Families of Unramified Extensions of Number Fields

Gene Ward Smith

Abstract

Algebraic methods are used to construct families of unramified abelian extensions of some families of number fields with specified Galois groups.

1 Abelian Extensions of Commutative Algebras

Consider the problem of constructing split extensions $G \rtimes A$, with an eye to forcing the abelian kernel A to correspond to an unramified extension of an extension with group G, in the case where A is cyclic, so that $G \rtimes A$ is a metacyclic group.

In the case where G is cyclic of odd prime power order, we can construct all cyclic extensions with group G by the method of [14]. In the case of extensions of even degree, this requires modification, but even so [12] suffices to construct these over number fields. In any case, it is easy ([3]) to see that the construction of [14] will give many cyclic extensions even when it will not give all of them.

Let $n > 1$ be an integer, for which we seek to construct corresponding cyclic extensions with group \mathbb{Z}_n, and ζ be primitive n-th root of unity. For $q \in \mathbb{Z}_{(n)}$, let $<q>$ denote the reduction modulo n to the range $0 \leq <q> < n$. Let b_i denote $\phi(n)$ algebraically transcendental elements, indexed by the set of integers I_n between 0 and n and prime to n, and let c_i be such that $c_i^n = b_i$.

Now set

$$e_j = \prod_{i,j \in I_n} c_i^{<j/i>},$$

1
\[r_i = \sum_{j \in I_n} e_j \zeta^{ij}, \quad 0 \leq i < n, \]
\[P_n = \prod_{i=0}^{n-1} (x - r_i). \]

If \(F \) is a field with characteristic prime to \(n \) which is disjoint from \(B(\zeta) \), where \(B \) is the prime field, then by specializing \(b_i \) to a conjugate orbit of values in \(F(\zeta) \), we will produce a polynomial over \(F \) which is either reducible or cyclic of degree \(n \)--in general, the latter.

As explained in [13], we can use this same construction to obtain metacyclic groups which are subgroups of the holomorph \(\text{Hol}(\mathbb{Z}_n) \) of \(\mathbb{Z}_n \)--that is to say, subgroups of the group of invertible affine transformations \(z \mapsto az + b \) of \(\mathbb{Z}_n \). An automorphism of the cyclic group of degree \(\phi(n) \) acting on the \(e_i \)'s will permute these; as a result the coefficients of the polynomial \(P_n \) in terms of the \(b_i \) are invariant under these automorphisms.

If we choose a normal basis \(\omega_i \) for field \(\mathbb{Q}(\zeta) \) over \(\mathbb{Q} \) (or over the prime field in nonzero characteristic), we can write
\[b_j = \sum_{i,j \in I_n} a_j \omega_{<ij>}. \]

We then have that the \(a_i \) are elements of \(F \), and moreover that the coefficients of \(P_n \) when expressed in terms of these are also invariants under automorphisms of \(\mathbb{Z}_n \).

Now suppose that we have an extension \(K/F \) of degree \(\phi(n) \), with abelian Galois group isomorphic to the invertible elements \((\mathbb{Z}/n\mathbb{Z})^* \) of \(\mathbb{Z}/n\mathbb{Z} \), and an explicit choice of isomorphism. If we have \(a_i \) which are conjugate in a manner which corresponds to the index \(i \) by this isomorphism, then the coefficients of the polynomial obtained by specializing \(P_n \) to these \(a_i \) will be in \(F \), and so if the polynomial is irreducible, we will obtain a an extension with Galois group \(\text{Hol}(\mathbb{Z}_n) \). In particular, if \(n \) is an odd prime power, we have that \((\mathbb{Z}/n\mathbb{Z})^* \) is cyclic of degree \(\phi(n) \), and we have a metacyclic extension with group \(\mathbb{Z}_{\phi(n)} \rtimes \mathbb{Z}_n \).

In the above case, the \(a_i \) are a complete orbit of values for an abelian extension with Galois group isomorphic to \((\mathbb{Z}/n\mathbb{Z})^* \); and the orbit is given by an isomorphism between \(\text{Gal}(K/F) \) and \((\mathbb{Z}/n\mathbb{Z})^* \). We can generalize this to an orbit in an abelian extension of \textit{commutative algebras}. What this means
concretely is that we have a direct sum of \(l \) copies of an abelian extension of degree \(m \), such that \(lm = \phi(n) \). The Galois group of the abelian extension of degree \(m \) combines with an abelian permutation of the \(l \) copies, to produce an automorphism of the algebra with the required abelian Galois group. The orbit of values for this algebra can now be used for the \(a_i \) just as in the case where this was a field extension.

To give a concrete example of this, suppose that we have two copies of the field \(\mathbb{Q}(\sqrt{-47}) \). The Galois action \(\sqrt{-47} \mapsto -\sqrt{-47} \) and the permutation of the two copies combine to give us a cyclic algebra extension of \(\mathbb{Q} \) with Galois group \(\mathbb{Z}_4 \). A possible orbit of values in this might be

\[
\begin{align*}
a_1 &= -13 + \sqrt{-47}, \\
a_2 &= (-21 - \sqrt{-47})/2, \\
a_4 &= -13 - \sqrt{-47}, \\
a_3 &= (-21 + \sqrt{-47})/2.
\end{align*}
\]

If we now compute corresponding \(b_i \) by taking

\[
b_i = \sum a_j \zeta^{2^{(i+j)}},
\]

then we have four roots of the polynomial

\[
x^4 - 47x^3 + 519x^2 + 47x + 1,
\]

permuted in the order \(x \mapsto (8x^3 - 377x^2 + 4186x + 234)/5 \). If we substitute the roots of this polynomial, \textit{in this order}, for the \(b_i \) in \(P_5 \), we obtain the irreducible polynomial

\[
x^5 - 10x^3 - 2605x^2 + 5860x + 443629.
\]

This is a cyclic extension of the algebra of the \(a_i \), which means it is a cyclic extension of \(\mathbb{Q}(\sqrt{-47}) \). It is clearly a split extension, and we easily check (as must be the case) that its splitting field is dihedral over \(\mathbb{Q} \).

