Efficient and Accurate Approximations of Nonlinear Convolutional Networks

Xiangyu Zhang1* Jianhua Zou1 Xiang Ming1* Kaiming He2 Jian Sun2
1Xi'an Jiaotong University 2Microsoft Research

Abstract

This paper aims to accelerate the test-time computation of deep convolutional neural networks (CNNs). Unlike existing methods that are designed for approximating linear filters or linear responses, our method takes the nonlinear units into account. We minimize the reconstruction error of the nonlinear responses, subject to a low-rank constraint which helps to reduce the complexity of filters. We develop an effective solution to this constrained nonlinear optimization problem. An algorithm is also presented for reducing the accumulated error when multiple layers are approximated. A whole-model speedup ratio of $4\times$ is demonstrated on a large network trained for ImageNet, while the top-5 error rate is only increased by 0.9%. Our accelerated model has a comparably fast speed as the “AlexNet” [11], but is 4.7% more accurate.

1. Introduction

This paper addresses efficient test-time computation of deep convolutional neural networks (CNNs) [12, 11]. Since the success of CNNs [11] for large-scale image classification, the accuracy of the newly developed CNNs [24, 17, 8, 18, 19] has been continuously improving. However, the computational cost of these networks (especially the more accurate but larger models) also increases significantly. The expensive test-time evaluation of the models can make them impractical in real-world systems. For example, a cloud service needs to process thousands of new requests per seconds; portable devices such as phones and tablets mostly have CPUs or low-end GPUs only; some recognition tasks like object detection [4, 8, 7] are still time-consuming for processing a single image even on a high-end GPU. For these reasons and others, it is of practical importance to accelerate the test-time computation of CNNs.

There have been a few studies on approximating deep CNNs for accelerating test-time evaluation [22, 3, 10]. A commonly used assumption is that the convolutional filters are approximately low-rank along certain dimensions. So the original filters can be approximately decomposed into a series of smaller filters, and the complexity is reduced. These methods have shown promising speedup ratios on a single [3] or a few layers [10] with some degradation of accuracy.

The algorithms and approximations in the previous work are developed for reconstructing linear filters [3, 10] and linear responses [10]. However, the nonlinearity like the Rectified Linear Units (ReLU) [14, 11] is not involved in their optimization. Ignoring the nonlinearity will impact the quality of the approximated layers. Let us consider a case that the filters are approximated by reconstructing the linear responses. Because the ReLU will follow, the model accuracy is more sensitive to the reconstruction error of the positive responses than to that of the negative responses. Moreover, it is a challenging task of accelerating the whole network (instead of just one or a very few layers). The errors will be accumulated if several layers are approximated, especially when the model is deep. Actually, in the recent work [3, 10] the approximations are applied on a single layer of large CNN models, such as those trained on ImageNet [2, 16]. It is insufficient for practical usage to speedup one or a few layers, especially for the deeper models which have been shown very accurate [18, 19, 8].

In this paper, a method for accelerating nonlinear convolutional networks is proposed. It is based on minimizing the reconstruction error of nonlinear responses, subject to a low-rank constraint that can be used to reduce computation. To solve the challenging constrained optimization problem, we decompose it into two feasible subproblems and iteratively solve them. We further propose to minimize an asymmetric reconstruction error, which effectively reduces the accumulated error of multiple approximated layers.

We evaluate our method on a 7-convolutional-layer model trained on ImageNet. We investigate the cases of accelerating each single layer and the whole model. Experiments show that our method is more accurate than the recent method of Jaderberg et al.’s [10] under the same speedup ratios. A whole-model speedup ratio of $4\times$ is demonstrated, and its degradation is merely 0.9%. When our model is accelerated to have a comparably fast speed as the “AlexNet” [11], our accuracy is 4.7% higher.

*This work is done when Xiangyu Zhang and Xiang Ming are interns at Microsoft Research.
2. Approaches

2.1. Low-rank Approximation of Responses

Our observation is that the response at a position of a convolutional feature map approximately lies on a low-rank subspace. The low-rank decomposition can reduce the complexity. To find the approximate low-rank subspace, we minimize the reconstruction error of the responses.

