1. INTRODUCTION

Aperiodic X-ray fluctuations have been observed from both galactic black hole binaries (BHBs) and active galactic nuclei (AGNs). The power spectral density (PSD) of such variability is generally modeled with a power law, \(P(f) \propto f^{-\beta} \), where \(P(f) \) is the power at frequency \(f \), and \(\beta \) varies with frequency. In the soft state, the PSDs of both BHBs and AGNs have a steep slope \(\sim 1 \) below a bend frequency \(f_b \), which is typically around 10 Hz for BHBs (see King et al. 2004 and references therein). The PSDs in the hard state are more complex. The origin of variability is not yet understood well. However, it is highly tempting to relate this variability to the magnetohydrodynamic turbulence, which is believed to drive the accretion process (Balbus & Hawley 1991). Some works followed this path through numerical simulation and typically used proxies for the radiation rather than a direct measure of luminosity (Hawley & Krolik 2001; Noble & Krolik 2009). It remains uncertain whether the proxies for radiation are appropriate for describing the luminosity fluctuations. In the present work, we will show that the variability of magnetic energy (stress) of the standard thin disk is different from that of radiation for short timescale fluctuations.

Recently, shearing box simulations of stratified magnetorotational turbulence (Hirose et al. 2009b) showed that fluctuations in the magnetic energy (stress) lead those in the radiation energy with roughly a thermal timescale, and a correlation is found between the stress and total pressure. Moreover, the disk is found to be thermally stable, which is, however, in conflict with the disk theory (Lightman & Eardley 1974; Shakura & Sunyaev 1976). The discrepancy reveals that the correlation found in the simulation may be different from the \(\alpha \)-prescription. For example, such a correlation may be related to the energy equation or result from the feedback from pressure to stress, which is not in the form of the standard \(\alpha \)-prescription (e.g., Lin et al. 2011; Ciesielski et al. 2012). Since the dissipation of magnetic energy will heat the gas of accretion flow, the perturbations in the magnetic energy will produce corresponding fluctuations in the internal energy and therefore in the pressure. Then, a correlation and delay between the stress and the pressure should exist. In the present work, based on the energy equation, we will investigate the relationship between fluctuations of the viscous heating and the inducing fluctuations of the radiative cooling.

The paper is organized as follows. The relationship of fluctuations of the viscous heating and the inducing fluctuations of the radiative cooling is derived in Section 2. A comparison of analysis and simulation is presented in Section 3. Conclusions and a discussion are carried out in Section 4.
we adopt the vertical hydrostatic equilibrium.

In order to study the induced fluctuations of radiative cooling, we adopt the vertical hydrostatic equilibrium

\[\Omega_\kappa^2 H^2 = \frac{\Pi}{\Sigma}. \]

(5)

and the equation of state, which can be approximately expressed as

\[\Pi = \Pi_{\text{gas}} + \Pi_{\text{rad}} = \frac{k_B}{\mu m_H} \Sigma T + 2 T^4 H. \]

(6)

2.2. Relationship of Fluctuations

We use the subscripts “0” and “1” to describe the unperturbed and perturbed quantities, respectively. We stress that the amplitudes can be significantly large. Nevertheless, the linear analysis may reveal the relationship of fluctuations of physical quantities. Combining Equations (2)–(6) with \(\bar{A} \), we have

\[A_{\text{th}} \frac{\partial}{\partial t} \left(\frac{4 T_1}{T_0} \right) = \frac{Q_{\text{vis},1}^+}{Q_{\text{vis},0}^+} - 4 \frac{T_1}{T_0}, \]

(7)

where the dimensionless parameter \(A \) is expressed as

\[A = \frac{(4 - 3 \beta)(\gamma - 1)}{4(1 + \beta)[\beta + 3(1 - \beta)(\gamma - 1)]} \times \left[7 - 6 \beta + \frac{2 \beta}{\gamma - 1} - \frac{7 \beta (4 - 3 \gamma)(1 - \beta)}{(\gamma - 1)(4 - 3 \beta)} \right]. \]

