TRACING THE [Fe ii]/[Ne ii] RATIO AND ITS RELATIONSHIP WITH OTHER ISM INDICATORS WITHIN STAR-FORMING DWARF GALAXIES: A SPITZER IRS ARCHIVAL STUDY

B. O’HALLORAN, S. C. MADDEN, AND N. P. ABEL

Received 2007 September 24; accepted 2008 March 19

ABSTRACT

Archival Spitzer observations of 41 starburst galaxies that span a wide range in metallicity reveal for the first time a correlation between the [Fe ii]/[Ne ii] 26.0 μm/12.8 μm ratio and the electron gas density as traced by the 18.7 μm/33.4 μm [S ii] ratio, with the [Fe ii]/[Ne ii] ratio decreasing with increasing gas density. The correlations of the [Fe ii]/[Ne ii] ratio, the PAH peak-to-continuum strength, and metallicity found in an earlier paper were confirmed for a larger sample. We also find a strong correlation between the gas density and the PAH peak-to-continuum strength. Using shock and photoionization models, we see that the driver of the observed [Fe ii]/[Ne ii] ratios is metallicity. The majority of [Fe ii] emission in low-metallicity galaxies may be shock-derived, while at high metallicity, the [Fe ii] emission may be instead dominated by contributions from H ii and in particular from dense PDR regions. However, the observed [Fe ii]/[Ne ii] ratios may instead be following a metallicity-abundance relationship, with iron being less depleted onto grains in low-metallicity galaxies, a result that would have profound implications for the use of iron emission lines as unambiguous tracers of shocks.

Subject headings: galaxies: starburst — galaxies: stellar content — infrared: galaxies — ISM: lines and bands

1 INTRODUCTION

The presence of massive stars within starbursts undoubtedly plays a huge role in determining the physical conditions within the local interstellar medium (ISM). High-mass (∼8 M⊙) stars formed within typical starbursts drastically affect the dynamics of the surrounding ISM, not only through the release of ionizing photons, which destroy molecular material, but also via supernovae (SNe), which provide thermal and kinetic energy input into the ISM. The effects of photoionization by high-mass stars on the observed dearth of polycyclic aromatic hydrocarbons (PAHs) have recently been investigated (Madden et al. 2006; Wu et al. 2006), while in O’Halloran et al. (2006, hereafter Paper I), we examined a sample of 18 galaxies of varying metallicity (from 1/50th to supersolar) with high star formation rates in order to determine whether SN-driven shocks do indeed play a role in the PAH deficit in low-metallicity environments. If we consider the ratio of the 26 μm [Fe ii] line and the 12.8 μm [Ne ii] line as a tracer of the strength of supernova shocks, we find a strong anticorrelation, suggesting that strong SN-driven shocks are indeed present within low-metallicity galaxies. Furthermore, the PAH deficit within these objects may indeed be linked to the presence and strength of these shocks. However, it has not as yet been conclusively proved that shocks are the dominant process behind the PAH deficit. As already noted, photoionization and perhaps delayed injection of dust into the ISM (Galliano 2008) each make their own contributions to the PAH deficit, but as yet, it remains unclear which of these three processes is the most dominant.

In addition, is the relationship between the [Fe ii]/[Ne ii] ratio and the PAH emission, as indicated in Paper I, really probing a causal effect? It could very well be that this relationship may be coincidental or that physical or selection effects may be the primary drivers of the observed relationship. It would therefore be advisable to further explore the nature of the ISM within such star-forming environments using additional mid-IR probes in order to expand our understanding of the [Fe ii]/[Ne ii] ratio and by extension its relationship with key ISM indicators such as PAH strength and metallicity.

2 OBSERVATIONS AND DATA ANALYSIS

To accomplish this, we have expanded our sample from the 18 objects presented in Paper I by including archival IRS observations of 23 additional objects, bringing the sample total to 41. The full list of targets is given in Table 1, listed by increasing metallicity. These galaxies range in metallicity from extremely low (such as I Zw 18, with Z/Z⊙ = 1/50) to supersolar-metallicity (≥1 Z⊙) galaxies, such as NGC 7714. To differentiate between low- and high-metallicity galaxies, we use a metallicity (12 + log [O/H]) cutoff value of 8.85—just less than solar, as in Paper I. The galaxies range widely in morphology from blue compact dwarfs such as I Zw 18 to spirals such as NGC 7714 and IC 342. None of the galaxies in our sample are known to harbor active galactic nuclei (AGNs). This is important, as PAH destruction can occur close to an AGN due to the hard ionization environment (e.g., Sturm et al. 2000). In addition, [Fe ii] emission can be elevated in galaxies harboring AGNs. One possible exception is NGC 7714, which is optically classified as a LINER (Thomas et al. 2002). However, the lack of [Ne v] emission at 14 and 24 μm and the absence of any evidence for an obscured AGN by recent Chandra imaging (Brandl et al. 2004; Smith et al. 2005) strongly suggest that NGC 7714 is a pure starburst, and it is therefore included in our sample.

