Fungal pathogen recognition by the NLRP3 inflammasome

Sophie Joly1,* and Fayyaz S. Sutterwala1,2
1Inflammation Program; and the 2Division of Infectious Diseases; Department of Internal Medicine; University of Iowa; Iowa City, IA USA

The relationship between host and opportunistic pathogen is a tenuous one and an injudicious response to pathogen-associated molecular patterns may result in a hostile environment to potentially beneficial commensal organisms. Therefore, discrimination between pathogenic forms, causing cellular damage, and innocuous commensal forms of microbes is critical in maintaining homeostasis. The NLRP3 inflammasome has recently been identified as playing an important role in recognition of the fungal pathogen Candida albicans. Here we will review these findings and discuss the role of the NLRP3 inflammasome in initiating an innate immune response to invasive C. albicans.

Introduction

C. albicans is a successful commensal and pathogen, highly adapted to survive on host surfaces such as mucosal tissue where it asymptptomatically colonizes 65% of healthy individuals. Candidemia accounts for more than 50% of fungal systemic infections and is associated with high mortality rates.1 Although mucosal candidiasis can occur in immunocompetent individuals it is more commonly associated with immunocompromised conditions such as AIDS, and during chemotherapy or following allogenic transplantation.2

Multiple host defense systems play roles in the control of Candida infections depending on the type and site of infection.3 Several pattern recognition receptors have been implicated in mediating innate immune responses to C. albicans. Toll-like receptor 2 (TLR2) and TLR4 can both recognize Candida. In a disseminated candidiasis model, TLR4 was shown to be protective,4 whereas TLR2 augmented IL-10 production and exacerbated disease.5 Recently, TLR9 has also been shown to be involved in anti-Candida host responses by mediating a cytokine response after stimulation with C. albicans DNA.6 However TLR9 was not crucial in an in vivo model of disseminated candidiasis.6,7 Other types of pattern recognition receptors are also involved in C. albicans recognition including lectins on macrophages (Mϕ), dendritic cells (DC), keratinocytes8-13 and integrins on leukocytes.14 Recently, several studies have suggested that C-type lectins are the major receptors in antifungal defense. Dectin-1 recognizes fungal β-(1,3)-glucans and possesses a cytoplasmic immunoreceptor tyrosine-based activating like motif (ITAM) which mediates immune signaling in response to C. albicans via spleen tyrosine kinase (syk) and caspase recruitment domain protein 9 (CARD9).15-18 Another C-type lectin, Mincle, plays a role in Mϕ responses to C. albicans and Mincle-deficient mice display an increased susceptibility to C. albicans infection in vivo.19 The mannose receptor (also a C-type lectin) recognizes mannan and mannoprotein plays an important role in phagosome sampling, cytokine production and adaptive immune response.20,21 C. albicans associates with the mannose receptor after phagocytosis at a late stage of phagosomal maturation and is not necessary for C. albicans uptake.20

The multitude of receptors involved in host recognition of C. albicans may reflect the vast repertoire of phenotypic features that C. albicans is able to display during the course of an infection. C. albicans dimorphism, also called bud-hyphae transition, is the most studied and results in a
differential interaction with the host innate response, affecting receptor recognition, cytokine production and cell-mediated responses. Indeed, killed blastopores have been shown to signal through TLR2 and 4 whereas killed hyphae predominantly use TLR2 resulting in a non-protective response. Interestingly, while Dectin-1 exclusively associates with the C. albicans yeast form, Dectin-2 preferentially binds to hyphae. The interaction of yeast and hyphae forms of C. albicans with DCs also greatly influences the subsequent T cell responses that follow.

Recently we, and others, have shown that the cytosolic nucleotide-binding domain leucine-rich repeat containing receptor (NLR) family member NLRP3 (also known as NALP3, Cryopyrin and CIAS1) is a key player in host defense against C. albicans. In addition, polymorphisms in the gene coding for NLRP3 have been associated with recurrent vulvovaginal candidiasis. The cytosolic nature of NLRP3 is of great importance in understanding the immune regulation occurring during host-opportunistic pathogen relationships. In this review we will particularly focus on the role and mechanism of NLRP3 inflammasome activation in response to C. albicans.

C. albicans-Mediated Activation of the NLRP3 Inflammasome

The NLR family of molecules is a newly described group of intracellular receptors that drive both inflammatory and cell death pathways. A number of NLR molecules form inflammasomes, which are multiprotein complexes capable of activating caspase-1 and ultimately resulting in the processing and secretion of IL-1β and IL-18. As intracellular receptors, the NLR family is in a prime location to detect danger signals associated with host stress and may therefore play a critical role in recognizing the transition from commensal to pathogen. The NLRP3 inflammasome can be activated in response to a large number of unrelated stimuli: (1) microbial (viruses, bacteria, yeast, bacterial toxins, bacterial motifs), (2) endogenous (ATP, monosodium urate crystals, calcium pyrophosphate dihydrate crystals, β-amyloid), and (3) exogenous (UV, alum, silica, asbestos) (reviewed in ref. 30). Activation of the NLRP3 inflammasome requires a two-step process described as signal 1 (priming) and signal 2 (activation). Signal 1 can be initiated by numerous stimuli and importantly these can be both microbial and non-microbial in origin. Given the varied number of agents that can contribute to signal 2 in NLRP3 inflammasome activation, it is unlikely that they are direct ligands for NLRP3 but instead induce a common endogenous molecule that is recognized by NLRP3. While it is accepted that C. albicans induces caspase-1-mediated IL-1β secretion in a NLRP3 dependent manner, the precise pathways involved in NLRP3 inflammasome activation are yet to be defined (Fig. 1).

Signal 1. Signal 1 serves two functions, in addition to stimulating the production of pro-IL-1β via the NFκB pathway, it is also a prerequisite for inflammasome priming. As mentioned above, C. albicans is recognized by several receptors such as TLR4, TLR2, Dectin-1, Dectin-2, the mannose receptor, and Mincle that can potentially activate NFκB. However, signaling through Dectin-1 and syk/CARD9 appear to be the predominant pathways involved in C. albicans-induced pro-IL-1β production.

Syk signaling was necessary for C. albicans-induced activation of the NLRP3 inflammasome, however β-glucan and zymosan that are also direct activators of this pathway failed to rapidly activate the NLRP3 inflammasome. The role of syk in NLRP3 inflammasome activation has also been described for malarial hemozoin and uric acid crystals. Syk signaling is however dispensable for NLRP3 inflammasome activation by...
pore forming toxins and ATP suggesting that syk involvement may be specific to particulate activators. Together these studies reinforce the role of syk in priming the NLRP3 inflammasome for activation by C. albicans. CARD9 is however dispensable for NLRP3 inflammasome activation in response to C. albicans as priming with the TLR4 agonist LPS can bypass the requirement for CARD9. Non-microbial agents can also act as signal 1 as demonstrated by recent studies showing that TNFα, hyaluronan, biglycan and HMGB1 can all serve a priming role in NLRP3 inflammasome activation.

The ability of C. albicans itself to directly provide signal 1 is dependent on the cell type infected. For bone marrow-derived dendritic cells (BMDM) and thioglycollate-elicited Mϕ, C. albicans was able to both prime (signal 1) and activate (signal 2) the NLRP3 inflammasome. In contrast, bone marrow-derived macrophages (BMDM) required an independent priming step prior to infection with C. albicans in order to achieve NLRP3 inflammasome activation. These findings in BMDM paralleled earlier studies that demonstrate Dectin-1 signaling alone is not sufficient to activate NFkB and induce TNFα production. This lack of responsiveness in Mϕ was later attributed to a differential use of CARD9 by Dectin-1 in Mϕ as compared to DCs. One notable difference in the generation of BMDM compared to BMDC is their exposure to GM-CSF. Exposure of Mϕ to either GM-CSF or IFNγ resulted in increased responsiveness to β-glucan by activating a CARD9-dependent pathway in Mϕ.

In contrast to DCs, the production of pro-IL-1β by thioglycollate-elicited Mϕ was MyD88 dependent. Similarly, β-glucan induced TNFα production has been previously shown to synergize with TLR signaling in Mϕ while β-glucan induced TNFα production was found to be MyD88 independent in DCs. The marked differences in the requirements for NLRP3 inflammasome activation between divergent cell types is highlighted in a recent study by Pelegrin and Surprenant in which ATP-mediated NLRP3 inflammasome activation seen in M1 polarized Mϕ was diminished by M2 polarization.

Signal 2. The rapid activation of the NLRP3 inflammasome by C. albicans required the presence of live yeast and was not dependent on ATP release, either from Candida or the phagocyte, as P2X7 receptor-deficient cells were capable of secreting IL-1β in response to C. albicans. Interestingly, an overnight or prolonged incubation with formalin fixed C. albicans or β-glucans (zymosan, curdian) was able to induce (although in a weaker manner) NLRP3 dependent IL-1β secretion by thioglycollate-elicited peritoneal Mϕ. The different magnitudes and kinetics of NLRP3 inflammasome activation seen between live and killed (or cell wall components) C. albicans suggests that different signaling pathways are being utilized.

Phenotypic plasticity is an important part of C. albicans virulence and its ability to transition between yeast and filamentous form have been shown to drastically impact host responses. Hyphal filaments were poor inducers of NLRP3 inflammasome activation and resulted in a significantly lower amount of IL-1β from BMDM, BMDC and peritoneal Mϕ. It is not clear why C. albicans hyphae fail to induce robust NLRP3 inflammasome activation, but this may be linked to ineffectiveness of hyphae or lack of surface molecules required to trigger NLRP3 inflammasome activation. Several studies have shown that hyphocytosis of particulate activators is necessary for NLRP3 inflammasome activation. Similarly, phagocytosis of C. albicans is also required for NLRP3 inflammasome activation. It has been postulated that the uptake of particulates may result in lysosomal disruption and therefore exposure to the cytosol endogenous molecules normally found in a sequestered location. Although hyphae did not possess stimulatory properties, the ability of C. albicans to transition from yeast to hyphal form was essential for NLRP3 activation as the C. albicans efg1Δ/Δaph1Δ/Δ double mutant and the opaque phenotype of strain WO-1, locked in a yeast phase, were unable to activate NLRP3. Interestingly, C. albicans phagosomal escape and disruption are mediated by a switch to a filamentous form after internalization thereby releasing endogenous molecule into the cytosol. Release of the lysosomal protease cathepsin B into the cytosol has been proposed to be necessary for IL-1β secretion by particulate activators of NLRP3. Although the cathepsin B inhibitor Ca-074-me inhibited C. albicans-induced activation of NLRP3 inflammasome in BMDM, Gross and colleagues demonstrated that NLRP3 activation was not affected in BMDC from cathepsin B-deficient mice suggesting that the inhibition seen with Ca-074-me may be due to off-target effects of the inhibitor. A commonality shared by ATP, pore-forming toxins and particulate mediated NLRP3 inflammasome activation was dependent on both potassium efflux and the generation of reactive oxygen species production (Fig. 1).

Role of the NLRP3 Inflammasome in the Pathogenesis of C. albicans Infections

The NLRP3 inflammasome plays an important role in a disseminated model of Candidal infection. Mice deficient in NLRP3 infected with C. albicans displayed diminished serum IL-1B, reduced survival and higher fungal burdens in kidney, spleen, liver and lung. Using a murine model of oral C. albicans infection Hise and colleagues further demonstrated that IL-1R, NLRP3, and the inflammasome components ASC and caspase-1 were necessary to prevent systemic dissemination of C. albicans. The role of NLRP3 and caspase-1 in the local mucosal colonization, unlike IL-1R and ASC, were limited. Interestingly, polymorphism in the gene coding for NLRP3 have been associated with recurrent vulvovaginal candidiasis underscoring the role of NLRP3 in mucosal homeostasis. However, it has been hypothesized that distinct defense mechanisms regulate innate immunity in vulvovaginitis, oropharyngeal candidiasis and systemic candidiasis as vaginitis and systemic infection in HIV positive individual are far less common.
that oropharyngeal candidiasis. 1 NLRP3 may play an important role in differenti-ating commensal organisms from pathogenic ones. Extracellular pathogen-associated molecular patterns may readily phagocytes for activation through TLR stimulation. However, only once an organism becomes a true threat, as deter-mined by cellular invasion resulting in cellular stress and damage, is the NLRP3 inflammasome pathway activated. Because C. albicans possesses the ability to modulate NLRP3 activation via phenotypic plasticity, the differential interaction with various immune cells and the route of infection (mucosal or systemic), there is no doubt that future studies will use this powerful model to unravel the identity of NLRP3 ligand and to study the multiple requirements needed to achieve a control of opportunistic pathogens. The identity of NLRP3 ligand and to study the this powerful model to unravel the iden-tification of the innate immune response to microorganisms. J Immunol 2006; 177:4679-87.

10. Jouault T, El Abed-El Behi M, Martínez-Esparza M, Breuilh L, Trinel PA, Chamaillard M, et al. Specific recognition of Candida albicans by macrophages requires galecin-3 to discriminate Saccharomyces cerevisiae and non-invasive strains with TLR2 for signaling. J Immunol 2006; 177:4679-87.

11. Kohatsu L, Hsu DK, Jeglanal AG, Liu FT, Baum LG. Galecin-3 induces death of Candida species expressing specific beta-1,2-linked mannans. J Immunol 2006; 177:4718-26.

12. Neta MG, Groot RA, Munro CA, Bates S, Collins C, Ferwerda G, et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest 2006; 116:1642-50.

13. Sato K, Yang XL, Yudate T, Chung JS, Wu J, Luby-Phelps K, et al. Dectin-2 is a partner recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem 2006; 281:38584-66.

14. Forsyth CB, Powell EF, Zhang L. Interaction of the fungal pathogen Candida albicans with integri- cin CD11b/CD18: recognition by the I domain is modulated by the lectin-like domain and the CD18 subunit. J Immunol 1998; 161:6198-205.

15. Gross O, Gewies A, Finger K, Schafer M, Sparwasser T, Peschel C, et al. CARD9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 2006; 442:051-6.

16. Leibund-Gut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleu-kin 17. Nat Immunol 2007; 8:630-8.

17. Neta MG, Brown GD, Kullberg BJ, Gow NA. A ligand-mediated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 2008; 6:183-9.

18. Gringhuis SJ, den Dunnen J, Ligtenberg MV, van der Mijl M, Meyers B, Bruijn SC, et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NFkappaB activation through Raf-1 and Syk. Nat Immunol 2009; 10:203-12.

19. Wells KA, Salvage-Jones JA, Li X, Hitchens K, Butcher S, Murray RZ, et al. The macrophage-inducible C-type lectin, Minele, is an essential component of the innate immune response to Candida albicans. J Immunol 2008; 180:7404-13.

20. Heinzebo G, Gerdes J, Martinez-Fozo M, Martinez-Pomares L, Brown GD, Gordon S. Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis. PLoS Pathog 2009; 5:1000218.

21. van de Veerdonk FL, Marinissen MJ, Kullberg BJ, Koener HJ, Cheng SC, Joosten I, et al. The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe 2009; 5:329-40.

22. van der Graaf CA, Neta MG, Verschueren I, van der Meer JW, van Krieken JH, et al. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 2004; 172:3712-8.

23. Miyazato A, Nakamura K, Yamamoto N, Mota-Montes HM, Tanaka M, Abe Y, et al. Toll-like recep-tor 9-dependent activation of myeloid dendritic cells by Dectin-like molecules from Candida albicans. Infect Immun 2007; 77:3056-64.

24. van de Veerdonk FL, Neta MG, Jansen TJ, Jacobs LV, Verschueren I, van der Meer JW, et al. Redundant role of TLR9 for anti-Candida host defense. Immunology 2008; 213:613-20.

25. Szolnoky G, Bata-Csorgo Z, Kenderessy AS, Kiss M, Pivarcza A, Novik Z, et al. A mannose-binding recep-tor is expressed on human keratinocytes and mediates killing of Candida albicans. J Invest Dermatol 2001; 117:205-13.

26. Poulin D, Jouault T. Candida albicans cell wall glycans, host receptors and responses: elements for a decisive crosstalk. Curr Opin Microbiol 2004; 7:342-9.

27. Vonk AG, Neta MG, van Krieken JH, Ivakura Y, van der Meer JW, Kullberg BJ. Endogenous inter-leukin (IL)-1alpha and IL-1beta are crucial for host defense against disseminated candidiasis. J Infect Dis 2006; 193:1419-26.

28. Belloccio S, Montagutoli C, Bozza S, Gaiazano R, Rossi G, Mambula SS, et al. The contribution of the Toll-like/IL-1 receptor superfamily to innate adaptive immunity to fungal pathogens in vivo. J Immunol 2004; 172:3059-69.

29. Lev-Sagie A, Picci D, Linkaes JM, Lavy Y, Ledger WJ, Witkin SS. Polymorphism in a gene coding for the inflammasome component NALP3 and recurrent vulvovaginal candidiasis in women with vulvar vestibulitis syndrome. Am J Obstet Gynecol 2009; 200:303-5.

30. Casell SL, Joly S, Surterwala FS. The NLRP3 inflammasome: A sensor of immune danger signals. Semin Immunol 2009; 21:194-8.

31. Franchi L, Eigenbrod T, Núñez G. Cutting edge: TNFalpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol 2009; 183:792-6.

32. Iyer SS, Pulkkin WP, Sadler JJ, Burer LM, Tege K, Ulland TK, et al. Necrotoxic cells trigger a sterile inflam-matory response through the Nlrp3 inflammasome. Proc Natl Acad Sci USA 2009; 106:20388-93.

33. Kumar H, Kamagai Y, Tsuochida T, Koenig PA, Satoh T, Guo Z, et al. Involvement of the NLRP3 inflammasome in innate and humoral adaptive immune responses to fungal beta-glucan. J Immunol 2009; 183:8061-7.

34. Shio MT, Eisenbarth SC, Savaria M, Viner AF, Bellemare MJ, Harder KW, et al. Malarial Hemozoin Activates the NLRP3 Inflammasome through Lyn and Syk Kinases. PLoS Pathog 2009; 5:1000559.

35. Ng C, Sharma K, Ward SM, Destroders MS, Stephens LA, School WM, et al. Receptor-independent, direct membrane binding leads to cell surface lipid sig-naling and Syk kinase activation in dendritic cells. Immunity 2008; 29:807-18.

36. Ghiringhelli F, Aperlo H, Tesniere A, Aymier L, Ma Y, Orti C, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 2009; 15:1170-8.

37. Lamkanfi M, Malireddi RK, Kanganedi T. Fungal symspan and mannan activate the cryopyrin inflam-masome. J Biol Chem 2009; 284:25748-81.

38. Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. Collaborative induction of inflam-matory responses by dectin-1 and Toll-like receptor 7. J Exp Med 2008; 197:1187-121.

39. Goodridge HS, Shimada T, Wolf AJ, Hsu YS, Becker CA, Lin X, et al. Differential use of CARD9 by dectin-1 in macrophages and dendritic cells. J Immunol 2009; 182:1146-54.

40. Rosas M, Liddiard K, Kimberg M, Faro-Trindade I, McDonald IU, Williams DL, et al. The induction of inflammasion by dectin-1 in vivo is dependent on myeloid cell programming and the progression of phagocytosis. J Immunol 2008; 181:3549-57.

41. Dennehy KM, Werferda G, Faro-Trindade I, Pyz E, Willment JA, Taylor PR, et al. Syk kinase is required for collaborative cytokine production induced through Dectin-1 and Toll-like receptors. Eur J Immunol 2008; 38:500-6.

42. Pelegri P, Surprenant A. Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 2009; 28:2114-27.

43. Stutz A, Golenbock DT, Latz E. Inflammasomes: too big to miss. J Clin Invest 2009; 119:3502-11.

44. Lo HJ, Kohler JR, DiDomenico R, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Cell 1997; 90:939-49.
45. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 2008; 9:857-65.

46. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 2008; 9:847-56.