Surveying the Environmental Footprint of Urban Food Consumption

Goldstein, Benjamin Paul; Birkved, Morten; Fernandez, John

Published in:
Journal of Industrial Ecology

Link to article, DOI:
10.1111/jiec.12384

Publication date:
2017

Document Version
Peer reviewed version

Citation (APA):
Goldstein, B. P., Birkved, M., & Fernandez, J. (2017). Surveying the Environmental Footprint of Urban Food Consumption. Journal of Industrial Ecology, 21(1), 151-165. DOI: 10.1111/jiec.12384
Goldstein B, Birkved M, Fernández J, Hauschild M. Surveying the Environmental Footprint of Urban Food Consumption. Journal of Industrial Ecology. 2016. doi:10.1111/jiec.12384

Surveying the environmental footprint of urban food consumption

B. Goldstein¹, M. Birkved¹, J. Fernandez², M. Hauschild¹

¹Department of Management Engineering, Technical University of Denmark
²Department of Architecture, Massachusetts Institute of Technology

Corresponding author: B. Goldstein, Department of Management Engineering, Technical University of Denmark, Produktionstorvet, Building 424, Kongens Lyngby, Denmark.
Email: bgol@dtu.dk

Summary

Assessments of urban metabolism (UM) are well situated to identify the scale, components and direction of urban and energy flows in cities, and have been instrumental in benchmarking and monitoring the key levers of urban environmental pressure such as transport, space conditioning and electricity. Hitherto, urban food consumption has garnered scant attention both in UM accounting (typically lumped with ‘biomass’) and on the urban policy agenda, despite its relevance to local and global environmental pressures. With future growth expected in urban population and wealth, an accounting of the
environmental footprint from urban food demand (‘foodprint’) is necessary. This paper reviews 43 UM assessments including 100 cities, and a total of 132 foodprints in terms of mass, carbon footprint and ecological footprint and situates it relative to other significant environmental drivers (transport, energy, etc.) The foodprint was typically the 3rd largest source of mass flows (average - 0.8 ton/capita/annum) and carbon footprint (average – 1.9 tons CO2 equivalents/capita/annum) in the reviewed cities, while it was generally the largest driver of urban ecological footprints (average - 1.2 global hectares/capita/annum), with large deviations based on wealth, culture and urban form. Meat and dairy are the primary drivers of both global warming and ecological footprint impacts, with little relationship between their consumption and city wealth. The foodprint is primarily linear in form, producing significant organic exhaust from the urban system that has a strong, positive correlation to wealth. Though much of the foodprint is embodied within imported foodstuffs, cities can still implement design and policy interventions such as improved nutrient recycling and food waste avoidance to redress the foodprint.
Introduction

Modern cities neither supply their bulk resource needs nor have the capacity to assimilate their wastes within their borders (Hodson et al. 2012; Chrysoulakis et al. 2013), which given the predominance of urban economies characterized by linear flows (material needs imported, waste produced exported) (Barles 2007; Swaney et al. 2011), has left them physically reliant on their hinterlands and beyond (Rees and Wackernagel 2008). As cities now accommodate the bulk of humanity and economic activity, they exercise environmental pressures at a global scale through impacts embedded within supporting supply chains and waste management conduits (Weisz and Steinberger 2010; Goldstein et al. 2013; Grubler et al. 2012).

Through the maelstrom of global trade, urban food consumption exerts pressures in terms of greenhouse gases (Dias et al. 2014; IPCC 2014a), land occupation (Moore et al. 2013; Warren-Rhodes and Koenig 2001; WWF 2013; Foley et al. 2011), resource exhaustion (Cribb 2010, FAO 2006), biodiversity loss (Jansson 2013) and a host of other impacts at global as well as regional scales (Heller and Keoleian 2003; Gliessman 2015). It is estimated that the global food system causes, directly and indirectly, between 20% and 50% of total anthropogenic environmental pressures (Roy et al. 2012; Notarnicola et al. 2012; McLaren 2010), with the majority attributable to the demands of cities by virtue of their population and wealth. The environmental impacts resulting from a city’s food demands have been termed by some its ‘foodprint’ (Billen et al. 2008; Chatzimpiros and Barles 2013), a phrase which will be adopted here. The urban foodprint is a term used to capture the various
elements of diverse resource consumption and environmental impacts associated with the production, processing, distribution and waste generation of food demanded by urban residents. The foodprint may be measured in a variety of ways and include units of mass, embodied carbon, ecological footprint, nutrient flows or other relevant indicators.

Despite the strong link between food and the environment, urban foodprints have been largely absent in urban environmental policy, excepting the drive to reduce the distance from farm to city (‘food miles’)(Hara et al. 2013; Edwards-Jones et al. 2008; Born and Purcell 2006). A recent analysis of climate change initiatives in 12 key areas by 59 cities ranked ‘food and agriculture’ the third least addressed issue in terms of the number of policy interventions (C40 2014). Broto and Bukleley’s review of climate change mitigation interventions in 100 cities does not even contain the word ‘food’ (2013). The environmental integrity of the food system is viewed by most urban dwellers (and policy makers) as operating independently of urban built form, and therefore, only tangentially affected by urban environmental policies (Brunori and Di Iacovo 2014), and consequentially, receives limited attention from urban decision-makers (Grewal and Grewal 2012). This rift is the outcome of fossil fuel based agriculture and transportation systems that have shifted food production well beyond municipal borders since industrialization, effectively obscuring urbanites from much of the land use conversion, climate change impacts, biodiversity losses, eutrophication and non-renewable resource exhaustion that stem from urban food demands (Cribb 2010; Marx 1976), though cities do deal with food waste (and will have to contend with future climate change impacts). This
rift is further intensified by the expansion of urban areas into urban agriculturally productive urban hinterlands that could provide local food to cities (Seto et al. 2011).

The low prioritization of foodprints on the urban agenda represents a lost opportunity to address significant urban environmental pressures as cities continue to grow in size and wealth (Kennedy et al. 2014a), and adopt more environmentally intensive diets predicated on increased animal product consumption (Tilman and Clark 2014). An accounting of the scale and nature of the foodprint is required to highlight the need to explore potential urban design and policy interventions to tackle it at the city level. Currently a knowledge gap persists since only a handful of studies of urban nutrient flows have directly addressed the issue (e.g. Fæge et al., 2001; Forkes, 2007 or Kennedy et al., 2007’s grazing of the subject in their review of urban material and energy flows). Moreover, though overviews exist for other important urban pressures such as building energy (Grubler et al. 2012; Steemers 2003), transport energy (Grubler et al. 2012; Kenworthy and Laube 1996) and water use (Darrel Jenerette and Larsen 2006), but urban food has not received congruent treatment. Thus, the motivation for cities to properly acknowledge, and consequently mitigate, their foodprints is diminished.

Though a gap is present in this sphere of urban sustainability research, much work has been done to document the foodprint of urban systems. For decades, environmental scientists have been documenting the energy and material metabolism of cities (Kennedy et al. 2007). Of the dozens of studies of cities, many have included food, yielding considerable
data on individual urban areas, but this piecemeal manner of quantifying the foodprint on a study-by-study basis has not coalesced into a cohesive conversation about the this important driver of urban environmental burdens. A survey of this body of literature is an ideal starting point from which to begin this dialogue. Through a comprehensive literature review, this paper consolidates the results of urban foodprints to develop a broader narrative surrounding the environmental impacts of food consumption in cities. Through this synthesis we will sketch how urban food demands translate to environmental impacts and highlight future challenges in managing and reducing the urban foodprint.

Quantifying Urban Foodprints – Review Methodology

Providing a synopsis of the urban foodprint requires a methodology to measure urban food flows, and potentially, the embodied environmental burdens of upstream production. The field of industrial ecology is well situated to address this need, with its focus on the scale, nature and interconnections of material and energy exchanges between different socio-technical systems and the environment (Ferrão and Fernández 2013). It is from this discipline that the urban metabolism (UM) concept arose (Kennedy et al. 2007b).

