An Intuitively Understandable Quality Measure for Theoretical Vibrational Spectra

Henning Henschel*†‡ and David van der Spoel*†

†Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
‡present address: Department of Medicinal Chemistry, Uppsala University, Husargatan 3, Box 574, SE-75123 Uppsala, Sweden

E-mail: henning.henschel@ilk.uu.se; david.vanderspoel@icm.uu.se

Contents

S1 Comparison of Correlation Coefficients S2
S2 Directions of Comparison and Wavenumber Ranges S6
S3 Performance Depending on Database Size S11
S4 Additional Measures for Correct Matches S15
S5 List of Compounds S45
S1 Comparison of Correlation Coefficients

Figure S1: Pearson’s and Spearman’s correlation coefficients of the comparison of theoretical with experimental spectra. The linear fit in (a) is given by $y = (0.5219 \pm 0.0014) + (0.3740 \pm 0.0028) \cdot x$, in (b) by $y = (0.4553 \pm 0.0001) + (0.4625 \pm 0.0002) \cdot x$.

(a) Comparison of corresponding spectra, wavenumber range 550–3846 cm$^{-1}$.

(b) Comparison over complete databases, wavenumber range 550–3846 cm$^{-1}$.
(a) Comparison of corresponding spectra, wavenumber range 550–2000 cm\(^{-1}\).

(b) Comparison over complete databases, wavenumber range 550–2000 cm\(^{-1}\).

Figure S2: Pearson’s and Spearman’s correlation coefficients of the comparison of theoretical with experimental spectra. The linear fit in (a) is given by \(y = (0.2485 \pm 0.0015) + (0.8325 \pm 0.0038) \cdot x \), in (b) by \(y = (0.21545 \pm 0.00001) + (0.9965 \pm 0.0002) \cdot x \).
Figure S3: Pearson’s and Spearman’s correlation coefficients of the comparison of theoretical with experimental spectra. The linear fit in (a) is given by \(y = (0.1129 \pm 0.0012) + (0.9382 \pm 0.0034) \cdot x \), in (b) by \(y = (2.17 \pm 0.03) \cdot 10^{-3} + (1.1593 \pm 0.0002) \cdot x \).
Figure S4: Pearson’s and Spearman’s correlation coefficients of the comparison of theoretical with experimental spectra. The linear fit in (a) is given by $y = (0.0804 \pm 0.0021) + (0.6100 \pm 0.0033) \cdot x$, in (b) by $y = (8.92 \pm 0.06) \cdot 10^{-3} + (0.7338 \pm 0.0001) \cdot x$.
S2 Directions of Comparison and Wavenumber Ranges

The comparison direction theoretical spectra versus experimental database (below also ,,forward comparison") means the theoretical spectrum for one compound is compared to all experimental spectra by calculating it’s correlation coefficient with all experimental spectra. The theoretical spectrum is assigned to the compound with the experimental spectrum giving the highest correlation coefficient – in principle all theoretical spectra could be assigned to the same compound. In the comparison experimental spectra versus theoretical database (also ,,reverse comparison"), one experimental spectrum is compared to all all calculated spectra, correspondingly. Comparisons were done using four different wavenumber ranges: 550–3846 cm$^{-1}$ (,,full”), 550–2000 cm$^{-1}$ (,,medium”), 550–1650 cm$^{-1}$ (,,short”), and 2000–3846 cm$^{-1}$ (,,inverse”).

Table S1: Numbers of compounds correctly identified using various theoretical methods in combination with different statistical measures. The labels ,,full”, ,,medium”, ,,short”, and ,,high” refer to different spectroscopical ranges used in the calculations: 550–3846 cm$^{-1}$, 550–2000 cm$^{-1}$, 550–1650 cm$^{-1}$, and 2000–3846 cm$^{-1}$, respectively. Comparisons were made over 670 compounds in the database. Numbers in parentheses are the mean and median rank of the correct compound in the respective comparison.

Level of Theory	Theory vs. Experimental Database	Spearman ρ			
	Pearson r	full	medium	short	high
B3LYP6-31G(2df,p)	145 126 114 18	62 167 227 3			
	(44.5; 9) (22.2; 9) (27.5; 10) (133.8; 84)	(75.5; 28) (33.3; 6) (18.0; 3) (230.0; 193)			
B3LYP/aug-cc-pVTZ	147 143 153 21	65 201 292 4			
	(38.3; 11) (24.4; 9) (25.9; 8) (110.5; 67)	(69.4; 23) (25.0; 4) (12.7; 2) (222.8; 181)			
CGenFF	22 5 1 14	15 16 15 3			
	(108.8; 60) (180.1; 142) (195.7; 158) (130.0; 60)	(169.3; 104) (161.8; 102) (145.5; 95) (258.7; 232)			
GAFF-BCC	1 5 3 1	3 8 2 1			
	(282.8; 241) (215.5; 166) (219.0; 180) (350.1; 354)	(243.4; 214) (169.4; 101) (178.3; 121) (303.1; 291)			
GAFF-ESP	1 0 1 0	0 3 4 0			
	(313.7; 288) (252.8; 213) (257.8; 226) (357.1; 357)	(262.8; 230) (196.7; 152) (220.5; 180) (313.9; 309)			
OPLS	2 1 1 5	6 4 4 1			
	(230.5; 187) (275.1; 222) (303.6; 296) (216.5; 174)	(219.6; 180) (289.8; 265) (258.8; 236) (275.2; 250)			

Level of Theory	Experiment vs. Theoretical Database	Spearman ρ			
	Pearson r	full	medium	short	high
B3LYP6-31G(2df,p)	146 131 125 15	175 271 278 17			
	(54.0; 13) (27.2; 8) (33.5; 12) (245.7; 106)	(44.5; 6) (12.7; 2) (14.1; 2) (185.5; 148)			
B3LYP/aug-cc-pVTZ	115 135 148 21	192 306 316 15			
	(45.6; 14) (25.6; 10) (28.6; 10) (128.4; 85)	(37.7; 4) (11.1; 2) (11.8; 2) (183.5; 142)			
CGenFF	14 8 4 5	30 23 17 7			
	(143.4; 88) (152.1; 112) (177.5; 135) (199.6; 143)	(103.7; 46) (103.3; 48) (127.6; 72) (221.6; 180)			
GAFF-BCC	2 3 3 0	8 3 6 3			
	(273.7; 217) (230.8; 182) (229.5; 194) (313.9; 291)	(181.5; 124) (214.0; 136) (196.8; 158) (252.5; 209)			
Figure S5: Ranks of the spectrum of the correct compound for each method, wavenumber range 550–3846 cm\(^{-1}\).
Figure S6: Ranks of the spectrum of the correct compound for each method, wavenumber range 550–2000 cm$^{-1}$.
Figure S7: Ranks of the spectrum of the correct compound for each method, wavenumber range 550–1650 cm$^{-1}$.

(a) Pearson, forward comparison
(b) Pearson, reverse comparison
(c) Spearman, forward comparison
(d) Spearman, reverse comparison
Figure S8: Ranks of the spectrum of the correct compound for each method, wavenumber range 2000–3846 cm$^{-1}$.
S3 Performance Depending on Database Size

The following figures show how the fraction of correctly matched compounds varies with database size. For each database size 150 different subsamples of compounds were chosen randomly, and the matching algorithm applied as for the complete database. The shaded area in the figures corresponds to the standard deviation of the correctly matched fraction over these 150 subsamples.

(a) Pearson, forward comparison
(b) Pearson, reverse comparison
(c) Spearman, forward comparison
(d) Spearman, reverse comparison

Figure S9: Performance of methods on subsamples of the database, wavenumber range 550–3846 cm\(^{-1}\).
Figure S10: Performance of methods on subsamples of the database, wavenumber range 550–2000 cm⁻¹.
Figure S11: Performance of methods on subsamples of the database, wavenumber range 550–1650 cm\(^{-1}\).
Figure S12: Performance of methods on subsamples of the database, wavenumber range 2000–3846 cm⁻¹.
S4 Additional Measures for Correct Matches

In total we are presenting three different measures for quantifying the performance of the different methods in matching compounds. The immediate measure for this is naturally the number of correct matches m – how many spectra were assigned to the correct compound or, for class matches, not necessarily the correct compound, but as a compound belonging to the same class as the correct compound. Dividing this number by the number of compounds in the database N, or the class n, respectively, gives the fraction of matches as $F = m/N$, and $F = m/n$, respectively. Especially in case of class matches, however, the fraction is a poor measure for the performance of a method, as it does not balance for the probability of randomly matching a compound correctly.

In order to account for this, we create a third measure, which gives the probability a random assignment of the spectra to compounds would have to create at least the present number of matches. The probability of generating a certain number of compound matches k over the database can be expressed as

$$p_k = \binom{N}{m} p_0^k (1 - p_0)^{N-k}$$ \hspace{1cm} (1)$$

where $p_0 = 1/N$ is the elementary probability of matching any one compound correctly.

In the case of class matches, however, the situation is somewhat more intricate. We start again by defining the elementary probability $p_c = n/N$, this time for assigning any spectrum randomly to a compound of the class in question. The probability that a certain number c of spectra is assigned to compounds of the given class is then, noting that in principle all spectra can be assigned to the same compound:

$$p_c = \binom{N}{c} p_c^c (1 - p_c)^{N-c}$$ \hspace{1cm} (2)$$

However, this gives only the number of spectra that are assigned to a compound of a given class, not the number of spectra that are correctly assigned to any (i.e. not necessarily the correct one) compound of the class. The probability that of the c spectra assigned to compounds of a class
a certain number $k \leq c$ is correctly assigned to the class can be described as checking for the
spectra that actually represent compounds of the class, the probability that k of these are assigned
to compounds of the same class:

$$p_k(c) = \binom{n}{k} \frac{c!}{(c-k)!} \frac{(N-c)!}{(N+k-n-c)!} \frac{(N-n)!}{N!}$$ \hspace{1cm} (3)$$

Combining this with the expression for p_c, and summing over all values for c that can give k correct
matches gives:

$$p_k = \sum_{c=k}^{N+k-n} \binom{N}{c} p_c^e (1-p_e)^{N-c} \binom{n}{k} \frac{c!}{(c-k)!} \frac{(N-c)!}{(N+k-n-c)!} \frac{(N-n)!}{N!}$$

$$= \sum_{c=k}^{N+k-n} \frac{N!}{c!(N-c)!} p_c^e (1-p_e)^{N-c} \frac{n!}{k!(n-k)!} \frac{c!}{(c-k)!} \frac{(N-c)!}{(N+k-n-c)!} \frac{(N-n)!}{N!}$$

$$= \sum_{c=k}^{N+k-n} p_c^e (1-p_e)^{N-c} \frac{n!}{k!(n-k)!(c-k)!(N+k-n-c)!}$$ \hspace{1cm} (4)$$

In either case, the probability of generating a certain number of correct matches is then summed
over all values equal to or larger than the actual number of matches and presented as negative
decadic logarithm a measure for predictive power (pP):

$$pP = -\log_{10} \left(\sum_{k=m}^{n} p_k \right)$$ \hspace{1cm} (5)$$

For practical reasons, we have capped the possible values of pP at 300.0.

Table S2: Correlation of theoretical spectra against database of experimental spectra in the range
550–3846 cm$^{-1}$ for B3LYP/6-31G(2df,p) sorted according to compound classification.

Class	N	Pearson r	Spearman ρ								
	Molecules	Classes	Molecules	Classes							
	Matched	Fraction	Matched	Fraction	Power	Matched	Fraction	Matched	Fraction	Power	
alcohol	76	18	0.237	49	0.645	27.2	2	0.026	65	0.855	49.2
aldehyde	12	3	0.250	5	0.417	5.9	5	0.417	8	0.667	11.3
alkane	82	3	0.037	25	0.305	5.0	6	0.073	44	0.537	18.7
alkene	174	43	0.247	80	0.460	8.0	16	0.092	106	0.609	21.5
alkylbromide	20	1	0.050	4	0.200	2.6	1	0.050	12	0.600	13.3

S16
Table S3: Correlation of experimental spectra against database of theoretical spectra in the range 550–3846 cm\(^{-1}\) for B3LYP/6-31G(2df,p) sorted according to compound classification.

