AZX611 マグネシウム合金/A6N01 アルミニウム合金接合材のガルバニック腐食に及ぼす面積比の影響

中津川 敦*・千野 靖正

Effect of area ratio on the galvanic corrosion of AZX611 magnesium alloy / A6N01 aluminum alloy joint

Isao NAKATSUGAWA* and Yasumasa CHINO

Galvanic corrosion at the joint of AZX611 magnesium (anode) and A6N01 aluminum (cathode) in 1 mass% NaCl solution with different cathode / anode area ratios was evaluated. The galvanic potential was different depending on the area ratio. The anode galvanic current density increased with the area ratio. The anode galvanic current density increased with increasing the area ratio. Surface profile of the galvanic joint was in good agreement with the SVET results. The obtained effect of cathode / anode area ratio was analyzed by the mixed potential theory. Finally, the compatibility of magnesium / aluminum joint was compared with other dissimilar metal joints.

(Received July 9, 2020 Accepted October 22, 2020)

Keywords: magnesium alloy; Aluminum alloy; galvanic corrosion; area ratio
流およびMgを含む塩類の溶解速度が面積比とともに増大することを報告している。

本研究では、AZ611合金/A6N01合金接合材の面積比を0.1～9に変更した場合の1 mass% NaCl溶液中におけるガルバニック腐食挙動を評価した。得られた結果を従来のガルバニック腐食研究と比較することにより、本腐食系の特徴を明らかにすることを試みた。

2. 実験方法

市販のAZ611マグネシウム合金押出材およびA6N01アルミニウム合金押出材（板厚3 mm、熱処理無し）を接合材料として用いた。以下、前者をアノード、後者をカソードと表記する。化学組成をTable 1に示す。実験にはFig. 1に示すような2種類の接合材A, Bを用いた。接合材Aでは、試料表面を1000番までのSiC紙で湿式研磨、純粋で洗浄、エタノールで脱脂した後にテフロン製試験ホルダを防食テープ等を用いて試験面積を1, 3, 4, 9 cm²に規定した。カソード面積（SC）/アノード面積（SA）の比を0.11, 0.32, 1.00, 3.14, 9.00となるよう相手材と組み合わせ、5 mmまで相対させた。接合材Bは長さが20 mm共通であり、厚さが4.7, 10.3, 16 mmに調整し、合計厚さが20 mmとなるように相手材と配置させた。SA/SCを0.25, 0.54, 1.00, 1.86, 4.00とした。接触する側面には幅0.1 mmのシリコン製絶縁材を挿し、背後にそれぞれ電流を取り出し用のコートを接続した。接合材を樹脂に埋め込み、試験面を1000番までのSiC紙で湿式研磨した後に純粋で洗浄、エタノールで脱脂した。

試験溶液は試薬NaCl溶液を純水で溶解し、凝固を1 mass%に調整した。被検Mg (OH)₃試薬を用いてpHをおよそ10に調整した。溶液の導電率（p）は1.76 S m⁻¹であった。試験溶液量を400 ml（接合材A評価用セル）もしくは800 ml（接合材B評価用セル）とした。

接合材Aのガルバニック電流（Ir）を無抵抗電流計（ZRA）により電気的に短絡された状態で測定した。またその生成電位であるガルバニック電位（Es）をレクトロメータ（いずれもPrinceton Applied Research VersaSTAT3内蔵）により測定した。Esの測定では接合材間に浸せき銀塩化銀（Ag/AgCl）参照電極を接続したキャビラリを挿入した。試験時間を24 hとして計測されたIrを時間平均値（Ir,avg）を算出した。

試験終了後にJIS Z 2371 (2015)に基づいて各合金の腐食生成物を除去した。接合材Aにおいては、重量減少量よりFaradayの法則に基づいてアノードおよびカソードの平均腐食面積（S hosted tave）を算出した。AZ611合金中のMgは2個、A6N01合金中のAlは3個で溶解すると仮定した。ガルバニック腐食挙動を模擬するために、電気化学測定装置を用いてアノードまたはカソード単体をガルバニック電位付近の電位（Eg）に保持した場合の電流応答（ip）を測定した。

SVETは市販システム（Princeton Applied Research VersaSCAN）を用いた。接合材Bを試験液溶液面5mm下に水平に設置した。先端部20 μmを残して絶縁被覆した白金板を接合材Bの上部100 μmに配置し、振幅40 μmでSA+SC (400 mm²) の領域を0.5×0.5 mmステップで走査した。測定およびキャリブレーションの詳細は従来③を参照された。測定は試験開始3 h後から24 h後まで、3 hごとに実施した。1回の測定に要する時間は約75 minであった。試験終了後に腐食生成物を除去後の表面形状を3次元測定ソフトウェア（Keyence VR-5200）で計測した。

すべての測定は室温（24 ± 2℃）、大気開放下で行った。溶液の供試材は行っていない。計測は2回以上実施し、挙動の再現性を確認した。以降、電流値を表記する際にはアノード電流を正、カソード電流を負とした。

Table 1 Alloy composition (mass%).

