REVIEW

Recent advances in preoperative management of esophageal adenocarcinoma [version 1; peer review: 2 approved]

Kazuto Harada1,2, Dilsa Mizrak Kaya1, Hideo Baba2, Jaffer A. Ajani1

1Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Holcombe Boulevard, Texas, USA
2Department of Gastroenterological Surgery, Kumamoto University, Jonjo, Kumamoto, Japan

First published: 18 Apr 2017, 6(F1000 Faculty Rev):501
Latest published: 18 Apr 2017, 6(F1000 Faculty Rev):501
https://doi.org/10.12688/f1000research.10794.1

Abstract
Esophageal cancer is an aggressive malignancy with increasing incidence, and the prognosis of patients treated by surgery alone remains dismal. Preoperative treatment can modestly prolong overall survival. Preoperative chemotherapy or chemoradiation is the standard of care for resectable esophageal cancer (greater than clinical stage I and less than clinical stage IV). One of the challenges is to predict complete response in the surgical specimen from preoperative therapy and to avoid surgery in some patients but also predict ineffectiveness of preoperative therapy if the tumor is resistant and avoid such therapies altogether. In-depth understanding of the molecular biology could lead to personalized therapy, and in the future, clinical trials designed according to molecular features are expected. Here, we summarize preoperative treatment for esophageal adenocarcinoma and their potential.

Keywords
Esophageal cancer, preoperative therapy, personalized therapy

Open Peer Review

Invited Reviewers
1
2

version 1
18 Apr 2017

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1. Rupert Langer, Institute of Pathology, Bern, Switzerland
2. Efriede Bollschweiler, University of Cologne, Köln, Germany

Any comments on the article can be found at the end of the article.
Introduction

Esophageal cancer (EC) is estimated to be the eighth most common cause of cancer in the world (456,000 cases) and the sixth most common cause of cancer death (400,000 deaths)

EC has two common histologic types: adenocarcinoma (EAC) and squamous cell carcinoma (ESCC). EAC is becoming prevalent worldwide, especially in North America and Western Europe.

Esophagectomy is the most effective treatment for loco-regional control, but the 5-year survival rate after esophagectomy for locally advanced EC without preoperative treatment is less than 30%.

For early-stage EC, endoscopical resection or esophagectomy with or without preoperative therapy is one of the available options.

For the metastatic EAC, two-drug cytotoxic regimens, mainly a combination of a fluoropyrimidine and a platinum compound is recommended, and if EAC overexpresses HER2, trastuzumab should be added to chemotherapy.

In case of locally advanced EC, despite radical resection, local-regional and distant recurrence develop in 33% and 20% of patients after resection, respectively.

The pre-existing occult micrometastases or unresected occult local disease is responsible for relapses. Interestingly, in one study, at the time of operation, 88% of patients with EC were already found to have micro-metastases in rib marrow aspirated during esophagectomy.

To overcome relapses after surgery, preoperative or postoperative treatments have been developed. Importantly, preoperative therapy can modestly prolong overall survival (OS) and increase the R0 resection rate.

Table 1. Key esophageal cancer trials.

