ALLAMANDA CATHARTICA LINN.: EXTRACTION AND PHARMACEUTICAL EVALUATION OF VARIOUS EXTRACTS OF LEAVES AND FLOWERS

MEENAKSHI FARTYAL
Laboratory of Plant Tissue Culture and Secondary Metabolites, Department of Botany, University of Rajasthan, Jaipur, India
Email: mksh35@gmail.com

ABSTRACT

Objective: Extraction and evaluation of the antifungal activity of extracts from leaves and flowers of Allamanda cathartica (Apocynaceae) Linn.

Methods: Leaves and flowers of A. cathartica were collected, dried and extracted by using well-established methods for alkaloids, flavonoids, steroids and crude extracts in polar and non-polar solvents. Extracts were screened for antifungal activity using 'Disc Diffusion Assay' against Candida albicans (Yeasts), Aspergillus flavus and Tricophyton mentagrophyte (fungi). Inhibition zone (IZ), Activity index (AI), Minimum inhibitory concentration (MIC), Minimum fungitoxic concentration (MFC) and Total activity (TA) were studied. Mean and standard deviation has also been calculated.

Results: C. albicans found to be the most susceptible organism while T. mentagrophyte found to be resistant. Alkaloid of leaf (IZ= 22 mm, AI= 0.65±0.02, MFC= 0.156 mg/ml, MIC= 0.078 mg/ml, TA= 557.59 ml/g) showed the best activity against C. albicans. Pet ether extract (IZ= 12 mm, AI= 0.40±0.02, MFC= 0.312 mg/ml, MIC= 0.156 mg/ml, TA= 11.48 ml/g) and water extract (IZ= 13 mm, AI= 0.43±0.02, MIC= 0.312 mg/ml, MIC= 0.156 mg/ml, TA= 99.36 ml/g) of flower also showed very good activities against C. albicans. The range of MFC and MIC found to be 1.25-0.156 mg/ml and 0.625-0.078 mg/ml, respectively.

Conclusion: Results indicate the good antifungal potency of extracts against tested microorganisms. Hence, may be explored for the formation of new antifungal drugs.

Keywords: Antifungal activity, Alkaloid, Flavonoid, Steroid, Polar and non-polar solvents, Disc diffusion assay, Minimum inhibitory concentration, Minimum fungitoxic concentration, Total activity

INTRODUCTION

The use of medicinal plants as a source for relief from illness can be traced back over five millennia to written documents of the early civilization in China, India and the Near east, but it is doubtless an art as old as mankind. Neanderthals living 60,000 y ago in present day Iraq used plants such as hollyhock. These plants are still widely used in ethnomedicine around the world [1, 2]. Medicinal plants still are a rich source of antimicrobial compounds. There has been an increasing interest worldwide on therapeutic values of natural products. It is believed that the cure, to any debilitating human ailments, may be found, among the world's flora in nature's pharmacy [3]. Phytochemicals have made a significant contribution in maintaining human health. The significance of drugs derived from plants cannot be over emphasized with the recent trend of high percentage of resistance in microorganisms to the present day antibiotics [4]. The effort has been intensified by researcher towards a search for more plant source of antimicrobial agents. In the present study Allamanda cathartica has been selected for the study.

Allamanda cathartica (common name Golden trumpet) is a woody climbing evergreen shrub belongs to family Apocynaceae. It is native to Central America and Brazil, cultivated in India for showy flowers, found wild in Karnataka. Various medicinal properties as a good purgative, Antidote for poisoning, inflammation, constipation and ascites are attributed to this plant. Distilled extract of the plant claims to the cure of malignancy, fungal and bacterial diseases, for colic and acute abdominal pain. It is used for jaundice and enlarged spleen resulting from malaria. It is active in vivo in mice and in vitro against human carcinoma of the nasopharynx. The alcoholic and aqueous extract is hypertensive. It’s cathartic (milky sap) possess antibacterial and possibly anticancer activity. The present investigation was undertaken to find out the antifungal potential of extracts of different parts of A. cathartica against some fungi.

