Elliptic flow and system size dependence of transition energies at intermediate energies

Yingxun Zhang1 and Zhuxia Li1,2,3

1) China Institute of Atomic Energy, P. O. Box 275 (18), Beijing 102413, P. R. China
2) Center of Theoretical Nuclear Physics, National Laboratory of Lanzhou Heavy Ion Accelerator, Lanzhou 730000, P. R. China
3) Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100080

(Dated: February 5, 2022)

Abstract

The elliptic flow for $Z \leq 2$ particles in heavy ion collisions at energies from several tens to several hundreds MeV per nucleon is investigated by means of transport model, i.e. a new version of the Improved Quantum Molecular Dynamics model (ImQMD05). In this model, a complete Skyrme potential energy density functional is employed. The influence of different effective interactions and medium corrections of nucleon-nucleon cross sections on the elliptic flow are studied. Our results show that a soft nuclear equation of state and incident energy dependent in-medium nucleon-nucleon cross sections are required for describing the excitation function of the elliptic flow at intermediate energies. The size dependence of transition energies for the elliptic flow at intermediate energies is also studied. The system size dependence of transition energies fits a power of system size with an exponent of 0.223.

PACS numbers: 25.70.-z, 24.10.Lx, 21.65.+f
One of the main goals for the research area of heavy ion collisions (HICs) at intermediate energies is to extract more accurate information on the nuclear equation of state (EoS). Considerable progress has been made recently in determining the equation of state of nuclear matter from heavy-ion reaction data [1, 2, 3, 4, 5]. A prominent role among available observables is played by collective flow. A lot of theoretical and experimental efforts on the study of the collective flow in HICs have been paid [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. The elliptic flow has proven to be one of the more fruitful probes for extracting the EoS and the dynamics of heavy ion collisions. The parameter of elliptic flow is quantified by the second order Fourier coefficient \(v_2 = \langle \cos 2\phi \rangle = \langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \rangle \) from the azimuthal distribution of detected particles at mid-rapidity as follows

\[
\frac{dN}{d\phi} = P_0 (1 + 2v_1 \cos \phi + 2v_2 \cos 2\phi)
\]

where \(\phi \) is the azimuthal angle of the emitted particle momentum relative to the x axis. Positive values for \(\langle \cos 2\phi \rangle \) reflect a preferential in-plane emission, and negative values for \(\langle \cos 2\phi \rangle \) reflect a preferential out-of-plane emission. The change-of-sign recently observed at ultra-relativistic energies has received particular interest as it reflects the increasing pressure buildup in the non-isotropic collision zone [24]. Recently, the excitation function of elliptic flow parameters at energies from Fermi energy to relativistic energy regime for \(^{197}\text{Au} + ^{197}\text{Au}\) has been measured by FOPI, INDRA, ALADIN Collaborations [6, 7] and the transition energy from positive to negative elliptic flow was confirmed, which is around 100 MeV per nucleon. The elliptical flow parameters \(\langle \cos 2\phi \rangle \) at energies from tens to hundreds MeV per nucleon are determined by the complex interplay among expansion, rotation and the shadowing of spectators. Both the mean field and two-body collision parts play important role at this energy region. The mean field plays dominant role at low energies and then gradually the two body collision part becomes dominant with energy increasing. Thus, a detailed study on the excitation function of elliptical flow at this energy region can provide more useful information on the nucleon-nucleon interaction related to the equation of state of nuclear matter and the medium correction of nucleon-nucleon cross sections. The transition energy of elliptic flow at intermediate energies may be particularly useful in extracting the information on the nuclear effective interaction. While the elliptic flow at the energies higher than the transition energy will be useful to extract the medium correction of nucleon-nucleon cross sections because two-body collisions play more important role on collective flow at these
The another aim of this work is to investigate the medium correction of nucleon-nucleon cross sections through elliptic flow in heavy ion collisions at energies from Fermi energy to relativistic energies.

