The changes of gut microbiota in drug-naïve first-episode MDD patients under treatment by SSRIs

Yang Shen
Peking University Sixth Hospital

Xiao Yang
Henan University of Science and Technology

Gaofei Li
Beijing Hospital of Chinese Traditional and Western Medicine

Xiaoxi Xing
Peking University Sixth Hospital

Zhiyong Li
Peking University Sixth Hospital

Yichen Huang
Peking University Sixth Hospital

Jiayu Gao
Henan University of Science and Technology

Ying Liang (liangying1980@bjmu.edu.cn)
National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital

Research article

Keywords: Gut microbiota, Brain-gut axis, Major depressive disorder, 16S rRNA sequence, SSRIs

DOI: https://doi.org/10.21203/rs.3.rs-25341/v4

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Recently, several studies reported that transplanting feces from depressed patients could induce depression-like behaviors in mice. In addition, antidepressants not only have antidepressant effects, but also have modulation of the gut microbiota in those animals. Therefore, this study firstly investigated on the changes of gut microbiota in depressed patients under effective antidepressant treatment.

Methods: We recruited 30 patients with drug-naive first-episode MDD (Patients group) and 30 healthy controls (Control group), and collected their fecal samples to complete 16S rRNA sequencing. Next, the Patients group received individualised treatment with escitalopram with a maximum dose of 20mg/d. After depressive symptoms improved to a HAMD scale score >50%, a second fecal sample was collected. This was classified as the follow-up group. We then investigated into the differences of gut microbiota between patients (Patients and Follow-up groups) and controls (Control group), the characteristics of gut microbiota under treatment, and the potential differences in metabolic functions.

Results: A significant difference in gut microbiota abundance was found after escitalopram treatment. The Firmicutes/Bacteroides ratio significantly decreased in the Follow-up group. After treatment, the species diversity of gut microbiota tended to be back to normal state in Follow-up group. The mainly difference of metabolic function were found as follows: Transport and catabolism, Nervous system, Glycan biosynthesis and metabolism.

Conclusions: Under escitalopram treatment, the gut microbiota diversity of MDD patients tended to back to normal state. However, several structures and metabolic pathways in microbes remained differences between patients and controls.

Background

As a common mental disorder accompanied by high disability and suicide, major depressive disorder (MDD) has become a worldwide issue [1]. In recent years, more and more evidences was reported to indicate that gut microbes might take part in the course of MDD [2-4]. In several paralleled researches, MDD patients showed specific features of gut microbes differing from normal controls [5-8]. Several studies have reported that transplantation of feces from MDD patients into rodents could lead to depression-like behaviors, which had be used to establish animal models of MDD [5, 9, 10]. The similar phenomenon was observed in fecal bacteria transplantation between animal models. Moreover, it also observed that fecal bacteria transplantation could lead to the increase of microglial cell density and expression of IL-1 in the ventral hippocampus [11]. Taken together, the change of gut microbiota could be correlated with the occurrence of MDD.

At present, selective serotonin reuptake inhibitors (SSRIs) are widely used in clinical practice and have therapeutic effects in the treatment of depression [12]. Besides, several SSRI’s drugs, including sertraline, fluoxetine, paroxetine and escitalopram, could present antibacterial effects directly [13, 14]. For example,
Staphylococcus and enterococcus are especially vulnerable to sertraline, fluoxetine and paroxetine [14-16]. The SSRIs could target on potential enterotoxigenic bacteria as well. Therefore, SSRIs have demonstrated both of antidepressant and antimicrobial properties [17]. The mechanism underlying these interactive dual effects remains as an ongoing challenge.

Overall, SSRIs could directly or indirectly influence the changes of gut microbiota which might play the key role in the development of MDD. The purpose of this study was to further exploring the difference of gut microbiota with first episode MDD and compare the changes of gut microbiota after treatment by SSRIs.

