MGMT Promoter Methylation Status Is Not Related to Histological or Radiological Features in IDH Wild-type Glioblastomas

Vilde Elisabeth Mikkelsen MD, Hong Yan Dai, PhD, Anne Line Stensjøen, MD, PhD, Erik Magnus Berntsen MD, PhD, Øyvind Salvesen, PhD, Ole Solheim MD, PhD, and Sverre Helge Torp MD, PhD

Abstract

O6-methylguanine DNA methyltransferase (MGMT) promoter methylation is an important favorable predictive marker in patients with glioblastoma (GBM). We hypothesized that MGMT status could be a surrogate marker of pretreatment tumor biology observed as histopathological and radiological features. Apart from some radiological studies aiming to noninvasively predict the MGMT status, few studies have investigated relationships between MGMT status and phenotypical tumor biology. We have therefore aimed to investigate such relationships in 85 isocitrate dehydrogenase (IDH) wild-type GBMs. MGMT status was determined by methylation-specific PCR and was assessed for associations with 22 histopathological features, immunohistochemical proliferative index and microvessel density measurements, conventional magnetic resonance imaging characteristics, preoperative speed of tumor growth, and overall survival. None of the investigated histological or radiological features were significantly associated with MGMT status. Methylated MGMT status was a significant independent predictor of improved overall survival. In conclusion, our results suggest that MGMT status is not related to the pretreatment phenotypical biology in IDH wild-type GBMs. Furthermore, our findings suggest the survival benefit of MGMT methylated GBMs is not due to an inherently less aggressive tumor biology, and that conventional magnetic resonance imaging features cannot be used to noninvasively predict the MGMT status.

Key Words: Angiogenesis, Glioblastoma, Histopathology, Magnetic resonance imaging, MGMT promoter methylation, Tumor growth.

INTRODUCTION

Glioblastomas (GBMs) are the most common of the primary malignant brain tumors in adults (1). The overall survival is only 14–16 months despite standard treatment of surgical resection and adjuvant concomitant radiation and chemotherapy (temozolomide) (2, 3). GBMs are biologically highly complex and aggressive tumors, illustrated by their rapid growth (4) and heterogeneous histological and molecular pathology (5–7).

O6-methylguanine DNA methyltransferase (MGMT) promoter methylation is an important predictive biomarker of improved response to temozolomide in GBMs (8, 9). MGMT is a DNA-repair enzyme that removes alkylated guanine residues on DNA, and hence counteracts the effect of alkylating agents, such as temozolomide (10). Methylation of the MGMT promoter leads to inactivation of the enzyme, which is believed to cause the predictive effect (10). However, it is not yet established whether it is purely a predictive marker or in part prognostic by itself, as previous studies have shown conflicting results regarding its prognostic value among patients who did not receive chemotherapy (8, 11–15). As MGMT promoter methylation status guides treatment decisions regarding chemotherapy (9), several radiological studies have sought to...
noninvasively predict the methylation status. However, results from these studies have also been conflicting (16).

We hypothesized that MGMT promoter methylation status could be a surrogate marker of pretreatment phenotypical tumor biology assessed by histopathology and magnetic resonance imaging (MRI) in GBMs. Apart from some radiological studies, few studies have investigated such relationships. By exploring these potential relationships using tissue material and MRI scans collected before treatment, we aimed to discover if there are differences in the inherent aggressiveness between MGMT methylated and unmethylated patients (i.e. a prognostic value). Moreover, such potential biological differences may also partially explain the different responses to chemotherapy. Our study could also further elucidate whether MGMT status can be predicted from preoperative MRI scans. In a cohort of treatment-naïve, isocitrate dehydrogenase (IDH) wild-type (wt) GBMs previously assessed for preoperative growth characteristics (4), we have therefore aimed to investigate whether MGMT status was associated with histological and radiological features.

