HOMOGENEITY DEGREE OF FANS

GERARDO ACOSTA, LOGAN C. HOEHN, AND YAZIEL PACHECO JUÁREZ

Abstract. The homogeneity degree of a topological space X is the number of orbits of the action of the homeomorphism group of X on X. We initiate a study of dendroids of small homogeneity degree, beginning with fans. We classify all smooth fans of homogeneity degree 3, and discuss non-smooth fans and prove some results on degree 4.

1. Introduction

For a topological space X we denote by $\mathcal{H}(X)$ the group of homeomorphisms of X onto itself. Given $x \in X$, we denote by $\text{Orb}_X(x)$ the orbit of x under the action of $\mathcal{H}(X)$ on X; that is, $\text{Orb}_X(x) = \{ h(x) : h \in \mathcal{H}(X) \}$. The homogeneity degree of X is the number of orbits for the action of $\mathcal{H}(X)$ on X. Alternatively, we say X is $\frac{1}{n}$-homogeneous to mean that X has homogeneity degree n.

A space is homogeneous if its homogeneity degree is 1. Homogeneity is a classical and well-studied notion in continuum theory; however, some important classes of spaces (e.g. dendroids) include no homogeneous spaces, and thus do not interact with this theory. In this paper, we aim to demonstrate that an appropriate notion of homogeneity for dendroids, especially for fans, is $\frac{1}{3}$-homogeneous.

An emerging theme in the study of continua (or more generally compact metric spaces) is that spaces of low homogeneity degree tend to be rare and remarkable, and conversely many well-known and interesting compact metric spaces have a low degree of homogeneity. This can be seen in recent work, e.g. in the classification of all homogeneous plane continua (more generally compact spaces in the plane) completed in [13], and the classification of all $\frac{1}{3}$-homogeneous dendrites [8].

In this paper we initiate a study of dendroids of low homogeneity degree, beginning with fans. We classify all $\frac{1}{3}$-homogeneous smooth fans, and prove that there are no smooth fans with homogeneity degree 4. We also consider some properties of non-smooth fans of homogeneity degrees 3 or 4. It is not yet known whether these exist – see Problem 1.

1.1. Definitions and notation. For a topological space X and $A \subset X$ the symbol $\text{Cl}_X(A)$ denotes the closure of A in X. In this paper, all spaces considered will be metric spaces, and the metric will always be denoted by d. When we refer to the distance or convergence of closed subsets of X, it will be understood that we are considering the Hausdorff metric.

A continuum is a compact connected metric space. An arc is a space homeomorphic to the interval $[0,1] = I$. We call any space homeomorphic to the standard...
middle-third Cantor set a Cantor set. A dendroid is an arcwise connected and hereditarily unicoherent continuum. Given a dendroid X and points $p, q \in X$, we denote by pq the unique arc in X having p and q as its endpoints, and put $(pq) = pq - \{p, q\}, [pq] = pq - \{q\}$ and $(pq) = pq - \{p\}$.

For a dendroid X we say that p has order r (in the classical sense), in symbols $\text{Ord}_X(p) = r$, if p is a common endpoint of exactly r arcs in X which are disjoint from one another beyond p. A point $p \in X$ is an endpoint of X if $\text{Ord}_X(p) = 1$, a ramification point of X if $\text{Ord}_X(p) > 2$, and an ordinary point if $\text{Ord}_X(p) = 2$. We denote by $E(X)$, $R(X)$, and $O(X)$ the set of endpoints, the set of ramification points, and the set of ordinary points of X respectively. It is clear that any homeomorphism of X onto itself preserves these three sets.

A fan is a dendroid X with exactly one ramification point called the top of X. Note that in a fan X the sets $E(X)$, $O(X)$, and $R(X)$ are all nonempty, hence any fan has homogeneity degree greater than or equal to 3. If X is a fan with top t, then $X = \bigcup_{e \in E(X)} te$ and $te \cap td = \{t\}$ for any two distinct $e, d \in E(X)$. It is clear that $O(X)$ is dense in X. From [15 Theorem 7.5, p.311], we have that $E(X)$ is a $G_δ$ subset of X.

