Factors that Affecting Success and Re-admission in the Treatment of Proximal Ureteral Stones with Shock Wave Lithotripsy

Tuncay Toprak¹, Musab Ali Kutluhan¹, Yavuz Onur Danacıoğlu², Yusuf Arıkan², Umut Arslan¹, Ramazan Topaktaş³

¹Department of Urology, University of Health Sciences, Fatih Sultan Mehmet Training and Research Hospital, Istanbul, Turkey
²Department of Urology, University of Health Sciences, Bakırköy Sadi Konuk Training and Research Hospital, Istanbul, Turkey
³Department of Urology, University of Health Sciences Turkey, Hamidiye Faculty of Medicine, Haydarpasa Numune Health Application and Research Center, Istanbul, Turkey

Abstract

Introduction: One of the treatment methods for urinary system stone is extracorporeal shock wave lithotripsy (SWL). Although there are many factors affecting the success of SWL, its success rate is 85%. In this study, we aimed to present our SWL results in proximal ureteral stones, the reasons for re-admission to hospital after SWL and the final success after additional interventions.

Methods: Between March 2017 and October 2019, 142 patients aged 18 years and over who underwent SWL for proximal ureteral stones were retrospectively evaluated. Age, sex, body mass index (BMI), stone laterality, stone size and volume (π × 1/6 × length × width × height), stone-skin distance, stone density (Hounsfield, (HU), hydronephrosis degrees, number of SWL sessions, reasons for re-admission and final success results were evaluated. The stone size determined on CT less than 4 mm was defined as successful SWL treatment. Other interventional procedures (ureterorenoscopy (URS), double J (DJ) stent, RIRS etc.) was performed to unsuccessful SWL patients and final success rate was determined. Complications were classified according to Clavien-Dindo classification.

Results: Age, BMI, laterality of the stone, degree of renal ectasia, number of SWL sessions and stone-skin distance did not contribute to SWL success (p>0.05). Factors affecting ESWL success include male gender, stone size, stone volume and stone density; stone-skin distance and degree of renal ectasia were found to affect final success (p<0.05). Complications were more frequent in the unsuccessful group (p<0.05).

Discussion and Conclusion: Stone volume, stone size and density in proximal ureteral stones are among the factors affecting SWL success. Final success rates of SWL can be increased with additional interventions when necessary.

Keywords: Proximal ureteral stone; SWL; success rate.

Although the guidelines offer various treatment options for the treatment of ureteral stones; size, localization and patient-related characteristics create a quandary in terms of treatment options for each ureteral stone[1]. With technological advances in urological surgery in the last decade, urologists have turned from open surgery to minimally invasive methods in the treatment of ureteral stones. In the nineteenth century, dorsal lumbotomy, transper-
Shock Wave Lithotripsy in Proximal Ureteral Stones

Materials and Methods

A total of 142 patients aged 18 years and over who underwent SWL for proximal ureteral stones in Fatih Sultan Mehmet Training and Research Hospital between March 2017 and October 2019 were retrospectively screened. Patients with regular follow-up were included in our study. Patients with abdominal aortic aneurism, unregulated anticoagulant therapy, active urinary tract infection, pregnancy, solitary kidneys were excluded from the study. Patients were evaluated with urine analysis, urine culture; routine hematological, biochemical blood parameters and non-contrast enhanced computed abdominal tomography (CT) before the procedure. All patients underwent non-contrast CT as a control imaging at the first month after the procedure to determine residual stone status after SWL. The level of ureteral stones was based on the starting point of the sacroiliac joint, and ureteral stones above this point were accepted as proximal ureteral stones. Focusing was done with ellipsoid-focused C-arm scopy. Patients with difficulty in focusing to stones were evaluated additionally by ultrasonography. Verbal and written informed consent was obtained from all patients before the procedure. The procedure was performed by using the electromagnetic SWL (Siemens Variostar) device in supine position. All patients underwent bowel cleaning one day before the procedure. Routine analgesia was not performed before the procedure. After the procedure, non steroid-anti-inflammatory agents were not started routinely, taking into consideration many adverse effects, especially gastrointestinal side effects. Pain management was determined according to the clinical status of patients. Routine antibiotic prophylaxis was not performed because all patients had sterile urine cultures. Age, gender, body mass index (BMI), stone laterality, stone size and volume ($\pi \times \frac{1}{6} \times \text{length} \times \text{width} \times \text{height}$), stone-kidney distance, stone density (Hounsfield Unit (HU)), grade of hydronephrosis, number of SWL sessions, reasons for re-admission and final success results were evaluated. Success was defined as no stones or stones smaller than 4mm in non-contrast CT at 1 month after procedure. Endourological methods (ureterorenoscopy (URS), double J (DJ) stent, RIRS etc.) were applied to patients who did not achieve success with SWL and final success rate was determined after additional interventions. Complications classified according to Clavie-Dindo classification.

