PIERI-TYPE FORMULAS FOR MAXIMAL ISOTROPIC GRASSMANNIANS VIA TRIPLE INTERSECTIONS

FRANK SOTTILE

Abstract. We give an elementary proof of the Pieri-type formula in the cohomology of a Grassmannian of maximal isotropic subspaces of an odd orthogonal or symplectic vector space. This proof proceeds by explicitly computing a triple intersection of Schubert varieties. The decisive step is an explicit description of the intersection of two Schubert varieties, from which the multiplicities (which are powers of 2) in the Pieri-type formula are deduced.

Introduction

The goal of this paper is to give an elementary geometric proof of Pieri-type formulas in the cohomology of Grassmannians of maximal isotropic subspaces of odd orthogonal or symplectic vector spaces. For this, we explicitly compute a triple intersection of Schubert varieties, where one is a special Schubert variety. Previously, Sertöz [17] had studied such triple intersections in orthogonal Grassmannians, but was unable to determine the intersection multiplicities and obtain a formula.

These multiplicities are either 0 or powers of 2. Our proof explains them as the intersection multiplicity of a linear subspace (defining the special Schubert variety) with a collection of quadrics and linear subspaces (determined by the other two Schubert varieties). This is similar to triple intersection proofs of the classical Pieri formula (cf. [7], [12], [14], §9.4) where the multiplicities (0 or 1) count the number of points in the intersection of linear subspaces. A proof of the Pieri-type formula for classical flag varieties [15] was based upon those ideas. Similarly, the ideas here provide a basis for a proof of Pieri-type formulas in the cohomology of symplectic flag varieties [1].

These Pieri-type formulas are due to Hiller and Boe [8], whose proof used the Chevalley formula [2]. Another proof, using the Leibnitz formula for symplectic and orthogonal divided differences, was given by Pragacz and Ratajski [13]. These formulas also arise in the theory of projective representations of symmetric groups [10, 4] as product formulas for Schur P- and Q-functions, and were first proven in this context by Morris [12]. The connection of Schur P- and Q-functions to geometry was noticed by Pragacz [13] (see also [10] and [14]).

In Section 1, we give the basic definitions and state the Pieri-type formulas in both the orthogonal and symplectic cases, and conclude with an outline of the proof in the
orthogonal case. Since there is little difference between the proofs in each case, we only do the orthogonal case in full. In Section 2, we describe the intersection of two Schubert varieties, which we use in Section 3 to complete the proof.

1. The Grassmannian of maximal isotropic subspaces

Let V be a $(2n + 1)$-dimensional complex vector space equipped with a non-degenerate symmetric bilinear form $β$ and W a $2n$-dimensional complex vector space equipped with a non-degenerate alternating bilinear form, also denoted $β$. A subspace H of V or of W is isotropic if the restriction of $β$ to H is identically zero. Isotropic subspaces have dimension at most n. The Grassmannian of maximal isotropic subspaces B_n or $B(V)$ (respectively C_n or $C(W)$) is the collection of all isotropic n-dimensional subspaces of V (respectively of W). The group $SO_{2n+1} \mathbb{C} = \text{Aut}(V, β)$ acts transitively on B_n with the stabilizer P_0 of a point a maximal parabolic subgroup associated to the short root, hence $B_n = SO_{2n+1} \mathbb{C}/P_0$. Similarly, $C_n = Sp_{2n} \mathbb{C}/P_0$, where P_0 is a maximal parabolic associated to the long root.

Both B_n and C_n are smooth complex manifolds of dimension $(n+1)$ 2. While they are not isomorphic if $n > 1$, they have identical Schubert decompositions and Bruhat orders. Another interesting connection is discussed in Remark 2.8. We describe the Schubert decomposition. For an integer j, let \overline{j} denote $-j$. Choose bases $\{e_1, \ldots, e_n\}$ of V and $\{f_1, \ldots, f_n\}$ of W for which

$$β(e_i, e_j) = \begin{cases} 1 & \text{if } i = \overline{j} \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad β(f_i, f_j) = \begin{cases} j/|j| & \text{if } i = \overline{j} \\ 0 & \text{otherwise} \end{cases}.$$

For example, $β(e_1, e_0) = β(f_1, f_1) = 0$ and $β(e_0, e_0) = β(f_1, f_1) = -β(f_1, f_1) = 1$.

Schubert varieties are determined by sequences

$$λ : \quad n ≥ λ_1 > λ_2 > \cdots > λ_n ≥ π$$

whose set of absolute values $\{|λ_1|, \ldots, |λ_n|\}$ equals $\{1, 2, \ldots, n\}$. Let SY_n denote this set of sequences. The Schubert variety $X_λ$ of B_n is

$$\{H ∈ B_n \mid \dim H \cap \langle e_{λ_1}, \ldots, e_n \rangle ≥ j \text{ for } 1 ≤ j ≤ n\}$$

and the Schubert variety $Y_λ$ of C_n

$$\{H ∈ C_n \mid \dim H \cap \langle f_{λ_1}, \ldots, f_n \rangle ≥ j \text{ for } 1 ≤ j ≤ n\}.$$

Both $X_λ$ and $Y_λ$ have codimension $|λ| := λ_1 + \cdots + λ_k$, where $λ_k > 0 > λ_{k+1}$. Given $λ, μ ∈ SY_n$, we see that

$$X_μ \supset X_λ \iff Y_μ \supset Y_λ \iff μ_j ≤ λ_j \text{ for } 1 ≤ j ≤ n.$$

Define the Bruhat order by $μ ≤ λ$ if and only if $μ_j ≤ λ_j$ for those j with $0 < μ_j$.

Example 1.1. Suppose $n = 4$. Then $X_{32\overline{14}}$ consists of those $H ∈ B_4$ such that

$$\dim H \cap \langle e_3, e_4 \rangle ≥ 1, \quad \dim H \cap \langle e_2, e_3, e_4 \rangle ≥ 2, \quad \text{and} \quad \dim H \cap \langle e_1, e_2, \ldots, e_4 \rangle ≥ 3.$$
Define $P_{\lambda} := [X_{\lambda}]$, the cohomology class Poincaré dual to the fundamental cycle of X_{λ} in the homology of B_n. Likewise set $Q_{\lambda} := [Y_{\lambda}]$. Since Schubert varieties are closures of cells from a decomposition into (real) even-dimensional cells, these Schubert classes $\{P_{\lambda}\}, \{Q_{\lambda}\}$ form bases for integral cohomology:

$$H^* B_n = \bigoplus_{\lambda} P_{\lambda} \cdot \mathbb{Z} \quad \text{and} \quad H^* C_n = \bigoplus_{\lambda} Q_{\lambda} \cdot \mathbb{Z}.$$

Each $\lambda \in SY_n$ determines and is determined by its diagram, also denoted λ. The diagram of λ is a left-justified array of $|\lambda|$ boxes with λ_j boxes in the jth row, for $\lambda_j > 0$. Thus

$$3 2 1 4 \leftrightarrow \begin{array}{|c|c|c|c|} \hline \hline \end{array} \quad \text{and} \quad 4 2 1 3 \leftrightarrow \begin{array}{|c|c|c|c|} \hline \hline \end{array}.$$

The Bruhat order corresponds to inclusion of diagrams. Given $\mu \leq \lambda$, let λ/μ be their set-theoretic difference. For instance, $4 2 1 3/3 2 1 4 \leftrightarrow \begin{array}{|c|c|c|c|} \hline \hline \end{array}$ and $3 2 1 4/1 2 3 4 \leftrightarrow \begin{array}{|c|c|c|c|} \hline \hline \end{array}$. Two boxes are connected if they share a vertex or an edge; this defines components of λ/μ. We say λ/μ is a skew row if $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \cdots \geq \mu_n$ equivalently, if λ/μ has at most one box in each column. Thus $4 2 1 3/3 2 1 4$ is a skew row, but $3 2 1 4/1 2 3 4$ is not.

The special Schubert class $p_m \in H^* B_n$ ($q_m \in H^* C_n$) is the class whose diagram consists of a single row of length m. Hence, $p_2 = P_{2111}$. A special Schubert variety X_K (Y_K) is the collection of all maximal isotropic subspaces which meet a fixed isotropic subspace K nontrivially. If $\dim K = n + 1 - m$, then $[X_K] = p_m$ and $[Y_K] = q_m$.

Theorem 1.2 (Pieri-type Formula). For any $\mu \in SY_n$ and $1 \leq m \leq n$,

1. $P_\mu \cdot p_m = \sum_{\lambda/\mu \text{ skew row}} 2^{\delta(\lambda/\mu) - 1} P_\lambda$ and
2. $Q_\mu \cdot q_m = \sum_{\lambda/\mu \text{ skew row}} 2^{\varepsilon(\lambda/\mu)} Q_\lambda$,

where $\delta(\lambda/\mu)$ counts the components of the diagram λ/μ and $\varepsilon(\lambda/\mu)$ counts the components of λ/μ which do not contain a box in the first column.

Example 1.3. For example,

$$P_{32114} \cdot p_2 = 2 \cdot P_{42113} + P_{4321} \quad \text{and} \quad Q_{32114} \cdot q_2 = 2 \cdot Q_{42113} + 2 \cdot Q_{4321}.$$

For $\lambda, \mu, \nu \in SY_n$, there exist integral constants $g_{\mu,\nu}^\lambda$ and $h_{\mu,\nu}^\lambda$ defined by the identities

$$P_\mu \cdot P_\nu = \sum_{\lambda} g_{\mu,\nu}^\lambda P_\lambda \quad \text{and} \quad Q_\mu \cdot Q_\nu = \sum_{\lambda} h_{\mu,\nu}^\lambda Q_\lambda.$$
These constants were first given a combinatorial formula by Stembidge [19].

Define λ^c by $\lambda^c_j := \overline{\lambda_{n+1-j}}$. Let $[pt]$ be the class dual to a point. The Schubert basis is self-dual with respect to the intersection pairing: If $|\lambda| = |\mu|$, then

$$P_\mu \cdot P_{\lambda^c} = Q_\mu \cdot Q_{\lambda^c} = \begin{cases} [pt] & \text{if } \lambda = \mu \\ 0 & \text{otherwise} \end{cases}. $$

Define the Schubert variety X'_{λ^c} to be

$$\{ H \in B_n \mid \dim H \cap \langle e_{\pi}, \ldots, e_{\lambda_j} \rangle \geq n + 1 - j \text{ for } 1 \leq j \leq n \}. $$

This is a translate of X_{λ^c} by an element of $SO_{2n+1} \mathbb{C}$. In a similar fashion, define Y'_{λ^c}, a translate of Y_{λ^c} by an element of $Sp_{2n} \mathbb{C}$. For any λ, μ, $X_\mu \cap X'_{\lambda^c}$ is generically transverse [11]. This is because if X_μ and X'_{λ^c} are any Schubert varieties in general position, then there is a basis for V such that these varieties and the quadratic form β are as given. The analogous facts hold for the varieties Y'_{λ^c}.

