Vocal Folds Analysis for Detection and Classification of Voice Disorder: Detection and Classification of Vocal Fold Polyps

Vikas Mittal, National Institute of Technology, Kurukshetra, India
https://orcid.org/0000-0003-3808-5057
R. K. Sharma, National Institute of Technology, Kurukshetra, India

ABSTRACT

The detection and description of pathological voice are the most important applications of voice profiling. Currently, techniques like laryngostroboscopy or surgical microlarynoscopy are popularly used for the diagnosis of voice pathologies but are invasive in nature. Disorders of vocal folds impact the quality of voice, and therefore, the accuracy of voice profiling is reduced. This paper presents a better solution to differentiate normal and pathological voices based on the glottal, physical, and acoustic and equivalent electrical parameters. These parameters have been correlated using mathematical equations and models. Results reveal that the glottal flow is strongly influenced by physical parameters like stiffness and viscosity of vocal folds in case of pathological voice. However, their direct measurement requires complex invasive medical procedures or costly and complex electronic hardware arrangements in case of non-invasive methods. Glottal parameters, on the other hand, facilitate much simpler estimation of vocal folds disorders. In this work, the authors have presented two non-invasive approaches for better accuracy and least complexity for differentiating normal and pathological voices: 1) by using correlation of glottal and physical parameters, 2) by using acoustic and equivalent electrical parameters.

KEYWORDS
Acoustic Circuit, Electrical Circuit, Glottal Parameters, Physical Parameters, Two Mass Model, Vocal Disorders

1. INTRODUCTION

The risk of pathological voice related disorders has increased manifolds. This is due to modern lifestyle, environmental issues, self medications and even a profession. About 25% of the population is engaged in activities that are “vocally demanding” (Amami & Smiti, 2017). The examples include professors, lawyers, auctioneers, aerobics instructors, singers, actors and manufacturing supervisors. For the diagnosis of voice pathologies, invasive endoscopy procedures are the current state of the art. But recently non-invasive digital techniques (like voice profiling and image processing) have evolved and are assisting medical professionals for early detection of voice disorders. In voice based detection, the most common method for extracting voice features is determination of acoustic parameters directly from the voice signal. Since most of the voice disorders are due to vocal fold dynamics, the researchers have started to work with glottal parameters of vocal folds to expedite the detection of related disorders. The detection of voice pathologies needs further improvement so as
to increase the accuracy of voice detection as well as their classification. This work aims improved
detection and classification of voice disorders using vocal folds glottal, physical, acoustic, and
equivalent electrical parameters.

Vocal acoustic evaluation is popularly used for the assessment and diagnosis of voice disorders
(Teixeira et al., 2020). Xiao Yao et al. claimed that when the speaker is under stress, certain vocal organs
are affected (Yao et al., 2015). Xiao Yao et al. further discussed the physical parameter, glottal flow and
stress output relationships (Yao et al., 2018). Although the voice parameters like the vibration of the
vocal folds, shape of the glottis and the glottal airflow have been extensively researched in literature,
yet their individual impacts on the voice quality cannot be accurately computed (Ramsay, 2019). It is
a fact that thorough study and evaluation of vocal folds behavior essentially require characterization of
vocal folds and their relationship with vocal tract. This paper focuses on the diagnosis of pathological
voice using physical, glottal parameters as well as acoustic and its equivalent electrical parameters.

The major contributions of this paper are summarized as under:

- It is a fact that speech disorders in the voice is caused fundamentally by the physiological changes
 of vocal folds leading to deviation in their natural vibrations and are reflected by glottal flow.
The authors have proposed a novel method to find physical parameters of vocal folds. On the
 other hand, IAIF method is used to extract glottal flow parameters from the given voice samples.
The physical parameters are then correlated with glottal flow parameters. Any change in glottal
 parameters reflects change in physical parameters which are then utilized to classify pathological
 voices. Hence the contents of the paper presents a method for detection and classification of
 voice disorders based on physical, glottal parameters as well as acoustic and its equivalent electrical parameters.

