Neutron experiments to search for new spin-dependent interactions

Yu. N. Pokotilovski¹

Joint Institute for Nuclear Research
141980 Dubna, Moscow region, Russia

Abstract

The consideration is presented of possible neutron experiments to search for new short-range spin-dependent forces. The spin-dependent nucleon-nucleon interaction between neutron and nuclei may cause different effects: phase shift of a neutron wave in neutron interferometer, neutron spin rotation in the pseudo-magnetic field, and transverse deflection of polarized neutron beam by a slab of substance. Estimates of possible sensitivity of these experiments are performed.

PACS: 14.80.Mz; 12.20.Fv; 29.90.+r; 33.25.+k

Keywords: Axion; Long-range interactions; Neutron spin rotation.

1. Introduction

A number of proposals were published for the existence of new interactions coupling mass to particle spin [1, 2, 3, 4]. On the other hand, there are theoretical indications that there may exist light, scalar or pseudoscalar, weakly interacting bosons. Generally the masses and the coupling of these particles to nucleons, leptons, and photons are not predicted by the proposed models. The most attractive solution of the strong CP problem is the existence of a light pseudoscalar boson - the axion [5]. Current algebra techniques is used to relate the masses and coupling constants of the axion and neutral pion: \[m_a = (f_\pi m_\pi / f_a)\sqrt{z} / (z+1), \]
where \(z = m_a / m_d = 0.56 \), \(f_\pi \approx 93 \text{ MeV} \), \(m_\pi = 135 \text{ MeV} \), so that \(m_a \approx (0.6 \times 10^{10} \text{ GeV} / f_a) \text{ meV} \). Here \(f_a \) is the scale of Peccei-Quinn symmetry breaking.

The axion coupling to fermions has general view \(g_{a\ell} = C_f m_f / f_a \), where \(C_f \) is the model dependent factor. The axion may have a priori mass in a very large range, namely \(10^{-12} \text{ eV} < m_a < 10^6 \text{ eV} \). The main part of this mass range from both – low and high mass boundaries – was excluded in result of numerous experiments and constraints from astrophysical considerations [6]. Astrophysical bounds are based on some assumptions concerning the axion and photon fluxes produced in stellar plasma.

More recent constraints limit the axion mass to \(10^{-5} \text{ eV} < m_a < 10^{-3} \text{ eV} \) with respectively very small coupling constants to quarks and photon [6].

Axion is one of the best candidates for the cold dark matter of the Universe [7]. Some recent reviews are [6, 8].

¹e-mail: pokot@nf.jinr.ru; tel: 7-49621-62790; fax: 7-49621-65429
Several laboratory searches provided constraints on the product of the scalar and pseudoscalar couplings at macroscopic distances $\lambda \leq 1$ mm. The examples of the most recent experiments are [9, 10, 11, 12].

These experiments may be divided in two groups: measurement of the force between a mass and a sensor, or measurement of the frequency shift resulting from interaction between mass and a sensor (Fig. 1).

On the other hand there exist independent constraints on the scalar and pseudoscalar coupling constants. The first one follows from the experiments of Galileo-, Eötvös- or Cavendish-type performed with macro-bodies, in measurements of the Casimir force between closely placed macro-bodies, or from high precision particle scattering. For the interaction range of our interest: $(10^{-4} < \lambda \leq 1)$ cm the most sensitive are the measurements of Seattle and Stanford groups [13, 14, 18, 15, 16, 17]. They have searched a deviation from the Newton gravitation law

$$U(r) = -\frac{GMm}{r}(1 + \alpha e^{-r/\lambda})$$

where G – the Newtonian gravitational constant, M and m are the masses of gravitating bodies.

For the monopole-monopole interaction due to exchange of the scalar boson

$$V_{\text{mon-mon}}(r) = \frac{g_s^2}{4\pi} \frac{\hbar c}{r} e^{-r/\lambda}$$

the scalar coupling constant g_s may be inferred from the limits on α:

$$g_s^2 = \frac{4\pi GMm\alpha}{\hbar c} \approx 10^{-37}\alpha,$$

where M and m are the nucleon masses.

It follows from the experiments [13, 14, 15, 16, 17] that g_s^2 is limited by the value $10^{-40} - 10^{-38}$ in the interaction range 1 cm $\lambda > 10^{-4}$ cm (see also [18]).