We see that to establish the Pieri-type formula, it suffices to compute the degree of the 0-dimensional schemes

$$X_\mu \cap X'_{\lambda^c} \cap X_K \quad \text{and} \quad Y_\mu \cap Y'_{\lambda^c} \cap Y_K$$

where K is a general isotropic $(n + 1 - m)$-plane and $|\lambda| = |\mu| + m$.

We only do the (more difficult) orthogonal case of Theorem 1.2 in full, and indicate the differences for the symplectic case. We first determine when $X_\mu \cap X'_{\lambda^c}$ is nonempty. Let $\mu, \lambda \in \mathbb{S} \mathbb{Y}_n$. Then, by the definition of Schubert varieties, $H \in X_\mu \cap X'_{\lambda^c}$ implies $\dim H \cap \langle e_{\mu_j}, \ldots, e_{\lambda_j} \rangle \geq 1$, for every $1 \leq j \leq n$. Hence $\mu \leq \lambda$ is necessary for $X_\mu \cap X'_{\lambda^c}$ to be nonempty. In fact,

$$X_\mu \cap X'_{\lambda^c} = \begin{cases} \{ e_{\lambda_1}, \ldots, e_{\lambda_n} \} & \text{if } \lambda = \mu \\ \emptyset & \text{otherwise,} \end{cases}$$

which establishes (1).

Suppose $\mu \leq \lambda$ in $\mathbb{S} \mathbb{Y}_n$. For each component d of λ/μ, let $\text{col}(d)$ index the columns of d together with the column just to the left of d, which is 0 if d meets the first column, in that it has a box in the first column. For each component d of λ/μ, define a quadratic form β_d:

$$\beta_d := \sum_{\pi \leq j \leq n \atop \pi \text{ or } j \in \text{col}(d)} x_j x_{\pi},$$

where x_{π}, \ldots, x_n are coordinates for V dual to the basis e_{π}, \ldots, e_n. For each fixed point of λ/μ (j such that $\lambda_j = \mu_j$), define the linear form $\alpha_j := x_{\lambda_j}$. If there is no component meeting the first column, then we say that 0 is a fixed point of λ/μ and define $\alpha_0 := x_0$. Let $Z_{\lambda/\mu}$ be the common zero locus of these forms α_j and β_d.

Lemma 1.4. Suppose $\mu \leq \lambda$ and $H \in X_\mu \cap X'_{\lambda^c}$. Then $H \subset Z_{\lambda/\mu}$.

Let Q be the isotropic points in V, the zero locus of β. For each $0 \leq i \leq n$, there is a unique form among the α_j, β_d in which one (or both) of the coordinates x_i, x_{π} appears. Thus β is in the ideal generated by these forms α_j, β_d and we see that they
are dependent on \(Q \). However, if \(\delta = \delta(\lambda/\mu) \) counts the components of \(\lambda/\mu \) and \(\varphi \) the number of fixed points, then the collection of \(\varphi \) forms \(\alpha_j \) and \(\delta - 1 \) of the forms \(\beta_d \) are independent on \(Q \). Moreover, Lemma 2.2 shows that

\[
 n + 1 = \varphi + \delta + \#\text{columns of } \lambda/\mu.
\]

Thus, if \(m = |\lambda| - |\mu| \), then \(\varphi + \delta - 1 \leq n - m \), with equality only when \(\lambda/\mu \) is a skew row. Since \(Q \) has dimension \(2n \), it follows that a general isotropic \((n + 1 - m)\)-plane \(K \) meets \(Z_{\lambda/\mu} \) only if \(\lambda/\mu \) is a skew row. We deduce

Theorem 1.5. Let \(\mu, \lambda \in SY_n \) and suppose \(K \) is a general isotropic \((n + 1 - m)\)-plane with \(|\mu| + m = |\lambda| \). Then

\[
 X_\mu \cap X'_\lambda \cap X_K
\]

is non-empty only if \(\mu \subset \lambda \) and \(\lambda/\mu \) is a skew row.

Proof of Theorem 1.2. Suppose \(\lambda, \mu \in SY_n \) with \(|\lambda| - |\mu| = m > 0 \). Let \(K \) be a general isotropic \((n + 1 - m)\)-plane in \(V \). We compute the degree of

\[
(2) \quad X_\mu \cap X'_\lambda \cap X_K.
\]

By Theorem 1.3, this is non-empty only if \(\mu \subset \lambda \) and \(\lambda/\mu \) is a skew row. Suppose that is the case. Then the forms \(\alpha_j \) and \(\beta_d \) (which define \(Z_{\lambda/\mu} \)) determine \(2^{\delta(\lambda/\mu) - 1} \) isotropic lines in \(K \). Theorem 3.1 asserts that a general isotropic line in \(Z_{\lambda/\mu} \) is contained in a unique \(H \in X_\mu \cap X'_\lambda \), which shows that (2) has degree \(2^{\delta(\lambda/\mu) - 1} \). This completes the proof of Theorem 1.2.

Example 1.6. Let \(n = 4 \) and \(m = 2 \), so that \(n + 1 - m = 3 \). We show that if \(K \subset Q \) is a general 3-plane, then

\[
 \# X_{321\overline{4}} \cap X'_{(4213)^c} \cap X_K = 2.
\]

Note that 2 is the coefficient of \(p_{4213} \) in the product \(p_{321\overline{4}} \cdot p_2 \) of Example 1.3.

First, the local coordinates for \(X_{321\overline{4}} \cap X'_{(4213)^c} \) described in Lemma 3.3 show that, for any \(x, z \in \mathbb{C} \), the row span \(H \) of the matrix with rows \(g_i \) and columns \(e_j \)

\[
\begin{array}{cccc|cccc}
 e_1 & e_2 & e_3 & e_4 & e_0 & e_1 & e_2 & e_3 \\
 g_1 & 0 & 0 & 0 & 0 & 0 & 0 & -x & 1 \\
 g_2 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 g_3 & 0 & 0 & 0 & 0 & 2z & -2z^2 & 0 & 0 \\
 g_4 & x & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

is in \(X_{321\overline{4}} \cap X'_{(4213)^c} \). Suppose \(K \) is the row span of the matrix with rows \(v_i \)

\[
\begin{array}{cccc|cccc}
 e_1 & e_2 & e_3 & e_4 & e_0 & e_1 & e_2 & e_3 \\
 v_1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
 v_2 & 1 & 1 & 0 & 0 & 2 & -2 & 1 & 1 \\
 v_3 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
\end{array}
\]
Then K is an isotropic 3-plane, and the forms
\[
\beta_0 = 2x_1 x_1 + x_0^2 \\
\beta_d = x_1 x_4 + x_3 x_3 \\
\alpha_2 = x_2
\]
define the 2 isotropic lines $\langle v_1 \rangle$ and $\langle v_2 \rangle$ in K. Lastly, for $i=1,2$, there is a unique $H_i \in X_{32} \cap X'_{(4213)}$ with $v_i \in H_i$. In these coordinates,
\[
H_1 : x = z = 0 \quad \text{and} \quad H_2 : x = z = 1.
\]

In the symplectic case, isotropic K are not contained in a quadric Q, the form $\alpha_0 = x_0$ does not arise, only components which do not meet the first column give quadratic forms β_d, and the analysis of Lemma 3.2 (2) in Section 3 is (slightly) different.

2. The intersection of two Schubert varieties

We study the intersection $X_\mu \cap X'_\lambda$ of two Schubert varieties. Our main result, Theorem 2.4, expresses $X_\mu \cap X'_\lambda$ as a product whose factors correspond to components of λ/μ, and each factor is itself an intersection of two Schubert varieties. These factors are described in Lemmas 2.5 and 2.6, and in Corollary 2.7. These are crucial to the proof of the Pieri-type formula that we complete in Section 3. Also needed is Lemma 2.1, which identifies a particular subspace of $H \cap \langle e_1, \ldots, e_n \rangle$ for $H \in X_\mu \cap X'_\lambda$.

For Lemma 2.1, we work in the (classical) Grassmannian $G_k(V^+)$ of k-planes in $V^+ := \langle e_1, \ldots, e_n \rangle$. For basic definitions and results see any of [8, 3, 4]. Schubert subvarieties $\Omega_\sigma, \Omega'_\sigma$ of $G_k(V^+)$ are indexed by partitions $\sigma \in \mathcal{Y}_k$, that is, integer sequences $\sigma = (\sigma_1, \ldots, \sigma_k)$ with $n - k \geq \sigma_1 \geq \cdots \geq \sigma_k \geq 0$. For $\sigma \in \mathcal{Y}_k$ define $\sigma^c \in \mathcal{Y}_k$ by $\sigma_j^c = n - k - \sigma_{k+1-j}$. For $\sigma, \tau \in \mathcal{Y}_k$, define
\[
\Omega_\tau := \{ H \in G_k(V^+) \mid \dim H \cap \langle e_{k+1-j+\tau_j}, \ldots, e_n \rangle \geq j, 1 \leq j \leq k \} \\
\Omega'_\sigma := \{ H \in G_k(V^+) \mid \dim H \cap \langle e_1, \ldots, e_{j+\sigma_{k+1-j}} \rangle \geq j, 1 \leq j \leq k \}.
\]

Let $\lambda, \mu \in \mathcal{S} \mathcal{Y}_n$ with $\mu \leq \lambda$, and suppose $\mu_k > 0 > \mu_{k+1}$. Define partitions σ and τ in \mathcal{Y}_k (which depend upon λ and μ) by
\[
\tau := \mu_1 - k \geq \cdots \geq \mu_k - 1 \geq 0 \\
\sigma := \lambda_1 - k \geq \cdots \geq \lambda_k - 1 \geq 0
\]

Lemma 2.1. Let $\mu \leq \lambda \in \mathcal{S} \mathcal{Y}_n$, and define $\sigma, \tau \in \mathcal{Y}_k$, and k as above. If $H \in X_\mu \cap X'_\lambda$, then $H \cap V^+$ contains a k-plane $L \in \Omega_\tau \cap \Omega'_\sigma$.

Proof. Suppose first that $H \in X_\mu$ with $\dim H \cap \langle e_{\mu_j}, \ldots, e_n \rangle = j$ for $j = k$ and $k+1$. Since $\mu_k > 0 > \mu_{k+1}$, we see that $L := H \cap V^+$ has dimension k. If $H \in X'_\lambda$, in addition, it is an exercise in the definitions to verify that $L \in \Omega_\tau \cap \Omega'_\sigma$. The lemma follows as such H are dense in X_μ. [Proof]

The first step towards Theorem 2.4 is the following combinatorial lemma.
Lemma 2.2. Let \(\varphi \) count the fixed points and \(\delta \) the components of \(\lambda/\mu \). Then

\[n + 1 = \varphi + \delta + \# \text{columns of } \lambda/\mu, \]

and \(\mu_j > \lambda_{j+1} \) precisely when \(|\mu_j| \) is an empty column of \(\lambda/\mu \).

Proof. Suppose \(k \) is a column not meeting \(\lambda/\mu \). Thus, there is no \(i \) for which \(\mu_i < k \leq \lambda_i \). Let \(j \) be the index such that \(|\mu_j| = k \). If \(\mu_j = k \), then we must also have \(\lambda_{j+1} < k \), as \(\mu_{j+1} < k \). Either \(\mu_j = \lambda_j \) is a fixed point of \(\lambda/\mu \) or else \(\mu_j < \lambda_j \), so that \(k \) is the column immediately to the left of a component \(d \) which does not meet the first column.

