The nutritional content of some fruits as feeding sources of Sumatran orangutans

O Onrizal¹ and N L Auliah¹

¹ Faculty of Forestry, Universitas Sumatera Utara, Medan, Indonesia

E-mail: onrizal@usu.ac.id

Abstract. Orangutans are classified as frugivore that most of their feeding sources come from fruits. Bukit Lawang forest (BLF) as part of Gunung Leuser National Park (GLNP) is known as the first center for orangutan rehabilitation (COR) established in 1973 and then closed in 1991. To date, the BLF is the orangutan viewing center (OVC). This study aimed to assess the nutritional content of some fruits feed by Sumatran orangutan (SOU) in BLF and to determine the energy adequacy from fruits eaten by SOU. The nutritional content was analyzed by proximate method. There were nine fruits from different tree species as SOU food sources analyzed in this study. According to the nutritional content, the best fruit for orangutan feed was P. lateriflora which the highest content of the fruit was water content (62.13%), followed by carbohydrate (23.81%), protein (13.72%), ash (0.21%) and fat (0.10%). This study indicated that the nutritional requirements of SOU at the BLF were categorized as sufficient. Therefore, no additional feed is needed for SOU in the area, and feeding time session can be eliminated in the OVC Bukit Lawang of GLNP.

1. Introduction

Orangutans are only great ape in Asia. Globally, Sumatran orangutan (Pongo abelii) (SOU) is categorized as critically endangered species [1], and the distributions are limited to the northern tip of Sumatra with declining the population from time to time. The main drive of SOU extinction is forest conversion, degradation and fragmentation [2–4] where the Sumatran forest as the habitat of SOU has the highest loss area compared to the other islands in Indonesia [5]. It is estimated that the declining of SOU population will continue as forests within the distribution range remain under great threat [4].

Orangutans generally live semi-solitary, diurnal and mostly arboreal [1] in forests that produce fruit as their main source of food [1, 6]. SOUs are frugivore; however, they also eat a small of other tree/plant part, such as bud and mature leaves, barks, flowers, piths and seeds as well as insects [6, 7] and sometimes eat the meat of slow lorises (Nycticebus coucang) [8–10]. The factor that causes the habit of orangutans eating is the availability of food sources. The feed is a primary source that has a strong influence on individual primates, groups, populations, and various types in ways that vary in behavior [6, 7, 11]. Therefore, diet greatly affects the biological conditions and regimens of SOU.

Bukit Lawang Forest (BLF) of Gunung Leuser National Park (GLNP) is the first center for orangutan rehabilitation (COR Bukit Lawang) in Indonesia established in 1973. Subsequently, the COR Bukit Lawang was officially closed by the Indonesian government on 23 April 1991 due to change of visitor orientation. After 1995, the BLF was functioned as orangutan viewing center (OVC Bukit Lawang) with twice feeding times a day. Most of the SOU population in BLF is habituated, and recovery to natural conditions will be allegedly difficult to achieve if the feed is allowed to continue. On the other hand, there is a lack of data related to the adequacy of feed from natural food sources, especially fruits as food.
sources of SOU in BLF. Therefore, this research aimed to assess the nutritional content of some fruits eaten by SOU in BLF and to determine the energy adequacy from fruits eaten by SOU.

2. Materials and methods

The survey for the SOU feed source diversity was carried out in BLF of GNLP from August 2017 to April 2018 using observation method. Fruits eaten by SOU were collected and then sent to the Laboratory of Food Technology, Faculty of Agriculture, Universitas Sumatera Utara to calculate the nutritional composition [7] using proximate analysis method based on Indonesian National Standard (SNI 01-2891-1992) [12], such as water content, carbohydrate, protein, fat, and ash. The caloric value of each nutritional (carbohydrate, protein, and fat) content was converted based on Drummond & Brefere [13]. Total calories of each fruit were calculated by summing up the calorie value of carbohydrates, proteins, and fats from each fruit.

3. Results and discussions

3.1. Food sources diversity

In total, 150 tree species were recorded as SOU food sources during the survey period which about 84% of them (126 tree species) provided fruits eaten by SOU (Appendix A). The remaining tree species provided other parts of trees, such as leaves, buds, barks, and flowers either both each part or together for SOU foods. This result supports the previous studies on orangutan diet [6, 7, 9, 11, 14–15], although it is sometimes different in terms of the composition of the part of the tree eaten by an orangutan.

