Stability and electronic structure of the low-Σ grain boundaries in CdTe: a density functional study

Ji-Sang Park, Joongoo Kang, Ji-Hui Yang, Wyatt Metzger and Su-Huai Wei

1 National Renewable Energy Laboratory, Golden, CO 80401, USA
2 Department of Emerging Materials Science, DGIST, Daegu 711-873, Korea
E-mail: Suhuai.Wei@nrel.gov

Keywords: grain boundaries, II-VI semiconductors, impurity and defect levels in semiconductors, radiation effects in semiconductors

Abstract

Using first-principles density functional calculations, we investigate the relative stability and electronic structure of the grain boundaries (GBs) in zinc-blende CdTe. Among the low-Σ-value symmetric tilt Σ_3 (111), Σ_3 (112), Σ_5 (120), and Σ_5 (130) GBs, we show that the Σ_3 (111) GB is always the most stable due to the absence of dangling bonds and wrong bonds. The Σ_5 (120) GBs, however, are shown to be more stable than the Σ_3 (112) GBs, even though the former has a higher Σ value, and the latter is often used as a model system to study GB effects in zinc-blende semiconductors. Moreover, we find that although containing wrong bonds, the Σ_5 (120) GBs are electrically benign due to the short wrong bond lengths, and thus are not as harmful as the Σ_3 (112) GBs also having wrong bonds but with longer bond lengths.

1. Introduction

Grain boundaries (GBs) are extended defects characterized by a common planar interface between two single crystals. They can exist in various forms and play important roles in determining material properties, and thus have been one of the most active research topics in materials science [1–6]. For example, segregation of impurities to the GBs is an effective way to purify materials, thus improving material quality for device applications [7–12]. GBs also increase phonon scattering, allowing the thermoelectric properties of a material to be improved by intentionally controlling its GB size [13, 14]. GBs in polycrystalline thin-film photovoltaic materials such as CdTe, Cu(In,Ga)Se$_2$ (CIGS), and Cu$_2$ZnSn(S,Se)$_4$ (CZTSSe) can greatly affect the performance of these solar cells. On one hand, GBs are detrimental to the performance of solar cells if they create defect levels that can act as effective recombination centers for photogenerated carriers, paths for forward current, or scattering centers for free carriers [15]. On the other hand, GBs can also be beneficial for solar cell performance if the GBs can act as a hole barrier and an electron sink, separating the photogenerated electrons from holes and thus increasing current collection by reducing carrier recombination [7, 8, 16–21].

Despite the importance of GBs in semiconductor device applications, the study of GBs is often hindered by their complicated atomic structures; the detailed atomic arrangement of the GB is not uniquely determined by the coincidence site lattice (CSL) theory [22]. The determination of the atomic structure of the GBs often requires combined efforts of high-resolution microscopy with atomistic theoretical simulation. Recently, there have been a series of studies on GBs in CdTe [23–26], which is one of the most promising thin-film solar cell absorbers. Most of the theoretical studies have been limited to the symmetric tilt Σ_3 GBs, (111) and (112), whose atomic structures were clearly identified by experiments [23–26]. Because the symmetric tilt Σ_3 GBs were experimentally observed in CdTe, it has been assumed that such a low-Σ-value GB has lower formation energy than other GBs with higher Σ values. However, there exist a variety of other GBs in CdTe [12, 20, 27], whose atomic structures, electronic structures, and optical properties have not been carefully studied. It is not clear whether the extensively studied Σ_3 (111) or Σ_3 (112) GBs are indeed the most stable GBs, and thus dominant in polycrystals.

Previous theoretical studies show that the formation of the wrong bonds will induce deep gap states [10, 12, 24]. Although some of the states can be passivated by doping, it is important to know which GBs are...
electrically less detrimental and whether their population can be controlled or not. To this perspective, stability and electronic structure of the GBs in zinc-blende materials such as CdTe need to be studied to establish a benchmark for future study of more complicated systems such as the zinc-blende-derived ternary (e.g., CIGS) and quaternary (e.g., CZTS) compounds. The GBs in zinc-blende materials have different structures and GB energy levels than in the well-studied diamond structures because they can form wrong cation–cation or anion–anion bonds, which do not exist in the diamond structure by definition. Because the defect levels of the different wrong bonds are different in energy, charge transfer between the defects commonly occurs, which affects to both the stability and the electronic structure of the GBs. The knowledge obtained from the study on CdTe can be easily extended to other zinc-blende or zinc-blende-derived systems [28].