MATERIALS AND METHODS

Patients and Samples

The selection of patients was based on the previous work by Stensjoen et al in which the preoperative growth dynamics of GBMs were investigated (4). Patients were retrospectively selected from all patients (n = 262) (4). Patients with ≥2 preoperative contrast-enhancing T1-weighted (T1wGd) MRI scans taken ≥14 days apart were eligible, and patients without contrast enhancement and/or gliomatosis cerebri were excluded (4). All cases were microscopically revised and IDH mutation status assessed according to the 2016 World Health Organization (WHO) Classification of Tumors of the Central Nervous System (17). IDH mutation status was first assessed using immunohistochemistry (18), and all immune-negative patients <55 years (18 patients) were additionally sequenced using Sanger sequencing according to previous described methods (using the BigDye Terminator v3.1 cycle sequencing kit and the 3130 genetic analyzer from Applied Biosystems, Foster City, CA) (19). Three patients were IDH mutated and were therefore excluded from the study. In 5 patients, IDH2 could not be sequenced; however, these were all IDH1 wt on sequencing. Due to the very low frequency of IDH2 mutations in newly diagnosed GBMs (20, 21), these were categorized as IDH wt and included in the study. The collection of clinical data regarding survival, treatment, sex, age at diagnosis, and Karnofsky performance status have previously been accounted for (18). Furthermore, of the 106 patients (4) analyzed for MGMT promoter methylation status, 18 were excluded (17%) due to inconclusive results. Hence, 85 patients were included in the current study.

DNA Extraction and MGMT Methylation-Specific PCR

For DNA isolation, an area of central tumor morphology (visually 100% tumor cells) was marked on hematoxylin and eosin (H&E) slides from formalin-fixed paraffin-embedded (FFPE) tissue blocks for each patient. Necrotic areas were avoided. Due to a lack of tumor material, 4 cases had a tumor cell content of 40%–70% in the marked areas. The marked areas were manually dissected, and tumor DNA then extracted using the QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden, Germany). QIAcube (Qiagen) was used for automated spin column process of DNA purification following the manufacturer’s instructions.

Methylation-specific PCR (MSP) was performed following bisulfite treatment of the isolated DNA using the EpiTect Fast Bisulfite Conversion kit (Qiagen). According to the method by Esteller et al (22), PCR amplification was performed using specific primers covering methylation of the MGMT promoter and exon 1 region. Methylated and unmethylated PCR products were detected with 4% agarose gel. An MGMT methylation-positive and a negative tissue control were applied during the whole process. The investigator who analyzed and interpreted the MSP data was blinded to other data.

Histopathology and Immunohistochemistry

All available H&E-stained FFPE sections from each case were assessed for the presence of 22 histopathological features. Definitions of each feature can be found in our previous publication (23). Most features were defined as either present or absent, while cellular density and atypia were semiquantitatively graded. Mitoses were counted in 10 high-power fields in hotspots. In 32 cases (38%), the amount of tissue on H&E slides has previously been subjectively categorized as sparse (23). This semiquantitative categorization was based on the collective area of viable (i.e. nonnecrotic) tumor tissue on all available H&E slides from each patient. Sparse tissue amount was often due to the patient being biopsied or having extensive necrosis in the resected material (23).

The immunohistochemical examinations of IDH1 R132H (monoclonal, IDH1 R132H/H09, 1:100, Dianova, Hamburg, Germany) (18), Ki-67/MIB-1 (monoclonal, Ki-67/MIB-1, 1:800 or 1:50, Dako, Glostrup, Denmark) (18), and CD105/endoglin (monoclonal, CD105/endoglin/SN6h, 1:50, Dako) (24) have previously been done and described in detail. The proliferative index (PI) of Ki-67/MIB-1 was quantified as described in our previous publication (18). The degree of angiogenesis has previously been quantified using microvessel density measurements of endoglin/CD105 (24). In short, the microvessel density was computed as the mean count of the number of vascular structures within a grid for 3 high-power fields in hotspots at ×400 magnification.

MRI Characteristics and Preoperative Tumor Growth

The MRI segmentations of total tumor volumes, volumes of the contrast enhancing and noncontrast enhancing...
Statistical Analyses

Statistical analyses were performed using Stata version 16 (StataCorp LLC, College Station, TX). Statistical significance was set at \(p \leq 0.05 \). Associations between MGMT status and categorical variables were analyzed using Chi-square/Fisher’s exact tests, while associations between MGMT status and continuous variables were assessed using Mann-Whitney U analyses. A Kaplan-Meier plot and the log-rank test were used for the univariable analyses between MGMT status and overall survival and a Cox proportional hazard model was used for multivariable survival analyses. The selection of variables in the multivariable model has previously been accounted for (18). All included variables followed the proportional hazard assumption, which was tested using Schoenfeld residuals in Stata.

