THE DAVEY STEWARTSON SYSTEM IN WEAK L^p SPACES

VANESSA BARROS
Universidade Federal de Alagoas, Instituto de matemática
57072-090, Maceió, Alagoas, Brasil

Abstract. We study the global Cauchy problem associated to the Davey-Stewartson system in \mathbb{R}^n, $n=2,3$. Existence and uniqueness of solution are established for small data in some weak L^p space. We apply an interpolation theorem and the generalization of the Strichartz estimates for the Schrödinger equation derivated in [CVeV]. As a consequence we obtain self-similar solutions.

1. Introduction

This paper is concerned with the initial value problem (IVP) associated to the Davey-Stewartson system

$$
\begin{aligned}
&i\partial_t u + \delta \partial^2_{x_1} u + \sum_{j=2}^n \partial^2_{x_j} u = \chi |u|^\alpha u + bu \partial_{x_1} \varphi, \\
&\partial_{x_1} \varphi + m \partial^2_{x_2} \varphi + \sum_{j=3}^n \partial^2_{x_j} \varphi = \partial_{x_1} (|u|^\alpha), \\
&u(x,0) = u_0(x)
\end{aligned}
$$

where $u = u(x,t)$ is a complex-valued function and $\varphi = \varphi(x,t)$ is a real-valued function.

The exponent α is such that $\frac{4(n+1)}{n(n+2)} < \alpha < \frac{4(n+1)}{n^2}$, the parameters χ and b are constants in \mathbb{R}, δ and m are real positive and we can consider δ, χ normalized in such a way that $|\delta| = |\chi| = 1$.

The Davey-Stewartson systems are 2D generalization of the cubic 1D Schrödinger equation,

$$
i\partial_t u + \Delta u = |u|^2 u
$$

and model the evolution of weakly nonlinear water waves that travel predominantly in one direction but which the amplitude is modulated slowly in two horizontal directions.

System (P), $n = 2$, $\alpha = 2$, was first derived for Davey and Stewartson [DS] in the context of water waves, but its analysis did not take account of the effect of surface tension (or capillarity). This effect was later included by Djordjevic and Redekopp [DR] who have shown that the parameter m can become negative when capillary effects are important. Independently, Ablowitz and Haberman [AH] obtained a particular form of (P), $n = 2$, as an example of completely integrable model also generalizing the two-dimensional nonlinear Schrödinger equation.

When $(\delta, \chi, b, m) = (1, -1, 2, -1), (-1 - 2, 1, 1), (-1, 2, -1, 1)$ the system (P), $n = 2$, is referred as DSI, $DSII$ defocusing and $DSII$ focusing respectively in the inverse scattering literature. In these cases several results concerning the existence of solutions or lump solutions.

Date: January 19, 2013.

2000 Mathematics Subject Classification. 35D05, 35E15, 35Q35.

Key words and phrases. Davey-Stewartson System, self-similar solution, Lorentz spaces.
have been established ([AF], [AnFr], [AS], [C], [FS], [FSu], [Su]) by the inverse scattering techniques.

In [GS], Ghidaglia and Saut studied the existence of solutions of IVP (1), $n = 2$, $\alpha = 2$. They classified the system as elliptic-elliptic, elliptic-hyperbolic, hyperbolic-elliptic and hyperbolic-hyperbolic, according to respective sign of $(\delta, m) : (+, +), (+, -), (-, +), (-, -)$.

For the elliptic-elliptic and hyperbolic-elliptic cases, Ghidaglia and Saut [GS] reduced the system (1), $n = 2$, to the nonlinear cubic Schrödinger equation with a nonlocal nonlinear term, i.e.

$$i\partial_t u + \delta \partial^2_{x_1} u + \partial^2_{x_2} u = \chi |u|^2 u + H(u),$$

where $H(u) = (\Delta^{-1} \partial^2_{x_1} |u|^2)u$. They showed local well-posedness for data in L^2, H^1 and H^2 using Strichartz estimates and the continuity properties of the operator Δ^{-1}.

The remaining cases, elliptic-hyperbolic and hyperbolic-hyperbolic, were treated by Linares and Ponce [LP1], Hayashi [H1], [H2], Chihara [Ch], Hayashi and Hirata [HH1], [HH2], Hayashi and Saut [HS] (see [LP2] for further references).

Here we will concentrate in the elliptic-elliptic and hyperbolic-elliptic cases. We start with the motivation for this work:

From the condition $m > 0$ we are allowed to reduce the Davey-Stewartson system (1) to the Schrödinger equation

$$\begin{cases}
i\partial_t u + \delta \partial^2_{x_1} u + \sum_{j=2}^n \partial^2_{x_j} u = \chi |u|^\alpha u + buE(|u|^\alpha), & \forall x \in \mathbb{R}^n, n = 2, 3, t \in \mathbb{R}, \\
u(x, 0) = u_0(x),
\end{cases}$$

where

$$\hat{E}(\hat{f})(\xi) = \frac{\xi_1^2}{\xi_1^2 + m\xi_2^2 + \sum_{j=3}^n \xi_j^2} \hat{f}(\xi) = p(\xi) \hat{f}(\xi).$$

Now observe that if $u(x, t)$ satisfies

$$i\partial_t u + \delta \partial^2_{x_1} u + \sum_{j=2}^n \partial^2_{x_j} u = \chi |u|^\alpha u + buE(|u|^\alpha),$$

then also does $u_\beta(x, t) = \beta^{2/\alpha} u(\beta x, \beta^2 t)$, for all $\beta > 0$.

Therefore it is natural to ask whether solutions $u(x, t)$ of (1) exist and satisfy, for $\beta > 0$:

$$u(x, t) = \beta^{2/\alpha} u(\beta x, \beta^2 t).$$

Such solutions are called self-similar solutions of the equation (2).

