RESEARCH ARTICLE

Multivessel versus Single Vessel Angioplasty in Non-ST Elevation Acute Coronary Syndromes: A Systematic Review and Metaanalysis

Javier Mariani¹,²*, Alejandro Macchia², Maximiliano De Abreu¹, Gabriel Gonzalez Villa Monte¹, Carlos Tajer¹

¹ Cardiology Department, Hospital El Cruce “Néstor Carlos Kirchner”, Av. Calchaquí 5401 (B1888AAE), Florencio Varela, Buenos Aires, Argentina, ² Fundación GESICA, Av. Rivadavia 2358 (C1034ACP), Ciudad Autónoma de Buenos Aires, Argentina

* ja_mariani@hotmail.com

Abstract

Background
Multivessel disease is common in acute coronary syndrome patients. However, if multivessel percutaneous coronary intervention is superior to culprit-vessel angioplasty has not been systematically addressed.

Methods
A metaanalysis was conducted including studies that compared multivessel angioplasty with culprit-vessel angioplasty among non-ST elevation ACS patients. Since all studies were observational adjusted estimates of effects were used. Pooled estimates of effects were computed using the generic inverse of variance with a random effects model.

Results
Twelve studies were included (n = 117,685). Median age was 64.1 years, most patients were male, 29.3% were diabetic and 36.9% had previous myocardial infarction. Median follow-up was 12 months. There were no significant differences in mortality risk (HR 0.79; 95% CI 0.58 to 1.09; I² 67.9%), with moderate inconsistency. Also, there were no significant differences in the risk of death or MI (HR 0.90; 95% CI 0.69 to 1.17; I² 62.3%), revascularization (HR 0.76; 95% CI 0.55 to 1.05; I² 49.9%) or in the combined incidence of death, myocardial infarction or revascularization (HR 0.83; 95% CI 0.66 to 1.03; I² 70.8%). All analyses exhibited a moderate degree of inconsistency. Subgroup analyses by design reduced the inconsistency of the analyses on death or myocardial infarction, revascularization and death, myocardial infarction or revascularization. There was evidence of publication bias (Egger’s test p = 0.097).
Conclusion
Routine multivessel angioplasty in non-ST elevation acute coronary syndrome patients with multivessel disease was not superior to culprit-vessel angioplasty. Randomized controlled trials comparing safety and effectiveness of both strategies in this setting are needed.

Introduction
Current clinical practice guidelines recommend an invasive approach for patients with intermediate and high-risk features presenting with non-ST elevation acute coronary syndromes (NSTE-ACS) [1,2]. Since approximately 40–60% of NSTE-ACS patients who undergo coronary angiography, have multivessel coronary artery disease, treating physicians often face the decision of choosing the best revascularization strategy [3,4]. In cases where anatomy is suitable for percutaneous coronary intervention (PCI), and there is no clear indication of surgical revascularization, the decision usually stands between multivessel PCI (MV PCI) and culprit-vessel PCI (CV PCI). In such situations, AHA/ACC guidelines recommend that “a strategy of multi-vessel PCI, in contrast to culprit lesion-only PCI, may be reasonable in patients undergoing coronary revascularization as part of treatment for NSTE-ACS” [2].

Complete revascularization has the potential to improve outcomes by reducing recurrent events, particularly urgent revascularization procedures [5]. Nevertheless, these benefits could be offset by an increase in the risk of periprocedural myocardial infarction (MI), stent thrombosis, bleeding and contrast-induced nephropathy associated with MV PCI [6–8]. Furthermore, it has been suggested that MV PCI has lower procedure success rates than CV PCI [9].

In this study, the aim was to assess the evidence that compares MV PCI versus CV PCI among patients with NSTE-ACS with multivessel coronary artery disease through a systematic review and meta-analysis.

Materials and Methods
The study protocol is registered in the international prospective register of systematic reviews (PROSPERO), number CRD42014015531 (available at http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42014015531).

Eligibility criteria
Studies were eligible if compared a revascularization strategy based on CV PCI (or one vessel only) versus MV PCI, among NSTE-ACS (MI or unstable angina) patients with multivessel coronary artery disease and with available outcome data for the analyses.

Only published articles were considered and there were no restrictions regarding design or language. Studies were included only if separated data was available for patients matching our target population.

Studies reporting data on patients with ST elevation MI and/or patients with cardiogenic shock, and those that compared PCI versus coronary artery bypass grafting (CABG) were excluded.

Search strategy
We searched in MEDLINE (via PubMed, with no date restrictions), EMBASE (from 1980 to present) and PsycINFO (from 1987 to present). The terms used for electronic search were:
[coronary angioplasty OR percutaneous coronary intervention OR pci OR revascularization] AND [(unstable angina) OR (myocardial infarction AND non st elevation) OR (non st elevation AND acute coronary syndrome)] AND [multivessel].

As recommended, reference lists of relevant studies and other published reviews on this issue were handsearched for potential studies [10].

Data extraction

Two of the authors (J.M. and A.M.) assessed independently the articles retrieved by the search in an unblinded fashion. Eligibility was initially evaluated through revision of titles and abstracts and, when inclusion criteria were met or there were no clear exclusion criteria present, full texts were retrieved for further evaluation.

Since all studies were observational, to record data MOOSE guidelines were followed [10]. The extracted data from each study report included authors, year of publication, design, statistical methods for confounding control, loss in follow-up, follow-up duration, total number of patients registered, number of patients finally included in the analyses, cardiovascular risk factors, angiographic data, use of drug eluting stents (DES), outcome event data and adjusted estimates of effects. Data were collected in an ad-hoc case report form and then entered in a dedicated database.

All discrepancies were solved by consensus with the participation of a third author (C.T.).

For quality evaluation, it was computed the Newcastle-Ottawa Scale (NOS) as the sum of stars of each study [11]. The scale assigned a maximum of nine points, with more points indicating better quality. As recommended elsewhere, assessment of quality included the NOS but was not limited to it [10,12].

Outcomes

The outcomes of interest were all cause mortality, death or MI, revascularization and the combined incidence of death, MI or revascularization. In all cases, definitions of events were maintained as reported in the original articles with no attempt to re-classify events.

Statistics

The main analyses were conducted using the adjusted estimators of effects for each study (i.e. measures of effect obtained after controlling for confounders), and these were pooled with a random effects model using the generic inverse variance method, as described by DerSimonian and Laird [10,13]. To evaluate the influence of confounders on estimates of effects, we also conducted exploratory analyses using the raw data (i.e. number with events and number of patients in each study group). Individual and pooled adjusted estimates of effect were reported as hazard ratios (HR) with the corresponding 95% confidence intervals (95% CI); there were, however, four studies that reported the adjusted estimates as odds ratios (OR). In these cases, the ORs were converted to relative risks, as suggested elsewhere, and pooled in this way in a sensitivity analysis [9,14–17].