Statistical Analysis

NCSS 11(Number Cruncher Statistical System, 2017 Statistical Software) and MedCalc Statistical Software version 18 (MedCalc Software bvba, Ostend, Belgium; http://www.medcalc.org; 2018) program was used for evaluating the findings obtained in this study. Descriptive statistics were used to define the demographic and disease characteristics of the patients. Kolmogorov Smirnov test was used to ensure normal distribution of variables. While calculating percentages and frequencies for categorical variables, mean±SD and median respectively for the variables that do not show normal distribution and Chi-square test/ Fisher’s Exact Test were used to compare categorical variables. Parametric and nonparametric continuous variables were compared using the Two Sample t test or the Mann Whitney U test, respectively. In all statistical tests, p<0.05 was considered statistically significant.

Results

A total of 94 (66.1%) patients included in the study were male and 48 (33.8%) were female. The mean age and mean BMI of the patients were 44.4±12.7 years and 25.97±3.66 kg/m², respectively. All patients admitted to the hospital complained of side pain. 72 (51.4%) of patients had right and 70 (48.6%) had left proximal ureteral stone (Table 1). Forty-three patients were diagnosed and treated with
urinary tract stone disease in their medical history. Of these patients, 13 (30.2%) had a history of percutaneous nephrolithotomy, 18 (41.8%) had endoscopic ureteral stone surgery (URS or RIRS), 12 (27.9%) had a history of SWL and 1 had a history of endoscopic cystolithotomy. There was no statistically significant correlation between SWL success and age, BMI, laterality of stone, renal ectasia degree, number of SWL sessions, and stone-skin distance (p>0.05). A statistically significant relationship was found between SWL success and male gender, stone size, stone volume and stone density (p=0.018, p=0.02, p=0.003, p<0.001 respectively). Stone-skin distance and degree of renal ectasia were found to be statistically significant among the factors affecting final success, while other factors did not contribute to final success (Table 2). Seventy-two (51%) patients obtained stone-free after SWL treatment. When we evaluated the complications after SWL, there were 11 (%15.2) patients (5 urinary tract infections, 2 hematuria, 4 renal colic) in whom SWL was successful, and 37 (%52.8) patients (14 urinary tract infection, 12 renal colic, 6 steinstrasse, 3 hematuria, 2 sepsis) who had unsuccessful SWL. A statistically significant relationship was observed between SWL success and complication rate (p<0.001). After successful SWL, 3 (4.1%) patients admitted with high fever and antibiotic therapy were applied. After unsuccessful SWL, 11 (15.7%) patients underwent URS, 9 (12.9%) patients underwent DJ stent application, 22 (31.4%) patients underwent RIRS and 2 (2.9%) patients underwent multiple endoscopic procedures. With additional endoscopic procedures, 113 (79.5%) patients had final stone free results. While there was no significant difference between the groups with and without final stone free status in terms of complications after SWL, additional surgical procedures were found to be significantly more in the non stone free patients (p=0.53, p<0.001 respectively) (Table 3).

Table 1. Demographic features of patients

Age (year) (Mean±SD)	44.4±12.7
Gender (M/F) (%)	66.2/33.8
Laterality (Right/Left) (%)	51.4/48.6
BMI (kg/m²) (Mean±SD)	25.97±3.66
Stone number (Mean±SD)	1.25±0.56
Number of sessions (Mean±SD)	2.4±0.8
Stone volume (n × 1/6 × length × width × height) (Mean±SD)	325.9±231
Stone size (mm) (Mean±SD)	10.3±2.5
Stone-skin distance (cm) (Mean±SD)	10.69±2.3
HU (Mean±SD)	971.5±294

HU: Hounsfield Unit; BMI: Body mass index.

