Two algorithms for numerical modeling of thermal decay of a metastable state

M V Chushnyakova1, I I Gontchar2, N A Khmyrova2
1Omsk State Technical University, 11 Mira ave., Omsk 644050, Russia
2Physics and Chemistry Department, Omsk State Transport University, Omsk 644046, Russia

maria.chushnyakova@gmail.com

Abstract. We compare two numerical algorithms for the computer modeling of the thermal decay process (Kramers problem) solving the stochastic (Langevin) equations for the generalized coordinate and its conjugate momentum. These are known in the literature (i) the ALGO algorithm including in the fluctuation part the terms up to $\tau^{3/2}$ (τ is the time step of the numerical modeling) and (ii) the Euler-Maruyama algorithm including in the fluctuation part only the terms proportional to $\tau^{1/2}$. We concentrate on the quasistationary decay rate and transient time. The ALGO algorithm appears to be more efficient, however, the optimal size of the time step has a strong and non-trivial dependence upon the dissipation strength and governing parameter.

1. Introduction

The Brownian motion was first successfully interpreted theoretically more than 100 years ago [1,2]. The approach that was worked out in those two works later became a model applied in a variety of natural sciences. The case of the thermally activated decay of a metastable state was studied theoretically in [3,4] and formed a basis for describing many processes ranging from the nuclear fission (considered within the one-dimensional models [5–7] and multi-dimensional models [8–11]) with a typical spatial size 10 fm up to the single bio-molecule manipulating [12–14] with a typical size about 100 nm [13].

In all these studies, the decay rate plays a key role. Many works are devoted to the study of this rate (see, e.g., surveys [15–17]). The numerical modeling of the stochastic decay process serves here as a valuable tool [18–20]. In the present work, we consider a one-dimensional case when an imaginary Brownian particle initially is at rest at the metastable state separated from the global minimum of the potential $U(q)$ by a potential barrier whose height is U_b. The motion of this particle is described by the generalized coordinate q and its conjugate momentum p. The corresponding Langevin Equations (LEs) read

\begin{align}
\frac{dp}{dt} &= -\frac{\eta}{m} p - \frac{dU}{dq} + g\Gamma, \quad (1) \\
\frac{dq}{dt} &= \frac{p}{m}. \quad (2)
\end{align}
Here \(m \) and \(\eta \) denote the inertia ("mass") and friction parameters, respectively; \(g = \sqrt{\eta \theta} \) is the amplitude of the random force (the thermal energy \(\theta \) is proportional to the temperature \(T \): \(\theta = k_B T \)); \(\langle \Gamma(t) \rangle = 0, \langle \Gamma(t_1) \Gamma(t_2) \rangle = 2 \delta(t_1 - t_2) \). All quantities \(m, \eta, \) and \(\theta \) are supposed to be \(g \)-independent.

In any explicit numerical scheme, the LEs are modeled as follows

\[
P^{(n+1)} = p^{(n)} + \Delta p, \tag{3}
\]

\[
q^{(n+1)} = q^{(n)} + \Delta q, \tag{4}
\]

The superscripts correspond to two moments of time separated by the time step \(\tau \). Different algorithms differ in a way they compute \(\Delta p \) and \(\Delta q \).

In the works related to the nuclear fission problem [6,21,22], the LEs are modeled usually using the Euler-Maruyama (EM) numerical scheme [23]. In our case it reads

\[
\Delta p = \left\{ -\beta p - \frac{dU}{dq} \right\} \tau + g b(t)^{1/2}, \tag{5}
\]

\[
\Delta q = \left(p^{(n)} + p^{(n+1)} \right)/(2m). \tag{6}
\]

Here we introduce the damping coefficient \(\beta = \eta / m \); the random number \(b \) entering the random force has a Gaussian distribution with zero average and variance 2. On the right-hand side of Eq. (5), all quantities are taken at the time moment \(t_n \).

