Lithium-6: A Probe of the Early Universe

K. Jedamzik

Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85740 Garching, Germany

I consider the synthesis of 6Li due to the decay of relic particles, such as gravitinos or moduli, after the epoch of Big Bang Nucleosynthesis. The synthesized 6Li/H ratio may be compared to 6Li/H in metal-poor stars which, in the absence of stellar depletion of 6Li, yields significantly stronger constraints on relic particle densities than the usual consideration of overproduction of 3He. Production of 6Li during such an era of non-thermal nucleosynthesis may also be regarded as a possible explanation for the relatively high 6Li/H ratios observed in metal-poor halo stars.

It is believed that most of the observed properties of the present universe originate from out-of-equilibrium conditions during brief periods in the evolution of the very early universe. These may result during cosmic phase transitions, an inflationary period followed by an era of reheating, and epochs of incomplete particle annihilation. During such eras the production of “unwanted” relics is also possible, and any observational constraint on relics is important in order to limit a plethora of proposed scenarios. Lindley [1] pointed out, that γ-rays present in the primordial plasma below redshift $z \lesssim 10^7$ may spoil the agreement between light element abundances synthesized during Big Bang Nucleosynthesis (hereafter, BBN) and observationally inferred primordial abundances synthesized during Big Bang Nucleosynthesis (hereafter, BBN) and observationally inferred primordial abundance constraints due to the possible photodisintegration of 2H. Similarly, possible overproduction of mass two and three elements concomitant with the photodisintegration of 4He may result from γ-rays injected below redshift $z \lesssim 2 \times 10^6$. Such arguments have since been used to constrain the abundances of a variety of relics, such as massive decaying particles [3], and radiating cosmic strings [3,4], among others. In this letter I point out, that decay of relics after the BBN era leads also to efficient production of 6Li.

Injection of energetic e^\pm and γ-rays into the primordial plasma at high redshift due to the decay of a relic, induce an electro-magnetic cascade on the cosmic microwave background radiation (hereafter, CMBR) via pair production of γ-rays on CMBR photons, $\gamma + \gamma_{bb} \rightarrow e^- + e^+\gamma$, and inverse Compton scattering of the produced pairs on the CMBR, $e^\pm + \gamma_{bb} \rightarrow e^\pm + \gamma$. This cascade is halted only when γ-ray energies fall below the threshold for pair production, i.e. for $E_\gamma < E_C \simeq m_e^2/2E_{bb}$. The resulting spectrum of “breakout” (i.e. $E_\gamma < E_C$) photons is quite generic, independent of the details of the injection mechanism, and has been analyzed analytically and numerically [3,4,8]. The number of “breakout” photons per unit energy interval is well approximated by the following form [8]

$$n_\gamma(E_\gamma) \approx \begin{cases} K_0 (E_\gamma/E_X)^{−1.5} & \text{for } E_\gamma < E_X \\ K_0 (E_\gamma/E_X)^{−2} & \text{for } E_X < E_\gamma < E_C \end{cases}$$

(1)

where $E_C(z) \approx 4.7 \times 10^7 z^{-1}$MeV, with z redshift, and $E_X(z) \approx 1.78 \times 10^6 z^{-1}$MeV [8] represents a break in the spectrum. Here $K_0 \approx E_0/(E_X^2 [2 + \ln(E_C/E_X)])$ is a normalization constant with E_0 the total energy in form of electro-magnetically interacting particles (i.e. e^\pms and γs with energies well above E_C) injected by the decay. Subsequent interactions of the “breakout” γ-rays are dominated by processes on matter. The dominant process for energetic photons is Bethe-Heitler pair production on protons and helium, i.e. $\gamma + p(^4\text{He}) \rightarrow p(^4\text{He}) + e^- + e^+\gamma$. The cross section for this process is given by

$$\sigma_{BH}(E_\gamma, Z) \approx \frac{\alpha}{\pi} \sigma_{Th} \left(\frac{28}{9} \ln \left(\frac{2E_\gamma}{m_e} \right) - \frac{218}{27} \right) Z^2,$$

(2)

for $1 \ll E_\gamma/m_e \ll a^{-1}Z^{-1/3}$, where α is the fine structure constant, σ_{Th} the Thomson cross section, m_e the electron mass, and $Z = 1$ for protons and 2 for helium. The pairs created suffer inverse Compton scattering on CMBR photons and generate a secondary generation of γ-rays which, nevertheless, is much softer than the “breakout” photons whose initial spectrum is given by Eq. (1).

