Risk factors of type 2 diabetes in population of Jammu and Kashmir, India

Ankit Mahajan a,b, Swarkar Sharma k,e, Manoj K. Dhar a, Rameshwar N.K. Bamezai b
aSchool of Biotechnology, University of Jammu, Jammu, J&K 180006, India;
bNational Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
kSchool of Biology and Chemistry, Shri Mata Vaishno Devi University, Katra, J&K 182320, India.

Received 04 April 2013, Revised 23 May 2013, Accepted 28 July 2013, Epub 25 August 2013

Abstract
We sought to identify risk factors for type 2 diabetes (T2D) in Jammu and Kashmir populations, India. A total of 424 diabetic and 226 non-diabetic subjects from Jammu, and 161 diabetic and 100 non-diabetic subjects from Kashmir were screened for various parameters including fasting blood glucose level, 2 hour glucose level, urea, creatinine, triglycerides, total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein (VLDL-C), uric acid, systolic and diastolic blood pressure level. We found that subjects aged 40-49 years had the highest rate of diabetes, with family income playing not much of a role. Kashmiri migrants or populations with rapid cultural, environmental, social or lifestyle change along with reduced physical activity, obesity and unhealthy lifestyle (smoking and alcohol consumption) were found to have higher rates of diabetes. High blood glucose, triglycerides and low HDL-C levels were found to be contributing to disease outcome. High blood pressure also contributed to a higher risk of developing T2D. Our study supports earlier reports confirming the contribution of comfortable life style, Western dietary habits and rapid lifestyle change along with many other factors to the prevalence of diabetes. This may contribute to the epidemic proportion of diabetes in Jammu and Kashmir. Early diagnosis and routine screening for undiagnosed diabetes in obese subjects and subjects with parental diabetes history is expected to decrease the burden of chronic diabetic complications worldwide.

Keywords: type 2 diabetes, north India, life style, kashmiri migrants, body mass index

INTRODUCTION
Type 2 diabetes (T2D), the most common form of diabetes constituting 90% of the diabetic population[1], if untreated, can lead to severe complications like retinopathy, coronary heart disease, nephropathy and neuropathy. The global prevalence of diabetes has been estimated to increase from 4% in 1995 to 5.4% in 2025[2]. The International Diabetes Forum (IDF) reported that the total number of people with diabetes in India was estimated to be 41 million in 2006, and could rise to as high as 70 million by 2025[3] and 100 million by 2030[4]. T2D is a lifelong disease with considerably increased co-morbidities and mortality; at the same time, it also compromises the quality of life of patients[5]. There is no denying that the disease...
and its complications cause a heavy economic burden for people with diabetes, their families and society as well. It is therefore imperative to understand why Indians are developing T2D at such a high rate. Once the causes for the high development rate are known, appropriate strategic healthcare planning could be pursued and the burden of disease reduced[5]. The present study was an attempt to identify various lifestyles, anthropometric, metabolic and socioeconomic factors that could contribute to the increasing number of T2D diabetes cases in the North Indian population of Jammu and Kashmir.

SUBJECTS AND METHODS

Subjects

The present study included a total of 585 T2D patients (336 males and 249 females) and 326 non-diabetic controls (151 males and 175 females) from Jammu and Kashmir. Of the total 585 patients, 424 were ancestral inhabitants of the Jammu region while 161 were migrants from the Kashmir region. Among the controls, 226 non-diabetic subjects were from the Jammu region while 100 were migrants from the Kashmir region presently living in Jammu. T2D was diagnosed according to the criteria set by the World Health Organization (WHO). The fasting plasma glucose levels ≥ 7.0 mmol/L or ≥ 126 mg/dL after a minimum of 12 hour fast, or a 2-hour post glucose level (oral glucose tolerance test, OGTT) ≥ 11.1 mmol/L or 2-h OGTT, ≥ 200 mg/dL[6]. Those subjects who were on hypoglycaemic medication were considered diabetic.