	Mg	Al	Ca	Zn	Si	Mn	Cu	Fe	Cr	Ni
AZ611	Bal.	5.9	1.0	0.6	0.01	0.2	0.002	0.004	-	0.003
A6N01	0.4	Bal.	-	0.02	0.6	0.1	0.2	0.2	0.02	-

Fig. 1 Schematic diagram of experimental setup.
3. 結 果

3.1 ガルバニック電位・電流および腐食速度

接合材Aにおけるガルバニック電位E_{gal}の時間変化をFig. 2に示す。浸漬初期において、E_{gal}はS_c/S_aが大きいほど貴な値を示した。しかしながら時間の経過とともにその関係は不明瞭となり、24時間後にはいずれも$-1.43 \sim -1.47$ Vの値で安定し、面積比との相関が弱くなった。Fig. 3にはガルバニック電流をアノード面積で除した電流密度I_{gal/S_a}を示す。$S_c/S_a=0.11$にて最も小さく、S_c/S_aの増大とともに増加した。いずれも試験開始1〜2時間以内に極大値を示した後に減少する傾向を示した。S_c/S_aが大きいほど短時間で極大値を示し、速やかに減少した。

Fig. 4にアノードとカソードの重量減少腐食速度i_{corr}、i_{corr}およびガルバニック電流時間平均値をアノード面積S_cで除した$I_{gal, ave/S_a}$の面積比依存性をプロットした。S_c/S_aの変化に伴いi_{corr}およびi_{corr}は単調に変化しており、面積比はカソード、アノードいずれの腐食速度にも影響を及ぼしている。いずれのパラメータも面積比の対数との関係に直線関係を示しており、相関係数R^2は0.95以上であった。なお、図には示していないが、ガルバニック電流をカソード面積で除したI_{gal/S_a}は勾配が負の直線関係を示した。

3.2 定電位保持試験

Fig. 2に示すように24時間後のガルバニック電位E_{gal}は$-1.43 \sim -1.47$ Vの範囲内には収まっている。そこで電気化学測定装置を用いてアノード（AZX611）またはカソード（A6N01）を単独で定電位$E_p=-1.43, -1.45, -1.47$ Vで保持した際の電流応答i_pを測定した。結果をFig. 5に示す。アノードにおいてi_pは1時間以内に極大値を示した後に減少しており、Fig. 3のガルバニック電流と同様な軌跡を示した。10時間後の電流値はE_pが高いほど大きい。$E_p=-1.47$ Vでのi_pは時間とともに減少し続け、18時間後には負の値を示した。カソードにおいてi_pは試験開始2〜5時間後に極大値を示した。E_pが大きいほどi_pは小さい。但し$i_p=-1.47$ V〜-1.45 Vでの減少幅がおよそ100μA cm$^{-2}$であるのに比べ、$E_p=-1.45$ V〜-1.43 Vでは300μA cm$^{-2}$程度であった。$E_p=-1.45$ Vにおいて、アノード・カソード共に$i_p=400$〜$500\mu A cm^{-2}$を示している。この値はFig. 3の$S_c/S_a=1.00$におけるI_{gal/S_a}にほぼ等しい。

3.3 SVET

$S_c/S_a=1.86$のSVET電流の時間変化をFig. 6に示す。赤色部がアノード域、青色部がカソード域であり、等電流密度線も付記した。接合部境界において電流密度が高く設定している。カソードにおいて起伏がある一方で、アノードでは局部的に2000μA cm$^{-2}$に達する領域が発生している。またその位置は時間とともに変化している。試験中の表面を観察したところ、カソードでは表面全体から水素が発生しているのに対し、アノードでは水素発生が観察され、腐食面から優先的に水素が発生していた。Wangらは2.5 mM NaCl溶液中におけるMg-Zn合金の水素発生をSVETで評価し、腐食面がアノードとなっていることを報告している。24時間後に、アノード、カソード共に白色もしくは逆の色を示す領域

Fig. 2 Time evolution of the galvanic potential of AZX611/A6N01 joint A with different area ratio in 1 mass% NaCl.

Fig. 3 Time evolution of the galvanic current to AZX611 at AZX611/A6N01 joint A with different area ratio in 1 mass% NaCl.

