GENERIC T-ADIC EXPONENTIAL SUMS IN ONE VARIABLE

CHUNLEI LIU, WENXIN LIU, AND CHUANZE NIU

Abstract. The T-adic exponential sum associated to a Laurent polynomial in one variable is studied. An explicit arithmetic polygon is proved to be the generic Newton polygon of the C-function of the T-adic exponential sum. It gives the generic Newton polygon of L-functions of p-power order exponential sums.

1. Introduction

Let W be the ring scheme of Witt vectors, \mathbb{F}_q the field of characteristic p with q elements, $\mathbb{Z}_q = W(\mathbb{F}_q)$, and $\mathbb{Q}_q = \mathbb{Z}_q[\frac{1}{p}]$.

Let $\Delta \supseteq \{0\}$ be an integral convex polytope in \mathbb{R}^n, and I the set of vertices of Δ different from the origin. Let

$$f(x) = \sum_{u \in \Delta} (a_u x^u, 0, 0, \ldots) \in W(\mathbb{F}_q[x_1^\pm 1, \ldots, x_n^\pm 1])$$

with $\prod_{u \in I} a_u \neq 0$,

where $x^u = x_1^{u_1} \ldots x_n^{u_n}$ if $u = (u_1, \ldots, u_n) \in \mathbb{Z}^n$.

Let T be a variable.

Definition 1.1. The sum

$$S_f(k, T) = \sum_{x \in (\mathbb{F}_q^\times)^n} (1 + T)^{Tr_{\mathbb{Z}_q / \mathbb{Z}_p}(f(x))} \in \mathbb{Z}_p[[T]]$$

is called a T-adic exponential sum. And the function

$$L_f(s, T) = \exp\left(\sum_{k=1}^{\infty} S_f(k, T) \frac{s^k}{k!}\right) \in 1 + s\mathbb{Z}_p[[T]][[s]]$$

is called an L-function of T-adic exponential sums.

We view $L_f(s, T)$ as a power series in the single variable s with coefficients in the T-adic complete field $\mathbb{Q}_p((T))$. Let ζ_{p^m} be a primitive p^m-th root of unity, and $\pi_m = \zeta_{p^m} - 1$. Then $L_f(s, \pi_m)$ is the L-function of the p-power order exponential sums $S_f(k, \pi_m)$ studied by Liu-Wei [LW].

This research is supported by NSFC Grant No. 10671015.
Definition 1.2. The function
\[C_f(s, T) = \exp\left(\sum_{k=1}^{\infty} -\left(q^k - 1\right)^{-n} S_f(k, T) \frac{s^k}{k} \right) \]
is called a C-function of T-adic exponential sums.

We have
\[L_f(s, T) = \prod_{i=0}^{n} C_f(q^i s, T)^{(-1)^{n-i+1}(i)}, \]
and
\[C_f(s, T) = \prod_{j=0}^{\infty} L_f(q^j s, T)^{(-1)^{n-1}(n+j-1)}. \]

So the C-function $C_f(s, T)$ and the L-function $L_f(s, T)$ determine each other. From the last identity, one sees that
\[C_f(s, T) \in 1 + s\mathbb{Z}_p[[T]][[s]]. \]

We also view $C_f(s, T)$ as a power series in the single variable s with coefficients in the T-adic complete field $\mathbb{Q}_p((T))$. The C-function $C_f(s, T)$ was shown to be T-adic entire in s by Liu-Wan [LWn].

Let $C(\Delta)$ be the cone generated by Δ, and $M(\Delta) = M(\Delta) \cap \mathbb{Z}^n$. There is a degree function \deg on $C(\Delta)$ which is $\mathbb{R}_{\geq 0}$-linear and takes the values 1 on each co-dimension 1 face not containing 0. For $a \not\in C(\Delta)$, we define $\deg(a) = +\infty$.

Definition 1.3. A convex function on $[0, +\infty]$ which is linear between consecutive integers with initial value 0 is called the infinite Hodge polygon of Δ if its slopes between consecutive integers are the numbers $\deg(a)$, $a \in M(\Delta)$. We denote this polygon by H_∞^Δ.

Liu-Wan [LWn] also proved the following.

Lemma 1.4. We have
\[T - \text{adic NP of } C_f(s, T) \geq \text{ord}_p(q)(p - 1)H_\infty^\Delta, \]
where NP stands for Newton polygon.

Definition 1.5. The T^a-adic Newton polygon of $C_f(s, T; \mathbb{F}_p^a)$ is called the absolute Newton polygon of $C_f(s, T; \mathbb{F}_p^a)$.

Conjecture 1.6. If p is sufficiently large, then the absolute T-adic Newton polygon of $C_f(s, T)$ is constant for a generic f. We call it the generic Newton polygon of $C_f(s, T)$.

Definition 1.7. The π_m^a-adic Newton polygon of $C_f(s, \pi_m; \mathbb{F}_p^a)$ is called the absolute Newton polygon of $C_f(s, \pi_m; \mathbb{F}_p^a)$.
Combine results of Gelfand-Kapranov-Zelevinsky [GKZ], Adolphson-Sperber [AS], Liu-Wei [LW] with Grothendieck specialization lemma [Ka], the absolute Newton polygon of $C_f(s, \pi_m)$ is constant for a generic f. We call it the generic Newton polygon of $C_f(s, \pi_m)$.

Conjecture 1.8. If p is sufficiently large, then the generic Newton polygon of $C_f(s, \pi_m)$ is independent of m, and coincides with the generic Newton polygon of $C_f(s, T)$.

The generic Newton polygon of $C_f(s, \pi_m)$ for $m = 1$ was studied by Wan [Wa1, Wa2].

In the rest of this section we assume that $\triangle \subset \mathbb{Z}$.

Definition 1.9. Let $0 \neq a \in M(\triangle)$. We define
\[
\delta \in (a) = \begin{cases}
1, & \{\deg(a)\} = \{\deg(pi)\} \text{ for some } i \text{ with } ia > 0, \deg(i) < \{\deg(a)\}, \\
0, & \text{otherwise},
\end{cases}
\]
where $\{\cdot\}$ is the fractional part of a real number. We also define $\delta \in (0) = 0$.

