Ultrasmall Fe$_2$O$_3$ nanoparticles/MoS$_2$ nanosheets composite as high-performance anode material for lithium ion batteries

Bin Qu1,2, Yue Sun1, Lianlian Liu1, Chunyan Li1, Changjian Yu1, Xitian Zhang2 & Yujin Chen1

Coupling ultrasmall Fe$_2$O$_3$ particles (~4.0 nm) with the MoS$_2$ nanosheets is achieved by a facile method for high-performance anode material for Li-ion battery. MoS$_2$ nanosheets in the composite can serve as scaffolds, efficiently buffering the large volume change of Fe$_2$O$_3$ during charge/discharge process, whereas the ultrasmall Fe$_2$O$_3$ nanoparticles mainly provide the specific capacity. Due to bigger surface area and larger pore volume as well as strong coupling between Fe$_2$O$_3$ particles and MoS$_2$ nanosheets, the composite exhibits superior electrochemical properties to MoS$_2$, Fe$_2$O$_3$ and the physical mixture Fe$_2$O$_3$+MoS$_2$. Typically, after 140 cycles the reversible capacity of the composite does not decay, but increases from 829 mA h g$^{-1}$ to 864 mA h g$^{-1}$ at a high current density of 2 A g$^{-1}$. Thus, the present facile strategy could open a way for development of cost-efficient anode material with high-performance for large-scale energy conversion and storage systems.

Owing to their high energy densities and environmental benignity, lithium ion batteries (LIBs) have been used as potential power sources for various electronic devices and equipments, ranging from a tiny music player to a massive sports car1,2. However, the commercial graphite anode of LIBs is difficult to satisfy the requirements of high power equipment of the modern society due to its low specific capacity (372 mAh g$^{-1}$). Thus, alternative anode materials with good electrochemical performances are particularly desirable. 2H-MoS$_2$, as a typical member of transition metal dichalcogenides, is composed of a layer of molybdenum atoms sandwiched between two layers of sulphur atoms. The spacing between neighboring layers is 0.615 nm, significantly larger than that of graphite (0.335 nm), and the weak van der Waals forces between the layers allows Li ions to diffuse without a significant increase in volume, leading to high-performance of MoS$_2$ as anode material than that of graphite3. The theoretical capacity of MoS$_2$ is as high as 670 mAh g$^{-1}$, resulting from a conversion reaction of MoS$_2$+4Li$^+$+4e$^-$→Mo+2Li$_2$S5. Furthermore, MoS$_2$ surface exists many unsaturated sulfur dangling bonds, which will also be involved in the charge and discharge reactions6, and consequently the actual capacity of MoS$_2$ is often higher than the theoretical value7. Recently, in order to improve the reversible capacity of MoS$_2$, many strategies were developed to synthesize various MoS$_2$ nanostructures including exfoliated MoS$_2$10 and hollow MoS$_2$ nanosheet assemblies, nanotubes11,12, nanoboxes13,14, MoS$_2$@void@MoS$_2$15, and hollow nanospheres16,17. Unfortunately, due to the poor conductivity, the MoS$_2$ materials exhibited inferior cycling stability and rate performance, which impedes their practical application18. One efficient solution is to introduce carbon materials, such as graphene nanosheets$^{18-29}$, carbon nanotubes30,32, carbon nanospheres31, carbon fiber cloth34,35, mesoporous carbon36 to improve the electrical conductivity of the composite materials. However, due to the lower capacity of these carbon materials, the overall energy density of the composite material would be suppressed.

Because of its high theoretical capacity (1005 mA h g$^{-1}$), low cost, abundance in nature, and environmental benignity Fe$_2$O$_3$ is another promising anode material37,38. Especially when Fe$_2$O$_3$ in ultrasmall size (5~10 nm) can exhibit high rate electrochemical performances37,38. Firstly, the ultrasmall size can greatly mitigate the volume expansion/contraction of Fe$_2$O$_3$ particles during charge/discharge. Secondly, a high lithium ion flux can be

1Key Laboratory of In-Fiber Integrated Optics, Ministry of Education and College of Science, Harbin Engineering University, Harbin 150001, China. 2Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education and School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China. Correspondence and requests for materials should be addressed to C.L. (email: chunyanli@hrbeu.edu.cn) or Y.C. (email: chenyujin@hrbeu.edu.cn)
achieved by the large surface area provided by the ultrasmall particles39. More importantly, due to the extremely short distance for lithium ions transportation within ultrasmall particles, the rate capability of lithium insertion/removal can be significantly enhanced40. However, the nanostructured Fe\textsubscript{2}O\textsubscript{3} exhibited a poor cycling stability due to structural damage during charging/discharging process37.

Herein, we report a facile method to grow ultrasmall Fe\textsubscript{2}O\textsubscript{3} nanoparticles on 2H-MoS\textsubscript{2} nanosheets, where MoS\textsubscript{2} nanosheets in the composite can serve as scaffolds, efficiently buffering the large volume changes of Fe\textsubscript{2}O\textsubscript{3} during charging/discharging process, whereas the ultrasmall Fe\textsubscript{2}O\textsubscript{3} nanoparticles mainly provide the specific capacity of the anode as well as the enhanced electrical conductivity. Furthermore, strong coupling between Fe\textsubscript{2}O\textsubscript{3} and MoS\textsubscript{2} nanosheets, elucidated by X-ray photoelectron spectrum measurements, facilitates a rapid charge transfer. In addition, MoS\textsubscript{2} nanosheets in the composite can also contribute to the total capacity of the anode. As a consequence, the composite prepared here exhibited superior electrochemical performance for anode material for Li-ion battery.