We extracted low- and high-resolution archival spectral data from the Short-Low (SL; 5.2–14.5 μm), Short-High (SH; 9.9–19.6 μm), and Long-High (LH; 18.7–37.2 μm) modules of the Spitzer Infrared Spectrograph (IRS). The data sets were derived from a number of Spitzer Legacy, GO, and GTO programs released to the Spitzer Data Archive and consisted of either spectral mapping or staring observations. We obtained fluxes for the nuclear positions only from the mapping observations. All the staring observations were centered on the galaxy’s nucleus. The data were preprocessed...
by the *Spitzer* Science Center (SSC) data reduction pipeline⁴ version 15.3 before being downloaded. Further processing was done within the IRS Basic Calibrated Data (BCD) level data reduction package SPICE, version 2.0.1.⁵ Both the low- and high-resolution spectra were extracted by SPICE using the full-aperture extraction method. As the [S III] emission is extended beyond the extent of the high-resolution slits in particular, we applied the aperture-loss correction function (ALCF) and slit-loss correction function (SLCF) extended-source corrections to the spectra as part of the SPICE extraction.⁶ The slit for the SH and LH modules is too small for background subtraction to take place, and separate SH or LH background observations do not exist for any of the galaxies in this sample. For the SL module, background subtraction was done using either a designated background file when available or by subtracting the data from one nod position from the other along the slit. In some cases, the slit was enveloped in the host galaxy, and background subtraction could not take place. For both high- and low-resolution spectra, the ends of each order, where the noise increases significantly, were manually clipped, as were hot pixels.

For the high-resolution observations, we required matched extractions in terms of angular extents from both the SH and LH slits, in order to accurately derive densities based on the 18 and 33 μm [S III] lines. The ionization potential of [S III] is ~35 eV, with the [S III] emission arising from gas ionized by young stars for our sample. With a relatively low ionization potential, [S III]...
emission may be quite easily extended spatially beyond the nuclear single-slit pointings for SH and LH. Indeed, comparisons of ISO and IRS data (Dudik 2007) show [S\textsc{ii}] emission within star-forming AGNs that extend beyond the size of both the SH and LH slits. Given that [S\textsc{ii}] emission is extended and we would expect to see a higher flux in the larger LH slit, any derived [S\textsc{ii}] line ratio will be artificially depressed. To avoid such aperture effects between the SH and LH slits, we scaled the LH flux by multiplying it by the ratio of the SH/LH slit angular sizes.

As a number of the sample starbursts at high metallicity are known to be dusty systems with large obscuration, the extracted line fluxes were then corrected for extinction for the sample as a whole. The fluxes and statistical errors, plus the derived line ratios, are presented in Tables 1 and 2, respectively, obtained using the IDL-based analysis package SMART, version 6.2.6 (Higdon et al. 2004). In all cases, detections were defined when the line flux was at least 3 σ. For the SL, SH, and LH modules the spectral resolution was $\lambda/\Delta \lambda = 60 - 127$, ~ 600, and ~ 600, respectively, with FWHM on the order of $1.9 \times 10^{-3} \mu$m for the PAH feature in the low-resolution spectrum and $(2 - 4) \times 10^{-2} \mu$m for the fine-structure lines in the high-resolution spectra. For the absolute photometric flux uncertainty, we conservatively adopt 15%, based on the assessed values given by the \textit{Spitzer} Science Center (SSC) over the lifetime of the mission. This error is calculated from multiple observations of various standard stars throughout the \textit{Spitzer} mission by the SSC. The dominant component of the total error

Table 2

Target	PAH 6.2 μm P/C	[Fe\textsc{ii}]/[Ne\textsc{ii}]	log ([S\textsc{ii}]/33.4 μm)	log ([S\textsc{ii}]/6716 A/6731 A)
I Zw 18	1.2	1.74	−0.29	1.32a
SBS 0335-052	1.23	1.29	−0.22	1.2b
HS 2236+1344	1.84	1.75	−0.25	1.15b
SDSS J0519+0007	1.89	0.75	1.17a	...
SBS 1415+437	1.57	1.11	−0.24	1.15b
HS 0837+7415	1.66	1.47	−0.22	...
Tol 65...	1.41	1.68	−0.29	...
HS 1142+4250	1.81	0.56	−0.20	...
Mrk 25	2.56	0.60	−0.11	...
SBS 1030+583	1.67	0.37	0.05	1.25b
Mrk 209	2.27	1.12	−0.25	1.28a
Mrk 36	1.82	0.46	−0.23	1.07b
SBS 0917+527	2.1	0.33	0.04	1.14b
SBS 1152+579	2.41	0.33	−0.14	1.17b
Mrk 170	2.2	0.90	−0.25	...
UM 448	1.63	0.31	−0.15	1.07b
SBS 0946+558	2.5	0.50	−0.01	1.11b
HZ 40...	2.6	0.26	0.03	1.15b
Mrk 930	2.5	0.51	−0.04	1.15b
Mrk 996	3.3	0.24	0.17	...
Tol 1924+416	2.8	0.13	−0.04	1.13
HZ 70...	2.1	1.27	−0.18	1.2b
NGC 4670	3.75	0.64	−0.13	...
Mrk 450	2.64	0.40	−0.07	1.17b
Mrk 5	2.91	0.71	−0.13	1.11b
Mrk 329	3.88	0.40	0.07	1.06
NGC 5253	3.21	0.71	−0.13	0.91c
IC 342	3.42	0.17	0.00	0.83d
Haro 3	4.18	0.15	0.06	1.23e
UM 311	3.27	0.44	−0.06	0.92b
Mrk 1499	4.27	0.46	−0.09	...
UGC 4274	3.92	0.43	0.01	0.96a
NGC 7793	4.78	0.28	0.22	...
NGC 4194	3.66	0.18	0.00	...
NGC 253	3.05	0.14	0.17	...
He 2-10	4.1	0.08	0.17	1.04c
NGC 7714	4.22	0.12	0.35	0.88b
M82......	5.07	0.07	0.38	0.8d
NGC 3049	5.23	0.30	0.11	0.87b
NGC 1482	3.7	0.02	0.43	...
NGC 2903	5.26	0.09	0.35	1.11d

Notes.— Col. (1): Common source names; col. (2): PAH 6.2 μm peak-to-continuum ratio; col. (3): [Fe\textsc{ii}]/[Ne\textsc{ii}] line ratio; col. (4): logarithm of the [S\textsc{ii}]/33.4 μm line ratio; col. (5): logarithm of the [S\textsc{ii}]/6716 A/6731 A line ratio.