A dendroid X is smooth if there is a point $p \in X$ such that for each sequence $\{a_n\}_n$ of points of X which converges to a point $a \in X$, the sequence of arcs $\{pa_n\}_n$ converges to the arc pa. In a smooth fan, the top of the fan can always be used for the point p in the previous definition.

1.2. Effros’ Theorem. We recall some fundamental notions from descriptive set theory. A Polish space is a separable, completely metrizable space. A subset of a Polish space X is itself Polish if and only if it is a $G_δ$ subset of X. If X is a compact metric space, then $\mathcal{H}(X)$ is a Polish group, i.e. a separable, completely metrizable topological group.

It is a consequence of a theorem of Effros [12 Theorem 2.1, p.39] that if X is a Polish space and G is a Polish group acting transitively on X, then for any $x \in X$ and any neighborhood U of the identity in G, the set $Ux = \{g \cdot x : g \in U\}$ is an open neighborhood of x in X. This result has seen extensive use in the study of homogeneous continua since it was first applied in the area by Ungar in [17]. We will demonstrate in this paper that it is also useful in the study of spaces with homogeneity degree greater than 1. We will use the following consequence (†) of the theorem.

An ε-homeomorphism is an element $h \in \mathcal{H}(X)$ such that $d(x, h(x)) < \varepsilon$ for all $x \in X$.

(†) Let X be a compact metric space and let $x \in X$. Suppose $\text{Orb}_X(x)$ is a $G_δ$ subset of X. Then for any $\varepsilon > 0$ there exists $\delta > 0$ such that for any $v \in X$ with $d(x, v) < \delta$ there exists an ε-homeomorphism $h : X \to X$ such that $h(x) = v$.

2. Preliminary results

In [15 Theorem 2.1, p.302], it is proved that if X is a dendroid, $E(X)$ does not contain any non-degenerate continua.

When we say that a subset A of X is an orbit of X, we mean that A is an orbit under the action of $\mathcal{H}(X)$ on X.
Lemma 2.1. Let X be a smooth fan which is not locally connected. If $E(X)$ is an orbit of X, then $O(X) \cap \text{Cl}_X\{E(X)\} \neq \emptyset$ or $\text{Cl}_X\{E(X)\}$ is a Cantor set.

Proof. Assume that $O(X) \cap \text{Cl}_X\{E(X)\} = \emptyset$.

Denote by $N(X)$ the set of points where X is not locally connected. By [10] Theorem 5.12, p.76, $N(X)$ contains a continuum of convergence, i.e. a non-degenerate continuum $K \subset N(X)$ for which there is a sequence $\{A_n\}_n$ of pairwise disjoint sub-continua of X converging to K such that, for each $n \in \mathbb{N}$, we have $K \cap A_n = \emptyset$. Since $E(X)$ does not contain any non-degenerate continuum, neither does $E(X) \cup \{t\}$, and so $K \cap O(X) \neq \emptyset$.

Choose $x \in K \cap O(X)$. We can assume $t \notin A_n$ for all n. Then for each n there is $e_n \in E(X)$ such that $A_n \subset te_n$. We can assume (by taking a subsequence if needed) that the sequence $\{e_n\}_n$ converges to a point $e \in X$. Because X is smooth, $te_n \to te$. Note that $x \in (te)$ and so $e \neq t$. Also, $e \notin O(X)$ since $O(X) \cap \text{Cl}_X\{E(X)\} = \emptyset$. Therefore, $e \in E(X)$. Since $E(X)$ is an orbit, this means that each point in $E(X)$ is a limit of a sequence of endpoints.

Note that by our initial assumption $\text{Cl}_X\{E(X)\} = E(X) \cup \{t\}$. Since $E(X)$ does not contain any non-degenerate continuum, neither does $E(X) \cup \{t\}$. Hence, $\text{Cl}_X\{E(X)\}$ is totally disconnected and perfect, and consequently it is a Cantor set.

Let C denote the standard middle-thirds Cantor set and F_C the Cantor fan $(C \times [0,1])/(C \times \{1\})$. It is known that a fan is smooth if and only if it is embeddable in F_C (see [5] Theorem 9, p.27), [7] Proposition 4, p.165 and [11] Corollary 4, p.90).

