A Note on the Modified Albertson Index

Shumaila Yousaf, Akhlaq Ahmad Bhatti, Akbar Ali

Department of Sciences and Humanities, National University of Computer and Emerging Sciences, B-Block, Faisal Town, Lahore, Pakistan
E-mail: shumaila.yousaf@uog.edu.pk, akhlaq.ahmad@nu.edu.pk

Knowledge Unit of Science, University of Management and Technology, Sialkot-Pakistan
E-mail: akbarali.maths@gmail.com

February 6, 2019

Abstract

The modified Albertson index, denoted by A^*, of a graph G is defined as $A^*(G) = \sum_{uv \in E(G)} |d_u - d_v|^2$, where d_u, d_v denote the degrees of the vertices u, v, respectively, of G and $E(G)$ is the edge set of G. In this note, a sharp lower bound of A^* in terms of the maximum degree for the case of trees is derived. The n-vertex trees having maximal and minimal A^* values are also characterized here. Moreover, it is shown that $A^*(G)$ is non-negative even integer for every graph G and that there exist infinitely many connected graphs whose A^* value is $2t$ for every integer $t \in \{0, 3, 4, 5\} \cup \{8, 9, 10, \cdots\}$.

Keywords: Irregularity; Albertson index; modified Albertson index.

2010 Mathematics Subject Classification: 05C07.

1 Introduction

All the graphs considered in this note are simple and finite. Sets of vertices and edges of a graph G will be denoted by $V(G)$ and $E(G)$, respectively. Degree of a vertex u and the edge connecting the vertices $u, v \in V(G)$ will be denoted by d_u and uv, respectively. Let $N(u)$ be the set of all those vertices of G which are adjacent to u. By an n-vertex graph, we mean a graph with n vertices. The graph theoretical terminology not defined here, can be found from some standard books of graph theory, like [5][10].

For a graph G, the imbalance of the edge $uv \in E(G)$, denoted by $imb(uv)$, is defined as $|d_u - d_v|$. The idea of the imbalance of an edge was actually appeared implicitly in [2] within the study of Ramsey graphs. Using the concept of imbalance, Albertson [1] defined the following graph invariant

$$A(G) = \sum_{uv \in E(G)} imb(uv)$$
and named it as the \textit{irregularity} of G; however, several researchers [3,7,9,11,14] referred it as the \textit{Albertson index} and we do the same in this paper. Detail about the mathematical properties of the Albertson index can be found in the recent papers [4,6,12,13] and related references listed therein.

This note is devoted to establish some properties of the following modified version of the Albertson index

$$A'(G) = \sum_{uv \in E(G)} |(d_u)^2 - (d_v)^2|.$$

We propose to call the graph invariant A' as the \textit{modified Albertson index}.

\section{Main Results}

Firstly, we prove two results concerning the modified Albertson index of trees; one of these results is related to a sharp lower bound of A' in terms of maximum degree and the second one is an extremal result, in which we characterize the n-vertex trees having maximal and minimal A' values.

\textbf{Proposition 2.1.} If T is a tree with maximum degree Δ then $A'(T) \geq \Delta(\Delta^2 - 1)$ with equality if and only if T is isomorphic to either a path or a tree containing only one vertex of degree greater than 2.

\textbf{Proof.} The result is obvious for $\Delta \leq 2$ and hence we assume that $\Delta \geq 3$. If $v \in V(T)$ has maximum degree then there are d_v pendant vertices namely $w_1, w_2, \ldots, w_{d_v}$ in T such that the paths $v - w_1, v - w_2, \ldots, v - w_{d_v}$ are pairwise internally disjoint. If the path $v-w_1$ has length greater than 1, suppose that $w_{1,1}, w_{1,2}, \ldots, w_{1,r}$ are the internal vertices of the path $v - w_1$. Then,

$$|\left(d_v\right)^2 - \left(d_{w_{1,1}}\right)^2| + \left|\left(d_{w_{1,1}}\right)^2 - \left(d_{w_{1,2}}\right)^2\right| + \cdots + \left|\left(d_{w_{1,r}}\right)^2 - \left(d_{w_1}\right)^2\right| \geq \left|\left(d_v\right)^2 - \left(d_{w_{1,1}}\right)^2\right| + \left|\left(d_{w_{1,1}}\right)^2 - \left(d_{w_{1,2}}\right)^2\right| + \cdots + \left|\left(d_{w_{1,r}}\right)^2 - \left(d_{w_1}\right)^2\right| = \Delta^2 - 1.$$

We note that the equality

$$|\left(d_v\right)^2 - \left(d_{w_{1,1}}\right)^2| + \left|\left(d_{w_{1,1}}\right)^2 - \left(d_{w_{1,2}}\right)^2\right| + \cdots + \left|\left(d_{w_{1,r}}\right)^2 - \left(d_{w_1}\right)^2\right| = \Delta^2 - 1$$

holds if and only if the degrees of successive vertices along the path from v to w_1 decrease monotonously (not necessarily strictly). Similarly, for $i = 2, \ldots, r$, the sum of contributions of edges to $A'(T)$ along the path $v - w_i$ is at least $\Delta^2 - 1$ with equality if and only if the degrees of successive vertices along the path from v to w_i decrease monotonously (not necessarily strictly), and hence the desired result follows. \hfill \square

\textbf{Proposition 2.2.} For $n \geq 5$, if T is an n-vertex tree different from the path P_n and star S_n, then $A'(P_n) < A'(T) < A'(S_n)$.