a Kong & Cheng (1999).
b Hoyos & Díaz (2006).
c Izotov et al. (2004).
d Ho et al. (1997).
e Vacca & Conti (1992).
arises from the uncertainty at mid-IR wavelengths in the stellar models used in calibration and is systematic rather than Gaussian in nature. The 6.2 μm PAH strength was determined according to the prescription adopted in a number of previous studies (Rigopoulou et al. 1999; Förster Schreiber et al. 2004). While the 7.7 and 8.6 μm PAH lines are stronger, the 8.6 μm line can suffer extinction effects due to a potential silicate absorption feature at 9 μm, and both of these pose difficulties in determining the continuum level. For this work, the continuum was determined at the center of the 6.2 μm feature, using a first-order linear fit to the 5.5 and 11.5 μm bandpass. The PAH strength was then calculated as the ratio of the 6.2 μm feature peak intensity to the underlying continuum. We assume a Gaussian fit while fitting the PAH and fine-structure lines with SMART.

3. RESULTS

In Figure 1, we plot [Fe ii]/[Ne ii] versus the 6.2 μm PAH peak-to-continuum ratio to check whether the relationship between the [Fe ii]/[Ne ii] ratio and the PAH peak-to-continuum strength first noted in Paper I, using the 6.2 μm PAH feature instead of the 7.7 μm, as one can perform continuum fitting with a higher degree of confidence with the 6.2 μm feature, still holds for the expanded sample. Employing a Spearman rank correlation analysis (Kendall & Stuart 1976) to assess the statistical significance of this trend yields a correlation coefficient of $r_S = -0.705$ and P_S of 2.69×10^{-6}, confirming the significant anticorrelation between PAH strength and the [Fe ii]/[Ne ii] ratio, as seen in Paper I. The Spearman rank correlation technique has the advantage of being nonparametric and robust to outliers and does not presuppose a linear relation. We plot the [Fe ii]/[Ne ii] ratio versus the metallicity in Figure 2, and we again see a strong anticorrelation ($r_S = -0.777$ and P_S of 9.36×10^{-7}) between [Fe ii]/[Ne ii] and metallicity, as seen in Paper I.

Based on what we have already seen from Paper I and from Figures 1 and 2, if the [Fe ii]/[Ne ii] ratio is truly indicative of the strength of SN-driven shocks within the extent of the high-resolution slits, one would expect the passage of such shocks to affect conditions within the local ISM in quite a substantive manner. Shocks, in addition to removing dust and PAHs from the ISM (Reach & Rho 2000; Reach et al. 2006), should also be adept at removing gas—one would therefore expect the propagation of intense SN-driven shocks into the ISM of star-forming regions to greatly impact the density of the gas. In order to determine how the gas density within these nuclear star-forming regions corresponds to the strength of the SN-driven shocks, we require a reliable mid-IR tracer to probe the gas density. The [S ii] 18.7 μm/33.4 μm line ratio provides such a reliable mid-IR tracer of the gas density (Valiante 1996). In Figure 3, we plot the logarithm of the ratio of the [S ii] fluxes versus the [Fe ii]/[Ne ii] flux ratio. There is a strikingly strong trend between the two line ratios, with high [Fe ii]/[Ne ii] values corresponding to lower [S ii] ratios. Using the Spearman rank correlation analysis, we get (r_S) = -0.891 between the [S ii]/[Ne ii] ratio and the [Fe ii]/[Ne ii] with a probability of chance correlation (P_S) of 7.43×10^{-6}, indicating a significant anticorrelation. Interestingly, we see a general decrease in the metallicity of the object with lower [S ii] ratios, corresponding to higher [Fe ii]/[Ne ii].

We again plot the logarithm of the ratio of the [S ii] fluxes in Figure 4, but this time against the 6.2 μm PAH peak-to-continuum ratio. As with Figure 3, we see a strong trend, but this time with the PAH strength increasing with log [S ii]—the PAH strength is
increasing with higher gas density. Again running a Spearman rank correlation analysis, we get r_S of 0.750 and P_S of 9.64×10^{-7}, confirming a significant correlation between log $[S\,\text{ii}]$ and PAH strength. We again see that a trend exists with PAH strength increasing with metallicity and increasing values of log $[S\,\text{ii}]$.

4. DISCUSSION

4.1. Can We Explain the Observed Relationships?

4.1.1. Are There Other Factors That May Be Influencing the Observed Relationships?

As we have seen from Figures 1–4, a series of relationships would seem to exist between the $[\text{Fe\,\text{ii}}]/[\text{Ne\,\text{ii}}]$ ratio, the metallicity, the PAH strength, and the $[S\,\text{ii}]$ ratio, with low values of the $[S\,\text{ii}]$ ratio corresponding to high $[\text{Fe\,\text{ii}}]/[\text{Ne\,\text{ii}}]$ ratios and weak/no PAH emission. However, before we press ahead with more detailed investigations of the nature of these relationships, it is prudent to first check whether other factors, such as extinction and aperture effects, might be responsible.

4.1.2. Extinction

As we have noted previously in § 2, we corrected the IRS fluxes for extinction, with A_T ranging from ~ 2 to 30 mag. To determine the correction, we used the ratios of Hβ/Hα and Brγ/Brα when available from the literature. Emissivity coefficients from Storey & Hummer (1995) for case B recombination with an electron temperature of 10^4 K and density of 100 cm$^{-3}$ were used to calculate the intrinsic line ratios for the Hα recombination lines. We note that while the density used in these calculations is lower than that seen in some of our sample, we noted little change in the intrinsic line ratios for denser environments. We adopted a Draine (1989) extinction law above 8.5 μm and the Lutz et al. (1999) galactic extinction law below this point. As the observed relationships remain after correction, we conclude that extinction can be ruled out as a driver for the observed correlations. For the optical $[S\,\text{ii}]$ lines used as comparisons to the MAPPINGS output, we obtained and used from the literature extinction-corrected fluxes when available.

