Abstract
Nonlinear oscillators arise everywhere in engineering, and though there are many analytical methods available, a fast and accurate estimation of the frequency–amplitude relationship is much needed in practical applications. He’s frequency formulation meets this requirement, but the local points are chosen randomly. In this paper, the Gaussian interpolation points are adopted, making He’s method more mathematically rigorous and physically reliable. The cubic-quintic Duffing equation is used for comparison, and an excellent result is obtained.

Keywords
Frequency formulation, Duffing oscillator, nonlinear conservative oscillator, Gaussian interpolation

Introduction
Nonlinear oscillation arises everywhere in science and engineering.\(^1\)\(^-\)\(^4\) However, its exact solution might be too complex to be used for a practical application, or sometimes, it is very hard to obtain its exact solution. Because of this, there have been many analytical methods developed to overcome this difficulty, including the variational iteration method,\(^5\) the homotopy perturbation method,\(^6\) the max–min approach,\(^7\)\(^,\)\(^8\) the Chebyshev series expansion method,\(^9\) the rational variational approach,\(^10\) the amplitude frequency formulation,\(^11\) the global error minimization method,\(^12\) the energy balance method,\(^13\)\(^,\)\(^14\) and so forth. Besides these, some asymptotic methods for strongly nonlinear equations can be found in literature.\(^15\) The relationship between the frequency and its amplitude is very important to a nonlinear oscillator. The simplest method to estimate the relationship of frequency and amplitude can be found in literature.\(^16\) The approximation can be characterized by its relative error, which attracts our great interests.

Recently the literature\(^16\) proposed a frequency formulation to estimate the frequency–amplitude relationship of a nonlinear oscillator with extremely simple calculation and relatively high accuracy. Due to its simplicity and effectiveness, He’s frequency formulation has become an effective tool to various nonlinear vibrations.\(^17\) But we find that when \(y(0)\) is larger, the relative error goes outside of acceptable limits. Therefore, based on the method proposed in literature,\(^16\) we will use the Lagrange interpolation method\(^18\) to improve the approximation, especially for the larger \(y(0)\).

He’s frequency formulation
Now we consider the following general nonlinear oscillator as follows
\[
y'' + f(y) = 0, \quad y(0) = A, \quad y'(0) = 0
\] (1)
He’s frequency formulation predicts that\(^{19,20}\)
\[
\omega^2 = \frac{df(y)}{dy} \mid_{y=A/2}
\]
(2)
or
\[
\omega^2 = \frac{1}{N+1} \sum_{i=0}^{N} \frac{df(y_i)}{dy}
\]
(3)
where \(\omega\) is the frequency, \(y_i(i = N)\) are location points.

Now consider the cubic-quintic Duffing oscillator\(^{16,19}\)
\[
y'' + y + y^3 + y^5 = 0, \quad y(0) = A, \quad y'(0) = 0
\]
(4)
Here, \(f(y) = y + y^3 + y^5\). Using He’s frequency formulation, we have
\[
\omega = \sqrt{1 + \frac{3}{4} A^2 + \frac{5}{16} A^4}
\]
(5)
The frequency–amplitude relationship given in equation (5) has relatively high accuracy for all \(A > 0\). Higher accuracy can be obtained by choosing many points, \(y_i(i = N)\) and then an average value is used. But there is no rule to how to choose the location points, here we show how the Lagrange interpolation method\(^{18}\) with \(2n + 1\) order accuracy can be powerfully applied to He’s frequency formulation.

Lagrange interpolation

In He’s frequency formulation, the location points play an important role, generally we choose \(\pm A\), but other location points can be also chosen, for examples, \(\pm 4A\), \(\pm 3A\) and \(\pm 2A\), in order to make the method more mathematically rigorous, the Gaussian interpolation\(^{20}\) can be adopted
\[
\omega = \sum_{i=1}^{n} w_i \omega(\xi_i), \quad \sum_{i=1}^{n} w_i = 1
\]
(6)

\(A\)	Exact frequency	Numerical frequency	Relative error \((\text{num} - \text{exact}) \times 100\%\)
0.1	1.00377	1.0050272	0.12525
0.3	1.03554	1.04702801	1.10937
0.5	1.10654	1.13843296	2.88222
1	1.52359	1.62769702	6.83301
3	7.26863	7.47315892	2.8136
5	19.1815	19.3651528	0.95745
8	48.2946	48.4140497	0.24734
10	75.1774	75.2393147	0.08236
20	299.223	298.827203	0.13228
50	1867.57	1864.06361	0.18775
70	3659.98	3652.91665	0.19299
100	7468.83	7454.23147	0.19546
300	67215.57	67082.71	0.19766
500	186709.04	186339.67	0.19783
700	365949.25	365225.11	0.19788
1000	746834.69	745356.66	0.19791
where \(n \) is the number of interpolation points, \(\xi_i \) is the \(i \)th interpolation point, \(w_i \) is the corresponding weight coefficient, and \(\omega(\xi_i) = \sqrt{\omega_n} \).

