Risks and Association of Impaired Cerebral Autoregulation With Outcomes in Aortic Arch Surgery: A Single-center, Retrospective Cohort Study

Ling Peng
West China Hospital of Sichuan University

Dan Guo
West China Hospital of Sichuan University

Yinhui Shi
West China Hospital of Sichuan University

Jiapei Yang
West China Hospital of Sichuan University

Wei Wei (✉ weiw@scu.edu.cn)
West China Hospital of Sichuan University

Research Article

Keywords: Cerebral autoregulation, Cardiopulmonary bypass, Hypothermia circulatory arrest, Near-infrared spectroscopy

Posted Date: January 5th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1220637/v1

License: ☕️ ☀️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Impairment of cerebral autoregulation (CA) has been observed in patients undergoing cardiopulmonary bypass (CPB), but little is known about its risks and associations with outcomes. The objective of this study was to analyze the risks of impaired CA, based on cerebral oximetry index (COx), in patients undergoing total aortic arch replacement with CPB and moderate hypothermic circulatory arrest (MHCA). We also evaluated the association between impaired CA and patient outcomes.

Methods

One hundred fifteen four adult patients who underwent total aortic arch replacement with stented elephant trunk implantation under CPB and MHCA at our hospital were retrospectively analyzed. Patients were defined as having new-onset impaired CA if post-CPB COx > 0.3, calculated based on a moving linear correlation coefficient between regional cerebral oxygen saturation (rScO\textsubscript{2}) and mean blood pressure (MAP). Pre- and intraoperative factors were tested for independent association with impaired CA. Postoperative outcomes were compared between patients with normal and impaired CA.

Results

In our 154 patients, 46(29.9%) developed new-onset impaired CA after CPB with MHCA. Multivariate analysis revealed a prolonged low rScO\textsubscript{2} (rScO\textsubscript{2} <55%) independently associated with onset of impaired CA, and receiver operating characteristic curve showed a cutoff value at 40 min (sensitivity, 89.5%; specificity, 68.0%). Compared with normal CA patients, those with impaired CA showed a significantly higher rates of in-hospital mortality and postoperative complications.

Conclusion

Prolonged low rScO\textsubscript{2} (rScO\textsubscript{2} <55%) during aortic arch surgery was closely related to onset of impaired CA. Impaired CA remained associated with the increased rates of postoperative complications and in-hospital mortality.

Trial registration: ChiCTR1800014545 with registered date 20/01/2018.

Introduction

Cerebral autoregulation (CA) ensures a constant supply of oxygenated blood flow to the brain over a wide range of blood pressures [1]. However, when CA is damaged, cerebral blood volume (CBV) may become correlated with blood pressure, leading to cerebral hypo- or hyperperfusion in patients whose blood pressure is uncontrolled. It also predisposes patients with low blood pressure to cerebral ischemia and patients with high blood pressure to hyperemia [1]. CA may become damaged in up to 20-24% of patients undergoing mild hypothermic cardiopulmonary bypass (CPB) [1, 2].
Impaired CA has been linked to neurological dysfunction in patients undergoing hypothermic CPB [1, 3]. Brain ischemic injury with low arterial pressure and increased cerebral embolic load with high arterial pressure are proposed mechanisms of neurological dysfunction in patients with impaired CA [1]. Whether CPB and hypothermic circulatory arrest (HCA) increase the risk of impaired CA in aortic dissection patients is unclear. On the one hand, Neri et al's work revealed that HCA combined with retrograde cerebral perfusion might damage CA [4]. And on the other hand, Ono et al’s study indicated that deep HCA could preserve CA better than moderate hypothermic CPB without circulatory arrest [5]. Therefore, the effect of HCA on CA remains unclear and requires further investigation.

Regional cerebral oxygen saturation (rScO$_2$) monitoring using near-infrared spectroscopy (NIRS) has been widely applied in cardiac surgeries, carotid endarterectomy, and shoulder surgeries in beach-chair position [6–9]. rScO$_2$ takes into account cerebral arterial, capillary, and venous blood, essentially reflecting the balance between cerebral oxygen supply and demand [10]. Particularly for patients who underwent total aortic arch replacement under CPB and HCA, rScO$_2$ monitoring could help to manage the flow rate of cerebral perfusion [11–13]. In previous research, it has been demonstrated that the change of rScO$_2$ was coherent with CBV in patients undergoing CPB or in those with an intracranial injury [14, 15]. And the function of CA can be assessed by measuring a moving linear correlation coefficient between rScO$_2$ and mean blood pressure (MAP), which is called the cerebral oximetry index (COx) [14]. If the COx approached 1, it implied that CBV depended on blood pressure and CA was damaged. If the COx value approached 0, it indicated that blood pressure did not correlate with CBV and CA was functional. An average COx > 0.3 was regarded as the threshold of impaired CA [5]. Furthermore, COx analysis has shown high sensitivity (92%) and moderate specificity (63%) for detecting CA impairment [16], and it agrees well with the mean velocity index (Mx) determined by transcranial Doppler (TCD) [14, 17]. The feasibility of using COx to monitor CA during cardiac surgery has been demonstrated for adult and pediatric patients [18, 19].