More formally, we consider a convolutional layer with a filter size of \(k \times k \times c \), where \(k \) is the spatial size of the filter and \(c \) is the number of input channels of this layer. To compute a response, this filter is applied on a \(k \times k \times c \) volume of the layer input. We use \(x \in \mathbb{R}^{k^2c+1} \) to denote a vector that reshapes this volume (appending one as the last entry for the bias). A response \(y \in \mathbb{R}^d \) at a position of a feature map is computed as:

\[
y = Wx.
\]

where \(W \) is a \(d \)-by-\((k^2c+1)\) matrix, and \(d \) is the number of filters. Each row of \(W \) denotes the reshaped form of a \(k \times k \times c \) filter (appending the bias as the last entry). We will address the nonlinear case later.

If the vector \(y \) is on a low-rank subspace, we can write \(y = M(y - \bar{y}) + \bar{y} \), where \(M \) is a \(d \)-by-\(d' \) matrix of a rank \(d' < d \) and \(\bar{y} \) is the mean vector of responses. Expanding this equation, we can compute a response by:

\[
y = MWx + b,
\]

where \(b = \bar{y} - M\bar{y} \) is a new bias. The rank-\(d' \) matrix \(M \) can be decomposed into two \(d \)-by-\(d' \) matrices \(P \) and \(Q \) such that \(M = PQ^\top \). We denote \(W' = Q^\top W \) as a \(d' \)-by-\((k^2c+1)\) matrix, which is essentially a new set of \(d' \) filters. Then we can compute (2) by:

\[
y = PW'x + b.
\]

The complexity of using Eqn.(3) is \(O(d'k^2c) + O(dd') \), while the complexity of using Eqn.(1) is \(O(dk^2c) \). For many typical models/layers, we usually have \(O(dd') \ll O(dk^2c) \), so the computation in Eqn.(3) will reduce the complexity to about \(d'/d \).

Fig. 1 illustrates how to use Eqn.(3) in a network. We replace the original layer (given by \(W \)) by two layers (given by \(W' \) and \(P \)). The matrix \(W' \) is actually \(d' \) filters whose sizes are \(k \times k \times c \). These filters produce a \(d' \)-dimensional feature map. On this feature map, the \(d \)-by-\(d' \) matrix \(P \) can be implemented as \(d \) filters whose sizes are \(1 \times 1 \times d' \). So \(P \) corresponds to a convolutional layer with a \(1 \times 1 \) spatial support, which maps the \(d' \)-dimensional feature map to a \(d \)-dimensional one. The usage of \(1 \times 1 \) spatial filters to adjust dimensions has been adopted for designing network architectures [13, 19]. But in those papers, the \(1 \times 1 \) filters are used to reduce dimensions, while in our case they restore dimensions.

Figure 1. Illustration of the approximation. (a) An original layer with complexity \(O(dk^2c) \). (b) An approximated layer with complexity reduced to \(O(d'k^2c) + O(dd') \).

Note that the decomposition of \(M = PQ^\top \) can be arbitrary. It does not impact the value of \(y \) computed in Eqn.(3).

A simple decomposition is the Singular Vector Decomposition (SVD) [5]: \(M = U_dS_dV_d^\top \), where \(U_d \) and \(V_d \) are \(d \)-by-\(d' \) column-orthogonal matrices and \(S_d \) is a \(d' \)-by-\(d' \) diagonal matrix. Then we can obtain \(P = U_dS_d^{1/2} \) and \(Q = V_dS_d^{1/2} \).

