Hydrodynamics of disordered marginally-stable matter

Matteo Baggioli
Instituto de Fisica Teorica UAM/CSIC, c/Nicolas Cabrera 13-15, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

Alessio Zaccone
Department of Physics "A. Pontremoli", University of Milan, via Celoria 16, 20133 Milan, Italy.
Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, U.K. and Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB30HE Cambridge, U.K.

We study the vibrational spectra and the specific heat of disordered systems using an effective hydrodynamic framework. We consider the contribution of diffusive modes, i.e. the 'diffusons', to the density of states and the specific heat. We prove analytically that these new modes provide a constant term to the vibrational density of states $g(\omega)$. This contribution is dominant at low frequencies, with respect to the Debye propagating modes. We compare our results with numerical simulations data and random matrix theory. Finally, we compute the specific heat and we show the existence of a linear in T scaling $C(T) \sim c T$ at low temperatures due to the diffusive modes, and we show that the coefficient scales with the diffusion constant as $c \sim D^{-1/2}$, hence the linear in T behavior in the specific heat is stronger the more localized the modes. Our results suggest that the anomalous properties of glasses and disordered systems can be understood effectively within a hydrodynamic approach which accounts for diffusive quasi-localized modes generated via disorder-induced scattering.

Glasses and disordered systems display interesting anomalous properties which remain unexplained to date. The vibrational modes, the thermodynamic quantities and the thermal transport coefficients strongly differ from the long known results for ordered crystals and an underlying robust theoretical picture is still absent [1].

A widely accepted view is that the vibrational degrees of freedom in glasses are not simply and only the standard Debye propagating phonons which obey, at low energy, the known dispersion relation:

$$\omega_{T,L} = v_{L,T} k + \ldots$$

where $v_{T,L}$ is the speed of propagation of the transverse (T) and longitudinal (L) modes. One possible extension of Debye’s theory involves the introduction of low-energy diffusive excitations which appear due to the strong disorder typical of glassy systems [2]. The presence of such modes can be understood, from a physical point of view, as a consequence of frequent scattering events that are caused by the absence of long-range order [2] (see Fig.1 for a visual representation), and possibly promoted at the microscopic level by the lack of inversion symmetry [3]. More specifically, the diffusons cannot propagate over long distance as they have a wavelength comparable with their mean-free path (Ioffe-Regel), and they appear as quasi-localized excitations.

The diffusons follow a Brownian motion dynamics which is expressed via the standard relation for the mean displacement squared:

$$\langle r^2 \rangle = D t.$$ \hspace{1cm} (2)

Here D is the macroscopic diffusion constant which arises from the collective behaviour of such quasi-localized modes. The previous expression has to be contrasted with the ballistic dynamics

$$\langle r^2 \rangle = v^2 t^2$$

which is typical of the propagating phonon modes in ordered crystals. In other words, the propagating sound modes are now coexisting with additional diffusive hydrodynamic degrees of freedom. When the diffusion constant of the diffusons becomes zero, as it happens at the mobility edge, they become completely localized and they are sometimes denominated locons. In disordered solids this type of Anderson-localization is typically observed near the upper limit of the vibrational density of states (VDOS) [4].

The idea that diffusons are present and extremely relevant in glasses has been introduced in [2] and hinted in several theoretical and experimental works in the past [5-11].

Moreover, the onset of vibrational diffusion relates with two important topics in the physics of disordered systems: the description of disordered solids in terms of random matrix theory [12-17] and the excess of vibrational degrees of freedom at the Ioffe-Regel crossover [18].

In this letter we build a hydrodynamic model for the diffusons, described as collective excitations with a diffusive dispersion relation, and study their contribution to the VDOS and the specific heat of the system using an effective field theory (EFT) approach. The diffusons
FIG. 1. A visual representation of the difference between diffusive dynamics and ballistic propagation. **Top:** A cartoon of the diffusive and ballistic mechanisms. **Bottom:** The dispersion relations for a propagating mode $\omega = v k$ and a damped diffusive mode $\omega = -i \Gamma - i D k^2$.

are shown to produce a constant-in-frequency contribution to the VDOS which dominates at low frequencies over the standard Debye term $g_{\text{Debye}}(\omega) \sim \omega^2$. Moreover, such contribution produces a linear in T term in the low temperature specific heat of the system.