4.1.3. Aperture Effects

As noted earlier, the ionization potential of $[S\,\text{iii}]$ is ~ 35 eV, with the $[S\,\text{iii}]$ emission arising from gas ionized by young stars.

With a relatively low ionization potential, $[S\,\text{iii}]$ emission may be quite easily extended in spatial extent beyond the nuclear single-slit pointings for SH and LH. To compensate, we applied the SLCF and ALCF extended-source corrections to the spectra. In addition, as we seek to derive a physical quantity, namely, the gas density, over a similarly sized physical area given the extent of the $[S\,\text{iii}]$ emission, it is therefore crucial that we use $[S\,\text{iii}]$ fluxes derived from slits of equal angular size. To do this, we obtained a fraction of the LH full-slit flux by multiplying it by the SH/LH angular size ratio, as noted in § 2. The final corrected fluxes are given in Table 1.

4.2. Modeling the Observed Relationships

Since we can rule out extinction and aperture effects as drivers for the observed correlations, we can be confident that the correlations seen in Figures 1–4 are indeed true physical relationships between the strength of the $[\text{Fe\,\text{ii}}]/[\text{Ne\,\text{ii}}]$ ratio and a number of ISM indicators, with the primary culprit for the observed relationships being the passage of SN-driven shocks. However, while we have focused up to now on a SN-derived shock origin for the behavior of the $[\text{Fe\,\text{ii}}]/[\text{Ne\,\text{ii}}]$ ratio, it may not be the only explanation. For example, Izotov et al. (2006) note the sign of strong depletion of iron onto dust grains and gradual destruction of those grains on a timescale of a few Myr, based on a survey of metal-poor galaxies from the third release of the SDSS. Such a process could undoubtedly drastically affect the nature of Fe emission and by extension the behavior of the $[\text{Fe\,\text{ii}}]/[\text{Ne\,\text{ii}}]$ ratio—within our sample, we may instead be probing an abundance-driven relationship, and the other observed relationships presented here would be purely coincidental to the $[\text{Fe\,\text{ii}}]/[\text{Ne\,\text{ii}}]$ ratio. In order to explore whether this indeed is the true cause or whether shocks alone can explain the observed relationships, we used shock and standard H II–photodissociation region (PDR) models in an effort to model the observed $[\text{Fe\,\text{ii}}]/[\text{Ne\,\text{ii}}]$ relationship for a wide variety of environments. We used both the MAPPINGS III photoionization/shock code (Sutherland & Dopita 1993) and the Cloudy photoionization code (Ferland et al. 1998) in order to determine the relative proportions of the $[\text{Fe\,\text{ii}}]$ emission from shocks and H II–PDRs and by extension the driving process behind the behavior of the observed $[\text{Fe\,\text{ii}}]/[\text{Ne\,\text{ii}}]$ line ratio. In addition to the mid-IR output, we also wished to explore whether a similar relationship is present at optical wavelengths. To this end, we use the ratio of extinction-corrected $[\text{S\,\text{ii}}]$ fluxes at 6716 and 6731 Å taken from the literature and compared the observed ratios with the MAPPINGS output.

4.2.1. MAPPINGS Models

In an effort to quantify the true nature of the $[\text{Fe\,\text{ii}}]/[\text{Ne\,\text{ii}}]$ ratio, we initially constructed a number of MAPPINGS models in which density, metallicity, and luminosity were allowed to vary. The theoretical H II region models were generated by the MAPPINGS III code, which uses as input the EUV fields predicted by the stellar population synthesis models Starburst99 (Leitherer et al. 1999). The photoionization modeling and shock models carried out with MAPPINGS III for this analysis are described in Dopita & Sutherland (1996) and Kewley et al. (2001) and are described briefly here. To model the H II region spectrum, MAPPINGS assumes that the metallicity and the shape of the EUV spectrum are defined (through the Starburst99 input) and characterizes the local ionization state by a local ionization parameter,

\[q = \frac{S_{\text{III}}}{n}, \tag{1} \]
where \(S \) is the ionizing photon flux through a unit area, \(n \) is the local number density of hydrogen atoms, and \(q \) is the maximum velocity of an ionization front that can be driven by the local radiation field (Dopita 2000; Kewley & Dopita 2002). We used a 5 Myr continuous star formation spectral energy distribution (SED) from Starburst99 as input to the MAPPINGS III code. The parameters of the SED consisted of a Salpeter initial mass function (IMF) with a power law of 2.35 and a star formation rate of \(1 M_\odot \text{yr}^{-1} \).

We then constructed a series of plane-parallel, isobaric models with \(P/k = 10^5 \text{cm}^{-3} \text{K} \), in which either the gas density, the metallicity, or the luminosity for the Starburst99 input were allowed to vary, with the other two variables remaining constant. For the Starburst99 input models, the density, metallicity, and luminosity were varied as follows:

- **Density.**—10–1000 \(\text{cm}^{-3} \); metallicity \((0.4 Z_\odot) \) and luminosity \((10^{43} \text{ergs}) \) remain constant.
- **Metallicity.**—0.05–2 \(Z_\odot \); density (100 \(\text{cm}^{-3} \)) and luminosity \((10^{43} \text{ergs}) \) remain constant.
- **Luminosity.**—\(10^{41} \) to \(10^{45} \) ergs; density (100 \(\text{cm}^{-3} \)) and metallicity \((0.4 Z_\odot) \) remain constant.

