Bioremediation of petroleum hydrocarbons from crude oil-contaminated soil with the earthworm: *Hyperiodrilus africanus*

O. A. Ekperusi · F. I. Aigbodion

Received: 28 November 2014 / Accepted: 23 March 2015 / Published online: 9 April 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract A study on the bioremediation potentials of the earthworm *Hyperiodrilus africanus* (Beddard) in soil contaminated with crude oil was investigated. Dried and sieved soils were contaminated with 5 ml each of crude oil with replicates and inoculated with earthworms and monitored daily for 12 weeks. Physicochemical parameters such as pH, total organic carbon, sulfate, nitrate, phosphate, sodium, potassium, calcium and magnesium were determined using standard procedures. Total petroleum hydrocarbon (TPH) was determined using atomic absorption spectrophotometer (AAS), while BTEX constituents and earthworms tissues were analyzed using Gas Chromatography with Flame Ionization Detector (GC-FID). The results showed that the earthworm significantly enhanced the physicochemical parameters of the contaminated soil resulting in a decrease of the total organic carbon (56.64 %), sulfate (57.66 %), nitrate (57.69 %), phosphate (57.73 %), sodium (57.69 %), potassium (57.68 %), calcium (57.69 %) and magnesium (57.68 %) except pH (3.90 %) that slightly increased. There was a significant decrease in the TPH (84.99 %), benzene (91.65 %), toluene (100.00 %), ethylbenzene (100.00 %) and xylene (100.00 %). Analyses of the tissues of the earthworm at the end of the experiment showed that the earthworms bioaccumulated/biodegraded 57.35/27.64 % TPH, 38.91/52.73 % benzene, 27.76/72.24 % toluene, 42.16/57.85 % ethylbenzene and 09.62/90.38 % xylene. The results showed that the earthworms *H. africanus* could be used to bioremediate moderately polluted soil with crude oil contamination in the Niger Delta region of Nigeria.

Keywords Vermiremediation · Crude oil · Earthworms · *Hyperiodrilus africanus* · Nigeria

Introduction

The petroleum industry in Nigeria is the largest in the West African region and the second largest in Africa after Algeria. Nigeria has a total of 159 oil fields and 1481 wells in operation (NDES 1997). According to the Nigerian National Petroleum Corporation (NNPC) 2013 Annual Statistical Bulletin on the oil and gas industry, a total crude oil and condensate production for the year was 852,776,653 barrels, giving a daily average of 2.27 million barrels per day (mb/day). These figures put Nigeria in the fifteenth position in relation to the global oil producing nation and the sixth largest exporter of crude oil worldwide (NNPC 2013).

All activities surrounding the oil sector such as exploration, drilling, transportation, refining and consumption of oil and its associated products result in the spilling of oil and refine products into the environment. In 2013 alone, the NNPC reported a total of 2256 line breaks on NNPC pipelines resulting in a loss of 181.67 million tonnes (mt) of petroleum products worth about N21.48 billion, with 34 cases of fire incidents during the year under review (NNPC 2013).

Crude oil contains a wide range of compounds which are largely toxic to humans and the environment. Some authors have suggested that soil remediation standards should be based on the BTEX components in crude oil and oil products (fuels)-impacted soils (Salanitro et al. 1997).
Although BTEX are known to vaporize in contaminated sites, they can remain locked in soil for months and even years as reported by the United Nations Environment Program assessment in Ogoniland (UNEP 2011), hence they need special attention in crude oil-contaminated soil. Each of these compounds or their combination poses a serious concern to human health, living organisms and the environment. Benzene is a notorious cause of bone marrow failure. Substantial quantities of epidemiologic, clinical, and laboratory data link benzene to aplastic anemia, acute leukemia, and bone marrow abnormalities (Kasper et al. 2004) and myelodysplastic syndrome (Smith 2010). Human exposure to benzene is a global health problem. Benzene targets liver, kidney, lung, heart and the brain and can cause DNA strand breaks, chromosomal damage, etc. Benzene causes cancer in animals including humans and has been shown to cause cancer in both sexes of multiple species of laboratory animals exposed via various routes (Huff 2007; Rana and Verma 2005). The United States Environmental Protection Agency (EPA) has classified benzene as a known human carcinogen for all routes of exposure (EPA 2012). The central nervous system (CNS) is the primary target organ for toluene toxicity in both humans and animals for acute and chronic exposures (EPA 2012). Animal studies have reported effects on the blood, liver, and kidneys from chronic inhalation exposure to ethylbenzene. Exposure to ethylbenzene by inhalation resulted in an increased incidence of kidney and testicular tumors in rats, and lung and liver tumors in mice (EPA 2000). Ethylbenzene is classified as a possible carcinogen by the International Agency for Research on Cancer (IARC 2012).

