Inhibition of *Streptococcus suis* Adhesion and Biofilm Formation in Vitro by Water Extracts of *Rhizoma Coptidis*

Yan-Hua Li\(^1,2,4\)*, Yong-Hui Zhou\(^1,2\), Yong-Zhi Ren\(^1,2\), Chang-Geng Xu\(^1,2\), Xin Liu\(^1,2\), Bing Liu\(^1,2\), Jian-Qing Chen\(^1,2\), Wen-Ya Ding\(^1,2\), Yu-Lin Zhao\(^1,2\), Yan-Bei Yang\(^1,2\), Shuai Wang\(^1,2\) and Di Liu\(^3\)

\(^1\) College of Veterinary Medicine, Northeast Agricultural University, Harbin, China, \(^2\) Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China, \(^3\) Heilongjiang Academy of Agricultural Sciences, Harbin, China

Correspondence: Yan-Hua Li
liyanhua1970@163.com

INTRODUCTION

Streptococcus suis is a pathogen causing huge economic and financial losses in the pork industry and an emerging threat to human health (Staats et al., 1997; Hill et al., 2005; Lun et al., 2007). *S. suis* can form biofilms, trapping nutrients, and shielding the pathogen from antagonistic effects (Brady et al., 2008; Wang et al., 2011). Biofilms are consortia of microorganisms attached to biotic or abiotic surfaces. Generally, the initial step in biofilm formation is a non-specific, reversible attachment of bacteria to substrate surfaces. Once permanently attached, the bacteria start to synthesize insoluble exopolysaccharides that encase the adherent bacteria in a three-dimensional...
matrix (Costerton et al., 1987). Therefore, reducing S. suis adhesion to surfaces may be an effective way to mitigate biofilm formation.

Studies have suggested that some genes and proteins play crucial roles in a series of complex molecular processes leading to biofilm formation (Sauer, 2003; Latasa et al., 2006; Beloin et al., 2008; Gaddy and Actis, 2009). A previous study reported deletion of the atl gene from S. suis type 2 strain HA9801, which encodes an autolysin, reduced adhesion to HEP-2 cells by 50% compared with wild-type S. suis, suggesting a role for Alt in biofilm formation and cell adhesion (Ju et al., 2012). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), an S. suis protein, has been identified as an adhesin. GAPDH mediates cell adhesion, encouraging biofilm production (Brassard et al., 2004; Wang and Lu, 2007). Muramidase-released protein (MRP) is a cell wall protein allowing bacteria to resist phagocytosis by macrophages and aids adhesion to epithelial cells (Liang et al., 2011). MRP induces expression of the cell surface protein BapA1 in Streptococcus pneumonia. Deletion of mrp reduces the bacterium’s ability to aggregate and form biofilms (Liang et al., 2011).

Rhizoma Coptidis (RC), used for over 2000 years in Traditional Chinese Medicine, has been studied for its antibacterial, antiviral, anti-inflammatory, anti-hyperglycemic, and hypolipidemic effects (Ye et al., 2009; Wu et al., 2014). In recent years, there has been a surge in the study of plants rich in bioactive components. These components have been shown to possess various beneficial properties including anti-adhesive effects (Dixon, 2001). It is reported that Rhizoma Coptidis can inhibit biofilm formation by Staphylococcus epidermidis (Wang et al., 2009). Previous studies on the anti-pathogenic effects of Rhizoma Coptidis have focused on its anti-biofilm activity (Zhu and Li, 2006; Hayashi et al., 2007; Yu et al., 2007). Our previous study indicated that a water extract from Rhizoma Coptidis (C. deltoidea C.Y.Cheng & P.K.Hsiao, obtained from Sichuan Province), berberine hydrochloride and coptisine can all inhibit S. suis biofilm formation in a tissue culture plate (TCP) assay (Liu et al., 2015), though the mechanisms involved are poorly understood.

Since in the previous study we only found that water extract from Rhizoma Coptidis could interfere with the formation of S. suis biofilms, but we did not know the mechanism involved. So the aim of this study was therefore to investigate the mechanisms by which Rhizoma Coptidis (C. deltoidea C.Y.Cheng & P.K.Hsiao, obtained from Sichuan Province) extracts disrupt S. suis biofilm formation and bacterial adherence, and to guide strategies to prevent S. suis biofilm infection.

