St-Polyform Modules and Related Concepts

Muna Abbas Ahmed

Received 3/5/2018, Accepted 26/6/2018, Published 13/9/2018

Abstract:
In this paper, we introduce a new concept named St-polyform modules, and show that the class of St-polyform modules is contained properly in the well-known classes; polyform, strongly essentially quasi-Dedekind and κ-nonsingular modules. Various properties of such modules are obtained. Another characterization of St-polyform module is given. An existence of St-polyform submodules in certain class of modules is considered. The relationships of St-polyform with some related concepts are investigated. Furthermore, we introduce other new classes which are; St-semisimple and κ-non St-singular modules, and we verify that the class of St-polyform modules lies between them.

Keywords: κ-nonsingular modules, Polyform modules, Semi-essential submodules, St-closed submodules, Strongly essentially quasi-Dedekind modules.

Introduction:
Throughout this paper, all rings are assumed to be commutative with a non-zero unity element, and all modules are unitary left R-modules. The notations $V \leq_\text{a} U$ and $V \leq_\text{sem} U$ mean that V is an essential and semi-essential submodule of U respectively. A submodule V of U is called essential if every non-zero submodule of U has a non-zero intersection with V (1, P.15). A submodule V of U is called semi-essential if every non-zero prime submodule of U has a non-zero intersection with V (2). A submodule V of U is called closed if V has no proper essential extensions inside U (1, P.18). Ahmed and Abbas introduced the concept of St-closed submodule, where a submodule V of U is said to be St-closed, if V has no proper semi-essential extensions inside U (3).

In this paper, we introduce and study a new class named St-polyform modules. This type of modules is contained properly in some classes of modules such as polyform, strongly essentially quasi-Dedekind and κ-non St-singular modules. An R-module U is called polyform if for every submodule V of U and for any homomorphism $f: V \rightarrow U$, $\ker f$ is closed submodule in U (4). A module U is called strongly quasi-Dedekind, if $\text{Hom}_R(U, U) = 0$ for all semi-essential submodule V of U (5). An R-module U is called κ-nonsingular, if for each homomorphism $f \in \text{End}(U)$ such that $\ker f$ is essential submodule of V, then $f = 0$ (6, P.95).

Department of Mathematics, College of Science for Women, University of Baghdad, Iraq.
E-mail: munaa_math@csu.uobaghdad.edu.iq

We define in this work a proper class of κ-nonsingular modules named κ-non St-singular. We define St-polyform as follows: an R-module U is called St-polyform, if for every submodule V of U and for every homomorphism $f: V \rightarrow U$, $\ker f$ is St-closed submodule in V. We verify that an St-polyform module is smaller than all of the classes: polyform, strongly quasi-Dedekind, κ-nonsingular and κ-non St-singular modules, see remark 2, proposition 30, proposition 40 and proposition 56. Beside that we give another generalization for St-polyform modules.

This work consists of three sections. In the first section we provide another characterization of St-polyform modules, we show that a module U is St-polyform if and only if for each non-zero submodule V of U and for each non-zero homomorphism $f: V \rightarrow U$, $\ker f$ is not semi-essential submodule of V, see theorem 4. Also we present the main properties of St-polyform module, for example we show in proposition 7 the existence of St-polyform in certain class of modules, also we prove in the proposition 11; if $W \leq_\text{sem} V$ for every submodule V of U with $\text{Hom}_R(U, W) = 0$, then U is a St-polyform module, and we show in the proposition 13 that a module U is an St-polyform if its quasi-injective hull is St-polyform. In section two we investigate the relationships of St-polyform with polyform module and small polyform, where a submodule V of U is called small if $V + W \neq U$ for every proper submodule W of U (1, P.20). An R-module U is called small polyform if for each non-
zero small submodule \(V \) of \(U \), and for each \(f \in \text{Hom}_R(V, U) \): \(\ker f \not\simeq V \) (4). Furthermore, we introduce another generalization for St-polyform module named essentially St-polyform module, and we show in theorem 26; the two concepts are equivalent under the class of uniform modules. The last section of this paper is devoted to study the relationships of St-polyform with other related concepts such as quasi-Dedekind and some of its generalizations as well as \(\kappa \)-nonsingular and Baer modules. We show that under certain condition an strongly essentially quasi-Dedekind module can be St-polyform, see theorem 31. Also, we give a partial equivalence between St-polyform and \(\kappa \)-nonsingular modules, see theorem 42. Moreover, other related concepts of St-polyform module are introduced which are St-semisimple, and \(\kappa \)-non St-singular modules.

St-polyform modules:

In this section, various properties and anther characterization for St-polyform modules are investigated. We start by the following definition.

Definition 1: An \(R \)-module \(U \) is called St-polyform, if for every submodule \(V \) of \(U \) and for any homomorphism \(f : V \rightarrow U \), \(\ker f \) is St-closed submodule in \(V \). A ring \(R \) is called St-polyform, if \(R \) is St-polyform \(R \)-module.

Remark 2: The St-polyform module is a proper class of polyform module. In fact if \(U \) is St-polyform module, then for every submodule \(V \) of \(U \) and for any homomorphism \(f : V \rightarrow U \), \(\ker f \) is St-closed submodule in \(V \). Since the class of closed submodule is greater than the class of St-closed submodule, thus \(\ker f \) is closed submodule in \(U \); hence \(U \) is a polyform module. On the other hand, not every polyform module is St-polyform for example; \(Z_5 \) as \(Z \)-module is clearly polyform module, but not St-polyform, since the identity homomorphism \(I : Z_5 \rightarrow Z_2 \) has zero kernel which is not St-closed submodule in \(Z_2 \) (3).

