Depletion of white adipocyte progenitors induces beige adipocyte differentiation and suppresses obesity development

AC Daquinag¹, C Tseng¹, A Salameh¹, Y Zhang¹, F Amaya-Manzanares¹, A Dadbin¹, F Florez¹, Y Xu¹, Q Tong¹ and MG Kolonin*¹

Overgrowth of white adipose tissue (WAT) in obesity occurs as a result of adipocyte hypertrophy and hyperplasia. Expansion and renewal of adipocytes relies on proliferation and differentiation of white adipocyte progenitors (WAP); however, the requirement of WAP for obesity development has not been proven. Here, we investigate whether depletion of WAP can be used to prevent WAT expansion. We test this approach by using a hunter-killer peptide designed to induce apoptosis selectively in WAP. We show that targeted WAP cytoablation results in a long-term WAT growth suppression despite increased caloric intake in a mouse diet-induced obesity model. Our data indicate that WAP depletion results in a compensatory population of adipose tissue with beige adipocytes. Consistent with reported thermogenic capacity of beige adipose tissue, WAP-depleted mice display increased energy expenditure. We conclude that targeting of white adipocyte progenitors could be developed as a strategy to sustained modulation of WAT metabolic activity.

Cell Death and Differentiation (2015) 22, 351–363; doi:10.1038/cdd.2014.148; published online 24 October 2014

Obesity, a medical condition predisposing to diabetes, cardiovascular diseases, cancer, and complicating other life-threatening diseases, is becoming an increasingly important social problem. Development of pharmacological approaches to reduction of body fat has remained a daunting task. Approved obesity treatments typically produce only moderate and temporary effects. White adipocytes are the differentiated cells of white adipose tissue (WAT) that store triglycerides in lipid droplets. In contrast, adipocytes of brown adipose tissue (BAT) dissipate excess energy through adaptive thermogenesis. Under certain conditions, white adipocytes can become partially replaced with brown-like adipocytes that simulate the thermogenic function of BAT adipocytes. Obesity develops in the context of positive energy balance as a result of hypertrophy and hyperplasia of white adipocytes.

Expansion and renewal of the white adipocyte pool in WAT continues in adulthood. This process is believed to rely on proliferation and self-renewal of mesenchymal precursor cells that we term white adipocyte progenitors (WAPs). WAPs reside within the population of adipose stromal cells (ASCs) and are functionally similar to bone marrow mesenchymal stem cells (MSCs). ASCs can be isolated from the stromal/vascular fraction (SVF) of WAT based on PDGFRα expression. ASCs support vascularization as mural/adventitial cells secreting angiogenic factors and, unlike bone marrow MSCs, express CD34. WAPs have been identified within the ASC population based on expression of mesenchymal markers, such as platelet-derived growth factor receptor-β (PDGFRβ, aka CD140b) and pericyst markers.

Recently, we isolated a cyclic peptide WAT7 (amino acid sequence CSWKYWFGEC) based on its specific binding to PDGFRβ, aka CD140b, and lack of PDGFRβ expression in ASCs. We identified a sequence CSWKYWFGEC (amino acid sequence CSWKYWFGEC) based on its specific binding to PDGFRβ, aka CD140b, and lack of PDGFRβ expression in ASCs. We identified a distinct ASC progenitor population capable of differentiating into both white and brown adipocytes has been identified in WAT based on PDGFRα (CD140a) expression and lack of PDGFRβ expression. The physiological relevance of the two precursor populations residing in WAT has not been explored.

We have previously established an approach to isolate peptide ligands binding to receptors selectively expressed on the surface of cell populations of interest. Such cell-targeted peptides can be used for targeted delivery of experimental therapeutic agents in vivo. A number of ‘hunter-killer’ peptides composed of a cell-homing domain binding to a surface marker and of a moiety inducing apoptosis upon receptor-mediated internalization, has been described by our group. Such bimodal peptides have been used for depletion of malignant cells and organ-specific endothelial cells in preclinical animal models.

Recently, we isolated a cyclic peptide WAT7 (amino acid sequence CSWKYWFGEC) based on its specific binding to PDGFRβ, aka CD140b, and lack of PDGFRβ expression in ASCs. We identified a distinct ASC progenitor population capable of differentiating into both white and brown adipocytes. We have previously established an approach to isolate peptide ligands binding to receptors selectively expressed on the surface of cell populations of interest. Such cell-targeted peptides can be used for targeted delivery of experimental therapeutic agents in vivo. A number of ‘hunter-killer’ peptides composed of a cell-homing domain binding to a surface marker and of a moiety inducing apoptosis upon receptor-mediated internalization, has been described by our group. Such bimodal peptides have been used for depletion of malignant cells and organ-specific endothelial cells in preclinical animal models.

We have previously established an approach to isolate peptide ligands binding to receptors selectively expressed on the surface of cell populations of interest. Such cell-targeted peptides can be used for targeted delivery of experimental therapeutic agents in vivo. A number of ‘hunter-killer’ peptides composed of a cell-homing domain binding to a surface marker and of a moiety inducing apoptosis upon receptor-mediated internalization, has been described by our group. Such bimodal peptides have been used for depletion of malignant cells and organ-specific endothelial cells in preclinical animal models.

Received 04.3.14; revised 29.7.14; accepted 06.8.14; Edited by M Piacentini; published online 24.10.14

¹Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA

*Corresponding author: MG Kolonin, Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, TX 77030, USA. Tel: +1 713-500-3146; Fax +1 713-500-2424; E-mail: Mikhail.G.Kolonin@uth.tmc.edu

Abbreviations: BAT, brown adipose tissue; WAT, white adipose tissue; WAP, white adipocyte progenitor; ASC, adipose stromal cell; SVF, stromal/vascular fraction; PDGFR, platelet-derived growth factor receptor; DCN, decorin; i.p., intraperitoneal; s.c., subcutaneous; CLAMS, Comprehensive Lab Animal Monitoring System; DIO, diet-induced obesity; UCP1, uncoupling protein 1; Plin1, perilipin-1; shRNA, short hairpin RNA; TZD, thiazolidinediones

© 2015 Macmillan Publishers Limited All rights reserved 1350-9047/15

www.nature.com/cdd
hunter-killer peptide that directs KLAKLAK_2 to WAPs through WAT7/ΔDCN interaction, we depleted WAP in the mouse diet-induced obesity model. We demonstrate that WAP depletion suppresses WAT growth. We show that, in response to WAP deficiency, WAT becomes populated with beige adipocytes. Consistent with the reported thermogenic function of beige adipocytes, the observed WAT remodeling is associated with increased energy expenditure. We identify a population of PDGFRα-positive, PDGFRβ-negative ASCs reported recently as a population surviving WAP depletion and responsible for WAT browning.

