Design and validation of a next generation sequencing assay for hereditary BRCA1 and BRCA2 mutation testing

Hyunseok P. Kang, Jared R Maguire, Clement S Chu, Imran S. Haque, Henry Lai, Rebecca Mar-Heyming, Kaylene Ready, Valentina S. Vysotskaia, Eric A. Evans

Hereditary breast and ovarian cancer syndrome, caused by a germline pathogenic variant in the BRCA1 or BRCA2 (BRCA1/2) genes, is characterized by an increased risk for breast, ovarian, pancreatic and other cancers. Identification of those who have a BRCA1/2 mutation is important so that they can take advantage of genetic counseling, screening, and potentially life-saving prevention strategies. We describe the design and analytic validation of the Counsyl Inherited Cancer Screen, a next-generation-sequencing-based test to detect pathogenic variation in the BRCA1 and BRCA2 genes. We demonstrate that the test is capable of detecting single-nucleotide variants (SNVs), short insertions and deletions (indels), and copy-number variants (CNVs, also known as large rearrangements) with zero errors over a 114-sample validation set consisting of samples from cell lines and deidentified patient samples, including 36 samples with BRCA1/2 pathogenic germline mutations.
Design and validation of a next generation sequencing assay for hereditary BRCA1 and BRCA2 mutation testing

Hyunseok P. Kang*, Jared Maguire, Clement Chu, Imran S. Haque, Henry Lai, Rebecca Mar-Heyming, Kaylene Ready, Valentina S. Vysotskaia, Eric A. Evans

Counsyl Inc., South San Francisco, CA, USA

* Correspondence should be addressed to Hyunseok P. Kang (peter@counsyl.com)

ABSTRACT

Hereditary breast and ovarian cancer syndrome, caused by a germline pathogenic variant in the BRCA1 or BRCA2 (BRCA1/2) genes, is characterized by an increased risk for breast, ovarian, pancreatic and other cancers. Identification of those who have a BRCA1/2 mutation is important so that they can take advantage of genetic counseling, screening, and potentially life-saving prevention strategies. We describe the design and analytic validation of the Counsyl Inherited Cancer Screen, a next-generation-sequencing-based test to detect pathogenic variation in the BRCA1 and BRCA2 genes. We demonstrate that the test is capable of detecting single-nucleotide variants (SNVs), short insertions and deletions (indels), and copy-number variants (CNVs, also known as large rearrangements) with zero errors over a 114-sample validation set consisting of samples from cell lines and deidentified patient samples, including 36 samples with BRCA1/2 pathogenic germline mutations.

INTRODUCTION

Hereditary breast and ovarian cancer syndrome (HBOC) is associated with mutations in tumor suppressor genes BRCA1 and BRCA2. Genetic analysis for individuals who are at risk for HBOC has become widely accepted. Several professional organizations and expert panels, including the National Comprehensive Cancer Network (NCCN) (National Comprehensive Cancer Network, 2014), the American Society of Clinical Oncology (ASCO) (Robson et al., 2010), the American Society of Human Genetics (ASHG) (The American Society of Human Genetics, 1994), the American College of Medical Genetics and Genomics (ACMG) (Hampel et al., 2015), the National Society of Genetic Counselors (NSGC) (Hampel et al., 2015), the U.S. Preventive Services Task Force (USPSTF) (Nelson et al., 2014), the Society of Gynecologic Oncologists (SGO) (Lancaster et al., 2007), and the European Society for Medical Oncology (ESMO) (Balmaña et al., 2011) have developed clinical criteria and practice guidelines for identifying individuals who may benefit from BRCA1 or BRCA2 mutation testing. In general, personalized risk assessment, genetic counseling, and often BRCA1/2 testing and management are recommended for individuals with a significant personal and/or family history of breast, ovarian, pancreatic and/or prostate cancer.
As suggested by various guidelines, individuals identified with
BRCA1 or *BRCA2* mutation are at significantly increased risk for breast, ovarian,
prostate, pancreatic and possibly other cancers: a 12% general population risk for breast
cancer rises to 50-80% for *BRCA1* mutation carriers or 40-70% for *BRCA2* mutation
carriers (Petrucelli, Daly & Feldman, 2015). Screening for *BRCA* mutations is of great
significance for breast and ovarian cancer prevention and early detection. Recommended
risk-reducing options include increased screening, chemoprevention and/or prophylactic
surgery (Balmaña et al., 2011; Hampel et al., 2015; Lancaster et al., 2007; National
Comprehensive Cancer Network, 2014; Nelson et al., 2014; Robson et al., 2010;
Statement of the American Society of Human Genetics on genetic testing for breast and
avarian cancer predisposition, 1994). Table 1 summarizes these options and their effect
on cancer risks.

Genetic testing for *BRCA1/2* mutation status has the potential to offer multiple benefits.
However, 20-73% of mutation carriers may not be identified by current guidelines (Alsop
et al., 2012; Brozek et al., 2012; Frank et al., 2002; Kang et al., 2014; Norquist et al.,
2013) or only meet current guidelines once they are diagnosed with ovarian cancer or
early onset breast cancer, resulting in some researchers to call for more inclusive
guidelines or even population screening (Finch et al., 2014; Gabai-Kapara et al., 2014;
Metcalf et al., 2013).

