Experimental Study of the Influence of Nanoparticles Additive to Diesel Fuel on the Emission Characteristics

Sadiq Talal Bunyan* Abed Al-Khadhim M. Hasan**

*,**Department of Mechanical Engineering /University of Technology/ Baghdad/ Iraq

*Email: sadiqtalal1993@gmail.com
**Email: Akm1@yahoo.com

(Received 16 July 2020; accepted 9 December 2020)

https://doi.org/10.22153/kej.2021.12.002

Abstract

The present experimental work is conducted to examine the influence of adding Alumina (Al2O3) nanoparticles and Titanium oxide (TiO2) nanoparticles each alone to diesel fuel on the characteristic of the emissions. The size of both Alumina and Titanium oxide nanoparticles which have been added to diesel fuel to obtain nano-fuel is about 20 nm and 25 nm respectively. Three doses of (Al2O3) and (TiO2) were prepared (25, 50 and 100) ppm. The nanoparticles mixed with gas oil fuel by mechanical homogenous (manual electrical mixer) and ultrasonic processor. The study reveals that the adding of Aluminum oxide (Al2O3) and Titanium oxide (TiO2) to gas oil (Al2O3+DF) and (TiO2+DF) improves the emissions characteristic of engine such as CO emissions are reduced by 34.28% and 20.5% for TiO2+DF and Al2O3+DF respectively at 25ppm, the emissions of CO2 increased by about 1.75% and 2.27% for TiO2+DF and Al2O3+DF respectively at 100ppm, the emissions of NOx decreased by about 37.7% and 12.2% for TiO2+DF and Al2O3+DF respectively at 25ppm and the emissions UHC decreased by about 16.9% and 13.5% for TiO2+DF and Al2O3+DF respectively at 25ppm.

Keywords: Alumina, diesel, emission characteristic, nanofuel, titanium oxide.

1. Introduction

Diesel fuel is one of the world's largest sources of pollutants, where the burning of diesel fuel in compression ignition engine producing unburned hydrocarbons (UHC), nitrogen oxides (NOx) and carbon monoxide (CO). Additionally, produce small amounts of sulfur oxides (SOx) [1]. However it also, produces carbon dioxide (CO2) which is a friend of the environment, oxygen (O2) and water vapor (H2O). So the researchers using several additives to diesel fuel especially the nanoparticles in recent years to resolve the problem of emissions [2]. The nano-fuel can define as a mixture of both diesel fuel and dosage of nanoparticles, which has different properties than net diesel and called also modified diesel.[3] The studies have shown that the addition of nanoparticles enhances the performance of the engine such as reducing specific fuel consumption and increasing thermal efficiency [4].The enhancement of the surface to volume ratio due to adding nanoparticles leads to decreasing the concentration of pollutants and increasing the rate of reaction [5].The expect reason of making the reaction faster due to a short delay period comparing to pure diesel [6]. Nanoparticles are worked to enhance some physical properties of a lot of fluids including diesel fuel [7].Where, it has been noticed that the nano additive to diesel (nanoparticles+ diesel) improve the fire point, flash point, viscosity, density and the other properties depending on the doses of nanoparticles [8].The particles which are suspended in diesel fuel increase effective thermal conductivity, the surface area of contact [9].Also, reducing the
exhaust emission such as unburned Hydrocarbons (UHC), Nitrogen oxides (NOx) and Carbon monoxides (CO) [10]. This present experimental research will study the influence of Alumina (Al₂O₃) and Titanium oxide (TiO₂) nanoparticles on the emission characteristics. Although utilizing nanoparticles in diesel fuel have several advantages, the utilizing nanoparticles may involve several disadvantages such as increase in pumping power, higher viscosity (undesirable level) and block the nozzles due to agglomerate the nanoparticles [11]. There are many types of nanoparticles [12]; these are shown in the table (1).

