Supporting Information

Controlling Ultralong Room Temperature Phosphorescence in Organic Compounds with Sulfur Oxidation State

Zhen Xu, Clàudia Climent, Christopher M. Brown, Duane Hean, Christopher J. Bardeen,* David Casanova* and Michael O. Wolf*

General

Solvents used were reagent grade and used without any further purification. HPLC grade solvents were used for analyses. 9-H carbazole was purchased from Sigma-Aldrich (China) and was crystallized from toluene solution before use. Other purchased chemicals were used without further purification. Bis(4-bromophenyl)sulfane was synthesized following the literature procedure.¹

Spectroscopy

¹H, ¹³C{¹H}, COSY, NOESY, HSQC and HMBC NMR experiments were collected using a Bruker AV-400 spectrometer and referenced first to TMS and then to the residual protonated solvent peak. NMR solvents (Aldrich or Cambridge Isotope Laboratories) were used as received. Electrospray ionization mass spectrometry data were obtained using a Bruker Esquire LC ion trap mass spectrometer. Infrared spectroscopy was performed on an attenuated total reflection (ATR) crystal using a Perkin-Elmer Frontier FT-IR spectrometer. UV-vis absorption spectra were recorded on a Varian-Cary 5000 UV-Vis-near-IR spectrophotometer. Steady-state photoluminescence data were collected using a Photon Technology International (PTI) QuantaMaster 50 fluorimeter fitted with an integrating sphere, double excitation monochromator and utilizing a 75 W Xe arc lamp as the source. Fluorescence and phosphorescence lifetime data were collected using a Horiba Yvon Fluorocube TCSPC apparatus with a 370 nm NanoLED (fluorescence) or a 359 nm Horiba spectral LED (phosphorescence). The photoluminescence lifetime data were fitted using the DAS6 Data Analysis software package. Time-resolved photoluminescence spectra utilizing a 1 ms delay were measured using a Photon Technology International (PTI) QuantaMaster 400 equipped with a 359 nm Horiba spectral LED. Time-resolved spectra ranging from microsecond to 110
ms were measured using the same spectrometer coupled with a 320 nm Ng:YAG laser. Samples for low-temperature spectroscopy and lifetime measurements were cooled using an Oxford Instruments Optistat DN coupled with an ITC601 temperature controller.

X-Ray Diffraction

Single-crystal X-ray data were collected using a Bruker APEX DUO diffractometer with graphite monochromated Mo Kα radiation (λ = 0.71073 Å) at 100 K. Raw frame data were processed using APEX2. The program SAINT+, v.7.68 was used to reduce the data and the program SADABS was used to make corrections to the empirical absorptions. Space group assignments were made using XPREP on all compounds. In all cases, the structures were solved in the Olex2 suite\(^2\) of programs using Intrinsic Phasing and refined using full-matrix least-squares/difference Fourier techniques on F2 using SHELXL.\(^3\) Diagrams and publication material were generated using CrystalMaker. Powder X-ray crystallography data were collected on a Bruker X8 APEX II diffractometer with graphite monochromated Mo-Kα radiation.

Photophysical Data
Figure S1. Normalized absorption spectra of (a) CBZ-S, (c) CBZ-SO and (e) Cbz CBZ-SO₂. Normalized photoluminescence spectra of (b) CBZ-S, (d) CBZ-SO and (f) CBZ-SO₂. (λ_{ex} = 320 nm). All spectra were recorded in ~ 2 × 10^{-5} M cyclohexanes (CH₆), dichloromethane (CH₂Cl₂) and acetonitrile (MeCN) solutions at room temperature.

RTP Arbitrary Efficiency Φ:

$$\Phi = \frac{\Phi_F}{\Phi_A}$$

A_F: Integration of phosphorescence peak
A_F: Integration of fluorescence peak
Φ_F: fluorescence quantum yield.
Figure S2. Fluorescence decay profile of CBZ-S, CBZ-SO and CBZ-SO$_2$ in the crystalline state.

Table S1. Summary of solid state photophysical data

	PLQY	Fluorescence	Phosphorescence (Air)$^{[b]}$	Phosphorescence (77K)$^{[b]}$		
	λ_{em} (nm)$^{[a]}$	λ_{em} (nm)	τ (ms)$^{[c]}$	τ_{avg} (ms)$^{[d]}$	τ (ms)$^{[c]}$	τ_{avg} (ms)$^{[d]}$
CBZ-S	0.27	390	565	169.13 (0.48), 226.97	777.19 (0.54), 1033.1	
				373.46 (0.15)	1657.3 (0.16)	
CBZ-SO	0.21	388	565	114.92 (0.55), 291.24	808.92 (0.51), 1395.1	
				445.02 (0.19)	1877.4 (0.32)	
CBZ-SO$_2$	0.75	388	562	98.87 (0.58), 309.46	1173.8(0.62), 1798.7	
				471.37 (0.18)	2461.8 (0.30)	

$^{[a]}$ Inset.$^{[b]}$ Inset.$^{[c]}$ Inset.$^{[d]}$ Inset.
Figure S3. Powder X-ray diffraction (pXRD) patterns of CBZ-S crystalline powder (black) compared to their single crystal simulated patterns (red).
Figure S4. Powder X-ray diffraction (pXRD) patterns of CBZ-SO crystalline powder (black) compared to their single crystal simulated patterns (red).

