INTRODUCTION

Organismal ageing is caused by the progressive deterioration of most cells, tissues or organs of the body. The immune system is not an exception. Its dysregulation and deterioration, so-called ‘immunosenescence’, predispose older adults to a diminished response to infections with novel pathogens, to autoimmunity, as well as to chronic non-immune disorders including cardiovascular and neurodegenerative diseases, cancers and type-2 diabetes (Fulop et al., 2016; Simon et al., 2015). Immunosenescence is a combination...
of immune system-wide changes over the life time of an individual, which are much better studied (examples can be found in the next paragraph on T and B cells), and cellular changes in individual immune cells, which we will term immune cell senescence. To be able to establish to which degree immune cell senescence contributes to immunosenescence, it will be important to first establish which immune cells undergo cellular senescence with age, as it is much less studied. This review will focus on techniques to detect the cellular changes leading to immune cell senescence.

A recent landmark study by Alpert et al. (2019) which has used ‘multi-omics’ technologies to uncover the cell subsets linked with age, provides longitudinal metrics of immune age. In addition, several recent reviews on the topic of immune system-wide changes give extensive overviews of surface markers and cell populations that emerge during ageing (Alpert et al., 2019; Drew et al., 2018; Frasca, 2018; Judge et al., 2020; Xu & Larbi, 2017; Yarbro et al., 2020). Thus, here we will only briefly summarise some of the most important immune system-wide changes and focus on the available strategies that can be used to detect them.

T and B lymphocytes are major players of the adaptive immune system (Lanier, 2013). Their diverse antigen-recognition repertoire enables naïve T and B cells to respond specifically to a variety of foreign antigens. Their antigen-experienced memory population provides long-lasting protection by responding to previously encountered antigens in a more rapid and robust manner. However, during ageing, the production of naïve lymphocytes declines, shrinking the repertoire of antigen-specific cells able to generate new memory cells (Salam et al., 2013). This compromises the ability of an aged immune system to fight against new pathogens and establish memory responses to these de novo antigens. Meanwhile, antigen-experienced cells accumulate and undergo oligoclonal expansion in the aged individuals, reflecting lymphopenia-driven homeostatic proliferation, the adaptive response from a reduced naïve pool and the effect of past and persistent infections. Some subsets of lymphocytes, characterised by reduced antigen-receptor signalling and innate-like phenotypes, are significantly increased in frequency during ageing. Due to their altered function and low proliferation rates, many of these highly inflammatory cells were the first to be termed senescent, including effector memory T cells re-expressing CD45RA (T_{E_{M R A}L}) and late/exhausted memory B cells (LM B cells) (Callender et al., 2018; Colonna-Romano et al., 2009; Di Mitri et al., 2011; Frasca et al., 2017; Lanna et al., 2014). However, whether they are truly ‘senescent’ is still putative, since it has been reported that they, or their subpopulation, are able to proliferate under specific conditions (Di Mitri, 2011; Hao et al., 2011; Verma et al., 2017). Age-associated changes also correlate with the expression of certain surface molecules, which can be detected using antibody staining via flow cytometry. One example is the increased expression of CD57 in T cells (and natural killer cells, which belong to the innate immune system) during ageing, which has been linked with senescent-like phenotypes (Alpert et al., 2019; Brenchley et al., 2003; Lopez-Verges et al., 2010). Downregulation of CD27 and CD28, and upregulation of KLRG1 are also linked with functionally deficient T cells (Henson & Akbar, 2009; Plunkett et al., 2007). In Table 1, we summarise these T and B cells that accumulate with age and their surface markers.

The deleterious effect of ageing on the adaptive immune system has been extensively investigated (Pawelec et al., 1999). However, there is accumulating evidence suggesting that innate immune systems are also affected, contributing to the emergence of age-related phenotypes in the elderly (Ray & Yung, 2018). Monocytes/macrophages, dendritic cells and natural killer cells have all been reported to undergo changes in number and phenotype during ageing (Almeida-Oliveira et al., 2011; Bhushan et al., 2002; Hearps et al., 2012; Nyugen et al., 2010; Seidler et al., 2010). The age-related myeloid bias during haematopoiesis can explain the increased numbers of macrophages and dendritic cells to a certain extent. Some explanations for the myeloid bias have been put forward, including: (1) a cell-intrinsic issue with the aged hematopoietic stem cell (Pang et al., 2011), (2) the aged microenvironment (Ergen et al., 2012), and (3) increased number of senescent cells that leads to an increase in macrophages and NK cells for their removal (Hall et al., 2016; Sagiv et al., 2016).

Many of their functions are also affected, and these are more likely to be due to immune cell senescence. For example, monocytes and neutrophils from aged humans (or mice) display decreased phagocytosis and ROS production, which impairs their antimicrobial capacity (Butcher et al., 2001; Hearps et al., 2012; McLachlan et al., 1995; Wenisch et al., 2000). The antigen-presenting ability of dendritic cells relies on their ability to phagocytose, which declines with age and may further affect the establishment of adaptive immunity (Agrawal et al., 2007). Another feature of an aged innate immune cell is the dysregulated cytokine/chemokine secretion, mainly studied in macrophages (and recently in T cells), which contributes to fuel the pro-inflammatory environment observed during ageing, termed ‘inflamm-aging’ (Desdin-Mico et al., 2020; Franceschi et al., 2017; Hearps et al., 2012; Qian et al., 2012).

Inflamm-aging refers to chronic, low-grade inflammation and is possibly caused by prolonged infection, dysregulated metabolism and accumulation of senescent cells (Franceschi et al., 2000, 2018). Some inflammatory molecules in blood, including pro-inflammatory cytokines, chemokines and acute-phase proteins, are widely used as readouts to assess inflamm-aging (Franceschi et al., 2017). From an evolutionary perspective, inflammation plays an important role in the short-term clearance of pathogens in early life (Franceschi et al., 2000). However, the chronic inflammation with age results in accelerated systemic ageing, leading to negative physiological outcomes that are not limited to immunity, which reinforces the pleiotropy theory of ageing.

Although many of the mentioned alterations have been associated with immune ageing, it remains largely unknown whether they are signs of maladaptation, or the outcome of an adaptation to compensate for a dysregulated immune system. To address this, a detailed profiling of cellular and molecular changes over the lifetime of an individual is essential. Do all changes happen to each cell at once, or just to some and in subsequent steps and does that correlate with
function? The good news is that the emerging field of geroscience may be of considerable help. Geroscience assumes that mechanisms underlying ageing and age-related diseases are largely overlapping and shared across cell types (Franceschi et al., 2018). Nowadays, several interconnected ‘pillars’ promoting ageing have been identified, including mitochondrial health, DNA damage, telomere shortening, chromosome reorganisation, cell cycle arrest, excessive cytokine release, proteostasis and lysosomal health (Kennedy et al., 2014). Applying the wide range of methods that have been developed and tested in multiple tissues and organisms to the immune system will provide important insights into the molecular basis of immunosenescence.

The current COVID-19 pandemic affects mostly the elderly and as such is closely linked to immunosenescence. A case report profiled the kinetics of immune responses in response to SARS-CoV-2 infection. Both innate and adaptive immunological changes were detected before the full resolution of symptoms (Thevarajan et al., 2020). The remodelling of the immune systems during ageing may explain why older adults are more at risk to develop severe COVID-19. Two hallmarks of ageing, which are, shorter telomere length and aberrant mitochondrial health, have been hypothesised to indicate a worse prognosis in COVID-19 (Aviv et al., 2020; Kloc et al., 2020). Systematically screening the hallmarks of both immune cell senescence and immune system-wide changes may unravel their relationship with the progression of the disease. Vaccines against SARS-CoV-2 are commonly considered as the best way of protecting the elderly and putting the pandemic to an end (Lurie et al., 2020; Zhang et al., 2020). However, the successful vaccination in senior people is a big challenge, since vaccines are much less immunogenic and effective in this cohort (Weinberger et al., 2018). Therefore, understanding the molecular mechanisms that underpin immune cell senescence may help to boost the effectiveness of SARS-CoV-2 vaccines and protect the vulnerable older adults. Furthermore, the predisposition of aged people to inflamm-aging may lead to immune pathology. In severe cases, patients suffer from excessive pro-inflammatory cytokines, the so-called ‘cytokine storm’, possibly promoted by inflamm-aging (Meftahi et al., 2020). Indeed, dexamethasone, an anti-inflammatory glucocorticoid, reduces the 28-day mortality rate in a randomised clinical trial (Group et al., 2020). We believe that understanding the cellular changes that occur with age in immune cells, which may lead to aberrant responses, including inflamm-aging, can help to identify drug targets for COVID-19 treatment (Channappanavar & Perlman, 2020).

In this review, we will compile the most widely used and accepted age-related cellular changes, and highlight the most recent techniques that can be applied to different immune cell types in a high-throughput manner (overviewed in Figure 1 and summarised in Table 2). These techniques, particularly the use of flow cytometry and omics at single-cell resolution, will help to correlate immune cell senescence with immune dysfunction. Furthermore, application of these techniques will potentially help to unveil druggable targets, and help to design drugs to rejuvenate aged immune cells and prevent age-related diseases. Because certain age-associated cell changes are not necessarily characteristics of senescence, and rather are hallmarks of cellular ageing, the next chapter will be divided into hallmarks of cellular senescence and hallmarks of cellular ageing (Gorgoulis et al., 2019; Lopez-Otin et al., 2013). The final part of this review aims to give our readers a perspective of the future directions of ageing research.