Alkaloids are known to have pharmacological effects and are used in medications, as recreational drugs or in ethenogenic rituals. Literature indicates that plant alkaloids have considerable biological activity [5, 6]. The presence of Alkaloids, Sterols, and Flavonoids in leaf of A. cathartica and their antifungal activity against Candida albicans were reported [7]. Flavonoids are potent water-soluble antioxidants and free radical scavengers, which prevent oxidative cell damage and have strong anti-cancer activity [8]. It was reported that flavonoids can improve the blood circulation and lower the blood pressure [9]. Different phytoconstituents such as alkaloids, phenolic compounds, flavonoids, saponins, glycosides, terpenoids, steroids, coumarins, quinones, phytosterols, proteins, and carbohydrates were identified in the aqueous, acetone, petroleum ether, chloroform and ethanol extracts of the flowers Allamanda cathartica Linn. [10].

Steroids are frequently used as signaling molecules, represents highly concentrated energy stores, along with phospholipids function as components of cell membranes. Literature related to the antimicrobial activity of steroids of Allamanda cathartica was not yet found. The methanolic extracts of A. cathartica showed active inhibition against Salmonella typhi, salmonella paratyphi, Streptococcus aureus, Klebsiella vulgaris, Shigella dysenteriae, Shigella boydii and Escherichia [11]. Petroleum ether extract of A. cathartica showed good inhibition against Staphylococcus aureus (20 mm), Escherichia coli (13 mm), Pseudomonas aeruginosa (19 mm), Acinetobacter sp (20 mm), Proteus sp (18 mm) [12]. Allamanda cathartica (leaf) extract found to exhibit potential antimicrobial properties against human pathogenic bacteria Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Proteus mirabilis [13]. Petroleum ether and chloroform extracts of Allamanda cathartica exhibited promising antifungal activity [14].

Considering the rich diversity of plants, it is expected that screening and scientific evaluation of plant extracts for their antimicrobial activity may provide new antimicrobial substances. Review of the current literature reveals that no work has been carried out for...
Candida albicans is a major model of pathogenic yeast which is found in mouth, throat, intestine and genitourinary tract of human and considered as a common constituent of bowel flora together with many bacterial species e.g. E. coli, S. aureus and P. mirabilis. It lives in 80% of the human population with no harmful effects, although overgrowth may result in candidiasis which is often observed in immune-compromised individuals such as patients of cancer, transplant, and AIDS. It is a causal agent of opportunistic oral and genital infections in humans [18]. Superficial and mycosis infections cause local inflammation and discomfort in human beings [19]. Candidiasis also known as ‘thrush’, which usually occurs in immune compromised people [20].

Aspergillus flavus is the second leading cause of invasive and non-invasive aspergillosis [21]. The presence of *Aspergillus* in the air is a major risk factor for both invasive and allergic aspergillosis [22]. *A. flavus* can cause storage problems in stored grains. It also causes diseases in economically important crops, such as maize and peanuts and produces potent mycotoxins. It can also be a human pathogen associated with aspergillosis of the lungs and sometimes causing corneal, otomyocytic and nasoorbital infections.

Triocrophon mentagrophyte is a cosmopolitan dermatophyte, belonging to a homogeneous group of fungi called the dermatophytes. The organism is found in soil, the floor of swimming pools, hairs of wild boar, cats and dogs, farm animals, foot wears and from human toe webs without clinical lesions. It requires keratin for growth and can cause a variety of cutaneous (hair, nail and skin) infections in humans and animals hence considered to be anthropophilic or zoophilic in nature [23, 24]. It causes dermatophytosis in dogs, cats, cattle and especially in rodents [25-27].

