AN ADAPTIVE OUTPUT FEEDBACK MOTION TRACKING CONTROLLER FOR ROBOT MANIPULATORS: UNIFORM GLOBAL ASYMPTOTIC STABILITY AND EXPERIMENTATION

ANTONIO YARZA *, VICTOR SANTIBANEZ *, JAVIER MORENO-VALENZUELA **

* Division of Graduate Studies and Research
Laguna Institute of Technology, Blvd Revolucion y Cuauhtemoc S/N, 27000, Torreon, Mexico
e-mail: {joseayarza, vsantiba}@iltalaguna.edu.mx

** Department of Systems and Control
National Polytechnic Institute (CITEDI), Avenida del Parque 1310, 22510, Tijuana, Mexico
e-mail: moreno@citedi.mx

This paper deals with two important practical problems in motion control of robot manipulators: the measurement of joint velocities, which often results in noisy signals, and the uncertainty of parameters of the dynamic model. Adaptive output feedback controllers have been proposed in the literature in order to deal with these problems. In this paper, we prove for the first time that Uniform Global Asymptotic Stability (UGAS) can be obtained from an adaptive output feedback tracking controller, if the reference trajectory is selected in such a way that the regression matrix is persistently exciting. The new scheme has been experimentally implemented with the aim of confirming the theoretical results.

Keywords: adaptive control, robot control, nonlinear control, output feedback, Lyapunov UGAS stability.

1. Introduction

Measurement of joint velocities in a robot manipulator through tachometers may produce noisy signals so that its use in a controller may not be feasible (Daly and Schwarz, 2006). Output feedback controllers deal with this problem since they only require position measurements; therefore, joint velocities are substituted by signals produced by an observer or filter.

Several output feedback controllers have been proposed for the regulation case, obtaining global asymptotic stability results. Output feedback controllers with gravity compensation were proposed by Berghuis and Nijmeijer (1993), Burkov (1993) as well as Kelly (1993), while Arimoto et al. (1994) put forward an output feedback controller with desired gravity compensation. An output feedback controller which compensates gravity uncertainty effects was proposed by Ortega et al. (1995); however, the asymptotic stability result is local. An adaptive output-feedback controller with bounded inputs was put forward by Lopez-Araujo et al. (2012), achieving global convergence of position errors to zero.

Results obtained for output feedback controllers in the tracking case are, for the most part, local. Some output feedback tracking controllers proposed in the literature are those by Lim et al. (1996) or Nicosia and Tomei (1990). An output feedback controller with bounded inputs is proposed by Loria and Nijmeijer (1998), for which global asymptotic stability is obtained by Santibanez and Kelly (2001) in the presence of viscous friction and a proper bound of the desired joint speed. A proposed solution using a variable structure observer is reported by Abdessameud and Khelfi (2006). Other variations of this controller are proposed by Moreno-Valenzuela et al. (2008a; 2008b), who prove local asymptotic stability via singular perturbations theory. A generalization of the controller proposed by Santibanez and Kelly (2001) is designed by Zavala-Rio et al. (2011).

Uncertainty in robot parameters is another practical problem in robot manipulator control. Adaptive controllers can be used when some of the parameters of the robot dynamic model are unknown. In adaptive controllers, an estimate of the model parameters is computed through an update law (see, e.g., Witkowska and Śmierzchalski, 2012; Baňka et al, 2013).

Craig et al. (1987) proposed the first adaptive
controller with a rigorous stability proof; however, the controller required knowledge of bounds on the robot parameters and measurement of joint accelerations. Other adaptive controllers were reported by Slotine and Li (1987), Sadegh and Horowitz (1987), Middleton and Goodwin (1988), as well as Kelly et al. (1989). An excellent tutorial is presented by Ortega and Spong (1989). An adaptive redesign of the PD with feedforward compensation is reported by Santibanez and Kelly (1999).

The only known proof of uniform global asymptotic stability for a full state feedback adaptive controller for the tracking case is presented by Loria et al. (2005).

As for adaptive output feedback controllers, only global convergence of tracking errors to zero has been reported. The first output feedback tracking controller was proposed by Zhang et al. (2000). A redesign of this controller is presented by Zergeroglu et al. (2000), which eliminates the need for a post-analysis transformation by considering only position measurements. An adaptive version of the output feedback controller reported by Loria and Nijmeijer (1998) was presented by Moreno-Valenzuela et al. (2010); global convergence is proved in the case of viscous friction large enough, while local exponential stability is proven when viscous friction is not large enough.

As far as the authors are aware, no proof of uniform global asymptotic stability has been presented for an adaptive output feedback tracking controller. So far in this paper, we prove for the first time that, for viscous friction large enough and if the reference trajectories are selected in such a way that the regression matrix is persistently exciting, uniform global asymptotic stability is achieved in such a way that the regression matrix is persistently exciting and large enough and if the reference trajectories are selected in such a way that the regression matrix is persistently exciting.

Throughout this paper, we use the notation $\lambda_{\min}(A(x))$ and $\lambda_{\max}(A(x))$, to indicate the smallest and largest eigenvalues, respectively, of a symmetric positive definite bounded matrix $A(x)$, for any $x \in \mathbb{R}^n$. Also, we define $\lambda_{\min}(A)$ as the greatest lower bound (infimum) of $\lambda_{\min}(A(x))$, for all $x \in \mathbb{R}^n$. Similarly, we define $\lambda_{\max}(A)$ as the least upper bound (supremum) of $\lambda_{\max}(A(x))$, for all $x \in \mathbb{R}^n$. The norm of vector x is defined as $\|x\| = \sqrt{x^T x}$ and that of a matrix $A(x)$ is defined as the corresponding induced norm $\|A(x)\| = \sqrt{\lambda_{\max}(A(x)^T A(x))}$. We denote by \mathbb{R}_+ the space of nonnegative real numbers. We denote by $\text{col}[x_1, x_2]$ the vector $[x_1^T, x_2^T]^T$.

2. Preliminaries

2.1. Robot dynamics. The dynamics of an n-link serial rigid robot manipulator, considering viscous friction, can be expressed as (Spong et al., 2005)

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q} + F(q) + g(q) = \tau,$$

where q is the $n \times 1$ vector of joint positions, \dot{q} is the $n \times 1$ vector of joint velocities, \ddot{q} is the $n \times 1$ vector of joint accelerations, $M(q)$ is the $n \times n$ symmetric positive definite inertia matrix, $C(q, \dot{q})$ is the $n \times n$ matrix of centrifugal and Coriolis torques, $F(q)$ is the $n \times n$ diagonal positive definite matrix of viscous friction coefficients, τ is the $n \times 1$ vector of applied torques, and $g(q)$ is the $n \times 1$ vector of gravitational torques, obtained as the gradient of the robot potential energy $U(q)$, i.e.,

$$g(q) = \frac{\partial U(q)}{\partial q}$$

We assume that the links are joined together with revolute joints. This assumption is instrumental in Properties 2–5.

