DISTANCES FROM POINTS TO PLANES

P. BIRKLBAUER, A. IOSEVICH AND T. PHAM

Abstract. We prove that if $E \subset \mathbb{F}_q^d$, $d \geq 2$, $F \subset \text{Graff}(d - 1, d)$, the set of affine $d - 1$-dimensional planes in \mathbb{F}_q^d, then $|\Delta(E, F)| \geq q$ if $|E||F| > q^{d+1}$, where $\Delta(E, F)$ the set of distances from points in E to lines in F. In dimension three and higher this significantly improves the exponent obtained by Pham, Phuong, Sang, Vinh and Valculescu ([5]).

1. Introduction

The Erdős-Falconer distance problem in \mathbb{F}_q^d is to determine how large $E \subset \mathbb{F}_q^d$ needs to be to ensure that
$$\Delta(E) = \{|x - y| : x, y \in E\},$$
with $|x| = x_1^2 + x_2^2 + \ldots + x_d^2$, is the whole field \mathbb{F}_q, or at least a positive proportion thereof. Here and throughout, \mathbb{F}_q denotes the field with q elements and \mathbb{F}_q^d is the d-dimensional vector space over this field.

The distance problem in vector spaces over finite fields was introduced by Bourgain, Katz and Tao in [1]. In the form described above, it was introduced by the second listed author of this paper and Misha Rudnev ([4]), who proved that $\Delta(E) = \mathbb{F}_q$ if $|E| > 2q^{d+1}$. It was shown in [3] that this exponent is essentially sharp for general fields when d is odd. When $d = 2$, it was proved in [2] that if if $E \subset \mathbb{F}_q^2$ with $|E| \geq cq^4$, then $|\Delta(E)| \geq C(c)q$. We do not know if improvements of the $\frac{d+1}{2}$. exponent are possible in even dimensions ≥ 4. We also do not know if improvements of the $\frac{d+1}{2}$ exponent are possible in any even dimension if we wish to conclude that $\Delta(E) = \mathbb{F}_q$, not just a positive proportion.

More generally, let $\text{Graff}(k, d)$ denote the set of k-dimensional affine planes in \mathbb{F}_q^d. In this paper we shall focus on distances from points in subsets of $\text{Graff}(0, d) = \mathbb{F}_q^d$ to $d - 1$-dimensional planes in subsets of $\text{Graff}(d - 1, d)$. The set of distances from points to points (see e.g. [4]) can be defined as the set of equivalence classes of two-point configurations where two pairs (x, y) and (x', y') are equivalent if there exists a
translation \(\tau \in \mathbb{F}_q^d \) and a rotation \(\theta \in O_d(\mathbb{F}_q^d) \) that takes one pair to the other. In the case of points and \(d-1 \)-dimensional planes in \(\mathbb{F}_q^d \), we may similarly define \((x, h)\) and \((x', h')\) to be equivalent, where \(x \)'s are points and \(h \)'s are planes, if after translation \(x \) to \(x' \), there exists a rotation \(\theta \in O_d(\mathbb{F}_q) \) that takes \(h \) to \(h' \). Denote the resulting set of equivalence classes by \(\Delta(E, F) \).

Before stating our main results, we need to say a few words about the parameterization of \((d-1)\)-dimensional planes in \(\mathbb{F}_q^d \). A \((d-1)\)-dimensional plane in \(\mathbb{F}_q^d \) can be expressed in the form

\[
H_{v, t} = \{ y \in \mathbb{F}_q^d : y \cdot v = t \},
\]

where we should think of \(v \) as a normal vector to the plane and \(t \) as the distance to the origin. Note that the notion of distance from a point to a plane described above only makes sense if \(||v|| \neq 0 \). We shall henceforth refer to planes with this property as non-degenerate planes. See Lemma 2.1 below.

Definition 1.1. We say that \(V \subset \mathbb{F}_q^d \) is a direction set if given \(x \in \mathbb{F}_q^d, x \neq \vec{0}, \) there exists \(v \in V \) and \(t \in \mathbb{F}_q^* \) such that \(x = tv \).

It is very convenient to work with a "canonical" direction set provided by the following simple observation.

Lemma 1.2. Let \(S_t = \{ x \in \mathbb{F}_q^d : ||x|| = t \} \). Let \(\gamma \in \mathbb{F}_q^* \) be a non-square. Define \(V_\gamma = S_0 \cup S_1 \cup S_\gamma \). Then \(V_\gamma \) is a direction set.