Synthetic Details

Scheme S1. Synthetic route of CBZ-S, CBZ-SO and CBZ-SO₂.
CBZ-S

This compound has been previously synthesized.\(^4\) Bis(4-bromophenyl)sulfane (344 mg, 1.0 mmol, 1.0 equiv.), 9H-Carbazole (334 mg, 2.0 mmol, 2.0 equiv.), Cs\(_2\)CO\(_3\) (650 mg, 2.0 mmol, 2.0 equiv.), Cul (38 mg, 0.2 mmol, 0.2 equiv.) and DMF (2 mL) were added to a 5-mL vial. The vial was sealed and placed in a Biotage microwave cavity. After irradiation at 220 °C for 80 minutes, the reaction mixture was poured into water (25 mL) and extracted with CH\(_2\)Cl\(_2\) (3 × 15 mL). The organic layers were combined and dried over anhydrous MgSO\(_4\), filtered, and concentrated under vacuum. Purification by column chromatography (1:30 EtOAc: hexanes) gave the pure product as a white solid (300 mg, 0.58 mmol, 58%).

\(^1\)H NMR (CD\(_2\)Cl\(_2\), 400 MHz): \(\delta = 8.16\) (H\(_9\), d, \(J = 7.7\) Hz, 4 H), 7.71 (H\(_2\), d, \(J = 8.5\) Hz, 4 H), 7.61 (H\(_3\),d, \(J = 8.5\) Hz, 4 H), 7.48 (d, \(J = 7.3\) Hz, 4 H), 7.43(t, \(J = 7.5\) Hz, 4 H), 7.30 (H\(_8\), t, 7.3 Hz, 4 H). \(^{13}\)C\{\(^1\)H\} NMR (CD\(_2\)Cl\(_2\), 101 MHz): \(\delta = 141.3\) (C\(_5\)), 137.5 (C\(_4\)), 135.1 (C\(_1\)), 133.12 (C\(_2\)), 128.4 (C\(_3\)), 126.6 (C\(_7\)), 124.0 (C\(_{10}\)), 120.8 (C\(_9\)), 120.7 (C\(_8\)), 110.3 (C\(_6\)). HRMS: calculated m/z: 516.1660, found (EI) m/z: 516.1658 [M]\(^+\).

CBZ-SO

To a solution of \textbf{CBZ-S} (0.103 g, 0.20 mmol, 1.0 equiv.) in CH\(_2\)Cl\(_2\) (10 mL) at 0 °C was added 70% \textit{m}-chloroperoxybenzoic acid (\textit{m}-CPBA, 0.050 g, 0.20 mmol, 1.0 equiv.) and the mixture was stirred for 0.5 h. The reaction mixture was poured into a saturated aqueous solution of sodium bicarbonate (15 mL) and was then extracted with CH\(_2\)Cl\(_2\) (3 × 10 mL). The organic layers were combined, dried over anhydrous MgSO\(_4\), filtered, and concentrated under vacuum. Purification by column chromatography (CH\(_2\)Cl\(_2\)) gave the pure product as a white solid (0.080 g, 0.15 mmol, 75%). \(^1\)H NMR (CD\(_2\)Cl\(_2\), 400 MHz): \(\delta = 8.15\) (H\(_6\), d, \(J = 7.7\) Hz, 4 H), 8.01 (H\(_2\), d, \(J = 7.7\) Hz, 4 H), 7.80 (H\(_3\), d, \(J = 7.8\) Hz, 4 H), 7.49 (H\(_6\),d, \(J = 8.1\) Hz, 4 H), 7.43 (H\(_7\), t, \(J = 7.6\) Hz, 4 H), 7.31 (H\(_8\), t, \(J = 7.4\) Hz, 4 H). \(^{13}\)C\{\(^1\)H\} NMR (CD\(_2\)Cl\(_2\), 101 MHz): \(\delta = 144.9\) (C\(_1\)), 141.1 (C\(_4\)), 141.0 (C\(_3\)), 128.3 (C\(_5\)), 127.1 (C\(_2\)), 126.8 (C\(_7\)), 124.3 (C\(_{10}\)), 121.1 (C\(_6\)), 120.9 (C\(_9\)).
To a solution of CBZ-S (0.103 g, 0.20 mmol) in CH₂Cl₂ (4 mL) at 0 °C was added 70% m-chloroperoxybenzoic acid (m-CPBA, 0.108 g, 0.44 mmol, 2.2 equiv.) and the mixture was stirred for 1 hour. The reaction mixture was poured over a saturated aqueous solution of sodium bicarbonate (20 mL) and extracted with CH₂Cl₂ (3 × 15 mL). The organic layers were combined, dried over anhydrous MgSO₄, filtered, and concentrated under vacuum. The crude material was purified by column chromatography (2:1 hexanes: CH₂Cl₂) to afford the pure product as a white solid (93 mg, 0.17 mmol, 85%).

