Isolation of a lytic bacteriophage vB_EfaS_PHB08 and its endolysin lys08 against Enterococcus faecalis biofilm

Dan Yang
Huazhong Agricultural University https://orcid.org/0000-0001-7769-3173

Yibao Chen
Huazhong Agricultural University

Erchao Sun
Huazhong Agricultural University

Lin Hua
Huazhong Agricultural University

Zhong Peng
Huazhong Agricultural University

Huanchun Chen
Huazhong Agricultural University

Bin Wu (wub@mail.hzau.edu.cn)
https://orcid.org/0000-0001-9078-386X

Research

Keywords: Enterococcus faecalis, bacteriophage, bacterial killing, endolysin, biofilms

DOI: https://doi.org/10.21203/rs.3.rs-18857/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: *Enterococcus faecalis* is an opportunistic pathogen can cause a variety of diseases, such as urinary tract infections and wound infections in human and animals. Recently, bacteriophages and their derivatives represent a good effect on fighting against bacterial infections.

Methods: We isolated virulent bacteriophages of *E. faecalis* using the double-layer plate method. The bioactivities of the phage isolated were determined via one-step growth curve testing and bacterial killing assays. Illumina HiSeq sequencing was performed to determine the genetic characteristics and the lysins of the phage. Protein expression and antibiofilm assays were also performed to highlight the bioactivities of the phage lysins.

Results: We isolated a virulent bacteriophage vB_EfaS_PHB08 (thereafter PHB08) from the sewage nearby hospital. PHB08 possessed a linear double-stranded DNA genome with 55,244 bp in length, which encoded 91 putative coding sequences (CDS). We found that PHB08 could inhibit the growth of host bacteria for 12 h. In vegetable models, PHB08 can reduce 1×10^5 Colony Forming Units (CFU) of *E. faecalis* per square centimeter at room temperature (25 °C) for 24 h. In addition, PHB08 and its endolysin can remove the biofilm formed by *E. faecalis*.

Conclusions: A virulent phage and endolysin displayed a good effect on reducing and/or eradicating *E. faecalis* infection and biofilm.

Background

The Gram-positive pathogenic bacteria *Enterococcus faecalis* is the causative agent of endocarditis, sepsis and meningitis in both animals and humans [1–3]. It has been reported that *E. faecalis* is the third most common pathogen that is associated with hospital-acquired infections and it accounts for 15% of catheter-associated urinary tract infections (CAUTI) and 5–15% of infective endocarditis (IE) cases [4–6]. *E. faecalis* strains are also closely associated with many hard-to-treat persistent interradicular infections, suggesting that *E. faecalis* plays a role in the pathogenesis of dental disease [7, 8]. In most cases, treatment of *E. faecalis* infections relies on the use of antimicrobials. However, due to the frequency of use of antibacterial drugs, the resistance of *E. faecalis* clinical isolates is increasing, suggesting a worrisome condition of using antimicrobials continuously [9–11]. Moreover, different genotypes of *E. faecalis* play a role in spreading drug resistance genes, which further promotes the clinically difficult treatment of *E. faecalis* infections [12].

During the infection, *E. faecalis* strains always form single and mixed-species biofilms on both tissue and medical devices in the host, often under exposure to fluid flow, giving rise to infections that are recalcitrant to treatment [13]. Research showed that produce biofilm of *E. faecalis* is related with clinical disease [14]. Formation of biofilms confers the bacteria capacity to escape the killing of antibiotics and the elimination of the host immune system [15]. Therefore, eradication of biofilms formed by *E. faecalis* during the infection is beneficial for clinical treatment.
Bacteriophages (thereafter phages) are the natural predator of bacteria and they are probably the most abundant biological entities in nature [16]. Regarding their ability to kill pathogens with high specificity, phages have been proposed as promising therapeutic tools since their discovery in 1915 [17]. Recently, *E. faecalis* phages have been found to have the potential to specifically inhibit (or kill) the reproduction and survival of *E. faecalis* as a biological control agent [18–20]. Phages and their derivates such as the lysins have also displayed a good effect on reducing and/or eradicating bacterial biofilms in addition to their effective bactericidal activity [21–23]. In this study, we isolated a virulent vB_EfaS_PHB08 (thereafter PHB08) specific infect for *E. faecalis* and constructed a recombinant plasmid expressing endolysin lys08. Further studies revealed that PHB08 as a potential biological agent in lettuce model. In addition, PHB08 and its derivative exhibited effectively for removing *E. faecalis* biofilms.

Methods

Bacterial strains and cultural conditions

E. faecalis strain EF3964 was recovered from a patient with urinary tract infections. It grows well on tryptic soy agars (TSA; Becton, Dickinson and company, MD, USA) and/or in tryptic soy broth (TSB; Becton, Dickinson and company, MD, USA) at 37° C for 16 h.

Phage isolation and purification

Phages against *E. faecalis* were isolated from sewages using *E. faecalis* strain EF3964 as an indicator by a double-layer plate methodology, as described previously [24]. In briefly, sewage samples from the hospital sewage were centrifuged at 4,000 × g for 10 min. The supernatants were harvested and were filtered using a 0.22 µm membrane to remove bacteria. After that, 300 µl of the filtrates were mixed with 300 µl of the bacterial culture of EF3964 at mid-log phase, and the mixture incubated using a double-layer TSA plate 37 °C for 12 h to form the phage plaques. Presumptive single plaque was picked and was resuspended in 6 ml of sterile SM buffer (5.8 g of NaCl, 2.0 g of MgSO₄·7H2O, 50 ml of Tris-HCl [pH7.4], 5.0 ml of 2% gelatin). The phage-containing SM buffer was then centrifuged at 12,000 × g for 30 s and the supernatant was filtered through a 0.22 µm pore size membrane. In the next, the phage preparations were given serial 10-fold dilutions with sterile SM buffer. Finally, the phage preparations were inoculated into the indicator bacteria at mid-log phase, which was then incubated using a double-layer TSA plate 37 °C to the next cycle. Phage isolation by the double-layer agar method was repeated four more times. The phages were purified by CsCl gradient ultra-centrifugation and then stored at 4 °C [25]. The morphology of the phages was observed under transmission electron microscope (HITACHI H-7650, Japan).