Table 2. Comparison of demographic findings according to success

	Successful (SWL)	Failed (SWL)	p	Successful (Final)	Failed (Final)	p
Age (year)	43±12.36	45.93±13.01	0.17	44.58±12.68	43.90±13.21	0.79
Gender (n, %)						
Male	41 (56.9)	53 (75.7)	0.018	72 (63.7)	22 (75.9)	0.21
Female	31 (43.1)	17 (24.3)		41 (36.3)	7 (24.1)	
BMI (kg/m²)	24.86 (19.57-33.56)	25.99 (19.79-33.02)	0.54	24.97 (19.57-33.56)	26.00 (20.59-32.48)	0.74
Laterality (n, %)						
Right	34 (47.2)	39 (55.7)	0.32	57 (50.4)	16 (55.2)	0.68
Left	38 (52.8)	31 (44.3)		56 (49.6)	13 (44.8)	
Grade of hydronephrosis (n, %)			0.12	22 (19.5)	17 (58.6)	<0.001
0	25 (35.7)	14 (19.4)		55 (45.1)	6 (20.7)	
1	26 (37.1)	31 (43.1)		37 (32.7)	4 (13.8)	
2	16 (22.9)	25 (34.7)		3 (2.7)	2 (6.9)	
3	3 (4.3)	2 (2.8)	0.37	1 (1-3)	1 (1-5)	0.94
Number of sessions, (median, min-max)	3 (1-4)	3 (1-3)	0.17	3 (1-4)	3 (1-3)	0.38
Stone volume (median, min-max)	213 (70-1419)	269.5 (126-1092)	0.003	245 (70-1419)	216 (126-936)	0.82
Stone size (mm)	10 (6-15)	10 (7-17)	0.02	10 (6-15)	10 (7-17)	0.78
Stone-skin distance (cm) (Mean±SD)	10.68±1.93	10.69±2.72	0.96	10.98±2.26	9.53±2.34	0.005
HU (median, min-max)	850 (436-1621)	1091 (405-1682)	0.000	961.20±292.68	1012±302.03	0.40

HU: Hounsfield unit; BMI: Body mass index.
Discussion

Because SWL is easy to apply, does not require hospitalization, does not cause any loss of labor, and has lower costs compared to the operation, it is an alternative to surgical intervention in selected patients in the treatment of urinary system stone disease. Many factors such as the size of the stone, its location, the presence of obstruction, the possibility of loss of renal function, the status of implantation determine the method of choice for the treatment of ureteral stones. Which method should be preferred in which group of patients is still a matter of debate. The success of SWL depends on the effectiveness of the device, the size, location, stone-skin distance, the type of stone and the anatomical features of the the patient and the kidney. In addition, special conditions such as the presence of obstruction, abnormal kidneys, and the condition of the opposite kidney affect SWL preference[8]. However, it is reported that the treatment of upper ureteral stones with SWL provides high success rates[9]. Izamin et al.[10] found 81.8% success rate of SWL in the treatment of upper ureteral stones. In our study, the success rate of SWL was found to be 51%, but when the literature is examined, it is seen that kidney ureter bladder graphy (KUB) is frequently used for success evaluation. In our study, non-contrast CT was used in stone-free assessment. Due to the higher sensitivity and specificity of non-contrast CT in stone detection compared to KUB, we had relatively low SWL success rate compared to literature. The incidence of urinary system stone disease is higher in males than in females, with a higher proportion of males receiving treatment[11]. In our study, we found that the ratio of male to women was about twice as high as those who received SWL therapy, but SWL failure was found to be higher in male.

Many studies have shown that the increase in BMI is effective in the pathophysiology and treatment success of urinary tract stone disease[12]. In a study by Pareek et al., 72% of the patients had stone-free and 28% had residual stone after SWL. The mean BMI of the stone-free group was 26.9 kg/m², while the mean BMI of the residual stone was 30.8 kg/m² (p<0.05)[13]. In addition, El- Nahas et al.[14] revealed the relationship between BMI and SWL success rate, as well as the relationship between skin-stone distance and SWL success rate. In our study, we found no relationship between BMI, stone-skin distance and SWL success rate for proximal ureteral stone. It is difficult to decide on the structure of the stone according to the density of the stone measured in imaging methods; since the stones are complex and usually a few stone structures can come together[15, 16]. In a study conducted by Joseph et al. found that after SWL all patients who had stones with a density of less than 500 HU were stone free, however, 86% of those with a density of 500-1000 HU were found to be stone-free, while only 55% of those with a density of more than 1000 HU were found to be stone-free[17]. In our study, we demonstrated the relationship between SWL success rate and stone density. Success rates were seen to decrease in patients with stones over 1000 HU (p<0.001). However, there was no correlation between the increase in stone density and final

Table 3. Comparison of complications of SWL and additional interventions according to success

