High Rates of Homologous Recombination in the Mite Endosymbiont and Opportunistic Human Pathogen Orientia tsutsugamushi

Piengchan Sonthayanon1,2*, Sharon J. Peacock2,3, Wirongrong Chierakul1,2, Vanaporn Wuthiekanun2, Stuart D. Blacksell2, Mathew T. G. Holden4, Stephen D. Bentley4, Edward J. Feil5, Nicholas P. J. Day2,6

1Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, 2Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, 3Department of Medicine, University of Cambridge, Cambridge, United Kingdom, 4The Wellcome Trust Sanger Institute, Hinxton, United Kingdom, 5Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom, 6Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom

Abstract

Orientia tsutsugamushi is an intracellular α-proteobacterium which resides in trombiculid mites, and is the causative agent of scrub typhus in East Asia. The genome sequence of this species has revealed an unprecedented number of repeat sequences, most notably of the genes encoding the conjugative properties of a type IV secretion system (T4SS). Although this observation is consistent with frequent intragenomic recombination, the extent of homologous recombination (gene conversion) in this species is unknown. To address this question, and to provide a protocol for the epidemiological surveillance of this important pathogen, we have developed a multilocus sequence typing (MLST) scheme based on 7 housekeeping genes (gpsA, mdh, nrdB, nuoF, ppdA, sucD, sucB). We applied this scheme to the two published genomes, and to DNA extracted from blood taken from 84 Thai scrub typhus patients, from 20 cultured Thai patient isolates, 1 Australian patient sample, and from 3 cultured type strains. These data demonstrated that the O. tsutsugamushi population was both highly diverse [Simpson’s index (95% CI) = 0.95 (0.92–0.98)], and highly recombinogenic. These results are surprising given the intracellular life-style of this species, but are broadly consistent with results obtained for Wolbachia, which is an α-proteobacterial reproductive parasite of arthropods. We also compared the MLST data with ompA sequence data and noted low levels of consistency and much higher discrimination by MLST. Finally, twenty-five percent of patients in this study were simultaneously infected with multiple sequence types, suggesting multiple infection caused by either multiple mite bites, or multiple strains co-existing within individual mites.

Introduction

Scrub typhus is a zoonotic disease endemic in Southeast Asia caused by Orientia tsutsugamushi, a Gram-negative obligate intracellular cocobacillus. The number of new cases in East Asia has been estimated at approximately one million per year [1]. It is transmitted by the bite of larval stages of trombiculid mites (“Chiggers”; Leptotrombidium spp.), which more typically feed on small rodents. The disease commonly presents as an acute febrile illness within 7–10 days of being bitten. The clinical features include fever, headache, myalgia, lymphadenopathy and an eschar at the site of the bite. Disease severity and manifestations vary widely from asymptomatic to fatal, and show marked geographical differences, with reported fatality rates in the pre-antibiotic era ranging from 3% in Taiwan to 40% in Japan [2]. It is not known whether these geographical differences reflect genetic variation in the bacteria, the host, or both. Strains of O. tsutsugamushi are typically distinguished serologically on the basis of the 56 kDa-outer membrane protein encoded by ompA, which is known to be highly polymorphic within the natural population.

Despite the importance of this pathogen, little is known of the population diversity or the role of homologous recombination in driving the microevolution of this species. This question is relevant for the development of markers aimed at epidemiological surveillance, but is also of evolutionary interest given the unusual mode of molecular evolution and distinctive intracellular niche of this species. The genome of O. tsutsugamushi strain Boryong reveals a massive proliferation of repeated non-functional genes, including 359 copies of the conjugative transfer (tra) components of a type IV secretion system (T4SS), and >400 transposases [3]. These duplications may facilitate extensive intragenomic rearrangement and possibly homologous recombination, although direct population-based evidence for this is currently lacking.

Obligate intracellular bacteria are generally considered unlikely to undergo high rates of homologous recombination as strict vertical (transovarial) transmission from mother to offspring will lead to co-evolution of host and symbiont, and will restrict the opportunities for different lineages to meet, and hence recombine. This picture, which largely stems from extensive studies on the aphid symbiont Buchnera, has recently been challenged by
Patients and bacterial strains

Eighty-four patients presenting to Udon Thani general hospital, Northeast Thailand between October 2000 and December 2001 with scrub typhus were identified using PCR, as previously described [9]. Five millilitres of blood was drawn on admission for molecular diagnostics. The study also included 20 strains isolated previously from patients in Udon Thani and Tak province (Northern Thailand) that were maintained in laboratory culture. The bacterial reference strain Kato, DNA of reference strains Gilliam, Karp and a patient DNA ‘Sido’ were obtained from the Australian Rickettsial Reference Laboratory, Geelong, Australia. DNA was extracted from admission blood samples and in vitro cell culture as previously described [10].