Therefore supposing local well posedness and u a self-similar solution we must have

$$u(x, 0) = u_\beta(x, 0), \forall \beta > 0,$$

i.e.,

$$u_0(x) = \beta^{2/\alpha} u_0(\beta x).$$

In other words, $u_0(x)$ is homogeneous with degree $-2/\alpha$ and every initial data that gives a self-similar solution must verify this property. Unfortunately, those functions do not belong to the usual spaces where strong solutions exists, such as the Sobolev spaces $H^s(\mathbb{R}^n)$. We shall therefore replace them by other functional spaces that allow homogeneous functions.

There are many motivations to find self-similar solutions. One of them is that they can give a good description of the large time behaviour for solutions of dispersive equations.
The idea of constructing self-similar solutions by solving the initial value problem for homogeneous data was first used by Giga and Miyakawa [GM] for the Navier Stokes equation in vorticity form. The idea of [GM] was used latter by Cannone and Planchon [CP], Planchon [P] (for the Navier-Stokes equation); Kwak [K], Snoussi, Tayachi and Weissler [STW] (for nonlinear parabolic problems); Kavian and Weissler [KW], Pecher [Pe], Ribaud and Youssfi [RY2] (for the nonlinear wave equation); Cazenave and Weissler [CW1], [CW2], Ribaud and Youssfi [RY1], Furioli [F] (for the nonlinear Schrödinger equation).

In [CVVeVi] Cazenave, Vega and Vilela studied the global Cauchy problem for the Schrödinger equation

\[i\partial_t u + \Delta u = \gamma|u|^{\alpha}u, \quad \alpha > 0, \gamma \in \mathbb{R}, \ (x,t) \in \mathbb{R}^n \times [0, \infty). \] (4)

Using a generalization of the Strichartz estimates for the Schrödinger equation they showed that, under some restrictions on \(\alpha \), if the initial value is sufficiently small in some weak \(L^p \) space then there exists a global solution. This result provided a common framework to the classical \(H^s \) solutions and to the self-similar solutions. We follow their ideas in our work.

From the condition \(m > 0 \) we are allowed to reduce the Davey-Stewartson system (1) to the Schrödinger equation (2). Now comparing Schrödinger equations (2) and (4) we observe that we have the nonlocal term \(uE(|u|^2) \) to treat. The main ingredient to do that will be an interpolation theorem and the generalization of the Strichartz estimates for the Schrödinger equation derivated in [CVVeVi]. As a consequence, we prove existence and uniqueness (in the sense of distributions) to the IVP problem (2). As a consequence we find self-similar solutions for the problem (2) in the case \(\delta > 0 \).

To study the IVP (2) we use its integral equivalent formulation

\[u(t) = U(t)u_0 + i \int_0^t U(t-s) \left(\chi|u|^\alpha u + buE(|u|^\alpha) \right)(s)ds, \] (5)

where \(U(t)u_0 \) defined as

\[\hat{U}(t)\hat{u}_0(\xi) = e^{-it\psi(\xi)}\hat{u}_0(\xi), \] (6)

\[\psi(\xi) = 4\pi^2 \delta \xi_1^2 + 4\pi^2 \sum_{j=2}^{n} \xi_j^2, \]

is the solution of the linear problem associated to (2).

We also define the subspace \(Y \subset S'(\mathbb{R}^n) \) where:

\[Y = \{ \varphi \in S'(\mathbb{R}^n) : U(t)\varphi \in L_{-\frac{\alpha(n+2)}{2}}^{\alpha(n+2)}(\mathbb{R}^{n+1}) \}, \]

\[\| \varphi \|_Y = \| U(t)\varphi \|_{L_{-\frac{\alpha(n+2)}{2}}^{\alpha(n+2)}(\mathbb{R}^{n+1})}, \]

and

\[L_{-\frac{\alpha(n+2)}{2}}^{\alpha(n+2)}(\mathbb{R}^{n+1}) \]

are weak \(L^p \) spaces that we define latter.

Our main result in this paper reads as follows:

Theorem 1. There exists \(\delta_1 > 0 \) such that given \(\frac{4(n+1)}{n(n+2)} < \alpha < \frac{4(n+1)}{n^2} \) and \(u_0 \in Y \) with \(\|u_0\|_Y < \delta_1 \) then there exists a unique solution \(u \in L_{-\frac{\alpha(n+2)}{2}}^{\alpha(n+2)}(\mathbb{R}^{n+1}) \) of (5) such that \(\|u\|_{L_{-\frac{\alpha(n+2)}{2}}^{\alpha(n+2)}(\mathbb{R}^{n+1})} < 3\delta_1 \).
To obtain this result we will use the contraction mapping theorem and some estimates for the nonlocal operator \(E \), defined in (3).

As a consequence of Theorem 1 we show that giving any initial data in \(Y \) and assuming the existence of a solution \(u \) to the integral equation (5) we have that \(u \) is the solution (in the weak sense) of the differential equation (2). We emphasize that Theorem 1 provides the existence of solutions to the equation (5) under the assumption of small initial data.

Proposition 2. Given \(\frac{4(n+1)}{n(n+2)} < \alpha < \frac{4(n+1)}{n^2} \), \(u_0 \in Y \) and let \(u \in L^{\frac{\alpha(n+2)}{2}}(\mathbb{R}^{n+1}) \) be the solution of (5). It follows that \(t \in \mathbb{R} \rightarrow u(t) \in S'(\mathbb{R}^n) \) is continuous and \(u(0) = u_0 \). In particular, \(u \) is a solution of (2). Moreover \(u(t_0) \in Y \) for all \(t_0 \in \mathbb{R} \). In addition, there exist \(u_\pm \) such that \(\|U(t)u_\pm\|_L^{\frac{\alpha(n+2)}{2}}(\mathbb{R}^{n+1}) < \infty \) and \(U(-t)u(t) \rightarrow u_\pm \) in \(S'(\mathbb{R}^n) \) as \(t \rightarrow \pm \infty \).

