Epidemiological Analysis of Methicillin-Resistant *Staphylococcus aureus* Carriage among Veterinary Staff of Companion Animals in Japan

Kanako ISHIHARA1,2), Mieko SAI TO2), Natsumi SHIMOKUBO2), Yasukazu MURAMATSU2), Shigeki MAETANI3) and Yutaka TAMURA2)*

1)Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
2)School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
3)Maetani Veterinary Hospital, Sapporo, Hokkaido 002-8003, Japan

(Received 8 March 2014/Accepted 6 August 2014/Published online in J-STAGE 5 October 2014)

Methicillin-resistant *Staphylococcus aureus* (MRSA) is the major cause of nosocomial infections, but it is also prevalent in the community and veterinary medical practice [1, 10]. MRSA carriage and associated risk of opportunistic infection, is an occupational hazard for veterinarians [8, 9]. We have previously shown that MRSA spreads within Japanese veterinary medical practices, both in an academic veterinary hospital [8] and in private veterinary clinics [7]. The percentage of veterinarians carrying MRSA was high (22.9%) [7], and veterinary staff carrying MRSA can be a source of MRSA infection in animals [8]. Therefore, MRSA control among veterinary staff is needed. To identify risk factors for MRSA carriage among veterinary staff, we analyzed the association between MRSA carriage and various epidemiological factors among veterinary staff members working at private veterinary clinics in Japan.

Data for MRSA carriage among veterinary staff members collected in a previous study [7] were used in this investigation. Briefly, nasal swab samples for MRSA isolation were collected from 96 veterinarians and 70 veterinary technicians (VTs) who provided medical care for dogs and cats. Subjects worked at 71 private veterinary clinics in the Ishikari region around Sapporo, Hokkaido, during the period April–June 2008. MRSA was detected in 22 veterinarians (22.9%) and seven VTs (10%) [7].

The following information was gathered from veterinary staff: sex, career (veterinarian or VT; duration of clinical veterinary experience), previous contact with animal patients with confirmed MRSA, keeping companion animals at home and established risk factors for MRSA infection within human medical practices (hospitalization, surgery received, dialysis treatment, catheter insertion within the previous year, antibiotics taken within the previous month and living with human MRSA carrier). Human samples and questionnaire answers were coded to protect anonymity. This study was approved by the Ethics Committee of the Graduate School of Dairy Science, Rakuno Gakuen University, Japan (No. 09–1).

For univariate analysis, categorical comparisons were performed by a chi-square test. When at least one expected frequency was less than five, Fisher’s exact test was used for comparison between two groups. *P* values were calculated by one-tailed test. An odds ratio (OR) for the number of years of clinical veterinary experience was calculated by logistic regression. A *P* value of less than 0.05 was considered significant. For multivariate analysis, variables with *P* values less than 0.2 in univariate analysis were analyzed by stepwise backward logistic regression. All statistical analyses were performed using SPSS Statistics 20.0 software (IBM Japan Co., Tokyo, Japan).

The results of univariate analysis are shown in Table 1. A significant difference in the percentage of MRSA carriage was observed between veterinarians and VTs (*P*=0.030). Eight veterinarians and three VTs provided only nasal swabs and no epidemiological information other than job type; therefore, these 11 individuals were excluded from the following analyses. The percentage of MRSA carriage in males was significantly higher than that in females (*P*=0.002).
However, there was no significant difference in percentage of MRSA carriage by sex among veterinarians ($P=0.076$). The percentage of MRSA carriage amongst female veterinarians was approximately the same as that of female VTs (OR 1.341, 95% confidence interval (CI 95%) 0.308–5.831; $P=0.480$). There was no significant difference in percentage of MRSA carriage related to contact with MRSA-identified animals ($P=0.051$), having at least one risk factor of MRSA infection in human medical practice ($P=0.487$) and keeping companion animals at home ($P=0.594$) (Table 1). Moreover, years of clinical veterinary experience was not associated with MRSA carriage (OR 1.034, CI 95% 0.987–1.083; $P=0.163$), according to the logistic regression analysis.

