

Acutifoliside, a novel benzoic acid glycoside from *Salix acutifolia*

Yanqi Wu, Darja Dobermann, Michael H. Beale and Jane L. Ward

Department of Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK.

UHPLC-MS profiling of a polar solvent extract of juvenile stem tissue of *Salix acutifolia* Willd. identified a range of phenolic metabolites. Salicortin, 1, a well-known salicinoid, was the major compound present and the study identified young stem tissue of this species as a potential source of this compound for future studies. Three further known metabolites (salicin 2, catechin 3 and tremuloidin 4) were also present. The UHPLC-MS analysis also revealed the presence of a further, less polar, unknown compound, which was isolated via HPLC peak collection. The structure was elucidated by high resolution mass spectroscopic and 1- and 2-dimensional NMR analysis, chemical derivatisation and comparison with literature values and was shown to be a novel benzoic acid glycoside 5, which we have named as acutifoliside.

Keywords: *Salix acutifolia*; phenolic glycoside; benzoic acid glycoside; acutifolisde; UHPLC-MS; NMR.

Corresponding author. E-mail: jane.ward@rothamsted.ac.uk
Number	1H (ppm)	1J (Hz)	13C (ppm)	1H-1H correlation to:	1H-13C HMBC correlation to
1	-	-	121.9		
2	-	-	153.3		
3	-	-	147.3		
4	7.16 (1H, dd)	8.1, 1.4	122.3	H-5	127.2 (C-6), 147.3 (C-3), 153.3 (C-2)
5	6.55 (1H, t)	8.0	120.7	H-4, H-6	121.9 (C-1), 147.3 (C-3), 153.3 (C-2)
6	7.43 (1H, dd)	8.0, 1.4	127.2	H-5	122.3 (C-4), 153.3 (C-2), 177.8 (C-7)
7	-	-	177.8		
1"			131.9		
2"/6"	7.99 (2H, dd)	8.3, 1.2	132.4	H-3" & H-5"	131.9 (C-1"), 132.0 (C-2")/(C-5"), 136.7 (C-4"), 170.9 (C-7")
3"/5"	7.54 (2H, dd)	8.3, 7.5	132.0	H-4" & H-2"/H-6"	131.9 (C-1"), 136.7 (C-4")
4"	7.70 (1H, dd)	7.5, 1.2	136.7	H-3" & 5"	132.4 (C-2")& (C-6")
7"			170.9		
1'	5.08 (1H, d)	7.5	103.3	H-2'	147.3 (C-3)
2'	3.68 (1H, dd)	9.1, 7.5	75.8	H-1' & H-3'	78.5 (C-3')
3'	3.64 (1H, t)	8.9	78.5	H-4'	75.8 (C-2'), 73.3 (C-4')
4'	3.59 (1H, dd)	9.9, 8.9	73.3	H-5'	78.5 (C-3'), 76.6 (C-5')
5'	3.95 (1H, ddd)	9.9, 7.9, 2.4	76.6	H-6' & H-6'	
6'α	4.71 (1H, dd)	12.0, 2.4	67.0	H-5'	170.9 (C-7")
6'β	4.52 (1H, dd)	12.0, 8.1	67.0	H-5'	170.9 (C-7"), 76.6 (C-5")

Table S1. 1 and 2-D-NMR data of acutifoliside 5 in D$_2$O:CD$_3$OD (80:20 containing 0.01% w/v d$_4$-TSP)
Figure S1. Total ion chromatogram from UHPLC-MS analysis (negative mode) of the polar plant extract (H₂O:CH₃OH, 8:2) from juvenile stem tissue of *Salix acutifolia*. The LC-retention times are indicated. 1: salicortin; 2: salicin; 3: catechin; 4: tremuloidin; 5: acutifoliside.
Figure S2. UHPLC-MS data from juvenile *Salix acutifolia*. A: Extract of total ion chromatogram indicating the peak at 26.60 minutes; B: mass spectrum; C: MS² fragmentation of m/z 419 ion.
Figure S3. UHPLC-MS analysis (negative mode) of purified acutifoliside, 5. A: total ion chromatogram; B: electrospray mass spectrum; C: MS-MS fragmentation spectrum of m/z 419.
1H-NMR spectrum of acutifoliside, 5

600 MHz, 80:20 D$_2$O:CD$_3$OD containing 0.01 % w/v d$_4$-TSP

Number of integrated protons; Assignments

Figure S4. 1H-NMR spectrum of isolated acutifoliside 5, collected at 600 MHz.
1H-1H COSY spectrum of acutifoliside, 5

600 MHz, 80:20 D$_2$O:CD$_3$OD

Figure S5. 1H-1H COSY spectrum of polar extract of juvenile *Salix Acutifolia.*
1H- 13C HSQC spectrum of acutifoliside, 5

600 MHz, 80:20 D$_2$O:CD$_3$OD

Figure S6. 1H- 13C HSQC spectrum of polar extract of juvenile Salix Acutifolia.
1H-13C HMBC spectrum of acutifoliside, 5

600 MHz, 80:20 D2O:CD3OD

Figure S7. **1H-13C** HMBC spectrum of polar extract of juvenile *Salix acutifolia*.
Figure S8. Key HMBC correlations (from H to C) of 5.
1H-NMR spectrum of acutifoliside methyl ester

600 MHz, 80:20 D$_2$O:CD$_3$OD containing 0.01 % w/v d$_4$-TSP

Number of integrated protons; Assignments

Figure S9. 1H-NMR spectrum of acutifoliside methyl ester, collected at 600 MHz.
Figure S10. UHPLC-MS data from acutifolside methyl ester. A: Extract of total ion chromatogram indicating the peak at 31.89 minutes; B: mass spectrum; C: MS2 fragmentation of m/z 433 ion.
Figure S11. Replicated total ion chromatograms of *S. acutifolia* stem extracts obtained from 3 separate solvent extractions. Table indicates peak areas for compounds 1-5 and their relative standard deviations.