MATERIALS AND METHODS

Preparation of Extract

Rhizoma Coptidis (C. deltoidea C.Y.Cheng & P.K.Hsiao, obtained from Sichuan Province) was purchased as a crude drug from the Beijing Tong Ren Tang Pharmacy. Its identity was authenticated by Professor Mingxia Bai at the Horticulture Branch of the Heilongjiang Academy of Agricultural Sciences. A berberine standard (877-200001) was purchased from the Ministry of Health of Drug Products. To generate water extracts of Rhizoma Coptidis, 50 g Rhizoma Coptidis powder were boiled in 500 mL distilled water for 60 min at 100°C before decanting and filtration. The filtrate was collected and added to 300 mL of distilled water and boiled for 60 min at 100°C. The final filtrate mass was lyophilized and concentrated into a dried powder with a yield of 0.25 g mL⁻¹ and stored at 4°C. The amount of berberine, the major active ingredient, in Rhizoma Coptidis water extracts was measured by high-performance liquid chromatography (HPLC) on a Waters Alliance HPLC system (Waters e2695, United States) consisting of a binary pump and a UV/Vis detector. Separation was carried out using a 5 µM DL-Cl8 column (4.6 mm × 150 mm, Japan) at 37°C. Acetonitrile (solvent A) and 0.05 M potassium dihydrogen phosphate (solvent B) were used as the mobile phase at a ratio of 40:60 (solvent A:solvent B), supplemented with 0.015 M sodium dodecyl sulfate. The flow rate was set at 1.2 mL min⁻¹. A detection wavelength of 345 nm and an injection volume of 5 µL were used in the study. The amount of berberine in the Rhizoma Coptidis aqueous extract was determined by comparing the HPLC retention time to the authentic standard. Quantification of berberine in the aqueous extract was done using a linear calibration plot of the peak area in HPLC at 345 nm against concentration using the external standard method. The calibration curve was calculated by plotting peak areas against six different concentrations of the standard solutions (0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 mg mL⁻¹).

Minimum Inhibitory Concentrations

The MIC (minimal inhibitory concentration) was determined by the microtiter broth dilution method, as recommended by the Clinical and Laboratory Standards Institute [CLSI] (2016). Dilutions were performed in Todd–Hewitt Broth (THB) medium using 1 × 10⁶ colony-forming units (CFU) of bacteria per milliliter. Cell suspensions (100 µL) were inoculated into 96-well microtiter plates in the presence of Rhizoma Coptidis water extracts with different final concentrations (0, 1.625, 3.125, 6.25, 12.5, 25, 50, 100, or 200 µg mL⁻¹). Azithromycin was used as a positive control, with the susceptibility (MIC) of S. suis ATCC 700794 to azithromycin found to be 32 µg mL⁻¹ (Yang et al., 2016). Inoculated microplates were incubated at 37°C for 24 h before examination. Susceptibility (MIC) of S. suis ATCC700794 to Rhizoma Coptidis water extracts was 100 µg mL⁻¹ (Berberine, the active ingredient, in Rhizoma Coptidis water extracts was 36.3 µg mL⁻¹).

Growth Conditions of S. suis Biofilms

Streptococcus suis ATCC700794 was grown overnight in THB (Sigma-Aldrich) at 37°C with constant shaking. Biofilm culture production was described previously (Wang et al., 2011). Briefly, S. suis grown in THB medium at 37°C was added to a 1% fibrinogen solution in 100 mm polystyrene dishes and grown for 24 h. After decanting the growth medium, plates were thoroughly rinsed twice with 50 mM Tris–HCl (pH 7.5). Biofilms were then harvested by scraping. Cells were sonicated for 5 min and centrifuged at 12,000 × g for 10 min at 4°C. Supernatants were then removed and cell pellets were washed twice with 50 mM Tris–HCl (pH 7.5).
Determination of the Effect of *Rhizoma Coptidis* Water Extracts on Biofilm Formation by TCP Assay

Streptococcus suis cultures in mid-exponential growth phase with an optical density of 0.2 at 600 nm (OD_{600}) were used for TCP assays. In each well of a 96-well plate, 100 µL of *S. suis* culture and 100 µL of *Rhizoma Coptidis* water extract were combined. The final tested concentrations were 6.25, 12.5, 25, or 50 µg mL^{-1}. Wells filled with sterile growth medium were included as blank controls, azithromycin (1/2MIC) as a positive control. Wells containing 200 µL culture without extract served as negative controls. After incubation at 37°C for 24 h, all wells were washed with sterile phosphate-buffered saline (PBS) and stained with crystal violet.

