Citation for published version (APA):
Monti, R. P., Lorenz, R., Hellyer, P., Leech, R., Anagnostopoulos, C., & Montana, G. (2015). Graph embeddings of dynamic functional connectivity reveal discriminative patterns of task engagement in HCP data. arXiv.
Graph embeddings of dynamic functional connectivity reveal discriminative patterns of task engagement in HCP data

Ricardo Monti*, Romy Lorenz†, Peter Hellyer‡, Robert Leech†, Christoforos Anagnostopoulos* and Giovanni Montana*†‡

*Department of Mathematics, Imperial College London
†Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London
‡Department of Biomedical Engineering, Kings College London

Abstract—There is increasing evidence to suggest functional connectivity networks are non-stationary. This has lead to the development of novel methodologies with which to accurately estimate time-varying functional connectivity networks. Many of these methods provide unprecedented temporal granularity by estimating a functional connectivity network at each point in time; resulting in high-dimensional output which can be studied in a variety of ways. One possible method is to employ graph embedding algorithms. Such algorithms effectively map estimated networks from high-dimensional spaces down to a low dimensional vector space; thus facilitating visualization, interpretation and classification. In this work, the dynamic properties of functional connectivity are studied using working memory task data from the Human Connectome Project. A recently proposed method is employed to estimate dynamic functional connectivity networks. The results are subsequently analyzed using two graph embedding methods based on linear projections. These methods are shown to provide informative embeddings that can be directly interpreted as functional connectivity networks.

Keywords—dynamic networks; Graph embedding; Brain decoding; visualisation; fMRI

I. INTRODUCTION

Traditional analysis of fMRI data focused primarily on studying the patterns of individual brain regions. Recently, there has been a growing interest in understanding relationships between distinct regions; referred to as brain connectivity. The subsequent study of brain connectivity has provided fundamental insights into the human brain [1].

A cornerstone in the understanding of brain connectivity is the notion that connectivity can be represented as a graph or network composed of a set of nodes interconnected by a set of edges. Nodes can represent anything from individual voxels to entire regions of interest (ROIs). Here each node is associated with its own time course of imaging data. This can subsequently be used to estimate the connections between nodes, defined as the edge structure of the network. In this work we consider estimating edge structure according to statistical dependencies between nodes. The resulting networks are referred to as functional connectivity networks.

Until recently, functional connectivity networks had been assumed to be stationary. This implied that only a global measure of dependency was considered for each pair of nodes. However, there is growing evidence to suggest that functional connectivity networks are highly non-stationary [2]. This has lead to mounting interest in quantifying dynamic changes in brain connectivity and has resulted in the proposal of several novel methodologies [2] [3] [4]. Such methodologies have provided unprecedented details relating to the restructuring and temporal evolution of functional connectivity networks. However, understanding and interpreting the high-dimensional output provided by such methods has posed novel statistical challenges. Many of these challenges arise from the fact that while graphs offer a rich representation of the data at hand, measuring similarities across multiple graphs remains non-trivial. One potential method with which to address this issue is to employ graph embedding techniques. Briefly, such methods look to map estimated graphs or networks down to a low-dimensional vector space. Such methods have been shown to be well-suited to the task of classifying functional networks; often referred to as brain decoding [5].

The objectives of this work are two fold. First, we present an extensive study of the working memory HCP data [6] using the recently proposed Smooth Incremental Graphical Lasso Estimation (SINGLE) algorithm [4]. Second, the estimated functional connectivity networks are then studied using two distinct graph embedding algorithms. The first is based on Principal Component Analysis (PCA) and is strongly related to the eigen-connectivity method developed in [3]. This embedding can be interpreted as a mapping from networks to a low-dimensional vector space that captures the maximal variability. The second approach corresponds to a novel supervised embedding algorithm which is based on Linear Discriminant Analysis (LDA). This algorithm can be interpreted as a mapping to a low-dimensional vector space that maximizes discriminatory power across the various tasks or states. The strengths of these embeddings is that they are both based on linear projections. As a result, the transformation described by the embeddings can be directly interpreted as a functional connectivity network.

