ORBIFOLD COMPACTIFICATION AND SOLUTIONS OF M–THEORY FROM MILNE SPACES

A. A. BYTSENKO
Departamento de Física, Universidade Estadual de Londrina
Caixa Postal 6001, Londrina-Paraná, Brazil

M. E. X. GUIMARÃES
Departamento de Matemática, Universidade de Brasília
Campus Universitário, Brasília-DF, Brazil

R. KERNER
Laboratoire de Physique Théorique des Liquides (UMR 7600)
Université Pierre et Marie Curie, Tour 22, 4-éme étage, Boîte 142
4, Place Jussieu, 75005 Paris, France

ABSTRACT: In this paper, we consider solutions and spectral functions of M-theory from Milne spaces with extra free dimensions. Conformal deformations to the metric associated with the real hyperbolic space forms are derived. For the three-dimensional case, the orbifold identifications $SL(2, \mathbb{Z} + i\mathbb{Z})/\{\pm Id\}$, where Id is the identity matrix, is analyzed in detail. The spectrum of a eleven-dimensional field theory can be obtained with the help of the theory of harmonic functions in the fundamental domain of this group and it is associated with the cusp forms and the Eisenstein series. The supersymmetry surviving for supergravity solutions involving real hyperbolic space factors is briefly discussed.

KEYWORDS: Milne universe; real coset hyperbolic spaces
1. Introduction

The true nature of gravity, though well measured for solar system scale experiments, is not well determined at larger or smaller scales. For example, the assumptions of dark matter and/or energy are made in order to fit the observed Universe within Einstein theory, yet it is quite possible that it is the theory of gravity which should be modified to accommodate these data. Theoretically, the possibility that gravity might not be fundamentally described by a purely tensorial theory in four dimensions is growing in importance. This is in part a consequence of superstring theory, which is consistent in ten dimensions (or M-theory in eleven dimensions), but also the more phenomenological recent developments of “braneworld” cosmological scenarios [1, 2, 3, 4, 5] have motivated the study of other gravitational theories in four-dimensions.

It is generally accepted that M-theory may provide a consistent quantum theory of gravity. Nevertheless, it is understood by now that to insert this theory in time-dependent backgrounds can bring a number of technical problems such as the appearance of closed timelike curves and the spacetime resulting from string compactification is not Hausdorff. Yet, open questions in cosmology such as the initial (big bang) singularity and the initial boundary conditions remain a challenge and they are the main motivations to consider string cosmology.

Initial boundary conditions and the requirement of homogeneity for the cosmological solution imply that the geometry has a form of higher dimensional Milne universe along a null hypersurface, with negative constant curvature in the spatial
sector. This spacetime can be viewed particularly as hyperbolic compactifications in M-theory (see [6, 7, 8]), which have recently attracted some interest as they lead to interesting cosmologies [9]. Cosmological string models in Milne universe have been considered by many authors. Milne spaces in the context of inflationary cosmology were studied in [10, 11]. String models in (1+1)-dimensional Milne space were discussed in [6, 7, 12, 13, 14, 15, 16]. Discussions on higher dimensional Milne spaces can be found in [6, 12], and more recently in [7, 15].

In the present paper we will extend these previous works in order to contemplate the problem of hyperbolic compactifications in the context of cosmological scenarios. In particular, we will be interested in the general class of time-dependent locally flat spacetimes obtained from the \((N+1)\)-dimensional Milne universe. Emphasis is devoted to the \(N = 3\) case, which analyze in details and orbifold identifications using the modular group \(\Gamma = SL(2, \mathbb{Z} + i\mathbb{Z})/\{\pm Id\}\), where \(Id\) is the identity matrix is considered. In Sec. 2 we analyse the class of conformal deformations of Riemannian metrics and in particular the conformal relation between Milne and hyperbolic space forms. In Sec. 3 we take into account constant slice in Milne spaces. In Sec. 4 we consider hyperbolic geometry in the spatial section of Milne space. For co-compact groups \(\Gamma\) (i.e. for compact real hyperbolic manifolds) the heat kernel coefficients are given in the explicit forms. Orbifolding of the group \(\Gamma\) we derived in explicit forms the Selberg trace formula and the determinant of Laplace type operators. The study of this theory involves harmonic analysis on locally symmetric spaces of rank one from which we will extract some results for the brane picture. Finally in Sec. 5 we discuss questions of supersymmetry surviving under the orbifolding of a discrete group.

2. Conformal deformations and Milne space forms

Let \(M\) be a \((N+1)\)-dimensional Riemannian space with metric \(ds^2 = g_{00}(x)(dx^0)^2 + g_{ij}(x)dx^i dx^j\), \(x = \{x^j\}, i, j = 1, ..., N\). For the conformal deformations of the \(g_{\mu\nu}\) the following relation holds:

\[
\tilde{g}_{\mu\nu}(x) = e^{2\sigma(x)}g_{\mu\nu}(x), \quad \sigma(x) \in C^\infty(M). \quad (2.1)
\]

