Effect of Mulching, Drip irrigation and Fertigation on Growth, Flowering and Yield parameters of Nerium (*Nerium oleander* L.)

K. Annasamy¹*, S. Muthu Lakshmi¹, K. M. Sellamuthu², T. Thangaselvabai³, J. Kannan², T. L. Preethi¹ and P. Arularasu¹

¹Department of Floriculture and Landscape Architecture, ²Department of Natural Resource Management, Horticultural College and Research Institute, Periyakulam, India ³Horticultural Research Station, Thadiankudisai, India

Corresponding author

A B S T R A C T

A field experiment was conducted to study the effect of mulching, drip irrigation and fertigation on growth, yield and quality of nerium (*Nerium oleander* L.) at Department of Floriculture and Landscape Architecture, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Periyakulam during 2016-2020. The experiment was laid out in a split split plot design consisting of three factors, viz., factor - I (M₁ - Black polythene mulch, M₂ - coir waste and M₃ - without mulch, factor - II (I₁ - 75 % WRc through drip irrigation, I₂ - 100 % WRc through drip irrigation and I₃ - 125 % WRc through drip irrigation) and factor - III (F₁ - 75 % RDF through fertigation, F₂ - 100 % RDF through fertigation, F₃ - 125 % RDF through fertigation) with twenty seven treatment combinations. The results of the study indicated that M₁, I₂, F₃ (black polythene mulch + 100 % WRc through drip irrigation + 125 % RDF through fertigation) recorded the highest plant height, number of primary branches, days taken to first inflorescence emergence and days to first flower opening and flower yield (kg) ha⁻¹.

Keywords
- Mulching
- Drip irrigation
- Fertigation
- Growth
- Yield
- Quality
- Nerium

Article Info

Accepted: 17 October 2020
Available Online: 10 November 2020

Introduction

Nerium (*Nerium oleander* L.) is an evergreen shrub belonging to Apocynaceae family and is native to North Africa. It is widely planted as an ornamental plant in warm temperate, tropical and sub tropical regions, survives drought well and is well suited for cultivation in even poor soils. This crop can tolerate salt sprays, brackish water and alkaline soil. It is commonly planted in highway medians as a no - maintenance plant. Oleander also does well as a quick growing screen or large specimen planting. Nerium flowers are commonly used for worship in home and temples and so is an important loose flower. In the present scenario of acute water shortage and unpredictable climatic conditions, effective and economic utilization of resources is essential and can be achieved through the use of improved techniques, viz., drip irrigation, fertigation and mulching. Drip irrigation results in discrete and efficient water usage. The moderation of soil
hydrothermal regimes by application of mulching results in better nutrient uptake, water absorption, metabolite production and carbohydrate storage and is reflected in better growth and higher yield of crops. In addition, mulches control weed incidence, reduce nutrient losses and affect various physical, chemical and biological reactions involved in plant growth and development, besides considerable saving irrigation water. Fertigation ensures better quality water soluble fertilizers for commercial flower production in various situations (Muthu Kumar, 2013). Hence, mulching, drip irrigation and fertigation may prevent crop water stress and have considerable effect on growth, flower yield and quality of nerium. Therefore the present studies were undertaken to establish the effect of various mulches, drip irrigation and fertigation on nerium.

Materials and Methods

The experiment was conducted at Department of Floriculture and Landscape Architecture, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Periyakulam in 2016-2020. The experimental field is situated at 77 E longitude, 10 latitude and at an altitude of 300 m above mean sea level (MSL). The treatments were randomly allocated in split split plot design and replicated three times. The experiment consisted of three factors, viz., factor - I (M1. Black polythene mulch, M2-coir waste and M3-without mulch, factor - II (I1- 75 % WRc through drip irrigation, I2 - 100 % WRc through drip irrigation and I3 - 125 % WRc through drip irrigation) and factor - III (F1-75 % RDF through fertigation,F2-100 % RDF through fertigation, F3-125 % RDF through fertigation) with twenty seven treatment combinations. Four plants were selected randomly and data collected was subjected to statistical analysis as suggested by Panse and Sukhatme, 1985.