Energetic γ-rays may also photodisintegrate 4He, i.e. $\gamma + ^4\text{He} \rightarrow ^3\text{H} (^3\text{He}) + p(n)$, provided their energies are above the threshold for this process, $E_{\gamma,thr}^{4\text{He}} = 19.81$ MeV for production of ^3H (which decays into ^3He) and 20.58 MeV for direct production of ^3He. Here the cross sections for the production of ^3H and ^3He are almost equal. Deuterium may also result from the photodisintegration process but with production typically suppressed by a factor of ten compared to that of ^3He [8].

A small fraction of “breakout” photons photodisintegrate rather than Bethe-Heitler pair produce. Thus, at redshift $z \gtrsim 2 \times 10^6$ when $E_C \gtrsim 20$ MeV cosmologically significant production of ^3He may result. The total number of ^3H nuclei produced by “breakout” photons is given by the contribution from photons with different energies, E_γ [8],

$$N_{\text{th}} = \int_{E_{\gamma,thr}^{4\text{He}}}^{E_C} dE_\gamma \frac{dN_{\text{th}}}{dE_\gamma},$$

(3)

where

$$\frac{dN_{\text{th}}}{dE_\gamma} \approx \frac{n_{^3\text{He}} \sigma_{^3\text{He}(\gamma,p)_{\text{th}}}(E_\gamma) n_{\gamma}(E_\gamma)}{n_p \sigma_{BH}(E_\gamma, 1) + n_{^4\text{He}} \sigma_{BH}(E_\gamma, 2)},$$

(4)
and with \(n_{\text{He}}, n_p \) helium and proton density, respectively. Eq. (4) is essentially a computation of the probability \(P_{\text{He}} \) that a photon will photodisintegrate, given that its typical life time towards pair-production is \(\tau_{\text{BH}} \approx (c\sigma_{\text{BH}} n_p)^{-1} \). It applies for \(P_{\text{He}} \ll 1 \) and when \(\tau_{\text{BH}} \) is smaller than the Hubble time at the epoch of the cascade, which is the case for \(z \gtrsim 10^3 \).

It is important to realize that the photodisintegration process leaves an initially non-thermal distribution of daughter nuclei, which may participate in non-thermal nuclear reactions. In fact, if only a small fraction of the produced energetic \(^3\text{H}\) and \(^3\text{He}\) may further react via \(^3\text{H}(\gamma) + \text{He} \rightarrow \text{Li} + n(p)\), overproduction of \(^6\text{Li}\) may result. This reaction has energy threshold of \(E_{\text{th}}^{\text{Li}} = 4.80\) MeV for synthesis of \(^6\text{Li}\) by \(^3\text{He}\) nuclei and 4.03 MeV by \(^3\text{He}\) nuclei. The cross section for \(^3\text{He}(\gamma,p)^6\text{Li}\) has been measured at \(32 + 3\) mb at 28 MeV energy (in the lab frame) \(^6\), where the first contribution is from production of \(^6\text{Li}\) in the ground state and the second is into the second excited state of \(^6\text{Li}\) (which decays into the ground state). The cross section for \(^3\text{H}\) is expected to be almost the same due to symmetry considerations. Unfortunately, there seems to be no further experimental data for this reaction. Theoretical calculations of nuclear reactions within seven-nucleon systems \(^7\) may reproduce the experimental data and suggest that the cross section is almost energy independent between threshold and \(E_{\text{th}} \approx 35 \) MeV. In contrast, \(^6\text{Li}\) production during BBN has to proceed mainly via a reaction absent of an energy threshold, \(^2\text{H} + \text{He} \rightarrow \text{Li}\), with cross section in the \(10 - 100 \) nb range, a factor \(\sim 10^9 \) below that for \(^3\text{H}(\gamma,n)^6\text{Li}\). BBN yields of \(^6\text{Li}\) are therefore generically low \(10^{-14} \lesssim \langle 6\text{Li}/3\text{H} \rangle \lesssim \) a few \(\times 10^{-13} \), with considerable uncertainty remaining due to ill-determined reaction rates.