Recalling that the partition function of field theory is given by (in the Euclidean sector differential operators are elliptic) \(W = \int d[\varphi] \exp(-\frac{1}{2} \int_M d^D x \varphi \mathcal{L} \varphi)\), where \(\varphi\) is a scalar density of wight \(-\frac{1}{2}\) and the operator \(\mathcal{L}\) has the form \(\mathcal{L} = -\Delta^g + m^2 + \xi R^g\), where \(m\) (the mass) and \(\xi\) are arbitrary parameters, while \(\Delta^g\) and \(R^g\) are respectively the Laplace-Beltrami operator and the scalar curvature of the space with respect to the original metric \(g\). One gets the following result:
Proposition 1 (A. A. Bytsenko, G. Cognola and S. Zerbini [7]) Let \(\tilde{\phi} = e^\sigma \varphi \) then the conformal deformations (2.1) leads to: \(\tilde{\Sigma} = e^{-\sigma} \Sigma e^\sigma \), and

\[
R^{\tilde{\varphi}} = e^{-2\sigma} [R^\varphi - 2(D - 1)\Delta^g \sigma - (D - 1)(D - 2)g^{\mu\nu}\partial_\mu \sigma \partial_\nu \sigma] \\
\Delta^{\tilde{\varphi}} = \frac{1}{4} e^{-\sigma} [4\Delta^g - 2(D - 2)\Delta^g \sigma - (D - 2)^2 g^{\mu\nu}\partial_\mu \sigma \partial_\nu \sigma] \varphi \\
= e^{-\sigma} [\Delta^g + \xi_D (e^{2\sigma} R^\varphi - R^g)] \varphi , \\
\Sigma = e^\sigma \{-\Delta^{\tilde{\varphi}} + \xi_R \tilde{R} + e^{-2\sigma} [m^2 + (\xi - \xi_D) R^g]\} e^\sigma ,
\]

where \(\xi_D = (D - 2)/4(D - 1) \) is the conformal invariant factor.

The classical conformal invariance requires that the action \(S \) is invariant in form, that is \(\tilde{S} = S[\tilde{\varphi}, \tilde{g}] \), (as to say \(\tilde{\Sigma} = \tilde{\Sigma} \)). As it is well known, this happens only for conformally coupled massless fields \((\xi = \xi_D) \). For the partition function we have \(\tilde{W} = J[g, \tilde{g}] W \), where \(J[g, \tilde{g}] \) is the Jacobian of the conformal deformation.

For \(0 < t < 1 \) the asymptotic expansion holds

\[
\text{Tr} e^{-t\Sigma} \simeq \sum_j A_j(\Sigma) t^{(j-D)/2} , \quad A_j(\Sigma) = (4\pi)^{-D/2} \int_M d^D x \sqrt{g} a_j(x|\Sigma) ,
\]

where \(a_j(x|\Sigma) \) is the \(j \)-th Seeley-De Witt coefficient (in the conformal invariant theories it is proportional to the trace anomaly). If the boundary of a manifold is empty then \(A_j(\Sigma) = 0 \) for any odd \(j \). The following results hold:

Proposition 2 Let us consider a family of conformal deformations \(g^a_{\mu\nu} = e^{2q\sigma} g_{\mu\nu} = e^{2(q-1)\sigma} \tilde{g}_{\mu\nu} \), \(\sqrt{g^a} \equiv \sqrt{\text{det} g^a_{\mu\nu}} = e^{Dq\sigma} \sqrt{\tilde{g}} \). The metric is \(g_{\mu\nu} \) or \(\tilde{g}_{\mu\nu} \) according to whether \(q = 0 \) or \(q = 1 \) respectively. Then,

\[
\log J[g_q, g_{q+\delta_q}] = \log [W_{q+\delta_q}/W_q] = (4\pi)^{-D/2} \delta q \int_M d^D x \sqrt{g^a} a_D(x|\Sigma^q) \sigma(x) , \quad (2.4) \\
\log J[g, \tilde{g}] = (4\pi)^{-D/2} \int_0^1 dq \int_M d^D x \sqrt{\tilde{g}} a_D(x|\Sigma^q) \sigma(x) , \quad (2.5) \\
\log W = \log \tilde{W} - \log J[g, \tilde{g}] = \frac{d}{2d_s} \zeta(s|\Sigma \ell^2)|_{s=0} - \log J[g, \tilde{g}] . \quad (2.6)
\]

Eq. (2.4) has been derived with the help of the zeta-function regularization, \(\ell \) being an arbitrary parameter necessary to adjust the dimensions.

2.1 Remark

The \((N+1)\)-dimensional Milne space is described by the metric \(ds^2 = -dt^2 + t^2 d\mathbb{H}^N \), where \(d\mathbb{H}^N \) is the arc element of the hyperboloid or upper half \(N \)-plane. The space is flat, as it is evident upon introducing Cartesian coordinates as follows:
$U = ty^{-1}$, $V = ty + U \sum_{j=1}^{N-1} x_j^2$, $X_j = U x_j$. This provides the embedding of the hyperboloid in $(N+1)$–Minkowski space, $ds^2 = -dU dV + dX_j^2$, where the hyperboloid is described by $t^2 = UV - \sum_{j=1}^{N-1} X_j^2$, which exhibits the $SO_1(N,1)$ isometry of \mathbb{H}^N.

