On Development of Efficient Data Acquisition Systems and Parameter Extraction Technique for DFB Lasers

Dao Thanh Hai¹, Le Anh Ngoc², Ngoc-Cham Vu², and Nguyen Quoc Cuong³

¹ Posts and Telecommunications Institute of Technology, Hanoi, Vietnam
² Electric Power University, Hanoi, Vietnam
³ Institute of Science and Technology - Ministry of Public Security

haidt102@gmail.com, anhngoc@epu.edu.vn, chamvn@epu.edu.vn, cuongnqth@gmail.com

Abstract. Distributed Feedback Laser plays a key role as a light source component in optical fiber communication systems ranging from metro, long-haul to submarine one thanks to its competitive features of superior narrow spectral width and wavelength cohesion. Characterizing such lasers via obtaining their electrical and spectral data and extracting their internal parameters therefore remains a critical task in designing and troubleshooting optical fiber systems. This paper presents first an agile framework for a rapid collection of laser data via automatic measurement and second an efficient approach for extracting laser internal parameters.

Keywords: Optical fiber communications · DFB lasers · Data Acquisition · Labview · Rate Equation · Parameter Extraction

1 Introduction

Internet has become clearly the largest engineered system made by humankind with millions of end devices, telecommunication links, switches and routers connecting to each others and billions of users have been on Internet via different means [1], [2], [3], [4], [5]. One one hand, such exponential growth of Internet users is driven by the rise of non-conventional applications including Internet of (every-) things (IoTs), machine-to-machine connections (M2M). On the other hand, more devices connecting to the Internet implies that there will be a severe impact on Internet traffic. Indeed, globally, Internet traffic will grow 3.7-fold from 2017 to 2022, a compound annual growth rate of 30% and in parallel, the significance advances in telecommunication infrastructure, including access, metro and backbone networks will be expected. It has to be noted that several billion kilometers of optical fiber have been installed around the globe today, constituting the major segment of Internet infrastructure [6], [7], [8], [9]. In essence, it is important to recognize that for every bit of information we send or receive over Internet today, the major part of its journey in the form of photon traversing via global optical networks infrastructure [10], [11], [12], [13], [14], [15].

Laser is a special device which is capable of emitting light through the optical amplification process relied on a physical phenomenon, called, stimulated emission of electromagnetic radiation. For a laser to be operational, two conditions have to be available, that is, the cavity and a gain medium in that cavity and the type of laser is indeed determined by the type of gain medium. Some of the lasers have been widely used in practice for various purposes including Fabry-Perot (FP) lasers, distributed feedback (DFB) lasers, external cavity lasers (ECLs) [16]. In this paper, we focus on DFB laser as this is the most widely used one for high-speed optical networks and its development.
is indeed closely tied to the advances in both speed and reliability of the next-generation optical fiber systems. By controlling the period of the Bragg grating, the center peak wavelength tunability of DFB lasers could be realized and such important property is critical in telecommunication systems. In practice, such tunability is controlled by adjusting the device temperature and DFB laser can therefore work smoothly over a whole C-band in optical systems [17].

This paper reports our work on developing an efficient data acquisition system for automatic measuring of key physical properties of DFB lasers. Such system is designed and programmed in Labview as described in Sect. 2. In processing the collected data to characterize laser as detailed in Sect. 3, we develop circuit models to extract physical parameters. Finally, the paper is concluded with some remarks to summarize and open up possibly follow-up works.

2 Labview Programs for Automatic Data Acquisition System

2.1 \(P, V, I_{PD} \) Acquisition

This Labview program enables users to observe the three important dependencies, namely, \(P - I \), \(V - I \) and \(I_{PD} - I \) at different range of temperature and current. The user can either opt for data collection and visualization at a specific point—designated input of laser temperature and current—or in a batch mode in an automatic manner over several data points. Besides, our Labview program allows real-time visualization of such measurement in three diagrams as shown in Fig. 1. Moreover, the data file could be exported to predefined directory according to structure in Tab. 1.

