A knowledge graph of clinical trials (CTKG)

Ziqi Chen1,4, Bo Peng1,4, Vassilis N. Ioannidis2, Mufei Li3, George Karypis2 & Xia Ning1*

Effective and successful clinical trials are essential in developing new drugs and advancing new treatments. However, clinical trials are very expensive and easy to fail. The high cost and low success rate of clinical trials motivate research on inferring knowledge from existing clinical trials in innovative ways for designing future clinical trials. In this manuscript, we present our efforts on constructing the first publicly available Clinical Trials Knowledge Graph, denoted as CTKG. CTKG includes nodes representing medical entities in clinical trials (e.g., studies, drugs and conditions), and edges representing the relations among these entities (e.g., drugs used in studies). Our embedding analysis demonstrates the potential utilities of CTKG in various applications such as drug repurposing and similarity search, among others.

Clinical trials are studies aiming at determining the safety and efficacy of interventions, treatments or investigational drugs on human subjects1. Effective and successful clinical trials are essential in developing new drugs and advancing new treatments2. However, clinical trials are very expensive. As reported in Sertkaya et al.3, the average cost of a single phase in clinical trials ranges from 1.4 million up to 52.9 million US dollars. In addition, the success rate of the clinical trials is considerably low. As reported in Wong et al.4, for certain therapeutic groups like Oncology, the overall success rate of clinical trials could be as low as 3.4%. The high cost and low success rate of clinical trials motivate deliberate analysis of existing clinical trials, inferring knowledge from them, utilizing existing clinical trials in innovative ways, and accordingly carefully designing future clinical trials. The Access to Aggregate Content of ClinicalTrials.gov (AACT) database5 represents an effort in enhancing the accessibility and analysis of the clinical trial data. However, as a relational database, AACT is not formatted for the purpose of inferring new knowledge from existing clinical trials6. A Knowledge Graph (KG), instead, is a graph representation in which information entities are represented as nodes, and their relations are coded as edges connecting the corresponding nodes. In contrast to relational databases, KG has been proven7–10 to be an effective representation for knowledge inference purposes. Constructing a KG over clinical trial data is vital for advancing the analysis and research of clinical trials. In this manuscript, we present our work on constructing a such KG, referred to as Clinical Trials Knowledge Graph, denoted as CTRG, and also release CTRG to the research community to facilitate advanced research using clinical trial data. CTKG includes nodes representing medical entities (e.g., studies, drugs and conditions), and edges representing relations among these entities (e.g., drugs used in studies). Different from the recently released knowledge base11 that focuses only on extracting medical entities from the eligibility criteria in clinical trials, CTKG includes more medical entities (e.g., adverse events and outcomes) and also the relations among these entities. The rich information in CTKG could enable more biomedical applications (e.g., adverse drug event prediction, outcome prediction) than the existing knowledge base in clinical trials. Figure 1 presents the schema of CTKG. The detailed descriptions of nodes and edges in CTKG will be presented in “Nodes in CTKG” section. To the best of our knowledge, CTKG is the first publicly available clinical trials knowledge graph in the scientific research community. The results of the embedding analysis over CTKG demonstrate its potential utilities in various applications such as drug repurposing and similarity search, among others.

Results

CTKG schema. Figure 1 presents the schema of CTKG. The schema presents the different information entities involved in clinical trials, represented as nodes, and the relations among them, represented as edges. There are 18 types of nodes and 21 types of edges in CTKG. Each node and edge type has attributes describing the properties of the nodes and edges. The statistics of different nodes and edges are presented in Tables 1 and 2, respectively. Detailed descriptions of node and edge attributes are available in the online documentation of CTKG12. We

1The Ohio State University, Columbus, USA. 2Amazon Web Services AI, Palo Alto, USA. 3Amazon Web Services Shanghai AI Lab, Shanghai, China. 4These authors contributed equally: Ziqi Chen and Bo Peng. 5email: ning.104@osu.edu
developed a web portal (https://u.osu.edu/ning.104/data-set/ctkg/ctkg-webportal/) for users to visualize CTKG and access its nodes and edges interactively.

Nodes in CTKG. Each study node represents a clinical trial and is associated with the primary properties of that clinical trial as node attributes. The properties of each study node describe the purposes, phases and the protocols of the corresponding clinical trial. Each study node links to condition nodes, drug nodes, outcome nodes and multiple types of group nodes via one-to-many relationships. Each condition node describes a disease or syndrome that is extracted from the AACT and studied by some clinical trials.

Each drug-term node represents the drug used in clinical trials, and is identified by the extracted drug mention (“Drug mentions and normalization” section). The drug-term nodes connect with study nodes via StudiedDrug and UsedDrug relations. The StudiedDrug relation connects studies and drug terms that are studied in at least one study group of the corresponding clinical trial, and the UsedDrug relation connects studies and the auxiliary drug terms such as pain reducers. Please refer to “Drug mentions and normalization” section for more details.

Each outcome node represents an outcome measure used to evaluate the efficacy of interventions in the clinical trials, and has the name and the description of the outcome measure as attributes. For example, the study “NCT04322526” uses the outcome “changes in blood oxygenation level-dependent (BOLD)” to evaluate the efficacy of interventions. Each outcome node is connected to a study node, representing that this specific outcome is used within the study. Note that unlike the condition node linking to multiple study nodes, each outcome node links to a unique study node. This is due to the complexity and the diversity of outcome measures, which makes it difficult to be shared across multiple study nodes. Each outcome node also links to one cluster-outcome node.

Figure 1. Schema of CTKG.

Table 1. Statistics of node types in CTKG.

Node type	Is study specific?	Statistics
Study	Yes	8210
Condition	No	1394
Drug term	No	2548
Event group	Yes	22,725
Adverse event	No	18,546
Organ	No	27
Baseline group	Yes	27,068
Baseline record	Yes	315,533
Drop group	Yes	22,272
Period	Yes	34,330
Drop record	Yes	123,627
Outcome group	Yes	32,499
Method	No	907
Outcome measurement	Yes	690,626
Outcome analysis	Yes	107,294
Outcome	Yes	88,386
Standard outcome	No	492
Cluster outcome	No	200
Table 2. Statistics of relation types in CTKG. Columns represent: “Relation type”: the type of relation; “Node type 1”: the type of head nodes in the relations; “#Node 1”: the number of unique head nodes with the relations; “Node type 2”: the type of tail nodes in the relations; “#Node 2”: the number of unique tail nodes with the relations; “#Relations”: the number of relations of a relation type.

