Quantitative input-output dynamics of a c-di-GMP signal-transduction cascade in *Vibrio cholerae*

Andrew A. Bridges*1*, Jojo A. Prentice*1*, Chenyi Fei1,2, Ned S. Wingreen1,2#, Bonnie L. Bassler1,3#

*These authors contributed equally
#Correspondence to: wingreen@princeton.edu bbassler@princeton.edu

Affiliations:
1Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
2Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA.
3The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.

Abstract

Bacterial biofilms are multicellular communities that collectively overcome environmental threats and clinical treatments. To regulate the biofilm lifecycle, bacteria commonly transduce sensory information via the second-messenger molecule cyclic diguanylate (c-di-GMP). Using experimental and modeling approaches, we quantitatively capture c-di-GMP signal transmission via the bifunctional polyamine receptor NspS-MbaA, from ligand binding to output, in the pathogen *Vibrio cholerae*. Upon binding of norspermidine or spermidine, NspS-MbaA synthesizes or degrades c-di-GMP, respectively, which in turn, drives alterations specifically to biofilm gene expression. A longstanding question is how output specificity is achieved via c-di-GMP, a diffusible molecule that regulates dozens of effectors. We show that NspS-MbaA signals locally to specific effectors, sensitizing *V. cholerae* to polyamines. However, local signaling is not required for specificity, as changes to global cytoplasmic c-di-GMP levels can selectively regulate biofilm genes. This work establishes the input-output dynamics underlying c-di-GMP signaling, which could be useful for developing bacterial manipulation strategies.
Introduction

Bacteria have the versatility to modify their lifestyles in response to shifting challenges. Commonly, bacteria resist threats by forming multicellular communities called biofilms, in which bacteria attach to surfaces and collectively produce an extracellular matrix (Flemming et al., 2016). Advantages that accrue to biofilm-resident cells include resistance to antimicrobial compounds, protection from predators, and the ability to collectively acquire nutrients (Flemming and Wingender, 2010; Mah et al., 2003; Shaw et al., 2004). Biofilm bacteria can return to the individual, free-swimming state by degrading the biofilm matrix and initiating motility, which together facilitate escape from the biofilm and spread to new territories (Guilhen et al., 2017). The ability to repeatedly transition between planktonic and biofilm states is central to the disease process for many pathogenic bacteria, and such lifestyle flexibility confounds clinical treatment (Guilhen et al., 2017). Interventions that manipulate biofilm formation and/or dispersal hold promise as therapeutics to combat globally-important pathogenic bacteria (Trebino et al., 2021).

Biofilm formation and dispersal are controlled by environmental stimuli. Bacteria detect many of these stimuli with membrane-bound receptors that transduce signals internally. Information flow typically converges on a set of key intracellular regulators, commonly including the bacterial second-messenger molecule cyclic diguanylate (c-di-GMP) (Jenal et al., 2017). Across the bacterial domain, high levels of c-di-GMP are associated with surface attachment and biofilm matrix production while low levels drive inhibition of biofilm formation and enhanced motility (Römling et al., 2013). Receptors controlling c-di-GMP levels contain ligand binding domains which regulate the activities of attached domains responsible for c-di-GMP synthesis and/or degradation. c-di-GMP synthesis occurs via diguanylate cyclase domains, which harbor catalytic “GGDEF” motifs. c-di-GMP is degraded by phosphodiesterase domains characterized by either “EAL” or “HD-GYP” motifs (Dow et al., 2006; Simm et al., 2004). The outputs of these enzymes are decoded by c-di-GMP-binding effectors that modulate transcription, translation, or protein
activity, which in turn, control bacterial behaviors (Jenal et al., 2017). For example, in the global pathogen *Vibrio cholerae*, the model organism used in the present work, the VpsT and VpsR transcription factors bind to c-di-GMP and subsequently activate expression of *vps* genes encoding vibrio polysaccharide biosynthesis enzymes (Conner et al., 2017). The Vps machinery promotes biofilm formation by facilitating matrix production.

Bacterial genomes often encode dozens of c-di-GMP metabolizing receptors (Dahlstrom and O'Toole, 2017). *V. cholerae* possesses 31 diguanylate cyclases, 12 phosphodiesterases, and 10 proteins containing both diguanylate cyclase and phosphodiesterase motifs (Conner et al., 2017). This large array of receptors presumably allows *V. cholerae* to respond to many cues. However, it is mysterious how the pertinent sensory information is integrated to accurately regulate downstream processes including biofilm formation and dispersal. In *V. cholerae* and most other studied species, the ligands regulating specific receptors that harbor c-di-GMP synthesis and/or degradation domains remain unidentified (Jenal et al., 2017). Thus, a quantitative understanding of the input-output dynamics underlying how c-di-GMP signaling modules convert ligand binding events into alterations in phenotypes remains elusive. Furthermore, despite the diffusibility of the c-di-GMP molecule, genetic evidence suggests that some c-di-GMP-metabolizing enzymes show specificity, controlling only small subsets of c-di-GMP-binding effectors (Dahlstrom and O'Toole, 2017; Hengge, 2021). For example, deletion of genes specifying particular diguanylate cyclases reduces biofilm formation while not altering motility, whereas deletion of others activates motility but does not change biofilm formation (Zamorano-Sánchez et al., 2019). How specificity is achieved by c-di-GMP signaling modules remains a topic of intense interest (Dahlstrom and O'Toole, 2017; Hengge, 2021).

Here, we analyze the input-output dynamics of c-di-GMP signaling by MbaA, an inner-membrane polyamine receptor that we previously showed controls biofilm dispersal in *V. cholerae* (Bridges and Bassler, 2021). MbaA is a bifunctional enzyme, harboring both diguanylate cyclase (GGDEF domain) and phosphodiesterase (EAL domain) activities (Fig. 1A). MbaA detects
polyamine ligands via interaction with the periplasmic binding protein NspS (Karatan et al., 2005; Sobe et al., 2017). NspS binds both norspermidine, a rare polyamine produced by *Vibrionaceae* and select other organisms, and spermidine, a nearly ubiquitous polyamine that is not produced by *V. cholerae* (Fig. 1A) (Young et al., 2021). Norspermidine binding to NspS is thought to drive NspS-MbaA association and this interaction favors MbaA diguanylate cyclase activity, promoting the biofilm state (Cockerell et al., 2014). Conversely, when NspS is in the apo state or when it is bound to spermidine, NspS does not associate with MbaA, and MbaA exhibits phosphodiesterase activity, repressing biofilm formation and driving the planktonic state (Fig. 1A) (Cockerell et al., 2014). Thus, NspS ligand occupancy dictates MbaA activity, which in turn, controls cytoplasmic c-di-GMP levels and whether *V. cholerae* forms or exits from biofilms. Notably, because the ligands for NspS-MbaA are known, and because MbaA can both produce and degrade c-di-GMP, this system is uniquely configured for a case study that incorporates all steps in c-di-GMP signal transduction – from ligand binding to phenotypic output.

To develop a quantitative understanding of signal transduction through the NspS-MbaA circuit, we formulate a mathematical model describing NspS-MbaA signaling from ligand binding to changes in c-di-GMP levels. Companion experiments show that NspS-MbaA detects its ligands in the periplasm with sub-nanomolar affinity. This sensitivity enables NspS-MbaA to respond to external polyamine fluctuations in the face of high affinity polyamine import by the cell. In turn, the c-di-GMP produced or degraded by MbaA regulates biofilm gene expression with high specificity. We address the long-standing issue of whether c-di-GMP signaling specificity is a consequence of localized c-di-GMP transmission between specific pairs of receptors and effectors, or alternatively, if changes in the global cytoplasmic c-di-GMP pool are detected only by particular effectors based strictly on their relative affinities for c-di-GMP (Hengge, 2021). We find that MbaA appears to channel c-di-GMP information exclusively through a localized mechanism at low ligand concentrations, whereas at high ligand concentrations it alters the global cytoplasmic c-di-GMP
pool. Notably, however, across the large range of tested polyamine concentrations, MbaA maintains signaling specificity, as among all c-di-GMP-responsive genes, changes only occur in the expression of those involved in biofilm formation. By assaying other receptors that produce c-di-GMP, we show that localized c-di-GMP signaling is not a prerequisite for specific control of biofilm gene expression in *V. cholerae*, as specificity can also be achieved through changes to the global cytoplasmic c-di-GMP pool. Regarding the NspS-MbaA circuit, the consequence of local signaling is increased sensitivity to polyamine ligands, endowing *V. cholerae* with the ability to detect physiological polyamine concentrations. To our knowledge, the work presented here provides the first quantitative study of c-di-GMP signal transmission from ligand binding to changes in the behaviors of cell collectives.

Results

A mathematical model describes the experimentally observed NspS-MbaA input-output dynamics

To quantitatively describe the relationship between polyamine signal input and c-di-GMP output via the NspS-MbaA circuit, we relied on our previous experimental measurements that exploited an established fluorescence-based live-cell c-di-GMP reporter (Bridges and Bassler, 2021; Zamorano-Sánchez et al., 2019; Zhou et al., 2016). In these assays, exogenous norspermidine and spermidine mixtures were supplied to cultures harboring a reporter whose output tracks linearly with cytoplasmic c-di-GMP concentrations (Zhou et al., 2016). The experimentally obtained wildtype c-di-GMP reporter results exhibit three regimes (Fig. 1B, left and middle panels): 1) a basal level of c-di-GMP, which is maintained when up to 10 µM exogenous norspermidine and up to 1 µM exogenous spermidine are added, 2) a reduced c-di-GMP level, which is established when high (≥10 µM) spermidine and low (≤10 µM) norspermidine are provided, and 3) an elevated c-di-GMP level, which is achieved when high (≥50 µM) norspermidine is supplied, irrespective of the amount of administered spermidine. In the ΔnspS strain (Fig. 1C, left and middle panels), basal c-di-GMP levels are lower than the wildtype basal
level due to constitutive MbaA phosphodiesterase activity, and there is no response to exogenous polyamine mixtures. The ΔmbaA strain (Fig. 1D, left and middle panels) is also incapable of responding to exogenous polyamines; however, it harbors slightly higher c-di-GMP levels than the untreated wildtype strain due to the lack of basal MbaA phosphodiesterase activity. The final experimental dataset we employed for model construction was that of the ΔpotD1 strain (Fig. 1E, left and middle panels), which is incapable of norspermidine and spermidine import due to the lack of a functional PotABCD1 ABC-family transporter (McGinnis et al., 2009). In the absence of polyamine import, our previous results suggest that self-secreted norspermidine accumulates in the periplasm, leading to high MbaA diguanylate cyclase activity (Fig. 1E, left panel). Therefore, the ΔpotD1 strain exhibits elevated basal c-di-GMP levels relative to the wildtype, no response to exogenous norspermidine, and an attenuated response to exogenous spermidine (Fig. 1E, middle panel).
Fig. 1. Modeling of polyamine sources, transport, and detection by the NspS-MbaA circuit captures in vivo dynamics. (A) Scheme for the NspS-MbaA c-di-GMP polyamine signal transduction circuit. *V. cholerae* detects periplasmic norspermidine (Nspd) and spermidine (Spd) via the NspS-MbaA signaling system. Left panel: Detection of norspermidine by the periplasmic binding protein NspS drives its association with MbaA, promoting MbaA diguanylate cyclase activity and biofilm formation. Norspermidine is exported to the *V. cholerae* periplasm via an unknown mechanism and is reimported by the PotABCD1 system. Right panel: When norspermidine is absent, or when spermidine is detected, NspS dissociates from MbaA and MbaA functions as a c-di-GMP phosphodiesterase, biofilm formation is repressed, and biofilm dispersal is promoted. Norspermidine is produced by *Vibrionaceae*. Spermidine is a commonly produced polyamine but is not substantially produced by *V. cholerae*. OM = outer membrane; IM = inner membrane. In MbaA, the GGDEF and EAL domains have the sequences SGDEF and EVL, respectively. MbaA was previously shown to possess both diguanylate cyclase and phosphodiesterase activities (Bridges and Bassler, 2021). (B) Left panel: Schematic of the periplasmic polyamine sensing and import components in wildtype *V. cholerae* in the absence of exogenous polyamines. Middle panel: Experimentally obtained results for c-di-GMP reporter output in wildtype *V. cholerae* for the indicated polyamine concentrations, displayed as a heatmap. Throughout the manuscript, data in c-di-GMP output heatmaps are displayed as percent differences compared to the untreated wildtype strain, with teal representing low and purple representing high c-di-GMP reporter output, respectively. Right panel: Modeled c-di-GMP reporter output for wildtype *V. cholerae* based on a global fit to the experimental data for the wildtype, ΔnspS, ΔmbaA, and ΔpotD1 strains. (C) As in B for the ΔnspS strain. (D) As in B for the ΔmbaA strain. (E) As in B for the ΔpotD1 strain. Experimental data are representative of 3 biological replicates. The experimental results shown in the middle panels in B-E are reproduced from (Bridges and Bassler, 2021), published under a Creative Commons Attribution license: https://creativecommons.org/licenses/by/4.0/.

