LIE SYMMETRIES OF THE CHOW GROUP OF A JACOBIAN AND THE TAUTOLOGICAL SUBRING

A. POLISHCHUK

Abstract. Let \(J \) be the Jacobian of a smooth projective curve. We define a natural action of the Lie algebra of polynomial Hamiltonian vector fields on the plane, vanishing at the origin, on the Chow group \(\text{CH}(J)_{\mathbb{Q}} \). Using this action we obtain some relations between tautological cycles in \(\text{CH}(J)_{\mathbb{Q}} \).

Introduction

Let \(J \) be the Jacobian of a smooth projective curve \(C \) of genus \(g \geq 2 \). We fix a point \(x_0 \in C \) and consider the corresponding embedding

\[\iota : C \to J \]

mapping a point \(x \in C \) to the isomorphism class of the line bundle \(\mathcal{O}_C(x-x_0) \). We always consider \(C \) as a subvariety in \(J \) via this embedding. We define the tautological subring \(\mathcal{T} \subset \text{CH}(J)_{\mathbb{Q}} \) in the Chow ring of \(J \) with coefficients in \(\mathbb{Q} \) as the smallest subring containing the class \([C] \) of the curve and closed under taking pull-backs with respect to the natural isogenies \([n] : J \to J \) and under the Fourier transform \(S : \text{CH}(J)_{\mathbb{Q}} \to \text{CH}(J)_{\mathbb{Q}} \) (defined in [2]). The corresponding subring in the quotient of \(\text{CH}(J)_{\mathbb{Q}} \) modulo algebraic equivalence was considered by Beauville in [4] and by the author in [13]. It is known that modulo algebraic equivalence this subring is generated by the characteristic classes of the Picard bundle on \(J \). Also, a number of nontrivial relations between these generators (still modulo algebraic equivalence) was described in [13]. In the present paper we will show how to lift these relations to the Chow ring (after adding some more generators). This is achieved using the action of a certain Lie algebra on \(\text{CH}(J)_{\mathbb{Q}} \) extending the well action of \(\mathfrak{s}_2 \) associated with the natural polarization of \(J \) (see [9]). The construction of this action may be of independent interest.

To state the results precisely we need to introduce some more notation. Recall that the Chow ring of \(J \) with rational coefficients admits a decomposition

\[\text{CH}(J)_{\mathbb{Q}} = \bigoplus_{p,s} \text{CH}^p_s(J), \]

where \(\text{CH}^p_s \) consists of \(c \in \text{CH}^p(J)_{\mathbb{Q}} \) such that \([n]^*c = n^{2p-s}c \) (see [3]). For every class \(c \in \text{CH}^p(J)_{\mathbb{Q}} \) we denote by \(c_s \in \text{CH}^p_s(J) \) its components with respect to the above decomposition. We also denote by \(\theta \in \text{CH}^1(J)_{\mathbb{Q}} \) the class of a symmetric theta divisor.

Let us define two families of classes in \(\text{CH}(J)_{\mathbb{Q}} \) by setting

\[p_n = S([C]_{n-1}), \ n \geq 1, \]
\[q_n = S(\theta \cdot [C]_n), \ n \geq 0. \]

Supported in part by NSF grant DMS-0302215.
Note that $p_1 = -\theta$ and $q_0 = g \cdot [J]$. It is easy to see that all the classes (p_n) and (q_n) belong to the tautological subring $T \text{CH}(J)_Q$. All the classes q_n for $n \geq 1$ are algebraically equivalent to zero.

Theorem 0.1. There exists a family of operators $(X_{m,n}, Y_{m,n})$ on $\text{CH}(J)_Q$, where $m,n \in \mathbb{Z}$, such that $X_{m,n} = 0$ unless $m,n \geq 0$ and $m+n \geq 2$ (resp., $Y_{m,n} = 0$ unless $m,n \geq 0$), satisfying the commutation relations

$$[X_{m,n}, X_{m',n'}] = (nm' - mn')X_{m+m'-1, n+n'-1}, \quad (0.1)$$

$$[X_{m,n}, Y_{m',n'}] = (nm' - mn')Y_{m+m'-1, n+n'-1}, \quad (0.2)$$

$$[Y_{m,n}, Y_{m',n'}] = 0$$

and such that

$$\frac{1}{n!} X_{0,n}(a) = p_{n-1} \cdot a,$$

$$\frac{1}{n!} Y_{0,n}(b) = q_n \cdot a.$$

Furthermore, one has

$$SX_{m,n}S^{-1} = (-1)^n X_{n,m}, \quad (0.3)$$

$$SY_{m,n}S^{-1} = (-1)^n Y_{n,m}. \quad (0.4)$$

Remark. In fact, one can easily see from the proof that the above operators on the Chow group are induced by endomorphisms of a \mathbb{Q}-motive of J and the relations are satisfied already for this motive action.

Explicit formulas for operators $X_{m,n}$ and $Y_{m,n}$ will be given in section 2 (see (2.3) and (2.6)). We will also show that the tautological subring $T \text{CH}(J)_Q$ is closed under all operators $X_{m,n}$ and $Y_{m,n}$. Note that the commutation relation (0.1) is the defining relation for the Lie algebra of polynomial Hamiltonian vector fields on the plane with the standard symplectic form (see e.g., [8], ch. 1, §1). The restriction $m+n \geq 2$ that we imposed for our generators $X_{m,n}$ corresponds to considering the subalgebra of vector fields vanishing at the origin. Also, note that the operators $(X_{2,0}/2, X_{1,1}, X_{0,2}/2)$ generate the well known action of \mathfrak{sl}_2 on $\text{CH}(J)_Q$ (see [9]).

As an application of the above Lie action we prove the following result.

Theorem 0.2. (i) The ring $T \text{CH}(J)_Q$ is generated by the classes (p_n) and (q_n). Furthermore, let us consider the following differential operator

$$\mathcal{D} = \frac{1}{2} \sum_{m,n \geq 1} \binom{m+n}{n} p_{m+n-1} \partial_{p_n} \partial_{p_m} + \sum_{m \geq 1, n \geq 1} \binom{m+n-1}{n} q_{m+n-1} \partial_{q_m} \partial_{p_n} - \sum_{n \geq 1} q_{n-1} \partial_{p_n},$$

where (∂_{p_n}) (resp., (∂_{q_m})) are partial derivatives with respect to (p_n) (resp., (q_n)). Then the space of polynomial relations between (p_n, q_n) in $\text{CH}(J)_Q$ is stable under the action of \mathcal{D}.