This paper is organized as follows: in section 2 we show the main theorem. In preparation for that we will establish some needed estimates for the integral operator.

Last section will be devoted to find self-similar solutions.

2. Global existence in weak \(L^p \) spaces

Let us define the weak \(L^p \) spaces we will use in the following:

Definition 3. \(L^{p,\infty}(\mathbb{R}^n) = \{ f : \mathbb{R}^n \rightarrow \mathbb{C} \text{ measurable} ; \|f\|_{L^{p,\infty}(\mathbb{R}^n)} := \sup_{\lambda > 0} \lambda \alpha(\lambda, f)^{1/p} < \infty \} \)

where

\[
\alpha(\lambda, f) = \mu(\{ x \in \mathbb{R}^n ; |f(x)| > \lambda \}),
\]

and

\[
\mu = \text{Lebesgue measure}.
\]

The reader should refer to [BeL] for details.

Remark 4. Using a change of variables it is easy to see that for any \(\varphi \in S'(\mathbb{R}^n) \), \(1 \leq p \leq \infty \) and \(\tau \in \mathbb{R} \):

\[
\|U(t)\varphi\|_{L^{p,\infty}(\mathbb{R}^{n+1})} = \|U(t + \tau)\varphi\|_{L^{p,\infty}(\mathbb{R}^{n+1})},
\]

where \(U(t) \) is the unitary group defined in (3).

The next theorem establishes a relationship between Lorentz Spaces \(L^{p,\infty} \) and \(L^\theta \) spaces:

Theorem 5 (Interpolation’s theorem). Given \(0 < p_0 < p_1 \leq \infty \), then for all \(p \) and \(\theta \) such that \(\frac{1}{p} = \frac{1-p_0}{p_0} + \frac{p}{p_1} \) and \(0 < \theta < 1 \) we have :

\[
(L^{p_0}, L^{p_1})_{\theta, \infty} = L^{p,\infty} \quad \text{with} \quad \|f\|_{(L^{p_0}, L^{p_1})_{\theta, \infty}} = \|f\|_{L^{p,\infty}},
\]

where

\[
(L^{p_0}, L^{p_1})_{\theta, \infty} = \{ a \text{ Lebesgue measurable}; \|a\|_{(L^{p_0}, L^{p_1})_{\theta, \infty}} := \sup_{t > 0} t^{-\theta} k(t, a) < \infty \}
\]

and

\[
k(t, a) = \inf_{a = a_0 + a_1} (\|a_0\|_{L^{p_0}} + t \|a_1\|_{L^{p_1}}).
\]

Proof. We refer to [BeL] for a proof of this theorem. \(\square \)
Remark 6. Another relationship between Lorentz Spaces and L^p spaces is given by the following decomposition:

Let $1 \leq p_1 < p < p_2 < \infty$. Then

$$L^{p\infty} = L^{p_1} + L^{p_2}.$$

The next result is a generalization of the classical Strichartz estimates for the Schrödinger equation. This was proved by Vilela in [McV].

Theorem 7. Consider r, \tilde{r}, q and \tilde{q} such that

$$2 < r, \tilde{r} \leq \infty, \quad \frac{1}{r} - \frac{1}{\tilde{r}} < \frac{2}{n},$$

$$\frac{1}{q} - \frac{2}{n} \frac{1}{r} + \frac{n}{2} \left(\frac{1}{r} - \frac{1}{\tilde{r}} \right) = 1, \quad \left\{ \begin{array}{ll}
\frac{n-2}{n} \frac{r}{r} & \neq \infty \\
\frac{1}{r} & \leq \frac{n}{n-2} \left(1 - \frac{1}{\tilde{r}} \right) \end{array} \right. \quad \text{if } n = 2,$$

and

$$0 < \frac{1}{q} < 1 - \frac{n}{2} \left(\frac{1}{r} + \frac{1}{r} - 1 \right) \quad \text{if } 1 \frac{1}{r} + \frac{1}{r} \geq 1,$$

$$- \frac{n}{2} \left(\frac{1}{r} + \frac{1}{r} - 1 \right) < \frac{1}{q} < 1 \quad \text{if } \frac{1}{r} + \frac{1}{r} < 1.$$

Then we have the following inequalities:

$$\| \int_0^t e^{i(t-\tau)\Delta} F(\cdot, \tau) d\tau \|_{L^q_t L^r_x} \leq c \| F \|_{L^q_\tilde{r}_t L^\tilde{r}_x}, (9)$$

$$\| \int_{-\infty}^t e^{i(t-\tau)\Delta} F(\cdot, \tau) d\tau \|_{L^q_t L^r_x} \leq c \| F \|_{L^q_\tilde{r}_t L^\tilde{r}_x},$$

$$\| \int_{-\infty}^{+\infty} e^{i(t-\tau)\Delta} F(\cdot, \tau) d\tau \|_{L^q_t L^r_x} \leq c \| F \|_{L^q_\tilde{r}_t L^\tilde{r}_x}.$$

Proof. We refer to [McV] for a proof of this theorem. \hfill \Box

Remark 8. Theorem 7 also holds for $U(t)$.

