MTouch: an automatic fault detection system for desktop FFF 3D printers using a contact sensor

Samuel Aidala1 · Zachary Eichenberger1 · Nicholas Chan1 · Kyle Wilkinson1 · Chinedum Okwudire1

Received: 6 February 2022 / Accepted: 25 April 2022 / Published online: 9 May 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Desktop fused filament fabrication (FFF) 3D printers have been growing in popularity among hobbyist and professional users as a prototyping and low-volume manufacturing tool. One issue these printers face is the inability to determine when a defect has occurred rendering the print unusable. Several techniques have been proposed to detect such defects, but many of these approaches are tailored to one specific fault, use expensive hardware, and/or use machine learning algorithms which can be sensitive to ambient conditions making them unreliable. This paper proposes a novel, low-cost system, named MTouch, to accurately detect millimeter-scale defects that tend to make prints unusable. MTouch uses an actuated contact probe designed with a low-power solenoid, magnet, and hall effect sensor. This sensor is used to check for the presence, or absence, of the printed object at specific locations. The MTouch probe demonstrated 100% accurate readings, which was significantly higher than the 74% achieved using a repurposed commercially available bed leveling touch probe (the BLTouch). Additionally, algorithms were developed to detect common print failures such as layer shifting, bed separation, and filament runout using the MTouch probe. In head-to-head testing against a commercially available print defect detection system (The Spaghetti Detective), the MTouch was able to detect faults 44% faster on average while only increasing the print time by 8.49%. In addition, MTouch was able to detect faults The Spaghetti Detective was unable to identify such as layer shifting and filament runout/jam.

Keywords Fault detection · 3D printer · Error detection · FFF · Contact sensor

1 Introduction
Fused filament fabrication (FFF) 3D printers, relied on by over 80% of 3D printing users [1], work by heating plastic filament and extruding it through a nozzle onto a bed. To manufacture an object, motion systems move the nozzle and bed to build up the desired part layer by layer. Desktop 3D printers, defined as printers that retail for less than $5000, are mostly FFF printers [2]. Their adoption has been growing rapidly among hobbyists and professional users. In 2019, over 700,000 units of desktop 3D printers retailing at an average selling price of $1,196 were sold globally, representing a 19.4% increase over the year 2018 [2]. In more recent years, 3D printing has seen a surge in adoption with 2.2 million 3D printers shipped in 2021 and projections to reach 21.5 million units by 2030 [3].

A hurdle in the further adoption of desktop FFF 3D printers is their failure rate of more than 20% [4]. When a defect develops, the printer will often continue manufacturing an unusable part, wasting time and material, unless manually stopped. To catch issues early, printers are often watched by a user; however, this may not always be possible. Some prints may take overnight to complete, or a user may be busy tending to another task. Similarly, for large collections of printers, often called print farms, used for small scale production, watching numerous printers can become tiring, and an operator may not notice one...
printer with an error among many others. An automated fault detection system eliminates the need for constant supervision when printing, allowing print farm operators to attend to other tasks and personal users to leave printers unsupervised with greater peace of mind.

One issue in the development of automated fault detection systems is the wide variety of faults that can occur. Defects in a print can range from overly rough surface finish but an otherwise geometrically acceptable part, to prints with laterally shifted layers, to collapsed sections of a print resulting in an unusable part. For the purposes of this paper, major print defects are defined as faults which cause millimeter-scale defects resulting in a print being unsuitable for use in its intended application. Examples of major faults which this paper will specifically focus on are bed separation, filament runout/jams, and layer shifting [5]. Some examples of these faults can be seen in Fig. 1. In addition to these defects, another type of defect will be mentioned, spaghetti failure. This fault is considered a secondary fault, as it occurs as the result of another major fault (the primary fault) such as bed separation or partial collapse of the print [6].

Several academic papers have been published on potential in situ fault detection systems for FFF 3D using a variety of sensors [7]. Fault detection system using optical cameras has been an active area of research [8–18, 21]. How these systems work can be divided into two main categories. The first category creates a point cloud representing the partially completed print. This point cloud is then either directly compared to a point cloud generated using the STL file of the desired part [8, 9], or is input into machine learning algorithms to determine when a fault has occurred [11] (some machine learning algorithms also take in the point cloud from the STL file [12]). The second category of fault detection system inputs the image stream from the optical camera directly into a ML algorithm [13, 14] (most commonly a neural network [15–18]).}

One system commercially available for major fault detection which implements this second category is The Spaghetti Detective [19]. This system uses a Raspberry Pi and a web camera aimed at the side of the print at roughly the level of the bed. The camera streams a video feed of the print to either a separate computer set up by the user, executing the open-source project code, or to a server managed by the company overseeing the project and offering the service commercially. This separate machine uses a trained neural network to process the video feed and alerts the users if any faults are detected. The Spaghetti Detective does have some limitations. Accurate fault detection requires consistent lighting and a plain background to prevent false positives [19]. Another limitation is that, while the system can detect spaghetti failures, it is often unable to detect faults which do not result in spaghetti failure such as layer shifting and under-/over-extrusion [20]. Research groups have been able to improve this limitation by training on larger datasets to include under-extrusion and over-extrusion [21], but large geometric defects like layer shifting are still often unable to be detected. The first category of camera-based systems perform better when detecting these geometric defects but still require consistent lighting and a plain background. These systems also require multiple cameras which must be calibrated and precisely positioned [12].

