Erratum: “Improving Topic Models with Latent Feature Word Representations”

Dat Quoc Nguyen, Richard Billingsley, Lan Du and Mark Johnson

Abstract

Change in clustering and classification results due to the DMM and LF-DMM bugs.

4.3 Document clustering evaluation

FROM (in the original published article): For example with 40 topics on the TMNtitle dataset, the DMM achieves about 6% higher Purity and NMI scores than LDA.

TO: For example with 80 topics on the TMNtitle dataset, the DMM achieves about 7% higher Purity and NMI scores than LDA.

FROM (in the original published article): on the short text TMN and TMNtitle datasets we obtain 3.6% and 3.0% higher Purity at T = 80.

TO: on the short text TMN and TMNtitle datasets we obtain 6.1% and 2.5% higher Purity at T = 80.

4.4 Document classification evaluation

FROM (in the original published article): In addition, our w2v-DMM model achieves 3.6% and 3.4% higher F1 score than the DMM model on short TMN and TMNtitle datasets with T = 80, respectively.

TO: In addition, our w2v-DMM model achieves 5.4% and 2.9% higher F1 score than the DMM model on short TMN and TMNtitle datasets with T = 80, respectively.

(from a part of Table 10 in the original published article): F1 scores for TMN and TMNtitle datasets.

Data	Method	Method	λ = 0.6		
	T=7	T=20	T=40	T=80	
TMN	DMM	0.605±0.023	0.724±0.016	0.763±0.008	0.741±0.005
	w2v-DMM	0.619±0.033	0.744±0.009	0.759±0.005	0.777±0.005
	glove-DMM	0.624±0.025	0.757±0.009	0.761±0.005	0.774±0.010
Improve		0.019	0.003	0.023	0.036
TMNtitle	DMM	0.570±0.022	0.650±0.011	0.654±0.008	0.646±0.008
	w2v-DMM	0.562±0.022	0.670±0.012	0.677±0.006	0.680±0.003
	glove-DMM	0.592±0.017	0.674±0.016	0.683±0.006	0.679±0.009
Improve		0.022	0.024	0.029	0.034

TO: F1 scores for TMN and TMNtitle datasets.

Data	Method	Method	λ = 0.6		
	T=7	T=20	T=40	T=80	
TMN	DMM	0.607±0.040	0.694±0.026	0.712±0.014	0.721±0.008
	w2v-DMM	0.607±0.019	0.736±0.025	0.760±0.011	0.771±0.005
	glove-DMM	0.621±0.042	0.759±0.011	0.759±0.006	0.775±0.006
Improve		0.014	0.006	0.048	0.054
TMNtitle	DMM	0.500±0.021	0.600±0.015	0.630±0.016	0.652±0.005
	w2v-DMM	0.528±0.028	0.663±0.008	0.682±0.006	0.681±0.006
	glove-DMM	0.565±0.027	0.688±0.001	0.684±0.000	0.679±0.004
Improve		0.065	0.008	0.054	0.029

(from a part of Table 11 in the original published article): F1 scores for Twitter dataset.

Data	Method	Method	λ = 0.6		
	T=4	T=20	T=40	T=80	
Twitter	DMM	0.505±0.023	0.614±0.012	0.634±0.013	0.656±0.011
	w2v-DMM	0.541±0.035	0.636±0.015	0.648±0.012	0.670±0.010
	glove-DMM	0.539±0.024	0.638±0.017	0.645±0.012	0.666±0.009
Improve		0.036	0.024	0.014	0.014

TO: F1 scores for Twitter dataset.
FROM (a part of Table 7 in the original published article): Purity and NMI results on the TMN and TMNtitle datasets with the mixture weight $\lambda = 0.6$.

Data	Method	Purity	NMI
TMN	DMM	0.632	0.445
	w2v-DMM	0.639	0.437
	glove-DMM	0.646	0.445
Improve		0.014	0.017
TMNtitle	DMM	0.598	0.353
	w2v-DMM	0.583	0.324
	glove-DMM	0.601	0.354
Improve		0.003	0.001

TO: Purity and NMI results on the TMN and TMNtitle datasets with the mixture weight $\lambda = 0.6$.

Data	Method	Purity	NMI
TMN	DMM	0.637	0.445
	w2v-DMM	0.623	0.426
	glove-DMM	0.641	0.440
Improve		0.004	0.019
TMNtitle	DMM	0.558	0.339
	w2v-DMM	0.552	0.329
	glove-DMM	0.586	0.343
Improve		0.028	0.005

FROM (a part of Table 8 in the original published article): Purity and NMI results on the Twitter dataset with the mixture weight $\lambda = 0.6$.

Data	Method	Purity	NMI
Twitter	DMM	0.552	0.201
	w2v-DMM	0.581	0.232
	glove-DMM	0.580	0.230
Improve		0.029	0.038

TO: Purity and NMI results on the Twitter dataset with the mixture weight $\lambda = 0.6$.

Data	Method	Purity	NMI
Twitter	DMM	0.523	0.222
	w2v-DMM	0.589	0.243
	glove-DMM	0.583	0.250
Improve		0.066	0.028