The relationship between hand hygiene practices and nasal *Staphylococcus aureus* carriage in healthcare workers

Ozlem Genc¹, **Inci Arikan**²

¹ Department of Medical Microbiology, Faculty of Medicine, Kutahya Health Science University, Turkey
² Department of Public Health, Faculty of Medicine, Kutahya Health Science University, Turkey

Summary

Background: The nasal carriage rate of *Staphylococcus aureus* in healthcare workers (HCWs) is higher than the general population. Their hands serve as vectors for transmitting *S.aureus* colonized in the nose to patients.

Objectives: To determine the rate of nasal *S.aureus* carriage and meticillin resistance in HCWs and to evaluate the relationship between carriage and personal risk factors and hand hygiene behaviors.

Methods: The questionnaire included questions about sociodemographic characteristics, occupational and personal risk factors for *S.aureus* carriage, the “Hand Hygiene Belief Scale (HHBS),” and “Hand Hygiene Practices Inventory (HHPI)”. Nasal culture was taken from all participants. Presence of *S.aureus*, meticillin and mupirocin resistance were investigated in samples.

Results: The study was carried out with 269 HCWs. The prevalence of *S.aureus* carriage was 20.1% (n:54). Among 54 *S.aureus* carriers, only one person had MRSA (0.37%). All *S.aureus* isolates were susceptible to mupirocin. *S.aureus* carriage was found to be significantly lower in the smoker group (p:0.015) and in the personnel wearing gloves during the procedures of each patient (p:0.002). *S.aureus* culture positivity was found to decrease significantly with increasing handwashing frequency (p:0.003). The mean HHPI score was higher in women (p:0.001). The mean HHPI score was lower in the group with nasal carriers than in non-carriers (p:0.176).

Conclusion: The knowledge of hand hygiene practices, high frequency of handwashing, and wearing different gloves during the procedure of each patient decrease *S.aureus* nasal carriage in HCWs. In addition mupirocin is still effective in nasal *S.aureus* carriers.

Key words: *Staphylococcus aureus*; nasal carriage; hand hygiene practices

Parole chiave: *Staphylococcus aureus*; carica batterica nelle cavità nasali; igiene delle mani

RIASSUNTO

«La relazione tra l’igiene delle mani e la trasmissione di *Staphylococcus aureus* nasale nel personale sanitario».

Introduzione: La carica batterica di *Staphylococcus aureus* nelle cavità nasali è più alta nel personale sanitario rispetto alla popolazione generale. Le mani del personale sanitario fungono da vettore per la trasmissione ai pazienti dello *S. aureus*. **Obiettivi:** Determinare l’incidenza della presenza di *S. aureus* nasale e della resistenza a meticillin nel personale sanitario e valutare la relazione tra carica batterica e fattori di rischio personali e comportamento corretto di igiene delle mani. **Metodi:** È stato somministrato un questionario comprendente domande su caratteristiche sociodemografiche, fattori di rischio occupazionali e personali per la presenza di *S. aureus*, il Questionario sulla percezione dell’igiene delle mani (HHBS) e le Procedure nell’igiene delle mani (HHPI). Una coltura nasale è stata ottenuta per ciascun partecipante allo studio. La presenza di *S. aureus* e l’eventuale resistenza a meticillin e mupirocina sono state indagate sui campioni raccolti. **Risultati:** Lo studio è stato condotto su 269 operatori sanitari. La
Introduction

Staphylococcus aureus is a member of transient or permanent flora in many human body regions, especially skin and mucosa (38). *S.aureus* is a causative agent in approximately 5% of healthcare-associated infections (HCAIs) in Turkey. It is responsible for 11.4% of surgical site infections, 8.1% of bloodstream infections, and approximately 5% of pneumonia related to healthcare. Methicillin resistance and multiple antibiotic resistance are observed in 55-59% of *S.aureus* isolated from these infections (20).

