Differential Geometry

Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians

✩

Extension de la formule de Reilly avec applications aux estimées de valeurs propres pour les laplaciens avec dérive

Li Ma a, Sheng-Hua Du b

a Department of Mathematics, Henan Normal University, Xinxiang, 453007, China
b Department of Mathematics, Tsinghua University, Beijing, 100084, China

1. Introduction

Among the important formulae in differential geometry, Reilly formula [5] is an important tool used to give a lower bound of eigenvalues of Laplacian operator on a Riemannian manifold with smooth boundary. Motivated by important work of G. Perelman [19] and the optimal transport theory [22], we study an extension of Reilly formula for drifting Laplacian operator associated with weighted measure and Bakry–Emery–Ricci tensor on a compact Riemannian manifold with smooth boundary. Then we give applications of this formula to the eigenvalue estimates of the drifting Laplacian on manifolds with boundary. The important motivation for such a study is its close connection with fundamental gaps of the classical Laplacian operator on manifolds [16].

Let \((M, g) \) be a compact \(n \)-dimensional Riemannian manifold with boundary. Let \(L = \Delta \) be the Laplacian operator on the compact Riemannian manifold \((M, g) \). Given \(h \) a smooth function on \(M \). We consider the elliptic operator with drifting \(L_h = \Delta - \nabla h \nabla \) associated with the weighted volume form \(dm = e^{-h} \, dv_g \). We also call \(L_h \) the \(h \)-Laplacian on \(M \). Assume that

\[-L_h u = \lambda u,\]

\(\lambda \) is an eigenvalue of \(L_h \).
with the Dirichlet or Neumann boundary condition. We shall always assume that \(\lambda > 0 \) and \(\int u^2 \, dm = 1 \). Then \(\lambda = \int |\nabla u|^2 \, dm \).

With the help of the Bochner formula for a smooth function \(f \) (see [19-14,17,18,23,6] and [21]), \(\frac{1}{2} L |\nabla f|^2 = |D^2 f|^2 + (\nabla f, \nabla L f) + \Ric(\nabla f, \nabla f) \), we can show the following Bochner formula for Bakry–Emery–Ricci tensor (see [2,3,15]):

\[
\frac{1}{2} L_h |\nabla f|^2 = |D^2 f|^2 + (\nabla f, \nabla L_h f) + (\Ric + D^2 h)(\nabla f, \nabla f).
\]

(2)

We remark that the tensor \(\Ric^h := \Ric + D^2 h \) is called Bakry–Emery–Ricci tensor which arises naturally from the study of Ricci solitons [7].

Then we have \(\frac{1}{2} L_h |\nabla u|^2 = |D^2 u|^2 - \lambda |\nabla u|^2 + (\Ric + D^2 h)(\nabla u, \nabla u) \). Recall that the second fundamental form of \(\partial M \) is defined by \(I(X,Y) = g(\nabla_X v, Y) \), where \(v \) is the outer unit normal vector to \(\partial M \). And \(H = \text{tr} I \) is the mean curvature. We shall denote by \(h_v \) the normal derivative of \(h \) on \(\partial M \) or on the hypersurface \(P \).

Using the integration by part on \(P \), we have the following extension of Reilly formula:

Theorem 1. We have the following extension of Reilly formula:

\[
\int_M \left(|L_h f|^2 - |D^2 f|^2 \right) \, dm = \int_M \Ric^h(\nabla f, \nabla f) \, dm + \int_{\partial M} (H f_v - \nabla h \nabla f + \Delta_{\partial} f) f_v \, dm
\]

\[
+ \int_{\partial M} \left(\langle \nabla_{\partial} f, \nabla_{\partial} f \rangle - \langle \nabla_{\partial} f, \nabla_{\partial} f_v \rangle \right) \, dm.
\]

(3)

Here and below, the symbol \(\nabla_{\partial} \) means covariant derivative taken with respect to the induced metric on \(\partial M \).

We shall apply the above result to study the eigenvalue estimate for drifting Laplacian operators on \(M \). We impose either Dirichlet boundary condition \(u = 0 \) on \(\partial M \) or the Neumann boundary condition \(\frac{\partial u}{\partial n} = 0 \). The corresponding first nontrivial eigenvalue of the \(h \)-Laplacian is denoted by \(\lambda_{D} \) or \(\lambda_{N} \) respectively. In below, for notation simplicity, we shall denote by \(\lambda \) for \(\lambda_{D} \) or \(\lambda_{N} \) when it is clear in the context.

