Preparation and Field Emission Properties of Titanium Polysulfide Nanobelt Films

Xing Cai Wu (✉), You Rong Tao, and Qi Xiu Gao

School of Chemistry and Chemical Engineering, and Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Nanjing University, Nanjing 210093, China

Received: 20 April 2009 / Revised: 9 May 2009 / Accepted: 10 May 2009

© Tsinghua University Press and Springer-Verlag 2009. This article is published with open access at Springerlink.com

ABSTRACT

TiS₃ nanobelt films, with widths of about 0.1–12 μm, thickness of about 20–250 nm, and lengths of up to 200 μm, have been grown on Ti substrates by a surface-assisted chemical-vapor-transport at 450 °C for 8 h. The TiS₃ nanobelt films were converted into TiS₁.₇₁ nanobelt films by pyrolysis in a vacuum at 600 °C for 2 h. The work functions of the two films were determined by ultraviolet photoelectron spectroscopy measurements to be 4.60 and 4.44 eV, respectively. Preliminary field emission experiments using the nanostructures as cold electron cathodes showed that both materials gave significant emission currents. The turn-on fields (defined as the electric field required to produce a current density of 10 μA/cm²) were about 1.0 and 0.9 V/μm, respectively, whereas the threshold fields (defined as the electric field required to produce a current density of 1 mA/cm²) were about 5.6 and 4.0 V/μm, respectively. These data reveal that both materials have potential applications in field emission devices.

KEYWORDS

Nanowire, film, titanium sulfide, chemical vapor-transport, field emission

Introduction

One-dimensional (1-D) nanomaterials have attracted considerable interest due to their unique physical properties and potential applications in the construction of nanoscale electric and optoelectronic devices [1–6]. A few 1-D nanomaterials have already been synthesized and fabricated into devices [7–10], but for future rational development and optimization of functional devices it is important to synthesize novel 1-D nanostructures and to understand their fundamental physical properties.

Titanium trisulfide (TiS₃) is an n-type extrinsic semiconductor with good conductivity. It has a pseudo one-dimensional structure with infinite chains of triangular prisms (TiS₆) that share trigonal faces along the b-axis. Each chain is shifted with respect to two neighboring ones by half the lattice parameter along the b direction [11]. Titanium disulfide (TiS₂) exhibits either semimetallic [12] or semiconducting [13] behavior due to a strong tendency toward nonstoichiometry with excess Ti. Over the past few years, TiS₃ and TiS₂ thin films have been prepared by chemical vapor deposition (CVD) of TiCl₄ and a series...
of sulfur sources [14], and TiS$_3$ nanobelts have been prepared by a chemical vapor transport (CVT) of Ti sponge and S powder [15]. In addition, TiS$_3$ nanotubes have been prepared by the thermal decomposition of TiS$_2$ in H$_2$ at 800–1000 °C [16], and by heating TiS$_2$ amorphous particles in H$_2$ at 200 °C [17]. If 1-D nanostructures of TiS$_3$ or TiS$_2$ are fabricated on metal or semiconducting substrates, they can form electronic field emission (FE) functional blocks due to the strong local electric field at the tip and unique direction of electron emission. Earlier, Zhang et al. prepared TiS$_2$ whisker arrays on Si substrates by a vapor deposition method, but no physical properties were studied [18]. We also fabricated TiS$_2$ microplates on Ti substrates by surface-assisted CVT [19], but did not obtain any 1-D nanostructures. Here we report that by altering the previous experimental conditions, it is possible to obtain TiS$_3$ nanobelt films on Ti foils, and that the TiS$_3$ nanobelt films can be pyrolyzed in a vacuum to afford TiS$_{1.71}$ nanobelt films. We also report FE measurements with both films.

