La Structure de A-Module induite par un A-Module de Drinfeld de Rang 2 sur un corps fini
The A-Module Structure Induced by a Drinfeld A-Module of Rank 2 over a Finite Field

Mohamed-Saadbouh MOHAMED-AHMED

Département de Mathématiques, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France

Résumé

Soit Φ un $\mathbb{F}_q[T]$-module de Drinfeld de rang 2, sur un corps fini L, extension de degré n d’un corps fini \mathbb{F}_q. Soit $P_\Phi(X) = X^2 - cX + \mu P^m$ (où $c \in \mathbb{F}_q[T]$, μ est un élément non nul de \mathbb{F}_q, m est le degré de l’extension L sur $\mathbb{F}_q[T]/P$, et P est la $\mathbb{F}_q[T]$-caractéristique de L et d le degré du polynôme P) le polynôme caractéristique du Frobenius F de L. On s’intéressera à la structure de $\mathbb{F}_q[T]$-module fini L^Φ induite par Φ sur L. Notre résultat principal est le parfait analogue du théorème de Deuring (voir [6]) pour les courbes elliptiques : soit $M = \mathbb{F}_q[T]_1 \oplus \mathbb{F}_q[T]_2$, où $I_1 = (i_1)$ et $I_2 = (i_2)$ (i_1, i_2 étant deux polynômes de $\mathbb{F}_q[T]$) tels que : $i_2 \mid (c - 2)$. Il existe alors un $\mathbb{F}_q[T]$-module de Drinfeld ordinaire Φ sur L de rang 2 tel que : $L^\Phi \simeq M$.

Pour citer cet article : Mohamed-saadbouh.Mohamed-Ahmed, C. R. Acad. Sci. Paris, Ser. I ... (...).

Abstract

Let Φ be a Drinfeld $\mathbb{F}_q[T]$-module of rank 2, over a finite field L. Let $P_\Phi(X) = X^2 - cX + \mu P^m$ (c an element of $\mathbb{F}_q[T]$, μ be a non-vanishing element of \mathbb{F}_q, m the degree of the extension L over the field $\mathbb{F}_q[T]/P$, and P the $\mathbb{F}_q[T]$-characteristic of L and d the degree of the polynomial P) the characteristic polynomial of the Frobenius F of L. We will be interested in the structure of finite $\mathbb{F}_q[T]$-module L^Φ induced by Φ over L. Our main result is analogue to that of Deuring (see [6]) for elliptic curves : Let $M = \mathbb{F}_q[T]_1 \oplus \mathbb{F}_q[T]_2$, where $I_1 = (i_1)$, $I_2 = (i_2)$ (i_1, i_2 being two polynomials of $\mathbb{F}_q[T]$) such that : $i_2 \mid (c - 2)$. Then there exists an ordinary Drinfeld $\mathbb{F}_q[T]$-module Φ over L of rank 2 such that : $L^\Phi \simeq M$. To cite this article: Mohamed-Saadbohu Mohamed-Ahmed , C. R. Acad. Sci. Paris, Ser. I ... (...).
1 Introduction

Let K a no empty global field of characteristic p (namely a rational functions field of one indeterminate over a finite field) together with a constant field, the finite field F_q with p^s elements. We fix one place of K, denoted by ∞, and call A the ring of regular elements away from the place ∞. Let L be a commutator field of characteristic p, $\gamma : A \to L$ be a ring A-homomorphism. The kernel of this A-homomorphism is denoted by P. We put $m = [L, A/P]$, the extension degree of L over A/P, and $d = \text{degP}$.

We denote by $L[\tau]$ the polynomial ring of τ, namely the Ore polynomial ring, where τ is the Frobenius of F_q with the usual addition and where the product is given by the commutation rule: for every $\lambda \in L$, we have $\tau \lambda = \lambda^q \tau$. A Drinfeld A-module $\Phi : A \to L[\tau]$ is a non trivial ring homomorphism and a non trivial embedding of A into $L[\tau]$ different from γ. This homomorphism Φ, once defined, define an A-module structure over the A-field L, noted L^Φ, where the name of a Drinfeld A-module for a homomorphism Φ. This structure of A-module depends on Φ and, especially, on his rank, for more information see [1], [2], and [3].

