Rationalized evaluation subgroups of mapping spaces between complex Grassmannians

Paul Antony Otieno¹ · Jean Baptiste Gatsinzi² · Vitalis Onyango-Otieno¹

Received: 22 December 2018 / Accepted: 14 October 2019 / Published online: 31 October 2019
© The Author(s) 2019

Abstract
We determine evaluation subgroups of the inclusion $Gr(2, n) \hookrightarrow Gr(2, n + 1)$ between complex Grassmannians.

Keywords Evaluation subgroups · Gottlieb group · G-sequence

Mathematics Subject Classification Primary 55P62 · 54C35

1 Introduction

Given a pointed topological space (X, x_0), the nth Gottlieb group of X, also called the evaluation subgroup of $\pi_n(X)$ and denoted by $G_n(X)$, consists of those $\alpha \in \pi_n(X)$ for which there is a map $F : X \times S^n \rightarrow X$ such that the following diagram commutes:

$$
\begin{array}{ccc}
X \times S^n & \xrightarrow{F} & X \\
\uparrow f & & \uparrow \nabla \\
X \vee S^n & \xrightarrow{1_x \vee f} & X \vee X,
\end{array}
$$

where $f : S^n \rightarrow X$ is a representative of α and ∇ is the folding map. Thus for every $\alpha \in G_n(X, x_0)$, there exists at least one map $F : X \times S^n \rightarrow X$ such that $F(x_0, s) = f(s)$. We say that F is an affiliated map to α [3]. If X has a base point x_0 and $aut X$ denotes the monoid of self homotopy equivalences of X with $ev : aut X \rightarrow X$ the evaluation map at

Paul Antony Otieno
paotieno@strathmore.edu

Jean Baptiste Gatsinzi
gatsinzij@biust.ac.bw

Vitalis Onyango-Otieno
vonyango@strathmore.edu

1 Strathmore Institute of Mathematical Sciences, Strathmore University, Box 59857, Nairobi, Kenya

2 Department of Mathematics, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
x_0, then it follows from the definition that
\[
G_n(X) = \text{im} \left(ev_n : \pi_n(\text{aut } X, 1_X) \rightarrow \pi_n(X, x_0) \right).
\]
Similarly, if $f : X \rightarrow Y$ is a based map between simply connected CW complexes and \(\text{map}(X, Y; f)\), the space of maps from X to Y which are homotopic to f, then $G_n(Y, X; f) = \text{im}(ev_n : \text{map}(X, Y; f) \rightarrow \pi_n(Y))$ is the nth evaluation subgroup of f [9]. In [10], Woo and Lee defined relative evaluation subgroups $G^r_n(X, Y; f)$ and showed that they fit in a sequence
\[
\cdots \rightarrow G^r_{n+1}(Y, X; f) \rightarrow G_n(X) \rightarrow G_n(Y, X; f) \rightarrow \cdots
\]
called the G-sequence of f.

We use Sullivan models to compute rational relative Gottlieb groups of the inclusion $Gr(2, n) \hookrightarrow Gr(2, n + 1)$. We refer to [4] for details and work over a field of characteristic zero in this case \mathbb{Q}.

Definition 1 A differential graded algebra (dga) is a graded algebra $A = \bigoplus_{n \geq 0} A^n$ together with a derivation $d, d = d_n : A^n \rightarrow A^{n+1}$ such that $d \circ d = 0$. Then (A, d) is called a cochain algebra. A graded algebra A is commutative if $a \cdot b = (-1)^{\deg a \cdot \deg b} b \cdot a$ for $a, b \in A$ [2, Chap. 3].

Definition 2 A Sullivan algebra is a commutative cochain algebra of the form $(\wedge V, d)$ where $V = \{V^p\}_{p \geq 2}$ and $\wedge V$ denotes the graded free commutative algebra on V. A Sullivan model for a commutative cochain algebra (A, d) is a quasi-isomorphism $m : (\wedge V, d) \rightarrow (A, d)$ from a Sullivan algebra $(\wedge V, d)$. A Sullivan algebra is said to be minimal if the differential is decomposable, that is, $\text{im } d \subset \wedge^+ V \cdot \wedge^+ V$. Moreover, if $H^0(A) = \mathbb{Q}$ then (A, d) has a minimal model which is unique up to isomorphism. If X is a nilpotent space and $A_{PL}(X)$ the commutative differential graded algebra (cdgga) of piecewise linear forms on X, then a Sullivan model of X is a Sullivan model of $A_{PL}(X)$ [2, Chap. 12].