Patient evaluation

A questionnaire was prepared and information regarding age, sex, dietary pattern, socio-economic status, exercise pattern, family history, age of onset, duration of diabetes, medication pattern, height, weight, fasting blood glucose level, 2 hour glucose level, urea, creatinine, triglycerides, total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very low density lipoprotein cholesterol (VLDL-C), uric acid, systolic and diastolic blood pressure were obtained. Standard procedures were followed to measure body height and weight. Body mass index (BMI) was calculated as [weight (kg)/height (m²)]. BMI values were defined according to the recent recommendations by the WHO for Asians[7]. Blood pressure was measured by using a standard mercury sphygmomanometer in sitting position. Hypertension was defined as systolic blood pressure ≥ 140 mm Hg. Those subjects who were on antihypertensive medication were taken as hypertensive despite low systolic blood pressure. Biochemical parameters were measured by using fully automated analyser. Information was taken regarding physical activity of the participants in 3 categories, very active (professionally requiring vigorous activity or > 2 hours/day exercise), moderately active (≤ 2 hours/day exercise), and mildly active (household work, no exercise). Economic status was calculated as monthly family income from all sources; low income class (< Rs 5000), middle income class (5000-50,000), high income class (> 50,000). Written informed consent was obtained from all the participants and the study protocol was approved by the institutional ethical committee of the University of Jammu, Jammu, India.

Statistical analysis

Data has been presented as mean±SD. Statistical analysis between patients and healthy controls was performed by using SPSS software 17.0 version (SPSS Inc., Chicago, IL, USA). Means for clinical parameters were compared by using Student’s t-test, and P value after Bonferroni correction (P-value = 0.05/14 = 0.0036) was considered statistically significant. We also estimated the risk provided by various clinical parameters [as odds ratio (OR)] of T2D patients in the combined population by using logistic regression analysis with T2D as dependent variable on the various clinical parameters. P-value was considered statistically significant after Bonferroni correction (P-value = 0.05/5 = 0.01).

RESULTS

Demographic and baseline characteristics of the study participants

The demographic and socioeconomic characteristics of the participants of the two populations are shown in Table 1. There was no significant difference between T2D patients and normal healthy controls according to education, economic status and physical activity in the two populations. In the Jammu population, 81% of the diabetic subjects were in the middle income group, 14% in the high income group and 5% in the low income group while 77%, 18.5% and 4.5% healthy subjects were in the middle, high and low income group, respectively. In the Kashmiri population, 84% of the diabetic subjects were in the middle income group, 14% in the high income group and 2% in the low income group whereas 86%, 12% and 2% of the healthy subjects were in the middle, high and low income group, respectively. The educational status in both the Jammu and Kashmiri population was comparable between diabetic subjects and healthy controls.
In the Jammu population, alcohol intake was higher in diabetic subjects (14%) compared to the non-diabetic subjects (6.19%) while no difference was found in the diabetic and healthy subjects in the Kashmiri population (diabetic, 4.34% vs. controls, 4.00%). In the Jammu population, 8% of the diabetic subjects were smokers compared to 4.5% of healthy controls. In the Kashmiri population, 10.5% of the diabetic subjects were smokers compared to 1% of healthy controls. In the Jammu population, 52% of the diabetic subjects were mildly active, 41% moderately active and 7% very active compared to 49% mildly active, 46% moderately active and 5% very active in the healthy controls. In the Kashmiri region, 45% of the diabetic subjects were mildly active, 51% moderately active and 5% very active compared to 42% mildly active, 53% moderately active and 5% very active in healthy controls.