In this letter, we apply the new version of Improved Quantum Molecular Dynamics model (ImQMD05) to study the excitation function of elliptic flow parameters for 197Au+197Au at intermediate energies, and through the comparison between measurement and model calculations to extract the information on the effective interaction which related to EoS and the medium correction of nucleon-nucleon cross sections. The system size dependence of transition energies of elliptic flow from 58Ni+58Ni to 197Au+197Au, will also be studied.

For the convenience of readers, we first give a brief introduction of the ImQMD05 model. The main developments of the ImQMD model compared with the usual IQMD model are: introducing 1) the isospin independent and dependent surface energy terms in the energy density functional, 2) the constraint on the single particle occupation number, and 3) the system size dependent wave packet width. With the ImQMD model, it is able to successfully describe the yields of clusters in intermediate energy heavy ion collisions. In the ImQMD05 model we introduce the full Skyrme potential energy density functional except the spin-orbit term in the local interaction part, which allow us to choose various Skyrme interactions which describe the ground states of nuclei and saturated nuclear matter similarly well but predict rather different properties away from saturated density.

In the ImQMD05 model, the nuclear local interaction potential energy density functional $V_{\text{loc}}(\rho(\mathbf{r}))$ reads

$$V_{\text{loc}} = \frac{\alpha}{2} \rho^2 \frac{\rho}{\rho_0} + \frac{\beta}{\gamma + 1} \frac{\rho^{\gamma + 1}}{\rho_0} + \frac{g_{\text{sur}}}{2\rho_0} (\nabla \rho)^2 + \frac{g_{\text{sur,iso}}}{\rho_0} |\nabla (\rho_n - \rho_p)|^2$$

$$+ \frac{g_{\rho \tau}}{5/3} \rho_{5/3}^8 + \frac{g_{\rho \tau}}{5/3} \rho_{5/3}^8$$

$$+ (A \rho^2 + B \rho^{\gamma + 1} + C \rho_{5/3}^8) \delta^2 + g_{\rho \tau} \rho_{5/3}^8,$$ (2)

where ρ, ρ_n, ρ_p are the nucleon, neutron, and proton density, $\delta = (\rho_n - \rho_p)/(\rho_n + \rho_p)$ is the isospin asymmetry. The first two terms in expression (2) are the iso-scalar bulk energy part, the third term is the isospin independent surface energy term, the forth term is the surface symmetry energy term and the fifth term is the bulk symmetry energy term. The last term, called the $\rho \tau$ term, is obtained from the $\rho \tau$ term of the Skyrme potential energy density functional by applying the Thomas-Fermi approximation to the kinetic energy density τ and thus the explicit momentum dependence is lost. However, the strength of this term $g_{\rho \tau}$ is
rather small compared with other iso-scalar terms. The coefficients in expression (2) are therefore directly related to the standard Skyrme interaction parameters as
\[
\frac{\alpha}{2} = \frac{3}{8} t_0 \rho_0, \quad \frac{\beta}{\gamma + 1} = \frac{1}{16} t_3 \rho_0, \\
\frac{g_{\text{sur}}}{2} = \frac{1}{64} (9 t_1 - 5 t_2 - 4 x_2 t_2) \rho_0, \\
\frac{g_{\text{sur,iso}}}{2} = -\frac{1}{64} (3 t_1 (2 x_1 + 1) + t_2 (2 x_2 + 1)) \rho_0.
\]
(3)

And the \(A, B\) and \(C\) in the volume symmetry energy term are also given by the Skyrme interaction parameters,
\[
A = -\frac{t_0}{4} (x_0 + 1/2), B = -\frac{t_3}{4} (x_3 + 1/2), C = -\frac{1}{24} \left(\frac{3 \pi^2}{2}\right)^{2/3} \Theta_{\text{sym}},
\]
(4)
where \(\Theta_{\text{sym}} = 3 t_1 x_1 - t_2 (4 + 5 x_2)\). The \(g_{\rho \tau}\) is determined by
\[
g_{\rho \tau} = \frac{3}{80} (3 t_1 + (5 + 4 x_2) t_2) \left(\frac{3 \pi^2}{2}\right)^{2/3} \rho_0^{5/3}.
\]
(5)

The \(t_0, t_1, t_2, t_3\) and \(x_0, x_1, x_2, x_3\) in expressions (3)-(5) are the parameters of Skyrme force.

