Photoreceptor cells have a remarkable capacity to adapt the sensitivity and speed of their responses to ever changing conditions of ambient illumination. Recent studies have revealed that a major contributor to this adaptation is the phenomenon of light-driven translocation of key signaling proteins into and out of the photoreceptor outer segment, the cellular compartment where phototransduction takes place. So far, only two such proteins, transducin and arrestin, have been established to be involved in this mechanism. To investigate the extent of this phenomenon we examined additional photoreceptor proteins that might undergo light-driven translocation, focusing on three Ca\(^{2+}\)-binding proteins, recoverin and guanylate cyclase activating proteins 1 (GCAP1) and GCAP2. The changes in the subcellular distribution of each protein were assessed quantitatively using a recently developed technique combining serial tangential sectioning of mouse retinas with Western blot analysis of the proteins in the individual sections. Our major finding is that light causes a significant reduction of recoverin in rod outer segments, accompanied by its redistribution toward rod synaptic terminals. In both cases the majority of recoverin was found in rod outer segments, with ~12% present in the outer segments in the dark and less than 2% remaining in that compartment in the light. We suggest that recoverin translocation is adaptive because it may reduce the inhibitory constraint that recoverin imposes on rhodopsin kinase, an enzyme responsible for quenching the photoexcited rhodopsin during the phototransduction. To the contrary, no translocation of rhodopsin kinase itself or either GCAP was identified.

The phototransduction cascade of vertebrate photoreceptors has served as a "benchmark system" where many of the basic molecular principles of G protein-coupled receptor signal transduction have been discovered and elaborated. Vision begins with the excitation of a prototypical G protein-coupled receptor, rhodopsin, which leads to the activation of multiple molecules of the G protein, transducin. Activated transducin stimulates the activity of its effector, cGMP phosphodiesterase, which leads to a decrease in cellular cGMP, closure of cGMP-gated channels in the plasma membrane, and ultimately development of the electrical signal known as the phototransduction (see Refs. 1–4 for recent reviews on phototransduction). Inactivation of phototransduction is required to prevent photoreceptors from saturating when exposed to constant illumination. Temporal resolution of vision also requires rapid inactivation of the components of the phototransduction cascade so that the cell can rapidly respond to the next light event. Inactivation of rhodopsin is achieved by its phosphorylation by rhodopsin kinase followed by binding of arrestin to completely prevent any further transducin activation (5). The termination of cGMP hydrolysis is achieved by the GTPase activity of transducin, a reaction greatly accelerated by the GTPase activating protein, RGS9 (4, 6). Finally, restoration of cGMP to its dark level to reopen cGMP-gated channels is accomplished by guanylate cyclase (7).

Photoreceptors have the ability to adjust the speed and sensitivity of their phototransduction to ever changing conditions of ambient illumination. The illumination at the earth’s surface varies by nearly 11 orders of magnitude during the normal day-night cycle, and two types of photoreceptors, rods and cones, cover this entire range of light intensities (8). It is well established that this property called light adaptation is underlain by many individual molecular mechanisms (9). Many of these mechanisms act in response to the decrease in intracellular Ca\(^{2+}\) that takes place during the phototransduction response. Ca\(^{2+}\) decrease causes an enhanced synthesis of cGMP, an increase in cGMP sensitivity of the channels, and shortening of the lifetime of photostimulated rhodopsin. These effects of Ca\(^{2+}\) are mediated by several Ca\(^{2+}\)-binding proteins, among which the most characterized are recoverin (10) and guanylate cyclase activating proteins (GCAPs)\(^1\) (11, 12). Ca\(^{2+}\)-bound recoverin interacts with rhodopsin kinase and inhibits its ability to phosphorylate rhodopsin. The reduction in Ca\(^{2+}\) caused by light releases the kinase from the complex, thus enhancing rhodopsin phosphorylation and signal turnoff (13–16). GCAP1 and GCAP2 interact with guanylate cyclase and either inhibit its activity at high Ca\(^{2+}\) or stimulate it as Ca\(^{2+}\) decreases (17–20). As such, the light-adapted photoreceptor has enhanced cyclase activity that allows it to efficiently counter the depletion in cGMP caused by continuous phosphodiesterase activation. Each of these Ca\(^{2+}\)-binding proteins, recoverin, GCAP1, and GCAP2, is acylated at its N terminus with a medium chain length (C12-C14) fatty acyl residue. In the case of recoverin, Ca\(^{2+}\) binding increases exposure of the myristoyl residue, which in turn increases the affinity of recoverin for membranes.