Of the total 424 subjects with diabetes in Jammu, 3.54% were found to maintain glycaemic control by diet and exercise, 40% took oral hypoglycaemic drugs, 4% received insulin therapy and 4% took insulin only, and 8% were diagnosed as diabetic for the first time. The remaining subjects (40.5%) did not take any drug to control diabetes. Similarly, in the Kashmiri population, 15.5% received diet and exercise therapy, 39% received medication and 7% were given insulin therapy, and 7% were diagnosed as diabetic for

Characteristics	Jammu Region	Kashmir Region		
	Type 2 Diabetic Patients (%)	Normal Healthy Controls (%)	Type 2 Diabetic Patients (%)	Normal Healthy Controls (%)
	Males (n=239) Females (n=185) Total (n=424)	Males (n=101) Females (n=125) Total (n=226)	Males (n=97) Females (n=64) Total (n=161)	Males (n=50) Females (n=50) Total (n=100)
Economic status				
High income class	14.65 12.98 13.92	17.82 19.2 18.58	14.43 14.07 14.29	12 12 12
Middle income class	79.50 83.24 81.13	76.23 77.6 77.00	84.53 82.81 83.85	86 86 86
Low income class	5.85 3.78 4.95	5.95 3.2 4.42	1.04 3.12 1.86	2 2 2
Education				
Illiterate	4.9 2.09	0.99 0.44	6.25 2.48	6 3
Middle	7.96 16.74 11.79	8.91 19.2 14.59	11.34 25 16.77	8 12 10
Secondary	21.76 23.24 22.4	15.85 14.4 15.04	21.65 29.70 24.85	16 24 20
Senior secondary	17.16 20.54 18.69	14.85 16.0 15.5	20.62 20.31 20.51	18 24 21
Graduate	46.0 30.26 39.14	51.48 40.0 45.13	36.08 14.06 27.32	56 28 42
Post-graduate and above	7.12 4.32 5.89	7.92 10.4 9.30	10.31 4.68 8.07	2 6 4
Alcohol consumption				
Teetotaller	46.84 100 70.04	38.61 100 72.57	79.4 100 87.58	52 100 76
Moderate	10.4 5.9	12.87 5.75	5.14 3.10	6 3
Heavy	3.33 1.9	0.99 0.45	1.03 0.62	2 1
Very heavy	8.39 4.71	1.03 0.62		
NR	30.95 17.45 47.52	21.23 13.40 8.08	40 20	
No smoking				
Moderate	8.0 4.48	7.93 3.54	11.35 6.83	
Heavy	6.20 3.54	1.98 0.88	6.18 3.72	2 1
NR	31 17.45 48.51	21.68 47.42 28.58	72 36	
Eating habits				
Vegetarian	48.5 50.3 49.3	11.89 69.6 43.8	55.7 35.94 47.83	14 28 21
Non-vegetarian	51.5 49.7 50.7	88.11 30.4 56.2	44.3 64.06 52.17	86 72 79
Physical activity				
Mildly active	40.2 68.1 52.4	45.5 52 49.1	38.14 56.25 45.34	44 40 42
Moderately active	50.6 28.1 40.8	49.5 43.2 46.0	57.73 39.07 50.32	54 52 53
Very active	9.2 3.8 6.8	5.0 4.8 4.9	4.12 4.68 4.34	2 8 5

Economic status: Family income > Rs 50,000/month is defined as high income class; Family income between Rs 5,000/month to 50,000/month is defined as middle income class; Family income less than Rs 5,000/month is defined as low income class. Alcohol consumption: persons who take less than 500 mL/week are defined as moderate; persons who take between 500 mL to 1000 mL per week are defined as heavy alcohol consumption; persons who take more than 1000 mL/week are defined as very heavy alcohol consumption. Smoking levels are defined as follows: no smoking; Moderate 10 packs/week; Heavy > 10 packs/week. Physical activity levels are defined as follows: Moderate active means household work, profession requiring physical activity; NR: no response.
the first time. The remaining patients (31.5%) did not receive any medication. In the Jammu population, the age-wise distribution of diabetes showed that approximately one third of the diabetic patients were in the age group of 40-49 years [0.5% (< 30 years), 16.65% (30-39 years), 33.35% (40-49 years), 26.3% (50-59 years), 20.05% (60-69 years) and 3.65% (> 70 years)]. In Kashmiri population, the age-wise distribution of diabetes was 2.25% (< 30 years), 12.9% (30-39 years), 32.25% (40-49 years), 35.95% (50-59 years), 19.25% (60-69 years) and 2.4% (> 70 years).

