A preliminary checklist of soil ants (Hymenoptera: Formicidae) of Colombian Amazon

Daniel Castro‡, Fernando Fernández§, Andrés D Meneses§, Maria C Tocora§, Stefania Sanchez§, Clara P Peña-Venegas‡

‡ Instituto Amazónico de Investigaciones Científicas SINCHI, Leticia, Colombia
§ Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia

Corresponding author: Daniel Castro (danielkaz80@gmail.com)
Academic editor: Francisco Hita Garcia
Received: 23 Aug 2018 | Accepted: 18 Oct 2018 | Published: 07 Nov 2018
Citation: Castro D, Fernández F, Meneses A, Tocora M, Sanchez S, Peña-Venegas C (2018) A preliminary checklist of soil ants (Hymenoptera: Formicidae) of Colombian Amazon. Biodiversity Data Journal 6: e29278. https://doi.org/10.3897/BDJ.6.e29278

Abstract

Background

This paper presents an updated list of soil ants of the Colombian Amazon collected in three different river basins: the Amazon, the Caquetá and the Putumayo. The list includes 10 subfamilies, 60 genera and 218 species collected from TSBF monoliths at four different depths (Litter, 0 - 10 cm, 10 - 20 cm and 20 - 30 cm). This updated list increases considerably the knowledge of edaphic macrofauna of the region, due to the limited published information about soil ant diversity in the Colombian Amazon region.

New information

This is the first checklist of soil ant diversity of the Colombian Amazon region. Six new records of species for Colombia are exposed: Acropyga tricuspis (LaPolla, 2004), Typhlomyrmex clavicorns (Emery, 1906), Typhlomyrmex meire (Lacau, Villemant & Delabie, 2004), Cyphomyrmex bicornis (Forel, 1895), Megalomyrmex emeryi (Forel, 1904)
and *Myrmicocrypta spinosa* (Weber, 1937), most of them corresponding to subterranean ants.

Keywords

TSBF, Amazon basin, soil macrofauna, biogeography, species distribution.

Introduction

In tropical forests, the abundance and diversity of ants is usually high, which brings out the importance of ants for these ecosystems (Floren and Linsenmair 2005, Floren et al. 2002, Dunn et al. 2007, Davidson et al. 2007, Jaffe et al. 2007). Ants, together with earthworms and termites, are known as "ecosystem engineers" due to the positive effect of their activity on ecosystems (Decaëns et al. 1999, Decaëns 2010, Lavelle et al. 1997, Luke et al. 2014, Griffiths et al. 2017). Physical, chemical and biological soil properties are positively affected by the presence of ant nests, chambers, galleries and mineral aggregates that ants create (Seybold et al. 1999, Barros et al. 2001, Sanabria et al. 2014, Wu et al. 2015).

Diversity of soil ants in Amazonian forests is notoriously high (Ryder Wilkie et al. 2010, Ryder Wilkie et al. 2007, Bastos and Harada 2011, Bruna et al. 2008). In Colombia, ant lists include reports from coastal, mountain and Amazonian ecosystems (Pérez et al. 2009, Sanabria-Blandón and Achury 2011, Sanabria-Blandón and de Ulloa 2011, Vergara-Navarro and Serna 2013, Valdés-Rodríguez et al. 2014). However, information on soil ant diversity in the Colombian Amazon region is limited, due to the small number of works on this topic that have been published (Ospina and Fagua 2007).

This paper reports a preliminary checklist of soil ants collected in the Colombian Amazon region, with the purpose of contributing to a better understanding of the biogeographical distribution of these insects in the three most important river basins of the Amazon region of Colombia: the Amazon, the Caquetá and the Putumayo.

Materials and methods

Study area

Three Colombian states of the Amazon region were sampled: Amazonas, Caquetá and Putumayo (Fig. 1). The study area includes the Andean-Amazonian transition from north to south of the Colombian Amazon region up to the borders with Peru and Brazil along the Amazon River. Sampling altitude went from 78 to 2275 metres above sea level. There, 71 sampling sites in 13 municipalities were sampled: in Caquetá, the municipalities of Belén de los Andaquíes, Florencia, Morelia, San José and Solano; in Putumayo, the municipalities of Puerto Leguizamo and La Tagua; in Amazonas, the municipalities of El Encanto, La Chorrera, Leticia, Puerto Alegria, Puerto Arica, Puerto Nariño and Puerto
Santander. Different natural and anthropic land uses were included in the sampling: primary and secondary forests, young secondary forests, pastures and indigenous slash-and-burn agricultural plots (Table 1).

River basin	State	Town	Land use	Altitude	Latitude	Longitude
Amazonas	Amazonas	Leticia	Primary forest	80	S4°10'09", W69°57'25"	
			Primary forest	81	S4°10'09.1", W69°57'27.2"	
			Primary forest	98	S04°07'15.4", W69°57'19.7"	
			Primary forest	106	S04°02'45.7", W69°59'26.8"	
			Primary forest	110	S04°00'32.5", W69°53'43.3"	
			Primary forest	119	S04°00'10.5", W69°53'47.6"	
			Primary forest	121	S04°02'48.0", W70°00'20.4"	
		Pto. Nariño	Secondary forest	87	S03°46'33.6", W70°21'41.8"	
Caquetá	Pto. Santander	Secondary forest	116	S00°39'43.3", W72°18'38.2"		
Caquetá	Belen	Pasture	233	N01°16'08.3", W75°47'17.6"		
		Pasture	242	N01°15'59.9", W75°47'23.4"		
		Primary forest	500	N01°36'17.8", W75°52'50.9"		
		Primary forest	625	N01°36'28.6", W75°53'12.6"		
		Primary forest	750	N01°37'50.3", W75°54'21.3"		
		Primary forest	875	N01°37'40.0", W75°54'16.8"		
		Primary forest	1000	N01°37'27.4", W75°54'04.3"		
		Primary forest	1125	N01°40'14.4", W75°54'13.3"		
		Primary forest	1247	N01°50'36.4", W75°40'18.3"		
		Primary forest	1250	N01°40'45.2", W75°54'12.4"		
		Primary forest	1375	N01°40'54.3", W75°54'17.1"		
		Primary forest	1500	N01°42'06.8", W75°53'57.5"		
		Primary forest	1625	N01°41'49.9", W75°54'18.1"		
		Primary forest	1875	N01°43'04.4", W75°54'11.7"		