RESULTS

MGMT and Clinical and Radiological Factors

In the 85 included patients, the distributions of age, sex, Karnofsky performance status, Ki-67/MIB-1 PI, and microvessel density of CD105 corresponded to previous reports (18, 24). The relationships between MGMT status and clinical and radiological factors are shown in Table 1. MGMT status was not significantly associated with any of the clinical factors or MRI volumetrics (Table 1). There was no significant association between MGMT status and MRI assessed preoperative speed of growth (Table 1).

MGMT and Histological Features

Distributions of the 22 histopathological features and the immunohistochemical markers (Ki-67/MIB-1 PI and microvessel density of CD105) in the MGMT methylated and unmethylated groups are presented in Table 2. There were no significant associations between MGMT status and any of the histological features assessed (Table 2). The difference in the presence of microvascular proliferation in the MGMT methylated and unmethylated groups was likely confounded by sparse tissue amount. In our previous work, we found that microvascular proliferation was significantly less present in...
cases with sparse tissue amount \((p < 0.001, \text{Chi-square test, unpublished student thesis}) \). In addition, there was a near-significant trend of more MGMT unmethylated cases in cases with sparse tissue material \((p = 0.088, \text{Chi-square test}) \) in the current study. To avoid this confounding effect, microvascular proliferation was redefined to only include well-sampled cases (Table 2). Microvascular proliferation was significantly associated with methylated MGMT status when not corrected for tissue amount \((p = 0.018, \text{Chi-square test}) \).

MGMT and Survival

The median overall survival was 13.3 months (95% confidence interval [CI] 9.9–15.7). Methylated MGMT status was significantly associated with overall survival both in the univariable analysis (Table 1; Fig. 1) and in the multivariable Cox model (Table 3).

DISCUSSION

MGMT promoter methylation is a pivotal predictive marker in IDH wt GBMs. However, we did not find any significant associations between the MGMT promoter methylation status and several biological parameters in treatment-naïve patients. These parameters included 22 histopathological features, proliferative activity, degree of angiogenesis, quantitative MRI volumetrics, and preoperative speed of radiological tumor growth. Altogether, these findings suggest

TABLE 2. MGMT and Histological Features. Distributions of the Histological Features Within the MGMT Methylated and Unmethylated Patient Groups

	Methylated MGMT (n = 31)	Unmethylated MGMT (n = 54)	p Value	Test Performed
Necrosis				
Small	84%	81%	0.781	Chi-square
Large	94%	89%	0.705	Fisher’s exact
Palisades\(^a\)	84%	72%	0.206	Chi-square
Microvascular proliferation\(^b\)	100%	90%	0.249	Fisher’s exact
High cellular density	42%	33%	0.428	Chi-square
Severe atypia	16%	26%	0.297	Chi-square
Median mitotic count (range)	16.0	11.5	0.109	Mann-Whitney U
(0–43)	(0–65)			
Vascular features				
Thrombosis	81%	87%	0.534	Fisher’s exact
Hemorrhage	87%	78%	0.290	Chi-square
Pseudorosettes\(^c\)	29%	25%	0.726	Chi-square
Secondary structures of Scherer\(^d\)	70%	71%	0.011	Chi-square
Desmoplasia	65%	67%	0.840	Chi-square
Leukocytes				
Macrophages	97%	91%	0.049	Fisher’s exact
Lymphocytic infiltrates	58%	76%	0.085	Chi-square
Small cell glioblastoma	23%	17%	0.502	Chi-square
Cell types				
Gemistocytes	29%	19%	0.263	Chi-square
Small cells	29%	22%	0.483	Chi-square
Sarcomatous cells	13%	20%	0.385	Chi-square
Myxomatoïd	6%	17%	0.314	Fisher’s exact
Giant cells	6%	11%	0.705	Fisher’s exact
Primitive neuronal component	6%	11%	0.705	Fisher’s exact
Oligodendroglial cells	10%	6%	0.664	Fisher’s exact
Median Ki-67/MIB-1 PI (range)	17.5	13.2%	0.333	Mann-Whitney U
(4.3–40.7)	(1.4–57.3)			
Median microvessel density count of CD105\(^e\) (range)	15.2	11.8	0.216	Mann-Whitney U
(4–42.7)	(0.7–50)			

MGMT, O6-methylguanine DNA methyltransferase; PI, proliferative index.

