The birth of piRNAs: how mammalian piRNAs are produced, originated, and evolved

Yu H. Sun1,2 · Brent Lee1 · Xin Zhiguo Li1,2

Received: 12 May 2021 / Accepted: 15 October 2021 / Published online: 1 November 2021
© The Author(s) 2021

Abstract
PIWI-interacting RNAs (piRNAs), small non-coding RNAs 24–35 nucleotides long, are essential for animal fertility. They play critical roles in a range of functions, including transposable element suppression, gene expression regulation, imprinting, and viral defense. In mammals, piRNAs are the most abundant small RNAs in adult testes and the only small RNAs that direct epigenetic modification of chromatin in the nucleus. The production of piRNAs is a complex process from transcription to post-transcription, requiring unique machinery often distinct from the biogenesis of other RNAs. In mice, piRNA biogenesis occurs in specialized subcellular locations, involves dynamic developmental regulation, and displays sexual dimorphism. Furthermore, the genomic loci and sequences of piRNAs evolve much more rapidly than most of the genomic regions. Understanding piRNA biogenesis should reveal novel RNA regulations recognizing and processing piRNA precursors and the forces driving the gain and loss of piRNAs during animal evolution. Such findings may provide the basis for the development of engineered piRNAs capable of modulating epigenetic regulation, thereby offering possible single-dose RNA therapy without changing the genomic DNA. In this review, we focus on the biogenesis of piRNAs in mammalian adult testes that are derived from long non-coding RNAs. Although piRNA biogenesis is believed to be evolutionarily conserved from fruit flies to humans, recent studies argue for the existence of diverse, mammalian-specific RNA-processing pathways that convert precursor RNAs into piRNAs, perhaps associated with the unique features of mammalian piRNAs or germ cell development. We end with the discussion of major questions in the field, including substrate recognition and the birth of new piRNAs.

Introduction

PIWI-interacting RNAs (piRNAs) are small non-coding RNAs that form 1:1 RNA–protein complexes with PIWI (P-element-induced wimpy testis) proteins. The PIWI gene was first identified in 1997, the disruption of which leads to defects in germ stem cell maintenance in Drosophila (Lin and Spradling 1997). Further studies revealed that a conserved family of PIWI genes with an essential function in germ cells is widely distributed in both vertebrates and invertebrates (Chirn et al. 2015; Murchison et al. 2008; Wynant et al. 2017). Three PIWI paralogs are found in mice, MIWI, MILI, and MIWI2, the deletion of any one of which leads to male infertility (Aravin et al. 2007b; Deng and Lin 2002; Carmell et al. 2007) (Fig. 1). piRNAs were first reported in 2001 in Drosophila as small silencing RNAs with distinct features from known microRNAs (miRNAs) or small interference RNAs (siRNAs) (Aravin et al. 2001). Although research in Tetrahymena in 2002 indicated that PIWI proteins bind small RNAs and the RNA–protein complex functions together in genome rearrangement (Box 1), the name “piRNA” was not coined until a group of studies published in 2006 revealed that a set of germ cell-specific small RNAs associate with PIWI proteins in both Drosophila and mammals (Vagin et al. 2006; Girard et al. 2006; Aravin et al. 2006; Grivna et al. 2006; Lau et al. 2006). These studies uncovered the features that distinguish piRNAs from other small RNAs: (1) piRNAs have a characteristic length of 24–35 nucleotides (nt), which is longer than both miRNAs and endogenous siRNAs; (2) 2′-O-methyl modifications occur at the 3′-end of piRNAs; and (3) piRNAs associate with PIWI proteins, a subclade of Argonaute proteins. While later studies have confirmed the distribution of piRNAs...
across bilateral animals (Grimson et al. 2008; Lewis et al. 2018), and piRNA biogenesis is believed to be evolutionarily conserved from fruit flies to humans (Czech and Hannon 2016a; Gainetdinov et al. 2018), recent studies argue for the existence of diverse, mammalian-specific RNA-processing pathways that convert precursor RNAs into piRNAs, probably associated with the unique features of mammalian piRNAs or germ cell development. Therefore, this review focuses primarily on mouse piRNAs, although piRNAs from other organisms will be discussed when relevant.

Multi-faceted piRNAs—classifying piRNAs

In mice, piRNAs are divided into three major classes based on their origins (Table 1): transposable element (TE) piRNAs from DNA transposons, endogenous retroviruses, long interspersed nuclear elements (LINEs), or short interspersed nuclear elements (SINEs); intergenic piRNAs from non-coding regions of the genome; and 3′ untranslated region (3′UTR) piRNAs that map to the 3′UTRs of protein-coding regions in the sense orientation. TE piRNAs protect the germline genome from TE activation, a function that is evolutionarily conserved in bilateral animals (Kumar and Carmichael 1998; Aravin and Hannon 2008; Farazi et al. 2008; Thomson and Lin 2009; Grimson et al. 2008). TE piRNAs are the dominant piRNA class in *Drosophila* and zebrafish, whereas intergenic piRNAs are the dominant piRNA class in adult mammalian testes. Both 3′UTR piRNAs and intergenic piRNAs are mostly uniquely mapped to the genome and lack well-identified targets. A small fraction of intergenic piRNAs have been shown to base-pair with and trigger the decay of mRNAs required for sperm maturation (Goh et al. 2015; Gou et al. 2014; Zhang et al. 2015; Wu et al.

Table 1 Classification of piRNAs in mammals

Precursors	TE RNA	IncRNA	3′UTR RNA
Developmental stage	Pre-natal	Pachytene	Pre-pachytene hybrid
Present	Bilateral animals	Mammals	*Drosophila* to mice
Function	Silence TEs	Silence mRNA	Fine-tune protein synthesis
Biogenesis	Ping-Pong, phased biogenesis	Phased biogenesis, TDRD5 (Tudor Domain Containing 5), and ribosomes	Phased biogenesis, TDRD5, and ribosomes
2020). 3'UTR piRNAs have been detected in Drosophila, frogs, and diverse mammalian species (Robine et al. 2009; Chirn et al. 2015). These 3'UTR piRNAs are derived from full-length mRNA precursors rather than cryptic transcripts corresponding exclusively to 3'UTRs, and their biogenesis is coupled with translation thus fine-tuning protein synthesis from their mRNA precursors (Sun et al. 2021).

piRNAs can be categorized into primary piRNAs and secondary piRNAs based on their biogenesis pathways, which are principally distinguished by their mechanisms of 5'end formation. Primary piRNAs are produced from long single-stranded RNA precursors that are synthesized from piRNA loci, and their 5'ends are produced during the fragmentation process, likely involving the MitoPLD endonuclease (or PLD6, which has a homolog “Zucchini” in Drosophila) located on mitochondrial outer membranes. Secondary piRNAs are produced from piRNA-targeted transcripts, and their 5'ends are generated by the endonucleolytic activity of PIWI proteins, which cleaves between positions 10 and 11 of the base-pair complementary RNA target relative to the piRNA 5'end. These secondary piRNAs can target the primary piRNA precursor transcripts to generate more secondary piRNAs, resulting in a piRNA-specific “Ping-Pong” loop. This loop is believed to represent an adaptive immune response that enables piRNAs to silence TE transcripts post-transcriptionally, as the loop continues to produce TE piRNAs until the TE transcripts are diminished (Gunawardane et al. 2007; Brennecke et al. 2007). In Drosophila, secondary piRNAs can also trigger a Zucchini-dependent “phased” piRNA biogenic mechanism that resembles primary piRNA biogenesis but only occurs downstream of the initial PIWI-catalyzed cleavage event in a 5' to 3' stepwise manner, generating non-overlapping fragments known as pre-piRNAs. After loading onto PIWI proteins, the pre-piRNAs (23–42 nt) are further trimmed and methylated to become mature piRNAs (Mohn et al. 2015; Han et al. 2015; Homolka et al. 2015; Ding et al. 2017; Gainetdinov et al. 2018; Darricarrère et al. 2013; Ishizu et al. 2015).

Based on the dynamics of their expression, mouse piRNAs can be further classified into prenatal piRNAs, pre-pachytene piRNAs, pachytene piRNAs, and hybrid piRNAs. Prenatal piRNAs are TE-rich and associated with MILI and MIWI2 proteins. MILI-bound prenatal piRNAs silence piRNA target transcripts in the cytosol. MIWI2-bound prenatal piRNAs are shuttled to the nucleus to recruit epigenetic machinery to direct the DNA methylation (Schöpp et al. 2020) of TEs around 13.5–15.5 days post coitum (dpc) (Arafin et al. 2008; Kuramochi-Miyagawa et al. 2008). Knockout of MILI or MIWI2 leads to TE desilencing; however, the catalytic activity of MIWI2 is not required (De Fazio et al. 2011), indicating that MILI-bound piRNAs are sufficient to trigger a robust cytotoxic Ping-Pong reaction and the formation of MIWI2-bound secondary piRNAs. Thus, the current data suggest that a subset of MILI cleavage products is loaded to MILI staying in the cytosol to trigger a Ping-Pong loop and another subset of cleavage products is loaded to MIWI2, and the MILI cleavage also triggers downstream phased piRNA production loading to MIWI2 (Yang et al. 2016). Pre-pachytene piRNAs, expressed after birth, have the lowest abundance among the four groups and are composed of TE piRNAs and 3'UTR piRNAs. They are associated with MILI and are essential for silencing TEs during the mitotic and meiotic stages of adult spermatogenesis (Di Giacomo et al. 2013). Pachytene piRNAs, along with MIWI proteins, are produced during the pachytene stage of meiosis. They, associated with both MILI and MIWI, are generally poor in TE complementary sequences and are mostly derived from long non-coding RNA (lncRNA) precursors synthesized in intergenic regions. Pachytene piRNAs represent the most abundant class of small RNAs in the adult testis, around 5.7 to 7.2 μM per cell (Gainetdinov et al. 2018). Pachytene piRNAs are produced via a Ping-Pong independent mechanism (Beyret et al. 2012), and, indeed, MIWI endonucleolytic cleavage activity is not required for pachytene piRNA production. Hybrid piRNAs are a class of piRNAs with features of both pachytene piRNAs (being present at increased levels during the pachytene stage and derived from lncRNAs) and pre-pachytene piRNAs (which map to mRNA 3'UTRs) (Li et al. 2013). Hybrid piRNA activation during pachytene stage is driven by the same transcription factor A-MYB as pachytene piRNAs, and their 3'UTRs are embedded with TE sequences, thus producing TE piRNAs that trigger Ping-Pong loops silencing TEs (Sun et al. 2021).

