Evaluation of membrane filtration and UV irradiation to control bacterial loads in recirculation aquaculture systems

David Huyben*, David Bevan, Roselynn Stevenson, Hongde Zhou, and Richard Moccia

* Corresponding author. Email: David Huyben, davidhuyben@gmail.com, +44-73983-58847.

Abstract

Ultraviolet (UV) irradiation is commonly used to control pathogen loads in recirculation aquaculture systems (RAS), although these microorganisms can be shielded by particles in the water, and some species tolerate very high UV doses. The objective of this study was to evaluate membrane filtration (MF) as an alternative, or complimentary, treatment to UV irradiation for pathogen control in RAS, as well as examine the operation and cost of each treatment. In a pilot-scale RAS, both MF and UV were used to treat wastewater for 30 days and water samples were collected biweekly and analysed for culturable bacteria, suspended solids, UV transmittance and other parameters. Bacterial control efficiencies were similar between both MF and UV treatments, which removed 99% of total bacteria and 98% of heterotrophic bacteria, respectively. Surface fouling was negligible for the UV while MF required biweekly cleaning to maintain operation. However, MF had the additional benefit of removing 96% of suspended solids, which resulted in increased UV transmittance. Capital and operating costs of MF were similar to UV, but only when MF treated a fraction of the wastewater compared with UV. We conclude that MF represents a potential complimentary technology to enhance UV irradiation, especially to minimise pathogens in RAS that are shielded by particles or tolerate UV.

Keywords
1. Introduction

Recirculation aquaculture systems (RAS) use various combinations of water treatment technologies to remove pathogens and other wastes derived from fish excretions and uneaten feed, in order to reuse and supply high quality water to farmed fish (Piedrahita, 2003). Recirculation of waste materials and pathogens can impart added stress on fish with associated morbidity, and can increase the prevalence of infection and clinical disease (Conte, 1992; Wedemeyer, 1996). Micro-screen drum filters are typically used in RAS to remove wastes greater than 50 microns, but smaller particles and pathogens can often bypass these micro-screens (Patterson et al, 1999). Ozone is often used in RAS to deconstruct fine particles and pathogens, but using ozone can present a health risk to fish as well as humans because it is toxic at low levels (Sharrer et al., 2005; Wedemeyer, 1996). UV irradiation is typically used in RAS either alone, or in combination with ozone, to inactivate pathogens, but pathogens can sometimes tolerate this treatment when “fouling” or high turbidity occurs, which shields pathogens from the UV exposure (Lazarova et al., 1999; Liltved and Cripps, 1999; Wedemeyer, 1996). In addition, some pathogens can tolerate very high doses of UV, and these proliferate within the RAS causing increased pathogen loads for the fish (Wedemeyer, 1996). For example, *Flavobacterium psychrophilum* has been found to require four-fold higher UV doses than the recommended dose of 30 mJ/cm² (Sharrer et al., 2005) to achieve 5-log reductions of this pathogen (Hedrick et al., 2000). This bacterial pathogen has been found in several aquaculture facilities of rainbow trout and in some cases can cause mortalities up to 90% (Nilsen et al., 2011). Lastly, UV has been found to inactivate most, but not all bacteria in RAS, and this can lead to the selection and proliferation of opportunistic pathogens that destabilizes the microbial community (Attramadal et al., 2012). Therefore, ineffective control of pathogens using UV irradiation poses a potential risk to fish health and the biocontrol aspects of RAS.
Membrane filtration (MF) is a process technology that physically separates solids from fluid using semi-permeable membranes that can be classified based on pore size: either as microfiltration, ultrafiltration, nanofiltration or reverse osmosis (Madaeni, 1999; Peters, 2010). Ultrafiltration membranes have pore sizes between 0.005 to 0.02 µm (Madaeni, 1999; Peters, 2010; Zhou and Smith, 2002) that allow dissolved ions and water to diffuse, while retaining suspended particles, protozoa, bacteria, viruses and other waste components larger than the applied pore size (Guo et al., 2009). Retained wastewater is continually or periodically drained from the MF system, but particles can clog and adsorb onto, or within the membrane’s pore structures that results in reduced filtration rates and higher transmembrane pressures (TMP) (Le-Clech et al., 2006; Madaeni, 1999). Continual fouling and increases in TMP can damage membranes. However, cleaning strategies, such as air-scouring and chemical washing can reduce fouling rates and maintain filtration efficiency, which is essential for long-term operation (Le-Clech et al., 2006; Madaeni, 1999; Zhou and Smith, 2002). In the past, MF technologies were considered costly, but advances in MF manufacturing efficiency and its widespread use in other sectors have increased its affordability and potential application in the aquaculture industry (Gomez et al., 2007). A study using a dead-end MF module with a pore size of 0.05 µm removed 94% of suspended solids with a 76% reduction in biochemical oxygen demand from aquaculture wastewater (Viadero and Noblet, 2002). However, MF has only been evaluated for solids and bacterial removal on a lab-scale, thus larger scale studies in RAS are needed in comparison to established technologies, e.g. UV.