Elemental abundances for 0.5–2.0 \(Z_\odot \) were adopted for the variable-metallicity models, while for the variable-density and -luminosity models, 0.4 \(Z_\odot \) metallicity abundances were used.

Dust physics is treated explicitly through absorption, grain charging, photoelectric heating, and the use of a standard MRN grain size distribution for both carbonaceous and silicaceous grain types (Mathis et al. 1977). The MAPPINGS code took the undepleted solar abundances to be those of Anders & Grevesse (1989). For non-solar metallicities, MAPPINGS assumes that both the dust model and the depletion factors are unchanged. All elements except nitrogen and helium are taken to be primary nucleosynthesis elements. As for the shock models, we use the prerun shock models from the MAPPINGS Web site, which are based on a grid of \(n = 1.0 \) models with \(v = 100–1000 \text{ km s}^{-1} \) in steps of 25 \(\text{km s}^{-1} \). The magnetic parameter \(B = p/\sqrt{n} \) is fixed to 3 in all calculations. This value corresponds to equipartition between thermal and magnetic pressures (Dopita & Sutherland 1996).

From the MAPPINGS output from the variable-metallicity model, we saw that while the [S \(\text{iii} \)] and [S \(\text{ii} \)] values remain relatively constant (and by extension the density), the [Fe \(\text{ii} \)]/[Ne \(\text{ii} \)] ratio varies quite considerably. With the variable-density model, interestingly, we saw that [Fe \(\text{ii} \)]/[Ne \(\text{ii} \)] does not drop with increasing density, contrary to what we observe (Fig. 3), but rather slightly increases, contrary to what we observe. Finally, for the variable-luminosity model, both the [Fe \(\text{ii} \)]/[Ne \(\text{ii} \)] and, unsurprisingly, the [S \(\text{iii} \)] and [S \(\text{ii} \)] values, remained constant. From the MAPPINGS model data, it was evident that the change in metallicity is primarily responsible for the observed drop in the [Fe \(\text{ii} \)]/[Ne \(\text{ii} \)] ratio.

In order to directly compare the photoionization and shock model output with the IRS and optical data, we then set about defining models that would replicate the sort of density, metallicity, and luminosity parameters typically seen in the sample. Since the low-metallicity objects tend to have lower densities and luminosities, we generated MAPPINGS models that gradually increased the metallicity, density, and luminosity over the ranges outlined above, moving from low to high metallicity (0.05, 0.2, 0.4, and solar), low to high density (20–1000 \(\text{cm}^{-3} \)), and low to high luminosity (\(10^{42} \) to \(10^{46} \) ergs). As we increased the metallicity, we concurrently moved to high densities and higher luminosities. As with the earlier MAPPINGS models, we used a 5 Myr continuous star formation SED from Starburst99 as input to the MAPPINGS III code (Leitherer et al. 1999). The parameters of the SED consisted of a Salpeter IMF with a power law of 2.35 and a star formation rate of \(1 M_\odot \text{yr}^{-1} \). Elemental abundances for 1/20, 2/5, and 1 \(Z_\odot \) were also adopted.

Using the observed [S \(\text{ii} \)] 6716 and 6731 Å, [S \(\text{iii} \)] 18 and 33 \(\mu \text{m} \), the [Fe \(\text{ii} \)] 26 \(\mu \text{m} \) and [Ne \(\text{ii} \)] 12.8 \(\mu \text{m} \) fluxes, we obtained the respective ratios and performed best-fit line calculations to the [S \(\text{iii} \)] versus [Fe \(\text{ii} \)]/[Ne \(\text{ii} \)] and [S \(\text{ii} \)] versus [Fe \(\text{ii} \)]/[Ne \(\text{ii} \)] model data, in which the line fluxes are the product of both the photoionization and shock model outputs. Using the best-fit models, we plotted the model ratio data in conjunction with the observed IRS and optical data ratios (Fig. 5), with the model data derived from the second MAPPINGS run describing very well the behavior of both sets of observed line ratios.

4.2.2. Cloudy Models

The slight increase in the [Fe \(\text{ii} \)] emission with density seen from the MAPPINGS output poses the following question: Where does this increase originate from? Is this increase due to an increased contribution to the [Fe \(\text{ii} \)] emission by dense \(\text{H II} \) regions and PDRs? If so, what is the level of this contribution? To resolve this, we used the spectral synthesis code Cloudy to determine how much of a contribution \(\text{H II} \) regions and PDRs make to the overall [Fe \(\text{ii} \)] emission, how this contribution is affected by the gas metallicity (as suggested by MAPPINGS), and the effect the \(\text{H II} \)–PDR contribution has on the overall [Fe \(\text{ii} \)]/[Ne \(\text{ii} \)] ratio. We used the developmental version of the spectral synthesis code Cloudy, last described by Ferland et al. (1998). Abel et al. (2005) and Shaw et al. (2005) describe recent advances in its treatment of PDR.
chemistry, while van Hoof et al. (2004) describes the grain physics. As with the MAPPINGS models, we used a 5 Myr continuous star formation SED from Starburst99 as input to Cloudy. The parameters of the SED consisted of a Salpeter IMF with a power law of 2.35 and a star formation rate of 1 M_\odot yr$^{-1}$.

Our model geometry consists of a plane-parallel slab illuminated on one side by a source of UV radiation. Our calculations start at the hot, illuminated face of the slab, where all the hydrogen is ionized. We end our calculations under two conditions, when the hydrogen ionization fraction falls below 1% (for the pure H II region calculations, see below) and when the fraction of hydrogen in the form of H$_2$ [$2n(H_2)/n(H_\text{tot})$] exceeds 90%. Beyond this depth, we expect little contribution to either [Fe II] or [Ne II] emission.