We will be interested in a Drinfeld A-module structure L^Φ in the case of rank 2, and we will prove that for an ordinary Drinfeld $F_q[T]$-module, this structure is always the sum of two cyclic and finite $F_q[T]$-modules: $A_{I_1} \oplus A_{I_2}$ where $I_1 = (i_1)$ and $I_2 = (i_2)$ such that i_1 and i_2 are two ideals of A, which verifies $i_2 | i_1$. Let $P_\Phi(X) = X^2 - cX + \mu P^m$, such that $\mu \in F_q^*$ and $c \in A$, the characteristic polynomial of Φ. We will show that $\chi_\Phi = I_1 I_2 = (P_\Phi(1))$, so if we put $i = \text{pgcd}(i_1, i_2)$, then $i^2 | P_\Phi(1)$. We will give an analogue of Deuring theorem for elliptic curves:

Theorem 1.1 Let $M = \frac{1}{i_1} \oplus \frac{1}{i_2}$, where $I_1 = (i_1)$, $I_2 = (i_2)$ and such that: $i_2 | i_1, i_2 | (c - 2)$. Then there exists an ordinary Drinfeld A-module Φ over L of rank 2, such that: $L^\Phi \simeq M$.

2 Structure de A-module de Drinfeld L^Φ

The Drinfeld A-module of rank 2 is of the form $\Phi(T) = a_1 + a_2 \tau + a_3 \tau^2$, where $a_i \in L$, $1 \leq i \leq 2$ and $a_3 \in L^*$. Let Φ and Ψ be two Drinfeld modules over an A-field L. A morphism from Φ to Ψ over L is an element $p(\tau) \in L[\tau]$ such that $p \Phi_a = \Psi_{aP}$ for all $a \in A$. A non-zero morphism is called an isogeny. We note that this is possible only between two Drinfeld modules with the same rank. The set of all morphisms forms an A-module denoted by $\text{Hom}_L(\Phi, \Psi)$.

(Mohamed-Saadbouh MOHAMED-AHMED).
In particular, if $\Phi = \Psi$ the L-endomorphism ring $\text{End}_L \Phi = \text{Hom}_L(\Phi, \Phi)$ is a subring of $L[\tau]$ and an A-module contained in $\Phi(A)$. Let \mathcal{L} be a fix algebraic closure of L, $\Phi_a(\mathcal{L}) := \Phi[a](\mathcal{L}) = \{ x \in \mathcal{L}, \Phi_a(x) = 0 \}$, and $\Phi_P(\mathcal{L}) = \cap_{a \in P} \Phi_a(\mathcal{L})$. We say that Φ is supersingular if and only if the A-module constituted by a P-division points $\Phi_P(\mathcal{L})$ is trivial, otherwise Φ is said an ordinary module, see [2].

Let Φ be a Drinfeld A-module of rank 2, over a finite field L and let P_Φ his characteristic polynomial, $P_\Phi(X) = X^2 - cX + \mu P^m$, such that $\mu \in \mathbb{F}_q^*$, and $c \in A$, where $\deg c \leq \frac{m \mu}{2}$ by the Hasse-Weil analogue in this case. Let χ be the Euler-Poincaré characteristic (i.e. it is an ideal from A). So we can speak about the ideal $\chi(L^\Phi)$, denoted henceforth by χ_Φ, which is by definition a divisor of A, corresponding for the elliptic curves to a number of points of the variety over their basic field. About the A-module structure L^Φ, we have the following result:

Proposition 2.1 The Drinfeld A-module Φ give a finite A-module structure L^Φ, which is on the form $\frac{A}{I_1} \oplus \frac{A}{I_2}$ where I_1 and I_2 are two ideals of A, such that : $\chi_\Phi = I_1 I_2$.

We put $I_1 = (i_1)$ and $I_2 = (i_2)$ (i_1 and i_2 two unitary polynomials in A).

Let $i = \text{pgcd} (i_1, i_2)$, it is clear by the Chinese lemma, that the no cyclicity of the A-module L^Φ, needs that I_1 and I_2 are not a prime between them, that means that $i \neq 1$, and since the relation $\chi_\Phi = I_1 I_2$, we will have : $i^2 \mid P_\Phi(1)$ ($\chi_\Phi = (P_\Phi(1))$).

In all the next of this paper, the condition above, will be considered verified, and more precisely we suppose that $I_2 \mid I_1$ (i.e : $i_2 \mid i_1$) otherwise L^Φ is a cyclic A-module and can be writing on this form A/χ_Φ.

Proposition 2.2 If $L^\Phi \simeq \frac{A}{I_1} \oplus \frac{A}{I_2}$, then $i_2 \mid c - 2$.