To uncover the features of the NspS-MbaA signaling circuit that underpin the measured dose responses, we designed a free-energy model describing the relationship between periplasmic polyamine concentrations and MbaA enzymatic activity. In the model, we propose that norspermidine and spermidine influence MbaA activity exclusively through their effects on the chemical equilibrium among NspS conformations. Specifically, we assume that NspS can exist in one of two conformations: An “open” conformation, which is favored by spermidine binding but which does not interact with MbaA, and a “closed” conformation, which is favored by norspermidine binding and which drives the NspS-MbaA interaction. Notably, in the absence of polyamine binding, an intrinsic free-energy offset between the NspS open and closed conformations determines the equilibrium abundances of the two protein conformations. A given MbaA receptor, in turn, can exist in any of three states: unbound to NspS and exhibiting phosphodiesterase activity, unbound to NspS and exhibiting diguanylate cyclase activity, or
bound to the closed conformation of NspS and exhibiting diguanylate cyclase activity. The chemical equilibrium among the MbaA states determines the average activity across all MbaA receptors and is calculated as a function of the free-energy offset between the phosphodiesterase and diguanylate cyclase states, f_{MbaA} (Methods). We incorporated the function describing MbaA activity in a simple dynamical system considering polyamine fluxes into and out of the periplasm and the kinetics of MbaA-driven c-di-GMP biosynthesis and degradation. To acquire values for parameters, we fitted the model to the experimentally obtained c-di-GMP reporter data for the wildtype, ΔnspS, ΔmbaA, and ΔpotD1 strains (Fig. 1B-E, middle panels). Our rationale for choosing this particular model was that we could introduce experimentally titrated polyamine concentrations as inputs to the model, compare the modeled steady-state c-di-GMP concentrations to the experimentally obtained c-di-GMP reporter output data, and thus exploit the model to obtain the parameters required to achieve the measured input-output dynamics. To place additional constraints on the parameters, we experimentally measured the stoichiometry (approximately 1:1) of functional NspS-3xFLAG and MbaA-FLAG proteins in vivo (Fig. S1A, B) as well as the apparent dissociation constants of spermidine (48.4 ± 14.7 nM) and norspermidine (67.1 ± 12.2 nM) for purified NspS-6xHis using isothermal titration calorimetry (ITC) (Fig. S1C-E).

Our model successfully captured the three regimes for the wildtype strain (Fig. 1B, right panel), while achieving close fits to the data for the three mutants (Fig. 1C-E, right panels). The model fits suggest that in wildtype V. cholerae, the first regime is explained by two factors: (1) PotABCD1 imports norspermidine with high affinity (K_m~1 nM) and (2) only a small fraction of NspS (~0.7%) exists in the closed state in the absence of norspermidine (Table 1). Supposition (1) is supported by experimental results from the ΔpotD1 strain, which show that in the absence of polyamine import, elevated periplasmic norspermidine drives maximal MbaA-directed c-di-GMP production (Fig. 1E, middle panel). Supposition (2) is supported by the ΔnspS mutant experimental data, which show that in the absence of NspS, the basal c-di-GMP level is lower
than that of the wildtype (Fig. 1C, middle panel). Thus, in the first regime, the model predicts that there is an inconsequentially low concentration of polyamines in the periplasm, but that a small fraction of closed NspS nonetheless binds to MbaA and drives a modest level of c-di-GMP production (Fig. 1B, right panel). In the second regime, our fitted kinetic parameters suggest that PotABCD1-mediated import of spermidine is saturated, resulting in the accumulation of periplasmic spermidine, which biases NspS to the open conformation (equivalent to an NspS-free state, as in Fig. 1C). Therefore, this regime is explained by the intrinsic (NspS-free) fraction of MbaA receptors that exist in the phosphodiesterase mode, which our fits suggest is around 75% (Table 1). In the third and final regime, our model suggests that the high concentration of exogenously supplied polyamines saturates PotABCD1-mediated import, and therefore MbaA activity is determined by a competition between periplasmic norspermidine and periplasmic spermidine binding to NspS. Using our ITC measurements (Fig. S1) and the predicted fraction of NspS that exists in the closed state (Table 1), we calculated the dissociation constant K_{nspd} for norspermidine for closed NspS to be ~ 0.5 nM and the dissociation constant K_{spd} for spermidine for open NspS to be ~ 48.0 nM (see Methods for details concerning these calculations). The consequence of this ~ 100-fold difference in binding affinities is that once PotD1-mediated import is saturated by norspermidine, the additional periplasmic norspermidine biases a significant fraction of NspS toward the closed state, irrespective of the periplasmic concentration of spermidine over the range studied (Fig. 1E, right panel). Thus, under this condition, MbaA acts as a diguanylate cyclase. Together, these results suggest that the NspS-MbaA circuit functions to maintain a basal cytoplasmic concentration of c-di-GMP via a mechanism in which a small fraction of total NspS binds MbaA in the absence of exogenous norspermidine. This arrangement may be necessary for the system to sensitively respond to both spermidine (and, in turn, degrade c-di-GMP) and norspermidine (and, in turn, synthesize c-di-GMP). In addition, high affinity uptake via PotABCD1 eliminates low-to-moderate concentrations of norspermidine and low
concentrations of spermidine from the periplasm. The consequence is that under physiologically realistic regimes, the concentrations of polyamines in the periplasm are sub-nanomolar.

The mathematical model for NspS-MbaA signal transduction is predictive

To test the fidelity of our model, we assessed its predictive capabilities by perturbing the NspS-MbaA signal-transduction cascade. Specifically, we constructed a *V. cholerae* Δ*mbaA* strain harboring *Pbad-mbaA*, which allowed us to artificially alter *mbaA* expression with arabinose. We modulated MbaA production from non-detectable (0% arabinose) to modestly below that of the wildtype (0.05% arabinose), to higher than wildtype levels (0.2% arabinose), as quantified by Western blot (Fig. S2). We assessed how changing the level of MbaA influenced the steady-state c-di-GMP concentration by measuring the c-di-GMP reporter output for each MbaA induction condition and each polyamine concentration (Fig. 2, left panels). We used our model to predict the c-di-GMP outputs under the same conditions (Fig. 2, right panels). As expected, in the absence of arabinose, the experimental results and model predictions agreed (Fig. 2A), and moreover, produced results akin to those for the Δ*mbaA* strain (Fig. 1D). Furthermore, our model predictions achieved close fits to the experimental c-di-GMP reporter outputs for both MbaA underexpression (Fig. 2B) and overexpression (Fig. 2C). Both under- and overexpression of MbaA dampened the response to norspermidine relative to the wildtype, suggesting that the NspS-MbaA circuit is maximally sensitive to changes in norspermidine levels near the endogenous wildtype MbaA concentration and that norspermidine sensitivity decreases as MbaA concentrations deviate from this level. Together, our results indicate that our mathematical framework for the NspS-MbaA circuit accurately predicts the effects stemming from perturbations to receptor levels, and that the natural system has evolved to be maximally sensitive to norspermidine when there is import by PotABCD1.
Fig. 2. **The fitted mathematical model of NspS-MbaA input-output dynamics accurately predicts the outcomes of perturbations to MbaA protein levels.** (A) Left panel: Experimentally obtained results for c-di-GMP reporter output in ΔmбаA *V. cholerae* carrying *Pbad-mbaA* for the indicated polyamine concentrations at 0% arabinose, shown as a heatmap. Throughout the manuscript, data in c-di-GMP output heatmaps are displayed as percent differences compared to the untreated wildtype strain, with teal representing low and purple representing high c-di-GMP reporter output, respectively. Right panel: Modeled c-di-GMP reporter output for ΔmбаA *V. cholerae* based on a global fit to the experimental data for the wildtype, ΔnspS, ΔmбаA, and ΔpotD1 strains. (B) Left panel: As in A, left panel, but with supplementation of 0.05% arabinose. Right panel: Modeled c-di-GMP reporter output for *V. cholerae* with ~2.5-fold lower MbaA levels than in wildtype *V. cholerae*. (C) Left panel: As in A, left panel, but with supplementation of 0.2% arabinose. Right panel: As in A, right panel, but for ~1.5-fold higher MbaA concentration than in wildtype *V. cholerae*. Experimental data are representative of 3 biological replicates.
The NspS-MbaA circuit is sensitive to sub-nanomolar periplasmic polyamine levels

Our data show that PotABCD1-mediated polyamine import dramatically influences the ability of NspS-MbaA to detect and respond to polyamines in the periplasm (Fig. 1D). The consequence of rapid polyamine internalization is that polyamines (i.e., those supplied in experiments, those supplied by export from the cytoplasm, or those supplied by neighboring organisms in non-lab environments) are depleted from the periplasm. We reasoned that to overcome ligand depletion by cytoplasmic import, the NspS-MbaA circuit must be exquisitely sensitive to periplasmic polyamines. To test this supposition, we needed to quantify the function of NspS-MbaA in a setup in which polyamine production and polyamine import were inactivated to eliminate cell-driven changes to the fixed levels of polyamines we supplied exogenously. Our strategy was to disable norspermidine production by deleting nspC, the gene encoding the carboxynorspermidine decarboxylase responsible for the final enzymatic step in norspermidine production (Lee et al., 2009). To eliminate both polyamine production and import, we constructed the ΔnspC ΔpotD1 double mutant. Analysis of these two mutant phenotypes allowed us to assess the intrinsic sensitivity of the NspS-MbaA circuit to periplasmic polyamines.