In practice the low-rank assumption is an approximation, and the computation in Eqn.(3) is approximate. To find an approximate low-rank subspace, we optimize the following problem:

\[
\min_M \sum_i \|(y_i - \bar{y}) - M(y_i - \bar{y})\|^2, \quad \text{s.t. rank}(M) \leq d'.
\]

Here \(y_i \) is a response sampled from the feature maps in the training set. This problem can be solved by SVD [5] or actually Principal Component Analysis (PCA): let \(\bar{Y} \) be the \(d \)-by-\(n \) matrix concatenating \(n \) responses with the mean subtracted, compute the eigen-decomposition of the covariance matrix \(YY^\top = USU^\top \) where \(U \) is an orthogonal matrix and \(\bar{S} \) is diagonal, and \(M = U_dU_d^\top \) where \(U_d \) are the first \(d' \) eigenvectors. With the matrix \(M \) computed, we can find \(P = Q = U_d \).

How good is the low-rank assumption of the responses? We sample the responses from a CNN model (with 7 convolutional layers, detailed in Sec. 3) trained on ImageNet [2]. For the responses of a convolutional layer (from 3,000 randomly sampled training images), we compute the eigenvalues of their covariance matrix and then plot the sum of the largest eigenvalues (Fig. 2). We see that substantial energy is in a small portion of the largest eigenvectors. For example, in the Conv2 layer \((d = 256) \) the first 128 eigenvectors contribute over 99.9% energy; in the Conv7 layer...
(d = 512), the first 256 eigenvectors contribute over 95% energy. This indicates that we can use a fraction of the filters to precisely approximate the original filters.

The low-rank behavior of the responses y is because of the low-rank behaviors of the filters W and the inputs x. While the low-rank assumptions of filters have been adopted in recent work [3, 10], we further adopt the low-rank assumptions of the filter input x, which is a local volume and should have correlations. The responses y will have lower rank than W and x, so the approximation can be more precise. In our optimization (4), we directly address the low-rank subspace of y.

2.2. The Nonlinear Case

Next we investigate the case of using nonlinear units. We use r(·) to denote the nonlinear operator. In this paper we focus on the Rectified Linear Unit (ReLU) [14]: r(·) = max{·, 0}. A nonlinear response is given by r(Wx) or simply r(y). We minimize the reconstruction error of the nonlinear responses:

\[
\min_{M, b} \sum_i \|r(y_i) - r(My_i + b)\|_2^2, \quad \text{s.t.} \quad \text{rank}(M) \leq d'.
\]

(5)

Here b is a new bias to be optimized, and r(My + b) = r(MWx + b) is the nonlinear response computed by the approximated filters.

The above problem is challenging due to the nonlinearity and the low-rank constraint. To find a feasible solution, we relax it as:

\[
\min_{M, b, \{z_i\}} \sum_i \|r(y_i) - r(z_i)\|_2^2 + \lambda \|z_i - (My_i + b)\|_2^2, \quad \text{s.t.} \quad \text{rank}(M) \leq d'.
\]

(6)

Here \{z_i\} is a set of auxiliary variables of the same size as \{y_i\}. \lambda is a penalty parameter. If \lambda \to \infty, the solution to (6) will converge to the solution to (5) [23]. We adopt an alternating solver, fixing \{z_i\} and solving for M, b and vice versa.

(i) The subproblem of M, b. In this case, \{z_i\} are fixed. It is easy to show b = z − My where z is the sample mean of \{z_i\}. Substituting b into the objective function, we obtain the problem involving M:

\[
\min_M \sum_i \|z_i - \bar{z} - M(y_i - \bar{y})\|_2^2, \quad \text{s.t.} \quad \text{rank}(M) \leq d'.
\]

(7)

Let Z be the d-by-n matrix concatenating the vectors of \{z_i - \bar{z}\}. We rewrite the above problem as:

\[
\min_M \|Z - MY\|_F^2, \quad \text{s.t.} \quad \text{rank}(M) \leq d'.
\]

(8)

Here \| \cdot \|_F is the Frobenius norm. This optimization problem is a Reduced Rank Regression problem [6, 21, 20], and it can be solved by a kind of Generalized Singular Vector Decomposition (GSVD) [6, 21, 20]. The solution is as follows. Let M = ZY^\top (YY^\top)^{-1}. The GSVD is applied on M as M = USV^\top, such that U is a d-by-d orthogonal matrix satisfying U^\top U = I_d where I_d is a d-by-d identity matrix, and V is a d-by-d matrix satisfying V^\top YY^\top V = I_d (called generalized orthogonality). Then the solution M to (8) is given by M = U_d S_d V_d^\top where U_d and V_d are the first d' columns of U and V and S_d are the largest d' singular values. We can further show that if Z = Y (so the problem in (7) becomes (4)), this solution degrades to computing the eigen-decomposition of YY^\top.