Although *S.aureus* carriage is most commonly detected in the nose, carrier status may occur in the skin, perineum, pharynx and rarely in the vagina, axilla and gastrointestinal system (4, 41). The rate of nasal carriage in healthcare workers (HCWs) is higher than the general population (16). Many outbreaks of HCAIs have been reported in HCWs, who are asymptomatic nasal carriers (17, 29). In order to reduce the frequency of HCAIs caused by *S.aureus* and especially methicillin-resistant *S.aureus* (MRSA), the identification and treatment of *S.aureus* nasal carriers appear to be one of the most critical steps of the infection control methods.

HCWs’ hands play an important role in the transmission of an infectious microorganism to the patient. Hand hygiene has a vital role in infection control, and in many studies, the rate of handwashing of HCWs, especially of physicians, was reported to be lower than expected (8). Hands serve as vectors for transmitting *S.aureus* colonized in the nose to patients (23). For these reasons, it is important to investigate whether there is a relationship between hand hygiene behaviors and nasal carriage of *S.aureus*, especially in HCWs. Although handwashing behavior is affected by many factors, workload, handwashing habits, difficulty in accessing hand hygiene products, low belief in hand hygiene, lack of role models, being a physician, and lack of knowledge are the main factors affecting hand hygiene compliance (2, 23).

The aim of this study was to determine the rate of nasal *S.aureus* carriage in HCWs working in intensive care units, operating rooms, and various units in our hospital. We also aimed to investigate the methicillin resistance rates and to evaluate the relationship between *S.aureus* carriage and occupational and personal risk factors and hand hygiene behaviors.

Methods

Study design

This cross-sectional study was conducted between August and September 2019 among physicians, nurses, and cleaning staff working at Evliya Celebi Training and Research Hospital in Kutahya, Turkey. Local ethics committee approval and administrative permissions were obtained. The sample size was calculated as 271 with a 90% confidence interval, 3% of error margin, and an expected prevalence of 10% (the prevalence of *S.aureus* carriage in hospital staff varies between 3% and 17% according to the literature). Exclusion criteria were as follows: being a staff member in any of the polyclinics, having upper respiratory tract infection, having used antibiotics in the last three weeks, having skin infections (impetigo, soft tissue infection), atopic dermatitis, and immunodeficiencies, and having undergone surgery or nose lesions in the last six months. A total of 300 people were reached; however, those who did not answer more than 50% of the questionnaire questions and those who met the exclusion criteria were excluded from the study. As a result, a total of 269 people were included in the study.
Survey

The participants were informed about the study, and the questionnaire was conducted with the face-to-face interview method. The questionnaire included questions inquiring participants’ sociodemographic characteristics, questions about occupational and personal risk factors for *S. aureus* carriage, the “Hand Hygiene Belief Scale (HHBS),” and “Hand Hygiene Practices Inventory (HHPI).” HHBS and HHPI were developed by Thea van de Mortel in 2009 (42). In 2016, Karadag et al. tested the validity and reliability of the Turkish versions of HHBS and HHPI. Coefficients of the internal consistency reliability were 0.76 and 0.85, respectively (25). In order to use the scales in the study, permission was obtained from M. Karadag. HHBS is scored as 1=strongly disagree, 2=disagree, 3=not sure, 4=agree, 5=strongly agree, and HHPI is scored as; 1=never, 2=sometimes, 3=often, 4=most of the time, 5=always. Total scores range from 22 to 110 for HHBS and 14 to 70 for HHPI. High scores indicate that hand hygiene practices are always performed.

Sample collection, laboratory analysis

Sterile cotton swabs with transport media (BTR, Gul-Ka, Ankara, Turkey) were used to collect the nasal culture sample from the participants. Samples were obtained by gently rotating the sticks five times in both nasal osteomas and sent to the microbiology laboratory within 30 minutes. Samples were cultured on a selective medium mannitol salts agar medium (RTA, Kocaeli, Turkey) and, after 48 hours incubation at 35-37°C, mannitol positive colonies were transferred to blood agar (RTA, Kocaeli, Turkey) for conventional methods (catalase, tube coagulase, etc.). Catalase and coagulase-positive isolates were identified by automated bacteria identification device (Phoenix, BD, USA). Disc diffusion test method was used to investigate methicillin resistance with 30 µg cefoxitin disc (Bioanalyse, Ankara, Turkey) according to EUCAST criteria (39) and high-level mupirocin resistance with 200 µg antibiotic disc (Bioanalyse, Ankara, Turkey) according to CLSI criteria (9). Cefoxitin MIK gradient test (Biomerieux, France) was studied for the confirmation of methicillin-resistant isolates. The isolates with cefoxitin MIK>4 mg/l were accepted as MRSA (39).

