Charges and homologies in AdS$_4$/CFT$_3$

Yosuke Imamura*

Department of Physics, University of Tokyo,
Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

Electric and magnetic charges of a certain class of operators in $\mathcal{N} = 2$ large N quiver Chern-Simons theories are investigated. We consider only non-chiral theories, in which every bi-fundamental field appears with its conjugate representation. By interpreting operators in a Chern-Simons theory as wrapped M-branes in the dual geometry $AdS_4 \times X_7$, we partly determine the homologies of X_7.

*E-mail: imamura@hep-th.phys.s.u-tokyo.ac.jp
1 Introduction

AdS$_4$/CFT$_3$ correspondence claims the equivalence between a three-dimensional conformal field theory (CFT) and M-theory in the background

\[AdS_4 \times X_7, \]

with an appropriately chosen Einstein 7-manifold X_7, which may in general contain singularities. In the brane picture, the CFT is the theory realized on multiple M2-branes in the cone over X_7. Until quite recent, low-energy effective field theories realized on multiple M2-branes were not known. The first example of interacting CFTs describing multiple M2-branes were proposed by Bagger and Lambert [1, 2, 3] and Gushtavson [4, 5]. The model, which is now called BLG model, is a Chern-Simons theory with $\mathcal{N} = 8$ supersymmetry, and is important also as the first example of Chern-Simons theories with $\mathcal{N} \geq 4$ supersymmetry. Although BLG model works only for two M2-branes [6, 7], it triggered the following construction and classification of various supersymmetric quiver Chern-Simons theories [8, 9, 10, 11, 12, 13, 14, 15]. $\mathcal{N} \leq 3$ quiver Chern-Simons theories, whose actions have been known for long, are also investigated from new perspective as theories for multiple M2-branes in various backgrounds [16, 17, 18, 19, 20, 21, 22, 23, 24].

Almost all theories appearing in the recent literature as theories on M2-branes are quiver Chern-Simons theories. The purpose of this paper is to investigate the relation between charges in such quiver Chern-Simons theories and wrapped M-branes in the corresponding internal space X_7.

In the case of AdS$_5$/CFT$_4$ duality, the relation between wrapped branes and operators are first proposed in [27] for non-dynamical (external) baryonic operators in the maximally supersymmetric Yang-Mills theories, and was extended to dynamical baryonic operators in theories with less supersymmetries in [28, 29]. In the latter, baryonic operators are identified with D3-branes wrapped on three-cycles in internal five-dimensional spaces. This is further extended in [30, 31, 32] to a large class of quiver gauge theories described by brane tilings [33, 34, 35]. In such a class of gauge theories, the spectrum of baryonic operators is known to be consistent with the homology of three-cycles, on which D3-branes can wrap.

The relation between fractional branes, D5-branes wrapped on two-cycles, and ranks of SU(N) gauge groups is also well understood [36, 37] in the case of Klebanov-Witten theory [38]. See also [39, 40] for fractional branes in more general theories described by brane tilings.

In this paper, we discuss similar relations for AdS$_4$/CFT$_3$ from the field theory side. We investigate electric and magnetic charges of operators, and relate them
to wrapping numbers of M5- and M2-branes. We determine one-, two-, and five-
cycle homologies of X_7 by the analysis of charges on the field theory side. We
also discuss the relation between ranks of gauge groups and the four-form flux in
the internal space.

We emphasize that operators considered in this paper are not always gauge
invariant. In general, they are charged under the U(1) part of $U(N) \sim SU(N) \times
U(1)$ gauge groups. We do not impose gauge invariance with respect to all these
U(1) subgroups. This is because, as is pointed out in [41], it is impossible to
identify all wrapped M-branes which are particles in AdS_4 with gauge invariant
operators. We require operators to be singlet with respect to $SU(N)$ subgroups
in the gauge group. We refer to such $SU(N)$ invariant operators as “colorless
operators.”

Colorless operators are constructed by contracting all $SU(N)$ color indices
of constituent objects. For simplicity, we do not consider the full symmetry
structure of $SU(N)$ indices. For example, when an operator has two color indices,
we do not take care about whether the indices are symmetric or anti-symmetric.
We only take account of the “index number” z defined by

$$z = \# \text{ of upper } SU(N) \text{ indices} - \# \text{ of lower } SU(N) \text{ indices}. \quad (2)$$

We determine whether a combination of operators can be colorless by only check-
ing whether the total index number vanishes. Of course, this simple prescription
cannot capture the detailed spectrum of operators, and more careful analysis is
necessary when we want to determine degeneracy of operators and so on. We
leave this problem for future work.

As we mentioned above, colorless operators are in general charged under the
diagonal U(1)’s of $U(N)$’s in the gauge group. We call this baryonic symmetry,
and refer to operators rotated by this symmetry as baryonic operators. Such
operators are constructed with $SU(N)$ epsilon tensors, and expected to have con-
formal dimension of order N. It is known that the mass of M5-branes wrapped on
five cycles reproduce this scaling of the conformal dimension, and by this reason,
we identify baryonic operators with wrapped M5-branes. Once we accept this
correspondence, it is natural to identify monopole operators, operators magnet-
ically charged with respect to the baryonic symmetry, with M2-branes wrapped
on two-cycles, which are mutually non-local to the wrapped M5-branes.

In general, quantum corrections shift the baryonic charges of monopole operators
[42, 43], and they make the charge spectrum of such operators complicated.
Unfortunately, we have not succeeded in interpreting such a complicated spec-
trum in terms of M-branes. By this reason, in this paper, we discuss only the
non-chiral $\mathcal{N} = 2$ quiver Chern-Simons theories, in which a bi-fundamental chiral
multiplet in (N_a, \overline{N}_a) and one in (\overline{N}_a, N_a) appear in the pairwise way and
the corrections to baryonic charges vanish. Examples of such non-chiral theories
describing M2-branes are $\mathcal{N} = 3$ Chern-Simons theories studied in [17].
This paper is organized as follows. In §2 we define the colorless sector for a single U\((N)\) gauge group. In §3 we generalize this into quiver Chern-Simons theories, and declare the class of operators we discuss. In §4 we relate M2-branes wrapped on two-cycles to non-baryonic monopole operators. In §5 we discuss the correspondence between baryonic operators and wrapped M5-branes. In §6 we study how flux strings are realized as wrapped M-branes. (By flux strings we mean stringy objects in AdS\(_4\). Since we consider CFT, confining strings do not exist on the field theory side.) A relation among ranks of gauge groups, baryonic charges, and the charge of flux strings attached on baryonic operators are also studied. In §7 we present some examples. The last section is devoted to discussions.

2 \(U(N)\) gauge group

In this preliminary section, we consider a gauge theory with a single \(U(N)\) gauge group. We denote this gauge group by \(G\), and the gauge field by \(A\). We assume that \(U(N)\) is the effective gauge group. If there were no matter fields the gauge group would be effectively SU\((N)/\mathbb{Z}_N\) because the diagonal U\((1)\) would not couple to any fields. We do not consider such a case and assume the existence of fields coupled by the full \(U(N)\) gauge group.

We can use Young diagrams to specify \(U(N)\) representations. Let \(w_i\) be the number of boxes in the \(i\)-th row in a Young diagram. These numbers form the highest weight vector for the representation. It is an element of the \(U(N)\) weight lattice \(\mathcal{W}\).

\[
\vec{w} = (w_1, w_2, \ldots, w_N) \in \mathcal{W}.
\]

When we use a weight vector to specify Young diagram, the components are ordered in the descending order; \(w_1 \geq w_2 \geq \cdots \geq w_N\). Because we consider not SU\((N)\) but \(U(N)\), columns filled up with \(N\) boxes have meaning and we cannot neglect them. In other words, we should distinguish between \((w_1, \ldots, w_N)\) and \((w_1 + 1, \ldots, w_N + 1)\). Note that negative \(w_i\) are not prohibited. Although the SU\((N)\) representation and the U\((1)\) charge are independent for general \(U(N)\) representations, we consider only the case in which both the U\((1)\) charge and the SU\((N)\) representation are specified by the same Young diagram.

