International Journal of Modern Physics A
© World Scientific Publishing Company

Understanding open-charm mesons

J. Vijande¹,²*, F. Fernández¹, A. Valcarce¹.
¹Grupo de Física Nuclear and IUFFyM, Universidad de Salamanca, E-37008 Salamanca, Spain
²Dpto. de Física Teórica and IFIC, Universidad de Valencia - CSIC, E-46100 Burjassot, Valencia, Spain

We present a theoretical framework that accounts for the new D_J and D_{sJ} mesons measured in the open-charm sector. These resonances are properly described if considered as a mixture of conventional P–wave quark-antiquark states and four-quark components. The narrowest states are basically P–wave quark-antiquark mesons, while the dominantly four-quark states are shifted above the corresponding two-meson threshold. We study the electromagnetic decay widths as basic tools to scrutinize their nature.

During the last few years, heavy meson spectroscopy is living a continuous excitation due to the discovery of several new charmed mesons. Three years ago BABAR Collaboration reported the observation of a charm-strange state, the $D_{sJ}^{*}(2317)$¹, that was later on confirmed by CLEO² and Belle Collaboration³. Besides, BABAR had also pointed out to the existence of another charm-strange meson, the $D_{sJ}(2460)$¹. This resonance was measured by CLEO² and confirmed by Belle³. Belle results are consistent with the assignments of $J^P = 0^+$ for the $D_{sJ}^{*}(2317)$ and $J^P = 1^+$ for the $D_{sJ}(2460)$. However, although these states are well established, they present unexpected properties quite different from those predicted by quark potential models. If they would correspond to standard P–wave mesons made of a charm quark, c, and a strange antiquark, \bar{s}, their masses would be larger, around 2.48 GeV for the $D_{sJ}^{*}(2317)$ and 2.55 GeV for the $D_{sJ}(2460)$. They would be therefore above the DK and D^*K thresholds, respectively, being broad resonances. However the states observed by BABAR and CLEO are very narrow, $\Gamma < 4.6$ MeV for the $D_{sJ}^{*}(2317)$ and $\Gamma < 5.5$ MeV for the $D_{sJ}(2460)$.

The intriguing situation of the charm-strange mesons has been translated to the nonstrange sector with the Belle observation of a nonstrange broad scalar resonance, $D_{0}^{*}(2308)$, of a nonstrange broad scalar resonance, $D_{0}^{*}(2308)$, with a mass of 2308 ± 17 ± 15 ± 28 MeV/c² and a width $\Gamma = 276 \pm 21 \pm 18 \pm 60$ MeV. A state with similar properties has been suggested by FOCUS Collaboration at Fermilab during the measurement of masses and widths of excited charm mesons $D_{sJ}^{*}(2317)$. This state generates for the open-charm nonstrange mesons a very similar problem to the one arising in the strange sector with the $D_{sJ}^{*}(2317)$. If the $D_0^{*}(2308)$ would correspond to a standard P–wave meson made of a charm

*E-mail address: javier.vijande@uv.es
Table 1. $c\pi$ and $c\pi$ masses (QM), in MeV. Experimental data (Exp.) are taken from Ref.9, except for the state denoted by a dagger that has been taken from Ref. 4.

nJ^P	State	QM ($c\pi$)	Exp.	State	QM ($c\pi$)	Exp.
$1S\ 0^-$	D_s	1981	1968.5±0.6	D	1883	1867.7±0.5
$1S\ 1^-$	D_s^*	2112	2112.4±0.7	D^*	2010	2008.9±0.5
$1P\ 0^+$	$D_{sJ}^*(2317)$	2489	2317.4±0.9	$D_{sJ}^0(2308)$	2465	2308±17±15±281
$1P\ 1^+$	$D_{sJ}(2460)$	2578	2459.3±1.3	$D_1(2420)$	2450	2422.2±1.8
$1P\ 2^+$	$D_{s2}(2573)$	2543	2535.3±0.6	$D_{sJ}^0(2430)$	2546	2427 ± 26 ± 25
$1P\ 3^+$	$D_{s3}(2615)$	2582	2572.4±1.5	$D_{sJ}^0(2460)$	2496	2459±4

quark, c, and a light antiquark, π, its mass would have to be larger, around 2.46 GeV. In this case, the quark potential models prediction and the measured resonance are both above the $D\pi$ threshold, the large width observed being expected although not its low mass.

The difficulties to identify the D_J and D_{sJ} states with conventional $c\pi$ mesons are rather similar to those appearing in the light-scalar meson sector6 and may be indicating that other configurations are playing a role. $q\bar{q}$ states are more easily identified with physical hadrons when virtual quark loops are not important. This is the case of the pseudoscalar and vector mesons, mainly due to the P–wave nature of this hadronic dressing. On the contrary, in the scalar sector is the $q\bar{q}$ pair the one in a P–wave state, whereas quark loops may be in a S–wave. In this case the intermediate hadronic states that are created may play a crucial role in the composition of the resonance, in other words unquenching is important. This has been shown to be relevant for the proper description of the low-lying scalar mesons7.