(8)

and the thermal timescale \(t_{\text{th}} \) takes the form (with \(Q_{\text{vis},0}^+ = 3\alpha \Pi_0 \Delta \kappa / 2 \))

\[t_{\text{th}} = \frac{E_0}{Q_{\text{rad},0}^+} = \frac{E_0}{Q_{\text{vis},0}^+} = \left(2 (1 - \beta) + \frac{2 \beta}{3(\gamma - 1)} \right) \frac{1}{\alpha \Delta \kappa}. \]

(9)

We choose \(\gamma = 5/3 \) and \(\alpha = 0.02 \) (e.g., Hirose et al. 2009a) for numerical calculations. The variation of \(A \) with \(\beta \) is shown by the solid line in Figure 1. The other two parameters, \(A_{\text{th}} \) (dashed line) and \(A_{\text{rad},0}^+ \) (dotted line), will be introduced by Equations (13) and (16), respectively.

By assuming that the time-dependent component of fluctuations takes the form of \(\exp(i\omega t) \), e.g., \(Q_{\text{vis},1}^+/Q_{\text{vis},0}^+ \propto \exp(i\omega t) \), we have the following relationship from Equation (7):

\[\left(\frac{4 T_1}{T_0} \right)_{\omega} = \frac{1}{i A_{\omega \text{th}}} + \left(\frac{Q_{\text{vis},1}^+}{Q_{\text{vis},0}^+} \right)_{\omega} \]

(10)

where \((Q_{\text{vis},1}^+/Q_{\text{vis},0}^+) \) and \((4 T_1/T_0) \) represent the fluctuations with \(\omega \) of the viscous heating and those of the radiative cooling, respectively. We stress that Equation (10) is a key relationship in the present work.

3. COMPARISON OF ANALYSIS AND SIMULATION

3.1. Time Delay between Magnetic Energy and Radiation Energy

Equation (10) can be modified as

\[\left(\frac{4 T_1}{T_0} \right)_{\omega} = \frac{1}{\sqrt{(A_{\omega \text{th}})^2 + 1} \left(\frac{Q_{\text{vis},1}^+}{Q_{\text{vis},0}^+} \right)_{\omega} \exp(-i\omega t_{\text{del}})}, \]

(11)

where the delay time \(t_{\text{del}} \) of the radiative cooling compared with the viscous heating takes the form

\[t_{\text{del}} = \frac{1}{\omega} \arctan(A_{\omega \text{th}}). \]

(12)

Obviously, this equation implies \(t_{\text{del}} \approx A_{\text{th}} \) for long timescale fluctuations.

Figure 2 shows the variation of \(t_{\text{del}} \) for three different values of \(\beta \). The simulations for \(\beta \sim 0.1 \) (Hirose et al. 2009b) showed that fluctuations of magnetic energy lead those of radiation energy by 5–15 orbit periods \(t_{\text{orb}} \), roughly a thermal time. Moreover, Figure 5 of Hirose et al. (2009b) indicates that significant variability occurs in the range \(0 \leq \beta \leq 0.1 \), which is equivalent to \(0.01 \lesssim \omega/\Omega_\kappa \lesssim 0.1 \), corresponding to the region between the two vertical dot-dashed lines in Figure 2. As shown by the solid line, the delay in our analysis is around 3–17\(t_{\text{orb}} \), which is consistent with the simulations. In addition, we would point out that the delay between viscous heating and magnetic energy (\(\sim 0.5 t_{\text{orb}} \)) is negligible compared with the thermal timescale.
Furthermore, simulations have been performed for the gas-pressure-dominated case (Hirose et al. 2006) and the case that gas and radiation pressures are comparable (Krolik et al. 2007). The delay in those simulations is $\sim 2t_{\text{orb}}$ for $\beta \sim 0.8$ and $\sim 5t_{\text{orb}}$ for $\beta \sim 0.5$. In our analysis, as shown by the dotted and dashed lines, the delay is around 2–3t_{orb} for $\beta = 0.8$ and 2–12t_{orb} for $\beta = 0.5$ in the range 0.01 $\lesssim \Omega /\Omega_\kappa \lesssim 0.1$, which is again consistent with the simulations. Note that κ in the simulations for $\beta \sim 0.8$ (Hirose et al. 2006) is dominated by the free–free absorption. In such a case, for a simple approach, we modify the parameter A as A_B by considering the free–free absorption instead of the electron scattering in Equation (3):