If \(\mu_j = -k \), then \(\lambda_j = -k \), for otherwise \(k = \lambda_i \) for some \(i \), and for this \(i \) we must necessarily have \(\mu_i < k \), contradicting \(k \) being an empty column. This proves the lemma, as 0 is either a fixed point of \(\lambda/\mu \) or else \(\lambda/\mu \) has a component meeting the first column, but not both. \(\blacksquare \)

Let \(d_0 \) be the component of \(\lambda/\mu \) meeting the first column (if any). Define mutually orthogonal subspaces \(V_\varphi, V_0, \) and \(V_d \), for each component \(d \) of \(\lambda/\mu \) not meeting the first column \((0 \not\in \text{col}(d)) \) as follows:

\[
V_\varphi := \langle e_{\mu_j}, e_{\mu_j} \mid \mu_j = \lambda_j \rangle,
V_0 := \langle e_0, e_k, e_\lambda \mid k \in \text{col}(d_0) \rangle,
V_d^- := \langle e_k \mid k \in \text{col}(d) \rangle,
V_d^+ := \langle e_\lambda \mid k \in \text{col}(d) \rangle,
\]

and set \(V_d := V_d^- \oplus V_d^+ \). Then

\[V = V_\varphi \oplus V_0 \oplus \bigoplus_{0 \not\in \text{col}(d)} V_d. \]

For each fixed point \(\mu_j = \lambda_j \) of \(\lambda/\mu \), define the linear form \(\alpha_j := x_{\mu_j} \). For each component \(d \) of \(\lambda/\mu \), let the quadratic form \(\beta_d \) be the restriction of the form \(\beta \) to \(V_d \). Composing with the projection of \(V \) to \(V_d \) gives a quadratic form (also written \(\beta_d \)) on \(V \). If there is no component meeting the first column, define \(\alpha_0 := x_0 \) and call 0 a fixed point of \(\lambda/\mu \). If \(0 \not\in \text{col}(d) \), then the form \(\beta_d \) identifies \(V_d^+ \) and \(V_d^- \) as dual vector spaces.

Lemma 2.3. Let \(H \in X_\mu \cap X'_\lambda \). Then

1. \(H \cap V_\varphi = \langle e_{\mu_j} \mid \mu_j = \lambda_j \rangle \).
2. \(\dim H \cap V_0 = \# \text{col}(d_0) \).
3. For all components \(d \) of \(\lambda/\mu \) which do not meet the first column,

\[
\dim H \cap V_d^+ = \# \text{rows of } d,
\dim H \cap V_d^- = \# \text{col}(d) - \# \text{rows of } d,
\]

and \((H \cap V_d^-)^\perp = H \cap V_d^+ \).
Proof of Lemma 2.3. Let $H \in X_\mu \cap X'_{\lambda^c}$. Suppose $\mu_j > \lambda_{j+1}$ so that $|\mu_j|$ is an empty column of λ/μ. Then the definitions of Schubert varieties imply

$$H = H \cap \langle e_\mu, \ldots, e_{\lambda_{j+1}} \rangle \oplus H \cap \langle e_{\mu_j}, \ldots, e_n \rangle.$$

Suppose d is a component not meeting the first column. If the rows of d are j, \ldots, k, then

$$H \cap V^+_d = H \cap \langle e_{\mu_k}, \ldots, e_{\lambda_j} \rangle = H \cap \langle e_{\mu_k}, \ldots, e_n \rangle,$$

and so has dimension at least $k - j + 1$.

Similarly, if l, \ldots, m are the indices i with $\overline{\alpha}_j \leq \mu_i, \lambda_i \leq \overline{\mu_k}$, then $H \cap V_d^-$ has dimension at least $l - m + 1$. Hence $\dim V_d/2 = \#\text{col}(d) = k + m - l - j + 2$, as $\lambda_j, \ldots, \lambda_k, \overline{\alpha}_l, \ldots, \overline{\alpha}_m$ are the columns of d.

Since H is isotropic, $\dim H^+_d + \dim H^-_d \leq \#\text{col}(d)$, which proves the first part of (3). Moreover, $H \cap V^+_d = (H \cap V^-_d)^\perp$: Since H is isotropic, we have \subset, and equality follows by counting dimensions.

Similar arguments prove the other statements.

For $H \in X_\mu \cap X'_{\lambda^c}$, define $H_\varphi := H \cap V_\varphi$, $H_0 := H \cap V_0$, $H^+_d := H \cap V^+_d$, and $H^-_d := H \cap V^-_d$. Then $H_\varphi \subset V_\varphi$ is the zero locus of the linear forms α_j, H_0 is isotropic in V_0, and, for each component d of λ/μ not meeting the first column, $H_d := H^+_d \oplus H^-_d$ is isotropic in V_d, which proves Lemma 1.4. Moreover, H is the orthogonal direct sum of H_0, H_0, and the H_d.

Theorem 2.4. The map

$$\{H_0 \mid H \in X_\mu \cap X'_{\lambda^c}\} \times \prod_{0 \notin \text{col}(d)} \{H_d \mid H \in X_\mu \cap X'_{\lambda^c}\} \longrightarrow X_\mu \cap X'_{\lambda^c}$$

defined by

$$(H_0, \ldots, H_d, \ldots) \longmapsto \langle H_\varphi, H_0, \ldots, H_d, \ldots \rangle$$

is an isomorphism.

Proof. By the previous discussion, it is an injection. For surjectivity, note that both sides have the same dimension. Indeed, $\dim X_\mu \cap X'_{\lambda^c} = |\lambda| - |\mu|$, the number of boxes in λ/μ. Lemmas 2.3 and 2.4 show that the factors of the domain each have dimension equal to the number of boxes in the corresponding components.

Suppose there is a component, d_0, meeting the first column. Let l be the largest column in d_0, and define $\lambda(0), \mu(0) \in SYL$ as follows: Let j be the first row of d_0 so that $l = \lambda_j$. Then, since d_0 is a component, for each $j \leq i < j + l - 1$, we have $\lambda_{i+1} \geq \mu_i$ and $l = \overline{\mu}_{j+l-1}$. Set

$$\mu(0) := \mu_j > \cdots > \mu_{j+l-1}$$

$$\lambda(0) := \lambda_j > \cdots > \lambda_{j+l-1}$$

Define $\lambda(0)^c$ by $\lambda(0)^c_p := \overline{\lambda(0)}_{l+1-p} = \overline{\lambda}_{j+l-p}$. The following lemma is a straightforward consequence of these definitions.
Lemma 2.5. With the above definitions,
\[\{ H_0 \mid H \in X_\mu \cap X'_{\lambda c} \} = X_{\mu(0)} \cap X'_{\lambda(0)c} \]
as subvarieties of \(B_k \simeq B(V_0) \), and \(\lambda(0)/\mu(0) \) has a unique component meeting the first column and no fixed points.

We similarly identify \(\{ H_d \mid H \in X_\mu \cap X'_{\lambda c} \} \) as an intersection \(X_{\mu(d)} \cap X'_{\lambda(d)c} \) of Schubert varieties in \(B_{#\text{col}(d)} \simeq B(\langle e_0, V_d \rangle) \). Let \(j, \ldots, k \) be the rows of \(d \) and \(l, \ldots, m \) be the indices \(i \) with \(\lambda_j \leq \mu_i, \lambda_i \leq \mu_k \), as in the proof of Lemma 2.3. Let \(p = \#\text{col}(d) \) and define \(\lambda(d), \mu(d) \in SY_p \) as follows. Set \(a = \mu_k \), and define
\[
\begin{align*}
\mu(d) & := \mu_j - a + 1 > \cdots > 1 > \mu_l + a - 1 > \cdots > \mu_m + a - 1, \\
\lambda(d) & := \lambda_j - a + 1 > \cdots > \lambda_k - a + 1 > \lambda_l + a - 1 > \cdots > \lambda_m + a - 1.
\end{align*}
\]
As with Lemma 2.5, the following lemma is straightforward.

Lemma 2.6. With these definitions,
\[\{ H_d \mid H \in X_\mu \cap X'_{\lambda c} \} \simeq X_{\mu(d)} \cap X'_{\lambda(d)c} \]
as subvarieties of \(B_p \simeq B(\langle e_0, V_d \rangle) \) and \(\lambda(d)/\mu(d) \) has a unique component not meeting the first column with only 0 as a fixed point.

Suppose now that \(\mu, \lambda \in SY_n \) where \(\lambda/\mu \) has a unique component \(d \) not meeting the first column and no fixed points. Suppose \(\lambda \) has \(k \) rows. A consequence of Lemma 2.3 is that the map \(H^+_d \mapsto \langle H^+_d, (H^+_d)^\perp \rangle \) gives an isomorphism
\[
\{ H^+_d \mid H \in X_\mu \cap X'_{\lambda c} \} \xrightarrow{\sim} X_\mu \cap X'_{\lambda c}.
\]

The following corollary of Lemma 2.3 identifies the domain.

Corollary 2.7. With \(\mu, \lambda \) as above and \(\sigma, \tau \), and \(k \) as defined in the paragraph preceding Lemma 2.7, we have:
\[\{ H^+_d \mid H \in X_\mu \cap X'_{\lambda c} \} = \Omega_\tau \cap \Omega_{\sigma c}, \]
as subvarieties of \(G_k(V^+) \).

Remark 2.8. The symplectic analogs of Lemma 2.6 and Corollary 2.7, which are identical save for the necessary replacement of \(Y \) for \(X \) and \(C_p \) for \(B_p \), show an unexpected connection between the geometry of the symplectic and orthogonal Grassmannians. Namely, suppose \(\lambda/\mu \) has no component meeting the first column. Then the projection map \(V \to W \) defined by
\[
e_i \mapsto \begin{cases} 0 & \text{if } i = 0 \\ f_i & \text{otherwise} \end{cases}
\]
and its left inverse \(W \leftarrow V \) defined by \(f_j \mapsto e_j \) induce isomorphisms
\[
X_\mu \cap X'_{\lambda c} \xrightarrow{\sim} Y_\mu \cap Y'_{\lambda c}.
\]
3. Pieri-type intersections of Schubert varieties

Fix λ/μ to be a skew row with $|\lambda| - |\mu| = m$. Let $Z_{\lambda/\mu} \subset \mathcal{Q}$ be the zero locus of the forms α_j and β_d of §2. If λ/μ has δ components, then as a subvariety of \mathcal{Q}, $Z_{\lambda/\mu}$ is the generically transverse intersection of the zero loci of the forms α_j and any $\delta - 1$ of the forms β_d. It follows that a general $(n + 1 - m)$-plane $K \subset \mathcal{Q}$ meets $Z_{\lambda/\mu}$ in $2^{\delta - 1}$ lines. Thus if $\langle v \rangle \subset Z_{\lambda/\mu}$ is a general line, then

$$\#X_\mu \cap X_\mu' \cap X_{(v)} = 2^\delta \cdot \#X_\mu \cap X_\mu' \cap X_{(v)}.$$

Theorem 1.2 is a consequence of this observation and the following:

Theorem 3.1. Let λ/μ be a skew row, $Z_{\lambda/\mu}$ be as above, and $\langle v \rangle$ a general line in $Z_{\lambda/\mu}$. Then $X_\mu \cap X_\mu' \cap X_{(v)}$ is a singleton.

