Dendritic cell entry to lymphatic capillaries is orchestrated by CD44 and the hyaluronan glycocalyx

Louise A Johnson1, Suneale Banerji1, B Christoffer Lagerholm2, David G Jackson1

DCs play a vital role in immunity by conveying antigens from peripheral tissues to draining lymph nodes, through afferent lymphatic vessels. Critical to the process is initial docking to the lymphatic endothelial receptor LYVE-1 via its ligand hyaluronan on the DC surface. How this relatively weak binding polymer is configured for specific adhesion to LYVE-1, however, is unknown. Here, we show that hyaluronan is anchored and spatially organized into a 400–500 nm dense glycocalyx by the leukocyte receptor CD44. Using gene knockout and by modulating CD44-hyaluronan interactions with monoclonal antibodies in vitro and in a mouse model of oxazolone-induced skin inflammation, we demonstrate that CD44 is required for DC adhesion and transmigration across lymphatic endothelium. In addition, we present evidence that CD44 can dynamically control the density of the hyaluronan glycocalyx, regulating the efficiency of DC trafficking to lymph nodes. Our findings define a previously unrecognized role for CD44 in lymphatic trafficking and highlight the importance of the CD44:HA:LYVE-1 axis in its regulation.

Introduction

Mobilization of antigen-presenting cells such as DCs from peripheral tissue via afferent lymphatics to draining LNs is essential for immune surveillance and for generating and regulating cellular immune responses (reviewed in reference 1). The process involves a number of individual steps guided by specific adhesion receptors and chemotactic cues, beginning with interstitial migration towards initial lymphatic capillaries, and followed by transit across endothelium to the vessel lumen and intraluminal crawling (2, 3, 4, 5, 6, 7, 8, 9, 10). A critical step in this process is that of vessel entry, during which migrating leukocytes with a diameter of ~10 μm must squeeze between the interdigitating endothelial flaps that comprise the distinctive overlapping junctions of initial lymphatic capillaries. These flaps are buttomed at their sides by the adherens junction molecule vascular endothelial cadherin (VE-cadherin) and tight junctional adhesion molecules including claudins and zonula occludens-1 (ZO-1), and lined at their tips by the lymphatic endothelial hyaluronan (HA) receptor LYVE-1 and CD31 (11). From the results of targeted gene deletion and antibody blockade studies, it is now clear that entry at such junctions involves formation of dynamic LYVE-1-rich transmigratory cups, which permit docking of DCs via HA present as a dense layer on their surface (12).

HA is a ubiquitously expressed glycosaminoglycan composed of linear repeating units of D-glucuronic acid and N-acetyl-D-glucosamine (GlcNAc β1-4 GlcUA)n, which may extend to up to 20,000 disaccharide units in length, with contour lengths of up to 25 μm. HA is implicated in a wide range of physiological and pathological roles, as a structural component and also through highly regulated interactions with a cohort of HA-binding proteins. Generated endogenously by members of the HA synthase protein family located on the inner leaflet of the plasma membrane (reviewed in reference 13), the nascent polymers are extruded from the cell surface. However, the molecular details of the DC HA glycocalyx and its structural organization remain poorly defined. Most importantly, the supramolecular organization of large multivalent HA polymers within the DC glycocalyx provides the necessary avidity for efficient binding to LYVE-1, enabling the receptor to discriminate between HA-coated DCs and smaller uncomplexed HA molecules that bind LYVE-1 more weakly (14, 15), a property described as superselectivity (16).

In this present study, we have investigated how the HA glycocalyx is retained and organized on the surface of DCs, and how this contributes to the recently established role of the glycocalyx in regulating entry and trafficking in lymphatic vessels. We reveal that the glycocalyx is tethered exclusively by the key leukocyte receptor CD44, which configures the constituent HA polymers for efficient docking and adhesion via LYVE-1+ transmigratory cups. Furthermore, using a mouse model of skin contact hypersensitivity, we show that CD44 gene deletion in DCs impedes their trafficking to draining LNs by disrupting their capacity to adhere and enter initial lymphatic capillaries. Finally, by inducing an increase in the HA-binding capacity of CD44 using potentiating antibody in vivo, we show the resulting increase in HA glycocalyx density dramatically enhances DC docking to LYVE-1 and promotes their arrest within the vessel lumen. These results identify a previously unrecognized role for CD44 in DCs and reveal its importance in the interplay between HA and LYVE-1 for lymphatic trafficking. In addition, they uncover...
the dynamic nature of the DC HA glyocalyx and reveal a potential mechanism by which DCs might regulate their own trafficking through control of CD44:HA-binding efficiency.

Results

CD44 is the primary anchoring receptor for the DC HA glyocalyx

Numerous different non-hematopoietic cell types, including fibroblasts, chondrocytes, vascular smooth muscle, and endothelial cells are surrounded by HA-rich pericellular coats (17, 18), whose anchorage has been attributed to the widely expressed HA receptor CD44 (19) as well as retention by the plasma membrane-bound HA synthases (13, 20). To determine if similar modes of anchorage are used by DCs, we compared the integrity of the HA coat in mouse BMDCs from wild-type and CD44−/− mice, verifying that CD44 plays a role in retaining HA and soluble HA showing a similar twofold increase upon LPS-induced maturation (Fig 2B and C). These findings reveal that CD44 is essential for processing, anchorage and retention of an endogenously synthesized HA glyocalyx in DCs. However, CD44 is dispensable for both HA synthesis and secretion.

CD44 is translocated to the DC uropod for HA-mediated adhesion to lymphatic endothelium

Next, we investigated the functional role of CD44 and its organization of the HA glyocalyx during DC adhesion to lymphatic endothelium. We carried out spinning disc video microscopy to observe initial encounters of CMFDA-labeled human monocyte–derived DCs (MDDCs) with a human lymphatic endothelial cell (hLEC) monolayer, using the non-blocking mAb 6A to visualize LYVE-1. As shown in Videos 1 and 2, MDDCs appeared to first adhere to a discrete cluster of LYVE-1 in the underlying endothelium via one pole of the cell, before extending lamellipodia–like protrusions to probe the surrounding monolayer. Significantly, both attachment to LYVE-1 and protrusion formation were disrupted when MDDCs were pretreated with the CD44 mAb IM7 that induces CD44 shedding (22, 23) or the CD44 HA–blocking mAb BRIC235 (24), both of which destabilize the glyocalyx (Figs 3A and S5A and B). Furthermore, dual staining of adhering MDDCs for ICAM3, a well-documented marker for the uropod, revealed that CD44 was preferentially localized to this distinct region at the trailing edge of the cell (25) where it formed the primary adhesive interface with underlying ECs (Fig 3B and Videos 5 and 6). We also observed that disrupting CD44–HA interactions at the surface of MDDCs by prior treatment with either IM7 or BRIC235 mAbs abolished the capacity of these cells to establish formation of the characteristic LYVE-1+ endothelial cups that mediate DC-lymphatic adhesion and transmigration (Fig S5C). Hence, the directed distribution of HA glyocalyx to the uropod via CD44 is pivotal to both these critical processes.

To explore the influence of CD44-dependent endothelial adhesion on DC motility, we tracked the migratory paths of MDDCs on hLEC monolayers. In the presence of control IgG, MDDCs crawled briefly but adhered rapidly, inducing LYVE-1 clustering in the regions of cell–cell contact before transmigrating across the monolayer, below the plane of view (Fig 3C and D and Videos 1 and 2). In contrast, MDDCs that were treated with either IM7 or BRIC235 failed to form long-lived interactions and thus crawled further (12-fold and 9-fold, respectively), with longer migratory paths (Fig 3C and D and Videos 3 and 4). Importantly, no effect was observed with the control non-blocking CD44 mAb F.10.44.2 (Fig 3E).

