Prevalence of Smqnr and plasmid-mediated quinolone resistance determinants in clinical isolates of Stenotrophomonas maltophilia from Japan: novel variants of Smqnr

H. Kanamori1,2, H. Yano1, A. Tanouchi1, R. Kakuta1, S. Endo1, S. Ichimura3, M. Ogawa1, M. Shimojima1, S. Inomata1, D. Ozawa1, T. Aoyagi1, D. J. Weber2 and M. Kaku1

1) Department of Infection Control and Laboratory Diagnostics, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan, 2) Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, United States and 3) Department of Bacteriology, BML Inc., Kawagoe, Saitama, Japan

Abstract

Stenotrophomonas maltophilia is an important pathogen in healthcare-associated infections. S. maltophilia may contain Smqnr, a quinolone resistance gene encoding the pentapeptide repeat protein, which confers low-level quinolone resistance upon expression in a heterologous host. We investigated the prevalence of Smqnr and plasmid-mediated quinolone resistance (PMQR) determinants in S. maltophilia isolates from Japan. A total of 181 consecutive and nonduplicate clinical isolates of S. maltophilia were collected from four areas of Japan. The antimicrobial susceptibility profiles for these strains were determined. PCR was conducted for Smqnr and PMQR genes, including qnrA, qnrB, qnrC, qnrS, aac(6’)-Ib and qepA. PCR products for Smqnr and aac(6’)-Ib were sequenced. For the S. maltophilia isolates containing Smqnr, pulsed-field gel electrophoresis (PFGE) was performed using XbaI. Resistance rates to ceftazidime, levofloxacin, trimethoprim–sulfamethoxazole, chloramphenicol and minocycline were 67.4%, 6.1%, 17.7%, 8.8% and 0%, respectively. The minimum inhibitory concentration required to inhibit the growth of 50% and 90% of organisms were 0.5 and 2 mg/L for moxifloxacin but 1 and 4 mg/L for levofloxacin, respectively. Smqnr was detected in 104 of the 181 S. maltophilia isolates (57.5%), and the most frequent was Smqnr6, followed by Smqnr8 and Smqnr11. Eleven novel variants from Smqnr48 to Smqnr58 were detected. The 24 Smqnr-containing S. maltophilia isolates were typed by PFGE and divided into 21 unique types. Nine S. maltophilia isolates (5.0%) carried aac(6’)-Ib-cr. No qnr or qepA genes were detected. This study describes a high prevalence of Smqnr and novel variants of Smqnr among S. maltophilia from Japan. Continuous antimicrobial surveillance and further molecular epidemiological studies on quinolone resistance in S. maltophilia are needed.

Keywords: Antimicrobial susceptibility, Japan, plasmid-mediated quinolone resistance (PMQR), Smqnr, Stenotrophomonas maltophilia

Original Submission: 12 November 2014; Revised Submission: 6 March 2015; Accepted: 27 April 2015

Available online 14 May 2015

Introduction

In recent years, hospital infections and outbreaks due to glucose nonfermenting Gram-negative bacilli such as the multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii have become a major concern worldwide. In hospital environments, Stenotrophomonas maltophilia has been isolated from tap water, nebulizers, ventilator circuits, contaminated disinfectants and other locations, and it is an important
opportunistic pathogen causing healthcare-associated infections [1]. Infections due to \textit{S. maltophilia} are increasing as a result of developments in advanced medical treatments such as organ transplantation, chemotherapy, immunosuppressant drugs, increased numbers of compromised hosts and the increased use of broad-spectrum antibiotics. \textit{S. maltophilia} causes various infections, including respiratory tract infections (pneumonia and acute exacerbations of chronic obstructive pulmonary disease); bacteraemia; and infections of urinary tract, skin and soft tissues, bones and joints and eye [2]. Nosocomial infections have high mortality, which has been reported to range 12.5% to 41% due to bacteraemia, 40% to 50% due to pneumonia and 39% due to endocarditis [1,3]. \textit{S. maltophilia} infections are difficult to treat because the bacterium may exhibit high-level intrinsic resistance to many antimicrobial agents. Trimethoprim–sulfamethoxazole, ticarcillin/clavulanate, and quinolones are used for treatment of \textit{S. maltophilia} infections, but resistance to these antibiotics has been increasingly described [3]. Few studies on the antimicrobial susceptibility of \textit{S. maltophilia} have been reported in Japan.