We define monopoles in \(U(N)\) gauge theory following Goddard, Nuyts, and Olive [44]. Namely, we consider Dirac monopoles for the Cartan subgroup \(H = U(1)^N \subset G\). Such monopoles are characterized by the Dirac strings attached on them, and their magnetic charges are defined by integrating the gauge potential around the Dirac string as

\[
m_i = \frac{1}{2\pi} \oint A_i, \quad i = 1, \ldots, N,
\]
where the index i labels the U(1)’s in H, and A_i is i-th diagonal component in the U(N) gauge field A. Monopoles defined in this way are called Goddard-Nuyts-Olive (GNO) monopoles. We can regard the set of magnetic charges m_i as a vector in the root lattice \mathcal{R}:

$$
\vec{m} = (m_1, m_2, \ldots, m_N) \in \mathcal{R}.
$$

The weight lattice \mathcal{W} and the root lattice \mathcal{R} are dual to each other, and for vectors $\vec{w} \in \mathcal{W}$ and $\vec{m} \in \mathcal{R}$ the inner product

$$
\vec{w} \cdot \vec{m} \equiv \sum_{i=1}^{N} w_i m_i
$$

is defined.

We mainly focus on “the colorless sector” as is mentioned in Introduction. This means that we focus on the electric and magnetic charges with respect to the diagonal U(1) subgroup of U(N). When we discuss electric charge in the colorless sector, we consider only SU(N) singlet operators. SU(N) non-singlet representations are excluded from the consideration. This constrains weight vectors by “the colorless condition”

$$
\vec{w} \cdot \vec{\alpha}_a = 0, \quad a = 1, \ldots, N-1,
$$

where $\vec{\alpha}_a \in \mathcal{R}$ are the SU(N) root vectors defined by

$$
\vec{\alpha}_1 = (1, -1, 0, \ldots, 0),
\vec{\alpha}_2 = (0, 1, -1, 0, \ldots, 0),
\vdots
\vec{\alpha}_{N-1} = (0, \ldots, 0, 1, -1).
$$

The colorless condition (7) means

$$
w_1 = w_2 = \ldots = w_N =: b,
$$

and the Young diagram of a colorless representation is an $N \times b$ rectangle.

If we consider only colorless operators, the effective gauge group becomes

$$
G_B = U(N)/SU(N) = U(1)/\mathbb{Z}_N,
$$

where U(1) in the last expression means the diagonal U(1) subgroup of U(N) and \mathbb{Z}_N is the center of SU(N). We define the G_B gauge field by

$$
B = \text{tr} A.
$$

This couples to the fundamental representation by charge $1/N$.

4
Contrary to the electric charges, we do not impose any restriction to the magnetic charge \vec{m}. Instead, we simply neglect the magnetic charges other than the G_B charge. This is realized by introducing the following equivalence relation:

$$\vec{m} \sim \vec{m} + \sum_{a=1}^{N-1} c_a \vec{a}_a, \quad c_a \in \mathbb{Z}. \tag{12}$$

This identification removes $N - 1$ components of the magnetic charges, and leaves information of the G_B magnetic charge only.

In general, when we consider a pairing of two linear spaces with inner product between them, an equivalence relation in one space always arises with a constraint in the other space for the consistency with the inner product. In the case of charge lattices we discuss here, the inner product $\vec{w} \cdot \vec{m}$ is well-defined in the colorless sector because it does not depend on the choice of an element from an equivalence class defined by (12) thanks to the restriction (7).

When we consider the colorless sector, we can use a single integer to represent each of electric and magnetic charges. For the electric charge, we use the common value b in (9), while an equivalence class of the G_B magnetic charge defined by (12) is specified by

$$m = \sum_{i=1}^{N} m_i. \tag{13}$$

The inner product of electric and magnetic charge vectors is equal to the product of these integers.

$$\vec{w} \cdot \vec{m} = bm. \tag{14}$$

For concreteness, let us consider $U(N)$ gauge theory with chiral multiplets Q^α and \tilde{Q}_α in the fundamental and anti-fundamental representation, respectively. We also assume the existence of the Chern-Simons term

$$S_{CS} = \frac{k}{4\pi} \int \text{tr} \left(AdA + \frac{2}{3} A^3 \right). \tag{15}$$

Colorless operators in this Chern-Simons theory are constructed by combining the following objects:

- The component fields in Q^α and \tilde{Q}_α.
- SU(N) invariant anti-symmetric tensors $\epsilon_{\alpha_1 \cdots \alpha_N}$ and $\epsilon^{\alpha_1 \cdots \alpha_N}$.
- Monopole operators.

If the Chern-Simons level is k, a monopole operator $m[\vec{m}]$ with magnetic charge \vec{m} belongs to SU(N) representation specified by the weight vector $\vec{w} = k\vec{m}$. In general, the G_B charge of the operator receives quantum corrections.
As we mentioned in Introduction, we consider only non-chiral theories in which such corrections vanish. Then the G_B charge is given by $b = km/N$, and we can regard \overline{w} as a U(N) weight vector.

The above mentioned monopole operators are elementary ones before combined with matter fields to form colorless operators. We use the character m to denote such “bare” monopole operators. The index number and the electric and the magnetic charges of these objects are shown in Table 1. We construct colorless operators by combining these objects so that the index number z cancels. For such operators, the electric charge b is always an integer and is the same as the number of the epsilon tensor. (We mean by “the number of the epsilon tensor” the number of $\epsilon_{\alpha_1 \cdots \alpha_N}$ subtracted by that of $\epsilon^{\alpha_1 \cdots \alpha_N}$.) Namely, the charge b counts the number of SU(N) “baryons”. This is the reason why we call G_B the baryonic symmetry.

3 Quiver Chern-Simons theories

Let us extend the arguments in the last section to quiver gauge theories. We consider a quiver Chern-Simons theory described by a connected quiver diagram with n vertices. The gauge group is given by

$$G = \prod_{a=1}^{n} U(N_a),$$

and the action includes the Chern-Simons terms

$$S_{CS} = \sum_{a=1}^{n} \frac{k_a}{4\pi} \int \text{tr} \left(A_a dA_a + \frac{2}{3} A_a^3 \right).$$

We define the “color part” of the gauge group by

$$G_{SU} = \prod_{a=1}^{n} SU(N_a) \subset G.$$

Table 1: The index number z, the electric G_B charge b, and the magnetic G_B charge m of elementary objects are shown.

	z	b	m
Q^α	1	$1/N$	0
Q_α	-1	$-1/N$	0
$\epsilon_{\alpha_1 \cdots \alpha_N}$	$-N$	0	0
$\epsilon^{\alpha_1 \cdots \alpha_N}$	N	0	0
$m[\overline{m}]$	km	km/N	m

6
Note that we do not remove the diagonal U(1) subgroup of G which does not act on any matter fields in the gauge theory. This is because we implicitly assume that the theory is embedded in string or M-theory. In such a case we can introduce an external source belonging to the fundamental representation in a $U(N_a)$ gauge group, to which the diagonal U(1) subgroup couples. We later impose a certain condition (eq. (24)) to exclude such representation from the physical spectrum.