To prove Theorem 1 we need some results:

Proposition 9. Consider $F : \mathbb{R}_+^2 \times \mathbb{R} \to \mathbb{C}$. Then for $1 < p < \infty$:

$$\| E(F) \|_{L^{p\infty}(\mathbb{R}^{n+1})} \leq \| F \|_{L^{p\infty}(\mathbb{R}^{n+1})}.$$

Instead of proving Proposition 9 we establish a more general result:

Lemma 10. Let A be a linear injective operator and suppose that for each $1 \leq p < \infty$ there exists $1 \leq q = q(p) < \infty$ such that $A : L^p(\mathbb{R}^n) \to L^q(\mathbb{R}^n)$ is bounded. Then A is bounded from $L^{p\infty}(\mathbb{R}^n)$ to $L^{q\infty}(\mathbb{R}^n)$.
Proof. In fact, fix $1 \leq p < \infty$. Take $1 \leq p_0$, $p_1 < \infty$ and $0 < \theta < 1$ such that $\frac{1}{p} = \frac{1 - \theta}{p_0} + \frac{\theta}{p_1}$.

By Theorem 5 we have $\|A(f)\|_{L^p(\mathbb{R}^n)} = \|A(f)\|_{(L^{p_0}, L^{p_1})\theta}$.

If

$$f = f_0 + f_1 \in L^{p_0}(\mathbb{R}^n) + L^{p_1}(\mathbb{R}^n),$$

then

$$A(f) = A(f_0) + A(f_1) \in L^{p_0}(\mathbb{R}^n) + L^{p_1}(\mathbb{R}^n),$$

and

$$\|A(f_j)\|_{L^{p_j}(\mathbb{R}^n)} \leq \|f_j\|_{L^{p_j}(\mathbb{R}^n)}, \ j = 0, 1.$$

So

$$K(t, A(f)) = \inf_{A(f) = A(f_0) + A(f_1)} (\|F_0\|_{L^{p_0}(\mathbb{R}^n)} + t\|F_1\|_{L^{p_1}(\mathbb{R}^n)})$$

$$\leq \inf_{A(f) = A(f_0) + A(f_1)} (\|A(f_0)\|_{L^{p_0}(\mathbb{R}^n)} + t\|A(f_1)\|_{L^{p_1}(\mathbb{R}^n)})$$

$$\leq \inf_{A(f) = A(f_0) + A(f_1)} (\|f_0\|_{L^{p_0}(\mathbb{R}^n)} + t\|f_1\|_{L^{p_1}(\mathbb{R}^n)}).$$

Since A is injective, $A(f) = A(f_0) + A(f_1)$ implies $f = f_0 + f_1$ Lebesgue almost everywhere. Then

$$K(t, A(f)) \leq \inf_{f_0 + f_1} (\|f_0\|_{L^{p_0}(\mathbb{R}^n)} + t\|f_1\|_{L^{p_1}(\mathbb{R}^n)}) = K(t, f).$$

Using Theorem 5 once more we obtain the result. \qed

Observe that since the linear operator E defined in (3) is injective and satisfies

$$\|E(F)\|_{L^q(\mathbb{R}^{n+1})} \leq \|F\|_{L^q(\mathbb{R}^{n+1})}$$

for all $1 < p < \infty$ (see [X]), the Proposition 9 will be a consequence of Lemma 10.

Now we define two integral operators:

$$G(F)(x, t) = \int_0^t U(t-s) F(\cdot, s)(x) ds, \quad (10)$$

and

$$(TT^*F)(x, t) = \int_{-\infty}^{+\infty} U(t-\tau) F(x, \tau) d\tau, \quad (11)$$

where $U(t)$ is the group defined in (6). We prove the following properties about them:

Proposition 11. Let $1 \leq p$, $r < \infty$ such that

$$\frac{1}{p} - \frac{1}{r} = \frac{2}{n + 2},$$

and

$$\frac{2(n + 1)}{n} < r < \frac{2(n + 1)(n + 2)}{n^2}.$$

Then

$$\|G(F)\|_{L^r(\mathbb{R}^{n+1})} \leq c\|F\|_{L^p(\mathbb{R}^{n+1})}, \quad (12)$$

and

$$\|TT^*(F)\|_{L^r(\mathbb{R}^{n+1})} \leq c\|F\|_{L^p(\mathbb{R}^{n+1})}, \quad (13)$$
Proof. To prove Property (12) we need Theorem 7 (with $U(t)$ instead of $e^{it\Delta}$) and the interpolation theorem. In fact taking $r = q$ and $r' = q' = p$ in Theorem 10 the hypothesis (1) becomes
\[
\frac{1}{p} - \frac{1}{r} = \frac{2}{n + 2},
\]
and the inequality (10) becomes
\[
\|G(F)\|_{L^r(\mathbb{R}^{n+1})} \leq c\|F\|_{L^p(\mathbb{R}^{n+1})},
\]
(14)
The restriction $\frac{2(n+1)}{n} < r < \frac{2(n+1)(n+2)}{n^2}$ comes from hypothesis (8).
The result follows applying Lemma 10 to inequality (14). Property (13) is proved exactly the same way.

Now we are ready to prove our main result:

Proof of Theorem 7: Consider the following operator
\[
(\Phi u)(t) = U(t)u_0 - iG(\chi|u|^\alpha u + buE(|u|^\alpha))(t),
\]
(15)
G as in (10). We want to use the Picard fixed point theorem to find a solution of $u = \Phi(u)$ in $B(0,3\delta_1) = \{f \in L^{\frac{\alpha(n+2)}{2}}(\mathbb{R}^{n+1}); \|f\|_{L^{\frac{\alpha(n+2)}{2}}(\mathbb{R}^{n+1})} \leq 3\delta_1\}$.

