A boundary element method for anisotropic-diffusion convection-reaction equation in quadratically graded media of incompressible flow

N Salam¹, D A Suriamihardja¹, D Tahir², M I Azis³*, and E S Rusdi³
¹Department of Mechanical Engineering, Hasanuddin University, Makassar, Indonesia
²Department of Physics, Hasanuddin University, Makassar, Indonesia
³Department of Mathematics, Hasanuddin University, Makassar, Indonesia
E-mail: mohivanazis@yahoo.co.id (*Corresponding author)

Abstract. A boundary element method (BEM) is utilized to find numerical solutions to boundary value problems of quadratically graded media governed by a spatially varying coefficients anisotropic-diffusion convection-reaction (DCR) equation. The variable coefficients equation is firstly transformed into a constant coefficients equation for which a boundary integral equation can be formulated. A BEM is then derived from the boundary integral equation. Some problems are considered. A FORTRAN script is developed for the computation of the solutions. The numerical solutions verify the validity of the analysis used to derive the boundary element method with accurate and consistent solutions. The computation shows that the BEM procedure elapses very efficient time in producing the solutions. In addition, results obtained for the considered examples show the effect of anisotropy and inhomogeneity of the media on the solutions. An example of a layered material is presented as an illustration of the application.

1. Introduction
By referring to the two-dimensional Cartesian coordinate system $Ox_1x_2$ this paper will concern with the DCR equation of incompressible flow

$$\frac{\partial}{\partial x_i} \left[ d_{ij}(x) \frac{\partial \beta(x)}{\partial x_j} \right] - \nu_i(x) \frac{\partial \beta(x)}{\partial x_i} - \rho(x) \beta(x) = 0 \quad (1)$$

where $i, j = 1, 2$, $x = (x_1, x_2)$, $d_{ij}$ is the anisotropic diffusion or conduction coefficient, $\nu_i$ is the velocity, $\rho$ is the reaction coefficient and $\beta$ is the dependent variable. Within
the domain in question $[d_{ij}]$ is a real symmetrical matrix satisfying $d_{11}d_{22} - d_{12}^2 > 0$. For the repeated indices in equation (1) summation convention applies so that equation (1) can be written explicitly
\[
\frac{\partial}{\partial x_1} (d_{11} \frac{\partial \beta}{\partial x_1}) + \frac{\partial}{\partial x_1} (d_{12} \frac{\partial \beta}{\partial x_2}) + \frac{\partial}{\partial x_2} (d_{12} \frac{\partial \beta}{\partial x_1}) + \frac{\partial}{\partial x_2} (d_{22} \frac{\partial \beta}{\partial x_2}) - \nu_1 \frac{\partial \beta}{\partial x_1} - \nu_2 \frac{\partial \beta}{\partial x_2} - \rho \beta = 0
\]

Also, in equation (1) the coefficients $d_{ij}$, $\nu_i$ and $\rho$ vary spatially and continuously which is applicable when the medium is inhomogeneous or is a functionally graded material.

DCR equation is usually used for modeling heat transfer and mass transport problems. According to Ravnik and Škerget [1], in mass transport which frequently occurs in environments, the convection process take places with a flow velocity which varies in the medium in question, and in the case of turbulence modeling with turbulent viscosity hypothesis, the diffusivity also change in the domain. These situations imply the DCR equation (1) becomes relevant.

Functionally graded materials (FGMs) are materials possessing characteristics which vary (with time and position) according to a mathematical function. FGMs are mainly artificial materials which are produced to meet a preset practical performance (see for example [2, 3]). Heat transfer in FGMs, for which equation (1) is usually used as the governing equation, is among application that has been considerably studied by many people. This constitutes relevancy of solving equation (1).

A number of papers previously considering DCR equation are [4, 5] in which AL-Bayati and Wrobel solved an isotropic-DCR equation with variable velocity, [6] where AL-Bayati and Wrobel solved an isotropic-DCR equation with a source term, [7] in which Fendoğlu et al. considered a constant coefficients unsteady isotropic-DCR equation with a source term, [8] by Rocca et al. which concerned with an isotropic-DCR equation with variable velocity, [9] in which Samec and Škerget solved an isotropic-DCR equation with variable velocity.