Physical parameter of phage PHB08

For temperature sensitivity assay, 100 µl (10⁹ Plaque Forming Units, PFU) of the purified phages were treated at different temperature (4, 20, 40, 50, 60, 70, and 80 °C) for 1 h. For acid-base sensitivity assay, 100 µl of phage (10⁹ PFU) with 900 µl SM buffer of pH (3.0, 5.0, 7.0, 9.0, and 11.0), were treated at 37 °C
for 1 h. Phage titer was determined using the double-layer plate method. This experiment was repeated three times.

One-step growth curve

The one-step growth curve of PHB08 is determined as described previously [24]. In briefly, PHB08 with multiplicity of infection (MOI) of 0.01 was inoculated into the indicator bacteria at mid-log phase and the mixture was incubated at 37 °C for 5 min. After incubation, the mixture was centrifuged at 12,000 rotation per minute (rpm) for 30 s. The supernatant was discarded with equal volume TSB. The titer of phage was determined by double-layer plate method. This experiment was repeated three times.

Lytic Activity of PHB08

The lytic activity of phage PHB08 was analyzed in a 96-well microtiter plate by examining the optical density measurement method [26, 27]. Briefly, 100 µl of the mid-log phase *E. faecalis* EF3964 (6.6 × 10^7 Colony Forming Units, CFU) mixed with 100 µl of phage PHB08 of different MOI (0.001, 0.01, 0.1, 1.0, 10, 100, and 1000) was incubated at 37 °C (160 rpm). Wells with equal volume of TSB medium or Phosphate buffer saline (PBS) buffer added were used as controls. The absorbance value of resulting supernatant was measured at 590 nm using a multimode microplate reader (Tecan Spark 10M). This experiment was performed in triplicate.

Killing assay in vegetable module

The effect of phage PHB08 on host strain EF3964 in vegetable module was evaluate as previously described [28]. Briefly, the vegetable was sterilized with sodium hypochlorite (100 µg/ml) for 5 min. After washing with sterile water, the vegetable sample was covered evenly host strain EF3964 (10^5 CFU/cm^2) until sample dried naturally. Subsequently, phage PHB08 with different MOI values (1000, 100, 10, and 1.0) was sprayed on the vegetable leaves at 25 °C for 6, 12, and 24 h, respectively. The control group was added equal volume phosphate buffered saline (PBS; pH = 7.4). The survival of EF3964 was counted by 10-fold dilutions method. This experiment was repeated three times.

DNA extraction and analysis of genome sequence

The phages’ genomic DNA extracted using the phenol-chloroform protocol was dissolved in TE buffer (10 mM Tris-HCl, 1 mM EDTA [pH = 8.0]) and was sequenced on an Illumina HiSeq 2,500 sequencer with 2 × 100 bp read length. The short reads were assembled into the genome by means of SOAPdenovo [29]. Open reading frames (ORFs) were predicted using Glimmer [30, 31]. The final assembled sequence was searched against the current protein and nucleotide databases (http://www.ncbi.nlm.nih.gov/) by means of the basic local alignment search tool (BLAST). Protein BLAST (BLASTP) was used to identify putative homologies and proteins sharing similarities with the predicted phage proteins. The genomes were scanned for tRNAs using tRNA scan-SE [32] and ARAGORN [33]. Phylogenetic tree was analyzed using the ClustalW program in MEGA 6.0 [34]. The complete genome sequence of PHB08 was deposited in GenBank under the accession number MK570225.

Cloning, expression and activity identification of lys08
The putative lysin gene lys08 of phage PHB08 was amplified by polymerase chain reaction (PCR) with specific primers (5’-CGTGTGTCACATACCTGAATTG-3’; 5’-GCAGTAACAGCCATTCTCATCTATG-3’), and then was cloned into the expression vector pET-28a, generating pET-lys08, which was finally transformed into the expressed strain BL21 (DE3). Single colonies of BL21 were picked and inoculated into TSB medium containing 50 µg/ml of kanamycin, incubated overnight at 37 °C. After that, bacterial culture was transferred into fresh TSB containing 50 µg/ml of kanamycin and the mixture was cultured at 37 °C until Optical Density (OD_{600}) value reaches 0.6 ~ 0.8. The expression of protein Lys08 was induced by the addition of 0.6 mM/L IPTG in the bacterial culture and further incubation at 25 °C for 16 h. Lys08 was purified by Ni-nitrilotriacetic acid column as previously described [35]. The purified protein lys08 was dialyzed in a protein preservation solution (50 mmoL/l Tris, 0.3 mol/l NaCl, pH 8.0) in 0.45 µm membrane concentrated. Purified protein was quantified by the Bradford Protein Assay Kit (Thermo Fisher Scientific) and stored at -80 °C until uses.

Antibiofilm by phage PHB08 and its endolysins lys08

Biofilm formation was detected using a 96-well microtiter plate as previously described [36]. In briefly, 100 µl of the overnight cultured bacterial strain EF3964 was added to each well and was incubated at 37 °C for 24 h, 48 h, or 72 h, respectively. Equal volumes of PBS (pH = 7.4) was included as controls. Each well was washed three times with sterile PBS buffer. Subsequently, 100 µl phage PHB08 (2.0·10^9 PFU/ml, 2.0·10^8 PFU/ml, 2.0·10^7 PFU/ml, and 2.0·10^6 PFU/ml) with TSB medium or 100 µl lys08 (50 µg and 100 µg) was added to every well at 37 °C for 4 h. After incubation, 1% crystal violet solution was added 100 µl to each well at 37 °C for 15 min, then washed three times with sterile PBS buffer until the liquid has no more crystal violet color. Finally, 150 µl of 33% acetic acid added to each well. The absorbance value of resulting supernatant was measured at 600 nm as mentioned above. This experiment was repeated three times.

