TCF7L2 gene polymorphism as a risk for type 2 diabetes mellitus and diabetic microvascular complications

Noran Talaat Aboelkhair1 · Heba Elsayed Kasem2 · Amera Anwar Abdelmoaty3 · Rawhia Hassan El-Edel1

Received: 17 April 2021 / Accepted: 30 June 2021 / Published online: 7 July 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
Background Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic condition with various genetics and environmental influences that affects the capacity of the body to produce or use insulin resulting in hyperglycemia, which may lead to variable complications. It is one of the world’s rising health problems. There is emerging evidence that some genetic polymorphisms can impact the risk of evolving T2DM. We try to determine the relationship of (rs7903146) variant of the Transcription factor 7-like 2 (TCF7L2) gene with T2DM and its microvascular complications.

Methods and results This case–control study included 180 subjects: 60 diabetic patients without complications, 60 diabetic patients with microvascular complications and 60 matched healthy controls. Genotypes of rs7903146 (C/T) SNP in the TCF7L2 gene were evaluated by real-time polymerase chain reaction via TaqMan allelic discrimination. Logistic regression was used to detect the most independent factor for development of diabetes and diabetic microvascular complications. Variant homozygous TT and heterozygous CT genotypes were significantly increased in diabetic without complications and diabetic with complications groups than controls (p = 0.003, 0.001) respectively. The T allele was more represented in both patient groups than controls with no significant difference between patient groups. TT genotype as well as T allele was significantly associated with increased T2DM risk.

Conclusion The T allele of rs7903146 polymorphism of TCF7L2 confers susceptibility to development of T2DM. However, no significant association was found for diabetic complications.

Keywords Type 2 diabetes · Microvascular complications · TCF7L2 · rs7903146

Introduction
Type 2 DM represents a group of polygenic metabolic and endocrine disorders. It has become one of the foremost chronic non-communicable diseases distressing the health of people worldwide [1]. The global prevalence is increasing at a dreadful rate, making it the most dreaded silent epidemic of the twenty-first century. According to the International Diabetes Federation, 451 million people suffered from diabetes in 2017, and this is projected to reach 693 million by 2045 [2]. Impaired insulin metabolism along with defects in carbohydrate, lipid and protein metabolism leads to raised blood glucose levels. Persistent hyperglycemia is the main cause of micro- and macrovascular complications in T2DM patients [3, 4]. Microvascular complications include diabetic peripheral neuropathy, diabetic retinopathy (DR) and
diabetic nephropathy (DN) that may develop at an advanced stage of the disease. In the meantime, macrovascular complications occur as an elevated risk of peripheral artery disease, coronary artery disease and stroke. Microangiopathy is not only present in the nerves, retina, and kidneys, but it is profuse affecting virtually every organ beyond the vascular beds and is the reason for increasing the severity of diabetic complications [5].

The TCF7L2 gene spans around 215,863 bases on the chromosome 10q25.3. The TCF7L2 codes for a transcription factor tangled in the Wnt signaling pathway, which plays an important role in controlling the biosynthesis, processing and secretion of insulin [6]. The TCF7L2 plays a significant role in the pathogenesis of T2DM and diabetic microvascular complications. Hence, this study aimed to study rs7903146 polymorphism of TCF7L2 gene as a risk factor in the pathogenesis of T2DM and diabetic microvascular complications.

Subjects and methods

Subjects

This case–control study included 180 participants recruited between August 2019 and July 2020 from Outpatient Clinics & Inpatients of the Internal Medicine Department at Menoufia University Hospitals, Egypt. They were distributed into three groups, group I: 60 apparently healthy controls, age and sex-matched with patient groups; group II: 60 T2DM patients without complications; group III: 60 T2DM patients with microvascular complications. Exclusion criteria were patients with urinary tract infection or other kidney diseases, uncontrolled hypertension, congestive heart failure, fever, infections, autoimmunity, neoplasm, or other hematological and endocrine diseases. Consent was taken from all participants and this study was accepted by the Committee for Research Ethics at Menoufia Faculty of Medicine.