UM applies industrial ecology principles to the geographic region (city, conurbation, commutershed), accounting for selected material and energy exchanges (Kennedy et al. 2014b), and occasionally, using network analysis, between sub-urban systems (e.g. heavy industry and waste management) (Li et al. 2012). Since Wolman’s (1965) seminal publication, the material flow analysis (MFA), mass based framework has been
complimented by other methodologies. Carbon footprinting (CF) (Ramaswami et al. 2011) and water footprinting (Vanham and Bidoglio 2014) account for UM related greenhouse gas (GHG) emissions and embodied water flows, respectively, while ecological footprinting (EF) quantifies the bioproductive area underpinning consumption and sequestration of CO₂ (Wackernagel 1998). Emergy accounts for embodied energy in UM flows (Stanhill 1977), while the life-cycle-assessment (LCA) tool estimates the environmental impact potentials of UM in a broad range of indicators throughout the supply and waste management chains (Goldstein et al. 2013).

This review is focused on MFA, CF and EF assessments of the foodprint, as these assessment methods are the most represented in the literature. The MFA studies were not limited to complete accounts of all major UM flows, but also include substance flow analyses of nitrogen or phosphorous through urban systems, if urban food needs were also included. Each of the three methods has its strengths and weaknesses, complimenting each other to provide a balanced perspective of the foodprint. Urban-scale MFA accounts for physical flows through cities, avoiding the uncertainties of abstracting out to other indicators further along the environmental cause-effect chain. Conversely, the scale of mass flows say little about the environmental impacts embodied within mass, though it can highlight deleterious exchanges between socio-technical systems and the ecosphere. CF provides both an indication of an actions contribution to society’s largest environmental challenge, while it is also easily understood within policy, economic and public spheres, however as a single indicator, it can ignore other potentially negative environmental
impacts (‘burden shifting’). EF quantifies the amount of global average bioproductive land and sea commandeered by humanity, providing an indication of ‘ecological overshoot’ and encroachment on animal habitats. However, EF is limited in the variety of waste flows it captures (only CO₂) and that it is usually based on land-use data at national levels, ignoring the considerable heterogeneity of bioproductivity within countries. Table 1 outlines the essential properties of these indicators as they pertain to the foodprint.

Table 1 - Properties of the study categories considered in the review

Study Category	Indicator	Method	Relation to the foodprint
Material Flow Analysis (MFA)	Per capita annual mass of food demanded by a city (t/cap/a)	Household: statistics of per-capita food demands at city, regional or national resolution	**Strengths:** • Measures the amount of environmentally intensive foods demanded • Can map food waste and nutrient flows in urban systems **Shortcomings:** • Ignores environmental impacts embodied in food products
Carbon Footprint (CF)	Per capita embodied CO₂ equivalents in annual food demanded by a city (t CO₂ eq/cap/a)	Process-based: summing of emissions from processes (farming, transport, etc.) along supplychain Input-output (IO): coupling of local food expenditures with environmentally extended IO tables to capture direct and inter-sectoral GHG flows	**Strengths:** • Quantifies GHG emissions embodied in food and identifies burdensome dietary choices **Shortcomings:** • Land use changes (LUC) and farm-related land management strategies (e.g. tilling) typically not included in CF studies • Focus on single indicator ignores other food related impacts (eutrophication, soil degradation, etc.)
Ecological Footprint (EF)	Per capita global average bioproductive land requirements to support annual food demands (gha/cap/a)	Component: summing of land use requirements from processes (farming, transport, etc.) along supply-chain Compound: coupling of local food expenditures with environmentally extended IO tables to capture direct and inter-sectoral land demands	**Strengths:** • Links foodprint to Earth’s biocapacity and potential encroachment on habitat from dietary choices **Shortcomings:** • Single indicator • Accounts for single waste flow (CO₂) ignoring other GHGs and important food-system waste streams • Land based indicator biased towards agriculture, potentially inflating foodprint relative to other UM drivers
Identification of Studies

The review began by isolating comprehensive literature reviews of UM studies. For UM, Decker et al.’s (2000), Kennedy et al.’s (2007b, 2011), Zhang’s (2013) and Stewart et al.’s (2014) all provide good lists of essential UM studies at their respective publishing dates. Private and public databases were also utilized to find material within the review scope.

Though the focus was on peer-reviewed material, other grey literature document types were considered for inclusion (e.g. theses, reports, etc.) Strategic key terms related to UM (e.g. ‘urban metabolism’, ‘urban substance flow analysis’, ‘urban ecological footprint’) were used to probe 15 databases (e.g. ISI Web of Science, Google Scholar, Oxford Journals, science.gov, Technical University of Denmark, Scopus, etc.)

UM Studies Included

A total of 206 texts on UM were found. This number was reduced to the pertinent literature through a number of limiting criteria: (i) food flows were included in the study, (ii) the foodprint was separately presented or disaggregated using minimal manipulation (reducing risk of error and/or misinterpretation), (iii) a demand-side urban foodprint was calculated related to urban food demands (the sum of food consumed and wasted) not urban food production (e.g. scope 1 and 2 CFs), and (iv) literature was published in or translated to English. Moreover, primarily qualitative historical narratives or highly speculative forecasts were excluded. With all criteria applied, 43 studies were reviewed,
covering 100 cities, sometimes over multiple years or UM types within the same year, resulting approximately 132 foodprints. Figure 1 shows the geographic distribution of the foodprints considered, while tables S1-S3 in the supplementary material provides an overview of where they are used in the meta analysis.

Some data pruning was performed prior to the analysis of the foodprints. Li et al.’s (2013) CF of Macao from 2005-2009 was taken as the average foodprint over the study period to avoid the biasing effect of including five nearly identical data points. Similarly, the results for Rosado et al.’s (2014) and Niza et al.’s (2009) MFA of Lisbon from 2003-2009 were also averaged due to the similarity of their methods (regional trade balance) and findings. Calcott and Bull’s (2007) EF study of UK cities accounted for 60 of the foodprints and was taken here as the average for those cities in the study for which city-level GDP data was available (see table S6). For the four studies for which averages were taken, no large changes in consumptive patterns or foodprints were seen for those assessments (over years or between cities), making the means fair representations of their respective studies. Aside from these exceptions, no manipulations of the original data were performed.

Despite efforts to maintain consistency between studies, discrepancies were unavoidable. The inclusion of tourist and/or commuter activities in the studies was not universal. Differences in study scope between ‘household’ (residents) and ‘city-wide’ (residents and businesses) were also seen, whereby the urban foodprint was underestimated in studies where the scope of urban metabolic activities beyond the household boundary were
excluded. System boundaries were also occasionally misaligned for CF and EF studies, whereby impacts from cooking and food waste were typically, but not always, unaccounted. Lastly, the different methodologies outlined in table 1 were encountered for all the three indicators.

Tables S1-S3 in the supplementary material provides an overview of the included studies their data sources and methodologies. OECD Statistics (2015) provided much of the GDP data that was used in the analysis, but where these were lacking tables S4-S6 outline estimation methods.

Results - The Urban Foodprint

Figure 2A displays the percentage contribution of the foodprint to the reviewed cities aggregate metabolisms for the reviewed assessments. Figure 2B presents a histogram of the

Figure 2 – Importance of the foodprint in the urban metabolic profile of the reviewed cities: a) percentage of cities with foodprint impacts as a distinctive fraction of total impacts b) Histogram of foodprint’s rank compared to other main urban metabolic categories (e.g. transport, building energy, etc.) as a contributor to gross urban environmental pressures measured through MFA, EF or CF. Ignores studies solely studying food. Sample sizes disagree for CF and MFA because some studies did not disaggregate total impacts into categories in a way that would support ranking. See supplementary material Table S1-S3 for clarification.
foodprint ranks in comparison to other commonly accounted urban metabolic flows such as the consumption of transport fuels, building energy, aggregates, and metallic minerals.