Heterogeneity was evaluated through the I² statistic, which represents the percentage of variation between estimates of effects that cannot be explained by the play of chance; a value >50% was considered an indicator of moderate inconsistency and a value >75% as substantial inconsistency [18]. Possible sources of heterogeneity were explored in subgroup analyses that were defined by study designs, duration of follow-up, percentage of DES utilization and quality of the study determined by the NOS.
Publication bias was evaluated by the visual exploration of funnel plot, and formally through the Egger’s test, with \(p < 0.1 \) considered as an indicator of a statistically significant asymmetry of the funnel plot [19].

All analyses were conducted using the R software and the meta package (the R Foundation for Statistical Computing, Vienna, Austria) [20].

Results

Included studies

The initial search identified 674 articles, 219 of which were duplicates. After revision of the remaining titles and abstracts, 16 full texts were retrieved for further evaluation (Fig 1). One was excluded because there was no control group for comparison and three reported ACS patients jointly with stable chronic angina patients [21–24]. In all, 12 studies were included with reported data of 117,685 patients (38,477 received MV PCI and 79,208 received CV PCI) (Table 1).

![Flow chat of studies.](https://doi.org/10.1371/journal.pone.0148756.g001)
Authors	Acronym	Year	Countries	Design	Statistical adjustment	Inclusion criteria	Intervention definition	Control definition	Exclusion criteria	N in database	N analysed	N lost in follow-up
Bauer et al	EHS-PCI	2011	Europe	Observational	Multivariate analyses	Haemodynamically stable ACS and at least two epicardial vessels with ≥70% obstruction	PCI in ≥2 vessels	PCI in 1 vessel	Prior CABG. LM lesion	47407	1920	NA
Onuma et al	Research—T-SEARCH	2013	Netherlands	Observational	Multivariate analyses	NSTE-ACS and multivessel disease	PCI in ≥2 vessels	PCI in 1 vessel	Prior CABG. staged PCI	1312	990	40
Lee et al		2011	Korea	Observational	Multivariate analyses	NSTE-ACS, multivessel disease and PCI with DES	PCI in ≥2 vessels	PCI in 1 vessel	Prior CABG. isolated LM, chronic occlusions, cardiogenic shock and staged PCI	532	366	NA
Shishehbor et al	TARGET	2006	North America, Australia, Europe	RCT analysis	Propensity score matching	NSTE-ACS and PCI	PCI in ≥2 vessels	PCI in 1 vessel	Primary PCI, cardiogenic shock, creatinine >2.5 mg/dl, thrombocytopenia, bleeding diathesis, life-limiting conditions, staged PCI	4809	1302	NA
Shishehbor et al		2007	United States	Observational	Multivariate analyses	NSTE-ACS, multivessel disease and PCI with BMS	PCI in 1 vessel	Chronic occlusions, staged PCI, prior CABG	1240	1240	NA	
Brener et al	ACC-NCDR	2008	United States	Observational	Multivariate analyses	NSTE-ACS, multivessel disease and PCI	PCI in ≥2 vessels	PCI in 1 vessel	Non-ACS patients, prior CABG, single vessel disease, staged PCI and missing angiographic information	662463	105866	33
Kim et al	KAMIR	2010	Korea	Observational	Multivariate analyses	NSTEMI and multivessel disease	PCI in ≥2 vessels	AMI	1919	1919	370	
Mariani et al	ROSAI	2001	Italy	Observational	Multivariate analyses	Unstable angina and multivessel disease	PCI in all significant lesions	At least 1 residual stenosis ≥50%	987	208	17	
Palmer et al		2004	United Kingdom	Observational	None	NSTE-ACS and multivessel disease	PCI in ≥2 vessels	PCI in 1 vessel	Prior CABG. LM lesion	219	151	13
Zapata et al	TACTICS-TIMI 18	2009	Argentina	Observational	Multivariate analyses	NSTE-ACS, multivessel disease and PCI	PCI in ≥2 vessels	STEMI, total chronic occlusions, staged PCI and prior CABG	1100	609	NA	
Brener et al	TACTICS-TIMI 18	2002	United States, Canada, South America, Europe	RCT analysis	None	NSTE-ACS and PCI	PCI in ≥2 vessels	Non-culprit lesion only PCI	2220	427	NA	
Hassanin et al	Acuity	2014	Europe, United States and Canada	RCT analysis	Multivariate analyses	Moderate or high risk NSTE-ACS and Multivessel disease	PCI in ≥2 vessels	PCI in 1 vessel	Staged PCI	13819	2864	NA

Abbreviations: ACS: acute coronary syndromes; PCI: percutaneous coronary interventions; CABG: coronary artery bypass grafting; LM: left main; NA: not available; NSTE-ACS: non-ST elevation acute coronary syndromes; DES: drug eluting stents; RCT: randomized clinical trial; BMS: bare metal stents; NSTEMI: non-ST elevation myocardial infarction; STEMI: ST elevation myocardial infarction.

doi:10.1371/journal.pone.0148756.t001
Three studies (n = 4,456) were analyses post-hoc of randomized controlled trials [25–27], the remaining were retrospective analyses from observational registries (n = 113,229) [5,9,14–16,28–31]; there were no case control studies. Median count of stars from NOS was 6 (range 5 to 8). The observational registries involved one or more institutions from one country, whereas randomized controlled trials were international.

Two studies (n = 107,786) reported only in-hospital outcomes [9,14], for the remaining the median follow-up was 12 (range 6 to 36) months. Patients that met inclusion criteria and were analyzed represented from 4% to 75% of patients included in the original registries (Table 2). Only five studies reported the number of loss during follow-up [9,15,28,30,31].

Table 2 also shows patients characteristics. Median age was 64.1 years, most patients were male, the median prevalence of smokers was 30.8%, diabetes mellitus was present in 29.3% of patients, and previous history of MI in 36.9%. Eight studies excluded patients with prior CABG [5,9,14–16,29–31].

There was a small excess of three-vessel disease among MV PCI, and lower prevalence of total chronic occlusions and complex lesions (B2 or C as defined by AHA/ACC classification). Mean left ventricular ejection fraction was normal and similar between groups across six studies that reported it [5,9,25,26,28,29], and it was also preserved in most patients when the threshold value was described in the study [14–16,27,31].

