Adsorption of \([\text{AuCl}_4]^-\) on Iron Sand Magnetic Material Coated with Aminobenzimidazol Modified Silica

Abraham Laurens Rettob\(^1\), Yenni Pintauli Pasaribu\(^3\), Yorinda Buyang\(^4\)
Chemical Education Department
Universitas Musamus
Merauke, Indonesia
\(^1\)abraham@unmus.ac.id, \(^3\)pasaribu@unmus.ac.id, \(^4\)buyang@unmus.ac.id

Nuryono\(^2\)
Chemistry Department
Universitas Gadjah Mada
Yogyakarta, Indonesia
\(^2\)nuryono_mipa@ugm.ac.id

Richard Samuel Waremwa\(^5\)
Physics Education Department
Universitas Musamus
Merauke, Indonesia
\(^5\)rickywaremra@unmus.ac.id

Abstract—Adsorption of \([\text{AuCl}_4]^-\) using aminobenzimidazole modified silica coated on iron sand magnetic material (MMSA) was carried out. MMSA was synthesized via sol gel process. MMSA was characterized by Fourier Transform Infrared (FT-IR) spectrophotometer and X-ray diffraction technique. The ability of MMSA to adsorb \([\text{AuCl}_4]^-\) was tested in a batch system as a function of pH, contact time, and adsorbate concentration. The adsorption kinetics was evaluated with pseudo first-order and pseudo second-order models, while adsorption isotherms was studied based on the Langmuir and Freundlich models. Characterization results indicated that MMSA was successfully synthesized. Adsorption kinetics of \([\text{AuCl}_4]^-\) on BMSA followed pseudo second-order model with a rate constant (k) of 1.54 x 10^{-3} g mg^{-1} min^{-1}. MMSA shows a linear plot of the Langmuir isotherm model with adsorption capacity of 16.90 mg g^{-1}. The results obtained indicate that MMSA could used to adsorb \([\text{AuCl}_4]^-\) or other metal ions in environmental with high acidity.

Keywords— \([\text{AuCl}_4]^-\); silica; iron sand; aminobenzimidazole

I. INTRODUCTION

Gold is a metal with high economic value and has been widely applied in various fields such as jewelry, electronics industry, and even health. Increased of gold demands encourage to develop effective methods of gold isolation. Several methods of metal isolation from solutions include adsorption [1-3], solvent extraction, and ion exchange are more commonly used than the pyrometallurgical method [4]. Among these methods, adsorption is promising to be developed due to high efficiency, even at low concentrations [4, 5].

Adsorption in batch systems is more effective because of the longer interaction time of adsorbate and adsorbent. However, separation of the adsorbent from the solution by centrifugation or filtration is considered to be less effective [6]. Therefore, the application of magnetic material in the adsorbent can offer easier adsorbent separation from the solution using an external magnetic field [7]. An alternative source of magnetic material that is rarely used is iron sand. Magnetic material is very easily oxidized by air and also dissolves in acidic conditions. So, use of silica as coating magnetic material has been widely used to resolve these weaknesses [8, 9]. Based on other researchers’ reports, magnetit (Fe\(_3\)O\(_4\)) coated with silica by formation of Fe-O-Si bonds [10, 11]. In addition, there are siloxane groups (Si-O-Si) and silanol (Si-OH) on surface of silica, so it’s possible to be functionalized by organic groups such as mercapto (-SH) and amino (-NH\(_2\)) [6].

In this study, we report the aminobenzimidazole group modified silica coated on iron sand magnetic material was synthesized via sol gel method and its application for adsorption of \([\text{AuCl}_4]^-\) ions from the solution.

II. EXPERIMENT

A. Materials and instrumentation

Magnetic material (MM) was obtained from iron sand of Bugel Coast Kulon Progo, Yogyakarta, Indonesia. Solution reagents of Hydrogen Fluoride (HF) 10\%, sodium silicate (Na\(_2\)SiO\(_3\)) 11.06 M (26% SiO\(_2\)), 2-aminobenzimidazol (AB1), 3 - chloropropyl - trimethoxysilane (CPTS), N,N Dimethylformamide (DMF), hydrochloric acid (HCl) 37\%, triethyamine, sodium hydroxide (NaOH), and HAuCl\(_4\) were purchased from Merck without special treatment.