2 Derivation spaces and the rationalized G-sequence

Given commutative differential graded algebras (A, d_A) and (B, d_B) and a map $\phi : A \rightarrow B$, define a ϕ-derivation of degree n to be a linear map $\theta : A^n \rightarrow B^{n-n}$ which satisfies $\theta(xy) = \theta(x)\phi(y) + (-1)^{|x|}\phi(x)\theta(y)$. We only consider derivations of positive degree. Let $\text{Der}_n(A, B; \phi)$ denote the vector space of all ϕ-derivations of degree n for $n > 0$. Define a linear map $D : \text{Der}_n(A, B; \phi) \rightarrow \text{Der}_{n-1}(A, B; \phi) \oplus D(\theta) = d_B \circ \theta - (-1)^{|\theta|}\theta \circ d_A$.

Then, $(\text{Der}_*(A, B; \phi), D)$ is a chain complex. In case $A = B$ and $\phi = 1_B$, the chain complex of derivations $\text{Der}_*(B, B; 1)$ is just the usual complex of derivations on the commutative differential graded algebra B [6]. If $\phi : (\wedge V, d) \rightarrow (\wedge W, d)$ is a Sullivan minimal model of $f : X \rightarrow Y$, then $H_n(\text{Der}(\wedge V, \wedge W; \phi), D) \cong \pi_n(\text{map}(X, Y; f)) \otimes \mathbb{Q}$; $n \geq 2$ [6], [1]. We note that $\text{Der}(\wedge V, B; \phi) \cong \text{Hom}(V, B)$. If $\{v_i\}$ is a basis of V, we denote by (v_i, b), the unique ϕ-derivation θ such that
\[
\begin{cases}
\theta(v_i) = b_i & b_i \in B, \\
\theta(v_j) = 0 & i \neq j.
\end{cases}
\]
Pre-composition with ϕ, respectively post-composition with the augmentation $\varepsilon : B \rightarrow \mathbb{Q}$, gives a map of chain complexes
\[
\phi^* : \text{Der}_*(B, B; 1) \rightarrow \text{Der}_*(A, B; \phi),
\]
respectively
\[\varepsilon_\ast : \text{Der}_n(A, B; \phi) \longrightarrow \text{Der}_n(A, \mathbb{Q}; \varepsilon). \]

Definition 3 Let \(\phi : V \longrightarrow W \) be a map of differential graded vector spaces. Define a differential graded vector space, \(\text{Rel}_n(\phi) \), called the mapping cone as follows. \(\text{Rel}_n(\phi) = sV_{n-1} \oplus W_n \) with differential \(\delta \) of degree \(-1\) given by \(\delta(sv, w) = (-sd_V(v), \phi(v) + d_W(w)) \) [7]. There are chain maps \(J : W_n \longrightarrow \text{Rel}_n(\phi) \) and \(P : \text{Rel}_n(\phi) \longrightarrow V_{n-1} \) defined by \(J(w) = (0, w) \) and \(P(sv, w) = v \). These give a short exact sequence of chain complexes
\[
0 \longrightarrow W_n \xrightarrow{J} \text{Rel}_n(\phi) \xrightarrow{P} V_{n-1} \longrightarrow 0,
\]
which leads to a long exact sequence in homology
\[
\cdots \longrightarrow H_{n+1}(\text{Rel}(\phi)) \xrightarrow{H(P)} H_n(V) \xrightarrow{H(\phi)} H_n(W) \xrightarrow{H(J)} H_n(\text{Rel}(\phi)) \longrightarrow \cdots,
\]
whose connecting homomorphism is \(H(\phi) \). We refer to this sequence as the long exact homology sequence of the map
\[\phi^* : \text{Der}_n(\bigwedge W, \bigwedge W; 1) \longrightarrow \text{Der}_n(\bigwedge V, \bigwedge V; \phi) \]
induced by the minimal model \(\phi : (\bigwedge V, d) \longrightarrow (\bigwedge W, d) \) of the map \(f : X \longrightarrow Y \).