Not so many works have been done on DCR equation of type (1) for anisotropic FGMs where the diffusivity, velocity and reaction coefficients are simultaneously variable. Similar works of anisotropic materials but for different kinds of applications have been done previously in [10, 11, 12, 13] for Helmholtz equation, in [14, 15, 16] for DC equation, in [17, 18, 19, 20] for vector elliptic equation, in [21] for a scalar Laplace type equation, in [22, 23, 24, 25] for a scalar elliptic type equation, and in [26, 27, 28] for a modified Helmholtz type equation.

Numerical solutions $\beta$ and its derivatives $\partial \beta / \partial x_1$, $\partial \beta / \partial x_2$ to (1) in the domain $\Omega$, subjected to the boundary condition that either $\beta$ or
\[
P = d_{ij} (\partial \beta / \partial x_i) n_j
\]

is known on the boundary $\partial \Omega$, are sought. The investigation of this paper is strictly mathematical. The purpose is mainly to develop a boundary element method for finding the numerical solutions.
2. Simplification to equation of constant coefficients

We limit the coefficients $\nu_i$, $d_{ij}$ and $\rho$ to be varying spatially according to a specific continuous function $h(x)$

$$d_{ij}(x) = \hat{d}_{ij} h(x)$$
$$\nu_i(x) = \hat{\nu}_i h(x)$$
$$\rho(x) = \hat{\rho} h(x)$$

where $\hat{d}_{ij}$, $\hat{\nu}_i$ and $\hat{\rho}$ are constant and the inhomogeneity function $h(x)$ is a differentiable function taking the quadratic form

$$h(x) = [A (\alpha_0 + \alpha_1 x_1 + \alpha_2 x_2)]^2$$

where $A$ and $\alpha_i$ are constants. So the material under consideration is a quadratically graded material. With this quadratic inhomogeneity function the coefficients $d_{ij}$, $\nu_i$ and $\rho$ can be decomposed into a constant and a variable velocity which was considered in papers [1, 9, 5, 4].

Substitution of (3), (4) and (5) into (1) gives

$$\hat{d}_{ij} \frac{\partial}{\partial x_i} \left( h \frac{\partial \beta}{\partial x_j} \right) - h \hat{\nu}_i \frac{\partial \beta}{\partial x_i} - \hat{\rho} h \beta = 0$$

Write

$$\beta(x) = h^{-1/2} (x) \zeta(x)$$

then equation (7) can be rewritten as

$$\hat{d}_{ij} \frac{\partial}{\partial x_i} \left[ h \frac{\partial (h^{-1/2} \zeta)}{\partial x_j} \right] - h \hat{\nu}_i \frac{\partial (h^{-1/2} \zeta)}{\partial x_i} - \hat{\rho} h^{1/2} \zeta = 0$$

which can be further written as

$$\hat{d}_{ij} \left[ \left( \frac{1}{4} h^{-3/2} \frac{\partial h}{\partial x_i} \frac{\partial h}{\partial x_j} - \frac{1}{2} h^{-1/2} \frac{\partial^2 h}{\partial x_i \partial x_j} \right) \zeta + h^{1/2} \frac{\partial^2 \zeta}{\partial x_i \partial x_j} \right] - h \hat{\nu}_i \frac{\partial (h^{-1/2} \zeta)}{\partial x_i} - \hat{\rho} h^{1/2} \zeta = 0$$

The identities

$$\frac{\partial^2 h^{1/2}}{\partial x_i \partial x_j} = - \left( \frac{1}{4} h^{-3/2} \frac{\partial h}{\partial x_i} \frac{\partial h}{\partial x_j} - \frac{1}{2} h^{-1/2} \frac{\partial^2 h}{\partial x_i \partial x_j} \right)$$

$$h \frac{\partial (h^{-1/2} \zeta)}{\partial x_i} = h^{1/2} \frac{\partial \zeta}{\partial x_i} - \zeta \frac{\partial h^{1/2}}{\partial x_i}$$