Transcription of piRNA loci

Despite piRNAs being the most heterogenous small non-coding RNA in animals with > 1 million unique sequences detected in individual germlines from most animal species that have been studied (Vagin et al. 2006; Aravin et al. 2006; Lewis et al. 2018), they are produced from discrete genomic loci, historically defined using computational methods and named piRNA clusters (Brennecke et al. 2007; Gainetdinov et al. 2018). Later work has defined the transcriptional start sites, polyA cleavage sites, promoters, and splice sites of the transcriptional units in the piRNA loci in mice (Li et al. 2013). Among all classes of murine piRNAs, we understand the transcriptional regulation of pachytene piRNAs in the most detail. Unlike convergent transcribed dual-stranded piRNA loci in Drosophila and chickens, piRNA loci in mammals are unidirectionally or bidirectionally transcribed similar to the transcription of protein-coding genes (Gould et al. 2012; Sun et al. 2017; Li et al. 2013; Yu et al. 2021). The single-strand pachytene piRNA precursors, ranging from 500 to 80,000 nt (Betel et al. 2007; Li et al. 2013),
are generated with the activation of the transcription factor A-MYB (Li et al. 2013) (Fig. 2). A-MYB-mediated transcriptional regulation of pachytene piRNAs is conserved in amniotes (Li et al. 2013), and A-MYB also regulates the mRNAs coding for piRNA biogenic proteins, forming a feedforward loop to ensure the robust activation of piRNA production during pachytene stage. Unlike promoters from protein-coding genes, which often have a high CpG content, the promoters of pachytene piRNA loci have a low CpG content and are heavily methylated (Yu et al. 2021). RNA polymerase II transcribes these pachytene piRNA genes, and the RNAs undergo conventional mRNA processing, including 5′-capping and polyA tailing. Pachytene piRNA precursors often contain introns that are removed by splicing, indicating that splicing occurs during piRNA precursor synthesis. Those precursors that harbor a long first exon require an additional biogenic factor, BTBD18 (BTB Domain Containing 18), to facilitate their transcriptional elongation (Zhou et al. 2017; Yu et al. 2021). Pachytene piRNA precursors also bind THOC1 and THOC2, THO complex subunits, for their nuclear export (Yu et al. 2021) and are eventually localized to the surface of mitochondria for primary piRNA biogenesis (Li et al. 2013; Murano et al. 2019; Fabry et al. 2019) (Fig. 2).

Post-transcriptional processing of piRNA precursors

The post-transcriptional processing of all primary piRNA precursors can be simplified to three steps: 5′-end formation, PIWI loading, and 3′-end formation (Fig. 2). The 5′-ends of primary piRNAs are formed when piRNA precursors are fragmented, likely by the MitoPLD endonuclease in mice based on structural and biochemical studies on its homologs in *Drosophila* (Gao and Frohman 2012; Kabayama et al. 2017) and silkworm (Izumi et al. 2020). In mice, MitoPLD, previously shown to be a phospholipid-hydrolyzing enzyme, contains an N-terminal mitochondrial targeting signal and is located on the outer membrane of mitochondria (Gao and Frohman 2012; Kabayama et al. 2017). However, structural studies of *Drosophila* ZUCCHINI suggests that its active site resembles the bacterial endonuclease Nuc, and Zucchini displays endonuclease activities in vivo (Voigt et al. 2012). During *Drosophila* phased piRNA biogenesis, ZUCCHINI continuously cleaves the single-stranded RNAs and simultaneously generates the 3′-end of the pre-piRNA (before 3′-trimming occurs) and the 5′-end of the next, immediately adjacent pre-pre-piRNA. The cleaved piRNA intermediates, pre-pre-piRNAs, are loaded onto PIWI proteins to trigger the next ZUCCHINI-dependent cleavages between the 3′-end of the pre-piRNAs and 5′-end of the pre-pre-piRNAs. Recently, the cleavage of single-stranded RNAs by silkworm ZUCCHINI has been recapitulated in vivo (Izumi et al. 2020). MOV10L1 is an RNA helicase required for piRNA biogenesis. It interacts with PIWI proteins stably, while its interaction with pachytene piRNA precursors is transient, requiring crosslink to be detected (Zheng et al. 2010; Vourekas et al. 2015). MOV10L1 is thought to load PIWI proteins onto the pre-pre-piRNAs. The 3′-ends of pre-piRNAs undergo trimming by an exonuclease (Trimmer in *Drosophila*, PNLDCl in mice) and 2′-O-methylation by HENMT1 (Hayashi et al. 2016; Kirino and Mourelatos 2007; Ohara et al. 2007).

Substrate recognition of piRNA precursors

The mechanisms that identify an RNA for piRNA processing in mice are currently unknown. As 5′-end formation is upstream of PIWI loading and 3′-end formation, the main question is what specifies the initial cleavages on the piRNA precursors. Based on the current model from *Drosophila*, the initiation of ZUCCHINI-dependent phased piRNA processing requires an initiator piRNA that has base-pair complementarity to the piRNA precursors. In *Drosophila*, the initiator piRNAs are provided maternally to the eggs in the germplasm and the cells with germplasm differentiate into germ cells. The maternally deposited initiator RNAs are the secondary piRNAs of the previous (F0) generation, which target the primary piRNA precursors in the germ cells of F1 generation and initiate primary piRNA production in a phased manner. The secondary piRNAs generated from the primary piRNAs will be deposited for primary piRNA production in the following generation (F2) and so on. However, unlike *Drosophila* germ cells, whose fates are pre-determined by the presence of germplasm where the piRNAs are deposited (Santos and Lehmann 2004), mammalian germ cells are induced de novo from somatic cells during embryogenesis (Nicholls et al. 2019). Thus, the biogenesis of pre-natal piRNAs in mice must have been initiated de novo. Similarly, de novo phased piRNA biogenesis...
through unknown mechanisms occurs in somatic cells of Drosophila, where piRNAs do not display Ping-Pong signatures (Homolka et al. 2015). Although it has been proposed that pre-pachytene piRNAs could serve as initiator piRNAs for pachytene piRNA biogenesis (Gainetdinov et al. 2018; Czech and Hannon 2016a), PIWI protein is below the detection limit in spermatocytes before pachytene piRNA production commences (Di Giacomo et al. 2013), arguing against the existence of abundant initiator piRNAs for pachytene piRNA biogenesis being provided from the pre-pachytene stage. Thus, it remains unclear whether the phased biogenesis of pachytene piRNAs is initiated by initiator piRNAs or by a de novo mechanism.

Other than the presence or source of initiator piRNAs, two major biogenic differences between mouse pachytene piRNAs and Drosophila germline piRNAs lie with their precursors. First, mouse pachytene piRNA precursors are long and continuous transcripts. Although both types of precursors are single-stranded RNAs, Drosophila germline piRNA precursors are cryptic transcripts that are synthesized in a heterochromatin-dependent and promoter-independent mechanism (Andersen et al. 2017), whereas pachytene piRNA precursors have defined transcriptional initiation sites and polyA cleavage sites and are long continuous RNAs up to 80,000 nt in length. Drosophila germline piRNA precursors are derived from highly repetitive regions, whereas mouse pachytene piRNA precursors are depleted of TE sequences in comparison to the rest of the genome. Given that downstream phased piRNA production declines with distance (Mohn et al. 2015; Han et al. 2015), which may be due to the instability of cleavage products prior to PIWI loading, more frequent cleavage promoted by initiator piRNAs would be required to produce more phased piRNAs in Drosophila (Mohn et al. 2015). However, the lack of repetitive elements and low abundance of piRNA prior to the pachytene stage argue against frequent initiator piRNA-mediated cleavage on pachytene piRNA precursors. Because of the low number of cleavages, if any, promoted by initiator piRNAs, phased pachytene piRNA biogenesis must be highly processive, as single-stranded RNAs are known to form secondary structures and bind to RNA-binding proteins. This requirement for high processivity of phased production may explain why ribosomes are involved in piRNA biogenesis in vertebrates, as elongating ribosomes are strong helicases (Takyar et al. 2005; Qu et al. 2011), unwinding secondary structures or stripping RNA-binding proteins off the precursors.

Second, mouse pachytene piRNA precursors are translated. In Drosophila, the RNA granules where piRNA precursors are processed are in close proximity to the nucleus, allowing direct channeling of the precursors. However, such attachment between the nucleus and RNA granules is not observed in mice. This may cause increased dwell time for piRNA precursors in the cytosol and can promote ribosome translation of the upstream open reading frame (uORF) of piRNA precursors, which are nonetheless annotated as IncRNAs (without long or conserved ORFs) (Sun et al. 2020). After translation of the uORFs, MOV10L1 facilitates the translocation of 80S ribosomes into the uORF downstream regions that produce the majority of piRNAs (Yabuta et al. 2011; Zheng and Wang 2012; Sun et al. 2018; Ding et al. 2018; Guan et al. 2021). Endonucleolytic cleavage occurs on ribosome-bound piRNA precursors near the ribosome E site, generating the pre-pre-piRNAs with ribosomes bound at their 5′-extremities (Sun et al. 2020) (Fig. 2). Given that ribosomes are actively moving along the UDR, based on runoff assays after translation inhibition, the current model proposes that once the ribosomes translocate downstream, PIWI proteins are loaded onto the 5′P end of pre-pre-piRNAs and trigger MitoPLD-dependent cleavage between the ribosomes and PIWI proteins. Although this ribosome-guided piRNA biogenesis mechanism is detected in chickens and lizards, it does not appear to exist in invertebrates (Izumi et al. 2020), nor does it function for regions of uORFs and 5′UTRs of pachytene piRNA precursors in mice. The phenotype of Tdrd5 mutant mice demonstrates the distinct biogenesis pathways that operate 5′ (upstream) and 3′ (downstream) of the stop codon of uORFs, as only the production of piRNAs from uORF downstream regions requires TDRD5, a Tudor domain protein that binds to pachytene piRNA precursors (Ding et al. 2018) (Fig. 2). Thus, it is possible that the ribosome-guided, TDRD5-dependent mechanism has specifically evolved for long continuous piRNA precursors. The differences between mice and Drosophila piRNA precursors suggest that more mammalian-specific biogenic factors involved in substrate recognition and coordination of substrate processing with ribosome translocation have yet to be discovered.