Results

Peptide D-WAT targets WAP in cell culture and in vivo. Incubation of adherent mouse ASCs with fluorophore-labeled WAT7 resulted in its intracellular accumulation (Figure 1a), suggesting that WAT7 coupled with a pro-apoptotic moiety could be used to deplete adipose progenitors. Based on the published approach, a bimodal peptide WAT7-KLAKLAK_2 (termed D-WAT), composed of WAT7 and of KLAKLAK_2 domains linked via aminohexanoic acid, was synthesized with all amino acids as D-enantiomers to prevent proteolytic degradation. We used flow cytometric measurement of Apo-Trace uptake to show that D-WAT induces apoptosis of SVF isolated from mouse intraperitoneal (i.p.) WAT (Figure 1b). Similarly, a dose-dependent cytotoxicity of the peptide toward SVF from subcutaneous (s.c.) WAT was revealed (Figure 1c). Importantly, endothelial and hematopoietic cells of WAT, which can be distinguished from ASCs based on CD31 and CD45 expression, as well as morphology, remained viable at D-WAT concentration lethal for ASC (Figure 1c). Upon treatment of mouse i.p. or s.c. WAT-derived cells adherent in culture, D-WAT killed ASCs within 12 h, whereas neither the homing domain WAT7 nor KLAKLAK_2 alone or a previously reported peptide CKGGRAKDC-KLAKLAK_2 (which does not target WAP) induced ASC death (Figure 1d). Importantly, D-WAT did not induce death of cells derived from interscapular BAT (Figure 1d). These data indicate specificity of D-WAT for ASCs.

Next, we tested whether D-WAT can be used for targeting WAPs in vivo by administering peptide into mice and comparing their tissues with tissues from sham-treated animals. Flow cytometry revealed D-WAT-induced apoptosis in both s.c. and i.p. WAT, but not in interscapular BAT (Figure 1e). Whereas apoptosis was peptide dose dependent in WAT, background Apo-Trace signal was not dose dependent in control organs (Figure 1f). Leukocyte (CD45+) frequency in i.p. WAT was at least twice as high as in s.c. WAT in mice analyzed (Figure 1g), explaining why Apo-Trace+ cell frequency was lower in i.p. WAT. Increased sensitivity of s.c. ASCs to D-WAT could also partly result from D-WAT administration into the s.c. depot where it is likely to be transiently present at a higher concentration before distributing systemically. Apoptosis targeting to WAP was confirmed by immunofluorescence analysis of tissues with antibody against cleaved (Asp175) caspase 3. We detected apoptosis in perivascular cells of WAT surrounding the CD31-positive endothelial lumen, whereas only rare apoptotic cells were detected in liver and kidneys (Figure 1h). Using antibodies against DCN, we confirmed that the peptide treatment resulted in a depletion of perivascular ASCs while sparing the CD31-positive endothelium (Figure 1i). Combined, these data indicate that D-WAT induces apoptosis specifically in WAP.

WAP depletion inhibits WAT expansion. To test whether WAP depletion can suppress WAT expansion, we inspected the effect of D-WAT on diet-induced obesity (DIO) induction in C57BL/6 male mice that were fed high-fat diet throughout the 12-week experiment period. Mice were metronomically s.c. injected with D-WAT for 4 weeks; control animals were injected with saline. Peptide-treated and control groups displayed no difference in the total body mass at the end of the treatment (week 4). However, analysis of body composition by Echo MRI demonstrated a difference in fat mass between the groups (Figure 2a). Echo MRI measurements on animals monitored after treatment discontinuation demonstrated that accumulation of fat mass, but not of lean mass, was suppressed long term (week 12) in peptide-treated mice. Necropsy revealed comparatively smaller sizes and weights of i.p. and s.c. WAT pads in treated mice (Figure 2b), indicating that D-WAT treatment suppresses DIO development.

To confirm that WAP depletion underlies WAT growth suppression, we analyzed adherent SVF cells at week 8. The majority of viable SVF recovered from s.c. or i.p. WAT of treated mice had endothelial or monocyte morphology, whereas cells with ASC morphology were rare (Figure 2c). In contrast, recovery of cells with mesenchymal morphology from interscapular BAT and lungs was unaffected (Figure 2c).
Depletion of adipocyte progenitors suppresses obesity

AC Daquinag et al

Cell Death and Differentiation
Depletion of adipocyte progenitors suppresses obesity

AC Daquinag et al.

Graphs

- **Total body mass (g)**
 - Control vs. D-WAT over time (weeks)
 - Treatment effect over time

- **Fat body mass (g)**
 - Control vs. D-WAT over time (weeks)
 - Treatment effect over time

- **Lean body mass (g)**
 - Control vs. D-WAT over time (weeks)
 - Treatment effect over time