Before concluding this section, some remarks on the Milne metric are in order. New coordinates in the Euclidean sector, $t \rightarrow it$, can be introduced as follows: $\tau = \log t, t \neq 0$ ($t = 0$ is a harmless coordinate singularity and corresponds to a horizon in this metric). This gives the new form for the metric: $ds^2 = e^{2\tau} d\tau^2 + e^{2\tau} d\Omega^2_N$. Taking into account Eq. (2.1) one can choose $\sigma(x) = -\tau$. In the Euclidean sector it gives

$$ds^2 = d\tau^2 + d\Omega^2_N.$$ (2.7)

Therefore, in a class of conformal deformations the metric (2.7) is related to the initial metric of Milne space and can be associated with spacetime forms of topology $S^1 \times \mathbb{H}^N$. One can use angular coordinates and define the initial metric as follows:

$$ds^2 = dt^2 + \frac{\rho^2}{\rho^2_N} (d\rho^2 + d\Omega^2_{N-1}),$$ (2.8)

where $d\Omega^2_{N-1}$ is the metric of a $(N-1)$–dimensional space. The technique of the conformal deformations of the Rindler space (except of a horizon) with its connection to a space with hyperbolic spatial section has been discussed in [17]. The metrics of both spaces have the form

$$ds^2_{(Rindler)} = \rho^2 dt^2 + d\rho^2 + d\Omega^2_{N-1} \quad \overset{\sigma=-\log \rho}{\Longrightarrow} \quad ds^2_{(S^1 \times \mathbb{H}^N)} = dt^2 + \frac{1}{\rho^2} (d\rho^2 + d\Omega^2_{N-1}).$$ (2.9)

For the Milne space a similar deformation (except of a horizon) in coordinate τ becomes

$$ds^2_{(Milne)} = e^{2\tau} \left(d\tau^2 + \frac{1}{\rho^2} (d\rho^2 + d\Omega^2_{N-1}) \right) \quad \overset{\sigma=\tau}{\Longrightarrow} \quad ds^2_{(S^1 \times \mathbb{H}^N)} = d\tau^2 + \frac{1}{\rho^2} (d\rho^2 + d\Omega^2_{N-1}).$$ (2.10)

The metrics on Rindler and Milne spaces are in the conformal class, and connections between their conformal deformations reads $\tau = \log \rho$. Here we derive the operator $\tilde{L}_N \equiv \tilde{\nabla} - \partial^2 \tau$, acting on scalars in the spatial section of the manifold defined by the metric Eq. (2.7).

$$\tilde{L}_N = -\Delta^\tilde{g}_N - \rho^2_N + e^{2\tau}(m^2 + \xi R^\theta),$$ (2.11)

$$\Delta^\tilde{g}_N = \partial^2 \tau - (N-1) \partial \tau + e^{2\tau} \Delta_{N-1},$$

where Δ_{N-1} is the Laplace-Beltrami operator on $(N-1)$–dimensional space, $\rho_N = (N-1)/2$. It should be noted the appearance of an effective “tachionic” mass $-\rho^2_N$, which has important consequences on the structure of the zeta function related to the operator \tilde{L}_N, which has generally speaking a continuum spectrum (see [17] for details).
Proposition 3 (A. A. Bytsenko, G. Cognola and S. Zerbini [17]) The trace of the heat kernel has the form

\[\text{Tr} e^{-t \tilde{L}_N} = \sum_{n=0}^{(N-3)/2} \frac{A_{2n}(L_{N-1}) a(t) - \Delta_{\mathbb{H}^{N-2n}} - \rho_{N-2n}^2}{N - 1 - 2n} \left(4\pi \varepsilon^{-2}\right)^{(N-1-2n)/2} \]

\[+ \frac{1}{4\sqrt{\pi} t} \left[\frac{d}{ds} \zeta(s|L_{N-1})|_{s=0} - 2\zeta(0|L_{N-1}) \log(\varepsilon/2) \right] \]

\[- \frac{1}{4} \zeta(0|L_{N-1}) + \frac{1}{2\pi} \int_{\mathbb{R}} d\psi(ir)e^{-tr^2}, \tag{2.12} \]

\[\text{Tr} e^{-t \tilde{L}_N} = \sum_{n=0}^{(N-2)/2} \frac{A_{2n}(L_{N-1}) a(t) - \Delta_{\mathbb{H}^{N-2n}} - \rho_{N-2n}^2}{N - 1 - 2n} \left(4\pi \varepsilon^{-2}\right)^{(N-1-2n)/2} \]

\[+ \frac{1}{4\sqrt{\pi} t} \int ds \zeta(s|L_{N-1})|_{s=0}, \tag{2.13} \]

valid for odd and even \(N \) respectively. Here by \(a(t) - \Delta_{\mathbb{H}^{N-2n}} - \rho_{N-2n}^2 \) we indicate the diagonal heat kernel of a Laplace-like operator on \(\mathbb{H}^{N-2n} \), and \(\varepsilon \) is a horizon cutoff parameter in integrating over coordinates.

3. Constant time slices in Milne cosmology

Now let us consider eleven-dimensional metric

\[ds_{10}^2 = -dt^2 + t^2 d_{\mathbb{H}^{N}} + dx_1^2 + dx_2^2 + dx_3^2 + \sum_{j=1}^{7-N} dy_j^2, \tag{3.1} \]

where the \(y \) coordinates describe compact internal dimensions. This is an exact solution of M-theory [3, 4, 5]. The internal space described by the \(y \) coordinates can be replaced by any Ricci flat space, giving a more general class of cosmological backgrounds. Note that four dimensional Friedmann-Robertson-Walker cosmology can be obtained from this model [6]. First, we replace the hyperboloid \(\mathbb{H}^{N} \) by a finite volume space \(\Gamma \setminus \mathbb{H}^{N} \), where \(\Gamma \) is a discrete subgroup of isometries such that the space has finite volume. Then we compactify to four dimensions. To obtain the four dimensional Einstein frame metric, we write the metric in the form

\[ds^2 = e^{2a(t)} ds_{4E}^2 + e^{2b(t)} d_{\mathbb{H}^{N}} + \sum_{j=1}^{7-N} dy_j^2, \tag{3.2} \]

\[ds_{4E}^2 = e^{2c(t)} (-dt^2 + dx_1^2 + dx_2^2 + dx_3^2). \tag{3.3} \]

