**1. Introduction**

Since ancient times, several aromatic plants and spices have been used worldwide for culinary purposes aiming to modify, enhance or improve the flavour of foods. Besides their significance in gastronomy, several of them are also recognized for their empirical use in folk medicine due to their beneficial health effects. In fact, beyond their nutritional value, several of these plants are known to have many phytochemicals, including polyphenols and terpenoid compounds, which can significantly contribute to their biological activity.\(^1,2\) Currently, aromatic plants are also considered as a valuable source of natural products, many of them being secondary metabolites that have diverse applications in the chemical, pharmaceutical, cosmetic and food industries.\(^3\) Among such products, essential oils have long been used by the food industry primarily as flavouring agents.\(^4\) However, because several essential oils have a Generally Recognized as Safe (GRAS) status attributed by the Food and Drug Administration (FDA), presently, the possibility of their utilization as natural preservatives to extend the shelf-life of foods has been attracting the attention of the food industry.\(^5\) In fact, the addition of synthetic additives in foods is increasingly raising concerns in consumers about eventual harmful effects. In this regard, several studies focusing on different aromatic plants have suggested the use of essential oils from these plants, or their constituents, as promising alternatives to synthetic preservatives.\(^4,5\)

Among the several species of aromatic plants used in culinary products, *Levisticum officinale* W.J.D. Koch, also known as lovage, was once much recognized, being considerably used by the condiment’s industry\(^6\) and by households in soups, stews, meat dishes, etc. Nevertheless, with the exception of quite a few culinary chefs, nowadays, the use of lovage in gastronomy is most probably unknown to the vast majority of people. *L. officinale* is a plant native to south-western Asia and Southern Europe, being classified as a perennial dicotyledonous plant belonging to the Apiaceae family. As several other plants of this family, lovage is mainly used for its aromatic properties. Due to its strong taste like celery combined with...
parsley with a scent of aniseed and curry, it reminds us of some commercial condiments, thus being also commonly designated as “Maggi plant” in several countries. Consumers who know this plant frequently grow it in private gardens and use it as a natural substitute of commercial condiments or stocks. Besides their significance in culinary products, L. officinale has also been used as a medicinal plant due to its carminative, spasmyloytic and diuretic effects, being approved by the German Commission E for lower urinary tract infections. Moreover, the decoction extract prepared from the aerial parts of the plant has been described as an antiseptic for wounds. Despite the significance of this aromatic plant, so far only some studies concerning the volatile composition of the essential oil extracted from lovage grown in different countries are available in the literature. To the best of our knowledge, we are unaware of any previous studies regarding the nutritional value, composition in bioactive compounds and biological properties of lovage. Therefore, this study aims at addressing this gap, contributing towards expanding the knowledge on this plant species.

2. Materials and methods

2.1. Samples

Edible aerial parts (leaves and stems) of L. officinale were bought in October 2018 from a local supermarket in Porto, Portugal. The leaves and stems were weighed, lyophilized (FreeZone 4.5, Labconco, MO, USA), powdered (20 mesh) and stored at −20 °C for further analysis.

2.2. Preparation of extracts

Two types of extracts were prepared, namely a decoction and a hydroethanolic extract. To prepare the decoction, 3 g of lyophilized leaves and stems were extracted with 300 mL of deionized water by boiling for 5 min. After standing at room temperature for another 5 min, the mixture was filtered through Whatman filter paper no. 4 and then subjected to freeze-drying (FreeZone 4.5, Labconco, USA).

For the hydroethanolic extract, 3 g of the lyophilized leaves and stems were extracted with 90 mL of ethanol: water (80:20, v/v) under stirring at room temperature, for 1 hour. The mixture was filtered through Whatman paper filter no. 4 and the residue was re-extracted by repeating the procedure. After gathering the two filtrates, ethanol was eliminated under vacuum at 40 °C by using a rotary evaporator (Buchi R-2010). The obtained solution was frozen and further lyophilized.

2.3. Chemical parameters

2.3.1. Macronutrients and energetic value. The lyophilized leaves and stems were analysed for moisture, ash and macronutrients according to the AOAC methods. Briefly, the crude protein was evaluated by the macro-Kjeldahl method (N × 6.25) using an automatic distillation and titration unit (model Pro-Nitro-A, JP Selecta, Barcelona), the crude fat was determined by extraction with petroleum ether using Soxhlet apparatus, the ash content was determined by incineration at 550 ± 15 °C, and total carbohydrates were determined by calculating the difference. Energy was calculated according to the Atwater system: energy (kcal per 100 g) = 4 × (g proteins + g carbohydrates) + 9 × (g fat).

2.3.2. Free sugars. The content of free sugars was determined in the lyophilized sample and in both extracts. For the lyophilized sample, the procedure was performed as previously described while for the extracts 30 mg of each extract was dissolved in 2 mL of distilled water, filtered through a 0.22 μm disposable LC filter disk and directly injected on a chromatographic system consisting of a high performance liquid chromatograph coupled with a refraction index detector (Knauer, Smartline system 1000, Berlin, Germany) operating under the conditions described by Barros et al.11 Compounds were identified by comparison with standards and quantification was achieved using melilloses (25 mg mL⁻¹) as an internal standard. The obtained data were handled using the Clarity 2.4 software (DataApex, Prague, Czech Republic) and the results were expressed in g per 100 g of fresh weight (fw) or in mg g⁻¹ extract, for the lyophilized aerial parts or the extracts, respectively.

2.3.3. Organic acids. Organic acids were determined in the lyophilized sample and in both extracts. The lyophilized sample was extracted using a methodology previously described and optimized, while the extracts (10 mg) were redissolved in 1 mL of metaphosphoric acid (4.5%), filtered (0.22 μm) and directly analysed in the chromatographic system. The analysis was performed using an ultra-fast liquid chromatography system coupled with a diode-array detector (Shimadzu Corporation, Japan) as previously described. Compounds were identified and quantified by comparison of the retention time, spectra and peak area recorded at 245 nm for ascorbic acid and at 215 nm for the remaining compounds with those of commercial standards (oxalic, quinic, malic, ascorbic, citric and fumaric acids; Sigma-Aldrich, St Louis, USA). The results were processed using the software LabSolutions Multi LC-PDA (Shimadzu Corporation, Kyoto, Japan), and expressed in g per 100 g of fresh weight (fw) or in mg g⁻¹ extract, for the lyophilized aerial parts or the extracts, respectively.

2.3.4. Fatty acids. Fatty acid methyl esters (FAME) were prepared as previously described, and determined by gas–liquid chromatography with flame ionization detection, using a DANI model GC 1000 instrument. Separation was achieved on a Zebron–Kame column (30 m × 0.25 mm ID × 0.20 μm, Phenomenex, Lisbon, Portugal) operating under the following oven temperature program: initial temperature of 100 °C, held for 2 min, increase at 10 °C min⁻¹ to 140 °C, followed by a 3 °C min⁻¹ ramp to 190 °C, a 30 °C min⁻¹ ramp to 260 °C and held for 2 min. The carrier gas (hydrogen) flow-rate was 1.1 mL min⁻¹, measured at 100 °C. The injection split ratio was 1:50, with injector and detector temperatures being set at 250 °C and 260 °C, respectively. Fatty acid identification and quantification (Clarity DataApex 4.0 Software, Prague, Czech Republic) were performed by comparing the relative retention times of FAME peaks from samples with standards (standard mixture
2.3.5. **Tocopherols.** Tocopherols were determined in the lyophilized sample using a HPLC system coupled to a fluorescence detector (FP-2010, Jasco, Easton, USA) as previously described. Compounds were identified by comparison with tocopherol standards (α-, β-, γ-, and δ-isomers, Sigma, St Louis, MO, USA) and quantification was performed by the internal standard (IS) method using tocol (Matreya, Pleasant Gap, USA) as the IS. The results were processed using the Clarity 2.4 software and expressed in mg per 100 g fw.

