Non-abelian tensor square of finite-by-nilpotent groups

RAIMUNDO BASTOS and NORAÍ R. ROCCO

Abstract. Let G be a group. We denote by $\nu(G)$ an extension of the non-abelian tensor square $G \otimes G$ by $G \times G$. We prove that if G is finite-by-nilpotent, then the non-abelian tensor square $G \otimes G$ is finite-by-nilpotent. Moreover, $\nu(G)$ is nilpotent-by-finite (Theorem A). Also we characterize BFC-groups in terms of $\nu(G)$ among the groups G in which the derived subgroup is finitely generated (Theorem B).

Mathematics Subject Classification. Primary 20E34, 20F24; Secondary 20F14.

Keywords. Structure theorems, Derived series, FC-groups.

1. Introduction. Let G and G^φ be groups, isomorphic via $\varphi : g \mapsto g^\varphi$ for all $g \in G$. Consider the group $\nu(G)$, introduced in [15] as

$$\nu(G) = \left\langle G \cup G^\varphi \mid [g, h^\varphi]^k = [g^k, (h^k)^\varphi] = [g, h^\varphi]^{k\varphi}, \forall g, h, k \in G \right\rangle. \quad (1.1)$$

It is a well-known fact (see [15]) that the subgroup $\Upsilon(G) = [G, G^\varphi]$ of $\nu(G)$ is canonically isomorphic with the non-abelian tensor square $G \otimes G$, as defined by R. Brown and J.-L. Loday in their seminal paper [2], the isomorphism being induced by $g \otimes h \mapsto [g, h^\varphi]$. The normality of $\Upsilon(G)$ in $\nu(G)$ gives the decomposition

$$\nu(G) = ([G, G^\varphi] \cdot G) \cdot G^\varphi, \quad (1.2)$$

where the dots mean (internal) semidirect products. With this in mind we shall write $\nu(G) = \Upsilon(G)(G^\varphi)$ and use $\Upsilon(G)$, $[G, G^\varphi]$, or $G \otimes G$ indistinctly to denote the non-abelian tensor square of G.

The group $\nu(G)$ inherits many properties of the argument G; for instance, if G is a finite π-group (π a set of primes), nilpotent, solvable, polycyclic-by-finite, or a locally finite group, then so is $\nu(G)$ (and hence also $G \otimes G$ and the

This work was supported by CAPES-Brazil.
non-abelian exterior square $G \wedge G$ [1, 3, 8, 9, 15]. For a deeper discussion of the commutator approach, we refer the reader to [7, 10].

In the present article we want to study the structure of $G \otimes G$ and $\nu(G)$ when G is a finite-by-nilpotent group.

An important result in the context of finite-by-nilpotent groups, due to Baer [14, 14.5.1], states that if $Z_k(G)$ is a subgroup of finite index in G, for some positive integer k, then the subgroup $\gamma_{k+1}(G)$ is finite. The converse does not hold in general; however, in [5], Hall obtained that if $\gamma_{k+1}(G)$ is finite, for some positive integer k, then $Z_{2k}(G)$ is a subgroup of finite index in G. This theorem shows that if G is finite-by-nilpotent, then G is nilpotent-by-finite. In the present paper we establish the following related result.

Theorem A. Let G be a finite-by-nilpotent group. Then

(a) The non-abelian tensor square $G \otimes G$ is finite-by-nilpotent;

(b) The group $\nu(G)$ is nilpotent-by-finite.

The converse of Theorem A (a) does not hold. In [1, Theorem 22] Blyth and Morse proved that $\Upsilon(D_\infty)$ is abelian, where $D_\infty = \langle a, b \mid a^2 = 1, a^b = a^{-1} \rangle$. More precisely, $\Upsilon(D_\infty)$ is isomorphic to $C_2 \times C_2 \times C_2 \times C_\infty$. On the other hand, $\gamma_k(D_\infty)$ is an infinite cyclic group, for every positive integer k. So, in particular, D_∞ cannot be finite-by-nilpotent.

It is an immediate consequence of [3, Proposition 9] that if G has a central subgroup Z of finite index, then also $G \otimes G$ has a central subgroup of finite index. Such a group is called central-by-finite. In particular, in this case the center $Z(G)$ is a subgroup of finite index in G. I. Schur [14, 10.1.4] showed that if G is a central-by-finite group, then the derived subgroup G' is finite and $\exp(G')$ divides $|G/Z(G)|$. It is clear that every central-by-finite group is also a BFC-group. Recall that a group G is called a BFC-group if there is a positive integer d such that no element of G has more than d conjugates. B. H. Neumann improved Schur’s theorem in a certain way, showing that the group G is a BFC-group if and only if the derived subgroup G' is finite [11]. The following result gives us another characterization of BFC-groups in terms of $\nu(G)$ when G has finitely generated derived subgroup.