(ii) The subproblem of \{z_i\}. In this case, M and b are fixed. Then in this subproblem each element z_{ij} of each vector z_i is independent of any other. So we solve a 1-dimensional optimization problem as follows:

\[
\min_{z_{ij}} (r(y_{ij}) - r(z_{ij}))^2 + \lambda (z_{ij} - y'_{ij})^2,
\]

(9)
where y_{ij}' is the j-th entry of $M y_i + b$. We can separately consider $z_{ij} \geq 0$ and $z_{ij} < 0$ and remove the ReLU operator. Then we can derive the solution as follows: let

$$z_{ij} = \min(0, y_{ij}') \quad (10)$$

$$z_{ij}'' = \max(0, \frac{\lambda y_{ij} + r(y_{ij}')}{}{\lambda + 1}) \quad (11)$$

then $z_{ij} = z_{ij}'$ if z_{ij}' gives a smaller value in (9) than z_{ij}'', and otherwise $z_{ij} = z_{ij}''$.

Although we focus on the ReLU, our method is applicable for other types of nonlinearities. The subproblem in (9) is a 1-dimensional nonlinear least squares problem, so can be solved by gradient descent or simply line search. We plan to study this issue in the future.

We alternatively solve (i) and (ii). The initialization is given by the solution to the linear case (4). We warm up the solver by setting the penalty parameter $\lambda = 0.01$ and run 25 iterations. Then we increase the value of λ by δ to make progress if λ is too large. So we increase λ to 1, run 25 more iterations, and use the resulting M as our solution. Then we compute P and Q by SVD on M.

2.3. Asymmetric Reconstruction for Multi-Layer

To accelerate a whole network, we apply the above method sequentially on each layer, from the shallow layers to the deeper ones. If a previous layer is approximated, its error can be accumulated when the next layer is approximated. We propose an asymmetric reconstruction method to address this issue.

Let us consider a layer whose input feature map is not precise due to the approximation of the previous layer layers. We denote the approximate input to the current layer as \hat{x}. For the training samples, we can still compute its non-approximate responses as $y = W x$. So we can optimize an “asymmetric” version of (5):

$$\min_{M, b} \sum_i \|r(W x_i) - r(MW \hat{x} + b)\|^2_2, \quad (12)$$

$$s.t. \quad \text{rank}(M) \leq d'.$$

Here in the first term x_i is the non-approximate input, while in the second term \hat{x}_i is the approximate input due to the previous layer. We need not use \hat{x}_i in the first term, because $r(W x_i)$ is the real outcome of the original network and thus more precise. On the other hand, we do not use x_i in the second term, because $r(MW \hat{x}_i + b)$ is the actual operation of the approximated layer. This asymmetric version can reduce the accumulative errors when multiple layers are approximated. The optimization problem in (12) can be solved using the same algorithm as for (5).

2.4. Rank Selection for Whole-Model Acceleration

In the above, the optimization is based on a target d' of each layer. d' is the only parameter that determines the complexity of an accelerated layer. But given a desired speedup ratio of the whole model, we need to determine the proper rank d' used for each layer.

Our strategy is based on an empirical observation that the PCA energy is related to the classification accuracy after approximations. To verify this observation, in Fig. 3 we show the classification accuracy (represented as the difference to no approximation) vs. the PCA energy. Each point in this figure is empirically evaluated using a value of d'. 100% energy means no approximation and thus no degradation of classification accuracy. Fig. 3 shows that the classification accuracy is roughly linear on the PCA energy.