$$A_B = \frac{(4 - 3 \beta)(\gamma - 1)}{(11.5 + 4.5 \beta)[\beta + 3(1 - \beta)(\gamma - 1)]} \times \left[7 - 6 \beta + \frac{2 \beta}{\gamma - 1} - \frac{7 \beta(4 - 3 \gamma)(1 - \beta)}{(\gamma - 1)(4 - 3 \beta)}\right].$$

(13)

The profile of A_B is shown by the dashed line in Figure 1.

3.2. Power Spectrum Relationship

In this subsection, we will show a comparison between our analytic normalized power spectrum of radiation energy P^A_{rad} and that in simulations P_{rad}. Equation (11) provides the relationship of the power spectrum between the radiative cooling P_{cool} and the viscous heating P_{vis}:

$$P_{\text{cool}}(f) = \frac{1}{1 + (2\pi A f t_{\text{th}})^2} P_{\text{vis}}(f).$$

(14)

Then the analytic power spectrum of volume-integrated radiation energy P^A_{rad} is expressed as

$$P^A_{\text{rad}}(f) = \frac{A^2_{\text{rad}}}{1 + (2\pi A f t_{\text{th}})^2} P_{\text{vis}}(f).$$

(15)

where the quantity A_{rad} is derived from Equations (2), (5), and (6):

$$A_{\text{rad}} \equiv \frac{E_{\text{rad},1}/E_{\text{rad},0}}{(4T_1/T_0)} = 1 + \frac{4 - 3 \beta}{4(1 + \beta)}. \quad (16)$$

The variation of A_{rad} with β is shown by the dotted line in Figure 1. Since the viscous heating is mainly due to the dissipation of magnetic energy, it is plausible to have

$$P_{\text{vis}}(f) \approx \left[(\sqrt{2\pi f t_{\text{dis}}})^2 + 1\right] P_B(f). \quad (17)$$

where t_{dis} is the dissipation timescale of magnetic energy, and P_B is the power spectrum of magnetic energy. The explanation for this relationship is presented in the Appendix. Then, Equations (15) and (17) provide an analytic relationship between the power spectrum of radiation energy and that of magnetic energy:

$$P^A_{\text{rad}}(f) = A^2_{\text{rad}} \frac{1 + (\sqrt{2\pi f t_{\text{dis}}})^2}{1 + (2\pi A f t_{\text{th}})^2} P_B(f).$$

(18)

The simulations (Equation (17) and Figure 5 of Hirose et al. 2009b) showed the profiles of P_B and P_{rad}:

$$P_B(f) = \begin{cases} 8.7 \times 10^{-6} f^{-1.13}, & f < 0.171, \\ 10^{-7} f^{-3.65}, & f > 0.171. \end{cases} \quad (19)$$

![Figure 3. Comparison of P^A_{rad} (solid line) and P_{rad} (dashed line), where P^A_{rad} is calculated with P_B (dotted line).](image)

In our Figure 3, we plot the above P_B and P_{rad} with the dotted and dashed lines, respectively. In addition, according to Equation (18), we plot the analytic power spectrum P^A_{rad} with the solid line. The values of $P_B(f)$ in Equation (18) are taken from the above simulation results (the dotted line). The parameters for calculating P^A_{rad} are $A = 2.1$, $A_{\text{rad}} = 1.8$ (corresponding to $\beta = 0.1$), and $t_{\text{dis}} = 0.5t_{\text{orb}}$ (Hirose et al. 2009b). As shown by the solid and dashed lines, our analytic P^A_{rad} agrees well with P_{rad} in simulations.