\(^{1}\) The abbreviations used are: GCAP1 and GCAP2, guanylate cyclase activating proteins 1 and 2.
Light-driven Recoverin Translocation in Rods

(.reviewed in Ref. 21). In contrast, binding of Ca\(^{2+}\) to GCAPs does not cause increased membrane binding (22, 23).

An entirely novel type of photoreceptor light adaptation, based on massive reversible translocation of signaling proteins between the rod or cone outer segment, where phototransduction takes place, and the rest of the cell has been revealed in recent studies. This translocation has been documented in a broad range of animal species from flies to mammals (see Refs. 24–27 for recent reviews). So far, only two signaling proteins, arrestin (originally described in Ref. 28) and transducin (independently described in Refs. 29–31), have been shown to undergo light-driven translocation in mammalian rods. Upon illumination, transducin moves from rod outer segments, whereas arrestin moves in the opposite direction. It is thought this mechanism allows the photoreceptor to optimize the protein composition of its outer segment as the ambient lighting conditions change during the normal diurnal cycle. Evidence in support of this function has been obtained in both vertebrates (32) and invertebrates (33, 34).

Here we searched for additional proteins undergoing light-driven translocation in rods by focusing on the Ca\(^{2+}\)-binding proteins, recoverin and GCAPs. The subcellular distribution of each of these proteins was measured using a quantitative approach originally developed to study transducin translocation (32). The method is based on serial sectioning through the photoreceptor layer of a flat-mounted retina followed by protein detection in each section using Western blotting. Our major finding is that light causes a 5–10-fold reduction of recoverin content in rod outer segments, accompanied by its redistribution toward rod synaptic terminals. To the contrary, the subcellular distribution of rhodopsin kinase and both GCAP1 and GCAP2 remained unchanged in dark- and light-adapted rods.

EXPERIMENTAL PROCEDURES

Antibodies—Western blotting of proteins was performed using the following antibodies: anti-recoverin and anti-GCAP1 and -GCAP2 rabbit polyclonal antibodies (a gift from A. M. Dizhoor, Pennsylvania College of Optometry), polyclonal antibodies against cytochrome oxidase subunit IV (A-4631 from Molecular Probes), monoclonal antibodies against rhodopsin kinase (G-8 from Santa Cruz Biotechnology, Inc.), and monoclonal anti-rhodopsin antibodies 4D2 (a gift from R. S. Molday, University of British Columbia).

Serial Sectioning with Western Blotting—The method was used essentially as previously described (32, 35). A mouse eye was enucleated and the retina was digested in 0.25% protease solution containing 100U/ml collagenase. The retina was then incubated at 37 °C for 40 min in complete darkness. Upon the completion of regeneration, rhodopsin was solubilized in ethanol, sonicated again, and incubated at 37 °C for 40 min in complete darkness. The supernatant was centrifuged in a tabletop microcentrifuge, and rhodopsin concentration in the supernatant was measured by difference spectrophotometry. The extent of rhodopsin bleaching in the retina was calculated as the difference between the measured rhodopsin concentration in regenerated and non-regenerated samples. The extent of rhodopsin bleaching in the retina was calculated as the difference between the measured rhodopsin concentration in regenerated and non-regenerated samples.

Preparation of Mouse Recoverin Standard—The cDNA for mouse recoverin was generated by RT-PCR from mouse retinal mRNA (isolated from strain C57BL/6). This cDNA was cloned into the pTriex2 vector (Novagen). Myristoylated recoverin was generated in Escherichia coli and purified over phenyl-Sepharose as previously described (37). Purified myristoylated recoverin was >90% pure as judged by SDS-PAGE. The concentration of the purified protein was determined by amino acid analysis (AAA Laboratories, Mercer Island, WA).