In the calculations performed in this work, for the bulk symmetry potential energy density, we only take \(\rho^2\) form, which is corresponding to the form of the linear density dependence of the symmetry potential energy as people usually use but the symmetry energy coefficient is calculated with the full energy density functional given by (2). The symmetry potential energy should not play important role in the quantity studied in this work. Furthermore, we introduce an explicit momentum dependent term as the same form as that in [28], which reads
\[
U_{MD} = 1.57 \ln(1 + 5 \times 10^{-4} \Delta \rho^2) \rho^2 / \rho_0
\]
(6)
as we find the explicit momentum dependent term is important for elliptic flow. This term provides an effective mass \(m^*/m=(1 + m/pdU_{\text{md}}/dp)\), which is about 0.75 at the Fermi momentum and about 0.95 at relative momentum around 800 AMeV [28]. The calculations show that without explicit momentum dependent term, the behavior of the calculated excitation function of elliptic flow are not consistent with that of experiments no matter which interaction is adopted. This finding is in agreement with the conclusion obtained in [16].

The Coulomb interaction potential energy are also introduced. By using present model we are able to directly test effective interactions, specifically, the various Skyrme interactions characterized by different 'K', and 'm*/m' of EoS by comparing the predictions of different
Skyrme interactions with measurement of elliptic flow. In this work, SkP29, SkM*30, SLy731, and SIII32 interactions are chosen. The first three are with similar incompressibility $K_\infty \sim 200$-229 MeV but with different m^*/m, the last one is with $K_\infty \sim 354$ MeV. Table 1 gives the parameters in the energy density functional(2) and the properties of saturated nuclear matter for the Skyrme interactions employed in this work.

TABLE I: parameters in the ImQMD model and the properties of saturated nuclear matter for Skyrme interactions employed in this work

	SkP	SkM^*	$SLy7$	$SIII$
α (MeV)	-356.20	-317.40	-293.97	-122.75
β (MeV)	303.03	248.96	215.03	55.19
γ	7/6	7/6	7/6	2
g_{sur} ($MeV fm^2$)	19.47	21.82	22.64	18.26
$g_{sur,iso}$ ($MeV fm^2$)	-11.35	-5.47	-2.25	-4.94
$g_{\rho\tau}$ (MeV)	0.00	5.92	9.92	6.42
m^*/m	1.00	0.789	0.687	0.763
ρ_∞ (fm^{-3})	0.162	0.160	0.158	0.145
a_s (MeV)	30.66	30.68	32.62	28.78
K_∞ (MeV)	200	216	229	354

In the collision term, the phenomenological density dependent in-medium nucleon-nucleon cross sections are taken, which reads

$$\sigma_{nn}^* = (1 - \eta \rho / \rho_0) \sigma_{nn}^{free},$$

(7)

where σ_{nn}^{free} denotes the free nucleon-nucleon scattering cross sections33, which are isospin dependent. In the treatment of Pauli-blocking in collision part, neutrons and protons are treated separately and two criteria are used as in34,

$$\frac{4\pi}{3} r_{ij}^3 \cdot \frac{4\pi}{3} p_{ij}^3 \geq \frac{\hbar^3}{8},$$

(8)

and

$$P_{block} = 1 - (1 - f_i)(1 - f_j),$$

(9)

where f_i is the phase space distribution function for nucleon i.
The fragments are constructed by means of the coalescence model widely used in the QMD model calculations in which particles with relative momenta smaller than P_0 and relative distances smaller than R_0 are coalesced into one cluster (here $R_0 = 3.0 \text{fm}$ and $P_0 = 250 \text{MeV/c}$ are adopted). Fig.1 shows the charge distribution of fragments for $^{197}\text{Au}+^{197}\text{Au}$ at $E_{\text{beam}} = 60, 150, 400 \text{AMeV}$ at central collisions, respectively. The experiment data (solid symbols) are taken from \cite{35,36}. The calculation results shown are for forward angles as the same as the experimental data. In the calculations, the SkP Skyrme interaction is used. One sees from the figure that the calculation results for charge distribution of fragments are in good agreement with experimental data. Then, we apply the ImQMD05 model to study the excitation function of elliptic flow parameters and try to extract the information on the effective interactions and the medium corrections of two-body cross sections.