3.3. Correlation between Magnetic Energy and Radiation Energy

The energy equation implies a correlation between the viscous heating (magnetic energy) and the pressure. Based on Equation (7), the correlation can be read as

$$\frac{Q^*_{\text{vis},1}}{Q^*_{\text{vis},0}} \simeq 4 \frac{T_1}{T_0}. \quad (21)$$

Owing to the same reason, there should be a correlation between viscous heating and magnetic energy, i.e., $Q^*_{\text{vis},1}/Q^*_{\text{vis},0} \simeq E_{B,1}/E_{B,0}$. With Equation (16), the above equation can be modified as

$$\frac{E_{B,1}}{E_{B,0}} \simeq \frac{1}{A_{\text{rad}}} \frac{E_{\text{rad},1}}{E_{\text{rad},0}} \quad (22)$$

As shown in Figure 1, there exists $A_{\text{rad}} = 1.8$ for $\beta = 0.1$, so we have the relationship:

$$E_B \propto E_{\text{rad}}^{0.55}, \quad (23)$$

which is close to the correlation found in simulations, e.g., $E_B \propto E_{\text{rad}}^{0.71}$ (Hirose et al. 2009b). The difference in the index may be related to the following two reasons: (1) the analysis is quite simple, particularly in dealing with the vertical radiative cooling; and (2) the feedback from pressure to stress makes significant contribution.

It is worth noting that Hirose et al. (2009b) also provided an explanation for the correlation with a toy model based on the energy equation. By using the correlation between t_{th} and E_{rad} ($t_{\text{th}} \propto E_{\text{rad}}^{0.5}$) obtained in simulations, they derived the correlation

$$P_{\text{rad}}(f) = \begin{cases} 6.1 \times 10^{-9} f^{-2.38}, & f < 0.118, \\ 2.3 \times 10^{-10} f^{-3.91}, & f > 0.118. \end{cases} \quad (20)$$
between E_{th} and E_{rad} ($E_{\text{B}} \propto E_{\text{rad}}^{-1}$). In our analysis, we choose Q_{rad}^{-1} to replace their radiative cooling term $E_{\text{rad}}/t_{\text{th}}$. We will show below that our results are quite similar to theirs.

Equations (3) and (16) can provide the relationship:

$$Q_{\text{rad}}^{-1} \propto E_{\text{rad}}^{1/A_{\text{rad}}}.$$ \hfill (24)

In simulations (Hirose et al. 2009b), the thermal time is calculated by

$$t_{\text{th}} = E / Q_{\text{rad}}.$$ \hfill (25)

With Equations (2), (5), (6) and (24), the above equation can be reduced to

$$t_{\text{th}} \propto E_{\text{rad}}^{s'},$$ \hfill (26)

where

$$s' = \frac{3(1 - \beta)(4 - 3\beta)(\gamma - 1) - 3\beta(1 + \beta)}{(8 + \beta)[\beta + 3(\gamma - 1)(1 - \beta)]}.$$ \hfill (27)

For radiation-pressure-dominated accretion flows, Equation (27) can be simplified as $s' \approx 1 - 1/A_{\text{rad}}$. Thus, Equation (22) indicates the relationship $E_{\text{B}} \propto E_{\text{rad}}^{-1}$, which is consistent with the correlation in the toy model (Hirose et al. 2009b). Moreover, in the case of $\beta = 0.1$, Equation (27) gives $s' = 0.41$, thus $t_{\text{th}} \propto E_{\text{rad}}^{0.41}$, which is close to the correlation found in simulations, e.g., $t_{\text{th}} \propto E_{\text{rad}}^{0.32}$ in simulation 1112a and $t_{\text{th}} \propto E_{\text{rad}}^{0.44}$ in simulation 1126b of Hirose et al. (2009b).

4. CONCLUSIONS AND DISCUSSION

In the present work, we have studied the fluctuations of standard thin disks by linear analysis of the time-dependent energy equation together with the vertical hydrostatic equilibrium and the equation of state. Our analytic results show that the delay between magnetic energy and radiation energy is consistent with that in previous simulations. In addition, the analytic power spectrum of radiation energy agrees well with that in previous simulations. Moreover, the correlation between magnetic energy and radiation energy can be well understood by the analysis, with an index (0.55) being close to that in simulations (0.71).