In this retrospective study, we aimed to identify the potential risk factors for new-onset impaired CA by COx calculation in patients undergoing total aortic arch replacement involving CPB and moderate hypothermic circulatory arrest (MHCA). We also analyzed the associations between impaired CA and short-term outcomes.

Methods

Study design and population

We retrospectively reviewed the electronic medical records of adult patients who underwent total aortic arch replacement with stented elephant trunk implantation for acute type A aortic dissection from February 2017 to December 2018. This study was approved by the Ethics Committee of West China Hospital, Sichuan University (protocol number: 2017342). Written informed consent was waived because of retrospective and observational study. All procedures performed in studies involving human
participants were in accordance with the Helsinki declaration. Furthermore, the study was registered in the chictro.cn with registration number: ChiCTR1800014545.

Perioperative care and anesthesia

Five-lead electrocardiography (ECG), pulse oxygen saturation (SpO_2), nasopharyngeal and rectal temperature, and invasive blood pressures via the bilateral radial arteries and left dorsal pedis artery were routinely monitored. General anesthesia was induced using midazolam (0.04-0.1 mg/kg), sufentanil (1-2μg/kg), and rocuronium (0.5-1.2 mg/kg), then maintained using sevoflurane inhalation (1-2%) and intermittent administration of sufentanil and cisatracurium besilate. After tracheal intubation, pressure-controlled mechanical ventilation was achieved and adjusted to keep end-tidal carbon dioxide (EtCO_2) in the normal range. Transesophageal echocardiographic examination (iE33; Phillips Medical System, Andover, MA, USA) was routinely performed before surgery. Vasoactive agents were administrated necessarily to stabilize hemodynamics as much as possible.

Surgical procedures

All patients underwent total aortic arch replacement with stented elephant trunk implantation through median sternotomy in supine position. Aortic cannulation, right axillary artery, or femoral artery cannulation was performed for systemic perfusion, and systemic venous return was achieved by vena cava cannulation or trans-femoral venous cannulation. Moderate hypothermia (nasopharyngeal temperature 26-28°C and rectal temperature 28-30°C) was reached after the establishment of circulatory arrest. During the cooling phase before MHCA, the pump flow rate decreased gradually from 2.6 to 2.2 L/min/m2. If MAP lower than 50 mmHg, vasoconstrictor, including metaraminol (0.2-0.5 mg) or norepinephrine (5-10 μg), was administrated intermittently; when MAP higher than 80 mmHg, vasodilator, including urapidil (3-5 mg) or perdipine (0.3-0.5 mg) was used. After the establishment of MHCA, selective antegrade cerebral perfusion was performed initially via innominate artery cannulation. If left rScO_2 was 10% lower than right rScO_2 during right antegrade cerebral perfusion, unilateral antegrade cerebral perfusion was immediately switched to bilateral antegrade cerebral perfusion through both innominate artery and left common carotid artery cannulations. The flow rate of antegrade cerebral perfusion was adjusted between 6 and 12 mL/min/kg under the guidance of right radial artery blood pressure or perfusion pressure. The right radial artery pressure was maintained between 40 and 70 mmHg as possible, while the cerebral perfusion pressure was kept between 40 and 50 mmHg. Alpha–stat management was used during cooling and rewarming phases and pH-stat was applied during MHCA. All patients were transferred to the intensive care unit (ICU) after surgery for respiratory and circulatory support.

rScO_2 monitoring and COX calculation

Two self-adhesive transcutaneous oximetry sensors (EGOS-600A, Suzhou Engine Bio-medical Electronics, Suzhou, China) were placed on the right and left sides of the forehead for bilateral rScO_2 monitoring. MAPs and rScO_2 were sampled with an analog-to-digital converter at 60 Hz and then processed with SAM
1.0 software (Senton Netease, Chengdu, China) and the EGOS-600A system respectively. For COx calculation, the saved MAP and rScO\textsubscript{2} data were extracted and redisplayed by Visual Studio 2013 software (Microsoft Corporation, WA, USA) on a personal computer (Lenovo XiaoXin Air 13 Pro). Of note, the MAP, measured in the left radial artery, was preferred for COx calculation. A continuous, moving Pearson correlation coefficient between MAP and rScO\textsubscript{2} was calculated to generate COx [14].

Consecutive, paired, non-overlapping 10-second mean values of MAP and rScO\textsubscript{2} were calculated over 300-sec interval, yielding 30 data points, which were used to determine the COx for that interval. This operation was equivalent to applying a moving filter with a 10-second time window and resampling at 0.1 Hz to eliminate high-frequency noise at the same time as allowing detection of oscillations and transients that occur below 0.05 Hz. Then, the mean values of COx of all 300-sec intervals for the pre- and post-CPB periods were used respectively to identify impaired CA. A COx near 1 indicates that CBV depends on blood pressure and so CA is damaged; a COx near 0 indicates that CBV does not correlate with blood pressure and therefore CA is functional [14]. New-onset impaired CA was defined as both right and left mean value of COx > 0.3 after CPB and ≤ 0.3 before CPB at all recorded MAPs [5]. Figure 1 shows one patient’s COx data in MAP bins of 5mmHg. The threshold of low rScO\textsubscript{2} was defined as lower than 55% according to that rScO\textsubscript{2} below 55% was related to the occurrence of neurological events [20, 21].