RESULTS

Subcellular Distribution of Recoverin in Dark- and Light-adapted Retinas—Previous reports addressing the distribution of recoverin in the retina indicated that it is localized primarily in rods and cones with a very small fraction also present in some of the cone bipolar cells (10, 38, 39). In all of these studies, recoverin immunostaining was observed throughout the entire cellular volumes of rods and cones. However, immunostaining
is not an optimal technique to quantify the distribution of recoverin between the outer segment and the other cellular compartments. This is because the efficiency of antigen–antibody recognition can vary significantly in different cellular compartments and different antibodies or tissue fixation techniques often yield variable quantitative results. Collectively these phenomena are known as epitope masking (cf. Ref. 40).

A quantitative approach for analyzing the subcellular distribution of photoreceptor-specific proteins was introduced in our study of light-driven transducin translocation in rods (32). This method exploits the highly layered structure of the vertebrate retina by combining serial tangential sectioning of flat-mounted frozen retinas with the Western blot analysis of proteins in each section. The subcellular localization of any given protein is then determined by comparing its distribution in the sections with the distribution of protein markers confined to specific subcellular compartments of the rods. Because in this analysis proteins are completely unfolded by SDS, detached from their intracellular environments and interacting partners, and separated from one another on the gel, it does not suffer from epitope masking and allows quantitative analysis of individual protein bands on Western blots.

We previously used serial sectioning to determine the distribution of recoverin in dark-adapted mouse rods (41). We extended this analysis to quantify the subcellular distribution of recoverin in rods of dark- and light-adapted mice (Fig. 1A). Most of the recoverin in rods is localized in the inner segments. Remarkably, light caused a significant redistribution of recoverin from the outer segments toward the synaptic terminals. To quantify the extent to which recoverin is lost from the outer segments upon illumination, we averaged recoverin distribution profiles obtained from four dark and five light experiments and calculated the average recoverin content as described under “Experimental Procedures.” We found that the recoverin content in the outer segments of dark-adapted mice was $12 \pm 3\%$ (S.E.) of its entire cellular pool whereas light caused its reduction to only $1.8 \pm 0.5\%$ (S.E.). When we then conducted a formal calculation of the amount of recoverin translocating between the proximal and distal halves of the cell (with the dividing line designated as section 12) the total extent of translocation was 24%. This amount is about twice as large than the recoverin content in the outer segments in the dark, which indicates that recoverin from both outer and inner segments moves toward the synaptic terminals upon illumination.
The Amount of Recoverin in the Entire Rod Cell Is Comparable with Transducin—A previous report using isolated bovine rod outer segments estimated the molar ratio of recoverin to rhodopsin to be 1:174 (15). However, our observation that even in the dark 90% recoverin in rods is localized outside the outer segments calls for re-evaluation of its total cellular amount. The molar ratio of recoverin to rhodopsin was determined by quantitative immunoblotting of mouse retina homogenates. Because cones comprise only 3% of the total photoreceptor pool in the rodent retina (42) and recoverin immunostaining in bipolar cells is truly minor (39), we assumed that the total recoverin amount in the retina would be very close to its amount in rods. We isolated whole retinas from dark-adapted mice, disrupted them by sonication, and quantified rhodopsin by difference spectroscopy (see “Experimental Procedures”). Recoverin was analyzed in the same extracts by quantitative immunoblotting, using recombinant mouse recoverin as the standard (Fig. 2). As expected, the molar ratio of recoverin to rhodopsin determined by this approach was much higher than previously reported and equal to 0.080 ± 0.010 (S.E., n = 6). This is approximately equimolar with transducin in mouse rods (0.084 ± 0.004 molar ratio with rhodopsin from Ref. 43).