- Furthermore, authors have also developed relation between vocal folds length and parameters
 of the acoustic model of the vocal folds. Change in vocal folds length, due to voice disorders
 reflects change in acoustic model parameters and the same has been used to classify pathological
 voices. The results of acoustic parameters variations due to voice disorders are shown in Table
 10 at page-15 of the manuscript.

- It has also been experimented that current variation in equivalent electrical model is a function
 of change in vocal folds length. This feature has been used to classify pathological voices as
 shown in Figure 16.

2. PHYSICAL MODEL OF VOCAL FOLDS

The vocal folds are situated in an anterior-posterior orientation in the middle of the glottis. There is
a “V” shaped form in the right and left folds. The gap in the shape of “V” forms the entrance to the
trachea. Each vocal fold is attached with muscles on both sides of the larynx. The contraction and
relaxation of the muscles lead to glottal flow and is termed as the glottal source. According to body-
cover theory stiffness properties of vocal folds depends on thyroarytenoid (TA) and cricothyroid (CT)
muscles. As a result, the behavior of vocal folds depends on the combined effect of body oscillation
and layers of cover. This paper considers only the symmetrical two-mass vocal folds model, shown
in Figure 1. Each vocal fold is composed of a lower mass (m1) and an upper mass (m2), stiffnesses
(k1, k2), and viscous resistances (r1, r2). P is Subglottal pressure which defines the pressure of the
airflow in the trachea below the glottis. The vocal fold vibration is the phonation source, which
further determines the nature of the glottal flow. Since voice disorders result in variations in vocal
fold stiffness (k1), viscous resistance (r1) and varying airflow patterns in the glottis may affect glottal
flow production (Hirano, 1974).
3. METHODOLOGY

For determining the relation between glottal flow and physical parameters, the procedure shown in Figure 2 has been used.

Two mass model is used to compute physical parameters (Ishizaka & Flanagan, 1972) meanwhile the glottal parameters are estimated from voice samples of normal and pathological voices (Mokhkari et al., 2018), using Aalto Aparat tool. The proposed work makes use of the German database; ‘Saarbrucken Voice Database (SVD)’. This database is freely available online. The authors have also recorded real voice samples from MMIMSR, Mullana hospital. There are total 16 samples that include eight (8) healthy and eight (8) pathological subjects, suffering with vocal folds polyps. Each category includes four (4) male and four (4) female samples all above 18 years. We have considered recordings of vowels /a/ produced at normal pitch. The durations of samples varies between 1 to 3 seconds. All recordings are sampled at 50 kHz with 16 bit resolution.

4. RELATIONSHIP AMONG PHYSICAL & GLOTTAL PARAMETERS

To achieve the objective of this work, the following procedure is used to demonstrate a correlation between physical and glottal parameters. Furthermore, the relationships among these parameters have been plotted.

4.1. Glottal Parameters

Aalto Aparat tool is used to extract glottal parameters & these parameters are briefly explained as under:

4.2. Normalized Amplitude Quotient (NAQ)

The parameter NAQ specifies the closing phase of vocal folds, and given as:
Figure 2. Blocks of methodology used

Voice Samples (Normal or Pathological)

Estimation of fundamental frequency F_0 ($=1/T$)

Estimation of Glottal parameters (NAQ, SQ, OQ and CIQ)

Estimation of Physical parameters (k_1, r_1) using fundamental frequency (F_0)

Developed relation between glottal and physical parameters

Classification of voice samples using above relation

Normal Voice Pathological Voice
\[NAQ = \frac{AQ}{T} \] \hspace{1cm} (1)

where \(T \) is the glottal period, \(AQ \) (Amplitude Quotient) is defined by the maximum amplitude of the glottal flow (Mittal & Sharma, 2020).