Another active area of interest regarding fault detection is using laser scanners [22–25]. Systems based on these laser scanners operate in a similar manner to those in the first category of optical cameras but use laser scanners to create a point cloud of the partially completed print. Some of these developed laser based scanning fault detection system compare the measured point cloud to one generated from the STL model of the desired part [22–24]. Others compare point clouds with the use of a trained neural network [25]. A benefit these systems have over optical camera-based systems is robustness against environmental factors. Ambient lighting conditions have much less of an effect on laser sensors and do not require

Fig. 1 Examples of major faults including: (a) filament runout/jam, (b) spaghetti failure, and (c) layer shift
a plain background for accurate measurements. These systems are not without their downsides. The laser scanners can be affected by laser shadowing causing some parts of the print to be unmeasurable. Additionally, the cost of the laser scanners used in many of these systems are of considerable price, often costing multiple hundreds of dollars for the scanner and more for the controlling/interfacing hardware necessary to operate them.

In addition to these optical camera and laser scan detection systems, systems have also been designed using accelerometers [26, 27], piezoelectric vibration sensors [28], microscopes [29], borescopes [30], acoustic emission sensor [31, 32], or a combination of sensors to create a digital twin [33]. While these alternatives can offer ranges of benefits from being low cost to robust against environmental factors, these systems only focus on detecting surface roughness, nozzle clogging, and interlayer bonding. Larger-scale geometric defects are likely to be undetected by these systems as they are designed with a different goal. Some printers also come with a filament sensor to detect when the printer’s filament spool has run out. While these sensors can detect when the filament runs out (as the name implies), they cannot determine when the nozzle is clogged or when geometric defects, like layer shifting, occur.

Therefore, there is a gap in the current research for a fault detection system that is low cost, robust against ambient conditions, and able to detect a variety of millimeter-scale geometric defects which often ruin prints completely. In this paper, we present such an automatic fault detection system, called MTouch. The proposed system is based on using an actuated contact sensor to detect the presence or absence of a print at predetermined locations across layers of an object being printed. The effectiveness of MTouch is shown through testing and shown to have advantages over the Spaghetti Detective such as being able to detect layer shifting and filament runout/jam faults. The outline of the rest of this article is as follows: Sects. 2.1–2.3 describe the MTouch system methodology. This includes how faults are detected, sample points are generated, and the development of a sensor to detect the presence or absence of a print at predetermined locations across layers of an object being printed. The effectiveness of MTouch is shown through testing and shown to have advantages over

The International Journal of Advanced Manufacturing Technology (2022) 120:8211–8224

has millimeter-scale geometric defects by determining the present or absence of the print at specific locations and comparing to pre-computed expected results [34]. MTouch consists of two main components: the controlling software and the sensor. A high-level flowchart of the entire MTouch system can be seen in Fig. 2. The system starts by generating sample points and their expected results from a Gcode file and user inputs. Next, the printing process is interrupted after a layer with generated sample points is completed. During the interruption, the sensor is used to determine if the printed object is present or absent at each location. The presence or absence of the print is determined by actuating a contact sensor and recording if contact was made with the print. The results of these measurements are compared to the pre-computed expected result. If all results match their expected outcomes, the print is resumed. If there is a discrepancy, the print is paused, and the user is alerted to a potential fault.

2.2 Control software

The first responsibility of the control software is all the pre-processing work. This includes creating a model of the print and using this model to generate the location of sample points as well as their expected results. The control software is also responsible for handling key events during the printing process, including interrupting the print at the layers to be sampled, moving the extruder of the printer to position the sensor over the sample point, using the sensor to get a measurement, and processing the result. Figure 3 shows a flowchart of these processes handled by the control software.

2 Materials and methods

2.1 Detecting faults

MTouch is an automatic fault detection system which works on the principle of determining if the object being printed

Fig. 2 A flowchart illustrating the MTouch system at a high level
Each process is covered in greater detail in the subsequent subsections below.

2.2.1 Detecting faults

The control software starts by creating a model of the print, used for sample point generation, from the input Gcode file. This model is created by representing a layer as a set of points whose coordinates correspond to the values of the X, Y, and Z components of G0/G1 commands (commands with no E component are ignored as nothing is being printed). To ensure a dense enough set of points which accurately represent a layer, extra points are added to commands with lengths over 0.1 mm to ensure points were no further away than 0.1 mm. The value of 0.1 mm was chosen because it is equal to the X/Y accuracy of the Ender 3 Pro printer being used for validation testing. Additionally, the smallest features the sensor can detect is limited by the size of the probe tip which is significantly larger than 0.1 mm, and therefore any finer resolution could not be detected.

2.2.2 User inputs

After generating a model of the print, the control software takes in some inputs from the user. The first input is the X, Y and Z offsets of the sensor’s probe tip from the extruder nozzle (the Z distance represents the distance the probe tip extends past the extruder at full extension). Figure 4 shows an illustration of a side view of the extruder and sensor probe tip where the X, Y and Z offsets are indicated. This input is used to calculate where to position the extruder so the sensor is over the intended sample point.

In addition to these offsets, a filament retraction value is input so the software knows how far the filament should be retracted to prevent plastic from seeping out of the nozzle during the sampling process. The next input is the layer spacing. This is the interval between layers that are sampled (e.g., for a layer spacing of 5, sample points are generated for every 5th layer). The smaller the layer spacing, the quicker a fault will be detected, but the more time will be taken measuring sample points. Finally, the control software takes in which algorithms to use when generating sample points and the area density of the points to generate with each algorithm. Four algorithms were developed as detailed in the next section. Multiple can be selected and the generated points combined. Point density is used instead of a desired number of points to account for changing cross sectional area of each layer. This saves time by preventing smaller layers from being oversampled with many redundant points.

