Solute Carrier 11 Cation Symport Requires Distinct Residues in Transmembrane Helices 1 and 6*§

Received for publication, December 4, 2007, and in revised form, January 18, 2008. Published, JBC Papers in Press, January 28, 2008, DOI 10.1074/jbc.M709906200

Pascal Courville†, Eva Urbankova†, Christopher Rensing§, Roman Chaloupka§, Matthias Quick¶, and Mathieu F. M. Cellier†1

From the †INRS-Institut Armand-Frappier, 531 Bd des prairies, Laval, Québec H7V 1B7, Canada, the ‡Faculty of Mathematics and Physics, Charles University, Institute of Physics, Ke Karlovu 5, 121 16 Prague 2, Czech Republic, the †Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, Arizona 85721, and the ¤Center for Molecular Recognition, Columbia University, College of Physicians and Surgeons 11-401, New York, New York 10032

Ubiquitous solute carriers 11 (SLC11) contribute to metal-ion homeostasis by importing Me2+ and H+ into the cytoplasm. To identify residues mediating cation symport, Escherichia coli proton-dependent manganese transporter (MntH) was mutated at five SLC11-specific transmembrane (TM) sites; each mutant activity was compared with wild-type MntH, and the biochemical results were tested by homology threading. Cd2+ and H+ uptake kinetics were analyzed in whole cells as a function of pH and temperature, and right-side out membrane vesicles were used to detail energy requirements and to probe site accessibility by Cys replacement and thiol modification. This approach revealed that TM segment 1 (TMS1) residue Asp94 couples H+ and Me2+ symport and contributes to MntH forward transport electrogenicity, whereas the TMS6 His211 residue mediates pH-dependent Me2+ uptake; MntH Asn37, Asn250, and Asn401 in TMS1, TMS7, and TMS11 participate in transporter cycling and/or helix packing interactions. These biochemical results fit the LeuT/SLC6 structural fold, which suggests that conserved peptide motifs Asp94-Pro-Gly (TMS1) and Met-Pro-His211 (TMS6) form antiparallel “TM helix/extended peptide” boundaries, lining a “pore” cavity and enabling H+-dependent Me2+ import.

Members of the natural resistance-associated macrophage protein (Nramp/SLC11) family (1, 2) are structurally conserved transporters catalyzing cellular uptake of redox metals such as Fe2+ and Mn2+. Mutations of NRAMP1 orthologs in terrestrial vertebrates were linked to host phagocyte innate response to infections and immune diseases (3, 4). Genetic defects in NRAMP2 (aka DMT1) affect iron homeostasis (intestinal absorption, erythropoiesis, and tissue distribution (2, 5, 6). Despite their medical importance, insight into the structure and function of SLC11 transporters is largely missing. Elucidation of the molecular mechanism underlying electrogenic H+ and Me2+ symport represents a milestone in the pursuit of future therapeutic approaches to treat Me2+ homeostasis disorders, including brain diseases (7).

Prokaryotic orthologs of essential eukaryotic membrane transport functions represent attractive models to advance understanding of the mechanism of transport (8, 9). Studies from different groups showed that Escherichia coli proton-dependent manganese transporter (MntH)2 is a valuable system for structure/function studies of H+ and Me2+ symport (10–13). MntH TM topology was established and selected mutations resulted in similar phenotypes in MntH and Nramp2 variants (6, 14, 15). In addition, E. coli MntH wild-type (WT) lacks cysteine residues, and site-directed introduction of Cys moieties combined to thiol modifications allows for detailed structural and functional mapping (16).

SLC11-dependent transport is typified by broad selectivity (e.g. Mn2+, Cd2+, Fe2+, Co2+, and Ni2+) and Me2+-specific interactions, including a range of Me2+/H+ stoichiometries depending on external conditions (10, 17–19). The H+-dependent Me2+ transport mechanism of eukaryotic Nramp homologs was deduced from studies of Me2+ uptake and Me2+-evoked currents, the external pH altering the transporter affinity for Me2+ and the stoichiometry of H+ and Me2+ fluxes (2, 5). Kinetic models for H+-coupled transport usually imply that H+ binding or uptake depends at least partly on the membrane potential (Δψm) and at high proton concentration (pH 5.5), large Me2+-induced currents are mainly due to H+ charge transfer across the membrane (17, 19).

To identify features defining the mechanism of transport of the SLC11 family, sites representing evolutionary type II rate shifts were targeted because they represent a radical shift in amino acid properties, which can contribute to functional divergence among homologous proteins including membrane proteins (20–22). Phylogenetic analyses distinguished the SLC11 family from a group of distantly related sequences (out-

* This work was supported in part by Canadian Institutes of Health Research Grant MOP-78014-Ml (to M.C.), Czech Science Foundation Grant 204/07/0558 (to R.C.), and the Fondation Armand-Frappier (to P.C.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† The on-line version of this article (available at http://www.jbc.org) contains supplemental Figs. S1–S5, Table S1, and supplemental Methods 1 and 2.

‡ To whom correspondence should be addressed: INRS-Institut Armand-Frappier, 531, Bd des prairies, Laval, QC H7V 1B7, Canada. Fax: 450-686-5301; E-mail: mathieu.cellier@haf.inrs.ca.

§ The abbreviations used are: MntH, proton-dependent manganese transporter; F5M, fluorescein 5-maleimide; NEM, N-ethylmaleimide; RSOV, right-side out vesicles; ISOV, inside out vesicles; PMS, methylphenazonium methyl sulfate; Asc, ascorbate; CCCP, carbonyl cyanide m-chlorophenylhydrazone; Nramp, natural resistance-associated macrophage protein; SLC11, solute carrier 11; SLC6, solute carrier 6; TMS, transmembrane segment; LeuT, leucine transporter; EmrD, multidrug transporter EmrD; Δψm, membrane potential; WT, wild type; Mes, 4-morpholineethanesulfonic acid; Pipes, 1,4-piperazinediethanesulfonic acid.