Regarding the ΔnspC single mutant that is incapable of polyamine production: The model predicts that the V. cholerae ΔnspC mutant responses to external norspermidine and spermidine resemble those of the wildtype (Fig. 3A, right panel). This outcome occurs because, as discussed above, self-produced norspermidine exerts a negligible effect on basal MbaA activity in the presence of polyamine import (Fig. 1A and B). Indeed, the middle panel of Fig. 3A shows that the ΔnspC mutant exhibits the three c-di-GMP regimes displayed by the wildtype (see Fig. 1A), with an EC$_{50}$ for norspermidine of ~10-50 µM.
Fig. 3. **MbaA-driven c-di-GMP production and biofilm formation are highly sensitive to norspermidine in the absence of PotD1-mediated import.** (A) Left panel: Schematic of the periplasmic polyamine sensing and import components in ΔnspC V. cholerae in the absence of exogenous polyamines. Middle panel: Experimentally obtained results for the c-di-GMP reporter output, displayed as a heatmap, in ΔnspC V. cholerae for the indicated polyamine concentrations. N = 3 biological replicates. Right panel: Modeled c-di-GMP reporter output for the ΔnspC V. cholerae strain. The parameters fitted to the data from Fig. 1 were used. (B) As in A for ΔnspC ΔpotD1 V. cholerae strain. Throughout the manuscript, data in c-di-GMP output heatmaps are displayed as percent differences compared to the untreated wildtype strain, with teal representing low and purple representing high c-di-GMP reporter output, respectively. C) Mean c-di-GMP output for ΔnspC ΔpotD1 V. cholerae at the specified norspermidine concentrations. N = 3 biological replicates. (D) Biofilm biomass over time measured by bright field time-lapse microscopy for ΔnspC ΔpotD1 V. cholerae at the specified norspermidine concentrations. N = 3 biological and N = 3 technical replicates, ± SD (shaded). a.u.: arbitrary unit.
Regarding the ΔnspC ΔpotD1 double mutant that is incapable of polyamine production and polyamine import: Our experimental results show that maximal c-di-GMP production was achieved at the lowest tested norspermidine concentration of 1 µM, and minimal c-di-GMP production occurred at 1 µM spermidine treatment (Fig. 3B, middle panel). The consequence of sensitization to external polyamines is that the high c-di-GMP regime, in which norspermidine outcompetes spermidine, expands to include significantly lower norspermidine concentrations (Fig. 3B, middle panel). The model output agreed with the experimental results, showing that the ΔnspC ΔpotD1 strain exhibits high sensitivity to exogenous spermidine and norspermidine relative to the ΔnspC strain due to the elimination of periplasmic polyamine depletion by PotABCD1 (Fig. 3B, right panel). To define the intrinsic input-output relationship between periplasmic norspermidine and c-di-GMP levels, we supplied norspermidine to the ΔnspC ΔpotD1 strain at concentrations below 1 µM and measured the reporter output. Fig. 3C shows that a response occurred at a norspermidine concentration as low as 0.1 nM, and the response was saturated by 100 nM. Consistent with these results, we calculated an EC\textsubscript{50} for norspermidine of ~1-5 nM (Fig. 3C). Thus, in the absence of polyamine import and export, the NspS-MbaA circuit is sensitive to sub-nanomolar changes in periplasmic polyamine concentrations. Finally, the close agreement between the experimental results and the model for the ΔnspC single and the ΔnspC ΔpotD1 double mutants demonstrates that our model accurately captures the role of polyamine import in the response of the NspS-MbaA circuit to external polyamines.

Our model and experimental results indicate that the NspS-MbaA circuit is exceptionally sensitive to changes in periplasmic norspermidine levels. To investigate whether such sensitivity plays out via changes in downstream c-di-GMP-regulated behaviors, we assessed whether the \textit{V. cholerae} ΔnspC ΔpotD1 mutant also exhibited altered biofilm formation and dispersal in response to sub-nanomolar concentrations of norspermidine. To do this, we administered 0.1 nM, 1 nM, and 10 nM norspermidine to the ΔnspC ΔpotD1 strain and assayed biofilm formation by
time-lapse microscopy. Indeed, a dose-dependent increase in biofilm biomass occurred in response to norspermidine (Fig. 3D). Together, these results show that sub-nanomolar levels of periplasmic norspermidine are detected by NspS-MbaA. Norspermidine detection leads to increased MbaA diguanylate cyclase activity and cytoplasmic c-di-GMP accumulation, the result of which is increased biofilm biomass accretion and reduced biofilm dispersal. Finally, the consequence of PotABCD1-directed polyamine internalization in wildtype V. cholerae is that cytoplasmic c-di-GMP levels are only altered in response to high concentrations of extracellular norspermidine (>10 µM; Fig. 1B, middle panel), despite the remarkable sensitivity of the NspS-MbaA system to low concentrations of periplasmic polyamines.

MbaA transmits information internally to elicit gene expression changes at polyamine concentrations well below those required to change the total concentration of cytoplasmic c-di-GMP

NspS-MbaA detection of norspermidine and spermidine leads to induction and repression, respectively, of vps biofilm matrix genes (Bridges and Bassler, 2021). However, the precise input-output relationship between polyamine sensing, c-di-GMP levels, and downstream gene expression is not known. To explore the relationship, we supplied exogenous norspermidine and spermidine to wildtype V. cholerae carrying a vpsL-lux reporter and measured the bioluminescence output. As shown above, in wildtype V. cholerae, exogenous norspermidine and spermidine had no notable effects on measured c-di-GMP levels at low concentrations (≤10 µM) (Fig. 1B, reproduced in Fig. 4A). By contrast, even at the lowest tested concentration (1 µM), both polyamines drove significant changes in vpsL expression (Fig. 4B). To determine if the changes in vps expression tracked with changes in the biofilm lifecycle, we measured the biofilm biomass over time. Consistent with the vpsL-lux data, biofilm biomass increased or decreased following the addition of 1 µM norspermidine or spermidine, respectively (Fig. 4C and D). Moreover, biofilm dispersal was inhibited at 10 µM exogenous norspermidine (Fig. 4D). As noted, changes in global cytoplasmic c-di-GMP are only elicited when 50 µM or higher polyamines are supplied (Fig. 4A).
Thus, the dichotomy is that \textit{vps} gene expression and resulting changes in the \textit{V. cholerae} biofilm lifestyle are triggered at extracellular norspermidine and spermidine levels that have no measurable effects on global cytoplasmic c-di-GMP levels. These results suggest that at low polyamine concentrations, the NspS-MbaA circuit transmits c-di-GMP directly to transcription factors via a local mechanism, the outcome of which is modulation of \textit{vps} expression without changes to global cytoplasmic c-di-GMP levels. By contrast, at high polyamine concentrations, NspS-MbaA-mediated signaling alters both \textit{vps} expression and the global cytoplasmic c-di-GMP reservoir, which could potentially be accessed by all c-di-GMP effectors.

\textbf{Figure 4}

\textbf{Fig. 4.} \textit{vps} gene expression and biofilm formation are more sensitive to external polyamines than is the cytoplasmic c-di-GMP pool. (A) Experimentally obtained results for c-di-GMP reporter output in wildtype \textit{V. cholerae} for the indicated polyamine concentrations, displayed as a heatmap and reproduced from Fig. 1A, middle panel. \(N = 3\) biological replicates. (B) As in (A) for \textit{vpsL-lux}. Values are displayed as the log\(_2\) fold-changes relative to the untreated condition. (C) as in (B) for peak biofilm biomass measured by bright field time-lapse microscopy. \(N = 2\) biological and \(N = 2\) technical replicates. (D) Biofilm biomass over time measured by bright field time-lapse microscopy for wildtype \textit{V. cholerae} at the specified norspermidine concentrations \(N = 3\) biological and \(N = 3\) technical replicates, ± SD (shaded). a.u.: arbitrary unit. (E) Mean \textit{vpsL-lux} (log\(_2\) fold-change relative to the untreated condition) and c-di-GMP outputs for wildtype \textit{V. cholerae} at the specified norspermidine concentrations. These plots were generated from the data points in the bottom rows of panels (A) and (B).
NspS-MbaA signal transduction specifically controls expression of biofilm genes, not genes involved in other c-di-GMP-regulated processes

Given that at high levels of norspermidine or spermidine, NspS-MbaA-directed signal transduction changes the cytoplasmic level of c-di-GMP, a diffusible second messenger known to regulate a wide-variety of phenotypes, we wondered whether MbaA exclusively controls transcription of biofilm genes or more generally affects the expression of genes involved in other c-di-GMP-regulated processes, such as motility. To explore this question, we defined the NspS-MbaA-controlled regulon by comparing the transcriptome of untreated wildtype *V. cholerae* to that of wildtype *V. cholerae* treated with 100 µM exogenous norspermidine (Fig. 5A, C) or 100 µM spermidine (Fig. 5B, C). The data reveal that MbaA signaling is highly specific for control of biofilm gene transcription; following norspermidine treatment, 20 of the 31 significantly upregulated genes (log₂ fold-change > 1 and P-value < 0.05 relative to untreated wildtype *V. cholerae*) encode *V. cholerae* biofilm matrix genes, operons, or known biofilm regulators (e.g., *vps-I*, *vps-II*, *rbm* cluster, and *vpsT*) (Fig. 5A, C, Supplementary Data 1). Consistent with this finding, spermidine treatment caused downregulation of these same genes (20 of the 25 downregulated genes) (Fig. 5B, C, Supplementary Data 2). Expression of a few other genes was altered in response to the polyamines, including *nspC*, genes encoding some ribosome components, and some transporters. Crucially, however, no genes involved in other known c-di-GMP-regulated processes were significantly altered by polyamine treatment. We verified these findings by performing the same analyses on the Δ*mbaA* mutant: Norspermidine and spermidine treatment did not alter biofilm gene expression (Fig. 5C, Supplementary Data 3-5). Collectively, these data demonstrate that the two polyamines regulate the *V. cholerae* biofilm lifecycle exclusively through NspS-MbaA, and NspS-MbaA exerts an effect on only a small subset of c-di-GMP-responsive genes.
Figure 5

Fig. 5. Polyamine signaling through the NspS-MbaA circuit specifically controls biofilm gene expression. (A) Volcano plot showing fold changes (FC) in gene expression measured by RNA sequencing of the transcriptome of wildtype *V. cholerae* following administration of 100 µM norspermidine relative to that of the untreated control. *vps* genes are highlighted in red, the horizontal dotted line represents a *p*-value of 0.05 and left and right vertical dashed lines represent log₂ fold-changes of -1 and 1, respectively. Samples were collected at OD₆₀₀ = 0.1 and *N* = 3 biological replicates. Complete datasets are available in the Supplemental Data. (B) As in A for 100 µM spermidine. (C) Heatmap showing fold-changes in *V. cholerae* biofilm gene expression for the indicated treatments and strains relative to untreated wildtype *V. cholerae* (lanes 1-3) or the untreated ΔmbaA strain (lanes 4-5) *V. cholerae*. Red and blue represent increased and decreased gene expression levels, respectively. (D) Identical data as in panel A, re-scaled for ease of comparison to the *V. cholerae* *vpvC*¹²⁴⁰R strain. *vps* genes are highlighted in red and motility genes are depicted in orange. (E) As in D for the *V. cholerae* *vpvC*¹²⁴⁰R strain. (F) Schematic comparing the proposed global (left panel) and local (right panel) models to achieve specificity in c-di-GMP signaling circuits. DGC: Diguanylate cyclase. See text for details. (Reviewed in Dahlstrom and O’Toole, 2017; Hengge, 2021).
We wondered if the ability to drive changes in only a select subset of c-di-GMP-responsive outputs is unique to NspS-MbaA or if other V. cholerae c-di-GMP metabolizing enzymes regulate particular downstream genes with analogous selectivity. To address this question, we focused on specificity stemming from c-di-GMP synthesis by diguanylate cyclases. An especially attractive feature of the NspS-MbaA system is that MbaA diguanylate cyclase activity can be ramped up via exogenous supply of the norspermidine ligand. We are not aware of another individual V. cholerae diguanylate cyclase that can be controlled with high specificity by administration of an identified ligand. To overcome this issue, we exploited a V. cholerae strain that exhibits constitutive VpvC diguanylate cyclase activity due to a point mutation (W240R) (Beyhan and Yildiz, 2007). The mutation “locks” V. cholerae in biofilm-forming mode and dispersal does not occur. Thus, the V. cholerae vpvC^{W240R} mutant, at least phenotypically, mimics wildtype V. cholerae that has been supplied with norspermidine. Unlike wildtype V. cholerae treated with norspermidine (Fig. 5D, rescaled data from 5A), V. cholerae carrying vpvC^{W240R} exhibited broad changes in gene expression (725 genes were differentially expressed relative to wildtype) (Fig. 5E, and Supplementary Data 6). The transcriptomic changes included higher activation of biofilm gene expression than that following norspermidine treatment of wildtype (red points), and, additionally, repression of genes involved in cell motility (orange points), and changes to hundreds of genes required for other processes (black points). Thus, the c-di-GMP synthesized by VpvC^{W240R} causes a dramatic and global reprogramming of V. cholerae gene expression, whereas the c-di-GMP produced by MbaA exclusively regulates biofilm genes.

