Success and Safety of Cesarean Myomectomy in Women with Single Uterine Myoma

Nazdar Raouf*
Department of Obstetrics and Gynecology, Duhok Obstetrics and Gynecology Teaching Hospital, Iraq

Submission: February 24, 2021; Published: March 02, 2021

*Corresponding author: Nazdar Raouf, Department of Obstetrics and Gynecology, Duhok Obstetrics and Gynecology Teaching Hospital, Iraq

Abstract

Background: Cesarean myomectomy is the term used to describe the removal of fibroids at cesarean section, most obstetricians are trained to avoid cesarean myomectomy. The aim for this study to determine the success and safety of the cesarean myomectomy and to evaluate the relationship between intra-operative and postoperative complications of the cesarean myomectomy in case of single uterine myomas.

Methods: This case-control study was conducted at the Duhok Obstetrics and Gynecology Teaching Hospital and Kurdistan Private Hospital in Iraqi Kurdistan between February 2016 and May 2019. The study included 61 pregnant women, they were divided into two groups, Cesarean Myomectomy group and were compared with Cesarean Section group. Outcomes studied were duration of surgery, change in hemoglobin from pre-operative to post-operative period, need for blood transfusion, and duration of hospital stay, post-operative complications and follow up of patients up to 6 weeks postpartum.

Result: During the study period, twenty-one pregnant women successfully underwent cesarean myomectomy and were compared with the control group and included forty pregnant women not having fibroids who underwent cesarean section only. There were no significant differences among the patients in the both groups in terms of baseline characteristics and indications for cesarean section. Duration of surgery was highly significant increased in study group as compared to control group. No complications were noted in either group during this period nor maternal death was reported.

Conclusion: Myomectomy of a single myoma during cesarean section can be considered a safe and advantageous surgical procedure.

keywords: Cesarean Section; Myoma; Cesarean Myomectomy; Obstetrics and Gynecology

Background

Myomas, also known as fibroids, are benign tumors of the smooth muscle cells of the female reproductive organs [1]. Based on first-trimester ultrasound assessments, the prevalence of uterine fibroids during pregnancy ranges from 1.6% to 10.7% [2,3]. The effects of fibroid growth on pregnancy may start before conception and continue through the postpartum period, but however the majority of myomas do not increase in size and rarely lead to adverse outcomes during pregnancy [4-7].

Myomas during pregnancy are associated with a high risk of cesarean section (CS) [1]. One of the most controversial dilemmas among obstetricians is the removal of fibroids during cesarean delivery, a procedure referred to as cesarean myomectomy (CM) [8,9]. Textbooks suggest that CM is not recommended because of the high risk of hemorrhage associated with the procedure. Cesarean myomectomy patients may also require blood transfusion or cesarean hysterectomy, and they are at increased risk for postoperative morbidity. Even so, leaving the myomas in place is not entirely without complications [10,11].

Several studies have demonstrated that CM can be performed safely, and the risk of anesthetic complications as well as the costs of multiple surgeries can be reduced [12,13]. The risks of hemorrhage and hysterectomy associated with CM maybe reduced by using techniques to minimize blood loss during the procedure [7,14]. Therefore, this study aimed to explore the safety and success of CM outcome regarding intrapartum bleeding, relaparotomy, hysterectomy, sepsis, and maternal mortality.
Methods

Design and setting

This case-control study was conducted at the Duhok Obstetrics and Gynecology Teaching Hospital and Kurdistan Private Hospital in Iraqi Kurdistan between February 2016 and May 2019. This study was approved by the Institutional Review Board (IRB) of Kurdistan Board for medical specialist, and the protocols used in the study were approved by the Committee of Scientific research unit of Duhok Obstetrics and Gynecology Teaching Hospital. The study included 61 pregnant women, they were divided into two groups; study group or (Cesarean Myomectomy group) included those who underwent CM and control group or (Cesarean Section group) included those who had undergone CS only.