\(^a\)Includes only tumors with central tumor morphology in the analysis \((n = 84) \) (23).

\(^b\)Tumors with sparse tissue amount were excluded from the analysis \((53 \text{ included cases}) \), because sparse tissue amount was likely a confounder of the association between microvascular proliferation and MGMT status.

\(^c\)Includes only tumors with paraffin sections with viable central tumor morphology \((n = 82) \) (23).

\(^d\)Recorded as present when \(\geq 1 \) of the following features were observed: Perineuronal satellitosis, angiocentric structures, or subpial clustering, as previously defined (23). Only recorded in tumors containing infiltration zones into gray matter \((n = 55) \).

\(^e\)Includes only tumors with enough tissue amount or adequate morphology for the microvessel density assessment \((n = 82) \) (24).
that MGMT status is not a surrogate marker of the pretreatment phenotypical biology of IDH wt GBMs.

Tumor biology has been extensively studied using experimental models; however, these models will never fully mimic the unique micro-environment of human GBMs (25). In this study, tissue samples were obtained from the first surgical intervention and only preoperative MRI scans were assessed. Hence, the assessed biological features were unaffected by radiochemotherapy. Nevertheless, 82% (n = 70) were preoperatively treated with corticosteroids, and there was a nonsignificant trend (p = 0.144) of more corticosteroid use in MGMT methylated tumors (data not shown). Therefore, we cannot entirely exclude corticosteroid use as a confounding factor. In summary, our study enabled us to study links between the phenotypical biology and MGMT status occurring during the natural history of human IDH wt GBMs.

MGMT and Histology

We could not find any significant associations between MGMT status and the histopathological features or immunohistochemically assessed degree of proliferation and angiogenesis (Table 2). Few previous studies have investigated relationships between MGMT status and histological features. However, Hegi et al investigated such relationships by looking at 13 morphological features in newly diagnosed GBM patients (26). Yet, they only found a significant association between methylated MGMT status and higher Ki-67/MIB-1 PI. However, this association is limited by various aspects of the assessments of Ki-67/MIB-1 PI (23, 27, 28). Pistollato et al found a higher MGMT expression (corresponding to unmethylated tumors) in the hypoxic, inner core of GBMs (29). They also found that cells derived from these areas were more resistant to temozolomide, which was further related to the higher MGMT expression (29). In our previous studies, we found that
thromboses independently predicted faster tumor growth, which indicated that hypoxia drives faster tumor growth (23, 24). Because our previous publications included IDH1 mutant tumors and that thromboses have been found to associate with IDH1 wt status (30), we reanalyzed the data from our previous publications while including only IDH wt GBMs. The reanalysis showed similar results, suggesting that thromboses promote aggressiveness also among IDH wt GBMs. Interestingly, neither thromboses nor faster preoperative growth were associated with MGMT status in the current study (Tables 1 and 2). Previous experimental studies have also linked MGMT expression to increased hypoxia (31–33) and decreased angiogenesis (34) in GBM cell lines. However, these results are conflicting, as hypoxia is known to be an important inducer of angiogenesis (35). Furthermore, a recent comprehensive genomic study showed considerable differences in mRNA expression profiles and DNA methylation profiles between GBM patient material and the in vitro and in vivo models derived from it (36). These findings illustrate challenges in extrapolating findings from experimental models on MGMT methylation status and expression. Altogether, the inconsistent results from previous pathological and experimental studies are in line with our findings, which suggest MGMT methylation status is not linked to pretreatment histology in GBMs.