Importantly, we will draw interesting connections with the results recently obtained via simulations and random matrix theory in [19], where similar effects have been observed. These connections hint at a deeper and more fundamental link between random matrix statistics of eigenvalues, eigenmode quasi-localization and diffusion.

To summarize, our results suggest that beyond the two-level states (TLS) theory [20–22] there are other possible theoretical explanations for the linear in T specific heat in glasses and amorphous materials which do not rely on any quantum phenomenon. With the present letter we provide an effective alternative explanation for such observation, which relies simply on hydrodynamic arguments and the scattering-induced diffusive nature of the vibrational degrees of freedom at low frequencies, e.g. the diffusons.

We consider collective vibrational modes whose dispersion relation has an imaginary part. In particular we discuss collective excitations defined by the following dispersion relation:

$$\omega = v k - i \Gamma(k) = v k - i \Gamma_0 - i D k^2 + O(k^4)$$ \hspace{1cm} (4)

in terms of a generic damping coefficient Γ which depends on the momentum k of the mode. This relation can be derived from the equation of elastodynamics of a solid supplemented with a viscous contribution [23], or from macroscopic balance equations that allow for energy dissipation [24].

In this work, we consider the limit where the imaginary (diffusive, dissipative) part of the above dispersion relation effectively dominates over the real part (representing the acoustic, elastic, propagative component). Effectively, this reduces to set the ballistic propagation speed to zero, $v = 0$, at least for the transverse phonons. We will show that by taking this limit, the characteristic properties of marginally stable (jammed) solids [25] can be reproduced.

We use a hydrodynamic approach to express the low-momentum limit of the damping coefficient in terms of a momentum-independent term Γ_0 and a diffusion constant D. Higher order terms can be ignored since they will not contribute to the low energy properties of the system. In the limit $\Gamma_0 \to 0$ these excitations are purely diffusive and coincide with those labeled in the previous literature as *diffusons* [2].

Hence, in the limit where diffusion dominates, the above dispersion relation becomes purely imaginary

$$\omega_{\text{diff}} = -i \Gamma(k) = -i \Gamma_0 - i D k^2 + O(k^4).$$ \hspace{1cm} (5)

are produced. In particular we discuss collective excitations defined by the following dispersion relation:

$$\omega = v k - i \Gamma(k) = v k - i \Gamma_0 - i D k^2 + O(k^4)$$ \hspace{1cm} (4)

in terms of a generic damping coefficient Γ which depends on the momentum k of the mode. This relation can be derived from the equation of elastodynamics of a solid supplemented with a viscous contribution [23], or from macroscopic balance equations that allow for energy dissipation [24].

In this work, we consider the limit where the imaginary (diffusive, dissipative) part of the above dispersion relation effectively dominates over the real part (representing the acoustic, elastic, propagative component). Effectively, this reduces to set the ballistic propagation speed to zero, $v = 0$, at least for the transverse phonons. We will show that by taking this limit, the characteristic properties of marginally stable (jammed) solids [25] can be reproduced.

We use a hydrodynamic approach to express the low-momentum limit of the damping coefficient in terms of a momentum-independent term Γ_0 and a diffusion constant D. Higher order terms can be ignored since they will not contribute to the low energy properties of the system. In the limit $\Gamma_0 \to 0$ these excitations are purely diffusive and coincide with those labeled in the previous literature as *diffusons* [2].