\[\delta = 8.28 (H_2, d, J = 8.6 \text{ Hz}, 4 \text{ H}), 8.15 (H_9, d, J = 7.7 \text{ Hz}, 4 \text{ H}), 7.85 (H_3, d, J = 8.6 \text{ Hz}, 4 \text{ H}), 7.52 (H_6, d, J = 8.2 \text{ Hz}, 4 \text{ H}), 7.43 (H_7, t, J = 7.7 \text{ Hz}, 4 \text{ H}), 7.33 (H_8, t, J = 7.5 \text{ Hz}, 4 \text{ H}) \].

\[\delta_{13C} (\text{H}) \text{ NMR (CD₂Cl₂, 101 MHz): } 143.2 (C_4), 140.6 (C_5), 140.1 (C_1), 130.3 (C_2), 127.8 (C_3), 126.9 (C_7), 124.7 (C_{10}), 121.5 (C_8), 120.0 (C_9), 110.2 (C_6). \]

IR (neat): (σ (SO)) 1154 and 1313 cm⁻¹.
Figure S5. 1H NMR spectra of CBZ-S in CD$_2$Cl$_2$ at 25 °C.

Figure S6. 13C{1H} NMR spectra of CBZ-S in CD$_2$Cl$_2$ at 25 °C.
Figure S7. 1H NMR spectra of CBZ-SO in CD$_2$Cl$_2$ at 25 °C.

Figure S8. 13C{1H} NMR spectra of CBZ-SO in CD$_2$Cl$_2$ at 25 °C.
Figure S9. 1H NMR spectra of CBZ-SO$_2$ in CD$_2$Cl$_2$ at 25 °C.

Figure S10. 13C$_{^1}$H NMR spectra of CBZ-SO$_2$ in CD$_2$Cl$_2$ at 25 °C.
Computational Details

Molecular geometries have been optimized within the density functional theory (DFT) with the ωB97X-D exchange-correlation functional and the 6-31+G(d) atomic basis set. Electronic transitions to the lowest singlet and triplet states and the interstate (singlet-triplet) spin-orbit couplings have been computed with the time-dependent version of DFT (TDDFT), and with the same energy functional and basis set. All calculations have been done with the Q-Chem package.

Table S2. Bond angles C-S-C and C-S-O, and dihedral angles Ph-CBZ, Ph-Ph and CBZ-CBZ (in degrees) for the crystal and optimized molecular structures of the CBZ-SO$_n$ dimers. C-S-O angles in CBZ-SO$_2$ correspond to average values.

angle	crystal	optimized				
	CBZ-S	CBZ-SO	CBZ-SO$_2$	CBZ-S	CBZ-SO	CBZ-SO$_2$
C-S-C	104.8	100.3	106.2	101.8	95.8	103.2
C-S-O	-	103.9	107.8	-	106.5	107.6
Ph-CBZ	118.5	125.4	123.6	122.2	123.5	125.6
Ph-Ph	82.5	69.1	70.2	66.6	9.9	2.6
CBZ-CBZ	2.1	4.1	4.1	23.5	77.7	93.1

Table S3. Vertical excitation energies (in eV), oscillator strengths (f in parenthesis) and electronic character to the lowest singlet and triplet states of the 9-phenylcarbazole molecule computed at the ground state optimized geometry at the ωB97X-D/6-31+G(d) level. CBZ/Ph = local excitation on carbazole/phenyl; CT = CBZ→Ph charge transfer.

state	ΔE (f)	character
T_1	3.25	CBZ (B$_2$)
T_2	3.56	CBZ (A$_1$)
T_3	3.66	Ph; CT
S_1	4.38 (0.050)	CBZ (A$_1$); CT
S_2	4.82 (0.164)	CBZ (B$_2$)
S_3	4.91 (0.156)	CT
Table S4. Vertical excitation energies (in eV), oscillator strengths \(f \) in parenthesis, electronic character, and orbital contributions (in %) to the lowest singlet and triplet states of the CBZ-SO\(_n\) dimers computed at the ground state optimized geometries at the \(\omega B97X-D/6-31+G(d) \) level. CBZ/Ph = local excitation on carbazole/phenyl; CT = CBZ\(\rightarrow \)Ph charge transfer; n(S): lone-pairs of S atom. H = HOMO; L = LUMO.