Methods

For all subjects, the followings were done: history taking, estimation of anthropometric measurements, clinical, neurological and fundus examination.

Biochemical investigations

Under aseptic precautions, a fasting blood sample was taken and divided into plain and EDTA vacutainer tubes. For genomic DNA extraction, 400 μl of whole blood was preserved on EDTA at − 20 °C. Serum was separated for biochemical tests as fasting blood glucose (FBG), lipid profile, creatinine and urea which were done using Beckman Coulter (Au 480) chemistry autoanalyzer using a kit provided by Beckman (USA), whereas low-density lipoprotein (LDL-C) was estimated using the formula of Friedewald’s and Fredrickson. Another blood sample on EDTA was used for the estimation of glycated hemoglobin (HbA1c) using a kit supplied by Beckman. After 2 hours of eating, an additional venous sample was withdrawn to estimate 2 h postprandial (2 h pp) glucose level. Random urine samples were collected for estimation of microalbumin/creatinine ratio (ACR). The eGFR was calculated using the Cockcroft-Gault formula.

Genomic DNA extraction and genotyping

The DNA was isolated from EDTA blood samples via a DNA extraction Kit (Thermofisher Scientific, USA) following the manufacturer’s procedure. The extracted DNA was stored at − 20 °C till genotyping. The rs7903146 (C/T) SNP of TCF7L2 was genotyped via real-time PCR with the ABI TaqMan allelic discrimination kit (Applied Biosystems, USA). The probes, primers and master mix (40 ×) were supplied by Thermo Scientific. The sequences used for the probes were: TAGAGAGCTAACGACCTTTTTATA\[\text{C/T}\]ATATAATTTAATTGCCGATGAGG. (VIC dye for allele C, FAM dye for allele T). The PCR reactions were performed in a total volume of 20 μl including 10 μl TaqMan Genotyping Master Mix, 1.25 μl Custom Taqman assay (primer/probe) 40×, 5 μl genomic DNA and 3.75 μl Nuclease free water. The conditions for cycling were: initial denaturation at 94 °C for 15 min, followed by 35 cycles of denaturation at 94 °C for 15 s, annealing at 62 °C for 30 s and extension at 72 °C for 30 s. Then 96-well plates were loaded in 7500 Real-Time PCR System (Applied Biosystems, USA). The allelic discrimination plot for TCF7L2 (rs7903146) is shown in (Fig. 1).
Statistical analysis

The patient data were analyzed by IBM® SPSS® statistics software package, version 22 (SPSS, Chicago, USA). For comparisons of demographic data and biochemical investigations between the studied groups, the following were used: chi-squared test, ANOVA test for parametric data, Kruskal–Wallis test for non-parametric data. The genotyping data were compared between cases and controls using the chi-squared test. Odds ratio (OR) and confidence interval (CI) were calculated by logistic regression analysis. P-value was regarded as statistically significant if 0.05 or less.

Results

The demographic data of the studied groups are shown in (Table 1). The blood pressure and body mass index (BMI) were significantly higher in both patient groups compared to controls (p < 0.001). The FBG, 2 h pp, HbA1c, urea and creatinine were significantly higher in patients’ groups than controls (p < 0.001) (Table 1). Regarding lipid profile, total cholesterol and triglycerides (TG) were considerably higher (p < 0.001) in DM without complications as compared to controls; however, high-density lipoprotein (HDL-C) level was significantly lower (p < 0.001) in DM with complications as compared to both DM without complications and
Table 1 Demographic and Laboratory data of the studied groups

