Calcium oscillations coordinate feather mesenchymal cell movement by SHH dependent modulation of gap junction networks

Ang Li1,2, Jung-Hwa Cho3,4, Brian Reid5, Chun-Chih Tseng1,6, Lian He7, Peng Tan7, Chao-Yuan Yeh1,8, Ping Wu1, Yuwei Li9, Randall B. Widelitz1, Yubin Zhou7, Min Zhao5, Robert H. Chow3 & Cheng-Ming Chuong1,8

Collective cell migration mediates multiple tissue morphogenesis processes. Yet how multidimensional mesenchymal cell movements are coordinated remains mostly unknown. Here we report that coordinated mesenchymal cell migration during chicken feather elongation is accompanied by dynamic changes of bioelectric currents. Transcriptome profiling and functional assays implicate contributions from functional voltage-gated Ca2+ channels (VGCCs), Connexin-43 based gap junctions, and Ca2+ release activated Ca2+ (CRAC) channels. 4-Dimensional Ca2+ imaging reveals that the Sonic hedgehog-responsive mesenchymal cells display synchronized Ca2+ oscillations, which expand progressively in area during feather elongation. Inhibiting VGCCs, gap junctions, or Sonic hedgehog signaling alters the mesenchymal Ca2+ landscape, cell movement patterns and feather bud elongation. Ca2+ oscillations induced by cyclic activation of opto-cCRAC channels enhance feather bud elongation. Functional disruption experiments and promoter analysis implicate synergistic Hedgehog and WNT/β-Catenin signaling in activating Connexin-43 expression, establishing gap junction networks synchronizing the Ca2+ profile among cells, thereby coordinating cell movement patterns.
Collective cell migrations play key roles in gastrulation, organogenesis, wound healing, and immune responses, as well as pathological processes including chronic inflammation and cancer invasion. Tissues undergo various types of collective cell migration. Epithelial cells, for example, have been observed to migrate in lines, sheets, strands, and hollow tubes. They rely on stable cell-cell junctions (especially adherens junctions) to maintain cooperativity. In contrast, migratory mesenchymal cells only have transient cell-cell contacts. This could be problematic when the cell density is high or the migration distance is long (millimeter or centimeter range). Either situation greatly limits guidance cues available to cells at the rear of the migrating cohort. Therefore, biological systems must have developed mechanisms to boost and relay directional signals.

Externally applied electric fields were found to guide directional migration of cultured cells. Recent studies revealed that long-range, self-sustained K+ oscillations coordinate collective proliferation and migration in bacteria. Endogenous direct-current (DC) electric fields (EFs) have also been detected during embryogenesis/regeneration in eukaryotes and these EFs were implicated in instructing cells with directional or positional information. However, the molecular understanding of these phenomena is rudimentary, mainly due to a lack of tools to monitor endogenous electric fields with high spatiotemporal resolution in vivo. The development of tools such as vibrating probes and genetically encoded voltage- and Ca2+ sensors enables in-depth investigation of bioelectric signals in vivo.

Feather bud elongation in chicken dorsal skin explants is a very robust and precise biological process, even without the embryonic microenvironment. The robustness of this process implies the maintenance of localized and stringent molecular mechanisms for coordinating collective cell behaviors. Previous studies of cellular events implicate polarized mesenchymal cell rearrangements in directed feather bud elongation. Sparse BrdU- or TUNEL-positive cells in feather mesenchyme imply minimal involvement of cell divisions or apoptosis, a potentially confounding interpretation. We hypothesize that tissue endogenous bioelectric signals mediated by ion channels, exchangers and pumps may carry out the signal relay function in mesenchymal cells during feather elongation.

In this study we observed dynamic changes of bioelectric currents in developing chicken embryos. Before feather bud elongation, EF endogenous to dorsal skin was relatively homogenous and exhibited inward directionality. At the onset of elongation, outward electric current emerged at the anterior side of each feather bud, implying a heterogenization of the EF into multiple smaller electric circuits. Tissue-wide long-range Ca2+ oscillations were observed in bud mesenchyme. Dampening these oscillations or introduction of exogenous oscillations altered feather morphology. Feather mesenchymal cell movement changes direction markedly when voltage-gated Ca2+ channels (VGCCs) or gap junctions were inhibited. The landscape of the Connexin-43 based gap junction network was modulated by synergistic actions of SHH and WNT signaling. This network electrically coupled mesenchymal cells expressing heterogeneous levels of VGCCs and CRAC channels, thereby allowing synchronized Ca2+ oscillations to occur and coordinate directional cell movements.

Results

Electric currents and ion channel expression in feathers. A vibrating probe was used to measure endogenous DC electric currents on intact chicken embryos from Hamburger & Hamilton (H&H) stage 29–38 (Fig. 1a). Measurement locations included interbud regions (between feather buds), anterior and posterior buds and interbud regions in intact chicken embryos at different developmental stages (n = 9–11 measurements per position per stage). Between Hamburger & Hamilton (H&H) Stage 34–35, the direction of currents at the anterior buds reversed from inward to outward, while that at the posterior buds stayed inward. The direction of currents at interbud regions stayed inward throughout the developmental stages examined. Data are presented as mean ± s.e.m. Scale bar, 500 μm. b Confocal image of H&H 31 and H&H 35 feather buds stained with LCAM and VIM to reveal distinct morphology of epithelial and mesenchymal cells. VIM positive cells in epithelium are melanocytes and periderm cells. Dashed lines highlight epithelial-mesenchymal boundaries. Scale bars, 50 μm. c Screening of genes encoding ion channels in RNA-Seq highlights multiple Ca2+–conducting channels. d In situ hybridization results of genes encoding components of VGCCs, gap junctions, CRAC channels, and Ca2+-activated K+ channels. Scale bar, 50 μm.
posterior feather bud regions. Inward currents were observed in interbud regions for all developmental stages examined. Inward ionic currents were also observed in feather buds before the initiation of polarized elongation (H&H 29–34). Following the onset of elongation (H&H 34–35), the current direction at the anterior bud regions reversed, while current directionality remained inward at posterior bud regions. We hypothesize that these dynamic changes of endogenous feather bud ionic currents result from spatiotemporally regulated ion channel expression and activity.

To screen candidates for the ion channels involved in stage-dependent current changes, we compared the transcriptomes of H&H 31 and H&H 35 embryonic chicken dorsal skins (Supplementary Fig. 1), with epithelium and mesenchyme separated due to their distinct cell morphology and molecular expression (Fig. 1b). Epithelium is primarily comprised of cuboidal cells tightly arranged in a honeycomb pattern (highlighted by staining of LCAM, Liver Cell Adhesion Molecule), while mesenchyme is mainly composed of VIM (Vimentin) positive, bipolar, or multipolar fibroblasts (Supplementary Fig. 2a, b). Neurites are very rare and only exist in mesenchyme underneath feather buds during feather elongation (Supplementary Fig. 2c). We focus on Ca2+ channel coding genes in RNA-Seq analysis, because Ca2+ ions not only serve as carriers of inward currents19, but also second messengers to link membrane potentials to downstream cellular events20. Intercellular gap junction channels were also included, as they are crucial to establish tissue-wide electrical paths21. Ca2+-activated K+ channels carrying outward currents may help restore the resting membrane potential after depolarization-induced Ca2+ influx22.

To shorten the candidate gene list (Supplementary Data 1), the following filter condition was applied: minimum RPKM (reads per kilobase of transcript per million mapped reads) > 1.5, fold change > 1.3 (before Log2 transformation), P < 0.05 (Fig. 1c). Afterwards, RNA in situ hybridization and RT-qPCR were performed to validate the RNA-Seq results (Fig. 1d and Supplementary Fig. 3). L-type and T-type voltage-gated Ca2+ channels (VGCCs), gap junctions and Ca2+ release activated Ca2+ (CRAC) channels exhibited developmental stage-dependent variations of expression. Connexin-43 gap junctions were localized at the posterior-distal epithelium and mesenchyme until feather elongation when the expression region expanded in the mesenchyme. Meanwhile their expression level decreased until feather elongation when the expression region expanded in the mesenchyme (Supplementary Fig. 2c). We focus on Ca2+ channel coding genes in RNA-Seq analysis, because Ca2+ ions not only serve as carriers of inward currents19, but also second messengers to link membrane potentials to downstream cellular events20. Intercellular gap junction channels were also included, as they are crucial to establish tissue-wide electrical paths21. Ca2+-activated K+ channels carrying outward currents may help restore the resting membrane potential after depolarization-induced Ca2+ influx22.