The pseudoscalar coupling constant is restricted to $g_p < 10^{-9}$ from astrophysical considerations [19].

Sensitivity of these experiments sharply fall with decreasing the interaction range below ~ 1 cm.

The experimental limit on the monopole-dipole interaction in the λ-range $(10^{-4} - 1)$ cm was established in the Stern-Gerlach type experiment in which ultracold neutrons transmitted...
through a slit between a horizontal mirror and absorber [20]. Their limit for the value \(g_s g_p\) is \(\sim 10^{-15}\) at the \(\lambda = 10^{-2}\) cm, what corresponds to the value of the monopole-dipole potential at the surface of the mirror \(\sim 10^{-3}\) neV, which is equivalent to the magnetic field \(\sim 0.2\) G in the neutron magnetic moment interaction \(\mu \mathbf{H}\) with magnetic field.

Sensitivity estimates for a future ultracold neutron Stern-Gerlach type experiment were presented, which promise some orders of magnitude improvements in limiting the monopole-dipole interaction [21].

Constraints on new spin-dependent interactions were also obtained from existing data on ultracold neutron depolarization in traps [22, 23].

There was also a proposal of the ultracold neutron magnetic resonance frequency shift experiment for obtaining these constraints with better precision [24].

It is seen that the constraints obtained and expected from further laboratory searches are weak compared to the limit on the product \(g_s g_p < 10^{-28}\) inferred from the above mentioned separate constraints on \(g_s\) and \(g_p\). Although they may not lead to the strongest bounds numerically, measurements made in terrestrial laboratories produce the most reliable results. On the other hand the direct experimental constraints on the monopole-dipole interaction may be useful for limiting more general class of low-mass bosons irrespective to any particular theoretical model. Further \(g_{mon-dip}\) is used for the coupling constant of this more general interaction.

Axions mediate a P- and T-reversal violating monopole-dipole interaction potential between spin and matter (polarized and unpolarized nucleons) [25]:

\[
V_{\text{mon-dip}}(r) = g_s g_p \frac{h^2 \sigma \cdot n}{8\pi m_n} \left(\frac{1}{\lambda r} + \frac{1}{r^2} \right) e^{-r/\lambda},
\]

\[(4)\]

where \(g_s\) and \(g_p\) are dimensionless coupling constants of the scalar and pseudoscalar vertices (unpolarized and polarized particles), \(m_n\) the nucleon mass at the polarized vertex, the nucleon spin \(s = h\sigma/2\), \(r\) is the distance between the nucleons, \(\lambda = h/(m_a c)\) is the range of the force, \(m_a\) - the axion mass, and \(n = r/r\) is the unitary vector.

The potential between the layer of substance and the nucleon separated by the distance \(x\) from the surface is:

\[
V_{\text{mon-dip}}(x) = \pm g_s g_p \frac{h^2 N\lambda}{4\pi m_n} \left(e^{-|x|/\lambda} - e^{-|x+d|/\lambda} \right)
\]

\[(5)\]

where \(N\) is the nucleon density in the layer, \(d\) is the layer’s thickness. The ”+” and ”−” depends on the nucleon spin projection on x-axis (the surface normal).

2. Phase shift in the neutron interferometer.

Slow neutrons with polarization normal to the surface of unpolarized matter (Fig. 2) experience shift of the phase of the wave function:

\[
\beta = \frac{2lV(x)}{h\nu} = g_s g_p \frac{N\lambda\lambda_n l}{4\pi} e^{-x/\lambda} \rightarrow g_s g_p \frac{N\lambda\lambda_n l}{4\pi},
\]

\[(6)\]

where \(\lambda_n\) is the neutron wavelength, \(l\) is the length of the inserted sample, \(x\) is the distance of the beam from the surface. We assume here that distance of the beam from the surface is less than the interaction range \(\lambda\) and both \(x, \lambda \ll d\).

The sensitivity to the product of the coupling constants follows from the sensitivity to the measured phase shift:

\[
g_s g_p = \frac{4\pi\beta}{N\lambda\lambda_n l}.
\]

\[(7)\]
At the very low energy interferometer with $\lambda_n = 30$ Å [27], $\lambda = 1$ mm, $l = 1$ cm, $\beta = 10^{-3}$, $N = 5 \times 10^{24}$, we have $g_s g_p = 10^{-21}$.