Results and Discussion

Effect of mulching drip irrigation and fertigation on growth characters

The results of the study on the effect of mulching, drip irrigation and fertigation on growth, yield and quality of nerium indicated that the individual as well as interaction effect had significant influence on morphological, flowering and yield characters. Among the three main plot treatments M1 (Black polythene mulch) recorded the highest plant height (151.0 and 216.5 cm respectively) and number of primary branches plant\(^{-1}\) in pre flowering and flowering stages (6.02 and 8.28 respectively). Among the three sub plot treatments I2 (100 % WRc through drip irrigation) recorded the highest plant height of (144.0 and 222.0 cm respectively) and number of primary branches plant\(^{-1}\) (5.67 and 7.31respectively) at pre flowering and flowering stages (Table 1a, 1b and 2 a and 2 b).

Among the three sub plot treatments, highest plant height was recorded during pre flowering and flowering stagesin F3 (125 % RDF through fertigation) (152.5 and 196.3 cm respectively). Similarly highest number of primary branches plant\(^{-1}\) (5.99 and 7.39 respectively) was also recorded in this treatment. The interaction effect between mulching and drip irrigation significantly influenced plant height. The treatment combination M1I2 (Black polythene mulch + 100 % WRc through drip irrigation) recorded the highest plant height of (171.4 and 241.7 cm) and number of primary branches plant\(^{-1}\) (6.20 and 8.72) at pre flowering and flowering stages respectively.

Significant difference was observed in plant height due to the interaction effect of mulching and fertigation. The highest plant height of 195.6 and 242.9 cm and number of
primary branches plant$^{-1}$ of 6.63 and 8.79 were recorded in M_1F_3 (black polythene mulch + 125 % RDF through fertigation) at pre flowering and flowering stages respectively. The combined effect of drip irrigation and fertigation on plant height was highly significant. The result showed that I_2F_3 (100 % WRc through drip irrigation + 125 % RDF through fertigation) exhibited the highest plant height of 182.9 and 271.7 cm and number of primary branches plant$^{-1}$ (6.31 and 7.68) at pre flowering and flowering stages respectively.

The interaction effect of mulching, drip irrigation and fertigation indicated that the treatment $M_1I_2F_3$ (black polythene mulch + 100 % WRc through drip irrigation + 125 % RDF through fertigation) registered the highest plant height of 244.8 and 277.0 cm and highest number of primary branches plant$^{-1}$ (7.03 and 9.15) at pre flowering and flowering stages respectively and this was on par with $M_2I_2F_3$ (coir waste + 100 % WRc through drip irrigation + 125 % RDF through fertigation). This might be attributed to the fact that mulching resulted in favourable environmental conditions such as temperature, moisture and soil air, because of which the photosynthetic activity is increased. Application of drip irrigation and fertigation at frequent intervals provides a consistent moisture regime and nutrient pool in the soil and therefore, roots remain active for a longer period resulting in increased availability of nutrients to the plants and translocation of food materials which accelerate the vegetative growth of the plant besides maintaining the soil moisture as well as temperature at optimum level. This increases the yield as reported earlier by Chawla (2008) in african marigold, Yathindra (2009) in China aster; and Vijay Kumar (2012), Patel Bhaveshkumar Bharatbhai (2013), Vasanthakumari et al., (2013) and Alak Barman et al., (2015) in tuberose. Sufficient supply of nutrients at frequent intervals might have increased the production of IAA which consequently would have shown stimulatory action, in terms of cell elongation and thus resulting in increased plant height as mentioned by Jainag et al., (2011). This finding is in consonance with Vinoth (2012); Jakadeeshkanth (2014) and Khalid Elhindi et al., (2015).

Effect of mulching, drip irrigation and fertigation on days to first inflorescence emergence, days to first flower opening and yield characters of nerium

The results of the experiment indicated earliness in days to first inflorescence emergence and days to first flower opening under M_1- black polythene mulch (172.4) and (178.80) respectively (Table 3 and 4). Earliness was also observed in plants subjected to 100 % and 75% WRc through drip irrigation (I_2 and I_1). Similarly 125 % RDF through fertigation (F_3) also recorded early inflorescence emergence and first flower opening (174.2 and 181.86 days respectively).