state \(\Delta E (f) \)	character	\% contribution
CBZ-S		
T\(_1\) 3.24	CBZ	16,16 H-2\(\rightarrow \)L+1,L+2; 15,15 H-3\(\rightarrow \)L+1,L+2
T\(_2\) 3.24	CBZ	16,16 H-3\(\rightarrow \)L+1,L+2; 15,15 H-2\(\rightarrow \)L+1,L+2
T\(_3\) 3.35	Ph; CT; n(S)\(\rightarrow \)Ph	29,24 H,H-4\(\rightarrow \)L; 9 H-7\(\rightarrow \)L+3
T\(_4\) 3.42	Ph; CT; n(S)\(\rightarrow \)Ph	22,18 H,H-4\(\rightarrow \)L+4; 12,10 H-8,H-1\(\rightarrow \)L
S\(_1\) 4.38 (0.219)	CBZ; n(S)\(\rightarrow \)CZ	38 H\(\rightarrow \)L+1; 38 H-1\(\rightarrow \)L+2
S\(_2\) 4.39 (0.034)	CBZ; n(S)\(\rightarrow \)CZ	42 H-1\(\rightarrow \)L+1; 40 H\(\rightarrow \)L+2
S\(_3\) 4.47 (0.486)	CT; n(S)\(\rightarrow \)Ph	59 H\(\rightarrow \)L; 15 H-1\(\rightarrow \)L+4; 11 H-4\(\rightarrow \)L
CBZ-SO		
T\(_1\) 3.24	CBZ	57 H-2\(\rightarrow \)L+3; 7 H\(\rightarrow \)L+8
T\(_2\) 3.24	CBZ	57 H-3\(\rightarrow \)L+2; 9 H-1\(\rightarrow \)L+7
T\(_3\) 3.47	Ph; CT	23,16 H-7,H\(\rightarrow \)L; 8 H-8\(\rightarrow \)L+1
T\(_4\) 3.51	Ph; CT; n(S,O)\(\rightarrow \)Ph	13,10 H-1,H-4\(\rightarrow \)L; 10,10 H,H-7\(\rightarrow \)L+4
S\(_1\) 4.40 (0.163)	CBZ	40 H\(\rightarrow \)L+3; 20,12 H-1\(\rightarrow \)L+2,L+3
S\(_2\) 4.41 (0.051)	CBZ	44,9 H-1,H\(\rightarrow \)L+2; 26 H\(\rightarrow \)L+3
S\(_3\) 4.48 (0.331)	CT	47 H\(\rightarrow \)L; 17,11 H-1\(\rightarrow \)L+4,L; 12 H-6\(\rightarrow \)L+4
CBZ-SO\(_2\)		
T\(_1\) 3.24	CBZ	31 H-3\(\rightarrow \)L+3; 31 H-2\(\rightarrow \)L+2
T\(_2\) 3.24	CBZ	31 H-3\(\rightarrow \)L+2; 31 H-2\(\rightarrow \)L+3
T\(_3\) 3.37	Ph; CT	30,26 H,H-2\(\rightarrow \)L; 10 H-1\(\rightarrow \)L+4
T\(_4\) 3.51	Ph; CT	21 H-1\(\rightarrow \)L; 17 H\(\rightarrow \)L+4
S\(_1\) 4.27 (0.511)	CT	68 H\(\rightarrow \)L; 22 H-1\(\rightarrow \)L+4
S\(_2\) 4.42 (0.174)	mainly CT; CBZ	43,13 H-1\(\rightarrow \)L,L+2; 19,13 H\(\rightarrow \)L+4,L+3
S\(_3\) 4.43 (0.026)	CBZ	42 H\(\rightarrow \)L+2; 41 H-1\(\rightarrow \)L+3
Figure S11. Main orbital contributions to the S\textsubscript{1} excitation of CBZ-SO\textsubscript{n} at the Franck-Condon geometry computed at the ωB97X-D/6-31+G(d) level. Note: the LUMO of CBZ-SO\textsubscript{2} shows overlap of π-orbitals of the two carbons bonded to S (but no contributions from S orbitals). The weight of O atomic orbitals in the LUMO is very small.

Figure S12. Crystal (top) and optimized (bottom) molecular structures of CBZ-SO and CBZ-SO\textsubscript{2} dimers. Short SO···H contacts (dashed lines) indicated in Angstroms.
Table S5. Vertical deexcitation energies (in eV), oscillator strengths (f in parenthesis) and electronic character from the optimized singlet and triplet excited state potential energy surface of the \textit{CBZ-SO$_n$} dimers computed at the ωB97X-D/6-31+G(d) level. S_{loc} = localized singlet, S_{deloc} = delocalized singlet, S_{ex} = excimer-like, T_1 = local triplet.

molecule	state	ΔE (f)
CBZ-S	S_{loc}	4.13 (0.086)
	S_{deloc}	3.85 (0.569)
	T_1	2.47
CBZ-SO	S_{loc}	4.17 (0.084)
	S_{ex}	3.64 (0.075)
	T_1	2.47
CBZ-SO$_2$	S_{ex}	3.50 (0.060)
	T_1	2.47

Figure S13. Main orbital contributions to the local (S_{loc}, left) and delocalized (S_{deloc}, right) excited state minima of \textit{CBZ-S} computed at the ωB97X-D/6-31+G(d) level.
Figure S14. Main orbital contributions to the local (S_{loc}, left) and excimer-like (S_{ex}, right) excited state minima of CBZ-SO computed at the ωB97X-D/6-31+G(d) level.