Statistical Analysis

Student’s unpaired t-test was used for statistical significance when comparing results for two groups; while ordinary one-way analysis of variance (ANOVA) with post-hoc analysis by Dunnett’s test was used when comparing the results of more than two groups. Data are present as “Mean ± SD”. Differences were considered statistically significant if $P < 0.05$ (∗). All statistical analyses were performed using GraphPad Prism software.

Results

Microbiological characteristics of phage PHB08

The isolated phage PHB08 had a clear, translucent, uniform size plaque on a double-layer agar plate (Fig. 1a). Under the observation of electron microscope, phage PHB08 had a rectangular head (length 124 mm ± 5, width 61 mm ± 5) and a long tail (158 mm ± 5) (Fig. 1b). Based on these morphological...
characteristics and according to the latest International Committee on Taxonomy of Viruses (ICTV) classification, PHB08 was determined as a member of the family *Siphoviridae*.

Phenotypic parameters of phage PHB08

Phage PHB08 was treated in different pH (3.0–11.0) at 37 °C for 1 h and treated in different temperature (4–80 °C for 1 h. The Acid-base tolerance results exhibited that the activity of PHB08 is relatively stable between 5.0–11.0 (Fig. 2a). Temperature tolerance results showed that the titer of phage PHB08 is quite stable between 4 °C and 60 °C (Fig. 2b). PHB08 was treated at 70 °C for 40 min or at 80 °C for 20 min, no titer was observed (Fig. 2b). The one-step growth curve of PHB08 showed that PHB08 has a latency of 20 min and a high-speed growth period of 40 min with an average burst size of 64 phage particles per infected (Fig. 2c). The host range assays indicated that phage PHB08 specifically infected 15 out of 19 *E. faecalis* clinical isolated, but not infecting other species including *Enterococcus faecium* (Table 1).
Table 1
The host range of PHB08.

Strains	Isolated locations	Plaque formation
Enterococcus faecalis EF3964 (Host Strain)	Hubei, China	+
Enterococcus faecalis EF1833	Hubei, China	+
Enterococcus faecalis EFHB01	Hubei, China	+
Enterococcus faecalis EFHB02	Hubei, China	+
Enterococcus faecalis EFHB03	Hubei, China	+
Enterococcus faecalis EFHB04	Hubei, China	-
Enterococcus faecalis EF1067	Anhui, China	+
Enterococcus faecalis EF7011	Anhui, China	+
Enterococcus faecalis EFhn15	Hunan, China	+
Enterococcus faecalis EFhn20	Hunan, China	-
Enterococcus faecalis FJ1801	Fujian, China	+
Enterococcus faecalis Hu6	Unknown	+
Enterococcus faecalis Hu7	Unknown	+
Enterococcus faecalis Hu8	Unknown	-
Enterococcus faecalis XN01	Shanxi, China	+
Enterococcus faecalis XN02	Shanxi, China	+
Enterococcus faecalis 20170714-1	Unknown	+
Enterococcus faecalis 20170714-2	Unknown	+
Enterococcus faecalis 20170714-3	Unknown	-
Enterococcus faecium HBM101	Hubei, China	-
Enterococcus faecium HBM1-2	Hubei, China	-
Enterococcus faecium 14409	Beijing, China	-
Enterococcus faecium STT-03	Hainan, China	-

NOTE: (+) indicates that plaques were observed; (-) indicates no plaques were observed.
Enterococcus faecium STT-04 Hainan, China -
Enterococcus faecium 21905 Hubei, China -
Enterococcus faecium 180724 Unknow -
Enterococcus faecium 180801 Unknow -
Enterococcus faecium SX11 Shanxi, China -
Enterococcus faecium HN12 Hainan, China -
Escherichia coli 18701 Hubei, China -
Escherichia coli 14997 Hubei, China -
Escherichia coli 0157:H7 Hubei, China -
Escherichia coli DH5α Hubei, China -
Salmonella 268 Hubei, China -
Salmonella 140411 Hubei, China -
Salmonella 1003 Hubei, China -

NOTE: (+) indicates that plaques were observed; (-) indicates no plaques were observed.

Features of phage PHB08 genome

The complete genome of phage PHB08 was linear double-stranded DNA genome of 55,244 bp, with a G + C content of 40% (Fig. 3). The genome of PHB08 was predicted 91 putative CDS (gene annotation for each CDS of PHB08 shown in Table 2), and one tRNA (Trp-CCA) prediction. A BLASTn search revealed that the PHB08 was closely related to phage vB_EfaS_IME198 (GenBank accession no. KT932699.1; 96.18% identity, 89% coverage) and vB_EfaS_HEf13 (GenBank accession no. MH618488.1; 95.95% identity, 84% coverage). The phage PHB08 genome contains genes that encode the structure and assembly protein of phage PHB08, including tail fibers (CDS61), tail length tape-measure protein (CDS62), major capsid protein (CDS71), portal protein (CDS74), and terminase large subunit (CDS75). Encoding DNA replication and regulation modules such as DNA binding protein (CDS6), DNA polymerase I (CDS22), adenylate kinase and related kinases (CDS35), HNH homing endonuclease (CDS39, CDS58, and CDS87), replicative DNA helicase (CDS41), DNA replication protein (CDS42), and DNA primase (CDS44). Genes encoding endolysin protein were found in the PHB08, such as phage lysin (CDS59), with 96% amino acid sequence identity to the CHAP domain protein of Enterococcus phage Entf1. No lysogeny associated gene and encoding known antibiotic resistance were predicted [37]. Phylogenetic tree analysis the amino acid sequence of the major capsid protein (CDS71) and terminase large subunit (CDS75) indicated that PHB08 belongs to Saphexavirus, Siphoviridae family (Fig. 4).
Table 2
Gene annotation for each CDS of PHB08.