Parameter	Controls (n = 60)	Diabetic without complications (n = 60)	Diabetic with microvascular complications (n = 60)	Test of sig	P value
Age/years					
Mean ± SD	50.6 ± 9.87	52.6 ± 9.00	54.4 ± 9.58	F = 2.38	0.095
Range	35–70	35–70	35–70		
Sex					
Male N (%)	34 (56.7)	42 (70.0)	40 (66.7)	X² = 2.52	0.283
Female N (%)	26 (43.3)	18 (30.0)	20 (33.3)		
Smoking					
Yes N (%)	9 (15.0)	17 (28.3)	15 (25.0)	X² = 3.28	0.194
No N (%)	51 (85.0)	43 (71.7)	45 (75.0)		
Hypertension					
Yes N (%)	0 (0.00)	27 (45.0)	44 (73.3)	X² = 68.7	0.001**
No N (%)	60 (100)	33 (55.0)	16 (26.7)		
Duration of diabetes/year					
Median	–	1	8.00	U = 8.41	<0.001**
Range	–	0.40–8.00	3.00–20		
BMI					
Mean ± SD	25.9 ± 1.50	27.6 ± 2.02	27.5 ± 2.28	F = 13.6	P1:0.001*
Range	23–31	21–33	21–33	P2:0.001*	P3:0.643
FBG (mg/dl)					
Mean ± SD	82.4 ± 8.25	140.8 ± 49.3	172.1 ± 58.9	F = 62.4	P1:0.001*
Range	66–99	89–370	107–360	P2:0.001*	P3:0.001*
2 h pp (mg/dl)					
Mean ± SD	132.7 ± 28.7	212.6 ± 69.4	254.7 ± 77.2	F = 59.4	P1:0.001*
Range	85–191	105–380	128–471	P2:0.001*	P3:0.001*
HbA1c (%)					
Mean ± SD	4.39 ± 0.68	6.26 ± 0.56	8.05 ± 1.47	F = 203.3	P1:0.001*
Range	3–6.3	3.8–7.1	4.6–11.7	P2:0.001*	P3:0.001*
Cholesterol (mg/dl)					
Mean ± SD	174.4 ± 42.8	194.1 ± 60.6	183.4 ± 55.6	F = 2.02	P1:0.009*
Range	75–257	87–426	68–301	P2:0.361	P3:0.276
Triglycerides (mg/dl)					
Median	99.5	122.5	103	K = 5.69	P1:0.001*
Range	40–284	50–390	33–466	P2:0.390	P3:0.056
HDL-C (mg/dl)					
Median	44	43	29	K = 5.78	P1:0.715
Range	28–75	27–68	7–69	P2: 0.001*	P3: 0.001*
LDL-C (mg/dl)					
Median	113.5	112	122	K = 3.62	P1:0.001*
Range	23–186	11–248	14–255	P2: 0.076	P3: 0.315
Creatinine (mg/dl)					
Median	0.80	0.90	1.10	K = 46.6	P1:0.001*
Range	0.40–1.10	0.50–1.10	0.60–8.90	P2:0.001*	P3:0.001*
Urea (mg/dl)					
Median	19	21.5	35	K = 59.4	P1:0.001*
Range	6–37	11–40	15–156	P2: 0.008*	P3: 0.001*

Bold indicts the significant values

BMI Body mass index, **F ANOVA test**, **SD Standard deviation, U Mann Whitney test, X² Chi square test, K Kruskal Wallis test, P1 Comparison between controls and diabetic without complications, P2 Comparison between controls and diabetic with microvascular complications, P3 Comparison between diabetic without complications and diabetic with microvascular complications

*Significant, **Highly significant

Springer
controls. The duration of diabetes and the levels of HbA1c were significantly higher in DM with complications group compared to DM without complications ($p < 0.001$).

The genotypic and allelic frequencies of (rs7903146) C/T polymorphism in the TCF7L2 gene (Table 2) were found to follow Hardy–Weinberg equilibrium. The frequency of TT and CT genotypes was higher in both patients' groups compared to controls; however, CC genotype was higher in controls compared to patients' groups. Regarding allele distribution, the T allele was significantly more dominant in patients' groups than the C allele ($p = 0.001$). There was a significant difference between DM without complications group and controls, also between DM with complications group and controls ($p = 0.001$). The DM with complications had increased frequency of the CT, TT genotypes and T allele than diabetic without complications, but this did not reach statistical significance. Regarding dominant and recessive models, there were significant differences between DM without complications group and controls, also between DM with complications group and controls.