2.2. Control objective. Assume that only the robot joint position vector $q(t) \in \mathbb{R}^n$ is available for measurement and some of the robot parameters are unknown. Then, the adaptive output feedback tracking control problem consists in designing a control law to compute the employed torques vector $\tau(\tilde{q}(t))$ together with a parameter estimation update law so that the limit

$$\lim_{t \to \infty} \tilde{q}(t) = 0$$

is satisfied, where

$$\tilde{q}(t) = q_d(t) - q(t)$$

is the tracking error and $q_d(t) \in \mathbb{R}^n$ is the desired joint position trajectories vector.

We assume that the desired time-varying trajectory $q_d(t)$ is three times differentiable and bounded for all $t \geq 0$ in the sense that

$$\|\dot{q}_d(t)\| \leq \mu_1,$$

$$\|\ddot{q}_d(t)\| \leq \mu_2,$$

$$\|\dddot{q}_d(t)\| \leq \mu_3,$$

where μ_1, μ_2 and μ_3 are known positive constants.
2.3. Properties of the dynamic model. Some important properties of the robot dynamics \(\text{include the following (Kelly et al., 2005; Spong et al., 2005) } \)

Property 1. By using Christoffel’s symbols, the matrix \(C(q, \dot{q}) \) and the time derivative \(M(q) \) of the inertia matrix satisfy (Koditschek, 1984; Spong et al., 2005)

\[
\dot{M}(q) = C(q, \dot{q}) + C(q, \dot{q})^T, \quad \forall q, \dot{q} \in \mathbb{R}^n.
\]

and

\[
\frac{1}{2} \dot{M}(q) - C(q, \dot{q}) = 0, \quad \forall q, \dot{q} \in \mathbb{R}^n.
\]

Property 2. There exists a positive constant \(k_c \) such that for all \(x, y \in \mathbb{R}^n \)

\[
\|C(x, y)z\| \leq k_c \|y\| \|z\|.
\]

Property 3. The gravitational torque vector \(g(q) \) is bounded for all \(q \in \mathbb{R}^n \) (Craig et al., 1987). This means that there exist constants \(\gamma_i \geq 0 \) such that

\[
|g_i(q)| \leq \gamma_i, \quad i = 1, 2, \ldots, n,
\]

for all \(q \in \mathbb{R}^n \), where \(g_i(q) \) stands for the \(i \)-th element of vector \(g(q) \). Equivalently, there exists a positive constant \(k_1 \) such that

\[
\|g(q)\| \leq k_1, \quad \forall q \in \mathbb{R}^n.
\]

Property 4. There exists a positive constant \(k_y \) such that

\[
\|g(x) - g(y)\| \leq k_y \|x - y\|
\]

for all \(x, y \in \mathbb{R}^n \).

Property 5. The so-called residual dynamics are defined by (Arimoto, 1995a; 1995b; Kelly et al., 2005)

\[
h(q, \dot{q}) = [M(q_d) - M(q_d - \dot{q})\dot{q}_d]
+ [C(q_d, \dot{q}_d) - C(q_d - \dot{q}, \dot{q}_d - \ddot{q})\dot{q}_d
+ g(q_d) - g(q_d - \dot{q}).
\]

The residual dynamics satisfy the inequality

\[
\|h(q, \dot{q})\| \leq k_{c1}\mu_1 \|\dot{q}\| + s_2 \tan\sigma(\|\sigma\dot{q}\|),
\]

where \(\sigma > 0 \), the constant \(\mu_1 \) in (5), and

\[
s_1 = k_y + k_{M1}\mu_2 + k_{c2}\mu_1^2,
\]

\[
s_2 = 2k_{c3}\mu_2 + k_{c1}\mu_1^2.
\]

where

\[
\begin{align*}
k_M & \geq n^2 \max_{i,j,k} \|\frac{\partial M_{ij}(q)}{\partial q_k}\|, \\
k_c & \geq n^3 \max_{i,j,k} \|\frac{\partial c_{ijk}(q)}{\partial q_k}\|, \\
k_1 & \geq \sup_{q \in \mathbb{R}^n} \|g(q)\|, \\
k_2 & \geq \lambda_{\text{max}} \{M(q)\},
\end{align*}
\]

for all \(q \in \mathbb{R}^n \), where \(M_{ij}(q) \) is the \(ij \)-element of matrix \(M(q) \) and \(c_{ijk}(q) \) is the \(ij \) \(k \) Christoffel symbol (Kelly et al., 2005).

Property 6. The robot model \(\text{can be linearly parameterized as} \)

\[
M(q)\ddot{q} + C(q, \dot{q})\dot{q} + F_0q + g(q) = Y(q, \dot{q}, \ddot{q})\theta + M_0(q)\ddot{q} + C_0(q, \dot{q})\dot{q} + F_0q + g_0(q)
\]

for all \(q, \dot{q}, \ddot{q} \in \mathbb{R}^n \), where \(Y(q, \dot{q}, \ddot{q}) \) is the regression matrix and \(\theta \in \mathbb{R}^m \) is the vector of the unknown parameters of the robot, which are assumed to be constant. \(M_0 \in \mathbb{R}^{n \times n}, C_0 \in \mathbb{R}^{n \times n}, F_0 \) and \(g_0 \) include terms which depend only on known parameters.

Property 7. There exists a positive constant \(k_M \) such that for all \(y, z, \omega \in \mathbb{R}^n \)

\[
\|\frac{M^{-1}(y) - M^{-1}(z)}{\omega}\| \leq k_M \|y - z\| \|\omega\|.
\]

Property 8. Under the conditions (5), (6) and (7), there exist positive constants \(k_y \) and \(k_{d_4} \) such that

\[
\|Y(q_d(t), \dot{q}_d(t), \ddot{q}_d(t))\| \leq k_y, \\
\|Y(q_d(t), \dot{q}_d(t), \ddot{q}_d(t))\| \leq k_{d_4},
\]

for all \(t \geq 0 \), with matrix \(Y \) defined in (15).

The proof of Property 7 is shown in Appendix A.

2.4. UGAS of a type of nonlinear systems. We start

by recalling the definitions of PE and U\(\delta\)-PE functions
given by Loria et al. (2002).

Definition 1. The locally integrable function \(\Phi : \mathbb{R}_+ \rightarrow \mathbb{R}^{n \times m} \) is said to be Persistently Exciting (PE) if there exist \(\mu > 0 \) and \(T > 0 \) such that

\[
\int_{t}^{t+T} \Phi(\tau)\Phi(\tau) \, d\tau \geq \mu I, \quad \forall t \in \mathbb{R}_+.
\]

Let \(x \in \mathbb{R}^n \) be partitioned as \(x = \text{col}[x_1, x_2] \), where \(x_1 \in \mathbb{R}^{n_1} \) and \(x_2 \in \mathbb{R}^{n_2} \). Let the column vector \(\phi : \mathbb{R}_+ \times \mathbb{R}^n \rightarrow \mathbb{R}^m \) be such that \((t, x) \mapsto \phi(t, x) \) is locally integrable. Define also \(D_1 = \{x \in \mathbb{R}^n : x_1 \neq 0\} \).
Definition 2. The function ϕ is said to be Uniformly δ-Persistently Exciting (U-δ-PE) with respect to x_1 if for each $x \in D_1$ there exist $\delta > 0$, $T > 0$ and $\mu > 0$ such that, for all $t \in \mathbb{R}^+$,

$$ ||z - x|| \leq \delta \implies \int_t^{t+T} ||\phi(\tau, z)|| \, d\tau \geq \mu. \quad (20) $$

The property of U-δ-PE defined above roughly means that for every fixed $x \neq 0$ the function $\Phi(t) = \phi(t, x)$ is PE in the sense of Definition 1 and μ and T are the same for all neighboring points of x. For uniformly continuous functions, we do not need to check the condition on neighboring points. More precisely, we have the following.

