Nucleotide 9-mers Characterize the Type II Diabetic Gut Metagenome

Balázs Szalkaia, Vince Grolmusza,b,*

aPIT Bioinformatics Group, Eötvös University, H-1117 Budapest, Hungary
bUratim Ltd., H-1118 Budapest, Hungary

Abstract

Discoveries of new biomarkers for frequently occurring diseases are of special importance in today’s medicine. While fully developed type II diabetes (T2D) can be detected easily, the early identification of high risk individuals is an area of interest in T2D, too. Metagenomic analysis of the human bacterial flora has shown subtle changes in diabetic patients, but no specific microbes are known to cause or promote the disease. Moderate changes were also detected in the microbial gene composition of the metagenomes of diabetic patients, but again, no specific gene was found that is present in disease-related and missing in healthy metagenome. However, these fine differences in microbial taxon- and gene composition are difficult to apply as quantitative biomarkers for diagnosing or predicting type II diabetes. In the present work we report some nucleotide 9-mers with significantly differing frequencies in diabetic and healthy intestinal flora. To our knowledge, it is the first time such short DNA fragments have been associated with T2D. The automated, quantitative analysis of the frequencies of short nucleotide sequences seems to be more feasible than accurate phylogenetic and functional analysis, and thus it might be a promising direction of diagnostic research.

Keywords: Type II diabetes, metagenome, biomarkers, G-C content, oligomers, short nucleotide sequences, tetranucleotides.

1. Introduction

Metagenomics \cite{1} is rapidly gaining importance in clinical research \cite{2,3,4,5,6,7,8,9}, environmental studies \cite{10,11,12} and biotechnology \cite{13,14,15}. Numer-

*Corresponding author
ous complex and reliable methods have been published for the phylogenetic identification of non-cloned short DNA reads from environmental or clinical samples, for example, the similarity-based methods MEGAN [16, 17, 18] and MG-RAST [19, 20], the marker-gene identifying phylogenetic analyzer AMPHORA [21] and its more user-friendly versions, AMPHORA2 [22] and AmphoraNet [23, 24].

These methods use multi-phase, complex approaches to retrieve phylogenetic information from the short read datasets, applying reference database operations in the process.

Surprisingly, it was shown that simple frequency counting of nucleotides or short nucleotide sequences in the metagenomic samples may also imply phylogenetic information.

It has been widely known for a long time that genomic AT/GC ratio is distributed in a wide range in bacterial species, and can be characteristic to some of them [25, 26, 27]. The ratio is shown to be influenced by numerous environmental and metabolic factors [28] and also carries phylogenetic information.

The article [29] reports differences in di- and tetranucleotide frequencies among numerous bacterial species, and examines the possible application of these signatures in molecular phylogeny.

Tetranucleotide sequence frequencies were applied in supervised and unsupervised phylogenetic classification, or “binning” in [30].

The work [31] applies conserved gene fragments, each encoding several dozens of amino acids, identified from the Pfam database [32]. The fragments are called “environmental gene tags”, and are used successfully for phylogenetic binning in [31].

The study of [3] investigated the differences in gut metagenomes of diabetic and healthy subjects. The metagenomes were de novo assembled, and the bacterial genes were mapped to a metagenomic gene catalog. Genes related to oxidative stress response were found more abundant in the samples originating from diabetic subjects. Additionally, moderate changes in intestinal bacterial composition were detected, but no specific microbes were associated with the metagenomes of the type II diabetes (T2D) patients.

After a very complex selection and filtering process, genome-specific nucleotide markers of length 50 were identified in [33]. The markers were applied for strain/species identification, and also as markers for microbial species that might play a role in T2D and obesity in the data set of [3].

Here we describe a very simple and straightforward approach for finding short nucleotide sequences whose frequencies significantly differ in T2D and healthy metagenomes of the dataset of [3]. We identify several nucleotide 9-mers that may serve as quantitative biomarkers of the pre-diabetic state in the future. To our knowledge, such short sequences have never been found to characterize T2D or any other disease.
We need to clarify that we do not state that the identified 9-mers will generally be applicable as biomarkers for diabetes for all human populations. We believe that “enterotype-specific” quantitative biomarkers could be found for each enterotype by exhaustive searches described in the Methods section, and those enterotype-specific biomarkers could serve as predictors of type 2 diabetes mellitus.

