SARS-CoV-2 orthologs of pathogenesis-involved small viral RNAs of SARS-CoV

Ali Ebrahimpour Boroojeny and Hamidreza Chitsaz

Department of Computer Science, Colorado State University

http://chitsazlab.org
chitsaz@chitsazlab.org

Abstract

Background The COVID-19 pandemic clock is ticking and the survival of many of mankind’s modern institutions and or survival of many individuals is at stake. There is a need for treatments to significantly reduce the morbidity and mortality of COVID-19.

Hence, we delved deep into the SARS-CoV-2 genome, which is the virus that has caused COVID-19. SARS-CoV-2 is from the same family as SARS-CoV in which three small viral RNAs (svRNA) were recently identified [1]; those svRNAs play a significant role in the virus pathogenesis in mice.

Contribution In this paper, we report potential orthologs of those three svRNAs in the SARS-CoV-2 genome. Instead of off-the-shelf search and alignment algorithms, which failed to discover the orthologs, we used a special alignment scoring that does not penalize C/T and A/G mismatches. RNA bases C and U both can bind to G; similarly, A and G both can bind to U, hence, our scoring.

To validate our results, we confirmed the discovered orthologs are fully conserved in all the publicly available genomes of various strains of SARS-CoV-2; the loci at which the SARS-CoV-2 orthologs occur are close to the loci at which SARS-CoV svRNAs occur. We also report potential targets for these svRNAs. We hypothesize that the discovered orthologs play a role in pathogenesis of SARS-CoV-2, and therefore, antagomir-mediated inhibition of these SARS-CoV-2 svRNAs inhibits COVID-19.

1 Introduction

The world is now struggling with a pandemic known as COVID-19 which is caused by a novel coronavirus that was first identified in December 2019 in a local sea food market in Wuhan, China [2]. Due to the similarity of its genomic sequence to that of Severe Acute Respiratory Syndrome (SARS-CoV), which is a member of the subgenus of Sarbecovirus, the aforementioned novel coronavirus was named SARS-CoV-2. Phylogenetic studies have found a bat origin for this virus [3, 4]. As of April 29th, 2020, this virus has infected more than 3,150,000 people in 185 countries, caused more than 227,000 cases of death, and has become a global health concern leading to massive lock downs and quarantine all around the world.
Since the emergence of SARS-CoV in China in 2002, which infected around 8,000 people world-wide, multiple research efforts have tried to understand that virus and to suggest potential treatments. Despite the fact that no vaccines or antivirals have been approved to date for any of coronaviruses, improvements on reducing the severity of the disease and mortality rate have been reported. Because of the similarity of the recent fast-spreading coronavirus SARS-CoV-2, which shares more than 79% of its genomic sequence with SARS-CoV, one plausible way to understand how it works and suggest possible treatments would be to port what has been found for SARS-CoV previously to SARS-CoV-2.

Non-coding RNAs (ncRNAs) are, as the name suggests, RNAs that do not translate to proteins. Although it is likely the case that some of them do not play a major role in the cell [5, 6], some have crucial functions, such as transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), micro RNAs (miRNAs), etc. Some of the ncRNAs, such as miRNAs, play a role in post-transcriptional regulation of gene expression. They, through a procedure called gene silencing, bind with the complementary parts of the target RNAs, and prevent the translation of those RNAs through cleavage of their strand, shortening their poly-A tail, or downgrading the efficiency of their translation by making some nucleotides unavailable to the ribosomes [7, 8].

First viral ncRNA was identified by Reich et al. [9]. Since then a plethora of viral-associated ncRNAs have been identified and this has been accelerated by the advances in technology [10]. Especially, deep sequencing has facilitated the detection of small virus-associated RNAs [11, 12]. Some of these ncRNAs are known to be responsible in counteracting the antiviral defense mechanism that are present in the host cells, mostly through inhibition of protein kinase R (PKR) [13]. Therefore, they aid in the life cycle of the virus [14, 15], such as svRNAs in influenza A virus that are involved in the mechanisms this virus uses for switching between transcription and replication [12].

It had been well-known that nuclear and DNA viruses encode miRNAs [16] that play a role in persistence [17] of the virus as well as changing the transcriptome in the host cell [18]. Using the deep sequencing technologies, it had been revealed that cytoplasmic RNA viruses also express ncRNAs [11, 12, 1] and most of them induce various cytoplasmic pathways to express their ncRNAs [12]. Flaviviruses can be mentioned as examples of cytoplasmic RNA viruses, which are very sensitive to interferons and have evolved a variety of mechanisms to avoid their action [19]. It has been shown that ncRNAs in flaviviral RNA binds to genes responsible for regulation of antiviral state of the host cell and affects the interferon response agains the virus [20].

A recent research has reported three small viral RNAs (svRNAs) that are derived from the genomic regions of SARS-CoV [1]. Morales et al. have shown the presence of these positive sense svRNAs, which are “mapped to nsp3 at the 5′ end of the Replicase gene and the N gene (svRNA-N) at the 3′ end of the genomic RNA (gRNA)” [1], by using specific small RNA RT-qPCR assays. Their experiments on a mouse model of the infection [21, 22] show that these svRNAs contribute to SARS-CoV pathogenesis, and also suggest a potential antiviral treatment using antagonim- mediated inhibition of these svRNAs.

Small non-coding RNAs that play an improtant roll have been shown to be highly conserved among genuses and families. Given that SARS-CoV-2 is in the the same subgenus as SARS-CoV and their genomic sequence has more than 79% similarity, if orthologs of the svRNAs found in SARS-CoV be present and found in SARS-CoV-2, then (antagomir-mediated) inhibition of those svRNA orthologs is expected to lead to reduction of SARS-CoV-2 titers and help decrease severity of COVID-19 in the majority of patients, as was shown to be the case for SARS-CoV [1]. What is needed is the sequence of the three aforementioned svRNAs in SARS-CoV-2 genome, from which
the corresponding antagonimirs are simply designed through base pair complementarity.

To target SARS-CoV-2 svRNAs, we first characterize the sequence of three svRNAs in SARS-CoV-2. We achieve that goal by aligning the sequences of SARS-CoV svRNAs to the SARS-CoV-2 genome sequences. After investigating many of the available sequenced genomes of SARS-CoV-2 that have been reported in various locations around the globe, we discovered the presence of three svRNAs that were highly conserved orthologs of the svRNAs that played a role in pathogenesis of SARS-CoV. This *in silico* discovery still needs to be confirmed using *in vitro* and *in vivo* experiments, but our findings reported in the following sections suggest strong likelihood of our hypothesis.

2 Methods

In order to find the svRNAs in SARS-CoV-2 that are orthologs of those in SARS-CoV, we selected all of the complete genomic sequences of SARS-CoV-2, that were made available on the NCBI portal as of March 27th (173 complete sequences) as well as 27 more randomly chosen ones among the more recent uploads on the NCBI portal. These genomic sequences are from different states and countries, including but not limited to: New York, Washington, California, Illinois, Utah, China, Japan, South Korea, Italy, India, Brazil, Germany, Australia, Turkey, and Greece.

We used a variant of the algorithm introduced by Smith and Waterman, which is known in the community as the *fit alignment* [23], as the core of investigation for the svRNAs of interest. The algorithm devised by Smith and Waterman is itself a variant of the *global alignment* algorithm known as Needleman-Wunsch algorithm [24], and can be used to find the regions of two genomic sequences that are similar. *Fit alignment* is a variant of this algorithm that searches a reference genome for a subsection that is highly similar to another shorter sequence.

We used our own in-house alignment tool that implements a faster variant of local and fit alignment algorithms, based on the idea of limiting the search to considering only a subset of the alignment search space that represents high similarity and pruning the regions that fall below the desired threshold. Also, when aligning two sequences, there might be multiple alignments with the same score as the highest score. Therefore, our tool keeps track of all the alignments with a score equal to the highest score. For this specific problem, we also added the feature of choosing the best alignment that exists in all the other reference sequences. However, we should note that, for all the sequences considered (the ones in Table 1) the loci reported for the exact match to our suggested svRNAs have also the highest score of alignment with the svRNAs reported by Morales *et al.* in their respective sequence.

3 Results

Figures 1, 2, and 3 show the sequences that we have found for three svRNAs in SARS-CoV-2 that are orthologs of the three aforementioned svRNAs in SARS-CoV. To further test our hypothesis, we searched for all these svRNAs in 200 different complete reference sequences of the virus. Our three svRNAs are wholly present, without any mutation, in all the reference sequences. Table 1 shows the NCBI ID of each of these sequences, as well as the string loci of each of the svRNAs. As you can see 199 out of 200 tested sequences are present in the table and contain the exact match of the proposed RNAs. The missing entry of the table is LR757997 which showed the presence of the third svRNA at loci 28604 but does not contain the other two because there is a gap in the
sequence from loci 3001 to 3235 (filled with Ns), and this is the region where the first two svRNAs reside in according to the loci values in the table for these two columns.

We identify a non-detrimental mismatch by : in Figures 1, 2, and 3. RNA-RNA binding energies is mainly governed by Watson-Crick base pairing, namely A-U, G-U, and C-G. Particularly, U can pair with both A and G. Hence, an A vs. G mismatch (substitution) in an ortholog RNA is non-detrimental for the binding to a target RNA. Similarly, G can pair with both U and C. Hence, an U/T vs. C mismatch (substitution) in an ortholog RNA is non-detrimental for the binding to a target RNA.

Figure 1: Alignment of the first svRNA in SARS-CoV and its identified ortholog in SARS-CoV-2. Top: nsp3.1 svRNA sequence GAGGAAGAAGAGGACGAT in SARS-CoV according to [1]. Bottom: Ortholog of nsp3.1 svRNA sequence GATGAAGAAGAAGGTGAT in SARS-CoV-2. | represents a match, — represents a gap (indel), empty represents a mismatch, and : represents a non-detrimental mismatch.

Figure 2: Alignment of the second svRNA in SARS-CoV and its identified ortholog in SARS-CoV-2. Top: nsp3.2 svRNA sequence GAGGAAGAAGAGGACGAT in SARS-CoV according to [1]. Bottom: Ortholog of nsp3.2 svRNA sequence GAAGAAGAGCAAGAAGAAGATT in SARS-CoV-2. | represents a match, — represents a gap (indel), empty represents a mismatch, and : represents a non-detrimental mismatch.

Figure 3: Alignment of the third svRNA in SARS-CoV and its identified ortholog in SARS-CoV-2. Top: N svRNA sequence AGGAACTGGCCAGAAGCTTC in SARS-CoV according to [1]. Bottom: Ortholog of N svRNA sequence AGGAACTGGCCAGAAGCTGGAC in SARS-CoV-2. | represents a match, — represents a gap (indel), empty represents a mismatch, and dotted line represents a potential omission. It is possible that some or all of the last four (4) nucleotides GGAC of the bottom sequence are dropped (omitted).
NCBI ID	svRNA1	svRNA2	svRNA3	
LC528232	3056	3182	28615	
LC528233	3061	3187	28620	
LC529905	3053	3179	28612	
LC529996	3033	3159	28592	
LR757995	3038	3164	28597	
LR757998	3028	3154	28587	
MN908947	3053	3179	28612	
MN938384	3021	3147	28580	
MN975262	3053	3179	28612	
MN985325	3053	3179	28612	
MN988668	3052	3178	28611	
MN988669	3052	3178	28611	
MN988713	3053	3179	28612	
MN994467	3053	3179	28612	
MN994468	3053	3179	28612	
MN996527	3020	3146	28579	
MN996528	3053	3179	28612	
MN996529	3041	3167	28600	
MN996530	3039	3165	28598	
MN996531	3040	3166	28599	
MN997409	3053	3179	28612	
MT007544	3053	3179	28612	
MT012098	3040	3166	28596	
MT019529	3053	3179	28612	
MT019530	3053	3179	28612	
MT019531	3053	3179	28612	
MT019532	3053	3179	28612	
MT019533	3053	3179	28612	
MT020781	3053	3179	28612	
MT020880	3053	3179	28612	
MT020881	3053	3179	28612	
MT027062	3053	3179	28612	
MT027063	3053	3179	28612	
MT027064	3053	3179	28612	
MT039873	3050	3176	28609	
MT039887	3053	3179	28609	
MT039888	3053	3179	28612	
MT039890	3053	3179	28612	
MT044257	3053	3179	28612	
MT044258	3029	3155	28588	
MT049951	3053	3179	28612	
MT050493	3033	3159	28592	
MT066156	3053	3179	28612	
MT066175	3053	3179	28612	
MT066176	3053	3179	28612	
	MT072688	3038	3164	28597
---	-----------	------	------	-------
46	MT093571	3053	3179	28612
47	MT093631	3040	3166	28599
48	MT106052	3053	3179	28612
49	MT106053	3053	3179	28612
50	MT106054	3053	3179	28612
51	MT118835	3053	3179	28612
52	MT121215	3053	3179	28612
53	MT123290	3056	3182	28615
54	MT123291	3050	3176	28609
55	MT123292	3053	3179	28612
56	MT123293	3047	3173	28606
57	MT126808	3053	3179	28612
58	MT135041	3053	3179	28612
59	MT135042	3053	3179	28612
60	MT135043	3053	3179	28612
61	MT135044	3053	3179	28612
62	MT152824	3051	3177	28610
63	MT159705	3053	3179	28612
64	MT159706	3053	3179	28612
65	MT159707	3053	3179	28612
66	MT159708	3053	3179	28612
67	MT159709	3053	3179	28612
68	MT159710	3053	3179	28612
69	MT159711	3053	3179	28612
70	MT159712	3053	3179	28612
71	MT159713	3053	3179	28612
72	MT159714	3053	3179	28612
73	MT159715	3053	3179	28612
74	MT159716	3038	3164	28597
75	MT159717	3053	3179	28612
76	MT159718	3053	3179	28612
77	MT159719	3053	3179	28612
78	MT159720	3053	3179	28612
79	MT159721	3053	3179	28612
80	MT159722	3053	3179	28612
81	MT163716	3053	3179	28612
82	MT163717	3047	3173	28606
83	MT163718	3053	3179	28612
84	MT163719	3053	3179	28612
85	MT184907	3053	3179	28612
86	MT184908	3053	3179	28612
87	MT184909	3053	3179	28612
88	MT184910	3053	3179	28612
89	MT184911	3053	3179	28612
90	MT184912	3053	3179	28612
91	MT184913	3053	3179	28612
	MT184913	3053	3179	28612
---	-----------	------	------	-------
92	MT188339	2999	3125	28558
93	MT188340	2999	3125	28558
94	MT188341	2999	3125	28561
95	MT192759	3026	3152	28585
96	MT192765	3046	3172	28605
97	MT192772	3053	3179	28612
98	MT192773	3052	3178	28611
99	MT226610	3053	3179	28612
100	MT233519	2999	3125	28558
101	MT233520	2999	3125	28558
102	MT233521	2999	3125	28558
103	MT233522	2999	3125	28558
104	MT233523	2999	3125	28558
105	MT240479	3017	3143	28576
106	MT240489	2979	3105	28538
107	MT246450	3022	3148	28581
108	MT246451	3008	3134	28567
109	MT246452	3046	3172	28605
110	MT246453	2979	3105	28538
111	MT246454	3044	3170	28603
112	MT246455	3008	3134	28567
113	MT246456	2996	3122	28555
114	MT246457	2997	3123	28553
115	MT246458	2927	3053	28486
116	MT246459	3047	3173	28606
117	MT246460	3053	3179	28612
118	MT246461	3021	3147	28580
119	MT246462	3053	3179	28612
120	MT246463	2927	3053	28486
121	MT246464	3002	3128	28561
122	MT246465	2931	3057	28490
123	MT246466	3047	3173	28606
124	MT246467	3050	3176	28609
125	MT246468	2993	3119	28552
126	MT246469	3019	3145	28578
127	MT246470	3035	3161	28594
128	MT246471	3021	3147	28580
129	MT246472	2968	3094	28527
130	MT246473	2979	3105	28535
131	MT246474	3043	3169	28602
132	MT246475	3033	3159	28592
133	MT246476	3014	3140	28573
134	MT246477	3022	3148	28581
135	MT246478	3040	3166	28599
136	MT246479	2979	3105	28538
---	---	---	---	
138	MT246480	3052	3178	28611
139	MT246481	3021	3147	28580
140	MT246482	2996	3122	28555
141	MT246483	2927	3053	28486
142	MT246484	3021	3147	28580
143	MT246485	2925	3051	28484
144	MT246486	3021	3147	28580
145	MT246487	3037	3163	28596
146	MT246488	3026	3152	28585
147	MT246489	3003	3129	28562
148	MT246490	2997	3123	28556
149	MT251972	3016	3142	28575
150	MT251973	3049	3175	28608
151	MT251974	3002	3128	28561
152	MT251975	3025	3151	28584
153	MT251976	3051	3177	28610
154	MT251977	2979	3105	28538
155	MT251978	3051	3177	28610
156	MT251979	3002	3128	28561
157	MT251980	3002	3128	28558
158	MT253696	2999	3125	28558
159	MT253697	2999	3125	28558
160	MT253698	2999	3125	28558
161	MT253699	2999	3125	28558
162	MT253700	2999	3125	28558
163	MT253701	2999	3125	28558
164	MT253702	2999	3125	28558
165	MT253703	2999	3125	28558
166	MT253704	2999	3125	28558
167	MT253705	2999	3125	28558
168	MT253706	2999	3125	28558
169	MT253707	2999	3125	28558
170	MT253708	2999	3125	28558
171	MT253709	2999	3125	28558
172	MT253710	2999	3125	28558
173	MT327745	3049	3175	28608
174	MT328032	3053	3179	28612
175	MT334563	3052	3178	28611
176	MT345880	3006	3132	28565
177	MT350251	3037	3163	28596
178	MT350266	3053	3179	28612
179	MT350282	3053	3179	28612
180	MT359866	3043	3169	28602
181	MT370944	3013	3139	28572
182	MT370968	2989	3115	28548
183	MT370975	2998	3124	28557
	MT371019	2998	3124	28557
----	------------	-------	-------	-------
185	MT371024	2981	3107	28540
186	MT371034	3006	3132	28565
187	MT371035	2998	3124	28557
188	MT371036	2998	3124	28557
189	MT371037	2989	3115	28548
190	MT371048	3053	3179	28612
191	MT371568	2929	3055	28488
192	MT371572	2945	3071	28504
193	MT372481	3048	3174	28607
194	MT374112	3051	3177	28610
195	MT375470	3021	3147	28580
196	MT385448	3050	3176	28609
197	MT394529	3042	3168	28601
198	MT394864	2999	3125	28558
199	MT396242	3028	3154	28587

