Editorial

Next frontiers in CAR T-cell therapy

Molecular Therapy — Oncolytics (2016) 3, 16028; doi:10.1038/mto.2016.28; published online 30 November 2016

Chimeric antigen receptor (CAR) T-cell therapy is entering a new era, transitioning from an experimental approach being tested in a handful of centers to a more mainstream and broadly investigated therapeutic platform with significant efforts directed towards commercial translation. CARs are synthetic receptors engineered and transduced into T cells to redirect T-cell cytotoxicity by recognition of cell surface antigens expressed on cancer cells.1,2 Ongoing innovations into the design and application of CAR T cells are aimed at improving antitumor potency and, at the same time, ensuring safety of this promising therapy.3 In this issue of Molecular Therapy — Oncolytics, we have invited preeminent authors to focus on the specific issues that comprise the next frontiers in CAR T-cell therapy.

The concept and clinical promise of CAR T-cell therapy is best illustrated in the success of CD19-targeted therapies for refractory/relapsed B-cell malignancies (reviewed in refs. 4–6). The remarkable clinical efficacy demonstrated with CD19-CARs has been achieved at multiple institutions, each evaluating their own CAR T-cell platforms and trial designs. Founding principles that have arisen from this wealth of clinical experience has helped shape our thinking about the parameters key to achieving therapeutic success, as well as management of potential toxicity risks. The application of these concepts to other malignancies is a major focus of current investigations. The reviews presented in this Special Issue address challenges facing successful CAR T-cell therapy: CAR bioengineering,4 CAR manufacturing,5 CAR bioengineering and manufacturing,6 application of CAR T cells for the treatment of solid tumors,7 toxicity and safety management (Curran et al.8), and immune monitoring to gain comprehensive understanding of therapeutic outcomes (Kalos et al.9).

Bioengineering of CARs

Abate-Daga and Davila10 discuss the structure of the CAR as a hybrid antigen receptor, part antibody and part T-cell receptor, comprising an extracellular antigen-binding domain and intracellular signaling domain(s). The antibody single chain variable fragment (scFv) directs T-cell binding to a tumor antigen and the intracellular domain, usually consisting of costimulatory and CD3ζ endodomains, initiates T-cell activation. The modifications of scFv, hinge/spacer length, and intracellular domains can influence T-cell recognition of differential antigen expressed on cancer cells versus normal cells, affinity, proliferation, persistence, and prevention of exhaustion. New generations of CARs, such as ligand CARs (IL-13 receptor), universal CAR systems, and bispecific CARs that can either be activated by two different antigens or inhibitory bispecific CARs that can prevent normal tissue destruction, are discussed. Additionally, third-generation CARs or TRUCKs (joint expression of CARs and accessory genes either in cis or trans, secretion of IL-12, IL-15, IL-7, or IL-21, either constitutively or induced) are developed with strong preclinical evidence of enhanced functionality and persistence, which are currently being translated into clinic. Davila and colleagues also highlight the careful thought process required in the incorporation of accessory molecules as safety switches (huEGFRt and iCasp9) in their alignment in the CAR structure.

Clinical Manufacturing of CAR T Cells

With the success of CD19-targeted CAR T cells in early-phase clinical trials and with industry-academia partnerships, clinical manufacturing of CAR T cells for late-phase clinical trials is rapidly developing. As a mostly autologous cell therapy, CAR-T cell manufacturing starts from apheresis and proceeds through systematic steps of T-cell selection, activation prior to gene transfer, and T-cell expansion. Expanded CAR-transduced T cells are formulated and cryopreserved to be administered to the patient. Although early in clinical development, several systems are available for T-cell activation such as cell-based, bead-based, antibody-coated magnetic beads, nanobeads, and expamer technologies. Genetic modification of T cells are routinely performed either by use of retroviral or lentiviral vectors. The advantages and limitations of both T-cell activation methods and vectors are discussed comprehensively by Wang et al.11 Additionally, transposon/transposase and messenger RNA transfer system were discussed. Following gene transfer, expansion protocols use a variety of bioreactors. More importantly, after manufacturing several quality standards are developed prior to administering T cells to the patient. Riviere and colleagues describe the above steps in a comprehensive manner. With the introduction of newer costimulatory domains into CARs and selective transduction of specific T-cell subsets, the knowledge, advantages, and limitations of each system are becoming increasingly important.