Benzene is a notorious cause of bone marrow failure. Substantial quantities of epidemiologic, clinical, and laboratory data link benzene to aplastic anemia, acute leukemia, and bone marrow abnormalities (Kasper et al. 2004) and myelodysplastic syndrome (Smith 2010). Human exposure to benzene is a global health problem. Benzene targets liver, kidney, lung, heart and the brain and can cause DNA strand breaks, chromosomal damage, etc. Benzene causes cancer in animals including humans and has been shown to cause cancer in both sexes of multiple species of laboratory animals exposed via various routes (Huff 2007; Rana and Verma 2005). The United States Environmental Protection Agency (EPA) has classified benzene as a known human carcinogen for all routes of exposure (EPA 2012). The central nervous system (CNS) is the primary target organ for toluene toxicity in both humans and animals for acute and chronic exposures (EPA 2012). Animal studies have reported effects on the blood, liver, and kidneys from chronic inhalation exposure to ethylbenzene. Exposure to ethylbenzene by inhalation resulted in an increased incidence of kidney and testicular tumors in rats, and lung and liver tumors in mice (EPA 2000). Ethylbenzene is classified as a possible carcinogen by the International Agency for Research on Cancer (IARC 2012).

Beside, the use of chemicals and mechanical methods for cleaning oil in the environment, one of the most promising bioremediation technologies is the use of earthworms in a processed specifically known as vermicomposting.

The idea to use earthworms in vermicomposting of gardens and crop enhancement has been known for centuries, but its application in bioremediation according to available records was incidentally discovered after the Seveso chemical plant explosion in 1976 in Italy, when a vast area was contaminated with extremely toxic chemical such as 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). Several fauna perished except for some species of the earthworms that survived. Earthworms which ingested TCDD-contaminated soils were shown to bioaccumulate dioxin in their tissues and concentrated it on an average of 14.5-fold (Satchell 1983).

Several researches have established the potentials of earthworms to bioremediate crude oil and other petrochemicals from laboratory and field trials polluted soil. Ma et al. (1995) studied the influence of earthworm species *Lumbricus rubellus* on the disappearance of spiked PAHs, phenanthrene and fluoranthene (100 μg/kg of soil), and found that the losses of both PAHs occurred at a faster rate in soils with earthworms than the soil without worms. After 56 days (8 weeks), 86 % of the phenanthrene was removed.

Other studies have also shown that oil-polluted soils can be efficiently bioremediated, leading to a reduction of toxic potency (Van Gestel et al. 2001). Martin-Gil et al. (2007) also studied the use of earthworm *Eisenia fetida* and vermicomposting in the treatment of high-molecular weight hydrocarbons asphaltenes from the prestige oil spill. Earthworms mineralized the asphaltenes, thus eliminating it from the system. Sinha et al. (2008) studied the remedial action of earthworms on PAHs contaminated soils obtained from a former gasworks site in Brisbane, Australia. Results showed that the earthworms could remove nearly 80 % of the PAHs as compared to just 47 and 21 % where it was not used and only microbial degradation occurred. Ameh et al. (2013) investigated the use of earthworms (*Eudrilus eugeniae*) for vermi-assisted bioremediation of petroleum hydrocarbon-contaminated mechanic workshop soils. After 35 days of treatment, earthworm inoculation affected a higher drop in total petroleum hydrocarbon contents as compared to the samples without worms, indicating that earthworms may be used as biocatalysts in the bioremediation process.

Hyperiordrillus africanus is a species of earthworms widely distributed in humid tropical Africa (Lavelle et al. 1999). Populations of this species are found throughout West (Ivory Coast, Nigeria) and Central Africa (Congo, Democratic Republic of Congo, Angola) both in natural and disturbed areas derived from humid savannas and forests (Madge 1969; Omodeo 1954; Tondoh and Lavelle 2005).

Although other species of earthworms have been used for bioremediation, literature on the bioremediation of crude oil with earthworms *H. africanus* is not available, hence this study seeks to determine the effectiveness of hydrocarbon degrading potentials of the earthworm *H. africanus* on crude oil-contaminated soil and to determine the fate of the contaminant taken by the earthworms, if they are bioaccumulated or biodegraded in the tissues of the earthworms.

