SUPPLEMENTARY INFORMATION

Upgrading Ketone Synthesis Direct from Carboxylic Acids and Organohalides

Ruzi et al.
Supplementary Methods

General information
All the reactions were carried out in Schlenk tubes under nitrogen atmosphere. Commercially available aryl, alkyl halides and carboxylic acids are used from commercial resource without further purification. Ni-catalysts were purchased from Strem or Aldrich and all ligands were purchased from J&K. K₃PO₄ was purchased from Aldrich and other bases purchased from Energy chemical (China). Solvents were purchased from J&K. All other reagents and solvents were obtained from commercial suppliers and used without further purification.

Analytical Methods. All reactions were carried out under argon atmosphere unless otherwise noted. Reactions were monitored by TLC on silica gel plates (GF254), and the analytical thin-layer chromatography (TLC) was performed on precoated, glass-backed silica gel plates. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker AVANCE III-400 or 500 spectrometer at room temperature. Chemical shifts (δ) are reported in ppm downfield from tetramethylsilane. Abbreviations for signal couplings are: s, singlet; d, doublet; t, triplet; m, multiple. GC-MS analyses were performed on a GC-MS with an EI mode. High resolution mass spectra were obtained using an Agilent 6210 Series TOF LC-MS equipped with electrospray ionization (ESI) probe operating in positive ion mode. Melting points (mp) were determined with a digital electrothermal apparatus without further correction. IR spectra were recorded on a Thermo Scientific Nicolet 380 FT-IR spectrometer. The 45 W blue LED lamps (λmax = 455 nm) were purchased from Kessil (A360NE/WE).
Optimization of the reaction conditions

Supplementary Table 1. Screening of photocatalysts

Entry	Photocatalyst	3 (3')
1	PC	18% (9%)
2	PCI	11% (10%)
3	PCII	nd

Reaction conditions: 1 (0.2 mmol), 2 (0.4 mmol), Ph3P (1.5 equiv), NiBr2•dme (5 mol%), L1 = 4,4'-di-tert-butyl-2,2'-bipyridine (10 mol%), photocatalyst (2 mol%), K2HPO4 (2 equiv), CH3CN (2 mL), blue LEDs, 25 °C, 20 h; isolated yield.

Supplementary Table 2. Screening of solvents

Entry	Solvent	3 (3')
1	DMF	23% (13%)
2	DMA	14% (19%)
Entry	Base	3 (3')
-------	----------	----------
1	K$_2$CO$_3$	23% (17%)
2	Cs$_2$CO$_3$	20% (8%)
3	K$_3$PO$_4$	26% (18%)
4	NaOAc	11% (9%)
5	2,6-Lutidine	nd
6	Triethylamine	nd

Reaction conditions: 1 (0.2 mmol), 2 (0.4 mmol), PC (2 mol%), NiBr$_2$•dme (5 mol%), L$_1$ (10 mol%), K$_2$HPO$_4$ (2 equiv), solvent (2 mL), blue LEDs, 25°C, 20 h. L$_1$ = 4,4'-di-tert-butyl-2,2'-bipyridine. DMF = N, N-dimethylformamide, DMA = N, N-dimethylacetamide, DCM = dichloromethane; isolated yield.
Supplementary Table 4. Screening for mixed bases and solvents

Entry	Solvent	Base	3 (3')
1	CH₃CN/DMF (V:V = 1:1)	K₃PO₄	30% (33%)
2	CH₃CN/DMF (V:V = 1:2)	K₃PO₄	27% (20%)
3	CH₃CN/DMF (V:V = 1:4)	K₃PO₄	25% (28%)
4	CH₃CN/DMF (V:V = 1:1)	K₃PO₄ (1 equiv)+Cs₂CO₃ (1 equiv)	46% (37%)
5	CH₃CN/DMF (V:V = 1:1)	K₃PO₄ (1 equiv)+Cs₂CO₃ (2 equiv)	nd

Reaction conditions: 1 (0.2 mmol), 2 (0.4 mmol), Ph₃P (1.5 equiv), PC (2 mol%), NiBr₂•dme (5 mol%), L₁ (10 mol%), DMF/CH₃CN (2 mL), blue LEDs, 25 °C, 20 h. L₁ = 4,4'-di-tert-butyl-2,2'-bipyridine. DMF = N,N-dimethylformamide; isolated yield.

Supplementary Table 5. Screening for amount of L₁

Entry	L₁ (x mol%)	3 (3')
1	15 mol%	23% (53%)
2	7.5 mol%	55% (24%)
3	5 mol%	71% (19%)
4	5 mol%	82% (16%)
5	10 mol%	46% (37%)
6 a 15 mol% 23% (53%)
7 a 3 mol% 19% (10%)

Reaction conditions: 1 (0.2 mmol), 2 (0.4 mmol), Ph₃P (1.5 equiv), K₃PO₄ (1 equiv), Cs₂CO₃ (1 equiv), NiBr₂•dme (5 mol%), L1 (x mol%), DMF/CH₃CN (2 mL, V/V = 1:1), blue LEDs, 25 °C, 20 h. L1 = 4,4'-di-tert-butyl-2,2'-bipyridine. DMF = N, N-dimethylformamide; isolated yield.

Supplementary Table 6. Screening of other ligands

Entry	Ligand	3 (3')
1	L1	82% (16%)
2	L2	31% (33%)
3	L3	42% (28%)
4	L4	35% (40%)
5	L5	nd
6	L6	nd

Reaction conditions: 1 (0.2 mmol), 2 (0.4 mmol), Ph₃P (1.5 equiv), K₃PO₄ (1 equiv), Cs₂CO₃ (1 equiv), ligand (5 mol%), DMF/CH₃CN (2 mL, V/V = 1:1), blue LEDs, 25 °C, 20 h. DMF = N, N-dimethylformamide, DMA = N, N-dimethylacetamide, DCM = dichloromethane; isolated yield.
Supplementary Table 7. Control experiments

Entry	Variation of conditions	3 (3')
1	no PC	nd
2	no NiBr₂·dtbbpy	nd
3	no Ph₃P	nd
4	no light	nd

Reaction conditions: 1 (0.2 mmol), 2 (0.4 mmol), Ph₃P (1.5 equiv), K₃PO₄ (1 equiv), Cs₂CO₃ (1 equiv), DMF:CH₃CN (2 mL, V/V = 1:1), blue LEDs, 25 °C, 20 h. DMF = N, N-dimethylformamide, DMA = N, N-dimethylacetamide, DCM = dichloromethane.

Supplementary Table 8. The initial testes for aliphatic carboxylic acids
Entry	Phosphine	Result
1	P-1	nd
2	P-2	nd
3	P-3	nd
4	P-4	nd
5	P-5	nd
6	P-6	trace
7	P-7	trace
8	P-8	nd
9	P-9	nd
10	P-10	nd

Reaction conditions: 57 (0.2 mmol), 2 (0.4 mmol), phosphine reagent (1.5 equiv), K₂HPO₄ (1 equiv), DMF (2 mL), blue LEDs, 25 °C, 20 h. DMF = N, N-dimethylformamide.

General procedure for the reaction conditions

```
R¹\text{Het} \text{OH} + \text{Br-}\text{Het} \rightarrow \text{NiBr}_2 \text{dme (3 mol%), L1 (5 mol%), PC (2 mol%), PPh₃ (1.5 equiv)}
\text{K₂PO₄ (1 equiv), Cs₂CO₃ (1 equiv)}
\text{DMF:CH₃CN (v:v = 1:1), blue LEDs, rt}
```

Supplementary Figure 1. Reaction set-up
In the nitrogen-filled glove box, an oven-dried vial (8 mL screw-cap threaded) was successively added stirring bar, NiBr₂•dme (1.9 mg, 3.0 mol%), 4,4’-di-tertbutyl-2,2’-bipyridine (2.7 mg, 5.0 mol%) and CH₃CN/DMF (2.0 mL, V/V = 1:1), and then it was sealed with a Teflon-lined plastic screw-cap and stirred until the resulting mixture became homogenous solution (about 20 min).

An oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was added photocatalyst Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (4.5 mg, 2 mol%), aromatic carboxylic acid (0.2 mmol, 1.0 equiv), aryl bromide (0.4 mmol, 2.0 equiv), Ph₃P (78.6 mg, 0.3 mmol, 1.5 equiv), anhydrous powder K₃PO₄ (42.4 mg, 0.2 mmol, 1.0 equiv), and anhydrous powder Cs₂CO₃ (65.0 mg, 0.2 mmol, 1.0 equiv). Subsequently, the nickel-catalyst solution was transferred into the Schlenk tube under argon. The tube was evacuated and backfilled with argon three times. The tube was then sealed and was placed at a distance (app. 5 cm) from 2 x 45 W blue LEDs, and the mixture was stirred for 20-36 h at room temperature (air-condition was used to keep the temperature is 25 °C or so). After completion, the reaction mixture was removed from the light, diluted with water and EtOAc, and then aqueous layer was extracted with three portions of EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography on silica gel to afford the corresponding desired ketone product.
Procedure for the gram-scale reaction

![Reaction set-up](image)

Supplementary Figure 2. Reaction set-up

In the nitrogen-filled glove box, an oven-dried 50 mL round bottom flask was added NiBr₂•dme (46.2 mg, 3.0 mol%) and 4,4′-di-tertbutyl-2,2′-bipyridine (67.0 mg, 5.0 mol%) and dissolved in CH₃CN:DMF (25.0 mL, V/V = 1:1). The round bottom flask was sealed and stirred until the resulting mixture became homogenous solution (about 30 min). An oven-dried 100 mL Schlenk tube equipped with a magnetic with stir bar was added aromatic 4-methylbenzoic acid (680.0 mg, 5 mmol), 4-bromobenzonitrile (1.82 g, 10 mmol), Ph₃P (1.97 g, 7.5 mmol), anhydrous K₃PO₄ (1.06 mg, 5.0 mmol), anhydrous Cs₂CO₃ (1.63 g, 5 mmol) and Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (56.1 mg, 1.0 mol%) under argon. Subsequently, the homogenous solution was syringed into the tube under nitrogen. The tube was then sealed and was placed at a distance (app. 5 cm) from 2 x 45 W blue LEDs, and the mixture was stirred for 20 h at room temperature (air-condition was used to keep the temperature is 25 °C or so). After completion, the reaction mixture was removed from the light, diluted with water and EtOAc, and then aqueous layer was extracted with three portions of EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography (eluent: PE: EA = 10:1) on silica gel to afford the desired ketone 29 in 906 mg with 82% yield.
Mechanistic investigations

Control experiment with additives

In the nitrogen-filled glove box, an oven-dried vial (8 mL screw-cap threaded) was added NiBr$_2$·dme (1.9 mg, 3.0 mol%), 4,4′-di-tertbutyl-2,2′-bipyridine (2.7 mg, 5.0 mol%) and dissolved in CH$_3$CN:DMF (2.0 mL, V/V = 1:1). The vial was sealed with a Teflon-lined plastic screw-cap and NiBr$_2$·dtbbpy precatalyst can be formed in situ until homogenous (about 20 min). An oven-dried 10 mL Schlenk tube equipped a magnetic with stir bar as well as photocatalyst Ir[dF(CF$_3$)ppy]$_2$(dtbbpy)PF$_6$ (4.5 mg, 2 mol%), 4-methylbenzoic acid (27.2 mg, 0.2 mmol), 5-bromo-2- (trifluoromethyl)pyridine (90.4 mg, 0.4 mmol), Ph$_3$P (78.6 mg, 0.3 mmol, 1.5 equiv), anhydrous powder K$_3$PO$_4$ (42.4 mg, 0.2 mmol, 1.0 equiv), anhydrous powder Cs$_2$CO$_3$ (65.0 mg, 0.2 mmol, 1.0 equiv), and TEMPO (62.4 mg, 0.4 mmol) under argon. Subsequently, the homogenous solution was syringed into the tube under argon. The tube was then sealed and was placed at a distance (app. 5 cm) from 2 x 45 W blue LEDs, and the mixture was stirred for 20 h at room temperature (air-condition was used to keep the temperature is 25 °C or so). After completion, the reaction mixture was removed from the light. The corresponding product 3 was obtained in trace yield by TLC analysis. Meanwhile, the product 2,2,6,6-tetramethylpiperidin-1-yl 4-methylbenzoate could be detected by ESI-HRMS, it further demonstrates the generation of acyl radical during the reaction process.