2 The abbreviations used are: MntH, proton-dependent manganese transporter; F5M, fluorescein 5-maleimide; NEM, N-ethylmaleimide; RSOV, right-side out vesicles; ISOV, inside out vesicles; PMS, methylphenazonium methyl sulfate; Asc, ascorbate; CCCP, carbonyl cyanide m-chlorophenylhydrazone; Nramp, natural resistance-associated macrophage protein; SLC11, solute carrier 11; SLC6, solute carrier 6; TMS, transmembrane segment; LeuT, leucine transporter; EmrD, multidrug transporter EmrD; Δψm, membrane potential; WT, wild type; Mes, 4-morpholineethanesulfonic acid; Pipes, 1,4-piperazinediethanesulfonic acid.
MntH Asp^{34} and His^{211} Mediate H^{+} and Me^{2+} Uptake

group <30% amino acid identity). Four type II rate shifts were identified at TM sites displaying polar or charged SLC11-specific amino acids matched by distinct outgroup-specific residues (10). Reciprocal residue exchange and additional mutations at each of these sites in TMS1, TMS6, and TMS11 were characterized, showing individual roles of each site in the Me^{2+} and/or H^{+} symport (10); among them residue Asp^{34} appeared crucial for transport activity but its functional role remains undefined (10, 11).

The objective of this study was to elucidate the individual roles of the TM residues identified as evolutionary type II rate shift sites by analyzing the impact of the SLC11/outgroup reciprocal mutations on Me^{2+} and H^{+} uptake kinetics and thermodynamics in vivo and in vitro, by probing the in situ accessibility of targeted sites, and by selecting a tridimensional structural fold obtained by threading that fits our experimental results.

EXPERIMENTAL PROCEDURES

Site-directed Mutagenesis of E. coli MntH—Site-directed mutagenesis was carried out as described previously (10). The oligonucleotide primers used to generate novel mutants are listed in supplemental Table 1. Mutant clones were selected by profiling in vivo Me^{2+} sensitivity conferred upon expression in a metallo-dependent E. coli background (12). Full-length DNA sequence was determined for one clone of several that were functionally tested (CEQ 2000XL, Beckman Coulter, Mississauga, ON). The 12TMS-His_{10} construct was generated by adding the 12th TMS of the Lactobacillus casei MntH Cβ1 homolog (23) and a His_{10} tag. A Stul restriction site was introduced prior to the mntH stop codon to enable swapping of a Stul-Xbal flanked fragment of mntH Cβ1 (residues 469–530, followed by a poly-His coding sequence).

Fluorescent Measurements of H^{+} Transport in Vivo—Metal-induced intracellular acidification was measured using a pH-dependent ratiometric green fluorescent protein, pHluorin, and cells resuspended at an A_{600} of 0.2 in 50 mM citrate-phosphate buffer (pH 4.7–5.7) (14). Fluorescence emission (wavelength 520 nm) was measured on a Fluoromax-2 spectrophotometer (Jobin-Yvon, SPEX) after dual excitation at 410 and 470 nm. MntH-dependent intracellular acidification was deduced from [H^{+}] changes post-metabolic addition and monitored for 1000 s. Energy of activation (E_a) values were deduced from [H^{+}] changes 250 s after addition of 10 μM Cd^{2+} at temperatures varying from 15 to 37 °C.

Preparation of Right-side Out and Inside Out Membrane Vesicles—E. coli strain G536 (24) lacking several Fe^{2+} and Mn^{2+} transport systems (W3110 ΔfepABCΔadeC::kan ΔzupT::cat ΔmntH ΔentC Δ费oABC) was transformed with derivatives of pBAD24 expressing native or mutant MntH. Individual clones were cultured in LB medium containing ampicillin (100 μg/ml) at 37 °C and 250 rpm until an A_{600} of 0.6 was reached. MntH expression was induced for 1 h using 0.1% arabinose. Right-side out vesicles (RSOV) were prepared by osmotic lysis (25), except that spheroplasts were lysed in 0.1 M potassium P_0, pH 7.5, washed, and resuspended in 0.1 mM Pipes-Mes, pH 7.5. Inside-out vesicles (ISOV) were prepared by one passage of the cells (2.5 mg wet weight/ml) through an Aminco French Press at 16,000 p.s.i. in 0.1 M potassium P_0, pH 7.5, buffer (26). RSOV and ISOV were resuspended in 0.1 M Pipes-Mes, pH 7.5, at a concentration of 10–15 mg of protein/ml. The polarity of these preparations was tested by fluorescence spectrophotometry (supplemental Fig. S3) using indicators of (i) changes in Δψ or ΔpH resulting from respiration (negative/alkaline or positive/acidic inside, respectively, for RSOV or ISOV), or (ii) topological accessibility of single Cys residues introduced in MntH extramembranous loops formerly assigned to either side of the membrane (14). These Cys mutants (MntH 12TMS-His_{10}) catalyzed Cd^{2+}-induced intracellular H^{+} uptake (supplemental Fig. 3, E and F).