In this work we have explored the same ideas for the understanding of the properties of the D_J and D_{sJ} meson states. In non-relativistic quark models the wave function of a zero baryon number ($B=0$) hadron may be written as $|B=0\rangle = \Omega_1 |qq\rangle + \Omega_2 |qqq\rangle + \ldots$ where q stands for quark degrees of freedom and the coefficients Ω_i take into account the mixing of four- and two-quark states. The hamiltonian considering the mixing between both configurations could be described using the 3P_0 model, however, since this model depends on the vertex parameter, we prefer in a first approximation to parametrize this coefficient by looking to the quark pair that is annihilated and not to the spectator quarks that will form the final $q\bar{q}$ state. Therefore we have taken $V_{q\bar{q}\rightarrow qqqq} = \gamma$. Further details about the formalism and the constituent quark model used are given in Refs. 77, 88.

A thoroughly study of the full meson spectra has been presented in Ref. 83. The results for the open-charm mesons are resumed in Table 13. It can be seen how the open-charm states are easily identified with standard $c\pi$ mesons except for the cases of the $D_{sJ}^*(2317)$, the $D_{sJ}(2460)$, and the $D_{sJ}^0(2308)$. This is a common behavior of almost all quark potential model calculation10. In a similar manner, quenched lattice NRQCD predicts for the $D_{sJ}^*(2317)$ a mass of 2.44 GeV11, while using relativistic charm quarks the mass obtained is 2.47 GeV12. Unquenched lattice QCD calculations of $c\pi$ states do not find a window for the $D_{sJ}^*(2317)$, supporting the difficulty of a P–wave $c\pi$ interpretation.
Table 2. Probabilities (P), in %, of the wave function components and masses (QM), in MeV, of the open-charm mesons once the mixing between $q\bar{q}$ and $qq\bar{q}$ configurations is considered. Experimental data are taken from Ref. 9 except for the state denoted by a dagger that has been taken from Ref. 4.

JP	I = 0	JP	I = 1/2	JP = 0$^+$		
	QM	Exp.	QM	Exp.		
	2339	±0.9	2421	±1.3	2555	
P(cnn)	28	P(cnn)	25	~ 1	P(cnn)	46
P(cn1p)	71	P(cn1p)	74	~ 1	P(cn1p)	53
P(c2p)	~ 1	P(c2p)	~ 1	98	P(c2p)	~ 1

Using for the qq interaction the parametrization of Ref. 7, the results obtained for the cnn configuration are 2731 and 2699 MeV for the $J^P = 0^+$ with $I = 0$ and $I = 1$, and 2841 and 2793 MeV for the $J^P = 1^+$ with $I = 0$ and $I = 1$. For the cnn configuration with $I = 1/2$ the energy is 2505 MeV. The $I = 1$ and $I = 0$ states are far above the corresponding strong decaying thresholds and therefore should be broad, what rules out a pure four-quark interpretation of the new open-charm mesons.

As outlined above, for $P-$wave mesons the hadronic dressing is in a $S-$wave, thus physical states may correspond to a mixing of two- and four-body configurations. In the isoscalar sector, the cnn and $c\bar{s}$ states get mixed, as it happens with cnn and $c\bar{n}$ for the $I = 1/2$ case. The parameter γ has been fixed to reproduce the mass of the $D_{sJ}(2317)$ meson, $\gamma = 240$ MeV. The results obtained are shown in Table 2. Let us first analyze the nonstrange sector. The 3P_0 $c\bar{n}$ pair and the cnn have a mass of 2465 MeV and 2505 MeV, respectively. Once the mixing is considered one obtains a state at 2241 MeV with 46% of four-quark component and 53% of $c\bar{n}$ pair. The lowest state, representing the $D_0^+(2308)$, is above the isospin preserving threshold $D\pi$, being broad as observed experimentally. The mixed configuration compares much better with the experimental data than the pure $c\bar{n}$ state. The orthogonal state appears higher in energy, at 2713 MeV, with and important four-quark component.