In this work, using first-principles density functional calculations of the GBs in CdTe as an example, we investigate the stability and the electronic structure of low-Σ symmetric tilt GBs. We demonstrate that, as expected, the Σ3 (111) GB is the most stable one compared to other GBs considered in this study. However, we find that the Σ5 (120) GBs are more stable than the Σ3 (112) GBs, despite the former having a higher Σ value and the latter having been often used as a model system to study GB in zinc-blende semiconductors. The Σ5 (120) GBs are shown to be electrically benign in comparison to the Σ3 (112) GBs due to the short bond lengths of the wrong bonds in the Σ5 (120) GBs. Our results indicate that the GB electrical properties strongly depend on the materials, chemical potentials, and misorientation angles.

2. Methods of the calculations

The first-principles density functional calculations are performed using the Vienna ab initio Simulation Package (VASP) [29]. For the calculation of the formation energy of the GBs, we use the local density approximation (LDA) for the exchange correlation potential [30], and the projector-augmented wave (PAW) pseudopotentials to describe the valence and core electron interactions [31]. The cutoff energy for the plane-wave basis is set to be 400 eV. The atomic structures are optimized until the residual forces are less than 0.02 eV Å\(^{-1}\). The optimized lattice constant of CdTe is 6.42 Å, close to the experimental value of 6.48 Å, and the band gap is 0.64 eV, underestimated as compared to the experiment band gap of 1.60 eV at low temperature. The pure tilt GBs are modeled using slab geometry within the supercell method. To avoid possible charge transfer between two different GBs in the same supercell, we employ a slab geometry containing a single GB, in which the surface dangling bonds (DBs) are passivated by pseudo-hydrogens [10].

The GB formation energy \(E_f\) is given by \(E_f = \frac{\text{E_{tot}(GB)} - \sum_i n_i \mu_i}{S}\), where \(\text{E_{tot}(GB)}\) is the total energy of the slab which contains a GB, \(n_i\) is the number of i atoms (i = Cd, Te, pseudo hydrogens with fractional charges 2/4 \(e\) and 6/4 \(e\) to passivate Te DBs and Cd DBs, respectively) in the supercell, \(\mu_i\) is the chemical potential of atom i, and S is the GB area in the supercell. Sum of the two chemical potentials, \(\mu_{\text{Cd}} + \mu_{\text{Te}}\), should be equal to the total energy of bulk CdTe to keep the system in equilibrium. \(\mu_{\text{Cd}}\) should be lower than that of bulk hexagonal Cd, and \(\mu_{\text{Te}}\) should be lower than that of bulk trigonal Te to avoid clustering of the elements. Chemical potentials of pseudo-hydrogen atoms are determined by calculating the surface energies of the (111), (112), (120), and (130) surfaces. For the (112) surface, the procedure described in ref. [32] is used.