Results

SEM images (Fig. 1a and b) show that the as-prepared MoS\textsubscript{2} exhibits sheet-like morphology with a thickness and a lateral length of about 10 and 400 nm, respectively, similar to that reported previously41. After Fe\textsubscript{2}O\textsubscript{3} coating, the MoS\textsubscript{2} exhibits a similar morphology and lateral length to that of the pristine MoS\textsubscript{2} nanosheets, but the surface becomes drastically rough (Fig. 1c), in sharp contrast to the smooth surface of the pristine MoS\textsubscript{2} nanosheets (Fig. 1b). From the high-magnification SEM image of the composite (Fig. 1d)), it can also be found that many ultrasmall particles are anchored on both sides of basal planes of MoS\textsubscript{2} nanosheets. Figure 2a shows a TEM image taken from the basal plane of MoS\textsubscript{2} nanosheets in the composite. It can be found that Fe\textsubscript{2}O\textsubscript{3} nanoparticles are uniformly and densely deposited on the surface of the MoS\textsubscript{2} nanosheets. The size distribution plot (Figure S1) indicates that the average size of Fe\textsubscript{2}O\textsubscript{3} nanoparticles is about 4.0 nm. Most lattice fringes of the Fe\textsubscript{2}O\textsubscript{3} nanoparticles in the high-resolution TEM (HRTEM) image (Fig. 2b) are not resolved well, revealing the weak degree of

Figure 1. Structural characterization of MoS\textsubscript{2} nanosheets and Fe\textsubscript{2}O\textsubscript{3}/MoS\textsubscript{2} composite. (a,b) SEM of MoS\textsubscript{2} nanosheets, and (c,d) SEM of Fe\textsubscript{2}O\textsubscript{3}/MoS\textsubscript{2} composite.
crystallizations of the Fe₂O₃ nanoparticles. The labeled lattice spacing for Fe₂O₃ nanoparticles in the HRTEM image is about 0.209 nm and 0.252 nm, which can be assigned to the (400) plane and (311) plane of Fe₂O₃, respectively. The fast Fourier transformation (FFT) technique confirms the crystal nature of Fe₂O₃ on the MoS₂ nanosheets (Figure S2). Cross-section TEM image (Fig. 2c) reveals that the ultrasmall Fe₂O₃ nanoparticles mainly disperse on the basal planes of the MoS₂ nanosheets, in which the lattice fringes corresponding to (002) plane can be clearly observed. HRTEM image (Fig. 2d) reveals that the interlayer distance of the (002) plane of the MoS₂ nanosheets is about 0.707 nm, larger than the value (0.615 nm) of bulk MoS₂.

The crystal structures of the samples were examined using X-ray diffraction (XRD) measurement. Figure 3a shows the XRD pattern of the pristine MoS₂ nanosheets, in which the peaks located at 2θ = 32.2° corresponds to the (100) and (101) planes, 2θ = 38.3° corresponds to the (103) plane and the peaks located at 2θ = 57.3° corresponds to the (110) and (008) planes of 2H-MoS₂ (JCPDS No. 37−1492). Compared to 2H-MoS₂ bulk, these peaks slightly shift toward low-angle region, revealing the slightly enlarged lattice distances along the basal planes of 2H-MoS₂. Similar to the previous report41, two additional peaks located at 9.2° and 18.5°, marked by “#”, are also observed at low-angle region. The corresponding d-spacings calculated according to the Bragg equation are 0.96 and 0.48 nm, respectively. The diploid relation between the d-spacings reveals that the MoS₂ nanosheets possess a new lamellar structure with a larger interlayer spacing of 0.96 nm than that of 0.615 nm in bulk 2H-MoS₂34,41,42. The enlarged interlayer spacing may be related to the synthesis conditions28,34,41,42. As previously reported41, when the temperature was lower than 180 °C, the MoS₂ nanosheets with enlarged interlayer spacing (0.95 nm) could be obtained in alkaline media; while the temperature was increased to 220 °C, the interlayer distance of the nanosheets kept the same value as that in bulk MoS₂41. On the other hand, the enlarged interlayer spacing could be achieved in the media containing urea at 220 °C; however, when the pH in the media was decreased by replacing urea with ammonium fluoride, even at the same temperature the phenomenon did not occur42. Therefore, the alkalinity and the synthetic temperature seriously affect the interlayer distance of the MoS₂ nanosheets. Under

Figure 2. TEM image of Fe₂O₃/MoS₂ composite. (a,b) TEM and HRTEM images taken from basal plane, and (c,d) cross-section TEM and HRTEM image of basal plane.
the experimental conditions such as strong alkaline media and low temperature, oxygen species may incorpo -
rate more easily with MoS 2, leading to the different lamellar structure with an enlarged interlayer spacing than
that of 0.615 in bulk 2H-MoS 2 . However, the new lamellar structure is thermodynamically unstable. After
annealing the MoS 2 nanosheets at 500 °C for 3 h under an Ar flow, XRD analysis was carried out. As shown
in Figure S3, the diffraction peaks at 9.2° and 18.5° disappear, while all the resolved peaks can be assigned to
thermodynamically stable 2H-MoS 2 (JCPDS No. 37–1492). After Fe 2 O 3 coating, the peak corresponding to the
(002) plane is suppressed significantly, further suggesting that uniform and dense nanoparticles are deposited
on the both sides of the basal plane of the MoS 2 nanosheets (Fig. 3b). In addition, the peaks from the Fe 2 O 3 and
MoS 2 can also be identified in the XRD pattern. The diffraction peaks at 2θ = 33.4° can be assigned to (100) and
(101) planes, 2θ = 39.5° can be assigned to (103) plane and 2θ = 58.5° can be assigned to (110) and (008) planes
of 2H-MoS 2 , respectively, whereas those at 2θ = 14.5°, 26.1°, 30.2°, 35.5°, 43.2°, 44.6°, 53.6°, 57.1°, 59.6° and 62.7°
can be indexed to (110), (211), (220), (311), (400), (410), (422), (511), (520) and (440) planes of Fe 2 O 3 (JCPDS no.
39–1346), respectively. Notably, the peak position of (110) plane is different from that in Fig. 3b. This
is because the pristine MoS 2 nanosheets with the enlarged interlayer spacing are thermodynamically unstable
phases, while the MoS 2 nanosheets in Fe 2 O 3 /MoS 2 composite, which were annealing at 500 °C for 3 h under an
Ar flow, are thermodynamically stable. They had different lamellar structures, leading to significantly difference
in XRD results (Fig. 3 and Figure S4). Compared to the XRD pattern of the annealed MoS 2 nanosheets with that
of the Fe 2 O 3 /MoS 2 composite, the peak position of (110) plane is almost identical (Figure S5). The above results
demonstrate that crystalline Fe 2 O 3 nanoparticles are successfully anchored on the surface of MoS 2 nanosheets.