The remainder of this paper is organised as follows: in Section II we describe two distinct graph embedding algorithms. These are applied to HCP data in Section III.

II. METHODS

Throughout this section it is assumed we have access to fMRI time series over a fixed set of p nodes for S subjects. We write \(X^{(s)} \in \mathbb{R}^{n \times p} \) for the 0th subject. We write \(X_i^{(s)} \in \mathbb{R}^{1 \times p} \) to denote the observed time series for the rth subject. We write \(X_i^{(s)} \in \mathbb{R}^{1 \times p} \) to denote the BOLD measurements at the ith observation for \(i = 1, \ldots, n\).

For each subject, we first look to estimate time-varying functional connectivity networks at each point in time. This is achieved using the recently proposed Smooth Incremental
Graphical Lasso Estimation (SINGLE) algorithm [4]. The resulting estimates over all subjects are then studied using two distinct graph embedding methods. The first method is strongly related to the eigen-connectivities method of [3] and is designed to provide a low-dimensional embedding which maximizes explained variance. The second method is a novel supervised embedding method based on Linear Discriminant Analysis (LDA). Here the objective is to obtain a low-dimensional embedding which provides the maximum discriminatory power between various classes (in the case of HCP data these will be the various tasks undertaken by the subject).

The remainder of this section is organized as follows: in Section II-A we describe the method used to obtain time-varying estimates of functional connectivity networks for each subject independently. In Sections II-B1 and II-B2 the two graph embedding methodologies are described.

A. Estimating non-stationary functional connectivity networks

In this section, we infer dynamic functional connectivity networks by estimating the corresponding precision (inverse covariance) matrix at each observation. Thus, for the ith subject we estimate a sequence of precision matrices \(\{\Theta_i^{(s)}\} = \{\Theta_i^{(s)}, \ldots, \Theta_i^{(s)}\} \). Here \(\Theta_i^{(s)} \in \mathbb{R}^{p \times p} \) encodes the partial correlation structure at the ith observation for subject s. It follows that we can encode \(\Theta_i^{(s)} \) as a graph \(G_i^{(s)} \) where the presence of an edge implies a non-zero entry in the corresponding entry of the precision matrix.

The SINGLE algorithm was employed to estimate time-varying precision matrices, \(\{\Theta^{(s)}\} \), for each of the S subjects independently. The SINGLE algorithm is able to accurately estimate functional connectivity networks by enforcing sparsity and temporal homogeneity constraints. Sparsity is introduced in order to ensure the estimation problem was well-posed as well as to remove spurious edges introduced by noise. Meanwhile, the introduction of temporal homogeneity is motivated by a desire to ensure changes in functional connectivity are only reported when strongly corroborated by evidence in the data. The SINGLE algorithm therefore seeks to find a balance between adequately describing the observed data while satisfying the aforementioned constraints by minimizing the following convex objective:

\[
\{\hat{\Theta}^{(s)}_i\} = \arg\min_{\Theta^{(s)}_i} \left\{ f(\Theta^{(s)}_i) + g_{\lambda_1, \lambda_2}(\Theta^{(s)}_i) \right\}. \tag{1}
\]

Here \(f(\Theta^{(s)}_i) = \sum_{t=1}^T -\log \det \Theta^{(s)}_i + \text{trace}(\hat{\Sigma}^{(s)}_i \Theta^{(s)}_i) \) is proportional to the sum of negative log-likelihoods where \(\hat{\Sigma}^{(s)}_i \) is the estimated covariance at time i. The penalty terms are enforced by the second term:

\[
g_{\lambda_1, \lambda_2}(\Theta^{(s)}_i) = \lambda_1 \sum_{i=1}^T ||\Theta^{(s)}_i||_1 + \lambda_2 \sum_{i=2}^T ||\Theta^{(s)}_i - \Theta^{(s)}_{i-1}||_1.
\]

Regularization parameters \(\lambda_1 \) and \(\lambda_2 \) each determine the extent of sparsity and temporal homogeneity respectively and can be tuned in a data-driven manner.