Data collection and definition

Preoperative variables were age, body mass index, sex, ejection fraction (EF), presence of comorbidities (diabetes, hypertension), baseline creatine, baseline hemoglobin, baseline b-type natriuretic peptide, and preoperative medication. Intraoperative variables were type of cerebral perfusion and systemic perfusion, MAP, central venous pressure, operation time, CPB time, cross-clamp time, cerebral perfusion time, red blood cells transfusion, temperatures and blood gas parameters during HCA, and rScO\textsubscript{2} values.

Postoperative outcomes were major complications including delirium, acute kidney injury (AKI), cardiac dysfunction, mechanical ventilation > 24 h, respiratory infection, and reoperation. Lengths of stay in the ICU and hospital generally were also recorded. Postoperative delirium was measured with the Confusion Assessment Method (CAM) or CAM-ICU for intubated patients. AKI was diagnosed according to the Kidney Disease Improving Global Outcomes (KDIGO) criteria as a 50% increase from baseline serum creatinine level or a 26.4 mmol/L increase from baseline within 48 h [22]. Cardiac dysfunction was defined as the minimal EF < 50% during postoperative hospitalization. Postoperative respiratory infection was identified as follows: if a patient received antibiotics for suspected respiratory infection and met at least one of the following criteria: new or changed sputum, new or changed lung opacities, fever, leukocyte count > 12,000 × 109 L−1 [23].

Statistical analysis

Continuous variables were expressed as mean ± standard deviation (SD), and categorical data as frequency in percentage or absolute number. Normality of the continuous data was tested using the Kolmogorov-Smirnov method. Inter-group differences in continuous variables were assessed for
significance using Student's t-test, and differences in categorical variables were assessed using χ^2 or Fisher's exact test. Preoperative and intraoperative variables were then entered into a univariate logistic regression model to assess for a relationship between each variable and impaired CA. Covariates with an explanatory $P<0.10$ were then manually entered into a multivariable logistic regression model. In cases of intercorrelation, the best single independent variable was chosen. For the predictors of impaired CA, adequate cutoff values were identified using a receiver operating characteristics curve. According to the previous study, impaired CA occurred in 20% of patients underwent CPB, and the odds ratio was 2 for PaCO_2 corresponding to impaired CA [1]. A sample size of 136 patients achieves 90% power at 0.05 significance by logistic regression analysis. Statistical analyses were performed using SPSS version 17.0 (IBM, Chicago, IL, USA), GraphPad Prism 7.0 (GraphPad Software, USA), and PASS 15.0 software. Differences with $P<0.05$ were considered statistically significant.

Results

One hundred sixteen adult patients underwent total aortic arch replacement with CPB and MHCA were reviewed. Patients with missing NIRS data (n=4), preoperative renal dysfunction (n=1), preoperative stroke (n=5), and impaired CA prior to CPB by COx calculation (n=4) were excluded. Finally, 154 cases were enrolled in this study. A total of 46 (29.9%) patients presented new-onset impaired CA after CPB with MHCA (Figure 2).

The preoperative profile and intraoperative data of the two cohort were listed in Table 1. There was no significant difference in the preoperative state between the 2 cohorts. In regards to their intraoperative course, patients who developed new-onset impaired CA had longer antegrade cerebral perfusion time and low rScO_2 ($\text{rScO}_2<55\%$) duration, as well as lower mean value of rScO_2 than normal CA patients. There were no differences in temperature, pH, carbon dioxide partial pressure (PaCO_2), arterial oxygen partial pressure (PaO_2), lactate, or hemoglobin between patients with impaired and normal CA during MHCA (Table 2).
Table 1
Preoperative and intraoperative characteristics of the patients with impaired or normal cerebral autoregulation.

Parameter	Impaired autoregulation (n=46)	Normal autoregulation (n=108)	P value
Frequency (%)	29.9	70.1	0.225
Baseline characteristics			
Age (years)	29.3±4.3	25.0±3.7	0.339
BMI (kg/m²)	49.5±11.2	47.2±10.8	0.084
Female, n (%)	6(13.0)	21(19.4)	0.434
Preoperative medication, n (%)			
β-blockers	12 (26.3)	22 (20.3)	0.472
ACEI	19 (41.3)	38 (35.1)	0.157
CCB	24 (52.1)	43 (39.8)	0.668
Insulin			
Creatinine (µmol/L)	117.5±121.1	100.6±63.6	
Hemoglobin (g/L)	119.6±22.8	124.5±25.3	0.263
BNP (pg/mL)	1063.1±1643.0	987.8±1981.6	0.826
Diabetes, n (%)	19 (41.3)	36 (33.3)	0.345