This is how we go about constructing split extensions with Galois group contained in \(\text{Aut}(\mathbb{Z}_n) \) in general. We take an abelian extension of the appropriate type, and use values in this subfield to define orbits of values in the \(a_i \), which can be thought of as a single orbit in an abelian algebra. If \(n \) is the power of an odd prime, and we want to construct all metacyclic extensions with our given extension as subfield, we need to look at the \(\phi(\phi(n)) \) different generators of \((\mathbb{Z}/n\mathbb{Z})^* \), and allow for conjugate orbits produced by each of these generators.
The example also illustrates the duality principle involved. We began with an orbit of values a_i, defined as belonging to an abelian Galois algebra extension K/F with group $\text{Gal}(K/F) \simeq \text{Aut}(Z_n)$, together with an explicit choice of isomorphism. We get a corresponding abelian Galois algebra extension H/F for the values b_i, which a subalgebra of $K \otimes F(\zeta)$, together with an explicit isomorphism. Starting from H/F and the selected isomorphism, the same diagonal subalgebra construction brings us back to K/F and our original isomorphism—these are in duality.

In the case where n is an odd prime power, the duality can be interpreted as being between a cyclic field extension K/F of degree m, where m divides $\phi(n)$, together with a generator of its Galois group; and another cyclic field extension of degree dividing $\phi(n)$ and a generator for its group. In the example already given, $\mathbb{Q}(\sqrt{-47})$ was dual to the cyclic field of conductor 235 previously given, together with the indicated generator for its Galois group. If we take the Galois group in reverse order, so that $x \mapsto (−13x^3 + 612x^2 − 6786x − 234)/5$ instead, we have that this is now dual to $\mathbb{Q}(\sqrt{-235})$. In fact, if

$$a_1 = (−21 + \sqrt{-235})/2, a_2 = −13,$$

$$a_4 = (−21 − \sqrt{-235})/2, a_3 = −13$$

then just as before, if

$$b_i = \sum a_j \zeta^{2(i+j)}$$

then we obtain roots of

$$x^4 − 47x^3 + 519x^2 + 47x + 1.$$

However, these roots now permute in the order opposite to before, and if we substitute values in this opposite order into P_5, we obtain instead

$$x^5 − 10x^3 − 2605x^2 + 5680x + 167504.$$

This is another dihedral polynomial, only now, of course, the quadratic subfield is $\mathbb{Q}(\sqrt{-235})$.

We wish to find extensions of K which are unramified. Since these are extensions obtained by taking $K(\zeta)$-linear combinations of n-th roots in $K(\zeta)$, we first insure that the extensions are unramified over $K(\zeta)$. But an n-th
root produces an unramified extension if and only if it is the \(n \)-root of something whose corresponding principal ideal is an \(n \)-power as an ideal. Since adding the \(n \)-th roots of unity can cover ramification only at primes dividing \(n \), and since if \(H \) is dual to \(K \) for some choice of isomorphism, it follows that an unramified extension of \(K \) obtained from one of the polynomials \(P_n \) corresponding to this isomorphism must come from \(n \)-th roots of values in \(H \) such that these are \(n \)-powers as principal ideals, and that anything constructed in this way will be unramified outside of primes dividing \(n \). In particular, if the \(H \)-values in the orbit for the \(b_i \) are units, we will obtain a corresponding extension of \(K \) unramified outside of primes dividing \(n \).

Thus, for example, the two dihedral degree-five polynomials we constructed using the quartic units given by the roots of

\[
x^4 - 47x^3 + 519x^2 + 47x + 1
\]

over \(\mathbb{Q}(\sqrt{-47}) \) and \(\mathbb{Q}(\sqrt{-235}) \) respectively, will be unramified outside of ramification at 5. Hence, to see if these are unramified, we need check only at 5.

If we take

\[
x = (2z^4 + 3z^3 + 254z^2 - 3300z - 9334)/64625,
\]

we find that

\[
x^5 + x^4 + x^3 - x^2 - 2x - 1
\]

is a polynomial giving the same splitting field; both polynomial and field have discriminant \(47^2 \), hence this must give an unramified cyclic extension of \(\mathbb{Q}(\sqrt{-47}) \) of degree five.

On the other hand, if we take

\[
x = (3z^4 + 44z^3 + 208z^2 - 6895z - 55660)/22090,
\]

then

\[
x^5 - 35x^3 + 50x + 20
\]

has the same splitting field, and is Eisenstein and hence totally ramified at 5. Hence it gives us a cyclic extension of \(\mathbb{Q}(\sqrt{-235}) \) which is unramified outside of 5.

We can check this by comparing the ratio of the discriminant of the degree five field with the square of the discriminant of the quadratic subfield. By the analysis in the previous section, these should be equal if and only if the extension is unramified, and we find this is the case.
2 Families of Unramified Extensions of Cyclic Extensions

If \(q = p^m \) is an odd prime power, and if the degree \(n \) of one of these polynomials divides \(\phi(q) \), we may replace \(n \) of the \(b_i \) in the generic polynomial for cyclic extension of degree \(q \) with conjugate values of the polynomial, and the rest with 1. If \(k \) is of multiplicative order \(n \) mod \(q \), we may make \(b_k = \sigma^i r \), where \(r \) is a root of the polynomial of degree \(n \) and \(\sigma \) a generator of its Galois group over \(\mathbb{Q}(t) \). In this way, we obtain a polynomial with coefficients in \(\mathbb{Z}[t] \) of degree \(q \), which has a subfield of degree \(n \) which is cyclic over \(\mathbb{Q}(t) \).

For specializations of \(t \) for which we obtain an extension of degree \(n \) (nearly all, by Hilbert irreducibility) we then have that a root of the specialized polynomial of degree \(n \) (if the polynomial is irreducible) will give a cyclic extension of degree \(q \) of the cyclic extension of degree \(n \), unramified outside of primes dividing \(n \), by the previous section.

We are now in the position to create unramified families of extensions for degrees higher than four. To start with, we have two degree two polynomials \(x^2 - tx + 1 \) and \(x^2 - tx - 1 \) which give families of units in quadratic extensions. If \(n \) is an odd prime power and if we take \(b_i \) equal to 1 in \(P_n \) except for two conjugate values for \(b_1 \) and \(b_{n-1} \), we obtain a polynomial which gives a cyclic extension of degree \(n \) over a cyclic extension of degree \(\phi(n) \), and which is unramified except at the prime dividing \(n \).

Moreover, there is an especially nice description of these extensions in terms of Chebyshev and Lucas polynomials. Let us name the roots of \(x^2 - tx + 1 \) as \(a = ((t+\sqrt{t^2 - 4})/2)^\frac{1}{n} \) and \(b = ((t-\sqrt{t^2 - 4})/2)^\frac{1}{n} \). Then one of the roots we obtain by substituting \(a \) for \(b_1 \) and \(b \) for \(b_{n-1} \) will be \(r = r_0 = \sum_{j \in I_n} a^j b^{n-j} \).