Definition 1.10. A convex function on $[0, +\infty]$ which is linear between consecutive integers with initial value 0 is called the arithmetic polygon of \triangle if its slopes between consecutive integers are the numbers
\[
\varpi_\triangle(a) = \lceil(p - 1) \deg(a) \rceil - \delta \in (a), a \in M(\triangle),
\]
where $\lceil \cdot \rceil$ is the least integer equal or greater than a real number. We denote this polygon by p_\triangle.

We can prove the following.

Theorem 1.11. We have
\[
p_\triangle \geq (p - 1) H^\infty_\triangle.
\]
Moreover, they coincide at the point $\text{Vol}(\triangle)$.

Let D be the least common multiple of the nonzero endpoint(s) of \triangle.

The main results of this paper are the following theorems.

Theorem 1.12. If $p > 3D$, then
\[
T - \text{adic NP of } C_f(s, T) \geq \text{ord}_p(q)p_\triangle.
\]

Theorem 1.13. Let $f(x) = \sum_{u \in \triangle} (a_u x^u, 0, 0, \cdots)$, and $p > 3D$. Then there is a non-zero polynomial $H(y) \in \mathbb{F}_q[y_u \mid u \in \triangle]$ such that
\[
T - \text{adic NP of } C_f(s, T) = \text{ord}_p(q)p_\triangle
\]
if and only if $H((a_u)_{u \in \triangle}) \neq 0$.

The above theorem implies Conjecture 1.6 for $\triangle \subset \mathbb{Z}$.
Theorem 1.14. Let \(f(x) = \sum_{u \in \Delta} (a_u x^{u}, 0, 0, \cdots), \) \(p > 3D, \) and \(m \geq 1. \) Then \(\pi_m - \text{adic NP of } C_f(s, \pi_m) = \text{ord}_p(q) \Delta \) if and only if \(H((a_u)_{u \in \Delta}) \neq 0. \)

The above theorem implies Conjecture 1.8 for \(\Delta \subset \mathbb{Z}. \)

Note that, if \(p \nmid D, \) then \(L(s, \pi_m) \) is a polynomial of degree \(p^m - 1 \) \(\text{Vol}(\Delta) \) for all \(m \geq 1 \) by a result of Adolphson-Sperber [AS] and a result of Liu-Wei [LW]. We shall prove the following.

Theorem 1.15. Let \(f(x) = \sum_{u \in \Delta} (a_u x^{u}, 0, 0, \cdots), \) and \(p > 3D. \) Then \(\pi_m - \text{adic NP of } L_f(s, \pi_m) \geq \text{ord}_p(q) \Delta \) on \([0, p^m - 1 \text{Vol}(\Delta)]\)
with equality holding if and only if \(H((a_u)_{u \in \Delta}) \neq 0. \)

Zhu [Zh1, Zh2] and Blache-Férand [BF] studied the Newton polygon of the \(L \)-function \(L_f(s, \pi_m) \) for \(m = 1. \)

2. Arithmetic estimate

In this section \(\Delta \subset \mathbb{Z}, \) \(A \) is a finite subset of \(M(\Delta) \times \mathbb{Z}/(b), \) and \(\tau \) is a permutation of \(A. \) We shall estimate
\[
\sum_{a \in A} \lceil \text{deg}(pa - \tau(a)) \rceil,
\]
where \(\text{deg}(i, u) = \text{deg}(i). \)

However, except in the ending paragraph, we assume that \(\Delta = [0, d], \) \(A \) is a finite subset of \(\{1, 2, \cdots \} \times \mathbb{Z}/(b). \)

Write
\[
\{x\}' = 1 + x - \lfloor x \rfloor = \begin{cases} \{x\}, & \text{if } \{x\} \neq 0, \\ 1, & \text{if } \{x\} = 0. \end{cases}
\]

Lemma 2.1. We have
\[
\sum_{a=0}^{m} (\delta_{<} - \delta_{\leq})(a) = \#\{1 \leq a \leq d\{\frac{m}{d}\}' \mid \{\frac{m}{d}\}' < \{\frac{pa}{d}\}'\},
\]
where
\[
\delta_{<}(a) = \begin{cases} 1, & \{\frac{a}{d}\}' < \{\frac{pa}{d}\}' \\ 0, & \text{otherwise.} \end{cases}
\]

Proof. Note that both \(\delta_{\leq} \) and \(\delta_{<} \) have a period \(d \) and have initial value 0. So we may assume that \(m < d. \) We have
\[
\sum_{a=0}^{m} \delta_{\leq}(a) = \sum_{a=1}^{m} \sum_{i=1}^{a-1} 1
\]
\[
\sum_{i=1}^{m-1} \sum_{a_i + 1}^{m} 1 = \#\{1 \leq i < m \mid i < d\frac{p_i}{d} \leq m\}.
\]

And, by definition,
\[
\sum_{a=0}^{m} \delta_\epsilon(a) = \#\{1 \leq a \leq m \mid a < d\frac{pa}{d}\}.
\]

The lemma now follows. □

Lemma 2.2. Let \(A, B, C \) be sets with \(A \) finite, and \(\tau \) a permutation of \(A \). Then
\[
\#\{a \in A \mid \tau(a) \in B, a \in C\} \\
\geq \#\{a \in A \mid a \in B, a \in C\} - \#\{a \in A \mid a \not\in B, a \not\in C\}.
\]

Proof. We have
\[
\#\{a \in A \mid a \in B, \tau(a) \in B, a \in C\} \\
\geq \#\{a \in A \mid a \in B, \tau(a) \not\in B\} - \#\{a \in A \mid a \in B, a \not\in C\},
\]
and
\[
\#\{a \in A \mid a \not\in B, \tau(a) \in B, a \in C\} \\
\geq \#\{a \in A \mid a \not\in B, \tau(a) \in B\} - \#\{a \in A \mid a \not\in B, a \not\in C\}.
\]