Gene choice and primer design

The housekeeping gene candidates were selected from shotgun sequencing of O. tsutsugamushi strain UT 76 (Udon Thani, Thailand), which was conducted at the Wellcome Trust Sanger Institute, UK (ftp://ftp.ensembl.org/pub/traces/orientia_ tsutsugamushi_ut76). Using the incomplete assembly, contiguous genes homologous to 19 orthologous housekeeping genes from 3 related rickettsial species (Rickettsia typhi, R. conori, R. prowazekii, R. felis, Ehrlichia ruminantium, Anaplasma marginale, Wolbachia pipiens strain nMel, Bartonella henselae) were identified using BLASTN [11] and annotated using Artemis software [12]. Seven housekeeping gene loci were selected: gpsA, mdh, mdB, nuoF, ppdK, sucD, and sucB. Fourteen primer pairs from these loci were designed using PrimerSelect (DNASTAR Lasergene, USA) (Table 1).

PCR amplification and DNA sequencing

O. tsutsugamushi DNA was amplified using nested PCR, as follows. The first PCR round contained 200 μM dNTP, 1 × PCR buffer, 1.5 mM MgCl2, 0.05 unit of Taq DNA Polymerase (Promega, USA) and 5 μl extracted DNA (total volume 50 μl). The amplification profile for all loci with the exception of gpsA was as follows: 94°C for 4 minutes (1 cycle), followed by 35 cycles of 94°C for 30 sec, 55°C for 30 sec, 72°C for 30 sec and 1 cycle of 72°C for 5 minutes. An annealing temperature of 30°C was used for gpsA. Five μl of the first PCR product was then used in a second PCR amplification profile using a 50°C annealing temperature for sucD, mdB, sucB, mdB, mdH, ppdK and 45°C for mdh and gpsA. PCR product clean up using QIAquick PCR purification kit (QIAGEN, Germany) was followed by sequencing reactions in forward and reverse directions using the second PCR primer. The PCR sequencing methods used ABI PRISM® BigDye™ Terminator Cycle Sequencing Kits with AmpliTaq DNA polymerase (FS enzyme) (Applied Biosystems, USA), following the protocols supplied by the manufacturer. The PCR sequencing product was precipitated and then resuspended in loading buffer and subjected to electrophoresis in an ABI 3730xl sequencer (Applied Biosystems, USA).

MLST and data analysis

MLST was defined for 84 DNA samples that had been extracted from EDTA blood and shown previously to be positive by PCR for O. tsutsugamushi, 21 DNA samples extracted from in vitro O. tsutsugamushi isolates, 3 DNA samples extracted (Karp, Gilliam and Sido strain), and 2 whole genome sequences available from GenBank. Forward and reverse sequence traces for each locus were compared using SeqMan® II (DNASTAR Lasergene, USA). Allele numbers for each locus were assigned to each unique sequence in the order in which they were discovered, to give an allelic profile for each strain in the order gpsA-mdh-mdB-nuoF-ppdK-.
products of locus cut or not cut the PCR product once at a polymorphic site. PCR enzyme analysis and PCR cloning were performed.

Restriction enzyme analysis and cloning (patient samples and reference strains) was analysed and displayed (diversity) was calculated as previously described [13,14]. The allele and profile frequencies were analysed using the software START version 2. The diversity index (Simpson’s index of diversity) was calculated for each of these datasets.

Table 1. Housekeeping genes and primers used in the O. tsutsugamushi MLST scheme.