Lemma 1. If $\phi(t, x)$ is continuous uniformly in t, then $\phi(t, x)$ is U-δ-PE with respect to x_1 if and only if for each $x \in D_1$, there exist $T > 0$ and $\mu > 0$ such that, for all $t \in \mathbb{R}^+$,

$$ \int_t^{t+T} ||\phi(\tau, x)|| \, d\tau \geq \mu. \quad (21) $$

In particular, a function of the form

$$ \phi(t, x) = \Phi(t)^T x \quad (22) $$

is U-δ-PE with respect to x if and only if Φ is PE (Loria et al., 2005).

We can now recall a useful theorem on the uniform global asymptotic stability of nonautonomous systems, presented by Loria et al. (2005). It applies to systems of the form

$$ \dot{x} = f(t, x) \quad (23) $$

with

$$ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = f(t, x) = \begin{bmatrix} f_1(t, x_1) + f_2(t, x_2) \\ f_3(x_1) \end{bmatrix}. \quad (24) $$

where $x = [x_1^T \ x_2^T]^T$, $x_1 \in \mathbb{R}^{n_1}$, $x_2 \in \mathbb{R}^{n_2}$, $f_1 : \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}^{n_1}$, $f_2 : \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}^{n_2}$, $f_3 : \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}^{n_1}$, $n = n_1 + n_2$, and all functions vanish in the origin $x = 0$. We define

$$ f_0(t, x_2) = f_2(t, x)|_{x_1 = 0}. \quad (25) $$

and notice that, necessarily, $f_0(t, 0) = 0$. Suppose the following assumptions are satisfied.

Assumption 1. There exists a continuously differentiable function $V : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^+$, which is positive definite, decrescent, radially unbounded and has a negative semidefinite time-derivative. More precisely, assume that there exist continuous, positive definite, radially unbounded functions $V_1, V_2 : \mathbb{R}^n \to \mathbb{R}^+$ and $U : \mathbb{R}^{n_1} \to \mathbb{R}^+$ continuous positive definite, such that

$$ V_1(x) \leq V(t, x) \leq V_2(x), \quad (26) $$

$$ \dot{V}(t, x) \leq -U(x_1), \quad (27) $$

for all $(t, x) \in \mathbb{R}^+ \times \mathbb{R}^n$.

Assumption 2. The function $f_2(t, x)$ is continuously differentiable and, moreover, it is uniformly bounded in t on each compact set of the state x_2. More precisely, for each $r_2 > 0$ there exist $f_M > 0$ and continuous nondecreasing functions $p_i : \mathbb{R}^+ \to \mathbb{R}^+$ with $\tau = 1, 2$ such that $p_i(0) = 0$ and for all $(t, x) \in \mathbb{R}^+ \times \mathbb{R}^n$

$$ \max_{||x_2|| \leq r_2} \left\{ ||f_0(t, x_2)||, \left\| \frac{\partial f_0}{\partial t} \right\|, \left\| \frac{\partial f_0}{\partial x_2} \right\| \right\} \leq f_M, \quad (28) $$

$$ \max_{||x_2|| \leq r_2} ||f_2(t, x) - f_0(t, x_2)|| \leq p_1(||x_1||), \quad (29) $$

$$ \max_{||x_2|| \leq r_2} \{ ||f_1(t, x_1)||, ||f_3(t, x_2)|| \} \leq p_2(||x_1||). \quad (30) $$

We are now ready to cite the theorem that we will employ to prove uniform global asymptotic stability of a nonlinear time-varying system of the form (24).

Theorem 1. (Loria et al., 2002) The system (23), (24) under Assumptions 1 and 2 is UGAS if and only if the function $f_0(t, x_2)$ is U-δ-PE with respect to x_2.

Remark 1. In the work of Loria et al. (2002), the condition (26) is expressed as

$$ \alpha_1(||x||) \leq V(t, x) \leq \alpha_2(||x||), \quad (31) $$

with $\alpha_1, \alpha_2 \in C_{\infty}$. However, the condition (26) implies the existence of $\alpha_1, \alpha_2 \in C_{\infty}$ such that (31) is fulfilled (see Khalil, 2002, Lemma 4.3).

3. Main result

The adaptive output feedback tracking controller, proposed by Moreno-Valenzuela et al. (2010), is given by

$$ \tau = Y(q_d, \tilde{q}_d, \tilde{q}_d, \tilde{q}_d)^T + K_t \tan \tilde{q} + F_\nu \tilde{q}_d + K_p \tan (\tilde{q}) \tilde{q}_d + M_0(q_d) \tilde{q}_d + C_0(q_d, \tilde{q}_d) \tilde{q}_d + g_0(q_d), \quad (32) $$

where $\tilde{q} = q_d - q$ denotes the link position tracking error vector, K_p and K_n are $n \times n$ diagonal positive definite matrices, σ is a positive constant, M_0, C_0, F_ν, and g_0 are defined in (15), and the reference trajectory $q_d(t)$ is chosen such that the transpose of the regression matrix $Y(q_d(t), \tilde{q}_d(t), \tilde{q}_d(t))^T$, defined in Property 6, is PE in the sense of Definition 1.

The function \tan is defined as the hyperbolic tangent function in vectorial form, that is, $\tan(y) = [\tan(y_1) \ \tan(y_2) \ \cdots \ \tan(y_n)]^T$, for all $y \in \mathbb{R}^n$.

The signal $\tilde{\eta}(t)$ in (32) is obtained from the following nonlinear filter:

$$ \dot{\tilde{z}} = -A \tanh(\tilde{\eta}), \quad (33) $$

$$ \tilde{\eta} = z + Bq. \quad (34) $$
with \(z \in \mathbb{R}^n \), \(A \) and \(B \) are \(n \times n \) diagonal positive definite matrices.

The estimated parameter vector \(\hat{\theta} \) is computed through the update law

\[
\dot{\hat{\theta}} = \Gamma \left[Y^T(q_d, q_d, \dot{q}_d) \hat{q} - \int_0^t Y^T(q_d, q_d, \dot{q}_d) \tilde{q} \right] d \tau - \varepsilon Y^T(q_d, q_d, \dot{q}_d) \tanh(\alpha \hat{q})
\]

(35)

with \(\Gamma \) being a diagonal positive definite matrix and \(\varepsilon \) a positive constant suitably selected.