4.3. **Speed Quotient (SQ)**

It defines the ratio of opening and closing intervals of vocal folds and expressed as (Mittal & Sharma, 2020):

\[SQ = \frac{T_{ol}}{T_c} \] \hspace{1cm} (2)

Some authors consider two parameters for the speed quotient: \(SQ_1 \) and \(SQ_2 \), as:

\[SQ_1 = \frac{T - T_c}{T_c} \] \hspace{1cm} (3)

\[SQ_2 = \frac{T_{ol}}{T_c} \] \hspace{1cm} (4)

\(T_{ol} \) is a time interval between the beginning instant of opening and the instant when the opening is maximum & time interval between max. opening to the complete closure is \(T_c \).
4.4. Opening Quotient (OQ):

It is defined as:

\[OQ = \frac{T_{o1} + T_c}{T} \tag{5} \]

Some authors consider two parameters for the OQ: OQ1 and OQ2. These are defined as (Mittal & Sharma, 2020):

\[OQ1 = \frac{T_{o1} + T_c}{T} \tag{6} \]

and

\[OQ2 = \frac{T_{o2} + T_c}{T} \tag{7} \]

Where \(T_{o2} \) as observed in Figure 3

4.5. Closing Quotient (CIQ)

It is defined as:

\[CIQ = \frac{T_c}{T} \tag{8} \]

4.6. Physical Parameters:

Physical parameters stiffness and viscosity that characterize the vocal folds are discussed as under.

4.6.1. Stiffness

Stiffness is related to muscle tension and fundamental frequency (Cataldo et al., 2006). It, therefore, affects the closing and opening of vocal folds.

\[m_1 \frac{d^2 x_1}{dt^2} + r_1 \frac{dx_1}{dt} + s_1 (x_1) + k_c (x_1 - x_2) = F_1 \tag{9} \]

\[m_2 \frac{d^2 x_2}{dt^2} + r_2 \frac{dx_2}{dt} + s_2 (x_2) + k_c (x_1 - x_2) = F_2 \tag{10} \]

Where \(m, r, s \) and \(F \) are viscous resistance, elasticity, and airflow respectively. \(x \) is the horizontal displacement from the balance of the two masses. \(k_c \) denotes to the stiffness of the coupling between the two masses. The elasticity can be computed as:
\[s_i(x_i) = k_i (x_i + \eta x_i^3) \quad i = 1, 2 \] (11)

where \(k_i \) is the stiffness parameter.

In the following discussion the relations of the fundamental frequency, physical parameters, and glottal parameters have been derived.

The fundamental frequency \(F_0 \) is expressed as under,

\[F_0 = \frac{1}{T} \] (12)

\(T \) is given as:

\[T = \frac{A Q}{N A Q} \] (13)

As per in Ishizaka and Flanagan model 1972, standard value of \(m_1 \) can be considered equal to 0.125g. Further the researchers (Ishizaka & Flanagan, 1972) relate \(m_1 \) & \(m_2 \) and \(k_1 \) & \(k_2 \) as expressed below:

\[m_2 = \frac{m_1}{5} \quad \text{and} \quad k_2 = \frac{k_1}{10} \] (14)

where \(k_1 \) is lower spring stiffness and \(m_1 \) is lower mass. Similarly, \(k_2 \) is upper spring stiffness and \(m_2 \) is upper mass.

\(F_0 \), as a function of \(k \) and \(m \), can be defined as:

\[F_0 = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \] (15)

where \(k = k_1 + k_2 \) and \(m = m_1 + m_2 \). Consequently, \(F_0 \) reduces to:

\[F_0 = \frac{1}{2\pi} \sqrt{\frac{1.1k_1}{1.2m_1}} \] (16)

From Equation (16), \(k_1 \) can be calculated as:

\[k_1 = \frac{(F0 \times 2\pi)^2 \times (1.2m_1)}{1.1} \] (17)

In above developed formula \(k_1 \) is proportional to \(F_0 \) so it is inversely proportional to \(T \). NAQ, OQ and CIQ glottal parameters are inversely proportional to \(T \) and thus stiffness parameter \(k_1 \)
is proportional to NAQ. SQ parameter is proportional to glottal time period T, so it is inversely proportional to k₁.