Two mechanisms have been proposed to account for specificity in the output of c-di-GMP-responsive genes (Hengge, 2021; Massie et al., 2012). First is the “global signaling model” (Fig. 5F, left panel), in which the c-di-GMP produced by a given diguanylate cyclase freely diffuses throughout the cytoplasm, and specificity in target gene expression is achieved entirely by differences in affinities of downstream effectors for c-di-GMP (Hengge, 2021). For example, a
weak diguanylate cyclase, represented by DGC-1 (Fig. 5F, left panel), produces a low level of c-di-GMP. Only effectors with the highest affinities for c-di-GMP detect this change, and in turn, alter genes or proteins in specific pathways. In our schematic, diguanylate cyclase DGC-2, which makes more c-di-GMP than DGC-1, activates the DGC-1 effectors and additional lower-affinity effectors. Consequently, DGC-2 elicits changes in the expression of a larger set of c-di-GMP-regulated genes and the behaviors they specify than does DGC-1. Finally, a strong diguanylate cyclase, represented by DGC-3, produces the highest level of c-di-GMP, activating all c-di-GMP-responsive effectors, which in turn, drive large-scale changes in gene expression and behavior.

In this model, phosphodiesterases operate similarly except, when stimulated, they reduce the global c-di-GMP pool. The second model, termed the “local signaling model”, (Fig. 5F, right panel), posits that diguanylate cyclases and phosphodiesterases convey information only to particular downstream effectors, either through direct protein-protein interactions, or via other means to produce local c-di-GMP pools (Hengge, 2021). In this model, specificity is achieved by directly ferrying c-di-GMP from the diguanylate cyclase enzyme to the effector(s) or by local c-di-GMP degradation in the case of phosphodiesterases.

A global mechanism for c-di-GMP signaling delivers transcriptional specificity, but local c-di-GMP signaling via NspS-MbaA mediates increased polyamine sensitivity

We considered whether local and/or global c-di-GMP signaling mechanisms could explain the differences in transcriptional output specificity that occur due to c-di-GMP produced by NspS-MbaA (highly specific) and that by VpvC_{W240R} (non-specific). An obvious possibility in the context of the global c-di-GMP signaling mechanism is that activation of MbaA by norspermidine treatment only drives low-level production of cytoplasmic c-di-GMP, whereas VpvC_{W240R} generates higher c-di-GMP concentrations. Thus, c-di-GMP produced by MbaA only engages high-affinity biofilm regulatory effectors, while c-di-GMP made by VpvC_{W240R} activates many more effectors. To test this possibility, we used the c-di-GMP reporter to compare the levels of c-di-GMP produced by the two diguanylate cyclases under the same conditions used for our
transcriptomics measurements. The bottom panel of Figure 6 shows the results. Companion transcriptomics results are displayed above those data in heatmaps, categorized by pathway. Indeed, the *V. cholerae* *vpvC^{W240R}* strain produced ~2-3-fold more c-di-GMP than wildtype *V. cholerae* treated with norspermidine. Thus, it is possible that differences in cytoplasmic c-di-GMP concentrations underpin the observed differences in gene expression outputs for the two diguanylate cyclases.

In the context of our analyses, the global c-di-GMP signaling model makes two predictions: (1) if MbaA-produced c-di-GMP were increased to match that of *VpvC^{W240R}*, a broader set of gene expression changes would occur, and specificity for biofilm regulation would be lost. (2) Conversely, if *VpvC^{W240R}* c-di-GMP output were reduced to match that of MbaA following norspermidine treatment, then *VpvC^{W240R}* would specifically regulate biofilm genes. To test whether these predictions hold, we synthetically modulated the amount of c-di-GMP made by MbaA and *VpvC^{W240R}* using the *Ptac* promoter (Fig. 6). Consistent with the global model, *V. cholerae* overexpressing *nspS* and *mbaA* no longer exhibited transcriptional specificity. Rather, 624 genes were differentially regulated relative to wildtype. Notably, biofilm genes showed strong activation and motility genes showed strong repression (Fig. 6, Fig. S3, Supplemental Data 7). To address the second prediction, we controlled the expression of *vpvC^{W240R}* using the arabinose-controllable *Pbad* promoter (Fig. 6, Fig. S3, Supplemental Data 8). Overall, gene expression changed in step with the amount of *VpvC^{W240R}* produced, as dictated by the arabinose inducer concentration. At the arabinose concentration at which the c-di-GMP output most closely matched that of wildtype *V. cholerae* treated with 100 µM norspermidine, the two strains demonstrated nearly identical transcriptomic profiles (Fig. 6, boxed). Unfortunately, this inducible *VpvC^{W240R}* construct did not have sufficient dynamic range to enable us to achieve
the high c-di-GMP levels required for repression of motility genes. Nonetheless, our results suggest that the global c-di-GMP signaling model could explain the specificity of the NspS-MbaA pathway for biofilm gene regulation and the lack of specificity in the VpvCW240R strain.

The above findings suggest that any c-di-GMP diguanylate cyclase/phosphodiesterase enzyme could deliver transcriptional specificity if its levels were appropriately modulated. To determine if this is the case, we used our arabinose induction strategy to modulate the levels of CdgL, another \textit{V. cholerae} diguanylate cyclase. We know that CdgL contributes to the basal c-di-GMP pool because the ΔcdgL mutant possesses reduced cytoplasmic c-di-GMP and exhibits lower biofilm gene expression than does wildtype \textit{V. cholerae}. Indeed, the ΔcdgL mutant behavior is akin to that of wildtype \textit{V. cholerae} treated with 100 µM spermidine (Fig. 6, Fig. S3, Supplemental Data 9). We discovered \textit{cdgL} induction conditions in which the cytoplasmic c-di-GMP level equaled that of wildtype \textit{V. cholerae} treated with 100 µM norspermidine (Fig. 6, boxed). Again, the transcriptional profile of the strain with synthetically modulated CdgL levels mirrored that of wildtype following norspermidine treatment (Fig. 6, Fig. S3, Supplemental Data 9). Together, these results show that c-di-GMP signaling specificity can be achieved exclusively through changes to the global cytoplasmic pool. Thus, local signaling is not required for specificity in transcription.
Figure 6
Fig. 6. **Consequences of global and local c-di-GMP changes on V. cholerae gene expression patterns.** Bottom panel: Mean global c-di-GMP reporter outputs for the indicated strains and conditions relative to untreated wildtype *V. cholerae*. *N* = 3 biological replicates. Strains carrying cloned genes encoding enzymes that synthesize c-di-GMP were grown with 0%, 0.0125%, 0.025%, 0.0375%, 0.05%, or 0.1% arabinose to increasingly induce expression. To prevent excessive biofilm formation from interfering with reporter measurements, we deleted the *vpsL* gene from the *vpvC*^{W240R} and *Ptac-nspS-mbaA* strains. Data were normalized to the Δ*vpsL* parent strain carrying the c-di-GMP reporter. Top panel: Heatmap of log₂ fold-changes for *V. cholerae* biofilm gene expression for the conditions and strains shown in the bottom panel. Genes are grouped by function (biofilm and motility), and red and blue represent increased and decreased expression levels, respectively. Boxed regions designate the gene expression outputs at approximately equal cytoplasmic c-di-GMP levels following norspermidine treatment, arabinose induction of *vpvC*^{W240R}, and arabinose induction of *cdgL*. Samples were collected at OD₆₀₀ = 0.1, complete datasets are available in the Supplemental Data, and volcano plots for each condition are shown in Fig. S3. For transcriptomics studies, the *vpvC*^{W240R} and *Ptac-nspS-mbaA* strains carried intact *vpsL*.

The consistency of our data with the global c-di-GMP signaling model suggests that the MbaA phosphodiesterase should be able to degrade c-di-GMP produced by a different enzyme, such as VpvC^{W240R}. To test this possibility, we administered arabinose to *V. cholerae* carrying *Pbad-vpvC*^{W240R} to achieve c-di-GMP reporter output equal to that of wildtype *V. cholerae* treated with 100 µM norspermidine, as described above and shown in Fig. 6. We subsequently titrated in either norspermidine or spermidine and assessed whether, in response to the ligands, MbaA altered the cytoplasmic concentration of c-di-GMP (Fig. S4). Indeed, norspermidine treatment elevated the c-di-GMP level while spermidine treatment reduced the c-di-GMP level to roughly that of untreated wildtype levels (Fig. S4). These results further demonstrate the global nature of c-di-GMP signaling by showing that MbaA can contribute to and deplete the global cytoplasmic c-di-GMP pool, the level of which is set by the combined activities of the suite of *V. cholerae* diguanylate cyclases and phosphodiesterases. Collectively, our results suggest that in *V. cholerae*, specificity in the biofilm gene expression output response to c-di-GMP signaling does not require local c-di-GMP signaling and can be achieved via global changes in cytoplasmic c-di-GMP levels (Fig. 6).
The existence of global c-di-GMP signaling does not eliminate the possibility that local c-di-GMP signaling could also take place. Indeed, our data indicate that MbaA transmits c-di-GMP directly to select downstream biofilm effectors through a local mechanism, as evidenced by activation of vpsL-lux (Fig. 4) and other genes encoding components required for biofilm formation (Fig. 6, Fig. S3, Supplemental Data 10) at norspermidine concentrations that are too low (≤10 µM) to elicit increases to the global cytoplasmic c-di-GMP pool (Fig. 4). The proposed local signaling mechanism employed by the NspS-MbaA circuit sensitizes V. cholerae to sub-micromolar concentrations of polyamines. This feature of the NspS-MbaA system presumably allows V. cholerae to modify its biofilm lifecycle in response to physiologically relevant polyamine concentrations. Fig. 7 presents a schematic that reconciles the findings presented here and offers a model for how ligand sensitivity and signaling specificity are achieved through both local and global signaling.