Summary of piRNA biogenic factors

Mouse piRNA biogenic factors, along with their homologs in Drosophila, include transcription factors (A-MYB, BTBD18), PIWI proteins (MIWI2, MILI, MIWI), multiple Tudor domain-containing proteins, ribosomes, endonucleases (MitoPLD), 3′ end maturation enzymes (PNLDC1, HENMT1), and other co-factors (MOV10L1, DDX4, GTSF1, MAEL, etc.) (Table 2). Some factors perform functions that are highly conserved between Drosophila to mammalians, such as MitoPLD (PLD6, or Zucchini in Drosophila) and S-adenosylmethionine (SAM)-dependent methyltransferase (Hen1 in Drosophila; HENMT1 in mice) (Table 2). On the other hand, some factors, representing homologous proteins between Drosophila and mice, have gained novel functions through gene duplication, such as...
Table 2 piRNA biogenesis factors in mice

Mouse	Drosophila	Function
A-MYB (MYBL1)	Myb	A-MYB is a transcription factor of mouse pachytene piRNAs. It binds to the promoter regions and drives the transcription of both pachytene piRNA precursors, hybrid piRNA precursors, and the mRNAs for core piRNA biogenesis factors including MIWI(Sun et al. 2021; Li et al. 2013)
BTBD18	–	As a nuclear protein, BTBD18 occupies a subset of pachytene piRNA-producing loci and facilitates their transcriptional elongation mediated by RNA polymerase II(Zhou et al. 2017)
MIWI (PIWIL1)	Aubergine (Aub)	Pachytene-expressed MIWI binds to piRNAs with a typical length of ~ 29–31 nt. In adult mouse testes, piRNAs are loaded to MILI and MIWI. MIWI’s PIWI domain has slicer activity which is responsible for TE silencing(Deng and Lin, 2002; Reuter et al. 2011)
MILI (PIWIL2)	Aubergine (Aub)	In primordial germ cells, mouse MILI forms Ping-Pong with MIWI2 to silence TEs. In adult mouse testes, piRNAs are loaded to MILI and MIWI. MILI’s PIWI domain has slicer activity which is responsible for TE silencing(De Fazio et al. 2011; Kuramochi-Miyagawa et al. 2008)
MIWI2 (PIWIL4)	Piwi	In primordial germ cells, mouse MILI forms a Ping-Pong loop with MIWI2 to silence transposons. MIWI2 performs transcriptional silencing with nuclear function(Aravin et al. 2008; Kuramochi-Miyagawa et al. 2008; Darricarrère et al. 2013; Carmo-Fonseca et al. 1991)
GTSF1 (CUE110)	Asterix (Arx)	GTSF1 is an essential factor for secondary piRNA production through MILI-MIWI2 Ping-Pong amplification in mice(Yoshimura et al. 2009, 2018)
MAEL	Maelstrom (Mael)	MAEL localizes predominantly at perinuclear nuage of mouse spermatocytes with a small subset clustered at nucleus and nuclear pores, and is critical for transcriptional repression of TEs(Matsumoto et al. 2015; Findley et al. 2003; Aravin et al. 2009; Sienski et al. 2012; Soper et al. 2008; Castaneda et al. 2014)
MitoPLD (PLD6)	Zucchini (Zuc)	MitoPLD is a mitochondrial outer membrane protein with endonuclease activity. It cleaves the piRNA precursors, which is required to generate the 5’-end of mature piRNAs. So far, no sequence specificity has been reported for MitoPLD’s cleavage activity in vitro(Haase, 2016; Nishimasu et al. 2012; Ipsaro et al. 2012)
GPAT2	Minotaur (Mino)	GPAT2 is a structural component of IMC required for phased piRNA biogenesis. It binds to MILI and plays a critical role in primary processing during piRNA production(Shiromoto et al. 2013; Vagin et al. 2013)
GASZ (ASZ1)	Gasz (CG2183)	GASZ is a mitochondrial outer membrane protein required for phased piRNA biogenesis. It is involved in the silencing of retrotransposons by stabilizing MILI in the nuage(Czech et al. 2013; Ma et al. 2009)
MOV10L1	Armitage (Armi)	MOV10L1 is an RNA helicase required for phased piRNA biogenesis. It unwinds secondary structures such as G quadruplexes on piRNA precursors and promotes phased piRNA biogenesis by facilitating ribosome binding on the uORF downstream regions (UDRs) (Zheng et al. 2010; Frost et al. 2010; Vourekas et al. 2015)
MVH (mouse VASA homolog, DDX4)	Vasa (Vas)	MVH is a DEAD box containing protein with ATP-dependent RNA helicase activity. It is required for the handover of PIWI-cleaved piRNA intermediates, which allows successful secondary piRNA biogenesis(Wenda et al. 2017; Kuramochi-Miyagawa et al. 2010; Xiol et al. 2014)
TDRD1	Vreteno (Vret)	TDRD1 is a Tudor domain-containing protein. In mice, it is localized in the nuage (intermitochondrial cement and chromatoid body) of mouse germ cells and binds to the arginine-methylated MILI protein, serving as a scaffold for piRNA biogenesis(Chuma et al. 2006). In Drosophila, it is localized to the nuage and Yb body(Zamparini et al. 2011)
TDRKH (TDRD2)	Papi	TDRKH is a Tudor domain-containing mitochondrial protein involved in piRNA 3’ end processing by tethering PNLD1 to the mitochondria. It is required for primary piRNA biogenesis but not for the Ping-Pong cycle. It partners with MIWI and MIWI2 via symmetrically dimethylated arginine residues(Chen et al. 2009; Ding et al. 2019; Saxe et al. 2013; Honda et al. 2013)
RNF17 (TDRD4)	Qin	RNF17 is a Tudor domain-containing protein. In mouse testes, RNF17 blocks promiscuous activity of PIWI proteins, and RNF17 mutants show inappropriate Ping-Pong targeting protein-coding genes and long noncoding RNAs. In Drosophila, it is localized to the nuage and suppresses homotypic Aub:Aub Ping-Pong(Wasik et al. 2015; Zhang et al. 2014; Pan et al. 2005)
TDRD5	Tejas (Tej)	TDRD5 is a Tudor domain-containing protein localized to the nuage. It is required for UDR piRNA biogenesis in mice but dispensable for piRNA production at the uORF region(Smith et al. 2004; Yabuta et al. 2011; Ding et al. 2018)
TDRD6	Tudor	TDRD6 is a Tudor domain-containing protein. It interacts with MILI and MIWI and is critical for the architecture of chromatoid bodies in mice(Nishida et al. 2009; Vasileva et al. 2009)
MOV10 and MOV10L1, both of which are mouse homologs of *Drosophila Armitage*. A-MYB, BTBD18, and ribosomes represent factors specific to amniote (including mammals and birds) piRNA biogenesis (Li et al. 2013; Zhou et al. 2017; Sun et al. 2020). Tudor domain-containing proteins (Gan et al. 2019) are essential for piRNA biogenesis in both *Drosophila* and mice, including TDRD1, TDRD2 (TDRKH), TDRD4 (RNF17), TDRD5, TDRD6, TDRD7, TDRD9, and TDRD12 (ECAT8) (Table 2). The 3’ end trimming protein in mice is a poly(A)-specific ribonuclease-like domain-containing 1 (PNLDC1), an ortholog protein missing in *Drosophila* but present as PARN-1 in *C. elegans* and silkworm. *Drosophila* instead uses the miRNA-trimming enzyme Nibbler to shorten piRNAs (Liu et al. 2011; Han et al. 2011; Feltzin et al. 2015), indicating the existence of diverse mechanisms for piRNA 3’ end formation (Czech and Hannon 2016b).

Table 2 (continued)

Mouse	*Drosophila*	Function
TDRD7	Tapas	TDRD7 is a Tudor domain-containing protein. It is localized to the nuage and functions together with TDRD6 in the initial assembly of chromatoid bodies in mice (Patil et al. 2014; Tanaka et al. 2011; Hosokawa et al. 2007)
TDRD9	Spindle-E (Spn-E)	TDRD9 is a Tudor domain-containing protein. It is localized to the nuage (piP body and chromatoid body) and required for Ping-Pong (Wenda et al. 2017; Shoji et al. 2009)
TDRD12	Yb, Brother of Yb (BoYb), and Sister of Yb (SoYb)	TDRD12 is a Tudor domain-containing protein. It does not co-localize with DDX4, but it is co-localized to an acrosome structure protein lectin-PNA in round spermatids. It is required for MIW12-bound secondary piRNA formation (Handler et al. 2011; Pandey et al. 2013; Kim et al. 2016). Its function is facilitated by its interaction partner Exonuclease domain-containing 1 (EXD1) (Pandey et al. 2018)
Ribosome	-	Ribosomes guide the 5’ end formation of pachytene piRNAs in mouse germ cells, mainly from the UDRs of pachytene piRNA precursors, and may act as a strong helicase to sustain phased biogenesis (Mao and Qian 2020; Sun et al. 2021, 2020)
FKBp6	Shutdown (Shu)	FKBp6 is a co-chaperone protein functioning with HSP90 to facilitate piRNA loading onto MIW12 (Olivieri et al. 2012; Preall et al. 2012; XIol et al. 2012)
HSP90	Hsp83	HSP90 is a co-chaperone protein functioning with FKBp6 to facilitate piRNA loading onto MIW12 (Specchia et al. 2010; XIol et al. 2012; Olivieri et al. 2012)
PNLDC1	Nibbler*	PNLDC1 is the pre-piRNA 3’ trimming exonuclease which shortens the pre-piRNA 3’ end to allow it to fit into the PIFWI protein (Feltzin et al. 2015; Liu et al. 2011; Han et al. 2011; Nishimura et al. 2018; Zhang et al. 2017; Ding et al. 2017)
HENMT1	Hen1	HENMT1 is an S-adenosylmethionine (SAM)-dependent methyltransferase that catalyzes 2’-O-methylation formation at the piRNA 3’ end (Lim et al. 2015; Saito et al. 2007; Wang et al. 2016; Hayashi et al. 2016; Kirino and Mourelatos, 2007; Ohara et al. 2007; Horwich et al. 2007)

*Nibbler is not an ortholog of PNLDC1 but also trims the pre-piRNAs from their 3’ ends

MOV10 and MOV10L1, both of which are mouse homologs of *Drosophila Armitage*. A-MYB, BTBD18, and ribosomes represent factors specific to amniote (including mammals and birds) piRNA biogenesis (Li et al. 2013; Zhou et al. 2017; Sun et al. 2020). Tudor domain-containing proteins (Gan et al. 2019) are essential for piRNA biogenesis in both *Drosophila* and mice, including TDRD1, TDRD2 (TDRKH), TDRD4 (RNF17), TDRD5, TDRD6, TDRD7, TDRD9, and TDRD12 (ECAT8) (Table 2). The 3’ end trimming protein in mice is a poly(A)-specific ribonuclease-like domain-containing 1 (PNLDC1), an ortholog protein missing in *Drosophila* but present as PARN-1 in *C. elegans* and silkworm. *Drosophila* instead uses the miRNA-trimming enzyme Nibbler to shorten piRNAs (Liu et al. 2011; Han et al. 2011; Feltzin et al. 2015), indicating the existence of diverse mechanisms for piRNA 3’ end formation (Czech and Hannon 2016b).