2.2.3 Sample point generation

Sample points are created by iterating through the layers of the model and generating sample points at the interval
specified by the layer spacing. Special care must be taken with sample points generated for layers with heights less than the Z offset of the probe. This is because, if the probe were to not contact the print, it will, instead, contact the bed of the printer before it reaches full extension and would register as a “contact” result causing a false reading. To resolve this issue, the extruder must be raised until the probe no longer contacts the bed at full extension before a sample is taken.

Figure 5 shows some example sample points generated for layers of a test print. At locations like the shell of a print or an infill wall, the print should be detected. Similarly, at other locations, the print is not expected to be found such as slightly beyond the outer shell of a print or cavities within the print. If a fault were to occur during the printing process, the result of a sample point will not match its expected outcome. For example, if a filament runout fault were to occur, sample points tested after the filament has run out will return a “no print detected” result despite expecting the print to be detected at some locations. When this discrepancy is found, the print can be paused, and the user alerted to the issue.

Sample points for each layer are generated using strategies that are picked and combined by the user. For each layer of interest, the number of sample points generated with each strategy is first calculated by using the area of the convex hull of the layer and point density specified for each specific strategy input by the user. Each sampling strategy is then used to calculate the specified number of sample points before moving to the next layer. One possible strategy is random placement where random points of the layer’s model are selected. Since these points are of the layer itself, the expected result for each one is a “contact” reading.

Beyond the random placement strategy, three advanced sampling strategies were developed to optimize the location of sample points to maximize the chances of detecting faults. The first sampling strategy developed was the inside-outside strategy. This strategy aims to ensure sample points are generated along the outer shell of the print by finding the convex hull of the cross section and generating points within a 0.1 mm threshold. The same number of points are then generated outside this threshold and within the convex hull to ensure the internal parts of the print are also sampled. Figure 6a shows sample points generated using the inside-outside strategy for a test print. By sampling along the convex hull, faults are more likely to be detected. This is due to any fault causing the shell to shift toward the center of the print resulting in a “no print detected” result when the print was expected to be found. Additionally, other faults such as collapsed overhangs and misshapen shells are most likely to be along the convex hull of a print, where other parts of the print cannot provide support.

The second sampling strategy developed was the min–max strategy. This process calculates points at the extremes of the X and Y axes. Figure 6b exhibits sample points output by min–max for a test print. By taking sample points at the extremes of the X and Y axes, faults that allow the print to move relative to the extruder will be reliably detected. An example of such a fault is bed separation. Since the generated sample points are at the extremes along the X and Y axes, at least one of the sample points will no longer be aligned with the print as it slides on the bed after separation. This sampling strategy also ensures that some sample points are spread across the entire layer and do not become concentrated in one area by chance as points are randomly chosen.

Note, the min–max strategy is not able to detect layer shift faults. This is because the layers after the shift and the extruder will both move the same amount. Since there is no net difference, the sample points will still detect the
print where expected. This led to the final sampling strategy developed, the layer shift detection strategy. As its name implies, this strategy is specifically targeted at determining when a layer shift fault has occurred. For this strategy, points are sampled just beyond the outer shell of the print expecting the print to not be detected. Examples of such sample points can be seen in Fig. 6c. When a layer shift fault does occur, the most recently printed layer will be offset from the previous layers, causing some sample points to be shifted over the previous layers resulting in a “print detected” result. Figure 7 illustrates this process.

A point may be raised that a print which has a layer shift at the same time as a transition from a small cross section in the previous layer to a larger cross section in the current layer may not allow the previous smaller layer to be detected. However, such occurrences can only take place in two situations, which are illustrated in Fig. 8. In the first situation, an overhang allows for the sudden change in cross section. In this case, the overhang will require support material to be printed, which will be detected when a sample is taken after a layer shift. The second case shows a print with a gradual change in the cross section between layers. In this case, there is no support material, but the difference in cross sections is so small, a sample point will still detect the previous layer when a millimeter-level layer shift occurs.

2.2.4 Fault detection

Once the sample points have been generated, and the user is satisfied, the print can be started, and the fault detection will be handled automatically during the printing process. As the part is being printed, the control software will interrupt the printing process after a layer with sample points has been finished. The program then iterates through the generated sample point coordinates. For each point, a command to move the extruder of the printer is generated from the sample points coordinates and the X and Y offset values to account for the difference between the nozzle of the extruder and the MTouch sensor. When the sensor is in position, a measurement is taken, and the results are compared to the expected result. If the two values match, the process repeats for the next sample point. If the two values do not match, the print is paused and the user is alerted. Once all sample points are checked and no discrepancies have been detected, the print is resumed.

2.3 Actuated contact sensor

2.3.1 Sensor construction

Having developed a methodology to detect faults, a sensor was needed, capable of detecting the presence or absence of the print at specific locations. An actuated contact sensor was chosen for its low-cost and tolerance of external conditions compared to other methods. The following criteria were developed:

1. Total cost is less than $100
2. Able to be controlled and powered by a Raspberry Pi
3. Average time for one sample is less than 0.5 s
4. Should not mark the print upon contact
5. Greater than 95% accuracy

Criteria 1 and 2 were established to satisfy the original goal of the project to create a low-cost fault detection system. A target price of <$100 was established as this is significantly less than the $1,196 average selling price of desktop 3D printers [2]. A key in making the system low cost is by minimizing the cost of computational hardware by only using a Raspberry Pi to control and power to system. Criteria 3, 4, and 5 were established to ensure the system is minimally intrusive. If the time required to take a sample is
too large, using the fault detection system will cause a large increase in the time required to print an object, outweighing any time savings when a fault is detected. Similarly, if the sensor were to mark the print upon contact, the quality of the print would be diminished making users less likely to use the system. Finally, the sensor must be accurate to minimize false positive and negatives pausing the print when a fault has not occurred.