Gene	Gene name	Primer 1st PCR sequence (5'->3')	Product size (bp)	Primer 2nd PCR sequence (5'->3')	Product size (bp)	MLST fragment size (bp)
gpsA	glycerol-3-phosphate dehydrogenase	gpsA_F TCAGCCCATACATCAAGAAATCA	572	gpsA_NF TCAGCTGCATACTAAAAA	510	390
		gpsA_R GCAAATGCCAACATTCCCTT				
mdh	malate dehydrogenase	mdh_F CCAAACGATTTGCTCAAGGT	608	mdh_NF AAAGCATGGGTATTGGTAAA	512	348
		mdh_R AGTCGCTCAAGAGCATAT				
nrdB	ribonucleoside-diphospho reductase	nrdB_F TAAAGCATGCACACTACG	595	nrdB_NF AAATTCAGGTCACCAAGA	500	384
	beta subunit	nrdB_R CGTCTCGTCCAAACCTCCAGGA				
nuoF	NADH dehydrogenase chain F	nuoF_F AATCGTTGTCATATGGCAGTGCAG	645	nuoF_NF AAAATCGGCTAGTGTTTA	520	360
		nuoF_R CATTGTGGGCTCTCTTGA				
ppdK	pyruvate, phosphate dikinase precursor	ppdK_F CAAAGGTGCAAAGGCTAGCTCAG	591	ppdK_NF TACCTATACCGGATTTTTT	528	396
		ppdK_R GTGTTGGTCATGCAATTGCT				
sucA	dihydrolipoamide S- succinyltransferase	sucA_F CAGCAAAAAGAAGATGGTGCAGC	590	sucA_NF ATTGGCAACAATCCTAGA	537	411
		sucA_R GTTGGCGCAATTGATGCT				
sucD	succinyl-CA synthase alpha chain	sucD_F ATGGTCCTCAGGCTTTGTCC	599	sucD_NF TGAAGCTATGAGTGTTGATA	562	411
		sucD_R TCAAGCAGCCTTTTTATCGTT				

doi:10.1371/journal.pntd.0000752.t001

ompA (56-kDa) gene typing
The entire 56-kDa protein gene (1.5 kb) of the 22 in vitro isolates used in this study has been sequenced and reported previously [17,18]. The genetic relatedness on DNA extracted from the original blood sample and from the organism grown in cell culture. The sequence types from both sources were identical (data not shown). This demonstrates that the 56kDa gene used in the current study were EDTA blood samples from patients with scrub typhus, an approach necessitated by the difficulty of isolating this slow growing bacterium in cell culture. Although DNA extracted directly from patients’ blood may contain low concentrations of bacterial DNA, it was possible using a nested PCR approach to produce amplicons in concentrations that were sufficient to sequence. In this study there were 3 patient samples (UT125, UT144, UT196) on which MLST was performed both on DNA extracted from the original blood sample and from the organism grown in cell culture. The sequence types from both sources were identical (data not shown). This demonstrates that the MLST sequence type can be determined directly from a patient blood sample when in vitro culture is not available.

Results
Nested PCR for amplification of O. tsutsugamushi DNA from whole blood
The O. tsutsugamushi MLST scheme was developed for direct application to clinical blood samples. Most of the samples (77%) used in the current study were EDTA blood samples from patients with scrub typhus, an approach necessitated by the difficulty of isolating this slow growing bacterium in cell culture. Although DNA extracted directly from patients’ blood may contain low concentrations of bacterial DNA, it was possible using a nested PCR approach to produce amplicons in concentrations that were sufficient to sequence. In this study there were 3 patient samples (UT125, UT144, UT196) on which MLST was performed both on DNA extracted from the original blood sample and from the organism grown in cell culture. The sequence types from both sources were identical (data not shown). This demonstrates that the MLST sequence type can be determined directly from a patient blood sample when in vitro culture is not available.
A total of 108 DNA samples (24 isolates extracted from in vitro cell culture and 84 PCR positive EDTA samples) were amplified and sequenced at all seven loci (2700-bp in total for each strain). The expected size of the final PCR products and the length of each sequenced gene fragment are shown in Table 1. Eighty-seven of the 100 DNA samples analysed had clear sequence reads in both directions at all 7 loci (Table S1), but 21 DNA samples, all amplified directly from patient blood (25% of patient samples processed in this way), repeatedly showed double peaks at one or more nucleotide positions at one or more loci. This was not seen with any of the 24 DNA samples extracted from cultured isolates.

The number of polymorphic sites at each ambiguous locus varied from 1 to 13, and the number of ambiguous loci per strain varied from 1 to 7. The polymorphic sites in some strains were also found in other strains at the same positions.