Theorem 2. Assume that

\[
\Ric + D^2 h \geq \left(\frac{|Dh|^2}{nz^2} + A \right) g,
\]

(4)

for some \(A > 0 \) and \(z > 0 \).

1. In the Dirichlet case, if the modified mean curvature \(H - h_v \) of \(\partial M \) is non-negative, then \(\lambda_{D} \geq \frac{n(n+1)A}{(n+1)(1-\beta)} \).

2. In the Neumann case, if \(\partial M \) is convex, that is, the second fundamental form (defined by \(I(X,Y) = g(\nabla_X v, Y) \)) is non-negative, then \(\lambda_{N} \geq \frac{n(n+1)A}{(n+1)(1-\beta)} \).

Recall that, by definition, a minimal \(h \)-hypersurface \(P \) in \(M \) is a hypersurface \(P \) with \(H = h_v = 0 \), where \(v \) is the unit normal vector which defines the second fundamental form of \(P \) in \(M \). We denote by \(\Delta_P \) the Laplacian operator of the induced metric on \(P \). Then we can prove the following result, which generalizes a result of Choi and Wang [4]:

Theorem 3. Let \((M^n, g)\) be a closed orientable manifold with \(\Ric^h \geq (n-1)K \). Let \(h \) be a smooth function on \(M \). Let \(P \subset M \) be an embedded minimal \(h \)-hypersurface dividing \(M \) into two submanifolds \(M_1 \) and \(M_2 \) (i.e., \(H = h_v \), this equality being independent on the orientation of the unit normal \(v \)). Then for the drifting Laplacian \(\Delta^h_p := \Delta_P - \nabla h \nabla_P \), \(\lambda_1(\Delta^h_p) \geq \frac{2(n-1)K}{n} \).

This paper is organized as follows. In Section 2 we prove Theorem 1, and Theorem 2 is proved in Section 3. Theorem 3 is proved in Section 4.

2. **Proof of Theorem 1**

We now prove Theorem 1.

Proof. We shall integrate the formula (2). Choose a set of local orthonormal frame fields \(\{e_i\} \) such that \(e_v = v \) on the boundary \(\partial M \). Note that \(\frac{1}{2} \int_M L_h |\nabla f|^2 \, dm = \int_M f_i f_j v_i v_j \, dm \), and \(\int_M (\nabla f, \nabla L_h f) \, dm = \int_M L_h f_i v_j v_i \, dm - \int_M |L_h f|^2 \, dm \), where, for the sake of simplicity, we still denote by \(dm \) the measure induced on \(\partial M \).

We shall use the classical notations that \(f_1 = df(e_v) \) and \(f_1 = D^2 f(e_v, e_v) \), etc. Then we have \(\int_M (|L_h f|^2 - |D^2 f|^2) \, dm = \int_M \Ric^h(\nabla f, \nabla f) \, dm + \int_{\partial M} (f_n L_h f - f_i f_in) \, dm \). Recall that \(L_h f = \Delta f - \nabla h \nabla f \). Then we have \(f_n L_h f - f_i f_in = -f_n \nabla h \cdot \nabla f + \sum_{j=1}^{m} (f_j f_n - f_j f_n) \).
Now
\[
\sum_{j<n} f_{jj} = \sum_{j<n} (e_j(e_j f) - (\nabla e_j e_j f)) = \sum_{j<n} ((\nabla_e e_j f) - (\nabla e_j e_j f) + \Delta_\lambda f)
\]
\[= Hf_n + \Delta_\lambda f.
\]

For \(j < n\),
\[
f_{jn} = f_{nj} = e_j(e_n f) - (\nabla e_j e_n f)
\]
\[= e_j(f_n) - \sum_{k<n} \delta_{jk} f_k.
\]

Then we have
\[
\sum_{j<n} f_{j} f_{jn} = (\nabla_\delta f, \nabla_\delta f_n) - \delta_{jk} f_j f_k.
\]

Putting all these together we have
\[
\int_M (|L_h f|^2 - |D^2 f|^2) \, dm = \int_M \text{Ric}^h(\nabla f, \nabla f) \, dm + \int_{\partial M} (Hf_n - \nabla h \nabla f + \Delta_\lambda f) f_n \, dm
\]
\[+ \int_{\partial M} (\|\nabla_\delta f, \nabla_\delta f) - (\nabla_\delta f, \nabla_\delta f_n) \| \, dm.
\]

The result follows. \(\Box\)

3. Proof of Theorem 2

The idea in the proof of Theorem 2 is similar to the one used by Reilly in [20] (see also [8]). We use the extension of Reilly formula to prove Theorem 2 below.