Next-generation sequencing (NGS) technologies offer higher throughput and lower per-
base cost as compared to legacy approaches such as Sanger sequencing. Although
researchers have described technical questions regarding analytical performance for
classes of variants that are considered to be challenging for NGS (Harismendy et al.,
2009), these refer to technologies that are several years old. Several laboratories have
recently reported applying a NGS approach for diagnostic testing of mutations in the
BRCA1/2 genes or multigene panels that include the *BRCA1* and *BRCA2* genes (Bosdet et
al., 2013; Chong et al., 2014; Judkins et al., 2015; Lincoln et al., 2015; Strom et al.,
2015). They performed a comparison of data analyses including independent and blind
evaluation as well as power estimation of the new NGS methodologies in comparison to
Sanger sequencing and demonstrated the very high accuracy of the NGS methods (Bosdet
et al., 2013; Chong et al., 2014; Judkins et al., 2015; Lincoln et al., 2015; Strom et al.,
2015).

The aim of the present study was to evaluate analytical sensitivity and specificity of the
Counsyl Inherited Cancer Screen (ICS), an NGS-based test for *BRCA1/2* testing. We
followed ACMG guidelines for analytical validation of NGS methods and platforms
(Rehm et al., 2013). The test also adheres to these guidelines for interpretation and
reporting of detected variants. Here, we report the results from a validation set of 114 cell
line and patient DNA samples, in which we demonstrate 100% concordance with
reference data or orthogonal assays.

MATERIALS AND METHODS
DNA Samples
The Counsyl Inherited Cancer Screen validation study was conducted by testing three classes of samples: a) deidentified blood samples (N=57), b) deidentified paired blood and saliva samples (7 pairs), and c) genomic DNA reference materials obtained from Coriell (N=57), including the well-characterized NA12878 sample from HapMap/1000 Genomes and 15 samples from the BIC BRCA1/BRCA2 Mutation Panel (Tables 2 and Supplemental Table 1). The protocol for this study was approved by Western Institutional Review Board (IRB number 1145639) and complied with the Health Insurance Portability and Accountability Act (HIPAA). The information associated with patient samples was de-identified in accordance with the HIPAA Privacy Rule. A waiver of informed consent was requested and approved by the IRB.

Test Design
The reportable range of the test is all coding exons of BRCA1 (NM_007294.3) and BRCA2 (NM_000059.3), 20 bp into the introns from intron/exon junctions, and selected intronic and untranslated regions where pathogenic variants have been reported in the literature (Supplemental Table 2).

Next Generation Sequencing
DNA from a patient’s blood or saliva sample is isolated, quantified by a Picogreen fluorescence assay and then fragmented to 200-1000 bp by sonication. The fragmented DNA is converted to an adapter-ligated sequencing library by end repair, A tailing, and barcoded adapter ligation; samples are multiplexed and identified by molecular barcodes. Hybrid capture-based enrichment with 40-mer oligonucleotides (Integrated DNA Technologies, Coral, IL) complementary to BRCA1/2 targeted regions is performed on these multiplexed samples. Next generation sequencing of the selected targets is performed with sequencing-by-synthesis on the Illumina HiSeq 2500 instrument to mean sequencing depth of ~500x. All target nucleotides were required to be covered with a minimum depth of 20 reads.

Bioinformatics Processing
Generated sequence reads are aligned to the hg19 human reference genome using the BWA-MEM algorithm (Li, 2013), which also trims sequencing adapters. Automated statistical analysis is used to identify and genotype single-nucleotide variants (SNVs) and short insertions and deletions (indels) following methods in GATK 1.6 and FreeBayes (Garrison & Marth, 2012; McKenna et al., 2010). The calling algorithm for copy number variants (insertions or deletions longer than 100bp) is described below. All SNVs, indels, and large deletions/duplications within the reportable range are analyzed and classified by the method described in the section “Variant Classification”. All reportable calls are reviewed by licensed clinical laboratory personnel.

CNV Calling Algorithm
Our method for CNV calling is based on high-resolution depth of coverage analysis and performed in a manner similar to that successfully used by other groups (Nord et al., 2011; Judkins et al., 2015; Lincoln et al., 2015).
Analysis is performed on a per-lane basis. The region of interest for the assay is grouped into a number of regions for which copy number is counted (e.g., exons); each exon is considered independently and with no smooth (e.g. HMM). Define matrix d_{ij} to be the matrix containing the number of reads from sample i overlapping with region j.

This matrix must be normalized. To protect against normalization issues due to individual samples with very large CNVs (such as a whole-gene deletion), we generate a normalization matrix n_{ij} by removing the highest variance probes from the total data set D via the invariant set method described in (Li & Hung Wong, 2001). The data matrix d is then normalized in two steps:

\[
d'_{ij} = d_{ij} / \text{mean}(n_{ij} \text{ for all } j)
\]

\[
d''_{ij} = d'_{ij} / \text{mean}(n_{ij} \text{ for all } i)
\]

For each putative CNV j in sample i, a hypothetical copy number and corresponding Z-score is computed:

\[
c_{ij} = 2 * d''_{ij}
\]

\[
z_{ij} = (d''_{ij} - \text{mean}(d''_{ij} \text{ for all } i)) / \text{stdev}(d''_{ij} \text{ for all } i)
\]

A CNV call is considered confidently non-reference if $\text{abs}(z) \geq 4$ and the estimate c is <1.2 or >2.8.