Note that
\[
\#\{a \in A \cap B \mid \tau(a) \not\in B\} = \#\{a \in A \setminus B \mid \tau(a) \in B\}.
\]

So
\[
\#\{a \in A \mid \tau(a) \in B, a \in C\} \\
\geq \#\{a \in A \mid a \in B, a \in C\} - \#\{a \in A \mid a \not\in B, a \not\in C\}.
\]

The lemma is proved. □

For \(a \in A \), we define
\[
\delta_\epsilon^\tau(a) = \begin{cases} 1, & \text{if } \deg(\tau(a)) < \text{deg}(a), \\
0, & \text{otherwise}. \end{cases}
\]

Theorem 2.3. If \(p > 3d \), and
\[
A = \{(1, \cdots, m-1) \times \mathbb{Z}/(b)\} \cup \{(m, i_0), \cdots, (m, i_{l-1})\},
\]
then
\[
\sum_{a \in A} \delta_\epsilon^\tau(a) \geq b \sum_{a=0}^{m-1} (\delta_\epsilon - \delta_\epsilon')(a) + l(\delta_\epsilon - \delta_\epsilon)(m).
\]
Proof. First we assume that \(l = 0 \). We have
\[
\sum_{a \in A} \delta_<(a) \geq \# \{ a \in A, \{ \text{deg}(\tau(a)) \}' \leq \{ \frac{m-1}{d} \}' < \{ p \text{deg}(a) \}' \}.
\]
Applying the last lemma with
\[
B = \{ a \in A, \{ \text{deg}(a) \}' \leq \{ \frac{m-1}{d} \}' \},
\]
and
\[
C = \{ a \in A, \{ \frac{m-1}{d} \}' < \{ p \text{deg}(a) \}' \},
\]
we get
\[
\sum_{a \in A} \delta_<(a) \geq \# \{ a \in A, \{ \text{deg}(a) \}' \leq \{ \frac{m-1}{d} \}' < \{ p \text{deg}(a) \}' \}
- \# \{ a \in A, \{ \text{deg}(a) \}' > \{ \frac{m-1}{d} \}' \geq \{ p \text{deg}(a) \}' \}.
\]
We have
\[
\# \{ a \in A, \{ \text{deg}(a) \}' \leq \{ \frac{m-1}{d} \}' < \{ p \text{deg}(a) \}' \} = b(\frac{m}{d} + 1)\# \{ 1 \leq a \leq d \{ \frac{m-1}{d} \}' | \{ \frac{m}{d} \}' < \{ \frac{pa}{d} \}' \}.
\]
We also have
\[
\# \{ a \in A, \{ \text{deg}(a) \}' > \{ \frac{m-1}{d} \}' \geq \{ p \text{deg}(a) \}' \}
= \frac{b}{d} m \# \{ d \geq a \geq d \{ \frac{m-1}{d} \}' | \{ \frac{m}{d} \}' \geq \{ \frac{pa}{d} \}' \}.
\]
\[
= \frac{b}{d} m \# \{ 1 \leq a \leq d \{ \frac{m-1}{d} \}' | \{ \frac{m}{d} \}' < \{ \frac{pa}{d} \}' \}.
\]
It follows that
\[
\sum_{a \in A} \delta_<(a) \geq b \# \{ 1 \leq a \leq d \{ \frac{m-1}{d} \}' | \{ \frac{m}{d} \}' < \{ \frac{pa}{d} \}' \}
\geq \sum_{a=0}^{m-1} (\delta_<(a) - \delta_<(m)).
\]
Secondly we assume that \(\delta_<(m) = 0 \). Extend the action of \(\tau \) trivially from \(A \) to \(\{1, \cdots, m\} \times \mathbb{Z}/(b) \). By what we just proved,
\[
\sum_{a \in \{1, \cdots, m\} \times \mathbb{Z}/(b)} \delta_<(a) \geq b \sum_{a=0}^{m} (\delta_<(a) - \delta_<(m)).
\]
It follows that
\[
\sum_{a \in A} \delta_<(a) \geq b \sum_{a=0}^{m} (\delta_<(a) - (b-l)\delta_<(m)).
\]
\[\sum_{a \in A} \delta_<(a) \geq b \sum_{a=0}^{m-1} (\delta_<(\delta_<(a) + l(\delta_<(a)))(m). \]

Finally we assume that \(\delta_a(m) = 1 \). We have
\[\sum_{a \in A} \delta_<(a) \geq \#\{a \in A, \{\deg(\tau(a))\}' \leq \{\frac{m-1}{d}' \} < \{p \deg(a)\}' \}. \]

Applying the last lemma with
\[B = \{a \in A, \{\deg(a)\}' \leq \{\frac{m-1}{d}' \} \}, \]
and
\[C = \{a \in A, \{\frac{m-1}{d}' \} < \{p \deg(a)\}' \}, \]
we get
\[\sum_{a \in A} \delta_<(a) \geq \#\{a \in A, \{\deg(a)\}' \leq \{\frac{m-1}{d}' \} < \{p \deg(a)\}' \} \]
\[-\#\{a \in A, \{\deg(a)\}' > \{\frac{m-1}{d}' \} \geq \{p \deg(a)\}' \}. \]

We have
\[\#\{a \in A, \{\deg(a)\}' \leq \{\frac{m-1}{d}' \} < \{p \deg(a)\}' \} \]
\[= b(\lfloor \frac{m}{d} \rfloor + 1) \#\{1 \leq a \leq d\{\frac{m-1}{d}' \} \leq \{\frac{m-1}{d}' \} < \{p \frac{a}{d}' \} \}. \]

We also have
\[\#\{a \in A, \{\deg(a)\}' > \{\frac{m-1}{d}' \} \geq \{p \deg(a)\}' \} \]
\[= b(\lfloor \frac{m}{d} \rfloor) \#\{d \geq a > d\{\frac{m-1}{d}' \} \geq \{\frac{m-1}{d}' \} \geq \{p \frac{a}{d}' \} \} + l1\{a \geq \frac{m}{d}' \} \geq \{p \frac{a}{d}' \} \}. \]