To shorten the candidate gene list (Supplementary Data 1), the following filter condition was applied: minimum RPKM (reads per kilobase of transcript per million mapped reads) > 1.5, fold change > 1.3 (before Log2 transformation), P < 0.05 (Fig. 1c). Afterwards, RNA in situ hybridization and RT-qPCR were performed to validate the RNA-Seq results (Fig. 1d and Supplementary Fig. 3). L-type and T-type voltage-gated Ca2+ channels (VGCCs), gap junctions and Ca2+ release activated Ca2+ (CRAC) channels exhibited developmental stage-dependent variations of expression. Connexin-43 gap junctions were localized at the posterior-distal epithelium and mesenchyme until feather elongation when the expression region expanded in the mesenchyme. Meanwhile their expression level decreased in the epithelium. STIM1 (Stromal Interaction Molecule 1, Ca2+ sensor of CRAC channels) was expressed with a similar pattern as Connexin-43 in feather mesenchyme. The binding partner of STIM1 (ORAI1, ion conducting pore subunit of CRAC channels) was also present in feathers but exhibited no stage-dependent variation in expression. Furthermore, in situ hybridization detected sparse KCNMA1 (component of Ca2+-activated K+ channel) expression in anterior epithelium and basal mesenchyme of H&H 35 feather buds.

Functional CRAC channels in elongating feathers. CRAC channels are activated by depleting the endoplasmic reticulum (ER) Ca2+ stores. To assess CRAC channel expression in feathers, intact skin explants were bathed in EGTA-buffered Ca2+ free solution containing Thapsigargin (ER Ca2+ pump blocker). After Thapsigargin treatment, 2 mM Ca2+ Ringer’s solution was applied to induce store-operated Ca2+ influx. Notable Ca2+ influx was observed in both feather epithelium and mesenchyme (Fig. 2i, k and Supplementary Movie 10). The CRAC channel inhibitor, BTP2, dramatically reduced Ca2+ influx (Fig. 2j, k and Supplementary Movie 11). Taken together, feather buds express functional CRAC channels.

In dissociated single mesenchymal cells, uncoordinated, spontaneous, and long-lasting Ca2+ fluctuations were observed (Fig. 3a ROI 2, 3). Normally, high KCl stimulation causes a rapid rise in Ca2+, owing to membrane depolarization leading to opening of VGCCs. This was, indeed, observed in many cells (Fig. 3a, b ROI 3). Surprisingly, KCl-induced Ca2+ decreases were also observed in some cultured mesenchymal cells (Fig. 3a, b ROI 3). We hypothesize that the decrease might be due to membrane depolarization shutting off Ca2+ influx through the inwardly rectifying CRAC channels31. Some cells exhibited biphasic responses to KCl (a rapid rise, followed by a decrease), possibly due to the cells’ expressing both VGCCs and CRAC channels (Fig. 3a, b ROI 2). When KCl was applied along with Nitrendipine, a VGCC blocker, Ca2+ levels showed only the decrease, confirming the role of VGCCs in the rapid upward

Functional VGCCs and Connexin-43 gap junctions in feathers. To visualize cytoplasmic Ca2+ buildup due to influx through functional VGCCs in feathers, we constructed an avian viral vector (RCAS) expressing Ca2+ sensor GCaMP6s30, T2A peptide, and mCherry. By normalizing the fluorescence intensity of GCaMP6s to that of mCherry, changes in Ca2+ levels could be measured and compared among tissues despite heterogeneous levels of viral expression. To visualize cytosolic Ca2+ changes along both the transverse and sagittal planes, we adopted skin explants and strip configurations (Fig. 2a). As expected, KCl application to depolarize membrane potentials triggered Ca2+ increases in mesenchymal but not epithelial cells. The responses elevated as the feathers developed (Fig. 2b–f, k; Supplementary Fig. 4a; Supplementary Movies 1–5). Pretreating skins with a VGCC blocker, Nifedipine, dramatically reduced the KCl response (Fig. 2g, k and Supplementary Movie 6). To measure direct currents through VGCCs, H&H 35 mesenchyme was dissociated to single cells for patch clamp experiments (Supplementary Fig. 5). Consistent with the in situ hybridization data (Supplementary Fig. 3a), a current–voltage (I–V) plot supports the presence of functional VGCCs. The measured I–V curve indicates that the cells mainly expressed T-type VGCCs, but we cannot exclude the possibility that a cell population may express L-type VGCCs due to the limited number of tested cells used in the patch clamp experiment. KCl-induced fast Ca2+ increases were also observed in cultured single cells (Fig. 3a, b ROI 1 and Supplementary Movie 7). Taken together, our data suggest that active VGCCs are present in a subpopulation of feather mesenchymal cells.

To confirm the presence of functional gap junction channels, we performed the scrape-loading/dye transfer assay to confirm the permeability of gap junctions in feathers23. In H&H 35 feather buds Lucifer yellow quickly spread to almost all feather mesenchymal cells after scraping (Supplementary Fig. 6a, b). Pretreatment of the skin for 1 h with 18-α-GA, which disrupts the Connexin-43 arrangement within the channel24, dramatically reduced intercellular transfer of Lucifer yellow (Supplementary Fig. 6a). Similar results were observed in samples treated with PMA (Supplementary Fig. 6b), which activates PKC to alter Connexin-43 phosphorylation and downregulates Connexin-43 expression25,26. As gap junction communication plays a role in propagating electrical signals among cell populations29, we expected weaker KCl responses in feathers after administering gap junction blockers. Indeed, pretreating the skins with either Carbendoxolone (an 18-α-GA derivative) or PMA significantly reduced the KCl responses (P < 0.05, Wilcoxon rank test, Fig. 2h, k, Supplementary Fig. 6c and Supplementary Movies 8, 9). These data indicate that a functional gap junction network exists in feather mesenchyme.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07661-5 | www.nature.com/naturecommunications
Fig. 2 Functional VGCCs, gap junctions and CRAC channels in elongating feathers. a Schematic drawing exhibiting the skin explant and strip configuration used for time-lapse Ca\(^{2+}\) imaging. Bright field images of feather buds at different developmental stages in skin explants and strips are shown. Dotted lines highlight epithelial-mesenchymal boundaries. Scale bars, 50 μm. b–d Time-lapse Ca\(^{2+}\) imaging of feathers from skin explants at different stages (n = 3 for each stage). Dotted lines indicate regions of interest (ROI) for quantification ("denotes seconds). Pseudocolor images of the ratios are presented at selected time points (arrowheads). Scale bar, 50 μm. e Quantifying change of mesenchymal Ca\(^{2+}\) increases in feathers from skin strips. R\(_d\): baseline F GCaMP6s/F mCherry ratio before KCl application. ΔR: the peak ratio subtracts R\(_d\). Mean ± s.e.m. *P < 0.05 (Wilcoxon rank test). Dots represent individual data points. f Time-lapse Ca\(^{2+}\) imaging of feathers in skin explants at H&H 35 (n = 16/16). g Pretreatment with 50 μM Nifedipine for 3 min greatly dampened the KCl-induced Ca\(^{2+}\) elevation (n = 4/4). h Pretreatment with 150 μM Carbenoxolone for 30 min significantly reduced the KCl response (n = 4/4). i Feather buds pretreated for 30 min with 0 mM Ca\(^{2+}\) solution including 10 μM Thapsigargin exhibited notable Ca\(^{2+}\) influx after perfusion of 2 mM Ca\(^{2+}\) solution (n = 3/3). j 5 μM BTP2 significantly reduced the Ca\(^{2+}\) influx (n = 3/3). k Quantification of Ca\(^{2+}\) response in feathers from skin explants under different treatments. Mean ± s.e.m. *P < 0.05 (Wilcoxon rank test)
Fig. 3 Heterogeneous Ca^{2+} responses in cultured mesenchymal cells. a, b Three types of Ca^{2+} responses upon 100 mM KCl stimuli in H&H 35 single mesenchymal cells: KCl-induced Ca^{2+} increase (ROI 1, n = 24/73), biphasic Ca^{2+} response (ROI 2, n = 7/73), KCl-induced Ca^{2+} decrease (ROI 3, n = 42/73). Rectangles denote regions of interest (ROI) for quantification. AM-Fura-2 dyes were used to measure Ca^{2+} level by excitation wavelength of 350 nm (F350) and F380. Scale bar, 25 μm. ′ denotes minutes. Whisker bottom, box bottom, median line, box top, and whisker top correspond to 10, 25, 50, 75, and 90 percentile. c, d 10 μM Nitrendipine (Nitren) or 10 μM LaCl₃ was used to inhibit L-type VGCC (n = 5) and CRAC channels (n = 20), respectively. **P < 0.01 (Wilcoxon rank test). e Mesenchymal cells were identified by vimentin staining after Ca^{2+} measurements. Scale bars, 35 μm, 110 μm. f Fast application of KCl solution for 10 s induced immediate Ca^{2+} responses. Four cells labeled with colored numbers in e were chosen to plot the ratios. ′′′ denotes seconds. g Slow, gentle bath perfusion of KCl (indicated by the time delay between onset of KCl application and response) implies the response is not an artifact of shear stress stimulation. h Negative correlation between R₀ and KCl-induced Ca^{2+} increase (Red circle, fast application/bath perfusion, n = 246). Positive correlation between R₀ and KCl-induced Ca^{2+} decrease (Black circle, fast application, n = 184; blue circle, bath perfusion, n = 62). % increase or decrease of Ca^{2+} response was calculated by ΔR/R₀.