X-ray photoelectron spectroscopy (XPS) analysis was carried out to determine surface chemical compositions
and valence states of the Fe 2 O 3 /MoS 2 composite and the MoS 2 nanosheets. Figure 4a shows the high-resolution
XPS spectra of Mo 3d core level for the two samples. Two peaks at 231.9 eV and 228.7 eV are observed in the Mo
3d spectrum of the MoS 2 nanosheets, corresponding to Mo 4+ species. After coating Fe 2 O 3 , the two peaks shift
to high binding energy side by an approximately 0.3 eV. The shift of the binding energy indicates that electron
transfer from MoS 2 to Fe 2 O 3 occurs. It can be concluded that the strong coupling between MoS 2 and Fe 2 O 3 is
presented in the composite. However, such shift in the physical mixture MoS 2 +Fe 2 O 3 does not occur (Figure S6),
revealing the advantage of our method for preparation of the Fe 2 O 3 /MoS 2 composite. In addition, two additional
peaks at 235.6 eV and 232.5 eV are assigned to Mo 6+ species, suggesting the surface oxidization of MoS 2 due
to the electron transfer. In the XPS spectrum of S 2p core level for the pure MoS 2 nanosheets, the main doublet
located at binding energies of 161.6 and 162.9 eV correspond to the S 2p 3/2 and S 2p 1/2 , respectively (Fig. 4b).
There are no obvious shift of the binding energy of the two peaks for the Fe 2 O 3 /MoS 2 composite, implying that the
Fe 2 O 3 coating has little effect on the valence states of the S species. In the Fe 2p core level spectrum for the Fe 2 O 3 /
MoS 2 composite, the peaks at 711.3 eV, 719.2 eV and 724.8 eV represent the binding energies of Fe 2p 3/2 , shake-up
satellite Fe 2p 1/2 , and Fe 2p 3/2 of Fe 3+ species, respectively (Fig. 4c). These values are consistent with the data of
Fe 2 O 3 , reported by the previous literatures, confirming the existence of Fe 2 O 3 in the Fe 2 O 3 /MoS 2 composite.

Compared to the XPS spectra of Fe 2 O 3 in the physical mixture MoS 2 +Fe 2 O 3 , the peaks for Fe 2p 3/2 and Fe 2p 1/2
shift to low binding energy side, further confirming the coupling effect between Fe 2 O 3 and MoS 2 in the Fe 2 O 3 /
MoS 2 composite. The peaks 529.9 and 530.0 eV in the high-resolution XPS spectrum of O 1 s core level for the
Fe 2 O 3 /MoS 2 composite can be assigned to oxygen in the lattice (Fe−O) 50,51 and oxygen in the lattice (Mo−O) 41,
respectively (Fig. 4d). Besides, the peak at 531.5 eV is associated to the hydroxyl oxygen.
Cyclic voltammogram (CV) tests for coin cells of the pristine MoS2 nanosheets were recorded at ambient temperature in the voltage range of 0.01–3 V at a scan rate of 1 mV s\(^{-1}\) for the initial five cycles, as shown in Fig. 5a. The peak of 0.87 V in the first cathodic scanning is ascribed to the intercalation of lithium ion on different defect sites in MoS2 to form Li\(_x\)MoS2. In the following cathodic scanning, two new reduction peaks at approximately 1.65 V and 1.15 V are observed, which are due to the conversion of S to Li\(_2\)S and the association of Li with Mo respectively\(^{52,53}\). During the anodic scans, two peaks at 1.92 and 2.42 V are clearly observed and maintain for the subsequent sweeps, which are related to the conversion reaction of Mo and Li\(_2\)S to MoS\(_2\) phase\(^{54,55}\). As for the pure Fe\(_2\)O\(_3\) in Fig. 5b, the reduction peaks at 0.36 V is observed in the first cycle, and its position shifts to 0.57 V at the following scanning, which is attributed to the reduction of Fe(III) to Fe(0). In the anodic scans, the oxidation peak at 1.95 V is the oxidation of Fe to Fe\(_2\)O\(_3\). As for the Fe\(_2\)O\(_3\)/MoS\(_2\) composite, three reduction peaks at 0.36 V, 0.87 V and 1.20 V are observed in the first cycle (Fig. 5c). The reduction peaks locate at 0.36 V and 0.87 V during the first anodic scan can match anodic scan peaks of pure Fe\(_2\)O\(_3\) and pure MoS\(_2\), respectively. The peak located at 1.20 V shows a same start shoulder at ~1.05 V with pure MoS\(_2\), which suggest the same lithiation process of MoS\(_2\)\(^8\). At the following scanning, however, these peaks shift to 0.65 V, 1.15 V and 1.75 V respectively. The peak at 1.15 V is related to the conversion of MoS\(_2\) to Mo and Li\(_2\)S, while two other peaks at 1.75 and 0.65 V are attributed to the formation of Li\(_x\)Fe\(_2\)O\(_3\) due to the lithiation of Fe\(_2\)O\(_3\) and the reduction of Fe(III) to Fe(0), respectively\(^{56-60}\). In the anodic scans, the oxidation peaks at 1.82 V and 2.40 V stand for oxidation of Mo and Li\(_2\)S to MoS\(_2\), respectively. The CV results demonstrate that both Fe\(_2\)O\(_3\) and MoS\(_2\) in the composite contribute to the capacity of the composite. As for the physical mixture Fe\(_2\)O\(_3\)+MoS\(_2\) (Fig. 5d), three reduction peaks at 0.43 V, 1.04 V and 1.30 V are found in the first cycle, and then their positions shift to 0.71 V, 1.16 V and 1.81 V after the following scanning, which are close to the positions of the corresponding peaks for Fe\(_2\)O\(_3\)/MoS\(_2\) composite (Fig. 5c). In the anodic scans, the oxidation peaks are also in accordance with Fe\(_2\)O\(_3\)/MoS\(_2\) composite. The observations suggest that similar electrochemical reactions occur for Fe\(_2\)O\(_3\)+MoS\(_2\) and Fe\(_2\)O\(_3\)/MoS\(_2\) composites during charging/discharging process. However, the physical mixture Fe\(_2\)O\(_3\)+MoS\(_2\) has larger irreversible capacity than the Fe\(_2\)O\(_3\)/MoS\(_2\) composite, as shown in Fig. 5c and d, suggesting advantage of coupling ultrasmall Fe\(_2\)O\(_3\) nanoparticles with MoS\(_2\) nanosheets. Figure 5e–h show the voltage-capacity curves of pristine MoS\(_2\) nanosheets, pure Fe\(_2\)O\(_3\), Fe\(_2\)O\(_3\)/MoS\(_2\) composite and physical mixture Fe\(_2\)O\(_3\)+MoS\(_2\) at a current density of 100 mA g\(^{-1}\). The initial discharging/discharging capacities of the Fe\(_2\)O\(_3\)/MoS\(_2\) composite are 1366/1207 mAh g\(^{-1}\), greatly larger than that of pure MoS\(_2\) nanosheets (854/754 mAh g\(^{-1}\)), pure Fe\(_2\)O\(_3\) (1218/879 mAh g\(^{-1}\)) and the physical mixture Fe\(_2\)O\(_3\)+MoS\(_2\) (1056/815 mAh g\(^{-1}\)). Furthermore, the Fe\(_2\)O\(_3\)/MoS\(_2\) composite has a Coulombic efficiency of 88.4% at the first cycle, much higher than that of the physical mixture Fe\(_2\)O\(_3\)+MoS\(_2\) (77.2%), consistent with the CV results. The energy efficiency (discharge energy/charge energy) of the Fe\(_2\)O\(_3\)/MoS\(_2\) composite are 43%–58% (Figure S7). The larger specific capacity and higher Coulombic efficiency of the Fe\(_2\)O\(_3\)/MoS\(_2\) composite indicate that coupling ultrasmall Fe\(_2\)O\(_3\) particles with MoS\(_2\) nanosheets is an efficient strategy to improve the electrochemical performance of the MoS\(_2\) nanosheets.