CARS for Solid Malignancies

CAR T-cell therapy for solid malignancies is an exciting front that has yet to be realized and must overcome several barriers specific to the tumor microenvironment. Newick, Moon, and Albelda discuss the primary hurdles to CAR T-cell therapy in the solid tumor microenvironment12 and present an eloquent summary of the current approaches to overcome solid tumor barriers. The elements necessary for effective solid tumor CAR T-cell therapy—trafficking to the tumor, successful infiltration and engagement of tumor antigens, overcoming CAR T-cell intrinsic, and extrinsic factors that can influence the potency and persistence of CAR T cells—are discussed in detail.

Selection of an optimal solid tumor-associated antigen for targeting by CAR T cells requires that an antigen: (i) is overexpressed in the majority of solid tumors; (ii) displays limited expression in normal tissues; and (iii) imparts a tumor aggression thereby reducing the likelihood for tumor escape.13,14 Newick et al.12 highlighted the lack of a “dispensable antigen” in solid tumors and discusses tumor-selective versus tumor-specific antigens that are being targeted in clinical trials. While neoantigens may avoid the common problem of choosing an antigen target for CAR T-cell therapy, they are not practical to apply to a large cohort of patients. Even after selecting an optimal antigen target, the function of a CAR is dependent upon the scFv avidity and ability to prevent tumor escape of immunogenic epitopes. Albelda and colleagues next discuss the important issue of T-cell trafficking that is dependent upon appropriate expression...
of chemokine receptors on T cells and “matching” tumor-secreted chemokines. “Engineered-matching” by overexpression of a tumor-specific chemokine receptor or genetic inhibition of protein kinase A activation to promote CART T-cell infiltration are some of the highlighted strategies. To improve CART T-cell trafficking and infiltration of solid tumors, our group has published the clinical and biological advantages of regional administration of CART T cells; this approach is now being tested in clinical trials.14

Dr. Albelda’s laboratory has contributed novel approaches to overcome T-cell extrinsic tumor microenvironmental factors such as stromal fibroblasts, Tregs, TGFβ, and PGE2 by FAP CART cells, systemic blockade of TGFβ, and genetic inhibition of protein kinase A, respectively.8 In addition to discussing the rationale for these approaches, other novel methods, such as TGFβ dominant negative receptor and tumor-restricted secretion of IL-12, are also highlighted. Suppressive immune cells such as Tregs, myeloid-derived suppressor cells, tumor-associated macrophage, and tumor-associated neutrophil can be better addressed in an immunocompetent mouse model that requires mouse CART T cells; the translational potential of such CARTs to the human setting is indirect. Our laboratory has highlighted the differential functional potency and persistence of CD28 or 4-1BB costimulated mesothelin CARTs in a solid tumor environment and developed translational approaches to overcome T-cell intrinsic inhibitory mechanisms such as PD-1/PD-L1/2.15 Other approaches, including antibody-mediated PD-1 blockade and PD-1 “switch receptors,” are also discussed.

The potential for well described severe “cytokine storm” in hematological malignancies, immunogenic reaction from transduced genes of murine origin resulting in “HAMA reaction” or feared “on-tological malignancies, immunogenic reaction from transduced and PD-1 “switch receptors, “ are also discussed.