Antimicrobial assay

Disc Diffusion Assay was performed for screening [28]. SD agar base plates were seeded with the fungal inoculum (inoculum size 1×10⁶ CFU/ml). Sterile filter paper discs of Whatman no.1 (6 mm in diameter) were impregnated with 100 µl of each of the extract of concentration 10 mg/ml to give a final concentration of 1 mg/disc. Discs were left to dry in vaccuo so as to remove residual solvent, which might interfere with the determination. Discs with extract were then placed on the corresponding seeded agar plates. Each extract was tested in triplicate along with Ketoconazole (1 mg/disc) for *T. mentagrophyte* and Terbinaine for *C. albicans* and *A. flavus* as standard drugs. The plates were kept at 4 °C for diffusion of extract, thereafter were incubated at 27 °C for 48 h and *T. mentagrophyte* for 5-7 d. Activity index for each extract was calculated [table 1] by the standard formula viz.

\[
\text{Activity index} = \frac{\text{IZ produced by the extract}}{\text{IZ produced by standard}}
\]

Determination of minimum inhibitory concentration (MIC) and minimum fungicidal (MFC) concentration

Minimum inhibitory concentration (MIC) was determined for each plant extract showing antimicrobial activity against the test pathogens. 'Broth microdilution' method was followed for determination of MIC values [29]. Plant extracts were resuspended in acetone (which has no activity against test microorganisms) to make 10 mg/ml final concentration. Two-fold serially diluted extracts were added to broth media of 96-wells of microtiter plates. Thereafter 100 µl inoculums (1×10⁶ CFU/ml) was added to each well. Fungal suspensions were used as negative control, while broth containing standard drug was used as positive control. Microtiter plates were then incubated at 27 °C for 48 h. Each extract was assayed in duplicate and each time two sets of microplates were prepared, one was kept for incubation while another was kept at 4 °C for comparing the turbidity in the wells of a microplate. The MIC values were taken as the lowest concentration of the extracts in the well of the microtiter plate that showed no turbidity after incubation. The turbidity of the wells in the microtiter plate was interpreted as the relative growth of microorganisms. The minimum fungicidal concentration (MFC) was determined by subculturing 50 µl from each well showing no apparent growth [table 2]. Least concentration of extract showing no visible growth on subculturing was taken as MFC.
RESULTS

Antimicrobial efficacy of secondary metabolites (alkaloid, steroid and flavonoid) and crude extracts in polar and non-polar solvents (methanol, pet ether, water) were assessed by using IZ, AI (table 1), MIC, MFC (table 2). Quantity of extract per gram of plant material was also calculated (table 3). In present investigation, 14 extracts were tested against three pathogenic organisms, including one yeast.

Table 1: Antifungal activity of extracts of Allamanda cathartica against some pathogenic fungi

Plant part	Extract	Microorganisms	C. albicans	A. flavus	T. mentagrophyte		
		IZ (mm)	AI	IZ (mm)	AI	IZ (mm)	AI
Leaf	A1	22	0.65±0.01	-	-	-	-
	S1	7	0.20±0.01	-	-	-	-
	E1	-	7	0.23±0.01	-	-	-
	E2	9	0.26±0.01	-	-	-	-
	P1	-	-	-	-	-	-
	M1	-	-	-	-	-	-
	W1	-	-	-	-	-	-
Flower	A2	8	0.27±0.01	-	-	-	-
	S2	9	0.30±0.01	-	-	-	-
	E1	-	7	0.23±0.01	-	-	-
	E2	-	7	0.23±0.01	-	-	-
	P2	12	0.40±0.01	-	-	-	-
	M2	9	0.30±0.01	-	-	-	-
	W2	13	0.43±0.02	-	-	-	-

(a) A1, A2= Alkaloid extract of respective plant parts, (b) S1, S2= Steroid extract of respective plant parts, (c) E1, E2= Free and Bound flavonoids of respective plant parts, (d) P1, P2= Pet ether extract of respective plant parts, (e) M1, M2= Methanolic extract of respective plant parts, (f) W1, W2= Water extract of respective plant parts, (g) IZ=Inhibition zone in mm (value: including 6 mm diameter of disc), (h) AI= Activity index (IZ developed by extract/IZ developed by standard), (i) [-]= no activity, (j)=±SEM

Total activity (TA) determination

Total activity is the volume up to which test extract can be diluted without losing the ability to kill microorganisms.