Similarly, we used spinning disc microscopy to simultaneously track the migratory paths of CD44+/+ and CD44−/− BMDCs on monolayers of primary dermal mouse lymphatic endothelial cells (mLECs), using cells that had been differentially tagged with either competitive ELISA. This showed the glycosaminoglycan was present in similar amounts in whole cell lysates (cell surface and intracellular fractions) of immature BMDCs from both CD44+/+ and CD44−/− and increased almost twofold in each case after LPS-induced maturation (Fig 2B and C). Moreover, Airlsyn confocal imaging of permeabilized cells revealed that HA in CD44+/+ BMDCs was predominantly at the cell surface, whereas in CD44−/− BMDCs, HA accumulated in intracellular vesicles (Fig 2D), suggestive of a role for CD44 in their trafficking to the plasma membrane. Surprisingly, HA was also secreted in significant amounts by both CD44+/+ and CD44−/− BMDCs, with both cell-associated HA and soluble HA showing a similar twofold increase upon LPS-induced maturation (Fig 2B and C).
Figure 1. CD44 anchors the HA glycocalyx to the surface of both immature and mature DCs.

(A) HA on intact BMDCs prepared from CD44+/+ and CD44−/− littermates, as detected using bVG1 with streptavidin-AF647 by flow cytometry. Data in box plots represent the median (center bar) ± s.e.m. (whiskers), n = 5, 6 mice. Data are one representative experiment from three.

(B) Representative dot plots of bVG1-streptavidin-AF647, to indicate levels of cell surface HA.

(C) Visualization of the HA glycocalyx by bVG1-streptavidin–AF647 (red) on an individual PFA-fixed CD44+/+ BMDC, with CD44 detected by mAb IM7 (green) and nucleus counterstained with DAPI (blue), as observed by confocal microscopy with Airyscan detection, with digital zoom (right panel) to show dimensions of the extended pericellular coat.

(D) Confocal microscopy of fixed CD44+/+ and CD44−/− BMDCs labeled with CMFDA green tracker dye, bVG1-streptavidin-

**** CD44+/+

CD44−/−

G

HA−cells (% of McCal+cells)

0 10 20 30 40 50 60 70

CD44−/− CD44+/+ CD44+/+ CD44+/+ Hase

confirmatory experiments.
CD44 is critical for DC entry to dermal lymphatics

To assess the significance of CD44-mediated glyocalyx organization for lymphatic trafficking in vivo, we topically applied FITC and the skin sensitizing agent oxazolone to the shaved abdomens of CD44+/+ and CD44−/− mice, then 24 h later harvested draining inguinal and axillary LNs for analysis by flow cytometry (Figs 6 and S6). We recorded a twofold reduction in recovery of FITC+ CD11c+ DCs in CD44−/− mice, in comparison to CD44+/+ litter- and cage-mates (Fig 6A–D), both in terms of absolute numbers (Fig 6A) and as their percentage of total cells in draining LNs (Fig S6A–C). The same impact of CD44 gene deletion was also evident in the FITC-bearing CD11c+ MHC class II+ CD103+ migratory DC subsets (Fig 6B) and was accompanied by a significant (P = 0.037) reduction in the total cellularity of CD44−/− LNs (Fig 6C). Nevertheless, because CD44 is also expressed by fibroblasts and epithelial cells in mouse skin, we could not exclude the possibility that such effects may have resulted from gene deletion in these other cells types. Therefore, to avoid such ambiguities, we carried out additional lymphatic trafficking experiments in which we labeled CD44−/− and CD44+/+ BMDCs with either Q-dot 655 or Q-dot 585 (or vice versa), and injected 1:1 mixtures into the skin of recipient CD44+/+ C57BL/6 mice that had been subjected to oxazolone contact hypersensitivity. We then compared their recoveries in draining cervical LNs by flow cytometry after 24 h. The results (Fig 7A) showed an almost twofold reduction in CD44−/− BMDCs in these LNs, both in terms of cell numbers and as a percentage of total LN cellularity (Fig S7A and B). As this reduction in nodal trafficking was comparable with that observed for BMDCs in Lyve-1-deficient mice (12), we reasoned that CD44, like LyvE-1, might contribute to the same initial step in vessel entry. To explore this further, we prepared fixed whole-mount skin sections from mice injected with CMFDA-labeled CD44−/− and CD44+/+ BMDCs, and used confocal imaging to compare their distribution in and around lymphatic capillaries close to the injection site. As expected, significant numbers of CMFDA+ BMDCs of both genotypes were still visible 24 h after transfer (Fig 7B). However, unlike CD44+/+ BMDCs, where the majority (80%) of vessel-associated cells were found within the capillary lumen, most CD44−/− BMDCs (60%) had accumulated at the basolateral surface and few if any were visible in the lumen (Fig 7B and C). Likewise, this correlated with a reduction in the number of CMFDA+ CD44−/− BMDCs recovered from draining LNs, in comparison with CD44+/+ BMDCs (Fig 7D), as well as a reduction in overall LN cellularity (Fig 7E).

To further consolidate these findings, we performed in vitro adhesion and transmigration assays (12, 26) using immature and LPS-matured BMDCs, and monolayers of primary dermal mLECs. As shown in Fig 8A–D, the numbers of both resting and LPS-matured CD44−/− BMDC adhering to the LEC monolayers after 3 h were, respectively, between two and fourfold lower than equivalent control CD44+/+ cells. Importantly, incubation with HAase reduced the adhesion of CD44+/+ BMDCs to the same level as that of CD44−/− BMDCs (Fig 8B), confirming that CD44:HA interactions are responsible for supporting such DC-LEC adherence, rather than other ligands of CD44 such as chondroitin sulfate (27, 28), E-selectin (29) macrophage mannose receptor (MR) (30), or osteopontin (31). In addition, the adhesion of wild-type BMDCs was reduced by more than 40% in the presence of excess free HA (Fig 8C). Furthermore, in Transwell assays with mLEC monolayers, both the rate and extent of basolateral-to-luminal transmigration of CD44+/− BMDC were reduced (up to 85%) by comparison with CD44+/+ DCs (Fig 8E). However, mAb-induced blockade of LyvE-1:HA interactions did not impair CD44−/− BMDC transmigration, unlike that of CD44+/+ BMDC, confirming that in the absence of CD44, diapedesis does not involve LyvE-1:HA interactions (Fig 8F).

Last, we considered the possibility that genetic deletion of CD44 in BMDCs might contribute to defective nodal trafficking by impeding interactions with HA in the dermal matrix, which could support interstitial migration before vessel entry. To address the issue, we modeled the process over 5 h in vitro, using an assay that measured transit of fluorescent (CMFDA-labeled), LPS-matured BMDCs through monolayers of mouse dermal fibroblasts plated on the upper surface of Transwell inserts. However, rather than blocking DC migration, the results (Fig 8G), indicated CD44 gene deletion marginally enhanced the process in comparison to CD44+/+ cells, although the difference did not reach statistical significance. These results demonstrate that CD44 retains and organizes the DC HA glyocalyx, to permit efficient docking with lymphatic endothelium and transit to the vessel lumen.

Increasing HA glyocalyx density through mAb-induced CD44 clustering enhances DC-lymphatic adhesion and leads to arrest in the vessel lumen

The importance of the CD44:HA glyocalyx complex for docking and entry of DCs to dermal lymphatic vessels raised the possibility that functional regulation of the receptor might exert control over lymphatic trafficking in vivo. Indeed, in other leukocyte populations, it is well documented that the HA-binding capacity of CD44 is
Figure 2. CD44−/− BMDCs exhibit no defect in HA synthesis.
(A) Cell lysates of immature and mature BMDCs from either five or six individual CD44+/+ and five CD44−/− littermates were resolved by SDS-PAGE and probed by Western blotting to detect HAS enzymes HAS1-3 and GAPDH (as a loading control). Representative blots are shown, from one of two separate experiments. Lysate from wild-type mouse skin was included as a positive control for HAS3. (B, C) Quantitation of HA in lysates (B) and supernatants (C) of immature and LPS-matured BMDCs, as determined by ELISA. Data represent the median (center bar) ± s.e.m. (whiskers), n = 5 for CD44+/+ and 6 for CD44−/− mice, one representative experiment from three separate experiments. (D) Detection of HA in permeabilized BMDCs prepared from CD44+/+ and CD44−/− littermates, using bVG1 and streptavidin–AF647 (gray), immunostaining for CD44 (green), and counterstaining with phalloidin (red) and DAPI (blue). Scale bars = 5 μm.
Figure 3. Disrupting CD44-HA binding impairs DC interactions with human lymphatic endothelial cells (hLECs).