Supplementary Figure 3. The HRMS -ESI spectra.
Quantum yield measurement

The quantum yield (\(\phi\)) was determined by the known ferrioxalate actinometry method. A ferrioxalate actinometry solution was prepared by following the Hammond variation of the Hatchard and Parker procedure outlined in Handbook of Photochemistry. The actinometry synthetic application solutions (1 mL) were irradiated with two 45 W blue LEDs for 0 s, 30 s, 60 s, 90 s and 120 s. The UV-Vis spectra are shown in Supplementary Figure 4. Based on the data, we got the graph Supplementary Figure 5 between the number of moles of products (y axis) and time (x axis). Then, the irradiated light intensity was estimated to 6.6571E\(^{-8}\) einstein/s by using K\(_3\)[Fe(C\(_2\)O\(_4\))\(_3\)] as an actinometer. For five clean tubes, according to the general procedure, the 0.2 mmol scale model reaction solution was irradiated with two 45 W blue LEDs for specified time intervals (0 min, 30 min, 60 min, 90 min and 120 min). The moles of products formed were determined by GC yield with acetophenone as reference standard. The number of moles of products (y axis) per unit time is related to the number of photons (x axis, calculated from the light intensity) Supplementary Figure 6. The slope gives the quantum yield (\(\Phi\)) of the photoreaction, 0.3505 (35%).

Supplementary Figure 4. The UV-Vis absorption spectra of actinometry solution

Supplementary Figure 5. The data of UV-Vis absorption of actinometry solution
Supplementary Figure 6. Data of quantum yield measurement.

In order to determine whether a radical-chain reaction is involved, the quantum yield measurement was conducted, and gives the quantum yield (Φ) of the photoreaction, 35%. Thus, a radical chain pathway is less likely.

Luminescence quenching experiment

The luminescence quenching experiment was taken using a Cary Eclipse fluorescence spectrophotometer (Varian, USA). The experiments were carried out in 1×10^{-6} mol/L of $[\text{Ir}\{\text{dF(CF}_3\text{ppy}\}_2\{\text{dtbbpy}\}]\text{PF}_6$ in CH$_3$CN at 25 °C. The emission intensity was collected at 475 nm. The concentrations of quenchers (I and Ph$_3$P) in DCM were 0, 3, 6, 9, 12, 15 mM.

Supplementary Figure 7. Luminescence quenching of $[\text{Ir}\{\text{dF(CF}_3\text{ppy}\}_2\{\text{dtbbpy}\}]\text{PF}_6$ by Ph$_3$P
Supplementary Figure 8. Luminescence quenching of [Ir\{dF(CF$_3$)ppy\}_2\{dtbbpy\}]PF$_6$ by acid 1

To determine whether a reductive or oxidative quenching cycle is operative in the reaction, fluorescence quenching studies were conducted. Based on the above data, photoexcited [Ir\{dF(CF$_3$)ppy\}_2\{dtbbpy\}]PF$_6^*$ can be quenched by Ph$_3$P, involving a reductive quenching cycle.

Stoichiometric reactions for the Ar-Ni(II) intermediates

\[
\text{Ni(cod)$_2$ + dtbbpy} \quad \text{THF} \quad \text{RT, 4 h} \quad \text{t-Bu} \quad \text{Ni(0)} \quad \text{t-Bu} \\
\text{t-Bu} \quad \text{Br} \quad \text{Me} \quad \text{RT, 20 min} \quad \text{t-Bu} \quad \text{Br} \quad \text{Me} \\
56: 55\%
\]

Supplementary Figure 9. The 1H NMR spectrum of aryl-Ni(II) complex 56.
According to the reported literature\(^1\), in the nitrogen-filled glove box, an oven-dried 8 mL screw-cap vial equipped with stir bar was charged with Ni(cod)\(_2\) (275 mg, 1.0 mmol), 4,4’-di-tert-butyl-2,2'-pyridine (268 mg, 1.0 mmol) and THF (5 mL). The vial was sealed (deep purple resulting solution) and stirred for 4 hours at ambient temperature. 2-Bromotoluene (0.5 mL, 4.15 mmol) was added and then the vial was continually stirred for 20 min. The resulting solution turned dark red. Subsequently, the solution was triturated with pentane (10 mL). The precipitate was filtered, washed with pentane and residual solvent was removed under vacuum to give the title compound 56 as a light red powder 275 mg, 55% yield. The title compound was used for spectroscopic studies without further purification.

Supplementary Figure 10. \(^{31}\)P NMR of reaction mixture
Supplementary Figure 11. 31P NMR of Ph$_3$P

To a nitrogen-filled 10 mL Schlenk tube equipped with a magnetic stir bar was added 56 (49.8 mg, 0.1 mmol) and triphenylphosphine (39.3 mg, 0.15 mmol). Subsequently, the tube was evacuated and backfilled with Ar (three times). The solvent DMF(d7):CD$_3$CN (2.0 mL, V/V=1:1) was added by syringe under Ar. The tube was then sealed and the mixture was stirred for 20 h at room temperature. The reaction mixture was monitored by 31P NMR in situ under argon. 31P NMR (162 MHz, DMF-d$_7$) δ -5.87. It suggested that the large excess of Ph$_3$P didn’t result in a ligand exchange process in the presence of Ar-Ni(II) intermediate.
To a nitrogen-filled 10 mL Schlenk tube equipped with a magnetic stir bar was added 4-methylbenzoic acid (13.6 mg, 0.1 mmol), 56 (99.6 mg, 0.2 mmol) and triphenylphosphine (39.3 mg, 0.15 mmol), anhydrous powder K$_3$PO$_4$ (21.2 mg, 0.1 mmol) and anhydrous powder Cs$_2$CO$_3$ (32.5 mg, 0.1 mmol). Subsequently, the tube was evacuated and backfilled with Ar (three times). The solvent DMF/CH$_3$CN (2.0 mL, V/V = 1:1) was added by syringe under Ar. The tube was then sealed and the mixture was stirred for 20 h at room temperature. The reaction mixture was removed from the light, diluted with water and EtOAc, and then aqueous layer was extracted with three portions of EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na$_2$SO$_4$, filtered, and concentrated. The residue was purified by flash chromatography on silica gel to afford 35, 8.8 mg, 42% yield.

Characterization data of products

\[
\text{p-tolyl(6-(trifluoromethyl)pyridin-3-yl)methanone 3}
\]

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 100:1) to afford 3, 43.5 mg, 82%, light yellow solid, mp = 85-87 °C, Rf = 0.3 (PE:EA = 50:1). 1H NMR (400 MHz, CDCl$_3$) δ 9.0 - 8.95 (m, 1H), 8.21 - 8.16 (m, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 2.40 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 192.1, 149.6, 149.3 (q, J = 35.0 Hz), 144.0, 137.6, 135.0, 132.6, 129.3, 128.5, 120.1 (q, J = 273.0 Hz), 119.2 (q, J = 2.0 Hz), 20.8. 19F NMR (376 MHz, Chloroform-d) δ -68.2. HRMS (ESI) Calculated for C$_{14}$H$_{11}$F$_3$NO [M+H]$^+$: 266.0787, found: 266.0789. IR ν (neat, cm$^{-1}$): 3053.8, 2306.1, 1664.2, 1421.8, 1264.1, 1084.6, 895.9, 730.8.
(4-fluorophenyl)(6-(trifluoromethyl)pyridin-3-yl)methanone 4

The reaction was carried out according to the general procedure on 0.2 mmol scale (36 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 100:1) to afford 4, 37.7 mg, 70%, light yellow solid, mp = 67-69 °C, Rf = 0.4 (PE/EA = 20:1). 1H NMR (400 MHz, CDCl$_3$) δ 8.97 (d, J = 4.0 Hz, 1H), 8.18 (dd, J = 8.0, 4.0 Hz, 1H), 7.83-7.75 (m, 3H), 7.19-7.11 (m, 2H).13C NMR (100 MHz, Chloroform-d) δ 192.0, 166.1 (d, J = 255.0 Hz), 150.7 (q, J = 35.0 Hz), 150.5, 138.6, 135.5, 132.8 (d, J = 9.0 Hz), 132.3 (d, J = 3.0 Hz), 124.6 (q, J = 273.0 Hz), 120.4 (d, J = 2.0 Hz), 116.2 (d, J = 22.0 Hz).19F NMR (471 MHz, CDCl$_3$) δ -68.2, -103.1. HRMS (ESI) Calculated for C$_{13}$H$_8$F$_4$NO [M+H]$^+$: 270.0537, found: 270.0532. IR ν (neat, cm$^{-1}$): 3077.3, 2923.9, 2348.6, 1666.5, 1598.4, 1332.3, 1306.7, 1151.8, 1083.8, 951.7, 749.6, 612.0.

(4-chlorophenyl)(6-(trifluoromethyl)pyridin-3-yl)methanone 5

The reaction was carried out according to the general procedure on 0.2 mmol scale (36 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 100:1) to afford 5, 43.3 mg, 76%, light yellow solid, mp = 125-127 °C, Rf = 0.3 (PE/EA = 50:1). 1H NMR (400 MHz, CDCl$_3$) δ 9.06 - 8.04 (m, 1H), 8.27 (dd, J = 8.0 Hz, J = 4.0 Hz, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.79 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H).13C NMR (100 MHz, CDCl$_3$) δ 192.3, 151.1 (q, J = 35.0 Hz), 140.5, 138.6, 135.3, 134.3, 131.4, 129.3, 121.1 (q, J = 273.0 Hz), 120.4 (q, J = 3.0 Hz).19F NMR (376 MHz, Chloroform-d) δ -68.2. HRMS (ESI) Calculated for C$_{13}$H$_8$ClF$_3$NO [M+H]$^+$: 286.0241, found: 286.0248. IR ν (neat, cm$^{-1}$): 3068.2, 2921.0, 1655.8, 1584.5, 1330.1, 1281.6, 1142.6, 1084.3, 930.6, 784.0.
The reaction was carried out according to the general procedure on 0.2 mmol scale (36 h). The crude product was purified by flash chromatography on SiO\(_2\) (eluent: PE:EA = 100:1) to afford 6, 43.3 mg, 66%, light yellow solid, mp = 130-132 °C, Rf = 0.3 (PE/EA = 50:1). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.99 - 8.95 (m, 1H), 8.19 (dd, \(J = 8.0, 4.0\) Hz, 1H), 7.78 (d, \(J = 8.0\) Hz, 1H), 7.63 (s, 4H). \(^{13}\)C NMR (100 MHz, Chloroform-\(d\)) \(\delta\) 192.5, 150.6, 149.9 (q, \(J = 23.0\) Hz), 138.6, 135.2, 134.7, 133.8, 132.3, 131.5, 130.1, 129.2, 128.9, 120.5 (q, \(J = 273.0\) Hz), 120.4 (q, \(J = 2.0\) Hz). \(^{19}\)F NMR (376 MHz, Chloroform-\(d\)) \(\delta\) -68.2. HRMS (ESI) Calculated for C\(_{13}\)H\(_8\)BrF\(_3\)NO \([\text{M+H}]^+\): 329.9736, found: 329.9736. IR v (neat, cm\(^{-1}\)): 2921.3, 2851.1, 1655.5, 1585.4, 1334.1, 1247.8, 1125.7, 1070.1, 862.7, 707.9, 477.0.

(3-fluoro-4-methylphenyl)(6-(trifluoromethyl)pyridin-3-yl)methanone 7

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO\(_2\) (eluent: PE:EA = 100:1) to afford 7, 47.0 mg, 83%, light yellow solid, mp = 85-87 °C, Rf = 0.4 (PE/EA = 20:1). \(^1\)H NMR (500 MHz, Chloroform-\(d\)) \(\delta\) 9.08 - 9.05 (m, 1H), 8.28 (dd, \(J = 10.0\) Hz, \(J = 5.0\) Hz, 1H), 7.87 (d, \(J = 10.0\) Hz, 1H), 7.53 - 7.49 (m, 2H), 7.37 (t, \(J = 10.0\) Hz, 1H), 2.41 (d, \(J = 5.0\) Hz, 3H). \(^{13}\)C NMR (125 MHz, Chloroform-\(d\)) \(\delta\) 192.0, 161.22 (d, \(J = 246.3\) Hz), 150.9 (q, \(J = 35.0\) Hz), 150.5, 138.6, 135.5 (d, \(J = 6.3\) Hz), 132.0 (d, \(J = 17.5\) Hz), 131.9 (d, \(J = 5.0\) Hz), 125.9 (d, \(J = 2.5\) Hz), 121.1 (q, \(J = 272.5\) Hz), 120.3 (q, \(J = 2.5\) Hz), 116.3 (d, \(J = 23.8\) Hz), 15.0 (d, \(J = 3.8\) Hz). \(^{19}\)F NMR (471MHz, CDCl\(_3\)) \(\delta\) -68.2, -115.0. HRMS (ESI) Calculated for C\(_{14}\)H\(_9\)F\(_4\)NNaO \([\text{M+Na}]^+\): 306.0512, found: 306.0509. IR v (neat, cm\(^{-1}\)): 2356.7, 1662.1, 1607.8, 1420.6, 1264.6, 1148.2, 904.9, 724.8, 649.9.
(4-methyl-3-(trifluoromethyl)phenyl)(6-(trifluoromethyl)pyridin-3-yl)methanone 8

The reaction was carried out according to the general procedure on 0.2 mmol scale (36 h). The crude product was purified by flash chromatography on SiO\(_2\) (eluent: PE:EA = 100:1) to afford 8, 45.0 mg, 67%, light yellow solid, mp = 78-80 °C, Rf = 0.3 (PE:EA = 50:1). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.98 (d, \(J = 4.0\) Hz, 1H), 8.20 (dd, \(J = 8.0, 4.0\) Hz, 1H), 8.03 (d, \(J = 4.0\) Hz, 1H), 7.80 (dd, \(J = 8.0, 4.0\) Hz, 2H), 7.41 (d, \(J = 8.0\) Hz, 1H), 2.54 (s, 3H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 192.0, 150.6 (q, \(J = 35.0\) Hz), 143.3, 138.6, 135.1, 133.8, 133.0, 132.6, 129.9 (q, \(J = 31.3\) Hz), 127.4 (q, \(J = 5.0\) Hz), 123.7 (q, \(J = 273.0\) Hz), 121.1 (q, \(J = 273.0\) Hz), 120.5 (q, \(J = 2.5\) Hz), 20.0. \(^{19}\)F NMR (471 MHz, CDCl\(_3\)) \(\delta\) -62.1, -68.2. HRMS (ESI) Calculated for C\(_{15}\)H\(_{10}\)F\(_6\)NO [M+H]\(^+\): 334.0661, found: 334.0661. IR \(\nu\) (neat, cm\(^{-1}\)): 3053.7, 2879.5, 1717.3, 1645.7, 1362.4, 1264.3, 1165.0, 1098.1, 907.5, 728.0.