Scanning Electron Microscopy

Scanning electron microscopy (SEM) was performed as described previously (Zhao et al., 2015). Briefly, cultures were diluted to an OD_{600} of 0.1 before adding 2 mL to wells of a six-well microplate containing a 10 mm × 10 mm sterilized rough organic membrane (Mosutech Co., Ltd., Shanghai, China). After incubation without shaking for 24 h at 37°C, planktonic cells were decanted. Attached cells were removed by addition of 0.5 M sodium hydroxide. Adherence was quantified by OD_{600}. Percentage adherence = [OD_{600} of adhered cells/(OD_{600} of adhered cells + OD_{600} of planktonic cells)].

Anti-adherence Activity of Extract Against *S. suis*

Anti-adherence to organic membranes. Assays were prepared as previously described (Hamada et al., 1981). Briefly, *S. suis* ATCC700794 cultures at mid-exponential growth phase were diluted to an OD_{600} of 0.1 before combining with 2 mL of THB or sub-MICs of *Rhizoma Coptidis* water extract in a six-well microplate containing a 10 mm × 10 mm sterilized rough organic membrane (Mosutech Co., Ltd., Shanghai, China). After incubation without shaking for 24 h at 37°C, planktonic cells were decanted. Attached cells were removed by addition of 0.5 M sodium hydroxide. Adherence was quantified by OD_{600}. Percentage adherence = [OD_{600} of adhered cells/(OD_{600} of adhered cells + OD_{600} of planktonic cells)].

Anti-adherence to cells. Assays were prepared as described previously (Lalonde et al., 2000) with slight modifications. Briefly, PK-15 cells were cultured in DMEM (Hyclone) and grown in 75 cm × 75 cm flasks at 37°C with 5% CO₂. Confluent monolayers of PK-15 cells (1.0 × 10⁵ cells per well) were cultured in 96-well plates (Corning, NY, United States). *S. suis* cells, either supplemented with sub-MICs of *Rhizoma Coptidis* water extracts or untreated, were added to each well at an MOI of 100:1 and incubated at 37°C to allow cells to attach. After 4 h, plates were washed twice with PBS and cells were lysed with sterile distilled water on ice. Both adherent and intracellular bacteria were counted on THB agar. Both assays were repeated three times.

RNA Isolation and Real-Time PCR

Real-time PCR was performed as described previously (Yang et al., 2015). The primer sequences used in the experiment were shown in Table 1. To investigate the effect of *Rhizoma Coptidis* water extracts on gene expression, mid-log growth phase cultures of *S. suis* were supplemented with 50 µg mL^{-1} extract and incubated at 37°C for 24 h. Cells without extract served as control. Cultures were centrifuged at 10,000 × g for 5 min before treatment with an RNase Remover I (Huayueyang Ltd., Beijing, China). Total RNA levels were determined using the E.Z.N.A.™ Bacterial RNA isolation kit. Real-time PCR for each
sample was performed as previously described (Yang et al., 2015).

iTRAQ Analysis

Protein was extracted from *S. suis* cells either treated with 50 µg mL⁻¹ *Rhizoma Coptidis* water extract or left untreated (Wang et al., 2011). iTRAQ analysis was performed at Shanghai Applied Protein Technology Co., Ltd. (APT, Shanghai, China). Three biological replicates were evaluated to minimize the influence of less reliable quantitative information. iTRAQ analysis was performed as previously described (Zhao et al., 2015).

Statistical Analysis

Values were calculated as the mean of individual experiments in triplicate and compared to those of the control groups. Differences between two mean values were calculated by Student’s t-test using SPSS 11.0.0 statistical software, with *p*-values below 5% designated as statistically significant.

RESULTS

Amounts of the Active Ingredient Berberine in *Rhizoma Coptidis* Water Extracts

High-performance liquid chromatography chromatograms of a *Rhizoma Coptidis* water extract and a standard solution of berberine are shown in Figure 1. The retention time of berberine agreed well with the authentic compound (15.43 min). The calibration curve equation was $y = 7E + 06x + 28,724, R^2 = 0.999$. Using the calibration curve, the portion of berberine, the active ingredient, in *Rhizoma Coptidis* water extracts was calculated to be 36.30%.

Effect of *Rhizoma Coptidis* Water Extracts Against Biofilm Formation in Vitro

The TCP method allows quantitative detection of *S. suis* biofilm formation at 24 h. Four different doses of *Rhizoma Coptidis* water extract were tested against *S. suis* biofilms (Figure 2). At 12.5 and 6.25 µg mL⁻¹, the OD₆₀₀ of *S. suis* ATCC700794 were lower than the negative control. At 25 and 50 µg mL⁻¹, there was significant inhibition (*p* < 0.05) of *S. suis* biofilm formation, suggesting that these concentrations were more effective than 6.25 or 12.5 µg mL⁻¹ at inhibiting biofilm formation.