Materials and methods

Test substrate

Top soil not exceeding a depth of five inches after clearing the vegetation cover was dug with a shovel and collected into a bucket besides the Botanical Garden, Faculty of Life
Sciences, University of Benin. The collected soil was sun-
dried by spreading it on a flat, clean board surface for 48 h. The dried soil was sieved using a 5 mm mesh plastic filter
according to ISO standard 11268-1 (ISO 1993) to remove
debris and large stones.

Test organisms

The earthworms used for the experiment were collected
around the main campus of the University of Benin im-
mediately after rainfall while crawling around to seek
shelter. All earthworms were held in a holding facility for
days prior to the experiment for acclimatization purposes
and were regularly checked on a daily basis to ascertain
their health condition. Prior to the experiment, earthworms
were identified by Stephen Owa, using methods described
by Owa (1992). The crude oil used for the experiment was
obtained from Chevron Escravos Terminal, Delta State,
Nigeria.

Experimental design

Four rectangular containers with cover lid and clips on both
sides of the edges measuring 20 × 9 × 12 cm were pur-
chased from the market. The containers were weighed with
a Digital Sensitive Weighing balance (Scoute SE-410X0.019, Ohaus Computer, USA) and were properly
labeled using tape and a permanent marker. 1 kg (ISO
1993) of the sun-dried soil was then weighed into each of
the four containers using Camry Emperors scale
manufactured by Dial Spring Scale, China. With the aid of
a 10 ml glass beaker, 5 ml of crude oil was thoroughly
mixed, into each of the four containers having 1 kg each of
soil and were moistened with distilled water to the water
holding capacity of the soil. The treatments with crude oil-
contaminated soil were left to stay for 7 days in the
laboratory exposed to the elements.

After 7 days, cow dung was freshly collected within the
campus and about 50 g each of the cow dung weighed was
thoroughly mixed into the containers with crude oil-con-
taminated soil.

Immediately after the addition of additives, earthworms
were sorted out of the holding containers, washed with
clean water and ten earthworms of the species H. africanus
measured and weighed were inoculated into the crude oil-
contaminated soil and the replicates except the control. A
netting material cut into sizes was placed on top of each of
the containers and the cover lid frame was placed on top of
it to hold it firmly with the help of the clips on both sides of
the containers. This is done to avoid escape of the earth-
worms and allow free flow of oxygen into the treatments.
The setup was placed inside the laboratory and checked
morning and evening on a daily basis.

Laboratory analyses

Prior to the contamination of the soil and after con-
tamination, samples were collected with a spatula, placed
in an aluminum foil, labeled and taken to a laboratory to
determine the physicochemical parameters of the soil, total
petroleum hydrocarbon (TPH) and the benzene, toluene,
ethylbenzene and xylene (BTEX) constituents.

For every 30 days, samples of the contaminated soil from
each of the treatments were collected for laboratory analyses.
For each of the contaminated soils, the physicochemical
parameters such as pH, total organic carbon, sulfate, nitrate
and phosphate, sodium, potassium, calcium, magnesium
were determined using procedures by the AOAC (2005). The
TPH was determined using Atomic Absorption Spec-
trophotometer (AAS) as described by Miroslav and Vladimir
(1999) while BTEX constituents in the crude oil (Figs. 1, 2,
3, 4) contaminated soil were determined using Gas Chro-
matography with Flame Ionization Detector (GC-FID) from
Agilent Technologies Inc., United States. At the termination
of the experiment, earthworms were analyzed to determine
the TPH and BTEX in the tissues using GC-FID.

Results

Death and survival of earthworms

At the termination of the experiment, no death was
recorded in the population of the earthworm species used
for the study.

Physicochemical parameters

The physicochemical parameters showed a variation within
90 days of the experiment. There was a gradual increased
in the pH of the contaminated soil with inoculation of earthworm after 30, 60 and 90 days, (0.93, 2.78 and 3.90 %) respectively compared to the control where there is a decrease. There was a significant ($P < 0.05$) decrease in the crude oil-contaminated soil after inoculation of *H. africanus* within 30, 60 and 90 days in the total organic carbon (3.47, 9.25, 56.64 %), sulfate (3.88, 37.63, 57.66 %), nitrate (3.86, 37.63, 57.69 %), phosphate (3.74, 37.61, 57.73 %), sodium (3.89, 37.57, 57.69 %), potassium (3.91, 37.78, 57.68 %), calcium (3.91, 37.68, 57.69 %) and magnesium (4.06, 37.68, 57.68 %) compared to the control without earthworms with a 10.55 % decrease after 90 days of the study (Fig. 5).