Translocation of Recoverin Is Not Accompanied by Translocation of Rhodopsin Kinase—Because the most well known function of recoverin is to regulate the activity of rhodopsin kinase, it was interesting to test whether rhodopsin kinase also undergoes light-driven translocation. However, the data illustrated in Fig. 3 indicate that rhodopsin kinase remains in the same outer segment sections as rhodopsin, regardless of the conditions of illumination.

Subcellular Distribution of GCAPs in the Dark- and Light-adapted Retinas—We next conducted similar analyses for determining the distributions of two other photoreceptor-specific Ca\textsuperscript{2+}-binding proteins, GCAP1 and GCAP2 (Fig. 4). Although the distribution profiles of GCAP1 and GCAP2 are different from one another, neither one undergoes a statistically significant translocation upon illumination. The rod outer segment content of GCAP1 was calculated to be 70.3 ± 5.5% (S.E., n =
GCAP1 was shown to be present predominantly in the outer segment analysis of GCAP in photoreceptors. In those studies, sections is generally consistent with previous immunolocalization of recoverin neither GCAP undergoes light-dependent translocation in the rod inner segment sections in our analysis. An observable difference in the GCAP1 amounts in section 6 of the dark and light profiles is not statistically significant (p = 0.15) and is paralleled by a slightly (and also statistically insignificant) difference in the average rhodopsin content in section 6. The rod outer segment content of GCAP2 was calculated to be 25.7 ± 3.8% (S.E., n = 4) in the dark and 22.1 ± 1.3% (S.E., n = 4) in the light. Based on this analysis, we conclude that unlike recoverin neither GCAP undergoes light-dependent translocation from their relative positions in the cell.

The overall distribution of each GCAP throughout the serial sections is generally consistent with previous immunolocalization analysis of GCAP in photoreceptors. In those studies, GCAP1 was shown to be present predominantly in the outer segments of rods and cones, whereas GCAP2 was shown to be present throughout the entire photoreceptor cell (12, 44–47).

**DISCUSSION**

The central observation obtained in this study is that recoverin undergoes light-driven translocation from rod outer segments toward the rod synaptic terminals. The significance of this finding is that recoverin is only the third signaling protein shown to translocate in this manner in vertebrate rods. Signal-dependent protein translocation occurs in other types of cells as well (48, 49), but the combination of a high degree of subcellular compartmentalization of the rod photoreceptor and its extremely well characterized function makes it a unique model for studying cell polarization and signal-dependent redistribution of intracellular proteins.

What could be the physiological role and the underlying cellular mechanisms of recoverin translocation? As the answers to these questions are as yet unresolved we present the following analysis based on the available literature.

**What is the Functional Role of Recoverin Translocation?**

The function of recoverin in phototransduction has been a subject of intensive investigation. *In vitro*, recoverin regulates the lifetime of activated rhodopsin by sequestering rhodopsin kinase in a Ca\(^{2+}\)-dependent manner (13–15, 50). This suggested a mechanism where the light-induced Ca\(^{2+}\) decrease in the outer segments is accompanied by kinase de-inhibition of recoverin, enhanced rhodopsin phosphorylation, and ultimately in a shortened photoresponse that is characteristic of the light-adapted photoreceptor. However, this putative mechanism was challenged by the lack of Ca\(^{2+}\) sensitivity on rhodopsin phosphorylation in rods permeabilized by \(\alpha\)-toxin (51). In addition, the Ca\(^{2+}\) dependence of rhodopsin phosphorylation in *in vitro* (13–15) and in dialyzed rod outer segments (52) did not match the physiological range of cytoplasmic Ca\(^{2+}\) changes (53–55). The latter was explained by Bownds and co-workers (15) who argued that this range is dependent on the concentration of reacting components. Key to their analysis was the observation that the membrane association of recoverin increases its affinity to Ca\(^{2+}\) (56) along with the fact that rod outer segments are tightly packed by the membranes of the photoreceptor discs.