The mode of the foodprint’s rank as a contributor to the cities’ environmental impacts are first for 62% of the EF studies and third for more than 50% of the CF and MFA studies. It is natural that the foodprint tends to dominate EF studies, a consequence of the method’s focus on land use, where agriculture is a dominating activity, while its CF and MFA pressures are significant, but less intense. Food production is actually estimated to contribute 24-50% of global greenhouse gas emissions (IPCC 2014b; Schmidt and Merciai 2014) which hints that the reviewed foodprints may be underestimated since most of the observed carbon foodprints fall below this range. Looking at the CF methods in table S5 we find that none of the CF studies included GHG emissions related to LUC (e.g. shifting from forest to pasture releasing carbon stored in biomass) or tilling (activating bacteria which produces CO₂ and N₂O). GHG emissions data on the latter is scarce, but estimates of LUC ranges from 6% to 20% of global CO₂ emissions (Hörtenhuber et al. 2014; Garnett 2010), providing evidence that more inclusive CF methodologies might elevate the importance of the foodprint in a city’s overall GHG burdens. The foodprint ranks lower in the MFA studies as transport fuels and construction materials flows are much greater.

Irrespective of assessment method, the foodprint is generally an important driver of urban environmental impacts.
Figure 3A shows a scatter plot of mass foodprints (determined by MFA) versus per capita GDP, with detailed data in Table S5 in the supplementary material. The average per capita annual mass foodprint for the studies is approximately 0.8 ± 0.3 ton/annum (t/cap/a – where ton refers to metric tons, as will be the case for all other uses in the article). Wealth affects a rise in food demand, echoing others’ findings (Cirera and Masset 2010) supported by the moderate correlation ($R^2 = 0.34$).

The study average and almost all of the case cities are above global per capita (0.5 t/a), implying that continued economic growth and urbanization may intensify global bulk food demands. However, it is

![Figure 3](https://example.com/figure3.png)

Figure 3 – The urban foodprint vs GDP per capita with foodprint in terms of: a) mass b) ecological footprint c) carbon footprint. Sample size disagrees with Figure 2 since additional studies that only included food flows are now included.
clear that food demands cannot grow ceaselessly with income after nutritional needs have been met, which means that a logarithmic relationship between mass foodprint and wealth might also be expected, potentially explaining some of the weak correlation here. A modest difference was observed between OECD and non-OECD cities, where a number of the former lie above the study average. The daily per capita food consumption in the OECD cities is 2.5 kg, greater than the amount of food a human can realistically consume on a daily basis (Barles 2009), hinting at excessive demand and food generation, particularly with increased incomes.

Paris’s foodprint represented 36% of total regional material consumption since it is a dense, mature city with high non-durable goods consumption, while Limerick’s foodprint was only 4% due to a metabolism defined by large construction aggregate additions to stock. The largest mass foodprints (Paris; 1.8 t/cap/a, Lisbon; 1.4-2 t/cap/a) utilized urban level trade statistics to generate a more inclusive assessment (Barles 2009; Rosado et al. 2014; Niza et al. 2009), as opposed to foodprints calculated from household consumption data or national level food availability balances (e.g. FAOSTAT) which may underestimate the gravitational pull of resources to cities or

![Figure 4 – CF vs. GDP with Macao removed from the data set.](image-url)
domestic purchasing power inequalities. Moreover, the Lisbon study also included biomass imported into the metropolitan area for feed, certainly playing an important role in the elevated numbers. The significant error-bars around the Lisbon also show how food demands can fluctuate across years. Nonetheless, the Paris and Lisbon studies suggest that a number of cities may have much higher mass foodprints than indicated in Figure 3A.

Figure 3B shows carbon foodprint as a function of per capita GDP (details in supplementary material Table S6). Average per capita annual carbon foodprint was 2.3 t CO₂ eq./cap/a, representing a carbon intensity of 2.8 t CO₂ eq./t urban food demand. Similar to the MFA assessment, a modest relationship is seen between income and carbon foodprint (R²=0.30). Though the non-OECD countries generally perform lower, this is not always a result of economic necessity. For instance, despite its wealth, Macao has markedly lower bovine product intake (Macao 2005-2009 average - beef; 13 kg/cap/a, dairy; 49.9 kg/cap/a) relative to similarly wealthy populations (US 2005-2009 average - beef; 41 kg/cap/a, dairy; 135 kg/cap/a) (FAO 2014). These differences strongly affect the carbon foodprint since bovine products have large embodied GHG emissions (FAO 2006). Conversely, London’s and Cardiff’s carbon foodprints were low for their relative wealth (0.9 and 1.1 t CO₂ eq./cap/a, respectively), though these foodprints are likely an underestimated considering recent findings that peg the average UK resident’s carbon foodprint at 2.7 t CO₂ eq./cap/a (Berners-Lee et al. 2012). Macao’s development is divergent from the findings of longitudinal studies at the global level that have found shifts in diets from traditional food systems towards highly processed foods and increased meat
intake (Tilman and Clark 2014; Monteiro and Cannon 2012). Figure 4 corroborates this finding by removing the outlier Macao, providing a strong positive correlation between the carbon foodprint and GDP at the urban level ($R^2=0.65$). This finding combined with the fact that the CF models in the reviewed foodprints ignore LUC and tilling related GHGs, means not only that the CF plays a larger role in a cities embodied GHG emissions than is currently acknowledged, and that these emissions are poised to grow lockstep with economic development in many countries. Geography should not be discounted, since cities located in regions with longer growing seasons or highly productive agricultural lands might be able to locally supply more of their nutritional needs, thereby reducing food-miles and embodied energy, though the sample size precludes an analysis of this.

Ecological foodprint as a function of per capita GDP is shown in Figure 3C. Average per capita annual ecological foodprint is 1.2 gha/cap/a, with an eco-efficiency of 1.5 gha/t urban food demand. The scatter plot was found to best fit a logarithmic curve ($R^2=0.35$), with EF quickly growing with income and then leveling off above 10 000 USD. Moreover, even though the study average GDP was more than 2.5 times the global average the global and study averages were comparable (0.9 and 1.2 gha/cap/a, respectively), showing that economic development quickly leads to demands for higher quality protein from animal products with large land use needs for feed and grazing, but that these demands saturate at modest income levels. This is in agreement with UNEP (2012) work showing that per capita meat consumption follows a logarithmic trend that saturates around 10 000 USD for national populations. The modest correlation also means that other factors contribute
to the EF. Comparative regional market advantage can make environmentally burdensome foodstuffs affordable to less-wealthy urban consumers (Popkin 2006; Darmon and Drewnowski 2008), such as the cheap beef abundant in South America which fuels that large EF of Sao Paulo (WWF 2012). In close to 50% of the cities, EF foodprints accounted for 20-30% of the overall EF of the cities, with foodprints approaching 50% of total EF burdens for multiple cities. In some unique instances the EF-foodprint played a minor role in the overall UM foodprint, for instance in Shenyang, CN and Kawasaki, JP, where the majority of both cities’ EFs originate from industrial energy consumption (Geng et al. 2014).

Discussion

The importance of the foodprint’s in the total environmental impacts of the reviewed cities warrants a deeper look. This section highlights study shortcomings that must be kept in mind in interpreting the results, identifies foodstuffs that strongly influence the foodprint, how the consumption of these evolves with the economic development of cities, and how the design of urban systems can exacerbate foodprints.

Review Shortcomings

This review has relied on a number of disparate studies to assemble an overview of the urban foodprint, with these supporting studies using equally distinct methodologies within assessment study categories (e.g. IO vs. process), entity accounted (household vs. city) and data sources (national, regional or city). This is an obstacle when trying to compare across studies and make inferences on the influence of economic development on the foodprint,
because it is hard to disentangle where differences between cities arise due to
methodological bias or lifestyle drivers. As such, the correlations of the scatter plots were
tested against the influence of these different modeling choices to understand how they
affected the results.