Location for piRNA biogenesis and function: RNA granules

Key piRNA biogenic factors, such as PNLDC1, TDRKH, MitoPLD, GASZ, and GPAT2, are found on the outer membrane of mitochondria (Honda et al. 2013; Czech et al. 2013; Ma et al. 2009; Shiromoto et al. 2013; Vagin et al. 2013; Nishimasu et al. 2012; Ipsaro et al. 2012; Haase et al. 2010) where specific RNA granules are located between adjacent mitochondria, called intermitochondrial cement (IMC). A more general term for these RNA- and protein-rich structures in germ cells are germinal granules (or germline granules, or germ granules) (Meikar et al. 2011). These germinal granules are also referred to as a “nuage” (French for “cloud”) due to their amorphous shape, the absence of surrounding membranes, and the abundance of RNA and proteins (Nishida et al. 2007; Seto et al. 2007; Harris and Macdonald 2001; Gunawardane et al. 2007; Brennecke et al. 2007; Meikar et al. 2011). So far, nuages have been found in the germ cells of both vertebrates and invertebrates (Eddy 1975). Nuage morphology, localization, and/or biochemical properties change as germ cells develop (Eddy 1974, 1975; Aravin et al. 2009; Chuma et al. 2009). In mammals, before birth, two types of germinal granules exist: IMC and piP-bodies (Aravin et al. 2009). piP-bodies harbor MIWI2, TDRD9, and MAEL, which are required for secondary piRNAs that will shuttle from the cytosol to nucleus for de novo DNA methylation. piP-bodies are lost after birth, but IMC structures remain until the pachytene stage. Multiple proteins are associated with IMC structures, including MILI, MIWI, TDRD1, TDRD6, TDRD7, TDRD9, MVH (DDX4), and MAEL (Meikar et al. 2011; Castaneda et al. 2014; Soper et al. 2008; Sienski et al. 2012; Aravin et al. 2009; Findley
Developmental timing for piRNA production

Over 90% of the piRNAs in the adult testis are expressed during the pachytene stage of meiosis. Since these pachytene piRNAs are not required for the completion of meiosis, production at the pachytene stage, rather than a functional necessity, is more likely to be a biogenesis requirement, with the pachytene stage likely providing optimal conditions for the massive production of piRNAs. Meiosis prophase I can be divided into five phases based on chromosome behavior: leptotene, zygotene, pachytene, diplotene, and diakinesis. The pachytene stage, when paternal and maternal chromosomes undergo synapsis and pair with each other, takes the longest time, lasting over a week in mice. The formation of the synaptonemal complex, a ladder-like series of parallel threads that form between homologous chromosomes, is a hallmark of the pachytene stage (Li and Schimenti 2007; Reynolds et al. 2007). Synapsis in mice is coupled with double-strand break repair, resulting in crossing-over. Because male mammals are the heterogametic sex and thus have sex chromosomes of different sizes, the sex chromosomes in male spermatocytes cannot be completely synapsed. A process known as meiotic silencing of unsynapsed chromatin (MSUC) (Turner et al. 2006; Khalil et al. 2004) results in entire sex chromosomes in male spermatocytes being transcriptionally inactive during the pachytene stage. MSUC has two consequences for piRNA biogenesis. First, none of the pachytene piRNA loci reside on sex chromosomes (Li et al. 2013). Second, transcriptional inactivation during synapsis leads to a decoupling of translation and transcription. For example, phosphoglycerate kinase 2 (PGK-2) is transcribed at pachytene stage and is temporally translationally suppressed until the round spermatid stage (Geisinger et al. 2021; Fine et al. 2019; Jamsai et al. 2015; Gold et al. 1983). Thus, piRNA biogenesis factor mRNAs that are translated at the pachytene stage need to be sorted separately from mRNAs experiencing translation repression. While most meiosis research focuses on chromosomal behavior during meiosis prophase, little is known about how transcription, splicing, polyadenylation, RNA exportation, and translation of mRNAs are orchestrated to initiate, promote, and exit meiosis. Our recent studies indicates that ribosome recycling factors as well as NMD pathways are specifically inhibited at pachytene stage. Otherwise, these pathways would compete the substrates with the ribosome-guided piRNA biogenesis (Sun et al. 2021; Shum et al. 2016). It is thus possible the sophisticated temporospatial mRNA regulation that enables pachytene progression also facilitates pachytene piRNA production.

Sexual dimorphism of piRNA pathways

In contrast to flies and zebrafish, where defective piRNA pathways results in sterility in both sexes (Ketting 2011), piRNA pathway disruption in mice only leads to sterile males, whereas females remain fertile (Carmell et al. 2007; Kuramochi-Miyagawa et al. 2004). This sexual dimorphism could be due to oocytes having a silencing mechanism mediated by endogenous siRNAs, which prevents TE activation (Tam et al. 2008; Watanabe et al. 2008). However, the activation of siRNAs in oocytes is rodent specific and not found in bovines nor humans, suggesting that this piRNA-independent defense mechanism is not present in oocytes of other mammalian species (Flemr et al. 2013; Rosenkranz et al. 2003; Matsumoto et al. 2015; Kuramochi-Miyagawa et al. 2010; Xiol et al. 2014; Wenda et al. 2017; Sho et al. 2009; Tanaka et al. 2011; Patil et al. 2014; Hosokawa et al. 2007; Vasileva et al. 2009; Nishida et al. 2009; Zamparini et al. 2011; Kuramochi-Miyagawa et al. 2004; Deng and Lin 2002). During early pachytene stage, pachytene piRNA precursors are transported to the IMC for piRNA processing. In late pachytene stage, the IMC disappears, and its components diffuse throughout the cytosol (Onohara and Yokota 2012). However, soon after meiosis the components from previous IMC structures aggregate into a single large (~1 μm) perinuclear granule called a chromatoid body (CB) in haploid round spermatids, which can be clearly observed under the microscope (Meikar et al. 2011). The CB is recognized by immunofluorescence staining using MVH (DDX4), MILI, and MIWI (Kotaja and Sassone-Corsi 2007; Wang et al. 2009; Meikar et al. 2014, 2011). During spermiogenesis, the CB is initially located near the acrosome and is closely associated with the nuclear envelope (Fawcett et al. 1970). The CB then migrates from the acrosomal region to the caudal pole on the other side of the cell, where it dissociates from the nuclear envelope and remains near the newly grown flagellum (Fawcett et al. 1970). As the sperm flagellum grows, the CB forms a ring structure close to the annulus of flagellum and moves with the annulus, encircling the flagellum (Parvinen 2005; Fawcett et al. 1970). During this process, the CB gradually decreases in size and undergoes progressive disaggregation (Fawcett et al. 1970). In addition to piRNA pathway proteins, the CB also harbors machinery for the miRNA pathway and nonsense mediated mRNA-decay (NMD) pathway (Kotaja and Sassone-Corsi 2007). In sum, for the three types of germinal granules, we propose that IMC is specific for piRNA biogenesis, their nuclear function, and the CB is specific for post-meiotic, piP-bodies generate MIWI2-piRNAs in preparation for granules, we propose that IMC is specific for piRNA biogenesis (Sun et al. 2021; Shum et al. 2016). It is thus possible the sophisticated temporospatial mRNA regulation that enables pachytene progression also facilitates pachytene piRNA production.
et al. 2015). Moreover, compared to most other mammals with 4 PIWI genes, rodents lack Piwil3, which has been shown to be specifically expressed in oocytes in hamsters, bovines, and humans (Yang et al. 2019; Tan et al. 2020; Ishino et al. 2021), suggesting that the Piwil3-piRNA pathway is specifically missing in the rodent lineage. To test whether the sexual dimorphic requirement for a piRNA pathway is specific for the rodent lineage, three independent groups have disrupted the piRNA pathways in hamsters and revealed that piRNA pathways are indeed required for maintaining germline genome integrity in both sexes (Zhang et al. 2021; Hasuwa et al. 2021; Loubalova et al. 2021). Thus, rodents are likely to be an outlier with the siRNAs replacing the Piwil3-piRNAs in oocytes, and piRNA pathways are generally required for germ cells of both sexes in animals.

Nonetheless, piRNA pathways in the ovaries of humans, bovines, hamster, and macaques do show distinct differences from those in testes with regards to piRNA abundance, piRNA size, modification, piRNA-associated PIWI proteins, and the genomic origins of piRNA species (Rosenkranz et al. 2015; Ishino et al. 2021; Hasuwa et al. 2021; Loubalova et al. 2021; Yang et al. 2019; Tan et al. 2020), arguing that piRNA pathways are influenced by the sex of the cell lineage. For instance, in hamsters, compared to testes piRNAs, oocyte piRNAs come from a distinct set of intergenic genomic loci whose transcription are not driven by A-MYB. Piwil3 in hamster oocytes bind to ~19 nt piRNAs without 2′-O-methyl modification, and the binding depends on the phosphorylation of Piwil3. In hamsters, while Piwil1 binds to ~29 nt piRNAs in testes, they bind to ~23 nt and ~29 nt piRNA in oocytes, and they only bind to ~23 nt piRNAs in 2-cell embryos. The developmentally dependent regulation of piRNA size contradicts the notion that the size of piRNAs is determined by the footprints of the PIWI protein. Therefore, further understanding the route of sexual dimorphism of piRNA pathways, either due to sex chromosome or sex hormone differences, will help to understand sex-dependent biogenic regulation and its impact on piRNA functions.

The evolution of piRNA pathways

Pervasive adaptive evolution among piRNA pathway proteins has been reported in both insect and vertebrate lineages (Yi et al. 2014; Levine et al. 2016, 2012; Simkin et al. 2013; Palmer and Whlybrow 2007; Obbard et al. 2009; Kolaczkowski et al. 2011). Two hypotheses have been proposed to explain the force driving this positive selection. The first hypothesis, an arms race with TEs, has been proposed since the discovery of piRNAs (Malone and Hanno 2009; Aravin et al. 2007a). As a prime embodiment of the Red Queen’s race, which originated from studies of host virus battles (Daugherty and Malik 2012), this hypothesis successfully explains why piRNA sequences need to rapidly adapt to keep up with ever-changing TE sequences but fails to provide a satisfactory explanation for the necessity of continuously changing the piRNA pathway proteins. While it is possible that piRNA biogenesis proteins have to constantly adapt to the life history of each recently invaded TE, such as driving the transcription of new piRNA precursors embedded with TEs or targeting new TE transcripts in a different subcellular location, as unlikely viruses, the TEs cannot “fight back” to repress piRNA machinery (Blumenstiel et al. 2016). The second hypothesis is adaptive evolution driven by the ongoing tension between TE silencing and off-target effects (known as genomic autoimmunity) (Blumenstiel et al. 2016). Similar tension has been observed between phage and CRISPR systems (Koonin and Yutin 2020). As the piRNAs have been shown to target mRNAs, off-targeting is the cost for robust TE suppression. The selection for specificity and sensitivity of TE suppression varies at different stages of TE invasion, with high TE activation favoring high specificity, while low TE expression favors sensitivity. Although most studies on the evolution of piRNA pathway proteins were performed on Drosophila, the same principles to suppress TEs and avoid autoimmunity would hold true for mammalians, as TE piRNAs share biogenic protein factors with pachytene piRNAs.

Pachytene piRNA sequences show poor conservation across species, and only 29 of 89 human piRNA loci share synteny conservation (the flanking genes surrounding piRNA clusters are conserved) outside of primates (Özata et al. 2020; Chirn et al. 2015). Despite being essential for male fertility, the function of pachytene piRNAs remains largely unknown. Although some pachytene piRNAs have been shown to trigger the decay of mRNAs required for meiosis or sperm maturation (Wu et al. 2020; Zhang et al. 2015; Gou et al. 2014; Goh et al. 2015), most pachytene piRNAs lack obvious complementary targets. It has also been proposed that PIWI proteins function without piRNAs (Vourkas et al. 2012), and piRNAs may exist to stabilize the PIWI protein without providing any specificity. Several models have been proposed to explain the rapid divergence of pachytene piRNA sequences. One hypothesis proposes that pachytene piRNA evolution drives reproductive isolation (Özata et al. 2020). Another suggests that existing piRNA clusters (Kawakka et al. 2012) serve as landing pads for TE transposition ‘trapping’ new TE sequences in the cluster (Yamanaka et al. 2014; Zhang et al. 2020) (Fig. 3, middle), a mechanism reminiscent of the acquisition of new sequences in CRISPR loci. While it is known that piRNA loci can autonomously process transcripts harboring insertion sequences into new piRNAs (Muerdter et al. 2012), there is only limited evidence that TE transposition, or other insertion mechanisms,
The birth of piRNAs: how mammalian piRNAs are produced, originated, and evolved

303

display a preference for targeting piRNA loci. Thus, the adaptive force underlying the rapid divergence of pachytene piRNA sequences currently remains unclear.