(A) Surface levels of CD44 and HA on LPS-matured human monocyte-derived DC (MDDC) after incubation with control IgG, or anti-CD44 mAbs IM7 and BRIC235, as measured by flow cytometry. ****P < 0.0001, unpaired t-test. Data are the mean ± s.e.m. (n = 3), one representative experiment of three.

(B) Single time point from a video of MDDCs labeled with FITC-conjugated anti-CD44 (mAb F10.44.2, green) and APC-conjugated anti–ICAM3 (red) crawling on unstained hLEC monolayers. Scale bar = 10 μm.

(C, D, E) Migration of mAb-treated MDDCs on monolayers of hLECs, imaged by spinning disc confocal microscopy over 4 h, with dragon tail tracks color-coded to indicate time progression (C) and quantitated using Imaris software (D, E). Scale bar = 20 μm, ****P < 0.0001, Mann–Whitney U-test. Data are the median (center bar) ± s.e.m. (whiskers), data combined from three experiments.
subject to regulation by pro-inflammatory cytokines, through a combination of inside-out signaling, post-translational modification and surface clustering (32, 33, 34). To explore the possibility in more detail, we assessed the consequences of increasing the HA-binding capacity of CD44 in mouse BMDCs using the anti-CD44 mAb IRAWB14, which has been shown to exert such effects in T lymphoma cells by promoting optimal CD44 clustering via an epitope in the N-terminal Link domain (35, 36, 37). As shown in Fig 9A, incubation of wild-type CD44+/+ BMDCs with IRAWB14 led to an almost twofold increase in their capacity to bind exogenously added HA. More compellingly, IRAWB14 also increased the extent to which BMDCs bound endogenously synthesized HA, as evidenced by an almost sixfold increase in surface HA levels in the absence of any externally added HA (Fig 9B). This latter finding indicates that the density of the HA glycocalyx can be altered by changes in CD44 functional status without any change in the levels of HA synthesis. Indeed, we found that most HA synthesized by LPS-matured CD44+/+ DCs is secreted (median 2.4 pg/cell), and less than 50% (median 1.7 pg/cell) is retained by CD44 tethering (Fig 2B and C). In contrast, we detected no capacity for binding exogenous HA in CD44−/− BMDCs, nor any potentiation of endogenous or exogenous HA binding in response to IRAWB14, confirming that the effects of this mAb are CD44 dependent (Fig 9A and B).
Figure 5. CD44 is required for efficient formation of lymphatic endothelial transmigratory cups.

(A) Confocal microscopy orthogonal view images of cultured primary mouse lymphatic endothelial cell (mLEC) monolayers immunostained with anti–LYVE-1 (red) viewed 3 h after the addition of LPS-matured, fluorescently labeled (green) CD44+/+ BMDC immunostained with anti-CD44 (blue), and bVG1 (yellow) and counterstained with DAPI (gray), scale bar = 10 μm. (B) Three-dimensional rendering of confocal images of cultured primary mLEC monolayer immunostained with anti–LYVE-1 (red) viewed 3 h after the addition of fluorescently labeled (green) CD44+/+ or CD44−/− BMDC immunostained with anti-CD44 (blue). An individual LYVE-1-lined transmigratory cup is indicated by arrow. Scale bar = 10 μm. (C) Quantitation of microscopy images to show the number of LYVE-1+ transmigratory cups associating with adherent DCs, after 2-h preincubation with HAase and 3-h co-culture of mLEC monolayers with either mature CD44+/+ or CD44−/− BMDC. ****P < 0.0001, Mann–Whitney U-test. Data are the median (center bar) ± s.e.m. (whiskers) (n = 10 fields of view), data combined from three experiments.
Figure 6. Impaired trafficking of endogenous dermal DCs to draining LNs in CD44-deficient mice.

(A, B) Recovery of endogenous DCs from draining inguinal and axillary LNs, 24 h after topical application of oxazolone and FITC, as measured by flow cytometry. (A, B) Live CD45+ CD11c+ FITC+ cells (A) were further gated according to expression of MHC class II and CD103 (B). (C) Total cellularity of LNs was measured by counting cells with a hemocytometer. *P < 0.05, Mann–Whitney U-test. Data represent the mean (center bar) ± s.e.m. (whiskers) (n = 5 mice), one representative experiment of three. (D) Representative contour and dot plots, showing percentage of cells in each gate.
incubation with IRAWB14 did not affect cell viability or induce CD44 shedding, as the levels of bound antibody remained undiminished after 24 h (Fig S8A). Next, we assessed the ability of IRAWB14-treated BMDCs to enter lymphatic capillaries and migrate to draining cervical LNs by confocal microscopy and flow cytometry, 24 h after injection. The results (Fig S10A and B) revealed a fourfold decrease in IRAWB14-treated BMDCs recovered from skin-draining LNs compared with IgG-treated controls, both in terms of absolute numbers and as percentages of the total LN cell population, consistent with the slower rate of transmigration observed in the in vitro assays (Figs 9G and S8B). This was accompanied by a fourfold decrease in total LN cellularity in mice receiving IRAWB14-treated BMDC, in comparison to those receiving IgG control cells (Fig 10C). Moreover, detailed examination of the dermis by confocal microscopy (Fig 10D–F) showed a threefold greater accumulation of IRAWB14-treated BMDCs inside the lumen of lymphatic capillaries (median 9 BMDCs/100 μm) compared with IgG-treated controls (median 3 BMDCs/100 μm), and an enlarged vessel diameter (median 23 μm diameter, compared to 17 μm in controls). This is likely due to occlusion of lymph flow by trapped BMDCs, although clearly, we cannot rule out the possibility that the IRAWB14 mAb may also evoke bystander inflammatory effects that affect lymph flow.

These results show that increasing the density of the HA glycocalyx through clustering and functional activation of CD44 can indeed influence the efficiency of DC trafficking via lymph, where the heightened avidity of the CD44:HA complex for LYVE-1 can impede the process by slowing diapedesis and inducing arrest of the migrating cells within the vessel lumen. Furthermore, they establish that CD44 together with HA and LYVE-1 contribute to a critical tripartite adhesion axis that can regulate the rate of DC entry and trafficking via lymph.

Discussion

Here, we have identified a novel and previously unrecognized role for the leukocyte HA receptor CD44 in regulating exit of DCs from the skin via afferent lymphatics, during their migration to downstream draining LNs. In particular, we have established that CD44 is required for both anchorage and functional organization of a dense HA glycocalyx on the surface of DCs, which enables them to dock and enter lymphatic capillaries. Moreover, we have provided new evidence that CD44 plays an active role in DC trafficking, whereby its ability to modulate glycocalyx density through receptor clustering allows DCs to regulate their adhesion and transmigration of lymphatic endothelium and hence their rate of transit to draining LNs for immune activation. Although previous studies have addressed the role of CD44 in epidermal Langerhans cell trafficking, such investigations used CD44 knockout mice in which tissue-wide deletion of the receptor limited interpretation of the experimental findings (38, 39). In contrast, our present study focused more specifically on comparisons between CD44−/− and CD44+/+ DCs and their migration via lymph in recipient wild-type littermates. Such approaches allowed us to conclude that CD44 fulfills a cell-autonomous function in DC trafficking by orchestrating critical interactions between the HA glycocalyx and LYVE-1 in lymphatic vessels.

Widely expressed in different tissues and with multiple roles in cell growth, survival, differentiation and motility, CD44 has a well-documented function in leukocyte extravasation from inflamed blood vessels. Notably, its presence on T-cells and neutrophils mediates their capture from flow and adhesive rolling on HA in the luminal glycocalyx that is itself retained by CD44 expressed in vascular endothelium (19, 24, 40, 41, 42, 43), reviewed in reference 44. However, we have described a different role for CD44 in the exit of DCs via dermal lymphatic vessels in that the HA it engages is not sequestered on lymphatic endothelium but rather synthesized by the DC itself, and its function is to mediate intravasation and not extravasation. Indeed, lymphatic vessels do not possess an HA glycocalyx, neither in vitro nor in vivo (45, 46), nor express CD44. Also, lymphatic endothelium does not use endogenously generated HA for DC adhesion (12). The retention of an HA glycocalyx by CD44 in DCs rather than endothelium and its recognition by a functionally distinct HA receptor LYVE-1 marks a clear difference between lymphatics and blood, and likely evolved to permit independent regulation of leukocyte trafficking in the two distinct vasculatures.