To prove $\Phi(B(0,3\delta_1) \subset B(0,3\delta_1)$ take $u \in B(0,3\delta_1)$.
Using the hypothesis $\|U(t)u_0\|_{L^{\frac{\alpha(n+2)}{2}}(\mathbb{R}^{n+1})} < \delta_1$ and Proposition 11 combined with the definition $\Phi(\cdot)$ in (13), we obtain
\[
\|\Phi(u)\|_{L^{\frac{\alpha(n+2)}{2}}(\mathbb{R}^{n+1})} \leq 2\left(\delta_1 + \|u|^{\alpha}u\|_{L^{\frac{\alpha(n+2)}{2}}(\mathbb{R}^{n+1})} + \|buE(|u|^\alpha)\|_{L^{\frac{\alpha(n+2)}{2}}(\mathbb{R}^{n+1})}\right).
\]
Applying Proposition 9 and Holder’s inequality we get
\[
\|\Phi(u)\|_{L^{\frac{\alpha(n+2)}{2}}(\mathbb{R}^{n+1})} \leq 2\left(\delta_1 + \|u|^{\alpha+1}\|_{L^{\frac{\alpha(n+2)}{2}}(\mathbb{R}^{n+1})} + |b|\|u\|_{L^{\frac{\alpha(n+2)}{2}}(\mathbb{R}^{n+1})}\|u(t)\|^\alpha_{L^{\frac{\alpha(n+2)}{2}}(\mathbb{R}^{n+1})}\right).
\]
Using that $u \in B(0,3\delta_1)$ and choosing $0 < \delta_1 \ll 1$ we have
\[
\|\Phi(u)\|_{L^{\frac{\alpha(n+2)}{2}}(\mathbb{R}^{n+1})} \leq 2c\delta_1 + 4c(3\delta_1)^{\alpha+1} + 4c|b|(3\delta_1)^{\alpha+1} < 3\delta_1.
\]
Now we prove the contraction in $B(0,3\delta_1)$. Take $u,v \in B(0,3\delta_1)$:
\[
\Phi(u) - \Phi(v) = iG(\chi(|v|^\alpha v - |u|^\alpha u)) + iG(b(vE(|v|^\alpha) - uE(|u|^\alpha))).
\]
By Proposition 11 we get
\[
\|\Phi(u) - \Phi(v)\|_{L^{\frac{\alpha(n+2)}{2}}(\mathbb{R}^{n+1})} \leq 2c\left(\|v|^{\alpha} - |u|^{\alpha}\|_{L^{\frac{\alpha(n+2)}{2}}(\mathbb{R}^{n+1})} + \|u|^{\alpha}(u - v)\|_{L^{\frac{\alpha(n+2)}{2}}(\mathbb{R}^{n+1})}\right) + 2c|b|\left(\|E(|v|^\alpha)(v - u)\|_{L^{\frac{\alpha(n+2)}{2}}(\mathbb{R}^{n+1})} + \|u(E(|v|^\alpha) - E(|u|^\alpha))\|_{L^{\frac{\alpha(n+2)}{2}}(\mathbb{R}^{n+1})}\right).
\]
Applying Holder’s inequality and Proposition 9 we obtain
\[\|\Phi(u) - \Phi(v)\|_{L^{\frac{n+2}{2}}(\mathbb{R}^{n+1})} \]
\[\leq 2c\left(\|v\|_{L^{\frac{n+2}{2}}(\mathbb{R}^{n+1})} ||u|\alpha - |u|\alpha\|_{L^{\frac{n+2}{2}}}(\mathbb{R}^{n+1}) + \|u\|^{\alpha}_{L^{\frac{n+2}{2}}}(\mathbb{R}^{n+1})\right)\]
\[+ 2c|\beta|\left(\|v\|^{\alpha-1}_{L^{\frac{n+2}{2}}}(\mathbb{R}^{n+1}) ||u - v\|_{L^{\frac{n+2}{2}}}(\mathbb{R}^{n+1}) + \|u\|^{\alpha-1}_{L^{\frac{n+2}{2}}}(\mathbb{R}^{n+1})\right). \]

Now we set
\[g(u) = |u|\alpha. \]
It follows by the Mean Value Theorem that
\[|g(u) - g(v)| \leq c(\alpha)(|u|^{\alpha-1} + |v|^{\alpha-1})|u - v|. \]
This property and Holder’s inequality imply that
\[\|v|\alpha - |u|\alpha\|_{L^{\frac{n+2}{2}}(\mathbb{R}^{n+1})} \]
\[\leq c(\alpha) \left(\|u\|^{\alpha-1}_{L^{\frac{n+2}{2}}(\mathbb{R}^{n+1})} ||u - v\|_{L^{\frac{n+2}{2}}(\mathbb{R}^{n+1})} + \|v\|^{\alpha-1}_{L^{\frac{n+2}{2}}(\mathbb{R}^{n+1})} ||u - v\|_{L^{\frac{n+2}{2}}(\mathbb{R}^{n+1})}\right). \]

Finally by the last inequality and the hypothesis \(u, v \in B(0, 3\delta_1) \) we get
\[\|\Phi(u) - \Phi(v)\|_{L^{\frac{n+2}{2}}(\mathbb{R}^{n+1})} \leq \delta_1^{\alpha}(c_1 + c_2|\beta|)||u - v\|_{L^{\frac{n+2}{2}}(\mathbb{R}^{n+1})}. \]
Taking 0 < \(\delta_1 \ll 1 \) we get the contraction. \(\square \)