Figure 7
Fig. 7. Model for local and global c-di-GMP signaling for the NspS-MbaA pathway in V. cholerae. At low norspermidine concentrations, NspS-MbaA transmits c-di-GMP directly to particular high affinity biofilm effectors via a local mechanism. This local mechanism sensitizes V. cholerae to norspermidine. At high norspermidine concentrations, when the NspS-MbaA diguanylate cyclase activity is maximal, the level of c-di-GMP that MbaA produces surpasses the amount that can be accommodated in the local pool. The extra c-di-GMP is contributed to the global pool and in principle becomes accessible to additional effectors. However, as shown in the results in Fig. 6, only the subset of transcription effectors with the highest affinity for c-di-GMP, i.e., those regulating biofilm gene expression, detect these low-level changes to the global c-di-GMP pool. In the case of NspS-MbaA signaling, it appears that this subset of effectors is saturated by the local signaling mechanism. Thus, specificity in biofilm gene expression output is retained across all norspermidine ligand levels (Fig. 6). Under artificial conditions, such as overexpression of nspS and mbaA by Ptac, the global c-di-GMP pool is driven higher, lower affinity effectors that control genes other than those involved in biofilms are engaged, and gene expression output specificity is lost.

Discussion

In this study, we performed a quantitative analysis of signal transmission via the second-messenger molecule c-di-GMP by characterizing the NspS-MbaA polyamine signaling circuit in V. cholerae. Our work uncovers how the pathway functions, from ligand binding to behavioral output. The parameter values from our mathematical model, which are underpinned by experimental data, suggest that high-affinity import depletes nearly all norspermidine from the periplasm of wildtype V. cholerae. As a result, NspS is unliganded; however, the parameter values also suggest that a small fraction of apo-NspS exists in the conformation that can bind MbaA, resulting in slight MbaA diguanylate cyclase activity and consequently some production of cytoplasmic c-di-GMP. If apo-NspS could not bind MbaA, MbaA would exhibit maximal phosphodiesterase activity (akin to the experimental results from Fig. 1C), and V. cholerae would not respond to fluxes of spermidine. On the other hand, if a large fraction of apo-NspS could bind to MbaA, MbaA would exhibit maximal diguanylate cyclase activity (akin to the experimental results from Fig. 1E), and V. cholerae would not respond to fluxes in norspermidine. Thus, a key takeaway from our modeling is that confining apo-NspS-MbaA complex formation to a low level underlies the capacity of V. cholerae cells to respond to both norspermidine and spermidine. In the future, the predictive capability of our model could be used, most powerfully in conjunction...
with genetic or synthetic biology approaches, to further characterize polyamine-mediated control of *V. cholerae* biofilms.

Bacterial species frequently possess dozens of receptors harboring c-di-GMP biosynthetic and catabolic activities, underscoring the widespread and conserved nature of these signaling pathways (Conner et al., 2017). Because of the central importance of c-di-GMP-based regulation of bacterial lifestyle decision making processes, c-di-GMP pathways have been proposed as potential targets for the development of therapeutics that modify bacterial behavior (Trebin et al., 2021). Success in such an endeavor could be accelerated by quantitative understanding of the input-output relationships for specific c-di-GMP signaling circuits. A significant obstacle to progress is that for the vast majority of c-di-GMP signaling systems, the ligands that stimulate the receptors remain unknown (Jenal et al., 2017). Nevertheless, the framework presented here to study the NspS-MbaA system can be adapted to other c-di-GMP signaling systems, even in the absence of knowledge of the ligands, to motivate experimental approaches and perhaps hasten targeting of c-di-GMP systems in biomedical applications.

In addition to the modeling effort, we used the NspS-MbaA pathway as a case study to explore the roles of local and global c-di-GMP signaling pools. We find that c-di-GMP-driven specificity in transcription of biofilm genes in *V. cholerae* does not require localized signaling, as evidenced by our results following titrations of VpvC^{W240R} and CdgL (Fig. 6). This result is presumably a consequence of effectors with the highest affinity for c-di-GMP accessing the global pool and, in turn activating transcription of biofilm genes (Fig. 4, 6, and 7). Nonetheless, our results strongly imply that NspS-MbaA must also be capable of transmitting c-di-GMP directly to particular effectors to alter downstream *vps* expression at low extracellular polyamine ligand levels that are insufficient to affect the concentration of the global c-di-GMP pool (Fig. 7). Because the output gene expression pattern is identical under conditions in which NspS-MbaA signals exclusively locally (i.e., 10 µM norspermidine) or locally and globally (i.e., when NspS-MbaA is saturated at 100 µM norspermidine), we presume that MbaA signals locally to the same set of
effectors (i.e., those responsible for regulating biofilm genes) that detect changes to the global c-di-GMP levels with high affinity. Thus, in the case of the NspS-MbaA system, while localized signaling is not required for specificity, it does confer higher sensitivity to polyamines than could be achieved if the relevant downstream effectors only responded to MbaA-driven changes to the global c-di-GMP pool (Fig. 4 and 7). It is possible that in other c-di-GMP signaling systems, the effectors responsible for conveying local signals differ from the high-affinity global effectors. In such cases, output specificity, or lack thereof, could be governed by stimuli levels: At low stimulus concentrations, specificity could be achieved through direct c-di-GMP transmission to a local partner effector, analogous to the scenario we present for NspS-MbaA. However, at high stimulus concentrations, the c-di-GMP produced could exceed the amount required to saturate the local effectors, that c-di-GMP would leak into the global c-di-GMP pool, alter its levels, and drive broad changes to gene expression. Thus, unlike for NspS-MbaA, output specificity would decline with increasing stimulus concentration.

To prove the existence of the NspS-MbaA localized mechanism, it will be necessary to define the downstream effectors that partner with NspS-MbaA. While not verified at present, we suspect that the c-di-GMP responsive transcription factors VpsT and/or VpsR are the key effectors and they are the focus of our ongoing work in this direction (Hsieh et al., 2018; Krasteva et al., 2010). VpsT and VpsR are the master regulators of *V. cholerae* biofilm gene expression and could interact with the MbaA catalytic domains (Teschler et al., 2015). In this regard, VpsT could act doubly as a c-di-GMP effector as it is also known to regulate motility (Krasteva et al., 2010). Direct interactions between c-di-GMP metabolizing enzymes and downstream effectors have been demonstrated in other systems (Dahlstrom and O’Toole, 2017). It is also worth noting that in the current work, we restricted our analyses to the transcriptional output in response to NspS-MbaA-directed c-di-GMP signal transduction. It remains possible that NspS-MbaA also controls c-di-GMP-dependent processes by post-transcriptional mechanisms, again acting either locally or globally.
It is increasingly appreciated that from bacteria to humans, second-messenger molecules have the remarkable capacity to signal with high specificity despite their general use in an array of processes in the same cell and in the face of their high diffusivity. Indeed, as one example, calcium signaling in eukaryotes relies on many of the principles germane to c-di-GMP signaling in bacteria: Calcium signal transduction lies at the core of cell physiology and function, there exist multiple sources of the calcium messenger molecule, it is diffusible, and a large set of effectors respond to changes in its levels (Bootman, 2012). A rich body of literature demonstrates that calcium signaling fidelity is achieved via formation of local microdomains that promote directed signal transmission (Berridge, 2006). Thus, in different guises, evolution has solved the same issues associated with generically used, diffusible second-messenger signaling by devising mechanisms for locally restricting signal transduction.
Methods

Model description

To describe the relation between periplasmic polyamine concentrations and c-di-GMP output from the NspS-MbaA circuit, we developed a two-state receptor model for MbaA. We assume that MbaA exists in one of two states: the diguanylate cyclase state or the phosphodiesterase state, which presumably correspond to distinct conformations of the MbaA homodimer. The average phosphodiesterase activity of MbaA, \(\langle A_{\text{PDE}} \rangle \), is equivalent to the probability of being in the phosphodiesterase state, which in the equilibrium statistical mechanical description is determined exclusively by the free-energy offset between the phosphodiesterase and diguanylate cyclase states, \(f_{\text{MbaA}} \) (with all energies in units of the thermal energy \(k_B T \)):

\[
\langle A_{\text{PDE}} \rangle = \frac{1}{1 + \exp(f_{\text{MbaA}})}.
\] (1)

As a consequence, the diguanylate cyclase activity of MbaA, \(\langle A_{\text{DGC}} \rangle \), is given by \(\langle A_{\text{DGC}} \rangle = 1 - \langle A_{\text{PDE}} \rangle \). \(f_{\text{MbaA}} \) is a function of the intrinsic (NspS-free) free-energy offset between the phosphodiesterase and diguanylate cyclase states, \(\epsilon_{\text{MbaA}} \), the concentration of free NspS in the closed conformation, \(N_{\text{free}}^{\text{closed}} \), and the binding constant of MbaA in the diguanylate cyclase state for the closed conformation of NspS, \(K_{\text{MbaA}} \):

\[
f_{\text{MbaA}} = \epsilon_{\text{MbaA}} + \log \left[1 + \frac{N_{\text{free}}^{\text{closed}}}{K_{\text{MbaA}}} \right].
\] (2)

\(N_{\text{free}}^{\text{closed}} \), in turn, is a function of \(\epsilon_{\text{MbaA}} \) and \(K_{\text{MbaA}} \), as well as the intrinsic free-energy offset between the open and closed states of apo-NspS (\(\epsilon_{\text{NspS}} \)), periplasmic norspermidine and spermidine concentrations (\(n_{\text{peri}} \) and \(s_{\text{peri}} \), respectively), the molar ratio of MbaA to NspS (\(R \)), the binding constants of each NspS conformation for norspermidine and spermidine (\(K_{\text{nspd}} \) and \(K_{\text{spd}} \), respectively), and the total concentration of NspS (\(N \)) (see Supplementary Materials for the full derivation):
We incorporated $\langle A_{\text{PDE}} \rangle$ and $\langle A_{\text{DGC}} \rangle$ in a system of ordinary differential equations, which model the effect of a constant extracellular polyamine source on the steady-state proportions of MbaA homodimers in the phosphodiesterase and diguanylate cyclase states and the effect of MbaA activity on the cytoplasmic c-di-GMP concentration (for parameter definitions, see Table 1):

$$\frac{dn_{\text{peri}}}{dt} = \alpha + \beta_n (n_{\text{ext}} - n_{\text{peri}}) - \frac{\psi P n_{\text{peri}}/K_{n_{\text{polD1}}}^n}{1 + s_{\text{peri}}/K_{n_{\text{polD1}}}^s + n_{\text{peri}}/K_{n_{\text{polD1}}}^s}$$ \hspace{1cm} (4)

$$\frac{ds_{\text{peri}}}{dt} = \beta_s (s_{\text{ext}} - s_{\text{peri}}) - \frac{\varphi P s_{\text{peri}}/K_{n_{\text{polD1}}}^s}{1 + s_{\text{peri}}/K_{n_{\text{polD1}}}^s + s_{\text{peri}}/K_{n_{\text{polD1}}}^s}$$ \hspace{1cm} (5)

$$\frac{dc}{dt} = \gamma + \lambda \langle A_{\text{DGC}} \rangle - (\mu + \nu \langle A_{\text{PDE}} \rangle)c.$$