Total petroleum hydrocarbon bioremediation

Total petroleum hydrocarbon content in crude oil-contaminated soil with *H. africanus* decreased significantly ($P < 0.05$, $F = 16,503.64$) after 30, 60 and 90 days of the experiment by 22.01, 44.29 and 68.29 %, respectively, but in the control, it only decreased by 11.87 % (Fig. 6).

Benzene, toluene, ethylbenzene and xylene bioremediation

Benzene, toluene, ethylbenzene and xylene decreased with inoculation of *H. africanus* into crude oil-contaminated soil (Fig. 7). Benzene decreased by 3.65, 50.60 and 84.73 % ($F = 181,785.77$, $P < 0.05$), toluene by 10.79, 75.95 and 100.00 % ($F = 3242.62$, $P < 0.05$), ethylbenzene by 5.72, 78.24 and 100.00 % ($F = 5217.28$, $P < 0.05$) and xylene by 37.26, 66.16 and 100.00 % ($F = 2484.56$, $P < 0.05$) after 30, 60 and 90 days of the study.

Bioaccumulation/biodegradation of TPH and BTEX

Analyses of the tissues of the earthworms, *H. africanus* at the end of the study showed that the earthworms bioaccumulated 58.05 % TPH, 48.42 % benzene, 31.86 % toluene, 63.20 % ethylbenzene and 18.14 % xylene in crude oil-contaminated soil.

To calculate the percentage biodegraded, the formula below was adopted:

$$\text{Biod}_C = \frac{I_C - F_C - T_C}{F_C}$$

where Biod$_C$ is the concentration of pollutant biodegraded at the end of the experiment, I_C is the initial concentration of pollutant at the beginning of the experiment, F_C is the final concentration of pollutant at the end of the experiment, and T_C is the concentration in the tissues of the earthworms at the end of the experiment.
The results revealed that the earthworms, *H. africanus*, biodegraded 10.24% TPH, 36.34% benzene, 68.14% toluene, 36.80% ethylbenzene and 81.86% xylene (Fig. 8).

Discussion

Bioremediation has become a universally acceptable technology for the removal of a wide range of contaminants, especially generated from the petrochemical industries from the environment.

In this present study, all the earthworms survived the concentration (5 ml) of crude oil contaminated into the 1 kg of soil and significantly degraded the TPH and BTEX hydrocarbons in the media.

Ameh et al. (2011) reported 100% survival of earthworms in 150 g of used engine oil. At the end of our study, earthworms re-introduced into non-polluted soil continue their normal activities. The idea that some workers have used more than 5 ml of oil in other regions of the world where heavy and sour crude oil is available led to the first attempt to use 10 ml for the experiment. This was the thinking based on the fact that the Nigerian crude oil is light and maybe less toxic, but such concentration resulted in the death of the earthworms in less than 48 h. This agrees with the findings of Dorn and Salanitro (2000) which reported that light oil was the most toxic oil in their study. Heavy oils were least toxic showing LC50s of 100% or greater after 2 ± 3 months time in either soil. The light oil in the soils was significantly more toxic than medium and heavy oils (Dorn and Salanitro 2000).

Earthworms commonly found in agricultural fields thrive at neutral pH, but can tolerate a pH from 5.0 to 8.0, (Duiker and Stehouwer 2008). The pH of the soil decreased from 5.85 to 5.39 after contamination and gradually increased from 5.39 to 5.60 after inoculation of earthworms. It is a favoured opinion that the activities of earthworms in soil tend to bring the pH towards neutrality. The increase in pH is probably due to the pH buffering action of organic molecules produced in the gut of earthworms (Duiker and
Stehouwer (2008) in the bioremediation process. It is possible that since the pH is still within the tolerable range (Edwards and Aracn 2006) for the survival and normal functioning of the earthworms, it is not a neutral approach at the end of the study. Sandor and Schrader (2012) observed that as a general trend, the recorded pH values were higher at the end of the experiments compared to the initial start value. Azarpira et al. (2013) reported that the pH value at final stage was increased for all the treatments as compared to initial stage for the vermicomposting process with E. eugeniae.

There was a significant decrease ($P < 0.05$) in total organic carbon, sulfate, nitrate, phosphate, sodium, potassium, calcium and magnesium with a decrease towards restoring the normal conditions of the soil to the background levels prior to contamination of soil. Ceccanti et al. (2006) on the combination of earthworms and compost for the ecological remediation of hydrocarbon polluted soil in Finland reported that the chemical parameters showed a decrease in the concentration of total carbon, total phosphorus, and the available carbon and nitrogen in all the treatments. This suggests a progressive degradation of organic compounds, probably including the pollutants (Ceccanti et al. 2006). Although at the end of our study, only phosphate was restored back to the initial background levels of soil.