Proof of Proposition 2: By hypothesis \(u \in L^{\frac{n+2}{2}}(\mathbb{R}^{n+1}) \). So by Holder’s inequality and Proposition 9
\[|u|\alpha u \quad \text{and} \quad uE(|u|\alpha) \in L^{\frac{n+2}{2}}(\mathbb{R}^{n+1}). \]
Now, by Remark 6 we can write
\[|u|\alpha u = f_1 + f_2 \quad \text{and} \quad uE(|u|\alpha) = f_3 + f_4, \]
where \(f_j \in L^{p_j}(\mathbb{R}^{n+1}) \) for some \(1 \leq p_1 < \frac{\alpha(n+2)}{2(\alpha+1)} < p_2 < \infty \) and \(1 \leq p_3 < \frac{\alpha(n+2)}{2(\alpha+1)} < p_4 < \infty \).
Replacing (16) in (5) we get
\[u(t) = U(t)u_0 + i\chi G(f_1)(t) + i\chi G(f_2)(t) + ibG(f_3)(t) + ibG(f_4)(t). \]
Observe that from the decomposition (17) we have that \(u(t) \in S'(\mathbb{R}^n) \).
Now, if we take \(\phi \in S(\mathbb{R}^n) \) then \(U(t)\phi \in C(\mathbb{R} : S(\mathbb{R}^n)) \) and also \(G(\phi)(t) \in C(\mathbb{R} : S(\mathbb{R}^n)) \).
By duality we can extend \(U(t) \) to \(S'(\mathbb{R}^n) \) and get \(U(t)\phi \in C(\mathbb{R} : S'(\mathbb{R}^n)) \) for \(\phi \in S(\mathbb{R}^n) \).
Using dominated convergence theorem we have \(G(\phi)(t) \in C(\mathbb{R} : S'(\mathbb{R}^n)) \) for \(\phi \in S'(\mathbb{R}^n) \) and by (17)
\[u(t) \in C(\mathbb{R} : S'(\mathbb{R}^n)). \]
Letting \(t \to 0 \) in (17) we get \(u(0) = u_0 \).
Now we prove that \(u(t) \) satisfies the equation
\[iu_t + \vec{d}u_{x_1} + \sum_{j=2}^n u_{x_jx_j} = \chi |u|^\alpha u + buE(|u|^\alpha), \]
in \(S'(\mathbb{R}^n) \) for all \(t \in \mathbb{R} \).
Define $F(u) := \chi |u|^\alpha u + buE(|u|^\alpha)$.

Note that by (10) and (18) we have

$$F(u)(t) \in C(\mathbb{R}, S'(\mathbb{R}^n)).$$

Using the integral equation (3) and the definition of the operator G in (10) we have the following expression for $u(t)$

$$u(t) = U(t)u_0 + iG(Fu)(t).$$

(20)

Using group properties, Lebesgue dominated convergence theorem and the Lebesgue differentiation theorem combined with the expression of $u(t)$ in (20) we obtain that for any $\phi \in S(\mathbb{R}^n)$

$$i \lim_{h \to 0} \left(\frac{u(t+h) - u(t)}{h} \right) \phi = (-\delta \partial_{x_1} + \sum_{j=2}^n \partial_{x_j})u(t) + F(u)(t), \phi,$$

where $\langle f, g \rangle = \int_{\mathbb{R}^n} f(x)g(x)dx$, which proves (19).

To prove $\|u(t_0)\|_{\mathcal{Y}} < \infty$, take $r = \frac{\alpha(n+2)}{2}$ on the Inequality (13) of Proposition 11.

Then we have

$$\|TT^*F\|_{L^\frac{\alpha(n+2)}{2}(\mathbb{R}^{n+1})} \leq c\|F\|_{L^\frac{\alpha(n+2)}{2}(\mathbb{R}^{n+1})}.$$ (21)

From the last property and identity (12), $\forall t_0 \in \mathbb{R}$ we get

$$\|U(t)\|_{L^\frac{\alpha(n+2)}{2}} \leq \|F\|_{L^\frac{\alpha(n+2)}{2}}.$$ (22)

Now taking $\chi(t_0, t)F$ instead of F in the last inequality we have

$$\|U(t)G(F)(t_0)\|_{L^\frac{\alpha(n+2)}{2}} \leq \|F\|_{L^\frac{\alpha(n+2)}{2}}.$$ (23)

Now taking $t = t_0$ in the integral equation (3) and applying $U(t)$ we have

$$U(t)u_0 = U(t + t_0)u_0 + iU(t)G(\chi |u|^\alpha u + buE(|u|^\alpha))(t_0).$$

Combining property (4), inequality (22) and the same arguments as in Theorem 4 we obtain

$$\|U(t)u(t_0)\|_{L^\frac{\alpha(n+2)}{2}} \leq 2\|U(t)u_0\|_{L^\frac{\alpha(n+2)}{2}} + 4\|u\|_{L^\frac{\alpha(n+2)}{2}} + 4|b|\|u\|_{L^\frac{\alpha(n+2)}{2}} \|u\|_{L^\frac{\alpha(n+2)}{2}} < \infty.$$

Finally, to prove the last statement of the theorem we set

$$u_+ = u_0 + i \int_0^\infty U(-\tau)(\chi |u|^\alpha u + buE(|u|^\alpha))(\tau)d\tau.$$

(24)

It follows from Inequalities (21) that:

$$\|U(t)u_+\|_{L^\frac{\alpha(n+2)}{2}} \leq 2 \left(\|U(t)u_0\|_{L^\frac{\alpha(n+2)}{2}} + \|\chi |u|^\alpha u + buE(|u|^\alpha)\|_{L^\frac{\alpha(n+2)}{2}} \right) < \infty.$$ (25)
We deduce from the decompositions in \([16]\) that
\[
U(-t)u(t) - u_+ = \int_t^\infty U(-\tau)(\chi|u|^{\alpha}u + buE(|u|^{\alpha}))(\tau)d\tau \to 0 \text{ in } S'(\mathbb{R}^n) \text{ as } t \to \infty.
\]
The result for \(t \to -\infty\) is proved similarly.