Because this research period was carried out on a shortage of fruits, only nine fruits from different tree species had sufficient samples for analysis of nutrient content. The species were Calophyllum inophyllum, Garcinia celebica, Ficus fistulosa, Buchanania arborescens, Gardenia tubifera, Leea indica, Garcinia microcarpa, Diospyros truncata and Polyalthia lateriflora (figure 1). The other fruit trees (115 tree species) did not have enough fruit samples for analysis.

3.2. Nutritional content of fruits

Table 1 shows the nutritional composition of some fruits eaten by SOU in BLF of GLNP. The highest composition of the fruits was water content varied from 62.13% to 72.74%, followed by carbohydrate content (13.58%-23.81%), protein (9.39-13.77%) and fat (0.01-8.43%). Ash had the lowest content of the fruits, i.e., between 0.01%-0.22%.

According to table 1, the fruit of Gardenia tubifera (Rubiaceae) was recorded as the highest water content (72.74%), followed by Garcinia microcarpa (Clusiaceae) (72.27%) and Garcinia celebica (Clusiaceae) (70.20%). On the other hand, the lowest content of water was Polyalthia lateriflora (Annonaceae). Because the fruit water content is more than 60%, it is appropriate to meet the water needs of the SOU [16]. The water content in the feed ingredients determines acceptability, freshness, and greatly affects the shelf life, because water can affect physical properties or the presence of chemical changes such as examples. Subsequently, the water content can affect the texture, appearance, and taste of feed ingredients [17].

The highest content of carbohydrate was Diospyros truncata (Ebenaceae) (23.81%), followed by Diospyros truncata (Ebenaceae) (22.84) and Buchanania arborescens (Anacardiaceae) (22.26%). On the other hand, the lowest content of carbohydrate was Gardenia tubifera (13.58%). It is indicated that the content of carbohydrates in each feed has fulfilled the carbohydrate nutrition of SOU [16]. Carbohydrates are the main energy sources for the animal including SOU.

Diospyros truncata was recorded as the highest content of protein (13.77%), followed by Polyalthia lateriflora (13.71%) and Buchanania arborescens (12.23%). Then, the lowest content of protein was Calophyllum inophyllum (9.39%) and Gardenia tubifera (9.40%). Based on the National Resource Council [16], orangutans need 6.1% to 26.0% protein in each gram of feed. Protein has an important role in nutritional needs after carbohydrates. If energy consumption is not sufficient, the protein from feed consumption will be processed and used to meet energy needs at the expense of the formation and repair of body tissues.
Figure 1. Fruits of SOU food sources analyzed for nutritional contents: (a) Calophyllum inophyllum, (b) Garcinia celebica, (c) Ficus fistulosa, (d) Buchanania arborescens, (e) Gardenia tubifera, (f) Leea indica, (g) Garcinia microcarpa, (h) Diospyros truncata, (i) Polyalthia lateriflora.

Table 1. Nutritional composition of fruits of some tree species eaten by Sumatran orangutan.

No	Species	Water (%)	Carbohydrate (%)	Protein (%)	Fat (%)	Ash (%)
1	Buchanania arborescens	65.06	22.26	12.23	0.64	0.11
2	Calophyllum inophyllum	64.40	17.56	9.39	8.43	0.21
3	Diospyros truncata	63.27	22.84	13.77	0.01	0.09
4	Ficus fistulosa	64.98	16.53	10.26	1.79	0.01
5	Garcinia celebica	70.20	19.61	9.58	0.56	0.15
6	Garcinia microcarpa	70.27	18.15	9.93	1.60	0.02
7	Gardenia tubifera	72.74	13.58	9.40	4.05	0.22
8	Leea indica	69.62	19.83	9.58	0.95	0.01
9	Polyalthia lateriflora	62.13	23.81	13.72	0.10	0.21

The highest fat content was found in the Calophyllum inophyllum fruit of 8.43% and the lowest was in the Diospyros truncata fruit (0.01%). According to the National Resource Council [16], orangutans need 2.9% to 9.8% fat. The result showed that the fat content that meets the orangutan feed needs was found in Gardenia tubifera and Calophyllum inophyllum fruits. Fat in the body functions as a food reserve if carbohydrates is completely overhauled as energy. Besides, the function of fat is a suspension for vitamins A, D, E, and K which are useful for biological processes shocks to protect vital organs, and protect the body from outside temperatures that are less supportive [18].

