STEADY ASYMMETRIC VORTEX PAIRS FOR EULER EQUATIONS

ZINEB HASSAINIA
NYU, Abu Dhabi
Saadiyat Marina District
P.O. Box 129188, Abu Dhabi, UAE

TAOUFIK HMIDI
IRMAR, Université de Rennes 1
Campus de Beaulieu
35 042 Rennes cedex, France

(Communicated by Thomas Bartsch)

Abstract. In this paper, we study the existence of co-rotating and counter-rotating unequal-sized pairs of simply connected patches for Euler equations. In particular, we prove the existence of curves of steadily co-rotating and counter-rotating asymmetric vortex pairs passing through a point vortex pairs with unequal circulations. We also provide a careful study of the asymptotic behavior for the angular velocity and the translating speed close to the point vortex pairs.

1. Introduction. In this paper we shall be concerned with the dynamics of asymmetric vortex pairs for the two-dimensional incompressible Euler equations. These equations describe the motion of an ideal fluid and take the form

\[
\begin{align*}
\partial_t \omega + v \cdot \nabla \omega &= 0 \quad (t, x) \in \mathbb{R}_+ \times \mathbb{R}^2, \\
v &= -\nabla^\perp \left(-\Delta \right)^{-1} \omega, \\
\omega|_{t=0} &= \omega_0,
\end{align*}
\]

where \(v = (v_1, v_2) \) refers to the velocity field and its vorticity \(\omega \) is given by the scalar \(\omega = \partial_1 v_2 - \partial_2 v_1 \). The second equation in (1) is nothing but the Biot-Savart law which can be written in the complex form:

\[
v(t, z) = \frac{i}{2\pi} \int_{\mathbb{R}^2} \frac{\omega(t, \zeta)}{\zeta - z} dA(\zeta), \quad \forall z \in \mathbb{C},
\]

where we identify \(v = (v_1, v_2) \) with the complex valued-function \(v_1 + iv_2 \) and \(dA \) denotes the planar Lebesgue measure. The global existence and uniqueness of solutions with initial integrable and bounded vorticity was established a long time ago by Yudovich [37]. He proved that the system (1) admits a unique global solution in the weak sense, provided that the initial vorticity \(\omega_0 \) lies in \(L^1 \cap L^\infty \). In this setting, we can rigorously deal with the so-called vortex patches, which are the characteristic function of bounded domains. This specific structure is preserved along

2020 Mathematics Subject Classification. Primary: 35Q35, 35Q31; Secondary: 53C35, 76C05.
Key words and phrases. Euler equations, vortex dynamics, steady vortex pairs, desingularization, implicit function theorem.
the time and the solution $\omega(t)$ is uniformly distributed in the bounded domain D_t, which is the image by the flow mapping of the initial domain D_0. When D_0 is a disc then the vorticity is stationary. However, elliptical vortex patches undergo a perpetual rotation about their centers without changing the shape. This discovery goes back to Kirchhoff [27] and till now, the ellipses are the only explicit examples with such properties in the setting of vortex patches. The existence of general class of implicit rotating patches, called also V-states, was discovered numerically by Deem and Zabusky [6]. Few years later, Burbea [2] gave an analytical proof using complex analytical tools and bifurcation theory to show the existence of a countable family of V-states with m-fold symmetry for each integer $m \geq 2$. More precisely, the rotating patches appear as a collection of one dimensional branches bifurcating from Rankine vortices at the discrete angular velocities set $\{\frac{m-1}{2m}, m \geq 2\}$. These local branches were extended very recently to global ones in [17], where the minimum value on the patch boundary of the angular fluid velocity becomes arbitrarily small near the end of each branch. The regularity of the V-states boundary has been conducted in a series of papers [3, 4, 17, 24]. The existence of small loops in the bifurcation diagram has been proved recently in [19]. From numerical point of view, Wu, Overman, and Zabusky [36] went further along the same branches and found singular limiting solutions with 90° corner. We also refer to the paper [30] where it is proved that corners with right angles is the only plausible scenario for the limiting V-states. In this context also see [33, 28, 29].

It is worth pointing out that Burbua’s approach has been intensively exploited in the few last years in different directions. For instance, this was implemented to prove the existence of rotating patches close to Kirchhoff’s ellipses [4, 21], multi-connected patches [20, 22, 25], patches in bounded domains [8], non trivial rotating smooth solutions [5] and rotating vortices with non uniform densities [13]. We mention that many of these results apply not only to the 2D Euler equations but also to more singular nonlinear transport equations, but with much more involved computations. In particular, the construction of simply connected V-states for the inviscid generalized surface quasi-geostrophic equations was accomplished in [16, 3] and their boundary analyticity was discussed in [4]. The existence of uniformly rotating doubly connected patches was conducted in [7, 32] and the stationary doubly connected patches in [14]. The radial symmetry properties of stationary and uniformly rotating solutions of the 2D Euler and gSQG equations was analyzed in [11, 18, 15]. Besides the gSQG, the bifurcation theory was also successfully implemented to the quasi-geostrophic shallow-water equations in [10] as well to a 3D quasi-geostrophic model [12] to show the existence of non trivial rotating patches.

It is important to emphasize that all of the aforementioned analytical results treat connected patches. However, for the disconnected ones the bifurcation arguments discussed above are out of use. The main objective of this paper is to deal with vortex pairs moving without changing the shape. One of the very simplest nontrivial vortex equilibria is given by a pair of point vortices with magnitude γ_1 and γ_2 and far away at a distance d. It is well known that if the circulations are with opposite signs $\gamma_1 = -\gamma_2$ then the system travels in a rectilinear motion with a constant speed $U_0 = \frac{\gamma_1}{2\pi d}$, otherwise the pair of point vortices rotates steadily with the angular velocity $\Omega_0 = \frac{\gamma_1 + \gamma_2}{2\pi d^2}$.

Coming back to the emergence of steady disconnected vortex patches, translating vortex pairs of symmetric patches were discovered numerically by Deem and
addition, the angular velocity has the expansion

\[\Omega(\varepsilon) = \frac{\gamma_1 + \gamma_2}{2d^2} + \frac{\varepsilon^4}{2d^6} \left(\gamma_1 b_2^4 + \gamma_2 b_1^4 \right) + o(\varepsilon^4), \]

where \(\delta_j = \frac{2\pi}{\gamma_j} \) in the co-rotating case and \(\delta_j = -1 \) in the translating one. In addition, the angular velocity has the expansion

\[\omega_{0,\varepsilon} = \frac{\gamma_1}{\varepsilon^2 b_1^2} \chi D_1 + \frac{\gamma_2}{\varepsilon^2 b_2^2} \chi D_2, \]

with

\[D_1 = \varepsilon b_1 D_1^\varepsilon \quad \text{and} \quad D_2 = -\varepsilon b_2 D_2^\varepsilon + d. \]

Informally stated, our main existence result is the following

Theorem 1.1. There exists \(\varepsilon_0 > 0 \) such that the following results hold true.

1. For any \(\gamma_1, \gamma_2 \in \mathbb{R} \) such that \(\gamma_1 + \gamma_2 \neq 0 \) and any \(\varepsilon \in (0, \varepsilon_0] \) there exists two strictly convex domains \(D_1^\varepsilon \) and \(D_2^\varepsilon \) at least of class \(C^1 \) such that \(\omega_{0,\varepsilon} \) generates a co-rotating vortex pair for \((1) \).
2. For \(\gamma_1 \in \mathbb{R} \) and any \(\varepsilon \in (0, \varepsilon_0] \) there exists \(\gamma_2 = \gamma_2(\varepsilon) \) and two strictly convex domains \(D_1^\varepsilon, D_2^\varepsilon \) at least of class \(C^1 \) such that \(\omega_{0,\varepsilon} \) generates a counter-rotating vortex pair for \((1) \).

Remark 1. The domains \(D_j^\varepsilon, j = 1, 2 \) are small perturbations of the unit disc. Moreover, as a by-product of the proofs the corresponding conformal parametrization \(\phi_j^\varepsilon : T \to \partial D_j^\varepsilon \) belongs to \(C^{1+\beta} \) for any \(\beta \in (0, 1) \), and has the Fourier asymptotic expansion

\[\phi_j(\varepsilon, w) = w + \delta_j \left(\frac{\varepsilon b_j}{d}
ight)^2 w + \frac{\delta_j}{2} \left(\frac{\varepsilon b_j}{d} \right)^3 w^2 + \frac{\delta_j}{3} \left(\frac{\varepsilon b_j}{d} \right)^4 \left(w^3 + 6(1 + \delta_j) w \right) + o(\varepsilon^5), \quad j = 1, 2, \]

where \(\delta_j = \frac{2\pi}{\gamma_j} \) in the co-rotating case and \(\delta_j = -1 \) in the translating one.
and the center of rotation has the expansion
\[Z(\varepsilon) = \frac{\gamma_2 d}{\gamma_1 + \gamma_2} + \frac{\varepsilon^4}{d^4(\gamma_1 + \gamma_2)^2} \left(\frac{\gamma_2^2 b_1^4}{\gamma_1} - \frac{\gamma_1^3 b_2^4}{\gamma_2} \right) + o(\varepsilon^4). \]
In the case of translation, the speed has the expansion
\[U(\varepsilon) = \frac{\gamma_1}{2d} \left(1 + \frac{\varepsilon^4}{d^4} (2b_1^4 + b_2^4) \right) + o(\varepsilon^4) \]
and the vorticity \(\gamma_2 \) has the expansion
\[\gamma_2(\varepsilon) = \gamma_1 \left(1 + \frac{\varepsilon^4}{d^4} (b_1^4 - b_2^4) \right) + o(\varepsilon^4). \]

Remark 2. As we shall see later, the case \(\varepsilon = 0 \) corresponds to the vortex point system. This allows to recover the classical result stating that two point vortices at distance \(2d \) and magnitudes \(2\pi\gamma_1 \) and \(2\pi\gamma_2 \) rotate uniformly about their centroid with the angular velocity \(\Omega_0 = \frac{2\pi\gamma_1 \pm \gamma_2}{2d} \) provided that \(\gamma_1 + \gamma_2 \neq 0 \). However, they translate uniformly with the speed \(U = \frac{b_2}{2d} \) when \(\gamma_1 \) and \(\gamma_2 \) are opposite.

Remark 3. The interval \([0, \varepsilon_0]\) is uniform in \(b_1 \) and \(b_2 \) and therefore we may recover the point vortex-vortex patch configuration by letting \(b_1 \) and \(b_2 \) go to 0.

The proof of this theorem is done in the spirit of the work [23] using contour dynamics reformulation. It is a known fact that the initial vorticity \(\omega_{0,\varepsilon} \) with the velocity \(\nu_{0,\varepsilon} \) generates a rotating solution, with constant angular velocity \(\Omega \) around the point \(Z \) on the real axis, if and only if
\[\text{Re} \left\{ \left(-i\Omega(\overline{z} - Z) - v(z) \right) \tilde{n} \right\} = 0 \quad \forall z \in \partial D_1^{\varepsilon} \cup \partial D_2^{\varepsilon}, \quad (2) \]
where \(\tilde{n} \) is the exterior unit normal vector to the boundary at the point \(z \). According to the Biot-Savart law combined with Green-Stokes formula, we can write
\[v(z) = \frac{i\gamma_1}{2\varepsilon^2 b_1^4} \int_{\partial D_1^{\varepsilon}} \frac{\overline{\xi} - z}{\xi - z} d\xi + \frac{i\gamma_2}{2\varepsilon^2 b_2^4} \int_{\partial D_2^{\varepsilon}} \frac{\overline{\xi} - z}{\xi - z} d\xi, \quad \forall z \in \mathbb{C}. \]
Following the same line of [23] we can remove the singularity in \(\varepsilon \) by slightly perturbing the unit disc with a small amplitude of order \(\varepsilon \) and taking advantage of its symmetry. Indeed, we seek for conformal parametrization of the boundaries \(\phi_j : \mathbb{D}^\varepsilon \to [D_j^{\varepsilon}]^c \), in the form
\[\phi_j(w) = w + \varepsilon f_j(w), \quad \text{with} \quad f_j(w) = \sum_{n \geq 1} \frac{a_n b_j^w}{w^n}, \quad a_n \in \mathbb{R}, \ j = 1, 2. \]
Straightforward computations and substitutions we find that the conformal mappings are subject to two coupled nonlinear equations defined as follows: for all \(w \in \mathbb{T} \) and \(j \in \{1, 2\} \),
\[F_j(\varepsilon, \Omega, Z, f_1, f_2) := \text{Im} \left\{ \left(2\Omega(\varepsilon b_j \phi_j(w)) + (-1)^j Z - (j - 1) d \right) + J_j(\varepsilon, w) \right\} w \phi_j'(w) \]
\[= 0, \quad (3) \]
where \(J_j \) ranges in the Hölder space \(C^\alpha \) and can be extended for \(\varepsilon \in (-\varepsilon_0, \varepsilon_0) \) with \(\varepsilon_0 > 0 \). In addition, the functional \(F = (F_1, F_2) : (-\frac{1}{2}, \frac{1}{2}) \times \mathbb{R} \times \mathbb{R} \times X \to Y \) is well-defined and it is of class \(C^1 \) where
\[X := \left\{ f \in (C^{1+\alpha}(\mathbb{T}))^2, \ f(w) = \sum_{n \geq 1} A_n w^n, \ A_n \in \mathbb{R}^2, \ w \in \mathbb{T} \right\} \]
and
\[Y = \left\{ g \in \left(C^\alpha(T)\right)^2, \quad g = \sum_{n \geq 1} C_n e_n, \quad C_n \in \mathbb{R}^2, w \in T \right\}, \quad e_n(w) = \text{Im}\{w^n\}. \]

In order to apply the Implicit Function Theorem we compute the linearized operator around the point vortex pairs leading to
\[D_{((f_1, f_2))} F(0, \Omega, Z, 0)(h_1, h_2)(w) = -\begin{pmatrix} \gamma_1 \text{Im}\{h_1'(w)\} \\ \gamma_2 \text{Im}\{h_2'(w)\} \end{pmatrix}, \]

This operator is not invertible from \(X \) to \(Y \) but it does from \(X \) to \(\tilde{Y} \), where
\[\tilde{Y} := \left\{ g \in Y : C_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}. \]

The idea to remedy to this defect is to consider the following operator: for any \(h = (\alpha_1, \alpha_2, h_1, h_2) \in \mathbb{R} \times \mathbb{R} \times X \)
\[D_{(\Omega, Z, f_1, f_2)} F(0, \Omega, Z, 0)(h_1, h_2)(w) = -\frac{2\alpha_1 d}{\gamma_1 + \gamma_2} \begin{pmatrix} \gamma_2 \\ \gamma_1 \end{pmatrix} \text{Im}\{w\} - \frac{\alpha_2(\gamma_1 + \gamma_2)}{d^2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{Im}\{w\} - \begin{pmatrix} \gamma_1 \text{Im}\{h_1'(w)\} \\ \gamma_2 \text{Im}\{h_2'(w)\} \end{pmatrix}. \]

which is invertible from \(\mathbb{R} \times \mathbb{R} \times X \) to \(Y \).