Outcomes

The analyses of adjusted estimators suggest that there were no significant differences in mortality risk (HR 0.79; 95% CI 0.58 to 1.09; I² 67.9%), with moderate inconsistency (Fig 2). Also, there were no significant differences in the risk of death or MI (HR 0.90; 95% CI 0.69 to 1.17; I² 62.3%), revascularization (HR 0.76; 95% CI 0.55 to 1.05; I² 49.9%) or the combined outcome of death, MI or revascularization (HR 0.83; 95% CI 0.66 to 1.03; I² 70.8%). All analyses exhibited a moderate degree of inconsistency (Fig 3).

In unadjusted analyses, MV PCI was associated with a statistically significant reduction in the risk of death (RR 0.90; 95% CI 0.82 to 0.99), without heterogeneity across studies (I² 0.0%). There were no statistically significant differences between revascularization strategies in the incidence of death or MI (RR 1.06; 95% CI 0.93 to 1.20; I² 1.9%), revascularization (RR 0.81; 95% CI 0.63 to 1.05; I² 68.0%) or the combined outcome of death, MI or revascularization (RR 0.88; 95% CI 0.77 to 1.02; I² 56.8%) (Fig 4).

Subgroup analyses

To explore potential sources of heterogeneity, subgroup analyses according to NOS, study designs, patient characteristics and utilization of DES were conducted (Figs 5–9). Analyzing separately the studies by their design (RCT post-hoc analysis versus Observational registries) the inconsistency of the analyses were reduced in terms of death or MI, revascularization and death, MI or revascularization (Fig 10); however, there was no variable that explained inconsistency across estimators of effect on mortality.

Sensitivity analysis

Results were almost identical after correction of effect estimators presented as OR (Fig 11). After exclusion of studies that reported only in-hospital outcomes, mortality analysis suggested a benefit from MV PCI with a lower level of inconsistency (Fig 12).
Authors	Mean age, years	Male gender, %	Diabetes, %	Previous MI, %	Chronic Kidney disease, %	Three vessel disease, %	Total occlusions, %	DES, %	B2-C type lesion, %	LVEF, %	Follow-up, months
Bauer et al [14]	65.0	67.0	69.3	73.4	28.6	30.0	33.8	34.1	5.3	6.8	29.8
Onuma et al [30]	64.6	64.1	30.9	30.3	20.1	18.5	45.2	52.0	NA	NA	56.3
Lee et al [29]	64.5	65.3	71.5	62.6	33.5	40.6	8.9	8.0	5.6	5.9	41.3
Shishehbor et al [27]	64.0	62.0	75.0	73.0	23.0	23.0	40.0	40.0	NA	NA	0.0
Shishehbor et al [5]	66.0	65.0	64.0	65.0	32.0	31.0	46.0	47.0	6.0	6.0	26.0
Brener et al [9]	65.0	66.0	64.4	64.7	31.5	31.9	25.2	29.3	5.1	5.9	NA
Kim et al [28]	65.2	65.5	65.4	69.2	33.9	35.0	21.3	21.1	NA	NA	46.1
Marian et al [15]	63.7	63.9	73.5	83.0	26.0	14.5	37.0	47.0	NA	NA	45.0
Palmer et al [31]	62.0	63.0	69.0	66.7	21.1	21.1	42.3	36.8	NA	NA	11.3
Zapata et al [16]	60.8	62.3	82.3	83.2	20.1	22.2	25.5	26.9	3.4	3.7	NA
Brener et al [30]	62.0	62.0	71.0	67.0	30.0	27.0	44.0	43.0	NA	NA	59.0
Hassanin et al [26]	62.0	62.0	70.6	72.3	35.1	32.4	34.9	38.0	16	18	64.9

Abbreviations: DES: drug eluting stents; MI: myocardial infarction; LVEF: left ventricular ejection fraction; MV-PCI: multivessel percutaneous coronary intervention; CV-PCI: culprit-vessel percutaneous coronary intervention.

doi:10.1371/journal.pone.0148756.t002
Publication bias

Visual inspection of funnel plot suggested asymmetry among studies that had reported adjusted estimates of effect (Fig 13A), and the formal evaluation indicated the presence of publication bias (p = 0.097). Fig 13B shows funnel plot constructed with unadjusted effect estimates with no evidence of publication bias (p = 0.868); differences between both plots suggested differential reporting of adjusted analyses.

Discussion

The results of present meta-analysis, based on observational studies that compared MV PCI versus CV PCI among NSTE-ACS patients with multivessel disease, suggested that there were no significant differences between both revascularization strategies.

Current clinical practice guidelines for the management of NSTE-ACS indicate that MV PCI could be reasonable in patients undergoing coronary revascularization as part of the treatment strategy [2]. This recommendation is based on reports of studies suggesting that MV PCI is a safe intervention and that it reduces the need for revascularization procedures during follow up [6, 9, 16, 25, 31]. However, this meta-analysis does not confirm the reduction of future revascularization procedures during follow up. Furthermore, regarding safety data of MV PCI, it is important to notice that, although in overall results showed no significant differences between both strategies in mortality, MI or revascularization risks, these results are heterogeneous and part of the heterogeneity is controlled with stratified analyses by study design, such that most rigorous data (those from post-hoc analyses of RCT) suggest an increase of death, MI or MACE risks with MV PCI. Hence, according these results, CV PCI should be the revascularization strategy preferred for most NSTE-ACS patients with multivessel disease undergoing PCI, excepting possibly those without a clearly identifiable culprit-vessel in whom a more extensive revascularization could be a better strategy.
Table: Effects of MV PCI versus CV PCI on secondary outcomes.

Study	TE	seTE	HR or OR	95% CI	Weights
Death or MI					
Kim et al. (2010)	-0.54	0.2577	0.58	[0.35; 0.96]	4.6%
Lee et al. (2011)	-0.58	0.4323	0.56	[0.24; 1.31]	2.3%
Onuma et al. (2013)	-0.29	0.1676	0.75	[0.54; 1.04]	6.9%
Shishehbor et al. (2007)	-0.13	0.1546	0.88	[0.65; 1.19]	7.3%
Hassanin et al. (2014)	0.25	0.1521	1.28	[0.95; 1.72]	7.4%
Shishehbor et al. (2006)	0.25	0.2128	1.29	[0.85; 1.96]	5.7%
Random effects model			0.90	[0.69; 1.17]	34.2%