Proof. Let Q_0 be the cone of isotropic points in V_0 and Q_d the cone of isotropic points in V_d for $d \neq d_0$. Since $Z_{\lambda/\mu} = H_{\varphi} \oplus Q_0 \oplus \bigoplus_{0 \in \text{col}(d)} Q_d$, we see that a general non-zero vector v in $Z_{\lambda/\mu}$ has the form

$$v = \sum_{\mu_j = \lambda_j} a_j e_{\mu_j} + v_0 + \sum_{0 \in \text{col}(d)} v_d,$$

where $a_j \in \mathbb{C}^\times$ and $v_0 \in Q_0$, $v_d \in Q_d$ are general vectors.

Thus, if $H \in X_\mu \cap X_\mu' \cap X_{(v)}$, we see that $v_0 \in H_0$ and $v_d \in H_d$. By Theorem 2.4, H is determined by H_0 and the H_d, thus it suffices to prove that H_0 and the H_d are uniquely determined. The identifications of Lemmas 2.5 and 2.6 show that this is just the case of the theorem when λ/μ has a single component, which is Lemma 3.2 below.

Lemma 3.2. Suppose $\lambda, \mu \in \mathcal{SY}_n$ where λ/μ is a skew row with a unique component and no non-zero fixed points.

1. If λ/μ does not meet the first column and $v \in Q_d$ is a general vector, then $X_\mu \cap X_\mu' \cap X_{(v)}$ is a singleton.
2. If λ/μ meets the first column and $v \in Q$ is general, then $X_\mu \cap X_\mu' \cap X_{(v)}$ is a singleton.

Proof of (1). Let $v \in Q_d$ be a general vector. Since $Q_d \subset V^+ \oplus V^-$, $v = v^+ \oplus v^-$ with $v^+ \in V^+$ and $v^- \in V^-$. Suppose $\mu_k > 0 > \mu_{k+1}$. Consider the set

$$\{H^+ \in G_k(V^+) \mid v \in H^+ \oplus (H^+)^\perp\} = \{H^+ \mid v^+ \in H^+ \subset (v^-)^\perp\}.$$

This is a Schubert variety $\Omega^\mu_{\lambda_{h(n-k,k)}}$ of $G_k V^+$, where $h(n-k,k)$ is the partition of hook shape with a single row of length $n-k$ and a single column of length k.

Under the isomorphisms of (3) and Lemma 2.6, and with the identification of Corollary 2.7, we see that

\[X^\mu \cap X'_{\lambda^c} \cap X_{\langle v \rangle} \cong \Omega_{\tau} \cap \Omega'_{\sigma^c} \cap \Omega''_{h(n-k,k)}, \]

where \(\sigma, \tau \) are as defined in the paragraph preceding Corollary 2.7. For \(\rho \in Y_k \), let \(S_\rho := [\Omega_\rho] \) be the cohomology class Poincaré dual to the fundamental cycle of \(\Omega_\rho \) in \(H^*G_k V^+ \). The multiplicity we wish to compute is

\[\text{deg}(S_\tau \cdot S_{\sigma^c} \cdot S_{h(n-k,k)}). \]

By a double application of the classical Pieri’s formula \((S_{h(n-k,k)} = S_{n-k} \cdot S_{1^{k-1}}) \), we see that (4) is either 1 or 0, depending upon whether or not \(\sigma/\tau \) has exactly one box in each diagonal. But this is the case, as the transformation \(\mu, \lambda \mapsto \tau, \sigma \) takes columns to diagonals.

Our proof of Lemma 3.2 (2) uses a system of local coordinates for \(X^\mu \cap X'_{\lambda^c} \). Let \(\lambda/\mu \) be as in Lemma 3.2 (2), and suppose \(\lambda_{k+1} = 1 \). For \(y_2, \ldots, y_n, x_0, \ldots, x_{n-1} \in \mathbb{C} \), define vectors \(g_j \in V \) as follows:

\[
g_j := \begin{cases}
\lambda_j - 1 & j \leq k \\
-2x_0^2e_1 + 2x_0e_0 + e_T + \sum_{i=\mu_k+1}^{\pi} y_i e_i & j = k + 1 \\
\lambda_j - 1 & j > k + 1
\end{cases}
\]

(5)

Lemma 3.3. Let \(\lambda, \mu \in \mathbb{SY}_n \) where \(\lambda/\mu \) is a skew row meeting the first column with no fixed points, and define \(\tau, \sigma \in Y_k \), and \(k \) as for Lemma 2.1. Then

1. For any \(x_1, \ldots, x_{n-1} \in \mathbb{C} \), we have \(\langle g_1, \ldots, g_k \rangle \in \Omega_\tau \cap \Omega'_{\sigma^c} \).
2. For and \(x_0, \ldots, x_{n-1} \in \mathbb{C} \) with \(x_{\mu_{k+1}}, \ldots, x_{\mu_{n-1}} \neq 0 \), the condition that \(H := \langle g_1, \ldots, g_n \rangle \) is isotropic determines a unique \(H \in X^\mu \cap X'_{\lambda^c} \).

Moreover, these coordinates parameterize dense subsets of the intersections.

Proof. The first statement is immediate from the definitions.

For the second, note that each \(g_j \in Q \). The conditions that \(\langle g_1, \ldots, g_n \rangle \) is isotropic are

\[\beta(g_i, g_j) = 0 \quad \text{for} \quad i \leq k < j. \]

Only \(n - 1 \) of these are not identically zero. Indeed, for \(i \leq k < j \),

\[\beta(g_i, g_j) \neq 0 \iff \begin{cases} \text{either} & \lambda_j < \mu_i < \mu_j, \\
\text{or} & \mu_i < \mu_j < \lambda_i. \end{cases} \]
Moreover, if we order the variables $y_2 < \cdots < y_n < x_0 < \cdots < x_{n-1}$, then, in the lexicographic term order, the leading term of $\beta(g_i, g_j)$ for $i \leq k < j$ is

$$y_{(k)} \quad \text{if } \lambda_j < \mu_i < \mu_j,$$

$$y_{(i)} x_{(j)} \quad \text{if } \mu_i < \mu_j < \lambda_i, \quad \text{or}$$

$$y_{(i)} = y_{(i)} \quad \text{if } i = 1, \ j = n.$$

Since $\{2, \ldots, n\} = \{\lambda_2, \ldots, \lambda_{k-1}, \mu_k, \ldots, \mu_n\}$, each y_i appears as the leading term of a unique $\beta(g_i, g_j)$ with $i < k \leq j$, thus these $n - 1$ non-trivial equations $\beta(g_i, g_j) = 0$ determine y_2, \ldots, y_n uniquely.

These coordinates parameterize an n-dimensional subset of $X_\mu \cap X'_{\lambda^c}$. Since $\dim(X_\mu \cap X'_{\lambda^c}) = n$ and $X_\mu \cap X'_{\lambda^c}$ is irreducible [3], this subset is dense, which completes the proof. \[\Box\]

Example 3.4. Let $\lambda = 6 5 3 1 7 4$ and $\mu = 5 3 1 7 4 6$ so $k = 3$. We display the components of the vectors g_i in a matrix

e_6	e_5	e_4	e_3	e_2	e_1	e_0	x_5	x_4	x_3	x_2	x_1
g_1	0	0	0	0	0	0	0	0	1	1	
g_2	0	0	0	0	0	0	0	0	2	1	0
g_3	0	0	0	0	0	0	0	x_1	x_2	1	0
g_4	0	0	0	y_2	1	0	$2x_0$	$-2x_0^2$	0	0	0
g_5	0	0	y_4	1	0	0	0	0	0	0	
g_6	y_6	1	0	0	0	0	0	0	0	0	

Then there are 5 non-zero equations $\beta(g_i, g_j) = 0$ with $i \leq 3 < j$:

$$0 = \beta(g_3, g_4) = y_2 x_2 + x_1$$

$$0 = \beta(g_3, g_5) = y_3 + x_2$$

$$0 = \beta(g_2, g_5) = y_4 x_4 + y_3 x_3$$

$$0 = \beta(g_2, g_6) = y_5 + x_4$$

$$0 = \beta(g_1, g_6) = y_6 + x_5 y_5$$

Solving, we obtain:

$$y_2 = -x_1/x_2, \ y_3 = -x_2, \ y_4 = -y_3 x_3/x_4, \ y_5 = -x_4, \ \text{and} \ y_6 = -x_5 y_5.$$

Proof of Lemma 3.2 (2). Suppose $\lambda, \mu \in SY_n$ where λ/μ is a skew row with a single component meeting the first column and no fixed points. Let $v \in Q$ be a general vector and consider the condition that $v \in H$ for $H \in X_\mu \cap X'_{\lambda^c}$. Let $\sigma, \tau \in \Sigma_k$ be defined as in the paragraph preceding Lemma 2.1. We first show that there is a unique $L \in \Omega_\tau \cap \Omega_{\sigma^c}$ with $L \subset H$, and then argue that H is unique.

The conditions on μ and λ imply that $\mu_n = 7$ and $\mu_j = \lambda_{j+1}$ for $j < n$. We further suppose that $\lambda_{k+1} = 1$, so that the last row of λ/μ has length 1. This is no restriction, as the isomorphism of V defined by $e_j \mapsto e_7$ sends $X_\mu \cap X'_{\lambda^c}$ to $X_{\lambda^c} \cap X'_{(\mu^c)^c}$ and one of λ/μ or μ^c/λ^c has last row of length 1.

Let $v \in Q$ be general. If necessary, scale v so that its e_7-component is 1. Let $2z$ be its e_0-component, then necessarily its e_1-component is $-2z^2$. Let $v^- \in V^-$ be
the projection of \(v \) to \(V^- \). Similarly define \(v^+ \in V^+ \). Set \(v' := v^+ + 2z^2e_1 \), so that \(\beta(v^-, v') = 0 \) and

\[
v = v^- + 2z(e_0 - ze_1) + v'.
\]

Let \(H \in X_\mu \cap X'_\lambda \), and suppose that \(v \in H \). In the notation of Lemma 2.3, let \(L \in \Omega_\tau \cap \Omega_\sigma' \) be a \(k \)-plane in \(H \cap V^+ \). If \(H \) is general, in that

\[
\dim H \cap \langle e_\pi, \ldots, e_{\lambda_{k+2}} \rangle = \dim H \cap \langle e_\pi, \ldots, e_0 \rangle = n - k - 1,
\]

then \(\langle L, e_1 \rangle \) is the projection of \(H \) to \(V^+ \). As \(v \in H \), we have \(v^+ \in \langle L, e_1 \rangle \). Since \(L \subset v^+ \cap V^+ = (v^-)^\perp \), we see that \(v' \in L \), and hence

\[
v' \in L \subset (v^-)^\perp.
\]

As in the proof of part (1), there is a (necessarily unique) such \(L \in \Omega_\tau \cap \Omega_\sigma' \) if and only if \(\sigma/\tau \) has a unique box in each diagonal. But this is the case, as the transformation \(\mu, \lambda \mapsto \tau, \sigma \) takes columns (greater than 1) to diagonals.