The genotype risk assessment for diabetes and diabetic complications is illustrated in (Table 3). The TT genotype displayed considerable risk for diabetes by 16.7 times more than CC (CI: 2.04–13.6) and significant risk for microvascular complications by 19.5 times (CI: 2.34–162.9). Simultaneously, the T allele carried the risk 2.64 times more than the C allele between DM without complications and controls (CI: 1.25–5.55), also 4.01 times between DM with complications and controls (CI: 1.87–8.57) and 3.16 times between patient groups and controls (CI: 1.83–5.46). Multivariate logistic regression for diabetes risk factors (Table 4) showed that FBG, 2 h pp, HbA1c, CT versus CC and TT versus CC carries the threat for diabetes; hence, the disease is multifactorial as there was no independent risk factor. However, multivariate logistic regression analysis for the predictable factors of complications of DM showed that each of disease duration, HbA1c, HDL-C, creatinine, ACR and GFR carry the risk for diabetic microvascular complications. There was a notable difference between the three studied genotypes amongst the DM without complications group only regarding 2 h pp.

Discussion

Diabetes is a quickly growing health issue in Egypt, as the prevalence of T2DM has tripled over the last two decades to affect about 15.6% of adults between the ages of 20–79. Several factors have been identified that affect the onset and progress of diabetes-related complications such as the age of onset or disease duration, specific genes, glycemic control, hyperlipidemia, hypertension and smoking [9]. *TCF7L2* is a highly variable transcription factor that is involved in insulin secretion and an increased rate of production of hepatic glucose. It has been reported to guard pancreatic cells against
interleukin-1 as well as interferon-mediated cell apoptosis [10, 11].

In this study, blood pressure was significantly increased in diabetic patients than controls. This was in agreement with earlier studies Biadgo et al. and Bhattarai et al., who reported that blood pressure was significantly higher among those with T2DM and diabetic complications than controls [12, 13]. Microvessels are the basic functional unit in the cardiovascular system playing an important role in the maintenance of blood pressure and proper nutrient delivery. Diabetes induces pathognomonic alterations in the microvasculature that affect the capillary basement membrane leading to the progress of diabetic microangiopathy [14]. In the current study, cholesterol and TG were significantly higher in DM without complications than controls. However, HDL-C was significantly lower in DM with complications than both controls and DM without complications. This agreed with Biadgo et al., who found a significant increase in the levels of cholesterol and triglycerides in diabetic patients compared to controls [12]. Also, Mukherjee et al., reported that HDL-C levels were considerably lower in patients with DM than in controls [15]. However, Saravani et al., stated that there was no significant difference regarding LDL-C between the diabetics and controls [16]. In diabetic subjects, insulin resistance has been considered the reason for dyslipidemia. The causes for increased TG levels in diabetic patients is an insufficient function or secretion of insulin that causes higher hepatic secretion of VLDL together with the late elimination of TG-rich lipoproteins, mostly due to greater substrate levels for TG synthesis [17].

Regarding genotype and allele frequencies of TCF7L2 (rs7903146), the T allele was significantly more represented in DM with complications than DM without complications, also TT and CT genotypes were significantly increased in DM without complications and DM with complications groups. This was in agreement with Nanfa et al., and Demirsoy et al., who reported that the T allele at rs7903146 was considerably related to the risk for DM [18, 19]. Also, Buraczynska et al., reported that T allele was highly associated with DN [20]. In addition, Assmann et al., found that T allele had been considerably related to increased risk for T2DM in a dominant inheritance model.
A study was done by Cicicacci et al. investigated TCF7L2 variants and several diabetic macro- and microvascular complications, reported that patients with T allele had an increased risk for developing DR in addition to cardiovascular disease [24]. Also, Buraczynska et al. reported about an association between rs7903146 and nephropathy (p < 0.001) and T allele was significantly associated with DN, particularly in the early onset of diabetes [20]. The discrepancy in the results between different studies could be attributable to the influence of many variables, like ethnic background variances, different study designs in addition to altered disease susceptibility. This could also indicate the participation of other genes in the pathogenesis of T2DM [25].