One commercially available contact sensor (and its derivatives) which meets most of these criteria is the BLTouch. The BLTouch is a bed leveling sensor that uses an actuated probe to contact the print bed and act as an end stop. During the initial development of the MTouch system, the BLTouch was tested to see if it was suitable for use. However, testing revealed that the probe of the BLTouch could become stuck while taking measurements. This was caused by the deployment force of the probe being less than the retraction force. The probe would become wedged between the side of the print and the sensor body during deployment and would not be able to overcome friction when retracting. In addition to becoming stuck alongside the print, the BLTouch was unable to detect when it had become stuck. The printer would then force the probe into the print, bending the probe, as it continued, damaging the BLTouch and the print.

To resolve this issue, a custom sensor was designed with a stronger retraction force and the ability to determine if it became stuck. Figure 9 shows the final MTouch sensor design with labels indicating the major components. The design starts with a 3D printed bracket that attaches to the extruder of the 3D printer and acts as the attachment point for a solenoid and a hall effect sensor. The solenoid is an Adafruit Mini Push–Pull Solenoid (product ID #2776), and it is responsible for actuation. The specific model of solenoid was chosen for several reasons. First, its power requirements were within the limits of a Raspberry Pi (rPi). Second, the solenoid is a push–pull configuration with a spring return. A spring return is required as the solenoid needs to actuate down on command but must return to a retracted position when not powered to prevent collisions with the part being printed.

Connected to the solenoid are two additional 3D printed parts, the magnet cap and the probe tip. The magnet cap simply acts as an adaptor between the core of the solenoid and the magnet. The magnet is needed for the hall effect sensor to determine the position of the solenoid during operation. The specific type of magnet used is a Super Magnet Man south pole radial ring magnet (part #RR0060S). This magnet is unique because the entire outer diameter is the south pole of the magnet. A radial magnet is used to eliminate any effect from the solenoid core rotating and changing the alignment between the magnet and hall effect sensor. Additionally, the magnet cap has an extension which sits between two rails on the bracket preventing the magnet from rotating more than a few degrees. The south pole of the magnet was chosen to be on the outer diameter since the type of hall effect sensor used (A3144 hall effect sensor) is more sensitive to the south pole of a magnet. It is important to note the type of hall effect sensor chosen outputs a binary signal (magnet detected or not detected), as the rPi would be unable to read an analog input without additional hardware. The second 3D printed part, the probe tip, also acts as an adaptor, this time between the solenoid core and a 1/16th inch dowel (McMaster-Carr 98381A415). The dowel is used to reduce the diameter of the probe contacting the printed part, increasing the resolution of detail which can be measured. The solenoid and hall effect sensor are connected to the rPi as shown in the circuit diagram in Fig. 10. All these components sum to a cost of $59.93. Since the MTouch sensor includes 3D printed parts and requires some wires, the total unit cost will be slightly higher but well within the $100 target. For comparison, the cost of a BLTouch is $40, but a rPi is also required for operation, bringing the cost up to $68.89.

2.3.2 Sensor operation

The contact sensor determines the presence or absence of the print by actuating the solenoid and using the hall effect sensor to measure the position of the magnet. Images of the various states of the sensor during the measurement process can be seen in Fig. 11. The rightmost image in the figure shows the sensor in the stowed position above the intended sample point. In this position, the magnet is close enough to the hall sensor for the magnet to be detected (which can be seen by the red light). The middle image shows the sensor
when the solenoid is actuated, and the probe contacts the print. The magnet moves away from the hall effect sensor, but the magnet can still be detected. When the rPi reads the signal, from the hall effect sensor, it will know the probe contacted the print. The leftmost image shows the solenoid actuated and the probe not in contact with the print. Since the probe is not in contact with the print, the solenoid is able to fully extend, moving the magnet far enough away from the hall sensor the magnet cannot be detected. This is read by the rPi which interprets the input as an indication the probe did not contact the print. Note, a hall effect sensor and magnet are not specifically required. A similar effect can be achieved by using other sensors such as optical endstops, contact switches, and capacitance/inductance probes. These other sensor configurations may even decrease the complexity and total cost of components for a MTouch sensor.

The process of taking a measurement with the sensor is illustrated in a flowchart shown in Fig. 12 below. The process starts with the rPi pushing power to the solenoid. The control program then waits 0.15 s for the solenoid to actuate before taking a reading from the hall sensor. The period of 0.15 s was found to be the shortest period the position of the magnet could reliably be determined. Next, power cut from the solenoid and another 0.15 s is allowed to pass for the solenoid to retract. At this point, a second hall effect sensor reading is taken to confirm the probe was able to retract and is not stuck alongside the print. If the probe is stuck, a subroutine is executed consisting of moving the probe 0.1 mm (a value determined empirically) along the X and Y axes outward from the sample point location to free it. To reduce the rate of false fault detections, a second sample can also be taken whenever there is a difference between the measured result and the expected result. This addition increases the time required for a measurement, but a sensor with high accuracy should not require this very often, increasing the print time minimally while preventing possible false fault detections. As previously mentioned, once a sensor measurement is established, the control software compares the result to the predetermined expected value. If the two match, the printer moves to the next sample point and repeats the measurement process, or the print is resumed. If the results do not match, the print is paused. The user can then check the print and decide between continuing the print and restarting.
Experimental setup

To test the MTouch sensor and proposed methodology, a fault detection system was implemented on an Ender 3 Pro 3D printer. To control the printer and interface with the MTouch sensor, an OctoPrint plugin was created. OctoPrint is an open-source program that gives users the ability to use a web interface to monitor and control their printers [35]. OctoPrint runs on a separate computer from the printer (typically a rPi) and streams commands from the user or from an uploaded Gcode file to a connected device. This method of integration was chosen as OctoPrint provides a framework for easy plugin creation and the ability to execute on a rPi.