To complete the proof, we use the local coordinates for \(X_\mu \cap X'_\lambda \) and \(\Omega_\tau \cap \Omega_\sigma' \) of Lemma 3.3. Since \(v \) is general, we may assume that the \(k \)-plane \(L \in \Omega_\tau \cap \Omega_\sigma' \) determined by \(v' \in L \subset (v^-)^\perp \) has non-vanishing coordinates \(x_{\mu_{k+1}}, \ldots, x_{\mu_n} \), so that there is an \(H \in X_\mu \cap X'_\lambda \) in this system of coordinates with \(L = H \cap V^+ \).

Such an \(H \) is determined up to a choice of coordinate \(x_0 \). The requirement that \(v \in H \) forces the projection \(\langle e_\tau + 2x_0e_0 \rangle \) of \(H \) to \(\langle e_\tau, e_0 \rangle \) to contain \(e_\tau + 2ze_0 \), the projection of \(v \) to \(\langle e_\tau, e_0 \rangle \). Hence \(x_0 = z \), and it follows that there is at most one \(H \in X_\mu \cap X'_\lambda \) with \(v \in H \). Let \(g_1, \ldots, g_n \) be the vectors \(\{3\} \) determined by the coordinates \(x_1, \ldots, x_{n-1} \) for \(L \) with \(x_0 = z \). We claim \(v \in H := \langle g_1, \ldots, g_n \rangle \).

Indeed, since \(v' \in L \) and \(v^- \in L^\perp = \langle g_{k+1} - 2z(e_0 - ze_1), g_{k+2}, \ldots, g_n \rangle \), there exists \(\alpha_1, \ldots, \alpha_n \in \mathbb{C} \) with

\[
v^- + v' = \alpha_1g_1 + \cdots + \alpha_{k+1}(g_{k+1} - 2z(e_0 - ze_1)) + \cdots + \alpha_ng_n.
\]

We must have \(\alpha_{k+1} = 1 \), since the \(e_\tau \)-component of both \(v \) and \(g_{k+1} \) is 1. It follows that

\[
v = \sum_{i=1}^{n} \alpha_ig_i \in H.
\]

Remarks.

1. Our desire to give elementary proofs led us to restrict ourselves to the complex numbers. With the appropriate modifications, these arguments give the same results for Chow rings of these varieties over any field of characteristic \(\neq 2 \). For example, the appropriate intersection-theoretic constructions and the properness of a general translate provide a substitute for our use of transversality. Then one could argue for the multiplicity of \(2^{\beta-1} \) as follows:
If \(\lambda, \mu \in \mathcal{SY}_n \) and \(K \) is a linear subspace in \(Q \), then the scheme-theoretic intersection \(X_\mu \cap X'_\lambda \cap X_K \) is \(pr_* \pi^*(K) \), where

\[
\Xi = \{ (p, H) \mid p \in H \in X_\mu \cap X'_\lambda \}
\]

Then intersection theory on the quadric \(Q \) (a homogeneous space) and Kleiman’s Theorem that the intersection with a general translate is proper \([11]\) gives a factor of \(2^{\delta - 1} \) from the intersection multiplicity of \(K \) and the subvariety \(Z_{\lambda/\mu} \) of \(Q \) consisting of the image of \(\pi \). The arguments of Section 3 show that \(\pi \) has degree 1 onto its image.

2. Conversely, similar to the proof of Lemma 3.3, we could give local coordinates for any intersection \(X_\mu \cap X'_\lambda \). Such a description would enable us to establish transversality directly, and to dispense with the intersection theory of the classical Grassmannian. This would work over any field whose characteristic is not 2, but would complicate the arguments we gave.

3. We have not investigated to what extent these methods would work in characteristic 2.

Appendix A. Proof in the symplectic case

This appendix, which will not be submitted for publication, repeats the arguments in the main body of the paper in the symplectic case.

Recall that \(W \simeq \mathbb{C}^{2n} \) is equipped with a non-degenerate alternating form \(\beta \) and a basis \(\{ f_{1n}, \ldots, f_{nn} \} \) such that

\[
\beta(f_i, f_j) = \begin{cases} j/|j| & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}
\]

We let \(C_n = C(W) \) be the Lagrangian Grassmannian, the manifold of all \(n \)-dimensional subspaces of \(W \) which are isotropic for the form \(\beta \). Schubert varieties \(Y_\lambda \) of \(C_n \) are indexed by \(\lambda \in \mathcal{SY}_n \). Set \(Y_\lambda \) to be

\[
\{ H \in C_n \mid \dim H \cap \langle f_{\lambda_j}, \ldots, f_n \rangle \geq j \text{ for } 1 \leq j \leq n \}.
\]

This has codimension \(|\lambda| := \lambda_1 + \cdots + \lambda_k \), where \(\lambda_k > 0 > \lambda_{k+1} \). The diagram of \(\lambda \in \mathcal{SY}_n \) is a left-justified array of boxes in the plane with \(\lambda_j \) boxes in the \(j \)th row for \(\lambda_j > 0 \).

Set \(Q_\lambda := [Y_\lambda] \), the cohomology class Poincaré dual to the fundamental cycle of \(Y_\lambda \) in homology. If \(K \) is an isotropic \((n + 1 - m) \)-plane, define the special Schubert variety \(Y_K \) to be \(\{ H \in C_n \mid H \cap K \neq \{0\} \} \) and the special Schubert class \(q_m := [Y_K] \). Then \(Y_K \simeq Y_\mu \) and \(q_m = Q_\mu \), where the diagram of \(\mu \) consists of a single row of \(m \) boxes. For example, \(q_2 = Q_2 \).

If \(\mu \subset \lambda \), let \(\lambda/\mu \) be the set-theoretic difference of diagrams \(\lambda - \mu \). Two boxes of \(\lambda/\mu \) are adjacent if they share a vertex, and this defines connected components of \(\lambda/\mu \). Set \(\varepsilon(\lambda/\mu) \) to be the number of components of \(\lambda/\mu \) which do not have a box in
the first column. We say that λ/μ is a skew row if there is at most one box in each column of λ/μ.

A.1. Outline of the Proof. We prove

Theorem A.1.2. For any $\mu \in \mathcal{SY}_n$ and $1 \leq m \leq n$,

$$Q_\mu \cdot q_m = \sum_{\lambda/\mu \text{ skew row}} 2^{\epsilon(\lambda/\mu)} Q_\lambda.$$

Example A.1.3. For example,

$$Q_{321} \cdot q_2 = 2 \cdot Q_{421} + 2 \cdot Q_{431}.$$

For $\lambda \in \mathcal{SY}_n$, let $\lambda^c \in \mathcal{SY}_n$ be the sequence

$$\lambda_n > \lambda_{n-1} > \cdots > \lambda_2 > \lambda_1.$$

Define the Schubert variety Y'_{λ^c} to be

$$\{ H \in C_n \mid \dim H \cap \langle f_{\lambda}, \ldots, f_{\lambda_j} \rangle \geq n + 1 - j \text{ for } 1 \leq j \leq n \}.$$

We first determine when $Y_\mu \cap Y'_{\lambda^c}$ is non-empty. Let $\mu, \lambda \in \mathcal{SY}_n$. Then, for $1 \leq j \leq n$, $H \in Y_\mu \cap Y'_{\lambda^c}$ implies $\dim H \cap \langle f_{\mu_j}, \ldots, f_{\lambda_j} \rangle \geq 1$, by the definition of Schubert varieties. Hence $\mu \leq \lambda$ is necessary for $Y_\mu \cap Y'_{\lambda^c}$ to be nonempty.

Our main tool in the proof of Theorem A.1.2 is Poincaré duality. If $|\lambda| = |\mu|$, then

$$Q_\mu \cdot Q_{\lambda^c} = \begin{cases} 1 & \text{if } \lambda = \mu \\ 0 & \text{otherwise} \end{cases}.$$

Equivalently,

$$Y_\mu \cap Y'_{\lambda^c} = \begin{cases} \langle f_{\lambda_1}, \ldots, f_{\lambda_n} \rangle & \text{if } \lambda = \mu \\ \emptyset & \text{otherwise} \end{cases}.$$

Thus, to prove Theorem A.1.2, we must show that if $|\lambda| - |\mu| = m$, then for any general $(n + 1 - m)$-plane K,

$$\deg(Y_\mu \cap Y'_{\lambda^c} \cap Y_K) = \begin{cases} 2^{\epsilon(\lambda/\mu)} & \text{if } \lambda/\mu \text{ is a skew row} \\ 0 & \text{otherwise} \end{cases}.$$

Suppose $\mu \leq \lambda$ in \mathcal{SY}_n. Let d_0 be the component of λ/μ which has a box in the first column (if any). We adopt the convention that d denotes any of the other components of λ/μ. For each such component d of λ/μ, let $\text{col}(d)$ index the columns of d and the column just to the left of d. Define a quadratic form β_d for each such component d:

$$\beta_d := \sum_{j \in \text{col}(d)} x_j x_{\overline{d}},$$

where x_1, \ldots, x_n are coordinates for W dual to the basis f_1, \ldots, f_n. For each fixed point of λ/μ (j such that $\lambda_j = \mu_j$), define the linear form $\alpha_j := x_{\overline{d}}$. Let $Z_{\lambda/\mu} \subset W$ be the common zero locus of these forms α_i, β_d.

Lemma A.1.4. Suppose $\mu \leq \lambda$ and $H \in Y_\mu \cap Y'_{\lambda^c}$. Then $H \subset Z_{\lambda/\mu}$.
The forms β_d involve different sets of variables, hence they are linearly independent. Thus $Z_{\lambda/\mu}$ has degree $2^{\varepsilon(\lambda/\mu)}$, as a variety in $\mathbb{P}(W)$. Let ψ count the number of fixed points of λ/μ (Note this is different from φ of §§1 and 2, as we do not have the possibility of 0 as a fixed point here.) By Lemma [A.2.2] we have

$$n = \psi + \varepsilon(\lambda/\mu) + \# \text{columns of } \lambda/\mu.$$

Thus $\psi + \varepsilon(\lambda/\mu) \leq n - m$, with equality only when λ/μ is a skew row. Since W has dimension $2n$, it follows that a general isotropic $(n + 1 - m)$-plane K meets $Z_{\lambda/\mu}$ only if λ/μ is a skew row. We deduce

Theorem A.1.5. Let $\mu, \lambda \in SY_n$ and suppose K is a general isotropic $(n + 1 - m)$-plane with $|\mu| + m = |\lambda|$. Then

$$Y_{\mu} \cap Y'_{\lambda} \cap Y_K$$

is non-empty only if $\mu \leq \lambda$ and λ/μ is a skew row.