109Cd^{2+} Transport Assays—We used Cd^{2+} as substrate for MntH because it triggers larger intracellular acidification compared with Mn^{2+}, Fe^{2+}, and Co^{2+} (10). 109Cd (specific activity 60 mCi/μmol; GE Healthcare, Baie d’Urfé, Quebec, Canada) uptake was performed by a quick filtration assay in 0.1 (vesicles preparations) or 0.05 mM Pipes-Mes (intact cells), pH 6.5 or 7.5, at 24 °C unless otherwise specified. Samples (0.1 ml) were removed at the indicated times and immediately filtered through 0.45-μm Metrical GN-6 filters (PALL, East Hills, NY) or 0.22-μm nitrocellulose filters (Whatman, Florham Park, NJ) ISOV. Filters were washed with 5 ml of ice-cold uptake buffer containing 1 mM CdCl_{2}. All experiments were performed at least in triplicate, using protein concentrations of 50 (RSOV), 200 (ISOV), and ~700 μg/ml (whole cells, corresponding to an OD_{420} of 10) as determined by protein assay using a modified Lowry procedure (27). Vesicles were energized by adding 2 mM L-asorbate and 0.02 mM N-methylphenazonium methyl sulfate (PMS/Asc), 10 mM d-lactate, or 5 mM NADH, for 3.5 min prior to the addition of Cd^{2+}. Ionophores (1 μM valinomycin, 0.1 μM nigericin, and 10 μM carbonyl cyanide m-chlorophenylhydrazone, CCCP) were added 1 min prior to PMS/Asc addition. E_a (28) was measured using whole cells at pH 6.5 during the initial, linear phase of Cd^{2+} uptake (after 10 s or 1 min) at temperatures varying from 24 to 37 °C. MntH specificity for Mn^{2+} was verified using varying concentrations of Mn^{2+} to compete Cd^{2+} uptake. By fitting data to the Cheng-Prusoff equation, an apparent inhibitory constant, K_{mM} = 1.2 ± 0.2 μM at pH 6.5, and [S] ~ K_{D} = 2.6 ± 0.5 μM Cd^{2+}, was obtained (29) (supplemental Fig. 1A), consistent with previous studies using 54Mn^{2+} (13).

Fluorescence Measurements of Membrane Potential (Δψ) in RSOV and ISOV—Fluorescence probes, 3,3′-dipropylthiodicarboxylic acid (1 mM) and bis-(1,3-dibutylthiadicarbocyanine) pentamethoxynononoxon (1 μM), were used to monitor Δψ changes in energized vesicles as described (30). Fluorescence excitation and emission wavelengths were, respectively, 622 and 670 nm for 3,3′-dipropylthiodicarboxylic acid and bis-(1,3-dibutylthiadicarbocyanine) pentamethoxynonoxon. Measurements were performed either in 100 mM Pipes-Mes, 100 mM KCl, pH 7.5 (and 10 mM CaCl_{2} or MgSO_{4} in some cases), or 100 mM potassium P_0, pH 7.5. MntH electrogenticity was evaluated using RSOV (50 μg/ml proteins) energized with PMS/Asc (2/0.02 mM) and in the presence of 0.1 μM nigericin. Fluorescence changes indicating relative mem-
brane depolarization were recorded for 5 min post-addition of Cd²⁺. 0.1 μM valinomycin was added finally as internal control.

Site-directed Thiol Fluorescence Labeling—Each MntH 12TMS-His₁₀ Cys derivative conferred in vivo Me²⁺ sensitivity (supplemental Fig. 4B), consistent with respective data from prior mutagenesis (supplemental Fig. 2) (10), implying that Cys accessibility will reflect the functional structure of native MntH. RSOV (0.5 mg of protein) were labeled by incubation with 0.1 mM fluorescein 5-maleimide (F5M, Vector Laboratories, Burlingame, CA) at 23 °C for 10 min, prior to or after solubilization in detergent. When indicated RSOV were pretreated for 10 min with 0.5 mM 4-acetomido-4'-maleimidylstilbene 2,2'-disulfonic acid, disodium salt (Molecular Probes, Eugene, OR), or 0.5 mM N-ethylmaleimide (NEM) and then washed and resuspended or solubilized before labeling with F5M. ISOV (0.5 mg of proteins) were incubated for 5 min in the presence of 2.5 μM F5M; labeling was stopped by a 15-min incubation in 20 mM NEM. Membranes were solubilized, and the constructs purified as described under supplemental methods before SDS-PAGE (31) and Coomassie or silver nitrate staining (32). Prior to gel staining, F5M fluorescence was measured under a UV lamp equipped with a green filter using an Alpha Imager 3400 (Innotech, San Leandro, CA).

Western Blot Analyses—C-terminal tagged (-c-Myc or -12TMS-His₁₀) MntH variants were immunodetected in membrane preparations or in purified form as described (10) using anti-c-Myc (PerkinElmer Life Sciences) or anti-His (GE Healthcare) monoclonal antibodies.

Homology Modeling—Several approaches that use an alignment to map residues in a query sequence to sites in candidate template crystals structures were tested using the parameters specified by the developers, including Modeler (33), mGenThreader (34), and several others that are proposed on the meta-server LOMETS, including I-TASSER (9, 33, 35). Four sequences representative of the SLC11 family (two prokaryotic MntH and two eukaryoticNramp) were tested and the results compiled to produce a consensus prediction. The PDB coordinates calculated were used visualize three-dimensional models using the freeware viewer PyMol (60). The root mean square deviation and Z-score of the LeuT models were verified using Combinatorial Extension (36), Dalilite (37), and MArkovian TRANsition of Structure evolution (38).