2
(ii) The operators $X_{m,n}$ and $Y_{m,n}$ preserve the subspace $\mathcal{T} \, \text{CH}(J)_Q$ and act on it via the following differential operators (for $m \geq 1$):

\[
(-1)^m \frac{1}{m!} X_{m,n} |_{\mathcal{T} \, \text{CH}(J)_Q} = \sum_{i_1, \ldots, i_m \geq 1} \frac{(n + i_1 + \ldots + i_m)!}{i_1! \ldots i_m!} p_{n+i_1+\ldots+i_m-1} \partial_{p_{i_1}} \cdots \partial_{p_{i_m}} \\
+ \frac{1}{(m-1)!} \sum_{i_1, \ldots, i_m-1 \geq 1} \frac{(n + i_1 + \ldots + i_m-1 + j-1)!}{i_1! \ldots i_m-1!(j-1)!} q_{n+i_1+\ldots+i_m-1+j-1} \partial_{q_1} \cdots \partial_{q_{j-1}} \\
- \frac{1}{(m-1)!} \sum_{i_1, \ldots, i_m \geq 1} \frac{(n + i_1 + \ldots + i_m-1)!}{i_1! \ldots i_m-1!} q_{n+i_1+\ldots+i_m-1} \partial_{p_1} \cdots \partial_{p_{i_m-1}},
\]

where for $m = 1$ the last term should be understood as $-n!q_{n-1}$.

It is easy to check that the above differential operators in independent variables (p_n, q_n) satisfy relations (0.1) and (0.2). Since \mathcal{D} corresponds to the action of $\mathbb{X}_{2,0}/2$, it follows that any \mathcal{D}-invariant ideal in $Q[p, q]$ is also invariant under all the other differential operators above. Since the operator \mathcal{D} lowers the degree by 1 (where $\deg p_n = \deg q_n = n$), starting from vanishing of polynomials of degree $g + 1$ and applying powers of \mathcal{D} we get nontrivial relations in $\text{CH}(J)_Q$ (see section 4 for some examples). Since all the classes q_n for $n \geq 1$ are algebraically equivalent to zero, we recover the relations between (p_n) modulo algebraic equivalence proved in [13]. The above theorem also has the following corollary closely related to the work of Beauville [1]. Consider the group of 0-cycles $\text{CH}^0(J)_Q$ equipped with the Pontryagin product. Let K be the canonical class on the curve C. Then we have a special 0-cycle $\iota_n K \in \text{CH}^0(J)_Q$. The proof of the following corollary will be given in section 1.

Corollary 0.3. The intersection $\mathcal{T} \, \text{CH}(J)_Q \cap \text{CH}^0(J)_Q$ coincides with the Q-subalgebra with respect to the Pontryagin product generated by the classes $[n] \iota_n K$, where $n \in \mathbb{Z}$.

Remarks. 1. It is easy that the classes of the subvarieties of special divisors $W_d \subset J$ belong to $\mathcal{T} \, \text{CH}(J)_Q$. More precisely, we will show in section 4 that they can be expressed as universal polynomials in classes $(p_n - q_n)$.

2. Of course, the ring $\mathcal{T} \, \text{CH}(J)_Q$ depends on a choice of a point $x_0 \in C$. For example, if $(2g-2)x_0 = K$ in Pic($C)_Q$ then all q_n vanish. In fact, using Abel's theorem it is easy to see that $(2g-2)x_0 = K$ iff $q_1 = 0$. The vanishing of other classes q_n in this case follows also from the formula

\[q_n = \mathcal{D}(q_1p_n) + q_1q_{n-1}. \]

Notation. We use the convention $\binom{n}{m} = 0$ for $m < 0$ and for $n < m$.

1. Preliminaries

Let $\Theta \subset J$ be a symmetric theta divisor (corresponding to some choice of a theta characteristic on C), so that $\theta = c_1(\Theta)$. Consider the line bundle on $J \times J$ given by
$\mathcal{L} = \mathcal{O}_{J \times J}(p_1^{-1}\Theta + p_2^{-1}\Theta - m^{-1}\Theta)$ where $p_1, p_2 : J \times J \to J$ are the natural projections and $m = p_1 + p_2 : J \times J \to J$ is the group law. It is easy to see that $\mathcal{L}|_{C \times C} \simeq \mathcal{O}_{C}(\Delta_C - x_0 \times C - C \times x_0)$, where $\Delta_C \subset C \times C$ is the diagonal. Indeed, it suffices to check that $\mathcal{L}|_{C \times J} \simeq \mathcal{P}_C$, where \mathcal{P}_C is the universal family of degree 0 line bundles on C trivialized at x_0. This in turn follows from the fact that \mathcal{L}^{-1} corresponds to the normalized Poincaré line bundle on $J \times \hat{J}$ under the principal polarization isomorphism $\phi : J \overset{\sim}{\longrightarrow} \hat{J}$ and from the equality $\phi \circ \iota = -a$, where $a : C \to \hat{J}$ is the embedding induced by \mathcal{P}_C (see [12], 17.3). We denote by S the Fourier transform on $\text{CH}(J)_Q$ defined by

$$S(c) = p_{2*}(\exp(c_1(\mathcal{L})) \cdot p_1^*c).$$

We refer to [2] for the detailed study of this transform. In particular we will use the following properties:

$$S^2 = (-1)^g[-1]^*,$$
$$S(\text{CH}^p(J)) \subset \text{CH}^*[−p−s](J),$$
$$S(a \ast b) = S(a) \cdot S(b),$$

where $a \ast b$ denotes the Pontryagin product on $\text{CH}(J)_Q$.

It is easy to see that $S([C]) = \sum_{n \geq 1} p_n$ is exactly the decomposition of the class $S([C])$ into components of different codimensions, so that $p_n \in \text{CH}^n_{n-1}(J)$. Similarly, $q_n \in \text{CH}^n_{n}(J)$. It is also well known that $p_1 = -\theta$ (see e.g. [4], Prop. 2.3, or [12], 17.2 and 17.3).

Recall that we have defined the tautological subring $\mathcal{T} \subset \text{CH}(J)_Q$ as the smallest subring containing $[C]$ and closed under S and under all the pull-back operations $[n]^*$. Equivalently, this is the smallest subring closed under S and containing all classes $[C_n]$. This immediately implies that all classes p_n and q_n belong to $\mathcal{T} \subset \text{CH}(J)_Q$.