Heterogeneity: I^2=62.3%, tau^2=0.0643, p=0.021

Revascularization

Study	TE	seTE	HR or OR	95% CI	Weights
Kim et al. (2010)	-1.27	0.8790	0.28	[0.05; 1.57]	0.6%
Lee et al. (2011)	-0.84	0.2975	0.43	[0.24; 0.77]	3.9%
Onuma et al. (2013)	-0.09	0.2387	0.91	[0.57; 1.45]	5.0%
Shishehbor et al. (2007)	-0.25	0.1424	0.78	[0.59; 1.03]	7.7%
Shishehbor et al. (2006)	0.10	0.2306	1.10	[0.70; 1.73]	5.2%
Random effects model			0.76	[0.55; 1.05]	22.5%

Heterogeneity: I^2=49.9%, tau^2=0.061, p=0.0919

Death, MI or revascularization

Study	TE	seTE	HR or OR	95% CI	Weights
Kim et al. (2010)	-0.42	0.1954	0.66	[0.45; 0.97]	6.1%
Lee et al. (2011)	-0.69	0.2606	0.50	[0.30; 0.83]	4.6%
Onuma et al. (2013)	-0.30	0.1514	0.74	[0.55; 1.00]	7.4%
Shishehbor et al. (2007)	-0.22	0.1138	0.80	[0.64; 1.00]	8.7%
Hassanin et al. (2014)	0.20	0.1223	1.22	[0.96; 1.55]	8.4%
Shishehbor et al. (2006)	0.01	0.1318	1.01	[0.78; 1.31]	8.1%
Random effects model			0.83	[0.66; 1.03]	43.2%

Heterogeneity: I^2=70.8%, tau^2=0.053, p=0.0043

Fig 3. Effects of MV PCI versus CV PCI on secondary outcomes.
doi:10.1371/journal.pone.0148756.g003
Multivessel PCI in Non-ST Acute Coronary Syndromes

Death

Study	Events	Total	Events	Total	Risk ratio	95% CI	Weights
Kim et al.	45	1011	57	908	0.71	[0.48, 1.04]	3.0%
Lee et al.	11	179	13	187	0.58	[0.41, 0.92]	1.0%
Marian et al.	0	44	2	147	0.56	[0.20, 1.55]	0.1%
Onuma et al.	79	611	69	379	0.71	[0.53, 0.96]	4.0%
Palmer et al.	1	71	0	57	2.41	[0.10, 58.11]	0.1%
Stelshenbor et al.	72	479	70	2255	1.14	[0.86, 1.51]	4.2%
Zapata et al.	7	204	9	405	1.54	[0.88, 2.69]	0.8%
Brenner et al.	2	66	5	224	1.56	[0.97, 2.36]	0.2%
Hassanin et al.	16	606	70	2255	0.85	[0.60, 1.21]	1.8%
Stelshenbor et al.	10	651	11	651	0.91	[0.38, 2.35]	0.8%
Brenner et al.	406	33818	937	72504	0.92	[0.82, 1.04]	7.1%
Bao et al.	8	734	25	1186	0.52	[0.23, 1.14]	0.9%

Random effects model 3847 75208 0.90 [0.62, 0.99] 23.8%

Heterogeneity: I-squared=66%, tau-squared=0.0035, p=0.014

Death or MI

Study	Events	Total	Events	Total	Risk ratio	95% CI	Weights
Lee et al.	16	179	19	187	0.88	[0.47, 1.66]	1.4%
Onuma et al.	108	611	78	379	0.86	[0.66, 1.12]	4.5%
Stelshenbor et al.	90	479	139	761	1.03	[0.81, 1.31]	4.8%
Zapata et al.	8	204	14	405	1.13	[0.84, 2.66]	0.8%
Hassanin et al.	93	606	277	2255	1.24	[1.01, 1.54]	5.2%
Stelshenbor et al.	50	651	44	651	1.14	[0.77, 1.68]	2.9%

Random effects model 2733 4838 1.06 [0.50, 2.20] 19.6%

Heterogeneity: I-squared=61%, tau-squared=0.0035, p=0.014

Recurrent ischemia

Study	Events	Total	Events	Total	Risk ratio	95% CI	Weights
Kim et al.	5	1011	12	908	0.37	[0.12, 1.06]	0.6%
Lee et al.	24	179	54	187	0.46	[0.30, 0.72]	2.0%
Marian et al.	6	44	16	147	1.25	[0.52, 3.01]	0.8%
Onuma et al.	78	611	38	379	1.27	[0.88, 1.84]	3.1%
Palmer et al.	5	71	10	57	0.40	[0.15, 1.11]	0.6%
Stelshenbor et al.	96	479	171	761	0.89	[0.71, 1.11]	5.1%
Zapata et al.	15	204	56	405	0.53	[0.31, 0.92]	1.8%
Hassanin et al.	89	606	302	2255	1.10	[0.68, 1.86]	5.2%
Stelshenbor et al.	37	651	36	651	1.02	[0.66, 1.61]	2.4%

Random effects model 3859 5750 0.81 [0.63, 1.05] 22.0%

Heterogeneity: I-squared=61%, tau-squared=0.0017, p=0.00001

Death, MI or recurrent ischemia

Study	Events	Total	Events	Total	Risk ratio	95% CI	Weights
Kim et al.	107	1011	134	908	0.72	[0.57, 0.91]	4.9%
Lee et al.	35	179	61	187	0.50	[0.42, 0.88]	2.9%
Marian et al.	5	44	17	147	0.96	[0.38, 2.51]	0.7%
Onuma et al.	160	611	105	379	0.94	[0.76, 1.15]	5.4%
Stelshenbor et al.	168	479	214	761	0.97	[0.83, 1.14]	6.4%
Zapata et al.	22	204	67	405	0.85	[0.62, 1.15]	2.3%
Brenner et al.	14	66	52	224	0.91	[0.54, 1.54]	1.9%
Hassanin et al.	143	606	470	2255	1.13	[0.96, 1.33]	6.2%
Stelshenbor et al.	72	651	72	651	1.06	[0.73, 1.56]	3.8%

Random effects model 3864 5917 0.88 [0.77, 1.03] 34.7%

Heterogeneity: I-squared=58%, tau-squared=0.0035, p=0.00001

Fig 4. Unadjusted analyses of MV PCI versus CV PCI.

doi:10.1371/journal.pone.0148756.g004
Figure 5. Subgroup analyses by quality of study report assessed by Newcastle-Ottawa Scale.

doi:10.1371/journal.pone.0148756.g005
Fig 6. Subgroup analyses by follow-up.