Assay Quality Metrics

To ensure the quality of the results obtained from the Counsyl Inherited Cancer Screen, documentation and QC systems (Supplemental Table 3) were developed in the Counsyl CLIA (Clinical Laboratory Improvement Amendments)-certified laboratory. Ancillary quality-control metrics, including amount of DNA recovered from a specimen (≥ 18ng/ul), fraction of sample contamination ($<5\%$), unreliable GC bias, read qualities (percent Q30 bases per Illumina specifications), depth of coverage (per base target coverage >20x), are computed on the final output and used to exclude and re-run failed samples.

Variant Classification

Variants are classified according to the ACMG Standards and Guidelines for the Interpretation of Sequence Variants (American College of Medical Genetics and Genomics, 2015). All variants that are known or predicted to be pathogenic are reported; patients and providers have an option to have variants of uncertain significance reported as well. Final variant classifications are regularly uploaded to ClinVar.

Statistical Analysis

Validation metrics were defined as: Accuracy = $(TP + TN) / (TP + FP + TN + FN)$; Sensitivity = $TP / (TP + FN)$; Specificity = $TN / (TN + FP)$; FDR = $FP / (TP + FP)$, where TP true positives, TN true negatives, FP false positives, FN false negatives, and
FDR false discovery rate. The confidence intervals (CIs) were calculated by the method of Wilson (Wilson, 1927).

RESULTS

Assay Development

The Counsyl Inherited Cancer Screen we have developed employs next-generation sequencing and includes comprehensive analysis of all coding exons of BRCA1 and BRCA2, 20 bp of flanking intronic sequences, and selected intronic and untranslated regions with known pathogenic variants (Supplemental Table 2). The test was designed and optimized to detect single-nucleotide variants, indels, and copy-number variants. A proprietary bioinformatics pipeline was developed for sequence data alignment and variant detection as described above. To test the analytical sensitivity, specificity and accuracy of the assay, we sequenced peripheral blood and cell line DNA from 114 samples with an extremely high mean read depth (more than 500X) across all samples. Every targeted position was covered with a minimum of 20 reads.

Analytical Validation

To establish analytical accuracy for detecting single-nucleotide variants and indels, we compared Counsyl BRCA1/2 sequence data of 41 Coriell samples (listed in Supplemental Table 1) to reference data obtained from the 1000 Genomes project and Counsyl BRCA1/2 sequence data for NA12878 to high-quality reference data published by Illumina, Inc. (http://www.illumina.com/platinumgenomes/) (Table 2). The results presented in Table 3 demonstrate that 536 true positive calls, 12,920 true negative calls and no false positive or false negative calls were observed. In addition, to confirm the detection of documented variants in BRCA1/BRCA2, 15 samples from the BIC BRCA1/BRCA2 Mutation Panel (available from Coriell) were included in the validation (Table 2 and Supplemental Tables 1 and 4). The concordance between the BRCA1/2 mutations detected by the Counsyl ICS and the BIC reference data was 100%.

Furthermore, to demonstrate the accurate detection of variants that are technically challenging for NGS, 10 pathogenic indels discovered in patient blood samples were subjected to orthogonal confirmation by Sanger sequencing (Tables 2 and 4; Supplemental Table 4). All the indels detected by the Counsyl Inherited Cancer Screen were concordant with the Sanger results.

To establish analytical accuracy for detecting CNVs, we compared Counsyl copy number calls to CNV calls provided by reference labs, when available, and MLPA assays otherwise, on 63 samples: 13 samples from reference labs; 15 samples from the BIC BRCA1/BRCA2 Mutation Panel; 25 random blood samples; 9 patient samples positive for CNVs; and NA12878 (Table 2). As shown in Table 5, 79 true positive calls, 3,067 true negative calls and no false positive or false negative calls were observed from the analysis of 63 analyzed samples (Table 5). Among the 63 tested samples, 10 had a deletion or duplication of a single exon, which can be technically challenging for NGS-based analysis.
The accuracy, sensitivity and specificity are therefore all 100% for SNPs, indels, and copy number variants. Only samples with reference data for the entire region of interest were used to calculate these metrics in order to avoid overestimating sensitivity or its confidence interval (MacAdam, 2000). We also calculated false discovery rate (FDR) and the associated confidence interval (Tables 3 and 5). For SNPs and indels, the FDR is 0 of 536 positives, or 0% (95% CI, 0-0.7%). For CNVs, the FDR is 0 of 79 (0%, CI 0-4.6%).

Our validation samples represent a diversity of variant subtypes (Table 4 and Supplemental Table 4), including 28 samples with variants technically challenging to detect by NGS, such as large indels and CNVs.

Inter-run and Intra-run Reproducibility

In addition to establishing the test analytical sensitivity, specificity and accuracy, the Counsyl BRCA1/2 test was validated for intra- and inter-run reproducibility. For indel detection reproducibility, each BIC sample (n=15) was run 3 times each on three flow cells, for a total of 9 replicates (Supplemental Table 5). For SNV detection reproducibility, 11 deidentified blood samples were rerun on 2-3 different flow cells (Supplemental Table 5). For CNV detection reproducibility, 15 Coriell cell line DNA and 11 patient samples were analyzed in replicates (Supplemental Table 5). Concordance between replicates was 100% (Supplemental Table 5), with no differences between inter- and intra-run replicates observed.

Test Compatibility with Different Input Materials

Finally, to demonstrate compatibility with different sample types, deidentified paired blood and saliva samples (7 pairs) were tested. The results from paired blood and saliva samples were 100% concordant (Supplemental Table 5).