2. Method

2.1 Participants

The 60 local subjects, including 30 depressed patients and 30 normal subjects, were recruited in this study. The inclusion criteria for subjects described as follows: (1) Age was between 18-65 years old; (2) Body mass index (BMI) was between 18-28 Kg / m2; (3) No history of treatment with antipsychotic medication; (4) Duration of symptoms was between 1 to 24 months; (5) No history of treatment with antidepressant medication; (6) Currently in the acute episode with the Hamilton Depression Rating Scale for Depression (HAMD) score \geq 24; (7) Other mental disorders such as axis I, personality disorder and mental retardation were excluded; (8) Psychotropic drugs were never used; (9) Diagnosis of depression in Patients group was made by two psychiatrists according to the Mini-International Neuropsychiatric Interview (MINI) [18]; (10) In Controls group, a diagnosis of mental disorder was excluded by two psychiatrists according to the MINI, and HAMD-17 score was < 7; (11) Patients group was defined as Follow-up group after receiving the drug treatment.

In addition, a series of exclusion criteria, based on the previous work, were employed in this study to exclude the factors affecting gut microbiota [18]. Those include: (1) No somatic diseases known to affect the gut microbiota such as inflammatory bowel disease, immune system diseases, diabetes, etc.; (2) Without antibiotics, probiotics or microbiological products used in recent 3 months; (3) Without the history of medical examination or surgery through the gastrointestinal tract in recent 6 months; (4) Without obvious changes in dietary habits or the presence of obvious diarrhea, constipation and other symptoms in recent 1 month.

According to the questionnaire, subjects’ life events that may affect the mood, such as examinations, unemployment and bereavement during the last six months and the whole research period, were surveyed and recorded. All of subjects in this study were required to sign an informed consent. According to the Helsinki Declaration, the protocol for sample collection and analysis was approved by the Ethics Committee of Peking University Sixth Hospital and Beijing Hospital of Chinese Traditional and Western Medicine.

2.2 Sample collection
Fecal samples were obtained from subjects enrolled. Subjects were instructed by staff to discharge feces into a clean container. After defecation, the staff collected 2 g fecal sample and quickly placed it into a container containing liquid nitrogen. The samples were then frozen at -80°C until analysis.

2.3 Treatment

All patients with depression received individualised treatment with escitalopram. The starting dose of escitalopram was 5 mg / d from day 1- day 7 and increased to 10 mg / d from day 8. According to the individual response, the dose of escitalopram could be adjusted, and the maximum dose was 20 mg / d. After 4-6 weeks of treatment, the patients were evaluated by HAMD scale. When the scale reduction rate of HAMD is ≥ 50% compared with baseline, their fecal sample was collected for the second time and recorded as ‘Follow-up group’ to be used in the comparison of gut microbiota.

2.4 16S rRNA Amplification of V3-V4 region and Illumina Sequencing

Using a PowerSoil DNA kit (MoBio, USA), DNA extraction was performed from 200 mg fecal samples according to manufacturer's instructions. KAPA HiFi HotStart ReadyMix (KAPA, USA) was used to amplify the 16S rRNA (V3-V4) gene marker. Each DNA sample of the bacterial 16S rRNA gene was amplified with primers 341F (GGACTACHVGGGTWTCTAAT) and 805R (ACTCCTACGGGAGGCAGCAG). The primers include a unique 8-nucleotide barcode and an Illumina adapter. Polymerase chain reaction (PCR) conditions were set as follows: initial denaturation at 95°C for 5 minutes, 98°C denaturation for 20 cycles for 20 seconds, 58°C annealing for 30 seconds, 72°C extension for 30 seconds, and 72°C final extension for 5 minutes. The amplicons obtained by PCR were analyzed on 1.5% agarose gel electrophoresis, and a band of a desired size was purified using a QIAquick gel extraction kit (QIAGEN, Germany). The product was submitted to the second-generation sequencing laboratory of Beijing institute of bioinformatics for sequencing on Illumina HiSeq 2500 platform.