Proof of Theorem A.1.5. Under the hypotheses of Theorem A.1.5, the forms α_j and β_d define $2^{\varepsilon(\lambda/\mu)}$ isotropic lines in K. Indeed, since the group Sp_{2n} acts transitively on $\mathbb{P}(W)$, a general translate of any isotropic $(n + 1 - m)$-plane K will meet $Z_{\lambda/\mu}$ transversally. By Bézout’s theorem, this will necessarily be in $2^{\varepsilon(\lambda/\mu)}$ points in $\mathbb{P}(W)$. Theorem A.3.1 asserts that a general isotropic line in $Z_{\lambda/\mu}$ determines a unique $H \in Y_{\mu} \cap Y'_{\lambda}$, which completes the proof of Theorem A.1.2.

Example A.1.6. Let $n = 4$ and $m = 2$ so that $n + 1 - m = 3$. We show that if K is a general isotropic 3-plane, then

$$\# Y_{3214} \cap Y'_{(4213)c} \cap Y_K = 2.$$

First, the local coordinates for $Y_{3214} \cap Y'_{(4213)c}$ described in Lemma A.3.3 show that, for any $x, z \in \mathbb{C}$, the row span H of the matrix

$$\begin{pmatrix}
g_1 & 0 & 0 & 0 & 0 & 0 & 0 & -x \\
g_2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
g_3 & 0 & 0 & 0 & 1 & 2z & 0 & 0 \\
g_4 & x & 1 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

is in $Y_{3214} \cap Y'_{(4213)c}$. Suppose K is the row span of the matrix:

$$\begin{pmatrix}
w_1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
w_2 & 1 & 1 & 0 & 1 & 2 & 1 & -1 \\
w_3 & 0 & 0 & 1 & 0 & 1 & 0 & 0
\end{pmatrix}$$

Then K is an isotropic 3-plane, and the forms

$$\beta_d = x_3x_4 + x_3x_3$$

$$\alpha_2 = x_3$$
define 2 isotropic lines \(\langle w_1 \rangle \) and \(\langle w_2 \rangle \) in \(K \). Lastly, there is a unique \(H_i \in Y_{32T4} \cap Y'_{(4213)} \) with \(w_i \in H_i \) for \(i = 1, 2 \). In these coordinates,
\[
H_1 : x = z = 0 \quad \text{and} \quad H_2 : x = z = 1.
\]

A.2. The intersection of two Schubert varieties. We study the intersection \(Y_\mu \cap Y'_\lambda \) of two Schubert varieties. Our main result, Theorem \[A.2.4\], expresses \(Y_\mu \cap Y'_\lambda \) as a product whose factors correspond to components of \(\lambda/\mu \), and each factor is itself an intersection of two Schubert varieties. These factors are described in Lemmas \[A.2.3\] and \[A.2.6\], and in Corollary \[A.2.7\]. These are crucial to the proof of the Pieri-type formula that we complete in Section A.3. Also needed is Lemma \[A.2.1\], which identifies a particular subspace of \(H \cap \langle f_1, \ldots, f_n \rangle \) for \(H \in Y_\mu \cap Y'_\lambda \).

For Lemma \[A.2.1\], we work in the (classical) Grassmannian \(G_k(W^+) \) of \(k \)-planes in \(W^+ := \langle f_1, \ldots, f_n \rangle \). For basic definitions and results see any of [8, 5, 4]. Schubert subvarieties \(\Omega_\sigma, \Omega'_{\sigma} \) of \(G_k(W^+) \) are indexed by partitions \(\sigma \in \mathcal{Y}_k \). For \(\sigma, \tau \in \mathcal{Y}_k \) define \(\sigma^c \in \mathcal{Y}_k \) by \(\sigma_j^c := n - k - \sigma_{k+1-j} \). For \(\sigma, \tau \in \mathcal{Y}_k \), define
\[
\Omega_\tau := \{ H \in G_k(W^+) \mid \dim H \cap \langle f_{k+1-j+\tau_j}, \ldots, f_n \rangle \geq j, 1 \leq j \leq k \}
\]
\[
\Omega'_{\tau} := \{ H \in G_k(W^+) \mid \dim H \cap \langle f_1, \ldots, f_{j+\sigma_{k+1-j}} \rangle \geq j, 1 \leq j \leq k \}.
\]

Let \(\lambda, \mu \in \mathcal{SY}_n \) with \(\mu \leq \lambda \) and suppose that \(\mu_k > 0 > \mu_{k+1} \). Define partitions \(\sigma \) and \(\tau \) in \(\mathcal{Y}_k \) (which depend upon \(\lambda \) and \(\mu \)) by
\[
\tau := \mu_1 - k \geq \cdots \geq \mu_k - 1 \geq 0 \quad \text{and} \quad \sigma := \lambda_1 - k \geq \cdots \geq \lambda_k - 1 > 0.
\]

Lemma A.2.1. Let \(\mu \leq \lambda \in \mathcal{SY}_n \), and define \(\sigma, \tau \in \mathcal{Y}_k \) as above. If \(H \in Y_\mu \cap Y'_\lambda \), then \(H \cap W^+ \) contains a \(k \)-plane \(L \in \Omega_\tau \cap \Omega'_{\tau} \).

Proof. Suppose first that \(H \in Y_\mu \) satisfies \(\dim H \cap \langle f_{\mu_j}, \ldots, f_n \rangle = j \) for \(j = k \) and \(k+1 \). Since \(\mu_k > 0 > \mu_{k+1} \), we see that \(L := H \cap W^+ \) has dimension \(k \). If \(H \in Y'_\lambda \), in addition, it is an exercise in the definitions to verify that \(L \in \Omega_\tau \cap \Omega'_{\tau} \). The lemma follows as such \(H \) are dense in \(Y_\mu \).

The first step towards Theorem \[A.2.4\] is the following combinatorial lemma.

Lemma A.2.2. Let \(\psi \) count the fixed points and \(\varepsilon \) the components of \(\lambda/\mu \) which do not meet the first column. Then
\[
n = \psi + \varepsilon + \# \text{columns of } \lambda/\mu,
\]
and \(\mu_j > \lambda_{j+1} \) precisely when \(|\mu_j| \) is an empty column of \(\lambda/\mu \).

Proof. Suppose \(k \) is a column not meeting \(\lambda/\mu \). Thus, there is no \(i \) for which \(\mu_i < k \leq \lambda_i \). Let \(j \) be the index such that \(|\mu_j| = k \). If \(\mu_j = k \), then we must also have \(\lambda_{j+1} < k \), as \(\mu_{j+1} < k \). Either \(\mu_j = \lambda_j \) is a fixed point of \(\lambda/\mu \) or else \(\mu_j < \lambda_j \), so that \(k \) is the column immediately to the left of a component \(d \) which does not meet the first column.

If \(\mu_j = -k \), then \(\lambda_j = -k \), for otherwise \(k = \lambda_i \) for some \(i \) and for this \(i \) we must necessarily have \(\mu_i < k \), contradicting \(k \) being an empty column.
Let \(d_0 \) be the component of \(\lambda/\mu \) meeting the first column (if any). Define mutually orthogonal subspaces \(W_\psi, W_0, \) and \(W_d, \) for each component \(d \) of \(\lambda/\mu \) not meeting the first column as follows:

\[
W_\psi := \langle f_{\mu_j}, f_{\mu_j} \mid \mu_j = \lambda_j \rangle,
\]
\[
W_0 := \langle f_k, f_\pi \mid k \in \text{col}(d_0) \rangle,
\]
\[
W_d^- := \langle f_k \mid k \in \text{col}(d) \rangle,
\]
\[
W_d^+ := \langle f_\pi \mid k \in \text{col}(d) \rangle,
\]

and set \(W_d := W_d^- \oplus W_d^+ \). Then
\[
W = W_\psi \oplus W_0 \oplus \bigoplus_{d \not\in \text{col}(d)} W_d.
\]

For each fixed point \(\mu_j \) of \(\lambda/\mu \), define the linear form \(\alpha_j := Y_{\mu_j}. \) For each component \(d \) of \(\lambda/\mu \) not meeting the first column, define the quadratic form \(\beta_d \) to be
\[
\beta_d = \sum_{j \in \text{col}(d)} x_j x_{\pi_j}.
\]

This is a form on either \(W \) or on \(W_d \), and it identifies \(W_d^+ \) and \(W_d^- \) as dual vector spaces. The forms \(\beta \) and \(\beta_d \) are related as follows: if \(w^+ \in W_d^+ \) and \(w^- \in W_d^- \), then
\[
-\beta(w^+, w^-) = \beta(w^-, w^+) = \beta_d(w^+, w^-) = \beta_d(w^-, w^+).
\]

Lemma A.2.3. Let \(H \in Y_\mu \cap Y_\lambda \). Then

1. \(H \cap W_\psi = \langle f_{\mu_j} \mid \mu_j = \lambda_j \rangle \).
2. \(\dim H \cap W_0 = \# \text{col}(d_0) \).
3. For all components \(d \) of \(\lambda/\mu \) which do not meet the first column,
 \[
 \dim H \cap W_d^+ = \# \text{rows of } d,
 \]
 \[
 \dim H \cap W_d^- = \# \text{col}(d) - \# \text{rows of } d,
 \]

and \((H \cap W_d^-)^\perp = H \cap W_d^+ \).

Proof of Lemma A.2.3. Let \(H \in Y_\mu \cap Y_\lambda \). Suppose \(\mu_j > \lambda_{j+1} \) so that \(|\mu_j|\) is an empty column of \(\lambda/\mu \). Then the definitions of Schubert varieties imply
\[
H = H \cap \langle f_\pi, \ldots, f_{\lambda_{j+1}} \rangle \oplus H \cap \langle f_{\mu_j}, \ldots, f_n \rangle.
\]

Suppose \(d \) is a component not meeting the first column. If the rows of \(d \) are \(j, \ldots, k \), then
\[
H \cap W_d^+ = H \cap \langle f_{\mu_k}, \ldots, f_{\lambda_j} \rangle = H \cap \langle f_\pi, \ldots, f_{\lambda_j} \rangle \cap \langle f_{\mu_k}, \ldots, f_n \rangle,
\]

and so has dimension at least \(k - j + 1 \).

Similarly, if \(l, \ldots, m \) are the indices \(i \) with \(\lambda_i \leq \mu_i \leq \pi_k \), then \(H \cap W_d^- \) has dimension at least \(l - m + 1 \). Then \(\dim W_d^-/2 = \# \text{col}(d) = k + m - l - j + 2 \), as \(\lambda_j, \ldots, \lambda_k, \pi_l, \ldots, \pi_m \) are the columns of \(d \).
Since H is isotropic, $\dim H_+^d + \dim H_-^d \leq \#\text{col}(d)$, which proves the first part of (3). Moreover, $H \cap W_+^d = (H \cap W_-^d)^\perp$: Since H is isotropic, we have \subset, and equality follows by counting dimensions.

Similar arguments prove the other statements. \blacksquare

For $H \in Y_\mu \cap Y_\lambda'$, define $H_\psi := H \cap W_\psi$, $H_0 := H \cap W_0$, $H_+^d := H \cap W_+^d$, and $H_-^d := H \cap W_-^d$. Then $H_\psi \subset W_\psi$ is the zero locus of the linear forms α_j, H_0 is isotropic in W_0, and, for each component d of λ/μ not meeting the first column, $H_d := H_+^d \oplus H_-^d$ is isotropic in W_d, which proves Lemma A.2.4. Moreover, H is the orthogonal direct sum of H_ψ, H_0, and the H_d.

