The Gravitational Energy of a Point Mass is Finite

L.V.Verozub

January 5, 2022

Kharkov State University, Kharkov 310077, Ukraine
(verozub@gravit.kharkov.ua)

Abstract

We argue that our gravitation equations \cite{1} in the flat space-time lead to the finite proper gravitational energy of a point mass.

1 The Gravitation Equations

Perhaps \cite{2}, gravitation can be described by a tensor field $\psi_{\mu\nu}$ in flat space-time and the Lagrangian action for the test point masses m in this field is of the form

$$L = -mc\left[g_{\alpha\beta}(\psi) \dot{x}^\alpha \dot{x}^\beta\right]^{1/2}, \quad (1)$$

where $\dot{x}^\alpha = dx^\alpha/dt$ and $g_{\alpha\beta}$ is a symmetric tensor whose components are the function of $\psi_{\alpha\beta}$.

The field $\psi_{\mu\nu}$ in flat space-time is an analog of the potential A_μ of the electromagnetic field. Therefore the field equations for $g_{\mu\nu}(\psi)$ must be invariant under the gauge transformations $\psi_{\mu\nu} \rightarrow \psi_{\mu\nu} + \phi_{\mu\nu}$. The simplest equations of such a kind were proposed in paper \cite{1}. The equations can be written in the form

$$B^\alpha_{\beta\gamma,\alpha} - B^\nu_{\beta\mu} B^\mu_{\gamma\nu} = 0, \quad (2)$$

where the comma denotes the covariant derivative with respect to the metric tensor $\eta_{\mu\nu}$ in pseudo-Euclidean space-time E.

In this equations the tensor $B^\alpha_{\beta\gamma}$ is given by

$$B^\gamma_{\alpha\beta} = \Pi^\gamma_{\alpha\beta} - \Pi^\gamma_{\alpha\beta}, \quad (3)$$

(Greek indices run from 0 to 3), where

$$\Pi^\gamma_{\alpha\beta} = \Gamma^\gamma_{\alpha\beta} - (n + 1)^{-1} \left[\delta^\gamma_{\alpha} \Gamma^\epsilon_{\epsilon\beta} - \delta^\gamma_{\beta} \Gamma^\epsilon_{\epsilon\alpha}\right], \quad (4)$$
\[\Pi_{\alpha\beta} = \Gamma_{\alpha\beta} - (n + 1)^{-1} \left[\delta_{\alpha}^{\gamma} \Gamma_{\varepsilon\beta} - \delta_{\beta}^{\gamma} \Gamma_{\varepsilon\alpha} \right], \quad (5) \]

\(\Gamma_{\alpha\beta} \) are the Christoffel symbols in \(E \) and \(\Gamma_{\alpha\beta}^{\gamma} \) are the Christoffel symbols of the Riemannian space-time \(V \) of dimension \(n \), whose fundamental tensor is \(g_{\alpha\beta} \).

The tensor \(B_{\alpha\beta}^{\gamma} \) can be formed by replacing the ordinary derivatives in \(\Pi_{\alpha\beta} \) with the covariant ones in \(E \).

\(B_{\beta\gamma,\alpha} \) satisfies also the following identities:

\[\ast_{\gamma} R_{\alpha\beta\delta} + \ast_{\delta} R_{\beta\alpha\gamma} + \ast_{\gamma} R_{\delta\alpha\beta} = 0, \quad (6) \]

where tensor \(R_{\alpha\beta\delta} \) is obtained from the Riemannian curvature tensor by replacing the Christoffel symbols with the Thomas symbols and by replacing ordinary derivative with the covariant one in \(E \).

The equations (2) and (6) are field equations for the tensor \(B_{\beta\gamma}^{\alpha} \).

Eqs. (2) are invariant under arbitrary transformations of the tensor \(g_{\alpha\beta} \) retaining invariant the equations of motion of a test particle, i.e., geodesic lines in \(V \). In other words, eqs. (2) are the geodesic-invariant. Thus, the tensor field \(g_{\alpha\beta} \) is defined up to geodesic mappings of space-time \(V \) (in the way analogous to the defining the potential \(A_{\mu} \) in electrodynamics up to gauge transformations). Therefore, additional conditions can be imposed on the tensor \(g_{\alpha\beta} \). In particular, if the tensor \(g_{\alpha\beta} \) satisfies the conditions

\[Q_{\alpha} = \Gamma_{\alpha\sigma}^{\sigma} - \ast_{\alpha\sigma}^{\sigma} = 0, \quad (7) \]

then eqs (2) will be reduced to vacuum Einstein equations \(R_{\alpha\beta} = 0 \), where \(R_{\alpha\beta} \) is the Ricci tensor. Unlike the \(g_{\alpha\beta} \) or \(\Gamma_{\alpha\beta}^{\gamma} \), the tensor \(B_{\alpha\beta}^{\gamma} \) is invariant under the geodesic mappings of space-time \(V \) as well as strength tensor \(F_{\alpha\beta} \) in electrodynamics is invariant under the gauge transformations.