CDS	Start	Stop	Length (bp)	Size (aa)	Function	Accession numbers	% identity	E value
1	151	17	135	44	hypothetical protein	-	-	-
2	603	229	375	124	hypothetical protein	-	-	-
3	982	596	387	128	hypothetical protein	-	-	-
4	1406	108	324	107	hypothetical protein	-	-	-
5	2683	217	513	170	hypothetical protein	-	-	-
6	2991	268	306	101	Phage DNA binding protein	YP_009603915.1	99.01%	2e-71
7	3259	299	267	88	hypothetical protein	-	-	-
8	3479	325	228	75	hypothetical protein	-	-	-

NOTE: (−) indicates that no analysis or no results.
CDS	Start	Stop	Length (bp)	Size (aa)	Function	Accession numbers	% identity	E value
9	3722	351 3	210	69	hypothetical protein	--	--	--
10	3947	373 5	213	70	hypothetical protein	--	--	--
11	4207	394 7	261	86	hypothetical protein	--	--	--
12	4398	420 4	195	64	hypothetical protein	--	--	--
13	4895	447 6	420	139	hypothetical protein	--	--	--
14	5109	490 9	201	66	hypothetical protein	--	--	--
15	5707	512 0	588	195	hypothetical protein	--	--	--
16	6053	573 0	324	107	hypothetical protein	--	--	--

NOTE: (--) indicates that no analysis or no results.
CDS	Start	Stop	Length (bp)	Size (aa)	Function	Accession numbers	% identity	E value
17	6259	6023	237	78	hypothetical protein	--	--	--
18	6521	6243	279	92	hypothetical protein	--	--	--
19	7275	6580	696	231	hypothetical protein	--	--	--
20	7663	7268	396	131	hypothetical protein	--	--	--
21	8120	7665	456	151	hypothetical protein	--	--	--
22	10726	8195	2532	843	DNA polymerase I (EC 2.7.7)	YP_009218931.1	98.3%	0.0
23	10991	10806	186	61	hypothetical protein	--	--	--
24	11232	11005	228	75	hypothetical protein	--	--	--

NOTE: (−) indicates that no analysis or no results.
CDS	Start	Stop	Length (bp)	Size (aa)	Function	Accession numbers	% identity	E value
25	115	11232	354	117	hypothetical protein	-	-	
	85							
26	117	11586	213	70	hypothetical protein	-	-	
	98							
27	120	11801	210	69	hypothetical protein	-	-	
	10							
28	122	12007	225	74	hypothetical protein	-	-	
	31							
29	124	12245	195	64	hypothetical protein	-	-	
	39							
30	126	12441	180	59	hypothetical protein	-	-	
	20							
31	130	12820	207	68	hypothetical protein	-	-	
	26							
32	131	13038	117	38	hypothetical protein	-	-	
	54							

NOTE: (−) indicates that no analysis or no results.
CDS	Start	Stop	Length (bp)	Size (aa)	Function	Accession numbers	% identity	E value
33	137	13157	564	187	hypothetical protein	--	--	--
	20							
34	144	13812	633	210	hypothetical protein	--	--	--
	44							
35	150	14437	570	189	adenylate kinase and related kinases	--	--	--
	06							
36	154	15003	435	144	hypothetical protein	--	--	--
	37							
37	159	15574	330	109	hypothetical protein	--	--	--
	03							
38	169	15903	102	342	hypothetical protein	--	--	--
	31							
39	173	16924	441	146	HNH homing endonuclease	NP_389885.1	28.4%	1e-05
	64							

NOTE: (−) indicates that no analysis or no results.
CDS	Start	Stop	Length (bp)	Size (aa)	Function	Accession numbers	% identity	E value
40	176	17437	225	74	hypothetical protein			
41	190	17676	136	454	Replicative DNA helicase (Dn aB)	NP_719448.1	24.3	8e-04
42	198	19052	777	258	DNA replication protein	YP_009036407.1	99.6	0.0
43	202	19877	354	117	hypothetical protein	--	--	--
44	212	20305	948	315	DNA primase	--	--	--
45	214	21264	189	62	hypothetical protein	--	--	--
46	216	21452	159	52	hypothetical protein	--	--	--
47	218	21607	255	84	hypothetical protein	--	--	--

NOTE: (−) indicates that no analysis or no results.
CDS	Start	Stop	Length (bp)	Size (aa)	Function	Accession numbers	% identity	E value
48	222	21861	393	130	hypothe cial prot ein	-	-	-
	53							
49	224	22255	147	48	hypothe cial prot ein	-	-	-
	01							
50	225	22373	213	70	hypothe cial prot ein	-	-	-
	85							
51	234	23346	126	41	hypothe cial prot ein	-	-	-
	71							
52	238	23656	201	66	hypothe cial prot ein	-	-	-
	56							
53	242	23856	387	128	hypothe cial prot ein	-	-	-
	42							
54	246	24245	435	144	hypothe cial prot ein	-	-	-
	79							
55	255	24732	825	274	hypothe cial prot ein	-	-	-
	56							

NOTE: (−) indicates that no analysis or no results.
CDS	Start	Stop	Length (bp)	Size (aa)	Function	Accession numbers	% identity	E value
56	26060	26284	225	74	hypothetical protein	--	--	--
57	26286	26714	429	142	hypothetical protein	--	--	--
58	26732	27292	561	186	HNH homing endonuclease	QDB70581.1	97.8%	2e-138
59	28035	27319	717	238	Phage lysin	--	--	--
60	31337	28110	322	107	Phage minor structural protein	QBZ69423.1	76.4%	0.0
61	35341	31349	399	133	Phage tail fibers	YP_009004020.1	87.1%	0.0
62	38240	35355	288	961	Phage tail length tape measure protein	YP_009218894.1	98.9%	0.0

NOTE: (--) indicates that no analysis or no results.
CDS	Start	Stop	Length (bp)	Size (aa)	Function	Accession numbers	% identity	E value
63	384	38253	225	74	hypothetical	--	--	--
64	389	38488	441	146	hypothetical	--	--	--
65	397	39072	690	229	hypothetical	--	--	--
66	402	39782	435	144	hypothetical	--	--	--
67	406	40229	381	126	hypothetical	--	--	--
68	409	40594	378	125	hypothetical	--	--	--
69	413	40987	405	134	hypothetical	--	--	--
70	418	41451	441	146	Chitinase (EC 3.2.1.14)	AYH927 97.9 5% 2e-100	--	--

