Prognostic impact of C-reactive protein and alpha-fetoprotein in immunotherapy score in hepatocellular carcinoma patients treated with atezolizumab plus bevacizumab: a multicenter retrospective study

Takeshi Hatanaka1 · Satoru Kakizaki2,3 · Atsushi Hiraoka4 · Toshifumi Tada5 · Masashi Hirooka6 · Kazuya Kariyama7 · Joji Tani8 · Masanori Atsukawa9 · Koichi Takaguchi10 · Ei Itobayashi11 · Shinya Fukunishi12 · Kunihiro Tsuji13 · Toru Ishikawa14 · Kazuto Tajiri15 · Hironori Ochi16 · Satoshi Yasuda17 · Hidenori Toyoda17 · Chikara Ogawa18 · Takashi Nishimura19 · Noritomo Shimada20 · Kazuhiro Kawata21 · Hisashi Kosaka22 · Takaaki Tanaka23 · Hideko Ohama12 · Kazuhiro Nousu2 · Asahiro Morishita6 · Akemi Tsutsui10 · Yukuya Nagano10 · Norio Itokawa9 · Tomomi Okubo9 · Taeang Ara9 · Michitaka Imai14 · Atsushi Naganuma23 · Yohei Koizumi6 · Shinichiro Nakamura5 · Kouji Joko16 · Masaki Kaibori22 · Hiroko Iijima19 · Yoichi Hiasa6 · Takashi Kumada24. On behalf of the Real-life Practice Experts for HCC (RELPEC) Study Group, and HCC 48 Group (hepatocellular carcinoma experts from 48 clinics in Japan)

Received: 3 February 2022 / Accepted: 7 May 2022 / Published online: 24 June 2022
© Asian Pacific Association for the Study of the Liver 2022

Abstract

Aim This study aimed to investigate the utility of C-reactive protein (CRP) and alpha-fetoprotein (AFP) in immunotherapy (CRAFITY) score in hepatocellular carcinoma (HCC) patients receiving atezolizumab and bevacizumab (Atez/Bev).

Methods This retrospective cohort study included a total of 297 patients receiving Atez/Bev from September 2020 to November 2021 at 21 different institutions and hospital groups in Japan. Patients with AFP ≥ 100 ng/mL and those with CRP ≥ 1 mg/dL were assigned a CRAFITY score of 1 point.

Results The patients were assigned CRAFITY scores of 0 points (n = 147 [49.5%]), 1 point (n = 111 [37.4%]), and 2 points (n = 39 [13.1%]). AFP ≥ 100 ng/mL and CRP ≥ 1.0 mg/dL were significantly associated with progression-free survival (PFS) and overall survival (OS). The median PFS in the CRAFITY score 0, 1, and 2 groups was 11.8 months (95% confidence interval [CI] 6.4–not applicable [NA]), 6.5 months (95% CI 4.6–8.0), and 3.2 months (95% CI 1.9–5.0), respectively (p < 0.001). The median OS in patients with CRAFITY score 0, 1 and 2 was not reached, 14.3 months (95% CI 10.5-NA), and 11.6 months (95% CI 4.9-NA), respectively. The percentage of patients with grade ≥ 3 liver injury, any grade of decreased appetite, any grade of proteinuria, any grade of fever, and any grade of fatigue was lowest in patients with a CRAFITY score of 0, followed by patients with CRAFITY scores of 1 and 2.

Conclusions The CRAFITY score is simple and could be useful for predicting therapeutic outcomes and treatment-related adverse events.

Keywords CRAFITY score · Immune checkpoint inhibitor · Anti-programmed death ligand-1 · Vascular endothelial growth factor · Inflammation · Adverse events · C-reactive protein · Alpha-fetoprotein · Progression-free survival · Overall survival

Introduction

According to the Imbrave150 trial [1], combination therapy with atezolizumab plus bevacizumab (Atez/Bev), an anti-programmed death ligand 1 (PD-L1) inhibitor and monoclonal antibody targeting vascular endothelial growth factor
(VEGF), demonstrated an advantage over the sorafenib in terms of the overall survival (OS) and progression-free survival (PFS). Based on this positive results, Atez/Bev have become the standard of care in first-line treatment in patients with advanced HCC under the recent guidelines [2–4]. However, the objective response rate (ORR) of immune monotherapy for HCC ranged from 17 to 20% [5–8] and only one-third of patients who received Atez/Bev treatment showed an objective response [1]. Numerous biomarkers, including the PD-L1 expression [9], and activated Wnt/β-catenin signaling [10, 11], that may be used to assist in decision-making and guide treatment have been studied; however, the established biomarkers have not been fully validated [12]. A recent study [13] reported the utility of C-reactive protein (CRP) and alpha-fetoprotein (AFP) in immunotherapy (CRAFITY) score in patients treated with immunotherapy. However, more than one-half of patients included in this study were treated with immune monotherapy, and data about the efficacy and safety of Atez/Bev is limited. Accordingly, the aim of the current study is to investigate the utility of the CRAFITY score in HCC patients receiving Atez/Bev.