The system (11), (32), (33), (34), (35) is expressed by the closed loop equation:

\[
\frac{d}{dt} \begin{bmatrix} \dot{\hat{q}} \\ \dot{\tilde{\theta}} \end{bmatrix} = \begin{bmatrix} \hat{\theta} \\ -\lambda(q, \dot{q}) + B\tilde{q} \end{bmatrix}
\]

(36)

where the origin is an equilibrium point, and \(h(q, \dot{q}) \) represents the so-called residual dynamics defined in Property 5.

Define the constants

\[
\gamma_1 = \frac{s_1 s_2}{\tanh(s_2 \sigma)},
\]

(37)

\[
\gamma_2 = 2k_{c1} \mu_1 + \lambda_{\max}(F_v),
\]

(38)

\[
\gamma_3 = k_{c1} \sqrt{\gamma_1} + \sigma \lambda_{\max}(M(q)) \lambda_{\max}(F_v).
\]

(39)

Assumption 3. Assume that the damping introduced by the viscous friction coefficients \(F_v \) is large enough so that it satisfies

\[
\lambda_{\min}(F_v) > k_{c1} \mu_1.
\]

(40)

Assumption 4. The matrix of proportional gains \(K_p \) is large enough so that it achieves

\[
\lambda_{\min}(K_p) > \gamma_1.
\]

(41)

Assumption 5. The constant \(\varepsilon \) from the adaptive law (35) is selected such that it satisfies

\[
\frac{1 - \beta}{\lambda_{\min}(K_p) - \lambda_{\min}(F_v)} < \varepsilon
\]

where \(\beta \in (0, 1) \), and \(A \) and \(B \) are the diagonal positive definite matrices employed in (33) and (34).

Remark 2. Assumption 3 is a condition that refers to the viscous friction matrix \(F_v \), and the bound on the time-derivative of the reference trajectory \(\mu_1 \). Such a condition has already been proposed in the literature (e.g., Santibanez and Kelly, 2001; Moreno-Valenzuela et al., 2010; Zavala-Rio et al., 2011). As far as the authors are aware, all the saturated output feedback tracking controllers proposed in the literature so far require this condition in order to achieve globality. As for Assumption 4, it is a standard condition; it requires proportional gains to be large enough in order to overcome the torque effects of the inertia and Coriolis matrices and gravity vector (most saturated controllers employ similar conditions). On the other hand, Assumption 5 bounds the parameter \(\varepsilon \) in order to ensure positive definiteness of the Lyapunov function and negative definiteness of its time-derivative.

Our main stability result on the origin of (36) is summarized in the following proposition.

Proposition 1. The origin \(\begin{bmatrix} \dot{\tilde{q}} \\ \dot{\tilde{\theta}} \end{bmatrix} = 0 \) of (36), under Assumptions 3, 4 and 5, is UGAS if and only if the matrix \(Y(q_d(t), \dot{q}_d(t), \ddot{q}_d(t))^T \) is PE in the sense of Definition 1.

3.1. Proof of Proposition 1. If we define

\[
x_1 = \begin{bmatrix} \tilde{q} \\ \dot{\tilde{\theta}} \end{bmatrix}, \quad x_2 = \tilde{\theta}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix},
\]

(42)

then (36) can be expressed in the form (23) as follows:

\[
\frac{d}{dt} \begin{bmatrix} \dot{\tilde{q}} \\ \dot{\tilde{\theta}} \end{bmatrix} = \begin{bmatrix} M(q)^{-1}[\gamma(q, \dot{q}, \dot{q})]q - F_v \tilde{q} \\ -\Lambda(q, \gamma(q, \dot{q}, \dot{q})) + \sigma \tanh(\alpha \tilde{q}) \end{bmatrix} + \begin{bmatrix} 0 \\ -\tilde{\theta} \end{bmatrix},
\]

(43)

\[
\frac{d}{dt} \begin{bmatrix} \tilde{q} \\ \dot{\tilde{\theta}} \end{bmatrix} = \begin{bmatrix} \tilde{q} \\ \dot{\tilde{\theta}} \end{bmatrix} + \begin{bmatrix} M(q)^{-1}[\gamma(q, \dot{q}, \dot{q})]q - F_v \tilde{q} \\ -\Lambda(q, \gamma(q, \dot{q}, \dot{q})) + \sigma \tanh(\alpha \tilde{q}) \end{bmatrix} + \begin{bmatrix} 0 \\ -\tilde{\theta} \end{bmatrix},
\]

(44)

In order to prove the UGAS of the origin of the system (33), (44), we will use Theorem 1. The first step is to check that Assumption 1 is satisfied. Consider the
Lyapunov function

\[V(t, x) = \frac{1}{2} \theta^T M(q) \dot{\theta} + \sum_{i=1}^{n} k_i b_i^{-1} \ln(\cosh(\tilde{\theta}_i)) \]

By bounding each of the terms of \(V(t, x) \), upper and lower bounds are given by

\[V_1(x) \leq V(t, x) \leq V_2(x), \quad (46) \]

where

\[V_1(x) = \left[\sqrt{\sum_{i=1}^{n} k_i b_i^{-1} \ln(\cosh(\tilde{\theta}_i))} \right]^T P \]

\[V_2(x) = \frac{1}{2} \lambda_{\max}(M) \| \dot{\theta} \|^2 \]

The time derivative \(\dot{V}(t, x) \) is given by

\[\dot{V}(t, x) = \varepsilon \tanh(\sigma \tilde{\theta})^T [-F \dot{\tilde{\theta}} - K_c \tanh(\tilde{\theta})] \]

The time derivative \(\dot{V}(t, x) \) may be upper bounded by

\[\dot{V}(t, x) \leq -U(x_1), \quad (49) \]

where

\[U(x_1) = \left[\| \tanh(\sigma \tilde{\theta}) \| \right]^T Q_1 \left[\| \tanh(\sigma \tilde{\theta}) \| \right] \]

\[+ \left[\| \tanh(\sigma \tilde{\theta}) \| \right]^T Q_2 \left[\| \tanh(\sigma \tilde{\theta}) \| \right] \]

and

\[Q_1 = \left[\frac{\varepsilon}{2} \lambda_{\min}(K_c) - \gamma_1 \right] - \frac{\varepsilon}{2} \gamma_1 - \frac{\varepsilon}{2} \gamma_2 \]

\[+ 0 \quad 0 \quad 0 \quad -\frac{\varepsilon}{2} \lambda_{\min}(K_c) \]

\[Q_2 = \left[\frac{\varepsilon}{2} \lambda_{\min}(K_c) - \gamma_1 \right] - \frac{\varepsilon}{2} \lambda_{\min}(K_c) \]

Under Assumptions 3–5, \(Q_1 \) and \(Q_2 \) are positive definite matrices. Therefore, \(U(x_1) \) is a positive definite function, and Assumption 1 is satisfied.

We will now verify that Assumption 2 holds. To this end, notice that \(f_i \) for \(i = 1, 2, 3 \) have been defined in \((43)\) and \((44)\). It is clear from \((25)\) and \((43)\) that

\[f_0(t, x_2) = \left[M(q_d)^{-1} Y(q_d, \dot{q}_d, \ddot{q}_d) \right]. \quad (50) \]

In Appendix B it is proven that \((25)–(30)\) are satisfied for functions \(f_1, f_2, f_3, \) and \(f_0 \).