Table 1.
List of TSBF monoliths sampling sites in Colombian Amazon soils.
Location	Type	Latitude	Longitude	
Florecia	Pasture	N01°38'54.1"	W75°38'13.6"	
	Pasture	N01°39'00.2"	W75°36'49.3"	
	Pasture	N01°45'33.7"	W75°46'41.5"	
	Pasture	N01°42'29.8"	W75°41'32.4"	
	Pasture	N01°42'55.1"	W75°42'06.0"	
	Secondary forest	N01°26'39.9"	W75°31'29.1"	
	Secondary forest	N01°40'35.0"	W75°37'5.86"	
	Secondary forest	N01°42'26.8"	W75°36'59.5"	
	Secondary forest	N01°43'04.0"	W75°36'45.6"	
	Secondary forest	N01°42'37.7"	W75°43'49.1"	
	Secondary forest	N01°50'09.0"	W75°40'19.2"	
	Young secondary forest	N01°42'52.2"	W75°36'53.6"	
	Young secondary forest	N01°42'27.6"	W75°43'26.0"	
	Young secondary forest	N01°26'40.9"	W75°31'32.1"	
	Young secondary forest	N01°40'47.0"	W75°37'48.3"	
	Young secondary forest	N01°42'27.9"	W75°36'59.7"	
	Young secondary forest	N01°50'36.9"	W75°40'16.1"	
Morelia	Pasture	N01°27'21.63"	W75°39'48.10"	
	Secondary forest	N01°26'28.8"	W75°39'10.3"	
	Young secondary forest	N01°26'18.1"	W75°45'16.3"	
	Young secondary forest	N01°26'29.9"	W75°39'12.5"	
	Young secondary forest	N01°39'35.2"	W75°36'33.9"	
San José	Primary forest	N01°11'38.4"	W75°58'16.7"	
	Young secondary forest	N01°11'40.1"	W75°58'18.7"	
Solano	Young secondary forest	S00°34'30.8"	W72°06'51"	
Putumayo	Amazonas	N01°37'03.7"	W73°15'31.7"	
Location	Type	ID	Latitude	Longitude
-----------------	------------------	----	----------------	-------------------
Primary forest	141	S01°40'34.7", W73°13'51.4"		
La Chorrera	Primary forest	126	S02°04'55.2", W72°10'54.8"	
Primary forest	133	S02°04'14.4", W72°10'14.2"		
Primary forest	146	S01°26’54.2", W72°48’13.3"		
Primary forest	151	S01°26’56.3", W72°48’37"		
Primary forest	154	S01°25’05.7", W72°47’21.2"		
Secondary forest	147	S01°25’11”, W72°47’10.5”		
Pto. Alegria	Primary forest	154	S01°00’31.5", W74°04’44.5”	
Primary forest	169	S00°59’34.3", W74°01’10.4”		
Pto. Arica	Primary forest	108	S02°07’55.6", W71°44’42.8”	
Primary forest	120	S02°07’59", W71°46’54”		
Primary forest	127	S02°08’10.5", W71°43’16.8”		
Sabalo	Primary forest	142	S02°21’11.7", W72°35’53.4”	
Putumayo	Pto. Leguizamo	Secondary forest	182	S00°05’14.9", W74°36’38.4”
	Secondary forest	213	S00°08’42.1", W74°46’40.9”	

Figure 1. Study area, sampling localities.
Sample collection and analysis

Soil ant collection took place between September 2015 and July 2017. Soil ants were collected using the methodology suggested by the Tropical Soil Biology and Fertility Program (TSBF) for soil macrofauna collection (Anderson and Ingram 1993). In each sampling site, a plot of 60 x 60 metres was selected. There, five monoliths of 25 x 25 x 30 cm of depth were done: one in each corner of the 60 x 60 m delimited square plot and one in the centre of it. In each monolith, macrofauna samples were collected at four depths: litter, 0 – 10 cm, 10 – 20 cm and 20 – 30 cm. Macrofauna collection in each monolith depth was undertaken in the field manually. Recovered samples were preserved in ethanol at 75% until their arrival to the SINCHI Institute laboratories in Leticia, Colombia, where specimens were vouchered and preserved in the CATAC collection.

In the laboratory, samples were cleaned and classified into morphotypes and species. All samples were identified by using the keys of recent revisions, verifying the species with the diagnosis and in some cases comparing with photos of type material in AntWeb (Brandão 1990, Kugler 1994, De Andrade and Baroni 1999, Palacio 1999, Fernández 2003, Longino and Fernández 2007, Jiménez et al. 2008, Mackay and Mackay 2010, Ortiz and Fernández 2011, Pacheco and Mackay 2013, Lenhart et al. 2013, Ješovník and Schultz 2017, AntWeb 2018, LaPolla 2004, Snelling and Longino 1992, Brandão 2003, Longino 2010, Fernández et al. 2015, Lattke et al. 2007, Lattke 1997, Longino 2013, Sosa-Calvo et al. 2018, Longino 2003). *Camponotus, Brachymyrmex* and *Pheidole* were identified through the comparison of material identified by specialists and reference collection. All data were organised alphabetically by subfamily, genus and species in an ant checklist following the nomenclature suggested in the Bolton online catalogue of the ants of the world (AntCat, Bolton 2018).

Analysis

Checklist of the soil ant species of Colombian Amazon

A total of 1341 specimens and 4318 individuals were analysed. From the total soil macrofauna, ants were the most abundant and species-richest organisms collected. Ants dominated litter and 0 - 10 cm depths (Barros et al. 2002, Mathieu et al. 2005, Rossi et al. 2006, Velásquez et al. 2012, Suárez Salazar et al. 2015). Litter had the highest species richness with 129 species, followed by the 0 - 10 cm depth with 110 species. Layers from 10 - 20 cm depth and 20 - 30 cm depth had 77 and 45 species, respectively, showing a decreasing ant richness structure in the soil profile with depth.

The preliminary checklist of soil ants from the Colombian Amazon region (Table 2), contains 218 species distributed in 60 genera of 10 subfamilies. The richest subfamily was Myrmicinae with 99 species, followed by Ponerinae with 41 species. Other subfamilies found there included Formicinae with 31 species, Ectatomminae with 18 species, Dolichoderinae with 14 species, Pseudomyrmecinae with 6 species, Dorylinae with 5 species, Amblyopone with 2 species and the Paraponerinae and Proceratiinae with 1
species each, respectively. The richest genus was *Pheidole* Westwood, 1839 with 27 species, followed by *Crematogaster* Lund, 1831 with 16 species. Other genera rich in species are *Camponotus* Mayr, 1861 with 14 species, *Odontomachus* Latreille, 1804 with 10 species and *Gnamptogenys* Roger, 1863 with 8 species.

Table 2.

Checklist of the soil ant species of the Colombian Amazon. The list is organised alphabetically by subfamily, genus and species. Species names in bold characters refer to species recorded for the first time in Colombia. River basins corresponded to: A = Amazon river; C = Caquetá river; P = Putumayo river. Depth of species collection: 1 = Litter; 2 = 0 – 10 cm; 3 = 10 – 20 cm; 4 = 20 – 30 cm. Land use corresponded to PF = Primary forest; SF = Secondary forest; P = Pasture; R = Young secondary regeneration forest.