Theorem B. Let G be a group in which G' is finitely generated. The following properties are equivalent:

(a) G is a BFC-group;

(b) $\nu(G)'$ is central-by-finite;

(c) $\nu(G)''$ is finite.

In Theorem B, the hypothesis that the derived subgroup G' is finitely generated is essential (see Remark 3.3 below). It is also interesting to note that when G is a BFC-group, $\Upsilon(G)$ is central-by-finite (this follows from Corollary 3.4 below). Nonetheless, as seen above, $\Upsilon(D_\infty)$ is abelian and D'_∞ is an infinite cyclic subgroup, while D_∞ is not a BFC-group. This suggest the following:

Question. Let G be a group in which G' is generated by finitely many commutators of finite order and $\Upsilon(G)$ is central-by-finite. Is it true that G is a BFC-group?
It is well-known that the converse of Schur’s theorem does not hold. Theorem B (b)–(c) could be used to obtain a converse of Schur’s theorem according to the following:

Definition. A group \(G\) is called a \(\nu\)-group if and only if there exists a group \(H\) with derived subgroup \(H'\) finitely generated such that \(G\) is isomorphic to \(\nu(H)'.\)

Thus, if \(G\) is a \(\nu\)-group with \(G'\) finite, then \(G\) is central-by-finite. For more details concerning groups satisfying the converse of Schur’s theorem, see [4,6,12,17].

In the next section we collect some results of the non-abelian tensor square and related constructions that are later used in the proofs of our main theorems. Section 3 contains the proofs of the main results.

2. The group \(\nu(G)\). The following basic properties are consequences of the defining relations of \(\nu(G)\) and the commutator rules (see [15, Section 2] for more details).

Lemma 2.1. The following relations hold in \(\nu(G)\), for all \(g, h, x, y \in G\).

(i) \([g,h^{\phi}, x^{\phi}] = [g,h^{\phi}, x] = [g^{\phi}, h, x] = [g^{\phi}, h^{\phi}, x] = [g^{\phi}, h, x].\)

(ii) \([g,h^{\phi}] \triangleleft \nu(G), [G, N^{\phi}] \triangleleft \nu(G)\).

In the notation of [16, Section 2], we have the derived map \(\rho' : \Upsilon(G) \to G'\) given by \([g, h^{\phi}] \mapsto [g, h]\). Let us denote by \(\mu(G)\) the kernel of \(\rho'\). In particular,

\[
\frac{\Upsilon(G)}{\mu(G)} \cong G'.
\]

Remark 2.2. Let \(N\) be a normal subgroup of \(G\). We set \(\overline{G}\) for the quotient group \(G/N\), and the canonical epimorphism \(\pi : G \to \overline{G}\) gives rise to an epimorphism \(\overline{\pi} : \nu(G) \to \nu(\overline{G})\) such that \(g \mapsto \overline{g}, g^{\phi} \mapsto \overline{g^{\phi}}\), where \(\overline{G^{\phi}} = G^{\phi}/N^{\phi}\) is identified with \(\overline{G^{\phi}}\).

In the following lemma we collect some results which can be found in [15] and [16], respectively.

Lemma 2.3. Let \(n\) be a positive integer and \(G\) be a group.

(i) ([15, Proposition 2.5]) With the above notation we have

(a) \([N, G^{\phi}] \triangleleft \nu(G), [G, N^{\phi}] \triangleleft \nu(G)\);

(b) \(Ker \overline{\pi} = \langle N, N^{\phi} \rangle [N, G^{\phi}] \cdot [G, N^{\phi}]\).

(ii) ([15, Theorem 3.3]) For \(i \geq 2\) the \(i\)-th term of the derived series of \(\nu(G)\) is given by

\[(\nu(G))^{(i)} = G^{(i)}(G^{\phi})^{(i)}[G^{(i-1)}, (G^{\phi})^{(i-1)}].\]

(iii) ([16, Proposition 2.7 (ii)]) \(\mu(G)\) is a central subgroup of \(\nu(G)\).