Scanning Electron Microscopy

Scanning electron microscopy was performed to examine the effects of 50 µg mL⁻¹ *Rhizoma Coptidis* water extract on *S. suis* biofilm formation. In the absence of extract, the surface of the rough organic membrane was observed to be almost entirely covered by aggregates and micro-colonies of *S. suis* (Figure 3A). However, when 50 µg mL⁻¹ extract was added, most of the cell aggregates were dispersed (Figure 3B), suggesting that *S. suis* biofilm formation was inhibited by the extract in vitro.

![FIGURE 3](image-url) Scanning electron microscopy of biofilm of *S. suis* grown in THB broth. (A) With 0 MIC (0 µg mL⁻¹) concentration of aqueous extracts of *Rhizoma Coptidis*; (B) with 1/2 × MIC (50 µg mL⁻¹) concentration of aqueous extracts of *Rhizoma Coptidis*.

![FIGURE 4](image-url) Effect of *Rhizoma Coptidis* at different concentrations on *S. suis* ATCC700794 adhesion to glass (A), or PK-15 cells (B). Data are expressed as means ± standard. Significant decrease (*p* < 0.05) compared to control in vitro.
more than 1.5-fold and others by less than 0.67-fold ($p < 0.05$). Of the 26 proteins tested using iTRAQ after treatment with 50 µg mL$^{-1}$ extract, expression of 15 proteins increased and 11 were suppressed (Table 2). Among the suppressed proteins were antigen-like protein (D5AGH9), hydrolase (R4NST6), methyltransferase H (G7SM56), glycosyltransferase (M1VJJ3), and helicase (G7S7E3). These proteins had fold-change values of 0.49576886, 0.311630845, 0.644879525, 0.574502756, and 0.57612248, respectively.

DISCUSSION

We investigated the relationship between *Rhizoma Coptidis* water extracts and *S. suis* biofilm formation. Previous studies have suggested that there is a relationship between some antimicrobial agents and biofilm formation (Majtan et al., 2008; Nucleo et al., 2009; Mishra et al., 2014; Zhao et al., 2015; Wang et al., 2016). In our study, sub-MICs of *Rhizoma Coptidis* water extracts could inhibit biofilm formation of *S. suis in vitro*, as observed in a TCP assay. Most studies on the anti-infective activities of *Rhizoma Coptidis* have focused on its anti-biofilm effects, with little or no

TABLE 2 | iTRAQ identification of differentially expressed proteins.

Accession	Proteins	Fold change
R4NST6	Hydrolase (HAD superfamily)	0.311630845
G7SEP0	Putative uncharacterized protein	0.389353378
G7SM20	DNA gyrase subunit B	0.427259889
D5A9H9	Antigen-like protein	0.49576886
G7SHZ3	Bacteriophage protein, putative	0.520900282
F3D5P5	Putative uncharacterized protein	0.534269172
G5K2N4	DNA polymerase IV	0.564882743
G7RZW0	Sugar ABC transporter permease	0.566616133
A4W5Y3	Response regulator	0.569410189
M1VJJ3	Glycosyltransferase	0.574502756
G7S7E3	Helicase	0.57612248
G7SM66	Methyltransferase H	0.644879625
R4NVK5	DNA gyrase subunit B	1.50073608
G7SN2N	ABC transporter ATP-binding protein	1.537200996
KOFG35	CpsR	1.542930057
R4NW55	AAA-class ATPase domain protein	1.55109354
G7S3Q5	Putative uncharacterized protein	1.56827867
F4E0C5	Putative uncharacterized protein	1.724654275
E9NC29	CPS16V	1.764888931
B9WUV5	Transcriptional regulator, DeoR family	1.913005357
B0FY8	Neprylsin (Fragment)	2.203412347
G7SDS2	ABC superfamily ATP binding cassette transporter, membrane protein	2.332354978
R4NST6	Hydrolase (HAD superfamily)	2.805220661
G7SM99	Type I site-specific restriction-modification system, R (Restriction) subunit and related helicase	3.177157457
G7SM99	ABC-type transport system involved in Fe-S cluster assembly, permease component	3.464547909
G7SM99	Chlorophenolic acetyltransferase	3.474123973

Anti-adherence Activity of Extract Against S. suis

The inhibitory effects of *Rhizoma Coptidis* water extract on adherence of *S. suis* to glass were tested at several concentrations (Figure 4). The extract inhibited adherence to organic membranes (Figure 4A) and PK-15 cells (Figure 4B).