The inclusion criteria were, pregnant women with documented myoma by antepartum ultrasound or by intra-operative findings, single myoma, and no other procedures at the time of cesarean section besides myomectomy should be done. Pregnant women with antepartum hemorrhage, coagulopathy, bleeding disorders, multiple gestation and any co-morbid conditions were excluded from the study. After complete history, clinical examination and investigations, written informed consent for surgery was taken in both the groups. In the study group consent for myomectomy was also taken and blood was arranged. Complications such as postpartum hemorrhage, blood transfusion, and cesarean hysterectomy were explained prior to the procedure. The operations were performed by surgeon experienced in the field of myomectomy operations and in managing cases of massive obstetric hemorrhage. Baseline characteristics of these patient were recorded, including maternal age, parity, gravidity, gestational age at delivery, neonatal body weight, and urgency of CS. indications for cesarean section as well as characteristics of myomas such as location, type, size, number, and histopathological analysis were also recorded.

Clinical outcomes examined were duration of surgery, change in hemoglobin level preoperatively to postoperatively, need for blood transfusion, duration of hospital stay, and complications including intra-operative bleeding, uterine atony, relaparotomy, vascular and organ injuries, cesarean hysterectomy, postpartum fever, sepsis, and maternal mortality. Intra-operative blood loss was collected into the surgical drape for operation and into the graduated bag of the aspirator cannula. The duration of surgery was calculated in minutes (calculated from skin incision to skin closure).

Cesarean Myomectomy Technique

In all cases, the abdominal incision was a low transverse incision, whereas the uterine incision to deliver the baby was a low transverse uterine incision. Following delivery of the baby, the third stage was actively managed. After the lower uterine segment incision was closed the uterine surface was evaluated for the types, locations, numbers and sizes of the myoma (Figure 1).

Figure 1: Large single myoma over the anterior surface of the uterus. Following delivery of the baby and placenta ,the lower uterine segment incision was closed then the uterine surface was evaluated for the types, locations, numbers and sizes of the myoma.

In cases of intramural myoma longitudinal incisions were made over the surface of the myoma by monopolar electrocoutery (Figure 2). After reaching the surface of myoma, edges were freed using sharp dissection then myoma was extract from its pseudo-capsule. Hemostasis was secured by a coagulation of the pseudo-capsule vessels .Sessile subserosal myoma were removed by making an elliptical incision over the myoma using electrocautery .Pedunculated myoma were cut from the pedicle. When a myoma was located in the submucosa or in the posterior uterine wall, the endometrial myomectomy technique was used to make...
an endometrial incision over the submucosal myoma, the myoma
was then enucleated. After a myoma mass was removed adequate
approximation of the myometrium, myoma bed and all dead spaces
were done using two layers of interrupted absorbable sutures (1-0
vicryl) then the serosa was sutured, using a continuous absorbable
suture (2-0 vicryl), as a third layer (Figure 3).

Hemostasis was secured using standard technique of intra-
capsular myomectomy and oxytocic agents such as oxytocin,
misoprostol, and ergometrine (if not contraindicated) were
used also, oxytocin infusion was continued for 4-8 hours
postoperatively. All patients received a single dose of 1-gram
Tranexamic acid in the form of an infusion over 20 minutes during
the operation. All patients received intra-operative antibiotics
intravenously (2g of ampicillin or amoxicillin or 2g cefazoline or
ceftiraxone and 500mg metronidazole). Myoma specimens were
sent for histopathological examination.

Follow-up

After surgery, all patients were cared for in high dependency
units or similar areas. Their vital signs and temperatures were
assessed, and they were monitored for vaginal blood loss and
assessed for thromboprophylaxis. patients were discharged after
35 hours of operation in a good health. They attended follow-up
examinations seven days and six weeks after the operation. Both
groups were compared with respect to baseline characteristics,
duration of surgery, change in hemoglobin from preoperative
to post-operative period, need for blood transfusion, duration of hospital stay, post-operative complications and follow up of patients up to 6 weeks postpartum.

Statistical analysis

The data were statistically analyzed using a software package, current versions IBM (SPSS) Statistic, descriptive statistics for nominal variables were expressed as number and percentage (%), whereas quantitative variables were expressed as mean ± standard deviation. Student’s t-test was applied to difference of mean of quantitative variables. The chi-square distribution test was used to compare categorical data. For interpretation of results, p value < 0.05 was considered significant.