Figures S8 and S9 test the effect of the application of IO and process based methodologies
on the carbon and ecological foodprints, respectively (not applicable to the included mass
foodprints). The IO method shows a tendency to be higher than process-based carbon
foodprint methods for cities of high incomes (no low income IO foodprints were available
for comparison), a consequence of the recursive GHG flows between sectors captured by
the method. Ecological foodprints were insensitive to the different methods. Figures S10-
S12 show that some methodological bias is present for carbon and mass, but not ecological
foodprints when the unit of analysis is shifted from the household to the city. Household
level studies showed lower impacts compared to the city level assessments at comparable
income brackets, demonstrating that food consumption outside of the house needs to be
accounted to accurately reflect urban food pressures. Figures S13-S15 show the effects of
different data sources on the results, with little discernable difference between city, regional
or national data, except in the Paris and Lisbon studies which had noticeably higher mass
foodprints. Most importantly, the observed trends in the results remained robust, though
income ranges of foodprints within some of the methodologies were not broad enough to
test correlations between foodprint and wealth.
In terms of the effect of scope, documenting the foodprint was not the goal of many of the studies, causing some aspects of the foodprint to be excluded or conflated with other impacts. Some of the reviewed foodprints allocated energy used in preparation (Wu et al. 2012), and the waste management burdens (collection, processing and disposal) to building and transport energy segments of the UM studies, increasing those drivers, while diminishing the foodprint. This misallocation is noteworthy since studies have found that household-side food preparation can (contingent on food and preparation method) represent a significant share of a food product’s life-cycle primary energy demands, and ergo, its environmental burdens (Muñoz et al. 2010; Davis et al. 2010).

A couple of caveats should also be kept in mind when reading the results. Calculating per capita GDP at the city level is a complex exercise with numerous assumptions that can also ignore economic disparities within city regions. Nonetheless, the GDPs here can be broadly interpreted as the purchasing power of the average residents in the cities included. Lastly, that the majority of foodprints included represent middle- and high-income cities, which may skew the observations upwards and make statements about foodprints in the Global South difficult to extract from the data. More foodprints from lower income cities would strengthen the observations from made here.

Foodprint Drivers

Much like their citizens each city has a unique foodprint. Notwithstanding, a clear connection between increasing animal product consumption and foodprint was observed, with this trend being ubiquitous across UM methods. Authors of the Cardiff and London
carbon foodprints identified dairy and meat products as large contributors to overall CF (Best Foot Forward Ltd. 2002; WWF 2005). The other CF studies did not describe foodprint contributors, either by agricultural source or supply-chain process. The exception was Wu et al.’s (2012) study of Beijing household food consumption, which identified food preparation as the largest contributor to the foodprint (60%), likely due to Beijing’s fossil fuel dominated energy production. Goldstein et al.’s (2013) UM-LCA study found that air transport of seafood was an important factor in the GHG foodprint of Hong Kong residents. UM studies neglected to mention GHG impacts from deforestation, enteric methane generation or long distance refrigerated transport, though these impacts can be considerable (Foley et al. 2011; Born and Purcell 2006).

With the EF studies, animal products feature prominently due to their grazing territory and arable land requirements. In Belfast, meat and dairy accounted for over two-thirds of the foodprint (Walsh et al. 2006). A study of Beijing found that the pork consumption was the origin of 65% of the household urban foodprint, increasing to 70% for wealthier households (Zhang et al. 2012). In the London EF study, meat and milk were respectively responsible for 28% and 12% of the total foodprint (itself 41% of the city’s total EF), with additional significant impacts from other dairy products (Best Foot Forward Ltd. 2002). Beef production requires direct land occupation for feed production, and often, grazing, and indirect land to offset methane production from cattle and deforestation, making it the agricultural product with the highest unit EF (though it would be larger if EF accounted for soil erosion which reduces the land productivity). This causes high beef
consuming cities to have corresponding EF foodprints. Sao Paulo residents, with a propensity for beef consumption had a similar per-capita foodprint to citizens from the UK studies, despite the average Brazilian’s comparatively lower impacts in many other respects (WWF 2012). Where longitudinal studies of a single city were performed, it was found that the share of these burdensome foods were only increasing (Warren-Rhodes and Koenig 2001; Sahely et al. 2003; Alfonso Piña and Pardo Martínez 2014; Wang et al. 2013), excepting Macao (Li et al. 2013). This was true for advanced and emerging economy cities alike, keeping with global trends of urbanization, economic development and the shift towards processed, high-energy density foodstuffs (Popkin 2006; Tilman and Clark 2014).

Foodprint Form

MFA and nutrient balance literature (see supplementary material S4) revealed a linear foodprint, in line with the general observations of UM studies and other socio-economic systems (Kennedy et al. 2010; Barles 2010; Huang and Hsu 2003; Ferrão and Fernández 2013). This linearity is defined by the importation of food from beyond the urban boundaries, its ingestion by inhabitants, and the solid and liquid waste (digested and discarded food) sent to repositories typically beyond municipal limits. This contrasts with a natural ecosystem’s cyclical metabolism, where material and energy exchanges between components are symbiotic (one sub-system’s effluent is another’s feedstock), mitigating the concept of ‘waste’, avoiding long-term buildup of noxious substances (Korhonen 2001).
Linear metabolism was observed in the majority of studies, as communicated by the significant solid waste flows destined for city landfills, with biomass being a weighty portion of this. Figure 5 outlines per capita food waste found in the reviewed literature, with all of the data points except two based from urban level waste statistics. Codoban and Kennedy (2008) found that 44% of food imported in to Toronto in 2000 households did not actually nourish residents. With the inclusion of commercial activities on a city-wide level, the percentage of total food sent to landfill were 19%, 20%, 26% and 31% (0.2, 0.2, 0.3 and 0.2 t/cap/a) in Hong Kong, Vancouver, Toronto and Limerick, respectively (Warren-Rhodes and Koenig 2001; Moore et al. 2013; Forkes 2007; Walsh et al. 2006). Food waste from the study cities as well as additional urban waste studies cited in UM literature (see table S7 in supplementary literature) were plotted against wealth showing significant positive correlation (R²=0.57), which has also been observed for waste in general at the global scale (IPCC, 2014c) and urban food waste (Adhikari et al. 2006).

Global per capita food waste over the processing, distribution and consumption stages was approximately 0.1 t/cap/a (FAO 2013), lower than the 0.2 t/cap/a average food waste for the reviewed cities which ostensibly covers a consumption waste and a portion from

![Figure 5 – Per capita waste foodprint in tons/annum (t/cap/a) as a function of per capita income](image-url)
processing and distribution. The FAO number is likely overestimated compared to the UM studies, since significant food processing and distribution (and related waste generation) occurs outside cities. Thus, cities as accumulators of wealth also appear to become centers of excess consumption with economic development, though future research is need to understand if the organic waste in cities is comprised of high-impact food (meat and dairy) let alone edible food. Even the relatively middle income city of Bogota relegated 140 kg/a/capita of food to landfills (Alfonso Piña and Pardo Martinez 2014); elevated well above global average.

Food waste is not only an issue because of the embodied environmental impacts in discarded edibles, but also because organic waste not recycled within the economy escalates nutrient removal and soil degradation at farms, increasing the reliance on fossil fuel and mineral based fertilizers to maintain yields (Jones et al. 2013) and further perturbing global nutrient cycles (Steffen et al. 2015). Another concern are the methane emissions from urban food waste, which are set to grow under current management scenarios leave food to anaerobically degrade in landfills (Adhikari et al. 2006). Highly developed cities with their advanced infrastructures can collect and control their food waste, but despite a renaissance in organic waste diversion the efficiency of such systems has been mixed (Slater and Frederickson 2001). For instance, Toronto’s household compost collection captured only 4.7% of nitrogen, failing to include businesses nor the apartments that make up a large portion of the housing stock (Forkes 2007), while Paris’s food waste was relegated primarily to toxic incinerator fly and bottom ashes, precluding recovery (Barles 2009). Where waste
collection infrastructure is lacking, nutrient recycling is not only limited, but also a potential contributor to nutrient driven algal blooms, as witnessed in the waterways of Bangkok (Færge et al. 2001). Solid food waste has also posed a challenge in cities in the emerging economies, where rotting food has been known to pile in the streets causing both a nuisance and public health hazard (Hazra and Goel 2009; Hasan and Mulamoottil 1994).