2.5 Bioinformatics analysis

The QIIME software was used to filter and sequence the original sequence to obtain optimized sequences (Tags) [19]. Fragments containing ambiguous characters in the sequence or more than two nucleotide mismatched primers were removed. Usearch software was used to cluster Tags at a similarity level of 97% to obtain OTUs [20]. OTUs were annotated based on the Silva (bacterial) and UNITE (fungi) taxonomy databases. QIIME software was used to generate species richness tables at different taxonomic levels, and R language tools were used to draw community structure maps at each taxonomic level of the sample. The community structure map of each sample was obtained at the level of taxonomy, class, order, family, genus, species.

In order to identify the difference in microbial community richness between the Patients group and Controls group, the Metastats software was used to perform a T test on the species richness data between two groups to obtain the p-value [21]. The q-value was obtained by correcting the p-value. Species were selected based on p-values or q-values that caused differences in the composition of the
two groups of samples. The analysis was performed at the level of phylum, class, order, family, genus, species taxonomy to analyze the significance between groups.

Mothur (version v.1.30) software was used to evaluate the Alpha Diversity Index of the samples [22]. The species diversity within a single sample was studied by Alpha Diversity Analysis, and the Ace, Chao1, Shannon, and Simpson indices of each sample at the 97% similarity level were counted; Beta diversity analysis was performed using QIIME software. Beta diversity analysis mainly used the binary jaccard algorithm to calculate the distance among samples to obtain the β value between samples. Based on the distance matrix obtained from the Beta diversity analysis, PCoA analysis was performed using R language tools to further demonstrate the differences in species diversity among samples [23]. Hierarchical clustering was performed on samples using unweighted paired average method (UPGMA) to determine the similarity of species composition among samples. According to the species abundance table obtained by clustering, spearman correlation coefficient among samples was calculated by Psych package in R language, and then the heatmap was drawn by Pheatmap package in R language. The closer of the calculated Spearman correlation coefficient was to 1, the redder of the color was in the heat map, thus indicating the stronger correlation of two samples. Then, LEfSe tools were used the Wilcox.test function of the R language STATS package to estimate the impact of the abundance of each component (species) on the effect of the difference between components, so that the comparison of two subgroups can be realized to find the species marker (Biomaker) with significant difference in the abundance.

PICRUSt software was used to compare the species composition information obtained from 16S sequencing data to deduce the functional gene composition in the samples, thereby determining the functional differences between different groups [24]. Using the KEGG orthology database (KOs) in the Kyoto Encyclopedia of Genes and Genomics (KEGG) database, the changes in metabolic pathways of functional genes of microbial communities between different groups were evaluated through differential analysis of KEGG metabolic pathways [25].

2.5 Statistics analysis

Statistical analysis was performed using SPSS19.0 software. Participants' gender, tobacco and alcohol consumption were expressed in terms of proportional or percentages. Independent t-tests, Welch t-tests, and White non-parametric t-tests were used for continuous variables. Pearson chi-square test or Fisher's exact test were used for classification variables. All significance tests were two-sided tests, and $p < 0.05$ or adjusted $p < 0.05$ was considered statistically significant.

3. Results

3.1 Clinical data

In this study, thirty patients with drug-naive first-episode MDD and thirty healthy controls were recruited, respectively. There were no statistically significant differences between patients' group and controls group in terms of age, height, weight, and tobacco and alcohol consumption (Table 1). The Patients
group received a individualised treatment and the maximum dose was 20 mg/d. The average dose of escitalopram was 16.33 ± 3.46 mg / d. The mean time for the HAMD score to be decreased by more than 50% following the commencement of escitalopram treatment was 34.53±5.18 days.

Table1 Demographic characteristics of patients and controls

	Patients (n=30)	Controls (n=30)	p-value
	M±SD	M±SD	
Age	44.83±11.00	43.97±10.57	0.757
Height (m)	1.68±0.07	1.70±0.05	0.171
Weight (Kg)	67.83±6.86	69.21±7.14	0.447
BMI (kg/m2)	23.99±2.05	23.83±2.08	0.761
tobacco(%)*	46.67%	30.00%	0.288
alcohol(%)*	53.33%	33.33%	0.192

*Chi-square test; compared with HCs, P < 0.05; BMI: body mass index

3.2 Sequencing data and Bacterial taxonomic composition

Total 4,790,651 original sequences were obtained from 90 samples. After double-end Reads splicing and filtering, a total of 4,444,748 Clean tags were generated. Each sample generated at least 12,039 Clean tags, and an average value were 49,386 Clean tags. Taxonomic annotation of OTUs based on Silva (bacterial) and UNITE (fungi) taxonomic databases.