2.3.6. **Volatile compounds.** Leaves and stems were subjected to essential oil extraction by hydrodistillation in Clevenger apparatus. The essential oil was separated from water and recovered directly without adding any solvent. After drying by adding anhydrous sodium sulphate, the oil was diluted in HPLC grade hexane and analysed in a GC-2010 Plus (Shimadzu) gas chromatography system with an AOC-20iPlus automatic injector and a mass spectrometry detector. Separation was achieved on an SH-RX-5 ms column (30 m × 0.25 mm × 0.25 μm; Shimadzu, USA) operating under the following conditions: initial oven temperature of 40 °C for 4 min, raised at 3 °C min⁻¹ to 175 °C, then at 15 °C min⁻¹ to 300 °C and held for 10 min. Helium was used as the carrier gas adjusted to a linear velocity of 30 cm s⁻¹. The injected sample was 1 μL, with a split ratio of 1:10. The injector temperature was set at 260 °C, with a transfer line at 280 °C and an ion source at 220 °C. The ionization energy was 70 eV and a scan range of 35–2000 m/z was used.

Identification of compounds was based on the NIST17 mass spectral library and by determining the linear retention index (LRI) based on the retention times obtained under identical conditions. When possible, comparisons were also performed with commercial standard compounds and with published data.

Quantification was performed and the results were expressed as the relative percentage of total volatiles using relative peak area values obtained directly from the total ion current (TIC) values.

2.3.7. **Phenolic compounds.** Phenolic compounds were analysed in both hydroethanolic and decoction extracts after they were re-dissolved in ethanol/water (80:20, v/v) and water, respectively, to a concentration of 5 mg mL⁻¹ and filtered (0.22 μm). The compounds were evaluated using a Dionex Ultimate 3000 UPLC system (Thermo Scientific, San Jose, USA) equipped with a quaternary pump and a diode array coupled in-series to an electrospray ionization mass spectrometry detector (LC-DAD-ESI/MS²) operating under the conditions described by Bessada et al. The identification of compounds was performed by comparison of data regarding retention time, UV-VIS spectra, mass spectra (full scan mode from m/z 100 to 1500) and fragmentation patterns of the sample compounds with those obtained from the available standards and/or reported data from the literature. For quantification, calibration curves constructed based on the UV-vis signal of the following standards, chlorogenic acid, apigenin-6-C-glucoside and quercetin-3-O-glucoside (Extrasynthese, Genay, France), were used. The results were expressed in mg g⁻¹ extract.

2.4. **Bioactive properties**

2.4.1. **Antioxidant activity.** Antioxidant properties were evaluated following different in vitro assays, namely, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity, reducing power, β-carotene bleaching inhibition, lipid peroxidation inhibition by evaluating thiobarbituric acid reactive substances (TBARS), and antihaemolytic activity evaluating the inhibition of oxidative haemolysis (OxHLIA). The hydroethanolic and decoction crude extracts were re-dissolved in ethanol: water (80:20, v/v) and water, respectively, at a final concentration of 5 mg mL⁻¹ and further diluted at different concentrations (in the range of 5–0.0391 mg mL⁻¹) to perform the different in vitro assays, as previously described.

The results of the assays were expressed as EC₅₀, corresponding to the extract concentrations providing 50% of antioxidant activity, with the exception for the reducing power assay for which EC₅₀ corresponds to 0.5 of absorbance at 690 nm. Trolox (Sigma-Aldrich, St Louis, USA) was used as a standard.

The antihaemolytic activity was evaluated by the oxidative haemolysis inhibition assay (OxHLIA) as previously described by Takebayashi et al., with some modifications. Blood was collected from healthy sheep and centrifuged at 1000g for 5 min at 10 °C. After discarding the plasma and buffy coats, the erythrocytes were first washed with NaCl (150 mM) and then three times with phosphate-buffered saline (PBS, pH 7.4). The erythrocyte pellet was then resuspended in PBS to obtain a concentration of 2.8% (v/v). Using a flat bottom 48-well microplate, 200 μL of the erythrocyte solution were mixed with 400 μL of PBS solution (control), antioxidant extracts dissolved in PBS, or water (for complete haemolysis). Trolox was used as a positive control. After pre-incubation at 37 °C for 10 min with shaking, 2,2′-azobis(2-methylpropionamide) dihydrochloride (AAPH, 160 mM in PBS, 200 μL) was added to each well and the optical density was measured at 690 nm every 10 min over 400 min while the microplate was re-incubated. The percentage of the erythrocyte population that remained intact (P) was calculated according to the equation: 

\[
P(\%) = \left( \frac{S_i - CH_0/CH_0}{S_i - CH_0} \right) \times 100,\] 

where \( S_i \) and \( S_0 \) correspond to the optical density of the sample at \( t \) and 0 min, respectively, and \( CH_0 \) is the optical density of the complete haemolysis at 0 min. The results were expressed as delayed time of haemolysis (Δt), which was calculated according to the equation: 

\[
\Delta t_{50} = \left( H_{50} \text{ (sample)} - H_{50} \text{ (control)} \right),
\]

where \( H_{50} \) is the time (min) corresponding to 50% haemolysis, graphically obtained from the haemolysis curve of each antioxidant sample concentration. The Δt values were then correlated with the extract concentrations, and from the correlation obtained, the extract concentration able to promote a Δt haemolysis delay was calculated. The results were given as IC₅₀ values (µg mL⁻¹) at Δt 60 and 120 min, i.e., the extract concent-
treatment required to keep 50% of the erythrocyte population intact for 60 and 120 min.

2.4.2. Hepatotoxicity and cytotoxic activity. Hepatotoxicity was evaluated by the Sulforhodamine B (Sigma-Aldrich, St Louis, USA) assay as described by Abreu et al., using a primary cell culture (PLP2) prepared from a porcine liver sample and different concentrations of the hydroethanolic or decoction extracts, ranging from 400 µg mL\(^{-1}\) to 6.5 µg mL\(^{-1}\). The anti-proliferative capacity of the extracts was also evaluated by the same method but using four human tumour cell lines (acquired from Leibniz-Institut DSMZ): MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer), HeLa (cervical carcinoma), and HepG2 (hepatocellular carcinoma). In both the cases, ellipticine (Sigma-Aldrich, St Louis, USA) was used as the positive control and the results were expressed as GI\(_{50}\) values (µg mL\(^{-1}\)), corresponding to the extract concentration that provides 50% of cell growth inhibition.

2.4.3. Antimicrobial activity. The antibacterial activity was evaluated by the broth microdilution method coupled to the rapid p-iodonitrotetrazolium chloride (INT) colorimetric assay as previously described. The microorganisms used were clinical isolates and included three Gram-positive bacteria (Enterococcus faecalis, Listeria monocytogenes and methicillin-resistant Staphylococcus aureus) and five Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Morganella morganii, Proteus mirabilis and Pseudomonas aeruginosa). The minimum inhibitory concentration (MIC) was determined through the colorimetric microbial viability based on the reduction of the INT dye (0.2 mg mL\(^{-1}\)). The minimum bactericidal concentration (MBC) was evaluated by plating the content of the microwells without coloration in the MIC assay. Different antibiotics were used as negative controls, namely ampicillin and imipenem for Gram-negative bacteria, and vancomycin and ampicillin for Gram-positive bacteria.