The highest ash content was found in Gardenia tubifera fruit of 0.22%, and the lowest was in Leea indica fruit of 0.01%. In the body, minerals are only needed in small amounts. If they are consumed in large quantities, they can be toxic. Minerals function as the body's metabolism and facilitate digestion. In addition to maintaining the osmotic pressure of body fluids, maintaining muscle and nerve concentrations, and regulating the transport of nutrients in cells are very important. Besides, it serves to repair and grow tissue such as in teeth and bones, repair of hair, horns, nails, soft tissue and blood cells.

3.3. Caloric value of fruits

According to Drummond & Brefere [13], each 1 gram of carbohydrates, fats, and proteins will produce 4 kcal, 9 kcal, and 4 kcal of energy, respectively. Based on the conversion, the caloric values of fruits eaten by SOU at BLF of GLNP are shown in table 2.
Table 2. Calorie values produced by fruits eaten by Sumatran orangutan.

No	Species	Protein %	Carbohydrate %	Fat %	Total Calorie
1	*Buchanania arborescens*	12.23	110.13	22.26	358.71
2	*Calophyllum inophyllum*	9.39	84.59	17.56	448.66
3	*Diospyros truncata*	13.77	124.00	22.84	366.43
4	*Ficus fistulosa*	10.26	92.38	16.53	306.13
5	*Garcinia celebica*	9.58	86.27	19.61	303.96
6	*Garcinia microcarpa*	9.93	89.45	18.15	314.97
7	*Gardenia tubifera*	9.40	84.60	13.58	315.93
8	*Leea indica*	9.58	86.25	19.83	314.37
9	*Polyalthia lateriflora*	13.72	123.56	23.81	377.76

Based on table 2, the *Callophylum inophyllum* fruit has the highest calorific value of 448.66 cal, while the *Garcinia celebica* fruit has the lowest calorific value of 303.96 cal and *Ficus fistulosa* fruit has a calorific value of 306.13 cal. *Ficus fistulosa*, one of the trees that produce fig fruit is included in the key species which is the most important source of orangutan food that can be fruitful throughout the year. Fig fruit is not always selected by orangutans during the fruit mass season. However, orangutans choose fig fruits as a food source during the fruit shortage season.

When field research was conducted (from August 2017 to April 2018), fruit production was not abundant, so the availability of sources of feed ingredients from fruit was low. The fruit is the main source of food for orangutans, so fruit consumption is still high even though fruit production is declining. The preference of orangutans to plants fruiting is very high even though the amount is small. Fruits have high fat and carbohydrate content compared to other food categories, so orangutans choose fruit as the main food which is always eaten every month to meet energy needs [20]. In the other part of GNLP, namely Ketambe forest, GLNP, plant phenology data show that the highest fruit production occurs in July (dry season), while the lowest fruit production is in January (early dry season). The results are similar to Van Schaik [21], which shows the highest fruit production occurs between July and August, the highest leaf production occurs between December and February and the highest flower production occurs between February and April.

According to Knott [19], an average of total daily energy expenditure (TDEE) in wild orangutan is estimated for adult females to be 2300 kcal/d, including reproductive costs and 1850 kcal/d excluding reproductive costs, and 3250 kcal/d for flanged males. Therefore, to meet their needs, orangutans eat enough fruit. If the availability of fruit decreases in a season, as in this study period, the orangutan will combine it by eating other parts of the plant.

4. Conclusions and recommendations

BLF of GNLP has a rich diversity of SOU food sources both fruits and other part of trees/plants. Most of the nutritional content of fruits eaten by SOU is sufficient to support the daily activities of SOU. During the low session of fruit production, SOU combines fruits by eating other parts of plants/trees, such as young leaves, bud, flowers, and barks. This result indicated that the feeding time in the OVC Bukit Lawang of GLNP can be eliminated. This decision is expected that the cessation of this feeding can improve semi-wild SOU ability to possibly behave as wild orangutans.

Acknowledgments

Thank goes to USU that has supported this research through TALENTA research scheme of the Year 2017. GLNP office has given research permit to research in the national park areas.
5. Appendix

Appendix A. List of tree species as Sumatran orangutan food sources at the Bukit Lawang Forest of Gunung Leuser National Park, Indonesia.