Definition 4 Given a commutative differential graded algebra map \(\phi : A \longrightarrow B \), we have the following commutative diagram of differential graded vector spaces;
\[
\begin{array}{ccc}
\text{Der}_n(B, B; 1) & \xrightarrow{\phi^*} & \text{Der}_n(A, B; \phi) \\
\downarrow_{\varepsilon_n} & & \downarrow_{\varepsilon_n} \\
\text{Der}_n(B, \mathbb{Q}; \varepsilon) & \xrightarrow{\phi^*} & \text{Der}_n(A, \mathbb{Q}; \varepsilon).
\end{array}
\]
Here, \(\varepsilon \) denotes the augmentation of either \(A \) or \(B \). On passing to homology and using the naturality of the mapping cone construction, we obtain the following homology ladder \((n \geq 2)\),
\[
\begin{array}{ccccc}
\cdots & \xrightarrow{H(J)} & H_{n+1}(\text{Rel}(\phi^*)) & \xrightarrow{H(P)} & H_n(\text{Der}(B, B; 1)) & \xrightarrow{H(\phi^*)} & H_n(\text{Der}(A, B; \phi)) & \cdots \\
\downarrow_{H(\varepsilon_n, \varepsilon_n)} & & \downarrow_{H(\varepsilon_n)} & & \downarrow_{H(\varepsilon_n)} & & \downarrow_{H(\varepsilon_n)} \\
\cdots & \xrightarrow{H(J)} & H_{n+1}(\text{Rel}(\phi^*)) & \xrightarrow{H(P)} & H_n(\text{Der}(B, \mathbb{Q}; \varepsilon)) & \xrightarrow{H(\phi^*)} & H_n(\text{Der}(A, \mathbb{Q}; \varepsilon)) & \cdots.
\end{array}
\]

Definition 5 Suppose \(\phi : A \longrightarrow B \) is a map of commutative differential graded algebras, we define the evaluation subgroups of \(\phi \) by
\[
G_n(A, B; \phi) = \text{im\{ } H(\varepsilon_n) : H_n(\text{Der}(A, B; \phi)) \longrightarrow H_n(\text{Der}(A, \mathbb{Q}; \varepsilon)).\}
\]
In the special case \(A = B \) and \(\phi = 1_B \), we refer to the Gottlieb group of \(B \), and use the notation \(G_n(B) \). If \(B = (\bigwedge V, d) \) is a model of a simply connected space \(X \), then an element
\(\alpha \in G_n(B) \) is represented by a linear mapping \(f : V^n \rightarrow \mathbb{Q} \) that extends into a derivation \(\theta \) of \(\wedge V \) such that \(\theta \theta = 0 \). Moreover, \(G_n(B) \cong G_n(X_{\mathbb{Q}}) [2, \text{Proposition 29.8}] \).

The \(n \)th relative evaluation subgroup of \(\phi \) is defined by;

\[
G^{	ext{rel}}_n(A, B; \phi) = \text{im}\{H(\varepsilon_\ast, \varepsilon_\ast) : H_n(\text{Rel}(\phi^{\ast})) \rightarrow H_n(\text{Rel}(\hat{\phi}^{\ast}))\}.
\]

Then the image of the upper long sequence in the lower, of the ladder above, gives a sequence

\[
\cdots \rightarrow H(\hat{J}) \rightarrow G^{	ext{rel}}_n(A, B; \phi) \xrightarrow{H(\hat{P})} G_n(B) \xrightarrow{H(\hat{\phi}^{\ast})} G_n(A, B; \phi) \xrightarrow{H(\hat{J})} \cdots
\]

that terminates in \(G_2(A, B; \phi) \).

We refer to this sequence as the \(G \)-sequence of the map \(\phi : A \rightarrow B \). This can be applied to the minimal model \(\phi : (\wedge V, d) \rightarrow (\wedge W, d) \) of the map \(f : X \rightarrow Y \) as stated and proved in [6, Theorem 3.5].

3 The inclusion \(Gr(2, n) \hookrightarrow Gr(2, n + 1) \)

Let \(Gr(k, n) \) be the Grassmann manifold of \(k \)-dimensional subspaces of \(\mathbb{C}^n \). The cohomology ring \(H^\ast(Gr(k, n), \mathbb{Q}) \) is generated by the Chern classes \(c_i \in H^{2i}(Gr(k, n), \mathbb{Q}) \), for \(1 \leq i \leq k \). Further, the cohomology ring has a presentation

\[
H^\ast(Gr(k, n), \mathbb{Q}) = \wedge(c_1, c_2, \ldots, c_k)/(h_{n-k+1}, \ldots, h_n),
\]

as the quotient of the polynomial ring generated by \(c_1, c_2, \ldots, c_k \), \(|c_i| = 2i \), modulo the ideal generated by the elements \(h_j, n-k+1 \leq j \leq n \). Here, \(h_j \) is defined as the \(2j \)th degree term in the Taylor’s expansion of \((1 + c_1 + c_2 + c_3 + \cdots + c_k)^{-1} \) where \((1 + c_1 + c_2 + c_3 + \cdots + c_k) \) is the total Chern class [4].