Study	Enrolled number	Treatment	Overall survival	Hazard ratio (95% confidence interval)	P value	References
Preoperative chemotherapy						
MRC OEO2	802	CF → surgery (n = 400)	5-year rate: 23%	0.84 (0.72-0.98)	0.03	11
		Surgery (n = 402)	5-year rate: 17%			
FNCLCC and FFCD	224	CF → surgery (n = 113)	5-year rate: 38%	0.69 (0.50-0.95)	0.02	13
		Surgery (n = 111)	5-year rate: 24%			
MAGIC	503	ECX → surgery (n = 250)	5-year rate: 36%	0.75 (0.60-0.93)	0.009	12
		Surgery (n = 253)	5-year rate: 23%			
INT 113	440	CF → surgery (n = 213)	Median: 14 months	1.04 (0.84-1.29)	0.53	15
		Surgery (n = 227)	Median: 16 months			
MRC OEO5	897	CF → surgery (n = 446)	3-year rate: 39%	0.92 (0.79-1.08)	0.30	14
		CF → surgery (n = 451)	3-year rate: 42%			
Preoperative chemoradiotherapy						
CROSS	368	Taxol/carbo/41.4 Gy → surgery (n = 180)	Median: 48 months	0.68 (0.53-0.88)	0.003	18
		Surgery (n = 188)	Median: 24 months			
FFCD 9901	195	CF/45 Gy → surgery (n = 98)	5-year rate: 41%	0.99 (0.69-1.30)	0.94	21
		Surgery (n = 97)	5-year rate: 33%			
CALGB 9781	56	CF/50.4 Gy → surgery (n = 30)	5-year rate: 39%	- (0.17-0.68)	0.002	20
		Surgery (n = 26)	5-year rate: 16%			
Preoperative chemotherapy vs. preoperative chemoradiotherapy						
POET	119	CF/30 Gy → surgery (n = 60)	3-year rate: 47%	0.67 (0.47-1.07)	0.07	22
		CF → surgery (n = 59)	3-year rate: 27%			
Burmeister et al.	75	CF/35 Gy → surgery (n = 39)	Median: 32 months	-	0.83	23
		CF → surgery (n = 36)	Median: 29 months			
NeoRes	181	CF/40 Gy → surgery (n = 91)	3-year rate: 47%	-	0.77	24
		CF → surgery (n = 90)	3-year rate: 49%			

CALGB, Cancer and Leukemia Group B; CF, cisplatin and 5 fluorouracil; CROSS, Chemoradiotherapy for esophageal Cancer Followed by Surgery Study; ECF, epirubicin, cisplatin, and fluorouracil; ECX, epirubicin, cisplatin and capecitabine; FFCD, Fédération Francophone de Cancérologie Digestive; FNCLCC, Fédération Nationales des Centres de Lutte Contre le Cancer; MAGIC, Medical Research Council Adjuvant Gastric Infusional Chemotherapy; MRC, United Kingdom Medical Research Council; POET, Preoperative Chemotherapy or Radiochemotherapy in Esophago-gastric Adenocarcinoma.
Preoperative chemotherapy

Several trials have produced mixed results. Firstly, the United Kingdom Medical Research Council (MRC) oesophageal cancer trial (OEO2) recruited 802 patients (EAC: 67%) and randomly assigned them to two treatment groups: 400 to surgery plus perioperative chemotherapy—two cycles of FP (cisplatin and fluorouracil)—and 402 to surgery alone. As compared with the surgery group, the perioperative chemotherapy group had a favorable OS (5-year rate: 23% versus 17%; hazard ratio [HR] 0.84; 95% confidence interval [CI] 0.72 to 0.98; P = 0.03), thus showing only marginal benefit.11,12

The other two trials added postoperative chemotherapy to preoperative chemotherapy. The Medical Research Council Adjuvant Gastric Infusional Chemotherapy (MAGIC) trial evaluated the effect of perioperative chemotherapy—three preoperative and three postoperative cycles of ECF (epirubicin, cisplatin, and fluorouracil)—for resectable gastro-esophageal (GE) adenocarcinoma.13 Five hundred and three patients were randomly assigned to two treatment groups: 250 to surgery plus perioperative chemotherapy and 253 to surgery alone. As compared with the surgery-alone group, the perioperative chemotherapy group had a favorable OS (5-year rate: 36% versus 23%; HR 0.75; 95% CI 0.60 to 0.93; P = 0.009). However, only 25% of patients in this trial had EAC or GE junction involvement.