Let us consider the element

$$\eta := \iota_*K/2 + [0] \in \text{CH}^q(J)_Q.$$

From the Riemann’s Theorem we get

$$\eta = \theta \cdot [C]$$

(see e.g. [12], Thm. 17.4). Hence, $\theta \cdot [C]_n = \eta_n$ and we have

$$q_n = S(\eta_n).$$

Note that for every point $x \in J$ we have

$$S([x]) = \exp(c_1(\mathcal{L}_x)) = \exp(\theta_x - \theta),$$

where $\mathcal{L}_x = \mathcal{L}|_{J \times x}$ and $\theta_x = [\Theta + x]$. Hence, we can rewrite the definition of q_n for $n \neq 0$ as follows:

$$q_n = \frac{1}{2} \sum_{i=1}^{2g-2} c_1(\mathcal{L}_{x_i})^n,$$

where (x_i) are points on C such that $K = x_1 + \ldots + x_{2g-2}$. In particular,

$$q_1 = \frac{1}{2} c_1(\mathcal{L}_\kappa),$$

where $\kappa \in J$ is the point corresponding to $K(-(2g-2)x_0)$.
Proof of Corollary 0.3. Theorem 0.2 implies that $T \text{CH}(J)_Q$ is generated with respect to the Pontryagin product by the classes $([C]_n)$ and (η_n). Therefore, the group of tautological 0-cycles is generated with respect to this product by the classes (η_n), or equivalently, by the classes $([n]_* \eta)$. □

The action of \mathfrak{sl}_2 on $\text{CH}(J)_Q$ (in fact, on the motive of J) mentioned in the introduction is generated by the operators

$$e(a) = p_1 \cdot a = -\theta \cdot a,$$
$$f(a) = -[C]_0 * a,$$
$$h(a) = (2n - s - g)a$$

for $a \in \text{CH}_n$ (the operators e and f differ from those of [9] by the sign). In fact, this action is induced by an algebraic action of the group SL_2, so that the Fourier transform corresponds to the action of the matrix

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

(see [11], Thm. 5.1). This leads to the formula

$$S = \exp(e) \exp(-f) \exp(e)$$

that can also be checked directly (see [4], (1.7)).

2. Commutation relations

Let us consider the following family of binary operations on $\text{CH}(J)$:

$$a *_n b = (p_1 + p_2)_* (c_1(L)^n \cdot p_1^* a \cdot p_2^* a), \ n \geq 0,$$

where $a, b \in \text{CH}(J)$. Note that $a *_0 b = a \ast b$ is the usual Pontryagin product.

Lemma 2.1. One has

$$a *_{n+1} b = (\theta \cdot a) *_n b + a *_n (\theta \cdot b) - \theta \cdot (a *_n b).$$

Proof. This follows immediately from the identity $c_1(L) = p_1^* \theta + p_2^* \theta - (p_1 + p_2)^* \theta$. □

Lemma 2.2. If $a \in \text{CH}_p^{s_1}, b \in \text{CH}_p^{s_2}$, then $a *_n b \in \text{CH}_p^{s_1+s_2-n-g}$.

Proof. Since $\theta \cdot \text{CH}_p^s \subset \text{CH}_p^{s+1}$, the assertion follows from Lemma 2.1 by induction in n. □

For every $a \in \text{CH}(J)$ and $n \geq 0$ let us denote by $A_n(a)$ the operator $b \mapsto a *_n b$ on $\text{CH}(J)$. For $n < 0$ we set $A_n(a) = 0$. Note that Lemma 2.1 is equivalent to the following identity

$$[e, A_n(a)] = A_{n+1}(a) - A_n(\theta \cdot a), \quad (2.1)$$

where e is the operator of the \mathfrak{sl}_2-action (see section 1).

Lemma 2.3. For every $s \geq 0$ one has $A_n(\eta_s) = 0$ for $n > s$ and $A_n([C]_s) = 0$ for $n > s+2$. 5
Proof. We start by observing that the operator \(f = -A_0([C]_0) \) commutes with \(A_0([C]_s) \) and with \(A_0(\eta_s) \). Also,

\[
[h, A_0([C]_s)] = (-s - 2)A_0([C]_s), \quad [h, A_0(\eta_s)] = -sA_0(\eta_s).
\]

Hence, \(A_0([C]_s) \) and \(A_0(\eta_s) \) are lowest weight vectors with respect to the adjoint action of \(\mathfrak{sl}_2 \) on \(\text{End}(\text{CH}(J)) \) of weights \(-(s + 2)\) and \(-s\), respectively. It follows that

\[
\text{ad}(e)^n(A_0([C]_s)) = 0
\]

for \(n > s + 2 \) and

\[
\text{ad}(e)^n(A_0(\eta_s)) = 0
\]

for \(n > s \). Using equalities (2.1) and (1.1) we find by induction in \(n \) that

\[
\text{ad}(e)^n(A_0(\eta_s)) = A_n(\eta_s),
\]

\[
\text{ad}(e)^n(A_0([C]_s)) = A_n([C]_s) - nA_{n-1}(\eta_s).
\]

The first equality implies that \(A_n(\eta_s) = 0 \) for \(n > s \). Together with the second equality this implies that \(A_n([C]_s) = 0 \) for \(n > s + 2 \).

\[\square\]

Lemma 2.4. One has

\[
A_s(\eta_s)(x) = s! \cdot q_s \cdot x,
\]

\[
A_{s+2}([C]_s)(x) = (s + 2)! \cdot p_{s+1} \cdot x.
\]

Proof. As we have seen in the previous proof, the operator \(A_0([C]_s) \) (resp., \(A_0(\eta_s) \)) is a lowest weight vector of weight \(-(s + 2)\) (resp., \(-s\)) with respect to the \(\mathfrak{sl}_2 \)-action. Since the Fourier transform \(S \) is given by the action of \(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) in \(\text{SL}_2 \), it follows that

\[
\text{ad}(e)^{s+2}(A_0([C]_s)) = \lambda_s \cdot S A_0([C]_s) S^{-1},
\]

\[
\text{ad}(e)^s(A_0(\eta_s)) = \mu_s \cdot S A_0(\eta_s) S^{-1}
\]

for some nonzero constants \(\lambda_s, \mu_s \). But \(\text{ad}(e)^s(A_0(\eta_s)) = A_s(\eta_s) \) and

\[
\text{ad}(e)^{s+2}(A_0([C]_s)) = A_{s+2}([C]_s) - (s + 2)A_{s+1}(\eta_s) = A_{s+2}([C]_s)
\]

as we have seen in the proof of Lemma 2.3. Hence,

\[
A_s(\eta_s)(a) = \mu_s \cdot S(\eta_s) \cdot a,
\]

\[
A_{s+2}([C]_s)(a) = \lambda_s \cdot S([C]_s) \cdot a.
\]

Setting \(a = 1 \) we get

\[
(p_1 + p_2)_s(c_1(\mathcal{L})^s \cdot p^*_s \eta_s) = \mu_s \cdot S(\eta_s),
\]

\[
(p_1 + p_2)_s(c_1(\mathcal{L})^{s+2} \cdot p^*_1[C]_s) = \lambda_s \cdot S([C]_s).
\]

Making the change of variables \((x, y) \mapsto (x, x + y)\) in the formula defining the Fourier transform and using the theorem of the cube we get

\[
S(a) = (p_1 + p_2)_s(\exp(c_1(\mathcal{L}) + p^*_1\Delta c_1(\mathcal{L})) \cdot p^*_1 a) = (p_1 + p_2)_s(\exp(c_1(\mathcal{L}) + 2p^*_1 \theta) \cdot p^*_1 a),
\]