Biochemical and anthropometric profiles of the study participants

Table 2 and 3 show the biochemical and anthropometric profiles of the participants of the two population groups in the study. In the Jammu population, there was a significant difference in urea (diabetic, 29.06±13.8 mg/dL vs. controls, 23.13±3.6 mg/dL, P = 0.00), creatinine (diabetic, 1.11±0.13 mg/dL vs. controls, 1.0±0.2 mg/dL, P = 0.01), total cholesterol (diabetic, 173.14±29.9 mg/dL vs. controls, 169.9±21.3 mg/dL, P = 0.001), triglycerides (diabetic, 204.3±114.5 mg/dL vs. 178.1±73.13 mg/dL, P = 0.001), VLDL-C (diabetic, 42.34±26.9 mg/dL vs. controls, 37.1±18.1 mg/dL, P = 0.007), HDL-C (diabetic, 47.47±5.1 mg/dL vs. controls, 49.10±6.48 mg/dL, P = 0.00), systolic blood pressure (diabetic, 138.2±17.9 mm Hg vs. controls, 129.5±13.6 mm Hg, P = 0.00) and diastolic blood pressure (diabetic, 82.9±5.8 mm Hg vs. controls, 81.4±5.2 mm Hg, P = 0.00). In the Kashmiri population, there was a significant difference in triglycerides (diabetic, 211.9±77.5 mg/dL vs. controls, 185.37±59.3 mg/dL, P = 0.02), LDL-C (diabetic, 82.0±28.12 mg/dL vs. 83.04±16.7 mg/dL), VLDL-C (diabetic, 43.07±18.31 mg/dL vs. controls, 36.95±12.0 mg/dL, P = 0.01), HDL-C (diabetic, 47.5±5.4 mg/dL vs. controls, 50.8±11.4 mg/dL, P = 0.006) and diastolic blood pressure (diabetic, 83.39±6.5 mm Hg vs. controls, 81.49±4.2 mm Hg, P = 0.00).

Risk factors for type 2 diabetes

Logistic regression analysis (Table 4) of the combined populations showed a significant association of T2D with BMI, triglycerides, uric acid and hyperten-

Table 2 Anthropometric and biochemical characteristics of the study subjects by sex and disease status in the populations of Jammu