allow equation (9) to be written in the form

$$h^{1/2} \left( \hat{d}_{ij} \frac{\partial \zeta}{\partial x_i \partial x_j} - \hat{\nu}_i \frac{\partial \zeta}{\partial x_i} - \hat{\rho} \zeta \right) - \zeta \left( \frac{\partial^2 h^{1/2}}{\partial x_i \partial x_j} - \hat{\nu}_i \frac{\partial h^{1/2}}{\partial x_i} \right) = 0$$
For incompressible flows, substitution of (4) into the zero velocity divergence
\[ \frac{\partial \nu_i(x)}{\partial x_i} = 0 \]
which implies
\[ \nu_i \alpha_i = 0 \]  
(11)
Then the quadratic inhomogeneity function (6) satisfies
\[ \hat{d}_{ij} \frac{\partial^2 h^{1/2}}{\partial x_i \partial x_j} - \nu_i \frac{\partial h^{1/2}}{\partial x_i} = 0 \]  
(12)
Therefore substitution of (12) into (10) gives a constant coefficients equation
\[ \hat{d}_{ij} \frac{\partial^2 \varsigma}{\partial x_i \partial x_j} - \nu_i \frac{\partial \varsigma}{\partial x_i} - \rho \varsigma = 0 \]  
(13)
Furthermore use of (3) and (8) in (2) yields
\[ P = -P_h \varsigma + P_\varsigma h^{1/2} \]  
(14)
where \( P_h(x) = \hat{d}_{ij} (\partial h^{1/2}/\partial x_j) n_i \) and \( P_\varsigma(x) = \hat{d}_{ij} (\partial \varsigma/\partial x_j) n_i \).

3. The integral equation
By using Gauss divergence theorem, equation (13) can be transformed into a boundary integral equation
\[ \kappa(\chi) \varsigma(\chi) = \int_{\partial \Omega} \{ P_v(x) \Lambda(x, \chi) - [P_v(x) \Lambda(x, \chi) + \Theta(x, \chi)] \varsigma(x) \} ds(x) \]  
(15)
where \( P_v(x) = \hat{\nu}_i n_i(x) \) and \( \chi = (\chi_1, \chi_2) \), \( \kappa = 0 \) if \( (\chi_1, \chi_2) \notin \Omega \cup \partial \Omega \), \( \kappa = 1 \) if \( (\chi_1, \chi_2) \) is on the boundary \( \partial \Omega \) given that \( \partial \Omega \) has a continuously turning tangent at \( (\chi_1, \chi_2) \). In (15) the fundamental solution \( \Lambda(x, \chi) \) for equation (13) satisfies
\[ \hat{d}_{ij} \frac{\partial^2 \Lambda(x, \chi)}{\partial x_i \partial x_j} + \hat{\nu}_i \frac{\partial \Lambda(x, \chi)}{\partial x_i} - \rho \Lambda(x, \chi) = -\delta(x - \chi) \]
and \( \Theta(x, \chi) \) satisfies
\[ \Theta(x, \chi) = \hat{d}_{ij} \frac{\partial \Lambda(x, \chi)}{\partial x_j} n_i \]
where \( \delta \) is the Dirac delta function. For 2-D problems the function \( \Lambda \) is given as (see Azis [29])
\[ \Lambda(x, \chi) = \frac{\hat{\nu}}{2\pi D} \exp \left( -\frac{\hat{\nu} \cdot \hat{R}}{2D} \right) K_0 \left( \mu \hat{R} \right) \]
where \( \mu = \sqrt{(\nu/2D)^2 + (\hat{\beta}/D)} \), \( D = [\hat{d}_{11} + 2\hat{d}_{12}\hat{\tau} + \hat{d}_{22}(\hat{\tau}^2 + \bar{\tau}^2)]/2 \), \( \hat{R} = \hat{x} - \hat{x} \), \( \hat{x} = (x_1 + \hat{\tau}x_2, \hat{\tau}x_2) \), \( \chi = (\chi_1 + \hat{\tau}\chi_2, \hat{\tau}\chi_2) \), \( \nu = (\hat{\nu}_1 + \hat{\tau}\hat{\nu}_2, \hat{\tau}\hat{\nu}_2) \), \( \hat{R} = \sqrt{(x_1 + \hat{\tau}x_2 - \chi_1 - \hat{\tau}\chi_2)^2 + (\hat{\tau}x_2 - \bar{\tau}\chi_2)^2} \), and \( \hat{\nu} = \sqrt{(\nu_1 + \hat{\tau}\hat{\nu}_2)^2 + (\hat{\tau}\hat{\nu}_2)^2} \) where \( \hat{\tau} \) and \( \bar{\tau} \) are respectively the real and the positive imaginary parts of the complex root \( \tau \) of the quadratic equation \( \hat{d}_{11} + 2\hat{d}_{12}\tau + \hat{d}_{22}\tau^2 = 0 \) and \( K_0 \) is the modified Bessel function. Use of (8) and (14) in (15) yields

\[
\kappa h^{1/2} = \int_{\partial\Omega} \left\{ \left( h^{-1/2} \Lambda \right) P + \left[ \left( P_h - P_v h^{1/2} \right) \Lambda - h^{1/2} \Theta \right] \beta \right\} ds \tag{16}
\]