The TCF7L2 gene has a vital role in the progression of T2DM by influencing pancreatic islands, adipogenesis and myogenesis. It affects the beta cells function as well as granules accountable for insulin secretion and controls the expression of proteins tangled in insulin granules exocytosis [19]. Overexpression of TCF7L2 in human pancreatic islets was found to decrease glucose-stimulated insulin secretion. Hence, the higher risk of T2DM assembled by variants in TCF7L2 comprises the entero-insular axis, increased expression of the gene in islets cells and impaired secretion of insulin. The validation of the association of TCF7L2 with T2DM complications in other populations affords evidence for additional consideration of TCF7L2 and associated molecules and pathways as possible therapeutic targets for diabetes [26]. In conclusion, the TCF7L2 (rs7903146) is associated with T2DM susceptibility as patients with variant TT genotype had a higher risk than the heterozygous and wild genotypes. However, there was no significant association with diabetic microvascular complications.

Author contributions Conceptualization: NTA, RHE-E. Methodology: NTA, AAAE-M. Formal analysis and investigation: AAAE-M, HEK. Writing—original draft preparation: AAAE-M. Writing—review and editing: NTA. Funding acquisition: No fund. Supervision: RHE-E. All authors have read and approved the manuscript.

Funding No funding was received for conducting this study.

Data availability The datasets generated analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Conflict of interest The authors have no conflicts of interest to declare that are relevant to the content of this article.

Consent to participate Consent to participate was obtained from all individuals included in the study.

Consent to publish Consent to publish relevant data was taken from all participants.

Ethical approval This research was approved by the Research Ethics Committee at Menoufia Faculty of Medicine according to 1964 Helsinki declaration and informed consent was taken from every participant in the study. IRB approval number: 19919CPATH31.

References

1. De Rosa S, Arcidiacono B, Chieffari E, Brunetti A, Indolfi C, Foti D (2018) Type 2 diabetes mellitus and cardiovascular disease: genetic and epigenetic links. Front Endocrinol (Lausanne) 9:2
2. Du B, Jia X, Tian W, Yan X, Wang N, Cai D et al (2021) Associations of SUCNR1, GRK4, CAMK1D gene polymorphisms and the susceptibility of type 2 diabetes mellitus and essential hypertension in a northern Chinese Han population. J Diabetes Complications 35(1):107752
3. Poznyak A, Grechko A, Poggio P, Myasoedova V, Alfieri V, Orekhov A (2020) The diabetes mellitus-atherosclerosis connection: the role of lipid and glucose metabolism and chronic inflammation. Int J Mol Sci 21(5):1835
4. Emara M, El-Edel R, Fathy W, Abebe M, Abou Elela D (2020) Study the association of tumor necrosis factor promoter polymorphism with type 2 diabetic nephropathy. Mediators Inflamm. https://doi.org/10.1155/2020/1498278
5. Mauricio D, Alonso N, Gratacós M (2020) Chronic diabetes complications: the need to move beyond classical concepts. Trends Endocrinol Metab 31(4):287–295
6. Dalhat M, Musa M (2018) Transcription factor 7 like 2 (TCF7L2) expression level variation contributes to VEGF alteration in diabetic retinopathy. Ophthalmol Res An Int J 8(1):1–7
7. Zaidi A, Abbas S, Singh SP, Raza ST, Mahdi F (2018) Role of Gsp, Tcf, Elmo1, Trpc 1, IL-10 gene polymorphism in diabetic nephropathy. Era’s J Med Res 5(2):170–174
8. Mandour I, Darwish R, Fayez R, Naguib M, El-Sayegh S (2018) TCF7L2 gene polymorphisms and susceptibility to type 2 diabetes mellitus, a pilot study. Biomed Pharmacol J 11(2):1043–1049
9. Hegazi R, El-Gamal M, Abdel-Hady N, Hamdy O (2015) Epidemiology of and risk factors for type 2 diabetes in Egypt. Ann Glob Heal 81(6):814–820
10. Abbas S, Raza S, Mir S, Siddiqui Z, Zaidi A, Zaidi Z et al (2019) Association of variants rs7903146 and rs290487 of TCF7L2 gene with diabetic nephropathy and co-morbidities (hypertension and dyslipidemia) in type 2 diabetes mellitus. Meta Gene 20:100561. https://doi.org/10.1016/j.mgene.2019.100561
11. Wrozek M, Sawicka A, Wrozek M, Płatkiewicz P, Talalaj M, Nowicka G (2019) Age at onset of obesity, transcription factor 7-like 2 (TCF7L2) rs7903146 polymorphism, adiponectin levels and the risk of type 2 diabetes in obese patients. Arch Med Sci 15(2):321–329
12. Biadgo B, Abebe S, Baynes H, Yesuf M, Alemu A, Abebe M (2017) Correlation between serum lipid profile with anthropometric and clinical variables in patients with type 2 diabetes mellitus. Ethiop J Health Sci 27(3):215–226
13. Bhattarai S, Godsland IF, Misra S, Johnston DG, Oliver N (2019) Metabolic health and vascular complications in type 1 diabetes. J Diabetes Complications 33(9):634–640