Therefore, due to its various properties, MF technology may present a viable alternative or complimentary treatment to UV for the control of fish pathogens in RAS. The objective of this study was to compare MF and UV in terms of the removal efficiency of culturable bacteria, additional effects on water quality, fouling resistance and capital/operating costs in a pilot-scale RAS.

2. Materials and methods

2.1 Recirculation Aquaculture System

The study was conducted at the Alma Aquaculture Research Station (University of Guelph, Elora, ON, Canada) using a warm-water (i.e. 20-23 °C) RAS that held Nile tilapia (Oreochromis niloticus) broodstock. The 5,600 L system was composed of twelve circular fibreglass tanks (340 L) that contained 271 fish in total with a mean weight of 1.3 ± 0.2
kg (± standard deviation). The fish were fed a commercial diet by automatic belt feeders. The study was carried out in accordance with the criteria set out by the Canadian Council of Animal Care (CCAC, 2005).

In the RAS, wastewater from fish tanks (Figure 1) was treated using a combination of a 60 µm rotating micro-screen drum filter, foam fractionator, fluidized micro-bead biofilter, CO₂ gas stripper and compressed oxygen injection system (PRAqua Technologies Ltd., BC, Canada). After oxygenation, the wastewater was disinfected by a 22 L closed-channel UV reactor (Trojan UV Logic™ midflow model 02AM20, Trojan Technologies Inc., ON, Canada) at a rate of 193.5 ± 4.7 L/min before recirculating to the fish tanks. The low-pressure UV reactor was capable of producing a maximum UV dose of 60 mJ/cm² with two lamps at a wavelength of 254 nm and a maximum flow rate of 227 L/min. The RAS recycled 98-99 % of the total flow and water lost through evaporation or drum filter cleaning cycles was replaced with high quality well water (8.5°C).

2.2 Membrane Filtration System

The MF system was composed of a membrane element (LSU-1515, Toray Membrane Inc., CA, USA) submerged in a vertical tank of water (1.8 m height x 0.2 m diameter), termed the “membrane tank” with an overflow port at the top (Figure 2). The membrane filter was capable of withstanding a maximum TMP of 100 kPa and maximum flow rate of 33 L/min. For more info on the MF system, see Table 1. Before UV treatment, wastewater was diverted into the MF system in order to supply both MF and UV systems with exactly the same source and quality of wastewater. After influent wastewater entered the MF system, two streams were produced; water that diffused through the membranes, termed “permeate”, and wastewater that was retained outside the membranes and drained, termed “retentate”. Influent wastewater, permeate and retentate flow rates were adjusted every two or three days to approximately 16, 15 and 1 L/min respectively. Retentate was continuously discarded and the permeate was recirculated to the collection sump (Figure 1).

Three cleaning strategies were applied to the MF system at different intervals to control membrane fouling: continuous air-scouring, membrane relaxation cycles and maintenance cleaning. For air-scouring, air was generated at a rate of 25 L/min connected to an air stone at the bottom of the membrane tank (Figure 2). For relaxation cycles, a repeat cycle timer turned off the permeate pump for one minute every 30 minutes to enhance air-scouring. For maintenance cleaning, the MF was taken off-line, soaked in a solution of 300 mg/L (0.03 %) sodium hypochlorite for
30 minutes, rinsed with well water for 90 minutes and then re-installed in the RAS after no free chlorine (Hach Method 4500-Cl) was detected in the permeate stream (Toray Membrane Inc., CA, USA). The TMP was measured and recorded every minute using a pressure transducer connected to a data logger (Lascar Electronics Inc., PA, USA), which was used to calculate membrane fouling resistance (see section 2.4).