(6)
Table 1: Model Parameters

Symbol	Description	Value
N	Total concentration of NspS.	16.7 μM
R	Molar ratio of MbaA to NspS.	1
n_{ext}	Extracellular concentration of norspermidine.	Input
s_{ext}	Extracellular concentration of spermidine.	Input
K_{spd}	Dissociation constant of spermidine from NspS in the open conformation.	48.0 nM
K_{nspd}	Dissociation constant of norspermidine from NspS in the closed conformation.	0.5 nM
ϵ_{Nsps}	Free-energy offset between the open and closed conformations of apo-NspS.	$-4.87 \, k_B \, T$
ϵ_{MbaA}	Free-energy offset between the phosphodiesterase and diguanylate cyclase states of MbaA in the absence of NspS.	$-1.214 \, k_B \, T$
K_{MbaA}	Dissociation constant of closed-conformation NspS from diguanylate-cyclase-state MbaA.	50 nM
ψ	Rate of norspermidine transport from the periplasm to the cytoplasm by PotD1.	$10.6/t$
φ	Rate of spermidine transport from the periplasm to the cytoplasm by PotD1.	$5.7/t$
P	Periplasmic concentration of PotD1.	10 μM
α	Rate of norspermidine production and export to the periplasm.	22.5 μM/t
β_{n}	Rate of diffusion of extracellular norspermidine across the outer membrane.	$5/t$
β_{s}	Rate of diffusion of extracellular spermidine across the outer membrane.	$5/t$
K_{PotD1}^n	Michaelis constant for PotD1-norspermidine.	1 nM
K_{PotD1}^h	Michaelis constant for PotD1-spermidine.	434 nM
γ	Background rate of c-di-GMP production.	20 μM/t
ν	Background rate of c-di-GMP degradation.	$1/t$
μ	Rate of c-di-GMP degradation by MbaA.	$0.78/t$
λ	Rate of c-di-GMP synthesis by MbaA.	7.8 μM/t

*In this table, parameter values with units of inverse time $1/t$ are denoted value/t, where t is an arbitrary unit of time.

Model fitting procedure

To fit the mathematical model to our experimentally obtained c-di-GMP reporter assay data, we set n_{ext} and s_{ext} equal to the experimentally supplied concentrations of norspermidine and spermidine, respectively, initialized the state variables, and simulated (3-5) to a steady state over a range of parameter values. To optimize the parameter values, we used nonlinear least squares, which seeks a minimizing vector of parameter values, x^*, for a nonlinear objective function, F, of the form
\[
\min_x F(x) \equiv \min_x \frac{1}{2} \| r(x) \|_2^2 = \min_x \frac{1}{2} \sum_{i=1}^{m} r_i(x)^2,
\]

(7)

where \(r_i(x) \) are the residuals representing the offset between each measured data point \((y_i) \) and the modeled steady-state c-di-GMP output \((c^*) \) when the supplied norspermidine and spermidine concentrations are \(n_i \) and \(s_i \), respectively:

\[
r_i(x) = y_i - q c^*(x, n_i, s_i).
\]

(8)

In (8), the model c-di-GMP output is scaled by a constant \(q \), because the c-di-GMP reporter responds linearly with cytoplasmic c-di-GMP concentration (Zhou et al., 2016). To perform this optimization task, we implemented the Levenberg-Marquardt algorithm through the lmfit package in Python 3 (Van Rossum and Drake Jr, 1995) (see Supplementary Materials for further details). The fitted parameter values are shown in Table 1.

Calculating the \(K_d \) values for the different NspS conformations from ITC measurements

We calculated the binding affinity of norspermidine for the closed conformation of NspS \((K_{nspd}) \) based on the equilibrium fraction of NspS bound to norspermidine. In general, in the absence of spermidine, this fraction is given by

\[
P_{\text{bound}} = \frac{e^{\epsilon_{\text{NspS}} n_{\text{peri}} \frac{1}{K_{\text{nspd}}}}}{1 + e^{\epsilon_{\text{NspS}} (\frac{n_{\text{peri}}}{K_{\text{nspd}}} + 1)}},
\]

(9)

where \(\epsilon_{\text{NspS}} \) denotes the intrinsic free-energy offset between the open and closed conformations of NspS. Thus, the relation between the measured apparent binding affinity, \(K_d^n \), and the closed-conformational binding affinity, is given by

\[
K_d^n = \frac{K_{\text{nspd}} (1 + \exp(\epsilon_{\text{NspS}}))}{\exp(\epsilon_{\text{NspS}})}.
\]

(10)
Similarly, the relation between the measured binding affinity of spermidine for NspS, K_d^*, and the binding affinity of spermidine for open NspS, K_{spd}, is given by

$$K_d^* = K_{spd}(1 + \exp(\epsilon_{NspS})).$$

(11)

Bacterial strains, reagents, reporters, imaging assays, and western blots

The wildtype *V. cholerae* parent used in this work was *V. cholerae* O1 El Tor biotype C6706str2. All strains used in this work are reported in Table S1. When necessary, antimicrobials were supplied at the following concentrations: polymyxin B, 50 μg/mL; kanamycin, 50 μg/mL; spectinomycin, 200 μg/mL; chloramphenicol, 10 μg/mL; and gentamicin, 15 μg/mL. Strains used for cloning were propagated on lysogeny broth (LB) plates supplemented with 1.5% agar or in liquid LB with shaking at 30°C. Strains used in reporter quantitation, biofilm assays, and RNA isolation were grown in M9 minimal medium with 0.5% dextrose and 0.5% casamino acids. Norspermidine (Millipore Sigma, I1006-100G-A), spermidine (Millipore Sigma, S2626-1G), and arabinose (Millipore Sigma, W325501) were added at the concentrations designated in the figures or figure legends at the start of each assay. c-di-GMP, vpsL-lux, and biofilm biomass over time were measured as previously described (Bridges and Bassler, 2019, 2021; Bridges et al., 2020).

The heatmap of peak biofilm biomass in Fig. 4 employed brightfield images that were obtained using a Biotek Cytation 7 imaging plate reader and a 20x objective lens. All plots were generated using Python 3 (Van Rossum and Drake Jr, 1995). Western blotting of MbaA-3xFLAG and NspS-3xFLAG was performed as described previously (Bridges and Bassler, 2021).

DNA manipulation and strain construction

Modifications to the *V. cholerae* genome were generated by replacing genomic DNA with linear DNA introduced by natural transformation as described previously (Bridges et al., 2020). PCR and Sanger sequencing (Genewiz) were used to verify results. See Table S2 for primers and g-blocks (IDT) used in this study. Due to overlap between the nspS and mbaA coding regions,
gene synthesis was used to simultaneously produce \textit{nspS-3xFLAG} at the endogenous locus and preserve the downstream coding sequence of \textit{mbaA}. To achieve this arrangement, the \textit{nspS-}
\textit{mbaA} overlapping region was duplicated. The \textit{nspS} codon usage was altered in the upstream duplication while preserving the amino acid sequence, and the 5'-most \textit{mbaA} start codon was disabled by mutation. DNA encoding \textit{3xFLAG} was introduced immediately upstream of the \textit{nspS} stop codon. DNA specifying a flexible linker (5x glycine, serine repeats) was inserted between the DNA encoding the 3' terminus of NspS and the 5' start of the DNA encoding the \textit{3xFLAG} tag. We found that such a linker was required for function. Arabinose titratable \textit{Pbad} expression constructs were introduced at the neutral locus, \textit{vc1807}. Reporters expressed on plasmids were introduced into \textit{V. cholerae} strains via conjugation with \textit{E. coli} S17 \textit{\lambda}pir.

\textbf{NspS protein purification and isothermal titration calorimetry}

DNA encoding NspS-6xHis, excluding its secretion signal (residues 1-34), was cloned into the pET-15b vector using Gibson assembly (NEB). Production of NspS-6xHis protein was initiated in \textit{E. coli} BL21 (DE3) by the addition of 1 mM IPTG, followed by growth with shaking for 20 h at 18°C. The cells were pelleted at 16,000 x \textit{g} for 20 min and resuspended in lysis buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 10 mM imidazole, 1 mM DTT, 0.2 mg/mL lysozyme, 25 u/mL benzonase nuclease, and 1x EDTA-free protease inhibitor cocktail (Roche)). The cells were lysed using sonication and subjected to centrifugation at 32,000 x \textit{g} for 30 min. NspS-6xHis protein was purified from the clarified supernatant using Ni-NTA Superflow resin (Qiagen) equilibrated in lysis buffer. The column was washed three times with 10x column volumes of wash buffer (50 mM Tris-HCl pH 8.0, 300 mM NaCl, 20 mM Imidazole, 1 mM DTT, and 1x EDTA-free protease inhibitor cocktail) and the protein was eluted with the same buffer except containing 300 mM imidazole. The eluate was immediately concentrated and subjected to a Superdex-200 size exclusion column (GE Healthcare) in gel filtration buffer (reduced salt PBS - 1.8 mM KH\textsubscript{2}PO\textsubscript{4}, 10 mM
Na$_2$HPO$_4$, 2.7 mM KCl, and 75 mM NaCl). Peaks containing the highest purity protein were collected, and the protein was stored on ice and subjected to ITC as soon as possible.

The binding affinities of polyamines to NspS-6xHis were measured using a MicroCal PEAQ-ITC (Malvern) instrument at 25 °C. Norspermidine and spermidine were each dissolved in the above gel filtration buffer. To measure K_d values, the indicated concentrations of each polyamine were titrated into a solution containing 7 μM apo-NspS-6xHis with continuous stirring at 750 rpm. The instrument was controlled with PEAQ-ITC Control software (MicroCal) and results were fitted and evaluated by the PEAQ-ITC Analysis software (MicroCal).

RNA isolation and sequencing

Overnight cultures of the indicated *V. cholerae* strains, grown in biological triplicate, were diluted to OD$_{600}$ ~0.001 in 5 mL of fresh M9 medium. These sub-cultures were grown at 30° C with shaking in the presence of the designated polyamine and/or arabinose to OD$_{600}$ = 0.1. Cells were harvested by centrifugation for 10 min at 3200 x g and resuspended in RNAprotect (Qiagen). RNA was isolated using the RNeasy mini kit (Qiagen), remaining DNA was digested using the TURBO DNA-free kit (Invitrogen), and the concentration and purity of RNA were measured using a NanoDrop instrument (Thermo). Samples were flash frozen in liquid nitrogen and stored at -80°C until they were shipped on dry ice to the Microbial Genome Sequencing Center (MIGS; https://www.migscenter.com/rna-sequencing). Upon sample submission, the 12 million paired-end reads option and the intermediate analysis package were selected for each sample. As per the MIGS project report, quality control and adapter trimming were performed with bcl2fastq (Illumina), while read mapping was performed with HISAT2 (Kim et al., 2019). Read quantitation was performed using the Subread’s featureCounts (Liao et al., 2014) functionality, and subsequently, counts were loaded into R (R Core Team) and normalized using edgeR’s (Robinson et al., 2010) Trimmed Mean of M values (TMM) algorithm. Values were converted to counts per million (cpm) and differential expression analyses were performed using edgeR’s
Quasi-Linear F-Test (qlfTest) functionality against treatment groups, as indicated. Heatmaps and volcano plots were produced in Python 3 (Van Rossum and Drake Jr, 1995).

Data and code availability

All data generated in this study and codes used for data analysis and plotting are included in the manuscript and supporting files.