At phylum level, the dominated gut microbiota were Bacteroidetes, Firmicutes, Proteobacteria and Actinobacteria in three groups. Bacteroidetes and Firmicutes accounted for nearly 90% of the total gut microbiota. At the genus level, the abundance distribution ratio of microbiota differed between groups (p<0.05) (Supplementary Table S1). By the calculation, the Firmicutes / Bacteroides ratio of Patients group, Follow-up group and Controls group were 0.64, 0.46, and 0.70, respectively. The ratio in Follow-up group was significantly lower than the other two groups. There were significant differences among the three groups (p<0.05) (Figure1).

Between the Patients and Controls groups, there were significant differences in the abundance of multiple gut microbiota at the genus level. The relative abundance of Parasutterella, Prevotella_9, Fusobacterium, Prevotella_2, Christensenellaceae_R-7_group, Odoribacter and [Eubacterium] _ruminantium_group was significantly decreased in Patients group. Meanwhile, The relative abundance of Parabacteroides, Lactobacillus, Anaerostipes, Ruminococcaceae_UCG-014 and Dialister was significantly increased in Patients group (p<0.05) (Supplementary Table S2), which compared to Control groups.
After escitalopram treatment, the Follow-up group compared to Control groups. We have found that the abundance of Christensenellaceae_R-7_group, [Eubacterium]_ruminantium_group and Fusobacterium were significantly increased in Follow-up group (p < 0.05). The abundance of gut microbiota Lactobacillus was significantly decreased in the Follow-up group (p < 0.05). The main change of gut microbiota abundance in Follow-up group was Bacteroides (Supplementary Table S2).

In addition, there were also several differences in the gut microbiota between Follow-up group and Controls group. In Follow-up group, the relative abundance of Parabacteroides, Prevotellaceae, Ruminiclostridium_6, Flavonifractor were significantly increased (p < 0.05), while that of Prevotella_2, Lachnospira, Collinsella, and Clostridium_sensu_stricto_1 were significantly decreased (p < 0.05). Moreover, the abundance of Faecalibacterium and Lachnoclostridium in both the Follow-up group and Patients group were significantly lower than the Controls group (p < 0.05) (Supplementary Table S2).

3.3 Diversity analysis

Alpha diversity mainly reflected the richness and diversity of the species in samples. As shown in Figure 3, the Chaos1, Ace, and Shannon indices of Patients group were significantly higher than those of Follow-up group and Controls group, and the Simpson index was significantly lower in Patients group than others. This showed that the number and the diversity of gut microbiota in Patients group were significantly higher than those of Follow-up group and Controls group, and there were statistically differences. Four indices value of Follow-up group was between the values of other two groups, which was significantly different from that of Patients group but not statistically different from that of Controls group. This meant that the Alpha diversity of gut microbiota in patients returned to the normal level. The statistics of Alpha diversity index values of each groups were showed in Table 2.

| Table 2 Richness and diversity index values of patients, follow-up and controls |
|-------------------------|-----------------|-----------------|
| | Patients | Follow-up | Controls |
| ACE | 254.88±2.30 | 187.39±11.09 | 173.43±3.80 |
| Chao1 | 257.38±2.63 | 188.93±11.07 | 172.69±4.46 |
| Shannon | 3.57±0.07 | 3.17±0.11 | 2.99±0.09 |
| Simpson | 0.09±0.01 | 0.12±0.01 | 0.13±0.01 |

Mothur (version v.1.30) software was used to calculate the Alpha diversity index for samples. The larger of the index values of Ace and Chao1 showed the greater number of species in the samples. The larger of the Shannon index value and the smaller of the Simpson index value showed more species categories of samples.