Variable	Males (n = 239)	Females (n = 185)	Total (n = 424)	Controls (n = 226)	P value		
Age (year)	50.48±9.7	46.88±10.5	49.87±9.8	44.68±10.7	43.64±10.7	44.11±10.7	0.0001
Onset of T2DM (year)	45.56±8.7	45.54±7.5	45.55±9.1	82.3±8.3	80.9±7.3	81.6±7.8	0.000015
Duration of T2DM (year)	7.35±7.0	6.24±5.0	6.86±6.25	25.4±4.2	26.2±4.3	25.9±4.2	0.000008
BMI (kg/m²)	26.2±4.7	26.9±4.8	26.52±4.8	108.0±14.7	106.0±24.1	106.8±20.7	0.00001
Blood sugar (mg/dL)	158.97±57.3	159.7±58.2	159.3±57.6	82.3±8.3	80.9±7.3	81.6±7.8	0.000003
2 hours	230.23±74.2	228.5±74.0	229.5±74.0	24.7±4.10	23.13±3.6	23.97±3.85	0.000002
Blood pressure (mm Hg)	136.9±17.0	140.0±18.9	138.2±17.9	128.7±13.0	130.2±14.0	129.5±13.6	0.000015
Systolic	82.61±5.3	83.3±6.4	82.9±5.8	24.7±4.10	23.13±3.6	23.97±3.85	0.000002
Diastolic	29.9±11.7	27.9±15.9	29.06±13.8	1.01±0.13	1.01±0.25	1.0±0.2	0.011
Urea (mg/dL)	1.12±0.35	1.09±0.41	1.11±0.3	1.12±0.35	1.09±0.41	1.11±0.3	0.000003
Creatinine (mg/dL)	171.09±28.1	175.8±32.0	173.14±29.9	170.9±22.9	169.0±19.8	169.9±21.3	0.00012
Total Cholesterol (mg/dL)	214.92±134.0	190.70±81.2	204.3±114.5	191.3±89.6	166.5±52.0	178.1±73.3	0.0001
Triglycerides (mg/dL)	45.0±4.0	50.63±4.7	47.47±5.1	47.05±6.17	51.14±6.8	49.10±6.48	0.00012
HDL-C (mg/dL)	81.01±21.37	84.63±23.09	82.6±22.1	82.4±21.5	82.7±17.4	82.5±19.4	0.052
LDL-C (mg/dL)	45.67±32.66	38.07±16.08	42.34±26.9	40.5±23.0	34.2±11.6	37.1±18.1	0.007
VLDL-C (mg/dL)	6.0±1.1	5.48±1.0	5.7±1.1	6.2±1.1	5.4±0.9	5.8±1.0	0.2
Uric acid (mg/dL)	94.8±14.6	90.7±15.5	93.28±15.1	96.3±8.8	88.1±14.9	93.88±11.50	0.28
Waist length (cm)	95.8±11.8	92.8±12.3	94.70±12.05	98.0±7.4	88.3±13.0	94.91±10.47	0.77
Hip length (cm)	0.97±0.13	0.97±0.12	0.97±0.13	0.98±0.07	1.0±0.05	0.99±0.06	0.33

Values are expressed as mean±S.D. P values represent the difference between the diabetic and healthy control samples; a represents the significant difference between male and female diabetic patients.β represents the significant difference between the male and female healthy controls. BMI: body mass index; HDL-C: high density lipoprotein cholesterol; LDL-C: low density lipoprotein cholesterol; VLDL-C: very low density lipoprotein; WHR: waist hip ratio.
Table 3 Anthropometric and biochemical characteristics of the study subjects by sex and disease status in the populations of Kashmir

Variable	Cases (n = 161)		Controls (n = 100)		P value					
	Males (n = 97)	Females (n = 64)	Total (n = 161)	Males (n = 50)	Females (n = 50)	Total (n = 100)				
Age (year)	51.52±11.3	49.69±9.6	50.79±10.6	49.14±11.3	44.5±9.2	46.8±10.5				
Onset of T2DM (year)	46.19±11.0	47.21±10.5	46.62±10.7	46.24±11.0	46.4±10.5	46.3±10.5				
Duration of T2DM (year)	7.3±6.5	8.12±4.7	7.71±5.6	8.21±4.4	8.08±3.9	8.14±4.2				
BMI (kg/m²)	25.54±3.9	27.92±6.1	26.4±5.0	24.61±3.4	25.8±4.6	25.2±4.1	0.279			
Blood sugar (mg/dL)				147.45±46.0	168.09±60.02	155.56±52.85	84.4±7.7	81.5±7.7	82.9±7.8	0.00001
	2 hours	210.96±61.3	226.8±81.1	217.3±70.1	113.15±19.6	107.2±19.8	109.9±19.8	0.00003		
Blood pressure (mm Hg)	136.29±16.6	142.17±16.3	138.5±16.7	132.4±16.9	127.9±12.3	130.21±14.9	0.00014			
Systolic	82.44±6.7	84.91±5.8	83.39±6.5	82.1±4.4	80.8±3.9	81.49±4.2	0.00002			
Diastolic	30.94±16.6	28.30±8.7	30.0±14.2	27.6±7.4	23.0±4.5	25.3±6.6	0.039			
Blood Creatinine (mg/dL)	1.14±0.3	1.10±0.44	1.12±0.37	1.0±0.16	1.0±0.17	1.04±0.16	0.059			
Total Cholesterol (mg/dL)	210.7±84.6	213.7±65.8	211.9±77.5	198.51±58.0	173.9±56.8	185.37±59.3	0.008			
Total Cholesterol (mg/dL)	167.07±24.2	178.09±36.4	171.32±29.9	168.51±22.2	168.8±21.7	168.6±21.8	0.008			
HDL-C (mg/dL)	46.2±5.8	49.64±3.8	47.5±5.4	47.5±5.0	53.8±14.5	50.8±11.4	0.006			
LDL-C (mg/dL)	79.61±24.8	85.79±32.4	82.0±28.12	82.01±15.9	84.0±17.6	83.04±16.7	0.014			
VLDL-C (mg/dL)	42.09±17.4	44.59±19.6	43.07±18.31	37.8±11.9	36.12±12.3	36.95±12.9	0.012			
Uric acid (mg/dL)	5.98±0.94	5.39±0.961	5.7±0.98	6.12±0.98	5.5±0.87	5.7±0.96	0.914			
Waist length (cm)	93.12±8.7	93.63±13.5	93.31±10.6	96.7±13.0	86.0±8.4	94.33±12.5	0.719			
Hip length (cm)	94.50±9.5	92.81±12.5	93.86±10.6	94.0±10.2	87.5±13.4	92.56±10.4	0.943			
WHR	0.98±0.06	1.0±0.05	0.99±0.06	1.0±0.06	0.98±0.05	1.01±0.06	0.754			