Table 1: Subtypes of T and B cells display senescent-like phenotypes and accumulate during ageing

Subtypes of T cells	Surface marker	Tissue	Percentage of total T or B cells	Characteristics related to cellular senescence
Senescent-like T cells	CD8* CD27* CD28*	PBMC	Human, 0.5% 50%	↓telomere length (Plunkett, 2007); ↓telomerase activity; ↓proliferation capacity
Terminally differentiated T cell (TEMRA)	CD8* CD45RA* CCR7	PBMC	Human, 3% 14%	↓proliferation capacity (Callender et al., 2018) ↑pro-inflammatory cytokine
CD57* KLRG1* CD8* T cells	CD8* CD57* KLRG1*	PBMC	Human, 7.9% 32.2%	↓proliferation capacity (Brenchley et al., 2003)
Virtual memory CD8* T cells (Tvm)	CD45RA* PanKIR* and/or NKG2A* (Quinn, 2018)	PBMC	Human, 4% 12%	↓proliferative capacity; ↑γH2AX
CD44hi CD49dlo (Quinn, 2018)	Spleen	Murine, 10% 30%		

Subtypes of B cells	Surface marker	Tissue	Percentage of total T or B cells	Characteristics related to cellular senescence
Age-associated B cells	CD21/35* CD23* CD43* CD93* (Hao et al., 2011)	Spleen	Murine, female, 3% 12%	↓proliferation capacity ↑pro-inflammatory cytokine
Age-associated B cell-like cells	CD11c* CD11b* CD21* (Rubtsov, 2011)	Spleen	Murine, female, 0.25% 6.64%	NA

Human/PanKIR and/or *NKG2A*.
2 | HALLMARKS OF CELLULAR SENESCENCE

2.1 | Cell Cycle

Common inducers of senescence include telomere erosion, DNA damage, oxidative stress, oncogene activation and chronic mitogen signalling. The downstream signalling cascades induced by these stressors ultimately converge to the p53/p21\(^{CIP}\) and/or the p16\(^{INK4a}\)/pRB pathways, which directly act on cyclin-dependent kinases to inhibit the cell cycle (Bruce et al., 2000). Both pathways contribute to the initial growth arrest during cellular senescence (Prieur et al., 2011). However, studies show that the type of stress signal determines which pathway takes the leading role. For instance, DNA damage upregulates p21\(^{CIP}\) levels in a p53-dependent manner (Mlynarczyk & Fåhraeus, 2014), while p38-MAPK-mediated increase in mitochondrial ROS levels stimulates p16\(^{INK4a}\) expression (Luo et al., 2011).

2.1.1 | p16\(^{INK4a}\)

Quantitative polymerase chain reaction (qPCR) has long been the benchmark technique for measuring mRNA levels. Some studies show an increase of p16\(^{INK4a}\) mRNA in human peripheral T cells (Liu et al., 2009), as well as mouse B cells during ageing (Liu et al., 2011). Due to the heterogeneity of senescence within the same cell population, it is necessary not only to measure the average change of p16\(^{INK4a}\) mRNA level over many cells, but at single-cell resolution. At present, single-cell RNA sequencing (scRNA-seq) allows us to identify p16\(^{INK4a}\)-expressing cells in a high-throughput manner, while also revealing other differentially expressed genes (Enge et al., 2017). Applying the technique to immune cells may help to identify whether they are senescent. Transgenic p16\(^{INK4a}\)-reporter mice also shed some light on the issue, and several mouse lines generated with different reporter-constructs are available (Demaria et al., 2014; Liu et al., 2019). A recent article demonstrates that less than 1% of T or B cells (among their total respective peripheral populations) are p16\(^{INK4a}\) positive in aged mice. This is a much lower frequency than the one found in other cell populations, such as cartilage and fat progenitor cells, among which around 6% of the cells express p16\(^{INK4a}\). Thus, in comparison with other tissues, it remains to be elucidated whether p16\(^{INK4a}\) is a reliable biomarker for senescence in immune cells by looking at other cellular changes and correlating them with immune function (Liu et al., 2019).

One explanation is that the p16\(^{INK4a}\) promoter activation does not reflect mRNA abundance. The senescent lymphocytes accumulate high levels of the p16\(^{INK4a}\) transcript with marked stability, but due to technical difficulties p16\(^{INK4a}\) protein levels are not easy to detect with this reporter line (Liu et al., 2019).

To measure p16\(^{INK4a}\) protein expression, flow cytometry or its multiparameter derivative CyTOF (time-of-flight mass cytometry),...
Category	Phenotype during ageing	Detection techniques	Phenotype in aged immune cells	References
Mitochondrial damage and oxidative stress	cellular ROS ↑	H₂-DCFDA or CellROX staining for flow cytometry	Increase in bone marrow-derived and tissue-resident macrophages	Sebastian et al. (2009) Vida et al. (2017)
	mitochondrial ROS ↑	Mito-SOX Red staining for flow cytometry	Increase in naive and central memory CD⁸ T and antibody-secreting cells	Sanderson and Simon (2017) Kurupati et al. (2019)
	mitochondrial membrane potential ↓	TMRE, JC-1, Rhodamine 123 or DioC6 staining for flow cytometry	No change in CD⁸ T nor antibody-secreting cells	Sanderson and Simon (2017) Kurupati et al. (2019)
p16^{Ink4a} (similar to p53)	↑	Single-cell RNA sequence	Increase in human peripheral T cells and mouse B cells	Liu et al. (2011) Liu et al. (2009)
		Antibody staining for flow cytometry or transgenic reporter mouse line	Minor increase in p16^{Ink4a} T and B cells	Liu et al. (2019)
Senescence-associated secretory phenotype	↑	qPCR single-cell RNA sequence	Increase in mouse senescent-associated T cells, human T_{EMRA} cells, late/exhausted memory B cells, mouse bone marrow myeloid cells and neutrophils	Fukushima et al. (2018) Callender et al. (2018) Frasca et al. (2017) Farr et al. (2016) Uhl et al. (2016)
		ELSpot Luminex IsoLight	IL-6, TNF-a, MMPs	
Senescence-associated beta-galactosidase	↑	C₁₂FDG or its analogue for flow cytometry or CyTOF	Increase in memory-phenotype (CD44^{hi}) T cells	Liu et al. (2019)
Lipofuscin	↑	biotin-conjugated GL13 staining for flow cytometry	Increase in peritoneal macrophages, microglia, and T cells	Vida et al. (2017) Kushwaha et al. (2018)
DNA damage	8-Oxoguanine ↑	flow cytometry	NA	Sampson et al. (2006) Quinn et al. (2018) Durdik et al. (2015) Phadwal et al. (2012)
	γH2AX ↑	ImageStream	Increase in virtual memory T cells, human HSCs and progenitor cells	
Telomere	average telomere length ↓	Flow-FISH	Shortened in human peripheral T cells	Sanderson and Simon (2017) Falli et al. (2019)
	telomerase activity ↓	droplet digital TRAP (ddTRAP)	Declines in resting T and B cells	Lin et al. (2015)
Ubiquitin-proteasome system	proteasome activity ↓	activity-based probe (ABP)	Decrease in lymphocytes and T cells	Carrard et al. (2003) Ponnappan et al. (1999) Arata et al. (2019)

(Continues)
which both rely highly on the specificity of the antibodies, are alternatives (Cheung & Utz, 2011). CyTOF currently can detect more than 50 features in a single cell simultaneously (Olsen et al., 2019). The high-dimensional data generated enable more detailed characterisation of p16\(^{INK4a}\) immune populations and identification of surface markers and ageing biomarkers correlating it with p16 expression. One hurdle is that p16\(^{INK4a}\) antibodies have not yet been validated for either method. However, other methods independent of highly specific antibodies, such as single-cell mass spectrometry-based proteomics, are emerging, which will help to answer whether and how p16\(^{INK4a}\) expression contributes to immune cell senescence (Dou et al., 2019).