We consider the colorless sector of this quiver gauge theory. The baryonic symmetry G_B is defined as the effective group acting on colorless operators:

$$G_B = G/G_{SU} = \prod_{a=1}^{n} (U(1)_a^\prime / \mathbb{Z}_{N_a}) = \prod_{a=1}^{n} U(1)_a,$$(19)

where $U(1)_a^\prime$ is the diagonal subgroup of $U(N_a)$ and $U(1)_a$ is its quotient by \mathbb{Z}_{N_a}, the center of $SU(N_a)$. Let B_a be the $U(1)_a$ gauge field defined by

$$B_a = \text{tr} A_a.$$(20)

For each $U(N_a)$ factor, we define electric and magnetic charges of the colorless sector in the same way as the previous section. We denote the electric and magnetic $U(1)_a$ charge by b_a and m_a, respectively. We collect them to form the vectors

$$b = (b_1, \ldots, b_n), \quad m = (m_1, \ldots, m_n),$$

and define the inner product

$$b \cdot m = \sum_{a=1}^{n} b_a m_a.$$ (22)

Each component of the vectors in (21) corresponds to each $U(N_a)$ factor in the gauge group G, or, equivalently, each vertex in the quiver diagram, while each component of vectors \vec{w} or \vec{m} used in the last section corresponds to each U(1) factor in the Cartan subgroup of a single $U(N)$.

Colorless operators are constructed by combining

- Bi-fundamental chiral multiplets $\Phi_I = (\phi_I, \psi_I)$
- $SU(N_a)$ invariant anti-symmetric tensors $\epsilon_{(a)\alpha_1 \ldots \alpha_{N_a}}$ and $\epsilon_{(a)\alpha_1 \ldots \alpha_{N_a}}$
- Monopole operators $m[m]

We define charge matrix $\{Q_{Ia}\}$ so that the component Q_{Ia} is $+1$ (-1) if Φ_I belongs to the fundamental (anti-fundamental) representation of $U(N_a)$, and otherwise $Q_{Ia} = 0$.

The $SU(N_a)$ index numbers, the electric and magnetic $U(1)_a$ charges of the fundamental objects are shown in Table 2. We can again easily see that for
Table 2: The index numbers, the electric and magnetic charges are shown

ϕ_I, ψ_I	Q_{Ia}	Q_{Ia}/N_a	0
$\epsilon^{(a)}$	$-N_a$	0	0
$m[m]$	$k_a m_a$	$k_a m_a/N_a$	m_a

colorless operators the electric charge b_a is always an integer and is the same as the number of SU(N_a) invariant anti-symmetric tensor $\epsilon^{(a)}$ included in the operator. Thus we can regard the charge b_a as the SU(N_a) baryon number. The complete contraction of color indices is possible only when the relation

$$N_a b_a - k_a m_a = z_a[\Phi]$$ \hspace{1cm} (23)

holds, where $z_a[\Phi]$ is the SU(N_a) index number carried by bi-fundamental fields in the operator. Because all matter fields in a quiver gauge theory are bi-fundamental fields, the right hand side in (23) vanishes when it is summed up with respect to a. We obtain

$$N \cdot b - k \cdot m = 0.$$ \hspace{1cm} (24)

We define the charge lattice Γ of colorless operators as the set of vectors (b, m) satisfying (24).

$$\Gamma = \{(b, m) | N \cdot b - k \cdot m = 0 \} = \mathbb{Z}^{2n-1}.$$ \hspace{1cm} (25)

To relate the charges (b, m) and wrapping numbers of M-branes on the gravity side is a main purpose of this paper. In order to have clear geometric picture with wrapped branes, we take the large N limit. We assume that the ranks N_a are given by

$$N_a = N + \delta N_a,$$ \hspace{1cm} (26)

and take the large N limit with δN_a fixed at order 1. We also assume that the charges b_a and m_a are of order 1.

$$b_a \sim \mathcal{O}(1), \quad m_a \sim \mathcal{O}(1).$$ \hspace{1cm} (27)

If the charges are of order N the corresponding branes would deform the background geometry and the probe approximation would cease to be valid. Although it would be very interesting to investigate such a deformed geometry, we restrict ourselves to the case in which we can treat the branes as probes.

We separate operators into two classes, non-baryonic and baryonic operators. Non-baryonic operators are defined as operators with $b = 0$. The other operators with $b \neq 0$ are referred to as baryonic operators. By definition, the non-baryonic operators are not only colorless but also gauge invariant. They are in general monopole operators carrying magnetic charges.
4 Monopoles and two-cycles

Let us first discuss correspondence between non-baryonic (monopole) operators and wrapped M2-branes. By definition, non-baryonic operators are characterized by only the magnetic charge m constrained by

$$k \cdot m = 0.$$ \hspace{1cm} (28)

The vector m satisfying this condition spans the sublattice $\Gamma_M \subset \Gamma$ defined by

$$\Gamma_M = \{(0, m) | k \cdot m = 0\} = \mathbb{Z}^{n-1}. \hspace{1cm} (29)$$

We would like to relate monopole operators to wrapped M2-branes. However, it is known that a certain subset of these operators does not correspond to wrapped branes but to bulk Kaluza-Klein modes.

Let us temporarily consider the case with $N_a = 1$. We can regard this Abelian Chern-Simons theory as a subsector of the non-Abelian theory representing the motion of a single M2-brane. In the subsector, the Chern-Simons action (17) reduces to

$$S_{CS} = \frac{n}{4\pi} \sum_{a=1}^{n} k_a \int A_a dA_a,$$ \hspace{1cm} (30)

where A_a in this action should be interpreted as one of diagonal components of $\text{U}(N_a)$ gauge field corresponding to the single M2-brane we are focusing on. Let us re-organize the n $\text{U}(1)$ gauge fields A_a into the diagonal $\text{U}(1)$ gauge field A_D and the other $n - 1$ gauge fields A'_i ($i = 1, \ldots, n - 1$). The relation between A_a and (A_D, A'_i) is

$$A_a = A_D + A'_a \hspace{1cm} (31)$$

where A'_a are linear combinations of A'_i. By substituting this into (30) we obtain

$$S_{CS} = \frac{1}{4\pi} \sum_{a=1}^{n} k_a \int A_D dA_D + \frac{1}{2\pi} \int A_D d \left(\sum_{a=1}^{n} k_a A'_a \right) + \sum_{a=1}^{n} \frac{k_a}{4\pi} \int A'_a dA'_a. \hspace{1cm} (32)$$

If we assume $1 \cdot k = 0, \hspace{1cm} 1 \equiv (1, 1, \ldots, 1), \hspace{1cm} (33)$

then the first term on the right hand side in (32) vanishes and the diagonal $\text{U}(1)$ gauge field A_D appears in the action only through the second term in (32). The equation of motion of A_D is

$$d \left(\sum_{a=1}^{n} k_a A_a \right) = 0, \hspace{1cm} (34)$$

and we can solve this by

$$\sum_{a=1}^{n} k_a A_a = da. \hspace{1cm} (35)$$
The scalar field a is the dual-photon field. This is periodic scalar field with period 2π and plays a role of the coordinate of the “eleventh” direction in the M-theory background. In the following, the relation (33) is always assumed because otherwise we cannot regard the theory as a theory of M2-branes.