TOC slightly increased after crude oil contamination of soil and decreased (1.73–0.75) after inoculation with H. africanaus below the background levels at the end of the experiment. The reason for the further decrease is not clear, but it is probable that the earthworms needed some degree of TOC in the biodegradation process of breaking down pollutant in the crude oil-contaminated soil. Edwards and Aracn (2006) stated that breakdown of compost materials results in low C:N ratios. Sandor and Schrader (2012) reported a significant decrease in soil organic carbon at the end of their experiment. Azarpira et al. (2013) reported that as compared to initial stage, organic carbon decreased in the final stage. The combined action of earthworms and gut microorganisms may be responsible for the loss of organic carbon in the form of carbon dioxide (Prakash and Karmegam 2010). Azizi et al. (2013) also recorded reduction in organic carbon during vermicomposting of sludge. They explained that loss in organic carbon was due to the use of organic carbon by earthworms and microorganisms as source of energy. Similar trend was also reported by Kennette et al. (2002) with Lumbricus terrestris, Ceccanti et al. (2006) with E. fetida and Ameh et al. (2011) with L. terrestris, while Singer et al. (2001), Schaefer et al. (2005), Iordache and Borza (2012) and Ameh et al. (2013) reported higher values.

Sulfate, nitrate, phosphate, sodium, potassium, calcium and magnesium in soil increase significantly after crude oil contamination and decrease significantly after inoculation of earthworms. These soil nutrients are required in the right proportions for the proper functioning of soil fertility for agricultural purposes. At the end of the experiment, these parameters were higher than the initial background levels prior to the experiment. The increase above the background levels is an indication that the earthworm was able to stabilize the soil from a moderately fertile soil to a fertile soil needed for soil flora and fauna. Sinha et al. (2009) reported that the earthworm increases these minerals in the soil by enhancing the soil quality and nutrients. Similar trend was reported by Zavala-Cruz et al. (2013) on crude oil-contaminated soil with earthworms in Mexico. Manyuchi et al. (2013) reported an increase in soil potassium content after 25 days period, but in contrast Sandor and Schrader (2012) reported a significantly lower amount of nitrates compared to those in the corresponding control treatments at the end of their experiment while Iordache and Borza (2011) stated that the concentrations of nitrates and nitrites decreased with 6.93 and 21.43 %, respectively, which are attributed to earthworms, because they consume large amounts of nitrogen in their digestion.

TPH was not detected in the soil prior to contamination. At the end of the study, the TPH in the contaminated soil with earthworms decreased significantly by 68.29 % but for the control without earthworm it only decreased by 11.87 %. There is yet no clear understanding of the biochemical pathway for the bioaccumulation or breakdown of organic compounds in earthworms, but it may not be unconnected with the interactions of chemicals such as enzymes secreted by the earthworms and the decomposer microbial flora associated with the gut of earthworms (Sinha et al. 2010). Schaefer et al. (2005) reported that the TPH concentration decreased significantly in samples with L. terrestris, E. fetida within 28 days. Schaefer and Filser (2007) also conducted an experiment on the influence of earthworms (E. fetida, Allobophora chlorotica, and L. terrestris) and organic additives on the biodegradation of oil-contaminated soil (9500 mg TPH/kg soil dry wt.) in Germany. GC analyses showed that the concentration of TPH was significantly reduced in soils with earthworms compared to the treatments without worms. The efficiency of oil degradation depended on earthworm species. They suggested that earthworms could be applied in the later stages of the bioremediation of even highly contaminated sites, when TPH concentrations and potential toxicity have been decreased to a tolerable or moderate level. Earthworms might be especially useful in situ remediation by the so-called natural attenuation where the soil is not disturbed by heavy machinery (Schaefer and Filser 2007). Other workers that reported decrease in TPH or crude oil include Schaefer (2001), Ceccanti et al. (2006), Tomoko et al. (2005), Getliff et al. (2002), while Callaham et al. (2002) reported no effect.
Benzene, toluene, ethylbenzene and xylene (BTEX) were below detection limits in the uncontaminated soil. After contamination, the values in the BTEX constituents were in the following descending order; Benzene > Toluene > Xylene > Ethylbenzene in the contaminated soil. The BTEX constituent decreases accordingly after inoculation of earthworms after 30 and 60 days. Only benzene was detected in the soil at the end of the study, while toluene, ethylbenzene and xylene were below detection limit. Hutchins et al. (1992) and Junfeng et al. (2008) also reported a significant reduction in BTEX in petrochemical-contaminated soils. Hutchins et al. (1992) reported average benzene breakthrough of 74.3 ± 5.8 %, 75.9 ± 12.1 %, and 63.1 ± 9.6 % in the columns with limited oxygen, limited oxygen plus nitrate, and nitrate alone, respectively. Junfeng et al. (2008) suggested that all the BTEX substrates could be anaerobically biodegraded to non-detectable levels within 70 days when the initial concentrations were below 100 mg/kg in soil. Toluene was non-detectable levels within 70 days when the initial concentration limit. Hutchins et al. (1992) and Junfeng et al. (2008) also reported a significant reduction in BTEX in petrochemical-contaminated soil. Hutchins et al. (1992) reported average benzene breakthrough of 74.3 ± 5.8 %, 75.9 ± 12.1 %, and 63.1 ± 9.6 % in the columns with limited oxygen, limited oxygen plus nitrate, and nitrate alone, respectively. Junfeng et al. (2008) suggested that all the BTEX substrates could be anaerobically biodegraded to non-detectable levels within 70 days when the initial concentrations were below 100 mg/kg in soil. Toluene was non-detectable levels within 70 days when the initial concentration limit. Hutchins et al. (1992) and Junfeng et al. (2008) also reported a significant reduction in BTEX in petrochemical-contaminated soils.