spike in the biphasic response (P < 0.01, Wilcoxon rank test, Fig. 3c, d). The KCl-induced decrease, even with Nitrendipine, suggests that the cells may express constantly active CRAC channels in addition to VGCCs (Fig. 3c and Supplementary Movie 12). Application of lanthanum (La^{3+}), a CRAC channel pore blocker, significantly decreased the baseline cytoplasmic Ca^{2+} levels in some cells, which also indicates the presence of sustained active CRAC channel currents (P < 0.01, Wilcoxon rank test, Fig. 3c, d and Supplementary Movie 13). Additionally, heterogeneous responses to Ca^{2+} stimulation after Ca^{2+} deprivation were observed in the dissociated mesenchymal cells, confirming the non-uniform presence of CRAC channels (Supplementary Fig. 7a-d). Finally, biphasic KCl responses were also observed in feather bud mesenchymal under skin strip configuration (Supplementary Fig. 8a, b and Supplementary Movie 14), implying the presence of active CRAC channels in vivo.

While we tried to classify the subpopulations of the mesenchymal cells with respect to KCl-induced Ca^{2+} responses, we discovered that there was a correlation between cell morphology and Ca^{2+} responses. Surface area and aspect ratio measured in VIM staining images indicated that smaller- and/or thin-shaped cells tended to exhibit elevated baseline Ca^{2+} levels and KCl-induced Ca^{2+} decreases, while larger- and/or polygonal-shaped cells tended to exhibit KCl-induced Ca^{2+} increases (Fig. 3e–h and Supplementary Fig. 7e, f). The elevation of baseline Ca^{2+} could be abolished by Thapsigargin treatment, implying contributions from constantly active CRAC channels (R₀ of Fura-2 is about 0.5 in all cells measured in Supplementary Fig. 7a, b). Notably, some mesenchymal cells located at the anterior region of buds were elongated compared to ones located at the posterior region (Supplementary Fig. 2a, b). Therefore, we speculated that subpopulations of dissociated mesenchymal cells somehow retain their endogenous locational information which causes them to express the functional Ca^{2+} channels corresponding to their sites of origin.

To further evaluate the contribution of CRAC channels to the dynamic Ca^{2+} changes in feather buds, we created light-activated CRAC channels called opto-cCRAC by fusing the chimerical cytosolic STIM1 domain with the LOV domain from Avena sativa phototropin 3. STIM1 is located in the ER membrane, where normally, upon depletion of the ER, it activates the plasma membrane ORAI channels. Upon blue light illumination, the LOV domain undergoes conformational changes, exposing the STIM1 cytosolic domain to engage ORAI channels on the cell membrane. We confirmed that the opto-cCRAC can induce Ca^{2+} influx in Hela cells (Fig. 4a and Supplementary Movie 15) and H&H 35 mesenchymal cells (Fig. 4b and Supplementary Movie 16). When we artificially elicited Ca^{2+} oscillations by cyclic activation of opto-cCRAC in skin explants transduced with RCAS virus encoding opto-cCRAC for 48 h, the highly infected feathers were significantly elongated compared to the poorly infected ones on the contralateral side (P < 0.01, Wilcoxon rank test, Fig. 4c). Control skins transduced with RCAS virus encoding
Ca^2+ influx induced by cyclic activation of opto-cCRAC enhances feather elongation. a In Hela cells opt-cCRAC induced Ca^{2+} influx after blue light exposure (n = 20/20). jRCaMP1b was expressed to detect Ca^{2+} level changes. Arrowheads in the line plot highlight the time point of images on the left. F/F_0 changes in fluorescence. Mean ± s.d. Scale bar, 10 μm. b Light-induced Ca^{2+} influx occurred in H&H 35 mesenchymal cells infected by virus encoding opto-cCRAC (cyan rectangles, n = 25/43) but not in the uninfected cells (magenta rectangles, n = 0/33). Mean ± s.d. Scale bar, 10 μm. (‘’ denotes seconds). F_C fluorescence at the end of recording (70°); **P < 0.01 (Chi-square test). c After 48 h cyclic blue light illumination, skin regions (n = 8/10) highly expressing opto-cCRAC developed more elongated feathers than the poorly infected buds (n = 60 for each group, **P < 0.01, Wilcoxon rank test). No discernable feather morphology changes (n = 48, NS, not significant, Wilcoxon rank test) were observed in skins infected by RCAS-GCaMP6s-T2A-mCherry. Regions close to the dorsal mid-line were magnified (rectangles) to compare feather aspect ratio (ellipses). Scale bar, 500 μm. Customized boxplot: Mean (red) ± s.d. (pink), 95% confidence interval (violet). Dots denote individual data points.

GCaMP6s-T2A-mCherry exhibited no discernible feather morphology changes. Thus collective cell Ca^{2+} oscillations are crucial for feather elongation.

Ca^{2+} oscillation patterns modulate feather elongation. To directly visualize the dynamics of the tissue Ca^{2+} profile, we did 4D (3D space + time) imaging of elongating feathers from H&H 34 skin explants and strips infected with RCAS virus encoding GCaMP6s-T2A-mCherry. Intriguingly, not only did we see fast, sporadic Ca^{2+} transients on the scale of seconds (Supplementary Fig. 8c, e and Supplementary Movie 17), we also observed slow Ca^{2+} oscillations, which are generally synchronized (peaks and valleys in phase) in anterior and posterior mesenchyme (Fig. 5a, Supplementary Fig. 8d, e and Supplementary Movies 18–21). The oscillating zone slowly expands in the anterior–proximal direction at about 1.7 μm/min (Fig. 5a and Supplementary Fig. 8d, f). These oscillations are dramatically dampened upon the inhibition of VGCCs or gap junctions, although some sparse Ca^{2+} transients could still be spotted (Fig. 5a; Supplementary Fig. 6 and Supplementary Movies 22–27). Thus VGCCs and gap junction channels are required for multi-cellular Ca^{2+} oscillations during feather elongation.

Next we explored whether the alterations of physiological Ca^{2+} dynamics would change feather morphology. We treated the skin with Nifedipine, Carbeneoxalone, PMA, and another gap junction inhibitor Mefloquine for 4 days and compared feather morphology to the untreated controls (Fig. 5b and Supplementary Fig. 9). The control feathers developed into elongated filaments tilting posteriorly. Nifedipine-treated feathers grew upward for a while and then stopped, without developing an apparent anterior–posterior (A–P) polarity. Carbeneoxalone and Mefloquine-treated feathers were also shorter than the controls. PMA treatment induced more severe phenotypes than Carboenoxalone in that feather buds disappeared in some skin regions. This difference may result from downstream effects of PKC signaling other than gap junction inhibition. We also genetically perturbed gap junction expression levels using lentivirus encoding Connexin-43 shRNA (pLL3.7-Cx43-SH) 34. The infected feathers were notably shorter than the counterparts in the contralateral, virus-negative side (P < 0.01, Wilcoxon rank test, Fig. 5c). All the chemicals also significantly altered the feather aspect ratio (P < 0.01, Wilcoxon rank test), while none of them significantly increased cell apoptosis (Supplementary Fig. 9). Nifedipine treatment increased cell proliferation while Mefloquine treatment had the opposite effect. Taken together, neither cell proliferation nor apoptosis is a major process involved in oriented feather elongation.

VGCCs and gap junctions modulate mesenchymal cell migration. Since feather elongation is mainly driven by cell rearrangement during development 14, we scrutinized cell movement patterns...
Fig. 5 Modulating physiological Ca2+ oscillations alters feather elongation process.