Class	N	Molecules Matched	Molecules Fraction	Classes Matched	Classes Fraction	Power
alkylchloride	41	4	0.098	19	0.463	12.2
alkylfluoride	8	2	0.250	6	0.750	10.1
alkyne	27	3	0.111	10	0.370	7.3
amide	10	4	0.400	5	0.500	6.8
amine	41	10	0.244	16	0.390	9.0
aromatic	172	65	0.378	121	0.703	33.7
allylchloride	23	4	0.174	8	0.348	6.2
allylfluoride	15	2	0.154	8	0.615	10.6
cycloalkane	39	2	0.051	12	0.308	5.9
cycloalkene	11	6	0.545	6	0.545	8.1
halogenated compound	105	14	0.133	62	0.590	23.3
heterocyclic	57	35	0.614	70	0.702	29.3
inorganic	3	0	0.000	0	0.000	0.0
ketone	33	8	0.242	23	0.697	22.3
nitro	10	2	0.200	7	0.700	10.7
phenol	18	7	0.389	12	0.667	14.6
thiol	16	4	0.250	4	0.250	3.3
all molecules	670	145	0.216	—	—	259.6

Class	N	Molecules Matched	Molecules Fraction	Classes Matched	Classes Fraction	Power
alcohol	76	13	0.171	60	0.709	41.5
aldehyde	12	4	0.333	7	0.583	9.4
alkane	82	1	0.012	12	0.146	0.5
alkenne	174	41	0.236	111	0.638	24.9
alkythromide	20	0	0.000	2	0.100	0.9
alkylchloride	41	4	0.098	21	0.512	14.6
alkylfluoride	8	1	0.125	4	0.500	5.9
alkyne	27	0	0.000	3	0.111	1.0
amide	10	4	0.400	7	0.700	10.7
amine	41	10	0.244	16	0.390	9.0
aromatic	172	69	0.401	137	0.797	48.8
allylchloride	23	4	0.174	11	0.478	10.1
allylfluoride	13	6	0.462	12	0.923	19.4
cycloalkane	39	3	0.077	27	0.692	24.1
cycloalkene	11	5	0.455	9	0.818	14.3
halogenated compound	105	17	0.162	63	0.600	24.2
heterocyclic	57	38	0.667	43	0.754	33.3
inorganic	3	0	0.000	0	0.000	0.0
ketone	33	9	0.273	27	0.818	29.4
nitro	10	3	0.300	6	0.600	8.7
phenol	18	5	0.278	12	0.667	14.6
thiol	16	1	0.062	3	0.188	2.2
all molecules	670	146	0.218	—	—	261.8

Class	N	Molecules Matched	Molecules Fraction	Classes Matched	Classes Fraction	Power
alcohol	76	14	0.184	71	0.934	60.1
aldehyde	12	11	0.917	11	0.917	18.1
alkane	82	8	0.088	19	0.232	2.4
alkenne	174	53	0.305	124	0.713	34.9
alkythromide	20	0	0.000	1	0.050	0.3
alkylchloride	41	6	0.146	22	0.537	15.8
alkylfluoride	8	2	0.250	6	0.750	10.1
alkyne	27	8	0.296	15	0.556	13.9
amide	10	5	0.500	7	0.700	10.7
amine	41	28	0.683	35	0.854	36.0
aromatic	172	69	0.401	159	0.924	76.5
allylchloride	23	8	0.348	12	0.522	11.6
allylfluoride	13	5	0.385	8	0.615	10.6
cycloalkane	39	4	0.103	6	0.154	1.6
cycloalkene	11	3	0.273	3	0.273	3.2
halogenated compound	105	22	0.210	63	0.600	24.2
heterocyclic	57	20	0.351	28	0.491	14.9
inorganic	3	2	0.667	2	0.667	4.2
ketone	33	10	0.303	23	0.697	22.3
nitro	10	1	0.100	5	0.500	6.8
phenol	18	10	0.556	14	0.778	18.5
thiol	16	3	0.188	3	0.188	2.2
all molecules	670	175	0.261	—	—	300.0
Table S4: Correlation of theoretical spectra against database of experimental spectra in the range 550–3846 cm\(^{-1}\) for B3LYP/aug-cc-pVTZ sorted according to compound classification.

Class	N	Molecules	Pearson \(r\)	Spearman \(\rho\)		
N		Matched	Fraction	Matched	Fraction	Power
alcohol	76	11	0.145	48	0.632	26.1
aldehyde	12	1	0.083	3	0.250	3.0
alkane	82	4	0.049	18	0.220	2.0
alkenes	174	49	0.282	99	0.569	17.2
alkyl bromide	20	2	0.100	5	0.250	3.6
alkyl chloride	41	2	0.049	13	0.317	6.2
alkyl fluoride	8	1	0.125	6	0.750	10.1
alkyne	27	4	0.148	13	0.481	11.1
amides	10	0	0.000	5	0.500	6.8
alkenes		17	0.415	28	0.683	24.1
aromatic	172	65	0.378	141	0.820	53.1
chlorinated	23	3	0.130	10	0.435	8.8
aromatic	172	13	0.000	5	0.385	5.5
cycloalkene	39	6	0.154	14	0.359	7.7
alkyl bromide	27	1	0.000	2	0.100	0.9
amides	10	1	0.333	1	0.333	1.9
ketones	33	5	0.152	15	0.455	11.0
nitro	10	0	0.000	4	0.400	5.0
phenols	18	2	0.111	9	0.500	9.5
thiol	16	4	0.250	6	0.375	5.9
all molecules	670	143	0.213	—	—	255.0

Table S5: Correlation of experimental spectra against database of theoretical spectra in the range 550–3846 cm\(^{-1}\) for B3LYP/aug-cc-pVTZ sorted according to compound classification.

Class	N	Molecules	Pearson \(r\)	Spearman \(\rho\)							
N		Matched	Fraction	Matched	Fraction	Power					
alcohol	76	11	0.118	52	0.664	30.8					
aldehyde	12	2	0.167	3	0.250	3.0					
alkane	82	1	0.012	9	0.110	0.2					
alkenes	174	40	0.230	119	0.684	30.8					
alkyl bromide	20	1	0.050	2	0.100	0.9					
alkyl chloride	41	1	0.024	13	0.317	6.2					
alkyl fluoride	8	1	0.125	4	0.500	5.9					
alkyne	27	1	0.037	9	0.333	6.2					
amides	10	0	0.000	5	0.500	6.8					
aromatic	172	63	0.366	134	0.779	45.7					
aromatic	172	23	0.348	13	0.565	13.1					
aromatic	172	13	0.000	6	0.462	7.1					
aromatic	172	39	0.103	26	0.667	22.5					
aromatic	172	11	0.455	8	0.727	12.1					
aromatic	172	10	0.095	51	0.486	14.5					
aromatic	172	57	0.491	36	0.632	24.0					
aromatic	172	3	0	0.000	0	0.000					
Class	N	Pearson r	Spearman ρ								
-------------	---	-------------	----------------								
		Molecules	Classes	Molecules	Classes						
		Matched	Fraction	Matched	Fraction	Power	Matched	Fraction	Matched	Fraction	Power
ketone	33	5 0.152	17 0.515	12 0.364	22 0.667	20.7					
nitro	10	0 0.000	9 0.900	1 0.100	6 0.600	8.7					
phenol	18	3 0.167	3 0.500	9 0.500	12 0.667	14.6					
thiol	16	1 0.062	2 0.125	5 0.312	6 0.375	5.9					
all molecules	670	115 0.172	— —	192 0.287	— —	300.0					

Table S6: Correlation of theoretical spectra against database of experimental spectra in the range 550–3846 cm$^{-1}$ for CGenFF sorted according to compound classification.

Class	N	Pearson r	Spearman ρ								
		Molecules	Classes	Molecules	Classes						
		Matched	Fraction	Matched	Fraction	Power	Matched	Fraction	Matched	Fraction	Power
alcohol	76	1 0.013	14 0.184	3 0.039	67 0.882	52.6					
aldehyde	12	0 0.000	0 0.000	0 0.000	0 0.000	0.0					
alkane	82	2 0.024	18 0.220	0 0.000	2 0.024	0.0					
alkene	174	5 0.029	96 0.552	3 0.017	136 0.782	46.0					
alkylbromide	20	0 0.000	0 0.000	0 0.000	0 0.000	0.0					
alkylchloride	41	0 0.000	2 0.049	0 0.000	1 0.125	1.0					
alkylfluoride	8	0 0.000	0 0.000	0 0.000	1 0.125	1.0					
alkyne	27	2 0.074	12 0.444	3 0.111	4 0.148	1.7					
amide	10	0 0.000	0 0.000	2 0.200	4 0.400	5.0					
amine	41	0 0.000	4 0.098	1 0.024	4 0.098	0.6					
aromatic	172	9 0.052	137 0.797	3 0.017	55 0.320	14.0					
arylchloride	23	0 0.000	1 0.043	0 0.000	0 0.000	0.0					
arylfluoride	13	0 0.000	0 0.000	0 0.000	0 0.000	0.0					
cycloalkane	39	1 0.026	2 0.051	0 0.000	0 0.000	0.0					
cycloalkene	11	0 0.000	1 0.091	0 0.000	0 0.000	0.0					
halogenated compound	105	0 0.000	11 0.105	2 0.019	6 0.057	0.0					
heterocyclic	57	6 0.105	8 0.140	1 0.018	5 0.088	0.3					
inorganic	3	0 0.000	0 0.000	0 0.000	0 0.000	0.0					
ketone	33	3 0.091	8 0.242	0 0.000	3 0.091	0.7					
nitro	10	0 0.000	0 0.000	0 0.000	2 0.200	2.0					
phenol	18	2 0.111	4 0.222	0 0.000	3 0.167	1.9					
thiol	16	0 0.000	7 0.438	1 0.062	11 0.688	14.2					
all molecules	670	22 0.033	— —	15 0.022	— —	12.6					

Table S7: Correlation of experimental spectra against database of theoretical spectra in the range 550–3846 cm$^{-1}$ for CGenFF sorted according to compound classification.
Table S8: Correlation of theoretical spectra against database of experimental spectra in the range 550–3846 cm\(^{-1}\) for GAFF-BCC sorted according to compound classification.

Class	N	Pearson \(r\)	Spearman \(\rho\)								
	Molecules	Classes	Molecules	Classes							
	Matched	Fraction	Matched	Fraction	Power	Matched	Fraction	Matched	Fraction	Power	
amide	10	2	0.200	4	0.400	5.0	2	0.200	2	0.200	2.0
amine	41	0	0.000	2	0.049	0.1	0	0.000	5	0.122	1.0
aromatic	172	2	0.012	104	0.605	21.1	6	0.035	110	0.640	25.2
arylchloride	23	0	0.000	4	0.174	2.1	0	0.000	0	0.000	0.0
arythiourea	13	0	0.000	1	0.077	0.6	0	0.000	1	0.077	0.6
cycloalkane	39	0	0.000	21	0.538	15.6	1	0.026	3	0.077	0.4
cycloalkene	11	0	0.000	1	0.091	0.8	0	0.000	1	0.091	0.8
halogenated compound	105	0	0.000	20	0.390	0.7	4	0.038	12	0.114	0.0
heterocyclic	57	0	0.000	13	0.228	3.1	2	0.035	15	0.263	4.2
inorganic	3	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
ketone	33	2	0.061	17	0.515	13.5	3	0.091	9	0.273	4.7
nitro	10	0	0.000	1	0.100	0.9	0	0.000	1	0.100	0.9
phenol	18	0	0.000	1	0.056	0.4	2	0.111	7	0.389	6.6
thiol	16	0	0.000	0	0.000	0.0	0	0.000	1	0.062	0.5
all molecules	670	14	0.021	—	—	11.4	30	0.045	—	—	33.1

Class	N	Pearson \(r\)	Spearman \(\rho\)								
	Molecules	Classes	Molecules	Classes							
	Matched	Fraction	Matched	Fraction	Power	Matched	Fraction	Matched	Fraction	Power	
alcohol	76	0	0.000	22	0.289	4.6	0	0.000	3	0.039	0.0
aldehyde	12	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
alkane	82	1	0.012	3	0.037	0.0	0	0.000	5	0.061	0.0
alkeene	174	0	0.000	15	0.086	0.0	1	0.006	109	0.626	23.5
alkylbromide	20	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
alkylchloride	41	0	0.000	3	0.073	0.3	0	0.000	0	0.000	0.0
alkylfluoride	8	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
alkyne	27	0	0.000	2	0.074	0.5	0	0.000	0	0.000	0.0
amide	10	0	0.000	1	0.100	0.9	0	0.000	3	0.300	3.4
amine	41	0	0.000	3	0.073	0.3	0	0.000	0	0.000	0.0
aromatic	172	0	0.000	35	0.203	0.0	1	0.006	38	0.221	0.1
arylchloride	23	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
arythiourea	13	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
cycloalkane	39	0	0.000	2	0.051	0.2	1	0.026	3	0.077	0.4
cycloalkene	11	0	0.000	1	0.091	0.8	0	0.000	0	0.000	0.0
halogenated compound	105	0	0.000	8	0.076	0.0	0	0.000	2	0.019	0.0
heterocyclic	57	0	0.000	11	0.193	2.1	0	0.000	4	0.070	0.1
inorganic	3	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
ketone	33	0	0.000	3	0.091	0.7	0	0.000	3	0.091	0.7
nitro	10	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
phenol	18	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
thiol	16	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
all molecules	670	1	0.001	—	—	0.2	3	0.004	—	—	1.1

S20
Table S9: Correlation of experimental spectra against database of theoretical spectra in the range 550–3846 cm$^{-1}$ for GAFF-BCC sorted according to compound classification.