Relation type	Node type 1	#Node 1	Node type 2	#Node 2	#Relations
Study-Condition	Study	8210	Condition	1394	17,259
Study-EventGroup	Study	8172	Event group	22,725	22,725
Study-BaselineGroup	Study	8209	Baseline	27,068	27,068
Study-DropGroup	Study	8210	Drop group	22,272	22,272
Study-OutcomeGroup	Study	8210	Outcome	32,499	32,499
Study-Outcome	Study	8210	Outcome	88,386	88,386
Study-StudiedDrug	Study	8169	Drug term	2373	20,982
Study-UsedDrug	Study	2234	Drug term	920	3992
Drug-EventGroup	Drug term	2201	Event group	21,790	31,528
EventGroup-AdverseEvent	Event group	20,571	Adverse event	18,546	966,450
AdverseEvent-Organ	Organ	18,546	Organ	27	18,546
BaselineGroup-BaselineRecord	Baseline	27,068	Baseline record	315,533	315,533
DropGroup-Period	Drop group	22,272	Period	34,330	34,330
Period-DropRecord	Period	25,956	Drop record	123,627	123,627
OutcomeGroup-OutcomeMeasurement	Outcome group	32,240	Outcome measurement	690,541	690,541
OutcomeGroup-OutcomeAnalysis	Outcome group	23,923	Outcome analysis	107,294	209,314
OutcomeAnalysis-Method	Outcome analysis	91,463	Method	907	91,463
Outcome-OutcomeAnalysis	Outcome	45,689	Outcome analysis	107,294	107,294
Outcome-OutcomeMeasurement	Outcome	85,905	Outcome measurement	690,626	690,626
Outcome-ClusterOutcome	Outcome	88,244	Cluster outcome	200	88,244
Outcome-StandardOutcome	Outcome	50,342	Standard outcome	492	58,819

and multiple standard-outcome nodes. The connection between the outcome node and the cluster-outcome node represents that the name of the outcome can be assigned to the cluster represented by the cluster-outcome node, while the connection between the outcome node and the standard-outcome node represents that the name or the description of the outcome contains the standard outcome measure. Please refer to “Outcome extraction and outcome clustering” section for more details.

Each group node represents a study arm or a comparison group, that is, a group of participants who receive a specific intervention. There are multiple types of group nodes as follows:

- **event-group node.** The information described by each event-group node is the number of participants within the group affected by specific types of adverse events. Each event-group node is connected to multiple drug nodes representing the drugs used in the event group, and adverse-event nodes representing the specific adverse events that occurred in the event group. Each adverse-event node also links to an organ-system node representing the affected organ system.
- **baseline-group node.** Each baseline-group node represents a group of participants with their demographic attributes (e.g., “Age” and “Ethnicity”) or study-specific attributes (e.g., “Baseline Modified Gingival Index”). Each baseline-group node is connected to one or multiple baseline-record nodes.
- **drop-group node.** Each drop-group node represents a group of participants with their withdrawal information. Each drop-group node is connected to one or multiple period nodes. Each period node represents an interval of the study (e.g., “First Intervention” and “Part 1: Treatment Period 1”), and has attributes describing the number of participants at the beginning and the end of the period. Each period node can link to multiple drop-record nodes. Each drop-record node includes a withdrawal reason and documents the number of the participants in the group withdrawing with this reason in a period.
- **outcome-group node.** An outcome-group node has the information on the efficacy of the studied interventions on the participants. The efficacy is evaluated by different outcome measures and analyzed by different statistical test methods with the measurements. For example, an outcome-group node could represent a group of 17 participants receiving Naltrexone as the intervention, and the efficacy of Naltrexone was evaluated using the results from this group of participants; these 17 participants and the efficacy evaluation are included in an outcome-group node. Other nodes related to the efficacy measures of interventions are as below:

- **method node.** Each method node represents a statistical hypothesis testing method that is used to make inference or draw conclusion statistically from the data collected in clinical trials. For example, the variance analysis method “ANOVA” could be a method node that is used to test the superiority of an intervention compared with a control in a clinical trial. Each method node is connected to multiple outcome-analysis nodes, representing that the method is used to conduct the analyses. Please refer to
The condition for drug repurposing—A strategy to identify new therapeutic indications for existing drugs. Particularly, we assessed if the high similarities between the condition node embeddings and drug-term node embeddings indicate the high potential of the corresponding drugs in treating the conditions. For the evaluation, we calculated the cosine similarities between the condition nodes and drug-term nodes, and identified the top-10 most similar pairs. Among these 10 pairs, we found that 5 of them have evidence demonstrated by the literature indicating potential repurposability, as presented in Table 3. For example, the condition node “Diabetes Mellitus, Type 2” has a similarity 0.597 with the drug-term node “Benzoates”; as demonstrated in the literature, Alogliptin Benzoate, an agent of Benzoates, is now available for the treatment of Type 2 Diabetes18. Similarly, the condition node “Lung Neoplasms” has a similarity 0.574 with the drug-term node “Triterpenes”, and as demonstrated in the literature, Triterpenes have anti-cancer properties against Lung Neoplasms. Please note the average similarity between condition nodes and drug-term nodes is -0.032.

Table 3. Similar condition nodes and drug-term nodes for drug repurposing. The average cosine similarity between condition nodes and drug-term nodes is -0.032.

Similarity	Similar nodes	Possible evidence
0.597	Diabetes Mellitus, Type 2 Benzoates	Alogliptin benzoate, an agent of Benzoates, is now available for treatment of type 2 diabetes18
0.587	Diabetes Mellitus, Type 2 Pulmonary Surfactants	Pulmonary surfactant involves in delaying the fetal lung biochemical maturation by maternal diabetes19
0.576	Diabetes Mellitus Pulmonary Surfactants	Pulmonary surfactant involves in delaying the fetal lung biochemical maturation by maternal diabetes19
0.574	Lung Neoplasms Triterpenes	Representatives of triterpenes show anti-cancer properties against multiple types of cancer including lung cancer19
0.562	Lung Neoplasms Pregnenediones	Pregnenediones shows promising activity against lung cancer cell lines19

Note that the different types of group nodes for a study could represent the same participant group with different information. According to AACT, using a single group to uniquely represent a participant group in the study is impossible due to the complicated designs of clinical trials. Therefore, we followed AACT and used different types of group nodes to represent different types of information of the clinical trials.