Subfamilies	Scientific valid name	River basin	Depth	Land use
Amblyoponinae	**Prionopelta antillana** Forel, 1909	A,C	1,2,3	R
	Fulakora orizabana (Brown, 1960)	C	3	P
Dolichoderinae	**Azteca** sp1	C,P	1,2	PF
	Azteca sp2	A,P	1,2,4	PF, R
	Azteca sp3	A,C,P	1,2,3,4	PF, P, R
	Azteca sp4	C	2,3	SF
	Azteca sp5	C	1,4	PF, P
	Dolichoderus atteloides Fabricius, 1775	A	1	PF
	Dolichoderus bidens Linnaeus, 1758	C,P	1,2	P, R
	Dolichoderus bispinosus Olivier, 1792	P	1	PF, R
	Dolichoderus imitator Emery, 1894	A,C	2,3	R
	Dolichoderus quadridenticulatus Roger, 1862	C	2	P
	Dolichoderus rugosus Smith, 1858	A,P	1	PF, R
	Linepithema sp1	A,C,P	1,2,3,4	PF, P
	Linepithema sp2	C	1,2,3,4	PF, P, SF
	Linepithema sp3	C	1,2,3,4	PF, SF
Dorylinae	**Cheliomyrmex andicola** Emery, 1894	C	2	SF
	Eciton hamatum Fabricius, 1782	A,C	1	PF
	Labidus praedator Smith, 1858	C	1,2,3	P, SF
	Leptanilloides sp.	P	2	PF
	Neivamyrnex cf. hetschkoii Mayr, 1886	C	1,4	PF, SF
Ectatomminae	Ectatomma brunneum Smith, 1858	A,C	1	PF, R
Ectatomma edentatum Roger, 1863	A	2	PF	
Ectatomma lugens Emery, 1894	P	2	PF	
Ectatomma ruidum Roger, 1860	A,C	1,2,3	PF, P	
Ectatomma tuberculatum Olivier, 1792	C	2	PF	
Gnamptogenys cf. illmani Lattke, 1995	C	1	P	
Gnamptogenys (gr. minuta) sp	A	2	PF	
Gnamptogenys kempfi Lenko, 1964	A	2	PF	
Gnamptogenys cf. lavra Lattke, 2002	A,C,P	1,2	PF	
Gnamptogenys porcata Emery, 1896	C	3	R	
Gnamptogenys striatula Mayr, 1884	C,P	1,3	PF	
Gnamptogenys strigata Norton, 1868	P	3	PF	
Gnamptogenys tortuolosa Smith, 1858	A	1	PF	
Typhlomyrmex clavicornis Emery, 1906	C,P	3,4	PF, SF	
Typhlomyrmex major Santschi, 1923	A,C	3,4	PF, SF	
Typhlomyrmex meire Lacau, Villemant & Delabie, 2004	C	1,3	P	
Typhlomyrmex pusillus Emery, 1894	C	1,2,4	PF, P	
Typhlomyrmex sp.	A,C	2	PF	
Formicinae	Acropyga aff. epedana Snelling, 1973	C	2	R
Acropyga exsanguis Wheeler, 1909	C	4	PF, R	
Acropyga goeldii Forel, 1893	C,P	1,2,3	PF	
Acropyga guianensis Weber, 1944	P	1,2,3	PF, P, SF	
Acropyga smithii Forel, 1893	P	2	PF	
Acropyga tricuspis LaPolla, 2004	A	1,2	R	
Brachymyrmex aff. heeri Forel, 1874	P	2	PF	
Brachymyrmex aff. australis Forel, 1901	C	1	P	
Brachymyrmex cordemoyi Forel, 1895	A,C	1,2,3,4	PF, SF	
Brachymyrmex myops Emery, 1906	A	2	PF	
Brachymyrmex pictus Mayr, 1887	C	1	SF	
Camponotus aff. ager Smith, 1858	A	2	PF	
Camponotus atriceps Smith, 1858	A	1	PF	
Species	Code	Count	Specimens	
--	------	-------	-----------	
Camponotus casicus Santschi, 1920	C	1	SF	
Camponotus femoratus Fabricius, 1804	A,C,P	1,2	PF, P, SF	
Camponotus latangulus Roger, 1863	C	1	P	
Camponotus nitidior Santschi, 1921	C	2	PF	
Camponotus novogranadensis Mayr, 1870	A	1	PF	
Camponotus rapax Fabricius, 1804	C	1,3	PF	
Camponotus ruﬁpes Fabricius, 1775	C	1	PF	
Camponotus senex Smith, 1858	C	3	P	
Camponotus sp1	C	1	SF	
Camponotus sp2	A	1	PF	
Camponotus sp3	C	3	R	
Camponotus sp4	C	2	PF	
Gigantiops destructor Fabricius, 1804	A,C,P	1,2	PF	
Myrmelachista sp.	C	1,3	PF	
Nylanderia sp1	A	1,2,3,4	PF, P, R, SF	
Nylanderia sp2	A,C	1,2,3,4	PF, P, S, SF	
Nylanderia sp3	A	1,2	PF, P, SF	
Nylanderia sp4	A	3	PF	