Due to the periodicity of a, it is natural to define the operator e^{ia}. Because a is the canonical conjugate to the flux $(2\pi)^{-1}dA_D$, the operator e^{ia} changes the flux $(2\pi)^{-1}dA_D$ by one. In other words, it carries the diagonal magnetic charge

$$m = 1.$$

(36)

In the non-Abelian quiver gauge theory with gauge group (16), we should extend this operator to the monopole operator $m[1]$ carrying the magnetic charge (36). By combining $m[1]$ and the matter fields, we can always make colorless monopole operators with the same magnetic charge:

$$O = m[1] \prod_I (\phi_I)^{s_I}.$$

(37)

The index numbers of $m[1]$ are $z_a = k_a$, and for the operator (37) to be colorless, s_I must be integers solving the equation

$$k_a + \sum_I Q_{aI}s_I = 0 \quad \forall a.$$

(38)

If s_I is negative, $(\phi_I)^{s_I}$ should be interpreted as $(\phi_I^{s_I})^{-1}$. Thanks to (33) and the connectivity of the quiver diagram, solutions always exist. If we would like to obtain chiral operators, we cannot use $\phi_I^{s_I}$ and s_I should be non-negative. Because we assume the theory is non-chiral and the quiver diagram is not only connected but also strongly connected, namely, every vertex is reachable from every other following oriented edges, the existence of such solutions is guaranteed.

In the correspondence between non-baryonic operators and wrapped M2-branes, we should exclude operators whose charges are multiple of (36). The exclusion of such operators is realized by introducing the equivalence relation

$$m \sim m + 1,$$

(39)

in the lattice Γ_M. We define the group of magnetic charges corresponding to wrapped M2-branes by

$$\Gamma_{M2} = \Gamma_M/(m \sim m + 1) = \mathbb{Z}^{n-2}.$$

(40)

Note that the constraint $k \cdot m = 0$ and the equivalence relation $m \sim m + 1$ are consistent to each other thanks to the assumption (33). We identify this group with the two-cycle homology of the internal space X_7:

$$H_2(X_7) = \Gamma_{M2} = \mathbb{Z}^{n-2}.$$

(41)
5 Baryons and five-cycles

Let us consider baryonic operators with \(b \neq 0 \). We do not impose the condition \(m = 0 \) for baryonic operators, and in general baryonic operator may carry magnetic charges. We define the group of baryonic charges by neglecting the charges of monopole operators. Namely, we define the charge lattice of baryonic operators as the following quotient lattice:

\[
\Gamma_B = \Gamma / \Gamma_M. \tag{42}
\]

The constraint (24) gives

\[
N \cdot b = 0 \mod \gcd k. \tag{43}
\]

In the large \(N \) limit, by using (26) and (27), we decompose this into the conditions

\[
1 \cdot b = 0, \tag{44}
\]

and

\[
\delta N \cdot b = 0 \mod \gcd k. \tag{45}
\]

The first condition (44) guarantees that (24) can be satisfied with \(m \) of order 1. This condition is necessary because we only consider operators realized on the gravity side as probe branes. When (44) is satisfied, (43) becomes the constraint (45), which will be regarded as the condition for the absence of flux strings attached on the operator.

Although the condition (45) must hold for the operator to be colorless, it is convenient to define the lattice \(\Gamma'_B \) defined only by the first constraint (44).

\[
\Gamma'_B = \{ b \in \mathbb{Z}^n | 1 \cdot b = 0 \} = \mathbb{Z}^{n-1}. \tag{46}
\]

A vector in \(\Gamma'_B \) in general gives colored operators accompanied by flux strings, and the second condition (45) defines the lattice \(\Gamma_B \) of colorless operators as a sublattice of \(\Gamma'_B \).

Similarly to the case of non-baryonic operators, a certain subset of \(\Gamma_B \) does not correspond to wrapped M5-branes. Let us consider \(\delta N = 0 \) case first. In this case, we can define the dual-photon field in the non-Abelian theory in the same way as the Abelian (\(N_a = 1 \)) case. The dual photon field is defined by

\[
da = \sum_{a=1}^{n} k_a B_a \tag{47}
\]

where \(B_a \), which is defined in (20), is the gauge fields coupling to the charge \(b_a \). Under gauge transformation \(\delta B_a = d\lambda_a \), the dual photon field is transformed by

\[
\delta a = \sum_{a=1}^{n} k_a \lambda_a. \tag{48}
\]
Due to this non-linear gauge transformation, the expectation value of the dual photon field breaks a U(1) subgroup of G_B into a certain discrete group. Therefore, the charge associated with this broken U(1) is no longer conserved, and cannot be identified with any wrapping number of M5-branes on the gravity side. Thus, to remove this unconserved component from the charges, we introduce the equivalence relation

$$b \sim b + k,$$

representing the “screening” by the operator e^{ia}, and define the baryonic charge group by

$$\Gamma'_{M5} = \Gamma'_B / (b \sim b + k) = \mathbb{Z}^{n-2} \times \mathbb{Z}_{\gcd k}. \quad (50)$$

Note that if $\delta N = 0$ (45) is automatically satisfied and $\Gamma'_B = \Gamma_B$. We identify the group (50) with the five-cycle homology group $H_5(X_7)$.

Let us next consider the general case with $\delta N \neq 0$. Even in this case the topology of the internal space is expected not to change from the case of $\delta N = 0$ as long as δN is of order one, and we still identify the group (50) with the five-cycle homology.

$$H_5(X_7) = \Gamma'_{M5} = \mathbb{Z}^{n-2} \times \mathbb{Z}_{\gcd k}. \quad (51)$$

It is, however, not necessarily the same as the group of isolated wrapped M5-branes because wrapped M5-branes are in general accompanied by flux strings realized as wrapped M2-branes as is studied in more detail in the next section. We define the group of wrapped M5-branes without flux strings as a subset of Γ'_{M5} by requiring the condition (45).

$$\Gamma_{M5} = \{ [b] \in \Gamma'_{M5} | \delta N \cdot b = 0 \mod \gcd k \}, \quad (52)$$

where $[b] = b + \mathbb{Z}k$ is the equivalence class with representative b. The inner product in (52) as an element of $\mathbb{Z}_{\gcd k}$ does not depend on the choice of a representative from $[b]$ because $\delta N \cdot k = 0 \mod \gcd k$.

The combination of two conditions (44) and (45) is equivalent to the single condition (43) only under the restriction (27). If we permit magnetic charge of order N, there exist colorless operators whose charge b satisfies (43), but not (44) and (45) separately. An example of such operators is the following monopole operator associated with a single U(N) gauge group:

$$\epsilon_{\alpha_1 \cdots \alpha_N} \overline{m}[^{\alpha_1 \cdots \alpha_N} m, \quad \overline{m} = (1, 1, \ldots, 1). \quad (53)$$

This operator, however, is prohibited by a gauge invariance condition as we explain below. The reason why we have not imposed gauge invariance with respect to the U(1) part of U(N) groups is that some of gauge fields of these U(1) are regarded as the boundary values of bulk gauge fields, and couple to wrapped M-branes [41]. If such a bulk gauge field is absent for a U(1) gauge symmetry on the
boundary, the gauge invariance with respect to this U(1) must be imposed. Once we accept the relation (51), we have only \(b_5 = n - 1 \) bulk gauge fields coupling to wrapped M5-branes, and no bulk gauge field couples the diagonal baryonic charge \(1 \cdot b \). Therefore, concerning this diagonal part, we must impose the gauge invariance condition, which is nothing but (24). Thus, the operator (53) does not have its counterpart on the gravity side.