As we showed by Western blotting, synthesis of the HA glycocalyx by BMDCs involves the two glycosyltransferases HAS1 and HAS2, both of which are highly processive (10 sugars/second) and can generate polymer chain lengths of several hundred to several thousand disaccharides, respectively (13, 21, 47, 48). We found that the levels of HA synthesis increased some twofold upon LPS-induced activation of BMDCs, in keeping with the enhanced lymphatic migratory capacity exhibited by mature DC populations in vivo (49). Curiously, however, this increase was not triggered by a rise in HAS enzyme levels and hence may result from an increase in HAS catalytic activity through post-translational modifications such as phosphorylation (50, 51), O-GlcNAcylation or a rise in UDP-sugar substrate levels through increased glucose uptake and cellular metabolism (20, 52, 53).

As revealed by the confocal imaging studies in this present article, the dense CD44-anchored HA glycocalyx likely extends over 500 nm from the DC surface, consistent with the dimensions of CD44-bound HA films in a supported lipid bilayer system (54). This is well beyond the sphere of interaction of smaller surface adhesion molecules such as the key β2 integrin LFA-1 which has an extracellular domain of 20 nm (55, 56), or even selectins (50–100 nm) (57, 58). Hence, we predict that the HA glycocalyx is poised to make the first adhesive contacts between DCs and lymphatic endothelium, and initiates docking via LYVE-1-enriched transmigratory cups (12), reviewed in reference 9. This likelihood is further substantiated by our observations in the current study, that CD44−/− DCs were unable to initiate stable adhesion to lymphatic endothelial monolayers and instead migrated randomly over the endothelial surface. Also, we showed that contacts between LYVE-1 and CD44:HA formed predominantly at the trailing edge of the DC, within the uropod. Extension of this dynamic, foot-like protrusion which is characteristic of motile cells (59) was previously shown to facilitate adherence and transmigration of leukocytes in vascular endothelium (60, 61). Moreover, in T cells and neutrophils, CD44 itself regulates polarization, assembly and stabilization of the uropod during adhesion to extracellular matrix (60, 62). The receptor is translocated to the posterior pole of these cells by its association with phosphorylated Ezrin, Radixin, and Moesin proteins, triggering membrane protrusion through cortical actin assembly/disassembly via...
Figure 7. Impaired entry and trafficking of CD44−/− BMDCs in dermal lymphatic vessels.

(A) Comparison of lymphatic trafficking of LPS-matured CD44+/+ and CD44−/− BMDCs, differentially labeled with Q-dot 585 and 655, respectively, or vice versa, 24 h after intradermal co-injection into oxazolone-painted skin of CD44+/+ mice. Recovery of BMDCs in draining cervical LNs was measured by flow cytometry, *P < 0.05, **P < 0.01, Paired t tests. (B) Entry of CMFDA-labeled CD44+/+ and CD44−/− BMDCs into dermal afferent lymphatics immunostained with anti–LYVE-1, following topical administration of oxazolone. Panels show 3-D rendering of z-stacks at low magnification (left; 100×, scale bars = 100 μm), and higher magnification (middle; 630×, scale bars = 20 μm) with orthogonal sections (right). (C) Numbers of BMDCs inside lymphatic vessel lumens, expressed as a percentage of the number of lymphatic vessel-associated BMDCs. Data combined from three experiments, ****P < 0.0001, Mann–Whitney U-test. (D, E) Recovery of intradermally injected CMFDA-labeled BMDCs (D) and overall cellularity (E) in draining cervical LNs 24 h after topical application of oxazolone and adoptive transfer of BMDCs, as measured by flow cytometry. *P < 0.05, **P < 0.01, Mann–Whitney U-test. Data are the median (center bar) ± s.e.m. (whiskers) (n = 5 mice). One representative experiment of three.
Figure 8. DC adhesion and transendothelial migration are dependent on CD44 and HA.

(A, B, C) Adhesion of LPS-matured CMFDA-labeled CD44+/+ and CD44−/− BMDCs to mouse lymphatic endothelial cell (mLEC) monolayers after 3 h incubation, as assessed by fluorescence plate reader, comparing (A) immature and mature BMDC, (B), mature BMDC after 2-h incubation with or without hyaluronidase (HAase) and (C) mature wild-type BMDC in the presence of exogenously applied high molecular weight HA.

(D) Immunostaining and confocal microscopy of mLEC monolayers following 3 h co-culture with CD44+/+ or CD44−/− LPS-matured CMFDA-labeled BMDC (green), with anti-LYVE-1 (red) and nuclei counterstained with DAPI (blue). Scale bar = 100 μm.

(E, F, G) Transmigration of LPS-matured CMFDA-labeled CD44+/+ and CD44−/− BMDCs through either mLEC monolayers cultured on the undersurface of Transwell filters in the presence of control rat IgG or anti–LYVE-1 neutralizing mAb 2125 where indicated (E, F) or across fibroblast monolayers cultured on the upper surface of filters (G) measured over a 5-h period by fluorescence plate reader. *P < 0.05, Mann–Whitney U-test. Data are the mean (center bar) ± s.e.m. (whiskers) (n = 4), representative experiments of three separate experiments.
Figure 9. mAb-induced enhancement of CD44-HA binding increases BMDC adhesion to mouse lymphatic endothelial cell (mLEC) and impairs transmigration. (A, B) Capacity of LPS-matured CD44+/+ and CD44−/− BMDCs to bind endogenously synthesized HA (A) or exogenously added HA (B), assessed by incubation with bVG1 and streptavidin–AF647 or bHA and streptavidin–AF647, respectively, with quantitation by flow cytometry and showing representative contour plots. (C, D) Adhesion of LPS-matured CMFDA-labeled wild-type BMDCs (green) to mLEC monolayers after 3-h incubation in the presence of either rat IgG or the CD44 potentiating antibody IRAWB14, as assessed by fluorescence plate reader (C) and confocal microscopy (D), with mLEC immunostained for LYVE-1 (red) and counterstained with DAPI (blue). Scale bar = 50 μm. (E, F) Effect of IRAWB14 or control rat IgG on transmigratory cup formation in mLEC monolayers co-cultured for 3 h with LPS-matured CMFDA-labeled
Rho and its associated kinase ROCK (63, 64). In our present study, the dense distribution of CD44 and its associated HA glycocalyx in the DC uropod likely facilitates efficient capture by LYVE-1, consistent with the known avidity-dependent binding properties of the receptor and its low affinity for free HA polymers (9, 15, 65). In addition, as demonstrated for matrix-adherent tumor cells that can also assemble a dense HA glycocalyx via CD44 (66), the extended dimensions of the bulky CD44:HA complexes on the surface of DCs may exert biophysical influences on the smaller underlying DC integrins by constraining their lateral diffusion, driving their clustering and promoting their activation through tensile stress. Given the key roles of β1 and β2 integrins in DCLEC adhesion and transmigration under conditions of inflammation (26), and the observation that their counter-receptors ICAM-1 and VCAM-1 are present within LYVE-1-rich lymph endothelial transmigratory cups (12, 67), it is likely that CD44 may also help choreograph DC transit by coordinating initial HA glycocalyx-mediated contacts with endothelium and subsequent firm integrin-mediated adhesion.

In comparison with afferent lymphatic migration of DCs, much less is understood about the mechanisms governing that of T cells (reviewed in reference 68), despite the fact they comprise 85–90% of cells in afferent lymph (69, 70). As T-cells exhibit lower levels of surface HA than DCs (71), it is unclear whether they have a sufficiently dense HA glycocalyx with which to interact with LYVE-1. Instead, lymphatic endothelial expressed-macrophage mannose receptor may be the dominant interaction partner for lymphocyte CD44 (30, 72).