Hence, in the limit where diffusion dominates, the above dispersion relation becomes purely imaginary

$$\omega_{\text{diff}} = -i \Gamma(k) = -i \Gamma_0 - i D k^2 + O(k^4).$$ \hspace{1cm} (5)

In the opposite limit, where the imaginary part is zero, the VDOS of the Debye modes can be obtained using standard methods as

$$g_{\text{Debye}}(\omega) = \frac{\omega^2 V}{2 \pi} \left(\frac{2}{v_T^2} + \frac{1}{v_L^2} \right)$$ \hspace{1cm} (6)

where v_L and v_T are the longitudinal and the transverse speed of sound, respectively; and V is simply the volume of the system. This equation constitutes the basis
of Debye theory for ordered crystals which is strongly violated in glasses and amorphous systems. In this work we will not discuss the anomaly known as boson peak (BP) which appears in glasses and amorphous systems (and also in some ordered crystals [26]). The boson peak can be retrieved, within the current approach, from the competition between the real and imaginary parts in Eq. (4) as shown in [27, 28]. Here we are interested in the dynamics of the system at lower frequencies, below the typical BP location, \sim THz.

Going back to the newly introduced diffusive modes [5], we can write down their contribution to the VDOS using the formula

$$g_{\text{diff}}(\omega) = \frac{2 \omega}{\pi k_D^3} \text{Im} \int_0^{\infty} \frac{k^2}{\omega^2 - i \omega \Gamma_0 - i D k^2} dk$$

(7)

where k_D is the Debye momentum. The above formula can be derived by defining the VDOS as a sum of Dirac deltas centered on the eigenfrequencies and then using the Plemelj identity [29]. The integral can be performed analytically and it gives the following expression (where we omit constant prefactors):

$$g_{\text{diff}}(\omega) = \text{Re} \left[\frac{\sqrt{D} k_D - \sqrt{\Gamma + i \omega} \tan^{-1} \left(\frac{\sqrt{D} k_D}{\sqrt{\Gamma_0 + i \omega}} \right)}{D^{3/2}} \right].$$

(8)

Importantly, the contribution of the diffusons to the VDOS displays the low frequency expansion

$$g_{\text{diff}}(\omega) = a + b \omega^2 + O(\omega^4)$$

(9)

with:

$$a = \frac{k_D^3}{D} - \frac{\sqrt{\Gamma_0} \tan^{-1} \left(\frac{\sqrt{D} k_D}{\sqrt{\Gamma_0}} \right)}{D^{3/2}}. \quad (10)$$

The most important observation here is that the diffusons provide a constant contribution to the VDOS, which is finite even at zero frequency and can dominate the low energy thermodynamic properties of the system. Let us notice that the dispersion relation Eq. (5), and consequently the result Eq. (10), are not reliable in the limit of very large diffusion constant $D \to \infty$ where higher order terms in eq. (5) have to be considered.

Finally, from the VDOS, we can obtain the specific heat of the system and in particular we can separate the contribution of the diffusons from the contribution of the propagating Debye modes using the standard formula [30]

$$C(T) = k_B \int_0^\infty \left(\frac{\hbar \omega}{2 k_B T} \right)^2 \sinh \left(\frac{\hbar \omega}{2 k_B T} \right)^{-2} g(\omega) d\omega.$$

(11)

It turns out that the diffusive modes dominate the specific heat at low temperature producing a very clear linear in T contribution. In particular we have

$$C(T) = c T + d T^3 + \ldots$$

(12)

where the second term is the known Debye $\sim T^3$ contribution which comes from the Debye VDOS Eq. (6), while the first term comes directly from the diffusons. This final result gives the same linear in T contribution as given by the tunnelling two-level state (TLS) theory [20–22], without having to resort to any quantum mechanism. Previous work established a relation between the anomalous thermal conductivity of glasses and the diffusons [2], hence it would be appealing to provide a unifying mechanism to explain all thermal anomalies of glasses based on diffusons. The root cause of the diffusive excitations is to be identified in many microscopic scattering processes which are taken into account here at the level of effective field theory (EFT). As shown below, this EFT description is able to reproduce the universal linear scaling of the specific heat observed in glasses and amorphous materials.