Myrmicinae

Species	Code	Count	Specimens	
Acromyrmex coronatus Fabricius, 1804	C	4	PF	
Apterostigma auriculatum Wheeler, 1925	P	2	PF	
Apterostigma cf. acre Lattke, 1997	A	1	R	
Apterostigma goniodes Lattke, 1997	C	1,4	PF	
Apterostigma (gr. pilosum) sp.1	A	1	SF	
Apterostigma (gr. pilosum) sp.2	C	2	R	
Apterostigma megacephala Lattke, 1999	C	1	P	
Atta colombica Guérin-Méneville, 1844	C	1	PF, P	
Blepharidatta brasiliensis Wheeler, 1915	A	1	PF	
Cardiocondyla nuda Mayr, 1866	C	1	SF	
Carebara brevipilosa Fernández, 2004	C	3	P	
Carebara (gr. escherichi) sp.1	A	4	PF	
Species Name	Author, Year	Distribution	Comments	
--------------------------------------	--------------	--------------	----------	
Cephalotes aff. cordatus	Smith, 1853	C 2 P		
Cephalotes atratus	Linnaeus, 1758	A,C 1 PF		
Cephalotes cf. patellaris	Mayr, 1866	C 1 SF		
Cephalotes spinosus	Mayr, 1862	C 1,3 P		
Crematogaster abstinens	Forel, 1899	A,C 1,2,3,4 SF		
Crematogaster acuta	Fabricius, 1804	A 2,3,4 PF		
Crematogaster aff. evallans	Forel, 1907	C 2,3 SF		
Crematogaster brasiliensis	Mayr, 1878	A,C 1,2,3,4 PF, SF		
Crematogaster bryophilia	Longino, 2003	A 1 PF		
Crematogaster carinata	Mayr, 1862	A,C,P 1,2,3,4 PF, P, SF		
Crematogaster cf. snellingi	Longino, 2003	A 1 PF		
Crematogaster crinosa	Mayr, 1862	C 1,3,4 SF		
Crematogaster erecta	Mayr, 1866	C 2 SF		
Crematogaster flavosensitiva	Longino, 2003	P 1 PF		
Crematogaster limata	Smith, 1858	A,C,P 1,2,3,4 PF, P, R, SF		
Crematogaster longispina	Emery, 1890	A,C 1,2 PF, SF		
Crematogaster minutissima	Mayr, 1870	A 1,2 PF		
Crematogaster nigropilosa	Mayr, 1870	A 2,3 PF		
Crematogaster sotobosque	Longino, 2003	C,P 2,3 PF		
Crematogaster tenuicula	Forel, 1904	A,P 1,2,3 PF, R		
Cyphomyrmex bicornis	Forel, 1895	A 2 PF		
Cyphomyrmex laevigatus	Weber, 1938	A,P 1 PF		
Cyphomyrmex minutus	Mayr, 1862	C 1 PF		
Cyphomyrmex peltatus	Kempf, 1966	C 1 PF		
Cyphomyrmex rimosus	Spinola, 1851	C,P 1,2,3 PF, P, SF		
Hylomyrma immanis	Kempf, 1973	A,C 1,2 PF, SF		
Hylomyrma sagax	Kempf, 1973	C 1 PF		
Kempfidris inusualis	Fernández, 2007	A 2 R		
Megalomyrmex cf. balzani	Emery, 1894	C 3 PF		
Megalomyrmex emeryi	Forel, 1904	C,P 1,2,3 P		
Megalomyrmex foreli	Emery, 1890	C,P 1,2,3 PF, P		
Species	Locality	Collection	Education	
--	----------	------------	-----------	
Megalomyrmex leoninus Forel, 1885	C	1,3	P	
Megalomyrmex megadriti Boudinot, Sumnicht & Adams, 2013	C	1	PF	
Mycocepurus smithii Forel, 1893	A,C,P	1,2,3	PF, SF	
Myrmicocrypta longinoda Weber, 1938	A	2	PF	
Myrmicocrypta sp.	C	2	PF	
Myrmicocrypta spinosa Weber, 1937	C	3	PF	
Nesomyrmex tristani Emery, 1896	C	1	SF	
Ochotomyrmex neopolitus Fernández, 2003	P	1	PF	
Octostruma balzani Emery, 1894	C	1	PF	
Octostruma impressa Palacio, 1997	C	1	PF	
Pheidole aff. biconstricta Mayr, 1870	A,C,P	1,2	PF	
Pheidole aff. chocoensis Wilson, 2003	P	1,3	PF	
Pheidole aff. cocciphaga Borgmeier, 1934	A	1	PF	
Pheidole aff. huliana Wilson, 2003	P	1,2	PF, R	
Pheidole aff. radoszkowski Mayr, 1884	C	3	SF	
Pheidole aff. sensitiva Borgmeier, 1959	P	1	PF	
Pheidole aff. subnuda Wilson, 2003	P	1	PF	
Pheidole aff. vafra Santschi, 1923	C	2	SF	
Pheidole astur Wilson, 2003	P	3	PF	
Pheidole gertrudae Forel, 1886	C	3	PF	
Pheidole sp1	C	1	SF	
Pheidole sp2	A,C	1,2,3	PF, SF	
Pheidole sp3	P	2	PF	
Pheidole sp4	P	4	PF	
Pheidole sp5	C	3	P, SF	
Pheidole sp6	C	1	SF	
Pheidole sp7	C	2	SF	
Pheidole sp8	P	2,3	PF	
Pheidole sp9	C	3,4	P, SF	
Pheidole sp10	C	2	P	
Pheidole sp11	C	2	SF	
Species	Location	Heat	Food Sources	
--	----------	------	--------------	
Pheidole sp12	C	1	SF	
Pheidole sp13	C	2	P	
Pheidole sp14	A,P	2,3,4	PF, SF	
Pheidole sp15	A,P	1,3	PF	
Pheidole sp16	A	1,2,4	PF	
Pheidole sp17	A	4	R	
Procryptocerus scabriusculus Forel, 1899	C	3	PF	
Rogeria belti Mann, 1922	A	1,2	PF, P	
Sericomyrmex bondari Borgmeier, 1937	A,C	1,2,3,4	PF, R	
Solenopsis geminata Fabricius, 1804	C	1,2,3	PF, P, R	
Solenopsis sp1	C	1	P	
Solenopsis sp2	P	2	PF	
Solenopsis sp3	A,P	1,2,4	PF, P, SF	
Solenopsis sp4	A,C	1,3	PF, P, SF	
Solenopsis sp5	C	1,2,3,4	PF, P, SF	
Solenopsis virulens Smith, 1858	P	1	PF	
Strumigenys denticulata Mayr, 1887	A	1	R	
Strumigenys interfectiva Lattke & Goltiá, 1997	C	1	PF	
Strumigenys smithii Forel, 1886	P	1	PF	
Trachymyrmex sp1	C,P	1,2,3,4	PF, SF	
Trachymyrmex sp2	A,C,P	1,2,3,4	PF, P, SF	
Trachymyrmex sp3	C,P	1,3,4	PF, SF	
Trachymyrmex sp4	C	3	PF	
Tranopelta gilva Mayr, 1866	A,C,P	1,2,3,4	PF, P, SF	
Wasmannia auropunctata Roger, 1863	A,C,P	1,2,3,4	PF, P, R, SF	
Paraponerinae				
Paraponera clavata Fabricius, 1775	C,P	1	PF	
Ponerinae				
Anochetus diegensis Forel, 1912	C	1	PF, P	
Anochetus mayri Emery, 1884	C	1	PF	
Anochetus cf. neglectus Emery, 1894	C	1	PF	
Centromyrmex alfaroi Emery, 1890	C	2	SF	
Centromyrmex brachycola Roger, 1861	A,C,P	1,2,3	PF, P, SF	
Species	Author(s)	Collection(s)	Locality	Remarks
--------------------------------------	---------------------	----------------	----------	---------
Cryptopone guianensis	Weber, 1939	C,P	2,3	PF
Cryptopone holmgreni	Wheeler, 1925	C	2,3,4	PF, SF
Dinoponera longipes	Emery, 1901	A	1	PF
Hypoponera distinguenda	Emery, 1890	A,C	1,2	PF, R
Hypoponera sp1		C,P	1,2,3,4	PF, P, R
Hypoponera sp2		C,P	1,2,3	PF, R
Hypoponera sp3		A,P	1,2	PF, R
Hypoponera sp4		A,C,P	1,2,3	PF, SF
Hypoponera sp5		A,C,P	1,2,3	PF, P, SF
Hypoponera sp6		A,C	1,2,3,4	PF, P, R, SF
Leptogenys (gr. crudelis) sp		C	1	PF
Mayaponera constricta	Mayr, 1884	A,C,P	1,2	PF, P, R, SF
Neoponera apicalls	Latreille, 1802	A,C	1	PF
Neoponera commutata	Roger, 1860	P	2	PF
Neoponera unidentata	Mayr, 1862	C	3	PF
Neoponera verenae	Forel, 1922	C	1	PF
Neoponera villosa	Fabricius, 1804	A	1	PF
Odontomachus aff. panamensis	Forel, 1899	C	1	SF
Odontomachus bauri	Emery, 1892	C	1,4	PF, P
Odontomachus bradleyi	Brown, 1976	C	1	PF
Odontomachus caelatus	Brown, 1976	P	1	PF
Odontomachus haematodus	Linnaeus, 1758	A,C	1	SF
Odontomachus meinerti	Forel, 1905	C	1,3	PF
Odontomachus opaciventris	Forel, 1899	C,P	1	PF, SF
Odontomachus scalptus	Brown, 1978	C	1	SF
Odontomachus spisuas	Kempf, 1962	P	1	PF
Odontomachus cf. yucatecus	Brown, 1976	C	2	PF
Pachycondyla crassinoda	Latreille, 1802	P	1,2	PF
Pachycondyla fuscoatra	Roger, 1861	A	1	R
Pachycondyla harpax	Fabricius, 1804	A,C,P	1,2	PF, R
Genus	Subgenus	Location	Identification	
-----------------------------------	----------	---------------------	----------------	
Pachycondyla impressa Roger, 1861				
Pseudoponera stigma Fabricius, 1804	A,C,P		1,2 PF	
Rasopone arhuaca Forel, 1901	A,C,P		1,2,3 PF, R	
Rasopone becculata MacKay & MacKay, 2010	C		2,3,4 PF	
Rasopone lunaris Emery, 1896	A		2 PF	
Rasopone sp.			2 PF	
Proceratium transitionis de Andrade, 2003	C		1 PF	