However, in Ref. [24], a different algorithm (ALGO) of a higher order with respect to \(\tau \) was proposed. That algorithm is expected allowing to use a larger time step thus winning the computer time. The algorithm reads

\[
\Delta p = \left\{ -\beta p - \frac{dU}{dq} \right\} \tau + g b_1 \tau^{1/2} - \beta g \left(\frac{b_1}{2} + \frac{b_2}{2\sqrt{3}} \right) \tau^{3/2}, \tag{7}
\]

\[
\Delta q = \frac{p}{m} + \frac{g}{m} \left(\frac{b_1}{2} + \frac{b_2}{2\sqrt{3}} \right) \tau^{3/2}. \tag{8}
\]

Here all the quantities on the right-hand side are taken at the time moment \(t_n \). A possible disadvantage of the ALGO is that it requires two random numbers \(b_1 \) and \(b_2 \) at each time step.

2. Results

The model used in the present work is described in detail in [20,25]. The numerical modeling results in a set of \(N_{tot} \) trajectories; each of them is terminated not later than at \(t = t_p \). We store a file with the information about each trajectory ("raw data") for the subsequent processing. Some of these trajectories cross the absorptive border \(q_a \) (sink) before \(t_p \). They contribute to the time-dependent decay rate \(R_n(t) \), calculated at the sink point according to the definition

\[
R_n(t) = \frac{1}{N_{tot} - N_e} \frac{\Delta N_e}{\Delta t}. \tag{9}
\]

Here \(N_e \) is the number of trajectories reaching \(q_a \) by the time moment \(t \); \(\Delta N_e \) denotes the number of trajectories arriving at the sink during the time lapse \(\Delta t \).

It was shown in [26] that the rate \(R_n(t) \) is basically defined by two dimensionless parameters: the governing parameter

\[
G = \frac{U_b}{\theta}, \tag{10}
\]

and damping parameter

\[
\varphi = \frac{\eta}{m\omega}, \tag{11}
\]
In Eq. (11), ω is the frequency of the oscillations near the bottom of the potential pocket. Note, that all the times below are measured in units of ω^{-1} unless the opposite is stated explicitly.

There are two most important values characterizing the time-dependent decay rate $R_n(t)$: its quasistationary value R_D and transient time T_n being the time moment at which $R_n(t)$ reaches a half of its quasistationary value.

Typical time-dependent rates divided by the corresponding values of R_D are presented in Fig. 1 for different values of the damping parameter. In Fig. 1e the meaning of T_n is illustrated by the dashed lines. These numerical rates are obtained using the EM algorithm with $\tau = 3 \cdot 10^{-5}$. This value has been proved to obey the plateau condition, i.e. the quantities we are interested in, R_D and T_n, do not depend upon τ within the statistical errors. We call the maximum value of τ, at which the plateau contains three points, the optimal value, τ_{opt}. The latter is considered to be safe to be used for obtaining physical results through computer modeling. We present this plateau obtained using the EM algorithm for R_D and T_n in Fig. 2.

![Figure 1](image_url)

Figure 1. Normalized rates R_n/R_D (red lines with symbols) versus the normalized time for several values of the damping parameter φ (indicated in the panels). Horizontal blue lines are for convenience. The EM algorithm is used; $G = 3.5$; $\tau = 3 \cdot 10^{-5}$.
Fig. 2. The quasistationary decay rate R_D (a) and transient time T_n (b) versus the time step τ.

The EM algorithm is used; $\phi = 2.5 \cdot 10^{-3}; G = 3.5$.

In Fig. 2a one clearly sees the plateau: while τ is too large, the quasistationary rate appears to be big and depending upon τ significantly beyond the statistical errors. At $\tau \leq 10^{-4}$ this dependence disappears; we can choose $\tau_{opt} \approx 5 \cdot 10^{-5}$. Fig. 2b shows that in the whole interval of τ variation, the transient time changes within at most 5% around its average value.