The equipment were used in magnetic material separation, synthesis, and adsorption: external magnet (Neodymium, grade N35, size 40 mm x 30 mm x 10 mm), oven (Memmert), grinder, pH-meter, shaker, and glass. For characterization of adsorbent...
were used X-Ray Diffractometer (Rigaku Multiflex) and Fourier Transform Infrared spectrophotometer (Shimadzu FTIR – PRESTIGE 21). Analysis of [AuCl₄]⁻ ion used flame atomic absorption spectrophotometer (FAAS, Analytic Jena contraA 300).

B. Procedures

1) Synthesis and characterization of MMSA

Synthesis of MMSA was performed using two separate containers. First container (a) was added by 0.5 g of MM, 1 mL of HCl 1 M, and 1 ml of Na₂SiO₃ and stirred. In second container (b) was added by 1.277 g of ABL, 6 mL of DMF, 1.8 mL of CPTS, and 1 mL of triethylamine were added. The mixture in container (b) was poured into (a) then stirred while dropped wise of 1 M HCl until the gelling formed (reach pH 7). The obtained gel of MMSA was stored in a closed container for one night, after that washed with distilled water then dried at 60 °C for 24 h. Adsorbents of MMSA were characterized by FT-IR and XRD instruments.

2) Adsorption of [AuCl₄]⁻

Adsorption of [AuCl₄]⁻ was performed by added 10 mg of MMSA to 10 mL of [AuCl₄]⁻ solution (50 mg L⁻¹) with a variation of pH 1.0 - 6.0. The mixture was shaken for 60 minutes and then the filtrate was separated by an external magnet. Filtrate was analyzed by FAAS. The amount of [AuCl₄]⁻ adsorbed was calculated using the equation:

\[Q = \frac{(C_o - C_e)V}{W} \]

Where Q is state the amount of adsorbed metal ions (mg g⁻¹), C₀ and Cₑ are the initial and final concentrations of metal ion (mg L⁻¹), respectively; V is volume of metal ion (L), and W is weight of the absorbent (g).

The analogue step was carried out for various of contact time (30, 60, 90, 120, 150, 180 minutes) at optimum pH. The resulted data was used to calculated parameters of adsorption kinetics. The same step also was carried out for various concentrations of [AuCl₄]⁻ in range by 5 - 100 mg L⁻¹ at optimum pH and contact time. The obtained data was used to calculated the parameters of adsorption isotherms.

III. RESULT AND DISCUSSION

A. Characterization of MMSA

Characterization of FT-IR was used to verify the presence of silica coated on magnetic material and attached of 2-aminobenzimidazole to silica surface. FT-IR spectra of magnetic material (MM), MM-silica (MMS), MM-silica-CPTS (BMC), and BMSA are display in Fig. 1. The bands on MM FT-IR spectra at 1635 and 3488 cm⁻¹ are attributed to -OH vibrations of Si-OH. Absorption band at 570 cm⁻¹ is identified as Fe-O stretching vibration from Fe₂O₃. The evidence of silica coated on MM surface is identified by the presence of Si-O-Si bending vibration at 1087 cm⁻¹ with high intensity compare to spectra of MM [10]. Functionalization of aminobenzimidazole groups to silica are verified by C=C stretching vibration of aromatic benzene at 1481 cm⁻¹ and C=C stretching vibration of imidazole ring at 1558 cm⁻¹ [9,12].

The diffraction peaks of silica generally appear at 2θ = 17.8 °; 19.1 °; and 20.6 ° [13]. The presence of a peak that extends at 2θ = 20 ° - 23 ° relates to existence of silica as show at XRD pattern of MMSA (Fig 2). This result is indicates magnetic material has coated with silica. In addition, structure of silica at magnetic material surface have an amorphous structure [14].

B. Adsorption of [AuCl₄]⁻ on MMSA

1) Effect of acidity (pH)

The effect of pH to [AuCl₄]⁻ adsorbed (qₑ) on MMSA is show in Fig 3. The highest amount of [AuCl₄]⁻ adsorbed is at pH 1 of 15.75 mg g⁻¹ and this amount decreases at pH 2-6. This phenomenon was different from other results of research that has been published and it has not yet understood, probably due to differences of active sites amount on adsorbents that interact...
with [AuCl₄]⁻. Protonation of all amine (-NH₂) is possible high at pH 1 because the abundant of H⁺ very a lot, so interaction of MMSA - [AuCl₄]⁻ occurs via ion exchange. Unlike pH 1, at pH 2-6 not all -NH₂ are protonated, so amount of active sites decreases and interaction of MMSA - [AuCl₄]⁻ occurs via complex formation because nitrogen (N) atom will act as Lewis base [15].