Proceratiinae

Pseudomyrmecinae

Genus	Subgenus	Location	Identification
Pseudomyrmex sp1	A,C		1,2,3 PF, P
Pseudomyrmex sp2	A,C,P		1,2,4 PF, P, R, SF
Pseudomyrmex sp3	C		1,2,3,4 PF, P, SF
Pseudomyrmex sp4	C,P		1,2,4 PF, SF
Pseudomyrmex sp5	C		1,3,4 P, SF
Pseudomyrmex sp6	C,P		1 PF

Ant richness in this report is remarkable when compared with previous reports from the Amazon region. The study done by Ryder Wilkie et al. 2010, which is recognised as the most complete work on ant diversity in the Amazon region, recorded at the Tiputini Reserve in Ecuador 66 genera and more than 300 species between subsoil and canopy. The high diversity reported in our work was certainly the effect of the broad area sampled (which includes three river basins) and the wide range of altitude included (Marsh et al. 2018).

The following are new records for Colombia:

Acropyga tricuspis (LaPolla, 2004)

Specimen Data. 4 w. AMAZONAS. Puerto Nariño [03°46'33.6"S; 70°21'41.8"W], 84 m a.s.l., 16 Jun 2017, C. Peña. Identification by D. Castro & A. Meneses (CATAC - 0413).

Comments. New record for Colombia. This species has been recorded in the Brazilian Amazonia (LaPolla 2004).

Typhlomyrmex clavicornis (Emery, 1906)

Specimen Data. 3 w. CAQUETÁ. Belén de los Andaquies [01°42'06.8"N; 75°53'57.5"W], 1500 m a.s.l., 23 Jan 2016, D. Castro. Identification by D. Castro & S. Sanchez (CATAC - 0893); 8 w, CAQUETÁ. Florencia, Palmichar [01°42'52.2"N; 75°36'53.6"W], 241 m a.s.l., 23 Mar 2016, Y. Virguez. Identification by D. Castro & S. Sanchez (CATAC - 0292).
Comments. New record for Colombia. This species has been recorded in Bolivia (Type locality), Brazil, French Guiana, Guyana, Paraguay and Suriname (Fernández and Arias-Penna 2008, Wild 2007).

Typhlomyrmex meire (Lacau, Villemant & Delabie, 2004)

Specimen Data. 2 w. CAQUETÁ: Florencia, Sebastopol [01°43'00.12"N; 75°36'49.3"W], 527 m a.s.l., 29 Mar 2016, Y. Virgüez. Identification by D. Castro & S. Sanchez (CATAC-02563).

Comments. New record for Colombia. This species has been recorded in Brazil (Lacau et al. 2004).

Cyphomyrmex bicornis (Forel, 1895)

Specimen Data. 1 w. AMAZONAS. Leticia. Tanimboca Natural Reserve, [04°07'15.4"S - 69°57'19.7"W], 98 m a.s.l., 23 Jun 2017, D. Castro. Identification by M. Tocora (CATAC-01582).

Comments. New record for Colombia. This species has been recorded in Brazil (Type Locality) (Kempf 1966).

Megalomyrmex emeryi (Forel, 1904)

Specimen Data. 6 w. CAQUETÁ. Florencia, Sebastopol [01°43'00.12"N; 75°36'49.3"W], 527 m a.s.l., 29 Mar 2016, Y. Virgüez. Identification by M. Tocora (CATAC-0326).

Comments. New record for Colombia. This species has been recorded in Bolivia, French Guiana, Guyana, Peru and Suriname (Type Locality) (Brandão 2003, Brandão 1990).

Myrmicocrypta spinosa (Weber, 1937)

Specimen Data. 1 w. CAQUETÁ. Florencia, Arandia [01°26'39.9"N - 75°31'29.1"W], 259 m a.s.l., 2 Jul 2016, Y. Virgüez. Identification by M. Tocora (CATAC-0331).

Comments. New record for Colombia. This species has been recorded in Guyana (Type Locality) (Weber 1937).

Discussion

The Caquetá river basin showed the highest number of soil ant species amongst basins (149 species, which corresponded to 68% of the total ants recorded), followed by the Amazon river basin (86 species, 40%) and the Putumayo river basin (71 species, 33%). From all species recorded, 89 species were exclusively registered in the Caquetá river basin, which was twice the number of species reported exclusively in the Amazon river basin (36 species) and in the Putumayo river basin (25 species). The high diversity of the Caquetá river basin may be an reflection of the geographic conditions of the area and the
sampling effort used there. The Caquetá river basin includes the Andean-Amazonian transition where a high turnover of species might occur, but additionally, it was the one with the greatest sampling effort.

From all the ant species recorded, 20 species were found in the four soil depths (Table 2). The most abundant of these species were: *Wasmannia auropunctata* Roger, 1863, *Tranopelta gilva* Mayr, 1866, *Sericomymex bondari* Borgmeier, 1937, *Crematogaster limata* Smith, 1858, *Crematogaster carinata* Mayr, 1862, *Crematogaster brasiliensis* Mayr, 1878, *Crematogaster abstinens* Forel, 1899 and *Brachymyrmex cordemoyi* Forel, 1895.

The genera *Acropyga* and *Typhlomyrmex* are underground genera commonly collected at deep soil depths. For example, the genus *Typhlomyrmex* was collected mostly at 10 - 20 and 20 – 30 cm soil depths. Although TSBF was appropriate for collecting these soil ants, which are generally undersampled with other methods of collection, the TSBF method might underestimate army ants and other large ants such as Paraponerinae that were not recorded in the searched Amazon basin area (Ryder Wilkie et al. 2007, Oliveira and Morato 2009, Sanabria-Blandón and de Ulloa 2011, Ryder Wilkie et al. 2010). However, the use of soil monoliths for macrofauna sampling allowed comparisons between macrofauna groups (e.g. ants with other macrofauna groups). The use of more than one method to obtain an accurate image of the community of ants has been proven (e.g. Winkler or pitfall for estimating the abundance of leaf litter ants) (Delsinne and Arias-Penna 2012, Wong and Guénard 2017, Ryder Wilkie et al. 2007). However, in this study, the composition of subterranean ant subfamilies was not affected by the method of collection used (TSBF) as the proportions of subfamilies were similar to those obtained using additional methods (Wong and Guénard 2017).

An important number of canopy and arboreal ant species such as *Crematogaster*, *Azteca*, *Dolichoderus*, *Camponotus* and *Cephalotes* were collected. Studies of ant fauna in the Colombian Amazon (Pérez et al. 2009) highlighted the diversity of these genera in the region. Canopy and arboreal ant species can be an important part of the ant density in the upper strata of soil (leaf litter and the depth of 0 - 10 cm) as occurred in this study where most of these ants were collected in litter. Results inferred that these ants use the soil as a way for transportation or for food provisioning, although they do not live in the soil such as ants of the genera *Pheidole*, *Acropyga*, *Cryptopone* or *Hypoponera*.