4. Discretisation

Divide the boundary \( \partial\Omega \) into \( L \) segments \( \partial\Omega_l = [q_{l-1}, q_l] \) for \( l = 1, 2, 3, \ldots, L \) where \( q_{l-1} \) and \( q_l \) are the endpoints of the segment \( \partial\Omega_l \). It is assumed that \( \beta \) and \( P \) are constant along each boundary segment \( \partial\Omega_l \) taking on their values at the mid point \( \hat{q}_l = (q_{l-1} + q_l)/2 \). Then the discretised form of (16) may be written as

\[
\kappa(\chi) h^{1/2}(\chi) \beta(\chi) = \sum_{l=1}^{L} \left\{ P(q_l) \int_{q_{l-1}}^{q_l} \left[ h^{-1/2}(x) \Lambda(x, \chi) \right] ds(x) + \beta(q_l) \int_{q_{l-1}}^{q_l} \left\{ \left[ P_h(x) - P_v(x) h^{1/2}(x) \right] \Lambda(x, \chi) - h^{1/2}(x) \Theta(x, \chi) \right\} ds(x) \right\}
\tag{17}
\]

The integral equation (17) is used to find the boundary unknowns \( \beta(\chi) \) or \( P(\chi) \) on \( \partial\Omega \). Then the solutions \( \beta(\chi) \) and its derivatives in the domain \( \Omega \) are evaluated using the complete boundary data \( \beta(\chi) \) and \( P(\chi) \) on \( \partial\Omega \).

If the source point \( \chi \) lies on the boundary \( \partial\Omega \) (thus \( \eta(\chi) = \frac{1}{2} \)), say \( \chi \) lies on the boundary segment \( \partial\Omega_k \) \( (k = 1, 2, \ldots, L) \) so that \( \chi \) is the mid-point \( \hat{q}_k \) of \( \partial\Omega_k \), then equation (17) can be written as

\[
\frac{1}{2} h^{1/2}(\hat{q}_k) \beta(\hat{q}_k) = \sum_{l=1}^{L} \left\{ P(q_l) \int_{q_{l-1}}^{q_l} \left[ h^{-1/2}(x) \Lambda(x, \hat{q}_k) \right] ds(x) + \beta(q_l) \int_{q_{l-1}}^{q_l} \left\{ \left[ P_h(x) - P_v(x) h^{1/2}(x) \right] \Lambda(x, \hat{q}_k) - h^{1/2}(x) \Theta(x, \hat{q}_k) \right\} ds(x) \right\}
\]

for \( k = 1, 2, \ldots, L \). This equation may be written in matrix form

\[
\frac{1}{2} h^{1/2} \beta_k - \sum_{l=1}^{L} \hat{H}_{kl} \beta_l = \sum_{l=1}^{L} G_{kl} P_l \tag{18}
\]
where \( h_{k}^{1/2} = h_{k}^{1/2}(\mathbf{q}_{k}) \), \( \beta_{k} = \beta_{k}(\mathbf{q}_{k}) \), \( P_l = P_{l}(\mathbf{q}_{l}) \), and

\[
\hat{H}_{kl} = \int_{\mathbf{q}_{l-1}}^{\mathbf{q}_{l}} \left\{ \left[ P_{h}(\mathbf{x}) - P_{\nu}(\mathbf{x}) h_{k}^{1/2}(\mathbf{x}) \right] \Lambda(\mathbf{x}, \mathbf{q}_{k}) - h_{k}^{1/2}(\mathbf{x}) \Theta(\mathbf{x}, \mathbf{q}_{k}) \right\} ds(\mathbf{x}) \quad (19)
\]

\[
G_{kl} = \int_{\mathbf{q}_{l-1}}^{\mathbf{q}_{l}} \left[ h_{k}^{1/2}(\mathbf{x}) \Lambda(\mathbf{x}, \mathbf{q}_{k}) \right] ds(\mathbf{x}) \quad (20)
\]