4.6.2. Viscosity
Viscosity of vocal fold tissues plays an important role in vocal fold oscillation and it varies during phonation. Kaneko, et al. (Kaneko et al., 1972) and Isshiki (Isshiki, 1977) have measured the viscous resistance. The vocal folds viscous resistance reflects the stickiness of surfaces during vocal fold contraction, which can be calculated as:

\[r_1 = 2\zeta_1 \sqrt{m_1 k_1} \quad \text{and} \quad r_2 = 2\zeta_2 \sqrt{m_2 k_2} \] (18)

where \(\zeta_1, \zeta_2 \) refer to damping ratios for the viscous resistances \(r_1 \) and \(r_2 \).

\(r_1 \) is computed assuming damping ratio \(\zeta_1 = 0.1 \) as in Ishizaka and Flanagan model 1972 (Ishizaka & Flanagan, 1972). Viscous resistance \(r_1 \) is proportional to \(k_1 \). So, \(r_1 \) is also proportional to NAQ and inversely proportional to SQ glottal parameter.

5. RESULTS AND DISCUSSION
The mathematical relations develop above are used to process voice samples of healthy and pathological subjects. In this work, Saarbrucken Voice Database (SVD) (Barry & Putzer, 2015) samples are used to test relationships for the speakers in the database. Using the same set of speech samples, relevant physical parameters, and glottal parameters are derived and plotted.

The computed values of stiffness (\(k_1 \)) and NAQ of Normal and Pathological Voices are shown in Table 1 and their graphical representations are shown in Figure 4. Stiffness (\(k_1 \)) represents the tension in the cricothyroid (CT) muscle. The high value of stiffness (\(k_1 \)) is responsible for the contraction of the cricothyroid (CT) muscle which causes slow vocal folds closure during vibration. An increase in \(k_1 \) raises NAQ. Stiffness (\(k_1 \)) for normal and pathological voices is obtained using Equation 17 whereas NAQ for both types of voices is obtained using inverse filtering.

Sample No.	Normal Voice	Pathological Voice		
	Stiffness \(k_1 \) (kdyn/cm)	NAQ	Stiffness \(k_1 \) (kdyn/cm)	NAQ
1	44.5	0.035	44.5	0.021
2	55.9	0.032	52.7	0.027
3	76.1	0.027	77.4	0.042
4	102.4	0.039	149.9	0.039
5	174.2	0.036	194.1	0.105
6	176.1	0.075	226	0.073
7	237.1	0.041	228.2	0.048
8	253.2	0.060	262.6	0.049

The computed values of \(k_1 \) and SQ of Normal and Pathological Voices are shown in Table 2.
Figure 5 shows graphical representation of the relation of stiffness (k_1) with speed Quotient (SQ). The value SQ parameter is higher in pathological voice. It is clear from Figure 5 that shrinking in the structure of vocal folds due to the presence of vocal diseases.

The values of k_1 and OQ of Normal and Pathological Voices are shown in Table 3.

Figure 6 shows the relation of stiffness k_1 with the Primary Opening Quotient (OQ). It is obvious from Figure 6 that value of the OQ parameter is higher in pathological voice. The increased value of OQ is due to the partial closing of vocal folds.

The computed values of k_1 and CIQ are shown in Table 4 and Figure 7 shows the relation of stiffness (k_1) with Closing Quotient (CIQ). The value CIQ parameter is higher in pathological voice.

The computed values of r_1 and NAQ are shown in Table 5.

Figure 8 demonstrates the relationship between the glottal parameter NAQ and the physical parameter viscous resistance r_1. The value of NAQ is high in the case of pathological voices. An increase in viscous resistance r_1 will lead to an increase in NAQ. Due to that, the vocal folds activity of adduction and abduction is delayed.

The computed values of r_1 and SQ are shown in Table 6.