Complications of SWL (n, %)	Successful (SWL) n= 72	Failed (SWL) n=113	p	Successful (Final) n=29	Failed (Final)	p
None	61 (84.7)	33 (47.1)	<0.001	81 (71.7)	13 (44.8)	0.53
UTI	3 (4.1)	14 (20)		11 (9.7)	8 (27.6)	
Sepsis	0 (0)	2 (2.9)		0 (0)	1 (3.4)	
Hematuria	3 (4.1)	3 (4.3)		3 (2.7)	2 (6.9)	
Colic pain	5 (6.9)	12 (17.1)		13 (11.5)	3 (10.3)	
Steinstrasse	0 (0)	6 (8.6)		4 (3.5)	2 (6.9)	
Additional interventions after SWL (n,%)						
None	69 (95.8)	4 (5.7)	<0.001	70 (61.9)	3 (10.3)	<0.001
URS	0 (0)	11 (15.7)		11 (9.7)	0 (0)	
DJ stent application	0 (0)	9 (12.9)		7 (6.2)	2 (6.9)	
RIRS	0 (0)	22 (31.4)		20 (17.7)	3 (10.3)	
Multiple intervention	0 (0)	2 (2.9)		2 (1.8)	0 (0)	
Following with antibiotherapy	3 (4.1)	22 (31.4)		3 (2.7)	21 (72.4)	

DJ Stent: Double J stent; SWL: shock wave lithotripsy RIRS: Retrograd intrarenal surgery; URS: Ureteroscopy; UTI: Urinary tract infection.
success rate. Evaluating the density of the stone before the procedure allows us to predict the success of SWL. Especially in stones with a density greater than 1000 HU, if the stone size is large, the patient’s stone-related symptoms are active and treatment delay is likely to lead to additional pathologies in the patient; endoscopic surgical procedures may be applied instead of SWL. Stone volume is also a factor that affects the stone-free rate after SWL. In our study, it was found that SWL success rate decreased with increasing stone volume (p<0.05).

Although SWL is a minimally invasive treatment method, it has some complications. Petechiae and ecchymosis on the skin, microscopic or macroscopic hematuria, hypertension (8%), colic pain (13-36%), fever (5-36%), necessity for hospitalization (3-8%) are common complications. Iliac vein thrombosis, cardiac arrhythmia, hearing loss, adjacent organ damage, ureteral obstruction and renal scar development can be rarely seen. In our study, the most common complications were renal colic and fever in accordance with the literature. In addition, the rate of complications in SWL successful group was found to be less than SWL failed group. It can be concluded from our study that we need to better determine the group of patients with a high probability of SWL success before the procedure in order to face fewer complications. In some studies, it is reported that approximately 12% of patients require additional treatment after SWL, and 17% of patients have undergone additional procedures after SWL. In a report including 18,825 patients treated with SWL for ureteral stones in the United States, 84% of patients had stone-free, but the need for retreatment was found to be 11%. In our study, 62.9% of patients who failed SWL underwent additional procedures and final success rate was shown to increase to 79.5%.

The strengths of this article are to determine some parameters to predict success in ESWL treatment. In our study, these parameters were found as stone volume, size and stone density. Our study has some limitations. Firstly, our study was retrospective. Secondly, we had no stone analyses of patients. Lastly follow-up times of patients were not determined in our study.

Conclusion

The stone volume, size and density are among the factors affecting SWL success in proximal ureteral stones. The final success rate of SWL is increased after additional interventions in case of necessity. Because SWL failure and complication rates are related to each other, this patient group should be closely monitored after the procedure. The results obtained in our study should be supported by largescaled prospective studies.