The interaction effects of mulching and drip irrigation significantly influenced days taken to first inflorescence emergence. The treatment M_1I_2 (Black polythene mulch + 100 % WRc through drip irrigation) recorded early inflorescence emergence (172.1 and 178.02 days). The interaction effects of mulching and fertigation were significant with respect to days taken to first inflorescence emergence and days to first flower opening. The treatment M_1F_3 (black polythene mulch + 125 % RDF through fertigation) recorded the least days to first inflorescence emergence (172.3 and 178.07 days) and higher days taken to first flowering opening.

The interaction effects of irrigation and fertigation were significant with respect to days taken to first inflorescence emergence.
Table 1a Influence of mulching, drip irrigation and fertigation on plant height (cm) in nerium at pre flowering stage

Treatments	M1	M2	M3	I x F												
	I1	I2	I3	Mean												
F1	101.1	122.3	127.3	116.9	96.8	127.9	121.8	115.5	70.5	89.1	88.7	82.8	89.5	113.1	112.6	105.1
F2	121.6	147.0	153.0	140.5	116.4	153.9	146.4	138.9	84.8	107.2	106.7	99.6	107.6	136.0	135.3	126.3
F3	190.7	244.8	151.4	195.6	125.8	193.1	158.4	159.1	87.7	110.8	110.0	102.8	134.7	182.9	139.9	152.5
Mean	137.8	171.4	143.9	151.0	113.0	158.3	142.2	137.8	81.0	102.4	101.8	95.1	110.6	144.0	129.3	128.0
SE d	0.844	0.955	1.079	1.593	1.744	1.800		2.969								
CD (0.05) %	2.343	2.081	2.189	3.738	3.844	3.729		6.115								
CV %								2.97								

Table 1b Influence of mulching, drip irrigation and fertigation on plant height (cm) in nerium at flowering stage

Treatments	M1	M2	M3	I x F												
	I1	I2	I3	Mean												
F1	157.8	203.4	190.8	184.0	150.9	199.6	194.5	181.7	110.0	136.8	132.1	126.3	139.5	179.9	172.4	157.8
F2	189.8	244.6	233.9	222.8	181.5	240.1	229.5	217.0	138.4	159.0	155.0	150.8	169.9	214.5	206.1	189.8
F3	196.3	277.0	255.3	242.9	187.7	270.3	265.9	241.3	166.4	268.0	262.0	232.1	183.4	271.7	261.0	196.3
Mean	181.3	241.7	226.7	216.5	173.4	236.7	230.0	213.3	138.3	187.9	183.0	169.7	164.3	222.0	213.2	181.3
SE d	0.468	0.367	0.534	0.699	0.889	0.841		1.409								
CD (0.05) %	1.300	0.800	1.085	1.711	1.988	1.730		2.888								
CV %								2.52								
Table 2a Influence of mulching, drip irrigation and fertigation on number of primary branches plant\(^{-1}\) in Nerium at pre flowering stage

Treatments	M1	M2	M3	I x F
F1				
F2				
F3				
Mean				

Treatments	M1	M2	M3	I x F
F1				
F2				
F3				
Mean				

Table 2b Influence of mulching, drip irrigation and fertigation on number of primary branches plant\(^{-1}\) in Nerium at flowering stage

Treatments	M1	M2	M3	I x F
F1				
F2				
F3				
Mean				

Treatments	M1	M2	M3	I x F
F1				
F2				
F3				
Mean				

SE d | 0.0595 | 0.032 | 0.040 | 0.075 | 0.082 | 0.066 |
CD (0.05) % | 0.165 | 0.070 | 0.082 | 0.192 | 0.200 | 0.136 | 0.225 |
CV % | 2.71 | 2.78 |
Table 3: Influence of mulching, drip irrigation and fertigation on days to first inflorescence emergence in nerium at flowering stage

Treatments	M1			Mean	M2			Mean	M3			Mean	I x F			Mean
F1	172.6	172.7	172.8	172.7	175.6	172.5	173.3	173.8	181.5	176.4	178.0	178.6	176.6	173.9	174.7	175.1
F2	172.3	172.0	172.4	172.2	175.4	172.1	173.0	173.5	180.2	177.4	177.7	178.4	176.0	173.8	174.4	174.7
F3	172.8	171.6	172.4	172.3	175.1	171.9	173.0	173.3	178.2	175.2	177.9	177.1	175.4	172.9	174.4	174.2
Mean	172.6	172.1	172.5	172.4	175.4	172.2	173.1	173.5	180.0	176.3	177.9	178.1	176.0	173.5	174.5	174.7