If the condition \(e^{2a} e^{N b} = 1 \) is satisfied, then \(ds_{4E}^2 \) is the Einstein frame metric. Comparing to (3.1), one obtains

\[ds_{4E}^2 = t^N (-dt^2 + dx_1^2 + dx_2^2 + dx_3^2), \tag{3.4} \]
or
\[ds_{4E}^2 = -d\tau^2 + \tau^{2N/(N+2)}(dx_1^2 + dx_2^2 + dx_3^2). \]
(3.5)

This corresponds to 4D Einstein equations coupled to an energy momentum tensor of a perfect fluid with equation of state \(p = \kappa \rho, \kappa = (4 - D)/3D. \) Although we have started with vacuum Einstein equations in ten dimensions, the four dimensional Einstein metric describes a homogeneous and isotropic space in presence of matter. This matter is, of course, the scalar field associated with the modulus representing the volume of the hyperbolic space. Interestingly, the above metric is the asymptotic (large time) form of the models of \(\mathbb{H}^N. \) For \(D = 4, \) it describes a universe filled with dust \((p = 0), \) and for \(D > 4 \) a universe filled with negative pressure matter\(^1\).

Since the models are based on a flat eleven-dimensional geometry, the \((N + 1)-\) dimensional Milne universes provide a simple setup for the study of interesting cosmological models. Let us consider strings/branes propagating in this space. An important question is whether the model is exactly solvable. To start with, consider the model based on \(\mathbb{H}^N \) with no identification, i.e. \(\Gamma \) is trivial. From the relation \(t^2 - UV + \sum_{j=1}^{N-1} X_j^2 = 0 \) it follows that \(UV - X_j^2 \geq 0. \) If the physical space is restricted only to this Milne patch, say with \(t > 0, \) then the brane coordinates are subject to the constraint that the brane lives in the interior of the future directed light cone; the space is not geodesically complete and a full description requires boundary conditions at the light cone surface. If it is possible that consistency also requires the inclusion of the past light cone (in string theory it is possible), then the geometry would describe a universe contracting to a big crunch which makes a transition to an expanding big bang universe. It is non-trivial to impose the condition as \(UV - X_j^2 \geq 0 \) in brane theory. On the other hand, if the full space \(U, V, X_j \) is considered, closed timelike curves can arise in the exterior of light cone as a result of identifications.

4. Hyperbolic geometry in M–theory

Let us consider an irreducible rank one symmetric space \(X = G/K \) of non-compact type. Thus \(G \) will be a connected non-compact simple split rank one Lie group with finite center and \(K \subset G \) will be a maximal compact subgroup. Up to local isomorphism we can represent \(X \) by the following quotients:

\[
X = \text{SO}(1,N)/\text{SO}(N), \quad \text{SU}(N,1)/U(N), \\
\text{SP}(N,1)/(\text{SP}(N) \times \text{SP}(1)), \quad F_{4(-20)}/\text{Spin}(9),
\]

(4.1)

where the dimension of the spaces is \(N, 2N, 4N, 16 \) respectively in these cases. For details on these matters the reader may consult [18]. The spherical harmonic analysis

\(^1\)In passing, we mention that, in Einstein gravity, the accelerated expansion of a spatially flat universe, requires the cosmological dynamics to be dominated by some exotic matter with negative pressure. We plan to address to this problem in a forthcoming paper.
on X is controlled by Harish-Chandra’s Plancherel density $\mu(r)$, a function on the real numbers \mathbb{R}, computed by Miatello [19, 20, 21], and others, in the rank one case we are considering. The object of interest is the groups $G = SO_1(N, 1)$ ($N \in \mathbb{Z}_+$) and $K = SO(N)$. The corresponding symmetric space of non-compact type is the real hyperbolic space $X = \mathbb{H}^N = SO_1(N, 1)/SO(N)$ of sectional curvature -1. Its compact dual space is the unit N–sphere.

4.1 Co-compact group

Let τ be an irreducible representation of K on a complex vector space V_τ, and form the induced homogeneous vector bundle $G \times_K V_\tau$. Restricting the G action to Γ we obtain the quotient bundle $E_\tau = \Gamma \backslash (G \times_K V_\tau) \rightarrow X_\Gamma = \Gamma \backslash X$ over X. The natural Riemannian structure on X (therefore on X_Γ) induced by the Killing form $\left(, \right)$ of G gives rise to a connection Laplacian L_Γ on E_τ. If Ω_K denotes the Casimir operator of K—that is $\Omega_K = -\sum y_j^2$, for a basis $\{y_j\}$ of the Lie algebra \mathfrak{k}_0 of K, where $(y_j, y_\ell) = -\delta_{j\ell}$, then $\tau(\Omega_K) = \lambda_j 1$ for a suitable scalar λ_j. Moreover for the Casimir operator Ω of G, with Ω operating on smooth sections $\Gamma^\infty E_\tau$ of E_τ one has $L_\Gamma = \Omega - \lambda_s 1$. For $\lambda \geq 0$ let $\Gamma^\infty (X_\Gamma, E_\tau) = \{s \in \Gamma^\infty E_\tau \mid -L_\Gamma s = \lambda s\}$ be the space of eigensections of L_Γ corresponding to λ. Here we note that if X_Γ is compact we can order the spectrum of $-L_\Gamma$ by taking $0 = \lambda_0 < \lambda_1 < \lambda_2 < \cdots$; $\lim_{j \to \infty} \lambda_j = \infty$.