![Fig. 1. VI to collect \(P, V, I_{PD} \) over a range of \(T^0 \) and \(I \)](image)

2.2 Spectrum Acquisition

This program, shown in Fig. 2, is developed to offer automatic feature on spectrum data collection. In addition to the (almost) real-time visualization of measured data together with the display of key
Table 1. Data Description for first VI

Output Files Description
File Name
PI_Temperature_Start Current_Stop Current_Current Step.txt
VI_Temperature_Start Current_Stop Current_Current Step.txt
IPDI_Temperature_Start Current_Stop Current_Current Step.txt

Data Organization
PI: 1st column is Power[W]; 2nd column is Current[mA]
VI: 1st column is Voltage[V]; 2nd column is Current[mA]
IPDI: 1st column is Photocurrent[µA]; 2nd column is Current[mA]

measured information including peak wavelength and SMSR, our program allows the exportation of all raw measurement data. Table 2 provides descriptions of how data is collected and stored in this Labview program.

Fig. 2. VI to collect spectrum over a range of T^o and I

Table 2. Data Description for second VI

Output Files Description
File Name
OSA_Temperature_Current.txt
peaklambda_start temp_stop temp_start current_stop current.txt
SMSR_start temp_stop temp_start current_stop current.txt

Data Organization
OSA: 1st column is λ[nm]; 2nd column is Power[dBm]
peaklambda: Columns and rows correspond to T^o, I; the unit is [nm].
SMSR: Columns and rows correspond to T^o, I; the unit is [dB]
3 Data Processing

Electrical and Spectral Data of our laser (DFB) are processed in order first to characterize laser and second to extract internal parameters. The work here involves finding threshold current, and through that evaluating the characteristic temperature T_0, investigating the dependence of output characteristics (P and λ_p) on input parameters (T_0 and I), as well as estimating the coupling coefficient.

There are number of ways to extract threshold current from P-I characteristic. In [18], [17], the methods as well as their pros and cons are discussed in-depth. The approach based on looking for maximum of second derivative of P over I is reported here thanks to its superior tolerance to non-linearities before and after threshold knee. Illustration for this method at $T = 25^\circ C$ is shown in Fig. 3. The characteristic temperature is subsequently derived based on the model suggested in [17], that is $I_{th} = I_0e^{T/T_0}$. The entire results are shown in Fig. 3 and Fig. 4.

![Fig. 3. Illustration of Threshold Calculation](image1)

![Fig. 4. T_0 evaluation](image2)

Peak Wavelength and Emitted power are both influenced and/or shifted by whatever change in drive current and temperature. Figure. 5 serves as graphical map to observe this variation. In certain sense, that map may assist users in adjusting input parameters to reach desired outputs.

Coupling Coefficient is important information for optimization of DFB laser as well as for system design purposes and therefore finding ways for effective estimation is still currently topic of interest. In general, κ is different at forward (κ_{RS}) and backward (κ_{SR}) direction. Its mathematical expression is: $\kappa = \kappa_i + \kappa_g e^{\pm \theta}$ (see [17]).

Our approach to evaluate κ is based on the method suggested in [17], that is to use numerical fitting of theoretical sub-threshold spectrum into measured one by least-square algorithm. For simplicity, we assume our laser belong to purely index-coupled one (see Fig. 6), which is commonly the case. Under this assumption, only refractive index varies along the longitudinal direction and hence we have $\kappa_{RS} = \kappa_{SR} = \kappa_i = \kappa$. The outcome of the work gives us $\kappa_i L = 0.66$.

4 Conclusions

To sum up, two main contributions have been reported in this paper, that is to build tools supporting automatic data collection and to employ parameters extraction techniques for laser characterization. Our tools proposed in this paper allows an efficient and agile procedure with low-complexity to rapidly measure both electrical and spectral data of DFB lasers, which are particularly helpful in the realm of laser measurements and laser modeling.

Acknowledgement: This work is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the grant number 102.02-2018.09
References

1. Dao TH. On optimal designs of transparent WDM networks with 1+1 protection leveraged by all-optical XOR network coding schemes. Optical Fiber Technology 2018; 40:93 – 100, https://doi.org/10.1016/j.yofte.2017.11.009.