This apparent controversy was recently resolved by the demonstration that rods of the recoverin knock-out mice have shortened photoresponses, consistent with the role of recoverin in the regulation of rhodopsin kinase activity (16, 41). What could be the role of recoverin translocation in this context? One possibility is that recoverin departure from the outer segments works in concert with the reduction in Ca\(^{2+}\) concentration in de-inhibition of rhodopsin kinase. Thus, recoverin translocation may serve as a cellular mechanism contributing to the shortening of the photoresponses in light-adapted rods.

Another aspect of recoverin translocation revealed in our study is its light-dependent elevation in synaptic terminals. Given that the majority of recoverin in rods resides outside the outer segments it seems likely that it has an additional role(s) in the cell. Indeed, a recent report (41) indicates that recoverin knock out shortens the light responses of rod bipolar and ganglion cells. This shortening occurs at a time in the photoreceptor before the effect of recoverin is detectable. The increase of recoverin in synaptic terminals upon light adaptation may further modify the transmission of visual information downstream from photoreceptors.

What are the Cellular Mechanisms of Recoverin Translocation?—Recoverin undergoes a light-dependent translocation in the same direction as transducin (29–31). The relationship between these movements is unclear because there is no established interaction between recoverin and transducin. The movement of recoverin could be mediated either by diffusion through the photoreceptor cytoplasm or by active transport involving molecular motors. Both types of mechanism for the light-driven translocation of signaling proteins in photoreceptors have been considered in a recent review (27).

We find the diffusion hypothesis particularly appealing in the case of recoverin. The Ca\(^{2+}\)-bound form of recoverin, with its high affinity for membranes, may be attracted to the high membrane content of the outer segment in darkness when intracellular free Ca\(^{2+}\) concentrations are high. In light, when intracellular free Ca\(^{2+}\) levels fall, recoverin dissociates from membranes and either redistributes itself throughout the rod or binds preferentially to a target within the rod cell body. A similar scenario may exist in all other subcellular compartments where the amount of membrane-associated recoverin is determined by the balance between Ca\(^{2+}\) concentration and the corresponding membrane density. Consistent with this, GCAP1 and GCAP2, which do not translocate between the cytosol and membranes in a Ca\(^{2+}\)-sensitive manner, also do not redistribute themselves differently between the outer segment and cell body in light and dark.