In particular, the cohomology rings of \(Gr(2, n) \) and \(Gr(2, n + 1) \) are:

\[
H^\ast(Gr(2, n), \mathbb{Q}) = \wedge(y_2, y_4)/(h_{n-1}, h_n) \quad \text{and} \quad H^\ast(Gr(2, n + 1), \mathbb{Q}) = \wedge(x_2, x_4)/(h_n, h_{n+1}) \quad \text{respectively.}
\]

The minimal model of \(Gr(2, n) \) is \((\wedge(y_2, y_4, y_{2n-3}, y_{2n+1}), d) \) with \(d(y_2) = d(y_4) = 0 \), \(d(y_{2n-3}) = h_{n-1}, d(y_{2n+1}) = h_n \). In the same way, a model of \(Gr(2, n + 1) \) is given by \((\wedge(x_2, x_4, x_{2n-3}, x_{2n+1}), d) \) with \(dx_2 = dx_4 = 0, dx_{2n-1} = h_n \) and \(dx_{2n+1} = h_{n+1} \).

Lemma 1 \(h_{n+1} = -x_2 h_n - x_4 h_{n-1} \).

Proof Write the Taylor series \(1 + x_2 + x_4)^{-1} = 1 + h_1 + h_2 + \cdots \) where, \(|h_i| = 2i \). From \((1 + x_2 + x_4)(1 + x_2 + x_4)^{-1} = 1\), one gets the relation \(h_{n+1} = -x_2 h_n - x_4 h_{n-1} \) \(\square \)

In particular, \(h_{n+1} \) is co-boundary in \((\wedge(x_2, x_4, x_{2n-3}, x_{2n-1}), d) \), that is, there exists \(\alpha \) of degree \(2n + 1 \) such that \(d\alpha = h_{n+1} \).

Theorem 1 Let \(B = (\wedge(y_2, y_4, y_{2n-3}, y_{2n-1}), d) \). Then \(G_n(B) = \langle [y^\ast_{2n-3}], y^\ast_{2n-1} \rangle \).

Proof Let \(\alpha_{2n-3} = (y_{2n-3}, 1) \) and \(\alpha_{2n-3} = (y_{2n-3}, 1) \). Then \(\delta \alpha_{n-1} = \delta \alpha_{2n-3} = 0 \). Moreover, \(\alpha_{2n-3} \) and \(\alpha_{2n-1} \) can not be boundaries for degree reason. Therefore, \([\alpha_{2n-3}] \) and \([\alpha_{2n-1}] \) are non zero homology classes in \(H_n(Der(B, B; 1)) \). Further, \(\varepsilon_\ast(\alpha_{2n-3}) = y^\ast_{2n-3} \) and \(\varepsilon_\ast(\alpha_{2n-1}) = y^\ast_{2n-1} \).

As \(Gr(2, n) \) is a finite CW-complex then \(G_{even}(B) = 0 [2, \text{Pg.379}] \). Hence, \(G_n(B) = \langle [y^\ast_{2n-3}], [y^\ast_{2n-1}] \rangle \).

\(\square \) Springer
The inclusion $Gr(2, n) \hookrightarrow Gr(2, n + 1)$ has a model of the form

$$\phi : \wedge V = \left(\wedge (x_2, x_4, x_{2n-1}, x_{2n+1}), d\right) \rightarrow \left(\wedge (y_2, y_4, y_{2n-3}, y_{2n-1}), d\right) = B$$

where $\phi(x_2) = y_2, \phi(x_4) = y_4, \phi(x_{2n-1}) = y_{2n-1}$ and $\phi(x_{2n+1}) = \alpha$ where $d\alpha = h_{n+1}$ by Lemma 1.

Theorem 2 Consider the inclusion $Gr(2, n) \hookrightarrow Gr(2, n + 1)$ and $\phi : (\wedge V, d) \rightarrow (B, d)$ its Sullivan model, then $G_*(\wedge V, B; \phi) \cong \langle [x_{2n-1}^*, [x_{2n+1}^*]\rangle$.

