A Pathway to Earth-like Worlds: Overcoming Astrophysical Noise due to Convection

Dr. Heather Cegla

Dr. Chris Watson, Dr. Sergiy Shelyag, Prof. Mihalis Mathioudakis
A Pathway to Earth-like Worlds:
Astrophysical Noise
Astrophysical Noise

- Star spots, Plages
Astrophysical Noise

- Star spots, Plages
- Stellar Oscillations
Astrophysical Noise

- Star spots, Plages
- Stellar Oscillations
- Granulation
Astrophysical Noise

- Star spots, Plages
- Stellar Oscillations
- Granulation
Astrophysical Noise

- Star spots, Plages
- Stellar Oscillations
- Granulation
- Variable Gravitational Redshift

Stellar jitter from variable gravitational redshift: implications for radial velocity confirmation of habitable exoplanets

H. M. Cegla,1,2 C. A. Watson,1* T. R. Marsh,3 S. Shelyag,1 V. Moulds,1 S. Littlefair,4 M. Mathioudakis,1 D. Pollacco1 and X. Bonfils5
Astrophysical Noise

- Star spots, Plages
- Stellar Oscillations
- Granulation
- Variable Gravitational Redshift
An Earth-

Current Removal Method

Average out
the noise

RADIAL VELOCITY DETECTION OF EARTH-MASS
PLANETS IN THE PRESENCE OF ACTIVITY NOISE: THE
CASE OF α CENTAURI Bb

Xavier Dumusque
François

Artie P. Hatzes, Johannes Sahlmann, Willy Benz, Séphane Udry

Dumusque et al., 2011, A&A, 525, 140
Our Removal Method
Our Removal Method
Parameterisation

- Separate based on:
 - Continuum Intensity
 - Magnetic Field

- Four Components
 - Granules
 - Non-Magnetic Intergranular Lanes
 - Magnetic Intergranular Lanes
 - MBPs
Four Average Granulation Components (0°)

Wavelength (Angstroms)

Flux

- Granules
- Non-Magnetic Lanes
- Magnetic Lanes
- MBPs
200 G Reconstruction

Best (0°)

Wavelength (Angstroms)

Flux

Original

Reconstruct

Avg Rel Err: 0.00048

0.9975

0.9988

1.0000

Worst (0°)

Wavelength (Angstroms)

Avg Rel Err: 0.022

1.0113

1.0454

1.0794
Recovered Granulation RVs from Parameterization

Residuals
Velocities Across the Disc

![Graph showing velocities across the disc with inclination on the x-axis and velocity on the y-axis. The graph includes data points for Original, Reconstructed, and Oscillation.](link)
Generating New Profiles
Analysing the Profiles

![Graph showing wavelength vs. normalised flux with labeled points V_t, V_b, V_1, V_2, V_3, and A_b.]}
Analysing the Profiles

Normalised Flux vs. Velocity (km s$^{-1}$)

\[\delta F_r(i) \delta RV(i) \]

Normalised Flux

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Velocity (km s$^{-1}$)

-10 -5 0 5 10
Initial Results
Initial Results
Initial Results

[Graph showing correlation between velocity and area under profile]
Initial Results

Diagnostic	V_σ (cm s$^{-1}$)	Fractional Reduction (%)	Pearson’s R
–	20.4	–	–
BIS	37.8	-85	-0.48
C	13.3	35	-0.84
V_b	15.5	24	0.80
A_b	16.2	21	-0.78
bi-Gauss	46.1	-126	-0.40
V_{asy}	9.0	56	0.91
FWHM	77.0	-277	0.26
Line Depth	13.0	36	-0.84
EW	17.4	15	-0.76
Brightness	10.5	49	-0.89
Next Steps...

- Continue to make observations more realistic:
 - Instrumental profile, photon noise, finite exposures, additional noise sources, various magnetic fields, injecting planets
- Test observationally
 - Solar data, highest RV precision targets
- Expand to a suite of stellar lines with varying:
 - Formation heights, absorption strengths, excitation and ionisation potentials
- Expand to other spectral types