Analysis of MLST data
Forty-nine sequence types (STs) were identified among the 89 samples (84 Thai patient samples, 1 Australian patient sample, 2 reference samples and 2 in silico genomes available from GenBank) for which the sequencing was unambiguous at all loci (Table S1). Of these, 24 STs were represented by only a single strain. The most common ST was ST29, which accounted for 17 strains (19.1%), followed by ST2 (n = 7), ST6 (n = 5), ST33 (n = 4), ST34 (n = 4), ST27 (n = 5), ST1, 9, 10, 13, 30 and 38 (n = 2). The number of alleles at each locus ranged from 18 to 23. There was a high degree of genetic diversity with a Simpson’s index of diversity of 0.95 (95% CI 0.92–0.98). The ratio of non-synonymous to synonymous nucleotide changes (dN/dS) was calculated for all 7 genes and found to range from 0.05–0.26 (Table 2), indicating that the genes are evolving predominantly by purifying selection.

In order to find further evidence for recombination we used the RDP suite of programs. Six tests for recombination were employed on the concatenated sequences: Geneconv, Bootscan, Max Chi, Chimaera, SiScan and 3Seq. Together, these tests detected 85 recombination signals corresponding to 16 unique events. Eight of these recombination events were supported by at least 3 tests (P<0.05) (Table 4). Approximately half of the recombination breakpoints detected by these tests corresponded to gene borders, which suggests a role for both intra- and inter-genic recombination. We visually inspected the sequence trace of breakpoints detected by these tests, which confirmed striking mosaicism, and two examples (recombination events 5 and 8) are shown in Figure 2.

Table 2. The genetic variation in O. tsutsugamushi MLST allele of 89 strains.

Gene	Length of allele (bp)	No. of alleles	No. of variable sites	dN/dS
gpsA	390	24	47	0.2663
mdh	348	20	18	0.2269
ndrB	384	19	21	0.121
nuoF	360	25	36	0.2378
ppdK	396	21	45	0.2605
sucB	411	20	26	0.0517
sucD	411	20	26	0.0517

1 dN/dS: The ratio of mean non-synonymous substitutions per non-synonymous site and mean synonymous substitutions per synonymous site.

doi:10.1371/journal.pntd.0000752.t002

Phylogenetic analysis and cluster definition
We examined the phylogeny of 49 STs including 47 STs from this study and the 2 sequenced strains Boryong and Ikeda from GenBank (accession no. AM494475 and AP008981, respectively), by using MEGA v 4.1 to construct a neighbour-joining tree (Figure 3). Although the bootstrap values were generally very poor (not shown), the tree was broadly consistent with the clusters delineated by eBURST based on a group definition of 5/7 alleles in common. However, there were exceptions; STs 35 and 36 were excluded from CC27 by the tree (indicating recombination events between diverged parents), whereas ST32 was included in this group by the tree but excluded by eBURST at 5/7 loci (indicating mutational events at multiple loci).

Quantifying the rate of homologous recombination in O. tsutsugamushi
To understand the extent to which recombination has contributed to the diversification of this population compared with mutation, we estimated the ratio of recombination to mutation (r/m) at both the allelic and nucleotide level within clonal complexes by comparing the sequences of the non-identical alleles in all SLVs with their assigned clonal founders [20,21]. Recombination is assumed to be the cause of multiple nucleotide changes (>1), while de novo mutation is assumed to be the cause if there is only a single nucleotide difference and if the resulting allele is not found elsewhere in the database. Of the 11 SLVs in 4 clonal complexes available for examination in our strain collection, only one genetic event was consistent with a point mutation by these criteria. The recombination to mutation ratio (r/m) per allele site is calculated from the number of alleles that were different in SLVs, and the per-site recombination to mutation was calculated from the overall number of nucleotide differences found in SLVs compare to the putative ancestral ST. The upper-bound ratio of recombination to mutation for O. tsutsugamushi in this population of 89 strains was estimated as 10:1 at the allele level and 60:1 at the nucleotide site level (r/m) (Table 3). These estimates are comparable to the freely recombining human pathogens Neisseria meningitidis and Streptococcus pneumoniae [22]. However, this estimate is based on only 11 SLVs, and a larger dataset is required in order to compute a more reliable estimate. Nevertheless, it is striking that 5/11 of the variant alleles in SLVs in the current data differ from the corresponding alleles in the founder for at least 8 nucleotide sites, (>1.5% sequence divergence). Thus even if many of the alleles differing by 2–4 nucleotides have emerged through point mutation and were misclassified as recombination events, the high diversity between these allelic comparisons points to a strong role for recombination.
MLST and ompA (56-kDa) gene typing

We compared the discrimination provided by the 56-kDa gene sequence to the MLST data by comparing data for a set of 22 isolates using both methods. The 56-kDa gene sequence resolved the 22 isolates into 3 putative antigenic types (Gilliam, Karp, and TA716), based on comparisons to relevant reference sequences (Table 5). The 56-kDa gene sequence data were generally poorly congruent to the MLST data at both the ST level (31.4%) and the concatenated sequence level (18.1%). The MLST data resolved 15 STs, corresponding to a Simpson's Index of Diversity of 0.95 (0.91–0.99) compared to 0.48 (0.30–0.66) for the 56-kDa data. This data indicated that MLST has higher discrimination power than 56-kDa typing.