Methods

Patients

A total of 325 patients with HCC received Atez/Bev from September 2020 to November 2021 at 21 different institutions and hospital groups in Japan. The inclusion criteria of this retrospective study were as follows: (a) HCC diagnosed based on typical enhancement on radiological imaging, including computed tomography and magnetic resonance imaging, or histologically proven in a biopsy specimen or a resected specimen obtained during the clinical course; (b) patients were treated with Atez/Bev; (c) the serum levels of AFP and CRP were measured at baseline. We excluded patients who suffer from any other systemic illness including active infection and other cancers. Among these 325 patients, baseline CRP data were missing for 28 patients. Therefore, the remaining 297 patients were included in the present study (Fig. 1).

After receiving official approval, this study was conducted as a retrospective analysis of database records based on the Guidelines for Clinical Research issued by the Ministry of Health and Welfare of Japan.

Atez/Bev treatment and the evaluation of AEs

After obtaining written informed consent from each patient, all patients received intravenous Atez/Bev every 3 weeks. The Atez/Bev treatment is composed of atezolizumab (1200 mg) and bevacizumab (15 mg/kg body weight). The treatment was discontinued until the development of unacceptable or serious AEs or clinical tumor progression was observed. We used the Common Terminology Criteria for Adverse Events (CTCAE) version 5.0 to evaluate the AEs. We carried out dose interruption or discontinuation of each drug based on the guidelines for Atez/Bev treatment provided by the manufacturer.

Evaluation of the tumor stage, liver function, and efficacy of Atez/Bev

The tumor stage was determined by the Barcelona Clinic Liver Cancer (BCLC) staging system [4]. The liver function was evaluated by Child–Pugh classification and albumin-bilirubin (ALBI) score [14] and modified albumin-bilirubin (mALBI) grade [15]. The radiological response was assessed by the Response Evaluation Criteria In Solid Tumors version 1.1 (RECIST ver.1.1). The ORR was defined as the percentage of the sum of patients with a complete response (CR) or partial response (PR), and the disease control rate (DCR) was defined as the percentage of the sum of patients with CR, PR, and stable disease (SD). Progression-free survival was defined as the time from the day of starting Atez/Bev to the observation of clinical disease progression or death and OS was defined as the time from the day of starting Atez/Bev to death or the last visit.

CRAFITY score

The CRAFITY score was determined by the values of AFP and CRP. According to a previous study [13], patients with AFP ≥ 100 ng/mL at baseline and those with CRP ≥ 1 mg/dL were assigned 1 point. For example, a patient with AFP < 100 ng/mL and CRP < 1 mg/dL was assigned to
CRAFITY 0 points. A patient who had either AFP ≥ 100 ng/mL or CRP ≥ 1 mg/dL was assigned a CRAFITY score of 1 point, and a patient who had both AFP ≥ 100 ng/mL or CRP ≥ 1 mg/dL was assigned a CRAFITY score of 2 points.

Statistical analyses

All statistical analyses were conducted using EZR Ver. 1.54 (Saitama Medical Center, Jichi Medical University, Saitama, Japan), which is a graphical user interface for R (The R Foundation for Statistical Computing, Vienna, Austria) [16]. Continuous data are presented as the median (interquartile range) and categorical data are presented as the number (percentage). The χ² test, Fisher’s exact, and Mann–Whitney U test were used as appropriate. Cox proportional hazards regression models were used to evaluate the hazard ratio (HR). The number of explanatory variables involved in each model depends on the number of events. We included chronic liver disease, BCLC stage, AFP, CRP, treatment settings, age, and sex as explanatory variables in the analysis of factors associated with PFS. In the analysis of factors associated with OS, we used chronic liver disease, BCLC stage, AFP, CRP, and treatment settings as explanatory variables. We also used non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) as explanatory variables instead of viral infection, and constructed other two multivariate models. Viral infection was defined as hepatitis B virus (HBV) or hepatitis C virus (HCV) infection. Patients with a presence or history of alcohol abuse (≥ 60 g/day) were judged to alcohol. NAFLD was diagnosed based on the pathological findings [17]. The etiology of patients with findings of fatty liver, and without a presence or history of habitual alcohol intake (≥ 30 g/day for men and ≥ 20 g/day for women) was also considered as NAFLD [17]. Among patients with non-viral infection, MAFLD was diagnosed based on a previous report [18]. Age was dichotomized based on the median value. Because the value of CRP was strongly correlated with the ALBI score (r = 0.44, p < 0.001; Supplemental Fig. 1), we did not adopt the ALBI score as an explanatory variable to avoid multicollinearity. The results obtained with a cutoff value of ALBI score for CRP ≥ 1 mg/dL are shown in Supplemental Fig. 2.

Results

Table 1 shows an overview of patient characteristics. The median age of all patients was 73.0 (68.0–78.0) years and 243 patients (81.8%) were men. The PS was 0, 1, and 2 in 238 (80.1%), 49 (16.5%), and 10 patients (3.4%), respectively. The etiology of chronic liver diseases was HCV, HBV, alcohol, NAFLD, and others in 99 (33.3%), 50 (16.8%), 57 (19.2%), 60 (20.2%), and 31 patients (10.4%), respectively.