Lemma 2.4. Let \(n\) be a positive integer and \(G\) a group. Then

\([Z_n(G), G^{\phi}] [G, Z_n(G)^{\phi}] \leq Z_n(\nu(G)).\)
Proof. The case where \(n = 1 \) is covered by [15, Proposition 2.7]. So we will assume that \(n \geq 2 \). We first prove that \([Z_n(G), G^\varphi] \leq Z_n(\nu(G)) \). Choose arbitrarily elements \(a \in Z_n(G) \) and \(b \in G \). Since \(\nu(G) = \Upsilon(G) G G^\varphi \), it is sufficient to show that

\[
[[a, b^\varphi], x_1^{\varphi}, \ldots, x_n^{\varphi}] = 1 = [[[a, b^\varphi], x_1, \ldots, x_n],]
\]

for all elements \(x_1, \ldots, x_n \in G \). Let \(x_1, \ldots, x_n \in G \). Repeated application of Lemma 2.1 (ii) enables us to write

\[
[[a, b^\varphi], x_1^{\varphi}, x_2^{\varphi}, \ldots, x_{n-1}^{\varphi}, x_n^{\varphi}] = [[[a, b, x_1, x_2, \ldots, x_{n-1}], x_n^{\varphi}], = 1
\]

and

\[
[[a, b^\varphi], x_1, x_2, \ldots, x_n] = [[[a, b, x_1, x_2, \ldots, x_{n-1}], x_n], = 1.
\]

Further, using only obvious modifications of the above argument, one can show that \([G, Z_n(G)^\varphi] \leq Z_n(\nu(G)) \). This completes the proof. □

3. Proofs of the main results. The following lemma is well known; the equivalence follows directly from results of Hall [5] and Baer [14, 14.5.1].

Lemma 3.1. Let \(G \) be a group. The following properties are equivalent:

(i) \(G \) is finite-by-nilpotent;
(ii) There exists a positive integer \(k \) such that the subgroup \(Z_k(G) \) is a subgroup of finite index in \(G \).

Proof of Theorem A. (a) Since \((G \otimes G)/\mu(G) \) is isomorphic to \(G' \) and \(\mu(G) \) is a central subgroup of \(\nu(G) \), it follows that the quotient \((G \otimes G)/Z(G \otimes G) \) is isomorphic to a finite-by-nilpotent group. Therefore \(G \otimes G \) is finite-by-nilpotent.

(b) By definition, there exists a positive integer \(k \) such that \(\gamma_k(G) \) is finite. According to Hall’s result [5], \(Z_{2k}(G) \) is a subgroup of finite index in \(G \). Set \(\bar{G} = G/Z_{2k}(G) \). By Remark 2.2, there exists an epimorphism \(\bar{\pi} : \nu(G) \to \nu(\bar{G}) \). That \(\nu(\bar{G}) \) is finite follows from [15, Proposition 2.4].

Lemma 2.3 now shows that

\[
Ker \bar{\pi} = \langle Z_{2k}(G), Z_{2k}(G)^\varphi \rangle [Z_{2k}(G), G^\varphi][G, Z_{2k}(G)^\varphi].
\]

Since \(\nu(\bar{G}) \) is finite, it is sufficient to show that \(Ker \bar{\pi} \) is nilpotent. By Lemma 2.4, \([Z_{2k}(G), G^\varphi][G, Z_{2k}(G)^\varphi] \leq Z_{2k}(\nu(G)) \). On the other hand, \(\nu(Z_{2k}(G)) \ni \langle Z_{2k}(G), Z_{2k}(G)^\varphi \rangle \) is nilpotent [15, Corollary 3.2]. Hence \(Ker \bar{\pi} \) is nilpotent. □

Now we will deal with Theorem B: Let \(G \) be a group in which \(G' \) is finitely generated. The following properties are equivalent:

(a) \(G \) is a BFC-group;
(b) \(\nu(G)' \) is central-by-finite;
(c) \(\nu(G)'' \) is finite.
It is well known that the finiteness of the non-abelian tensor square $G \otimes G$ does not imply that G is a finite group. For instance, the Prüfer group $\mathbb{Z}(p^\infty)$ is an example of an infinite group such that $\mathbb{Z}(p^\infty) \otimes \mathbb{Z}(p^\infty) = 0$ (and so, finite). This is the case for all torsion, divisible abelian groups. A useful result, due to Niroomand and Parvizi [13], provides a sufficient condition for a group to be finite.

Lemma 3.2. Let G be a finitely generated group in which the non-abelian tensor square $[G, G^\varphi]$ is finite. Then G is finite.

We are now in a position to prove Theorem B.

Proof of Theorem B. (a) implies (b). By Lemma 2.3 (v), $\mu(G) \leq Z(\nu(G))$. Moreover, the quotient $\Upsilon(G)/\mu(G) \cong G'$. Since G is a BFC-group, we have that G' is finite [11]. Consequently, $\mu(G)$ is a subgroup of finite index in $\Upsilon(G)$. By Lemma 2.3 (iii), the derived subgroup of $\nu(G)$ is given by

$$\nu(G)' = \Upsilon(G) G' (G')^\varphi.$$

Since G' is finite, we conclude that $\mu(G)$ is a central subgroup of finite index in $\nu(G)'$.