2.5. Statistical analysis

All the analyses were performed at least in triplicate with results being expressed as mean ± standard deviation (SD). SPSS Statistics software (IBM SPSS Statistics for Windows, v. 23.0) was used to analyse the existence of differences among the two extracts by applying Student’s t-test at a 5% confidence level.

3. Results and discussion

3.1. Chemical characterization of L. officinale leaves and stems

The results of the nutritional value, free sugars and organic acid composition obtained for the analysis of the aerial edible parts of lovage (leaves and stems) are shown in Table 1. Carbohydrates were the most abundant macronutrient, followed by proteins, with lipids being present in a minor amount. Comparing the obtained results with those reported for other commonly consumed species of the Apiaceae family, such as parsley (Petroselinum crispum), coriander (Coriandrum sativum) and celery (Apium graveolens), it can be seen that the values of the proximate composition are very similar, since all show a high amount of moisture, and carbohydrates and lipids as the major and minor groups of macronutrients. However, considering the values calculated for dry mass, while parsley, coriander and lovage have identical contents of carbohydrate (51.5 g per 100 g, 47.1 g per 100 g and 53.4 g per 100 g, respectively) and protein (24.2 g per 100 g, 27.3 g per 100 g, and 28.4 g per 100 g, respectively), celery is a bit less similar as it presents a higher carbohydrate content (65.0 g per 100 g) and a lower protein content (15.0 g per 100 g) compared to lovage. As expected, due to the high moisture content, the energetic value calculated for the edible parts of L. officinale was considerably low (38 kcal per 100 g fw). When searching the USDA food composition database using the words “lovage” or “levisticum” no results were obtained. Additionally, from the literature consulted, no information was found regarding the nutritional composition of lovage, with data being reported for the first time in the present study.

L. officinale presented a low content of free soluble sugars, with only 4 compounds being detected (Table 1). Among those, the predominant compounds were sucrose and glucose, followed by trehalose and smaller amounts of arabinose.

Organic acids have been evaluated in previous studies regarding different vegetables as they are known to affect the organoleptic characteristics of vegetables, such as their flavour (mainly acidity) and appearance, besides playing important roles in plant metabolism and in microbial interactions. Moreover, organic acids can also influence consumers’ acceptability, being frequently used in the food industry as acidifying compounds. A total of six organic acids were identified in the edible aerial parts of L. officinale (Table 1), with oxalic acid being the predominant compound, followed by quinic, citric

| Table 1: Nutritional value, energetic value, free sugars and organic acids of the edible aerial parts (leaves and stems) of L. officinale (mean ± SD, n = 3) |
|---------------------------------------------------------------|
| **Nutritional value**                                      | **Free sugars (g per 100 g fw)** | **Organic acids (g per 100 g fw)** |
| Moisture (%)                                                | Arabinose                          | Oxalic                        |
| 89.4 ± 0.1                                                   | 0.048 ± 0.001                      | 0.462 ± 0.001                 |
| Ash (g per 100 g fw)                                        | Glucose                            | Quinic                        |
| 1.52 ± 0.06                                                  | 0.090 ± 0.001                      | 0.37 ± 0.06                   |
| Proteins (g per 100 g fw)                                   | Sucrose                            | Malic                         |
| 3.01 ± 0.06                                                  | 0.092 ± 0.003                      | 0.203 ± 0.001                 |
| Lipids (g per 100 g fw)                                     | Trehalose                          | Shikimic                       |
| 0.37 ± 0.02                                                  | 0.073 ± 0.002                      | 0.012 ± 0.001                 |
| Carbohydrates (g per 100 g fw)                              | Total free sugars                  | Citric                        |
| 5.7 ± 0.2                                                    | 0.30 ± 0.01                        | 0.21 ± 0.04                   |
| Energy (kcal per 100 g fw)                                  | Total organic acids                | Fumaric                        |
| 38.0 ± 0.6                                                   | 1.26 ± 0.02                        | 0.003 ± 0.001                 |
| **Free sugars (g per 100 g fw)**                            |                                    | Total organic acids            |
| **Organic acids (g per 100 g fw)**                          |                                    | 1.26 ± 0.02                   |
| **Energy (kcal per 100 g fw)**                              |                                    |                                |
| **Carbohydrates (g per 100 g fw)**                          |                                    |                                |
| **Lipids (g per 100 g fw)**                                 |                                    |                                |
| **Proteins (g per 100 g fw)**                               |                                    |                                |
| **Ash (g per 100 g fw)**                                    |                                    |                                |
| **Moisture (%)**                                            |                                    |                                |
| **Total free sugars**                                       |                                    |                                |
| **Total organic acids**                                     |                                    |                                |
and malic acids. Regarding oxalic acid, known to promote kidney stones when taken in high amounts, compared to other vegetables, lovage presents a moderate content of oxalic acid (0.46 g per 100 g fw) being lower than that found in parsley raw leaves (1.7 g per 100 g), but higher than those in celery (0.19 g per 100 g) and coriander (0.01 g per 100 g).

The fatty acid profile is shown in Table 2, where it can be observed that a total of 19 fatty acids were identified, with polyunsaturated fatty acids (PUFA) representing the major group, followed by saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA). The edible aerial parts of lovage presented a predominant composition of unsaturated fatty acids, being particularly rich in omega-3 PUFA, mainly due to the high content of α-linolenic acid (48.7%). L. officinale leaves and stems also showed considerable amounts of linoleic (28.5%) and palmitic (10.0%) acids. To the best of our knowledge, this study reports for the first time the fatty acid profile of this vegetable species. Despite lipids being present in small amounts (Table 1), lovage presents an interesting fatty acid profile concerning omega-3 and also essential fatty acids. Several studies demonstrated that a deficient intake of these fatty acids can lead to various problems including dermatitis, immunosuppression, cardiac dysfunction, promotion of the development of some degenerative diseases and acceleration of the process of aging. In this sense, the consumption of L. officinale can be a contribution to a healthy diet owing to its favourable fatty acid profile (Table 2).

The results regarding vitamin E are also shown in Table 2. Vitamin E works in vivo as an antioxidant, preventing the spread of free radical damage caused by peroxyl radicals, particularly protecting PUFA. This prevention is possible because such radicals react 1000 times faster with vitamin E than with PUFA. Only two isoforms of tocopherols (α- and γ-) were identified and quantified in the leaves of L. officinale (Table 2), with α-tocopherol being the predominant compound. The low content of tocopherols is most possibly related to the low amount of lipids in the studied sample.