Figure S15. Main orbital contributions to the excimer-like (S_{ex}) state minimum of CBZ-SO$_2$ computed at the ωB97X-D/6-31+G(d) level.

Figure S16. Main orbital contributions to the lowest triplet (T_1) state minimum of CBZ-SO$_n$ computed at the ωB97X-D/6-31+G(d) level.
Figure S17. Excited state (S_{ex}) optimized geometry and crystal molecular structure of CBZ-SO$_2$.

Table S6. Vertical excitation energies (in eV), oscillator strengths (f in parenthesis) and electronic character to the lowest singlet and triplet states of the CBZ-SO$_n$ dimers for the crystal molecular geometries computed at the ωB97X-D/6-31+G(d) level. CBZ/Ph = local excitation on carbazole/phenyl; CT = CBZ→Ph charge transfer.

state	CBZ-S	CBZ-SO	CBZ-SO$_2$	character
T_1	3.21	3.20	3.27	CBZ; CT
T_2	3.21	3.21	3.27	CBZ; CT
T_3	3.37a	3.42	3.52	CBZ; Ph; CT
T_4	3.48a	3.48	3.53	CBZ; Ph; CT
S_1	4.34 (0.306)a	4.35 (0.507)a	4.44 (0.490)b	CBZ; Ph; CT
S_2	4.37 (0.068)a	4.41 (0.089)	4.48 (0.115)	CBZ; Ph; CT
S_3	4.48 (0.487)a	4.45 (0.013)a	4.55 (0.200)	CBZ; Ph; CT

a n(S)→Ph (also); b CBZ→Ph (mainly).

Figure S18. Crystal molecular dimers with the shortest intermolecular distance. Eclipsed (left) and T-shape (right) molecular pairs of CBZ-SO in the crystal. CBZ-SO and CBZ-SO$_2$ crystals exhibit equivalent molecular pairs.
Table S7. Vertical excitation energies (in eV), oscillator strengths (f in parenthesis) to the lowest singlet and triplet states of computed for the eclipsed and T-shape molecular pairs of CBZ-SO$_n$ in the crystal (Figure S17) computed at the oB97X-D/6-31+G(d) level.

state	CBZ-S	CBZ-SO	CBZ-SO$_2$
	CBZ-S	CBZ-SO	CBZ-SO$_2$
eclipsed pair			
T$_1$	3.24	3.23	3.29
T$_2$	3.24	3.24	3.29
T$_3$	3.24	3.24	3.29
T$_4$	3.28	3.25	3.30
S$_1$	4.32 (0.166)	4.34 (0.022)	4.41 (0.009)
S$_2$	4.33 (0.150)	4.37 (0.451)	4.43 (0.062)
S$_3$	4.34 (0.135)	4.37 (0.144)	4.44 (0.503)
S$_4$	4.35 (0.010)	4.40 (0.134)	4.48 (0.143)
T-shape pair			
T$_1$	3.22	3.22	3.28
T$_2$	3.23	3.23	3.30
T$_3$	3.24	3.23	3.30
T$_4$	3.25	3.25	3.31
S$_1$	4.32 (0.664)	4.34 (1.144)	4.41 (1.117)
S$_2$	4.35 (0.118)	4.36 (0.005)	4.45 (0.001)
S$_3$	4.36 (0.093)	4.41 (0.017)	4.48 (0.117)
S$_4$	4.38 (0.100)	4.42 (0.171)	4.49 (0.177)
Table S8. Relative energies (in meV) and SOCs (in cm$^{-1}$) between the lowest excited singlet (S_1) and energetically close triplets of the CBZ-SO$_n$ dimers computed at the oB97X-D/6-31+G(d) level in the crystal molecular structure. The last column qualitatively indicates the weight of the sulfur and oxygen lone pairs participation in the electronic structure of T_n.

