Cost-Effectiveness of Pembrolizumab in Combination with Platinum-Based Chemotherapy in First-Line for Squamous and Nonsquamous Non Small-Cell Lung Cancer. Far from Economic Sustainability

Jacopo Giuliani, Andrea Bonetti
Department of Oncology, Mater Salutis Hospital – Az. ULSS 9 Scaligera, Legnago (VR), Italy

Abstract

Objectives: To assess the pharmacological costs of pembrolizumab in association with chemotherapy as first-line treatment in non small-cell lung cancer (NSCLC).

Methods: Pivotal phase III randomized controlled trials (RCTs) were considered. Differences in progression free survival (PFS) between the different arms were calculated and compared with the pharmacological costs needed to get one month of PFS (incremental cost-effectiveness ratio, ICER).

Results: One thousand one hundred and seventy five patients were included. Differences in costs between the 2 arms with the use of pembrolizumab were 37 009 € for squamous NSCLC and 45 234 € for nonsquamous NSCLC, with a cost of 23 131 € and 11 598 € per month of PFS-gain in the overall population for squamous and nonsquamous NSCLC, respectively and with a progressively lower cost per month of PFS-gain in the transition from PD-L1< 1% (37 009 €) to PD-L1 of 1 to 49% (18 505 €) to PD-L1≥ 50% (9739 €) in squamous and NSCLC.

Conclusion: At the actual prize, pembrolizumab in combination with chemotherapy is not cost-effective in first-line for both squamous and nonsquamous NSCLC. A reduction in pharmacy cost is mandatory.

Keywords: Cost of drugs, NSCLC, pembrolizumab

Recently, the topic of costs has become preponderant in oncology, also in relation to the introduction of target immunotherapy, with their greatest budgetary impact.[1] One of the most recent examples is represented by pembrolizumab in first-line treatment for advanced non small-cell lung cancer (NSCLC). In this setting, pembrolizumab in association with chemotherapy has shown both a prolonged progression free survival (PFS) and overall survival (OS) in both the intention-to-treat population and the PD-L1-positive subgroup versus (vs.) platinum-based chemotherapy in squamous and nonsquamous NSCLC.[2,3] The introduction of pembrolizumab in this setting is associated with a relevant increase of costs and it is therefore important to make a balance between the costs of treatment and the added value represented by the improvement of the clinical parameters of interest such as OS and PFS. The pres-
ent analysis was conducted to assess the pharmacological costs of pembrolizumab in association with platinum-based chemotherapy as first-line treatment in squamous and nonsquamous NSCLC.

Materials and Methods

Pivotal phase III randomized controlled trials (RCTs) were considered. Differences in PFS (expressed in months) between the different arms were calculated and compared with the pharmacological costs needed to get one month of PFS. Combining the costs of therapy with the measure of efficacy represented by the PFS, we get the costs for obtaining the advantage in PFS, for each arm of the analyzed trials. Incremental cost-effectiveness ratio (ICER) was calculated as the ratio between the difference of the costs in the intervention and in the control groups (pharmacy costs) and the difference between the effect in the intervention and in the control groups (PFS). The costs of drugs are at the Pharmacy of our Hospital (Italy) and are expressed in euros (€), updated to September 2020. Calculations were based on an “ideal patient” (BSA 1.8 sqm; weight 70 Kg). The dosage of drugs were considered according to those reported in the pivotal phase III RCT2. For pembrolizumab we assumed the following pharmacy cost: 2056.08 € for 100 mg vial. All data were reviewed by 2 investigators (J.G., A.B.) and separately computed by 2 investigators (J.G., A.B.). We have subsequently applied the European Society for Medical Oncology Magnitude of Clinical Benefit Scale (ESMO-MCBS) to the above RCTs to derive a relative ranking (from grade 1 to grade 5) of the magnitude of clinically meaningful benefit that can be expected in this setting; adjustments (upgrade or down-grade) are planned based on quality of life (QoL) or grade 3-4 toxicities impacting daily well-being.

Results

One thousand one hundred and seventy five patients were included, in two phase III RCTs. ESMO-MCBS reached grade 3 in both RCTs. Differences in costs between the 2 arms with the use of pembrolizumab were 37 009 € for squamous NSCLC and 45 234 € for nonsquamous NSCLC, with a cost of 23 131 € and 11 598 € per month of PFS-gain in the overall population for squamous and nonsquamous NSCLC, respectively (Table 1) and with a progressively lower cost per month of PFS-gain in the transition from PD-L1 < 1% (37 009 €) to PD-L1 of 1 to 49% (18 505 €) to PD-L1 ≥ 50% (9739 €) in squamous and NSCLC (Table 1); the same kind of considerations could not be made in the nonsquamous NSCLC, because the stratification for PD-L1 was not made (only PFS of PD-L1 < 1% population was reported).