The reviewed cities showed the same pattern in their handling of liquid waste from households and businesses, also an readily accessible source of nutrients (Forkes 2007). Toronto was capturing approximately 90% of digested nitrogen at the wastewater treatment plant, but this was redirected back to landfills due to public health concerns (IBID). Stockholm more successfully pelletizes sewage sludge to make fertilizer, recycling 60% of phosphorous contained in imported food (Burstrom et al. 1997); a more common practice in Europe. In cities lacking infrastructure, significant household wastewater flows were sent directly to local water bodies harming the ecosystem, as was the case in Bangkok (Færge et al. 2001), Beijing and Cape Town (Goldstein et al. 2013). Since the 1940s human waste from cities has been one of the dominant sources of nutrient discharge to global surface waters (Morée et al. 2013).

Urban Design and Policy Interventions

The clear trend of urban foodprints dominated by animal products is a challenge for policy makers trying to affect sustainable urban development. Moreover, the relation between economic growth and the increased consumption of these compounds the complexity of the issue. Having cities intervene in what is largely a matter of personal preference, cultural
practice and politics is likely a political non-starter in most societies due to the paternalistic undertones of such tactics. New York City’s foray into behaviorally inspired regulation that banned oversized soft drinks in hopes of combating obesity in the city was both publically abhorred and ruled unlawful (Galle 2014), though the city has made strides in reducing food packaging waste (Stringer 2015). A more tractable aspect of behavior to address is edible food waste generation, either through awareness campaigns, organic waste fraction disposal fees or legislation that curtails food waste generation at commercial operations, such as France’s law forcing supermarkets to donate edible food waste to charities or sell it for biofuel production (Chrisafis 2015).

Though admittedly cities have limited influence over the types of foods imported or personal waste production, design interventions are still available at the urban level to redress the linear nature of the foodprint. Intercepting the nutrients contained in solid food waste and wastewater for reuse in the agricultural system before they are sent to the landfill or surface waters provides double dividends of reducing eutrophication and avoiding the production agricultural inputs reliant on non-renewable resources (fossil fuels and mineral phosphorous) that are likely to see a 60% increase in demand over coming decades (Tilman et al. 2011).

Historical cities are instructive in this regard through their circular metabolisms that coupled nutrient recycling with food production. In 19th century Paris latrine residues and horse manure were used as inputs to an extensive horticulture system that produced leafy
greens in excess of local needs (Barles 2007). More recently, 1970s Hong Kong pig farming in the territory had a mutualistic relationship with local produce production within the city limits, whereby pigs consumed food waste, while producing high quality manure and protein (Warren-Rhodes and Koenig 2001). In present-day African cities low-tech, informal nutrient recycling systems are commonly employed to combine sewage with urban food production, but improper pathogen eradication remains a threat to viability (Srikanth and Naik 2004; Qadir et al. 2010). A more sustainable solution has been found in Kolkata, India, where for over a hundred years a 3000 ha wetlands has process 550 000 m3 of the city’s raw sewage daily, simultaneously producing 16% of the city’s fish needs and fertilizer for fields, demonstrating ecologically sensitive use of landscape as infrastructure (Carlisle 2013).

Because of the risk of pathogens in nutrients mined from human waste a multi-forked set of solutions to the linear foodprint is required. This is already present in the way that a number of cities apply nutrients in wastewater sludge to fields producing feed crops for livestock, as opposed to crops for direct human consumption (Miljøministreriet 2005). Nutrients collected at wastewater plants are also entrained with heavy metals and other pollutants from industrial wastewater and surface water runoff, portending the need to separate nutrient rich human waste streams (or effluent from food processing plants) before the wastewater treatment plant (Forman 2014). A potentially effective strategy is the point source collection of bulk of nutrients expelled by humans using urine diversion toilets (IBID, Baccini and Brunner 2014), however the large sunk costs, slow replacements
rates and centralized structures of urban wastewater collection and treatment systems means that this type of intervention will be difficult in cities with mature wastewater handling infrastructure. Source segregated urban food waste is pathogen-free when correctly cured and is thus better suited for human food production. The generation of compost from organic waste both recycles nutrients and enriches soil with organic carbon, however concerns about toxic metals concentrations remain a challenge (Hargreaves et al. 2008). Composting must also overcome public resistance to sorting and separating food waste and the aversion of municipalities to its perceived higher costs over landfilling (Decker et al. 2000), putting compost at a disadvantage even in developed cities with sufficient technical capacity.

Regardless of the design interventions employed, it is essential that the foodprint be understood from a system-wide perspective. Reducing urban foodprints by moving towards cyclical UM most avoid the pitfalls of focusing on single waste streams, since this increases the potential for ignoring key food related flows and reduces the environmental efficacy of these strategies (Kalmykova et al. 2012). Furthermore, cyclical UM remains a challenge since nutrients embedded in food imports represent a fraction of the nutrients used in production, since swathes are lost in agricultural runoff and microbial action (Baccini and Brunner 2014; Gliessman 2015), necessitating actions at the urban scale and beyond to redress nutrient losses. It should also be noted that cyclical UM schemes need not ‘close the loop’ by coupling with food production near cities (hypothetically, nutrients could be captured in cities and sold on the global market), but such programs have the added
benefit of reducing the significant distance that food travels to urban markets (Born and Purcell 2006). Metson et al. (2012) documented the symbiotic relationships between the urban dairies in the Phoenix Metropolitan Area and alfalfa farmers which used waste from the dairies and bio-solids from treated wastewater to recycle phosphorous.

Urban development as a foodprint driver

From the data obtained from the literature review, there seems to be a tenable linkage between economic activity and the mass, carbon and ecological foodprints, as well as the food waste generation. Due to the higher per-capita economic activity in cities, the average urbanite is likely to have more income to spend on food than their rural counterpart, supporting the assertion that cities eat better than the countryside (Hoornweg et al. 2012). OECD estimates that the share of global GDP from agriculture will continue to decrease, along with crop prices, which would act to decrease the cost of food to many urbanites (OECD and FAO 2015) hinting at further divergence of purchasing power between rural and urban inhabitants. Combining cheaper food with the superlinear economic growth related to urbanization (Bettencourt and West 2010), it seems possible that bulk food demands may also follow a suite as rural populations continue to migrate into cities. Kennedy et al.’s (2015) review of megacities has already revealed this superlinear scaling in the metabolism of certain metabolic flows (waste, gasoline and electricity), and future research should explore if the urban foodprint shares this property.

Urbanization also affects consumption patterns and household food management practices. Figures 3A and 3C show that the ecological foodprint increases at a quicker pace
with wealth than the mass foodprint, as evidenced by the former’s logarithmic correlation to GDP. This could indicate that beyond once nutritional demands are met, the increase in the environmental burden from food consumption is not caused by bulk, but by shifts towards foods with higher land use and embodied energy demands. Additionally, as figure 5 revealed, increasing wealth is coupled with a surge in food waste. That is, the increase in the environmental burden seen for increasing GDP is most likely caused by household food management practices and shifting consumption patterns towards expensive food items with larger environmental burdens.

Linkages between economic development and increasing intake of high-burden foods by others support this (Tillman et al., 2014). Recent UN reports also show that food waste in wealthy nations originates largely at the consumer end (FAO, 2013). This evokes an accelerating pattern: as incomes rise, people tend to consume more environmentally burdensome foods, but at the same time consume less of the total food they purchase. Looking deeper into global food waste data, disposal rates of edible food by consumers in wealthy countries are 19%, 8%, 26%, 31% and 32% for meat, dairy, fruits and vegetables, cereals, and roots and tubers, respectively (IBID). Fruits, vegetables, grains and tubers are most commonly castaway at the household level; exactly the foods that studies have shown to be more easily accessible in wealthy areas of US cities (Shove and Walker 2010; Algert et al. 2006; Gordon et al. 2011). Wealth is not the sole reason that consumers discard fruits, vegetables and grains (education, storage options and other factors are important), but the
fact that these foods are more available might promote excessive purchasing by wealthy urbanites.