B. Graph embedding

Having obtained functional connectivity estimates, \(\{\Theta_i^{(s)}\} \) for all S subjects we turn to the problem of graph embedding. Graph embeddings methods allow us to represent graphs or networks in (potentially low-dimensional) vector spaces. Such methods are beneficial as there is no “standard” method to measure distances between graphs [7] while vectors are easily interpretable and can be studied in a variety of ways. Moreover, as we will discuss below, the embeddings studied here consist of linear projections and therefore yield a unique interpretation in terms of functional connectivity networks.

We begin by first calculating the Laplacian of each estimated functional connectivity network:

\[
L_i^{(s)} = (D_i^{(s)})^{-\frac{1}{2}} (D_i^{(s)} - \Theta_i^{(s)}) (D_i^{(s)})^{-\frac{1}{2}}, \tag{2}
\]

where \(D_i^{(s)} \) is a diagonal matrix containing the variance of each node respectively. It therefore follows that each \(L_i^{(s)} \) is fully characterized the its \(\binom{p}{2} \) upper-triangular entries. In the following sections we will use \(\{L_i^{(s)}\} \) directly to perform graph embedding. We define

\[
\text{vec}(L^{(s)}) = \mathbb{R}^{n \times \binom{p}{2}} \tag{3}
\]

as a matrix where the ith row corresponds to the vectorized upper-triangular entries of the Laplacian at the ith observation. The matrix, \(L \), consisting of all vectorized Laplacians across all subjects can subsequently be defined as:

\[
L = \left[\text{vec}(L^{(1)})^T, \ldots, \text{vec}(L^{(S)})^T \right]^T \in \mathbb{R}^{S \times n \times \binom{p}{2}}. \tag{4}
\]

This process is described in Figure [1a]. It follows that each column of \(L \) corresponds directly to one of the \(\binom{p}{2} \) possible edges. As both embeddings studied here consist of linear projections of \(L \) onto lower-dimensional subspaces, they can each be understood as a a linear combination of edges and interpreted as functional connectivity networks.

1) Unsupervised PCA-driven embedding:

Here we look to obtain a low-dimensional embedding that maximizes the amount of explained variance. Following from the method described in [3], we look to achieve this by applying Principal Component Analysis (PCA) to \(L \). This will yield the linear combination of edges that best summarize the variability in functional connectivity networks over time.

Formally, PCA is an unsupervised dimensionality reduction technique which produces a new set of uncorrelated variables. This is achieved by considering the k leading eigenvectors of the covariance matrix \(L^T L \), defined as the principal components \(P_k \in \mathbb{R}^{k \times \binom{p}{2}} \).

The principal components, \(P_k \), can be studied in two ways. By considering the entries of each principal component we are able to quantify the contribution of the corresponding edges. Edges which vary highly with a dataset can therefore be expected to provide a large contribution to the leading principal components. Moreover, the embedding produced by \(P_k \) is obtained as:

\[
P_k \cdot \text{vec}(L^{(s)}) \in \mathbb{R}^{k \times n}. \tag{5}
\]

This yields a k-dimensional graph embedding for each subject at each of the \(n \) observations.
2) Supervised LDA-driven embedding: While the PCA-driven embedding was motivated by understanding the components of functional connectivity which demonstrated the greatest variability, we may also be interested in understanding which functional networks are most discriminative across multiple tasks. As a result, a supervised learning approach is taken here.

We propose the use of LDA to learn the functional connectivity networks which are most discriminative between tasks. LDA is a simple and robust classification algorithm, but more importantly, LDA can also be interpreted as a linear projection. As a result, LDA reports the linear combination of edges which are most discriminative between tasks. These can subsequently be interpreted as a discriminative embedding which reports changes in functional connectivity induced by a given task.