Since \(r \) is a symmetric polynomial in \(a \) and \(b \), homogenous of degree \(n \), \(r \) can be written in terms of the two elementary symmetric polynomials, \(ab = 1 \) and \(a + b = x \). Hence, \(r \) can be expressed as a polynomial in \(x \), and so \(\mathbb{Q}(r) \) and \(\mathbb{Q}(x) \) give the same extension of \(\mathbb{Q} \). For example, if \(n = 5 \) we have \(r = ab^4 + a^2 b^3 + a^3 b^2 + a^4 b \), which can be written in terms of the elementary symmetric polynomials as \(ab(a + b)^3 - 2a^2 b^2 (a + b) \), and setting \(ab = 1 \) and \((a + b) = x \), this tells us that \(r = x^3 - 2x \).

In the language of [15], \(x \) is the \(n \)th Chebyshev root of \(t \), where we may write

\[
x = ((t + \sqrt{t^2 - 4})/2)^\frac{1}{n} + ((t - \sqrt{t^2 - 4})/2)^\frac{1}{n} = 2 \cosh(\arccosh(t/2)/n) =
\]
2 \cos(\arccos(t/2)/n) = C_n^1(t) = \sqrt[n]{t}.

Since \(x = \sqrt[n]{t}, x^{\circ n} = (t^{\circ n})^n = t, \) and the polynomial is \(x^{\circ n} - t, \) where \(x^{\circ n} \) is the \(n \)th Chebyshev polynomial, normalized to be monic and orthogonal over \([-2, 2]\).

In the same way, if we set \(a = ((t+\sqrt{t^2+4})/2)^{\frac{1}{n}} \) and \(b = ((t-\sqrt{t^2+4})/2)^{\frac{1}{n}}, \) then we may proceed as before except that now \(ab = -1. \) We now obtain a Lucas polynomial root:

\[
x = ((t + \sqrt{t^2+4})/2)^{\frac{1}{n}} + ((t - \sqrt{t^2-4})/2)^{\frac{1}{n}} = L_n^1(t),
\]

and we get \(L_n(x) - t, \) where \(L_n(x) \) is the \(n \)th Lucas polynomial.

As an algebraic function of \(t, \) this polynomial defines a single real branch, which we can express by

\[
L_n^1(t) = 2 \sinh(\text{arcsinh}(\frac{t}{2})/2).
\]

As before, however, we are really more concerned with \(p \)-adic branches, and merely note that the real branch indicates we need not concern ourselves with ramification at the infinite place.

We now have the following:

Theorem 1 Upon specialization of \(t \) to a value in any number-ring \(O, \) both \(x^{\circ n} - t \) and \(L_n(x) - t \) produce an infinite number of distinct splitting fields which are unramified over some extension of the field of quotients of \(O. \)

Proof: Any value of \(t \) close enough \(\wp \)-adically to \(a^{\circ n} \) (respectively, \(L_n(a) \)) for all \(\wp \) dividing \(n \) for some \(a \) in \(O \) will converge to a \(\wp \)-adic root for each of these \(\wp, \) the only primes which can ramify. These will create congruence conditions for families of unramified extensions, which will give unramified cyclic extensions of degree \(n \) over an extension field of the field of fractions of \(O \) for all but a thin set of values, and hence for an infinite set. \(\square \)

The situation is most easily analyzed when \(n \) is a power of an odd prime, as we see in the following two theorems.

Theorem 2 If \(p \) is an odd prime, and \(q = p^k, \) let \(F \) be the function field which is the (unique) twist of the \(q \)-th roots of unity by the algebra consisting of \(\phi(q)/2 \) copies of \(\mathbb{Q}(\sqrt{t^2+4}) \). For all but a thin set of values, specializing
t to a value in $j \in \mathbb{Z}$ produces a cyclic extension F_j of \mathbb{Q} of degree $\phi(q)$. If j is not a p-th Chebyshev power, that is, if it is not the case that $j = m^{\circ p}$ for some integer m, and if j is congruent to a fixed point m of $x^{\circ p}$, (that is, a root of $x^{\circ p} - x$) modulo p^{2k+1} if $m \equiv \pm 2 \pmod{p}$, or modulo p^{k+1} otherwise, then the splitting field of

$$\mathbb{Q}(\sqrt[\circ p]{j})$$

defines an unramified cyclic extension of F_j.

Proof: We have $p-1$ p-adic fixed points, one for each congruence class mod p, since these lift from the factorization of $x^{\circ p} - x = x^p - x \pmod{p}$. These are also the fixed points for $x^{\circ q}$, since this is k iterations of $x^{\circ p}$.

Let u be a fixed point. Then expanding around u, we have

$$x^{\circ p} = u + (x^{\circ p})'(u)(x-u) + \ldots.$$

Unless the fixed point is ± 2, $(x^{\circ p})'(u)$ will have p-adic valuation $\frac{1}{p}$.

Theorem 3 If p is an odd prime, $q = p^k$, let F be the function field which is the (unique) twist of the q-th roots of unity by the algebra consisting of $\phi(q)/2$ copies of $\mathbb{Q}(\sqrt{t^2 + 4})$. For all but a thin set of values, specializing t to a value in $j \in \mathbb{Z}$ produces a cyclic extension F_j of \mathbb{Q} of degree $\phi(q)$. If p is congruent to one mod four, and if it is not the case that $j = L_p(m)$ for some integer m, and if j is congruent to a fixed point of L_p, that is, a root of $L_p(x) - x$, modulo p^{k+1}, then the splitting field of

$$\mathbb{Q}(L_{\frac{1}{2}}(j)).$$

defines an unramified cyclic extension of F_j. Similarly, if p is congruent to three mod four, and if j is congruent to $\pm \sqrt{-2} \pmod{p^{2k+1}}$, or congruent to one of the other fixed points of $L_p \pmod{p^{k+1}}$, then the splitting field of

$$\mathbb{Q}(L_{\frac{1}{2}}(j)).$$

defines an unramified cyclic extension of F_j.