Since Assumption 2 is already satisfied, it only remains to show that \(f_0(t, x_2) \) is U̅-PE with respect to \(x_2 \). Hence, we need to show that for each \(x_2 \neq 0 \) there exist \(\mu > 0 \) and \(T > 0 \) such that, for all \(t \geq 0 \),

\[\int_t^{t+T} x_2^2 Y(q_d(\tau), \dot{q}_d(\tau), \ddot{q}_d(\tau))^T M(q_d(\tau))^{-1} \]

\[\times M(q_d(\tau))^{-1} Y(q_d(\tau), \dot{q}_d(\tau), \ddot{q}_d(\tau)) x_2 d\tau \geq \mu. \]

Since \(M(q_d(\tau))^{-1} \) is full rank, then \((51)\) holds if and only if the function \(\phi(t, x) = Y(q_d(t), \dot{q}_d(t), \ddot{q}_d(t)) x_2 \) is U̅-PE. Since \(\phi(t, x) \) is in the form \((22)\), with \(\Phi(t)^T = Y(q_d(t), \dot{q}_d(t), \ddot{q}_d(t)) \), it is U̅-PE if and only if \(Y(q_d(t), \dot{q}_d(t), \ddot{q}_d(t))^T \) is PE in the sense of Definition 1. Hence, from Theorem 1, the origin of \((36)\) is UGAS.

4. Experimental results

Experimental results were carried out to show the performance of the adaptive output feedback tracking controller \((52)\) and to confirm the theoretical analysis. The
A control scheme was proved in a two degrees of freedom planar arm prototype moving in the vertical plane, whose links are connected through revolute joints. This is the direct drive robot manipulator used by Reyes and Kelly (2001), built at the CICESE Research Center and located at the Laguna Institute of Technology, Mexico. Two tests were performed in order to observe the performance of the proposed controller for two different desired trajectories. Robot parameters are shown in Table 1.

The robot dynamics are linearly parameterized as in (54)–(55) used for Test 2, it is a harder one, since its initial velocities are different from zero, which demands greater initial torques. Besides, the trajectory for Test 2 includes an additional sinusoidal term assuring so the persistency of excitation.

Description	Notation	Value	Units
Mass of link 1	m_1	23.902	kg
Mass of link 2	m_2	3.88	kg
Length of link 1	l_1	0.45	m
Length of link 2	l_2	0.45	m
Distance to the center of mass 1	l_c1	0.091	m
Distance to the center of mass 2	l_c2	0.048	m
Inertia relative to center of mass 1	I_1	1.266	kg m^2
Inertia relative to center of mass 2	I_2	0.093	kg m^2
Gravity acceleration	g	9.81	m/s^2
Coefficient of viscous friction 1	f_v1	2.288	N m/s
Coefficient of viscous friction 2	f_v2	0.175	N m/s

For Test 1, the desired trajectory was selected as

\[q_{d1} = c_1 (1 - e^{-at^2}) + c_2 (1 - e^{-bt^2}) \sin(\omega_1 t), \quad (52) \]
\[q_{d2} = c_3 (1 - e^{-bt^2}) + c_4 (1 - e^{-bt^2}) \sin(\omega_2 t). \quad (53) \]

For Test 2, the desired trajectory was selected as

\[q_{d1} = k_1 (1 - e^{-at^2}) + k_2 \sin(\omega_3 t) + k_3 \sin(\omega_4 t), \quad (54) \]
\[q_{d2} = k_4 \sin(\omega_5 t) + k_5 \sin(\omega_6 t). \quad (55) \]

Parameters of the desired trajectories are shown in Table 2. Control parameters used for the experimental tests are shown in Table 3.

The desired trajectory (52)–(53) for Test 1 has the feature that its initial positions, velocities, and accelerations are zero and evolve smoothly, which prevents torque values from saturating the actuators and the required velocities do not surpass the permitted velocity motor limits. As for the desired trajectory (54)–(55) used for Test 2, it is a harder one, since its initial velocities are different from zero, which demands greater initial torques. Besides, the trajectory for Test 2 includes an additional sinusoidal term assuring so the persistency of excitation.

Table 2. Parameters of the desired joint trajectory \(q_d(t)\) for Tests 1 and 2.

Desired trajectory parameters	Value	Unit
\(c_1\)	0.7854	rad
\(c_2\)	0.1745	rad
\(c_3\)	1	rad
\(c_4\)	0.5	rad
\(\omega_1\)	7.5	rad/s
\(\omega_2\)	1.75	rad/s
\(\omega_3\)	2	1/s^4
\(\omega_4\)	1.8	rad/s
\(\omega_5\)	1.5707	rad
\(\omega_6\)	2	rad/s
\(k_1\)	0.1745	rad
\(k_2\)	0.1745	rad
\(k_3\)	0.25	rad
\(k_4\)	0.25	rad
\(k_5\)	4	rad/s
\(k_6\)	0.5	rad/s
\(k_7\)	1.5	rad/s

The robot dynamics are linearly parameterized as in (55) in the following manner:

\[Y(q, \dot{q}, \ddot{q}) = \begin{bmatrix} y_{11} & y_{12} & y_{13} \\ y_{21} & y_{22} & y_{23} \end{bmatrix}, \quad (56) \]
\[M_0(q) = \begin{bmatrix} m_1l_1^2 + I_1 & 0 \\ 0 & 0 \end{bmatrix}, \quad (57) \]
\[C_0(q, \dot{q}) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad (58) \]
\[F_{v_0} = \begin{bmatrix} f_{v_1} & 0 \\ 0 & f_{v_2} \end{bmatrix}, \quad (59) \]
\[g_0(q) = \begin{bmatrix} m_1l_1g \sin(q_1) \\ 0 \end{bmatrix}, \quad (60) \]
\[\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix} = \begin{bmatrix} m_2l_2c_2 \\ m_2l_2^2c_2 + I_2 \end{bmatrix}, \quad (61) \]

where

\[y_{11} = l_1^2 \ddot{q}_1 + l_1 g \sin(q_1), \quad (62) \]
\[y_{12} = 2l_1 \cos(q_2) \ddot{q}_1 + l_1 \cos(q_2) \ddot{q}_2 - l_1 \sin(q_2) (\dot{q}_1 \dot{q}_2 - \dot{q}_1 \dot{q}_2), \quad (63) \]
\[y_{13} = \ddot{q}_1 + \dot{q}_2, \quad (64) \]
\[y_{21} = 0, \quad (65) \]
\[y_{22} = l_1 \cos(q_2) \ddot{q}_1 + l_1 \sin(q_2) \ddot{q}_1^2 + g \sin(q_1 + q_2), \quad (66) \]
\[y_{23} = \ddot{q}_1 + \ddot{q}_2. \quad (67) \]
From Table 1, it is possible to observe that
\[
\begin{bmatrix}
\theta_1 \\
\theta_2 \\
\theta_3
\end{bmatrix} = \begin{bmatrix}
m_2 & m_{21}c_2 \\
m_{21}c_2 & m_2c_2 + I_2
\end{bmatrix} \begin{bmatrix}
3.88 \\
0.18624 \\
0.1019
\end{bmatrix}.
\]