No	Species	Family	Plant part eaten by SOU
1	Actinidia sp.	Actinidiaceae	fruit
2	Alangium javanicum	Alangiaceae	fruit
3	Buchanania arborescens	Anacardiaceae	fruit
4	Dracontomelon dao	Anacardiaceae	fruit
5	Mangifera foetida	Anacardiaceae	fruit
6	Mangifera quodrifida	Anacardiaceae	fruit
7	Cyathocalyx sumatranana	Annonaceae	fruit
8	Polyalthia lateriflora	Annonaceae	fruit
9	Polyalthia sumatranana	Annonaceae	fruit
10	Durio zibethinus	Bombacaceae	fruit
11	Canarium denticulatum	Burseraceae	fruit
12	Canarium indicum	Burseraceae	fruit
13	Canarium sp.	Burseraceae	fruit
14	Protium javanicum	Burseraceae	fruit
15	Calophyllum inophyllum	Cluciaceae	fruit
16	Calophyllum rigidum	Cluciaceae	fruit
17	Calophyllum sp.	Cluciaceae	fruit
18	Calophyllum sp. 2	Cluciaceae	fruit
19	Garcinia celebica	Clusiaceae	fruit
20	Garcinia dioica	Clusiaceae	fruit
21	Garcinia microcarpa	Clusiaceae	fruit
22	Dillenia	Dilleniaceae	fruit
23	Dillenia indica	Dilleniaceae	fruit
24	Dillenia reticulata	Dilleniaceae	bark, young leave
25	Dipterocarpus caudatus	Dipterocarpaceae	fruit
26	Dipterocarpus cornutus	Dipterocarpaceae	fruit
27	Dipterocarpus elongatus	Dipterocarpaceae	fruit
28	Dipterocarpus sp.	Dipterocarpaceae	fruit
29	Shorea ovalis	Dipterocarpaceae	young leave
30	Diospyros celebica	Ebenaceae	fruit
31	Diospyros sp.	Ebenaceae	fruit
32	Diospyros truncata	Ebenaceae	fruit
33	Antidesma bunius	Euphorbiaceae	fruit
34	Antidesma gahaesembilla	Euphorbiaceae	fruit
35	Antidesma sp.	Euphorbiaceae	fruit
36	Aporosa elliptifolia	Euphorbiaceae	young leave, fruit
37	Aporosa frutescens	Euphorbiaceae	young leave, fruit
38	Aporosa sp.	Euphorbiaceae	young leave, fruit
39	Baccaurea macrocarpa	Euphorbiaceae	fruit
40	Baccaurea sp.	Euphorbiaceae	fruit
41	Baccaurea stipulata	Euphorbiaceae	fruit
42	Baccaurea sumatranana	Euphorbiaceae	fruit
43	Croton argyratus	Euphorbiaceae	flower
44	Endospermum diadenum	Euphorbiaceae	fruit, young leave, bark
45	Macaranga bancana	Euphorbiaceae	fruit
46	Macaranga indica	Euphorbiaceae	bark
47	Macaranga punctulata	Euphorbiaceae	fruit
Appendix A. List of tree species as Sumatran orangutan food sources at the Bukit Lawang Forest of Gunung Leuser National Park, Indonesia.