Figure 4. XPS spectra of Fe\(_2\)O\(_3\)/MoS\(_2\) composite and MoS\(_2\) nanosheets. (a) Mo 3d XPS spectrum, (b) S 2p XPS spectra, (c) Fe 2 P XPS spectrum, and (d) O 1 s XPS spectrum.
To confirm the superiority of the Fe2O3/MoS2 composite as an anode material over the pristine MoS2 nanosheets and the physical mixture Fe2O3/MoS2, in the lithium storage performance, we compared their cycling behaviors at different current densities (Fig. 6). Clearly, MoS2 nanosheets deliver an initial capacity of 854 mAh g\(^{-1}\) at a current density of 100 mA g\(^{-1}\) (Fig. 6a), higher than its theoretical value due to its ultra-thin nanosheets for lithium storage. However, obvious capacity decay is witnessed when cycled at a high current density (Fig. 6a). For example, the capacity decreases from 638 mA h g\(^{-1}\) to 449 mA h g\(^{-1}\) at 1 A g\(^{-1}\) only after 40 cycles. This phenomenon is probably due to the exfoliation of the ultra-thin MoS2 nanosheets during discharging/charging process. Similarly, the pure Fe2O3 delivers an initial discharge capacity of 1219 mA h g\(^{-1}\) at a current densities of 100 mA g\(^{-1}\), and the capacity decreases from 533 mA h g\(^{-1}\) to 287 mA h g\(^{-1}\) at 1 A g\(^{-1}\) only after 55 cycles (Fig. 6b). As the MoS2 nanosheets are mixed with Fe2O3 mechanically, slightly better cycling stability at the current densities of 100 mA g\(^{-1}\) and 1 A g\(^{-1}\) than the pristine MoS2 nanosheets can be achieved, as shown in Fig. 6c. However, the physical mixture still shows poor cycling stability at a high current density. For example, the discharge capacity of the physical mixture decreases from 698 mA h g\(^{-1}\) to 545 mA h g\(^{-1}\) after 80 cycles at a high current density of 1 A g\(^{-1}\) (Fig. 6c). In contrast, the Fe2O3/MoS2 composite exhibits dramatically enhanced rate capability (Fig. 6d, e, and Figure S8). Furthermore, the Fe2O3/MoS2 composite shows an excellent cycling durability at different current densities. For example, the Fe2O3/MoS2 composite delivers an initial discharge capacity of 1366 mAh g\(^{-1}\) at current densities of 100 mA g\(^{-1}\). The capacity does not decay after 150 cycles, but gradually increases to 1350 mA h g\(^{-1}\) with a high Coulombic efficiency of ≈98.7% (Fig. 6d). Surprisingly, even at high current densities of 1 and 2 A g\(^{-1}\), the composite also exhibits excellent cycling stability (Fig. 6e). The capacity of the Fe2O3/MoS2 composite increases from 908 mA h g\(^{-1}\) to 1011 mA h g\(^{-1}\) at 1 A g\(^{-1}\), and from 829 mA h g\(^{-1}\) to 864 mA h g\(^{-1}\) at 2 A g\(^{-1}\) after 140 cycles (Fig. 6e). The cycling performance is inferior to that of MoS2/graphene composite with the capacity of 907 mA h g\(^{-1}\) after 400 cycles\(^{29}\), however, comparable or superior to most other Fe2O3 and MoS2 or their composites, which is summarized in Table S1\(^{13,21,37,61–71}\). For example, the capacity of Fe2O3 nanoparticles was only about 300 mAh g\(^{-1}\) at ca. 100 mA g\(^{-1}\) after 100 cycles\(^{22}\); the capacity of CNTs–MoS2 was 737 mA h g\(^{-1}\) at 100 mA g\(^{-1}\) after 30 cycles\(^{69}\). Furthermore, when the current density is increased to 5 A g\(^{-1}\), the composite shows a relatively bad cycling durability, but still delivers a capacity of 481 mA h g\(^{-1}\) after 140 cycles. To reveal the charge/discharge stability of anode, the SEM and elemental mapping analyses of Fe2O3/MoS2 composite after 100 cycles were carried out. After the cycling, the ultrasmall Fe2O3 nanoparticles are still resolved in the basal planes of the MoS2 nanosheets, as shown in Figure S9. Elemental mapping images (Figure S10) reveal that Fe and Mo elements are uniformly distributed in the composite. These results above demonstrate that the Fe2O3/MoS2 composite exhibit significantly enhanced capacity, rate capability and cyclability stability compared to the pristine MoS2 nanosheets, the pure Fe2O3, and the physical mixture Fe2O3/MoS2. Notably, the electrochemical performance of Fe2O3/MoS2 composite was measured at room temperature. It is well known that the electrochemical performance of the anode material for LIBs is suppressed significantly at the ambient temperature lower than 0 °C. However, as previously reported, the specific capacity of MoS2/G electrode at −20 °C still remained ca. 700 mA h g\(^{-1}\) at 100 mA g\(^{-1}\). This result indicates that MoS2-based anode material may be used at low-temperature environment. The electrochemical performance of our Fe2O3/MoS2 composite at such low-temperature environment is studied under way.
Discussion