Images

- **b**
 - Control vs. D-WAT:
 - ip WAT
 - scWAT

- **c**
 - WAT
 - BAT
 - Lung

- **d**
 - WAT
 - BAT

- **e**
 - Adherent cells (%)
 - Control vs. D-WAT

- **f**
 - Control vs. D-WAT
WAP depletion prevents dyslipidemia but leads to hyperglycemia. Because WAT mass is a major factor in the regulation of lipid and sugar homeostasis, we analyzed a number of biochemical plasma variables in mice immediately after treatment discontinuation and at week 12. No significant differences in the basal levels of free fatty acids (FFA), glycerol, triglycerides (TG), and cholesterol were detected between control and peptide-treated animals (Figure 3a). Elevation in the steady-state plasma levels of insulin and glucose was detected in nonstarved animals (Figure 3a). However, no difference in fasting glucose tolerance was revealed between treated and control mice at both early and late time points (Figure 3b). We did not detect lipid intolerance upon intralipid infusion into fasted mice (Figure 3c). Increased systemic circulation of β-hydroxybutyrate was detected in treated mice (Figure 3d). This suggests that hyperlipidemia and ectopic fatty acid deposition is at least partly circumvented by their oxidation into ketone bodies. Stimulation of fatty acid utilization by D-WAT was demonstrated that upon sympathetic nervous system stimulation observed in control DIO mice was lower in D-WAT-treated animals (Figure 5b). Such ‘browning’ of BAT has been previously linked with improvement of its thermogenic function.38 To address whether this is the case in WAP-depleted animals, we analyzed expression of uncoupling protein 1 (UCP1), a protein responsible for thermogenesis.32 We could not detect a difference in expression frequency or intensity of UCP1, highly expressed in BAT adipocytes, between control and treated mice (Figure 5b).

A number of recent reports demonstrate that WAT ‘browning’ can lead to its metabolic activation,38–42 it has been demonstrated that upon sympathetic nervous system stimulation, white adipocytes can become replaced with beige (brite) adipocytes that simulate brown adipocytes expending energy via adaptive thermogenesis.8,32,33,43 We, therefore, considered a possibility that in our study increased thermogenesis in treated animals results from changes in WAT itself. Histological analysis revealed a trend for smaller adipocyte size in both s.c. and i.p. WAT of animals treated with D-WAT (Figure 5c).

WAP depletion results in WAT population with beige adipocytes. The level of locomotor activity increase (Figure 4f) is unlikely to explain the marked effects of D-WAT treatment on energy expenditure. Thus, we analyzed BAT to determine whether it is hypertrophic, which would account for increased thermogenesis. However, the size of interscapular BAT depots was not increased by treatment. As shown in Figure 5a, interscapular BAT in D-WAT-treated animals was visually less white, indicating lower lipid content. Indeed, BAT section analysis confirmed that lipid accumulation observed in control DIO mice was lower in D-WAT-treated animals (Figure 5b). Such ‘browning’ of BAT has been previously linked with improvement of its thermogenic function.38 To address whether this is the case in WAP-depleted animals, we analyzed expression of uncoupling protein 1 (UCP1), a protein responsible for thermogenesis.32 We could not detect a difference in expression frequency or intensity of UCP1, highly expressed in BAT adipocytes, between control and treated mice (Figure 5b).

Figure 2 WAP depletion suppresses WAT growth in DIO mice. Mice (15/group) maintained on high-fat diet underwent a 4-week treatment: twelve 200 μl s.c. injections (3/week) of 1 mM D-WAT or PBS (control). (a) Changes in total, fat, and lean body mass during and after treatment. (b) Exposed i.p. WAT and intradermal s.c. WAT (bracketed in H&E-stained sections) hypotrophic in treated mice at week 8. WAT pad weights are quantified in the graph on the right. (c) Phase contrast micrographs of adherent cells recovered (week 8) from matched amount of i.p. WAT, interscapular BAT, and lung tissue showing reduced plating efficiency for WAT, but not for BAT or lung, of treated mice. Arrows indicate SVF cells with ASC morphology, arrowheads indicate monocytes, and asterisks indicate endothelial colonies. (d) Identification of mesenchymal stroma as CD31−CD45− cells with large nuclei (arrows) versus leukocytes as CD45+ cells (arrowheads) and endothelial cells as CD31+ (*) by immunofluorescence on adherent cells shown in (e) with anti-CD31 (red) and anti-CD45 (green) antibodies. (e) Quantification of SVF immunophenotyping (d) showing reduced frequency of ASCs among viable WAT cells. (f) The i.p. WAT cells shown in (e) post confluence were induced to differentiate into white adipocytes (7 days) and stained with Oil red O. Note that white adipocytes (accumulating large lipid droplets) are rare upon treatment. Error bars: S.E.M. *P<0.05 versus control. Scale bar: 50 μM.
Figure 3 Lipid and glucose metabolism upon WAP depletion. D-WAT-treated (■) and control (▲) mice analyzed at week 4 or week 12 as corresponding to Figure 2a timeline. (a) Steady-state levels of circulating free fatty acids (FFA), glycerol, triglycerides, cholesterol, insulin, and glucose in plasma. (b) Comparable kinetics of blood glucose clearance upon i.p. glucose infusion (arrow) into fasted mice. (c) Comparable kinetics of triglyceride clearance upon i.v. intralipid infusion (arrow) into fasted mice. (d) Circulating β-hydroxybutyrate increase in treated mice. (e) H&E-stained sections show reduced lipid (arrow) accumulation in the liver of treated mice. (f) Triacylglycerol (TAG) quantification in hind limb muscle and feces of control and treated mice. *P<0.05 versus control. Scale bar: 50 μm
A marked infiltration of s.c. WAT with brown-like adipocytes was observed in treated mice (Figure 5d). Consistent with this observation, the frequency of cells expressing UCP1 was found to be 12-fold higher in s.c. WAT of treated mice (Figures 5e and f). Frequency of UCP1 expression was also increased in i.p. WAT (Figure 5f). Quantitative real-time PCR indicated that Cidea, CD137, and PGC-1α, reported as markers of beige adipocytes, were also induced in the WAT of treated animals (Figure 5g). These results indicate that, as a result of WAP depletion, WAT undergoes a partial conversion to beige fat that is particularly prominent in the s.c. depot.