Theorem 1 (A. A. Bytsenko and F. L. Williams [22]) **The heat kernel admits an asymptotic expansion** [22, 23], **and for all** G **except** $G = SO_1(\ell, 1)$ **with** ℓ **odd, and for** $0 \leq k \leq N/2 - 1$,

$$A_k(L_\Gamma) = (4\pi)^{N/2-1} \chi(1) \text{Vol}(\Gamma \backslash G) C_G \pi \sum_{\ell=0}^{k} \frac{(-p_N^{2})^{k-\ell}}{(k-\ell)!} \left[\frac{N}{2} - (\ell + 1) \right] ! a_{2|\frac{N}{2}-(\ell+1)} \right] (4.2)$$

while for $n = 0, 1, 2, \ldots$ we have

$$A_{\frac{n}{2}+(n)}(L_\Gamma) = (-1)^n (4\pi)^{N/2-1} \chi(1) \text{Vol}(\Gamma \backslash G) C_G \pi \sum_{j=0}^{\frac{n}{2}-1} (-1)^j \frac{p_{2j}^n}{(n-j)!} \beta_{r+1}(j) a_{2j}$$

$$+ 2 \sum_{j=0}^{\frac{n}{2}-1} \sum_{\ell=0}^{n} (-1)^\ell \frac{p_{2j}^{n-\ell}}{(n-\ell)!} \beta_{r+1}(j) a_{2j}$$

$$+ 2 \sum_{j=0}^{\frac{n}{2}-1} \sum_{\ell=0}^{n} (-1)^\ell \frac{p_{2j}^{n-\ell}}{(n-\ell)!} \beta_{r+1}(j) a_{2j}$$

(4.3)

Here $\beta_r(j)$ ($r \in \mathbb{Z}_+$) is given by

$$\beta_r(j) \overset{\text{def}}{=} [2^{1-2(r+j)} - 1] \left[\frac{\pi}{a(G)} \right] 2^{(r+j)} \frac{(r+j)! B_{2(r+j)}}{(r+j)! (r-1)!} \right].$$

(4.4)

B_r is the r-th Bernoulli number, $a(G) \overset{\text{def}}{=} \pi$ if $G = SO_1(\ell, 1)$ with ℓ even, and $a_{2j} \in C_G$ are some constants (C_G depending on G). For $G = SO_1(2n+1, 1)$, $k = 0, 1, 2, \ldots$

$$A_k(L_\Gamma) = (4\pi)^{n-\frac{1}{2}} \chi(1) \text{Vol}(\Gamma \backslash G) C_G \sum_{\ell=0}^{\min\{k,n\}} \frac{(-n^2)^{k-\ell} \Gamma (n - \ell + \frac{1}{2})}{(k-\ell)!} a_{2(n-\ell)}$$

(4.5)
4.2 The orbifold coset: \(\Gamma = SL(2, \mathbb{Z} + i\mathbb{Z})/\{\pm Id\} \)

In [7] the \(SL(2, \mathbb{Z}) \) orbifold model from Milne spaces and the string spectrum associated with that orbifold has been analysed. It has been also shown that strings with \(SL(2, \mathbb{Z}) \) identifications are related to the null orbifold [12] with an extra reflection generator.

Here we consider the case \(N = 3 \) and the group of local isometry associated with a simple three-dimensional complex Lie group. The discrete group can be chosen in the form \(\Gamma \subset PSL(2, \mathbb{C}) = SL(2, \mathbb{C})/\{\pm Id\} \), where \(Id \) is the \(2 \times 2 \) identity matrix and is an isolated element of \(\Gamma \). The group \(\Gamma \) acts discontinuously at point \(z \in \mathbb{C}, \mathbb{C} \) being the extended complex plane. We consider a special discrete group \(SL(2, \mathbb{Z} + i\mathbb{Z})/\{\pm Id\} \), where \(\mathbb{Z} \) is the ring of integer numbers. The element \(\gamma \in \Gamma \) will be identified with \(-\gamma\). The group \(\Gamma \) has, within a conjugation, one maximal parabolic subgroup \(\Gamma_{\infty} \). Let us consider an arbitrary integral operator with kernel \(k(z, z') \).

Invariance of the operator is equivalent to fulfillment of the condition \(k(\gamma z, \gamma z') = k(z, z') \) for any \(z, z' \in \mathbb{H}^3 \) and \(\gamma \in PSL(2, \mathbb{C}) \). So the kernel of the invariant operator is a function of the geodesic distance between \(z \) and \(z' \). It is convenient to replace such a distance with the fundamental invariant of a pair of points \(u(z, z') = |z - z'|^2/yy' \), thus \(k(z, z') = k(u(z, z')) \).