MGMT and MRI

We found no significant associations between MGMT status and total tumor volumes, contrast enhancing volumes, necrotic volumes, the percentage of necrosis, or preoperative speed of growth (Table 1). As mentioned, previous radiological studies have aimed to noninvasively predict MGMT status using conventional and advanced MRI characteristics. However, results have been conflicting and derived no expert consensus (16). Still, most studies have found significant associations between unmethylated MGMT status and MRI parameters indicating increased aggressiveness, such as more necrosis (37) and higher vascularity. Higher vascularity was in these studies measured as (i) ring enhancement (37, 38), (ii) higher normalized relative cerebral blood volume (39), (iii) higher relative cerebral blood flow (16), (iv) more edema (40), and (v) lower apparent diffusion coefficient (also indicating increased cellularity) (16, 41). On the contrary, others have found methylated MGMT status to significantly associate with necrosis (16), lower apparent diffusion coefficient (42), and higher relative cerebral blood volume (43). In line with our study, others found no significant associations between MGMT status and conventional MRI features (44–47). Nevertheless, machine learning approaches might be a way to advance and have thus far shown both promising (47–50) and negative results (45). In summary, our results along with the previous conflicting studies indicate that MGMT status cannot yet be noninvasively predicted from MRI scans.

MGMT and Survival

MGMT promoter methylation was an independent predictor for improved survival when adjusted for several clinical factors in the multivariable analyses (Table 3). However, this does not necessarily mean that methylated MGMT status is an independent prognostic factor, as MGMT status may have affected the temozolomide use in the studied patients. As defined by Clark, a prognostic factor is “associated with clinical outcome in the absence of therapy or with the application of a standard therapy that patients are likely to receive” (51). Hence, it is a feature of the natural history of the disease. A predictive factor is “associated with response or lack of response to a particular therapy” (51). Ideally, predictive factors should be studied in randomized controlled trials (RCTs), isolating the effect of the potential biomarker related to treatment. Prognostic factors are better studied in cohort studies where treatment is not dependent on the studied biomarker. In our study, most patients received chemotherapy regardless of the MGMT status (Table 1). However, among elderly GBM patients, the Stupp protocol is more seldom given and patients with MGMT methylated tumors may be selected for chemotherapy alone (12). Second-line chemotherapy is also more likely to be given to patients with MGMT methylated lesions. Thus, since MGMT status is to some extent used for treatment decisions, the seemingly independent effect of MGMT status on survival in the multivariable analyses may be colored by the use of MGMT status for treatment selection.

Our finding that MGMT status was not related to pretreatment phenotypical tumor biology indicates that methylated MGMT status is not associated with an intrinsically less aggressive tumor biology. This further suggests methylated MGMT status is not a prognostic factor by itself but merely a predictive marker. As mentioned, previous studies have shown conflicting results regarding the prognostic value of MGMT status among patients who were not treated with chemotherapy. Three RCTs on elderly patients (11–13) and a retrospective cohort from the preStupp area (14) did not find a significant difference in overall survival according to MGMT status in the radiotherapy-only treated group. Conversely, the EORTC-NCIC RCT on younger patients (8, 52) and a retrospective study by Rivera et al (15) found a prognostic value of MGMT status within the same patient group. However, second-line therapy with temozolomide was given to a higher percentage of the radiotherapy-only patients in the EORTC-NCIC trial (~60%) than in the 3 other RCTs (~30% in all) (11–13). Furthermore, in the EORTC-NCIC trial, they argue that the survival benefit is probably due to an effect of second-line chemotherapy, as the progression-free survival was short and the overall survival relatively long in the MGMT methylated cases in the radiotherapy-only group (8, 52). Moreover, Rivera et al found that methylated MGMT status also predicted an increased response to radiotherapy (15). They further speculated whether methylated MGMT status could represent a surrogate marker of improved treatment response in general or of undiscovered processes causing an inherently less aggressive tumor biology (15). However, our study suggests the latter speculation is not the case in IDH wt GBMs. Moreover, our results also indicate that the increased response to chemotherapy in MGMT methylated GBMs is not due to pretreatment differences in phenotypical tumor biology. Altogether, our findings along with previous studies indicate the increased survival of MGMT promoter methylated patients is due to an
increased response to therapy, and not due to an intrinsically less aggressive tumor biology.

Methodological Aspects

To date there is no consensus regarding the best assay for detecting the MGMT methylation status (53, 54). We used MSP, which has been related to survival in several pivotal clinical studies (8, 10, 22, 53). The finding of 36% MGMT methylated cases corresponds to the 30%–60% in previous studies (10). Interestingly, there was a near-significant trend of more MGMT unmethylated tumors when tumor material was sparse (p = 0.088). This association is perhaps due to the assay’s propensity toward more false negatives when the amount of isolated DNA is low. Intratumoral heterogeneity in MGMT status has also been reported (55, 56), which may contribute to a higher risk of false negative results in cases with sparse tissue. Further technical limitations of the MSP assay have been elaborated elsewhere (10, 54, 57). Still, the primers used in this study correspond to an area of the promoter found to best correlate with survival and MGMT expression in patients with GBM (58, 59).