Examples and Remarks 3:

i. Simple module is not St-polyform module. The proof is similar as proving \(Z_2 \) is not St-polyform in remark 2.

ii. \(Z_6 \) is not St-polyform module. In fact there exists \(f : \langle 2 \rangle \rightarrow Z_6 \) defined by \(f(\overline{x}) = \overline{2x} \) \(\forall \overline{x} \in \langle 2 \rangle \). Note that \(\ker f = \langle 4 \rangle \), and \(\langle 4 \rangle \) is not St-closed submodule in \(Z_6 \).

iii. Epimorphic image of St-polyform module may not be St-polyform; for example \(Z_{10} \) is St-polyform, while \(\frac{Z_{10}}{\langle 2 \rangle} \cong Z_5 \). By i, \(Z_5 \) is not St-polyform.

iv. Monoform module need not be St-polyform. For example, \(Z_2 \) is a monoform \(Z \)-module, but it is not St-polyform as we seen in remark 2.

v. Uniform may not be St-polyform module, where a non-zero module \(U \) is called uniform if \(U \) every non-zero two submodules of \(U \) have non-zero intersection (1, P.85).

vi. \(Q \) as \(Z \) is not St-polyform. In fact \(Q \) is uniform module, hence it is semi-uniform, and the result follows by v.

vii. \(Z_6 \) is an St-polyform module, since every submodule of \(Z_6 \) is St-closed. So the kernel of any homomorphism from each submodule to \(Z_6 \) is St-closed. For the same argument \(Z_{10} \) is St-polyform.

viii. \(Z_{12} \) is not St-polyform \(Z \)-module.

ix. A submodule of St-polyform module may not be St-polyform, for example; by vii, \(Z_6 \) is an St-polyform module, but \(A = \langle 2 \rangle \subseteq Z_6 \) is not St-polyform, since \(A \) is simple module, which is not St-polyform as we showed in i.

The following theorem gives another characterization of St-polyform module.

Theorem 4: An \(R \)-module \(U \) is St-polyform, if and only if for each non-zero submodule \(V \) of \(U \) and for each non-zero homomorphism \(f : V \rightarrow U \), \(\ker f \) is not semi-essential submodule of \(V \).

Proof: \(\Rightarrow \) Assume that there exists a non-zero submodule \(V \) of \(U \) and a non-zero homomorphism \(f : V \rightarrow U \) such that \(\ker f \) is semi-essential submodule of \(V \). But \(\ker f \subseteq \text{Stc} V \), therefore \(\ker f = V \), hence \(f = 0 \) which is a contradiction. That is \(\ker f \not\simeq \text{Stem} V \).

\(\Leftarrow \) Suppose that there exists a submodule \(V \) of \(U \) and a homomorphism \(f : V \rightarrow U \) such that \(\ker f \) is not St-closed submodule in \(V \). By definition of St-closed, there exists a submodule \(W \) of \(V \) such that \(\ker f \subseteq \text{Stem} W \subseteq V \). Consider the homomorphism \(f \circ i : W \rightarrow U \). It is clear that \(f \circ i \neq 0 \), and since \(\ker f \subseteq W \), then \(\ker(f \circ i) \subseteq \text{Stem} W \). But this is contradict with our assumption, thus \(\ker f \) is St-closed submodule of \(V \).

The following examples are checked by using theorem 4.

Examples 5:

i. Any semi-uniform module is not St-polyform module, where a non-zero \(R \)-module \(U \) is called semi-uniform if every non-zero submodule has non-zero intersection with all prime submodules of \(U \).

Proof i: Let \(V \) be a non-zero submodule of \(U \), and \(f : V \rightarrow U \) be a non-zero homomorphism. Assume that \(U \) is St-polyform module, so \(\ker f \not\simeq \text{Stem} V \), hence \(\ker f \not\simeq \text{Stem} U \). But this contradicts the definition of semi-uniform module, thus \(U \) is not St-polyform.

\(\blacksquare \)
ii. Z is not St-polyform Z-module. In fact since Z is semi-uniform module, so the result follows by i.

iii. \(Z_4\) is not St-polyform module. In fact if we take \(V=Z_4\) in the theorem 4 as a submodule of itself, then there exists a homomorphism \(f \in \text{Hom}_R(Z_4,Z_4)\) defined by \(f(x)=2x \quad \forall x \in Z_4\), note that \(\ker f=2\) which is semi-essential submodule of \(Z_4\). Thus \(Z_4\) is not St-polyform module.

iv. \(Z \oplus Z_2\) is not St-polyform Z-module. To show that; assume there exist a submodule \(V=Z \oplus Z_2\) and a homomorphism \(f: V \rightarrow U\) defined by \(f(x,y)=(0,x)\), where \(x \in Z_2, y \in Z_2\).

Note that \(f \neq 0\), and \(\ker f=\{(x,y) \in V | f(x,y)=0\} = \{(x,y) \in V | \bar{x}=0\} = 2Z \oplus Z_2\), hence \(\ker f \not\subseteq \text{sem} V\). So \(Z \oplus Z_2\) is not St-polyform module.

Proposition 6: A direct summand of St-polyform module is St-polyform.