Result

During the study period, from February 2016 to May 2019, twenty-one of pregnant women had undergone CM were compared with the control group and included forty pregnant women not having fibroids who underwent CS only.

Baseline characteristics of patients

Table 1: Baseline characteristics of patients selected for cesarean myomectomy.

Patient Characteristics	Cesarean Myomectomy Group (N=21)	Cesarean Section Group (N=40)	P-Value
Maternal age (years)	33.11 ± 8.21	35.31 ± 3.23	0.139
Gravidity	1.44 ± 0.53	1.52 ± 1.04	0.742
Parity	1.31 ± 0.33	1.35 ± 0.42	0.706
Gestational age (weeks)	38.01 ± 1.05	38.4 ± 1.21	0.216
Neonatal body weight	3132.02 ± 323.57	3264.11 ± 326.34	0.137
Elective CS	19 (31.14%)	31 (50.81%)	0.144
Emergency CS	2 (3.27%)	9 (14.75%)	0.173

Quantitative variables presented as mean ± SD, nominal variables as number (percent), P < 0.05 = Significant, P < 0.001 = highly significant, P > 0.05 = Not significant.

The baseline characteristics of these patients are summarized in Table 1. Twenty-one myomas were removed in 19 elective and 2 emergency cesarean section in study group while, 31 elective and 9 emergency cesarean section done in control group. All patients received spinal anesthesia for the operation. There were no significant differences among the patients in both groups in terms of baseline characteristics such as age, gravidity, parity, gestational age at delivery, neonatal body weight, and urgency of CS.

Indications for cesarean section

Indications for cesarean section in both groups are summarized in Table 2. When cesarean indications were considered a non-cephalic presentation was the first among all indications, followed by previous scar. The groups were similar in terms of indications for cesarean section.

Table 2: Indications for caesarean section.

Indications	Cesarean Myomectomy Group (N=21)	Cesarean Section Group (N=40)	P-Value
Non-cephalic presentation	7 (11.47%)	15 (24.59%)	0.228
Previous scar	4 (6.55%)	12 (19.67%)	0.178
Infertility	3 (4.91%)	5 (8.19%)	0.637
Maternal request	3 (4.91%)	4 (6.55%)	0.799
Bad obstetric history	2 (3.27%)	1 (1.63%)	0.68
Prolonged labor	1 (1.63%)	2 (3.27%)	0.709
Fetal distress	1 (1.63%)	1 (1.63%)	1

Data are presented as number (percent), P > 0.05 = Not significant, P < 0.05 = Significant.

Myoma characteristics

Myoma characteristics are summarized in Table 3. In ten cases (47.62%), the myoma was located at the anterior wall. In seven cases (33.33%), it was fundal. In two cases (9.52%), the myoma was located in the lower uterine segment. In two cases (9.52%), the myoma was located at the posterior wall. The myoma was subserosal in nine cases (42.86%), intramural in 10 (47.62%), and submucosal in two (9.52%). Myomas were 5–7 cm in size in eight cases (38.10%) and 8–14 cm in 13 (61.90%). All cases involved a single myoma. All specimens were sent for histopathology, and all revealed benign myomas.
Table 3: Myomas characteristics.

Myomas Characteristics	Values
Location	All myomas
Anterior wall	10 (47.62%)
Fundus	7 (33.33%)
Lower uterine segment	2 (9.52%)
Posterior wall	2 (9.52%)
Type	All myomas
Subserosal	9 (42.86%)
Intramural	10 (47.62%)
Submucosa	2 (9.52%)
Size	All myomas
5-7 cm	8 (38.10%)
8-14 cm	13 (61.90%)

Data are presented as number (percent)

Table 4: Surgical consequences of cesarean myomectomy group compared with cesarean section group.