Theorem A.2.4. The map

$$\{H_0 \mid H \in Y_\mu \cap Y_\lambda'\} \times \prod_{0 \notin \text{col}(d)} \{H_d \mid H \in Y_\mu \cap Y_\lambda'\} \rightarrow Y_\mu \cap Y_\lambda'$$

defined by

$$(H_0, \ldots, H_d, \ldots) \mapsto (H_\psi, H_0, \ldots, H_d, \ldots)$$

is an isomorphism.

Proof. By the previous discussion, it is an injection. For surjectivity, note that both sides have the same dimension. Indeed, $\dim Y_\mu \cap Y_\lambda' = |\lambda| - |\mu|$, the number of boxes in λ/μ. Lemmas A.2.3 and A.2.6 show that the factors of the domain each have dimension equal to the number of boxes in the corresponding components. \blacksquare

Suppose there is a component, d_0, meeting the first column. Let l be the largest column in d_0, and define $\lambda(0), \mu(0) \in SY_l$ as follows: Let j be the first row of d_0 so that $l = \lambda_j$. Then, since d_0 is a component, for each $j \leq i < j + l - 1$, we have $\lambda_{i+1} \geq \mu_i$ and $l = \frac{\mu_j + l - 1}{1}$.

Set

$$\begin{align*}
\mu(0) &:= \mu_j > \cdots > \mu_{j+l-1} \\
\lambda(0) &:= \lambda_j > \cdots > \lambda_{j+l-1}
\end{align*}$$

Define $\lambda(0)^c$ by $\lambda(0)^c_p := \overline{\lambda(0)_{l+1-p}} = \overline{\lambda_{j+l-p}}$. The following lemma is straightforward.

Lemma A.2.5. With the above definitions,

$$\{H_0 \mid H \in Y_\mu \cap Y_\lambda'\} = Y_{\mu(0)} \cap Y_{\lambda(0)^c}$$

as subvarieties of $C_k \simeq C(W_0)$, and $\lambda(0)/\mu(0)$ has a unique component meeting the first column and no fixed points.

We similarly identify $\{H_d \mid H \in Y_\mu \cap Y_\lambda'\}$ as an intersection $Y_{\mu(d)} \cap Y_{\lambda(d)^c}$ of Schubert varieties in $C_{\#\text{col}(d)} \simeq C(W_d)$. Let j, \ldots, k be the rows of d and l, \ldots, m be the indices i with $\lambda_j \leq \mu_i$, $\lambda_k \leq \mu_k$, as in the proof of Lemma A.2.3. Let $p = \#\text{col}(d)$ and define $\lambda(d), \mu(d) \in SY_p$ as follows. Set $a = \mu_k$, and define

$$\begin{align*}
\mu(d) &:= \mu_j - a + 1 > \cdots > 1 > \mu_l + a - 1 > \cdots > \mu_m + a - 1 \\
\lambda(d) &:= \lambda_j - a + 1 > \cdots > \lambda_k - a + 1 > \lambda_l + a - 1 > \cdots > \lambda_m + a - 1
\end{align*}$$
As with Lemma A.2.5, the following lemma is straightforward.

Lemma A.2.6. With these definitions,
\[
\{ H_d \mid H \in Y_\mu \cap Y'_\lambda \} \simeq Y_{\mu(d)} \cap Y'_{\lambda(d)}
\]
as subvarieties of \(C_p \simeq C([W_d]) \) and \(\lambda(d)/\mu(d) \) has a unique component not meeting the first column and no fixed points.

Suppose now that \(\mu, \lambda \in SY_n \) where \(\lambda/\mu \) has a unique component \(d \) not meeting the first column and no fixed points. Suppose \(\lambda \) has \(k \) rows. A consequence of Lemma A.2.3 is that the map \(H_d + d \mapsto \langle H_d + d, (H_d + d)_{\perp} \rangle \) gives an isomorphism
\[
\{ H_d^+ \mid H \in Y_\mu \cap Y'_\lambda \} \rightarrow Y_\mu \cap Y'_\lambda.
\]
(6)

The following corollary of Lemma A.2.1 identifies the domain.

Corollary A.2.7. With \(\mu, \lambda \) as above and \(\sigma, \tau \), and \(k \) as defined in the paragraph preceding Lemma A.2.1, we have:
\[
\{ H_d^+ \mid H \in Y_\mu \cap Y'_\lambda \} = \Omega \tau \cap \Omega \sigma^c,
\]
as subvarieties of \(G_k(W^+) \).

A.3. Pieri-type intersections of Schubert varieties

Fix \(\lambda/\mu \) to be a skew row with \(|\lambda| - |\mu| = m \). Let \(Z_{\lambda/\mu} \) be the zero locus of the forms \(\alpha_j \) and \(\beta_d \) of §A.2. Since there are \(\varepsilon(\lambda/\mu) \) quadratic forms \(\beta_d \), a general isotropic \((n + 1 - m)\)-plane \(K \) meets \(Z_{\lambda/\mu} \) in \(2^{\varepsilon(\lambda/\mu)} \) lines. Thus if \(\langle w \rangle \subset Z_{\lambda/\mu} \) is a general line, then
\[
\# Y_\mu \cap Y'_\lambda \cap Y_K = 2^{\varepsilon(\lambda/\mu)} \cdot \# Y_\mu \cap Y'_\lambda \cap Y_{\langle w \rangle}.
\]

Theorem A.1.2 is a consequence of this observation and the following:

Theorem A.3.1. Let \(\lambda/\mu \) be a skew row, \(Z_{\lambda/\mu} \) be as above, and \(\langle w \rangle \) a general line in \(Z_{\lambda/\mu} \). Then \(Y_\mu \cap Y'_\lambda \cap Y_{\langle w \rangle} \) is a singleton.

Proof. For each component \(d \) of \(\lambda/\mu \) not meeting the first column, let \(Q_d \subset W_d \) be the zero locus of the form \(\beta_d \). Since
\[
Z_{\lambda/\mu} = H_\psi \oplus W_0 \oplus \bigoplus_{0 \notin \text{col}(d)} Q_d,
\]
we see that a general non-zero vector \(w \) in \(Z_{\lambda/\mu} \) has the form
\[
w = \sum_{j=\lambda} a_j f_{\mu_j} + w_0 + \sum_{0 \notin \text{col}(d)} w_d,
\]
where \(a_j \in \mathbb{C}^x \) and \(w_0 \in W_0, w_d \in Q_d \) are general vectors.

Thus, if \(H \in Y_\mu \cap Y'_\lambda \cap Y_{\langle w \rangle} \), we see that \(w_0 \in H_0 \) and \(w_d \in H_d \). By Theorem A.2.4, \(H \) is determined by \(H_0 \) and the \(H_d \), thus it suffices to prove that \(H_0 \) and the \(H_d \) are uniquely determined. The identifications of Lemmas A.2.3 and A.2.6 show that this is just the case of the theorem when \(\lambda/\mu \) has a single component, which is Lemma A.3.2 below.
Lemma A.3.2. Suppose $\lambda, \mu \in \mathcal{SY}_n$ where λ/μ is a skew row with a unique component and no fixed points.

1. If λ/μ does not meet the first column and $w \in Q_d$ is a general vector, then $Y_\mu \cap Y'_{\chi_c} \cap Y_{(w)}$ is a singleton.
2. If λ/μ meets the first column and $w \in W$ is general, then $Y_\mu \cap Y'_{\chi_c} \cap Y_{(w)}$ is a singleton.

Proof of (1). Let $w \in Q_d$ be a general vector. Since $Q_d \subset W^+ \oplus W^-$, $w = w^+ \oplus w^-$ with $w^+ \in W^+$ and $w^- \in W^-$. Suppose $\mu_k > 0 > \mu_{k+1}$. Consider the set

$$\{H^+ \in G_k(W^+) \mid w \in H^+ \oplus (H^+)^{\perp}\} = \{H^+ \mid w^+ \in H^+ \subset (w^-)^{\perp}\}.$$

This is a Schubert variety $\Omega''_{h(n-k,k)}$ of $G_k W^+$, where $h(n-k,k)$ is the partition of hook shape with a single row of length $n-k$ and column of length k.

Thus under the isomorphisms of (8) and Lemma A.2.6, and with the identification of Corollary A.2.7, we see that

$$Y_\mu \cap Y'_{\chi_c} \cap Y_{(w)} \simeq \Omega_\sigma \cap \Omega'_{\chi_c} \cap \Omega''_{h(n-k,k)},$$

where $\sigma, \tau \in \mathbb{Y}_k$ are as defined in the discussion preceding Corollary A.2.7. For $\rho \in \mathbb{Y}_k$, let $S_\rho := [\Omega_\rho]$ be the cohomology class Poincaré dual to the fundamental cycle of Ω_ρ in $H^*G_k W^+$. Then the multiplicity we wish to compute is

$$(7) \quad \deg(S_{\tau} \cdot S_{\sigma^c} \cdot S_{h(n-k,k)}).$$

By a double application of Pieri's formula (as $S_{h(n-k,k)} = S_{n-k} \cdot S_{a_{k-1}}$), we see that (7) is either 1 or 0, depending upon whether or not σ/τ has exactly one box in each diagonal. But this is the case, as the transformation $\mu, \lambda \rightarrow \tau, \sigma$ takes columns to diagonals. \blacksquare

Our proof of Lemma A.3.2 (2) uses a system of local coordinates for $Y_\mu \cap Y'_{\chi_c}$. Let λ/μ be as in Lemma A.3.2 and let $k+1$ be the length of λ, so that $\lambda_{k+1} = 1$. For $y_2, \ldots, y_n, x_0, \ldots, x_{n-1} \in \mathbb{C}$, define vectors $g_j \in W$ as follows:

$$(8) \quad g_j = \begin{cases} f_{\lambda_j} + \sum_{i=\mu_j}^{\lambda_j-1} x_i f_i & j \leq k \\ x_0 f_1 + f_T + \sum_{i=\mu_{k+1}}^{\tau} y_i f_i & j = k+1 \\ f_{\lambda_j} + \sum_{i=\mu_j}^{\lambda_j-1} y_i f_i & j > k+1 \end{cases}$$

Lemma A.3.3. Let $\lambda, \mu \in \mathcal{SY}_n$ with λ/μ a skew row meeting the first column with no fixed points, and define $\tau, \sigma \in \mathbb{Y}_k$ and k as for Lemma A.2.7. Then

1. For any $x_1, \ldots, x_{n-1} \in \mathbb{C}$, we have $\langle g_1, \ldots, g_k \rangle \in \Omega_\tau \cap \Omega'_{\chi_c}$.
2. For any $x_0, \ldots, x_{n-1} \in \mathbb{C}$ with $x_{\mu_{k+1}}, \ldots, x_{\mu_{n-1}} \neq 0$, the condition that $H := \langle g_1, \ldots, g_n \rangle$ is isotropic determines a unique $H \in Y_\mu \cap Y'_{\chi_c}$.