(5-chloro-2-methylphenyl)(6-(trifluoromethyl)pyridin-3-yl)methanone 9

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO\(_2\) (eluent: PE:EA = 100:1) to afford 9, 50.0 mg, 83%, light yellow oil, Rf = 0.3 (PE:EA = 50:1). \(^1\)H NMR (500 MHz, Chloroform-\(d\)) \(\delta\) 9.06 - 9.04 (m, 1H), 8.30 (dd, \(J = 10.0\) Hz, 5.0 Hz, 1H), 7.87 - 7.84 (m, 1H), 7.46 (dd, \(J = 10.0\) Hz, 5.0 Hz, 1H), 7.33 - 7.31 (m, 2H), 2.37 (s, 3H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 194.1, 151.3 (q, \(J = 35.0\) Hz), 151.2, 138.7, 137.8, 136.1, 134.8, 133.1, 131.62, 128.7, 121.0 (q, \(J = 272.5\) Hz), 120.4 (q, \(J = 2.5\) Hz), 19.7. \(^{19}\)F NMR (471 MHz, Chloroform-\(d\)) \(\delta\) -68.2. HRMS (ESI) Calculated for C\(_{14}\)H\(_{10}\)ClF\(_3\)NO [M+H]\(^+\): 300.0398, found: 300.0399. IR \(\nu\) (neat, cm\(^{-1}\)): 3006.0, 2349.6, 1657.9, 1433.0, 1275.7, 1082.7, 764.1.
The reaction was carried out according to the general procedure on 0.2 mmol scale (36 h). The crude product was purified by flash chromatography on SiO\(_2\) (eluent: PE:EA = 100:1) to afford 10, 39.1 mg, 62%, light yellow oil, Rf = 0.4 (PE/EA = 20:1). \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 9.08 - 9.06 (m, 1H), 8.29 - 8.25 (m, 1H), 7.86 (dd, \(J = 8.0\) Hz, \(J = 4.0\) Hz, 1H), 7.31 (t, \(J = 4.0\) Hz, 1H), 7.25 - 7.23 (m, 1H), 7.20 - 7.18 (m, 1H), 3.88 (s, 3H). \(^{13}\)C NMR (125 MHz, Chloroform-\(d\)) \(\delta\) 192.1, 160.6, 151.0 (q, \(J = 35.0\) Hz), 138.7, 138.2, 135.7, 135.0, 122.5, 121.1 (q, \(J = 273.0\) Hz), 120.0 (q, \(J = 2.5\) Hz), 119.7, 113.5, 55.9. \(^{19}\)F NMR (471 MHz, CDCl\(_3\)) \(\delta\) -68.2. HRMS (ESI) Calculated for C\(_{14}\)H\(_{10}\)ClF\(_3\)NO\(_2\) [M+H]\(^+\): 316.0347, found: 316.0348. IR \(v\) (neat, cm\(^{-1}\)): 2960.0, 1717.4, 1636.1, 1576.3, 1404.8, 1262.0, 1230.0, 1089.0, 1043.3, 877.6, 750.7.

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO\(_2\) (eluent: PE:EA = 100:1) to afford 11, 46.4 mg, 77%, light yellow solid, mp = 75-77 °C, Rf = 0.4 (PE/EA = 20:1). \(^1\)H NMR (500 MHz, Chloroform-\(d\)) \(\delta\) 9.18 - 7.16 (m, 1H), 8.37 (dd, \(J = 10.0\) Hz, 5.0 Hz, 1H), 8.28 (s, 1H), 8.04 - 7.96 (m, 4H), 7.91 (d, \(J = 10.0\) Hz, 1H), 7.71 - 7.68 (m, 1H), 7.65 - 7.61 (m, 1H). \(^{13}\)C NMR (125 MHz, Chloroform-\(d\)) \(\delta\) 193.5, 150.7, 150.8 (q, \(J = 35.0\) Hz) 138.8, 136.0, 135.8, 133.3, 132.6, 132.2, 129.6, 129.2, 129.1, 128.0, 127.4, 125.0, 121.2 (q, \(J = 273.0\) Hz), 120.4 (q, \(J = 2.5\) Hz). \(^{19}\)F NMR (471 MHz, Chloroform-\(d\)) \(\delta\) -68.1. Calculated for C\(_{14}\)H\(_{10}\)ClF\(_3\)NO\(_2\) [M+H]\(^+\): 302.0787, found: 302.0790. IR \(v\) (neat, cm\(^{-1}\)): 3363.6, 2920.3, 1741.3, 1658.1, 1332.6, 1140.1, 1083.1, 765.5, 725.6, 442.6.
m-toly(6-(trifluoromethyl)pyridin-3-yl)methanone 12

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO\(_2\) (eluent: PE:EA = 100:1) to afford 12, 40.8 mg, 77%, light yellow solid, mp = 65-67 °C, Rf = 0.4 (PE:EA = 20:1). \(^1\)H NMR (500 MHz, Chloroform-\(d\)) \(\delta\) 9.08 - 9.07 (m, 1H), 8.29 (dd, \(J = 10.0\) Hz, \(J = 5.0\) Hz, 1H), 7.86 (d, \(J = 10.0\) Hz, 1H), 7.66 (s, 1H), 7.61 (d, \(J = 10.0\) Hz, 1H), 7.50 (d, \(J = 10.0\) Hz, 1H), 7.46 - 7.42 (m, 1H), 2.46 (s, 3H). \(^{13}\)C NMR (125 MHz, Chloroform-\(d\)) \(\delta\) 193.7, 150.7, 150.4 (q, \(J = 35.0\) Hz), 138.9, 138.7, 136.1, 135.8, 134.6, 130.5, 128.7, 127.4, 121.2 (q, \(J = 272.5\) Hz), 120.3 (q, \(J = 5.0\) Hz), 21.3. \(^19\)F NMR (471 MHz, Chloroform-\(d\)) \(\delta\) -68.2. HRMS (ESI) Calculated for C\(_{14}\)H\(_{10}\)F\(_4\)NO \([M+H]^+\): 266.0787, found: 266.0793. IR \(\nu\) (neat, \(\text{cm}^{-1}\)): 3063.1, 2923.1, 1665.5, 1596.4, 1331.6, 1287.3, 1139.1, 1082.9, 715.2, 686.9.

![Chemical Structure](image)

(3-benzoylphenyl)(6-(trifluoromethyl)pyridin-3-yl)methanone 13

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO\(_2\) (eluent: PE:EA = 100:1) to afford 13, 49.7 mg, 70%, light yellow solid, mp = 151-153 °C, Rf = 0.4 (PE:EA = 20:1). \(^1\)H NMR (500 MHz, Chloroform-\(d\)) \(\delta\) 9.14 - 9.11 (m, 1H), 8.35 - 8.30 (m, 1H), 8.25 - 8.22 (m, 1H), 8.14 - 8.10 (m, 1H), 8.08 - 8.05 (m, 1H), 7.90 - 7.86 (m, 1H), 7.86 - 7.82 (m, 2H), 7.72 (t, \(J = 10.0\) Hz, 1H), 7.68 - 7.63 (m, 1H), 7.57 - 7.51 (m, 2H). \(^{13}\)C NMR (125 MHz, Chloroform-\(d\)) \(\delta\) 195.3, 192.8, 151.9 (q, \(J = 35.0\) Hz), 150.7, 138.7, 138.4, 136.7, 136.2, 135.0, 134.7, 133.3, 133.2, 131.1, 130.1, 129.1, 128.6, 121.6 (q, \(J = 273.0\) Hz), 120.4 (q, \(J = 2.5\) Hz). \(^19\)F NMR (376 MHz, Chloroform-\(d\)) \(\delta\) -68.2. HRMS (ESI) Calculated for C\(_{20}\)H\(_{13}\)F\(_3\)NO\(_2\) \([M+H]^+\): 356.0893, found: 356.0897. IR \(\nu\)
methyl 3-(6-(trifluoromethyl)nicotinoyl)benzoate 14

The reaction was carried out according to the general procedure on 0.2 mmol scale (36 h). The crude product was purified by flash chromatography on SiO2 (eluent: PE:EA = 100:1) to afford 14, 46.0 mg, 76%, light yellow oil, Rf = 0.2 (PE/EA = 20:1). 1H NMR (500 MHz, Chloroform-d) δ 9.10 - 9.08 (m, 1H), 8.46 - 8.43 (m, 1H), 8.37 - 8.33 (m, 1H), 8.31 (dd, J = 10.0, 5.0 Hz, 1H), 8.06 (dt, J = 10.0, 5.0 Hz, 1H), 7.90 - 7.85 (m, 1H), 7.67 (t, J = 10.0 Hz, 1H), 3.97 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 192.7, 165.8, 150.8 (q, J = 34.0 Hz), 138.7, 136.3, 135.0, 134.5, 133.9, 133.6, 130.9, 129.2, 120.2 (q, J = 2.0 Hz), 120.1 (q, J = 273.0 Hz), 52.6. 19F NMR (376 MHz, Chloroform-d) δ -68.2. HRMS (ESI) Calculated for C_{15}H_{11}F_{3}NO_{3} [M+H]^+: 310.0686, found: 310.0692. IR ν (neat, cm⁻¹): 3394.5, 2985.5, 2877.4, 2349.2, 1772.3, 1717.3, 1645.7, 1398.6, 1296.2, 1165.1, 1067.3, 892.4, 764.9, 665.2.

3-(6-(trifluoromethyl)nicotinoyl)benzaldehyde 15

The reaction was carried out according to the general procedure on 0.2 mmol scale (36 h). The crude product was purified by flash chromatography on SiO2 (eluent: PE:EA = 100:1) to afford 15, 37.0 mg, 66%, light yellow oil, Rf = 0.3 (PE/EA =10:1). 1H NMR (400 MHz, Chloroform-d) δ 10.04 (s, 1H), 9.04 - 9.00 (m, 1H), 8.25 - 8.22 (m, 2H), 8.13 (dt, J = 8.0, 4.0 Hz, 1H), 8.04 (d, J = 8.0, 4.0 Hz, 1H), 7.83 - 7.79 (m, 1H), 7.69 (t, J = 8.0 Hz, 1H). 13C NMR (100 MHz, Chloroform-d) δ 192.4, 190.9, 150.7, 150.3 (q, J = 35.0 Hz), 138.7, 136.9, 136.8, 135.2, 134.9, 134.1, 130.9, 129.9, 121.1 (q, J = 273.0 Hz), 120.5 (q, J = 3.0 Hz). 19F NMR (376 MHz, Chloroform-d) δ -68.2. HRMS (ESI)
Calculated for C_{14}H_{9}F_{3}NO_{2} [M+H]^+: 280.0580, found: 280.0581. IR ν (neat, cm⁻¹): 2925.1, 1702.1, 1668.8, 1598.4, 1331.9, 1132.2, 1082.7, 937.4, 859.7, 731.7.

tert-butyl (4-(6-(trifluoromethyl)nicotinoyl)phenyl)carbamate 16

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO₂ (eluent: PE:EA = 100:1) to afford 16, 60.0 mg, 82%, light yellow solid, mp = 108-110 °C, Rf = 0.3 (PE/EA = 5:1). ¹H NMR (400 MHz, Chloroform-d) δ 8.97 - 8.94 (m, 1H), 8.17- 8.13 (m, 1H), 7.78 - 7.70 (m, 3H), 7.49 - 7.44 (m, 2H), 6.91 (s, 1H), 1.46 (s, 9H). ¹³C NMR (100 MHz, Chloroform-d) δ 192.1, 152.1, 150.4, 150.3 (q, J = 35.0 Hz), 143.9, 138.5, 136.2, 131.8, 131.3, 130.2, 121.5 (q, J = 273.0 Hz), 120.0 (q, J = 2.0 Hz), 117.6, 81.6, 28.2. ¹⁹F NMR (376 MHz, Chloroform-d) δ -68.1. HRMS (ESI) Calculated for C_{18}H_{18}F_{3}N_{3}O_{3} [M+H]^+: 367.1264, found: 367.1272. IR ν (neat, cm⁻¹): 3396.0, 2985.5, 2879.6, 1724.7, 1644.5, 1527.2, 1400.0, 1366.5, 1232.1, 1164.8, 1097.8, 933.3, 890.4, 764.4.