(a) Virtual sections of 4D ratiometric Ca2+ imaging of elongating feather buds on H&H 34 skins (n = 3). ROI analysis of GCaMP6s and mCherry fluorescence ratio exhibited synchronized Ca2+ oscillations in anterior (cyan rectangle) and posterior (magenta rectangle) mesenchyme. The high Ca2+ area expanded anteriorly over time (the intersection of cyan and magenta lines).\textdagger in x-axis denotes minutes. Pseudocolor ratiometric images were shown at selected times (arrowheads). 50 μM Nifedipine or 150 μM Carbenoxolone treatment dramatically reduced the number of cells showing elevated Ca2+ (n = 2). Scale bar, 50 μm.

(b) Feather buds on H&H 31 skins became elongated filaments oriented posteriorly after 4-day culture with DMSO (red arrows, n = 10/10). Nifedipine-treated feather buds were shorter and had no apparent anterior-posterior polarity (n = 8/8). 150 μM Carbenoxolone treatment inhibited feather elongation and disrupted feather polarities (red arrows, n = 6/6). H&E: Hematoxylin and Eosin staining. Scale bars, 500 μm (whole-mount skin), 50 μm (section).

(c) In H&H 35 Skins, the regions (n = 4/4) infected with lentivirus encoding Connexin-43 shRNA (pLL3.7-Cx43-SH) exhibited dramatically inhibited elongation of young feather buds (cyan ellipses) compared to the control side (magenta ellipses, n = 23 for each group, **P < 0.01, Wilcoxon rank test). Rectangles highlight magnified area. Scale bar, 500 μm. Customized boxplot: Mean (red) ± s.d. (pink), 95% confidence interval (violet). Dots denote individual data points.
by tracking individual mesenchymal cells labeled with histone-H2B GFP in skin explants. Since there was a strong correlation between Ca²⁺ dynamics and feather morphology changes as shown above, we tested the effect of VGCC and Gap junction blockers on cell migration. We segmented out the feather mesenchyme to exclude epithelial cells, tracked cell positions over time, and plotted trajectories along the X (anterior–posterior), Y (left–right), and Z axis (up–down) over time. Black line indicates averaged cell position over time. The averaged velocities (\(v \)) and the averaged displacement angles (\(\Theta \)) were significantly altered upon Nifedipine or PMA treatment. **P < 0.01 (Watson’s U² test)
mesenchymal cells mainly moved upward without notable A–P bias (Supplementary Movie 29). The movement velocity and displacement angle are similar between the anterior and posterior bud mesenchymal cells (Supplementary Table 1 and Supplementary Fig. 10b). Carbenoxolone treatment also diminished cell movement in the posterior direction (Fig. 6c and Supplementary Movie 30). In PMA-treated skins, feather mesenchymal cells mainly move downward and anteriorly (Supplementary Fig. 10c and Supplementary Movie 31), which explains why some feather buds disappeared in long-term culture (Supplementary Fig. 9a). Therefore, blocking VGCCs and gap junctions dramatically altered the mesenchymal cell movement patterns, especially the directionality. SHH signaling allows sporadic Ca\(^{2+}\) transients to synchronize. Next, we explored the biochemical signals that modulate Ca\(^{2+}\) oscillation and cell migration patterns. The Ca\(^{2+}\) oscillations in elongating feathers initially emanate from the posterior–distal mesenchyme, which is known as the SHH signal responding zone. SHH is expressed in the posterior–distal epithelium while its receptor PTCH1 is enriched in the underlying mesenchyme (Fig. 7a). Therefore, SHH protein from the feather epithelium must have diffused through the basement membrane into the mesenchyme. To confirm SHH signaling activity in the posterior–distal mesenchyme, we infected embryonic chicken skin with a virus-based reporter construct, RCAN-GBS-GFP\(^{35}\). The GLI-binding-site (GBS) drives gene expression upon SHH signal activation, while RCAN itself has no internal promoter activity. We found that GFP-positive cells co-localize with the PTCH1-positive region (Fig. 7a). The GFP-positive zone expanded in the anterior–proximal direction as feathers elongated, resembling the expansion pattern of synchronized Ca\(^{2+}\) oscillations. Furthermore, blocking SHH signaling with Cyclopamine\(^{16}\) causes failure of feather bud polarization and elongation (Fig. 7b). This morphological abnormality could be fully rescued by adding the SHH agonist SAG\(^{36}\) (Supplementary Fig. 9), and partially rescued by opto-cCRAC together with cyclic blue light illumination. The feather mesenchymal region enriched for opto-cRAC elongated and became the new feather tips (Fig. 7c). In 4D Ca\(^{2+}\) imaging, Cyclopamine treatment inhibited synchronized Ca\(^{2+}\) oscillations, but sporadic Ca\(^{2+}\) transients were still observed (Fig. 7d and Supplementary Movies 32–34). When we track mesenchymal cells in Cyclopamine-treated feathers, they initially move upward, then stop and move slightly downward (Fig. 7e, f and Supplementary Movie 35). The anterior and posterior mesenchymal cell populations have significant differences in movement directionality: the anterior cells move more anteriorly while the posterior cells mainly move upward (\(P < 0.01\), Watson’s U\(^2\) test, Supplementary Fig. 10d).

SHH/WNT signaling module activates Connexin-43 expression. Disruption of Ca\(^{2+}\) oscillation patterns upon Cyclopamine treatment implies a role of SHH signaling in regulating either the activities or expression levels of certain Ca\(^{2+}\)-related channels. Previous studies of Xenopus spinal cells implicated SHH signaling in increasing spontaneous neuronal Ca\(^{2+}\)-transients\(^{36}\). We conducted similar experiments in cultured H&H 34 mesenchymal cells but observed no significant increase of spontaneous Ca\(^{2+}\) transients upon treatment with SHH N-terminus protein or SAG compared to the controls (Wilcoxon rank test, Supplementary Fig. 11a and Supplementary Movie 36). We also examined KCl response strength in feathers with short-term Cyclopamine (Supplementary Movie 37) or SAG (Supplementary Movie 38) treatment, but no notable changes were observed, either (Supplementary Figs. 4 and 11b). Therefore, we assume that SHH signaling mainly affects channel gene expression, which takes longer to occur. We attempted to identify SHH-induced Ca\(^{2+}\) channel genes in an embryonic context through RCAS mediated SHH overexpression. However, this led to severe developmental defects before feather buds emerge (Supplementary Fig. 12a). Hence, we switched to cultured mesenchymal cells for the answer. qPCR results indicate 24-hr SHH N-terminus protein treatment mildly elevated Connexin-43 and STIM1, but not CACNA1C or PKD2 expression (Fig. 8a and Supplementary Fig. 12b). In skin explants, 48-hr SAG treatment also elevated Connexin-43 expression in feathers, while Cyclopamine treatment had the opposite effect (Fig. 8b). The mild effect of SHH protein on Connexin-43 expression in cultured mesenchymal cells may implicate the involvement of other epithelial factors in inducing Connexin-43 expression, as epithelium is absent in the cell culture. Previously we discovered active WNT/β-catenin signaling in posterior feather mesenchyme\(^{16}\). During feather elongation, the WNT-responding zone (composed of nuclear β-Catenin positive cells) expands distally and partially overlaps with the SHH-responsing zone (Fig. 8c). Therefore, we examined how WNT signaling regulates Connexin-43 expression. Basal expression of constitutively active β-Catenin in chicken embryos substantially upregulated Connexin-43 expression (Fig. 8d). Meanwhile no elevation was observed in control (RCAS-GCaMP6s-T2A-mCherry) embryos (Supplementary Fig. 12a). The RCAS-β-Catenin infected feather buds also exhibited randomized polarity as seen previously\(^{16}\). In skin explants treated with LiCl, which activates WNT/β-catenin signaling\(^{37}\), we also observed elevated Connexin-43 expression (Supplementary Fig. 12c), while the inhibition of WNT/β-catenin signaling by endo-IWR1\(^{38}\) had the opposite effect (Supplementary Fig. 12c). qPCR of cultured mesenchymal cells also demonstrated an elevation of Connexin-43 expression upon LiCl treatment, which is enhanced by SHH N-terminus protein treatment (Fig. 8a). Additionally, we searched for the SHH-responding motif (GLI-binding site) and WNT-responding motif (LEF1-binding site) in the active Connexin-43 promoter region, which is marked by enrichment of Histone H3 Lysine 4 trimethylation\(^{39}\) in ChIP-Seq analysis. We pinpointed a GLI-binding site and a LEF1-binding site in proximity (Fig. 8e), supporting the idea that SHH and WNT signaling may work together to activate Connexin-43 transcription. Such a synergistic effect was not seen for CACNA1C, STIM1, or PKD2 expression (Supplementary Fig. 12b).