Diabetes >26.5% - Death

Study	TE	sTE	HR or OR	95% CI	Weights
Lee et al. (2011)	-0.37	0.160	0.69	[0.25, 1.00]	1.5%
Shishibirob et al. (2007)	-0.06	0.1804	0.94	[0.60, 1.44]	5.1%
Brener et al. (2008)	0.10	0.0990	1.11	[0.67, 1.82]	7.7%
Bau et al. (2011)	-0.62	0.4137	0.54	[0.39, 1.21]	1.9%
Random effects model	0.96		[0.79, 1.21]	10.0%	

Diabetes =26.5% - Death

Study	TE	sTE	HR or OR	95% CI
Crona et al. (2013)	-0.60	0.1086	0.55	[0.30, 0.90]
Shishibirob et al. (2006)	-0.29	0.4508	0.75	[0.31, 1.71]
Random effects model	0.98		[0.41, 2.31]	6.5%

Diabetes >26.5% - Death or MI

Study	TE	sTE	HR or OR	95% CI
Kim et al. (2010)	-0.54	0.2577	0.59	[0.36, 0.94]
Lee et al. (2011)	-0.59	0.4323	0.59	[0.36, 1.01]
Shishibirob et al. (2007)	-0.13	0.1546	0.88	[0.65, 1.16]
Hassan et al. (2014)	0.35	0.1521	1.29	[0.96, 1.70]
Random effects model	0.95		[0.59, 1.23]	19.6%

Diabetes =26.5% - Death or MI

Study	TE	sTE	HR or OR	95% CI
Crona et al. (2013)	-0.59	0.1676	0.75	[0.56, 1.04]
Shishibirob et al. (2006)	0.25	0.2128	1.29	[0.85, 1.96]
Random effects model	0.97		[0.57, 1.69]	3.0%

Diabetes >26.5% - Revascularization

Study	TE	sTE	HR or OR	95% CI
Kim et al. (2010)	-1.27	0.8750	0.28	[0.09, 1.57]
Lee et al. (2011)	-0.84	0.2654	0.43	[0.26, 0.71]
Shishibirob et al. (2007)	-0.25	0.1424	0.78	[0.59, 1.02]
Random effects model	0.58		[0.34, 0.98]	9.5%

Diabetes =26.5% - Revascularization

Study	TE	sTE	HR or OR	95% CI
Crona et al. (2013)	-0.09	0.2387	0.91	[0.57, 1.45]
Shishibirob et al. (2006)	0.10	0.2306	1.10	[0.70, 1.72]
Random effects model	1.00		[0.73, 1.39]	6.0%

Diabetes >26.5% - Death, MI or revascularization

Study	TE	sTE	HR or OR	95% CI
Kim et al. (2010)	-0.42	0.1954	0.68	[0.45, 0.97]
Lee et al. (2011)	-0.69	0.2066	0.50	[0.30, 0.86]
Shishibirob et al. (2007)	-0.22	0.1186	0.80	[0.64, 1.00]
Hassan et al. (2014)	0.20	0.1223	1.22	[0.96, 1.55]
Random effects model	0.79		[0.59, 1.11]	21.6%

Diabetes <26.5% - Death, MI or revascularization

Study	TE	sTE	HR or OR	95% CI
Crona et al. (2013)	-0.30	0.1514	0.74	[0.50, 1.10]
Shishibirob et al. (2006)	0.21	0.2178	1.01	[0.79, 1.29]
Random effects model	0.87		[0.84, 1.18]	32.0%
Chronic occlusion excluded – Death

Study	TE	seTE	HR or OR	95% CI	Weights
Lee et al. (2011)	-0.37	0.5180	0.69	[0.25; 1.90]	2.2%
Shishehbor et al. (2007)	-0.06	0.1804	0.94	[0.66; 1.34]	8.0%
Random effects model			0.91	[0.65; 1.27]	10.2%
Heterogeneity:			I-squared=9%, tau-squared=0, p=0.573		

Chronic occlusion included – Death

Study	TE	seTE	HR or OR	95% CI	Weights
Brenner et al. (2008)	0.10	0.0688	1.11	[0.97; 1.27]	11.5%
Bauer et al. (2011)	-0.62	0.4137	0.54	[0.24; 1.21]	3.2%
Random effects model			0.87	[0.45; 1.70]	14.7%
Heterogeneity:			I-squared=66.1%, tau-squared=0.1716, p=0.0858		

Chronic occlusion included – Death or MI

Study	TE	seTE	HR or OR	95% CI	Weights
Kim et al. (2010)	-0.54	0.2577	0.58	[0.35; 0.96]	5.8%
Hassanin et al. (2014)	0.25	0.1521	1.28	[0.95; 1.72]	8.9%
Random effects model			0.89	[0.41; 1.92]	14.8%
Heterogeneity:			I-squared=85.7%, tau-squared=0.2685, p=0.0082		

Chronic occlusion excluded – Death or MI

Study	TE	seTE	HR or OR	95% CI	Weights
Lee et al. (2011)	-0.58	0.4323	0.56	[0.24; 1.31]	3.0%
Shishehbor et al. (2007)	-0.13	0.1546	0.60	[0.65; 1.10]	8.8%
Random effects model			0.84	[0.63; 1.11]	11.8%
Heterogeneity:			I-squared=87.0%, tau-squared=0.3249, p=0.0049		

Chronic occlusion included – Revascularization

Study	TE	seTE	HR or OR	95% CI	Weights
Kim et al. (2010)	-1.27	0.8790	0.28	[0.05; 1.57]	0.9%
Random effects model			0.28	[0.05; 1.57]	0.9%
Heterogeneity:			not applicable for a single study		

Chronic occlusion excluded – Revascularization

Study	TE	seTE	HR or OR	95% CI	Weights
Lee et al. (2011)	-0.84	0.2975	0.43	[0.24; 0.77]	5.0%
Shishehbor et al. (2007)	-0.25	0.1424	0.78	[0.59; 1.03]	9.2%
Random effects model			0.61	[0.35; 1.09]	14.2%
Heterogeneity:			I-squared=69.3%, tau-squared=0.1229, p=0.071		

Chronic occlusion included – Death, MI or revascularization

Study	TE	seTE	HR or OR	95% CI	Weights
Kim et al. (2010)	-0.42	0.1954	0.66	[0.45; 0.97]	7.5%
Hassanin et al. (2014)	0.20	0.1223	1.22	[0.96; 1.56]	9.9%
Random effects model			0.91	[0.50; 1.67]	17.4%
Heterogeneity:			I-squared=85.9%, tau-squared=0.1623, p=0.0077		

Chronic occlusion excluded – Death, MI or revascularization

Study	TE	seTE	HR or OR	95% CI	Weights
Lee et al. (2011)	-0.09	0.2606	0.50	[0.30; 0.83]	5.8%
Shishehbor et al. (2007)	-0.22	0.1138	0.80	[0.64; 1.00]	10.2%
Random effects model			0.67	[0.43; 1.05]	16.0%
Heterogeneity:			I-squared=63.4%, tau-squared=0.07, p=0.0984		