Embedding analysis
We conducted an embedding analysis to evaluate the quality of CTKG and demonstrate its utilities in various important applications. We applied TransE13, a state-of-the-art graph embedding method, to generate embeddings for nodes in CTKG. These computable embeddings can benefit various downstream tasks. For example, we could establish similarities among nodes using their embeddings. The similarities enable fast retrieval of nodes corresponding to similar medical entities and could facilitate applications such as drug repurposing and similar study search, as will be discussed below. Note that TransE generates node embeddings based on the topology of the graph (i.e., node attributes are not considered). We used the TransE implementation in DGL-KE14, which is a high-performance python library on top of the Deep Graph Library (DGL15). DGL is a python library for deep learning on graphs and enables training models on large-scale graphs in a convenient way. Based on DGL, DGL-KE provides many popular KG embedding algorithms like TransE for users to learn KG embeddings that can be used for many different applications9. Other KG embedding methods are also applicable for the following analyses. Detailed information on KG embedding methods is available in a survey16.

CTKG for drug repurposing. In this analysis, we evaluated the utilities of CTKG for drug repurposing—a strategy to identify new therapeutic indications for existing drugs17. Particularly, we assessed if the high similarities between the condition node embeddings and drug-term node embeddings indicate the high potential of the corresponding drugs in treating the conditions. For the evaluation, we calculated the cosine similarities between all the condition nodes and drug-term nodes, and identified the top-10 most similar pairs. Among these 10 pairs, we found that 5 of them have evidence demonstrated by the literature indicating potential repurposability, as presented in Table 3. For example, the condition node “Diabetes Mellitus, Type 2” has a similarity 0.597 with the drug-term node “Benzoates”; as demonstrated in the literature, Alogliptin Benzoate, an agent of Benzoates, is now available for the treatment of Type 2 Diabetes. Similarly, the condition node “Lung Neoplasms” has a similarity 0.574 with the drug-term node “Triterpenes”, and as demonstrated in the literature, Triterpenes have anti-cancer properties against Lung Neoplasms. Please note the average similarity between condition nodes and drug-term nodes is -0.032, and thus the above similarities are significantly high. In addition, the above drugs are not studied for their highly-similar conditions in any CTKG studies (i.e., no existing edges connecting the condition nodes and drug-term nodes). Thus, the above results demonstrate the utilities of CTKG for drug repurposing. Other similar condition and drug-term node pairs, for example, “Squamous Cell Carcinoma of Head and Neck”
and "Naloxone" with similarity 0.565, and "Lung Neoplasms" and "Uric Acid" with similarity 0.564, may enable new hypothesis generation for innovative investigation and findings.

CTKG for similar medical entity retrieval. In this analysis, we evaluated whether CTKG enables high-quality node embeddings for similar medical entity retrieval tasks. Particularly, we focused on the retrieval of similar studies, and the retrieval of similar conditions, drugs, adverse events and outcomes. All these retrieval tasks are common and useful in designing new clinical trials.

Similar study retrieval. CTKG can support the search and retrieval of similar studies. To demonstrate this, we first identified the top-5 most similar pairs of study nodes using cosine similarity over their embeddings. In each identified pair, we randomly selected one study node, and identified its top-5 most similar study nodes. Table 4 presents the selected study nodes and their top-5 most similar study nodes. As presented in Table 4, the identified similar studies all investigated similar drugs or conditions. For example, study "NCT00795769" and its top-5 most similar studies investigated the prevention of the side effects caused by the stem cell transplant, or conditions that could be treated by the stem cell transplant; study "NCT01431274" and its top-5 most similar studies all investigated the therapies for the Chronic Obstructive Pulmonary Disease (COPD).

Similar medical concept retrieval. CTKG can also support the retrieval of other similar medical concepts. To demonstrate this, we identified the top-10 most similar pairs of condition nodes, drug-term nodes, adverse-event nodes, and standard-outcome nodes, as in Tables 5, 6, 7, and 8, respectively, using cosine similarities over their embeddings. As presented in Table 5, the identified similar condition nodes all share some commonalities. For example, condition node "Nephritis" and "Lupus Nephritis" have a similarity 0.997 (average condition similarity is 0.331), and Lupus Nephritis is a common sub-type of Nephritis. We also found a similar trend in Tables 6, 7, and 8. For example, drug-term nodes "ABT-267" and "Macrocyclic Compound" have a similarity 0.997 (average drug-term similarity is 0.254), and both drugs could be used to treat Hepatitis C Virus (HCV) infection.

In addition, the two drugs are studied together in multiple studies such as NCT01458535, NCT01464827 and NCT01563536. In Table 7 for adverse-event nodes, "Blood Luteinising Hormone" is very similar to "Uterus Myomatosus" (cosine similarity 0.995; average adverse-event similarity is 0.329). The high similarity could be due to the fact that Luteinising Hormone can affect the development and growth of Uterus Myomatosus by stimulating the production of estrogen. Note that Luteinising Hormone and Uterus Myomatosus are not present together in any of the CTKG studies; therefore, such similar pairs demonstrate the effectiveness of CTKG.

Table 4. Similar study nodes. The average cosine similarity among Study nodes is 0.301.