It follows that
\[\sum_{a \in A} \delta_<(a) \geq b \#\{1 \leq a \leq d\{\frac{m-1}{d}' \} \leq \{\frac{m-1}{d}' \} < \{p \frac{a}{d}' \} \} \]
\[-l1\{\frac{m-1}{d}' \geq \{p \frac{a}{d}' \} \} \geq b \sum_{a=0}^{m-1} (\delta_<(\delta_<(a) + l(\delta_<(a)))(m). \]

The proof of the theorem is completed. \(\square \)

Theorem 2.4. If \(p > 3d \), \(A \) is of cardinality \(bm + l \) with \(0 \leq l < b \), then
\[\sum_{a \in A} (\lfloor p \deg(a) \rfloor - \lfloor \deg(a) \rfloor + \delta_<(a)) \geq bp_\Delta(m) + l\varpi(m). \]

Moreover, the strict inequality holds if \(A \) is not of the form
\[(\{1, \cdots, m-1\} \times \mathbb{Z}/(b)) \cup \{(m, i_0), \cdots, (m, i_{l-1})\}. \]
Proof. We may assume that A is not of the form
\[
\{(1, \cdots, m-1) \times \mathbb{Z}/(b)) \cup \{(m, i_0), \cdots, (m, i_{l-1})\}.
\]
There is an element $a_0 \in A$ with $\deg(a_0) > \deg(m)$. Set $A' = A \setminus \{a_0\}$ and
\[
\tau'(a) = \begin{cases}
\tau(a), & a \neq \tau^{-1}(a_0), \\
\tau(a_0), & a = \tau^{-1}(a_0).
\end{cases}
\]
Then
\[
\sum_{a \in A} \left([p \deg(a)] - \deg(a) + \delta_{\tau'}(a)\right)
> \sum_{a \in A'} \left([p \deg(a)] - \deg(a) + \delta_{\tau'}(a)\right) + \varpi(m).
\]
The theorem now follows by induction. \qed

We now assume that $\triangle \subset \mathbb{Z}$, and A is a finite subset of $M(\triangle) \times \mathbb{Z}/(b)$.
For an integer $m \geq 1$, we define
\[
A_m = \{a \in M(\triangle) \mid \varpi(a) \leq p\triangle(m) - p\triangle(m-1)\}.
\]

Theorem 2.5. If $p > 3D$, then
\[
\sum_{a \in A} [\deg(pa - \tau(a))] \geq bp\triangle(m).
\]
Moreover, the strict inequality holds if m is a turning point of $p\triangle$, and $A \neq A_m \times \mathbb{Z}/(b)$.

Proof. We define $\text{sgn}((i, u)) = \text{sgn}(i)$. Write
\[
A_i = \{a \in A \mid \text{sgn}(a) = (-1)^i\},
\]
and
\[
A_{ij} = \{a \in A \mid \text{sgn}(a) = (-1)^i, \text{sgn}(\tau(a)) = (-1)^j\}.
\]
Define a new permutation τ_0 as follows:
\begin{itemize}
 \item τ_0 is identity on A_0.
 \item $\tau_0 = \tau$ on A_{11} and A_{22}.
 \item τ_0 maps $A_1 \setminus A_{11}$ to $A_1 \setminus \tau(A_1)$.
 \item τ_0 maps $A_2 \setminus A_{22}$ to $A_2 \setminus \tau(A_2)$.
\end{itemize}
We have
\[
\sum_{a \in A} [\deg(pa - \tau(a))] \geq \sum_{a \in A} \left([p \deg(a)] - \deg(\tau_0(a)) + 1_{\{\deg(\tau_0(a))' < \{p \deg(a)\}'\}}\right).
\]
The theorem now follows the last one. \qed
3. The \(T\)-adic Dwork Theory

In this section we review the \(T\)-adic analogue of Dwork theory on exponential sums.

Let
\[
E(t) = \exp\left(\sum_{i=0}^{\infty} \frac{t^i}{p^i}\right) = \sum_{i=0}^{+\infty} \lambda_i t^i \in 1 + t\mathbb{Z}_p[[t]]
\]
be the \(p\)-adic Artin-Hasse exponential series. Define a new \(T\)-adic uniformizer \(\pi\) of \(\mathbb{Q}_p((T))\) by the formula
\[
E(\pi) = 1 + \pi^1.
\]
Let \(\pi_1/D\) be a fixed \(D\)-th root of \(\pi\). Let
\[
L = \{ \sum_{i \in M(\triangle)} c_i \pi^{\deg(i)} x^i : c_i \in \mathbb{Z}_q[[\pi^{1/D}]] \}.
\]

Let \(a \mapsto \hat{a}\) be the Teichmüller lifting. One can show that the series
\[
E_f(x) := \prod_{a_i \neq 0} E(\pi \hat{a}_i x^i) \in L.
\]

Note that the Galois group of \(\mathbb{Q}_q\) over \(\mathbb{Q}_p\) can act on \(L\) but keeping \(\pi^{1/D}\) as well as the variable \(x\) fixed. Let \(\sigma\) be the Frobenius element in the Galois group such that \(\sigma(\zeta) = \zeta^p\) if \(\zeta\) is a \((q-1)\)-th root of unity. Let \(\Psi_p\) be the operator on \(L\) defined by the formula
\[
\Psi_p(\sum_{i \in M(\triangle)} c_i x^i) = \sum_{i \in M(\triangle)} c_i \pi^{\deg(i)} x^i.
\]

Then \(\Psi := \sigma^{-1} \circ \Psi_p \circ E_f\) acts on the \(T\)-adic Banach module
\[
B = \{ \sum_{i \in M(\triangle)} c_i \pi^{\deg(i)} x^i \in L, \ \text{ord}_T(c_i) \to +\infty \text{ if } \deg(i) \to +\infty \}.
\]

We call it Dwork’s \(T\)-adic semi-linear operator because it is semi-linear over \(\mathbb{Z}_q[[\pi^{1/D}]]\).