Let \(\lambda_j \) be the isolated eigenvalues of the self-adjoint extension of the Laplace operator and let us introduce a suitable analytic function \(h(r) \) and \(r_j^2 = \lambda_j - 1 \). It can be shown that \(h(r) \) is related to the quantity \(k(u(z, \gamma z)) \) by means of the Selberg transform. Let us denote by \(g(u) \) the Fourier transform of \(h(r) \), namely \(g(u) = (2\pi)^{-1} \int_{\mathbb{R}} dr h(r) \exp(-iru) \).

Theorem 2 Suppose \(h(r) \) be an even analytic function in the strip \(|\Re r| < 1 + \varepsilon \) (\(\varepsilon > 0 \)), and \(h(r) = \mathcal{O}(1+|r|^2)^{-2} \). For the special discrete group \(SL(2, \mathbb{Z} + i\mathbb{Z})/\{\pm Id\} \) the Selberg trace formula holds

\[
\sum_j h(r_j) - \sum_{\gamma \neq \text{Id}, \gamma \nonparabolic} \int d\mu(z) k(u(z, \gamma z)) \\
- \frac{1}{4\pi} \int_{\mathbb{R}} dr h(r) \frac{d}{ds} \log S(s)|_{s=1+ir} + \frac{h(0)}{4} [S(1) - 1] - \mathcal{E} g(0) \\
= \text{Vol}(\Gamma \backslash G) \int_0^{\infty} \frac{dr r^2}{2\pi^2} h(r) - \frac{1}{4\pi} \int_{\mathbb{R}} dr h(r) \psi(1 + ir/2). \tag{4.6}
\]

The first term in the right-hand side of Eq. (4.6) is the contribution of the identity element, \(\text{Vol}(\Gamma \backslash G) \) is the (finite) volume of the fundamental domain with respect to the measure \(d\mu \), \(\psi(s) \) is the logarithmic derivative of the Euler \(\Gamma \text{-}f\)unction, and \(\mathcal{E} \) is a computable real constant [23, 24, 25]. The function \(S(s) \) is given by a generalised Dirichlet series \(S(s) = \pi^{1/2} \Gamma(s - 1/2)[\Gamma(s)]^{-1} \sum_{c \neq 0} \sum_{0 \leq d < |c|} |c|^{-2s} \), where the sums are taken over all pairs \(c, d \) of the matrix \(\begin{pmatrix} * & * \\ c & d \end{pmatrix} \in \Gamma_{\infty} \backslash \Gamma/\Gamma_{\infty} \). The meromorphic function \(S(s) \) convergent for \(\Re s > 1 \), and it poles are contained in the region...
\[s < 1/2 \text{ and in the interval } [1/2, 1]. \]

In general, the determinant of an elliptic differential operator requires a regularization. It is convenient to introduce the operator \(L_\Gamma(\delta) = L_\Gamma + \delta^2 - 1 \), with \(\delta \) a suitable parameter. One of the most widely used regularization is the zeta-function regularization. Thus, one has \(\log \det L_\Gamma(\delta) = -(d/ds)\zeta(s|L_\Gamma(\delta))|_{s=0} \). In standard cases, the zeta function at \(s = 0 \) is well defined and one gets a finite result. The meromorphic structure of the analytically continued zeta function is related to the asymptotic properties of the heat-kernel trace. Summarizing, the final result is:

Theorem 3 (A. A. Bytsenko, G. Cognola and S. Zerbini [24]) The following identity holds

\[
\det L_\Gamma(\delta) = \frac{2}{(\pi \delta)^{1/2} \Gamma(\delta/2)} \exp \left(-\frac{1}{6\pi} \text{Vol}(\Gamma \backslash G)\delta^3 + \mathcal{C}\delta \right) Z_\Gamma(1 + \delta), \tag{4.7}
\]

where \(Z_\Gamma(s) \) is the Selberg’s zeta function.

Let us analyse a scalar field propagating in this orbifolds. Normalizable wave functions associated with scalar density can be written in terms of cusp forms. Cusp forms are automorphic functions which decrease exponentially at infinity. The discrete part of spectrum associate with cusp forms, while the Eisenstein series related to the continuous part. A vertex operator of a brane model contains cusp forms. In the string case a computation of \(S- \text{matrix elements by using plane-wave vertex operators has been discussed in [7]. Such computation for Kaluza-Klein quantum numbers of brane modes turn out to be more complicate and we disregard it.} \]

Finally we note that in the \(SL(2, \mathbb{Z} + i\mathbb{Z})/\{\pm Id\} \) orbifold the instability may be absent. To demonstrate that for three-orbifold we can use the arguments given for string models in [7]. The instability can be originated from the gravitational interaction of plane waves. The continuum part of spectrum may lead to wave interactions, but it is severely restricted by \(SL(2, \mathbb{Z} + i\mathbb{Z})/\{\pm Id\} \) symmetry, and the argument of [26] on instability does not seem to directly apply to our case. In the discrete part of the spectrum the states have finite motion, and the corresponding wave functions are regular.

5. Cosets \(\Gamma \backslash G/K \) and Killing spinors

In the previous sections we have considered real hyperbolic space forms. The hyperbolic spaces \(\mathbb{H}^N \) have Killing spinors transforming in the spinorial representation of \(SO_1(N - 1, 1) \) [27] (see also [3, 28, 29]). Thus the simplest membrane model with trivial \(\Gamma \) allows supersymmetry. In general, the following results hold:
Proposition 4 (T. Friedrich [30]) A Riemannian spin manifold \((M^N, g)\) admitting a Killing spinor \(\psi \neq 0\) with Killing number \(\mu \neq 0\) is locally irreducible.