Lastly, the spatial characteristic of urban development has an effect on the foodprint, since low-density growth potentially consumes productive agricultural land at the per-urban fringe. This type of development reduces local capacity for food production locking residents into increased consumption of food transported over long distances.

Conclusions

Through an assemblage of earlier quantifications of UM, this review demonstrates that environmental impacts from urban food demands are not only non-trivial, but sometimes the largest contributor to a city’s environmental loading. In light of this, researchers and cities should be compelled to further develop methods and better quantify the urban foodprint. Such a task is easier said than done considering the complexities of the food system and its many interfaces with other systems of production and consumption. Notwithstanding these challenges, it is clear that future assessments should leverage multi-metric approaches to gauge environmental impacts, since differences between the three examined metrics in this study mirror the fact that they are linked to different drivers.

The main drivers of urban foodprints are animal based food products. Consumption of these, and resultant foodprints, generally increase with co-mingled urbanization and economic development, though a number of other important factors assert influence (cultural preferences, lower prices, etc.) The UM was also found to be linear in form with
low production of food within cities and usually marginal recycling of nutrients in food and human waste back to the agricultural system. Moreover, where proper waste management facilities are lacking, the foodprint can manifest within urban regions in the form of nutrient fed algal blooms that damage local aquatic life. Thus the foodprint is a multi-scale issue exerting pressure at the city level and beyond.

Given the numerous challenges facing the long-term sustainability of the global food system in the coming decades both in terms of resource availability (land, fossil fuels) and minimizing the collateral environmental damage of agricultural production (biodiversity loss, eutrophication), it is essential for cities to evaluate how they can actively contribute to positive change. Since the food choices of urbanites largely influence the food-related environmental impacts of a city, combating it at the city level requires urban design interventions that redirect the current linear UM to better recycle valuable nutrients and organic carbon within the agricultural system, both locally and abroad. Though many cities already do this to some capacity, there is room for improvement through expanded organic waste diversion and human waste management schemes that reduce the spread of pathogens and toxic chemicals. Behavioral changes should also be explored even if limited in purview. Attacking edible food waste through awareness campaigns and user fees to discourage generation reaps double dividends of landfill diversion and circumventing the environmental loading embodied within food production.

About the authors
Benjamin Goldstein is a PhD candidate at the Technical University of Denmark in Kongens Lyngby, Denmark. Morten Birkved is an associate professor at the Technical University of Denmark in Kongens Lyngby, Denmark. John Fernandez is a Professor at the Massachusetts Institute of Technology in Cambridge, MA, USA. Michael Hauschild is a professor at the Technical University of Denmark in Kongens Lyngby, Denmark.

References

Adhikari, B.K., S. Barrington, and J. Martinez. 2006. Predicted growth of world urban food waste and methane production. Waste Management & Research : The Journal of the International Solid Wastes and Public Cleansing Association, ISWA 24(5): 421–433.

Alfonso Piña, W.H. and C.I. Pardo Martínez. 2014. Urban material flow analysis: An approach for Bogotá, Colombia. Ecological Indicators 42: 32–42.

Algert, S.J., A. Agrawal, and D.S. Lewis. 2006. Disparities in Access to Fresh Produce in Low-Income Neighborhoods in Los Angeles. American Journal of Preventive Medicine 30(5): 365–370.

Baccini, P. and P.H. Brunner. 2014. Metabolism of the Anthroposphere. 2nd ed. Cambridge, US: MIT Press.

Barles, S. 2007. Feeding the city: food consumption and flow of nitrogen, Paris, 1801-1914. The Science of the Total Environment 375(1-3): 48–58.

Barles, S. 2009. Urban Metabolism of Paris and Its Region. Journal of Industrial Ecology 13(6): 898–913.

Barles, S. 2010. Society, energy and materials: the contribution of urban metabolism studies to sustainable urban development issues. Journal of Environmental Planning and Management 53(4): 439–455.

Berners-Lee, M., C. Hoolohan, H. Cammack, and C.N. Hewitt. 2012. The relative greenhouse gas impacts of realistic dietary choices. Energy Policy 43: 184–190.
Best Foot Forward Ltd. 2002. *City Limits: A resource flow and ecological footprint analysis of Greater London*. London, UK. www.citylimitslondon.com/downloads/Complete report.pdf.

Bettencourt, L. and G. West. 2010. A unified theory of urban living. *Nature* 467: 912–913.

Billen, G., S. Barles, J. Garnier, J. Rouillard, and P. Benoit. 2008. The food-print of Paris: long-term reconstruction of the nitrogen flows imported into the city from its rural hinterland. *Regional Environmental Change* 9(1): 13–24.

Born, B. and M. Purcell. 2006. Avoiding the Local Trap: Scale and Food Systems in Planning Research. *Journal of Planning Education and Research* 26(2): 195–207.

Brunori, G. and F. Di Iacovo. 2014. Urban Food Security and Landscape Change: A Demand-side Approach. *Landscape Research* 39(2): 141–157.

Burstrom, F., N. Brandt, B. Frostell, and U. Mohlander. 1997. Material Flow Accounting and Information for Environmental Policies in the City of Stockholm. In *MFA for Regional and Local Materials Management*, 135–161.

C40 (C40 Cities). 2014. *Climate Action in Megacities Version 2*. http://issuu.com/c40cities/docs/c40_climate_action_in_megacities#download.

Calcott, A. and J. Bull. 2007. Ecological footprint of British City Residents. http://assets.wwf.org.uk/downloads/city_footprint2.pdf

Carlisle, S. 2013. Productive Filtration: Living System Infrastructure In Calcutta. *Scenario Journal* (Spring).

Castán Broto, V. and H. Bulkeley. 2013. A survey of urban climate change experiments in 100 cities. *Global Environmental Change* 23(1): 92–102.

Chatzimpiros, P. and S. Barles. 2013. Nitrogen food-print: N use related to meat and dairy consumption in France. *Biogeoosciences* 10(1): 471–481.

Chrisafis, A. 2015. France to force big supermarkets to give unsold food to charities. *The Guardian*, May 22, 2015.

Chryssoulakis, N., M. Lopes, R. San José, C.S.B. Grimmond, M.B. Jones, V. Magliulo, J.E.M. Klostermann, et al. 2013. Sustainable urban metabolism as a link between biophysical sciences and urban planning: The BRIDGE project. *Landscape and Urban Planning* 112: 100–117.
Cirera, X. and E. Masset. 2010. Income distribution trends and future food demand. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences* 365(1554): 2821–34.

Codoban, N. and C.A. Kennedy. 2008. Metabolism of Neighborhoods. *Journal of Urban Planning and Development* 134(1): 21–31.

Cribb, J. 2010. *The Coming Famine*. Berkeley, US: University of California Press.

Darmon, N. and A. Drewnowski. 2008. Does social class predict diet quality? *The American Journal of Clinical Nutrition* 87(5): 1107–1117.

Darrel Jenerette, G. and L. Larsen. 2006. A global perspective on changing sustainable urban water supplies. *Global and Planetary Change* 50(3-4): 202–211.

Davis, J., U. Sonesson, D.U. Baumgartner, and T. Nemecek. 2010. Environmental impact of four meals with different protein sources: Case studies in Spain and Sweden. *Food Research International* 43(7): 1874–1884.

Decker, E.H., S. Elliott, F. a. Smith, D.R. Blake, and F.S. Rowland. 2000. Energy and Material Flow Through the Urban Ecosystem. *Annual Review of Energy and the Environment* 25(1): 685–740.

Dias, A.C., D. Lemos, X. Gabarrell, and L. Arroja. 2014. Environmentally extended input–output analysis on a city scale – application to Aveiro (Portugal). *Journal of Cleaner Production* 75: 118–129.