Fig 7. Subgroup analyses by DES use.

doi:10.1371/journal.pone.0148756.g007
Table 1

Study	DES differential use > median - Death	DES differential use <= median - Death	DES differential use > median - Death or MI	DES differential use <= median - Death or MI	DES differential use > median - Revascularization	DES differential use <= median - Revascularization	DES differential use > median - Death, MI or revascularization	DES differential use <= median - Death, MI or revascularization									
	TE	**seTE**	**HR or OR**	**95% CI**	**TE**	**seTE**	**HR or OR**	**95% CI**	**TE**	**seTE**	**HR or OR**	**95% CI**	**TE**	**seTE**	**HR or OR**	**95% CI**	
DES differential use > median - Death	Lee et al. (2011)	-0.37	0.1880	0.69	[0.25; 1.50]	3.2%											
DES differential use <= median - Death	Ohara et al. (2013)	-0.60	0.1985	0.55	[0.20; 0.89]	9.0%											
Random effects model																	
DES differential use <= median - Death or MI	Bauer et al. (2011)	-0.02	0.4137	0.54	[0.24; 1.21]	4.4%											
Random effects model																	
DES differential use <= median - Death or MI	Kim et al. (2010)	-0.54	0.2577	0.58	[0.35; 0.96]	7.3%											
Hasserin et al. (2014)	0.25	0.1231	1.28	[0.95; 1.72]	10.0%												
Random effects model																	
DES differential use > median - Revascularization	Lee et al. (2011)	-0.58	0.4903	0.56	[0.24; 1.21]	4.2%											
Ohara et al. (2013)	-0.29	0.1076	0.75	[0.54; 1.04]	9.6%												
Random effects model																	
DES differential use <= median - Revascularization	Kim et al. (2010)	-1.27	0.8790	0.28	[0.05; 1.57]	1.2%											
Random effects model																	
DES differential use > median - Revascularization	Lee et al. (2011)	-0.84	0.2975	0.43	[0.24; 0.77]	6.4%											
Ohara et al. (2013)	-0.09	0.2381	0.91	[0.57; 1.45]	7.7%												
Random effects model																	
DES differential use <= median - Death, MI or revascularization	Kim et al. (2010)	-0.42	0.1954	0.66	[0.45; 0.97]	8.9%											
Hasserin et al. (2014)	0.20	0.1223	1.22	[0.96; 1.55]	10.7%												
Random effects model																	
DES differential use > median - Death, MI or revascularization	Lee et al. (2011)	-0.69	0.2966	0.50	[0.30; 0.83]	7.2%											
Ohara et al. (2013)	-0.36	0.1514	0.74	[0.55; 1.00]	10.0%												
Random effects model																	

Fig 8. Subgroup analyses by diabetes prevalence.

doi:10.1371/journal.pone.0148756.g008
Fig 9. Subgroup analyses by chronic occlusions prevalence.

doi:10.1371/journal.pone.0148756.g009
Fig 10. Subgroup analyses by studies design.

doi:10.1371/journal.pone.0148756.g010
Multivessel PCI in Non-ST Acute Coronary Syndromes

Fig 11. Sensitivity analyses with odds ratios transformation to risk ratios.

DOI: 10.1371/journal.pone.0148756.g011

Study	TE	seTE	HR or OR	95% CI	Weights
Death					
Lee et al. (2011)	-0.37	0.5180	0.69	[0.25, 1.90]	1.4%
Onuma et al. (2013)	-0.60	0.1886	0.55	[0.39, 0.85]	5.4%
Shibahara et al. (2007)	-0.06	0.1804	0.94	[0.66, 1.34]	5.6%
Shibahara et al. (2006)	-0.29	0.4508	0.75	[0.31, 1.81]	1.8%
Random effects model			0.72	[0.53, 0.99]	14.2%

Heterogeneity: I-squared=29.1%, tau-squared=0.0296, p=0.2376

Death or MI					
Kim et al. (2010)	-0.54	0.2577	0.58	[0.35, 0.96]	3.9%
Lee et al. (2011)	-0.58	0.4323	0.56	[0.24, 1.31]	1.9%
Onuma et al. (2013)	-0.29	0.1676	0.75	[0.54, 1.04]	6.0%
Shibahara et al. (2007)	-0.13	0.1546	0.88	[0.65, 1.19]	6.3%
Hassanin et al. (2014)	0.25	0.1521	1.28	[0.95, 1.72]	6.4%
Shibahara et al. (2006)	0.25	0.2128	1.29	[0.85, 1.96]	4.8%
Random effects model			0.90	[0.69, 1.17]	29.3%

Heterogeneity: I-squared=62.3%, tau-squared=0.0643, p=0.021

Revascularization					
Kim et al. (2010)	-1.27	0.8790	0.28	[0.05, 1.57]	0.5%
Lee et al. (2011)	-0.64	0.2975	0.43	[0.24, 0.77]	3.3%
Onuma et al. (2013)	-0.09	0.2387	0.91	[0.57, 1.45]	4.3%
Shibahara et al. (2007)	-0.25	0.1424	0.78	[0.59, 1.03]	6.7%
Shibahara et al. (2006)	0.10	0.2306	1.10	[0.70, 1.73]	4.5%
Random effects model			0.76	[0.55, 1.05]	19.2%

Heterogeneity: I-squared=49.9%, tau-squared=0.061, p=0.0919

Death, MI or revascularization					
Kim et al. (2010)	-0.42	0.1954	0.66	[0.45, 0.97]	5.2%
Lee et al. (2011)	-0.69	0.2696	0.50	[0.30, 0.83]	3.9%
Onuma et al. (2013)	-0.30	0.1514	0.74	[0.55, 1.00]	6.4%
Shibahara et al. (2007)	-0.22	0.1138	0.80	[0.64, 1.00]	7.5%
Hassanin et al. (2014)	0.20	0.1223	1.22	[0.96, 1.55]	7.2%
Shibahara et al. (2006)	0.01	0.1318	1.01	[0.78, 1.31]	7.0%
Random effects model			0.83	[0.66, 1.03]	37.2%

Heterogeneity: I-squared=70.8%, tau-squared=0.053, p=0.0043
Study	TE	seTE	HR	95% CI	Weights
Death					
Lee et al. (2011)	-0.37	0.5180	0.69	[0.25; 1.90]	1.3%
Onuma et al. (2013)	-0.60	0.1886	0.55	[0.38; 0.80]	4.9%
Shishehbor et al. (2007)	-0.06	0.1804	0.94	[0.66; 1.34]	5.1%
Shishehbor et al. (2006)	-0.29	0.4508	0.75	[0.31; 1.81]	1.6%
Brener et al. (2008)	0.10	0.0679	1.11	[0.97; 1.27]	7.7%
Bauer et al. (2011)	-0.61	0.4105	0.55	[0.24; 1.22]	1.9%
Random effects model					0.79