The integrals in equations (19) and (20) can be evaluated numerically. And also the values of the modified Bessel function involved in the fundamental solutions \( \Lambda \) and \( \Theta \) can be approached by their polynomial approximations (see Abramowitz and Stegun [30]). In a simpler way, equation (18) may be written as

\[
\sum_{l=1}^{L} H_{kl} \beta_{l} = \sum_{l=1}^{L} G_{kl} P_{l} \quad (21)
\]

where

\[
H_{kl} = \begin{cases} 
-\hat{H}_{kl} & \text{when } k \neq l \\
\frac{1}{2} h_{k}^{1/2} - \hat{H}_{kl} & \text{when } k = l 
\end{cases}
\]

Equation (21) can be rearranged by putting the unknowns on the left hand side and all the knowns on the right hand side to obtain a \( L \times L \) linear system of algebraic equations in the form

\[
AX = B \quad (22)
\]

where \( X \) is the unknown matrix.

Once the unknowns \( \beta \) and \( P \) on the boundary \( \partial \Omega \) are obtained from the equation (22), we can calculate the value of \( \beta \) at any point \( \chi \) inside the domain \( \Omega \) by using the following equation

\[
\beta(\chi) = h_{\chi}^{1/2}(\chi) \sum_{l=1}^{L} \left\{ P(\mathbf{q}_{l}) \int_{\mathbf{q}_{l-1}}^{\mathbf{q}_{l}} \left[ h_{l}^{1/2}(\mathbf{x}) \Lambda(\mathbf{x}, \chi) \right] ds(\mathbf{x}) \right. \\
+ \beta(\mathbf{q}_{l}) \int_{\mathbf{q}_{l-1}}^{\mathbf{q}_{l}} \left\{ \left[ P_{h}(\mathbf{x}) - P_{\nu}(\mathbf{x}) h_{l}^{1/2}(\mathbf{x}) \right] \Lambda(\mathbf{x}, \chi) - h_{l}^{1/2}(\mathbf{x}) \Theta(\mathbf{x}, \chi) \right\} ds(\mathbf{x}) \left. \right\}
\]

We can also calculate the values of the derivatives \( \partial \beta / \partial \chi_{1} \) and \( \partial \beta / \partial \chi_{2} \) using the following equations

\[
\frac{\partial \beta}{\partial \chi_{1}}(\chi) = h_{\chi}^{1/2}(\chi) \left\{ \sum_{l=1}^{L} \left\{ P(\mathbf{q}_{l}) \int_{\mathbf{q}_{l-1}}^{\mathbf{q}_{l}} \left[ h_{l}^{1/2}(\mathbf{x}) \frac{\partial \Lambda(\mathbf{x}, \chi)}{\partial \chi_{1}} \right] ds(\mathbf{x}) \right. \\
+ \beta(\mathbf{q}_{l}) \int_{\mathbf{q}_{l-1}}^{\mathbf{q}_{l}} \left\{ \left[ P_{h}(\mathbf{x}) - P_{\nu}(\mathbf{x}) h_{l}^{1/2}(\mathbf{x}) \right] \frac{\partial \Lambda(\mathbf{x}, \chi)}{\partial \chi_{1}} \right. \\
- h_{l}^{1/2}(\mathbf{x}) \frac{\partial \Theta(\mathbf{x}, \chi)}{\partial \chi_{1}} \right\} ds(\mathbf{x}) \left. \right\} - \beta(\chi) \frac{\partial h_{\chi}^{1/2}(\chi)}{\partial \chi_{1}}
\]
\[
\frac{\partial \beta}{\partial \chi_2}(\chi) = h^{-1/2}(\chi) \left\{ \sum_{l=1}^{L} \left\{ P(\hat{q}_l) \int_{q_{l-1}}^{q_{l+1}} \left[ h^{-1/2}(x) \frac{\partial \Lambda(x, \chi)}{\partial \chi_2} \right] ds(x) \right. \\
+ \beta(\hat{q}_l) \int_{q_{l-1}}^{q_{l+1}} \left[ P_h(x) - P_x(x) h^{1/2}(x) \right] \frac{\partial \Lambda(x, \chi)}{\partial \chi_2} \\
- h^{1/2}(x) \frac{\partial \Theta(x, \chi)}{\partial \chi_2} \right\} ds(x) \right\} - \beta(\chi) \frac{\partial h^{1/2}(\chi)}{\partial \chi_2} 
\]

5. Numerical examples

The aim of this section is to justify the analysis used to derive the boundary integral equation (16). Some problems will be considered. Solutions to the problems are calculated using a FORTRAN script and a specific command is embedded inside the script to count the elapsed CPU computation time for obtaining the results as to show the efficiency of the BEM. The other aspects that will be justified are the accuracy and consistency of the BEM solutions as to see whether or not the developed FORTRAN script works correctly. Moreover, we will also study the influence of the anisotropy and inhomogeneity of the material under consideration on the solutions.