Acknowledgements

We thank the members of the Bassler and Wingreen groups for insightful comments and ideas. Isothermal Titration Calorimetry was performed in the Princeton Biophysics Core Facility with Venu Vandavasi. This work was supported by the Howard Hughes Medical Institute (B.L.B.); the National Science Foundation through the Center for the Physics of Biological Function (PHY-1734030), as well as NSF grants MCB-1713731 (B.L.B.) and MCB-1853602 (B.L.B. and N.S.W.); NIH grants 1R21AI144223 (B.L.B. and N.S.W.), 2R37GM065859 (B.L.B.), GM082938 (N.S.W.), and 1K99AI158939 (A.A.B); and the Max Planck Society-Alexander von Humboldt Foundation (B.L.B.). During this work, A.A.B. was a Howard Hughes Medical Institute Fellow of the Damon Runyon Cancer Research Foundation (DRG-2302-17).
References

Berridge, M.J. (2006). Calcium microdomains: organization and function. Cell Calcium 40, 405–412.

Beyhan, S., and Yildiz, F.H. (2007). Smooth to rugose phase variation in Vibrio cholerae can be mediated by a single nucleotide change that targets c-di-GMP signalling pathway. Mol Microbiol 63, 995–1007.

Bootman, M.D. (2012). Calcium signaling. Cold Spring Harb Perspect Biol 4, a011171.

Bridges, A.A., and Bassler, B.L. (2019). The intragenus and interspecies quorum-sensing autoinducers exert distinct control over Vibrio cholerae biofilm formation and dispersal. PLoS Biol. 17, e3000429.

Bridges, A.A., and Bassler, B.L. (2021). Inverse regulation of Vibrio cholerae biofilm dispersal by polyamine signals. eLife 10, e65487.

Bridges, A.A., Fei, C., and Bassler, B.L. (2020). Identification of signaling pathways, matrix-digestion enzymes, and motility components controlling Vibrio cholerae biofilm dispersal. PNAS 117, 32639–32647.

Cockerell, S.R., Rutkovsky, A.C., Zayner, J.P., Cooper, R.E., Porter, L.R., Pendergraft, S.S., Parker, Z.M., McGinnis, M.W., and Karatan, E. (2014). Vibrio cholerae NspS, a homologue of ABC-type periplasmic solute binding proteins, facilitates transduction of polyamine signals independent of their transport. Microbiology 160, 832–843.

Conner, J.G., Zamorano-Sánchez, D., Park, J.H., Sondermann, H., and Yildiz, F.H. (2017). The ins and outs of cyclic di-GMP signaling in Vibrio cholerae. Curr Opin Microbiol 36, 20–29.

Dahlstrom, K.M., and O'Toole, G.A. (2017). A symphony of cyclases: specificity in diguanylate cyclase signaling. Annu Rev Microbiol 71, 179–195.

Dow, J.M., Fouhy, Y., Lucey, J.F., and Ryan, R.P. (2006). The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. Mol Plant Microbe Interact 19, 1378–1384.

Flemming, H.-C., and Wingender, J. (2010). The biofilm matrix. Nat Rev Microbiol 8, 623–633.

Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A., and Kjelleberg, S. (2016). Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14, 563–575.

Guilhen, C., Forestier, C., and Balestrino, D. (2017). Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties. Mol Microbiol 105, 188–210.

Hengge, R. (2021). High-specificity local and global c-di-GMP signaling. Trends Microbiol 0.

Hsieh, M.-L., Hinton, D.M., and Waters, C.M. (2018). VpsR and cyclic di-GMP together drive transcription initiation to activate biofilm formation in Vibrio cholerae. Nucleic Acids Res 46, 8876–8887.
Jenal, U., Reinders, A., and Lori, C. (2017). Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15, 271–284.

Karatan, E., Duncan, T.R., and Watnick, P.I. (2005). NspS, a predicted polyamine sensor, mediates activation of *Vibrio cholerae* biofilm formation by norspermidine. J Bacteriol 187, 7434–7443.

Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37, 907–915.

Krasteva, P.V., Fong, J.C.N., Shikuma, N.J., Beyhan, S., Navarro, M.V.A.S., Yildiz, F.H., and Sondermann, H. (2010). *Vibrio cholerae* VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327, 866–868.

Lee, J., Sperandio, V., Frantz, D.E., Longgood, J., Camilli, A., Phillips, M.A., and Michael, A.J. (2009). An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in *Vibrio cholerae*. J Biol Chem 284, 9899–9907.

Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930.

Mah, T.-F., Pitts, B., Pellock, B., Walker, G.C., Stewart, P.S., and O’Toole, G.A. (2003). A genetic basis for *Pseudomonas aeruginosa* biofilm antibiotic resistance. Nature 426, 306–310.

Massie, J.P., Reynolds, E.L., Koestler, B.J., Cong, J.-P., Agostoni, M., and Waters, C.M. (2012). Quantification of high-specificity cyclic diguanylate signaling. PNAS 109, 12746–12751.

McGinnis, M.W., Parker, Z.M., Walter, N.E., Rutkovsky, A.C., Cartaya-Marin, C., and Karatan, E. (2009). Spermidine regulates *Vibrio cholerae* biofilm formation via transport and signaling pathways. FEMS Microbiol Lett 299, 166–174.

R Core Team R: A language and environment for statistical computing.

Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140.

Römling, U., Galperin, M.Y., and Gomelsky, M. (2013). Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77, 1–52.

Shaw, T., Winston, M., Rupp, C.J., Klapper, I., and Stoodley, P. (2004). Commonality of elastic relaxation times in biofilms. Phys Rev Lett 93, 098102.

Simm, R., Morr, M., Kader, A., Nimtz, M., and Römling, U. (2004). GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53, 1123–1134.

Sobe, R.C., Bond, W.G., Wotanis, C.K., Zayner, J.P., Burriss, M.A., Fernandez, N., Bruger, E.L., Waters, C.M., Neufeld, H.S., and Karatan, E. (2017). Spermine inhibits *Vibrio cholerae* biofilm formation through the NspS–MbaA polyamine signaling system. Journal of Biological Chemistry 292, 17025–17036.
Teschler, J.K., Zamorano-Sánchez, D., Utada, A.S., Warner, C.J.A., Wong, G.C.L., Linnington, R.G., and Yildiz, F.H. (2015). Living in the matrix: assembly and control of *Vibrio cholerae* biofilms. Nat Rev Microbiol 13, 255–268.

Trebino, M.A., Shingare, R.D., MacMillan, J.B., and Yildiz, F.H. (2021). Strategies and approaches for discovery of small molecule disruptors of biofilm physiology. Molecules 26, 4582.

Van Rossum, G., and Drake Jr, F.L. (1995). Python tutorial.

Young, E.C., Baumgartner, J.T., Karatan, E., and Kuhn, M.L. (2021). A mutagenic screen reveals NspS residues important for regulation of *Vibrio cholerae* biofilm formation. Microbiology.

Zamorano-Sánchez, D., Xian, W., Lee, C.K., Salinas, M., Thongsomboon, W., Cegelski, L., Wong, G.C.L., and Yildiz, F.H. (2019). Functional specialization in *Vibrio cholerae* diguanylate cyclases: distinct modes of motility suppression and c-di-GMP production. mBio 10, e00670-19.

Zhou, H., Zheng, C., Su, J., Chen, B., Fu, Y., Xie, Y., Tang, Q., Chou, S.-H., and He, J. (2016). Characterization of a natural triple-tandem c-di-GMP riboswitch and application of the riboswitch-based dual-fluorescence reporter. Sci Rep 6, 20871.
Figure S1

A) Wildtype

B) MbaA-3xFLAG
NspS-3xFLAG

C) R1 R2 R3

MbaA-3xFLAG
NspS-3xFLAG

D) Norspermidine

E) Spermidine

\[[\text{NspS}] = 7.0 \, \mu\text{M} \]
\[[\text{nspd}] = 110 \, \mu\text{M} \]
\[N(\text{sites}) = 0.900 \pm 8.6e-3 \]
\[K_D = 67.1 \pm 12.2 \, n\text{M} \]
\[\Delta H = -7.89 \pm 0.14 \text{ kcal/mol} \]
\[\text{Offset} = -1.48 \pm 6.1e-2 \text{ kcal/mol} \]
\[\Delta G = -9.79 \text{ kcal/mol} \]
\[-T\Delta S = -1.90 \text{ kcal/mol} \]

\[[\text{NspS}] = 7.0 \, \mu\text{M} \]
\[[\text{spd}] = 90 \, \mu\text{M} \]
\[N(\text{sites}) = 0.917 \pm 1.3e-2 \]
\[K_D = 48.4 \pm 14.7 \, n\text{M} \]
\[\Delta H = -4.80 \pm 0.14 \text{ kcal/mol} \]
\[\text{Offset} = -1.13 \pm 7.1e-2 \text{ kcal/mol} \]
\[\Delta G = -9.98 \text{ kcal/mol} \]
\[-T\Delta S = -5.19 \text{ kcal/mol} \]
Fig. S1. In vivo stoichiometry of NspS and MbaA proteins and ITC measurements of binding constants. (A) Relative c-di-GMP reporter output for wildtype V. cholerae (left panel) and V. cholerae harboring mbaA-3x-FLAG and nspS-3xFLAG (right panel) expressed from the native locus on the chromosome. Treatments: No addition (designated Ctrl), 100 µM spermidine, and 100 µM norspermidine. (B) Western blot of MbaA-3xFLAG and NspS-3xFLAG. R1, R2, and R3 designate three biological replicates. (C) SDS-PAGE gel showing purity of the NspS-6xHis protein used for ITC measurements. Molecular weight markers are designated on the left. The arrow on the right shows the position of NspS-6xHis. (D) ITC data, plot, and calculated values for norspermidine binding to purified NspS-6xHis. (E) As in D for spermidine.
Fig. S2. *MbaA-3xFLAG levels can be controlled by arabinose and quantified.* Representative western blot (top) and companion quantitation (bottom) of *MbaA-3xFLAG* levels for *V. cholerae* carrying *mbaA-3xFLAG* at the endogenous *mbaA* locus (referred to as WT, leftmost lane and companion bars), and for the *V. cholerae ΔmbaA Pbad-mbaA-3xFLAG* strain following induction by the indicated arabinose concentrations (right three lanes and companion bars). RpoA was used as the loading control in the western blot.
Biofilm gene expression specificity can be achieved by altering the global cytoplasmic c-di-GMP level. Volcano plots showing fold-changes (FC) in gene expression relative to the corresponding controls, measured by RNA sequencing. Fold-changes were quantified relative to untreated wildtype *V. cholerae* for all conditions except those involving arabinose, which were compared to the wildtype strain treated with the equivalent arabinose concentration. Plots represent the full transcriptional profiles for the strains and conditions shown in Fig. 6. Biofilm genes are highlighted in red and motility genes are depicted in orange. The horizontal dotted line represents a *p*-value of 0.05 and left and right vertical dashed lines represent log₂-fold-changes of -1 and 1, respectively. Samples were collected at OD₆₀₀ = 0.1 and *N* = 3 biological replicates. Complete datasets are available in the Supplemental Data.
Fig. S4. **The NspS-MbaA system can modify the c-di-GMP pool established by VpvCW240R.** Experimentally obtained results for c-di-GMP reporter output in *V. cholerae* carrying *Pbad-vpvCW240R* treated with 0.0125% arabinose, for the indicated polyamine concentrations, displayed as a heatmap. Throughout the manuscript, data in c-di-GMP output heatmaps are displayed as percent differences compared to the untreated wildtype strain, with teal representing low and purple representing high c-di-GMP reporter output, respectively.
Table S1. Strains used in this study.