Beta diversity was used to compare the similarity of species diversity among different groups. The binary jaccard algorithm was used to calculate beta diversity, and there were statistical differences among three
groups ($R = 0.273, p = 0.001$) (Figure 4). The gut microbiota of Patients group was significantly different from Controls group, and the gut microbiota within Patients group was more similar.

In addition, the gut microbiota profiles of some patients treated with escitalopram were more similar to those of the control group, but the others' profiles remained closer to those of patients. The other analysis methods employed in this study also produced similar results. The unweighted paired average method (UPGMA) was used in the R language tool to perform hierarchical clustering of each groups. It found that the gut microbiota of Patients group was significantly different from that of Controls group, and the gut microbiota of Follow-up group was more like that of Controls group (Supplementary Figure S3).

Spearman correlation coefficient between samples was calculated to draw the heatmap. The closer of the calculated Spearman correlation coefficient was to 1, the redder of the color was in the heat map, thus indicating the stronger correlation between two samples. As shown in Figure 4, the follow-up group could be divided into two subgroups. The gut microbiota profiles of some of the treated patients in the follow-up group remained similar to those in the patients group, while others' profiles were more like those of Controls group. These results suggest that antidepressant drugs may transform gut microbiota of some patients into that of the control group. We used LEfSe for the quantitative analysis of biomarkers with in two subgroups (LDA>4). We found that several microorganisms could be selected as biomarkers in the two subgroups. Gut microbiota of follow-up group 2, that the subgroup was associated with Patients group, was differently enriched with p-Bacteroidetes, o-Bacteroidales, c-Bacteroidia, g-Prevotella_9, etc. While gut microbiota of follow-up group 1, that the subgroup was associated with Controls group, was differently enriched with p-Firmicutes, p-Actinobacteria, fLachnospiraceae, f-Bifidobacteriaceae, o-Bifidobacteriales, c-Actinobacteria, g-Bifidobacterium, etc (Supplementary Figure S4).

3.4 Functional properties predicted by PICRUSt

The study considered that the profiles of gut microbiota in Follow-up group could not completely return to the normal state. The PICRUSt software was used to compare the species composition information obtained from 16S sequencing data to infer the functional gene composition between patients and controls. Through the annotation of the KEGG metabolic pathway, it found that there were differences in the metabolic pathways of Transport and catabolism, Nervous system, Glycan biosynthesis and metabolism, Cell motility and Membrane transport between Follow-up group and Controls group ($p \leq 0.05$) (Figure 5). In Patients group, the pathways above also had certain differences with those of Control group but not significantly differences with those of Follow-up group. It suggested that the gut microbiota of Follow-up group might still involve in the occurrence of depression (Supplementary Table S5).

Discussion

This study demonstrated that the gut microbiota from patients of drug-naive first-episode MDD was significantly different from that of controls, and the composition and structure of the gut microbiota within patients was more similar. This suggested that the occurrence and development of MDD might be associated with a special and similar group of gut microbiotas. The composition of gut microbiota in
patients with depression have been found not consistent in several studies. This may be due to factors such as different inclusion criteria, ethnic differences and dietary habits, which influence the final sequencing results[26]. However, some studies have shown that transplanting fecal samples from depressed patients can induce depressive symptoms in mice [27, 28]. This suggests that a disturbed gut microbiota may be one of the causes of depression.

Our study have found that the metabolic function of gut microbiota in the follow-up group was still different from that in the control group. The function of gut microbiota in depressed patients is abnormal even if the species abundance changes in a certain stage. In 2011, Manimozhian Arumugam et al. proposed the concept of enterotypes [29]. In the sequencing results, they reported that the human gut microbiome could be divided into three robust clusters, including Prevotella-enterotype (enterotype P), Bacteroides-enterotype (enterotype B) and Ruminococcus-enterotype (enterotype R). Different enterotypes have characteristic advantages of respective functional states [30]. For example, enterotype P has stronger fermentation ability and can generate more short-chain fatty acids, but enterotype B has more specific enzymes sufficiently to degrade sugars and proteins [31]. Therefore, further research on the enterotypes and corresponding functional changes of gut microbiota would be helpful to understand the impact of gut microbiota on the development of MDD.