Values are n (%) or mean ± SD, unless otherwise noted.
Parameter	Impaired autoregulation (n=46)	Normal autoregulation (n=108)	P value
Hypertension, n (%)	34 (73.9)	71 (65.7)	0.319
Ejection fraction < 50%, n (%)	4 (8.7)	9 (8.3)	0.941
Emergency surgery, n (%)	22 (47.8)	37 (35.2)	0.113
Intraoperative factors			
ACP	7 (15.2)	11 (10.2)	0.374
uACP, n (%)	34 (73.9)	73 (67.6)	0.531
biACP, n (%)	12 (26.1)	35 (32.4)	0.531
Systemic perfusion	62.3±6.3	62.0±7.6	0.893
Trans-femoral artery, n (%)	48.0±5.7	51.1±6.7	0.086
Trans-aorta, n (%)	52.0±3.9	53.9±4.6	0.090
MAP (mmHg)	8.1±3.3	10.2±3.5	0.071
Pre-CPB	476.9±100.8	456.6±85.7	0.206
During CPB	257.9±56.2	253.9±73.3	0.754
Post-CPB	144.1±47.9	127.1±48.0	0.136
CVP(cmH₂O)	187.5±49.1	175.7±50.5	0.228
Pre-CPB	37.7±9.1	33.4±9.2	0.008
Post-CPB	6 (31.6)	11 (24.4)	0.604
Operation time (min)			
CPB time (min)			
Post-CPB time (min)			
Cross-clamp time (min)			
ACP time (min)			
RBC infusion, n (%)			
Left rScO₂ baseline (%)	61.7±4.5	60.9±3.8	0.562
Right rScO₂ baseline (%)	59.6±6.2	61.7±4.5	0.167
Left rScO₂ minimum (%)	55.3±3.7	55.1±5.6	0.900

Values are n (%) or mean ± SD, unless otherwise noted.
Parameter	Impaired autoregulation (n=46)	Normal autoregulation (n=108)	P value
Right rScO₂ minimum (%)	55.4±4.6	54.9±5.1	0.254
Left rScO₂ mean (%)	57.2±3.6	59.9±5.1	0.041
Right rScO₂ mean (%)	57.6±4.8	60.4±4.3	0.035
Left rScO₂<55% duration (min)	71.5±36.4	33.5±44.2	0.002
Right rScO₂<55% duration (min)	67.6±24.9	33.5±45.3	0.003
Left rScO₂<50% duration (min)	4.6±13.0	7.2±20.8	0.627
Right rScO₂<50% duration (min)	14.5±39.1	11.1±33.8	0.773

Values are n (%) or mean ± SD, unless otherwise noted.
Table 2
Temperatures and blood gas analysis of patients averaged over hypothermic circulatory arrest, stratified by impaired or normal cerebral autoregulation.

Parameters	Impaired autoregulation (n=46)	Normal autoregulation (n=108)	P value
Nasopharyngeal T_{mean} (°C)	26.5±1.7	26.8±2.2	0.522
Nasopharyngeal T_{min} (°C)	26.3±1.7	26.5±2.3	0.732
Rectal T_{mean} (°C)	28.1±2.1	28.5±2.0	0.442
Rectal T_{min} (°C)	27.9±2.0	28.4±1.9	0.407
pH	7.2±0.1	7.2±0.1	0.755
PaCO₂ (mmHg)	62.2±13.7	59.6±13.0	0.519
PaO₂ (mmHg)	191.3±85.3	221.2±93.6	0.251
Lactate (mmol/L)	4.8±2.0	5.4±2.7	0.447
BE	-3.6±2.3	-5.0±2.6	0.056
Hemoglobin (g/L)	78.0±10.2	82.2±11.0	0.180
Glucose (mmol/L)	9.8±2.7	11.0±4.1	0.200

Values are mean ± SD, unless otherwise noted.

Abbreviations: T, temperature; PaCO₂, partial pressure of carbon dioxide; PaO₂, partial pressure of oxygen; BE, base excess