2-(6-(trifluoromethyl)nicotinoyl)phenyl acetate 17

The reaction was carried out according to the general procedure on 0.2 mmol scale (36 h). The crude product was purified by flash chromatography on SiO₂ (eluent: PE:EA = 100:1) to afford 17, 38.3 mg, 62%, yellow oil, Rf = 0.3 (PE/EA = 10:1). ¹H NMR (400 MHz, Chloroform-d) δ 9.02 - 8.98 (s, 1H), 8.19 - 8.14 (m, 1H), 7.73 (dd, J = 8.0, 4.0 Hz, 1H), 7.60 - 7.54 (m, 1H), 7.44 (dd, J = 8.0, 4.0 Hz, 1H), 7.34 - 7.28 (m, 1H), 7.19 - 7.16 (m, 1H), 1.99 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 191.9, 169.1, 150.9 (q, J = 35.0 Hz), 151.0, 148.9, 138.6, 135.2, 133.7, 130.5, 130.0, 126.0, 123.5, 121.1 (q, J = 273.0 Hz), 120.2 (q, J = 3.0 Hz), 20.7. ¹⁹F NMR (376 MHz, Chloroform-d) δ -68.2. HRMS (ESI) Calculated for C_{15}H_{11}F_{3}NO_{3} [M+H]^⁺: 310.0686, found: 310.0683. IR ν
(3-(allyloxy)phenyl)(6-(trifluoromethyl)pyridin-3-yl)methanone 18

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 100:1) to afford 18, 47.3 mg, 77%, yellow oil, Rf = 0.4 (PE/EA = 20:1). 1H NMR (400 MHz, Chloroform-d) δ 9.00 - 8.98 (m, 1H), 8.21 - 8.17 (m, 1H), 7.76 (d, J = 8.0, 4.0 Hz, 1H), 7.38 - 7.29 (m, 1H), 7.27 - 7.23 (m, 1H), 7.17 - 7.12 (m, 1H), 6.03 - 5.92 (m, 2H), 5.39 - 5.32 (m, 1H), 5.27 - 5.22 (m, 1H), 4.53 (dt, J = 8.0, 4.0 Hz, 2H). 13C NMR (100 MHz, Chloroform-d) δ 193.2, 158.9, 150.7 (q, J = 35.0 Hz), 150.7 138.6, 137.2, 135.6, 132.6, 129.8, 123.0, 121.1 (q, J = 273.0 Hz), 120.9, 120.2 (q, J = 3.0 Hz), 118.2, 115.2, 69.1. 19F NMR (376 MHz, Chloroform-d) δ -68.2. HRMS (ESI) Calculated for C$_{16}$H$_{13}$F$_{3}$NO$_2$ [M+H]$^+$: 308.0893, found: 308.089. IR ν (neat, cm$^{-1}$): 2922.1, 1666.2, 1580.2, 1383.2, 1331.7, 1282.7, 1141.8, 1083.3, 960.8, 847.9, 783.2, 737.1.

(3-(phenylethynyl)phenyl)(6-(trifluoromethyl)pyridin-3-yl)methanone 19

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 100:1) to afford 19, 45.6 mg, 65%, light yellow solid, mp = 139-141 °C, Rf= 0.5 (PE/EA = 20:1). 1H NMR (400 MHz, Chloroform-d) δ 9.04 - 9.01 (m, 1H), 8.23 (dd, J = 8.0, 4.0 Hz, 1H), 7.87 (t, J = 4.0 Hz, 1H), 7.81 - 7.77 (m, 1H), 7.76 - 7.70 (m, 2H), 7.49 - 7.45 (m, 3H), 7.30 - 7.28 (m, 3H). 13C NMR (100 MHz, Chloroform-d) δ 192.8, 150.7, 150.8 (q, J = 35.0 Hz), 138.71, 136.5, 136.2, 135.2, 133.0, 131.7, 129.4, 129.1, 128.8, 128.5, 124.4, 122.5, 120.4 (q, J = 2.0 Hz), 91.2, 121.1 (q, J = 273.0 Hz), 87.7. 19F NMR
benzofuran-5-yl(6-(trifluoromethyl)pyridin-3-yl)methanone 20

The reaction was carried out according to the general procedure on 0.2 mmol scale (36 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 100:1) to afford 20, 47.0 mg, 81%, light yellow solid, mp = 121-123 °C, Rf = 0.4 (PE/EA = 20:1). 1H NMR (400 MHz, Chloroform-d) δ 9.02 - 8.98 (m, 1H), 8.23 - 8.19 (m, 1H), 8.01 (d, J = 4.0 Hz, 1H), 7.79 - 7.76 (m, 2H), 7.68 (dd, J = 8.0, 4.0 Hz, 1H), 7.59 - 7.53 (m, 1H), 6.81 (dd, J = 8.0, 4.0 Hz, 1H). 13C NMR (100 MHz, Chloroform-d) δ 193.2, 157.8, 150.6, 150.0 (q, J = 35.0 Hz), 147.0, 138.6, 136.3, 131.4, 127.8, 126.6, 124.7, 121.2 (q, J = 273.0 Hz), 120.3 (q, J = 3.0 Hz), 112.0, 107.3. 19F NMR (376 MHz, Chloroform-d) δ -68.1. HRMS (ESI) Calculated for C$_{21}$H$_{13}$F$_3$NO $[M+H]^+$: 352.0944, found: 352.0948. IR ν (neat, cm$^{-1}$): 3065.4, 2923.2, 1657.1, 1573.9, 1443.6, 1330.1, 1263.6, 1130.1, 1082.9, 981.0, 861.6, 853.9, 755.0, 733.0, 691.2, 537.9.

benzo[d][1,3]dioxol-5-yl(6-(trifluoromethyl)pyridin-3-yl)methanone 21

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 100:1) to afford 21, 47.8 mg, 81%, light yellow solid, mp = 75-77 °C, Rf = 0.4 (PE/EA = 20:1). 1H NMR (400 MHz, Chloroform-d) δ 8.99 - 8.92 (m, 1H), 8.17 - 8.12 (m, 1H), 7.76 (dd, J = 8.0, 4.0 Hz, 1H), 7.32 (d, J = 4.0 Hz, 1H), 7.27 (dd, J = 8.0, 4.0 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 6.04 (s, 2H). 13C NMR (100 MHz, Chloroform-d) δ 191.7, 152.7, 150.3, 150.2 (q, J = 35.0 Hz), 148.6, 148.5, 138.4, 136.3, 136.1, 130.7, 127.4, 121.2 (q, J = 273.0 Hz), 120.2 (q, J = 2.0 Hz), 109.4, 108.1, 102.3. 19F NMR (376 MHz,
Chloroform-d δ -68.2. HRMS (ESI) Calculated for C$_{14}$H$_9$F$_3$NO$_3$ [M+H]$^+$: 296.0529, found: 296.0536. IR ν (neat, cm$^{-1}$): 3054.2, 2307.8, 1653.0, 1443.4, 1264.1, 932.1, 730.8.

![Structure of thiophen-3-yl(6-(trifluoromethyl)pyridin-3-yl)methanone 22](image)

thiophen-3-yl(6-(trifluoromethyl)pyridin-3-yl)methanone 22

The reaction was carried out according to the general procedure on 0.2 mmol scale (36 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA=100:1) to afford 22, 42.1 mg, 82%, light yellow solid, mp = 109-111 °C, Rf = 0.5 (PE/EA =20:1). 1H NMR (400 MHz, Chloroform-d) δ 9.07 - 9.04 (m, 1H), 8.25 - 8.21 (m, 1H), 7.93 - 7.90 (m, 1H), 7.80 - 7.75 (m, 1H), 7.55 (dd, J = 8.0, 4.0 Hz, 1H), 7.41 - 7.37 (m, 1H). 13C NMR (100 MHz, Chloroform-d) δ 186.6, 150.6 (q, J = 35.0 Hz), 150.1, 149.8 (q, J = 35.0 Hz), 140.3, 138.1, 136.6, 135.2, 128.1, 127.4, 121.1 (q, J = 273.0 Hz), 120.4 (q, J = 2.0 Hz). HRMS (ESI) Calculated for C$_{11}$H$_7$F$_3$NO$_3$ [M+H]$^+$: 258.0195, found: 258.0195. IR ν (neat, cm$^{-1}$): 3054.2, 2349.4, 1656.9, 1421.5, 1264.2, 1084.1, 908.2, 728.9.

![Structure of benzof[b]thiophen-3-yl(6-(trifluoromethyl)pyridin-3-yl)methanone 23](image)

benzof[b]thiophen-3-yl(6-(trifluoromethyl)pyridin-3-yl)methanone 23

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 100:1) to afford 23, 53.0 mg, 86%, light yellow solid, mp = 113-115 °C, Rf = 0.5 (PE/EA = 20:1). 1H NMR (400 MHz, Chloroform-d) δ 9.06 - 9.02 (m, 1H), 8.57 - 8.53 (m, 1H), 8.22 (dd, J = 8.0, 4.0 Hz, 1H), 7.95 (s, 1H), 7.86 - 7.82 (m, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.49 - 7.39 (m, H). 13C NMR (100 MHz, Chloroform-d) δ 187.3, 150.1, 149.8 (q, J = 35.0 Hz), 140.3, 140.1, 138.2, 137.3, 136.8, 134.0, 126.3, 126.2, 125.2, 122.49 120.7 (q, J = 272.0 Hz), 120.3 (q, J = 3.0 Hz). 19F NMR (376 MHz, Chloroform-d) δ -68.1.
HRMS (ESI) Calculated for C_{16}H_{12}F_{3}N_{2}O [M+H]^+: 305.0896, found: 305.0897. IR ν (neat, cm\(^{-1}\)): 3359.4, 2920.1, 2349.2, 1637.8, 1510.3, 1331.5, 1140.7, 1082.7, 939.7, 741.0, 510.3.

(1-methyl-1H-indol-2-yl)(6-(trifluoromethyl)pyridin-3-yl)methanone 24

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO\(_2\) (eluent: PE:EA = 100:1) to afford 24, 43.2 mg, 71%, light yellow solid, mp = 85-87 °C, Rf = 0.4 (PE/EA = 20:1). \(^1\)H NMR (500 MHz, CDCl\(_3\)) δ 9.22 - 9.20 (m, 1H), 8.37 (d d, \(J = 10.0, 5.0\) Hz, 1H), 7.87 (d, \(J = 10.0\) Hz, 1H), 7.72 (d, \(J = 10.0\) Hz, 1H), 7.50 - 7.47 (m, 1H), 7.25 - 7.21 (m, 2H), 7.05 (s, 1H), 4.19 (s, 3H). \(^{13}\)C NMR (100 MHz, Chloroform-d) δ 185.0, 150.3, 150.2 (q, \(J = 35.0\) Hz), 140.9, 138.3, 137.5, 133.8, 127.2, 125.8, 123.4, 121.4, 120.3 (q, \(J = 2.0\) Hz), 118.5 (q, \(J = 273.0\) Hz), 116.4, 110.5, 32.2. \(^{19}\)F NMR (376 MHz, Chloroform-d) δ -68.1. HRMS (ESI) Calculated for C_{16}H_{12}F_{3}N_{2}O [M+H]^+: 305.0896, found: 305.0897. IR ν (neat, cm\(^{-1}\)): 3359.4, 2920.1, 2349.2, 1637.8, 1510.3, 1331.5, 1140.7, 1082.7, 939.7, 741.0, 510.3.