	M	I	F	M x I	M x F	I x F	M x I x F
SE d	1.407	1.067	1.415	2.063	2.446	2.268	3.781
CD (0.05)%	3.907	2.325	2.870	5.069	5.568	4.676	7.760
CV %	2.84						

Table 4: Influence of mulching, drip irrigation and fertigation on days to first flower opening in nerium at flowering stage

Treatments	M1			Mean	M2			Mean	M3			Mean	I x F			Mean
F1	180.49	178.64	179.56	179.56	184.78	183.00	183.98	183.92	185.90	183.92	184.99	184.94	183.72	181.85	182.84	182.80
F2	179.55	178.41	178.32	178.76	184.65	182.78	183.64	183.69	185.85	183.86	184.27	184.66	183.35	181.68	182.08	182.37
F3	179.22	177.00	178.00	178.07	184.12	182.65	183.47	183.41	185.60	183.47	183.25	184.11	182.98	181.04	181.57	181.86
Mean	179.75	178.02	178.63	178.80	184.52	182.81	183.70	183.67	185.78	183.75	184.17	184.57	183.35	181.52	182.16	182.35

	M	I	F	M x I	M x F	I x F	M x I x F
SE d	0.267	0.308	0.534	0.267	0.308	0.547	0.500
CD (0.05)%	0.554	0.640	1.108	0.554	0.640	0.557	1.112
CV %	2.65						
Table 5a Influence of mulching, drip irrigation and fertigation on cumulative flower yield ha\(^{-1}\)(kg) in nerium from January 2017 to March 2017 at flowering stage

Treatments	M₁	M₂	M₃	I x F												
	I₁	I₂	I₃	Mean	I₁	I₂	I₃	Mean	I₁	I₂	I₃	Mean				
F₁	5425	6600	5300	5775	3975	5025	4250	4417	2100	2600	2325	2342	3833	4742	3958	4178
F₂	5700	6975	5774	6150	4987	6200	5874	5687	2200	2750	2375	2442	4296	5308	4674	4759
F₃	5925	13300	7800	9008	5550	8375	6350	6758	2245	3375	3150	2923	4573	8350	5767	6230
Mean	5683	8958	6291	6978 & 4837	6533	5491	5621	2182	2908	2617	2569	4234	6133	4800	5056	

SE d	47.37	37.61	36.63	71.23	70.20	64.01	104.31
CD (0.05) %	131.5	81.95	74.30	174.03	166.30	133.17	215.65
CV %	2.85	2.85	2.85				

Table 5b Influence of mulching, drip irrigation and fertigation on cumulative flower yield ha\(^{-1}\)(kg) in nerium from April 2017 to August 2017 at peak flowering stage

Treatments	M₁	M₂	M₃	I x F												
	I₁	I₂	I₃	Mean	I₁	I₂	I₃	Mean	I₁	I₂	I₃	Mean				
F₁	7524	9150	7625	8100	5247	5775	5552	5525	3350	4875	4756	4327	5374	6600	5978	5984
F₂	7300	10050	8225	8525	5364	6457	5647	5823	3650	4987	4675	4437	5438	7165	6182	6262
F₃	6700	18300	11875	12292	5478	15850	6500	9276	4575	5124	5001	4900	5584	13091	7792	8822
Mean	7175	12500	9242	9639	5363	9361	5900	6874	3858	4995	4811	4555	5465	8952	6651	7023

SE d	58.68	55.49	53.95	97.99	96.26	94.34	153.7
CD (0.05) %	162.9	120.9	109.4	234.5	222.0	196.2	317.7
CV %	2.86	2.86	2.86				
Table 5c Influence of mulching, drip irrigation and fertigation on cumulative flower yield ha\(^{-1}\) (kg) in nerium from September 2016 to October 2017 at lean flowering stage