8
We can do something similar with polynomials of higher degree giving cyclic extensions. There are certain well-known polynomials over \(\mathbb{Z}[t] \) which have cyclic Galois group and norm term \(\pm 1 \). We have polynomials of degrees 3, 4, and 6 such that the indeterminate \(t \) is a rational function of the roots, and such that the roots transform by a linear rational function:

\[
\begin{align*}
x^3 - tx^2 - (t + 3)x - 1, \\
x^4 - tx^3 - 6x^2 + tx + 1, \\
x^6 - 2tx^5 + 5(t - 3)x^3 + 20x^3 - 5tx^2 + 2(t - 3)x + 1.
\end{align*}
\]

These are normalized by the condition that the polynomial of degree \(n \) is apolar to the corresponding cyclotomic polynomial of \(n \)-th roots of unity, and that the indeterminate \(t \) is a positive integral multiple of the trace. Apolarity means that these polynomials can be written in the form

\[
p(x - \omega)^n + q(x - \omega')^n,
\]

where \(\omega \) and \(\omega' \) are the two primitive \(n \)-th roots of unity.

We also have other unit-generating polynomials with cyclic Galois groups for degrees 4, 5, and 6, whose genus is greater than 0:

\[
\begin{align*}
x^4 - t^2x^3 - (t^3 + 2t^2 + 4t + 2)x^2 - t^2x + 1, \\
x^5 - t^2x^4 - (t^3 + 6t^2 + 10t + 10)x^3 - (t^4 + 5t^3 + 11t^2 + 15t + 5)x^2 \\
\quad + (t^3 + 4t^2 + 10t + 10)x - 1, \\
x^6 - tx^5 - (t^2 - 5t + 12)x^4 + (t^3 - 4t^2 + 10t - 2)x^3 \\
\quad - (t^3 - 6t^2 + 17t - 21)x^2 - (t^2 - 3t + 6)x - 1.
\end{align*}
\]

These polynomials are discussed in [4], [16], and [17], and are related to modular functions.

For any such polynomial of degree \(n \), we may produce two corresponding polynomials of degree \(\phi(q) \) so long as \(n \) divides \(\phi(q) \) by the process described above.

For degree five, using the apolar unit-generating cyclic polynomial of degree four, we obtain in one direction

\[
z^5 - 10z^3 + 20z^2 + (5t^2 + 65)z - t^3 - 2t^2 - 16t - 28.
\]

9
We obtain the same polynomial with $-t$ in the place of t from the other
direction. The Tschernhausen transformation

\[x = \left((t+6)z^4 + (t-14)z^3 + (t^2-11t-22)z^2 - (3t^2+3t-150)z + 4t^3 + 20t^2 + 68t - 8\right)/D, \]

\[D = (t^3 + 4t^2 + 60t + 32) \]
give us the transformed polynomial

\[x^5 + 10x^3 - 5tx^2 - 15x - t^2 + t - 16. \]

This has Galois group Z_5 over its cyclic quartic subfield, given by

\[y^4 + 5(t^2 + 16)y^2 + 5(t^2 + 16)(t - 2)^2. \]

The method by which this transformation was discovered was as follows:
for various specializations of t of a polynomial of degree n in x over $\mathbb{Z}[t]$,
one performs the POLRED algorithm described in [1], which gives a list of
n polynomials. One then notes that for many of these values of t, we have
polynomials on each list which appear to be falling into a pattern, in the
sense that they all appear to be specializations of a polynomial over $\mathbb{Z}[t]$.
Interpolating these values gives us a new polynomial over $\mathbb{Z}[t]$; we may then
use factorization over field extensions to both verify that the new polynomial
gives the same field extension as the old one, and to find the Tschernhausen
transformation.

The implementation of POLRED on Pari and of polynomial factorization
in Maple was used to produce the above transformed polynomial as well as
the other transformed polynomials listed below.

It is evident from this that a version of POLRED which works over $\mathbb{Z}[t]$
might be possible and would be desirable. This is interesting also from the
point of view of geometry, as the corresponding plane algebraic curve is in
part desingularized.

If v_1 and v_2 are the two roots of

\[v^2 - (t^2 - t + 16)v + t^3 + 2t^2 + 16t + 28, \]

then one root of the above degree five polynomial can be expressed as

\[L_\frac{t}{4}(v_1) + L_\frac{t}{4}(v_2), \]
with the other roots being nearly as easy to write in this way. It is now possible to use this expression for the roots of in terms of Lucas polynomial radicals to began to analyze unramified extensions.

If we substitute an integer value for \(t \), if the polynomials involved are irreducible, we will obtain an extension of a cyclic quartic field unramified outside of 5. We may then check locally for where the degree five polynomial factors 5-adically, and obtain the following:

Theorem 4 Let \(t \) be a rational integer congruent to -5, 1, 3, or 9 mod 25. If the polynomial

\[
y^4 + 5(t^2 + 16)y^2 + 5(t^2 + 16)(t - 2)^2
\]

is irreducible, it gives a cyclic extension of \(\mathbb{Q} \), and if

\[
p(x) = x^5 + 10x^3 - 5tx^2 - 15x - t^2 + t - 16
\]

is likewise irreducible, it gives an unramified cyclic extension of \(\mathbb{Q}(y) \).

Proof: For each of these \(t \) values, we can find a corresponding \(u \) such that \(p(u) \) is 5-adically less than \(p'(u)^2 \), and hence provides a starting value which converges to a root of \(p(x) \) by Newton’s method. For example, if \(t = 1 + 25s \), then \(u = -9 - 10s \) will work. Since we have a 5-adic root, the extension is unramified over 5, but since it can possibly ramify only over 5, it is unramified everywhere. \(\square \)

This polynomial over \(\mathbb{Q}(t) \) has the advantage of being “geometric”, so that its splitting field has no subfields algebraic over \(\mathbb{Q} \). This allows us to use it to find quadratic extensions with unramified degree five cyclic extensions.

We obtain a \(D_5 \) extension when \(t^2 + 16 = 5s^2 \), which gives us a Pell’s equation if we wish integral values of \(t \). A recurrence relation for this is given by \(a_0 = 2, a_1 = 8, a_2 = 22 \) and

\[
a_i = 3a_{i-1} - a_{i-2}.
\]

Modulo 25, this gives us values of \(\pm 2, \pm 3, \pm 8 \). Since by the proof of the previous theorem, the values congruent to 3 will give us a 5-adic root, we obtain a family of unramified cyclic quintic extensions of quadratic extensions in these cases. If we set \(b_0 = -22, b_1 = 2728, b_2 = 41266478 \), and

\[
b_i = 15127b_{i-1} - b_{i-2},
\]
we obtain our family of unramified extensions.