Discussion
Emergence of organized patterns from apparently random cells is the essence of tissue morphogenesis\(^{40}\). During tissue morphogenesis, cells navigate through a three-dimensional space to interact and organize themselves into proper configurations. Using time-lapse imaging and tracking, we observed dynamic and multi-dimensional cellular flows in the 4D context. Random and directed movements seem to co-exist in mesenchymal sub-populations. Cellular collectives form, disassemble, then reform. Cells move in one direction, stop, and then reorient. Amazingly, order gradually emerges from these seemingly chaotic movements, and organs with proper shape and orientation emerge. It is difficult to explain such complex choreography just with chemotaxis. The roles of mechanical force, bioelectric signals and ionic control in morphogenesis are now gaining increasing attention\(^{41,42}\). Here we leverage the distinct feather patterns on emerging Ca\(^{2+}\) dynamics in collective cell behavior control.

Before the onset of feather buds elongation, the E-cadherin gene expression in chicken is relatively homogenous and inwardly...
directed. Outward currents likely exist in other regions of the chicken embryo to complete the circuit on a global scale, which is known to occur in earlier chicken embryos. These global circuits have also been detected in zebrafish embryos and Xenopus tadpoles. Later on the current direction reverses locally at the anterior side of feather buds in chicken embryos. Another case of local electric current reversal is reported before limb bud formation in the Xenopus embryos. Thus local circuit formation may signify and participate in orchestration of local collective cell behaviors in different biological processes.

We postulate that the formation of these local electric circuits during feather bud elongation relies on active VGCC, CRAC, Ca\(^{2+}\)-activated K\(^+\) channels, as well as the gap junction network. Previously, gap junction components have been detected in multiple types of skin appendages including feathers and their networks are known to shape multicellular Ca\(^{2+}\) networks.
activities in a variety of excitable and non-excitable cells. Due to their permeability to ions and small molecules, gap junctions serve as low-resistance pathways to spread ionic currents, and hence propagate membrane potential changes among neighboring cells. The range of the gap junction network is limited by diffusion from posterior bud epithelium and in vitro qPCR data (Fig. 1c and Supplementary Fig. 12b) imply that SHH and WNT signaling likely also upregulate **STIM1** expression, which enables store-operated **Ca**^{2+} influx through CRAC channels. In dissociated H&H 35 feather mesenchyme, we observed sparse cells with changes in cytosolic

Fig. 7 SHH signaling underlies normal **Ca**^{2+} oscillation and mesenchymal cell migration pattern in feather. **a** In situ hybridization reveals that SHH is expressed in the posterior-distal epithelium while PTCH1 is enriched in the underlying mesenchyme. An RCAN virus-based GLI reporter demonstrates expansion of the mesenchymal SHH-responding zone anteriorly during feather elongation. Scale bar, 50 μm. **b** H&H 31 skins cultured for 4 days in 5 μM Cyclopamine exhibited dramatic inhibition of feather bud elongation (ellipse, n = 8/8). Scale bars, 500 μm, 50 μm. **c** Expression of opto-c-CRAC in feather mesenchyme and cyclic blue light illumination partially rescued the Cyclopamine mediated inhibition of elongation by inducing new feather tips to form (n = 3/3). The buds with new tips exhibited more elongated morphology (cyan ellipse) than those poorly or not infected ones (magenta ellipse, dramatic inhibition of feather bud elongation (ellipse, cyan ellipse) with cyclopamine (mesenchyme highlighted in white). Scale bar, 50 μm. **e** 9 h 4D cell nuclear imaging of a feather bud treated with 5 μM Cyclopamine (mesenchyme highlighted in white). Scale bar, 50 μm. **f** Mesenchymal cell positions plotted over time and the averaged displacement angles (n = 430)

Fig. 8 SHH and WNT signaling synergistically activate **Connexin-43** expression. **a** qPCR revealed a mild elevation of **Connexin-43** expression in cultured mesenchymal cells treated for 24 h with 0.25 μM SHH N-terminal peptide (N-SHH) or 7 mM LiCl to activate WNT signaling. The upregulation is more significant when both N-SHH and LiCl are present. Activation of SHH and WNT signaling are confirmed by PTCH1 and LEF1 qPCR, respectively (n = 6). **b** Virtual sections of 4D **Ca**^{2+} imaging of H&H 34 feather buds treated with 5 μM Cyclopamine (n = 2). Scattered **Ca**^{2+} fluctuations were observed among the cells. Quantification of F GGoMP6s/F Cherry was conducted for the anterior (cyan rectangle) and posterior (magenta rectangle) mesenchyme and demonstrated in line plot. Scale bar, 50 μm. **c** 9 h 4D cell nuclear imaging of a feather bud treated with 5 μM Cyclopamine (mesenchyme highlighted in white). Scale bar, 50 μm. **f** Mesenchymal cell positions plotted over time and the averaged displacement angles (n = 430)
Ca2+. Those cells that did show Ca2+ changes typically exhibited sustained Ca2+ elevations, implying continuous CRAC channel activation. Though sustained CRAC activity may depolarize membrane potential to activate the low-threshold voltage-gated T-type Ca2+ channels, tissue-wide synchronized Ca2+ oscillations were not observed until gap junction expression increased in mesenchyme. Thus we think gap junction-mediated electric coupling is essential for synchronized the originally heterogeneous VGCC and CRAC activation events, transforming sporadic Ca2+ transients into organized oscillations. These oscillations facilitate the collective cell movements mediating feather elongation in the posterior–distal direction (Fig. 9).

Ca2+ fluctuations have previously been implicated in modulating cell migration32–34, convergent extension31, apical constriction35, etc. Our study demonstrates slow multicellular Ca2+ oscillations coordinate collective mesenchymal cell migration in skin appendage organogenesis. We have three hypotheses of how these two events are linked: (1) Elevated cytoplasmic Ca2+ promotes myosin-driven cell protrusions by activating myosin light chain kinase (promoting actomyosin contractility)31. (2) Elevated mitochondrial Ca2+ (mitochondria are known to at least partially buffer cytoplasmic Ca2+ increase) enhances ATP production56. (3) The oscillations serve as a communication mechanism enhancing sensitivity to gradients of chemotactic cues like FGF57–60. Since FGF signaling is required for normal SHH expression in feather50, the chemotaxis and gap-junction-based communications may function in parallel.

Multicellular Ca2+ oscillations are dependent on both gap junctions and CRAC channels in cells lacking VGCCs61. Our in situ hybridization data indicates that the Connexin–43 expression region overlapped with that of STIM1 in feather mesenchyme. Although CRAC channel inhibitor BTP2 did not block feather elongation (Supplementary Fig. 9), oscillatory activation of opto-CRAC channels did enhance feather elongation (Fig. 4c). Beside VGCCs and CRAC channels, Ca2+ transients could also be triggered by stretch-activated Ca2+ channels62, interestingly, the stretch-activated Ca2+ transients observed in human gingival fibroblasts are also contributed by VGCCs, suggesting a potential link between the two types of channels. Furthermore, mechanical stimulations could regulate the expression, subcellular localization and even phosphorylation state of Connexin-4363. There is a possibility that stretch between cells during feather mesenchymal migration helps reshape the functional gap junction network.

The mechanism described in this work is active when feather primordia (< 100 µm in length) elongate to become long feather buds (> 200 µm in length), representing a substantial change in the organ aspect ratio. Unlike the more stable adhesion molecule-mediated cell condensates, this mechanism enables transient cell collectives to form dynamically, effectively guiding mesenchymal cells during the construction of organ architectures. This study also demonstrates a proof-of-concept that manipulation of Ca2+ patterns can modulate cell behaviors in tissues and organs located close to the body surface. Hence, the optogenetic Ca2+ channels would have wide applications in procedures such as accelerating wound healing, decreasing scar formation, wound contraction, and inducing hair regeneration.

Methods

Egg resources. Animal care and experiments were conducted according to the guidelines established by the USC Institutional Animal Care and Use Committee. White leghorn chicken eggs were purchased from Charles River (pathogen free) and AA laboratory.