No	Nanoparticle	Examples
1	Metal	ferric chloride (FeCl₃), Iron and Aluminum
2	Metal Oxides	Alumina, Cerium oxide, Zinc Oxide, MnO, TiO₂
3	Organic additives	Glycerin
4	Magnetic Nano fluid	Ferro fluids
5	Composite material	Alloved nanoparticle, a170Cu30
6	Carbon nanotube	Tic, Sic
7	Layered	Al+Al₂O₃, Cu+C
8	Nitride	SiN, AlN
9	Earth oxide	CeO₂

2. Experimental Setup

The engine used in the experimental tests is Fiat diesel engine, four cylinders, 4-stroke, direct injection, natural aspirated, closed water-cooled cycle with a displacement volume (3.666 L) and fitted with a hydraulic dynamometer. Figure (2.1) shows the test engine with its equipment. The specifications of engine test are given in table (2). The type of additive nanoparticles is Alumina (Al₂O₃) and Titanium oxide (TiO₂). The selection of doses depends on primary experimental results and researchers' results [13]. The chosen doses are (25, 50, and 100) ppm. The size of both Alumina and Titanium oxide nanoparticles is 20 nm and 25 nm respectively. The nanoparticles blended with fuel each one by mechanical homogenous (manual electrical mixer) for one hour in order to prevent the gathering of particles rapidly and ultrasonic processor UP200Ht (power 200W and frequency 26 kHz) to disperse the nanoparticles and distribute them equally in the base fuel. All the exhaust gases emissions from the engine studied (unburnt Hydrocarbon (UHC), CO₂, CO and NOx) are measured by using the gas analyzer. The gas analyzer model AIRREX HG-550 used to measure the exhaust emission by two principles which are Electro-Chemical principle for measuring NOx and O₂ and non-dispersive infrared principle for measuring (UHC, CO₂, and CO).

The measurements for thermophysical properties of nano diesel and diesel are shown in table (3). Where the viscosity, density and the flash point and fire point were measured for both diesel and nano-diesel at University of Technology/ Department of Chemical Engineering. Cetane number was measured for both diesel and nano-diesel at University of Babylon / Department of Polymer Engineering. The calorific value of diesel and nano-diesel was measured at Middle Refineries Company/ Quality Control Laboratories Department.
3. Result and Discussion

This section introduces the results obtained from experiments, where the results include:

3.1 Carbon Monoxide (CO) Emission

The influence of nanoparticles doses level and types on CO emission for diesel fuel is shown in figure (2) and figure (3). The figures reveal that the CO emission decreases with adding TiO$_2$ and Al$_2$O$_3$ nanoparticles; especially with TiO$_2$ may be because of the delay period of titanium oxide is shorter than alumina which leads to complete combustion [10]. The best dose of nanoparticles is 25ppm for both types. Where, TiO$_2$ and Al$_2$O$_3$ reduce the emissions of CO by 34.28% and 20.5% at 25ppm and 75% load respectively.

![Fig. 2. Gas Analyzer.](image_url)

![Fig. 3. variation of the carbon monoxide with Titanium nanoparticles doses.](image_url)

Table 2, Tested Engine Specification.

Sample	Engine model	Engine type	Displacement	Bore	Stroke	Compression ratio	Fuel injection pump	Static injection timing	Spray angle of nozzle	Nozzle hole diameter	Nozzle opening pressure
Diesel (D)	TD 313 Diesel engine reg	Four-cylinder, four-stroke	3.666 L	100 mm	110 mm	17/1	Unit pump 26 mm diameter plunger	23 BTDC	160°	0.48 mm	40Mpa
D+Al$_2$O$_3$ 25 ppm											
D+Al$_2$O$_3$ 50 ppm											
D+Al$_2$O$_3$ 100 ppm											
D+TiO$_2$ 25 ppm											
D+TiO$_2$ 50 ppm											
D+TiO$_2$ 100 ppm											

Table 3, Thermophysical properties of nano diesel.

Sample	Density (kg/m3)	Dynamic viscosity *10$^{-3}$ (kg/m.s)	Flash point & Fire point °C	Calorific Value k Cal/kg	Cetane number
Diesel (D)	844.3	2.788	65-70	10941.08	51.8
D+Al$_2$O$_3$ 25 ppm	845.8	2.810	71-75	10943.23	52.1
D+Al$_2$O$_3$ 50 ppm	846.8	2.806	74-77	10946.33	53.1
D+Al$_2$O$_3$ 100 ppm	849	2.823	76-79	10949.41	53.9
D+TiO$_2$ 25 ppm	852.4	2.780	73-76	10950.73	51.9
D+TiO$_2$ 50 ppm	853	2.791	75-78	10955.78	52.7
D+TiO$_2$ 100 ppm	853.8	2.825	78-82	10960.43	53.2
3.2 Nitrogen Oxides (NO\textsubscript{x}) Emission