In addition to retaining the HA glycocalyx and targeting its distribution within the pro-adhesive DC uropod, CD44 likely imposes a spatial organization on the bound HA polymers that shapes their interaction with LYVE-1. The notion that HA configuration is critical for receptor binding is supported by numerous experimental findings. Notably the distinctive pericellular HA cables formed by wrapping of the polymer chains around their binding partner versican and covalent attachment to Iα1 (inter α trypsin inhibitor) heavy chain present in cells exposed to inflammatory stimuli, convert HA from a weak to a strongly adhesive state for CD44 on monocytes (73, 74, 75, 76). Likewise, in the case of LECs, complexing HA with TSG-6 dramatically enhances its binding to LYVE-1 (65). Although the precise configuration of HA in the DC glycocalyx is currently unknown, the relatively short CD44 footprint (6–8 sugars (77, 78)) and the likelihood that only a small proportion of these are occupied by the receptor (based on the abundance of free bVG1 binding sites) predict a tethered HA meshwork comprising multiple loops and free ends of varying lengths. That such a topology has special significance for selective binding of the glyocalyx to LYVE-1 is supported by recent biophysical analyses which revealed an unexpected complementarity between the two receptors insofar as LYVE-1 binds much more slowly than CD44 to HA loops and displays a marked preference for HA chain ends (Bano, Banerji, Jackson and Richter unpublished). Whether and how these features enable the unusual sliding mode by which LYVE-1 engages HA as distinct from the conventional sticking interactions of CD44 (79, 80) is the subject of ongoing research in our laboratory.

Finally, by experimentally manipulating the HA-binding capacity of CD44 in DCs, we showed that the receptor can control glyocalyx surface density and consequently adhesion to LYVE-1, conferring on it the potential to regulate DC entry and trafficking through initial lymphatics. Specifically, treatment with the mAb IRAWB14 that cross-links CD44 and potentiates its HA-binding (35, 37, 81) led to increased incorporation of endogenous HA into the glyocalyx, elevating its surface density by almost sixfold and strengthening its adhesiveness for LYVE-1 to such an extent that it significantly delayed DC transmigration. Hence, DCs appear to carry a reservoir of spare HA, for appropriate on-demand expansion of the glyocalyx. Furthermore, when injected into the skin of oxazolone-sensitized mice, we showed that the increased adhesiveness of the HA glyocalyx in IRAWB14-treated DCs led to their accumulation inside the lumen of dermal lymphatic capillaries, effectively halting their migration and subsequent emergence in draining LNs. Following transmigration, DCs normally crawl along the luminal surface of initial lymphatics, before entering downstream contractile vessels for transport to draining LNs (5, 7, 10, 82, 83, 84, 85). However, as LYVE-1 lines the luminal as well as basolateral surfaces of initial lymphatic capillaries (86), our findings raise the intriguing possibility that such crawling may be regulated by interactions between LYVE-1 and the CD44-anchored DC HA glyocalyx. Indeed, regulated retention of DCs within the lumen of initial lymphatics appears important in light of recent reports that DCs pause during such migration to form long-lived MHC-dependent interactions with antigen-specific T-cells (87). We speculate that similar functional modulation of CD44 may occur to control leukocyte trafficking in vivo, in response to cytokines including TNFα, IL-2, IL-1, and IFN-γ and chemokines such as CCL4 (MIP-1β), CCL8 (IL-8), and CCL5 (RANTES), already well-documented to activate HA binding by CD44 in monocytes and T-cells (33, 34, 88, 89, 90, 91).

In conclusion, we have shown that CD44 plays a key role in DC migration by anchoring the HA surface glyocalyx, mediating docking onto lymphatic endothelium for vessel entry via the lymphatic HA receptor LYVE-1 in transmigratory cups. Moreover, we have demonstrated that modulation of HA glyocalyx density through CD44 clustering and activation can regulate the efficiency of DC docking and entry to lymphatics, and may possibly influence the rate of DC trafficking to draining LNs in vivo. These findings reveal the intricate nature of the CD44:HA:LYVE-1 axis and highlight its potential to regulate DC entry and trafficking through initial lymphatics.

Materials and Methods

Human and animal studies

All studies using human tissue were approved by the Oxford Regional Health Committee (OXREC). Animal studies were performed under appropriate UK Home Office licenses according to established institutional guidelines.

BMDCs (green) and immunostained for LYVE-1 (red), with bound IRAWB14 (detected with anti-rat IgG, blue), shown in (E), scale bar = 20 μm, and the percentage of adherent BMDCs associated with LYVE-1 transmigratory cups in each condition shown in (F). (G) Effect of IRAWB14 mAb or control rat IgG on basolateral-to-luminal transmigration of LPS-matured CMD4A-labeled wild-type BMDCs across mLEC monolayers grown on the undersurface of Transwell filters, measured over a 5-h period by fluorescence plate reader. *P < 0.05, Mann-Whitney U-test. Data are the mean (center bar) ± s.e.m. (whiskers) (n = 4), one representative experiment of three. Source data are available for this figure.
Figure 10. Impaired lymphatic trafficking of DCs after mAb-induced enhancement of CD44-HA binding.

(A, B, C) Effect of IRAWB14 or control rat IgG on recovery of LPS-matured CMFDA-labeled wild-type BMDCs from draining cervical LNs 24 h after intradermal injection into oxazolone-painted skin, as measured by flow cytometry and expressed as (A) numbers of CMFDA+ BMDCs, (B) percentage of CMFDA+ cells and (C) total LN cellularity. (D) Numbers of BMDCs detected inside the lumen of dermal lymphatic vessels, expressed as a percentage of the total number of lymphatic vessel-associated BMDCs. (E) Lymphatic vessel diameter 24 h after adoptive transfer of IgG- and IRAWB14-treated BMDCs, five measurements/vessel, five vessels/mouse. (F) Entry of CMFDA-labeled IgG- and IRAWB14-treated wild-type BMDCs (green) into dermal afferent lymphatic capillaries immunostained with anti–LYVE-1 (red), following oxazolone skin painting. Panels show 3-D rendering of z-stacks at low magnification (left; 100×, scale bars = 100 μm), and higher magnification (center; 630×, scale bars = 20 μm) with orthogonal sections (right). **P < 0.01, ***P < 0.001, Mann–Whitney U-test. Data are the mean (center bar) ± s.e.m. (whiskers) (n = 5 mice), one representative experiment of three.

CD44 orchestrates lymphatic trafficking Johnson et al. https://doi.org/10.26508/lsa.202000908 vol 4 | no 5 | e202000908 15 of 22
Experiments were carried out using CD44+/− and CD44+/+ litter- and cage-mates aged 8–12 wk. C57BL/6 wild-type mice were purchased from Envigo RMS Inc.

Genotyping

Ear notches from mice generated by CD44+/− × CD44+/− breeding were digested in 200 μl DirectPCR (Tail) lysis reagent (Qiagen 102-T) supplemented with Proteinase K, 0.4 mg/ml (P2308; Sigma-Aldrich) for 16 h at 55°C, then heated to 85°C for 45 min before use in PCRs using a Bio-Rad Thermocycler T100. MyTaq Red Mix (Bioline) and primers (0.5 μM) were used for Touchdown PCR, denaturing at 94°C for 2 min initially, followed by 10 cycles of 94°C for 1 min, annealing at 65°C for 1 min (−0.5°C per cycle) and extending at 72°C for 1 min. Then, for a further 28 cycles, denaturing at 94°C for 1 min, annealing at 60°C for 1 min and extending at 72°C for 1 min, before a final 2 min incubation at 72°C. The following primers from The Jackson Laboratory Genotyping Protocol were used: olMR1432 GCC GAC TAG ATC CCT CGG TT, olMR1433 ACC CAG AGG CAT ACC AGC TG, olMR6916 CIT TGG TGG AGA GGA GGC TAT TC, and olMR6917 AGG TGA GAT GGC AGG AGA TC, yielding PCR products of 280 bp for the null and 175 bp for the WT alleles, respectively. Products were electrophoresed on 1.5% agarose-Tris-Borate-EDTA gels.