Fig. 4 Effect of area ratio of AZX611/A6N01 joint A on the corrosion rates of AZX611 and A6N01, and the average galvanic current density to AZX611 in 1 mass% NaCl solution.
が発生しており、ガルバニック腐食に関与する領域が変化していることを示唆する。

Fig. 7にS/S_0を0.25, 1.00, 4.00に変えた接合体Bの24h後のSVET電流分布を示す。S/S_0 = 0.25でのアノード電流は境界部付近に集中し、その外側には白色あるいは薄青色の電流がほとんど検出されない領域が占めている。但し電流密度が2000 μA cm⁻²を示す部分領域は依然存在している。カソードの占める割合が大きいS/S_0 = 4.00ではアノード全領域が赤色を呈しているが、電流密度が3000 μA cm⁻²を超える領域は認められなかった。

3.4 表面プロファイル
試験終了後の接合体BのS/S_0 = 0.25, 1.00, 4.00における表面プロファイルをFig. 8に示す。色彩で深さに対応しており、スケールの最小値は接合体の最大侵食深さに相当する。侵食深さの分布はFig. 7のSVET測定の結果とよく対応している。S/S_0 = 0.25においてはカソード/アノード境界部からやや離れた領域でも局部腐食箇所が認められる。接合面と垂直に2 mm間隔での断面プロファイルを10本求め、その平均値をFig. 9に示した。S/S_0 = 1.00で最も大きなアノード侵食深さが得られている。S/S_0 = 4.00の接合材は、その高い面積比に関わらずS/S_0 = 1.00より小さい。カソードにおける起伏の状態は0.03〜0.07 mm程度であり、腐食が比較的均一に進行していた。

4. 考察
4.1 混成電位理論に基づくガルバニック腐食の解析
面積比S/S_0 = 1におけるE_corおよびI_corの値は、実験的に求まるAZX611のアノード電位分極曲線とA6N01のカソード動電位分極曲線の交点付近に位置する[11]。Mansfield[12]は、腐食電気化学の基礎理論である混成電位理論に基づいて、ガルバニック腐食に及ぼす面積比の影響を3つのケースに分類している。（Case 1）ではアノード上ではアノード反応のみ、カソード上ではカソード反応のみを生じ、共にTafel挙動を示す状態を扱う。（Case 2）はアノードがその腐食電位よりもわずかに分極している状態を扱う。この場合、アノード上的カソード反応が無視できず、I_cor ≈ S/S_0となる。1 mass% NaCl溶液中のAZX611の腐食電位はおよそ−1.52 Vであり[11]。Fig. 2に示すE_corとの差が0.07 V程度であることから、[Case 2]の条件に合致する。Mansfield論文に従うと、ガルバニック電流I_cor/S_0やアノード腐食速度i_corは面積比S/S_0との間に以下の関係が成立する：

$$\log I_{cor}/S_0 = \log i_{cor} - \log (1 + i_{cor}/S_0/S_0)$$

または

$$i_{cor} = (I_{cor}/S_0) = 1 + (i_{cor}/S_0)/1$$

ところでi_cor/S_0はアノード、カソード上でのカソード反応の交換電流密度に相当する。

Fig. 4の結果を定式化してみよう。（1）式より、I_cor/S_0は面積比を含む項（1 + i_cor/S_0）の対数の関数であるが、i_cor/S_0も依存する。また混成電位理論に従うとi_corおよびi_aは各々の標準電極電位とガルバニック電位との差およびターフェル勾配の関数として与えられる[12]。Fig. 2に示すように初期のE_corはS/S_0に依存するが、時間とともに変化している。さらに、Fig. 4の各電流密度パラメータは試験時間24 hでの時間積分値である。さらにのようにS/S_0はI_cor/S_0およびi_aに複雑に関与するが、結果としてFig. 4のような相関関係がI_cor/S_0およびi_aのみならず、カソード腐食の平均化と現れるi_cor（およびI_cor/S_0）についても成長することは興味深い。

Fig. 4中のI_cor/S_0およびi_corの結果を（2）式に代入するとFig. 10に示す結果が得られる。図の直線の勾配よりi_cor/i_aの値は約0.24と求められる。更に[16]は0.1 mol dm⁻³ NaCl溶液中のA1050合金の酸化反応に伴うi_aを3〜4 μA cm⁻²と報告している。Frankel[17]は99.99%Mgの0.1 mol dm⁻³ NaCl溶液中のi_aを4 μA cm⁻²と報告している。これらの数値を代入するとi_cor/i_a = 1〜3と計算される。i_aが合金中の成分によって指数的に変化することを考慮すれば、（2）式より得られる0.24という値と良い整合性がみられると言ってよい。マグネシウム以外で[Case 2]に相当するガルバニック腐食を報告した例は少ないようである[18]。著者の知る限り、Fig. 10は[Case 2]のガルバニック腐食系で（2）式が成立することを実証した最初の例と推察される。