We have numerically verified that the regression matrix \(Y(q_d, \dot{q}_d, \ddot{q}_d) \), given by (56), is persistently exciting according to Definition 1, where \(\Phi(t)^T = Y(q_d(t), \dot{q}_d(t), \ddot{q}_d(t)) \), for the desired trajectories (52)–(53) and (54)–(55). For the reference trajectory (52)–(53), the condition
\[
\int_0^{t+T} \Phi(\tau)\Phi(\tau)^T d\tau \geq \mu I, \quad \forall t \in \mathbb{R}_+,
\]
where \(\Phi(t)^T = Y(q_d(t), \dot{q}_d(t), \ddot{q}_d(t)) \), is satisfied with \(\mu = 51 \) and \(T = 2.5 \). For the reference trajectory (54)–(55), the condition (69) is satisfied with \(\mu = 6.8 \) and \(T = 2.5 \).

For Test 1, Figs. 1 and 2 show the tracking errors \(\tilde{q}_1(t) \) and \(\tilde{q}_2(t) \) for Joints 1 and 2, respectively. Figures 3 and 4 show the employed torques \(\tau_1(t) \) and \(\tau_2(t) \), and Figs. 5–7 show the estimated parameters \(\hat{\theta}_1(t), \hat{\theta}_2(t), \) and \(\hat{\theta}_3(t) \), respectively. We have computed the Root Mean Square (RMS) index, for the steady state position errors of Test 1, given by
\[
RMS = \sqrt{\frac{1}{T_2 - T_1} \int_{T_1}^{T_2} \| \tilde{q} \| ^2(t) dt},
\]
with \(T_1 = 10 \) s and \(T_2 = 60 \) s, obtaining a value of 0.0078 [rad].

For Test 2, Figs. 8 and 9 show tracking errors \(\tilde{q}_1(t) \) and \(\tilde{q}_3(t) \) for Joints 1 and 2, respectively. Figures 10 and 11 show the employed torques \(\tau_1(t) \) and \(\tau_3(t) \), and Figs. 12–14 show the estimated parameters \(\hat{\theta}_1(t), \hat{\theta}_2(t), \) and \(\hat{\theta}_3(t) \), respectively. The root mean square index for the steady state position error of Test 2 is 0.0079 [rad].

By taking into account that maximum torques that the actuators can deliver are \(\tau_1^{\text{max}} = 150 \) [Nm] and \(\tau_2^{\text{max}} = 15 \) [Nm], from Figs. 3 and 4 for Test 1 and Figs. 10 and 11 for Test 2 one can observe that torques evolve inside of the permitted limits.

On the other hand, we can observe that position errors do not converge to zero in both tests, showing an oscillatory behaviour, which is present mainly because of uncompensated friction, unmodeled high frequency dynamics and discretization errors due to the fact of digitally implementing the robot control system. For Test 2, we observe greater position errors at the beginning; this is explained because, as mentioned above, reference 2 is harder since its initial velocities are different from zero. For both cases we can observe that the RMS position error index is better than or similar to that of other adaptive control systems (see, e.g., Loria et al., 2005; Kelly et al., 2005). It can also be observed that parameter estimators converge to values which are very close to the real ones. So, the experimental results confirm the theoretical stability analysis which claims uniform global convergence to zero for all state variables: position, velocity and parameter errors.

5. Conclusions

In this paper, the adaptive output feedback tracking controller proposed by Moreno-Valenzuela et al. (2010) was revised. Uniform global asymptotic stability of the

Controller parameters	Value	Unit
\(k_{w1} \)	60	N m
\(k_{w2} \)	7	N m
\(k_{w3} \)	10	N m
\(k_{v1} \)	5	N m
\(\varepsilon \)	3	1/s
\(\sigma \)	50	
\(a_1 \)	100	1/s²
\(a_2 \)	100	1/s²
\(b_1 \)	100	1/s
\(b_2 \)	100	1/s
\(\gamma_1 \)	0.64	
\(\gamma_2 \)	0.08	
\(\gamma_3 \)	0.05	

Fig. 1. Time evolution of the tracking error for Joint 1 denoted by \(\tilde{q}_1(t) \) for Test 1.

Fig. 2. Time evolution of the tracking error for Joint 2 denoted by \(\tilde{q}_2(t) \) for Test 1.
An adaptive output feedback motion tracking controller for robot manipulators...

Fig. 3. Time evolution of the applied torque for Joint 1 denoted by $\tau_1(t)$ for Test 1.

Fig. 4. Time evolution of the torque applied for Joint 2 denoted by $\tau_2(t)$ for Test 1.

Fig. 5. Time evolution of the estimated parameter $\hat{\theta}_1(t)$ for Test 1.

Fig. 6. Time evolution of the estimated parameter $\hat{\theta}_2(t)$ for Test 1.

Fig. 7. Time evolution of the estimated parameter $\hat{\theta}_3(t)$ for Test 1.

Fig. 8. Time evolution of the tracking error for Joint 1 denoted by $\tilde{\theta}_1(t)$ for Test 2.

Fig. 9. Time evolution of the tracking error for Joint 2 denoted by $\tilde{\theta}_2(t)$ for Test 2.

Fig. 10. Time evolution of the torque applied for Joint 1 denoted by $\tau_1(t)$ for Test 2.
controller was proved. As far as the authors are aware, this is the first proof of uniform global asymptotic stability of an adaptive output feedback tracking controller. The stability analysis was carried out via Lyapunov theory, complemented by a theorem proposed by Loria et al. (2002) on the uniform global asymptotic stability of a certain type of nonlinear systems. Experimental results were presented in order to show the performance of the controller and to confirm the theoretical proposal.

Acknowledgment

This work is partially supported by CONACyT projects 134534, 176587, DGEST and SIP-IPN.

References

Abdessameud, A. and Khelfi, M.F. (2006). A variable structure observer for the control of robot manipulators, *International Journal of Applied Mathematics and Computer Science* **16**(2):189–196.

Arimoto, S., Parra-Vega, V. and Naniwa, T. (1994). A class of linear velocity observers for nonlinear mechanical systems, *Asian Control Conference*, Tokyo, Japan, pp. 633–636.

Arimoto, S. (1995a). Fundamental problems of robot control, Part I: Innovation in the realm of robot servo-loops, *Robotica* **13**(1): 19–27.

Arimoto, S. (1995b). Fundamental problems of robot control, Part II: A nonlinear circuit theory towards an understanding of dexterous motions, *Robotica* **13**(2): 111–122.

Bańka, S., Dworak, P. and Jaroszewski, K. (2013). Linear adaptive structure for control of a nonlinear MIMO dynamic plant, *International Journal of Applied Mathematics and Computer Science* **23**(1): 47–63, DOI: 10.2478/amcs-2013-0005.

Berghuis, H. and Nijmeijer, H. (1993). A passivity approach to controller-observer design for robots, *IEEE Transactions on Robotics and Automation* **9**(6): 740–754.