We are now in the position of discussing the various implications of the simple hydrodynamic model introduced in the previous section. The main question is how the diffusons might modify the physical properties of the system. The first important consequence of the existence of diffusive modes of the type Eq. (5) is the appearance of a constant low-frequency plateau in the total VDOS which is shown in Fig. 2. We have ascertained that this behaviour is qualitatively independent from the values of the parameters and it agrees with the analytical result Eq. (10). It is straightforward to notice that this new contribution can be dominant at low frequency with

![FIG. 3. The comparison between the VDOS for $Z = Z_c$ obtained via simulations of a harmonic random spring network [3] and best fitted by random matrix theory in [10] (solid line) and the VDOS of the hydrodynamic model of this paper (dashed line). The simple model can reproduce the behaviour at small frequency just in terms of diffusive and (longitudinal) Debye modes.](image-url)
FIG. 4. The contribution of the diffusons Eq. (5) to the specific heat for different values of the diffusion constant D (increasing from blue to green). The dashed lines guide the eyes towards the linear in T scaling at low temperature. The T^3 Debye contribution is omitted.

FIG. 5. The dependence of the linear in T coefficient c in the specific heat upon the diffusion constant D of the diffusons. The more the modes are localized, the bigger the linear contribution. The tendency is consistent with the scaling $c \propto D^{-1/2}$.

is totally dominated by the diffusons contribution. In Fig. 4 we compare the hydrodynamic model with an analytical best fit, based on random matrix theory, of simulations data of a random network of harmonic springs at the marginal stability point $Z = Z_c = 6$ [19]. The qualitative agreement at low frequency is good and suggests the existence of a deep connection between diffusons, random matrix theory and disordered marginally-stable states. In particular, this comparison demonstrates that, at the jamming point of marginally-stable disordered solids, where the shear modulus vanishes, and only longitudinal modes propagate, the frequency spectrum is dominated by the diffusive modes (which are continuously scattered by disorder).

We then compute the contribution of the diffusive modes Eq. (5) to the specific heat $C(T)$. The appearance of a low temperature linear scaling is evident. A prototype of the results is shown in Fig. 5 for various values of the diffusion constant of the hydrodynamic modes.

Finally, we discuss the dependence of the linear in T term in the specific heat upon varying the diffusion constant D of the diffusons. We observe that the numerical data are consistent with the simple scaling:

$$C(T) \sim c T + \ldots \text{ with } c \sim D^{-1/2},$$

as shown in Fig. 5. The higher the diffusion constant of the hydrodynamic modes the smaller their linear in T contribution to the specific heat. In simple words, we can state that the more localized the modes, i.e. the smaller their diffusion constant D, the more important the linear in T contribution to the specific heat. This last observation suggests a strong correlation between the degree of localization of the low energy vibrational modes and the anomalous linear in T scaling ubiquitously observed in glasses and amorphous solids.

We built a simple and analytic effective-field theory model to explain the low energy/frequency anomalous properties of glasses and amorphous materials. The framework is based on hydrodynamic arguments and on the introduction of new quasi-localized diffusive modes, i.e. the diffusons, which crucially modify the dynamics at low energy, and become dominant in the limit of marginally-stable solids where transverse modes and the shear modulus vanish. We directly show that these modes induce a constant-in-frequency plateau in the vibrational density of states (VDOS) at low frequency. Importantly, these modes produce a linear in T term in the specific heat which is widely observed in experiments on highly disordered systems like glasses. Also, we analytically derived the relation $c \sim D^{-1/2}$ between the coefficient of the linear term in the specific heat and the diffusion constant of the diffusons, which establishes an unprecedented link between the linear-in-T specific heat and the degree of (quasi)localization of vibrational modes in disordered systems.
Our study strengthens the correlation between disorder, hydrodynamics and eigenmode diffusion. It is tempting to indicate simple diffusive dynamics as the underlying universal reason for all the known "anomalous" properties of disordered solids (specific heat, thermal conductivity, vibrational spectra). Our effective field theory does not rely on any specific microscopic mechanism, but it would certainly be desirable to have a more precise understanding of these diffusive quasi-localized modes in relation to the microscopic scattering processes induced by the disorder.