ちなみにMansfieldは ‘catchment area principle’ と言われる[Case 3]を詳しく取上げている。この場合、

$$i_{cor} = i_0(1 + S_0/S_0)$$

が成立する[12, 19]。i_0は溶存酸素の限界拡散電流である。（3）
Fig. 6 SVET current map of AZX611/A6N01 joint B with area ratio of 1.86 in 1 mass% NaCl after; (a) 6 h, (b) 12 h, and (c) 24 h. Electrodes are separated by an insulator located at X = 13 mm. Blue and red colors denote the positive and negative current, respectively.

Fig. 7 SVET current map of AZX611/A6N01 joint B in 1.0 mass% NaCl after 24 h with area ratio of; (a) 0.25, (b) 1.00, and (c) 4.00. Electrodes are separated by an insulator located at X = 4, 10, 16 mm, respectively. Blue and red colors denote the positive and negative current, respectively.

Fig. 8 Surface profile of AZX611/A6N01 joint B in 1.0 mass% NaCl after 24 h with area ratio of; (a) 0.25, (b) 1.00, and (c) 4.00. Arrows indicate the position of an insulator.
カソードでは保持電位は $E_p = -1.45 \text{ V} \rightarrow -1.43 \text{ V}$ の電位変化が $|\mu| = 315 \rightarrow 45 \mu \text{ A cm}^2$ と大きな電流値の低下を示した。これらの数値から得られる挙動は 24 mV/decade であり、A6N01のカソードTafel勾配 $(b_h = 110 \text{ mV/decade})$ と大きく異なる。Ogleらはアルミニウムのカソード腐食が発生するためには過剰の水素酸化イオン (OH) が必要であること、そのために $E_p = -1.4 \text{ V vs. Ag/AgCl}$ 以下の電位が必要することを指摘している。このことはAl合金のカソード腐食における何からの電流量の存在を示唆する。S_i/S_h の増大は E_p を引き上げるが、当該電位に近づくことにつながり、カソード溶解が抑制される。この点、Case 3 が示すガルバニック腐食と大きく異なる。カソード反応が溶酸素系の限界拡散電流を示す状況では、E_p が多少変動しても、カソード反応速度 (i_{gal}) は一定である。

Fig. 9の$S_i/S_h = 1$ においてアノードの平均侵害深さが最大となっている。本報では示していないが、接合材Bでのガルバニック電流 i_{gal} も測定しており、同様に$S_i/S_h = 1$において最大値を示した。$S_i/S_h > 1$ であると E_p が上昇し、上記のカソード溶解が抑制される方向に働く。また、アノードの非分権するに $S_i/S_h < 1$ となっても E_p はあまり変化せず、電位の引き上げによるカソード腐食の加速は小さい。加えて初期のカソードサイトの発生によって、E_p が腐食電位付近まで下がることはない。以上のよう】面積比がアノード、カソードの腐食挙動に影響を与える様子を定性的に理解できるが、最大値が$S_i/S_h = 1$において現れる理由は不明である。この現象はMansfieldの分類 [Case 1] において、接合材Bの配置 ($S_i + S_h$ 一定) およびアノードおよびカソードのTafel勾配が共に等しい ($b_h = |b_h|$) の時のみに生じる。本報では [Case 1] に該当せず、b_hと$|b_h|$ は大きく異なる。今後の課題としたい。

Mg合金とAl合金のガルバニック腐食が、炭素鋼との間で見られるような激しい腐食を引き起こさないのとは、両者の腐食電位が比較的近いことに関わる。Fig. 10の$t_{\text{gal}}/t_{\text{corr}}$ ～1と、カソード特性にあまり差がないためもと解釈できる。Mg合金にとってAl合金がcompatibleな材料であるのを求める。しかし、ガルバニック腐食を構成するカソード反応が水素発生反応であることに変わりはなく、塩化物濃度や温度によって大きく加速される可能性に常に注意する必要がある。

5. 結 言

(1) 1 mass% NaCl溶液中に浸漬したAZX611合金アノード /A6N01合金カソード接合材のガルバニック電流は浸漬1〜2

(2) アノード、カソードの重量減少腐食速度およびアノード

(3) アノードおよびカソードの電位を24 h後のガルバニック

(4) SVET電流はアノード/カソード境界部で最大値を示

Fig. 9 Average depth profiles of AZX611/A6N01 joint B in 1 mass% NaCl after 24 h with different area ratio. Arrow indicates the position of an insulator.