The influence of nanoparticles doses level and types on NO\textsubscript{x} emission for diesel fuel is shown in figure (4) and figure (5). The two figures reveal that the NO\textsubscript{x} emission decreases with adding the dose 25 ppm of TiO\textsubscript{2} nanoparticles at all loads. While, the dose 25 ppm of Al\textsubscript{2}O\textsubscript{3} decreased NO\textsubscript{x} emission at low loads. The expected reason for increased NO\textsubscript{x} is high temperature with Aluminum and the availability of oxygen. Furthermore, the thermal conductivity of Al\textsubscript{2}O\textsubscript{3} is larger than TiO\textsubscript{2} by four times approximately. Where, the thermal conductivity of TiO\textsubscript{2} and Al\textsubscript{2}O\textsubscript{3} are 9W/m.K and 40W/m.K respectively. The biggest decrease of NO\textsubscript{x} emission with Al\textsubscript{2}O\textsubscript{3} and TiO\textsubscript{2} is 12.2% and 37.7% with no load at 25 ppm.

3.3 Carbon Dioxide Emissions (CO\textsubscript{2})

Figure (6) and figure (7) shows the variation of Carbon dioxide emission (CO\textsubscript{2}) with Nanoparticles doses for two types (TiO\textsubscript{2} and Al\textsubscript{2}O\textsubscript{3}). These figures reveal that CO\textsubscript{2} emissions increase by increasing the dose of Nanoparticles due to high thermal conductivity and the presence of oxygen in nanoparticles which in turn makes the combustion complete. The best increase was obtained in CO\textsubscript{2} emissions for TiO\textsubscript{2} and Al\textsubscript{2}O\textsubscript{3} by 1.75% and 2.27% at 75% load with 100 ppm respectively. The increasing of CO\textsubscript{2} emissions gives an indication to decrease CO emissions. The overlap between the two curves of no-load with the curve with load with nanoparticles dose variation due to rich mixture at full load which in turn cause a reduction in CO\textsubscript{2} so the overlap occurred.
3.4 Unburnt Hydrocarbon (UHC) Emissions

The variation of unburnt hydrocarbon emissions (UHC) with different doses of nanoparticles for two types (Al₂O₃ and TiO₂) is shown in figure (8) and figure (9). The two figures reveal that UHC emissions decrease by adding any dose of Al₂O₃ nanoparticles at no load and it is increased with all other loads. While the additive TiO₂ nanoparticles decrease the emissions of UHC with all loads at all doses including no-load state. The expect reasons, that the equivalence ratio of TiO₂ is less than Al₂O₃, incomplete combustion of (D+ Al₂O₃) and the size TiO₂ larger than Al₂O₃ that gives a greater chance to atomize the large droplets of fuel during entering. Finally, the biggest doze was 25 ppm for all loads.

4. Conclusion

The present paper focuses on the effect of adding Alumina and Titanium oxide to diesel fuel with variable doses on the emission characteristics based on the experimental results from present work. Accordingly, the following conclusions are:

1. The best reduction of CO at 25 ppm for both types. Where TiO₂ and Al₂O₃ reduce the emissions of CO by 34.28% and 20.5% at 25 ppm and 75% load respectively.
2. The adding of TiO₂ decrease NOₓ emission by 37.7% at 25 ppm. While adding Al₂O₃ increase NOₓ emission except at low loads, where NOₓ emission decreased by 12.2% at 25 ppm.
3. The adding of nanoparticles increase CO₂ emission for both types. The best increase achieves in CO₂ emissions for TiO₂ and Al₂O₃ by 1.75% and 2.27% at 75% load with 100 ppm respectively.
4. The adding of TiO₂ decrease UHC emission by 16.9% at 25 ppm and 75% load. While adding Al₂O₃ increase UHC emission except with no load, where UHC emission decreased by 13.5% at 25 ppm.

5. References

[1] Amer Abdullah, Abed Al-Khadim M. Hassan, Mahmoud A. Mashkour "The effect of bio-additives on the burning velocity and emission of liquid hydrocarbon fuel" Ph.D. thesis dissertation Department of Mechanical Engineering/University of Technology, 2018.
[2] Rolvin D. "Silvaa, Binu K.G, Thirumaleshwara Bhat" Performance and
Emission characteristics of a C.I. Engine fuelled with diesel and TiO2 nanoparticles as fuel additive" St Joseph Engineering College, Vamanjoor, Mangaluru 575028, Karnataka, India,2015.

[3] Hamzah H. K., “Experemental and Numerical Investigation of Turbulent Forced Convection in A Circular Pipe with Induced Vibration”, Ph.D. Thesis dissertation Department of Mechanical Engineering/ University of Babylon, 2016.