NOTE: (−) indicates that no analysis or no results.
CDS	Start	Stop	Length (bp)	Size (aa)	Function	Accession numbers	% identity	E value
71	428	42046	807	268	Phage major capsid protein	YP_006488741.1	99.6	0.0
72	435	42901	675	224	hypothetical protein	-	-	-
73	444	43686	756	251	hypothetical protein	-	-	-
74	459	44453	153	511	Phage portal protein	AYH92724.1	99.8	0.0
75	473	46045	127	423	Phage terminase, large subunit	YP_009603889.1	99.5	0.0
76	476	47379	249	82	hypothetical protein	-	-	-
77	479	47646	345	114	hypothetical protein	-	-	-

NOTE: (−) indicates that no analysis or no results.
CDS	Start	Stop	Length (bp)	Size	Function	Accession numbers	% identity	E value
78	48603	48004	600	199	hypothetical protein		--	--
79	48884	49198	315	104	hypothetical protein		--	--
80	49198	49455	258	85	hypothetical protein		--	--
81	49455	49847	393	131	hypothetical protein		--	--
82	49849	50235	387	128	hypothetical protein		--	--
83	50232	50492	261	86	hypothetical protein		--	--
84	50494	50700	207	68	hypothetical protein		--	--
85	50690	50992	303	100	hypothetical protein		--	--

NOTE: (−) indicates that no analysis or no results.
CDS	Start	Stop	Length (bp)	Size	Function	Accession numbers	% identity	E value
86	510	51380	369	121	hypothetical protein	--	--	--
87	518	52582	759	252	HNH homing endonuclease	APU002	98.8%	0.0
88	526	53511	855	284	hypothetical protein	--	--	--
89	535	53730	219	72	hypothetical protein	--	--	--
90	537	53944	213	70	hypothetical protein	--	--	--
91	541	54262	141	46	hypothetical protein	--	--	--

NOTE: (--) indicates that no analysis or no results.

Killing of PHB08 in vitro

The effect of the PHB08 on host strain EF3964 was evaluated in liquid medium at 37 °C for 12 h. As shown in Fig. 5a, phage PHB08 showed a strong antibacterial ability at different MOI value (from 0.0001 to 100) for 12 h. After two hours, the curve of the OD\textsubscript{600nm} value showed a downward trend, implying that the host bacteria were killed by phage PHB08. The effect of phage PHB08 on host strain was evaluated in lettuce as a vegetable model at room temperature (25 °C). With higher (MOI = 1000) phage-treated, the number of living bacteria EF3964 have a significantly reduction (\(P< 0.001\)) compared to control group. With phage-treated at MOI = 1, no significantly reduction of living bacteria EF3964 was observed within 24 h (Fig. 5b).
Antibiofilm activity

The recombinant protein lys08 was predicted to be 26.4 kDa, which was consistent with Polyacrylamide Gel Electrophoresis (PAGE-Gel) test results (Fig. 6a). The purified lys08 was detected by the spot method. The results showed 5 µl lys08 (5 µg) can form translucent halo on the plate, suggesting bactericidal activity of lys08 (Fig. 6b). The effect of the lys08 and phage on the biofilm was evaluated using 96-well microtiter plate method. In phage challenge groups, PHB08 was able to remove the formation of biofilm in co-culture 24 h at 37 °C ($P < 0.001$) (Fig. 6c). In lys08-treated groups, obviously reduction was observed ($P < 0.001$) (Fig. 6d).

Discussion

In recent years, the use of bacteriophages and their derivates fighting against bacterial infections and antimicrobial resistance have received more attentions [17]. In the present study, we isolated a virulent phage PHB08 from sewages using *E. faecalis* EF3964 as the indicator bacterium. The morphology and phylogenetic tree analysis further revealed that phage PHB08 belonged to the *Siphoviridae* family. The phenotypic parameters assays showed that PHB08 had relatively good stability at temperatures between 4 °C and 60 °C, and pH between 5.0 and 9.0, the average survival rate of phages during incubation is maintained at 40–50%. Our results were consistent with those of phages including *Enterococcus* phage vB_EfaS_HEf13 [38] and *Enterococcus* phage EF-P10 [39] when they were exposed to the same temperature (4–60 °C) and acid-base (5.0–9.0). It is worthy note that PHB08 can lyse 15 of the 19 *E. faecalis* strains, with a host range of 78.9%, which has a wider lytic range than the other *E. faecalis* bacteriophages (7%-70.5%) [38, 40–42]. The average burst of PHB08 was 64 phage particles per infected, in line with the generally reported estimate of about 30–122 phage particles per infected [43, 44]. The genome sequence of phage PHB08 has the highest similarity (89–98%) with those phages (IME198, HEf13, Ef7.1, EF-P29, EF-P10, UD13, IME-EF1, SAP6, EF1c55, BC-611, Entf1, and Ef2.2) with ~ 40% G + C (Table 3). Phylogenetic analysis of the complete genome sequences of PHB08 and other representative the complete *Saphexavirus* genome. Our data showed that PHB08 was closely related to phage SAP6 (Figure S1). The results indicated those phages, which were isolated from different countries (China, USA, Japan, South Korea, Poland, Russia) may have the complex evolutionary relationship.
Table 3
Sequence information for the *E.faecalis* phages belonging to Saphexavirus subfamily used in this study.