Finally, in the Fédération Nationales des Centres de Lutte Contre le Cancer/Fédération Francophone de Cancérologie Digestive (FNCLCC/FFCD) trial, 224 patients were randomly assigned to two treatment groups: 113 to surgery plus perioperative chemotherapy (two or three preoperative and three or four postoperative cycles of CF) and 111 to surgery alone14. In this trial, 75% of patients had EAC. Compared with the surgery-alone group, the perioperative chemotherapy group had a favorable OS (5-year rate: 38% versus 24%; HR 0.69; 95% CI 0.50 to 0.95; P = 0.02). Moreover, perioperative chemotherapy significantly increased the R0 resection rate (84% versus 73%; P = 0.04). These trial results were considered acceptable, and perioperative chemotherapy became standard therapy in Europe. Recently, the MRC-OEO5 trial compared two chemotherapy regimens: two cycles of FP and four cycles of ECX (epirubicin, cisplatin, and capecitabine)15. The ECX group had a higher R0 resection rate and pCR; however, there was no OS benefit for ECX compared with FP (3-year rate: 42% versus 39%; HR 0.92; 95% CI 0.79 to 1.08; P = 0.30). Furthermore, chemotherapy toxicity was higher in the ECX group16. This trial suggests that perioperative chemotherapy with more drugs and longer duration is not worthwhile and the addition of epirubicin does not provide any advantage.

The first and only study conducted in the US was the RTOG trial 8911 (USA Intergroup 113), which demonstrated no advantage from the addition of perioperative chemotherapy to surgery.15,16. Thus, enthusiasm for perioperative chemotherapy has been low in the US and perioperative chemoradiation has been favored.

Preoperative chemoradiation

A prior meta-analysis proposed that perioperative chemoradiation may be beneficial; however, meta-analyses are only hypothesis-generating17. In 2012, the Chemoradiotherapy for esophageal Cancer Followed by Surgery Study (CROSS) trial produced favorable results for patients who received perioperative chemoradiation over surgery alone18. Three hundred sixty-eight resectable but selected patients with EC (EAC: 75%) were randomly assigned to two treatment groups: 180 to surgery plus perioperative chemoradiation and 188 to surgery alone. The long-term result of the CROSS study showed that the median OS for the perioperative chemoradiation group was significantly longer than that for the surgery-alone group (median of 48.6 versus 24.0 months; HR 0.68; 95% CI 0.53 to 0.88; P = 0.003)19. Importantly, the benefit for patients with ESCC was higher than for patients with EAC: Median OS rates for patients with ESCC were 81.6 months in the perioperative chemoradiation group and 21.1 months in the surgery-alone group (HR 0.48; 95% CI 0.28 to 0.83; P = 0.008), whereas the rates for patients with EAC were 43.2 months in the perioperative chemoradiation group and 27.1 months in the surgery-alone group (HR 0.73; 95% CI 0.55 to 0.98; P = 0.038)19. The rate of R0 resection increased because of perioperative chemoradiation. A previous prospective randomized CALGB 9781 trial compared surgery plus perioperative chemoradiation (cisplatin and fluorouracil with 50.4-Gy concurrent radiotherapy) and surgery alone and showed benefit for perioperative chemoradiation20. However, this trial assessed only 56 patients (EAC: 75%).

The benefit from perioperative chemoradiation for patients with early-stage EC remains debatable. The result of the FFCD 9901 trial, which compared the surgery-alone group (n = 97, EAC: 28%) with the perioperative chemoradiation group (n = 98, EAC: 31%), unfortunately did not show an increase in the R0 resection rate or OS benefit but did have an increase in postoperative mortality21.

The type of chemotherapy agents and radiation dose differ among trials. The CROSS study used paclitaxel and carboplatin plus 41.4-Gy concurrent radiotherapy; on the other hand, the FFCD 9901 study used CF plus 45-Gy concurrent radiotherapy. Although the OS benefit from perioperative chemotherapy is modest to marginal, the types of combinations have varied (FP or ECF regimen)21,22. In the current National Comprehensive Cancer Network guidelines, ECF has been downgraded on the basis of the OEO5 trial results23. Importantly, no trial has been completed that compared preoperative chemotherapy with perioperative chemoradiation. An ongoing trial might settle this issue. The PROTECT (PReoperative Chemoradiation (Paclitaxel-carboplatin or FOLFOX) for Resectable Esophageal and Junctional Cancer) study24 (NCT02359968) is comparing carboplatin and paclitaxel with FOLFOX during radiation. Another phase II trial (NCT01843829) is comparing carboplatin and paclitaxel with oxaliplatin and capecitabine. Additionally, the Neo-AEGIS trial (NCT01726452) is currently comparing the CROSS regimen with the MAGIC regimen. Results are expected in the near future.