The Effect of Rhizoma Coptidis Water Extracts on Gene Expression

The expression profiles of gapdh, sly, and mrp in *S. suis* were determined 24 h post-treatment with 50 µg mL$^{-1}$ *Rhizoma Coptidis* water extract. In treated cultures, gapdh, sly, and mrp gene expression levels were suppressed compared to untreated samples (Figure 5).

Rhizoma Coptidis Water Extracts Inhibit Biofilm Formation and Modulate Protein Expression by iTRAQ

Streptococcus suis cultures were incubated with extract for 24 h before measurement using iTRAQ. Changes in protein expression levels were observed, with some proteins changing by

TABLE 1 | Primers used for the quantitative RT-PCR analysis.

Genes	Primer sequence
16S rRNA	Forward: 5′-TGCTAGTACCTAGGCTAAAGGCTAA-3′ Reverse: 5′-GGCTGGAGATTCTTCTGAT-3′
gapdh	Forward: 5′-GCTGGAAGAAGTAAACCGCTGCT-3′ Reverse: 5′-GTGCGACATCAAATACGAACC-3′
sly	Forward: 5′-AGTCATGGTTGGACTGCTAGG-3′ Reverse: 5′-TTGTCGTCGAACTGACCGC-3′
mrp	Forward: 5′-TGGCACAGTATTACGAAGACCC-3′ Reverse: 5′-TACCGTACACGAAAACAT-3′

Figure 5 | Effect of 1/2MIC of aqueous extracts of Rhizoma Coptidis on mRNA decreased expression of genes in *S. suis* ATCC700794. Data are expressed as means ± standard deviations. The expression was normalized to 16S rRNA. Controls refer to the absence of aqueous extracts of Rhizoma Coptidis. Significantly different ($p < 0.05$) compared to untreated control bacteria.
Furthermore, a recent study showed that mutation of the hrpB gene, which encodes RNA helicase, can reduce surface adhesion and inhibit disease spread in citrus leaves (Granato et al., 2016). We thank Shanghai Applied Protein Technology Co., Ltd. for the help with iTRAQ.

REFERENCES

Beloin, C., Roux, A., and Ghigo, J. M. (2008). *Escherichia coli* biofilms. *Curr. Top. Microbiol. Immunol.* 322, 249–289. doi: 10.1007/978-3-540-75418-3_12

Brady, R. A., Leid, J. G., Calhoun, J. H., Costerton, J. W., and Shirvell, M. E. (2008). Osteomyelitis and the role of biofilms in chronic infection. *FEMS Immunol. Med. Microbiol.* 52, 13–22. doi: 10.1111/j.1574-695X.2007.00357.x

Brassard, J., Gottschalk, M., and Quessy, S. (2004). Cloning and purification of the *Streptococcus suis* serotype 2 glyceraldehyde-3-phosphate dehydrogenase and its involvement as an adhesin. *Vet. Microbiol.* 102, 87–94. doi: 10.1016/j.vetmic.2004.05.008

Costerton, J. W., Cheng, K. J., Geesy, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M., et al. (1987). Bacterial biofilms in nature and disease. *Annu. Rev. Microbiol.* 41, 435–464. doi: 10.1146/annurev.mi.41.100187.002251

Clinical and Laboratory Standards Institute [CLSI] (2016). *M100S Performance Standards for Antimicrobial Susceptibility Testing*, 26th Edn. Wayne, PA: CLSI.

Dabral, N., Jain-Gupta, N., Seleem, M. N., Sriranganathan, N., and Vemulapalli, R. (2015). Overexpression of *Brucella* putative glycosyltransferase WbkA in *B. abortus* RB51 leads to production of exopolysaccharide. *Front. Cell. Infect. Microbiol.* 5:54. doi: 10.3389/fcimb.2015.00054

Dixon, R. A. (2001). Natural products and plant disease resistance. *Nature* 411, 843–847. doi: 10.1038/35081178

Gaddy, J. A., and Actis, L. A. (2009). Regulation of Acinetobacter baumannii biofilm formation. *Future Microbiol.* 4, 273–278. doi: 10.2217/fmb.09.5

Granato, L. M., Picchi, S. C., Andrade, M. D., Takita, M. A., De Souza, A. A., Wang, N., et al. (2016). The ATP-dependent RNA helicase HrpB plays an important role in motility and biofilm formation in *Xanthomonas citri* subsp. *citri*. *BMC Microbiol.* 16:55. doi: 10.1186/s12866-016-0655-1

Hamada, S., Torii, M., Kotani, S., and Tsuchiyama, Y. (1981). Adherence of *Streptococcus sanguis* clinical isolates to smooth surfaces and interactions of the isolates with *Streptococcus mutans* glucosyltransferase. *Infect. Immun.* 32, 364–372.