As indicated by Equation (14), a break frequency $f_{\text{br}} \sim 1/(2\pi A_{\text{th}})$ may exist in P_{cool}. The frequency f_{br} may be associated with the high-frequency break observed in the power spectra of luminosity fluctuations (e.g., McHardy 2010), since its value in the inner region of disk is close to that of observed high-frequency break. Moreover, the difference between P_{cool} and P_{vis} for $f > f_{\text{br}}$, shown by Equation (14), should be taken into account in modeling the high-frequency variability of quasar luminosity (e.g., Mushotzky et al. 2011; Zu et al. 2012). In addition, the similar frequency break may also occur in radiatively inefficient accretion flows, such as advection-dominated accretion flows (Narayan & Yi 1994) and slim disks (Abramowicz et al. 1988).

We thank the referee, Omer Blaes, for helpful suggestions and useful communications to improve the paper. We also thank Feng Yuan and Sheng-Ming Zheng for beneficial discussions. This work was supported by the National Basic Research Program (973 Program) of China under grant 2009CB824800, and the National Natural Science Foundation of China under grants 10833002, 11073015, 11103015, 11222328, and 11233006.

APPENDIX

THE RELATIONSHIP BETWEEN P_{vis} AND P_{B}

In this Appendix, we try to derive the relationship between $P_{\text{vis}}(f)$ and $P_{\text{B}}(f)$ as shown by Equation (17). The evolution of magnetic energy $E_{\text{B}}(t)$ can be simply described as

$$\frac{\partial E_{\text{B}}(t)}{\partial t} = G_{\text{B}}(t) - D_{\text{B}}(t),$$ \hfill (A1)

where $G_{\text{B}}(t)$ and $D_{\text{B}}(t)$ are respectively the generation and dissipation rate of magnetic energy. With small amplitude perturbations in Equation (A1), we have

$$i\omega t_{\text{dis}} \left(\frac{E_{\text{B},1}}{E_{\text{B},0}} \right) = \left(\frac{G_{\text{B},1}}{G_{\text{B},0}} \right) - \left(\frac{D_{\text{B},1}}{D_{\text{B},0}} \right),$$ \hfill (A2)

or

$$(\omega t_{\text{dis}})^{2}P_{\text{B}}(\omega) = P_{\text{G}}(\omega) + P_{\text{D}}(\omega) - \left(\frac{G_{\text{B},1}}{G_{\text{B},0}} \right) \times \left[\left(\frac{D_{\text{B},1}}{D_{\text{B},0}} \right)^{\ast} - \left[\frac{G_{\text{B},1}}{G_{\text{B},0}} \right] \times \left(\frac{D_{\text{B},1}}{D_{\text{B},0}} \right)^{\ast} \right].$$ \hfill (A3)

where $D_{\text{B},0} = G_{\text{B},0}$, $t_{\text{dis}} = E_{\text{B},0}/D_{\text{B},0}$, the symbol “$\ast$” represents the complex conjugate number, the power spectrum of G_{B} and D_{B} are

$$P_{\text{G}}(\omega) = \left| \left(\frac{G_{\text{B},1}}{G_{\text{B},0}} \right) \right|^{2}, \quad P_{\text{D}}(\omega) = \left| \left(\frac{D_{\text{B},1}}{D_{\text{B},0}} \right) \right|^{2}.$$

Magnetic fields in the accretion disk present exponential growth owing to the magnetorotational instability (Balbus & Hawley 1991), followed by the dissipation due to some destructive mechanisms. Since the rise and decay phases of channel modes are similar (e.g., Figure 4 of Simon et al. 2009), it is plausible to believe that P_{G} and P_{D} is comparable for $\omega < \pi / t_{\text{dis}}$. With the consideration of the delay ($\sim t_{\text{dis}}$) between G_{B} and D_{B}, the relationship between G_{B} and D_{B} can be modeled as

$$\left(\frac{D_{\text{B},1}}{D_{\text{B},0}} \right)^{\ast} \sim \frac{G_{\text{B},1}}{G_{\text{B},0}} \exp (-i\omega t_{\text{dis}}).$$ \hfill (A4)

Substituting this relationship into Equation (A3), we obtain

$$P_{\text{D}}(\omega) = \frac{(\omega t_{\text{dis}})^{2}}{2(1 - \cos \omega t_{\text{dis}})} P_{\text{B}}(\omega) \approx \left[\frac{(\omega t_{\text{dis}})^{2}}{2} + 1 \right] P_{\text{B}}(\omega).$$ \hfill (A5)

The above relationship is applicable for $\omega < \pi / t_{\text{dis}}$.