TOXICITY MANAGEMENT

The success of CD19 CART T-cell therapy owes, in part, to the development of early recognition and better treatment strategies for CART T-cell toxicities. Theoretical toxicities, such as clonal expansion secondary to insertional mutagenesis, graft versus host disease, and off-target antigen recognition, have been rare. However, cytokine release syndrome, due to T-cell activation and subsequent cytokine secretion, is more prevalent and requires early recognition and expert management. Currently used therapeutic approaches, such as IL-6 blockade and corticosteroids, and their mechanisms of action were discussed in this issue by Curran et al.10 Neurological toxicity is the least understood or studied, yet a common toxicity in CD19 studies. Neurological studies, such as electroencephalogram and brain scans, have not been helpful. Ongoing investigations are testing the cytokine concentration in cerebrospinal fluid, CART T-cell accumulation in cerebrospinal fluid, and central nervous system leukemia. With expansion of CART T-cell therapy solid tumors, identification of an ideal tumor-restricted antigen is rare. On-target, off-tumor toxicities are feared especially if the target tissue is expressed in crucial tissues such as lungs, heart, or liver. Anaphylaxis due to murine components of the vectors have been described. Bonifant et al.10 discuss treatment strategies for toxicity management. The current approaches include pharmacological immunosuppression by use of tocilizumab or corticosteroids. A variety of suicide genes have been incorporated into CART designs such as HSV-tk, iCaspase-9, and EGFR or CD20 mutations.

CONFLICT OF INTEREST

The authors declared no conflict of interest.

Christine E Brown1 and Prasad S Adusumilli2,3 1T cell Therapeutics Research Laboratory, Department of Hematology & Hematopoietic Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California, USA; 2Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York, USA; 3Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA. Correspondence: PS Adusumilli (adusumip@mskcc.org) or CE Brown (cbrown@coh.org)
REFERENCES
1. Sadelain, M (2016). Chimeric antigen receptors: driving immunology towards synthetic biology. Curr Opin Immunol 41: 68–76.
2. June, C, Rosenberg, SA, Sadelain, M and Weber, JS (2012). T-cell therapy at the threshold. Nat Biotechnol 30: 611–614.
3. Sadelain, M, Brentjens, R and Rivière, I (2013). The basic principles of chimeric antigen receptor design. Cancer Discov 3: 388–398.
4. Ruella, M and June, CH (2016). Chimeric antigen receptor T cells for B cell neoplasms: choose the right CAR for you. Curr Hematol Malig Rep 11: 368–384.
5. Davila, ML and Sadelain, M (2016). Biology and clinical application of CART cells for B cell malignancies. Int J Hematol 104: 6–17.
6. Park, JH, Geyer, MB and Brentjens, RJ (2016). CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date. Blood 127: 3312–3320.
7. Abate-Daga, D and Davila, ML (2016). CAR models: next-generation CAR modifications for enhanced T-cell function. Mol Ther Oncolytics 3: 16014.
8. Wang, X and Rivière, I (2016). Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol Ther Oncolytics 3: 16015.
9. Newick, K, Moon, E and Albelda, SM (2016). Chimeric antigen receptor T-cell therapy for solid tumors. Mol Ther Oncolytics 3: 16006.
10. Bonifant, CL, Jackson, HJ, Brentjens, RJ and Curran, KJ (2016). Toxicity and management in CART-cell therapy. Mol Ther Oncolytics 3: 16011.
11. Novosadly, R and Kalos, M (2016). High-content molecular profiling of T-cell therapy in oncology. Mol Ther Oncolytics 3: 16009.
12. Morello, A, Sadelain, M and Adusumilli, PS (2016). Mesothelin-targeted CARs: driving T cells to solid tumors. Cancer Discov 6: 133–146.
13. Priceman, SJ, Forman, SJ and Brown, CE (2015). Smart CARs engineered for cancer immunotherapy. Curr Opin Oncol 27: 466–474.
14. Adusumilli, PS, Cherkassky, L, Villena-Vargas, J, Colovos, C, Servais, E, Plotkin, J et al. (2014). Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med 6: 261ra151.
15. Cherkassky, L, Morello, A, Villena-Vargas, J, Feng, Y, Dimitrov, DS, Jones, DR et al. (2016). Human CART cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest 126: 3130–3144.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/
© The Author(s) (2016)