds, the Brillouin zone was sampled at the Gamma point (1×1×1). For the PDOS calculation, a higher (2×2×2) K-point is used. The atomic charges are calculated using Bader charge analysis.²²

Instrumentation

A SHIMADZU UV-3800 spectrometer was used for measuring the absorbance spectra. Emission measurements were performed using a Fluorolog-3 spectrofluorimeter from Horiba Jobin Yvon. The relative quantum yield was determined by the best match of the excitation wavelength of a well-known chromophore such as pyrene with the NC and the excitation was fixed at 317 nm. The concentration of the chloroform solutions was fixed by adjusting the absorption 0.05 OD and measured the quantum yield at room temperature. A picosecond time-correlated single photon counting (TCSPC) system (Horiba Jobin Yvon-IBH) was utilized for
the measurement of emission lifetime. Transmission electron microscopy (TEM; FEI Tecnai G2 F30 S-Twin; 300 kV), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDS; FEI Nova NANOSEM 450) were used. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) measurements have been done by using the Omicron Nanotech instrument (MgKα radiation at 1253.6 eV). All binding energies were referenced to the neutral C 1s peak at 284.8 eV. The thermo-gravimetric analysis (TGA) was done on SDT Q600 (Shimadzu) instrument with a heating rate of 10 °C min⁻¹ under N₂ atmosphere. Cyclic Voltammogram was done by using a CH instrument with a three-electrode system where glassy carbon was used as a working electrode, graphite electrode served as a counter electrode and silver wire was used as a reference electrode in dichloromethane solvent. In this organic solvent, 0.5 M [(n-Bu)₄N]PF₆ salt was added as a supporting electrolyte. We have calibrated against the standard reference electrode (Ag/Ag⁺). Bruker Avance III, 500 MHz, NMR was used for the ¹H and ³¹P studies. Electron paramagnetic resonance (EPR) spectrum was recorded using MiniScope MS 5000 Magmetech EPR spectrometer. Waters Q-TOF mass spectrometer equipped with a Z-spray source was used for the electrospray ionization (ESI) mass spectrometry measurement in positive mode. Samples were dissolved in chloroform (1 mg/mL) and diluted by acetonitrile (1:1). The solution was infused at 20 µL/min. The spectrometer was operated in the mass range of m/z 1500–6000, capillary voltage was 2.9 kV, sampling cone 60, source temperature 70 °C source offset 28, desolvation temperature 100 °C, cone gas flow 20 L/Hr, desolvation gas flow 244 L/Hr. The chloroform solution of the synthesized NCs is drop-casted between the patterned gold electrodes deposited on the ceramic plate to form a thin layer of the material. The electrical and photoresponse measurements were observed using a Keithley 6712 electrometer using a laser of 360 nm wavelength and 10 mW.

The radiative and nonradiative rate constants calculation

The radiative rate \(k_r \) and nonradiative rate \(k_{nr} \) constants are calculated using the following equations

\[
k_r = \frac{\phi}{\tau_{av}} \quad (S1)
\]

\[
k_{nr} = \frac{(1-\phi)}{\tau_{av}} \quad (S2)
\]

where, \(\phi \) = Quantum yield; \(\tau_{av} \) = Average emission lifetime.
Table S1. Crystal data and structure refinement parameters.

Identification code	Cu18 NC
CCDC number	2132516
Empirical formula	C_{192}H_{242}Cl_{2}Cu_{18}P_{4}S_{12}
Formula weight	4273.06
Temperature	173 (2) K
Wavelength	1.54184 Å
Crystal system	monoclinic
Space group	P2_1/c (No. 14)
Unit cell dimensions	a = 19.2184 (2) Å; b = 47.4362 (6) Å, c = 24.0097 (3) Å; α = 90°; β = 100.5215 (12)°; γ = 90°
Volume	21520.4 (5) Å³
Z	4
Density	1.319 mg/m³
Absorption coefficient	3.783 mm⁻¹
F(000)	8808
Crystal size	0.15 × 0.06 × 0.04 mm³
Theta range for data collection	2.517 to 67.079°
Limiting indices	-16 ≤ h ≤ 22, -56 ≤ k ≤ 56, -28 ≤ l ≤ 26
Reflections collected	136476
Independent reflections	37748 [R(int) = 0.0579]
Completeness to theta = 67.079°	98.3 %
Refinement method	Full-matrix least-squares on F²
Data / restraints / parameters	37748 / 36 / 2065
Goodness-of-fit on F²	1.016
Final R indices [I > 2sigma(I)]	R₁ = 0.0534, wR₂ = 0.1127
R indices (all data)	R₁ = 0.0722, wR₂ = 0.1199
Largest diff. peak and hole	1.307 and -0.629 e. Å⁻³
Table S2. List of reported thiolate protected Cu NCs.