Moreover, these parameterize dense subsets of the intersections.

Proof. The first statement is immediate from the definitions.

For the second, first note that the conditions for $\langle g_1, \ldots, g_n \rangle$ to be isotropic are

$$\beta(g_i, g_j) = 0 \quad i \leq k < j.$$

Only $n - 1$ of these relations are not identically zero. Indeed, for $i \leq k < j$,

$$\beta(g_i, g_j) \neq 0 \iff \left\{ \begin{array}{l}
\text{either} \
\lambda_j < \mu_i < \mu_j
\end{array} \right. \text{or} \left\{ \begin{array}{l}
\mu_i < \mu_j < \lambda_i.
\end{array} \right.$$

Moreover, if we order the variables $y_2 < \cdots < y_n < x_0 < \cdots < x_{n-1}$, then, in the lexicographic term order, the leading term of $\beta(g_i, g_j)$ for $i \leq k < j$ is

$$y_{\lambda_i} \quad \text{if} \quad \lambda_j < \mu_i < \mu_j,$$

$$y_{\mu_i}x_{\mu_j} \quad \text{if} \quad \mu_i < \mu_j < \lambda_i,$$

$$y_n = y_{\mu_i} \quad \text{if} \quad i = 1, \ j = n.$$

Since $\{2, \ldots, n\} = \{\lambda_2, \ldots, \lambda_{k-1}, \mu_k, \ldots, \mu_n\}$, each y_i appears as the leading term of a unique $\beta(g_i, g_j)$ with $i < k < j$, thus these $n - 1$ non trivial equations $\beta(g_i, g_j) = 0$ determine y_2, \ldots, y_n uniquely.

These coordinates parameterize an n-dimensional subset of $Y_\mu \cap Y_\lambda' c$. Since $\dim(Y_\mu \cap Y_\lambda' c) = n$ and $Y_\mu \cap Y_\lambda' c$ is irreducible [3], this subset is dense, which completes the proof.

Example A.3.4. Let $\lambda = 653124$ and $\mu = 531246$. We display the components of the vectors g_i:

| | f_{π} | f_{τ} | $f_{\tau'}$ | $f_{\tau''}$ | $f_{\pi'}$ | $f_{\pi''}$ | $f_{\tau'''}$ | $f_{\tau''''}$ | $f_{\pi'''}$ | $f_{\pi''''}$ | x_1 | x_2 | x_3 | x_4 | x_5 | x_6 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| g_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | x_5 | 1 |
| g_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| g_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| g_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| g_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| g_6 | y_6 | y_5 | y_3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Then there are 5 non-zero equations $\beta(g_i, g_j) = 0$ with $i \leq 3 < j$:

$$0 = \beta(g_3, g_4) = y_2x_2 + x_1$$

$$0 = \beta(g_3, g_5) = y_3 + x_2$$

$$0 = \beta(g_2, g_5) = y_4x_4 + y_3x_3$$

$$0 = \beta(g_2, g_6) = y_5 + x_4$$

$$0 = \beta(g_1, g_6) = y_6 + x_5y_5$$

Solving, we obtain:

$$y_2 = -x_1/x_2, \ y_3 = -x_2, \ y_4 = -y_3x_3/x_4, \ y_5 = -x_4, \ \text{and} \ y_6 = -x_5y_5.$$
Proof of Lemma A.3.2 (2). Suppose \(\lambda, \mu \in \mathbb{S}Y_n \) where \(\lambda/\mu \) is a skew row with a single component meeting the first column and no fixed points. Let \(w \in W \) be a general vector and consider the condition that \(w \in H \) for \(H \in Y_\mu \cap Y_\lambda' \). Let \(\sigma, \tau \in \mathbb{Y}_k \) be defined as in the paragraph preceding Lemma A.2.1. We first show that there is a unique \(L \in \mathbb{O}_\tau \cap \mathbb{O}_{\sigma^c} \) with \(L \subseteq H \), then argue that \(H \) is unique.

The conditions on \(\mu \) and \(\lambda \) imply that \(\mu_\alpha = \mathbf{1} \) and \(\mu_j = \lambda_{j+1} \) for \(j < n \). We further suppose that \(\lambda_{k+1} = 1 \), so that the last row of \(\lambda/\mu \) has length 1. This is no restriction, as the isomorphism of \(W \) defined by \(f_j \mapsto f_\tau \) sends \(Y_\mu \cap Y_\lambda' \) to \(Y_\lambda \cap Y_\mu' \), and one of \(\lambda/\mu \) or \(\mu/\lambda \) has last row of length 1.

Let \(w \in W \) be general and suppose that its \(\tau \)th-component is 1 and its 1st-component is \(z \). Let \(w^- \in W^- \) be the projection of \(w \) to \(W^- \). Similarly define \(w^+ \in W^+ \). Set \(w' := w^+ - zf_1 \), then \(\beta(w^-, w') = 0 \) and

\[
w = w^- + zf_1 + w'.
\]

Let \(H \in Y_\mu \cap Y_\lambda' \), and suppose that \(w \in H \). In the notation of Lemma A.2.1, let \(L \in \mathbb{O}_\tau \cap \mathbb{O}_{\sigma^c} \) be a k-plane in \(H \cap W^+ \). If \(H \) is general, in that

\[
\dim H \cap \langle f_\tau, \ldots, f_{\lambda_{k+2}} \rangle = \dim H \cap \langle f_\tau, \ldots, f_\mu \rangle = n - k - 1,
\]

then \(\langle L, f_1 \rangle \) is the projection of \(H \) to \(W^+ \). As \(w \in H \), we have \(w^+ \in \langle L, f_1 \rangle \). Since \(L \subset w^- \cap W^+ = (w^-)^\perp \), we see that \(w' \in L \), and hence

\[
w' \in L \subset (w^-)^\perp.
\]

As in the proof of (1), there is a (necessarily unique) such \(L \in \mathbb{O}_\tau \cap \mathbb{O}_{\sigma^c} \) if and only if \(\sigma/\tau \) has a unique box in each diagonal. But this is the case, as the transformation \(\mu, \lambda \longrightarrow \tau, \sigma \) takes columns (greater than 1) to diagonals.

To complete the proof, we use the local coordinates for \(Y_\mu \cap Y_\lambda' \) and \(\mathbb{O}_\tau \cap \mathbb{O}_{\sigma^c} \) of Lemma A.3.3. Since \(s \) is generic, we may assume that the k-plane \(L \in \mathbb{O}_\tau \cap \mathbb{O}_{\sigma^c} \) determined by \(w' \in L \subset (w^-)^\perp \) has non-vanishing coordinates \(x_{\mu_1}, \ldots, x_{\mu_{k+1}} \), so that there is an \(H \in Y_\mu \cap Y_\lambda' \) in this system of coordinates with \(L = H \cap W^+ \).

Such an \(H \) is determined up to a choice of coordinate \(x_0 \). Since \(H = L \oplus (H \cap \langle W^-, f_1 \rangle) \), we see that if \(w \in H \), then \(w^- + zf_1 \in H \cap \langle W^-, f_1 \rangle \). Considering the projection of \(H \cap \langle W^-, f_1 \rangle \) to \(\langle f_\tau, f_1 \rangle \), we see that \(x_0 = z \), so there is at most one \(H \) with \(w \in H \). Let \(g_1, \ldots, g_n \) be the vectors determined by the coordinates \(x_1, \ldots, x_{n-1} \) for \(L \) and with \(x_0 = z \). We claim \(w \in H \).

Indeed, since \(w' \in L \) and \(w^- \in L^\perp = \langle g_{k+1} - zf_1, g_{k+2}, \ldots, g_n \rangle \), there exists \(\alpha_1, \ldots, \alpha_n \in \mathbb{C} \) with

\[
w^- + w' = \alpha_1 g_1 + \cdots + g_{k+1} - zf_1 + \cdots + \alpha_n g_n.
\]

It follows that

\[
w = \sum_{i=1}^n \alpha_i g_i \in H. \quad \square
\]
References

[1] N. Bergeron and F. Sottile, *Pieri-type formulas for Lagrangian classes in the symplectic flag manifold*, in preparation, 1997.

[2] C. Chevalley, *Sur les décompositions cellulaires des espaces G/B*, in Algebraic Groups and their Generalizations: Classical Methods, American Mathematical Society, 1994, pp. 1–23. Proceedings and Symposia in Pure Mathematics, vol. 56, Part 1.

[3] V. Deodhar, *On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells*, Invent. Math., 79 (1985), pp. 499–511.

[4] W. Fulton, *Young Tableaux*, Cambridge University Press, 1996.

[5] P. Griffiths and J. Harris, *Principles of Algebraic Geometry*, J. Wiley and Sons, 1978.

[6] H. Hiller and B. Boe, *Pieri formula for SO_{2n+1}/U_n and SP_n/U_n*, Adv. in Math., 62 (1986), pp. 49–67.

[7] W. V. D. Hodge, *The intersection formula for a Grassmannian variety*, J. Lond. Math. Soc., 17 (1942), pp. 48–64.

[8] W. V. D. Hodge and D. Pedoe, *Methods of Algebraic Geometry*, vol. II, Cambridge University Press, 1952.

[9] P. Hoffman and J. Humphreys, *Projective representations of symmetric groups*, Oxford, 1992.

[10] T. Józefiak, *Schur Q-functions and the cohomology of isotropic Grassmannians*, Math. Proc. Camb. Phil. Soc., 109 (1991), pp. 471–8.

[11] S. Kleiman, *The transversality of a general translate*, Comp. Math., 28 (1974), pp. 287–297.

[12] A. Morris, *A note on the multiplication of Hall polynomials*, J. London Math. Soc., 39 (1964), pp. 481–8.

[13] P. Pragacz, *Enumerative geometry of degeneracy loci*, Ann. Scient. Éc. Norm. Sup., 4e série, t. 21, (1988), pp. 413–454.

[14] P. Pragacz, *Algebra-geometric applications of Schur S- and Q-polynomials*, in Topics in Invariant Theory, Séminaire d’Algèbre Dubreil-Malliavin 1989-90, Springer-Verlag, 1991, pp. 130–191.

[15] P. Pragacz and J. Ratajski, *Pieri type formula for isotropic Grassmannians; the operator approach*, Manuscripta Math., 79 (1993), pp. 127–151.

[16] I. Schur, *Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen*, J. reine angew. Math., 139 (1911), pp. 155–250.

[17] S. Sertöz, *A triple intersection theorem for the varieties SO(n)/P_d*, Fundamenta Mathematica, 142 (1993), pp. 201–220.

[18] F. Sottile, *Pieri’s formula for flag manifolds and Schubert polynomials*, Annales de l’Institut Fourier, 46 (1996), pp. 89–110.

[19] J. Stembridge, *Shifted tableaux and the projective representations of the symmetric group*, Adv. Math., 74 (1989), pp. 87–134.

Department of Mathematics, University of Toronto, 100 St. George Street, Toronto, Ontario M5S 3G3, Canada

E-mail address: sottile@math.toronto.edu