Considering that aromatic plants are generally characterized by a strong taste and an intense aroma, they are used to aromatize and enhance the flavor of dishes and frequently allow the use of a reduced amount of sodium chloride, therefore imparting health benefits beyond their composition in bioactive compounds. Due to its intense and pungent organoleptic characteristics, which somehow reminds us of the flavor of some commercial seasonings, lovage extracts were once used as a raw material in the production of condiments to impart a seasoning-like flavor and is still used by some consumers, in the plant form, as a healthier substitute of commercial seasonings. Therefore, the volatiles profile of the essential oil obtained by hydrodistillation of the aerial parts of the lovage sample grown in Portugal was studied, and is listed in Table 3. The GC-MS analysis allowed identification of 99.1% of the compounds, corresponding to a total of 44 identified compounds. Monoterpenic hydrocarbons and oxygenated monoterpenes were the two main groups, each representing approximately 37% of the identified compounds, with phthalides also present in high amount (24.3%). α-Terpinyl acetate was found to be the major compound (33.6%), followed by p-cymene (20.5%), (Z)-ligustilide (22.2%), β-phenylterpine (4.7%) and myrcene (4.2%). When comparing the obtained composition, in terms of most abundant compounds, with data previously published for the volatile composition of L. officinale grown in Iran, Moldavia, Lithuania, and Estonia, in general, the chemical profile of the Portuguese grown sample was considerably different. Despite the similarity to other oils that also presented α-terpinyl acetate as the major compound, a higher content has been previously reported in the aerial parts (52.4%), leaves (55.8% and 49.7% to 70%), and stems (49.1% to 69.0%) of lovage. Other studies reported different major compounds, namely pentyl cyclohexa-1,3-diene (28.1%) and γ-terpinene (14.5%). Additionally, in the sample grown in Portugal, the second most abundant compound was found to be p-cymene (20.5%), which has not been identified or has been reported in minor amounts (ranging from 0.1% to 4.3%) in the previous studies. In the present work, different phthalides were detected, with the most abundant being (Z)-ligustilide (22.2%). This result is in good agreement with previous studies that reported also a considerable amount of this compound in the essential oil of lovage, ranging from 4.4% to 29.7%, Phthalides are a relatively small group of

| Table 2  Composition of fatty acids (relative %) and tocopherols (mg per 100 g fw) of the edible aerial parts (leaves and stems) of L. officinale (mean ± SD, n = 3) |
|-----------------------------------------------|-----------------|
| Fatty acids                  | Relative %      |
| C8:0                         | 0.067 ± 0.004   |
| C10:0                        | 0.076 ± 0.006   |
| C12:0                        | 0.117 ± 0.004   |
| C14:0                        | 0.63 ± 0.02     |
| C15:0                        | 0.237 ± 0.008   |
| C16:0                        | 10.0 ± 0.3      |
| C16:1                        | 1.05 ± 0.04     |
| C17:0                        | 0.162 ± 0.001   |
| C18:0                        | 1.44 ± 0.08     |
| C18:1n9                      | 1.83 ± 0.05     |
| C18:2n6                      | 28.5 ± 0.5      |
| C18:3n3                      | 48.7 ± 0.6      |
| C20:0                        | 0.388 ± 0.001   |
| C20:1                        | 0.043 ± 0.004   |
| C20:2                        | 1.38 ± 0.03     |
| C20:3                        | 0.063 ± 0.001   |
| C21:0                        | 0.44 ± 0.02     |
| C22:0                        | 1.03 ± 0.04     |
| C23:0                        | 3.84 ± 0.02     |
| C24:0                        | 0.067 ± 0.004   |
| SFA                          | 18.0 ± 0.2      |
| MUFA                         | 2.93 ± 0.09     |
| PUFA                         | 79.0 ± 0.1      |
| α-6                          | 29.9 ± 0.3      |
| α-3                          | 49.2 ± 0.41     |
| Tocopherols (mg per 100 g fw) |                 |
| α-Tocopherol                 | 0.773 ± 0.004   |
| γ-Tocopherol                 | 0.028 ± 0.001   |
| Total tocopherols            | 0.80 ± 0.01     |

SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; and PUFA: polyunsaturated fatty acids.
natural compounds confined to various plant families and some genera of fungi. Among the different plant families for which studies have been performed to characterize these compounds, the Apiaceae family stands out.29 Different biological properties, including antioxidant activity, antihyperglycemic activity, and analgesic and neurological effects, have been ascribed to these compounds, in particular to (Z)-ligustilide. Moreover, phthalides have been reported as bioactive constituents of different plant species used in traditional medicine, such as Angelica sinensis (Chinese name: Danggui), Angelica acutiloba (Japanese name: Toki), and Ligusticum porteri (Hispanic name: Oshá).29

3.2. Chemical characterization of L. officinale extracts
Considering that the leaves and stems of lovage are used in gastronomy for flavoring dishes, being frequently added in stews and in meat marinades, besides the chemical characterization of the aerial parts of lovage, they were also subjected to

| Peak number | Compound                  | RT (min) | LRIa | LRIb | Relativec % |
|-------------|---------------------------|---------|------|------|-------------|
| 1           | α-Thujene                 | 13.93   | 926  | 924  | 0.094 ± 0.002 |
| 2           | α-Pinene                  | 14.25   | 932  | 932  | 0.93 ± 0.02   |
| 3           | Camphene                  | 15.00   | 946  | 946  | 0.135 ± 0.002 |
| 4           | Sabine                   | 16.34   | 972  | 969  | 1.05 ± 0.02   |
| 5           | β-Pinene                 | 16.47   | 974  | 974  | 0.270 ± 0.007 |
| 6           | Myrcene                  | 17.32   | 991  | 988  | 4.20 ± 0.05   |
| 7           | α-Phellandrene           | 17.93   | 1003 | 1000 | 1.34 ± 0.02   |
| 8           | 3-Carene                 | 18.25   | 1009 | 1008 | 0.059 ± 0.002 |
| 9           | α-Terpinene              | 18.59   | 1015 | 1014 | 0.234 ± 0.006 |
| 10          | p-Cymene                 | 19.01   | 1023 | 1020 | 20.53 ± 0.09  |
| 11          | β-Phellandrene           | 19.21   | 1027 | 1025 | 4.65 ± 0.04   |
| 12          | (Z)-β-Ocimene            | 19.75   | 1038 | 1032 | 0.224 ± 0.003 |
| 13          | (E)-β-Ocimene            | 20.27   | 1048 | 1044 | 1.05 ± 0.02   |
| 14          | γ-Terpinene              | 20.79   | 1058 | 1054 | 0.609 ± 0.005 |
| 15          | Terpinolene              | 22.32   | 1087 | 1086 | 0.093 ± 0.001 |
| 16          | Linalool                 | 22.91   | 1099 | 1095 | 0.055 ± 0.001 |
| 17          | Nonanal                  | 23.10   | 1102 | 1100 | 0.053 ± 0.001 |
| 18          | (E)-p-Menth-2-en-1-ol    | 23.91   | 1119 | 1117 | 0.43 ± 0.01   |
| 19          | Allo-octenone            | 24.40   | 1129 | 1128 | 0.659 ± 0.008 |
| 20          | 5-Pentyl-1,3-cyclohexadiene| 25.83 | 1157 | 1156 | 0.181 ± 0.001 |
| 21          | Terpinen-4-ol            | 26.79   | 1177 | 1174 | 0.107 ± 0.001 |
| 22          | Cryptone                 | 27.20   | 1185 | 1183 | 1.90 ± 0.02   |
| 23          | α-Terpineol              | 27.41   | 1189 | 1186 | 0.036 ± 0.001 |
| 24          | Carvone                  | 29.97   | 1243 | 1239 | 0.051 ± 0.001 |
| 25          | Geraniol                 | 30.47   | 1254 | 1249 | 0.264 ± 0.006 |
| 26          | α-Terpinal acetate       | 35.01   | 1334 | 1336 | 33.6 ± 0.2    |
| 27          | Geranyl acetate          | 36.27   | 1383 | 1379 | 0.031 ± 0.006 |
| 28          | β-Elemene                | 36.72   | 1393 | 1389 | 0.997 ± 0.004 |
| 29          | γ-Elemene                | 38.51   | 1436 | 1434 | 0.143 ± 0.002 |
| 30          | (E)-β-Farnesene          | 39.40   | 1457 | 1454 | 0.02 ± 0.01   |
| 31          | Germacrene D             | 40.55   | 1484 | 1480 | 0.037 ± 0.004 |
| 32          | β-Selinene               | 40.75   | 1489 | 1489 | 0.081 ± 0.003 |
| 33          | Kessane                  | 42.47   | 1532 | 1529 | 0.024 ± 0.001 |
| 34          | Elemol                   | 43.24   | 1552 | 1548 | 0.057 ± 0.01  |
| 35          | Germacrene B             | 43.65   | 1562 | 1559 | 0.061 ± 0.001 |
| 36          | Spathulenol              | 44.41   | 1581 | 1577 | 0.02 ± 0.001  |
| 37          | 3-Butylphthalide         | 47.19   | 1655 | 1647 | 0.018 ± 0.001 |
| 38          | Neointermedeol           | 47.54   | 1664 | 1658 | 0.412 ± 0.001 |
| 39          | (Z)-Butylidenephtalide   | 47.98   | 1676 | 1671 | 0.031 ± 0.001 |
| 40          | (E)-Butylidenephtalide   | 49.59   | 1721 | 1717 | 0.320 ± 0.011 |
| 41          | (Z)-Ligustilide          | 50.10   | 1749 | 1736 | 22.3 ± 0.1    |
| 42          | (E)-Ligustilide          | 51.49   | 1808 | 1796 | 1.67 ± 0.01   |
| 43          | (Z)-Terpine              | 52.2    | 1849 | 1844 | 0.027 ± 0.003 |
| 44          | Methyl hexadecanoate     | 53.17   | 1927 | 1921 | 0.096 ± 0.009 |