Discussion

Two main variables are able to condition pharmacy costs: the efficacy of treatment and the price of drugs. The first variable is related to the patient’s inclusions criteria and we know that results from RCTs could be not representative of daily clinical practice (that is of patients treated outside such trials). In facts, there may be a cost standardization problem within different European countries (in our country there are no significant pharmacy cost differences between the different regional realities), due to the use of local pharmacy cost. In this case, this bias is minimize by the reference to only a single immune check point inhibitor (pembrolizumab) and the comparison with placebo. Another limit is related to the consideration of only direct costs (which account for about 55% of total medical expenses).

The scenario has become even more complicated over the last few years with the introduction of new drugs (biotechnology), which are completely different towards old drugs (chemical). In facts, the old was of high prevalence, low cost, without extension of indication, without combination therapy and, consequently, without increase in treatment duration. Different, the new is of low prevalence, high costs, with extension of indication, often with combination therapy and, consequently, with increase in treatment duration (exactly the opposite of the old drugs). The biggest problem is certainly linked to the definition of the price of new drugs. So, the choice of price is not based on levels of scientific evidence and/or on measures of expected clinical benefit. To this we must add first, that the cost “per year of life gained” increases over the time and second the Companies perspective (high costs of clinical development, regulatory requirements and reinvestment needs). In this complex situation we can be helped by the introduction of biosimilars (biologic product that have been shown “highly similar” to an already approved reference product, it means no clinically meaningful differences in terms of safety, purity and potency towards the originator). In facts, we know that biological agents are essential in oncology, but it was one of the main causes of the increase in spending on anticancer drugs. So, the integration of biosimilars into daily clinical practice has the potential to significantly decrease, costs for patients, health-care systems and insurance companies. Unfortunately, few active oncological drugs were produced and approved in daily clinical practice (trastuzumab, bevacizumab and rituximab) and what we currently can do as Medical Oncologists (and more generally the whole of the society) are becoming more and more concerned with the issues of the costs of the cure of cancer patients.
In Europe expenditure for cancer drugs amounted to €10 billion in the year 2005 and increased more than three times to €32 billion in the year 2018. In this scenario, European Countries negotiate the price of new drugs with the manufacturers with the aim to obtain a discount, so as to allow more patients to be treated. It results on "confidential rebates" (it means not publicly available), that may really hamper access to drugs with a consequent overpaying without improving the value of drugs.

In addition, the annual cost of drug treatment in the overall population (277,572 € in squamous NSCLC and 139,176 € in squamous NSCLC) is not in line with those reported in literature that found a favored implementing intervention for thresholds of less than $61,500 (57,138 €) per life-year gained.

Better results, but not in line with those reported in literature, were obtained in squamous NSCLC for PD-L1 of 1 to 49% (222,060 €) and for PD-L1 ≥ 50% in squamous NSCLC (116,868 €). An excessive spending (444,108 € in squamous NSCLC and 542,808 € in squamous NSCLC) were obtained in PD-L1< 1% population.

In light of the relevant expenses of these new drugs it might be also interesting to compare the cost of pembrolizumab with the costs of the other immunotherapies used in advanced NSCLC (among the most expensive new drugs in medical oncology (87) and the costs of the ICIs, nivolumab and atezolizumab), with a Δ toward gold 18K and platinum (currently listed on 46.90 € per gram) with the aim to obtain a discount, so as to allow more patients to be treated.

| Table 1. Pharmacological costs and difference in PFS with pembrolizumab in combination with chemotherapy vs. chemotherapy in first-line for both squamous and nonsquamous NSCLC |
|-----------------------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Trial/Histology | Comparative Regimens | Total N patients | Primary endpoint | OS (months) | PFS (months) | PFS gain (months) | OS HR (95% C.I.) | ESMO-MCBS | Median duration of treatment (months) | Costs of therapy (€) | ICER (€) |
| KEYNOTE-407/ squamous | carboplatin plus paclitaxel/nab-paclitaxel plus pembrolizumab -> pembrolizumab | 278 | OS, PFS | 15.9^a | <0.001^a | 6.4^a | 1.6^a | 0.64 | 3 | 6.3 | x + 37,009 | 23,131^a |
| NSCLC2 | carboplatin plus paclitaxel/nab-paclitaxel plus placebo | 281 | OS, PFS | 11.3^a | <0.001^a | 4.8^a | 3.8^a | 0.49 | 3 | 4.7 | x | 18,505^b |
| KEYNOTE-189/ nonsquamous NSCLC3 | platinum-based chemotherapy plus pembrolizumab -> pembrolizumab | 410 | OS, PFS | NR^a | <0.001^a | 6.1^b | 3.9^a | 0.49 | 3 | 7.4 | x + 45,234 | 11,598^a |