Class	N	Molecules Matched	Fraction	Molecules Matched	Fraction	Pearson r	Spearman ρ
alcohol	76	0	0.000	4	0.053	0.0000	0.013
aldehyde	12	1	0.083	4	0.333	0.0000	0.000
alkane	82	0	0.000	3	0.037	0.0000	0.024
alkenes	174	0	0.000	119	0.684	30.8	0.000
alkythromide	20	0	0.000	1	0.050	0.0000	0.000
alkylchloride	41	0	0.000	4	0.098	0.6	0.000
alkylfluoride	8	0	0.000	2	0.250	2.4	0.000
alkyne	27	0	0.000		0.000	0.0000	0.000
amide	10	0	0.000		0.000	0.0000	0.000
amine	41	0	0.000		0.000	0.0000	0.000
aromatic	172	0	0.000	24	0.140	0.0	0.000
arylchloride	23	0	0.000		0.000	0.0000	0.000
arylfluoride	13	0	0.000		0.000	0.0	0.000
cycloalkane	39	0	0.000	3	0.077	0.4	0.000
cycloalkene	11	0	0.000	1	0.091	0.8	0.000
halogenated	105	0	0.000	25	0.238	1.7	1.010
heterocyclic	57	1	0.018	10	0.175	1.7	0.000
inorganic	3	0	0.000		0.000	0.0000	0.000
ketone	33	1	0.030	8	0.242	3.8	0.000
nitro	10	0	0.000		0.000	0.0	0.000
phenol	18	0	0.000		0.000	0.0	0.000
thiol	16	0	0.000		0.000	0.0	0.000
all molecules	670	2	0.003		0.000	0.6	0.012

Table S10: Correlation of theoretical spectra against database of experimental spectra in the range 550–3846 cm$^{-1}$ for GAFF-ESP sorted according to compound classification.

Class	N	Molecules Matched	Fraction	Molecules Matched	Fraction	Pearson r	Spearman ρ
alcohol	76	0	0.000	28	0.368	8.2	0.000
aldehyde	12	0	0.000		0.000	0	0.000
alkane	82	1	0.012	10	0.122	0.3	0.000
alkenes	174	0	0.000	17	0.098	0.0	0.000
alkythromide	20	0	0.000		0.000	0.0	0.000
alkylchloride	41	0	0.000		0.000	0.0	0.000
alkylfluoride	8	0	0.000		0.000	0.0	0.000
alkyne	27	0	0.000		0.000	0.0	0.000
amide	10	0	0.000		0.000	0.0	0.000
amine	41	0	0.000	4	0.098	0.6	0.000
aromatic	172	0	0.000	32	0.186	0.0	0.000
arylchloride	23	0	0.000		0.000	0.0	0.000
arylfluoride	13	0	0.000		0.000	0.0	0.000
cycloalkane	39	0	0.000	8	0.205	2.8	0.000
cycloalkene	11	0	0.000	1	0.091	0.8	0.000
halogenated	105	0	0.000	13	0.124	0.1	0.000
heterocyclic	57	0	0.000	4	0.070	0.1	0.000
inorganic	3	0	0.000		0.000	0.0	0.000
Class	N	Pearson r	Spearman ρ				
----	----	----------	----------				
		Molecules	Classes	Molecules	Classes		
		Matched	Fraction	Matched	Fraction	Power	Matched
ketone	33	0	0.000	1	0.030	0.1	0
nitro	10	0	0.000	0	0.000	0.0	0
phenol	18	0	0.000	0	0.000	0.0	0
thiol	16	0	0.000	2	0.125	1.3	0
all molecules	670	1	0.001	—	—	0.2	0

Table S11: Correlation of experimental spectra against database of theoretical spectra in the range 550–3846 cm\(^{-1}\) for GAFF-ESP sorted according to compound classification.

Class	N	Pearson r	Spearman ρ
		Molecules	Classes
		Matched	Fraction
alcohol	76	1	0.013
aldehyde	12	0	0.000
alkane	82	0	0.000
alkene	174	0	0.000
alkylbromide	20	0	0.000
alkylchloride	41	0	0.000
alkylfluoride	8	1	0.125
alkyne	27	0	0.000
amide	10	0	0.000
amine	41	0	0.000
aromatic	172	0	0.000
arylchloride	23	0	0.000
arylfluoride	13	0	0.000
cycloalkane	39	0	0.000
cycloalkene	11	0	0.000
halogenated compound	105	1	0.010
heterocyclic	57	0	0.000
inorganic	3	0	0.000
ketone	33	0	0.000
nitro	10	0	0.000
phenol	18	0	0.000
thiol	16	0	0.000
all molecules	670	1	0.001

Table S12: Correlation of theoretical spectra against database of experimental spectra in the range 550–3846 cm\(^{-1}\) for OPLS sorted according to compound classification.
Table S13: Correlation of experimental spectra against database of theoretical spectra in the range 550–3846 cm\(^{-1}\) for OPLS sorted according to compound classification.

Class	N	Pearson	Spearman								
		Molecules	Classes	Molecules	Classes						
		Matched	Fraction	Matched	Fraction	Power	Matched	Fraction	Matched	Fraction	Power
amide	10	0	0.000	0	0.000	0.0	2	0.200	3	0.300	3.4
amine	41	0	0.000	1	0.024	0.0	0	0.000	3	0.073	0.3
aromatic	172	0	0.000	134	0.779	45.7	2	0.012	43	0.250	0.2
aryl chloride	23	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
arythioflouride	13	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
cycloalkane	39	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
cycloalkene	11	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
halogenated compound	105	1	0.010	16	0.152	0.2	1	0.010	6	0.057	0.0
heterocyclic	57	0	0.000	15	0.263	4.2	0	0.000	0	0.000	0.0
inorganic	3	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
ketone	33	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
nitro	10	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
phenol	18	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
thiol	16	0	0.000	1	0.062	0.5	2	0.125	11	0.688	14.2
all molecules	670	2	0.003	—	—	0.6	6	0.009	—	—	3.2

S23
Table S14: Correlation of theoretical spectra against database of experimental spectra in the range 550–2000 cm$^{-1}$ for B3LYP/6-31G(2df,p) sorted according to compound classification.

Class	N	Molecules	Pearson r	Spearman ρ
		Matched Fraction	Matched Fraction	Power
alcohol	76	13 0.171	60 0.799	41.5
aldehyde	12	2 0.167	4 0.333	4.3
alkane	82	3 0.037	10 0.122	0.3
alkene	174	50 0.287	131 0.753	41.2
alkyllithium	20	0 0.000	6 0.300	4.7
alkylchlooride	41	2 0.049	14 0.341	7.1
alkylfluoride	8	1 0.125	3 0.375	4.0
alkyne	27	3 0.111	5 0.185	2.4
amide	10	2 0.200	5 0.500	6.8
amine	41	5 0.122	8 0.395	2.5
aromatic	172	46 0.267	104 0.605	21.1
vinyl	12	2 0.154	8 0.615	10.6
cyano	39	7 0.179	12 0.308	5.9
cyklene	11	5 0.455	5 0.455	6.3
halogenated compound	105	9 0.086	46 0.438	11.1
heterocyclic	57	27 0.474	34 0.596	21.5
inorganic	3	0 0.000	0 0.000	0.0
ketone	33	3 0.091	13 0.394	8.6
nitro	10	2 0.200	6 0.600	8.7
phenol	18	5 0.278	12 0.667	14.6
thiol	16	0 0.000	3 0.188	2.2
all molecules	670	126 0.188	—	217.2

Table S15: Correlation of experimental spectra against database of theoretical spectra in the range 550–2000 cm$^{-1}$ for B3LYP/6-31G(2df,p) sorted according to compound classification.

Class	N	Molecules	Pearson r	Spearman ρ		
		Matched Fraction	Matched Fraction	Power		
alcohol	76	15 0.197	60 0.799	41.5		
aldehyde	12	2 0.167	7 0.583	9.4		
alkane	82	5 0.061	48 0.585	22.6		
alkene	174	49 0.282	125 0.718	35.8		
alkyllithium	20	0 0.000	1 0.050	0.3		
alkylchlooride	41	0 0.000	8 0.395	2.5		
alkylfluoride	8	1 0.125	3 0.375	4.0		
alkyne	27	1 0.037	2 0.074	0.5		
amide	10	4 0.400	6 0.600	8.7		
amine	41	5 0.122	9 0.220	3.2		
aromatic	172	54 0.314	139 0.808	50.9		
vinyl	12	2 0.087	4 0.174	2.1		
cyano	39	4 0.308	11 0.846	17.0		
cyklene	11	5 0.128	6 0.154	1.6		
halogenated compound	105	11 0.105	34 0.324	4.8		
heterocyclic	57	25 0.439	33 0.579	20.3		
inorganic	3	0 0.000	0 0.000	0.0		
Class	N	Pearson r	Spearman ρ			
-------	---	------------	-------------			
	Molecules	Matched	Fraction	Matched	Fraction	Power
	Classes					
ketone	33	4	0.121	0.576	16.2	
nitro	10	3	0.300	0.500	6.8	
phenol	18	3	0.167	0.611	12.9	
thiol	16	0	0.000	0.062	0.5	
all molecules	670	131	0.196	—	228.2	
alcohol	76	5	0.066	0.671	29.6	
aldehyde	12	0	0.000	0.083	0.7	
alkane	82	3	0.037	0.305	5.0	
alkene	174	63	0.362	0.810	51.2	
alkythromide	20	3	0.150	0.500	10.1	
alkylchloride	41	1	0.024	0.195	2.5	
alkylthioamide	8	1	0.125	0.250	2.4	
alkyn	27	4	0.148	0.519	12.4	
amide	10	0	0.000	0.300	3.4	
amine	41	7	0.171	0.488	13.4	
aromatic	172	52	0.302	0.721	36.3	
arylchloride	23	1	0.043	0.087	0.7	
arylnitro	13	0	0.000	0.308	4.1	
cycloalkane	39	12	0.308	0.538	15.6	
cycloalkene	11	7	0.636	0.636	10.0	
halogenated compound	105	9	0.086	0.400	8.7	
heterocyclic	57	25	0.439	0.561	19.2	
inorganic	3	0	0.000	0.000	0.0	
ketone	33	1	0.030	0.485	12.2	
nitro	10	0	0.000	0.400	5.0	
phenol	18	2	0.111	0.556	11.2	
thiol	16	6	0.375	0.625	12.4	
all molecules	670	139	0.207	—	246.0	

Table S16: Correlation of theoretical spectra against database of experimental spectra in the range 550–2000 cm\(^{-1}\) for B3LYP/aug-cc-pVTZ sorted according to compound classification.

Class	N	Pearson r	Spearman ρ			
	Molecules	Matched	Fraction	Matched	Fraction	Power
	Classes					
alcohol	76	6	0.079	0.658	28.4	
aldehyde	12	0	0.000	0.000	0.7	
alkane	82	9	0.110	0.634	26.8	
alkene	174	60	0.345	0.759	42.1	
alkythromide	20	2	0.100	0.200	2.6	
alkylchloride	41	2	0.049	0.244	3.8	
alkylthioamide	8	1	0.125	0.375	4.0	
alkyn	27	3	0.111	0.333	6.2	

Table S17: Correlation of experimental spectra against database of theoretical spectra in the range 550–2000 cm\(^{-1}\) for B3LYP/aug-cc-pVTZ sorted according to compound classification.
Table S18: Correlation of theoretical spectra against database of experimental spectra in the range 550–2000 cm\(^{-1}\) for CGenFF sorted according to compound classification.

Class	N	Pearson r	Spearman ρ							
	Molecules	Classes	Molecules	Classes						
	Matched	Fraction	Matched	Fraction	Power	Matched	Fraction	Matched	Fraction	Power
amide	10	0.000	5	0.066	0.0	6	0.013	23	0.303	5.1
amine	41	0.146	24	0.585	18.4	0.659	36	0.878	37.9	
aromatic	172	0.320	134	0.779	45.7	0.733	162	0.942	81.3	
arylchloride	23	0.043	5	0.217	3.0	0.783	18	0.783	21.9	
arylfluoride	13	0.000	5	0.385	5.5	0.846	13	1.000	22.3	
cycloalkane	39	0.179	12	0.308	5.9	0.385	22	0.564	16.9	
cycloalkene	11	0.545	6	0.545	8.1	0.818	9	0.818	14.3	
halogenated compound	105	0.076	41	0.390	8.2	0.448	82	0.781	44.7	
heterocyclic	57	0.368	30	0.526	17.0	0.737	45	0.789	36.8	
inorganic	3	0.000	0	0.000	0.0	1.000	1	0.333	1.9	
ketone	33	0.061	12	0.364	7.6	0.485	24	0.727	24.0	
nitro	10	0.000	7	0.700	10.7	0.900	10	1.000	18.3	
phenol	18	0.167	10	0.556	11.2	0.667	15	0.833	20.7	
thiol	16	0.250	4	0.250	3.3	0.438	8	0.500	8.9	
all molecules	670	0.201	—	—	237.1	0.457	—	—	300.0	

S26
Table S19: Correlation of experimental spectra against database of theoretical spectra in the range 550–2000 cm\(^{-1}\) for CGenFF sorted according to compound classification.