\textbf{Proof.} The inequality $A'(P_n) < A'(T)$ follows from Proposition 2.1. To prove the inequality $A'(T) < A'(S_n)$, we note that for any two vertices $u, v \in V(T)$, it holds that $|\left(d_u\right)^2 - \left(d_v\right)^2| \leq |(n-1)^2 - 1|$ with equality if and only if one of the vertices u, v has degree 1 and the other has degree $n-1$. But, T does not contain any vertex of degree $n-1$ and hence

$$A'(T) = \sum_{uv \in E(T)} |(d_u)^2 - (d_v)^2| < (n-1)(n-1)^2 - 1 = A'(S_n).$$

\hfill \square
Let u be a fixed vertex of G. We partition the set $N(u)$ as follows: $L(u) = \{v \in N(u) : d_v < d_u\}$, $E(u) = \{v \in N(u) : d_v = d_u\}$ and $G(u) = \{v \in N(u) : d_v > d_u\}$. The number of elements in $L(u)$, $E(u)$ and $G(u)$ ar denoted by l_u, e_u and g_u, respectively. Clearly, $d_u = l_u + e_u + g_u$. Now, we will prove that the modified Albertson index A^* is non-negative even integer for every graph; but, before proving this fact, we derive the following useful result first.

Lemma 2.3. If u and v are non-adjacent vertices in a graph G such that $d_u \geq d_v$ then
\[
A'(G + uv) = A'(G) + 3d_u(d_u + 1) + d_v(d_v - 1) - 2[(2d_u + 1)g_u + (2d_v + 1)g_v].
\]

Proof. We consider the difference
\[
A'(G + uv) - A'(G) = (d_u + 1)^2 - (d_v + 1)^2
+ \sum_{x \in N(u)} \left(|(d_u + 1)^2 - (d_x)^2| - |(d_u)^2 - (d_x)^2| \right)
+ \sum_{y \in N(v)} \left(|(d_v + 1)^2 - (d_y)^2| - |(d_v)^2 - (d_y)^2| \right).
\]

Now, using the facts $N(u) = L(u) \cup E(u) \cup G(u)$, $N(v) = L(v) \cup E(v) \cup G(v)$ and then after simplifying, we arrive at
\[
A'(G + uv) - A'(G) = (d_u - d_v)(d_u + d_v + 2) + (2d_u + 1)(e_u + l_u - g_u)
+ (2d_v + 1)(e_v + l_v - g_v),
\]
which is equivalent to
\[
A'(G + uv) - A'(G) = 3d_u(d_u + 1) + d_v(d_v - 1) - 2[(2d_u + 1)g_u + (2d_v + 1)g_v].
\]

\[\square\]

Proposition 2.4. The modified Albertson index A^* of every graph is a non-negative even integer.

Proof. Let G be any graph. By definition, $A'(G) \geq 0$ with equality if and only if every component of G is regular. The result obviously holds if G is the complete graph and hence we assume that G is not isomorphic to a complete graph. We prove the result by induction on the number of edges of G. If G is the edgeless graph then $A'(G) = 0$ and hence the induction starts. Let u and v be non-adjacent vertices of G such that $d_u \geq d_v$. Then, by Lemma 2.3 it holds that
\[
A'(G + uv) = A'(G) + 3d_u(d_u + 1) + d_v(d_v - 1) - 2[(2d_u + 1)g_u + (2d_v + 1)g_v]. \tag{1}
\]
By induction hypothesis, $A'(G)$ is even and hence from Equation (1), it follows that $A'(G + uv)$ is even. This completes the induction and hence the proof.

\[\square\]

Transformation 1. Let uv be an edge of a graph G satisfying $d_u = d_v = 3$. Let G' be the graph obtained from G by inserting a new vertex $x \not\in V(G)$ of degree 2 on the edge uv.

Finally, we prove that there exist infinitely many connected graphs whose modified Albertson index is $2t$ for every integer $t \in \{0, 3, 4, 5\} \cup \{8, 9, 10, \cdots\}$. For this, we need the following two lemmas whose proofs are straightforward.
Lemma 2.5. If G and G' are the two graphs specified in Transformation 1, then $A'(G') = A'(G) + 10$.