For multivariate analysis, sex, career (veterinarian or VT; duration of clinical experience), contact with MRSA-identified animal patients ($P<0.2$ in the univariate analysis) and the interaction effect of sex and job type (veterinarian or VT) were selected. As a result of stepwise backward logistic regression, sex was the only variable independently associated with MRSA carriage (OR 1.034, CI 95% 0.987–1.083; $P=0.163$), according to the logistic regression analysis.

Table 1. Univariate analysis of risk factors for methicillin-resistant *Staphylococcus aureus* carriage in veterinary staff

Variable	Value	Isolation rate (%)	OR [CI 95%]	P
Career	Veterinarian	22.9% (22/96)*	2.676 [1.072–6.677]	0.030
	Veterinary Technicians	10% (7/70)	Ref	
Gender	Subtotal			
	Male	29.2% (19/65)	3.717 [1.555–8.889]	0.002
	Female	10% (9/90)	Ref	
	Male	30.2% (19/63)	3.167 [0.845–11.864]	0.076
	Female	12% (3/25)	Ref	
	Male	0% (0/2)	0.967 [0.924–1.013]	0.828
	Female	9.2% (6/65)	Ref	
Contact with MRSA-identified animal patients	Positive	27.1% (13/48)	2.278 [0.985–5.269]	0.051
	Negative	14.0% (15/107)	Ref	
Risk factor for MRSA infection in human medical practices	Positive	20% (5/25)	1.163 [0.369–3.420]	0.487
	Negative	17.7% (23/130)	Ref	
Keeping companion animals at home	Positive	18.0% (24/133)	0.991 [0.307–3.193]	0.594
	Negative	18.2% (4/22)	Ref	

OR, odds ratio; CI 95%, 95% confidence interval; Ref, reference; MRSA, methicillin-resistant *Staphylococcus aureus*; *Isolation rate (No. of MRSA positive samples / No. of tested samples).*

According to the multivariate analysis, the duration of clinical experience in the veterinary field was not associated with MRSA carriage. Previous studies established that the duration of MRSA carriage was generally brief following short-term exposure to MRSA-positive livestock animals [5, 11]. Moreover, Frana et al. reported that MRSA with *spa* type t002 was most common among veterinary students with short-term MRSA carriage [5]. Most MRSA (18/29) carried by veterinary staff in our study were also classified as *spa* type t002.
type t002 [7]. Therefore, MRSA with spa type t002 was likely cleared from healthy veterinary staff for small animals after a certain period of carriage.

In our previous study, contact with an identified animal MRSA case was associated with MRSA carriage among veterinary staff in an academic veterinary hospital (OR, 6.1; \(P<0.01 \)) [8]. Although almost a third of veterinary staff had contact with MRSA-identified animal patients, an association with MRSA carriage was not statistically established in the current study (OR, 2.278; \(P=0.051 \)). A detailed bacteriological examination is needed for diagnosis of animal MRSA cases. As the prevalence of MRSA among veterinarians (22.9%) was equivalent to that reported in an academic veterinary hospital [7, 8], the rate of identification of MRSA-infected animal patients in private veterinary clinics might be lower than that in an academic veterinary hospital.

In conclusion, this study found that male veterinary staff had a higher risk of MRSA carriage than female veterinary staff. MRSA carriage is likely to be intermittent in healthy veterinary staff. Hand-hygiene practice was reported as a strong protective factor against MRSA colonization among veterinary personnel for horses [2]. Therefore, veterinary staff, especially male staff, should prevent MRSA carriage by hand-hygiene practice while providing veterinary medical care.

ACKNOWLEDGMENTS. The authors thank the participants of the study and Dr. T. Nomura of Sapporo Veterinary Medical Association for assisting us in collecting these samples. This work was supported in part by JSPS KAKENHI Grant Number 23790671.