Class	N	Molecules Matched	Pearson r	Molecules Matched	Spearman ρ
		Fraction		Fraction	
			Matched		Power
alcohol	76	0.000	13	0.171	1.1
aldehyde	12	0.000	0	0.000	0.0
alkane	82	0.012	4	0.049	0.0
alkeno	174	0.011	72	0.414	5.2
alkylbromide	20	0.000	0	0.000	0.0
alkylchloride	41	0.000	2	0.049	0.1
alkylfluoride	8	0.000	0	0.000	0.0
alkyne	27	0.000	0	0.000	0.0
amide	10	0.100	2	0.200	2.0
amine	41	0.000	4	0.098	0.6
aromatic	172	0.006	94	0.547	15.2
aryalkylide	23	0.000	3	0.130	1.4
aryalkylfluoride	13	0.000	0	0.000	0.0
cycloalkane	39	0.026	2	0.051	0.2
cycloalkene	11	0.000	0	0.000	0.0
halogenated compound	105	0.000	17	0.162	0.3
heterocyclic	57	0.018	8	0.140	1.0
inorganic	3	0.000	0	0.000	0.0
ketone	33	0.030	10	0.303	5.6
nitro	10	0.000	0	0.000	0.0
phenol	18	0.056	5	0.278	4.0
thiol	16	0.000	0	0.000	0.0
all molecules	670	0.012	—	—	5.0

Table S20: Correlation of theoretical spectra against database of experimental spectra in the range 550–2000 cm\(^{-1}\) for GAFF-BCC sorted according to compound classification.

Class	N	Molecules Matched	Pearson r	Molecules Matched	Spearman ρ					
		Fraction		Fraction						
			Matched		Power					
alcohol	76	0.013	7	0.092	0.1					
aldehyde	12	0.083	1	0.083	0.7					
alkane	82	0.024	16	0.195	1.4					
alkeno	174	0.006	33	0.190	0.0					
alkylbromide	20	0.000	1	0.050	0.3					
alkylchloride	41	0.000	4	0.098	0.6					
alkylfluoride	8	0.125	1	0.125	1.0					
alkyne	27	0.000	1	0.037	0.2					
amide	10	0.000	0	0.000	0.0					
amine	41	0.000	1	0.024	0.0					
aromatic	172	0.006	65	0.378	3.5					
aryalkylide	23	0.000	0	0.000	0.0					
aryalkylfluoride	13	0.000	0	0.000	0.0					
cycloalkane	39	0.000	1	0.026	0.0					
cycloalkene	11	0.000	2	0.182	1.9					
halogenated compound	105	0.010	24	0.229	1.5					
heterocyclic	57	0.018	13	0.228	3.1					
inorganic	3	0.000	0	0.000	0.0					
Class	N	Pearson r	Spearman ρ							
-----------	---	-------------	-----------------							
		Molecules Matched	Fractions Matched	Fractions	Power	Molecules Matched	Fractions Matched	Fractions	Power	
ketone	33	0.000	4	0.121	1.1	1	0.030	2	0.063	0.3
nitro	10	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
phenol	18	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
thiol	16	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
all molecules	670	5	0.007	—	—	2.4	8	0.012	—	5.0

Table S21: Correlation of experimental spectra against database of theoretical spectra in the range 550–2000 cm$^{-1}$ for GAFF-BCC sorted according to compound classification.

Class	N	Pearson r	Spearman ρ								
		Molecules Matched	Fractions Matched	Fractions	Power	Molecules Matched	Fractions Matched	Fractions	Power		
alcohol	76	0.000	18	0.237	2.7	0	0.000	58	0.763	38.7	
aldehyde	12	0.000	1	0.083	0.7	0	0.000	0	0.000	0.0	
alkane	82	2	0.024	40	0.488	15.2	0	0.000	25	0.305	5.0
alkene	174	0	0.000	61	0.351	2.3	0	0.000	40	0.230	0.1
alkylbromide	20	0	0.000	10	0.500	10.1	0	0.000	9	0.450	8.6
alkylchloride	41	1	0.024	8	0.195	2.5	1	0.042	19	0.463	12.2
alkylfluoride	8	0	0.000	0	0.000	0.0	0	0.000	1	0.125	1.0
alkyne	27	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
amide	10	0	0.000	2	0.200	2.0	0	0.000	0	0.000	0.0
amine	41	0	0.000	1	0.024	0.0	0	0.000	1	0.024	0.0
aromatic	172	0	0.000	22	0.128	0.0	0	0.000	29	0.169	0.0
arylchloride	23	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
arylfluoride	13	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
cycloalkane	39	0	0.000	5	0.128	1.1	0	0.000	2	0.051	0.2
cycloalkene	11	0	0.000	4	0.364	4.7	0	0.000	1	0.091	0.8
halogenated compound	105	1	0.010	37	0.352	6.1	1	0.010	37	0.352	6.1
heterocyclic	57	1	0.018	9	0.158	1.3	0	0.000	4	0.070	0.1
inorganic	3	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
ketone	33	1	0.050	10	0.303	5.6	0	0.000	0	0.000	0.0
nitro	10	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
phenol	18	0	0.000	0	0.000	0.0	0	0.000	1	0.056	0.4
thiol	16	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
all molecules	670	3	0.004	—	—	1.1	3	0.004	—	1.1	

Table S22: Correlation of theoretical spectra against database of experimental spectra in the range 550–2000 cm$^{-1}$ for GAFF-ESP sorted according to compound classification.
Class	N	Pearson r Molecules			Spearman ρ Molecules							
		Matched	Fraction	Matched	Fraction	Power	Matched	Fraction	Matched	Fraction	Power	
amide	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
amine	41	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
aromatic	172	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
arylchloride	23	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
arytfuoride	13	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
cycloalkane	39	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
cyctalkene	11	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
halogenated compound	105	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
heterocyclic	57	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
inorganic	3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ketone	33	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
nitro	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
phenol	18	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
thiol	16	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
all molecules	670	0.000	—	—	—	—	0.000	0.000	0.000	0.000	0.000	0.000

Table S23: Correlation of experimental spectra against database of theoretical spectra in the range 550–2000 cm$^{-1}$ for GAFF-ESP sorted according to compound classification.
Table S24: Correlation of theoretical spectra against database of experimental spectra in the range 550–2000 cm\(^{-1}\) for OPLS sorted according to compound classification.

Class	N	Pearson \(r\) Molecules Fraction	Pearson \(r\) Classes Fraction	Spearman \(\rho\) Molecules Fraction	Spearman \(\rho\) Classes Fraction	Power
		Matched		Matched		
alcohol	76	0.000	0.000	0.079	0.1	
aldehyde	12	0.000	0.000	0.000	0.000	0.000
alkanes	82	0.000	0.232	0.144	0.000	0.085
alkenes	174	0.000	25	0.000	0.000	0.155
alkylbromides	20	0.000	0.000	0.024	0.000	0.024
alkylchlorides	41	0.000	1.1	0.000	0.000	0.172
alkylfluorides	8	0.000	0.000	0.000	0.000	0.000
alkyne	27	0.000	0.000	0.000	0.000	0.000
amides	10	0.000	0.000	0.000	0.000	0.000
amines	41	0.000	1.024	0.000	0.000	0.000
aromatics	12	0.000	0.000	0.000	0.000	0.000
arylchlorides	23	0.000	0.000	0.000	0.000	0.000
arylfluorides	12	0.000	0.000	0.000	0.000	0.000
cycloalkanes	39	0.000	0.000	0.000	0.000	0.000
cycloalkenes	11	0.000	0.000	0.000	0.000	0.000
halogenated	23	0.000	0.000	0.000	0.000	0.000
heterocycles	41	0.000	0.000	0.000	0.000	0.000
inorganics	3	0.000	0.333	0.333	0.000	0.000
ketones	33	0.000	0.000	0.000	0.000	0.000
nitriles	10	0.000	0.000	0.000	0.000	0.000
phenols	18	0.000	0.000	0.000	0.000	0.000
thiols	16	0.000	0.000	0.000	0.000	0.000
all molecules	670	0.000	0.000	0.000	0.000	0.000

Table S25: Correlation of experimental spectra against database of theoretical spectra in the range 550–2000 cm\(^{-1}\) for OPLS sorted according to compound classification.

Class	N	Pearson \(r\) Molecules Fraction	Pearson \(r\) Classes Fraction	Spearman \(\rho\) Molecules Fraction	Spearman \(\rho\) Classes Fraction	Power					
		Matched		Matched							
alcohol	76	0.000	0.000	0.079	0.1						
aldehyde	12	0.000	0.000	0.000	0.000	0.000					
alkanes	82	0.000	0.232	0.144	0.000	0.085					
alkenes	174	0.000	25	0.000	0.000	0.155					
alkylbromides	20	0.000	0.000	0.024	0.000	0.024					
alkylchlorides	41	0.000	1.1	0.000	0.000	0.172					
alkylfluorides	8	0.000	0.000	0.000	0.000	0.000					
alkyne	27	0.000	0.000	0.000	0.000	0.000					
amides	10	0.000	0.000	0.000	0.000	0.000					
amines	41	0.000	1.024	0.000	0.000	0.000					
aromatics	12	0.000	0.000	0.000	0.000	0.000					
arylchlorides	23	0.000	0.000	0.000	0.000	0.000					
arylfluorides	12	0.000	0.000	0.000	0.000	0.000					
cycloalkanes	39	0.000	0.000	0.000	0.000	0.000					
cycloalkenes	11	0.000	0.000	0.000	0.000	0.000					
halogenated	23	0.000	0.000	0.000	0.000	0.000					
heterocycles	41	0.000	0.000	0.000	0.000	0.000					
inorganics	3	0.000	0.333	0.333	0.000	0.000					
ketones	33	0.000	0.000	0.000	0.000	0.000					
nitriles	10	0.000	0.000	0.000	0.000	0.000					
phenols	18	0.000	0.000	0.000	0.000	0.000					
thiols	16	0.000	0.000	0.000	0.000	0.000					
all molecules	670	0.000	0.000	0.000	0.000	0.000					
Class	N	Pearson r	Spearman ρ								
----------	----	-----------	------------								
Molecules	Matched	Fraction	Matched	Fraction	Power	Molecules	Matched	Fraction	Matched	Fraction	Power
ketone	33	0.000	0.000	0.000	0.000	0.000	0.000	2.061	0.300		
nitro	10	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.900		
phenol	18	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
thiol	16	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
all molecules	670	2.000	—	—	0.600	7.010	—	4.100	—		

Table S26: Correlation of theoretical spectra against database of experimental spectra in the range 550–1650 cm$^{-1}$ for B3LYP/6-31G(2df,p) sorted according to compound classification.

Class	N	Pearson r	Spearman ρ								
Molecules	Matched	Fraction	Matched	Fraction	Power	Molecules	Matched	Fraction	Matched	Fraction	Power
alcohol	76	0.010	0.046	0.605	23.9	0.289	0.580	0.763	38.7		
aldehyde	12	0.250	0.250	3.00		0.417	0.541	0.417	5.9		
alkane	82	0.037	0.134	0.40		0.049	0.293	0.45			
aldehyde	174	0.276	0.736	38.4		0.431	0.759	42.1			
alkylbromide	20	0.050	0.250	3.60		0.000	0.100	0.90			
alkylchloride	41	0.049	0.317	6.20		0.171	0.390	9.00			
alkylfluoride	8	0.000	0.000	0.00		0.259	0.556	13.9			
aldehyde	27	0.073	0.111	1.00		0.171	0.538	8.80			
amide	10	0.098	0.171	0.90		0.259	0.556	13.9			
aromatic	172	0.250	0.529	13.60		0.529	0.797	48.8			
alkylchloride	23	0.043	0.043	0.30		0.035	0.435	8.80			
alkylfluoride	13	0.154	0.462	7.10		0.538	0.737	12.1			
alkene	39	0.179	0.308	5.90		0.308	0.436	10.8			
alkylfluoride	11	0.455	0.455	6.30		0.455	0.874	64.2			
aldehyde	20	0.065	0.182	3.00		0.065	0.352	15.2			
aldehyde	57	0.544	0.544	18.10		0.737	12.2	32.2			
alcohol	3	0.000	0.000	0.00		0.000	1.000	1.90			
ketone	33	0.030	0.182	2.30		0.273	0.394	8.60			
nitro	10	0.100	0.100	0.90		0.600	1.000	18.3			
phenol	18	0.111	0.222	2.90		0.500	0.667	14.6			
thiol	16	0.000	0.062	0.50		0.312	0.562	10.60			
all molecules	670	0.170	—	—	191.2	0.339	—	300.0			

Table S27: Correlation of experimental spectra against database of theoretical spectra in the range 550–1650 cm$^{-1}$ for B3LYP/6-31G(2df,p) sorted according to compound classification.
Class	N	Molecules	Pearson r	Spearman ρ							
		Matched	Fraction	Matched	Fraction	Power	Matched	Fraction	Matched	Fraction	Power
amide	10	0	0.000	2	0.200	2.0	5	0.500	7	0.700	10.7
amine	41	4	0.098	7	0.171	1.9	23	0.561	30	0.732	27.2
aromatic	172	57	0.331	133	0.773	44.7	114	0.663	165	0.959	86.4
arylchloride	23	2	0.087	4	0.174	2.1	15	0.652	16	0.696	18.1
arylylfluoride	13	6	0.462	12	0.923	19.4	13	1.000	13	1.000	22.3
cycloalkane	39	3	0.077	4	0.103	0.7	5	0.500	7	0.636	10.0
cycloalkene	11	4	0.364	4	0.364	4.7	7	0.636	7	0.636	10.0
halogenated compound	105	12	0.114	34	0.324	4.8	46	0.438	68	0.648	28.9
heterocyclic	57	24	0.421	31	0.544	18.1	42	0.737	46	0.807	38.4
inorganic	3	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
ketone	33	1	0.030	5	0.152	1.7	12	0.364	14	0.424	9.8
nitro	10	3	0.300	9	0.500	6.8	9	0.900	10	1.000	18.3
phenol	18	5	0.278	10	0.556	11.2	9	0.500	14	0.778	18.5
thiol	16	0	0.000	1	0.062	0.5	4	0.250	4	0.250	3.3
all molecules	670	125	0.187	—	—	215.0	278	0.415	—	—	300.0

Table S28: Correlation of theoretical spectra against database of experimental spectra in the range 550–1650 cm⁻¹ for B3LYP/aug-cc-pVTZ sorted according to compound classification.
Table S29: Correlation of experimental spectra against database of theoretical spectra in the range 550–1650 cm\(^{-1}\) for B3LYP/aug-cc-pVTZ sorted according to compound classification.