The kinetic energy transferred to the daughter \(^3\text{H}\) and \(^3\text{He}\) nuclei during the photodisintegration process is a simple function of photon energy, \(E_{\text{H}}(E_{\gamma}) = (E_{\gamma} - E_{\text{th}}^{\text{Li}})/4 \). This implies that a \(\gamma \)-ray needs \(E_{\gamma} \approx 40 \) MeV in order to produce a mass three nuclei sufficiently energetic to synthesize \(^6\text{Li}\). The main energy loss of energetic charged nuclei in the plasma is due to Coulomb scattering off electrons and plasma excitations. Energy loss due to these processes per unit path length traveled by the nuclei is given by \(13 \) (\(dE/dx \)) \(_{\text{C}} \) = \((2Z^2/\omega v^2) \omega^2 \) \(n_e \omega_e^2/\omega_p \), where \(\omega_p^2 = 4\pi e^2/\mu_e \) is the plasma frequency, \(n_e \) the electron density, \(\nu \) the velocity of the energetic nuclei, \(Z \) the charge of the nuclei, and \(\Lambda \) a factor of order unity. Given the above, it is possible to calculate the total \(^6\text{Li}\) yield resulting from the energetic “breakout” photons. This is accomplished by a convolution over (a) the initial \(^3\text{H}(\gamma)^3\text{He}\) energy which is given by the spectrum of the photodisintegrating photons Eq. (1), the energy-dependent relative reaction rates for \(^\alpha\text{He}\) photodisintegration and Bethe-Heitler pair production Eq. (4), and the relation between \(E_{\text{H}} \) and \(E_{\gamma} \), and (b) the probability that a \(^3\text{H}(\gamma)^3\text{He}\) nuclei of given initial energy synthesizes with \(^4\text{He}\) to form \(^6\text{Li}\) as it continuously looses energy by Coulomb interactions. This results in

\[
N_{6\text{Li}} = \int_{E_{\text{th}}^{\text{Li}}}^{E_{\gamma}} \frac{dE_{\gamma}}{dE_{\gamma}} \frac{dN_{\text{He}}}{dE_{\gamma}} \\
\times \int dE_{\gamma} n_{\text{He}} \sigma_{\text{BH}(\gamma,n)}(\alpha) \left(\frac{dx}{dE_{\gamma}} \right) C. \tag{5}
\]

Figure 1 shows the synthesized \(^6\text{Li}\) yield as a function of redshift per MeV of electro-magnetically interacting energy injected by the decay of relics. The calculation uses Eq. (1) - (5), as well as a \(^4\text{He}\) photodisintegration cross section \(\sigma_{\text{BH}(\gamma,p)}^\text{H} \approx 0.8 \text{mb} \) \((E_\gamma/40 \text{MeV})^{-2.9} \) applicable for \(E_\gamma > 40 \text{ MeV} \). The cross section for \(^3\text{He}(\gamma,p)^6\text{Li}\) is taken to be energy-independent in the energy range of interest at a value of \(38 \) mb, as suggested by the experimental determination and theoretical calculations. Given this, one finds that the contribution to the total yield of \(^6\text{Li}\) is peaked for “breakout” photon energies of \(E_\gamma \approx 70 - 80 \) MeV, resulting in \(^3\text{H}\) and \(^3\text{He}\) nuclei with energy \(E_3 \approx 15 - 20 \) MeV, close to the energy where the cross section for \(^3\text{He}(\gamma,p)^6\text{Li}\) has been measured. The calculation presented takes also account of two additional effects. Tritium nuclei are unstable with half life \(\tau_{3\text{H}} = 12.33 \) y, such that for redshifts below \(z < 10^4 \) tritium nuclei may decay while still energetic enough to synthesize \(^6\text{Li}\). An additional source of \(^6\text{Li}\) is due to the photodisintegration of \(^7\text{Li}\). This has been included \(^{13}\) and results in \(^6\text{Li}\) production for redshifts \(z \gtrsim 10^6 \), as evident from Figure 1. At redshifts \(10^6 \lesssim z \lesssim 5 \times 10^5 \) the \(^6\text{Li}\) yield may be somewhat uncertain due to the neglect of \(\gamma\gamma \) scattering in the spectrum Eq. (1, 4).