No	Species	Family	Plant part eaten by SOU
48	*Macaranga gigantea*	Euphorbiaceae	fruit
49	*Mallotus peltatus*	Euphorbiaceae	fruit
50	*Psychopyxis arborea*	Euphorbiaceae	fruit
51	*Sesbania grandiflora*	Fabaceae	young leave, flower
52	*Cactanopsis tungurut*	Fagaceae	fruit, young leave, bark
53	*Castanopsis inermis*	Fagaceae	fruit
54	*Castanopsis sp.*	Fagaceae	Fruit
55	*Castanopsis sp. 1*	Fagaceae	fruit
56	*Castanopsis sp. 2*	Fagaceae	fruit
57	*Castanopsis sp. 3*	Fagaceae	fruit
58	*Castanopsis sp. 4*	Fagaceae	fruit
59	*Lithocarpus elegans*	Fagaceae	fruit
60	*Lithocarpus glochidium*	Fagaceae	fruit
61	*Lithocarpus gracilis*	Fagaceae	fruit
62	*Quercus icata*	Fagaceae	young leave, fruit
63	*Quercus sumatrana*	Fagaceae	young leave, fruit
64	*Quercus turbinata*	Fagaceae	young leave, fruit
65	*Callicarpa tomentosa*	Lamiaceae	young leave
66	*Actinodaphne angustifolia*	Lauraceae	young leave, fruit
67	*Actinodaphne glabra*	Lauraceae	young leave, fruit
68	*Actinodaphne glomerata*	Lauraceae	young leave, fruit
69	*Actinodaphne sp.*	Lauraceae	young leave
70	*Alseodaphne bancana*	Lauraceae	young leave
71	*Alseodaphne glabra*	Lauraceae	young leave
72	*Cinnamomun javanicum*	Lauraceae	flower
73	*Cryptocarya elliptifolia*	Lauraceae	fruit
74	*Lauraceae*	Lauraceae	young leave
75	*Litsea angulat*	Lauraceae	young leave
76	*Litsea castanea*	Lauraceae	young leave
77	*Litsea firma*	Lauraceae	leave
78	*Litsea lanceolata*	Lauraceae	leave
79	*Litsea sp.*	Lauraceae	leave
80	*Litsea tomentosa*	Lauraceae	leave
81	*Phoebe grandis*	Lauraceae	leave
82	*Phoebe lanceolata*	Lauraceae	young leave
83	*Plantochia sp.*	Lecythidaceae	flower
84	*Leea indica*	Lecaeceae	fruit
85	*Parkia javanica*	Leguminaceae	young leave, fruit
86	*Archidendron ellipticum*	Leguminosae	fruit
87	*Archidendron pauciflorum*	Leguminosae	fruit
88	*Magnolia lasia*	Mangnoliaceae	fruit
89	*Pternanda dumosa*	Melastomataceae	fruit
90	*Pternanda rostrata*	Melastomataceae	fruit
91	*Pternandra coerulescens*	Melastomataceae	fruit
92	*Aglaia argenta*	Meliaceae	young leave, fruit
93	*Aglaia elliptica*	Meliaceae	young leave, fruit
94	*Aglaia sp.*	Meliaceae	young leave
95	*Aglaia sp. 1*	Meliaceae	young leave
96	*Aglaia tomentosa*	Meliaceae	young leave, fruit
Appendix A. List of tree species as Sumatran orangutan food sources at the Bukit Lawang Forest of Gunung Leuser National Park, Indonesia.

No	Species	Family	Plant part eaten by SOU
97	Aglaia edulis	Meliaceae	young leave, fruit
98	Chisocheton patens	Meliaceae	young leave, fruit
99	Dysoxylum caulisforum	Meliaceae	fruit
100	Dysoxylum sp.	Meliaceae	fruit
101	Artocarpus dadah	Moraceae	fruit
102	Artocarpus elasticus	Moraceae	fruit
103	Artocarpus lanceifolia	Moraceae	fruit
104	Artocarpus nitidus	Moraceae	fruit
105	Ficus glomerata	Moraceae	fruit
106	Ficus religiosa	Moraceae	fruit
107	Ficus stupenda	Moraceae	fruit
108	Ficus sumatrana	Moraceae	fruit
109	Ficus fistulosa	Moraceae	fruit
110	Horsfieldia irya	Myristiceaece	fruit
111	Horsfieldia wallichii	Myristiceaece	fruit
112	Knema galeata	Myristiceaece	fruit
113	Knema latericia	Myristiceaece	fruit
114	Myristica iners	Myristiceaece	fruit
115	Ardisia tomentosa	Myrsinaceae	fruit
116	Eugenia sp.	Myrtaceae	young leave, fruit
117	Eugenia sp. l	Myrtaceae	young leave, fruit
118	Eugenia tetraptera	Myrtaceae	fruit
119	Rhodamnia cinerea	Myrtaceae	fruit
120	Syzygium claviflora	Myrtaceae	young leave, fruit
121	Syzygium cumini	Myrtaceae	young leave, fruit
122	Syzygium rostratum	Myrtaceae	young leave, fruit
123	Syzygium sp.	Myrtaceae	young leave, fruit
124	Syzygium triata	Myrtaceae	young leave, fruit
125	Podocarpus imbricatus	Podocarpaceae	fruit
126	Gardenia tubifera	Rubiaceae	fruit
127	Nauclea sp.	Rubiaceae	bark, fruit
128	Nauclea subdita	Rubiaceae	bark, fruit
129	Rubiaceae	Rubiaceae	fruit
130	Melicope glabra	Rutaceae	fruit, flower
131	Nephelium cuspidatum	Sapindaceae	fruit
132	Nephelium maingayi	Sapindaceae	fruit
133	Nephelium mutabile	Sapindaceae	fruit
134	Pometia pinnata	Sapindaceae	fruit
135	Palaquium gutta	Sapotaceae	fruit
136	Palaquium sp.	Sapotaceae	fruit
137	Palaquium sumatranum	Sapotaceae	fruit
138	Planchonella firma	Sapotaceae	young leave
139	Planchonella obovata	Sapotaceae	young leave
140	Smilax sp.	Smilaceae	fruit
141	Smilax sp. l	Smilaceae	fruit
142	Scaphium macropodum	Sterculiaecae	fruit
143	Sterculia coccinea	Sterculiaecae	bark, young leave, fruit
144	Sterculia foetida	Sterculiaecae	fruit
145	Sterculia rubiginosa	Sterculiaecae	fruit
Appendix A. List of tree species as Sumatran orangutan food sources at the Bukit Lawang Forest of Gunung Leuser National Park, Indonesia.

