STRICT PARTITIONS OF MAXIMAL PROJECTIVE DEGREE

DAN BERNSTEIN

Abstract. The projective degrees of strict partitions of \(n \) were computed for all \(n \leq 100 \) and the partitions with maximal projective degree were found for each \(n \). It was observed that maximizing partitions for successive values of \(n \) “lie close to each other” in a certain sense. Conjecturing that this holds for larger values of \(n \), the partitions of maximal degree were computed for all \(n \leq 220 \). The results are consistent with a recent conjecture on the limiting shape of the strict partition of maximal projective degree.

1. Introduction

Let \(\lambda = (\lambda_1, \lambda_2, \ldots) \) be a partition of \(n \), denoted as usual by \(\lambda \vdash n \). Let \(f^\lambda \) denote the number of standard tableaux of shape \(\lambda \). \(f^\lambda \) is also the number of paths in the Young graph \(Y \) from the root \((1)\) to \(\lambda \), and it is also the degree of the irreducible character \(\chi^\lambda \) of the symmetric group \(S_n \).

A partition \(\lambda = (\lambda_1, \ldots, \lambda_r) \vdash n \) is said to be strict if \(\lambda_1 > \lambda_2 > \cdots > \lambda_r > 0 \) for some \(r \). In that case we write \(\lambda \models n \). Let \(SY \) be the subgraph of the Young graph \(Y \) formed by the strict partitions. If \(\lambda \models n \), let \(g^\lambda \) denote the number of paths in \(SY \) from the root \((1)\) to \(\lambda \). According to a theorem by Schur, \(g^\lambda \) is the degree of the projective representation of \(S_n \) corresponding to \(\lambda \). It is also the number of standard young tableaux of shifted shape \(\lambda \).

Vershik and Kerov [6, 7] have determined the asymptotic shape of the partition \(\lambda \) that maximizes \(f^\lambda \) as \(|\lambda| = n \to \infty \). They have also shown that the same shape is also the asymptotic expected shape of a random partition with respect to the Plancherel measure. The latter result was reached independently by Logan and Shepp [4] as well. Through the Robinson-Schensted algorithm, the expected shape relates to the expected length of the longest increasing subsequence in a random permutation. For some recent developments related to this problem and the probability distributions involved, see [1, 2, 5].

More precisely, given the Young diagram of a partition \(\lambda \vdash n \) where each box is \(1 \times 1 \), shrink it along both axes by a factor of \(\sqrt{n} \) to obtain the re-scaled diagram \(\bar{\lambda} \) of total area \(1 \). For each \(n \), let \(\lambda_{f^\lambda \text{max}}^{(n)} \) be a partition \(\lambda \vdash n \) with maximal \(f^\lambda \), that is, \(f^\lambda_{f^\lambda \text{max}}^{(n)} = \max \{ f^\nu \mid \nu \vdash n \} \). Through slight abuse of notation, where the maximizing partition is not unique for a given \(n \), we shall take \(\lambda_{f^\lambda \text{max}}^{(n)} \) to read “any \(\lambda \vdash n \) of maximal degree”.

Date: May 28, 2007.
Partially supported by the Israel Science Foundation (grant No. 947/04).
Theorem 1 ([6, 7]). The limit shape as $n \to \infty$ of the re-scaled diagrams $\bar{\lambda}_{f_{\text{max}}}^{(n)}$ exists, and is given by the two axes and by the parametric curve

$$\begin{align*}
 x &= \left(\frac{3}{\pi}\right) (\sin \Theta - \Theta \cos \Theta) + 2 \cos \Theta, \\
 y &= -\left(\frac{2}{\pi}\right) (\sin \Theta - \Theta \cos \Theta),
\end{align*}$$

$0 \leq \Theta \leq \pi$.

Figure 1

The Vershik-Kerov limit shape of Theorem 1 is shown in Figure 1. The problem of determining the asymptotic shape of the partition λ which maximizes g^λ remains unsolved, and we are unaware of even partial characterizations of the shape. However, recently the following was conjectured.

Conjecture 2 ([3, Conjecture 8.2]). The limit shape λ^* of the $\lambda \models n$ maximizing $2^{n-\ell(\lambda)} (g^\lambda)^2$ — and possibly maximizing g^λ — is given by the two axes and by the parametric curve

$$\begin{align*}
 x &= 2\sqrt{2} \cos \Theta, \\
 y &= \left(\frac{2\sqrt{2}}{\pi}\right) (\Theta \cos \Theta - \sin \Theta),
\end{align*}$$

$0 \leq \Theta \leq \frac{\pi}{2}$.

Figure 2

The conjectured limit shape of Conjecture 2 is shown in Figure 2. It was obtained from the Vershik-Kerov shape by bisecting it along the line $y = -x$, taking
the upper half, dilating it (so that its area become 1) and applying the shearing
transformation \((x, y) \mapsto (x + y, y)\) (to bring the line \(y = -x\) to the y axis).

In the next section, we give the results of computing the partition maximizing
\(g^\lambda\) over all \(\lambda \models n\) for \(1 \leq n \leq 100\). We observe a property of successive maximizing
partitions in the range \(1 \leq n \leq 100\), and conjecture that it holds for all \(n\). Assuming
the conjecture, we compute the maximizing partitions for \(100 < n \leq 220\). Our
results are consistent with Conjecture 2 for both \(g^\lambda\) and \(2^{-\ell(\lambda)} (g^\lambda)^2\).

2. Results for \(n \leq 100\)

To compute \(g^\lambda\), we used the following formula, due to Schur.