2. Discussion and Results

Our results are summarized on Table 1 and on Figure 1. Table 1 contains 20 7-, 8- and 9-mers of the highest statistical significance, distinguishing between the diabetic and non-diabetic metagenomes of the study [3].

Table 1 was prepared without considering complementarities between the short nucleotide sequences. Therefore, the complements found with very close frequencies and statistical parameters independently verify our results. It is easy to recognize in Table 1 that TGTGGTA and TACCACA are exact complements. The complement of TCCACAT, ATGTGGA, is almost the prefix of ATGTGGTAC. The complement of TGTGGTACT (line 3) is again the exact complement of AGTACCACA (line 6), just to mention some of the complementarities in the table.

Figure 1 gives the empirical cumulative distribution functions of the frequency of 9-mer TGTGGTGTGA in the diabetic and in the non-diabetic samples. The difference between the expected values (means) of the two distribution is obvious on the figure and is quantified statistically in Table 1.

We also searched for short nucleotide sequences characterizing lean/obese and male/female individuals in the dataset of [3]. Only one short sequence passed the statistical significance bound in the lean/obese search, and none in the male/female search (c.f. Table S1 and S2 and Figure S1 in the Appendix).

The source of the bias in short nucleotide sequence frequencies is most probably due to the difference in the gene- and species composition of diabetic and healthy metagenomes, found in [3, 33]. These frequencies could be measured and evaluated more easily than the much more involved characteristics found in [3, 33].

3. Materials and Methods

Our data source was the set of metagenomes of 345 Chinese subjects, collected by Qin et al. [3] and deposited in the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) under accession numbers SRA045646 (145 subjects) and SRA050230 (225 subjects). The assembled data was downloaded from the GigaScience database, GigaDB at http://dx.doi.org/10.5524/100036.
We considered all the possible DNA sequences of length at most 9 (this means over 300,000 possible sequences). For each sequence, we counted the number of exact matches in each raw metagenome. Our aim was to determine whether there are any short DNA fragments whose frequencies differ for diabetic/non-diabetic, lean/obese or female/male individuals.

We first defined the frequency of a short DNA fragment for a given metagenome as the number of occurrences (exact matches), divided by the total size, measured in base-pairs (bp), of the metagenome. Additionally – to account for minor mutations – we also included those sequences in the counting process that differed by only one nucleotide, but these were considered with half a weight. So, for example, the final frequency of the sequence AAA included not only how many times the sequence AAA occurs in a specific metagenome, but also how many times AAG, CAA, ATA, ... occur in that metagenome, except that the number of occurrences for these related DNA fragments was divided by two.

\[
\ell_M \text{ denotes the length in base-pairs (bp) of a metagenome } M. \text{ Let } d(s, t) \text{ be the number of mismatches between the two sequences of same length, } s \text{ and } t \text{ (also called the Hamming distance). Let } k_M(s) \text{ denote the number of exact matches of sequence } s \text{ in metagenome } M. \text{ Then } f_M(s) \text{ (the frequency of sequence } s \text{ with respect to metagenome } M \text{) is defined by the formula}
\]

\[
f_M(s) = \frac{1}{\ell_M} \left(k_M(s) + \frac{1}{2} \sum_{d(s, t) = 1} k_M(t) \right).
\]

This approach (counting some non-exact matches as well, but with the half the weight) yielded statistically better results when compared to the original, stricter counting process, which only allowed exact matches.

We developed C++ programs for counting the fragments and analyzing the results. Several partitions on the set of subjects were analyzed, by dividing them into two groups by different attributes: diabetic/non-diabetic, lean/obese and female/male. Our aim was to look for short DNA sequences whose mean frequency differs for the two groups.

To achieve this, first we calculated \(f_M(s) \) for each raw/assembled metagenome \(M \) and each short DNA sequence \(s \) of length \(\ell_s \leq 9 \). Then, for each \(s \) we calculated a \(p \)-value using Welch’s t-test, which showed whether the frequency \(s \) is the same in the two groups (i.e., \(p \) is large) or differs significantly (i.e., \(p \leq 0.05 \)).
Figure 1: Empirical cumulative distribution function of the frequency of 9-mer TGTGGTGTA (solid: diabetic, dashed: non-diabetic). For every value \(x \) the curves demonstrate the diabetic (solid line) and non-diabetic (dashed line) fraction of metagenomes with TGTGGTGTA frequency of at most \(x \). For example, for \(x = 0.000045 \), 70% of the diabetic samples have the TGTGGTGTA frequency less than \(x \), while only 38% of the non-diabetic samples have that frequency less than \(x \). Further empirical cumulative distribution functions are given in the Appendix.