2 Spherically Symmetric Field

For a spherically symmetric field the nonzero components of the tensor \(B_{\alpha\beta}^{\gamma} \) in the spherical coordinate system are:

\[B_{11}^{1} = A'/2A, \quad B_{22}^{1} = -r(A^{-1} - 1), \quad B_{10}^{0} = C'/2C, \]

\[B_{33}^{1} = -r \sin^{2}(\theta)(A - 1), \quad B_{00}^{1} = CA'/2A, \]

where the functions \(A \), \(B \) and \(C \) are:

\[A = (f')^{2}(1 - \beta/f)^{-1}, \quad B = f^{2}, \quad C = 1 - \beta/f \quad (8) \]

and

\[f = (r^{3} + \beta^{2})^{1/3} \]
and \(f' = df/dr \). The constant \(\beta \) is not determined from the boundary conditions \(^1\). If we put \(\beta = \alpha \), where \(\alpha = 2GM/c^2 \), \(M \) is the attractive mass, \(G \) is the gravitational constant and \(c \) is the speed of light, then the solution (8) has no a physical singularity in the sense that this solution does not lead to the collapse. Some astrophysical consequences of this solution are considered in \(^3\).

3 The Gravitational Energy of a Point Mass

Eq. (2) without the nonlinear term is analogous to the electrodynamics equations \(F_{\beta,\gamma} = 0 \) for the strength tensor \(F_{\alpha\beta} \). Since the gravitational field must be self-interacting we can suppose that eq. (2) are of the form

\[
B_{\alpha\beta,\gamma}^\gamma = \kappa t_{\alpha\beta},
\]

where \(\kappa = 4\pi C/c^4 \) and

\[
t_{\alpha\beta} = \kappa^{-1} B_{\alpha\gamma} B_{\beta\delta}^\gamma
\]

is the energy-momentum tensor of gravitation field. The components of the 3-momentum density vector

\[
P_i = t_{0i} \quad (i = 1, 2, 3)
\]

are equal to zero for the solution (8).

Let us find the energy of a point masses

\[
\mathcal{E} = \int t^0_0 dV
\]

We have

\[
t_{00} = 2\kappa^{-1} B^1_{00} B^0_{01}
\]

and, therefore, in the used coordinates system

\[
\mathcal{E} = \int t^0_0 dV = - \frac{1}{8} \frac{\alpha^2 c^2}{\pi \gamma} J,
\]

where

\[
J = \int \frac{dV}{f^4} = \frac{4\pi}{3\beta} B(1, 1/3) = \frac{4\pi}{\beta},
\]

where

\[
B(z, w) = \int_0^\infty \frac{t^{z-1}}{(1+t)^{z+w}} dt
\]

is the B-function \(^4\). Using the equation

\[
B(z, w) = \frac{\Gamma(z)\Gamma(w)}{\Gamma(z+w)},
\]
where Γ is Γ-function and setting $\beta = \alpha$, we obtain finally

$$\mathcal{E} = M c^2.$$ \hfill (18)

On the contrary, if we search the constant β from the condition that gravitational energy of a point mass is given by equation (18), then we shall arrive at the conclusion that $\beta = \alpha$.

Certainly, the 4-divergency of the tensor $t_{\alpha\beta}$ must be equal to zero. It is likely that the 4-divergency of the tensor $B^\gamma_{\alpha\beta}$ is not equal to zero identically. However, it is should be observed that the conservation law for the energy-momentum tensor must not be is satisfied for an arbitrary field $B^\gamma_{\alpha\beta}$ (or $g_{\alpha\beta}$), and only for the fields which are solutions of eq. (2). For the received solution of the field equations the 4-divergency of the tensor $B^\gamma_{\alpha\beta}$ is indeed equal to zero. Therefore, the tensor $t_{\alpha\beta}$ for the spherical-symmetric field is a conservation value.

The gravitation energy of the point mass being finite, it is sufficient argument to suppose that the energy - momentum of gravitational field of an attracting mass is given by equation (10) up to a term, with the integral over the volume equal to zero.

References

[1] L.V.Verozub Phys.Lett. A 156 (1991) 404
[2] W.E.Thirring Ann.Phys. 16 (1961) 96
[3] L.V.Verozub Astron. Nachr. 317 (1996) 107
[4] A.M.Abramowitz and I.A.Stegun Handbook of Mathematical function, National of Buraw of Standards, 1964