To prove this, choose \(x \) such that \(||x|| = 0 \). Then \(x \in S_0 \). Now choose \(x \) such that \(||x|| = t^2 \) for some \(t \neq 0 \). Then \(\left(\frac{x}{t} \right)^2 + \left(\frac{x}{t} \right)^2 = 1 \), so \(x = tv \) with \(v \in S_1 \). Finally, suppose that \(||x|| = u \) where \(u \) is not a square in \(\mathbb{F}_q^* \). To see that \(x = tv \) for some \(v \in S_\gamma \), it is enough to check that \(u\gamma^{-1} \) is a square in \(\mathbb{F}_q^\ast \). Moreover, it is enough to prove that a product of two non-squares is a square. To see this, let \(\phi : \mathbb{F}_q^\ast \to \mathbb{F}_q^\ast \) given by \(\phi(x) = ux \), where \(u \) is a non-square. The image of a square is certainly a non-square since otherwise \(u \) would be forced to be a square. It follows that an image of a non-square is a square since exactly half the elements of \(\mathbb{F}_q^\ast \) are squares. This completes the proof of Lemma 1.2.

Our main result is the following.

Theorem 1.3. Let \(E \subset \mathbb{F}_q^d, d \geq 2, \) and \(F \) be a subset of non-degenerate planes in \(\text{Graff}(d - 1, d), d \geq 2 \). Let \(\gamma \) be a non-square in \(\mathbb{F}_q \). Suppose that \(|E| |F| > q^{d+1} \). Then \(|\Delta(E, F)| > q \). More precisely,

\[
|\Delta(E, F)| \geq \frac{|E|^2 |F|^2}{2|E|^2 |F|^2 q^{-1} + 2q^{d-1} |E||F|} \cdot \max_{||v||=1, \gamma} \sum_t F(v, t).
\]
When $d = 2$, a better exponent was obtained by Pham, Phuong, Sang, Vinh and Valculescu ([5]). They proved that the conclusion of Theorem 1.3 holds in \mathbb{F}_q^2 if $|E||F| > Cq^{\delta/3}$.

It is not clear if it is possible to weaken the $|E||F| > q^{d+1}$ assumption in higher dimensions. It is not difficult to see that we cannot do better than assuming $|E||F| > q^d$. To see this, take $q = p^2$, p prime, let $E = \mathbb{F}_p^d$ and F be the set of all $(d-1)$-dimensional affine planes in \mathbb{F}_p^d. Then $|E| \approx |F| \approx q^d$ while $\Delta(E, F) = p$.

2. Proof of Theorem 1.3

We begin with a couple simple algebraic observations that make working with $\Delta(E, F)$ much easier. Given $F \subset \text{Graff}(d-1,d)$, we write the indicator function of F in the form $F(v, t)$, where each plane in $\text{Graff}(d-1,d)$ is parameterized by $(v, t) \in V_\gamma \times \mathbb{F}_q$, where V_γ is as in Lemma 1.2. For a point $x \in E$ and a plane $F(v, t) \in F$, the distance function between them, denoted by $d[x, F(v, t)]$, is defined by

$$d[x, F(v, t)] := \frac{(x \cdot v - t)^2}{||v||}.$$

In the following lemma, we show that the size of $\Delta(E, F)$ is at least the number of distinct non-zero distances between points in E and planes in F.

Lemma 2.1. Let $F \subset \text{Graff}(d-1,d)$ be parameterized as above, with coordinates $(v, t) \in V_\gamma \times \mathbb{F}_q$, where $||v|| \neq 0$. Then

$$|\Delta(E, F)| \geq \# \left\{ \frac{(x \cdot v - t)^2}{||v||} \neq 0 : x \in E; (v, t) \in F \right\}.$$

