Kaon Interferometry at RHIC from AMPT Model

Zi-wei Lin †‡ and C.M. Ko †¶

† Physics Department, The Ohio State University, Columbus OH 43210
‡ Cyclotron Institute and Physics Department, Texas A&M University, College Station, TX 77843-3366, USA

Abstract. The two-kaon interferometry at RHIC is studied in a multi-phase transport model. Similar to the pion case, we find strong space-time correlation at freeze-out for the kaon emission source, which results in a large positive \(R_{out} - t \) term and tends to reduce the \(R_{out}/R_{side} \) ratio. Unlike the pion case, the source radii for kaons determined from the emission function are close to the radius parameters extracted from a Gaussian fit to the correlation function.

1. Introduction and Summary

Particle interferometry based on the Hanbury-Brown Twiss (HBT) effect has been used extensively in heavy ion collisions to extract the information on the emission source of particles \[1, 2, 3, 4\]. In particular, the long emission time as a result of the phase transition from the quark-gluon plasma to hadronic matter in relativistic heavy ion collisions may lead to an emission source which has a much larger radius in the direction of the total transverse momentum of detected two particles (\(R_{out} \)) than that perpendicular to both this direction and the beam direction (\(R_{side} \)) \[4, 5\]. Since the quark-gluon plasma is expected to be formed in heavy ion collisions at RHIC, it is surprising to find that the extracted ratio \(R_{out}/R_{side} \) from a Gaussian fit to the measured two-pion correlation function in Au+Au collisions at \(\sqrt{s} = 130A \) GeV is close to one \[6, 7, 8\], very different from predictions of hydrodynamical models \[4, 5\].

Since particle interferometry probes the phase-space distributions of particles at freeze-out, it is natural to apply transport models to HBT. The reason is that particle freeze-out is dynamically generated in transport models when the mean-free-path exceeds the system size at later stage of expansion, whereas freeze-out has to be imposed in hydrodynamical models. Using a multi-phase transport (AMPT) model, we have found that the small pion \(R_{out}/R_{side} \) ratio could be due to a large and positive space-time correlation in the emission source \[9\]. Furthermore, the pion source at freeze-out is highly non-Gaussian, leading to much larger pion source radii than the radius parameters from a Gaussian fit to the three-dimensional correlation function.

In this study, we extend the work of Ref.\[9\] by studying the kaon interferometry in central Au+Au collisions at RHIC energies. Using the AMPT model, we find that, unlike the pion case, the kaon source radii extracted directly from the emission function are close to the fitted radius parameters extracted from a Gaussian fit to the

†‡Slides of this conference talk at http://nt3.phys.columbia.edu/people/zlin/PUBLICATIONS/
three-dimensional correlation function. Our results also show that the kaon emission source has a large and positive correlation between time and position along the out-
direction at freeze-out, similar to what we have found earlier for the pion emission
source. We expect that the study of kaon interferometry, as well as other observables
such as the strange hadron elliptic flow, will be useful in understanding the dynamics
of strange quarks and hadrons in heavy ion collisions at RHIC.

2. A MultiPhase Transport Model - AMPT

The AMPT model is a hybrid model that uses the minijet partons from hard processes
and excited strings from soft processes in the HIJING model \(10\) for the initial
condition of relativistic heavy ion collisions. The time evolution of partons is then
described by the ZPC \(11\) parton cascade model, and that of hadrons by an extended
ART model \(12\). In the default AMPT model, only minijet partons are included
in the parton cascade with a parton scattering cross section of \(\sigma_p = 3\) mb. After
partons freeze out, they combine with their parent strings and then fragment to
hadrons according to the Lund string fragmentation as implemented in PYTHIA \(13\).
The default model has been quite reasonable in describing the measured rapidity
distributions of charge particles \(14, 15\), particle to antiparticle ratios \(15\), and the
spectra of low transverse momentum pions, kaons \(16\), multi-strange baryons \(17\) and
\(\phi\) mesons \(18\) in heavy ion collisions at SPS and/or RHIC.