2.1.2 | p53-p21\(^{CIP}\) signalling pathway

p53 is a tumour suppressor gene, which is frequently mutated in human cancer (Yue et al., 2017). Upon DNA damage responses, p53 protein undergoes post-translational modification and induces cell cycle arrest and/or apoptosis through its transcription factor activity. Thus, it is crucial to the maintenance of genome stability. Similar to p16\(^{INK4a}\), p53 also participates in cellular senescence. One of its downstream genes, p21\(^{CIP}\), is a cyclin-dependent kinase inhibitor, which halts the progress of the cell cycle through interacting with multiple types of cyclin-dependent kinases (He et al., 2005). The activation of p53-p21\(^{CIP}\) pathway has been widely observed in senescent cells, though only at the early stage, which suggest to its role in induction of cellular senescence (Stein et al., 1999). The p53 pathway has complex roles in ageing, depending on the persistence of the stimuli, which activate p53 expression (Liu & Sharpless, 2009). Transient stimuli-triggered p53 activity contributes to genome stability through temporarily pausing cell cycle for DNA repair. However, continuous p53 activation caused by prolonged stress leads to senescence or cell death (Liu & Sharpless, 2009). Aged splenocytes and thymocytes display elevated p53 levels, suggesting the accumulation of DNA damage (Kapasi & Singhal, 1999). Different p53 isoforms can have a different impact on ageing. The age-associated human peripheral CD8\(^+\) T cells (CD28\(^-\)CD57\(^+\)) show decreased \(\Delta133p53\) and increased p53\(^{\beta}\) levels (Mondal et al., 2013). Reconstituting \(\Delta133p53\) expression recovers the proliferation of these age-associated T cells and rescues their senescent phenotypes, suggesting a potential therapeutic strategy for treating immune cell senescence.

The methods to detect p16\(^{INK4a}\) and p53 are similar. Note that p53 activity is determined by its various post-translational modifications (PTM) and isoforms (Liu et al., 2019). A systematic analysis with PTM- and isoform-specific antibodies will fully uncover p53’s role in immune ageing.

2.2 | Telomere attrition

Telomeres are special structures at the end of linear chromosomes, which, in mammalian cells, consist of typical telomeric DNA repeats (TTAGGG) and associated proteins (Shay & Wright,
The protein complex prevents telomeres from being recognised as damaged DNA and represses the DNA damage response. During DNA replication, the replicate machinery cannot fully copy the telomeric DNA, leading to the shortening of telomere each time, termed 'end-replication problem' (Shay & Wright, 2019). Once the telomeric DNA shortens below a threshold, it may cause DNA breaks and replicative senescence (d’Adda di Fagagna, 2003).

Thus, telomere shortening, which is a cause of telomere dysfunction, can be used as a readout to detect cellular senescence (Bernadotte et al., 2016).

In the immune system, the average telomere length decreases both in lymphocytes and granulocytes with ageing, with lymphocytes experiencing more pronounced telomere shortening (Aubert et al., 2012). The telomere length also varies between different subtypes of human CD8+ T lymphocytes. Naive populations usually display longer telomeres than the highly differentiated ones, leading to higher proliferative potential (Sanderson & Simon, 2017). Thus, both telomere attrition and population shift from naive to memory and effector cells lead to the overall shortening of telomeres in T cells (Fali et al., 2019). Flow-FISH (fluorescence in situ hybridisation) has been widely used to measure average telomere length in hematopoietic lineages (Baerlocher et al., 2006). It combines flow cytometry with the hybridisation of telomeric PNA probes to cells in suspension. Telomere length by Flow-FISH correlates with mitochondrial stress in T cells (Sanderson & Simon, 2017) and lymphocyte function, predicting immune responses to vaccination in the elderly (Najarro et al., 2015).

Telomerase is a reverse transcriptase that maintains telomere length (Pfeiffer & Lingner, 2013). Due to their high telomerase activity, immortal cell lines, germline cells, stem cells or cells at early stage of fetal development may escape replicative senescence caused by telomere dysfunction (Liu et al., 2007; Montalto et al., 1999). While in resting lymphocytes, telomerase activity is usually low, mitogen stimulation can transiently upregulate telomerase activity (Hiyama et al., 1995). One study showed that with age telomerase activity declines in resting T and B cells (Lin et al., 2015). To measure telomerase enzyme activity at single-cell level, traditional telomere repeat amplification protocol (TRAP) was adapted to a digital format, called ‘droplet digital TRAP’ (ddTRAP) (Ludlow et al., 2014). This method allows the quantification of telomerase-extended products in a single cell with high accuracy and reproducibility. Several studies managed to monitor telomerase activity in single T cells with ddTRAP (Huang et al., 2017; Tedone et al., 2019).

2.3 | Senescence-associated secretory phenotype

The senescence-associated secretory phenotype is another typical feature of senescent cells. Senescent cells secrete a spectrum of soluble factors including pro-inflammatory cytokines, chemokines, growth factors and proteases. In a recent article, Nathan et al. introduces the ‘SASP atlas’, which profiles SASP factors in human lung fibroblasts and renal cortical epithelial cells (Basisty et al., 2020).

In young individuals, the SASP contributes to tissue homeostasis by facilitating myofibroblast differentiation and wound healing (Demaria et al., 2014). However, as senescent cells accumulate with age, chronic SASP promotes degenerative changes in neighbouring cells and age-related pathologies, and possibly inflammation-ageing. This is supported by studies using senolytics that specifically eliminate senescent cells through pharmacological or genetic methods (definitive evidence revealing that senescent cells accelerate age-related phenotypes systematically) (Baker et al., 2011; Zhu et al., 2015). Therefore, inhibiting SASP production may become a target of anti-ageing therapies (Laberge et al., 2015).

SASP factors can potentially create a pro-inflammatory environment and recruit immune cells (Prata et al., 2018). The immune cells may further produce more pro-inflammatory cytokines and aggravate age-related pathologies. Some age-associated adaptive immune populations are able to secrete factors belonging to SASP. The terminally differentiated EMRA cells in humans, and the TEMRA-like virtual memory CD8+ T cells in mice, which accumulate during ageing, exhibit a uniquely high inflammatory secretory profile characteristic of SASP, which is regulated by p38-MAPK signalling pathway (Callender et al., 2018; Quinn et al., 2018). However, it is still elusive whether increased SASP serves as a homeostatic, adaptive response to the age-associated decline in antigen-specific immunity. The function of SASP+ immune cells needs to be carefully determined in vivo.

A large proportion of SASP factors may originate from the innate immune system. Aged CD14+ myeloid cells isolated from mouse bone marrow show increased expression of 36 established SASP-related mRNA (Farr et al., 2016). Similarly, synthesis of pro-inflammatory (IL-1α, IL-1β, IL-6, TNFα and IFNγ) cytokines was significantly increased in aged neutrophils (Uhl et al., 2016) and surprisingly T cells contribute to age-related pro-inflammatory cytokine production (Desdín-Mico et al., 2020). Although the secretome of aged immune cells overlaps with SASP, whether and how it is associated with cellular senescence still needs to be ascertained. Detailed profiling of SASP components, other hallmarks of senescence as described herein and the upstream signalling inducing such phenotype will solve this question.

To measure cytokine secretion at the single-cell level, traditional methods involve enzyme-linked immune absorbent spot (ELISpot) and flow cytometry-based assays. To detect all relevant cytokines simultaneously, several techniques offer a solution (Xu et al., 2019). Cell culture supernatants containing SASPs are added to a mixture of beads (Luminex) pre-coated with analyte-specific capture antibodies, followed by detection with fluorescent dyes and flow-based analysis. Though enabling multi-analyte profiling, the method is not easily applicable to single cells. However, another technique, called IsoLight, combines sandwich ELISA and fluorescence signal detection (Liu et al., 2020) and is based on a single-cell, highly multiplexed chip consisting of an antibody barcode array. It enables the quantification of 40+ key secreted proteins from up to ~10,000 live single cells. For surface staining, antibodies that do not affect intracellular
signalling pathways are required to avoid changes in the cell secretome. Such platforms can further be adapted to include common SASP factors for ageing biomarker development.

2.4 Senescence-associated beta-galactosidase

Senescence-associated beta-galactosidase (SA-β-gal) activity, together with p16\(^{INK4a}\) expression, serves as the most widely used biomarker for detecting cellular senescence (Lee et al., 2006). Normally, the lysosomal beta-galactosidase displays peak activity of hydrolyzing the beta-galactosides between pH 4.0 and 4.5. In senescent cells, due to the accumulation of the enzyme, such activity is detectable at pH 6.0 (Dimri et al., 1995). This biomarker was first described in senescent human cells in vitro and in ageing skin in vivo through histochemical staining. Despite being used in many senescence studies, SA-β-gal activity cannot be used alone, since its activity at pH 6.0 also occurs in immortal cell lines or quiescent primary cells upon high confluency or serum starvation (Cho & Hwang, 2012). As mentioned before, multiple different measurements are needed to establish the senescent status of a cell.

Enhanced SA-β-gal activity has been observed in immune cells under different physiological conditions. In murine secondary lymphoid organs, memory-phenotype (CD44\(^{high}\)) T cells show increased SA-β-gal activity in aged mice when compared to their naïve counterparts (Shimatani et al., 2009). Injection of senescent fibroblasts into mouse peritoneal cavity leads to p16\(^{INK4a}\) macrophages recruitment with high SA-β-gal expression (Liu et al., 2019). Detection of SA-β-gal activity by chemogenic and fluorogenic substrates is either performed by histology on fixed tissues or by flow cytometry, allowing its measurement at both population and single-cell level. C\(_{12}\)FDG (5-dodecanoylaminofluorescein di-β-D-galactopyranoside) is a galactosidase substrate covalently modified with a 12-carbon lipophilic moiety (Debacq-Chainiaux et al., 2009). Once inside the cell and cleaved, the fluorescent product is incorporated into the membrane structure of the cell, where it is retained. Since the SA-β-gal activity needs to be detected at pH 6.0, the cells are pre-treated with lysosomal alcalisation reagents. Most importantly, cells are still alive after the detection, enabling further characterisation of SA-β-gal+ populations through in vivo transfer. Another galactosidase probe, suitable for mass spectrometry detection through adding a tellurophene reporter group, is based on a similar mechanism (Lumba et al., 2017). One caveat of both methods is the potential physiological alterations of elevated lysosomal pH or the in vitro culture when treated with alcalisation reagents. Therefore, it might be necessary to fix cells prior to staining in certain sensitive cell types.