molecule	state	$E(S_1)$-$E(T_n)$	SOC	n(S) or n(O) character
CBZ-S	T_7	211	0.8	large
	T_8	163	0.6	small
	T_9	162	0.2	small
	T_{10}	82	0.8	small
	T_{11}	79	0.3	small
	T_{12}	34	0.4	large
	T_{13}	-281	0.0	small
	T_{14}	-313	0.8	small
	T_{15}	-376	0.2	small
	T_{16}	-377	0.5	small
	T_{17}	-432	0.7	small
	T_{18}	-433	0.5	small
	T_{19}	-605	3.1	large
	T_{20}	-642	0.2	small
CBZ-SO	T_7	360	8.6	large
	T_8	182	3.6	small n(s), n(O)
	T_9	175	0.8	no
	T_{10}	93	0.9	no
	T_{11}	85	0.4	no
	T_{12}	-3	3.3	small n(O)
	T_{13}	-70	2.7	small n(S), n(O)
	T_{14}	-196	5.6	small n(S), n(O)
	T_{15}	-253	2.5	small n(S), n(O)
	T_{16}	-328	3.2	small n(S), n(O)
	T_{17}	-334	1.5	small n(S)
	T_{18}	-369	4.1	small n(O)
	T_{19}	-394	0.4	no
	T_{20}	-472	36.9	large n(O), n(S)
CBZ-SO$_2$	T_7	197	0.2	no
	T_8	197	0.5	no
	T_9	121	1.0	no
	T_{10}	120	0.1	no
	T_{11}	-31	0.3	no
	T_{12}	-47	0.3	no
	T_{13}	-204	0.4	no
	T_{14}	-213	0.3	no
	T_{15}	-297	0.4	no
	T_{16}	-297	0.3	no
	T_{17}	-339	0.4	no
	T_{18}	-339	0.1	no
	T_{19}	-477	0.3	small n(O)
	T_{20}	-490	0.4	small n(O)
Figure S19. Spin orbit couplings (in cm$^{-1}$) between excited triplet states and S_1 (red), S_2 (blue) and S_3 (green) of CBZ-SO$_n$ for the crystal molecular structure calculated at the oB97X-D/6-31+G(d) level. Dashed vertical lines indicate the energy of the excited singlet, S_1, S_2 or S_3, respectively.

Figure S20. Molecular orbital sulfur lone pair of CBZ-S (left) and CBZ-SO (right) responsible for the strong S_1/T_n SOC in the crystal molecular structure calculated at the oB97X-D/6-31+G(d) level.
Phosphorescent emission probability

We evaluate the oscillator strength of triplet emission through perturbation theory by expanding the triplet state wave function as:

\[|T_1^{SOC}\rangle = |T_1\rangle + \sum_n \frac{\langle S_n | \hat{H}_{SO} | T_1 \rangle}{E(T_1) - E(S_n)} |S_n\rangle \] (S1)

Then, the oscillator strength \(f \) can be expressed as:

\[f = \frac{2}{3} \Delta E_{ST} |\langle T_1^{SOC} | \hat{\mu} | S_0 \rangle|^2 \] (S2)

Table S9. Oscillator strengths \(f \) for the emission from the two lowest excited triplet states of \(\text{CBZ-SO}_n \) computed with equation S2 and with the sum over excited singlets in equation S1 running over the 20 lowest states. Computations have been done for the molecular crystal structures at the oB97X-D/6-31+G(d) level.

state	CBZ-S	CBZ-SO	CBZ-SO₂
\(T_1 \)	4.7·10⁻⁹	6.2·10⁻⁹	2.5·10⁻⁸
\(T_2 \)	2.6·10⁻⁹	8.1·10⁻⁹	1.1·10⁻⁸
Optimized geometries

CBZ-S: S_0 state

Atom	X	Y	Z
S	24.92617	1.689602	4.065272
C	24.794085	2.814206	2.686971
C	23.90706	3.895676	2.703404
H	23.311695	4.095619	3.588990
C	23.806723	4.732051	1.599733
C	24.556661	4.470791	0.450104
C	25.423712	3.80125	0.422228
C	25.557303	2.567225	1.544729
H	26.253992	1.734225	1.529416
C	25.065154	2.814206	5.443572
H	23.141118	5.899373	1.619348
N	24.436517	3.13492	-0.679729
C	25.998464	3.175939	-0.476225
C	24.301941	2.567225	6.585818
C	25.951531	3.895677	5.427136
C	23.258015	5.581133	-1.371620
C	25.473592	6.020986	-1.282257
H	26.052538	1.734223	6.601133
C	24.435536	3.380124	7.708319
H	26.547539	4.095621	4.541547
C	26.052518	4.732052	6.530806
C	21.974142	5.079241	-1.153623
C	23.538372	6.469123	-2.430806
C	24.958303	6.751507	-2.373217
C	26.820668	6.088544	-0.923667
H	23.860788	3.175938	8.606773
C	25.302585	4.470791	7.680438
H	26.718122	5.589939	6.511189
C	20.965764	5.500074	-2.012170
H	21.769294	4.380541	-0.348272
C	22.508111	6.877282	-3.280466
C	25.812769	7.554248	-3.131686
H	27.207238	5.537422	-0.071898
C	27.651057	6.894227	-1.693373
N	25.422733	5.313493	8.810271
C	21.224389	6.392938	-3.064263
H	19.956537	5.125819	-1.865850
H	22.709668	7.561218	-4.100480
H	25.429387	8.122307	-3.974984
C	27.157466	7.619020	-2.789663
H	28.704406	6.965093	-1.437512
C	24.385659	6.020985	9.412804
C	26.601238	5.581136	9.502157
H	20.412798	6.702129	-3.716025
H	27.834077	8.238425	-3.370686
C	23.038582	6.088540	9.054220
C	24.900952	6.751507	10.503761
C	27.885111	5.079246	9.284153
C	26.320884	6.469125	10.561343
H	22.652009	5.537417	8.202453
C	22.208195	6.894221	9.823930
C	24.046488	7.554246	11.262235
H	28.089956	4.380546	8.478802
C	28.893492	5.500080	10.142696
C	27.351149	6.877286	11.410999
H	21.154845	6.965086	9.568074
CBZ-SO: S_0 state