Since the initial energy density in Au+Au collisions at RHIC is expected to be
much larger than the critical energy density at which the transition from hadronic
matter to quark-gluon plasma would occur \(19, 20\), the AMPT model has been
extended to allow the conversion of initial excited strings to partons at RHIC energies
\(21, 9\). In this string melting scenario, hadrons that would have been produced
from string fragmentation are converted instead to valence quarks and/or antiquarks.
Interactions among these partons are again described by the ZPC parton cascade
model. The transition from the partonic matter to hadronic matter at parton freeze-
out is achieved using a simple quark coalescence model by combining two nearest
partons into mesons and three nearest partons into baryons (or anti-baryons) \(21\).
With the energy in excited strings taking part in the early partonic interactions and
using quark coalescence to model hadronization, the extended AMPT model with
string melting \(21\) is able to describe the observed elliptic flow at RHIC \(22, 23\),
which the default AMPT model failed to reproduce.

At present, the ZPC parton cascade \(11\) in the AMPT model includes only
two-parton elastic scatterings. The in-medium differential cross section is given by
\(d\sigma/d\hat{t} = 9\pi\alpha_s^2(1+\mu^2/\hat{s})/2/(1-\mu^2)^2\), where the effective screening mass \(\mu\) in principle
depends on the temperature and density of the partonic matter \(11\). In this study, we
take \(\mu\) as a parameter in order to study the effect of partonic scatterings. Also, for
simplicity, we assume the same scattering cross section for partons of different flavors.
We note, however, that comparisons of high-quality data on the elliptic flow of strange
hadrons \(24, 25\) with theoretical predictions \(26, 27, 28, 29, 30\) is expected to provide
very useful information on the interactions of strange quarks in dense matter.

3. Two Ways of Extracting Radius Parameters

To evaluate the two-kaon correlation function requires the knowledge of the single
kaon emission function \(S(x, p)\). In the AMPT model, it is obtained from the kaon
space-time coordinate x and momentum p at kinetic freeze-out. The HBT correlation function for two identical hadrons of momenta p_1 and p_2 is then given by

$$C_2(Q, K) = 1 + \frac{\int d^4x_1d^4x_2S(x_1, K)S(x_2, K)\cos[Q \cdot (x_1 - x_2)]}{\int d^4x_1S(x_1, p_1)\int d^4x_2S(x_2, p_2)},$$

where $K = (p_1 + p_2)/2$ and $Q = (p_1 - p_2, E_1 - E_2)$. Expecting that the emission function is sufficiently smooth in momentum space, one can evaluate the correlation function by using p_1 and p_2 for K in the numerator of above equation.

First, the size of the emission source can be extracted from the emission function via the curvature of the correlation function at $Q = 0$:

$$R_{ij}^2(K) = D_{x_i, x_j}(K) - D_{x_i, \beta_j t}(K) + D_{\beta_i t, x_j}(K) + D_{\beta_i t, \beta_j t}(K).$$

(2)

In the above, $\beta = K/K_0$ with K_0 denotes the average energy of the two kaons; $x_i(i = 1 - 3)$ are spatial coordinates of a kaon at freeze-out; and $D_{x,y} = \langle x \cdot y \rangle - \langle x \rangle \langle y \rangle$ with $\langle x \rangle$ denoting the average value of x. In this study we use the usual “out-side-long” (osl) coordinate system.

On the other hand, the measured correlation function $C_2(Q, K)$ is usually fitted by a Gaussian function in Q, i.e.,

$$C_2(Q, K) = 1 + \lambda \exp\left(-\sum_{i=1}^{3} R_{ii}^2(K)Q_i^2 \right),$$

(3)

We note that, for central heavy-ion collisions, the above fitted radius parameters would be identical to the source radii given by the curvature of the emission function at $Q = 0$ (i.e. Eq. (2)) only when the emission source is Gaussian in space and time.

4. AMPT Results at RHIC Energies

4.1. Two-kaon correlation function

![Figure 1](image-url)
Figure 1. Correlation functions for K_0^3 ($-1 < y < 1, 200 < p_T < 400$ MeV/c).

Using the program Correlation After Burner, we have evaluated the correlation function $C_2(Q, K)$ of two kaons in their longitudinally comoving frame for central ($b = 0$ fm) Au+Au collisions at $\sqrt{s} = 130$ A GeV. In Figure 1, we show the invariant correlation function, i.e., the correlation function as a function of $Q_{inv} = \sqrt{-Q^2}$, and its projections onto one of the Q_{out}, Q_{side} and Q_{long} axes. In evaluating the projected correlation function, the other two Q-components have been integrated over the range $0 - 40$ MeV/c. The dash-dotted curves in Figure 1 represent results from the default AMPT model (no string melting), while the other curves are
from the extended AMPT model with string melting but using different values for σ_p. It is seen that the one-dimensional kaon correlation functions become narrower as σ_p is increased in the extended AMPT model. Their dependence on σ_p seems, however, to be much weaker than that of the pion correlation function [9].