Chemotherapy and chemoradiation

A recent meta-analysis compared preoperative chemoradiotherapy (n = 1,078) and chemotherapy (n = 1,141) for both EAC and ESCC, showing better OS of preoperative chemoradiation but not to a significant degree (HR 0.88; 95% CI 0.76 to 1.01; P = 0.07)25. To date, three randomized trials have compared preoperative chemoradiotherapy with chemotherapy, but none showed a benefit in OS of preoperative chemoradiation. The Preoperative Chemotherapy or Radiochemotherapy in Esophago-gastric Adenocarcinoma (POET) trial failed to recruit a sufficient number to
document an OS advantage for preoperative chemoradiation, and the trial had to be terminated early\(^2\). The pCR rate was higher with preoperative chemoradiation compared with preoperative chemotherapy (15.6\% versus 2.0\%)\(^3\). Another phase II trial also showed no benefit from preoperative chemoradiation for patients with EAC; the median OS was 32 months from preoperative chemoradiation compared with 29 months from preoperative chemotherapy \((P = 0.83)\)\(^3\). Another trial compared neoadjuvant chemotherapy with chemoradiotherapy in resectable cancer of the esophagus and gastric cardia patients \((n = 181\) with 73\% EAC), and although chemoradiation resulted in a higher pCR rate (28\% versus 9\%), higher R0 resection rate (87\% versus 74\%), and a lower rate of lymph nodal metastases (35\% versus 62\%), there was no OS benefit (3-year OS: 49\% versus 47\%; \(P = 0.77)\)\(^4\).

Our group retrospectively reviewed sequential phase II/III trials performed at the University of Texas M.D. Anderson Cancer Center, showing that compared with preoperative chemotherapy, preoperative chemoradiation exhibited a longer OS \((P = 0.046)\) and disease-free survival \((P = 0.015)\) and the higher pCR rate \((P < 0.001)\)\(^5\).

Induction chemotherapy followed by preoperative chemoradiation

Our group had proposed a strategy of induction chemotherapy before preoperative chemoradiation\(^6\). To document whether there is any benefit to the addition of induction chemotherapy, we reported a randomized phase II trial that compared induction chemotherapy followed by preoperative chemoradiation with preoperative chemoradiation only. One hundred twenty-six patients with localized EAC were randomly assigned to one of two groups. The median OS rates with and without induction chemotherapy were 43.6 and 45.6 months, respectively. The pCR rates were 13\% in the no induction chemotherapy group and 26\% in the induction chemotherapy group \((P = 0.094)\), concluding that induction chemotherapy did not appear to benefit these patients\(^2\). However, subgroup analysis showed that induction chemotherapy had a considerable benefit for only those patients who had a well-moderate differentiated tumor\(^8\).

Preoperative treatment with molecular targeting drug

Currently, there is no evidence that the addition of a targeted drug benefits to patients with localized EC. In patients with advanced EAC or gastric cancer, the ToGA (Trastuzumab for Gastric Cancer) trial showed that the addition of HER2 inhibitor, trastuzumab, to chemotherapy had modest benefit\(^7\). However, the benefit of trastuzumab in the neoadjuvant setting is not established. In Japan, a phase II trial is evaluating S-1 plus cisplatin with or without trastuzumab in the neoadjuvant setting for HER2-positive gastric or esophagogastroduodenal junction adenocarcinoma\(^9\). Epidermal growth factor receptor (EGFR) inhibitors have been evaluated in this setting\(^2\) on the basis of a tantalizing phase II study which added cetuximab to chemoradiation and produced a pCR rate of 27\%\(^11\). However, two phase III trials that added an EGFR inhibitor to dCRT (definitive chemoradiation) failed to show survival benefit\(^11,13\). In addition, bevacizumab or erlotinib was evaluated with preoperative chemoradiation but did not demonstrate survival benefit or improvement in the pCR rate\(^6\).