To simultaneously determine the rank for each layer, we further assume that the whole-model classification accuracy is roughly related to the product of the PCA energy of all layers. More formally, we consider this objective function:

$$\mathcal{E} = \prod_{l} \sum_{a=1}^{d'_l} \sigma_{l,a}, \quad (13)$$

Here $\sigma_{l,a}$ is the a-th largest eigenvalue of the layer l, and $\sum_{a=1}^{d'_l} \sigma_{l,a}$ is the PCA energy of the largest d'_l eigenvalues in the layer l. The product \prod_l is over all layers to be approximated. The objective \mathcal{E} is assumed to be related to the accuracy of the approximated whole network. Then we optimize this problem:

$$\max_{\{d'_l\}} \mathcal{E}, \quad s.t. \quad \sum_{l} \frac{d'_l}{d_l} C_l \leq C. \quad (14)$$

![Figure 3. PCA accumulative energy and the accuracy rates (top-5). Here the accuracy is evaluated using the linear solution (the nonlinear solution has a similar trend). Each layer is evaluated independently, with other layers not approximated. The accuracy is shown as the difference to no approximation.](image)
layer	filter size	# channels	# filters	stride	output size	complexity (%)	# of zeros
Conv1	7 × 7	3	96	2	109 × 109	3.8	0.49
Pool1	3 × 3				37 × 37		
Conv2	5 × 5	96	256	1	35 × 35	17.3	0.62
Pool2	2 × 2			2	18 × 18		
Conv3	3 × 3	256	512	1	18 × 18	8.8	0.60
Conv4	3 × 3	512	512	1	18 × 18	17.5	0.69
Conv5	3 × 3	512	512	1	18 × 18	17.5	0.69
Conv6	3 × 3	512	512	1	18 × 18	17.5	0.68
Conv7	3 × 3	512	512	1	18 × 18	17.5	0.95

Table 1. The architecture of the model. Each convolutional layer is followed by ReLU. The final convolutional layer is followed by a spatial pyramid pooling layer [8] that have 4 levels (\(6 \times 6, 3 \times 3, 2 \times 2, 1 \times 1\), totally 50 bins). The resulting 50 × 512-d is fed into the 4096-d fc layer (fc6), followed by another 4096-d fc layer (fc7) and a 1000-way softmax layer. The convolutional complexity is the theoretical time complexity, shown as relative numbers to the total convolutional complexity. The (relative) number of zeros is the calculated on the responses of the layer, which shows the “sparsity” of the layer.

Here \(d_l\) is the original number of filters in the layer \(l\), and \(C_l\) is the original time complexity of the layer \(l\). So \(d_l C_l\) is the complexity after the approximation. \(C\) is the total complexity after the approximation, which is given by the desired speedup ratio. This problem means that we want to maximize the accumulated accuracy subject to the time complexity constraint.

The problem in (14) is a combinatorial problem [15]. So we adopt a greedy strategy to solve it. We initialize \(d'_l\) as \(d_l\), and consider the set \(\{\sigma_{l,a}\}\). In each step we remove an eigenvalue \(\sigma_{l,a}\) from this set, chosen from a certain layer \(l\). The relative reduction of the objective is \(\Delta E / E = \sigma_{l,a} / \sum_{a=1}^{d_l} \sigma_{l,a}\), and the reduction of complexity is \(\Delta C = \frac{1}{d_l} C_l\). Then we define a measure as \(\frac{\Delta E / E}{\Delta C}\). The eigenvalue \(\sigma_{l,a}\) that has the smallest value of this measure is removed. Intuitively, this measure favors a small reduction of \(\Delta E / E\) and a large reduction of complexity \(\Delta C\). This step is greedily iterated, until the constraint of the total complexity is achieved.

2.5. Discussion

In our formulation, we focus on reducing the number of filters (from \(d\) to \(d'\)). There are algorithmic advantages of operating on the “\(d'\)”-dimension. Firstly, this dimension can be easily controlled by the rank constraint \(\text{rank}(M) \leq d'\). This constraint enables closed-form solutions, e.g., PCA to the problem (4) or GSVD to the subproblem (7). Secondly, the optimized low-rank projection \(M\) can be exactly decomposed into low-dimensional filters (\(P\) and \(Q\)) by SVD. These simple and close-form solutions can produce good results using a very small subset of training images (3,000 out of one million).