This allows to to apply the Implicit Function Theorem and complete the proof of the main theorem.

Notation. We need to fix some notation that will be frequently used along this paper. We shall use the symbol :=, to define an object. We denote by \(\mathbb{D} \) the unit disc and its boundary, the unit circle, is denoted by \(T \). Let \(f : T \to \mathbb{C} \) be a continuous function. We define its mean value by,
\[\int_T f(\tau) d\tau := \frac{1}{2\pi} \int_T f(\tau) d\tau, \]
where \(d\tau \) stands for the complex integration.

2. **Boundary equation.** In what follows, we shall describe the motion of a co-rotating and a counter-rotating asymmetric pair of patches in the plane. The equations governing the dynamics of the boundaries can be thought of as a system of two steady nonlocal equations of nonlinear type coupling the conformal parametrization of the two domains.

2.1. **Co-rotating vortex pairs.** Let \(\varepsilon \in (0, 1) \) and consider two bounded simply connected domains \(D_1^\varepsilon \) and \(D_2^\varepsilon \), containing the origin and contained in the ball \(B(0, 2) \). For \(b_1, b_2 \in \mathbb{R}_+ \) and \(d > 2(b_1 + b_2) \) we define the domains
\[\tilde{D}_1^\varepsilon := \varepsilon b_1 D_1^\varepsilon \quad \text{and} \quad \tilde{D}_2^\varepsilon := -\varepsilon b_2 D_2^\varepsilon + d. \]

Given \(\gamma_1, \gamma_2 \in \mathbb{R} \), we consider the initial vorticity
\[\omega_{0, \varepsilon} = \frac{\gamma_1}{\varepsilon^2 b_1^2} \chi_{\tilde{D}_1^\varepsilon} + \frac{\gamma_2}{\varepsilon^2 b_2^2} \chi_{\tilde{D}_2^\varepsilon}. \]

As we can readily observe, this initial data is composed of unequal-sized pair of simply connected patches with vorticity magnitudes \(\gamma_1 \) and \(\gamma_2 \). Assume that the initial vorticity \(\omega_{0, \varepsilon} \) gives rise to a rotating pair of patches about some point \(Z \) in
the complex plan. Since the boundary of $\tilde{D}_1^\varepsilon \cup \tilde{D}_2^\varepsilon$ is advected by the flow, then it is folklore (see, for instance, [20]) that this condition can be expressed by the equation

$$\text{Re} \left(-i\Omega (\varpi - Z) \hat{n} \right) = \text{Re} \left(\overline{v(z)} \hat{n} \right) \quad \forall z \in \partial \tilde{D}_1^\varepsilon \cup \partial \tilde{D}_2^\varepsilon,$$ \hfill (6)

where \hat{n} is the exterior unit normal vector to the boundary at the point z. From the Biot-Savart law, the velocity can be recovered from the vorticity by

$$v(z) = \frac{i\gamma_1}{2\pi \varepsilon b_1} \int_{\partial D_1^\varepsilon} \frac{dA(\zeta)}{\zeta - z} + \frac{i\gamma_2}{2\pi \varepsilon^2 b_2} \int_{\partial D_2^\varepsilon} \frac{dA(\zeta)}{\zeta - z}, \quad \forall \zeta \in \mathbb{C}.$$

Therefore, by using Green-Stokes formula we get

$$v(z) = \frac{i\gamma_1}{2\pi \varepsilon b_1} \int_{\partial D_1^\varepsilon} \frac{\xi - \varpi}{\xi - z} d\xi + \frac{i\gamma_2}{2\pi \varepsilon^2 b_2} \int_{\partial D_2^\varepsilon} \frac{\xi - \varpi}{\xi - z} d\xi, \quad \forall \zeta \in \mathbb{C}.$$

Changing ξ by $-\xi + d$ in the last integral gives

$$v(z) = \frac{i\gamma_1}{2\varepsilon b_1} \int_{\partial D_1^\varepsilon} \frac{\xi - \varpi}{\xi - z} d\xi - \frac{i\gamma_2}{2\varepsilon^2 b_2} \int_{\partial D_2^\varepsilon} \frac{\xi + \varpi - d}{\xi + z - d} d\xi \quad \hfill (7)$$

where we have used the notation

$$\tilde{D}_3^\varepsilon := -\tilde{D}_2^\varepsilon + d = \varepsilon b_2 D_2^\varepsilon.$$

Hence by combining the last identity with (7) and (6) we obtain

$$\text{Re} \left\{ \left(2\Omega (\varpi - Z) - \frac{\gamma_1}{\varepsilon b_1} \int_{\partial D_1^\varepsilon} \frac{\xi - \varpi}{\xi - z} d\xi \right) \tilde{\tau} \right\} = 0 \quad \forall \zeta \in \partial \tilde{D}_1^\varepsilon,$$

and

$$\text{Re} \left\{ \left(2\Omega (\varpi + Z - d) - \frac{\gamma_1}{\varepsilon b_1} \int_{\partial D_1^\varepsilon} \frac{\xi + \varpi - d}{\xi + z - d} d\xi \right) \tilde{\tau} \right\} = 0 \quad \forall \zeta \in \partial \tilde{D}_3^\varepsilon,$$

where $\tilde{\tau}$ denotes a tangent vector to the boundary of $\tilde{D}_1^\varepsilon \cup \tilde{D}_3^\varepsilon$ at the point z. Observe that when $z \in \partial D_1^\varepsilon$ then $-z + d \notin \tilde{D}_3^\varepsilon$ and conversely; when $z \in \partial \tilde{D}_3^\varepsilon$, then $-z + d \notin \tilde{D}_1^\varepsilon$. Hence according to residue theorem, we find that for $j \in \{1, 3\}$,

$$\int_{\partial D_j^\varepsilon} \frac{\xi + \varpi - d}{\xi + z - d} d\xi = \int_{\partial D_j^\varepsilon} \frac{\xi}{\xi + z - d} d\xi \quad \forall z \in \partial \tilde{D}_{3-j}^\varepsilon.$$

Combining this identity with the change of variables $z \rightarrow \varepsilon b_1 z$ and $z \rightarrow \varepsilon b_2 z$, which send \tilde{D}_1^ε to D_1^ε and \tilde{D}_3^ε to D_2^ε respectively, we get

$$\text{Re} \left\{ \left(2\Omega (\varepsilon \varpi - Z) + \frac{\gamma_1}{\varepsilon b_1} \int_{\partial D_1^\varepsilon} \frac{\xi - \varpi}{\xi - z} d\xi \right) \tilde{\tau} \right\} = 0 \quad \forall \zeta \in \partial D_1^\varepsilon.$$

and

Now, we shall see how to remove the singularity in ε from the full non linearity $I_j^\varepsilon(w)$. To alleviate the discussion, we use the notation

$$A = \tau - w \quad \text{and} \quad B_j = f_j(\tau) - f_j(w).$$

Thus

$$I_j^\varepsilon(w) = \frac{1}{\varepsilon b_j} \int_T \frac{\overline{A} + \varepsilon b_j B_j}{A + \varepsilon b_j B_j} \left[1 + \varepsilon b_j f_j'(\tau)\right] d\tau$$

$$= \int_T \frac{A f_j'(\tau) d\tau}{A + \varepsilon b_j B_j} + \varepsilon b_j \int_T \frac{A B_j - \overline{A} B_j}{A(A + \varepsilon b_j B_j)} f_j'(\tau) d\tau + \int_T \frac{A B_j - \overline{A} B_j}{A^2} d\tau + \frac{1}{\varepsilon b_j} \int_T \frac{\overline{A}}{A} d\tau.$$

From the identity

$$\int_T \frac{\overline{A}}{A} d\tau = \int_T \frac{w - \tau}{w - \tau} d\tau = -w$$

The structure of the last system may be unified as follows

$$\begin{align*}
\text{Re}\left\{2\Omega(\varepsilon b\bar{z} + (j-1)^2z) - \gamma_{1}\int_{\partial D_1} \frac{\bar{\xi}}{\varepsilon b_1 \xi + \varepsilon b_2 z - d} d\xi + \gamma_{2}\int_{\partial D_2} \frac{\bar{\xi} - \bar{z}}{\xi - z} d\xi\right\} = 0 & \quad \forall z \in \partial D_2.
\end{align*}$$

The identity

$$I = \int_C \frac{2\Omega}{\xi - z} d\xi = \frac{2\Omega}{\xi - z}.$$

We shall look for domains $\{D_j, j = 1, 2\}$ which are slight perturbation of the unit disc of order ε. In other words, we shall impose the conformal mapping $\phi_j : \mathbb{D}^c \to [D_j]^c$ to satisfy the expansions

$$\phi_j(w) = w + \varepsilon b_j f_j(w), \quad \text{with} \quad f_j(w) = \sum_{n \geq 1} a_j^i w^n, \quad a_j^i \in \mathbb{R}, j = 1, 2.$$
and by the residue theorem
\[\oint_{\Gamma} \frac{A}{A} f'_j(\tau)d\tau = 0, \quad \oint_{\Gamma} \frac{AB_j - \overline{A}B_j}{A^2} d\tau = 0. \]

Therefore
\[\text{Im}\left\{ f'_j(w)\phi_j(w) \right\} = -\text{Im}\left\{ f'_j(w) \right\} + \varepsilon b_j \text{Im}\left\{ w(1 + \varepsilon b_j f'_j(w)) \right\} \int_{\Gamma} \frac{AB_j - \overline{A}B_j}{A(\varepsilon + \varepsilon b_j B_j)} \left[f'_j(\tau) - \frac{B_j}{A} \right] d\tau \]

Inserting the last identity in the system (9) we get
\[F_j(\varepsilon, g)(w) := \text{Im}\left\{ F_{1j}(\varepsilon, g)(w) + F_{2j}(\varepsilon, g)(w) + F_{3j}(\varepsilon, g)(w) \right\} = 0, \]
for all \(w \in \mathbb{T} \) where
\[g := (\Omega, Z, f_1, f_2) \]
and
\[F_{1j}(\varepsilon, g)(w) := 2\Omega \left[\varepsilon b_j (w + \varepsilon b_j f'_j(w)) + (-1)^j Z - (j - 1)d \right] w(1 + \varepsilon b_j f'_j(w)) - \gamma_j f'_j(w) \]
\[F_{2j}(\varepsilon, g)(w) := \varepsilon b_j \gamma_j w \left[1 + \varepsilon b_j f'_j(w) \right] \int_{\Gamma} \frac{AB_j - \overline{A}B_j}{A(A + \varepsilon b_j B_j)} \left[f'_j(\tau) - \frac{B_j}{A} \right] d\tau \]
\[F_{3j}(\varepsilon, g)(w) := -\gamma_{3-j} w \left[1 + \varepsilon b_j f'_j(w) \right] \]
\[\times \int_{\Gamma} \frac{\left(\tau + \varepsilon b_{3-j} f'_{3-j}(\tau) \right)(1 + \varepsilon b_{3-j} f'_{3-j}(\tau))}{\varepsilon(\tau + b_j w) + \varepsilon^2 (b_{3-j}^2 f'_{3-j}(\tau) + b_j^2 f_j(w))} d\tau. \]

Next we shall use the following notation
\[F(\varepsilon, g)(w) := \left(F_{1}(\varepsilon, g)(w), F_{2}(\varepsilon, g)(w) \right) \quad \forall w \in \mathbb{T}. \]

2.2. **Counter-rotating vortex pair.** We shall consider two bounded simply connected domains \(D_1^* \) and \(D_2^* \), containing the origin and contained in the ball \(B(0, 2) \). For \(b_1, b_2 \in (0, \infty) \) and \(d > b_1 + b_2 \) we set
\[\tilde{D}_1^* := \varepsilon b_1 D_1^* \quad \text{and} \quad \tilde{D}_2^* := -\varepsilon b_2 D_2^* + d. \]

Given \(\gamma_1, \gamma_2 \in \mathbb{R} \), we consider the initial vorticity
\[\omega_{0, \varepsilon} = \frac{\gamma_1}{\varepsilon b_1^2} \chi_{\tilde{D}_1^*} - \frac{\gamma_2}{\varepsilon b_2^2} \chi_{\tilde{D}_2^*}. \]

We assume that this unequal-sized pair of simply connected patches with vorticity magnitudes \(\gamma_1 \) and \(-\gamma_2 \) travels steadily in \((Oy)\) direction with uniform velocity \(U \). Then in the moving frame the pair of the patches is stationary and consequently,
\[\text{Re}\left\{ w(z) + iU \bar{n} \right\} = 0 \quad \forall z \in \partial \tilde{D}_1^* \cup \partial \tilde{D}_2^*, \]

where \(\bar{n} \) is the unit normal to \(\partial \tilde{D}_1^* \).
where \(\vec{n} \) is the exterior unit normal vector to the boundary of \(\tilde{D}^x_1 \cup \tilde{D}^x_2 \) at the point \(z \). From (7) one has

\[
\text{Re}\left\{ \left(2U + \frac{\gamma_1}{\varepsilon_2 b_1} \int_{\partial \tilde{D}^x_1} \frac{\xi - \tau}{\xi - z} d\xi + \frac{\gamma_2}{\varepsilon_2 b_2} \int_{\partial \tilde{D}^x_2} \frac{\xi + \tau - d}{\xi + z - d} d\xi \right) \hat{\varphi} \right\} = 0 \quad \forall z \in \partial \tilde{D}^x_1,
\]

\[
\text{Re}\left\{ \left(2U + \frac{\gamma_1}{\varepsilon_2 b_1} \int_{\partial \tilde{D}^x_1} \frac{\xi - \tau}{\xi - z} d\xi + \frac{\gamma_2}{\varepsilon_2 b_2} \int_{\partial \tilde{D}^x_2} \frac{\xi - \tau}{\xi - z} d\xi \right) \hat{\varphi} \right\} = 0 \quad \forall z \in \partial \tilde{D}^x_2
\]

where we have used the notation

\[
\tilde{D}^x_j := \varepsilon b_j D^x_j.
\]

and \(\hat{\varphi} \) denote for tangent vector to the boundary of \(\tilde{D}^x_1 \cup \tilde{D}^x_2 \) at the point \(z \). We can easily verify that when \(z \in \partial \tilde{D}^x_1 \), \(-z + d \not\in \tilde{D}^x_1 \). Therefore, if \(z \in \partial \tilde{D}^x_2 \), then \(-z + d \not\in \tilde{D}^x_1 \). Thus, by the residue theorem we conclude that for all \(i, j \in \{1, 3\} \) and \(i \neq j \), we have

\[
\int_{\partial \tilde{D}^x_j} \frac{\xi - \tau}{\xi - z} d\xi = \int_{\partial \tilde{D}^x_j} \frac{\xi}{\xi + z - d} d\xi \quad \forall z \in \partial \tilde{D}^x_{1-j}.
\]