Future perspective

Approximately 25\% of patients who undergo preoperative chemoradiation achieve a pCR\(^1\). If one could predict the possibility of pCR with a high level of certainty, then novel strategies to preserve the esophagus could be implemented. However, there are no useful clinical variables including positron emission tomographic (PET) changes and there are no reliable biomarkers for such a prediction at the moment. A clinical CR defined as endoscopic biopsies without cancer cells and PET scan with physiologic uptake provides an OS benefit\(^7\) but does not correlate with pCR\(^3\). Therefore, we recommend that all patients eligible for surgery proceed to surgery after recovering from chemoradiation.

Recently, whole-genome analyses of EAC have been reported\(^12\)–\(^4\). The Cancer Genome Atlas reported an integrated genomic landscape in EC, showing that genomic characterization of EAC was different from that of ESCC but similar to that of gastric cancer subtype “CIN, chromosomal instability”\(^40,41\). Mutations in TP53, CDK2N2A, ARID1A, and SMAD4 were common in EAC. Amplifications in ERBB2, VEGFA, GATA4, and GATA6 were common in EAC. A positive result for microsatellite instability or Epstein-Barr virus was rare in EAC. However, there were some differences between EAC and gastric cancer subtyped with CIN. Compared with gastric cancer, EAC had more frequent CpG hyper-methylation phenotype, VEGFA and MYC amplifications and mutation of SMARCA4, deletion of tumor suppressor RUNX1, FHIT, and WWOX, and lower APC pathway activation\(^40\). The molecular features of EAC were significantly different from that of ESCC. ESCC had significantly mutated genes, such as TP53, NFE2L2, MLL2, ZNF750, NOTCH1, and TGFB2, and specific somatic copy number alterations, such as amplifications of SOX2, TERT, FGFR1, MDM2, and NXX2-1 and deletion of RB1. Compared with EAC, inactivation of CDKN2A, amplification of CCND1 and TP63/SOX2, and alterations of histone-modifying factors were more common in ESCC; conversely, ERBB2 alterations were rare, suggesting that molecular targeting can differ between EAC and ESCC\(^46\). Sercier et al. reported whole-genome sequencing in 129 EAC samples and classified EAC into three groups: C>T/A dominant (29\%), DNA damage repair (DDR) impaired (18\%), and mutagenic (53\%)\(^46\). The report recommends that, in some patients, the combination of anti-ERBB2 and anti-MET inhibition might prove useful. In the presence of DDR impairment, inhibition by poly ADP ribose polymerase (PARP) inhibitor in combination with DNA-damaging agent might prove useful. Recently, immune-checkpoint pathways, such as T lymphocyte-associated antigen 4 (CTLA-4) and programmed
death protein 1/its ligand (PD-1/PD-L1), have received much attention. Therefore, tumors that have high mutation load may be amenable to immune-checkpoint inhibitors.

Several biomarkers that may be associated with response to preoperative therapy have been explored. For instance, 3'-untranslated region polymorphisms of thymidylate synthase may predict a response to 5-fluorouracil (5-FU)-based chemoradiation. Overexpression of excision repair cross-complementation group 1 may be associated with chemoradiation response, especially with platinum agent. MicroRNAs also have potential as predictive markers. Hale et al. reported that the proportion of tumor in biopsy tissue can predict preoperative chemotherapy response; however, these data need to be validated and combined with biomarkers.

Recently, liquid biopsy has been actively studied and is of considerable interest. Tumor-derived biomarkers in the bloodstream, such as circulating tumor cells (CTCs), cell-free DNA (ctDNA), and exosomes, have the potential to predict early treatment response. For instance, in several cancers, changes in CTC count were associated with response to treatment. In colorectal cancer, during treatment, mutation or copy number status in ctDNA can be dynamically monitored. Further studies and clinical applications are expected.