We may express these values in terms of Lucas numbers. These are the numbers given by the recurrence relation \(L_0 = 2, \ L_1 = 1, \)

\[
L_i = L_{i-1} + L_{i-2}.
\]

If \(\tau \) and \(\bar{\tau} \) are the two roots of \(x^2 - x - 1 \), then

\[
L_i = \tau^i + \bar{\tau}^i.
\]

We assume \(L_i \) is defined for all integers, positive and negative.

In terms of Lucas numbers, we have

\[
b_i = 2L_{20i-5}.
\]

Hence we obtain the following:

Theorem 5 Substituting a value of \(t \) such that

\[
t = 2L_{20i-5}
\]

into

\[
x^5 + 10x^3 - 5tx^2 - 15x - t^2 + t - 16
\]

leads to an unramified cyclic extension of the quadratic extension

\[
\mathbb{Q}\left(\sqrt{-\sqrt{\frac{t^2 + 16}{500}}}\right)
\]

if the polynomial is irreducible. Moreover, it is irreducible for all but a finite number of integers \(t \), and hence this procedure generates an infinite family.

As an algebraic curve, the degree five polynomial has genus one. Since the polynomial is of degree two in \(t \), we very nearly have a Weierstrass model already. Solving for \(t \) in terms of \(x \), and substituting

\[
y^2 = 4x^3 + x^2 - 2x - 7,
\]

we obtain

\[
t = \frac{(x + 3)y - 5x^2 + 1}{2}
\]
in terms of x and y on the Weierstrass model
\[y^2 = 4x^3 + x^2 - 2x - 7. \]

By Mordell’s theorem, this has only a finite number of integral points. Moreover, the curve (of conductor 50) has a reduced minimal model
\[y^2 + xy + y = x^3 - x - 2, \]
which by the tables of [2] has rank 0 and a torsion subgroup with three elements, the nonzero elements of which correspond to $t = -22, x = 2, and t = 3, x = 2$. Hence in this case we can completely analyze the function field from the point of view of irreducibility under specialization, and conclude that it is irreducible for all rational specializations excepting $t = -22, 3$.

From the genus one unit-generating cyclic quartic of [16], we obtain in one direction the polynomial
\[
\begin{align*}
 z^5 - 10z^3 + 5(t^3 + 2t^2 + 4t + 4)z^2 - 5(t^4 + 2t^3 + 4t^2 + 8t + 3)z \\
 + t^7 + 4t^6 + 10t^5 + 22t^4 + 29t^3 + 26t^2 + 20t + 4.
\end{align*}
\]
We may transform this as before, obtaining
\[x^5 - 10x^3 - 5x^2t^2 + 5(t^3 + 2t^2 + 4t + 5)x - (t^3 + 2t^2 + 5t + 8)t, \]
and in any case, we have again a polynomial with Galois group F_{20}, and in this case, the cyclic quartic subfield is given by
\[y^4 + 5(t + 2)(t^2 + 4)ty^2 + 5(t^2 + 4)(t + 2)(t - 1)^2t^2. \]
Because of the modular interpretation of the unit-generating polynomial, we have a modular interpretation of this F_{20} polynomial, which because of its simple form, may be a rather natural one.

As before we may prove this:

Theorem 6 Let t be a rational integer congruent to -1 mod 5, -8 or -2 mod 25, or 0 mod 125. If the polynomial
\[y^4 + 5(t + 2)(t^2 + 4)ty^2 + 5(t^2 + 4)(t + 2)(t - 1)^2t^2. \]
is irreducible, it gives a cyclic extension of \mathbb{Q}, and if
\[(x^2 - 5)^2x + (20x - 8)t - 5(x - 1)^2t^2 + (5x - 2)t^3 - t^4, \]
is likewise irreducible, it gives an unramified cyclic extension of $\mathbb{Q}(y)$.

13
Proof: As before. □

We have a quadratic rather than a quartic subfield when \(t^2 + 4 = 5s^2 \), and this Pell’s equation has solutions \(a_0 = 1, a_1 = 4, a_2 = 11 \) and \(a_i = 3a_{i-1} - a_{i-2} \). Modulo 5, this alternates between 1 and \(-1\), and we obtain the value congruent to \(-1 \mod 5\) by \(b_0 = -1, b_1 = 4, b_2 = 29 \) and \(b_i = 7b_{i-1} - b_{i-2} \). This we may express in terms of Lucas numbers by

\[
b_i = L_{4i-1}.
\]

As before, we have thus a family of cyclic quintic extensions of quadratic extensions; and also as before, this is easily seen to be an infinite family; geometrically, we have a curve of genus three, and hence only finitely many rational points on it.

Theorem 7 Substituting a value of \(t \) such that

\[
t = L_{4i-1}
\]

into

\[
x^5 - 10x^3 - 5x^2t + 5(t^3 + 2t^2 + 4t + 5)x - (t^3 + 2t^2 + 5t + 8)t
\]

\[
(x^2 - 5)^2x + (20x - 8)t - 5(x - 1)^2 + (5x - 2)t^3 - t^4
\]

leads to an unramified cyclic extension of the quadratic extension

\[
\mathbb{Q}(\sqrt{-t(t + 2)\sqrt{5t^2 + 20}})
\]

if the polynomial is irreducible. Moreover, it is irreducible for all but a finite number of integers \(t \), and hence this procedure generates an infinite family.

Theorem 8 Let \(t \) be a rational integer congruent to 7 or 11 mod 25, -2 or 0 mod 125, or 989 mod 3125. If the polynomial

\[
y^4 + 5(t + 2)(t^2 + 4)ty^2 + 5(t^2 + 4)(t + 2)^2t^2
\]

is irreducible, it gives a cyclic extension of \(\mathbb{Q} \), and if

\[
(x+4)(x-1)^4+20(x-1)^2t+(10x^2-20x+26)t^2+(5x^2-10x+13)t^3+(-5x+6)t^4+2t^5
\]

is likewise irreducible, it gives an unramified cyclic extension of \(\mathbb{Q}(y) \).
Proof: As before. □

Theorem 9 Substituting a value of t such that

$$t = L_{20i-15}$$

or

$$t = L_{100i-25}$$

into

$$(x+4)(x-1)^4+20(x-1)^2t+(10x^2-20x+26)t^2+(5x^2-10x+13)t^3+(-5x+6)t^4+2t^5$$

leads to an unramified cyclic extension of the quadratic extension

$$\mathbb{Q}(\sqrt{-t+2(t+2)} \sqrt{t^2+4/125}).$$

if the polynomial is irreducible. Moreover, these are irreducible for all but a finite number of integers t, and hence each of these procedures generates an infinite family.