3. Results and discussions

Figure 1 shows the atomic structure of Σ3 GBs, including (111) and two different (112) GBs. These structures have been verified experimentally [23–26]. In the Σ3 (111) GB, which can be considered a stacking fault between the zinc-blende and wurtzite structures, there is no DB and wrong bond, and the maximum deviation of Cd–Te bond length from the ideal value of 2.78 Å is less than 0.01 Å. Because of the small deviation from the ideal structure, the formation energy and the change in the GB electronic structure are expected to be small. There are two different Σ3 (112) GBs. In figure 1(b), there are two Cd DBs (A, B), a Te DB (C), and a five-folded Cd atom (D) in the unit cell. In figure 1(c), however, there are two Te DBs (E, F), a Cd DB (G), and a five-folded Te atom (H) in the unit cell. The structure in figure 1(b) has more Cd DBs, and the structure in figure 1(c) has more Te DBs; thus, they are usually labeled as Cd-core and Te-core Σ3 (112) GBs, respectively. In the Cd-core, the two Cd atoms with DBs (denoted by A and B) repel each other due to lack of electrons and Coulomb interaction, resulting in a large Cd–Cd distance of 4.52 Å. However, in the Te-core, the two Te atoms (denoted by E and F) with occupied dangling bond states can interact with each other, forming a bonding state inside the valence band and an anti-bonding level above the valence-band maximum (VBM), consistent with previous studies [33, 34]. The calculated bond distance between the two Te atoms is 3.44 Å. Though they are called Cd-core or Te-core, the two types of Σ3 (112) GBs are stoichiometric, i.e., they have equal numbers of Cd and Te atoms; therefore, the GB formation energies do not depend on the Cd and Te chemical potentials.
To search for atomic structures of CdTe Σ5 GBs with low formation energy, we used the atomic structure of Si Σ5 GBs as the starting points because they have been well studied in the past [35, 36]. We studied only GBs with the mirror symmetry because fewer wrong bonds are formed for this symmetric structure compared to others. In our search, first, we made the initial GB structure based on the GBs in bulk Si. Next, we relaxed the structures and/or removed one or two elements from the wrong bonds to see if the energy could be reduced through this process. Figure 2 shows the atomic structures of several low-energy Σ5 (130) GBs [figures 2(a) to (c)], and Σ5 (120) GBs [figures 2(d) to (f)]. As shown in figure 2, there were two different kinds of wrong bonds: Three Cd atoms form a ring structure, and two Te atoms form wrong bonds, denoted as 'A' and 'B' in the figure, respectively. Note that the structures in (b) and (e) have an equal number of Cd and Te atoms at the GB; thus, there is no chemical potential dependence for their GB formation energies. In contrast, the GBs in (a) and (d) have more Cd atoms, and the structures in (c) and (f) contain more Te atoms. Hence, the formation energy of these GBs depends on the chemical potentials of Cd and Te. It is worth noting that although the atomic structure in the pure CdTe crystal is not changed after Cd and Te atoms are interchanged, such operation changes the...
structures in the $\Sigma 5$ (120) GBs. However, our total energy calculations show that the $\Sigma 5$ GBs obtained by exchanging Cd and Te atoms from the structures in figure 2 (not shown) all have higher formation energies.

As shown in figure 3, our results clearly show that the $\Sigma 3$ (111) GB is the most stable one ($E_f = 0.03 \text{ eV nm}^{-2}$) because there are no DBs or wrong bonds, and that the $\Sigma 5$ (120) GBs have lower formation energy than $\Sigma 3$ (112) GBs regardless of the chemical potential of Te, although the $\Sigma 3$ (112) GBs have often been used as a model system to study GBs in II–VI semiconductors. The lowest-energy $\Sigma 5$ (120) GB structure depends on the chemical potential of Te; the Cd-core GB [figure 2(d)] is formed under the Cd-rich condition, while the Te-core GB [figure 2(f)] becomes stable under the Te-rich condition. The stoichiometric $\Sigma 5$ (120) GB with no wrong bonds [figure 2(e)] can also be formed in a limited range of the chemical potential. This indicates that we can control the atomic structure of GBs by changing the chemical potential. For the $\Sigma 3$ (112) GBs in figure 1, we find that the Te-core GB is more stable than the Cd-core GB, which is consistent with both a previous theoretical calculation [33] and the fact that only the Te-core was found in most experiments [24]. Previous studies showed that the Te-core $\Sigma 3$ (112) GB is more harmful than the Cd-core $\Sigma 3$ (112) GB due to the deep gap states associated with the Te-core, although it can be more easily passivated [33, 34]. Also, the $\Sigma 5$ (130) GBs have comparable formation energies as the $\Sigma 3$ (112) GBs, whereas they are less stable than the $\Sigma 3$ (120) GBs. We notice that the $\Sigma 5$ (130) GB in Si is more stable than $\Sigma 5$ (120) GBs [35], suggesting that the relative GB stability is determined by the material’s ionicity and the ratio of the anion and cation sizes.

In compound semiconductors such as CdTe, CIGS, and CZTS, GB states inside the band gap are usually introduced by DBs and wrong bonds. Consequently, the lack of such defects makes the $\Sigma 3$ (111) GB free of deep gap states and inactive for carrier recombination in CdTe compared to other GBs. Indeed, previous studies show that $\Sigma 3$ (111) GB only weakly acts as a hole barrier because the VBM of the wurtzite-like GB region is a little higher than that of the ZB CdTe [23, 25]. In contrast, the atomic structure of the $\Sigma 5$ GBs contains both DBs and wrong bonds. Because the $\Sigma 5$ (120) GBs are the second most stable GBs in this study, we will discuss their electronic structures in more detail.