Conclusions
This review described an understanding of preoperative therapy for EC. The benefits of preoperative treatment, and preoperative chemoradiation in particular, have been established. Currently, preoperative chemoradiation is preferred over preoperative chemotherapy in the US. Head-to-head comparison of preoperative chemotherapy versus preoperative chemoradiation is not completed as it is a subject of ongoing trials. A further challenge is to identify patients who are destined to achieve a pCR. CTCs or ctDNA might prove useful in surveillance after therapy and occasionally for selection of therapy.

Author contributions
KH helped to conceive the study and prepared the first draft of the manuscript. DK and JA helped to conceive the study. All authors contributed to the preparation of the manuscript and were involved in the revision of the draft and have agreed to the final content.

Competing interests
The authors declare that they have no competing interests.

Grant information
This work was supported by generous grants from the Caporella, Dallas, South, Park, Smith, Frazier, Oaks, Vanstekekenbergh, Plantjery, and Cantu Families. From the Scherker Private Foundation, Rivercreek Foundation, Kevin Fund, Myer Fund, Milrod Fund, and Multidisciplinary Grants from the University of Texas M. D. Anderson Cancer Center, Houston, USA. Supported in part by the National Cancer Institute and Department of Defense awards CA138671, CA172741, CA129926, CA150334 (JAA). Supported by a grant from Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers from Japan Society for the Promotion of Science (KH).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References
1. Ferlay J, Soerjomataram I, Dikshit R, et al.: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015; 136(5): E359–66. Published Abstract | Publisher Full Text
2. Lagergren J, Bergström R, Lindgren A, et al.: Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med. 1999; 340(11): 825–31. Published Abstract | Publisher Full Text
3. Hirst J, Smithers BM, Goh D, et al.: Defining cure for esophageal cancer: analysis of actual 5-year survivors following esophagectomy. Ann Surg Oncol. 2011; 18(6): 1766–74. Published Abstract | Publisher Full Text
4. Ajan JA, D’Amico TA, Almhanna K, et al.: Esophageal and esophagogastric junction cancers, version 1.2015. J Natl Compr Canc Netw. 2015; 13(2): 194–227. Published Abstract
5. Mariette C, Balon JM, Piessen G, et al.: Pattern of recurrence following complete resection of esophageal carcinoma and factors predictive of recurrent disease. Cancer. 2003; 97(7): 1616–23. Published Abstract | Publisher Full Text
6. O’Sullivan GC, Sheehan D, Clarke A, et al.: Micrometastases in esophagogastric cancer: high detection rate in resected rib segments. Gastroenterology. 1999; 116(3): 543–8. Published Abstract | Publisher Full Text
7. Rice TW, Rusch VW, Apperson-Hansen C, et al.: Worldwide esophageal cancer collaboration. Dis Esopagus. 2009; 22(1): 1–8. PubMed Abstract | Publisher Full Text
8. Donahue JM, Nichols FC, Li Z, et al.: Complete pathologic response after neoadjuvant chemoradiotherapy for esophageal cancer is associated with enhanced survival. Ann Thorac Surg. 2009; 87(2): 392–8; discussion 398–9. PubMed Abstract | Publisher Full Text | Free Full Text
9. Berger AC, Farma J, Scott WJ, et al.: Complete response to neoadjuvant chemoradiotherapy in esophageal carcinoma is associated with significantly improved survival. J Clin Oncol. 2005; 23(19): 4330–7. PubMed Abstract | Publisher Full Text
10. Medical Research Council Oesophageal Cancer Working Group: Surgical resection with or without preoperative chemotherapy in oesophageal cancer: a randomised controlled trial. Lancet. 2002; 359(9219): 1727–33. PubMed Abstract | Publisher Full Text
11. Allum WH, Stening SP, Bancewicz J, et al.: Long-term results of a randomized trial of surgery with or without preoperative chemotherapy in esophageal cancer. J Clin Oncol. 2009; 27(30): 5062–7. PubMed Abstract | Publisher Full Text
12. Cunningham D, Allum WH, Stening SP, et al.: Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006; 355(11): 11–20. PubMed Abstract | Publisher Full Text | F1000 Recommendation
with extensive lymph node metastasis: Japan Clinical Oncology Group study JCOG1301 (Trigger Study). J Clin Oncol. 2015; 33(11): 1082–9.