Edwards-Jones, G., L. Milà i Canals, N. Hounsome, M. Truninger, G. Koerber, B. Hounsome, P. Cross, et al. 2008. Testing the assertion that “local food is best”: the challenges of an evidence-based approach. *Trends in Food Science & Technology* 19(5): 265–274.

Færge, J., J. Magid, and F.W.T. Penning de Vries. 2001. Urban nutrient balance for Bangkok. *Ecological Modelling* 139(1): 63–74.

FAO (Food and Agriculture Organizatin of the United Nations). 2006. *Livestock’s Long Shadow*. Rome, IT. http://www.fao.org/docrep/010/a0701e/a0701e00.HTM.

FAO. 2013. *Food waste footprint - Impacts on natural resources - Summary Report*. http://www.fao.org/docrep/018/i3347e/i3347e.pdf

FAO. 2014. Faostat. http://faostat3.fao.org.
Ferrão, P. and J.E. Fernández. 2013. Sustainable Urban Metabolism. Cambridge, US: MIT Press.

Foley, J. a, N. Ramankutty, K. a Brauman, E.S. Cassidy, J.S. Gerber, M. Johnston, N.D. Mueller, et al. 2011. Solutions for a cultivated planet. Nature 478(7369): 337–42.

Forkes, J. 2007. Nitrogen balance for the urban food metabolism of Toronto, Canada. Resources, Conservation and Recycling 52(1): 74–94.

Forman, R. 2014. Urban Ecology: Science of Cities. Cambridge, UK: Cambridge University Press.

Galle, B. 2014. Tax, Command...or Nudge?: Evaluating the New Regulation. Texas Law Review 92(4): 837–894.

Garnett, T. 2010. Foresight Project: SR32: Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy 36: S23–S32.

Geng, Y., L. Zhang, X. Chen, B. Xue, T. Fujita, and H. Dong. 2014. Urban ecological footprint analysis: A comparative study between Shenyang in China and Kawasaki in Japan. Journal of Cleaner Production 75: 130–142.

Gliessman, S. 2015. Agroecology: The ecology of sustainable food systems. 3rd ed. Boca Raton, US: CRC Press.

Goldstein, B., M. Birkved, M.-B. Quitzau, and M. Hauschild. 2013. Quantification of urban metabolism through coupling with the life cycle assessment framework: concept development and case study. Environmental Research Letters 8(3).

Gordon, C., M. Purciel-Hill, N.R. Ghai, L. Kaufman, R. Graham, and G. Van Wye. 2011. Measuring food deserts in New York City’s low-income neighborhoods. Health and Place 17(2): 696–700.

Grewal, S.S. and P.S. Grewal. 2012. Can cities become self-reliant in food? Cities 29(1): 1–11.

Grubler, A., X. Bai, T. Buettner, S. Dhakal, D.J. Fisk, T. Ichinose, J.E. Keirstead, et al. 2012. Chapter 18 - Urban Energy Systems. In Global Energy Assessment - Toward a Sustainable Future, 1307–1400. Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria.
Hara, Y., K. Tsuchiya, H. Matsuda, Y. Yamamoto, and Y. Sampei. 2013. Quantitative assessment of the Japanese “local production for local consumption” movement: a case study of growth of vegetables in the Osaka city region. Sustainability Science 8(4): 515–527.

Hargreaves, J.C., M.S. Adl, and P.R. Warman. 2008. A review of the use of composted municipal solid waste in agriculture. Agriculture, Ecosystems and Environment 123: 1-14

Hasan, S. and G. Mulamoottil. 1994. Environmental problems of Dhaka city - A study of mismanagement. Cities 11(3): 195–200.

Hazra, T. and S. Goel. 2009. Solid waste management in Kolkata, India: Practices and challenges. Waste Management 29(1): 470–478.

Heller, M.C. and G. a Keoleian. 2003. Assessing the sustainability of the US food system: a life cycle perspective. Agricultural Systems 76(3): 1007–1041.

Hodson, M., S. Marvin, B. Robinson, and M. Swilling. 2012. Reshaping Urban Infrastructure. Journal of Industrial Ecology 16(6): 789–800.

Hoornweg, D.A., G. Campillo, and D. Linders. 2012. Mainstreaming Urban Metabolism: Advances and Challenges in City Participation. Sixth Urban Research and Knowledge Symposium 2012.

Hörtenthuber, S., G. Piringer, W. Zollitsch, T. Lindenthal, and W. Winiwarter. 2014. Land use and land use change in agricultural life cycle assessments and carbon footprints - The case for regionally specific land use change versus other methods. Journal of Cleaner Production 73: 31–39.

Huang, S.-L. and W.-L. Hsu. 2003. Materials flow analysis and emergy evaluation of Taipei’s urban construction. Landscape and Urban Planning 63(2): 61–74.

IPCC (Intergovernmental Panel on Climate Change). 2014a. IPCC 5th Assessment Report, Working Group II, Chapter 8: Urban Areas. www.ipcc.ch/report/ar5/wg2/.

IPCC. 2014b. IPCC 5th Assessment Report, Working Group III, Chapter 1: Introductory Chapter. www.ipcc.ch/report/ar5/wg3/.

Jansson, Å. 2013. Reaching for a sustainable, resilient urban future using the lens of ecosystem services. Ecological Economics 86: 285–291.

Jones, D.L., P. Cross, P.J. a. Withers, T.H. DeLuca, D. a. Robinson, R.S. Quilliam, I.M. Harris, D.R. Chadwick, and G. Edwards-Jones. 2013. Nutrient stripping: the global
disparity between food security and soil nutrient stocks. *Journal of Applied Ecology* 50(4): 851–862.

Kalmykova, Y., R. Harder, H. Borgestedt, and I. Svanäng. 2012. Pathways and Management of Phosphorus in Urban Areas. *Journal of Industrial Ecology* 16(6): 928–939.

Kennedy, C., J. Cuddihy, and J. Engel-yan. 2007. The Changing Metabolism of Cities. *Journal of Industrial Ecology* 11(2): 43–59.

Kennedy, C., S. Pincetl, and P. Bunje. 2011. The study of urban metabolism and its applications to urban planning and design. *Environmental Pollution* 159(8-9): 1965-19773.

Kennedy, C., N. Ibrahim, I. Stewart, A. Facchini, and R. Mele. 2014a. An urban metabolism survey design for megacities. http://tinyurl.com/pnb9m7x.

Kennedy, C., I.D. Stewart, N. Ibrahim, A. Facchini, and R. Mele. 2014b. Developing a multi-layered indicator set for urban metabolism studies in megacities. *Ecological Indicators* 47: 7–15.

Kennedy, C. a., I. Stewart, A. Facchini, I. Cersosimo, R. Mele, B. Chen, M. Uda, et al. 2015. Energy and material flows of megacities. *Proceedings of the National Academy of Sciences* 112(19).

Kenworthy, J. and F. Laube. 1996. Automobile Dependence in Cities: An International Comparison of Urban Transport and Land Use Patterns with Implications for Sustainability. *Environmental Impact Assessment Review* 16(4-6): 279–308.

Korhonen, J. 2001. Four ecosystem principles for an industrial ecosystem. *Journal of Cleaner Production* 9(3): 253–259.

Li, J.S., G.Q. Chen, T.M. Lai, B. Ahmad, Z.M. Chen, L. Shao, and X. Ji. 2013. Embodied greenhouse gas emission by Macao. *Energy Policy* 59: 819–833.

Li, S., Y. Zhang, Z. Yang, H. Liu, and J. Zhang. 2012. Ecological relationship analysis of the urban metabolic system of Beijing, China. *Environmental Pollution* 170: 169–76.

Marx, K. 1976. *Capital: a critique of political economy*. New York, US: Penguin Publishing.

McLaren, S.J. 2010. Life Cycle Assessment (LCA) of food production and processing: An introduction. In *Environmental Assessment and Management in the Food Industry*, ed. by
Ulf Sonesson, J. Berlin, and F. Ziegler. 37–58. Cambridge, UK: Woodhead Publishing.