Hayashi, K., Minoda, K., Nagaoaka, Y., Hayashi, T., and Usato, S. (2007). Antiviral activity of berberine and related compounds against human cytomegalovirus. *Biorg. Med. Chem. Lett.* 17, 1562–1564. doi: 10.1016/j.bmcl.2006.12.085

Hernandez, O., Almeida, A. J., Gonzalez, A., Garcia, A. M., Tamayo, D., Cano, L. E., et al. (2010). A 32-kilodalton hydrolase plays an important role in the inhibition of biofilm formation and adhesion by *Rhizoma Coptidis* water extracts. *FEMS Immunol. Med. Microbiol.* 59, 168–177. doi: 10.1111/j.1574-695X.2010.00821.x

Hernandez, O., Rabinowicz, P. D., and Boucher, M. W. (2011). Halothane increases adhesion to polystyrene plates (Dabral et al., 2015). Kumar et al. (2012). Over-expression of the putative glycosyltransferase WbkA in *S. suis* is important factor in inhibiting *S. suis* biofilm formation.

In this study, we identified *S. suis* genes gapdh, sly, and mrp as potential targets of *Rhizoma Coptidis* water extracts. These genes are thought to play key roles in infection and invasion (Liang et al., 2011; Ju et al., 2012) and have been shown to be important in biofilm formation and adhesion. Treatment with 50 µg mL⁻¹ of extract suppressed gapdh, sly, and mrp gene expression. We speculate that this downregulation may be the cause of a reduction in *S. suis* adhesion and therefore biofilm formation. However, the detailed molecular mechanisms behind this reduction are still unknown and should be addressed in further studies.

Using iTRAQ, we found that 26 proteins were differentially expressed upon treatment of *S. suis* with 50 µg mL⁻¹ *Rhizoma Coptidis* water extract compared to untreated cells. Of these proteins, 11 proteins, implicated in surface adhesion and biofilm formation, were significantly suppressed. These include an antigen-like protein (D5AGH9), hydrolase (R4NST6), methyltransferase H (G7SM56), glycosyltransferase (M1VJ3), and helicase (G7S7E3) (Table 2). Antigen-like protein (D5AGH9) has been identified as a novel matricellular protein that promotes cell adhesion and spreading (Tajiri et al., 2010). Hydrolase, from the haloacid dehydrogenase superfamily (R4NST6), plays an important role in *Paracoccidioides brasiliensis* adherence to host cells (Hernandez et al., 2010). A previous study showed that deletion of an orphan C⁵ -cytosine methyltransferase, similar to methyltransferase H (G7SM56), has a significant effect on the expression of genes responsible for pathogenic growth (Kumar et al., 2012). Over-expression of the putative *Brucella* glycosyltransferase can lead to development of clumping and increased adhesion to polystyrene plates (Dabral et al., 2015).

Furthermore, a recent study showed that mutation of the hrpB gene, which encodes RNA helicase, can reduce surface adhesion and inhibit disease spread in citrus leaves (Granato et al., 2016). Biofilm formation and adhesion were reduced by treatment with 50 µg mL⁻¹ of *Rhizoma Coptidis* water extract, likely by down-regulation of expression of the proteins discussed above. In contrast, loss of capsular polysaccharides has previously been described to facilitate and speed up biofilm formation (Qin et al., 2013). Our results suggest that treatment of *S. suis* cells by the extract might cause upregulation of CpsR (K0FG35) and CPS16V (E9NQ29), proteins involved capsular polysaccharide formation, and reduced biofilm formation and adhesion.

Our results show that sub-MICs of *Rhizoma Coptidis* water extracts could inhibit biofilm formation, though the mechanism of action is unclear. We observed anti-adherence activity of the extract on *S. suis*. We also found that expression levels of genes and proteins involved in adhesion were significantly altered in cells treated with sub-MICs of *Rhizoma Coptidis* water extracts compared to untreated cells. Our results indicate that *Rhizoma Coptidis* water extracts inhibit *S. suis* biofilm formation by limiting adhesion.