Multiple genotypes in DNA sample from patients

We repeatedly observed double peaks in the chromatograms from a number of DNA samples extracted directly from blood. For example, the 542 bp gpsA PCR product from strain no. 37 demonstrated a multiple (C/A) peak at position 223 and strain no. 70 demonstrated a multiple (T/C) peak at position 261. In order to check whether this resulted from a mixed infection we digested the PCR product with DdeI which was predicted to cut one of the two putative PCR products at a single polymorphic site [DdeI site (C223^TNAG)]. Electrophoresis post digestion revealed 3 bands, two of the predicted size following DdeI digestion (at 319, 223 bp), and one representing an undigested product (at 542 bp) (Figure 4). Although this was consistent with the presence of two bacterial genotypes in the original patient blood sample, it is also possible that the three bands simply reflected partial digestion. We therefore cloned and sequenced gpsA amplicons from these samples to further evaluate the basis of the double peaks. The sequence of cloned amplicons resolved the double peaks by demonstrating the presence of either one or other nucleotide at these sites, confirming the presence of more than one PCR product in the original blood sample (Figure 5 A–F). We infer from this that the results are consistent with mixed infection in 25% of human samples tested, which can either be explained by mixed strains in mites or multiple bites of a single human by mono-

Table 3. Variant alleles within the SLVs found in 4 clonal complexes.

Clonal complex	ST of clonal ancestor	ST of SLV	SLV frequency	Variant locus in SLV	Ancestral allele	SLV allele	No. of nucleotide differences*
27	27	25	1	sucB	6	2	2
27	27	26	1	sucB	6	3	3
27	27	24	1	ppdK	10	4	9
29	29	30	2	sucB	7	8	4
29	29	28	1	rdpB	10	1	3
29	29	31	1	mdh	9	12	1†
10	10	9	2	nufF	3	1	11
10	10	11	1	sucB	4	15	2
13	13	4	1	gpsA	4	2	8
13	13	14	1	sucD	2	4	10
13	13	15	1	ppdK	2	11	8

*When the number of nucleotide differences is more than one, this is assigned as having arisen through recombination.

†Single nucleotide polymorphism of a novel allele not found elsewhere in the data set and therefore assigned as a point mutation.

doi:10.1371/journal.pntd.0000752.t003
infected mites. We also note that in many cases where multiple strains were recovered from a single blood sample, that strains tended to be more similar to each other than to other strains in the study. This may reflect the adaptation of particular bacterial genotypes to specific mite genotypes, although a more extensive dataset is needed from both human and mite hosts to examine this possibility more thoroughly.

Table 4. The recombination events found in this population study using 6 recombination tests.

Event	Begin	End	Recombinant	Minor Parent	Major Parent	GECO	BTSC	MACH	CHIM	SISC	3Seq
1	385	2272	ST16	ST11	ST13	X					
2	385	2272	ST14	ST4	Unknown	X					
3	18	1608	ST18	ST3	ST34	X					
4	1497	2168	ST38	Unknown	ST35	X					
5	1136	1502	ST9	ST12	ST10	X					
6	1261	1875	ST41	ST34	ST22	X					
7	1846	431	ST7	ST5	ST47	X					
8	1106	1899	ST12	ST3	ST28	X					
9	1206	1614	ST22	Unknown	ST45	X					
10	1208	1638	ST47	ST45	ST40	X					
11	18	317	ST24	ST39	ST37	X					
12	2153	2691	ST39	ST10	Unknown	X					
13	ST35	1509	ST28	ST15	Unknown	X					
14	1529	1821	ST7	Unknown	ST17	X					
15	1510	1930	ST15	ST17	ST13	X					
16	1507	1875	ST41	ST20	ST8	X					

Begin and End are the breakpoint settings. ‘Recombinant’ is the putative recombinant which has sequence closely related to major parent and minor parent. ‘Minor parent’ is a ST that has sequence related to that from which sequences in the proposed recombinant region may have been derived. ‘Major parent’ is a ST that has sequence closely related to that from which the greater part of daughter’s sequence (recombinant) may have been derived. Only one example of each parent and recombinant ST is shown for each event. Bold numbers are breakpoint at or near gene borders.