Name	GenBank	Length	Similarity	G + C%	ORF	tRNA	Countries
Enterococcus phage vB_EfaS_PHB08	MK570225.1	55,244 b p	100%	40.00%	91	1	China
Enterococcus phage vB_EfaS_IME198	KT932699.1	58,000 b p	96.18%	40.02%	95	0	China
Enterococcus phage vB_EfaS_HEf13	MH618488.1	57,811 b p	95.95%	40.03%	95	1	South Korea
Enterococcus phage vB_EfaS_Ef7.1	MK721194.1	58,018 b p	94.09%	40.03%	102	3	The United States
Enterococcus phage EF-P29	KY303907.1	58,984 b p	96.07%	39.77%	101	0	China
Enterococcus phage EF-P10	KY472224.1	57,408 b p	96.05%	39.82%	127	0	China
Enterococcus phage VD13	KJ127303.1	55,726 b p	94.89%	40.01%	88	1	The United States
Enterococcus phage IME-EF1	NC_041959	57,081 b p	96.40%	40.05%	98	0	The United States
Enterococcus phage SAP6	NC_041960	58,619 b p	97.53%	40.00%	44	0	South Korea
Name	GenBank	Length	Similarity	G + C%	ORF	tRNA	Countries
-------------------------------	------------	------------	------------	--------	-----	------	-----------
Enterococcus phage vB_EfaS_EF1c55	MN103542.1	55,876 bp	89.20%	39.79%	94	0	Poland
Enterococcus phage BC-611	AB712291.1	53,996 bp	95.40%	40.45%	88	1	Japan
Enterococcus phage Entf1	MK800154.1	58,938 bp	95.24%	39.93%	105	1	Russia
Enterococcus phage vB_EfaS_Ef2.2	MK721189.1	58,400 bp	89.52%	39.92%	103	2	The United States

The harm caused by foodborne pathogens has become a serious challenge to humans [45]. Researchers began to use phages as natural antimicrobials in food to kill or inhibit foodborne pathogens, thus ensuring food safety [46, 47]. A series of studies have shown that phages can be used in food safety. For example, application phages on *Salmonella* in cantaloupes resulted *Salmonella* significantly reduced [48]; With phage treated, 95% reduction the number of *Campylobacter jejuni* was observed, and also founded that *Salmonella* can be killed or inhibited by phage [49]. In our study, killing assay exhibited the host strain EF3964 can be inhibited or killed at different MOI for 12 h in medium. Potential bactericidal ability at low MOI was similar to those of the single phage 13076 and phage 14028 [26]. In vegetable model, PHB08 can kill $1 \cdot 10^5$ CFU/cm² *E. faecalis* at 25 °C for 24 h. It can be inferred that phage-based biological control methods have great potential in improving the safety of food microorganisms. *E. faecalis* with biofilm formation can provide resistance to antibiotics [50], explore the new methods of against cell biofilms is currently one of the major problems in medicine [51]. Although some research have reported of phages fighting bacterial biofilms [52, 53], only a few studies on the effects of *E. faecalis* phage endolysin on host bacteria biofilms. In our study, endolysin lys08 and phage PHB08 can effectively remove the host strain biofilm at 37 °C for 72 h ($P<0.001$), suggesting that phage and endolysin have the development potential to against the biofilm formation of *E. faecalis*.

Conclusion

A virulent phage of *E. faecalis* was isolated and characterized in this study. This phage displayed a high survival stability and capacity to lyse cells. *In vitro* tests revealed that PHB08 and its endolysin lys08 could remove the biofilm formed by *E. faecalis*. Overall, our study offers an option for treating *E. faecalis* infections through phage and its derivates.
Abbreviations

CDS
Coding Sequences
CFU
Colony Forming Units
CAUTI
Catheter-associated Urinary Tract Infections
TSA
tryptic soy agars
TSB
tryptic soy broth
PFU
Plaque Forming Units
MOI
Multiplicity of infection
rpm
Rotation per minute
PBS
Phosphate buffer saline
ORFs
Open Reading Frames
BLAST
Basic Local Alignment Search Tool
BLASTP
Protein BLAST
PCR
Polymerase chain reaction
OD
Optical Density
PAGE-Gel
Polyacrylamide Gel Electrophoresis

Declarations

Ethics approval and consent to participate: Not applicable

Consent for publication: Not applicable

Availability of data and materials
The datasets during and/or analysed during the current study available from the corresponding author on reasonable request.

Acknowledgments

We thanks to Lijun Yang1 and Shuang Wang1 for their critical suggestions on this article.

Author Contributions

DY and YC performed the data and drafted the main manuscript; DY, YC, ES, and LH planned and performed experiments; BW, HC, and ZP were responsible for experimental design, project management, and manuscript revision. All authors reviewed and agreed the publication of this manuscript.

Conflicts of interest

The authors declare that they have no competing interests.

Funding

This work was supported in part by the Agricultural Science and Technology Innovation Program of Hubei Province (Grant numbers: 2018skjcx05). Zhong Peng was supported in part by China Postdoctoral Science Foundation (grant number: 2018 M640719). The funders have no role in the study design, data collection and interpretation, or the decision to submit the work for publication.

Accession number(s). The complete genome sequence of phage was deposited in GenBank under the accession number MK570225.

References

1. Dahl A, Bruun NE. Enterococcus faecalis infective endocarditis: focus on clinical aspects. Expert Rev Cardiovasc Ther. 2013;11(9):1247–57.
2. Stuart CH, Schwartz SA, Beeson TJ, Owatz CB. Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. 2006, 32(2):93–98.
3. Tebruegge M, Pantazidou A, Clifford V, Gonis G, Ritz N, Connell T, Curtis N. The age-related risk of co-existing meningitis in children with urinary tract infection. PLoS One. 2011;6(11):e26576.
4. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol. 2008;29(11):996–1011.
5. Gjodsbol K, Christensen JJ, Karlsmark T, Jorgensen B, Klein BM, Krogfelt KA. Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J. 2006;3(3):225–31.
6. Peng D, Li X, Liu P, Luo M, Chen S, Su K, Zhang Z, He Q, Qiu J, Li Y. Epidemiology of pathogens and antimicrobial resistance of catheter-associated urinary tract infections in intensive care units: A systematic review and meta-analysis. Am J Infect Control. 2018;46(12):e81–90.

7. Zhang C, Du J, Peng Z. Correlation between Enterococcus faecalis and Persistent Intraradicular Infection Compared with Primary Intraradicular Infection: A Systematic Review. J Endod. 2015;41(8):1207–13.

8. Vidana R, Sullivan A, Billstrom H, Ahlquist M, Lund B. Enterococcus faecalis infection in root canals - host-derived or exogenous source? Lett Appl Microbiol. 2011;52(2):109–15.