As the part is manufactured, the plugin will interrupt the print and take control of the printer after a layer with sample points has been completed. This interruption is facilitated by checking the current layer height after a Z-change event, which is broadcast by the main OctoPrint software. If the layer height matches that of a layer with sample points, the main OctoPrint thread is paused while another processing thread is created to handle sample point measurements. This thread iterates through the generated sample point coordinates. At each point, a G0 command is generated from the sample point’s coordinates and the sensor offset values. The feedrate of the command is set to the travel feedrate of the printer. This minimizes the time the printer is traveling between points and will not affect the accuracy of measurements because the extruder must come to a stop before a measurement is taken. After the G0 command, a M114 (return current position) command is also sent to the print. This allows the plugin to know when the extruder is in position as the current position message will only be sent after processing the G0 command. Once this message is received, the plugin executes the measurement routine described in Sect. 2.3.2. The result of the measurement is then compared to the expected result. If the values match, the process repeats with the next sample point. When all sample points are completed, the main OctoPrint thread is resumed, continuing the print. If the values do not match, a second measurement is taken. If this second measurement confirms the discrepancy, a fault has been detected and a flag is set in the plugin. The main OctoPrint thread is then resumed which checks the plugin flag and will pause the print.

3 Results

3.1 Sensor validation testing

To validate the MTouch sensor meets the set requirements, several tests were conducted to validate the custom design as well as testing the BLTouch to see how the sensors compare. Tests were conducted to determine the range over which each sensor could become stuck, the rate of false positives and negatives, the accuracy of each sensor, and the measurement period. Each test is described below and is accompanied by its results.

The first test establishes the range of distances from the edge of a print where the probe of the sensor becomes stuck. The test starts by printing a 15-mm cube with fault detection disabled. Once the cube is complete, the probe is positioned 2 mm outward from an edge of the cube. A measurement is taken, and the probe is checked to determine if it became stuck along the side of the print. The state of the probe is recorded (stuck or not stuck), the probe is moved 0.1 mm toward the center of the cube, and another measurement is taken. This process is repeated until a measurement 2 mm away the edge of the print, inward toward the center of the cube, is taken. Figure 13 shows an illustration of this test.

The second test measured the rate of false positives and negatives of each sensor. Using the 15-mm cube from the previous test, the rate of false negatives was measured by positioning...
the sensor at a random point over the print, such that the probe would contact the print, and taking 100 consecutive measurements. The sensor was then moved away from the print, such that the probe would not contact the print, and another 100 consecutive measurements were taken to find the rate of false positives. The results of these two tests are shown in Table 1 below.

The results in Table 1 show the MTouch sensor can still become stuck alongside the print but in a significantly narrower range compared to the BLTouch. Table 1 also shows the rates of false positives/negatives are almost identical between the two sensors. The BLTouch did output one false positive reading compared to zero for the MTouch sensor, but this is most likely due to natural variance. Similarly, while the MTouch sensor had a 0% rate of false positives and negatives, this does not mean the sensor is completely immune to false readings. During testing of the entire fault detection system, as described in the next section, there were three instances of false readings being output out of hundreds of measurements. This does indicate that the rate of false readings is very low making the sensor suitable for use.

To further test the accuracy of each sensor in a less artificial case, each sensor was used to take 100 random samples (including points where both the presence and absence of the print is expected) across the cross section of a partially completed print of a 15-mm cube with no defects. The accuracy was then calculated as the number of correct measurements divided by the total number of measurements. The test was run a second time with measurements whose results deviated from the expected result being sampled a second time (or “resampled”) to ensure a fault has been accurately detected. The results of these tests are shown in Table 2. The results show the MTouch has 100% accuracy in determining the presence of absence of the print with and without the second measurement. However, the BLTouch had, at best, 74% accuracy. This is a considerable difference compared to the almost 0% rate of false positives and negatives. This difference is due to the probe of the BLTouch occasionally becoming stuck along the side of the cube when sampling near edges, causing an inaccurate measurement.

To determine the measurement period, or time needed for a single measurement, for each sensor, 100 consecutive samples were taken, and the total time recorded. The time for a single measurement was then assumed to be the average time per sample. Note, the timing values had to be changed from 0.15 s for the MTouch to 0.3 s for the BLTouch due to slower probe deployment. The measurement period for the MTouch without the error check (i.e., the second hall sensor reading in Fig. 12 to detect a stuck probe) was also determined. The results, in Table 3, show the MTouch sensor has a measurement period of 0.378 seven with error checking, faster than the BLTouch by 47%. This measurement period is also within the 0.5 s established in the sensor requirements.