References

1. Turk C, A. Skolarikos, A. Neisius, A. Petrik, C. Seitz, K. Thomas. EAU guidelines on urolithiasis. Eur Assoc Urol 2019; 69:11-16
2. Liong LM, Clayman RV, Gittes RF, Lingeman JE, Huffman JL, LyonES. Treatment options for proximal ureteral urolithiasis: review and recommendations. J Urol 1989; 141:504–9.
3. Turk C, Petrik A, Sarica K, et al. EAU guidelines on urolithiasis. Eur Assoc Urol 2015; 69: 475–482.
4. Rassweiler JJ, Tailly GG, Chaussy C. Progress in lithotriptor technology. EAU Update Series. 2005; 3(1): 17-36
5. Rasool M, Tabassum SA, Sheikh AH, Mumtaz F. Extracorporeal shockwave lithotripsy: initial experience at Bahawalpur. Annals 2009; 15(1):21–6.
6. Scales CD Jr, Saigal CS, Hanley JM et al. The impact of unplanned post procedure visits in the management of patients with urinary stones. Surgery 2014;155(5):769–775
7. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004; 240:205
8. Neisius A, Lipkin ME, Rassweiler JJ, Zhong P, Preminger GM, Knoll T. Shock wave lithotripsy: The new phoenix World J Urol. 2015; 33(2):213-21.
9. Robert M, A’Ch S, Lanfrey P, Guiter J, Navratil H. Piezoelectric shockwave lithotripsy of urinary calculi: comparative study of stone depth in kidney and ureter treatments. J Endourol 1999; 13: 699-703.
10. Izamin I, Aniza I, Rizal AM, Aljunid SM. Comparing extracorporeal shock wave lithotripsy and ureteroscopy for treatment of proximal ureteric calculi: a cost-effectiveness study. Med J Malaysia 2009; 64:12-21.
11. Muslumanoglu AV, Binbay M, Yuruk E. et al. Updated epidemiologic study of urolithiasis in Turkey. I: Changing characteristics of urolithiasis. Urol Res 2011; 39(4): 309-14.
12. Yang, T.-K., Yang, H.-J., Lee, L.-M., & Liao, C.-H. Body mass index and buttock circumference are independent predictors of disintegration failure in extracorporeal shock wave lithotripsy for ureteral calculi. Journal of the Formosan Medical Association, 2013, 112(7), 421–425.
13. Pareek G, Armenakas NA, Panagopoulos G, Bruno JJ, Fracchina JA. Extracorporeal shock wave lithotripsy success based on body mass index and Hounsfield units. Urology 2005; 65: 33–
6. El-Nahas AR, El-Assmy AM, Mansour O, Sheir KZ. A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution noncontrast computed tomography. Eur Urol. 2007 Jun; 51(6): 1688-93.

14. Nakada S, Hoff DG, Attai S, Heisey D, Blankenbaker D, Pozniac M. Determination of stone composition by noncontrast spiral computed tomography in the clinical setting. Urology 2000; 55: 816–9.

16. Sheir KZ, Mansour O, Madbouly K, Elsobky E, Abdel-kalek M. Determination of the chemical composition of urinary calculi by noncontrast spiral computerized tomography. Urol Res 2005; 33: 99–104.

17. Joseph P, Mandal AK, Singh SK, Mandal P, Sankhwar SN, Sharma SK. Computerized tomography attenuation value of renal calculus: can it predict successful fragmentation of the calculus by extracorporeal shock wave lithotripsy? A preliminary study. J Urol. 2002; 167(S):1968-71.

19. Bedir S, Kılıçler M, Özgök Y, Dayanç M. vücud dışından şok dalgalanı ile taş kırm. Türk Urol Sem 2011; 2: 55-60.

20. Çakıroğlu B, Hazar A, Can Balcı MB, Sinanoğlu O, Özkazan A, Nuhoğlu B. İki santimetre üzerindeki böbrek taşlarının tedavisinde şok dalga litotripsinin (SWL) etkinliği. JAREM 2012; 2: 77-81.

21. Al Karawi MA, Mohamed ARE, El Etaibi KE, et al. Extracorporeal shock wave lithotripsy induced erosions in upper gastrointestinal tract. Urology 1987; 30: 224-7.

22. Abe H, Nisimura T, Osawa S, Miura T, Oka F. Acute pancreatitis caused by extracorporeal shock wave lithotripsy for bilateral renal pelvic calculi. Int J Urol. 2000; 7: 65-8.

23. Delius M, Enders G, Xuan ZR, Liebich HG, Brendel W. Biological effects of shock waves: kidney damage by shock waves in dogs-dose dependence. Ultrasound Med Biol 1988; 14: 117-22.

24. Pearle MS, Nadler R, Bercowsky E, et al. Prospective randomized trial comparing shock wave lithotripsy and ureteroscopy for management of distal ureteral calculi. J Urol. 166: 1255-1260, 2001.383.

25. Ather MH, Paryani J, Memon A, Sulaiman MN: A 10-year experience of managing ureteric calculi: changing trends towards endourological intervention - is there a role for open surgery? BJU Int. 88: 173-177, 2001.

26. Mobley TB, Myers DA, Jenkins JM, Grine WB, Jordan WR: Effects of stents on lithotripsy of ureteral calculi: treatment results with 18,825 calculi using the Lithostar lithotripter. J Urol 1994 152: 66-67.