(2.2)

where \(a \in \text{CH}(J) \). Applying this to \(a = \eta_s \) and keeping in mind that \(\theta \cdot \eta_s = 0 \) we get

\[
S(\eta_s) = (p_1 + p_2)_s(\exp(c_1(\mathcal{L})) \cdot p^*_1 \eta_s).
\]
Since \(S(\eta_s) \in \text{CH}^{g-s} \), this implies that
\[
S(\eta_s) = (p_1 + p_2)_s(\frac{c_1(L)^s}{s!} \cdot p_1^s(\eta_s)),
\]
so \(\mu_s = s! \). Similarly, applying (2.2) to \(a = [C]_s \) and using the fact that \(\theta^2 \cdot [C]_s = 0 \) and \(S([C]_s) \in \text{CH}^{g-s-1} \) we obtain
\[
S([C]_s) = (p_1 + p_2)_s(\frac{c_1(L)^{s+2}}{(s+2)!} \cdot p_2^s[C]_s) + 2(p_1 + p_2)_s(\frac{c_1(L)^{s+1}}{(s+1)!} \cdot p_1^s(\theta \cdot [C]_s)).
\]
It remains to observe that the second term is proportional to \(A_{s+1}(\eta_s)(1) \), hence it vanishes by Lemma 2.3.

Lemma 2.5. For \(n_1, n_2 \geq 0 \) and \(a_1, a_2, b \in \text{CH}(J)_Q \) one has
\[
[A_{n_1}(a_1), A_{n_2}(a_2)](b) = \sum_{i \geq 1} (p_1 + p_2 + p_3)_s \left(\binom{n_1}{i} p_{13}^s c_1(L)^{n_1-i} p_{23}^s c_1(L)^{n_2} - \binom{n_2}{i} p_{13}^s c_1(L)^{n_1} p_{23}^s c_1(L)^{n_2-i} \right)
\cdot p_1^s c_1(L)^i \cdot p_1^s a_1 \cdot p_2^s a_2 \cdot p_3^s b,
\]
where \(p_{ij} : J \times J \times J \to J \times J \) and \(p_i : J \times J \times J \to J \) are the natural projections.

Proof. Using the projection formula we find
\[
a_1 \ast_{n_1} (a_2 \ast_{n_2} b) = (p_1 + p_2 + p_3)_s \left((p_1, p_2 + p_3)^s c_1(L)^{n_1} \cdot p_{23}^s c_1(L)^{n_2} \cdot p_1^s a_1 \cdot p_2^s a_2 \cdot p_3^s b \right).
\]
Similarly,
\[
a_2 \ast_{n_2} (a_1 \ast_{n_1} b) = (p_1 + p_2 + p_3)_s \left((p_1, p_2 + p_3)^s c_1(L)^{n_2} \cdot p_{23}^s c_1(L)^{n_1} \cdot p_1^s a_2 \cdot p_2^s a_1 \cdot p_3^s b \right)
\cdot (p_1 + p_2 + p_3)_s \left((p_2, p_1 + p_3)^s c_1(L)^{n_2} \cdot p_{13}^s c_1(L)^{n_1} \cdot p_2^s a_1 \cdot p_3^s a_2 \cdot p_3^s b \right).
\]
It remains to use the equalities
\[
(p_1, p_2 + p_3)^s c_1(L) = p_{12}^s c_1(L) + p_{13}^s c_1(L), \quad (p_2, p_1 + p_3)^s c_1(L) = p_{12}^s c_1(L) + p_{23}^s c_1(L).
\]

Note that from the above lemma (or directly from the definition) one can immediately see that for \(a_1, a_2 \in \text{CH}(J)_Q \) the operators \(A_{n_1}(a_1) \) and \(A_{n_2}(a_2) \) commute. Hence, \([A_{n_1}(\eta_{s_1}), A_{n_2}(\eta_{s_2})] = 0.\)

Theorem 2.6. One has the following commutation relations
\[
[A_{n_1}([C]_{s_1}), A_{n_2}([C]_{s_2})] = \left(\binom{n_1}{1} \left(\frac{s_1 + s_2 - n_1 - n_2 + 3}{s_1 - n_1 + 2} \right) - n_2 \cdot \left(\frac{s_1 + s_2 - n_1 - n_2 + 3}{s_2 - n_2 + 2} \right) \right) A_{n_1+n_2-1}([C]_{s_1+s_2}) -\]
\[
2 \cdot \left(\binom{n_1}{2} \left(\frac{s_1 + s_2 - n_1 - n_2 + 3}{s_1 - n_1 + 2} \right) - \binom{n_2}{2} \left(\frac{s_1 + s_2 - n_1 - n_2 + 2}{s_2 - n_2 + 2} \right) \right) A_{n_1+n_2-2} (\eta_{s_1+s_2}).
\]
\[[A_{n_1}([C]_{s_1}), A_{n_2}(\eta_{s_2})] = \]
\[(n_1 \left(s_1 + s_2 - n_1 - n_2 + 1 \right) - n_2 \left(s_1 + s_2 - n_1 - n_2 + 1 \right)) A_{n_1+n_2-1}(\eta_{s_1+s_2}). \]

Proof. Since \([m]_s[C] = \sum_{s \geq 0} m^{s+2}[C]_s\) (resp., \([m]_*\eta_s = \sum_{s \geq 0} m^s\eta_s\)), the first (resp., the second) commutator is the coefficient with \(m_1^{s_1+2}m_2^{s_2+2}\) (resp., \(m_1^{s_1+2}m_2^{s_2}\)) in the commutator

\[[A_{n_1}([m]_*[C]), A_{n_2}([m_2]_*[C])]\) (resp., \([A_{n_1}([m_1]_*[C]), A_{n_2}([m_2]_*\eta)]\)).