2.5 Lipofuscin

Lipofuscin is a type of autofluorescent lipopigment enriched in aged neurons, muscle and skin (Moreno-Garcia et al., 2018). While the nature and structure of lipofuscin shows tissue specificity and temporal heterogeneity, it is universally composed of lipids, metals and misfolded proteins (Hohn et al., 2010; Terman & Brunk, 2004; Zglinski et al., 1995). The lipopigment accumulates in lysosomes and cytosol over time which, on one hand, delineates a specific cellular senescence pattern, and on the other hand, aggravates the defects of lysosomal degradation pathways during ageing (Terman et al., 1999). The levels of lipofuscins in both peritoneal macrophages, microglia and T cells from aged mice are significantly higher than those from young (Kushwaha et al., 2018; Singh Kushwaha et al., 2018; Vida et al., 2017). To customise lipofuscin detection to immune cell populations, a novel method involving an analogue of Sudan Black B (SBB), called GL13, has been developed that stains of a variety of lipids, which together make up 20%-50% of lipofuscin aggregate. With enhanced sensitivity through coupling with biotin, it enables its detection using antibiotin antibodies conjugated with fluorescent dyes. This allows the lipofuscins to be identified in cells using both microscopy and flow cytometry.

3 Hallmarks of cellular ageing

3.1 Cell stress and damage

Cells face continuous cellular damage throughout their lifetime. To guarantee homeostasis, cells evolve multiple maintenance mechanisms, which respond timely to various forms of stress and activate pathways to repair damage. However, the age-related decline of repair mechanisms causes accumulation of damage, acting as a main driving force of cellular ageing (Harman et al., 1983; Schieber & Chandel, 2014). While it is accepted that naïve and memory T cells and tissue-resident macrophages are generally considered to be long-lived, and have a high chance to accumulate damage over lifetime, it is less clear whether long-lived immune cells escape senescence or whether all senescent immune cells undergo apoptosis. However, damage can also be found in short-lived cells, such as neutrophils and monocytes that may only survive for 1-2 days. The mechanisms that culminate in a short-lived cell exhibiting an aged phenotype are yet to be elucidated, but they might involve inheritance of damage from their longer-lived progenitors, which can undergo asymmetric cell division. Thus, in this section the term cellular ageing will be used to refer to the functional status of the cells that exhibit inefficient repair mechanisms, as a result of accumulated damage and stress, which is not necessarily a result of longer lifespan.

3.1.1 Oxidative stress and mitochondrial dysfunction

Reactive oxygen species (ROS) refer to a class of radical and non-radical oxygen species. The majority of cellular ROS (cROS) are generated endogenously through mitochondrial aerobic respiration
CD8+ significantly correlate with ageing in human naïve and central memory old and young. Our group previously demonstrated that mROS levels accurately compare oxidative stress and mitochondrial quality between programming. It is necessary to distinguish among T-cell subsets to accurately compare oxidative stress and mitochondrial quality between old and young. Our group previously demonstrated that mROS levels significantly correlate with ageing in human naïve and central memory

As mitochondrial ATP production in the electron transport chain is the main producer of cROS, mitochondrial DNA (mtDNA) and proteins are especially vulnerable to ROS (Sandalio et al., 2013). Indeed, age-associated increase of mtDNA mutations has been found in multiple tissues (Sun et al., 2016). It impairs the normal function and integrity of mitochondria, inducing more ROS production and their leakage into the cytosol. The positive feedback loop of oxidative stress leads to cellular ageing over time. To systematically describe the mitochondrial changes occurring during ageing, mROS and mitochondrial membrane potential (MMP) are usually tested.

T-cell activation and differentiation involves metabolic reprogramming. It is necessary to distinguish among T-cell subsets to accurately compare oxidative stress and mitochondrial quality between old and young. Our group previously demonstrated that mROS levels significantly correlate with ageing in human naïve and central memory CD8+ T cells (Sanderson & Simon, 2017). In line with this, antibody-secreting cells from old donors display an increase in mROS (Kurupati et al., 2019). Among innate immune cells, the classical monocytes isolated from human peripheral blood show no changes in mROS or MMP during ageing (Pence & Yarbro, 2018). Similarly, mROS production in aged murine neutrophils does not differ from their young counterparts (Uhl et al., 2016). However, aged bone marrow-derived and tissue-resident macrophages are susceptible to the accumulation of intracellular ROS (Sebastian et al., 2009). In summary, aged immune cells do not necessarily display the same mitochondrial phenotypes, requiring its detection in a cell type-specific manner.

Oxidative stress and mitochondrial dysfunction can be assessed by fluorescent probes compatible with flow cytometry. To detect ROS, several probes are commercially available, including the H$_2$DCFDA and CellROX reagents (Zhang et al., 2018). After passively diffusing into the cell, H$_2$DCFDA, with its acetate groups cleaved by intracellular enzymes, undergoes oxidation by ROS and turns into a fluorescent compound (Zhu et al., 1994). One caveat of the dye is its conversion to fluorescent product accelerates in the presence of light-sensitive and prone to auto-oxidation, which may compromise the accuracy of superoxide detection by flow cytometry or confocal microscopy (Zielonka et al., 2008).

MMP is the driving force for mitochondrial ATP synthesis. It reflects the quality of mitochondria since depolarisation impairs mitochondrial function. The use of several common fluorescent dyes, including tetramethylrhodamine ethyl ester (TMRE), 5,5',6,6'-tetra chloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1), Rhodamine 123 and 3,3'-dihexyloxacarbocyanine iodide (DioC6), facilitates the monitoring of MMP (Perry et al., 2011). These dyes are all lipophilic cationic and accumulate within mitochondria in inverse proportion to MMP. The comparison of their advantages and pitfalls has been previously summarised (Perry et al., 2011). Note that both mROS and MMP level need to be normalised with MitoTracker Green (MTG), a fluorescent probe to measure total mitochondrial mass (Kurupati et al., 2019).

3.1.2 DNA damage

Cells are constantly exposed to DNA damaging agents, including chemical mutagens, irradiation and oxidative stress (Jackson & Bartek, 2009). To maintain genome stability, an evolutionary conserved pathway known as DNA damage response (DDR) can sense DNA damage and recruit the repair machineries to fix the DNA lesion. DDR mediates transient checkpoint through activating the p53-p21CIP signalling pathway before the removal of DNA damage (Ou & Schumacher, 2018). However, if DNA damage is persistent, cells may undergo apoptosis or enter cellular senescence. It can be inferred that some senescent cells may contain more DNA lesions and higher DDR level than non-senescent ones.

8-Oxoguanine (8-oxoG) is one of the most common DNA lesions resulting from guanine being modified by ROS. During ageing, 8-oxoG accumulates in various mammalian tissues (Nie et al., 2013). As mitochondrial DNA is more vulnerable to oxidative stress due to its structure and location, it displays increased 8-oxoG both in vivo and in vitro (Barreau et al., 1996; Mecocci et al., 1993). Mice deficient in 8-oxoG-repair enzymes show high level of 8-oxoG in mitochondrial DNA, which is linked with the onset of neurodegenerative diseases (Leon et al., 2016). Quantitation of cellular 8-oxoG level can be achieved through antibody staining and followed by flow cytometry. DNA damage also gives rise to epigenetic changes. H2AX is a minor histone H2A variant and detection of H2AX foci can serve as a readout for DNA double-strand breaks, as well as genomic instability and telomere dysfunction (Mah et al., 2010; Nagelkerke & Span, 2016). Several kinases mediate the phosphorylation of its Ser-139 residue and the formation of γH2AX foci at the DNA break site. γH2AX modifications can increase DNA accessibility, further enhancing the recruitment and accumulation of certain DDR proteins. Since each DNA break corresponds to one γH2AX focus
can be assessed by measuring nascent proteins with O-propargylation, which culminates in impaired protein translation. Hence, ER stress puromycin (OPP) assays by flow cytometry (Zhang et al., 2019). The accumulation of improperly folded proteins, and the formation of protein conjugates, such as BiP, GRP-78, a heat shock protein 70 chaperone, and synergistically culminates in increased chaperone activity, translation inhibition and improved proteostasis (Bertolotti et al., 2000; Ye, 2000). Proteostasis relies on the activation of degradation and recycling mechanisms downstream of the UPR, such as the ubiquitin-proteasome system and autophagy, which determines cell death or survival (Hetz et al., 2012, 2015).