1. Experimental

Titanium (Ti) foil (99.9%) and sulfur (S) powder (99.8%) were used as starting materials. Three pieces of Ti foil with size of ca. 0.2 mm × 5 mm × 11 mm (total weight: 136.0 mg) and S powder (10.0 mg) were sealed in a quartz ampule (Ø 6 mm × 130 mm) under a vacuum (ca. 10$^{-2}$ Pa). The ampule was placed in a conventional horizontal furnace with a temperature gradient of ca. 10 K/cm from center to edge. The end containing the Ti foil was put at the center of the furnace, and the ampule then heated at different temperatures (350, 450, 550, and 650 °C) for 8 h; finally TiS$_3$ nanobelt arrays grown on Ti foil were obtained. After the furnace was cooled to room temperature, the pieces of foil with attached TiS$_3$ nanostructures were extracted from the quartz ampule. The product obtained at 450 °C was sealed in a quartz ampule (Ø 6 mm × 250 mm) under a vacuum (ca. 10$^{-2}$ Pa). The ampule was placed in a conventional horizontal furnace with a temperature gradient of ca. 10 K/cm from center to edge. The end containing the Ti foil was put at the center of the furnace, and the ampule then heated at different temperatures (350, 450, 550, and 650 °C) for 8 h; finally TiS$_3$ nanobelt arrays grown on Ti foil were obtained. After the furnace was cooled to room temperature, the pieces of foil with attached TiS$_3$ nanostructures were extracted from the quartz ampule. The product obtained at 450 °C was sealed in a quartz ampule (Ø 6 mm × 250 mm) under a vacuum (ca. 10$^{-2}$ Pa). The end of the ampule containing the TiS$_3$ nanostructure was put at the center of the furnace, with the other end extending out of the furnace by about 7 cm, and the ampule was then annealed at 600 °C for 2 h in a vacuum so as to obtain TiS$_{1.71}$ nanobelt films.

The products were characterized using an X-ray diffractometer (XRD; Shimadzu XRD-6000) with graphite monochromatized Cu Kα-radiation, a scanning electron microscope (SEM; LEO-1530VP) with attached energy-dispersive X-ray spectrometer (EDX), and a high-resolution transmission electron microscope with a point resolution of 0.19 nm (HRTEM; JEOL model JEM-2100). The composition of the products was confirmed by a gravimetric method: the products scraped from the Ti foils were weighed, and converted to TiO$_2$ by heating in air at 800 °C for 1 h, and then cooled to room temperature. The atomic ratios of Ti and S were calculated based on the weight loss of the products. The work functions were measured by ultraviolet photoelectron spectroscopy (UPS, ESCALAB 250) with an ultraviolet excitation source (He I discharge at hν = 21.22 eV) in a vacuum of 3 × 10$^{-8}$ Pa. The spectrum was recorded with a sample bias of −3.500 V so that the sample inelastic cutoff could be distinguished from that of the spectrometer. The electron field emission measurements were performed by using a parallel-plate configuration with a space of 500 μm and an emission area of 0.41 cm2 in a vacuum chamber at a pressure of 5.0 × 10$^{-4}$ Pa at room temperature. A DC voltage sweeping from 0 to 4500 V was applied to the samples.

2. Results and discussion

2.1 Structure and morphology

Figures 1(a)–(d) show the XRD patterns of the films prepared by reaction of Ti foil with S at different temperatures. Figure 1(a) indicates the reflection peaks of the product obtained at 350 °C, which can be indexed as the hexagonal phase of Ti (ICCD PDF no. 05-0682), revealing that Ti does not react with S below 350 °C. Figures 1(b) and 1(c) exhibit the reflection peaks of the nanostructures prepared at 450 and 550 °C, respectively, which can be indexed as the monoclinic phase of TiS$_3$ (ICCD PDF no. 36-1337; S. G.: P2$_1$/m). Figure 1(d) displays the reflection peaks of the product obtained at 650 °C, which can be indexed as the hexagonal phase of TiS$_2$ (ICCD PDF no. 15-0853). After the films prepared at 450 °C were
annealed in a vacuum at 600 °C for 2 h, they were converted to hexagonal TiS$_{1.71}$, for which the XRD pattern is shown in Fig. 1(e) (ICCD PDF no. 71-0374; S. G.: R3m).

Figures 2(a)–(c) are SEM images of the TiS$_3$ nanobelt films obtained at 450 °C, which show that the nanobelts, with widths of about 0.1–12 μm, thickness of about 20–250 nm, and lengths of up to 200 μm, were vertically or obliquely grown on the Ti substrate. The EDX spectrum (Fig. 2(d)) gave a molar ratio of Ti to S of 24.2:75.8 (1:3.13), which is close to the expected stoichiometric composition. In addition, gravimetric analysis gave almost the same Ti/S molar ratio, 1:3.10. Figures 2(e)–(g) show a high-magnification TEM image, a selected area electron diffraction (SAED) pattern, and an HRTEM image of a single TiS$_3$ nanobelt, respectively. The SAED pattern can be indexed as TiS$_3$ (ICCD PDF no. 36-1337), consistent with the above XRD results. Lattice fringe spaces of 0.49 and 0.34 nm correspond to (100) and (010) planes of TiS$_3$, which demonstrate that the nanobelt grows along the [010] direction. The structure of the nanobelt is drawn as an inset in Fig. 2(g).