Sr. No.	Formula of Crystals	Presence of Cu(0)	Emission Property	Ref.
1	[Cu_{15}(PPh_3)_6(SCH_2CH_2Ph)_13]^{2+}	-	NIR emission	S4
2	[Cu_{25}H_{10}(SPhCl_2)_{18}]^{3-}	-	-	S2
3	[Cu_{32}(SCH_2CH_2Ph)_{24}H_8Cl_2][PPh_4]_2	-	-	S1
4	[Cu_{36}H_{10}(SCH_2CH_2Ph)_{24}(PPh_3)_6Cl_2]	-	-	S5
5	[Cu_{61}(S'Bu)_{26}S_6Cl_6H_{14}]^+	Partial Cu(0)	-	S3
6	[Cu_{81}(PhS)_{46}('BuNH_2)_{10}(H)_{32}]^{3+}	-	-	S6
7	[Cu_{18}H_3(S-Adm)_{12}(PPh_3)_4Cl_2]	One isolated Cu(0)	Violet emission	This work
Table S3. The obtained radiative, nonradiative rate constants, quantum yield and emission lifetime.

Compound	Relative Quantum yield (\(\phi\))	Emission Lifetime (\(\tau_{av}\) (ns))	\(k_r\) (s\(^{-1}\))	\(k_{nr}\) (s\(^{-1}\))
\(\text{Cu}_{18}\)	0.0032	0.26	\(1.23 \times 10^7\)	\(3.83 \times 10^9\)
\(\text{Cu}_{18} \cap \beta\text{-CD}_1\)	0.012	0.97	\(1.23 \times 10^7\)	\(1.02 \times 10^9\)
Fig. S1 The optical images of the Cu$_{18}$ NC with cubic shape.
Fig. S2 (a) The attachment of two μ_3 bridged hydrides, and (b) one μ_5 bridged hydride with the core. (c) Attachment of two chloride atoms by μ_2 bridging mode at the two opposite positions of the square edges of the Cu$_6$ octahedron. Color legend; Cu, light and deep orange; Cl, green; H, white.
Fig. S3 DFT optimized structure of the Cu$_{18}$ NC.
Fig. S4 GIAO 1H NMR spectrum of the Cu$_{18}$ NC.
Fig. S5 1H NMR spectra in CDCl$_3$ of (a) Cu$_{18}$ NC and (b) Cu$_{18}$D NC.
Fig. S6 μ_3 bridging mode of S (a) bonding between two Cu atoms of the motif and one Cu atom of the Cu$_6$ octahedron, and (b) bonding with two Cu atoms of the motif and one Cu atom of the Cu$_5$ distorted square pyramid. Color legend; Cu, light and deep orange; S, yellow.
Fig. S7 μ_3 bridging mode of S (a) bonding between one Cu atom of the motif and two Cu atoms of the Cu$_6$ octahedron, and (b) bonding with one Cu atom of the motif and two Cu atoms of the Cu$_5$ distorted square pyramid. Color legend; Cu, light and deep orange; S, yellow.
Fig. S8 (a) μ_3 bridging mode of S which are making connection among Cu$_6$ distorted octahedron, Cu$_5$ distorted square pyramid, and motif shell, and (b) μ_2 S atoms in the metal-ligand motifs. Color legend; Cu, light and deep orange; S, yellow.
Fig. S9 Attachment of four P atoms with the four Cu atoms of the metal-ligand motifs. Color legend; Cu, light and deep orange; P, magenta.
Fig. S10 31P NMR spectrum in CDCl$_3$ of the Cu$_{18}$ NC.
Fig. S11 The herringbone pattern of the Cu$_{18}$ NC caused by the hydrophobic interactions between the adamantane moieties along the x-axis.
Fig. S12 Partial positive-mode ESI-MS spectrum of the Cu$_{18}$ NC over the range of m/z 1900 to 2500. The numbers show experimental peaks of the corresponding fragments.
Fig. S13 The numbers show each experimental peaks and their simulated isotopic patterns corresponding to each fragment with a +2 charge.
Fig. S14 (a) Experimental and simulated isotopic patterns of the peak corresponding to \([\text{Cu}_{18}(\text{S-Adm})_{12}(\text{PPh}_3)_4\text{D}_3]^{2+}\), and (b) peak shifting from \(\text{Cu}_{18}\) NC to \(\text{Cu}_{18}\text{D}\) NC.
Fig. S15 Thermogravimetric analysis of the Cu$_{18}$ NC.
Fig. S16 (a) HR-TEM image, and (b) SEM micrograph of the Cu₁₈ NC crystal.
Fig. S17 EDS analysis illustrates the presence of Cu, S, P, Cl, and C as elements in this Cu$_{18}$ NC.
Fig. S18 Survey spectrum and deconvoluted XPS spectra of each element of the Cu$_{18}$ NC.
Fig. S19 Cyclic voltammogram data of the Cu_{18} NC.
Fig. S20 EPR spectrum of the Cu$_{18}$ NC with respect to g-factor.
Fig. S21 Localized density of states (LDOS) of different types of Cu atoms in the Cu$_{18}$ NC. Representative atoms from each category are analysed.
Fig. S22 (a) Solid-state UV-vis absorbance spectrum of the Cu$_{18}$ NC and (b) its characteristic bandgap.
Fig. S23 Simulated absorbance spectrum of the Cu$_{18}$ NC in chloroform.
Fig. S24 Emission lifetime of Cu$_{18}$ NC and Cu$_{18}$ NC with β-CD in chloroform medium upon excitation with a 375 nm laser.
Fig. S25 Difference in PL properties of solid and solution state of Cu$_{18}$ NC and Cu$_{18}$ NC with β-CD.
Fig. S26 1H NMR spectra in CDCl$_3$ of (a) β-CD attached Cu$_{18}$ NC, and (b) pure β-CD.
Fig. S27 UV-vis absorbance spectra of the Cu$_{18}$ NC and Cu$_{18}$ NC with β-CD.
Fig. S28 Temperature-dependent PL property of the Cu$_{18}$ NC and Cu$_{18}$ NC with β-CD.
Fig. S29 Cyclic voltammogram data of Cu$_{18}$ NC with β-CD.
Fig. S30 I-V characteristic plot of the Cu$_{12}$ NC.
Fig. S31 UPS data of the Cu$_{18}$ NC.
References