In addition, the gut microbiota tended to “normal” gut microbiota structure under SSRIs treatment, thus indicating a positive effect of SSRI antidepressants on the change of gut microbiota. However, the gut microbiota was still different from healthy controls in Follow-up group. On one hand, fecal samples from the follow-up group were not collected after the patients' symptoms had fully returned to normal. On the other hand, this results suggested that the recovery of the gut microbiota might take longer time than the improvement of depressive symptoms. The recovered gut microbiota might still partially maintain the pathological state, which would be a trigger for depression recurrence. Currently, there are no effective biomarkers to indicate recurrence in depressed patients. The dynamic changes of gut microbiota under antidepressant treatment provided the potential biomarkers for further investigation [32].

The outcomes of current study were limited to the relatively small sample size and short follow-up time. In this study, we were unable to further observe the correlation between the effects of different doses of antidepressants on gut microbiota. In this study, the influence of dietary factors on gut microbiota was also not fully considered. Different diets and microbial combinations have different effects on the physiological function and substance metabolism of the intestinal tract [33]. In future studies, the sample size can be further increased and collect fecal samples from patients at different doses of antidepressant. On the basis of exploring the changes of gut microbiota, we can further observe the correlation between gut microbiota and clinical phenotypes. Moreover, metabolomics and proteomics technologies are strongly suggested to be employed to elucidate the relationship between gut microbiota and depression.

Conclusion
In conclusion, this study found that the gut microbiota of patients with first-episode depression was similar and less different, and it was significantly different from healthy controls. After escitalopram treatment, gut microbiota diversity of depressive patients tended to transform to the normal state. However, there were still several structures and metabolic pathways difference in the gut microbiota between follow-up patients and healthy controls, which might be relate to the relapse of depression.

Abbreviations

MDD: major depressive disorder
SSRIs: Selective serotonin reuptake inhibitors
16S rRNA: 16S ribosomal Ribonucleic Acid
HAMD: Hamilton Depression Scale
BMI: Body mass index
OUTs: Operational taxonomic units
KEGG: Kyoto Encyclopedia of Genes and Genomes
UPGMA: unweighted paired average method
PCoA: Principal coordinate analysis

Declarations

Ethics approval and consent to participate

The study was explained to all participants both verbally and in writing, and written informed consent was obtained from each participant. According to the Helsinki Declaration, the protocol for sample collection and analysis was approved by the Ethics Committee of Peking University Sixth Hospital and Beijing Hospital of Chinese Traditional and Western Medicine.

Consent for publication

Not applicable.

Availability of data and material

The datasets used and/or analyzed during this study are available from the corresponding author on reasonable request.
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was supported by Beijing Association for science and technology, the Seed fund of Jinqiao project (NO. JQ18005). The role of funding body was in the design of study.

Author contributions

YS, XY, JYG and YL designed the study and wrote the protocol. XXX and XY, JYG managed the literature searches and analyses. YS, ZYL and YCH undertook the statistical analysis, and YS, XY and GFL wrote the first draft of the manuscript. All authors contributed to and have approved the final manuscript.

Acknowledgements

We thank all the subjects who took part in this study.

==

References

1. Roberts T, Miguel Esponda G, Krupchanka D, Shidhaye R, Patel V, Rathod S: *Factors associated with health service utilisation for common mental disorders: a systematic review*. BMC Psychiatry 2018, 18(1):262.

2. Inserra A, Mastronardi CA, Rogers G, Licinio J, Wong ML: *Neuroimmunomodulation in Major Depressive Disorder: Focus on Caspase 1, Inducible Nitric Oxide Synthase, and Interferon-Gamma*. Mol Neurobiol 2019, 56(6):4288-4305.