We can take five Gaussian interpolation points in \([0, A]\) and obtain a better result as shown in Table 1. However, from Table 1, we find that the relative errors are relatively bigger when \(A \leq 1 \). Thus, by combining the method proposed by He,\(^{16}\) we set the approximation frequency \(\omega_{\text{num}} \) as

\[
\omega_{\text{num}} = \begin{cases}
\omega(A/2) & A \leq 1 \\
\sum_{i=1}^{n} w_i \omega(\xi_i) & A > 1
\end{cases}
\]

(7)

\[\text{Table 2. The approximate results of frequencies from formula (7) and literature.}^{19}\]

\(A \)	\(\omega_{\text{exa}} \)	\(\omega_{\text{num}} \)	\(\frac{\mid \omega_{\text{exa}} - \omega_{\text{num}} \mid}{\omega_{\text{num}}} \times \% \)	Ref.\(^{19}\)	Relative error of Khan et al.\(^{19}\) (%)
0.1	1.003770	1.003756160732	0.001139543189988	1.0038	0.00028542
0.3	1.03554	1.03442314842621	0.107852093959335	1.0377	0.0226153
0.5	1.10654	1.09864973945293	0.710569665592376	1.1083	0.1635
1	1.52359	1.4364066163451	5.73968970428349	1.5484	1.63324
3	7.26863	4.7315892210105	0.108385793610423	7.725	6.29895
5	19.1815	19.3651528311874	0.95744770319004	20.597	6.92444
8	48.2946	48.4731586922353	0.247335463251167	51.738	7.12965
10	75.1774	75.2393147363422	0.00823581724763	80.572	7.17588
20	299.223	299.827202669513	0.132275035883346	208	7.23675
50	365.98	1864.06361372916	0.187751263451695	2003.04	7.25363
70	1867.57	1864.916525597	0.192988689563997	3925.51	7.2552
100	7468.83	7454.2314743213	0.01549330858289	8010.77	7.25603
300	67,215.57	67,082.7102272643	0.197662197517157	72,093.2	7.25674
500	186,709.04	186,339.6689748777	0.197832426926328	200,258	7.2568
700	365,949.25	365,225.107160414	0.19788067323159	392,506	7.25682
1000	746,834.69	745,356.663327701	0.19790546584004	801,031	7.25682

\[\times 10^5\]

\(A \)	Exact frequency	Numerical frequency	Relative error of Khan et al.\(^{19}\) (%)							
0	100	200	300	400	500	600	700	800	900	1000
0.1	1.003770	1.003756160732	0.001139543189988	1.0038	0.00028542					
0.3	1.03554	1.03442314842621	0.107852093959335	1.0377	0.0226153					
0.5	1.10654	1.09864973945293	0.710569665592376	1.1083	0.1635					
1	1.52359	1.4364066163451	5.73968970428349	1.5484	1.63324					
3	7.26863	4.7315892210105	0.108385793610423	7.725	6.29895					
5	19.1815	19.3651528311874	0.95744770319004	20.597	6.92444					
8	48.2946	48.4731586922353	0.247335463251167	51.738	7.12965					
10	75.1774	75.2393147363422	0.00823581724763	80.572	7.17588					
20	299.223	299.827202669513	0.132275035883346	208	7.23675					
50	365.98	1864.06361372916	0.187751263451695	2003.04	7.25363					
70	1867.57	1864.916525597	0.192988689563997	3925.51	7.2552					
100	7468.83	7454.2314743213	0.01549330858289	8010.77	7.25603					
300	67,215.57	67,082.7102272643	0.197662197517157	72,093.2	7.25674					
500	186,709.04	186,339.6689748777	0.197832426926328	200,258	7.2568					
700	365,949.25	365,225.107160414	0.19788067323159	392,506	7.25682					
1000	746,834.69	745,356.663327701	0.19790546584004	801,031	7.25682					

Figure 1. The comparison of the exact frequency and numerical frequency.
Consequently, the approximate results are listed in Table 2, and the comparison of the solutions and relative
errors are shown in Figures 1 and 2, correspondingly.
As shown in Table 1, Table 2, Figure 1, and Figure 2, the present modification leads to a much higher accuracy
with almost same calculation process, especially for the case with a bigger A, making He’s frequency formulation
much more attractive and reliable.