108 patients (37.2%) were accompanied by diabetes mellitus and 78 patients (52.7%) were diagnosed with MAFLD. The Child–Pugh score was 5, 6, and ≥ 7 in 183 (61.6%), 96 (32.3%), and 18 patients (6.1%), respectively. The median ALBI score was calculated to be -2.43 (-2.70 to -2.13) and the mALBI grades were 1, 2a, 2b, and 3 in 115 (38.7%), 76 (25.6%), 104 (35.0%), and 2 patients (0.7%), respectively. One hundred sixty-nine (56.9%) and 128 patients (43.1%) received Atez/Bev as a front line and later line treatment, respectively. The BCLC stage was classified as early, intermediate, advanced, and terminal in 17 (5.7%), 121 (40.7%), 155 (52.2%), and 4 patients (1.3%), respectively. The etiology of chronic liver diseases was HCV, HBV, alcohol, NAFLD, and others in 99 (33.3%), 50 (16.8%), 57 (19.2%), 60 (20.2%), and 31 patients (10.4%), respectively.

The Kaplan–Meier curves showed that the median PFS was 6.8 months (95% CI 6.0–8.0), with 144 events (48.8%) detected at the time of the analysis (Fig. 2a). While the median OS was not reached, the 6-month, and 12-month OS rates were 89.9% (95% CI 85.3–93.1) and 66.1% (95% CI 55.6–74.6%), respectively, with 52 events (17.5%) found at the time of the analysis (Fig. 2b). While a significant difference in the DCR was observed among the three groups (p = 0.029).

The Kaplan–Meier curves showed that the median PFS was 6.8 months (95% CI 6.0–8.0), with 144 events (48.8%) detected at the time of the analysis (Fig. 2a). While the median OS was not reached, the 6-month, and 12-month OS rates were 89.9% (95% CI 85.3–93.1) and 66.1% (95% CI 55.6–74.6%), respectively, with 52 events (17.5%) found at the time of the analysis (Fig. 2b). The results obtained from the multivariate analysis are presented in Table 3. The following factors showed a significant association with PFS: AFP ≥ 100 ng/mL (HR 1.97, 95% CI 1.40–2.77, p < 0.001) and CRP ≥ 1.0 mg/dL (HR 1.51, 95% CI 1.05–2.19, p = 0.028). A statistical analysis of factors related to OS also revealed that AFP ≥ 100 ng/mL (HR 2.74, 95% CI 1.52–4.92, p < 0.001) and CRP ≥ 1.0 mg/dL (HR 1.87, 95% CI 1.06–3.31, p = 0.032) were predictors of OS. The multivariate analyses of factors including NAFLD and MAFLD used as explanatory variables were shown in Supplemental Tables 1 and 2. A multivariate analysis was performed using the CRAFTY score as an explanatory variable, and the HRs and 95% CIs of each CRAFTY score are described in Supplemental Table 3.

The PFS and OS for each CRAFTY score are shown in Fig. 3. In the CRAFTY 0, 1, and 2 points groups, the median PFS was 11.8 months (95% CI 6.4–not applicable
Table 1 Patient demographic features

Variables	Overall patients (n=297)	CRAFITY 0 points (n=147)	CRAFITY 1–2 points (n=150)	p value
Age, years	73.0 [68.0, 78.0]	73.0 [68.0, 77.5]	73.5 [67.0, 79.0]	0.50
Male, n (%)	243 (81.8)	122 (83.0)	121 (80.7)	0.65
PS, n (%)^a				0.025
0	238 (80.1)	127 (86.4)	111 (74.0)	
1	49 (16.5)	17 (11.6)	32 (21.3)	
2	10 (3.4)	3 (2.0)	7 (4.7)	
Body mass index, (kg/m²)	22.8 [20.7, 25.2]	23.5 [21.1, 26.1]	22.3 [20.3, 24.8]	0.014
Chronic liver diseases, n (%)				0.76
HCV	99 (33.3)	47 (32.0)	52 (34.7)	
HBV	50 (16.8)	24 (16.3)	26 (17.3)	
Alcohol	57 (19.2)	30 (20.4)	27 (18.0)	
NAFLD	60 (20.2)	33 (22.4)	27 (18.0)	
Others	31 (10.4)	13 (8.8)	18 (12.0)	
Diabetes mellitus, n (%)	108 (37.2)	50 (35.0)	58 (39.5)	0.47
MAFLD[*], n (%)	78 (25.7)	39 (51.3)	39 (54.2)	0.75
Total bilirubin (mg/dL)	0.70 [0.54, 1.00]	0.70 [0.57, 1.00]	0.70 [0.54, 1.00]	0.61
Albumin (g/dL)	3.77 [3.40, 4.10]	3.90 [3.60, 4.20]	3.60 [3.20, 3.90]	<0.001
Child–Pugh score, n (%)				<0.001
5	183 (61.6)	108 (73.5)	75 (50.0)	
6	96 (32.3)	35 (23.8)	61 (40.7)	
≥ 7	18 (6.1)	4 (2.7)	14 (9.3)	
ALBI score	-2.43 [-2.70, -2.13]	-2.56 [-2.77, -2.27]	-2.29 [-2.61, -2.02]	<0.001
mALBI grade, n (%)				<0.001
1	115 (38.7)	70 (47.6)	45 (30.0)	
2a	76 (25.6)	42 (28.6)	34 (22.7)	
2b	104 (35.0)	35 (23.8)	69 (46.0)	
3	2 (0.7)	0 (0.0)	2 (1.3)	
Treatment settings, n (%)				0.002
Front line	169 (56.9)	97 (66.0)	72 (48.0)	
Later line	128 (43.1)	50 (34.0)	78 (52.0)	
BCLC stage, n (%)				0.038
Early stage	17 (5.7)	11 (7.5)	6 (4.0)	
Intermediate stage	121 (40.7)	69 (46.9)	52 (34.7)	
Advanced stage	155 (52.2)	65 (44.2)	90 (60.0)	
Terminal stage	4 (1.3)	2 (1.4)	2 (1.3)	
AFP ≥ 100 ng/mL, n (%)	122 (41.1)	0 (0.0)	122 (81.3)	<0.001
DCP ≥ 100 mAU/mL^{**}, n (%)	198 (67.3)	78 (54.2)	120 (80.0)	<0.001
CRP (mg/dL)	0.30 [0.10, 0.86]	0.17 [0.06, 0.37]	0.72 [0.19, 1.79]	<0.001
CRP ≥ 1.0 mg/dL	67 (22.6)	0 (0.0)	67 (44.7)	<0.001
CRAFITY score (point)				<0.001
0	147 (49.5)	147 (100.0)	0 (0.0)	
1	111 (37.4)	0 (0.0)	111 (74.0)	
2	39 (13.1)	0 (0.0)	39 (26.0)	