Heterogeneity: I^2=87.8%, tau^2=0.0864, p=0.0083

Study	TE	seTE	HR	95% CI	Weights
Death or MI					
Kim et al. (2010)	-0.54	0.2577	0.58	[0.35; 0.96]	3.6%
Lee et al. (2011)	-0.58	0.4323	0.56	[0.24; 1.31]	1.8%
Onuma et al. (2013)	-0.29	0.1676	0.75	[0.54; 1.04]	5.4%
Shishehbor et al. (2007)	-0.13	0.1546	0.88	[0.65; 1.19]	5.7%
Hassanin et al. (2014)	0.25	0.1521	1.28	[0.95; 1.72]	5.7%
Shishehbor et al. (2006)	0.25	0.2128	1.29	[0.85; 1.96]	4.4%
Random effects model					0.90

Heterogeneity: I^2=62.3%, tau^2=0.0643, p=0.021

Study	TE	seTE	HR	95% CI	Weights
Revascularization					
Kim et al. (2010)	-1.27	0.8790	0.28	[0.05; 1.57]	0.5%
Lee et al. (2011)	-0.84	0.2975	0.43	[0.24; 0.77]	3.0%
Onuma et al. (2013)	-0.09	0.2387	0.91	[0.57; 1.45]	3.9%
Shishehbor et al. (2007)	-0.25	0.1424	0.78	[0.59; 1.03]	6.0%
Shishehbor et al. (2006)	0.10	0.2306	1.10	[0.70; 1.73]	4.1%
Random effects model					0.76

Heterogeneity: I^2=49.9%, tau^2=0.061, p=0.0919

Study	TE	seTE	HR	95% CI	Weights
Death, MI or revascularization					
Kim et al. (2010)	-0.42	0.1954	0.66	[0.45; 0.97]	4.7%
Lee et al. (2011)	-0.69	0.2606	0.50	[0.30; 0.83]	3.5%
Onuma et al. (2013)	-0.30	0.1514	0.74	[0.55; 1.00]	5.8%
Shishehbor et al. (2007)	-0.22	0.1138	0.80	[0.64; 1.00]	6.7%
Hassanin et al. (2014)	0.20	0.1223	1.22	[0.96; 1.55]	6.5%
Shishehbor et al. (2006)	0.01	0.1318	1.01	[0.78; 1.31]	6.2%
Random effects model					0.83

Heterogeneity: I^2=70.8%, tau^2=0.053, p=0.0043

Fig 12. Sensitivity analyses excluding studies with follow-up limited to initial hospitalization.

doi:10.1371/journal.pone.0148756.g012
Systematic monitoring for periprocedural MI might explain the results heterogeneity between observational registries and post-hoc analyses of RCT. Higher risk of MI after MV PCI has been related to distal embolization, side branch closure and stent thrombosis, which could be heightened after multiple stent deployment in a pro-inflammatory and pro-thrombotic environment [6,32].

The analyses have several limitations that should be considered at interpreting the results. First, this is a meta-analysis of observational studies and, although adjusted estimators of effect were used to minimize biases, some degree of residual confounding is possible [10]. In all studies, treatment groups were defined after PCI, such that patients in whom originally planned strategy was MV PCI, but received only one-vessel PCI because technical or anatomic factors were classified as CV PCI, which could bias results against CV PCI. Furthermore, most studies derived from analyses from larger datasets, leaving the possibility of selection bias. Finally, there is evidence of publication bias, with smaller studies suggesting more benefits for MV PCI.

In conclusion, the results of this meta-analysis suggests that routine MV PCI in NSTE-ACS patients with multivessel disease is not superior to CV PCI and, that there is evidence that it could be not equally as safe. Since, there is a high prevalence of multivessel disease among NSTE-ACS patients and the available evidence has multiple limitations, randomized controlled trials evaluating safety and effectiveness of MV PCI in this setting are needed.

Supporting Information

S1 Data. Database for the mortality (main) analyses.
(CSV)

S1 MOOSE Checklist. MOOSE Checklist.
(DOCX)
Author Contributions
Conceived and designed the experiments: JM AM. Performed the experiments: JM. Analyzed the data: JM. Contributed reagents/materials/analysis tools: JM AM MDA GGVM CT. Wrote the paper: JM AM MDA GGVM CT.