2. Hai DT. An optimal design framework for 1+1 routing and network coding assignment problem in WDM optical networks. IEEE Access 2017; 5:22 291–22 298, https://doi.org/10.1109/ACCESS.2017.2761809.

3. Hai DT. A bi-objective integer linear programming model for the routing and network coding assignment problem in WDM optical networks with dedicated protection. Computer Communications 2019; 133:51 – 58, https://doi.org/10.1016/j.comcom.2018.08.006.

4. Hai DT. On routing, spectrum and network coding assignment problem for transparent flex-grid optical networks with dedicated protection. Computer Communications 2019; URL http://www.sciencedirect.com/science/article/pii/S0140366418306546.

5. Hai DT. On solving the 1 + 1 routing, wavelength and network coding assignment problem with a bi-objective integer linear programming model. Telecommunication Systems Jun 2019; 71(2):155–165, https://doi.org/10.1007/s11235-018-0474-9.

6. Hai DT, Minh HT, Chau LH. QoS-aware protection in elastic optical networks with distance-adaptive and reconfigurable modulation formats. Optical Fiber Technology 2021; 61:102 364, https://doi.org/10.1016/j.yofte.2020.102364.

7. Hai DT, Morvan M, Gravey P. Combining heuristic and exact approaches for solving the routing and spectrum assignment problem. IET Optoelectronics 2018; 12(2):65–72, https://doi.org/10.1049/iet-opt.2017.0013.

8. Dao H, Morvan M, Gravey P. An efficient network-side path protection scheme in OFDM-based elastic optical networks. International Journal of Communication Systems ; 31(1):e3410. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.3410 e3410 dac.3410.

9. Hai DT. On the spectrum-efficiency of QoS-aware protection in elastic optical networks. Optik 2020; 202:163 563, https://doi.org/10.1016/j.ijleo.2019.163563 URL http://www.sciencedirect.com/science/article/pii/S0030402619314615.

10. Hai DT, Hoang KM. An efficient genetic algorithm approach for solving routing and spectrum assignment problem. 2017 International Conference on Recent Advances in Signal Processing, Telecommunications Computing (SigTelCom), 2017; 187–192, https://doi.org/10.1109/SIGTELCOM.2017.7849820.

11. Hai DT, Hoang KM. On the efficient use of multi-line rate transponder for shared protection in WDM network. 2017 International Conference on Recent Advances in Signal Processing, Telecommunications Computing (SigTelCom), 2017; 181–186.

12. Dao Thanh H, Morvan M, Gravey P. On the usage of flexible transponder in survivable transparent flex-grid optical network. 2014 9th International Symposium on Communication Systems, Networks Digital Sign (CSNDSP), 2014; 1123–1127.

13. Hai D, Morvan M, Gravey P. On the routing and spectrum assignment with multiple objectives. Advanced Photonics for Communications, Optical Society of America, 2014; JT3A.12.

14. Gravey P, Hai D, Morvan M. On the advantages of co-OFDM transponder in network-side protection. Advanced Photonics for Communications, Optical Society of America, 2014; PW1B.3. URL http://www.osapublishing.org/abstract.cfm?URI=PS-2014-PW1B.3.

15. Hai DT. A novel adaptive operation of multi-line rate transponder for dedicated protection in WDM network. 2017 Seventh International Conference on Information Science and Technology (ICIST), 2017; 69–74, https://doi.org/10.1109/ICIST.2017.7926494.

16. Lee S, Willner A. Optical communication systems — basic concepts. Encyclopedia of Modern Optics, Guenther RD (ed.). Elsevier: Oxford, 2005; 376–387.

17. A Phenomenological Approach to Diode Lasers, chap. Two. John Wiley & Sons, Ltd, 2012; 45–90.

18. Slight TJ, Watson S, Viola S, Yadav A, Stanczyk S, Grzanka S, Gwyr S, Rafailov E, Perlin P, Najda SP, et al.. Recent progress in distributed feedback InGaN/GaN laser diodes. Novel In-Plane Semiconductor Lasers XVIII, vol. 10939, Belyanin AA, Snowton PM (eds.), International Society for Optics and Photonics, SPIE, 2019; 51 – 56.