Figures 3(a)–(c) are SEM images of the nanobelt films obtained at 550 °C, showing that the nanobelts, with widths of about 0.4–17 μm, thickness of about 50–300 nm, and lengths of up to 440 μm, grew almost vertically on the Ti substrate. EDX and XRD analyses demonstrate that the material is also TiS$_3$ (ICCD PDF no. 36-1337). When the reaction was carried out at 650 °C, only TiS$_2$ particle films were formed as shown in Fig. 3(d).

Figures 4(a)–(c) are the SEM images of TiS$_{1.71}$ nanobelt films with sizes and morphologies which approach those of the TiS$_3$ nanobelt precursors prepared at 450 °C. The EDX spectrum (Fig. 4(d)) confirms that the nanobelt is composed of Ti and S with a molar ratio of 36.95:63.05 (1:1.71). Gravimetric analysis shows that Ti/S molar ratio of the products is 1:1.76, consistent with the EDX analysis. Figure 4(e) shows a TEM image and corresponding SAED pattern (inset) of a single TiS$_{1.71}$ nanobelt. The SAED analysis supports the above XRD results and confirms that the nanobelt grows along the [100] direction.
2.2 Growth mechanism

Tips of nanobelts can be observed in Fig. 3(b) which suggests that the formation of TiS$_3$ nanobelts can be explained by the vapor-solid growth mechanism [20]. When the reaction temperature reaches 450 °C, sulfur (b.p. 444.6 °C) is evaporated into the vapor phase, and deposits on the Ti substrate. Titanium reacts with sulfur vapor and forms unstable TiS$_x$ species in the gas phase. TiS$_x$ in the vapor phase reacts with further S vapor, and condenses again on the Ti substrate to form stable TiS$_3$ seeds. In the subsequent process, TiS$_x$ and S in the vapor phase may combine with TiS$_3$ seeds to form TiS$_3$ nanobelts. Owing to the presence of the seeds, TiS$_3$ nanobelts stand almost vertically on the surface of the substrates, similar to the growth of MoO$_2$ nanorod arrays on Si substrates [21]. When the reaction proceeds at 650 °C, TiS$_3$ seeds are decomposed into TiS$_2$ particles resulting in films of TiS$_2$. Compared with our previous experiments [19], we think that the reaction time influences the stoichiometries and morphologies of the products formed.

2.3 UPS analysis

Work functions of the materials were measured in ultrahigh vacuum using the inelastic secondary electron cutoff of UPS energy distribution curves [22]. Before the spectra were recorded, the surfaces of the samples were cleaned by Ar$^+$ sputtering with an applied energy of 2 keV and a beam density of 0.5 μA/mm2 for 200 s. After a high purity Ni plate was sputtered, its UPS spectrum on the kinetic energy scale was recorded as shown in Fig. 5(a), and
the spectrometer was calibrated by the Fermi edge of Ni. The spectrum width from the Fermi edge to the sample inelastic cutoff, as determined by the centers of the slopes (Fig. 5(a)), is equal to $h\nu - \Phi$ (where $h\nu$ is the photon energy and Φ is the work function) [22]; the work function of Ni was confirmed as 4.01 eV. The UPS spectra of TiS$_3$ and TiS$_{1.71}$ are shown in Figs. 5(b) and 5(c), respectively. The positions of the sample inelastic cutoff for TiS$_3$ and TiS$_{1.71}$ correspond to values of the work functions of 4.60 and 4.44 eV, respectively (although the Fermi edge is not observed, the value can be taken as the same as that for Ni, since the Fermi edge is the reference point of the energy scale in UPS and should not change from sample to sample as long as they are grounded [22]).

2.4 Electronic field emission

The emission current–voltage characteristics were analyzed by using the Fowler–Nordheim (F–N) equation for the field emission: $J = (AE^2 \beta^2/\Phi) \exp[-B \Phi^{3/2} / (E \beta)]$, where J is the current density (A/m2), E is the applied field, $B = 6.83 \times 10^9$ (eV$^{3/2}$/V·m), $A = 1.56 \times 10^{10}$ (AV2·eV), β is a field enhancement factor, and Φ is the work function [23]. Figures 6 (a) and 6(b) depict the curves of the emission current density (J) as a function of applied field (E) of the TiS$_3$ nanobelt films obtained at 450 °C and the TiS$_{1.71}$ nanobelt films, respectively, and insets show the corresponding F–N plots, that is, the plots of ln (J/E^2) versus 1/E. The F–N plots exhibit an approximately linear behavior in the low field region but nonlinear behavior in the high field region, which may result from space charge effects in the vacuum space [24]. Based on the J–E curves, we can determine the field emission turn-on fields and threshold fields, which are defined as the macroscopic fields required to produce a current density of 10 μA/cm2 and 1 mA/cm2, respectively. The turn-on fields of TiS$_3$ and TiS$_{1.71}$ are 1.0 and 0.9 V/μm, respectively, and the threshold fields are 5.6 and 4.0 V/μm, respectively.