WAP depletion spares beige adipocyte progenitors. Finally, we investigated the mechanism of adipocyte type switch upon WAP depletion. Recent studies indicate that beige adipocytes arise from a progenitor pool distinct from WAP rather than through adipocyte transdifferentiation. It has been shown that beige adipocytes can be identified as CD137+UCP1+ cells with low expression of perilipin-1 (Plin1) among CD137−UCP1−Plin1+ white adipocytes. To assess the content of beige adipocyte progenitors, we isolated SVF cells from s.c. WAT post D-WAT treatment, subjected them to brown adipogenesis induction in adherent culture, and then used immunofluorescence to measure UCP1 and Plin1 expression. As shown in Figure 6a, cells from control mice differentiated predominantly into UCP1-negative adipocytes with large lipid droplets coated with Plin1. In contrast, SVF from treated mice displayed predominant differentiation into UCP1+ adipocytes expressing low level of Plin1 (Figure 6a). Immunofluorescence revealed that the beige adipocyte marker CD137 is expressed in leukocytes present in the SVF of both treated and untreated mice. However, its...
expression in adipocytes was induced selectively in the SVF derived from treated mice, but not from control mice (Figure 6b). These data indicate that progenitors of beige adipocytes are retained upon WAP depletion.

Recently, PDGFRα-positive stromal cells, not expressing PDGFRβ, were identified in WAT as a distinct population of progenitors capable of differentiating into brown adipocytes.22 To address the progenitor heterogeneity, we performed immunofluorescence analysis of WAT from untreated mice using two different PDGFRα antibodies. Consistent with published data,22 our analysis shows that stromal cells expressing PDGFRα+ are distinct from PDGFRβ+ WAP (Figure 6c). Whereas PDGFRβ+ cells are predominantly localized in juxtaposition to the endothelium, PDGFRα+ cells are typically located in outer perivascular stroma layers often away from blood vessels (Figure 6d). By analyzing the SVF after D-WAT treatment, we observed a specific ablation of PDGFRβ+ cells, whereas PDGFRα+ cells remained among adherent stromal cells (Figure 6e), indicating that WAT7 is specific for WAP.
It has been shown that beige adipocyte differentiation and activity in mouse s.c. WAT requires the PRDM16 transcription factor. Using lentivirus expressing short hairpin RNA (shRNA), we silenced PRDM16 expression in s.c. ASCs and analyzed these cells in parallel with ASCs expressing untargeted shRNA (Figure 6f). Consistent with the lack of PRDM16 expression in WAP, its silencing did not significantly change cell sensitivity to D-WAT (Figure 6g). Confirming reported results, PRDM16-silenced cells failed to differentiate into beige (UCP1+) adipocytes upon brown adipogenesis induction (Figure 6h). D-WAT treatment did not reduce the frequency of beige adipocyte differentiation in cells expressing untargeted shRNA, confirming that D-WAT spares beige adipocyte progenitors (Figure 6h). Upon D-WAT treatment, the frequency of PDGFRβ+ cells was reduced among PRDM16-silenced ASCs at least as much as among PRDM16-untargeted ASCs (Figure 6i). Combined, these data confirm that D-WAT specifically targets WAP. Interestingly, we detected an increase in the frequency of stromal PDGFRα+ cells in both s.c. and i.p. WAT of treated mice (Figure 6j). This suggests that not only the pool of PDGFRα+ stromal cells survives, but it also undergoes expansion upon PDGFRβ+ WAP depletion. We conclude that WAT browning in response to WAP depletion occurs because of recruitment of an alternative progenitor cell population, the PDGFRα+ PDGFRβ− stromal cells, which in s.c. WAT can differentiate into beige adipocytes.

Discussion

Previous studies have established a strategy to ablation of specific cell types based on ‘hunter-killer’ peptides. Our group has successfully used cell-homing peptides coupled with a moiety KLAKLAK2 that induces apoptosis. Adipotide, a peptide that targets KLAKLAK2 to WAT endothelium through the homing peptide CKGGRKDC binding cell surface prohibitin, has been used for experimental obesity treatment. Adipotide induces quick and substantial WAT mass regression and improves glucose tolerance that has been validated in mouse, rat, and several non-human primate models. Here we use a novel hunter-killer peptide D-WAT, targeting WAP in both s.c. and i.p. WAT, to experimentally limit the pool of white adipocyte progenitors and determine whether the resulting white adipocyte shortage would have an effect on obesity development. By using D-WAT, we demonstrate that expansion of white adipocytes in a DIO model partly relies on WAP, suggesting that depletion of this progenitor population can be used as an approach to suppress WAT growth. It is important to contrast D-WAT with Adipotide that induces an acute reversal of experimental obesity that relapses upon treatment discontinuation. Unlike Adipotide, D-WAT induces only a subtle WAT loss, whereas its suppression of WAT growth is long term, reflecting its impact on WAP, a distinct target cell population. Provided the endothelium-supporting function of perivascular ASCs, the transient fat mass reduction observed during the treatment (Figure 2a) could be because of the temporary indirect effect of D-WAT on adipose vasculature.

WAT has remained controversial as a target in metabolic disease. Indeed, genetic models of lipodystrophy display dyslipidemia and the metabolic syndrome whereas thiazolidinediones (TZD), promoting adipocyte differentiation, have antidiabetic activity. The important distinction of our approach from models of total adipocyte deficiency is that it suppresses expansion of white adipocyte mass growth without causing lipodystrophy. Our data indicate that the adverse metabolic effects may be spared upon D-WAT treatment because of a skewed WAT development rather than its complete blockade. We demonstrate that WAP depletion results in WAT enrichment for thermogenic beige adipocytes. It has been shown that pharmacological treatments mildly reducing lipid content in white adipocytes, inducing WAT browning, and activating energy expenditure, improve metabolic function. Recent findings indicating that TZD action partly relies on fat browning is an illustration of the concept that a controlled modulation of adipocyte state can be not only safe but also beneficial.

No obvious adverse effects on mouse health have been detected upon D-WAT treatment. Increased appetite and the trend for lean mass increase (Figure 2b) rule out a possibility of caloric restriction being responsible for the WAT phenotype. This new approach to obesity suppression largely spares the adverse metabolic effects reported for genetic models of total adipose tissue deficiency. In fact, treatment prevented dyslipidemia, partly because of fatty acid conversion to ketone bodies that can serve as an energy source for metabolically active tissues. Elevated basal glucose and insulin levels in nonstarved animals could be a reflection of the increased feeding. We conclude that WAT browning is unable to completely compensate for the changes in glucose homeostasis induced by WAP in the context of increased high-calorie diet intake. Because we observed changes not only in deep WAT depots, but also in intradermal WAT, it is possible that the resulting reduced thermo insulation and cold intolerance contributes to increased thermogenesis. The relative contribution of BAT, which undergoes browning in treated animals, to energy expenditure is also unclear. Because both BAT and beige adipocytes rely on SNS for their thermogenic activity, hypothalamic circuitry is likely to mediate the effects of WAP depletion. Future studies will help to better understand the complex physiology of the systemic response to WAP depletion.