3. Self-similar solutions

In this section we find self-similar solutions to \((2)\) for \(\delta > 0\). Without lost of generality we can suppose \(\delta = 1\), so our equation becomes:

\[
\begin{cases}
 iu_t + \Delta u = \chi|u|^{\alpha}u + buE(|u|^{\alpha}), \\
 u(x, 0) = u_0(x),
\end{cases}
\]
\[\forall x \in \mathbb{R}^n, n = 2, 3, t \in \mathbb{R}, \quad (23)\]

We will need the following proposition:

Proposition 12. Let \(\varphi(x) = |x|^{-p}\) where \(0 < \text{Re } p < n\). Then \(e^{t\Delta} \varphi\) is given the explicit formula below for \(x \neq 0\) and \(t > 0\):

\[
e^{t\Delta} \varphi(x) = |x|^{-p} \sum_{k=0}^{m} A_k(a, b) e^{k\pi i / 2} \left(\frac{|x|^2}{4t}\right)^{-k} + |x|^{-p} A_{m+1}(a, b) \left(\frac{|x|^2}{4t}\right)^{-m-1} \frac{(m + 1)e^{ak/2}}{\Gamma(m + 2 - b)}
\]
\[\times \int_0^\infty \int_0^1 (1 - s)^m \left(-i - \frac{4ts}{|x|^2}\right)^{a-m-1} e^{-\tau^{m+1-b}dsd\tau}\]
\[+ e^{i|x|^2/4t} |x|^{-n+p}(4t)^{\frac{n-p}{2}} \sum_{k=0}^{l} B_k(b, a) e^{-(n+2k)p/4} \left(\frac{|x|^2}{4t}\right)^{-k}\]
\[\times \int_0^\infty \int_0^1 (1 - s)^l \left(-i - \frac{4ts}{|x|^2}\right)^{-b-l-1} e^{-\tau^{l+1-a}dsd\tau},\]

where \(a = p/2, b = (n-p)/2, m, l \in \mathbb{N}\) such that \(m + 2 > \text{Re } b\) and \(l + 2 > \text{Re } a\) and

\[
A_k(a, b) = \frac{\Gamma(a + k)\Gamma(k + 1 - b)}{\Gamma(a)\Gamma(1 - b)k!}, \quad B_k(b, a) = \frac{\Gamma(b + k)\Gamma(k + 1 - a)}{\Gamma(a)\Gamma(1 - a)k!}
\]

where \(\Gamma\) denotes the gamma function.

Proof. We refer to \([CW1]\) for a proof of this proposition. \(\square\)

We already know that a self-similar solution must have an homogeneous initial condition with degree \(-2/\alpha\). So the idea is to prove that \(u_0(x) = \epsilon|x|^{-2/\alpha} \in Y\) where \(0 < \epsilon \ll 1\). Then by Theorem \([1]\) and Proposition \([2]\) we have existence and uniqueness for equation \((23)\) in \(Y\). Since \(u(x, t)\) and \(\beta^{2/\alpha}u(\beta x, \beta^2 t)\) are both solutions, we must have \(u = u_\beta\) and therefore self-similar solutions in \(Y\).

To prove that \(u_0 \in Y\), we consider the homogeneous problem with initial condition
THE DAVEY STEWARTSON SYSTEM IN WEAK L^p SPACES

\[u_0(x) = |x|^{-2/\alpha}; \]
\[
\begin{align*}
 iu_t + \Delta u &= 0, \\
 u(x, 0) &= |x|^{-2/\alpha}. \\
\end{align*}
\forall x \in \mathbb{R}^n, n = 2, 3, t \in \mathbb{R}. \tag{24}
\]

We know that the solution to the equation (24) is given by

\[u(x, t) = U(t)u_0(x), \]

where \(U(t) = e^{it\Delta}. \)

Since \(u_\beta(x, t) = \beta^{2/\alpha}u(\beta x, \beta^2 t), \beta > 0 \) is also a solution, we must have

\[\beta^{2/\alpha}u(\beta x, \beta^2 t) = U(t)u_0(x) = u(x, t). \]

Taking \(\beta = 1/\sqrt{t} \) we get

\[u(x, t) = t^{-1/\alpha}f(x/\sqrt{t}), \tag{25} \]

where \(f(x) = u(x, 1). \)

By Proposition [12] we have that for \(\alpha > 2/n \)

\[|f(x)| \leq c(1 + |x|)^{-\sigma} \text{ where } \sigma = \begin{cases}
\frac{2}{\alpha}; & \alpha \geq 4/n \\
\frac{n - 2}{2\alpha}; & \alpha < 4/n.
\end{cases} \tag{26} \]

Next, we calculate \(\alpha(\lambda, u) = |\{(x, t); |u(x, t)| > \lambda\}|. \)

By (25) and (26)

\[
\alpha(\lambda, u) \leq \int \left\{(x, t); t^{-1/\alpha} \left(1 + \frac{|x|}{\sqrt{t}}\right)^{-\sigma} > \lambda \right\} d(x, t) \leq \int \left\{(x, t); 0 \leq t < \lambda^{-\alpha} \text{ and } |x| < t^{1/2}((t\lambda^\alpha)^{-1/\alpha} - 1) \right\} d(x, t) \\
\leq c\lambda^{-n/2} \int_0^{\lambda^{-\alpha}} t^\frac{n}{2\alpha \sigma} \left[1 - (t\lambda^\alpha)^{\frac{1}{\alpha \sigma}}\right]^n dt \leq \lambda^{-\frac{\alpha(n+2)}{2}}.
\]

Therefore \(\|U(\cdot)u_0\|_{L^\alpha(R^{n+1})} \leq c. \)

Choosing \(0 < \epsilon \ll 1 \) and taking the initial condition \(u_0(x) = \epsilon |x|^{-2/\alpha} \) we conclude the result.

\textbf{Acknowledgements.} I would like to thank my advisor Professor Felipe Linares for his help, his comments and all the fruitful discussions we had during the preparation of this work.

\textbf{References}

[AF] J.M. Ablowitz, A.S. Fokas, On the inverse scattering transform of multidimensional nonlinear equations, J. Math., Phys., Vol.25 (1984), 2494-2505.

[AnFr] D. Anker, N.C. Freeman, On the soliton solutions of the Davey-Stewartson equation for long waves, Proc. R. Soc. A., Vol.360 (1978), 529-540.