P < 0.05

The variables listed in Table 1 were tested for univariable association with impaired CA (Table 3). On univariate analysis, only those variables including bilateral rScO₂ mean values and durations of bilateral rScO₂<55% were significant. The risk variables with an explanatory P<0.10 at the univariate step were tested with a multivariable analysis. The variables identified in the univariate analysis were tested for intercorrelation. There was a significant correlation between left rScO₂ mean value and right rScO₂ mean value and between left rScO₂<55% duration and right rScO₂<55% duration. We therefore included left rScO₂ mean value and left rScO₂<55% duration in the multivariable models because right side selective cerebral perfusion was mostly performed. After correction for other explanatory factors, left rScO₂<55% duration independently associated with the occurrence of impaired CA.
Variables	Odds Ratio	95% Confidence Interval	P-value
Univariate Analysis			
Age (y)	1.014	0.977-1.053	0.464
BMI (kg/m²)	1.046	0.931-1.176	0.449
Female	1.922	0.636-5.805	0.247
Hemoglobin (g/L)	0.989	0.971-1.006	0.207
Diabetes (Absent, present)	0.791	0.322-1.884	0.596
Hypertension (Absent, present)	0.853	0.347-2.101	0.730
CPB time (min)	1.001	0.995-1.006	0.752
Cross-clamp time (min)	1.005	0.997-1.013	0.228
ACP time (min)	1.038	0.997-1.081	0.073
PaCO₂ (mmHg)	1.015	0.972-1.060	0.500
Left rScO₂ baseline (%)	1.047	0.899-1.221	0.554
Right rScO₂ baseline (%)	0.918	0.812-1.039	0.178
Left rScO₂ mean (%)	1.133	1.001-1.282	0.047*
Right rScO₂ mean (%)	1.158	1.013-1.323	0.031*
Left rScO₂ minimum (%)	0.993	0.892-1.103	0.898
Right rScO₂ minimum (%)	1.066	0.955-1.189	0.255
Left rScO₂ < 55% duration (min)	1.020	1.005-1.035	0.007*
	1.019(1.005-1.033)		0.007
Right rScO₂ < 55% duration (min)	1.019	1.005-1.033	0.007*
Left rScO₂ < 50% duration (min)	0.991	0.957-1.027	0.628
Right rScO₂<50% duration (min)	1.002	0.990-1.014	0.770
Multivariable analysis			
Left rScO₂ < 55% duration (min)	1.016	1.002-1.031	0.029*
To explore the capacity of rScO$_2$ <55% duration in predicting impaired CA, a receiver operating characteristic curve was applied. The duration of intraoperative rScO$_2$ <55% had an area under the curve of 0.81, with a cutoff value at 40 min (sensitivity, 89.5%; specificity, 68.0%) (Figure 3).

Compared to patients with normal CA, those who developed impaired CA had higher frequencies of in-hospital mortality, postoperative delirium, AKI, mechanical ventilation > 24 h, and respiratory infection, and prolonged ICU stay (Table 4). There was no significant difference in hospital stay between the 2 cohort.

Table 4
Outcomes of patients after cardiopulmonary bypass with hypothermic circulatory arrest, stratified by impaired or normal cerebral autoregulation.

Outcome	Impaired autoregulation (n=46)	Normal autoregulation (n=108)	P value
Length of ICU stay (d)	7.3±7.2	4.7±3.5	0.004*
Hospitalization (d)	19.0±11.1	16.7±7.6	0.146
Re-operation, n (%)	5(10.9)	8 (7.4)	0.946
Ejection fraction < 50%, n (%)	13(28.3)	24(22.2)	0.422
Acute kidney injury, n (%)	17 (37.0)	13(12.1)	<0.001*
Delirium, n (%)	31 (67.3)	21(19.4)	<0.001*
Mechanical ventilation > 24 h, n (%)	32(69.6)	54(50.0)	0.037*
Lung infection, n (%)	26 (56.5)	39 (36.1)	0.019*
In-hospital death, n (%)	12(26.1)	9(8.3)	<0.001*

Values are n (%) or mean ± SD, unless otherwise noted.

Discussion

In our study, 29.9% of aortic arch surgical patients developed new-onset impaired CA after CPB with MHCA and with a worse outcomes. The occurrence of impaired CA in adult patients undergoing CPB with MHCA was consistent with children in previous reports [24, 25]. Impairment of CA was more likely to be associated with a prolonged low rScO$_2$ (rScO$_2$ <55%), in which the critical threshold of rScO$_2$ <55% duration was 40 min.

It is known that the mechanisms for impaired CA have not yet been elucidated. Notably, there was no association between age, body mass index, gender, diabetes, hypertension, preoperative hemoglobin level...
and impaired CA. During CPB particularly during HCA and selective cerebral perfusion, factors might influence CA include temperature, \(\text{PaO}_2 \), \(\text{PaCO}_2 \), perfusion pressure, flow rate, and hematocrit [24–27]. Temperature reduction exponentially decreases cerebral metabolism and preserves cellular stores of high-energy adenosine triphosphate [25]. Carbon dioxide is a potent cerebrovasodilator, and elevated \(\text{PaCO}_2 \) can obviously increase CBF volume in both awake and anesthetized states [26]. In our cohort, the patients with impaired or normal CA did not differ significantly in the above factors (Table 2). High \(\text{PaCO}_2 \) might be detrimental to preserve the function of CA. And this variable was independently associated with impaired CA [1]. In our study, the \(\text{PaCO}_2 \) was higher than normal range. However, there was no significant difference between patients with impaired and normal CA. The high \(\text{PaCO}_2 \) might be related to that we used pH-stat for blood gas management to ensure sufficient cerebral perfusion during MHCA. Although the selective cerebral perfusion time showed an obviously difference between impaired CA and normal patients in our study, this variable did not reach a significant association with impaired CA consistent with the result in a literature [20].