Let \(b = \log_p q\). Then the \(b\)-iterate \(\Psi^b\) is linear over \(\mathbb{Z}_q[[\pi^{1/D}]]\), since
\[
\Psi^b = \Psi_p^b \circ \prod_{i=0}^{b-1} E_f(x^{p^i}).
\]

One can show that \(\Psi\) is completely continuous in the sense of Serre [Se]. So
\[
\text{det}(1 - \Psi^b s | B/\mathbb{Z}_q[[\pi^{1/D}]]) \text{ and } \text{det}(1 - \Psi s | B/\mathbb{Z}_p[[\pi^{1/D}]])
\]
are well-defined.

We now state the \(T\)-adic Dwork trace formula [LWn].

Theorem 3.1. We have
\[
C_f(s, T) = \text{det}(1 - \Psi^b s | B/\mathbb{Z}_q[[\pi^{1/D}]]).
\]
4. The Dwork semi-linear operator

Write

\[E_f(x) = \sum_{i \in M(\Delta)} \gamma_i x^i, \]

and

\[\det(1 - \Psi s | B/\mathbb{Z}_p[[\pi^{1/2}]]) = \sum_{i=0}^{+\infty} (-1)^i c_i s^i. \]

Let \(O(\pi^\alpha) \) denotes any element of \(\pi \)-adic order \(\geq \alpha \). In this section we prove the following.

Theorem 4.1. Let \(p > 3D \). Then

\[\text{ord}_s(c_{bm}) \geq bp_\Delta(m). \]

Moreover, if \(m < \text{Vol}(\Delta) \) is a turning point of \(p_\Delta \), then

\[c_{bm} = \pm \text{Norm}(\det(\gamma_{pi-j} i,j \in A_m)) + O(\pi^{bp_\Delta(m)+1/D}), \]

where \(\text{Norm} \) is the norm map from \(\mathbb{Q}_q(\pi^{1/D}) \) to \(\mathbb{Q}_p(\pi^{1/D}) \).

Proof. Fix a normal basis \(\bar{\xi}_u, u \in \mathbb{Z}/(b) \) of \(\mathbb{F}_q \) over \(\mathbb{F}_p \). Let \(\xi_u \) be their Tera-
chmüller lift of \(\bar{\xi}_u \). Then \(\xi_u, u \in \mathbb{Z}/(b) \) is a normal basis of \(\mathbb{Q}_q \) over \(\mathbb{Q}_p \), and \(\sigma \) acts on the basis \(\xi_u, u \in \mathbb{Z}/(b) \) as a permutation. Let \((\gamma_{i,u}(j,\omega))_{i,j \in M(\Delta), 1 \leq u, \omega \leq b} \) be the matrix of \(\Psi \) on \(B \otimes \mathbb{Z}_p \mathbb{Q}_p(\pi^{1/D}) \) with respect to the basis \(\{\xi_u x^i\}_{i \in M(\Delta), 1 \leq u \leq b} \).

Then

\[c_{bm} = \sum_A \det((\gamma_{i,u}(j,\omega))_{(i,u),(j,\omega) \in A}), \]

where \(A \) runs over all subsets of \(M(\Delta) \times \mathbb{Z}/(b) \) with cardinality \(bm \). One can show that

\[\det(\gamma_{i,j})_{i,j \in A_m \times \mathbb{Z}/(b)} = \pm \text{Norm}(\det((\gamma_{pi-j} i,j \in A_m))). \]

Therefore the theorem follows from the following.

Theorem 4.2. Let \(A \subset M(\Delta) \times \mathbb{Z}/(b) \) be a subset of cardinality \(bm \). If \(p > 3D \), then

\[\text{ord}_T(\det(\gamma_{i,u}(j,\omega))_{(i,u),(j,\omega) \in A}) \geq bp_\Delta(m). \]

Moreover, if \(m < \text{Vol}(\Delta) \) is a turning point of \(p_\Delta \), and \(A \neq A_m \times \mathbb{Z}/(b) \), then the strict inequality holds.

Proof. one can show that \(\gamma_i = O(\pi^{[\deg(i)]}) \). And, from the equality

\[(\xi_u \gamma_{pr-l})^{\sigma-1} = \sum_{\omega=1}^{b} \gamma(r,w),(l,u)\xi_\omega, \]

we infer that

\[\gamma_{i,j} = O(\pi^{[\deg(pi-j)]}). \]
So we have
\[\sum_{a \in A} \text{ord}_\pi(\gamma_{a,\tau(a)}) \geq \sum_{a \in A} \lceil \deg(pa - \tau(a)) \rceil \geq bp_\Delta(m). \]
Moreover, if \(m \) is a turning point of \(p_\Delta \), and \(A \neq A_m \times \mathbb{Z}/(b) \), then the strict inequality holds. \(\square \)

5. The Hasse Polynomial

In this section we study \(\det(\gamma_{pi-j})_{i,j \in A_m} \).

Definition 5.1. For each positive integer \(m \), we define \(S^0_m \) to be the set of permutations \(\tau \) of \(A_m \) satisfying \(\tau(0) = 0 \), and
\[\frac{\tau(a)}{d(\text{sgn}(a))} \geq \deg(pa) - \lceil \deg(pa) - \deg(n) \rceil, \quad a \neq 0, \]
where \(n \) is the element of maximal degree in \(A_m \cap \text{sgn}(a)\mathbb{N} \).

Lemma 5.2. Let \(p > 3D \), \(m < \text{Vol}(\Delta) \) a turning point of \(p_\Delta \), and \(\tau \) a permutation of \(A_m \). Then
\[\sum_{a \in A_m} \lceil \deg(pa - \tau(a)) \rceil \geq p_\Delta(m), \]
with equality holding if and only if \(\tau \in S^0_m \).