Finally, it would be interesting to verify if the diffusive dynamics and the correlated properties discussed in this letter might be at work also in other systems in the low-\(k\) hydrodynamic regime \cite{32}. A possible playground to consider is the dynamics of the viscous electrons in graphene and Dirac materials in the hydrodynamic window \cite{33}.

Moreover, it would be important to find more signatures for the presence of these diffusive modes, looking for example at other experimental observables, such as transport coefficients and conductivities. A ballistic to hydrodynamic crossover is expected at the point of marginal stability and it might induce more effects than the ones discussed in this manuscript.

ACKNOWLEDGMENTS

We thank Silvio Franz and Richard Stephens for useful comments and discussions about the topics considered in this work. M.B. acknowledges the support of the Spanish Agencia Estatal de Investigacion through the grant IFT Centro de Excelencia Severo Ochoa SEV-2016-0597. M.B. thanks the University of Milano for the hospitality during the initial stages of this work.

\[1\] Kurt Binder and Walter Kob. Glassy Materials and Disordered Solids. WORLD SCIENTIFIC, revised edition, 2011.

\[2\] Philip B Allen, Joseph L Feldman, Jaroslav Fabian, and Frederick Wooten. Diffusions, locos and propagons: Character of atomic vibrations in amorphous solids. Philosophical Magazine B, 79(11-12):1715–1731, 1999.

\[3\] R. Milikus and A. Zaccone. Local inversion-symmetry breaking controls the boson peak in glasses and crystals. Phys. Rev. B, 93:094204, Mar 2016.

\[4\] N. Xu, V. Vitelli, A. J. Liu, and S. R. Nagel. Anharmonic and quasi-localized vibrations in jammed solids—modes for mechanical failure. EPL (Europhysics Letters), 90(5):56001, Jun 2010.

\[5\] Patrick Charbonneau, Eric I. Corwin, Giorgio Parisi, Alexis Poncet, and Francesco Zamponi. Universal non-debye scaling in the density of states of amorphous solids. Phys. Rev. Lett., 117:045503, Jul 2016.

\[6\] Y. M. Beltukov and D. A. Parshin. Density of states in random lattices with translational invariance. JETP Letters, 93(10):598, Jul 2011.

\[7\] David G. Cahill, S. K. Watson, and R. O. Poli. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B, 46:6131–6140, Sep 1992.

\[8\] Leonardo E. Silbert, Andrea J. Liu, and Sidney R. Nagel. Normal modes in model jammed systems in three dimensions. Phys. Rev. E, 79:021308, Feb 2009.

\[9\] Vincenzo Vitelli, Ning Xu, Matthieu Wyart, Andrea J. Liu, and Sidney R. Nagel. Heat transport in model jammed solids. Phys. Rev. E, 81:021301, Feb 2010.

\[10\] N. Xu, V. Vitelli, A. J. Liu, and S. R. Nagel. Anharmonic and quasi-localized vibrations in jammed solids—modes for mechanical failure. EPL (Europhysics Letters), 90(5):56001, Jun 2010.

\[11\] TS Grigera, Victor Martín-Mayor, G Parisi, and P Verrocchio. Vibrational spectra in glasses. Philosophical Magazine B, 82(6):637–649, 2002.

\[12\] T S Grigera, V Martín-Mayor, G Parisi, and P Verrocchio. Vibrations in glasses and euclidean random matrix theory. Journal of Physics: Condensed Matter, 14(9):2167–2179, Feb 2002.

\[13\] M. L. Manning and A. J. Liu. A random matrix definition of the boson peak. EPL (Europhysics Letters), 109(3):36002, Feb 2015.