Inserting the last identity into the system above and changing \(z \to \varepsilon b_1 z \) and \(z \to \varepsilon b_2 z \) we find

\[
\text{Re}\left\{ \left(2U + \frac{\gamma_j}{\varepsilon_2 b_j} \int_{\partial \tilde{D}^x_j} \frac{\xi - \tau}{\xi - z} d\xi + \gamma_{3-j} \int_{\partial \tilde{D}^x_{3-j}} \frac{\xi}{\xi + z - d} d\xi \right) \hat{\varphi} \right\} = 0, \quad (15)
\]

for all \(z \in \partial D_j \) with \(j = 1, 2 \). We shall now use the conformal parametrization of the boundaries \(\phi_j : \mathbb{D} \to [\partial D_j]^c \),

\[
\phi_j(w) = w + \varepsilon b_j f_j(w), \quad \text{with} \quad f_j(w) = \sum_{n \geq 1} \frac{a_n^j}{w^n}, \quad a_n^j \in \mathbb{R}, \ j = 1, 2.
\]

Since the tangent vector to the boundary at \(z = \phi_j(w) \) is given by

\[
\hat{\varphi}(\phi_j(w)) = iw \phi'_j(w),
\]

then by a change of variables the system (15) becomes

\[
\text{Im}\left\{ \left(2U + \gamma_j I_j^x(w) + \gamma_{3-j} K_{3-j}^x(w) \right) w \phi'_j(w) \right\} = 0, \quad j = 1, 2 \quad (16)
\]

for all \(w \in \mathbb{T} \), where

\[
I_j^x(w) := \int_{\mathbb{T}} \phi_j(\tau) - \phi_j(w) \phi'_j(\tau) d\tau,
\]

\[
K_{3-j}^x(w) := \int_{\mathbb{T}} \phi_{3-j}(\tau) \phi'_j(\tau) d\tau.
\]

As in the rotating case, from (10), one has

\[
\text{Im}\left\{ I_j^x(w) w \phi'_j(w) \right\} = -\text{Im}\left\{ f_j'(w) \right\}
\]

\[
+ \varepsilon b_j \text{Im}\left\{ w \left(1 + \varepsilon b_j f_j'(w) \right) \int_{\mathbb{T}} \frac{\overline{A B_j} - \overline{A B_j}}{A + \varepsilon b_j B_j} \left[f_j'(\tau) - \frac{B_j}{A} \right] d\tau \right\},
\]

where we have used the notation

\[
A = \tau - w \quad \text{and} \quad B_j = f_j(\tau) - f_j(w).
\]
It is straightforward that for any
and

In what follows we shall use the notation such that

3. Regularity of the nonlinear functional. This section is devoted to the regularity study of the nonlinear functional F introduced in (11) and (17) and which defines the V-states equations. We proceed first with the Banach spaces X and Y of Hölder type to which the Implicit Function Theorem will be applied. Recall that for given $\alpha \in (0, 1)$, we denote by C^α the space of continuous functions $f : T \to \mathbb{C}$ such that

$$
\|f\|_{C^\alpha(T)} := \|f\|_{L^\infty(T)} + \sup_{\tau \neq w \in T} \frac{|f(\tau) - f(w)|}{|\tau - w|^\alpha} < \infty.
$$

For any integer $n \in \mathbb{N}$, the space $C^{n+\alpha}(T)$ stands for the set of functions f of class C^n whose n-th order derivative is Hölder continuous with exponent α. This space is equipped with the usual norm

$$
\|f\|_{C^{n+\alpha}(T)} := \|f\|_{L^\infty(T)} + \left\| \frac{d^n f}{d w^n} \right\|_{C^\alpha(T)}.
$$

Now, consider the spaces

$$
X := \left\{ f \in (C^{1+\alpha}(T))^2, \ f(w) = \sum_{n \geq 1} A_n \overline{w}^n, \ A_n \in \mathbb{R}^2, \ w \in T \right\},
$$

$$
Y = \left\{ g \in (C^\alpha(T))^2, \ g(w) = \sum_{n \geq 1} C_n e_n, \ C_n \in \mathbb{R}^2, \ w \in T \right\}, \ e_n = \text{Im}\{w^n\},
$$

$$
\tilde{Y} := \left\{ g \in Y : C_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}.
$$

For $r > 0$ we denote by B_r the open ball of X centered at zero and of radius r,

$$
B_r := \left\{ f \in X, \ |f|_{C^{n+\alpha}(T)} \leq r \right\}.
$$

It is straightforward that for any $f \in B_r$ the function $w \mapsto \phi(w) = w + \varepsilon f(w)$ is conformal on $\mathbb{C}\setminus \overline{D}$ provided that $r, \varepsilon < 1$. Moreover according to Kellog-Warshawski result, the boundary of $\phi(\mathbb{C}\setminus \overline{D})$ is a Jordan curve of class $C^{n+\alpha}$.
3.1. **Co-rotating vortex pairs.** We propose to prove the following result concerning the regularity of F.

Proposition 1. The following assertions hold true.

1. The function F can be extended to C^1 function from $\left(-\frac{1}{2}, \frac{1}{2}\right) \times \mathbb{R} \times \mathbb{R} \times B_1 \rightarrow Y$.
2. Two initial point vortex $\gamma_1 \pi \delta_0$ and $\gamma_2 \pi \delta_d$ with $\gamma_1 \neq -\gamma_2$ rotate uniformly about the point

\[Z_0 := \frac{d\gamma_2}{\gamma_1 + \gamma_2} \]

with the angular velocity

\[\Omega_0 := \frac{\gamma_1 + \gamma_2}{2d^2}. \]

3. For all $h = (\alpha_1, \alpha_2, h_1, h_2) \in \mathbb{R} \times \mathbb{R} \times X$ one has

\[
 D_g F(0, g_0)h(w) = -\frac{2\alpha_1 d}{\gamma_1 + \gamma_2} \left(\gamma_2 \gamma_1 \right) \text{Im}\{w\} - \frac{\alpha_2 (\gamma_1 + \gamma_2)}{d^2} \left(\begin{array}{c} 1 \\ -1 \end{array} \right) \text{Im}\{w\}
\]

\[
 - \left(\begin{array}{c} \gamma_1 \text{Im}\{h_1'(w)\} \\ \gamma_2 \text{Im}\{h_2'(w)\} \end{array} \right)
\]

with

\[g := (\Omega, Z, f_1, f_2) \quad \text{and} \quad g_0 := (\Omega_0, Z_0, 0, 0). \]

4. The linear operator $D_g F(0, g_0) : \mathbb{R} \times \mathbb{R} \times X \rightarrow Y$ is an isomorphism.

Proof.

(1) Notice that the part $F_{1j} + F_{2j}$ defined in (11) appears identically in the boundary equation of co-rotating symmetric pairs and its regularity was discussed in the paper [23]. The only term that one should care about is F_{3j} describing the interaction between the boundaries of the two patches which are supposed to be disjoint. Therefore the involved kernel is sufficiently smooth and it does not carry significant difficulties in the treatment. and can be dealt with in a very classical way.

(2) According to the formulation developed in Section 2 the two points vortex system is a solution to the equation $F(0, \Omega, Z, 0, 0) = 0$. In this case we can easily check that

\[F_j(0, \Omega, Z, 0, 0)(w) = \left[2\Omega \left((-1)^j Z + (1-j)d \right) + \frac{\gamma_1 - j}{d} \right] \text{Im}\{w\}. \]

Therefore $F_j(0, \Omega, Z, 0, 0) = 0$ if and only if

\[-2\Omega Z + \frac{\gamma_j}{d} = 0 \quad \text{and} \quad 2\Omega \left(Z - d \right) + \frac{\gamma_j}{d} = 0. \]

Thus,

\[\Omega = \Omega_0 := \frac{\gamma_1 + \gamma_2}{2d^2} \quad \text{and} \quad Z = Z_0 := \frac{d\gamma_2}{\gamma_1 + \gamma_2}. \]

(3)-(4) Since $F = (F_1, F_2)$ then for given $h = (h_1, h_2) \in X$, we have

\[
 D_f F(0, \Omega, Z, 0, 0)h(w) = \left(\begin{array}{c} \partial_1 F_1(0, \Omega, Z, 0, 0)h_1(w) + \partial_2 F_1(0, \Omega, Z, 0, 0)h_2(w) \\ \partial_1 F_2(0, \Omega, Z, 0, 0)h_1(w) + \partial_2 F_2(0, \Omega, Z, 0, 0)h_2(w) \end{array} \right).
\]
The Gâteaux derivative of the function F_j at $(0, \Omega, b, 0, 0)$ in the direction h_j is given by
\[
\frac{d}{dt} F_j(0, \Omega, Z, 0, 0)h_j(w) = \frac{d}{dt} \left[F_j(0, \Omega, Z, th_j, 0) \right]_{t=0}(w) = -\gamma_j \text{Im}\left\{ h_j'(w) \right\}.
\]
On the other hand, straightforward computations allow to get
\[
\frac{d}{dt} F_j(0, \Omega, Z, 0, 0)h_{3-j}(w) = \frac{d}{dt} \left[F_j(0, \Omega, Z, 0, th_{3-j}) \right]_{t=0}(w) = 0.
\]
From (11) one can easily check that
\[
F_j(0, \Omega, Z, f_1, f_2) = \text{Im}\left\{ 2\Omega \left[(-1)^j Z + (1 - j)d \right] w - \gamma_j f_j'(w) + \frac{\gamma_3 - j}{d} w \right\}. \tag{21}
\]
Differentiating the last identity with respect to Ω at (Ω_0, Z_0) gives
\[
\frac{\partial}{\partial \Omega} F_j(0, \Omega_0, Z_0, f_1, f_2) = 2 \left[(-1)^j Z_0 + (1 - j)d \right] \text{Im}\left\{ w \right\}. \tag{22}
\]
Next, differentiating (21) with respect to Z at (Ω_0, Z_0) we get
\[
\frac{\partial}{\partial Z} F_j(0, \Omega_0, Z_0, f_1, f_2) = 2(-1)^j \Omega_0 \text{Im}\left\{ w \right\}.
\]
Therefore, for all $(\alpha_1, \alpha_2) \in \mathbb{R}^2$
\[
D_{(\Omega, Z)} F(0, \Omega_0, Z_0, f_1, f_2)(\alpha_1, \alpha_2) = \alpha_1 \left(\frac{2\gamma_2 d}{\gamma_1 + \gamma_2} \right) \text{Im}\left\{ w \right\} + \alpha_2 \left(\frac{\gamma_1 + \gamma_2}{d^2} \right) \text{Im}\left\{ w \right\}.
\]
Consequently the restricted linear operator $D_{(\Omega, Z, f_1, f_2)} F(0, \Omega_0, Z_0, f_1, f_2)$ is invertible if and only if the determinant of the two vectors, given by $-\frac{2}{d} (\gamma_1 + \gamma_2)$, is non vanishing.

3.2. Counter-rotating vortex pairs. This section is devoted to the counter-rotating asymmetric pairs and our main result reads as follows.

Proposition 2. The following assertions hold true.

1. The function F can be extended to C^1 function from $(-\frac{1}{2}, \frac{1}{2}) \times \mathbb{R} \times \mathbb{R} \times B_1 \to Y$.
2. Two initial point vortex $\gamma_1 \pi \delta_0$ and $-\gamma_2 \pi \delta_{(d, 0)}$ translate uniformly with the speed
\[
U_0 := \frac{\gamma_1}{2d}
\]
3. For all $h = (\alpha_1, \alpha_2, h_1, h_2) \in \mathbb{R} \times \mathbb{R} \times X$ one has
\[
D_h F(0, g_0) h(w) = \alpha_1 \left(\frac{2}{2} \right) \text{Im}\left\{ w \right\} - \alpha_2 \left(\frac{1}{0} \right) \text{Im}\left\{ w \right\} - 2U d \left(\text{Im}\left\{ h_1'(w) \right\} \right)
\]
with
\[
g := (U, \gamma_2, f_1, f_2) \quad \text{and} \quad g_0 := (U_0, \gamma_1, 0, 0).
4. The linear operator \(D_g F(U_0, \gamma_1, 0, 0) : \mathbb{R} \times \mathbb{R} \times X \rightarrow Y \) is an isomorphism.

Proof. (1) Notice that the function \(F_{j_2} + F_{j_3} \) coincide with the function \(F_{j_2} + F_{j_3} \) appearing in the rotating case and \(F_{j_1} \) enjoys obviously the required regularity.