Antibodies

Rat anti-mouse LYVE-1 mAb C1/8 and mouse anti-human LYVE-1 mAb 6A were generated previously, using mouse LYVE-1 Fc and human LYVE-1 Fc, respectively, as immunogens, as were rabbit anti-LYVE-1 polyclonal antibodies (92, 93). Anti-CD44 mAB IRAWB14 hybridoma was kindly provided by Dr. Jayne Lesley and IM7 hybridoma was purchased from ATCC. Hybridomas were cultured in-house. Rat and mouse IgG fractions were purified from hybridoma supernatants using Protein G-Sepharose. Other antibodies were mouse anti-human CD44 mAb BR235 (International Blood Group Reference Library), mouse anti-human CD44 mAb F10.44.2-FITC (Abcam), anti-mouse CD11c-PE (12-0114-82 clone N418; eBioscience), anti-mouse MHCclII (I-A/I-E)-AF488 (Inc 5536323 clone 2G9; BioLegend), and anti-human ICAM3-APC (clone CBR-IC3/1; BioLegend Inc.). All antibodies were used at 10 μg/ml for immunostaining and 50 μg/ml for function blocking. For flow cytometry, antibodies used were anti–CD11b-BUV395 (565976 clone M1/70; BD Biosciences), anti–MHCII (I-A/I-E)-AF488 (Inc 5536323 clone 2G9; BioLegend), and anti-human ICAM3-APC (clone CBR-IC3/1; BioLegend Inc.). All antibodies were used at 10 μg/ml for immuno- 50 μg/ml for function blocking. For flow cytometry, antibodies used were anti–CD11b-BUV395 (565976 clone M1/70; BD Biosciences), anti–MHCII (I-A/I-E)-AF488 (Inc 5536323 clone 2G9; BioLegend), and anti-human ICAM3-APC (clone CBR-IC3/1; BioLegend Inc.). All antibodies were used at 10 μg/ml for immuno- 50 μg/ml for function blocking. For flow cytometry, antibodies used were anti–CD11b-BUV395 (565976 clone M1/70; BD Biosciences), anti–MHCII (I-A/I-E)-AF488 (Inc 5536323 clone 2G9; BioLegend), and anti-human ICAM3-APC (clone CBR-IC3/1; BioLegend Inc.). All antibodies were used at 10 μg/ml for immuno- 50 μg/ml for function blocking. For flow cytometry, antibodies used were anti–CD11b-BUV395 (565976 clone M1/70; BD Biosciences), anti–MHCII (I-A/I-E)-AF488 (Inc 5536323 clone 2G9; BioLegend), and anti-human ICAM3-APC (clone CBR-IC3/1; BioLegend Inc.). All antibodies were used at 10 μg/ml for immuno- 50 μg/ml for function blocking. For flow cytometry, antibodies used were anti–CD11b-BUV395 (565976 clone M1/70; BD Biosciences), anti–MHCII (I-A/I-E)-AF488 (Inc 5536323 clone 2G9; BioLegend), and anti-human ICAM3-APC (clone CBR-IC3/1; BioLegend Inc.). All antibodies were used at 10 μg/ml for immuno- 50 μg/ml for function blocking. For flow cytometry, antibodies used were anti–CD11b-BUV395 (565976 clone M1/70; BD Biosciences), anti–MHCII (I-A/I-E)-AF488 (Inc 5536323 clone 2G9; BioLegend), and anti-human ICAM3-APC (clone CBR-IC3/1; BioLegend Inc.). All antibodies were used at 10 μg/ml for immuno- 50 μg/ml for function blocking. For flow cytometry, antibodies used were anti–CD11b-BUV395 (565976 clone M1/70; BD Biosciences), anti–MHCII (I-A/I-E)-AF488 (Inc 5536323 clone 2G9; BioLegend), and anti-human ICAM3-APC (clone CBR-IC3/1; BioLegend Inc.). All antibodies were used at 10 μg/ml for immuno- 50 μg/ml for function blocking. For flow cytometry, antibodies used were anti–CD11b-BUV395 (565976 clone M1/70; BD Biosciences), anti–MHCII (I-A/I-E)-AF488 (Inc 5536323 clone 2G9; BioLegend), and anti-human ICAM3-APC (clone CBR-IC3/1; BioLegend Inc.). All antibodies were used at 10 μg/ml for immuno- 50 μg/ml for function blocking. For flow cytometry, antibodies used were anti–CD11b-BUV395 (565976 clone M1/70; BD Biosciences), anti–MHCII (I-A/I-E)-AF488 (Inc 5536323 clone 2G9; BioLegend), and anti-human ICAM3-APC (clone CBR-IC3/1; BioLegend Inc.). All antibodies were used at 10 μg/ml for immuno- 50 μg/ml for function blocking. For flow cytometry, antibodies used were anti–CD11b-BUV395 (565976 clone M1/70; BD Biosciences), anti–MHCII (I-A/I-E)-AF488 (Inc 5536323 clone 2G9; BioLegend), and anti-human ICAM3-APC (clone CBR-IC3/1; BioLegend Inc.). All antibodies were used at 10 μg/ml for immuno-

Measurement of in vivo DC trafficking

To study endogenous DC trafficking, 3% (wt/vol) oxazolone (4-ethoxymethylene-2 phenyl-2-oxazoline-5-one; E0753; Sigma-Aldrich) and 4 mg/ml FITC (Fluorescein isothiocyanate isomer 1, F7250; Sigma- Aldrich) in 95% aqueous ethanol were topically applied to the shaved abdomens (150 μl/mouse) of CD44+/− and CD44+/+ mice aged 8 wk. Mice were euthanized after 24 h. To measure trafficking of adoptively transferred BMDC, LPS-matured non-adherent BMDCs (CD44+/− or CD44+/+ cells) were labeled with either Qtracker 655 (Q5201MP) or Qtracker 585 (Q2501MP) cell labeling kits, or CMFDA Cell Tracker Green (Invitrogen), according to the manufacturer’s protocol. BMDCs were washed in PBS, mixed 1:1, then co-injected intradermally into the ears of wild-type mice, 2 × 106 cells total BMDCs per injection, at the same time as topical application of oxazolone, 3% (wt/vol) in 95% ethanol (vol/vol). To assess trafficking of IRAWB14-treated cells, LPS-matured non-adherent wild-type BMDCs were labeled with CMFDA Cell Tracker Green (Invitrogen), following the manufacturer’s protocol, then incubated with either rat IgG or IRAWB14 (100 μg/ml, in PBS) for 20 min on ice before injection into mouse ear dermis (2 × 106 cells in 50 μl per ear) at the same time as topical application of 3% oxazolone.
Harvesting dermal DCs for cytospin

Ears were removed from CD44+/− and CD44+/+ mice after euthanasia, then peeled from dorsal and ventral halves and cultured for 24 h (exposed dermis-side down) in 24-well dishes in RPMI 1640 supplemented with 10% FCS, penicillin–streptomycin and glutamine (Life Technologies), and mouse TNFα (50 ng/ml; R&D Systems). Cells which had crawled out from dermis were collected from the medium and applied to microscope slides by Cytospin (Shandon; Thermo Fisher Scientific).

Flow cytometric analysis of LNs

LNs were cut into halves and digested at 37°C for 40 min in Collagenase D (1108882001; Roche), 1 mg/ml (wt/vol) in RPMI 1640, then LNs were cut into halves and digested at 37°C for 40 min in Collagenase D (1108882001; Roche), 1 mg/ml (wt/vol) in RPMI 1640, then

Flow cytometric analysis of cultured BMDCs

Non-adherent BMDCs were suspended in incubation buffer (PBS + 10% FCS, 0.01% azide), counted manually by hemocytometer and maintained on ice, and then incubated with Fixable Viability Dye eFluor780 (65-0865; eBioscience) for 15 min, after fixation and storage in 2% formaldehyde (vol/vol) at 4°C until analysis by flow cytometer (LSRII; BD Biosciences) and FlowJo software. Compensation was carried out using samples of single-color-stained cells and fluorescence-minus-one controls.