Proof: Let \(U=U_1 \oplus U_2\) be a St-polyform module, where \(U_1\) and \(U_2\) are R-submodules of \(U\). Let \(V_1\) be a non-zero submodule of \(U_1\), and \(f: V_1 \rightarrow U_1\) be a non-zero homomorphism. Consider the following sequence:

\[V_1 \rightarrow U_1 \rightarrow U_1 \oplus U_2 \]

where \(j\) is an injection homomorphism. Now, \(j \circ f: V_1 \rightarrow U_1\) and \(U_1\) is St-polyform, then \(\ker (j \circ f) \subseteq \text{sem} V_1\). Since \(\ker (j \circ f) = \{v_1 \in V_1 | (j \circ f)(v_1) = 0\} = \{v_1 \in V_1 | f(v_1) = 0\} = \ker f \oplus U_2\), then \(\ker f \oplus U_2 \subseteq \text{sem} U\). But \(U_2 \subseteq \text{sem} U_2\), thus \(\ker f \not\subseteq \text{sem} U_1\) (5, Lemma(1.18)). That is \(U_1\) is St-polyform.

The converse of proposition 6 is not true in general; for example each of \(Z_{10}\) and \(Z_6\) are St-polyform \(Z\)-modules; see 3iii., but \(Z_{10} \oplus Z_6\) is not St-polyform \(Z\)-module.

Recall that an R-module \(U\) is called Artinian if every descending chain of submodules in \(U\) is stationary (1,P.7). The following proposition indicates the existence of St-polyform submodules in certain class of modules.

Proposition 7: Every nonzero Artinian module has a submodule which is an St-polyform.

Proof: Let \(U\) be a non-zero Artinian module, and \(V\) be a submodule of \(U\). If \(V\) is St-polyform, then we are done. Otherwise there exists a submodule \(V_1\) of \(V\) and a homomorphism \(f_1: V_1 \rightarrow V\) with \(\ker f_1 \subseteq \text{St} V_1\) and \(\ker f_1 \subseteq \text{St} V_2\) for some proper submodule \(V_2\) of \(V_1\). Now, if \(V_1\) is St-polyform, then we are through, otherwise there exists a submodule \(V_3\) of \(V_2\) and a homomorphism \(f_2: V_3 \rightarrow V_2\) with \(\ker f_2 \subseteq \text{St} V_3\) and \(\ker f_2 \subseteq \text{St} V_4\) for some proper submodule \(V_4\) of \(V_3\). We continue in this manner until we arrive in a finite number of steps at a submodule which is an St-polyform submodule. Otherwise, we have an infinite descending chain \(V \supseteq V_1 \supseteq V_2 \supseteq \ldots\) of submodules of the module \(U\). But this is a contradiction, since \(U\) is Artinian. Therefore \(U\) contains an St-polyform submodule. ■

Proposition 8: Let \(U\) be an R-module. If either \(V_1\) or \(V_2\) are St-polyform modules, then \(V_1 \cap V_2\) is St-polyform module.

Proof: Assume that \(V_1\) is St-polyform module. Let \(V\) be a non-zero submodule of \(V_1 \cap V_2\), and let \(f: V \rightarrow V_1 \cap V_2\) be a non-zero homomorphism. Consider the following sequence:

\[V \rightarrow V_1 \cap V_2 \rightarrow V_1 \]

Since \(V_1\) is a St-polyform module, then \(\ker (i \circ f) \not\subseteq \text{sem} V\). But \(\ker f = \ker (i \circ f)\), then \(\ker f \not\subseteq \text{sem} V\). That is \(V_1 \cap V_2\) is a St-polyform module. ■

Recall that an R-module \(U\) is called multiplication if for any \(f \in \text{End}_R(U)\), there exists an \(r \in R\) such that \(f(x) = rx \quad \forall x \in U\), where \(\text{End}_R(U)\) is the endomorphism ring of \(U\) (5).

Proposition 9: Let \(U\) be a faithful scalar R-module. Then \(R\) is an St-polyform ring if and only if \(\text{End}_R(U)\) is an St-polyform ring.

Proof: Since \(U\) is a faithful scalar module, then \(\text{End}_R(U) \cong R\) (7). So if \(R\) is an St-polyform module, then \(\text{End}_R(U)\) is polyform, and vice versa. ■

An R-module \(U\) is called multiplication for every submodule \(V\) of \(U\) there exists an ideal I of \(R\) such that \(V = IU\) (8, P.200).

Corollary 10: Let \(U\) be a finitely generated faithful and multiplication R-module. Then \(R\) is an St-polyform ring if and only if \(\text{End}_R(U)\) is St-polyform module.

Proof: Since \(U\) is finitely generated and multiplication, then \(U\) is a scalar module (7), and the result follows by proposition 9. ■

Proposition 11: Let \(U\) be an R-module. If \(W \subseteq \text{sem} V\) for every submodule \(V\) of \(U\), such that \(\text{Hom}_R(V/W, U) = 0\), then \(U\) is a St-polyform module.

Proof: Assume \(U\) is not St-polyform module, so there exists a submodule \(V\) of \(U\) and a non-zero homomorphism \(\alpha: V \rightarrow U\) such that \(\ker \alpha \subseteq \text{sem} U\).

Define \(\beta: V \rightarrow W / \ker \alpha\) by \(\beta(v+\ker \alpha) = \alpha(v) \quad \forall v\in V\), and \(\beta(v+\ker \alpha) = 0 \quad \forall v+\ker \alpha \not\in \text{ker} \beta\).

We can easily show that \(\beta\) is well defined and homomorphism. Since \(\alpha\) is a non-zero homomorphism, then \(\beta\) is also non-zero, thus \(\text{Hom}_R(V/W, U) \neq 0\). But this contradicts our assumption, therefore \(\ker \beta \not\subseteq \text{sem} U\).