Parameters	Cesarean Myomectomy Group (N=21)	Cesarean Section Group (N=40)	P-Values
Surgical time (minutes)	48.61±3.23	20.22±2.11	< 0.001
Amount of blood loss (ml*)	400±30	390±20	0.125
Pre-operative Hb level (g/dl§)	11.51±0.72	11.22±1.62	0.439
Post-operative Hb level (g/dl§)	10.52±1.12	10.42±1.23	0.757
Hospital stay (hours)	33±21.22	30±11.13	0.47

*ml = milliliter, *g/dl= gram /deciliter, *Hb= Hemoglobin

Data are presented as mean ± SD (percent), P < 0.05 = Significant, P < 0.001 = highly significant, P > 0.05 = Not significant

None of the patients had fevers in the postoperative period, and none required a blood transfusion or cesarean hysterectomy. None of the patients experienced atony and postpartum hemorrhage. No relaparotomy and organ injury or vascular complications developed in either group. Neither sepsis nor maternal death was reported in either group. Patients in both groups were followed up to 6 weeks postpartum. No complications were noted in either group during this period. Twenty-one pregnant women successfully underwent cesarean myomectomy.

Discussion

There is no consensus among obstetricians regarding the performance of CM nevertheless, Recent studies have shown that CM can be performed safely and successfully by an experienced obstetrician in carefully selected patients, particularly when it involves a single myoma, as well as when they are subserous and pedunculated myomas, although there are many studies in literature that investigate CM, those evaluating single myomectomy are rare [15-17].

Our data indicate that there was no difference between CM group and CS group, in term of baseline characteristics, indications for cesarean section, pre- and post-operative hemoglobin values, and complications related to CM. The only parameter that affects CM group was the duration of operation. A retrospective study evaluated study group underwent CM and control group with documented fibroids who underwent CS alone, the two groups were similar with respect to median age, median parity and median gestational age [18]. A retrospective case control study, the study group included 15 term pregnant women who had undergone CM and control group included 15 women who had undergone CS only and not having myoma, difference in age was reported that his could be due to increased incidence of fibroids with increasing age [19].

In recent decades, some studies have demonstrated that CM did not increase risk of uterine atony and intra-operative hemorrhage compared to CS without myomectomy [20]. In the present study, no cases were complicated by uterine atony or intra-operative bleeding. In a retrospective study involving 111 women with CM and 257 women undergoing CS alone noted no significant difference in incidence of intra-operative hemorrhage [18]. In 1989, Burton et al were probably the first to report the procedure of a myomectomy during pregnancy and CS. Thirteen
other women had incidental myomectomy at CS; one of these
had an intra-operative hemorrhage [21]. On the other hand, one
study reported nine cases of CM three had severe hemorrhage
needling hysterectomy [2], some authors have reported high
morbidity especially hemorrhage [10]. Relaparotomy reported
in one study resulted in hysterectomy and maternal death due to
massive hemorrhage [22]. In another study, CM was performed
on 25 patients, and no patient required cesarean hysterectomy
[23]. In the present study, no cases of relaparotomy, cesarean
hysterectomy or maternal death were reported.

Several methods have been used to minimize bleeding during
CM, such as high-dose oxytocin, devascularization, uterine
tourniquet, electrocautery, and several surgical techniques
[18, 24-27]. In one study the authors used an intra-capsular
myomectomy technique [28]. While in another study the author
used the purse-string suture technique [29]. One study reported
that experience of the surgeon also should be considered [30]. In
our study both intra-capsular myomectomy and electrocautery
were used, also we administered a uterotonic agents such as
oxytocin intraoperatively and postoperatively for all patients as
well as misoprostol and ergometrine.

During CM both location and size of myomas should be
considered, in one study reported that myomas located in the lower
segment should be removed [18]. Many authors reported that
removal of large or intramural myomas should be avoided during
CS [31]. While others reported removal of huge myoma during CS
[32,33]. Another study reported that only peduncular myomas
and small size myomas of less than 6 cm should be removed [34].
In one study reported that the myoma diameter was found to be
larger in the group with complications [35]. Two studies suggested
that CM should be avoided in intramural myomas within fundus
and myoma located in cornua of uterus as both sites are associated
with complications [18,36]. In our study, all cases were single
uterine myoma. The largest myoma size removed was 15cm and
the smallest was 5cm, also in this study (intramural, submucosal,
subserosal, fundal, lower uterine segment and anterior as well as
posterior wall myomas) all were removed, no case of myoma
located in cornua of uterus was reported.