Table 1: Start loci of the three svRNAs in various strains of SARS-CoV-2 genome.
3.1 Potential targets

We also analyzed the potential target genes of these svRNAs in human body. To this end, we considered more than 32,000 known RNAs that are transcribed in human body. We processed the sequence of each of these RNAs and removed the intron regions of each. Finally, we aligned the reverse complement of our svRNAs to all the exon sequences. A highly similar region to the reverse complement of an svRNA is highly complementary to the svRNA and hence suggests a high chance of interacting with that svRNA. Tables showing the results of that alignment for the regions that had an alignment score higher than 0.7 with these three svRNAs are available in the Appendix Tables 2, 3, and 4. To compute the score of the alignment, we used a reward of one (1) for a pair of matching nucleotides and a penalty of negative one (-1) for substitutions and insertion/deletions (indels). In the end, the total score was divided by the length of each svRNA to normalize the scores.

4 Analysis

Our proposed svRNAs for SARS-CoV-2 are highly conserved versions of the svRNAs of SARS-CoV. Presence of these svRNAs in all the 200 reference sequences that we used to test our hypothesis increases the possibility of correctness of our claim. Also, our proposed svRNAs occur at very similar loci in different reference sequences, and these loci are almost the same as the ones for the original svRNAs reported for SARS-CoV. The fact that the two viruses are in the same subgenus makes our hypothesis more plausible. However, still this hypothesis has to be verified experimentally.

As mentioned earlier, the complete tables showing the possible target RNAs of our proposed svRNAs are available in the supplementary document. However, it is worth mentioning some of them. The second highest match to the reverse complement of the first svRNA is HIF3A transcript which is a transcriptional regulator in adaptive response to low oxygen levels. Silencing this gene affects the reaction of the body in response to hypoxia. The second best match with the reverse complement of the second svRNA is MEX3B transcript which is a member of MEX3 translational regulators. MEX3 are RNA-binding proteins that are evolutionarily conserved and their in vivo functions is yet to be fully characterized.

5 Conclusion

In this paper, we reported three potential svRNAs, which are orthologs of SARS-CoV svRNAs, in the SARS-CoV-2 genome. To validate our results, we confirmed the discovered orthologs are fully conserved in all the publicly available genomes of various strains of SARS-CoV-2; the loci at which the SARS-CoV-2 orthologs occur are close to the loci at which SARS-CoV svRNAs occur. Furthermore, our proposed svRNAs occur at very similar loci in different reference sequences, and these loci are almost the same as the ones for the original svRNAs reported in SARS-CoV.

We also reported potential targets for these svRNAs. We hypothesize that the discovered orthologs play a role in pathogenesis of SARS-CoV-2, and therefore, antagomir-mediated inhibition of these SARS-CoV-2 svRNAs inhibits COVID-19. This in silico discovery still needs to be confirmed using in vitro and in vivo experiments.
References

[1] Lucía Morales, Juan Carlos Oliveros, Raúl Fernandez-Delgado, Benjamin Robert tenOever, Luis Enjuanes, and Isabel Sola. Sars-cov-encoded small rnas contribute to infection-associated lung pathology. *Cell host & microbe*, 21(3):344–355, 2017.

[2] Hongzhou Lu, Charles W Stratton, and Yi-Wei Tang. Outbreak of pneumonia of unknown etiology in wuhan china: the mystery and the miracle. *Journal of Medical Virology*.

[3] Roujian Lu, Xiang Zhao, Juan Li, Peihua Niu, Bo Yang, Honglong Wu, Wenling Wang, Hao Song, Baoying Huang, Na Zhu, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. *The Lancet*, 395(10224):565–574, 2020.

[4] Yushun Wan, Jian Shang, Rachel Graham, Ralph S Baric, and Fang Li. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of sars coronavirus. *Journal of virology*, 94(7), 2020.

[5] Jürgen Brosius. Waste not, want not–transcript excess in multicellular eukaryotes. *TRENDS in Genetics*, 21(5):287–288, 2005.

[6] Alexander F Palazzo and Eliza S Lee. Non-coding rna: what is functional and what is junk? *Frontiers in genetics*, 6:2, 2015.

[7] Marc Robert Fabian, Nahum Sonenberg, and Witold Filipowicz. Regulation of mrna translation and stability by micrornas. *Annual review of biochemistry*, 79:351–379, 2010.

[8] David P Bartel. Micrnas: target recognition and regulatory functions. *cell*, 136(2):215–233, 2009.

[9] Paul R Reich, Bernard G Forget, Sherman M Weissman, and James A Rose. Rna of low molecular weight in kb cells infected with adenovirus type 2. *Journal of molecular biology*, 17(2):428–439, 1966.

[10] Kazimierz T Tykowski, Yang Eric Guo, Nara Lee, Walter N Moss, Tenaya K Vallery, Mingyi Xie, and Joan A Steitz. Viral noncoding rnas: more surprises. *Genes & development*, 29(6):567–584, 2015.

[11] Poornima Parameswaran, Ella Sklan, Courtney Wilkins, Trever Burgon, Melanie A Samuel, Rui Lu, K Mark Ansel, Vigo Heissmeyer, Shirit Einav, William Jackson, et al. Six rna viruses and forty-one hosts: viral small rnas and modulation of small rna repertoires in vertebrate and invertebrate systems. *PLoS pathogens*, 6(2), 2010.

[12] Jasmine T Perez, Andrew Varble, Ravi Sachidanandam, Ivan Zlatev, Muthiah Manoharan, Adolfo Garcia-Sastre, et al. Influenza a virus-generated small rnas regulate the switch from transcription to replication. *Proceedings of the National Academy of Sciences*, 107(25):11525–11530, 2010.

[13] Joan Steitz, Sumit Borah, Demian Cazalla, Victor Fok, Robin Lytle, Rachel Mitton-Fry, Kasandra Riley, and Tasleem Samji. Noncoding rns of viral origin. *Cold Spring Harbor perspectives in biology*, 3(3):a005165, 2011.

[14] Amiya K Banerjee. Transcription and replication of rhabdoviruses. *Microbiological reviews*, 51(1):66, 1987.

[15] Bryan R Cullen. Viral and cellular messenger rna targets of viral micrornas. *Nature*, 457(7228):421–425, 2009.

[16] Bryan R Cullen. Viruses and micrornas: Riscy interactions with serious consequences. *Genes & development*, 25(18):1881–1894, 2011.

[17] Benjamin R Tenoever. Rna viruses and the host microrna machinery. *Nature Reviews Microbiology*, 11(3), 2013.

[18] David P Bartel. Micrnas: genomics, biogenesis, mechanism, and function. *cell*, 116(2):281–297, 2004.

[19] Michael S Diamond. Mechanisms of evasion of the type i interferon antiviral response by flaviviruses. *Journal of interferon & cytokine research*, 29(9):521–530, 2009.

[20] Katell Bidet, Dhivya Dadlani, and Mariano A Garcia-Blanco. G3bp1, g3bp2 and caprin1 are required for translation of interferon stimulated mrnas and are targeted by a dengue virus non-coding rna. *PLoS pathogens*, 10(7), 2014.
[21] Anjeanette Roberts, Damon Deming, Christopher D Paddock, Aaron Cheng, Boyd Yount, Leatrice Vogel, Brian D Herman, Tim Sheahan, Mark Heise, Gillian L Genrich, et al. A mouse-adapted sars-coronavirus causes disease and mortality in balb/c mice. *PLoS pathogens*, 3(1), 2007.

[22] Marta L DeDiego, Enrique Álvarez, Fernando Almazán, María Teresa Rejas, Elaine Lamirande, Anjeanette Roberts, Wun-Ju Shieh, Sherif R Zaki, Kanta Subbarao, and Luis Enjuanes. A severe acute respiratory syndrome coronavirus that lacks the e gene is attenuated in vitro and in vivo. *Journal of virology*, 81(4):1701–1713, 2007.

[23] Temple F Smith and Michael S Waterman. Comparison of biosequences. *Advances in Applied Mathematics*, 2(4):482–489, 1981.

[24] Saul B Needleman and Christian D Wunsch. A general method applicable to the search for similarities in the amino acid sequence of two proteins. *Journal of molecular biology*, 48(3):443–453, 1970.
Appendices

Tables 2, 3, and 4 show the matches with a score of at least 70% between more than 32,000 RNAs transcribed in the human body and reverse-complement of our proposed svRNAs for Sars-CoV-2. The ones with a high score are likely to be target genes of the corresponding svRNA. The entries of each table are sorted based on the normalized score of the alignment.

Tables 5, 6, and 7 show the matches with a score of at least 80% between our proposed svRNAs and human reference genome. Patch release 13 of build 38 was used for as the reference genome.
Gene ID	Score	Matched Sequence	Loci		
ENSG000000168421	0.94	ATCACCTTCTTCTTCTCAGTC	20		
ENSG000000196218	0.89	ATCACCTTCTTCTTCTTCAGTC	15459		
ENSG000000124440	0.89	ATCACCTTCTTCTTCTTCAGTC	5383		
ENSG000000234545	0.83	ATTCATCTTCTTCTTCATC	1521		
ENSG000000186867	0.83	ATCACCTTCTTCTTCTTCATC	692		
ENSG000000108100	0.83	ATCACCTTCTTCTTCTTCATC	4064		
ENSG00000119632	0.83	ATCACCTTCTTCTTCTTCATC	1524		
ENSG00000168038	0.83	ATCACCTGCTTCTTCTTCATC	5803		
ENSG00000229913	0.83	ATCACCTTCTTCTTCTTCATC	274		
ENSG00000137767	0.78	ATCA-CTTCTTCTTCTTCATC	315		
ENSG00000135902	0.78	ATCACCTTCTTCTTCTTCATC	929		
ENSG00000136758	0.78	ATCAGCCTTCTTCTTCTTCATC	1553		
ENSG00000250448	0.78	ATCACCTTCTTCTTCTTCTTCATC	1192		
ENSG00000105675	0.78	ATCACCATCTTCTTCTTCATC	2635		
ENSG0000013375	0.78	ATCACCTTACTTCTTCTTCATC	6738		
ENSG00000151553	0.78	ATCACCTTCTTCTTCTTCATC	3956		
ENSG00000157388	0.78	ATCACCTTCTTCTTCTTCATC	5845		
ENSG00000173227	0.78	ATCACCTTCTTCTTCTTCATC	10806		
ID	Accession	Score	Sequence 1	Sequence 2	Length
--------	------------	-------	--------------	--------------------	--------
19	ENSG00000163485	0.78	ATCACCTTC-T-TCTTCATC	AT-CACCTTCTTCTTCATC	1300
20	ENSG00000103599	0.78	ATACCTTTCTTCTTCATC	ATCACCTTCTTCTTCATC	5911
21	ENSG00000148935	0.78	TTCACCTTCTTCTTCATC	ATCACCTTCTTCTTCATC	2061
22	ENSG00000106278	0.78	ATCATCTTTCTCTATCATC	ATC-ACCTTCTTTCTTCATC	7929
23	ENSG00000115232	0.78	ATACCTTTCTTCTTCATC	ATCACCTTCTTCTTCATC	1025
24	ENSG00000184083	0.78	ATCTACCTTTCTTCATC	ATCACCTTCTTCTTCATC	4572
25	ENSG00000188687	0.78	ATCACCTTTCTTCTTCATC	ATCACCTTCTTCTTCATC	3941
26	ENSG000000279010	0.78	ACCACCTTCTTCTTCATC	ATCACCT-CTTCTTCTTCATC	4323
27	ENSG000000188352	0.78	ATCACCTTCTTCTTCATC	ATCACCTTCTTCTTCATC	188
28	ENSG00000276460	0.78	ATGCACCTTTCTTCTTCATC	ATCACCTTCTTCTTCATC	685
29	ENSG00000100181	0.78	ATGACCTTTCTTCTTCATC	ATCACCTTCTTCTTCATC	8513
30	ENSG00000081148	0.78	ATCATCTACTTCTTCTTCATC	ATCACCTTCTTCTTCATC	3543
31	ENSG00000173208	0.78	ATCACCTACTTATATTCATC	ATCACCTTCTTCTTCATC	4148
32	ENSG00000116783	0.78	CTACCTCTCTCTCCTTCATC	ATCACCTTCTTCTTCATC	3911
33	ENSG00000237654	0.78	ATCACCTTCTTCAAACCTCCATC	ATCACCTTCTTCTTCATC	1902
34	ENSG00000117834	0.78	AT-ACCTTTCTTCTTCATC	ATCACCTTCTTCTTCATC	703
35	ENSG00000198793	0.78	ATCACCTTCTTCTTCATC	ATCACCTTCTTCTTCATC	3000
	ENSG00000128973	0.78	ATCCCCCTTCTTCCTCATC ATCACCTTCTTCCTCATC		
---	----------------	------	--		
37	ENSG00000118596	0.78	ATCTCCTGCTTCTTCATC ATCACCTTCTTCCTCATC		
38	ENSG00000164778	0.78	ATCACCAACTTCTTCATC ATCACCTTCTTCCTCATC		
39	ENSG0000012660	0.78	A-CACTTTCTTCTTCATC ATCACCTTCTTCCTCATC		
40	ENSG00000138161	0.78	ATCACCTT-TCCTGCATC ATCACCTTCTTCCTCATC		
41	ENSG00000116329	0.78	ATC-TCTTCTTCTTCATC ATCACCTTCTTCCTCATC		
42	ENSG00000237693	0.78	ATCACCTTCTTCTTCATC ATCACCTTCTTCCTCATC		
43	ENSG00000150712	0.78	AGCACCTTCTTCTTCATC ATCACCTTCTTCCTCATC		
44	ENSG00000152932	0.78	ATACAACCTTCTTCTTCATC AT-C-ACCTTCTTCCTCATC		
45	ENSG00000229373	0.78	ATTCAGCCTTCTTCTTCATC A-TCA-C-CTTCTTCCTCATC		
46	ENSG00000146574	0.78	AT-ACCTTCTACTCTTCATC ATCACCTTCTTCCTCATC		
47	ENSG00000198589	0.78	ATCACGTCTTCTTCTTAATC ATCACCTTCTTCCTCATC		
48	ENSG00000107611	0.78	ATCAACKCTTCTACTTCATC ATCACCTTCTTCCTCATC		
49	ENSG00000109501	0.78	CTCACTCTTCTTCTTCATC ATCACCTTCTTCCTCATC		
50	ENSG00000016402	0.78	ATCACCTTCTTATCCATC ATCACCTTCTTCCTCATC		
51	ENSG00000094963	0.78	ATCACCTTCTTCTTCATC ATCACCTTCTTCCTCATC		
52	ENSG00000151067	0.78	ATCTCCATCTTCTTCATC ATCACCTTCTTCCTCATC		
53	ENSG00000183853	0.78	CTCAATCTTCCTTCCTCATC ATCACCTTCTTCCTCATC		
ATCACCTTCTTCTTCATC

54 ENSG00000114841 0.78 ATCACCTTCTTCTTCATC
 ATCACCTTCTTCTTCATC 8495

55 ENSG00000197077 0.78 ATCACCTTCTTCTTCTTGGC
 ATCACCTTCTTCTTCATC 5266

56 ENSG00000083544 0.78 ATCACCTTCTTCTTCTTGC
 ATCACCTTCTTCTTCATC 5611

57 ENSG00000187533 0.78 ATCACCTTCTTCTTCTTCATC
 ATCACCTTCTTCTTCATC 4084

58 ENSG00000147724 0.78 ATC-CCTGTCATTCTTTCATC
 ATCACCTTCTTCTTCATC 719

59 ENSG00000143126 0.78 CTCACCTTCTTCTTCTTCATC
 ATCACCTTCTTCTTCATC 7471

60 ENSG00000185950 0.78 ATCACCTTCTTCTTCTTCATC
 ATCACCTTCTTCTTCATC 1270

61 ENSG00000266885 0.78 CTCACCTTCTTCTTCATC
 ATCACCTTCTTCTTCATC 1963

62 ENSG00000198796 0.78 ATCACCTGCTGTCTTTCATC
 ATCACCTTCTTCTTCATC 9006

63 ENSG00000081059 0.78 ATCACCTGCTGTCTTTCATC
 ATCACCTTCTTCTTCATC 3422

64 ENSG00000091986 0.78 ATCACCTGCTGTCTTTCATC
 ATCACCTTCTTCTTCATC 5768

65 ENSG00000100142 0.78 ATCACCTTCTTCTTCATC
 ATCACCTTCTTCTTCATC 68

66 ENSG00000237921 0.78 ATCACCTTCTTCTTCATC
 ATCACCTTCTTCTTCATC 272

67 ENSG00000074706 0.78 ATCACCTTCTTCTTCATC
 ATCACCTTCTTCTTCATC 3106

68 ENSG00000164418 0.78 ATCACCTTCTTCTTCATC
 ATCACCTTCTTCTTCATC 5587

69 ENSG00000167216 0.78 ATCACCTTCTTCTTCATC
 ATCACCTTCTTCTTCATC 4520

70 ENSG00000257230 0.78 CTACCTTCTTCTTCATC
 ATCACCTTCTTCTTCATC 214
	ENSG00000168329	0.78	ACCGCTTCTTCTTCATC
			ATCACCTTCTTCTTCATC
71			955
	ENSG00000160818	0.78	ATCACCTTCTTCTTCATC
			ATCACCTTCTTCTTCATC
72			399
	ENSG00000089199	0.78	ATCACCTTCTTCTTCATC
			ATCACCTTCTTCTTCATC
73			1384
	ENSG00000166847	0.78	ATGACCTT-TTCTTCATC
			ATCACCTTCTTCTTCATC
74			4221
	ENSG00000259030	0.78	CTCACCTTCTTCTTCATC
			ATCACCTTCTTCTTCATC
75			9070
	ENSG00000231728	0.78	AGTACCTTCTTCTTCATC
			A-TCACCTTCTTCTTCATC
76			1153
	ENSG00000095564	0.78	ATCAGTTCTTCCTTCTTCATC
			ATCA-CCTT-CTTCTTCATC
77			2590
	ENSG00000100714	0.78	ATCACGGATTT-TTCTTCATC
			ATCACCT-TTCTTCTTCATC
78			130
	ENSG00000231216	0.78	CTCATCTCTCTTCTTCATC
			ATCA-CCTT-CTTCTTCATC
79			2111
	ENSG00000231216	0.78	ATCACCTTCTTCTTCATC
			3157
80			5028
	ENSG00000234224	0.78	ATACAACTTCCTTCTTCATC
			AT-CACCTT-CTTCTTCATC
81			8585
	ENSG0000017209	0.78	ATGACCTTC-TTCTTCATC
			ATCACCTTCTTCTTCATC
82			15860
	ENSG00000177200	0.78	ATCATCTTCTTCTTCATC
			ATCACCTTCTTCTTCATC
83			9797
	ENSG00000234224	0.78	TTCACCTTCTTCTTCATC
			ATCACCTTCTTCTTCATC
84			792
	ENSG00000182568	0.78	ATC-TCTTCTTCTTCATC
			ATCACCTTCTTCTTCATC
85			3896
	ENSG00000257964	0.78	ATCACCTTCTTCTTCATC
			321
	ENSG00000251615	0.78	TTCACCTTCTTTCTTCATC
----	----------------	------	---------------------
	ATCACCTTCTTTCTTCATC		
	ENSG00000164185	0.78	ATCATCTTCTTTGTTTCATC
	ATCACCTTCTTTGTTTCATC		
	ENSG00000164185	0.78	A-CACCTTCTTTGTTTCATC
	ATCACCTTCTTTGTTTCATC		
	ENSG00000176783	0.72	ATCACCTTCTTTCTTCATC
	ATCACCTTCTTTCTTCATC		
	ENSG00000226145	0.72	AGCACCTTCTTTCTTCATC
	ATCACCTTCTTTCTTCATC		
	ENSG0000000151413	0.72	ATGAACCTCTTTCTTTTCATC
	ATGAACCTCTTTCTTTTCATC		
	ENSG000000184014	0.72	ATCATC-TCTTCTTTTCATC
	ATCACCTTCTTTCTTCATC		
	ENSG000000244242	0.72	ATCATC-TCTTCTTTTCATC
	ATCACCTTCTTTCTTCATC		
	ENSG000000184014	0.72	ATGAACCTCTTTCTTTTCATC
	ATGAACCTCTTTCTTTTCATC		
	ENSG0000000279675	0.72	ATCCCCCTACTTCTTTTCAGC
	ATCCACCTTCTTTCTTCATC		
	ENSG000000165424	0.72	TTGCACCTTCTTTCTTTATC
	TTGCACCTTCTTTCTTTATC		
	ENSG0000000279675	0.72	ATCCCCCTACTTCTTTTCAGC
	ATCCACCTTCTTTCTTCATC		
	ENSG000000205086	0.72	ATTCACTCATTCTTTCTTTTCATC
	A-TCAC-C-TTC-TTC-TTCATC		
	ENSG000000177058	0.72	CTCACCTTCTTTTGATGC
	ATCCACCTTCTTTCTTCATC		
	ENSG000000238062	0.72	ATCAACCTCTCTTCTTCTTCATC
	ATCAACCTCTCTTCTTCTTCATC		
	ENSG000000135824	0.72	AGCACCTTCTTTCTTTGATC
	ATCACCTTCTTTCTTCATC		
	ENSG000000261371	0.72	ATCACCTTCTTTCTTCATC
	ATCACCTTCTTTCTTCATC		
	ENSG000000274333	0.72	ATCACCTTCTTTCTTCATC
	ATCACCTTCTTTCTTCATC		
	ENSG00000248966	0.72	ATCACCTTCTTTCTCCCCAGTTC
			ATCACCTTCTTTCT-C-A-C
107	ENSG00000179218	0.72	CTCACCTTTCTTTCTCTTC
			ATCACCTTCTTTCT-CATC
108	ENSG00000123243	0.72	ATCACCTTTTTTTTCTCTTC
			ATCACCTTCTTTCTCATC
109	ENSG00000104321	0.72	A-CACCTTCTTTCTTCATC
			ATCACCTTCTTTCT-CATC
110	ENSG00000100150	0.72	AGTC-CCTTTCTTTCTCTTCATC
			A-TCACCTTCTTTCTCATC
111	ENSG00000072041	0.72	AGCACCATTCTTTCTTCATC
			ATCACCTTCTTTCTCATC
112	ENSG00000230894	0.72	AACACCGTTCTCTTTCTCATC
			ATCACCTTCTTTCTCATC
113	ENSG00000086570	0.72	ATCAGACCTTTGACTTTCTCATC
			ATC-A-CCTTTCTTTCTCATC
114	ENSG00000162511	0.72	ATCACCATGCTTTCTTCTCATC
			ATCACCTTCTTTCTCATC
115	ENSG00000099977	0.72	ATAATCC-TCTTTCTTCTCATC
			ATCA-CCTTTCTTTCTCATC
116	ENSG00000270104	0.72	ATCTACCTATCTTGCTTTCTCATC
			ATC-ACCT-TCTTTCT-CATC
117	ENSG00000153822	0.72	A-CACCTTTCTTTCTTCATC
			ATCACCTTCTTTCTCATC
118	ENSG00000236449	0.72	ATCACCATCTTTCTCCACTC
			ATCACCTTCTTTCTTCATC
119	ENSG00000278903	0.72	ATCACCTT-TGTGTCTTCTCATC
			ATCACCTTCTTTCTCATC
120	ENSG00000173705	0.72	ATCGCC-TCTTTCTTCTCATC
			ATCACCTTCTTTCTCATC
121	ENSG00000172215	0.72	AACACCTGCTTTCTTCTCATAC
			ATCACCT-TCTTTCTTCATC-C
122	ENSG00000055609	0.72	ATC-CCTACTTTCTTCAGTC
			ATCACCTTCTTTCTTCATC
123	ENSG00000139174	0.72	ATCTCCTTTCCATTTCTTCTCATC
			ATCTCCTTTCCATTTCTTCTCATC
ID	Ensembl Gene ID	Log2FoldChange	Sequence 1
------	----------------	----------------	------------
124	ENSG00000178607	0.72	ATCACC-TT-C-TTCTTCATC
125	ENSG00000109163	0.72	ATC-ACCT-TCTTCTTCATC
126	ENSG00000179912	0.72	ATCACCTTCTTC-ACTTCATC
127	ENSG00000250220	0.72	ATC-ACCT-TCTTCTTCATC
128	ENSG00000279128	0.72	ATC-ACCT-TCTTCTTCATC
129	ENSG00000088726	0.72	ATCACCTTCTTC-TCTTCTTCATC
130	ENSG00000047579	0.72	ATCACCTTCTTC-TCTTCTTCATC
131	ENSG00000183908	0.72	ATCAACCCTCCTTCTTCTTCATC
132	ENSG00000035862	0.72	ATCACCTTCTTC-TCTTCTTCATC
133	ENSG00000133247	0.72	ATCACCTTCTTC-TCTTCTTCATC
134	ENSG00000154065	0.72	ATCACCTTCTTC-TCTTCTTCATC
135	ENSG00000254541	0.72	ATCACCTTCTTC-TCTTCTTCATC
136	ENSG00000157765	0.72	ATCACCTTCTTC-TCTTCTTCATC
137	ENSG00000143669	0.72	ATCACCTTCTTC-TCTTCTTCATC
138	ENSG00000179841	0.72	ATCACCTTCTTC-TCTTCTTCATC
139	ENSG000000213760	0.72	ATCACCTTCTTC-TCTTCTTCATC
140	ENSG00000137210	0.72	ATCACCTTCTTC-TCTTCTTCATC
	ENSG00000065135	0.72	ATCACCTTTTGTTCCTTCAGC
-------	----------------	------	----------------------
141	ENSG00000181847	0.72	ATCTACCTTTTTCTCAGTTC
142	ENSG00000250383	0.72	ATCCATCTTCTTCTCCATC
143	ENSG00000197852	0.72	TTCACCCATTTCTCTCACGT
144	ENSG00000170374	0.72	ATCACCTTCTCTCTTCTACC
145	ENSG00000106344	0.72	ATC-CACTCTTCTTCATTC
146	ENSG00000185811	0.72	ACTCACACTTCTTCTTCATC
147	ENSG00000130649	0.72	AGTCATCTTCTCTTACTC
148	ENSG00000196935	0.72	ATTCAGCCTTCTATCTGCTAC
149	ENSG00000260073	0.72	ATCACCTTCTGCTCTCCTC
150	ENSG00000249915	0.72	ATGACCTTTTTTCTCATTCT
151	ENSG00000170275	0.72	ATGACCTTCTTCTTCTTCATC
152	ENSG00000145348	0.72	ATCACCTGTCTCTCCTCCTC
153	ENSG00000165629	0.72	TTCTACCTTTTGCTCTTCATC
154	ENSG00000281357	0.72	ATCACCTTCTTCTCTTCATC
155	ENSG00000117472	0.72	ACTCA-GTTCTTCTTCATC
156	ENSG0000099341	0.72	A-CACCTTCTTCTGACATC
	ENSG00000213853	0.72	ATCACCTTCTTCTTCTTCATC
----	----------------	------	-----------------------
159	ENSG00000148600	0.72	ATCATCC-TCTTCTTCATC
160	ENSG00000280548	0.72	ATCACCTATCTTCTCTCA-C
161	ENSG00000258754	0.72	ACCACCTTCGTTCCCTTCATC
162	ENSG00000125538	0.72	AGCACCTTCTTCTTCATC
163	ENSG00000235100	0.72	AT-ACCTTCTTACTT-ATC
164	ENSG00000184154	0.72	ATCATCC-TCTTCTTCATC
165	ENSG00000267767	0.72	ATCCACATTCTTCTCTCATC
166	ENSG00000276077	0.72	ATCACCTT-TTGTTCATC
167	ENSG00000280156	0.72	TTCACCTTCTTCTACCTC
168	ENSG00000175697	0.72	A-CAGCTTCTTCTATCATC
169	ENSG000000259485	0.72	ATCACCTGCCTTCTGCAGCTAC
170	ENSG000000259485	0.72	ATCACCTTGCTTCTGCAGCTAC
171	ENSG00000129467	0.72	ATCACCTTCTCCTCTCCTTC
172	ENSG00000129467	0.72	ATCA-CTTCCATTCCT-ATC
173	ENSG00000158528	0.72	ATC-CCTGCTTCTTCTCTCAATC
174	ENSG000000197157	0.72	ATCACCTTTGGCTTGAGCTAGTT
175	ENSG000000139219	0.72	ATTTCTACCTTCTCTTCATC

23
Gene ID	Score	Region Sequence	Score
ENSG00000153395	0.72	ATCACCTGTTTGCTTTCCCATC	1211
ENSG00000140943	0.72	ATCAACCTCTCTGCTTTTCATC	8498
ENSG00000213676	0.72	TTCACCTCTCTCTTCTTCATC	3305
ENSG00000087460	0.72	ATC-CCTTCTCTCTTGC-TC	155
ENSG00000204160	0.72	ATC-CTCTTCTCTCTCTGTC	552
ENSG00000279006	0.72	ATCACCTTCTCTC-TCATC	1031
ENSG000000185272	0.72	ATTA-CTTCTCTTCTTCATC	720
ENSG00000134444	0.72	ATGCCACCTTCTC-TCATC	1818
ENSG00000196083	0.72	ATCACCTGCTCTCAGC	206
ENSG00000149972	0.72	ATCAACCTTCTTACACTC	8455
ENSG00000161999	0.72	ACTCACCTTCTTCTTCATC	2216
ENSG00000144596	0.72	ATTC-CCTGCTCTTCATC	3428
ENSG00000134243	0.72	ACTCACCTTCTTCTTCATC	7525
ENSG0000007312	0.72	ATCATCC-TCTTCATC	1409
ENSG00000235750	0.72	ATCACACCTCTTCTTTCATC	877
ENSG00000112394	0.72	ATCACCTTCTTTACATC	6666
ENSG00000143294	0.72	ATCACATATCTTATTTCATC	3644

24
ID	ENSG Identifier	Similarity Score	Sequence 1	Sequence 2	Sequence 3
194	ENSG00000105202	0.72	ATCACCTATCTTCTCTCA-C	ATCACCT-TCTT-CT-TCATC	2047
195	ENSG00000115183	0.72	AGCACCGTTCTTC-TCATC	ATCACCT-TCTTCTCCTCATC	2647
196	ENSG00000188283	0.72	ATCATTTCTTTTCTTTCAGCTC	ATCA-CC-TCCTTCTTCA-TCT	684
197	ENSG00000226312	0.72	ATTTACCAACCTTCTTCTTCCCATC	AT-TC-ACCTTCTTTCTTTCATC	886
198	ENSG00000091536	0.72	CTCCTCCTTCTTCTTCTCATC	AT-ACCTT-TCTTCTTCTCTCATC	17565
199	ENSG00000154265	0.72	AT-ACCTT-TCTTCTTCTCATC	ATCACCCTTCTT-CTTCTATC	10718
200	ENSG00000147118	0.72	ATTCAGCCTTTTCTTCTTCTATC	AT-TCACCTTCTTTCTTTCATC	2376
201	ENSG00000232021	0.72	ATCACAACCTTCTTCTTACATC	AT-AC-CTT-CTTCTTCTTCTATC	402
202	ENSG00000169087	0.72	ATCACACTTCTTCTTAC	ATCAC-CTTCTTCTTCTTCTATC	3353
203	ENSG00000154237	0.72	A-CAGCCTTCTTTCTA-TC	ATCA-CCTTCTTCTTCTTCTATC	5809
204	ENSG00000132182	0.72	ATC-CCTCCTTTCTTACAT	ATCACCCTTCTTCTTCTTATC	645
205	ENSG00000260880	0.72	ATC-CCTCATTCTTCAGC	ATCACCCTTCTTCTTCTATC	640
206	ENSG00000153347	0.72	AGTCATCTTCTTTCTTTCATC	ATCACCCTTCTTCTTCTTCATC	2332
207	ENSG00000044446	0.72	ATCAGCCTTTTCTTCCACC	ATCA-CCTTTCTTCTTATC	6802
208	ENSG00000177663	0.72	ATCACCTTAATT-TCACAT	ATCACCTTCTTCTTCTATC	8539
209	ENSG00000144029	0.72	ATCACCTGCTTTCTGCTGCAGTC	ATCACCCTTCTTCTTCTATC	3912
210	ENSG00000131591	0.72	CTCACCTGCTTTCTTCTCATC	ATCACCTTCTTCTTCTATC	1166
ID	ENSG Identifier	Score	Sequence 1	Sequence 2	
----------	--------------------	-------	-----------------------------	---------------------------------	
211	ENSG00000116641	0.72	ATCACCTTCTGTTTCTTCATC	ATCACCTTCTTCTTCATC	
212	ENSG00000282961	0.72	ATCACCATGTTCTATC-TCTATC	ATCCAC-T-TCT-TCTTCTTCATC	
213	ENSG00000277991	0.72	ATCACCTTTGTTCATC	ATCACCTTTCTTCTTCATC	
214	ENSG00000231049	0.72	ATCTCTCTTTTCTTCCTCACTC	A-TCACCTTTCTTCTTCATC	
215	ENSG00000130038	0.72	AGTCA-CTTCTTCTTCAGC	A-TCACCTTTTTCTTCATC	
216	ENSG00000259134	0.72	ATCAGCTATCTTCTATGCTATC	ATCCAC-T-TCTTCTTCATC	
217	ENSG00000253894	0.72	ATC-CCTTCATTCTTCATC	ATCACCTTTCTTCTTCATC	
218	ENSG00000174255	0.72	ATCA-C-TCTGTCTTCATC	ATCACCTTCTTCTTCATC	
219	ENSG00000088387	0.72	ATCATAGCCTGTGCCTTCATC	ATC-A-CCTTCTTCTTCATC	
220	ENSG00000162804	0.72	AT-ACCTTTCTATGCTGCTATC	ATCACCTTCTTCTTCATC	
221	ENSG00000080815	0.72	ATCACCTTTCTTCATCAC	ATCACCTTTCTTCTTCATC	
222	ENSG00000109182	0.72	ATCACCTTTCTTCGTCACC	ATCACCTTTCTTCTTCATC	
223	ENSG00000143322	0.72	AGTGCA-CTTACCTTCTTCATC	A-T-CACCTTTCTTCTTCATC	
224	ENSG00000152705	0.72	ATTCACCATCATCTTCATC	A-TACACCTTTCTTCTTCATC	
225	ENSG00000242715	0.72	ATTCCTACCTT-TCTTCTTCATC	A-T-C-ACCTTTCTTCTTCATC	
226	ENSG00000186847	0.72	AGCACCTTC-TCTTCACTC	ATCACCTTTCTTCTTCATC	
227	ENSG00000035499	0.72	ATCACCTTTTCTTCTTCTTCATC	ATCACCC-T-TCT-TCTTCTTCATC	
228	ENSG00000245937	0.72	ATCACCTTCCCACCTTCATC	ATCACCTTCTTCTTCATC	
Gene ID	Score	Sequence 1	Sequence 2		
--------	-------	------------	------------		
ENSG00000227110	0.72	ATCACCCGTTCTTCTGCACTC	ATCA-CTTCTTTCTTCATC		
ENSG00000165181	0.72	ATCACCTTCTCTTCAATA	ATCACCTTCTTTCTTCATC		
ENSG00000188984	0.72	ATGCCACCTTCTCTCTTCATAC	AT-ACCTTCTTCTTCATC		
ENSG00000126777	0.72	ATACCTTCTCTTCTTCATAC	ATCACCTTCTTTCTTCATC		
ENSG00000155886	0.72	ATGCCACCTTCTCTCTTCATAC	ATACCTTCTTTCTTCATC		
ENSG00000254465	0.72	ACTCACACTTCTTTTCTATCATC	A-TCAC-CTTC-CTTCATC		
ENSG00000175841	0.72	ATCACCTTTCTCTTTCATAC	ATCACCTTCTTTCTTCATC		
ENSG00000112096	0.72	ATCACCTTCTTCTTCATC	ATCACCTTCTTTCTTCATC		
ENSG00000157680	0.72	ATCA-CTTCATT-TTCATC	ATCACCTTCTTTCTTCATC		
ENSG00000081014	0.72	ATCTCTCCTTTCTTCATC	A-TCACCTTCTTTCTTCATC		
ENSG00000169679	0.72	ATCA-TCTTTCTTTCTTCATC	ATCA-C-CTTCTTTCTTCATC		
ENSG00000101096	0.72	ATCACACTTTTCTTTGC-TC	ATCACCTTCTTTCTTCATC		
ENSG00000280145	0.72	ATCACCTT-TGTTCATC	ATCACCTTCTTTCTTCATC		
246 ENSG00000111481 0.72 AT-ACCTCTTCTCTCTTCATC
 ATCA-CTTCTCTTTCATC

247 ENSG00000152061 0.72 ATCACCTGTCTTCTGCGTC
 ATCACCTTCTTCTTCATC

248 ENSG00000154783 0.72 ACTCCCTTTTCTTCTTCTC
 A-TCACCTTTTCTTTCATC

249 ENSG00000235522 0.72 AT-AACTTCTTCTGTCATC
 ATCACCTTCTTCTTCATC

250 ENSG00000174844 0.72 AT-A-CTTCTTCTTCTTCATC
 ATCACCTTCTTCTTCATC

251 ENSG00000153046 0.72 ATCACCTGCTTTCTTCTTCATC
 ATCACCTTCTTCTTTCATC

252 ENSG00000234072 0.72 ATCACCTGCCCTTCTTCAGTC
 ATCACCTTCTTCTTCATC

253 ENSG00000136854 0.72 ATCATCCTTC-TCTACATC
 ATCA-CCTTCTCTTCATC

254 ENSG00000153551 0.72 ATC-CCTTCTACTTCACTC
 ATCACCTTCTTCTTCATC

255 ENSG00000136449 0.72 ATTTACCTTTCTTCTTCAAGTC
 A-TCACCTTTTCTTTCATC

256 ENSG00000231918 0.72 ATC-CCTTCTTTCTTCTTCATC
 ATCACCTTCTTCTTCATC

257 ENSG00000164587 0.72 ACTCCAGCCTTCTCTTCTTCATC
 A-T-CA-CCTTCTTCTTCATC

258 ENSG00000127507 0.72 CTCACC-TCTTCTTCCATC
 ATCACCTTCTTCTTCCATC

259 ENSG00000253355 0.72 ATCCACCTTGCT-TTCCATC
 AT-CACCTTCTTCTTCCATC

260 ENSG00000174197 0.72 ATCTCCTGTCTTCTTTCATC
 ATCACCT-CTTCTTCATC

261 ENSG00000116095 0.72 ATC-CC-TCTATCTCCTCATC
 ATCACCTTCTTCTTCATC

262 ENSG00000179604 0.72 AACAGCCCTTTCTTCTTCATC
 ATCA-CCTTCTTCTTCCATC

263 ENSG00000024862 0.72 AT-ACCCCTTCTTCTTCAGGTC
Gene ID	Value	Sequence 1	Sequence 2	Length	
ENSG00000198569	0.72	ATCA-CCTTCTTCTTCATC	TC	1710	
ENSG00000144792	0.72	ATCACACTTCTCTCTAATC	TC	3422	
ENSG00000091262	0.72	ATCTACC-TCCTCTCATC	ATC-ACCTCTCTCTCATC	236	
ENSG00000149948	0.72	ATCACCTTCTT-TGATATC	TC	12587	
ENSG00000170180	0.72	TTCAACCTTCTTCTCTGTC	ATCACCTCTTTCTCTCA-TC	1575	
ENSG00000160588	0.72	ATCATTTTCTTTCTTCTCATC	ATCACCTTCTTCTTCTCATC	3133	
ENSG00000171827	0.72	ATCACCCTTCTTCTTCATC	ATCACCTTCTTCTTCTCATC	1923	
ENSG00000171827	0.72	AT-ACCTTCTTCTTGCTAT	ATCACCTTCTTCTCTCAT	9217	
ENSG00000138778	0.72	GTCAACCTACGTCTTCTTCTCATC	ATCACCTTCTTCTTCTCAT	1413	
ENSG00000198246	0.72	ATCATCTTTTTTCTTCATC	ATCACCTTCTTCTTCTCAT	474	
ENSG00000224885	0.72	ATCCACCTTCTTCTTCTATGC	ATACCTTCTTCTTCTCATC	2328	
ENSG00000127920	0.72	ATCACCTGCTTCTTTCTGAT	ATCACCTTCTTCTTCTC	2544	
ENSG00000102053	0.72	ACCACCTATCTCTTCTCATC	ATCACCTTCTTCTTCTCAT	91	
ENSG00000154122	0.72	ATCACCT-TCATTCTTCTTATTC	ATCACCTTCTTCTTCTCATC	10325	
ENSG00000115419	0.72	ATTCACACTTCTTCTTCTTC	A-TCAC-CTTCTTCTTCTCAT	5668	
ID	ENSG ID	Score	Matched Sequence	Length	
-------------	-------------------	-------	---------------------------------------	--------	
281	ENSG00000105722	0.72	ATC-CTTCTTTCTTTCTTCTTC	1853	
282	ENSG00000135636	0.72	ATCATCC-TCTTTCTCATCATC	8006	
283	ENSG00000267784	0.72	ATCA-CCTTTCTTCTTC-TC	2064	
284	ENSG00000099958	0.72	ATTCAGCTTCTTCTTCAAC	536	
285	ENSG00000080644	0.72	AT-ACCTTGCTTTCTTACACC	4287	
286	ENSG00000135966	0.72	ATACACCCTC-TCTTCTCATC	4443	
287	ENSG00000147874	0.72	ATCACCTTTCTTTCTTTATGC	7807	
288	ENSG00000215182	0.72	CTCAACCTTTCTTCTCATCATC	1637	
289	ENSG00000140092	0.72	ATCGGCC-TCTTTCTTCTTC	1294	
290	ENSG00000187555	0.72	ATCACTTTATTTTTTCTCATC	7155	
291	ENSG00000103335	0.72	ATCATCC-TCTTTCTTCTCATC	9423	
292	ENSG00000170836	0.72	ATTC-CCTTTCTTTCTTCTTCATC	3027	
293	ENSG00000188649	0.72	AT-ACCTTCCTTTCTTCTTACC	70	
294	ENSG00000141837	0.72	ATCGGCATGCTTTCTTCTCATC	33937	
295	ENSG00000205730	0.72	ATCACCTTTCTCGCTTTCA-C	2027	
296	ENSG00000184277	0.72	AGTCACCTTTCT-TTC-TC	8527	
297	ENSG00000204697	0.72	ATCA-CCTTTCTTCTTCTCATC	636	
298	ENSG00000112137	0.72	ACCACCTT-TTCTTTCCATC	6578	
	ENSG00000169083	0.72	ATCACATGCITTC-TCTTCATC	ATCAC-CTTCTTCTTCATC	4499
---	----------------	------	------------------------	---------------------	------
300	ENSG00000198093	0.72	ATCTTCCCAITTCCTTCCATC	ATC-ACC-CTTCTTCTTCATC	1594
301	ENSG00000280224	0.72	ATCACCATCATCATCATC	ATCACCTTCTTCTCTCATC	883
302	ENSG00000099998	0.72	ATTCACCTTT-TTCATTCATTC	ATC-AC-CTTCTTCTTCATC	1645
303	ENSG00000172269	0.72	ATCATCTCTTTCTGCTTCATC	ATCA-C-CTTCTTCTTCATC	2459
304	ENSG00000275079	0.72	ATCACCTGTTTCTGCTTCATC	ATCACCTTCTTCTTCATC	809
305	ENSG00000171105	0.72	ATCACTTTTTCTCCTGCTTCATC	ATCACCTTCTTCTTCATC	9192
306	ENSG00000131732	0.72	ATCACTCTTT-TCTTCTTCATC	ATCACCTTCTTCTTCATC	1923
307	ENSG00000171094	0.72	ATCACCGTTTTTTCTTCCTCCATC	ATCAC-CTTCTTCTTCATC	2844
308	ENSG00000072657	0.72	ATCTTTCTTTACTCTTCTTCATC	ATC-ACC-CTTCTTCTTCATC	3711
309	ENSG00000248905	0.72	ATCACGTTT TTCTTCTTCATC	ATCAC-CTTCTTCTTCATC	169
310	ENSG00000162337	0.72	ATCATCTCTCTCTCTCGTC	ATCA-CCT-TCTTCTTCATC	4690
311	ENSG00000108387	0.72	ATGACCTTCTCTTTCTCTTCATC	AT-CACCTTCTTCTTCATC	2142
312	ENSG00000088808	0.72	ATGATCTTTCTTCCCTTCATC	ATCA-CTTCTTCTTCATC	8092
313	ENSG00000123643	0.72	ATCA-CTTCTTCTTCTGTA	ATCACCTTCTTCTTCATC	3610
314	ENSG00000117408	0.72	ATCCACCCCTTT-TCTTCTTCATC	AT-CA-CCTTCTTCTTCATC	4760
315	ENSG00000165970	0.72	ATCACCTCTCTTCTTACAAC	ATCAC-CT-TCTTCTTCATC	1729
Number	Gene Identifier	Score	Sequence 1	Sequence 2	
---------	----------------	-------	------------	------------	
316 ENSG00000205060	0.72	ATCACCTTTTCCTTCTTCAGC ATCAC-TC-TTCTTCTCATC	2028		
317 ENSG00000172671	0.72	A-CAGCCTTTCTCTTCTTCATC ATCA-CCTTCTTCTTCTCATC	4096		
318 ENSG00000274286	0.72	ATCACCTTCCTCATTC-TC ATCACCTCTTTC-TTCATC	151		
319 ENSG00000101337	0.72	ATCGAGC-TCTTCTTCATC ATC-ACCTTCTTCTTCTCATC	2186		
320 ENSG00000105409	0.72	ATCACCTTCTT-CTCCACC ATCACCTTCTTCTTCTCATC	1654		
321 ENSG00000029363	0.72	ATCACCTTCTTCTTCCAGTTC ATCACCTTCTTCTC-TCA-TC	4555		
322 ENSG00000160716	0.72	ATCCATCCTT-TTGCTTCTCATC AT-CA-CCTTCTTCTTCTCATC	1909		
323 ENSG00000113073	0.72	ATCAGCC-TCATCTTCTCATC ATCA-CCTTCTTCTTCTCATC	1638		
324 ENSG00000154727	0.72	ATGCACCTTCTCTTCTTATT AT-CA-CCTTCTTCTTCTCATC	3569		
325 ENSG00000080189	0.72	AT-ACCTTCTCATCTCACTC ATCACCTTCTTCTTCTCA-TC	5934		
326 ENSG00000242550	0.72	ATCACCCCATTTCTCTTCTCTCATC ATCA-CC-TCTCTTCTTCTCATC	1755		
327 ENSG00000103222	0.72	AGTCACCTT-TTCTTCCATC AT-TCACCTTCTTCTTCTCATC	3333		
328 ENSG00000146005	0.72	ATC-CACTTCTT-TCATC ATCAC-CTTCTTCTTCTCATC	3102		
329 ENSG00000001626	0.72	CTCAGCCTTCTCTTCTTCTCATC ATCA-CCTTCTTCTTCTCATC	1494		
330 ENSG00000182021	0.72	CTACCTTCTTTGCTTCTTCTCATC ATCACCTTCTTCTTCTCATC	1782		
331 ENSG00000197893	0.72	A-CACTTCTTCTTCTC-TC ATCACCTTCTTCTTCTCATC	1988		
332 ENSG00000177932	0.72	ATCATCCTTCTT-TTCTCATC ATCA-CCTTCTTCTTCTCATC	1074		
333 ENSG00000123007	0.72	ATCACCC-TCTTTTCTTCTCATC	1520		
Gene ID	Score	Sequence 1	Sequence 2	Length	
------------	-------	------------------------------	------------------------------	--------	
ENSG00000212743	0.72	ATCACCTTCTTCTTCATC	ATCACCTTCTTCTTCATC	37	
ENSG00000196923	0.72	ACCACCTTC-TCTTCCATC	A-TCACCTTCTTCTTCATC	408	
ENSG00000179630	0.72	ATCA-CTTCTTCTTGATC	ATCACCTTCTTCTTCATC	1313	
ENSG00000111012	0.72	ATCACCTT-TTCATTTCATC	ATCACCTT-TTCATTTCATC	2656	
ENSG00000132915	0.72	ATCAACCTTCCTTCCATTCA-TC	ATCAACCTTCCTTCCATTCA-TC	6001	
ENSG00000185958	0.72	ATCACCAATCTTCTCTCACTAC	ATCACCAATCTTCTCTCACTAC	6273	
ENSG00000258943	0.72	ATCAAACCTTTATTTCTGTACATC	ATCA-ACTTCTTCTTCTCATC	827	
ENSG00000123066	0.72	ACTCAACCTTCTGTTTACTTCATC	A-TCACCTTCTTCTTCATC	13350	
ENSG00000073803	0.72	ATCTATCCATT-TTCTTCATC	ATC-A-CC-TTCTTCTTCATC	5564	
ENSG00000100395	0.72	AT-ACCCTTC-TCTTCATC	AT-ACCCTTC-TCTTCATC	4962	
ENSG00000100379	0.72	ATCACCTGCTTGGCTTACCTC	ATCACCTTCT-CTTCATC	1323	
ENSG00000118777	0.72	ACCACCTCCTTCTGTCATC	ATCACCTTCTTCTTCATC	2018	
ENSG00000100379	0.72	ATCCACC-TCTTCTTCTTCATC	AT-CACCTTCTTCTTCATC	1613	
ENSG00000066322	0.72	ATGGCACCATCCTTCTTCATGTC	AT-GACACCTTCTTCTTCAT-C	1864	
ENSG00000134909	0.72	ATCGACCCCTCTTCTTCATC	AT-CCACCTTCTTCTTCATC	5069	
ENSG00000061676	0.72	ATCACCTTCTTCTCAGTAAC	ATCACCTTCTTCTTCATC	20776	
ENSG00000280162	0.72	ATC-CCTTCTTGTCTGTACATC	ATCACCTTCT-TCT-TCTCATC	744	
Gene ID	Score	Sequence 1	Sequence 2		
--------------	-------	------------------------------------	----------------------------		
ENSG00000101204	0.72	ATCACCTATGACTCTGATACTC	ATCACCT-T-CTTCTTCATC		
ENSG00000116299	0.72	ATTACCTTCTTTCTTCTTC	ATCACCTTCTTC-TCTCA-TCTC		
ENSG00000165240	0.72	ATCACTCTTGTTATCTCATC	ATCAC-CTTCT-TCTTCA-TC		
ENSG00000221813	0.72	ATCACCATGTCTACTTCATC	ATCACT-T-TCTTCTTC-ATC		
ENSG00000279800	0.72	ATCACCTTCTTCTCCAGTTC	ATCACCTTCTTCTC-TCA-TCTC		
ENSG00000106692	0.72	ATCACTTCTCTCTTCATC	ATCACCTTCTTCTTCA-TCTC		
ENSG00000153317	0.72	CTCACCTTCTTCTTCATC	ATCACCTTCTTCTTCA-TCTC		
ENSG00000114251	0.72	ATCCACCTTCTTTCTTCA-C	AT-ACCTTCTTTCTTCATC		
ENSG00000130939	0.72	ATCATCTTCTTTCTATC	ATCACC-T-TCTTTCTCATC		
ENSG00000146278	0.72	ATCCACCTTCTTCTTCATC	A-TACCTTCTTCTTCATC		
ENSG00000116871	0.72	ATCATCTTCTTCTGATCCATC	ATCACCTTCTTCTTCATC		
ENSG00000153750	0.72	ATCTAGACCTCCTTCTTCATC	ATC---ACCTTCTTCTTCATC		
ENSG00000172493	0.72	ATCTAGACCTCCTTCTTCATC	ATC---ACCTTCTTCTTCATC		
ENSG00000174130	0.72	ATCTAGACCTCCTTCTTCATC	ATC---ACCTTCTTCTTCATC		
ENSG00000160753	0.72	ATCTAGACCTCCTTCTTCATC	ATC---ACCTTCTTCTTCATC		
ENSG00000173331	0.72	ATCTAGACCTCCTTCTTCATC	ATC---ACCTTCTTCTTCATC		
ENSG00000230040	0.72	ATCTAGACCTCCTTCTTCATC	ATC---ACCTTCTTCTTCATC		
	ENSG00000118113	0.72	ATCACCTCTCATCTTACCACC		
			ATCACCTTCTCTCCATC		
---	----------------	------	----------------------		
	ENSG00000159842	0.72	ATCACCTTCTCTTCCTGCTC		
			ATCACCTTCTCTTCATC		
	ENSG00000164106	0.72	ATTCATCTTTTCCTCATC		
			A-TACACTTCTCTTCATC		
	ENSG00000267586	0.72	ATCACCTCTTCTCTTCATC		
			ATCACCTTCTCTTCATC		
	ENSG00000185532	0.72	A-CACCTTCTTATATTTATC		
			ATCACCTTCTCTTCATC		
	ENSG00000215580	0.72	ATCACCTTGCTATCTTCAGTC		
			ATCACCTCTCTCTTCATC		
	ENSG00000085999	0.72	ATCACCTTCGTCTTCCACC		
			ATCACCTTCTCTTCATC		
	ENSG00000105339	0.72	ATCACCTTCTCTTCATC		
			ATCACCTTCTCTTCATC		
	ENSG00000267665	0.72	ATCACCTTTCTTCTTCATC		
			ATCACCTTTCTTCTTCATC		
	ENSG00000231367	0.72	ATCACCTTTCTTCTTCATC		
			ATCACCTTTCTTCTTCATC		

Table 2: Potential target RNAs for svRNA1.
Gene ID	Score	Matched Sequence	Loci
ENSG00000196628	0.86	AGATCTTCTCTTTGCTACTTCTTC	10282
ENSG00000183496	0.82	TATCTTCTCCTGCTCTTCTTC	2447
ENSG00000102290	0.77	AATTCCTTCTTCCTCTTCTTC	1349
ENSG00000174175	0.77	AATCATTCATTCCTTCTCTTCTTC	2614
ENSG00000186104	0.77	ATATCTTGCTCTGCTCTTCTTC	4378
ENSG00000255767	0.77	AATCTTGCTCTTCTCTTCTTC	355
ENSG00000137648	0.73	ACTTCTTCTTCCTTCTCTTCTTC	9396
ENSG00000151532	0.73	AATCTTTCTCTCTTCCTTC	3316
ENSG00000235824	0.73	ATCTTCTTCTTCTTCTTCTTCTTC	43
ENSG00000145012	0.73	AATCGTTACTATCCTTTGACCTTTTCTTC	21971
ENSG00000169484	0.73	AATCTTCTTCTTTGACTT-TAC	497
ENSG00000154262	0.73	AAT-TCCTCTCTCTTCTTC	6729
ENSG00000106588	0.73	AAT-TCTCTCTCTCTTTCTTC	2481
ENSG00000184068	0.73	AATCTTCTGCTCTTTTCTTTCTTC	76
ENSG00000185052	0.73	AGAGCTTCTCTGCTCTCTTCTTC	2676
ENSG00000143669	0.73	AACTCATTTCTCTTCTCTCTTC	15026
ENSG00000189046	0.73	AAT-TCTTTCTTCTCTTTCTTC	1801
ENSG00000230461	0.73	AATCTTTCTTCTTGCTCTTCTTC	2627
AATCTTCTTCTTGCTCTTCTTC

19 ENSG00000185745 0.73 AATC-TCTCTTCTCTCTCGTCCTCTCTTC
 AATCTCTCT-TCT-TGC-CTTTCTCTTC

20 ENSG00000126016 0.73 AAT-TTCTTGCTTTGCTCTCCTCCTTC
 AATCTTCTT-TCT-TGTGCTCTCTTTCTTC

21 ENSG00000144840 0.73 AATCTTCTT-TCTCTCTCCTTC
 AATCTTCTT-TCTCTCTCCTTC

22 ENSG00000170871 0.73 AAGTCTGTTCTTACTCTAGCTCTTCTTC
 AA-TTCTCTTCTCITGCTCTTCTTC

23 ENSG00000188655 0.73 AATC-TCTCTCCTCTCTCTCTTCATTTCTTC
 AATCTTCTTCTCTCTCTCTTCTTC

24 ENSG00000113645 0.73 AATCTCTT-TATCTGCTCTTCTCCTTCTTC
 AATCTTCTT-TATCTGCTCTTCTCCTTCTTC

25 ENSG00000226419 0.73 AA-CTCTGTTCTTGCTCTTCTTC
 AATCTTCTT-TATCTGCTCTTCTCCTTCTTC

26 ENSG00000168314 0.73 AA-CTCTGTTCTTGCTCTTCTTC
 AATCTTCTT-TATCTGCTCTTCTCCTTCTTC

27 ENSG00000221866 0.73 AATATT-TTCTTGCTCTCTTTCTTC
 AATCTTCTTCTTCTCTCTCTCTTCTTC

28 ENSG00000033867 0.73 ATCTCTTCTTTTGCTCTTTCTTCTTC
 A-ATCTTCTTTGCTCTTTCTTCTTC

29 ENSG000000152763 0.73 CTCTTTCTTCTTTCTTCTTCTTCTTC
 AATCTTCTTCTTCTTCTTCTTCTTCTTC

30 ENSG00000114473 0.73 ATTCATTCTTCTTGCTCTTCTTC
 AATCTTCTTCTTCTTCTTCTTCTTCTTC

31 ENSG00000181852 0.73 AGATCTCTTTCTTTGCTTGCTT-TTC
 A-ATCTT-C-TTCTTGTGCTCTTTCTTC

32 ENSG00000117174 0.73 AATCTCTACTCTTTCTTTGCTTGCTT-TTC
 AATCTTCTT-TC-TTGCTCCTTTCTTC

33 ENSG00000247271 0.73 AATCTACCTTCTTCTTTCTTCTTC
 AATCTTCTTCTTCTTCTTCTTCTTCTTC

34 ENSG00000070985 0.73 AGCTCTTCTTCTTTCTTCTTCTTCTTCTTC
 A-ATCTTCTTCTTCTTCTTCTTCTTCTTC

35 ENSG00000133641 0.73 AATATTCTTCTTCTTCTTCTTCTTCTTC
 AATCTTCTTCTTCTTCTTCTTCTTCTTC

37
	ENSG*00000118946		ACTCTGTCCTCCTCCTCCTGCTCTTCTTCATC	
	ENSG*00000181222		AATC-TC-TCTTGCTTTTCTTC	
	ENSG*00000141503		AACCTCTCTGCTGCTTTTCCTTC	
	ENSG*00000089818		AATCTTCTCTTGCTCTTTCTTCTTC	
	ENSG*00000214029		ACATCTTCTCTGGCTTTTCTTC	
	ENSG*00000145362		AATCTTCTTCTGCTCTTTCTTC	
	ENSG*00000235823		AATCTTCTTCTCTGCTCTTTCTTC	
	ENSG*00000175224		TATCTTCTTC-TCTCTTCTTC	
	ENSG*00000151617		AATC-TCTTCTCTGCTCTTCTTC	
	ENSG*00000066427		AATCTTTCTTTCTCTCCTTCCTTC	
	ENSG*00000143437		AATCTTATCTTTTCTCTCTTCCTTC	
	ENSG*00000226688		AATCTCTCTCTCTCTCCCTCCTTC	
	ENSG*00000156738		AATCTTGTCTCTGCTCTTCCTTC	
	ENSG*00000049618		AATCTTCTACTCT-CT-TCTCTTC	

Table 3: Potential target RNAs for svRNA2.
Gene ID	Score	Matched Sequence	Loci
ENSG00000166908	0.84	ACGCTTCTGTGCCCCAGTTCCCT	759
		A-GCTTCTGGCCCCAGTTCCCT	
ENSG00000174243	0.84	AGCTTCTTGCCCCAGTTCCCT	4934
		AGCTTCTGGCCCCAGTTCCCT	
ENSG00000280011	0.84	AGCATCTGGCCCCAGTTCCCT	7953
		AGCTTCTGGCCCCAGTTCCCT	
ENSG000000145685	0.84	AG-TTCTGGCCCCAGTTCCCT	5046
		AGCTTCTGGCCCCAGTTCCCT	
ENSG00000008710	0.79	AGCTTCTGGCCCCAGTTCCCT	14664
		AGCTTCTGGCCCCAGTTCCCT	
ENSG00000179698	0.79	AGCTTCTGGCCCCAGTTCCCT	3729
		AGCTTCTGGCCCCAGTTCCCT	
ENSG00000198722	0.79	ACGCTTCTGTGCCCCAGTTCCCT	1093
		A-GCTTCTGTGCCCCAGTTCCCT	
ENSG00000131979	0.79	AGCTTCTGGCCCCAGTTCCCT	2034
		AGCTTCTGGCCCCAGTTCCCT	
ENSG00000254401	0.79	AGCTTCTGGCCCCAGTTCCCT	1539
		AGCTTCTGGCCCCAGTTCCCT	
ENSG00000071246	0.79	AGCTTCTGGCCCCAGTTCCCT	260
		AGCTTCTGGCCCCAGTTCCCT	
ENSG00000142698	0.79	AGCTTCTGTGCCCCAGTTCCCT	1122
		AGCTTCTGGCCCCAGTTCCCT	
ENSG00000237945	0.79	AGCTTCTGGCCCCAGTTCCCT	7297
		AGCTTCTGGCCCCAGTTCCCT	
ENSG00000246582	0.79	AGCTTCTGGCCCCAGTTCCCT	528
		AGCTTCTGGCCCCAGTTCCCT	
ENSG00000223651	0.79	AGCTTCTGTGCCCCAGTTCCCT	1184
		AGCTTCTGTGCCCCAGTTCCCT	
ENSG00000136002	0.79	AGCTTCTGGCCCCAGTTCCCT	1439
		AGCTTCTGGCCCCAGTTCCCT	
ENSG00000268926	0.79	AGCTTCTGTGCCCCAGTTCCCT	1670
		AGCTTCTGTGCCCCAGTTCCCT	
ENSG00000173846	0.79	AGCTTCTGTGCCCCAGTTCCCT	1765
		AGCTTCTGTGCCCCAGTTCCCT	
ENSG00000167792	0.79	AGCTTCTGTGCCCCAGTTCCCT	871
		AGCTTCTGTGCCCCAGTTCCCT	
AGCTTCTGGCCCAGTTCCT			
19 ENSG00000162779 0.79 AGCTTCT-GCCCCAGTCCT			
AGCTTCTGGCCCAGTTCCT			
20 ENSG00000173020 0.79 AGCTTTGTAGGCCTCACTTTCCT			
AGCTTCT-GGCC-CAGTTCCT			
21 ENSG00000178425 0.79 AGCTT-T-GCCCAGTTCCT			
AGCTTCTGGCCCAGTTCCT			
22 ENSG00000165757 0.79 AGACTTCTGGTGGCCCAGTTCCT			
AGCTTCTGGTGGCCCAGTTCCT			
23 ENSG00000077942 0.79 AGCTTCTGGTGGCCCAGTTCCT			
AGCTTCTGGTGGCCCAGTTCCT			
24 ENSG00000115539 0.79 ACGCTTCTGTGCCTCAGTTCCT			
AGCTTCTGGTGGCCCAGTTCCT			
25 ENSG00000139637 0.79 AGCTGCTGGCCCAGTTCCT			
AGCTTCTGGTGGCCCAGTTCCT			
26 ENSG00000127481 0.79 GGCTTCTGGCCCAGTTCCT			
AGCTTCTGGTGGCCCAGTTCCT			
27 ENSG00000142230 0.79 AGCTTCTGGCAGTTCCT			
AGCTTCTGGTGGCCCAGTTCCT			
28 ENSG00000118729 0.79 AGCTTCTGGCAGTTCCT			
AGCTTCTGGTGGCCCAGTTCCT			
29 ENSG00000171658 0.74 AGCTTCTGGCAGTTCCT			
AGCTTCTGGCAGTTCCT			
30 ENSG00000171658 0.74 AGCTTCTGGCAGTTCCT			
AGCTTCTGGCAGTTCCT			
31 ENSG0000015802 0.74 AGCTTCTGGCAGTTCCT			
AGCTTCTGGCAGTTCCT			
32 ENSG00000134184 0.74 AGCTTCTGGCAGTTCCT			
AGCTTCTGGCAGTTCCT			
33 ENSG00000239213 0.74 AGCTTCTGGCAGTTCCT			
AGCTTCTGGCAGTTCCT			
34 ENSG00000176473 0.74 AGCTTCTGGCAGTTCCT			
AGCTTCTGGCAGTTCCT			
35 ENSG00000084693 0.74 AGCTTCTGGCAGTTCCT			
AGCTTCTGGCAGTTCCT			
	ENSG00000107537	0.74	AGCTTACTGCGGCCTCAAGTTCCT 1294
---	---	---	---
	ENSG00000104613	0.74	AGCTTCT-C-CCCCAGTCTCCT 6185
	ENSG00000072134	0.74	AGCTTGGCTAGCCAAAGTTCCT 631
	ENSG00000164591	0.74	AGCCTCTGGCTCCAGCTCCT 317
	ENSG00000256166	0.74	AGCTTCCC-TAGCCCAAGTTCCT 179
	ENSG00000185829	0.74	AGCCT-TGGCCCAGTGCCT 4968
	ENSG00000007312	0.74	AGCCTGTGGCCCAAGTTCCT 344
	ENSG00000137496	0.74	AGCTTGTGTGGCCCAAGTTCCT 304
	ENSG00000111678	0.74	ATGCTTCTGGGCAGTGCCT 934
	ENSG00000127561	0.74	GGCTTCC-TGGCCCAGTCCCT 3053
	ENSG00000197563	0.74	TGCTGTGTGGCCCAGTTCCT 12631
	ENSG00000158292	0.74	AGCCTGCTGGCCAGTTCCCT 3407
	ENSG00000184640	0.74	AGC-TCTG.TGGCCAGTTCCCT 1977
	ENSG00000185038	0.74	AGCTTCTGGCCCAAGTTCCT 2163
	ENSG00000240891	0.74	AGCTTCTGGCCCAAGTTCCT 6415
	ENSG00000131871	0.74	AGCTTACTGCGGCCTCAAGTTCCT 1261
	Protein ID	Confidence	Sequence 1
----	--------------------	------------	---------------------
54	ENSG00000138073	0.74	AGCTTCTGGCCAGTTTCCCT
55	ENSG00000078808	0.74	AGCTCTCTGTCGCGCCGAGTTCATCT
56	ENSG00000197056	0.74	AGCTATCTGAGCCCGAGTTCATCT
57	ENSG00000168350	0.74	ATG-CTTCTGGCCAGTTTCCCT
58	ENSG0000004777	0.74	AGCTCTCTGTCGCGCCGAGTTCATCT
59	ENSG0000010803	0.74	CGTCTTCTTGGGCAAGTTCATCT
60	ENSG00000158786	0.74	ACGTCTTTTAAGCCCGAGTTCATCT
61	ENSG00000279072	0.74	AGCTTTTTTTGCCCCAGTTTCCCT
62	ENSG0000017920	0.74	AGCTTCTTGTCGCGCCGAGTTCATCT
63	ENSG00000175215	0.74	AGCTTCTTGTCGCGCCGAGTTCATCT
64	ENSG00000229847	0.74	AGCTTTTTTTGCCCCAGTTTCCCT
65	ENSG00000072501	0.74	ACCTTCTGTGCGCAGTTTCCCT
66	ENSG00000276805	0.74	AGCTTCTGTGCGCAGTTTCCCT
67	ENSG00000203685	0.74	AGCTTCTGTGCGCAGTTTCCCT
68	ENSG00000112541	0.74	TGGCTTCTGAGGCCCAAGTTTCCCT
69	ENSG00000167972	0.74	AGCTTCTGTGCGCAGTTTCCCT
70	ENSG00000133961	0.74	AGCTTCTGTGCGCAGTTTCCCT
71 ENSG00000257431 0.74 AGC-T-TGCCACCCAGTTTCACT
AGCTTTCTGGC-CCAGTTTCTT

72 ENSG00000185361 0.74 AGCTTCTCTGCTCAGTTTCCC
AGCTTCT-TGCCAGTTTCTT

73 ENSG00000166340 0.74 AGC-CTGTGCCCAGTTCCT
AGCTTCTCTGCCCAGTTCCT

74 ENSG00000120053 0.74 AGTTCCTCTGTGTGCCAGTTTCT
AG-CTCTCTGCCCAGTTCCT

75 ENSG00000242852 0.74 AAGGCTTTCAGTTGGCCCAGTTTCT
A-GC-TTCATGCCAGTTTCTT

76 ENSG00000168795 0.74 AGCTTTGTGCGCCAGTTTCT
AGCTTCTCTGCCCAGTTCCT

77 ENSG00000257060 0.74 AGCTTCTCTGCCCAGTTCCT
AGCT-TCTGCCCAGTTCCT

78 ENSG00000107021 0.74 AGCTGTATGCTGCCCAGTTCCT
AGCT-TCTGCCCAGTTCCT

79 ENSG00000230724 0.74 AGC-CTTCTTGGCCCAGTTTCT
AGC-TCTTCTGCCCAGTTCCT

80 ENSG00000197046 0.74 AAGGCTTTCCTGTCCCAGTTTCT
A-GCTTCTCTGCCCAGTTCCT

81 ENSG00000116698 0.74 AGCTCATCTGTTCCCAGTTTCT
AG-CTCTCTGCCCAGTTCCT

82 ENSG00000150961 0.74 AAGGCTTTCCTGTCCCAGTTTCT
A-GCTTCTCTGCCCAGTTCCT

83 ENSG00000137504 0.74 AGGCTTCTGCCCAGTTTCT
AGCTTCTCTGCCCAGTTCCT

84 ENSG00000123938 0.74 AGCTTCTGCCCAGTTTCT
AGCTTCTCTGCCCAGTTCCT

85 ENSG00000137504 0.74 AGGCTTCTGCCCAGTTTCT
AGCTTCTCTGCCCAGTTCCT

86 ENSG00000137504 0.74 AGGCTTCTGCCCAGTTTCT
AGCTTCTCTGCCCAGTTCCT

87 ENSG00000137504 0.74 AGGCTTCTGCCCAGTTTCT
AGCTTCTCTGCCCAGTTCCT

88 ENSG00000137504 0.74 AG-CTTCTGCCCAGTTTCT
AGCTTCTCTGCCCAGTTCCT

43
Gene ID	Score	Sequence 1	Sequence 2	Length
ENSG0000015592	0.74	AGCTTCTGGCCCA-G-TTC-CT	AG-CT-TCTCTGTGCCTTCAGTTTCCT	1774
ENSG00000186469	0.74	AGC-CTTTGGCCCACTCAGTTTCCT	AGCTTC-TGGCCCACTCAGTTTCCT	2335
ENSG00000103148	0.74	AGCTTCTGCTGAGCCCACTCAGTTTCCT	AG-C-TCTCTGGCCCACTCAGTTTCCT	5486
ENSG00000272556	0.74	AGCCTTTTTGGCCCACTCAGTTTCCT	AGC-TCTCTGGCCCACTCAGTTTCCT	3440
ENSG00000253326	0.74	AGCCTTTTTTTGGCCCACTCAGTTTCCT	AGC-TCTCTGGCCCACTCAGTTTCCT	4
ENSG00000165816	0.74	AGCTTTTTGGCCCACTCAGTTTCCT	AGCTTTTTTTGGCCCACTCAGTTTCCT	690
ENSG00000183242	0.74	AGCTTTTTGGCCCACTCAGTTTCCT	AGCTTTTTTTGGCCCACTCAGTTTCCT	1576
ENSG00000178187	0.74	AGCTTTTTGGCCCACTCAGTTTCCT	AGCTTTTTTTGGCCCACTCAGTTTCCT	484
ENSG000000108219	0.74	AGCTTTTTGGCCCACTCAGTTTCCT	AGCTTTTTTTGGCCCACTCAGTTTCCT	12861
ENSG00000263072	0.74	AGCTTTTTGGCCCACTCAGTTTCCT	AGCTTTTTTTGGCCCACTCAGTTTCCT	2448
ENSG00000237424	0.74	AGCTTTTTGGCCCACTCAGTTTCCT	AGCTTTTTTTGGCCCACTCAGTTTCCT	2295
ENSG000000263072	0.74	AGCTTTTTGGCCCACTCAGTTTCCT	AGCTTTTTTTGGCCCACTCAGTTTCCT	3482
ENSG000000108219	0.74	AGCTTTTTGGCCCACTCAGTTTCCT	AGCTTTTTTTGGCCCACTCAGTTTCCT	1058
ENSG00000143355	0.74	AGCTTTTTGGCCCACTCAGTTTCCT	AGCTTTTTTTGGCCCACTCAGTTTCCT	1271
ENSG00000198911	0.74	AGCTTTTTGGCCCACTCAGTTTCCT	AGCTTTTTTTGGCCCACTCAGTTTCCT	1937
ENSG00000125637	0.74	AGCTTTTTGGCCCACTCAGTTTCCT	AGCTTTTTTTGGCCCACTCAGTTTCCT	8161
ENSG00000241973	0.74	AGCTTTTTGGCCCACTCAGTTTCCT	AGCTTTTTTTGGCCCACTCAGTTTCCT	7916
ENSG ID	Score	Sequence 1	Sequence 2	
---------	-------	------------	------------	
ENSG00000092068	0.74	AGCATTGGCTGAAGCCCAGTTCCT	AGC-TT-CTG-GCCCAGTTCCT	
ENSG00000251143	0.74	AGCTTTCTGGCCCTAGCTTCCT	AGCTTCTGGCCCAGTTCCT	
ENSG00000188612	0.74	AACTTCCTGAGCTTCCCT	AGCTTCTGGCCAGTTCCT	
ENSG00000188039	0.74	AGCCTTCTGTCCCA-TTCCT	AGCTTCTGGCCCAGTTCCT	
ENSG00000225465	0.74	AGCTT-GGGCTCCAGTTCCT	AGCTTCTGGCCCAGTTCCT	
ENSG00000064999	0.74	AGC-TGTGTGCCCAGTTCCT	AGCTTCTGGCCCAGTTCCT	
ENSG00000150995	0.74	ACCTTCTGGCCCTGAGCTTCCT	AGCTTCTGGCCCAGTTCCT	
ENSG00000226995	0.74	AGTTTCTGGCCTCAGGTCCT	AGCTTCTGGCCCAGTTCCT	
ENSG00000279141	0.74	AGCATCTGGGACCCCAGTTCCT	AGCTTCTGGCCCAGTTCCT	
ENSG00000279440	0.74	AGTCCCTCTGGCCCTAGTTCCT	AGCTTCTGGCCCAGTTCCT	
ENSG00000233837	0.74	A-CTTCTGGCCCCAAGTTCCT	AGCTTCTGGCCCAGTTCCT	
ENSG00000230590	0.74	AGACTTCTGGCCTCAAGTAATCCT	AGCTTCTGGCCCAGTTCCT	
ENSG00000060718	0.74	ATGCTTTCTGGCCTACAGTTCCT	AGCTTCTGGCCCAGTTCCT	
ENSG00000170322	0.74	AGTTTTCTGGCCCCAGTTCCT	AGCTTCTGGCCCAGTTCCT	
ENSG00000182010	0.74	AGCTTTCTGGGGTGCTTCAT	AGCTTCTGGCCCAGTTCCT	
ENSG00000148187	0.74	AGCTTCTGTGCCCAGTTCCT	AGCTTCTGGCCCAGTTCCT	
ENSG00000130830	0.74	AGCCTTCTGGCCCAGGTTTCCT	AGCTTCTGGCCCAGTTCCT	
ENSG00000228327	0.74	AGCCTTTTTTGCCAGTTCCT	AGCTTCTGGCCCAGTTCCT	