We parameterize the ionizing continuum with the ionization parameter, which is the dimensionless ratio of hydrogen-ionizing flux to density,

$$U = \frac{Q_H}{4\pi R^2 N_{H_\text{tot}} c},$$

where Q_H is the total number of hydrogen-ionizing photons emitted by the central object per second. For all calculations, we chose $\log U = -2.5$, a value typical in H II regions (Veilleux & Osterbrock 1987). The ionization parameter in MAPPINGS is related to the one used in Cloudy by the equation

$$U = \frac{q}{c}. \quad (2)$$

We also include cosmic rays in our calculations. Primary and secondary cosmic-ray ionization processes are treated as described in Appendix C of Abel et al. (2005), with an assumed cosmic-ray ionization rate of 5×10^{-17} s$^{-1}$. Cosmic rays are a significant heating source and also drive the ion-molecule chemistry deep in the molecular cloud. However, since our calculations stop short of the molecular cloud, for our models cosmic rays are only of secondary importance. Our calculations include the major ionization processes that can affect the ionization structure. This includes all stages of ionization for the lightest 30 elements.

Dust is known to play an important role in both H II regions and PDRs (Draine 2003). We self-consistently determine the grain temperature and charge as a function of grain size and material for the local physical conditions and radiation field. This determines the grain photoelectric heating of the gas, an important gas-heating process, as well as collisional energy exchange determining the grain photoelectric heating of the gas, an important parameter for the local physical conditions and radiation field. This

We therefore use the $R_F = 4$ grain size distribution given in Weingartner & Draine (2001). We also include size-resolved PAHs in our calculations, with the same size distribution used by Bakes & Tielens (1994). The abundance of carbon atoms in PAHs that we use, n_C/PAH$/n_H = 3 \times 10^{-6}$, PAHs are thought to be destroyed by hydrogen-ionizing radiation and to coagulate in molecular environments (see, for instance, Omont 1986). We model this effect by scaling the PAH abundance by the ratio of H^0/H$_{\text{tot}}$ [n_C/PAH$/n_H = 3 \times 10^{-6} n(H^0)/n(H_{\text{tot}})$].

The assumed gas-phase and dust abundances are extremely important in our calculations. We also assume gas-phase abundances based on an average of the abundances in the Orion Nebula derived by Baldwin et al. (1991), Rubin et al. (1991), and Osterbrock et al. (1992). The abundances by number are $\text{He}/H = 0.095, C/H = 3 \times 10^{-4}, O/H = 4 \times 10^{-4}, N/H = 7 \times 10^{-5},$ and $Ar/H = 3 \times 10^{-6}$. We also assume a default grain abundance of $A_F/N(H_{\text{tot}}) = 5 \times 10^{-22} \text{ mag cm}^2$. We then scale the metal and dust abundance such that the final value of $Z = 12 + \log (O/H)$ ranges from 7 to 10, in increments of 1 dex.

There is one major exception to our assumed abundances, and that is the Fe/H ratio. Rodríguez & Rubin (2005) discuss the variation in Fe/H with Z, and as noted earlier, Izotov et al. (2006) also determined the variation in elemental abundances with Z from the Sloan Digital Sky Survey, including Ne and Fe. For these two elements, Izotov et al. (2006) provide the following equations to derive their respective abundances; for this work, we use the notation Z instead of X, as used in Izotov et al. (2006):

$$\log (\text{Ne/O}) = 0.097Z - 1.542, \quad (3)$$

$$\log (\text{Fe/O}) = -0.606Z + 2.994, \quad (4)$$

where $Z = 12 + \log (O/H)$; we find that

$$\log (\text{Ne/Fe}) = -4.536 + 0.703Z. \quad (5)$$

In all calculations, we scale the Fe abundance so that equation (3) is always obeyed.

The relationship between density, temperature, and pressure is determined by the assumed equation of state. We perform two sets of calculations, one for which we stop the calculation at the hydrogen ionization front and one in which we include the PDR. For the pure H II region models we assume constant density, with the density ranging from $\log n_H = 0.5$ to 4, in increments of 0.5 dex. For the H II + PDR calculations, we assume constant pressure, with thermal and radiation pressure being the dominant contributors to the total pressure. We do not include turbulent pressure in the equation of state, although we assume a small turbulent broadening of 1 km s$^{-1}$ for its effects on line optical depths. Such an equation of state neglects shocks and other time-dependent effects. In the constant-pressure scenario, we specify n_H at the illuminated face, then solve for the density based on how the pressure contributions change with depth. Our densities range over $\log n_H = 2$–4, in increments of 0.5 dex. Overall, our combination of n_H and Z represents 52 calculations.

In Figure 6, we plot the [Fe II]/[Ne II] line ratio as a function of Z and density for the H II region only. In Figure 7, we again plot the [Fe II]/[Ne II] line ratio as a function of Z and density, but this time including the PDR in addition to the H II region. As one can see, the relative H II contribution dominates over the PDR contribution at low densities (and metallicities), with the PDR contribution becoming more dominant as one moves to higher densities ($\sim 10^3 \text{ cm}^{-3}$) and metallicities. Previous IR studies of starburst H II – PDRs (Carral et al. 1994; Lord et al. 1996) support this scenario. For very dense H II regions where the PDRs are irradiated by intense FUV, PDR-derived [Fe II] emission is dominant. Correspondingly at lower densities ($\sim 10^2 \text{ cm}^{-3}$), the H II regions are larger, the PDRs lie farther from the stars, and the resultant lowered FUV fluxes and densities do not excite [Fe II] in the PDR, and thus the H II region dominates the H II – PDR contribution to [Fe II] production for such environments.
4.2.3. What Is Driving the Fe/Ne Relationship?