5.1. A test problem

![The domain Ω](image)

The domain and the boundary conditions are as depicted in Figure 1. The constant coefficients are

\[
\hat{d}_{ij} = \begin{bmatrix} 1 & 0.75 \\ 0.75 & 1.5 \end{bmatrix} \quad \hat{u}_i = (0.5, 0.3) \quad \hat{\rho} = 0.25
\]
Figure 2. The absolute errors of $\beta$ (left), $\partial \beta / \partial x_1$ (center), $\partial \beta / \partial x_2$ (right) solutions for the test problem.

Figure 3. The BEM scattering $\beta$ and flow vector ($\partial \beta / \partial x_1$, $\partial \beta / \partial x_2$) solutions for the test problem.

The quadratical inhomogeneity function $h$ is assumed to be

$$h(x) = [2(1 - 0.15x_1 + 0.25x_2)]^2$$

The exact solution is

$$\beta(x) = 0.5 \exp \left(0.5x_1 - 0.584933x_2\right) / (1 - 0.15x_1 + 0.25x_2)$$

Figures 2 and 3 show the accuracy and consistency (between the scattering and flow) of the numerical solutions when a number of 320 boundary segments of equal length, namely 80 segments on each side, are used. Efficiency of the BEM is indicated by a short elapsed CPU time which is only in 185.703125 seconds for obtaining solutions $\beta(x)$ and its derivatives at 19×19 interior points.

5.2. Problems without any simple exact solutions
A layered material consisting of eight layers of the same size and with boundary conditions as depicted in Figure 4 is under consideration. Each layer is supposed to be homogeneous, but from layer to layer the diffusion $d_{ij}$, velocity $v_i$ and reaction $\rho$ coefficients are assumed to be varying as smoothly as the variability can be fitted to a quadratical function $h(x) = (a_0 + a_2x_2)^2$.

Just as an illustration, suppose that we have a set of data of the diffusion $d_{ij}$, velocity $v_i$ and reaction $\rho$ coefficient values at center point of each layer as shown in Table 1. And
we also have reference values of constant coefficients

\[
\hat{d}_{ij} = \begin{bmatrix} 1 & 0 \\ 0 & 1.5 \end{bmatrix} \quad \hat{\nu}_i = (0.2, 0) \quad \hat{\rho} = 0.25
\]

Fitting the data in Table 1 to the function \( h(x) = (\alpha_0 + \alpha_2 x_2)^2 \) we will get the values of the parameters \( \alpha_0 \) and \( \alpha_2 \)

\[
\alpha_0 = 1 \quad \alpha_2 = 0.3
\]

Therefore we can then approximate the layered material as a sole material with continuously varying coefficients. So we may use the analysis in Sections 2 – 4 to solve the problem.

Again, a number of 320 segments of equal length are used. As shown in Figure 5 for the constant orthotropic diffusion coefficient \( \hat{d}_{ij} \) given above the solution \( \beta \) exhibits the nature of the considered medium as a layered material.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Layer & \( d_{11} \) & \( d_{12} \) & \( d_{22} \) & \( \nu_1 \) & \( \nu_2 \) & \( \rho \) \\
\hline
1 & 1.03785 & 0 & 1.55678 & 0.20757 & 0 & 0.25946 \\
2 & 1.03785 & 0 & 1.67350 & 0.22313 & 0 & 0.27892 \\
3 & 1.19629 & 0 & 1.79443 & 0.23926 & 0 & 0.29907 \\
4 & 1.27973 & 0 & 1.91959 & 0.25595 & 0 & 0.31993 \\
5 & 1.36598 & 0 & 2.04896 & 0.27320 & 0 & 0.34145 \\
6 & 1.45504 & 0 & 2.18256 & 0.291015 & 0 & 0.36376 \\
7 & 1.54691 & 0 & 2.32037 & 0.309385 & 0 & 0.38673 \\
8 & 1.64160 & 0 & 2.46240 & 0.32832 & 0 & 0.410405 \\
\hline
\end{tabular}
\caption{Example of the diffusion \( d_{ij} \), velocity \( \nu_i \) and reaction \( \rho \) coefficient data}
\end{table}
However, if we assume that the material under consideration is a sole material varying continuously and we change the diffusion coefficient $\hat{d}_{ij}$ to an anisotropic diffusion coefficient