3. Neutron spin rotation.
The neutron spin Larmor precession frequency is

$$\omega_L = \frac{2V(x)}{\hbar} = g_s g_p \frac{\hbar N \lambda}{2m_n} e^{-|x|/\lambda}. \quad (8)$$

Angle of spin rotation

$$\varphi = \omega_L t = \omega_L \frac{l}{v} = g_s g_p \frac{\hbar N \lambda \lambda_n l}{4\pi} e^{-|x|/\lambda}, \quad (9)$$

the same as in the interferometer, but the sensitivity to the $g_s g_p$ may be higher.

It follows that constraint on $g_s g_p$

$$g_s g_p = \frac{4\pi \varphi}{N \lambda \lambda_n l} e^{-|x|/\lambda}. \quad (10)$$

At $\lambda_n = 10$ Å, $N \sim 5 \times 10^{24}$, $L = 1$ m, and measurable deviation angle $\varphi = 10^{-5}$ the limit may be obtained $g_s g_p = 3 \times 10^{-25} e^{-|x|/\lambda}$.

4. Deviation of the polarized neutron beam.
The gradient of the potential of Eq. (5) is

$$\nabla V_{mon-dip}(x) = g_s g_p \frac{\hbar^2 N}{4m_n} e^{-|x|/\lambda} \quad (11)$$

and is directed along the nucleon spin direction ($\lambda \ll d$).

The acceleration exerted by the medium on the polarized neutron is

$$a = g_s g_p \frac{\hbar^2 N}{4m_n^2} e^{-|x|/\lambda}, \quad (12)$$

where x is the distance of the beam from the slab surface.

For an estimate of the sensitivity of such an experiment we consider the experiment [26] on the search for the neutron electric charge. In this experiment the beam of cold neutrons with the wavelength $12 < \lambda < 30$ Å passed through a strong electric field ~ 60 kV/cm, over a length of 9 m, and possible lateral deflection of the beam was looked with a multi-slit neutron optical system when polarity of the electric field was changed alternatively.
In the search for the spin-dependent interaction the expected lateral deflection angle of the neutron beam with velocity v polarized normal to the surface of the slab of substance with the length l

$$\theta = \frac{v_\perp}{v_\parallel} = \frac{at}{v_\parallel} = \frac{al}{v_\parallel^2} = g s g_p \frac{\hbar^2 N l}{4m_n v_\parallel^2} = g s g_p \frac{\lambda^2 N l}{(4\pi)^2}.$$ \hfill (13)

$x \ll \lambda$. Similarly, in the neutron charge experiment

$$\theta = \frac{v_\perp}{v_\parallel} = \frac{at}{v_\parallel} = \frac{al}{v_\parallel^2} = Q_n E l \frac{m_n v_\parallel^2}{m_n v_\parallel^2}.$$ \hfill (14)

From the constraints for Q_n the sensitivity of a possible experiment for the constraints on $g_s g_p$ is:

$$g_s g_p = \frac{4m_n Q_n E}{\hbar^2 N}.$$ \hfill (15)

At $Q_n = 10^{-21} e$ [26] and $N = 5 \times 10^{24} \text{ cm}^{-3}$ we get $g_s g_p = 10^{-22}$.

Serious requirement in this experiment is perfect magnetic shielding: the lateral deflection of the neutron beam caused by the pseudomagnetic field at the value $g_s g_p = 10^{-22}$ may be caused by the gradient of magnetic field of $\sim 10^{-5} \text{ G/cm}$ directed normal to the slab surface.

References

[1] J. Leitner and S. Okubo, Phys. Rev. **136** (1964) B1542.

[2] C. T. Hill and G. G. Ross, Nucl. Phys. **B 311** (1988) 253.

[3] P. Fayet, Class. Quant. Gravit. **13** (1996) A19.

[4] B. A. Dobrescu and I. Mocioiu, JHEP **11** 005 (2006); arXiv: hep-ph/0605342.

[5] S. Weinberg, Phys. Rev. Lett. **40** (1978) 223; F. Wilczek, Phys. Rev. Lett. **40** (1978) 279.

[6] C. Hangmann, H. Murayama, G. G. Raffelt, L. J. Rosenberg, and K. van Bibber, (Particle Data Group), Phys. Lett. **B667** (2008) 459.