The fluctuations with $\omega > \pi / t_{\text{dis}}$ in G_{B} and those in D_{B} are unclear, and thus it remains uncertain for $P_{\text{G}}(\omega)$ and $P_{\text{D}}(\omega)$. However, it may be plausible to believe that G_{B} and D_{B} are decoupled with each other for $\omega > \pi / t_{\text{dis}}$. If we further assume that $P_{\text{G}}(\omega) \sim P_{\text{D}}(\omega)$, Equation (A3) can be reduced to

$$P_{\text{D}}(\omega) \sim \frac{(\omega t_{\text{dis}})^{2}}{2} P_{\text{B}}(\omega).$$ \hfill (A6)

We use this equation to describe the relationship of $P_{\text{D}}(\omega)$ and $P_{\text{B}}(\omega)$ for $\omega > \pi / t_{\text{dis}}$. Based on Equations (A5) and (A6), a general form of relationship between P_{D} and P_{B} may be simply described as

$$P_{\text{D}}(f) \approx \left[\left(\sqrt{2\pi f t_{\text{dis}}} \right)^{2} + 1 \right] P_{\text{B}}(f).$$ \hfill (A7)
Since the turbulent kinetic energy follows the fluctuating magnetic energy (Hirose et al. 2009b) and magnetic dissipation dominates over kinetic dissipation, we obtain

\[P_{\text{vis}}(f) \approx P_D(f) \approx \left[\left(\frac{\sqrt{2}\pi f t_{\text{dis}}} \right)^2 + 1 \right] P_B(f) \]

(A8)

which is the exact form of Equation (17). It should be noted that the relationship between \(P_{\text{vis}} \) and \(P_B \) in the short timescale range (\(\omega > \pi / t_{\text{dis}} \)) is tentatively used in the present work.

REFERENCES

Abramowicz, M. A., Czerny, B., Lasota, J. P., & Szuszkiewicz, E. 1988, ApJ, 332, 646
Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214
Ciesielski, A., Wielgus, M., Kluźniak, W., et al. 2012, A&A, 538, A148
Hawley, J. F., & Krolik, J. H. 2001, ApJ, 548, 348

Hirose, S., Blaes, O., & Krolik, J. H. 2009a, ApJ, 704, 781
Hirose, S., Krolik, J. H., & Blaes, O. 2009b, ApJ, 691, 16
Hirose, S., Krolik, J. H., & Stone, J. M. 2006, ApJ, 640, 901
Kato, S., Fukue, J., & Mineshige, S. 2008, Black-Hole Accretion Disks: Toward a New Paradigm (Kyoto: Kyoto Univ. Press)
King, A. R., Pringle, J. E., West, R. G., & Livio, M. 2004, MNRAS, 348, 111
Krolik, J. H., Hirose, S., & Blaes, O. 2007, ApJ, 664, 1045
Lightman, A. P., & Eardley, D. M. 1974, ApJ, 187, L1
Lin, D.-B., Gu, W.-M., & Lu, J.-F. 2011, MNRAS, 415, 2319
McHardy, I. 2010, in The Jet Paradigm, ed. T. Belloni (Lecture Notes in Physics, Vol. 794; Berlin: Springer), 203
Mushotzky, R. F., Edelson, R., Baumgartner, W., & Gandhi, P. 2011, ApJ, 743, L12
Narayan, R., & Yi, I. 1994, ApJ, 428, L13
Noble, S. C., & Krolik, J. H. 2009, ApJ, 703, 964
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Shakura, N. I., & Sunyaev, R. A. 1976, MNRAS, 175, 613
Simon, J. B., Hawley, J. F., & Beckwith, K. 2009, ApJ, 690, 974
Zu, Y., Kochanek, C. S., Kozłowski, S., & Udalski, A. 2012, arXiv:1202.3783