Two mutational modes are known to give rise to the birth of new piRNA loci. The first mode is copy number duplication or deletion of existing piRNA loci (Assis and Kondrashov 2009; Chirn et al. 2015) (Fig. 3, left). For example, mammalian piRNA loci have been reported to display elevated rates of copy number variation (Gould et al. 2012). However, it remains unclear what is the mutational mechanism leading to the copy number variations of piRNA loci. The second mode is activation of novel TE insertions into piRNA loci (Sun et al. 2017; Yu et al. 2019). For example, in koalas and chickens, proviruses that recently invaded the germline gained the ability to produce piRNAs. In koalas, piRNAs that target the KoRV-A retrovirus were originally produced from the sense strand of KoRV-A but then, through an unknown mechanism, shifted toward the production of piRNAs antisense to the retrovirus (Yu et al. 2019) (Fig. 3, right). Domesticated chickens were found to activate piRNA production from a truncated proviral locus against avian leukosis viruses, whereas undomesticated chickens did not produce piRNAs from the same locus (Sun et al. 2017). According to the “out of testis” hypothesis (Kaessmann 2010), the permissive chromatin state of spermatocytes and spermatids makes testes an ideal tissue for the emergence of new genes. Thus, it is not surprising that proviral loci are transcribed in testes, but it remains unclear what genomic and/or epigenetic mechanisms led to their ability to produce piRNAs.

Perspective

piRNAs constitute a unique and rapidly evolving class of small non-coding RNAs with a wide diversity of functions and various biogenesis pathways. Developments in genetics and sequencing techniques have advanced piRNA research through the identification of multiple key players during the various phases of piRNA processing; however, the absence of cell culture systems, or in vitro systems, that can recapitulate mammalian piRNA production has hindered the mechanistic studies of piRNA biogenic pathways. Furthermore, studying mammalian piRNA function, especially pachytene piRNAs, using conventional genetics remains a challenge. As pachytene piRNAs share key piRNA biogenic factors with pre-pachytene piRNAs, animals with defective piRNA biogenesis exhibit de-silenced TEs that trigger arrest during early spermatogenesis, which consequently masks their function during spermiation. Furthermore, A-MYB, the key pachytene piRNA transcription factor, also regulates the expression of (protein-coding) mRNAs such that A-Myb mutants also display early meiotic arrest (Li et al. 2013). Pachytene piRNAs are primarily derived from 100 intergenic genomic loci (Li et al. 2013) that are likely functionally redundant. As
a result, deleting a single piRNA-producing locus often has no obvious phenotype (Wu et al. 2020; Homolka et al. 2015). Recently, sperm maturation defects were observed upon knockout of the promoter of a pair of piRNA clusters with only subtle changes of the entire transcriptome (Choi et al. 2021; Wu et al. 2020). In conclusion, significant advances have been made in our understanding of piRNA biology over the past several years; however, a number of key questions surrounding piRNA biogenesis remain:

(1) Why are some transcripts processed to piRNAs while others are not? piRNA precursors could be either marked epigenetically during transcription or recognized post-transcriptionally in the cytosol. Unlike Drosophila germline piRNA loci, which are marked with the chromatin-bound protein Rhino (Klattenhoff et al. 2009), currently no epigenetic factors have been identified that specially bind piRNA loci in mammals. It is also unlikely that there would be unique splicing structures in mammals, as has been proposed for Drosophila piRNA biogenesis, because mammalian piRNA precursors are canonically spliced (Li et al. 2013; Sun et al. 2021). Whether pachytene piRNA precursors have unique secondary or tertiary structures, RNA modifications, or translation intermediates remains to be determined.

(2) How are piRNA precursors recruited to mitochondria? What is the significance of the connection between piRNA biogenesis and mitochondrial biology? Either the piRNA precursors are channeled directly to the IMC from the nucleus without interacting with ribosomes prior to IMC localization or they are translated first, and the precursor translation intermediates are then transported to mitochondria. Given that the IMC is not close to the nucleus, if the former is the case, a special mechanism, such as packing piRNA precursors using RNA-binding proteins, would be required to prevent ribosome access prior to IMC localization. Alternatively, specific precursor translation intermediates could be recognized by the piRNA-processing machinery, or the translation products could be recognized by mitochondrion-localizing chaperones.

(3) Is phased piRNA biogenesis initiated de novo or by initiator piRNAs? If phased biogenesis is triggered by base-pair complementary initiator piRNAs, the pairing rules between piRNAs and targets are likely to tolerant mismatches to allow sufficient cleavage events on the long single-stranded piRNA precursors. Alternatively, piRNA precursors may recruit an endonuclease or the conventional RNA decay machinery for de novo piRNA processing. One possibility is that piRNA biogenesis may be initiated by an endonuclease that specifically targets ribosomes outside of ORFs, as translation-mediated RNA decay is common, involving mechanisms such as NMD, no-go decay, no-stop decay, or co-translational Exo1-mediated decay (Shoemaker and Green 2012; Graille and Séraphin 2012; Kervestin and Jacobson 2012; Schoenberg and Maquat 2012).

(4) How does the first nucleotide uridine (1U) bias arise? 1U bias is the most noticeable sequence signature on primary piRNAs. Crystal structures of the silkworm PIWI protein Siwi(Matsumoto et al. 2016) and Drosophila Ptwi (Yamaguchi et al. 2020), as well as in vitro biochemical assays from silkworm(Matsumoto et al. 2016), revealed that the 5′-uridine fits well into the PIWI/Siwi MID domain. However, in Pnldc1 mutant mice, the un-trimmed piRNAs form a head-to-tail pattern with no gaps between them, indicating that the fragmentation process must generate the 1U bias prior to PIWI loading. Since MitoPLD/ZUCCHINI does not show any preference for cleaving before uridines in vitro, nor do ribosomes display any binding bias, either MitoPLD is not the main endonuclease fragmenting the pachytene piRNA precursors (that show a 1U bias) or another co-factor exists that works coordinately with MitoPLD and ribosomes to generate the 1U bias.

(5) Why are large quantities of piRNAs produced at the pachytene stage? We are yet to understand the biological significance of the burst of piRNA production at the pachytene stage. This production is due either to a functional or biogenic requirement. As discussed previously, while a biogenic requirement seems more likely, the disruption of pachytene piRNA biogenesis in hamsters leads to pachytene arrest (Hasuwa et al. 2021; Loubalova et al. 2021; Zhang et al. 2021), distinct from round spermatid arrest in mice, suggesting that pachytene piRNAs may be generally required for meiosis progression with rodent as an outlier. As most studies on meiosis have focused on chromosome behavior or epigenetic regulation, we know little about how RNA metabolism, such as translation and RNA granule movement, coordinates with the complex choreography occurring in nuclei. Such studies may shed light on the biogenic requirements that facilitate the coordinate production of 3.8–8.4 million piRNA molecules in each spermatocyte during the pachytene stage (Gainetdinov et al. 2018).

(6) How is a new piRNA locus born and how does it die during evolution? Pachytene piRNA loci can rise and disappear rapidly over short evolutionary timescales (80 million years between mice and humans) in mammals. This rapid divergence could be due to elevated mutation rates and/or adaptive selection. The current notion that pachytene piRNAs function to target mRNAs required for sperm maturation does not seem sufficient to provide such a selective force. The idea
that pachytene piRNAs and their mRNA targets behave like a toxicant and anti-toxicant is an attractive model that needs further investigation (Aravin 2020). The possibilities that piRNA loci exhibit elevated mutation rates or that piRNA loci represent preferential TE landing sites have also not been fully explored.

(7) Are there somatic piRNAs in vertebrates? The notion is that somatic piRNA pathways widely exist in invertebrates, but was lost in vertebrates (Lewis et al. 2018). However, there are a number of reports in vertebrates regarding the existence of piRNA-like molecules or the expression of PIWI proteins (Galton et al. 2021; Mai et al. 2020; Moyano and Stefani 2015; Keam et al. 2014; Yan et al. 2011; Mei et al. 2015; Zhao et al. 2015; Nandi et al. 2016; Perera et al. 2019; Sharma et al. 2001; Freedman et al. 2016; Martinez et al. 2015; Lee et al. 2011; Cheng et al. 2014). These reports failed to provide a satisfactory answer as to why there is no phenotype beyond reproduction when disrupting piRNA pathways in mice. It is an interesting area for further investigation: either somaticpiRNAs exist in low abundance with under-explored function, or mice are not a good model to study somatic piRNAs.

Here, we have provided an overview of piRNA biogenesis in mice and have referenced a range of other organisms where relevant. We discuss the current progress in our understanding of piRNA conservation and evolution. Finally, we outline several key questions in the field regarding piRNA biogenesis. With the rapid advances in sequencing technologies and development of new techniques and model organisms for multi-omics and comparative studies, we envision that significant strides will be made in the next few years. A complete understanding of piRNA biogenesis, evolution, and function may facilitate the development and application of artificial piRNAs as tools for epigenetic regulation and a wide variety of other possible uses.

Box 1

In 2002, well before piRNAs were discovered to bind to PIWI proteins and function as part of an RNA–protein complex, the Tetrahymena PIWI protein (Twi1p) was discovered to associate with small ~28 nt RNAs (Mochizuki et al. 2002) that were necessary for the elimination of internal eliminated sequences (IES) (Mochizuki et al. 2002), leading to the rearrangement of the Tetrahymena macronucleus genome (Jahn and Klobutcher 2002; Yao et al. 2003). In the absence of Twi1p (Twi1p knockout), cells failed to produce small RNAs and did not complete IES elimination. Mechanistically, these small RNAs function together with Twi1p to direct the elimination of IESs through both homology scanning and epigenetic regulation (Mochizuki and Gorovsky 2004; Mochizuki et al. 2002; Yao et al. 2003). Although these small RNAs are produced from double-strand RNAs via a Dicer-dependent pathway rather than from single-stranded RNA precursors, this RNAi-like mechanism provided the first hint that PIWI proteins function together with small RNAs now known as piRNAs. It also suggests that diverse RNA-processing mechanisms may converge on piRNAs.

Acknowledgements We thank Guy Riddihough, John Roy Lozada, and other members in the Li lab for editing and providing constructive suggestions on the manuscript. This work was supported in part by National Institutes of Health Grant R35GM128782 and Agriculture and Food Research Initiative Competitive Grant No. 2018-67015-27615 from the USDA National Institute of Food and Agriculture.