Treatments	M₁	M₂	M₃	I x F												
	I₁	I₂	I₃	Mean												
F₁	5025	6400	5825	5750	3200	5825	3800	4275	975	2475	1650	1700	3067	4900	3758	3908
F₂	5325	6525	6000	5950	3375	6175	5426	4992	1075	2575	1975	1875	3258	5092	4467	4272
F₃	5525	7625	7100	6750	4001	7450	6965	6139	1375	2875	2725	2325	3634	5983	5597	5071
Mean	5292	6850	6308	6150	3525	6483	5397	5135	1142	2642	2117	1967	3320	5325	4607	4417
I	27.59	24.83	27.90	44.66	48.15	46.62	76.85									
F	76.62	54.11	56.60	107.5	109.5	96.57	158.2									
M x I x F	2.39	1.00	1.00	2.39	2.39	2.39	2.39									
The treatment I_2F_3 (100 % WRc through drip irrigation + 125 % RDF through fertigation) recorded the least days to first inflorescence emergence (172.9 days) and days to first flower opening (181.04 days respectively). The three way interaction effects of mulching, drip irrigation and fertigation were significant with respect to days taken to first inflorescence emergence and days to first flower opening. The treatment $M_1I_2F_3$ (black polythene mulch + 100 % WRc through drip irrigation + 125 % RDF through fertigation) recorded the least days to first inflorescence emergence and days to first flower opening (171.6 and 181.04 days) which was on par with treatments $M_2I_2F_3$. Higher levels of recommended dose of fertilizers reduced the time taken for flower initiation as compared to 100 per cent recommended dose of fertilizers. Early flower initiation may be due to the increased levels of potassium given to the plants in the water soluble form, better utilization of soil moisture, soil nutrients, less weed intensity throughout crop growth stage which might have enhanced the reproductive development of the plant (Yathindra, 2009) in china aster.

Similar results were reported by Chaitra (2006) in china aster and Ashutosh Sharma (2013) in tuberose. Early flower initiation may be due to the fact that plants got sufficient moisture for longer time and maintained turgidity resulting in better uptake of nutrients and lower weed intensity. Similar findings were reported by Vijay Kumar (2009) in China aster, Vasanthakumari et al., 2013 in gladiolus; Alak Barman et al., (2015) in tuberose; Adnan Younis et al., (2012) in freesia; Pal and Ghosh (2010) and Ifitkhar Ahmad et al., (2011) in african marigold.

With regard to main plots, the treatment M_1 (black polythene mulch) registered higher flower yield of 6978, 9639 and 6150 (kg) ha$^{-1}$ from January 2017 to March 2017, April 2017 to August 2017 and September 2017 to October 2017 respectively (Table 5 a, 5 b and 5 c). Among the sub plot treatments, I_2 (100 % WRc through drip irrigation) registered the higher flower yield of 6133, 8952 and 5325 kg from January 2017 to March 2017, April 2017 to August 2017 and September 2017 to October 2017 respectively.

Among the three sub plot fertigation treatments, F_3 (125 % RDF through fertigation) registered the higher flower yield of 6230, 8822 and 5071 kg from January 2017 to March 2017, April 2017 to August 2017 and September 2017 to October 2017 respectively.

Among the interaction effects the treatment combination M_1I_2 (Black polythene mulch + 100 % WRc through drip irrigation) had recorded higher flower yield of 8958, 12500 and 6850 kg from January 2017 to March 2017, April 2017 to August 2017 and September 2017 to October 2017 respectively. The interaction effect between mulching and fertigation significantly influenced flower yield. The treatment, M_1F_3 (black polythene mulch + 125 % RDF through fertigation) recorded higher flower yield (9008, 12292 and 6750 kg) from January 2017 to March 2017, April 2017 to August 2017 and September 2017 to October 2017 respectively. The interaction effects between drip irrigation and fertigation indicated that the treatment, I_2F_3 (100 % WRc through drip irrigation + 125 % RDF through fertigation) recorded the highest flower yield (8350, 13091 and 5983 kg) from January 2017 to March 2017, April 2017 to August 2017 and September 2017 to October 2017.

The interaction effect between mulching and fertigation significantly influenced flower yield. The treatment, M_1F_3 (black polythene mulch + 125 % RDF through fertigation) recorded higher flower yield (9008, 12292 and 6750 kg) from January 2017 to March 2017, April 2017 to August 2017 and September 2017 to October 2017 respectively. The interaction effects between drip irrigation and fertigation indicated that the treatment, I_2F_3 (100 % WRc through drip irrigation + 125 % RDF through fertigation) recorded the highest flower yield (8350, 13091 and 5983 kg) from January 2017 to March 2017, April 2017 to August 2017 and September 2017 to October 2017.