In such a high-dimensional supervised learning problems it is of paramount importance to avoid overfitting. Two popular methods to guard against overfitting involve the introduction of regularization, thereby penalizing overly complex models which are more susceptible to overfitting, and cross-validation. Here a combination of both approaches was employed. First a variable screening procedure was applied, reducing the number of candidate variables (i.e., edges) to \(p' \) selected edges which is easily interpretable. The remaining \(p' \) selected edges are subsequently used to train an LDA classifier. Such a classifier will learn the linear projection of selected edges which is most discriminative across tasks. This projection will serve as our LDA-driven embedding.

The screening method employed in this work selected the most reproducible edges across all \(S \) subjects. This was achieved by fitting an independent LDA classifier for the data of each subject. Due to the limited observations per subject, regularization was introduced in the form of an \(l_2 \) penalty. As a result, an \(l_1 \) penalized LDA model was estimated for each subject. Such models can be estimated efficiently as described in [8] and provide the additional benefit of performing variable selection. It follows that the regularization parameter will play a fundamental role in the variable selection procedure and must therefore be carefully tuned. This issue was addressed via the use of a cross-validation scheme. The variables which were consistently selected across all subjects where retained and all others discarded.

Such a screening approach can be interpreted as performing stability selection, as described in [9], where the sub-sampling is performed by studying each subject independently. This serves to discard a large number of noisy and non-informative variables, yielding a Laplacian matrix, \(L' \in \mathbb{R}^{S \times p'} \), consisting of only selected variables which have demonstrated reproducible discriminative power across all subjects.

III. MATERIALS AND RESULTS

Working Memory (WM) task data from the Human Connectome Project [6] was studied with \(S = 206 \) of the 500 available subjects selected at random. During the tasks subjects were presented with blocks of trails consisting of either 0-back or 2-back WM tasks. For each subject both a LR and a RL acquisition dataset was studied, however, they were treated as separate scans and studied separately throughout. Thus a total of \(2 \times 206 = 412 \) datasets were studied. Preprocessing involved regression of Fristons 24 motion parameters from the fMRI data. Sixty-eight cortical and 16 subcortical ROIs were derived from the Desikan-Killiany atlas and the ASEG atlas, respectively. Mean BOLD timeseries for each of these 84 ROIs were extracted and further cleaned by regressing out timeseries sampled from white matter and cerebrospinal fluid. Finally, the extracted timescourses were high-pass filtering using a cut-off frequency of \(\frac{1}{130} \) Hz.

A. PCA-driven embedding results

The objective of PCA-driven embedding is to provide a low-dimensional embedding which captures a large portion of the variability present in the data. This was achieved in an unsupervised manner by considering the leading \(k = 2 \) principal components of Laplacian matrix \(L \). The leading \(k = 2 \) components were considered here as the emphasis lay on visualization, however further components could also be studied. In this section, both the LR and RL acquisitions for each subject were considered simultaneously as the goal was to understand variability across the entire population.

Figure [1b] shows the average embeddings across all \(S \) subjects. The background is colored to denote the task taking place at each point in time; green is used to denote 2-back WM task while purple denotes a 0-back WM task and a white background is indicative of rest. We note that in the case of both embeddings there is a clear oscillatory pattern which is strongly correlated with the task. Moreover, the two embeddings are lagged, with the second principal component embedding peaking immediately after the first.

The functional connectivity networks associated with these embeddings are shown in Figures [1c]. These networks have been thresholded to retain only 2% of edges with the largest absolute value. It can be seen that they reflect independent networks dynamics. The first component appears to reflect stronger inter-hemispheric coupling, particularly between motor regions. The second component appears to reflect increased intra-hemispheric long-range connections between frontal and parietal regions.

B. LDA-driven embedding results

The motivation behind the use of LDA-driven embedding is to provide an interpretable embedding which is highly discriminative across various tasks. In this section, we studied the contrast between the 0-back and 2-back WM tasks.