3. Inserra A, Rogers GB, Licinio J, Wong ML: *The Microbiota-Inflammasome Hypothesis of Major Depression*. Bioessays 2018, 40(9):e1800027.

4. Molina-Torres G, Rodriguez-Arrastia M, Roman P, Sanchez-Labraca N, Cardona D: *Stress and the gut microbiota-brain axis*. Behav Pharmacol 2019, 30(2 and 3-Spec Issue):187-200.

5. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, Zeng L, Chen J, Fan S, Du X et al: *Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism*. Mol Psychiatry 2016, 21(6):786-796.

6. Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linlokken A, Wilson R, Rudi K: *Correlation between the human fecal microbiota and depression*. Neurogastroenterol Motil 2014, 26(8):1155-1162.
7. Lin P, Ding B, Feng C, Yin S, Zhang T, Qi X, Lv H, Guo X, Dong K, Zhu Y et al: Prevotella and Klebsiella proportions in fecal microbial communities are potential characteristic parameters for patients with major depressive disorder. J Affect Disord 2017, 207:300-304.

8. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, Wang W, Tang W, Tan Z, Shi J et al: Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 2015, 48:186-194.

9. Li B, Guo K, Zeng L, Zeng B, Huo R, Luo Y, Wang H, Dong M, Zheng P, Zhou C et al: Metabolite identification in fecal microbiota transplantation mouse livers and combined proteomics with chronic unpredictable mild stress mouse livers. Transl Psychiatry 2018, 8(1):34.

10. Luo Y, Zeng B, Zeng L, Du X, Li B, Huo R, Liu L, Wang H, Dong M, Pan J et al: Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Transl Psychiatry 2018, 8(1):187.

11. Pearson-Leary J, Zhao C, Bittinger K, Eacret D, Luz S, Vigderman AS, Dayanim G, Bhatnagar S: The gut microbiome regulates the increases in depressive-type behaviors and in inflammatory processes in the ventral hippocampus of stress vulnerable rats. Mol Psychiatry 2019.

12. Dale E, Bang-Andersen B, Sanchez C: Emerging mechanisms and treatments for depression beyond SSRIs and SNRIs. Biochem Pharmacol 2015, 95(2):81-97.

13. Lieb J: The immunostimulating and antimicrobial properties of lithium and antidepressants. J Infect 2004, 49(2):88-93.

14. Munoz-Bellido JL, Munoz-Criado S, Garcia-Rodriguez JA: Antimicrobial activity of psychotropic drugs: selective serotonin reuptake inhibitors. Int J Antimicrob Agents 2000, 14(3):177-180.

15. Ayaz M, Subhan F, Ahmed J, Khan AU, Ullah F, Ullah I, Ali G, Syed N, Hussain S: Sertraline enhances the activity of antimicrobial agents against pathogens of clinical relevance. J Biol Res (Thessalon) 2015, 22(1):4.

16. Coban AY, Tanriverdi Cayci Y, Keles Uludag S, Durupinar B: [Investigation of antibacterial activity of sertralin]. Mikrobiyol Bul 2009, 43(4):651-656.

17. Kruszewska H, Zareba T, Tyski S: Examination of antimicrobial activity of selected non-antibiotic medicinal preparations. Acta Pol Pharm 2012, 69(6):1368-1371.

18. Shen Y, Xu J, Li Z, Huang Y, Yuan Y, Wang J, Zhang M, Hu S, Liang Y: Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study. Schizophr Res 2018, 197:470-477.

19. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Penas AG, Goodrich JK, Gordon JI et al: QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010, 7(5):335-336.

20. Edgar RC: UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 2013, 10(10):996-998.

21. White JR, Nagarajan N, Pop M: Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 2009, 5(4):e1000352.
22. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Program NCS, Bouffard GG, Blakesley RW, Murray PR et al: **Topographical and temporal diversity of the human skin microbiome.** *Science* 2009, 324(5931):1190-1192.