Proof. To prove this lemma, it is enough to indicate that for $x, x' \in E$ and $(v, t), (v', t') \in F$, if $d[x, F(v, t)] = d[x', F(v', t')]$, then there is a rotation θ such that the translation from x to x' followed by θ takes the plane $F(v, t)$ to $F(v', t')$. Indeed, since $d[x, F(v, t)] = d[x', F(v', t')]$, we have

$$\frac{(x \cdot v - t)^2}{||v||} = \frac{(x' \cdot v' - t')^2}{||v'||}.$$

This implies that $||v||/||v'||$ is a square. From this we deduce, just as in the proof of Lemma 1.2 above that either both $||v||$ and $||v'||$ are squares or they are both non-squares. Since we are only considering $||v||$ and $||v'||$ that are equal to 1 or γ, we conclude that $||v|| = ||v'||$. From the equation (2.1), we have $x \cdot v - t = \pm (x' \cdot v' - t')$. Without loss of generality, we assume that $x' = 0$. Since $||v|| = ||v'|| \neq 0$, there
exists a rotation $\theta \in O_d(\mathbb{F}_q)$ such that $\theta v = \pm v'$. Thus we have the following

\[
\{ \theta(y - x) : y \cdot v = t \} = \{ z : (\theta^{-1}z + x) \cdot v = t \} \\
= \{ z : z \cdot \theta v = t - x \cdot v \} \\
= \{ z : \pm z \cdot v' = \pm t' \} \\
= \{ z : z \cdot v' = t' \}.
\]

In other words, the translation from x to x' followed by the rotation θ about x' takes the plane $F(v, t)$ to the plane $F(v', t')$. This concludes the proof of the lemma. □

Before proving Theorem 1.3, we need to review the Fourier transform of functions on \mathbb{F}_q^d. Let χ be a non-trivial additive character on \mathbb{F}_q. For a function $f : \mathbb{F}_q \to \mathbb{C}$, we define

\[
\hat{f}(m) = q^{-d} \sum_{x \in \mathbb{F}_q^d} \chi(-x \cdot m) f(x).
\]

It is clear that

\[
f(x) = \sum_{m \in \mathbb{F}_q^d} \chi(x \cdot m) \hat{f}(m),
\]

and

\[
\sum_{m \in \mathbb{F}_q^d} |\hat{f}(m)|^2 = q^{-d} \sum_{x \in \mathbb{F}_q^d} |f(x)|^2.
\]

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. It follows from Lemma 2.1 that it suffices to prove that

\[
\# \left\{ \frac{(x \cdot v - t)^2}{||v||} : x \in E; (v, t) \in F \right\} \geq \frac{|E|^2 |F|^2}{2q^{-1}|F|^2 |E|^2 + 2q^{d-1} \max_{v \in V} F(v, t) \cdot |E||F|}.
\]

For $r \in \mathbb{F}_q$, let

\[
\nu(r) := \sum_{(x \cdot v - t)^2 = r ||v||} E(x) F(v, t).
\]

By the Cauchy-Schwartz inequality,

\[
|E|^2 |F|^2 = \left(\sum_r \nu(r) \right)^2 \leq \sum_r \nu^2(r) \cdot \# \left\{ \frac{(x \cdot v - t)^2}{||v||} : x \in E; (v, t) \in F \right\}.
\]

This implies that

\[
\# \left\{ \frac{(x \cdot v - t)^2}{||v||} : x \in E; (v, t) \in F \right\} \geq \frac{|E|^2 |F|^2}{\sum_{r \in \mathbb{F}_q} \nu(r)^2}.
\]
We now are going to show that

\[
\sum_{r \in \mathbb{F}_q} \nu(r)^2 \leq 2q^{-1}|F|^2|E|^2 + 2q^{d-1}|F||E| \cdot \max_{v \in V} \sum_t F(v, t).
\]

Indeed, applying Cauchy-Schwarz inequality again gives us

\[
\sum_{r \in \mathbb{F}_q} \nu^2(r) \leq |F| \sum_{x, x', v, t, d[x, F(v, t)] = d[x', F(v, t)]} E(x)E(x')F(v, t)
\]

\[
= |F| \left(\sum_{x \cdot v = x' \cdot v = 0} F(v, t)E(x)E(x') + \sum_{x \cdot v + x' \cdot v - 2t = 0} F(v, t)E(x)E(x') \right) = |F|(I + II).
\]

We now bound I and II as follows.

\[
I = \sum_{x \cdot v = x' \cdot v = 0} F(v, t)E(x)E(x') = q^{-1}|F||E|^2 + q^{-1} \sum_{s \neq 0} \sum_{v, t, x, x'} \chi(sv \cdot (x - x'))F(v, t)E(x)E(x')
\]

\[
= q^{-1}|F||E|^2 + q^{-1} \sum_{s \neq 0} \sum_{v, t, x, x'} \chi(sv \cdot (x - x'))F(v, t)E(x)E(x')
\]

\[
= q^{-1}|F||E|^2 + q^{2d-1} \max_{v \in V} \sum_t F(v, t) \cdot \sum_{z \in \mathbb{F}_q^d} |\widehat{E}(z)|^2
\]

\[
\leq q^{-1}|F||E|^2 + q^{2d-1} \cdot \max_{v \in V} \sum_t F(v, t) \cdot \sum_{z \in \mathbb{F}_q^d} |\widehat{E}(z)|^2
\]