Some arboreal species of *Crematogaster*, *Camponotus*, *Myrmelachista*, *Procryptocerus* and *Pseudomyrmex* were found in soil deep horizons, even at 20-30 cm depth such as *Azteca* and *Pseudomyrmex*. Ant collection was done manually in the field. During this process, some arboreal ants could fall down and contaminate monolith samples when the bags were not well closed. However, arboreal ants may realistically be away from their common substrate or nest, as little is known about their biology, even more so when this is not the first time they have been recorded in soil samples (Rosumek et al. 2008, Vasconcelos et al. 2003, Delabie and Fowler 1995).
Ants are the most diverse soil macrofauna group in the Amazon region (Mathieu et al. 2005, Barros et al. 2008) and represent a high density (Table 3). In the Caquetá basin, they are the most dense organisms of the soil macrofauna. In the other two river basins, ants are only exceeded by termites. Differences in ant and termite densities might be a reflection of the land use sampled. Termites tend to be more abundant in less disturbed ecosystems (Mboukou-Kimbatsa et al. 1998, Velásquez et al. 2012), while ants tend to be more abundant in disturbed or degraded ecosystems of the Amazon region. In our study, the Caquetá basin is where the most disturbed coverings, such as pastures and young secondary forests, are found (Table 1) (Aquino et al. 2008, Barros et al. 2002, Marichal et al. 2014, Pinzón et al. 2014, Rousseau et al. 2014).

Taxa Group	Amazonas	Caquetá	Putumayo
Formicidae	274.16	173.70	82.12
Amblyoponinae	0.78	0.49	0.00
Dolichoderinae	4.39	9.66	3.29
Dorylinae	0.00	2.47	0.47
Ectatomminae	7.24	4.23	3.29
Formicinae	72.87	37.94	9.18
Myrmicinae	145.74	91.96	45.88
Paraponerinae	0.00	0.63	0.71
Ponerinae	41.34	24.26	18.82
Proceratiinae	0.00	0.07	0.00
Pseudomyrmecinae	1.29	1.97	0.47
Termitoidea	289.15	146.33	142.12
Coleoptera	33.59	15.80	34.12
Araneae	26.36	15.87	17.18
Immature insects	18.35	15.02	13.18
Blattodea	4.13	7.62	4.94
Hemiptera	9.30	5.71	5.18

Table 3. Density (Individuals/m²) of the main taxonomic groups collected in TSBF monoliths in the Colombian Amazon.
Isopoda	8.79	3.74	8.94
Diplura	8.01	3.95	4.00
Opiliones	8.01	3.10	4.24

The Neotropics (including the Amazon basin) have been recognised as a region of speciation and conservation of multiple lineages of ants (Moreau and Bell 2013). Results presented here increase the knowledge of soil ants from the Amazon region and suggest that ant species richness may increase considerably when sampling effort increases and combined methodologies are used to capture ants in different habitats.

Acknowledgements

We thank the Instituto Amazónico de Investigaciones Científicas SICHI for its financial support. Thanks to AZICATCH, AIZA and OIMA indigenous associations and the Tanimboca, Otra Parte and Cerca Viva Natural Reserves for allowing us to collect ants in their areas. We also thank Jack Longino, Claudia Ortiz and Lina Pedraza for their help in the identification of some ant species. We heartily thank Dr. John Lattke and Dr. Gabriela Camacho for their useful comments and suggestions on the manuscript.

Author contributions

DC and CPPV collected the material. DC and FF analysed data. DC, FF, ADM, MCT and SS identified the material. DC, FF, MCT and CPPV elaborated the manuscript.

References

- Anderson J, Ingram J (1993) Tropical soil Biology an fertility a handbook of methods. second edition. Cab International, Oxford University Press, 240 pp. [ISBN 0851988210]
- AntWeb (2018) http://www.antweb.org. Accessed on: 2018-6-04.
- Aquino A, Correia M, Alves M (2008) Diversidade da Macrofauna Edáfica no Brasil. In: Moreira F, Siqueira J, Brussaard L (Eds) Biodiversidade do Solo em Ecossistemas Brasileiros. Universidade Federal de Lavras, Lavras - MG, 143-170 pp.
- Barros E, Curmi P, Hallaire V, Chauvel A, Lavelle P (2001) The role of macrofauna in the transformation and reversibility of soil structure of an oxisol in the process of forest to pasture conversion. Geoderma 100: 193-213. https://doi.org/10.1016/s0016-7061(00)00086-0
- Barros E, Pashanasi B, Constantino R, Lavelle P (2002) Effects of land-use system on the soil macrofauna in western Brazilian Amazonia. Biology and Fertility of Soils 35 (5): 338-347. https://doi.org/10.1007/s00374-002-0479-z
- Barros E, Mathieu J, Tapia-Coral S, Nascimento A, Lavelle P (2008) Comunidades da Macrofauna de Solo na Amazônia Brasileira. In: Moreira F, Siqueira J, Brussaard L
• Bastos A, Harada A (2011) Leaf-litter amount as a factor in the structure of a ponerine ants community (Hymenoptera, Formicidae, Ponerinae) in an eastern Amazonian rainforest, Brazil. Revista Brasileira de Entomologia 55: 589-596. https://doi.org/10.1590/S0085-56262011000400016
• Bolton B (2018) An online catalog of the ants of the world. http://antcat.org. Accessed on: 2018-7-27.
• Brandão C (1990) Systematic revision of the neotropical ant genus Megalomyrmex Forel (Hymenoptera: Formicidae: Myrmicinae), with the description of thirteen new species. Arquivos de Zoologia 31 (5): 1. https://doi.org/10.11606/issn.2176-7793.v31i5p1-91
• Brandão C (2003) Further revisionary studies on the ant genus Megalomyrmex Forel (Hymenoptera: Formicidae: Myrmicinae: Solenopsidini). Papéis Avulsos de Zoologia (São Paulo) 43 (8): https://doi.org/10.1590/s0031-10492003000800001
• Bruna E, Darrigo MR, Furuya Pacheco AM, Vasconcelos H (2008) Interspecific variation in the defensive responses of ant mutualists to plant volatiles. Biological Journal of the Linnean Society 94 (2): 241-249. https://doi.org/10.1111/j.1095-8312.2008.00962.x
• Davidson DW, Lessard J, Bernau C, Cook S (2007) The tropical ant mosaic in a primary Bornean rain forest. Biotropica 39 (4): 468-475. https://doi.org/10.1111/j.1466-8238.2009.00517.x
• Decaëns T (2010) Macroecological patterns in soil communities. Global Ecology and Biogeography 19 (3): 287-302. https://doi.org/10.1111/j.1466-8238.2009.00517.x
• Delabie J, Fowler H (1995) Soil and litter cryptic ant assemblages of Bahian cocoa plantations. Pedobiologia 39: 423-433.
• Delsinne T, Arias-Penna T (2012) Influence of Leaf Litter Moisture on the Efficiency of the Winkler Method for Extracting Ants. Journal of Insect Science 12 (57): 1-13. https://doi.org/10.1673/031.012.5701
• Dunn R, Sanders N, Fitzpatrick M, Laurent C, Lessard J, Agostini D, Andersen A, Bruhl C, Cerda X, Ellison A, Fisher B, Gibb H, Gotelli N, Gove A, Guenard B, Janda M, Kaspari M, Longino J, Majer J, Mcglynn T, Menke S, Parr C, Philpott S, Pfeiffer M, Retana J, Suarez A, Vasconcelos H (2007) Global ant (Hymenoptera: Formicidae) biodiversity and biogeography – a new database and its possibilities. Myrmecological News 10: 77-83.
• Fernández F, Castro-Huertas V, Serna F (2015) Hormigas cortadoras de hojas de Colombia: Acromyrmex & Atta (Hymenoptera: Formicidae). Fauna de Colombia, Monografía No.5. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D. C., 350 pp. [ISBN 9789587752571]