Author contribution YHS and XZL wrote the manuscript. BL proofread the manuscript.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Andersen PR, Tirian L, Vinjak M, Brennecke J (2017) A heterochromatin-dependent transcription machinery drives piRNA expression. Nature 549:54–59
Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan M, Tuschl T (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203–207
Aravin AA (2020) Pachytene piRNAs as beneficial regulators or a defense system gone rogue. Nat Genet 52:644–645
Aravin AA, Hannon GJ (2008) Small RNA silencing pathways in germ and stem cells. Cold Spring Harb Symp Quant Biol 73:283–290
Aravin AA, Hannon GJ, Brennecke J (2007a) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318:761–764
Aravin AA, Sachidanandam R, Bourchis D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ (2008) A piRNA pathway primed by
individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31:785–799
Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ (2007b) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316:744–747
Aravin AA, van der Heijden GW, Castañeda J, Vagin VV, Rozovsky YM, Gvozdev VA (2001) Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol 11:1017–1027
Assis R, Kondrashov AS (2009) Rapid repetitive element-mediated expansion of piRNA clusters in mammalian evolution. Proc Natl Acad Sci USA 106:7079–7082
Betel D, Sheridan R, Marks DS, Sander C (2007) Computational analysis of mouse piRNA sequence and biogenesis. PLoS Comput Biol 3:222
Beyret E, Liu N, Lin H (2012) piRNA biogenesis during adult spermatogenesis in mice is independent of the ping-pong mechanism. Cell Res 22:1429–1439
Blumenstiel JP, Erwin AA, Hemmer LW (2016) What drives positive selection in the drosophila piRNA machinery? The genomic autoimmunity hypothesis. Yale J Biol Med 89:499–512
Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103
Carmell MA, Girard A, van de Kant HJ, Bourchis D, Bestor TH, de Rooij DG, Hannon GJ (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germ line. Dev Cell 12:503–514
Carmo-Fonseca M, Thery D, Pepek B, Barabino SM, Merdes A, Brunner C, Zamore PD, Green MR, Hurt E, Lamond AI (1991) Mammalian nuclei contain foci which are highly enriched in components of the pre-mRNA splicing machinery. EMBO J 10:195–206
Castaneda J, Genzor P, van der Heijden GW, Sarkeshik A, Yates JR, Ingolia NT, Bortvin A (2014) Reduced pachytene piRNAs and translation underlie spermiogenic arrest in Maelstrom mutant mice. EMBO J 33:1999–2019
Chen C, Jin J, James DA, Adams-Croaba MA, Park JG, Guo Y, Tena-glia E, Xu C, Gish G, Min J, Pawson T (2009) Mouse Piwi interacts with a Tudor domain that silences LINE1 elements. Nature 480:259–263
Deng W, Lin H (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2:819–830
Di Giacomo M, Comazzo S, Saini H, De Fazio S, Carriero C, Morgan M, Vasiliauskaitė L, Benes V, Enright AJ, O’Carroll D (2013) Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis. Mol Cell 50:601–608
Ding D, Liu J, Dong K, Melnick AF, Latham KE, Chen C (2019) Mitochondrial membrane-based initial separation of MIWI and MILI functions during pachytene piRNA biogenesis. Nucleic Acids Res 47:2594–2608
Ding D, Liu J, Dong K, Midic U, Hess RA, Xie H, Demireva EY, Chen C (2017) PNLD1 is essential for piRNA 3’ end trimming and transposon silencing during spermatogenesis in mice. Nat Commun 8:819
Ding D, Liu J, Midic U, Wu Y, Dong K, Melnick A, Latham KE, Chen C (2018) TDRD5 binds piRNA precursors and selectively enhances piRNA processing in mice. Nat Commun 9:127
Eddy EM (1974) Fine structural observations on the form and distribution of nuage in germ cells of the rat. Anat Rec 178:731–757
Eddy EM (1975) Germ plasm and the differentiation of the germ cell line. Int Rev Cytol 43:229–280
Feltzin VL, Khaladkar M, Munafò M, Eastwood EL, Kneuss E, Falciatori I, Falconio FA, Hannon GJ, Chen C (2019) piRNA-guided co-transcriptional silencing coopts nuclear export factors. Elife 8:e47999
Farazi, T. A., Juranek, S. A., and Tuschl, T. (2008). The growing insights from host-virus arms races. Annu Rev Genet 42:677–700
Fawcett DW, Eddy EM, Phillips DM (1970) Observations on the fine structure and relationships of the chromatoid body in mammalian spermatogenesis. Biol Reprod 2:819–830
Feltzin VL, Khaladkar M, Abe M, Parisi M, Hendriks GJ, Kim J, Bonini NM (2015) The exonuclease Nibbler regulates age-associated traits and modulates piRNA length in Drosophila. Aging Cell 14:443–452
Findley SD, Tamanaha M, Clegg NJ, Ruohola-Baker H (2003) Maelstrom, a Drosophila spindle-class gene, encodes a protein that co-localizes with Vasa and RDE1/AGO1 homolog, Aubergine, in nuage. Development 130:859–871
Fine AD, Ball RL, Fujiwara Y, Handel MA, Carter GW (2019) Uncoupling of transcriptomic and cytological differentiation in mouse spermatocytes with impaired meiosis. Mol Biol Cell 30:717–728
Flemr M, Malik R, Franke V, Nejepinska J, Sedlacek R, Vlahovec K, Svoboda P (2013) A retrotransposon-driven dicer isoform
The birth of piRNAs: how mammalian piRNAs are produced, originated, and evolved

Haase AD, Fenoglio S, Muerdter F, Guzzardo PM, Czech B, Pappin DJ, Chen C, Gordon A, Hannon GJ (2010) Probing the initiation and effector phases of the somatic piRNA pathway in Drosophila. Genes Dev 24(22):2499–2504

Han BW, Hung JH, Weng Z, Zamore PD, Amarès SL (2011) The 3’-to-5’ exoribonuclease Nibbler shapes the 3’ ends of microRNAs bound to Drosophila Argonaute1. Curr Biol 21:1878–1887

Han BW, Wang W, Li C, Weng Z, Zamore PD (2015) Noncoding RNA piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production. Science 348:817–821

Handler D, Olivier D, Novatchkova M, Gruber F, Meixner K, Mechler K, Stark A, Sachidanandam R, Brennecke J (2011) A systematic analysis of Drosophila TUDOR domain-containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors. EMBO J 30:3977–3993

Harris AN, Macdonald PM (2001) Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to elf2c. Development 128:2823–2832

Hasuwa, H., Iwasaki, Y. W., Au Yeung, W. K., Ishino, K., Masuda, H., Sasaki, H., and Siomi, H. (2021). Production of functional oocytes requires maternally expressed PIWI genes and piRNAs in golden hamsters. Nat Cell Biol

Hayashi R, Schnabl J, Handler D, Mohn F, Amarès SL, Brennecke J (2016) Genetic and mechanistic diversity of piRNA 3’-end formation. Nature 539:588–592

Homolka D, Pandey RR, Goriaux C, Brasset E, Vauray C, Sachidanandam R, Fauvarque MO, Pillai RS (2015) PIWI slicing and RNA elements in precursors instruct directional primary piRNA biogenesis. Cell Rep 12:418–428

Honda S, Kiroino Y, Maragkakis M, Alexiou P, Ohtaki A, Murrali R, Mourelatos Z, Kirino Y (2013) Mitochondrial protein Bmpapi modulates the length of mature piRNAs. RNA 19:1405–1418

Horwich MD, Li C, Matranga C, Vagin F, Farley G, Wang P, Zamore PD (2007) The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 17:1265–1272

Hosokawa M, Shoji M, Kitamura K, Tanaka T, Noce T, Chuma S, Nakatsuji N (2007) Tudor-related proteins TDRD1/MTR-1, TDRD6 and TDRD7/TRAP: domain composition, intracellular localization, and function in male germ cells in mice. Dev Biol 301:38–52

Ipsaro JJ, Haase AD, Kaott SR, Joshua-Tor L, Hannon GJ (2012) The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature 491:279–283

Ishino K, Hasuwa H, Yoshimura J, Iwasaki YW, Nishihara H, Seki NM, Hirano T, Tsuchiya M, Ishizaki H, Masuda H, Kuramoto T, Saito K, Sakakibara Y, Toyoda A, Itoh T, Siomi MC, Morishita S, Siomi H (2021) Hamster PIWI proteins bind to piRNAs with stage-specific size variations during oocyte maturation. Nucleic Acids Res 49:2700–2720

Ishizu H, Iwasaki YW, Hirakata S, Ozaki H, Iwasaki W, Siomi H, Siomi MC (2015) Somatic primary piRNA biogenesis driven by cis-acting RNA elements and trans-acting Yb. Cell Rep 12:429–440

Izumi N, Shoji K, Suzuki Y, Katsumi S, Tomari Y (2020) Zucchini consensus motifs determine the mechanism of pre-piRNA production. Nature 578:311–316

Jahn CL, Klobutcher LA (2002) Genome remodeling in ciliated protozoa. Annu Rev Microbiol 56:489–520

Jamsai D, O’Connor AE, Odonnell L, Lo JC, O’Bryan MK (2015) Uncoupling of transcription and translation of Fanconi anemia (FANC) complex proteins during spermatogenesis. Spermatogenesis 5:979061

Kabayama Y, Toh H, Katanaya A, Sakurai T, Chuma S, Kuramoto-Miyagawa S, Saga Y, Nakano T, Sasaki H (2017) Roles of MIWI,
MILI and PLD6 in small RNA regulation in mouse growing oocytes. Nucleic Acids Res 45:5387–5398

Kaesmann H (2010) Origins, evolution, and phenotypic impact of new genes. Genome Res 20:1313–1326

Kawaoka S, Mitsutake H, Kiuchi T, Kobayashi M, Yoshikawa M, Suzuki Y, Sugano S, Shimada T, Kobayashi J, Tomari Y,Katsumata S (2012) A role for transcription from a piRNA cluster in de novo piRNA production. RNA 18:265–273

Keam SP, Young PE, McCorkindale AL, Dang TH, Clancy JL, Humphreys DT, Preiss T, Hutvagner G, Martin DJ, Cropley S, Sutter CM (2014) The human Piwi protein Hiwi2 associates with tRNA-derived piRNAs in somatic cells. Nucleic Acids Res 42:3894–3895

Kervestin S, Jacobson A (2012) NMD: a multifaceted response to premature translational termination. Nat Rev Mol Cell Biol 13:700–712

Ketting RF (2011) The many faces of RNAi. Dev Cell 20:148–161

Khalil AM, Boyar FZ, Driscoll DJ (2004) Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis. Proc Natl Acad Sci USA 101:16583–16587

Kim M, Ki BS, Hong K, Park SP, Ko JJ, Choi Y (2016) Tudor Domain Containing Protein TDRD12 Expresses at the Acrosome of Spermatozoa in Mouse Testis. Asia-Pacific J Anim Sci 29:944–951

Kirino Y, Mourelatos Z (2007) Mouse Piwi-interacting RNAs (piRNAs) are O-methylated at their 3′ termini. Nat Struct Mol Biol 14:347–348