Study node	Similarity	Similar nodes	Possible evidence
NCT00795769	0.840	NCT01789255	NCT00918333 and NCT00720109 investigate therapies for conditions that could be treated by the stem cell transplant (e.g., Lymphoma). All the other studies are on preventing side effects following the stem cell transplant
	0.741	NCT00918333	
	0.713	NCT00105001	
	0.672	NCT00293384	
	0.629	NCT00720109	
NCT01431274	0.826	NCT01431287	All the studies investigate therapies for the Chronic Obstructive Pulmonary Disease (COPD)
	0.737	NCT01559116	
	0.721	NCT02796651	All the studies investigate therapies for different sub-types of Leukemia (e.g., Acute Lymphoblastic Leukemia, Acute Myeloid Leukemia)
	0.716	NCT00782509	
	0.709	NCT00931385	
NCT00137111	0.825	NCT00866307	
	0.748	NCT00720109	
	0.747	NCT00136084	
	0.744	NCT00808639	
	0.724	NCT00119262	
NCT00782509	0.784	NCT00796653	All the studies investigate the safety and efficacy of BI 1744 CL in patients with COPD
	0.749	NCT00793624	
	0.735	NCT01040793	
	0.724	NCT01040130	
	0.700	NCT00782210	
NCT02105688	0.801	NCT02252016	All the studies investigate therapies for the Chronic Hepatitis C Virus (HCV)
	0.688	NCT02105467	
	0.662	NCT02358044	
	0.655	NCT01544920	
	0.652	NCT02216422	

Note: The table presents the top-5 most similar study nodes for each study node, along with possible evidence that supports the similarity.
retrieving similar/related adverse events. In Table 8 for standard-outcome nodes, “Aspartate Aminotransferase” is very similar to “Alanine Aminotransferase” in their embeddings (cosine similarity 0.986; average standard-outcome similarity is 0.315), and both measure the amount of two enzymes made by liver in the blood and can be tested to check the liver damage. These results demonstrate that CTKG can facilitate the search and retrieval of medical entities in the context of clinical trials that carry similar/related information.

CTKG for other applications. CTKG could also enable other potential applications such as adverse drug event prediction and outcome prediction, etc. Specifically, for the adverse drug event prediction, we could

Similarity	Similar nodes	Possible evidence
0.997	Nephritis	Lupus Nephritis is a common sub-type of Nephritis
0.997	Hepatitis	Hepatitis A is a special sub-type of Hepatitis
0.996	Rhinitis, Allergic	Rhinitis, Allergic is a sub-type of Rhinitis caused by allergy
0.996	Urinary Bladder Disease	Urinary Bladder Disease is a special sub-type of Urologic Disease
0.996	Arthritis, Rheumatoid	Arthritis, Rheumatoid is a chronic inflammatory Arthritis
0.995	Neovascularization, Pathologic Choroidal Neovascularization	Both of the conditions are sub-types of Neovascularization
0.995	Diabetes Mellitus, Type 2	Diabetes Mellitus, Type 2 is a common sub-type of Diabetes Mellitus
0.994	Alopecia Areata	Alopecia Areata is a sub-type of Alopecia
0.994	Depression	Depression is also known as major Depressive Disorder in Clinics40
0.993	Keratosis, Actinic	Keratosis, Actinic is a sub-type of Keratosis

Table 5. Top-10 most similar condition nodes. The average cosine similarity among condition nodes is 0.311.

Similarity	Similar nodes	Possible evidence
0.997	ABT-267	Both ABT-267 and Macroyclic Compounds could be used to treat Hepatitis C Virus (HCV) infection51,22
0.996	Pulmonary Surfactants, Surface-Active Agents	Pulmonary Surfactants is a type of Surface-Active Agents41
0.995	Phenylethyl Alcohol, LY2216684	Phenylethyl Alcohol and LY2216684 are studied together in study NCT00922636, NCT01243957 and NCT01380691
0.994	Thioguanine, Mercaptopurine	Thioguanine is a substitute of Mercaptopurine in treating childhood lymphoblastic leukaemia42
0.993	Cilastatin, Imipenem	Cilastatin and Imipenem are commonly used together as a treatment for serious infections43
0.985	Metylperon, Butyrophenones	Metylperon is an atypical antipsychotic of the Butyrophenone chemical class44
0.983	Ubiquinone, Coenzyme Q10	Ubiquinone is a form of Coenzyme Q1045
0.982	PHD-CV Vaccine, VAXELIS	Both of the drug terms are vaccines for diphtheria46,47
0.982	Propafenone, Sotalol	Both Propafenone and Sotalol could maintain sinus rhythm for patients with recurrent symptomatic atrial fibrillation48
0.980	SNAP25 Protein, Acetylcholine	SNAP25 Protein could block Acetylcholine from releasing at the neuromuscular junction49

Table 6. Top-10 most similar drug-term nodes. The average cosine similarity among drug-term nodes is 0.254.
employ knowledge reasoning methods over $CTKG$, and infer new adverse events of drugs using the existing or predicted paths from $drug-term$ nodes to $adverse-event$ nodes in $CTKG$. For the outcome prediction, we could employ link prediction methods to infer new edges between $study$ nodes and $outcome$ nodes based on the existing ones in $CTKG$. Overall, $CTKG$ could facilitate new knowledge discovery and benefit the design of new clinical trials, and also improve the success rate of future clinical trials. We released the code for drug repurpos-

Table 7. Top-10 most similar $adverse-event$ nodes. The average cosine similarity among $adverse-event$ nodes is 0.329.

Similarity	Similar nodes	Possible evidence
0.998	Blood Luteinising Hormone Increased Uterus Myomatosus	Luteinising Hormone (LH) can affect the growth of Uterus Myomatosus by controlling the level of estrogen
0.997	Inpatient Hospitalization Uterus Myomatosus	Excess length of inpatient hospitalization can lead to ulceration
0.997	Major Bleeding Event Infection with Unknown Anc, Catheter-Related	Patients receiving hemodialysis are at risk for major bleeding event and catheter-related infection
0.996	Blood Luteinising Hormone Increased Major Bleeding Event	The level of LH is related to uterine bleeding
0.995	Blood Luteinising Hormone Increased Skin Procedural Complication Uterus Myomatosus	LH may regulate skin functions via LH receptors on skin
0.995	Skin Procedural Complication Infection with Unknown Anc, Catheter-Related	Both are similar to the $adverse-event$ node "Blood Luteinising Hormone Increased"
0.995	Infection with Unknown Anc, Catheter-Related Prostatic Obstruction	Patients with prostatic obstruction often receive urinary catheters, and are at risk for catheter-related infection
0.994	Gi Tract Perforation Latent Autoimmune Diabetes in Adults	Diabetes can induce Gi Tract Perforation
0.994	Cervix Carcinoma Stage III Vanishing Twin Syndrome	Both of the adverse events are related with Uterus
0.994	Major Bleeding Event Uterus Myomatosus	Uterus Myomatosus can associate with major bleeding event

Table 8. Top-10 most similar $standard-outcome$ nodes. The average cosine similarity among $standard-outcome$ nodes is 0.315.