Ageing is accompanied by a dysregulation of the UPR, which contributes to loss of proteostasis (Martinez et al., 2017). It has been observed in rodent tissue that the expression and activity of key chaperones, such as BiP, declines during ageing, which facilitates the accumulation of improperly folded proteins, and the formation of protein aggregates (Paz Gavilan et al., 2006). Thus, detection of low BiP levels (both mRNA or protein) may be an important tool to molecularly identify immune cell senescence. Lower levels of BiP also elicit UPR activation, which culminates in impaired protein translation. Hence, ER stress can be assessed by measuring nascent proteins with O-propargylpuromycin (OPP) assays by flow cytometry (Zhang et al., 2019).

4 | PROTEOSTASIS

4.1 | ER stress

The endoplasmic reticulum hosts the unfolded protein response (UPR), an important stress triggered pathway that enables the suppression of protein aggregation (Walter & Ron, 2011), and promotes cell homeostasis (Hetz et al., 2015). The orchestrated activation of three sensors is key to the UPR: the dual kinase/endoribonuclease inositol-requiring enzyme 1α (IRE1α), the kinase PKR-like ER-resident kinase (PERK), and activating transcription factor 6α (ATF6α). Their activation follows the detachment of the binding immunoglobulin protein (BiP, GRP-78), a heat shock protein 70 chaperone, and synergistically culminates in increased chaperone activity, translation inhibition and improved proteostasis (Bertolotti et al., 2000; Ye, 2000). Proteostasis relies on the activation of degradation and recycling mechanisms downstream of the UPR, such as the ubiquitin-proteasome system and autophagy, which determines cell death or survival (Hetz et al., 2012, 2015).

Methods to detect the activity of different UPS components, including the proteasome, E3 ubiquitin ligases and deubiquitinating enzymes (DUBs), have been comprehensively summarised previously (Melvin et al., 2013). Here, we focus on the technique suitable for the study of primary immune cells. Fluorescently labelled activity-based probes (ABPs) are a class of chemical compounds with three domains – a reactive group, a tri- or tetrapeptide recognition element and a reporter tag (Hewings et al., 2017). Once entering the proteasomal catalytic chamber, ABPs can be covalently linked to the active-site Thr residues, detectable by flow cytometry or fluorescence microscopy. Existing subunit-selective ABPs can distinguish all six types of constitutive and immunoproteasome subunits, therefore allowing to profile the changes in each subunit during ageing. While this is limited by the fact it inhibits the catalytic function irreversibly, ABP is still a powerful tool to measure the proteasomal activity in intact cells without the necessity of transgene or transfection (Schipper-Krom et al., 2019).

4.1.1 | Ubiquitin-proteasome system

The ubiquitin-proteasome system (UPS) acts as a major component of the intracellular protein catabolic pathway. Through the removal of misfolded or damaged proteins, it helps to maintain protein homeostasis under various forms of cellular stress (Chen et al., 2011). UPS-mediated degradation involves two stages – the ubiquitination and the proteasome-mediated degradation. Ubiquitin tags protein substrates to deliver them to the proteasome for degradation. Proteasomes are barrel-shaped proteolytic machineries, containing 20S ‘core’ catalytic chambers, and 19S ‘cap’ regulatory particles, which bind the polyubiquitinated substrates and translocate them into the central chamber (Kimura et al., 2015). The most frequent form of the 20S core is the constitutive proteasome. In immune cells, a special form of proteasome, called the immunoproteasome, plays a crucial role in digesting intracellular proteins of viral origins (Nathan et al., 2013). It helps to produce small peptides for further MHC-I-mediated antigen presentation.

Proteasome activity declines progressively in aged mammalian cell (Carrard et al., 2003). Overexpressing proteasomal subunits has been shown to promote proteostasis and longevity in various organisms (Chondrogianni et al., 2015; Nguyen et al., 2019). Aged human lymphocytes display decreased proteasome function, mainly due to the post-translational modification of the proteasome subunits (glycation, lipid peroxidation product conjugation and ubiquitination) (Carrard et al., 2003). Moreover, TCR-stimulated aged CD4+ T cells also fail to induce transcriptional upregulation of proteasome subunit genes (Arata et al., 2019). In T cells from elderly donors, decreased proteasome activity leads to compromised IκBα degradation upon TNFα stimulation, increasing NF-κB signalling and IL2R upregulation (Ponnappan et al., 1999).

Methods to detect the activity of different UPS components, including the proteasome, E3 ubiquitin ligases and deubiquitinating enzymes (DUBs), have been comprehensively summarised previously (Melvin et al., 2013). Here, we focus on the technique suitable for the study of primary immune cells. Fluorescently labelled activity-based probes (ABPs) are a class of chemical compounds with three domains – a reactive group, a tri- or tetrapeptide recognition element and a reporter tag (Hewings et al., 2017). Once entering the proteasomal catalytic chamber, ABPs can be covalently linked to the active-site Thr residues, detectable by flow cytometry or fluorescence microscopy. Existing subunit-selective ABPs can distinguish all six types of constitutive and immunoproteasome subunits, therefore allowing to profile the changes in each subunit during ageing. While this is limited by the fact it inhibits the catalytic function irreversibly, ABP is still a powerful tool to measure the proteasomal activity in intact cells without the necessity of transgene or transfection (Schipper-Krom et al., 2019).

4.1.2 | Autophagy

Autophagy is a conserved lysosome-dependent degradation pathway in eukaryotic cells. There are three types of autophagy – macroautophagy, microautophagy and chaperone-mediated autophagy (CMA). We focus on macroautophagy, the most prevalent form (hereafter referred to as autophagy) (Feng et al., 2014) and CMA,
as both are closely related to ageing. Autophagy is a crucial homeostatic regulator of cell metabolism, differentiation and cell growth, balancing cell survival and death. During ageing, autophagic activity declines across multiple tissues, as is the case for macrophages, T and B lymphocytes (Bharath et al., 2020; Puleston et al., 2014; Stranks et al., 2015; Zhang et al., 2019). Several anti-ageing interventions, including behavioural (calorie restriction or exercise) or pharmacological (reducing TOR or insulin/insulin-like growth factor signalling, activating AMPK or sirtuins) converge in the induction of autophagy (Cabo et al., 2014). Possible mechanisms of how autophagy delays ageing involve the removal of protein aggregates or damaged mitochondria, prevention of stem cell attrition and oncogenic transformation, and the reduction of inflammatory responses (Rubinshtein et al., 2011). Therefore, autophagy acts both as a biomarker of ageing, and as a popular anti-ageing target. Similarly, CMA activity declines during ageing. In mouse T cells, CMA is crucial to TCR-mediated activation through degrading inhibitory molecules, whereas its compromised capacity during ageing negatively impact the TCR response (Valdor, 2014).

Autophagy requires core molecular machineries composed of different autophagy-related proteins (Feng et al., 2014). It starts from a double-membrane structure, and as this elongates, it either engulfs bulk cytosolic content or selectively sequesters a large spectrum of cargoes (Gatica et al., 2018). LC3/GABARAP (Atg8) family proteins play a crucial role in the selectivity. LC3-II, the lipid-modified form of LC3, is anchored into the double membranes and recruits autophagy receptors, which carries polyubiquitinated autophagic cargos (Kabeya et al., 2000). The autophagosome together with its cargo is delivered to the lysosome for degradation. The membrane-bound LC3-II is used as a readout for autophagy by microscopy, as it appears punctate, or by Western blot, as it runs at different molecular weight (Phadwal et al., 2012). In immune cells, flow cytometry or imaging is ideal as it can be combined with surface markers. As the fluorophore-conjugated LC3 antibody detects both LC3-I and II, we use saponin to selectively permeabilise plasma membrane and flush away the cytosolic non-membrane bound LC3-I. For LC3-II levels to reflect autophagic flux, it is blocked with lysosomal inhibitors, such as chloroquine or bafilomycin A1, that prevent the fusion between autophagosome and lysosome and therefore accumulates LC3 levels over the time of treatment (Homwood et al., 1972; Mauvezin & Neufeld, 2015).

An alternative way to measure autophagic flux is by cationic amphiphilic tracer dyes. Cyto-ID is an autofluorescent compound displaying a preference for autophagosomal membrane lipids (Niemann et al., 2001). These dyes have been widely applied to detect the autophagic flux in living cells with flow cytometry (Chan et al., 2012). However, some evidence suggests that during ageing autophagosomes fail to fuse with lysosomes and accumulate in the cell (Zhang et al., 2019). Measuring LC3-II should be accompanied by detecting the extent of autophagosome-lysosome fusion.

CMA substrates include proteins with KFERQ-like motif, which enables their binding to heat shock cognate 71 kDa protein (HSC70, a cytosolic chaperone). The substrate-chaperone complex is recruited to lysosomal surface by lysosome-associated membrane protein type 2A (LAMP2A). LAMP2As are assembled into multimeric translocation complex to internalise the unfolded protein for intralysosomal degradation. To monitor CMA level in vivo, animals with transgenic reporters were developed. The fluorescent protein reporter, tagged with KFERQ sequence, is degraded specifically by CMA (Dong et al., 2020). Cells with high CMA level display lower fluorescent signal, which can be quantified by both microscopy or flow. Another method involves immunostaining of HSC70 and LAMP2A (Kaushik & Cuervo, 2009). Since lysosomes competent for CMA contains both molecules, the abundance of these lysosomes can indirectly reflect CMA level (Cuervo et al., 1997).