REFERENCES

1. Allen, J. L., Abraham, L. A., Thompson, K. and Browning, G. F. 2013. Methicillin-resistant \textit{Staphylococcus aureus}: an issue for veterinary hospitals. \textit{Aust. Vet. J.} \textbf{91}: 215–219. [Medline] [CrossRef]

2. Anderson, M. E. C., Lefebvre, S. L. and Weese, J. S. 2008. Evaluation of prevalence and risk factors for methicillin-resistant \textit{Staphylococcus aureus} colonization in veterinary personnel attending an international equine veterinary conference. \textit{Vet. Microbiol.} \textbf{129}: 410–417. [Medline] [CrossRef]

3. Burstiner, L. C., Faires, M. and Weese, J. S. 2010. Methicillin-resistant \textit{Staphylococcus aureus} colonization in personnel attending a veterinary surgery conference. \textit{Vet. Surg.} \textbf{39}: 150–157. [Medline] [CrossRef]

4. Centers for Disease Control and Prevention 2002. Guideline for hand hygiene in health-care settings. \textit{Morbidity and Mortality Weekly Report} \textbf{51}.

5. Frana, T. S., Beahm, A. R., Hanson, B. M., Kinyon, J. M., Layman, L. L., Karriker, L. A., Ramirez, A. and Smith, T. C. 2013. Isolation and characterization of methicillin-resistant \textit{Staphylococcus aureus} from pork farms and visiting veterinary students. \textit{PLoS ONE} \textbf{8}: e53738. [Medline] [CrossRef]

6. Hanselman, B. A., Kruth, S. A., Rousseau, J., Low, D. E., Willey, B. M., McGeer, A. and Weese, J. S. 2006. Methicillin-resistant \textit{Staphylococcus aureus} colonization in veterinary personnel. \textit{Emerg. Infect. Dis.} \textbf{12}: 1933–1938. [Medline] [CrossRef]

7. Ishihara, K., Saito, M., Shimokubo, N., Muramatsu, Y., Maetani, S. and Tamura, Y. 2014. Methicillin-resistant \textit{Staphylococcus aureus} carriage among veterinary staff and dogs in private veterinary clinics in Hokkaido, Japan. \textit{Microbiol. Immunol.} \textbf{58}: 149–154. [Medline] [CrossRef]

8. Ishihara, K., Shimokubo, N., Sakagami, A., Ueno, H., Muramatsu, Y., Kadosawa, T., Yanagisawa, C., Hanaki, H., Nakajima, C., Suzuki, Y. and Tamura, Y. 2010. Occurrence and molecular characteristics of methicillin-resistant \textit{Staphylococcus aureus} and methicillin-resistant \textit{Staphylococcus pseudintermedius} in an academic veterinary hospital. \textit{Appl. Environ. Microbiol.} \textbf{76}: 5165–5174. [Medline] [CrossRef]

9. Jordan, D., Simon, J., Fury, S., Moss, S., Giffand, P., Maiwald, M., Southwell, P., Barton, M. D., Axon, J. E., Morris, S. G. and Trott, D. J. 2011. Carriage of methicillin-resistant \textit{Staphylococcus aureus} by veterinarians in Australia. \textit{Aust. Vet. J.} \textbf{89}: 152–159. [Medline] [CrossRef]

10. Piao, C., Karasawa, T., Totsuka, K., Uchiyama, T. and Kikuchi, K. 2005. Prospective surveillance of community-onset and healthcare-associated methicillin-resistant \textit{Staphylococcus aureus} isolated from a university-affiliated hospital in Japan. \textit{Microbiol. Immunol.} \textbf{49}: 959–970. [Medline] [CrossRef]

11. van Cleef, B. A., Graveland, H., Haenen, A. P., van de Giesen, A. W., Heederik, D., Wagenaar, J. A. and Kluymans, J. A. 2011. Persistence of livestock-associated methicillin-resistant \textit{Staphylococcus aureus} in field workers after short-term occupational exposure to pigs and veal calves. \textit{J. Clin. Microbiol.} \textbf{49}: 1030–1033. [Medline] [CrossRef]