Statistical analysis

SPSS package program was used in the evaluation of the data. Statistical analyses were performed using the Kolmogorov-Smirnov test for the normality test of the data. In the comparison of the averages, Student’s t-test was used for the normally distributed-matched data. X² test was used for the analysis of categorical variables. The level of significance was set at p <0.05.

Results

The study was carried out with the inclusion of 269 people (64.3%, n: 173 women and 35.7% n: 96 men) and the mean age was 33.28±8.25 (min: 19, max: 59). The prevalence of *S. aureus* carriage was 20.1% (n: 54). Among 54 *S. aureus* carriers, only one person (a female nurse working in operating room) had MRSA (0.37%). All *S. aureus* isolates were susceptible to mupirocin.

There was no statistically significant relationship between culture results and age, sex, job, education level, hospital unit, tenure, presence of chronic disease (diabetes mellitus, hypertension, asthma, chronic lung disease, heart failure, kidney failure, etc.), and having a child and pets at home (table 1).

No statistically significant relationship was found between culture results and both the frequency of nose cleaning and hand disinfectant use. However, *S. aureus* carriage was found to be significantly lower in the smoker group and in the personnel wearing gloves during the procedures of each patient. *S. aureus* culture positivity was found to decrease significantly with increasing handwashing frequency (table 2).

When the HHPI-HHBS scores of the HCWs were evaluated, the mean HHPI score was 64.45±7.35, while the mean HHBS score was 84.69±9.52. The mean HHPI score was lower in the group with nasal carriers than in non-carriers. There was no statistically significant relationship between HHBS score and culture results (table 3).
The mean HHPI score was 62.95±6.65 in men, 65.25±7.12 in women. Therefore, the mean score was higher in women (t: 2.491, p: 0.001). There was no statistically significant relationship between HHBS scores and sex (table 4).

When evaluating *S. aureus* carriers according to sex, the HHPI score was 61.09±8.92 in males and 61.03±9.06 in females (t: 0.024, p: 0.981). Also, the HHBS score was 86.69±11.70 in males and 81.75±11.39 in females (t: 1.546, p: 0.128). There was no statistically significant difference.

Table 1 - Comparison of sociodemographic characteristics and culture results of the study group
S. aureus culture results
Age
Mean±SD
Sex
Male
Female
Education level
High school/University
Below
Hospital unite
Service
Operating room
Intensive care
Multiple unit
Job
Doctor
Nurse
Cleaning staff
Tenur
Less than 1 year
1-5 years
More than 5 years
Pets at home
Yes
No
Child at home
Yes
No
Chronic disease
Yes
No
Table 2 - Comparison of culture results and some hygiene habits

	Negative (N:215) n (%)	Positive (N:54) n (%)	Total* (N:269) n (%)	Statistics
Nose cleaning frequency				
Sometimes	60 (78.9)	16 (21.1)	76 (28.3)	X²: 0.063
Everyday	155 (80.3)	38 (19.7)	193 (71.7)	p: 0.802
Frequency of wearing gloves				
Not used	7 (46.7)	8 (53.3)	15 (5.6)	X²: 12.55
When it is necessary	82 (78.1)	23 (21.9)	105 (39.0)	p: 0.002
For each patient	126 (84.6)	23 (15.4)	149 (55.4)	
Using hand disinfectant				
No	46 (78.0)	13 (22.0)	59 (21.9)	X²: 0.181
Yes	169 (80.5)	41 (19.5)	210 (78.1)	p: 0.671
Smoking				
No	129 (75.4)	42 (24.6)	171 (63.6)	X²: 5.89
Yes	86 (87.8)	12 (12.2)	98 (36.4)	p: 0.015
Daily hand washing frequency				
5 times	19 (63.3)	11 (36.7)	30 (11.2)	X²: 11.484
5-10 times	25 (67.6)	12 (32.4)	37 (13.7)	p: 0.003
>10 times	171 (84.7)	31 (15.3)	202 (75.1)	