(2) The point vortex configuration corresponds to \(F(0, U, \gamma_2, 0, 0) \). Thus, for \(\varepsilon = 0 \) one has

\[
F_j(0, \gamma_1, \gamma_2, 0, 0)(w) = \left[2U - \frac{\gamma_3 - j}{d} \right] \text{Im}\{w\}.
\]

Therefore \(F(0, U, \gamma_2, 0, 0) = 0 \) if and only if

\[
\gamma_1 = \gamma_2 = 2Ud.
\]

(3)-(4) Taking \(\varepsilon = 0 \) in (17) we get

\[
F_j(0, U, \gamma_2, f_1, f_2) = \text{Im}\left\{ 2Uw - \gamma_j f_j'(w) - \frac{\gamma_3 - j}{d} w \right\}.
\]

Thus, for given \((h_1, h_2) \in X\), we have

\[
\partial_{f_j} F_j(0, U, \gamma_2, 0, 0) h_j = -\gamma_j \text{Im}\{h_j'(w)\}
\]

and

\[
\partial_{f_{j-1}} F_j(0, U, \gamma_2, 0, 0) h_{j-1}(w) = 0.
\]

On the other hand, differential of \(F \) with respect \((U, \gamma_2)\) is given by

\[
D_{(U, \gamma_2)} F(0, U, \gamma_2, f_1, f_2)(\alpha_1, \alpha_2) = \alpha_1 \left(\frac{2}{2} \right) \text{Im}\{w\} + \alpha_2 \left(\frac{-1}{2} \right) \text{Im}\{w\}.
\]

Thus, we conclude that the linear operator \(D_g F(0, g_0) \) is invertible for all \(\gamma_1 \in \mathbb{R} \). \(\square \)

4. Existence of asymmetric co-rotating patches. The goal of this section is to provide a full statement of the point (1) of Theorem 1.1. In other words, we shall describe the set of solutions of the equation \(F(\varepsilon, g) = 0 \) around the point \((\varepsilon, g) = (0, g_0)\) by a one-parameter smooth curve \(\varepsilon \mapsto g(\varepsilon) \) using the implicit function theorem.

4.1. Co-rotating vortex pairs. The main result of this section reads as follows.

Proposition 3. The following assertions hold true.

1. There exists \(\varepsilon_0 > 0 \) and a unique \(C^1 \) function \(g := (\Omega, Z, f_1, f_2) : [-\varepsilon_0, \varepsilon_0] \rightarrow \mathbb{R} \times \mathbb{R} \times B_1 \) such that

\[
F(\varepsilon, \Omega(\varepsilon), Z(\varepsilon), f_1(\varepsilon), f_2(\varepsilon)) = 0
\]

with

\[
\left(\Omega(0), Z(0), f_1(0), f_2(0) \right) = (\Omega_0, Z_0, 0, 0).
\]

2. For all \(\varepsilon \in [-\varepsilon_0, \varepsilon_0] \setminus \{0\} \) one has

\[
(f_1(\varepsilon), f_2(\varepsilon)) \neq (0, 0).
\]

3. If \((\varepsilon, f_1, f_2)\) is a solution then \((-\varepsilon, \tilde{f}_1, \tilde{f}_2)\) is also a solution, where

\[
\forall w \in T, \quad \tilde{f}_j(w) = f_j(-w), \quad j = 1, 2.
\]

4. For all \(\varepsilon \in [-\varepsilon_0, \varepsilon] \setminus \{0\} \), the domains \(D_1^\varepsilon \) and \(D_2^\varepsilon \) are strictly convex.
Proof. (1) From Proposition 1 one has \(F : (-\frac{1}{2} : \frac{1}{2}) \mathbb{R} \times \mathbb{R} \times B_1 \to Y \) is a \(C^1 \) function and \(D_y F(0, y_0) : X \to Y \) is an isomorphism. Thus the implicit function theorem ensures the existence of \(\varepsilon_0 > 0 \) and a unique \(C^1 \) parametrization \(g = (\Omega, Z, f_1, f_2) : [-\varepsilon_0, \varepsilon_0] \to B_1 \) verifying the equation \(F(\varepsilon, \Omega(\varepsilon), Z(\varepsilon), f_1(\varepsilon), f_2(\varepsilon)) = 0 \). Moreover, this solution passes through the origin, that is,
\[
(\Omega, Z, f_1, f_2)(0) = (0, 0).
\]
This completes the proof of the desired result.

(3) We shall prove that for any \(\varepsilon \) small enough and any \(\Omega \) we can not get a rotating vortex pair with \(f_1 = 0 \) and \(f_2 = 0 \). In other words, we need to prove that
\[
F(\varepsilon, \Omega, Z, 0, 0) \neq 0.
\]
To this end we write
\[
F_j(\varepsilon, \Omega, Z, 0, 0)(w) = \text{Im} \left\{ 2\Omega \left[(-1)^j Z - (j - 1)d \right] - \gamma_{3-j} \int_0^T \frac{\tau}{\varepsilon(b_{3-j} \tau + b_j w) - d} w \right\}.
\]
By Taylor expansion, we get
\[
\int_0^T \frac{\tau}{\varepsilon(b_{3-j} \tau + b_j w) - d} \, d\tau = -\sum_{n \in \mathbb{N}} \frac{\varepsilon^n}{dn+1} \int_0^T \frac{\tau(b_{3-j} \tau + b_j w)^n}{b_j} \, d\tau
\]
\[
= -\sum_{n \in \mathbb{N}} \frac{\varepsilon^n}{dn+1} b_j^n w^n
\]
\[
= \frac{1}{\varepsilon b_j w - d}.
\]
Consequently,
\[
F_j(\varepsilon, \Omega, Z, 0, 0)(w) = \text{Im} \left\{ 2\Omega \left[(-1)^j Z - (j - 1)d \right] - \frac{\gamma_{3-j}}{\varepsilon b_j w - d} w \right\}
\]
and this quantity is not zero if \(\varepsilon \neq 0 \) is small enough.

(2) We only need to check that
\[
F_j(\varepsilon, \Omega, Z, f_1, f_2)(-w) = -F_j(-\varepsilon, \Omega, Z, \tilde{f}_1, \tilde{f}_2)(w) \quad \text{for} \quad j = 1, 2,
\]
where \(F_j \) is defined by (11). By definition we have
\[
F_{1j}(-\varepsilon, \Omega, Z, \tilde{f}_1, \tilde{f}_2) = 2\Omega \left[-\varepsilon b_j (-\bar{w} + \varepsilon b_j \bar{f}_j(w)) + (-1)^j Z \right. \\
- (j - 1)d \left\{ w \left(1 - \varepsilon b_j \tilde{f}_j(w)\right) - \gamma_j \tilde{f}_j(w). \right\}
\]
Since \(\tilde{f}_j(w) = -f_j'(-w) \) we get
\[
F_{1j}(-\varepsilon, \Omega, Z, \tilde{f}_1, \tilde{f}_2) = 2\Omega \left[\varepsilon b_j (-\bar{w} + \varepsilon b_j \bar{f}_j(w)) + (-1)^j Z \right. \\
- (j - 1)d \left\{ w \left(1 + \varepsilon b_j f_j(-w)\right) + \gamma_j f_j'(-w) \right\}
\]
\[
= -F_j(\varepsilon, \Omega, Z, f_1, f_2)(-w).
\]
Straightforward computations will lead to the same properties for the functions F_{2j} and F_{3j}. This completes the proof of (4).

(3) Now to prove the convexity of the domains D^e_1, D^e_2 we shall reproduce the same arguments of [23]. Recall that the outside conformal mapping associated to the domain D^e_j is given by

$$\phi_j = w + \varepsilon b_j f_j(w).$$

and the curvature can be expressed by the formula

$$\kappa(\theta) = \frac{1}{|\phi'_j(w)|} \text{Re} \left(1 + w \frac{\phi''_j(w)}{\phi'_j(w)} \right).$$

We can easily verify that

$$1 + w \frac{\phi''_j(w)}{\phi'_j(w)} = 1 + \varepsilon b_j w \frac{f''_j(w)}{1 + \varepsilon b_j f'_j(w)}$$

and so

$$\text{Re} \left(1 + w \frac{\phi''_j(w)}{\phi'_j(w)} \right) \geq 1 - |\varepsilon b_j| \frac{|f''_j(w)|}{1 - |\varepsilon b_j f'_j(w)|} \geq |\varepsilon b_j|.$$

The last quantity is non-negative if $|\varepsilon| < 1/2$. Thus the curvature is strictly positive and therefore the domain D^e_j is strictly convex.

4.2. Counter-rotating vortex pairs. In this section we shall give the complete statement for the existence of translating unequal-sized pairs of patches.

Proposition 4. The following holds true.

1. There exists $\varepsilon_0 > 0$ and a unique C^1 function $g := (U, \gamma_2, f_1, f_2) : [-\varepsilon_0, \varepsilon_0] \rightarrow \mathbb{R} \times \mathbb{R} \times B_1$ such that

$$F \left(\varepsilon, U(\varepsilon), \gamma_2(\varepsilon), f_1(\varepsilon), f_2(\varepsilon) \right) = 0,$$

with

$$\left(U(0), \gamma_2(0), f_1(0), f_2(0) \right) = \left(\frac{\gamma_1}{2d}, \gamma_1, 0, 0 \right).$$

2. If (ε, f_1, f_2) is a solution then $(-\varepsilon, \tilde{f}_1, \tilde{f}_2)$ is also a solution, where

$$\forall w \in T, \quad \tilde{f}_j(w) = f_j(-w), \quad j = 1, 2.$$

3. For all $\varepsilon \in [-\varepsilon_0, \varepsilon_0] \setminus \{0\}$, the domains D_1^e and D_2^e are strictly convex.

Proof. Same arguments as in Proposition 3.

5. Asymptotic behavior. In this section we study the asymptotic expansion for small ε of the conformal mappings, the angular velocity, the center of rotation and the circulations.

5.1. Co-rotating pairs. In the case of the co-rotating pairs we get the following expansion at higher order in ε.

Proposition 5. The conformal mappings of the co-rotating domains, $\phi_j : T \rightarrow \partial D^e_j$, have the expansions

$$\phi_j(\varepsilon, w) = w + \delta_j \left(\frac{\varepsilon b_j}{d} \right)^2 w^2 + \frac{\delta_j}{2} \left(\frac{\varepsilon b_j}{d} \right)^3 w^4 + \frac{\delta_j}{3} \left(\frac{\varepsilon b_j}{d} \right)^4 \left(w^5 + 6(1 + \delta_j)w^3 \right) + \frac{\delta_j}{4} \left(\frac{\varepsilon b_j}{d} \right)^5 \left(w^7 + 3(1 + \delta_j)w^5 \right) + o(\varepsilon^5),$$
for all $w \in T$ and $j = 1, 2$ where $\delta_j = \frac{\gamma_{3-j}}{\gamma_j}$. The angular velocity has the expansion
\[
\Omega(\varepsilon) = \frac{\gamma_1 + \gamma_2}{2d^2} + \frac{\varepsilon^4}{2d^6} \left(\gamma_1 b_2^4 + \gamma_2 b_1^4 \right),
\]
and the center of rotation has the expansion
\[
Z(\varepsilon) = \frac{\gamma_2 d}{\gamma_1 + \gamma_2} + \frac{\varepsilon^4}{d^3(\gamma_1 + \gamma_2)^2} \left(\frac{\gamma_3 b_4}{\gamma_1} - \frac{\gamma_3 b_1}{\gamma_2} \right).
\]

Proof. Recall that
\[
\phi_j(\varepsilon, w) = w + \varepsilon b_j f_j(\varepsilon, w), \quad j = 1, 2.
\]
and from Proposition 3 one has
\[
F(\varepsilon, g(\varepsilon)) := F(\varepsilon, \Omega(\varepsilon), Z(\varepsilon), f_1(\varepsilon), f_2(\varepsilon)) = 0. \tag{24}
\]
where F is defined in (11). Moreover
\[
g(0) = (\Omega_0, Z_0, 0, 0). \tag{25}
\]
By the composition rule we get
\[
\partial_\varepsilon g(0) = -D_g F(0, g_0)^{-1} \partial_\varepsilon F(0, g_0). \tag{26}
\]
In view of (11) one has
\[
F_j(\varepsilon, g_0) = -\gamma_{3-j} \text{Im} \left\{ \left(\frac{1}{d} + \int_T \varepsilon (b_{3-j} \tau + b_j w) - d \tau \right) w \right\}
\]
and from (23) we conclude that
\[
\frac{\partial^\infty}{d^n+1} F_j(\varepsilon, g_0) = \gamma_{3-j} \sum_{n=1}^{\infty} \frac{\varepsilon^n b_j^n}{d^n+1} \text{Im} \{ w^{n+1} \}. \tag{27}
\]
Thus
\[
\frac{\partial^\infty}{d^n+1} F(0, g_0)(w) = \frac{n!}{d^n+1} \left(\frac{\gamma_2 b_1^n}{\gamma_1 b_2^n} \right) \text{Im} \{ w^{n+1} \}. \tag{28}
\]
Now, we shall write down the explicit expression of $D_g F(0, g_0)^{-1}$. Recall from Proposition 1 that for all $h = (\alpha_1, \alpha_2, h_1, h_2) \in \mathbb{R} \times \mathbb{R} \times X$ with
\[
h_j(w) = \sum_{n \geq 1} a_n^j \overline{w^n}, \quad j = 1, 2,
\]
one gets
\[
D_g F(0, g_0) h(w) = -2\alpha_1 d \frac{\gamma_2}{\gamma_1 + \gamma_2} \left(\frac{\gamma_1^2 + \gamma_2^2}{d^2} \right) \text{Im} \{ w \} - \alpha_2 \left(\frac{1}{d^2} \right) \text{Im} \{ w \}
\]
\[
- \sum_{n \geq 1} n \left(\frac{\gamma_1 a_1^n}{\gamma_2 a_2^n} \right) \text{Im} \{ w^{n+1} \}. \tag{29}
\]
Then, for any $k \in Y$ with the expansion
\[
k(w) = \sum_{n \geq 0} \left(A_n^k \right) \text{Im} \{ w^{n+1} \},
\]
Thus, for all \(h \) one has

\[
D_y F(0, g_0)^{-1} k(w) = -\left(\frac{A_0 + B_0}{2d}, \frac{(A_0 \gamma_1 - B_0 \gamma_2) d^2}{(\gamma_1 + \gamma_2)^2}, \sum_{n \geq 1} \frac{A_n}{n \gamma_1} w^n, \sum_{n \geq 1} \frac{B_n}{n \gamma_2} w^n \right). \tag{30}
\]

Combining the last identity with (28) and (26) we get

\[
\partial_\varepsilon g(0, w) = \left(0, 0, \frac{b_1 \gamma_2}{d^2 \gamma_1} w, \frac{b_2 \gamma_1}{d^2 \gamma_2} w \right). \tag{31}
\]