(2.2)\]

\[
= q^{-1}|F||E|^2 + q^{2d-1}|E| \cdot \max_{v \in V} \sum_t F(v, t),
\]
where we used $\sum_{z \in \mathbb{F}_q} |\hat{E}(z)|^2 = q^{-d}|E|$.

$$II = \sum_{x \cdot v - x' \cdot v = 2t} F(v,t) E(x) E(x') = q^{-1}|F||E|^2 + q^{-1}\sum_{s \neq 0} \sum_{v,t,x,x'} \chi(sv \cdot (x + x')) \chi(2st) F(v,t) E(x) E(x')$$

$$= q^{-1}|F||E|^2 + q^{-1}\sum_{s \neq 0} \sum_{v,t,x,x'} \chi(sv \cdot (x + x')) \chi(2st) F(v,t) E(x) E(x')$$

$$= q^{-1}|F||E|^2 + q^{-1}\sum_{s \neq 0} \sum_{v,t} \hat{E}(sv) \hat{E}(sv) \chi(st + st) F(v,t)$$

$$\leq q^{-1}|F||E|^2 + q^{-d-1}\sum_{s \neq 0} \sum_{v,t} |\hat{E}(sv)|^2 F(v,t)$$

$$\leq q^{-1}|F||E|^2 + q^{-d-1} \cdot \max_{v \in V} \sum_t F(v,t) \cdot \sum_{z \in \mathbb{F}_q^d} |\hat{E}(z)|^2$$

(2.3)

$$= q^{-1}|F||E|^2 + q^{-d-1}|E| \cdot \max_{v \in V} \sum_t F(v,t).$$

Putting (2.2) and (2.3) together, we obtain

$$\sum_{r \in \mathbb{F}_q} \nu(r)^2 \leq 2q^{-1}|F|^2|E|^2 + 2q^{-d-1}|F||E| \cdot \max_{v \in V} \sum_t F(v,t).$$

We conclude that

$$\# \left\{ \frac{(x \cdot v - t)^2}{||v||^2} : x \in E; (v,t) \in F \right\} \geq \frac{|E|^2|F|^2}{2q^{-1}|F|^2|E|^2 + 2q^{-d-1} \max_{v \in V} F(v,t) \cdot |E||F|}.$$

Hence,

$$|\Delta(E,F)| \geq \frac{|E|^2|F|^2}{2q^{-1}|F|^2|E|^2 + 2q^{-d-1} \max_{v \in V} F(v,t) \cdot |E||F|}.$$

This concludes the proof once we note that

$$\max_{v \in V} F(v,t) \leq q.$$

□

References

[1] J. Bourgain, N. Katz, T. Tao. A sum-product estimate in finite fields, and applications. Geom. Funct. Anal. 14 (2004), 27–57.
[2] J. Chapman, M. B. Erdogan, D. Hart, A. Iosevich, and D. Koh, Pinned distance sets, k-simplices, Wolff’s exponent in finite fields and sum-product estimates, Math Z. 271 (2012), 63–93. 1

[3] D. Hart, A. Iosevich, D. Koh, and M. Rudnev Averages over hyperplanes, sum-product theory in vector spaces over finite fields and the Erdős-Falconer distance conjecture, Trans. Amer. Math. Soc. 363 (2011), no. 6, 3255–3275. 1

[4] A. Iosevich and M. Rudnev Erdős distance problem in vector spaces over finite fields, Transactions of the AMS, (2007). 1

[5] T. Pham, N. D. Phuong, N. M. Sang, C. Valculescu, L. A. Vinh, Distinct distances between points and lines in F_q^2, Forum Math., (accepted for publication) (2017). 1, 3

Department of Mathematics, University of Rochester, Rochester, NY
E-mail address: philipp.birklbauer@rochester.edu

Department of Mathematics, University of Rochester, Rochester, NY
E-mail address: iosevich@math.rochester.edu

Department of Mathematics, University of California, San Diego
E-mail address: v9pham@ucsd.edu