5 | CONCLUSION AND PERSPECTIVES

The recent decade has witnessed a progression in the field of immune ageing. We have a comprehensive knowledge of the components of immune system, and how they respond in different physiological contexts. More importantly, immune ageing is at the centre of many age-related phenotypes and diseases (Simon et al., 2015). Understanding its molecular and cellular mechanisms becomes more urgent with global population ageing, which also highlights the immense translational potential of strategies able to modulate and rescue immunosenescent phenotypes. The ongoing COVID-19 pandemic is a vivid example. Old individuals are more susceptible to SARS-CoV-2 viral infection and complications accompanied by a severe cytokine storm (Liu, Li, et al., 2020). Thus, investigating ways to rejuvenate aged immune cells and promote robust and efficient immune responses in the elderly has become an urgent matter, and the reason why we believe that immune ageing research will be particularly incentivised after the pandemic. It will be important to first establish which immune cells increasingly undergo cellular senescence with age, before drawing any conclusions to which degree immune cell senescence contributes to immunosenescence in mammals.

Immune cells are one of the most accessible human samples, thus allowing easier ‘bench to bedside’ translation. It is especially relevant to advance in complex topics such as ageing. However, immune cells are very heterogeneous in phenotype and function, which requires systematic analysis at high resolution with single-cell omics techniques to dissect certain phenomena (Goldman et al., 2019). Thanks to the recent advances of cloud computing, large amounts of data generated can be stored and processed with unprecedented speed. Artificial intelligence technology can further help to decipher hidden patterns among the large data volume and unravel more robust biomarkers of ageing. It is worth noting that one age-related hallmark does not necessarily co-exist with others. Some of them may appear earlier and drive cells into ageing, forming a hierarchical relation (Lopez-Otin et al., 2013). Adaptation of traditional methods to fit the omics era and measure all hallmarks simultaneously is necessary, forming a ‘toolkit’ of ageing detection. This toolkit can be further applied for the exploration of other tissues, to reveal the diverse facets of ageing in the whole organism.
CONFLICT OF INTEREST
None declared.

AUTHOR CONTRIBUTIONS
D. Z and M. B. wrote the manuscript, and K. S. edited the manuscript.

ORCID
Anna Katharina Simon https://orcid.org/0000-0002-4077-7995

REFERENCES
Agrawal, A., Agrawal, S., Cao, J.-N., Su, H., Osann, K., & Gupta, S. (2007). Altered innate immune functioning of dendritic cells in elderly humans: A role of phosphoinositide 3-kinase-signaling pathway. The Journal of Immunology, 178, 6912–6922. https://doi.org/10.4049/jimmunol.178.11.6912

Almeida-Oliveira, A., Smith-Caravello, M., Porto, L. C., Cardoso-Oliveira, J., Ribeiro, A. D. S., Falcão, R. R., Abdelhay, E., Bouzas, L. F., Thuler, L. C. S., Ornellas, M. H., & Diamond, H. R. (2011). Age-related changes in natural killer cell receptors from childhood through old age. Human Immunology, 72, 319–329. https://doi.org/10.1016/j.humimm.2011.01.009

Alpert, A., Pickman, Y., Leipold, M., Rosenberg-Hasson, Y., Ji, X., Gaujoux, R., Rabani, H., Starosvetsky, E., Kveler, K., Schaffert, S., Furman, D., Caspi, O., Rosenschein, U., Khatri, P., Dekker, C. L., Maelzer, H. T., Davis, M. M., & Shen-Orr, S. S. (2019). HP1-β mobilization promotes chromatin changes that facilitate aging-associated inflammation. Cell Metabolism, 32(1), 44–55.e6. https://doi.org/10.1016/j.cmet.2020.04.015

Bhushan, M. et al. (2002). Tumour necrosis factor-alpha-induced migration of human Langerhans cells: The influence of ageing. British Journal of Dermatology, 146, 32–40. https://doi.org/10.1046/j.1365-2133.2002.04549.x

Brenchley, J. M., Karandikar, N. J., Betts, M. R., Ambrozak, D. R., Hill, B. J., Crotty, L. E., Casazza, J. P., Kuruppu, J., Migueles, S. A., Connors, M., Roederer, M., Douek, D. C., & Koup, R. A. (2003). Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood, 101, 2711–2720. https://doi.org/10.1182/blood-2002-07-2103

Bruce, J. L., Hurford, R. K. Jr., Classon, M., Koh, J., & Dyson, N. (2000). Requirements for cell cycle arrest by p16INK4a. Molecular Cell, 6, 737–742.

Butcher, S. K. et al. (2001). Senescence in innate immune responses: Reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. Journal of Leukocyte Biology, 70, 881–886.

Callender, L. A., Carroll, E. C., Beal, R. W. J., Chambers, E. S., Nourshargh, S., Akbar, A. N., & Henson, S. M. (2018). Human CD8(+) EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK. Aging Cell, 17(1). https://doi.org/10.1111/acel.12675

Carrard, G., Dier, M., Raes, M., Toussaint, O., & Friguet, B. (2003). Impact of aging on proteasome structure and function in human lymphocytes. International Journal of Biochemistry & Cell Biology, 35, 728–739. https://doi.org/10.1016/s1357-2725(02)00356-4

Chan, L. L., Shen, D., Wilkinson, A. R., Patton, W., Lai, N., Chan, E., Kuksin, D., Lin, B., & Qiu, J. (2012). A novel image-based cytometry method for autophagy detection in living cells. Autophagy, 8, 1371–1382. https://doi.org/10.4161/auto.21028

Channappanavar, R., & Perlman, S. (2020). Age-related susceptibility to coronavirus infections: Role of impaired and dysregulated host immunity. J Clin Invest, 130, 6204–6213. https://doi.org/10.1172/JCI144115

Chen, B., Retzlaff, M., Roos, T., & Friedman, J. (2011). Cellular strategies of protein quality control. Cold Spring Harb Perspect Biol, 3, a004374. https://doi.org/10.1101/cshperspect.a004374

Cheng, G., Zielonka, M., Dias Duarte Machado, L. G., Thiebaut, D., Ouari, O., Hardy, M., Zielonka, J., & Kalyanaraman, B. (2018). Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future. Journal of Biological Chemistry, 293, 10363–10380. https://doi.org/10.1074/jbc.RA118.003044

Cheung, R. K., & Utz, P. J. (2011). Screening: CyTOF-the next generation of cell detection. Nature Reviews Rheumatology, 7, 502–503. https://doi.org/10.1038/nrrheum.2011.110

Cho, S., & Hwang, E. S. (2012). Status of mTOR activity may phenotypically differentiate senescence and quiescence. Molecules and Cells, 33, 597–604. https://doi.org/10.1007/s10020-012-0042-1

Chondrogianis, N., Georgiá, K., Kourtis, N., Tavernarakis, N., & Gonas, E. S. (2015). 205 proteasome activation promotes life span extension and resistance to proteotoxicity in Caenorhabditis elegans. The FASEB Journal, 29, 611–622. https://doi.org/10.1096/fj.14-252189

Colonna-Romano, G., Bulati, M., Aquino, A., Pellicaniò, M., Vitello, S., Lio, D., Candore, G., & Caruso, C. (2009). A double-negative (IgD-CD27-) B cell population is increased in the peripheral blood of...
elderly people. *Mechanisms of Ageing and Development*, 130, 681–690. https://doi.org/10.1016/j.mad.2009.08.003

Cuervo, A. M., Dice, J. F., & Knecht, E. (1997). A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins. *Journal of Biological Chemistry*, 272, 5602–5615. https://doi.org/10.1074/jbc.272.9.5606

d’Adda di Fagagna, F., Reaper, P. M., Clay-Farrace, L., Fiegler, H., Carr, P., von Zglinicki, T., Saretzki, G., Carter, N. P., & Jackson, S. P. (2003). A DNA damage checkpoint response in telomere-initiated senescence. *Nature*, 426, 194–198. https://doi.org/10.1038/nature02118

de Cabo, R., Carmona-Gutierrez, D., Bernier, M., Hall, M. N., & Madeso, F. (2014). The search for antiaging interventions: From elixirs to fasting regimens. *Cell*, 157, 1515–1526. https://doi.org/10.1016/j.cell.2014.05.031

Debacq-Chainiaux, F., Erusalimsky, J. D., Campisi, J., & Toussaint, D. et al (2011). Reversible senescence in human patterns. *Biogerontology*, 12, 1070–1078. https://doi.org/10.1007/s10522-011-91730

Ergen, A. V., Boles, N. C., & Goodell, M. A. (2012). Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. *Blood*, 119, 2500–2509. https://doi.org/10.1182/blood -2011-11-391730

Fali, T., Papagno, L., Bayard, C., Mouloud, Y., Boddaert, J., Sauce, D., & Appay, V. (2019). New Insights into lymphocyte differentiation and aging from telomere length and telomerase activity measurements. *The Journal of Immunology*, 202, 1962–1969. https://doi.org/10.4049/jimmunol.1801475