RESULTS

Targeting Five Type II Evolutionary Rate Sites to Study the Mechanism of Me²⁺ and H⁺ Symport—The functional impact of mutating four SLC11-specific TM sites (MntH Asp³⁴, Asn⁷⁷, His²¹¹, and Asn¹⁰¹, Ref. 10) suggested that further kinetic and thermodynamic analyses of mutants at these sites would inform understanding of structure-function relationships. We thus studied mutants in which the SLC11 residues were exchanged for the matching outgroup moiety. The presence of two Asn residues at selected sites suggested also include MntH TMS7 Asn²⁵⁰, which is invariant in the SLC11 family and substituted for Thr or Ser in the outgroup. Because replacement of MntH Asn⁴⁰¹ with Thr produces a phenotype similar to the exchange for the matching outgroup moiety (Gly) (10), we analyzed MntH mutants N37T, N250T, and N401T. The TM location of

![FIGURE 1. Thermal activation of E. coli MntH mutants activity. A. Low resolution E. coli MntH homologous model. Arrows indicate the predicted location of MntH residues corresponding to SLC11-specific sites. B, Western blot of c-Myc-tagged mutants (80 μg of membrane proteins/lane). C, Cd²⁺ uptake by E. coli GR536 cells expressing MntH-WT and -mutants at SLC11 type II evolutionary sites. Uptake of 10 μM ¹⁰⁹Cd²⁺ (60 nCi/mmol) was measured for 10 s at 37 °C, pH 6.5. D and E, Arrhenius Ea plots of MntH activity (15–37 °C) deduced using the equation k = A × exp(-Ea/(RT)), where k is the rate coefficient, A is a constant, R the universal gas constant and T, temperature in K, for Cd²⁺ uptake quantified by radio-filter assay (D), and Cd²⁺-induced H⁺ uptake measured by ratiometric fluorescence analysis of intracellular pH (E).](http://www.jbc.org/content/283/15/9653/F1)

TABLE 1

MntH	Kₑ⁻	Vₘₐₓ		
	pH 6.5	pH 7.5	pH 6.5	pH 7.5
Wild-type	2.6±0.5	9.1±2.9	13.4±2.1	31.2±4.6
D34G²	21.1±3.6	32.0±9	10.4±0.7	8.1±0.3
N37T²	15.0±2.5	43.0±15	9.7±0.3	10.0±3.0
H211Y²	4.4±1.1	NA	4.3±0.3	NA
N250T²	4.3±0.1	12.5±0.8	3.7±0.1	3.5±0.4
N401T²	2.1±0.6	10.4±0.8	7.7±0.7	28.2±0.9

⁴ Data collected 1 min, pH 6.5, and 2 min, pH 7.5, after addition of ¹⁰⁹Cd²⁺.

NA, not applicable (similar to ΔmntH cells).

The targeted sites is schematized (Fig. 1A) based on previous predictions and experimental determinations (11, 14, 15, 39). The mutant proteins displayed membrane expression levels similar to MntH-WT, indicating that the substitutions were structurally well tolerated (Fig. 1B).

Characterization of E. coli MntH Cd²⁺ and H⁺ Transport in Vivo—To study the effects of the external pH on the kinetics of MntH, we measured ¹⁰⁹Cd²⁺ uptake and Cd²⁺-dependent intracellular acidification in intact E. coli cells. Cd²⁺ uptake by MntH-WT (Fig. 1C) revealed Kₑ⁻ values at 37 °C of 2.6 ± 0.5 μM at pH 6.5 and 9.1 ± 2.9 μM at pH 7.5 (data fitted to the Michaelis-Menten equation, Table 1). The maximal velocity (Vₘₐₓ) of Cd²⁺ transport was lower at pH 6.5 compared with pH 7.5. MntH-catalyzed Cd²⁺-induced H⁺ uptake was activated by increasing amounts of Cd²⁺, with Kₑ⁻ values at 23 °C ranging from 0.78 to 1.4 μM Cd²⁺ (pH 4.7–5.7, respectively, Table 2 and supplemental Fig. 1, B and C). In both systems, lowering the external pH increased MntH affinity for Cd²⁺.

To discriminate carrier-type from channel-mediated transport the Arrhenius Ea values were measured (28, 40) for Cd²⁺.
MntH Asp34 and His211 Mediate H+ and Me2+ Uptake

MntH	pH 4.7	pH 5.3	pH 4.7	pH 5.3
Wild-type	0.8 ± 0.2	1.4 ± 0.3	98 ± 6	34 ± 2
D34G	NA	NA	NA	NA
N37T	NA	NA	NA	NA
H211Y	30 ± 9	500 ± 200	116 ± 9	28 ± 7
N250T	140 ± 10	40 ± 20	81 ± 8	18 ± 2
N401T	4 ± 1	5 ± 2	190 ± 20	101 ± 7

*NA, not applicable (D34G, no activity; N37T, K0.5 ~ 600 μM at pH 4.7). Values were obtained at 23 °C in 50 mM citrate-phosphate buffer and 1000 s after addition of Cd2+. Table 2 shows the effects of various MntH mutants on Cd2+ uptake and Cd2+-induced intracellular acidification. Eα values (Fig. 1, D and E) were in the range of those obtained for carriers (10.7–26.3 kcal/mol, versus channels, 4.3–8.1 kcal/mol) supporting the notion of MntH transport cycle and intramolecular structural rearrangement. This could involve, for instance, an external open conformation loading Me2+ and H+ to translocate them to the inner face of the membrane, before unloading and then rapidly back-translocating to reload (16).