Proof : We know that the A-module structure L^Φ is stable by the endomorphisme Frobenius F of L. We choose a basis for A/χ_Φ, for which the A-module L^Φ will be generated by $(i_1, 0)$ and $(0, i_2)$. Let $M_F \in M_2(A/\chi_\Phi)$ the matrix of the endomorphism Frobenius F in this basis. Then $M_F = \begin{pmatrix} a & b \\ a_1 & b_1 \end{pmatrix}$, where $a, b, a_1, b_1 \in A/\chi_\Phi$.

Although since : $\text{Tr} M_F = a + b_1 = c$ and $M_F(i_1, 0) = (i_1, 0)$ and $M_F(0, i_2) = (0, i_2)$, we will have $a.i_1 \simeq i_1 (\mod \chi_\Phi)$ and then $a - 1$ is divisible by i_1, of same for $b_1.i_2 \simeq i_2 (\mod \chi_\Phi)$, that means that $b_1 - 1$ is divisible by i_2 and then : $c - 2 = a - 1 + b_1 - 1$ is divisible by i_2 (since we have always $i_2 \mid i_1$).
Let \(\rho \) be a prime ideal from \(A \), different from the \(A \)-characteristic \(P \), we define the finite \(A \)-module \(\Phi(\rho) \) as been the \(A \)-module \((A/\rho)^2\).

The discriminant of the \(A \)-order : \(A + g.O_{K(F)} \) is \(\Delta.g^2 \), where \(\Delta \) is the discriminant of the characteristic polynomial \(P_\Phi(X) = X^2 - cX + \mu P^m \). So each order is defined by this discriminant and will be noted by \(\mathcal{O}(\text{disc}) \), see [8], and [7]. It is clear, by the Propositions 2.1 that the inclusion \(\Phi(\rho) \subset L^\Phi \) implies that \(\rho^2 \mid P_\Phi(1) \) and \(\rho \mid c - 2 \). We have:

Proposition 2.3 Let \(\Phi \) be an ordinary Drinfeld \(A \)-module of rank 2, and let \(\rho \) an ideal from \(A \) different from the \(A \)-characteristic \(P \) of \(L \), such that \(\rho^2 \mid P_\Phi(1) \) and \(\rho \mid c - 2 \). Then \(\Phi(\rho) \subset L^\Phi \), if and only if, the \(A \)-order \(\mathcal{O}(\Delta/\rho^2) \subset \text{End}_L \Phi \).

To prove this proposition we need the following lemma:

Lemma 2.4 \(\Phi(\rho) \subset L^\Phi \) is equivalent to \(\frac{F-1}{\rho} \in \text{End}_L \Phi \).

Proof : We know that \(L^\Phi \) is satble by the isogeny \(F \) so \(L^\Phi = \text{Ker}(F - 1) \), and by definition \(\Phi(\rho) = \text{Ker}(\rho) \) (we confuse by commodity the ideal \(\rho \) with this generator in \(A \)), and we know by [2], Theorem 4.7.8, that for two isogenies, let by example \(F - 1 \) and \(\rho \), we have \(\text{Ker}(F - 1) \subset \text{Ker}(\rho) \), if and only if, there exists an element \(g \in \text{End}_L \Phi \) such that \(F - 1 = g.\rho \) and then \(\Phi(\rho) \subset L^\Phi \), if and only if, \(\frac{F-1}{\rho} = g \in \text{End}_L \Phi \).

We prove now the Proposition 2.3 :

Proof : Let \(N(\frac{F-1}{\rho}) \) the norm of the isogeny \(\frac{F-1}{\rho} \), which is a principal ideal generated by \(\frac{P_\Phi(1)}{\rho^2} \), and the trace (Tr) of this isogeny is \(\frac{c-2}{\rho} \) then we can calculate the discriminant of the \(A \)-module \(A[\frac{F-1}{\rho}] \) by :

\[
\text{disc}A(\frac{F-1}{\rho}) = Tr(\frac{F-1}{\rho})^2 - 4N(\frac{F-1}{\rho}) = \frac{c^2-4\mu P^m}{\rho^2} = \Delta/\rho^2 \Rightarrow
\]

\(O(\Delta/\rho^2) \subset \text{End}_L \Phi. \)

We suppose now that : \(O(\Delta/\rho^2) \subset \text{End}_L \Phi \) and we prove that \(\Phi(\rho) \subset L^\Phi \). The Order corresponding of the discriminant \(\Delta/\rho^2 \) is \(A[\frac{F-1}{\rho}] \) this means that : \(\frac{F-1}{\rho} \in \text{End}_L \Phi \) and so, by lemma 2.1 : \(\Phi(\rho) \subset L^\Phi \).

Corollary 2.5 If \(O(\Delta/\rho^2) \subset \text{End}_L \Phi \), then \(L^\Phi \) is not cyclic.