We found that impaired CA seems to associate with intraoperative low rScO\(_2\). The period of rScO\(_2\) < 55% in impaired CA patients was longer than in normal CA patients. In addition, intraoperative rScO\(_2\) less than 55% for more than 40 min was independently associated with the onset of impaired CA. This result was consistent with previous studies that the period of rScO\(_2\) less than 55% during aortic surgery was closely related to the occurrence of postoperative neurological events [20, 21]. These results indicated that by regulating cerebral perfusion blood flow rate and pressure alone might not avoid the events of rScO\(_2\) lower than 55%. Other methods also should be considered, including raising hematocrit to improve oxygen delivery, maintaining deep hypothermia during the circulatory arrest to suppress cerebral metabolism, and minimizing the duration of HCA. Whereas using α-stat management during moderate hypothermia produces better neurologic outcomes than observed with pH-stat management, it is unclear which strategy is superior in adults when MHCA is used [28]. However, given the nature of our study, we cannot confirm a causative relationship between the prolonged low rScO\(_2\) and impaired CA. In other words, improving cerebral oxygen delivery by the strategies above to reduce occurrence of impaired CA should be tested in randomized controlled trials.

Our results suggested that patients with impaired CA had a higher rate of postoperative delirium, consistent with previous studies in coronary artery bypass grafting or valve surgery under CPB [29, 30]. Patients with impaired CA were also at increased risks of in-hospital mortality, AKI, mechanical ventilation > 24 h, respiratory infection, and length of ICU stay. Like the present study, other work reported that impaired CA was associated with longer mechanical ventilation and hospital stay [29]. The onsets of AKI, respiratory infection, and postoperative death were affected by many factors, including the cardiac function, bleeding, and the duration of mechanical ventilation. Although the events of low cardiac output and reoperation due to bleeding showed no significant difference between patients with impaired CA and those with normal CA, the causal relationship between impaired CA and postoperative death, AKI and respiratory infection was uncertain from our study which merits prospective studies. Our findings might indicate that impaired CA was one of the manifestations of systemic organ injury in patients who
underwent CPB with MHCA. These observations suggested the need to comprehensively monitor patients who undergo CPB and MHCA to ensure sufficient oxygen delivery to key organs. In particular, patients with impaired CA may require early interventions before postoperative complications onset, such as increasing systemic oxygen delivery, providing renal replacement therapy, and/or giving mild hypothermia therapy.

Our study presents several limitations. First, we were able to enroll only 158 cases because of the relatively small number of total aortic arch replacement surgeries for acute type A aortic dissection at our institution. Second, COx >0.3 was tested in the animal study as a threshold of impaired CA. Thus, perspective studies were ongoing to explore an absolute value or a certain percentage increase of COx as a measurement tool for impaired CA in adult patients. Third, because rScO$_2$ monitoring was not routinely performed after surgery in our center, we could not further calculate postoperative COx to track the duration of impaired CA. Fourth, not all patients received a rigorous assessment by a neurologist or psychiatrist to identify the postoperative neurological complications. This may lead to an underestimation of the occurrence of postoperative neurological complications. In addition, only the temporary rather than permanent neurological complications were evaluated. Fifth, we did not analyze the potential impact of vasoconstrictors or inotropics on CA because the accuracy of the dosage and usage time could not be ensured. Finally, there is no control group without MHCA in our study. But the occurrence of new-onset impaired CA in patients who underwent CPB and HCA was higher than those who underwent CPB alone in literature. This might reveal that CPB with MHCA increased the risk of new-onset impaired CA. Large prospective studies are needed to understand more about the association between COx value and changes of CA over time during all parts of the aortic arch surgery, and the association between COx and patient outcomes.

Conclusions

Our single-site retrospective study showed that prolonged low rScO$_2$ (rScO$_2$ <55%) during aortic arch surgery was closely related to onset of impaired CA. Impaired CA might be associated with the increased rates of postoperative complications and in-hospital mortality.

Abbreviations

CA: cerebral autoregulation, CBV: cerebral blood volume, CPB: cardiopulmonary bypass, COx: cerebral oximetry index, HCA: hypothermic circulatory arrest, MHCA: moderate hypothermic circulatory arrest, rScO$_2$: regional cerebral oxygen saturation, MAP: mean blood pressure, Mx: mean velocity index, TCD: transcranial Doppler, ECG: electrocardiography, SpO$_2$: pulse oxygen saturation, EtCO$_2$: end-tidal carbon dioxide, ICU: intensive care unit, AKI: acute kidney injury, KDIGO: Kidney Disease Improving Global Outcomes, EF: ejection fraction, SD: standard deviation, PaCO$_2$: carbon dioxide partial pressure, PaO$_2$: arterial oxygen partial pressure, BMI: body mass index, ACEI: angiotensin-converting enzyme inhibitor,
Declarations

Ethics approval and consent to participate: This study was approved by Ethics Committee of West China Hospital, Sichuan University (protocol number 2017342). Written informed consent was waived because of retrospective and observational study. All procedures performed in studies involving human participants were in accordance with the Helsinki declaration.

Consent for publication: Not applicable.

Availability of data and materials: The datasets used and analysed during this study are available from the corresponding author on reasonable request.

Competing interests: The authors declare that they have no competing interests.