Class	N	Molecules		Classes		Power
		Matched	Fraction	Matched	Fraction	
		Pearson r	Spearman ρ			
alcohol	76	0.066	0.632	26.1	0.711	33.3
aldehyde	12	0.333	0.333	4.3	0.750	15.4
alkane	82	0.122	0.634	26.8	0.585	22.6
alkene	174	0.351	0.753	41.2	0.920	75.3
alkythromide	20	0.100	0.200	2.6	0.450	8.6
alkylchloride	41	0.024	0.220	3.2	0.585	22.6
alkylfluoride	8	0.125	0.125	1.0	0.500	5.9
alkyne	27	0.111	0.370	7.3	0.630	17.0
amide	10	0.300	0.400	5.0	0.400	5.0
amine	41	0.146	0.463	12.2	0.902	40.0
aromatic	172	0.355	0.756	41.8	0.948	82.9
arylchloride	23	0.130	0.304	5.1	0.826	23.9
arylfluoride	13	0.000	0.385	5.5	1.000	22.3
cycloalkane	39	0.231	0.359	7.7	0.641	21.0
cycloalkene	11	0.636	0.636	10.0	0.818	14.3
halogenated compound	105	0.067	0.390	8.2	0.790	46.0
heterocyclic	57	0.421	0.561	19.2	0.789	36.8
inorganic	3	0.000	0.000	0.0	0.667	4.2
ketone	33	0.091	0.364	7.6	0.636	19.2
nitro	10	0.000	0.900	15.4	1.000	18.3
phenol	18	0.167	0.389	6.6	0.778	18.5
thiol	16	0.312	0.312	4.6	0.625	12.4
all molecules	670	0.221	—	—	266.4	

Table S30: Correlation of theoretical spectra against database of experimental spectra in the range 550–1650 cm\(^{-1}\) for CGenFF sorted according to compound classification.

Class	N	Molecules		Classes		Power
		Matched	Fraction	Matched	Fraction	
		Pearson r	Spearman ρ			
alcohol	76	0.000	0.013	0.0	0.250	3.2
aldehyde	12	0.000	0.000	0.0	0.000	0.0
alkane	82	0.000	0.037	0.0	0.073	0.0
alkene	174	0.006	0.247	0.2	0.494	10.5
alkythromide	20	0.000	0.000	0.0	0.050	0.3
alkylchloride	41	0.000	0.049	0.1	0.049	0.1
alkylfluoride	8	0.000	0.000	0.0	0.125	1.0
alkyne	27	0.000	0.100	0.9	0.200	2.0
amide	10	0.000	0.100	0.9	0.200	2.0
amine	41	0.000	0.098	0.6	0.103	0.7
aromatic	172	0.006	0.488	10.2	0.343	2.1
arylchloride	23	0.000	0.000	0.0	0.000	0.0
arylfluoride	13	0.000	0.000	0.0	0.000	0.0
cycloalkane	39	0.000	0.026	0.0	0.091	0.8
cycloalkene	11	0.000	0.000	0.0	0.086	0.0
halogenated compound	105	0.000	0.114	0.0	0.158	1.3
heterocyclic	57	0.018	0.088	0.3	0.000	0.0
inorganic	3	0.000	0.000	0.0	0.000	0.0

S33
Table S31: Correlation of experimental spectra against database of theoretical spectra in the range 550–1650 cm\(^{-1}\) for CGenFF sorted according to compound classification.

Class	N	Pearson \(r\)	Spearman \(\rho\)								
	Molecules	Classes	Molecules	Classes							
	Matched	Fraction	Matched	Fraction	Power	Matched	Fraction	Matched	Fraction	Power	
ketone	33	0	0.000	3	0.091	0.7	0	0.000	0	0.000	0.0
nitro	10	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
phenol	18	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
thiol	16	0	0.000	0	0.000	0.0	1	0.062	6	0.375	5.9
all molecules	670	1	0.001	—	—	0.2	15	0.022	—	—	12.6

Table S32: Correlation of theoretical spectra against database of experimental spectra in the range 550–1650 cm\(^{-1}\) for GAFF-BCC sorted according to compound classification.

Class	N	Pearson \(r\)	Spearman \(\rho\)								
	Molecules	Classes	Molecules	Classes							
	Matched	Fraction	Matched	Fraction	Power	Matched	Fraction	Matched	Fraction	Power	
alcohol	76	0	0.000	12	0.158	0.8	3	0.039	32	0.421	11.0
aldehyde	12	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
alkane	82	2	0.012	4	0.049	0.0	1	0.012	13	0.159	0.7
alkene	174	2	0.011	85	0.489	10.1	3	0.017	65	0.374	3.2
alkylbromide	20	0	0.000	0	0.000	0.0	3	0.150	3	0.150	1.7
alkylchloride	41	0	0.000	5	0.122	1.0	2	0.049	5	0.122	1.0
alkylfluoride	8	0	0.000	0	0.000	0.0	1	0.125	1	0.125	1.0
alkyne	27	0	0.000	0	0.000	0.0	0	0.000	1	0.037	0.2
amide	10	0	0.000	0	0.000	0.0	1	0.100	2	0.200	2.0
amine	41	0	0.000	12	0.293	5.4	2	0.049	14	0.341	7.1
aromatic	172	0	0.000	96	0.558	16.3	3	0.017	85	0.494	10.7
arylchloride	23	0	0.000	1	0.043	0.3	0	0.000	0	0.000	0.0
arylfluoride	13	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
cycloalkene	57	0	0.000	7	0.132	0.7	0	0.000	3	0.053	0.1
halogenated compound	105	0	0.000	19	0.181	0.5	4	0.038	23	0.219	1.2
heterocyclic	57	0	0.000	7	0.123	0.7	0	0.000	3	0.053	0.1
inorganic	3	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
ketone	33	0	0.000	2	0.061	0.3	0	0.000	0	0.000	0.0
nitro	10	0	0.000	0	0.000	0.0	0	0.000	0	0.000	0.0
phenol	18	0	0.000	4	0.222	2.9	2	0.111	4	0.222	2.9
thiol	16	0	0.000	0	0.000	0.0	0	0.000	1	0.062	0.5
all molecules	670	4	0.006	—	—	1.7	17	0.025	—	—	15.0

S34
Class	N	Pearson r		Spearman ρ		
		Molecules	Classes	Molecules	Classes	
		Matched	Fraction	Matched	Fraction	
					Power	
amide	10	0	0.000	0	0.000	0.0
amine	41	0	0.000	1	0.024	0.0
aromatic	172	1	0.006	71	0.413	5.2
arylchloride	23	0	0.000	0	0.000	0.0
aryfluoride	13	0	0.000	0	0.000	0.0
cycloalkane	39	0	0.000	1	0.026	0.0
cycloalkene	11	0	0.000	2	0.182	1.9
halogenated compound	105	0	0.000	1	0.181	0.5
heterocyclic	57	1	0.018	11	0.193	2.1
inorganic	3	0	0.000	0	0.000	0.0
ketone	33	0	0.000	2	0.061	0.3
nitro	10	0	0.000	0	0.000	0.0
phenol	18	0	0.000	0	0.000	0.0
thiol	16	0	0.000	0	0.000	0.0
all molecules	670	3	0.004	—	—	1.1

Table S33: Correlation of experimental spectra against database of theoretical spectra in the range 550–1650 cm\(^{-1}\) for GAFF-BCC sorted according to compound classification.

Class	N	Pearson r		Spearman ρ		
		Molecules	Classes	Molecules	Classes	
		Matched	Fraction	Matched	Fraction	
					Power	
alcohol	76	0	0.000	18	0.237	2.7
aldehyde	12	0	0.000	0	0.000	0.0
alkane	82	2	0.024	39	0.476	14.4
alkenes	174	1	0.006	51	0.293	0.7
alkylthiomide	20	0	0.000	10	0.500	10.1
alkylchloride	41	1	0.024	9	0.220	3.2
alkylchloride	8	0	0.000	0	0.000	0.0
alkynes	27	0	0.000	0	0.000	0.0
amide	10	0	0.000	0	0.000	0.0
amine	41	0	0.000	0	0.000	0.0
aromatic	172	0	0.000	45	0.262	0.3
arylchloride	23	0	0.000	0	0.000	0.0
aryfluoride	13	0	0.000	0	0.000	0.0
cycloalkane	39	0	0.000	3	0.077	0.4
cycloalkene	11	0	0.000	3	0.273	3.2
halogenated compound	105	1	0.010	35	0.333	5.2
heterocyclic	57	0	0.000	3	0.053	0.1
inorganic	3	0	0.000	0	0.000	0.0
ketone	33	0	0.000	0	0.000	0.0
nitro	10	0	0.000	0	0.000	0.0
phenol	18	0	0.000	0	0.000	0.0
thiol	16	0	0.000	0	0.000	0.0
all molecules	670	3	0.004	—	—	1.1

S35
Table S34: Correlation of theoretical spectra against database of experimental spectra in the range 550–1650 cm\(^{-1}\) for GAFF-ESP sorted according to compound classification.

Class	N	Molecules	Pearson \(r\)	Spearman \(\rho\)	
		Matched	Fraction	Matched Fraction	Matched Fraction
alcohol	76	0	0.000	3	0.039
		0	0.000	0	0.000
aldehyde	12	0	0.000	0	0.000
		1	0.000	12	0.146
alkane	82	0	0.000	19	0.109
		1	0.000	0	0.000
alkene	174	0	0.000	0	0.000
alkylthioamide	20	0	0.000	0	0.000
alkylchloride	41	0	0.000	2	0.049
alkylfluoride	8	0	0.000	0	0.000
alkyne	27	0	0.000	0	0.000
amide	10	0	0.000	0	0.000
amine	41	0	0.000	0	0.000
aromatic	172	0	0.000	67	0.390
arylchloride	23	0	0.000	0	0.000
arylfluoride	13	0	0.000	0	0.000
cycloalkane	39	0	0.000	0	0.000
cycloalkene	11	0	0.000	1	0.091
halogenated compound	105	0	0.000	13	0.124
heterocyclic	57	0	0.000	9	0.158
inorganic	3	0	0.000	0	0.000
ketone	33	0	0.000	1	0.030
nitro	10	0	0.000	1	0.100
phenol	18	0	0.000	0	0.000
thiol	16	0	0.000	0	0.000
all molecules	670	1	0.001	—	0.2

Table S35: Correlation of experimental spectra against database of theoretical spectra in the range 550–1650 cm\(^{-1}\) for GAFF-ESP sorted according to compound classification.

Class	N	Molecules	Pearson \(r\)	Spearman \(\rho\)	
		Matched	Fraction	Matched Fraction	Matched Fraction
alcohol	76	0	0.000	21	0.276
		0	0.000	0	0.000
aldehyde	12	0	0.000	0	0.000
		1	0.000	9	0.110
alkane	82	0	0.000	20	0.115
alkene	174	0	0.000	6	0.300
alkylthioamide	20	0	0.000	8	0.195
alkylchloride	41	0	0.000	0	0.000
alkylfluoride	8	0	0.000	0	0.000
alkyne	27	0	0.000	0	0.000
amide	10	0	0.000	0	0.000
amine	41	0	0.000	0	0.000
aromatic	172	0	0.000	59	0.343
arylchloride	23	0	0.000	0	0.000
arylfluoride	13	0	0.000	0	0.000
cycloalkane	39	0	0.000	1	0.026
cycloalkene	11	0	0.000	2	0.182
halogenated compound	105	0	0.000	33	0.314
heterocyclic	57	0	0.000	7	0.123
inorganic	3	0	0.000	0	0.000
Table S36: Correlation of theoretical spectra against database of experimental spectra in the range 550–1650 cm\(^{-1}\) for OPLS sorted according to compound classification.