Quinolone resistance is mainly caused by chromosomal mutations of the quinolone resistance–determining regions in DNA gyrase and DNA topoisomerase IV, as well as porin alterations or overexpression of efflux pump systems, resulting in decreased quinolone accumulation [4–6]. However, a plasmid-mediated horizontally transferable quinolone resistance gene encoding a pentapeptide repeat protein \textit{(}qnr\textit{)} was discovered in 1998 [7]. Since then, other plasmid-mediated quinolone resistance (PMQR) determinants, including \textit{aac(6')-Ib-cr}, encoding a variant aminoglycoside acetyltransferase, and \textit{qepA}, encoding an efflux pump, have been reported worldwide in clinical isolates of Enterobacteriaceae [5,6]. Studies of PMQR determinants in Enterobacteriaceae have been increasing, though PMQR determinants in \textit{S. maltophilia} remain unclear.

The main mechanism of high-level quinolone resistance in \textit{S. maltophilia} is thought to involve overexpression of efflux pumps, in particular \textit{SmeDEF}, and low permeability of the outer membrane [8]. Quinolone resistance in \textit{S. maltophilia} can also occur as a result of mutations in DNA gyrase and topoisomerase genes [2]. \textit{Smqnr} have been recently identified in \textit{S. maltophilia} as a novel chromosomal quinolone resistance gene encoding the pentapeptide repeat protein SmQnr. Similar to PMQR determinants in Enterobacteriaceae, \textit{Smqnr} confers low-level quinolone resistance in \textit{Escherichia coli} and may transmit quinolone resistance genes to other bacteria [9–11]. There are few studies on the frequency of \textit{Smqnr} and PMQR genes in \textit{S. maltophilia}. In this study, we investigated the antimicrobial susceptibility of clinical isolates of \textit{S. maltophilia} and the prevalence of \textit{Smqnr} and PMQR determinants in \textit{S. maltophilia} isolates from Japan.

Materials and Methods

Bacterial isolates

A total of 181 consecutive and nonduplicate clinical isolates of \textit{S. maltophilia} were collected between November 2009 and March 2010 from four areas of Japan, including 43 isolates from Hokkaido, 49 from Tokyo, 43 from Osaka and 46 from Fukuoka. \textit{S. maltophilia} were identified using the Microscan Walkaway System (Siemens Healthcare Diagnostics, Tokyo, Japan) and the Vitek-2 System (Sysmex-bioMérieux, Tokyo, Japan). Isolates included 148 from sputum (81.8%), 13 from nasal and throat swabs (7.2%), eight from urine (4.4%) and 12 from other specimens (6.6%). There were no isolates obtained from blood cultures in this study. The isolates included 160 (88.4%) from hospitalized patients and 21 (11.6%) from community patients. Institutional review board approval was not required for this study according to the research guidelines of the Japanese government (http://www.niph.go.jp/wadai/ekigakurinri/guidelines.pdf).

Antimicrobial susceptibility testing

Minimum inhibitory concentrations (MICs) of nine antibiotics, including piperacillin (range, 0.06–128 mg/L), ceftazidime (0.06–128 mg/L), imipenem (0.06–128 mg/L), minocycline (0.06–128 mg/L), amikacin (0.06–128 mg/L), levofloxacin (0.06–128 mg/L), moxifloxacin (0.06–128 mg/L), trimethoprim–sulfamethoxazole (1/19–8/152 mg/L) and chloramphenicol (2–128 mg/L) were determined by the broth microdilution method. Clinical and Laboratory Standards Institute (CLSI) interpretive criteria were used for each antibacterial agent [12]. Quality control was performed using \textit{E. coli} American Type Culture Collection (ATCC) 25922 and \textit{E. coli} ATCC 35218.