DISCUSSION

Pathogenic mutations in the BRCA1/2 genes are known to be associated with increased risk for breast, ovarian and other cancers. For women, the risk of developing breast cancer by age 70 is approximately 60-70% for BRCA1 and 45–55% for BRCA2 mutation carriers. The cumulative ovarian cancer risk by age 70 (including fallopian tube and primary peritoneal carcinomas) is 40% for BRCA1 and 20% for BRCA2 mutation carriers respectively (Antoniou et al., 2003; Chen & Parmigiani, 2007; King, Marks, & Mandell, 2003). Increasing evidence indicates that early identification of BRCA carriers is important so that they can take advantage of genetic counseling, screening, and potentially life-saving prevention strategies.

NGS is increasingly being applied in the field of diagnostics, including BRCA analysis. An optimized and validated assay design is critical to maximizing the analytical performance of NGS assays and ensuring high-quality interpretation to facilitate clinical-decision making. Here, we describe the design and analytic validation of the Counsyl Inherited Cancer Screen, a next-generation-sequencing-based test to detect pathogenic
variation in the BRCA1/2 genes. We demonstrate that the test is capable of detecting
SNVs, indels, and copy-number variants with zero errors over a 114-sample validation
set consisting of samples from cell lines and deidentified patient samples. Among the 114
tested samples, 28 (25%) were samples with challenging variants, including single- and
multi-exon deletions/duplications (n=22) and >10bp indels (n=6). The high sensitivity
and specificity achieved in our study are comparable to the results of similar studies
(Bosdet et al., 2013; Judkins et al., 2015; Lincoln et al., 2015; Strom et al., 2015),
although some NGS studies report a higher false positive rate (Chong et al., 2014).

Some laboratories confirm NGS findings to reduce the risk of false positives (Chong et
al., 2015; Lincoln et al., 2015). Result confirmation is recommended when the analytic
false positive rate is high or not yet well established (Rehm et al., 2013). Confirmation
can also be used to verify sample identity, which is critical when laboratory workflows
are complex and not fully automated (Rehm et al., 2013). However, more recent work
indicates that variant calls by NGS may be more reliable than relying on Sanger
confirmation (Beck et al., 2016). In this study, we have orthogonally confirmed a number
of SNV and CNV calls (using Sanger or MLPA testing, respectively: Table 2), and
observed neither false positive nor false negative calls for samples with reference data
across the entire region of interest. Additionally, the laboratory workflow described is
fully automated, with positive sample tracking throughout the entire process. Barcode
scans are performed of each tube and plate at all handling and pipetting steps. All sample
processing actions performed by automated instruments are logged, and video of the
decks of liquid handling instruments is continuously recorded.

In conclusion, we describe the development and analytical validation of a cost-effective,
high-throughput NGS assay for the detection of BRCA1 and BRCA2 pathogenic
mutations suitable for the clinical laboratory. We confirm that our test meets the rigorous
quality standards necessary for clinical implementation (Rehm et al., 2013). The test is
offered by Counsyl’s laboratory, which is CLIA certified (05D1102604), CAP accredited
(7519776), and NYS permitted (8535).

REFERENCES
1. Alsop K, Fereday S, Meldrum C, deFazio A, Emmanuel C, George J, Dobrovic A,
 Birrer MJ, Webb PM, Stewart C, Friedlander M, Fox S, Bowtell D, Mitchell G.
 2012. BRCA mutation frequency and patterns of treatment response in BRCA
 mutation-positive women with ovarian cancer: a report from the Australian
 Ovarian Cancer Study Group. Journal of Clinical Oncology 30(21):2654-63. DOI:
 10.1200/JCO.2011.39.8545.
2. American College of Medical Genetics and Genomics. Standards and Guidelines
 for the Interpretation of Sequence Variants: A Joint Consensus Recommendation
 of the American College of Medical Genetics and Genomics and the Association
 for Molecular Pathology. Available at https://www.acmg.net/ (accessed 27
 February 2015).
3. Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, Loman N,
 Olsson H, Johannsson O, Borg A, Pasini B, Radice P, Manoukian S, Eccles DM,
 Tang N, Olah E, Anton-Culver H, Warner E, Lubinski J, Gronwald J, Gorski B,
Tulinius H, Thorlacius S, Eerola H, Nevanlinna H, Syrjäkoski K, Kallioniemi OP, Thompson D, Evans C, Peto J, Laloo F, Evans DG, Easton DF. 2003. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. American Journal of Human Genetics 72(5):1117-30.

4. Balmaña J, Diez O, Rubio IT, Cardoso F. 2011. BRCA in breast cancer: ESMO Clinical Practice Guidelines. Annals of Oncology 22 Suppl 6:vi31-4. DOI: 10.1093/annonc/mdr373.

5. Beck TF, Mullikin JC; NISC Comparative Sequencing Program, Biesecker LG. 2016. Systematic Evaluation of Sanger Validation of Next-Generation Sequencing Variants. Clin Chem. 62(4):647-54. doi: 10.1373/clinchem.2015.249623.

6. Bosdet IE, Docking TR, Butterfield YS, Mungall AJ, Zeng T, Coope RJ, Yorida E, Chow K, Bala M, Young SS, Hirst M, Birol I, Moore RA, Jones SJ, Marra MA, Holt R, Karsan A. 2013. A clinically validated diagnostic second-generation sequencing assay for detection of hereditary BRCA1 and BRCA2 mutations. Journal of Molecular Diagnostics 15(6):796-809. DOI: 10.1016/j.jmoldx.2013.07.004.