Class	N	Pearson \(r\)	Molecules	Spearman \(\rho\)	Classes	Molecules	Classes
			Matched	Fraction	Matched	Fraction	Power
ketone	33	0	0	0.000	0	0.000	0.0
nitro	10	0	0	0.000	0	0.000	0.0
phenol	18	0	0	0.000	0	0.000	0.0
thiol	16	0	0	0.000	0	0.000	0.0
all molecules	670	0	0	0.000	0	0.000	0.0
alcohol	76	0	5	0.092	0	0.000	0.2
aldehyde	12	0	2	0.167	0	0.000	0.0
alkane	82	0	17	0.207	0	0.000	1.7
alkene	174	0	27	0.155	0	0.000	0.0
alkylthromide	20	0	0	0.000	0	0.000	0.0
alkylchloride	41	0	1	0.024	0	0.000	0.9
alkylthiouride	8	0	0	0.000	0	0.000	0.0
alkyne	27	0	3	0.111	0	0.000	0.5
amide	10	0	1	0.100	0	0.000	0.0
amine	41	0	1	0.024	0	0.000	0.0
aromatic	172	0	41	0.238	0	0.000	2.5
arylchloride	23	0	0	0.000	0	0.000	0.0
arylthiouride	13	0	0	0.000	0	0.000	0.0
cycloalkane	39	0	1	0.026	0	0.000	0.0
cycloalkene	11	0	0	0.000	0	0.000	0.0
halogenated compound	105	0	9	0.086	0	0.000	0.0
heterocyclic	57	0	9	0.158	1	0.018	1.7
inorganic	3	1	0.333	0.333	0	0.000	0.0
ketone	33	0	1	0.030	0	0.000	0.0
nitro	10	0	0	0.000	0	0.000	0.0
phenol	18	0	0	0.000	0	0.000	0.0
thiol	16	0	0	0.000	0	0.000	0.0
all molecules	670	1	—	—	0	0.006	1.7

Table S37: Correlation of experimental spectra against database of theoretical spectra in the range 550–1650 cm\(^{-1}\) for OPLS sorted according to compound classification.

Class	N	Pearson \(r\)	Molecules	Spearman \(\rho\)	Classes	Molecules	Classes
			Matched	Fraction	Matched	Fraction	Power
alcohol	76	0	5	0.066	0	0.000	0.0
aldehyde	12	0	2	0.167	0	0.000	1.7
alkane	82	0	36	0.439	12.0	0	0.0
alkene	174	1	26	0.149	0	0.000	2.4
alkylthromide	20	0	0	0.000	0	0.000	0.0
alkylchloride	41	0	1	0.024	0	0.000	0.1
alkylthiouride	8	0	0	0.000	0	0.000	1.0
alkyne	27	0	1	0.037	0.2	0	0.5

S37
Class	N	Molecules	Classes	Spearman ρ	Molecules	Classes
		Matched	Fraction	Matched	Fraction	Power
amide	10	0	0.000	0	0.000	0.000
amine	41	0	0.000	8	0.195	2.5
aromatic	172	0	0.000	64	0.372	3.3
arylchloride	23	0	0.000	0	0.000	0.0
arylfluoride	13	0	0.000	0	0.000	0.0
cycloalkane	39	0	0.000	0	0.000	0.0
cycloalkene	11	0	0.000	0	0.000	0.0
halogenated compound	105	0	0.000	23	0.219	1.2
heterocyclic	57	0	0.000	5	0.088	0.3
inorganic	3	0	0.000	0	0.000	0.0
ketone	33	0	0.000	0	0.000	0.0
nitro	10	0	0.000	0	0.000	0.0
phenol	18	0	0.000	0	0.000	0.0
thiol	16	0	0.000	0	0.000	0.0
all molecules	670	1	0.001	—	—	0.2

Table S38: Correlation of theoretical spectra against database of experimental spectra in the range 2000–3846 cm⁻¹ for B3LYP/6-31G(2df,p) sorted according to compound classification.
Table S39: Correlation of experimental spectra against database of theoretical spectra in the range 2000–3846 cm$^{-1}$ for B3LYP/6-31G(2df,p) sorted according to compound classification.

Class	N	Pearson r	Spearman ρ				
	Molecules	Clases	Matched	Fraction	Matched	Fraction	Power
alcohol	76	1	0.013	31	0.408	10.3	
aldehyde	12	0	0.000	3	0.250	3.0	
alkane	82	0	0.000	15	0.183	1.1	
alkenes	14	6	0.034	54	0.310	1.1	
alkylthiocyanide	20	0	0.000	3	0.150	1.7	
alkylhalides	41	0	0.000	12	0.293	5.4	
alkyne	8	0	0.000	0	0.000	0.0	
amide	10	0	0.000	0	0.000	0.0	
amine	41	3	0.073	10	0.244	3.8	
aromatic	172	9	0.052	114	0.663	28.2	
arylchloride	23	2	0.087	2	0.087	0.7	
arylfluoride	13	0	0.000	1	0.077	0.6	
cycloalkane	39	0	0.000	28	0.718	25.6	
cycloalkene	11	0	0.000	1	0.091	0.8	
halogenated compound	105	2	0.019	37	0.352	6.1	
heterocyclic	57	11	0.193	20	0.351	7.7	
inorganic	3	1	0.333	1	0.333	1.9	
ketone	33	1	0.030	2	0.061	0.3	
nitro	10	0	0.000	0	0.000	0.0	
phenol	18	0	0.000	2	0.111	1.1	
thiol	16	0	0.000	1	0.062	0.5	
all molecules	670	15	0.022	—	—	12.6	

Table S40: Correlation of theoretical spectra against database of experimental spectra in the range 2000–3846 cm$^{-1}$ for B3LYP/aug-cc-pVTZ sorted according to compound classification.

Class	N	Pearson r	Spearman ρ				
	Molecules	Clases	Matched	Fraction	Matched	Fraction	Power
alcohol	76	1	0.013	31	0.408	10.3	
aldehyde	12	0	0.000	3	0.250	3.0	
alkane	82	0	0.000	15	0.183	1.1	
alkenes	174	9	0.052	70	0.402	4.5	
alkylthiocyanide	20	0	0.000	1	0.050	0.3	
alkylhalides	41	0	0.000	9	0.220	3.2	
alkyne	27	2	0.074	5	0.185	2.4	
amide	10	1	0.100	2	0.200	2.0	
amine	41	0	0.000	7	0.171	1.9	
aromatic	172	8	0.047	93	0.541	14.6	
arylchloride	23	0	0.000	0	0.000	0.0	
arylfluoride	13	0	0.000	1	0.077	0.6	
cycloalkane	39	0	0.000	5	0.128	1.1	
cycloalkene	11	0	0.000	0	0.000	0.0	
halogenated compound	105	2	0.019	47	0.448	11.8	
heterocyclic	57	9	0.158	21	0.368	8.5	
inorganic	3	0	0.000	0	0.000	0.0	
Class	N	Pearson r	Spearman ρ				
---------------	---	-------------	-----------------				
		Molecules	Clases	Molecules	Clases		
		Matched	Fraction	Matched	Fraction		
		0	0.000	1	0.030	0.1	
ketone	33	0	0.000	0	0.000	0.0	
nitro	10	0	0.000	2	0.111	1.1	
phenol	18	0	0.000	0	0.000	0.0	
thiol	16	0	0.000	0	0.000	0.0	
all molecules	670	21	0.031	—	—	20.2	
		0	0.000	0	0.000	0.0	

Table S41: Correlation of experimental spectra against database of theoretical spectra in the range 2000–3846 cm$^{-1}$ for B3LYP/aug-cc-pVTZ sorted according to compound classification.

Class	N	Pearson r	Spearman ρ			
		Molecules	Clases	Molecules	Clases	
		Matched	Fraction	Matched	Fraction	
alcohol	76	1	0.013	37	0.487	15.1
aldehyde	12	1	0.083	3	0.250	3.0
alkane	82	1	0.012	17	0.207	1.7
alkene	174	10	0.057	68	0.391	4.0
aldehyde	20	0	0.000	1	0.050	0.3
alkylchloride	41	0	0.000	0	0.244	3.8
aldehy	8	0	0.000	0	0.000	0.0
amide	10	0	0.000	0	0.000	0.0
amine	41	0	0.000	11	0.268	4.6
aromatic	172	9	0.052	113	0.657	27.4
arylchloride	23	0	0.000	0	0.000	0.0
arylfluoride	13	1	0.077	1	0.077	0.6
cycloalkane	39	0	0.000	28	0.718	25.6
cycloalkene	11	2	0.182	3	0.273	3.2
halogenated compound	105	1	0.010	32	0.305	4.0
heterocyclic	57	8	0.140	19	0.333	6.9
inorganic	3	0	0.000	0	0.000	0.0
ketone	33	2	0.061	2	0.061	0.3
nitro	10	0	0.000	0	0.000	0.0
phenol	18	1	0.056	2	0.111	1.1
thiol	16	0	0.000	1	0.062	0.5
all molecules	670	21	0.031	—	—	20.2

Table S42: Correlation of theoretical spectra against database of experimental spectra in the range 2000–3846 cm$^{-1}$ for CGenFF sorted according to compound classification.
Class	N	Molecules Matched	Fraction	Classes Matched	Fraction	Power
amide	10	0	0	0	0	0.0
amine	41	0	0	6	0.146	1.4
aromatic	172	4	0.023	126	0.733	38.1
arylchloride	23	0	0	2	0.087	0.7
arylfluoride	13	0	0	0	0.000	0.0
cycloalkane	39	1	0.026	11	0.282	5.0
cycloalkene	11	0	0	2	0.182	1.9
halogenated compound	105	1	0.010	17	0.162	0.3
heterocyclic	57	3	0.053	7	0.123	0.7
inorganic	3	0	0	0	0.000	0.0
ketone	33	0	0	0	0.000	0.0
nitro	10	0	0	0	0.000	0.0
phenol	18	0	0	0	0.000	0.0
thiol	16	0	0	0	0.000	0.0
all molecules	670	5	0.021	—	—	11.4

Table S43: Correlation of experimental spectra against database of theoretical spectra in the range 2000–3846 cm⁻¹ for CGenFF sorted according to compound classification.
Table S44: Correlation of theoretical spectra against database of experimental spectra in the range 2000–3846 cm\(^{-1}\) for GAFF-BCC sorted according to compound classification.

Class	N	Pearson \(r\) Matched Fraction	Pearson \(r\) Clases Matched Fraction	Spearman \(\rho\) Matched Fraction	Spearman \(\rho\) Clases Matched Fraction
alcohol	76	0 0.000 0 0.000	0 0.000 3 0.039	0 0.000 3 0.039	0.0
aldehyde	12	0 0.000 0 0.000	0 0.000 0 0.000	0 0.000 0 0.000	0.0
alkane	82	1 0.012 14 0.171	0 0.000 0 0.000	0 0.000 0 0.000	3.9
alkene	174	0 0.000 31 0.178	1 0.006 143 0.822	53.4	53.4
alkylthromide	20	0 0.000 0 0.000	0 0.000 0 0.000	0 0.000 0 0.000	0.0
alkylchloride	41	0 0.000 5 0.122	0 0.000 0 0.000	0 0.000 0 0.000	0.0
alkylfluoride	8	0 0.000 0 0.000	0 0.000 0 0.000	0 0.000 0 0.000	0.0
alkyne	27	0 0.000 0 0.000	0 0.000 0 0.000	0 0.000 0 0.000	0.0
amide	10	0 0.000 0 0.000	0 0.000 0 0.000	0 0.000 0 0.000	0.0
amine	41	0 0.000 0 0.000	0 0.000 0 0.000	0 0.000 0 0.000	0.0
aromatic	172	0 0.000 23 0.134	0 0.000 22 0.128	0.0	0.0
arylchloride	23	0 0.000 0 0.000	0 0.000 0 0.000	0 0.000 0 0.000	0.0
arylfluoride	13	0 0.000 0 0.000	0 0.000 0 0.000	0 0.000 0 0.000	0.0
cycloalkane	39	0 0.000 9 0.211	0 0.000 0 0.000	0 0.000 0 0.000	0.0
cycloalkene	11	0 0.000 0 0.000	0 0.000 0 0.000	0 0.000 0 0.000	0.0
halogenated compound	105	0 0.000 38 0.362	0 0.000 0 0.000	0.0	0.0
heterocyclic	57	0 0.000 3 0.053	0 0.000 0 0.000	0 0.000 0 0.000	0.0
inorganic	3	0 0.000 0 0.000	0 0.000 0 0.000	0 0.000 0 0.000	0.0
ketone	33	0 0.000 3 0.091	0 0.000 0 0.000	0 0.000 0 0.000	0.0
nitro	10	0 0.000 0 0.000	0 0.000 0 0.000	0 0.000 0 0.000	0.0
phenol	18	0 0.000 0 0.000	0 0.000 0 0.000	0 0.000 0 0.000	0.0
thiol	16	0 0.000 0 0.000	0 0.000 0 0.000	0 0.000 0 0.000	0.0
all molecules	670	1 0.001 — —	1 0.001 — —	0.2	0.2

Table S45: Correlation of experimental spectra against database of theoretical spectra in the range 2000–3846 cm\(^{-1}\) for GAFF-BCC sorted according to compound classification.