PCR and sequencing of \textit{Smqnr} and PMQR genes

The primers used to amplify an 811 bp fragment containing the entire \textit{Smqnr} coding sequence were as follows: 5'-ACACA-GAACGGCTTGACTGC-3' and 5'-TTCACCGCAGTGGAGCTTG-3' [9,11]. Screening of \textit{S. maltophilia} isolates for \textit{aac(6')-Ib} and PMQR genes, including \textit{qnrA}, \textit{qnrB}, \textit{qnrC}, \textit{qnrS} and \textit{qepA}, was conducted by multiplex PCR amplification, as described previously [13]. PCR products for \textit{Smqnr} and \textit{aac(6')-Ib} were sequenced using ABI BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA) on an ABI 3730xl Analyzer (Applied Biosystems). Nucleotide and amino acid sequences were analysed with BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi), Expasy translate tool (http://web.expasy.org/translate/) and CLUSTALW v2.1 (http://www.ddbj.nig.ac.jp/searches-j.html). If one or more amino acid differed compared to the previously reported \textit{Smqnr} sequences in New Microbes and New Infections © 2015 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases, NMNI, 7, 8–14 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
GenBank and/or published articles, Smqnr alleles were considered to be novel and were named numerically according to qnr nomenclature [14].

Pulsed-field gel electrophoresis

For the 24 S. maltophilia isolates containing Smqnr variants which were detected from four Japanese areas, pulsed-field gel electrophoresis (PFGE) was performed using XbaI (Takara Bio Inc., Otsu, Japan). Electrophoresis was performed on a 1% PFGE agarose gel with a CHEF-DR III system (Bio-Rad Laboratories, Richmond, CA, USA). Electrophoretic patterns were analysed with GelCompar II version 3.0 (Applied Maths, Kortrijk, Belgium). Similarity between two tracks was calculated using the coefficient of Jaccard and band positions. Cluster analysis and dendrogram generation were performed by the unweighted pair group method using arithmetic averages. Isolates with similarity >85% were considered to be within a cluster [15].

Statistical analysis

Statistical significance was evaluated by two-sided chi-square test or Fisher’s test, according to the sample size. A p value of <0.05 was considered significant.

Results

Antimicrobial susceptibility of S. maltophilia isolates

MICs and susceptibility profile of S. maltophilia for the tested antimicrobial agents are shown in Table 1. Resistance rates to cefazidime, levofloxacin, trimethoprim–sulfamethoxazole and chloramphenicol were 67.4%, 6.1%, 17.7% and 8.8%, respectively. All isolates were susceptible to minocycline. The MIC required to inhibit the growth of 50% of organisms (MIC50) of piperacillin, imipenem and amikacin was 128 mg/L, >128 mg/L and 128 mg/L, respectively. The MIC50 and MIC required to inhibit the growth of 90% of organisms (MIC90) of moxifloxacin (0.5 and 2 mg/L, respectively) were lower than those of levofloxacin (1 and 4 mg/L, respectively). Fig. 1 shows a comparison of susceptibility to levofloxacin and moxifloxacin among S. maltophilia isolates with or without Smqnr genes. Eight (7.7%) and three (2.9%) of the 104 Smqnr-positive isolates were resistant to levofloxacin and moxifloxacin using the resistance breakpoint of MICs ≥8 mg/L, while three (3.9%) and three (3.9%) of the 77 Smqnr-negative isolates were resistant to levofloxacin and moxifloxacin, respectively (p >0.05) for both levofloxacin and moxifloxacin between Smqnr-positive and -negative isolates. However, 41 (39.4%) and 20 (19.2%) of the 104 Smqnr-positive isolates were resistant to levofloxacin and moxifloxacin using the resistance breakpoint of MICs ≥2 mg/L, while 17 (22.1%) and seven (9.1%) of the 77 Smqnr-negative isolates were resistant to levofloxacin and moxifloxacin, respectively (p 0.0134 for levofloxacin and p >0.05 for moxifloxacin between Smqnr-positive and -negative isolates).