Strain Number	Genotype	Plasmid	Antibiotic Resistance	Origin
BB_Vc_0090	Wildtype O1 El Tor biotype C6706str2	-	Sm	Laboratory wildtype
AB_Vc_761	Δvc1807::CmR (Referred to as wildtype in this work)	-	Sm, Cm	Bridges et al. 2020
AB_Vc_956	Wildtype	pFY4357::GmR	Sm, Gm	Bridges et al. 2021
AB_Vc_977	ΔnspS Δvc1807::KanR	pFY4357::GmR	Sm, Gm, Kan	Bridges et al. 2021
AB_Vc_975	ΔmbaA Δvc1807::KanR	pFY4357::GmR	Sm, Gm, Kan	Bridges et al. 2021
AB_Vc_969	ΔpotD1 Δvc1807::CmR	pFY4357::GmR	Sm, Gm, Cm	Bridges et al. 2021
AB_Vc_1122	mbaA-3xFLAG nspS-3xFLAG Δvc1807::SpecR	-	Sm, Spec	NT of AB_Vc_835
AB_Vc_1133	mbaA-3xFLAG nspS-3xFLAG Δvc1807::SpecR	pFY4357::GmR	Sm, Gm, Spec	Conj of AB_Vc_1122
AB_Ec_064	E. coli BL21 (DE3)	pET15B::npsS-6xHis::AmpR	Amp	Transformation of BL21
AB_Vc_835	mbaA-3xFLAG Δvc1807::KanR	-	Sm, Kan	Bridges et al. 2021
AB_Vc_1182	ΔmbaA Δvc1807::Pbad-mbaA-3xFLAG::SpecR ΔlacIZ::KanR	-	Sm, Spec, Kan	NT of AB_Vc_1181
JP_Vc_1192	ΔnspC Δvc1807::KanR	pFY4357::GmR	Sm, Spec, Kan	Conj of AB_Vc_1182
AB_Vc_960	ΔnspC ΔpotD1 Δvc1807::KanR	pFY4357::GmR	Sm, Gm, Kan	Conj of AB_Vc_993
AB_Vc_994	ΔnspC ΔpotD1 Δvc1807::KanR	-	Sm, Kan	NT of AB_Vc_711
AB_Vc_801	Δvc1807::KanR	pEVS143-Ppsic-lux::CmR	Sm, Cm, Kan	Bridges et al. 2020
AB_Vc_1088	vpvcW240R Δvc1807::SpecR	-	Sm, Spec	NT of BB_Vc_0090
AB_Vc_839	ΔmbaA Δvc1807::KanR	-	Sm, Kan	Bridges et al. 2021
AB_Vc_958	ΔvpsL Δvc1807::KanR	pFY4357::GmR	Sm, Kan	Conj of AB_Vc_487
AB_Vc_962	ΔvpsL vpvcW240R	pFY4357::GmR	Sm, Gm	Conj of BB_Vc_0101
AB_Vc_1145	Ptac-nspS-mbaA-3xFLAG Δvc1807::SpecR	-	Sm, Spec	NT of AB_Vc_835
AB_Vc_1203	ΔvpsL Ptac-nspS-mbaA-3xFLAG Δvc1807::KanR	pFY4357::GmR	Sm, Gm, Kan	Conj of AB_Vc_1197
AB_Vc_996	ΔcdgL Δvc1807::KanR	-	Sm, Kan	NT of BB_Vc_0090
JP_Vc_1206	ΔcdgL Δvc1807::KanR	pFY4357::GmR	Sm, Gm, Kan	Conj of AB_Vc_996
AB_Vc_1056	Δvc1807::Pbad-cdgL::KanR	-	Sm, Kan	NT of BB_Vc_0090
AB_Vc_1104	Δvc1807::Pbad-cdgL::KanR	pFY4357::GmR	Sm, Gm, Kan	Conj of 1056
_AB_Vc_1124_	ΔvpvC Δvc1807::SpecR	-	Sm, Spec	NT of BB_Vc_0090
_JP_Vc_1205_	ΔvpvC Δvc1807::SpecR	pFY4357::GmR	Sm, Gm, Spec	Conj of AB_Vc_1124
_AB_Vc_1109_	Δvc1807::Pbad-vpvCW240R::KanR	-	Sm, Kan	NT of BB_Vc_0090
_AB_Vc_1110_	Δvc1807::Pbad-vpvCW240R::KanR	pFY4357::GmR	Sm, Gm, Kan	Conj of 1109

NT = Natural Transformation
Conj = Conjugation

47
Oligo #	Name	Purpose	Direction	5’ to 3’ Sequence						
691	npsS_3000up	Cloning at nspS locus	F	GACTTTATCAGGCTACTCGCGTTATCCCTG						
890	npsS_3xFlag_B	Cloning nspS-3xFLAG	R	CGCTGCTCTGGAGATAATCGAGAGATC						
981	npsS_3xFLAG_GSLinker_Gblock	Cloning nspS-3xFLAG	F	GATCTCTGCATTATCTCCAGAGCAGCAGATGGGCAGAAGTTGATCAATTGCTCGAATCTCGCTCTCTCTCGCTCTCGTCTACTAGATTA TTCTTTCCAGTTGCATCGTACGTAAGCGAAGACCTTACCGGTTCAGGAAGTGGTAGTGCTGACTACAAAGACCATGACGGGTAGTTATATAAAG ATCATGATATCGATTACAAGGATGAGTACGAGACAAGTACGACGTACGACGTACGAGCAAGCTAACATGAGCTAAACCAGAG						
891	npsS_3xFlag_C	Cloning nspS-3xFLAG	F	CAGCAGTGTGACCTACCAATATGAAGCTAAACCAGAG						
698	npsS_3000dwn	Cloning at nspS locus	R	CGCGTGTTCCAATAGCTCGAAGCTAAACCAGAG						
692	npsS_2700up	Cloning at nspS locus	F	CTCTCAAAAGCGGAACGTGGTGAACCC						
697	npsS_2700dwn	Cloning at nspS locus	R	CCTAATGACATCCTGCTGAACCC						
862	pET15B_RBS	pET15b-nspS-6xHis	R	CATGGTATATCTCCTCTTAAAGTAAACAAATATTATCTAGAGGGG AATGG						
863	pET15B_cleav6His	pET15b-nspS-6xHis	F	GGAAGCAGTGTGACCCGTGTCGAGG						
864	pET15B_npsS	pET15b-nspS-6xHis	F	GAAATATTTTCTGTACCTTTACAAAGGAGATACCATGGAACCTGAAACTGTCTTACCTTGGGGGCAGATAC						
865	pET15B_npsS	pET15b-nspS-6xHis	R	GGCACCGGCGCGCTACCTGGCTCGTTAGCTTTAGCTACGTATTTAGGT AAGTCACACTG						
577	mbaA_100up	Cloning at mbaA locus	F	GAAACCTGACATGCGGGAATCAATGC						
893	3xFLAG_AbR	Δvc1807::Pbad-mbaA-3xFLAG::SpecR	R	GTCGACGGATCCCGGGAATTCTGTCTCATCGTCATCTTGAATC G						
986	vc1807_3xFLAG_E	Δvc1807::Pbad-mbaA-3xFLAG::SpecR	F	CGATTACAGGATGACGACTGAAATGAACTCAATCCGGGGCATCCGTGAGCAGGAGATCCCCTCGAGCCTGAGCAG						
230	vc1807_100dwn	Δvc1807::Pbad-mbaA-3xFLAG::SpecR	R	GGTAAGATCGGTAGCCCTCGCTCGTGCTG						
Row	Description	Specifics	Direction	Sequence						
-----	-------------	-----------	-----------	----------						
1011	nspS_100dwn	Δvc1807::Pbad- mbaA-3xFLAG::Spec^R	F	CACGCTG GCCAAAGTGACATCATC						
233	ABD124	Δvc1807::Pbad- mbaA-3xFLAG::Spec^R	R	TGAGGCTGGAGCTGCTTC						
571	mbaA_3000up	Endogenous Ptac-nspS- mbaA	F	GCGCGCTAATCTGAACCATC						
571	mbaA_2700up	Endogenous Ptac-nspS- mbaA	F	CGTTAGCATTCCACGCGTCAGTTAG						
571	mbaA_2700up	Endogenous Ptac-nspS- mbaA	F	CGCTGCTCTGGGAGATAAATCGAGAGATC						
881	cdgL_B	Deleting cdgL	R	CAAATTTCAATGATGTACATCGITTTAAATAATCTACCTAGTCATAATAACCTTTAC						
882	cdgL_C	Deleting cdgL	F	GTAAAGTTTATTATGACGATGCTATTTAAACGATACATTTTACCTTTGGAAAATTTG						
884	cdgL_2700down	Cloning at cdgL locus	R	GTAGGTTTGCCTCAACCTGACATC						
884	cdgL_2700down	Cloning at cdgL locus	F	GTTCGTTACTCGCATATCAGTCATCCAACTAC						
884	cdgL_2700down	Cloning at cdgL locus	R	GTAGGTTTGCCTCAACCTGACATC						
105	BBC1881	Δvc1807::Pbad- cloning	F	TTTAAAGGGGATCAGTGACCG						
721	Pbad vc1807_ Universal_B	Δvc1807::Pbad- cloning	R	CATTACAACCTCTGCAGGTAC						
721	Pbad_vc1807_ Universal_B	Δvc1807::Pbad- cloning	R	CATTACAACCTCTGCAGGTAC						
911	Pbad_cdgL_C	Δvc1807::Pbad- cdgL::Kan^R	F	GTACCTGCAGGAGGTGAATGAATTTAAATAACTTTAGGCTACGC TGGCTAAC						
---	---	---	---	---	---	---	---	---	---	---
912	Pbad_cdgL_D	Δvc1807::Pbad-cdgL::KanR	R	GTCGACGGATCCCCGGAATTTAGACAAATTTCGCAACAACGTATCGATC						
232	ABD123	Δvc1807::Pbad-cloning	F	ATTCGGGGAGTGCGTCGAC						
106	BBC1882	Δvc1807::Pbad-cloning	R	CAATTTTGCTTTTGGACCATCCC						
978	Pbad_vpvC_fwd	Δvc1807::Pbad-vpvCW240R::KanR	F	GTACCTGCGAGGGTGTAATGACTGATCAAAGAGCGAGCATTTCG						
979	Pbad_vpvC_rev	Δvc1807::Pbad-vpvCW240R::KanR	R	GTCGACGGATCCCCGGAATTTGCACTGCTTGAGTTCCTTCG						
203	vpvC_3000up	Cloning at vpvC locus	F	CGATCCAGTGACTGCAGAGGAATTGC						
998	vpvC_B	Deleting vpvC	R	GATGGCGAAGTGCTCGAAGCAGGACCCAGTAATAC TTTCAGCGCG						
999	vpvC_C	Deleting vpvC	F	CGCGTGAAGATTACTGGGTGTCCTTGCGAGAGGCTTCGAGCAGC TTTCGCATC						
204	vpvC_3000down	Cloning at vpvC locus	R	CCGGCTGATCGTTTGTCCTAAGTGTGCTG						
997	vpvC_2700up	Cloning at vpvC locus	F	CTCAGTCGCGCTGCAATTAAAGTTTCTC						
1001	vpvC_2700down	Cloning at vpvC locus	R	GCTCACTTTGGCACTACCTGATTATTG						