Dimopoulos et al. \(^{13}\) have shown that \(^6\text{Li}\) is also synthesized in hadronic showers generated by the hadronic decay of relics. Yields are dependent on the number and energy of injected baryons in the decay, which are sensitive to the mass and the initial decay products of the relic. They estimate a production of \(5 \times 10^{-11} \) of \(^6\text{Li}\) per MeV of relic particle energy for hadronic decay of a particle with mass \(M_X \approx 1 \) TeV. This is comparable to the yield from electro-magnetic cascades for redshifts below \(10^6 \), but may dominate \(^6\text{Li}\) production at higher redshifts. Note that the \(^6\text{Li}\) yield presented here is virtually independent of decay mode, as it only depends on the fraction of relic energy converted into electro-magnetically interacting energy. This fraction is typically of order unity except for the case of “invisible” decays.

The abundance of \(^6\text{Li}\) has been determined for the presolar nebula at \(6\text{Li}/H \approx 1.5 \times 10^{-10} \) and, within the atmospheres of hot, low-metallicity, Population II, halo stars. A number of authors have claimed detections of the \(^6\text{Li}/7\text{Li}\) ratio in the star HD 84937 \(^{19,20}\), with the most recent observation yielding \(6\text{Li}/7\text{Li} = 0.052 \pm 0.019 \). Furthermore, a \(^6\text{Li}\) detection has also been claimed for the
star BD 26 3578 at \(\frac{6}{7} \) Li = 0.05 ± 0.03. Both stars have metallicity of approximately [Fe/H] \(\approx -2.3 \), and belong to the Spite plateau of constant \(\frac{7}{H} \) Li ratios, believed to reflect the primordial \(\frac{7}{H} \) Li abundance. Recently, the first observational determination of \(\frac{6}{7} \) Li/\(\frac{7}{H} \) Li ratios in the far more metal-rich ([Fe/H] \(\approx -0.6 \)) galactic disk stars HD 68284 and HD 130551 has been claimed. Coincidentally, both stars have \(\frac{6}{7} \) Li \(\approx 0.05 \) with \(\frac{7}{H} \) Li ratios only slightly elevated from the Spite plateau. Given the value of the Spite plateau \(\frac{7}{H} \) Li \(\approx 1 - 2 \times 10^{-10} \), one finds \(\frac{6}{H} \) Li \(\approx 5 - 10 \times 10^{-12} \), for the four stars where \(\frac{6}{H} \) Li detections have been claimed.

Whereas the origin of \(\frac{7}{H} \) Li in hot, low-metallicity halo stars is known to be primordial, \(\frac{6}{H} \) Li, as well as the isotopes \(\frac{9}{H} \) Be, \(\frac{10}{H} \) B (and some fraction of \(\frac{11}{H} \) B), are believed to originate from spallation (\(p, \alpha + CNO \rightarrow LiBeB \)) and fusion (\(\alpha + \alpha \rightarrow Li \)) reactions of cosmic rays on interstellar gas. The abundances of these elements are expected to generically increase with increasing metallicity, since metallicity represents a measure of the total “action” of galactic supernova shock generated cosmic rays, up to the time of the formation of the star. There is controversy as to the detailed composition of the cosmic rays responsible for LiBeB production. In order to explain an observed linear relationship of Be versus Fe (which is contrary to what is expected from “standard” cosmic rays with roughly interstellar composition at the time of the supernova), observationally allowed, but so far un-known, populations of metal-enriched cosmic rays have been postulated. Alternatively, it has been argued that if variation of O/Fe ratios with metallicity are taken into account, the observational data of LiBeB may be reproduced.