9. Abamecha A, Wondafrash B, Abdissa A. Antimicrobial resistance profile of Enterococcus species isolated from intestinal tracts of hospitalized patients in Jimma, Ethiopia. BMC Res Notes. 2015;8:213.

10. Kaveh M, Bazargani A, Ramzi M, Ebrahim-Saraie HS, Heidari HJ. Colonization rate and risk factors of vancomycin-resistant enterococci among patients received hematopoietic stem cell transplantation in Shiraz, southern Iran. 2016, 7(4):197.

11. Rizzotti L, Rossi F, Torriani S. Biocide and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from the swine meat chain. Food Microbiol. 2016;60:160–4.

12. van Harten RM, Willems RJL, Martin NI, Hendrickx APA: Multidrug-Resistant Enterococcal Infections: New Compounds, Novel Antimicrobial Therapies? Trends Microbiol 2017, 25(6):467–479.

13. Tan CAZ, Antypas H, Kline KA. Overcoming the challenge of establishing biofilms in vivo: a roadmap for Enterococci. Curr Opin Microbiol. 2020;53:9–18.

14. Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, Hayes J, Forbes M, Greenberg DP, Dice B, Burrows A. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. Jama. 2006;296(2):202–11.

15. Baldassarri L, Cecchini R, Bertuccini L, Ammendolia MG, Isosi F, Arciola CR, Montanaro L, Di Rosa R, Gherardi G, Dicuonzo G, et al. Enterococcus spp. produces slime and survives in rat peritoneal macrophages. Med Microbiol Immunol. 2001;190(3):113–20.

16. Clokie MR, Millard AD, Letarov AV, Heaphy S. Phages in nature. Bacteriophage. 2011;1(1):31–45.

17. Salmond GP, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol. 2015;13(12):777–86.

18. Crump JA, Ram PK, Gupta SK, Miller MA, Mintz ED. Part I. Analysis of data gaps pertaining to Salmonella enterica serotype Typhi infections in low and medium human development index countries, 1984–2005. Epidemiol Infect 2008, 136(4):436–448.

19. Khalifa L, Brosh Y, Gelman D, Coppenhagen-Glazer S, Beyth S, Poradosu-Cohen R, Que YA, Beyth N, Hazan R. Targeting Enterococcus faecalis biofilms with phage therapy. Appl Environ Microbiol. 2015;81(8):2696–705.

20. Gelman D, Beyth S, Lerer V, Adler K, Poradosu-Cohen R, Coppenhagen-Glazer S, Hazan R. Combined bacteriophages and antibiotics as an efficient therapy against VRE Enterococcus faecalis in a mouse model. Research in microbiology. 2018;169(9):531–9.
21. Chan BK, Abedon ST. Bacteriophages and their enzymes in biofilm control. Curr Pharm Des. 2015;21(1):85–99.
22. Wroe JA, Johnson CT, Garcia AJ. Bacteriophage delivering hydrogels reduce biofilm formation in vitro and infection in vivo. J Biomed Mater Res A. 2020;108(1):39–49.
23. Yuksel FN, Buzrul S, Akcelik M, Akcelik N. Inhibition and eradication of Salmonella Typhimurium biofilm using P22 bacteriophage, EDTA and nisin. Biofouling. 2018;34(9):1046–54.
24. Chen Y, Guo G, Sun E, Song J, Yang L, Zhu L, Liang W, Hua L, Peng Z, Tang X, et al: Isolation of a T7-Like Lytic Pasteurella Bacteriophage vB_PmuP_PHB01 and Its Potential Use in Therapy against Pasteurella multocida Infections. Viruses 2019, 11(1).
25. Chen YB, Sun EC, Song JY, Yang L, Wu B. Complete Genome Sequence of a Novel T7-Like Bacteriophage from a Pasteurella multocida Capsular Type A Isolate. Curr Microbiol. 2018;75(5):574–9.
26. Islam MS, Zhou Y, Liang N, Liou I, Liu K, Yan T, Wang XH, Li JQ. Application of a Phage Cocktail for Control of Salmonella in Foods and Reducing Biofilms. Viruses-Basel 2019, 11(9).
27. Huang CX, Virk SM, Shi JC, Zhou Y, Williams SP, Morsy MK, Abdelnabbi HE, Liu J, Wang XH, Li JQ. Isolation, Characterization, and Application of Bacteriophage LPSE1 Against Salmonella enterica in Ready to Eat (RTE) Foods. Frontiers in Microbiology 2018, 9.
28. Adams M, Hartley A, Cox LJFM. Factors affecting the efficacy of washing procedures used in the production of prepared salads. 1989, 6(2):69–77.
29. Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, Huang W, He G, Gu S, Li S. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics. 2014;30(12):1660–6.
30. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 2007;23(6):673–9.
31. Salzberg SL, Delcher AL, Kasif S, White O. Microbial gene identification using interpolated Markov models. Nucleic Acids Res. 1998;26(2):544–8.
32. Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005;33:W686–9.
33. Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32(1):11–6.
34. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.
35. Diez-Martinez R, De Paz HD, Garcia-Fernandez E, Bustamante N, Euler CW, Fischetti VA, Menendez M, Garcia P. A novel chimeric phage lysozyme with high in vitro and in vivo bactericidal activity against Streptococcus pneumoniae. J Antimicrob Chemother. 2015;70(6):1763–73.
36. O’Toole GA. Microtiter Dish Biofilm Formation Assay. Jove-Journal of Visualized Experiments 2011(47).
37. Liu B, Pop MJNar. ARDB—antibiotic resistance genes database. 2008, 37(suppl_1):D443-D447.
38. Han SH, Lee D, Im J, Na H, Ryu S, Yun C-H. The Novel Enterococcus Phage vB_EfaS_HEf13 Has Broad Lytic Activity Against Clinical Isolates of Enterococcus faecalis. Front Microbiol. 2019;10:2877.