Let us apply Lemma 2.5 to compute these commutators. Taking into account the formula for \(L_{C\times C}\) we find

\[[A_{n_1}([m_1]_*[C]), A_{n_2}([m_2]_*[C])] (b) = \]
\[\sum_{i \geq 1} (p_1 + p_2 + p_3)_* \left(\binom{n_1}{i} p_{13}^* c_1(L)^{n_1-i} p_{23}^* c_1(L)^{n_2} - \binom{n_2}{i} p_{13}^* c_1(L)^{n_1} p_{23}^* c_1(L)^{n_2-i} \right) \cdot m_1^i m_2^i p_{12}^* \left([m_1] \times [m_2] \right)_* (i \times i)_* ([\Delta C] - [x_0 \times C] - [C \times x_0]) \cdot p_3^* b. \]

Therefore, the sum has only two terms, \(T_1\) and \(T_2\), corresponding to \(i = 1\) and \(i = 2\). We have

\[T_1 = (p_1 + p_2 + p_3)_* \left((m_1 p_{13}^* c_1(L)^{n_1-1} p_{23}^* c_1(L)^{n_2} - n_2 p_{13}^* c_1(L)^{n_1} p_{23}^* c_1(L)^{n_2-1}) m_1 m_2 p_{12}^* \right) (\eta_{s_1} [C] - [x_0 \times C] - [C \times x_0]) \cdot p_3^* b. \]

Note that since we are only interested in the coefficient with \(m_1^{s_1+2}m_2^{s_2+2}\) we can discard the terms linear in \(m_1\) or \(m_2\). Therefore, we can replace \(T_1\) with

\[T_1' = (m_1 + m_2) p_1 + p_2)_* \left(m_1 m_2 (m_1 m_1^{n_1-1} m_2^{n_2} - n_2 m_1^{n_1} m_2^{n_2-1}) c_1(L)^{n_1+n_2-1} \cdot p_1^*[C] \cdot p_2^* b. \right) \]

Using the formula

\[c_1(L) = \frac{([m_1] + [m_2]) \times \text{id}}{m_1 + m_2} c_1(L) \]

we obtain

\[T_1' = \frac{m_1 n_1 m_2^{n_1+n_2-1} - n_2 m_1^{n_1+1} m_2^{n_2}}{(m_1 + m_2)^{n_1+n_2-2}} (p_1 + p_2)_* \left(c_1(L)^{n_1+n_2-1} \cdot p_1^*[m_1 + m_2]_* [C] \cdot p_2^* b \right) = \]
\[(m_1 m_2^{n_1+n_2+1} - n_2 m_1^{n_1+1} m_2^{n_2}) \sum_s (m_1 + m_2)^{s-n_1-n_2+3} A_{n_1+n_2-1}([C]_s)(b). \]

Let us observe that by Lemma 2.3 we can restrict the summation to \(s\) such that \(n_1 + n_2 - 1 \leq s + 2\), i.e., \(s \geq n_1 + n_2 - 3\).

On the other hand, using the formula \([\Delta C]^2 = -\Delta_* K\) we obtain

\[(i \times i)_* ([\Delta C] - [x_0 \times C] - [C \times x_0]) = 2 \Delta_* \eta. \]

Hence,

\[T_2 = -2 (p_1 + p_2 + p_3)_* \left(\binom{n_1}{2} p_{13}^* c_1(L)^{n_1-2} p_{23}^* c_1(L)^{n_2} - \frac{n_2}{2} p_{13}^* c_1(L)^{n_1} p_{23}^* c_1(L)^{n_2-2} \right) \]
\[\cdot m_1^2 m_2^2 p_{12}^* (m_1, m_2)_* \eta \cdot p_3^* b. \]
We can rewrite this as
\[-T_2 = 2 \frac{(n_1)}{2} \frac{m_1^{n_1} m_2^{n_2}}{m_1 + m_2} (p_1 + p_2) \cdot (c_1(L)^{n_1 + n_2 - 2} \cdot p^*_1 (m_1 + m_2) \cdot p^*_2 b) = \\
2 \left(\left(\frac{n_1}{2} \right) m_1^{n_1} m_2^{n_2} + \left(\frac{n_2}{2} \right) m_1^{n_1 + 2} m_2^{n_2} \right) \sum_s (m_1 + m_2)^{s - n_1 - n_2 + 2} A_{n_1 + n_2 - 2}(\eta_s)(b) \]

Again by Lemma 2.3 we can restrict the summation to \(s \geq n_1 + n_2 - 2 \). Now the required formula for \([A_{n_1}([C]_{s_1}), A_{n_2}([C]_{s_2})]\) follows easily by considering the coefficients with \(m_1^{s_1 + 2} m_2^{s_2 + 2} \) in \(T_1 \) and \(T_2 \).

Following similar steps we can write
\[
[A_{n_1}([m_1], [C]), A_{n_2}([m_2], \eta)](b) = \\
(p_1 + p_2 + p_3) \cdot [(n_1 p^*_1) c_1(L)^{n_1} - n_2 p^*_2 c_1(L)^{n_2} - n_2 p^*_1 c_1(L)^{n_1} p^*_2 c_1(L)^{n_2 - 1}) \\
\cdot m_1 m_2 p^*_2 ((m_1, m_2), \eta - [0] \times [m_2], \eta) \cdot p^*_2 b].
\]

Since we are interested in the coefficient with \(m_1^{s_1 + 2} m_2^{s_2} \), we can discard the term linear in \(m_1 \). Hence, \([A_{n_1}([C]_{s_1}), A_{n_2}([m_2], \eta)]\) is equal to the coefficient with \(m_1^{s_1 + 2} m_2^{s_2} \) in
\[
\frac{n_1 m_1^{n_1} m_2^{n_2 + 1} - n_2 m_1^{n_1 + 1} m_2^{n_2}}{(m_1 + m_2)^{n_1 + n_2 - 1}} (p_1 + p_2) \cdot (c_1(L)^{n_1 + n_2 - 1} \cdot p^*_1 (m_1 + m_2) \cdot p^*_2 b) = \\
(n_1 m_1^{n_1} m_2^{n_2 + 1} - n_2 m_1^{n_1 + 1} m_2^{n_2}) \sum_s (m_1 + m_2)^{s - n_1 - n_2 + 1} A_{n_1 + n_2 - 1}(\eta_s)(b),
\]
where the summation can be restricted to \(s \geq n_1 + n_2 - 1 \) by Lemma 2.3. This immediately implies the result.

Setting
\[
\tilde{X}_{k,n} = k! \cdot A_n([C]_{k+n-2}), \\
Y_{k,n} = k! \cdot A_n(\eta_{k+n})
\]
for \(n \geq 0, k \geq 0 \) we see that these operators satisfy the commutation relations
\[
[\tilde{X}_{k,n}, \tilde{X}_{k',n'}] = (nk' - n'k) \tilde{X}_{k+k'-1,n+n'-1} - 4 \cdot \binom{n}{2} \binom{k'}{2} - \binom{n'}{2} \binom{k}{2} Y_{k+k'-2,n+n'-2},
\]
\[
[\tilde{X}_{k,n}, Y_{k',n'}] = (nk' - n'k) Y_{k+k'-1,n+n'-1},
\]
where we set \(\tilde{X}_{k,n} = Y_{k,n} = 0 \) for \(k < 0 \) (note that this convention agrees with Lemma 2.3).