Limitations regarding the collection of clinical data, the histopathological and immunohistochemical assessments, the segmentation of tumor volumes and different tumor compartments, and the estimation of growth rates have previously been described in detail (4, 18, 23, 24). The relatively large population of treatment-naive patients with a population-size of 0.8, the power was estimated to be conclusion that none of these tests were significant further supports our MGMT between one false positive finding of the 29 performed statistical tests based on the set p value of 0.05, one would expect at least one false positive finding of the 29 performed statistical tests between MGMT status and biological features. Hence, the fact that none of these tests were significant further supports our conclusion that MGMT status is not related to pretreatment phenotypical tumor biology. Assuming a standardized effect size of 0.8, the power was estimated to be ~90% for each analysis between MGMT status and the biological features. The results should be validated in future studies.

Conclusion

In conclusion, we did not find any significant associations between MGMT promoter methylation status and histological or MRI features in treatment-naive IDH wt GBM patients. These findings suggest MGMT status is not related to the pretreatment phenotypical biology in IDH wt GBMs, which indicate that the increased survival of MGMT methylated patients is not due to an inherently less aggressive tumor biology. Also, our findings suggest that preoperative conventional MRI characteristics cannot be used for noninvasive prediction of the MGMT status.

ACKNOWLEDGMENTS

We would like to thank Mona Jonsson, Tore Skaldebo, Tone Furre, Ingeborg Engesvold, and Torild Gladø for the excellent laboratory work with the methylation-specific PCR analyses of the MGMT promoter methylation status at the Department of Pathology, St. Olav’s University Hospital. We would also like to thank the staff at the Cellular and Molecular Imaging Core Facility (CMIC), NTNU-Norwegian University of Science and Technology for outstanding laboratory work with the histological and immunohistochemical analyses. Open Access funding provided by NTNU-Norwegian University of Science and Technology.

REFERENCES

1. Ostrom QT, Gittleman H, Pruitt G, et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro-Oncology 2018;20:i1–i86
2. Ronning PA, Helseth E, Meling TR, et al. A population-based study on the effect of temozolomide in the treatment of glioblastoma multiforme. Neuro-Oncology 2012;14:1178–84
3. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352:987–96
4. Stensjøen AL, Solheim O, Kvistad KA, et al. Growth dynamics of untreated glioblastomas in vivo. Neuro Oncol 2015;17:1402–11
5. Burger PC, Kleihues P. Cytologic composition of the untreated glioblastoma with implications for evaluation of needle biopsies. Cancer 1989;63:2014–23
6. Habberstad AH, Lind-Landsto¨m T, Torp SH. The histopathological spectrum of primary human glioblastomas with relations to tumour biology. J Clin Exp Pathol 2012;2:2110
7. Sottoriva A, Spiteri I, Piccirillo SG, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 2013;110:4009–14
8. Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352:997–1003
9. Weller M, van den Bent M, Tonn JC, et al. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglioma gliomas. Lancet Oncol 2017;18:e315–29
10. Weller M, Stupp R, Reifenberger G, et al. MGMT promoter methylation in malignant gliomas: Ready for personalized medicine? Nat Rev Neurol 2010;6:39–51
11. Wick W, Platten M, Meissner C, et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: The NOA-08 randomised, phase 3 trial. Lancet Oncol 2012;13:707–15
12. Malmstrom A, Gronberg BH, Marosi C, et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: The Nordic randomised, phase 3 trial. Lancet Oncol 2012;13:916–26
13. Perry JR, Laperriere N, O’Callaghan CJ, et al. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med 2017;376:1027–37
14. Ciniere E, Kaloshi G, Laigle-Donadey F, et al. MGMT prognostic impact on glioblastoma is dependent on therapeutic modalities. J Neurooncol 2007;83:173–9
15. Rivera AL, Pelloski CE, Gilbert MR, et al. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro-Oncology 2010;12:116–21
16. Han Y, Yan LF, Wang XB, et al. Structural and advanced imaging in predicting MGMT promoter methylation of primary glioblastoma: A region of interest based analysis. BMC Cancer 2018;18:215
17. Louis DN, Ohgaki H, Wiestler OD, et al. WHO Classification of Tumours of the Central Nervous System. Revised 4th ed. 2011 Geneva 27, Switzerland: International Agency for Research on Cancer (IARC) 2016