Similarity	Similar nodes	Possible evidence
0.986	Aspartate Aminotransferase Alanine Aminotransferase	Both are enzymes that are tested to check liver damage
0.955	Swollen Joint Count Tender Joint Count	Both are used to assess patients with rheumatoid arthritis
0.952	Calcium Potassium	Both are electrolyte that can be tested to monitor a range of medical conditions
0.952	Incomplete Response Partial Response	Both are used to assess the response to treatment
0.946	Aspartate Aminotransferase Blood Urea Nitrogen	Both can be tested to check liver damage
0.941	Potassium Blood Urea Nitrogen	Both are included in basic metabolic panel blood test
0.940	Calcium Blood Urea Nitrogen	Both are included in basic metabolic panel blood test
0.930	Alanine Aminotransferase Blood Urea Nitrogen	Both can be tested to check kidney damage
0.930	Hemoglobin A1c Hemoglobin	Hemoglobin A1c represents the hemoglobin in the blood that has glucose attached to it
0.923	Erythrocyte Sedimentation Rate Disease Activity Score 28	Disease Activity Score 28 can be calculated based on Erythrocyte Sedimentation Rate
Discussion
In this manuscript, we presented and released a new knowledge graph CTKG for clinical trials. We also described our methods in generating CTKG. We demonstrated the potential utilities of CTKG in drug repurposing and similarity search, among others, via embedding analysis over CTKG. Currently, CTKG only includes studies that have both drug interventions and reported outcomes. However, incomplete studies (e.g., studies not started or without reported outcomes), and studies without drug interventions (e.g., studies for medical devices) could also contain valuable knowledge for the design of future clinical trials. Therefore, we will enrich CTKG with more studies in the future research. In addition, current CTKG does not contain all the important information for drug discovery and development. For example, CTKG does not have the interactions between drugs/molecules and proteins/diseases, nor the interactions among proteins. Missing such information may limit the potential of CTKG for a much wider range of applications (e.g., to predict if a new molecule for a disease can survive from clinical trials). In the future research, we will align CTKG with other knowledge bases and integrate more and diverse information into CTKG to enable more applications using CTKG. Moreover, CTKG embeds rich textual information (e.g., title and description) and heterogeneous data types (e.g., numerical, categorical and textual data) as node attributes, which encourages a much broader spectrum of research (e.g., deep graph embedding, link prediction) and more complicated methods to be developed to leverage such information for better translational clinical trial design. We will also investigate attribute-sensitive KG embedding methods to better leverage CTKG.

Methods
CTKG represents each medical entity (e.g., a clinical trial, also referred to as a study; a drug; an adverse event) as a single node. To develop CTKG, we extracted the medical entities from the Access to Aggregate Content of ClinicalTrials.gov (AACT) database. We then normalized multiple expressions of a same medical entity into a single one. Figure 2 presents the overview of development of CTKG.

Clinical trials data. The clinical trials data in CTKG is collected from the AACT database. AACT is a publicly available relational database, which contains the information of every clinical trial registered in ClinicalTrials.gov, and is updated on a daily basis. In AACT, each clinical trial, also referred to as a study, is associated with a unique National Clinical Trial (NCT) ID, and all the information of a clinical trial is stored in 45 different tables. For example, information representing the medications, procedures and other actions provided or conducted in a clinical trial is stored in two tables: “interventions” and “browse interventions”; information representing the measurements used to evaluate the safety and efficacy of drugs or procedures studied in clinical trials is stored in the table “outcomes.” All the tables and their schemas are publicly available. Until July 2020, 344,500 clini-
Clinical trials have been registered in ClinicalTrials.gov and included in AACT. We selected all the studies that have drug interventions, conditions and outcome analyses into CTKG. Specifically, we excluded 232,274 studies that do not have drug interventions, and 103,047 studies that do not have outcome analyses. Among 9,179 remaining studies, we excluded 969 studies without the conditions, resulting 8,210 studies in CTKG. Note that we did not consider clinical trials that are not on drug inventions, such as physical therapies, behavioral therapies or medical devices. We will update CTKG with more studies in the future as new studies on drug interventions become available.

Note that CTKG does not include all the tables in AACT. For example, CTKG does not include tables such as “Sponsors”, “Overall officials” and “Result contacts” because they are not directly related to the design and results of clinical trials, and including them may not significantly benefit the knowledge graph in analyzing the relations among medical entities. Other AACT tables such as “Provided documents” and “Documents” contain the links to detailed study protocols, informed consent forms and statistical analysis plans, etc. These documentations have rich textual information that might be complementary to the structural relations represented by CTKG. However, such information is highly specific to each individual clinical trial, and does not help establish new relations across clinical trials if no natural language processing is applied first, which by itself is highly non-trivial. Therefore, CTKG does not include such tables; instead, CTKG uses AACT’s original study IDs so that all such information can still be retrieved from AACT if needed. CTKG does not include other AACT tables such as “Calculated values”, “Design outcomes” and “Design group interventions” because information in such tables is already included in other tables that CTKG includes. Table 9 summarizes the AACT tables that are included and are not included in CTKG.

Adverse event normalization. In AACT, we could find the adverse events (AE), represented by AE terms, happened among the participants in the “reported events” table. Many AE terms listed in the table could be mapped to the Medical Dictionary for Regulatory Activities (MedDRA®). MedDRA® is the international medical terminology developed under the auspices of the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). More specifically, we found 28,677 unique AE terms in which 13,995 terms could be directly mapped to the MedDRA dictionary. In CTKG, such terms are also referred to as MedDRA terms. We normalized the remaining 14,682 AE terms that are not in the MedDRA® to MedDRA terms as follows:

- We removed parenthesized contents (e.g., “Altered pitch perception (pitch seemed lower)”). The contents in parentheses are typically explanations or afterthoughts so removing them would not significantly affect the major meanings.