In our study, CM was not associated with obvious changes
in hemoglobin levels, blood transfusion was not required. A
meta-analysis was conducted including nine studies, 44 women
underwent CM and 639 underwent CS alone. All of them found
no significant difference in change in hemoglobin levels from
pre-operative to post-operative period [31]. A comparative study
of CM with abdominal myomectomy on 33 women of similar
characteristics in each group was done. Blood loss and change in
hemoglobin between two groups were not statistically significant
and no complication was encountered [37]. In one study
comparing 47 pregnant women having fibroids undergoing CM
with 94 pregnant women having myoma undergoing CS alone, the
difference between preoperative and post-operative hemoglobin
was significant [36].

In present study the duration of surgery in study group
was longer in compared to control group. This difference was
statistically highly significant. Kwawukiame and Hassiakos et al
showed significant difference in duration of operation between
the two groups in their study [24,36]. Roman and Tabsh reported
no significant difference in duration of surgery between study
and control groups [18]. Meta-analysis conducted by Song D
showed operative time to be 4.94 minutes longer in CM group,
but again the difference was not significant [31]. In another study
which evaluated 165 patients, myomectomy was carried out in
65 patients; operating times were longer in the myomectomy
group, but there was no increase in postoperative complications
compared to the group which did not undergo myomectomy [14].

There was no difference in duration of hospital stay and
postoperative complications in present study as well as in other
studies [18,31,36,38]. Present study and most other studies in
literature show that the only significant difference between study
and control group was duration of surgery which was significantly
more in study group. Most of the studies included pregnant
patients with myoma undergoing CS alone as control group and
compared them with CM as study group. However, in our study
pregnant women not having myoma underwent CS were taken
as controls and compared with pregnant women with myoma
underwent CM as study group.

Strengths and limitations

This study had two limitations that must be considered. First,
the sample size was insufficient. Second, we had no information
regarding the long-term outcomes of CM. The major strengths
of our study are that all patients had only a single myoma of a
wide range of sizes and that the surgeries were performed by
experience surgeon trained in surgical treatment of obstetric
hemorrhage and CM.

Conclusion

Myomectomy of a single myoma during CS can be considered
a safe surgical procedure, regardless of the size without affecting
adversely the intra-operative and postoperative course however,
it should be performed by an obstetrician with experience in
managing cases of massive obstetric hemorrhage. The operation
decision should be considered on case-to-case basis with the
facility of blood banks, expert anesthetist, intensive care units.
All risks associated with the procedure should be carefully
discussed with the patients. Hence, our results could be useful
to obstetricians who choose to perform CM; it is advantageous
for the patient because it avoids second operation, anesthesia
complications, and it is cost saving. Further studies involving a
large sample size and various myoma types are warranted, also
long-term outcomes and the method of delivery in subsequent
pregnancies should be considered.
Acknowledgment

We would like to thank the operation and laboratory staff, anesthetist’s team and postgraduate students involved in the trial for their hard work, including everyone involved in the collection and interpretation of the data. We would also like to thank Editage (www.editage.com) for their English language editing service.

Ethics approval and consent to participate

The ethical approval from the local ethics and scientific committee was obtained. The written informed consent of all the participants was obtained.