P-value of each tests are indicated as: $P < 0.05$ and $P > 0.05$. Not Significant. (GECO = GeneConv; BTSC = Bootscan; MACH = MaxChi squared; Chim = Chimaera; SISC = SiScan; 3Seq = 3Seq).

doi:10.1371/journal.pntd.0000752.t004

Discussion

Here we describe a new MLST scheme that was developed for *O. tsutsugamushi* and discuss evidence concerning the rates of recombination and mixed infection in the human host. Shotgun cloning and sequencing of a Thai *O. tsutsugamushi* isolate (UT 76 strain) greatly facilitated gene choice and the design of primers.

Table 4. The recombination events found in this population study using 6 recombination tests.

Event	Begin	End	Recombinant	Minor Parent	Major Parent	GECO	BTSC	MACH	CHIM	SISC	3Seq
1	385	2272	ST16	ST11	ST13	X					
2	385	2272	ST14	ST4	Unknown	X					
3	18	1608	ST18	ST3	ST34	X					
4	1497	2168	ST38	Unknown	ST35	X					
5	1136	1502	ST9	ST12	ST10	X					
6	1261	1875	ST41	ST34	ST22	X					
7	1846	431	ST7	ST5	ST47	X					
8	1106	1899	ST12	ST3	ST28	X					
9	1206	1614	ST22	Unknown	ST45	X					
10	1208	1638	ST47	ST45	ST40	X					
11	18	317	ST24	ST39	ST37	X					
12	2153	2691	ST39	ST10	Unknown	X					
13	ST35	1509	ST28	ST15	Unknown	X					
14	1529	1821	ST7	Unknown	ST17	X					
15	1510	1930	ST15	ST17	ST13	X					
16	1507	1875	ST41	ST20	ST8	X					

Begin and End are the breakpoint settings. ‘Recombinant’ is the putative recombinant which has sequence closely related to major parent and minor parent. ‘Minor parent’ is a ST that has sequence related to that from which sequences in the proposed recombinant region may have been derived. ‘Major parent’ is a ST that has sequence closely related to that from which the greater part of daughter’s sequence (recombinant) may have been derived. Only one example of each parent and recombinant ST is shown for each event. Bold numbers are breakpoint at or near gene borders.

P-value of each tests are indicated as: $P < 0.05$ and $P > 0.05$. Not Significant. (GECO = GeneConv; BTSC = Bootscan; MACH = MaxChi squared; Chim = Chimaera; SISC = SiScan; 3Seq = 3Seq).

doi:10.1371/journal.pntd.0000752.t004

Figure 2. Mosaic structure in the 2 recombination events identified using the RDP suite of programs. The triple alignment of concatenated sequence of 3 STs (two parental STs and a putative recombinant) in the order gpsA-mdh-nrdB-nuoF-ppdK-sucB-sucD. Only variable sites within the concatenated alignment are shown. Allele borders are shown as vertical lines. Recombinant regions are shown as white on black. The vertical numbers on each variable site refer to position on sequence. The dot (.) represents the same nucleotide as shown in the first line sequence.

doi:10.1371/journal.pntd.0000752.g002
and the genes have been confirmed to be ubiquitous within the *O. tsutsugamushi* population and are likely to be predominantly under neutral selection. We therefore argue that the MLST genes proposed here fulfill all the criteria suggested for large-scale typing [7] and form a representative sample of the core *O. tsutsugamushi* genome.

We noted a large number of STs and high allelic diversity at all loci within the 89 *O. tsutsugamushi* strains characterized by MLST. The population of *O. tsutsugamushi* is thus very diverse (Simpson’s index 0.95), with a high number of STs per strain (49 STs in 89 strains, 0.55 STs per strain). Estimation of the relative contributions of recombination and mutation to the emergence of variant alleles provides insight into the way a bacterial population is diversifying. This disease-causing *O. tsutsugamushi* population showed high r/m ratios at both the allelic (10:1) and nucleotide level (60:1), suggesting that the diversification of natural populations of *O. tsutsugamushi* is predominantly characterized by recombination rather than mutation and is comparable with