Fig.2 shows the excitation function of elliptic flow parameters at mid-rapidity ($|y/y_{\text{proj}}| \leq 0.1$) for $Z \leq 2$ particles for $^{197}\text{Au}+^{197}\text{Au}$ collisions at $b=5 \text{fm}$ (the reduced impact parameter b/b_{max} equals to 0.38, and $b_{\text{max}} = 1.15(A_{P}^{1/3} + A_{T}^{1/3})$). The calculated elliptic flow is given in the rotated reference frame as the same as the experimental data. In the figure, solid symbols denote experimental data \cite{3, 6, 7} and open symbols denote calculation results with Skyrme interactions SkP, SkM*, SLy7, and SIII, respectively. Concerning the in-medium two-body cross sections, the η in expression (6) is taken to be 0.2. The general behavior of the excitation functions of elliptical flow parameters v_2 calculated with different Skyrme interactions are similar, i.e. the elliptic flow evolves from a preferential in-plane (rotational like) emission ($v_2 > 0$) to out-of-plane (squeeze out) emission ($v_2 < 0$) with increase of energies. But the detailed behavior of the results from different Skyrme interactions are rather different. One can see from the figure that the transition energies at which the elliptic flow parameter (v_2) changes sign from positive to negative are divergent for different Skyrme interactions. The difference is more than 30 MeV per nucleon among the calculation results with Skyrme interactions SkP, SkM*, SLy7, and SIII. The transition from preferential in-plane emission to out-of-plane emission is because the mean field which contributes to the formation of a rotating compound system becomes less important and the collective expansion process based on the nucleon-nucleon scattering starts to be predominant. The competition between the mean field and the nucleon-nucleon collisions should strongly depend on the effective interaction, which leads to the divergence of the transition energies calculated with different Skyrme interactions. Clearly, the harder EoS provides stronger pressure which
leads to a stronger out-of-plane emission and thus to have a smaller transition energy. The transition energies calculated with SkP and SkM* are in agreement with experimental data while that with SIII and SLy7 are too small compared with experimental data. To see the relation between the elliptic flow and the EoS, in the inset in Fig.2 we show the pressure as a function of density calculated from the potential energy density functional (2) for SkP, SkM*, SLy7, SIII interactions, respectively. One can see that the transition energy sensitively depends on the stiffness of EoS, which depends on both K and m^*/m. Thus, the best fit to the transition energy of the elliptic flow at intermediate energies provides us with the information on the stiffness of EoS. It seems to us that one needs multi-observable in order to extract K and m^*/m explicitly(also see[7, 16]).

As energy further increases v_2 becomes negative, and it reaches maximal negative value around 400 AMeV for SkP and SkM* and 250 AMeV for SLy7 and SIII. The calculations with SIII and SLy7 provide stronger pressure at the compression zone compared with SkP and SkM*, which makes calculated elliptic flow to reach the maximal negative v_2 at lower energy for SIII and SLy7. To compare the predictions with 4 Skyrme interactions with measurement we find that the results with SkP and SkM* are in reasonable agreement with experimental data. After reaching the maximal negative elliptic flow, the negative v_2 value decreases again. It implies that the spectator moves faster after the v_2 reaches the maximal negative value[7]. In [37], the nuclear stopping from 90 AMeV to 1.93 AGeV was measured and maximal nuclear stopping was observed around 400 AMeV for $^{197}Au+^{197}Au$. It seems to us that the energy for reaching the maximal negative elliptic flow parameter is in coincident with the energy for reaction reaching the maximal nuclear stopping. It is clear that if the reaction system reaches the maximal stopping around certain energies the matter formed in the reaction should reach minimal transparency and thus particles are preferentially out of plane emission mostly.