Prevalence of Smqnr and PMQR genes in S. maltophilia

The distribution of Smqnr and PMQR genes for S. maltophilia is summarized in Table 2. Smqnr was detected in Japan at high frequencies in clinical isolates of S. maltophilia (57.5%; 104/181 isolates). The Smqnr frequency by region was 69.8% (30/43) in Hokkaido, 53.1% (26/49) in Tokyo, 46.5% (20/43) in Osaka and 60.9% (28/46) in Fukuoka. The most frequent was Smqnr6 (27.9%, 29/104), followed by Smqnr8 (19.2%, 20/104) and Smqnr1 (13.5%, 14/104). PMQR determinants were detected in nine S. maltophilia isolates (5.0%). No S. maltophilia isolates carried qnrA, qnrB, qnrC, qnrS or qepA. Nine (5.0%) were positive for aac(6’)-Ib, and all of them possessed the -cr variant.

PFGE typing of Smqnr-containing S. maltophilia isolates

Dendrogram and PFGE of XbaI-digested genomic DNA from 24 S. maltophilia with Smqnr are shown in Fig. 2, including 11 isolates with Smqnr6 and 13 isolates with Smqnr11. The 24 Smqnr-containing S. maltophilia isolates were divided into 21 unique PFGE types. Of the 11 Smqnr6-containing S. maltophilia

TABLE 1. Minimum inhibitory concentrations (MICs) and susceptibility profiles of Stenotrophomonas maltophilia for the tested antimicrobial agents

Antibiotic	MIC range (mg/L)	MIC50 (mg/L)	MIC90 (mg/L)	Resistance rate (%)
Piperacillin	0.06–128	128	>128	67.4
Cefazidime	0.06–128	64	128	6.1
Imipenem	0.06–128	>128	>128	0
Minocycline	0.06–128	0.25	1	0
Amikacin	0.06–128	128	>128	6.1
Levofloxacin	0.06–128	4	4	0
Moxifloxacin	0.06–128	0.5	2	8
Trimethoprim–sulfamethoxazole	1/19–8/152	1/19	8/152	17.7
Chloramphenicol	2–128	8	16	8.8

MIC50, minimum inhibitory concentration required to inhibit the growth of 50% of organisms; MIC90, minimum inhibitory concentration required to inhibit the growth of 90% of organisms.
isolates, five isolates were novel, while two isolates from Osaka and Fukuoka, Tokyo and Osaka, or Fukuoka only clustered together (SM1, SMS or SM6). All 13 isolates possessing Smqnr11 were unique.