PubMed Abstract | Publisher Full Text

31. Crosbie T, Hurt CN, Falk S, et al.: Long-term results and recurrence patterns from SCOPE-1: a phase III randomised trial of definitive chemoradiotherapy +/- cetuximab in oesophageal cancer. Br J Cancer. 2017; 116(6): 709–716.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

32. Ruhtaller T, Piess M, Dietrich D, et al.: Cetuximab in combination with chemoradiotherapy before surgery in patients with resectable, locally advanced esophageal carcinoma: a prospective, multicenter phase III trial (SAKK 75/06). J Clin Oncol. 2011; 29(6): 626–31.

PubMed Abstract | Publisher Full Text

33. Safra T, Suntharalingam M, D’Incalci M, et al.: Cetuximab with concurrent chemoradiotherapy for esophageal cancer: assessment of toxicity. Int J Radiat Oncol Biol Phys. 2008; 70(2): 391–5.

PubMed Abstract | Publisher Full Text

34. Becerra CR, Hanna N, McCullough AJ, et al.: A phase II study with cetuximab and radiation therapy for patients with surgically resectable esophageal and G/E junction carcinomas: Hoosier Oncology Group G09-92. J Thorac Oncol. 2013; 8(11): 1425–9.

PubMed Abstract | Publisher Full Text | Free Full Text

35. Suntharalingam M, Winter K, Ilson DH, et al.: The initial report of RTOG 0436: A phase III trial evaluating the addition of cetuximab to paclitaxel, cisplatin, and radiation for patients with esophageal cancer treated without surgery. J Clin Oncol. 2014; 32(suppl 3): abstr LBA5.

PubMed Abstract | Publisher Full Text

36. Bendell JC, Meluch A, Peyton J, et al.: Phase II trial of preoperative concurrent chemotherapy/radiation therapy plus bevacizumab/cetuximab in the treatment of localized esophageal cancer. Clin Adv Hematol Oncol. 2012; 10(7): 430–7.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

37. Taketa T, Correa AM, Suzuki A, et al.: Outcome of trimodality eligible esophageal cancer patients who declined surgery after preoperative chemoradiation. Oncology. 2012; 83(5): 300–4.

PubMed Abstract | Publisher Full Text | Free Full Text

38. Suzuki A, Xiao L, Taketa T, et al.: Results of the baseline positron emission tomography can customize therapy of localized esophageal adenocarcinoma patients who achieve a clinical complete response after chemoradiation. Ann Oncol. 2013; 24(11): 2854–9.

PubMed Abstract | Publisher Full Text

39. Elmiova E, Wang X, Etchehene E, et al.: 18-fluorodeoxyglucose positron emission computed tomography as predictive of response after chemoradiation in esophageal cancer patients. Eur J Cancer. 2015; 51(17): 2545–52.

PubMed Abstract | Publisher Full Text | Free Full Text

40. zum Büschenfelde CM, Herrmann K, Schuster T, et al.: **FF-DG PET-guided salvage neoadjuvant radiochemotherapy of adenocarcinoma of the esophagogastric junction: the MUNICON II trial. J Nucl Med. 2011; 52(8): 1189–96.

PubMed Abstract | Publisher Full Text

41. Lordick F, Ott K, Krause BJ, et al.: PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophageal junction: the MUNICON phase II trial. Lancet Oncol. 2007; 8(9): 787–805.