Now let us investigate the influence of the medium correction of nucleon-nucleon cross sections on elliptic flow. Fig.3 shows the excitation functions of elliptic flow parameters calculated with $\eta = 0.2, 0.0, -0.4$ in expression (6) by which we effectively study the medium correction of nucleon-nucleon cross sections at different nuclear environment as well as the relative momentum of the scattering pair. The SkP Skyrme interaction is adopted in the calculations of Fig.3. From the figure, we see that at energies lower than transition energy the difference between the calculation results with $\eta = 0.2$ and $\eta = 0.0$ is small and both
give reasonable agreement with experimental data and the difference increases when the
bombarding energy is higher than transition energy. As energy further increases the neg-
avative elliptic flow calculated with $\eta = 0.2$ is too weak (i.e. too small negative elliptic flow
parameter). One needs a smaller η or even a negative η. We find a reasonable agreement
with experimental results can be obtained for the case at incident energy around 400 AMeV
when η is taken to be about -0.4, i.e. at the energy about 400 AMeV, the in-medium two-
body cross section extracted is larger than the free cross section. In [38, 39] it was predicted
that the behavior of the in-medium elastic nucleon-nucleon cross section at super-normal
densities as a function of the relative momentum of two colliding nuclei is first suppression
and then enhancement. It is also predicted that the in-medium elastic nucleon-nucleon cross
section increases with temperature. If we simply consider the relative momentum of col-
liding nucleon pair to be roughly equal to the relative momentum of projectile and target,
and suppose the temperature increases obviously from several tens AMeV to several hun-
dreds AMeV, the information on the in-medium nucleon-nucleon cross sections extracted
from the elliptic flow is qualitatively consistent with the prediction of [38, 39]. This study
suggests that the η in the phenomenological expression of in-medium nucleon-nucleon cross
section (6) should depend on the reaction energy in order to mimic the medium correction
of nucleon-nucleon cross sections at different environment. To confirm this finding we make
similar calculations for the excitation function of nuclear stopping in Au+Au at SIS ener-
gies and compared with measurement [37]. The information about the medium correction
of two-body cross section extracted from nuclear stopping is in good agreement with that ob-
tained from excitation function of elliptic flow in this work. The results concerning nuclear
stopping will be given in another publications.

We notice that the calculation results are not in fully agreement with measurement at
whole energy region. It means that a more self-consistent treatment including the in-medium
cross section and the mean field, especially, a more self-consistent explicitly momentum
dependent term is needed but it is still difficult up to now.

We further carry out the study of the system size dependence for the elliptic flow of
$Z \leq 2$ particles in $^{58}Ni + ^{58}Ni$, $^{112}Sn + ^{112}Sn$, $^{197}Au + ^{197}Au$. We find that the transition
energies for three systems are obviously different. We then make a systematic investigation
of the system size dependence of the transition energies of elliptic flow at intermediate energy
regime. Fig.4 shows the transition energies as a function of masses of combined systems. All
reactions calculated are of symmetric reactions, the reduced impact parameters are chosen to be 0.38. The SkP Skryme interaction and $\eta = 0.2$ in the phenomenological expression (6) are adopted. From the figure, one sees that the transition energy decreases with the reaction system size increasing. One of the important reason is because the pressure produced by Coulomb interaction increases with the system size. We fit this curve with the following power law,

$$E_{\text{tran}} = x(A_P + A_T)^{-\tau}.$$ \hspace{1cm} (10)

The exponent τ is about 0.223. Here the exponent is substantially smaller than the exponent of the size dependence of balance energies for directed flow. Presumably, it is because more complex effects such as the expansion of the compressed zone and the shadowing effect of the colder spectator matter play role in changing the sign of elliptic flow compared with the directed flow.