Novel variants of Smqnr and comparison with previous variants

In this study, 11 novel variants of Smqnr were discovered, and the following nucleotide accession numbers were assigned in the EMBL/GenBank/DBJ database: Smqnr48, AB852568; Smqnr49, AB852569; Smqnr50, AB852570; Smqnr51, AB852571; Smqnr52, AB852572; Smqnr53, AB852573; Smqnr54, AB905279; Smqnr55, AB905280; Smqnr56, AB905281; Smqnr57, AB905282; and Smqnr58, AB905283. The novel variants were compared to those reported previously: Smqnr1–Smqnr11 (accession numbers AB430839–AB430843, AB430845–AB430850); Smqnr12–Smqnr18 (accession numbers FJ596752–FJ596758); Smqnr19–Smqnr27 (accession numbers EU681371–EU681373, EU681375, EU681378, EU681381–EU681382, EU681384–EU681385); Smqnr28–Smqnr47 (accession numbers HQ874463–HQ874464, HQ896258–HQ896275). A phylogenetic tree showing the relationship from Smqnr1 to Smqnr58 is shown in Fig. 3. Differences in amino acid sequences between novel variants in this study and previous variants are as follows: SmQnr48 (55S/T, 194T/A of SmQnr36), SmQnr49 (18D/G of SmQnr30), SmQnr50 (119A/V of SmQnr35), SmQnr51 (20T/H of SmQnr9), SmQnr52 (72R/H, 203V/M of SmQnr11), SmQnr53 (67K/E, 146W/G of SmQnr37), SmQnr54 (119A/E, 169V/I of SmQnr11), SmQnr55 (82S/N, 115G/W, 194A/T of SmQnr38), SmQnr56 (6S/F, 57T/A, 82S/N of SmQnr39), SmQnr57 (105S/N, 169V/I of SmQnr11), and SmQnr58 (6S/F, 57T/A, 205Q/X of SmQnr39).

FIG. 1. Comparison of levofloxacin (A) and moxifloxacin (B) susceptibility among Stenotrophomonas maltophilia isolates with or without Smqnr genes. Susceptible, ≤2 mg/L; intermediate, 4 mg/L; resistant, ≥8 mg/L.

TABLE 2. Distribution of Smqnr and plasmid-mediated quinolone resistance (PMQR) genes in 181 clinical isolates of *Stenotrophomonas maltophilia*

Gene	n	%
Smqnr		
Smqnr2	5	2.8
Smqnr4	2	1.1
Smqnr6	29	16.0
Smqnr8	20	11.0
Smqnr9	3	1.7
Smqnr11	14	7.7
Smqnr18	1	0.6
Smqnr35	4	2.2
Smqnr37	5	2.8
Smqnr41	4	2.2
Smqnr48	1	0.6
Smqnr49	2	1.1
Smqnr50	1	0.6
Smqnr51	1	0.6
Smqnr52	6	3.3
Smqnr53	1	0.6
Smqnr54	1	0.6
Smqnr55	1	0.6
Smqnr56	1	0.6
Smqnr57	1	0.6
Smqnr58	1	0.6
Total	104	57.5

PMQR genes

Gene	n	%
qnrA	0	0
qnrB	0	0
qnrC	0	0
qnrS	0	0
qepA	0	0
qac(6′)-Ib-cr	9	5.0
Total	9	5.0
Global infectious disease surveillance indicates that resistance rates for trimethoprim–sulfamethoxazole, ticarcillin–clavulanic acid, ciprofloxacin, levofloxacin and minocycline in *S. maltophilia* isolates are less than 4.7%, 16.1%, 40%, 6.5% and 5%, respectively [16]. However, large differences in the susceptibility of *S. maltophilia* were seen, depending on the country and/or region. In our study, resistance to trimethoprim–sulfamethoxazole was approximately 18% in Japan, while it has been reported to be 8% in the Asia-Pacific region, 10% in Europe, 15% in Turkey, 25% in Taiwan and 27% in Spain [3]. The resistance rate to levofloxacin in this study was 6.1%, which was the same as seen in a previous study in China [17]. Although the percentage of strains resistant to quinolones ranged from 13–96% for ciprofloxacin, 3–11% for levofloxacin, 0–46% for gatifloxacin, 6% for moxifloxacin, 56% for norfloxacin and 5% for ofloxacin [3], the levofloxacin resistance rate in this study showed a higher tendency in a MIC scale than to moxifloxacin. Furthermore, our resistance rate using a MIC of ≥8 mg/L (the same as the CLSI criteria) between isolates with or without *Smqnr*, although the number of sample strains tested in this study was small. Little association was seen between *Smqnr* presence and high-level quinolone resistance in *S. maltophilia*, though *Smqnr* can provide low-level quinolone resistance, as described in previous studies [9–11,17]. The role of *Smqnr* remains unclear, but the reduced susceptibility may be associated with the selection of mutants having higher resistance, as described in PMQR determinants [7].