Vibrating probe measurement of feather bioelectric currents. The vibrating probe technique for non-invasive measurement of endogenous electric current densities has been previously described1. The probe is an Elgiloy-stainless microelectrode (WPJ #S33A370) coated with a thin layer of parylene insulation, leaving 1–2 µm of metal exposed at the tip. Using a nano-amp power supply, we electroplate a thin layer of gold and then a platinum ball onto the tip. The probe, mounted on a 3-dimensional micro-positioner (Line Tool Co., model H), is vibrated at high frequency (150–200 Hz) by a piezoelectric actuator in solution ~1 tip ball distance from the sample surface. If an electric current is present due to ion flux, the electric charge on the platinum ball fluctuates in proportion to the size of the current. The probe is connected to a lock-in amplifier (Stanford Research Systems, model SR530) that locks on to the probe’s specific frequency. The probe is calibrated with a set current density of 1.5 µA/cm2 at the start and end of experiment. Before measurements, the probe is vibrated in solution far from the sample (> 1 cm), where there is no electric current, to establish a baseline.
coated-glass chips (0.5 × 0.5 cm). The mixture of 4 µM AM-Fura-2 and 2 Ca²⁺ dyes (Life Technologies) and 0.04% pluronic F-127 (Sigma) were loaded in the presence of 5% CO₂ in air to incubator. For ginger’s solution for 10 min, each glass chip was placed onto a recording chamber equipped with a local perfusion system. The custom-built local perfusion system was placed right next to a field of view and was able to exchange each test solution with a time constant of 100 ms. An inverted Axiovert 100 microscope (Zeiss) was used and set with a monochromatic filter V: 510 nm. The excitation light was filtered at 350 nm and 380 nm excitation wavelength for Fura-2. Each excitation wavelength was illuminated for 200 ms at 1 Hz sampling frequency through a 63 x 0.9 NA achroplan water immersion objective. The corresponding emission intensity was detected with a 16-bit depth EMCCD camera (Xon Ultra 897, Andor Technology) operated by MetaFluo (Version 7.8, Universal Imaging). All recordings were done at room temperature. For ROI analysis, background-subtracted intensity traces were imported into IGR Pro 6.2.2 (Waveometrics), and analyzed using custom-written data analysis routines. For testing activities of the chicken version of the opto-cRAC construct, Hela cells were transfected with 300 µg plenti-mcherry–LOV–cSTIM and 300 ng pCP-CMV-NEStagRAC1P (adddeg1#83163) in 35 mm glass-bottom dishes. Sixteen hours post-transfection, cells were recorded under 594 nm channel: 30s-off, followed by two cycles of on (blue light 1 min) and off (2 min).

Solutions used for time-lapse Ca²⁺ imaging. The skin explants expressing RCAS-GCaMP6s–T2A-mCherry were washed with 2 mM Ca²⁺ Ringer’s solution containing (in mM): 140 NaCl, 2.8 KCl, 10 MgCl₂, 10 CaCl₂, 20 D-glucose (pH 7.2 adjusted with 1 N NaOH, 290–300 µM osm adjusted with D-glucose). 100 mM KCl solution was composed of 100 KCl, 50 NaCl, 10 HEPEs, 1 MgCl₂, 2 CaCl₂, and 10 D-glucose (pH 7.2 adjusted with 1 N KOH, 290–300 µM osm adjusted with D-glucose). Ca²⁺ free solution was composed of 140 NaCl, 2.8 KCl, 10 HEPEs, 1 MgCl₂, 1 mM EGTA, and 10 D-glucose (pH 7.2 adjusted with 1 N NaOH, 290–300 µM osm adjusted with D-glucose). All the solutions were filtered through bottle-top filters with a 0.2 µm pore size membrane before use.

Patch clamp experiment for VGCC current recording. Dissociated mesenchymal cells from HH8 35 embryonic chicken skins were cultured on collagen-coated-glass chips (rat tail type 1 collagen, Sigma). Internal solution was composed of (in mM) 120 CsGlutamate, 10 HEPEs, 2 MgATP, 0.3 NaGTP, 10 NaCl, 10 EGTA, and 10 TEACl (pH 7.2 adjusted with 1 N CaO, 290 µM osm). The internal solution was filled into fire-polished glass pipettes prepared using a PC-10 patch pipette puller (Narishige, Japan). Pipette resistance ranged from 4.5 Mohm to 5.5 Mohm. The cells were placed on a recording chamber and washed with 2 mM Ca²⁺ Ringer’s solution. An inverted Axiovert 100 microscope (Zeiss) with a 63 x 0.9 NA water immersion objective was used to locate single mesenchymal cells. After forming a gigahm seal between a patch pipette and cell plasma membrane, a standard whole-cell configuration was prepared using an EPC9 amplifier (HEKA Elektronik, Germany). Pipette capacitance and membrane capacitance were compensated, and further eliminated using a P/4 protocol during current recordings. Series resistance ranged from 10 Mohm to 20 Mohm. A step voltage protocol written using PatchMaster Version 2 x 73.5 was applied to voltage-clamped cells. Currents were filtered at 2.5 kHz using a 4-pole bessel filter and digitized at a sampling frequency of 10 kHz. For data analysis, current traces were imported into IGR Pro 6.2.2 (Waveometrics) and current-voltage plots were generated using a custom-written data analysis routine.

4D Ca²⁺ imaging and cell nucleus imaging. HH8 34 chicken dorsal skins were cultured for 3–4 h before imaging in a Fisher Scientific 6-well culture insert (upper wall trimmed) mounted on 4 spacers glued to a WillCo 50 mm glass-bottom dish with 3 mL culture media underneath it. Right before imaging 1.8 ml culture media was added on top of the skin. A non-lubricated condom was used to make a sealed chamber between the dish and the microscope lens. Both the lens and the dish were warmed for 1.5–2 h before imaging. For 4D ratiometric Ca²⁺ imaging in skin explants, the interval between z-stack scans was 6 min (scanning time was ~2 min). The interval was 1.5 min for skin strips. For 4D nuclear imaging, the interval was 3 min (~1 min scanning time). 3D rendering, cell tracking was done in IMARIS (Bitplane). Representation of the fluorescence mesenchyme, ROI analyses were done in ImageJ. Quantification of movement patterns and generation of pseudocolour images were done in MATLAB. The duration of the slow Ca²⁺ transients were determined by measuring the time interval between the peaks or valleys on the pGCAMp6s/mCherry ratio plots. To calculate the spreading speed of multicellular Ca²⁺ transients, the frontiers of the wave propagation were manually determined in the pseudo-color images at different time points and the distances between the frontiers were measured and divided by the time intervals.

Photo-activation of opto-cRAC in cultured cells and skin. For the cultured mesenchymal cells, concentrated RCAS-mCherry–LOV–cSTIM virus was added to cell culture media (1:200 for 48 h). The cells were loaded with the Ca²⁺ indicator AM-Fura-2 (F12345, Molecular Probes) and imaged with an inverted Axiovert 100 microscope (Zeiss) equipped with an HBO lamp (HBO 100W/2) for excitation and an HBO lamp (HBO 100W/2) for excitation. For imaging with HH8 (no Phenol Red) before imaging. Imaging was done in a Zeiss LSM510 confocal microscope at 38 °C. For the skin culture, skin from HH8 31 embryos

Characterization of cell proliferation and apoptosis. Two hours before skin explants were collected and fixed in 4% PFA, 10 µl % BrdU (Sigma) was added to the culture media to label the proliferating cells. After fixation (4 °C overnight), samples were dehydrated in alcohol, cleared in xylene, and then embedded in paraffin. The paraffin blocks were cut into 8 µm sections. Before staining for BrdU (Abcam ab138105), the samples were incubated in 0.5 M HCl in 0.1 M NaOH at room temperature. For ROI analysis, background-subtracted intensity traces were imported into IGR Pro 6.2.2 (Waveometrics), and analyzed using custom-written data analysis routines. For testing activities of the chicken version of the opto-cRAC construct, Hela cells were transfected with 300 µg plenti-mcherry–LOV–cSTIM and 300 ng pCP-CMV-NEStagRAC1P (adddeg1#83163) in 35 mm glass-bottom dishes. Sixteen hours post-transfection, cells were recorded under 594 nm channel: 30s-off, followed by two cycles of on (blue light 1 min) and off (2 min).