Since this was done for each short DNA fragment, the number of total statistical tests done for a given division of subjects was equal to the number of possible \(s \) DNA sequences of length at most 9. As this is more than 300,000, there was a high probability that one of the tests would yield a very low \(p \)-value but the large measured difference of means would be in fact due to mere chance.

Therefore we utilized a two-step hypothesis testing procedure. First we computed the \(p \)-values for Study 1 (with 145 subjects, SRA accession number SRA045646) only, which now became our training set. Then we sorted the possible \(s \) sequence candidates by \(p \)-value ascending, and chose those 20 sequences which had the lowest \(p \)-value. These were those sequences which showed promise that their frequency might differ significantly between diabetic/non-diabetic, lean/obese and female/male individuals, depending our current partitioning of the subjects. Then we tested these selected sequences (and corresponding statistical hypotheses) on the holdout set, which was the collection of metagenomes from Study 2 (SRA accession number SRA050230, 225 subjects). On this set we performed only those 20 tests which qualified in the first round, which again yielded a second \(p \)-value for each of the 20 DNA sequences.

Fragment	Diabetic	Non-diabetic	\(p \) (training set)	\(p \) (holdout set)	\(p \) (corrected)
TGTGGTGTA	4.475e-05	4.713e-05	**7.8e-09**	0.000296	0.005928
TGTGCTATC	4.346e-05	4.549e-05	**1.871e-08**	0.001764	0.033518
TGTGGTACT	4.009e-05	4.164e-05	**9.508e-10**	0.001929	0.034726
Table 1: Frequencies of 7-, 8- and 9-mers in diabetic vs. non-diabetic samples with the highest significance (training set: Study 1, holdout set: Study 2). The training set p-values are highlighted for the statistically significant multimers (\(p < 0.05\) with Holm-Bonferroni correction). It is easy to recognize that TGTGGTA and TACCACA are exact complements. The complement of TCCACAT, ATGTGGGA, is almost the prefix of ATGTGGTAC. 9-mer TGTGGTACT (line 3) is the exact complement of AGTACCACA (line 6). One can find further complementarities in the table. These independently found complements with very close frequencies and p-values strengthen our findings. More tables (for lean-obese and female-male distributions) are given in the Appendix.

Sequence	TGTGGTA	TGTGGTACA	AGTACCACA	CCATCTGT	TGCCACATA	TGTGGTATG	TACCACA	TGTGGAGAT	TGTGGTATC	ATGGTCTGT	GTACCACAT	CCACATACT	ATGTGGTAC	CTCCACAT	TCCACAT		
Frequency	0.0006214	4.672e-05	4.096e-05	0.0002318	5.811e-05	4.813e-05	0.0006332	6.544e-05	5.035e-05	5.845e-05	4.179e-05	5.127e-05	4.135e-05	6.968e-05	6.615e-05	5.578e-05	0.0008132
Standard Deviation	0.0006428	4.875e-05	4.242e-05	0.0002424	6.126e-05	5.04e-05	0.0006531	6.788e-05	5.248e-05	6.071e-05	4.311e-05	5.348e-05	4.266e-05	7.255e-05	6.84e-05	5.753e-05	0.008294
p-values	1.397e-08	2.973e-08	2.152e-08	2.138e-08	6.417e-09	9.19e-09	3.377e-08	1.523e-08	1.492e-08	1.291e-08	1.055e-08	2.436e-08	9.495e-09	1.582e-08	5.427e-09	2.018e-08	1.919e-08
q-values	0.001937	0.002098	0.002246	0.003092	0.004678	0.004925	0.004999	0.008901	0.011902	0.012383	0.012814	0.014294	0.024340	0.074780	0.078516	0.257111	0.266428
p-values	0.032922	0.033564	0.033686	0.043284	0.060818	0.059099	0.054987	0.089010	0.107118	0.099068	0.089698	0.085764	0.121702	0.299121	0.235547	0.514221	0.266428

Then the Holm-Bonferroni correction was used to determine which of the sequences had a significantly different frequency among the two groups. This correction algorithm effectively calculates an upper bound for a \(p\)-value which takes the fact that we performed multiple (i.e., 20) statistical tests into account. Since the frequencies in the second study are independent from those in the first study, the first one is indeed a suitable training set for the model, and we can safely ignore that we performed over 300,000 statistical tests on the first study, since we use only the tests on the holdout set to make predictions.