Our study provides a fundamental insight into the function of adipocyte progenitor cells. It has been shown that brown-like adipocytes arise in s.c. WAT from progenitors de novo upon β-3 adrenergic stimulation. A body of evidence indicates that developmentally distinct lineages of progenitor cells populate adipose depots with brown, beige, and white adipocytes. Whereas WAPs expressing PDGFRβ (the population targeted by D-WAT) give rise to white adipocytes, PDGFRα was revealed as a marker of progenitors capable of differentiating into both white and brown-like adipocytes. These precursor cells do not express PDGFRα meaning that they are different from WAPs. Our results demonstrating mutually exclusive expression of PDGFRβ and PDGFRα on ASC subpopulations support this notion, and are consistent with the model according to which distinct adipocyte precursor cell populations predetermine the relative abundance of white and beige adipocytes. We show that although D-WAT treatment depletes WAP, it does not deplete the progenitors...
Depletion of adipocyte progenitors suppresses obesity
AC Daquinag et al

(a) Control | D-WAT
(b) Control | D-WAT

c) PDGFRβ | PDGFRα
(d) PDGFRβ | PDGFRα

(e) Control | D-WAT
(f) PRDM16 expression

(g) % dead ASC

(h) Control | D-WAT
(i) Untargeted shRNA | PRDM16 shRNA

(j) Control | D-WAT

Cell Death and Differentiation
of beige adipocytes. Based on the published observation that PDGFRα+ stromal cells are capable of differentiating into brown-like adipocytes ex vivo, and on our observation that PDGFRα+ stromal cells are enriched in the WAT of treated animals, we conclude that PDGFRα+ ASCs serve as beige adipocyte progenitors. Interestingly, our data suggest that upon WAP depletion, PDGFRα+ ASCs undergo proliferation that may facilitate WAT population with beige adipocytes derived from these progenitors. Lineage tracing studies would be needed to confirm whether PDGFRα+PDGFRβ− and PDGFRα−PDGFRβ− ASCs indeed represent distinct progenitor populations maintaining the pools of white and beige adipocytes, respectively.

A potential value of WAP depletion as an approach to obesity prevention, in particular in the context of aging and positive energy balance, remains to be further investigated. It should be noted that a similar physiological response could be achieved through approaches other than WAP depletion. Similar phenotypes have been previously demonstrated for adipose tissue browning achievable through WAT β-adrenergic signaling or through muscle and BAT stimulation. Arguably, any controlled conversion of WAT into beige fat could be a viable strategy in treatment of obesity and the associated disorders. Therefore, from a short-term clinical benefit point of view, pharmacological SNS stimulation could be as effective. However, the conceptual distinction of obesity suppression via WAP depletion is that it changes the differentiation potential of WAT stroma. By enriching for beige adipocyte progenitors, WAP depletion predisposes WAT to undergo browning. Future studies will be needed to determine whether such WAT reprogramming is effective beyond the 3-month period analyzed in our study. This will determine whether inhibition of WAP with approaches based on the concept introduced here could complement conventional obesity therapies. As adipose progenitors functionally contribute to tumor microenvironment, they could also be considered as a cancer therapy target.

Materials and Methods
Peptide synthesis and administration. Peptides were synthesized by conventional peptide chemistry, cyclized via cysteines, purified to > 95% purity by HPLC and quality controlled (mass spectroscopy) by Cellek Peptides (Franklin, TN, USA). Cyclic CS[KYWFGE]C was labeled using the EasyLink Cy3 Conjugation Kit (Abcam, Cambridge, MA, USA). Cyclic peptide cCS[KYWFGE]C-KLAKLAK2 (cWAT-KLAKLAK2) was designed based on previously described strategy, but with all amino acids as D-enantiomers and with aminohexanoic acid-NH(CH2)5-CON as a linker (−). Peptide acetate salt powder was dissolved in phosphate-buffered saline (PBS) to 10 mM and aliquots were stored frozen until dilution in PBS, filtration, and use.

Animal studies. All animal studies were performed in accordance with the standards of the UTHealth Department of Comparative Medicine after review and approval of the protocol by Institutional Animal Care and Use Committee/Animal Welfare Committee, C57BL/6 male mice (6 weeks old) were purchased from Jackson (Bar Harbor, ME, USA) and maintained for 8 weeks upon WAP depletion, PDGFRα+ ASCs undergo proliferation that may facilitate WAT population with beige adipocytes derived from these progenitors. Lineage tracing studies would be needed to confirm whether PDGFRα+PDGFRβ− and PDGFRα−PDGFRβ− ASCs indeed represent distinct progenitor populations maintaining the pools of white and beige adipocytes, respectively.

A potential value of WAP depletion as an approach to obesity prevention, in particular in the context of aging and positive energy balance, remains to be further investigated. It should be noted that a similar physiological response could be achieved through approaches other than WAP depletion. Similar phenotypes have been previously demonstrated for adipose tissue browning achievable through WAT β-adrenergic signaling or through muscle and BAT stimulation. Arguably, any controlled conversion of WAT into beige fat could be a viable strategy in treatment of obesity and the associated disorders. Therefore, from a short-term clinical benefit point of view, pharmacological SNS stimulation could be as effective. However, the conceptual distinction of obesity suppression via WAP depletion is that it changes the differentiation potential of WAT stroma. By enriching for beige adipocyte progenitors, WAP depletion predisposes WAT to undergo browning. Future studies will be needed to determine whether such WAT reprogramming is effective beyond the 3-month period period analyzed in our study. This will determine whether inhibition of WAP with approaches based on the concept introduced here could complement conventional obesity therapies. As adipose progenitors functionally contribute to tumor microenvironment, they could also be considered as a cancer therapy target.