Proof. Let the locally Riemannian product has the form \(M^N = M^K \times M^{N-K}\). Let \(\mathcal{X}, \mathcal{Y}\) are vectors tangent to \(M^K\) and \(M^{N-K}\) respectively, and, therefore, the curvature tensor of the Riemannian manifold \((M^N, g)\) is trivial. Since \(\psi\) is a Killing spinor the following equations hold:

\[
\nabla_\mathcal{X}\psi = \mu \mathcal{X} \cdot \psi,
\]

\[
4\mu^2 = [N(N-1)]^{-1}R \text{ at each point of a connected Riemannian spin manifold } (M^N, g),
\]

where \(R\) is a scalar curvature. Because of (5.1) we have

\[
\nabla_\mathcal{X}\nabla_\mathcal{Y}\psi = \mu(\nabla_\mathcal{X}\mathcal{Y}) \cdot \psi + \mu^2 \mathcal{Y} \cdot \mathcal{X} \cdot \psi \Rightarrow (\nabla_\mathcal{X}\nabla_\mathcal{Y} - \nabla_\mathcal{Y}\nabla_\mathcal{X} - \nabla_{[\mathcal{X}, \mathcal{Y}]})\psi = \mu^2 (\mathcal{Y} \cdot \mathcal{X} - \mathcal{X} \cdot \mathcal{Y})\psi.
\] (5.2)

The curvature tensor \(R(\mathcal{X}, \mathcal{Y})\) in the spinor bundle \(\mathcal{S}\) is related to the curvature tensor of the Riemannian manifold \((M^N, g)\): \(R(\mathcal{X}, \mathcal{Y}) = (1/4) \sum_{j=1}^{N} e_j R(\mathcal{X}, \mathcal{Y}) e_j \cdot \psi\), where \(\{e_j\}_{j=1}^{N}\) is a orthogonal basis in manifold. Therefore Eq. (5.2) can also be written as

\[
\sum_{j=1}^{N} e_j R(\mathcal{X}, \mathcal{Y}) e_j \psi + [N(N-1)]^{-1}R(\mathcal{X}\mathcal{Y} - \mathcal{Y}\mathcal{X})\psi = 0.
\] (5.3)

From Eq. (5.3) we get \(R \cdot \mathcal{X} \cdot \mathcal{Y} \cdot \psi = 0\), and moreover \(\mathcal{X}\) and \(\mathcal{Y}\) are orthogonal vectors. Since \(\mu \neq 0 (R \neq 0)\) it follows that \(\psi = 0\), hence a contradiction. \(\square\)

We have also the following statement:

Proposition 5 (T. Friedrich [30]) Let \((M^N, g)\) be a connected Riemannian spin manifold and let \(\psi\) is a non-trivial Killing spinor with Killing number \(\mu \neq 0\). Then \((M^N, g)\) is an Einstein space.

Proof. The proof easily follows from Proposition 2; indeed \((M^N, g)\) is an Einstein space of scalar curvature given by Eq. (5.1). \(\square\)

There are no normalizable modes for any field configurations in hyperbolic spaces. Spaces with finite volume of fundamental domain can be obtained by forming the coset spaces with topology \(\Gamma \backslash \mathbb{H}^N\) where \(\Gamma\) is a discrete subgroup of the isometry group. Let us comment on the supersymmetry of these spaces following the lines of [3, 4]. For non-trivial \(\Gamma\) and finite volume space \(\Gamma \backslash \mathbb{H}^N\) it has been shown [3] that for even \(N\) supersymmetries are always broken by the identifications. Indeed, the isometry group of \(\mathbb{H}^N\) is \(SO_1(N, 1)\) and \(\Gamma\) is in general a subgroup of \(SO_1(N, 1)\), which may or may not have fixed points. Killing spinors are in the spinorial representation of \(SO_1(N-1, 1)\), and if \(\Gamma\) is a subgroup of \(SO_1(N-1, 1)\), but it is not a subgroup.
of $SO_1(N - 3, 1)$, then there are no surviving Killing spinors. The later exist if $\Gamma \in SO_1(N - 3, 1)$, but in this case $\Gamma \backslash \mathbb{H}^N$ will still be of infinite volume. Therefore, for even N there is no finite volume cosets $\Gamma \backslash \mathbb{H}^N$ with unbroken supersymmetries. On the other hands, for odd N this analysis does not exclude that an appropriate choice of Γ could give a supersymmetric model with finite volume hyperbolic space. For odd N there are two Killing spinors on \mathbb{H}^N in the spinorial representation of $SO_1(N - 1, 1)$. These spinors are also Weyl spinors of the isometry group $SO_1(N, 1)$, so they form an irreducible Dirac spinor of $SO_1(N, 1)$. All supersymmetries are broken if Γ is not a subgroup $SO_1(N - 1, 1)$. If Γ is a subgroup $SO_1(N - 1, 1)$, then half of the supersymmetries survive. A question of interest is whether supersymmetry survives under the orbifolding by the discrete group Γ. Perhaps there are more solutions involving real hyperbolic spaces, where some supersymmetries are unbroken. However the analysis of that problem is complicated and we leave it for other occasion.

Acknowledgements

A. A. Bytsenko and M. E. X. Guimarães would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for a support. The authors would like to thank the Coordenacao de Campos e Partículas do Centro Brasileiro de Pesquisas Físicas (CCP/CBPF) for kind hospitality during preparation of this work.

