March. 29, 2008 (Arrangements and Related Topics, at LSU, Baton Rouge)

Generic section of a hyperplane arrangement and twisted Hurewicz maps

Masahiko Yoshinaga

Kobe University
Notation

A *hyperplane arrangement* is a collection

\[\mathcal{A} = \{H_1, H_2, \ldots, H_n\} \]

of affine hyperplanes \(H_i \subset \mathbb{C}^\ell \). And denote

\[M(\mathcal{A}) = \mathbb{C}^\ell - \bigcup_{H \in \mathcal{A}} H. \]
0 Contents

1. Randell’s result on Hurewicz maps.
2. Twisted Hurewicz maps.
3. Main results:
 Surjectivity of twisted Hurewicz maps.
4. Proof.
5. Corollary.
1 Randell’s result

Thm. (Randell) If $k \geq 2$, the Hurewicz map

$$h : \pi_k(M(A), x_0) \longrightarrow H_k(M(A), \mathbb{Z})$$

is the zero map.

(Proof) Let $f : S^k \rightarrow M(A)$. Consider

$$\begin{align*}
H^k(S^k) & \xrightarrow{k^*} H^k(M(A)) \\
\wedge H^1(S^k) = 0 & \xleftarrow{k^*} \wedge H^1(M(A)).
\end{align*}$$

\uparrow \text{surj.}$$
1 Randell’s result

\[\pi_k(M) \quad h = 0 \quad H_k(M, \mathcal{L}) \]

Goal: Twisted version detects! (Sometimes)
Twisted Hurewicz maps

Generalities:
Let \mathcal{L} be a local system on X, C be a closed manifold of $\dim_{\mathbb{R}} C = k$, $f : (C, \ast) \to (X, x_0)$ a continuous map. The map f and a section $t \in \Gamma(C, f^* \mathcal{L})$ determines a twisted cycle $[f] \otimes t \in H_k(X, \mathcal{L})$.
2 Twisted Hurewicz maps

Let \mathcal{L} be a rank one local system on $M(\mathcal{A})$,

$$f : (S^k, *) \to (M(\mathcal{A}), x_0)$$

a continuous map. $k \geq 2$. Since S^k is simply connected, $f^* \mathcal{L}$ on S^k is trivial and hence

$$\Gamma(S^k, f^* \mathcal{L}) \cong \mathcal{L}_{x_0}.$$
2 Twisted Hurewicz maps

We have

\[h : \pi_k(S^k, *) \otimes \mathcal{L}_{x_0} \to H_k(M(A), \mathcal{L}) \]

the *twisted Hurewicz map*. (Note that it is defined only when \(k \geq 2 \).)

e.g. If \(\mathcal{L} \) is a trivial local system, then \(h \) is the classical one.
3 Main result

Def. An arrangement \mathcal{A} in \mathbb{C}^ℓ is called *generic-section type* if there is another arrangement $\tilde{\mathcal{A}}$ of rank $(\ell + 1)$ in $\mathbb{C}^{\ell+1}$ and a generic hyperplane $F \subset \mathbb{C}^{\ell+1}$ such that \mathcal{A} is isomorphic to $F \cap \tilde{\mathcal{A}}$.

![Diagram](image)
3 Main result

Thm. Assume $\ell \geq 2$. If \mathcal{A} is generic-section type and \mathcal{L} is nonresonant, then the top twisted Hurewicz map

$$h : \pi_\ell(M(\mathcal{A}), x_0) \otimes \mathcal{L}_{x_0} \longrightarrow H_\ell(M(\mathcal{A}), \mathcal{L})$$

is surjective.

Note: $H_\ell(M(\mathcal{A}), \mathcal{L}) \cong \mathbb{C}^{\left|\chi(M)\right|}$. Hence $\pi_\ell(M) \neq 0$ (Randell).
4 Proof

Proof is based on two results:

– Lefschetz Theorem on hyperplane section, (or minimality of $M(A)$).
– Nonresonance theorem for local system homology groups.
4 Proof

\[\tilde{M} = M(\tilde{A}), \]

\[F \subset \mathbb{C}^{\ell+1}: \text{a generic. hyperplane.} \]