In summary, we have investigated the elliptic flow in heavy ion collisions at energies from several tens AMeV to several hundreds AMeV with the ImQMD05 model. By changing the Skyrme interactions we study the influence of the EoS on the elliptic flow, especially on the transition energy and the energy that the elliptic flow parameter reaches the maximal negative value. We find that the SkP and SkM* interactions can better describe the excitation function of elliptic flow at intermediate energies. The medium correction of nucleon-nucleon cross sections is also studied by changing the parameter η in expression (6). By fitting the experimental excitation function of elliptic flow parameters we obtain the behavior of in-medium two nucleon cross sections as function of relative momentum of two colliding nucleons. Our study suggests that medium correction (the η value) in the phenomenological expression of in-medium cross sections should depend on the relative momentum of colliding pair and the medium density and temperature of nuclear medium. The linear density dependence of the in-medium nucleon-nucleon cross section in (6) probably be better valid when the incident energies lower than 100MeV per nucleon for HIC with heavy nuclear systems. The system size dependence of the transition energies is investigated, which fits a power of system size with a exponent of 0.223.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foundation of China under Grant Nos.10175093, 10235030, 10235020 and by Major State Basic Research Development Program
under Contract No.G20000774. We would like to thank Dr. P. Danielewicz for helpful discussions.

[1] P.Danielewicz, R. Lacey, and W.G. Lynch, Science, 298, 1592(2002).
[2] M.Demoulins, et.al., Phys.Lett.B241, 476(1990).
[3] H.H.Gutbrod, et.al., Phys.Lett.B216, 267(1989); Phys.Rev.C42, 640(1990).
[4] W.Residorf, H.G.Ritter, Ann.Rev.Nucl.Part.Sc.47, 663(1997).
[5] H.Stöcker, W.Greiner, Phys.Rep.137, 277(1986).
[6] J.Lukasik, G.Auger, M.L.Begemann-Blaich, et.al., Phys.Lett. B608, 223(2005).
[7] A.Andronic,et.al.,Nucl.Phys.A679, 765(2001); Phys.Lett.B612, 173(2005).
[8] W.Q.Shen, et.al., Phys.Rev.C57, 1508(1998).
[9] L.W.Chen, C.M.Ko, nucl-th/0505044; nucl-th/0507067.
[10] M.B.Tsang, et.al., Phys.Rev.C53, 1959(1996).
[11] S.Wang, et.al., Phys.Rev.Lett.76, 3911(1996).
[12] C.Pinkenberg, N.N.Ajitanand, et.al., Phys.Rev.Lett83, 1295(1993).
[13] Y.M.Zheng, C.M.Ko, B.A.Li and B.Zhang, Phys.Rev.Lett83, 2534(1999).
[14] B.A.Li, A.T.Sustich, B.Zhang, Phys.Rev.C64, 054604(2001).
[15] A.B.Larionov, W.Cassing, C.Greiner, U.Musel, Phys.Rev.C62, 064611(2000).
[16] P.Danielewicz, Nucl.Phys.A673, 375(2000).
[17] D.Persram, C.Gale, Phys.Rev.C65, 064611(2002).
[18] N.Bastid, et.al., Nucl.Phys.A622,573(1997).
[19] C.Alt, et.al., Phys.Rev.C68, 034903(2003).
[20] K.H.Ackermann, et.al., Phys.Rev.Lett.86, 402(2001).
[21] G.D.Westfall, W.Bauer, et.al., Phys.Rev.Lett.71, 1986(1993).
[22] D.Klakow, G.Welke and W.Bauer, Phys.Rev.C48, 1982(1993).
[23] Hongbo Zhou, Zhuxia Li, Yizhong Zhuo, Phys.Rev.C50, R2664(1994); Nucl.Phys.A580, 627(1994).
[24] C. Adler, et.al. Phys. Rev. lett. 90, 032301(2003) and Phys. Rev. Lett. 91,182301(2003).
[25] B. Zhang, L.W. Chen, C.M.Ko, nucl-th/0509095.
[26] Ning Wang, Zhuxia Li, Xizhen Wu, et.al., Phys.Rev.C65,064608(2002);
Phys.Rev.C69,034608(2004).

[27] Yingxun Zhang, Zhuxia Li, Phys.Rev. C71,024604(2005).

[28] J.Aichelin, A.Rosenhauer, G.Peilert, H.Stöker, W.Greiner, Phys.Rev.Lett. 58, 1926(1987).