Table 2: MIC and MFC of active extracts of Allamanda cathartica against some pathogenic fungi

Microorganisms	MIC and MFC	A1	S1	E1	E2	P1	M1	W1	A2	S2	E1	E2	P2	M2	W2
C. albicans	0.156	1.25	0.625	-	-	-	1.25	0.625	-	0.312	0.625	0.312			
A. flavus	0.078	0.625	0.312	-	-	-	0.625	0.312	-	0.156	0.312	0.156			
T. mentagrophyte	0.078	-	-	0.625	-	-	-	-	0.625	0.625	-	-	-	-	

(a) A1, A2= Alkaloid extract of respective plant parts, (b) S1, S2= Steroid extract of respective plant parts, (c) E1, E2= Free and Bound flavonoids of respective plant parts, (d) P1, P2= Pet ether extract of respective plant parts, (e) M1, M2= Methanolic extract of respective plant parts, (f) W1, W2= Water extract of respective plant parts, (g) MIC= Minimum inhibitory concentration, (h) MFC= Minimum fungicidal concentration, (i) [-]= no activity.

Table 3: Quantity and total activity of crude extracts of Allamanda cathartica Linn

Plant part	Extract	Quantity of extract mg/g dwt	C. albicans	A. flavus	T. mentagrophyte
Leaf	A1	43.5	557.59	-	-
	S1	201.67	450.67	-	-
	E1	61.1	98.56	-	-
	E2	124.70	399.68	-	-
	P1	35	-	-	-
	M1	203.75	-	-	-
	W1	112.5	-	-	-
Flower	A2	674.12	1078.59	-	-
	S2	450	1442.30	-	-
	E1	175	-	280	-
	E2	348.34	-	557.34	-
	P2	17.86	-	114.48	-
	M2	172.23	-	552.01	-
	W2	15.5	-	99.36	-

(a) A1, A2= Alkaloid extract of respective plant parts, (b) S1, S2= Steroid extract of respective plant parts, (c) E1, E2= Free and Bound flavonoids of respective plant parts, (d) P1, P2= Pet ether extract of respective plant parts, (e) M1, M2= Methanolic extract of respective plant parts, (f) W1, W2= Water extract of respective plant parts, (g) TA= total activity (extract per gm dried plant part/MIC of extract)
C. albicans and two fungi A. flavus and T. mentagrophyte. Among all the tested extracts all the three crude extracts of leaf found to be inactive against all the tested pathogens. T. mentagrophyte found to be resistant pathogen as no extract showed activity against it. C. albicans found to be most susceptible organism as 8 out of 14 extracts showed activity against it. Best activity was observed in alkaloid extract of leaf (IZ = 2.2 mm, Al = 0.65±0.02, MFC = 0.156 mg/ml, MIC = 0.078 mg/ml, TA = 557.59 ml/g) against C. albicans. Pet ether extract of flower (IZ = 12 mm, Al = 0.40±0.02, MFC = 0.312 mg/ml, MIC = 0.156 mg/ml, TA = 114.48 ml/g) and water extract of flower (IZ = 13 mm, Al = 0.45±0.02, MFC = 0.312 mg/ml, MIC = 0.156 mg/ml, TA = 99.36 ml/g) also showed very good activities against C. albicans. Bound flavonoid of leaf (IZ = 9 mm, Al = 0.26±0.01, MFC = 0.625 mg/ml, MIC = 0.312 mg/ml, TA = 399.68 ml/g) and pet ether extract of flower (IZ = 9 mm, Al = 0.20±0.01, MFC = 0.312 mg/ml, MIC = 0.625 mg/ml, TA = 114.230 ml/g) also showed very good activities against C. albicans. Bound flavonoid of leaf (IZ = 9 mm, Al = 0.34±0.01, MFC = 0.625 mg/ml, MIC = 0.312 mg/ml, TA = 114.230 ml/g) and pet ether extract of flower (IZ = 9 mm, Al = 0.20±0.01, MFC = 0.625 mg/ml, MIC = 0.312 mg/ml, TA = 114.230 ml/g) also showed good activities against C. albicans while free flavonoid of leaf (IZ = 7 mm, Al = 0.23±0.01, MFC = 1.25 mg/ml, MIC = 0.625 mg/ml, TA = 98.56 ml/g) and free flavonoid of flower (IZ = 7 mm, Al = 0.23±0.01, MFC = 1.25 mg/ml, MIC = 0.625 mg/ml, TA = 280 ml/g) and bound flavonoid of flower (IZ = 7 mm, Al = 0.23±0.01, MFC = 1.25 mg/ml, MIC = 0.625 mg/ml, TA = 557.34 ml/g) showed satisfactory activities against A. flavus. Steroid of leaf (IZ = 7 mm, Al = 0.20±0.01, MFC = 1.25 mg/ml, MIC = 0.625 mg/ml, TA = 450.67 ml/g) showed satisfactory activity against C. albicans.