Let us turn now to consideration of polynomials of degree seven with splitting fields which have Galois group F_{42}, and which are unramified over their cyclic subfields of degree six. In considering how to construct these from unit-generating polynomials, it is useful to consider first the subfields of the unit-generating polynomials. The apolar unit-generating polynomial has a cubic subfield given by

$$x^3 + tx^2 + (t-3)x - 1$$

and quadratic subfield

$$\mathbb{Q}(\sqrt{t^2-3t+9}).$$

The other unit-generating polynomial, of genus two, has the same cubic subfield, but has a quadratic subfield given by

$$\mathbb{Q}(\sqrt{(t-2)^2+4}),$$

that is, by the roots of $x^2 - (t-2)x - 1$.

15
If we use the apolar unit-generating polynomial of degree six to construct an F_{42} polynomial of degree seven, we obtain in one direction

\[x^7 - 21x^5 + 70x^4 - 105x^3 - 28(4t^2 - 12t + 33)x^2 + 7(96t^2 - 288t + 859)x \
+ 64t^3 - 1264t^2 + 3792t - 9642. \]

The polynomial we obtain in the other direction can be obtained from this one by the substitution $t \mapsto 3 - t$.

The cubic and quadratic subfields of this can be obtained by twisting the cubic and quadratic subfields of the unit-generating polynomial by the roots of a polynomial giving the cyclic cubic field of conductor 7 and by $\sqrt{-7}$ respectively. By a twist of a cyclic extension of degree n by another of degree n, I mean a cyclic extension of degree n contained in the compositum, which is not identical to either of the original extensions.

This gives us the following theorem:

Theorem 10 Let t be a rational integer congruent to 0, 5, 8, 17, 20, or 25 mod 49. If the polynomial

\[y^3 - ty^2 - (2t^2 - 7t + 21)x + t^3 + 28 \]

is irreducible, it gives a cyclic extension of \mathbb{Q}, and if

\[x^7 - 21x^5 + 70x^4 - 105x^3 - 28(4t^2 - 12t + 33)x^2 + 7(96t^2 - 288t + 859)x \
+ 64t^3 - 1264t^2 + 3792t - 9642. \]

is likewise irreducible, it gives an unramified cyclic extension of $\mathbb{Q}((\sqrt{-7(t^2 - 3t + 9)}, y)$.

Proof: As before. □

If we use the genus-two unit-generating polynomial, we obtain in one direction a polynomial which we may simplify by transformation and so obtain the following theorem:

Theorem 11 Let t be a rational integer congruent to 2 mod 7, or to $-21, -18, -16, -8, 11$ mod 49, or 743 mod 2401. If the polynomial

\[y^3 - ty^2 - (2t^2 - 7t + 21)x + t^3 + 28 \]
is irreducible, it gives a cyclic extension of \mathbb{Q}, and if

$$x^7 + 21x^5 - 7(t^2 - 4t + 10)x^4 + 28(t^2 - 3t + 15)x^3 - 7(5t^3 - 8t^2 + 12t + 72)x^2 +$$
$$7(5t + 6)(2t^2 - 7t + 22)x - t^5 - 20t^4 - 94t^3 + 410t^2 - 1584t + 1224$$

is likewise irreducible, it gives an unramified cyclic extension of $\mathbb{Q}(\sqrt{-7(t - 2)^2 - 28}, y)$.

Proof: As before. \square

Going in the other direction, we will obtain a F_{42} extension with the same quadratic subfield. However, it seems to me more interesting to make the substitution $t \mapsto 3 - t$ after doing this, and obtain another F_{42} extension with the same cyclic cubic subfield. Doing this and making another simplifying transformation gives us:

Theorem 12 Let t be a rational integer congruent to 3 mod 7, or to 17, -5, 5, 7, 13 mod 49, or 743 mod 2401. If the polynomial

$$y^3 - ty^2 - (2t^2 - 7t + 21)x + t^3 + 28$$

is irreducible, it gives a cyclic extension of \mathbb{Q}, and if

$$x^7 - 7tx^5 - 7(t^2 - 4t + 11)x^4 + 28(t^2 - t + 3)x^3 + 7(3t^3 - 13t + 36)t^2x^2 +$$
$$7(t^4 - 18t^3 + 68t^2 - 176t + 192)x - t^5 - 23t^4 + 184t^3 - 816t^2 + 1536t - 2304$$

is likewise irreducible, it gives an unramified cyclic extension of $\mathbb{Q}(\sqrt{-7(t - 1)^2 - 28}, y)$.

Proof: As before. \square

We may also use the unit-generating polynomials of degree six to produce polynomials of degree nine with Galois group F_{54}. When we do this, we discover that using the genus zero polynomial leads to a reducible polynomial, and that using the genus two polynomial leads to two different extensions. These were not reduced by the POLRED method, which failed to produce the requisite family of polynomials in $\mathbb{Z}[x]$.

Theorem 13 Let t be a rational integer congruent to -12, 11, 6 or 11 mod 27. If the polynomial

$$y^3 - 3(t^2 - 3t + 9)x + (t - 6)(t^2 - 3t + 9)$$

...
is irreducible, it gives a cyclic extension of \(\mathbb{Q} \), and if

\[
x^9 + 27x^7 - 9(t^3 - 4t^2 + 11t - 6)x^6 + 27(t - 2)(t^2 - 4t + 8)(t^2 - 3t + 9)x^5 - \\
9(t^2 - 4t + 8)(t^2 - 3t + 9)(t^4 - 7t^3 + 26t^2 - 48t + 36)x^4 - \\
3(7t^2 - 18t + 63)(t^2 - 3t + 9)(t^2 - 4t + 8)^2x^3 - \\
27(t^2 - 5t + 10)(t^2 - 4t + 8)^2(t^2 - 3t + 9)^2x^2 + \\
9(t^3 - 6t^2 + 18t - 24)(t^2 - 3t + 9)^2(t^2 - 4t + 8)^3x - \\
(t^6 - 11t^5 + 61t^4 - 213t^3 + 475t^2 - 660t + 468)(t^2 - 3t + 9)^2(t^2 - 4t + 8)^3
\]

is likewise irreducible, it gives an unramified cyclic extension of \(\mathbb{Q}(\sqrt{-3(t-2)^2-12}, y) \).