Metson, G., R. Aggarwal, and D.L. Childers. 2012. Efficiency Through Proximity. *Journal of Industrial Ecology* 16(6): 914–927.

Miljøministreriet. 2005. *Risikovurdering af anvendelse af lokalt opsamlet faeses i private havebrug* [Risks from application of local faeces in private gardens]. Copenhagen: Ministry of Environment

Monteiro, C.A. and G. Cannon. 2012. The impact of transnational “big food” companies on the south: A view from brazil. *PLoS Medicine* 9(7).

Moore, J., M. Kissinger, and W.E. Rees. 2013. An urban metabolism and ecological footprint assessment of Metro Vancouver. *Journal of Environmental Management* 124: 51–61.

Morée, a. L., a. H.W. Beusen, a. F. Bouwman, and W.J. Willems. 2013. Exploring global nitrogen and phosphorus flows in urban wastes during the twentieth century. *Global Biogeochemical Cycles* 27(3): 836–846.

Muñoz, I., L. Milà i Canals, and A.R. Fernández-Alba. 2010. Life cycle assessment of the average Spanish diet including human excretion. *The International Journal of Life Cycle Assessment* 15(8): 794–805.

Niza, S., L. Rosado, and P. Ferrão. 2009. Urban Metabolism. *Journal of Industrial Ecology* 13(3): 384–405.

Notarnicola, B., G. Tassielli, and P.A. Renzulli. 2012. Modeling the Agri-Food Industry with Life Cycle Assessment. In *Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products*, ed. by Mary Anne Curran, 159–183. Scrivener Publishing LLC.

OECD (Organization of Economic Cooperation and Development). 2015. OECD Stats Extracts. http://stats.oecd.org. Accessed June 2015.

OECD and FAO. 2015. *OECD-FAO Agricultural Outlook 2015*.

Popkin, B.M. 2006. Global nutrition dynamics: the world is shifting rapidly toward a diet linked with noncommunicable diseases. *The American Journal of Clinical Nutrition* 84(2): 289–98.
Qadir, M., D. Wichelns, L. Raschid-Sally, P.G. McCornick, P. Drechsel, a. Bahri, and P.S. Minhas. 2010. The challenges of wastewater irrigation in developing countries. *Agricultural Water Management* 97(4): 561–568.

Ramaswami, A., A. Chavez, J. Ewing-Thiel, and K.E. Reeve. 2011. Two approaches to greenhouse gas emissions foot-printing at the city scale. *Environmental Science & Technology* 45(10): 4205–6.

Rees, W. and M. Wackernagel. 2008. *Urban Ecological Footprints: Why Cities Cannot be Sustainable — and Why They are a Key to Sustainability Introduction*:

Rosado, L., S. Niza, and P. Ferrão. 2014. A Material Flow Accounting Case Study of the Lisbon Metropolitan Area using the Urban Metabolism Analyst Model. *Journal of Industrial Ecology* 18(1): 84–101.

Roy, P., T. Orikasa, M. Thammawong, N. Nakamura, Q. Xu, and T. Shiina. 2012. Life cycle of meats: an opportunity to abate the greenhouse gas emission from meat industry in Japan. *Journal of Environmental Management* 93(1): 218–24. http://www.ncbi.nlm.nih.gov/pubmed/22054588. Accessed March 21, 2014.

Sahely, H.R., S. Dudding, and C.A. Kennedy. 2003. *Estimating the urban metabolism of Canadian cities: Greater Toronto Area case study*. *Canadian Journal of Civil Engineering*. Vol. 30.

Schmidt, J.H. and S. Merciai. 2014. Life cycle assessment of the global food consumption. In *9th International Conference LCA of Food*. San Francisco.

Seto, K.C., M. Fragkias, and B. Gu. 2011. A Meta-Analysis of Global Urban Land Expansion 6(8).

Shove, E. and G. Walker. 2010. Governing transitions in the sustainability of everyday life. *Research Policy* 39(4): 471–476.

Slater, R.. and J. Frederickson. 2001. Composting municipal waste in the UK: some lessons from Europe. *Resources, Conservation and Recycling* 32(3-4): 359–374.

Srikanth, R. and D. Naik. 2004. Prevalence of Giardiasis due to wastewater reuse for agriculture in the suburbs of Asmara City, Eritrea. *International Journal of Environmental Health Research* 14(1): 43–52.

Stanhill, G. 1977. *An urban agro-ecosystem: the example of nineteenth-century Paris*. *Agro-Ecosystems* 3: 269–284.
Steemers, K. 2003. Energy and the city: density, buildings and transport. *Energy and Buildings* 35(1): 3–14.

Steffen, W., K. Richardson, J. Rockström, S. Cornell, I. Fetzer, E. Bennett, R. Biggs, et al. 2015. Planetary Boundaries: Guiding human development on a changing planet. *Science* 347.

Stewart, I., C. Kennedy, and A. Facchini. 2014. *Metabolism of megacities: a review and synthesis of the literature*. http://tinyurl.com/ntdub3k.

Stringer, L. 2015. New York restaurants scramble for alternatives after city bans foam packaging. *The Guardian*, January 22, 2015.

Swaney, D.P., R.L. Santoro, R.W. Howarth, B. Hong, and K.P. Donaghy. 2011. Historical changes in the food and water supply systems of the New York City Metropolitan Area. *Regional Environmental Change* 12(2): 363–380.

Tilman, D., C. Balzer, J. Hill, and B.L. Befort. 2011. Global food demand and the sustainable intensification of agriculture. *Proceedings of the National Academy of Sciences of the United States of America* 108(50): 20260–4.

Tilman, D. and M. Clark. 2014. Global diets link environmental sustainability and human health. *Nature* 515: 518-522.

UN-ESA (United Nations Population Division). 2011. World Urbanization Prospects, the 2011 Revision. http://esa.un.org/unup.

UNEP (United Nations Environment Programme). 2012. *Growing greenhouse gas emissions due to meat production*. http://www.unep.org/pdf/unep-geas_oct_2012.pdf

Vanham, D. and G. Bidoglio. 2014. The water footprint of Milan. *Water Science and Technology: A Journal of the International Association on Water Pollution Research* 69(4): 789–95.

Wackernagel, M. 1998. The ecological footprint of Santiago de Chile. *Local Environment* 3(1): 7–25.

Walsh, C., A. McLoone, B. O’Regan, R. Moles, and R. Curry. 2006. The application of the ecological footprint in two Irish urban areas: Limerick and Belfast. *Irish Geography* 39(1): 1–21.

Wang, H., X. Zhao, L. Tang, S. Cui, and G. Li. 2013. Changes in phosphorus consumption and its environmental loads from food by residents in Xiamen City. *Acta Ecologica Sinica* 33(14): 4495–4504.
Warren-Rhodes, K. and a Koenig. 2001. Escalating trends in the urban metabolism of Hong Kong: 1971-1997. *Ambio* 30(7): 429–38.

Weisz, H. and J.K. Steinberger. 2010. Reducing energy and material flows in cities. *Current Opinion in Environmental Sustainability* 2(3): 185–192.

Wolman, A. 1965. The Metabolism of Cities. *Scientific American*.

Wu, Y., X. Wang, and F. Lu. 2012. The carbon footprint of food consumption in Beijing. *Acta Ecologica Sinica* 32(5): 1570–1577.

WWF (World Wildlife Fund for Nature). 2005. *Reducing Cardiff’s Ecological Footprint*.

WWF. 2012. *The Ecological Footprint of Sao Paulo · State and Capital*. http://bit.ly/1iibCEi.

WWF. 2013. *Hong Kong Ecological Footprint Report*. http://bit.ly/QJgmfv.

Zhang, P.Y., C.H. Hu, M.Z. Qin, J.H. Yan, and Y.P. Zhao. 2012. The Study on Surveys and Evaluation of Living Consumption Level of Urban Residents Based on the Ecological Footprint. *Advanced Materials Research* 616-618: 1249–1253.

Zhang, Y. 2013. Urban metabolism: a review of research methodologies. *Environmental Pollution* 178: 463–73.