45
AG-C-TTCTGGCCCAGTTCCT

124 ENSG0000029433 0.74 AGCCTCTCTGCGCCGCAGTTCCCT
AG-CT-TCTG-GCC-CAGTT-CCT 748

AG-CT-TCTG-GCC-CAGTT-CCT

125 ENSG00000101203 0.74 AGGCTTCTGAGCCCCAAGTTGCCT
A-GCTTCTG-G-CCC-AGTT-CCT 601

AG-C-TTCTGGCCCAGTTCCT

126 ENSG00000149809 0.74 AGCCTGAGGCCCAGTTCCCT
AG-CTTCTGGCCCAGTTCCCT 2273

AG-CTTCTGGCCCAGTTCCT

127 ENSG00000283050 0.74 AGCCTTTTTTGCCCCAGTTCCCT
AG-C-TTCTGGCCCAGTTCCCT 4237

AGCTTCTGG–CCC-AGTTCCT

128 ENSG00000256028 0.74 AGC-TCTGGCCCGAGTTCCCT
AGCTTCTGG–CCC-AGTTCCT 241

AG-CTTCTGGCCCAGTTCCT

129 ENSG00000164073 0.74 ATTCATCTGGCCCAGTTCCT
A-GCTTCTGGCCCAGTTCCCT 5201

AG-CTTCTGGCCCAGTTCCT

130 ENSG00000237438 0.74 AGCCTTCTGGCCCCAGTTCCCT
AG-CTTCTGGCCCAGTTCCCT 2347

AGCTTCTGGCCCAGTTCCT

131 ENSG00000119772 0.74 AGCTTCTGGCCCCAGTTCCCT
AG-CTTCTGGCCCAGTTCCCT 6769

AGCTTCTGGCCCAGTTCCT

132 ENSG00000256028 0.74 AGC-TCTGGCCCGAGTTCCCT
AGCTTCTGG–CCC-AGTTCCT 241

AGCTTCTGGCCCAGTTCCT

133 ENSG00000164073 0.74 ATTCATCTGGCCCAGTTCCT
A-GCTTCTGGCCCAGTTCCCT 5201

AGCTTCTGGCCCAGTTCCT

134 ENSG00000168765 0.74 AGTCTTCTG-CCCAATTCCT
AG-CTTCTGGCCCAGTTCCCT 1005

AGCTTCTGGCCCAGTTCCT

135 ENSG00000172819 0.74 AGCTAC-GGCCCAGTTCCCT
AGCTTCTGGCCCAGTTCCCT 915

AGCTTCTGGCCCAGTTCCT

136 ENSG00000168765 0.74 AGTCTTCT-GCCCAATTCCT
AG-CTTCTGGCCCAGTTCCCT 1005

AGCTTCTGGCCCAGTTCCT

137 ENSG00000149091 0.74 AGCTAC-GGCCCAGTTCCCT
AGCTTCTGGCCCAGTTCCCT 915

AGCTTCTGGCCCAGTTCCT

138 ENSG00000214837 0.74 AGCCTTTTTGCCCCAGTTCCCT
AG-C-TTCTGGCCCAGTTCCCT 3757

AGCTTCTGGCCCAGTTCCCT

139 ENSG00000168939 0.74 AGC-TCT-GCCCCAGTTCT
AGCTTCTGGCCCAGTTCCCT 3687

AGCTTCTGGCCCAGTTCCCT

140 ENSG00000178188 0.74 AGCTGCTCTGGCCCCAG-TTCT
AGCT-TCTGG–CCCAGTTCCCT 2194

46
	ENSG00000164855	0.74	AGCCTCTCCTGGCCTCAGTATCCT	AG-CT-T-CTGGCC-CAGT-TCCT	5633
	ENSG00000260404	0.74	AGCCTTTTTTGGCCCCAGTTCCT	AG-C-TTCTGGCCCAGTTCCT	2012
	ENSG00000228696	0.74	AGCTT-GGCCCCAGTGCCCT	AGCTTCTGGCCCAGTTCCT	3341
	ENSG00000205176	0.74	AGACTGCTGGCCCCAGTTCCT	AG-CTTCTGGCCCAGTTCCT	6432
	ENSG00000111325	0.74	AGC-TCTGGCCGCCCAGTTCCT	AGCTTCTGG-CCC-AGTTCCT	1749
	ENSG00000174405	0.74	AGTCCTTCTGCGCCAGCTCCG	AG-CTTCTGGCCAGTTCCT	206
	ENSG00000177084	0.74	CGCTCTCTGGCCCCAGTCAGCT	AGCT-TCTGGCCCAGTTC-CT	9130
	ENSG00000171700	0.74	AGCTGGCTGGCCCCAGTGCCTC	AGCT-TCTGGCCCAGTTC-CT	1605

Table 4: Potential target RNAs for svRNA3 (truncated version).
Gene ID	Score	Matched Sequence	Loci			
NC000002.12	0.89	GAGGAAGAAGAAGGTGAT	134222364			
chr2		GATGAAGAAGAAGGTGAT				
NC000003.12	0.89	GATAAAGAAGAAGGTGAT	62430918			
chr3		GATGAAGAAGAAGGTGAT				
NC000012.12	0.89	GATGCAAGATAGAAGGTGAT	43685381			
chr12		GATG-AAGA-AGAAGGTGAT				
NC000012.12	0.89	GAT-AAGAAGAAGGTGAT	22739819			
chr12		GATGAAGAAGAAGGTGAT				
NC000007.14	0.89	GATGAATGAAGAAGGTGAT	690091			
chr7		GATGAA-GAAGAAGGTGAT				
NC000007.14	0.89	GATGAAGAAGAAGGTGAT	5993096			
chr7		GATGAA-GAAGAAGGTGAT				
NC000011.10	0.89	GATG-AGAAGAAGGTGAT	33698282			
chr11		GATGAAGAAGAAGGTGAT				
NC000015.10	0.89	GAAGAAGAAGAAGGTGAT	13363820			
chr15		GATGAAGAAGAAGGTGAT				
NC000015.10	0.89	GAAGAAGAAGAAGGTGAT	5648009			
chr15		GATGAAGAAGAAGGTGAT				
NC000006.12	0.89	GAAGAAGAAGAAGGTGAT	39349582			
chr6		GATGAAGAAGAAGGTGAT				
NC000003.12	0.89	GATGATAGAAGACAGGTGAT	38020582			
chr3		GATGA-AGAAGA-AGGTGAT				
NC000003.12	0.89	GATGAAGAAAGAAGGTGAT	52630276			
chr3		GATGAA-GAAGAAGGTGAT				
NC000004.12	0.89	GATGAAAGAAGG-GAT	88689121			
chr4		GATGAAGAAGAAGGTGAT				
NC000003.12	0.89	GATGAAG-AGAAGGTGAT	96774073			
chr3		GATGAAGAAGAAGGTGAT				
NC000006.12	0.89	GATCAAGAAGAAGGTGAT	68689908			
chr6		GATGAAGAAGAAGGTGAT				
NW021160000.1	0.83	GATGTAGAAGACAGGTGAT	376177			
chr10	patch	GATGAAGAAGAAGGTGAT				
FIX		GATGAAGAAGAAGGTGAT				
NC000009.12	0.83	GATGCAAGAAGACAGGTGAT	5316996			
chr9		GATGAAGAAGAAGGTGAT				
	Accession	Chromosome	Position	% Similarity	Sequence A	Sequence B
---	-----------	------------	----------	--------------	------------	------------
18	NC000009.12 chr9	0.83	GATGAAGAAGGAAGGTGGT GATGAAGAA-GAAGGTGAT	17792287		
19	NC000009.12 chr9	0.83	GATGCAGAAGACAGGTGAT GATGAAGAAGA-AGGTGAT	39264386		
20	NW012132919.1 chr7 patch FIX	0.83	AATGAAGAAGACAGGTGAT GATGAAGAAGA-AGGTGAT	106833		
21	NW018654717.1 chr8 patch FIX	0.83	GATGAAGAAGAGGGTGAT GATG-AAGAAGAAGGTGAT	3239611		
22	NC000008.11 chr8	0.83	GATGCAGAAGACAGGTGAT GATGAAGAAGA-AGGTGAT	20240737		
23	NC000008.11 chr8	0.83	GAGTGAAGAATGAAGGTGATCAT GA-AGAAGAA-GAAGGTGAT	23109525		
24	NC000008.11 chr8	0.83	GAT-AAGAAGAGGTGAT GATGAAGAAGA-AGGTGAT	29218614		
25	NC000008.11 chr8	0.83	GA-GAAGAAGAGCCGTGAT GATGAAGAAGAAGGTGAT	29390573		
26	NC000008.11 chr8	0.83	GATGCAGAAGACAGGTGAT GATGAAGAAGA-AGGTGAT	36287121		
27	NC000008.11 chr8	0.83	GATGAAGCCAAGAAGGTGAT GATGAAGAAGAAAGGTGAT	48086402		
28	NC000008.11 chr8	0.83	GATGAAGAAGGAAGGTACAGAT GATGAAGAAGAAGGTGAT	49093880		
29	NC000002.12 chr2	0.83	GATGAAGAAGAAATGGTGAT GATGAAGAAGAAGGTGAT	132283207		
30	NC000006.12 chr6	0.83	GATGAAGAATGAAGTTGAT GATGAAGAAGAAGGTGAT	11193208		
31	NC000006.12 chr6	0.83	GATGGGAGGAGGAAGGTGAT GAT-GA-AGAAGAAGGTGAT	12861402		
32	NC000006.12 chr6	0.83	GATGCAGAAGACAGGTGAT GATGAAGAAGA-AGGTGAT	20151370		
33	NC000006.12 chr6	0.83	GATGATAGAAGAGGTTGAT GATGA-AG-AAGAAGG-TGAT	20163463		
34	NC000006.12 chr6	0.83	GATGCAGAAGACAGGTGAT GATGAAGAAGA-AGGTGAT	21271973		
ID	Chromosome	Start	End	Sequence		
--------	------------	-------	-------	---------------------------		
35	NC000005.10 chr5	0.83	GAAAGAAGAAGGTGAAT GATGAAGAAGAAGGTGAT	22996338		
36	NC000006.12 chr6	0.83	GATGAAGAATGAAAGTTTGAT GATGAAGAAGAAGGTGAT	23465955		
37	NC000005.10 chr5	0.83	GATGAAGAAGAAGGTGAT GATGAAGAAGAAGGTGAT	8462537		
38	NC000005.10 chr5	0.83	GATGAAGAAGAAGGTGAT GATGAAGAAGAAGGTGAT	7721853		
39	NC000006.12 chr6	0.83	GATGAAGAAGAAGGTGAT GATGAAGAAGAAGGTGAT	24455160		
40	NC000006.12 chr6	0.83	GATGAAGAAGAAGGTGAT GATGAAGAAGAAGGTGAT	28251421		
41	NC000005.10 chr5	0.83	GATGAAGAAGAAGGTGAT GATGAAGAAGAAGGTGAT	6331339		
42	NC000009.12 chr9	0.83	GATGAAGAAGAAGGTGAT GATGAAGAAGAAGGTGAT	4019042		
43	NC000011.10 chr11	0.83	GATGAAGAAGAAGGTGAT GATGAAGAAGAAGGTGAT	7591884		
44	NC000011.10 chr11	0.83	GATGAAGAAGAAGGTGAT GATGAAGAAGAAGGTGAT	32927191		
45	NC000014.9 chr14	0.83	GATGAAGAAGAAGGTGAT GATGAAGAAGAAGGTGAT	19059994		
46	NC000002.12 chr2	0.83	GATGAAGAAGAAGGTGAT GATGAAGAAGAAGGTGAT	10699700		
47	NC000002.12 chr2	0.83	GATGAAGAAGAAGGTGAT GATGAAGAAGAAGGTGAT	23878256		
48	NC000002.12 chr2	0.83	GATGAAGAAGAAGGTGAT GATGAAGAAGAAGGTGAT	30292923		
49	NC000002.12 chr2	0.83	GATGAAGAAGAAGGTGAT GATGAAGAAGAAGGTGAT	33544254		
50	NC000002.12 chr2	0.83	GATGAAGAAGAAGGTGAT GATGAAGAAGAAGGTGAT	36195723		
51	NC000002.12 chr2	0.83	GATGAAGAAGAAGGTGAT GATGAAGAAGAAGGTGAT	41776674		
52	NC000002.12 chr2	0.83	GATGAAGAAGAAGGTGAT GATGAAGAAGAAGGTGAT	44826227		
Position	Accession	Chromosome	Identity	Sequence 1	Sequence 2	
----------	-----------	------------	----------	------------	------------	
53	NC000002.12 chr2	chr2	0.83	GATGAAGAAGA-AGGTGAT	GATG-AAG-AAGA-AGGTGAT	
54	NC000002.12 chr2	chr2	0.83	GATGAAGAAG-AGGTGAGT	GATGAAGAAGAAGGTGAGT-T	
55	NC000001.11 chr1	chr1	0.83	GATGAAGAAGGACAGGTGAGT	GATGAAGAA-GA-AGGTGAGT-T	
56	NC000001.11 chr1	chr1	0.83	GAGTGAAGGAAGAAAGGTGAT	GA-TGAA-GAAG-AAGGTGAT	
57	NC000001.11 chr1	chr1	0.83	GAATGAAGGAAGAAAGGTGAT	G-ATGAA-GAA-GAAGGTGAT	
58	NC000014.9 chr14	chr14	0.83	GATAGAAGATAGAAAGGTGAGT	GAT-GAAGAAGG-AAGGTGAT	
59	NC000014.9 chr14	chr14	0.83	GATGAAGAAGGAGGTGAT	GATGAAGAA-GAAGGTGAT	
60	NC000014.9 chr14	chr14	0.83	GATGCAGAAGACAGGTGAT	GATGAAGAAGAAGGTGAT	
61	NC000011.10 chr11	chr11	0.83	GATGAAGAATAAGGTGTAT	GATGAAGAAGAAGGTGAT-AT	
62	NC000014.9 chr14	chr14	0.83	GATGATAGATAGATAGGTGAT	GATGA-AGA-AGA-AGGTGAT	
63	NC000014.9 chr14	chr14	0.83	GATGTAGAAGCAGGTGAT	GATGAAGAAGAAGGTGAT	
64	NC000014.9 chr14	chr14	0.83	GAATGAAGAAGTAGGTGAT	G-ATGAA-GAA-GAAGGTGAT	
65	NC000014.9 chr14	chr14	0.83	GATGAAGTAGGAAGGTGAT	GATGAAGAAGAAGGTAAGGTGAT	
66	NC000014.9 chr14	chr14	0.83	GATGAAGATAGGAGGTGAT	GATGAAGAAGAAGGTGAT	
67	NC000014.9 chr14	chr14	0.83	GATGAAGATAGGAGGTGAT	GATGAAGAAGAAGGTGAT	
68	NC000012.12 chr12	chr12	0.83	GATGCAGAAGACAGGTGAT	GATGAAGAAGAAGGTGAT	
69	NC000012.12 chr12	chr12	0.83	GATGCAGAAGACAGGTGAT	GATGAAGAAGAAGGTGAT	
ID	Accession	Chromosome	Similarity	Sequence 1	Sequence 2	Length
------------	-------------	------------	------------	-------------------------	-------------------------	------------
70	NC000012.12	chr12	0.83	GATGCAGAAGACAGGTGAT	GATGAAGAAGA-AGGTGAT	4602928
71	NC000012.12	chr12	0.83	GATAGAAGAAG-AGGTGAT	GAT-GAAGAAGAAGGTGAT	4904999
72	NC000012.12	chr12	0.83	GATGAGAAGAAGAAAGTGAT	GATGA-AGAAGAAGGTGAT	8026984
73	NW015495299	chr2	0.83	GATGAAGAAGAA-GTGCAT	GATGAAGAAGAAGGTGAT-AT	465928
74	NC000011.10	chr11	0.83	GATGCAGAAGACAGGTGAT	GATGAAGAAGA-AGGTGAT	11790646
75	NC000011.10	chr11	0.83	GATGAAGAAGTTAAGGCTGAT	GATGAAGAAGG-AGG-TGAT	13950942
76	NW019805490	chr3	0.83	GATTTGAAGAGTGATG	GA-TGAAGAAGAAGGTGAT	212653
77	NW019805503	chr18	0.83	GCATTAAAGAAGGTGAT	G-ATGAAGAAGAAGGTGAT	148518
78	NC000002.12	chr2	0.83	GAT-AAGAAGACAGGTGAT	GATGAAGAAGA-AGGTGAT	10335731
79	NC000003.12	chr3	0.83	GATGAAGAAGGAAAGTGAG	GATGAAGAA-GAAGGTGAT	10434488
80	NC000003.12	chr3	0.83	GATGCAGAAGACAGGTGAT	GATGAAGAAGA-AGGTGAT	6804109
81	NC000018.10	chr18	0.83	GATGCAGAAGACAGGTGAT	GATGAAGAAGA-AGGTGAT	16198420
82	NC000004.12	chr4	0.83	GATGATGAAGAAGAGTGAT	GATGAAGAAGAAG-AGTGAT	84784338
83	NC000004.12	chr4	0.83	GATGCAGAAGACAGGTGAT	GATGAAGAAGAAGGTGAT	83332038
84	NC000004.12	chr4	0.83	GATGAAGAAGAAGGAAGAT	GATGAAGAAGAAGG-TGAT	78956485
85	NC000004.12	chr4	0.83	GAATGAAGAAGAAGGTGCT	G-ATGAAGAAGAAGGTGAT	78780579
86	NC000004.12	chr4	0.83	GTATGAAGAAG-AGGTGAT	GATGAAGAAGAAGGTGAT	77419436