Proof: As before. \(\square \)

Once again, under the assumption that getting the cubic subfields to agree is marginally more interesting than getting the quadratic subfields to agree, I make the substitution of \(3 - t \) for \(t \) when going in the other direction:

Theorem 14 Let \(t \) be a rational integer congruent to 5 or 10 mod 27. If the polynomial

\[
y^3 - 3(t^2 - 3t + 9)x + (t - 6)(t^2 - 3t + 9)
\]

is irreducible, it gives a cyclic extension of \(\mathbb{Q} \), and if

\[
x^9 + 27x^7 + 9(t^3 - 5t^2 + 14t - 18)x^6 - 27(t - 1)(t^2 - 2*t + 5)(t^2 - 3t + 9)x^5 + \\
9(t^2 - 2t + 5)(t^2 - 3t + 9)(t^3 - 2t^2 + 5t + 12)x^4 - \\
3(t^2 - 3t + 9)(10t^2 - 33t + 90)(t^2 - 2t + 5)^2x^3 + \\
27(t^2 - 3t + 6)(t^2 - 2t + 5)^2(t^2 - 3t + 9)^2x^2 - \\
9(t^2 - 2t + 5)^3(t^2 - 3t + 9)^3x + \\
(t^4 - 5t^3 + 27t^2 - 54t + 135)(t^2 - 3t + 9)^2(t^2 - 2t + 5)^3
\]

is likewise irreducible, it gives an unramified cyclic extension of \(\mathbb{Q}(\sqrt{-3(t-1)^2-12}, y) \).
Proof: As before. □

This ends the list of geometric extensions producing families of unramified cyclic extensions of cyclic extensions which we can produce by this method. There are, however, an infinity of non-geometric possibilities as well; for example, consider the extension of degree seven with Galois group \(F_{42} \) obtained from the unit-generating polynomial of degree three \(x^3 + tx^2 + (t - 3)x - 1 \). Transforming this via the POLRED method and proceeding as before, we obtain:

Theorem 15 Let \(t \) be a rational integer congruent to \(-16, -11, -5, 0, 6 \) or \(11 \mod 49 \), or \(743 \mod 2401 \). If the polynomial

\[
y^3 - ty^2 - (2t^2 - 7t + 21)x + t^3 + 28
\]

is irreducible, it gives a cyclic extension of \(\mathbb{Q} \), and if

\[
x^7 - 14x^4 - 7(t - 3)x^3 + 14tx^2 - 28x + t^2 - 11t + 33
\]

is likewise irreducible, it gives an unramified cyclic extension of \(\mathbb{Q}(\sqrt{-7}, y) \).

Proof: As before. □

3 Unramified 2-elementary extensions of \(\text{PGL}_3(2) \)

In [13], I explain a method for constructing split extensions with Galois groups a subgroup of the holomorphs of 2-elementary abelian groups. In the case of the holomorph \(\text{Hol}(2^3) \), this means a split extension of \(\text{PGL}_3(2) \), called among other things \(\text{AGL}_3(2), 2^3.\text{PGL}_3(2) \), or \(8T48 \).

Back in the last millenium the author constructed a polynomial of degree eight over \(\mathbb{Q}(b_1, \ldots, b_7) \) using seven indeterminates \(b_i \), which had coefficients which were resolvents for the roots of a polynomial with Galois group \(\text{PGL}_3(2) \). When the seven roots of a polynomial of degree seven were properly ordered and substituted into the degree eight polynomial, one then obtained a split extension of \(\text{PGL}_3(2) \) so long as the roots were not squares of elements in the splitting field, and generated the splitting field.

One especially interesting polynomial for this purpose is

\[
x^7 + (3u - 2)x^6 + (2u^2 + 2u - 3)x^5 + (3u^2 - 3u + t)x^4 - (u^3 - u^2 + 2u - t)x^3
\]
with Galois group Hol(2^3) method, we obtain $-u^2(u + 4)x^2 + u^2(u - 3)x + u^3$.

This is a transformation the author obtained of the LaMacchia polynomial [9], which has Galois group $\text{PGL}_3(2)$ over $\mathbb{Q}(t, u)$. It has the particularly interesting (for us) property that the norm term is simply a power of one of the coefficients. This meant that when the roots were property ordered and substituted for the b_i in the mystery degree eight polynomial, I was able to obtain a polynomial with Galois group Hol(2^3) which is very well suited for finding unramified extensions; this polynomial is

$$x^8 + (-20u^2 - 4t + 8u)x^6 - 16(u - 3)u^2x^5$$
$$+ (16u^5 - 42u^4 + 36u^2t + 80u^3 + 6t^2 - 24ut - 48u^2)x^4$$
$$- 32(7u^3 + ut - 7u^2 + 3t - 6u)u^2x^3$$
$$+ (-96u^7 - 32tu^5 + 588u^6 - 60tu^4 + 1288u^5 - 12t^2u^2 - 128tu^3 +$$
$$64u^4 - 4t^3 + 24t^2u + 96u^2t - 256u^3)x^2$$
$$+ 16(24u^6 + 79u^5 - 2tu^3 + 59u^4 + 3t^2u + 14u^2t - 16u^3 + 3t^2 - 12ut - 96u^2)u^2x$$
$$- 48t^2u^2 + 1024u^4 - 1024u^5 - 164tu^6 + 256tu^3 + 54t^2u^4 - 8t^3u + 48t^2u^3$$
$$- 2624u^6 - 352u^7 + t^4 + 753u^8 + 400u^9 + 64u^10 - 4t^3u^2 + 16t^2u^5 - 392tu^5 - 32tu^7.$$