Fig. 10 Relation between the surface area ratio and the weight loss corrosion rate of AZX611 divided by galvanic current to AZX611.
ド/アノード面積比が大きいほど高電流を示すアノード領域が増えが、最大電流密度はあまり変化しなかった。カソードでは面積比が小さくなるほど電流密度最大値が増加した。

（5）試験後のアノード・カソードの表面プロファイルは、SVETの結果とよく一致した。面積比が1.00の場合に最も大きなアノード侵食深さプロファイルが得られた。

（6）面積比のガルバニック電流および腐食速度への影響はMansfeldの拡散電位理論による分類（Case 2）に基づく予測と一致した。

参考文献
1) 中津川徹：マグネシウム合金の最先端技術と応用展開。編集河村能人、千野靖正、シーエムシー出版、（2020）、169-174。
2) ASTM G82-98, ASTM International, (2014).
3) D. L. Hawke, J. E. Hillis, M. Pekguleryuz and I. Nakatsugawa: ASM Specialty Handbook Magnesium and Magnesium Alloys, ed. M. M. Avedesian and H. Baker, ASM International, (1999), 194-210.
4) M. R. Bothwell: Corrosion of Light Metals, John Wiley & Sons, (1967), 266-270.
5) Ph. Gimenez, J.J. Rameau and M.C. Reboul: Corrosion, 37 (1981), 673-682, doi:10.5006/1.3577557.
6) K. Ogale, M. Serdechnova, M. Mokaddem and P. Volovitch: Electrochim. Acta, 56 (2011), 1711-1718, doi.org/10.1016/j.electacta.2010.09.058.
7) S. Thomas, N.V. Medhekar, G.S. Frankel, N. Birbilis: Curr. Opin. Sold St. M., 19 (2015), 85-94.
8) T.W. Cain, I. Gonzalez-Afanador, N. Birbilis and J.R. Scully: J. Electrochem. Soc., 164 (2017), C300-C311, 10.1149/2.1371706.
9) N. Birbilis, A.D. King, S. Thomas, G.S. Frankel and J.R. Scully: Electrochim. Acta, 132 (2014), 277-283, doi.org/10.1016/j.electacta.2014.03.133.
10) M. Esmaili, J. E. Svensson, S. Fajardo, N. Birbilis, G. S. Frankel, S. Virtanen, R. Arrabal, S. Thomas and L. G. Johansson: Prog. Mat. Sci., 89 (2017), 92-193, doi.org/10.1016/j.pmatsci.2017.04.011.
11) I. Nakatsugawa and Y. Chino: J. Electrochem Soc., 165 (2020), 061501, 10.1149/1945-7111/ab7c70.meta.
12) F. Mansfeld: Corrosion, 27 (1971), 436-442, doi.org/10.5006/0010-9312-27.10.436.
13) G. Song, B. Johannesson, H. Hapugoda and D. St.John: Corros. Sci., 46 (2004), 955-977, doi.org/10.1016/S0010-938X (03) 00190-2.
14) D.R. Banjade, S.D. Porter, B.M. McMullan and J. Harb: J. Electrochem. Soc., 166 (2016), C116-C123, 10.1149/2.0711603.
15) H. Wang, Y. Song, J. Yu, D. Shan and H. Han: J. Electrochem. Soc., 164 (2017), C574-C580, 10.1149/2.1221709.
16) 世論修文, 村上 大, 村上 亮, 村上 真: 材料と環境, 63 (2014), 496-503, doi.org/10.3323/jcorr.63.496.
17) G.S. Frankel, A. Samaniego and N. Birbilis: Corros. Sci., 70 (2013), 104-111, doi.org/10.1016/j.corsci.2013.01.017.
18) E. Quezada-Castillo, W. Aguilar-Castro and B. Quezada-Alvan: Matéria (Rio de Janeiro) 25: 2 (2020), doi.org/10.1590/s1517-707620200001.0926.
19) F. Mansfeld and J.V. Kenkel: Corros. Sci., 15 (1975), 239-250, doi.org/10.1016/S0010-938X (75) 80019-9.
20) 宮坂松信：エバラ時報, 222 (2009), 33-43.
21) T.E. Standish, L.J. Braithwaite, D.W. Shoesmith and J.J. Noël: J. Electrochem. Soc., 166 (2019), C3448-C3455, 10.1149/2.0521911jes.