As noted previously, two datasets where available for each subject. In such a supervised learning task it is important to differentiate between the LR and RL acquisition datasets as they each employed a distinct task-design. The approach taken here was to build an LDA-driven embedding using only the LR acquisition datasets across all subjects and then validate this model using the unseen RL acquisition datasets. All \(\binom{p}{2} \) potential edges were screened as described previously and only those selected over 60% of the time were studied. This reduced the number of candidate edges to \(p' = 126 << \binom{p}{2} \).

1Note: only LR acquisition datasets plotted here, as the task design varied from LR to RL acquisitions.
Figure 1b shows the results of applying the LDA-driven embedding to the unseen RL acquisition datasets, averaged across all S subjects. We note the resulting embedding is strongly correlated with the onset of the 0-back WM task (denoted by the purple background). This serves as evidence that the estimated LDA-driven embedding is able to discriminate between the two WM tasks in a validation dataset.

The corresponding functional connectivity network associated estimate LDA-driven embedding is shown in Figure 1c. We note that the higher loading task condition (2-back WM task; characterized by red edges in Figure 1c)) is associated with stronger long-range inter-hemispheric connections.

IV. CONCLUSION

We present results from applying two graph embedding methods to HCP working memory task data for 206 subjects. Both of the embedding methods studied here are based on linear projections and therefore yield embeddings that are easily interpretable in terms of functional connectivity networks.

The first method studied here is closely related to the eigen-connectivities method introduced in [3]. Here PCA is employed to capture variability throughout a task across a population of subjects. The second graph embedding method studied corresponds to a novel supervised embedding algorithm. First, a screening step drastically reduces the total number of potential in order to yield interpretable embeddings and avoid overfitting. LDA is subsequently used to obtain an embedding that is discriminative across tasks.

In future, such approaches could be applied to the full range of task data provided by the HCP. In addition, we note that the SINGLE algorithm requires the input of two regularization parameters which will ultimately affect the results of the approaches discussed. Future work would involve studying the sensitivity of each method to the choice of such parameters.

ACKNOWLEDGEMENT

The data was provided by the Human Connectome Project.

REFERENCES

[1] E. Bullmore and O. Sporns. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature, 10:186–198, 2009.
[2] E. Allen, E. Damaraju, S. Plis, E. Erhardt, T. Eichele, and V. Calhoun. Tracking whole-brain connectivity dynamics in the resting state. Cerebral cortex, page bhs352, 2012.
[3] N. Leonardi, J. Richiardi, M. Gschwind, S. Simioni, J-M. Annoni, M. Schlup, P. Vuilleumier, and D. Van De Ville. Principal components of functional connectivity: A new approach to study dynamic brain connectivity during rest. NeuroImage, 83:937–950, 2013.
[4] R. P. Monti, P. Hellyer, D. Sharp, R. Leech, C. Anagnostopoulos, and G. Montana. Estimating time-varying brain connectivity networks from functional mri time series. NeuroImage, 103:427–443, 2014.
[5] J. Richiardi, H. Eryilmaz, S. Schwartz, P. Vuilleumier, and D. Van De Ville. Decoding brain states from fMRI connectivity graphs. NeuroImage, 56(2):616–626, 2011.
[6] J. S. Elam and D. Van Essen. Human connectome project. In Encyclopedia of Computational Neuroscience, pages 1–4. Springer, 2014.
[7] J. Richiardi, D. Van De Ville, K. Riesen, and H. Bunke. Vector space embedding of undirected graphs with fixed-cardinality vertex sequences for classification. In ICPP, pages 902–905. IEEE, 2010.
[8] L. Clemmensen, T. Hastie, D. Witten, and B. Ersbøll. Sparse discriminant analysis. Technometrics, 53(4), 2011.
[9] N. Meinshausen and P. Bühlmann. Stability selection. Journal of the Royal Statistical Society: Series B, 72(4):417–473, 2010.