Proof : We know that \(\Phi(\rho) \) is not cyclic (since it is a \(A \)-module of rank 2), and then the necessary and sufficient conditions need for non cyclicitiy of \(A- \)
module \(L^\Phi \) are equivalent to the necessary and sufficient conditions to have \(\Phi(\rho) \subset L^\Phi \).

We can so prove the following important theorem:

Theorem 2.6 Let \(M = \frac{A}{I_1} \oplus \frac{A}{I_2} \), \(I_1 = (i_1) \) and \(I_2 = (i_2) \) such that: \(i_2 \mid i_1 \), \(i_2 \mid (c - 2) \). Then there exists an ordinary Drinfeld \(A \)-module \(\Phi \) over \(L \) of rank 2, such that: \(L^\Phi \simeq M \).

Proof: In fact, if we consider the Drinfeld \(A \)-module \(\Phi \), for which the characteristic of Euler-Poincare is giving by \(\chi_\Phi = I_1.I_2 \) and his endomorphism ring is \(O(\Delta/i_2^2) \) where \(\Delta \) is always the discriminant of the characteristic polynomial of the Frobenius \(F \). We remind that \(\Phi(\rho) \subset L^\Phi \) for every \(\rho \) an ideal, different from \(P \) and verify \(\rho^2 \mid P_\Phi(1) \) and \(\rho \mid (c - 2) \), if and only if, the \(A \)-order \(O(\Delta/\rho^2) \subset \text{End}_L\Phi \). Let now \(\rho = i_2 \). Since by construction the \(A \)-order \(O(\Delta/i_2^2) \subset \text{End}_L\Phi \) we have that \(\Phi(i_2) \simeq (A/i_2)^2 \subset L^\Phi \). We know that \(L^\Phi \) is included or equal to \(\Phi(\chi_\Phi) \simeq \frac{A}{\chi_\Phi} \oplus \frac{A}{\chi_\Phi} \), we have so: \(L^\Phi = \frac{A}{I_1} \oplus \frac{A}{I_2} \).

The above theorem can be proved by using the following conjecture:

Conjecture 2.7 Let \(M \in M_2(A/\chi_\Phi) \), \(P = P(\mod P, \chi_\Phi) \). We suppose : \(\det M = \overline{P^n} \), \(\text{Tr}(M) = c \) and \(c \nmid P \). There exists an ordinary Drinfeld \(A \)-module over a finite field \(L \) of rank 2, for which the Frobenius matrix associated, is \(M_F \), and such that: \(M_F = M \in M_2(A/\chi_\Phi) \).

We put the following matrix: \(M_F = \begin{pmatrix} c - 1 & i_1 \\ i_2 & -1 \end{pmatrix} \in M_2(A/\chi_\Phi) \).

We can see that the three conditions of the conjecture are realized then there exists an ordinary Drinfeld \(A \)-modules \(\Phi \) over \(L \) of rank 2, such that: \(L^\Phi \simeq M \).

References

[1] Bruno Angles. *One Some Subring of Ore Polynomials Connected with Finite Drinfeld Modules*, J. Algebra 181 (1996) no.2, 507–522.

[2] David Goss. *Basic Structures of Function Field Arithmetic*, Volume 35 Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer.

[3] V.G. Drinfeld. *Modules Elliptiques*. Math, USSR Sbornik, 94 (136), 594-627, 656, (1974).
[4] V.G. Drinfeld. *Modules Elliptiques II Math.* USSR Sbornik, 102 (144), No 2, 182-194, 325, (1977).

[5] Joseph. H. Silverman *The Arithmetic of Elliptic Curves.* Graduate Texts in Mathematics, 106.

[6] M. Deuring. *Die Typen der Multiplikatorenringe Elliptischer Funktionenkörper,* Abh. Math. sem. Univ. Hamburg, 14 (1941), 197-272.

[7] M. A. Tsfasman-S. G. Vladut. *Algebraic-Geometric Codes,* Mathematics and Applications, Dordrecht et al, (1991).

[8] R. Shoo. *Nonsingular Plane Cubic Curves Over Finite Fields,* Journal of combinatorial theory, series A 46, (1987), 183-211.

[9] I. Reiner. *Maximal Orders.* Academic Press, (1975).

[10] H.G. Ruck. *A Note on Elliptic Curves Over Finite Fields.* Math. Comp. 49, no179, (1987), 301–304.

[11] W. C. Waterhouse. *Abelian Varieties Over Finite Fields.* Ann. Sci. Ecole Norm. Sup2, (1969), 521-560.