4.2. Source radii versus fitted radius parameters

The source radii for kaons within $-1 < y < 1$ and $200 < p_T < 400 \text{ MeV}/c$ are shown in Figure 2 (a). The results are obtained from both the default AMPT model (shown at $\sigma_p = 0$) and the extended AMPT model with string melting. For the latter, we have used different parton cross sections of $\sigma_p = 3, 6, 10,$ and 15 mb. It is seen that these radii have values between 2 and 5 fm, and they are much smaller than the source radii for low p_T pions (between 7 and 25 fm) [9]. The $R_{\text{out}}/R_{\text{side}}$ ratio (solid curves without symbols) from the kaon emission function is also shown in Figure 2 (a), and it increases appreciably with increasing parton scattering cross section.

![Figure 2](image)

Figure 2. (a) Source radii, (b) fitted radius parameters and λ for K^0_S as functions of σ_p at 130A GeV. Points at $\sigma_p = 0$ correspond to the default AMPT.

The radius parameters obtained from fitting the three-dimensional correlation function $C_2(Q)$ by Eq. (3) are shown in Figure 2 (b). We find that they are close (mostly within 30%) to the source radii determined directly from the emission function. This is contrary to the pion case, where the pion source radii can be more than twice larger than the radius parameters from the Gaussian fit [9]. Note that kaons from ϕ meson decays have been included in the evaluation of the correlation function $C_2(Q)$ but not in the source radii (due to the long lifetime of ϕ); however, pions from ω decays have been included in the source radii in Ref. [9]. Figure 2 (b) also shows that $R_{\text{out}}/R_{\text{side}}$ from fitted radius parameters changes little with parton cross section, in contrast to the significant increase seen in the source radii shown in Figure 2 (a).

Figure 3 (a) shows the extended AMPT results with $\sigma_p = 10 \text{ mb}$ for kaon source radii as functions of m_T in the six p_T-bins, $0 - 200 - 400 - 600 - 800 - 1000 - 1500 \text{ GeV}/c$, for Au+Au collisions at $\sqrt{s} = 130\text{A GeV}$. We see that for all m_T the source radii (solid) are close to the corresponding fitted radius parameters (filled squares). We note that, before making quantitative predictions on kaon correlations, abundances of strange resonances such as K^* and ϕ need to be checked, and the effects of other resonances not yet included in the AMPT model also need to be investigated.
4.3. $x-t$ correlation and the R_{out}/R_{side} ratio

Figure 3 (b) and (c) show the $x_{out} - x_{side}$ and $x_{out} - t$ distributions at freeze-out for K^0_S with $200 < p_T < 400$ MeV/c and $-1 < y < 1$. The kaon emission source shows a positive shift in x_{out} as in the pion case [9], consistent with a strong transverse flow. The emission source also appears to be highly non-Gaussian, which leads to different values of radius parameters extracted from the two methods in Section 3 [33, 9]. The solid curve with open diamonds in Figure 3 (c) gives the average value $\langle x_{out} \rangle$ as a function of freeze-out time t. The kaon emission source is seen to have a strong positive $x_{out} - t$ correlation as in the pion emission source [9].

Since $R_{side}^2 = D_{x_{side},x_{side}}$ but

$$R_{out}^2 = D_{x_{out},x_{out}} - 2 D_{x_{out},\beta_{\perp} t} + D_{\beta_{\perp} t,\beta_{\perp} t},$$

the ratio R_{out}/R_{side} contains information about the duration of emission (in the last term) and has been studied extensively [4, 34, 5, 35]. We note, however, that a direct relation between R_{out} and the emission duration exists only if the $x_{out} - t$ correlation term $D_{x_{out},\beta_{\perp} t}$ is small, which is not the case according to our results from the extended AMPT. E.g., the above equation for the kaons is numerically written as $3.4^2 \approx 35 - 2 \times 22 + 20$ in units of fm2. The $x_{out} - t$ correlation term $D_{x_{out},\beta_{\perp} t}$ is thus positive (+22 fm2) and comparable to the magnitude of $D_{\beta_{\perp} t,\beta_{\perp} t}$ (20 fm2), making it difficult to extract information about the duration of emission from R_{out}/R_{side}. The situation is similar for the pion emission source, e.g., for mid-rapidity pions with $125 < p_T < 225$ MeV/c, numerically the corresponding Eq. [32] is $17^2 \approx 185 - 2 \times 168 + 431$ in units of fm2.