The ability for this species of earthworms to biodegrade contaminant is not known but it is clear from our study that biodegradation and bioaccumulation are processes that are simultaneously taking place in the earthworms. It is also possible that earthworms can tolerate some concentration of contaminant without affecting its regular biological function and it only breakdown contaminant when it is exceeding its tolerance threshold. There is need for further research to shed light on this. In earthworms-contaminated soil, grasses started growing in the media after 20 days while in the control grasses appeared after 41 days.

Conclusion

Developing an effective strategy for the removal of petrochemicals from contaminated environment is one of the major challenges facing developing countries including Nigeria in her quest for economic development. This research has shown that the earthworm *H. africanus* has the potential to bioaccumulate and biodegrade hydrocarbons from crude oil-polluted soil. The addition of additives or nutrients for the earthworms will increase and enhance the bioremediation process. These findings suggest that the earthworm could be applied in the later stages of bioremediation, even in highly contaminated soil with crude oil when the toxicity of the contaminant may have decreased or pre-treated to a tolerable level. Earthworm bioremediation does not only remove the contaminant but also enrich the soil by the addition of vermicast after reworking of the contaminated soil in the gut of the earthworm.

Acknowledgments The authors thank Prof. (Mrs) Beatrice Iloba for helping with inputs in designing the initial research, Prof. Stephen Owa for identifying the earthworms, Prof. Rotimi for his advice and Christina Macci for shedding light on their application on similar research in Italy.
Conflict of interest The authors have declared that no conflict of interest exists.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Ameh AO, Mohammed-Dabo IA, Ibrahim S, Ameh JB, Aziege CD, Tanimu Y (2011) Earthworm survival in used engine oil contaminated soil spiked with manure. Int J Biol Chem Sci 5(3):923–929
Ameh AO, Mohammed-Dabo IA, Ibrahim S, Ameh JB (2013) Earthworm-assisted bioremediation of petroleum hydrocarbon contaminated soil from mechanic workshop. Afr J Environ Sci Technol 7(6):531–539. doi:10.5897/AJEST2013.1506
AOAC (2005) Methods of analysis. Association of Official Analytical Chemists, Washington
Azarpira H, Behdarvand P, Dhumal K (2013) Effect of different bulking materials and earthworms species on bioremediation potential of municipal sewage sludge. J Environ Earth Sci 5(12):68–72
Azizi AB, Lime MPM, Noor ZM, Abdullah N (2013) Vermiremoval of heavy metal in sewage sludge by utilising Lumbricus rubellus. Ecotoxicol Environ Safety 90:13–20. doi:10.1016/j.ecoenv.2012.12.006
Callaham MA, Stewart AJ, Alarcon C, McMillen SJ (2002) Effects of earthworm (Eisenia fetida) and wheat (Triticum aestivum) straw additions on selected properties of petroleum contaminated soils. Environ Toxicol Chem 21:1658–1663
Cecchini B, Masiandarlo G, Garcia C, Macci C, Doni S (2006) Soil bioremediation: combination of earthworms and compost for the ecological remediation of a hydrocarbon polluted soil. Water Air Soil Pollut 177:383–397
Contreras-Ramos SM, Alvarez-Bernal D, Dendooven L (2006) Eisenia fetida increased removal of polycyclic aromatic hydrocarbons (PAHs) from soil. Environ Pollut 141:396–401
Dorn PB, Salanitro JP (2000) Temporal ecological assessment of soil contaminated soils before and after bioremediation. Chemosphere 40:419–426
Duiker S, Stehouwer R (2008) Penn State Agricultural Extension Service. Pennsylvania State University 2008
Edwards CA, Arancon NQ (2006) The science of vermiculture: the use of earthworms in organic waste management. In: Guerrero RD III, Guerrero-del Castillo MRA (eds) Vermi-technologies for Developing Countries, Proceedings of the International Symposium-Workshop on Vermi-technologies for Developing Countries, Philippine Fisheries Association, Inc., Los Baños, 16–18 Nov 2005, p 1–30