Among all the tested extracts, none of the tested extracts showed activity against more than one pathogen. Plant extracts, which had shown activity in diffusion assay, were evaluated for their MIC and MFC values (table 2). The range of MIC and MFC of extracts recorded was 1.25-0.156 and 0.625-0.078, respectively. In present study lowest MIC value 0.078 mg/ml was recorded against C. albicans, indicating significant antimicrobial efficacy of tested extracts. Quantity of extract obtained per gram from plant parts and TA was indicating significant antimicrobial efficacy of tested extracts. C. albicans.

DISCUSSION

Extracts from different parts of A. cathartica have previously been studied for their antifungal activity but, still, meager work has been carried out as far as the antifungal activity of steroids and crude extracts is concerned. Most of the research has been restricted on the determination of IZ of extracts without calculating AI, MIC, MFC and TA. Determination of MIC and MFC has now become an inevitable step in antimicrobial studies in order to establish their antifungal activity so as to explore them at industrial level for the inevitable step in antimicrobial studies in order to establish their antimicrobial activity and in vivo toxicity of Moringa oleifera and Allamanda cathartica against multiple drug resistant clinical pathogens. Int J Pharma Sci 2013;4:760-75.

A. cathartica

ACKNOWLEDGEMENT

The author is thankful to ‘Head’ Department of Botany, the University of Rajasthan for providing all necessary facilities and Prof. Padma kumar for her assistance in language and proofreading of the manuscript.