3. Experiments

We evaluate on the “SPPnet (Overfeat-7)” model [8], which is one of the state-of-the-art models for ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014 [16]. This model (detailed in Table 1) has a similar architecture to the Overfeat model [17], but has 7 convolutional layers. A spatial pyramid pooling layer [8] is used after the last convolutional layer, which improves the classification accuracy. We train the model on the 1000-class dataset of ImageNet 2012 [2, 16], following the details in [8].

We evaluate the “top-5 error” (or simply termed as “error”) using single-view testing. The view is the center 224 × 224 region cropped from the resized image whose shorter side is 256. The single-view error rate of the model is 12.51% on the ImageNet validation set, and the increased error rates of the approximated models are all based on this number. For completeness, we report that this model has 11.1% error using 10-view test and 9.3% using 98-view test.

We use this model due to the following reasons. First, its architecture is similar to many existing models [11, 24, 17, 1] (such as the first/second layers and the cascade usage of 3 × 3 filters), so we believe most observations should be valid on other models. Second, on the other hand, this model is deep (7-conv.) and the computation is more uniformly distributed among the layers (see “complexity” in Table 1). A similar behavior exhibits on the compelling VGG-16/19 models [18]. The uniformly distributed computation indicates that most layers should be accelerated for an overall speedup.

For the training of the approximations as in (4), (6), and (12), we randomly sample 3,000 images from the ImageNet training set and use their responses as the training samples.

3.1. Single-Layer: Linear vs. Nonlinear

In this subsection we evaluate the single-layer performance. When evaluating a single approximated layer, the rest layers are unchanged and not approximated. The speedup ratio (involving that single layer only) is shown as the theoretical ratio computed by the complexity.

In Fig. 4 we compare the performance of our linear so-
Figure 4. **Linear vs. Nonlinear**: single-layer performance of accelerating Conv1 to Conv7. The speedup ratios are computed by the theoretical complexity, but is nearly the same as the actual speedup ratios in our CPU/GPU implementation. The error rates are top-5 single-view, and shown as the increase of error rates compared with no approximation (smaller is better).

Figure 5. **Symmetric vs. Asymmetric**: the cases of 2-layer and 3-layer approximation. The speedup is computed by the complexity of the layers approximated. (a) Approximation of Conv6 & 7. (b) Approximation of Conv2, 3 & 4. (c) Approximation of Conv5, 6 & 7.

...olution (4) and nonlinear solution (6). The performance is displayed as *increase of error rates* (decrease of accuracy) vs. the speedup ratio of that layer. Fig. 4 shows that the nonlinear solution consistently performs better than the linear solution. In Table 1, we show the sparsity (the portion of zero activations after ReLU) of each layer. A zero activation is due to the truncation of ReLU. The sparsity is over 60% for Conv2-7, indicating that the ReLU takes effect on a substantial portion of activations. This explains the discrepancy between the linear and nonlinear solutions. Especially, the Conv7 layer has a sparsity of 95%, so the advantage of the nonlinear solution is more obvious.

Fig. 4 also shows that when accelerating only a single layer by 2×, the increased error rates of our solutions are rather marginal or ignorable. For the Conv2 layer, the error rate is increased by < 0.1%; for the Conv3-7 layers, the error rate is increased by < 0.2%.

We also notice that for Conv1, the degradation is ignorable on or below 2× speedup (1.8× corresponds to \(d' = 32\)). This can be explained by Fig. 2(a): the PCA energy has almost no loss when \(d' \geq 32\). But the degradation can grow quickly for larger speedup ratios, because in this layer the channel number \(c = 3\) is small and \(d'\) needs to be reduced drastically to achieve the speedup ratio. So in the following, we will use \(d' = 32\) for Conv1.