Proof. Let \(L_h u + \lambda u = 0\). We shall integrate the extension of Reilly formula (3).

Note that \((a + b)^2 \geq \frac{a^2}{2 + t} - \frac{b^2}{2}\) for any \(z > 0\). So, we have \((\Delta u)^2 = (\lambda u + g(\nabla h, \nabla u))^2 \geq \frac{\lambda^2 z^2}{2 + t} - \frac{g(\nabla h, \nabla u)^2}{2}\). Then we have
\[
\int_M (|L_h u|^2 - |D^2 u|^2) \leq \int_M \left(\lambda^2 u^2 - \frac{1}{n} (\Delta u)^2\right) \, dm \leq \int_M \left(\frac{\lambda^2 u^2 (n + 1)}{n(n + 1)} + \frac{g(\nabla h, \nabla u)^2}{nz}\right) \, dm. \tag{5}
\]

Note that for either Dirichlet or Neumann cases, we have
\[
\int_{\partial M} (Hu_v - g(\nabla h, \nabla u) + \Delta_\delta u) u_v \, dm + \int_{\partial M} (\|\nabla_\delta u, \nabla_\delta u\) - (\nabla_\delta u, \nabla_\delta u_n) \| \, dm
\]
\[= \int_{\partial M} (Hu_v^2 - h_v u_v^2) \, dm + \int_{\partial M} (\nabla_\delta u, \nabla_\delta u) \, dm \geq 0.
\]

In the last inequality we have used our assumption on the geometry of \(\partial M\).

Then by our assumption (4) we have
\[
\int_M \text{Ric}^h(\nabla u, \nabla u) \, dm \geq \int_M \left(\frac{|Dh|^2}{nz} + A\right)|\nabla u|^2 \, dm. \tag{6}
\]

Putting (5) and (6) together we have
\[
\int_M \frac{|Dh|^2}{nz} |\nabla u|^2 \, dm + A \lambda \leq \frac{\lambda^2 (n+1)}{n(n+1)} + \int_M \frac{|Dh|^2 |\nabla u|^2}{nz} \, dm,
\]
and noting \(\lambda \neq 0\), we have \(\lambda \geq \frac{n+1}{n(n+1)} A\). The result is proved. \(\Box\)
4. Proof of Theorem 3

Suppose $\Delta^h f + \lambda f = 0$. Substituting possibly $-\nu$ to ν, there exists a choice of the orientation of the unit normal vector ν such that $\int_{\partial M_1} \langle \nabla \nu, \nabla u \rangle \, d\nu \geq 0$. Fixing this choice of the orientation of ν between the two open submanifolds M_1 and M_2, we decide to call M_1 the one which admits ν as the unit outer normal vector.

Define f on M_1 such that $L_h f = 0$, on M with the boundary condition $f = u$ on ∂M_1. By Theorem 1 we have $0 \geq \int_{\partial M_1} (-|D^2 f|^2) \, dM = \int_{M_1} \text{Ric}^h(\nabla f, \nabla f) \, dM + \int_{\partial M_1} (H_f - \nu \nabla f + \Delta_p u) f_n \, dM + \int_{\partial M_1} (-\langle \nabla_p f, \nabla f \rangle) \, dM$. Note that

$$
\int_{\partial M_1} (H_f - \nabla_h \nabla f + \Delta_p u) f_n \, dM = \int_{\partial M_1} ((H - h_n) f_n - \nabla_p h \nabla f + \Delta_p u) f_n \, dM
$$

$$
= -\int_{\partial M_1} ((\nabla \nu h - H) \nabla f + \lambda u) f_n \, dM = -\lambda \int_{\partial M_1} u f_n \, dM,
$$

and

$$
\int_{\partial M_1} (-\langle \nabla_p f, \nabla f \rangle) \, dM = \int_{\partial M_1} (\Delta^h f) f_n \, dM = -\lambda \int_{\partial M_1} u f_n \, dM.
$$