Since many other fault detection systems use noncontact sensors, the need to physically interact with a newly printed layer raises concerns about distorting the print at sample points. A final test was conducted to determine if any artifacts would be left on the print by the sampling process. The test consisted of printing a 15-mm cube and sampling six random points and each corner of every third layer and the last layer. A print with a relatively small cross-sectional area was chosen to give the layer less time to cool, making the layer the most susceptible to artifacts from the measurement process. All printing tests were completed using PLA plastic with an extruder temperature of 200 °C, printing speed of 60 mm/s, and travel speed of 120 mm/s. Figure 14 shows two cubes representative of the results, one printed

Table 1 Results of sensor tests for BLTouch and MTouch

Sensor	Range of getting stuck [mm]	Rate of false positives	Rate of false negatives
BLTouch	[-0.1, 0.5]	1%	0%
MTouch	(0.0, 0.1]	0%	0%

Table 2 Results of accuracy test for BLTouch and MTouch

Sensor	Accuracy without second measurement	Accuracy with second measurement
BLTouch	72%	74%
MTouch	100%	100%

Table 3 Results of timing tests for BLTouch and MTouch

Sensor	Measurement period without error checking [s]	Measurement period with error checking [s]
BLTouch	0.718	N/A
MTouch	0.212	0.378

![An illustration of the sample points used to test if and where each sensor would become stuck along the side of a print](image-url)
with the sampling process and one printed without. The cube printed with the sampling process shows no signs of being scuffed or marked by the probe during sampling. This test was repeated three times to ensure accurate results.

3.2 MTouch system validation testing

To validate the MTouch system and methodology of detecting faults, tests were conducted where a fault would be deliberately introduced to a print with the fault detection system in operation. The layer of the print the fault was introduced and the layer the fault was detected were recorded as well as the time elapsed before detection. All tests were repeated three times to ensure consistent results. The faults tested were layer bed separation, filament runout/jam, and layer shifting. Images of a normal print as well as a print affected by each of these faults can be seen in Fig. 15. As a point of comparison, the same tests were conducted with The Spaghetti Detective (TSD) using the default settings and a Logitech C270 Webcam (720p resolution) mounted to the extrusion motor of the Ender 3 Pro using a 3D printed bracket and zip ties. Each test is described below and is accompanied with its results. The sample point generation strategy setting used during all tests are shown in Table 4.

Table 4 Sample point generation strategy settings used during all tests of the MTouch system

Strategy	Setting
Layer spacing	5
Layer shift detection	4 points per layer
Random sampling	1 point per cm²
Min–max sampling	4 points per layer
Inside-outside sampling	1 point per cm²

Fig. 14 Two images of the cubes printed with (a) and without (b) being sampled

Fig. 15 Examples of all the faults tested in the fault detection validation tests: a filament runout/jam, b Y axis layer shift, c X axis layer shift, d bed separation, e no defects
The first fault detection test consisted of a bed separation fault. To reliably introduce such a fault, the print was paused before layer 27 of 52 began to print, and a metal spatula was used to separate the print from the print bed while the part was held in place. The print was then resumed. Layer 27 was chosen as it is toward the middle of the print and is immediately after sample points are measured for layer 26, maximizing the number of layers and time until another layer of samples would be printed (layer 32). The results of the test, presented in Table 5, shows MTouch detected the fault while sampling the first layer with sample points after the fault was introduced. Additionally, MTouch was able to detect the fault 154 s (or 44%) faster than The Spaghetti Detective.

The second fault detection test consisted of a filament runout/jam fault. This fault was caused by removing filament from the extruder. Again, this fault was introduced at layer 27. The results in Table 6 show the MTouch detecting the fault while sampling the first layer with sample points after the fault was introduced. This is compared to The Spaghetti Detective which was unable to detect the fault. Looking at the fault in Fig. 15, this is likely because the fault does not cause the secondary fault of spaghetti failure. The part after the fault is introduced keeps a geometric shape despite producing an unusable part.

The third fault detection test consisted of a layer shift fault. This fault was introduced to the printed part by pausing the print at layer 27, finding the current coordinates of the extruder using an M114 command, and using a G0 command to move the nozzle 1.5 mm either the X or Y direction (both were tested). A G92 command was then used to set the position of the extruder back to the coordinates received from the M114 message response. Table 7 shows the results of this test. Looking at the results, the MTouch was, once again, able to detect the fault while sampling the first layer with sample points after the fault was introduced while The Spaghetti Detective was unable to detect the fault. Similar to the filament runout/jam fault, this is likely due to the part keeping a geometric shape and not forming any spaghetti defects.

Since the MTouch system pauses the print at regular intervals to measure the sample points, the time required to complete a print will increase. The last fault detection test consisted of manufacturing a regular print with no faults with and without the MTouch system operating. The time required to complete the print in both scenarios was recorded. As Table 8 shows, the MTouch system increased the print time by 163.2s (8.49%) for a 1922.5s print. It should be noted this increase in print time can vary greatly with the sample point generation strategy values. For example, if a larger layer spacing or a lower point density is used, the increase in time will be less. However, the system may not detect faults as quickly or accurately, since there are fewer sample points to determine when something has gone wrong.

| Table 5 Results of bed separation fault detection tests for MTouch and TSD when the fault was introduced at layer 27 |
|---|---|---|
| Fault detection system | Layer fault was detected | Elapsed time [s] |
| TSD | 35 | 349 |
| MTouch | 32 | 195 |

| Table 6 Results of filament runout/jam fault detection tests for MTouch and TSD when the fault was introduced at layer 27 |
|---|---|---|
| Fault detection system | Layer fault was detected | Elapsed time [s] |
| TSD | N/A | N/A |
| MTouch | 32 | 201 |

| Table 7 Results of layer shift fault detection tests for MTouch and TSD when the fault was introduced at layer 27 |
|---|---|---|
| Fault detection system | Layer X axis shift was detected | Layer Y axis shift was detected |
| TSD | N/A | N/A |
| MTouch | 32 | 32 |

| Table 8 Results of print time test while the MTouch system is enabled and disabled |
|---|---|
| MTouch system enabled/disabled | Average time required for print [s] |
| Enabled | 2085.7 |
| Disabled | 1922.5 |
4 Discussion, conclusions, and future work