Proposition 12: Let \(U\) be an R-module, and \(I\) be an ideal of \(R\) such that \(I \subseteq \text{ann}_R(U)\), then \(U\) is St-polyform R-module if and only if \(U\) is St-polyform \(R/I\) module.

337
Proof: Assume that \(U \) is an St-polyform \(R \)-module. Since \(I \subseteq \text{ann}_R(U) \), then it can be easily shown that \(\text{Hom}_R(V, U) = \text{Hom}_R(V, U) \) for each submodule \(V \) of \(U \), hence the result follows directly. \(\blacksquare \)

Recall that an \(R \)-module \(U \) is called injective if for every monomorphism \(f: A \to B \) where \(A \) and \(B \) be any \(R \)-modules, and for every homomorphism \(g: A \to U \), there exists a homomorphism \(h: B \to U \) such that \(h \circ f = g \) (8, P.33). A module \(U \) is called quasi-injective if it is \(U \)-injective \(R \)-module (8, P.83). The injective hull (quasi-injective hull) of a module \(U \) is defined as an injective (quasi-injective) module with essential extension of \(U \), it is denoted by \(E(U) \) (respectively \(\overline{U} \)) (8, P.39). Clark and Wisbauer in (9) proved that a module \(U \) is polyform if its quasi-injective hull is polyform. As analogue of that, we have the following result.

Proposition 13: Let \(U \) be an \(R \)-module. If the injective hull \(E(U) \) of \(U \) is St-polyform module, then \(U \) is St-polyform module.

Proof: Let \(V \) be a non-zero submodule of \(U \), and \(f: V \to U \) be a non-zero homomorphism. Suppose the converse is not true, that is \(\ker f \leq \text{sem} \ V \). Consider the following Fig. 1.

![Diagram](image)

Figure 1. The diagram of injective the module

where \(i: V \to E(V) \) and \(j: U \to E(U) \) are the inclusion homomorphisms. Since \(E(U) \) is injective, then there exists a non-zero homomorphism \(g: V \to U \) such that \(g \circ i = j \circ f \). It is clear that \(\ker (g \circ i) \subseteq \ker g \) and \(\ker f = \ker (j \circ f) \). Since \(E(U) \) is an St-polyform module, then \(\ker (g) \leq \text{sem} \ E(V) \). By definition of injective hull \(V \leq E(V) \), hence \(V \leq \text{sem} \ E(V) \), and by our assumption \(\ker f \leq \text{sem} \ V \), then by transitivity of semi-essential submodules \(\ker f \leq \text{sem} \ E(V) \) (2). On the other hand, clearly \(\ker f \leq \ker g \), therefore \(\ker g \leq \text{sem} \ E(V) \) (2), which is a contradiction. Therefore, \(\ker f \not\leq \text{sem} \ V \), i.e. \(V \) is an St-polyform module. \(\blacksquare \)

In example 3ix, we verified that a submodule of St-polyform may not be St-polyform. In the following proposition, we satisfy that under certain conditions.

Corollary 14: Let \(U \) be an injective and St-polyform module. If \(V \) is an essential submodule, then \(V \) is St-polyform module.

Proof: Since \(V \) is an essential submodule of \(U \), then \(E(V) = E(U) \) (10, Prop(2.22), P.45). But \(U \) is injective module, so \(U = E(U) \). This implies that \(E(V) = U \). Since \(U \) is St-polyform, then \(E(V) \) is St-polyform. The result follows by proposition 13. \(\blacksquare \)

Recall that a module over integral domain \(R \) is called divisible if \(U = E(U) \) (10, P.32).

Corollary 15: Let \(R \) be a division ring, and \(U \) be an St-polyform \(R \)-module. If \(V \) is essential submodule of \(U \), then \(V \) is an St-polyform module.

Proof: Since \(R \) is a division ring, then \(U \) is an injective module (10, P.30), and the result follows by corollary 14. \(\blacksquare \)

Corollary 16: If \(R \) is a division St-polyform ring, then each ideal of \(R \) is an St-polyform.

Proof: Let \(I \) be an ideal of \(R \). Since \(R \) is a division ring, then clearly every ideal of \(R \) is essential. On the other hand, since every module over division ring is an injective module (10, P.30), therefore \(I \) is injective. But \(R \) is an St-polyform ring, so by corollary 14, \(I \) is a St-polyform ideal. \(\blacksquare \)

Corollary 17: Let \(U \) be a divisible St-polyform module over P.I.D. If \(V \) is an essential submodule of \(U \), then \(V \) is St-polyform module.

Proof: Since \(U \) is divisible over P.I.D, then \(U \) is injective (10, Th(2.8), P.35). The result follows by corollary 14. \(\blacksquare \)

Recall that a commutative domain \(R \) is called Dedekind; if every non-zero ideal of \(R \) is invertible (10, P.36).

Corollary 18: Let \(U \) be a divisible module over Dedekind domain \(R \), and \(V \leq e U \). If \(U \) is a St-polyform module, then \(V \) is St-polyform.

Proof: Since Every divisible module over a Dedekind domain is injective (10, P.36), then by corollary 14, we are done. \(\blacksquare \)

St-polyform and Polyform modules:

In this section, we investigate the relationships of St-polyform module with polyform and small polyform modules. Besides that, we introduce another generalization for St-polyform modules.