**REFERENCES**

1. Pugh, E. N., Jr., and Lamb, T. D. (2000) in *Handbook of Biological Physics* (Sluivera, D. G., DeGrip, W. J., and Pugh, E. N., Jr., eds) pp. 183–255, Elsevier Science Publishers B. V., Amsterdam
2. Burns, M. E., and Baylor, D. A. (2001) *Annu. Rev. Neurosci.* 24, 779–805
3. Rain, G. L., Matthews, H., Hornwall, M. C., and Kontoyiannis, T. (2001) *Physiol. Rev.* 81, 111–157
4. Arshavsky, V. Y., Lamb, T. D., and Pugh, E. N., Jr. (2002) *Annu. Rev. Physiol.* 64, 153–187
5. Arshavsky, V. Y. (2002) *Trends Neurosci.* 25, 124–126
6. Cowan, C. W., He, W., and Wensel, T. G. (2000) *Prog. Nucleic Acids Res. Mol. Biol.* 65, 341–359
7. Dixhoorn, A. M. (2000) *Cell. Signal.* 12, 711–719
8. Rodieck, R. W. (1998) *The First Steps in Seeing*, Sinauer, Sunderland
9. Pugh, E. N., Jr., Nisonov, S., and Lamb, T. D. (1999) *Curr. Opin. Neurobiol.* 9, 410–417
10. Dixhoorn, A. M., Ray, S., Kumar, S., Niemi, G., Spencer, M., Brolley, D., Walsh, K. A., Philipov, P. P., Hurley, J. B., and Stryer, L. (1991) *Science* 251, 915–918
11. Paleczewski, K., Subbaraya, I., Gorczyca, W. A., Helekar, B. S., Ruiz, C. C., Ohguro, H., Huang, J., Zhao, X., Crab, J. W., Johnson, R. S., Walsh, K. A., Gray-Keller, M. D., Dewitler, P. B., and Baehr, W. (1994) *Neuron* 13, 395–404
12. Dixhoorn, A. M., Olshewskaia, E. V., Henzel, W. J., Wong, S. C., Stults, J. T., Ankoudinova, I., and Hurley, J. B. (1995) *J. Biol. Chem.* 270, 25200–25206
13. Kawamura, S. (1993) *Nature* 362, 855–857
14. Chen, C.-K., Inglese, J., Lefkowitz, R. J., and Hurley, J. B. (1995) *Annu. Rev. Physiol.* 57, 915–939
15. Arshavsky, V. Y. (2002) *Trends Neurosci.* 25, 124–126
16. Brenner, A., Calvert, P. D., and Bownds, M. D. (1995) *J. Biol. Chem.* 270, 16147–16152
17. Makino, C. L., Doh, R. L., Chen, J., Burns, M. E., Roca, A., Simon, M. I., and Baylor, D. A. (2004) *J. Gen. Physiol.* 123, 729–741
18. Haeuseler, F., Sokal, I., Li, N., Pettenati, M., Rao, N., Bronson, D., Wechter, R., Baehr, W., and Paleczewski, K. (1999) *J. Biol. Chem.* 274, 6526–6535
19. Mendez, A., Burns, M. E., Sokal, I., Dixhoorn, A. M., Baehr, W., and Chen, J. (2001) *Proc. Natl. Acad. Sci. U. S. A.* 98, 9948–9953
20. Burns, M. E., Mendez, A., Chen, J., and Baylor, D. A. (2002) *Neuron* 36, 81–91
20. Howes, K. A., Pennesi, M. E., Sokal, I., Church-Kopish, J., Schmidt, B., Margolis, D., Frederick, J. M., Rieke, F., Palczewski, K., Wu, S. M., Dettwiler, P. B., and Baehr, W. (2002) *EMBO J.* 21, 1545–1554

21. Ames, J. B., Tanaka, T., Stryer, L., and Ikura, M. (1996) *Curr. Opin. Struct. Biol.* 6, 432–438

22. Olshevskaya, E. V., Hughes, R. E., Hurley, J. B., and Dizhoor, A. M. (1997) *J. Biol. Chem.* 272, 14327–14333

23. Otto-Bruc, A., Buczylko, J., Surgucheva, I., Subbaraya, I., Rudnica-Nawrot, M., Crabb, J. W., Arendt, A., Hargrave, P. A., Baehr, W., and Palczewski, K. (1997) *Biochemistry* 36, 4295–4302

24. Arshavsky, V. Y. (2003) *Sci. STKE.* 2003, E43

25. Hardie, R. C. (2003) *Curr. Biol.* 13, R775–R777

26. Strissel, K. J., and Arshavsky, V. Y. (2004) *Neuron* 43, 2–4

27. Strissel, K. J., Sokolov, M, and Arshavsky, V. Y. (2004) in *Recent Advances in Human Biology* (Williams, D. S., ed) pp. 163–193, World Scientific, Singapore

28. Broekhuyse, R. M., Tolhuizen, E. F., Janssen, A. P., and Winkens, H. J. (1985) *Curr. Eye Res.* 4, 613–618

29. Brann, M. R., and Cohen, L. V. (1987) *Science* 235, 585–587

30. Philp, N. J., Chang, W., and Long, K. (1987) *FEBS Lett.* 225, 127–132

31. Whelan, J. P., and McGinnis, J. F. (1988) *J. Neurosci. Res.* 20, 263–270

32. Sokolov, M., Lyubarsky, A. L., Strissel, K. J., Savchenko, A. B., Govardovskii, V. I., Pugh, E. N., Jr., and Arshavsky, V. Y. (2002) *Neuron* 34, 95–106

33. Bähner, M., Frechter, S., Da Silva, N., Minke, B., Paulsen, R., and Huber, A. (2002) *Neuron* 34, 83–93

34. Lee, S. J., Xu, H., Kang, L. W., Amzel, L. M., and Montell, C. (2003) *Neuron* 39, 121–132

35. Sokolov, M., Strissel, K. J., Leskov, I. B., Michaud, N. A., Govardovskii, V. I., and Arshavsky, V. Y. (2002) *J. Biol. Chem.* 277, 19149–19156