We now construct the shrinking Cantor fan F_{C_ω}. For each $i \in \mathbb{N}$ put

$$F_i = \bigcup \left\{ tp_c : c \subset C \cap \left[\frac{(3)^{i-1} - 1}{(3)^{i-1}}, \frac{(3)^i - 2}{(3)^i} \right] \text{ and } p_c = \left(c, \frac{1}{2^{i-1}} \right) \right\}.$$

Then $\{F_i\}_i$ is a sequence of fans homeomorphic to the Cantor fan tending to $\{t\}$ such that the intersection of any two of them is $\{t\}$. Define

$$F_{C_\omega} = \bigcup_{i \in \mathbb{N}} F_i.$$

Note that F_{C_ω} is a smooth fan, and $\text{Cl}_{F_{C_\omega}}(E(F_{C_\omega})) = E(F_{C_\omega}) \cup \{t\}$.

The following theorem gives us a characterization of F_C and F_{C_ω}. We use this characterization to classify $\frac{1}{4}$-homogeneous smooth fans in Theorem 3.2 and to prove that there is no $\frac{1}{4}$-homogeneous smooth fan in Theorem 4.1.

Theorem 2.2. Let X be a smooth fan not locally connected such that $E(X)$ is an orbit of X. Then:

1) X is homeomorphic to F_C if and only if $E(X)$ is closed in X; and

2) X is homeomorphic to F_{C_ω} if and only if $\text{Cl}_X\{E(X)\} = E(X) \cup \{t\}$.

Proof. In both 1) and 2) the left to right implication follows at once. Now, for 1) assume that $E(X)$ is closed in X. By Lemma 2.1 $E(X)$ is a Cantor set. We can suppose that $X \subset F_C$ and $E(X) \subset E(F_C) = C \times \{0\}$ (see [4] Theorem 1 (2), p.74). Now it is easy to see that X is homeomorphic to F_C.

For 2) suppose that $\text{Cl}_X\{E(X)\} = E(X) \cup \{t\}$. As a consequence of Lemma 2.1 $\text{Cl}_X\{E(X)\}$ is a Cantor set. So there is a sequence $\{E_i\}_i$ of disjoint, open and
closed sets of $\text{Cl}_X \left(E(X) \right)$ such that

$$E(X) = \text{Cl}_X \left(E(X) \right) - \{ t \} = \bigcup_{i \in \mathbb{N}} E_i \quad \text{and} \quad \lim_{i \to \infty} E_i = \{ t \}.$$

For each $i \in \mathbb{N}$, define $X_i = \bigcup_{e \in E_i} te$. Observe that for each $i \in \mathbb{N}$, the set $E(X_i) = E_i$ is a Cantor Set. Hence X_i is homeomorphic to the Cantor fan.

Given that $\{ E_i \}$ converges to $\{ t \}$ and X is smooth, the sequence of fans $\{ X_i \}$ converges to $\{ t \}$. Note that $X = \bigcup X_i$. It is now straightforward to see that X is homeomorphic to $F_{C_{\omega}}$. □

3. \(\frac{1}{3}\)-Homogeneous Smooth Fans

Given $n \in \mathbb{N} - \{ 1, 2 \}$, the simple n-od is the unique (up to homeomorphism) fan with exactly n endpoints. Simple n-ods are sometimes called finite fans. Clearly any simple n-od is $\frac{1}{3}$-homogeneous.

We denote by F_{ω} the unique (up to homeomorphism) locally connected fan whose top has infinite order. That is, F_{ω} is homeomorphic to $\bigcup_{i=1}^{\infty} \text{ob}_i$, constructed in \mathbb{R}^2, where $o = (0, 0)$, $b_i = \left(\frac{1}{i}, \frac{1}{i^2} \right)$, and ob_i is the straight line segment joining o and b_i for each $i \in \mathbb{N}$. Clearly F_{ω} is $\frac{1}{3}$-homogeneous as well.

Because the Cantor set is homogeneous, it is straightforward to see that the Cantor fan F_C and the shrinking Cantor fan $F_{C_{\omega}}$ are both $\frac{1}{3}$-homogeneous.