861
18. Stensjoen AL, Berntsen EM, Mikkelsen VE, et al. Does pretreatment tumor growth hold prognostic information for patients with glioblastoma? World Neurosurg 2017;101:868–94.e4

19. Jakota AS, Skjulsvik AJ, Mynel KS, et al. Surgical resection versus watchful waiting in low-grade gliomas. Ann Oncol 2017;28:1942–8

20. Brennan CW, Verhaak RG, McKenna A, et al. The somatic genomic landscape of glioblastoma. Cell 2013;155:462–77

21. Kloosterhof NK, Bralet LB, Dubbink HJ, et al. Isocitrate dehydrogenase-1 mutations: A fundamentally new understanding of diffuse glioma? Lancet Oncol 2011;12:83–91

22. Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 2003;345:1300–4

23. Mikkelsen VE, Stensjoen AL, Berntsen EM, et al. Histopathologic features in relation to pretreatment tumor growth in patients with glioblastoma. World Neurosurg 2018;109:e50–e8

24. Mikkelsen VE, Stensjoen AL, Granli US, et al. Angiogenesis and radiological tumor growth in patients with glioblastoma. BMC Cancer 2018;18:962

25. Huszthy PC, Daphu I, Niculor SP, et al. In vivo models of primary brain tumors: Pitfalls and perspectives. Neuro-Oncology 2012;14:979–93

26. Hegi ME, Janzer RC, Lambiv WL, et al. Presence of an oligodendroglioma-like component in newly diagnosed glioblastoma identifies a pathogenetically heterogeneous subgroup and lacks prognostic value: Central pathology review of the EORTC 26981/NCIC-CE.3 trial. Acta Neuropathol 2012;123:841–52

27. Prayson RA. Cell proliferation and tumors of the central nervous system, part II: Radiolabeling, cytometric, and immunohistochemical techniques. J Neuropathol Exp Neurol 2002;61:665–72

28. Skjulsvik AJ, Mork JM, Tarp MO, et al. Ki-67/MIB-1 immunostaining in a cohort of human gliomas. Int J Clin Exp Pathol 2014;7:9005–10

29. Pistolatto F, Abbadi S, Rampazzo E, et al. Intraprovincial hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells 2010;28:851–62

30. Unruh D, Schwarzwe SR, Khoury L, et al. Mutant IDH and thrombosis in gliomas. Acta Neuropathol 2016;132:917–30

31. Wang P, Lan C, Xiong S, et al. HIF1alpha regulates single differentiated glioma cell dedifferentiation to stem-like cell phenotypes with high tumorigenic potential under hypoxia. Oncotarget 2016;7:28074–92

32. Tang JH, Ma ZX, Huang GH, et al. Downregulation of HIF-1a sensitizes glioblastoma stem-like cells to Temozolomide by affecting HIF-Lalpha stability and MGMT expression. Cell Death Dis 2012;3:e412

33. Tang JH, Ma ZX, Huang GH, et al. Downregulation of HIF-1a sensitizes U251 glioma cells to the temozolomide (TMZ) treatment. Exp Cell Res 2016;343:148–58

34. Wang P, Lan C, Xiong S, et al. HIF-Lalpha regulates single differentiated glioma cell dedifferentiation to stem-like cell phenotypes with high tumorigenic potential under hypoxia. Oncotarget 2016;7:28074–92

35. Chahal M, Xu Y, Lesniak D, et al. MGMT modulates glioblastoma angiogenesis and response to the tyrosine kinase inhibitor sunitinib. Neuro-Oncology 2010;12:823–33

36. Hardee ME, Zagzag D. Mechanisms of glioma-associated neovascularization. J Neuropathol Exp Neurol 2010;69:133–48

37. Wang P, Lan C, Xiong S, et al. HIF-Lalpha regulates single differentiated glioma cell dedifferentiation to stem-like cell phenotypes with high tumorigenic potential under hypoxia. Oncotarget 2016;7:28074–92