23. Sakaki T, Takeshima T, Tominaga M, Hashimoto H, Kawaguchi S: **Recurrence of ICA-PCoA aneurysms after neck clipping.** *J Neurosurg* 1994, 80(1):58-63.

24. Parks DH, Tyson GW, Hugenholtz P, Beiko RG: **STAMP: statistical analysis of taxonomic and functional profiles.** *Bioinformatics* 2014, 30(21):3123-3124.

25. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R et al: **Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences.** *Nat Biotechnol* 2013, 31(9):814-821.

26. Kelly JR, Borre Y, C OB, Patterson E, El Aidy S, Deane J, Kennedy PJ, Beers S, Scott K, Moloney G et al: **Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat.** *J Psychiatr Res* 2016, 82:109-118.

27. Xu Z, Liu Z, Dong X, Hu T, Wang L, Li J, Liu X, Sun J: **Fecal Microbiota Transplantation from Healthy Donors Reduced Alcohol-induced Anxiety and Depression in an Animal Model of Chronic Alcohol Exposure.** *Chin J Physiol* 2018, 61(6):360-371.

28. Kurokawa S, Kishimoto T, Mizuno S, Masaoka T, Naganuma M, Liang KC, Kitazawa M, Nakashima M, Shindo C, Suda W et al: **The effect of fecal microbiota transplantation on psychiatric symptoms among patients with irritable bowel syndrome, functional diarrhea and functional constipation: An open-label observational study.** *J Affect Disord* 2018, 235:506-512.

29. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM et al: **Enterotypes of the human gut microbiome.** *Nature* 2011, 473(7346):174-180.

30. Chen T, Long W, Zhang C, Liu S, Zhao L, Hamaker BR: **Fiber-utilizing capacity varies in Prevotella-versus Bacteroides-dominated gut microbiota.** *Sci Rep* 2017, 7(1):2594.

31. Vieira-Silva S, Falony G, Darzi Y, Lima-Mendez G, Garcia Yunta R, Okuda S, Vandeputte D, Valles-Colomer M, Hildebrand F, Chaffron S et al: **Species-function relationships shape ecological properties of the human gut microbiome.** *Nat Microbiol* 2016, 1(8):16088.

32. Buckman JEJ, Underwood A, Clarke K, Saunders R, Hollon SD, Fearon P, Pilling S: **Risk factors for relapse and recurrence of depression in adults and how they operate: A four-phase systematic review and meta-synthesis.** *Clin Psychol Rev* 2018, 64:13-38.

33. Dey N, Wagner VE, Blanton LV, Cheng J, Fontana L, Haque R, Ahmed T, Gordon JI: **Regulators of gut motility revealed by a gnotobiotic model of diet-microbiome interactions related to travel.** *Cell* 2015, 163(1):95-107.

Figures
Figure 1

Histogram of species distribution. QIIME software was used to generate species abundance tables at different taxonomic levels, and R language tool was used to draw community structure charts at different taxonomic levels. (A) relative proportions of species distribution at the phylum level; (B) relative proportions of species distribution at the genus level.
Figure 2

Visualization of Alpha diversity index. (A) Ace index; (B) Chao1 index; (C) Shannon index; (4) Simpson index. ** means the statistical difference between the two groups, p < 0.05
Figure 3

PCoA analysis shows the distribution coordinate diagram of samples: In the graph, the distance between the dots represents the similarity of the samples. Samples with high similarity tend to cluster together. The yellow dots represent the patient group, the blue dots represent the follow-up group, and the red dots represent the control group. The results showed a statistically significant difference among the three groups (R=0.273, p=0.001).
Figure 4

Spearman correlation coefficient heat map between samples. The closer the calculated Spearman correlation coefficient is to 1, the redder the color in the heat map, indicating the stronger correlation between the two samples. Follow-up group 1 had high correlation with Controls group. Follow-up group 2 had high correlation with Patients group.

Figure 5

KEGG metabolic pathway analysis. The left side of the figure shows the abundance ratio between the two groups. The middle section shows the proportional variation in functional abundance within the 95% confidence interval. The p-value is on the right.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryInformations8.13.docx