Values are expressed as mean±S.D. P values represent the difference between the diabetic and healthy control samples; α represents the significant difference between male and female diabetic patients. β represents the significant difference between the male and female healthy controls. BMI: body mass index; HDL-C: high density lipoprotein cholesterol; LDL-C: low density lipoprotein cholesterol; VLDL-C: very low density lipoprotein cholesterol; WHR: waist hip ratio.

sion. High BMI (more than 25 Kg/m²) also showed increased risk with an odds ratio of 1.81 (CI-1.01-2.82, P = 0.04). Uric acid and hypertension also showed a significant difference in diabetic patients with an odds ratio of 1.51 (CI-0.62-2.13, P = 0.01) and 4.24 (CI-2.59-6.92, P = 0.00), respectively.

DISCUSSION

The present study was carried out to identify the risk factors responsible for the rapid rise in the prevalence of T2D in Jammu and Kashmir. Although independent studies in the past were carried out in Jammu and Kashmir region (the regions being separated by approximately 300 Km and having different climatic conditions) but this is the first study wherein participants from both Jammu and Kashmir regions have been recruited. India has the dubious distinction of being dubbed as ‘Diabetes capital’ of the world with a total of 40.9 million diabetic patients, which is estimated to increase to 69.9 million by 2025[8]. The prevalence of T2D in urban India has risen from 2.1% in 1970s to 12-16% in 2002[9]. In general, Asian Indians have been identified as an ethnic group with high prevalence of T2D[10]. There have been several studies on the increased incidence of T2D in India, especially South India[11-12]. The maximum prevalence of diabetic patients in India is found in the age group of above 50 years[13]. We found that a substantial number of people in their 40s are developing T2D, as observed in another study from the Jammu region[14]. This is in contrast to a study conducted 12 years back in the Kashmir region where a higher percentage of diabetic subjects were in the age group of 50-59 years old[15].

T2D shows a clear familial aggregation. In Western populations, it has been demonstrated that the risk for T2D among offspring with a single diabetic parent was 3.5 folds higher, and for those with two diabetic parents was 6-fold higher compared with offspring without parental diabetes[16]. A migration study in 1980’s showed that 10% of Asian Indian patients had both parents diabetic, compared to only 1% of European diabetic patients[17]. In our study, a strong
family aggregation towards the development of T2D is seen with almost 60% of the diabetic patients with a positive family history, which suggests a genetic background. Similar genetic predisposition towards T2D development is seen in the North Indian Punjabi population and South Indian populations [18-19].