38. Chahal M, Xu Y, Lesniak D, et al. MGMT modulates glioblastoma angiogenesis and response to the tyrosine kinase inhibitor sunitinib. Neuro-Oncology 2010;12:823–33

39. Hardee ME, Zagzag D. Mechanisms of glioma-associated neovascularization. J Neuropathol Exp Neurol 2010;69:133–48

40. Ellingson BM, Cloughesy TF, Pope WB, et al. Anatomic localization of MGMT promoter methylated and unmethylated tumors: A radiographic study in 358 de novo human glioblastomas. Neuroimage 2012;59:908–16

41. Romano A, Calabria LF, Tavanti F, et al. Apparent diffusion coefficient obtained by magnetic resonance imaging as a prognostic marker in glioblastomas: Correlation with MGMT promoter methylation status. Eur Radiol 2013;23:513–20

42. Pope WB, Lai A, Mehta R, et al. Apparent diffusion coefficient histogram analysis stratifies progression-free survival in newly diagnosed bevacizumab-treated glioblastoma. AJNR Am J Neuroradiol 2011;32:882–9

43. Hempel JM, Schittenhelm J, Klose U, et al. In vivo molecular profiling of human glioma: Cross-sectional observational study using dynamic susceptibility contrast magnetic resonance perfusion imaging. Clin Neuropathol 2019;29:479–91

44. Ahn SS, Shin NY, Chang JH, et al. Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging. J Neurosurf 2014;121:367–73

45. Kickingeder P, Bonekamp D, Nowosielski M, et al. Radiogenomics of glioblastoma: Machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology 2016;281:907–18

46. Gupta A, Omuoro AM, Shah AD, et al. Continuing the search for MR imaging biomarkers for MGMT promoter methylation status: Conventional and perfusion MRI revisited. Neuro-Oncology 2012;14:641–3

47. Koriﬁtis P, Kline TL, Coufalova L, et al. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys 2016;43:2835–44

48. Li ZC, Bai H, Sun Q, et al. Multiregional radiomics features from multiparametric MRJ for prediction of MGMT methylation status in glioblastomas. Multimodality and Image-integrated Radiology 2014;30:606–15

49. Xi YB, Guo F, Xu ZL, et al. Radiomics signature: A potential biomarker for the prediction of MGMT promoter methylation in glioblastoma. J Magn Reson Imaging 2018;47:1380–7

50. Hajianfar G, Shiri I, Maleki H, et al. Noninvasive O6-methylguanine-DNA methyltransferase status prediction in glioblastoma multiforme can be using magnetic resonance imaging radiomics features: Univariate and multivariate radiogenomics analysis. World Neurosurg 2019;132:140–61

51. Clark GM. Prognostic factors versus predictive factors: Examples from a clinical trial of erlotinib. Mol Oncol 2008;1:406–12

52. Gorlia T, van den Bent MJ, Hegi ME, et al. Nomograms for predicting survival of patients with newly diagnosed glioblastoma: Prognostic factors analysis of the EORTC and NCIC trial 26981/22981/CE.3. Lancet Oncol 2008;9:29–38

53. Mansouri A, Hackem LD, Mansouri S, et al. MGMT promoter methylation status testing to guide therapy for glioblastoma: Refining the approach based on emerging evidence and current challenges. Neuro-Oncology 2019;21:167–78

54. Malme ﬂin M, Lyssak M, Kristensen BW, et al. Do we really know who needs MGMT methylation analysis of gliomas for personalized therapy? Neuro-Oncol Pract 2020;7:e140–e61

55. Wengh R, Ferreyra Vega S, Kling T, et al. Intraocular DNA methylation heterogeneity in glioblastoma: Implications for DNA methylation-based classification. Neuro-Oncology 2019;21:616–27

56. Parker NR, Hudson AL, Khong P, et al. Intraocular methylation heterogeneity identiﬁed at the epigenetic, genetic and transcriptional level in glioblastoma. Sci Rep 2016;6:22477

57. Dullea A, Marignol L. MGMT testing allows for personalised therapy in glioblastoma. J Lasc Oncol 2013;12:862–868

58. Bady P, Sciuscio D, Diserens AC, et al. MGMT methylation analysis of glioblastoma cells and xenografts in vivo. Acta Neuropathol 2011;121:651–61