Figure 3. The phylogenetic analysis of 89 *O. tsutsugamushi* strains. A neighbour-joining tree was constructed on concatenated sequences of 87 strains from this study and 2 in silico strains obtained from GenBank. The circles indicate STs within each clonal complex (CC). doi:10.1371/journal.pntd.0000752.g003
other human pathogens known to recombine freely: Neisseria meningitidis (3.6:1 and 100:1); Streptococcus pneumoniae (8.9:1 and 61:1) and Helicobacter pylori (6.7:1 and 76:1). Our estimated r/m ratio does not take account of the patient population who were putatively infected by more than one strain of O. tsutsugamushi. It is not possible to resolve the STs in these cases but we have no reason to think that inclusion of these data would lead to a reduction in this ratio.

The genome sequence of O. tsutsugamushi shows characteristics that are consistent with high rates of recombination [3,23]. Sixty percent of functional genes have been reported to be involved in replication, recombination and repair processes [24]. In addition, the Boryong sequence strain has a massive proliferation of mobile elements and repeat sequences. Horizontal gene transfer probably occurs more readily due to the high number of mobile elements. The constant shuffling of DNA may in turn have ecological implications, such as facilitating host-adaptation.

Comparison of MLST to a single locus typing method (based on the gene for the immunodominant surface expressed 56-kDa protein) showed low congruence between these two methods. Simpson’s index, which is used to assess the discriminative ability of typing methods, was higher for MLST (0.95) than for the single locus typing method (0.48). However, the number of isolates used in this assessment was low (n = 22), and further investigation is needed to accurately assess the relative abilities of the two methods. In general, typing that relies on antigenic gene variation, which is

Strains	gpsA	mdh	nrdB	nuoF	ppdK	sucB	sucD	STs	Putative antigenic type¹	% identity²
UT076	1	1	1	1	1	1	1	1	Karp	93.1
UT167	1	1	1	1	3	1	2	1	Karp	93.2
UT316	1	1	1	1	1	3	1	2	Karp	93.2
UT332	1	1	1	1	3	1	2	1	Karp	93.2
UT150	2	2	1	2	2	2	4	2	Karp	93.2
UT169	2	2	1	2	2	3	5	2	Karp	95.5
FPW2031	2	4	3	4	4	1	5	6	Karp	94.7
UT213	2	4	3	4	4	1	5	6	Karp	95.3
UT221	2	4	3	4	4	1	5	6	Karp	95.4
UT219	2	4	3	4	4	1	5	6	Karp	95.5
UT395	2	4	3	4	4	2	5	7	Karp	95.4
UT176	3	3	2	3	3	4	4	10	Karp	94.6
UT177	3	3	2	3	3	4	4	10	Karp	94.4
UT336	4	2	1	2	2	2	13	Karp	96.1	
UT418	6	6	5	5	6	2	2	19	Karp	93.6
UT144	11	9	10	10	7	7	10	29	Gilliam	91.4
UT196	11	9	10	10	7	7	10	29	Gilliam	91.4
UT125	11	12	10	10	7	7	10	31	Gilliam	91.4
UT329	12	10	9	11	7	3	11	34	Gilliam	91.8
FPW1038	15	13	13	16	15	13	13	40	TA716	95.9
FPW2016	16	1	14	17	7	14	14	41	Gilliam	88.9
FPW2049	17	1	15	18	7	4	15	42	Gilliam	89.8

¹Typing data based on the entire 56-kDa gene sequence, published previously in [17].
²Type based on % identity to reference strains.

Table 5. Comparison of MLST data and putative antigenic type for 22 strains demonstrates that individual antigenic types contain numerous STs.

Figure 4. The restriction enzyme analysis on a predicted multiple infection O. tsutsugamushi strain. The DNA pattern on O. tsutsugamushi strain no. 37 undigested PCR product (1) and products after digestion with Dde I enzyme (2). M represents a 100 bp-DNA ladder marker.

doi:10.1371/journal.pntd.0000752.g004

doi:10.1371/journal.pntd.0000752.t005
subject to diversifying selection from the immune response, is less able to reveal the underlying population genetic structure, although such approaches may be useful for characterising local outbreaks.