Total identified: 99.1 ± 0.1
Monoterpene hydrocarbons: 37.3 ± 0.3
Oxygen-containing monoterpenes: 36.7 ± 0.3
Sesquiterpene hydrocarbons: 0.62 ± 0.01
Oxygen-containing sesquiterpenes: 0.102 ± 0.002
Phthalides: 24.26 ± 0.01
Others: 0.12 ± 0.01

a LRI, linear retention index determined on a SH-RX5-5ms fused silica column relative to a series of n-alkanes (C8–C40). b Linear retention index reported in the literature (Adams, 2017). c Relative % is given as mean ± SD, n = 3.
two different extractions (decoction and hydroethanolic). These extracts, besides being intended for the bioactivity assays, were also evaluated regarding their composition in hydrophilic compounds, namely soluble sugars, organic acids and phenolic compounds.

Regarding the quantification of free sugars (Table 4), arabinose was the major sugar present followed by sucrose, trehalose and glucose, the main free sugars also present in the dry plant. The hydroethanolic extract presented higher amounts compared to the decoction extract ($p < 0.05$); this was expected due to the extraction solvent used.

Regarding organic acids, all the compounds identified in the plant were present in the decoction while citric acid was not detected in the hydroethanolic extract. In comparison with the hydroethanolic extract, the decoction allowed the extraction of a significantly higher amount of total organic acids ($p < 0.05$), the difference regarding the malic acid content being particularly noticeable, which was about 4× higher in the aqueous extract (Table 4).

The results of the phenolic compound analysis carried out on the two extracts are shown in Fig. 1 and Table 5. Chromatographic and spectral data obtained by HPLC-DAD-ESI/MS$^n$ analysis, namely retention time, $\lambda_{\text{max}}$ in the UV-vis region, molecular ions and main fragment ions observed in MS$^2$, are detailed in Table 5 and were used for the tentative identification of compounds and respective quantification. The compounds trans 5-O-caffeoylquinic acid (chlorogenic acid, peak 4), quercetin 3-O-rutinoside (peak 6) and kaempferol 3-O-rutinoside (peak 7) were positively identified according to their retention time, mass spectra and UV-Vis characteristics by comparison with commercial standards. Peaks 1, 2 and 3 were tentatively identified as 3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid and cis-5-O-caffeoylquinic acid, taking into account the hierarchical key fragmentation pattern described by Clifford et al.$^{31}$ Peak 5 presented a pseudomolecular ion [M – H]$^-$ at $m/z$ 423, being tentatively identified as maclurin-3-C-glucoside based on the UV spectrum and

| Table 4 Free sugars (mg g$^{-1}$ extract) and organic acids (mg g$^{-1}$ extract) of L. officinale (mean ± SD, $n = 3$) |
|---------------------------------|-----------------|-----------------|-----------------|
|                                  | Decoction       | Hydroethanolic  | Student’s $t$-test $p$-Value |
| Free sugars                     |                 |                 |                             |
| Arabinose                       | 60.9 ± 0.5      | 97 ± 2          | <0.001                      |
| Glucose                         | 9.7 ± 0.7       | 21 ± 1          | <0.001                      |
| Sucrose                         | 29.7 ± 0.5      | 48 ± 2          | <0.001                      |
| Trehalose                       | 26 ± 1          | 32 ± 1          | <0.001                      |
| Total free sugars               | 127 ± 3         | 199 ± 1         | <0.001                      |
| Organic acids                   |                 |                 |                             |
| Oxalic                          | 82.8 ± 0.7      | 87 ± 1          | <0.001                      |
| Quinic                          | 83 ± 1          | 66 ± 2          | <0.001                      |
| Malic                           | 104 ± 2         | 25 ± 3          | <0.001                      |
| Shikimic                        | 3.2 ± 0.1       | 3.03 ± 0.02     | <0.001                      |
| Citric                          | 47 ± 2          | nd              | —                           |
| Fumaric                         | 1.46 ± 0.02     | 0.46 ± 0.001    | <0.001                      |
| Total organic acids             | 322 ± 1         | 181 ± 4         | <0.001                      |

nd – not detected.

Fig. 1 Phenolic profile of leaves of Levisticum officinale recorded at 280 nm (A) and 370 nm (B). Peak numbers as defined in Table 5.
Table 5  Retention time ($R_t$), wavelengths of maximum absorption in the visible region ($\lambda_{\text{max}}$), mass spectral data, tentative identification, and quantification (mg g$^{-1}$ extract, mean ± SD) of phenolic compounds in the decoction and hydroethanolic extracts of L. officinale (mean ± SD, n = 3)

| Peak | $R_t$ (min) | $\lambda_{\text{max}}$ (nm) | [M - H]$^-$ (m/z) | Tentative identification | Decoction Hydroethanolic extract | Student’s t-test p-Value | References |
|------|-------------|-----------------------------|------------------|------------------------|---------------------------------|-----------------------------|------------|
| 1    | 4.71        | 324                         | 353              | 191[100], 179[52], 173[5], 161[3], 135[18] | 3-O-Caffeoylquinic acid$^a$ | 9.5 ± 0.1                  | 17.2 ± 0.1 | <0.001  | Clifford et al.,$^{31}$ |
| 2    | 6.50        | 324                         | 353              | 191[18], 179[56], 173[100], 135[5] | 4-O-Caffeoylquinic acid$^a$ | 4.76 ± 0.06                 | 5.78 ± 0.03 | <0.001  | Clifford et al.,$^{31}$ |
| 3    | 7.03        | 326                         | 353              | 191[100], 179[14], 161[3], 135[5] | cis 5-O-Caffeoylquinic acid$^a$ | 7.2 ± 0.1                  | 43 ± 1     | <0.001  | Clifford et al.,$^{31}$ |
| 4    | 8.35        | 325                         | 353              | 191[100], 179[12], 161[3], 135[5] | trans 5-O-Caffeoylquinic acid$^a$ | 3.265 ± 0.01               | 4.8 ± 0.1  | <0.001  | Clifford et al.,$^{31}$ |
| 5    | 15.28       | 234, 264, 423 | 303[100], 261[35], 243[22] | Maclurin-3-C-glucoside$^b$ | 50.9 ± 0.9                  | 79.3 ± 0.9                | <0.001  | Beelders et al.,$^{32,33}$ |
| 6    | 17.48       | 352                         | 609              | 301[100] | Quercetin-3-O-rutinoside$^e$ | 36.71 ± 0.03               | 77 ± 1     | <0.001  | Spinola et al.,2015$^{41}$ |
| 7    | 20.87       | 348                         | 593              | 285[100] | Kaempferol-3-O-rutinoside$^e$ | 5.31 ± 0.06               | 6.3 ± 0.2  | <0.001  | Spinola et al.,2015$^{41}$ |
|      |             |                             |                  | TPA | 24.7 ± 0.1                 | 71 ± 1                  | <0.001  |          |                      |
|      |             |                             |                  | TF  | 93 ± 1                    | 163 ± 2                | <0.001  |          |                      |
|      |             |                             |                  | TPC | 118 ± 1                   | 233 ± 1                | <0.001  |          |                      |