Proof. We assume that \(M(\Delta) = \mathbb{N} \). The other cases can be proved similarly.
In this case, \(\text{sgn}(a) = +1 \) if \(a \neq 0 \), and the element \(n \) of maximal degree in \(A_m \cap \text{sgn}(a)\mathbb{N} \) is \(m - 1 \). Let \(d \) be the nonzero endpoint of \(\Delta \). For \(a = 0 \), we have
\[\lceil \deg(pa - \tau(a)) \rceil \geq 0 \]
with equality holding if and only if \(\tau(a) = 0 \). For \(a \neq 0 \), we have
\[\left\lfloor \frac{pa - \tau(a)}{d} \right\rfloor \geq \left\lfloor \frac{pa - n}{d} \right\rfloor \]
with equality holding if and only if
\[\frac{\tau(a)}{d} \geq \frac{pa}{d} - \left\lfloor \frac{pa - n}{d} \right\rfloor. \]
It follows that
\[\sum_{a \in A_m} \lceil \deg(pa - \tau(a)) \rceil \geq \sum_{a=1}^{n} \lceil \deg(pa - n) \rceil = p_\Delta(m) \]
with equality holding if and only if \(\tau \in S^0_m \). The theorem is proved. \(\square \)

Lemma 5.3. We have
\[\gamma_i = \pi^{\lceil \deg(i) \rceil} \sum_{\sum_{j \in \Delta} \lambda_j a_j^n_j} \prod_{j \in \Delta} \lambda_j a_j^n_j + O(\pi^{\lceil \deg(i) \rceil + 1}). \]
Proof. We have
\[\gamma_i = \sum_{\sum_{j \in \Delta} n_j = i, n_j \geq 0} \prod_{j \in \Delta} P_j^{n_j} \prod_{j \in \Delta} \lambda_{n_j} a_j^{n_j}. \]
We also have that
\[\sum_{j \in \Delta} n_j \geq \lceil \deg(i) \rceil \text{ if } \sum_{j \in \Delta} jn_j = i. \]
The lemma now follows.

Definition 5.4. For each positive integer \(m \), we define
\[H_m(y) = \sum_{\tau \in S_m} sgn(\tau) \prod_{i \in A_m} \sum_{\sum_{j \in \Delta} n_j = pi - \tau(i)} \prod_{j \in \Delta} \lambda_{n_j} y_j^{n_j} \in \mathbb{Z}_p[y_j \mid j \in \Delta]. \]

Theorem 5.5. Let \(p > 3D \), and \(m < \text{Vol}(\Delta) \) a turning point of \(p_\Delta \). Then
\[\det(\gamma_{pi-j})_{i,j \in A_m} = H_m((\bar{a}_j)_{j \in \Delta}) p^{\Delta(m)} + O(p^{\Delta(m)+1/D}). \]

Proof. Let \(S_m \) be the set of permutations of \(A_m \). We have
\[\det(\gamma_{pi-j})_{i,j \in A_m} = \sum_{\tau \in S_m} \prod_{i \in A_m} \gamma_{pi-\tau(i)}. \]
The theorem now follows from the last two lemmas.

Definition 5.6. The reduction of \(H_m \) modulo \(p \) is denoted as \(\overline{H}_m \), and is called the Hasse polynomial of \(\Delta \) at \(m \).

Theorem 5.7. If \(p > 3D \), and \(m < \text{Vol}(\Delta) \) is a turning point of \(p_\Delta \), then \(\overline{H}_m \) is non-zero.

Proof. Define \(\deg(y_j) = |j| \). Then
\[\prod_{i \in A_m} \sum_{\sum_{j \in \Delta} n_j = pi - \tau(i)} \prod_{j \in \Delta} \lambda_{n_j} y_j^{n_j} \]
has degree
\[\sum_{i \in A_m} |pi - \tau(i)| = \sum_{i \in A_m} sgn(i)(pi - \tau(i)) \]
\[= p \sum_{i \in A_m} sgn(i)i - \sum_{i \in A_m} sgn(i)\tau(i) \]
\[\geq p \sum_{i \in A_m} sgn(i)i - \sum_{i \in A_m} sgn(\tau(i))\tau(i) \]
\[\geq (p - 1) \sum_{i \in A_m} sgn(i)i, \]
with equality holding if and only if τ preserves the sign. Therefore it suffices to show that the reduction of
\[
\sum_{\tau \in S^1_m} \text{sgn}(\tau) \prod_{i \in A_m} \sum_{j \in \Delta} \prod_{j \in \Delta} \lambda_{n_j} y_j^{n_j},
\]
where S^1_m consists of the sign-preserving permutations of S^0_m, is nonzero. One can prove this by the maximal-monomial-locating technique of Zhu [Zh1], as was used by Blache-Férard [BF].

Definition 5.8. We define $H = \prod_m \mathcal{M}_m$, where the product is over all turning points $m < \text{Vol}(\Delta)$ of p_Δ.

Theorem 5.9. If $p > 3D$, then H is non-zero.

Proof. This follows from the last theorem. \qed

6. Proof of the main theorem

In this section we prove the main theorems of this paper.

Lemma 6.1. The Newton polygon of $\det(1 - \Psi^{b} s \mid B/\mathbb{Z}_q[[\pi^{1/3}]])$ coincides with that of $\det(1 - \Psi s \mid B/\mathbb{Z}_p[[\pi^{1/3}]])$.