14. Chawla A, Chawla R, Jaggi S (2016) Microvascular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J Endocrinol Metab 20(4):546–551

15. Mukherjee B, Shankar S, Ahmed R, Singh K, Bhatia K (2017) Association of glycated haemoglobin and serum apolipoproteins with diabetic retinopathy: an indian overview. J Clin Diagn Res 11(9):BC19–BC23

16. Saravani R, Irani Z, Galavi H (2016) Evaluation of transcription factor 7 like 2 polymorphisms and haplotypes in risk of Type 2 Diabetes. Rev Rom Med Lab 24(4):423–430

17. Alzahrani S, Baig M, Aashi M, Al-Shaibi F, Alqarni D, Bakhamees W (2019) Association between glycated hemoglobin (HbA1c) and the lipid profile in patients with type 2 diabetes mellitus at a tertiary care hospital: a retrospective study. Diabetes Metab Syndr Obes 12:1639–1644

18. Nanfa D, Sobngwi E, Atogho-Tiedeu B, Noubiap J, Donfack O, Mofo E et al (2015) Association between the TCF7L2 rs12255372 (G/T) gene polymorphism and type 2 diabetes mellitus in a Cameroonian population: a pilot study. Clin Transl Med 4(1):17

19. Demirsoy I, Aras N (2016) TCF7L2 rs7903146 gene variation is associated with risk of type 2 diabetes in Turkish population. J Clin Med Genom 4(1):2–4

20. Buraczynska M, Swatowski A, Markowska-Gosik D, Kuczmaszewska A, Ksiazek A (2011) Transcription factor 7-like 2 (TCF7L2) gene polymorphism and complication/comorbidity profile in type 2 diabetes patients. Diabetes Res Clin Pract 93(3):390–395

21. Assmann T, Duarte G, Rheinheimer J, Cruz L, Canani L, Crispim D (2014) The TCF7L2 rs7903146 (C/T) polymorphism is associated with risk to type 2 diabetes mellitus in Southern-Brazil. Arq Bras Endocrinol Metabol 58(9):918–925

22. Wu L, Hsieh C, Pei D, Hung Y, Kuo S, Lin E (2009) Association and interaction analyses of genetic variants in ADIPOQ, ENPP1, GHSR, PPARy and TCF7L2 genes for diabetic nephropathy in a Taiwanese population with type 2 diabetes. Nephrol Dial Transplant 24(11):3360–3366

23. Verma S, Srivastava N, Banerjee M (2016) PS 04-25 association Of TCF7L2 and PPARf gene variants with type 2 diabetes mellitus in North Indian population. J Hypertens 34:e139–e140

24. Ciccacci C, Di Fusco D, Cacciotti L, Morganti R, D’Amato C, Novelli G et al (2013) TCF7L2 gene polymorphisms and type 2 diabetes: association with diabetic retinopathy and cardiovascular autonomic neuropathy. Acta Diabetol 50(5):789–799

25. Dendup T, Feng X, Clingan S, Astell-Burt T (2018) Environmental risk factors for developing type 2 diabetes mellitus: a systematic review. Int J Environ Res Public Health MDPI 15(1):78

26. Jin T (2016) Current understanding on role of the Wnt signaling pathway effector TCF7L2 in glucose homeostasis. Endocr Rev 37(3):254–277

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.