*AFP α-fetoprotein, ALBI albumin-bilirubin, BCLC Barcelona clinical liver cancer, CRP C-reactive protein, CRAFITY C-reactive protein and α-fetoprotein in immunotherapy, DCP des-gamma-carboxy prothrombin, HBV hepatitis B virus, HCV hepatitis C virus, NAFLD non-alcoholic fatty liver disease, MAFLD metabolic dysfunction-associated fatty liver disease, mALBI modified albumin-bilirubin, PS performance status

^aIt was evaluated in patients with non-viral infection

^{**}Data were missing for three patients

Data are reported as the median [IQR] or number (percentage)
6.5 months (95% CI 4.6–8.0), and 3.2 months (95% CI 1.9–5.0), respectively, \((p<0.001)\). The results of the analysis of PFS in patients with BCLC early and intermediate stage according to the CRAFITY score are shown in Supplemental Fig. 2a and those of patients with BCLC advanced and terminal stage are shown in Supplemental Fig. 2b. The results of the analysis of PFS in patients receiving Atez/bev as front line and later line were shown in Supplemental Fig. 3c and d.

The median OS in patients with CRAFITY score 0 points was not reached while it was 14.3 months (95% CI 10.5–NA) and 11.6 months (95% CI 4.9–NA) in patients with CRAFITY scores of 1 point and 2 points, respectively. There was a significant difference among the three groups \((p<0.001)\). The 6-month and 12-month OS rates were 94.7% (95% CI 88.4–97.6) and 81.1% (95% CI 66.1–89.9%), respectively, in patients with CRAFITY score 0, 92.9% (95% CI 85.6–96.6%) and 63.5% (48.3–75.3%) in patients with CRAFITY score 1, and 63.6% (95% CI 44.5–77.7%) and 33.2% (95% CI 10.5–58.3%) in patients with CRAFITY score 2. The survival curves for patients with BCLC early and intermediate stage, stratified by the CRAFITY score, are shown in Supplemental Fig. 3a, while those with BCLC advanced and terminal stage are also shown in Supplemental Fig. 3b.

A summary of AEs according to the CRAFITY score is shown in Table 4. The most common AEs in all patients were fatigue \((n=75, 25.3\%)\), followed by proteinuria \((n=71, 23.9\%)\), decreased appetite \((n=70, 23.6\%)\), hypertension \((n=58, 19.5\%)\), and liver injury \((n=40, 13.5\%)\). Significant differences were observed in grade \(\geq 3\) liver injury \((p=0.036)\), any grade of decreased appetite \((p=0.002)\,

![Supplemental Fig. 2](image)

Table 2 Confirmed radiological response rate according to CRAFITY score

CRAFITY 0 points \((n=119)\)	CRAFITY 1 point \((n=101)\)	CRAFITY 2 points \((n=37)\)	\(P\) value	
Radiological response, \(n\) (%)	CRAFITY 0 points \((n=119)\)	CRAFITY 1 point \((n=101)\)	CRAFITY 2 points \((n=37)\)	\(P\) value
CR	2 (1.7)	3 (3.0)	0 (0.0)	0.20
PR	28 (23.5)	24 (23.8)	8 (21.6)	
SD	71 (59.7)	53 (52.5)	16 (43.2)	
PD	18 (15.1)	21 (20.8)	13 (35.1)	
Objective response rate (%)	30 (24.4)	27 (26.0)	8 (20.5)	0.80
Disease control rate (%)	101 (82.1)	80 (76.9)	24 (61.5)	0.029

CR complete response, CRAFITY C-reactive protein and α-fetoprotein in immunotherapy, PD progressive disease, PR partial response, SD stable disease.