S1. S. Lee, M. S. Bootharaju, G. Deng, S. Malola, W. Baek, H. Hakkinen, N. Zheng and T. Hyeon, *J. Am. Chem. Soc.*, 2020, **142**, 13974-13981.

S2. C. Sun, N. Mammen, S. Kaappa, P. Yuan, G. Deng, C. Zhao, J. Yan, S. Malola, K. Honkala, H. Häkkinen, B. K. Teo and N. Zheng, *ACS nano*, 2019, **13**, 5975-5986.

S3. A. Ghosh, R.-W. Huang, B. Alamer, E. Abou-Hamad, M. N. Hedhili, O. F. Mohammed and O. M. Bakr, *ACS Mater. Lett.*, 2019, **1**, 297-302.

S4. S. Nematulloev, R. W. Huang, J. Yin, A. Shkurenko, C. Dong, A. Ghosh, B. Alamer, R. Naphade, M. N. Hedhili, P. Maity, E. Mohammed, O. F. Mohammed and O. M. Bakr, *Small*, 2021, **27**, 2006839.

S5. C. Dong, R.-W. Huang, C. Chen, J. Chen, S. Nematulloev, X. Guo, A. Ghosh, B. Alamer, M. N. Hedhili, T. T. Isimjan, Y. Han, O. F. Mohammed and O. M. Bakr, *J. Am. Chem. Soc.*, 2021, **143**, 11026-11035.

S6. R.-W. Huang, J. Yin, C. Dong, A. Ghosh, M. J. Alhilaly, X. Dong, M. N. Hedhili, E. Abou-Hamad, B. Alamer, S. Nematulloev, Y. Han, O. F. Mohammed and O. M. Bakr, *J. Am. Chem. Soc.*, 2020, **142**, 8696-8705.

S7. Rigaku Oxford Diffraction. CrysAlisPro Software system, version 1.171.40.25a, Rigaku Corporation, Oxford, UK, 2018.

S8. L. Palatinus and G. Chapuis, *J. Appl. Crystallogr.*, 2007, **40**, 786.

S9. G. M. Sheldrick, *Acta Crystallogr., C. Struct. Chem.*, 2015, **71**, 3-8.

S10. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. J. Puschmann, *Appl. Crystallogr.*, 2009, **42**, 339.

S11. M. J. Frisch, *et al.* Gaussian 09, Revision D.01; Gaussian, Inc. Wallingford, CT, 2009.

S12. A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648-5652.

S13. A. D. McLean and G. S. Chandler, *J. Chem. Phys.*, 1980, **72**, 5639 –5648.

S14. P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, **82**, 270 –283.

S15. P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, **82**, 299 –310.

S16. T. Lu and F. Chen, *J. Comput. Chem.*, 2012, **33**, 580-592.

S17. T. Lu and F. Chen, *Acta Chim. Sinica*, 2011, **69**, 2393-2406.

S18. K. Wolinski, J. F. Hinton and P. Pulay, *J. Am. Chem. Soc.*, 1990, **112**, 8251–8260.

S19. G. Kresse and J. Hafner. *Phys. Rev. B. Condens. Matter Mater. Phys.*, 1994, **49**, 14251.

S20. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, *Phys. Rev. B. Condens. Matter Mater. Phys.*, 1992, **46**, 6671.

S21. G. Kresse and D. Joubert, *Phys. Rev. B. Condens. Matter Mater. Phys.*, 1999, **59**, 1758.

S22. W. Tang, E. Sanville and G. Henkelman, *J. Phys., Compute Mater.*, 2009, **21**, 084204.