Proof As $Gr(2, n)$ is formal, $Der(\wedge V, B; \phi) \xrightarrow{\cong} Der(\wedge V, H(B); f \circ \phi)$ where $f : B \xrightarrow{\cong} H(B)$ is a quasi isomorphism. Similarly, since B is formal $Der(B, B; 1) \cong Der(B, H(B); f)$. Define $\theta_{2n-1} = (x_{2n-1}, 1), \theta_{2n+1} = (x_{2n+1}, 1)$ in $Der(\wedge V, H(B); f \circ \phi)$, and $\delta\theta_{2n-1} = \delta\theta_{2n+1} = 0$. Moreover, θ_{2n-1} and θ_{2n+1} are nonzero cohomology classes in $H_*(Der(\wedge V, H^*(B); f \circ \phi))$.

We note that, $\theta_2 = (x_2, 1)$ and $\theta_4 = (x_4, 1)$ are not cycles in $Der(\wedge V, H(B); f \circ \phi)$ [8]. Further, $H_*(\theta_{2n-1}) = [x_{2n-1}^*] \in G_{2n-1}(\wedge V, B; f \circ \phi)$. In a similar way, $H_*(\theta_{2n+1}) = [x_{2n+1}^*] \in G_{2n+1}(\wedge V, B; f \circ \phi)$. It then follows that $G_*(\wedge V, B; f \circ \phi) = \langle [x_{2n-1}^*], [x_{2n+1}^*]\rangle$. \hfill \Box

Theorem 3 Consider the inclusion $Gr(2, n) \hookrightarrow Gr(2, n + 1)$ and

$$\phi : (\wedge V, d) = \left(\wedge (x_2, x_4, x_{2n-1}, x_{2n+1}), d\right) \rightarrow \left(\wedge V(y_2, y_4, y_{2n-3}, y_{2n-1}), d\right) = B$$

its Sullivan model, then $G_*^{rel}(\wedge V, B; \phi) = \langle ([x_{2n-3}^*, 0]), ([0, y_{2n+1}^*])\rangle$.

Proof Consider the diagram below [6].

$$
\begin{array}{ccc}
Der(B, H(B); f) & \xrightarrow{\phi^*} & Der(\wedge V, H(B); f \circ \phi) \\
\downarrow{\varepsilon_*} & & \downarrow{\varepsilon_*} \\
Der(B, \mathbb{Q}; \varepsilon) & \xrightarrow{\hat{\phi}^*} & Der(\wedge V, \mathbb{Q}; \varepsilon) \\
& \downarrow{\varepsilon_*} & \downarrow{\varepsilon_*} \\
& \xrightarrow{\hat{\phi}^*} & Rel(\phi^*) \\
& & \downarrow{\varepsilon_*} \\
& & Rel(\phi^*)
\end{array}
$$

Let $\alpha_{2n-1} = (y_{2n-1}, 1), \alpha_{2n-3} = (y_{2n-3}, 1) \in Der(B, H(B); f)$ and $\theta_{2n-1}, \theta_{2n+1} \in Der(\wedge V, H^*(B); \phi)$ as defined above. Then $\phi^*(\alpha_{2n-1}) = \theta_{2n-1}$ and $\phi^*(\alpha_{2n-3}) = 0$.

Further, $D(\alpha_{2n-1}, 0) = (0, \theta_{2n-1}), D(\alpha_{2n-3}, 0) = (0, 0)$ and $D(0, \theta_{2n-1}, 0) = D(0, \theta_{2n+1})$. Therefore, $\langle [\alpha_{2n-3}, 0] \rangle$ and $\langle (0, \theta_{2n+1}) \rangle$ are non zero homology classes in $H_*(Rel(\phi^*))$. Moreover, $H_*(\varepsilon_*, \varepsilon_*)([\alpha_{2n-3}, 0]) = ([x_{2n-3}^*, 0])$ and $H_*(\varepsilon_*, \varepsilon_*)([0, \theta_{2n+1}]) = ([0, y_{2n+1}])$. A straightforward computation shows that $\langle [x_{2n-3}^*, 0] \rangle$ and $\langle (0, y_{2n+1}^*) \rangle$ span $H_*(\varepsilon_*, \varepsilon_*)$. \hfill \Box
The G-sequence reduces to