Immunofluorescence antibody staining of cells and tissues

Monolayers of mLECs or hLECs cultured in 8-chamber slides (BD Falcon) were fixed in paraformaldehyde (1% wt/vol in PBS, pH 7.4) for 5 min, and then washed in PBS before applying primary antibodies in blocking buffer (PBS + 1% BSA + 10% FCS). Cells were incubated at room temperature for 45 min, followed by washing and further incubation for 30 min with Alexa Fluor secondary antibodies, before mounting in Vectorshield+DAPI (H-1200; Vector Laboratories) and viewing on a Zeiss LSM 780 upright confocal microscope, using sequential scanning and either a 10X/0.3 DIC M27 Plan-Apochromat, 40X/1.1 W Korr UV-Vis-IR LDC-Apochromat, or 63X/1.4 oil Plan-Apochromat objective.

Primary mLECs or hLECs were seeded in eight-chamber slides and cultured until confluent. CMFDA fluorescently labeled LPS-matured BMDCs or MDDCs were preincubated with either anti-CD44 mAbs or control IgG 30 min as appropriate, before addition of DCs (0.1 × 106 per chamber). Cells were incubated at 37°C for 3 h then non-adherent DCs were removed by gentle washing with PBS, before immunostaining as detailed above. Adherent DCs from 10 fields of view per chamber were counted and scored as either associated with or independent of LYVE-1+ transmigratory cups.

Adhesion and transmigration assays

To quantify adhesion, confluent monolayers of primary mLECs in gelatin-coated 24-well dishes were layered with 5 × 105 fluorescently labeled LPS-matured BMDCs per well and incubated at 37°C for 3 h. The total numbers of BMDCs present were then measured in a fluorescence plate reader (Synergy HT; Bio-Tek), followed by gentle rinsing (three times with PBS) to remove non-adherent BMDCs, before re-measuring fluorescence and calculating the percentage of adherent cells. To assess the effect of CD44 clustering/activation, CMFDA-labeled BMDCs were preincubated with Streptomyces hyalurolyticus HAase (15 U/ml; Sigma-Aldrich), for 2 h at 37°C in PBS, then washed in PBS.
(30 min, 37°C) with CD44 mAb IRAWB14 or control lg before applying to mLECs or hLECs. Where indicated, hLECs were incubated for 30 min at 37°C with mouse anti–LYVE-1 mAb (clone 6A, 10 μg/ml), conjugated to DyLight 650 according to the manufacturer’s instructions (Thermo Fisher Scientific), 30 min, then washed in EGM2MV medium. LPS-matured MDDCs were either pre-labeled with CMFDA Cell Tracker Green (Invitrogen), following the manufacturer instructions (Thermo Fisher Scientific) in blocking buffer (4°C, overnight). After washing with PBS 0.1% (vol/vol) Tween 20 for 4 × 5 min, the membrane was incubated with the appropriate IRdye 800 and IRdye 700 conjugates for quantitative imaging using a Li-COR Odyssey scanner and Image Studio software.

 Imaging of DC motility on LEC monolayers

mLECs or hLECs were plated on 0.1% gelatin-coated glass-bottomed wells (ibidi) and cultured until confluent. Where indicated, hLECs were incubated for 30 min at 37°C with mouse anti–LYVE-1 mAb (clone 6A, 10 μg/ml), conjugated to DyLight 650 according to the manufacturer’s instructions (Thermo Fisher Scientific), 30 min, then washed in EGM2MV medium. LPS-matured MDDCs were either pre-labeled with CMFDA Cell Tracker Green (Invitrogen), following the manufacturer’s protocol, or with fluorescently conjugated anti-CD44 mAb clone F10.44.2 and anti-ICAM3, washing in EGM2MV medium before application to hLECs monolayers. Where indicated, CMFDA-labeled MDDCs were preincubated with either control IgG or anti-CD44 mAbs IM7, BRIC235, or F10.44.2, 10 μg/ml, 30 min before applying directly to hLECs monolayers. CD44+/+ and CD44−/− BMDCs were pre-labeled with either CMFDA Cell Tracker Green or CMTPX Cell Tracker Red, washed in EGM2MV medium and then applied to mLECs or hLECs monolayers.

Time-lapse images were acquired using a Zeiss Cell Observer inverted spinning disc confocal microscope, equipped with a Hamamatsu Flash v2 CMOS camera and a 20× 0.8 NA Plan-Apochromat objective, at 37°C in the presence of 5% CO2. Cells were allowed to equilibrate at the microscope for a minimum of 15 min before imaging. Spinning disc images were deconvolved using Huygens Professional (version 19.10, Scientific Volume Imaging) using the Classical Maximum Likelihood method and default parameters as determined from the image meta data.

Quantitation of DC hyaluronan levels

A hyaluronan competitive ELISA kit (Cat. no. K-1200-1) was purchased from Eschelon Biosciences and the manufacturer’s protocol was followed. BMDCs were prepared from CD44+/+ and CD44−/− mice as described above, culturing for 24 h either alone or with LPS (1 μg/ml). Cells were counted, lysed in lysis buffer (50 mM Tris, pH 7.5, 100 mM NaCl, 1% NP-40, and 1 mM EDTA) and debris removed by centrifugation (11,000g, 5 min) before application to the assay. Supernatants were applied directly to the assay without further treatment. HA concentration was expressed as pg/cell.

HA synthase quantitation by Western blotting

Immature and LPS-matured BMDCs were lysed (98°C, 5 min) in 1× NuPAGE LDS sample buffer (Thermo Fisher Scientific) containing 2-mercaptoethanol (5%, vol/vol) for reducing SDS–PAGE. To obtain a positive control for immunoblotting, skin was excised from the back of euthanized C57Bl/6 mice, after treatment with hair removal cream (Veet), then minced in PBS containing Complete EDTA-free protease inhibitor (Merck) on ice, before low-speed centrifugation. Supernatant was discarded, and sedimented tissue homogenized in 1× NuPAGE LDS sample buffer, lysed (98°C, 5 min) then centrifuged (11,000g, 5 min), from which supernatant was retained. All samples were subjected to sonication (Bioruptor pico, Diagenode) to shear genomic DNA, then electrophoresed on Novex 4–12% Tris-Glycine Mini Protein gels followed by transfer to Immobilon–FL PVDF membranes (Millipore). Blots were blocked by Li-COR blocking buffer at room temperature, then probed with mouse anti–GAPDH (clone 6C5; Life Technologies Ltd) and either rabbit anti-HAS1 (Cat. no. A10453, supplied by 2B Scientific; Abclonal), anti-HAS2 (Cat. no. A9897; Abclonal), or rabbit anti–HAS3 (Cat. no. PA5-100552; Thermo Fisher Scientific) in blocking buffer (4°C, overnight). After washing with PBS 0.1% (vol/vol) Tween 20 for 4 × 5 min, the membrane was incubated with the appropriate IRdye 800 and IRdye 700 conjugates for quantitative imaging using a Li-COR Odyssey scanner and Image Studio software.

Data and statistical analyses

Data were analyzed using Excel (Microsoft) and the Mann–Whitney U test was used to compare data sets throughout this study, unless otherwise stated, using Graph Pad Prism. P < 0.05 was considered significant. Microscopy images were quantitated using Image J and Imaris (Bitplane).

Online supplemental material

Fig S1 demonstrates that CD44 deficiency does not affect expression of DC activation markers MHC class II, CD80, or CD86. Fig S2 shows the specificity of the bVGI probe for HA in BMDCs. Fig S3 reveals reduced levels of HA in the dermis of CD44+/+ mice. Fig S4 demonstrates that genetic deletion of CD44 does not affect expression of HAS enzymes in BMDCs. Fig S5 illustrates that disrupting CD44–HA interactions using CD44 function-blocking mAbs prevents formation of transmigratory cups in lymphatic endothelium. Fig S6 shows impaired trafficking of endogenous dermal DC subsets to draining LNs in CD44-deficient mice. Fig S7 demonstrates reduced lymphatic trafficking of adoptively transferred CD44+/+ BMDCs, as a percentage of total number of cells in draining LNs. Fig S8 confirms no IRAWB14-induced loss of BMDC viability and shows that mAb-induced potentiation of CD44:HA interactions impairs lymphatic trafficking. All Videos are spinning disc confocal microscopy time-lapse movies. Videos 1– Videos 6 show the increase in MDDC motility on monolayers of hLECs in the presence of the function-blocking
CD44 orchestrates lymphatic trafficking

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.202000908.