Theorem 3. Let \(\lambda = (\lambda_1, \ldots, \lambda_r) \models n\). Then
\[
g^\lambda = \frac{n!}{\lambda_1! \cdots \lambda_r!} \prod_{1 \leq i < j \leq r} \frac{\lambda_i - \lambda_j}{\lambda_i + \lambda_j}
\]

All computations were done with Mathematica.

For \(1 \leq n \leq 100\), \(g^\lambda\) was computed for every \(\lambda \models n\) and the partitions attaining
the maximal value for each \(n\) were identified.

Observation 4 (Uniqueness of the maximum). For every \(n \in [100] \setminus \{3, 11\}\), there
exists a partition \(\lambda = \lambda_{g_{\text{max}}}^{(n)} \models n\) such that \(g^\lambda > g^\mu\) for all \(\lambda \neq \mu \models n\).

Observation 5.
\[
\lambda_{g_{\text{max}}}^{(100)} = (24, 20, 16, 13, 10, 8, 5, 3, 1).
\]

Figure 3 shows the normalized diagram \(\tilde{\lambda}_{g_{\text{max}}}^{(100)}\) overlaid with the conjectured limit
shape.

Recall that by Conjecture 2 the partitions maximizing \(g^\lambda\) are asymptotically
equal to the partitions maximizing \(2^{-\ell(\lambda)} (g^\lambda)^2\). For all strict partitions \(\lambda\) of \(1 \leq n \leq 100\), \(2^{-\ell(\lambda)} (g^\lambda)^2\) was computed and the partition maximizing it was denoted
\(\lambda_{2g_{\text{max}}}^{(n)}\). Comparing the results with the results for \(g^\lambda\), the following was observed.

Observation 6. For all
\[
n \in \{1, 2, \ldots, 100\} \setminus \{3, 8, 16, 25, 26, 38, 51, 52, 53, 54, 69, 70, 88, 89, 90, 91\},
\]
\[
\lambda_{g_{\text{max}}}^{(n)} = \lambda_{2g_{\text{max}}}^{(n)}.
\]
Definition 7 \((d\text{-successor})\). Let \(\mu = (\mu_1, \ldots, \mu_r) \models n\) and let \(d \in \mathbb{N}\). The \(d\)-successors of \(\mu\) are the elements of the set

\[
N(\mu, d) := \{ \lambda = (\lambda_1, \ldots, \lambda_s) \models n + 1 \mid |\lambda_i - \mu_i| \leq d \quad 1 \leq i \leq s \}
\]

We have observed the following.

Observation 8. For \(1 \leq n < 100\), \(\lambda_{g \text{max}}^{(n+1)} \in N(\lambda_{g \text{max}}^n, 1)\).

When \(\lambda_{g \text{max}}^{(n)}\) is not unique, read the above to mean “every \(\lambda \models n + 1\) of maximal projective degree is a 1-successor of every \(\lambda \models n\) of maximal degree”.

3. A Conjecture and Results for \(n \leq 220\)

Based on the above observation, we conjecture the following.

Conjecture 9 (Maximizers are successors to a maximizers). For all \(n\), if \(\lambda_{g \text{max}}^{(n+1)} \in N(\lambda_{g \text{max}}^n, 1)\).

Assuming that the conjecture holds, \(\lambda_{g \text{max}}^{(n+1)}\) was computed for \(100 \leq n < 220\) as follows: starting with \(\lambda = \lambda_{g \text{max}}^{(n)}\), for every \(\mu \in N(\lambda, 1)\), the ratio \(\frac{\mu}{g}\) was computed and the \(\mu\) maximizing the ratio was selected.

Observation 10. If Conjecture 9 holds for all \(n < 220\), then

\[\lambda_{g \text{max}}^{(220)} = (37, 32, 28, 24, 21, 18, 16, 13, 11, 8, 6, 4, 2)\].

Figure 4 shows the normalized diagram \(\lambda_{g \text{max}}^{(220)}\) overlaid with the conjectured limit shape.

Figure 5 shows the ratio \(\frac{\lambda_{g \text{max}}^{(n+1)}}{\ell(\lambda_{g \text{max}}^n, 1)}\) for \(1 \leq n \leq 220\), where the values above \(n = 100\) are based on Conjecture 9. According to Conjecture 2, the ratio at the limit is \(\pi\).
REFERENCES

[1] J. Baik, P. Deift, and K. Johansson. On the distribution of the length of the longest increasing subsequence of random permutations. *J. Amer. Math. Soc.*, 12(4):1119–1178, 1999.
[2] J. Baik, P. Deift, and K. Johansson. On the distribution of the length of the second row of a Young diagram under Plancherel measure. *Geom. Funct. Anal.*, 10(4):702–731, 2000.
[3] D. Bernstein, A. Henke, and A. Regev. Maximal projective degrees for strict partitions. Preprint, 2006.
[4] B. F. Logan and L. A. Shepp. A variational problem for random Young tableaux. *Advances in Math.*, 26(2):206–222, 1977.
[5] R. P. Stanley. Recent progress in algebraic combinatorics. *Bull. Amer. Math. Soc. (N.S.)*, 40(1):55–68 (electronic), 2003. Mathematical challenges of the 21st century (Los Angeles, CA, 2000).
[6] A. M. Vershik and S. V. Kerov. Asymptotics of the Plancherel measure of the symmetric group and the limit form of young tableaux. *Dokl. Akad. Nauk SSSR*, 233:1024–1027, 1977.
[7] A. M. Vershik and S. V. Kerov. Asymptotic behavior of the maximum and generic dimensions of irreducible representations of the symmetric group. *Funktsional. Anal. i Prilozhen.*, 19(1):25–36, 96, 1985.

Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel

E-mail address: dan.bernstein@weizmann.ac.il