Hypertriglyceridemia and low HDL-cholesterol are characteristically seen in Asian Indian population [20]. Dyslipidemia characterized by high triglycerides, LDL, VLDL and low HDL-cholesterol has been observed in our population, which is a contributing factor for the development of T2D in the population of Jammu and Kashmir. It has been seen that Asian Indians have a higher degree of central obesity at a given BMI [21] and they develop insulin resistance even though having non-obese BMI [22-23]. In our study, obesity characterised by BMI > 25 kg/m² has emerged as a significant risk factor for the development of T2D. Thus, high body fat content at the given BMI is responsible for the development of T2D in the Jammu and Kashmir population. The growth of middle class in Jammu and Kashmir is leading to the availability of high caloric junk food. At the same time, as the availability of resources, comfortable transportation facilities or at the working place, the physical activity is reduced with long hours of bench work. Moreover, a

Fig. 1 Percentage diabetic at the end of each decade in Jammu and Kashmir male and female population, A and B: males and females in Jammu population, respectively. C and D: males and females in Kashmir population, respectively.
Table 4 Logistic regression analysis of the combined population using T2D as dependent variable on the various clinical parameters

Parameter	Mean ± S.E	Test of association	
BMI (kg/m²)			
Normal (18.5-25)			
High (> 25²)	0.524 ± 0.262	0.049	1.81 (1.01-2.82)
Uric acid (mg/dL)	0.141 ± 0.316	0.656	1.51 (0.620-2.13)
Blood pressure			
Normal/Hypertension	1.44 ± 0.25	0.006	4.24 (2.59-6.92)
Triglycerides (mg/dL)			
Desirable(< 150)	-1.73 ± 0.539	0.003	0.177 (0.06-0.50)
High (> 200)	0.945 ± 0.422	0.025	3.08 (1.3-7.1)
Creatinine (mg/dL)			
Normal(0.8-1.4)		0.233	
Risk(< 0.8)	-0.901 ± 0.668	0.177	0.406 (110-1.50)

BMI: body mass index.

huge number of Kashmiri pandits have migrated from Kashmir (temperate climate) and live in migratory camps (subtropical climate), which results in environmental and mental stress. The population living in valley is also under mental stress because of political unrest. The unfavourable changes in the modifiable risk factors, stress and genetic predisposition are leading to the decline in the age of onset and rise in T2D to epidemic levels in Jammu and Kashmir.