(b) implies (c). By Schur’s theorem [14, 10.1.4], $\nu(G)''$ is finite.

(c) implies (a). By Lemma 2.3 (iii), $\nu(G)'' = [G', (G')^\varphi]G''(G'')^\varphi$. Thus, $[G', (G')^\varphi]$ is finite. Since G' is finitely generated, it follows that G'' is finite (Lemma 3.2). According to Neumann’s result G is a BFC-group, which completes the proof.

Remark 3.3. In Theorem B, the hypothesis that the derived subgroup G' is finitely generated is essential. Let $p \geq 3$ be a prime and consider the Prüfer group $A = \mathbb{Z}(p^\infty)$. We define the semi-direct product $D = A \cdot C_2$, where $C_2 = \langle c \rangle$ and

$$a^c = -a,$$

for every $a \in A$. Thus $D' \cong A$. By Lemma 2.3 (iii),

$$\nu(D)'' = \Upsilon(D') D''(D'')^\varphi.$$

Since D' is a Prüfer group, it follows that the non-abelian tensor square $\Upsilon(D')$ is trivial. As D is a metabelian group, we have $\nu(D)''$ is trivial (and so, finite). On the other hand, D is not a BFC-group.

Corollary 3.4. Let G be a BFC-group. Then $\Upsilon(G)$ is central-by-finite. Moreover, $\exp(\Upsilon(G)')$ divides $|G'|$.

Proof. Set $K = \Upsilon(G)$. Therefore K is central-by-finite by Theorem B (b). That $\exp(K')$ divides $|K/Z(K)|$ follows from Schur’s theorem [14, 10.1.4]. Since G is a BFC-group and $K/\mu(G) \cong G'$, we have $|K/Z(K)|$ divides $|G'|$, which completes the proof.
Acknowledgements. The authors are thankful to the referees for their careful reading of the original version and the various suggestions that have contributed to the improvement of this article.

References

[1] R. D. Blyth and R. F. Morse, Computing the nonabelian tensor square of polycyclic groups, J. Algebra 321 (2009), 2139–2148.
[2] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987), 311–335.
[3] R. Brown, D. L. Johnson, and E. F. Robertson, Some computations of non-abelian tensor products of groups, J. Algebra 111 (1987), 177–202.
[4] D. Gumber and H. Kalra, On the converse of a theorem of Schur, Arch. Math. 101 (2013), 17–20.
[5] Ph. Hall, Finite-by-nilpotent groups, Proc. Camb. Philos. Soc. 52 (1956), 611–616.
[6] P. Hilton, On a theorem of Schur, Int. J. Math. Math. Sci. 28 (2001), 455–460.
[7] L.-C. Kappe, Nonabelian tensor products of groups: the commutator connection, Proc. Groups St. Andrews 1997 at Bath, London Math. Soc. Lecture Notes 261 (1999), 447–454.
[8] B. C. R. Lima and R. N De Oliveira, Weak commutativity between two isomorophic polycyclic groups, J. Group. Theory 19 (2016), 239–248.
[9] P. Moravec, The exponents of nonabelian tensor products of groups, J. Pure Appl. Algebra 212 (2008), 1840–1848.
[10] I. N. Nakaoka and N. R. Rocco, A survey of non-abelian tensor products of groups and related constructions, Bol. Soc. Paran. Mat. 30 (2012), 77–89.
[11] B. H. Neumann, Groups with finite classes of conjugate elements, Prof. London Math. Soc. 1 (1951), 178–187.
[12] P. Niroomand, The converse of Schur’s theorem, Arch. Math. 94 (2010), 401–403.
[13] P. Niroomand and M. Parvizi, On the structure of groups whose exterior or tensor square is a p-group, J. Algebra 352 (2012), 347–353.
[14] D. J. S. Robinson, A course in the theory of groups, 2nd edition, Springer-Verlag, New York, 1996.
[15] N. R. Rocco, On a construction related to the non-abelian tensor square of a group, Bol. Soc. Brasil Mat. 22 (1991), 63–79.
[16] N. R. Rocco, A presentation for a crossed embedding of finite solvable groups, Comm. Algebra 22 (1994), 1975–1998.
[17] M K. Yadav, Converse of Schur’s Theorem – A statement, preprint available at arXiv:1212.2710v2 [math.GR].
RAIMUNDO BASTOS
Departamento de Matemática,
Universidade de Brasília,
Brasília, DF 70910-900,
Brazil
e-mail: bastos@mat.unb.br

NORAÍ R. ROCCO
Departamento de Matemática
Universidade de Brasília,
Brasília, DF 70910-900,
Brazil
e-mail: norai@unb.br

Received: 16 September 2015