7. Brozek I, Ratajska M, Piatkowska M, Kluska A, Balabas A, Dabrowska M, Nowakowska D, Niwinska A, Rachたn J, Steffen J, Limon J. 2012. Limited significance of family history for presence of BRCA1 gene mutation in Polish breast and ovarian cancer cases. Familial Cancer 11(3):351-4. DOI: 10.1007/s10689-012-9519-5.

8. Buys SS, Partridge E, Black A, Johnson CC, Lamerato L, Isaacs C, Reding DJ, Greenlee RT, Yokochi LA, Kessel B, Crawford ED, Church TR, Andrionle GL, Weissfeld JL, Fouad MN, Chia D, O'Brien B, Ragard LR, Clapp JD, Rathmell JM, Riley TL, Hartge P, Pinsky PF, Zhu CS, Izmirlian G, Kramer BS, Miller AB, Xu JL, Prorok PC, Gohagan JK, Berg CD. 2011. Effect of screening on ovarian cancer mortality: the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial. Journal of the American Medical Association 305(22):2295-303. DOI: 10.1001/jama.2011.766.

9. Chen S, Parmigiani G. 2007. Meta-analysis of BRCA1 and BRCA2 penetrance. Journal of Clinical Oncology 25(11):1329-33.

10. Clarke-Pearson DL. 2009. Clinical practice. Screening for ovarian cancer. New England Journal of Medicine 361(2):170-7.

11. Chong HK, Wang T, Lu H-M, Seidler S, Lu H, Keiles S, Chao EC, Stuenkel AJ, Li X, Elliott AM. 2014. The Validation and Clinical Implementation of BRCAplus: A Comprehensive High-Risk Breast Cancer Diagnostic Assay. PLoS ONE 9(5): e97408. doi:10.1371/journal.pone.0097408

12. De Greve J, et al. Curr Opin Oncol. 2008. Hereditary breast cancer: from bench to bedside. 20(6):605-13.

13. Finch A, Bacopulos S, Rosen B, Fan I, Bradley L, Risch H, McLaughlin JR, Lerner-Ellis J, Narod SA. 2014. Preventing ovarian cancer through genetic testing: a population-based study. Clinical Genetics 86(5):496-9. DOI: 10.1111/cge.12313.
14. Finch AP, Lubinski J, Møller P, Singer CF, Karlan B, Senter L, Rosen B, Maehle L, Ghadirian P, Cybulski C, Huzarski T, Eisen A, Foulkes WD, Kim-Sing C, Ainsworth P, Tung N, Lynch HT, Neuhausen S, Metcalfe KA, Thompson I, Murphy J, Sun P, Narod SA. 2014. Impact of oophorectomy on cancer incidence and mortality in women with a BRCA1 or BRCA2 mutation. Journal of Clinical Oncology 32(15):1547-53. DOI: 10.1200/JCO.2013.53.2820.

15. Frank TS, Deffenbaugh AM, Reid JE, Hulick M, Ward BE, Lingenfelter B, Gumpper KL, Scholl T, Tavtigian SV, Pruss DR, Critchfield GC. 2002. Clinical characteristics of individuals with germline mutations in BRCA1 and BRCA2: analysis of 10,000 individuals. Journal of Clinical Oncology 20(6):1480-90.

16. Gabai-Kapara E, Lahad A, Kaufman B, Friedman E, Segev S, Renbaum P, Beeri R, Gal M, Grinshpun-Cohen J, Djemal K, Mandell JB, Lee MK, Beller U, Catane R, King MC, Levy-Lahad E. 2014. Population-based screening for breast and ovarian cancer risk due to BRCA1 and BRCA2. Proceedings of the National Academy of Sciences 111(39):14205-10. DOI: 10.1073/pnas.1415979111.

17. Garrison E, Marth G. 2012. Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:1207.3907 [q-bio.GN].

18. Hampel H, Bennett RL, Buchanan A, Pearlman R, Wiesner GL. 2015. A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment. Genetics in Medicine 17(1):70-87. DOI: 10.1038/gim.2014.147.

19. Harismendy O, Ng PC, Strausberg RL, Wang X, Stockwell TB, Beeson KY, Schork NJ, Murray SS, Topol EJ, Levy S, Frazer KA. 2009. Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biology 10(3):R32. doi: 10.1186/gb-2009-10-3-r32.

20. Hartmann LC, Schaid DJ, Woods JE, Crotty TP, Myers JL, Arnold PG, Petty PM, Sellers TA, Johnson JL, McDonnell SK, Frost MH, Jenkins RB. 1999. Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. New England Journal of Medicine 340(2):77-84.

21. Hartmann LC, Sellers TA, Schaid DJ, Frank TS, Soderberg CL, Sitta DL, Frost MH, Grant CS, Donohue JH, Woods JE, McDonnell SK, Vockley CW, Deffenbaugh A, Couch FJ, Jenkins RB. 2001. Efficacy of bilateral prophylactic mastectomy in BRCA1 and BRCA2 gene mutation carriers. Journal of National Cancer Institute 93(21):1633-7.

22. Hogervorst FB, Nederlof PM, Gille JJ, McElgunn CJ, Grippeling M, Pruntel R, Regnerus R, van Welsum T, van Spaendonk R, Menko FH, Kluif J, Dommering C, Verhoef S, Schouten JP, van't Veer LJ, Pals G. 2003. Large genomic deletions and duplications in the BRCA1 gene identified by a novel quantitative method. Cancer Res 63: 1449–1453.