In this study, we identified 21 different PFGE types among the 24 *S. maltophilia* *Smqnr*-containing isolates in Japan. These results suggest that *S. maltophilia* *Smqnr*-containing isolates in Japan are not a single clone but rather are multiple clones. Superinfection with *S. maltophilia* is common, with a reported frequency of 20–40% [3,18], and *S. maltophilia* may be a reservoir for the dissemination of quinolone resistance to other bacteria. Thus, it is necessary to monitor *Smqnr* genes in Enterobacteriaceae and other organisms as well as in *S. maltophilia*.

Smqnr, a chromosome-carried quinolone resistance gene in *S. maltophilia*, was first reported by Shimizu and colleagues in 2008 [9]. There have been several experimental and epidemiologic studies regarding the mechanism and distribution of

Strain No.	Smqnr	PFGE type
F39	Smqnr6	SM1
I37	Smqnr6	SM1
I5	Smqnr6	SM2
A40	Smqnr6	SM3
A1	Smqnr6	SM4
D45	Smqnr6	SM5
F10	Smqnr6	SM5
I44	Smqnr6	SM6
I11	Smqnr6	SM6
F8	Smqnr11	SM7
F15	Smqnr11	SM8
A28	Smqnr11	SM9
D50	Smqnr11	SM10
D1	Smqnr11	SM11
D17	Smqnr11	SM12
D19	Smqnr11	SM13
D30	Smqnr11	SM14
D33	Smqnr11	SM15
I49	Smqnr11	SM16
A29	Smqnr6	SM17
D35	Smqnr11	SM18
A30	Smqnr11	SM19
A39	Smqnr11	SM20
I1	Smqnr6	SM21

FIG. 2. Dendrogram and pulsed-field gel electrophoresis of XbaI-digested genomic DNA from 24 *Smqnr*-containing *Stenotrophomonas maltophilia* isolates. A, Hokkaido; D, Tokyo; F, Osaka; I, Fukuoka; M, marker.
Smqnr in clinical isolates of *S. maltophilia* [9–11,17,19,20]. SmQnr1–11 proteins with 2–6 amino acid alterations were initially identified in Japan [9], and subsequent SmQnr variants were described as follows: SmQnr12–18 in UK [11], SmQnr19–27 in Spain [10], SmQnr28–47 in China [17] and SmQnr48–58 in Japan (this study). All 11 novel Smqnr variants in our study were derived from Smqnr genes reported previously from Japan and China. Our study suggests a high prevalence of Smqnr in *S. maltophilia* from Japan (Table 2), and there were regional differences of 47–70% in Smqnr frequency. The most common Smqnr gene in our study was Smqnr6, followed by Smqnr8 and Smqnr11, while Smqnr8 and Smqnr35 were most common in China. Further molecular epidemiological studies investigating the prevalence of Smqnr variants in other countries are needed.

Unlike Enterobacteriaceae, PMQR determinants in *S. maltophilia* have not been fully clarified. A previous study in China showed that PMQR determinants, including *qnrA, qnrB, qnrC, qnrD, qnrE, qnrF, qnrG, qnrH, qnrI, qnrJ, qnrK, qnrL, qnrM, qnrN, qnrO, qnrP, qnrQ, qnrR, qnrS, qnrT, qnrU, qnrV, qnrW, qnrX, qnrY, qnrZ*, were present in *S. maltophilia*. Further studies are needed to clarify the role of PMQR determinants in *S. maltophilia*.
qnrC, qnrD and qnrS, were not detected in S. maltophilia [17]. In this investigation, we report the detection of aac(6’)-Ib-cr in S. maltophilia, but no qnr or qepA genes were seen. The aac(6’)-Ib-cr gene, which confers resistance to both quinolones and aminoglycosides, has often been detected in CTX-M-producing Enterobacteriaceae [6,21] and is a concern for facilitating further multidrug resistance in S. maltophilia.