Let’s move to the second order derivative in \(\varepsilon \) at 0. By the composition rule we get

\[
\partial^2_{\varepsilon \varepsilon} g(0) = -D_y F(0, g_0)^{-1} \left(\partial^2_{\varepsilon \varepsilon} F(0, g_0) + 2D^2_{\varepsilon y} F(0, g_0) g'(0) \right) + D^2_{yy} F(0, g_0) [g'(0), g'(0)] \tag{32}
\]

Observe that

\[
F_j(0, g) = \text{Im} \left\{ 2\Omega \left((-1)^j Z + (1 - j) d \right) w - \gamma_j f_j'(w) + \frac{\gamma_3 - j}{d} w \right\}. \tag{33}
\]

Thus, for all \(h = (\alpha_1, \alpha_2, h_1, h_2), k = (\alpha_1, \alpha_2, k_1, k_2) \in \mathbb{R} \times \mathbb{R} \times X \), one has

\[
\partial^2_{\varepsilon y} F_j(0, g)[h, k] = (-1)^j 2\alpha_1 \beta_2 \text{Im} \{ w \}. \tag{34}
\]

From the identity (31) we get

\[
\partial^2_{\varepsilon y} F_j(0, g_0)[g'(0), g'(0)] = 0. \tag{35}
\]

Next, differentiating the identity (11) with respect to \(\varepsilon \) we get

\[
\partial_\varepsilon F_j(\varepsilon, g) = \text{Im} \left\{ 2\Omega \left[\varepsilon b_j \left(\overline{w} + \varepsilon b_j \overline{f_j(w)} \right) + \left((-1)^j Z - (j - 1) d \right) w b_j f_j'(w) \right] \right. \\
+ 2b_j \Omega \left(\overline{w} + 2\varepsilon b_j \overline{f_j(w)} \right) w \left(1 + \varepsilon b_j f_j'(w) \right) \\
+ b_j \gamma_j w \left(1 + 2\varepsilon b_j f_j'(w) \right) \int_T \frac{A B j - \overline{A B j}}{A (A + \varepsilon b_j B_j)} \left[f_j'(\tau) - \frac{B_j}{A} \right] d\tau \\
- \varepsilon b_j^2 \gamma_j w \left(1 + \varepsilon b_j f_j'(w) \right) \int_T \frac{B_j (A B j - \overline{A B j})}{A (A + \varepsilon b_j B_j)} \left[f_j'(\tau) - \frac{B_j}{A} \right] d\tau \\
- \gamma_3 - j b_j w f_j'(w) \int_T \frac{\tau + \varepsilon b_{3-j} f_{3-j}(\tau)}{\varepsilon C_j + \varepsilon^2 D_j - d} d\tau \\
- \gamma_3 - j b_{3-j} w \left(1 + \varepsilon b_j f_j'(w) \right) \\
	imes \int_T \frac{f_{3-j}(\tau) \left(1 + \varepsilon b_{3-j} f_{3-j}(\tau) \right) + \left(\tau + \varepsilon b_{3-j} f_{3-j}(\tau) \right) f_{3-j}'(\tau)}{\varepsilon C_j + \varepsilon^2 D_j - d} d\tau \\
+ \gamma_3 - j w \left(1 + \varepsilon b_j f_j'(w) \right) \\
\times \int_T \frac{C_j + \varepsilon D_j - \tau}{\varepsilon C_j + \varepsilon^2 D_j - d} d\tau \right\}. \tag{36}
\]

with

\[
A = \tau - w, \quad B_j = f_j(\tau) - f_j(w), \quad C_j = (b_{3-j} \tau + b_j w), \quad D_j = b_{3-j} f_{3-j}(\tau) + b_j^2 f_j(w).
\]
For $\varepsilon = 0$ we have

$$
\partial_\varepsilon F_j(0,g) = \text{Im} \left\{ 2\Omega \left((-1)^j Z - (j - 1)d \right) w_h f'_j(w) + b_j \gamma_j w \int_\mathbb{T} \frac{A B_j - \overline{A} B_j}{A^2} \left[f'_j(\tau) - \frac{B_j}{A} \right] d\tau + \frac{\gamma_3 - b_j}{d} w f'_j(w) + \frac{\gamma_3 - b_j}{d^2} w^2 \right\}.
$$

(37)

Consequently, for all $h = (\alpha_1, \alpha_2, h_1, h_2) \in \mathbb{R} \times \mathbb{R} \times X$, one finds

$$
\partial_{\varepsilon g}^2 F_j(0,g) h = 2 \text{Im} \left\{ \left[\alpha_1 \left((-1)^j Z - (j - 1)d \right) + \alpha_2 \Omega(-1)^j \right] w_h f'_j(w) + b_j \gamma_j w \int_\mathbb{T} \frac{2 \text{Im} \{ A(f_j(\tau) - f_j(w)) \}}{A^2} \left[h'_j(\tau) - \frac{h_j(\tau) - h_j(w)}{A} \right] d\tau + b_j \gamma_j w \int_\mathbb{T} \frac{2 \text{Im} \{ A(h_j(\tau) - \overline{h_j}(w)) \}}{A^2} \left[f'_j(\tau) - \frac{f_j(\tau) - f_j(w)}{A} \right] d\tau \right\}.
$$

(38)

Then, for $g = g_0 := \left(\frac{\gamma_1 + \gamma_2}{2d^2}, \frac{d \gamma_2}{\gamma_1 + \gamma_2}, 0, 0 \right)$ one gets

$$
\partial_{\varepsilon g}^2 F_j(0,g_0) h = 0.
$$

(39)

Plugging the identities (28), (30), (35) and (39) into (32) yields

$$
g''(0) = \left(0, 0, \frac{b_1^2 \gamma_2}{d^3 \gamma_1}, \frac{b_2^2 \gamma_1}{d^3 \gamma_2} \right).
$$

(40)

Next, we move to the third order derivative

$$
\partial_{\varepsilon g h}^3 g(0) = -D_g F(0,g_0) \left(\partial_{\varepsilon g h}^3 F(0,g_0) + 3\partial_{\varepsilon g h}^2 F(0,g_0) g'(0) \right) + 3\partial_{\varepsilon g h}^3 F(0,g_0) \left[g'(0), g'(0) \right] + 3\partial_{\varepsilon g h}^2 F(0,g_0) [g'(0), g'(0), g''(0)]
$$

(41)

Owing to the identity (37), for all $h = (\alpha_1, \alpha_2, h_1, h_2), k = (\beta_1, \beta_2, k_1, k_2) \in \mathbb{R} \times \mathbb{R} \times X$, one has one gets

$$
\partial_{\varepsilon g h}^3 F_j(0,g)[h,k] = \beta_1 \text{Im} \left\{ 2 \left((-1)^j Z - (j - 1)d \right) w_h k'_j(w) \right\}
$$

+ $\beta_2 \text{Im} \left\{ 2 \left((-1)^j Z - (j - 1)d \right) w_h k'_j(w) \right\} + \alpha_1 \text{Im} \left\{ 2 \left((-1)^j Z - (j - 1)d \right) w_h k'_j(w) \right\}
$$

+ $\alpha_2 \text{Im} \left\{ 2 \left((-1)^j Z - (j - 1)d \right) w_h k'_j(w) \right\} + (\alpha_1 \beta_2 + \alpha_2 \beta_1) \text{Im} \left\{ 2 \left((-1)^j Z - (j - 1)d \right) w_h k'_j(w) \right\}
$$

+ $\text{Im} \left\{ b_j \gamma_j w \int_\mathbb{T} \frac{2 \text{Im} \{ A(k_j(\tau) - k_j(w)) \}}{A^2} \left[h'_j(\tau) - \frac{h_j(\tau) - h_j(w)}{A} \right] d\tau + b_j \gamma_j w \int_\mathbb{T} \frac{2 \text{Im} \{ A(h_j(\tau) - \overline{h_j}(w)) \}}{A^2} \left[k'_j(\tau) - \frac{k_j(\tau) - k_j(w)}{A} \right] d\tau \right\}.
$$

(42)
Thus, for \(g = g_0 : = \left(\frac{\gamma_1 + \gamma_2}{2d}, \frac{d\gamma_2}{\gamma_1 + \gamma_2}, 0, 0 \right), h = g'(0) \) and \(k = g'(0) \) we find

\[
\partial^3_{\varepsilon g g} F_{\varepsilon}(0, g_0) = 2b_j^3 \gamma_j \operatorname{Im} \left\{ \frac{b_j^2}{\gamma_j} \int_T \frac{(\tau - w)^2}{(\tau - w)^2 - 1} \left(\tau^2 - \frac{\tau}{\tau - w} \right) d\tau \right\} = 2b_j^3 \gamma_j \operatorname{Im} \left\{ \frac{b_j^2}{\gamma_j} \right\} = 0.
\]

Next, differentiating (36) with respect to \(\varepsilon \) gives

\[
\partial^2_{\varepsilon \varepsilon} F_{\varepsilon}(\varepsilon, g) = 2 \operatorname{Im} \left\{ \omega f_j'(w) \left[2b_j^2 \Omega (\omega + 2b_j f_j'(w)) + b_j^2 \gamma_j \int_T \frac{AB_j - \overline{A}B_j}{A(A + \varepsilon b_j B_j)} \left[f_j'(\tau) - \frac{B_j}{\overline{A}} \right] d\tau \right. \right.
\]

\[
- \gamma_3 b_j b_{3-j} \int_T \frac{f_{3-j}(\tau)(1 + \varepsilon b_{3-j} f_{3-j}(\tau)) + (\tau + \varepsilon b_{3-j} f_{3-j}(\tau)) f_{3-j}'(\tau)}{\varepsilon C_j + \varepsilon^2 D_j - d} d\tau
\]

\[
+ \gamma_3 b_j \int_T \frac{(C_j + 2\varepsilon D_j) f_{3-j}(\tau)(1 + \varepsilon b_{3-j} f_{3-j}(\tau))}{(\varepsilon C_j + \varepsilon^2 D_j - d)^2} d\tau
\]

\[
+ \gamma_3 b_j \int_T \frac{f_{3-j}(\tau)(1 + \varepsilon b_{3-j} f_{3-j}(\tau))}{\varepsilon C_j + \varepsilon^2 D_j - d} d\tau
\]

\[
- \gamma_3 b_j^2 \int_T \frac{f_{3-j}(\tau) f_{3-j}'(\tau)}{\varepsilon C_j + \varepsilon^2 D_j - d} d\tau
\]

\[
+ \gamma_3 b_j^2 \int_T \frac{f_{3-j}(\tau)(1 + \varepsilon b_{3-j} f_{3-j}(\tau))}{(\varepsilon C_j + \varepsilon^2 D_j - d)^2} d\tau
\]

\[
+ \gamma_3 b_j \int_T \frac{D_j (\tau + \varepsilon b_{3-j} f_{3-j}(\tau))(1 + \varepsilon b_{3-j} f_{3-j}(\tau))}{(\varepsilon C_j + \varepsilon^2 D_j - d)^2} d\tau
\]

\[
- \gamma_3 b_j^2 \int_T \frac{(C_j + 2\varepsilon D_j)^2 (\tau + \varepsilon b_{3-j} f_{3-j}(\tau))(1 + \varepsilon b_{3-j} f_{3-j}(\tau))}{(\varepsilon C_j + \varepsilon^2 D_j - d)^3} d\tau \}
\]

where we have used the notation

\(A = \tau - w, B_j = f_j(\tau) - f_j(w), C_j = (b_{3-j} \tau + b_j w), D_j = b_{3-j} f_{3-j}(\tau) + b_j f_j(w). \)

At \(\varepsilon = 0 \) one has

\[
\partial^2_{\varepsilon \varepsilon} F_{\varepsilon}(0, g) = 2 \operatorname{Im} \left\{ 2b_j^2 \omega f_j'(w) + f_j'(w) \right\} + b_j^2 \gamma_j w f_j'(w) \int_T \frac{AB_j - \overline{A}B_j}{A^2} \left[f_j'(\tau) - \frac{B_j}{\overline{A}} \right] d\tau
\]
Thus, for all \(h = (\alpha_1, \alpha_2, h_1, h_2) \in \mathbb{R} \times \mathbb{R} \times X \) one finds

\[
\partial_{\varepsilon g}^3 F_j(0, g) h = 2a_1 \text{Im} \left\{ 2b_j^2 \left(w f_j(w) + f_j'(w) \right) \right\}
\]

\[
+ 2 \text{Im} \left\{ 2b_j^2 \left(w h_j(w) + h_j'(w) \right) + \frac{1}{d^2} \gamma_{3-j} w^2 b_j^2 h_j'(w) + \frac{1}{d^2} \gamma_{3-j} b_j^2 w h_j(w) \right. \\
+ b_j^2 \gamma_j w \int_0^\tau \left[f_j'(w) - B_j \right] A^2 \text{Im} \left\{ A(h_j(\tau) - h_j(w)) \right\} \left(f_j'(\tau) - \frac{B_j}{A} \right) d\tau \\
+ b_j^2 \gamma_j w \int_0^\tau \left[f_j'(w) - B_j \right] A^2 \left(f_j'(\tau) - \frac{h(\tau) - h_j(w)}{A} \right) d\tau \\
+ 2 \frac{b_j^2}{d^2} \gamma_{3-j} \text{Im} \left\{ w \int_0^\tau f_j'(\tau) h_{3-j}(\tau) d\tau + w \int_0^\tau h_j'(\tau) f_{3-j}(\tau) d\tau \right\}.
\]

Therefore, for \(g = g_0 := \left(\frac{\gamma_1 + \gamma_2}{2d^2}, \frac{\delta g_2}{\gamma_1 + \gamma_2}, 0, 0 \right) \), \(h = g'(0) \) we get

\[
\partial_{\varepsilon g}^3 F_j(0, g_0) g'(0) = \frac{4b_j^2}{d^4} \frac{\gamma_{3-j}}{\gamma_j} (\gamma_1 + \gamma_2) \text{Im} \left\{ w^2 \right\}.
\]

Next, in view of (34) one has

\[
\partial_{gg}^3 F(0, g_0) [g'(0), g''(0)] = 0
\]

(47)

and

\[
\partial_{ggg}^3 F(0, g_0) [h, k, l] = 0 \quad \text{for all} \quad h, k, l \in \mathbb{R} \times \mathbb{R} \times X.
\]

(48)