52
ID	Accession	Chromosome	Distance	Sequence 1	Sequence 2	Coordinate
87	NC000004.12	chr4	0.83	GAGGAAGAAGAAGAGTGAT	GATGAAGAAGAAGAGTGAT	76308292
88	NC000004.12	chr4	0.83	GATGAAGAAGAAGAGTGAT	GATGAAGAAGAAGAGTGAT	73534765
89	NC000004.12	chr4	0.83	GATGAAGAAGAAGAGTGAT	GATGAAGAAGAAGAGTGAT	62458987
90	NC000020.11	chr20	0.83	GATGAAGCAGAAGAAGGTGAT	GATGAAGCAGAAGAAGGTGAT	37225026
91	NC000016.10	chr16	0.83	GATGAAGAAGAAGAAGGTGAT	GATGAAGAAGAAGAAGGTGAT	34440755
92	NC000016.10	chr16	0.83	GATGAAGAAGAAGAAGGTGAT	GATGAAGAAGAAGAAGGTGAT	34440752
93	NC000016.10	chr16	0.83	GATGAAGAAGAAGAAGGTGAT	GATGAAGAAGAAGAAGGTGAT	4949206
94	NC000016.10	chr16	0.83	GATGAAGAAGAAGAAGGTGAT	GATGAAGAAGAAGAAGGTGAT	17439087
95	NC000016.10	chr16	0.83	GATGAAGAAGAAGAAGGTGAT	GATGAAGAAGAAGAAGGTGAT	16213349
96	NC000016.10	chr16	0.83	GATGAAGAAGAAGAAGGTGAT	GATGAAGAAGAAGAAGGTGAT	4949206
97	NC000019.10	chr19	0.83	GATGAAGAAGAAGAAGGTGAT	GATGAAGAAGAAGAAGGTGAT	18521261
98	NC000019.10	chr19	0.83	GCATGAAGAAGAAGAAGGTGACT	GATGAAGAAGAAGAAGGTGACT	19625401
99	NC000018.10	chr18	0.83	GATGAAGAAGAAGAAGGTGAT	GATGAAGAAGAAGAAGGTGAT	2511062
100	NC000018.10	chr18	0.83	GATGAAGAAGAAGAAGGTGAT	GATGAAGAAGAAGAAGGTGAT	3244108
101	NC000018.10	chr18	0.83	GATGAAGAAGAAGAAGGTGAT	GATGAAGAAGAAGAAGGTGAT	12177624
102	NC000018.10	chr18	0.83	GATGAAGAAGAAGGATCGTAT	GATGAAGAAGAAGGATCGTAT	14560185
103	NC000003.12	chr3	0.83	GATGAAGAAGAAGGATCGTAT	GATGAAGAAGAAGGATCGTAT	10434487
	Accession	Chromosome	jaccard	1st sequence	2nd sequence	Position
-------	-------------	------------	----------	---	---	------------
104	NC000004.12	chr4	0.83	GAATGAGGAAGAAGGGTGAT	G-ATGAAGAAGAAGGGTGAT	87353341
105	NC000002.12	chr2	0.83	GATTGAAAGCAAGAAGGGTGAT	GA-TG-AAAG-AAAGAAGGGTGAT	90988927
106	NC000003.12	chr3	0.83	GATTTGAAGATGAAGGGTGAT	GA-TGAAGAAGAAGGGTGAT	34637960
107	NC000002.12	chr2	0.83	GATGGAAGAAGAAGGGTGAT	GA-TGAAAGAAGAAGGGTGAT	127837384
108	NC000002.12	chr2	0.83	GATGAAATGAAGAAGGGTGAT	GATGAA-GAAGAAGGGTGAT	122632234
109	NC000002.12	chr2	0.83	GAGTGAAGAAAGAAGGGTGAT	GA-TGAAAGAAGAAGGGTGAT	114885326
110	NC000002.12	chr2	0.83	GATGTAAGAAGAAGGGTGAT	GATGAAAGAAGAAGGGTGAT	108862672
111	NC000002.12	chr2	0.83	GATGATGAAAGAAGGGTGAGT	GATGAAAGAAGAAGGGTGAGT	107221350
112	NC000002.12	chr2	0.83	GATGCAGAAGCAAGGGTGAT	GATGAAAGAAGAAGGGTGAT	103810398
113	NC000002.12	chr2	0.83	GATGAAAGAAGAAGGGATAGTGAGT	GATGAAAGAAGAAGGGATAGTGAGT	102943227
114	NC00018.10	chr18	0.83	GATG-AGACAGAAGGGTGAT	GATGAAAGAAGAAGGGTGAT	18128465
115	NC000003.12	chr3	0.83	TATGAAGAAGAAGGGTGAT	GATGAAAGAAGAAGGGTGAT	19152201
116	NC000003.12	chr3	0.83	GATGCAGAAGATAGGGTGAT	GATGAAAGAAGAAGGGTGAT	25424584

Table 5: Potential target regions on the human genome for svRNA1.
Gene ID	Score	Matched Sequence	Loci		
NC000004.12 chr4	0.86	GAAAGAGAGGAAGAAGAAGAATT GAAGAAGAGCAAGAAGAGAATT	117558370		
NC000014.9 chr14	0.86	GAAAGAGGCAAATGAAGAAGAAGACTT GAAGAAGGCAA-AAG-AAG-AAGTT	12719463		
NW018654725.1 chrY patch FIX	0.86	GAAAGAGGAAAGAAGAAGATTT GAAGAAGAGCAAGAAGAAGATT	21110		
NC000004.12 chr4	0.86	GAAAGAAGAAG-AAGAAGAAGAATT GAAGAAG-AGCAAGAAGAAGAAGATT	130552436		
NC000014.9 chr14	0.86	GAAAGAAGATGTAGCTCAAGAAGAGAGATAT GAAGAAGA-G-CAAGAAGAAGAT-T	79840239		
NC000018.10 chr18	0.86	GAAAGAGATGTAGCTCAAGAGAAGATCT GAAGAAGA-G-CAAGAAGAAGAT-T	783992		
NC000003.12 chr3	0.86	GAAAGAAGAGAAGAAGAAGAATT GAAGAAGAGCAAGAAGAAGATT	60432276		
NC000002.12 chr2	0.86	GAAAGATAGAGCAATGAAGAAGAAGATT GAAGAAGA-G-CAAGAAGAAGATT	44201986		
NC000015.10 chr15	0.82	GAAAGAAGAGAAGAAGAAGATAT GAAGAAG-AGCAAGAAGAAGAT-T	5850233		
NC000006.12 chr6	0.82	GAAAGAAGAGC-AGAAGAAGAATT GAAGAAGAGCAAGAAGAAGATT	38233680		
NC000019.10 chr19	0.82	GAAAGAAGAG-AGAAGAAGAAGAATT GAAGAAGAGCAAGAAGAAGATT	16552894		
NC000020.11 chr20	0.82	GAAAGAAGAGAAGAAGAAGACCTT GAAGAAGAGCAAGAAGAAGAATT	2384918		
NC000021.9 chr21	0.82	GAAAGAAGAGCAA-TAGAAGAAGATT GAAGAAGAGCAAGAAGAAGAATT	3080346		
NW018654706.1 patch NOVEL chr1	0.82	GAAAGAAGAG-AGAAGAAGAAGGATT GAAGAAGAGCAAGAAGAAGAATT	21426		
NW017852928.1 patch NOVEL chr1	0.82	GAAAGAAGAGCAAGAAGAAGAAGGATT GAAGAAGAGC-AAGAAGAAGAATT	42684		
NW013171802.1 patch FIX chr6	0.82	GAAG-AGAGCAAGAAGAAGAAGGATT GAAGAAGAGCAAGAAGAAGAATT	64033		
	Accession	Chromosome	Position	Sequence 1	Sequence 2
---	-----------	------------	----------	------------	------------
17	NC000002.12 chr2	0.82	GAAAAAGAG-AAGAAGAAGATT GAAAGAGAGCAAGAGAGAGATT	25750788	
18	NC000002.12 chr2	0.82	GAAGAAGAAG-AAGAAGAAGATT GAAGAAGAGCAAGAAGAGATT	80694044	
19	NC000005.10 chr5	0.82	GAAGAAGAGCAAGAAGAGATT GAAGAAGAGCAAGAAGAGATT	14573711	
20	NC000006.12 chr6	0.82	GAAGAAGAAG-AAGAAGAAGATT GAAGAAGAGCAAGAAGAGATT	69217989	
21	NC000011.10 chr11	0.82	GAAGAAGAAGGAAGAAGATT GAAGAAGAAGGAAGAAGATT	25049429	
22	NC000008.11 chr8	0.82	GAAGAAGAGAAAGAAGAAGATT GAAGAAGAGCAAGAAGAAGATT	34613950	
23	NC000015.10 chr15	0.82	GCAGAAGAGCAAGCAAGAAGATT GAAGAAGAGCAAGAAGAAGATT	11738083	
24	NC000011.10 chr11	0.82	GAAGAAGAGCAAGCAAGAAGATT GAAGAAGAGCAAGAAGAAGATT	16510998	
25	NC000012.12 chr12	0.82	GAAGAAGAGCAAGAAGAAGATT GAAGAAGAGCAAGAAGAAGATT	60548156	
26	NC000018.10 chr18	0.82	GAAGAAGATAGGCAAGAAGAAGATT GAAGAAGAAGCAAGAAGAAGATT	783990	
27	NC000002.12 chr2	0.82	GAAGAAGAGGAAGAAGCAAGCATT GAAGAAGAGCAAGAAGAAGATT	42576014	
28	NC000012.12 chr12	0.82	GAAGAAGAGAAAGAAGAAGAAGATT GAAGAAGAGCAAGAAGAAGAAGATT	58338875	
29	NC000012.12 chr12	0.82	GAAGAAGAGAAAGAAGAAGAAGATT GAAGAAGAGCAAGAAGAAGAAGATT	57133351	
30	NC000012.12 chr12	0.82	GAAGAAGAGAAAGAAGAAGAAGATT GAAGAAGAGCAAGAAGAAGAAGATT	23370439	
31	NC000014.9 chr14	0.82	GAAGAAGAGAATGAAAGAAGAAGACT GAAGAAGAGCAAGAAGAAGAAGATT	12719462	
32	NC000014.9 chr14	0.82	GAAGAAGAGAAAGAAGAAGAAGATT GAAGAAGAGCAAGAAGAAGAAGATT	3784429	
33	NC000002.12 chr2	0.82	GAAGAAGAGAAAGAAGAAGAAGATT GAAGAAGAGCAAGAAGAAGAAGATT	135101854	
34	NC000005.10 chr5	0.82	GAAGAAGAGCAAGAAGAAGGATT GAAGAAGAGCAAGAAGAAGGATT	17629750	
Table 6: Potential target regions in the human genome for svRNA2.					

Gene	**Chromosome**	**Score**	**Target Sequence**	**Coordinates**	
---------	----------------	-----------	---------------------	----------------	
NC000018.10	chr18	0.82	GAAGAAGTAGGCAAGAAAGGATT	783991	
NC000003.12	chr3	0.82	GAAGAAGAAG-AGGAAAGAAGATCT	27102255	
NC000003.12	chr3	0.82	GAAGAAGAAGAAGAAAGAAGAT-T	56345429	
NC000003.12	chr3	0.82	GAAGAAGAAGAAGAAAGAAGAT	60432275	
NC000004.12	chr4	0.82	GAAGAAGAGGAAGAAGAAGAT	117558369	
NC000016.10	chr16	0.82	GAAGAAGAAGAAGAAGAAGAT	37420425	
NC000004.12	chr4	0.82	GAAGAAGAGCAAGAAAGAAGAAAG	70599182	
NC000004.12	chr4	0.82	GAAGAAGAGCAAGAAAGAAGA-A	70599181	
NC000004.12	chr4	0.82	GAAGAAGAGCAAGAAAGAAGA–	70599180	
NC000002.12	chr2	0.82	GAAGAAGAGGAAGAAGAAGA-T	1886808	
NC000002.12	chr2	0.82	GAAGAAGAGGAAGAAGAAGATG	1886809	
NC000002.12	chr2	0.82	GAAGAAGAGGAAGAAGAAAGAT	70555008	
Gene ID	Score	Matched Sequence	Loci		
-------------	-------	--	----------		
NC000002.12	0.89	AGGACTACTGGGCGCCAGAGGCT			
 | | AGGA–ACTGGGCGCCAGAGGCT | 48975650 |
| NC000007.14 | 0.89 | AGGAACTGAGGGCCAGGAGGCT
 | | AGGAACTGAGGGCCAGGAGGCT | 14547625 |
| NC000008.11 | 0.89 | AGGAACTGGGGCCAGAAGGCT
 | | AGGAACTGGGGCCAGAAGGCT | 10614535 |
| NC000014.9 | 0.89 | AGGAACTGGGGCCAGAAGGCT
 | | AGGAACTGGGGCCAGAAGGCT | 1419369 |
| NC000014.9 | 0.89 | AGGAACTGGGGCCAGAAGGCT
 | | AGGAACTGGGGCCAGAAGGCT | 1419367 |
| NC000014.9 | 0.89 | AGGAACTGGGGCCAGAAGGCT
 | | AGGAACTGGGGCCAGAAGGCT | 1419366 |
| NC000004.12 | 0.84 | AGGCAACTTGTCGCGCCAGAAGGCT
 | | AGGCAACTTGTCGCGCCAGAAGGCT | 69436080 |
| NC000009.12 | 0.84 | AGGAACTGGGGCCAGAAGGCT
 | | AGGAACTGGGGCCAGAAGGCT | 25416967 |
| NC000020.11 | 0.84 | AGGAGACCCTGGGGCCAGAAGGCT
 | | AGGAGACCCTGGGGCCAGAAGGCT | 11374836 |
| NC000019.10 | 0.84 | AGGAACTGTCGCGAGAAGGCT
 | | AGGAACTGTCGCGAGAAGGCT | 3570717 |
| NC000019.10 | 0.84 | AGGAACTGTCGCGAGAAGGCT
 | | AGGAACTGTCGCGAGAAGGCT | 24050685 |
| NC000009.12 | 0.84 | AGGAACTGTCGCGAGAAGGCT
 | | AGGAACTGTCGCGAGAAGGCT | 581979 |
| NC000011.10 | 0.84 | AGGAACTGTCGCGAGAAGGCT
 | | AGGAACTGTCGCGAGAAGGCT | 22741205 |
| NC000011.10 | 0.84 | AGGAACTGTCGCGAGAAGGCT
 | | AGGAACTGTCGCGAGAAGGCT | 21037552 |
| NC000012.12 | 0.84 | AGGAACTGTCGCGAGAAGGCT
 | | AGGAACTGTCGCGAGAAGGCT | 11370121 |
| NC000012.12 | 0.84 | AGGAACTGTCGCGAGAAGGCT
 | | AGGAACTGTCGCGAGAAGGCT | 486225 |
| NC000006.12 | 0.84 | AGGAACTGTCGCGAGAAGGCT
 | | AGGAACTGTCGCGAGAAGGCT | 70506695 |
| NC000004.12 | 0.84 | AGGAACTGTCGCGAGAAGGCT
 | | AGGAACTGTCGCGAGAAGGCT | 92640053 |
Table 7: Potential target regions in the human genome for svRNA3 (truncated version).

#	NC000003.12 chr3	0.84	AGGA ACTGAGGCTCAGAGAGCT	33209680
	AGGA ACTG-GG-CAGA-AGCT			
---	-----------------	------	--------------------------	----------
20	NC000003.12 chr3	0.84	AGTGAAGCATGGCCAGAAGCT	4730544
	AG-GA-A-TGGGCCAGAAGCT			

AG-GA ACTG GGGCCAGAAGCT