The excellent electrochemical properties of the Fe$_2$O$_3$/MoS$_2$ composite, as evidenced by a remarkably increased reversible capacity, improved rate capability, and robust long-term stability even at a high current density, indicates that the Fe$_2$O$_3$/MoS$_2$ composite is favorable for superior anode materials for Li-ion battery. The following factors can be attributed to the improved electrochemical properties of the Fe$_2$O$_3$/MoS$_2$ composite. First, unlike some designed composites, both Fe$_2$O$_3$ and MoS$_2$ in our composite can contribute to the total capacity of the anode, elucidated by CV measurements (Fig. 5c). The high reversible capacity of the Fe$_2$O$_3$/MoS$_2$ composite may also be related to its unique heteronanostructure character. As we know, during the first discharge process, Fe$_2$O$_3$ reacts with Li$^{+}$, and then Fe and Li$_2$O will gradually produce (Equation 1); however, only partial Li$_2$O can reversibly converse to Li$^{+}$ during the subsequent charging process, leading to a high irreversible capacity of Fe$_2$O$_3$-based anodes. On the other hand, during the first discharging process of MoS$_2$, amorphous Mo metal clusters will form (Equation 2) and disperse on the surface of MoS$_2$. The Mo metal clusters have highly electrochemical activity. Considering the unique heteronanostructure of the Fe$_2$O$_3$/MoS$_2$ composite, the Mo metal clusters on the MoS$_2$ surface can efficiently contact with Li$_2$O and make the irreversible Li$_2$O converse to Li$^{+}$, as shown in Fig. 7a. As a result, the Fe$_2$O$_3$/MoS$_2$ composite shows a low irreversible capacity and a high Coulombic efficiency of 88.4% at the first cycle. As for the physical mixture Fe$_2$O$_3$+MoS$_2$, since the efficient contact between Mo and Li$_2$O is more difficultly available, the conversion of Li$_2$O to Li$^{+}$ will be greatly suppressed (Fig. 7b). Consequently, the physical mixture Fe$_2$O$_3$+MoS$_2$ shows a high irreversible capacity and a low Coulombic efficiency at the first cycle (Fig. 5d and h).

\[
\text{Fe}_2\text{O}_3 + 6\text{Li}^{+} \rightarrow \text{Fe} + \text{Li}_2\text{O} \quad (1)
\]

\[
\text{MoS}_2 + 4\text{Li}^{+} \rightarrow \text{Mo} + \text{Li}_2\text{S} \quad (2)
\]

Second, the average Fe$_2$O$_3$ size is approximately 4.0 nm, which can shorten the Li ion transfer length and then facilitate the improvement of the rate capability. Additionally, nitrogen adsorption–desorption isotherms show that Brunauer–Emmett–Teller (BET) surface areas and cumulative volume of pores were 12.5 m2 g$^{-1}$ and 0.06 cm3 g$^{-1}$ for the pristine nanosheets, around two times lower than those of the composite (23.1 m2 g$^{-1}$ and 0.12 cm3 g$^{-1}$), as shown in Figure S11 and Figure S12. The bigger BET surface area and larger pore volume not only allow for fast Li-ion diffusion, but also buffer the volume changes accompanying the Li charging and discharging processes.

Third, the strong coupled interfaces boost a rapid interfacial charge transfer, leading to excellent rate capability of the Fe$_2$O$_3$/MoS$_2$ composite, as evidenced by electrochemical impedance measurements. Nyquist plots (Fig. 8) shows that the Fe$_2$O$_3$/MoS$_2$ composite has a charge transfer resistance (R_{ct}) of 39.9 Ω, greatly smaller than that of the physical mixture Fe$_2$O$_3$+MoS$_2$ (238.9 Ω), the pure Fe$_2$O$_3$ (136.0 Ω) and the
pristine MoS2 nanosheets (51.3 Ω), at high frequency 100000 Hz, low frequency 0.01 Hz and amplitude 0.005 V. The strong coupling between MoS2 and Fe2O3 implies that small Fe2O3 nanoparticles are tightly anchored on the MoS2 scaffolds, facilitating long-term stability of the Fe2O3/MoS2 composite even at a high current density. Taken together, the synergistic effect of two excellent anode materials and the unique structural features of the composite make it an attractive candidate for anode material for Li-ion battery.

In summary, a facile and cost-effective strategy was developed to anchor ultrasmall Fe2O3 nanoparticles on the surface of MoS2 nanosheets. Due to the synergistic effect of two excellent anode materials and the unique structural feature, the Fe2O3/MoS2 composite exhibits excellent electrochemical properties, including a remarkably increased reversible capacity, improved rate capability, and long-term stability even at a high current density. After 140 cycles the reversible capacity of the composite does not decay, but increases from 829 mA h g\(^{-1}\) to 864 mA h g\(^{-1}\) at a high current density of 2 A g\(^{-1}\), outperforming other MoS2- and iron oxide-based anode materials previously reported. Thus, the facile strategy may open a way for development of cost-efficient anode material with high-performance for large-scale energy conversion and storage systems.

Methods

Synthesis of samples. MoS2 nanosheets were first synthesized by a solution-based method\(^{40}\). Simply, \((\text{NH}_4)_6\text{Mo}_7\text{O}_{24} \cdot 4\text{H}_2\text{O}\) (1 mmol) and thiourea (30 mmol) were dissolved in distilled water (35 mL) under vigorous stirring to form a homogeneous solution. After being stirred for 30 min, the solution was transferred into a 50 mL Tellon-lined stainless steel autoclave and maintained at 180°C for 24 h. The obtained products were collected by centrifugation, washed with distilled water and ethanol, and dried at 40°C under vacuum. The obtained MoS2...
nаносheets (30 mg) was dispersed in ethyl alcohol (75 mL) and then iron acetylacetone (0.5 mmol), distilled water (1.8 mL) and ammonia (2 mL) were added. After sonication for 15 min at room temperature the mixture was heated at 80 °C for 10 h in a water bath. The precipitates were separated by centrifugation, washed with distilled water and ethanol, and dried at 40 °C for 24 h under vacuum. The growth of ultra-small Fe₃O₄ nanoparticles on the MoS₂ nanosheets was achieved after the dried powder was thermally treated at 500 °C for 3 h under an Ar flow. For convenience, the obtained sample denoted as Fe₂O₃/MoS₂ composite. As shown in Figure S13, the Fe and Mo atom ratio was 2:1. The Fe₂O₃ was prepared by heating graphene–hollow iron oxide at 500 °C for 1.5 h under air atmosphere²², and then was thermally treated at 350 °C for 1 h under an Ar/H₂ flow. The physical mixture Fe₂O₃ and MoS₂ (denoted as Fe₂O₃+MoS₂) as reference sample was prepared by grinding the MoS₂ nanosheets and commercial Fe₂O₃ powder according to Fe and Mo atomic ratio.