In 1961 A. Lelek constructed a fan as an example of a dendroid whose set of endpoints is dense and 1-dimensional ([15, §9, p.314]). Such a fan is called the Lelek fan, and it is characterized as the only smooth fan whose set of endpoints is dense (see [16, Corollary, p.33] and [4, Theorem, p.529]).

In [1] Jan M. Aarts and Lex G. Oversteegen constructed the hairy arc H. This is a smooth dendroid constructed as the intersection of a sequence of subsets of $[0, 1]^2$ containing the base $B = [0, 1] \times \{ 0 \}$ in such a way that the closure of each component of $H - B$ is an arc, called a hair, these hairs are pairwise disjoint, the set of endpoints $E(H)$ is dense in H, and $E(H) \cup B$ is connected ([1, Corollary 2.5, p.905]). The following result is well known.

Lemma 3.1. The Lelek fan is homeomorphic to H/B.

Proof. Let $X = H/B$ and q be the quotient function from H to X. Then q identifies the base B into a point $x_0 \in X$, and $q|_{H-B}$ is a homeomorphism from $H - B$ into $X - \{ x_0 \}$. Hence q is monotone and by [16 Corollary 10, p.309], X is a smooth dendroid. Since $R(H) \subset B$, we have $q(R(H)) = \{ x_0 \}$ and so X is a smooth fan with top x_0.

We have $E(X)$ is dense in X, because $q|_{H-B}$ is a homeomorphism and $E(H)$ is dense in $H - B$. Thus X is homeomorphic to the Lelek fan. □

In [2] Corollary 1.5, p.285 it is proved that there are exactly five homeomorphism types of points in H, namely

1) endpoints of the base B,
2) endpoints of hairs,
3) hairless base points,
4) base points with hair attached,
5) interior points of hairs.
It follows easily from this and Lemma 2.1 that the Lelek fan is $\frac{1}{3}$-homogeneous.

We now prove that the fans discussed above comprise the complete list of $\frac{3}{5}$-homogeneous smooth fans.

Theorem 3.2. A smooth fan is $\frac{1}{4}$-homogeneous if and only if it is homeomorphic to one of the following fans.

1) A simple n-od, for some $n \in \mathbb{N} - \{1, 2\}$,
2) the dendrite F_ω,
3) the Cantor fan,
4) the Lelek fan,
5) the shrinking Cantor fan F_{C_ω}.

Proof. It has been observed above that each of the fans in this list is $\frac{1}{4}$-homogeneous.

Suppose that X is a $\frac{1}{4}$-homogeneous fan. It is not difficult to see that the only locally connected $\frac{1}{4}$-homogeneous fans are F_ω and simple n-ods.

Assume, then, that X is not locally connected. If $E(X)$ is closed, from Theorem 2.2 part 1), we have that X is homeomorphic to the Cantor fan. If $E(X)$ is dense, X is homeomorphic to the Lelek fan by the characterization mentioned above. Finally, suppose that $E(X)$ is neither closed nor dense in X. We want to prove that $\text{Cl}_X(E(X)) = E(X) \cup \{t\}$. Suppose that $\text{Cl}_X(E(X)) \cap O(X) \neq \emptyset$. This implies $O(X) \subset \text{Cl}_X(E(X))$, because $E(X)$ and $O(X)$ are orbits of X. It follows that $E(X)$ is dense, which contradicts our assumption. Consequently, $\text{Cl}_X(E(X)) \subset E(X) \cup \{t\}$ and since $E(X)$ is not closed, the equality holds. By Theorem 2.2 part 2), X is homeomorphic to F_{C_ω}. □

4. $\frac{1}{4}$-HOMOGENEOUS SMOOTH FANS

In this section we prove the following result.

Theorem 4.1. There is no $\frac{1}{4}$-homogeneous smooth fan.

We first establish two auxiliary results, which apply to both smooth and non-smooth fans.

Lemma 4.2. Let X be a $\frac{1}{4}$-homogeneous fan with top t. Then $O(X) = O_1 \cup O_2$, where O_1 and O_2 are two orbits of X and for each $e \in E(X)$, both t and e belong to $\text{Cl}_X(O_1 \cap (te))$ and to $\text{Cl}_X(O_2 \cap (te))$.