EPA (2000) Ethylbenzene United States, Environmental Protection Agency. http://www.epa.gov/tnntw01/hilthe/ethylben.html. Accessed 10 Nov 2014
EPA (2012) Toluene United States, Environmental Protection Agency. http://www.epa.gov/tnntw01/hilthe/toluene.html. Accessed 10 Nov 2014
Gettiff J, McEwan G, Ross S, Richards R, Norman M (2002) Drilling fluid design and the use of vermiculture for the remediation of drill cuttings, AADE Technology Conference Drilling Fluids and Waste Management
Huff J (2007) Benzene-induced cancers: abridged history and occupational health impact. Int J Occup Environ Health 13(2):213–221. doi:10.1179/007311707X22363
Hutchins SR, Moolenaar SW, Rhodes DE (1992) Column studies on BTEX biodegradation under microaerophilic and denitrifying conditions. J Hazard Mat 32(2–3):195–214
IARC (2012) IARC Monographs on the evaluation of carcinogenic risks to humans. Volume 100F: a review of human carcinogens: chemical agents and related occupations. International Agency for Research on Cancer. http://monographs.iarc.fr/ENG/Monographs/vol100F/mono100F-24.pdf. Accessed on 22 Oct 2014
Iordache M, Borza I (2011) Remediation of several chemical properties of soil through earthworm activity. Res J Agri Sci 43(4):101–105
Iordache M, Borza I (2012) The bioremediation potential of earthworms (Oligochaeta: Lumbricidae) in a soil polluted with heavy metals. J Food Agri Environ 10(2):1183–1186
ISO (1993) ISO 11268-1:1993: Soil quality—effects of pollutants on toxicity using artificial soil substrate, International Organization for Standardization, ISO Central Secretariat, CP 56, CH-1211, Geneva 20, Switzerland
Junfeng DOU, Xiang LIU, Zhifeng HU (2008) Anaerobic BTEX degradation in soil bioaugmented with mixed consortia under nitrate reducing conditions. J Environ Sci 20(5):585–592
Kasper D, Braunwald E, Hauser S (2004) Harrison’s principles of internal medicine, 16th edn. McGraw-Hill Professional, p 2607. ISBN 0071402357
Kenne D, Hendershot W, Tomlin A, Sauvé S (2002) Uptake of trace metals by the earthworm Lumbricus terrestris L. in urban contaminated soils. Appl Soil Ecol 19:191–198
Krishna MV, Shrushkesh N, Sreehari K, Aravind KT, Vidyavathi N, Pallavi A (2011) Study on bioremediation of phenol by earthworm. Int J Environ Sci 1(6):1268–1273
Lavelle P, Brussard L, Hendrix PF (1999) Earthworm management in tropical agroecosystems. Oxford University Press, Oxford, p 300
Ma WC, Imzerzeel BJ (1995) Earthworm and food interactions on bioaccumulation and disappearance in soil of polycyclic aromatic hydrocarbons: studies on phenanthrene and fluorenanthene. Ecotoxicol Environ Safety 32:226–232
Madge DS (1969) Field and laboratory studies on the activities of two species of tropical earthworms. Pedobiologia 9:188–214
Manyuchi MM, Chitambwe T, Phiri A, Muredzi P, Kanhukamwe Q (2013) Effect of vermicompost, vermiwash and application time on soil physicochemical properties. Int J Chem Environ Eng 4(4):216–220
Martin-Gil J, Navas-Gracia LM, Gomez-Sobrino E, Correa-Guiamaes A, Hernandez- Navarro S, Sanchez-Bascones M (2007) Composting and vermicomposting experiences in the treatments and bioconversion of ashenplains from the Prestige oil spill. Biorec Technol 99:1821–1829
Miroslav R, Vladimir NB (1999) Practical environmental analysis. Royal Society of Chemistry, UK
NDES (1997) Niger Delta Environmental Survey (NDES) (1997) Environmental and socio economic characteristics
NNPC (2013) 2013 Annual Statistical Bulletin, Corporate Planning and Strategy Division, Nigerian National Petroleum Corporation. www.nnpcgroup.com. Accessed 20 Oct 2014
Omodeo P (1954) Eudrilinae e octochaetina delle Costa d’Ovorio (Oligochaeta) Momorie del Museo Civico di Storia. Naturale di Verona 4:162–166
Owa SO (1992) Taxonomy and distribution of Nigerian earthworms of the family Eudrilidae and their use as possible indicators of soil properties. Dissertation, Obafemi Awolowo University, Ile-Ife, Nigeria
Prakash M, Karmegam N (2010) Vermistabilization of pressmud using *Perionyx ceylanensis* mich. Bioresour Technol 10:8464–8468. doi: 10.1016/j.biortech.2010.06.002