23. Iodice S, Barile M, Rotmensz N, Feroce I, Bonanni B, Radice P, Bernard L, Maisonneuve P, Gandini S. 2010. Oral contraceptive use and breast or ovarian cancer risk in BRCA1/2 carriers: a meta-analysis. European Journal of Cancer 46(12):2275-84. DOI: 10.1016/j.ejca.2010.04.018.

24. Judkins T, Leclair B, Bowles K, Gutin N, Trost J, McCulloch J, Bhatnagar S, Murray A, Craft J, Wardell B, Bastian M, Mitchell J, Chen J, Tran T, Williams D,
Development and analytical validation of a 25-gene next generation sequencing panel that includes the BRCA1 and BRCA2 genes to assess hereditary cancer risk. BMC Cancer 15:215. DOI: 10.1186/s12885-015-1224-y.

25. Kang PC, Phuah SY, Sivanandan K, Kang IN, Thirthagiri E, Liu JJ, Hassan N, Yoon SY, Thong MK, Hui M, Hartman M, Yip CH, Mohd Taib NA, Teo SH. 2014. Recurrent mutation testing of BRCA1 and BRCA2 in Asian breast cancer patients identify carriers in those with presumed low risk by family history. Breast Cancer Research and Treatment 144(3):635-42. DOI: 10.1007/s10549-014-2894-x.

26. Kast K, Schmutzler RK, Rhiem K, Kiechle M, Fischer C, Niederacher D, Arnold N, Grimm T, Speiser D, Schlegelberger B, Varga D, Horvath J, Beer M, Briest S, Meindl A, Engel C. 2014. Validation of the Manchester scoring system for predicting BRCA1/2 mutations in 9,390 families suspected of having hereditary breast and ovarian cancer. International Journal of Cancer 135(10):2352-61. DOI: 10.1002/ijc.28875.

27. Kauff ND, Domchek SM, Friebel TM, Robson ME, Lee J, Garber JE, Isaacs C, Evans DG, Lynch H, Eeles RA, Neuhausen SL, Daly MB, Matloff E, Blum JL, Sabbatini P, Barakat RR, Hudis C, Norton L, Offit K, Rebeck TR. 2008. Risk-reducing salpingo-oophorectomy for the prevention of BRCA1- and BRCA2-associated breast and gynecologic cancer: a multicenter, prospective study. Journal of Clinical Oncology 26(8):1331-7. DOI: 10.1200/JCO.2007.13.9626.

28. Kauff ND, Satagopan JM, Robson ME, Scheuer L, Hensley M, Hudis CA, Ellis NA, Boyd J, Borgen PI, Barakat RR, Norton L, Castiel M, Nafa K, Offit K. 2002. Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. New England Journal of Medicine 346(21):1609-15.

29. King MC, Marks JH, Mandell JB. 2003. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302(5645):643-6.

30. King MC, Wiedand S, Hale K, Lee M, Walsh T, Owens K, Tait J, Ford L, Dunn BK, Costantino J, Wickerham L, Wolmark N, Fisher B. 2001. Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2: National Surgical Adjuvant Breast and Bowel Project (NSABP-P1) Breast Cancer Prevention Trial. Journal of the American Medical Association 286(18):2251-6.

31. Kuhl C, Weigel S, Schrading S, Arand B, Bieling H, König R, Tombach B, Leutner C, Rieber-Brambs A, Nordhoff D, Heindel W, Reiser M, Schild HH. 2010. Prospective multicenter cohort study to refine management recommendations for women at elevated familial risk of breast cancer: the EVA trial. Journal of Clinical Oncology 28(9):1450-7. DOI: 10.1200/JCO.2009.23.0839.

32. Kurian AW, Kingham KE, Ford JM. 2015. Next-generation sequencing for hereditary breast and gynecologic cancer risk assessment. Curr Opin Obstet Gynecol. 27(1):23-33. DOI: 10.1097/GCO.0000000000000141.

33. Lancaster JM, Powell CB, Kauff ND, Cass I, Chen LM, Lu KH, Mutch DG, Berchuck A, Karlan BY, Herzog TJ. 2007. Society of Gynecologic Oncologists
Education Committee statement on risk assessment for inherited gynecologic cancer predispositions. Gynecologic Oncology 107(2):159-62.

34. Li C, Hung Wong W. 2001. Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biology 2(8):RESEARCH0032.

35. Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997.

36. Lincoln SE, Kobayashi Y, Anderson MJ, Yang S, Desmond AJ, Mills MA, Nilsen GB, Jacobs KB, Monzon FA, Kuriyan AW, Ford JM, Ellisen LW. 2015. A Systematic Comparison of Traditional and Multigene Panel Testing for Hereditary Breast and Ovarian Cancer Genes in More Than 1000 Patients. Journal of Molecular Diagnostics 17(5): 533–544. DOI: 10.1016/j.jmoldx.2015.04.009.

37. Maxwell KN, Wubbenhorst B, D’Andrea K. 2014. Prevalence of mutations in a panel of breast cancer susceptibility genes in BRCA1/2-negative patients with early-onset breast cancer. Genet Med 11:176.

38. McAdam AJ. 2000. Discrepant analysis: how can we test a test? Journal of Clinical Microbiology 38(6):2027-9.

39. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20(9):1297-303. DOI: 10.1101/gr.107524.110.

40. Meijers-Heijboer H, van Geel B, van Putten WL, Henzen-Logmans SC, Seynaeve C, Menke-Pluymers MB, Bartels CC, Verhoog LC, van den Ouweland AM, Niermeijer MF, Brekelmans CT, Klijn JG. 2001. Breast cancer after prophylactic bilateral mastectomy in women with a BRCA1 or BRCA2 mutation. New England Journal of Medicine 345(3):159-64.