2.3 Water Sampling and Analyses

The MF system processed wastewater from the RAS, in parallel with the UV system, for 30 days. Water samples were collected, in triplicate, from three sampling locations within the RAS: 1. before MF/UV treatment (influent), 2. after MF treatment (effluent) and, 3. after UV treatment (effluent; Figure 1 and 2). Water samples were collected every two or three days, and each sample replicate was taken five minutes apart. For bacterial analyses, separate water samples were collected in triplicate into sterile bottles, from the three sampling ports within the RAS and then placed on ice for later analysis.

Water samples were measured for total bacteria counts using the NEO-GRID/ISO-GRID membrane filtration system (Neogen Corp., MI, USA) as described in the Official Methods of Analysis 986.32 (AOAC, 2007). An aliquot of each sample was vacuum-filtered, in duplicate, on an iso-grid, placed on tryptic soy agar (Sigma-Aldrich Co., MO, USA) and incubated for three days at 18 °C. After incubation, colonies were counted, converted to the corresponding Most Probable Number (MPN) and then multiplied by the dilution factor to obtain colony forming units (CFU) /mL of total bacteria (AOAC, 2007). Heterotrophic bacteria were measured at the Agriculture and Food Laboratory (Guelph, ON, Canada) according to Standard Method 9215 (APHA, 1998).

For chemical water quality, influent and effluent samples were measured for dissolved oxygen, temperature and pH using handheld probes (Oxyguard A/S, Farum, Denmark). The UV transmittance \(10^\lambda(\text{UV absorbance} / \text{cm}) \times 100\) was measured at a 1 cm path length and a wavelength of 254 nm using a spectrophotometer (Hewlett-Packard Co., CA, USA). Turbidity and total dissolved solids were measured using a turbidimeter (HF Scientific, Fort Myers, FL, USA) and a spectrophotometer (Hach, London, Canada). Total suspended solids were measured using Standard Method 2560 (APHA, 1998).

2.4 Data and Cost Analyses
Removal efficiencies achieved by MF and UV treatments were calculated for each set of water samples (((influent - effluent)/influent) x 100%). For bacterial analyses, percent removal was used to calculate Log₁₀ reductions (-log₁₀(1 - (% removal/100)) (Metcalf and Eddy, 2003). UV doses were calculated based on the UV intensity and water characteristics ((UV intensity)*(exposure time)*(transmittance factor), mJ/cm²) (Sharrer et al., 2005).

Fouling resistance experienced by the MF system was calculated based on Darcy’s equation (Belfort et al., 1994):

\[J = \frac{\Delta \text{TMP}}{\eta (R_m + R_f)} \]

where \(J \) is permeate flux (i.e. 35.78 L/m²/hr), \(\Delta \text{TMP} \) is change in transmembrane pressure (kPa), \(\eta \) is water viscosity at 22 °C (i.e. 0.02 kPa·min), \(R_m \) is membrane resistance against clean water during the first hour (i.e. 3.34x10⁵ /m) and \(R_f \) is fouling resistance (/m). Fouling rates were calculated using fouling resistance values and time (t) between each maintenance cleaning (i.e. \((R_{f,t2} - R_{f,t1})/(t_2 - t_1) \), /m/day (Fan and Zhou, 2007).

A Shapiro-Wilk test was performed on data from each water quality parameter to determine data normality (Field et al., 2012). To test for a difference in removal efficiencies between MF and UV treatments, two-sample Student’s t-test was performed on data sets that were normally distributed and a two-sample Wilcoxon signed-rank test was performed on data sets that were not (Field et al., 2012). All statistical analyses were completed using R® version 2.11.1 software (R Core Development Team, 2011) and p-values below 0.05 were considered significant.

The capital and operating costs of the small pilot-scale MF and UV systems were calculated based on quotes (USD$) from commercial manufacturers (i.e. Toray Membrane and Trojan Technologies). The cost of pumps and piping was calculated based on an assumption of 1.5 times the cost of the MF module based on the extra need for a reversible permeate pump, air pump and membrane tank while the cost was 0.5 times the cost of UV, as according to Cheryan (1998) and Viadero and Noblet (2002). The electricity costs ($0.12/kWh; USA average 2011) for MF were based on consumption from a 0.24 kW permeate pump and 0.17 kW air pump while the UV system used a 0.35 kW permeate pump and 0.30 kW UV reactor. Tax and labour were excluded since it varies based on location, water quality and automation of the treatments.