The combined effect of application of black polythene mulch + 100 % WRc through drip irrigation + 125 % RDF through fertigation
(M₁₁₂F₃) registered higher flower yield from January 2017 to March 2017, April 2017 to August 2017 and September 2017 to October 2017 (13300, 18300 and 7625 kg) and this was on par with M₂₁₂F₃ - coir waste + 100 % WRc through drip irrigation + 125 % RDF through fertigation (8375, 15850 and 7450 kg). The results obtained in this study demonstrate that the effects of quality of irrigation water and irrigation frequency are significantly important in order to obtain higher yield. This is in line with the findings by Koksal Aydinsakir et al., (2011) in carnation, Bagali et al., (2012) in onions; Lodhi et al., (2014) in sweet pepper; Arif Turan et al., (2015) in cut chrysanthemum; Ayyanna et al., (2014) in marigold; Puneet Sharma and Arun Kaushal (2015); Ughade and Mahadkar (2015) in brinjal and Muthu Kumar and Ponnuswami (2013) in noni. Nutrients like N, P and K are being the constituent of proteins, amino acids, nucleic acid, various enzymes and coenzymes is associated with the increased shoot length and leaf area resulting in more photosynthesis and thus increased transformation of manufactured food material from source (leaf) to sink (flower bud) as reported by Vinoth (2012) in lilium hybrids; Khalid Elhindi et al., (2015) in Zinnia and Jakadeeshkanth, (2014) in curry leaf. The present findings are in agreement with the findings of Rafat Saeed and Rafiq Ahmad, (2009) in tomato and Tomasz Spizewski et al., (2010) in cucumber.

References

Ayyanna D. Siddapur., Basavaraj, S. Polisgowdar, Rajan and Hiremath, Muddi Nemichandrappa, Satish Kumar, Ashok H. Hugar, Shivan and N. Honnali and Gurappa S. Yadahalli. 2014. Evaluation of surface and drip irrigation methods for marigold flower (Tagetes erecta L) under Raichur condition.

Adnan Younis, Muhammad Zahid Mukhtar Bhatti, Atif Riaz, Usman Tariq, Muhammad Arfan, Muhammad Nadeem and Muhammad Ahsan. 2012. Effect of different types of mulching on growth and flowering of Freesia alba cv. Aurora. Pak. J. Agri. Sci., 49(4):429-433.

Alak Barman, Abu Habib M.D. Abdullah, Arman Hossen, M.D. Asrafuzzaman and M. Habibur Rahman. 2015. Effect of different mulching on growth and yield of tuberose. International J of Res & Review., 2(6): 301.

Arif Turan, Yusuf Ucar and Soner Kazaz. 2015. Effects of different irrigation treatment on quality parameters of cut chrysanthemum. Scientific Papers. Series B, Horticulture. LIX,

Ashutosh Sharma. 2013. Effect of nitrogen and phosphorous on growth and flowering in tuberose (Polianthes tuberosa L.) cv. Double. MSc., (Hort) Thesis, Y.S.R. Horticultural University, Solan.

Bagali, A.N., H.B. Patil, M.B. Guled and R.V. Patil. 2012. Effect of scheduling of drip irrigation on growth, yield and water use efficiency of onion (Allium cepa L.). Karnataka J. Agric. Sci., 25 (1): (116-119).

Chaitra R. 2006. Effect of integrated nutrient management on growth, yield and quality of china aster (Callistephus chinensis (L.) Nees). University of Agricultural Sciences, Dharwad.

Chawla, S. L. 2008. Response of african marigold to irrigation and mulching. J. Ornt. Hort., 11(2):131-135.

Iftikhar Ahmad, Muhammad Asif, AtyabAmjad, Sagheer Ahmad. 2011. Fertilization enhances growth, yield, and xanthophyll contents of marigold. Turk J Agric For 35: 641-648.

Jainag, K., K. V. Jayaprasad, R. Krishnamanohar, Shivan and Hongal and K. Prakash. 2011. Effect of levels of fertigation on growth and yield of bird of paradise (Strelitzia reginae Ait). Asian J. Hort., 6(1):118-121.