The radiological response was assessed by Response Evaluation Criteria In Solid Tumors version 1.1.
any grade of proteinuria \((p = 0.039)\), any grade of fever \((p = 0.011)\), and any grade of fatigue \((p = 0.032)\). The rates of these AEs were lowest in patients with a CRAFITY score of 0, followed by patients with CRAFITY scores of 1 and 2.

Discussion

The major finding of the present study is that AFP ≥ 100 ng/mL and CRP ≥ 1.0 mg/dL were found to be predictive factors associated with PFS and OS in patients treated with Atez/Bev. The CRAFITY score, which is composed of AFP and CRP, could stratify the OS of patients treated with Atez/Bev. Because the previous report [13] did not investigate the correlation of the CRAFITY score with PFS and AEs, we revealed that the CRAFITY score could also predict PFS and treatment-related AEs. Accordingly, the CRAFITY score was simple and useful for predicting therapeutic outcomes and treatment-related AEs. To our knowledge, this is the first report assessing the utility of the CRAFITY score in HCC patients treated with Atez/Bev.

AFP is a well-known, novel tumor biomarker, that is widely used in the clinical setting. An elevated serum level of AFP was associated with a poor prognosis across all stages of HCC [12]. Some studies revealed that AFP was a prognostic factor in patients treated with surgical resection [19], liver transplantation [20], radiofrequency ablation

Variables	Hazard ratio (95% CI)	P value	
PFS analysis			
Chronic liver disease	Viral infection	1.17 (0.84–1.63)	0.36
BCLC stage	Stage C or D	1.41 (0.99–2.00)	0.058
AFP	≥ 100 ng/mL	1.97 (1.40–2.77)	< 0.001
CRP	≥ 1.0 mg/dL	1.51 (1.05–2.19)	0.028
Treatment settings	Front line	1.00 (0.72–1.40)	0.99
Age	≥ 73 year old	1.07 (0.76–1.52)	0.69
Sex	Female	0.50 (0.30–0.84)	0.009
OS analysis			
Chronic liver disease	Viral infection	0.98 (0.57–1.70)	0.94
BCLC stage	Stage C or D	1.14 (0.65–2.01)	0.64
AFP	≥ 100 ng/mL	2.74 (1.52–4.92)	< 0.001
CRP	≥ 1.0 mg/dL	1.87 (1.06–3.31)	0.032
Treatment settings	Front line	0.96 (0.55–1.67)	0.88

Table 3 Multivariate analyses of factors associated with PFS and OS

Viral infection was defined as hepatitis B virus or hepatitis C virus infection

Fig. 3 Kaplan–Meier curves for progression-free survival (a) and overall survival (b) according to the CRAFITY score. *CRAFITY score* C-reactive protein and alpha-fetoprotein in immunotherapy

\[\text{AFP} \] α-fetoprotein, BCLC Barcelona clinical liver cancer, CI confidence interval, CRP C-reactive protein, OS overall survival, PFS progression-free survival
In addition, AFP was also associated with a high rate of recurrence after liver transplantation [24]. Due to the prognostic significance of AFP in advanced HCC patients, the pretreatment AFP concentration has been adopted as a stratification factor in recent phase 3 trials [1, 25, 26]. With regard to the molecular HCC classes, Hoshida’s HCC subclasses (S1-S3) are associated with various parameters, such as tumor size, tumor differentiation, and AFP [27]. Among these subclasses, the S2 subclass is associated with high serum AFP [27]. Moreover, the expression of AFP and EpCAM (a hepatic stem cell expression marker) were used to characterize the progenitor cell group (S2 subclass) [28]. Recently, AFP was also shown to be associated with the activation of the tumor VEGF pathway [29, 30]. VEGF reduces the therapeutic effect of immune checkpoint inhibitors (ICIs) via some mechanisms, including inhibition of the maturation of dendritic cells [31, 32], stimulation of lymphocyte rolling [33, 34], intra-tumoral T-cell infiltration [35], and expansion of immunosuppressive myeloid-derived suppressor cells (MDSCs) [36, 37]. Given these previous studies, patients with high AFP levels (≥ 100 ng/dL) showed a poor prognosis and shorter PFS in comparison to those with low AFP levels in the present study.

Inflammation is considered a hallmark of cancer progression and a key component of the tumor microenvironment [38, 39]. C-reactive protein is an acute protein and is mainly regulated by interleukin-6 [40]. To date, many studies reported that CRP is a novel prognostic marker in HCC patients [41–43]. Regarding ICI treatment, an elevated CRP level has been reported as an unfavorable factor in some types of cancers, including non-small cell lung cancer [44, 45] and melanoma [45, 46]; however, few reports have investigated the relationship between the single determination of CRP and ICI efficacy in HCC patients. An association between CRP and immunosuppression was recently reported. CRP binds to T-cells and has a profound suppressive effect on immunity in patients [47, 48]. CRP also regulates the development and suppressive actions of MDSC [49]. These previous reports support the present findings that CRP is a predictive factor for PFS and OS.