6 Flux strings and ranks of gauge groups

In general if we introduce an external source of the color charge, the charge is partially screened by ambient fields. Well-known example is that the color charge in the SU(\(N \)) pure Yang-Mills theory is screened by the adjoint field to leave only the “\(N \)-ality” of the representation. In a confining theory, an external source with unscreened charge is accompanied by a flux string. This is not the case in non-confining theories. Even in such non-confining theories, on the gravity side, operators with unscreened charge is treated as endpoints of stringy objects in AdS space. For example, external quarks in the maximally supersymmetric Yang-Mills theory in four dimensions are treated as the endpoints of fundamental strings on the conformal boundary [45, 46]. We will use the term “flux strings” in the following to mean such stringy objects in AdS

In this section we treat baryonic operators as external sources, and discuss flux strings attached on them. What degrees of freedom is left after screening in a quiver Chern-Simons theory? If we take account of the vacuum polarization of adjoint fields, the information of a U(\(N_a \)) representation is almost lost and we are left with only the index number \(z_a \) for each U(\(N_a \)). The polarization of bi-fundamental fields hides the distinction among U(\(N_a \)) factors, and only the total index number

\[
 z = \sum_{a=1}^{n} z_a
\]

is left. If we take account of all non-baryonic operators including monopole operators, only the modulo gcd \(k \) part of \(z \) is left unscreened because as is shown in Table 2 the index number of monopole operators is linear combination of Chern-Simons levels \(k_a \) with integral coefficients. If this unscreened charge does not vanish, the source is accompanied by flux strings.

In the previous section, we saw that the electric charge \(b \) of a colorless baryonic operator satisfies (51). We can regard this as the condition for the complete screening of the charges of the operator. If (45) does not hold, the baryonic operator is accompanied by a flux string with charge

\[
 f = \delta N \cdot b \in \mathbb{Z}_{gcd \, k}.
\]

On the gravity side, we can interpret this relation as follows. Let us consider a baryonic operator realized as an M5-brane wrapped on a five-cycle \(\Omega_5 \). The
action of the M5-brane includes

$$\frac{1}{2\pi} \oint_{M5} H_3 \wedge C_3 = \frac{1}{2\pi} \oint_{M5} b_2 \wedge F_4,$$

(56)

where $H_3 = db_2$ is the field strength of the two-form field b_2 living on the M5-brane, and $F_4 = dC_3$ is the field strength of the background three-form field C_3. Let $\Sigma_3 \in H_3(X_7)$ be the Poincare dual of the background four-form flux $[(2\pi)^{-1} F_4] \in H^4(X_7)$. Through the interaction (56), the background flux induces the charge on the M5-brane worldvolume electrically coupled by the field b_2. Because Ω_5 is compact, the charge must be canceled by the charge of the boundary of M2-branes attached on the M5-brane. For this cancellation we need to attach M2-brane along the one-cycle γ_1 in Ω_5 which is Poincare dual in Ω_5 to

$$\left[\frac{1}{2\pi} F_4|_{\Omega_5} \right] \in H^4(\Omega_5).$$

(57)

In other words, γ_1 is the intersection of the five-cycle Ω_5 and the three-cycle Σ_3

$$\gamma_1 = \Omega_5 \cap \Sigma_3.$$

(58)

This is the geometric translation of the relation (55). We identify flux strings with M2-branes wrapped on one-cycles, and the flux string charge group with the one-cycle homology

$$H_1(X_7) = \mathbb{Z}_{gcd \, k}.$$

(59)

Flux strings generate non-trivial monodromies for baryonic operators (wrapped M5-branes).

Up to now, we have obtained the following homologies by the comparison of operators in a Chern-Simons theory and their M-brane realizations:

$$H_1(X_7) = \mathbb{Z}_{gcd \, k}, \quad H_2(X_7) = \mathbb{Z}^{n-2}, \quad H_5(X_7) = \mathbb{Z}^{n-2} \times \mathbb{Z}_{gcd \, k}.$$

(60)

These are consistent to the duality of the homology groups. In general, the following duality relations hold among homologies of d-dimensional manifold:

$$H^f_i = H^f_{d-i}, \quad H^t_i = H^t_{d-i-1},$$

(61)

where H^f_i and H^t_i are the free part and the torsion subgroup, respectively, of the homology H_i.

In the above argument, we relate the three-cycle homology $H_3(X_7)$ to δN, the “fractional” part of the ranks:

three-cycles $\leftrightarrow \delta N$.

(62)

In general, the structure of the three-cycle homology is highly non-trivial, and we do not try to establish the concrete map between three-cycles and δN. We here
comment on one important point; $\delta N = 0$ does not necessarily mean vanishing four-form flux. If all the ranks are the same and $\delta N = 0$, (45) is automatically satisfied. On the gravity side, this means that the three-cycle Σ_3 satisfies

$$[\Omega_5 \cap \Sigma_3] = [0] \in H_1(X_7) \quad \forall [\Omega_5] \in H_5(X_7).$$

The condition (63) does not require $[\Sigma_3] = 0$, the vanishing background four-form flux. Indeed, in the case of $\mathcal{N} = 4$ Chern-Simons theories, there are in general many possible F_4 discrete torsion corresponding to equal-rank quiver Chern-Simons theories [41]. We will mention such an example in the following section.

In addition to M2-branes wrapped on one-cycles, there is another potential origin of stringy objects: M5-branes wrapped on four-cycle s. Combining the two-cycle homology (41) and the duality relation (61), we find that $H_4(X_7)$ does not have torsion subgroup. The duality relation also says that it is the same as the free part of $H_3(X_7)$.

$$H_4(X_7) = H_3^f(X_7) = \mathbb{Z}^{b_3}.$$ \hfill (64)

Absence of the torsion subgroup in $H_4(X_7)$ means that associated strings does not induce fractional monodromies for monopole operators. We have no idea about interpretation of these strings. We only comment that these may have something to do with the cascading phenomenon. If $b_3 \neq 0$, we can introduce four-form flux in the free part of the four-form cohomology group $H^4(X_7) = H_3(X_7)$. Unlike the discrete torsion, such a flux induces non-vanishing energy and deforms the background geometry. Such a deformation signals the existence of cascading phenomenon [37] in three dimensions.

The homologies we obtained up to now are collected in Table 3. They are completely determined by three integers, s, b_2, and b_3, and torsion part T of $H_3(X_7)$. The integers s and b_2 are given in terms of parameters in the Chern-Simons theory by

$$s = \gcd k, \quad b_2 = n - 2.$$ \hfill (65)

H_0	H_1	H_2	H_3	H_4	H_5	H_6	H_7	
free part	\mathbb{Z}	0	\mathbb{Z}^{b_2}	\mathbb{Z}^{b_3}	\mathbb{Z}^{b_3}	0	\mathbb{Z}	
torsion part	0	\mathbb{Z}_s	0	T	0	\mathbb{Z}_s	0	0
7 Examples

In the previous sections, by the analysis of charges in non-chiral Chern-Simons theories, we conjectured the homology groups of the dual geometry X_7 as Table 3. Typical examples of Sasaki-Einstein manifolds/orbifolds are listed in Table 4. All examples in the table have vanishing b_3. It is also known that every 3-Sasakian manifold has $b_3 = 0$. This is not the case for general Einstein manifolds. The simplest example is $S^3 \times S^4$ with appropriate radii. Sasaki-Einstein manifolds with $b_3 \neq 0$ are also known to exist. (See [49] and references therein.) Although all manifolds/orbifolds in the table have homologies consistent with the form shown in Table 3, only the first and the last examples correspond to non-chiral theories, and our arguments are not applicable to the others.

In the following subsections, we discuss the two examples of non-chiral theories in more detail.

7.1 ABJM model

The simplest example is the $\mathcal{N} = 6$ Chern-Simons theory proposed by Aharony, Bergman, Jafferis, and Maldacena [11]. This model, ABJM model, is described by a quiver diagram with two vertices. Namely, the gauge group is $U(N_1) \times U(N_2)$. Due to the condition (33), two $U(N)$ gauge groups have opposite Chern-Simons levels. n and k are given by

$$n = 2, \quad k = (k, -k).$$

(66)

The Higgs branch moduli space of this theory is the symmetric product of $\mathbb{C}^4/\mathbb{Z}_k$, and the internal space is $X_7 = S^7/\mathbb{Z}_k$. (66) is consistent through (65) with the
data of this internal space shown in Table 4. The non-trivial homologies are

$$H_0 = H_7 = \mathbb{Z}, \quad H_1 = H_3 = H_5 = \mathbb{Z}_k. \quad (67)$$

Let σ_3 and σ_5 be the generators of H_3 and H_5, respectively. We can adopt $\sigma_1 = \sigma_3 \cap \sigma_5$, the intersection of σ_3 and σ_5, as the generator of the one-cycle homology group.

There are no non-trivial two-cycles in $X_7 = S^7/\mathbb{Z}_k$. Monopole operators in ABJM model \cite{50, 51, 52} carry “diagonal” magnetic charge proportional to $1 = (1, 1)$, and should be identified with Kaluza-Klein modes in the bulk.

Baryonic operators in ABJM model with $\delta N = 0$ are studied in \cite{53}, and the degeneracy and the conformal dimension are reproduced by the analysis using wrapped branes. (In \cite{53} the wrapped branes are analyzed from the perspective of type IIA theory.)

The gravity dual of $U(N) \times U(N + M)$ ABJM model is studied in \cite{54}. The rank difference M in this case correspond to the fractional brane wrapped on $\Sigma_3 = M\sigma_3$, or, equivalently, the discrete torsion $F_4 = \Sigma_3^*$, where Σ_3^* is the Poincare dual of Σ_3. In \cite{54} it is argued that only when $-k \leq M \leq k$ the Chern-Simons theory is unitary, and two theories with $M = M_1$ and $M = M_2$ are equivalent if $M_1 = M_2 \mod k$.

When $0 \leq M \leq k$, we can construct the following baryonic operator:

$$\mathcal{B}^{\beta_1 \ldots \beta_N+M} = \epsilon_{\alpha_1 \ldots \alpha_N} \epsilon^{\beta_1 \ldots \beta_N \beta_{N+1} \ldots \beta_{N+M}} \phi_{\beta_1}^{\alpha_1} \phi_{\beta_2}^{\alpha_2} \ldots \phi_{\beta_N}^{\alpha_N}, \quad (68)$$

where α_i and β_i are $SU(N)$ and $SU(N + M)$ indices, respectively, and $\phi_{\beta_i}^{\alpha_i}$ is bi-fundamental scalar field. ABJM model includes four such bi-fundamental scalar fields. In \cite{68} we omitted the flavor indices for distinction of these four. The operator \cite{68} correspond to an M5-brane wrapped on the five-cycle σ_5. If $1 \leq M \leq k - 1$, this is not colorless, and is accompanied by a flux string with charge $M \in \mathbb{Z}_k$. Geometric description \cite{68} of this fact is

$$\Sigma_3 \cap \sigma_5 = M\sigma_1. \quad (69)$$

If $M = 0$, \cite{68} is colorless, and not accompanied by a flux string. If two theories with $M = 0$ and $M = k$ are equivalent as is argued in \cite{54}, it should be possible to construct colorless baryonic operator even when $M = k$. Actually, this is possible. By adding fermionic bi-fundamental fields $\psi_{\beta_i}^{\alpha_i}$ and the monopole operator $m([(-1, 0)])$ to \cite{68}, we can write the colorless operator

$$\mathcal{B} = \epsilon_{\alpha_1 \ldots \alpha_N} m([(-1, 0)] \epsilon^{\beta_1 \ldots \beta_N \beta_{N+1} \ldots \beta_{N+k}} \phi_{\beta_1}^{\alpha_1} \phi_{\beta_2}^{\alpha_2} \ldots \phi_{\beta_N}^{\alpha_N} \psi_{\beta_{N+1}}^{\alpha_{N+1}} \ldots \psi_{\beta_{N+k}}^{\alpha_{N+k}}, \quad (70)$$

7.2 $\mathcal{N} = 4$ Chern-Simons theories

$\mathcal{N} = 4$ Chern-Simons theories are described by circular quiver diagrams whose vertices and edges represent $U(N)$ gauge groups and hyper multiplets, respectively. There are two types of hypermultiplets, so-called untwisted and twisted
hypermultiplets [10]. Let \(n, p, \) and \(q \) be the number of vector, untwisted hyper, and twisted hypermultiplets, respectively. Because the quiver diagram is circular, the following relation holds:

\[
p + q = n. \tag{71}
\]

The requirement of \(\mathcal{N} = 4 \) supersymmetry restricts the Chern-Simons levels to be \(\pm k \) or 0. The Higgs branch moduli space of this theory is derived in [55]. See also [56, 57]. It is the symmetric product of

\[
(\mathbb{C}^2/\mathbb{Z}_p \times \mathbb{C}^2/\mathbb{Z}_q)/\mathbb{Z}_k. \tag{72}
\]

Correspondingly, the internal space is

\[
X_7 = (S^7/(\mathbb{Z}_p \times \mathbb{Z}_q))/\mathbb{Z}_k. \tag{73}
\]

The data of the homology groups of this orbifold are given in Table 4 and satisfy the relation (65). In [41] not only the isomorphisms \(\Gamma_{M2} = H_2(X_7) \) and \(\Gamma'_{M5} = H_5(X_7) \) but also the agreement of degeneracy and the conformal dimension of baryonic operators with the predictions of the M5-brane description is confirmed. Concerning monopole operators, the R-charge spectrum are computed on the field theory side in [58] by using the radial quantization method [42, 43], and agreement with the analysis on the gravity side is partially confirmed.

An interesting feature of these theories is the non-trivial structure of \(H_3(X_7) \). It is given by

\[
H_3(X_7) = (\mathbb{Z}_{k_p}^{q-1} \times \mathbb{Z}_{k_q}^{p-1} \times \mathbb{Z}_{kpq})/(\mathbb{Z}_p \times \mathbb{Z}_q). \tag{74}
\]

Refer to [41] for detailed description of this homology group. To understand the meaning of \(H_3(X_7) \) on the field theory side, it is convenient to realize the theory by type IIB brane system. When \(k = 1 \), the theory is realized on a system consisting of D3-branes wrapped around \(S^1 \), on which gauge theory lives, and \(p \) NS5 and \(q \) D5-branes intersecting with the D3-branes. The fivebranes divide the \(S^1 \) into \(n \) intervals. Here, we discuss only the case with \(p = q = 2 \) and \(k = 1 \) for simplicity and concreteness. In this case, the non-trivial homologies are

\[
H_0 = H_7 = \mathbb{Z}, \quad H_2 = H_5 = \mathbb{Z}^2, \quad H_3 = \mathbb{Z}_4. \tag{75}
\]

In order to specify the brane configuration, we need to specify the arrangement of the four fivebranes. For this purpose, we decorate the rank vector in the following way:

\[
\mathbf{N} = (1: \text{NS} N_1, 2: \text{NS} N_2, 3: \text{D} N_3, 4: \text{D} N_4: 1: \text{NS}). \tag{76}
\]

The superscripts in (76) mean that the fivebranes are arranged along \(S^1 \) in order NS5, NS5, D5, and D5. The gauge group \(U(N_i) \) corresponding to \(i \)-th component of the vector \(\mathbf{N} \) is realized on \(N_i \) D3-branes stretched between two fivebranes indicated on the two sides of the component \(N_i \) in the vector (76). For the brane configuration represented in (76), the levels are

\[
k = (0, 1, 0, -1). \tag{77}
\]
The Chern-Simons level of each U(N) depends on the fivebranes at the two ends of the interval, and we can read off the rule to determine Chern-Simons levels for general ordering of fivebranes from this example.

Let σ_3 be the generator of $H_3 = \mathbb{Z}_4$. The relation between the F_4 discrete torsion and the structure of the brane system is investigated in [41]. We can also obtain some information about this relation from the analysis of the monopole spectrum in [58]. Results in these references indicate that the rank vector of the Chern-Simons theory corresponding to the discrete torsion $F_4 = M\sigma_3^*$ is

$$\mathbf{N} = (1: NS, 2: NS N + M, 3: D N, 4: D N^{1: NS}).$$

This is only one of infinitely many possible choice of the brane configuration, which are transformed to one another by continuous interchanges of fivebranes. Such deformations are expected to have something to do with Seiberg-like duality in three dimensions [59, 60].

The rank vector (78) may seem to show that the equal-rank gauge group is realized only when the discrete torsion vanishes. This is, however, not a precise statement because even if $M \neq 0$ it may be possible to realize equal ranks by interchanges of fivebranes. Actually, it is possible when $M = 0, \pm 1 \mod 4$. In the case of $M = 1$, we can realize equal ranks by exchanging the fivebranes 2 and 3.

$$\mathbf{N} = (1: NS, 2: NS N + 1, 3: D N, 4: D N^{1: NS}) \xrightarrow{[23]} (1: NS, 2: D N, 3: NS N, 4: D N^{1: NS}).$$

We took account of the brane creation due to the Hanany-Witten effect [61]. The Chern-Simons level for the resulting brane configuration is $k = (1 - 1, 1, -1)$. When $M = -1$, we can realize equal ranks by three steps as follows.

$$\mathbf{N} = (1: NS, 2: NS N - 1, 3: D N, 4: D N^{1: NS}) \xrightarrow{[12], [34], [14]} (1: D N - 1, 2: NS N - 1, 3: D N - 1, 4: NS N - 1^{1: D}).$$

The levels for the resulting brane configuration is $k = (-1, -1, 1)$. Similar deformation to equal rank configuration is always possible if $M = 0, \pm 1 \mod 4$. See [41] for detailed analysis of such brane interchange processes. If the gauge group is equal-rank, the condition (15) is trivially satisfied, and we can define a colorless baryonic operator corresponding to any five-cycle in X_7.

If we start from the rank vector (78) with $M = 2 \mod 4$, we cannot arrive at any equal-rank configuration. Even in this case, the condition (15) still holds with $k = 1$ and it should be possible to construct a colorless baryonic operator for an arbitrary five-cycle. Let us consider, for example, a baryonic operator with charge $\mathbf{b} = (-1, 1, 0, 0)$ in the theory with

$$\mathbf{N} = (1: NS, 2: NS N + 2, 3: D N, 4: D N^{1: NS}), \quad \mathbf{k} = (0, 1, 0, -1).$$
We can indeed construct the colorless operator

$$\mathcal{B} = \epsilon^{\alpha_1 \cdots \alpha_N} m^{\beta_{N+1} \beta_{N+2}} \epsilon_{\beta_1 \cdots \beta_N} \beta_{N+1} \beta_{N+2} \phi^{\beta_1}_{\alpha_1} \phi^{\beta_2}_{\alpha_2} \cdots \phi^{\beta_N}_{\alpha_N},$$

where α_i and β_i are $U(N_1)$, and $U(N_2)$ color indices, respectively. m is a monopole operator with magnetic charge $(0, 2, 0, 0)$.

8 Discussions

In this paper we considered following aspects in non-chiral $\mathcal{N} = 2$ quiver Chern-Simons theories:

- We defined the lattice Γ_{M2} of magnetic charges of non-baryonic operators, and identified it with the two-cycle homology $H_2(X_7)$ of the internal space X_7.

- The lattice of baryonic charge Γ'_{M5} were defined. The colorless baryonic operators forms the sublattice $\Gamma_{M5} \subset \Gamma'_{M5}$. The former was identified with the five-cycle homology $H_5(X_7)$.

- The charge of flux strings $\mathbb{Z}_{\gcd k}$ were identified with the one-cycle homology $H_1(X_7)$.

- The charge of flux strings attached on baryonic operators depends on the ranks of gauge groups, and is obtained by the relation (55). We derived the corresponding relation (58) on the gravity side by requiring the flux conservation on M5-branes. We can use these relation to obtain some information about the relation between ranks of gauge groups and the four-form flux in the dual geometry.

There are many problems which we did not study in this paper. The one-to-one correspondence between operators and dual objects in AdS$_5$/CFT$_4$ has been intensively investigated. In particular, in the maximally supersymmetric Yang-Mills theory in four-dimensions, the duality between 1/2 BPS operators classified by Schur polynomials [62, 63] and giant gravitons [64, 65] or bubbling geometries [66] was found. It is interesting problem to establish a similar one-to-one correspondence between operators and objects in the dual geometry in the case of AdS$_4$/CFT$_3$.

The three-cycle homology group $H_3(X_7)$ is expected to relate to the rank distribution in the gauge group. In general, the structure of H_3 is complicated, and it is not straightforward to establish the map between δN and elements of H_3. The relation (58), which corresponds to (55) in the field theory, gives some information. This is, however, not sufficient to establish the complete map. More detailed information may be obtained by analyzing the spectrum of monopole...
operators. Because the three-form potential couples to M2-branes, it works as Wilson lines shifting the Kaluza-Klein spectrum of wrapped M2-branes. By comparing spectrum of monopole operators and that of wrapped M2-branes we can obtain additional information about the relation (62). Spectrum of monopole operators is studied in [58] for $\mathcal{N} = 4$ Abelian Chern-Simons theories. Extension of this analysis to more general theories is important task.

Generalization of our results to chiral theories is very interesting and challenging problem. It would enable us to consider a much larger class of Chern-Simons theories and Sasaki-Einstein dual geometries, such as dual pairs constructed by utilizing brane crystals [67, 68, 69], and might provide information about dynamics of Chern-Simons theories with large quantum corrections.

We hope to return to these problems in the near future.

Acknowledgements

I would like to thank Y. Yasui for valuable information about Einstein manifolds. I also would like to thank S. Yokoyama for discussions. This work was supported in part by Grant-in-Aid for Young Scientists (B) (#19740122) from the Japan Ministry of Education, Culture, Sports, Science and Technology.

References

[1] J. Bagger and N. Lambert, Phys. Rev. D 75, 045020 (2007) [arXiv:hep-th/0611108].

[2] J. Bagger and N. Lambert, Phys. Rev. D 77, 065008 (2008) [arXiv:0711.0955 [hep-th]].

[3] J. Bagger and N. Lambert, JHEP 0802, 105 (2008) [arXiv:0712.3738 [hep-th]].

[4] A. Gustavsson, arXiv:0709.1260 [hep-th].

[5] A. Gustavsson, JHEP 0804, 083 (2008) [arXiv:0802.3456 [hep-th]].

[6] N. Lambert and D. Tong, Phys. Rev. Lett. 101, 041602 (2008) [arXiv:0804.1114 [hep-th]].

[7] J. Distler, S. Mukhi, C. Papageorgakis and M. Van Raamsdonk, JHEP 0805, 038 (2008) [arXiv:0804.1256 [hep-th]].

[8] D. Gaiotto and E. Witten, arXiv:0804.2907 [hep-th].
[9] H. Fuji, S. Terashima and M. Yamazaki, Nucl. Phys. B 810, 354 (2009) [arXiv:0805.1997 [hep-th]].

[10] K. Hosomichi, K. M. Lee, S. Lee, S. Lee and J. Park, JHEP 0807, 091 (2008) [arXiv:0805.3662 [hep-th]].