This paper has presented a low-cost system for detecting millimeter-scale part defects in desktop FFF 3D printers which is robust against environmental factors and versatile enough to detect several different types of faults. The system works by using a custom developed actuated contact sensor to determine the presence or absence of the print at specific locations and comparing the results to pre-calculated expected values. Validation tests were conducted on the developed sensor and fault detection system to show there were operating within the requirements set. From the results of the sensor validation tests, it was shown the actuated contact sensor met all the criteria. During the design of the sensor, the total cost was kept under the target price of $100 and the sensor is able to be controlled and powered by a Raspberry Pi. The validation tests show the average sample period of the sensor is 0.378 s with an accuracy of 100% (during accuracy testing), meeting both requirements for measurement period and accuracy. The validation tests also showed the sensor does not scratch or mar the surface of the print while taking a sample. The results of the system validation tests also show that the MTouch system can detect millimeter-scale major faults that are undetectable using The Spaghetti Detective while minimally increasing the time required to complete a print.

Finally, there are a few areas of potential future work with the MTouch fault detection system. The first area is shifting the sample point generation from OctoPrint to a slicer like Cura [36]. This would save a significant amount of time as the model recreation process can be skipped. Secondly, materials like ABS, PETG, and nylon, which require high-temperature printing, should be tested to ensure the MTouch sensor does not affect layer adhesion or print quality in these scenarios. Additionally, as previously mentioned, the design of the MTouch sensor could be further simplified by using alternatives to the magnet and hall effect sensor such as an optical endstop, pressure sensor, or capacitive/inductive probe. A fourth area of future work is using the fault detection system to autonomously collect data to train a neural network to predict faults from the Gcode. By predicting a fault ahead of time, this would allow proactive steps to be taken to prevent printing part from becoming unsuitable for use in the first place. This is a topic of ongoing work at the Smart and Sustainable Automation (S2A) Lab at the University of Michigan.

Author contributions All authors contributed to design and implementation of the concept. Material preparation and data collection for testing were done by Sam Aidala and Kyle Wilkinson. The first draft was written by Sam Aidala. All authors connected on previous versions of the manuscript and have read and approve the final manuscript.

Data availability The source code for the MTouch OctoPrint plugin can be found at: https://doi.org/10.5281/zenodo.5796404. The CAD files for the MTouch system can be found at: https://doi.org/10.5281/zenodo.5796477

Declarations

Competing interests The Regents of the University of Michigan have filed a provisional patent for the MTouch fault detection system.

References

1. Sculpteo, Inc (2021) The state of 3D printing: the data you need to understand the 3D printing world and build your 3D printing strategy, San Francisco, CA
2. Wohlers T, Wohlers Report (2020) 3D Printing and additive manufacturing: global state of the industry. In Technical report. Wohlers Associates
3. Grand View Research (2022) 3D printing market size, share & trends analysis report by component (hardware, software, services), by printer type, by technology, by software, by application, by vertical, by region, and segment forecasts, 2022 – 2030. San Francisco, CA
4. Song R, Telenko C (2019) Causes of desktop fdm fabrication failures in an open studio environment. Procedia CIRP 80(494–499):2212–2271. https://doi.org/10.1016/j.procir.2018.12.007
5. Simplify 3D (2021, November 15) Print Quality Guide, Print Quality Troubleshooting Guide, Retrieved from www.simplify3d.com/support/print-quality-troubleshooting/
6. Prusa Research (2021, November) Prusa Knowledge Base. Spaghetti monster Retrieved from https://help.prusa3d.com/en/article/spaghetti-monster_1999/
7. Fu Y, Downey A, Yuan L, Pratt A, Balogun Y (2021) In situ monitoring for fused filament fabrication process: a review. Addit Manuf 38:2214–8604. https://doi.org/10.1016/j.addma.2020.101749
8. Delli U, Chang S (2018) Automated process monitoring in 3d printing using supervised machine learning. Procedia Manuf 26(865–870):2351–9789. https://doi.org/10.1016/j.promfg.2018.07.111
9. Strauss J (2015) Initial work on the characterization of additive manufacturing (3D printing) using software image analysis. Machines 3:55–71. https://doi.org/10.3390/machines3020055
10. Charalampos P, Kostavelis I, Kopsachilis C et al (2021) Vision-based real-time monitoring of extrusion additive manufacturing processes for automatic manufacturing error detection. Int J Adv Manuf Technol 115:3859–3872. https://doi.org/10.1007/s00170-021-07419-2
11. Khan MF, Alam A, Siddiqui MA, Alam MS, Rafat Y, Salik N, Al-Saidan I (2021) Real-time defect detection in 3D printing using machine learning. Mater Today Proc 42(521–528):2214–7853. https://doi.org/10.1016/j.matpr.2020.10.482
12. Holzmond O, Li X (2017) In situ real-time defect detection of 3D printed parts. Addit Manuf 17(135–142):2214–8604. https://doi.org/10.1016/j.addma.2017.08.003
13. Cheng Y, Jafari MA (2008) Vision-Based online process control in manufacturing applications. IEEE Trans Autom Sci Eng 5:140–153. https://doi.org/10.1109/TASE.2007.912058
14. Wu M, Phoha VV, Moon YB, Belman AK (2016) Detecting malicious defects in 3D printing process using machine learning and image classification. Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition.
Emerging Technologies: Materials; Genetics to Structures; Safety Engineering and Risk Analysis. Phoenix, Arizona, USA, November 11–17, V014T07A004. ASME. https://doi.org/10.1115/IMECE2016-67641