[4] Mahendravarman R. D.B. Sivakumar, P. Sivakumar. “Experimental study on performance and emission characteristics of a direct injection compression ignition engine with fe3O4 nanoparticles”. Advanceds in Natural and Applied Sciences. 10(4): pages 139-144, 2016.

[5] S Karthikeyan, A Elango, A prathima "Diesel engine performance and emission analysis using canola oil methyl ester with the nano sized zinc oxide particles" Indian Journal of Engineering and Material Science, Vol.21, pp. 83-87, 2014.

[6] Arul M.S. V,Anand R.B., Udayakumar M. “Effects of cerium oxide nanoparticle addition in diesel and diesel-biodiesel-ethanol blends on the performance and emission characteristics of a CI engine”. ARPN Journal of Engineering Applied Sciences, Vol 4, NO.7, 2009.

[7] Nithin Samuel, Muhammed Shafeek “Performance and Emission Characteristics of a C.I Engine with Cerium Oxide Nanoparticles as Additive to Diesel" International Journal of Science and Research Vol.4 Issue 7, 2013.

[8] Sukkar, K., Karamalluh, A., & Jaber, T. (2019). Rheological and Thermal Properties of Lubricating Oil Enhanced by the Effect of CuO and TiO2 Nano-Additives. Al-Khwarizmi Engineering Journal, 15(2), 24-33. https://doi.org/10.22153/kej.2019.12.002.

[9] Chaichan, M., Hussein, R., & Jawad, A. (2017). Thermal Conductivity Enhancement of Iraqi Origin Paraffin Wax by Nano-Alumina. Al-Khwarizmi Engineering Journal, 13(3), 83-90. https://doi.org/10.22153/kej.2017.02.003.

[10] S P Venkatesan, P N Kadiresh "Influence of aluminum oxide nanoparticle additive on performance and exhaust emissions of diesel engine" International Journal of Applied Engineering Research ISSN 0973-4562 Vol.10, Number 3 pp. 5741-5749, 2015.

[11] Ajay K. "Effects of cerium oxide nanoparticles on compression ignition performance and emission characristics when using water diesel emulsion". Thesis M.Sc. dissertation Department of Mechanical Engineering/ Thapar University Patiala-147004, India July 2014.

[12] Yimin X., and Qiang L., “Heat transfer enhancement of nanofluids”, International Journal of Heat and Fluid Flow. Vol. 21, pp.58-64, 2000.

[13] Hayder Abed Dhahad, Sinan Abdul-Ghafar Ali "Experimental study on The Effect of nanoparticle addition on the pressure at the start of ignition, maximum pressure and timing of maximum pressure" ARPN Journal of Engineering and Applied Sciences, ISSN 1819-6608, Vol. 14, NO.8, 2019.
دراسة تجريبية لتأثير الجسيمات النانوية المضافة لوقود الديزل على خصائص الانبعاث

صادق طلال بنيان**
عبد الكاظم محمد حسن***

الخطابة

تم إجراء العمل التجريبي الحالي لفحص تأثير إضافة جزيئات الألومينا (TiO₂) والنانوية وحدها او أكسيد التيتانيوم (Al₂O₃) للوقود الذي تم الحصول على وقود الديزل. تم تحضير ثلاث جرعات من (TiO₂) و (Al₂O₃) و (DF) بنسبة (25، 50، 100) جزء في المليون، ثم قمت بالتجربة. وانتقلت الدراسة إلى إضافة الألومينا والنائمة في زيت الغاز بواسطة معالج ميكانيكي متعدد (خلاط كهربائي يدوي) ومعالج فوق صوتي. كشفت الدراسة أن إضافة أكسيد الألومينا (TiO₂) والإكسيد النانوي (DF) إلى زيت الغاز (TiO₂) و (Al₂O₃) يحسن من خصائص الانبعاثات المحرك مثل انبعاثات ثاني أكسيد الكربون وانبعاثات ثاني أكسيد الكربون وانبعاثات ثاني أكسيد الكربون للاستخدام في المليون، وانخفضت انبعاثات أكاسيد النيتروجين (NOx) بحوالي 7.73% و 2.21% لكل من (TiO₂ + DF) و (Al₂O₃ + DF) على التوالي عند 0.5 جزء في المليون. وانخفضت انبعاثات (UHC) بحوالي 9.61% و 9.31% لكل من (TiO₂ + DF) و (Al₂O₃ + DF) على التوالي عند 0.5 جزء في المليون.