[11] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, [arXiv:0806.1218 [hep-th]].

[12] K. Hosomichi, K. M. Lee, S. Lee, S. Lee and J. Park, JHEP 0809, 002 (2008) [arXiv:0806.4977 [hep-th]].

[13] J. Bagger and N. Lambert, [arXiv:0807.0163 [hep-th]].

[14] M. Schnabl and Y. Tachikawa, [arXiv:0807.1102 [hep-th]].

[15] Y. Imamura and K. Kimura, J. High Energy Phys. 10 (2008) 040, [arXiv:0807.2144]

[16] H. Ooguri and C. S. Park, JHEP 0811, 082 (2008) [arXiv:0808.0500 [hep-th]].

[17] D. L. Jafferis and A. Tomasiello, JHEP 0810, 101 (2008) [arXiv:0808.0864 [hep-th]].

[18] D. Martelli and J. Sparks, [arXiv:0808.0912 [hep-th]].

[19] A. Hanany and A. Zaffaroni, [arXiv:0808.1244 [hep-th]].

[20] K. Ueda and M. Yamazaki, [arXiv:0808.3768 [hep-th]].

[21] Y. Imamura and K. Kimura, JHEP 0810, 114 (2008) [arXiv:0808.4155 [hep-th]].

[22] A. Hanany, D. Vegh and A. Zaffaroni, [arXiv:0809.1440 [hep-th]].

[23] S. Franco, A. Hanany, J. Park and D. Rodriguez-Gomez, JHEP 0812, 110 (2008) [arXiv:0809.3237 [hep-th]].

[24] A. Hanany and Y. H. He, [arXiv:0811.4044 [hep-th]].

[25] S. Hohenegger and I. Kirsch, [arXiv:0903.1730 [hep-th]].

[26] D. Gaiotto and D. L. Jafferis, [arXiv:0903.2175 [hep-th]].

[27] E. Witten, JHEP 9807, 006 (1998) [arXiv:hep-th/9805112].

[28] S. S. Gubser and I. R. Klebanov, Phys. Rev. D 58, 125025 (1998) [arXiv:hep-th/9808075].
[29] S. Gukov, M. Rangamani and E. Witten, JHEP 9812, 025 (1998) arXiv:hep-th/9811048.

[30] A. Butti, D. Forcella and A. Zaffaroni, JHEP 0706, 069 (2007) arXiv:hep-th/0611229.

[31] D. Forcella, A. Hanany and A. Zaffaroni, JHEP 0712, 022 (2007) arXiv:hep-th/0701236.

[32] A. Butti, D. Forcella, A. Hanany, D. Vegh and A. Zaffaroni, JHEP 0711, 092 (2007) arXiv:0705.2771 [hep-th]].

[33] A. Hanany and K. D. Kennaway, “Dimer models and toric diagrams,” arXiv:hep-th/0503149.

[34] S. Franco, A. Hanany, K. D. Kennaway, D. Vegh and B. Wecht, JHEP 0601 (2006) 096, arXiv:hep-th/0504110.

[35] S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh and B. Wecht, JHEP 0601 (2006) 128, arXiv:hep-th/0505211.

[36] I. R. Klebanov and A. A. Tseytlin, Nucl. Phys. B 578, 123 (2000) arXiv:hep-th/0002159.

[37] I. R. Klebanov and M. J. Strassler, JHEP 0008, 052 (2000) arXiv:hep-th/0007191.

[38] I. R. Klebanov and E. Witten, Nucl. Phys. B 536, 199 (1998) arXiv:hep-th/9807080.

[39] S. Benvenuti, A. Hanany and P. Kazakopoulos, JHEP 0507, 021 (2005) arXiv:hep-th/0412279.

[40] A. Butti, JHEP 0610, 080 (2006) arXiv:hep-th/0603253.

[41] Y. Imamura and S. Yokoyama, arXiv:0812.1331[v3] [hep-th].

[42] V. Borokhov, A. Kapustin and X. k. Wu, JHEP 0211, 049 (2002) arXiv:hep-th/0206054.

[43] V. Borokhov, A. Kapustin and X. k. Wu, JHEP 0212, 044 (2002) arXiv:hep-th/0207074.

[44] P. Goddard, J. Nuyts and D. I. Olive, “Gauge Theories And Magnetic Charge,” Nucl. Phys. B 125, 1 (1977).

[45] S. J. Rey and J. T. Yee, Eur. Phys. J. C 22, 379 (2001) arXiv:hep-th/9803001.
[46] J. M. Maldacena, Phys. Rev. Lett. 80, 4859 (1998) [arXiv:hep-th/9803002].

[47] D. Fabbri, P. Fre’, L. Gualtieri, C. Reina, A. Tomasiello, A. Zaffaroni and A. Zampa, Nucl. Phys. B 577, 547 (2000) [arXiv:hep-th/9907219].

[48] D. Martelli and J. Sparks, JHEP 0811, 016 (2008) [arXiv:0808.0904 [hep-th]].

[49] C. P. Boyer and K. Galicki, Surveys Diff. Geom. 7, 123 (1999) [arXiv:hep-th/9810250].

[50] D. Berenstein and D. Trancanelli, Phys. Rev. D 78, 106009 (2008) [arXiv:0808.2503 [hep-th]].

[51] K. Hosomichi, K. M. Lee, S. Lee, S. Lee, J. Park and P. Yi, JHEP 0811, 058 (2008) [arXiv:0809.1771 [hep-th]].

[52] I. Klebanov, T. Klose and A. Murugan, [arXiv:0809.3773 [hep-th]].

[53] C. S. Park, [arXiv:0810.1075] [hep-th].

[54] O. Aharony, O. Bergman and D. L. Jafferis, JHEP 0811, 043 (2008) [arXiv:0807.4924 [hep-th]].

[55] Y. Imamura and K. Kimura, Prog. Theor. Phys. 120 (2008) 509, [arXiv:0806.3727 [hep-th]].

[56] M. Benna, I. Klebanov, T. Klose and M. Smedback, [arXiv:0806.1519 [hep-th]].

[57] S. Terashima and F. Yagi, [arXiv:0807.0368] [hep-th].

[58] Y. Imamura, [arXiv:0902.4173] [hep-th].

[59] A. Giveon and D. Kutasov, Nucl. Phys. B 812, 1 (2009) [arXiv:0808.0360 [hep-th]].

[60] V. Niarchos, JHEP 0811, 001 (2008) [arXiv:0808.2771 [hep-th]].

[61] A. Hanany and E. Witten, Nucl. Phys. B 492, 152 (1997) [arXiv:hep-th/9611230].

[62] S. Corley, A. Jevicki and S. Ramgoolam, Adv. Theor. Math. Phys. 5, 809 (2002) [arXiv:hep-th/0111222].

[63] D. Berenstein, JHEP 0407, 018 (2004) [arXiv:hep-th/0403110].

[64] J. McGreevy, L. Susskind and N. Toumbas, JHEP 0006, 008 (2000) [arXiv:hep-th/0003075].
[65] A. Hashimoto, S. Hirano and N. Itzhaki, JHEP 0008, 051 (2000) [arXiv:hep-th/0008016].

[66] H. Lin, O. Lunin and J. M. Maldacena, JHEP 0410, 025 (2004) [arXiv:hep-th/0409174].

[67] S. Lee, S. Lee and J. Park, JHEP 0705, 004 (2007) [arXiv:hep-th/0702120].

[68] S. Lee, Phys. Rev. D 75, 101901 (2007) [arXiv:hep-th/0610204].

[69] S. Kim, S. Lee, S. Lee and J. Park, Nucl. Phys. B 797, 340 (2008) [arXiv:0705.3540 [hep-th]].