[29] J.Dobaczewski, h. Flocard, and J. Treiner, Nucl.Phys.A422, 103(1997).

[30] J. Bartel, P. Quentin, C. Guet, and H.-B. Hakensson, Nucl.Phys.A386, 79(1982).

[31] E.Chabanat, P.Bonche, P.H.Haensel, et.al., Nucl.Phys.A627, 710(1997).

[32] M. Beiner, H. Flocard, N. Van Giai and P. Quentin, Nucl.Phys. A238, 29(1975).

[33] J.Cugnon, D.L’Hôte, J.Vandermeulen, Nucl. Inst. Meth. Phys. Res.B111, 215(1996).

[34] Qingfeng Li, Zhuxia Li, Mod.Phys.Lett. A17, 375(2002).

[35] W.Trautmann, A.Le Fèvre, J.Lukasik, INDRA and ALLADIN Collaborations, nucl-ex/0404025

[36] W.Reisdorf, Prog.Theor.Phys.Suppl.140, 111(2000).

[37] W.Reisdorf, et.al.(FOPI Collaboration) Phys. Rev. Lett. 92,232301(2004).

[38] Qingfeng Li, Zhuxia Li and Guangjun Mao, Phys.Rev.C62, 014606(2000).

[39] Qingfeng Li, Zhuxia Li and Enguang Zhao, Phys.Rev.C69(2004)017601.
Fig. 1 The charge distributions of products in the central collisions of reactions $^{197}Au + ^{197}Au$ at $E_{beam} = 60, 150, 400$ AMeV calculated with the ImQMD05 model, respectively. The SkP Skyrme interaction is chosen. The experiment data (solid symbols) are taken from [35, 36]. The calculation results shown are for products at forward angles as the same as the experimental data.

Fig. 2 The excitation functions of elliptic flow parameters at mid-rapidity for $Z \leq 2$ particles from mid-central collisions of $^{197}Au + ^{197}Au$ calculated with SkP, SkM^*, SLy7, SIII Skyrme interactions, respectively. The calculated results are given in the rotated reference frame as the same as the experimental data. The experimental data are taken from [6]. The inset shows the pressure as a function of density calculated with SkP, SkM^*, SLy7, SIII Skyrme interactions, respectively.

Fig. 3 The excitation functions of elliptic flow parameters at mid-rapidity for $Z \leq 2$ particles from mid-central collisions of $^{197}Au + ^{197}Au$ with $\eta = 0.2, 0.0, -0.4$ in the phenomenological expression of in-medium cross sections (6), respectively. The SkP interaction is chosen. The experimental data are taken from [6].

Fig. 4 The transition energies for elliptic flow at intermediate energies as a function of combined system mass.
SkP, 197Au+197Au, central collisions

dM/dZ

$E_{\text{beam}} = 60 \text{AMeV}$

$E_{\text{beam}} = 150 \text{AMeV}$

$E_{\text{beam}} = 400 \text{AMeV}$
V_2 vs E_{beam} (MeV) for $^{197}\text{Au} + ^{197}\text{Au}$ collisions, $b=5\text{fm}$. The plot shows data points for different potentials (SkP, SkM*, SLy7, SIII) and experimental data (Exp). The equation for σ_{nn}^* is given as $\sigma_{nn}^*=(1-0.2\rho/\rho_0)\sigma_{nn}^{\text{free}}$. Inset shows P vs ρ/ρ_0 for different potentials.
\[\sigma_{nn}^* = (1 - \eta \rho / \rho_0) \sigma_{nn}^{\text{free}} \]

\[{^{197}\text{Au}} + {^{197}\text{Au}}, \; b = 5\text{fm} \]
![Graph showing the relationship between E_{tran} (MeV) and $A_p + A_T$. The graph includes data points for elements ^{58}Ni, ^{90}Zr, ^{112}Sn, ^{124}Sn, ^{160}Gd, and ^{197}Au. The trend line is represented by the equation $\log_2(A_p + A_T) = -0.223$.](image-url)