3.2. Multi-Layer: Symmetric vs. Asymmetric

Next we evaluate the performance of asymmetric reconstruction as in the problem (12). We demonstrate approximating 2 layers or 3 layers. In the case of 2 layers, we show the results of approximating Conv6 and 7; and in the case of 3 layers, we show the results of approximating Conv5-7
Table 2. Whole-model acceleration with/without rank selection. The speedup ratios shown here involve all convolutional layers (Conv1-Conv7). We fix \(d' = 32 \) in Conv1. In the case of no rank selection, the speedup ratio of each other layer is the same. The solver is the asymmetric version. Each column of Conv1-7 shows the rank \(d' \) used, which is the number of filters after approximation. The error rates are top-5 single-view, and shown as the increase of error rates compared with no approximation (smaller is better).

speedup	rank sel.	Conv1	Conv2	Conv3	Conv4	Conv5	Conv6	Conv7	err. ↑ %
2×	no	32	110	199	219	219	219	219	1.18
2×	yes	32	83	182	211	239	237	253	0.93
2.4×	yes	32	74	174	191	191	191	191	1.77
3×	yes	32	57	139	153	153	153	153	2.56
3×	no	32	62	138	149	166	162	167	2.34
4×	no	32	57	104	115	115	115	115	4.32
4×	yes	32	50	112	114	122	117	119	4.20
5×	no	32	46	83	92	92	92	90	4.67
5×	yes	32	41	94	93	98	92	90	6.53

We sequentially approximate the layers involved, from a shallower one to a deeper one. In the asymmetric version (12), \(\hat{x} \) is from the output of the previous approximated layer (if any), and \(x \) is from the output of the previous non-approximate layer. In the symmetric version (5), the response \(y = Mx \) where \(x \) is from the output of the previous non-approximate layer. We have also tried another symmetric version of \(y = \hat{Mx} \) where \(\hat{x} \) is from the output of the previous approximated layer (if any), and found this symmetric version is even worse.

Fig. 5 shows the comparisons between the symmetric and asymmetric versions. The asymmetric solution has significant improvement over the symmetric solution. For example, when only 3 layers are approximated simultaneously (like Fig. 5 (c)), the improvement is over 1.0% when the speedup is 4×. This indicates that the accumulative error rate due to multi-layer approximation can be effectively reduced by the asymmetric version.

When more and all layers are approximated simultaneously (as below), if without the asymmetric solution, the error rates will increase more drastically.

3.4. Comparisons with Previous Work

We compare with Jaderberg et al.’s method [10], which is a recent state-of-the-art solution to efficient evaluation. This method mainly operates on the spatial domain. It decomposes a \(k \times k \) spatial support into a cascade of \(k \times 1 \) and \(1 \times k \) spatial supports. This method focuses on the linear reconstruction error. The SGD solver is adopted for optimization. In the paper of [10], their method is only evaluated on a single layer of a model trained for ImageNet.

Our comparisons are based on our re-implementation of [10]. We use the Scheme 2 decomposition in [10] and its filter reconstruction version, which is the one used for ImageNet as in [10]. Our re-implementation of [10] gives a 2× single-layer speedup on Conv2 and < 0.2% increase of error. As a comparison, in [10] it reports 0.5% increase of error on Conv2 under a 2× single-layer speedup, evaluated on another Overfeat model [17]. For whole-model speedup, we adopt this method sequentially on Conv2-7 using the same speedup ratio. We do not apply this method on Conv1, because this layer has a small fraction of complexity while the spatial decomposition leads to considerable error on this layer if using a speedup ratio similar to other layers.