(1-methyl-1H-pyrrol-2-yl)(6-(trifluoromethyl)pyridin-3-yl)methanone 25

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO\(_2\) (eluent: PE:EA = 100:1) to afford 25, 68%, 34.5 mg, light yellow solid, mp = 64-66 °C, Rf = 0.4 (PE/EA = 20:1). \(^1\)H NMR (400 MHz, Chloroform-d) δ 9.03 - 8.89 (m, 1H), 8.18 - 8.14 (m, 1H), 7.73 (dd, \(J = 8.0, 4.0\) Hz, 1H), 6.94 (t, \(J = 4.0\) Hz, 1H), 6.66 - 6.63 (m, 1H), 6.15 - 6.13 (m, 1H), 3.99 (s, 3H). \(^{13}\)C NMR (100 MHz, Chloroform-d) δ 182.0, 149.9, 149.7 (q, \(J = 35.0\) Hz), 137.8, 133.1, 129.8, 123.9, 121.3 (q, \(J = 273.0\) Hz), 120.1 (q, \(J = 3.0\) Hz), 109.2, 37.6. \(^{19}\)F NMR (376 MHz, Chloroform-d) δ -68.1. HRMS (ESI) Calculated for
C₁₂H₁₀F₃N₂O [M+H]⁺: 255.0740, found: 255.0747. IR ν (neat, cm⁻¹): 3110.6, 2928.1, 1626.4, 1428.4, 1405.5, 1329.2, 1139.6, 915.6, 736.5.

![Chemical Structure](image)

benzo[b]thiophen-3-yl(6-(trifluoromethyl)pyridin-3-yl)methanone 26

The reaction was carried out according to the general procedure on 0.2 mmol scale (36 h). The crude product was purified by flash chromatography on SiO₂ (eluent: PE:EA = 100:1) to afford 26, 57%, 27.5 mg, light yellow solid, mp = 93-95 °C, Rf = 0.3 (PE:EA = 20:1). ¹H NMR (400 MHz, Chloroform-d) δ 9.09 - 9.05 (m, 1H), 8.26 - 8.22 (m, 1H), 7.91 (t, J = 4.0 Hz, 1H), 7.79 - 7.76 (m, 1H), 7.50 (t, J = 4.0 Hz, 1H), 6.87 - 6.84 (s, 1H). ¹³C NMR (100 MHz, Chloroform-d) δ 186.1, 150.4 (q, J = 35.0 Hz) 149.6, 149.1, 144.8, 137.6, 136.5, 122.1 (q, J = 273.0 Hz), 120.7 (q, J = 3.0 Hz), 109.7. ¹⁹F NMR (376 MHz, Chloroform-d) δ -68.2. HRMS (ESI) Calculated for C₃₁H₂₃F₃NO₂ [M+H]⁺: 242.0423, found: 242.0425. IR ν (neat, cm⁻¹): 3361.8, 3100.4, 2920.9, 1646.1, 1514.7, 1333.0, 1183.2, 1145.0, 887.2, 739.5, 587.2.

![Chemical Structure](image)

(4-methoxyphenyl)(p-tolyl)methanone 27

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO₂ (eluent: PE:EA = 100:1) to afford 27, 30.7 mg, 68%, light yellow solid, Rf = 0.4 (PE:EA = 10:1). ¹H NMR (400 MHz, Chloroform-d) δ 7.73 (d, J = 8.9 Hz, 2H), 7.59 (d, J = 8.1 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 6.87 (d, J = 8.9 Hz, 2H), 3.79 (s, 3H), 2.35 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 195.4, 163.0, 142.6, 135.5, 132.4, 130.5, 130.0, 128.9, 113.5, 55.5, 21.6. These data are in agreement with those reported previously in the literature.
ethyl 4-(4-methylbenzoyl)benzoate 28

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO₂ (eluent: PE:EA = 100:1) to afford 28, 45.0 mg, 84%, white solid, Rf = 0.2 (PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.0 Hz, 2 H), 7.81 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 4.42 (q, J = 8.0 Hz, 2H), 2.45 (s, 3H), 1.44 (t, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.8, 165.9, 143.9, 141.6, 134.3, 133.4, 131.1, 130.3, 129.6, 129.4, 129.2, 121.7, 61.4, 21.7, 14.3. These data are in agreement with those reported previously in the literature.²

4-(4-methylbenzoyl)benzonitrile 29

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO₂ (eluent: PE:EA = 100:1) to afford 29, 38.5 mg, 87%, white solid, Rf = 0.3 (PE/EA = 5:1). ¹H NMR (500 MHz, Chloroform-d) δ 7.87 (d, J = 8.0 Hz, 2 H), 7.80 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 2.48 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 194.8, 144.4, 141.7, 133.7, 132.1, 130.3, 130.1, 129.4, 118.1, 115.41, 21.8. These data are in agreement with those reported previously in the literature.³

p-tolyl(4-(trifluoromethyl)phenyl)methanone 30

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO₂ (eluent: PE:EA = 100:1) to afford 30, 42.8 mg, 81%, white solid, Rf = 0.4 (PE/EA = 20:1). ¹H NMR (400
MHz, CDCl$_3$) δ 7.87 (d, $J = 8.0$ Hz, 2H), 7.75 - 7.71 (m, 4H), 7.30 (d, $J = 8.0$ Hz, 2H), 2.45 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 195.3, 144.1, 141.1, 133.4 (q, $J = 32.0$ Hz), 134.1, 130.3, 130.0, 129.2, 125.6 (q, $J = 271.0$ Hz), 125.3 (q, $J = 3.0$ Hz). 19F NMR (376 MHz, Chloroform-d) δ -63.0. These data are in agreement with those reported previously in the literature.4

p-toly[4-((trifluoromethyl)thio)phenyl]methanone 31

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 100:1) to afford 31, 47.3 mg, 80%, white solid, mp = 121-123 $^\circ$C, Rf = 0.4 (PE/EA = 20:1). 1H NMR (400 MHz, Chloroform-d) δ 7.81 (d, $J = 8.0$ Hz, 2H), 7.75 (d, $J = 8.0$ Hz, 2H), 7.72 (d, $J = 8.0$ Hz, 2H), 7.30 (d, $J = 8.0$ Hz, 2H), 2.45 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 195.3, 144.0, 139.9, 135.5, 134.1, 130.6, 130.3, 129.2, 129.4 (q, $J = 308.0$ Hz), 21.7. 19F NMR (376 MHz, Chloroform-d) δ -41.8. HRMS (ESI) Calculated for C$_{15}$H$_{12}$F$_3$OS [M+H]$^+$: 297.0555, found: 297.0562. IR ν (neat, cm$^{-1}$): 2253.4, 1657.1, 1607.3, 1395.5, 1280.1, 1083.1, 902.7, 722.5, 649.5.

p-toly(3-(trifluoromethoxy)phenyl)methanone 32

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 100:1) to afford 32, 26.9 mg, 48%, light yellow solid, mp = 117-119 $^\circ$C, Rf = 0.5 (PE/EA = 20:1). 1H NMR (400 MHz, Chloroform-d) δ 7.71 (d, $J = 8.0$ Hz, 3H), 7.65 - 7.62 (m, 1H), 7.52 (d, $J = 8.0$ Hz, 1H), 7.45 - 7.41 (m, 1H), 7.30 (d, $J = 8.0$ Hz, 2H), 2.45 (s, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 194.7, 149.1, 143.9, 139.8, 134.1, 130.3, 129.8, 129.2, 128.2, 124.5, 122.23, 120.4 (q, $J = 256.0$ Hz), 21.7. 19F NMR (400 MHz, CDCl$_3$)
\[\delta = 57.9. \] HRMS (ESI) Calculated for \(\text{C}_{15}\text{H}_{12}\text{F}_3\text{O}_2 \) [M+H]^+: 281.0784, found: 281.0785. IR \(\nu \) (neat, cm\(^{-1}\)): 3054.1, 2253.2, 1648.1, 1601.8, 1421.3, 1264.2, 906.9, 728.2.

methyl 3-(4-methylbenzoyl)benzoate 33

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO\(_2\) (eluent: PE:EA = 100:1) to afford 33, 41.1 mg, 81\%, light yellow solid, mp = 115-117 °C, Rf = 0.3 (PE:EA = 20:1). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.42 (t, \(J = 4.0 \) Hz, 1H), 8.25 (d, \(J = 8.0, 4.0 \) Hz, 1H), 7.99 (dt, \(J = 8.0, 4.0 \) Hz, 1H), 7.72 (d, \(J = 8.0 \) Hz, 2H), 7.58 (t, \(J = 8.0 \) Hz, 1H), 7.30 (d, \(J = 8.0 \) Hz, 2H), 3.94 (s, 3H), 2.46 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 195.5, 166.4, 143.7, 138.3, 134.4, 134.0, 133.0, 130.9, 130.3, 129.2, 128.6, 52.4, 21.7. HRMS (ESI) Calculated for \(\text{C}_{16}\text{H}_{15}\text{O}_3 \) [M+H]^+: 255.1016, found: 255.1015. IR \(\nu \) (neat, cm\(^{-1}\)): 2982.5, 1718.8, 1659.0, 1605.9, 1446.5, 1267.1, 1103.2, 1020.4, 907.1, 736.7.

\[\text{Me} - \overset{\text{O}}{\text{C}} - \overset{\text{Me}}{\text{O}} - \overset{\text{CO}_2\text{Me}}{\text{Me}} \]

2-(4-methylbenzoyl)benzonitrile 34

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO\(_2\) (eluent: PE:EA = 100:1) to afford 34, 35.0 mg, 79\%, light yellow oil, Rf = 0.2 (PE:EA = 20:1). \(^1\)H NMR (400 MHz, Chloroform-d) \(\delta \) 7.85 - 7.81 (m, 1H), 7.72 (d, \(J = 8.0 \) Hz, 2H), 7.70 - 7.66 (m, 1H), 7.65 - 7.62 (m, 1H), 7.30 (d, \(J = 8.0 \) Hz, 2H), 2.45 (s, 3H). \(^{13}\)C NMR (100 MHz, Chloroform-d) \(\delta \) 193.5, 145.1, 142.0, 134.1, 133.4, 132.1, 131.1, 130.5, 129.9, 129.4, 117.1, 111.9, 21.8. HRMS (ESI) Calculated for \(\text{C}_{15}\text{H}_{12}\text{NO} \) [M+H]^+: 222.0913, found: 222.0918. IR \(\nu \) (neat, cm\(^{-1}\)): 2921.7, 2228.0, 1657.9, 1603.1, 1409.0, 1292.6, 1184.1, 931.0, 837.3, 760.0, 670.3, 584.0.
The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 10). The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 100:1) to afford 35, 25.8 mg, 61%, light yellow oil, Rf = 0.2 (PE/EA = 20:1). 1H NMR (400 MHz, Chloroform-d) δ 7.62 (d, $J = 8.0$ Hz, 2H), 7.32 - 7.27 (m, 1H), 7.25 - 7.10 (m, 5H), 2.34 (s, 3H), 2.23 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 198.4, 144.1, 139.0, 136.5, 135.2, 130.9, 130.3, 129.2, 128.3, 125.2, 21.7, 19.9. These data are in agreement with those reported previously in the literature.2

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 100:1) to afford 36, 43.4 mg, 77%, white solid, mp = 120-122 °C, Rf = 0.3 (PE/EA = 20:1). 1H NMR (400 MHz, Chloroform-d) δ 8.11 - 8.06 (m, 1H), 8.03 - 7.99 (m, 1H), 7.68 (d, $J = 8.0$ Hz, 2H), 7.34 - 7.28 (m, 3H), 2.46 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 193.6, 161.9 (d, $J = 264.0$ Hz), 144.1, 135.8 (d, $J = 10.0$ Hz), 134.3, 133.9, 130.1, 129.3, 122.1 (d, $J = 272.0$ Hz), 118.7 (q, $J = 20.0$ Hz), 117.0 (d, $J = 21.0$ Hz), 21.7. 19F NMR (376 MHz, Chloroform-d) δ -61.6, -108.2. HRMS (ESI) Calculated for C$_{15}$H$_{11}$F$_4$O $[M+H]^+$: 283.0741, found: 283.0742. IR ν (neat, cm$^{-1}$): 3362.5, 2851.1, 2349.2, 1651.2, 1470.6, 1274.4, 1133.6, 964.5, 725.6.
(3,5-bis(trifluoromethyl)phenyl)(p-toly) methanone 37