Also, by Lemma 2.4 we have
\[
\frac{1}{n!} Y_{0,n}(a) = q_n \cdot a,
\]
\[
\frac{1}{n!} \tilde{X}_{0,n}(a) = p_{n-1} \cdot a.
\]
Lemma 2.7. One has
\[\tilde{X}_{2,0} = -2f, \]
\[\tilde{X}_{1,1} = -h + g \cdot \text{id}, \]
\[\tilde{X}_{0,2} = 2e. \]

Proof. The first equality holds by the definition of \(f \). The third equality follows from (2.5). It remains to use the relation
\[\frac{1}{4} \cdot [\tilde{X}_{0,2}, \tilde{X}_{2,0}] = \tilde{X}_{1,1} - Y_{0,0} = \tilde{X}_{1,1} - g \cdot \text{id}. \]

Lemma 2.8. One has the following relations
\[\text{ad}(e)^n(Y_{k,0}) = \frac{k!}{(k-n)!} \cdot Y_{k-n,n}, \]
\[\text{ad}(f)^n(Y_{0,k}) = \frac{k!}{(k-n)!} \cdot Y_{n,k-n}, \]
\[\text{ad}(e)^n(\tilde{X}_{k,0}) = \frac{k!}{(k-n)!} \cdot \left(\tilde{X}_{k-n,n} - n(k-n)Y_{k-n-1,n-1} \right), \]
\[\text{ad}(f)^n(\tilde{X}_{0,k}) = \frac{k!}{(k-n)!} \cdot \left(\tilde{X}_{n,k-n} - n(k-n)Y_{n-1,k-n-1} \right). \]

Proof. We have
\[[e, Y_{k,n}] = \frac{1}{2} [\tilde{X}_{0,2}, Y_{k,n}] = kY_{k-1,n+1}, \]
\[[e, \tilde{X}_{k,n}] = \frac{1}{2} [\tilde{X}_{0,2}, \tilde{X}_{k,n}] = k\tilde{X}_{k-1,n+1} - k(k-1)Y_{k-2,n}. \]
From this one can easily deduce the first and the third formulas by induction in \(n \). The other two are proved in the same way since our relations are skew-symmetric with respect to switching \(\tilde{X}_{k,n} \) with \(\tilde{X}_{n,k} \) and \(Y_{k,n} \) with \(Y_{n,k} \). □

Finally, we set
\[X_{k,n} = \tilde{X}_{k,n} - knY_{k-1,n-1} = k! \cdot A_n([C]_{k+n-2}) - (k-1)! \cdot A_{n-1}(\eta_{k+n-2}). \]

(2.6)

Proof of Theorem 0.1. An easy computation shows that \(X_{k,n} \) and \(Y_{k,n} \) satisfy relations (0.1) and (0.2). It remains to check (0.3) and (0.4). We have
\[SY_{m,0}S^{-1} = m!SA_0(\eta_m)S^{-1} = m!q_m = A_m(\eta_m) = Y_{0,m}, \]
\[S\tilde{X}_{m,0}S^{-1} = m!SA_0([C]_{m-2})S^{-1} = m!p_{m-1} = A_m([C]_{m-2}) = \tilde{X}_{0,m}. \]
Since \(SeS^{-1} = -f \) we immediately derive (0.4) and (0.3) from Lemma 2.8. □
3. Proof of Theorem 0.2.

(i) Let us denote by $T'\, CH(J) \subset CH(J)$ the subring generated by the classes (p_n) and (q_n). Consider the operator $f = -SeS^{-1} = -\tilde{X}_{2,0}/2 = -X_{2,0}/2$ on $CH(J)$. We are going to show that it preserves $T'\, CH(J)$. Note that

$$[[f, p_n], p_m] = \frac{1}{(m+1)!n!}[X_{1,n-1}, X_{0,m+1}] = -\frac{1}{m!n!}X_{0,m+n} = -\binom{m+n}{m}p_{m+n-1},$$

$$[[f, p_n], q_m] = \frac{1}{n!m!}[X_{1,n}, Y_{0,m}] = -\frac{1}{n!(m-1)!}Y_{0,m+n-1} = -\binom{m+n-1}{m-1}q_{m+n-1},$$

and $[[f, q_n], q_m] = 0$. (3.3)

On the other hand, from the definition of q_n we derive

$$q_n = -Se([C]_n) = fS([C]_n) = f(p_{n+1}).$$

Since $f(1) = 0$, this gives

$$[f, p_n](1) = f(p_n) = q_{n-1}. \quad (3.4)$$

Also,

$$0 = -Se(\eta_n) = fS(\eta_n) = f(q_{n}),$$

so

$$[f, q_n](1) = 0. \quad (3.5)$$

We claim that these relations imply that for any polynomial F in (p_n) and (q_n) one has

$$f(F) = -D(F),$$

where D is the differential operator defined in the formulation of the theorem. Indeed, from relations (3.1)-(3.3) we see that

$$[[f, x], y](F) = -[[D, x], y](F),$$

where x and y are any of the classes (p_n) or (q_n). By induction in the degree this implies that

$$[f, p_n](F) = -[D, p_n](F)$$

and

$$[f, q_n](F) = -[D, q_n](F),$$

where the base of induction follows from relation (3.4) and (3.5). Finally, another induction in degree proves (3.6).

Thus, we proved the operator $f \in sl_2$ preserves $T'\, CH(J)$ and acts on it by the differential operator $-D$. Since $T'\, CH(J)$ is also closed under the operator $e \in sl_2$, it follows that $T'\, CH(J)$ is closed under the Fourier transform $S = \exp(e) \exp(-f) \exp(e)$. Therefore, $T'\, CH(J)$ coincides with the tautological subring $T\, CH(J)$.

(ii) For \(m = 0 \) the operator \(X_{0,n} \) (resp., \(Y_{0,n} \)) acts as multiplication by \(n!p_{n-1} \) (resp., \(n!q_n \)). In particular, they preserve \(\mathcal{T} \text{CH}(J)_Q \). The general case follows from this by induction in \(m \) using commutation relations

\[
[X_{2,0}, X_{m,n}] = -2nX_{m+1,n-1}, \quad [X_{2,0}, Y_{m,n}] = -2nY_{m+1,n-1}
\]

together with the fact that \(X_{2,0}/2 \) acts on \(\mathcal{T} \text{CH}(J)_Q \) via the operator \(\mathcal{D} \).

\[
\Box
\]

4. Some relations in \(\mathcal{T} \text{CH}(J)_Q \)

Let us denote by \(\mathbb{Q}[q] \subset \mathcal{T} \text{CH}(J)_Q \) the subring generated by the classes \((q_n) \). First, we collect some general observations in the following

Proposition 4.1.

(i) \(\oplus_s \mathcal{T} \text{CH}(J)_s^* = \mathbb{Q}[q] \).

(ii) \(\mathcal{T} \text{CH}(J)_s^* = p_1^{g-s} \cdot \mathcal{T} \text{CH}(J)_s^* = p_1^{g-s} \cdot (\text{CH}_s \cap \mathbb{Q}[q]) \).

(iii) \(\mathcal{T} \text{CH}(J)_g^* = 0 \).