Table 2. Computed values of k_1 and SQ

Sample No.	Normal Voice	Pathological Voice		
	Stiffness k_1 (kdyn/cm)	SQ	Stiffness k_1 (kdyn/cm)	SQ
1	44.5	3.7	44.5	6.9
2	55.9	3.1	52.7	3.4
3	76.1	2.3	77.4	2.8
4	102.4	2.2	149.9	3.2
5	174.2	2.1	194.1	2.9
6	176.1	0.4	226	2.2
7	237.1	1.1	228.2	2
8	253.2	1.7	262.6	2.2
Figure 9 demonstrates the relationship between SQ and the viscous resistance r_1. An increase in viscous resistance r_1 will lead to a decrease in SQ. The value of SQ is high in the case of pathological voices. It implies that a more asymmetric glottal flow is developed.

The computed values of \{r_1 and OQ\} and \{r_1 and CIQ\} are shown in Table 7 and Table 8.

Figure 10 and Figure 11 demonstrates the relationship between the OQ, CIQ and the viscous resistance r_1. The value of OQ and CIQ is high in case of pathological voices. An increase in viscous resistance r_1 will lead to an increase in OQ and CIQ that mean slowing down the vibration speed of the vocal folds.

Authors have correlated physical parameters (stiffness, viscous resistance) and glottal flow parameters (NAQ, SQ, OQ1 and CIQ) for normal and pathological voice.

Table 9 shows the average values of computed parameters for normal and pathological voice data. The increase in k_1 for pathological voices is due to the contraction of CT which in turn happens due to distorted muscle under tension. Increased k_1 leads to deceleration of vocal folds and thus asymmetrical glottal flow. This behavior of glottal flow is also reflected by larger NAQ, SQ, OQ1,
Figure 6. Relationship between OQ and k_1

![Figure 6. Relationship between OQ and k_1](image)

Table 4. Computed values of k_1 and CIQ

Sample No.	Normal Voice	Pathological Voice		
	Stiffness k_1 (kdyn/cm)	CIQ	Stiffness k_1 (kdyn/cm)	CIQ
1	44.5	0.037	44.5	0.167
2	55.9	0.051	52.7	0.073
3	76.1	0.057	77.4	0.069
4	102.4	0.076	149.9	0.065
5	174.2	0.17	194.1	0.016
6	176.1	0.244	226	0.35
7	237.1	0.10	228.2	0.118
8	253.2	0.106	262.6	0.110

Figure 7. Relationship between CIQ and k_1

![Figure 7. Relationship between CIQ and k_1](image)
Table 5. Values of r_1 and NAQ

Sample No.	Normal Voice	Pathological Voice		
	Viscous resistance (r_1)	NAQ	Viscous resistance (r_1)	NAQ
1	14.9	0.035	14.9	0.021
2	16.7	0.032	16.2	0.027
3	19.5	0.027	19.6	0.042
4	22.6	0.039	27.3	0.039
5	29.5	0.036	31.1	0.105
6	29.6	0.075	33.6	0.073
7	34.5	0.041	33.7	0.048
8	35.5	0.060	36.2	0.049

Figure 8. Relationship between NAQ and r_1

Table 6. Computed values of r_1 and SQ

Sample No.	Normal Voice	Pathological Voice		
	Viscous resistance (r_1)	SQ	Viscous resistance (r_1)	SQ
1	14.9	3.7	14.9	2.8
2	16.7	3.1	16.2	3.1
3	19.5	2.3	19.6	3.8
4	22.6	2.2	27.3	3.2
5	29.5	2.1	31.1	2.9
6	29.6	0.4	33.6	2.2
7	34.5	1.1	33.7	2
8	35.5	1.7	36.2	6.9
and CIQ. The Viscous resistance \(r_1 \) for pathological voice is substantially greater than normal voice. This leads to a stickier surface of vocal folds.