In Fig. 6 we compare our method with Jaderberg et al.’s [10] for whole-model speedup. The speedup ratios are the theoretical complexity ratios involving all convolutional layers. Our method is the asymmetric version and with rank selection (denoted as “our asymmetric”). Fig. 6 shows that when the speedup ratios are large (4× and 5×), our method outperforms Jaderberg et al.’s method signif-
Table 3. Comparisons of network performance. The top-5 error is absolute values (not the increased number). The running time is per view on a CPU (single thread, with SSE).

model	speedup solution	top-5 err. (1-view)	top-5 err. (10-view)	time (ms)
AlexNet [11]	-	18.8	16.0	273
SPPNet (Overfeat-7)	[10], 4×	18.5	15.6	278
	our asym., 4×	16.7	14.4	271
	our asym. (3d), 4×	14.1	12.0	267

We set the speedup ratios of both mechanisms to be equal: e.g., if the speedup ratio of the whole model is \(r \times \), then we use \(\sqrt{r} \times \) for both. Fig. 6 shows that this strategy leads to significantly smaller increase of error. For example, when the speedup is 5×, the error is increased by only 2.5%. This is because the speedup ratio is accounted by all three dimensions, and the reduction of each dimension is lower. Our asymmetric solver effectively controls the accumulative error even if the multiple layers are decomposed extensively.

Finally, we compare the accelerated whole model with the well-known “AlexNet” [11]. The comparison is based on our re-implementation of AlexNet. The architecture is the same as in [11] except that the GPU splitting is ignored. Besides the standard strategies used in [11], we train this model using the 224×224 views cropped from resized images whose shorter edge is 256 [9]. Our re-implementation of this model has top-5 single-view error rate as 18.8% (10-view top-5 16.0% and top-1 37.6%). This is better than the one reported in [11].

Table 3 shows the comparisons on the accelerated models and AlexNet. The error rates in this table are the absolute value (not the increased number). The time is the actual running time per view, on a C++ implementation and Intel i7 CPU (2.9GHz). The model accelerated by our asymmetric solver (channel-only) has 16.7% error, and by our asymmetric solver (3d) has 14.1% error. This means that the accelerated model is 4.7% more accurate than AlexNet, while its speed is nearly the same as AlexNet.

As a common practice [11], we also evaluate the 10-view score of the models. Our accelerated model achieves 12.0% error, which means only 0.9% increase of error with 4× speedup (the original one has 11.1% 10-view error).

4. Conclusion and Future Work

On the core of our algorithm is the low-rank constraint. While this constraint is designed for speedup in this work, it can be considered as a regularizer on the convolutional filters. We plan to investigate this topic in the future.

\[^1\text{In [11] the 10-view error is top-5 18.2\% and top-1 40.7\%.}\]
References

[1] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, 2009.

[3] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear structure within convolutional networks for efficient evaluation. In NIPS, 2014.

[4] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.

[5] G. H. Golub and C. F. van Van Loan. Matrix computations. 1996.

[6] J. C. Gower and G. B. Dijksterhuis. Procrustes problems, volume 3. Oxford University Press Oxford, 2004.

[7] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simultaneous detection and segmentation. In ECCV, pages 297–312, 2014.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. arXiv:1406.4729v2, 2014.

[9] A. G. Howard. Some improvements on deep convolutional neural network based image classification. In arXiv:1312.5402, 2013.

[10] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional neural networks with low rank expansions. In BMVC, 2014.

[11] Á. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.

[12] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1989.

[13] M. Lin, Q. Chen, and S. Yan. Network in network. In arXiv:1312.4400, 2013.

[14] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, pages 807–814, 2010.

[15] C. R. Reeves. Modern heuristic techniques for combinatorial problems. John Wiley & Sons, Inc., 1993.

[16] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. arXiv:1409.0575, 2014.

[17] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. 2014.

[18] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014.

[19] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. arXiv:1409.4842, 2014.

[20] Y. Takane and H. Hwang. Regularized linear and kernel redundancy analysis. Computational Statistics & Data Analysis, pages 394–405, 2007.

[21] Y. Takane and S. Jung. Generalized constrained redundancy analysis. Behaviormetrika, pages 179–192, 2006.

[22] V. Vanhoucke, A. Senior, and M. Z. Mao. Improving the speed of neural networks on CPUs. In Deep Learning and Unsupervised Feature Learning Workshop, NIPS 2011, 2011.

[23] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, 2010.

[24] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional neural networks. In ECCV, 2014.