We have applied the raw, unassembled metagenomes from Study 1 and Study 2 to look for short marker sequences of diabetes.

Unfortunately, there was not enough information available to us to determine which subjects of Study 2 are lean/obese or female/male. Thus we had to use the available assembled metagenomes in Study 1 to look for marker fragments for sex and obesity. We partitioned the assembled metagenomes of the first study into two “random” groups: one of the groups consisted of those individuals with an odd subject ID, and the other group contained those with an even ID. One of these was the training set and the other became the holdout set, i.e.
they took the role of Study 1 and Study 2 for the lean/obese and female/male classifications (Tables S1 and S2 in the Appendix).

One sequence passed the significance threshold for the lean/obese division, and none of the short sequences had a significant difference of frequency between the two sexes.

4. References

References

[1] Committee on Metagenomics: Challenges and Functional Applications, National Research Council. The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet. The National Academies Press, 2007.

[2] Xiaokang Wu, Chaofeng Ma, Lei Han, Muhammad Nawaz, Fei Gao, Xuyan Zhang, Pengbo Yu, Chang’an Zhao, Lianchuan Li, Aiping Zhou, Juan Wang, John E Moore, B. Cerie Millar, and Jiru Xu. Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr Microbiol, 61(1):69–78, Jul 2010.

[3] Junjie Qin, Yingrui Li, Zhiming Cai, Shenghui Li, Jianfeng Zhu, Fan Zhang, Suisha Liang, Wenwei Zhang, Yuanlin Guan, Dongqian Shen, Yangqing Peng, Dongya Zhang, Zhuye Jie, Wenxian Wu, Youwen Qin, Wenbin Xue, Junhua Li, Lingchuan Han, Donghui Lu, Peixian Wu, Yali Dai, Xiaojuan Sun, Zesong Li, Aifa Tang, Shilong Zhong, Xiaoping Li, Weineng Chen, Ran Xu, Mingbang Wang, Qiang Feng, Meihua Gong, Jing Yu, Yanyan Zhang, Ming Zhang, Torben Hansen, Gaston Sanchez, Jeroen Raes, Gwen Falony, Shujiro Okuda, Mathieu Almeida, Emmanuelle LeChatelier, Pierre Renault, Nicolas Pons, Jean-Michel Batto, Zhaoxi Zhang, Hua Chen, Ruifu Yang, Weimou Zheng, Songgang Li, Huannming Yang, Jian Wang, S Dusko Ehrlich, Rasmus Nielsen, Oluf Pedersen, Karsten Kristiansen, and Jun Wang. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418):55–60, Oct 2012.

[4] Josef Neu, Graciela Lorca, Sandra D K Kingma, and Eric W Triplett. The intestinal microbiome: relationship to type 1 diabetes. Endocrinol Metab Clin North Am, 39(3):563–571, Sep 2010.

[5] A. Lyra, S. Lahtinen, K. Tiitinen, and A. C. Ouwehand. Intestinal microbiota and overweight. Benef Microbes, 1(4):407–421, Nov 2010.

[6] Patrice D Cani and Nathalie M Delzenne. The gut microbiome as therapeutic target. Pharmacol Ther, 130(2):202–212, May 2011.

[7] William D Bradley, Catherine Zwingelstein, and Cristina M Rondinone. The emerging role of the intestine in metabolic diseases. Arch Physiol Biochem, 117(3):165–176, Jul 2011.
[8] Brian P Boerner and Nora E Sarvetnick. Type 1 diabetes: role of intestinal microbiome in humans and mice. *Ann N Y Acad Sci*, 1243:103–118, Dec 2011.