Based on the work functions of TiS$_3$ (4.60 eV) and TiS$_{1.71}$ (4.44 eV) determined as above, and the slopes of the F–N plots, field enhancement factors of the TiS$_3$ and TiS$_{1.71}$ nanobelt films are calculated as -1.63×10^4 and -2.14×10^4, respectively. Both turn-on fields and threshold fields are comparable to the values reported for Mo (2.2 and 6.24 V/μm) [21], AlN (3.8 and 7 V/μm) [25], and ZrS$_2$ (0.95 and 3.6 V/μm) nanowire arrays [26]. Therefore, both nanostructures are candidates for future field emitters. Because the TiS$_{1.71}$ nanobelt films were prepared by vacuum pyrolysis of the TiS$_3$ nanobelt films, the amounts (per cm2) and morphologies of the two nanostructures are very similar. Therefore, the FE performances of the materials depend strongly on their work function. It should be noted that the work function measured here is an average over the emitting material and the local work function at the tips of individual 1-D nanostructures, where most electrons are emitted, has an important effect on the FE properties [27, 28]. The maximal emission current of the TiS$_{1.71}$ nanobelt

![Figure 5](image-url) UPS spectra of (a) Ni plate, (b) TiS$_3$ nanobelt film, and (c) TiS$_{1.71}$ nanobelt film.
arrays is greater than that of the TiS₃ nanobelt arrays, which may be attributed to the greater stability of the TiS₁.₇₁ nanobelts. Emission stabilities of the TiS₁.₇₁ nanobelt films were tested at a constant electric field of 7.0 V/μm. As shown in Fig. 7, the initial current and the average current densities were 3.14 and 3.03 mA/cm², respectively, and no obvious degradation of current densities was observed after 4 h.

3. Conclusions

TiS₃ nanobelt films have been fabricated on Ti substrates by a facile surface-assisted chemical-vapor-transport approach. The morphologies and structures strongly depend on the reaction conditions including quantities of reagents, reaction temperature, and reaction time. TiS₃ nanobelt films can be decomposed to give TiS₁.₇₁ nanobelt films by vacuum pyrolysis. Both films possess low turn-on fields and high field enhancement factors. These properties could make the nanobelt film ensembles highly valuable for use in novel FE nanodevices.

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (No. 20671050), and National Basic Research Program of China (973 Program, No. 2007CB936302).

References

[1] Bawendi, M. G.; Steigerwald, M. L.; Brus, L. E. The quantum-mechanics of larger semiconductor clusters (quantum dots). Annu. Rev. Phys. Chem. 1990, 41, 477–496.
[2] Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.
[3] Weller, H. Colloidal semiconductor Q-particles—Chemistry in the transition region between solid-state and molecules. Angew. Chem. Int. Ed. 1993, 32, 41–53.
[4] Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.
[5] Kovtyukhova, N. I.; Mallouk, T. E. Nanowires as building blocks for self-assembling logic and memory circuits. Chem. Eur. J. 2002, 8, 4355–4363.
[6] Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C. Protonated titanates and TiO₂ nanostructured materials: Synthesis,
properties, and applications. Adv. Mater. 2006, 18, 2807–2824.

[7] Wu, X. C.; Tao, Y. R.; Hu, Y. M.; Song, Y.; Hu, Z.; Zhu, J. J.; Dong, L. Tantalum disulfide nanobelts: Preparation, superconductivity and field emission. Nanotechnology 2006, 17, 201–205.

[8] Fang, X.; Bando, Y.; Ye, C.; Golberg, D. Crystal orientation-ordered ZnS nanobelt quasi-arrays and their enhanced field-emission. Chem. Commun. 2007, 3048–3050.

[9] Yoon, H.; Seo, K.; Moon, H.; Varadwaj, K. S. K.; In, J.; Kim, B. Aluminum foil mediated noncatalytic growth of ZnO nanowire arrays on an indium tin oxide substrate. J. Phys. Chem. C 2008, 112, 9181–9185.