Putting together the identities (28), (43), (46), (47) (48) and (41) we conclude that

\[
\partial_{\varepsilon g}^3 g(0, w) = \frac{12}{d^3} \left(0, 0, b_1^3 \left(1 + \frac{\gamma_2}{\gamma_1} \frac{\gamma_2}{\gamma_1} \frac{w^2}{w^3} + b_1^3 \frac{\gamma_2}{\gamma_1} \frac{w^3}{w^4} + b_2^3 \left(1 + \frac{\gamma_1}{\gamma_2} \frac{\gamma_1}{\gamma_2} \frac{w^2}{w^3} + b_2^3 \frac{\gamma_1}{\gamma_2} \frac{w^3}{w^4} \right) \right) \right).
\]

(49)

Now we move to the fourth order derivative in \(\varepsilon \) of \(g \). By the composition rule we get

\[
\partial_{\varepsilon g g}^4 g(0, w) = -D_g F(0, g_0)^{-1} \left(\partial_{\varepsilon g g}^4 F(0, g_0) + 4 \partial_{\varepsilon g g}^3 F(0, g_0) g'(0) \right)
\]

\[
+ 6 \partial_{\varepsilon g g}^3 F(0, g_0) g''(0) + 6 \partial_{\varepsilon g g}^2 F(0, g_0) g'''(0) + 6 \partial_{\varepsilon g g} F(0, g_0) [g''(0), g''(0)] + 12 \partial_{\varepsilon g g}^3 [g''(0), g''(0)] + 4 \partial_{\varepsilon g g}^3 F(0, g_0) [g''(0), g''(0)]
\]

\[
+ 3 \partial_{gg}^2 F(0, g_0) [g''(0), g''(0)] + 4 \partial_{gg}^3 F(0, g_0) [g'''(0), g''(0)] + 6 \partial_{ggg}^3 F(0, g_0) [g''(0), g''(0), g''(0)] + 6 \partial_{ggg}^3 F(0, g_0) [g''(0), g''(0), g''(0)] + 6 \partial_{ggg}^3 F(0, g_0) [g''(0), g''(0), g''(0)] \right).
\]
In view of (34) one has
\[
\partial_{gg}^2 F(0, g_0) [g^{(3)}(0), g''(0)] = \partial_{gg}^2 F(0, g_0) [g''(0), g''(0)] = 0
\] (50)
and
\[
\partial_{ggg}^3 F(0, g_0) [g'(0), g'(0), g'(0), g'(0)] = \partial_{ggg}^3 F(0, g_0) [g''(0), g''(0), g'(0)] = 0. \quad (51)
\]
Moreover, from (39) we find
\[
\partial_{g} F(0, g_0) g^{(3)}(0) = 0 \quad (52)
\]
and by (42) we obtain
\[
\partial_{gggg} F_j(0, g) [h, k, l] = (\beta_1 \sigma_2 + \beta_2 \sigma_1) \Im \left\{ 2(-1)^j w b_j h'_j(w) \right\}
\]
and
\[
\partial_{gggg} F_j(0, g) [h, k, l] = (\alpha_1 \sigma_2 + \alpha_2 \sigma_1) \Im \left\{ 2(-1)^j w b_j k'_j(w) \right\}
\]
Consequently
\[
\partial_{gggg}^3 F_j(0, g_0) [g'(0), g'(0), g'(0)] = 0, \quad \text{for all} \quad h, k, l \in \mathbb{R} \times \mathbb{R} \times X.
\]
Therefore, we conclude that
\[
g^{(4)}(0) = -D_g F(0, g_0)^{-1} \left(\partial_{gggg}^4 F(0, g_0) + 4 \partial_{gggg}^4 F(0, g_0) g'(0)
\right)
\]
and
\[
+ 6 \partial_{gggg}^3 F(0, g_0) [g^{(2)}(0) + 6 \partial_{gggg}^3 F(0, g_0) [g''(0), g'(0)]
\]
\[
+ 12 \partial_{gggg}^3 F(0, g_0) [g''(0), g'(0)] \right) \quad (53)
\]
From (44) we get
\[
\partial_{gggg}^4 F_j(0, g_0) h = \frac{6 \gamma_3-j}{d^3} \Im \left\{ w b_j^3 h'_j(w) \right\}
\]
\[
+ b_{3-j} w \int_T (b_j w + b_{3-j} \tau)^2 [h_{3-j}'(\tau) + \tau h_{3-j}''(\tau)] d\tau
\]
\[
+ 2w \int_T (b_j^2 h_j(w) + b_{3-j}^2 h_{3-j}(\tau))(b_j w + b_{3-j} \tau) d\tau \right\},
\]
for all \(h, k, l \in \mathbb{R} \times \mathbb{R} \times X \). Replacing \(h \) by \(g'(0) = \left(0, 0, \frac{b_3}{d \gamma_1} w, \frac{b_3}{d \gamma_2} \bar{w} \right) \) gives
\[
\partial_{gggg}^4 F_j(0, g_0) g'(0) = \frac{6 \gamma_3-j}{d^3} \Im \left\{ - \frac{b_j^4}{\gamma_j} \gamma_{3-j} w
\right\}
\]
\[
+ \frac{b_j^3}{\gamma_{3-j}} w \int_T (b_j w + b_{3-j} \tau)^2 [\tau - \bar{\tau}]^3 d\tau
\]
\[
+ 2w \int_T \left(\frac{b_j^3}{\gamma_j} \gamma_{3-j} w + \frac{b_{3-j}^3}{\gamma_{3-j}} \bar{w} \right)(b_j w + b_{3-j} \tau) d\tau \right\}.
\]
Thus
\[\partial^{4}_{\varepsilon\varepsilon\varepsilon\varepsilon} F_j(0, g_0) g'(0) = \frac{6}{d^5} \left(\gamma_j b_{3-j}^4 + \frac{\gamma_{3-j}^2 b_j^4}{\gamma_j} \right) \text{Im} \left\{ w \right\}. \] (54)

Replacing \(h \) by \(g''(0) = \left(0, 0, \frac{b_j^2}{w^2}, \frac{b_j^2}{w^2} \right) \) in (45) we get
\[\partial^{3}_{\varepsilon\varepsilon\varepsilon} F_j(0, g_0) g''(0) = \frac{2b_j^4}{d^5} \frac{\gamma_{3-j}}{\gamma_j} \text{Im} \left\{ (\gamma_1 + \gamma_2) \left(w^3 - 2w^3 - \gamma_{3-j} w \right) \right\} \]
\[= \frac{6b_j^4}{d^5} \frac{\gamma_{3-j}}{\gamma_j} (\gamma_1 + \gamma_2) \text{Im} \left\{ w^3 \right\} + \frac{2b_j^4}{d^5} \frac{\gamma_{3-j}}{\gamma_j} \text{Im} \left\{ w \right\}. \] (55)

From (42) we get
\[\partial^{3}_{\varepsilon\varepsilon\varepsilon} F_j(0, g_0) [g''(0), g'(0)] \]
\[= b_j \gamma_j \text{Im} \left\{ \int_T \frac{2 \text{Im} \left\{ A \left(\partial_{\varepsilon\varepsilon} f_j(0, \tau) - \partial_{\varepsilon\varepsilon} f_j(0, w) \right) \right\}}{A^2} \right. \]
\[\times \left[\partial^{3}_{\varepsilon\varepsilon\varepsilon} f_j(0, \tau) - \partial^{2}_{\varepsilon\varepsilon} f_j(0, \tau) \right. \]
\[- \partial_{\varepsilon\varepsilon} f_j(0, w) \left. \right\} d\tau \right. \]
\[+ b_j \gamma_j \text{Im} \left\{ \int_T \frac{2 \text{Im} \left\{ A \left(\partial_{\varepsilon\varepsilon} f_j(0, \tau) - \partial_{\varepsilon\varepsilon} f_j(0, w) \right) \right\}}{A^2} \right. \]
\[\times \left[\partial^{2}_{\varepsilon\varepsilon} f_j(0, \tau) - \partial_{\varepsilon\varepsilon} f_j(0, \tau) \right. \]
\[- \partial_{\varepsilon\varepsilon} f_j(0, w) \left. \right\} d\tau \right. \]
\[= b_j \gamma_j \text{Im} \left\{ - \frac{b_j^3}{d^5} \frac{\gamma_{3-j}}{\gamma_j^2} \right. \int_T \left(1 - \frac{(\tau - w)^2}{(\tau - w)^2} \right) \left(2\tau^3 - \frac{\tau^2}{\tau - w} \right) d\tau \]
\[- b_j \frac{\gamma_{3-j}}{d^5} \frac{\gamma_{3-j}}{\gamma_j} \int_T \left(w + \tau - \frac{(\tau - w)(\tau^2 - w^2)}{(\tau - w)^2} \right) \left(\tau + \frac{\tau - w}{\tau - w} \right) d\tau \right. \]
\[= \frac{b_j^4}{d^5} \frac{\gamma_{3-j}}{\gamma_j} \text{Im} \left\{ w \right\}. \] (56)

Now using the fact that
\[\tau - w = -(\tau - w)w \quad \forall w, \tau \in T, \]
we get
\[\partial^{3}_{\varepsilon\varepsilon\varepsilon} F_j(0, g_0) [g''(0), g'(0)] = - \frac{b_j^4}{d^5} \frac{\gamma_{3-j}}{\gamma_j} \text{Im} \left\{ w \right\}. \] (56)

From (45) we find
\[\partial^{3}_{\varepsilon\varepsilon\varepsilon\varepsilon} F_j(0, g_0) [h, k] = \]
\[\alpha_1 \text{Im} \left\{ 4b_j^2 \left(w k_j(w) + k'_j(w) \right) \right\} + 2\beta_1 \text{Im} \left\{ 2b_j^2 \left(w^2 h_j(w) + h'_j(w) \right) \right\} \]
\[+ \frac{2}{d^5} \frac{\gamma_{3-j}}{\gamma_j} \text{Im} \left\{ w \int \left(k_{3-j}(\tau) h_{3-j}(\tau) d\tau + w \int \left(k_{3-j}(\tau) h_{3-j}(\tau) d\tau \right) \right. \right. \]
\[\left. \left. + \frac{\gamma_{3-j}}{\gamma_j} \text{Im} \left\{ w \right\}. \right) \right. \] (57)
Plugging in the identities (28), (54), (56) and (57) into (86) we get

$$g^{(4)}(0) = -24 \frac{d^5}{d^5} D_g F(0, g_0)^{-1} \left(\frac{\gamma_1 b_1^4}{\gamma_1 b_2} \Im \{ w^5 \} + \frac{6}{4} (\gamma_1 + \gamma_2) \frac{2 \gamma_1 b_1^4}{\gamma_1 b_2} \Im \{ w^3 \} \right) + \left(\frac{\gamma_1 b_1^4 - \gamma_1 \gamma_2}{\gamma_1 b_2} + \frac{2 \gamma_1 b_1^4}{\gamma_1 b_2} \right) \Im \{ w \}. \right) \right) \right) \right).$$

(58)

In view of (30) we conclude that

$$g^{(4)}(0) = 24 \frac{d^5}{d^5} \left(\frac{\gamma_1 b_1^4 + \gamma_2 b_1^4}{2d}, \frac{d^2 (\gamma_1 b_1^4 - \gamma_1^4 b_1^4)}{\gamma_1 \gamma_2 (\gamma_1 + \gamma_2)^2}, \frac{1}{4} \frac{\gamma_1^2 b_1^4}{\gamma_1} \Im w^4 + \frac{3}{4} \frac{\gamma_2}{\gamma_1} (\gamma_1 + 1) \Im b_1^4 \Im w^2, \frac{1}{4} \frac{\gamma_1^2 b_1^4}{\gamma_2} \Im w^2 + \frac{3}{4} \frac{\gamma_1}{\gamma_2} (\gamma_1 + 1) \Im b_2^4 \Im w^2 \right) \right).$$

5.2. Counter-rotating pairs. Next we shall prove the following expansion.

Proposition 6. The conformal mappings of the counter-rotating domains, \(\phi_j : T \rightarrow \partial D^*_j \), have the expansions

$$\phi_j(\varepsilon, w) = w - \left(\frac{\varepsilon b_j}{d} \right)^2 w - \frac{1}{2} \left(\frac{\varepsilon b_j}{d} \right)^3 w^2 - \frac{1}{3} \left(\frac{\varepsilon b_j}{d} \right)^4 w^3 - \frac{1}{4} \left(\frac{\varepsilon b_j}{d} \right)^5 w^4 + o(\varepsilon^5),$$

for all \(w \in T \). Moreover,

$$U(\varepsilon) = \frac{\gamma_1}{2d} \left(1 + \frac{\varepsilon^4}{d^2} (2b_1^4 + b_2) \right) + o(\varepsilon^4)$$

$$\gamma_2(\varepsilon) = \gamma_1 \left(1 + \frac{\varepsilon^4}{d^2} (b_1^4 - b_2^4) \right) + o(\varepsilon^4).$$

Proof. Recall that

$$\phi_j(\varepsilon, w) = w + \varepsilon b_j f_j(\varepsilon, w), \quad j = 1, 2.$$

Moreover, in view of Proposition 4 one has

$$F \left(\varepsilon, g(\varepsilon) \right) := F \left(\varepsilon, U(\varepsilon), \gamma_2(\varepsilon), f_1(\varepsilon), f_2(\varepsilon) \right) = 0$$

and

$$g(0)= \left(U(0), \gamma_2(0), f_1(0), f_2(0) \right) = \left(\frac{\gamma_1}{2d}, \gamma_1, 0, 0 \right),$$

where \(F \) is defined by (17). By the composition rule we get

$$\partial_\varepsilon g(0) = -D_g F(0, g_0)^{-1} \partial_\varepsilon F(0, g_0).$$

(61)

In view of (17) one has

$$F_j(\varepsilon, g_0) = \gamma_1 \Im \left\{ \left(\frac{1}{d} + \int_T \frac{\tau}{\varepsilon (b_{3-j} \tau + b_j w) - d} d\tau \right) w \right\}$$

$$= \gamma_1 \Im \left\{ \left(\frac{1}{d} - \sum_{n=0}^{\infty} \gamma^n \frac{d^n}{d^n + 1} \int_T \tau (b_{3-j} \tau + b_j w)^n d\tau \right) w \right\}$$

$$= -\frac{\gamma_1}{d} \sum_{n=1}^{\infty} \frac{\varepsilon^n b_j^4}{d^n} \Im \{ w^{n+1} \}.$$
Thus

\[\partial^n \varepsilon F(0, g_0)(w) = -\frac{n! \gamma_1}{d^n+1} \left(\frac{b^n_1}{b^n_2} \right) \text{Im}\{w^{n+1}\}. \]