[9] J. Amar, M. Serino, C. Lange, C. Chabo, J. Iacovoni, S. Mondot, P. Lepage, C. Klopp, J. Mariette, O. Bouchez, L. Perez, M. Courtney, M. Marre, P. Klopp, O. Lantieri, J. Dore, M. Charles, B. Balkau, R. Burcelin, and D.E.S.I.R. Study Group. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. *Diabetologia*, 54(12):3055–3061, Dec 2011.

[10] Noah Fierer, Jonathan W. Leff, Byron J. Adams, Uffe N. Nielsen, Scott Thomas Bates, Christian L. Lauber, Sarah Owens, Jack A. Gilbert, Diana H. Wall, and J Gregory Caporaso. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. *Proc Natl Acad Sci U S A*, 109(52):21390–21395, Dec 2012.

[11] A. S. Pandit, M. N. Joshi, P. Bhargava, G. N. Ayachit, I. M. Shaikh, Z. M. Saiyed, A. K. Saxena, and S. B. Bagatharia. Metagenomes from the saline desert of Kutch. *Genome Announc*, 2(3), 2014.

[12] Wei Xie, Fengping Wang, Lei Guo, Zeling Chen, Stefan M. Sievert, Jun Meng, Guangrui Huang, Yuxin Li, Qingyu Yan, Shan Wu, Xin Wang, Shangwu Chen, Guangyuan He, Xiang Xiao, and Anlong Xu. Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries. *ISME J*, 5(3):414–426, Mar 2011.

[13] Christel Schmeisser, Helen Steele, and Wolfgang R. Streit. Metagenomics, biotechnology with non-culturable microbes. *Appl Microbiol Biotechnol*, 75(5):955–962, Jul 2007.

[14] Manuel Ferrer, Olga Golyshina, Ana Beloqui, and Peter N. Golyshin. Mining enzymes from extreme environments. *Curr Opin Microbiol*, 10(3):207–214, Jun 2007.

[15] Helen L. Steele and Wolfgang R. Streit. Metagenomics: advances in ecology and biotechnology. *FEMS Microbiol Lett*, 247(2):105–111, Jun 2005.

[16] Daniel H. Huson, Alexander F. Auch, Ji Qi, and Stephan C. Schuster. MEGAN analysis of metagenomic data. *Genome Res*, 17(3):377–386, Mar 2007.

[17] Daniel H. Huson, Suparna Mitra, Hans-Joachim Ruscheweyh, Nico Weber, and Stephan C. Schuster. Integrative analysis of environmental sequences using MEGAN4. *Genome Res*, 21(9):1552–1560, Sep 2011.

[18] Daniel H. Huson and Suparna Mitra. Introduction to the analysis of environmental sequences: metagenomics with MEGAN. *Methods Mol Biol*, 856:415–429, 2012.
[19] Andreas Wilke, Elizabeth M. Glass, Daniela Bartels, Jared Bischof, Daniel Braithwaite, Mark D’Souza, Wolfgang Gerlach, Travis Harrison, Kevin Keegan, Hunter Matthews, Renzo Kottmann, Tobias Paczian, Wei Tang, William L. Trimble, Pelin Yilmaz, Jared Wilkening, Narayan Desai, and Folker Meyer. A metagenomics portal for a democratized sequencing world. *Methods Enzymol.*, 531:487–523, 2013.

[20] Elizabeth M. Glass, Jared Wilkening, Andreas Wilke, Dionysios Antonopoulos, and Folker Meyer. Using the metagenomics rast server (MG-RAST) for analyzing shotgun metagenomes. *Cold Spring Harb Protoc*, 2010(1):pdb.prot5368, Jan 2010.

[21] Martin Wu and Jonathan A Eisen. A simple, fast, and accurate method of phylogenomic inference. *Genome Biol.*, 9(10):R151, 2008.

[22] Martin Wu and Alexandra J Scott. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. *Bioinformatics*, 28(7):1033–1034, Apr 2012.

[23] Csaba Kerepesi, Daniel Banky, and Vince Grolmusz. AmphoraNet: the webserver implementation of the AMPHORA2 metagenomic workflow suite. *Gene*, 533(2):538–540, Jan 2014.

[24] Csaba Kerepesi, Balázs Szalkai, and Vince Grolmusz. Visual analysis of the quantitative composition of metagenomic communities: the AmphoraVizu webserver. *Microb Ecol*, Oct 2014.