$$\hat{d}_{ij} = \begin{bmatrix} 1 & 1 \\ 1 & 1.5 \end{bmatrix}$$

and keeping the other coefficients remain the same then we will obtain a significantly different solution $\beta$ as shown in Figure 6. This means that the anisotropy of the medium gives an impact on the solution. Therefore in application it is necessary for the anisotropy to be taken into account.

Now if we assume that the medium is anisotropic homogeneous with

$$\hat{d}_{ij} = \begin{bmatrix} 1 & 1 \\ 1 & 1.5 \end{bmatrix} \quad \alpha_0 = 1 \quad \alpha_2 = 0$$

then we will obtain a slightly different solution $\beta$ as shown in Figure 7. This indicates that the inhomogeneity also gives an impact on the solution. Therefore one should put the inhomogeneity in consideration for any application.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{orthotropic_medium}
\caption{The BEM scattering $\beta$ and flow vector $(\partial \beta / \partial x_1, \partial \beta / \partial x_2)$ solutions of the orthotropic inhomogeneous medium}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{anisotropic_medium}
\caption{The BEM scattering $\beta$ and flow vector $(\partial \beta / \partial x_1, \partial \beta / \partial x_2)$ solutions of the anisotropic inhomogeneous medium}
\end{figure}
6. Conclusion
A standard BEM has been used to find numerical solutions to boundary value problems governed by the anisotropic diffusion-convection-reaction equation (1) of incompressible flow with spatially variable coefficients for quadratically graded (inhomogeneous) media. The BEM gives accurate and consistent solutions and uses very efficient computation time for producing the results, which verifies that the analysis for deriving the boundary integral equation in Section 3 is valid and the developed FORTRAN code works well. Moreover, effect of the anisotropy and inhomogeneity of the media on the solutions are also presented.

Acknowledgements
The authors acknowledge the research grants provided by The Ministry of Higher Education of Indonesia (KEMRISTEKDIKTI) under the contract numbered as 007/SP2H/PTNBH/DRPM/2019 and by The Hasanuddin University under the Hasanuddin University’s Rector decrees numbered as 2006/UN4.1/KEP/2019 and 641/UN4.1/KEP/2019.

References
[1] Ravnik J and Škerget L 2013 A gradient free integral equation for diffusion-convection equation with variable coefficient and velocity Engineering Analysis with Boundary Elements 37 683
[2] Abotula S, Kidane A, Chalivendra V B and Shakla A 2012 Dynamic curving cracks in functionally graded materials under thermo-mechanical loading International Journal of Solids and Structures 49 1637
[3] Abadikhah H and Folkow P D 2018 Dynamic equations for solid isotropic radially functionally graded circular cylinders Composite Structures 195 147
[4] AL-Bayati S A and Wrobel L C 2018 A novel dual reciprocity boundary element formulation for two-dimensional transient convection-diffusion-reaction problems with variable velocity Engineering Analysis with Boundary Elements 94 60
[5] AL-Bayati S A and Wrobel L C 2018 The dual reciprocity boundary element formulation for convection-diffusion-reaction problems with variable velocity field using different radial basis functions International Journal of Mechanical Sciences 145 367
[6] AL-Bayati S A and Wrobel L C 2019 Radial integration boundary element method for two-dimensional non-homogeneous convection-diffusion-reaction problems with variable source term Engineering Analysis with Boundary Elements 101 89
[7] Fendoğlu H, Bozkaya C and Tezer-Sezgin M 2018 DBEM and DRBEM solutions to 2D transient
convection-diffusion-reaction type equations *Engineering Analysis with Boundary Elements* 93 124

[8] Rocca A L, Rosales A H and Power H 2005 Radial basis function Hermite collocation approach for the solution of time dependent convection–diffusion problems *Engineering Analysis with Boundary Elements* 29 359

[9] Samec N and Skerget L 2004 Integral formulation of a diffusive–convective transport equation for reacting flows *Engineering Analysis with Boundary Elements* 28 1055