No	Species	Family	Plant part eaten by SOU
146	Sterculia sp.	Sterculiaceae	fruit
147	Styrax benzoin	Styraxaceae	fruit
148	Symlocos sp.	Symlocaceae	fruit
149	Microcos crassifolia	Tiliaceae	fruit
150	Rinorea macrocarpa	Violaceae	fruit

6. References

[1] Singleton I, Wich S A, Nowak M, Usher G, & Utami-Atmoko S S 2017 *Pongo abelii* (errata version published in 2018) The IUCN Red List of Threatened Species 2017

[2] Wich SA, Meijaard E, Marshall A J, Husson S, Ancrenaz M, Lacy R C, & Doughty, M 2008 *Oryx*, 42(3), 329-339

[3] Campbell-Smith G, Campbell-Smith M, Singleton I, & Linkie M 2011 *PLoS One*, 6(2), e17210

[4] Wich S A, Singleton I, Nowak M G, Atmoko SSU, Nisam G, Arif S M, & Gaveau D L 2016 *Science Advances*, 2(3)

[5] Margono B A, Potapov P V, Turubanova S, Stolle F, & Hansen M C 2014 *Nature Climate Change*, 4(8), 730

[6] Delgardo Jr, R A, & Van Schaik, C P 2000 *Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews*, 9(5), 201-218

[7] Harrison M E, Morrogh-Bernard H C, & Chivers D J 2010 *International Journal of Primatology*, 31(4), 585-607

[8] Utami S S, & Van Hooff J A 1997 *American Journal of Primatology*, 43(2), 159-165

[9] Morrogh-Bernard, H C, Husson, SJ, Knott, CD, Wich, SA, van Schaik, CP, van Noordwijk, MA, Lackman-Ancrenaz, I, Marshall, AJ, Kanamori, T, Kuze, N and bin Sakong R 2009 Orangutan activity budgets and diet *Orangutans: Geographic Variation in Behavioral Ecology and Conservation* (dd Wich, SA, Utami Atmoko, SS, Mitra Setia, T and van Schaik, CP (Oxford, UK: Oxford University Press) pp 119–134

[10] Hardus, M E, Lameira, A R, Zulfa, A, Atmoko, S S U, de Vries, H, & Wich, S A 2012 *International Journal of Primatology*, 33(2), 287-304

[11] Harrison M E, & Marshall A J 2011 *International Journal of Primatology*, 32(3), 531-565

[12] BSN 1992 *SNI 01-2891-1992* (Jakarta: Badan Standarasi Nasional)

[13] Drummond K E, & Brefere L M 2010 *Nutrition for foodservice and culinary professionals* (Chichester, UK: John Wiley and Sons).

[14] Onrizal. 2011. Potency of Sumateran Orangutan botanical food source as rehabilitation activity in west and east block of Batang Toru forest, North Sumatera (in Indonesian) [Report] (Medan: TFCA Sumatra Programme).

[15] Onrizal & Mansor M 2014. *Tree selection for rehabilitation of Sumatran orangutan habitat in Batangtoru, Indonesia*. Abstract book of the 2014 AAAS Annual Meeting: Meeting Global Challenges: Discovery and Innovation. P. A181

[16] National Research Council 2003 *Nutrient requirements of nonhuman primates* (Washington, DC: National Academies Press)

[17] Winarno 2000 *Food and Nutrition Chemistry* (in Indonesian). Jakarta: PT Gramedia Pustaka Utama

[18] Fredriksson G, & Indra M. 2007. Batang Toru Forest, Tapanuli Treasure (in Indonesian). Medan: Yayasan Ekosistem Lestari

[19] Zulfa A. 2011. *Feeding behaviour and Nutrition Compotition of Orangutan’s Diet (Pongo abelii)* in Ketambe Research Station, Gunung Leuser National Park, Nanggroe Aceh Darussalam (in Indonesia) [Thesis] (Depok: Universitas Indonesia)

[20] Van Schik C P 1986 *Journal of Tropical Ecology*, 2(4), 327-347