Structure characterizations. The morphology and size of the samples were characterized by scanning electron microscope (SEM, Hitachi SU 70) (Condition = Vanc = 15KV, Mag = x600k-x250k, Working Distance = 15800 um, Emission Current = 28000 nA) and a FEI Tecnai-F20 transmission electron microscope (TEM) equipped with a Gatan imaging filter (GIF), operated at an accelerating voltage of 200 kV, combined with HRTEM and EDX measurements. The crystal structure of the sample was determined by X-ray diffraction (XRD) [D/max 2550 V, Cu Kα radiation] in the 20 range of 5–70°. (X-Ray 40 kV/100 mA, DivSlit 1 deg., RecSlit open, DivH.L.Slit 10mm, ScitSlit 8.0mm, Step 0.02). X-ray photoelectron spectra (XPS) were carried out by using a spectrometer with Mg Kα radiation (PHI 5700 ESCA System). The binding energy was calibrated with the C1s position of contaminant carbon in the vacuum chamber of the XPS instrument (284.6 eV). The pore diameter distribution and surface area were tested by nitrogen adsorption/desorption analysis (TRISTAR III020).

Electrochemical measurements. The electrochemical tests were performed at ambient temperature using two-electrode coin cells (CR 2016) with lithium foils serving as the counter electrode. The active material was mixed with a conductive acetylene black, and a commercial polymer binder (LA133) at a weight ratio of 70:15:15. The mixture was painted onto a Cu foil and dried in air, then cut into 14 mm diameters of round piece. Finally, the electrode pieces were dried in vacuum at 60 °C for 12 h to adequately evaporate the residual moisture. The average thickness and mass loading of the electrode were ~3.5 μm. The electrochemical performance was carried out on a battery measurement system (LAND-BT2013A) at various current densities of 100–5000 mA g⁻¹ in the cutoff voltage range of 3 to 0 V versus Li/Li⁺ at room temperature (~20°C). Cyclic voltammetry measurements were carried out on a CHI660D electrochemical workstation over the potential range of 3.0 to 0.01 V at a scan rate of 1 mV s⁻¹.