References
1. Hamm CW, Bassand JP, Agewall S, Bax J, Boersma E, Bueno H, et al; ESC Committee for Practice Guidelines. ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2011; 32: 2999–3054. doi: 10.1093/eurheartj/ehr236 PMID: 21873419
2. Amsterdam EA, Wenger NK, Brindis RG, Casey DE Jr, Ganiats TG, Holmes DR Jr, et al; ACC/AHA Task Force Members. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014; 130: e344–426. doi: 10.1161/CIR.0000000000000134 PMID: 25249585
3. Fox KA, Poole-Wilson PA, Henderson RA, Clayton TC, Chamberlain DA, Shaw TR, et al; Randomized Intervention Trial of unstable Angina Investigators. Interventional versus conservative treatment for patients with unstable angina or non-ST-elevation myocardial infarction: the British Heart Foundation RITA 3 randomised trial. Randomized Intervention Trial of unstable Angina. Lancet. 2002; 360: 743–751. PMID: 12241831
4. Invasive compared with non-invasive treatment in unstable coronary-artery disease: FRISC II prospective randomised multicentre study. FFagmin and Fast Revascularisation during InStability in Coronary artery disease Investigators. Lancet. 1999; 354: 708–715. PMID: 10475181
5. Shishehbor MH, Lauer MS, Singh IM, Chew DP, Karha J, et al. In unstable angina or non-ST-segment acute coronary syndrome, should patients with multivessel coronary artery disease undergo multivessel or culprit-only stenting? J Am Coll Cardiol. 2007; 49: 849–854. PMID: 17320742
6. Bhatt DL, Topol EJ. Does creatinine kinase-MB elevation after percutaneous coronary intervention predict outcomes in 2005? Periprocedural cardiac enzyme elevation predicts adverse outcomes. Circulation. 2005; 112: 906–915. PMID: 16087811
7. Senoo T, Motohiro M, Kamihata H, Yamamoto S, Isono T, Manabe K, et al. Contrast-induced nephropathy in patients undergoing emergency percutaneous coronary intervention for acute coronary syndrome. Am J Cardiol. 2010; 105: 624–628. doi: 10.1016/j.amjcard.2009.10.044 PMID: 20180507
8. Loh JP, Pendyala LK, Torguson R, Chen F, Satler LF, Pichard AA, Waksman R. Incidence and correlates of major bleeding after percutaneous coronary intervention across different clinical presentations. Am Heart J. 2014; 168: 248–255. doi: 10.1016/j.ahj.2014.05.018 PMID: 25173534
9. Brener SJ, Milford-Beland S, Roe MT, Bhatt DL, Weintraub WS, Brindis RG; American College of Cardiology National Cardiovascular Database Registry. Culprit-only or multivessel revascularization in patients with acute coronary syndromes: an American College of Cardiology National Cardiovascular Database Registry report. Am Heart J. 2008; 155: 140–146. PMID: 18082505
10. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000; 283: 2008–2012. PMID: 10789670
11. Available: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 10 January 2015.
12. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010; 25: 603–605. doi: 10.1007/s10654-010-9491-2 PMID: 20652370
13. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986; 7: 177–188. PMID: 3802833
14. Bauer T, Zeymer U, Hochadel M, Möllmann H, Weidinger F, Zahn R, et al. Prima-vista multi-vessel percutaneous coronary intervention in haemodynamically stable patients with acute coronary syndromes: analysis of over 4,400 patients in the EHS-PCI registry. Int J Cardiol. 2013; 166: 596–600. doi: 10.1016/j.ijcard.2011.11.024 PMID: 22122977
15. Mariani G, De Servi S, Dellavalle A, Repetto S, Chierchia S, D’Urbano M, et al; ROSAI Study Group. Complete or incomplete percutaneous coronary revascularization in patients with unstable angina in stent era: Are early and one-year results different? Catheter Cardiovasc Interv. 2001; 54: 448–453. PMID: 11747178
16. Zapata GO, Lasave LI, Kozak F, Damonte A, Meiriño A, Rossi M, et al. Culprit-only or multivessel percutaneous coronary stenting in patients with non-ST-segment elevation acute coronary syndromes: one-year follow-up. J Interv Cardiol. 2009; 22: 329–335. doi: 10.1111/j.1540-8183.2009.00477.x PMID: 19515083

17. Zhang J, Yu KF. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA. 1998; 280: 1690–1691. PMID: 9832001

18. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003; 327: 557–560. PMID: 12958120

19. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997; 315: 629–634. PMID: 9310563

20. Guido Schwarzer (2015) meta: General Package for Meta-Analysis. R package version 4.1–0. http://CRAN.R-project.org/package=meta

21. de Feyter PJ, Serruys PW, Arnold A, Simoons ML, Wijns W, Geuskens R, et al. Coronary angioplasty of the unstable angina related vessel in patients with multivessel disease. Eur Heart J. 1986; 7: 460–467. PMID: 2942406

22. Nikolsky E, Gruberg L, Patil CV, Roguin A, Kapeliovich M, Petcherski S, et al. Percutaneous coronary interventions in diabetic patients: is complete revascularization important? J Invasive Cardiol. 2004; 16: 102–106. PMID: 15125155

23. Hannan EL, Wu C, Walford G, Holmes DR, Jones RH, Sharma S, King SB 3rd. Incomplete revascularization in the era of drug-eluting stents: impact on adverse outcomes. JACC Cardiovasc Interv. 2009; 2: 17–25. doi: 10.1016/j.jcin.2008.08.021 PMID: 19463393

24. Ijsselmuiden AJ, Ezechiels J, Westendorp IC, Tijssen JG, Kiemeneij F, Slagboom T, et al. Complete versus culprit vessel percutaneous coronary intervention in multivessel disease: a randomized comparison. Am Heart J. 2004; 148: 467–474. PMID: 15389234

25. Brener SJ, Murphy SA, Gibson CM, DiBattiste PM, Demopoulos LA, Cannon CP; TACTICS-TIMI 18 Investigators. Treat Angina with Aggrastat and Determine Cost of Therapy with an Invasive or Conservative Strategy-Thrombosis in Myocardial Infarction. Efficacy and safety of multivessel percutaneous revascularization and tirofiban therapy in patients with acute coronary syndromes. Am J Cardiol. 2002; 90: 631–633.

26. Shishehbor MH, Topol EJ, Mukherjee D, Hu T, Cohen DJ, Stone GW, et al; TARGET Investigators. Outcome of multivessel coronary revascularization in the contemporary percutaneous revascularization era. Am J Cardiol. 2006; 97: 1585–1590. PMID: 16728219

27. Hassanian A, Brener SJ, Lansky AJ, Xu K, Stone GW. Prognostic impact of multivessel versus culprit vessel only percutaneous intervention for patients with multivessel coronary artery disease presenting with acute coronary syndrome. EuroIntervention. 2014. pii: 20131226–04. doi: 10.4244/EIJY14M08_05

28. Kim MC, Jeong MH, Ahn Y, Kim JH, Chae SC, Kim YJ, et al; Korea Acute Myocardial Infarction Registry Investigators. What is optimal revascularization strategy in patients with multivessel coronary artery disease in non-ST-elevation myocardial infarction? Multivessel or culprit-only revascularization? Int J Cardiol. 2011; 153: 148–153. doi: 10.1016/j.ijcard.2010.08.044 PMID: 20843572

29. Lee HJ, Song YB, Hahn JY, Kim SM, Yang JH, Choi JH, et al. Multivessel vs single-vessel revascularization in patients with non-ST-segment elevation acute coronary syndrome and multivessel disease in the drug-eluting stent era. Clin Cardiol. 2011; 34: 160–165. doi: 10.1002/clc.20858 PMID: 21400543

30. Onuma Y, Muramatsu T, Girasis C, Kukreja N, Garcia-Garcia HM, Daemen J, et al; interventional cardiologists of the Thoraxcenter (2000–5). Single-vessel or multivessel PCI in patients with multivessel disease presenting with non-ST-elevation acute coronary syndromes. EuroIntervention. 2013; 9: 916–922. doi: 10.4244/EIJY14A154 PMID: 24384289

31. Palmer ND, Causer JP, Ramsdale DR, Perry RA. Effect of completeness of revascularization on clinical outcome in patients with multivessel disease presenting with unstable angina who undergo percutaneous coronary intervention. J Invasive Cardiol. 2004; 16: 185–188. PMID: 15152143

32. Buffon A, Biasucci LM, Liuzzo G, D’Onofrio G, Crea F, Maseri A. Widespread Coronary Inflammation in Unstable Angina. N Engl J Med. 2002; 347: 5–12. PMID: 12097534