[AH] J.M. Ablowitz, R. Haberman, Nonlinear evolution equations in two and three dimensions, Phys. Rev. Lett., Vol.35 (1975), 1185-1188.

[AS] J.M. Ablowitz, A. Segur, Solitons and Inverse Scattering Transform, PA:SIAM (1981).

[BeL] J. Bergh, J. Lofstrom, Interpolation Spaces. An introduction, Springer-Verlag, Berlin-Heidelberg-New York, 1976.

[C] H. Cornille, Solutions of the generalized nonlinear Schrödinger equation in two spatial dimensions, J. Math. Phys., Vol.20 (1979), 199-209.

[Ch] H. Chihihara, The initial value problem for the elliptic-hyperbolic Davey-Stewartson equation, J. Math. Kyoto Univ., Vol.39 (1999), 41-66.

[CP] M. Cannone, F. Planchon, Self-similar solution for the Navier-Stokes equations in \mathbb{R}^3, Comm. PDE, Vol.21 (1996), 179-193.

[CVeVi] T. Cazenave, L. Vega, M.C. Vilela, A note on the nonlinear Schrödinger equation in weak L^p spaces, Comm. Contemporary Math., Vol.3 (2001), 153-162.
T. Cazenave, F.B. Weissler, Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations, Math. Z., Vol.228 (1998), 83-120.

T. Cazenave, F.B. Weissler, More self-similar solutions of the nonlinear Schrödinger equation, NoDEA Nonlinear Differential Equations Appl., Vol.5 (1998), 355-365.

V.D. Djordjevic, L.G. Redekopp, On two-dimensional packets of capillary-gravity waves, J. Fluid Mech., Vol.79 (1977), 703-714.

A. Davey, K. Stewartson, On three dimensional packets of surface waves, Proc. Roy. London Soc. A, Vol.338 (1974), 101-110.

G. Furioli, On the existence of self-similar solutions of the nonlinear Schrödinger equation with power nonlinearity between 1 and 2, Differential Integral Equations, Vol.14 , no 10 (2001), 1259-1266.

A.S. Fokas, P.M. Santini, Recursion operators and bi-Hamiltonian structures in multidimensions I, II, Commun. Math. Phys., Vol.115, no 3 (1988), 375-419, Vol.116, no 3 (1988), 449-474.

A.S. Fokas, L.Y. Sung, On the solvability of the N-wave, Davey-Stewartson and Kadomtsev-Petviashvili equations, Inverse Problems, Vol.8 (1992), 375-419.

Y. Giga, T. Miyakawa, Navier-Stokes flow in \mathbb{R}^3 with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations, Vol.14 (1989), 673-708.

J.M. Ghidaglia, J.C. Saut, On the initial problem for the Davey-Stewartson systems, Nonlinearity, Vol.3 (1990), 475-506.

N. Hayashi, Local existence in time of small solutions to the Davey-Stewartson system, Annales de l'I.H.P. Physique Theorique, Vol.65 (1996), 313-366.

N. Hayashi, Local existence in time of solutions to the elliptic-hyperbolic Davey-Stewartson system without smallness condition on the data, J. Analyse Mathematique, Vol.73 (1997), 133-164.

N. Hayashi, H. Hirata, Global existence and asymptotic behaviour of small solutions to the elliptic-hyperbolic Davey-Stewartson system, Nonlinearity, Vol.9 (1996), 1387-1409.

N. Hayashi, H. Hirata, Local existence in time of small solutions to the elliptic-hyperbolic Davey-Stewartson system in the usual Sobolev space, Proc. Edinburgh Math. Soc., Vol.40 (1997), 563-581.

N. Hayashi, J.C. Saut, Global existence of small solutions to the Davey-Stewartson and the Ishimori systems, Differential Integral Equations, Vol.8 (1995), 1657-1675.

M. Kawak, A semilinear heat equation with singular initial data, Proc. Royal Soc. Edinburgh Sect. A, Vol.128 (1998), 745-758.

O. Kavian, F. Weissler, Finite energy self-similar solutions of a nonlinear wave equation, Comm. PDE, Vol.15 (1990), 1381-1420.

F. Linares, G. Ponce, On the Davey-Stewartson systems, Ann. Inst. Henri Poincaré, Vol.10 no 5 (1993), 523-548.

F. Linares, G. Ponce, Introduction to Nonlinear Dispersive Equation, Springer, New York, 2009, 256pp.

M.C. Vilela, Las estimaciones de Strichartz bilineales en el contexto de la ecuación de Schrödinger, Ph.D.thesis, Universidad del País Vasco (2003), Bilbao.

F. Planchon, Self-Similar solutions and semilinear wave equations in Besov spaces, J. Math. Pures Appl., Vol.79, no 8 (2000), 809-820.

H. Pecher, Self-similar and asymptotically self-similar solutions of nonlinear wave equations, Math. Ann., Vol.316 (2000), 259-281.

F. Ribaud, A. Youssfi, Regular and self-similar solutions of nonlinear Schrödinger equations, J. Math Pures Appl., Vol.77 (1998), 1065-1079.

F. Ribaud, A. Youssfi, Global solutions and self-similar solutions of semilinear wave equation, Math. Z., Vol.239 (2002), 231-262.

L.Y. Sung, An inverse-scattering transform for the Davey-Stewartson II equations, Part III, J. Math Anal. Appl., Vol.183 (1994), 477-494.

S. Shoussi, S. Tayachi, F.B. Weissler, Asymptotically self-similar global solutions of a general semilinear heat equation, Math. Ann., Vol.321 (2001), 131-155.

Z. Xiangling, Self-Similar solutions to a generalized Davey-Stewartson system, Adv. Math. (China), Vol.36, no 5 (2007), 579–585.