Regarding the analysis of the radiological response, although statistical significance was not observed in the analysis of the ORR, it was observed in the analysis of the DCR. A previous study [13] by Scheiner et al. showed that

Table 4 Adverse events according to the CRAFITY score	CRAFITY 0 points (n = 147)	CRAFITY 1 point (n = 111)	CRAFITY 2 points (n = 39)	P value	
Diarrhea	Any	7 (4.8)	10 (9.0)	5 (12.8)	0.17
	Grade ≥ 3	1 (0.7)	1 (0.9)	1 (2.6)	0.57
Liver injury	Any	17 (11.6)	13 (11.7)	10 (25.6)	0.058
	Grade ≥ 3	3 (2.0)	3 (2.7)	4 (10.3)	0.036
Hypertension	Any	28 (19.0)	23 (20.7)	7 (17.9)	0.91
	Grade ≥ 3	6 (4.1)	5 (4.5)	3 (7.7)	0.63
Decreased appetite	Any	28 (19.0)	24 (21.6)	18 (46.2)	0.002
	Grade ≥ 3	7 (4.8)	4 (3.6)	1 (2.6)	0.79
Protein urea	Any	26 (17.7)	32 (28.8)	13 (33.3)	0.039
	Grade ≥ 3	10 (6.8)	9 (8.1)	7 (17.9)	0.087
Fever	Any	5 (3.4)	13 (11.7)	6 (15.4)	0.011
	Grade ≥ 3	2 (1.4)	1 (0.9)	1 (2.6)	0.74
Fatigue	Any	37 (25.2)	22 (19.8)	16 (41.0)	0.032
	Grade ≥ 3	4 (2.7)	1 (0.9)	0 (0.0)	0.36
Varices rupture	Any	0 (0.0)	0 (0.0)	0 (0.0)	NA
	Grade ≥ 3	2 (1.4)	1 (0.9)	0 (0.0)	0.36
Hepatic edema	Any	11 (7.5)	11 (9.9)	3 (7.7)	0.77
	Grade ≥ 3	1 (0.7)	4 (3.6)	2 (5.1)	0.146

CRAFITY C-reactive protein and α-fetoprotein in immunotherapy, NA not applicable
CRAFITITY score predicted the ORR and DCR. This difference may be associated with the short observation period of the present study. A further study with long-term observation is needed to confirm the correlation between the CRAFITITY score and the ORR and DCR of patients treated with Atez/Bev.

In the present study, NAFLD and MAFLD were not found to be predictive factors associated with the PFS and OS in multivariate analyses (Supplemental Tables 1 and 2). A recent study [52] showed that NAFLD hampers the therapeutic outcome of immunotherapy. Two meta-analyses showed that viral-related HCC patients benefitted from immunotherapies compared to control groups whereas non-viral-related HCC patients did not [52, 53]. According to retrospective studies concerning with lenvatinib [54, 55] and sorafenib [56], the clinical outcomes were not significantly different between the patients with viral and non-viral infection. A further study is required to investigate whether or not NAFLD affected on the therapeutic outcome of immunotherapies in clinical settings.

The present study was associated with some limitations. This study was conducted in a retrospective manner. Although the present study included a larger number of patients in comparison to previous studies [13], the observation period of the present study was short. Further prospective studies with long-term follow-up are warranted.

In conclusion, the CRAFITITY score is simple to determine and could be useful for predicting therapeutic outcomes and treatment-related AEs.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s12072-022-10358-z.

Acknowledgement RELPEC study group member includes Takeshi Hatanaka, Satoru Kakizaki, Atsushi Hirao, Toshifumi Tada, Kazuya Kariyama, Koichi Takaguchi, Ei Itobayashi, Munihiko Tsuji, Toru Ishikawa, Satoshi Yasuda, Hidenori Toyoda, Chikara Ogawa, Takashi Nishimura, Noritomo Shimada, Kazuhiro Kawata, Hisashi Kosaka, Takaaki Tanaka, Hideko Ohama, Kazuhiro Noso, Asahiro Morishita, Akemi Tsutsui, Takuya Nagano, Norio Ikotaka, Tomomichi Ohkubo, Taeang Arai, Michitaka Imai, Atsushi Naganuma, Yohei Koizumi, Shinichiro Nakamura, Kouji Joko, Masaki Kaihori, Hiroko Iljima, and Yoichi Hiasa, have no potential conflicts of interest to declare.

Ethical approval The study protocol was granted approval by the Institutional Ethics Committee of Ehime Prefectural Central Hospital (IRB No. 30–66) (UMIN000043219). All procedures were performed in accordance with the Declaration of Helsinki.

Informed consent Written informed consent was obtained from all patients.