Included in CTKG	Not included in CTKG
Baseline counts	Brief summaries
Baseline measurements	Calculated values
Browse conditions	Central contacts
Browse intervention	Countries
Conditions	Design group interventions
Designs	Design groups
Drop withdrawals	Design outcomes
Eligibilities	Detailed descriptions
Interventions	Documents
Id information	Facilities
Milestones	Facilities contacts
Outcome measure	Facility investigator
Outcome analyses	Intervention other names
Outcome analysis groups	Idp information types
Outcomes	Keywords
Participant flows	Links
Reported events	Overall officials
Result groups	Pending results
Studies	Provided documents
Study references	Responsible parties
	Result agreements
	Result contacts
	Sponsors

Table 9. AACT tables included and not included in CTKG.
We removed words or phrases that specify the auxiliary information (e.g., "left", "right", "Baseline Phase") or the time frame (e.g., "for 12 hours") of adverse events. We observed that these words or phrases are study-specific, and not in the MedDRA terms. For example, by removing the phrase "Baseline Phase", the AE term "Throat tightness - Baseline Phase" can be normalized to the MedDRA term "Throat tightness". The phrase "Baseline Phase" is given to specify the initial phase of assessment involving collection of initial data in the study, and thus unrelated to the adverse event itself.

We removed the stop words and lemmatized AE terms using the NLTK library\(^\text{31}\), and Stanza NLP Library\(^\text{32}\), respectively.

We mapped an AE term to its most similar MedDRA term if their edit distance is less than 4. For example, the adverse event term "Cholecystitis" will be normalized to the MedDRA term "Cholecystitis". This process can correct simple misspellings.

After each step above, if the normalized AE term is a MedDRA term, we will stop the normalization. With the above normalization, we successfully normalized 7,296 AE terms to MedDRA terms. In total, we got 15,976 unique MedDRA terms and had 7,393 AE terms that cannot be normalized.

In order to construct a one-to-one mapping between the adverse events and the MedDRA terms, we used the MedDRA dictionary to further group multiple MedDRA terms of the same adverse event into a unique MedDRA term. According to the definition of MedDRA, each MedDRA term is assigned to one of the five hierarchical levels\(^\text{33}\). Specifically, the MedDRA terms with the lowest level (i.e., level 1), which are used to communicate the adverse events in practice, could correspond to the same adverse event. For example, "Eye itching" and "Ocular itching" are two MedDRA terms with level 1 and represent the same event. Such MedDRA terms corresponding to the same event have a common parent, which is a MedDRA term with level 2 (e.g., "itchy eyes" in the above example). Therefore, we normalized each MedDRA term with level 1 to its linked MedDRA term with level 2. In total, we converted 15,976 MedDRA terms into 11,153 more abstract MedDRA terms. Each term among these 11,153 MedDRA terms and 7,393 non-MedDRA terms represents an adverse event, which is further represented as an adverse-event node in CTKG. Note that due to the licensing restriction of MedDRA \(^\text{34}\), we didn’t specify which adverse-event nodes represent MedDRA terms in CTKG and only kept the terms as the attribute of adverse-event nodes.

Drug mentions and normalization. In AACT, the drugs used in studies (i.e., clinical trials) could be found in the intervention table, in which the "name" field stores the information about medicines and administrations used in each intervention. For example, we could find that the drug Naltrexone is used in the study NCT04322526 via its intervention “Naltrexone 50 Mg Oral Tablet.”

In CTKG, we used Medical Text Indexer (MTI)\(^\text{35}\) to automatically extract drug mentions. MTI is developed by the National Library of Medicine (NLM) to recognize medical entities (e.g., anatomy, drugs and conditions) from plain text. We used this tool to extract drug mentions following 2 steps:

- We used MTI to automatically recognize all the medical entities from the interventions.
- We found drug entities from the medical entities recognized by MTI. Specifically, for each recognized entity, MTI will output its MeSH code if available. MeSH is a hierarchically-organized vocabulary from NLM to index and categorize biomedical and health-related information\(^\text{36}\). Given the MeSH code, we first identified entities with MeSH codes starting with character "D", which indicates drug entities (e.g., D02.241.223.701.430 for Ibuprofen). After that we removed the entities not representing specific drugs by excluding those with the MeSH code D26.310 (drug combination), D26 (pharmaceutical preparations), D23.101 (biomarkers) and D26.255 (dosage forms). We also noticed that a few recognized entities were not associated with MeSH codes. For these entities, we did a manual check and identified the ones representing specific drugs.

After the above 2 steps, there were still 1,775 unique interventions in which MTI did not find any drug mentions. For these interventions, we did a manual search and identified the drugs mentioned. Eventually, from the intervention table, we found 3,487 mentioned drugs in total. Among these drugs, 860 (24.7%) of them are found manually. Most of the manually found drugs are investigational drugs (e.g., pf-06669571), or drugs mentioned in abbreviations (e.g., tvr and umec).

Besides the drugs in interventions, there were also drugs mentioned in the titles or descriptions of the study groups (e.g., event group). For example, from the title "tramadol/diclofenac 25/25", we could find the drugs Tramadol and Diclofenac. We also extracted drugs mentioned in the titles or descriptions of study groups to generate a complete list of drug mentions. Specifically, we first used the above 2 steps to automatically mention the drugs in titles and descriptions of study groups. For groups that we did not find any drugs automatically, we manually searched their titles and descriptions, and identified the mentioned drugs. In the end, we found 4585 drug mentions from the interventions and the study groups.

From the drug mentions, we observed that one drug could be represented by different names. For example, the drug "losartan potassium" could be represented by its brand name "cozaar" or its generic name "losartan." Therefore, we normalized the drug mentions found in texts to normalized terms. Specifically, we first used MTI to map all the 4585 drugs to their MeSH terms. For example, MTI could automatically map the drugs "losartan potassium", "cozaar" and "losartan" to the MeSH term "losartan." For the drugs that MTI can find their MeSH terms, the MeSH terms were used as their normalized terms. For the other drugs, if they are in abbreviations (e.g., tvr), we first found their full names (e.g., Telaprevir), and used the MeSH terms of their full names for normalization; if they are not in abbreviations, we used their generic names for normalization. We noticed that investigational drugs may not have generic names. For these drugs, their identifiers mentioned in studies (e.g.,
pf-06669571) were used as their normalized terms. After the normalization, the 4585 drug mentions were normalized to 2548 normalized terms. Each of the normalized term is represented as a drug-term node in CTKG.