References

1. Sparic R (2014) Uterine myomas in pregnancy, childbirth and the puerperium. Srp Arh Celok Lek 142(1-2): 118-124.
2. Exacoustou C, Rosati P (1993) Ultrasound diagnosis of uterine myomas and complications in pregnancy. Obstet Gynecol182(1): 97-101.
3. Laughlin SK, Baird DD, Savitz DA, Herring AH, Hartmann KE, et al. (2009) Prevalence of uterine leiomyomas in the first trimester of pregnancy: an ultrasound-screening study. Obstet Gynecol 113(3): 630-635.
4. Muram D, Gilliss M, Walters JH (1980) Myomas of the uterus in pregnancy: ultrasonographic follow-up. Am J Obstet Gynecol 138(1): 16-19.
5. Rosati P, Exacoustou C, Mancuso S (1992) Longitudinal evaluation of uterine myoma growth during pregnancy. A sonographic study. J Ultrasound Med 11(10): 511-515.
6. Vergani P, Ghidini A, Strobelt N, Roncaglia N, Locatelli A, et al. (1994) Do uterine leiomyomas influence pregnancy outcome? Am J Perinatol 11(5): 356-358.
7. Qidwai GI, Caughey AB, Jacoby AF (2006) Obstetric outcomes in women with sonographically identified uterine leiomyomata. Obstet Gynecol 107: 376-382.
8. Park BJ, Kim YW (2009) Safety of cesarean myomectomy. Obstet Gynecol Res 35(5): 906-911.
9. Sparic R, Nejkovic L, Mutavdizic D, Malvasi A, Tinelli A, et al. (2014) Conservative surgical treatment of fibroids. Acta Chirursurgica 61: 61-66.
10. Davis JL, Ray-Mazumder S, Hobel CJ, Balely KA, Saxsson DE, et al. (1990) Uterine leiomyomas in pregnancy: a prospective study. Obstet Gynecol 75(1): 41-44.
11. Kwavukume EY (2002) Myomectomy during cesarean section. Int J of Gynecol Obstet 76(2): 183-184.
12. Awoleke JO (2013) Myomectomy during cesarean birth in fibroid-endemic, low-resource settings. Obstet Gynecol Int p. 520834.
13. Rebo G, Tessarolo M, Leo L, Arduino S, Wierdis T, et al. (1997) Surgical management of leiomyomata in pregnancy. Clin Exp Obstet Gynecol 24(2): 76-78.
14. Cunningham FG, Gant NF, Levenon KJ, Gilstrap LC, Hauth JC, et al. (2001) Abnormalities of the reproductive tract. In: Williams Obstetrics, In: (21st edn.), McGraw Hill, New York, USA, p. 930.
15. Sparic R, Malvasi A, Kadija S, Babovic I, Nejkovic L, et al. (2017) Tinelli A Cesarean myomectomy trends and controversies: an appraisal. J Matern Fetal Neonatal Med 30: 1114-1123.
16. Malvasi A, Stark M, Tinelli A (2015) Cesarean myomectomy. In: Tinelli A, Malvasi A (Eds.), Uterine myoma, myomectomy and minimally invasive treatments. In: (1st edn.), Springer, Berlin, pp. 237-252.
17. Segars JH, Parrott EC, Nagel JD, Xiaoxiao CG, Xiaohua G, et al. (2014) Proceedings from the third national institutes of health international congress on advances in uterine leiomyoma research: comprehensive review, conference summary and future recommendations. Hum Reprod Update 20(3): 309-333.
18. Roman AS, Tabash KM (2004) Myomectomy at time of cesarean delivery: a retrospective cohort study. BMC Pregnancy Childbirth 4(1): 14-17.
19. Jaiswar SP, Srivastava P, Priyadarshini A, Deo S, Shankhwar P, et al. (2015) Safety of cesarean myomectomy with huge myoma compared with uncomplicated cesarean section in Indian scenario. Int J Reprod Contracept Obstet Gynecol 4:1696-1699.
20. Kwon DH, Song JG, Yoon KR, Lee YK (2014) The safety of cesarean myomectomy in women with large myomas. Obstet Gynecol Sci 57(5): 367-372.
21. Burton CA, Grimes DA, March CM (1989) Surgical management of leiomyomata during pregnancy. Obstet Gynecol 74(5): 707-709.
22. Seffah JD (2005) Relaparotomy after cesarean section. Int J Gynecol Obstet 88: 253-257.
23. Ehligiegha AE, Ande AB, Obiho SI (2001) Myomectomy during cesarean section. Int J Gynecol Obstet 75(1): 21-25.
24. Kwavukume EY (2002) Caesareanmyomectomy. Afr J Reprod Health 6(3): 38-43.