Proof.

(i) This follows from the fact that \(q_n \in \text{CH}(J)_n \) and \(p_n \in \text{CH}(J)_{n-1}^n \).

(ii) Since \(f \) acts on \(\mathcal{T} \text{CH}(J)_Q \) by the operator \(-\mathcal{D}\), it preserves the subring \(\mathbb{Q}[p_1, q] \) generated by \(p_1 \) and \((q_n) \). Hence, the Fourier transform \(S \) also preserves this subring. But \(\mathcal{T} \text{CH}(J)_g^* = S(\text{CH}_g^*) \), so the assertion follows from (i).

(iii) It is enough to prove that \(q_{n_1} \ldots q_{n_k} = 0 \) for \(n_1 + \ldots + n_k = g \). We can use induction in \(k \). The base of induction follows from

\[
q_g = -\mathcal{D}(p_{g+1}) = 0.
\]

Assume the assertion holds for \(k - 1 \). Then for \(n_1 + \ldots + n_k = g \) we have

\[
0 = -\mathcal{D}(q_{n_1} \ldots q_{n_{k-1}} p_{n_{k+1}}) = q_{n_1} \ldots q_{n_{k-1}} q_{n_k},
\]

since all the other terms vanish by the induction assumption.

Part (ii) of the above proposition implies that for every \(n_1 + \ldots + n_k + m_1 + \ldots + m_t = g \) we have a relation of the form

\[
p_{n_1} \ldots p_{n_k} q_{m_1} \ldots q_{m_t} = p_1^k f(q).
\]

The simplest example of such a relation is

\[
p_g = p_1 q_{g-1}
\]

obtained by applying \(\mathcal{D} \) to \(p_1 p_g = 0 \). Similarly, applying \(\mathcal{D} \) to \(p_1 p_{q_{g-i}} = 0 \) we get

\[
p_{g-i} q_{g_i} = p_1 q_{g_i - 1} q_{g_i} - \binom{g-1}{i} p_1 q_{g-1}.
\]

Proposition 4.2. The ring \(\mathcal{T} \text{CH}(J)_Q \) is generated over \(\mathbb{Q} \) by the classes \((p_n)_{n < g/2 + 1} \) and \((q_n)_{n < 2g+1/2} \). Furthermore, for \(n \geq g/2 + 1 \) the class \(p_n \) belongs to the ideal generated by \((q_i)_{i \geq 1} \).

Proof.

First, let us prove that for \(n \geq \frac{g+1}{2} \) the class \(q_n \) can be expressed in terms of \((q_i)_{i < n} \). The idea is to represent \(n \) in the form \(n = n_1 + \ldots + n_k - k \), where \(n_i \geq 2 \) for all \(i \) and \(n_1 + \ldots + n_k \geq g + 1 \). Then it is enough to check \(0 = \mathcal{D}^k(p_{n_1} \ldots p_{n_k}) \) is a polynomial of degree \(n \) in \((q_i)_{i \leq n} \) (where \(\text{deg } q_i = i \)) that has a nonzero coefficient with \(q_n \). Note that \(\mathcal{D} \)
preserves the subring generated by all the classes \((p_i)\), where \(i \geq 2\), together with all the classes \((q_i)\) and acts on this subring as the operator \(\mathcal{D}' = \mathcal{D}'_0 - \mathcal{D}'_1\), where

\[
\mathcal{D}'_0 = \frac{1}{2} \sum_{m,n \geq 2} \binom{m+n}{n} p_{m+n-1} \partial_{p_n} \partial_{p_m} + \sum_{m \geq 1, n \geq 2} \binom{m+n-1}{n} q_{m+n-1} \partial_{q_n} \partial_{p_n},
\]

\[
\mathcal{D}'_1 = \sum_{n \geq 2} q_{n-1} \partial_{p_n}.
\]

Let us consider two more gradings \(\deg_p\) and \(\deg_q\) on the algebra of polynomials in \((p_i)\) and \((q_i)\) such that \(\deg_p(p_i) = \deg_q(q_i) = 1\) and \(\deg_p(p_i) = \deg_q(p_i) = 0\). Since \(\mathcal{D}\) decreases \(\deg_p\) by \(1\), we obtain that \(\mathcal{D}^k(p_{n_1} \ldots p_{n_k})\) is a polynomial in \((q_i)\). Furthermore, since \(\mathcal{D}'_0\) preserves \(\deg_q\) and \(\mathcal{D}'_1\) raises it by \(1\), we have

\[
\mathcal{D}^k(p_{n_1} \ldots p_{n_k}) = (\mathcal{D}')^k(p_{n_1} \ldots p_{n_k}) = (\mathcal{D}'_0)^k(p_{n_1} \ldots p_{n_k}) - \lambda \cdot q_n + f(q_1, \ldots, q_{n-1}),
\]

where

\[
\lambda \cdot q_n = \sum_{i=1}^{k} (\mathcal{D}'_0)^{i-1} \mathcal{D}'_1 (\mathcal{D}'_0)^{k-i}(p_{n_1} \ldots p_{n_k}).
\]

Now it is clear from the explicit form of \(\mathcal{D}'_0\) and \(\mathcal{D}'_1\) that \((\mathcal{D}'_0)^k(p_{n_1} \ldots p_{n_k}) = 0\) and that \(\lambda > 0\).

Next, let us show that for \(n \geq g/2 + 1\) the class \(p_n\) belongs to the ideal generated by \((q_i)_{i \geq 1}\) in the subring generated by \((p_i)_{i < n}\) over \(\mathbb{Q}[q]\). To this end we represent \(n\) in the form \(n = n_1 + \ldots + n_k - k + 1\), where \(n_i \geq 2\) for all \(i\) and \(n_1 + \ldots + n_k \geq g\). Now let us consider the class

\[
a = \mathcal{D}^{k-1}(p_{n_1} \ldots p_{n_k}) = (\mathcal{D}')^{k-1}(p_{n_1} \ldots p_{n_k}).
\]

Note that if \(n_1 + \ldots + n_k = g\) then we have \(p_{n_1} \ldots p_{n_k} \in \mathcal{C}_{g-k}^g(J)\). Hence, by Proposition 4.1(ii) the class \(p_{n_1} \ldots p_{n_k}\) belongs to the ideal generated by \((q_i)\) in the subring \(\mathbb{Q}[p_1, q] \subset \mathfrak{T} \mathcal{C}(J)_{\mathbb{Q}}\). Therefore the same is true about the class \(a\) (and if \(n_1 + \ldots + n_k > g\) then \(a = 0\)). On the other hand, we can write \(\mathcal{D}' = \mathcal{D}'_p + \mathcal{D}'_q\), where

\[
\mathcal{D}'_p = \frac{1}{2} \sum_{m,n \geq 2} \binom{m+n}{n} p_{m+n-1} \partial_{p_n} \partial_{p_m},
\]

\[
\mathcal{D}'_q = \sum_{m \geq 1, n \geq 2} \binom{m+n-1}{n} q_{m+n-1} \partial_{q_n} \partial_{p_n} - \sum_{n \geq 2} q_{n-1} \partial_{p_n}.
\]