* Percentage of column

Table 3 - Comparison of culture results and HHPI-HHBS scores

	Negative (N:215) n (%)	Positive (N:54) n (%)	Total (N:269) n (%)	Statistics
S. aureus culture results				
HHPI				
Mean±SD	65.30±6.70	61.05±8.92	64.45±7.35	t: 0.387
(Min-Max)	(40-70)	(31-70)	(31-70)	p: 0.001
HHBS				
Mean±SD	84.93±8.91	83.75±11.06	84.69±9.52	t: 0.807
(Min-Max)	(50-110)	(29-110)	(29-110)	p: 0.420

Abbreviations: HHBS: Hand Hygiene Belief Scale, HHPI: Hand Hygiene Practices Inventory

Table 4 - Comparison of HHPI-HHBS scores of the study group by sex

	Male	Female	Total	Statistics
HHPI				
Mean±SD	62.95±6.63	65.25±7.12	64.45±7.35	t: 2.491
(Min-Max)	(38-70)	(31-70)	(31-70)	p: 0.001
HHBS				
Mean±SD	85.75±9.91	84.10±9.20	84.69±9.52	t: 1.356
(Min-Max)	(54-110)	(29-110)	(29-110)	p: 0.176

Abbreviations: HHBS: Hand Hygiene Belief Scale, HHPI: Hand Hygiene Practices Inventory
Discussion

The prevalence of HCAIs is between 5.7% and 19.1% in developing countries (44). *S. aureus* infections are responsible for 5% of HCAIs in our country. Methicillin resistance is found in 55–59% of *S. aureus* isolated from healthcare-associated pneumonia, urinary tract infection, bloodstream infection, and surgical site infections (20).

The fact that HCWs are nasal carriers of *S. aureus* and the lack of appropriate handwashing habits make it easier to spread this bacterium to patients (36). In a review of Hawkins et al., it was reported that persistent carriers and HCWs with skin lesions were responsible for MRSA outbreaks. Detection and decolonization of carriage in HCWs in hospitals with endemic and non-endemic MRSA infections reduces the incidence of MRSA infection (19). In an opposite study that screened patients and staff to determine the source it was reported HCWs were rarely responsible for the outbreaks (40). Mita-analysis of 22 current studies on the risk of occupational infection risks and HCWs who are carriers of multiple drug-resistant organisms refers to the limitations of the research, such as inadequate number of participants, not including an appropriate comparison group, not explaining the questionnaire in detail, and not presenting the results clearly. In addition, it is reported that the screening of health personnel and patients at the same time is important (35). For the prevention of HCAIs, the main measures to be taken are the detection and appropriate treatment of HCWs with nasal carriage and increasing hand hygiene compliance. In our study, the prevalence of nasal *S. aureus* carriage in HCWs was investigated. Additionally, HHBS and HHPI were evaluated by belief in hand hygiene and hand hygiene behaviors.

In our study, the prevalence of nasal *S. aureus* carriage in health workers was determined as 20.1%. Only one person had MRSA (0.37%). Carrier prevalence varies by country, hospital units, number of participants, and demographic characteristics. In a meta-analysis, which included 22 studies, *S. aureus* carriage was found to be 22.7%, and MRSA carriage was 32.8% in Iran (12). A meta-analysis of 127 studies from 37 different countries reported that MRSA carriage ranged from 4.6% to 5.1%. Considering the studies conducted in the last five years, the prevalence of *S. aureus* carriage varies between 11% and 45.4%, while the prevalence of MRSA carriage varies between 1.3% and 25.5% (1, 5, 7, 10, 11, 14, 15, 21, 22, 26, 28, 30, 32, 33, 36, 43). In a study, it was reported that the carriage rate of MRSA except for epidemic conditions was between 0–15%. However, it is stated that prevalence may be higher if carriage is investigated in the period of transient colonization. In this respect, it was emphasized that results of prevalence studies should be interpreted carefully (19). Since our investigation is a point prevalence study, it shows the situation in the time interval when it was performed.