Proof. It is easy to see that $E(X)$ must be one of the orbits of X and $O(X)$ is the union of two orbits of X, $O(X) = O_1 \cup O_2$. Let $e \in E(X)$. Since $E(X)$ is an orbit of X, the two orbits O_1 and O_2 of ordinary points must both intersect (te).

Suppose for a contradiction that $\text{Cl}_X(O_1 \cap (te))$ does not contain e. Then there is a point $x \in (te)$ such that $O_1 \cap (xe) = \emptyset$, but for any $x' \in (tx)$ we have $O_1 \cap (x'e) \neq \emptyset$. Let $y \in (xe)$, which implies $y \in O_2$.

If $x \in O_2$, then we can choose a homeomorphism $h : X \to X$ such that $h(y) = x$. But then $h(x) \in (tx)$, and $h((xe)) = (h(x)e) \subset O_2$, contradicting the choice of x. Thus $x \in O_1$. By a similar argument, we can see that $(tx) \not\subset O_1$. But then if $z \in O_2 \cap (tx)$, we can choose a homeomorphism $h : X \to X$ such that $h(z) = y$, and then we have $h(x) \in O_1 \cap (ye) \subset O_1 \cap (xe) = \emptyset$, again a contradiction. Therefore $e \in \text{Cl}_X(O_1 \cap (te))$.

The proofs that $t \in \text{Cl}_X(O_1 \cap (te))$ and $t, e \in \text{Cl}_X(O_2 \cap (te))$ are similar. □
Lemma 4.3. If X is a $\frac{1}{3}$-homogeneous fan, then either $O(X) \cap \text{Cl}_X(E(X)) = \emptyset$ or $O(X) \subset \text{Cl}_X(E(X))$.

Proof. Suppose for a contradiction that X is a $\frac{1}{3}$-homogeneous fan such that $O_1 = O(X) \cap \text{Cl}_X(E(X))$ and $O_2 = O(X) - \text{Cl}_X(E(X))$ are both nonempty. This means that these sets O_1 and O_2 must be orbits of X.

Take a point $x \in O_1$ and a sequence $\{e_n\}_n$ of points in $E(X)$ converging to x. Denote by e the endpoint such that $x \in te$. From Lemma 4.2 we can choose $y \in (tx) \cap O_2$. Note that $tx \subset \lim_{n \to \infty} te_n$. Hence, for each n we can choose $y_n \in te_n$ such that $y_n \to y$. Since $O_2 = X - \{\{t\} \cup \text{Cl}_X(E(X))\}$ is open in X, we can assume that $y_n \in O_2$ for all n.

Put $\varepsilon = \frac{1}{2}d(x,e)$. Since O_2 is an open orbit, by Effros’ Theorem (†) there exists $\delta > 0$ such that, if $v \in O_2$ with $d(x,v) < \delta$, then there is an ε-homeomorphism of X onto itself sending y to v. Choose $n \in \mathbb{N}$ such that $d(y,y_n) < \delta$ and $d(x,e_n) < \varepsilon$. Then there is an ε-homeomorphism $h : X \to X$ such that $h(y) = y_n$. Observe that $h(e) = e_n$. But $d(e, e_n) \geq d(e, x) - d(x, e_n) > 2\varepsilon - \varepsilon = \varepsilon$, which is a contradiction since h is an ε-homeomorphism. □

Proof of Theorem 4.4. Suppose for a contradiction that X is a $\frac{1}{4}$-homogeneous smooth fan with top t. It is easy to see that X cannot be locally connected, as the only locally connected fans are simple n-ods and F_w. Since $E(X)$ is an orbit of X and F_C and F_C_w are $\frac{1}{4}$-homogeneous, by Theorem 2.2 it follows that $\text{Cl}_X(E(X))$ is not contained in $E(X) \cup \{t\}$. Note that $E(X)$ is not dense, because in that case X would be the Lelek fan which is also $\frac{1}{3}$-homogeneous. It follows that $O(X) \cap \text{Cl}_X(E(X)) \neq \emptyset$ and $O(X) \not\subset \text{Cl}_X(E(X))$, which contradicts Lemma 4.3. □

5. Non-smooth fans

For the remainder of this section, let X be a fan with top t.

Given $a \in X$, we say that X is smooth at t with respect to a if for every sequence $\{a_n\}_n$ converging to a, we have $ta_n \to ta$. Define the set

$$S(X) = \{a \in X : X \text{ is smooth at } t \text{ with respect to } a\}.$$

From the definition, it is clear that X is smooth if and only if $S(X) = X$, and $S(X)$ is invariant under homeomorphisms. In [8, Corollary 10, p.124] it is proved that $S(X)$ is a dense G_δ-subset of X.

Lemma 5.1. If for each $x \in X - \{t\}$ we have $(tx) \cap S(X) \neq \emptyset$, then $E(X) \subset S(X)$.

Proof. Suppose contrary to the claim that there is a point $e \in E(X) - S(X)$. Then there is a sequence $\{e_n\}_n$ of points converging to e such that the arcs te_n converge to a continuum $Y \neq te$. Observe that $Y \supseteq te$. Take $a \in Y - te$ and $b \in (te)$. From our hypothesis we can assume that a and b belong to $S(X)$. Since $a, b \in Y$, for each n there are $a_n, b_n \in te_n$ such that $a_n \to a$ and $b_n \to b$. Note that $ta_n \to ta$ and $tb_n \to tb$. Since $b \notin ta$, we can suppose that $b_n \notin ta_n$ for all n. This means that $ta_n \subset tb_n$ for each n. Hence $ta \subset tb$. This contradicts the choice of a and b. □

In particular, Lemma 5.1 implies that if $O(X) \subset S(X)$ then $E(X) \subset S(X)$ as well. It is easy to prove in this case that $t \in S(X)$ too. Hence, we obtain the following result:
Corollary 5.2. If X is a fan with $O(X) \subset S(X)$, then X is smooth.

A space X is colocally connected at a point p in X, provided that each neighborhood of p contains a neighborhood V of p such that $X - V$ is connected.

Theorem 5.3. If X is a $\frac{1}{n}$-homogeneous non-smooth fan, then:
1) X is colocally connected at each point of $E(X)$;
2) $E(X)$ is dense in X; and
3) $S(X) = E(X) \cup \{t\}$.

Proof. Let X be a $\frac{1}{n}$-homogeneous non-smooth fan. The three orbits of X are $\{t\}$, $O(X)$, and $E(X)$. According to [14, Theorem 3.5, p.235 and Theorem 4.1, p.237], the set of endpoints at which X is colocally connected is non-empty. Because $E(X)$ is an orbit, we obtain 1).

From Corollary 5.2 and the fact that $O(X)$ is an orbit, we have that $O(X) \cap S(X) = \emptyset$. Thus $S(X) \subset E(X) \cup \{t\}$. Since $S(X)$ is dense, it intersects $E(X)$. Hence,
$$E(X) \subset S(X) \subset E(X) \cup \{t\}.$$ It follows that $E(X)$ is also dense.

Suppose for a contradiction that $t \notin S(X)$. Then there is a sequence $\{t_n\}_n$ converging to t such that the arcs $\{tt_n\}_n$ do not converge to $\{t\}$. In this case we may assume, by taking a subsequence, that there exists a point $b \in O(X)$ and a sequence $\{b_n\}_n$ such that $b_n \in (tt_n)$ and $b_n \to b$. Since $O(X)$ is an orbit, it follows that the same is true for every ordinary point; that is, for every $c \in O(X)$, there exist sequences $\{s_n\}_n$ and $\{c_n\}_n$ such that $c_n \in (ts_n)$, $s_n \to t$, and $c_n \to c$. Since $O(X)$ is dense in X, we have the same property for endpoints $c \in E(X)$. It is straightforward to see that this contradicts the fact that X is colocally connected at each of its endpoints. Therefore $t \in S(X)$. This completes the proof of 3). \qed

Theorem 5.4. If X is a $\frac{1}{n}$-homogeneous non-smooth fan, then:
1) X is colocally connected at each point of $E(X)$;
2) $E(X)$ is dense in X; and
3) $S(X) \supset E(X) \cup \{t\}$.

Proof. Let X be a $\frac{1}{n}$-homogeneous non-smooth fan. Since $E(X)$ is an orbit of X, we obtain 1) in exactly the same way as in the proof of Theorem 5.3.

To prove $t \in S(X)$, we can use a similar argument as in the proof Theorem 5.3. The only difference is that in the present situation $O(X)$ is not an orbit of X, so instead we must use the result of Lemma 4.2 that for each $e \in E(X)$ the two orbits of ordinary points in (xe) both accumulate on e.

It remains to prove that $E(X)$ is dense and $E(X) \subset S(X)$.

If $S(X) \cap O(X) = \emptyset$, then as in the proof Theorem 5.3 since $S(X)$ is dense it follows that $E(X) \subset S(X)$, and hence $E(X)$ is dense as well.

Assume for the remainder of the proof that $S(X) \cap O(X) \neq \emptyset$. In this case the four orbits of X are:

$$\{t\}, \ E(X), \ O_1 = O(X) \cap S(X), \ \text{and} \ O_2 = O(X) \setminus S(X).$$

From Lemmas 4.2 and 5.1 we conclude that $E(X) \subset S(X)$. To prove $E(X)$ is dense, according to Lemma 4.3 it suffices to prove that $\text{Cl}_X(E(X)) \cap O(X) \neq \emptyset$, for in this case $O(X) \subset \text{Cl}_X(E(X))$ and hence $\text{Cl}_X(E(X)) = X$.\[\]
Suppose for a contradiction that $\text{Cl}_X(E(X)) \cap O(X)$ is empty. Since $S(X)$ is dense, it follows that $O(X) \subset \text{Cl}_X(O_1)$. Hence, O_1 is dense in X.

We make the following claim:

(⋆) For any $x \in O_2$, there exist $a, b \in O_1$ such that $x \in (ab) \subset O_2$.

To see this, suppose $x \in O_2$ and let $e \in E(X)$ be such that $x \in (te)$. Since $x \notin S(X)$, there is a sequence of arcs $\{tx_n\}_n$ such that $x_n \to x$ but $tx_n \to Y \neq tx$, where Y is a subcontinuum of X. Since $t \in S(X)$, we must have $Y = tx'$ for some $x' \in (te)$ with $x \in (tx')$. Clearly this implies that $[xx'] \subset O_2$. Since O_2 is an orbit, it follows that every point of O_2 is part of an interval in O_2. The claim (⋆) then follows from Lemma 4.2.

Now take any $x \in O_2$. Because O_1 is dense, there is a sequence $\{a_n\}_n$ of points in O_1 such that $a_n \to x$. For each n let $e_n \in E(X)$ such that $a_n \in (te_n)$. We can assume that $\{e_n\}_n$ is convergent to a point $e \in \text{Cl}_X(E(X)) \subset E(X) \cup \{t\}$. It follows easily from the fact that $E(X) \cup \{t\} \subset S(X)$ that $e \in E(X)$, and $x \in te = \lim_{n \to \infty} te_n$.

Recall that by [15, Theorem 7.5, p.311], $E(X)$ is a $G_δ$ orbit, so we can apply Effros’ theorem (†) to it. Put $\varepsilon = \frac{1}{2}d(x, O_1 \cap te)$. Observe that $\varepsilon > 0$ by (⋆). Let δ be given by Effros’ theorem (†) and choose $n \in \mathbb{N}$ such that $d(x, a_n) < \varepsilon$ and $d(e, e_n) < \delta$. Then there is an ε-homeomorphism $h : X \to X$ such that $h(e_n) = e$. Note that $h(te_n) = te$ and $d(x, h(a_n)) \geq 2\varepsilon$, because $h(a_n) \in O_1 \cap te$. So

$$d(a_n, h(a_n)) \geq d(x, h(a_n)) - d(x, a_n) \geq 2\varepsilon - \varepsilon = \varepsilon.$$

This is a contradiction since $d(p, h(p)) < \varepsilon$ for all $p \in X$. Hence, $O(X) \cap \text{Cl}_X(E(X)) \neq \emptyset$.

Now, from Lemma 4.3 we have that $O(X) \subset \text{Cl}_X(E(X))$. Therefore $E(X)$ is dense.

6. Questions

Theorems 5.3 and 5.4 provide some information about how a $\frac{1}{3}$-homogeneous or $\frac{1}{4}$-homogeneous non-smooth fan would have to look, but as yet we are not aware of any examples of such objects. To complete the classification of all $\frac{1}{3}$-homogeneous or $\frac{1}{4}$-homogeneous fans, one must answer the following question:

Problem 1. Does there exist a $\frac{1}{3}$-homogeneous non-smooth fan? a $\frac{1}{4}$-homogeneous non-smooth fan?

We have confined our attention here to fans, as they comprise a simple class of dendroids, and hence make a good starting point for the study of homogeneity degree of dendroids. In the classification of all $\frac{1}{3}$-homogeneous dendrites given in [3], many interesting dendrites appear, including the locally connected fans, the universal (n-branching) dendrites, and the (n-branching) Gehman dendrites. It would be interesting to extend this to a classification of all $\frac{1}{3}$-homogeneous dendroids, perhaps beginning with smooth dendroids.

Problem 2. What are all the $\frac{1}{3}$-homogeneous (smooth) dendroids?

References

1. Jan M. Aarts and Lex G. Oversteegen, The geometry of Julia sets, Trans. Amer. Math. Soc. 338 (1993), no. 2, 897–918. MR 1182980
2. ______, The homeomorphism group of the hairy arc, Compositio Math. 96 (1995), no. 3, 283–292. MR 1327147
3. Gerardo Acosta and Yaziel Pacheco-Juárez, \(1\)-homogeneous dendrites, Topology Appl. 219 (2017), 55–77. MR 3606284
4. Witold D. Bula and Lex G. Oversteegen, A characterization of smooth Cantor bouquets, Proc. Amer. Math. Soc. 108 (1990), no. 2, 529–534. MR 991691
5. J. J. Charatonik, On fans, Dissertationes Math. Rozprawy Mat. 54 (1967), 39. MR 0227944
6. J. J. Charatonik and W. J. Charatonik, Fans with the property of Kelley, Topology Appl. 29 (1988), no. 1, 73–78. MR 944071
7. ______, Images of the Cantor fan, Topology Appl. 33 (1989), no. 2, 163–172. MR 1020278
8. ______, Smoothness and the property of Kelley, Comment. Math. Univ. Carolin. 41 (2000), no. 1, 123–132. MR 1756932
9. J. J. Charatonik and Carl Eberhart, On smooth dendroids, Fund. Math. 67 (1970), 297–322. MR 0275372
10. Włodzimierz J. Charatonik, The Lelek fan is unique, Houston J. Math. 15 (1989), no. 1, 27–34. MR 1002079
11. Carl Eberhart, A note on smooth fans, Colloq. Math. 20 (1969), 89–90. MR 0243488
12. Edward G. Effros, Transformation groups and \(C^*\)-algebras, Ann. of Math. (2) 81 (1965), 38–55. MR 0174987
13. Logan C. Hoehn and Lex G. Oversteegen, A complete classification of homogeneous plane continua, Acta Math. 216 (2016), no. 2, 177–216. MR 3573330
14. Józef Krasinkiewicz and Piotr Minc, Dendroids and their endpoints, Fund. Math. 99 (1978), no. 3, 227–244. MR 0494010
15. A. Lelek, On plane dendroids and their endpoints in the classical sense, Fund. Math. 49 (1960/1961), 301–319. MR 0133806
16. Sam B. Nadler, Jr., Continuum theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker, Inc., New York, 1992, An introduction. MR 1192552
17. Gerald S. Ungar, On all kinds of homogeneous spaces, Trans. Amer. Math. Soc. 212 (1975), 393–400. MR 0385825

(G. Acosta) Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, D.F. 04510, México
E-mail address: gacosta@matem.unam.mx

(L.C. Hoehn) Department of Computer Science and Mathematics, Nipissing University, 100 College Drive, Box 5002, North Bay, Ontario, Canada, P1B 8L7
E-mail address: loganh@nipissingu.ca

(Y. Pacheco) Department of Computer Science and Mathematics, Nipissing University, 100 College Drive, Box 5002, North Bay, Ontario, Canada, P1B 8L7
E-mail address: yazielpj@nipissingu.ca