The physical parameters reflect the physical characteristics in the physiological system but their computation is complex. In the detection of voice pathology, the glottal parameters often perform well and the estimation method is simple. In this work, the glottal parameters are estimated for normal and pathological voice samples. Further, these parameters have been related to physical parameters. As seen from results, these parameters are effective in detecting vocal folds disorder as presented above in Table 9.

In subsequent sections, a method based on acoustic and electrical circuits is proposed to differentiate between normal and pathological voices.

Flanagan and Landgraf in 1968 (Flanagan & Landgraf, 1968) were the first researchers who modeled the acoustic behavior of vocal folds using one mass model and assumed lungs as a constant-pressure source should it be denoted as \(P_s \). Further Van den Berg (Van den Berg, 1958), experimented on one mass model and studied the impact of constant and variable pressure on air volume velocity.
(U₂) and express the time-varying glottal impedance as function of viscous non-flow dependent resistance (Rᵥ), a kinetic flow dependent resistance (Rₖ) and inertance (Lₙ).

The acoustic circuit of vocal folds based on two- mass model (Ishizaka & Flanagan, 1972) is shown in Figure 12. The elements of the acoustic circuit are defined as,

\[R_{v1} = 12 \frac{\mu L^2 d_1}{A^4_{y1}} \] \hspace{1cm} (19)

\[R_{v2} = 12 \frac{\mu L^2 d_2}{A^4_{y2}} \] \hspace{1cm} (20)

Table 8. Computed values of rᵥ and CIQ

Sample No.	Normal Voice	Pathological Voice		
	Viscous resistance (rᵥ)	CIQ	Viscous resistance (rᵥ)	CIQ
1	14.9	0.037	14.9	0.167
2	16.7	0.051	16.2	0.073
3	19.5	0.057	19.6	0.069
4	22.6	0.076	27.3	0.065
5	29.5	0.170	31.1	0.016
6	29.6	0.244	33.6	0.35
7	34.5	0.100	33.7	0.118
8	35.5	0.106	36.2	0.110
Figure 11. Relationship between CIQ and r_1

Table 9. Average value of physical and glottal parameters

Physical and glottal Parameters	Normal Voice	Pathological Voice	(%) increase in pathological parameters
NAQ	0.03	0.05	66
SQ	2.07	3.36	62
OQ1	0.25	0.32	28
CIQ	0.08	0.10	25
k_1(kdyn/cm)	139.9	154.4	10
r_1	25.3	26.5	04

\[L_{g1} = \frac{\rho d_1}{A_{y1}} \]
\[L_{g2} = \frac{\rho d_2}{A_{y2}} \]
\[R_{x1} = \frac{0.19\rho}{A_{y1}^2} \]
\[
R_{k2} = \frac{\rho \left[0.5 - \frac{A_{g2}}{A_1} \right] \left(1 - \frac{A_{g1}^2}{A_1} \right)}{A_{g2}^2}
\]

Where,

- \(d_1\) and \(d_2\): thickness of mass \(m_1\) & \(m_2\), respectively,
- \(A_{g1}\) and \(A_{g2}\): cross-sectional areas at the two masses (\(m_1\) & \(m_2\)),
- \(L_{g}\): effective length of the vocal folds,
- \(R_{v1}\) and \(R_{v2}\): viscous non-flow dependent resistances,
- \(L_{g1}\) and \(L_{g2}\): inertances due to the two masses (\(m_1\) & \(m_2\)),
- \(R_{k1}\) and \(R_{k2}\): kinetic flow dependent resistances

Viscosity of air (\(\mu\)) = 1.86*10^{-4} dyne-sec/cm², at 30°C
Air density (\(\rho\)) = 1.14*10^{-3} g/cm³, 30°C

In the acoustic circuit given in Figure 12, if there is any change in subglottal pressure or in the values of components, the volume velocity (\(U_g\)) changes. Change in \(U_g\) reflects the change in the fundamental frequency of normal or pathological voices. From the above circuit, it can be shown that:

\[
\left(R_{k1} + R_{k2} \right) U_g \left(R_{v1} + R_{v2} \right) U_g + \left(L_{g1} + L_{g2} \right) \frac{dU_g}{dt} = P_s
\]