The demographic characteristics of the HCWs included in the studies affect the prevalence of carriage. Recent studies have reported the risk factors for *S. aureus* carriage as being of older age (21), female (6, 21), male (1, 34, 43), and a nurse (1, 11). Risk factors for MRSA carriage include being a nurse (6, 11, 15, 22), being a woman (21, 32), being a male (6), being older than 40–45 years (6, 22), working in the intensive care unit (22), and having diabetes mellitus (30).

In our study, *S. aureus* carriage resulted higher among nurses than in other occupational groups. In our study, no statistically significant relationship was found between culture results and sociodemographic factors such as age, sex, occupation, hospital unit, education level, tenure, presence of chronic disease, and having children and/or pets at home. Since MRSA was detected in only one HCW, no assessment of MRSA carriage could be made.

Different studies have investigated the effects on *S. aureus* carriage in the nose of some risk factors such as the frequency of handwashing, the use of scrubbing during handwashing (30), the use of masks (36), smoking (31, 36, 37), and the presence of smokers and HCWs at home (32). In the study of Legese et al., it was reported that hand scrubbing was a risk factor for MRSA carriage (30). In the study of Oğuzkaya-Artan et al., it was found that the use of masks reduces MRSA carriage (32).

When the relationship between culture results and some habits was evaluated in our study, there was no statistically significant relationship between nasal cleaning frequency and hand disinfectant use. It was found that *S. aureus* culture positivity decreased...
with increasing handwashing frequency. This finding emphasizes the importance of proper application of general hand hygiene rules in reducing nasal *S. aureus* carriage, which causes HCAIs. Also, in our study, *S. aureus* carriage was found to be significantly lower in the smoker group and in the HCWs who had the habit of using new gloves for each patient. The use of new gloves for each patient is among the general hygiene practices and may be effective in reducing the carriage of *S. aureus* in the nose. However, we have difficulty explaining the negative relationship between smoking and carriage. We think that the higher frequency of nasal cleansing (p: 0.003) in the smoking group may have affected the culture results.

Mupirocin treatment is still effective in nasal *S. aureus* carriers (31). CLSI recommends the study of high levels of mupirocin resistance with 200 µg antibiotic disc in *S. aureus* (9). In our study, all *S. aureus* isolates were found to be susceptible to mupirocin. High-level mupirocin resistance was investigated in the study of Kavitha et al. and mupirocin resistance was not detected (27). In the study of Kaur et al., mupirocin resistance was found in 0.71% of MRSAs, whereas no resistance was reported in methicillin-sensitive *S. aureus* (26). However, mupirocin susceptibility was studied with different methods and different amounts of antibiotics. Using a 10 µg antibiotic disc, Bucompain et al. found 3.9% resistance in MSSA and no resistance in MRSA (6). Ulug et al. investigated low-level mupirocin resistance using a 5 µg antibiotic disk and found no resistance in both MSSA and MRSA (41).

Hand hygiene is the most important step in reducing HCAIs (8,18,44). Hand hygiene compliance in HCWs is between 30 and 40% on average and is very low (2,8,13). Being a doctor, being a nursing student, working in intensive care units, being a man, and wearing gloves were reported as the main causes of non-compliance with hand hygiene (8). In order to increase hand hygiene compliance, it is necessary to evaluate handwashing behaviors, routinely monitor them, give feedback, as well as remind necessary information (24). In our study, HHBS and HHPI were used to measure hand hygiene beliefs and behaviors of nursing students (42). These scales were translated into Turkish, applied to nursing students in several studies, and their reliability and validity were proved (3,25). High scores on both scales indicate that there is a high belief in hand hygiene and hygiene practices are always performed. In our study, the mean HHPI was found to be 64.45±7.35, and it was found to be higher in women than in men. The mean HHBS score was 84.69±9.52 and was similar in both sexes. In the study of Karadağ et al., the mean HHBS score was 85.26±9.11, while the mean HHPI score was 64.90±5.71, with no differences between men and women (25). As far as we know, these two scales have not been applied to doctors, nurses, or different HCWs neither in our country nor in other countries. In addition, our study is the first to investigate the relationship between these two scales and nasal *S. aureus* carriage.