[7] P. Sikivie, Phys. Rev. Lett. **51** (1983) 1415; R. Bradley, J. Clarke, D. Kinion, L. J. Rosenberg, K. van Bibber, S. Matsuki, M. Mück, P. Sikivie, Rev. Mod. Phys. **75** (2003) 777.

[8] J. Jaeckel, A. Ringwald, arXive:1002.0329; O.K Baker, G. Cantatore, J. Jaeckel and G. Mueller, arXive:1007.1835.

[9] B.R. Heckel, E.G. Adelberger, C.E. Cramer, T.S. Cook, S. Schlamminger, and U. Schmidt, Phys. Rev. **D78** (2008) 092006.

[10] Wei-Tou Ni, Shean-Shi Pan, Sien-Chi Yeh, Li-Shing Hou, and Juling Wan, Phys. Rev. Lett. **82** (1999) 2439.

[11] R. C. Ritter, L. I. Winkler, and G. T. Gillies, Phys. Rev. Lett. **70** (1993) 701;

Wei-Tou Ni, Shean-Shi Pan, sien-Chi Yeh, Li-Shing Hou, and Juling Wan, Phys. Rev. Lett. **82** (1999) 2439.
[12] G. D. Hammond, C. C. Speake, Ch. Trenkel, A. Pulido-Patón, Phys. Rev. Lett. 98 (2007) 081101.

[13] C.D. Hoyle, D.J. Kapner, B.R. Heckel, E.G. Adelberger, J.H. Gundlach, U. Schmidt, and H.E. Swanson, Phys. Rev. D 70 (2004) 042004.

[14] D.J. Kapner, T.S. Cook, E.G. Adelberger, J.H. Gundlach, B. R. Heckel, C. D. Hoyle, and H. E. Swanson, Phys. Rev. Lett. 98 (2007) 021101.

[15] J. Chiaverini, S. J. Smullin, A. A. Geraci, D. M. Weld, and A. Kapitulnik, Phys. Rev. Lett. 90 (2003) 151101.

[16] S.J. Smullin, A.A. Geraci, D.M. Weld, J. Chiaverini, S. Holmes, and A. Kapitulnik, Phys. Rev. D72 (2005) 122001.

[17] A.A. Geraci, S.J. Smullin, D.M. Weld J. Chiaverini, and A. Kapitulnik, Phys. Rev. D 78 (2008) 022002.

[18] E.G. Adelberger, B.R. Heckel, S. Hoedl, C.D. Hoyle, D.J. Kapner, and A. Upadhye, Phys. Rev. Lett. 98 (2007) 131104.

[19] G. G. Raffelt, Phys. Rep., 333-334 593 (2000).

[20] S. Baeßler, V.V. Nesvizhevsky, K.V. Protasov, and A.Yu. Voronin, Phys. Rev. D75 (2007) 075006.

[21] S. Baeßler, V. V. Nesvizhevsky, G. Pignol, K. V. Protasov, and A. Yu. Voronin, arXiv:0902.3139v1.

[22] A. P. Serebrov, Phys. Lett. B680 (2009) 423.

[23] V. K. Ignatovich, Yu. N. Pokotilovski, Eur. Phys. Journ. C64 (2009) 19.

[24] O. Zimmer, Phys. Lett. B685 (2010) 38.

[25] J. E. Moody, F. Wilczek, Phys. Rev., D30, 130 (1984).

[26] J. Baumann, R. Gäler, J. Kalus, W. Mampe, Phys. Rev. D37 (1988) 3107.

[27] K. Eder, M. Gruber, A. Zeilinger, R. Gäler, W. Mampe, W. Drexel, Nucl. Instr. Meth. A284 (1989) 171;
 G. van der Zouw, M. Weber, J. Felber, R. Gäler, A. Zeilinger, Nucl. Instr. Meth. A440 (2000) 568;
 M. Hino, S. Tasaki, Y. Kawabata, T. Ebisawa, P. Geltertort, T. Brenner, J.S. Butterworth, R. Gäler, N. Achiwa, M. Utsuro, Physica A335 (2003) 230;
 Ch. Pruner, M. Fally, R.A. Rupp, R.P. May, J. Vollbrandt, Nucl. Instr. Meth. A560 (2006) 598.