Jakadeeshkanth, R. 2014. Standardization of fertigation scheduling and high density planting system in curry leaf (Murraya koenigii Spreng) for high yield and quality. Ph.D Thesis, Tamil Nadu Agricultural University., Periyakulam.

Khalid Elhindi, Salah El Hendawy, Eslam Abdel
Salam, Abdallah Elgorban, Mukhtar Ahmed. 2015. Impacts of fertigation via surface and subsurface drip irrigation on growth rate, yield and flower quality of *Zinnia elegans*, Bragantia, Campinas., 20(10): 1-12.

Koksal Aydinsakir, Ismail Hakkı Tuzel and Dursun Buyuktas. 2011. The effects of different irrigation levels on flowering and flower quality of carnation (*Dianthus caryophllus* L.) irrigated by drip irrigation. African J of Biotechnol 10 (66):14826-14835.

Lodhi, A. S., A. Kaushal and K.G. Singh. 2014. Impact of irrigation regimes on growth, yield and water use efficiency of sweet pepper. Indian Journal of Science and Technology, 7(6), 790-794.

Muthu Kumar, S. and V. Ponnuwrami. 2013. Effect of different water regimes and organic manures on quality parameters of noni (*Morinda citrifolia*).8(27) 3534-3543.

Pal, P. and P Ghosh. 2010. Effect of different sources and levels of potassium on growth flowering and yield of african marigold cv. Siracole. Indian J of natural products and resources.1 (3):371-375.

Panse, V.G. and P.V. Sukhatme. 1985. Statistical methods for agricultural works. Fourth Edn., ICAR, New Delhi.

Patel Bhavesh kumar Bharathbhai. 2013. Effect of irrigation levels and mulching on growth and yield of tuberose (*Polianthes tuberosa* L.) var. Prajwal. M.Sc (Hort) Thesis, Navsari Agricultural University.

Puneet Sharma and Arun Kaushal. 2015. Growing okra with drip irrigation and fertigation a review. International J of Engineering Sci. Invention. 4 (9):01-05.

Rafat Saeed and Rafiq Ahmad. 2009. Vegetative growth and yield of tomato as affected by the application of organic mulch and gypsum under saline rhizosphere Pak. J. Bot., 41(6): 3093-3105.

Tomasz Spizewski, Barbara Frąszczak, Alina Kałużewicz, Włodzimierz Krzesinski and Jolanta Lisiecka. 2010. The effect of black polyethylene mulch on yield of field grown cucumber. Acta Sci. Pol.. Hortorum Cultus 9(3): 221-229.

Ughade, S. R. and U. V. Mahadkar. 2015. Effect of different planting density, irrigation and fertigation levels on growth and yield of brinjal (*Solanum melongena* L.). The bio sci, 10 (3): 1205-1211.

Vasanthakumari. R., D.P. Kumar , B. Arun Kumar and M. Mahadevam. (2013). Effect of plant density, planting methods and mulching on floral and cormal parameters in gladiolus (*Gladiolus hybridus* L.). The Asian J. horti., 8(3): 391-398.

Vijaya Kumar, N. S. 2009. Standardisation of drip irrigation and fertigation in china aster (*Callistephus chinensis* L. Nees). M.Sc (Hort) Thesis, University of Agricultural Sciences, Bangalore.

Vinoth. 2012. Studies on optimization of fertigation schedule for improved growth, yield and quality of Asiatic and OT hybrid Lilies (*Lilium spp.*). Ph.D Thesis, Tamil Nadu Agricultural University., Coimbatore.

Yathindra, H.A. 2009. Effect of plastic mulching and fertigation on growth, yield and flower quality of china aster (*Callistephus chinensis* L. Nees). M.Sc (Hort) Thesis, University of Agricultural Sciences, Bangalore.

How to cite this article:

Annasamy, K., S. Muthu Lakshmi, K. M. Sellamuthu, T. Thangaselvabai, J. Kannan, T. L. Preethi and Arularasu, P. 2020. Effect of Mulching, Drip irrigation and Fertigation on Growth, Flowering and Yield parameters of Nerium (*Nerium oleander* L.). *Int.J.Curr.Microbiol.App.Sci.* 9(11): 2272-2282. doi: https://doi.org/10.20546/ijcmas.2020.911.272