Statistical analysis method normalization. We observed that one statistical analysis method could be represented by different names in the table. For example, the method “paired t-test” could be represented as “paired t-test”, “paired t-tests” and “paired t-test” in the table. Therefore, we normalized the names of the methods using the 3 steps as follows:

- We preprocessed the method names from the table by removing the space and punctuation in the text.
- We calculated the edit distance among the preprocessed names, and normalized the preprocessed names with edit distance less than 4 to a same normalized term. We also did a manual check to correct possible misnormalization. For example, the normalized terms “pairedttest” and “ttestpaired” represent the same method “paired t-test” with the same words but of different orders. We manually merged such terms to the one with the highest frequency.

After all the steps, we normalized the 1,299 unique method names mentioned in the table to 907 normalized terms. Each of the normalized terms is represented as a method node in CTKG.

Outcome extraction and outcome clustering. In AACT, the outcome measures used to test the effectiveness of the interventions could be found in the “title” or the “description” fields of the outcome table. Most of the titles in the outcome table are long phrases and could involve multiple standard outcome measures (e.g., in the title “Change From Baseline in Platelet Count and White Blood Cell Count”, where “Platelet Count” and “White Blood Cell Count” represent standard outcome measures). These standard outcome measures are common assessment tools that are used to assess the effectiveness of an intervention. The complex relations between the outcome titles and the standard outcome measures make it difficult to directly represent the outcomes with the extracted standard outcome measures. Therefore, we incorporated the identified standard outcome measures as nodes into CTKG and built connections between the outcome nodes and the involved standard-outcome nodes. Through such connections, we can infer which standard outcome measures are used in each study to assess the efficacy of interventions. We observed that some popular phrases within the titles or the descriptions of outcome records represent standardized assessment tools used to measure the outcome of clinical trials, for example, “Visual Analogue Scale” is a tool widely used as a measure for pain. Incorporating such standard outcome measures into the CTKG could enable the comparison on the outcome measurements across different studies, and also could provide a reference regarding the choice of standardized assessment tools in the design of clinical trials. Therefore, we extracted the phrases that could represent standard outcome measures as below:

- We found the abbreviations and identified the definitions of abbreviations from the titles or the descriptions of the outcomes using the Schwartz-Hearst algorithm. We observed in the titles that many standard outcome measures are associated with their corresponding abbreviations. For example, we could identify the abbreviation “BI” and the corresponding definitions “Bleeding Index” from the outcome name “Gingival Health Measured by Bleeding Index (BI)”.
- We kept only the definitions containing the following words: scale, index, score, test, questionnaire, value, count, inventory, assessment, level, rate. We observed that most standard outcome measures would contain such words (e.g., “Visual Analogue Scale”, “Social Responsiveness Scale”).
- We manually normalized different variants of the same standard outcome measures and removed the extracted phrases that are not outcome measures. We also manually added some popular standard outcome measures (e.g., “Overall Survival”, “blood pressure”, “triglyceride”) that do not contain the above words or do not have any abbreviations.

All the extracted phrases are represented as the standard-outcome nodes in the CTKG. In the end, we got 492 standard-outcome nodes from 50,342 outcome records (i.e., 56.96% over all the 88,386 outcome records), and connected the standard-outcome nodes with the corresponding outcome nodes.

With the extracted standard outcome measures, there were still more than 40% of the outcome nodes not connected to any standard-outcome nodes. Therefore, to aggregate similar outcome nodes, we also grouped all the outcome titles (including those containing the standard outcome measures) into several clusters. Specifically, we represented each outcome title using its term frequency-inverse document frequency (TF-IDF) vectors. We then grouped the TF-IDF vectors of outcome titles using the CLUTO, a clustering toolkit, into 200 clusters. Each cluster is presented as a cluster-outcome node and has attributes describing the cluster size, that is, the number of outcomes within the cluster, and the most representative words of these outcomes. Specifically, for each cluster, the representative words of outcomes include 5 descriptive words and 5 discriminating words derived by CLUTO that can best describe or discriminate each cluster. Each word is associated with a percentage computed by CLUTO (details in its manual) which indicates the importance of this word with respect to describing or discriminating the cluster. We converted the descriptive words and the discriminating words as two attributes of each cluster, by combining the words and their corresponding percentages. For example, after clustering, one
cluster-outcome node has these descriptive features: “circumference 56.4%, waist 43.0%, head 0.1%, abdominal 0.1%, change 0.1%”, and most outcome nodes connected with it have the titles related to “circumference” and “waist”, such as “Change in Waist-to-hip Ratio” and “Mean Change From Baseline in Waist Circumference”.

Data availability

The CTKG dataset and the code for the embedding analyses are released in GitHub: https://github.com/ninglab/CTKG.

Received: 5 November 2021; Accepted: 28 February 2022
Published online: 18 March 2022