References

[1] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B429 (1998) 263 [hep-ph/9803315].

[2] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phenomenology, astrophysics and cosmology of theories with sub-millimeter dimensions and TeV scale quantum gravity, Phys. Rev. D59 (1999) 086004 [hep-ph/9807344].

[3] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B436 (1998) 257 [hep-ph/9804398].

[4] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221].

[5] L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064].

[6] A. Kehagias and J. G. Russo, Hyperbolic Spaces in String and M-Theory, JHEP 0007 (2000) 027 [hep-th/0003281].
[7] J. G. Russo, *Cosmological string models from Milne spaces and SL(2, Z) orbifold*, Mod. Phys. Lett. **A19** (2004) 421 [hep-th/0305032].

[8] A. A. Bytsenko, M. E. X. Guimarães and J. A. Helayel-Neto, *Hyperbolic Space Forms and Orbifold Compactification In M-Theory*, in the Proceedings of the "Fourth International Winter Conference on Mathematical Methods in Physics", PoS(WC2004)017.

[9] P. K. Townsend and M. N. Wohlfarth, *Accelerating cosmologies from compactification*, Phys. Rev. Lett. **91** (2003) 061302 [hep-th/0303097].

[10] K. Yamamoto, T. Tanaka and M. Sasaki, *Particle Spectrum Created Through Bubble Nucleation*, Phys. Rev. **D51** (1995) 2968 [gr-qc/9412011].

[11] T. Tanaka and M. Sasaki, *Quantized gravitational waves in the Milne universe*, Phys. Rev. **D55** (1997) 6061 [gr-qc/9610060].

[12] G. T. Horowitz and A. R. Steif, *Singular String Solutions With Nonsingular Initial Data*, Phys. Lett. **B 258** (1991) 91.

[13] J. Khoury, B. A. Ovrut, N. Seiberg, P. J. Steinhardt and N. Turok, *From big crunch to big bang*, Phys. Rev. **D65** (2002) 086007 [hep-th/0108187].

[14] N. Seiberg, *From Big Crunch To Big Bang - Is It Possible?*, hep-th/0201039.

[15] L. Cornalba and M. S. Costa, *A New Cosmological Scenario in String Theory*, Phys. Rev. **D66** (2002) 066001 [hep-th/0203031].

[16] N. A. Nekrasov, *Milne universe, tachyons, and quantum group*, Surveys High Energ. Phys. **17** (2002) 115 [hep-th/0203112].

[17] A. A. Bytsenko, G. Cognola and S. Zerbini, *Finite Temperature Effects for Massive Fields in D-dimensional Rindler-like Spaces*, Nucl. Phys. **B458** (1996) 267 [hep-th/9508104].

[18] S. Helgason, *Differential Geometry and Symmetric Spaces*, Pure and Applied Math. Ser. **12**, (Academic Press, 1962).

[19] R. Miatello, *The Minakshisundaram-Pleijel Coefficients for thr Vector-Valued Heat Kernel on Compact Locally Symmetric Spaces of Negative Curvature*, PhD Thesis, Rutgers University, 1-126 (1976).

[20] R. Miatello, *The Minakshisundaram-Pleijel Coefficients for the Vector-Valued Heat Kernel on Compact Locally Symmetric Spaces of Negative Curvature*, Trans. Am. Math. Soc. **260** (1980) 1.

[21] A. A. Bytsenko, E. Elizalde and M. E. X. Guimarães, *Operator Product on Locally Symmetric Spaces of Rank One and the Multiplicative Anomaly*, Int. J. Mod. Phys. **A18** (2003) 2179 [hep-th/0305031].
[22] A.A. Bytsenko and F.L. Williams, Asymptotics of the Heat Kernel on Rank 1 Locally Symmetric Spaces, J. Phys. A: Math. Gen. 32 (1999) 5773 [math.SP/9804115].

[23] A. A. Bytsenko, G. Cognola, L. Vanzo and S. Zerbini, Quantum Fields and Extended Objects in Space-Times with Constant Curvature Spatial Section, Phys. Rep. 266 (1996) 1 [hep-th/9505061].

[24] A. A. Bytsenko, G. Cognola and S. Zerbini, Determinant of Laplacian on a non-compact 3-dimensional hyperbolic manifold with finite volume, J. Phys. A30 (1997)3543 [hep-th/9608089].

[25] A. A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti and S. Zerbini, Analytic Aspects of Quantum Fields, (World Scientific, Singapore 2003).

[26] G. T. Horowitz and J. Polchinski, Instability of spacelike and null orbifold singularities, Phys. Rev. D66 (2002) 103512 [hep-th/0206228].

[27] Y. Fujii and K. Yamagishi, Killing Spinors On Spheres And Hyperbolic Manifolds, J. Math. Phys. 27 (1986) 979.

[28] H. Lu, C. N. Pope and J. Rahmfeld, A Construction of Killing Spinors on S^n, J. Math. Phys. 40 (1999) 4518 [hep-th/9805151].

[29] S. Nasri, P. J. Silva, G. D. Starkman and M. Trodden, Radion stabilization in compact hyperbolic extra dimensions, Phys. Rev. D66 (2002) 045029 [hep-th/0201063].

[30] T. Friedrich, Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics, vol. 25, AMS, Providence 1997.