CONFLICT OF INTERESTS

Declare none

REFERENCES

1. Stockwell C. Nature's pharmacy. London: Century Hutchinson Ltd; 1988.
2. Thomson WA. editor. Medicines from the Earth. Maidenhead: McGraw-Hill Book Co.; 1978.
3. Olowosuolu AK, Ibrahim YK. Studies on the antimicrobial screening of aqueous extracts of five plants used in Folk medicine in Nigeria, West Africa. J Biol Sci 2006;6:21-6.
4. Ibekwe VL, Ubochi KC, Anyanwu BN. Prevalence of penicillia resistance in organisms that cause sexually transmitted diseases in Port Harcourt, Nigeria Int Environ Health Res 2000;10:251-5.
5. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999;12:564-82.
6. Okunade AL, Elwin-Lewis MPF, Lewis WH. Natural antmycobacterial metabolites: current status. Phytomedicine 2000;6:5-17.
7. Sci E, Mendes FB, Motta EVS, Bellozi PMQ. Antimicrobial and antioxidant activities of some plant extract. Phytochemicals as Nutraceuticals-Global Approaches to their Role in Nutrition and Health; 2012.
8. Del-Rio A, Obdullo BG, Castillo J, Marin RR, Ontane A. Uses and properties of citrus flavonoids. J Agric Food Chem 1997;45:405-15.
9. Blumenthal M. The ABC clinical guide to herbs. Austin: American botanical council; 2003. p. 239.
10. Oselin J, Sarawahi T, Britsia S, Florence AR. Screening of select ornamental flowers of the family Apocynaceae for phytochemical constituents. Asian Pac J Trop Dis 2012;2:260-4.
11. Britto AJD, Sebastian SR, Sujin RM. Phytochemical and antibacterial screening of seven Apocynaceae species against human pathogenic fungi. Int J Pharm Pharm Sci 2011;3:278-81.
12. Rajamanickam K, Sudha S. In vitro antimicrobial activity and in vivo toxicity of Moringa oleifera and Allamanda cathartica against multiple drug resistant clinical pathogens. Int J Pharma Sci 2013;4:760-75.
13. Md Chowdhury AN, Ashrafaszaman M, Md Ali H, Liza LN. Antimicrobial activity of some medicinal plants against multi-drug resistant human pathogens. Adv Biosci Bioeng 2013;1:1-24.
14. Singh IM, Unni RG, Kakoty Y, Das J. Evaluation of in vitro antifungal activity of medicinal plants against phytopathogenic fungi. Phytother Res 1997;11:103-40.
15. Ramavat KG, Merillon JM. Biotechnology: secondary metabolites. Science Pub Inc.; 2000.
16. Subramanian SS, Nagarjan S. Flavonoids of the seeds of Crotolaria retusa and Crotalaria striata. Curr Sci 1969;38:65.
17. Tomita Y, lomori A, Minato H. Steroidal sapogenins and sterols in tissue cultures of Dioscorea tokora. Phytochemistry 1970;9:111-4.
18. Enfert C, Hube B. editors. Candida: comparative and functional genomics. Caister Academic Press; 2007.
19. Pappas PG. Invasive candidiasis. Infectious Disease Clinics North Am 2006;20:485-506.
20. Ryan KJ, Rey CG. Serrish medical microbiology. 4th ed. Mc Graw Hill; 2004.
21. Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiol 2007;153:1677-92.
22. Denning DW, Venkateswarlu K, Oakley KL, Anderson MJ. Itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 1997;41:364-8.
23. Sanchez-Castellanos MS, Mayruga-Rodrigues JA, Sandoval-Tress C, Hernandez-Torres M. Tinea incognito due to Trichophyton mentagrophyte. Mycoses 2007;50:855-7.
24. Van Rooij P, Detandt M, Nolard N. Mycoses 2006;49:485-506.
25. Ajello L, Cheng S. The perfect state of the nail. Sabouraudia 1967;5:230-4.
26. George LK, Roberts CS, Menges RW, Kalpan W. Trichophyton mentagrophyte infection on dogs and cats. J Am Vet Med Assoc 1957;130:427-32.
27. Houck HE, Cooley JE, Lowitt MH, Kao GF. Tinea caput medusa; an unusual presentation of *Tricophyton mentagrophyte* on the scalp. *Cutis* 1996;58:48-52.

28. Andrews JM. BSAC standardized disc susceptibility testing method. *J Antimicrob Chemother* 2001;4:43-57.

29. Basri DF, Fan SH. The potential of aqueous and acetone extracts of gall of *Quercus infectoria* as antibacterial agents. *Indian J Pharmacol* 2005;37:26-9.

30. Eloff JN. Quantifying the bioactivity of the plant extracts during screening and bioassay-guided fractionation. *Phytomedicine* 2004;11:370-1.

How to cite this article

- Meenakshi Fartyal. *Allamanda cathartica* linn.: Extraction and pharmaceutical evaluation of various extracts of leaves and flowers. *Int J Curr Pharm Res* 2016;8(4):28-32.