Rana SV, Verma Y (2005) Biochemical toxicity of benzene. J Environ Biol 26(2):157–168

Salanitro JP, Dorn PB, Huesemann MH, Moore KO, Rhodes IA, Jackson LMR, Vipond TE, Western MM, Wisniewski HL (1997) Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environ Sci Technol 31(6):1769–1776. doi:10.1021/es96079j

Sandor M, Schrader S (2012) Interaction of earthworms and enchytraeids in organically amended soil. North-Western J Zoo 8(1):46–56

Satchell JE (1983) Earthworm ecology—from Darwin to Vermiculture. Chapman and Hall Ltd., Cambridge, pp 1–178

Schaefer M (2001) Earthworms in crude oil contaminated soils: toxicity tests and effects on crude oil degradation. J Contam Soil Sed Water 35:708

Schaefer M, Filser J (2005) Effects of *Lumbricus terrestris*, *Allolobophora chlorotica* and *Eisenia fetida* on microbial community dynamics in oil-contaminated soil. Soil Biol Biochem 37:2065–2076

Singer AC, Jury W, Leupromchai E, Yahng CS, Crowley DE (2001) Contribution of earthworms to PCB bioremediation. Soil Biol Biochem 33:765–775

Sinha RK, Bhardwaj G, David R (2008) Converting wasteland into wonderland by earthworms: a low-cost nature’s technology for soil remediation: a case study of vermiremediation of PAH contaminated soil. Environ UK 28:466–475

Sinha RK, Sunil H, Gokul B, Swapnil P, Bapat PD, Kunal C, Dalsukh V (2009) Vermiculture biotechnology: the emerging cost-effective and sustainable technology of the twenty first century for multiple uses from waste and land management to safe and sustained food production. Environ R J, NOVA Science Publishers, USA, Invited Paper, vol 3 (2/3)

Sinha RK, Herat S, Valani D (2010) Earthworms—the environmental engineers: review of vermiculture technologies for environmental management and resource development. In: Sinha RK, Herat S and Agarwal S (eds). Special Issue on ‘Vermiculture Technology for Environmental Management and Resource Development. Int J Global Environ Issues, Inderscience Pub. USA 10:265–292. Nos. 3/4

Smith MT (2010) Advances in understanding benzene health effects and susceptibility. Ann Rev Pub Health 31:133–148. doi:10.1146/annurev.publhealth.012809.103646

Tharakan J, Addagada A, Tomlinson DS (2004) Vermicomposting for the bioremediation of PCB congeners in SUPERFUND site media. Earth Worm Digest, December 4, 2005. www.wormdigest.org/content/186/2. Accessed 10 Oct 2014

Tomoko Y, Toyota K, Shiraishi H (2005) Enhanced bioremediation of oil-contaminated soil by a combination of the earthworm (*Eisenia fetida*) and tea extraction residue. Edaphologia 77:1–9

Tondoh JE, Lavelle P (2005) Population dynamics of *Hyperoedrilus africanus* (Oligochaeta, Eudrilidae) in Ivory Coast. J Trop Ecol 21:493–500

UNEP (2011) Environmental Assessment of Ogoniland. United Nations Environment Programme. p 257. United Nations Environment Programme P.O. Box 30552 Nairobi, Kenya. www.unep.org/nigeria. Accessed 12 Oct 2014

Van Gestel K, Mergaert J, Swings J, Coosemans J, Rycxkebore J (2001) Bioremediation of diesel oil-contaminated soil by composting with biowaste. Environ Pollut 125(5):361–368

Zavala-Cruz J, Trujillo-Castan F, Ortiz-Celballos GC, Ortiz-Celballos AI (2013) Tropical endogeic earthworm population in a pollution gradient with weathered crude oil. Res J Environ Sci 7:15–26. doi:10.3923/rjes.2013.15.26