Burkov, I. (1993). Asymptotic stabilization of nonlinear Lagrangian systems without measuring velocities, *International Symposium on Active Control in Mechanical Engineering*, Lyon, France, pp. 37–41.

Craig, J., Hsu, P. and Sastry, S. (1987). Adaptive control of mechanical manipulators, *International Journal of Robotics Research* **6**(2): 16–28.

Daly, J. and Schwarz, H. (2006). Experimental results for adaptive output feedback control, *Robotica* **24**(6): 727–738.

Kelly, R. (1993). A simple set-point robot controller by using only position measurements, *International Federation of Automatic Control World Congress*, Sydney, Australia, pp. 173–176.

Kelly, R., Carelli, R. and Ortega, R. (1989). Adaptive motion control design to robot manipulators: An input-output approach, *International Journal of Control* **50**(6): 2563–2581.
An adaptive output feedback motion tracking controller for robot manipulators…

Kelly, R., Santibanez, V. and Loría, A. (2005). Control of Robot Manipulators in Joint Space. Springer-Verlag, Berlin.

Khalil, H. (2002). Nonlinear Systems, Prentice-Hall, Englewood Cliffs, NJ.

Koditschek, D. (1984). Natural motion for robotic arms. Conference on Decision and Control, Las Vegas, NV, USA, pp. 733–735.

Lim, S., Dawson, D. and Anderson, K. (1996). Re-examining the Nicosia–Tomei robot observer-controller from a backstepping perspective. IEEE Transactions on Control Systems Technology 4(3): 304–310.

Lopera, A., Kelly, R. and Teel, A. (2005). Uniform parametric convergence in the adaptive control of mechanical systems, European Journal of Control 11(2): 87–100.

Loria, A. and Nijmeijer, H. (1998). Bounded output feedback tracking control of robots manipulators, International Journal of Control, Automation and Systems 11(1): 105–115.

Loria, A., Kelly, R. and Teel, A. (2005). Uniform parametric convergence in the adaptive control of mechanical systems, European Journal of Control 11(2): 87–100.

Loria, A.E., Panteley, Popovic D. and Teel A. (2002). δ-Persistence of excitation: A necessary and sufficient condition for uniform attractivity. IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 3506–3511.

Loria, A. and Nijmeijer, H. (1998). Bounded output feedback tracking control of fully-actuated Euler–Lagrange systems, Systems & Control Letters 33(3): 151–161.

Middleton, R. and Goodwin, G. (1998). Adaptive computed torque control for rigid link manipulators, Systems & Control Letters 10(1): 9–16.

Moreno-Valenzuela, J., Santibanez, V., Orozco-Manriquez, E. and Gonzalez-Hernandez, L. (2010). Theory and experiments of global adaptive output feedback tracking control of manipulators, IET Control Theory and Applications 4(9): 1639–1654.

Moreno-Valenzuela, J., Santibanez, V., Campa, R. (2008a). A class of OFT controllers for torque-saturated robot manipulators: Lyapunov stability and experimental evaluation, Journal of Intelligent & Robotic Systems 51(1): 65–88.

Moreno-Valenzuela, J., Santibanez, V., Campa, R. (2008b). On output feedback tracking control of robots manipulators with bounded torque input, International Journal of Control, Automation, and Systems 6(1): 76–85.

Nicosia, S. and Tomei, P. (1990). Robot control by using only position measurements, IEEE Transactions on Automatic Control 35(9): 1058–1061.

Ortega, R., Loria, A. and Kelly, R. (1995). A semiglobally stable output feedback PI²D regulator for robot manipulators, IEEE Transactions on Automatic Control 40(8): 1432–1436.

Ortega, R. and Spong, M. (1989). Adaptive motion control of rigid robots: A tutorial, Automatica 25(6): 877–888.

Reyes, F. and Kelly, R. (2001). Experimental evaluation of model-based controllers on a direct-drive robot arm, Mechatronics 11(3): 267–282.

Sadegh, N. and Horowitz, R. (1987). Stability analysis of an adaptive controller for robotic manipulators, International Conference on Robotics and Automation, Raleigh, NC, USA, pp. 1223–1229.

Santibanez, V. and Kelly, R. (2001). Global asymptotical stability of bounded output feedback tracking control for robot manipulators, IEEE Conference on Decision and Control, Orlando, FL, USA, pp. 1378–1379.

Santibanez, V. and Kelly, R. (1999). Global convergence of the adaptive PD controller with computed feedforward for robot manipulators, IEEE International Conference on Robotics and Automation, Detroit, MI, USA, pp. 1831–1836.

Slotine, J. and Li, W. (1987). On the adaptive control of robot manipulators, International Journal of Robotics Research 6(3): 49–59.

Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). Robot Modeling and Control, John Wiley and Sons, New York, NY.

Slotine, J. and Li, W. (1987). On the adaptive control of robot manipulators, International Journal of Robotics Research 6(3): 49–59.

Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). Robot Modeling and Control, John Wiley and Sons, New York, NY.

Slotine, J. and Li, W. (1987). On the adaptive control of robot manipulators, International Journal of Robotics Research 6(3): 49–59.

Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). Robot Modeling and Control, John Wiley and Sons, New York, NY.

Slotine, J. and Li, W. (1987). On the adaptive control of robot manipulators, International Journal of Robotics Research 6(3): 49–59.

Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). Robot Modeling and Control, John Wiley and Sons, New York, NY.

Slotine, J. and Li, W. (1987). On the adaptive control of robot manipulators, International Journal of Robotics Research 6(3): 49–59.

Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). Robot Modeling and Control, John Wiley and Sons, New York, NY.

Slotine, J. and Li, W. (1987). On the adaptive control of robot manipulators, International Journal of Robotics Research 6(3): 49–59.

Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). Robot Modeling and Control, John Wiley and Sons, New York, NY.

Slotine, J. and Li, W. (1987). On the adaptive control of robot manipulators, International Journal of Robotics Research 6(3): 49–59.

Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). Robot Modeling and Control, John Wiley and Sons, New York, NY.

Slotine, J. and Li, W. (1987). On the adaptive control of robot manipulators, International Journal of Robotics Research 6(3): 49–59.

Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). Robot Modeling and Control, John Wiley and Sons, New York, NY.

Slotine, J. and Li, W. (1987). On the adaptive control of robot manipulators, International Journal of Robotics Research 6(3): 49–59.

Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). Robot Modeling and Control, John Wiley and Sons, New York, NY.

Slotine, J. and Li, W. (1987). On the adaptive control of robot manipulators, International Journal of Robotics Research 6(3): 49–59.

Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). Robot Modeling and Control, John Wiley and Sons, New York, NY.

Slotine, J. and Li, W. (1987). On the adaptive control of robot manipulators, International Journal of Robotics Research 6(3): 49–59.

Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). Robot Modeling and Control, John Wiley and Sons, New York, NY.