Proof. Note that
\[
\det(1 - \Psi s \mid B/\mathbb{Z}_p[[\pi^{1/3}]]) = \text{Norm}(\det(1 - \Psi^{b} s \mid B/\mathbb{Z}_q[[\pi^{1/3}]])),
\]
where Norm is the norm map from $\mathbb{Z}_q[[\pi^{1/3}]]$ to $\mathbb{Z}_p[[\pi^{1/3}]]$. The lemma now follows from the equality
\[
\prod_{\zeta^{i} = 1} \det(1 - \Psi \zeta s \mid B/\mathbb{Z}_p[[\pi^{1/3}]]) = \det(1 - \Psi^{b} s \mid B/\mathbb{Z}_p[[\pi^{1/3}]]).
\]
\qed

Theorem 6.2. The T-adic Newton polygon of $\det(1 - \Psi^{b} s \mid B/\mathbb{Z}_q[[\pi^{1/3}]])$ is the lower convex closure of the points
\[
(m, \text{ord}_T(c_{bm})), \quad m = 0, 1, \ldots .
\]

Proof. By the last lemma, the T-adic Newton polygon of the power series $\det(1 - \Psi^{b} s \mid B/\mathbb{Z}_q[[\pi^{1/3}]])$ is the lower convex closure of the points
\[
(i, \text{ord}_T(c_{i})), \quad i = 0, 1, \ldots .
\]
It is clear that $(i, \text{ord}_T(c_{i}))$ is not a vertex of that polygon if $b \nmid i$. So that Newton polygon is the lower convex closure of the points
\[
(bm, \text{ord}_T(c_{bm})), \quad m = 0, 1, \ldots .
\]
It follows that the T-adic Newton polygon of $\det(1 - \Psi^{b} s \mid B/\mathbb{Z}_q[[\pi^{1/3}]])$ is the lower convex closure of the points
\[
(m, \text{ord}_T(c_{bm})), \quad m = 0, 1, \ldots .
\]
We now prove Theorem 1.12 which says that
\[T \text{-adic NP of } C_f(s, T) \geq \operatorname{ord}_p(q)p_\Delta \text{ if } p > 3D. \]

Proof of Theorem 1.12. Combine the last theorem with the \(T \)-adic Dwork’s trace formula, we see that the \(T \)-adic Newton polygon of \(C_f(s, T) \) is the lower convex closure of the points
\[(m, \operatorname{ord}_T(c_m)), \ m = 0, 1, \ldots \]
The theorem now follows from the estimate
\[\operatorname{ord}_T(c_m) \geq bp_\Delta(m). \]

We now prove Theorem 1.11 which says that
\[p_\Delta \geq (p-1)H^\infty_\Delta \]
with equality holding at the point \(\operatorname{Vol}(\triangle) \).

Proof of Theorem 1.11. We assume that \(\Delta = [0, d] \). The other cases can be proved similarly. It suffices to show that
\[p_\Delta \geq (p-1)H^\infty_\Delta \text{ on } [0, d] \]
with equality holding at the point \(\Delta \). Let \(0 < m \leq d \). We have
\[
p_\Delta(m) = \sum_{0 \leq a < m} \left(\left\lceil \frac{(p-1)a}{d} \right\rceil - \delta \varepsilon(a) \right)
= \sum_{0 \leq a < m} \left(\left\lfloor \frac{pa}{d} \right\rfloor - \left\lfloor \frac{a}{d} \right\rfloor + \delta \varepsilon(a) - \delta \varepsilon(a) \right)
= \sum_{1 \leq a < m} \left(\left\lfloor \frac{pa}{d} \right\rfloor - 1 \right) + \sum_{1 \leq a < m} (\delta \varepsilon - \delta \varepsilon)(a)
= \sum_{1 \leq a < m} \left\lfloor \frac{pa}{d} \right\rfloor + \sum_{1 \leq a < m} (\delta \varepsilon - \delta \varepsilon)(a)
= p \sum_{1 \leq a < m} \frac{a}{d} - \sum_{1 \leq a < m} \left\{ \frac{pa}{d} \right\} + \sum_{1 \leq a < m} \frac{1}{d\left\{ \frac{pa}{d} \right\} \geq m} \cdot 1
= (p-1)H^\infty_\Delta(m) + \sum_{1 \leq a < m} \frac{a}{d} - \sum_{1 \leq a < m} \left\{ \frac{pa}{d} \right\} + \# \{ 1 \leq a < m \mid d\left\{ \frac{pa}{d} \right\} \geq m \}.
\]
In particular, we have
\[p_\Delta(d) = (p-1)H^\infty_\Delta(d). \]

Note that
\[
\sum_{1 \leq a < m} \frac{a}{d} - \sum_{1 \leq a < m} \left\{ \frac{pa}{d} \right\} + \# \{ 1 \leq a < m \mid d\left\{ \frac{pa}{d} \right\} \geq m \}
\]
\[
\sum_{1 \leq a < m} \frac{a}{d} - \sum_{\substack{1 \leq a < m \\ d \left(\frac{a}{p} \right) < m}} \{\frac{pa}{d}\} \geq 0.
\]

It follows that
\[
p_{\Delta}(m) \geq (p - 1)H_{\infty}^m(m).
\]

Theorem 6.3. Let \(A(s,T)\) be a \(T\)-adic entrie series in \(s\) with unitary constant term. If \(0 \neq |t|_p < 1\), then
\[
t - \text{adic NP of } A(s,t) \geq T - \text{adic NP of } A(s,T),
\]
where \(NP\) is the short for Newton polygon. Moreover, the equality holds for one \(t\) if and only if it holds for all \(t\).

Proof. Write
\[
A(s,T) = \sum_{i=0}^{\infty} a_i(T)s^i.
\]

The inequality follows from the fact that \(a_i(T) \in \mathbb{Z}_q[[T]]\). Moreover,
\[
t - \text{adic NP of } A(s,t) = T - \text{adic NP of } A(s,T)
\]
if and only if
\[
a_i(T) \in T^e\mathbb{Z}_q[[T]]^\times
\]
for every turning point \((i,e)\) of the \(T\)-adic Newton polygon of \(A(s,T)\). It follows that the equality holds for one \(t\) iff it holds for all \(t\). \(\square\)

Theorem 6.4. Let \(f(x) = \sum_{u \in \Delta} (a_u, x^u, 0, 0, \cdots)\), and \(p > 3D\). If the equality
\[
\pi_m - \text{adic NP of } C_f(s,\pi_m) = \text{ord}_p(q)p_{\Delta}
\]
for one \(m \geq 1\), then it holds for all \(m \geq 1\), and we have
\[
T - \text{adic NP of } C_f(s,T) = \text{ord}_p(q)p_{\Delta}.
\]