Klattenhoff C, Xi H, Li C, Lee S, Xu J, Kurhana JS, Zhang F, Schultz N, Koppetsch BS, Novoselska A, Seitz H, Zamoere PD, Weng Z, Theurkauf WE (2009) The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell 138:1137–1149

Kolaczkowski B, Hupalo DN, Kern AD (2011) Recurrent adaptation in RNA interference genes across the Drosophila phylogeny. Mol Biol Evol 28:1033–1042

Koonin EV, Yutin N (2020) The crAss-like Phage group: how metagenomes reshaped the human virome. Trends Microbiol 28:349–359

Kotaja N, Sassone-Corsi P (2007) The chromatoid body: a germ-cell–specific RNA-processing centre. Nat Rev Mol Cell Biol 8:85–90

Kumar M, Carmichael GG (1998) Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol Mol Biol Rev 62:1415–1434

Kuramochi-Miyagawa S, Kimura T, Iriji TW, Isobe T, Asada N, Fujita Y, Ikawa M, Iwai N, Okabe M, Deng W, Lin H, Matsuda Y, Nakano T (2004) Mili, a mammalian member of piwi family, is essential for spermatogenesis. Development 131:839–849

Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Takamatsu K, Chuma S, Kojima-Kita K, Shiromoto Y, Asada N, Toyoda A, Fuyiyma A, Totoki Y, Shibata T, Kimura T, Nakatsuji N, Noce T, Sasaki H, Nakano T (2010) MVH in piRNA processing and gene silencing of retrotransposons. Genes Dev 24:887–892

Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, Asada N, Kojima K, Yamaguchi Y, Iriji TW, Hata K, Li E, Matsuda Y, Kimura T, Okabe M, Sakaki Y, Sasaki H, Nakano T (2008) DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22:908–917

Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE (2006) Characterization of the piRNA complex from rat testes. Science 313:363–367

Lee EJ, Banerjee S, Zhou H, Jammalamadaka A, Arcila M, Manjunath BS, Kosik KS (2011) Identification of piRNAs in the central nervous system. RNA 17:1090–1099

Levine MT, McCoy C, Vermaak D, Lee YC, Hiatt MA, Matsen FA, Malik HS (2012) Phylogenomic analysis reveals dynamic evolutionary history of the Drosophila heterochromatin protein 1 (HP1) gene family. PLoS Genet 8:e1002729

Levine MT, Vander Wende HM, Hsieh E, Baker EP, Malik HS (2016) Recurrent gene duplication diversifies genome defense repertoire in drosophil. Mol Biol Evol 33:1641–1653

Lewis SH, Quarles KA, Yang Y, Tanguy M, Frézal L, Smith SA, Sharma PP, Cordaux R, Gilbert C, Giraud I, Collins DH, Zamore PD, Miska EA, Sarkies P, Jiggins FM (2018) Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nat Ecol Evol 2:174–181

Li XC, Schimenti JC (2007) Mouse pachytene checkpoint 2 (trip13) is required for completing meiotic recombination but not synapsis. PLoS Genet 3:e130

Li XZ, Roy CK, Dong X, Golcun-Filas E, Wang J, Han BW, Xu J, Moore MJ, Schimenti JC, Weng Z, Zamore PD (2013) An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol Cell 50:67–81

Lim SL, Qu ZP, Kortchak RD, Lawrence MA, Geoghagen J, Hempling AL, Bergmann M, Goodnow CC, Ormandy CJ, Wong L, Mann J, Scott HS, Jamais D, Adelson DL, Obryan MK (2015) HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse. PLoS Genet 11:e1005620

Lin H, Spradling AC (1997) A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124:2463–2476

Liu L, Qi H, Wang J, Lin H (2011) PAPI, a novel Tudor-domain protein, complexes with AGO3, ME31B and TRAL in the nuage in the early spermatid. Development 138:1863–1873

Loubleva Z, Fulka H, Horvat F, Pasulka J, Malik R, Hirose M, Ogura A, Svoboda P (2021) Formation of spermatogonia and fertile oocytes in golden hamsters requires piRNAs. Nat Cell Biol

Ma L, Buchold GM, Greenbaum MP, Roy A, Burns KH, Zhu H, Han DY, Harris RA, Coarfa C, Gunaratne PH, Yan W, Matzuk MM (2009) GASZ is essential for male meiosis and suppression of retrotransposon expression in the male germline. PLoS Genet 5:e1000635

Mai D, Zheng Y, Guo H, Ding P, Bai R, Li M, Ye Y, Zhang J, Huang X, Liu D, Sui Q, Pan L, Su J, Deng J, Wu G, Li R, Deng S, Bai Y, Ligu Y, Tan W, Wu C, Wu T, Zheng J, Lin D (2020) Serum piRNA-54265 is a new biomarker for early detection and clinical surveillance of Human Colorectal Cancer. Theranostics 10:8468–8478

Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136:656–668

Mao Y, Qian SB (2020) Ribosome-guided piRNA production. Nat Cell Biol 22:141–142

Martinez VD, Vucic EA, Thu KL, Hubaux R, Enfield KS, Pikor LA, Becker-Santos DD, Brown CJ, Coarfa C, Gunaratne PH, Yan W, Matzuk MM (2015) Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology. Sci Rep 5:10423

Matsumoto N, Nishimatsu H, Sakakibara K, Nishida KM, Hirano T, Ishitani R, Siomi H, Siomi MC, Nureki O (2015) Crystal structure of silkworm PIWI-clade argonaute Siwi bound to piRNA. Structure 23:1280–1289

Matsuno N, Sato K, Nishimatsu H, Namba Y, Miyakuki K, Dohmae N, Ishitani R, Siomi H, Siomi MC, Nureki O (2016) Crystal structure and activity of the endoribonuclease domain of the piRNA pathway factor maelstrom. Cell 167:484–497.e9

Mei Y, Wang Y, Kumar P, Shetty AC, Clark D, Gable T, MacKerell AD, Ma MZ, Webster DJ, Yang AJ, Edelman MJ, Mao L (2015) A piRNA-like small RNA interacts with and modulates p-ERM proteins in human somatic cells. Nat Commun 6:7316
Meikar O, Da Ros M, Korhonen H, Kotaja N (2011) Chromatoid body and small RNAs in male germ cells. Reproduction 142:195–209
Meikar O, Vagin VV, Chamel F, Sostar K, Lardenois A, Hammell M, Jin Y, Da Ros M, Wasik KA, Toppari J, Hannon GJ, Kotaja N (2014) An atlas of chromatoid body components. RNA 20:483–495
Mochizuki K, Fine NA, Fujisawa T, Gorovsky MA (2002) Analysis of Meikar O, Vagin VV, Chalmel F, Sostar K, Lardenois A, Hammell M, Jin Y, Da Ros M, Wasik KA, Toppari J, Hannon GJ, Kotaja N (2011) Chromatoid body and their contents in mammalian spermatogenic cells, as revealed by immunoelectron microscopy. Meiosis 40:217–240
Onohara Y, Yokota S (2012) Nuage components and their contents in mammalian spermatogenic cells, as revealed by immunoelectron microscopy. Meiosis 40:217–240

 Özata DM, Yu T, Mou H, Gainetdinov I, Colpan C, Cecchini K, Kaymaz Y, Wu PH, Fan K, Kucukural A, Weng Z, Zamore PD (2020) Evolutionarily conserved pachytene piRNA loci are highly divergent among modern humans. Nat Ecol Evol 4:156–168
Palmer, S., and Whybrow, A. (2007). Handbook of coaching psychology
Pan J, Goodheart M, Chuma S, Nakatsuji N, Page DC, Wang PJ (2005) RNF17, a component of the mammalian germ cell nuage, is essential for spermiogenesis. Development 132:4029–4039
Pandey RR, Homolka D, Olotu O, Sachidanandam R, Kotaja N, Pillai RS (2018) Exonuclease domain-containing 1 enhances miw2 piRNA biogenesis via its interaction with TDRD12. Cell Rep 24:3423-3432.e4
Pandey RR, Tokuzawa Y, Yang Z, Hayashi E, Ichisaka T, Kajita S, Asano Y, Kunieda T, Sachidanandam R, Chuma S, Yamanaka S, Pillai RS (2013) TUDOR domain containing 12 (TDRD12) is essential for secondary PIWI interacting RNA biogenesis in mice. Proc Natl Acad Sci USA 110:16492–16497

Parvinen M (2005) The chromatoid body in spermatogenesis. Int J Androl 28:189–201
Patil VS, Anand A, Chakraborti A, Kai T (2014) The Tudor domain protein Tapas, a homolog of the vertebrate Tdr7, functions in the piRNA pathway to regulate retrotransposons in germline of Drosophila melanogaster. BMC Biol 12:61
Perera BPU, Tsai ZT, Colwell ML, Jones TR, Goodrich JM, Wang K, Sartor MA, Faulk C, Dolinoy DC (2019) Somatic expression of piRNA and associated machinery in the mouse identities short, tissue-specific piRNAs. Epigenetics 14:504–521
Preall JB, Deutsch B, Guzzardo PM, Muelder T, Hannon GJ (2012) Shutdown is a component of the Drosophila piRNA biogenesis machinery. RNA 18:1446–1457
Qu X, Wen JD, Lancaster L, Noller HF, Bustamante C, Tinoco I (2011) The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475:118–121
Reuter M, Berninger P, Chuma S, Shah H, Hosokawa M, Funaya C, Antony C, Sachidanandam R, Pillai RS (2011) Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 480:264–267
Reynolds N, Collier B, Bingham V, Gray NK, Cooke HJ (2007) Translation of the synaptonemal complex component Sycc3 is enhanced in vivo by the germ cell specific regulator Dazl. RNA 13:974–981
Robine N, Lau NC, Balla S, Jin Z, Okamura K, Kuramochi-Miyagawa S, Blower MD. Lai EC (2009) A broadly conserved pathway generates 3'UTR-directed primary piRNAs. Curr Biol 19:2066–2076
Rosenkranz D, Han CT, Roovers EF, Zischler H, Ketting RF (2015) Essential for secondary PIWI interacting RNA biogenesis via its interaction with TDRD12. Cell Rep 24:3423-3432.e4

RNF17, a component of the mammalian germ cell nuage, is essential for spermiogenesis. Development 132:4029–4039