From the MAPPINGS and Cloudy simulations and the comparisons with the IRS and optical data (Fig. 5), it would seem that metallicity is the primary driver for the behavior of the [Fe ii]/[Ne ii] ratio, as metallicity determines the origin (shocks vs. H II and/or PDRs) and strength of the [Fe ii] emission. We can reproduce the observed [Fe ii]/[Ne ii] dependence on Z if we assume the Izotov variation of Fe/Ne with Z. Cloudy reproduces the [Fe ii]/[Ne ii] ratio decrease with increases in density (for the pure H II region only) because of the following: the critical density for electron excitation of [Fe ii] is 1.2×10^{4} cm$^{-3}$, while for [Ne ii] it is 5×10^{5} cm$^{-3}$. The ratio of [Fe ii]/[Ne ii] thus depends on the ratio

$$\frac{1 + n_{\text{critical}}(\text{Ne})/n(H)}{1 + n_{\text{critical}}(\text{Fe})/n(H)}.$$

In the low-density limit, this ratio is \sim42. However, for a density of 1×10^{4} cm$^{-3}$, which is the high end of our parameter space, this ratio is only \sim20 because [Fe ii] emission is suppressed by the higher density. The reason the ratio increases with density in Figure 7 (H II + PDR) is because [Fe ii] is excited by atomic hydrogen in the PDR in addition to electrons in the H II region. The critical density of [Fe ii] with H atoms is $\sim 1 \times 10^{6}$ cm$^{-3}$. Therefore [Fe ii] emits readily in the PDR, while [Ne ii] does not emit, because all the neon is neutral. However, we do note that the H II and PDR contribution to the [Fe ii] emission is surpassed by the contribution from shocks at the lowest metallicities and densities, based on comparison with the MAPPINGS output and the observed data—perhaps only \sim10% of the [Fe ii] emission comes from H II and PDRs, with that contribution rising to \sim80%–90% as one moves to higher metallicity. As we move to roughly solar metallicity, it would seem likely that the dominant mechanism for production of [Fe ii] (and thus the behavior of the [Fe ii]/[Ne ii] ratio at high metallicities) is from H II and PDRs in combination, rather than from SN shocks.

4.2.4. Can We Tie the Behavior of the Gas Density to the [Fe ii]/[Ne ii] Ratio, Metallicity, and PAH Strength?

While abundances may play a role in the overall behavior of the [Fe ii]/[Ne ii] ratio, the shock scenario would seem to fit the observed variation of the gas density and the PAH ratio with metallicity. Assuming that shocks are indeed behind the observed correlations, the following scenarios would seem to account for the relationship between the [Fe ii]/[Ne ii] and [S iii] ratios and the PAH strength. In very low metallicity dwarf starburst environments, such as I Zw 18, the observed gas density is phenomenally low, on the order of ~ 20–100 cm$^{-3}$. From Figure 3 and the models, it would seem that low density correlates strongly with the presence of strong supernovae shocks, a harsh radiation environment, which is lacking in populations of dust and PAHs, as noted by the lack of PAH emission (Figs. 1 and 4), and generally flat slopes of the dust continua. It would seem likely therefore that we are probing the tenuous gas within a superbubble cavity that has been carved by the cumulative effects of numerous SN-driven shocks. Previous surveys of low-metallicity dwarf galaxies have found evidence for such superbubbles (Strickland & Stevens 2000; Calzetti et al. 2004; Ott et al. 2005), with ionized gas expanding at a rate of several tens of km$^{-1}$, driven by mechanical energy from starbursts deposited into the ISM (Calzetti et al. 2004).

For high-metallicity environments, the picture becomes somewhat more complicated. Such objects are of course still the sites of high levels of massive star formation—the high-metallicity starburst M82 is after all the template for starburst activity—but we see a much more benign environment for the survivability of dust and PAHs. A number of new factors play a role in affecting star formation and its effects on the local environment. First of all, from the Cloudy and MAPPINGS models plus the observed data, we note that the dominant contribution to the [Fe ii] flux no longer comes from shocks, but rather from H II regions and from PDRs in particular—the lack of shocks propagating into the ISM provides a more benign, denser environment for the buildup of dust and PAHs. Superbubbles are present as in low-metallicity...
galaxies; however, SN-driven shocks are no longer the dominant mechanism driving the expansion, but rather stellar winds from massive stars. As a consequence, less mechanical energy is available to drive breakout and outflow, and the superbubble can remain enclosed, especially where the gravitational potential of the galaxy is steep (Skillman & Bender 1995; Burkaert 2004; Calzetti et al. 2004). Given the inability of weaker shocks to drive out material and clear the local ISM, it is not surprising that we should see a buildup of metals and the survivability of dust and PAHs formed locally.

4.2.5. Are Abundances Driving the Fe/Ne Relationship?

While the SN-driven shock hypothesis is convincing in terms of the enhanced [Fe ii] emission and corresponding low PAH emission, it is not the only plausible explanation for the observed correlation. As we have already noted, from Izotov et al. (2006) it has been suggested that the observed levels of [Fe ii] emission may instead be abundance driven. Using equations (1) and (2) to derive how the Fe/Ne ratio varies with metallicity, we see that the Fe/Ne ratio decreases with increasing Z in a fashion very similar to the [Fe ii]/[Ne ii] versus Z correlation, suggesting that the variation in the [Fe ii]/[Ne ii] emission ratio with Z may be a consequence of varying Fe/Ne abundance with Z. Indeed, the slope of Fe/Ne versus Z from Izotov et al. (2006) is very similar to the slope of the best-fitting line from Figure 2 (m = −0.68)—our observational data set points to this being a possibility, and the MAPPINGs and Cloudy models lend further support to this scenario.