41. Metcalfe KA, Poll A, Royer R, Nanda S, Llacuachaqui M, Sun P, Narod SA. 2013. A comparison of the detection of BRCA mutation carriers through the provision of Jewish population-based genetic testing compared with clinic-based genetic testing. British Journal of Cancer 109(3):777-9. DOI: 10.1038/bjc.2013.309.

42. Narod SA, Brunet JS, Ghadirian P, Robson M, Heimdal K, Neuhausen SL, Stoppa-Lyonnet D, Lerman C, Pasini B, de los Rios P, Weber B, Lynch H. 2000. Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study. Hereditary Breast Cancer Clinical Study Group. Lancet 356(9245):1876-81.

43. National Comprehensive Cancer Network. Genetic/Familial High Risk Assessment: Breast and Ovarian (Version 2.2014). Accessed October 30, 2014. Available at: http://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf

44. Nelson HD, Pappas M, Zacher B, Mitchell JP, Okinaka-Hu L, Fu R. 2014. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: a systematic review to update the U.S. Preventive Services Task Force recommendation. Annals of Internal Medicine 160(4):255-66.
45. Nord AS, Lee M, King MC, Walsh T. 2011. Accurate and exact CNV identification from targeted high-throughput sequence data. BMC Genomics 12:184. DOI: 10.1186/1471-2164-12-184.

46. Norquist BM, Pennington KP, Agnew KJ, Harrell MI, Pennil CC, Lee MK, Casadei S, Thornton AM, Garcia RL, Walsh T, Swisher EM. 2013. Characteristics of women with ovarian carcinoma who have BRCA1 and BRCA2 mutations not identified by clinical testing. Gynecologic Oncology 128(3):483-7. DOI: 10.1016/j.ygyno.2012.12.015.

47. Olopade OI, Artioli G. 2004. Efficacy of risk-reducing salpingo-oophorectomy in women with BRCA-1 and BRCA-2 mutations. Breast Journal 10 Suppl 1:S5-9.

48. Oros KK, Ghadirian P, Maugard CM, Perret C, Paredes Y, Mes-Masson AM, Foulkes WD, Provencher D, Tonin PN. 2006. Application of BRCA1 and BRCA2 mutation carrier prediction models in breast and/or ovarian cancer families of French Canadian descent. Clinical Genetics 70(4):320-9.

49. Petrucelli N, Daly MB, Feldman GL. 2015. GeneReviews: BRCA1 and BRCA2 Hereditary Breast and Ovarian Cancer. Available at http://www.ncbi.nlm.nih.gov/pubmed/?term=20301425 (accessed 27 February 2014).

50. Rebbeck TR, Lynch HT, Neuhausen SL, Narod SA, Van't Veer L, Garber JE, Evans G, Isaacs C, Daly MB, Matloff E, Olopade OI, Weber BL. 2002. Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. New England Journal of Medicine 346(21):1616-22.

51. Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, Deignan JL, Friez MJ, Funke BH, Hegde MR, Lyon E. 2013. ACMG clinical laboratory standards for next-generation sequencing. Genet. Med. 15, 733–747.

52. Robson ME, Storm CD, Weitzel J, Wollins DS, Offit K. 2010. American Society of Clinical Oncology policy statement update: genetic and genomic testing for cancer susceptibility. Journal of Clinical Oncology 28(5):893-901. DOI: 10.1200/JCO.2009.27.0660.

53. Rutter JL, Wacholder S, Chetrit A, Lubin F, Menczer J, Ebbers S, Tucker MA, Struewing JP, Hartge P. 2003. Gynecologic surgeries and risk of ovarian cancer in women with BRCA1 and BRCA2 Ashkenazi founder mutations: an Israeli population-based case-control study. Journal of the National Cancer Institute 95(14):1072-8.

54. Sardanelli F, Podo F, Santoro F, Manoukian S, Bergonzi S, Trecate G, Vergnaghi D, Federico M, Cortesi L, Corcione S, Morassut S, Di Maggio C, Cilotti A, Martinich L, Calabrese M, Zuiani C, Preda L, Bonanni B, Carbonaro LA, Contegiacomo A, Panizza P, Di Cesare E, Savarese A, Crecco M, Turchetti D, Tonutti M, Belli P, Maschio AD. 2011. Multicenter surveillance of women at high genetic breast cancer risk using mammography, ultrasonography, and contrast-enhanced magnetic resonance imaging (the high breast cancer risk italian l study): final results. Investigative Radiology 46(2):94-105. DOI: 10.1097/RLI.0b013e3181f3fcdf.

55. Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.
56. Shirts BH, Casadei S, Jacobson AL, Lee MK, Gulsoner S, Bennett RL, Miller M, Hall SA, Hampel H, Hisama FM, Naylor LV, Goetsch C, Leppig K, Tait JF, Scroggins SM, Turner EH, Livingston R, Salipante SJ, King MC, Walsh T, Pritchard CC. 2016. Improving performance of multigene panels for genomic analysis of cancer predisposition. Genet Med. DOI: 10.1038/gim.2015.212

57. Statement of the American Society of Human Genetics on genetic testing for breast and ovarian cancer predisposition. 1994. American Journal of Human Genetics 55(5):i-iv.