Class	N	Pearson \(r\) Matched Fraction	Pearson \(r\) Clases Matched Fraction	Spearman \(\rho\) Matched Fraction	Spearman \(\rho\) Clases Matched Fraction
alcohol	76	0 0.000 4 0.053	0 0.000 38 0.500	16.0	16.0
aldehyde	12	0 0.000 5 0.417	0 0.000 3 0.250	3.0	3.0
alkane	82	0 0.000 6 0.073	0 0.000 30 0.366	7.9	7.9
alkene	174	0 0.000 122 0.701	0 0.000 8 0.046	0.0	0.0
alkylthromide	20	0 0.000 1 0.050	0 0.000 0 0.000	0.0	0.0
alkylchloride	41	0 0.000 0 0.000	0 0.000 3 0.073	0.3	0.3
alkylfluoride	8	0 0.000 0 0.000	0 0.000 0 0.000	0.0	0.0
alkyne	27	0 0.000 0 0.000	0 0.000 0 0.000	0.0	0.0
amide	10	0 0.000 0 0.000	0 0.000 0 0.000	0.0	0.0
amine	41	0 0.000 0 0.000	0 0.000 0 0.000	0.0	0.0
aromatic	172	0 0.000 19 0.110	0 0.000 22 0.128	0.0	0.0
arylchloride	23	0 0.000 0 0.000	0 0.000 0 0.000	0.0	0.0
arylfluoride	13	0 0.000 0 0.000	0 0.000 0 0.000	0.0	0.0
cycloalkane	39	0 0.000 2 0.051	0 0.000 0 0.000	0.2	0.2
cycloalkene	11	0 0.000 0 0.000	0 0.000 0 0.000	0.0	0.0
halogenated compound	105	0 0.000 5 0.048	0 0.000 0 0.000	0.0	0.0
heterocyclic	57	0 0.000 3 0.053	1 0.018 11 0.193	2.1	2.1
inorganic	3	0 0.000 0 0.000	0 0.000 1 0.333	1.9	1.9
Table S46: Correlation of theoretical spectra against database of experimental spectra in the range 2000–3846 cm\(^{-1}\) for GAFF-ESP sorted according to compound classification.

Class	N	Pearson r Molecules		Spearman ρ Molecules			
		Matched Fraction	Matched Fraction	Power	Matched Fraction	Matched Fraction	Power
ketone	33	0 0.000 2 0.061 0.3		0 0.000 0 0.000 0.0			
nitro	10	0 0.000 0 0.000 0.0		0 0.000 0 0.000 0.0			
phenol	18	0 0.000 0 0.000 0.0		0 0.000 0 0.000 0.0			
thiol	16	0 0.000 0 0.000 0.0		0 0.000 0 0.000 0.0			
all molecules	670	0 0.000 — — 0.0		3 0.004 — — 1.1			

Table S47: Correlation of experimental spectra against database of theoretical spectra in the range 2000–3846 cm\(^{-1}\) for GAFF-ESP sorted according to compound classification.

Class	N	Pearson r Molecules		Spearman ρ Molecules			
		Matched Fraction	Matched Fraction	Power	Matched Fraction	Matched Fraction	Power
alcohol	76	0 0.000 6 0.105 0.4		0 0.000 0 0.000 0.0			
aldehyde	12	0 0.000 1 0.003 0.7		0 0.000 0 0.000 0.0			
alkane	82	0 0.000 0 0.000 0.0		0 0.000 0 0.000 0.0			
alkene	174	1 0.006 105 0.603 20.8		0 0.000 14 0.030 0.1			
alkylbromide	20	0 0.000 0 0.000 0.0		0 0.000 0 0.000 0.0			
alkylfluoride	41	0 0.000 1 0.024 0.0		0 0.000 3 0.073 0.3			
alkyne	27	0 0.000 4 0.250 3.3		0 0.000 0 0.000 0.0			
amide	10	0 0.000 0 0.000 0.0		0 0.000 0 0.000 0.0			
amine	41	0 0.000 1 0.024 0.0		0 0.000 1 0.024 0.0			
aromatic	172	0 0.000 33 0.192 0.0		0 0.000 14 0.081 0.0			
aromatic	23	0 0.000 0 0.000 0.0		0 0.000 0 0.000 0.0			
arylchloride	13	0 0.000 0 0.000 0.0		0 0.000 0 0.000 0.0			
cycloalkane	39	0 0.000 15 0.385 8.7		0 0.000 0 0.000 0.0			
cycloalkene	11	0 0.000 0 0.000 0.0		0 0.000 0 0.000 0.0			
halogenated compound	105	0 0.000 31 0.295 3.6		0 0.000 0 0.000 0.0			
heterocyclic	57	0 0.000 6 0.105 0.4		0 0.000 0 0.000 0.0			
inorganic	3	0 0.000 0 0.000 0.0		0 0.000 0 0.000 0.0			
ketone	33	0 0.000 2 0.061 0.3		0 0.000 1 0.030 0.1			
nitro	10	0 0.000 0 0.000 0.0		0 0.000 0 0.000 0.0			
phenol	18	0 0.000 0 0.000 0.0		0 0.000 0 0.000 0.0			
thiol	16	0 0.000 4 0.250 3.3		0 0.000 0 0.000 0.0			
all molecules	670	0 0.000 — — 0.0		0 0.000 — — 0.0			
Class	N	Molecules	Pearson r	Spearman ρ			
--------------------	-----	-----------	-------------	-----------------			
		Matched	Fraction	Matched	Fraction	Power	
		Molecules		Classes	Power		
		Matched	Fraction		Matched	Fraction	Power
		Molecules					
amide	10	0	0.000	1	0.100	0.9	
amine	41	0	0.000	0	0.000	0.0	
aromatic	172	0	0.000	22	0.128	0.0	
arylchloride	23	0	0.000	0	0.000	0.0	
arylfluoride	13	0	0.000	0	0.000	0.0	
cycloalkane	39	0	0.000	5	0.128	1.1	
cycloalkene	11	0	0.000	0	0.000	0.0	
halogenated compound	105	0	0.000	10	0.095	0.0	
heterocyclic	57	0	0.000	6	0.105	0.4	
inorganic	3	0	0.000	0	0.000	0.0	
ketone	33	0	0.000	1	0.030	0.1	
nitro	10	0	0.000	0	0.000	0.0	
phenol	18	0	0.000	0	0.000	0.0	
thiol	16	0	0.000	0	0.000	0.0	
all molecules	670	1	0.001	—	—	0.2	

Table S48: Correlation of theoretical spectra against database of experimental spectra in the range 2000–3846 cm$^{-1}$ for OPLS sorted according to compound classification.
Table S49: Correlation of experimental spectra against database of theoretical spectra in the range 2000–3846 cm\(^{-1}\) for OPLS sorted according to compound classification.

Class	N	Molecules Matched	Fraction	Pearson \(r\)	Power	Molecules Matched	Classes Fraction	Spearman \(\rho\)	Power	
alcohol	76	0	0.000	0.053	0.0	1	0.015	48	0.632	26.1
aldehyde	12	0	0.000	0.083	0.7	0	0.000	0	0.000	0.0
alkane	82	0	0.000	0.146	0.5	0	0.000	34	0.415	10.5
aldehyde	174	1	0.006	0.787	47.0	0	0.000	10	0.057	0.0
alkyl bromide	20	0	0.000	0.100	0.9	0	0.000	0	0.000	0.0
alkyl fluoride	41	0	0.000	0.024	0.0	0	0.000	0	0.000	0.0
alkyne	8	1	0.125	0.125	1.0	1	0.125	3	0.375	4.0
amide	10	0	0.000	0	0.000	0	0.000	1	0.100	0.9
amine	41	1	0.024	0.024	0.0	0	0.000	3	0.073	0.3
aromatic	172	1	0.006	0.616	22.5	0	0.000	40	0.233	0.1
aryliclORIDE	23	0	0.000	0	0.000	0	0.000	1	0.043	0.3
aryldifluoride	13	0	0.000	0	0.000	0	0.000	1	0.077	0.6
cycloalkane	39	0	0.000	0.077	0.4	0	0.000	2	0.051	0.2
cycloalkene	11	0	0.000	0	0.000	0	0.000	0	0.000	0.0
halogenated compound	105	1	0.010	0.114	0.0	1	0.010	13	0.124	0.1
heterocyclic	57	0	0.000	0.246	3.6	0	0.000	3	0.053	0.1
inorganic	3	1	0.333	0.333	1.9	0	0.000	0	0.000	0.0
ketone	33	0	0.000	0	0.000	0	0.000	1	0.030	0.1
nitro	10	0	0.000	0	0.000	0	0.000	0	0.000	0.0
phenol	18	0	0.000	0.278	4.0	0	0.000	0	0.000	0.0
thiol	16	0	0.000	0	0.000	0	0.000	0	0.000	0.0
all molecules	670	4	0.006	—	—	1	0.007	—	2.4	

S5 List of Compounds

1,1,1,3,3,3–hexafluoro–2–propanol
1,1,1–trichloroethane
1,1,2,2–tetrabromoethane
1,1,2,2–tetrachloroethane
1,1,2–trichloroethane
1,1,3,3–tetramethylurea
1,1–biphenyl
1,1–dichloroethane
1,1–dichloroethene
1,1–difluoroethane

1,1–difluoroethene
1,1–dimethoxyethane
1,1–dimethylethanol
1,1–dimethylcyclohexane
1,1–dimethylcyclopropane
1,2,3,4,5–pentafluorobenzene
1,2,3,4–tetrafluorobenzene
1,2,3,4–tetrahydroxynaphthalene
1,2,3,4–tetramethylbenzene
1,2,3,6–tetrahydrobenzaldehyde
1,2,3–propanetriol
1,2,3–trichlorobenzene
1,2,3-trichloropropane
1,2,3-trimethylbenzene
1,2,3-trimethylcyclopent-1-ene
1,2,4,5-tetrafluorobenzene
1,2,4-trichlorobenzene
1,2,4-trifluorobenzene
1,2,4-trimethylbenzene
1,2-bis-2-methoxyethoxyethane
1,2-dibromobenzene
1,2-dibromoethane
1,2-dibromopropane
1,2-dichlorobenzene
1,2-dichloroethene
1,2-dichloroethane
1,2-dichloropropane
1,2-difluorobenzene
1,2-dimethoxybenzene
1,2-dimethoxyethane
1,2-ethanediamine
1,2-ethanedithiol
1,2-propylene-oxide
1,3-benzothiazole
1,3-dibromobenzene
1,3-dichlorobenzene
1,3-dichloropropane
1,3-difluorobenzene
1,3-dioxane
1,3-dioxolane
1,3-dithiane
1,3-oxazole
1-(3-pyridinyl)ethanone
1,3-thiazole
1,4-butanedithiol
1-(4-chlorophenyl)ethanone
1,4-dichlorobenzene
1,4-dichlorobutane
1,4-dichloro-trans-2-butene
1,4-difluorobenzene
1,5-dimethylcyclopent-1-ene
1,5-pentanediol
1-bromo-2-chloroethane
1-bromo-3-methylbutane
1-bromobutane
1-bromodecane
1-bromoheptane
1-bromohexane
1-bromonaphthalene
1-bromononane
1-bromoocytane
1-bromopentane
1-butanethiol
1-butanol
1-butene
1-butyne
1-chloro-1,1-difluoroethane
1-chloro-2-methylpropane
1-chloro-2-propanol
1-chloro-3-methylbutane
1-chloro-3-nitrobenzene
1-chloro-4-nitrobenzene
1-chloronaphthalene
1-chlorooctane
1-chloropentane
1-chloropropane
1-diethoxyphosphorylethene
1-ethoxy-2-(2-ethoxyethoxy)ethane
(1-ethoxyethyl)phosphoryl-oxethane
1-ethyl-1-methylcyclopentane
1-ethyl-2-methylbenzene
1-ethyl-3-methylbenzene
1-ethyl-4-methylbenzene
1-ethylcyclopent-1-ene
1-ethynaphthalene
1-fluoro-4-nitrobenzene
1-hexyne
1H-indene
1-methyl-2-nitrobenzene
1-methyl-3-nitrobenzene
1-methyl-4-propan-2-ylbenzene
1-methynaphthalene
1-methylpyrrole
1-methylpyrrolidin-2-one
1-nitropropane
1-octanol
1-pentene
1-pentyne
1-phenyl-1-propanol
1-phenylpropan-1-one
1-phenylpropan-2-one
1-propanethiol
1-propanol
1R,2R-1,2-dimethylcyclopropane
1R,2R,3S-1,2,3-trimethylcyclopentane
1R,2S-1,2-dimethylcyclohexane
1R,2S-1,2-dimethylcyclopentane
1R,2S-1,2-dimethylcyclopropane
1R,4R-1,4-dimethylcyclohexane
1S,2R-1-ethyl-2-methylcyclopropane
1S,2S-1,2-dimethylcyclohexane
1S,4S-1,4-dimethylcyclohexane
1Z,3Z-cycloocta-1,3-diene
1Z,5Z-cycloocta-1,5-diene
2,2,2-trichloroethanol
2,2,2-trifluoroethanol
2,2,3,3-tetrafluoro-1-propanol
2,2,3-trimethylbutane
2,2,4-trimethylpent-2-ene
2,2,4-trimethylpentane
2,2-dichloro-1,1,1-trifluoroethane
2,2-dimethylbutane
2,2-dimethylpentane
2,2-dimethylpropanenitrile
2-(2-ethoxyethoxy)ethylacetate
2,3,3-trimethylbut-1-ene
2,3,3-trimethylpentane
2,3,4-trimethylpent-2-ene
2,3,4-trimethylpentane
2,3-dihydro-1H-indene
2,3-dihydro-1H-indole
2,3-dihydrofuran
2,3-dimethylbut-1-ene
2,3-dimethylbutane
2,3-dimethylhex-1-ene
2,3-dimethylhex-2-ene
2,3-dimethylhexane
2,3-dimethylpent-1-ene
2,3-dimethylpent-2-ene
2,3-dimethylpentane
2,4,4-trimethylpent-1-ene
2,4,6-trichlorophenol
2,4-dichlorotoluene
2,4-dimethyl-3-pentanone
2,4-dimethylaniline 2-chloropyridine
2,4-dimethylhexane 2-chlorotoluene
2,4-dimethylpent-1-ene 2E-3,4-dimethylhex-2-ene
2,4-dimethylpent-2-ene 2E-3-methylhex-2-ene
2,4-dimethylpentan-3-ol 2E-4,4-dimethylhex-2-ene
2,4-dimethylpentane 2E-4,4-dimethylpent-2-ene
2,4-pentanediol 2E,4E-hexa-2,4-diene
2,4-pentanedione 2E-4-methylhept-2-ene
2,5-dimethylhexa-2,4-diene 2E-5-methylhex-2-ene
2,5-dimethylhex-1-ene 2E-oct-2-ene
2,5-dimethylhex-2-ene 2-ethoxyethanol
2,5-dimethylhexane 2-ethoxyethylacetate
2,5-norbornadiene 2-ethyl-1-hexanol
2,6-dimethylheptane 2-ethylbut-1-ene
2,6-dimethylpyridine 2-ethynaphthalene
2,6-xylenol 2-ethylphenol
2-acetyloxyethylacetate 2-fluoropyridine
2-aminoethanol 2-hexanone
2-bromobutane 2-hydroxyacetophenone
2-bromopentane 2-mercaptoethanol
2-bromopropene 2-methoxy-2-methylpropane
2-bromopyridine 2-methoxyethanol
2-butanol 2-methoxyphenol
2-butane 2-methyl-13-butadiene
2-butoxyethanol 2-methyl-1-butanol
2-butyne 2-methyl-2-pentanediol
2-chloro-2-methylpropane 2-methyl-2-butanol
2-chloroaniline 2-methyl-2-propanethiol
2-chlorobutanoic acid 2-methyl-2-propanol
2-chloroethanol 2-methyl-3-methylidenepentane
2-chloronaphthalene 2-methylaniline
2-chloropropane 2-methylbut-1-ene