It is well known that the band gap is underestimated in the LDA. Consequently, the positions of defect levels derived from the wrong bonds, such as Cd–Cd and Te–Te, are not accurately determined. To correct the band gap error, we adopted hybrid functional calculations using the exchange correlation functional proposed by Heyd, Scuseria, and Ernzerhof (HSE06) [37]. The calculated band gap is 1.44 eV, close to the experimental value of 1.60 eV. The structure was relaxed in the HSE calculations by using Γ point only for the Brillouin zone integration. A denser $(3 \times 3 \times 1)$ k-point grid was used to obtain the projected density of states. The cutoff energy for the plane-wave basis is set to 205.8 eV because of the heavy computational cost of HSE. Using the HSE method, we calculate the electronic structures of the two $\Sigma 5$ (120) GBs, which are stable in the Cd-rich and Te-rich conditions.

The Cd-core $\Sigma 5$ (120) GB do not induce deep gap states, although some GB states appear at a position close to the VBM, as shown in figures 4(a). Figures 4(b) shows the charge density of the defect state, which is derived from the three Cd atoms forming a triangular ring and one Te DB in the unit cell. The bonds among the three Cd atoms are derived from the Cd 5s orbitals, and the level is pushed down to be close the VBM because of the short Cd–Cd bond lengths. Note that this state also couples weakly with the Te DB state, which is located at about 1.2 eV below the VBM. Since there is no empty gap state, this GB is not active in capturing electrons. Note that
the capture and de-trapping of holes can easily occur because the GB state is close to the VBM. Consequently, we expect that this GB is not an active recombination center nor harmful to device performance.

In contrast to Cd atoms, Te atoms in the Te-core do not form the ring structure due to the difference of charge and size between the Cd and Te atoms. Therefore, there are one Te DB, one Te–Te wrong bond, and one Cd DB in the unit cell, resulting in different electronic structures. Also in this GB, there is no empty gap state, as shown by the PDOS in figure 5(a); only some fully occupied GB states appear above the VBM by 0.11 eV. The Cd DB level is higher than the conduction-band minimum (CBM) by about 1.5 eV, and the Te DBs are located below the VBM by about 0.7 eV. The occupied Te DB state is strongly hybridized with the valence band states, as is the Cd DB state with the conduction band. As the two Te DB levels interact, Te–Te σ bonding and anti-bonding states are located at about 3.2 eV below and 2 eV above the VBM, respectively. It is important to know that the Te–Te anti-bonding level depends strongly on the Te–Te bond length. In this Te-core Z5 GB, the bond length is 2.76 Å, so the anti-bonding Te–Te σ wrong bond state is pushed above the CBM. However in the Te-
core $\Sigma 3$ GB, the Te–Te wrong bond length is much longer at 3.51 Å [34]. Hence, the anti-bonding state of the Te-core $\Sigma 3$ GB is located deep inside the band gap, and can trap electrons.

Because there is no partially occupied defect level deep inside the band gap, the $\Sigma 5$ (120) GBs, which are energetically more favorable than the $\Sigma 3$ (112) GBs, are electrically more benign than the $\Sigma 3$ (112) GBs. Our calculations for $\Sigma 5$ (130) GBs also show that the GBs are benign because the Cd–Cd and Te–Te wrong bonds have short distances in these GBs. The reason that the large $\Sigma 5$ GBs have shorter Te–Te and Cd–Cd bond lengths could be because these GBs have sharp interface angles, and thus smaller space at the GBs; consequently, the wrong bonds are squeezed to have short lengths. We suggest that experimental studies should be done to verify our predicted $\Sigma 5$ GB structures and our finding that despite the associated dangling bonds and wrong bonds, the $\Sigma 5$ GBs in CdTe are electrically benign. More study on other high-Σ-value tilt GBs is also needed to see whether these GBs create deep GB levels inside the band gap or not.

4. Conclusions

In summary, using first-principle total energy calculations, we have systematically investigated the stability and electronic structure of symmetric tilt GBs in CdTe. Our results show that the $\Sigma 3$ (111) GB is the most stable one among all the GBs considered in this study because of the absence of dangling bonds and wrong bonds. However, surprisingly, we find $\Sigma 5$ (120) GBs are more stable than $\Sigma 3$ (112) GBs despite the former having a high Σ number. The local structure of the $\Sigma 5$ (120) GBs depends on the chemical potential of Cd and Te. Under the Cd-rich (Te-rich) condition, the Cd–Cd (Te–Te) wrong bonds are formed; therefore, the GBs can have different electronic structures depending on the chemical potentials. However, although wrong bonds, in general, are more detrimental to device performance compared to other defects because they usually introduce deep levels inside the band gap, we find that $\Sigma 5$ (120) GBs are electronically benign compared to $\Sigma 3$ (112) GBs because the wrong bonds in $\Sigma 5$ (120) GBs are much shorter. The insights obtained in this study will help us to have a better understanding of the chemical trends of GB formation and the roles of GB in controlling material properties.