\[\text{Acidity (pH) effect to [AuCl₄]⁻ adsorption} \]

\[\text{Effect of contact time of [AuCl₄]⁻ adsorption by MMSA} \]

TABLE I. ADSORPTION KINETICS PARAMETER OF [AuCl₄]⁻ ON MMSA

Model of First-order	R²	kₙ (minutes⁻¹)	qₑ (mg g⁻¹)
Pseudo first-order	0.6503	1.38 x 10⁻²	1.79

Model of Second-order	R²	kₑ (g mg⁻¹ minutes⁻¹)	qₑ (mg g⁻¹)
Pseudo second-order	0.9884	1.16 x 10⁻²	9.50

2) Adsorption kinetics

Effect of contact time for [AuCl₄]⁻ adsorption by MMSA is obtained by reacting a number of adsorbents into the HAuCl₄ solution with various time presented in Fig. 4. Adsorption of [AuCl₄]⁻ on MMSA increased until maximum adsorption is reach in 60 minutes of 9.91 mg g⁻¹ (qₑperimental). After 60 minutes, adsorption of [AuCl₄]⁻ tends to decrease and then relative is constant of 9.71 mg g⁻¹ because the surface of MMSA was saturated by [AuCl₄]⁻.

Determination of adsorption rate constant (k) was studied based on the pseudo first-order and pseudo second-order kinetics models. The kinetics parameter for adsorption of [AuCl₄]⁻ on MMSA show in Table 1. Those value in Table 1 indicated that adsorption of [AuCl₄]⁻ by MMSA follows the models of pseudo second-order because it has linearity coefficient (R²) is higher than pseudo first-order. In addition, the calculation of qₑ (9.50 mg g⁻¹) approaches experimental adsorption capacity value of 9.91 mg g⁻¹.

\[\text{Relation curve of [AuCl₄]⁻ adsorption on MMSA (qₑ) to equilibrium concentration (Cₑ)} \]

TABLE II. ADSORPTION ISOTHERM PARAMETER OF [AuCl₄]⁻ ON MMSA

Model of Langmuir	qₑ (μmol g⁻¹)	Kₑ (mg g⁻¹ L⁻¹)
R² 0.9968	5.0 x 10⁻²	16.90
Kₑ 0.37		

Model of Freundlich	R²	Kₑ (mg g⁻¹)
R² 0.5178	5.97	3.92

3) Adsorption isotherm

Adsorption isotherms is needed to calculate capacity and constants of metal adsorption on adsorbent. The Langmuir and Freundlich models are most commonly used to interpret adsorption data. Langmuir's adsorption isotherm assumes that process of adsorbate adsorption occurs at the monolayer containing active site of adsorbent. The Freundlich adsorption isotherm model states that adsorption occurs in heterogeneous layers of adsorbents due to differences in active sites or different adsorbate species. The effect of the initial concentration to [AuCl₄]⁻ adsorption by MMSA is presented in Fig 5. At low concentrations of [AuCl₄]⁻ (<10 mg L⁻¹), the active site on adsorbent surface is very large, allowing the [AuCl₄]⁻ ions in solution to adsorbed properly by MMSA. At high concentration of [AuCl₄]⁻ (> 10 mg L⁻¹), less active sites of adsorbent surface due to saturation by [AuCl₄]⁻, so that equilibrium is achieved. Table 2 shows the adsorption isotherm parameters of Langmuir and Freundlich. The linearity coefficient (R²) on Langmuir isotherm (0.9968) is higher than Freundlich (0.5178) indicates that the adsorption of [AuCl₄]⁻ on MMSA fits to the model of Langmuir adsorption isotherm. In addition, the calculation of the adsorption capacity (qₑ) of [AuCl₄]⁻ on MMSA of 16.90 mgg⁻¹.
IV. CONCLUSION

In this study, the coating of magnetic material from iron sand with aminobenzimidazole modified silica (MMSA) via sol gel process was successfully carried out. It was observed that adsorption of $[\text{AuCl}_4]$ on MMSA was maximum at pH 1. The results of kinetics parameters demonstrated that adsorption follow pseudo second-order with the adsorption constant (k) of 1.16×10^{-2} g mg$^{-1}$ min$^{-1}$. Based on Langmuir isotherm adsorption model, the adsorption capacity of $[\text{AuCl}_4]$ on MMSA of is 16.90 mg of adsorbate/g of adsorbent.