However, given the similarity in terms of behavior of our observational data set with the Izotov et al. (2006) results, it begs the question, What may be causing the change in Fe/Ne with Z? Since neon is not depleted (Juett et al. 2006; Yao et al. 2006), the observed relationship would then be due to variations in Fe/H rather than Ne/H. So what is causing the iron depletion? Since iron is known to be depleted onto grains (Juett et al. 2006; Yao et al. 2006), the increased variation in Fe/H would suggest that there is either more grain destruction or less grain formation as one moves to lower metallicities.

If this is correct, the reason for the observed [Fe ii]/[Ne ii] with Z trend is that Fe is less depleted in low-metallicity galaxies. This would have a profound impact on ISM studies, as the usefulness of iron emission as a pure indicator of shocks may be compromised. However, this is not conclusive, and we need more observations to deduce for certain the physical process that is controlling the [Fe ii] emission. In order to definitively figure out whether shocks are truly responsible for the [Fe ii] emission at low metallicity, we require high-resolution IR spectroscopy to unambiguously determine the presence of shocks within the velocity profiles. The upcoming availability of such high-resolution spectroscopic data from Herschel and SOFIA will be crucial to determine the true nature of iron emission at low metallicity, and we look forward to furthering this line of investigation in a future paper.

5. CONCLUSIONS

Using archival Spitzer observations of 41 starburst galaxies that span a wide range in metallicity, we found a correlation between the ratio of emission-line fluxes of [Fe ii] at 26 µm and [Ne ii] at 12.8 µm and the electron gas density as traced by the 18.7 µm/33.4 µm [S ii] ratio, with the [Fe ii]/[Ne ii] flux ratio decreasing with increasing gas density. We also find a strong correlation between the gas density and the PAH peak-to-continuum strength. The correlation of the [Fe ii]/[Ne ii] ratio and the PAH peak-to-continuum strength found in Paper I was confirmed for a larger sample. Using shock and photoionization models, we see that metallicity is the primary driver for the observed behavior of the [Fe ii]/[Ne ii] ratio. It may very well be that the majority of [Fe ii] emission at low metallicity may be shock-derived, while at high metallicity the [Fe ii] emission is dominated by contributions from H II and in particular from PDRs, and that at higher metallicity shocks may not play as significant a role in removing gas, PAHs, and dust from the ISM, unlike in low-metallicity systems. However, the observed [Fe ii]/[Ne ii] emission may instead be following a metallicity-abundance relationship, with the iron being less depleted in low-metallicity galaxies, a result that would have profound implications for the use of Fe emission lines as unambiguous tracers of shocks. Follow-up high-resolution spectroscopic observations will be required to determine whether this is indeed the case or whether the detected iron emission is truly tracing emission from the passage of shocks.

We are grateful to S. Satyapal for her comments and guidance. B. O’H. gratefully acknowledges financial support from NASA grant NAG5-11432. N. P. A. acknowledges National Science Foundation support under grant 0094050, 0607497 to the University of Cincinnati. This work is based on archival data obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The IRS was a collaborative venture between Cornell University and Ball Aerospace Corporation funded by NASA through the Jet Propulsion Laboratory and Ames Research Center. SMART was developed at Cornell University and is available through the Spitzer Science Center at Caltech. The SPICE reduction package has been developed by and released through the Spitzer Science Center.

REFERENCES

Abel, N. P., Ferland, G. J., Shaw, G., & van Hoof, P. A. M. 2005, ApJS, 161, 65
Anders, E., & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197
Bakos, E. L. O., & Tielens, A. G. G. M. 1994, ApJ, 427, 822
Baldwin, J. A., Ferland, G. J., Martin, P. G., Corbin, M. R., Cota, S. A., Peterson, B. M., & Slettebak, A. 1991, ApJ, 374, 580
Brandl, B. R., et al. 2004, ApJS, 154, 188
Burkert, A. 2004, in ASP Conf. Ser. 322, The Formation and Evolution of Massive Young Star Clusters, ed. H. J. G. L. M. Lamers, L. J. Smith, & A.Nota (San Francisco: ASP), 489
Calzetti, D., Armus, L., Bohlin, R. C., Kinney, A. L., Koornneef, J,. & Storchi-Bergmann, T. 2000, ApJ, 533, 682
Calzetti, D., Harris, J., Gallagher, J. S., III, Smith, D. A., Conselice, C. J., Homeier, N., & Kewley, L. 2004, AJ, 127, 1405
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Carral, R., Hollenbach, D. J., Lord, S. D., Colgan, S. W. J., Haas, M. R., Rubin, R. H., & Erickson, E. F. 1994, ApJ, 423, 223
Cazaux, S., & Tielens, A. G. G. M. 2002, ApJ, 575, L29
Dopita, M. A. 2000, Ap&SS, 272, 79
Dopita, M. A., & Sutherland, R. S. 1996, ApJS, 102, 161
Draine, B. T. 1989, in ESA, Infrared Spectroscopy in Astronomy (Noordwijk: ESA), 93
—. 2003, ARA&A, 41, 241
Dudik, R. P., Weingartner, J. C., Satyapal, S., Fischer, J., Dudley, C. C., & O’Halloran, B. 2007, ApJ, 664, 71
Ferland, G. J., Korista, K. T., Verner, D. A., Ferguson, J. W., Kingdon, J. B., & Verner, E. M. 1998, PASP, 110, 761
Förster Schreiber, N. M., Rousset, H., Sauvage, M., & Charmandaris, V. 2004, A&A, 419, 501
Galliano, F., Deve, E., & Chianal, P. 2008, ApJ, 672, 214
Guhathakurta, P., & Draine, B. T. 1989, ApJ, 345, 230
Higdon, S. J. U., et al. 2004, PASP, 116, 975
Ho, L. C., Filippenko, A. V., & Sargent, W. L. W. 1997, ApJS, 112, 315