Funding: This research was funded by a grant from the National Natural Science Foundation of China (grant no. 81971772)

Author’s contributions: LP, and WW have given substantial contributions to the conception or the design of the manuscript, DG, YHS and JPY to acquisition, analysis and interpretation of the data. All authors participated to draft the manuscript, LP and WW revised it critically. All authors read and approved the manuscript.

Acknowledgements: The authors acknowledge Suzhou Engine Bio-medical Electronics for providing technical support in this study.

References

1. Ono M, Joshi B, Brady K, Easley RB, Zheng Y, Brown C, Baumgartner W, Hogue CW. Risks for impaired cerebral autoregulation during cardiopulmonary bypass and postoperative stroke. Br J Anaesth 2012; 109:391-8.

2. Joshi B, Brady K, Lee J, Easley B, Panigrahi R, Smielewski P, Czosnyka M, Hogue CW Jr. Impaired autoregulation of cerebral blood flow during rewarming from hypothermic cardiopulmonary bypass and its potential association with stroke. Anesth Analg 2010; 110:321-8

3. Zheng F, Sheinberg R, Yee MS, Ono M, Zheng Y, Hogue W. Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review. Anesth Analg 2013; 116:663-76
4. Neri E, Sassi C, Barabesi L, Massetti M, Pula G, Buklas D, Tassi R, Giomarelli P. Cerebral autoregulation after hypothermic circulatory arrest in operation on the aortic arch. Ann Thorac Surg 2004; 77:72-9

5. Ono M, Brown C, Lee JK, Gottesman RF, Kraut M, Black J, Shah A, Cameron DE, Baumgartner W, Hogue CW. Cerebral blood flow autoregulation is preserved after hypothermic circulatory arrest. Ann Thorac Surg 2013; 96:2045

6. Vretzakis G, Georgopoulou S, Stamoulis K, Stamatiou G, Tsakiridis K, Zarogoulidis P, Katsikogianis N, Kougioumtzi L, Machairiotis N, Tsiourda T, Mpakas A, Belevlesis T, Koletas A, Siminelakis SN, Zarogoulidis K. Cerebral oximetry in cardiac anesthesia. J Thorac Dis 2014; 6(Suppl 1): S60-9

7. Wang Y, Li L, Wang T, Zhao L, Feng H, Wang Q, Fan L, Feng X, Xiao W, Feng K. The Efficacy of Near-Infrared Spectroscopy Monitoring in Carotid Endarterectomy: A Prospective, Sing-Center, Observational Study. Cell Transplant 2019; 28:170-5

8. Shchanitsyn IN, Larin IV, Bakharev RM, Lukin OY. Role of cerebral oximetry in prediction of hyperperfusion syndrome after carotid endarterectomy. Angiol Sosud Khir 2018; 24:19-25

9. Oh CS, Sa M, Park HJ, Piao L, Oh KS, Kim SH. Effects of remote ischemic preconditioning on regional cerebral oxygen saturation in patients in the beach chair position during shoulder surgery: A double-blind randomized controlled trial. J Clin Anesth 2020; 61:109661

10. Subramanian B, Nyman C, Fritock M, Klinger RY, Sniecinski R, Roman P, Huffmyer J, Parish M, Yenokyan G, Hogue CW. A Multicenter Pilot Study Assessing Regional Cerebral Oxygen Desaturation Frequency During Cardiopulmonary Bypass and Responsiveness to an Intervention Algorithm. Anesth Analg 2016; 122:1786-93

11. Rubio A, Hakami L, Mvnch F, Tandler R, Harig F, Weyand M. Noninvasive control of adequate cerebral oxygenation during low-flow antegrade selective cerebral perfusion on adults and infants in the aortic arch surgery. J Card Surg 2008; 23:474-9

12. Ferradal SL, Yuki K, Vyas R, Ha CG, Yi F, Stopp C, Wypij D, Cheng HH, Newburger JW, Kaza AK, Franceschini MA, Kussman BD, Grant PE. Non-invasive Assessment of Cerebral Blood Flow and Oxygen Metabolism in Neonates during Hypothermic Cardiopulmonary Bypass: Feasibility and Clinical Implications. Sci Rep 2017; 7:44117

13. Joshi B, Ono M, Brown C, Brady K, Easley RB, Yenokyan G, Gottesman RF, Hogue CW. Predicting the limits of cerebral autoregulation during cardiopulmonary bypass. Anesth Analg 2012; 114:503-10

14. Brady K, Joshi B, Zweifel C, Smielewski P, Czosnyka M, Easley RB, Hogue CW Jr. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke 2010; 41:1951-6
15. Rivera-Lara L, Geocadin R, Zorrilla-Vaca A, Healy R, Radzik BR, Palmisano C, Mirski M, Ziai WC, Hogue C. Validation of near-infrared spectroscopy for monitoring cerebral autoregulation in comatose patients. Neurocrit Care 2017; 27:362-9

16. Brady K, Lee J, Kibler K, Smielewski P, Czosnyka M, Easley RB, Koehler RC, Shaffner DH. Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke 2007; 38:2818-25