As one particularly interesting special case, if we set $u = -1, t = 4t + 2$ in the above polynomials, and transform the second, we obtain

$$x^7 - 5x^6 - 3x^5 + 8x^4 + 6x^3 - 3x^2 - 4x - 1 + 4tx^3(x + 1)$$

as a polynomial with Galois group PGL$_3(2)$ over $\mathbb{Q}(t)$, and

$$z^8 - (36 + 16t)z^6 + 64z^5 + (96t^2 + 336t - 42)z^4 + (128 - 256t)z^3$$
$$- (256t^3 + 960t^2 - 16t^2 + 68)z^2 + (1792t - 320)z + (256t^4 + 768t^3 - 160t^2 - 592t + 17)$$

with Galois group Hol(2^3) over $\mathbb{Q}(t)$. Transforming this by the POLRED method, we obtain

$$(y + 1)(y^7 - y^6 - 11y^5 + y^4 + 41y^3 + 25y^2 - 34y - 29) - t(2y + 3)^2.$$

The polynomial discriminant of the degree seven polynomial in x and the degree eight polynomial in y is exactly the same,

$$(6912t^4 - 3456t^3 - 95472t^2 + 23976t - 1417)^2.$$

20
This leaves little, if any, possibility that the splitting field for the degree seven polynomial is not a subfield of the splitting field for the degree eight polynomial; however since the mystery polynomial originally used to construct these has been lost, I will point out that any vestige of doubt is removed by the fact that the a root of the degree seven polynomial can be expressed in terms of a root of the degree 28 polynomial which is the polynomial satisfied by the sum of two distinct roots of the degree eight polynomial. Maple can do the necessary computations without difficulty, but the results are so unwieldy I do not give them here.

From the manner of its construction, which involved adjoining square roots of units in the splitting field for the degree seven polynomial, the only possible ramification is at 2 or infinity, and in any case for any integer value of \(t \), \(6912t^4 - 3456t^3 - 95472t^2 + 23976t - 1417 \) is odd. The stem field defined by specializing \(t \) to an integer in the degree seven polynomial has three real and four complex embeddings, and for the degree eight polynomial we get four real and four complex embeddings, so we have no ramification at any infinite place. We can also directly check the ramification at 2; the degree seven polynomial is identically \(x^7 + x^6 + x^5 + x^2 + 1 \) for any integer specialization of \(t \), and the degree eight polynomial factors as \(y(y^7 + y + 1) \) for odd \(t \) and \((y + 1)(y^7 + y^6 + y^5 + y^4 + y^3 + y^2 + 1) \) for even \(t \), so there is no ramification over 2. Odd primes \(p \) ramify (tamely) in the degree seven stem field if and only if \(p \) divides \(6912t^4 - 3456t^3 - 95472t^2 + 23976t - 1417 \), and similarly for the degree eight stem field if the polynomial is irreducible.

We therefore have this:

Theorem 16 Let \(t \) be a rational integer. For all but a finite number of exceptional \(t \), the roots of

\[
x^7 - 5x^6 - 3x^5 + 8x^4 + 6x^3 - 3x^2 - 4x - 1 + 4tx^3(x + 1)
\]

gives a \(PGL_3(2) \) extension of \(\mathbb{Q} \), and the roots of

\[
(y + 1)(y^7 - y^6 - 11y^5 + y^4 + 41y^3 + 25y^2 - 34y - 29) - t(2y + 3)^2.
\]

gives an unramified \(2^3 \)-elementary extension of the \(PGL_3(2) \) extension.

Proof: By Hilbert irreducibility and the above. \(\square \)

As an immediate result, we have constructed an infinity of \(PGL_3(2) \) Galois extensions of \(\mathbb{Q} \) such that the Galois group acts faithfully on a quotient of
the class group, in just the way that three-by-three square matrices over the
field of two elements act on three-vectors in such a field.

In [10], Gunter Malle gives two polynomials with Galois group PGL₃(2)
over three indeterminates and one over four indeterminates. It seems likely
that many more families of unramified 2³.PGL₃(2) extensions could be con-
structed using these. Malle also gives a two-parameter family of 2³.PGL₃(2)
extensions, and mentions the problem of finding a 2³.PGL₃(2) polynomial
whose discriminant is the square of an odd prime, and provides an example.
Since 6912𝑡⁴ − 3456𝑡³ − 95472𝑡² + 23976𝑡 − 1417 seems to be fecund as a
prime-generating polynomial, many more such polynomials are easy to pro-
vide; by Bunyakovsky’s conjecture we of course expect the number of such
primes to be infinite.

References

[1] Cohen, Henri, A Course in Computational Number Theory, Springer-
Verlag, 1993.

[2] Cremona, J. E., Algorithms for Modular Curves, Cambridge University
Press, 1992.

[3] Dentzer, Ralf, “A Table of Cyclic Polynomials”, Preprint 93-14, In-
terdisziplinäres Zentrum Für Wissenschaftliches Rechnen, Universität
Heidelberg, 1993.

[4] Lehmer, Emma, “Connection Between Gaussian Periods and Cyclic
Units”, Math. Comp. 50(182), 1988, 535-541.

[5] Gold, Robert, “Hilbert Class Fields and Split Extensions”, Illinois J. of
Math., 21, 1977, 66-69.

[6] Gurak, Stanley, “Pseudoprimes for Higher Order Linear Recurrence Se-
quences”, Math. Comp., 55(192), 1990, 783-813.

[7] Hasse, Helmut “Über den Klassenkörper zum quadratischen Zahlkörper
mit Discriminante -47”, Acta. Arthih., 9, 1964, 419-434.

[8] Koblitz, Neal, p-adic Numbers, p-adic Analysis, and Zeta-Functions,
Second Ed. 1984, Springer-Verlag.
[9] LaMacchia, Samuel E., “Polynomials with Galois Group PSL(2,7)”, Communications in Alg. 8(10), 1980, 983-992.

[10] Malle, Gunter, “Multi-parameter Polynomials with Given Galois Group”, J. Symbolic Computation 21, 2000, 115.

[11] Razar, Michael J., “Central and Genus Class Fields and the Hasse Norm Theorem”, Compositio Math. 35, 1977, 281-298.

[12] Martinais, Dominique and Schneps, Leila, “A complete parametrization of cyclic field extensions of 2-power degree”, Manuscripta Mathematica, 80(1), 1993, 181-197

[13] Smith, Gene Ward, Generic Cyclic Extensions and some Applications, PhD Thesis, University of California at Berkeley, 1990.

[14] Smith, Gene Ward, “Generic Cyclic Extensions of Odd Degree”, Communications in Alg. 19(12), 1991, 3367-3391.

[15] Smith, Gene Ward, “The Chebyshev Exponent”, arXiv:1209.2760 [math.NT]

[16] Washington, Lawrence C., “A Family of Cyclic Quartic Fields Arising from Modular Curves”, Math. Comp. 57(196), 1991, 763-775.

[17] Lecacheux, Odile, “Unités d’une de corps cycliques réels de degré 6 liés à la courbe modulaire $X_1(13)$”, J. Num. Theo., 31, 1989, 54-63.