The statistical error for R_D is estimated as the doubled root mean square deviation. For T_n finding the statistical errors is challenging. We adopt the following algorithm: after the value of R_D has been found, we process our raw data several times with different values of the upper limit $t_{up} \leq t_D$. The resulting values of T_n are presented in Fig. 3 for two parameter sets (left for $\phi = 0.50$ and $G = 1.0$; right for $\phi = 5.0$ and $G = 5.7$). These calculations have been performed using the ALGO algorithm. We estimate the relative error of T_n as $\varepsilon_{T_n} = 0.5(T_{n,\text{max}} - T_{n,\text{min}})/(T_n)$ where $\langle T_n \rangle$ is the average value of T_n in the interval of t_{up}-variation. This procedure results in $\varepsilon_{T_n} = 2\%$.

Let us now go over to the main question of our work: to what extent the ALGO algorithm is advanced in comparison to the EM algorithm. To answer this question, one needs to consider Fig. 4. Here we present the quantities R_D and T_n, evaluated with the different values of τ using the ALGO algorithm and divided by the corresponding value resulting from the EM algorithm at $\tau = 3 \cdot 10^{-5}$. The relative value of R_D, changing most drastically, is shown in each column of this figure twice in different scales for the convenience.
Figure 3. The relative values of the transient time T_n versus the value of t_{up}. The values obtained at different t_{up} are divided by the average value in the given domain of t_{up}. (a) $\tau = 10^{-3}$, $\varphi = 0.50$, $G = 1.0$; (b) $\tau = 2 \cdot 10^{-3}$, $\varphi = 5.0$, $G = 5.7$. The ALGO algorithm is used.

In general, one learns from Fig. 4 that, within the framework of the ALGO algorithm, the value of τ at which the plateau condition is obeyed strongly depends upon G and φ. At $G = 1.0$, in the overdamping regime ($\varphi \gg 1$) the optimal value of the time step is extremely large ($\tau \approx 10^{-2}$) giving enormous profit for the computer modeling. However, as the damping parameter becomes smaller, the optimal value of the time step becomes significantly smaller too (see Figs. 4a and 4b) and at $\varphi = 10^{-3}$ the advantage of the ALGO algorithm disappears.

At the larger value of the governing parameter, $G = 5.7$, the situation becomes even worse (see Figs. 4d-4f). In the overdamping regime, the ALGO algorithm again demonstrates a significant advantage, but this advantage disappears already at $\varphi = 10^{-2}$.

3. Conclusions

Despite many works devoted to the Kramers problem, its universal analytical solution (i.e. the one which is valid at any values of the governing and damping parameters, G and φ) has not been found yet. Therefore, numerical modeling proves to be extremely useful for finding the quasistationary decay rate R_D. In the present work, we compare two numerical algorithms, Euler-Maruyama (EM) and ALGO used in the literature for this purpose.

The decay process is modeled numerically by solving the stochastic (Langevin) equations for the generalized coordinate and its conjugate momentum. We determine the main characteristics of the process: the quasistationary decay rate R_D and transient time T_n as functions of the time step τ. The value of this step at which the plateau condition is obeyed, τ_{opt} (optimal time step) has been found to depend significantly upon the values of G and φ; whereas at small G and large φ the ALGO algorithm makes computer modeling faster by a factor of 200, at $G = 5.7$ and $\varphi = 10^{-2}$ the advantage of the ALGO algorithm totally disappears. Thus, one should be extremely careful using the ALGO algorithm for modeling the decay process of the metastable state.
Figure 4. The relative values of two quantities characterizing the time-dependent decay rate are shown versus the time step \(\tau \): (a), (b), (d), and (e) the quasistationary rate \(R_D \) in the different scales (c) and (f) the transient time \(T_n \). Both \(R_D \) and \(T_n \) are calculated within the framework of the ALGO algorithm and are normalized to the value obtained using the EM algorithm at \(\tau = 3 \cdot 10^{-5} \). Different symbols correspond to the different values of \(\varphi \) as shown in panel (a). Left column: \(G = 1.0 \); right column: \(G = 5.7 \).