The use of DNA extracted from patient blood enabled us to detect the presence of multiple infecting genotypes in a single patient sample. The finding that approximately 25% of patients had multiple MLST genotypes in their blood suggests that either the patient had been bitten by multiple mites harboring different strains, or that several strains of *O. tsutsugamushi* coexist in single mites. This second hypothesis is supported by the detection of multiple antigenic strains of *O. tsutsugamushi* in both naturally infected and laboratory-reared chigger mites (*Leptotrombidium spp.*) [25]. This implies that different strains of *O. tsutsugamushi* may commonly coexist in the same place at the same time, providing an opportunity for genetic exchange to occur and variation to arise. Recombination between different strains of *O. tsutsugamushi* could either occur in the mite, or in the rodent reservoir which may become infected on multiple, independent occasions. Further studies are now needed to investigate the molecular epidemiology of *O. tsutsugamushi* harbour by mites and rodents.

Supporting Information

Table S1 Strain details and MLST data for 89 *O. tsutsugamushi* strains included in this study.

Found at: doi:10.1371/journal.pntd.0000752.s001 (0.14 MB DOC)

Acknowledgments

We thank our colleagues at Udon Thani Hospital and Mahidol-Oxford Tropical Medicine Research Unit (MORU) for their support, and Dr. Stephen Graves and Dr. John Stenos, Australian Rickettsial Reference Laboratory, Geelong, Australia for providing *O. tsutsugamushi* reference strains. We would like to thank the Sanger Institute’s Pathogen Production Group for shotgun sequencing, and the Core Informatics Group for support.
Author Contributions
Conceived and designed the experiments: PS SJP NPD. Performed the experiments: PS WC VW SDB MTGH SDB. Analyzed the data: PS SJP MTGH SDB EJF NPD. Contributed reagents/materials/analysis tools: PS SJP WC VW SDB MTGH SDB EJF. Wrote the paper: PS SJP EJF NPD.

References
1. Rosenberg R (1997) Drug-resistant scrub typhus: Paradigm and paradox. Parasitol Today 13: 131–132.
2. Kawamura A (1995) Tsutsugamushi Disease-An Overview. In: Kawamura A, Tanaka H, Tamura A, eds. Tsutsugamushi Disease. Tokyo: University of Tokyo Press. 362 p.
3. Cho NH, Kim HR, Lee JH, Kim SY, Kim J, et al. (2007) The Orientia tsutsugamushi genome reveals massive proliferation of conjugative type IV secretion system and host-cell interaction genes. Proc Natl Acad Sci U S A 104: 7891–7896.
4. Baldo L, Bordenstein S, Wernegreen JJ, Werren JH (2006) Widespread recombination throughout Wolbachia genomes. Mol Biol Evol 23: 437–449.
5. Simpson EH (1949) Measurement of Diversity. Nature 163: 688
6. Martin DP, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21: 260–262.
7. Blacksell SD, Laksameetanasan R, Kalambaheti T, Aukkanit N, Paris DH, et al. (2008) Genetic typing of the 36-kDa type-specific antigen gene of contemporary Orientia tsutsugamushi isolates causing human scrub typhus at two sites in north-eastern and western Thailand. FEBS Immunol Med Microbiol 52: 335–342.
8. Laksameetanasan R, Blacksell SD, Kalambaheti T, Wuthiekanun V, Chierakul W, et al. (2007) Patient and sample-related factors that effect the success of in vitro isolation of Orientia tsutsugamushi. Southeast Asian Trop Med Public Health 38: 91–96.
9. Francisco AP, Bagalho M, Ramirez M, Carrojo JA (2009) Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinformatics 10: 152.
10. Spratt BG, Hanage WP, Feil EJ (2001) The relative contributions of recombination and point mutation to the diversification of bacterial clones. Curr Opin Microbiol 4: 602–606.
11. Nakayama K, Yamashita A, Kurokawa K, Morimoto T, Ogawa M, et al. (2008) The Whole-genome Sequencing of the Obligate Intracellular Bacterium Orientia tsutsugamushi Revealed Massive Gene Amplification During Reductive Genome Evolution. DNA Res.
12. Fuxelius HH, Darby A, Min CK, Cho NH, Andersson SG (2007) The genomic and metabolic diversity of Rickettsia. Res Microbiol 158: 745–753.
13. Grundmann H, Horii S, Tanner G (2001) Determining Confidence Intervals When Measuring Genetic Diversity and the Discriminatory Abilities of Typing Methods for Microorganisms. J Clin Microbiol 39: 4190–4192.
14. Simpson EH (1949) Measurement of Diversity. Nature 163: 688.
15. Feil EJ, Maiden MC, Achman M, Spratt BG (1999) The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. Mol Biol Evol 16: 1496–1502.