25. Sapmaz E, Celi H, Altungul A (2003) Bilateral ascending uterine artery ligation vs. tourniquet use for hemostasis in cesarean myomectomy: a comparison. Int J Reprod Med 48(12): 95-99.
26. Incebiyik A, Hilali NG, Camuzcuoglu A, Yuzel M, Camuzcuoglu H, et al. (2014) Myomectomy during cesarean: a retrospective evaluation of 16 cases. Arch Gynecol Obstet 289(3): 569-573.
27. Desai BR, Patted SS, Pujar YY, Sherigar BY, Das SR, et al. (2010) A novel technique of selective uterine devascularization before myomectomy at the time of cesarean section: a pilot study. Fertil Steril 94(1): 362-364.
28. Tinelli A, Malvasi A, Mynbaev OA (2014) The surgical outcome of intracapsular cesarean myomectomy. A match control study. J Matern Fetal Neonatal Med 27(1): 66-71.
29. Lee JH, Cho DH (2011) Myomectomy using purse-string suture during cesarean section. Arch Gynecol Obstet 283(Suppl 1): 35-37.
30. Vitale SG, Padula F, Guilio FA (2015) Management of uterine fibroids in pregnancy: recent trends. Curr Opin Obstet Gynecol 27(6): 432-437.
31. Song D, Zhang W, Chames MC (2013) Myomectomy during cesarean delivery. Int J Gynecol Obstet 121: 208-213.
32. Leanza V, Fichera S, Leanza G (2011) Huge fibroid (g. 3.000) removed in pregnancy: recent trends. Curr Opin Obstet Gynecol 23(6): 38-43.
33. Desai BR, Patted SS, Pujar YY, Sherigar BY, Das SR, et al. (2010) A novel technique of selective uterine devascularization before myomectomy at the time of cesarean section: a pilot study. Fertil Steril 94(1): 362-364.
34. Tinelli A, Malvasi A, Mynbaev OA (2014) The surgical outcome of intracapsular cesarean myomectomy. A match control study. J Matern Fetal Neonatal Med 27(1): 66-71.
35. Lee JH, Cho DH (2011) Myomectomy using purse-string suture during cesarean section. Arch Gynecol Obstet 283(Suppl 1): 35-37.
36. Vitale SG, Padula F, Guilio FA (2015) Management of uterine fibroids in pregnancy: recent trends. Curr Opin Obstet Gynecol 27(6): 432-437.
37. Song D, Zhang W, Chames MC (2013) Myomectomy during cesarean delivery. Int J Gynecol Obstet 121: 208-213.
38. Leanza V, Fichera S, Leanza G (2011) Huge fibroid (g. 3.000) removed during cesarean section with uterus preservation: a case report. Ann Ital Chirurgica 82(1): 75-77.
39. Ma PC, Juan YC, Wang ID (2010) A huge leiomyoma subjected to a myomectomy at the time of cesarean section: a pilot study. Fertil Steril 94(1): 362-364.
40. Leanza V, Fichera S, Leanza G (2011) Huge fibroid (g. 3.000) removed in pregnancy: recent trends. Curr Opin Obstet Gynecol 23(6): 38-43.
41. Awoleke JO (2013) Myomectomy during cesarean birth in fibroid-endemic, low-resource settings. Obstet Gynecol Int p. 520834.
42. Kim YS, Choi SD, Bae DH (2010) Risk factors for complications in patients undergoing myomectomy at the time of cesarean section. Int J Gynecol Obstet 107: 16-19.
36. Hassiakos D, Christopoulos P, Vitontos N, Xarchoulakou E, Vaggos G, et al. (2006) Myomectomy during cesarean section: a safe procedure? Ann New York Acad Sci 1092(1): 408-413.

37. Mangala JK, Sreedhar S, Sumathy S, Rajamal B (2016) Retrospective study of 53 cases of caesarean myomectomy regarding its safety and feasibility. Int J Reprod Contracept Obstet Gynecol 5(4): 1158-1161.

38. Topcu H0, Iskender CT, Timur H, Kaymak O, Memur T, et al. (2015) Outcomes after cesarean myomectomy versus cesarean alone among pregnant patients with uterine leiomyomas. Int J Gynecol Obstet. Int J Gynaecol Obstet 130(3): 244-246.

Your next submission with Juniper Publishers will reach you the below assets

- Quality Editorial service
- Swift Peer Review
- Reprints availability
- E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats (Pdf, E-pub, Full Text, Audio)
- Unceasing customer service

Track the below URL for one-step submission
https://juniperpublishers.com/online-submission.php