In the previous section, we verified that the class of St-polyform modules is a proper subclass of polyform modules. In the following theorems, we use certain conditions under which St-polyform module can be polyform module. Before that; an \(R \)-module \(U \) is called fully prime if every proper submodule of \(U \) is prime (2).

Theorem 19: Let \(U \) be a fully prime \(R \)-module, then \(U \) is St-polyform if and only if \(U \) is a polyform module.

Proof: \(\Leftarrow \) By remark 2.

\(\Rightarrow \) Assume that \(U \) is polyform module, and let \(V \) be a submodule of \(U \), and \(f: V \to U \) be a
homomorphism. Since U is polyform, then \(\ker f \) is closed submodule in U. But U is fully prime, then \(\ker f \) is an St-closed in U \((3)\), hence U is St-polyform. \[\]

Recall that an R-module U is called fully essential, if every semi-essential submodule of U is essential \((2)\).

Theorem 20: Let U be a fully essential R-module, then U is St-polyform if and only if U is a polyform module.

Proof: \(\Rightarrow\) By remark 2. \\
\(\Leftarrow\) Let V be a non-zero submodule of U, and \(f : V \rightarrow U \) be a non-zero homomorphism. Since U is polyform, then \(\ker f \not\subseteq V \). But U is fully essential; therefore, \(\ker f \not\subseteq V \) \((2)\), that is U is St-polyform module.

The following proposition shows that the class of St-polyform domain coincides with the class of polyform domain.

Theorem 21: An integral domain \(R \) is an St-polyform if and only if \(R \) is polyform domain.

Proof: \(\Rightarrow\) It is obvious. \\
\(\Leftarrow\) Assume that \(R \) is a polyform domain. Let \(I \) be a non-zero ideal of \(R \), and \(f : I \rightarrow R \) be a non-zero homomorphism. Since \(R \) is integral domain, then \(\text{ann}(I)=0 \); that is \(\text{ann}_R(I) \not\subseteq R \). Thus \(R \) is St-polyform.

Hadi and Marhoon in \((4)\) gave a generalization of polyform module as follows:

Definition 22: An R-module U is called small polyform module if for each non-zero small submodule \(V \) of \(U \), and for each non-zero homomorphism \(f : V \rightarrow U \); \(\ker f \not\subseteq V \).

Remark 23: Every St-polyform module is small polyform.

Proof: Since every St-polyform module is polyform, so the result follows directly. \[\]

Now, we need to introduce another class of polyform modules which is bigger than polyform modules.

Definition 24: An R module U is called essentially polyform module if for each non-zero proper essential submodule \(V \) of \(U \), and for each non-zero homomorphism \(f : V \rightarrow U \); \(\ker f \not\subseteq U \).

We can generalize St-polyform as follows:

Definition 25: An R module U is called essentially St-polyform module if for each non-zero proper essential submodule \(V \) of \(U \), and for each non-zero homomorphism \(f : V \rightarrow U \); \(\ker f \not\subseteq V \).

It is clear that every St-polyform module is essentially St-polyform, and every essentially St-polyform module is essentially polyform module. Furthermore, it should be noted that the polyform module lies between St-polyform and essentially St-polyform module.

The following theorem gives a partial equivalence between St-polyform and essentially St-polyform module.

Theorem 26: Let U be a uniform module, then U is St-polyform if and only if U is essentially St-polyform.

Proof: \(\Rightarrow\) It is straightforward. \\
\(\Leftarrow\) Assume that U is essentially St-polyform, and let \(V \) be a non-zero submodule of U, and \(f : V \rightarrow U \) be a non-zero homomorphism. Since U is a uniform module so \(V \leq u \). But U is essentially St-polyform; therefore, \(\ker f \not\subseteq V \); that is U is an St-polyform module.

By replacing uniform module by hollow and essential submodule by small, we have the following; and the proof is in a similar way.

Proposition 27: Let U be a hollow module, then U is St-polyform if and only if U is small St-polyform.

We can summarize the main results of this section by the following implications of modules:

\[\text{St-polyform} \Rightarrow \text{Polyform} \Rightarrow \text{Essentially St-polyform}\]

\[\text{Essentially St-polyform} \Downarrow \text{Essentially polyform}\]

St-polyform and other related concepts:

This section is devoted to study the relationships of St-polyform with some related concepts such as quasi-Dedekind and some of its generalizations, \(\kappa \)-nonsingular, injective, extending, Baer and \(\kappa \)-non St-singular module.

Recall that an R-module U is called quasi-Dedekind, if for every non-zero homomorphism \(f \in \text{End}(U) \), \(\ker f=0 \) \((11)\).

Remark 28: It is worth mentioning that St-polyform modules and quasi-Dedekind modules are independent; for example the \(Z \)-module \(Z_6 \) is St-polyform module see example 3vii, but not quasi-Dedekind. On the other hand, \(Z \) is quasi-Dedekind \((11)\), but not St-polyform, see example 5ii.

Proposition 29: Let U be a semi-uniform module. If U is St-polyform then U is a quasi-Dedekind module.

Proof: Assume that U is St-polyform module, and let \(f \in \text{End}(U) \). If \(V \) be a non-zero submodule of U, then we have the following sequence:

\[V \rightarrow U \rightarrow U \]

Where \(i \) is the inclusion homomorphism. Suppose that \(\ker f \neq 0 \), since U is St-polyform. Note that \(f \circ i \neq 0 \). Since U is St-polyform, then \(\ker(i \circ f) \not\subseteq U \), hence \(\ker(i \circ f) \not\subseteq V \). But this is a contradiction since U is a semi-uniform module, thus \(\ker f = 0 \). \[\]
The converse of proposition 29 is not true in general, for example Z_2 is a quasi-Dedekind module, but not St-polyform.