References

1. Elkin, M. E. & Zhu, X. Predictive modeling of clinical trial terminations using feature engineering and embedding learning. Sci. Rep. 11, 1–12 (2021).
2. Friedman, L. M., Furberg, C. D., DeMets, D. L., Reboussin, D. M. & Granger, C. B. Fundamentals of Clinical Trials (Springer, 2015).
3. Sertkaya, A., Wong, H.-H., Jessup, A. & Beleche, T. Key cost drivers of pharmaceutical clinical trials in the united states. Clin. Trials 13, 117–126 (2016).
4. Wong, C. H., Siah, K. W. & Lo, A. W. Estimation of clinical trial success rates and related parameters. Biostatistics 20, 273–286 (2019).
5. Tasneem, A. et al. The database for aggregate analysis of ClinicalTrials.gov (AACT) and subsequent regrouping by clinical specialty. PLoS ONE 7, e36677-e36677 (2012).
6. Macak, M., Stovcik, M. & Buhnova, B. The suitability of graph databases for big data analysis: A benchmark. In International Conference on Internet of Things, Big Data and Security (IoTBDS) (2020).
7. Pujara, J., Miao, H., Getoor, L. & Cohen, W. Knowledge graph identification. In International Semantic Web Conference (ISWC) 542–557 (Springer, 2013).
8. Ma, Y., Crook, P. A., Sarikaya, R. & Fosler-Lussier, E. Knowledge graph inference for spoken dialog systems. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 5348–5350 (IEEE, 2015).
9. Li, S., Pan, S., Cambria, E., Marttinen, P. & Yu, P. S. A survey on knowledge graphs: Representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 33, 494–514. https://doi.org/10.1109/TNNLS.2021.3070843 (2022).
10. Ioannidis, V. N. et al. DRKG—Drug Repurposing Knowledge Graph for Covid-19. https://github.com/gnn4dr/DRKG/ (2020). Accessed: 2022-01-29.
11. Liu, H., Chi, Y., Butler, A., Sun, Y. & Weng, C. A knowledge base of clinical trial eligibility criteria. J. Biomed. Inform. 117, 103771 (2021).
12. Peng, B. et al. https://github.com/ninglab/CTKG/blob/main/Schema.pdf (2021). Accessed: 2022-02-19.
13. Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J. & Yakhnenko, O. Translating embeddings for modeling multi-relational data. In International Conference on Internet of Things, Big Data and Security (IoTBDS) (2020).
14. Zheng, D. et al. DGL-KE: Training knowledge graph embeddings at scale. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’20, 739–748 (Association for Computing Machinery, 2020).
15. Wang, M. et al. Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv preprint arXiv:1909.01315 (2019).
16. Wang, Q., Mao, Z., Wang, B. & Guo, L. Knowledge graph embedding: A survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29, 2724–2743 (2017).
17. Pushpakom, S. et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 18, 41–58 (2019).
18. Rendell, M., Drinic, A. & Andukuri, R. Aloglipitin benzoate for the treatment of type 2 diabetes. Expert Opin. Pharmacother. 13, 553–563 (2012).
19. Chudzik, M., Korzöne-Szlacheta, I. & Krol, W. Tripterenes as potentially cytotoxic compounds. Molecules 20, 1610–1625 (2015).
20. Hao, T., Rusanov, A., Boland, M. R. & Weng, C. Clustering clinical trials with similar eligibility criteria features. J. Biomed. Inform. 52, 112–120 (2014).
21. Feld, J. et al. Treatment of HCV with ABT-450/®-ombitasvir and dasabuvir with ribavirin. N. Engl. J. Med. 370, 1594–1603 (2014).
22. Pillayar, T., Namasiavayam, V. & Manickam, M. Macrocytic hepatitis C virus NS3/4A protease inhibitors: An overview of medicinal chemistry. Curr. Med. Chem. 23, 3404–3447 (2016).
23. Maruo, T., Ohara, N., Wang, J. & Matsuo, H. Sex steroids regulation of uterine leiomyoma growth and apoptosis. Hum. Reprod. Update 10, 207–220 (2004).
24. Chen, X., Jia, S. & Xiang, Y. A review: Knowledge reasoning over knowledge graph. Expert Syst. Appl. 141, 112948 (2020).
25. Zheng, D. et al. Scalable graph neural networks with deep graph library. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining 1141–1142 (2021).
26. Santos, A. et al. Clinical knowledge graph integrates proteomics data into clinical decision-making. bioRxiv https://doi.org/10.1101/2020.05.09.084897 (2020).
27. Xu, J. et al. Building a PubMed knowledge graph. Sci. Data 7, 205 (2020).
28. Wu, Y. & Wang, Z. Knowledge graph embedding with numeric attributes of entities. In Proceedings of The Third Workshop on Representation Learning for NLP 132–136 (Association for Computational Linguistics, 2018).
29. Clinical Trials Transformation Initiative. Improving Public Access to Aggregate Content of ClinicalTrials.gov. https:// acct.clinicaltrials.org/. Accessed: 2022-1-28.
30. Brown, E. G., Wood, L. & Wood, S. The medical dictionary for regulatory activities (MedDRA). Drug Saf. 20, 109–117 (1999).
31. Bird, S., Klein, E. & Loper, E. Natural Language Processing with Python (O’Reilly UK Ltd., 2009).
32. Zhang, Y., Zhang, Y., Qi, P., Manning, C. D. & Langlotz, C. P. Biomedical and clinical English model packages for the stanza python NLP library. J. Am. Med. Inform. Assoc. 28, 1892–1899 (2021).
33. Yokotsuka, M., Aoyama, M. & Kubota, K. The use of a medical dictionary for regulatory activities terminology (MedDRA) in prescription-event monitoring in japan (J-PEM). Int. J. Med. Inform. 57, 139–153 (2000).
34. Mork, J. G., Jimeno-Yepes, A. & Aronson, A. R. The NLM medical text indexer system for indexing biomedical literature. In Proceedings of the First Workshop on Bio-Medical Semantic Indexing and Question Answering, a Post-Conference Workshop of Conference on Internet of Things, Big Data and Security (IoTBDS) (2021).
35. Chapman, D. Advanced search features of PubMed. J. Can. Acad. Child Adolesc. Psychiatry 18, 58 (2009).
36. Schwartz, A. S. & Hearst, M. A. A simple algorithm for identifying abbreviation definitions in biomedical text. In Pac. Symp. Biocomput. 451–462 (World Scientific, 2003).
Acknowledgements

MedDRA ® trademark is registered by ICH. We thank Michael Lin for his efforts in constructing the CTKG web portal.

Author contributions

X.N. and G.K. conceived the research. All the authors designed the research; Z.C. and B.P. conducted the research, including data curation, formal analysis, methodology design and implementation, result analysis and visualization; X.N. supervised and mentored Z.C. and B.P.; Z.C. and B.P. drafted the original manuscript; X.N. edited and revised the manuscript; V.I.L., M.L. and G.K. provided comments; all authors reviewed the final manuscript.

Funding

This project was made possible, in part, by support from the National Science Foundation under Grant Number IIS-1855501. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and materials should be addressed to X.N.

Reprints and permission information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