Acknowledgments

The work at NREL was supported by the U.S. Department of Energy, EERE, under contract no. DE-AC36-08GO28308. The work at DGIST was supported by the DGIST MIREBrain Program.

References

[1] DiVincenzo D P, Alerhand O L, Schlüter M and Wilkins J W 1986 Phys. Rev. Lett. 56 1925
[2] Maiti A, Chisholm M F, Pennycook S J and Pantelides S T 1996 Phys. Rev. Lett. 77 1306
[3] Baram M, Chatain D and Kaplan W D 2011 Science 332 206
[4] Luo J, Cheng H, Asl K M, Kiely C J and Harmer M P 2011 Science 333 1730
[5] Kang J, Glatzmaier G C and Wei S-H 2013 Phys. Rev. Lett. 111 055502
[6] Frolow T, Divinski S V, Asta M and Mishin Y 2013 Phys. Rev. Lett. 110 235502
[7] Visoly-Fisher I, Cohen S R, Ruzin A and Cahn D 2004 Adv. Mater. 16 879
[8] Visoly-Fisher I, Cohen S R, Gartsman K, Ruzin A and Cahn D 2006 Adv. Funct. Mater. 16 649
[9] Cepelka V, Feuillet G, Barnes J P and Donatini F 2009 Phys. Rev. B 80 165207
[10] Yin W-J, Wu Y, Noufi R, Al-Jassim M and Yan Y 2013 Appl. Phys. Lett. 102 193905
[11] Moseley I, Al-Jassim M M, Moutinho H R, Guthrey H L, Metzger W K and Ahrenkiel R K 2013 Appl. Phys. Lett. 103 233103
[12] Li C et al 2014 Phys. Rev. Lett. 112 156103
[13] Poulet B et al 2008 Science 320 634
[14] Biswas K, He J, Blum I D, Wu C-I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414
[15] Metzger W K and Gloeckler M 2005 J. Appl. Phys. 98 063701
[16] Visoly-Fisher I, Cohen S R and Cahn D 2003 Appl. Phys. Lett. 82 556
[17] Smith S, Zhang P, Gesser T and Mascarenhas A 2004 Appl. Phys. Lett. 85 3854
[18] Persson C and Zunger A 2003 Phys. Rev. Lett. 91 266401
[19] Persson C and Zunger A 2005 Appl. Phys. Lett. 87 211904
[20] Hafemeister M, Siebenbronn S, Alberth J, Lux-Steiner M C and Sadewasser S 2010 Phys. Rev. Lett. 104 196602
[21] Gloeckler M, Sites J R and Metzger W K 2005 J. Appl. Phys. 98 113704
[22] Ranganathan S 1966 Acta Cryst. B 21 197
[23] Yan Y, Al-Jassim M M, Jones K M, Wei S-H and Zhang X 2000 Phys. Rev. Lett. 77 801
[24] Yan Y, Al-Jassim M M and Jones K M 2003 J. Appl. Phys. 94 2970
[25] Sun C, Lu N, Wang J, Lee J, Peng X, Klie R F and Kim M J 2013 Appl. Phys. Lett. 103 252104
[26] Oliveira J M, Malachias A, Oscura A C and Ferreira S O 2014 J. Phys. Chem. C 118 1968
[27] Consonni V, Baier N, Robach O, Caunron C, Donatini F and Feuillet G 2014 Phys. Rev. B 89 035310
[28] Walsh A, Chen S, Wei S-H and Gong X-G 2012 Adv. Energy. Mater. 2 400
[29] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[30] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 56
[31] Balsch P E 1994 Phys. Rev. B 50 17953
[32] Zhang S B and Wei S-H 2004 Phys. Rev. Lett. 92 086102
[33] Zhang L, Da Silva J L F, Li J, Yan Y, Gessert T A and Wei S-H 2008 Phys. Rev. Lett. 101 155501
[34] Feng C, Yin Y-J, Nie J, Zu X, Huda M N, Wei S-H, Al-Jassim M M and Yan Y 2012 Solid State Commun. 152 1744
[35] Kohyama M 1987 Phys. Status Solidi B 141 71
[36] Kohyama M, Yamamoto R, Ebata Y and Kinoshita M 1988 J. Phys. C: Solid State Phys. 21 3205
[37] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207