Slotine, J. and Li, W. (1987). On the adaptive control of robot manipulators, International Journal of Robotics Research 6(3): 49–59.
Appendix A

Here we present a proof for Property 7. The inverse of the inertia matrix $M(q)$ may be expressed as

$$M^{-1}(q) = \frac{1}{\det(M(q))} A(q),$$ \hspace{1cm} (A1)

where $A(q)$ is the adjoint matrix of $M(q)$. Based on (A1), we may obtain the following expression for the partial derivatives of the elements of matrix $M^{-1}(q)$:

$$\frac{\partial M_{ij}^{-1}(q)}{\partial q_k} = \frac{1}{\det(M(q))} \left[\det(M(q)) \frac{\partial a_{ij}(q)}{\partial q_k} - a_{ij}(q) \frac{\partial \det(M(q))}{\partial q_k} \right],$$ \hspace{1cm} (A2)

for $i,j,k = 1,2,\ldots,n$, where $M_{ij}^{-1}(q)$ is the ij-element of matrix $M^{-1}(q)$ and a_{ij} is the ij-element of matrix $A(q)$. Since we are assuming robot manipulators whose links are joined together with revolute joints, elements a_{ij} and the determinant $\det(M(q))$ contain only sinusoidal functions of q_k, and also their partial derivatives. Therefore, such expressions are bounded, and there exists a positive constant K_{M_i} such that

$$\left| \frac{\partial M_{ij}^{-1}(q)}{\partial q_k} \right| \leq K_{M_i},$$ \hspace{1cm} (A3)

for all $i,j,k = 1,2,\ldots,n$. Therefore (see Kelly et al., 2005, Corollary A.1, p. 385)

$$\|M^{-1}(y) - M^{-1}(z)\omega\| \leq n^2 K_{M_i} \|y - z\| \|\omega\|,$$ \hspace{1cm} (A4)

Property 7 is then satisfied with

$$K_M \geq n^2 K_{M_i}. $$ \hspace{1cm} (A5)

Appendix B

Here, we will show how the conditions (28), (29) and (30) are satisfied. From the definition of f_0 in (50), we have that

$$\frac{\partial f_0}{\partial t} = \left[\frac{d}{dt}[M(q_d)^{-1}]Y(q_d, \dot{q}_d, \ddot{q}_d)\right] \hat{\theta},$$ \hspace{1cm} (B1)

where $x_2 = \hat{\theta}$ as is defined in (42).

The time derivative of matrix $M(q_d)^{-1}$ may be expressed in the following manner:

$$\frac{d}{dt}[M(q_d)^{-1}] = -M(q_d)^{-1} \dot{M}(q_d)M(q_d)^{-1}.$$ \hspace{1cm} (B3)

It can be observed from Eqn. (A1) that matrix $M(q_d)^{-1}$ is bounded. On the other hand, the matrix $\dot{M}(q_d)$ is bounded under the condition (5). Therefore, $\frac{d}{dt}[M(q_d)^{-1}]$ is bounded, and under the conditions (17) and (18), matrix $\frac{d}{dt}[M(q_d)^{-1}]Y(q_d, \dot{q}_d, \ddot{q}_d) + M(q_d)^{-1}Y(q_d, \dot{q}_d, \ddot{q}_d)$ is also bounded. Therefore, if $\|x_2\| \leq r_2$, or equivalently, $\|\hat{\theta}\| \leq r_2$, then $\frac{\partial f_0}{\partial t}$ is bounded. On the other hand, the boundedness of $\frac{\partial f_0}{\partial x_2}$ is straightforward from the boundedness of matrices $M(q_d)^{-1}$ and $Y(q_d, \dot{q}_d, \ddot{q}_d)$. Therefore, the condition (28) is satisfied.

Notice, from the definition of function f_1 in (43) that

$$\|f_1\|^2 = \|\tilde{q}\|^2 + \|M(q)\|^{-1}[-C(q, \dot{q})\tilde{q} - F_v \tilde{q} - K_v \tanh(\theta) - K_p \tanh(\sigma \tilde{q}) - h(\tilde{q}, \dot{q})]\|^2 + \|\dot{A} \tanh(\theta) + B \tilde{q}\|^2 \leq \|x_1\|^2 \left[1 + \frac{1}{\lambda_{min}(M)} (K_{c_1} \|x_1\| + \zeta_1)^2 \right] + \|x_1\|^2 \lambda_{max} \{A\} + \lambda_{max} \{B\}^2,$$ \hspace{1cm} (B4)

where

$$\zeta_1 = 2k_{c_1} \mu_1 + \lambda_{min} \{F_v\} + \lambda_{max} \{K_v\} + \sigma \lambda_{max} \{K_p\} + \frac{s_{1,2}^2}{\tanh(s_{2} \sigma)}.$$ \hspace{1cm} (B5)

Therefore,

$$\|f_1\| \leq \|x_1\| \sqrt{\frac{1}{\lambda_{min}(M)} (k_{c_1} \|x_1\| + \zeta_1)^2 + \zeta_2},$$ \hspace{1cm} (B6)
where
\[\zeta_2 = 1 + (\lambda_{\text{max}}\{A\} + \lambda_{\text{max}}\{B\})^2. \] (B7)

Also, notice that
\[\|f_3\| = \|\Gamma_a Y(q_d, \dot{q}_d, \ddot{q}_d)^T \hat{\dot{q}} + \varepsilon \tanh(\sigma \tilde{q})\| \]
\[\leq \lambda_{\text{max}}\{\Gamma_a\} k_y \left[\|\hat{\dot{q}}\| + \varepsilon \sigma\|\tilde{q}\| \right] \]
\[\leq \lambda_{\text{max}}\{\Gamma_a\} k_y (1 + \varepsilon \sigma) \|x_1\|, \] (B8)
where we used the fact that \[\|\tanh(\sigma \tilde{q})\| \leq \|\sigma \tilde{q}\| \] (Kelly et al., 2005). Therefore, the condition (30) is satisfied with
\[p_2(\|x_1\|) = \max\{p_{21}(\|x_1\|), p_{22}(\|x_1\|)\}, \] (B9)
where
\[p_{21}(\|x_1\|) = \sqrt{\frac{1}{\lambda_{\text{min}}\{M\}} (k_c, \|x_1\| + \zeta) \|x_1\|^2 + \zeta_2 \|x_1\|^2}, \] (B10)
\[p_{22}(\|x_1\|) = \lambda_{\text{max}}\{\Gamma_a\} k_y (1 + \varepsilon \sigma) \|x_1\|. \] (B11)

On the other hand, we have that, for all \[\|x_2\| \leq r_2, \]
with \(r_2 \) defined in Assumption 2,
\[\|f_2 - f_0\| = \|[M(q)^{-1} - M(q_d)^{-1}] \times \]
\[\times Y(q_d, \dot{q}_d, \ddot{q}_d)x_2\| \]
\[\leq k_M k_y r_2 \|\tilde{q}\| \]
\[\leq k_M k_y r_2 \|x_1\|, \] (B12)
with \(f_2 \) and \(f_0 \) defined in (43) and (50), respectively, and Property 7 applied. Therefore, the condition (29) is satisfied with
\[p_1(\|x_1\|) = k_M k_y r_2 \|x_1\|. \] (B13)

Received: 16 October 2012
Revised: 8 June 2013