MntH Cd2+ uptake activity was drastically reduced for four of the mutants studied (Fig. 1C). Further analyses of MntH Cd2+/H+ symport kinetics and thermodynamics revealed various types of effects (Tables 1 and 2), which can be summarized as: (i) low affinity Me2+ uptake and little H+ transport (Asp34 and Asn37), (ii) reduced Me2+ uptake but significant residual H+ uptake (Asn250, His211), or (iii) slight opposite variations in Cd2+ and H+ uptake (Asn401), and (iv) impaired transporter cycling (Asn77, Asn250, and His211). Individual phenotypes are detailed below.

MntH TMS1 Asp34 Is Essential for Coupling H+ and Cd2+ Uptake—Kinetic analyses of the MntH-D34G mutant revealed dose-dependent Cd2+ uptake, and K0.5Cd values that were increased about 2- and 10-fold compared with MntH-WT at pH 7.5 and 6.5, respectively, but Cd2+-induced H+ uptake was not detected even when using 1 mM Cd2+ (supplementary Fig. 2D). The unique properties of the MntH-D34G mutant, such as K0.5Cd values little affected by the external pH and lack of H+ transport, suggested that exchange of Asp34 uncoupled Cd2+ uptake from H+ influx.

To determine whether a conformational rearrangement was involved we tested the Eα of Cd2+ uptake by MntH-D34G, which was similar to MntH-WT (Fig. 1D). The Eα of H+ uptake could not be measured because no significant activity was detected for any Asp34 variant (supplementary Fig. 2D). This indicated that mutation of Asp34 could directly affect H+ binding versus transporter cycling, which was confirmed in vitro by lack of a Cd2+-induced MntH-dependent variation of Δψ in right-side-out vesicles (see below “Electrogenicity of MntH-dependent Forward Cd2+ Transport” and Fig. 3E).

MntH TMS6 His211 Role in Cd2+ Transport is pH-dependent—The exchange of TMS6 His211 for Tyr had pH-dependent effects on MntH Cd2+ uptake. Compared with MntH-WT, the K0.5Cd value of MntH-H211Y doubled at pH 6.5, but at pH 7.5, Cd2+ uptake levels were indistinguishable from cells lacking a functional MntH (Table 1). At pH 6.5, the MntH-H211Y Vmax value was reduced (Table 1), and the Eα value possibly affected (Fig. 1D). Similar strongly pH-dependent Me2+ uptake activity has been reported for Nram2 mutation at the homologous site, H267A, which was compensated for by lowering the external pH (41).

To examine whether this SLC11 invariant His residue is crucial for pH-dependent Me2+ binding we measured Cd2+-induced variations in intracellular pH (Table 2, supplemental Fig. 1, B and C). The apparent K0.5 of MntH H211Y was several 100-fold increased at pH 5.3 compared with WT. The Vmax value for H+ accumulation showed that this mutant still catalyzed H+ uptake, although the Eα value of H+ transport was elevated (Fig. 1E). The results thus indicated that replacement of MntH TMS6 His211 alters H+ binding and the catalytic cycle of Cd2+ binding and transport.

MntH Asn77, Asn250, and Asn401 Contribute Indirectly to Cotransport Activity—The MntH Asn250 mutant also showed unique effects compared with MntH-WT: up to an 100-fold increase in the apparent K0.5 value for Cd2+-induced H+ uptake at pH 4.7 and reduced Vmax values (Table 2 and supplementary Fig. 1, B and C); strong reduction in the Vmax values for Cd2+ uptake, especially at pH 7.5 and a lesser increase of K0.5Cd values, mainly at pH 6.5 (Table 1); and elevated Eα values of both Cd2+ and H+ transport (Fig. 1, D and E). Because N250Q exchange was not conservative (compared with N401Q, supplementary Fig. 2) these results indicated a role of Asn250 in transporter cycling.

Although replacement of Asn77 affected Cd2+ and H+ transport kinetics similarly to Asp34 mutation, maybe due to proximity of these sites, important differences were noted: the MntH-N37T mutation did not abrogate Cd2+-induced H+ uptake (supplementary Fig. 2D), whereas the Eα value of Cd2+ transport was elevated (Fig. 1D), and K0.5Cd values remained pH-dependent (Table 1). The MntH Asn77 residue may, similarly to Asn250, take part in conformational changes during the transport cycle.

MntH mutation Asn401 to Thr had less impact on transport kinetics than N37T and N250T exchanges (Fig. 1), consistent with Asn to Gln replacement that was conservative only at site 401 (supplementary Figs. 1 and 2). Main effects were on MntH-N401T Vmax, which was reduced for Cd2+ uptake especially at pH 6.5 (Table 1), but increased ~2-fold for Cd2+-induced H+ uptake, independent of the external pH (Table 2, supplementary Fig. 1, B and C). pH-dependent variations of K0.5Cd were not correlated with Cd2+ transport Vmax values. Such effects supported previous observations linking nonconservative mutations of Asn401 to intracellular acidification in the absence of added Cd2+ (10), due to apparently opposite effects on the Vmax values of Me2+ and H+ uptake.

Characterization of MntH-catalyzed Forward Metal Uptake in Vitro—To confirm the uncoupling effect of the MntH D34G mutation observed in vivo we studied Cd2+ transport in vitro using RSOV. ISOV were used for comparison. MntH-dependent 109Cd2+ uptake in 0 trans conditions showed different requirements for RSOV or ISOV preparations (Fig. 2, A and B). Uptake into RSOV was stimulated about 10-fold of the background levels by addition of millimolar amounts of Ca2+ and the respiratory substrate PMS/Asc (42), whereas 10-fold more metal was necessary to obtain about 3-fold stimulation of back-
ground uptake in ISOV (Fig. 2, A and B). However, both Cd\(^{2+}\) uptake activities were saturable, temperature-dependent (data not shown), and required an active transporter: mutants at sites thought to interact directly with Cd\(^{2+}\) and H\(^{+}\) showed little uptake in conditions otherwise favorable for MntH-WT (Fig. 2, C and D).