Lemma 2.6. Let uv be an edge of a graph G satisfying one of the following conditions
1. $d_u = 1$ and $d_v \geq 2$;
2. at least one of the vertices u, v has degree 2.
If G' is the graph obtained from G by inserting a new vertex $x \not\in V(G)$ of degree 2 on the edge uv, then $A'(G') = A'(G)$.

Proposition 2.7. For every integer $t \in \{0, 3, 4, 5\} \cup \{8, 9, 10, \ldots\}$, there exist infinitely many connected graphs whose A' value is $2t$.

Figure 1: The graphs $H_{0,0}$, $H_{0,1}$, $H_{0,2}$, $H_{0,3}$ and $H_{0,4}$, used in the proof of Proposition 2.7.

Proof. Let $H_{0,0}$ be the cubic graph shown in Figure 1. Obviously, $H_{0,0}$ has $3(t + 2)$ edges and its A' value is 0. Also, we consider the graphs $H_{0,1}$, $H_{0,2}$, $H_{0,3}$ and $H_{0,4}$ (which are obtained from $H_{0,0}$) depicted in Figure 1; their A' values are 32, 24, 16 and 8, respectively. For $j = 0, 1, 2, 3, 4$ and $1 \leq i < 3(t + 2)$, let $H_{i,j}$ be the graph obtained from $H_{i-1,j}$ by applying Transformation 1. Then,

$$A'(H_{i,j}) = \begin{cases} 10i & \text{if } j = 0; \\ 2(5i - 4j + 20) & \text{otherwise}. \end{cases}$$

We yet need to find the graphs with A' values 22 and 6. The A' value of the 3-vertex path graph P_3 is 6. Let H be the graph obtained from the 5-vertex complete graph K_5 by inserting a new vertex $x \not\in V(K_5)$ of degree 2 on an edge of K_5. If H' is the graph obtained from H by attaching a new vertex $y \not\in V(H)$ to the vertex $x \in V(H)$, then $A'(H') = 22$. Until now, we have found a single graph having modified Albertson index $2t$ for each $t \in \{0, 3, 4, 5\} \cup \{8, 9, 10, \ldots\}$. Now, by using the transformation specified in Lemma 2.6, we get infinitely many graphs with the same A' value, corresponding to each of the graphs $H_{i,j}$, P_3, H'. \qed
References

[1] M. O. Albertson, The irregularity of a graph, *Ars Combin.* **46** (1997) 219–225.

[2] M. O. Albertson, D. M. Berman, Ramsey graphs without repeated degrees, *Cong. Numer.* **83** (1991) 91–96.

[3] A. Ali, Z. Raza, A. A. Bhatti, Bond incident degree (BID) indices of polyomino chains: A unified approach, *Appl. Math. Comput.* **287-288** (2016) 28–37.

[4] A. R. Ashrafi, A. Ghalavand, A. Ali, Molecular trees with the sixth, seventh and eighth minimal irregularity values, *Discrete Math. Algorithm. Appl.*, DOI: 10.1142/S1793830919500022, in press.

[5] J. A. Bondy, U. S. R. Murty, *Graph Theory*, Springer, 2008.

[6] X. Chen, Y. Hou, F. Lin, Some new spectral bounds for graph irregularity, *Appl. Math. Comput.* **320** (2018) 331–340.

[7] B. Furtula, I. Gutman, M. Dehmer, On structure-sensitivity of degree-based topological indices, *Appl. Math. Comput.* **219** (2013) 8973–8978.

[8] I. Gutman, P. Hansen, H. Mélot, Variable neighborhood search for extremal graphs 10. Comparison of irregularity indices for chemical trees, *J. Chem. Inf. Model.* **45** (2005) 222–230.

[9] P. Hansen, H. Mélot, Variable neighborhood search for extremal graphs. 9. Bounding the irregularity of a graph, in: S. Fajtlowicz, P. W. Fowler, P. Hansen, M. F. Janowitz, F. S. Roberts (Eds.), *Graphs and Discovery*, Am. Math. Soc., Providence, 2005, pp. 253–264.

[10] F. Harary, *Graph Theory*, Addison-Wesley, 1969.

[11] M. M. Matejić, E. I. Milovanović, I. Ž. Milovanović, On upper bounds for VDB topological indices of graphs, *Appl. Math. Comput. Sci.* **3** (2018) 5–11.

[12] R. Nasiri, H. R. Ellahi, A. Gholami, G. H. Fath-Tabar, The irregularity and total irregularity of Eulerian graphs, *Iranian J. Math. Chem.* **9**(2) (2018) 101–111.

[13] R. Nasiri, A. Gholami, G. H. Fath-Tabar, H. R. Ellahi, Extremely irregular unicyclic graphs, *Kragujevac J. Math.* **43** (2019) 281–292.

[14] T. Réti, R. Sharafdini, Á. Drégely-Kiss, H. Haghbin, Graph irregularity indices used as molecular descriptors in QSPR studies, *MATCH Commun. Math. Comput. Chem.* **79** (2018) 509–524.