AUTHOR CONTRIBUTIONS

Y-HL designed the whole experiment. The other authors are responsible for completing the experiment.

FUNDING

This study was financially supported by the National Natural Science Foundation of China (No. 31472231), the earmarked fund for China Agriculture Research System-35, scientific research project of Heilongjiang Province Education Department (No. 12531037).

ACKNOWLEDGMENTS

We thank Shanghai Applied Protein Technology Co., Ltd. for the help with iTRAQ.
role in *Paracoccidioides brasiliensis* adherence to host cells and influences pathogenicity. Infect. Immun. 78, 5280–5286. doi: 10.1128/IAI.00692-10

Hill, J. E., Gottschalk, M., Brousseau, R., Harel, J., Hemmingsen, S. M., and Goh, S. H. (2005). Biochemical analysis, cpr60 and 16S rDNA sequence data indicate that *Streptococcus suis* serotypes 32 and 34, isolated from pigs, are *Streptococcus arisraetii*. Vet. Microbiol. 107, 63–69. doi: 10.1016/j.vetmic.2005.01.003

Ju, C. X., Gu, H. W., and Lu, C. P. (2012). Characterization and functional analysis of *atl*, a novel gene encoding autolysin in *Streptococcus suis*. J. Bacteriol. 194, 1464–1473. doi: 10.1128/JB.06231–11

Kumar, R., Mukhopadhyay, A. K., Ghosh, P., and Rao, D. N. (2012). Comparative transcriptomics of *H. pylori* strains AMS, SSI and their hypoAVIB deletion mutants: possible roles of cytosine methylation. PLoS One 7:e42303. doi: 10.1371/journal.pone.0042303

Lalonde, M., Segura, M., Lacouture, S., and Gottschalk, M. (2000). Interactions between *Streptococcus suis* serotype 2 and different epithelial cell lines. Microbiology 146 (Pt 8), 1913–1921. doi: 10.1099/00221287-146-8-1913

Latasa, C., Solano, C., Penades, J. R., and Lasa, I. (2006). Biofilm-associated proteins. C. R. Biol. 329, 849–857. doi: 10.1016/j.crbio.2006.07.008

Liang, X., Chen, Y. Y., Ruiz, T., and Wu, H. (2011). New cell surface protein involved in biofilm formation by *Streptococcus parasanginis*. Infect. Immun. 79, 3239–3248. doi: 10.1128/IAI.0029-11

Liu, B., Han, Q., Sheng, Z. L., Chen, J. Q., Chen, X. Y., Wei, S. G., et al. (2015). Intervention effects of water extract, berberine hydrochloride and coptisine from Rhizoma Coptidis against *Streptococcus suis* biofilm in vitro. Chin. J. Vet. Med. 51, 16–19.

Lun, Z. R., Wang, Q. P., Chen, X. G., Li, A. X., and Zhu, X. Q. (2007). *Streptococcus suis*: an emerging zoonotic pathogen. Lancet Infect. Dis. 7, 201–209. doi: 10.1016/S1473-3099(07)70001–4

Maftan, J., Maftanova, L., and Maftan, V. (2008). In vitro effect of subinhibitory concentrations of antibiotics on biofilm formation by clinical strains of *Salmonella enterica* serovar Typhimurium isolated in Slovakia. J. Appl. Microbiol. 104, 1294–1301. doi: 10.1111/j.1365-2672.2007.03653.x

Mishra, N. N., Ali, S., and Shukla, P. K. (2014). Arachidonic acid affects biofilm formation and PGE2 level in *Candida albicans* and non-albicans species in presence of subinhibitory concentration of fluconazole and terbinafine. Braz. J. Infect. Dis. 18, 287–293. doi: 10.1016/j.bjid.2013.09.006

Nucleo, E., Steffanoni, L., Fugazza, G., Migliavacca, R., Giacobone, E., Navarra, A., et al. (2009). Growth in glucose-based medium and exposure to subinhibitory concentrations of imipenem induce biofilm formation in a multidrug-resistant clinical isolate of *Acinetobacter baumannii*. BMC Microbiol. 9:270. doi: 10.1186/1471-2180-9-270

Qin, L., Kida, Y., Imamura, Y., Kuwano, K., and Watanabe, H. (2013). Impaired capsular polysaccharide is relevant to enhanced biofilm formation and lower virulence in *Streptococcus pneumoniae*. J. Infect. Chemother. 19, 261–271. doi: 10.1007/s10156-012-0495-3