4.4. Energy dependence

Figure 4 shows the correlation functions for both neutral and charged kaons within $-1 < y < 1$ and $200 < p_T < 400$ MeV/c from AMPT model with string melting and $\sigma_{p} = 10$ mb for $\sqrt{s} = 130$A and 200A GeV. The effect due to Coulomb interactions is included for K^- correlation functions using the program Correlation After Burner [32]. The kaon correlation functions are found to change only slightly from 130A to 200A GeV at RHIC.
Acknowledgments

We appreciate stimulating discussions with H. Huang, M. Murray, S. Pratt and N. Xu. This work was supported by the U.S. Department of Energy Grant No. DE-FG02-01ER41190 (Z.W.L.) and by the U.S. National Science Foundation Grant No. PHY-0098805 as well as the Welch Foundation under Grant No. A-1358 (C.M.K.)

References

[1] Pratt S 1984 Phys. Rev. Lett. 53 1219.
[2] Bertsch G, Gong M and Tohyama M 1988 Phys. Rev. C 37 1896.
[3] Pratt S, Csörgő T and Zimanyi J 1990 Phys. Rev. C 42 2646.
[4] Rischke D H and Gyulassy M 1996 Nucl. Phys. A 608 479.
[5] Soff S, Bass S A and Dumitru A 2001 Phys. Rev. Lett. 86 3981.
[6] Adler C et al (STAR Collaboration) 2001 Phys. Rev. Lett. 87 082301.
[7] Johnson S C (PHENIX Collaboration) 2002 Nucl. Phys. A 698 603.
[8] Adcox K et al (PHENIX Collaboration) 2002 Phys. Rev. Lett. 88 192302.
[9] Lin Z W, Ko C M and Pal S 2002 Phys. Rev. Lett. 89 152301.
[10] Wang X N and Gyulassy M 1991 Phys. Rev. D 44 3501.
[11] Zhang B 1998 Comput. Phys. Commun. 109 193.
[12] Li B A and Ko C M 1995 Phys. Rev. C 52 2037.
[13] Sjostrand T 1994 Comput. Phys. Commun. 82 74.
[14] Zhang B et al 2000 Phys. Rev. C 61 067901.
[15] Lin Z W et al 2001 Phys. Rev. C 64 011902.
[16] Lin Z W et al 2002 Nucl. Phys. A 698 375.
[17] Pal S, Ko C M and Lin Z W 2001 Preprint nucl-th/0106073.
[18] Pal S, Ko C M and Lin Z W 2002 Nucl. Phys. A 707 525.
[19] Zhang B et al 2000 Phys. Rev. C 62 054905.
[20] Karsch F 2002 Nucl. Phys. A 698 199.
[21] Lin Z W and Ko C M 2002 Phys. Rev. C 65 034904.
[22] Ackermann K H et al (STAR Collaboration) 2001 Phys. Rev. Lett. 86 402.
[23] Adler C et al (STAR Collaboration) 2002 Phys. Rev. C 66 034904.
[24] Adler C et al (STAR Collaboration) 2001 Phys. Rev. Lett. 87 182301; ibid 89 012301.
[25] Sorensen P 2003 Preprint nucl-ex/0305008.
[26] Lin Z W and Ko C M 2002 Phys. Rev. Lett. 89 202302.
[27] Voloshin S A 2002 Preprint nucl-ex/0210014.
[28] Molnar D and Voloshin S A 2003 Preprint nucl-th/0302014.
[29] Lin Z W and Molnar D 2003 Preprint nucl-th/0304045.
[30] Greco V, Ko C M and Levai P 2003 Preprint nucl-th/0305024.
[31] Wiedemann U A and Heinz U W 1999 Phys. Rep. 319 145.
[32] Pratt S et al 1994 Nucl. Phys. A 566 163c.
[33] Hardtke D and Voloshin S A 2000 Phys. Rev. C 61 024905.
[34] Bernard S et al 1997 Nucl. Phys. A 625 473.
[35] Soff S et al, 2002 Phys. Rev. Lett. 88 072301; 2002 J. Phys. G 28 1885.