S48
2-methylbut-2-ene 2Z-3-methylhex-2-ene
2-methyldecane 2Z-4,4-dimethylpent-2-ene
2-methylfuran 2Z-4-methylhex-2-ene
2-methylenept-2-ene 2Z-5,5-dimethylhex-2-ene
2-methylheptane 2Z-5-methylhex-2-ene
2-methylhex-1-ene 3,3-dimethyl-1-butene
2-methylhex-2-ene 3,3-dimethylbut-1-ene
2-methylmethoxybenzene 3,3-dimethylbutan-2-one
2-methylnonane 3,3-dimethylhex-1-ene
2-methyl-N-phenylmethylpropan-2-amine 3,3-dimethylhexane
2-methylpent-1-ene 3,3-dimethylpent-1-ene
2-methylpenta-1,4-diene 3,3-dimethylpentane
2-methylpentane 3,4-dichloro-1-butene
2-methylphenol 3,4-dihydro-2H-pyran
2-methylprop-2-enenitrile 3,4-dimethylhex-1-ene
2-methylpropanenitrile 3,4-dimethylhexane
2-methylpropanoic-acid 3,4-dimethylpent-1-ene
2-methylpropyl-cyclopentane 3,5-dichloroaniline
2-methylpyridine 3-amino-1-propanol
2-methylquinoline 3-bromopentane
2-nitropropane 3-bromopropene
2-pentanone 3-chloro-1,2-propanediol
2-phenylethanol 3-chlorophenol
2-propan-2-ylphenol 3-chloropropan-1-ol
2-propanethiol 3-chloropropene
2-propanol 3-chloropyridine
2-propenenitrile 3-chlorotoluene
2-propyn-1-ol 3E-2,2-dimethylhex-3-ene
2R-1-bromo-2-methylbutane 3E-2,5-dimethylhex-3-ene
2S,5R-2,5-dimethyltetrahydrofuran 3E-2-methylhex-3-ene
2-thiophene-carbonitrile 3E-2-methylpenta-1,3-diene
2Z-3,4,4-trimethylpent-2-ene 3E-3-methyl-1,3-pentadiene
2Z-3,4-dimethylpent-2-ene 3E-5-methylhept-3-ene
S49
3E-hept-3-ene
3E-oct-3-ene
3-ethyl-2-methylpent-1-ene
3-ethyl-2-methylpent-2-ene
3-ethyl-2-methylpentane
3-ethyl-3-methylpent-1-ene
3-ethyl-4-methylpent-1-ene
3-ethylcyclopent-1-ene
3-ethylhex-3-ene
3-ethylhexane
3-ethylpent-1-ene
3-ethylpentane
3-ethylpentan-3-ol
3-ethylpyridine
3-fluoropyridine
3-fluorotoluene
3-heptanol
3-heptanone
3-hexanol
3-hydroquinone
3-hydroxymethyl-pyridine
3-methoxypropanenitrile
3-methyl-1-butaneliol
3-methyl-1-butanol
3-methyl-1-butene
3-methyl-1-butylacetate
3-methyl-1-butyne
3-methyl-1-pentyne
3-methyl-2-butanone
3-methyl-2-cyclopenten-1-one
3-methyl-4-methylidenehexane
3-methylaniline
3-methylbenzenethiol
3-methylbutanoic-acid
3-methylbutyraldehyde
3-methylcyclopentanone
3-methylcyclopentanone
3-methylcyclopentene
3-methylheptane
3-methylhex-1-ene
3-methylhexane
3-methylideneheptane
3-methylpent-1-ene
3-methylpentane
3-methylpentane
3-methylphenol
3-methylpyridine
3-methylsulfolane
3-methylthiophene
3-pentanol
3-pentanone
3-phenylpropan-1-ol
3-pyridinecarboxaldehyde
3Z-2,5-dimethylhex-3-ene
3Z-2-methylhept-3-ene
3Z-2-methylhex-3-ene
3Z-3-methylhex-3-ene
3Z-3-methyl-penta-13-diene
4-1H-1,3-benzodiazol-2-yl-1,3-thiazole
4,4-dimethylhex-1-ene
4,4-dimethylpent-2-yne
4,5-dimethylhex-1-ene
4-bromoaniline
4-chlorobenzenemethanethiol
4-chlorobutanoic-acid
4-chlorophenol
4-chlorotoluene
4E-hexa-1,4-diene
4E-oct-4-ene
4-ethenylcyclohex-1-ene
4-ethylhex-1-ene
4-fluoroaniline
4-methoxybenzaldehyde
4-methyl-1-pentyne
4-methylaniline
4-methylheptane
4-methylhex-1-ene
4-methylhex-2-yne
4-methylmethoxybenzene
4-methyloctane
4-methylpent-1-ene
4-methylpenta-1,3-diene
4-methylpentan-2-one
4-methylphenol
4-methylpyridine
4R-4-methylhept-1-ene
4Z-oct-4-ene
5-methyl-2(3H)-furanone
5-methylhex-1-yne
6-methylhept-1-ene
7-methyloct-3-yne
8-hydroxyquinoline
9-chloroanthracene
9H-fluorene
acenaphthene
acetic anhydride
acetonitrile
acetophenone
acridine
allyl-acrylate
allylamine
ammonia
aniline
anisole
anthracene-9,10-dione
anthracene
azulene
benzaldehyde
benzamide
benzene
benzenethiol
benzonitrile
benzoyl-chloride
bis-2-chloroethyl-ether
bromochloromethane
bromoethane
bromoethene
but-3-en-2-ol
buta-1,3-diene
butanal
butane-1,2-diol
butane-2,3-diol
butane
butanoic-acid
butylbenzene
butylcyclopentane
butyl-ethyl-ether
butyl-formate
butyl-vinyl-ether
caprolactam
chloroacetyl-chloride
chlorocyclohexane-axial
chloroethane
dichloromethane
cyclohepta-1,3,5-triene
dicyclopenty1methanone
cyclohexa-1,3-diene
diethyl-carbonate
cyclohexa-1,4-diene
diethylene-glycol
cyclohexane
diethylene-glycol-monoethyl-ether
cyclohexanethiol
diethylene-glycol-monomethyl-ether
cyclohexanol
diethyl-malonate
cyclohexanone
diethyl-oxalate
cyclohexene
diethyl-sulfide
cyclohexylamine
diisopropyl-ether
cycloheptylamine
dimethoxymethane
cyclooctane
dimethylethanolamine
cyclooctatetraene
dimethylamine
cyclooctene
dimethyl-carbonate
cyclopent-2-en-1-one
dimethyl-disulfide
cyclopentanol
dimethylsulfide
cyclopentanone
dimethylsulfone
cyclopentene
dimethylether
cyclopropylamine
dimethyl-sulfate
cyclopropylmethylketone
dimethyl-sulfoxide
decan-1-ol
dipenty1-ether
decane
diphenyl-ether
dodecane
diphenylmethanone
dodecanethiol
diacetone-alcohol
dodecane
dibromomethane
dodecanetwo
dibutylamine
e-2-butenene
dibutyl-ether
e-3-methylpent-2-ene
dichloroacetic-acid
e-4-methylpent-2-ene
e-2-pent-2-ene
ethane
e-thanethiol
ethanol
ethoxymethoxyethane
ethyl−2−chloroacetate
ethyl−2−cyanoacetate
ethyl−2−hydroxybenzoate
ethyl−3−oxobutanoate
ethyl−acetate
ethyl−acrylate
ethylamine
ethylbenzene
ethyl−benzoate
ethyl−butanoate
ethylcyclobutane
ethylcyclohexane
ethylcyclopropane
ethyleneglycol
ethyl−formate
ethyl−propanoate
ethyl−propiolate
ethyl−trans−cinnamate
fluoranthene
fluorobenzene
fluoroethene
formamide
formic−acid
furfural
furfuryl−alcohol
hept−1−yne
heptan−1−ol
heptan−1−one
heptane−1−thiol
heptane
heptanoic−acid
hex−1−ene

hex−3−yne
hexa−1,5−diyne
hexadecane
hexene−1,6−dithiol
hexene−1−thiol
hexane
hexanoic−acid
indole
isobutane
isobutyl−acrylate
isobutyl−formate
isopentane
isopropylamine
isopropylbenzene
isopropylcyclopropane
isquinoline
methacrylic−acid
methane
methyl−acetate
methyl−acetoacetate
methyl−acrylate
methyl−benzoate
methyl−butanoate
methyl−chloroacetate
methylcyclobutane
methylcyclohexane
methylcyclopentane
methylcyclopentene
methylenecyclohexane
methyl−formate
methyl−hexanoate
methyl−isocyanate
methyl−isothiocyanate
methyl-methacrylate
methyl-octanoate
methylpropene
methyl-propionate
methyl-vinyl-ether
morpholine
m-phenylenediamine
m-tolualdehyde
n-aminoethyl-ethanolamine
naphthalen-1-amine
naphthalen-2-amine
naphthalene-1-carbaldehyde
naphthalene-2-carbaldehyde
naphthalene
N-buty lacetamide
N-butyl-N-phenylacetamide
neopentane
N-ethylacetamide
N-ethyl aniline
N-ethylmorpholine
nitrobenzene
nitroethane
nitromethane
N-methyl-1-phenylmethanamine
N-methylaniline
N-methylformamide
N-methyl-N-phenyl-formamide
N,N-diethylacetamide
N,N-diethylaniline
N,N-diethylformamide
N,N-dimethylacetamide
N,N-dimethylaniline
non-1-yn e
non-2-yn e
non-4-yn e
nonane
nonanoic-acid
N-pentylamine
N-prop-2-enylprop-2-en-1-amine
n-propyl-propionate
oct-1-ene
oct-1-yn e
oct-2-yn e
oct-3-yn e
oct-4-yn e
octane
octanoic-acid
o-ethylaniline
oxetane
oxolan-2-one
paraldehyde
pent-2-yn e
pentachloroethane
pentadecane
pentane
pentanoic-acid
pentlyl-formate
p-ethylphenol
phenanthrene
phenazine
phenetole
phenol
phenyl-acetate
phenylacetylene
phenylmethanethiol
phenylmethanol
phenylmethoxymethylbenzene
phthalan
p−hydroquinone
p−hydroxybenzoic−acid
piperidine−axial
prop−1−en−2−ylbenzene
prop−2−en−1−ol
prop−2−en−1−ylbenzene
propane−1,2−diol
propane−1,3−diol
propane
propanenitrile
propanoic−acid
propenal
propene
propyl−acetate
propylamine
propylbenzene
propylene−glycol−monomethyl−ether
propyl−formate
pyrene
pyrimididine
pyrrole
pyrrolidine−axial
quinoline
salicylaldehyde
sec−butyl−acetate
sec−hexyl−acetate
spiropentane
succinic−acid
succinimide
tert−butylamine
tert−butylbenzene
tetrahydrofuran
tetrahydrofurfuryl−alcohol
tetrahydropyran
thiane
thiobis−2−ethanol
trans−1,2−dichloroethene
trans−1,3−pentadiene
trans−1−propenylbenzene
trans−3−methylcyclohexanol
trans−decalin
trichloromethyl−benzene
trifluorooacetic−acid
trifluoromethyl−benzene
undecane
undecanenitrile
vinyl−acetate
Z−3−methylpent−2−ene
Z−4−methylpent−2−ene
Z−hex−2−ene
Z−hex−3−ene
Z−pent−2−ene