References

1. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382:1894–1905
2. Gordan JD, Kennedy EB, Abou-Alfa GK, Beg MS, Brower ST, Gade TP, et al. Systemic therapy for advanced hepatocellular carcinoma: ASCO guideline. J Clin Oncol. 2020;38:4317–4345
3. Vogel A, Martinelli E. Updated treatment recommendations for hepatocellular carcinoma (HCC) from the ESMO Clinical Practice Guidelines. Ann Oncol. 2021;32:801–805
4. Llovet JM, Villanueva A, Marrero JA, Schwartz M, Meyer T, Galle PR, et al. Trial design and endpoints in hepatocellular carcinoma: AASLD Consensus Conference. Hepatology. 2021;73(Suppl 1):158–191
5. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389:2492–2502
6. Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19:940–952
7. Finn RS, Ryoo BY, Merle P, Kudo M, Bouatour M, Lim HY, et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: A randomized, double-blind, phase III Trial. J Clin Oncol. 2020;38:193–202
8. Lee MS, Ryoo BY, Hsu CH, Numata K, Stein S, Verrett W, et al. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): an open-label, multicentre, phase 1b study. Lancet Oncol. 2020;21:808–820
9. Li XS, Li JW, Li H, Jiang T. Prognostic value of programmed cell death ligand 1 (PD-L1) for hepatocellular carcinoma: a meta-analysis. 2020. Biosci Rep. https://doi.org/10.1042/BSR20200459
10. de Galan-Delaire MR, Bresnahan E, Molina-Sánchez P, Lindblad KE, Maier B, Sia D, et al. β-catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 2019;9:1124–1141
11. Sia D, Jiao Y, Martinez-Quetglas I, Kuchuk O, Villacorta-Martin C, de Moura MC, et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology. 2017;153:812–826
12. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7:6
13. Scheiner B, Pomej K, Kirstein MM, Huckle F, Finkelmeier F, Waidmann O, et al. Prognosis of patients with hepatocellular carcinoma treated with immunotherapy - development and validation of the CAF\textsc{ITY} score. J Hepatol. 2022;76(2):353–363
14. Johnson PJ, Berhané S, Kagayabayashi C, Satomura S, Teng M, Reeves HL, et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol. 2015;33:550–558
15. Hiraoka A, Michitaka K, Kumada T, Izumi N, Kadoya M, Kokudo N, et al. Validation and potential of albumin-bilirubin grade and prognostication in a nationwide survey of 46,681 hepatocellular carcinoma patients in Japan: The need for a more detailed evaluation of hepatic function. Liver Cancer. 2017;6:325–336
16. Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–458
17. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunot EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55:2005–2023
18. Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol. 2020;73:202–209
19. Ridder DA, Weimann A, Schindeldecker M, Urbansky LL, Berndt K, Gerber TS, et al. Comprehensive clinicopathologic study of alpha fetoprotein-expression in a large cohort of patients with hepatocellular carcinoma. Int J Cancer. 2021;150(6):1053–1066
20. Mazzalferro V, Sposito C, Zhou J, Pinna AD, De Carlis L, Fan J, et al. Metroticket 2.0 model for analysis of competing risks of death after liver transplantation for hepatocellular carcinoma. Gastroenterology. 2018;154:128–139
21. Lee DH, Lee JM, Lee JY, Kim SH, Yoon JH, Kim YJ, et al. Radiofrequency ablation of hepatocellular carcinoma as first-line treatment: long-term results and prognostic factors in 162 patients with cirrhosis. Radiology. 2014;270:900–909
22. N’Kontchou G, Mahamoudi A, Aout M, Ganne-Carrié N, Grand’ V, Codere E, et al. Radiofrequency ablation of hepatocellular carcinoma: long-term results and prognostic factors in 235 Western patients with cirrhosis. Hepatology. 2009;50:1475–1483
23. Takayasu K, Arii S, Kudo M, Ichida T, Matsui O, Izumi N, et al. Supersensitive transarterial chemoembolization for hepatocellular carcinoma. Validation of treatment algorithm proposed by Japanese guidelines. J Hepatol. 2012;56:886–892
24. Mehta N, Dodge JL, Roberts JP, Yao FY. Validation of the prognostic power of the RETREAT score for hepatocellular carcinoma recurrence using the UNOS database. Am J Transplant. 2018;18:1206–1213
25. Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391:1163–1173
26. Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389:56–66
27. Hoshida Y, Nijman SM, Kobayashi M, Chan JA, Brunet JP, Chiang DY, et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009;69:7385–7392
28. Yamashita T, Forgues M, Wang W, Kim JW, Ye Q, Jia H, et al. EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res. 2008;68:1451–1461
29. Galle PR, Foerster F, Kudo M, Chan SL, Llovet JM, Qin S, et al. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver Int. 2019;39:2214–2229
30. Montal R, Andreu-Oller C, Bassaganayas L, Esteban-Fabrò R, Moran S, Montironi C, et al. Molecular portrait of high alpha-fetoprotein in hepatocellular carcinoma: implications for biomarker-driven clinical trials. Br J Cancer. 2019;121:340–343
31. Oyama T, Ran S, Ishida T, Nadaf S, Kerr L, Carbone DP, et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol. 1998;160:1224–1232
32. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996;2:1096–1103
33. Borgrström P, Hughes GK, Hansell P, Woltisky BA, Sirramarao P. Leukocyte adhesion in angiogenic blood vessels. Role of E-selectin, P-selectin, and beta2 integrin in lymphotoxin-mediated leukocyte recruitment in tumor microvessels. J Clin Invest. 1997;99:2246–2253
34. Hegde PS, Wallin JJ, Mancao C. Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. Semin Cancer Biol. 2018;52:117–124
35. Wallin JJ, Bendell JC, Funke R, Sznol M, Korski K, Jones S, et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat Commun. 2016;7:12624
36. Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet AL, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 2015;212:139–148
37. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–174
38. Diakos CI, Charles KA, McMillan DC, Clarke SJ. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014;15:e493–503
39. Mantovani A, Allavena P, Sica A, BalkWill F. Cancer-related inflammation. Nature. 2008;454:436–444
40. Morris-Stiff G, Gomez D, Prasad KR. C-reactive protein in liver cancer surgery. Eur J Surg Oncol. 2008;34:727–729
41. Sieghart W, Pinter M, Huckle F, Graziadei I, Schöniger-Hekele M, Müller C, et al. Single determination of C-reactive protein at the time of diagnosis predicts long-term outcome of patients with hepatocellular carcinoma. Hepatology. 2013;57:2224–2234
42. Meischl T, Rasoul-Rockenschaub S, Gyorgi G, Sieghart W, Reiberger T, Trauner M, et al. C-reactive protein is an independent predictor for hepatocellular carcinoma recurrence after liver transplantation. PLoS ONE. 2019;14:e0216677
43. Hayashi T, Shibata M, Oe S, Miyagawa K, Honma Y, Harada M. C-reactive protein can predict dose intensity, time to treatment failure and overall survival in HCC treated with lenvatinib. PLoS ONE. 2020;15:e0244370
44. Riedl JM, Barth DA, Brueckl WM, Zeiger F, Foris V, Molnar S, et al. C-Reactive Protein (CRP) levels in immune checkpoint inhibitor response and progression in advanced non-small cell lung cancer: a bi-center study. Cancers (Basel). 2020;12:2319
45. livanainen S, Ahvon J, Knuuttila A, Tiainen S, Koivunen JP. Elevated CRP levels indicate poor progression-free and overall survival on cancer patients treated with PD-1 inhibitors. ESMO Open. 2019;4: e000531
Authors and Affiliations