Acknowledgements

The authors thank P Sopp, C Waugh, K Clark, and S-A Clark at the Weatherall Institute of Molecular Medicine. (DG Jackson) and the Wolfson Imaging Centre (BC Lagerholm), MRC Research Council (MRC) through MRC Human Immunology Unit core funding (DG Jackson) and the Wolfson Imaging Centre (BC Lagerholm), MRC Weatherall Institute of Molecular Medicine.

Author Contributions

LA Johnson: conceptualization, resources, data curation, formal analysis, investigation, visualization, methodology, project administration, and writing—original draft, review, and editing.

S Banerji: investigation, methodology, and writing—review and editing.

BC Lagerholm: resources, investigation, and methodology.

DG Jackson: conceptualization, funding acquisition, resources, project management, and writing—review and editing.

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

References

1. Randolph GJ, Ivanov S, Zinselmeyer BH, Scallan JP (2017) The lymphatic system: Integral roles in immunity. Annu Rev Immunol 35: 31-52. doi:10.1146/annurev-immunol-041015-055354

2. Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT, Nakano H (1999) Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell interaction. J Exp Med 189: 465–460. doi:10.1084/jem.189.3.451

3. Johnson LA, Jackson DG (2010) Inflammation-induced secretion of CCL21 in lymphatic endothelium is a key regulator of integrin-mediated dendritic cell transmigration. Int Immunol 22: 839–849. doi:10.1093/intimm/dxq435

4. Martin-Fonthea A, Sebastiani S, Hopken UE, Ugucioni M, Lipp M, Lanzavecchia A, Sallusto F (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198: 615–621. doi:10.1084/jem.20030448

5. Russo E, Teijeira A, Vaathomeri K, Willrodt AH, Bloch JS, Nitschke M, Santambrogio L, Kerjaschki D, Sixt M, Halin C (2016) Intralymphatic CCL21 promotes tissue egress of dendritic cells through afferent lymphatic vessels. Cell Rep 14: 1723–1734. doi:10.1016/j.celrep.2016.01.048

6. Saeki H, Moore AM, Brown MJ, Hwang ST (1999) Cutting edge: Secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J Immunol 162: 2472–2475.

7. Tal O, Lim HY, Gurevich I, Milo I, Shipony Z, Ng LG, Angel V, Shakkur G (2011) DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J Exp Med 208: 2141–2153. doi:10.1084/jem.20102392

8. Weber M, Hauschild R, Schwarz J, Mousson C, de Vries I, Legler DF, Luther SA, Bollenbach T, Sixt M (2013) Intestinal dendritic cell guidance by haptotactic chemokine gradients. Science 339: 328–332. doi:10.1126/science.1228456

9. Jackson DG (2019) Leucocyte trafficking via the lymphatic vasculature-mechanisms and consequences. Front Immunol 10: 471. doi:10.3389/fimmu.2019.00471

10. Schineis P, Runge P, Halin C (2019) Cellular traffic through afferent lymphatic vessels. Vascul Pharmacol 112: 31–41. doi:10.1016/j.vascphar.2018.08.001

11. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Meldorini C, Dejana E, et al (2007) Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 204: 2349–2362. doi:10.1084/jem.20062596

12. Johnson LA, Banerji S, Lawrence W, Gileadi U, Holder KA, Roshorm YM, Hanke T, Cerundolo V, Gale NW, et al (2017) Dendritic cells enter lymph vessels by hyaluronan-mediated docking to the endothelial receptor LYVE-1. Nat Immunol 18: 762–770. doi:10.1038/ni.3750

13. Weigel PH, Hascall VC, Tammi M (1997) Hyaluronan synthases. J Biol Chem 272: 13997–14000. doi:10.1074/jbc.272.22.13997

14. Banerji S, Hide BR, James JR, Noble ME, Jackson DG (2010) Distinctive properties of the hyaluronan–binding domain in the lymphatic endothelial receptor Lyve-1 and their implications for receptor function. J Biol Chem 285: 10724–10735. doi:10.1074/jbc.M109.076467

15. Banerji S, Lawrence W, Metcalfe C, Briggs DC, Yamauchi A, Dushek O, van der Meerwe PA, Day AJ, Jackson DG (2016) Homodimerization of the lymph vessel endothelial receptor LYVE-1 through a redox-labile disulfide is critical for hyaluronan binding in lymphatic endothelium. J Biol Chem 291: 25004–25018. doi:10.1074/jbc.M116.736926

16. Dubacheva GV, Curt K, Frenkel D, Richter RP (2019) Multivalent recognition at fluid surfaces: The interplay of receptor clustering and superselectivity. J Am Chem Soc 141: 2577–2588. doi:10.1021/jacs.8b12553

17. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, Bollenbach T, Sixt M (2013) Interstitial dendritic cell guidance by CCL21 on lymphatic endothelium and intralymphatic crawling. J Exp Med 234: 1723–1734. doi:10.1084/jem.2012.2049

18. Wang G, Tielemeier GL, van den Berg BM, Rabelink TJ (2020) Endothelial glycans regulate and role in prevention of diabetic complications. Am J Pathol 190: 781–790. doi:10.1165/ajpath.2019.07.022

19. Nandi A, Estess P, Siegelman MH (2000) Hyaluronan anchoring and regulation on the surface of vascular endothelial cells is mediated through the functionally active form of CD44. J Biol Chem 275: 14939–14948. doi:10.1074/jbc.275.20.14939

20. Tammi RH, Passi AG, Riila K, Karousou E, Viggidi D, Makkonen K, Tammi MI (2011) Transcriptional and post-translational regulation of hyaluronan synthesis. FEBS J 278: 1419–1428. doi:10.1111/j.1742-4658.2011.08070.x

21. Itano N, Sawai T, Yoshida M, Lenas P, Yamada Y, Imagawa M, Shinomura T, Hamaguchi M, Yoshida Y, Ohnuki Y, et al (1999) Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem 274: 359. doi:10.1074/jbc.274.1.359

22. Camp RL, Scheunius A, Johansson C, Pure E (1993) CD44 is necessary for optimal contact allergic responses but is not required for normal leukocyte extravasation. J Exp Med 178: 497–507. doi:10.1084/jem.178.2.497
CD44 orchestrates lymphatic trafficking
Johnson et al.
CD44 orchestrates lymphatic trafficking Johnson et al.

https://doi.org/10.26508/lisa.202000908 vol 4 | no 5 | e202000908

21 of 22
89. Legras S, Levesque JP, Charrad R, Morimoto K, Le Bousse C, Clay D, Jasmin C, Smadja-Joffe F (1997) CD44-mediated adhesiveness of human hematopoietic progenitors to hyaluronan is modulated by cytokines. Blood 89: 1905–1914.

90. Maiti A, Maki G, Johnson P (1998) TNF-alpha induction of CD44-mediated leukocyte adhesion by sulfation. Science 282: 941–943. doi:10.1126/science.282.5390.941

91. Mohamadzadeh M, DeGrendele H, Arizpe H, Estess P, Siegelman M (1998) Proinflammatory stimuli regulate endothelial hyaluronan expression and CD44/HA-dependent primary adhesion. J Clin Invest 101: 97–108. doi:10.1172/JCI1604

92. Teoh D, Johnson LA, Hanke T, McMichael AJ, Jackson DG (2009) Blocking development of a CD8+ T cell response by targeting lymphatic recruitment of APC. J Immunol 182: 2425–2431. doi:10.4049/jimmunol.0803661

93. Johnson LA, Prevo R, Clasper S, Jackson DG (2007) Inflammation-induced uptake and degradation of the lymphatic endothelial hyaluronan receptor LYVE-1. J Biol Chem 282: 33671–33680. doi:10.1074/jbc.M702889200

License: This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).