In conclusion, our study revealed a high prevalence of Smqnr among S. maltophilia from Japan and described novel variants of Smqnr. We also investigated the prevalence of PMQR determinants and demonstrated the presence of aac(6’)-Ib-cr genes in clinical isolates of S. maltophilia. Continuous antimicrobial surveillance for S. maltophilia and further investigations into quinolone resistance mechanisms in S. maltophilia are required.

Conflict of interest

None declared.

Acknowledgement

Supported by JSPS KAKENHI grant 24790546.

References

[1] Senol E. Stenotrophomonas maltophilia: the significance and role as a nosocomial pathogen. J Hosp Infect 2004;57:1–7.
[2] Brooke JS. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 2012;25:2–41.
[3] Looney WJ, Narita M, Mühlemann K. Stenotrophomonas maltophilia: an emerging opportunistic human pathogen. Lancet Infect Dis 2009;9:312–23.
[4] Martínez JL, Alonso A, Gómez-Gómez JM, Baquero F. Quinolone resistance by mutations in chromosomal gyrA genes. Just the tip of the iceberg? J Antimicrob Chemother 1998;42:683–8.
[5] Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 2006;6:629–40.
[6] Strahilevitz J. Jacoby GA, Hooper DC, Robicsek A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev 2009;22:664–89.
[7] Martínez-Martínez L, Pascual A, Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet 1998;351:797–9.
[8] Ba BB, Feghali H, Arpin C, Saux MC, Quentin C. Activities of ciprofloxacin and maxifloxacin against Stenotrophomonas maltophilia and emergence of resistant mutants in an in vitro pharmacokinetic–pharmacodynamic model. Antimicrob Agents Chemother 2004;48:946–53.
[9] Shimizu K, Kikuchi K, Sasaki T, Takahashi N, Ohtsuka M, Ono Y, et al. Smqnr, a new chromosome-carried quinolone resistance gene in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2008;52:3823–5.
[10] Sánchez MB, Hernández A, Rodríguez-Martínez JM, Martínez-Martínez L, Martínez JL. Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of a novel family of Qnr determinants. BMC Microbiol 2008;8:148.
[11] Gordon NC, Wardam DW. Novel variants of the Smqnr family of quinolone resistance genes in clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 2010;65:483–9.
[12] Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 23rd informational supplement M100-S23. Wayne, PA: CLSI; 2013.
[13] Kim HB, Park CH, Kim CJ, Kim EC, Jacoby GA, Hooper DC. Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob Agents Chemother 2009;53:639–45.
[14] Jacoby G, Cattoir V, Hooper D. qnr gene nomenclature. Antimicrob Agents Chemother 2008;52:2297–9.
[15] Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995;33:2233–9.
[16] Sader HS, Jones RN. Antimicrobial susceptibility of uncommonly isolated non-enteric Gram-negative bacilli. Int J Antimicrob Agents 2005;25:95–109.
[17] Sánchez MB, Martínez JL. SmQnr contributes to intrinsic resistance to quinolones in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2010;54:580–1.
[18] Pathmanathan A, Waterer GW. Significance of positive Stenotrophomonas maltophilia culture in acute respiratory tract infection. Eur Respir J 2005;25:911–4.
[19] Sánchez MB, Martínez JL. SmQnr contributes to intrinsic resistance to quinolones in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2010;54:580–1.
[20] Wardam DW, Gordon NC, Shimizu K. Two new variants of and creation of a repository for Stenotrophomonas maltophilia quinolone protection protein (Smqnr) genes. Int J Antimicrob Agents 2011;37:89–90.
[21] Peirano G, Pitout JD. Molecular epidemiology of Escherichia coli producing CTX-M β-lactamases: the worldwide emergence of clone ST131 O25:H4. Int J Antimicrob Agents 2010;35:316–21.