ACKNOWLEDGMENT

We thank Musamus University for facilities and supports. This project and publication were supported by DIPA Musamus University.

REFERENCES

[1] C. Chen, T. Cheng, M. Zhang, and M. Zhou, “Competitive Adsorption Properties of Heavy Metals Lead and Nickel by Synthetic Zeolite,” vol. 94, no. Apet, pp. 2233–2240, 2017.

[2] S. Liu, S. Bin, J. Wen, and S. Jiang, “Study on the Adsorption Properties of L-Alanine Modified Chitosan for Cesium Ion in Aqueous Solution,” AER-Advances Eng. Res., vol. 22, pp. 334–337, 2015.

[3] T.A.N. Gang, X.U.E. Yongjie, and C.A.I. Jun, “Isotherm study on adsorption removal of Pb (II) by MCM-41 zeolite synthesized from biomass ash,” Atl. Press, no. Icset 2014, pp. 91–96, 2015.

[4] N. Nuryono, E. Muliati, B. Rusdiasro, S.C.W. Sakti, and S. Tanaka, “Adsorption of Au (III), Cu (II) and Ni (II) on Magnetite Coated with Mercapto Groups Modified Rice Hull Ash Silica,” J. Ion Exch., vol. 25, no. 4, pp. 114–121, 2014.

[5] A. Kraus, K. Jainae, F. Unob, and N. Sukpirom, “Synthesis of MPTS-modified cobalt ferrite nanoparticles and their adsorption properties in relation to Au(III),” J. Colloid Interface Sci., vol. 338, no. 2, pp. 359–365, 2009.

[6] P. Jal, S. Patel, and B. Mishra, “Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions,” Talanta, vol. 62, no. 5, pp. 1005–1028, 2004.

[7] W. Yantasee, C.L. Warner, T. Sangvanich, R.S. Addleman, T.G. Carter, R.J. Wjacck, G.E. Fryxell, C. Timchak, and M.G. Warner, “Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles,” Environ. Sci. Technol., vol. 41, no. 14, pp. 5114–5119, 2007.

[8] P.I. Girginova, A.L.D. da-Silva, C.B. Lopes, P. Figueira, M. Otero, V.S. Amaral, E. Pereira, T. Trindade, “Silica coated magnetite particles for magnetic removal of Hg2+ from water,” J. Colloid Interface Sci., vol. 345, no. 2, pp. 234–240, 2010.

[9] Y. Lin, H. Chen, K. Lin, B. Chen, and C. Chiov, “Application of magnetic particles modified with amino groups to adsorb copper ions in aqueous solution,” J. Environ. Sci., vol. 23, no. 1, pp. 44–50, 2011.

[10] N. Nuryono, N. Rosiati, B. Rusdiasro, S. C. Sakti, and S. Tanaka, “Coating of magnetite with mercapto modified rice hull ash silica in a one-pot process,” Springerplus, vol. 3, no. 1, p. 515, 2014.

[11] D. Yang, J. Hu, and S. Fu, “Controlled Synthesis of Magnetite - Silica Nanocomposites via a Seeded Sol - Gel Approach,” J.Phys.Chem.C, vol. 113, pp. 7646–7651, 2009.

[12] R. Abraham and K.K.M. Yusuff, “Copper(II) complexes of embelin and 2-aminobenzimidazole encapsulated in zeolite Y-potential as catalysts for reduction of dioxygen,” J. Mol. Catal. A Chem., vol. 198, no. 1–2, pp. 175–183, 2003.

[13] P. Dhawade and R. Jagtap, “Comparative Study of Physical and Thermal Properties of Chitosan-Silica Hybrid Coatings Prepared by Sol-Gel Method,” Der Chem. Sin., vol. 3, no. 3, pp. 589–601, 2012.

[14] U. Kalapathy, A. Proctor, and J. Shultz, “An improved method for production of silica from rice hull ash,” Bioreour. Technol., vol. 85, no. 3, pp. 285–289, 2002.

[15] K.F. Lam, C.M. Fong, K.L. Yeung, and G. Mckay, “Selective adsorption of gold from complex mixtures using mesoporous adsorbents,” Chem. Eng. J., vol. 145, no. 2, pp. 185–195, 2008.