Farr, J. N., Fraser, D. G., Wang, H., Jaehn, K., Ogrodnik, M. B., Weivoda, M. M., Drake, T. M., Tchkonia, T., LeBrasseur, N. K., Kirkland, J. L., Bonewald, L. F., Pignolo, R. J., Monroe, D. G., & Khosla, S. (2016). Identification of senescent cells in the bone microenvironment. *Journal of Bone and Mineral Research*, 31, 1920–1929. https://doi.org/10.1002/jbmr.2892

Feng, Y., He, D., Yao, Z., & Klionsky, D. J. (2014). The machinery of mac- rouptophagy. *Cell Research*, 24, 24–41. https://doi.org/10.1038/ cr.2013.168

Franceschi, C., Bonafè, M., Valensin, S., Olivieri, F., De luca, M., Ottaviani, E., & De benedistis, G. (2000). Inflamm-aging. An evo- lutionary perspective on immunosenescence. *Annals of the New York Academy of Sciences*, 908, 244–254. https://doi.org/10.1111/ j.1749-6632.2000.tb06651.x

Franceschi, C., Garagnani, P., Parini, P., Giuliani, C., & Santoro, A. (2018). Inflammaging: A new immune-metabolic viewpoint for age-related diseases. *Nature Reviews Endocrinology*, 14, 576–590. https://doi.org/10.1038/s41574-018-0059-4

Franceschi, C., Garagnani, P., Vitale, G., Capri, M., & Salvioi, S. (2017). Inflammaging and ‘Garb-aging’. *Trends in Endocrinology and Metabolism*, 28, 199–212. https://doi.org/10.1016/j.tem.2016.09.005

Frasca, D. (2018). Senescent B cells in aging and age-related diseases: Their role in the regulation of antibody responses. *Experimental Gerontology*, 107, 55–58. https://doi.org/10.1016/j.exger.2017.07.002

Frasca, D., Diaz, A., Romero, M., & Blomberg, B. B. (2017). Human periph- eral late/exhausted memory B cells express a senescent-associated secretory phenotype and preferentially utilize metabolic signaling pathways. *Experimental Gerontology*, 87, 113–120. https://doi. org/10.1016/j.exger.2016.12.001

Fulop, T., Dupuis, G., Witkowsi, J. M., & Larbi, A. (2016). The role of immunosenescence in the development of age-related diseases. *Revista De Investigacion Clinica*, 68, 84–91.

Gatica, D., Lahiri, V., & Klionsky, D. J. (2018). Cargo recognition and deg- radation by selective autophagy. *Nature Cell Biology*, 20, 233–242. https://doi.org/10.1038/s41556-018-0037-z

Goldman, S. L., MacKay, M., Afshinnekoo, E., Melnick, A. M., Wu, S., & Mason, C. E. (2019). The impact of heterogeneity on single-cell sequencing. *Front Genet.*, 10. https://doi.org/10.3389/fgene.2019.00008

Gorgoulis, V., Adams, P. D., Alimonti, A., Bennett, D. C., Bischof, O., Bishop, C., Campisi, J., Collado, M., Evangelou, K., Ferbeyre, G., Gil, J., Hará, E., Krizhanovsky, V., Jurk, D., Maier, A. B., Narita, M., Niedernhofer, L., Passos, J. F., … Demaria, M. (2019). Cellular se- nescence: Defining a path forward. *Cell*, 179, 813–827. https://doi. org/10.1016/j.cell.2019.10.005

Group R. C. et al (2020). Dexamethasone in hospitalized patients with Covid-19 - preliminary report. *New England Journal of Medicine*, 2020, https://doi.org/10.1056/NEJMoa2021436

Hall, B. M. et al (2016). Aging of mice is associated with p16(ink4a)- and beta-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. *Aging (Albany NY)*, 8, 1294–1315. https://doi.org/10.18632/aging.100991

Hao, Y., O’Neill, P., Naradikian, M. S., Scholz, J. L., & Cancro, M. P. (2011). A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. *Blood*, 118, 1294–1304. https://doi.org/10.1182/blood -2011-01-330530

Harman, D. (1983). Free radical theory of aging: Consequences of mito- chondrial aging. *Ageing Research Reviews*, 6, 1983.

ZHOU ET AL.
He, G., Siddik, Z. H., Huang, Z., Wang, R., Koomen, J., Kobayashi, R., Khokhar, A. R., & Kuang, J. (2005). Induction of p21 by p53 following DNA damage inhibits both Cdk4 and Cdk2 activities. Oncogene, 24, 2929–2943. https://doi.org/10.1038/sj.onc.1208474

Hearps, A. C., Martin, G. E., Angelovich, T. A., Cheng, W.-J., Maia, A., Landay, A. L., Jaworowski, A., & Crowe, S. M. (2012). Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell, 11, 867–875. https://doi.org/10.1111/j.1474-9726.2012.00851.x

Henson, S. M., & Akbar, A. N. (2009). KLRG1–more than a marker for T cell senescence. Age (Dordr), 31, 285–291. https://doi.org/10.1007/s11357-009-1010-9

Henson, S. M., Franzese, O., Macaulay, R., Libri, V., Azevedo, R. I., Kiani-Alikhan, S., Plunkett, F. J., Masters, J. E., Jackson, S., Griffiths, S. J., Pircher, H.-P., Soares, M. V. D., & Akbar, A. N. (2009). KLRG1 signaling induces defective Akt (ser473) phosphorylation and pro- liferative dysfunction of highly differentiated CD8+ T cells. Blood, 113, 6619–6628. https://doi.org/10.1182/blood-2009-01-195988

Hetz, C. (2012). The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nature Reviews Molecular Cell Biology, 13, 89–102. https://doi.org/10.1038/nrm3270

Hetz, C., Chevet, E., & Oakes, S. A. (2015). Proteostasis control by the unfolded protein response. Nature Cell Biology, 17, 829–838. https://doi.org/10.1038/ncb3184

Hewings, D. S., Flygare, J. A., Wertz, I. E., & Bogyo, M. (2017). Activity-based probes for the multicatalytic proteasome. FEBS Journal, 284, 1540–1554. https://doi.org/10.1111/febs.14016

Hiyama, K. et al (1995). Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. The Journal of Immunology, 155, 3711–3715.

Hoh, A., Jung, T., Grimm, S., & Grune, T. (2010). Lipofuscin-bound iron is a major intracellular source of oxidants: Role in senescent cells. Free Radical Biology and Medicine, 48, 1100–1108. https://doi.org/10.1016/j.freeradbiomed.2010.01.030

Homewood, C. A., Warhurst, D. C., Peters, W., & Baggaley, V. C. (1972). Lysosomes, pH and the anti-malarial action of chloroquine. Nature, 235, 50–52. https://doi.org/10.1038/235050a0

Huang, E. E., Tedone, E., Orjalo, A. V., Patil, C. K., Freund, A., Zhou, L., Curran, S. C., Davalos, A. R., Wilson-Edell, K. A., Liu, S., Limbicad, M., Demaria, M., Li, P., Hubbard, G. B., Ikeno, Y., Javors, M., Desprez, P.-Y., Benz, C. C., Kapahi, P., … Campisi, J. (2015). MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nature Cell Biology, 17, 1049–1061. https://doi.org/10.1038/ncb3195

Hun, L. L. (2013). Shades of grey–the blurring view of innate and adaptive immunity. Nature Reviews Immunology, 13, 73–74. https://doi.org/10.1038/nri3389

Lanza, A., Henson, S. M., Escors, D., & Akbar, A. N. (2014). The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nature Immunology, 15, 965–972. https://doi.org/10.1038/ni.2981

Le Page, A., Dupuis, G., Larbi, A., Wittkowski, J. M., & Fulop, T. (2018). Signal transduction changes in CD4(+) and CD8(+) T cell subpopulations with aging. Experimental Gerontology, 105, 128–139. https://doi.org/10.1016/j.exger.2018.01.005

Lee, B. Y. et al (2006). Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell, 5, 187–195. https://doi.org/10.1111/j.1474-9726.2006.00199.x

Leon, J., Sakumi, K., Castillo, E., Sheng, Z., Oka, S., & Nakabeppu, Y. (2016). 8-Oxoguanine accumulation in mitochondrial DNA causes mitochondrial dysfunction and impairs neurogenesis in cultured adult mouse cortical neurons under oxidative conditions. Scientific Reports, 6, 22086. https://doi.org/10.1038/srep22086

Lin, Y. et al (2015). Age-associated telomere attrition of lymphocytes in vivo is co-ordinated with changes in telomerase activity, composition of lymphocyte subsets and health conditions. Clinical Science (Lond), 128, 367–377. https://doi.org/10.1042/CS20140481

Liu, D., Paczkowski, P., Mackay, S., Ng, C., & Zhou, J. (2020). Single-cell multiplexed proteomics on the isolium resolves cellular functional heterogeneity to reveal clinical responses of cancer patients to immunotherapies. Methods in Molecular Biology, 2055, 413–431. https://doi.org/10.1007/978-1-4939-9773-2_19

Liu, J. Y. et al (2019). Cells exhibiting strong p16 (INK4a) promoter activation in vivo display features of senescence. Proceedings of the National Academy of Sciences of the United States of America, 116, 2603–2611. https://doi.org/10.1073/pnas.181311116

Liu, J., Li, S., Liu, J., Liang, B., Wang, X., Wang, H., Li, W., Tong, Q., Yi, J., Zhao, L., Xiong, L., Guo, C., Tian, J., Luo, J., Yao, J., Pang, R., Shen, H., Peng, C., Liu, T., … Zheng, X. (2020). Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine, 55, 102763. https://doi.org/10.1016/j.ebiom.2020.107263

Liu, L., Bailey, S. M., Okua, M., Muñoz, P., Li, C., Zhou, L., Wu, C., Czerwiec, E., Sandler, L., Seyfang, A., Blasco, M. A., & Keefe, D. L. (2007). Telomere lengthening early in development. Nature Cell Biology, 9, 1436–1441. https://doi.org/10.1038/ncb1664
system: From large scale discoveries to single cells analysis. Cell Biochemistry and Biophysics, 67, 75–89. https://doi.org/10.1007/s12013-013-9621-9

Mlynarczyk, C., & Fähraeus, R. (2014). Endoplasmic reticulum stress sensitizes cells to DNA damage-induced apoptosis through p53-dependent suppression of p21 CDKN1A. Nature Communications, 5, 1–16.