Element	X	Y	Z
S	26.082388	1.181616	3.991448
C	25.720475	2.382716	2.683268
C	24.402824	2.742458	2.420725
H	23.583931	2.297981	2.981302
C	24.136994	3.691988	1.439182
H	23.118258	4.008510	1.237036
C	25.188142	4.245220	0.705576
C	25.004475	3.845127	0.951801
C	26.773828	2.915738	1.948950
H	27.788015	2.581566	2.150361
O	27.455873	0.632756	3.713001
C	26.287885	2.406876	5.315942
N	24.920461	5.209314	-0.291868
H	27.304336	4.262281	0.352934
C	25.174737	2.998337	5.906214
C	27.575482	2.715839	5.734017
C	24.067884	5.043049	-1.381667
C	25.450161	6.497959	-0.336212
H	24.169114	2.730888	5.591024
C	25.356152	3.934399	6.916999
H	28.420424	2.218601	5.265643
C	27.755409	3.665778	6.734957
C	23.340464	3.917203	-1.769822
C	24.050709	6.234300	-2.135942
C	24.934953	7.163388	-1.465741
C	26.318930	7.126610	0.556798
H	24.502364	4.397091	7.402540
C	26.648126	4.277155	7.324846
H	28.754042	3.943806	7.058337
C	22.574908	4.014113	-2.925652
H	23.375733	2.994587	-1.198693
C	23.274153	6.307147	-3.294039
C	25.312230	8.486808	-1.718322
H	26.697152	6.614595	1.436235
C	26.679622	8.440833	0.284419
N	26.830177	5.242815	8.340375
C	22.535485	5.196377	-3.681194
H	21.998528	3.152940	-3.251417
H	23.252017	7.218785	-3.884962
H	24.923442	9.013667	-2.585520
C	26.187169	9.116995	-0.842761
H	27.355907	8.954230	0.961905
C	26.355912	6.552881	8.308372
C	27.520524	5.050697	9.535802
H	21.926331	5.238142	-4.579072
H	26.490846	10.143103	-1.026855
C	25.642886	7.209685	7.304392
C	26.743377	7.209738	9.494432
C	28.140916	3.899143	10.022108
CBZ-SO₂: S₀ state

C 17.899985 12.089477 -0.413436
C 17.771094 11.098540 0.011200
C 19.978695 12.205189 0.146628
C 16.830384 12.720056 -1.036022
C 19.151543 12.719244 -0.334412
C 15.864332 12.227881 -1.107714
C 17.015498 13.994836 -1.574271
C 19.359853 13.987857 -0.862671
C 16.150748 14.909593 -2.292222
C 18.274963 14.619576 -1.471860
C 20.335364 14.460802 -0.807219
C 14.810070 14.860785 -2.678868
C 16.923861 16.048191 -2.59503
C 18.213412 15.866741 -2.094706
C 14.203160 13.988921 -2.450518
C 14.263713 15.944771 -3.353778
C 16.379920 17.149009 -3.259446
C 19.280367 16.782027 -2.208754
C 13.228445 15.921338 -3.661893
C 15.043592 17.077231 -3.634570
C 16.970097 18.035730 -3.468619
C 19.658511 17.258785 -3.466673
C 19.954568 17.211681 -1.062215
C 14.594770 17.919828 -4.152560
C 20.709739 18.160302 -3.501814
C 19.131646 16.913531 -4.350697
C 19.631202 16.858550 -0.088071
C 21.017328 18.099179 -1.173357
C 21.004694 18.549708 -4.549412
C 21.385287 18.565206 -2.432646
C 21.538203 18.453311 -0.289368
C 22.778332 19.675083 -2.582790
O 22.639736 20.386257 -3.851304
O 24.171376 18.565206 -2.732034
O 22.916927 20.386257 -1.314277
C 24.539335 18.099180 -3.992224
C 24.846924 18.160302 -1.585397
C 24.018460 18.453311 -4.876213
C 25.602095 17.211681 -4.103366
H 24.551969 18.549708 -0.616169
C 25.898152 17.258785 -1.698908
		25.925461	16.858550	-5.077509
		26.276296	16.782027	-2.956826
		26.425016	16.913530	-0.814884
		27.343251	15.866741	-3.070875
		27.281701	16.619576	-3.693721
		28.632803	16.048191	-2.569078
		28.541165	13.987857	-4.302910
		29.405915	14.909593	-2.873358
		29.176743	17.149009	-1.906134
		29.405120	14.719244	-4.831169
		25.221299	14.460802	-4.358362
		28.726279	12.720056	-4.125959
		30.746593	14.860785	-2.486713
		28.586566	18.035730	-1.696962
		30.513071	17.077231	-1.531011
		25.577968	12.205189	-5.312209
		27.656678	12.089478	-4.752145
		29.692331	12.227881	-4.057867
		31.355030	13.988921	-2.715063
		31.292950	15.924771	-1.811802
		30.961893	17.919828	-1.013020
		27.785569	11.098540	-5.176781
		32.333819	15.921338	-1.506781