[25] N. Sueoka. On the genetic basis of variation and heterogeneity of dna base composition. *Proc Natl Acad Sci U S A*, 48:582–592, Apr 1962.

[26] G. Bernardi and G. Bernardi. Compositional constraints and genome evolution. *J Mol Evol*, 24(1-2):1–11, 1986.

[27] L. D. Hurst and A. R. Merchant. High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes. *Proc Biol Sci*, 268(1466):493–497, Mar 2001.

[28] Hao Wu, Zhang Zhang, Songnian Hu, and Jun Yu. On the molecular mechanism of gc content variation among eubacterial genomes. *Biol Direct*, 7:2, 2012.

[29] S. Karlin, J. Mrázek, and A. M. Campbell. Compositional biases of bacterial genomes and evolutionary implications. *J Bacteriol*, 179(12):3899–3913, Jun 1997.

[30] Isaam Saeed and Saman K. Halgamuge. The oligonucleotide frequency derived error gradient and its application to the binning of metagenome fragments. *BMC Genomics*, 10 Suppl 3:S10, 2009.
[31] Lutz Krause, Naryttza N. Diaz, Alexander Goesmann, Scott Kelley, Tim W. Nattkemper, Forest Rohwer, Robert A. Edwards, and Jens Stoye. Phylogenetic classification of short environmental dna fragments. *Nucleic Acids Res*, 36(7):2230–2239, Apr 2008.

[32] E. L. Sonnhammer, S. R. Eddy, and R. Durbin. Pfam: a comprehensive database of protein domain families based on seed alignments. *Proteins*, 28(3):405–420, Jul 1997.

[33] Qichao Tu, Zhili He, and Jizhong Zhou. Strain/species identification in metagenomes using genome-specific markers. *Nucleic Acids Res*, 42(8):e67, Apr 2014.

[34] Manimozhiyan Arumugam, Jeroen Raes, Eric Pelletier, Denis Le Paslier, Takuji Yamada, Daniel R. Mende, Gabriel R. Fernandes, Julien Tap, Thomas Bruls, Jean-Michel Batto, Marcelo Bertalan, Natalia Borruel, Francesc Casellas, Leyden Fernandez, Laurent Gautier, Torben Hansen, Masahira Hattori, Tetsuya Hayashi, Michiel Kleerebezem, Ken Kurokawa, Marion Leclerc, Florence Levenez, Chaysavanh Manichanh, H Bjorn Nielsen, Trine Nielsen, Nicolas Pons, Julie Poulain, Junjie Qin, Thomas Sicheritz-Ponten, Sebastian Tims, David Torrents, Edgardo Ugarte, Erwin G. Zoetendal, Jun Wang, Francisco Guarner, Oluf Pedersen, Willem M. de Vos, Søren Brunak, Joel Doré, MetaH. I. T Consortium, María Antolín, François Artiguenave, Hervé M. Blottiere, Mathieu Almeida, Christian Brechet, Carlos Cara, Christian Chervaux, Antonella Cultrone, Christine Delorme, Gérard Denariaz, Rozenn Dervyn, Konrad U. Foorstner, Carsten Friss, Maarten van de Guchte, Eric Guedon, Florence Haimet, Wolfgang Huber, Johan van Hylckama-Vlieg, Alexandre Jamet, Catherine Juste, Ghalia Kaci, Jan Knol, Omar Lakhdari, Severine Layec, Karine Le Roux, Emmanuelle Maguin, Alexandre Mérieux, Raquel Melo Minardi, Christine M'rini, Jean Muller, Raish Oozeer, Julian Parkhill, Pierre Renault, Maria Rescigno, Nicolas Sanchez, Shinichi Sunagawa, Antonio Torrejon, Keith Turner, Gaetana Vandemeulebrouck, Encarna Varela, Yohanan Winogradsky, Georg Zeller, Jean Weisschenbach, S Dusko Ehrlich, and Peer Bork. Enterotypes of the human gut microbiome. *Nature*, 473(7346):174–180, May 2011.
5. Appendix