Mondal, M. A., Horikawa, I., Pine, S. R., Fujita, K., Morgan, K. M., Vera, E., Mazur, S. J., Appella, E., Vojtesek, B., Blasco, M. A., Lane, D. P., & Harris, C. C. (2013). p53 isoforms regulate aging- and tumor-associated replicative senescence in T lymphocytes. J Clin Invest, 123, 5247–5257. https://doi.org/10.1172/JCI70355

Montalto, M. C., Phillips, J. S., & Ray, F. A. (1999). Telomerization activation in human fibroblasts during escape from crisis. Journal of Cellular Physiology, 180, 46–52.10.1002/sic.1097-4652(199907)180:1<46:AID-JCP5>3.0.CO;2-K

Moreno-Garcia, A., Kun, A., Calero, O., Medina, M., & Calero, M. (2018). An overview of the role of lipofuscin in age-related neurodegeneration. Frontiers in Neuroscience, 12, 464. https://doi.org/10.3389/fnins.2018.00464

Nagelkerke, A., & Span, P. N. (2016). Staining against phospho-H2AX (gamma-H2AX) as a marker for DNA damage and genomic instability in cancer tissues and cells. Advances in Experimental Medicine and Biology, 899, 1–10. https://doi.org/10.1007/978-3-319-26666-4_1

Naidoo, N., Ferber, M., Master, M., Zhu, Y., & Pack, A. I. (2008). Aging impairs the unfolded protein response to sleep deprivation and leads to Proapoptotic signaling. Journal of Neuroscience, 28(26), 6539–6548. https://doi.org/10.1523/JNEUROSCI.5685-07.2008

Najarro, K., Nguyen, H., Chen, G., Xu, M., Alcorta, S., Yao, X., Zukley, L., Metter, E. J., Truong, T., Lin, Y., Li, H., Oelke, M., Xu, X., Ling, S. M., Longo, D. L., Schnick, J., Beng, L., Ferrucci, L., & Weng, N.-P. (2015). Telomere length as an indicator of the robustness of B- and T-cell response to influenza in older adults. Journal of Infectious Diseases, 212, 1261–1269. https://doi.org/10.1093/infdis/jiv202

Nathan, J. A., Spinnennhirt, V., Schmidtke, G., Basler, M., Groettrup, M., & Goldberg, A. L. (2013). Immuno- and constitutive proteasomes do not differ in their abilities to degrade ubiquitinated proteins. Cell, 152, 1184–1194. https://doi.org/10.1016/j.cell.2013.01.037

Nguyen, N. N. et al. (2019). Proteasome beta5 subunit overexpression improves proteostasis during aging and extends lifespan in Drosophila melanogaster. Scientific Reports, 9, 3170. https://doi.org/10.1038/s41598-019-39508-4

Nie, B., Gan, W., Shi, F., Hu, G.-X., Chen, L.-G., Hayakawa, H., Sekiguchi, M., & Cai, J.-P. (2013). Age-dependent accumulation of 8-oxoguanine in the DNA and RNA in various rat tissues. Oxidative Medicine and Cellular Longevity, 2013, 1–9. https://doi.org/10.1155/2013/303181

Niemann, A., Baltes, J., & Elssasser, H. P. (2001). Fluorescence properties and staining behavior of monodansylcyclohexane, a structural homologue of the lysosomotropic agent monodansylcadaverine. Journal of Histochemistry and Cytochemistry, 49, 177–185. https://doi.org/10.1369/002215540104900206

Onyema, O. O. et al. (2012). Cellular aging and senescence characteristics of human T-lymphocytes. Biogerontology, 13, 169–181. https://doi.org/10.1007/s10522-011-9366-z
Walter, P., & Ron, D. (2011). The unfolded protein response: From stress pathway to homeostatic regulation. Science, 334, 1081-1086. https://doi.org/10.1126/science.1209038

Weinberger, B. (2018). Vaccines for the elderly: Current use and future challenges. *Immun Ageing*, 15, 3. https://doi.org/10.1186/s12979-017-0107-2

Wenisch, C., Patrula, S., Daxbock, F., Krause, R., & Horl, W. (2000). Effect of age on human neutrophil function. *Journal of Leukocyte Biology*, 67, 40–45. https://doi.org/10.1002/jlb.67.1.40

Xu, W. et al. (2019). Mapping of gamma/delta T cells reveals Vdelta2+ T cells resistance to senescence. *EBioMedicine*, 39, 44–58. https://doi.org/10.1016/j.ebiom.2018.11.053

Xu, W., & Lari, A. (2017). Markers of T cell senescence in humans. *International Journal of Molecular Sciences*, 18. https://doi.org/10.3390/ijms18081742

Yarbro, J. R., Emmons, R. S., & Pence, B. D. (2020). Macrophage immunometabolism and inflamming: Roles of mitochondrial dysfunction, cellular senescence, CD83, and NAD. *Immunometabolism*, 2, e200026. https://doi.org/10.20900/immunometab20200026

Ye, J., Rawson, R. B., Komuro, R., Chen, X., Davé, U. P., Prywes, R., Brown, M. S., & Goldstein, J. L. (2000). ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. *Molecular Cell*, 6, 1355–1364. https://doi.org/10.1016/S1097-2765(00)00133-7

Xue, Y., Zhao, Y., Xu, Y., Zheng, M., Feng, Z., & Hu, W. (2017). Mutant p53 in cancer: Accumulation, gain-of-function, and therapy. *Journal of Molecular Biology*, 429, 1595-1606. https://doi.org/10.1016/j.jmb.2017.03.030

Zhang, H., Alsaleh, G., Feltham, J., Sun, Y., Napolitano, G., Riffelmacher, T., Charles, P., Frau, L., Hublitz, P., Yu, Z., Mohammed, S., Ballabio, A., Balabanov, S., Mellor, J., & Simon, A. K. (2019). Polyamines control eIF5A hypusination, TFB6 translation, and autophagy to reverse B cell senescence. *Molecular Cell*, 76(1), 110–125.e9. https://doi.org/10.1016/j.molcel.2019.08.005

Zhang, J., Zeng, H., Gu, J., Li, H., Zheng, L., & Zou, Q. (2020). Progress and prospects on vaccine development against SARS-CoV-2. *Vaccines (Basel)*, 8, 153. https://doi.org/10.3390/vaccines8020153

Zhang, Y., Dai, M., & Yuan, Z. (2018). Methods for the detection of reactive oxygen species. *Analytical Methods*, 10, 4625–4638.

Zhu, H., Bannenberg, G. L., Moldeus, P., & Shertzler, H. G. (1994). Oxidation pathways for the intracellular probe 2′,7′-dichlorofluorescein. *Archives of Toxicology*, 68, 582–587. https://doi.org/10.1007/s002040050118

Zhu, Y., Tchkonia, T., Pirskkalaha, T., Gower, A. C., Ding, H., Giorgadze, N., Alkner, A. K., Ikeno, Y., Hubbard, G. B., Lenburg, M., O’Hara, S. P., LaRusso, N. F., Miller, J. D., Roos, C. M., Verzosa, G. C., LeBrausse, N. K., Wren, J. D., Farr, J. N., Kholsa, S., ... Kirkland, J. L. (2015). The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. *Aging Cell*, 14(4), 644–658. https://doi.org/10.1111/acel.12344

Zielonka, J., Srinivasan, S., Hardy, M., Ouari, O., Lopez, M., Vasquez-Vivar, J., Avadhani, N. G., & Kalyanaraman, B. (2008). Cytochrome c-mediated oxidation of hydroxythidine and mito-hydroxythidine in mitochondria: Identification of homo- and heterodimers. *Free Radical Biology and Medicine*, 44, 835–846. https://doi.org/10.1016/j.freeradbiomed.2007.11.013

How to cite this article: Zhou D, Borsa M, Simon AK. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. *Aging Cell*. 2021:20:e13316. https://doi.org/10.1111/acel.13316