Recall that an R-module U is called strongly essentially quasi-Dedekind if for each non-zero homomorphism $f \in \text{End}_R(U)$, $\ker f \not\leq_{\text{sem}} U$ (5).

Proposition 30: Every St-polyform module is strongly essentially quasi-Dedekind.

Proof: Let U be St-polyform module. Let V be a non-zero submodule of U, and $f: V \to U$ be a non-zero homomorphism. By assumption $\ker f$ is not semi-essential submodule in V. In particular, all non-zero endomorphisms of U have kernels which are not semi-essential in U, proving our assertion.

The converse of proposition 30 is not true in general, for example Z_2 is strongly essentially quasi-Dedekind module (5, Ex (1.11)) but not St-polyform as we saw in remark 2. In the following theorem we use a condition under which the converse is true.

Proposition 31: Let U be a quasi-injective R-module then U is U is St-polyform if and only if U is a strongly essentially quasi-Dedekind module.

Proof: (⇒) By proposition 30.

(⇐) Let V be a non-zero submodule of U, and $f: V \to U$ be a non-zero homomorphism. Consider the following Fig. 2.

![Figure 2. The diagram of injective module U](image)

where $i: V \to U$ is the inclusion homomorphism. Since U is quasi-injective, then there exists a homomorphism $g: U \to U$ such that $g \circ i = f$. Now, $g \in \text{End}(U)$ and U is essentially quasi-Dedekind; therefore, $\ker g \not\leq_{\text{sem}} U$. But $\ker f \subseteq \ker g$, then by transitivity of semi-essential submodule, $\ker f \not\leq_{\text{sem}} U$ (2), and we are done.

In (3) Ahmed and Abbas proved that if every submodule of U is St-closed, then every submodule of U is direct summand. This motivates us to introduce the following.

Definition 32: An R module U is called St-semisimple if every submodule of U is St-closed.

This concept is clearly a proper subclass of semisimple modules, and we can easily prove the following.

Remark 33: Every St-semisimple module is St-polyform module.

We think that the converse of the remark 33 is not true in general, but we cannot find example.

Definition 34: Let U be an R-module. We define St-singular submodule as follows:

$$\{u \in U \mid \text{ann}_R(u) \leq_{\text{sem}} R\}$$

It is denoted by $\text{St-sing}(U)$. If $\text{St-sing}(U) = U$, then U is called St-singular module, and U is called non St-singular if $\text{St-sing}(U) = 0$.

Example 35: Q as Z-module is non St-singular, where Q is the set of all rational numbers, since $\text{St-sing}(Q) = 0$. For the same reason Z is non St-singular Z-module.

Proposition 36: Let U and V be R-modules. If $\text{Hom}_R(V,U)=0$ for each St-singular module V, then U is non St-singular module.

Proof: Consider the inclusion homomorphism $i: \text{St-sing}(U) \to U$. It is clear that $\text{St-sing}(U)$ is St-singular module, so by assumption $i=0$. But $i(\text{St-sing}(U)) = \text{St-sing}(U)$, therefore sing $U=0$. That is U is non St-singular.

Remark 37: For any submodule V of an R-module U, $\text{St-sing}(V)=\text{St-sing}(U)\cap V$.

Proof: It is clear that $\text{St-sing}(V) \subseteq \text{St-sing}(U)$, so the result follows directly.

Remark 38: By using remark 37, we can easily show that the class of St-singular module is closed under submodules.

Recall that an R-module U is called κ-nonsingular, if for each $f \in \text{End}_R(U)$, $\ker f \not\leq e U$, then $f=0$ (6, P.95). In other words, for every non-zero homomorphism $f \in \text{End}_R(U)$, $\ker f \not\leq e U$. As example for this class of modules is Z-module Z_p, it is κ-nonsingular for every prime number P, since Z_p is a simple module; therefore, all non-zero endomorphisms are automorphisms.

Remark 39: The concept of κ-nonsingularity is strictly weaker than the concept of nonsingularity for modules (6, Ex(4.1.10), P.96), where an R-module U is called nonsingular if $Z(U)=0$, where $Z(U)\subseteq \{u \in U \mid \text{ann}_R(u) \leq e R\}$ (1, P.30).

Proposition 40: Every St-polyform module is κ-nonsingular.

Proof: Let U be St-polyform module. Let V be a non-zero submodule of U, and $f: V \to U$ be a non-zero homomorphism. By assumption, $\ker f \not\leq e V$. As we take $V=U$, then we obtain $f: U \to U$, and $\ker f \not\leq e U$. Since every essential submodule is semi-essential (2), then $\ker f \not\leq e U$, hence U is κ-nonsingular.

The converse of proposition 40 is not true in general as the following examples show:
Examples 41:

1. Every simple module is κ-nonsingular (12), but not St-polyform, see example 3i.
2. The Z-module Q is nonsingular module, hence it is κ-nonsingular (12). But Q is not St-polyform module, see example 3vi.
3. The Z-module $U = Q \oplus Z_2$ is not St-polyform module. In fact if $V = Z \oplus (0)$ be a non-zero submodule of U. Let $f : V \to U$ be a map defined by $f(x, 0) = (0, x)$, where $x \in Z$. It is clear that f is a non-zero homomorphism, then $\ker f = \{(x, 0) \in V \mid f(x, 0) = (0, 0)\} = 2Z \oplus (0)$. We can easily verify that $2Z \oplus (0) \leq_{\text{sem}} V$, hence U is not St-polyform module. On the other hand, U is κ-nonsingular Z-module (12).