MntH uptake in RSOV was stimulated by a potent electron donor (PMS/Asc versus lactate or NADH, Fig. 3A). In the presence of 1 unit of \(\Delta pK\) (10-fold variation in [H\(^{+}\)]), Cd\(^{2+}\) uptake was increased by adding the H\(^{+}\)/K\(^{+}\) ionophore nigericin, which converts \(\Delta pK\) into increased \(\Delta \psi\) (43), and it was abrogated using the K\(^{+}\) ionophore valinomycin, which dissipates \(\Delta \psi\) (Fig. 3C). Without external K\(^{+}\), Cd\(^{2+}\) transport still required PMS/Asc and Ca\(^{2+}\) but was not affected by nigericin, slightly stimulated with valinomycin, and the protonophore CCCP abrogated it (data not shown). Thus, MntH forward Me\(^{2+}\) uptake activity is proton-dependent.

In contrast, and contrary to the expected inhibition by \(\Delta \psi\) (positive inside) of a proton-motive force-dependent mechanism of Cd\(^{2+}\) uptake, MntH-dependent activity in ISOV persisted in the presence of 10 mM D-lactate or 5 mM NADH (Fig. 3B) and was indifferent to nigericin, valinomycin, or both as well as up to 100 \(\mu\)M CCCP (Fig. 3D). Also, compared with RSOV, PMS/Asc and Ca\(^{2+}\) induced little stimulation of Cd\(^{2+}\) uptake in ISOV, which was nullified by CCCP (consistent with \~90% homogeneous ISOV preparations, supplemental Fig. 3D and data not shown). These data distinguished MntH "reverse" transport from proton-dependent forward transport activity.
MntH Asp34 and His211 Mediate H+ and Me2+ Uptake

FIGURE 4. Topological accessibility of MntH TMS1 Asp34 and TMS6 His211. A and B, in situ accessibility of single cysteine residues introduced in MntH 12TMS-His\textsubscript{10} at either SLC11-specific sites or the control cytoplasmic site 228 (supplemental Fig. 3) was assayed using RSV. Top panel, in-gel F5M fluorescence was visualized under UV; bottom panel, silver nitrate staining of the corresponding Ni2+ affinity purified proteins. In situ accessibility was revealed by direct labeling with F5M (A, except ∗, labeling after solubilization), or reaction with NEM (N) or not (−) before solubilization and F5M labeling (B), as described under “Experimental Procedures.” C, view from the periplasm of the LeuT-based SLC11 model obtained by threading. Half-helices 1a and 6b are placed at the bottom, orthogonal to the membrane plane; sites comprising the top "loop EL4" (44) are not shown for clarity. Positions predicted for cation binding sites Asp34 and His211, close to the center (indicated by star), and for the other sites studied are indicated by arrows. Numbers 1–5 and 6–10 designate the TMS forming the inverted domains.

*MntH Asp34 and His211 Are Accessible to Solvent and Predicted to Line a Permeation Pathway—Direct involvement of Asp34 in coupled Cd2+ and H+ uptakes suggested that this residue could interact with either cation through a water-filled "pore," and should thus be solvent-accessible. To address this possibility, single Cys mutants were produced using a MntH construct that had been modified to add a 12th TMS and a C-terminal cytoplasmic His tag that allowed affinity purification. The MntH 12TMS-His\textsubscript{10} construct exhibited transport activity similar to MntH-WT (supplemental Figs. 3F and 4B). RSVO harboring each of the MntH single Cys mutants at the five Nramp/SCL11-specific sites (34, 37, 211, 250, and 401) were probed in situ with sulfhydryl reagents, either bulky and polar, F5M, or small and permeable, NEM.

Strikingly, only two sites were reachable in situ: Cys34 was freely accessible to F5M (Fig. 4A) and Cys211 reacted solely with NEM (Fig. 4, A and B). These results seemed consistent with the Asp34 and His211 respective predicted locations in TMS1 and TMS6 and their distinct direct roles in Me2+/H+ symport. Also, TMS1 Cys37 and TMS7 Cys250 became labeled with F5M after solubilizing MntH (Fig. 4, A and B), supporting possible roles in the transporter motion. TMS11 Cys401 was marginally accessible (Fig. 4, A and B) implying that it participates to tight inter-helical contacts; exchanging Asn401 for a smaller side chain increased cation uptake, whereas a similar sized moiety limited it (e.g. supplemental Fig. 4B and 2, A and C, respectively, Cys and Gln; prior data using Gly and Thr, see Ref. 10). The results of site-directed labeling thus converged with functional data to demonstrate that SLC11-specific residues contribute critically to MntH transport by either binding substrates directly (Asp34, His211) or contributing to inter-helices contacts (Asn37, Asn250, and Asn401).