(62)

Recall from Proposition 2 that for all \(h = (\alpha_1, \alpha_2, h_1, h_2) \in \mathbb{R} \times \mathbb{R} \times X \) with

\[h_j(w) = \sum_{n \geq 1} a^n_j w^n, \quad j = 1, 2, \]

one has

\[D_g F(0, g_0) h(w) = \alpha_1 \left(\frac{2}{2} \right) \text{Im}\{w\} - \frac{\alpha_2}{d} \left(\frac{1}{0} \right) \text{Im}\{w\} \]

\[- \gamma_1 \sum_{n \geq 1} n \left(a^n_1 a^n_2 \right) \text{Im}\{w^{n+1}\}. \]

(63)

Then, for any \(k \in Y \) with the expansion

\[k(w) = \sum_{n \geq 0} \left(\frac{A_n}{B_n} \right) \text{Im}\{w^{n+1}\}, \]

one has

\[D_g F(0, g_0)^{-1} k(w) = - \left(-\frac{B_0}{2}, d(A_0 - B_0), \sum_{n \geq 1} A_n \frac{A_n}{\gamma_1 n} w^n, \sum_{n \geq 1} B_n \frac{B_n}{\gamma_1 n} w^n \right). \]

(64)

Combining the last identity with (62), (61) and (64) we get

\[\partial g(0, w) = -\frac{1}{d^2} \left(0, 0, b_1 \ov{w}, b_2 \ov{w} \right). \]

(65)

Let’s move to the second order derivative in \(\varepsilon \) at 0. By the composition rule we get

\[\partial^2 \varepsilon g(0) = -D_g F(0, g_0)^{-1} \left(\partial^2 \varepsilon F(0, g_0) + 2 D^2_{\varepsilon g} F(0, g_0) g'(0) \right) g'(0) \]

\[+ D^2_{gg} F(0, g_0)[g'(0), g'(0)] \right). \]

(66)

Observe that

\[F_j(0, g) = \text{Im}\left\{ 2 U w - \gamma_j f'_j(w) \right\}. \]

(67)

Thus, for all \(h = (\alpha_1, \alpha_2, h_1, h_2), k = (\beta_1, \beta_2, k_1, k_2) \in \mathbb{R} \times \mathbb{R} \times X \), one has

\[\partial^2_{gg} F_1(0, g)[h, k] = 0, \quad \partial^2_{gg} F_2(0, g)[h, k] = -\alpha_2 \text{Im}\left\{ k'_2(w) \right\} - \beta_2 \text{Im}\left\{ h'_2(w) \right\}. \]

(68)

From the identity (65) we get

\[\partial^2_{gg} F_j(0, g_0)[g'(0), g'(0)] = 0. \]

(69)

Next, differentiating the identity (17) with respect to \(\varepsilon \) we get

\[\partial \varepsilon F_j(\varepsilon, g) = \text{Im}\left\{ 2 U w b_j f'_j(w) \right\}. \]
where we have used the notation

Next, we move to the third order derivative

\[
\partial_{x_5}^3 g(0) = -D_g F(0, g_0)^{-1} \left\{ \partial_{x_5}^3 g(0, g_0) + 3 \partial_{x_5 x_5}^2 g(0, g_0) g'(0) \
+ 3 \partial_{x_5 x_5}^2 g(0, g_0) \left[g'(0), g''(0) \right] + 3 \partial_{x_5 x_5}^2 g(0, g_0) g''(0) \right\}.
\]
By virtue of the identity (71), for all \(h = (\alpha_1, \alpha_2, h_1, h_2), k = (\beta_1, \beta_2, k_1, k_2) \in \mathbb{R} \times \mathbb{R} \times X \), one has

\[
\frac{\partial^2_{\varepsilon g} F_j(0, g)[h, k]}{\varepsilon} = \alpha_1 \text{Im} \left\{ 2wb_jk_j'(w) \right\} + \beta_1 \text{Im} \left\{ 2wb_jh_j'(w) \right\}
\]

\[
- \frac{\alpha_2 b_j d_1^i}{d} \text{Im} \left\{ wk_j'(w) \right\} - \frac{\beta_2 b_j d_1^i}{d} \text{Im} \left\{ wh_j'(w) \right\} + (\alpha_2 + \beta_2) \delta_j b_j \text{Im} \left\{ w \right\}
\]

\[
\times \int_{\tau} \frac{2\text{Im} \left\{ A(\beta_j - f_j(w)) \right\}}{A^2} \left[h_j'(\tau) - \frac{h_j(\tau) - h_j(w)}{A} \right] d\tau + w \int_{\tau} \frac{2\text{Im} \left\{ A(k_j - k_j(w)) \right\}}{A^2} \left[f_j'(\tau) - \frac{f_j(\tau) - f_j(w)}{A} \right] d\tau \right\}
\]

\[
+ b_j \gamma_j \text{Im} \left\{ w \int_{\tau} \frac{2\text{Im} \left\{ A(\beta_j - f_j(w)) \right\}}{A^2} \left[h_j'(\tau) - \frac{h_j(\tau) - h_j(w)}{A} \right] d\tau \right\}
\]

\[
+ w \int_{\tau} \frac{2\text{Im} \left\{ A(k_j - k_j(w)) \right\}}{A^2} \left[k_j'(\tau) - \frac{k_j(\tau) - k_j(w)}{A} \right] d\tau \right\}.
\]

Thus, for \(g = g_0 : = \left(\gamma, \gamma, 0, 0 \right) \), \(h = g'(0) \) and \(k = g'(0) \) we find

\[
\frac{\partial^3_{\varepsilon g} F_j(0, g_0)[g'(0), g'(0)]}{\varepsilon} = \frac{2\gamma b_j d_1^i}{d} \int_{\tau} \left(1 - \frac{(\tau - \bar{w})^2}{(\tau - \bar{w})^2} \right) \left((\tau - \bar{w})^2 - \frac{(\tau - \bar{w})}{\tau - \bar{w}} \right) d\tau = 0.
\]

Next, differentiating (70) with respect to \(\varepsilon \) gives

\[
\frac{\partial^2_{\varepsilon} F_j(\varepsilon, g)}{\varepsilon} = \text{Im} \left\{ -2b_j w \left[(1 + \varepsilon b_j f_j'(w)) \int_{\tau} \frac{B_j(AB_j - A B_j)}{A(A + \varepsilon b_j B_j)^2} \left[f_j'(\tau) - \frac{B_j}{A} \right] d\tau \right.
ight.
\]

\[
+ b_j w f_j'(w) \left[2b_j \gamma_j \int_{\tau} \frac{A B_j - A B_j}{A + \varepsilon b_j B_j} \left[f_j'(\tau) - \frac{B_j}{A} \right] d\tau \right.
\]

\[
+ 2\gamma_{3-j} - 3 \int_{\tau} \frac{B_j(AB_j - A B_j)}{A(A + \varepsilon b_j B_j)^3} \left[f_j'(\tau) - \frac{B_j}{A} \right] d\tau \right\}
\]

\[
- 2\gamma_{3-j} \int_{\tau} \frac{(C_j + 2\varepsilon D_j)(\tau + \varepsilon b_{3-j} f_{3-j}')(\tau + \varepsilon b_{3-j} f_{3-j}')}{(\varepsilon C_j + \varepsilon^2 D_j - \bar{d})^2} d\tau \right.
\]

\[
+ w \left(1 + \varepsilon b_j f_j'(w) \right) \left[2\varepsilon b_j^2 \gamma_j \int_{\tau} \frac{B_j^2(AB_j - A B_j)}{A(A + \varepsilon b_j B_j)^3} \left[f_j'(\tau) - \frac{B_j}{A} \right] d\tau \right.
\]

\[
+ 2\varepsilon^2 b_{3-j} \gamma_{3-j} w \left[f_{3-j}'(\tau) \frac{(C_j + 2\varepsilon D_j)}{(\varepsilon C_j + \varepsilon^2 D_j - \bar{d})^2} \right. \frac{f_{3-j}'(\tau)}{\varepsilon C_j + \varepsilon^2 D_j - \bar{d}} \left. d\tau \right.
\]

\[
- 2\gamma_{3-j} \int_{\tau} \frac{(C_j + 2\varepsilon D_j)(\tau + \varepsilon b_{3-j} f_{3-j})}{(\varepsilon C_j + \varepsilon^2 D_j - \bar{d})^2} d\tau \right)
\]

\[
- 2\gamma_{3-j} \int_{\tau} \frac{(C_j + 2\varepsilon D_j)(\tau + \varepsilon b_{3-j} f_{3-j}')}{(\varepsilon C_j + \varepsilon^2 D_j - \bar{d})^2} d\tau \right).
\]
\[-2\gamma_3 \int_T D_j \left(\tau + \varepsilon b_{3-j} f_{3-j}(\tau) \right) \left(1 + \varepsilon b_{3-j} f_{3-j}^2(\tau) \right) d\tau \]

\[+ 2\gamma_3 \int_T \left(C_j + 2\varepsilon D_j \right)^2 \left(\tau + \varepsilon b_{3-j} f_{3-j}(\tau) \right) \left(1 + \varepsilon b_{3-j} f_{3-j}^2(\tau) \right) d\tau \] \quad \tag{77}

For \(\varepsilon = 0 \) one has

\[\partial^2_{\varepsilon \varepsilon} F_j(0, g) = 2 \text{Im} \left\{ \frac{b_j^2 \gamma_j w}{A^2} \int_T A B_j - \bar{A} B_j \left[\frac{f_j'(\tau) - B_j}{A} \right] \left[\frac{f_j'(\tau) - B_j}{A} \right] d\tau \right\} \]

\[- \frac{1}{d^2} \gamma_3 \int_T b_j^2 f_j'(w) - \frac{1}{d^2} \int_T f_j'(\tau) f_{3-j}(\tau) d\tau + w f_j(w) + \frac{1}{d} w^2 \]

\[+ 2 \gamma_j w \int_T \left[h_j'(w) - \frac{h_j(\tau) - h_j(w)}{A} \right] A B_j - \bar{A} B_j \left[\frac{f_j'(\tau) - B_j}{A} \right] d\tau \]

\[+ \gamma_j w \int_T \left[f_j'(\tau) - \frac{B_j}{A} \right] \left[\frac{f_j'(\tau) - B_j}{A} \right] d\tau \]

\[+ \gamma_j w \int_T \left[f_j'(\tau) - \frac{B_j}{A} \right] \left[\frac{f_j'(\tau) - B_j}{A} \right] d\tau \]

\[- \frac{2}{d^2} \gamma_3 \int_T w \int_T f_j'(\tau) h_{3-j}(\tau) d\tau + w \int_T h_j'(\tau) f_{3-j}(\tau) d\tau \] \quad \tag{78}

Therefore, for \(g = g_0 := \left(\frac{\gamma_j}{2d^2}, \gamma_3, 0, 0 \right) \), \(h = g'(0) \) we get

\[\partial^3_{\varepsilon \varepsilon \varepsilon} F_j(0, g_0) g'(0) = 0. \] \quad \tag{79}

Next, in view of (68) one has

\[\partial^3_{ggg} F(0, g_0) \left[g'(0), g''(0) \right] = 0 \] \quad \tag{80}

and

\[\partial^3_{ggg} F(0, g_0) \left[h, k, l \right] = 0 \quad \text{for all} \quad h, k, l \in \mathbb{R} \times \mathbb{R} \times X. \] \quad \tag{81}

Putting together the identities (62), (76), (79), (80), (81) and (74) we conclude that

\[\partial^3_{\varepsilon \varepsilon \varepsilon} g(0, w) = -\frac{2}{d^2} \left(0, 0, b_1^3 w^3, b_2^3 w^3 \right). \] \quad \tag{82}
Now we move to the fourth order derivative in ε of g. By the composition rule we get

$$
\partial^4_{\varepsilon\varepsilon\varepsilon\varepsilon} g(0) = -D_g F(0, g_0)^{-1} \left(\partial^4_{\varepsilon\varepsilon\varepsilon} F(0, g_0) + 4\partial^4_{\varepsilon\varepsilon\varepsilon} F(0, g_0) g'(0) \\
+ 6\partial^3_{\varepsilon\varepsilon} F(0, g_0) g^{(2)}(0) + 4\partial^3_{\varepsilon\varepsilon} F(0, g_0) g^{(3)}(0) + 6\partial^4_{\varepsilon\varepsilon\varepsilon} F(0, g_0) [g'(0), g'(0)] \\
+ 12\partial^3_{\varepsilon\varepsilon\varepsilon} F(0, g_0) [g''(0), g'(0)] + 4\partial^4_{\varepsilon\varepsilon\varepsilon} F(0, g_0) [g'(0), g'(0), g'(0)] \\
+ 3\partial^2_{\varepsilon\varepsilon} F(0, g_0) [g''(0), g''(0)] + 4\partial^2_{\varepsilon\varepsilon} F(0, g_0) [g^{(3)}(0), g'(0)] \\
+ 6\partial^3_{\varepsilon\varepsilon\varepsilon} F(0, g_0) [g'(0), g''(0), g'(0)] + \partial^4_{\varepsilon\varepsilon\varepsilon\varepsilon} F(0, g_0) [g'(0), g'(0), g'(0), g'(0)] \right).
$$

In view of (68) one has

$$
\partial^2_{\varepsilon\varepsilon} F(0, g_0) [g^{(3)}(0), g'(0)] = \partial^2_{\varepsilon\varepsilon} F(0, g_0) [g''(0), g'(0)] = 0
$$

and

$$
\partial^4_{\varepsilon\varepsilon\varepsilon\varepsilon} F(0, g_0) [g'(0), g'(0), g'(0), g'(0)] = \partial^4_{\varepsilon\varepsilon\varepsilon\varepsilon} F(0, g_0) [g'(0), g'(0), g'(0)] = 0.
$$