[10] Li, L.; Fang, X.; Chew, H. G.; Zheng, F.; Liew, T. H.; Xu, X.; Zhang, Y.; Pan, S.; Li, G.; Zhang, L. Crystallinity-controlled germanium nanowire arrays: Potential field emitters. Adv. Funct. Mater. 2008, 18, 1080–1088.

[11] Ait-Ouali, A.; Jandl, S. Photoluminescence study of the one-dimensional material ZrS3 and its solid solution Zr1-xHfxS3. Phys. Rev. B 1996, 53, 9852–9858.

[12] Shepherd, F. R.; Williams, P. M. Photoemission studies of band structures of transition-metal dichalcogenides. 1. Group-IVA and Group-IVB. J. Phys. C: Solid State Phys. 1974, 7, 4416–4426.

[13] Chen, C. H.; Fabian, W.; Brown, F. C.; Woo, K. C.; Davies, B.; De Long, B.; Thompson, A. H. Angle-resolved photoemission-studies of the band-structure of TiSe2 and TiS2. Phys. Rev. B 1980, 21, 615–624.

[14] Chang, H. S. W.; Schleich, D. M. TiS2 and TiS2 thin-films prepared by MocVD. J. Solid State Chem. 1992, 100, 62–70.

[15] Ma, J. J.; Liu, X.Y.; Cao, X. J.; Feng, S. H.; Fleet, M. E. Bundle of nanobelts up to 4 cm in length: One-step synthesis and preparation of titanium trisulfide (TiS3) nanomaterials. Eur. J. Inorg. Chem. 2006, 519–522.

[16] Nath, M.; Rao, C. N. R. Nanotubes of group 4 metal disulfides. Angew. Chem. 2002, 41, 3451–3454.

[17] Chen, J.; Tao, Z. L.; Li, S. L. Lithium intercalation in open-ended TiS2 nanotubes. Angew. Chem. Int. Ed. 2003, 42, 2147–2151.

[18] Zhang, Y.; Li, Z. K.; Jia, H. B.; Luo, X. H.; Xu, J.; Zhang, X. H.; Yu, D. P. TiS2 whisker growth by a simple vapor-deposition method. J. Cryst. Growth 2006, 293, 124–127.

[19] Tao, Y. R.; Wu, X. C.; Zhang, Y. L.; Dong, L.; Zhu, J. J.; Hu, Z. Surface-assisted synthesis of microscale hexagonal plates and flower-like patterns of single-crystalline titanium disulfide and their field-emission properties. Cryst. Growth Des. 2008, 8, 2990–2994.

[20] Jennings, H. M. On reactions between silicon and nitrogen. 1. Mechanisms. J. Mater. Sci. 1983, 18, 951–967.

[21] Zhou, J.; Xu, N. S.; Deng, S. Z.; Chen, J.; She, J. C.; Wang, Z. L. Large-area nanowire arrays of molybdenum and molybdenum oxides: Synthesis and field emission properties. Adv. Mater. 2003, 15, 1835–1840.

[22] Park, Y.; Choong, V.; Gao, Y.; Hsieh, B. R.; Tang, C. W. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl. Phys. Lett. 1996, 68, 2699–2701.

[23] Gadzuk, J. W.; Plummer, E. W. Field-emission energy-distribution (FEED). Rev. Mod. Phys. 1973, 45, 487–548.

[24] Xu, N. S.; Chen, Y.; Deng, S. Z.; Chen, J.; Ma, X. C.; Wang, E. G. Vacuum gap dependence of field electron emission properties of large area multi-walled carbon nanotube films. J. Phys. D: Appl. Phys. 2001, 34, 1597–1601.

[25] He, J. H.; Yang, R.; Chueh, Y. L.; Chou, L. J.; Chen, L. J.; Wang, Z. L. Aligned AlN nanorods with multi-tipped surfaces—Growth, field-emission, and cathodoluminescence properties. Adv. Mater. 2006, 18, 650–654.

[26] Zhang, Y. L.; Wu, X. C.; Tao, Y. R.; Mao, C. J.; Zhu, J. J. Fabrication and field-emission performance of zirconium disulfide nanobelt arrays. Chem. Comm. 2008, 2683–2685.

[27] Bai, X.; Wang, E. G.; Gao, P.; Wang, Z. L. Measuring the work function at a nanobelt tip and at a nanoparticle surface. Nano Lett. 2003, 3, 1147–1150.

[28] Xu, Z.; Bai, X. D.; Wang, E. G.; Wang, Z. L. Field emission of individual carbon nanotube with in situ tip image and real work function. Appl. Phys. Lett. 2005, 87, 163106.