Sauer, K. (2003). The genomics and proteomics of biofilm formation. Genome Biol. 4:219. doi: 10.1186/gb-2003-4-6-219

Staats, J. J., Feder, I., Okwumabua, O., and Chengappa, M. M. (1997). *Streptococcus suis*: past and present. Vet. Res. Commun. 21, 381–407. doi: 10.1023/A:1005870317757

Tajiri, Y., Igarashi, T., Li, D., Mukai, K., Suematsu, M., Fukui, E., et al. (2010). Tubulointerstitial nephritis antigen-like 1 is expressed in the uterus and binds with integrins in decidualized endometrium during postimplantation in mice. Biol. Reprod. 82, 263–270. doi: 10.1095/biolreprod.109.080028

Wang, K. C., and Lu, C. P. (2007). Adhesion activity of glyceraldehyde-3-phosphate dehydrogenase in a Chinese *Streptococcus suis* type 2 strain. Berl. Munch. Tierarztl. Wochenr. 120, 207–209.

Wang, S., Yang, Y. B., Zhao, Y. L., Zhao, H. H., Bai, J. W., Chen, J. Q., et al. (2016). Sub-MIC tylosin inhibits *Streptococcus suis* biofilm formation and results in differential protein expression. Front. Microbiol. 7:384. doi: 10.3389/fmicb.2016.00384

Wang, X. Q., Qiu, S. J., Yao, X., Tang, T. T., Dai, K. R., and Zhu, Z. A. (2009). Berberine inhibits *Staphylococcus epidermidis* adhesion and biofilm formation on the surface of titanium alloy. J. Orthop. Res. 27, 1487–1492. doi: 10.1002/jor.20917

Wang, Y., Zhang, W., Wu, Z. F., and Lu, C. P. (2011). Reduced virulence is an important characteristic of biofilm infection of *Streptococcus suis*. FEMS Microbiol. Lett. 316, 36–43. doi: 10.1111/j.1574-6968.2010.02189.x

Wu, H., He, K., Wang, Y. Z., Xue, D. F., Ning, N., Zou, Z. Y., et al. (2014). The antihipercholesterolemic effect of jatrohrrhizine isolated from *Rhizoma coptidis*. Phytomedicine 21, 1373–1381. doi: 10.1016/j.phymed.2014.05.002

Yang, Y. B., Wang, S., Wang, C., Huang, Q. Y., Bai, J. W., Chen, J. Q., et al. (2015). Emodin affects biofilm formation and expression of virulence factors in *Streptococcus suis* ATCC700794. Arch. Microbiol. 197, 1173–1180. doi: 10.1007/s00203-015-1158-4

Yang, Y. B., Chen, J. Q., Zhao, Y. L., Bai, J. W., Ding, W. Y., Zhou, Y. H., et al. (2016). Sub-MICs of azithromycin decrease biofilm formation of *Streptococcus suis* and increase capsular polysaccharide content of S. suis. Front. Microbiol. 7:1659. doi: 10.3389/fmicb.2016.01659

Ye, X., Feng, Y., Tong, Y., Ng, K. M., Tsao, S., Lau, G. K., et al. (2009). Hepatoprotective effects of coptidis aqueous extract on carbon tetrachloride-induced acute liver hepatotoxicity in rats. J. Ethnopharmacol. 124, 130–136. doi: 10.1016/j.jep.2009.04.003

Yu, Y., Yi, Z. B., and Liang, Y. Z. (2007). Validate antibacterial mode and find main bioactive components of traditional Chinese medicine *Aegilea oxysepala*. Biogeo. Med. Chem. Lett. 17, 1855–1859. doi: 10.1016/j.bmcl.2007.01.032

Zhao, Y. L., Zhou, Y. H., Chen, J. Q., Huang, Q. Y., Han, Q., Liu, B., et al. (2015). Quantitative proteomic analysis of sub-MIC erythromycin inhibiting biofilm formation of *S. suis* in vitro. J. Proteomics 116, 1–14. doi: 10.1016/j.jprot.2014.12.019

Zhu, C. L., and Li, M. Y. (2006). Inhibition of extracts from 17 Chinese herbs on periodontal pathogenic microbes. *Shanghai Kou Qiang Yi Xue* 15, 434–436.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Li, Zhou, Ren, Xu, Liu, Liu, Chen, Ding, Zhao, Yang, Wang and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.