References

[1] Zimmet P, Alberti, Shaw J. Global and societal implications of diabetes epidemic. *Nature* 2001; 414: 782-7.
[2] King H, Aubert RE, Herman WH. Global burden of diabetes, 1995-2025: prevalence, numerical estimates and projections. *Diabetes Care* 1998; 21: 1414-31.
[3] Sicree R, Shaw J, Zimmet P. Diabetes and impaired glucose tolerance in India using the WHO 1999 criteria: Prevalence of diabetes in India study (PODIS). *Diabetes Res Clin Pract* 2004; 66: 301-7.
[4] Shetty P. Public health: India’s diabetes time bomb. *Nature* 2012; 485(S): 14-16.
[5] Hoskote SS, Joshi SR. Are Indians Destined to be Diabetic? *J Assoc Physicians India* 2008; 56: 225-6.
[6] WHO study group report on diabetes mellitus. WHO (Geneva) *Tech Rep Ser* 1985; 727.
[7] WHO Expert Consultation 2004. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. *Lancet* 2004; 363: 157-63.
[8] Mohan V, Jaydip R, Deepa R. Type 2 diabetes in Asian Indian youth. *Pediatric Diabetes* 2007; 8 (S9): 29-34.
[9] Mohan V. Why Indians are more prone to Diabetes. *J Assoc Physicians India* 2004; 52: 468-7.
[10] Sadikot SM, Nigam A, Das S, Zargar AH, Prasanna Kumar KM, et al. Diabetes India: The burden of diabetes and impaired glucose tolerance in India using the WHO International Diabetes Federation (IDF 3: 15 G, IDF 4: 2003) criteria: Prevalence of diabetes in India study (PODIS). *Diabetes Res Clin Pract* 2004; 66: 301-7.
[11] Ramchandran A, Snehalatha C, Kapur A, Vijay V, Das AK, et al. Diabetes Epidemiology Study group in India (DESI): High prevalence of diabetes and impaired glucose tolerance in India- National Urban Diabetes Survey (NUDS). *Diabetologia* 2001; 44: 1094-100.
[12] Ramchandran A, Jali MV, Mohan V, Snehalatha C, Viswanathan M. High prevalence of diabetes in an urban population in South India. *BMJ* 1986; 297: 587-90.
[13] Nakagami T, Qiao Q, Carstensen B, Nhr-Hansen C, Hu G, Tuomilehto J, Age, body mass index and type 2 diabetes association modified by ethnicity. *Diabetologia* 2003; 46: 1063-70.
[14] Sethi S, Kumar P, Gupta S, Bhanwer AIS. Study of risk factors for the high prevalence of type 2 diabetes in the people of Jammu. *J Hum Ecol* 2013; 15: 177-217.
[15] Zargar AH, Khan AK, Masoodi SR, Laway BA, Wani AI, Bashir MI, Dar FA. Prevalence of Type 2 diabetes mellitus and impaired glucose tolerance in Kashmir Valley of Indian subcontinent. *Diabetes Res and Clin Pract* 2000; 47:135-46.
[16] Meigs JB, Cupples LA, Wilson PW. Parental transmission of Type 2 diabetes: the Framingham Offspring Study. *Diabetes* 2000; 49: 2201-7.
[17] Mohan V, Sharp PS, Aber V, Mather HM, Kohner EM. Family histories of Asian Indian and European NIDDM patients. *Prac Diabetes* 1986; 3: 254-6.
[18] Bhatti JS, Bhatti GK, Joshi A, Rai S, Mastana SS, Ralhan SK. Identification of the risk factors for the high prevalence of type 2 diabetes and its complications in a Punjab population: North Indian Diabetes study: A case-control study. *Int J Diab Dev Ctries* 2007; 27(S4): 100-15.
[19] Viswanathan M, McCarthy MI, Snehalatha C, Hitman GA, Ramachandran A. Familial aggregation of type 2 diabetes mellitus in south India; absence of excess ma-
ternal transmission. *Diab Med* 1996; 13: 232-7.

[20] Misra A, Vikram NK. Insulin Resistance syndrome (metabolic syndrome) and obesity in Asian Indians: Evidence and implications. *Nutrition* 2004; 20: 482-91.

[21] Chandalia M, Abate N, Garg A, Stray-Gubdersen J, Grundy SM. Relationship between generalised and upper body obesity to insulin resistance in Asian Indian men. *J Clin Endocrinol Metab* 1999; 84: 2329-35.

[22] McKeigue PM, Shah B, Marmot MG. Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians. *Lancet* 1991; 337: 382-6

[23] Banerji MA, Faridi N, Alturi R, Chaiken RL, Lebovitz HE. Body composition, visceral fat, leptin and insulin resistance in Asian Indian men. *J Clin Endocrinol Metab* 1999; 84: 137-44.

Lipid Metabolism: A Call for Papers

The *Journal of Biomedical Research* is planning a special issue on Lipid Metabolism in its May issue of 2014. We therefore issue a call for papers on all aspects of Nuclear Medicine. The *Journal* welcomes submission of individual reviews and original research papers from scientists worldwide. Papers should be submitted online by our deadline of Dec 30, 2013 (http://mc03.manuscriptcentral.com/jbprint), and it would help if you mention that your submission is in response to this call for papers. The *Journal* will expedite the review of papers submitted in answering this call for papers.