Discussion and conclusion
He’s frequency formulation is extremely simple and relatively efficient. This paper suggests a general approach to
choice of the location points based on He’s frequency formulation (2). The value of y not only can be chosen by
$A/2$, but also can be chosen with the different value in $[0, A]$ according to Gaussian interpolation points and the
high accuracy can be reached. This method is also suitable for other oscillators, especially for Fangzhu
oscillator.21

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this
article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this
article: This work was supported by Special Research Project of Education Department of Shaanxi Provincial Government of
China [grant no. 20JK0718].

ORCID iD
Yue Shen https://orcid.org/0000-0002-0463-4487

References
1. Big-Alabo A and Ossia C. Analysis of the coupled nonlinear vibration of a two-mass system. J Appl Comput Mech 2019; 5:
935–950.
2. Song HY. A thermodynamic model for a packing dynamical system. Therm Sci 2020; 24: 2331–2335.
3. Zhou X. Numerical analysis of influence of different track structures on vibration response of subway. *Therm Sci* 2020; 24: 1537–1543.

4. Apuzzo A, Barretta R, Fabbrocino F, et al. Axial and torsional free vibrations of elastic nano-beams by stress-driven two-phase elasticity. *J Appl Comput Mech* 2019; 5: 402–413.

5. He JH. Variational iteration method—a kind of non-linear analytical technique: some examples. *Int J Nonlinear Mech* 1999; 34: 699–708.

6. El-Dib YO. Multiple scales homotopy perturbation method for nonlinear oscillators. *Nonlinear Sci Lett A* 2017; 8: 352–364.

7. He JH. Max-Min approach to nonlinear oscillator. *Int J Non Sci Numer Simul* 2008; 9: 207–210.

8. Ganji DD and Azimi M. Application of max-min approach and amplitude frequency Formulation to nonlinear oscillation systems. *UPB Sci Bull Ser A Appl Math Phys* 2012; 74: 131–140.

9. Beléndez A, Hernández A, Beléndez T, et al. Solutions for conservative nonlinear oscillators using an approximate method based on Chebyshev series expansion of the restoring force. *Acta Phys Pol A* 2016; 130: 67–78.

10. Yazdi MK and Tehrani PH. Rational variational approaches to strong nonlinear oscillations. *Int J Appl Comput Math* 2017; 3: 757–771.

11. Akbarzade M and Farshidianfar A. Application of the amplitude-frequency formulation to a nonlinear vibration system typified by a mass attached to a stretched wire. *Int Appl Mech* 2014; 50: 476–483.

12. Yazdi MK and Tehrani PH. Frequency analysis of nonlinear oscillations via the global error minimization. *Nonlinear Eng* 2016; 5: 87–92.

13. Hosen MA, Chowdhury MSH, Ali MY, et al. An analytical approximation technique for the Duffing oscillator based on the energy balance method. *Ital J Pure Appl Math* 2017; 37: 455–466.

14. Hosen MA, Chowdhury MSH, Ali MY, et al. A new analytical approximation technique for highly nonlinear oscillations based on the energy balance method. *Results Phys* 2016; 6: 496–504.

15. He JH. Some asymptotic methods for strongly nonlinear equations. *Int J Mod Phys B* 2006; 20: 1141–1199.

16. He JH. The simplest approach to nonlinear oscillators. *Results Phys* 2019; 15: 102546.

17. He JH. Variational principle and periodic solution of the Kundu–Mukherjee–Naskar equation. *Results Phys* 2020; 17: 103031.

18. Stroud AH and Secrest D. *Gaussian quadrature formulas*. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1966.

19. Khan NA, Riaz F and Khan NA. Parameters approach applied on nonlinear oscillators. *Shock Vib* 2014; 2014: 179–184.

20. Epperson JF. An introduction to numerical methods and analysis. In: *Mathematical reviews*. New York: Wiley, 2013, 615.

21. He JH and El-Dib YO. Homotopy perturbation method for Fangzhu oscillator. *J Math Chem* 2020; 58: 2245–2253.