References
1. Cheng, Z.; Sun, P.; Tang, A.; Jin, W.; Liu, C. Org. Lett. 2019, 21, 8925–8929.
2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H.; J. Appl. Cryst. 2009, 42, 339–341.
3. Sheldrick, G. M. Acta Cryst. 2015, A71, 3–8.
4. L. Xu, K. Zhou, H. Ma, A. Lv, D. Pei, G. Li, Y. Zhang, Z. An, A. Li and G. He, ACS Appl Mater Interfaces, 2020, 12, 18385–18394.
5. S. Xu, T. Liu, Y. Mu, Y.-F. Wang, Z. Chi, C.-C. Lo, S. Liu, Y. Zhang, A. Lien and J. Xu, Angew. Chem. Int. Ed., 2014, 54, 874–878.
6. Chai, J.-D.; Head-Gordon, M. Phys Chem Chem Phys 2008, 10, 6615–6620.
7. Liu, F.; Livshits, E.; Lochan, R. C.; Luenser, A.; Manohar, P.; Manzer, S. F.; Mao, S.-P.; Mardirossian, N.; Marenich, A. V.; Maurer, S. A.; Mayhall, N. J.; Neuscamman, E.; Oana, C. M.; Olivares-Amaya, R.; O’Neill, D. P.; Parkhill, J. A.; Perrine, T. M.; Peberati, R.; Prociuk, A.; Rehn, D. R.; Rosta, E.; Russ, N. J.; Sharada, S. M.; Sharma, S.; Small, D. W.; Sodt, A.; Stein, T.; Stueck, D.; Su, Y.-C.; Thom, A. J. W.; Tsuchimochi, T.; Vanovschi, V.; Vogt, L.; Vydrov, O.; Wang, T.; Watson, M. A.; Wenzel, J.; White, A.; Williams, C. F.; Yang, J.; Yeganeh, S.; Yost, S. R.; You, Z.-Q.; Zhang, I. Y.; Zhang, X.; Zhao, Y.; Brooks, B. R.; Chan, G. K. L.; Chipman, D. M.; Cramer, C. J.; Goddard, W. A.;
Gordon, M. S.; Hehre, W. J.; Klamt, A.; Schaefer, H. F.; Schmidt, M. W.; Sherrill, C. D.; Truhlar, D. G.; Warshel, A.; Xu, X.; Aspuru-Guzik, A.; Baer, R.; Bell, A. T.; Besley, N. A.; Chai, J.-D.; Dreuw, A.; Dunietz, B. D.; Furlani, T. R.; Gwaltney, S. R.; Hsu, C.-P.; Jung, Y.; Kong, J.; Lambrecht, D. S.; Liang, W.; Ochsenfeld, C.; Rassolov, V. A.; Slipchenko, L. V.; Subotnik, J. E.; Van Voorhis, T.; Herbert, J. M.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M.; Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T. B.; Wormit, M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X.; Ghosh, D.; Goldey, M.; Horn, P. R.; Jacobson, L. D.; Kaliman, I.; Khaliullin, R. Z.; Kus, T.; Landau, A.; Liu, J.; Proynov, E. I.; Rhee, Y. M.; Richard, R. M.; Rohrdanz, M. A.; Steele, R. P.; Sundstrom, E. J.; Woodcock, H. L.; Zimmerman, P. M.; Zuev, D.; Ben Albrecht; Alguire, E.; Austin, B.; Beran, G. J. O.; Bernard, Y. A.; Berquist, E.; Brandhorst, K.; Bravaya, K. B.; Brown, S. T.; Casanova, D.; Chang, C.-M.; Chen, Y.; Chien, S. H.; Closser, K. D.; Crittenden, D. L.; Diedenhofen, M.; Distasio, R. A.; Do, H.; Dutoi, A. D.; Edgar, R. G.; Fathehi, S.; Fusti-Molnar, L.; Ghysels, A.; Golubeva-Zadorozhnaya, A.; Gomes, J.; Hanson-Heine, M. W. D.; Harbach, P. H. P.; Hauser, A. W.; Hohenstein, E. G.; Holden, Z. C.; Jagau, T.-C.; Ji, H.; Kaduk, B.; Khistyaev, K.; Kim, J.; Kim, J.; King, R. A.; Klunzinger, P.; Kosenkov, D.; Kowalczyk, T.; Krauter, C. M.; Lao, K. U.; Laurent, A. D.; Lawler, K. V.; Levchenko, S. V.; Lin, C. Y. Molecular Physics 2015, 113, 184–215.