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 100:1) to afford 37, 43.8 mg, 66%, light yellow liquid, Rf = 0.4 (PE/EA = 10:1). 1H NMR (400 MHz, CDCl$_3$) δ 8.15 - 8.12 (m, 2H), 8.02 - 7.98 (m, 1H), 7.62 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 2.40 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 193.3, 144.8, 139.6, 133.3, 132.0 (q, J = 34.0 Hz), 130.2, 129.7, 129.6, 125.4 (q, J = 3.0 Hz), 122.9 (q, J = 272.0 Hz), 21.6. These data are in agreement with those reported previously in the literature.\(^5\)

thiophen-2-yl(p-toly) methanone 38

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 100:1) to afford 38, 28.7 mg, 71%, light yellow solid, Rf = 0.4 (PE/EA = 10:1). 1H NMR (400 MHz, CDCl$_3$) δ 7.71 (d, J = 8.0 Hz, 2H), 7.62 (dd, J = 8.0, 4.0 Hz, 1H), 7.57 (dd, J = 8.0 Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 7.09 - 7.07 (m, 1H), 2.36 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 187.9, 143.8, 143.1, 135.4, 134.5, 133.8, 129.4, 129.1, 127.9, 21.7. These data are in agreement with those reported previously in the literature.\(^5\)

methyl 5-(4-methylbenzoyl)furan-2-carboxylate 39

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 20:1) to afford 39, 27.8 mg, 57%, white solid, mp = 118-120 °C, Rf = 0.3 (PE/EA =
H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.0 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 7.21 (s, 2H), 3.88 (s, 3H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 181.9, 158.7, 154.2, 146.6, 144.3, 133.6, 129.9, 129.4, 119.6, 118.5, 52.4, 21.8. HRMS (ESI) Calculated for C₁₄H₁₅NO [M+H⁺]: 245.0808, found: 245.0814. IR ν (neat, cm⁻¹): 3361.0, 3149.5, 2920.3, 2349.1, 1731.9, 1649.3, 1606.7, 1408.9, 1276.7, 883.9, 764.5.

p-tolyl(5-(trifluoromethyl)pyridin-3-yl)methanone 40

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO₂ (eluent: PE:EA = 100:1) to afford 40, 37.1 mg, 70%, light yellow solid, mp = 74-76 °C, Rf = 0.4 (PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 9.14 - 8.93 (m, 2H), 8.29 - 8.22 (m, 1H), 7.65 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.9, 153.5, 149.2 (q, J = 4.0 Hz), 144.9, 134.2 (q, J = 3.0 Hz), 133.4 (d, J = 2.0 Hz), 130.2, 129.6, 123.1 (q, J = 27.10 Hz), 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5. HRMS (ESI) Calculated for C₁₄H₁₅F₃N0 [M+H⁺]: 266.0787, found: 266.0789. IR ν (neat, cm⁻¹) ¹): 3057.9, 2924.7, 1604.2, 1292.4, 1130.5, 1026.6, 916.2, 751.0.

p-tolyl(5-(trifluoromethyl)pyridin-3-yl)methanone 40

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO₂ (eluent: PE:EA = 100:1) to afford 40, 37.1 mg, 70%, light yellow solid, mp = 74-76 °C, Rf = 0.4 (PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 9.14 - 8.93 (m, 2H), 8.29 - 8.22 (m, 1H), 7.65 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.9, 153.5, 149.2 (q, J = 4.0 Hz), 144.9, 134.2 (q, J = 3.0 Hz), 133.4 (d, J = 2.0 Hz), 130.2, 129.6, 123.1 (q, J = 27.10 Hz), 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5. HRMS (ESI) Calculated for C₁₄H₁₅F₃N0 [M+H⁺]: 266.0787, found: 266.0789. IR ν (neat, cm⁻¹) ¹): 3057.9, 2924.7, 1604.2, 1292.4, 1130.5, 1026.6, 916.2, 751.0.

p-tolyl(5-(trifluoromethyl)pyridin-3-yl)methanone 40

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO₂ (eluent: PE:EA = 100:1) to afford 40, 37.1 mg, 70%, light yellow solid, mp = 74-76 °C, Rf = 0.4 (PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 9.14 - 8.93 (m, 2H), 8.29 - 8.22 (m, 1H), 7.65 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.9, 153.5, 149.2 (q, J = 4.0 Hz), 144.9, 134.2 (q, J = 3.0 Hz), 133.4 (d, J = 2.0 Hz), 130.2, 129.6, 123.1 (q, J = 27.10 Hz), 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5. HRMS (ESI) Calculated for C₁₄H₁₅F₃N0 [M+H⁺]: 266.0787, found: 266.0789. IR ν (neat, cm⁻¹) ¹): 3057.9, 2924.7, 1604.2, 1292.4, 1130.5, 1026.6, 916.2, 751.0.
\[[\text{M+H}]^+: 216.0819, \text{found: 216.0827}. \text{IR } \nu (\text{neat, cm}^{-1}): 2922.0, 2348.9, 1646.4, 1587.3, 1480.5, 1371.7, 1253.1, 763.3. \]

\[p\text{-tolyl}(2\text{-}(\text{trifluoromethyl})\text{pyrimidin-5-yl})\text{methanone 42} \]

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO\(_2\) (eluent: PE:EA = 100:1) to afford 42, 43.1 mg, 81%, light yellow solid, mp = 77-79 \(^\circ\text{C}\), Rf = 0.3 (PE/EA = 20:1). \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 9.22 (s, 2H), 7.75 (d, \(J = 8.0 \text{ Hz}\), 2H), 7.38 (d, \(J = 8.0 \text{ Hz}\), 2H), 2.49 (s, 3H). \(^{13}\)C NMR (100 MHz, Chloroform-\(d\)) \(\delta\) 190.6, 158.5, 158.1 (q, \(J = 37.0 \text{ Hz}\)), 145.8, 132.8, 130.2, 129.9, 119.3 (q, \(J = 274.0 \text{ Hz}\)), 21.9. \(^{19}\)F NMR (376 MHz, Chloroform-\(d\)) \(\delta\) -70.4. HRMS (ESI) Calculated for C\(_{13}\)H\(_{10}\)F\(_3\)N\(_2\)O [M+H]\(^+\): 267.0740, found: 267.0741. IR \(\nu\) (neat, cm\(^{-1}\)): 3064.1, 1628.2, 1425.6, 1083.4, 715.1.

\[\text{quinolin-3-yl(p-tolyl)methanone 43} \]

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO\(_2\) (eluent: PE:EA = 100:1) to afford 43, 25.0 mg, 50%, light yellow solid, mp = 115-117 \(^\circ\text{C}\), Rf = 0.3 (PE/EA = 10:1). \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 9.21 (d, \(J = 4.0 \text{ Hz}\), 1H), 8.45 (d, \(J = 4.0 \text{ Hz}\), 1H), 8.10 (d, \(J = 8.0 \text{ Hz}\), 1H), 7.82 (d, \(J = 8.0 \text{ Hz}\), 1H), 7.78 - 7.72 (m, 1H), 7.69 (d, \(J = 8.0 \text{ Hz}\), 2H), 7.57 - 7.50 (m, 1H), 7.25 (d, \(J = 8.0 \text{ Hz}\), 2H), 2.38 (s, 3H). \(^{13}\)C NMR (100 MHz, Chloroform-\(d\)) \(\delta\) 194.5, 150.4, 149.4, 144.1, 138.6, 134.4, 131.7, 130.5, 130.3, 129.5, 129.4, 129.1, 127.5, 126.7, 21.7. HRMS (ESI) Calculated for C\(_{17}\)H\(_{14}\)NO [M+H]\(^+\): 248.1070, found: 248.1075. IR \(\nu\) (neat, cm\(^{-1}\)): 3061.4, 2922.0, 2349.3, 1688.4, 1606.4, 1461.1, 1367.1, 1288.6, 1120.3, 747.2.
hex-5-en-1-yl 4-(4-methylbenzoyl)benzoate 44

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 100:1) to afford 44, 50.9 mg, 79%, light yellow solid, mp = 124-126 °C, Rf = 0.3 (PE/EA = 10:1). 1H NMR (400 MHz, CDCl$_3$) δ 8.14 (d, J = 8.0 Hz, 2H), 7.82 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 5.88 - 5.78 (m, 1H), 5.07 - 4.98 (m, 2H), 4.39 - 4.35 (m, 2H), 2.45 (s, 3H), 2.17 - 2.12 (m, 2H), 1.85 - 1.78 (m, 2H), 1.61 - 1.53 (m, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 195.8, 165.9, 143.9, 141.7, 138.3, 134.3, 133.3, 130.4, 129.6, 129.4, 129.2, 115.0, 65.4, 33.3, 28.1, 25.3, 21.7. HRMS (ESI) Calculated for C$_{21}$H$_{23}$O$_3$ [M+H]$^+$: 323.1642, found: 323.1650. IR ν (neat, cm$^{-1}$): 2926.9, 2349.2, 1719.7, 1659.5, 1605.9, 1403.9, 1268.7, 1103.8, 929.7, 737.3.

hex-5-yn-1-yl 4-(4-methylbenzoyl)benzoate 45

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 100:1) to afford 45, 39.0 mg, 61%, yellow solid, mp = 110-112 °C, Rf = 0.3 (PE/EA = 20:1). 1H NMR (500 MHz, CDCl$_3$) δ 8.16 (d, J = 10.0 Hz, 2H), 7.84 (d, J = 10.0 Hz, 2H), 7.74 (d, J = 10.0 Hz, 2H), 7.32 (d, J = 10.0 Hz, 2H), 4.42 (t, J = 5.0 Hz, 2H), 2.47 (s, 3H), 2.35 - 2.30 (m, 2H), 2.01 (t, J = 5.0 Hz, 1H), 1.99 - 1.93 (m, 2H), 1.77 - 1.71 (m, 2H). 13C NMR (125 MHz, CDCl$_3$) δ 195.8, 165.9, 143.9, 141.7, 134.3, 133.2, 130.4, 129.7, 129.4, 129.2, 83.8, 68.9, 64.9, 27.7, 25.0, 21.7, 18.2. HRMS (ESI) Calculated for C$_{21}$H$_{23}$O$_3$ [M+H]$^+$: 321.1485, found: 321.1486. IR ν (neat, cm$^{-1}$): 3290.9, 2954.2, 2349.2, 1720.2, 1656.3, 1604.8, 1403.9, 1311.17, 1274.4, 1102.9, 930.4, 750.8.
tert-butyl 4-(4-methylbenzoyl)-1H-pyrazole-1-carboxylate 46

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO₂ (eluent: PE:EA = 100:1) to afford 46, 22.0 mg, 38%, light yellow solid, mp = 119-121 °C, Rf = 0.3 (PE/EA = 10:1). ^1H NMR (400 MHz, Chloroform-d) δ 8.48 (s, 1H), 8.07 (s, 1H), 7.70 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 2.37 (s, 3H), 1.61 (s, 9H). ^13C NMR (100 MHz, Chloroform-d) δ 186.9, 146.0, 143.4, 142.8, 134.5, 133.0, 128.4, 128.1, 123.3, 85.9, 26.9, 20.6. HRMS (ESI) Calculated for C₁₆H₁₉N₂O₃ [M+H]^+: 287.1390, found: 287.1398. IR ν (neat, cm⁻¹): 2981.3, 2349.4, 1753.9, 1647.8, 1552.8, 1393.1, 1256.7, 1146.5, 960.0, 840.8, 752.0.