In our study, the mean HHPI score was lower in the *S. aureus* carrier group than the non-carrier group. There was no statistically significant relationship between HHBS scores and culture results. The fact that the HHBS score is not different in the carrier and non-carrier group indicates that hand hygiene belief is established in our hospital. There was no statistically significant difference between men and women in terms of mean HHPI scores and HHBS scores among *S. aureus* carriers. In our opinion, when evaluating the relationship between carriage and HHPI or HHBS, it should be remembered that the time of sample collection for transient colonization and the personal characteristics and responses of the participants are confusing factors.

The first limitation of our study was that we collected only one nasal culture from each HCW. With only one nasal culture, it is difficult to determine whether the carriage is continuous or transient or intermittent. In the study of Garcia et al., continuous *S. aureus* carriage was reported as only 12.5%, and continuous MRSA carriage was 45% (14). The second limitation of our study was that only nasal carriage was investigated and perianal/axilla carriage was not investigated. That choice was taken in order to improve the participation of our worker minimizing the impact of the study procedure.

Another limitation is that the study design is cross-sectional and that because of it being a questionnaire study, memory factors can affect the answers of workers. Also, due to time constraints, it was performed only in the selected sample.
As a result, in our study, it was determined that the prevalence of *S. aureus* nasal carriage was lower in HCWs who had the habit of frequent hand washing and the habit of using different gloves during each patient’s procedure. By raising awareness of hand hygiene practices, it is thought that nasal carriage of *S. aureus*, a pathogen responsible for HCAIs, will reduce in HCWs. However, intervention studies should be conducted in order to show the relationship between the effectiveness of hand hygiene practices and nasal carriage. In our study, only due diligence was performed. In the following periods, it is thought that our results will be guiding for the intervention studies that will be planned about hygiene practices and carriage in health workers in our hospital. After all, mupirocin is still effective in nasal *S. aureus* carriers.

No potential conflict of interest relevant to this article was reported by the authors.