TPA: total phenolic acids; TF: total flavonoids; TPC: total phenolic compounds; nd: non detected; and nq: non-quantified; compounds were quantified using the following calibration curves: $^a$ Chlorogenic acid ($y = 168823x - 161172$, $R^2 = 0.990$). $^b$ Apigenine-6-C-glucoside ($y = 107025x + 61531$, $R^2 = 0.998$). $^c$ Quercetin-3-O-glucoside ($y = 34843x - 160173$, $R^2 = 0.999$).

MS$^2$ fragmentation pattern as reported previously.$^{12-14}$ Quercetin-3-O-rutinoside was the most abundant flavonoid in both extracts, though it was present in a higher amount in the hydroethanolic extract. This is possibly related to the low solubility of this compound in aqueous solutions, which can also affect its bioavailability.$^{35}$ Still, quercetin-3-O-rutinoside, also known as rutin, has been shown to exhibit a wide range of biological activities mainly related to its antioxidant, antimicrobial, anti-inflammatory, anti-thrombogenic and anti-cancer activities.$^{36}$ Regarding the phenolic acid group, 3-O-cafeoylquinic and cis-5-O-cafeoylquinic acids were the main compounds in the decoction and hydroethanolic extracts, respectively. These compounds are frequently abundant in the human diet and have been linked to reduced risks of developing different chronic diseases mainly due to their antioxidant and anti-inflammatory properties.$^{37,38}$ The compound tentatively identified as maclurin-3-C-glucoside, a benzophenone derivative previously reported in honeybush,$^{34}$ was also present in considerable amounts in both extracts. Although no bioactive properties have been ascribed so far to this C-glycosylated compound, the aglycone maclurin has been reported to exhibit antioxidant activity, anti-cancer effects and suppression of enzymatic browning.$^{35,40}$

Despite the similarity of the qualitative profiles in both types of extracts, significant differences were observed regarding the total amount of phenolic compounds and each individual compound ($p < 0.05$), with a higher extraction yield being achieved when using a mixture of ethanol: water as the extraction solvent. Previous data on the phenolic composition of methanolic extracts of L. officinale leaves have been recently reported by Zlotek et al.$^{42}$ The authors reported the tentative identification of a total of 14 phenolic compounds, some being identical to the ones also reported in this work, such as 4-O and 5-O-cafeoylquinic acids and rutin. Nevertheless, other compounds described by Zlotek et al.$^{42}$ such as apterin, caffee, sinapic and p-coumaric acids were not found in the present work.

3.3  Bioactive properties of L. officinale hydroalcoholic and decoction extracts

The bioactive properties of plant extracts evaluated in vitro are known to be directly related to their chemical composition and concentration of bioactive compounds.$^{43}$ Although aromatic plants are generally consumed in small quantities, when ingested regularly they can be a potential source of beneficial compounds, thus playing a relevant role in the human diet. Therefore, this study also comprised the in vitro evaluation of different biological properties, namely antioxidant, cytotoxic and antimicrobial activities.

In this study, five different methods were applied to access the antioxidant properties of the two prepared extracts (Table 6), namely DPPH free radical uptake, reducing power, inhibition of β-carotene bleaching, inhibition of lipid peroxidation (TBARS) and inhibition of oxidative hemolysis (OxHLIA). In general, the hydroalcoholic extract showed superior activity since it presents the lowest EC$_{50}$ values for most assays (with the exception of TBARS), which may be related to its higher concentration in phenolic compounds compared to that of the decoction.

In the OxHLIA assay, erythrocytes are subjected to hemolysis by the action of both hydrophilic and lipophilic radicals, therefore being considered an in vitro cell-based antioxidant assay. By observing the data presented in Table 6, it can be noticed that both extracts showed better results regarding antimicrobial activity in comparison with Trolox, a water-soluble analog of vitamin E widely used as an antioxidant in biochemi-
In the present study, the highest tested concentration of both extracts from defatted fruits of *L. officinale* presented activity against HepG2 cells (Table 6). Bogucka-Kocka et al. evaluated the cytotoxic potential of hydroethanolic extracts obtained from the edible aerial parts (leaves and stems) of *L. officinale* against seven leukaemia cell lines (1 mg mL\(^{-1}\)) (NCI-H460, MCF-7, HeLa, C8166, J45), being also highly significant in inducing apoptosis. Nevertheless, the authors also found that the extract caused a significant decrease of viable human B cells and two normal cell lines (human T cells and human hepatic cells-PLP2). GI50 values correspond to the sample concentration responsible for 50% inhibition of growth in tumor cells or in a primary culture of liver cells-PLP2. GI50 values for ellipticine (positive control): 23 μg mL\(^{-1}\) (DPPH scavenging activity), 18 μg mL\(^{-1}\) (TBARS inhibition), 120 μg mL\(^{-1}\) (OxHLIA activity), and 65.1 μg mL\(^{-1}\) (EC50 values correspond to the sample concentration responsible for 50% of antioxidant activity).

### Table 7 Antimicrobial activity of the extracts obtained from the edible aerial parts (leaves and stems) of *L. officinale* (mean ± SD, \(n = 3\))

| Gram-negative bacteria                           | Decoction | Hydroethanolic extract | Ampicillin (20 mg mL\(^{-1}\)) | Imipenem (1 mg mL\(^{-1}\)) | Vancomycin (1 mg mL\(^{-1}\)) |
|------------------------------------------------|-----------|------------------------|-------------------------------|-----------------------------|-------------------------------|
| *Escherichia coli*                              | MIC       | MBC                    | MIC                          | MBC                         | MIC                          |
| 5                                               | >20       | 10                     | >20                           | >0.15                       | <0.0078                      |
| *Klebsiella pneumoniae*                         | 5         | >20                    | 10                            | >20                         | 0.08                         |
| *Morganella morganii*                           | 5         | >20                    | 20                            | >0.015                      | <0.0078                      |
| *Proteus mirabilis*                             | 20        | >20                    | >20                           | >0                          | 0.5                          |
| *Pseudomonas aeruginosa*                        | 20        | >20                    | >20                           | >0                          | nt                           |

| Gram-positive bacteria                           | Decoction | Hydroethanolic extract | Ampicillin (20 mg mL\(^{-1}\)) | Imipenem (1 mg mL\(^{-1}\)) | Vancomycin (1 mg mL\(^{-1}\)) |
|------------------------------------------------|-----------|------------------------|-------------------------------|-----------------------------|-------------------------------|
| *Enterococcus faecalis*                         | 2.5       | >20                    | 5                             | >0.15                       | nt                           |
| *Listeria monocytogenes*                        | 2.5       | >20                    | 5                             | >0.15                       | nt                           |
| MRSA                                            | 2.5       | >20                    | 20                            | >0                          | nt                           |