Compute

$$
2 \int_{\partial M_1} u f_n \, dM = \int_{\partial M_1} (f^2) \, dM = \int_{M_1} L_h(f^2) \, dM = 2 \int_{M_1} |\nabla f|^2 \, dM.
$$

Using our assumption we have $0 \geq ((n-1)K - 2\lambda) \int_{M_1} |\nabla f|^2 \, dM$. Since $\int_{M_1} |\nabla f|^2 \, dM > 0$, we get $\lambda \geq \frac{(n-1)K}{2}$.

Acknowledgement

The authors would like to thank the unknown referee for very helpful suggestions.

References

[1] T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer Monogr. Math., Springer-Verlag, Berlin, 1998.
[2] D. Bakry, M. Emery, Diffusion hypercontractivites, in: Séminaire de Probabilités XIX, 1983/1984, in: Lect. Notes in Math., vol. 1123, Springer, Berlin, 1985, pp. 177–206.
[3] D. Bakry, Z.M. Qian, Volume comparison theorems without Jacobi fields, in: Current Trends in Potential Theory, in: Theta Ser. Adv. Math., vol. 4, Theta, Bucharest, 2005, pp. 115–122.
[4] H. Choi, A.N. Wang, A first eigenvalue estimate for minimal hypersurfaces, J. Diff. Geom. 18 (1983) 559–562.
[5] B. Chow, P. Lu, L. Ni, Hamilton’s Ricci Flow, Lectures in Contemporary Mathematics, vol. 3, Science Press and American Mathematical Society, 2006.
[6] S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry, third ed., Universitext, Springer-Verlag, Berlin, 2004.
[7] R. Hamilton, The formation of singularities in the Ricci flow, Surveys Diff. Geom. 2 (1995) 7–136.
[8] P. Li, Lecture Notes in Geometric Analysis, Lecture Series, vol. 6, Seoul National University, 1993, http://math.uci.edu/~pli/lecture.pdf.
[9] P. Li, S.T. Yau, Estimates of eigenvalues of a compact Riemannian manifold, in: Geometry of Laplace Operator, in: Proc. Symp. Pure Math., vol. XXXVI, AMS, Providence, RI, 1980, pp. 205–239.
[10] L. Ma, S.-H. Du / C. R. Acad. Sci. Paris, Ser. I 348 (2010) 1203–1206

[11] X.D. Li, Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pure Appl. 84 (2005) 1295–1361.
[12] Murat Limoncu, The Bochner technique and modification of the Ricci tensor, Ann. Global Anal. Geom. 36 (2009) 285–291.
[13] Jun Ling, A lower bound of the first eigenvalue of a closed manifold with positive Ricci curvature, Ann. Global Anal. Geom. 31 (4) (2007) 385–408.
[14] Li Ma, Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds, J. Funct. Anal. 241 (2006) 374–382.
[15] L. Ma, Eigenvalue estimates and L1 energy on closed manifolds, preprint, 2009.
[16] L. Ma, Hamilton type estimates for heat equations on manifolds, arXiv:1009.0603.
[17] L. Ma, B.Y. Liu, Convex eigenfunction of a drifting Laplacian operator and the fundamental gap, Pacific J. Math. 240 (2009) 343–361.
[18] L. Ma, B.Y. Liu, Convexity of the first eigenfunction of the drifting Laplacian operator and its applications, New York J. Math. 14 (2008) 393–401.
[19] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, 2002, math.DG/0211159.
[20] R.C. Reilly, Applications of Hessian operator in a Riemannian manifold, Indiana Univ. Math. J. 26 (1977) 459–472.
[21] R. Schoen, S.T. Yau, Lectures on Differential Geometry, International Press, 1994.
[22] C. Villani, Optimal Transport, Old and New, Grundlern der mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009.
[23] Changyu Xia, Universal inequalities for eigenvalues of the vibration problem for a clamped plate on Riemannian manifolds, Quart. J. Math., September 4, 2009, doi:10.1093/qmath/hap026.