58. Strom CM, Rivera S, Elzinga C, Angeloni T, Rosenthal SH, Goos-Root D, Siaw M, Platt J, Braastadt C, Cheng L, Ross D, Sun W. 2015. Development and Validation of a Next-Generation Sequencing Assay for BRCA1 and BRCA2 Variants for the Clinical Laboratory. PLoS One 10, p. e0136419.

59. Turnbull C, Rahman N. 2008. Genetic predisposition to breast cancer: past, present, and future. Annu Rev Genomics Hum Genet. 9:321-45. DOI: 10.1146/annurev.genom.9.081307.164339.

60. Warner E, Hill K, Causer P, Plewes D, Jong R, Yaffe M, Foulkes WD, Ghadirian P, Lynch H, Couch F, Wong J, Wright F, Sun P, Narod SA. 2011. Prospective study of breast cancer incidence in women with a BRCA1 or BRCA2 mutation under surveillance with and without magnetic resonance imaging. Journal of Clinical Oncology 29(13):1664-9. DOI: 10.1200/JCO.2009.27.0835.

61. Wilson EB. 1927. Probable inference, the law of succession, and statistical inference. Journal of the American Statistical Association 22: 209–212. DOI:10.1080/01621459.1927.10502953
Table 1. *BRCA1* and *BRCA2* cancer risk management options and effectiveness

Risk Management Options	Effectiveness
Prophylactic mastectomy	Up to 90% reduction in breast cancer risk (Hartmann et al., 1999; Hartmann et al., 2001; Meijs-Heijboer et al., 2001)
Prophylactic oophorectomy	~50% reduction in breast cancer risk when performed premenopausally (more pronounced effect for *BRCA2* mutation carriers compared to *BRCA1*) (Kauff et al., 2002; Kauff et al., 2008) Up to 96% reduction in ovarian cancer risk (Olopade & Artioli, 2004; Rebbeck et al., 2002; Rutter et al., 2003)
Tamoxifen	Up to 62% reduction in breast cancer risk among *BRCA2* mutation carriers Up to 50% contralateral breast cancer risk reduction in both *BRCA1* and *BRCA2* Limited data but appears to be more effective in *BRCA2* mutation carriers compared to *BRCA1* (King et al., 2001; Metcalfe et al., 2005; Narod et al., 2000)
Oral contraceptives	Up to 50% reduction in ovarian cancer risk (Iodice et al., 2010)
Breast MRI/mammogram	No risk reduction, but earlier detection (Kuhl et al., 2010; Sardanelli et al., 2011; Warner et al., 2011)
Ovarian cancer screening (transvaginal ultrasound and serum cancer antigen 125 (CA-125))	No risk reduction and no effect on cancer mortality (Buys et al., 2011; Clarke-Pearson, 2009)
Table 2. Source of samples and reference data used in validation

Mutation Type	Test Samples	Reference Data
SNV/Indel	41 Coriell Cell Line Samples	1000 Genomes Project Exomes
	NA12878	Illumina Platinum Genome
	15 BIC samples	BIC reference data
	10 positive patient samples	Orthogonal confirmation by Sanger
CNV	NA12878	Orthogonal confirmation by MLPA
	15 BIC samples	Orthogonal confirmation by MLPA
	13 reference lab samples	Reference lab results
	25 random patient samples	Orthogonal confirmation by MLPA
	9 positive patient samples	Orthogonal confirmation by MLPA
Table 3. Performance of Counsyl Inherited Cancer Screen for SNPs and indels

Counsyl ICS	1000 Genomes reference data	Results (95\% confidence interval)	
	Variant present	Variant not present	
Variant detected	536 true positives	0 false positives	100\% accuracy (0.999-1.0)
			100\% sensitivity (0.993-1.0)
			100\% specificity (0.999-1.0)
			0\% FDR (0-0.7\%)
Variant not detected	0 false negatives	12,920 true negatives	

Only samples with reference data for the entire region of interest were used to calculate the analytic concordance. Validation metrics were defined as: Accuracy = (TP + TN)/(TP + FP + TN + FN); Sensitivity = TP / (TP + FN); Specificity = TN / (TN + FP); FDR = FP / (TP + FP). For true negative and true positive calculations, all polymorphic positions (positions at which we observed non-reference bases in any sample) across all samples were considered.
Table 4. Positive Variants Included In Validation Study

Mutation Type	Subtype	Number of Positive Variants	
		Reference Data	Orthogonal Confirmation
SNV	N/A	525	
Indel	Indels < 10 bp	10	4
	Indels >= 10 bp	1	6
CNV	Single-exon deletions or duplications	10	
	Multiple exon deletions or duplications	69	
Table 5. Performance of Counsyl Inherited Cancer Screen for Copy Number Variants

Counsyl ICS	MLPA reference data	Results (95% confidence interval)	
	CNV present	CNV not present	
CNV detected	79 true positives	0 false positives	100% accuracy (0.999-1.0)
			100% sensitivity (0.951-1.0)
	0 false negatives	3067 true negatives	100% specificity (0.999-1.0)
CNV not detected	0 false negatives	3067 true negatives	0% FDR (0-4.6%)

Only reference data with full copy number assessment of the **BRCA1/2** genes were included.

Validation metrics were defined as:
- **Accuracy** = \(\frac{TP + TN}{TP + FP + TN + FN} \)
- **Sensitivity** = \(\frac{TP}{TP + FN} \)
- **Specificity** = \(\frac{TN}{TN + FP} \)
- **FDR** = \(\frac{FP}{TP + FP} \)

True positives and true negatives were computed on a per-exon basis.