Patch clamp experiment for VGCC current recording. Dissociated mesenchymal cells from HH8 35 embryonic chicken skins were cultured on collagen-coated-glass chips (rat tail type 1 collagen, Sigma). Internal solution was composed of (in mM) 120 CsGlutamate, 10 HEPEs, 2 MgATP, 0.3 NaGTP, 10 NaCl, 10 EGTA, and 10 TEACl (pH 7.2 adjusted with 1 N CaO, 290 µM osm). The internal solution was filled into fire-polished glass pipettes prepared using a PC-10 patch pipette puller (Narishige, Japan). Pipette resistance ranged from 4.5 Mohm to 5.5 Mohm. The cells were placed on a recording chamber and washed with 2 mM Ca²⁺ Ringer’s solution. An inverted Axiovert 100 microscope (Zeiss) with a 63 x 0.9 NA water immersion objective was used to locate single mesenchymal cells. After forming a gigahm seal between a patch pipette and cell plasma membrane, a standard whole-cell configuration was prepared using an EPC9 amplifier (HEKA Elektronik, Germany). Pipette capacitance and membrane capacitance were compensated, and further eliminated using a P/4 protocol during current recordings. Series resistance ranged from 10 Mohm to 20 Mohm. A step voltage protocol written using PatchMaster Version 2 x 73.5 was applied to voltage-clamped cells. Currents were filtered at 2.5 kHz using a 4-pole bessel filter and digitized at a sampling frequency of 10 kHz. For data analysis, current traces were imported into IGR Pro 6.2.2 (Waveometrics) and current-voltage plots were generated using a custom-written data analysis routine.

4D Ca²⁺ imaging and cell nucleus imaging. HH8 34 chicken dorsal skins were cultured for 3–4 h before imaging in a Fisher Scientific 6-well culture insert (upper wall trimmed) mounted on 4 spacers glued to a WillCo 50 mm glass-bottom dish with 3 mL culture media underneath it. Right before imaging 1.8 ml culture media was added on top of the skin. A non-lubricated condom was used to make a sealed chamber between the dish and the microscope lens. Both the lens and the dish were warmed for 1.5–2 h before imaging. For 4D ratiometric Ca²⁺ imaging in skin explants, the interval between z-stack scans was 6 min (scanning time was ~2 min). The interval was 1.5 min for skin strips. For 4D nuclear imaging, the interval was 3 min (~1 min scanning time). 3D rendering, cell tracking was done in IMARIS (Bitplane). Representation of the fluorescence mesenchyme, ROI analyses were done in ImageJ. Quantification of movement patterns and generation of pseudocolour images were done in MATLAB. The duration of the slow Ca²⁺ transients were determined by measuring the time interval between the peaks or valleys on the pGCAMp6s/mCherry ratio plots. To calculate the spreading speed of multicellular Ca²⁺ transients, the frontiers of the wave propagation were manually determined in the pseudo-color images at different time points and the distances between the frontiers were measured and divided by the time intervals.

Photo-activation of opto-cRAC in cultured cells and skin. For the cultured mesenchymal cells, concentrated RCAS-mCherry–LOV–cSTIM virus was added to cell culture media (1:200 for 48 h). The cells were loaded with the Ca²⁺ indicator AM-Fura-2 (F12345, Molecular Probes) and imaged with an inverted Axiovert 100 microscope (Zeiss) equipped with an HBO lamp (HBO 100W/2) for excitation and an HBO lamp (HBO 100W/2) for excitation. For imaging with HH8 (no Phenol Red) before imaging. Imaging was done in a Zeiss LSM510 confocal microscope at 38 °C. For the skin culture, skin from HH8 31 embryos
References
1. Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10, 445–457 (2009).
2. Thveneau, E. & Mayor, R. Collective cell migration of epithelial and mesenchymal cells. Cell. Mol. Life Sci. 70, 3481–3492 (2013).
3. Weijer, C. J. Collective cell migration in development. J. Cell. Sci. 122, 3215–3223 (2009).
4. Roux, W. Ueber die polare Erregung der lebendigen Substanz durch den elektrischen Strom. Pflüg. Arch. Eur. J. Physiol. 63, 542–544 (1896).
5. Humphries, J. et al. Species-independent attraction to biofilms through electrical signaling. Cell 172, 200–209 (2018).
6. Prindle, A. et al. Ion channels enable electrical communication in bacterial communities. Nature 527, 59–63 (2015).
7. Hotary, K. B. & Robinson, K. R. Endogenous electrical currents and the resultant voltage gradients in the chick embryo. Dev. Biol. 140, 149–160 (1990).
8. Levin, M. & Stevenson, C. G. Regulation of cell behavior and tissue patterning by biophysical signals: challenges and opportunities for biomedical engineering. Annu. Rev. Biomed. Eng. 14, 295–323 (2013).
9. Nakajima, K. et al. KCNJ15/Kir4.2 couples with polyamines to sense weak extracellular electric fields in galvanotaxis. Nat. Commun. 6, 8532 (2015).
10. Ross, C. L. The use of electric, magnetic, and electromagnetic field for directed cell migration and adhesion in regenerative medicine. Biotechnol. Prog. 33, 5–16 (2017).
11. Reid, B., Nuccitelli, R. & Zhao, M. Non-invasive measurement of bioelectric currents with a vibrating probe. Nat. Protocol. 2, 661–667 (2009).
12. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).
13. Vogt, N. Sensors and probes: Visualizing voltage. Nat. Methods 11, 710–711 (2014).
14. Chuong, C.-M. Molecular Basis of Epithelial Appendage Morphogenesis. (R.G. Landes Co., Austin, TX, 1998).
15. Wildeizit, R. B. et al. Wnt-7a in feather morphogenesis: involvement of anterior-posterior asympmetry and proximal-distal elongation demonstrated with an in vivo model. Development 125, 200–209 (1999).
16. Li, A. et al. Shaping organs by a wingless-int/Notch/nonmuscle myosin module which orients feather bud elongation. Proc. Natl Acad. Sci. USA 110, E1452–E1461 (2013).
17. Chodankar, R. et al. Shift of localized growth zones contributes to skin appendage morphogenesis: role of the Wnt/beta-catenin pathway. J. Invest. Dermatol. 130, 20–26 (2003).
18. Hamburger, V. & Hamilton, H. L. A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92 (1951).
19. Hille, B. Ion channels of excitable membranes (Sinauer Associates, Sunerlan, MA, 1984).
20. Bertridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003).
21. Tseng, A. & Levin, M. Cracking the bioelectric code: probing endogenous ionic controls of pattern formation. Commun. Integr. Biol. 6, 13192–13200 (2013).
22. Ghatta, S., Nimmagadda, D., Xu, X. & O’Rourke, S. T. Large-conductance, calcium-activated potassium channels: structural and functional implications. Pharmacol. Ther. 110, 103–116 (2006).
23. El-Fouly, M. H., Trosko, J. E. & Chang, C. Scrape-loading and dye transfer: a rapid and simple technique to study gap junctional intercellular communication. Exp. Cell Res. 168, 422–430 (1987).
24. Goldberg, G. S. et al. Evidence that disruption of connexon particle arrangements in gap junction plaques is associated with inhibition of gap junctional communication by a glycyrrhetinic acid derivative. Exp. Cell Res. 222, 48–53 (1996).
25. Lampe, P. D. et al. Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication. J. Cell. Biol. 149, 1503–1512 (2000).
26. Rivedal, E. & Opsahl, H. Role of PKC and MAP kinase in EGF- and TPA-induced connexin43 phosphorylation and inhibition of gap junction intercellular communication in rat liver epithelial cells. Carcinogenesis 22, 1543–1550 (2001).
27. Sirnes, S., Kjenseth, A., Leithe, E. & Rivedal, E. Interplay between PKC and the MAP kinase pathway in Connexin43 phosphorylation and inhibition of gap junction intercellular communication. Biochem. Biophys. Res. Commun. 382, 41–49 (2005).
28. Oh, S. Y., Grupen, C. G. & Murray, A. W. Phorbol ester induces phosphorylation and down-regulation of connexin 43 in WB cells. Biochem. Biophys. Acta 1394, 243–245 (1991).
29. Cooper, M. S. Gap junctions increase the sensitivity of tissue cells to exogenous electric fields. J. Theor. Biol. 111, 123–130 (1984).
30. Tian, C., Du, L., Zhou, Y. & Li, M. Store-operated CRAC channel inhibitors: opportunities and challenges. Future Med. Chem. 8, 817–832 (2016).
31. Hoth, M. & Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cell line R1-10.2. Exp. Cell Res. 197, 257–2587 (1999).
32. He, L. et al. Near-infrared photoactivatable control of Ca(2+) signaling and optogenetic immunomodulation. Elife 4, 1–25 (2015).
33. Connors, B. W. Tales of a dirty drug: carbenoxolone, gap junctions, and seizures. *Epilepsy Curr.* **12**, 66–68 (2012).

34. Robinson, D., D. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. *Nat. Genet.* **33**, 401 (2003).

35. Uygur, A. et al. Scaling pattern to variations in size during development of the dermal condensations during feather development. *Dev. Biol.* **384**, 1–12 (2014).