Since \(\deg_p(a) = 1\) and since the image of \(\mathcal{D}'_q\) is contained in the ideal generated by \((q_i)\), we obtain

\[
a = (\mathcal{D}')^{k-1}(p_{n_1} \ldots p_{n_k}) = \mu \cdot p_n + a',
\]

where

\[
\mu \cdot p_n = (\mathcal{D}'_p)^{k-1}(p_{n_1} \ldots p_{n_k})
\]

and \(a'\) is a linear combination of \(f_i(q)p_{n-i}\) with \(i \geq 1\) and \(f_i(q) \in \mathbb{Q}[q]\). It is clear from the formula for \(\mathcal{D}'_p\) that \(\mu > 0\), so our assertion follows.

For example, if \(g = 2\) then \(\mathfrak{T} \mathcal{C}(J)_{\mathbb{Q}}\) is generated by \(p_1\) and \(q_1\). In fact, in this case we have \(q_2 = q_1^2 = 0\) (by Proposition 4.1) and \(p_2 = p_1q_1\) (by (4.1)). For \(g = 3\) the above
proposition states that $\mathcal{T}\operatorname{CH}(J)_\mathbb{Q}$ is generated by p_1, p_2 and q_1. Indeed, first we see that $q_3 = q_1 q_2 = q_1^3 = 0$ and $p_3 = p_1 q_2$. Also, applying \mathcal{D}^2 to $p_2^2 = 0$ we derive the relation $q_2 = q_1^2/4$ (and hence $p_3 = p_1 q_1^2/4$). In addition, (4.2) gives $p_2 q_1 = \frac{3}{2} p_1 q_1^2$.

Finally, let us show that the classes of the subvarieties of special divisors $W_d \subset J$ can be expressed as universal polynomials in $(p_n - q_n)$. Recall that W_d is the image of the natural map $C^{[d]} \to J : D \to \mathcal{O}_C(D - dx_0)$. Let us set $w_i = [W_{g-i}] \in \operatorname{CH}^i(J)$.

Proposition 4.3. One has $-p_k + q_k = N^k(w)$, where $N^k(w)$ is the k-th Newton polynomial in the classes (w_i): $N^k(w) = \frac{1}{k!} \sum_{i=1}^g \lambda_i^k$, where (λ_i) are roots of $\lambda^g - w_1 \lambda^{g-1} + \ldots + (\lambda q_1^2 = 4p_1 q_2$.

We will use the formula $\delta^* E_d = \delta \mathcal{O}_C(dx_0)$ and $\delta : J \to J$ is the involution $x \mapsto \kappa - x$, where $\kappa \in J$ corresponds to the line bundle $K(-2g - 2)x_0$. (see [12], sec. 19.5). On the other hand, using Grothendieck-Riemann-Roch formula one can easily find that

$$\operatorname{ch}(E_d) = p_i - q_i$$

for $i > 0$ (where ch_i is the component of the Chern character of codimension i). Hence,

$$\operatorname{ch}_1(\delta^* E_d) = \delta_*(p_i - q_i) = [\kappa] * [-1]_*(p_i - q_i) = (-1)^i - 1 [\kappa] * (p_i + q_i).$$

Next, we observe that

$$S([\kappa]) = \exp(c_1(\mathcal{L}_\kappa)) = \exp(2q_1).$$

Using Theorem 0.1 we obtain that

$$[\kappa] * a = \exp(2Y_{1,0})(a)$$

for $a \in \operatorname{CH}^*(J)_\mathbb{Q}$. Now the formula for $Y_{1,0}$ from Theorem 0.2(ii) implies that

$$[\kappa] * q_i = q_i, \quad [\kappa] * p_i = p_i - 2q_i.$$

Therefore,

$$\operatorname{ch}_i(\delta^* E_d) = (-1)^i - 1 [\kappa] * (p_i + q_i) = (-1)^i - 1 (p_i - q_i).$$

Combining this with (4.3) we immediately derive our assertion. \qed

Thus, we have $p_1 - q_1 = -w_1$, $p_2 - q_2 = w_2 - w_1^2/2$, $p_3 - q_3 = w_3/2 + w_2w_1/2 - w_1^3/6$, etc. Hence, we can express the classes (w_i) as polynomials in $(p_i - q_i)$.

References

[1] A. Beauville, *Diviseurs spéciaux et intersections de cycles dans la jacobienne d’une courbe algébrique*, in *Enumerative geometry and classical algebraic geometry*, 133-142, Birkhäuser, 1982.

[2] A. Beauville, *Quelques remarques sur la transformation de Fourier dans l’anneau de Chow d’une variété abélienne*, Algebraic Geometry (Tokyo/Kyoto 1982), Lecture Notes in Math. 1016, 238–260. Springer-Verlag, 1983.

[3] A. Beauville, *Sur l’anneau de Chow d’une variété abélienne*, Math. Ann. 273 (1986), 647–651.

[4] A. Beauville, *Algebraic cycles on Jacobian varieties*, preprint math.AG/0204188.

[5] G. Ceresa, *C is not algebraically equivalent to C− in its Jacobian*, Annals of Math., 117 (1983), 285–291.
[6] A. Collino, *Poincaré’s formulas and hyperelliptic curves*, Atti Acc. Sc. Torino 109 (1974-1975), 89–101.

[7] E. Colombo, B. Van Geemen, *Note on curves in a Jacobian*, Compositio Math. 88 (1993), 333–353.

[8] D. Fuks, *Cohomology of infinite-dimensional Lie algebras*, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986.

[9] K. Künemann, *A Lefschetz decomposition for Chow motives of abelian schemes*, Invent. Math. 113 (1993), 85–102.

[10] S. Mukai, *Duality between $D(X)$ and $D(\hat{X})$ with its application to Picard sheaves*, Nagoya Math. J. 81 (1981), 153–175.

[11] A. Polishchuk, *Analogue of Weil representation for abelian schemes*, J. Reine Angew. Math. 543 (2002), 1–37.

[12] A. Polishchuk, *Abelian Varieties, Theta Functions and the Fourier Transform*, Cambridge University Press, 2003.

[13] A. Polishchuk, *Universal algebraic equivalences between algebraic cycles on Jacobians of curves*, preprint math.AG/0309160.

[14] R. L. E. Schwarzenberger, *Jacobians and symmetric products*, Illinois J. Math. 7 (1963), 257–268.

Department of Mathematics, University of Oregon, Eugene, OR 97405

E-mail address: apolish@math.uoregon.edu