Three-dimensional mapping of functional sites is crucial to understand catalytic mechanisms. We determined whether known transporter structures could help model a spatial distribution for the SLC11-specific functional sites. Several template structures, e.g. LeuT, glycerol-3-phosphate transporter, EmrD, and chloride channel, were frequently ranked as significant hits with most programs and for each SLC11 sequence tested. However, only the LeuT/SLC6 family structure (44) fully supported our functional and topological data (Fig. 4C and supplemental Fig. 5). Additional predictions obtained using Modeler and either single sequences or groups of sequences representing SLC11 phylotypes as queries produced 16 models, which were all based on the LeuT template, and with scores ranging from 0.01 to 0.76. The similarity of each of these models with the LeuT structure was quantified using DaliLite (37) yielding values in the ranges 44–60.3 (Z-score), 322–439 (aligned residues), 0.8–1.7 (Å, root mean square deviation), and 10–17% (sequence identity), which indicated that SLC11 transporters may share the same general fold. The model presented (Fig. 4C; supplemental Fig. 5) exhibits little difference with the LeuT/SLC6 structure, with values for root mean square deviations and Z-score of, respectively, 1.07 Å and 7.5 (45) or 1.0 Å and 52.9 (37). This LeuT fold places both Asp34 and His211 in the inner core of the MntH molecule, as parts of extended peptides interrupting TMS1 and TMS6, and lining a water-filled pore. The three Asn37, Asn250, and Asn401 appeared directed toward inter-helix contacts and the outer fence of the model architecture (Fig. 4C and supplemental Fig. 5). Structural modeling of SLC11 evolutionary distinct sites thus corroborates their key functional roles.

DISCUSSION

The present study showed that MntH Asp34 and His211, two SLC11 family-specific and ionizable residues located in TMS1 and TMS6 are necessary for binding and transport of H+ and Me2+. Whereas interdependent transport of Me2+ and H+ by MntH is consistent with properties reported for eukaryotic Nramp homologs (17, 46), we demonstrated here for the first time that exchange of MntH TMS1 Asp34 uncoupled H+ and Cd2+ transport and also reduced affinity for Cd2+, but preserved pH-independent Cd2+ uptake and transporter cycling. Because this site was also freely accessible in situ, it is likely part of an H+ translocation pathway. Exchange of MntH TMS6 His211 rendered affinity for Cd2+ more dependent on the external pH but preserved Cd2+-induced H+ transport; Cys211 was accessible in situ only to a small reagent, supporting a direct role of His211 (de)protonation in Cd2+ transporter cycling. The SLC11-specific TMS1 Asp and TMS6 His residues constitute thus functional determinants of Me2+ and H+ symport.

The TMS1 Asp residue is part of a conserved DPGN motif that has been subjected to mutagenesis in studies using MntH or Nramp2 homologs, which showed loss of Me2+ uptake caused by Gly exchange (11, 47). The carboxyl end of Nramp2 TMS1 and adjacent extra loop were implicated in Me2+ binding and coupling of Me2+ uptake to the proton-motive force.
MntH Asp34 and His211 Mediate H$^+$ and Me$^{2+}$ Uptake

(47). MntH scanning mutagenesis revealed that only Pro35 exchange did not abrogate Mn$^{2+}$ uptake, and MntH-P35G had a marginally affected K_{Mn}^{G} (11). Here, the role of the flanking SLC11 family-specific site Asn37 was detailed. Exchange of Asn37 seemed to perturb interactions among TMS rather than between MntH and cations, as demonstrated by inaccessibility to a small soluble compound in situ, impaired Cd$^{2+}$ and H$^+$ transporter cycling but residual Cd$^{2+}$-induced H$^+$ transport, and pH dependence of Cd$^{2+}$ uptake. We deduce that the SLC11 invariant tripeptide (DPG) may bear analogy to a known functional signature for Me$^{2+/+}$ transport, i.e. ([C/S/T]P(C/H)) that is conserved in the TMS6 of $P_{\text{n}a}$-type ATPases, which pump heavy metal cations using energy provided by ATP hydrolysis (48, 49). The SLC11-invariant Asp and Gly residues in TMS1 could thus contribute to Me$^{2+}$ binding, the acidic moiety being key for H$^+$-coupled transport.

The His residue in TMS6 was shown previously to regulate Me$^{2+}$ uptake via Nrmp2 and MntH (10, 41). We further showed that low Me$^{2+}$ uptake persisted with MntH-H211C (supplemental Fig. 4B), similar to the Nmp2 matching mutant H267C (41), and that MntH-H211Y low affinity for Cd$^{2+}$ did not prevent H$^+$ uptake. It seems thus unlikely that this His residue could either bind Me$^{2+}$ directly, or simply be part of a relay or channel enabling H$^+$ movement across the membrane (50, 51). Instead, (de)protonation could favor a conformation facilitating Me$^{2+}$ translocation and transporter cycling; TonB His29 is an example of a TM His moiety required for transport cycling and the energy transduction event (52). The SLC11-specific TMS6 His residue is part of another conserved motif (MPH) (with exceptions in plasmodia, plants, and fungi homologs) not found in the SLC11 phylogenetic outgroup (V(P/G/Y)) (10), suggesting by analogy with TMS1 that the TMS6 motif (MPH) may represent another signature for metal transport.

Strikingly, modeling SLC11 homologs on the LeuT/SLC6 structure suggests an internal symmetry (including two domains made of helices 1–5 and 6–10, similarly folded but in inverted orientation with respect to the membrane (53), and thus a possible origin for the motifs in TMS1 and TMS6, which appear central to the model transporter architecture. These two motifs in anti-parallel orientation (DPG) and (HPM)) form a pair of extended peptides interrupting TMS1 and TMS6. Similar pairs of discontinuous helices (α-helix-extended peptide-α-helix) constitute a salient feature in five cation transporter structures, and pairs of antiparallel discontinuous TM helices may be part of a fold shared by several cation transporter families (54).