\[14\] E. Stauffer, P. K. Morse, A. A. Middleton, and M. L. Manning. Simple random matrix model for the vibrational spectrum of structural glasses. Phys. Rev. E, 98:042908, Oct 2018.

\[15\] Silvio Franz, Giorgio Parisi, Pierfrancesco Urbani, and Francesco Zamponi. Universal spectrum of normal modes in low-temperature glasses. Proceedings of the National Academy of Sciences, 112(47):14539–14544, 2015.

\[16\] Giorgio Parisi. Soft modes in jammed hard spheres (i): Mean field theory of the isostatic transition. arXiv preprint arXiv:1401.4413, 2014.

\[17\] Fernanda PC Benetti, Giorgio Parisi, Francesca Pietracaprina, and Gabriele Sicuro. Mean-field model for the density of states of jammed soft spheres. Physical Review E, 97(6):062157, 2018.

\[18\] S. N. Taraskin and S. R. Elliott. Ioffe-regel crossover for plane-wave vibrational excitations in vitreous silica. Phys. Rev. B, 61:12031–12037, May 2000.

\[19\] Matteo Baggiani, Rico Milkus, and Alessio Zaccone. From random matrix theory to linear-in-t specific heat in glasses. arXiv preprint arXiv:1903.05237, 2019.

\[20\] Amorphous Solids-Low Temperature Properties. Topics in current physics vol. 24, edited by wa phillips, 1981.

\[21\] WA Phillips. Tunneling states in amorphous solids. Journal of Low Temperature Physics, 7(3-4):351–360, 1972.

\[22\] P W Anderson, BI Halperin, and C M Varma. Anomalous low-temperature thermal properties of glasses and spin glasses. Philosophical Magazine, 25(1):1–9, 1972.

\[23\] P. M. Chaikin and T. C. Lubensky. Principles of Condensed Matter Physics. Cambridge University Press, 1995.

\[24\] P. C. Martin, O. Parodir, and P. S. Pershan. Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids. Phys. Rev. A, 6:2401–2420, Dec 1972.
zero applied stress: The epitome of disorder. *Phys. Rev. E*, 68:011306, Jul 2003.

[26] Manuel Moratalla, Jonathan F. Gebbia, Miguel Angel Ramos, Luis Carlos Pardo, Sanghamitra Mukhopadhyay, Svenir Rudić, Felix Fernandez-Alonso, Francisco Javier Bermejo, and Josep Lluis Tamarit. Emergence of glassy features in halomethane crystals. *Phys. Rev. B*, 99:024301, Jan 2019.

[27] Matteo Baggioli and Alessio Zaccone. Universal origin of boson peak vibrational anomalies in ordered crystals and in amorphous materials. *arXiv preprint arXiv:1810.09516*, 2018.

[28] M Baggioli and A Zaccone. Soft optical phonons induce glassy-like vibrational and thermal anomalies in ordered crystals. *arXiv preprint arXiv:1812.07245*, 2018.

[29] W. Ludwig. H. bttcher: Principles of the theory of lattice dynamics. physik-verlag, weinheim 1983. 332 seiten, preis: Dm 96., *Berichte der Bunsengesellschaft fr physikalische Chemie*, 87(11):1101–1101, 1983.

[30] D.I. Khomskii. *Basic Aspects of the Quantum Theory of Solids: Order and Elementary Excitations*. Cambridge University Press, 2010.

[31] Alessio Zaccone and Enzo Scossa-Romano. Approximate analytical description of the nonaffine response of amorphous solids. *Phys. Rev. B*, 83:184205, May 2011.

[32] Philip H. Handle, Lorenzo Rovigatti, and Francesco Sciortino. q-independent slow dynamics in atomic and molecular systems. *Phys. Rev. Lett.*, 122:175501, May 2019.

[33] Andrew Lucas and Kin Chung Fong. Hydrodynamics of electrons in graphene. *J. Phys. Condens. Matter*, 30:053001, 2018.