Legend: N= number; PFS= progression free survival; OS= overall survival; ESMO-MCBS= European Society for Medical Oncology-Magnitude of Clinical Benefit Scale (from grade 1 to grade 5); ICER= incremental cost-effectiveness ratio (expressed as the difference (€) per month-PFSS gained); NSCLC= non small-cell lung cancer; NR= not reached; a= overall population; b= PD-L1< 1%; c= PD-L1 of 1 to 49%; d= PD-L1 of 1 to 50%.
In conclusion, at the actual prize, combining pharmacological costs of drugs with the measure of efficacy represented by the PFS, pembrolizumab in combination with chemotherapy is not a cost-effective in first-line for both squamous and nonsquamous NSCLC. There is no doubt that data on pembrolizumab in combination with chemotherapy are good in this setting (confirming also by the grade of clinical benefit with ESMO scale [4]), but a reduction in pharmacy cost is mandatory.

Disclosures

Ethics Committee Approval: Ethics committee approval was not requested for this study.

Disclosure: No founds were received to support this article.

Peer-review: Externally peer-reviewed.

Conflict of Interest: The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Research involving human participants and/or animals: No human participants and/or animals were involved.

Informed consent: Not needed (no human participants were involved).

Authorship Contributions: Concept – J.G., A.B.; Design – J.G., A.B.; Supervision – J.G., A.B.; Materials – J.G., A.B.; Data collection &/or processing – J.G., A.B.; Analysis and/or interpretation – J.G., A.B.; Literature search – J.G., A.B.; Writing – J.G., A.B.; Critical review – J.G., A.B.

References

1. Giuliani J, Bonetti A. The Economic Impact of Biosimilars in Oncology and Hematology: The Case of Trastuzumab and Rituximab. Anticancer Res 2019;39:3971-3. [CrossRef]
2. Paz-Ares L, Luft A, Vicente D, et al. Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. N Engl J Med 2018;379:2040-51. [CrossRef]
3. Gandhi L, Rodriguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N Engl J Med 2018;378:2078-92. [CrossRef]
4. Cherny NI, Sullivan R, Dafni U, et al. A standardised, generic, validated approach to stratify the magnitude of clinical benefit that can be anticipated from anti-cancer therapies: the European Society for Medical Oncology Magnitude of Clinical Benefit Scale (ESMO-MCBS). Ann Oncol 2015;26:1547-73. [CrossRef]
5. Giuliani J, Bonetti A. Which grade is of clinical benefit in the randomised controlled trials? The example of 54th American Society of Clinical Oncology annual meeting, 2018. Eur J Cancer 2018;104:233-5. [CrossRef]
6. Giuliani J, Fiorica F, Albanese V, et al. Financial toxicity and cancer treatments: Help from biosimilars - The explanatory case of bevacizumab. Eur J Cancer 2020;143:40-2. [CrossRef]
7. Hofmarcher T, Lindgren P, Wilking N, Jönsson B. The cost of cancer in Europe 2018. Eur J Cancer 2020;129:41-9. [CrossRef]
8. Azimi NA, Welch HG. The effectiveness of cost-effectiveness analysis in containing costs. J Gen Intern Med 1998;13:664.
9. Giuliani J, Bonetti A. Financial Toxicity and Non-small Cell Lung Cancer Treatment: The Optimization in the Choice of Immune Check Point Inhibitors. Anticancer Res 2019;39:3961-5.
10. Giuliani J, Bonetti A. Immunotherapy in first-line for advanced non-small cell lung cancer: a cost-effective choice? Recenti Prog Med 2019;110:138-43.
11. Giuliani J, Bonetti A. Immune-checkpoint inhibitors in head and neck squamous cell carcinoma: cost-efficacy in second-line treatment based on programmed death-ligand 1 (PD-L1) level. Oral Oncol 2019;97:143-5. [CrossRef]
12. Giuliani J, Bonetti A. Nivolumab in Second-Line Treatment for Advanced Non-Small-Cell Lung Cancer With Squamous-Cell Histology: A Perspective Based on Pharmacologic Costs. Clin Lung Cancer 2017;18:e363-5. [CrossRef]
13. Giuliani J, Bonetti A. Nivolumab Is a Cost-Effective Second-Line Treatment for Metastatic Renal-Cell Carcinoma. Clin Genitourin Cancer 2018;16:e557-62. [CrossRef]