Burying such (DPG) and (HPM) “extended peptides/polar helix termini” elements within the low-dielectric core of the membrane is not energetically favored, partly due to charges, including polar backbone groups not engaged in intra-chain hydrogen bonds. Such elements should be stabilized by interacting with adjacent residues, transported substrates (e.g. dehydrated cations), or by mediating alternate conformation rearrangements (44, 54). Our data indicate that interactions with Me$^{2+}$ and/or H$^+$ may stabilize SLC11 TMS1 Asp and TMS6 His. Mapping to the LeuT model are other sites of potential divergence between the SLC11 family and outgroup, suggested clustering around these central motifs, (DPG) and (HPM) (supplemental Fig. 5, C and D), and possible inter-helix contacts, which could be considered in future structure/function studies using the present approach. The targeted Asn residues in TMS1, TMS5, and TMS11 affected transport without interacting with cations or being accessible to NEM in situ (Asn37, Asn250, and Asn401). According to the LeuT fold, these residues may be oriented for inter-helix contacts, possibly key for transport cycling, e.g. TMS7 Asn250 and TMS1b Asn37, or velocity (Asn401), because TM Asn residues can drive strongly inter-helix associations (55, 56) or mediate structural motion during ion permeation (57).

Analysis of E. coli MntH activity in vitro yielded surprising results concerning activation of MntH forward Cd$^{2+}$ transport by millimolar amounts of Ca$^{2+}$, and reverse Cd$^{2+}$ transport that appeared passive. Requirement for millimolar Ca$^{2+}$ in addition to RSOV energization was previously reported to stimulate Mn$^{2+}$ uptake in E. coli RSOV (42). Because MntH is the sole manganese uptake system known in E. coli laboratory strains, our data may suggest a possible link between MntH transport and external Ca$^{2+}$, which might be reminiscent of interactions between a DMT1 mutant and Ca$^{2+}$ (6). Strong asymmetry observed between MntH forward and reverse uptakes supports the proposition that MntH functions as a pump driven by Δψ, accumulating cytosolic Me$^{2+}$ against their concentration gradient. Kinetic studies of H$^+$-coupled transport systems have shown that Δψ regulates H$^+$ binding or uptake, and that H$^+$ coupling increases a transporter affinity for its substrates or provides some thermodynamic force for the translocation step (2). Such a mechanism is widespread in microbes and was conserved in higher eukaryotic systems where an acid microclimate produces a huge proton gradient (e.g. the epithelial brush-border membrane of the proximal intestine, site of uptake by Nrmp2 of non-heme dietary iron (58), and the phagosomal lumen in phagocytes that is depleted from Me$^{2+}$ by Nrmp1 (59)). It is thus expected that future work on the E. coli MntH mechanism of the H$^+$-dependent transport will reveal additional structure-function relationships key to the Nrmp/SLC11 family.

Evolutionary targeting of sites for biochemical analyses and three-dimensional validation of the results provides a framework to locate distinct TM residues key to the mechanism of the SLC11 membrane transport family. Low levels of sequence identity between SLC11 and SLC6 families (<20%) implies that the “LeuT-like” structural models obtained probably indicate a possibility that different families of cation transporters may share a general fold that could include inverted symmetry and discontinuous TM helices. SLC11 crystals will be required to ultimately validate any predicted model with resolution and accuracy. Nevertheless, the high resolution of the LeuT structure, which was corroborated by extensive biochemical and mutagenesis data, provided a high quality modeling template, and the suggested fit between the deduced architecture and SLC11 transporters topological and functional data imply that the current model holds significant potential for future studies of the SLC11 mechanism of Me$^{2+}$/H$^+$ symport and investigations of naturally occurring mutants in relation to diseases.
MnH Asp34 and His211 Mediate H^+ and Me2+ Uptake

Acknowledgments—We thank T. A. Tompkins for providing L. casei genomic DNA (R0215), T. Pugsley for supplying E. coli strain PAP3402, J. Beaubien for technical assistance, E. Narayanan for help with ModWeb analyses, P. Gros for support, and H. R. Kaback for critical comments.

REFERENCES

1. Cellier, M., Prive, G., Belouchi, A., Kwan, T., Rodrigues, V., Chia, W., and Gros, P. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 10089–10093
2. Mackenzie, B., and Hediger, M. A. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 9069–9074
3. Cellier, M. F., Courville, P., and Campion, C. (2007) Arch. Biochem. Biophys. 460, 255–268
4. Kaback, H. R., Dunten, R., Frillingos, S., Venkatesan, P., Kwaw, I., Zhang, W., and Ermolova, N. (2007) J. Biol. Chem. 282, 27151–27159
5. Chen, X., Peng, J., Cohen, A., Nelson, H., Nelson, N., and Hediger, M. A. (2001) J. Exp. Biol. 204, 397–404
6. Sacher, A., Cohen, A., and Nelson, N. (2001) J. Biol. Chem. 276, 28937–28945
7. Sodhi, J. S., and Westermann, C. M. (2005) Trends Biochem. Sci. 30, 424–431
8. Sodhi, J. S., Westermann, C. M., Serfin, A., and Postle, K. (2005) J. Biol. Chem. 280, 13321–13330
9. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
10. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
11. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
12. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
13. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
14. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
15. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
16. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
17. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
18. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
19. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
20. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
21. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
22. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
23. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
24. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
25. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
26. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
27. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
28. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
29. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
30. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
31. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
32. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
33. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
34. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
35. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
36. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
37. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
38. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
39. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
40. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
41. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
42. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
43. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
44. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
45. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
46. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
47. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
48. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
49. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
50. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
51. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
52. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
53. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
54. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
55. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
56. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
57. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
58. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
59. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686
60. Gu, X., and Yang, S. (2003) J. Biol. Chem. 278, 7680–7686

9658 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 283 • NUMBER 15 • APRIL 11, 2008