4-oxo-4-(p-tolyl)butanenitrile 47

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO₂ (eluent: PE:EA = 100:1) to afford 47, 31.8 mg, 92%, colorless oil, Rf = 0.3 (PE/EA = 5:1). ^1H NMR (500 MHz, Chloroform-d) δ 7.87 (d, J = 10.0 Hz, 2H), 7.31 (d, J = 10.0 Hz, 2H), 3.39 - 3.36 (m, 2H), 2.80 - 2.77 (m, 2H), 2.45 (s, 3H). ^13C NMR (125 MHz, Chloroform-d) δ 195.0, 144.9, 133.2, 130.2, 129.6, 129.2, 128.1, 119.4, 34.1, 21.8, 11.8. HRMS (ESI) Calculated for C₁₁H₁₂NO [M+H]^+: 174.0913, found: 174.0912. IR ν (neat, cm⁻¹): 2921.4, 2251.0, 1679.5, 1606.3, 1421.6, 1279.9, 1206.0, 1183.4, 903.0, 773.7, 722.9, 649.4, 462.9.

methyl 4-oxo-4-(p-tolyl)butanoate 48
The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO₂ (eluent: PE:EA = 100:1) to afford **48**, 28.0 mg, 68%, colorless oil, Rf = 0.3 (PE/EA = 20:1).

\[^1\text{H}\text{ NMR}\ (400 \text{ MHz, Chloroform}-d) \delta 7.89 \ (d, J = 8.0 \text{ Hz}, 2\text{H}), 7.27 - 7.25 \ (m, 2\text{H}), 3.71 \ (s, 3\text{H}), 3.30 \ (t, J = 8.0 \text{ Hz}, 2\text{H}), 2.76 \ (t, J = 8.0 \text{ Hz}, 2\text{H}), 2.41 \ (s, 3\text{H}).\]

\[^{13}\text{C}\text{ NMR}\ (100 \text{ MHz, Chloroform}-d) \delta 197.7, 173.5, 144.1, 134.1, 129.3, 128.2, 51.8, 33.3, 28.1, 21.7.\]

HRMS (ESI) Calculated for C₁₂H₁₅O₃ [M+H]^+: 207.1016, found: 207.1004. IR ν (neat, cm\(^{-1}\)): 2920.4, 2349.2, 1735.3, 1681.4, 1607.0, 1436.8, 1221.1, 1121.4, 810.4, 732.7, 554.9.

\[\text{2-phenyl-1-(p-tolyl)ethan-1-one 49}\]

In the nitrogen-filled glove box, an oven-dried 8 mL screw-cap vial was successively added stirring bar, NiBr₂•dme (3.1 mg, 5.0 mol%), 4,4’-di-tertbutyl-2,2’-bipyridine (5.3 mg, 10.0 mol%) and DMF (2.0 mL), and then it was sealed and stirred until the resulting mixture became homogenous solution (about 20 min). Subsequently, the nickel-catalyst stock solution was syringed into an oven-dried 10 mL Schlenk tube which equipped a magnetic stir bar as well as photocatalyst Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (2.2 mg, 1 mol%), aromatic carboxylic acid (27.2 mg, 0.2 mmol), (chloromethyl)benzene (50.8 mg, 0.4 mmol), Ph₃P (78.6 mg, 0.3 mmol), Et₃N (20.2 mg, 0.2 mmol). The Schlenk tube was evacuated and backfilled with argon three times. The Schlenk tube was then sealed and was placed at a distance (app. 5 cm) from 2 x 45 W blue LEDs, and the mixture was stirred for 20 h at room temperature (air-condition was used to keep the temperature is 25 °C or so). After completion, the reaction mixture was removed from the light, diluted with water and EtOAc, and then aqueous layer was extracted with three portions of EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was purified by flash chromatography on SiO₂ (eluent: PE:EA = 100:1) to afford **49**, 19.0 mg, 46%, light yellow solid, Rf = 0.6 (PE/EA = 20:1).

\[^1\text{H}\text{ NMR}\ (400 \text{ MHz, Chloroform}-d) \delta 7.91 \ (d, J = 8.0 \text{ Hz}, 2\text{H}), 7.44 - 7.12 \ (m, 7\text{H}), 4.26 \ (s, 2\text{H}), 2.40 \ (s, 3\text{H}).\]

\[^{13}\text{C}\text{ NMR}\ (100 \text{ MHz,}\ Chloroform-d) \delta 173.5, 153.2, 133.9, 132.4, 129.3, 128.2, 51.8, 33.3, 28.1, 21.7.\]
Chloroform-\(d\) δ 197.3, 144.0, 134.8, 134.2, 129.4, 129.3, 128.8, 128.6, 126.8, 45.4, 21.7. These data are in agreement with those reported previously in the literature.\(^6\)

\[
\text{isopropyl 2-(4-(4-chlorobenzoyl)phenoxy)-2-methylpropanoate 50}
\]

The reaction was carried out according to the general procedure on 0.2 mmol scale (20 h). The crude product was purified by flash chromatography on SiO\(_2\) (eluent: PE:EA = 100:1) to afford 50, 46.8 mg, 65%, light yellow solid, Rf = 0.3 (PE/EA = 10:1). \(^1\)H NMR (400 MHz, Chloroform-\(d\)) δ 7.69 - 7.59 (m, 4H), 7.37 (d, \(J = 8.0\) Hz, 2H), 6.79 (d, \(J = 8.0\) Hz, 2H), 5.05 - 4.98 (m, 1H), 1.59 (s, 6H), 1.14 (s, 3H), 1.12 (s, 3H). \(^{13}\)C NMR (100 MHz, Chloroform-\(d\)) δ 193.2, 172.1, 158.7, 137.3, 135.4, 130.9, 130.1, 129.2, 127.5, 116.3, 78.4, 68.3, 24.4, 20.5. These data are in agreement with those reported previously in the literature.\(^7\)

\[
\text{(6-(3-((1R,3R,5S)-adamantan-1-yl)-4-methoxyphenyl)naphthalen-2-yl)(6-trifluoromethyl)pyridin-3-yl)methanone 51}
\]

The reaction was carried out according to the general procedure on 0.2 mmol scale (36 h). The crude product was purified by flash chromatography on SiO\(_2\) (eluent: PE:EA = 100:1) to afford 51, 43.3 mg, 40%, yellow solid, mp = 225-227 °C, Rf = 0.3 (PE/EA = 20:1). \(^1\)H NMR (500 MHz, Chloroform-\(d\)) δ 9.18 (s, 1H), 8.37 (d, \(J = 9.7\) Hz, 1H), 8.28 (s, 1H), 8.09 (s, 1H), 8.05 (d, \(J = 8.6\) Hz, 1H), 8.02 - 7.99 (m, 2H), 7.92 (d, \(J = 8.0\) Hz, 1H), 7.88 (d, \(J = 8.5\) Hz, 1H), 7.65 (s, 1H), 7.60 - 7.58 (m, 1H), 7.04 (d, \(J = 8.5\) Hz, 1H), 3.94 (s, 3H), 2.22 (s, 6H), 2.14 (s, 3H), 1.83 (s, 6H). \(^{13}\)C NMR (100 MHz,
Chloroform-\textit{d} δ 193.3, 159.2, 150.7, 150.3 (q, \(J = 35.0\) Hz), 142.4, 139.1, 138.7, 136.3, 136.2, 132.8, 132.5, 132.2, 130.9, 130.0, 129.1, 127.1, 126.0, 125.8, 125.4, 124.8, 123.0 (q, \(J = 273.0\) Hz), 120.4 (q, \(J = 2.0\) Hz), 112.2, 55.2, 40.6, 37.2, 37.1, 29.7, 29.3, 29.1.

\(^{19}\text{F NMR}\) (376 MHz, Chloroform-\textit{d}) δ -68.1. HRMS (ESI) Calculated for C\textsubscript{34}H\textsubscript{31}F\textsubscript{3}N\textsubscript{2} [M+H]\(^{+}\): 542.2301, found: 542.2307. IR \(v\) (neat, cm\(^{-1}\)): 2908.6, 2253.7, 1660.4, 1472.2, 1264.5, 1072.9, 905.2, 725.8, 646.8.

\textit{1-(4-(4-methylbenzoyl)phenyl)-2-((3\textit{a}R,5\textit{R},5\textit{a}S,8\textit{a}S,8\textit{b}R)-2,2,7,7-tetramethyltetrahydro-5H-bis(1,3]dioxolo)[4,5-\textit{b}:4',5'-\textit{d}]pyran-5-yl)ethan-1-one 52\)

The reaction was carried out according to the general procedure on 0.2 mmol scale (36 h). The crude product was purified by flash chromatography on Si\textsubscript{O} (eluent: PE:EA = 50:1) to afford 52, 39.2 mg, 42%, colorless oil, R\textsubscript{f} = 0.3 (PE/EA = 5:1). \(^{1}\text{H NMR}\) (400 MHz, Chloroform-\textit{d}) δ 8.08 (d, \(J = 8.0\) Hz, 2H), 7.73 (d, \(J = 8.0\) Hz, 2H), 7.64 (d, \(J = 8.0\) Hz, 2H), 7.22 (d, \(J = 8.0\) Hz, 2H), 5.52 - 4.47 (m, 1H), 4.44 - 4.36 (m, 1H), 4.31 - 4.24 (m, 2H), 4.15 - 4.12 (m, 1H), 2.38 (s, 3H), 1.45 (s, 3H), 1.41 (s, 3H), 1.29 (s, 3H), 1.27 (s, 3H). \(^{13}\text{C NMR}\) (100 MHz, Chloroform-\textit{d}) δ 195.8, 165.7, 143.9, 141.8, 134.3, 132.9, 130.4, 129.6, 129.6, 129.2, 109.8, 108.8, 96.3, 71.1, 70.8, 70.5, 66.1, 64.3, 26.0, 26.0, 25.0, 24.5, 21.7. HRMS (ESI) Calculated for C\textsubscript{27}H\textsubscript{31}O\textsubscript{8} [M+H]\(^{+}\): 483.2013, found: 483.2016. IR \(v\) (neat, cm\(^{-1}\)): 2987.7, 2922.9, 1723.4, 1660.2, 1606.1, 1405.1, 1271.7, 1211.7, 1102.8, 1069.6, 1006.4, 960.2, 765.2.
(3aS,5S,6R,6aS)-5-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl 4-(4-methylbenzoyl)benzoate 53

The reaction was carried out according to the general procedure on 0.2 mmol scale (36 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 100:1) to afford 53. 61.2 mg, 64 %, colorless oil, Rf = 0.4 (PE:EA = 5:1). 1H NMR (400 MHz, Chloroform-d) δ 8.05 (d, J = 8.0 Hz, 2H), 7.75 (d, J = 8.0 Hz, 2H), 7.64 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 5.90 (d, J = 4.0 Hz, 1H), 5.46 (d, J = 4.0 Hz, 1H), 4.59 (d, J = 4.0 Hz, 1H), 4.31 - 4.24 (m, 2H), 4.08 - 4.00 (m, 2H), 2.38 (s, 3H), 1.49 (s, 3H), 1.35 (s, 3H), 1.26 (s, 3H), 1.21 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 195.5, 164.5, 144.1, 142.2, 134.1, 132.3, 130.3, 129.7, 129.4, 129.2, 112.4, 109.5, 105.1, 83.4, 80.0, 72.6, 67.4, 26.9, 26.7, 26.2, 25.2, 21.7. HRMS (ESI) Calculated for C$_{27}$H$_{31}$O$_8$ [M+H]$^+$: 483.2013, found: 483.2019. IR ν (neat, cm$^{-1}$): 2928.4, 1718.9, 1659.4, 1312.3, 737.1.

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4-(4-methylbenzoyl)benzoate 54

The reaction was carried out according to the general procedure on 0.2 mmol scale (36 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 100:1) to afford 54. 42.3 mg, 56%, colorless oil, Rf = 0.3 (PE:EA = 5:1). 1H NMR (400 MHz, Chloroform-d) δ 8.06 (d, J = 8.0 Hz, 2H), 7.74 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 4.94 - 4.86 (m, 1H), 2.37 (s, 3H), 2.10 - 2.03 (m, 1H), 1.93 - 1.85 (m, 1H), 1.71 - 1.63 (m, 2H), 1.57 - 1.47 (m, 3H), 1.10 - 1.00 (m, 2H), 0.89 - 0.84 (m, 7H), 0.74 (d, J = 8.0 Hz, 3H). 13C NMR (100 MHz, Chloroform-d) δ 195.8, 165.4, 143.9, 141.6, 134.3, 133.7, 130.4, 129.6, 129.4, 129.1, 75.4, 47.3, 40.9, 34.3, 31.5, 26.6, 23.6, 22.1, 21.7, 20.8, 16.5. HRMS (ESI) Calculated for C$_{25}$H$_{31}$O$_3$ [M+H]$^+$: 379.2268, found: 379.2272. IR ν (neat, cm$^{-1}$): 2955.9, 2869.4, 1715.4, 1661.1, 1455.5, 1272.0, 1104.1, 914.7, 784.1.
The reaction was carried out according to the general procedure on 0.2 mmol scale (36 h). The crude product was purified by flash chromatography on SiO$_2$ (eluent: PE:EA = 100:1) to afford 55, 55.6 mg, 74%, colorless oil, Rf = 0.4 (PE/EA = 20:1). 1H NMR (400 MHz, Chloroform-d) δ 8.07 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.64 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 5.46 - 5.38 (m, 1H), 5.06 - 4.98 (m, 1H), 4.81 (d, J = 8.0 Hz, 2H), 2.37 (s, 3H), 2.08 - 1.98 (m, 4H), 1.71 (s, 3H), 1.61 (s, 3H), 1.54 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 195.8, 165.9, 143.9, 142.8, 141.6, 134.3, 133.4, 131.9, 130.3, 129.6, 129.5, 129.1, 123.7, 118.1, 62.3, 39.6, 26.3, 25.7, 21.7, 17.7, 16.6. HRMS (ESI) Calculated for C$_{25}$H$_{29}$O$_3$ [M+H]$^+$: 377.2111, found: 377.2112. IR ν (neat, cm$^{-1}$): 2923.1, 2852.8, 1720.0, 1659.9, 1606.1, 1404.9, 1272.3, 1101.5, 930.2, 764.0.