[10] Azis M I 2019 Numerical solutions for the Helmholtz boundary value problems of anisotropic homogeneous media *Journal of Computational Physics* 381 42

[11] Azis M I 2019 BEM solutions to exponentially variable coefficient Helmholtz equation of anisotropic media *Journal of Physics: Conference Series* 1277 012036

[12] Nurwahyu B, Abdullah B, Massimal A and Azis M I 2019 Numerical solutions for BVPs governed by a Helmholtz equation of anisotropic FGM *IOP Conference Series: Earth and Environmental Science* 279 012008

[13] Hamzah S, Azis M I and Amir A K 2019 Numerical solutions to anisotropic BVPs for quadratically graded media governed by a Helmholtz equation *IOP Conference Series: Materials Science and Engineering* 619 012060

[14] Azis M I, Asrul L, Khaeruddin and Paharuddin 2018 BEM solutions for unsteady transport problems in anisotropic media *JP Journal of Heat and Mass Transfer* 15(4) 915

[15] Azis M I, Kasbawati, Haddade A and Thamrin S A 2018 On some examples of pollutant transport problems solved numerically using the boundary element method *Journal of Physics: Conference Series* 979 012075

[16] Haddade A, Salam N, Khaeruddin and Azis M I 2017 A boundary element method for 2D diffusion-convection problems in anisotropic media *Far East Journal of Mathematical Sciences* 102(8) 1593

[17] Azis M I and Clements D L 2014 On some problems concerning deformations of functionally graded anisotropic elastic materials *Far East Journal of Mathematical Sciences* 87(2) 173

[18] Azis M I, Toaha S, Bahri M and Ilyas N 2018 A boundary element method with analytical integration for deformation of inhomogeneous elastic materials *Journal of Physics: Conference Series* 979 012072

[19] Clements D L and Azis M I 2000 A note on a boundary element method for the numerical solution of boundary value problems in isotropic inhomogeneous elasticity *Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A/Chung-kuo Kung Ch'eng Hsueh K'an.* 23(3) 261

[20] Hamzah S, Azis M I and Syamsuddin E 2019 On some examples of BEM solution to elasticity problems of isotropic functionally graded materials *IOP Conference Series: Materials Science and Engineering* 619 012018

[21] Salam N, Haddade A, Clements D L and Azis M I 2017 A boundary element method for a class of elliptic boundary value problems of functionally graded media *Engineering Analysis with Boundary Elements* 84(3) 186

[22] Azis M I 2019 Numerical solutions to a class of scalar elliptic BVPs for anisotropic exponentially graded media *Journal of Physics: Conference Series* 1218 012001

[23] La Nafie N, Ilyas N, Azis M I and Amir A K 2019 A class of variable coefficient elliptic equations solved using BEM *IOP Conference Series: Materials Science and Engineering* 619 012025

[24] Haddade A, Azis M I, Djafar Z, Jabir St N and Nurwahyu B 2019 Numerical solutions to a class of scalar elliptic BVPs for anisotropic quadratically graded media *IOP Conference Series: Earth and Environmental Science* 279 012007

[25] Jabir St N, Azis M I, Djafar Z and Nurwahyu B 2019 BEM solutions to a class of elliptic BVPs for anisotropic trigonometrically graded media *IOP Conference Series: Materials Science and Engineering* 619 012059

[26] La Nafie N, Azis M I and Fahruddin 2019 Numerical solutions to BVPs governed by the anisotropic modified Helmholtz equation for trigonometrically graded media *IOP Conference Series: Materials Science and Engineering* 619 012058
[27] Syam R, Fahruruddin, Azis M I and Hayat A 2019 Numerical solutions to anisotropic FGM BVPs governed by the modified Helmholtz type equation IOP Conference Series: Materials Science and Engineering 619 012061

[28] Azis M I, Syam R and Hamzah S 2019 BEM solutions to BVPs governed by the anisotropic modified Helmholtz equation for quadratically graded media IOP Conference Series: Earth and Environmental Science 279 012010

[29] Azis M I 2017 Fundamental solutions to two types of 2D boundary value problems of anisotropic materials Far East Journal of Mathematical Sciences 101(11) 2405

[30] Abramowitz M and Stegun I A 1972 Handbook of mathematical functions: with formulas, graphs and mathematical tables, Dover Publications, Washington