Supplementary Information of manuscript:

Variations in North Pacific Sea Surface Temperature Caused by Arctic Stratospheric Ozone Anomalies

Fei Xie¹, Jianping Li¹,²*, Jiankai Zhang³, Wenshou Tian³, Yongyun Hu⁴, Sen Zhao⁵,⁶, Cheng Sun¹, Ruiqing Ding⁷, Juan Feng¹, and Yun Yang¹

¹College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
²Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
³College of Atmospheric Sciences, Lanzhou University, Lanzhou, China
⁴Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
⁵Key Laboratory of Meteorological Disaster of Ministry of Education, and College of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing, China
⁶School of Ocean and Earth Science and Technology, University of Hawaii at Mānoa, Honolulu, Hawaii
⁷State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Figure S1. ASO variations are represented by a time series of ozone averaged over the region 60°–90°N at 150–50 hPa for each month from the MERRA2 (black line), SWOOSH (blue line) and GOZCARDS (green line) ozone. Seasonal cycles and linear trends have been removed.
Figure S2. Height–time cross section of composite daily value of zonal wind (averaged over 60°–80°N) during ASO decrease events (a) and increase events (b) in March, April and May from 1979 to 2015. Details of the ASO change events selected for composite analysis are given in Table 1 in the text. Zonal wind is from NCEP2.
Figure S3. Climatological (1979–2015) geopotential height at 850 hPa in (a) March and (b) April. The geopotential height value is divided by 10^3.