Synthesis of starting materials

Following the general procedure of reported literature,7 to a solution of isopropyl 2-(4-formylphenoxy)-2-methylpropanoate6 (0.89 g, 3.6 mmol), NaH$_2$PO$_4$ (432 mg, 3.6 mmol), 2-methyl-2-butene (1.2 g, 15.8 mmol) in tert-BuOH (20 mL) and water (4 mL) was added NaClO$_2$ (3.4 g, 12.2 mmol) and the mixture was stirred for 50 min at room temperature. The reaction mixture was adjusted to pH of 4 by addition of 1 M HCl. The aqueous layer was extracted with CH$_2$Cl$_2$. The organic layers were combined, washed with brine, dried over anhydrous Na$_2$SO$_4$. Purification by flash chromatography (PE/EA = 20:1/5:1), afforded the corresponding product S1.
Prepared according to general procedure: to a stirred solution of bromobenzoic acid (10 mmol, 1.0 eq) in DCM (30 mL) and DMF (0.15 mL) under argon was added oxalyl chloride (13.0 mmol, 1.3 eq) by syringe. The reaction mixture was stirred for 1 h at 0 °C and then warmed up to room temperature. After 3 h, a clear light-yellow solution was obtained and all of the volatiles were removed under vacuum. The residue was then dissolved in DCM (10 mL) and added to a mixture of an alcohol (7.2 mmol, 1.0 eq), DMAP (0.72 mmol, 0.1 eq) and Et$_3$N (15 mmol, 2.0 eq) in DCM (10 mL). The reaction was allowed to stirred overnight at room temperature. Then, the mixture was quenched upon addition of NH$_4$Cl (aq. 10%), and extracted with DCM (3x). The organic phase was washed with brine, concentrated and purified by silica gel flash chromatography to give the corresponding substituted aryl bromides S2-5.
Preliminary investigation of other carboxylic acids

Supplementary figure 12. Preliminary investigation of other carboxylic acids
Copies of 1H NMR, 13C NMR, 19F NMR spectra

Supplementary Figure 13. 1H NMR spectra for compound 3

Supplementary Figure 14. 13C NMR spectra for compound 3
Supplementary Figure 15. 19F NMR spectra for compound 3

Supplementary Figure 16. 1H NMR spectra for compound 4
Supplementary Figure 17. 13C NMR spectra for compound 4

Supplementary Figure 18. 19F NMR spectra for compound 4
Supplementary Figure 19. 1H NMR spectra for compound 5

Supplementary Figure 20. 13C NMR spectra for compound 5
Supplementary Figure 21. 19F NMR spectra for compound 5

Supplementary Figure 22. 1H NMR spectra for compound 6
Supplementary Figure 23. 13C NMR spectra for compound 6

Supplementary Figure 24. 19F NMR spectra for compound 6
Supplementary Figure 25. 1H NMR spectra for compound 7

Supplementary Figure 26. 13C NMR spectra for compound 7
Supplementary Figure 27. 19F NMR spectra for compound 7

Supplementary Figure 28. 1H NMR spectra for compound 8
Supplementary Figure 29. 13C NMR spectra for compound 8

Supplementary Figure 30. 19F NMR spectra for compound 8
Supplementary Figure 31. 1H NMR spectra for compound 9

Supplementary Figure 32. 13C NMR spectra for compound 9
Supplementary Figure 33. 19F NMR spectra for compound 9

Supplementary Figure 34. 1H NMR spectra for compound 10
Supplementary Figure 35. 13C NMR spectra for compound 10

Supplementary Figure 36. 19F NMR spectra for compound 10
Supplementary Figure 37. 1H NMR spectra for compound 11

Supplementary Figure 38. 13C NMR spectra for compound 11
Supplementary Figure 39. 19F NMR spectra for compound 11

Supplementary Figure 40. 1H NMR spectra for compound 12
Supplementary Figure 41. 13C NMR spectra for compound 12

Supplementary Figure 42. 19F NMR spectra for compound 12
Supplementary Figure 43. 1H NMR spectra for compound 13

Supplementary Figure 44. 13C NMR spectra for compound 13
Supplementary Figure 45. 19F NMR spectra for compound 13

Supplementary Figure 46. 1H NMR spectra for compound 14
Supplementary Figure 47. 13C NMR spectra for compound 14

Supplementary Figure 48. 19F NMR spectra for compound 14
Supplementary Figure 49. 1H NMR spectra for compound 15

Supplementary Figure 50. 13C NMR spectra for compound 15
Supplementary Figure 51. 19F NMR spectra for compound 15

Supplementary Figure 52. 1H NMR spectra for compound 16
Supplementary Figure 53. \(^{13}\)C NMR spectra for compound 16

Supplementary Figure 54. \(^{19}\)F NMR spectra for compound 16
Supplementary Figure 55. 1H NMR spectra for compound 17

Supplementary Figure 56. 13C NMR spectra for compound 17
Supplementary Figure 57. 19F NMR spectra for compound 17

Supplementary Figure 58. 1H NMR spectra for compound 18
Supplementary Figure 59. 13C NMR spectra for compound 18

Supplementary Figure 60. 19F NMR spectra for compound 18
Supplementary Figure 61. 1H NMR spectra for compound 19

Supplementary Figure 62. 13C NMR spectra for compound 19
Supplementary Figure 63. 19F NMR spectra for compound 20

Supplementary Figure 64. 1H NMR spectra for compound 20
Supplementary Figure 65. 13C NMR spectra for compound 20

Supplementary Figure 66. 19F NMR spectra for compound 20
Supplementary Figure 67. 1H NMR spectra for compound 21

Supplementary Figure 68. 13C NMR spectra for compound 21
Supplementary Figure 69. 19F NMR spectra for compound 21

Supplementary Figure 70. 1H NMR spectra for compound 22
Supplementary Figure 71. 13C NMR spectra for compound 22

Supplementary Figure 72. 19F NMR spectra for compound 22
Supplementary Figure 73. 1H NMR spectra for compound 23

Supplementary Figure 74. 13C NMR spectra for compound 23
Supplementary Figure 75. 19F NMR spectra for compound 23

Supplementary Figure 76. 1H NMR spectra for compound 24
Supplementary Figure 77. 13C NMR spectra for compound 24

Supplementary Figure 78. 19F NMR spectra for compound 24
Supplementary Figure 79. 1H NMR spectra for compound 25

Supplementary Figure 80. 13C NMR spectra for compound 25
Supplementary Figure 81. 19F NMR spectra for compound 25

Supplementary Figure 82. 1H NMR spectra for compound 26
Supplementary Figure 83. 13C NMR spectra for compound 26

Supplementary Figure 84. 19F NMR spectra for compound 26
Supplementary Figure 85. 1H NMR spectra for compound 27

Supplementary Figure 86. 13C NMR spectra for compound 27
Supplementary Figure 87. 1H NMR spectra for compound 28

Supplementary Figure 88. 13C NMR spectra for compound 28
Supplementary Figure 89. 1H NMR spectra for compound 29

Supplementary Figure 90. 13C NMR spectra for compound 29
Supplementary Figure 91. 1H NMR spectra for compound 30

Supplementary Figure 92. 13C NMR spectra for compound 30
Supplementary Figure 93. 19F NMR spectra for compound 30

Supplementary Figure 94. 1H NMR spectra for compound 31
Supplementary Figure 95. 13C NMR spectra for compound 31

Supplementary Figure 96. 19F NMR spectra for compound 31
Supplementary Figure 97. 1H NMR spectra for compound 32

Supplementary Figure 98. 13C NMR spectra for compound 32
Supplementary Figure 99. 19F NMR spectra for compound 32

Supplementary Figure 100. 1H NMR spectra for compound 33
Supplementary Figure 101. 13C NMR spectra for compound 33

Supplementary Figure 102. 1H NMR spectra for compound 34
Supplementary Figure 103. 13C NMR spectra for compound 34

Supplementary Figure 104. 1H NMR spectra for compound 35
Supplementary Figure 105. 13C NMR spectra for compound 35

Supplementary Figure 106. 1H NMR spectra for compound 36
Supplementary Figure 107. 13C NMR spectra for compound 36

Supplementary Figure 108. 19F NMR spectra for compound 36
Supplementary Figure 109. 1H NMR spectra for compound 37

Supplementary Figure 110. 13C NMR spectra for compound 37
Supplementary Figure 111. 1H NMR spectra for compound 38

Supplementary Figure 112. 13C NMR spectra for compound 38
Supplementary Figure 113. 1H NMR spectra for compound 39

Supplementary Figure 114. 13C NMR spectra for compound 39
Supplementary Figure 115. 1H NMR spectra for compound 40

Supplementary Figure 116. 1H NMR spectra for compound 40
Supplementary Figure 117. 19F NMR spectra for compound 40

Supplementary Figure 118. 1H NMR spectra for compound 41
Supplementary Figure 119. 13C NMR spectra for compound 41

Supplementary Figure 120. 19F NMR spectra for compound 41
Supplementary Figure 121. 1H NMR spectra for compound 42

Supplementary Figure 122. 13C NMR spectra for compound 42
Supplementary Figure 123. 19F NMR spectra for compound 42

Supplementary Figure 124. 1H NMR spectra for compound 43
Supplementary Figure 125. 13C NMR spectra for compound 43

Supplementary Figure 126. 1H NMR spectra for compound 44
Supplementary Figure 127. 13C NMR spectra for compound 44

Supplementary Figure 128. 1H NMR spectra for compound 45
Supplementary Figure 129. 13C NMR spectra for compound 45

Supplementary Figure 130. 1H NMR spectra for compound 46
Supplementary Figure 131. 13C NMR spectra for compound 46

Supplementary Figure 132. 1H NMR spectra for compound 47
Supplementary Figure 133. 13C NMR spectra for compound 47

Supplementary Figure 134. 1H NMR spectra for compound 48
Supplementary Figure 135. 13C NMR spectra for compound 48

Supplementary Figure 136. 1H NMR spectra for compound 49
Supplementary Figure 137. 13C NMR spectra for compound 49

Supplementary Figure 138. 1H NMR spectra for compound 50
Supplementary Figure 139. 13C NMR spectra for compound 50

Supplementary Figure 140. 1H NMR spectra for compound 51
Supplementary Figure 141. 13C NMR spectra for compound 51

Supplementary Figure 142. 19F NMR spectra for compound 51
Supplementary Figure 143. 1H NMR spectra for compound 52

Supplementary Figure 144. 13C NMR spectra for compound 52
Supplementary Figure 145. 1H NMR spectra for compound 53

Supplementary Figure 146. 13C NMR spectra for compound 53
Supplementary Figure 147. 1H NMR spectra for compound 54

Supplementary Figure 148. 13C NMR spectra for compound 54
Supplementary Figure 149. 1H NMR spectra for compound 55

Supplementary Figure 150. 13C NMR spectra for compound 55
Supplementary References

1. Shields, B. J., Kudisch, B., Scholes, G. D. & Doyle, A. G. Long-Lived Charge-Transfer States of Nickel(II) Aryl Halide Complexes Facilitate Bimolecular Photoinduced Electron Transfer. *J. Am. Chem. Soc.* **140**, 3035-3039 (2018).

2. Si, S., Wang, C., Zhang, N. & Zou, G. Palladium-Catalyzed Room-Temperature Acylative Suzuki Coupling of High-Order Aryl Borons with Carboxylic Acids. *J. Org. Chem.* **81**, 4364-4370 (2016).

3. Gooßsen, L. J., Rudolfi, F., Oppel, C. & Rodriguez, N. Synthesis of Ketones from a-Oxocarboxylates and Aryl Bromides by Cu/Pd-Catalyzed Decarboxylative Cross-Coupling. *Angew. Chem. Int. Ed.* **47**, 3043-3045 (2008).

4. Dohi, S., Moriyama, K., Togo, H. Practical One-pot Preparation of Ketones from Aryl and Alkyl Bromides with Aldehydes and DIH via Grignard Reagents. *Tetrahedron.* **68**, 6557-6564 (2012).

5. Mallari, J. P., Shelat, A., Kosinski, A., Caffrey, C. R., Connelly, M., Zhu, F., McKerrow, J. H. & Guy, R. K. Discovery of Trypanocidal Thiosemicarbazone Inhibitors of Rhodesain and TbcatB. *Bioorg. Med. Chem. Lett.* **18**, 2883-2885 (2008).

6. Tang, S., Bricard, J., Martine, S., Frédéric, B. Fukuyama Cross-Coupling Approach to Isoprekinamycin: Discovery of the Highly Active and Bench-Stable Palladium Precatalyst POxAP. *Org. Lett.* **21**, 844–848 (2019).

7. Chu, L., Lipshultz, J. M. & MacMillan, D. W. Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones by the Decarboxylative Arylation of Alpha-Oxo Acids. *Angew. Chem. Int. Ed.* **54**, 7929-7933 (2015).

8. Shen, Y., Gu, Y. & Martin, R. Sp³ C-H Arylation and Alkylation Enabled by the Synergy of Triplet Excited Ketones and Nickel Catalysts. *J. Am. Chem. Soc.* **140**, 12200-12209 (2018)