The \(\frac{6}{H} \) Li isotope may be depleted during the pre-main sequence, as well as main sequence phase of stars. Nevertheless, the models by Ref. [12] and [23] have been used to argue against significant (more than factor \(\sim 2 \)) depletion of \(\frac{6}{H} \) Li (and \(\frac{7}{H} \) Li) in the Pop II halo stars. The claim is, that by constructing models which reproduce the solar system \(\frac{6}{H} \) Li, the \(\frac{9}{H} \) Be versus iron relation, as well as the metallicity varying \(\frac{6}{H} \) Li/\(\frac{9}{H} \) Be ratios (\(\approx 80 \) in Pop II stars, and \(\approx 5.9 \) in the solar system), it seems not possible to produce \(\frac{6}{H} \) Li by far more than that observed in the halo stars precluding significant astration of this isotope. Ramaty et al. [24] even claim, that whereas models of metal-enriched cosmic rays may reproduce the \(\frac{9}{H} \) Be data, none of the existing cosmic ray models are able to synthesize \(\frac{6}{H} \) Li in abundance as observed in the halo stars, an argument which is based on cosmic ray energetics.

In light of this it is intriguing to note that existing \(\frac{6}{H} \) Li observations, taken face value, are consistent with a “no evolution” hypothesis for metallicities below [Fe/H] \(\leq -0.6 \). Of course, it is most likely that \(\frac{6}{H} \) Li astration has occurred in the two disk stars with metal-
licity $[\text{Fe/H}] \sim -0.6$, since cosmic ray nucleosynthesis scenarios predict a ^6Li abundance in excess of that observed in these stars. However, in the absence of astration, a metallicity-independent abundance could be reconciled with a primordial origin of ^6Li, similar to the existence of a Spite plateau for ^7Li, though with ^6Li originating from a very different process. A primordial origin could also offer an explanation for the relatively high ^6Li abundance in the Pop II stars.

One may use the observed ^6Li abundance to derive a tentative limit on the abundance of relics decaying after BBN, subject to the loophole of ^6Li astration in halo stars. In Figure 2, the demand of pre-galactic ^6Li synthesis not to exceed $^6\text{Li}/^6\text{He}\approx 7 \times 10^{-12}$ was imposed on a relic decaying with half-life τ_X. In summary, I have shown that an era of non-thermal light-element nucleosynthesis following the BBN freeze-out and initiated by the electromagnetic decay of massive particles, evaporation of primordial black holes, or radiating topological defects, not only leads to production of ^3He and ^4He as commonly known, but also results in efficient ^6Li synthesis. Here ^6Li is mainly synthesized via $^3\text{He}(a, n)^6\text{Li}$ by energetic tritium nuclei resulting from the photodisintegration of ^4He. This result provides additional motivation for observations of ^6Li in low-metallicity stars, accompanied by an improved understanding of ^6Li cosmic ray production, and stellar depletion, since upper limits on the pregalactic abundance of ^6Li may be used to constrain non-equilibrium processes in the early universe. In the absence of stellar ^6Li astration, current observationally determined $^6\text{Li}/^6\text{He}$ ratios in low-metallicity stars, already provide a factor ~ 50 stronger constraint on the electromagnetic decay of relics than consideration of production of $(^2\text{H} + ^3\text{He})$ alone. This underlines the importance of the study of ^6Li in metal-poor stars. On the other hand, if a relatively high plateau of $^6\text{Li}/^6\text{He}$ ratios in low-metallicity stars should be ever established, invaluable new insight in the evolution of the very early universe might be gained.

I wish to acknowledge many useful discussions with Jan B. Rehm.