MRSA: methicillin resistant *Staphylococcus aureus*; MIC: minimum inhibitory concentration; MBC: minimum bactericidal concentration; and nt: not tested.
of the extracts, irrespective of the tested concentration, showed bactericidal activity against the assayed microorganisms. In general, the decoction extract exhibited the best results as it showed the lowest MIC values for all tested bacteria, with the exception of P. aeruginosa. Overall, the two extracts were more efficient against Gram-positive bacteria. This observation has been previously reported by several authors and is most possibly related to the fact that this group of microorganisms presents a less complex cell wall when compared to Gram-negative bacteria that have a selective outer membrane. Moreover, Gram-negative bacteria frequently present multidrug resistance pumps (efflux pumps), which may also explain the reduced antimicrobial activity observed in vitro for several extracts and plant-derived compounds against this type of bacteria.45,46 In the present study, the extracts of lovage, in particular the decoction, presented interesting results as they were also able to inhibit the growth of different Gram-negative bacteria, although requiring higher MIC values compared to those of Gram-positive bacteria. Interestingly both extracts inhibited P. aeruginosa, with a lower MIC value being obtained for the hydroethanolic extract (Table 7). P. aeruginosa is an opportunistic pathogen frequently associated with nosocomial infections, and is being considered an emerging threat to public health due to its intrinsic resistance to several antibiotics. Moreover, infections caused by P. aeruginosa are becoming increasingly difficult to treat as the number of multidrug resistant strains is growing worldwide.47,48 Since numerous strains have been reported as being resistant to several commonly used classes of antibiotics,48 it has been suggested that medicinal plant extracts/compounds may provide a promising approach as adjuvant therapy, as several studies showed that the antibiotic activity can be potentiated when in combination with phytochemicals.46,47,49 It should be noted that in the present study, the tested microorganisms were clinical isolates resistant to different antibiotics.

4. Conclusion

In this work, a comprehensive study on the nutritional, chemical and bioactive properties of the edible aerial parts (leaves and stems) of a Portuguese grown sample of L. officinale was performed. Similar to other aromatic plants, lovage is shown to be a low caloric food as it presents a high content of moisture. Regarding the composition of hydrophilic compounds in the leaves and stems of lovage, chromatographic analysis showed that sucrose and oxalic acid are the most abundant free sugar and organic acid, respectively. Moreover, a total of 7 phenolic compounds were detected and tentatively identified in the two types of extracts prepared (decoction and hydroethanolic extract), with 5-O-cafeoylquinic and 3-O-cafeoylquinic acid being the most abundant phenolic acids and quercetin-3-O-rutinoside and maclurin-3-C-glucoside the major flavonoids. Besides the presence of these bioactive compounds, lovage also showed an interesting fatty acid profile, as it is rich in polyunsaturated fatty acids, in particular having α-linolenic acid, an omega-3 essential fatty acid, as a major compound. In the lipidic fraction, two tocopherol isoforms, α and γ, were also detected. The aroma profile of the essential oil hydrodistilled from this aromatic plant showed that it was rich in monoterpene, with α-terpinyl acetate being the most abundant volatile, followed by p-cymene. Interestingly, a high content of phthalides, which have been associated with health benefits, was also observed.

Regarding the bioactive potential of this plant, both extracts showed interesting properties, and it is worth mentioning that they showed better activity in the OxHILIA test when compared to the antioxidant used as the control (Trolox). The extracts were able to inhibit the growth of all tested bacteria, and were in general more active against Gram-positive bacteria. Regarding cytotoxicity against tumor cell lines, it was found that only the hydroethanolic extract showed activity against liver cancer cells. Moreover, both extracts did not show toxic effects against the q non-tumor liver cell line (PLP2), suggesting that they are safe for human use.

In brief, an extensive and detailed study was performed revealing that lovage has an interesting composition from the nutritional point of view being also a source of several bioactive compounds; therefore its inclusion as a seasoning/flavoring agent in different dishes should be promoted.

Conflicts of interest

All authors declare that they do not have any conflict of interest for publishing this research work.

Acknowledgements

The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) and FEDER under Programme PT2020 for financial support to CIMO (UID/AGR/00690/2019). A. Fernandes, L. Barros and R. C. Calhelha contracts were provided by National funding by FCT, P. L., through the institutional scientific employment program-contract and C. Pereira contract through the celebration of program-contract foreseen in No. 4, 5 and 6 of article 23° of Decree-Law No. 57/2016, of 29th August, amended by Law No. 57/2017, of 19th July. This work was also funded by the FEDER-Interreg España-Portugal programme through the project 0377_Iberphenol_6_E.

References

1 J. M. Alves-Silva, S. M. Dias dos Santos, M. E. Pintado, J. A. Pérez-Álvarez, J. Fernández-López and M. Viuda-Martos, Chemical composition and in vitro antimicrobial, antifungal and antioxidant properties of essential oils obtained from some herbs widely used in Portugal, Food Control, 2013, 32, 371–378.
11 L. Barros, A. M. Carvalho, J. S. Morais and I. C. F. R. Ferreira, Strawberry-tree, blackthorn and rose fruits: Detailed characterization in nutrients and phytochemicals with antioxidant properties, Food Chem., 2010, 120, 247–254.

12 M. Obodai, D. L. N. Mensah, Â. Fernandes, N. K. Kortei, M. Dzomeku, M. Teegarden and I. C. F. R. Ferreira, Chemical characterization and antioxidant potential of wild ganoderma species from Ghana, Molecules, 2017, 22, 18.

13 L. Barros, A. M. Carvalho, J. S. Morais and I. C. F. R. Ferreira, Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb. f.: An underexploited and highly disseminated species, Ind. Crops Prod., 2016, 89, 45–51.

14 S. M. F. Bessada, J. C. M. Barreira, L. Barros, I. C. F. R. Ferreira and M. B. P. P. Oliveira, Phenolic profile and antioxidant activity of Levisticum officinale Koch, essential oil from the leaves of a medicinal herb, J. Essent. Oil-Bear. Plants, 2015, 18, 1055–1065.

15 A. Sarmento, L. Barros, Â. Fernandes, A. M. Carvalho and I. C. F. R. Ferreira, Valorization of traditional foods: Nutritional and bioactive properties of Cicer arrietinum L. and Lathyrus sativus L. pulses, J. Sci. Food Agric., 2015, 95, 179–185.

16 J. Takebayashi, N. Iwahashi, Y. Ishimi and A. Tai, Development of a simple 96-well plate method for evaluation of antioxidant activity based on the oxidative hemolysis inhibition assay (OxHILA), Food Chem., 2012, 134, 606–610.

17 M. Reis, E. Pereira, R. C. Calhelha, R. T. Lima, M. H. Vasconcelos, F. Adega, R. Chaves and M. J. R. Queiroz, Anti-hepato-cellular carcinoma activity using human HepG2 cells and hepatotoxicity of 6-substituted methyl 3-aminothieno [3, 2-b] pyridine-2-carboxylate derivatives: In vitro evaluation, cell cycle analysis and QSAR studies, Eur. J. Med. Chem., 2011, 46, 5800–5806.

18 T. C. S. Pires, M. I. Dias, L. Barros, M. J. Alves, M. B. P. P. Oliveira, C. Santos-Buelga and I. C. F. R. Ferreira, Antioxidant and antimicrobial properties of dried Portuguese apple variety (Malus domestica Borkh. cv Bravo de Esмолfe), Food Chem., 2018, 240, 701–706.