36. Belgacem, Y. H. & Borodinsky, L. N. Sonic hedgehog signaling is decoded by mTOR-dependent calcium spike activity in the developing spinal cord. *Proc. Natl Acad. Sci. USA* **108**, 4842–4847 (2011).

37. Du, W. et al. Lithium chloride regulates Connexin43 in skeletal myoblasts in vitro: possible involvement in Wnt-β-catenin signaling. *Cell. Commun. Adhes.* **15**, 261–271 (2008).

38. Chen, B. et al. Small molecule–mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. *Nat. Chem. Biol.* **5**, 100–107 (2009).

39. Valouev, A. et al. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. *Nat. Methods* **5**, 829–834 (2008).

40. Li, A. et al. Deciphering principles of morphogenesis from temporal and spatial patterns in the developing *brachyury* mutant. *Dev. Dyn.* **244**, 905–920 (2015).

41. Muncie, J. M. & Weaver, V. M. The physical and biochemical properties of the extracellular matrix regulate cell fate. *Curr. Top. Dev. Biol.* **130**, 1–38 (2017).

42. McLaughlin, K. A. & Levin, M. Bioelectric signaling in regeneration: mechanisms of ionic controls of growth and form. *Dev. Biol.* **433**, 177–189 (2017).

43. Jia, Z. & Loewenstein, S. J. Strong electrical currents leave the primitive streak of chick embryos. *Science* **206**, 569–571 (1979).

44. Reid, B., Song, B. & Zhao, M. Electric currents in Xenopus tadpole tail regeneration. *Dev. Biol.* **335**, 198–207 (2009).

45. Robinson, K. R. Endogenous electrical currents leave the limb and prelimb region of the Xenopus embryo. *Dev. Biol.* **97**, 203–211 (1983).

46. Fan, C., Wang, C. S. C. & Martin, P. E. Connexins and pannexins in the intersegmentary system: the skin and appendages. *Cell. Mol. Life Sci.* **72**, 2937–2947 (2015).

47. Meyer, W., Oberthuer, A., Ngezahayo, A., Neumann, U. & Jacob, R. Immunohistochemical demonstration of connexins in the developing feather follicle of the chicken. *Acta Histochem.* **116**, 639–645 (2014).

48. Allabadi, L. Gap and tight junctions in the formation of feather branches: a descriptive ultrastructural study. *Ann. Anat.* **192**, 251–258 (2010).

49. Harris, A. L. Connexin channel permeability to cytoplasmic molecules. *Prog. Biophys. Mol. Biol.* **94**, 120–143 (2007).

50. Ting-Berrett, S. A. & Chuong, C. M. Sonic Hedgehog in feather morphogenesis: induction of mesenchymal condensation and association with cell death. *Dev. Dyn.* **207**, 157–170 (1996).

51. Markova, O. & Lenne, P. Calcium signaling in developing embryos: focus on the regulation of cell shape changes and collective movements. *Semin. Cell Dev. Biol.* **23**, 298–307 (2012).

52. Komuro, H. & Rakic, P. Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. *Neuron* **17**, 275–285 (1996).

53. Wei, C. et al. Calcium-flickers steer cell migration. *Nature* **457**, 901–905 (2009).

54. Rash, B. G., Ackman, J. B. & Rakic, P. Bidirectional radial Ca2+ activity regulates neurogenesis and migration during early cortical column formation. *Sci. Adv.* **2**, e1501773 (2016).

55. Suzuki, M. et al. Distinct intracellular Ca2+(2) dynamics regulate apical constriction and differentially contribute to neural tube closure. *Development* **144**, 1307–1316 (2017).

56. Nakano, M., Imamura, H., Nagai, T. & Noji, H. Ca2+ regulation of mitochondrial ATP synthesis visualized at the single cell level. *ACS Chem. Biol.* **6**, 709–715 (2011).

57. Ellison, D. et al. Cell-cell communication enhances the capacity of cell ensembles to sense shallow gradients during morphogenesis. *Proc. Natl Acad. Sci. USA* **113**, E679–E688 (2016).

58. Song, H. K., Lee, S. H. & Goetinck, P. F. P. FGF-2 signaling is sufficient to induce dermal condensations during feather development. *Dev. Dyn.* **231**, 741–749 (2004).

59. Lin, C. M. et al. Spots and stripes: pleomorphic patterning of stem cells via p-ERK-dependent cell chemotaxis shown by feather morphogenesis and mathematical simulation. *Dev. Biol.* **334**, 369–382 (2009).

60. Mandler, M. & Neubuser, A. FGF signaling is required for initiation of feather placode development. *Development* **131**, 3333–3343 (2004).

61. Reppert, J. C., Camerer, E. M. & Mathiesen, I. Prydz, H. & Hørven, J. Synchronized Ca2+-oscillations induced in Madin Darby canine kidney cells by bradykinin and thrombin but not by ATP. *Cell Calcium* **21**, 195–211 (1997).

62. Arora, P. D., Bbbby, K. J. & McCulloch, C. A. Slow oscillations of free intracellular calcium ion concentration in human fibroblasts responding to mechanical stretch. *J. Cell. Physiol.* **161**, 187–200 (1994).

63. Salameh, A. & Dhein, S. Effects of mechanical forces and stretch on intercellular gap junction coupling. *Biochim. Biophys. Acta* **1828**, 147–156 (2013).

64. Yu, Y., Wu, P., Wu, P., Widelitz, R. B. & Chuong, C. M. The morphogenesis of feathers. *Nature* **420**, 308–312 (2002).

65. Koh, D., Chen, L., Ufret-Vincenty, C. A. & Jung, S. A fast solution switching system with temperature control for single cell measurements. *J. Neurosci. Methods* **199**, 35–42 (2011).

66. Buda-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. *Nature* **470**, 279–283 (2011).

Acknowledgements

C.-M.C., A.L., R.B.W. and P.W. are supported by National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) R01-AR47364, AR63036, GM125322. A.L. is also supported by California Institute of Regenerative Medicine (CIRM) training grant TG2-01161 and Doerr Stem Cell Challenge Grant. J.-H.C., R.H.C. are supported by NIH BR0 SR01EY02293, B.R., M.Z. are supported by grants from AFOSR (FA9550-16-1-0052), NIH (R01EY079101), NEI Core Grant (P30 EY012576, to J.S. Werner) and Research to Prevent Blindness. L.H., T.P., Y.Z. are supported by NIH R01-GM12003, R21-GM126532 and the Welch Foundation. We thank Dr. James Briscoe (Francis Crick Institute, United Kingdom) for providing the GBS-GFP plasmid. We thank Drs. Tingxin Jiang, Ya-Chen Liang, Jie Yan, Mingxin Li, Masafumi Inaba, and other Chuong Lab members for their support. We thank USC Stem Cell Microscopy Core Facility and the Cell and Tissue Imaging Core, USC Research Center for Liver Disease for assistance in imaging. We thank Meng Li of the USC Norris Medical Library Bioinformatics Service for assistance in RNA-Seq and ChIP-Seq analysis.

Author contributions

A.L., J.-H.C., C.-M.C., and R.H.C. conceived the overall experimental designs. M.Z., B.R., and C.-M.C designed the vibrating probe assay and B.R. conducted the experiments. J.-H.C. and A.L. conducted and analyzed time-lapse Ca2+ imaging data obtained from skin specimens and strips. J.-H.C. and R.H.C. conducted single cell Ca2+ imaging, immunostaining, patch clamp experiment and analyzed the data. C.-Y.Y. wrote an intensity modulated display analysis routine to generate ratiometric Ca2+ images. A.L. conducted the 4D Ca2+ imaging. 4D cell nuclear imaging. Y.L., R.B.W., and A.L. analyzed the 4D data. C.-C.T and A.L. conducted the scrape-loading dye transfer assay. L.H., P.T., Y.Z., and A.L. designed the opto-CRAC experiments and A.L. conducted the experiments. P.W. did the RNA-Seq, CHIP-Seq sample preparation and A.L. did analysis of the data. A.L. designed the shRNA for pLL3.7 and P.W. did the cloning. A.L. conducted the in situ hybridization, immunostaining experiments. A.L., J.-H.C., R.B.W., R.H. C., and C.-M.C. contributed to manuscript writing and editing. This is a multi-disciplinary study. C.-M.C. contributed more on feather bud morphogenesis and R.H.C. contributed more on ion channel and Ca2+ signaling.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-07661-5.

Competing interests: The authors declare no competing interests.

Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions/.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.