• Floren A, Biun A, Linsenmair E (2002) Arboreal ants as key predators in tropical lowland rainforest trees. Oecologia 131 (1): 137-144. https://doi.org/10.1007/s00442-002-0874-z

• Floren A, Linsenmair KE (2005) The importance of primary tropical rain forest for species diversity: An investigation using arboreal ants as an example. Ecosystems 8 (5): 559-567. https://doi.org/10.1007/s10021-002-0272-8

• Griffiths H, Ashton L, Walker A, Hasan F, Evans T, Eggleton P, Perr C (2017) Ants are the major agents of resource removal from tropical rainforests. Journal of Animal Ecology 87 (1): 293-300. https://doi.org/10.1111/1365-2656.12728

• Jaffe K, Horchler P, Verhaagh M, Gomez C, Sievert R, Jaffe R, Morawetz W (2007) Comparing the ant fauna in a tropical and a temperate forest canopy. Ecotropicos 20: 74-78.

• Ješovnik A, Schultz T (2017) Revision of the fungus-farming ant genus *Sericomymnex* Mayr (Hymenoptera, Formicidae, Myrmicinae). ZooKeys 670: 1-109. https://doi.org/10.3897/zookeys.670.11839

• Jiménez E, Fernández F, Arias T, Lozano-Zambrano F (2008) Sistemática, biogeografía y conservación de las hormigas cazadoras de Colombia. Instituto Alexander Von Humbold, Bogotá D.C, 609 pp.

• Kempf WW (1966) A revision of the Neotropical fungus-growing ants of the genus *Cyphomyrmex* Mayr. Part II: Group of rimosus (Spinola) (Hym., Formicidae). Studia Entomologica 8: 161-200. URL: http://antcat.org/documents/1794/4580.pdf

• Kugler C (1994) A revision of the ant genus *Rogeria* with description of the sting apparatus (Hymenoptera: Formicidae). Journal of Hymenoptera Research 3: 17-89.

• Lacau S, Villemant C, Delabie JC (2004) *Typhlomyrmex meire*, a remarkable new species endemic to Southern Bahia, Brazil (Formicidae: Ectatomminae). Zootaxa 678: 1-23.

• LaPolla JS (2004) *Acropyga* (Hymenoptera: Formicidae) of the World. Contributions of the American Entomological Institute 33 (3): 1-130.

• Lattke J (1997) Revisión del género apterostigma mayr: (hymenoptera: formicidae). Arquivos de Zoologia 34 (5): 121-221. https://doi.org/10.11606/issn.2176-7793.v34i5p121-221

• Lattke JE, Fernández F, Palacio E (2007) Identification of the species of Gnamptogenys Roger in the Americas. In: Snelling R, Fisher B, Ward P (Eds) Advances in ant systematics (Hymenoptera: Formicidae): Homage to E.O. Wilson - 50 years of contributions. Memoirs of the American Entomological Institute 80, 690 pp.

• Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal O, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Science 33: 159-193.

• Lenhart P, Dash S, Mackay W (2013) A revision of the giant Amazonian ants of the genus *Dinoponera* (Hymenoptera, Formicidae). Journal of Hymenoptera Research 31: 119-164. https://doi.org/10.3897/jhr.31.4335

• Longino J (2003) *The Crematogaster* (Hymenoptera, Formicidae, Myrmicinae) of Costa Rica. Zootaxa 151 (1): 1-150. https://doi.org/10.11646/zootaxa.151.1.1
A preliminary checklist of soil ants (Hymenoptera: Formicidae) of Colombian ... 21

• Longino J (2010) A Taxonomic Review Of The Ant Genus Megalomymrnex Forel (Hymenoptera: Formicidae) In Central America. Zootaxa 2720: 35-58.
• Longino JT, Fernández F (2007) Taxonomic review of the genus Wasmannia . Memoirs of the American Entomological Institute 80: 271-289.
• Longino JT (2013) A revision of the ant genus Octostruma Forel 1912 (Hymenoptera, Formicidae). Zootaxa 3699: 1-61. https://doi.org/10.11646/zootaxa.3699.1.1
• Luke S, Gayle T, Eggleton P, Turner E, Davies R (2014) Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodiversity and Conservation 23 (11): 2817-2832. https://doi.org/10.1007/s10531-014-0750-2
• Mackay W, Mackay E (2010) The systemsatics and biology of the new world ants of the genus Pachycondyla (Hymenoptera: Formicidae). The Edwin Mellen Presss, 642 pp. https://doi.org/10.13140/2.1.4271.8726
• Marichal R, Grimaldi M, M. AF, Oszwald J, Praxedes C, Ruiz Cobo DH, Pilar Hurtado Md, Desjardins T, Silva Junior Mld, Silva Costa Lgd, Miranda IS, Delgado Oliveira MN, Brown G, Tséloouko S, Martins MB, Decaëns T, Velasquez E, Lavelle P (2014) Soil macroinvertebrate communities and ecosystem services in deforested landscapes of Amazonia. Applied Soil Ecology 83: 177-185. https://doi.org/10.1016/j.apsoil.2014.05.006
• Marsh C, Feitosa R, Louzada J, Ewers R (2018) Is β-diversity of Amazonian ant and dung beetles communities elevated at rainforest edges? Journal of Biogeography 45 (8): 1966-1979. https://doi.org/10.1111/jbi.13357
• Mathieu J, Rossi J-P, Mora P, Lavelle P, Martins PF, Rouland C, Grimaldi M (2005) Recovery of soil macrofauna communities after forest clearance in Eastern Amazonia, Brazil. Conservation Biology 19 (5): 1598-1605. https://doi.org/10.1111/j.1523-1739.2005.00200.x
• Mboukou-Kimbatsa IM, Bernhard-Reversat F, Loumeto JJ (1998) Change in soil macrofauna and vegetation when fast-growing trees are planted on savanna soils. Forest Ecology and Management 110: 1-12. https://doi.org/10.1016/s0378-1127 (98)00273-4
• Moreau CS, Bell CD (2013) Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67 (8): 2240-2257. https://doi.org/10.1111/evo.12105
• Oliveira M, Morato E (2009) Ant (Hymenoptera: Formicidae) diversity in an area of the Amazon Forest in Acre, Brazil. Socibiology 54: 1-26.
• Ortiz CM, Fernández F (2011) Hormigas del género Dolichoderus Lund (Formicidae: Dolichoderinae) en Colombia. Universidad Nacional de Colombia. Facultad de Ciencias. Instituto de Ciencias Naturales, Bogotá, 118 pp.
• Os spins M, Fagua G (2007) La entomofauna de la región sur de la Amazonia colombiana. In: Ruiz S, Sánchez E, Tabares E, Prieto A, Arias J, Gómez R, Castellanos D, García P, Rodríguez L (Eds) Diversidad biológica y cultural del sur de la Amazonia colombiana - Diagnóstico. Corpoamazonia, Instituto Humboldt, Instituto Sinchi, UAESPNN, Bogotá D.C, 178-181 pp.
• Pacheco J, Mackay W (2013) The systematics and biology of the new world thief ants of the genus Solenopsis (Hymenoptera: Formicidae). Edwin Mellen Press, Lewiston, New York, 501 pp.
• Palacio E (1999) Hormigas legionarias (Hymenoptera: Formicidae: Ecitoninae) de Colombia. In: Amat G, Andrade G, Fernandez F (Eds) Insectos de Colombia Vol. II. Academia Colombiana de Ciencias Exactas, Físicas y Naturales y Facultad de Ciencias Universidad Nacional de Colombia, Bogotá D.C, 117–189 pp.