19 NEPA – Núcleo de Estudos e Pesquisas em Alimentação, Tabela brasileira de composição de alimentos, NEPA – Unicamp161, 2011.

20 USDA, United States Department of Agriculture Food Composition Databases, 2019, Retrieved from https://ndb.nal.usda.gov/ndb/, Accessed date: September 2019.

21 J. H. Iyda, Â. Fernandes, R. C. Calhelha, M. J. Alves, F. D. Ferreira, L. Barros, J. S. Amaral and I. C. F. R. Ferreira, Nutritional composition and bioactivity of Umbilicus rupetris, (Salisb.) Dandy: An underexploited edible wild plant, Food Chem., 2019, 295, 341–349.

22 L. Perini, B. Stevanato, S. Cyl, J. Eliete, L. Visentainer and O. Dalalio, Ácidos graxos poli-insaturados n-3 e n-6: metabolismo em mamíferos e resposta imune, Rev. Nutr., 2010, 23, 1075–1086.

23 S. W. Leonard and M. G. Traber, Methods for assessment of Vitamin E, in Laboratory Assessment of Vitamin Status, ed. D. Harrington, Academic Press, 2019, ch. 4. DOI: DOI: 10.1016/B978-0-12-813050-6.00004-8.

24 O. Heidarpour, M. K. Souri and R. Omidbaigi, Changes in Content and Constituents of Essential Oil in Different Plant Parts of Lovage (Levisticum officinale Koch. Cv. Budakalaszi) Cultivated in Iran, J. Essent. Oil-Bear. Plants, 2013, 16, 318–322.

25 M. Moradalizadeh, M. R. Akhgar, P. Rajaei and A. Faghihizarandi, Chemical composition of the essential oils of Levisticum officinale growing wild in Iran, Chem. Nat. Compd., 2012, 47, 876–877.

26 A. Ciocarlan, I. Dragalin, A. Ariu, L. Lupascu, N. Ciocarlan and V. Popescu, Chemical composition and antimicrobial activity of the Levisticum officinale W.D.J Koch essential oil, Chem. J. Mold., 2018, 13, 63–68.

27 E. Bylaït, R. P. Venskutonis and J. P. Roozen, Influence of Harvesting Time on the Composition of Volatile
Components in Different Anatomical Parts of Lovage (Levisticum officinale Koch.), J. Agric. Food Chem., 1998, 46, 3735–3740.

28 A. Raal, E. Arak, A. Orav, T. Kailas and M. Müürisepp, Composition of the Essential Oil of Levisticum officinale W. D. J. Koch from Some European Countries, J. Essent. Oil Res., 2008, 20, 37–41.

29 A. León, M. Del-Ángel, J. L. Ávila and G. Delgado, Phthalides: Distribution in nature, chemical reactivity, synthesis, and biological activity, Prog. Chem. Org. Nat. Prod., 2017, 104, 128–169.

30 R. Adams, Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, Allured Publishing Corporation, Illinois, 2017.

31 M. N. Clifford, K. L. Johnston, S. Knight and N. Kuhnert, Hierarchical scheme for LC-MSn identification of chlorogenic acids, J. Agric. Food Chem., 2003, 51, 2900–2911.

32 T. Beelers, D. J. Brand, D. de Beer, C. J. Malherbe, S. E. Mazibuko, C. J. F. Muller and E. Joubert, Benzophenone C- and O-Glucosides from Cyclopia genistoides (Honeybush) Inhibit Mammalian alpha-Glucosidase, J. Nat. Prod., 2014a, 77, 2694–2699.

33 T. Beelers, D. de Beer, M. A. Stander and E. Joubert, Comprehensive Phenolic Profiling of Cyclopia genistoides (L.) Vent. by LC-DAD-MS and -MS/MS Reveals Novel Xanthone and Benzophenone Constituents, Molecules, 2014b, 19, 11760–11790.

34 A. Kokotkiewicz, M. Luczkiewicz, J. Pawłowska, P. Łuczkiwicz, P. Sowski, J. Witkowski, E. Bryl and A. Bucinski, Isolation of xanthone and benzophenone derivatives from Cyclopia genistoides (L.) Vent. (honeybush) and their pro-apoptotic activity on synoviocytes from patients with rheumatoid arthritis, Fitoterapia, 2013, 90, 199–208.

35 C. Manach, G. Williamson, C. Morand, A. Scalbert and C. Rémésy, Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies, Am. J. Clin. Nutr., 2005, 81, 2308–2425.

36 P. Sharma and R. P. Singh, Evaluation of Antioxidant Activity in Foods with Special Reference to TEAC Method, Am. J. Food Technol., 2013, 10, 221–247.

37 N. Liang and D. D. Kitts, Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions, Nutrients, 2015, 8, 1–20.

38 M. Naveed, V. Hejazi, M. Abbas, A. Ali, G. Jilany, M. Shumzaid, F. Ahmad, D. Babazadeh, X. FangFang, F. Modarresi-Ghazani, L. WenHua and Z. XiaoHui, Chlorogenic acid (CGA): A pharmacological review and call for further research, Biomed. Pharmacother., 2018, 97, 67–74.

39 Y. J. Lee, O. Jung, J. Lee, J. Son, J. Y. Cho, C. Ryou and S. Y. Lee, Maclurin exerts anti-cancer effects on PC3 human prostate cancer cells via activation of p38 and inhibitions of JNK, FAK, AKT, and c-Myc signaling pathways, Nutr. Res., 2018, 58, 62–71.

40 K. M. Moon, C. Young Kim, J. Yeul Ma and B. Lee, Xanthone-related compounds as an anti-browning and antioxidant food additive, Food Chem., 2019, 274, 345–350.

41 V. Spinola, J. Pinto, and P. C. Castilho, Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MSn and screening for their antioxidant activity, Food Chem., 2015, 173, 14–30.

42 U. Złotek, U. Szymanska, U. Pecio, S. Kozachok and A. Jakubczyk, Antioxidative and potentially anti-inflammatory activity of phenolics from lovage leaves Levisticum officinale Koch elicited with jasmonic acid and yeast extract, Molecules, 2019, 24, 1441.

43 S. Burt, Essential oils: their antibacterial properties and potential applications in foods—a review, Int. J. Food Microbiol., 2004, 94, 223–253.

44 A. Bogucka-Kocka, H. D. Smolarz and J. Kocki, Apoptotic activities of ethanol extracts from some Apiaceae on human leukaemia cell lines, Fitoterapia, 2008, 79, 487–497.

45 G. Tegos, F. R. Sternitz, O. Lomowskaya and K. Lewis, Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials, Antimicrob. Agents Chemother., 2002, 46, 3133–3141.

46 M. I. Garvey, M. M. Rahman, S. Gibbons and L. J. V. Piddock, Medicinal plant extracts with efflux inhibitory activity against Gram-negative bacteria, Int. J. Antimicrob. Agents, 2011, 37, 145–151.

47 M. Chatterjee, C. P. Anju, L. Biswas, V. A. Kumar, C. G. Mohan and R. Biswas, Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options, Int. J. Med. Microbiol., 2016, 306, 48–58.

48 M. F. Moradali, S. Ghods and B. H. A. Rehm, Antibiotic resistance in P. aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence, Front. Cell. Infect. Microbiol., 2017, 7, 1–29.

49 C. Chaves-López, D. Usai, M. G. Donadu, A. Serio, R. T. González-mina, M. C. Simeoni and A. Paparella, Function potential of Borojoa patinoi Cuatrecasas water extract to inhibit nosocomial antibiotic resistant, Food Funct., 2018, 9, 2725–2734.