References

1. Al-Humaidan OS, El-Kersh TA, Al-Akeel RA: Risk factors of nasal carriage of *Staphylococcus aureus* and meticillin-resistant *Staphylococcus aureus* among health care staff in a teaching hospital in central Saudi Arabia. Saudi Med J 2015; 36: 1084-1090
2. Alp E, Leblebicigil H, Doganay M, Voss A: Infection control practices in countries with limited resources. Ann Clin Microbiol Antimicrob 2011; 10: 36
3. Birgili F, Baybuga M, Ozkoc H, et al: Validation of a Turkish translation of The Hand Hygiene Questionnaire. East Mediterr Health J 2019; 25: 299-305
4. Bozkurt H, Bayram Y, Guducuglu H, Berktas M: YYÜ. Investigation of resistance rates to meticillin with nasal *Staphylococcus aureus* carriage at staff of Y.Y.U. Medical Faculty Research Hospital. Van Med J 2007; 14: 52-56
5. Buenaventura-Alcazaren FA, Dela Tonga A, Ong-Lim A, Destura RV: Prevalence and molecular characteristics of MRSA nasal carriage among hospital care workers in a tertiary hospital in the Philippines. J Microbiol Immunol Infect 2019; pii: S1684-1182(18)30169-5
6. Boncompain CA, Suárez CA, Morbidoni HR: *Staphylococcus aureus* nasal carriage in health care workers: First report from a major public hospital in Argentina. Rev Argent Microbiol 2017; 49: 125-131
7. Castro A, Komora N, Ferreira V, et al: Prevalence of *Staphylococcus aureus* from nares and hands on health care professionals in a Portuguese Hospital. J Appl Microbiol 2016; 121: 831-839
8. Centers for Disease Control and Prevention. Guideline for hand hygiene in health-care settings. Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. MMWR 2002;51(No. RR-16):21-25
9. Clinical and Laboratory Standards Institute. Testing for detecting high-level mupirocin resistant in *Staphylococcus aureus*. In Performans standart for antimicrobial susceptibility testing 29th edition M100. Wayne; CLSI, 2018: 146-147
10. De Benito, Alou L, Becerro-de-Bengoa-Vallejo R, et al: Prevalence of *Staphylococcus* spp. nasal colonization among doctors of podiatric medicine and associated risk factors in Spain. Antimicrob Resist Infect Control 2018; 7: 24
11. El Aila NA, Al Laham NA, Ayesh BM: Nasal carriage of meticillin resistant *Staphylococcus aureus* among healthcare workers at Al Shifa hospital in Gaza Strip. BMC Infect Dis 2017; 17: 28
12. Emaneini M, Jabalameli F, Rahdar H, et al: Nasal carriage rate of meticillin resistant *Staphylococcus aureus* among Iranian healthcare workers: a systematic review and meta-analysis. Rev Soc Bras Med Trop 2017; 50: 590-597
13. Erasmus V, Daha Tj, Brug H, et al: Systematic review of studies on compliance with Hand Hygiene Guidelines in hospital care. Infect Control Hosp Epidemiol 2010; 31: 283-294
14. Garcia C, Acuña-Villaorduña A, Dulanto A, et al: Dynamics of nasal carriage of meticillin-resistant *Staphylococcus aureus* among healthcare workers in a tertiary-care hospital in Peru. Eur J Clin Microbiol Infect Dis 2016; 35: 89-93
15. Gogoi M, Khan AR, Sharma A, Mohan DG: Nasal and hand carriage of meticillin-resistant *Staphylococcus aureus* among health care workers of a tertiary care hospital in North-East India. IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) 2017; 16: 36-41
16. Gul M, Çıragil P, Aral M: *Staphylococcus aureus* nasal and hand carriage in hospital staff of Medical Faculty of Kahramanmaras Sutcu Imam University. ANKEM J 2004; 18: 36-39
17. Haill C, Fletcher S, Archer R, et al: Prolonged outbreak of meticillin-resistant *Staphylococcus aureus* in a cardiac surgery unit linked to a single colonized healthcare worker. J Hosp Infect 2013; 83: 219-225
18. Haque M, Sartelli M, McKimm J, Abu Bakar M: Health care–associated infections – an overview. Infect Drug Resist 2018; 11: 2321-2333.
19. Hawkins G, Stewart S, Blatchford O, Reilly J: Should healthcare workers be screened routinely for meticillin-resistant *Staphylococcus aureus*? A review of the evidence. J Hosp Infect 2011; 77: 285-289
20. Hekimoğlu CH, Batır E, Yıldırım Gozel: National health service related infections surveyance network, agent dis-
21. Hogan B, Rakotozandraindy R, Al-Emran H, et al: Prevalence of nasal colonisation by meticillin-sensitive and meticillin resistant Staphylococcus aureus among healthcare workers and students in Madagascar. BMC Infect Dis 2016; 16: 420

22. Joachim A, Moyo SJ, Nkinda L, et al: Nasal carriage of meticillin-resistant Staphylococcus aureus among health care workers in tertiary and regional hospitals in Dar es Salaam, Tanzania. Int J Microbiol 2018; 2018:5058390

23. Kantarcıoğlu AS, Yucel A. Investigation of meticillin-resistant Staphylococcus aureus hand and nasal carriage among patients’accomplices and visitors. Cerrahpasa J Med 2002; 33: 97–103

24. Karabey S, Çetinkaya Sarden Y, Alp E, et al: El hijyeni kılavuzu. Turkish J Hosp Infect 2008; 12(suppl 1)

25. Karadag M, Yıldırım N, Pekin Iseri O: The validity and reliability study of Hand Hygiene Belief Scale and Hand Hygiene Practices Inventory. Çukurova Med J 2016; 41: 271–284

26. Kaur DC, Narayan PA: Mupirocin resistance in nasal carriage of Staphylococcus aureus among healthcare workers of a tertiary care rural hospital. Indian J Crit Care Med 2014; 18: 716–721

27. Kavitha E, Srikumar R: High-Level mupirocin resistance in Staphylococcus spp. among health care workers in a tertiary care hospital. Pharmacology 2019; 103: 320–323