39. Cheng M, Zhang Y, Li X, Liang J, Hu L, Gong P, Zhang L, Cai R, Zhang H, Ge J. Endolysin LysEF-P10 shows potential as an alternative treatment strategy for multidrug-resistant Enterococcus faecalis infections. Scientific reports. 2017;7(1):1–15.

40. Rahmat Ullah S, Andleeb S, Raza T, Jamal M, Mehmood K: Effectiveness of a lytic Phage SRG1 against vancomycin-resistant Enterococcus faecalis in compost and soil. BioMed research international 2017, 2017.

41. Wang R, Xing S, Zhao F, Li P, Mi Z, Shi T, Liu H, Tong Y. Characterization and genome analysis of novel phage vB_EfaP_IME195 infecting Enterococcus faecalis. Virus Genes. 2018;54(6):804–11.

42. Rigvava S, Tchkgkonia I, Jgenti D, Dvalidze T, Carpino J, Goderdzishvili M. Comparative analysis of the biological and physical properties of Enterococcus faecalis bacteriophage vB_EfaS_GEC-EfS_3 and Streptococcus mitis bacteriophage vB_SmM_GEC-SmitisM_2. Can J Microbiol. 2013;59(1):18–21.

43. Cheng M, Liang J, Zhang Y, Hu L, Gong P, Cai R, Zhang L, Zhang H, Ge J, Ji Y. The bacteriophage EF-P29 efficiently protects against lethal vancomycin-resistant Enterococcus faecalis and alleviates gut microbiota imbalance in a murine bacteremia model. Frontiers in microbiology. 2017;8:837.

44. Uchiyama J, Rashel M, Maeda Y, Takemura I, Sugihara S, Akechi K, Muraoka A, Wakiguchi H, Matsuzaki S. Isolation and characterization of a novel Enterococcus faecalis bacteriophage φEF24C as a therapeutic candidate. FEMS Microbiology letters. 2008;278(2):200–6.

45. de Oliveira Elias S, Noronha TB, Tondo EC. Salmonella spp. and Escherichia coli O157: H7 prevalence and levels on lettuce: A systematic review and meta-analysis. Food microbiology 2019.

46. Hagens S, Loessner MJ. Bacteriophage for Biocontrol of Foodborne Pathogens: Calculations and Considerations. Curr Pharm Biotechnol. 2010;11(1):58–68.

47. Garcia P, Martinez B, Obeso JM, Rodriguez A. Bacteriophages and their application in food safety. Lett Appl Microbiol. 2008;47(6):479–85.

48. Leverentz B, Conway WS, Alavidze Z, Janisiewicz WJ, Fuchs Y, Camp MJ, Chighladze E, Sulakvelidze A. Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: A model study. J Food Prot. 2001;64(8):1116–21.

49. Goode D, Allen VM, Barrow PA. Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microbiol. 2003;69(8):5032–6.

50. Burrowes B, Harper DR, Anderson J, McConville M, Enright MC. Bacteriophage therapy: potential uses in the control of antibiotic-resistant pathogens. Expert review of anti-infective therapy. 2011;9(9):775–85.

51. Parasion S, Kwiatek M, Gryko R, Mizak L, Malm A. Bacteriophages as an Alternative Strategy for Fighting Biofilm Development. Polish Journal of Microbiology. 2014;63(2):137–45.
52. Al-Zubidi M, Widziolek M, Gains A, Smith R, Ansbro K, Alrafaie A, Evans C, Murdoch C, Mesnage S, Douglas C. Identification of Novel Bacteriophages with Therapeutic Potential That Target Enterococcus faecalis. Infect Immun. 2019;87(11):e00512–9.

53. D’Andrea MM, Frezza D, Romano E, Marmo P, De Angelis LH, Perini N, Thaller MC, Di Lallo G: The lytic bacteriophage vB_EfaH_EF1TV, a new member of the Herelleviridae family, disrupts biofilm produced by Enterococcus faecalis clinical strains. Journal of global antimicrobial resistance 2019.

Figures

Figure 1

Morphological characteristics of phage PHB08. a. Appearance of phage PHB08 plaque on host strain EF3964. b. Electron microscopy of phage PHB08. Phage PHB08 has a rectangular head (length 124 mm ± 5, width 61 mm ± 5) and a long tail (158 mm ± 5). The scale in the right corner is 200 nm.
Figure 2

Biological characteristics of phage PHB08. a. Stability of phage PHB08 at different temperatures. b. Stability of phage PHB08 at different pH values. c. Curves for one-step growth of phage PHB08.

Figure 3

Circular genetic map of PHB08. The red part represents the distribution of the CDS region. The black part represents the total content of GC (40%). The green part represents the GC skew +, which means the GC shift on the leading chain is positive and the purple is the GC skew −.

Figure 4

Phylogenetic tree analysis of phage PHB08. a. The amino acid of terminase large subunit large terminal subunit and b. the major capsid proteins of phage PHB08 was analyzed by MEGA6.0. The neighbor-joining method was used to construct phylogenetic with a bootstrap re-sampling analysis of 1,000 replications. The numbers next to the branches are bootstrap values.
Figure 5

Lytic Activity of PHB08 in vitro. a. Killing assay in TSB medium. b. Killing assay in vegetable module. Data are expressed as the mean ± SD. Validation of the killing by CFU count of host bacteria EF3964 after 6 h, 12 h, and 24 h with or without treatment by PHB08 at MOIs of 101-104, respectively. Data are expressed as the mean ± SD. Significance was determined by ANOVA (**P < 0.001).
Antibiofilm activity. a. SDS polyacrylamide gel electrophoresis analysis of purified protein lys08. Lane 1: Unpurified protein, lane 2: Purified protein. b. The activity of PHB08 and purified lys08 was determined by spot tests. 5 μl endolysin lys08 (5 μg) spotted on the plated containing host strain EF3964 at 37°C for 12 h. c. The effect of the phage PHB08 on the biofilm and (d.) lys08 on the biofilm was evaluated using 96-well microtiter plate method. Three independent experiments were performed and data are expressed as means ± SD (n = 3). Significance was determined by ANOVA (***, P < 0.001)

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplementarymaterials.docx