Concerning the strange sector, the $D_{sJ}^+(2317)$ and the $D_{sJ}(2460)$ are dominantly $c\bar{s}$ $J = 0^+$ and $J = 1^+$ states, respectively, with almost 30% of four-quark component. Such component is responsible for the shift of the mass of the unmixed states to the experimental values below the DK and D^*K thresholds. Being both states below their isospin-preserving two-meson threshold, the only allowed strong decays to $D_{sJ}^0\pi$ would violate isospin and are expected to have small widths $O(10) \text{ keV}$. As a consequence, they should be narrower than the $D_{s2}(2573)$ and $D_{s1}(2536)$, opposite to what is expected from heavy quark symmetry. The second isoscalar $J^P = 1^+$ state, with an energy of 2555 MeV and 98% of $c\bar{s}$ component, corresponds to the $D_{s1}(2536)$. Regarding the $D_{sJ}^+(2317)$, it has been argued that a possible DK molecule would be preferred with respect to an $I = 0$ cnn tetraquark, what would anticipate an $I = 1$ cnn partner nearby in mass. Our results confirm the last argument, the vicinity of the isoscalar and isovector tetraquarks, however, the re-
Electromagnetic decay widths, in keV, for the \(D^*_s J^+ (2317) \) and \(D^*_s J^+ (2460) \) (QM), compared to the results of two different quark models based only on \(q \bar{q} \) states. To compare with the experimental data by CLEO and Belle we have assumed for \(\Gamma(D^{*+}_s \pi^0) \approx \Gamma(D^{*+}_s \pi^0) \approx 10 \text{ keV} \) as estimated in Ref. [14].

Transition	Quark models QM	Ref. 13	Ref. 14	Experiments CLEO 2	Belle 3
\(D^*_s J^+ (2317) \rightarrow D^{*+}_s \gamma \)	1.6	1.74	1.9	< 0.59	> 1.8
\(D^*_s J^+ (2460) \rightarrow D^{*+}_s \gamma \)	0.06	4.66	5.5	< 1.6	< 3.1
\(D^*_s J^+ (2460) \rightarrow D^{*+}_s \gamma \)	6.7	5.08	6.2	< 4.9	5.5 ± 1.3 ± 0.8

Apart from the masses, the structure of the \(D^*_s J^+ (2317) \) and the \(D^*_s J^+ (2460) \) mesons could be scrutinized also through the study of their electromagnetic decay widths. We compare in Table 3 our results with different theoretical approaches and the experimental limits reported by Belle and CLEO. The main difference is noticed in the suppression predicted for the \(D^*_s J^+ (2460) \rightarrow D^{*+}_s \gamma \) decay as compared to the \(D^*_s J^+ (2460) \rightarrow D^{*+}_s \gamma \). A ratio \(D^*_s J^+ (2460) \rightarrow D^{*+}_s \gamma / D^*_s J^+ (2460) \rightarrow D^{*+}_s \gamma \approx 1 - 2 \) has been obtained assuming a \(q \bar{q} \) structure for both states (what seems incompatible with their properties). We find a larger value, \(D^*_s J^+ (2460) \rightarrow D^{*+}_s \gamma / D^*_s J^+ (2460) \rightarrow D^{*+}_s \gamma \approx 100 \), due to the small \(1^3 P_1 \) probability of the \(D^*_s J^+ (2460) \). A similar enhancement has been obtained in Ref. [11] in the framework of light-cone QCD sum rules.

This work has been partially funded by Ministerio de Ciencia y Tecnología under Contract No. FPA2004-05616, by Junta de Castilla y León under Contract No. SA-104/04, and by Generalitat Valenciana under Contract No. GV05/276.

References
1. B. Aubert et al., [BABAR Collaboration], Phys. Rev. Lett. 90, 242001 (2003).
2. D. Besson et al., [CLEO Collaboration], Phys. Rev. D 68, 032002 (2003).
3. Y. Mikani et al., [CLEO Collaboration], Phys. Rev. Lett. 92, 012002 (2004).
4. K. Abe et al., [Belle Collaboration], Phys. Rev. D 69, 112002 (2004).
5. J.M. Link et al., [FOCUS Collaboration], Phys. Lett. B 586, 11 (2004).
6. G.S. Bali, Phys. Rev. D 68, 071501(R) (2003).
7. J. Vijande et al., Phys. Rev. D 72, 034025 (2005).
8. J. Vijande, F. Fernández, and A. Valcarce, J. Phys. G 19, 2013 (2005).
9. S. Eidelman et al., Phys. Lett. B 592, 1 (2004).
10. S. Godfrey and R. Kokoski, Phys. Rev. D 43, 1679 (1991).
11. J. Hein et al., Phys. Rev. D 62, 074503 (2000).
12. P. Boyle, [UKQCD Collaboration], Nucl. Phys. B (Proc. Supp.) 63, 314 (1998).
13. W.A. Bardeen, E.J. Eichten, and C.T. Hill, Phys. Rev. D 68, 054024 (2003).
14. S. Godfrey, Phys. Lett. B 568, 254 (2003).
15. T. Barnes, F.E. Close, and H.J. Lipkin, Phys. Rev. D 68, 054006 (2003).
16. P. Colangelo, F. de Fazio, and A. Ozpineci, Phys. Rev. D 72, 074004 (2005).