3. Results
In the 30-day study, both MF and UV treatments were very effective at achieving high removal efficiencies of both total and heterotrophic bacteria (Table 2). No significant differences existed in total (Wilcoxon test; W = 50, n = 12, p = 0.085) or heterotrophic (W = 12, n = 5, p = 1.0) bacteria between MF and UV treatments. However, two counts of total bacteria (i.e. 1300 and 1500 CFU/mL) from MF effluent collected on day four and seven were not included in the analysis because they were four-fold higher than influent levels, which indicated bacterial contamination inside the membrane filter. Thereafter, the membrane filter was disinfected (maintenance cleaning) every two or three days afterwards to reduce contamination.

Mean UV intensity and transmittance were 17.4 ± 0.2 mW/cm² and 92.0 ± 0.5 %, which produced a mean UV dose of 110.0 ± 2.0 mJ/cm². The UV system did not require any cleaning because UV intensity did not drop below the recommended minimum of 7.5 mW/cm².

Continuous air-scouring, membrane relaxation cycles and maintenance cleanings were effective at reducing fouling of the MF system (Figure 2). After the first maintenance cleaning, the MF system achieved a mean fouling rate of 7.04 ± 1.19 x 10⁴ /m/day, or a change in TMP of 0.66 ± 0.11 kPa/day based on nine filtration cycles. On day 0, the MF system had an initial TMP of 3.1 kPa (membrane resistance) and after 30 days of operation it had a final TMP of 22.9 kPa. In addition to bacteria, MF achieved significant removal efficiencies of turbidity and total suspended solids and had a significant effect on UV transmittance, pH and dissolved oxygen (Table 3).

The cost comparison showed that one MF element had lower capital and operating costs than UV, but less wastewater would be treated (Table 4). In order to filter the same flow as UV, six MF elements would be required, consequently increasing the capital and operating costs of the MF system to 3.8 times that of comparable UV system.

4. Discussion

This study demonstrated for the first time that MF can achieve similar bacterial removal efficiencies compared with UV treatment in RAS, at least at a small, pilot-scale level. Recent studies have evaluated membrane bioreactors (MBR) for bacteria retention for nitrogen removal at low flow rates in RAS (Holan et al., 2014; Sharrer et al., 2007; Wold et al., 2014), although this is the first study to investigate bacterial removal at high flow rates in RAS. The MF system achieved approximately 2 log reductions of total bacteria, which was similar to previous MF studies (Guo et al., 2009;
Nakatsuka et al., 1996). In comparison, the UV system achieved 2 log reductions while a study by Sharrer et al. (2005) only achieved 0.5 and 0.7 log reductions of heterotrophic bacteria from a commercial RAS at UV doses of 78 and 150 mJ/cm². However, MF and UV systems in Sharrer et al. (2005) were challenged with approximately 10-fold and 2.5-fold higher levels of bacteria and suspended solids compared with our study. High levels of suspended solids are known to block UV transmittance and reduce UV disinfection efficiency (Gomez et al., 2007; Lazarova et al., 1999; Wedemeyer, 1996). For example, Gomez et al. (2007) achieved higher pathogen removal efficiencies using MF compared with UV when treating municipal wastewater with UV transmittance levels between 37-76%. In comparison to our study, influent UV transmittance levels were higher (i.e. 89-95%), which suggested that the UV system was able to achieve maximum bacterial removal and match the efficiency of the MF system. The MF treatment may have been able to achieve higher bacterial removal efficiencies than UV if challenged with higher concentrations of suspended solids and bacteria, but more research is required. Since UV disinfection efficiency is reduced by suspended solids, using MF as a small side-stream treatment or in combination with UV may be a better alternative. In this study, MF achieved high removal efficiency of suspended solids, which in turn improved UV transmittance (Table 3). Thus, if MF were used as a pre-treatment in RAS with more concentrated wastewater, the MF could remove particles that shield pathogens from UV and improve overall UV disinfection efficiency (Gomez et al., 2007; Liltved and Cripps, 1999; Wedemeyer, 1996). In addition, the MF system removed fine solids that bypassed micro-screen filtration that would have degraded in the rearing system and resulted in the secondary production of ammonia and pathogenic bacteria that can negatively impact fish health (Patterson et al., 1999; Piedrahita et al., 2003). Alternately, MF could replace UV entirely and only treat part of the wastewater, similar to a foam fractionator, to reduce bacteria and solids in RAS while avoiding negative effects of UV. UV has been found to inactivate most bacteria and stimulate the rapid proliferation of opportunistic pathogens (r-selection) in their place that can destabilise the microbial community (Attramadal et al., 2012; Wold et al., 2014). The dominance of non-opportunistic bacteria (k-strategists) is proposed to inhibit proliferation of opportunistic bacteria in RAS, at least for marine fish larvae (Skjermo et al., 1997). Therefore, constant removal of bacteria and solids using MF would remove the substrate for bacteria and possibly prevent sporadic proliferation of opportunistic pathogens in RAS. MF may be an alternative to the questionable long-term use of UV, especially since disease control is still a major challenge in RAS that use UV.
A low rate of membrane fouling found in the present study indicates that MF has potential for long-term operation in RAS as long as biweekly cleanings are performed. The highest TMP value achieved by the MF system over the 30-day study (i.e. 25.2 kPa) did not reach the maximum value of 70 kPa, which requires recovery cleaning in order to reduce TMP for continued operation. The membrane fouling rate may have been further reduced by applying more cleaning strategies, such as permeate backwashing, while the three strategies employed in the present study were sufficient. However, the MF system treated a low concentration of suspended solids, as mentioned previously, and additional studies are needed to evaluate this technology in larger-scale RAS. In addition, a study that used a MBR to remove nitrogen from a RAS of cod larvae (Gadus morhua) found that feeding dry feed resulted in higher membrane fouling than feeding live feed (Holan et al., 2014). In comparison with UV, no maintenance or recovery cleaning strategies were required, but again this may be due to low influent levels of suspended solids. Fouling is a larger challenge for long-term operation of MF compared to UV, but further advances in membrane resistance, cleaning strategies and design could reduce fouling rates and increase the long-term potential of MF in RAS.