References

[1] Einstein A 1905 Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen *Ann. Phys.* **322** 549–60

[2] von Smoluchowski M 1906 Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen *Ann. Phys.* **326** 756–80

[3] Pontryagin L, Andronov A and Vitt A 2009 On the statistical treatment of dynamical systems
Noise in Nonlinear Dynamical Systems Volume 1. Theory of Continuous Fokker-Planck Systems. (Cambridge: Cambridge University Press) p 356

[4] Kramers H A 1940 Brownian motion in a field of force and the diffusion model of chemical reactions Physica 7 284–304

[5] Gontchar I I 1995 Langevin fluctuation-dissipation dynamics of fission of excited atomic nuclei Phys. Elem. Part. At. Nucl. 26 394–449

[6] Fröbrich P and Gontchar I I 1998 Langevin description of fusion, deep-inelastic collisions and heavy-ion-induced fission Phys. Rep. 292 131–238

[7] Wang N and Ye W 2020 Backstreaming effects on probing postsaddle dissipation with light particle multiplicity Phys. Lett. B 801 135138

[8] Abe Y, Ayik S, Reinhard P-G and Suraud E 1996 On stochastic approaches of nuclear dynamics Phys. Rep. 275 49–196

[9] Adeev G D, Karpov A V, Nadtochii P N and Vanin D V 2005 Multidimensional stochastic approach to the fission dynamics of excited nuclei Phys. Elem. Part. At. Nucl. 36 378–426

[10] Vardaci E, Nadtochy P N, Di Nitto A, Brondi A, La Rana G, Moro R, Rath P K, Ashaduzzaman M, Kozulin E M, Knyazheva G N, Itkis I M, Cinausero M, Prete G, Fabris D, Montagnoli G and Gelli N 2015 Fission dynamics of intermediate-fissility systems: A study within a stochastic three-dimensional approach Phys. Rev. C 92 034610

[11] Ishizuka C, Usang M D, Ivanyuk F A, Maruhn J A, Nishio K and Chiba S 2017 Four-dimensional Langevin approach to low-energy nuclear fission of 236U Phys. Rev. C 96 064616

[12] Schnoering G and Genet C 2015 Inducing dynamical bistability by reversible compression of an optical piston Phys. Rev. E 91 042135

[13] Fang X, Kruse K, Lu T and Wang J 2019 Nonequilibrium physics in biology Rev. Mod. Phys. 91 045004

[14] Monge A M, Manosas M and Ritort F 2018 Experimental test of ensemble inequivalence and the fluctuation theorem in the force ensemble in DNA pulling experiments Phys. Rev. E 98 032146

[15] Hänggi P, Talkner P and Borkovec M 1990 Reaction-rate theory: fifty years after Kramers Rev. Mod. Phys. 62 251–341

[16] Mel'nikov V I 1991 The Kramers problem: Fifty years of development Phys. Rep. 209 1–71

[17] Talkner P and Hänggi P 2012 New Trends in Kramers’ Reaction Rate Theory (Berlin: Springer)

[18] Büttiker M, Harris E P and Landauer R 1983 Thermal activation in extremely underdamped Josephson-junction circuits Phys. Rev. B 28 1268–75

[19] Straub J E, Borkovec M and Berne B J 1986 Non-Markovian activated rate processes: Comparison of current theories with numerical simulation data J. Chem. Phys. 84 1788–94

[20] Chushnyakova M V. and Gontchar I I 2019 Precision numerical modeling of the decay of a metastable state at high temperatures Brazilian J. Phys. 49 587–93

[21] Gontchar I I, Chushnyakova M V and Blesman A I 2019 Dimensionless universal parameters of the Kramers problem J. Phys. Conf. Ser. 1210 012052