\[
0 \longrightarrow G_{2n+1}(\wedge V, B; \phi) \xrightarrow{H(J)} G_{2n+1}^{rel}(\wedge V, B; \phi) \longrightarrow 0 \cdots
\]

\[
\cdots 0 \longrightarrow G_{2n-1}(B) \xrightarrow{H(\phi^s)} G_{2n-1}(\wedge V, B; \phi) \longrightarrow 0 \cdots
\]

\[
\cdots 0 \longrightarrow G_{2n-2}^{rel}(\wedge V, B; \phi) \xrightarrow{H(P)} G_{2n-3}(B) \longrightarrow 0.
\]

and is exact.

Example 1 Consider $Gr(2, 4) \rightarrow Gr(2, 5)$. A model of the inclusion is given by

\[\phi : \wedge V = \left(\wedge (x_2, x_4, x_7, x_9), d \right) \longrightarrow \left(\wedge (y_2, y_4, y_5, y_7), d \right) = B,\]

where $dx_2 = dx_4 = 0$, $dx_7 = x_2^2 - 3x_2^2x_4 + x_4^2$, $dx_9 = 4x_2^3x_4 - 3x_2x_4^2 - x_5^2$ $dy_2 = dy_4 = 0$, $dy_5 = 2y_2y_4 - y_2^3$ and $dy_7 = y_4^2 - 3y_2y_4 + y_4^2$.

Moreover, $\phi(x_2) = y_2$, $\phi(x_4) = y_4$, $\phi(x_7) = y_7$ and $\phi(x_9) = -y_2y_7 - y_4y_4$.

We compute $G_{s}^{rel}(\wedge V, B; \phi)$. Let $\alpha_7 = (y_7, 1)$, $\alpha_5 = (y_5, 1) \in \text{Der}_s(B, H(B); f)$ where $f : B \cong H(B)$ and $\theta_7 = (x_7, 1)$, $\theta_9 = (x_9, 1) \in \text{Der}(\wedge V, H^s(B); f \circ \phi)$ then $\phi^s(\alpha_7) = \theta_7$ and $\phi^s(\alpha_5) = 0$. Moreover, $D(sa\alpha_7, 0) = (0, \theta_7)$, $D(sa\alpha_5, 0) = (0, 0)$ and $D(0, \theta_9) = (0, 0)$. Hence $[(s\alpha_5, 0)]$ and $[(0, \theta_9)]$ are non zero homology classes. Moreover, $(\epsilon_5, \epsilon_9)(s\alpha_5, 0) = (s\gamma_5^s, 0)$, $(\epsilon_5, \epsilon_9)(0, \theta_9) = (0, y_9^s)$. Therefore

\[G_{s}^{rel}(\wedge V, B; \phi) = \left\{ [(0, x_9^s)], [(s\gamma_5^s, 0)] \right\} .\]

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Buijs, U., Murillo, A.: The rational homotopy Lie algebra of function spaces. Comment. Math. Helv. 83(4), 723–739 (2008)
2. Félix, Y., Halperin, S., Thomas, J.-C.: Rational Homotopy theory, Graduate Texts in Mathematics, vol. 205. Springer, New York (2001)
3. Gottlieb, D.H.: Evaluation subgroups of homotopy groups. Am. J. Math. 91, 729–756 (1969)
4. Hoffman, M.: Endomorphisms of the cohomology of complex Grassmannians. Trans. Am. Math. Soc. 281(2), 745–760 (1984)
5. Lee, K.-Y., Mimura, M., Woo, M.H.: Gottlieb groups of homogeneous spaces. Topol. Appl. 145(1–3), 147–155 (2004)
6. Lupton, G., Smith, S.B.: Rationalized evaluation subgroups of a map I: Sullivan models, derivations and G-sequences. J. Pure Appl. Algebra 209(1), 159–171 (2007)
7. MacLane, S.: Homology. Springer, New York (2012)
8. Otieno, P.A., Gatsinzi, J.-B., Otieno, V.O.: Rational homotopy type of mapping spaces between complex Grassmannian. Quaest. Math
9. Woo, M.H., Kim, J.-R.: Certain subgroups of homotopy groups. J. Korean Math. Soc. 21(2), 109–120 (1984)
10. Woo, H.H., Lee, K.Y.: On the relative evaluation subgroups of a CW-pair. J. Korean Math. Soc. 25, 149–160 (1988)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.