Takeshi Hatanaka1 · Satoru Sakizaki2,3 · Atsushi Hiraoka4 · Yoshifumi Tada5 · Masashi Hirooka6 · Kazuya Kariyama7 · Joji Tani8 · Masanori Atsukawa9 · Koichi Takaguchi10 · Ei Itobayashi11 · Shinya Fukunishi12 · Kunihiro Tsuji13 · Toru Ishikawa14 · Kazuto Taji15 · Hironori Ochi16 · Satoshi Yasuda17 · Hidenori Toyoda17 · Chikara Ogawa18 · Takashi Nishimura19 · Norito Shimada20 · Kazuhito Kawata21 · Hisashi Kosaka22 · Takaaki Tanaka4 · Hideko Ohama12 · Kazuhiro Nousu1 · Asahiro Morishita8 · Tatsuya Tsutsui10 · Taka Nakagawa23 · Yohei Koizumi18 · Shinichiro Nakamura5 · Kouji Joko16 · Masaki Kaibori22 · Hiroko Iijima19 · Yoichi Hisa6 · Takashi Kumada24. On behalf of the Real-life Practice Experts for HCC (RELPEC) Study Group, and HCC 48 Group (hepatocellular carcinoma experts from 48 clinics in Japan)

1 Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Kamishindenmachii 564-1, Maebashi, Gunma 371-0821, Japan
2 Department of Clinical Research, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan
3 Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Gunma, Japan
4 Gastroenterology Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
5 Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
6 Department of Gastroenterology and Metabolology, Ehime University Graduate School of Medicine, Ehime, Japan
7 Department of Gastroenterology, Okayama City Hospital, Okayama, Japan
8 Department of Gastroenterology and Hepatology, Kagawa University, Kagawa, Japan
9 Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
10 Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
11 Department of Gastroenterology, Asahi General Hospital, Asahi, Japan
12 Premier Departmental Research of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
13 Center of Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
14 Department of Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
15 Department of Gastroenterology, Saiseikai Niigata Hospital, Niigata, Japan
16 Department of Gastroenterology, Toyama University Hospital, Toyama, Japan
17 Center for Liver-Biliary-Pancreatic Disease, Matsuyama Red Cross Hospital, Matsuyama, Japan
18 Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
19 Department of Gastroenterology, Japanese Red Cross Takamatsu Hospital, Takamatsu, Japan
19 Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya, Japan

20 Division of Gastroenterology and Hepatology, Otakanomori Hospital, Kashiwa, Japan

21 Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan

22 Department of Surgery, Kansai Medical University, Hirakata, Japan

23 Department of Gastroenterology, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan

24 Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan