Shuffle Private Linear Contextual Bandits

Xingyu Zhou, Sayak Ray Chowdhury*

UCLA Big Data and Machine Learning Seminar

* Equal Contributions, Post-doc at Boston University
Introduction
Linear Contextual Bandits (LCB)

- For each time $t = 1, \ldots, T$
 1. Observe context c_t
 2. Prescribes action a_t
 3. Receive reward $y_t = \langle \phi(c_t, a_t), \theta^* \rangle + \epsilon_t$
 4. Update model

- The goal is to minimize regret

$$\text{Reg}(T) = \sum_{t=1}^{T} \left[\max_a \langle \theta^*, \phi(c_t, a) \rangle - \langle \theta^*, \phi(c_t, a_t) \rangle \right]$$
Privacy Risk

- Both **context** and **reward** are sensitive information
- Standard LCB could reveal these information
 - Bob has **diabetes** and health app often prescribes
 - Alice is a **new** user and extremely happy with
 - Bob receives new recommendation
 - If Bob knows Alice is the most recent user
 - Bob’s belief that Alice has diabetes **increases**

A new diabetes treatment

age, medical history…

hmm...after Alice uses the app, it starts to prescribe
Differentially Private LCB

Central model

- Differential Privacy (DP) provides formal privacy guarantee [Dwork et al. 2006]
- Well-tuned noise added to obscure each user’s contribution
- In LCB, **central server** updates model with injected noise
 - Gaussian noise with variance $\sigma^2 = O(\log(1/\delta)/\epsilon^2)$
 - Smaller ϵ, δ, stronger privacy but worse regret
- **Privacy vs Regret.** [Shariff and Sheffet. 2018] shows that

\[
\text{Regret} \tilde{O}\left(\frac{\sqrt{T}\log(1/\delta)^{1/4}}{\sqrt{\epsilon}}\right) \text{ under central } (\epsilon, \delta)\text{-DP}^*
\]

Contextual bandits need relax to joint-DP
Another Privacy Risk

- Both **context** and **reward** are sensitive information.
- What if central server is **not** trustworthy?
 - Will it follow the right DP mechanism…?
 - Will it use my data for other use cases…?
 - Will it be attacked by an adversary…?
- **Hence**, users may **not** be willing to share their raw data.
 - Context via $\phi(c_t, a_t)$
 - Reward y_t
Differentially Private LCB

Local model

- Each user injects noise before sending data
 - By post-processing, local DP implies central DP
- In LCB, each user applies local randomizer \mathcal{R}
 - Gaussian noise with variance $\sigma^2 = O(\log(1/\delta)/\epsilon^2)$
 - Smaller ϵ, δ, stronger privacy but worse regret

Privacy vs Regret. [Zheng et al. 2020] shows that

$$\text{Regret} \tilde{O}\left(\frac{T^{3/4}(\log(1/\delta))^{1/4}}{\sqrt{\epsilon}}\right) \text{ under local } (\epsilon, \delta)\text{-DP}^*$$

* The original result is $1/\epsilon$, which can be easily improved to $1/\sqrt{\epsilon}$
Can one achieve a better regret even without a trusted server?

Yes!
Contribution
1. Propose a generic private LCB algorithm with black-box protocol $\mathcal{P} = (\mathcal{R}, \mathcal{S}, \mathcal{A})$

2. Two instantiation of \mathcal{P} guarantee *shuffle privacy* with regret $\tilde{O}(T^{3/5})$

3. For the case of returning users, our regret can match the one under central model, i.e, $\tilde{O}(T^{2/3})$
Related Work
Shuffle DP protocols & app. in SGD

○ Shuffle DP protocols
 - Practical system [Bittau et al. 2017 …]
 - Shuffle protocols for bounded sum [Cheu et al. 2021, Cheu et al. 2019, Balle et al. 2020, Ghazi et al. 2020 …]
 - Sum of n numbers in $[0, 1]$, shuffler enables (ϵ, δ)-SDP with error $\tilde{O}(1/\epsilon)$
 - General “privacy amplification” bounds [Feldman et al. 2021, Erlingsson et al. 2019, Balle et al. 2019 …]
 - Shuffling of $n \epsilon_0$-DP locally randomized data, yields (ϵ, δ)-SDP with $\epsilon = \tilde{O}(\epsilon_0/\sqrt{n})$ if $\epsilon_0 \leq 1^*$

○ Applications in private SGD
 - Both ERM and SCO [Girgis et al. 2021, Lowy and Razaviyayn 2021, Cheu et al. 2021 …]
 - Shuffler enables SDP with the same convergence rate as in central DP

* Ignore δ term and similar result holds for (ϵ_0, δ_0)-LDP amplification
Related Work

Shuffle DP in bandit learning

- Shuffle DP in MAB [Tenebaum et al. 2021]
 - A batch-variant arm elimination algorithm
 - Guarantee (ϵ, δ)-SDP with additive privacy cost $\frac{K \log T \sqrt{\log(1/\delta)}}{\epsilon}$
 - Central $(\epsilon,0)$-DP — additive cost $\frac{K \log T}{\epsilon}$; Local $(\epsilon,0)$-DP — multiplicative factor $1/\epsilon^2$

- Shuffle DP in linear contextual bandits
 - In addition to rewards, contexts also need protection
 - One concurrent and independent work [Garcelon et al. 2021]
 - More complicated algorithm; A gap exists in their regret analysis*
 - The shuffle privacy guarantee only holds for $\epsilon \ll 1$

* Will be discussed in detail later
Background
Shuffle Differential Privacy

Standard SDP

- **Neighboring datasets.** \(D, D' \in \mathcal{D}^n \) are neighboring if they only differ in one user’s data \(D_i \)

Def. Differential Privacy [Dwork et al. 2006]

For \(\epsilon, \delta > 0 \), a randomized mechanism \(\mathcal{M} \) satisfies \((\epsilon, \delta)\)-DP is for all neighboring datasets \(D, D' \) and all events \(\mathcal{E} \) in the range of \(\mathcal{M} \)

\[
\Pr[\mathcal{M}(D) \in \mathcal{E}] \leq e^\epsilon \cdot \Pr[\mathcal{M}(D') \in \mathcal{E}] + \delta
\]

- **Standard shuffle DP.** The output of the shuffler is private, i.e., \((S \circ \mathcal{R}^n) := S(\mathcal{R}(D_1), \ldots, \mathcal{R}(D_n))\)

Def. Shuffle Diff. Privacy [Cheu et al. 2019]

Let \(\mathcal{P} = (\mathcal{R}, \mathcal{S}, \mathcal{A}) \) be a protocol for \(n \) users. Then, \(\mathcal{P} \) satisfies \((\epsilon, \delta)\)-SDP if the mechanism \((S \circ \mathcal{R}^n)\) satisfies \((\epsilon, \delta)\)-DP

- 🌟 Recall that shuffling amplifies privacy by \(\sqrt{n} \)
Shuffle Differential Privacy

SDP in Bandits

- **Divide users into batch.** Run a standard protocol for each batch \(m \in [M] \) with size \(n_m \)

- **Composite mechanism.** \(\mathcal{M}_P = (S \circ R^{n_1}, \ldots, S \circ R^{n_M}) \)
 - Each \((S \circ R^{n_m}) \) operates on \(n_m \) users’ data \(\mathcal{D}^{n_m} \)
 - Each data point in LCB is \((\phi(c_i, a_i), y_i) \)

Def. SDP in Bandits

An \(M \)-batch shuffle protocol \(\mathcal{P} \) is \((\epsilon, \delta)\)-SDP if \(\mathcal{M}_P \) satisfies \((\epsilon, \delta)\)-DP

- If users are *unique*, it suffices to show each \((S \circ R^{n_m}) \) satisfies \((\epsilon, \delta)\)-DP

 This is assumed in all previous private bandit works. We will discuss how to handle returning users later by simple parallel-composition.
Our Algorithm
A Generic Private LinUCB

Illustration
A Generic Private LinUCB

Initialize: batch size B, statistics $V_0 = \lambda I_d$, $u_0 = 0$, initial parameter estimate $\hat{\theta}_0 = 0$

For local user $t = 1, \ldots, T$ do

// user-app interaction
Observe user context c_t and prescribes action $a_t \in \arg\max_{a \in \mathcal{X}} (\phi(c_t, a), \hat{\theta}_{m-1}) + \beta_{m-1} \|\phi(c_t, a)\|_{V^{-1}}$
User generates reward y_t

// local randomizer
Send randomized messages $M_{t,1} = R_1(\phi(c_t, a_t), y_t)$ and $M_{t,2} = R_2(\phi(c_t, a_t)\phi(c_t, a_t)^T)$ to the shuffler

If $t = mB$ then
 // shuffler
 Set batch end-time $t_m = t$
 Randomly permutes per-batch messages and send to central server, $Y_{m,i} = S_i(\{M_{t,i}\}_{t_{m-1}+1 \leq t \leq t_m}), i = 1, 2$

// central server
Compute per-batch statistics $\tilde{a}_m = A_1(Y_{m,1})$ and $\tilde{V}_m = A_2(Y_{m,2})$
Update statistics $u_m = u_{m-1} + \tilde{a}_m$ and $V_m = V_{m-1} + \tilde{V}_m$
Update estimate $\hat{\theta}_m = V^{-1}_m u_m$, send new model $(\hat{\theta}_m, V_m)$ to users and increase $m = m + 1$
SDP via LDP Amplification
Amplification of Gaussian Mechanism

Local Randomizer is Gaussian Mechanism

Analyzer is a simple aggregation

\[\tilde{u} = \begin{bmatrix} \bullet \\ \vdots \\ \bullet \end{bmatrix} + \begin{bmatrix} \bullet \\ \vdots \\ \bullet \end{bmatrix} \]

\[\tilde{V} = \begin{bmatrix} \bullet & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} + \begin{bmatrix} \bullet & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \]
Performance
SDP via Amplification

Theorem

Fix batch size B and $\epsilon \in \left(0, \sqrt{\frac{\log(2/\delta)}{B}}\right)$. Let local Gaussian mechanism choose noise $\sigma_0 = \tilde{O}(1/(\epsilon\sqrt{B}))$. Then we have

- (Privacy) Our algorithm is $O(\epsilon, \delta)$-SDP
- (Regret) Set $B = O(T^{3/5})$, with a high probability, our algorithm achieves $\tilde{O}\left(\frac{T^{3/5}}{\sqrt{\epsilon}}\right)$

- 😊 Achieve a better regret vs. $\tilde{O}(T^{3/4})$ under local model without a trusted server
- 😞 Minimal modification on existing private algorithms, i.e., batch + shuffler

- 😞 Privacy guarantee holds only for small $\epsilon \ll 1$
- 😞 Continuous privacy noise, difficulty on finite computers and even privacy leakage [Kairouz et al. 2021, Mironov et al. 2012]
- 😞 Communication of real numbers

LDP with $\epsilon_0 = \epsilon\sqrt{B}$
SDP via Vector Sum
Shuffle Bounded Sum

Introduction

- **Problem.** Given \(n \) numbers within \([0,1]\), private sum with error \(\tilde{O}(1/\epsilon) \), no trusted server?

- **A shuffle protocol.** \(\mathcal{P} = (\mathcal{R}, \mathcal{S}, \mathcal{A}) \) proposed in [Cheu et al. 2021

 - Randomizer — fixed-point encoding + random rounding + Binomial noise
 - 😊 only discrete noise + bit communication
 - Shuffler — randomly permute a bunch of bits
 - Analyzer — aggregate bits with simple de-bias operation
Shuffle Bounded Sum

Illustration $\mathcal{P}_{1D} = (\mathcal{R}, \mathcal{S}, \mathcal{A})$

$x_1 = 0.53 \rightarrow \ldots$
$x_2 = 0.27 \rightarrow \ldots$

\vdots

$x_n = 0.98 \rightarrow$

$0.98 \rightarrow 9 \rightarrow 10 = 9 + 1 \rightarrow 10 + 5 \rightarrow (111\ldots000\ldots)$

- **\mathcal{R}** Parameters: g, b, n
 - Fixed-point encoding with $g = 10$
 - Random rounding
 - Binomial noise
 - $\hat{x} + \gamma_2$ are 1 else 0

- **\mathcal{A}** Parameters: g, b, n
 - $\hat{z} = \sum_{i=1}^{n(g+b)} y_i \rightarrow z = (\hat{z} - pbn)/g \rightarrow z \approx \sum_{i} x_i$
 - Sum of all bits
 - Remove bias

Is this private? 😕

How close is it? 😐

Parameters:
- g
- b
- n

$\sum_{i=1}^{n(g+b)} y_i \rightarrow \hat{z} = \sum_{i} x_i \rightarrow z = (\hat{z} - pbn)/g \rightarrow z \approx \sum_{i} x_i$

\vdots

$(110101\ldots100\ldots) \rightarrow n \cdot (g + b)$ bits

$\hat{z} = \sum_{i=1}^{n(g+b)} y_i \rightarrow z = (\hat{z} - pbn)/g \rightarrow z \approx \sum_{i} x_i$
Shuffle Bounded Sum

Privacy and utility [Cheu et al. 2021 ††]

○ Sum of n real $[0,1]$ numbers. Let $g \geq \sqrt{n}, b = \tilde{O} \left(\frac{g^2}{(\epsilon^2 n)} \right), p = 1/4$

\[\mathcal{P}_{1D} = (\mathcal{R}, \mathcal{S}, \mathcal{A}) \text{ is } (\epsilon, \delta)-SDP \text{ and } z \text{ is unbiased with variance } \tilde{O}(1/\epsilon^2) \]

○ “Amplification” of Binomial mechanism.

- Each user injects binomial noise with variance $\approx bp = O(g^2/(\epsilon^2 n))$ with sensitivity g
- Hence, it is $\epsilon_0 = \epsilon \sqrt{n}$ locally private by Binomial mechanism [Ghazi et al. 2019]
- Sum of n norm-bounded vectors. There exists parameters g, b, p, modification of \mathcal{P}_{1D}

\[\mathcal{P}_{\text{Vec}} \text{ is } (\epsilon, \delta)-SDP \text{ and the output of analyzer is unbiased with variance } \tilde{O}(d/\epsilon^2) \]

*\(\delta \) term is omitted for clarity
Vector Sum in LCB

\[\tilde{u} = \mathcal{A}_{\text{Vec}} \]

\[\tilde{v} = \mathcal{A}_{\text{Vec}} \]
Performance
SDP via Vector Sum

Theorem

Fix batch size B, privacy budgets $\varepsilon \in (0, 15]$ and $\delta \in (0, 1/2)$. There exist parameter choices of g, b, p, such that

- (Privacy) Our algorithm is (ε, δ)-SDP
- (Regret) Set $B = O(T^{3/5})$, with a high probability, our algorithm achieves $\tilde{O}\left(\frac{T^{3/5}}{\sqrt{\varepsilon}}\right)$

- 😊 Achieve a better regret vs. $\tilde{O}(T^{3/4})$ under local model without a trusted server
- 😊 Privacy holds for $\varepsilon > 1$
- 😐 Discrete noise and communicating bits
- 😞 Still has gap compared to central model $\tilde{O}(\sqrt{T})$
Proof Ideas
A Generic Regret Bound

- **Noise assumption.** Let n_i, N_i be total noised added in batch i for vector and matrix.
 - For each m, $\sum_{i=1}^{m} n_i$ is a element-wise zero-mean sub-Gaussian with variance σ_1^2
 - For each m, $\sum_{i=1}^{m} N_i$ is a element-wise zero-mean sub-Gaussian with variance σ_2^2
 - Let $\sigma = \max\{\sigma_1, \sigma_2\}$

Lemma

Let above noise assumption holds. Our generic algorithm satisfies a high probability regret bound*

$$\text{Reg}(T) = \tilde{O}\left(dB + d\sqrt{T} + \sqrt{T}\sigma d^{3/4}\right)$$

Cost of batch update Standard regret Cost of privacy

* To handle batch update, we relies on the proof idea in [WZG'21]
A Generic Regret Bound

Applications

Lemma

Let noise assumption hold. Our generic algorithm satisfies a high probability regret bound

\[\text{Reg}(T) = \tilde{O} \left(dB + d\sqrt{T} + \sqrt{\sigma T} d^{3/4} \right) \]

- SDP via LDP amplification $\sigma^2 \approx O(T/(e^2B))$
 - Each user’s noise is Gaussian with variance $\tilde{O}(1/(e^2B))$ and a total of T such noise

- SDP via Vector sum $\sigma^2 \approx O(T/(e^2B))$
 - Each batch is sub-Gaussian noise with variance $\tilde{O}(1/e^2)$ and a total of $M = T/B$ such noise

- Recover standard private bounds when $B = 1$
 - Central model: $\sigma^2 \approx \log T/e^2$ and Local model: $\sigma^2 \approx T/e^2$

- Batched central and local models ... improve non-private batch LinUCB...
Simulations

Our algorithm with both protocols achieve regret that lies in between central and local model
Returning Users

Introduction

○ **Assumption.** Each user can participate *once* in all M batches

 - Each batch — each phase of medical experiment

 - Send feedback once in each phase allows for tracking the overall effectiveness

○ **Key differences.**

 ○ Shuffle model — advanced composition of privacy loss is required

 ○ Central model — total sensitivity becomes larger

 - For central model, we consider users can participate in any M_0 rounds
Returning Users

Guarantees

Lemma

Let noise assumption hold. Our generic algorithm satisfies a high probability regret bound

\[
\text{Reg}(T) = \tilde{O} \left(\frac{dT}{M} + d\sqrt{T} + \sqrt{\sigma T} d^{3/4} \right)
\]

- **Shuffle model** — scale \(\epsilon \) by \(1/\sqrt{M} \) for \((\epsilon, \delta)\)-SDP
 - As a result, total noise changes from \(\sigma^2 \approx O(M/\epsilon^2) \) to \(\sigma^2 \approx O(M^2/\epsilon^2) \)

- **Central model** — scale \(\epsilon \) by \(1/M_0 \) for \((\epsilon, \delta)\)-DP in the central model
 - As a result, total noise changes from \(\sigma^2 \approx O(\log T/\epsilon^2) \) to \(\sigma^2 \approx O(M_0^2 \log T/\epsilon^2) \)

If \(M = M_0 = T^{1/3} \), both models have the same regret \(\tilde{O}(T^{2/3}) \)!
Discussion
Concurrent Work

[Garcelon. et al 2021]

- A more complicated algorithm.
 - Two different batch schedules: shuffler — fixed batch size; server — adaptive batch schedule
 - This is due to the fact that their analysis of single-batch schedule is not tight
 - Instead, our tighter analysis shows that single-batch schedule is sufficient for same regret

- Privacy guarantees hold only for $\epsilon \ll 1$.
 - Instead, our SDP via vector sum holds for $\epsilon > 1$

- Adaptive batch schedule in fact causes trouble, i.e., a gap in Theorem 10 of their paper.
 - The key issue is that standard determinant trick cannot be directly used
 - It relies on the fact that $V_t \geq V_{\tau_t}$, where $\tau_t < t$ is the most recent model update time
 - However, this does not necessarily hold due to the added privacy noise! (This problem exists for all three DP models)
Open Problems

- **Can we close the gap?**
 - What’s the lower bound for local model? i.e., Can $O(T^{3/4})$ be improved?
 - Or, can one further improve $O(T^{3/5})$ in the shuffle model?

- **Can we achieve pure DP in all three models?**
 - The key challenge is a non-trivial matrix concentration bound with sub-exponential tails

- **Can we do adaptive batch schedule (i.e., rarely-switching) in private case?**
 - The key challenge is that standard determinant trick fails
Thank you!