References

1. Armand, M. & Tarascon, J. M. Building better batteries. *Nature* **451**, 652–657 (2008).
2. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. *Nature* **414**, 359–367 (2001).
3. Wang, L. E.; Xu, Z.; Wang, W. L. & Bai, X. D. Atomic mechanism of dynamic electrochemical lithiation processes of MoS₂ nanosheets. *J. Am. Chem. Soc.* **136**, 6693–6697 (2014).
4. Wang, Q. & Li, J. Facilitated lithium storage in MoS₂ overlays supported on coaxial carbon nanotubes. *J. Phys. Chem. C* **111**, 1675–1682 (2007).
5. Yu, X. Y.; Yu, L. & Lou, X. W. Metal sulfide nanomaterials for electrochemical energy storage. *Adv. Energy Mater.* **6**, 1501333 (2016).
6. Liu, H. et al. Highly ordered mesoporous MoS₂ with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. *Adv. Energy Mater.* **2**, 970–975 (2012).
7. Sen, U. K. & Mitra, S. High-rate and high-energy-density lithium-ion battery anode containing 2D MoS₂ nanowall and cellulose binder. *ACS Appl. Mater. Interfaces* **5**, 1240–1247 (2013).
8. Sun, P. L. et al. Synthesis of hierarchical MoS₂, and its electrochemical performance as an anode material for lithium-ion batteries. *J. Mater. Chem. A* **2**, 3498–3504 (2014).
9. Stephenson, T.; Li, Z.; Olsen, B. & Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS₂) nanocomposites. *Energy Environ. Sci.* **7**, 209–231 (2014).
10. Xiao, J. et al. Exfoliated MoS₂ nanocomposite as an anode material for lithium ion batteries. *Chem. Mater.* **22**, 4522–4524 (2010).
11. Wang, P. P.; Sun, H. Y.; Ji, Y. J.; Li, W. H. & Wang, X. Three-dimensional assembly of single-layered MoS₂. *Adv. Mater.* **26**, 964–969 (2014).
12. Li, G. D. et al. Facile synthesis of hierarchical hollow MoS₂ nanotubes as anode materials for high-performance lithium-ion batteries. *CrystEngComm* **16**, 10754–10759 (2014).
13. Zhang, L.; Wu, H. B.; Yan, Y.; Wang, X. & Lou, W. H. Hierarchical MoS₂ microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. *Energy Environ. Sci.* **7**, 3302–3306 (2014).
14. Yu, X. Y.; Hu, H.; Wang, Y. W.; Chen, H. Y. & Lou, X. W. Ultrathin MoS₂ nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. *Angew. Chem. Int. Ed.* **54**, 7395–7398 (2015).
15. Ko, Y. N.; Kang, Y. C. & Park, S. B. Superior Electrochemical properties of MoS₂ powders with a MoS₂@violet MoS₂ configuration. *Nanoscale* **6**, 4508–4512 (2014).
16. Ding, S.; Zhang, D.; Chen, J. S. & Lou, X. W. Facile synthesis of hierarchical MoS₂ microspheres composed of few-layered nanosheets and their lithium storage properties. *Nanoscale* **4**, 95–98 (2012).
17. Wang, M.; Li, G.; Xu, H. Y. & Qian, Y. T.; Yang, J. Enhanced lithium storage performances of hierarchical hollow MoS₂ nanoparticles assembled from nanosheets. *ACS Appl. Mater. Interfaces* **5**, 1003–1008 (2013).
18. Wang, Z. et al. CTAB-assisted synthesis of single-layer MoS₂-graphene composites as anode materials of Li-ion batteries. *J. Mater. Chem. A* **1**, 2202–2210 (2013).
19. Pham, V. H. et al. Liquid phase Co-exfoliated MoS₂ graphene composites as anode materials for lithium ion batteries. *J. Power Sources* **244**, 280–286 (2013).
20. Hou, Y. et al. N-doped graphene/porous g-C₃N₄ nanosheets supported layered- MoS₂ hybrid as robust anode materials for lithium-ion batteries. *Nano Energy* **8**, 157–164 (2014).
21. Wang, Q. & Li, J. H. Facile lithium storage in MoS₂ overlayers supported on coaxial carbon nanotubes. *J. Phys. Chem. C* **111**, 1675–1682 (2007).
22. Li, G. D. et al. Facile synthesis of hierarchical hollow MoS₂ nanotubes as anode materials for high-performance lithium-ion batteries. *CrystEngComm* **16**, 10754–10759 (2014).
23. Zhang, L.; Wu, H. B.; Yan, Y.; Wang, X. & Lou, W. H. Hierarchical MoS₂ microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. *Energy Environ. Sci.* **7**, 3302–3306 (2014).
24. Yu, X. Y.; Hu, H.; Wang, Y. W.; Chen, H. Y. & Lou, X. W. Ultrathin MoS₂ nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. *Angew. Chem. Int. Ed.* **54**, 7395–7398 (2015).
25. Ko, Y. N.; Kang, Y. C. & Park, S. B. Superior Electrochemical properties of MoS₂ powders with a MoS₂@violet MoS₂ configuration. *Nanoscale* **6**, 4508–4512 (2014).
26. Ding, S.; Zhang, D.; Chen, J. S. & Lou, X. W. Facile synthesis of hierarchical MoS₂ microspheres composed of few-layered nanosheets and their lithium storage properties. *Nanoscale* **4**, 95–98 (2012).
27. Wang, M.; Li, G.; Xu, H. Y. & Qian, Y. T.; Yang, J. Enhanced lithium storage performances of hierarchical hollow MoS₂ nanoparticles assembled from nanosheets. *ACS Appl. Mater. Interfaces* **5**, 1003–1008 (2013).
28. Wang, Z. et al. CTAB-assisted synthesis of single-layer MoS₂-graphene composites as anode materials of Li-ion batteries. *J. Mater. Chem. A* **1**, 2202–2210 (2013).
29. Pham, V. H. et al. Liquid phase Co-exfoliated MoS₂ graphene composites as anode materials for lithium ion batteries. *J. Power Sources* **244**, 280–286 (2013).
30. Hou, Y. et al. N-doped graphene/porous g-C₃N₄ nanosheets supported layered- MoS₂ hybrid as robust anode materials for lithium-ion batteries. *Nano Energy* **8**, 157–164 (2014).
21. Huang, G. C. et al. Graphene-like MoS2/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium. Small 9, 3693–3703 (2013).
22. Cao, X. H. et al. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 9, 3433–3438 (2013).
23. Zhou, X. S., Wan, L. J. & Guo, Y. G. Synthesis of MoS2 nanosheet–graphene nanosheet hybrid materials for stable lithium storage. Chem. Commun. 49, 1838–1840 (2013).
24. Xiao, J. et al. Electrochemically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium. Adv. Funct. Mater. 21, 2840–2846 (2011).
25. Li, H. L. et al. MoS2/graphene hybrid nanoflowers with enhanced electrochemical performances as anode for lithium-ion batteries. J. Phys. Chem. C 119, 7959–7968 (2015).
26. Wang, B. H. et al. Heat-induced formation of porous and free-standing MoS2/GS hybrid electrodes for binder-free and ultralong-life lithium-ion batteries. Nano Energy 8, 183–195 (2014).
27. Ma, L., Ye, J. B., Chen, W. X., Chen, D. Y. & Lee, J. Y. Gemini surfactant assisted hydrothermal synthesis of nanotube-like MoS2/graphene hybrid with enhanced lithium storage performance. Nano Energy 10, 144–152 (2014).
28. Yu, H. L. et al. Three-dimensional hierarchical architectures constructed by graphene/MoS2 nanoflake arrays and their rapid charging/discharging properties as lithium-ion battery anodes. Chem.– Eur. J. 19, 5818–5823 (2013).
29. Teng, Y. Q. et al. MoS2 Nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano 10, 8526–8535 (2016).
30. Zhu, C. B., Mu, X. K., Aken, P. A., Maier, J. & Yu, Y. Fast Li storage in MoS2-graphene-carbon nanotube nanocomposites: advantageous functional integration of 0D, 1D, and 2D nanostructures. Adv. Energy Mater. 5, 1401170 (2015).
31. Wang, J. Z. et al. Development of MoS2–CNT composite thin film from layered MoS2 for lithium batteries. Adv. Energy Mater. 3, 798–805 (2013).
32. Kartick, B., Sunee Kumar, S. & Souindra, M. MoS2–MWCNT hybrids as a superior anode in lithium-ion batteries. Chem. Commun. 49, 1823–1825 (2013).
33. Zhang, L. & Lou, X. W. Hierarchical MoS2 shells supported on carbon spheres for highly reversible lithium storage. Chem.– Eur. J. 20, 5219–5223 (2014).
34. Yu, H. L. et al. Three-dimensional hierarchical MoS2 nanoflake array/carbon cloth as high-performance flexible lithium-ion battery anodes. J. Mater. Chem. A 2, 4551–4557 (2014).