17. Ono M, Zheng Y, Joshi B, Sigl JC, Hogue CW. Validation of a stand-alone near-infrared spectroscopy system for monitoring cerebral autoregulation during cardiac surgery. Anesth Analg 2013; 116:198-204

18. Brady KM, Mytar JO, Lee JK, Cameron DE, Vricella LA, Thompson WR, Hogue CW, Easley RB. Monitoring cerebral blood flow pressure autoregulation in pediatric patients during cardiac surgery. Stroke 2010; 41:1957-62

19. Blaine Easley R, Kibler KK, Brady KM, Joshi B, Ono M, Brown C, Hogue CW. Continuous cerebrovascular reactivity monitoring and autoregulation monitoring identify similar lower limits of autoregulation in patients undergoing cardiopulmonary bypass. Neurol Res 2013; 35:344-54

20. Orihashi K, Sueda T, Okada K, Lmai K. Near-infrared spectroscopy for monitoring cerebral ischemia during selective cerebral perfusion. Eur J Cardiothorac Surg 2004; 26:907-11

21. Harrer M, Waldenberger FR, Weiss G, Folkmann S, Gorlitzer M, Moidl R, Grabenwoeger M. Aortic arch surgery using bilateral antegrade selective cerebral perfusion in combination with near-infrared spectroscopy. Eur J Cardiothorac Surg 2010; 38:561-7

22. Rodrigues FB, Bruetto RG, Torres US, Otaviano AP, Zanetta DM, Burdmann EA. Incidence and mortality of acute kidney injury after myocardial infarction: a comparison between KDIGO and RIFLE criteria. PLoS One 2013; 8: e69998

23. Li XF, Jiang D, Jiang YL, Yu H, Zhang MQ, Jiang JL, He LL, Yu H. Comparison of low and high inspiratory oxygen fraction added to lung protective ventilation on postoperative pulmonary complications after abdominal surgery: A randomized controlled trial. J Clin Anesth 2020; 67:110009

24. Greeley WJ, Kern FH, Meliones JN, Ungerleider RM. Effect of deep hypothermia and circulatory arrest on cerebral blood flow and metabolism. Ann Thorac Surg 1993; 56:1464-6

25. Greeley WJ, Kern FH, Ungerleider RM, Boyd JL 3rd, Quill T, Smith LR, Baldwin B, Reves JG. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children. J Thorac Cardiovasc Surg 1991; 101:783-94

26. Schober A, Feiner JR, Bickler PE, Rollins MD. Effects of Changes in Arterial Carbon Dioxide and Oxygen Partial Pressures on Cerebral Oximeter Performance. Aesthesiology 2018; 128:97-108
27. Meng L, Hou W, Chui J, Han R, Gelb AW. Cardiac Output and Cerebral Blood Flow: The Integrated Regulation of Brain Perfusion in Adults Humans. Anesthesiology 2015; 123:1198-208

28. Shann KG, Likosky DS, Murkin JM, Baker RA, Baribeau YR, DeFoe GR, Dickinson TA, Gardner TJ, Grocott HP, O'Connor GT, Rosinski DJ, Sellke FW, Willcox TW. An evidence-based review of the practice of cardiopulmonary bypass in adults: A focus on neurologic injury, glycemic control, hemodilution, and the inflammatory response. J Thorac Cardiovasc Surg 2006; 132:283-90

29. Ono M, Brady K, Easley RB, Brown C, Kraut M, Gottesman RF, Hougue CW Jr. Duration and magnitude of blood pressure below cerebral autoregulation threshold during cardiopulmonary bypass is associated with major morbidity and operative mortality. J Thorac Cardiovasc Surg 2014; 147:483-9

30. Hori D, Brown C, Ono M, Rappold T, Sieber F, Gottschalk A, Neufeld KJ, Gottesman R, Adachi H, Hogue CW. Arterial pressure above the upper cerebral autoregulation limit during cardiopulmonary bypass is associated with postoperative delirium. Br J Anaesth 2014; 113:1009-17

Figures

![Figure 1](image)

Figure 1

Examples of regional cerebral oxygen saturation ($rScO_2$), mean arterial blood pressure (MAP) and cerebral oximetry index (COx) recording in a patient with normal cerebral autoregulation (CA) before cardiopulmonary bypass (CPB) with hypothermic circulatory arrest (A) but became impaired after the
procedures (B). Graphs in the top row shows MAP, rScO₂ of left brain (L- rScO₂) and right brain (R-rScO₂) from pre-induction of anesthesia until the end of surgery. Graphs in the middle graph show COx values for left side of brain, and graphs in the bottom row show COx for the right side of brain.

Figure 2

Flow chart of patient selection. CPB, cardiopulmonary bypass; HCA, hypothermic circulatory arrest; CA, cerebral autoregulation; NIRS, near-infrared spectroscopy
Figure 3

Receiver operating characteristic curve for the duration of low rScO₂ (rScO₂ <55%) identified as independently associated with impaired cerebral autoregulation. AUC, area under the curve; CI, confidence interval.