Fragment	Lean	Obese	p (training set)	p (holdout set)	p (corrected)
CTCGTGACA	2.002e-05	1.901e-05	**0.002091**	0.001443	0.028859
CTCGATTGT	2.848e-05	2.727e-05	0.002945	0.004539	0.086232
TGTCGACTG	2.459e-05	2.3e-05	0.0009184	0.005781	0.104062
ACACTCGAG	1.126e-05	1.025e-05	0.001831	0.006911	0.117490
CTCGAGTGT	1.127e-05	1.025e-05	0.002036	0.012364	0.197821
TGTCGACTG	1.354e-05	1.291e-05	0.002158	0.014499	0.217484
ATGTGAGGC	2.35e-05	2.255e-05	0.001805	0.016175	0.226446
GTGCTCTCTC	2.382e-05	2.26e-05	0.002931	0.019559	0.254270
GGCTCACTC	1.817e-05	1.722e-05	0.003306	0.031810	0.381714
CGAGTGAGA	1.858e-05	1.786e-05	0.003293	0.036067	0.396741
CACTCGAGG	1.205e-05	1.087e-05	0.003403	0.061201	0.612006
GAGTGAAGCT	2.149e-05	2.059e-05	0.003223	0.062982	0.566836
CTCGACTGT	2.062e-05	1.954e-05	0.003178	0.071181	0.569449
CTGTGTTGT	2.723e-05	2.629e-05	0.00301	0.077670	0.543687
TGTCGTTG	5.722e-05	5.518e-05	0.002553	0.121549	0.729294
CACTCGTG	1.633e-05	1.524e-05	0.002677	0.130222	0.651109
TCACCATGT	4.975e-05	4.83e-05	0.003499	0.283407	1.133628
TCTAGGCCT	1.786e-05	1.729e-05	0.003271	0.561284	1.683851
AACAGCCAC	5.328e-05	5.22e-05	0.002606	0.697098	1.394196
CTAGCTGTC	2.083e-05	2.036e-05	0.001805	0.882905	0.882905

Table S1: Frequencies of ninemers of in lean vs. obese samples with the highest significance (training and holdout sets: two halves of Study 1). The boldface number in column 4 denotes the significant difference by Holm-Bonferroni corrections, shown in the last column.
Fragment	Male	Female	p (training set)	p (holdout set)	p (corrected)
TAGTACTGG	2.748e-05	2.854e-05	0.006019	0.174548	3.490951
TTCATAGGG	3.385e-05	3.479e-05	0.0005157	0.305204	5.798868
AGTCTCAGG	2.314e-05	2.229e-05	0.007333	0.353644	6.365594
GATGTTGCT	3.878e-05	3.841e-05	0.006985	0.452399	7.690776
GTCTCACAC	1.635e-05	1.594e-05	0.00236	0.495140	7.922244
CTCAGTCT	0.0001047	0.0001014	0.006424	0.512597	7.688961
CATGTAACC	2.969e-05	2.932e-05	0.001608	0.515833	7.221663
GCTTCAGAC	4.097e-05	3.98e-05	0.006813	0.546829	7.108781
CTCTAACAC	2.147e-05	2.098e-05	0.006313	0.578498	6.941978
ACAGACTCA	3.893e-05	3.82e-05	0.007392	0.582096	6.403058
GGTCATTAAC	4.215e-05	4.266e-05	0.006413	0.595760	5.957600
TGTTGTAC	2.247e-05	2.204e-05	0.007573	0.618236	5.564123
CAGACTCAT	4.513e-05	4.426e-05	0.007669	0.619291	4.954327
GTGTAGAC	1.626e-05	1.596e-05	0.004958	0.625175	4.376228
ACCTCTGTC	4.032e-05	3.957e-05	0.005543	0.729250	4.375499
GTCTAACAC	1.634e-05	1.596e-05	0.002582	0.752233	3.761164
AGGATGTGT	4.805e-05	4.725e-05	0.001627	0.795980	3.183920
TCCTCCTAA	5.775e-05	5.652e-05	0.006681	0.909561	2.728684
TCTCAGTCT	3.361e-05	3.263e-05	0.004097	0.945748	1.891496
GGTGTGTCT	2.855e-05	2.794e-05	0.005231	0.949554	0.949554

Table S2: Frequencies of ninemers and an eightmer in female vs. male samples with the highest significance (training and holdout sets: two halves of Study 1). After the very strict Holm-Bonferroni corrections, no significant differences were found.
Figure S1: Empirical cumulative distribution function of the frequency of fragment CTCGTGACA (solid: lean, dashed: obese)