New wastewater treatment technologies need to be affordable in order for their successful transition and use in the aquaculture industry. Increased affordability was reflected in the present study as the cost of the single MF system was cheaper and treated twice the flow rate of a similar MF system in RAS reported previously (Viadero and Noblet, 2002). The cost comparison showed that the advantage of MF over UV is the low capital cost of the MF elements and their long lifespan, but the need for more pumps and frequent cleaning are disadvantages for MF. The capital cost of the MF system with one element was lower than the UV system (Table 4). However, a MF system composed of six elements are needed to treat the same flow rate as UV (i.e. 200 L/min) and this larger MF system would result in greater than 1.5x the capital cost and 3.5x the operating cost. The higher cost of MF reduces its potential to completely replace UV and treat a high flow rate of wastewater in RAS, but MF may be affordable as a small side-stream treatment.

This study demonstrated that MF can achieve equivalent bacterial removal efficiencies compared to UV irradiation in RAS. Removal of suspended solids and low membrane fouling rates achieved by MF indicate an additional advantage and potential for long-term operation in RAS while frequent cleaning and higher capital/operating cost of a larger MF system are potential disadvantages. Results from this study indicate that MF may be best used as a side-stream treatment complementary to UV in RAS in order to minimise UV-shielded and tolerant
pathogens that induce disease. However, large-scale evaluations of MF in RAS under various operating conditions are required before MF can be confidently used as a pathogen control measure in commercial aquaculture systems.

Acknowledgements

Funding for this research was provided by the Ontario Sustainable Aquaculture Working Group of Environment Canada, the Ontario Ministry of Agriculture, Food and Rural Affairs and Toray Membrane USA. We would like to thank Michael Burke and the staff at the Alma Aquaculture Research Station for managing the RAS, Dr. Shawn Robinson and Dr. Gregor Reid for their assistance at the St. Andrew’s Biological Station and Iwona Skulska for her help with the bacterial analyses.

References

American Public Health Association (APHA) (1998) Standard methods for the examination of water and wastewater, 12th edn. APHA, Washington, USA

Association of Official Analytical Chemists (AOAC) (2007) Official methods of analysis of AOAC International, 18th edn. AOAC International, Maryland, USA

Attramadal KJK, Øie G, Størseth TR, Alver MO et al (2012) The effects of moderate ozonation or high intensity UV-irradiation on the microbial environment in RAS for marine larvae. Aquaculture 330-333:121-129

Belfort G, Davis RH, Zydnye AL (1994) Review: The behavior of suspensions and macromolecular solutions in crossflow microfiltration. J Membrane Sci 96:1-58

Canadian Council on Animal Care (CCAC) (2005) Guidelines on: the care and use of fish in research, teaching and testing. CCAC, Ottawa, Ontario, Canada

Cheryan M (1998) Ultrafiltration and Microfiltration Handbook. Technomic, Lancaster, Pennsylvania, USA