15. Nuchitprasitchai S (2017) An algorithm for reconstructing three-dimensional images from overlapping two-dimensional intensity measurements with relaxed camera positioning requirements, with application to additive manufacturing, PhD thesis, Michigan Technological University, Houghton, MI

16. Nuchitprasitchai S, Roggemann MC, Pearce JM (2017) Three hundred and sixty degree real-time monitoring of 3-D printing using computer analysis of two camera views. J Manuf Mater Process. https://doi.org/10.3390/jmmp1010002

17. Jin Z, Zhang Z, Gu GX (2020) Automated Real-time detection and prediction of interlayer imperfections in additive manufacturing processes using artificial intelligence. Adv Intell Syst 2:1900130. https://doi.org/10.1002/asiy.201900130

18. Jin Z, Zhang Z, Gu G (2019) Autonomous in-situ correction of fused deposition modeling printers using computer vision and deep learning. Manuf Lett 22:11–15, ISSN 2213–8463. https://doi.org/10.1016/j.mflet.2019.09.005

19. The Spaghetti Detective (2021, November 15) Optimal camera and lighting setup for the best results Available Retrieved from https://www.thespaghettidetective.com/docs/optimal-camera-setup/

20. Thomas Sanladerer (2020, October 30) This AI watches over your 3D Printers for you - The Spaghetti Detective Review! [Video File]. Retrieved from https://youtu.be/Vs8M8Np4Qkg

21. Lin W, Shen H, Fu J, Wu S (2019) Online quality monitoring in material extrusion additive manufacturing processes based on laser scanning technology. Precis Eng 60(76–84):0141–6359. https://doi.org/10.1016/j.precisioneng.2019.06.004

22. Khanzadeh M, Rao P, Jafari-Marandi R, Smith BK, Tschopp MA, Bian L (2018) Quantifying geometric accuracy with unsupervised machine learning: using self-organizing map on fused filament fabrication additive manufacturing parts. J Manuf Sci Eng 140. https://doi.org/10.1115/1.4038598

23. Faes M, Abbeloos W, Vogeler F, Valkenaers H, Coppens K, Goedemé T, Ferraris E (2016) Process monitoring of extrusion based 3D printing via laser scanning. https://doi.org/10.48550/arXiv.1612.02219

24. Rao P, Kong Z, Duty C, Smith R (2016) Three dimensional point cloud measurement based dimensional integrity assessment for additive manufactured parts using spectral graph theory. Proceedings of the ASME 2016 11th International Manufacturing Science and Engineering Conference. https://doi.org/10.1115/MSEC2016-8516

25. Tootooni MS, Dsoza A, Donovan R, Rao PK, Kong ZJ, Borgesen P (2017) Classifying the dimensional variation in additive manufactured parts from laser-scanned three-dimensional point cloud data using machine learning approaches. J Manuf Sci Eng 139. https://doi.org/10.1115/1.4036641

26. Li Z, Zhang Z, Shi J, Wu D (2019) Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robot Comput Integr Manuf 57(488–495):0736–5845. https://doi.org/10.1016/j.rcim.2019.01.004

27. Wu D, Wei Y, Terpenney J (2018) Surface roughness prediction in additive manufacturing using machine learning. Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference. https://doi.org/10.1115/MSEC2018-6501

28. Li Y, Zhao W, Li Q, Wang T, Want G (2019) In-situ monitoring and diagnosing for fused filament fabrication process based on vibration sensors. J Sens. https://doi.org/10.3390/s19112589

29. Liu C, Law ACC, Roberson D, Kong ZJ (2019) Image analysis-based closed loop quality control for additive manufacturing with fused filament fabrication. J Manuf Syst 51(75–86):0278–6125. https://doi.org/10.1016/j.jmsy.2019.04.002

30. Rao PK, Liu J, Roberson D, Kong Z, Williams C (2015) Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors. J Manuf Sci Eng 137. https://doi.org/10.1115/1.4029823

31. Kim J, Lee C, Kim S, Lee S (2018) Development of data-driven in-situ monitoring and diagnosis system of fused deposition modeling (FDM) Process based on support vector machine algorithm. Int J Precis Eng Manuf Green Tech 5:479–486. https://doi.org/10.1007/s40684-018-0051-4

32. Wu H, Wang Y, Yu Z (2016) In situ monitoring of FDM machine condition via acoustic emission. Int J Adv Manuf Technol 84:1483–1495. https://doi.org/10.1007/s00170-015-7809-4

33. Kantaros A, Piromalis D, Tsaramiris G, Papageorgas P, Tamimi H (2022) 3D Printing and implementation of digital twins: current trends and limitations. Appl Syst Innov 5(1):7. https://doi.org/10.3390/asi5010007

34. Smart and Sustainable Automation Lab (2022, March 17) MTouch: A low-cost and reliable 3D printing fault detection system [Video File]. Retrieved from https://youtu.be/E2E-yLmo7bk

35. Gina Haubge (2021, December 7) Octoprint, The snappy web interface for your 3D printer. Retrieved from https://octoprint.org/

36. Ultimaker (2021, November 15) Ultimaker Cura. Retrieved from https://ultimaker.com/software/ultimaker-cura

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.