The following proposition gives a partial equivalence between St-polyform and κ-nonsingular modules.

Theorem 42: Let U be a fully essential quasi-injective module, then U is St-polyform if and only if U is κ-nonsingular provided that $\text{Hom}_R(V, U) \neq 0$.

Proof: Let U be a fully essential module. If U is κ-nonsingular, consider the following Fig. 3.

![Diagram](image_url)

where $i : V \to U$ is the inclusion homomorphism. Since U is quasi-injective, then there exists a homomorphism $g : U \to U$ such that $g \circ i = f$. Now, $g \in \text{End}_R(U)$ and U is κ-nonsingular, thus $g \leq \kappa U$. But $\ker f \leq \ker f$, thus $f \leq \kappa U$. Since U is fully prime, then $f \leq \kappa_{\text{st}} U$.

Corollary 43: Let U be a fully prime injective module. Then U is an St-polyform module if and only if U is κ-nonsingular.

Proof: Since every fully prime module is fully essential (2), and $\text{End}_R(U) \neq 0$, then the result follows by theorem 42.

Lemma 44: (11) If U is an injective module, then $J(\text{End}_R(U)) = \{f \in \text{End}_R(U) \mid \ker f \leq \kappa U\}$.

Corollary 45: Let U be a fully essential module. If U is injective and $J(\text{End}_R(U)) = 0$, then U is St-polyform.

Proof: Since $J(\text{End}_R(U)) = 0$, then it is clear that U is κ-nonsingular. Since $\text{End}_R(U) \neq 0$, then by theorem 42 we are done.

The following theorem gives some useful relationships of St-polyform ring with some related concepts. Before that, we need the following characterization of essential submodules.

Lemma 46: (10, P.40) Let U be an R-module. A submodule V of U is essential, if $\forall 0 \neq u \in U$, there exists $r \in R$ such that $0 \neq ru \in V$.

Theorem 47: Let R be a fully essential quasi-injective ring. Consider the following statements:

1. R is an St-semisimple ring
2. R is an St-polyform ring.
3. R is a κ-nonsingular ring.
4. R is a polyform ring.
5. R is a semiprime ring.
6. R is a nonsingular ring.

Then: $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4), (5) \Rightarrow (4), (5) \Rightarrow (6) \Rightarrow (3), (6) \Rightarrow (4)$ and $(5) \Rightarrow (2)$.

Proof:

(2) $\Rightarrow (3)$ Since U is fully essential quasi-injective, then by theorem 42 we are done.

(4) $\Rightarrow (3)$ By remark 39.

(6) $\Rightarrow (4)$ (6, P.95).

(5) $\Rightarrow (2)$ Assume that R is not κ-nonsingular ring, so there exists a non-zero homomorphism $\varphi \in \text{End}_R(R)$ with $\ker \varphi \leq \text{sem} R$. If $\varphi \neq 0$ then there exists $0 \neq x \in R$ such that $\varphi(x) = tx \forall t \in R$. By lemma 46 there exists $0 \neq k \in R$ such that $0 \neq k \in \ker \varphi$. This implies that $0 = \varphi(xk) = x^2k$, hence $(xk)^2 = 0$. But R is semiprime, therefore $xk = 0$ which is a contradiction. Thus $\varphi = 0$.

(5) $\Rightarrow (6)$ (1, Prop.1.27), P.35.

(6) $\Rightarrow (3)$ By remark 39.

(5) $\Rightarrow (2)$ Assume that R is not St-polyform ring, so for each non-zero ideal I of R, there exists a homomorphism $f : I \to R$ such that $\ker f \leq \text{sem} R$. Since R is fully essential ring, then $\ker f \leq \kappa R$. The remain steps of the proof are similar of the direction $(5) \Rightarrow (3)$.

An R-module U is called extending, if every closed submodule of U is direct summand of U (8, P.118).

Proposition 48: Let U be a fully essential module. If U is an extending module, then U is St-polyform module.

Proof: Let $0 \neq V \subseteq U$ and $f : V \to U$ be a non-zero homomorphism. Since U is an extending module, then $\ker f \leq \kappa U$, hence $\ker f \leq \kappa V$ (1, Prop.1.5, P.18). But U is fully essential, thus $\ker f \leq_{\text{st}} U$, so we are done.

We need to give the following definition.
Definition 49 (6, P.94): An R-module U is called Baer, if for every submodule V of U, \(\text{ann}_U(V) = \{f \} \), where \(f^2 = f \in \text{End}_R(U) \).

In order to verify the relation of St-polyform with Baer module, we need to introduce the following proposition.

Proposition 50: Every Baer quasi-injective module is polyform.

Proof: Let V be a non-zero submodule of U, and \(f: V \rightarrow U \) be a non-zero homomorphism. Suppose the converse; that is \(\ker f \leq e \cdot V \). Consider the following Fig. 4:

![Diagram](image)

Figure 4. The diagram of injective module U

where \(i: V \rightarrow U \) is the inclusion homomorphism. Since U is quasi-injective, then there exists a homomorphism \(g: U \rightarrow V \) such that \(g \circ i = f \). Now, \(g \in \text{End}_R(U) \) and U is Baer, so \(\ker g = \text{ann}_U g = e \cdot U \).\(e = e \cdot U \) and \(S = \text{End}_R(U) \). This implies that \(\ker g \) is a direct summand of \(U \). Since \(\ker (i \circ g) \leq \ker g \), then \(\ker f = \text{ann}_U f = e \cdot V \), and \(S = \text{End}_R(U) \). This implies that \(\ker g \) is a direct summand of \(V \). On the other hand, \(\ker f \leq e \cdot V \), therefore \(\ker f = e \cdot V \), hence \(f = 0 \) which is a contradiction with assumption, thus \(\ker f \leq e \cdot V \).

Corollary 51: For a fully prime (or fully essential) module, every Baer quasi-injective module is St-polyform.

Proof: Since in the class of fully prime (or fully essential) modules the concept of essential submodules coincides with the concept of semi-essential, so the proof is in similar of the proposition 50.

Proposition 52: Let U be an extending module. If U is St-polyform, then U is a Baer module.

Proof: Since U is St-polyform, then by proposition 40, U is \(\kappa \)-nonsingular. On the other hand, U is extending, so U is a Baer module (6, Lemma(4.1.17), P.97).

Theorem 53: Let U be an quasi-injective module. Consider the following statements:

1. U is an St-polyform module.
2. U is a \(\kappa \)-nonsingular module.
3. U is a Baer module.
4. U is a polyform module.

Then: (1) \(\Rightarrow \) (2) \(\Rightarrow \) (3) \(\Leftrightarrow \) (4), and if U is fully prime then (4) \(\Rightarrow \) (1).

Proof: (1) \(\Rightarrow \) (2) By proposition 40.

(2) \(\Rightarrow \) (3) Since U is quasi-injective, so clearly U is extending. But U is St-polyform, thus U is a Baer module (6, Lemma(4.1.17), P.97).

(3) \(\Leftrightarrow \) (4) Since U is Baer and quasi-injective, then by proposition 50, U is polyform. Conversely: Since U is polyform, then U is \(\kappa \)-nonsingular (6, Prop(4.1.5), P.95). But U is quasi-injective; therefore, U is extending. So U is \(\kappa \)-nonsingular and extending, this implies that U is a Baer module (6, Lemma(4.1.17), P.97).

(4) \(\Rightarrow \) (1) Since U is fully prime, then by theorem 20, we are done.

Now we introduce a subclass of \(\kappa \)-nonsingular module.

Definition 54: An R-module U is called \(\kappa \)-non St-singular, if for any non-zero homomorphism \(f \in \text{End}_R(U) \) \(\ker f \leq \text{sem}_V \), then \(f = 0 \). In other words, for every non-zero homomorphism \(f \in \text{End}_R(U) \) \(\ker f \leq \text{sem} U \).

Remark 55: Every \(\kappa \)-non St-singular R-module is \(\kappa \)-nonsingular.

Proof: Let \(f \in \text{End}_R(U) \) be a non-zero homomorphism. Since U is a \(\kappa \)-non St-singular module, then \(\ker f \leq \text{sem} U \), hence \(\ker f \leq \text{sem} U \). Thus U is \(\kappa \)-non St-singular module.

The converse of remark 55 is true under certain condition as the following proposition shows.

Proposition 56: Let U be a fully essential module, then U is \(\kappa \)-non St-singular module if and only if U is \(\kappa \)-nonsingular.

Proof: \(\Rightarrow \) By remark 55.

\(\Leftarrow \) Assume that U is a \(\kappa \)-nonsingular module. Let V be a non-zero submodule of U, and \(f \in \text{End}_R(U) \) be a non-zero homomorphism, so \(\ker f \leq \text{sem} V \). Since U is a fully essential module, then \(\ker f \leq \text{sem} V \) and we are done.

Proposition 57: Every St-polyform module is \(\kappa \)-non St-singular module.

Proof: It is similar of the proof of the proposition (40), but in this proposition we use the transitive property of semi-essential submodules (2), instead of the generalized property of semi-essential submodules.

We end this work by the following.

Remark 58: We can summarize the main results which were introduced in last section about the relationships of the St-polyform module with related concepts as follows:

St-polyform \(\Rightarrow \) strongly essentially quasi-Dedekind

St-polyform \(\Rightarrow \)polyform \(\Rightarrow \)\(\kappa \)-nonsingular
مقاس بوليفورم من النمط St- والمفاهيم ذات العلاقة

منى عباس أحمد
قسم الرياضيات، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق.

الخلاصة:
في هذا البحث قمنا بطرح نوع جديد من المفاهيم أطلقنا عليه اسم مقاس بوليفورم من النمط St- والذي برهنا أنه محتوى فعلياً في بعض أصناف المقاسات المعروفة، مثل مقاس بوليفورم، مقاس كواسي ديدكند واسع بقوة والمقياس غير الشاذ من النمط 𝜅-، فقنا بالتحقق في هذا البحث من مجموعة من الخواص الأساسية لمقاس بوليفورم من النمط St-، وأعطينا تشخيصاً آخر له. كما تم البرهنة على وجود مقاس بوليفورم من النمط St- كمقاس جزئي في أصناف معينة من المقاسات، وكذلك درسنا علاقة المقاس بوليفورم من النمط St-، الذي ينتمي إلى النمط St-، بالمقياس الشبه البسيط من النمط St-، ونبرهنا أن المقاس بوليفورم من النمط St- يقع بينهما.

الكلمات المفتاحية: المقياسات غير الشاذة من النمط 𝜅-, المقياسات الجزئية شبه الواسعة، المقياسات الجزئية المغلقة من النمط St-، المقياسات الجزئية شبه الديدكندية الواسعة بقوة.