† Electronic Address: jedamzik@mpa-garching.mpg.de

[1] D. Lindley, Mon. Not. R. Astr. Soc. 193, 593 (1980).
[2] for a review cf. J. Ellis, G. B. Gelmini, J. P. Lopez, D. V. Nanopoulos, and S. Sarkar, Nucl. Phys. B373, 399 (1992); S. Sarkar, Rept. Prog. Phys. 59 1493 (1996).
[3] E. Witten, Nucl. Phys. 249, 557 (1986); J. P. Ostriker, C. Thompson, and E. Witten, Phys. Lett. B180, 231 (1986); R. H. Brandenberger, Nucl. Phys. B293, 812 (1987); C. T. Hill, D. N. Schramm, and T. K. Walker, Phys. Rev. D36, 1007 (1987).
[4] G. Sigl, K. Jedamzik, D. N. Schramm, and V. S. Berezinsky, Phys. Rev. D52 6682 (1995).
[5] F. A. Aharonian, V. G. Kirillov-Ugryumov, and V. V. Vardanian, Astrophys. Space Sci., 115 201 (1985).
[6] V. S. Berezinskii, S. V. Bulanov, V. A. Dogiel, V. L. Ginzburg, and V. S. Ptuskin, “Astrophysics of Cosmic Rays”, (North Holland, Amsterdam 1990).
[7] R. J. Protheroe, T. Stanev, and V. S. Berezinsky, Phys. Rev. D51 4134 (1995).
[8] M. Kawasaki and T. Moroi, Astrophys. J. 452, 506 (1995).
[9] J. A. Koepke and R. E. Brown, Phys. Rev. C16 18 (1977).
[10] Y. Fujiwara and Y. C. Tang, Nucl. Phys. A522 459 (1991).
[11] K. M. Nollett, M. Lemoine, and D. N. Schramm, Phys. Rev. C56 1144 (1997).
[12] E. Vangioni-Flam, M. Cassé, R. Cayrel, J. Audouze, M. Spite, and F. Spite, New Astron. 4 245 (1999).
[13] J. D. Jackson, in Classical Electrodynamics (New York: Wiley).
[14] M. Gari and H. Hebacher, Phys. Rep. 72 1 (1981).
[15] The Coulomb stopping time for a ^3He with energy $E_3\text{He}$ is $\tau_{\text{stop}}\approx 2.0 \times 10^7 s (z/10^{-3})^{-1}(E_3\text{He}/15\text{MeV})^{1/2}$. The decay product ^4He may still synthesize on ^4He but loses energy more rapidly due to its higher charge.
[16] For direct production by ^7Be photodisintegration equations very similar to Eq. (3) and Eq. (4), with the appropriate replacements, have been used. Further, a cross section for $^7\text{Li} (\gamma, n)^6\text{Li}$ as given in Ref. [17], and a BBN $^7\text{Li}/^6\text{He}$ yield of 2×10^{-10} has been used. A similar cross section for $^7\text{Be} (\gamma, p)^6\text{Li}$ has been assumed and $^7\text{Li}(\gamma, p)^6\text{He}$ has been, conservatively, neglected.
[17] S. S. Dietrich and B. L. Berman, Atom. Data Nucl. Data 38 214 (1988).
[18] S. Dimopoulos, R. Esmailzadeh, L. J. Hall, and G. D. Starkman, Astrophys. J. 330 545 (1988).
[19] V. V. Smith, D. L. Lambert, and P. E. Nissen, Astrophys. J. 408 262 (1993); L. M. Hobbs and J. A. Thorburn, Astrophys. J. 491 772 (1997); R. Cayrel, M. Spite, F. Spite, E. Vangioni-Flam, M. Cassé, and J. Audouze, Astron. & Astrophys. 343 923 (1999).
[20] V. V. Smith, D. L. Lambert, and P. E. Nissen, Astrophys. J. 506 405 (1998).
[21] P. E. Nissen, D. L. Lambert, F. Primas, and V. V. Smith, Astron. & Astrophys. 348 211 (1999).
[22] D. K. Duncan, D. L. Lambert, and M. Lemke, Astrophys. J. 401 584 (1992); M. Cassé, R. Lehoucq, and E. Vangioni-Flam, Nature 373 318 (1995); R. Ramaty, B. Kozlovsky, and R. E. Lingenfelter, Astrophys. J. 438 L21 (1995).
[23] B. D. Fields and K. A. Olive, New Astron. 4 255 (1999).
[24] R. Ramaty, S. T. Scully, R. E. Lingenfelter, and B. Kozlovsky, astro-ph/9909021