Palmer, S., and Whybrow, A. (2007). Handbook of coaching psychology
Pan J, Goodheart M, Chuma S, Nakatsuji N, Page DC, Wang PJ (2005) RNF17, a component of the mammalian germ cell nuage, is essential for spermiogenesis. Development 132:4029–4039
Pandey RR, Homolka D, Olotu O, Sachidanandam R, Kotaja N, Pillai RS (2018) Exonuclease domain-containing 1 enhances miw2 piRNA biogenesis via its interaction with TDRD12. Cell Rep 24:3423-3432.e4
Pandey RR, Tokuzawa Y, Yang Z, Hayashi E, Ichisaka T, Kajita S, Asano Y, Kunieda T, Sachidanandam R, Chuma S, Yamanaka S, Pillai RS (2013) TUDOR domain containing 12 (TDRD12) is essential for secondary PIWI interacting RNA biogenesis in mice. Proc Natl Acad Sci USA 110:16492–16497
Parvinen M (2005) The chromatoid body in spermatogenesis. Int J Androl 28:189–201
Patil VS, Anand A, Chakraborti A, Kai T (2014) The Tudor domain protein Tapas, a homolog of the vertebrate Tdr7, functions in the piRNA pathway to regulate retrotransposons in germline of Drosophila melanogaster. BMC Biol 12:61
Perera BPU, Tsai ZT, Colwell ML, Jones TR, Goodrich JM, Wang K, Sartor MA, Faulk C, Dolinoy DC (2019) Somatic expression of piRNA and associated machinery in the mouse identities short, tissue-specific piRNAs. Epigenetics 14:504–521
Preall JB, Deutsch B, Guzzardo PM, Muelder T, Hannon GJ (2012) Shutdown is a component of the Drosophila piRNA biogenesis machinery. RNA 18:1446–1457
Qu X, Wen JD, Lancaster L, Noller HF, Bustamante C, Tinoco I (2011) The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475:118–121
Reuter M, Berninger P, Chuma S, Shah H, Hosokawa M, Funaya C, Antony C, Sachidanandam R, Pillai RS (2011) Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 480:264–267
Reynolds N, Collier B, Bingham V, Gray NK, Cooke HJ (2007) Translation of the synaptonemal complex component Sycc3 is enhanced in vivo by the germ cell specific regulator Dazl. RNA 13:974–981
Robine N, Lau NC, Balla S, Jin Z, Okamura K, Kuramochi-Miyagawa S, Blower MD. Lai EC (2009) A broadly conserved pathway generates 3'UTR-directed primary piRNAs. Curr Biol 19:2066–2076
Rosenkranz D, Han CT, Roovers EF, Zischler H, Ketting RF (2015) Essential for secondary PIWI interacting RNA biogenesis via its interaction with TDRD12. Cell Rep 24:3423-3432.e4

The birth of piRNAs: how mammalian piRNAs are produced, originated, and evolved
Sharma AK, Nelson MC, Brandt JE, Wessman M, Mahmud N, Weller KP, Hoffman R (2001) Human CD34(+)-cell stem cells express the hiwi gene, a human homologue of the Drosophila gene piwi. Blood 97:426–434
Shiramoto Y, Kuramochi-Miyagawa S, Daiba A, Chuma S, Kanataya A, Katsumata A, Nishimura K, Ohtaka M, Nakamishii D, Nakamura T, Yoshinaga K, Asada N, Nakamura S, Yasunaga T, Kojima-Kita K, Ito D, Kimura T, Nakano T (2013) GPAT2, a mitochondrial outer membrane protein, in piRNA biogenesis in germine stem cells. RNA 19:803–810
Shoemaker CJ, Green R (2012) Translation drives mRNA quality control. Nat Struct Mol Biol 19:594–601
Shoji M, Tanaka T, Hosokawa M, Reuter M, Stark A, Kato Y, Kondoh G, Okawa K, Chuo T, Suzuki T, Hata K, Martin SL, Noce T, Kuramochi-Miyagawa S, Nakano T, Sasaki H, Pillai RS, Nakatsuji N, Chuma S (2009) The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germ line. Dev Cell 17:775–787
Shum EY, Jones SH, Shao A, Dumjde J, Krause MD, Chan WK, Lou Y, H. Sun et al.
Shoji M, Tanaka T, Hosokawa M, Reuter M, Stark A, Kato Y, Kondoh G, Okawa K, Chuo T, Suzuki T, Hata K, Martin SL, Noce T, Kuramochi-Miyagawa S, Nakano T, Sasaki H, Pillai RS, Nakatsuji N, Chuma S (2009) The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germ line. Dev Cell 17:775–787
Simkin A, Wong A, Poh YP, Theurkauf WE, Jensen JD (2013) Recurrent and recent selective sweeps in the piRNA pathway. Evolution 67:1081–1090
Smith JM, Bowles J, Wilson M, Teasdale RD, Koopman P (2004) Expression of the tudor-related gene Tdrd5 during development of the male germ line in mice. Gene Expr Patterns 4:701–705
Soper SF, van der Heijden GW, Hardiman TC, Goodel MH, Martin SL, de Boer P, Bortvin A (2008) Mouse maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis. Dev Cell 15:285–297
Specchia V, Picentini L, Tritto P, Fanti L, D’Alessandro R, Palumbo A, Notterman JD, Espinoza JL, Song HW, Phan MH, Ramaiah M, Huang L, Sun YH, Wang RH, Du K, Zheng J, Xie LH, Pereira AA, Zhang C, Specchia V, Piacentini L, Tritto P, Fanti L, D’ Alessandro R, Palumbo A, Koglgruber R, Chuma S, Subramanian S, Hosokawa M, Sobolev A, Tiedau D, Firooznia A, Muller-Reichert T, Jessberger R (2009) Tdrd6 is required for spermiogenesis, chromotid body architecture, and regulation of miRNA expression. Curr Biol 19:630–639
Voigt F, Reuter M, Kasaruto A, Schulz EC, Pillai RS, Barabos O (2012) Crystal structure of the primary piRNA biogenesis factor Zucchini reveals similarity to the bacterial PLD endonuclease Nuc. RNA 18:2128–2134
Vorekas A, Zheng K, Fu Q, Maragakis M, Alexiou P, Ma J, Pillai RS, Mourelatos Z, Wang PJ (2015) The RNA helicase MOV10L1 binds piRNA precursors to initiate piRNA processing. Genes Dev 29:617–629
Voirekas A, Zheng K, Alexiou P, Maragakis M, Kirino Y, Gregory BD, Mourelatos Z (2012) Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nat Struct Mol Biol 19:773–781
Yang Z, Ma Z, Niu K, Xiao Y, Wu X, Pan C, Zhao Y, Wang K, Zhang Y, Liu N (2016) Antagonistic roles of Nibbler and Hen1 in modulating piRNA 3’ ends in Drosophila. Development 143:530–539
Wang J, Saxe JP, Tanaka T, Chuma S, Lin H (2009) Mili interacts with tudor domain-containing protein 1 in regulating spermatogenesis. Curr Biol 19:640–644
Waskia KA, Tam OH, Knott SR, Falcitorti I, Hambrell M, Vagin VV, Reuter M, Yang Z, Benninger P, Palencia A, Benes V, Penninger J, Sachidanandam R, Pillai RS (2012) Distinct roles of RNA helicases MVH and TDRD9 in PIWI slicing-triggered mammalian piRNA biogenesis and function. Dev Cell 41:623–637.e9
Wu PH, Fu Y, Cecchini K, Özata DM, Arif A, Yu T, Colpan C, Gainetdinov I, Weng Z, Zamore PD (2020) The evolutionarily conserved piRNA-producing locus pi6 is required for male mouse fertility. Nat Genet 52:728–739
Wynnat N, Santos D, Vandlen Broeck J (2017) The evolution of animal Argonautes: evidence for the absence of antiviral AGO Argonautes in vertebrates. Sci Rep 7:9230
Xiol J, Cora E, Koglerbrger R, Chuma S, Subramanian S, Hosokawa M, Reuter M, Yang Z, Berninger P, Palencia A, Benes V, Penninger J, Sachidanandam R, Pillai RS (2012) A role for Fkbp6 and the chaperone machinery in piRNA amplification and transposon silencing. Mol Cell 47:970–979
Xiol J, Spinelli P, Laussmann MA, Homolka D, Yang Z, Cora E, Couté Y, Conn S, Kadlec J, Sachidanandam R, Kasoken M, Cusack S, Ehrussi A, Pillai RS (2014) RNA clamping by Vasa assemblies...
a piRNA amplifier complex on transposon transcripts. Cell 157:1698–1711

Yabuta Y, Ohta H, Abe T, Kurimoto K, Chuma S, Saitou M (2011) TDRD5 is required for retrotransposon silencing, chromatin body assembly, and spermiogenesis in mice. J Cell Biol 192:781–795

Yamaguchi S, Oe A, Nishida KM, Yamashita K, Kajiy A, Hirano S, Matsumoto N, Dohmace N, Ishiroti R, Saito K, Siomi H, Nishimasa H, Siomi MC, Nureki O (2020) Crystal structure of Drosophila Piwi. Nat Commun 11:858

Yamana S, Siomi MC, Siomi H (2014) piRNA clusters and open chromatin structure. Mob DNA 5:22

Yan Z, Hu HY, Jiang X, Maierhofer V, Neb E, He L, Hu Y, Hu H, Li N, Chen W, Khaitovich P (2011) Widespread expression of piRNA-like molecules in somatic tissues. Nucleic Acids Res 39:6596–6607

Yang Q, Li R, Lyu Q, Hou L, Liu Z, Sun Q, Liu M, Shi H, Xu B, Yin M, Yan Z, Huang Y, Liu M, Li Y, Wu L (2019) Single-cell CAS-seq reveals a class of short PIWI-interacting RNAs in human oocytes. Nat Commun 10:3389

Yang Z, Chen KM, Pandey RR, Homolka D, Reuter M, Janeiro BK, Sachidanandam R, Fauvarque MO, McCarthy AA, Pillai RS (2016) PIWI Slicing and EXD1 Drive Biogenesis of Nuclear piRNAs from Cytosolic Targets of the Mouse piRNA Pathway. Mol Cell 61:138–152

Yao MC, Fuller P, Xi X (2003) Programmed DNA deletion as an RNA-guided system of genome defense. Science 300:1581–1584

Yi M, Chen F, Luo M, Cheng Y, Zhao H, Cheng H, Zhou R (2014) Rapid evolution of piRNA pathway in the teleost fish: implication for an adaptation to transposon diversity. Genome Biol Evol 6:1393–1407

Yoshimura T, Toyoda S, Kuramochi-Miyagawa S, Miyazaki T, Miyazaki S, Tashiro F, Yamato E, Nakano T, Miyazaki J (2009) Gtsf1/Cue110, a gene encoding a protein with two copies of a CHHC Zn-finger motif, is involved in spermatogenesis and retrotransposon suppression in murine testes. Dev Biol 335:216–227

Yoshimura T, Watanabe T, Kuramochi-Miyagawa S, Takemoto N, Shiromoto Y, Kudo A, Kanai-Azuma M, Tashiro F, Miyazaki S, Katanaya A, Chuma S, Miyazaki JI (2018) Mouse GTSF1 is an essential factor for secondary piRNA biogenesis. EMBO Rep 19:e42054

Yu T, Fan K, Özata DM, Zhang G, Fu Y, Theurkauf WE, Zamore PD, Weng Z (2021) Long first exons and epigenetic marks distinguish conserved pachytene piRNA clusters from other mammalian genes. Nat Commun 12:73

Yu T, Koppetsch BS, Pagliarani S, Johnston S, Silverstein NJ, Luban J, Chappell K, Weng Z, Theurkauf WE (2019) The piRNA Pathway is Essential for Retrovirial Invasion of the Koala Genome. Cell 179:632-643.e12

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.