Conte FS (1992) Evaluation of a freshwater site for aquaculture potential. Issue No 92-101 Western Regional Aquaculture Center, Seattle, Washington, USA

Fan F, Zhou H (2007) Interrelated effects of aeration and mixed liquor fractions on membrane fouling for submerged membrane bioreactor processes in wastewater treatment. Environ Sci Technol 41:2523-2528

Field Z, Field A, Miles J (2012) Discovering Statistics Using R. SAGE Publications Ltd, London, UK

Gómez M, Plaza F, Garralón G et al (2007) A comparative study of tertiary wastewater treatment by physico-chemical-UV process and macrofiltration–ultrafiltration technologies. Desalination 202:369-376
Guo X, Zhang Z, Fang L et al (2009) Study on ultrafiltration for surface water by a polyvinylchloride hollow fiber membrane. Desalination 238:183-191

Hedrick RP, McDowell TS, Marty GD et al (2000) Ultraviolet irradiation inactivates the waterborne infective stages of Myxobolus cerebralis: a treatment for hatchery water supplies. Dis Aquat Organ 42:53-59

Holan AB, Wold PA, Leiknes TO (2014) Intensive rearing of cod larvae (Gadus morhua) in recirculating aquaculture systems (RAS) implementing a membrane bioreactor (MBR) for enhanced colloidal particle and fine suspended solids removal. Aquacult Eng 58:52-8

Lazarova V, Davoye P, Janex ML et al (1999) Advanced wastewater disinfection technologies: state of the art and perspectives. Water Sci Technol 40:203-213

Le-Clech P, Chen V, Fane TAG (2006) Review: Fouling in membrane bioreactors used in wastewater treatment. J Membrane Sci 284:17-53

Liltved H, Cripps SJ (1999) Removal of particle-associated bacteria by prefiltration and ultraviolet irradiation. Aquacult Res 30:445-450

Madaeni SS (1999) The application of membrane technology for water disinfection. Water Res 33(2):301-308

Metcalf and Eddy Inc (2003) Advanced wastewater treatment, in: Tchobanoglous G, Burton FL, Stensel HD (Eds), Wastewater Engineering: Treatment and Reuse. McGraw-Hill, New York, USA, p1035-1216

Nakatsuka S, Nakate I, Miyano T (1996) Drinking water treatment by using ultrafiltration hollow fiber membranes. Desalination 106:55-61

Nilsen H, Olsen AB, Vaagnes O, Hellberg H, Bottolfsen K, Skjelstad H, Colquhoun DJ (2011) Short Communication: Systemic Flavobacterium psychrophilum infection in rainbow trout, Oncorhynchus mykiss (Walbaum), farmed in fresh and brackish water in Norway. J Fish Dis 34:403-408

Patterson RN, Watts KC, Timmons MB (1999) The power law in particle size analysis for aquacultural facilities. Aquacult Eng 19:259-273

Peters T (2010) Review: membrane technology for water treatment. Chem Eng Technol 33(8):1233-1240

Piedrahita RH (2003) Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture 226:35-44

R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, URL http://www.R-project.org.

Sharrer MJ, Summerfelt ST, Bullock GL et al (2005) Inactivation of bacteria using ultraviolet irradiation in a recirculating salmonid culture system. Aquacult Eng 33:135-149

Sharrer MJ, Tal Y, Ferrier D, Hankins JA, Summerfelt ST (2007) Membrane biological reactor treatment of a saline backwash flow from a recirculating aquaculture system. Aquacult Eng 36(2):159-176

Skjermo J, Salvesen I, Oie G, Olsen Y, Vadstein O (1997) Microbially matured water: a technique for selection of a non-opportunistic bacterial flora in water that may improve performance of marine larvae. Aquacult Int 5:13–28
Viadero RC, Noblet JA (2002) Membrane filtration for removal of fine solids from aquaculture process water. Aquacult Eng 26:151-169

Wedemeyer GA (1996) Managing pathogen exposure, in: Physiology of Fish in Intensive Culture Systems. Chapman and Hall, New York, USA, p202-226

Wold PA, Holan AB, Øie G, Attramadal K, Bakke I, Vadstein O, Leiknes TO (2014) Effects of membrane filtration on bacterial number and microbial diversity in marine recirculating aquaculture system (RAS) for Atlantic cod (Gadus morhua L.) production. Aquaculture 422:69-77

Zhou H, Smith DW (2002) Advanced technologies in water and wastewater treatment. J Environ Eng and Sci 1: 247-264