36. Bownds, D., Gordon-Walker, A., Gaide-Huguenin, A.-C., and Robinson, W. (1971) *J. Gen. Physiol.* 58, 225–237

37. Ray, S., Zozulya, S., Niemi, G. A., Flaherty, K. M., Brolley, D., Dizhoor, A. M., McKay, D. B., Hurley, J., and Stryer, L. (1992) *Proc. Natl. Acad. Sci. U. S. A.* 89, 5705–5709

38. McCarthy, S. T., Younger, J. P., and Owen, W. G. (1994) *Biophys. J.* 67, 2076–2089

39. McGinnis, J. F., Stepanik, P. L., Jariangprasert, S., and Lerious, V. (1997) *J. Neurosci. Res.* 50, 487–495

40. Roof, D. J., and Heth, C. A. (1988) *Science* 241, 845–847

41. Sampath, A. P., Strissel, K. J., Elias, R., Arshavsky, V. Y., McGinnis, J. F., Chen, J., Kawamura, S., Rieke, F., and Hurley, J. B. (2005) *Neuron* 46, 413–420

42. Carter-Dawson, L. D., and LaVail, M. M. (1979) *J. Comp. Neurol.* 188, 245–262

43. Tsang, S. H., Burns, M. E., Calvert, P. D., Gouras, P., Baylor, D. A., Goff, S. P., and Arshavsky, V. Y. (1998) *Science* 282, 117–121

44. Otto-Bruc, A., Fariss, R. N., Haseleer, P., Huang, J., Buczylko, J., Surgucheva, I., Baehr, W., Milam, A. H., and Palczewski, K. (1997) *Proc. Natl. Acad. Sci. U. S. A.* 94, 4727–4732

45. Howes, K., Bronson, J. D., Dang, Y. L., Li, N., Zhang, K., Ruiz, C., Helekar, B., Lee, M., Subbaraya, I., Kelh, H., Chen, J., and Baehr, W. (1998) *Investig. Ophthalmo. Vis. Sci.* 39, 867–875

46. Cuenca, N., Lopez, S., Howes, K., and Kolb, H. (1998) *Investig. Ophthalmo. Vis. Sci.* 39, 1243–1250

47. Kashi, S., Nishizawa, Y., Olshevskaya, E., Yamazaki, A., Miyake, Y., Wakabayashi, T., Dizhoor, A., and Usukura, J. (1999) *Exp. Eye Res.* 68, 465–473

48. Lee, J. D., and LaVail, M. M. (1979) *J. Comp. Neurol.* 188, 245–262

49. Tsang, S. H., Burns, M. E., Calvert, P. D., Gouras, P., Baylor, D. A., Goff, S. P., and Arshavsky, V. Y. (1998) *Science* 282, 117–121

50. Otto-Bruc, A. E., Fariss, R. N., Van Hooser, J. P., and Palczewski, K. (1998) *Proc. Natl. Acad. Sci. U. S. A.* 95, 15014–15019

51. Erickson, M. A., Lagnado, L., Zozulya, S., Neubert, T. A., Stryer, L., and Baylor, D. A. (1998) *Proc. Natl. Acad. Sci. U. S. A.* 95, 6474–6479

52. McCarthy, S. T., Younger, J. P., and Owen, W. G. (1994) *Biophys. J.* 67, 2076–2089

53. Gray-Keller, M. P., and Detwiler, P. B. (1994) *Neuron* 13, 849–861

54. Woodruff, M. L., Sampath, A. P., Matthews, H. R., Krasnoperova, N. V., Lem, J., and Pain, G. L. (2002) *J. Physiol.* 542, 843–854

55. Zozulya, S., and Stryer, L. (1992) *Proc. Natl. Acad. Sci. U. S. A.* 89, 11569–11573