35. Zhao, C. Y. et al. Thin MoS2 nanoflakes encapsulated in carbon nanofibers as high-performance anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 6392–6398 (2014).
36. Xu, L. et al. A nanosheets-on-channel architecture constructed from MoS2 and CMK-3 for high-capacity and long-cycle-life lithium storage. Adv. Energy Mater. 4, 1400924 (2014).
37. Luo, F. D. et al. α-Fe2O3 lithium battery anodes by nanocasting strategy from ordered 2D and 3D templates. J. Alloys Compd. 615, S482–S486 (2014).
38. Cao, Z. Y. & Wei, B. Q. α-Fe2O3 single-wall carbon nanotube hybridfilms as highperformance anodes for rechargeable lithium-ion batteries. J. Power Sources 241, 330–340 (2013).
39. Wang, X. G., Li, H. Q., He, P., Hosono, E. & Zhou, H. S. Nano active materials for lithium-ion batteries. Nanoscale 2, 1294–1305 (2010).
40. Bruce, P. G., Scrosati, B. & Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008).
41. Xie, J. F. et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 135, 17881–17888 (2013).
42. Yu, H. L. et al. A strategy to synergistically increase the number of active edge sites and the conductivity of MoS2 nanosheets for hydrogen evolution. Nanoscale 7, 8731–8738 (2015).
43. Baker, M. A., Gilmore, R., Lenardi, C. & Gisler, W. XPS Investigation of preferential sputtering of S from Mo and 2 determination of MoS stoichiometry from Mo and S peak x positions. Surf. Sci. 150, 255–262 (1999).
44. Wang, H. W., Skeldon, P. & Thompson, G. E. XPS studies of MoS2 formation from ammonium tetrathiomolybdate solutions. Surf. Coat. Technol. 91, 200–207 (1997).
45. Lin, T. R., Wang, J., Guo, L. Q. & Fu, F. F. Fe3O4@MoS2 core–shell composites: preparation, characterization, and catalytic application. J. Phys. Chem. C 119, 13658–13664 (2015).
46. Jiang, Y. Z. et al. Amorphous Fe3O4, as a high-capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy 4, 23–30 (2014).
47. Biesinger, M. C. et al. Creating a synergistic interplay between tubular MoS2 and particulate Fe3O4 for improved lithium storage. Adv. Funct. Mater. 24, 3195–3202 (1999).
48. Xiong, Y. H. et al. Synthesis of magnetic porous γ-Fe2O3/C@HKUST-1 composites for efficient removal of dyes and heavy metal ions from aqueous solution. RSC Adv. 5, 5164–5172 (2015).
49. Fujii, T., De Groot, F. M. & Sawatzky, G. A. In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 59, 3195–3202 (1999).
50. Sun, M., Dong, Y. Z., Zhang, G., Qu, J. H. & Li, J. H.-α-Fe2O3, spherical nanocrystals supported on CNTs as efficient non-noble electrocatalyst for oxygen reduction reaction. J. Mater. Chem. A 2, 13635–13640 (2014).
51. Pradhan, G. K., Padhi, D. K. & Parida, K. M. Fabrication of α-Fe2O3 nanorod/rGO composite: a novel hybrid photocatalyst for alcohol degradation. ACS Appl. Mater. Interfaces 5, 9101–9110 (2013).
52. Lu, Y. T. et al. MoS2 nanoflowers consisting of nanosheets with a controllable interlayer distance as high-performance lithium ion anodes. RSC Adv. 5, 7938–7943 (2015).
53. Fang, P. et al. Lithium storage in commercial MoS2 in different potential ranges. Electrochim. Acta 81, 155–160 (2012).
54. Hwang, H., Kim, H. & Cho, J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11, 4826–4830 (2011).
55. Chang, K. & Chen, W. X. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5, 4720–4728 (2011).
56. Ye, J., Zhang, J., Wang, F. X., Su, Q. M. & Du, G. H. One-potsynthesis of Fe2O3/graphene and its lithium-storage performance. Electrochim. Acta 113, 212–217 (2013).
57. Liu, J. L. et al. Three dimensinals α-Fe2O3/polypyrrole (ppy) nanorozay as anode for micro lithium ion batteries. Nano Energy 2, 726–732 (2013).
58. Zhou, G. W. et al. Facile spray drying route for the three-dimensional graphene encapsulated Fe2O3 nanoparticles for lithium battery anodes. Ind. Eng. Chem. Res. 52, 1197–1204 (2013).
59. Xu, S. M. et al. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 7, 632–637 (2014).
60. Cao, G. X., Yu, L., Wu, H. B. & Lou, X. W. Hierarchical tubular structures constructed by carboncoated α-Fe2O3 nanorods for highly reversible lithium storage. Small 9, 1741–1745 (2013).
61. Zhu, X. D. et al. Creating a synergistic interplay between tubular MoS2 and particulate Fe3O4 for improved lithium storage. Chem. Commun. 51, 11888–11891 (2015).
62. Chen, Y., Song, B. H., Tang, X. H., Lu, L. & Xue, J. M. Ultrasmall Fe3O4 nanoparticle/MoS2 nanosheet composites with superior performances for lithium ion batteries. Small 10, 1536–1543 (2014).
63. Pan, L., Zhu, X. D., Xie, X. M. & Liu, Y. T. Delicate ternary heterostructures achieved by hierarchical Co-assembly of Ag and Fe3O4 nanoparticles on MoS2 nanosheets: morphological and compositional synergy in reversible lithium storage. J. Mater. Chem. A 3, 2726–2733 (2015).
64. Wan, Z. M. et al. Core–shell structure of hierarchical quasi-hollow MoS2 microspheres encapsulated porous carbon as stable anode for Li-ion batteries. Small 10, 4975–4981 (2014).
65. Lu, L. et al. Monolithic Fe3O4/graphene hybrid for highly efficient lithium storage and arsenic removal. Carbon 67, 500–507 (2014).
66. Zhang, L., Wu, H. B., Madhavi, S., Hng. H. H. & Lou, X. W. Formation of Fe3O4 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 134, 17388–17391 (2012).
67. Pan, L., Liu, Y. T., Xie, X. M. & Zhu, X. D. Coordination-driven hierarchical assembly of silver nanoparticles on MoS2 nanosheets for improved lithium storage. Chem. Asian J. 9, 1519–1524 (2014).
68. Xu, X., Fan, Z. Y., Ding, S. J., Yu, D. M. & Du, Y. P. Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage. Nanoscale 6, 5245–5250 (2014).
69. Park, S. K. et al. A simple l-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries. Dalton Trans. 42, 2399–2405 (2013).
70. Han, S. et al. Ternary MoS2/SiO2/graphene hybrids for high-performance lithium storage. Carbon 81, 203–209 (2015).
71. Liu, H. et al. Porous tremella-like MoS2/polyaniline hybrid composite with enhanced performance for lithium-ion battery anodes. Electrochim. Acta 167, 132–138 (2015).
72. Yu, X. B. et al. Growth of hollow transition metal (Fe, Co, Ni) oxide nanoparticles on graphene sheets through kirkendall effect as anodes for high-performance lithium-ion batteries. Chem. – Eur. J. 22, 1638–1645 (2016).
73. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J.-M. ChemInform abstract: nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).
74. Hassan, M. F., Guo, Z. P., Chen, Z. & Liu, H. K. Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries. J. Power Sources 195, 2372–2376 (2010).

Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant no. 51572051), the Natural Science Foundation of Heilongjiang Province (E2016023), the 111 project (B13015) of the Ministry of Education of China to the Harbin Engineering University, and also the Open Project Program of Key Laboratory for Photonic and Electric Bandgap Materials, Ministry of Education, Harbin Normal University, China.

Author Contributions
Y.C. and C.L. proposed the research direction and guided the project. B.Q. designed and performed the experiments. Y.C., B.Q. and C.L. analysed and discussed the experimental results and drafted the manuscript. X.Z. carried out TEM measurements. L.L., Y.S. and C.Y. carried out some supporting experiments. All authors have read and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Qu, B. et al. Ultrasmall Fe3O4 nanoparticles/MoS2 nanosheets composite as high-performance anode material for lithium ion batteries. Sci. Rep. 7, 42772; doi: 10.1038/srep42772 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017