• Pérez L, Pérez G, Echeverri-rubiano C, Sánchez A, Durán J, Pedraza L (2009) Riqueza de hormigas (Hymenoptera: Formicidae) en várzea y bosque de tierra firme de la región Amazónica Colombiana. Boletín Sociedad Entomológica Aragonesa 45: 477-483.

• Pinzón S, Guillaume X, Rocha da Piedade A, Celentano D, Corrêa Zelarayán M, Braun H (2014) La macrofauna del suelo como indicadora de degradación de bosques ribereños en la amazonia oriental brasilera. Revista de la Facultad de Agronomía 114: 49-60.

• Rossi J, Mathieu J, Cooper M, Grimaldi M (2006) Soil macrofaunal biodiversity in Amazonian pastures: Matching sampling with patterns. Soil Biology and Biochemistry 38 (8): 2178-2187. https://doi.org/10.1016/j.soilbio.2006.01.020

• Rosumek F, Antunes M, Cortês B, Steiner J, Zillikens A (2008) Formigas de solo e de bromélias em uma área de Mata Atlântica, Ilha de Santa Catarina, sul do Brasil: Levantamento de espécies e novos registros. Biotemas 21 (4): 81-89.

• Rousseau GX, Santos Silva PRd, Celentano D, de Carvalho CJR (2014) Macrofauna do solo em uma cronosequência de capoeiras, florestas e pastos no Centro de Endemismo Belém, Amazônia Oriental. Acta Amazonica 44 (4): 499-512. https://doi.org/10.1590/1809-4392201303245

• Ryder Wilkie KT, Mertl AL, Traniello JFA (2007) Biodiversity below ground: probing the subterranean ant fauna of Amazonia. Die Naturwissenschaften 94 (9): 725-731. https://doi.org/10.1007/s00114-007-0250-2

• Ryder Wilkie KT, Mertl AL, Traniello JFA (2010) Species diversity and distribution patterns of the ants of Amazonian Ecuador. PloS One 5 (10): . https://doi.org/10.1371/journal.pone.0013146

• Sanabria-Blandón C, Achury R (2011) Hormigas legionarias (Formicidae: Ecitoninae) en sistemas productivos de Caquetá (Colombia). Acta Biológica Colombiana 16: 219-224.

• Sanabria-Blandón MC, de Ulloa PC (2011) Hormigas cazadoras en sistemas productivos del piedemonte amazónico colombiano: diversidad y especies indicadoras. Acta Amazonica 41 (4): 503-512. https://doi.org/10.1590/s0044-59672011000400008

• Sanabria C, Lavelle P, Fonte S (2014) Ants as indicators of soil-based ecosystem services in agroecosystems of the Colombian Llanos. Applied Soil Ecology 84: 24-30. https://doi.org/10.1016/j.apseil.2014.07.001

• Seybold CA, Herrick JE, Brejda JJ (1999) Soil resilience: a fundamental component of soil quality. Soil Science 164 (4): 224-234. https://doi.org/10.1097/00010694-199904000-00002

• Snelling RR, Longino JT (1992) Revisionary notes on the fungus-growing ants of the genus Cyphomyrmex, rimosus group (Hymenoptera: Formicidae: Attini). In: Quintero D, Aiello A (Eds) Insects of Panama and Mesoamerica: selected studies. 479-494 pp.

• Sosa-Calvo J, Fernández F, Schultz T (2018) Phylogeny and evolution of the cryptic fungus-farming ant genus MyrmicocryptaF. Smith (Hymenoptera: Formicidae) inferred from multilocus data. Systematic Entomology https://doi.org/10.1111/syen.12313
• Suárez Salazar JC, Durán Bautista EH, Patiño GR (2015) Macrofauna edáfica asociada a sistemas agroforestales en la Amazonia Colombiana. Acta Agronómica 64 (3): 214-220. https://doi.org/10.15446/acag.v64n3.38033
• Valdés-Rodríguez S, de Ulloa PC, Armbricht I (2014) Especies de hormigas del suelo en el Parque Nacional Natural Gorgona, Pacífico Colombiano. Revista de Biología Tropical 62: 265. https://doi.org/10.15517/rbt.v62i0.16340
• Vasconcelos H, Macedo AC, Vilhena JS (2003) Influence of Topography on the Distribution of Ground-Dwelling Ants in an Amazonian Forest. Studies on Neotropical Fauna and Environment 38 (2): 115-124. https://doi.org/10.1076/snfe.38.2.115.15923
• Velásquez E, Fonte S, Barot S, Grimaldi M, Desjardins T, Lavelle P (2012) Soil macrofauna-mediated impacts of plant species composition on soil functioning in Amazonian pastures. Applied Soil Ecology 56: 43-50. https://doi.org/10.1016/j.apsoil.2012.01.008
• Vergara-Navarro E, Serna F (2013) A checklist of the ants (Hymenoptera: Formicidae) of the department of Antioquia, Colombia and new records for the country. Agronomía Colombiana 31: 324-342.
• Weber NA (1937) The biology of the fungus-growing ants. Part I. New forms. Revista de Entomología (Rio de Janeiro) 7: 378-409. URL: http://antcat.org/documents/3205/3011.pdf
• Wild AL (2007) A catalogue of the ants of Paraguay (Hymenoptera: Formicidae). Zootaxa 1622: 1-55. https://doi.org/10.11646/zootaxa.1622.1.1
• Wong M, Guénard B (2017) Subterranean ants: summary and perspectives on field sampling methods, with notes on diversity and ecology (Hymenoptera: Formicidae). Myrmecological News 25: 1-16.
• Wu H, Lu X, Tong S, Batzer D (2015) Soil engineering ants increase CO2 and N2O emissions by affecting mound soil physicochemical characteristics from a marsh soil: A laboratory study. Applied Soil Ecology 87: 19-26. https://doi.org/10.1016/j.apsoil.2014.11.011