PubMed Abstract | Publisher Full Text

42. Dulak AM, Stojanov P, Peng S, et al.: Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet. 2013; 45(6): 478–88.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

43. Nones K, Waidell N, Wayne N, et al.: Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat Commun. 2014; 5: 5224.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

44. Wang K, Johnson A, Ali SM, et al.: Comprehensive Genomic Profiling of Advanced Esophageal Squamous Cell Carcinomas and Esophageal Adenocarcinomas Reveals Similarities and Differences. Oncologist. 2015; 20(10): 1132–9.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

45. Secrnier M, Li X, de Silva N, et al.: Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance. Nat Genet. 2016; 48(10): 1131–41.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

46. Cancer Genome Atlas Research Network, Analysis Working Group: Asian University, BC Cancer Agency, et al.: Integrated genomic characterization of oesophageal carcinoma. Nature. 2017; 541(7616): 169–75.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

47. Cancer Genome Atlas Research Network: Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014; 513(7517): 204–9.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

48. Sharma P, Allison JP: The future of immune checkpoint therapy. Science. 2015; 348(6203): 56–61.

PubMed Abstract | Publisher Full Text | F1000 Recommendation
49. Becht E, Giraldo NA, Dieu-Nosjean M, et al.: Cancer immune contexture and immunotherapy. Curr Opin Immunol. 2016; 39: 7–13. PubMed Abstract | Publisher Full Text | F1000 Recommendation

50. Fareed KR, Kaye P, Soomro IN, et al.: Biomarkers of response to therapy in oesophago-gastric cancer. Gut. 2009; 58(1): 127–43. PubMed Abstract | Publisher Full Text

51. Liao Z, Liu H, Swisher SG, et al.: Polymorphism at the 3’-UTR of the thymidylate synthase gene: a potential predictor for outcomes in Caucasian patients with esophageal adenocarcinoma treated with preoperative chemoradiation. Int J Radiat Oncol Biol Phys. 2006; 64(3): 700–8. PubMed Abstract | Publisher Full Text

52. Joshi MB, Shirota Y, Danenberg KD, et al.: High gene expression of TS1, GSTP1, and ERCC1 are risk factors for survival in patients treated with trimodality therapy for esophageal cancer. Clin Cancer Res. 2005; 11(6): 2215–21. PubMed Abstract | Publisher Full Text

53. Skinner HD, Lee JH, Bhutani MS, et al.: A validated miRNA profile predicts response to therapy in esophageal adenocarcinoma. Cancer. 2014; 120(23): 3635–41. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

54. Hale MD, Narikell M, Hutchins GG, et al.: Biopsy proportion of tumour predicts pathological tumour response and benefit from chemotherapy in resectable oesophageal carcinoma: results from the UK MRC OES2 trial. Oncotarget. 2016; 7(47): 77565–75. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

55. Reeh M, Effenberger KE, Koerig AM, et al.: Circulating Tumor Cells as a Biomarker for Preoperative Prognostic Staging in Patients With Esophageal Cancer. Ann Surg. 2015; 261(6): 1124–30. PubMed Abstract | Publisher Full Text | F1000 Recommendation

56. Alix-Panabières C, Pantel K: Clinical Applications of Circulating Tumor Cells and Circulating Tumor DNA as Liquid Biopsy. Cancer Discov. 2016; 6(5): 479–91. PubMed Abstract | Publisher Full Text

57. Chaudhuri AA, Binkley MS, Osmundson EC, et al.: Predicting Radiotherapy Responses and Treatment Outcomes Through Analysis of Circulating Tumor DNA. Semin Radiat Oncol. 2015; 25(4): 305–12. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

58. Bidard FC, Peeters DJ, Fehm T, et al.: Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol. 2014; 15(4): 406–14. PubMed Abstract | Publisher Full Text | F1000 Recommendation

59. Scher HI, Heller G, Molina A, et al.: Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J Clin Oncol. 2015; 33(12): 1348–55. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

60. Siravegna G, Mussolin B, Buscarino M, et al.: Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med. 2015; 21(7): 796–801. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

61. Mohan S, Heitzer E, Ulz P, et al.: Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing. PLoS Genet. 2014; 10(3): e1004271. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
Open Peer Review

Current Peer Review Status: 🔄 ✔️

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1

1. Efriede Bollschweiler
 General, Visceral and Cancer Surgery, University of Cologne, Köln, Germany
 Competing Interests: No competing interests were disclosed.

2. Rupert Langer
 Institute of Pathology, Bern, Switzerland
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com