Proof. This follows from Theorems 4.1 and 6.3 \(\square\)

Theorem 6.5. Let \(f(x) = \sum_{u \in \Delta} (a_u, x^u, 0, 0, \cdots)\). Then
\[
\pi_m - \text{adic NP of } C_f(s,\pi_m) = \text{ord}_p(q)p_{\Delta}
\]
if and only if
\[
\pi_m - \text{adic NP of } L_f(s,\pi_m) = \text{ord}_p(q)p_{\Delta} \text{ on } [0, p^{m-1}\text{Vol}(\Delta)].
\]

Proof. Assume that \(L_f(s,\pi_m) = \prod_{i=1}^{p^{m-1}d} (1 - \beta_is)\). Then
\[
C_f(s,\pi_m) = \prod_{j=0}^{\infty} L_f(q^js,\pi_m) = \prod_{j=0}^{\infty} \prod_{i=1}^{p^{m-1}d} (1 - \beta_iq^is).
\]
Therefore the slopes of the q-adic Newton polygon of $C_f(s, \pi_m)$ are the numbers

$$j + \text{ord}_q(\beta_i), \ 1 \leq i \leq p^{m-1}\text{Vol}(\triangle), \ j = 0, 1, \ldots.$$

One can show that the slopes of p_\triangle are the numbers

$$j(p - 1) + p_\triangle(i) - p_\triangle(i - 1), \ 1 \leq i \leq p^{m-1}\text{Vol}(\triangle), \ j = 0, 1, \ldots.$$

It follows that

$$\pi_m - \text{adic NP of } C_f(s, \pi_m) = \text{ord}_p(q)p_\triangle$$

if and only if

$$\pi_m - \text{adic NP of } L_f(s, \pi_m) = \text{ord}_p(q)p_\triangle \text{ on } [0, p^{m-1}\text{Vol}(\triangle)].$$

□

We now prove Theorems 1.13, 1.14 and 1.15. By the above theorems, it suffices to prove the following.

Theorem 6.6. Let $f(x) = \sum_{u \in \triangle} (a_u x^u, 0, 0, \cdots)$, and $p > 3D$. Then

$$\pi_1 - \text{adic NP of } L_f(s, \pi_1) = \text{ord}_p(q)p_\triangle \text{ on } [0, \text{Vol}(\triangle)]$$

if and only if $H((a_u)_{u \in \triangle}) \neq 0$.

Proof. It is known that the q-adic Newton polygon of $L_f(s, \pi_1)$ coincides with H_∞^∞ at the point $\text{Vol}(\triangle)$. By Theorem 1.11, p_\triangle coincide with $(p - 1)H_\infty^\infty$ at the point $\text{Vol}(\triangle)$. It follows that the π_1-adic Newton polygon of $L_f(s, \pi_1)$ coincides with $\text{ord}_p(q)p_\triangle$ at the point $\text{Vol}(\triangle)$. Therefore it suffices to show that

$$\pi_1 - \text{adic NP of } L_f(s, \pi_1) = \text{ord}_p(q)p_\triangle \text{ on } [0, \text{Vol}(\triangle) - 1]$$

if and only if $H((a_u)_{u \in \triangle}) \neq 0$.

From the identity

$$C_f(s, \pi_1) = \prod_{j=0}^\infty L_f(q^j s, \pi_1),$$

and the fact the q-adic orders of the reciprocal roots of $L_f(s, \pi_1)$ are no greater than 1, we infer that

$$\pi_1 - \text{adic NP of } L_f(s, \pi_1) = \pi_1 - \text{adic NP of } C_f(s, \pi_1) \text{ on } [0, \text{Vol}(\triangle) - 1].$$

Therefore it suffices to show that

$$\pi_1 - \text{adic NP of } C_f(s, \pi_1) = \text{ord}_p(q)p_\triangle \text{ on } [0, \text{Vol}(\triangle) - 1]$$

if and only if $H((a_u)_{u \in \triangle}) \neq 0$. The theorem now follows from the T-adic Dwork trace formula and Theorems 4.1 and 5.5. □
References

[AS] A. Adolphson and S. Sperber, Exponential sums and Newton polyhedra: cohomology and estimates, Ann. Math., 130 (1989), 367-406.

[BF] R. Blache and E. Férard, Newton straitification for polynomials: the open stratum, J. Number Theory, 123(2007), 456-472.

[GKZ] I.M. Gelfand, M.M. Kapranov and A.V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser Boston, Inc., Boston, MA, 1994.

[Ka] N. Katz, Slope filtration of F-crystals, Astérisque, 63(1979), 113-164.

[LG] C. Liu and D. Wei, The L-functions of Witt coverings, Math. Z., 255 (2007), 95-115.

[LWn] C. Liu and D. Wan, T-adic exponential sums, Algebra & Number theory, to appear, arXiv: 0802.2589.

[Se] J-P. Serre, Endomorphismes complètement continus des espaces de Banach p-adiques, Publ. Math., IHES., 12(1962), 69-85.

[Wa1] D. Wan, Newton polygons of zeta functions and L-functions, Ann. Math., 137 (1993), 247-293.

[Wa2] D. Wan, Variation of p-adic Newton polygons for L-functions of exponential sums, Asian J. Math., Vol 8, 3(2004), 427-474.

[Zh1] J. H. Zhu, p-adic variation of L-functions of one variable exponential sums, I. Amer. J. Math., 125 (2003), 669-690.

[Zh2] J. H. Zhu, Asymptotic variation of L functions of one-variable exponential sums, J. Reine Angew. Math., 572 (2004), 219-233. 1529–1550.

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, P.R. China, E-mail: clliu@sjtu.edu.cn

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, P.R. China, E-mail: wenxin8210@mail.bnu.edu.cn

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, P.R. China, E-mail: czniubnu@yahoo.cn