28. Khatri S, Pant ND, Bhandari R, et al: Nasal Carriage Rate of Methicillin Resistant Staphylococcus aureus among Health Care Workers at a Tertiary Care Hospital in Kathmandu, Nepal. J Nepal Health Res Counc 2017; 15: 26–30

29. Lamanna O, Bongiorno D, Bertoncello L, et al: Rapid containment of nosocomial transmission of a rare community-acquired meticillin-resistant Staphylococcus aureus (CA-MRSA) clone, responsible for the Staphylococcal Scalded Skin Syndrome (SSSS). Ital J Pediatr 2017; 43: 5

30. Legese H, Kahsay AG, Kahsay A, et al: Nasal carriage, risk factors and antimicrobial susceptibility pattern of meticillin resistant Staphylococcus aureus among healthcare workers in Adigrat and Wukro hospitals, Tigray, Northern Ethiopia. BMC Res Notes 2018; 11: 250

31. Mody L, Kaufman CA, McNeil SA, et al: Mupirocin-based decolonization of Staphylococcus aureus carriers in residents of 2 long-term care facilities: A randomized, double-blind, placebo-controlled trial. Clin Infect Dis 2003; 37: 1467–1474

32. Oğuzkaya-Artan M, Baykan Z, Artan C, Avsarogullari L: Prevalence and risk factors for meticillin resistant Staphylococcus aureus carriage among emergency department workers and bacterial contamination on touch surfaces in Erciyes University Hospital, Kayseri, Turkey. Afri Health Sci 2015;15: 1289–1294

33. Pathare NA, Asogan H, Tejani S, et al: Prevalence of meticillin resistant Staphylococcus aureus [MRSA] colonization or carriage among health-care workers. J Infect Public Health 2016; 9: 571–576

34. Peters C, Dulong M, Kleinmüller O, et al: MRSA prevalence and risk factors among health personnel and residents in nursing homes in Hamburg, Germany - A cross-sectional study. PLoS One 2017; 12(1): e0169425

35. Peters C, Dulong M, Nienhaus A, Schablon A: Occupational infection risk with multidrug-resistant organisms in health personnel-A systematic review. Int J Environ Res Public Health 2019; 16(11). doi: 10.3390/ijerph16111983

36. Pourmamezan N, Ohadian Moghadam S, Pourmand MR: Meticillin-resistant Staphylococcus aureus tracking spread among health-care workers and hospitalized patients in critical wards at a university hospital, Tehran, Iran. New Microbe and New Infect 2018; 7: 36

37. Rashid Z, Farzana K, Sattar A, Murtaza G: Prevalence of nasal Staphylococcus aureus and meticillin-resistant Staphylococcus aureus in hospital personnel and associated risk factors. Acta Pol Pharm 2012; 69: 985–991

38. Sakr A, Brégeon F, Mége JL, et al: Staphylococcus aureus nasal colonization: An update on mechanisms, epidemiology, risk factors, and subsequent infections. Front Microbiol 2018; 9: 2419

39. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0, 2019. http://www.eu-cast.org

40. Ulrich N, Gastmeier P, Vonberg RP: Effectiveness of healthcare worker screening in hospital outbreaks with gram-negative pathogens: A systematic review. Antimicrob Resist Infect Control 2018; 7: 36

41. Ulug M: Investigation of nasal Staphylococcus aureus carriage in intensive care unit and operating room staff. The Medical Bulletin of Haseki 2012; 50: 48–52

42. Van de Mortel: Development of a questionnaire to assess health care students’ hand hygiene knowledge, beliefs and practices. Aust J Adv Nurs 2009; 26: 9–16

43. Van Vuigt JL, Coelen RJ, van Dam DW, et al: Nasal carriage of Staphylococcus aureus among surgeons and surgical residents: A nationwide prevalence study. Surg Infect (Larchmt) 2015; 16: 178–182

44. WHO: Health care-associated infection and evidence of the importance of hand hygiene. In WHO Guidelines on Hand Hygiene in Health Care: a Summary. Geneva, Switzerland, 2019: 1–10