Materials and Methods
Peptide synthesis and administration. Peptides were synthesized by conventional peptide chemistry, cyclized via cysteines, purified to > 95% purity by HPLC and quality controlled (mass spectroscopy) by Cellek Peptides (Franklin, TN, USA). Cyclic CS[KYWFGE]C was labeled using the EasyLink Cy3 Conjugation Kit (Abcam, Cambridge, MA, USA). Cyclic peptide cCS[KYWFGE]C-KLAKLAK2 (cWAT-KLAKLAK2) was designed based on previously described strategy, but with all amino acids as D-enantiomers and with aminohexanoic acid-NH(CH2)5-CON as a linker (−). Peptide acetate salt powder was dissolved in phosphate-buffered saline (PBS) to 10 mM and aliquots were stored frozen until dilution in PBS, filtration, and use.

Animal studies. All animal studies were performed in accordance with the standards of the UTHealth Department of Comparative Medicine after review and approval of the protocol by Institutional Animal Care and Use Committee/Animal Welfare Committee, C57BL/6 male mice (6 weeks old) were purchased from Jackson (Bar Harbor, ME, USA) and maintained for 8 weeks upon WAP depletion, PDGFRα+ ASCs undergo proliferation that may facilitate WAT population with beige adipocytes derived from these progenitors. Lineage tracing studies would be needed to confirm whether PDGFRα+PDGFRβ− and PDGFRα−PDGFRβ− ASCs indeed represent distinct progenitor populations maintaining the pools of white and beige adipocytes, respectively.

A potential value of WAP depletion as an approach to obesity prevention, in particular in the context of aging and positive energy balance, remains to be further investigated. It should be noted that a similar physiological response could be achieved through approaches other than WAP depletion. Similar phenotypes have been previously demonstrated for adipose tissue browning achievable through WAT β-adrenergic signaling or through muscle and BAT stimulation. Arguably, any controlled conversion of WAT into beige fat could be a viable strategy in treatment of obesity and the associated disorders. Therefore, from a short-term clinical benefit point of view, pharmacological SNS stimulation could be as effective. However, the conceptual distinction of obesity suppression via WAP depletion is that it changes the differentiation potential of WAT stroma. By enriching for beige adipocyte progenitors, WAP depletion predisposes WAT to undergo browning. Future studies will be needed to determine whether such WAT reprogramming is effective beyond the 3-month period period analyzed in our study. This will determine whether inhibition of WAP with approaches based on the concept introduced here could complement conventional obesity therapies. As adipose progenitors functionally contribute to tumor microenvironment, they could also be considered as a cancer therapy target.

Materials and Methods
Peptide synthesis and administration. Peptides were synthesized by conventional peptide chemistry, cyclized via cysteines, purified to > 95% purity by HPLC and quality controlled (mass spectroscopy) by Cellek Peptides (Franklin, TN, USA). Cyclic CS[KYWFGE]C was labeled using the EasyLink Cy3 Conjugation Kit (Abcam, Cambridge, MA, USA). Cyclic peptide cCS[KYWFGE]C-KLAKLAK2 (cWAT-KLAKLAK2) was designed based on previously described strategy, but with all amino acids as D-enantiomers and with aminohexanoic acid-NH(CH2)5-CON as a linker (−). Peptide acetate salt powder was dissolved in phosphate-buffered saline (PBS) to 10 mM and aliquots were stored frozen until dilution in PBS, filtration, and use.

Depletion of adipocyte progenitors suppresses obesity
AC Daquinag et al

Cell Death and Differentiation

Figure 6 Beige adipocyte progenitor retention upon WAP depletion. (a and b) Adherent s.c. SVF cells from D-WAT-treated and control mice analyzed at week 12 (as corresponding to Figure 2a timeline) were induced (4 days) to differentiate into brown adipocytes. (a) Anti-Plin1 (green)/anti-UCP1 (red) immunofluorescence shows preferential differentiation of ASCs from treated mice into beige (UCP1+) adipocytes (arrows), whereas mainly UCP1− adipocytes with large Plin1+ lipid droplets are observed for control mice. (b) Anti-CD137+ immunofluorescence (green) reveals differentiation of ASCs from treated, but not from control, mice into beige adipocytes (arrows). Arrowheads indicate CD137+ leukocytes present in SVF from both control and treated mice. (c) Immunofluorescence analysis of s.c. WAT sections from a control mouse with ab51875 anti-PDGFRα (green) and anti-PDGFRβ (red) antibodies identifies PDGFRα+ and PDGFRβ+ stromal cells, as distinct populations. (d) Immunofluorescence analysis of whole mounts of i.p. WAT from a control mouse with AF1082 anti-PDGFRα (green) and anti-PDGFRβ (red) antibodies. Inset magnified on the right: confocal Z-stack projections of median series confirming that expression of PDGFRα and PDGFRβ on stromal cells is mutually exclusive. (e) Adherent s.c. SVF cells post-D-WAT treatment were subjected to immunofluorescence analysis with anti-PDGFRα (green) and anti-PDGFRβ (red) antibodies (red), demonstrating specific depletion of PDGFRβ+ cells. Endothelial colonies (*) are PDGFRα−PDGFRβ−. (f) Relative PRDM16 mRNA expression (normalized to 18S RNA) in s.c. SVF cells transduced with lentivirus expressing an untagged shRNA (Untarg.) or shRNA clones 1 and 3 designed to silence PRDM16 expression measured by quantitative PCR. (g) The s.c. SVF cells transduced with untagged shRNA or PRDM16 shRNA clone 3 were treated with D-WAT and cell death was quantified based on Trypan blue positivity. (h) Adherent s.c. SVF cells transduced with untagged shRNA or PRDM16 shRNA (clone 3) were untreated (Control) or treated with D-WAT and then induced to differentiate into brown adipocytes (8 days), fixed, and subjected to anti-Plin1 (green)/anti-UCP1 (red) immunofluorescence. Note that UCP1 expression (orange arrows) is not observed in PRDM16 shRNA adipocytes (green arrows). (i) Adherent s.c. SVF cells transduced with untagged shRNA or PRDM16 shRNA (clone 3) were untreated (Control) or treated with D-WAT and then subjected to immunofluorescence analysis with anti-PDGFRα (green) and anti-PDGFRβ (red) antibodies (red). Images (left) demonstrate the retention of PDGFRα+ cells (red arrows) upon PRDM16 silencing and their depletion upon D-WAT treatment; the graph (right) is data quantification. (j) Immunofluorescence analysis of s.c. WAT whole mounts with anti-PDGFRα antibody (green) and IB4 (red) reveals higher numbers of PDGFRα+ stromal cells (arrows) in treated mice. The graph (right) shows quantified frequencies of PDGFRα+ cells among nucleated cells of s.c. and i.p. WAT. Nuclei are blue. * P < 0.05. Scale bar: 50 μm.
Short hairpin RNA lentivector vectors. PRMD16 silencing experiments were performed with lentiviral pLKO.1 vectors from the RNA Consortium (TRC) lentiviral shRNA library (Open Biosystems, Lafayette, CO, USA). Oligonucleotide ID TRCN0000958, referred to as PRMD16 C1; oligonucleotide ID TRCN0000460, referred to as PRMD16 C3. GFP-shRNA pLKO.1 was used as untargeted shRNA control. Packaging vectors pMSCP.LT, pCAGGS, pLV.EF1, pMDLg/pRRE, pRSV-Rev, and pMD2.G/p2VSV (Addgene, Cambridge, MA, USA) were used for lentivirus production by transient transfecting 293-T cells (Xelent, Oclotech, Mountain View, CA, USA) for 16 h, and harvesting viral particles 24 and 48 h later. Recombinant particles filtered through 0.45 μm pore cellulose acetate membrane and concentrated by ultracentrifugation for 2 h at 50 000 × g were used for transduction, drug selection, and reporter gene expression confirmation as previously described.