Moreover, from (71) we find

$$
\partial_{\varepsilon g} F(0, g_0) g^{(3)}(0) = 0
$$

and by (75) we obtain

$$
\partial^4_{\varepsilon\varepsilon\varepsilon\varepsilon} F_j(0, g)[h, k, l]
= (\alpha_2 + \beta_2) \delta_{2j} \text{Im} \left\{ b_j w \int_{\tau} \frac{2i \text{Im} \{ A(l_j(\tau) - l_j(w)) \} \left[h_j' (\tau) - \frac{h_j(\tau) - h_j(w)}{A} \right] d\tau}{A^2} \right. \\
+ b_j w \int_{\tau} \frac{2i \text{Im} \{ A(h_j(\tau) - h_j(w)) \} \left[l_j' (\tau) - \frac{l_j(\tau) - l_j(w)}{A} \right] d\tau}{A^2} \right. \\
+ \sigma_j \text{Im} \left\{ b_j w \int_{\tau} \frac{2i \text{Im} \{ A(k_j(\tau) - k_j(w)) \} \left[h_j' (\tau) - \frac{h_j(\tau) - h_j(w)}{A} \right] d\tau}{A^2} \right. \\
+ b_j w \int_{\tau} \frac{2i \text{Im} \{ A(h_j(\tau) - h_j(w)) \} \left[k_j' (\tau) - \frac{k_j(\tau) - k_j(w)}{A} \right] d\tau}{A^2} \right. \right\},
$$

Consequently

$$
\partial^3_{\varepsilon\varepsilon\varepsilon} F_j(0, g_0)[g'(0), g'(0), g'(0)] = 0, \text{ for all } h, k, l \in \mathbb{R} \times \mathbb{R} \times X.
$$

Therefore, we conclude that

$$
g^{(4)}(0) = -D_g F(0, g_0)^{-1} \left(\partial^4_{\varepsilon\varepsilon\varepsilon} F(0, g_0) + 4\partial^4_{\varepsilon\varepsilon\varepsilon} F(0, g_0) g'(0) \\
+ 6\partial^3_{\varepsilon\varepsilon} F(0, g_0) g^{(2)}(0) + 6\partial^3_{\varepsilon\varepsilon} F(0, g_0) [g'(0), g'(0)] \\
+ 12\partial^3_{\varepsilon\varepsilon\varepsilon} F(0, g_0) [g''(0), g'(0)] + \partial^4_{\varepsilon\varepsilon\varepsilon\varepsilon} F(0, g_0) [g'(0), g'(0), g'(0), g'(0)] \right).
$$
From (75) we get
\[
\partial_{x_0 x_0 x_0 x_0}^4 F_j(0, g_0) h = -\frac{6\gamma_1}{d^3} \text{Im} \left\{ w b_3^4 h'_j(w) + b_3 w \int_T (b_j w + b_3 - j \tau)^2 \left[h_3 - j (\tau) + \tau h_3 - j (\tau) \right] d\tau \\
+ 2w \int_T (b_j^2 h_j(w) + b_3^2 h_3 - j (\tau))(b_j w + b_3 - j \tau) \tau d\tau \right\},
\]
for all \(h \in \mathbb{R} \times \mathbb{R} \times X \). Replacing \(h \) by \(g'(0) = \left(0, 0, -\frac{b_3}{d^2} \bar{w}, -\frac{b_3}{d^2} \bar{w} \right) \) gives
\[
\partial_{x_0 x_0 x_0 x_0}^4 F_j(0, g_0) g'(0) = -\frac{6\gamma_1}{d^3} \text{Im} \left\{ b_j^4 w - b_3^2 w \int_T (b_j w + b_3 - j \tau)^2 \left[\tau - \bar{\tau}^3 \right] d\tau \\
- 2w \int_T (b_j^2 w + b_3^2 \tau)(b_j w + b_3 - j \tau) \tau d\tau \right\}.
\]
Thus
\[
\partial_{x_0 x_0 x_0 x_0}^4 F_j(0, g_0) g'(0) = \frac{6\gamma_1}{d^3} \left(b_j^4 + b_3^4 \right) \text{Im} \left\{ w \right\}.
\] (87)
Replacing \(h \) by \(g''(0) = \left(0, 0, -\frac{b_3}{d^2} \bar{w}^2, -\frac{b_3}{d^2} \bar{w}^2 \right) \) in (78) we get
\[
\partial_{x_0 x_0 x_0 x_0}^3 F_j(0, g_0) g''(0) = \frac{2\gamma_1 b_j^4}{d^3} \text{Im} \left\{ w \right\}.
\] (88)
From (75) we get
\[
\partial_{x_0 x_0 x_0 x_0}^3 F_j(0, g_0) [g''(0), g'(0)]
= \gamma_1 \text{Im} \left\{ b_j w \int_T 2 \text{Im} \left\{ A (\partial_{\tau} f_j(0, \tau) - \partial_{x_0} f_j(0, w)) \right\} \right\}
\times \left[\partial_{x_0 x_0 x_0}^2 f_j(0, \tau) - \partial_{x_0 x_0} f_j(0, \tau) - \partial_{x_0} f_j(0, w) \right] d\tau
+ b_j w \int_T 2 \text{Im} \left\{ A (\partial_{\tau}^2 f_j(0, \tau) - \partial_{x_0}^2 f_j(0, w)) \right\}
\times \left[\partial_{x_0 x_0 x_0}^2 f_j(0, \tau) - \partial_{x_0 x_0} f_j(0, \tau) - \partial_{x_0} f_j(0, w) \right] d\tau \right\}
= \gamma_1 \text{Im} \left\{ -\frac{b_j^4}{d^5} w \int_T \left(1 - \frac{(\tau - w)^2}{(\tau - w)^2} \right) \left(2\tau^2 + \frac{\tau^2 - w^2}{\tau - w} \right) d\tau \\
- \frac{b_j^4}{d^5} w \int_T \left(w + \tau - \frac{(\tau - w)(\tau^2 - w^2)}{(\tau - w)^2} \right) \left(\tau^2 + \frac{\tau - w}{\tau - w} \right) d\tau \right\}.
\]
Now using the fact that \(\tau - w = -(\tau - w)\bar{w} \forall w, \tau \in T \),
we get
\[
\partial_{x_0 x_0 x_0 x_0}^3 F_j(0, g_0) [g''(0), g'(0)] = -\frac{\gamma_1 b_j^4}{d^5} \text{Im} \left\{ w \right\}.
\] (89)
From (78) we find
\begin{align*}
\partial_{x egg}^3 F_j(0, g_0)[h, k] = -\frac{2\gamma_1}{d} b_{3-j}^2 \operatorname{Im} \left\{ w \int_T \kappa_{3-j}(\tau) \bar{h}_{3-j}(\tau) d\tau + w \int_T \kappa'_{3-j}(\tau) \bar{k}_{3-j}(\tau) d\tau \right\}.
\end{align*}
Therefore
\begin{align*}
\partial_{x egg}^3 F_j(0, g_0)[g'(0), g'(0)] = \frac{4\gamma_1 b_{3-j}^2}{d^5} \operatorname{Im} \left\{ w \right\}. \tag{90}
\end{align*}
Plugging in the identities (57), (87), (88), (89) and (90) into (86) we get
\begin{align*}
g^{(4)}(0) = -\frac{24}{d^4} D_4 F(0, g_0)^{-1} \left(- \left(\frac{b_1^4}{b_2^4} \right) \operatorname{Im} \left\{ w^5 \right\} + \frac{\gamma_1}{d} \left(\frac{b_1^4}{b_2^4 + 2b_1^4} \right) \operatorname{Im} \left\{ w \right\} \right).
\end{align*}
By virtue of (64) we conclude that
\begin{align*}
g^{(4)}(0) = \frac{24}{d^4} \left(\frac{\gamma_1}{2d} \left(2b_1 + b_2^4 \right), \frac{\gamma_1}{2d} \left(b_1^4 - b_2^4 \right), -\frac{1}{4} \frac{b_1^4}{b_2^4}, -\frac{1}{4} \frac{b_2^4}{b_1^4} \right), \tag{91}
\end{align*}
which achieves the proof of the desired result. \hfill \Box

REFERENCES

[1] T. Bartsch and M. Sacchet, Periodic solutions with prescribed minimal period of vortex type problem in domains, *Nonlinearity*, **31** (2018), 2156–2172.
[2] J. Burbea, Motions of vortex patches, *Lett. Math. Phys.*, **6** (1982), 1–16.
[3] A. Castro, D. Córdoba and J. Gómez-Serrano, Existence and regularity of rotating global solutions for the generalized surface quasi-geostrophic equations, *Duke Math. J.*, **165** (2016), 935–984.
[4] A. Castro, D. Córdoba and J. Gómez-Serrano, Uniformly rotating analytic global patch solutions for active scalars, *Ann. PDE*, **2** (2016), Art. 1, 34 pp.
[5] A. Castro, D. Córdoba and J. Gómez-Serrano, Uniformly rotating smooth solutions for the incompressible 2D Euler equations, *Arch. Ration. Mech. Anal.*, **231** (2019), 719–785.
[6] G. S. Deem and N. J. Zabusky, Vortex waves: Stationary V-states interactions, recurrence, and breaking, *Phys. Rev. Lett.*, **40** (1978), 859–862.
[7] F. de la Hoz, Z. Hassainia and T. Hmidi, Doubly connected V-states for the generalized surface quasi-geostrophic equations, *Arch. Ration. Mech. Anal.*, **220** (2016), 1209–1281.
[8] F. de la Hoz, Z. Hassainia, T. Hmidi and J. Mateu, An analytical and numerical study of steady patches in the disc, *Anal. PDE*, **9** (2016), 1609–1670.
[9] D. G. Dritschel, A general theory for two-dimensional vortex interactions, *J. Fluid Mech.*, **293** (1995), 269–303.
[10] D. G. Dritschel, T. Hmidi and C. Renault, Imperfect bifurcation for the quasi-geostrophic shallow-water equations, *Arch. Ration. Mech. Anal.*, **231** (2019), 1853–1915.
[11] L. E. Fraenkel, *An Introduction to Maximum Principles and Symmetry in Elliptic Problems*, Cambridge Tracts in Mathematics, 128. Cambridge University Press, Cambridge, 2000.
[12] C. García, T. Hmidi and J. Mateu, Time periodic solutions for 3D quasi-geostrophic model, preprint, arXiv:2004.01644.
[13] C. García, T. Hmidi and J. Soler, Non uniform rotating vortices and periodic orbits for the two-dimensional Euler equations, *Arch. Ration. Mech. Anal.*, **238** (2020), 929–1085.
[14] J. Gómez-Serrano, On the existence of stationary patches, *Adv. Math.*, **343** (2019), 110–140.
[15] J. Gómez-Serrano, J. Park, J. Shi and Y. Yao, Symmetry in stationary and uniformly-rotating solutions of active scalar equations, preprint, arXiv:1908.01722.
[16] Z. Hassainia and T. Hmidi, On the V-States for the generalized quasi-geostrophic equations, *Comm. Math. Phys.*, **337** (2015), 321–377.
[17] Z. Hassainia, N. Masmoudi and M. H. Wheeler, Global bifurcation of rotating vortex patches, *Comm. Pure Appl. Math.*, **73** (2020), 1933–1980.
[18] T. Hmidi, On the trivial solutions for the rotating patch model, *J. Evol. Equ.*, 15 (2015), 801–816.

[19] T. Hmidi and C. Renault, Existence of small loops in a bifurcation diagram near degenerate eigenvalues, *Nonlinearity*, 30 (2017), 3821–3852.

[20] F. de la Hoz, T. Hmidi, J. Mateu and J. Verdera, Doubly connected V-states for the planar Euler equations, *SIAM J. Math. Anal.*, 48 (2016), 1892–1928.

[21] T. Hmidi and J. Mateu, Bifurcation of rotating patches from Kirchhoff vortices, *Discrete Contin. Dyn. Syst.*, 36 (2016), 5401–5422.

[22] T. Hmidi and J. Mateu, Degenerate bifurcation of the rotating patches, *Adv. Math.*, 302 (2016), 799–850.

[23] T. Hmidi and J. Mateu, Existence of corotating and counter-rotating vortex pairs for active scalar equations, *Comm. Math. Phys.*, 350 (2017), 699–747.

[24] T. Hmidi, J. Mateu and J. Verdera, Boundary regularity of rotating vortex patches, *Arch. Ration. Mech. Anal.*, 209 (2013), 171–208.

[25] T. Hmidi, J. Mateu and J. Verdera, On rotating doubly connected vortices, *J. Differential Equations*, 258 (2015), 1395–1429.

[26] G. Keady, Asymptotic estimates for symmetric vortex streets, *J. Austral. Math. Soc. Ser. B*, 26 (1985), 487–502.

[27] G. Kirchhoff, *Vorlesungen uber Mathematische Physik*, Leipzig, 1874.

[28] P. K. Newton, *The N-Vortex Problem*, Analytical techniques. *Applied Mathematical Sciences*, 145. Springer-Verlag, New York, 2001.

[29] J. Norbury, Steady planar vortex pairs in an ideal fluid, *Comm. Pure Appl. Math.*, 28 (1975), 679–700.

[30] E. A. Overman II, Steady-state solutions of the Euler equations in two dimensions. II. Local analysis of limiting V-states, *SIAM J. Appl. Math.*, 46 (1986), 765–800.

[31] R. T. Pierrehumbert, A family of steady, translating vortex pairs with distributed vorticity, *Journal of Fluid Mechanics*, 99 (1980), 129–144.

[32] C. Renault, Relative equilibria with holes for the surface quasi-geostrophic equations, *J. Differential Equations*, 263 (2017), 567–614.

[33] P. G. Saffman, *Vortex dynamics. Cambridge Monographs on Mechanics and Applied Mathematics*, Cambridge University Press, New York, 1992.

[34] P. G. Saffman and R. Szeto, Equilibrium shapes of a pair of equal uniform vortices, *Phys. Fluids*, 23 (1980), 2339–2342.

[35] B. Turkington, Corotating steady vortex flows with N-fold symmetry, *Nonlinear Anal.*, 9 (1985), 351–369.

[36] H. M. Wu, E. A. Overman II and N. J. Zabusky, Steady-state solutions of the Euler equations in two dimensions: rotating and translating V-states with limiting cases I. Numerical algorithms and results, *J. Comput. Phys.*, 53 (1984), 42–71.

[37] V. I. Yudovič, Non-stationary flows of an ideal incompressible fluid, *Z. Vyčisl. Mat i Mat. Fiz.*, 3 (1963), 1032–1066.

Received January 2020; revised August 2020.

E-mail address: zh14@nyu.edu
E-mail address: thmidi@univ-rennes1.fr