Thm. (Lefschetz)

\[\tilde{M} \cong (\tilde{M} \cap F) \cup_{\varphi} \bigcup_{i=1}^{b} D^{\ell+1} \]

attach \((\ell+1)\)-dim cells
\[\tilde{M} \simeq (\tilde{M} \cap F) \cup_{\varphi} \bigcup_{i=1}^{b} D^{\ell+1} \]

attach \((\ell+1)\)-dim cells

\[\partial D^{\ell+1} \simeq S^{\ell} \]

Hyperplane section
4 Proof

\[\tilde{M} \simeq (\tilde{M} \cap F) \cup_{\varphi} \bigcup_{i=1}^{b} D^{\ell+1} \]

attach \((\ell+1)\)-dim cells

How many \((\ell + 1)\)-dim cells to attach?

Minimality (Dimca-Papadima-Randell-Suciu)

\[\implies b = b_{\ell+1}(\tilde{M}). \]
4 Proof

\[\tilde{M} = M(\tilde{\mathcal{A}}) \text{ and } M = M(\mathcal{A}) = \tilde{M} \cap F. \]

\[\tilde{M} \simeq M \cup_{\varphi} \bigcup_{i=1}^{b_{\ell+1}} D^{\ell+1} \]

attach \((\ell+1)\)-dim cells

Associated twisted chain complexes:

\[C_{\bullet}(\tilde{M}) = C_{\bullet}(M) \oplus C^{b_{\ell+1}}. \]
4 Proof

\[C_{\ell+1}(\tilde{M}) \xrightarrow{\partial_L} C_\ell(\tilde{M}) \rightarrow \cdots \rightarrow C_0(\tilde{M}) \]

Nonresonance Theorem:
Suppose \(\mathcal{L} \) is a generic local system. Then only \(H_{\ell+1}(C_\bullet(\tilde{M})) \) and \(H_\ell(C_\bullet(M)) \) survive.
4 Proof

\[C_{\ell+1}(\tilde{M}) \xrightarrow{\partial_{\mathcal{L}}} C_{\ell}(\tilde{M}) \rightarrow \cdots \rightarrow C_0(\tilde{M}) \]

Only \(H_{\ell+1}(C_{(*)}(\tilde{M})) \) and \(H_{\ell}(C_{(*)}(M)) \) survive.

Observation 1:

\[\partial_{\mathcal{L}} : C_{\ell+1}(\tilde{M}) \rightarrow H_{\ell}(M, \mathcal{L}) \] is surjective.
Recall the decomposition

\[\tilde{M} \simeq M \cup_{\varphi} \bigcup_{i=1}^{b_{\ell+1}} D_{\ell+1} \]

is defined by attaching maps

\[\varphi_i : \partial(D_{\ell+1}) = S^{\ell} \longrightarrow M. \]
Observation 2: The twisted boundary map splits

\[C_{\ell+1}(\tilde{M}) \xrightarrow{\partial_{\mathcal{L}}} C_{\ell}(M) \]

\[\pi_{\ell}(M) \otimes \mathcal{L}_{x_0} \xrightarrow{h} H_{\ell}(M, \mathcal{L}) \]

to the twisted Hurewicz map \(h \). Thus

\[h : \pi_{\ell}(M) \otimes \mathcal{L}_{x_0} \longrightarrow H_{\ell}(M, \mathcal{L}) \]

is surjective. \(\square\)
Let \mathcal{A} be an arrangement in \mathbb{C}^ℓ of generic section type and \mathcal{L} be a nonresonant rank one local system. Then every twisted ℓ-cycle is represented by an ℓ-dimensional sphere.
(Falk) Let \mathcal{A} be a line arrangement in \mathbb{C}^2 with $|\mathcal{A}| \geq 3$. Suppose no two lines are parallel. Then $\pi_2(M(\mathcal{A})) \neq 0$.
(Falk) Let \mathcal{A} be a line arrangement in \mathbb{C}^2. Let F be a generic line. Then $\mathcal{A} \cup \{F\}$ is not $K(\pi, 1)$.
6 Reference

M. Falk, $K(\pi, 1)$ arrangements. *Topology*, 34 (1995) 141–154.

R. Randell, Homotopy and group cohomology of arrangements. *Topology and its applications*, 78 (1997) 201–213.

M. Yoshinaga, Generic section of a hyperplane arrangement and twisted Hurewicz maps. *Topology and its applications*, 2008 (to appear).