Tissue analysis. All steady-state plasma analyses were performed by Baylor Mouse Metabolism Core (Houston, TX, USA) under a fee-for-service contract. Food intake was measured as described previously.36,37 Triglyceride quantification in muscle and feces was performed using a colorimetric kit from Biovision (Milpitas, CA, USA). Paraffin-embedded fixed cells and formalin-fixed paraffin-embedded tissue sections were analyzed by immunofluorescence as previously described.20,34

Statistical analysis. All primary antibodies (4°C, 12 h) and secondary antibodies (RT, 1 h) diluted in PBS/0.05% Tween-20 were used: rat anti-CD44 from BD Pharmingen (San Jose, CA, USA; 1:100), goat anti-CD31 from Santa Cruz Biotechnology (Santa Cruz, CA, USA; 1:75; anti-Ash-175-cleaved Caspase3) from Cell Signaling Technology (Beverly, MA, USA; 1:100); goat anti-DN from R&D Systems (Minneapolis, MN, USA; 1:200); rabbit anti-UCP1 (Abcam, 1:1000); rabbit anti-Plin1 (Cell Signaling Technology, 1:100); rabbit anti-CD137 (Bios, Woburn, MA, USA; 1:50); rat anti-PDGFRα ab15875 (Abcam, 1:100); goat anti-PDGFRα AF1062 (R&D Systems, 1:100), and rabbit anti-PDGFRα ab23570 (Abcam, 1:100). Secondary antibodies used were: donkey Alexa488-IgG (Invitrogen, Grand Island, NY, USA; 1:150) and Cy3-IgG (Jackson ImmunoResearch, West Grove, PA, USA; 1:50). Biotinylated IB4 was from Vector Labs (Burlingame, CA, USA; 1:50) and used with Cy3-conjugated streptavidin as previously described.24 Nuclear were stained with Hoechst 33258 or TO-PRO-3 (Invitrogen). Hematoxylin and eosin tissue sections were analyzed by immunofluorescence as previously described.20,34

1. Wisse BE, Kim F, Schwartz MW. Physiology. An integrative view of obesity. Science 2007; 318: 829–832.
2. Friedman JM. Obesity: causes and control of excess body fat. Nature 2009; 459: 340–342.
3. Sirin O, Kolonin MG. Treatment of obesity as a potential complementary approach to cancer therapy. Drug Discov Today 2013; 11: 567–573.
4. Dolgin E. A history of drugs on the weight list. Nat Med 2012; 18: 843.
5. Daquinag AC, Zhang Y, Kolonin MG. Vascular targeting of adipose tissue as an anti-obesity approach. Trends Pharmacol Sci 2011; 32: 300–307.
6. Ducharme NA, Bickel PE. Lipid droplets in lipogenesis and lipolysis. Endocrinology 2008; 149: 940–949.
7. Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell 2014; 156: 20–44.
8. Cinti S. Between brown and white: novel aspects of adipocyte differentiation. Ann Med 2011; 43: 104–115.
9. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest 2011; 121: 2094–2101.
10. Spalding KL, Arner E, Westmark PO, Bernard S, Buchholz BA, Bergmann O et al. Dynamics of fat cell turnover in humans. Nature 2008; 453: 783–787.
11. Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 2013; 19: 1338–1344.
12. Kras KM, Hausman DB, Hausman GJ, Martin RJ. Adipocyte development is dependent upon stem cell recruitment and proliferation of preadipocytes. Obes Res 1999; 7: 491–447.
13. Guntlee JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res 2012; 110: 1250–1257.
14. Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: existing history, concepts, and assays. Cell Stem Cell 2008; 2: 313–319.
15. Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell 2011; 9: 11–15.
16. Kolonin MG, Simmons PJ. Combinatorial stem cell mobilization. Nat Biotechnol 2009; 27: 252–253.
17. Rodeheffer MS, Boris K, Friedman JM. Identification of white adipocyte progenitor cells in vivo. Cell 2008; 138: 240–249.
18. Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE et al. White fat progenitor cells reside in the adipose vasculature. Science 2008; 322: 583–586.
19. Traktuev D, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 2008; 102: 77–85.
20. Daquinag AC, Zhang Y, Amaya-Manzanares F, Simmons PJ, Kolonin MG. An isofrom of decorin is a resistin receptor on the surface of adipose progenitor cells. Cell Stem Cell 2011; 9: 74–86.
21. Berry R, Rodeheffer MS. Characterization of the adipocyte cellular lineage in vivo. Nat Cell Biol 2013; 15: 302–306.
22. Lee YH, Petkova AP, Mottillo EP, Granneman JG. In vivo ligand-receptor mapping by direct combinatorial selection in cancer patients. Proc Natl Acad Sci U S A 2004; 101: 15978–15983.
23. Kolonin MG, Sun J, Do KA, Vidal CI, Ji Y, Baggerly KA et al. Dynamics of fat cell turnover in humans. Proc Natl Acad Sci U S A 2013; 110: 18637–18642.
24. Azhdarinia A, Daquinag AC, Zhang Y, Kolonin MG. Vascular targeting of adipose tissue as an anti-obesity approach. Nat Med 2012; 18: 490–491.
25. Azhdarinia A, Daquinag AC, Tseng C, Ghosh S, Amaya-Manzanares F, Sevik-Muraca E et al. A peptide probe for targeted brown adipose tissue imaging. Nat Commun 2014; 5: 3742–3752.
26. Daquinag AC, Zhang Y, Kolonin MG. Vascular targeting of adipose tissue as an anti-obesity approach. Proc Natl Acad Sci U S A 2013; 110: 18637–18642.
27. Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W. Reversal of obesity by targeted pro-apoptotic peptides. Nat Med 2012; 18: 490–491.
28. Azhdarinia A, Daquinag AC, Tseng C, Ghosh S, Amaya-Manzanares F, Sevik-Muraca E et al. A peptide probe for targeted brown adipose tissue imaging. Nat Commun 2014; 5: 3742–3752.
38. Koncarevic A, Kajimura S, Cornwall-Brady M, Andreucci A, Pulleen A, Sako D et al. A novel therapeutic approach to treating obesity through modulation of TGFbeta signaling. Endocrinology 2012; 153: 3133–3146.

39. Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 2014; 159: 304–316.

40. Onci L, Cook WS, Ravazzola M, Wang MY, Park BH, Montesano R et al. Rapid transformation of white adipocytes into fat-oxidizing machines. Proc Natl Acad Sci USA 2004; 101: 2058–2063.

41. Cinti S. Transdifferentiation properties of adipocytes in the adipose organ. Am J Physiol 2014; 315: C277–C287.

42. Wu J, Bostrom P, Sparks CA, Tang Y, Choi JH, Giang AH et al. Fat apoptosis through which insulin regulates CCAAT/enhancer binding protein alpha (C/EBPalpha) phosphorylation and gene expression in 3T3-L1 adipocytes. Correlation with GLUT4 gene expression. J Biol Chem 2009; 284: 15220–15229.

43. Seale P, Bjork B, Yang W, Kajimura S, Chiu S, Kuang S et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008; 454: 961–967.

44. Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest 2011; 121: 96–105.

45. Kim DH, Sarma MA, Bain JR, Sandowal D, Stevens RD, Medvedovic M et al. Rapid and weight-independent improvement of glucose tolerance induced by a peptide designed to elicit apoptosis in adipose tissue endothelium. Diabetes 2012; 61: 2299–2310.

46. Pajvani UB, Trujillo ME, Combs TP, Iyengar P, Jelicks L, Roth KA et al. Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy. Nat Med 2005; 11: 797–803.

47. Mlotra J, Mason MM, Olive M, Krylov D, Gavrilo O, Marques-Samuels B et al. Life without white fat: a transgenic mouse. Genes Dev 1998; 12: 3168–3181.

48. Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 2008; 77: 289–312.

49. Reilly SM, Chiang SH, Decker SJ, Chang L, Uhm M, Larsen MJ et al. An inhibitor of the protein kinases TBK1 and IKK epsilon improves obesity-related metabolic dysfunctions in mice. Nat Med 2013; 19: 313–321.

50. Qian L, Wang L, Kon N, Zhao W, Lee S, Zhang Y et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell 2012; 150: 620–632.

51. Sanchez-Sermones J, Hung CM, Sparks CA, Tang Y, Li H, Guerin DA. Pten loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab 2012; 16: 348–362.

52. Reilly SM, Chiang SH, Decker SJ, Chang L, Uhm M, Larsen MJ et al. An inhibitor of the protein kinases TBK1 and IKK epsilon improves obesity-related metabolic dysfunctions in mice. Nat Med 2013; 19: 313–321.

53. Qian L, Wang L, Kon N, Zhao W, Lee S, Zhang Y et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell 2012; 150: 620–632.

54. Sanchez-Sermones J, Hung CM, Sparks CA, Tang Y, Li H, Guerin DA. Pten loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab 2012; 16: 348–362.

55. Shan T, Liang X, Bi P, Zhang P, Lu W, Kuang S. Distinct populations of adipogenic and myogenic Myf5-lineage progenitors in white adipose tissues. J Lipid Res 2013; 54: 2214–2224.

56. Vegiopoulos A, Muller-Decker K, Strzoda D, Schmitz I, Chichelnitskiy E, Ostertag A et al. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 2010; 328: 1158–1161.

57. Kotas ME, Jurczak RJ, Annicelli C, Gillum MP, Cline GW, Shulman GI et al. Role of caspase-1 in regulation of triglyceride metabolism. Proc Natl Acad Sci USA 2013; 110: 4810–4815.

58. Tschoop MH, Speakman JR, Arch JR, Auwex J, Bruning JC, Cham L et al. A guide to analysis of mouse energy metabolism. Nat Methods 2012; 9: 57–63.

59. Hemati N, Ross SE, Erickson RL, Groblewski GE, MacDougald OA. Signaling pathways through which insulin regulates CCAAT/enhancer binding protein alpha (C/EBPalpha) phosphorylation and gene expression in 3T3-L1 adipocytes. Correlation with GLUT4 gene expression. J Biol Chem 1997; 272: 25913–25919.

60. Daquinag AC, Souza GR, Kolonin MG. Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles. Tissue Eng Part C Methods 2013; 19: 336–344.