(25)

Assuming constant lung pressure \(P_s\) of the acoustic circuit, if the length of the vocal folds (\(L\)) changes, the values of components of acoustic circuit also changes {eqns. 19 to 24}. The changed values of the components imply a change in volume velocity \(U_g\) and consequently, change in the fundamental frequency. Table 10 shows values of \(R_{v1}, R_{v2}, R_{k1}, R_{k2}, L_{g1}, L_{g2}\) w.r.t different vocal folds length (\(L\)) and a corresponding change in fundamental frequencies for normal and pathological voices.
Equation 26 relates fundamental frequency (F_0) and vocal folds length (L). Decrease in L results into increase in F_0.

$$F_0 = \left(\frac{8.67}{L} \right) \left(1 + \frac{5.69 A^2}{L^2} \right) e^{4.01 \left(\frac{L}{L_0}\right)}$$

(26)

Where,

L_0 is abducted reference length,
A is vibration amplitude

For the human vocal folds, amplitude to length (A/L) ratio is of the order of 0.1 and 0.5<L/L_0<1.0(Titze, 1989a).

Another simpler relationship connecting fundamental frequency (F_0) and vocal folds membranous length (L_m) is (Titze, 1989b) shown in Equation 27.

$$F_0 = \frac{1700}{L_m}$$

(27)
Table 11 and Figure 13 show that if vocal folds length reduces, the fundamental frequency increases.

Table 11. Computed values of fundamental frequency and vocal folds length

Normal Voices	Pathological Voices		
fundamental frequency (F_0)	**fundamental frequency** (F_0)	**vocal folds length** (L)	**vocal folds length** (L)
Hz	Hz	cm	cm
98	1.7	99	1.7
102	1.6	120	1.4
119	1.42	134	1.26
138	1.23	167	1
180	0.94	190	0.89
181	0.93	205	0.82
210	0.8	206	0.82
217	0.78	221	0.76

*Fundamental frequencies are obtained using Aalto Aparat tool.

**Length of vocal folds is obtained using equation 27.

Figure 13. Fundamental frequency vs Vocal folds Length

Now, if the lung pressure P_s in the acoustic circuit changes then volume velocity (U_g) also changes and leading to change in fundamental frequency. These observations are depicted in Table 12 and Figure 14. Here it is assumed that the values of circuit components are constant.

The value of lung pressure P_s is calculated with help of following relationships as given by Hocine Teffahi (Baken & Orlikoff, 2000),

\[F_0 (Hz) = 2.3P_s + 48Q +1.98 \]
Assume, $Q (=3)$ is vocal cord tension (Teffahi, 2009), which is proportional to Fundamental frequency (F_0).

The equivalent electrical circuit derived from the acoustic circuit (Figure 12) is shown in Figure 15. Circuit components values are a function of the length of the vocal fold. The voltage (V) of the circuit which is equivalent to lung pressure (P_s) is calculated by using the following relation (Baken & Orlikoff, 2000),

$$1\text{cmH}_2\text{O Pressure} = 1.27 \times P_{\text{alv}} + 5.94 \quad (29)$$

where P_{alv} is the alveolar pressure approximated as dc voltage equivalent.

The mathematical model of the circuit is given by the following relation:

Normal Voices	Pathological Voices		
*fundamental frequency (F_0)Hz	*fundamental frequency (F_0)Hz	*fundamental frequency (F_0)Hz	*fundamental frequency (F_0)Hz
*subglottal pressure (P_s) in cmH$_2$O			
180	14.7	205	25.6
210	27.8	221	32.6
102	4.9	120	5.2
138	6.2	167	9.1
217	30.8	190	19.1
98	4.5	99	4.5
119	5.2	134	6.1
181	14.8	206	26

*Fundamental frequencies are obtained using Aalto Aparat tool

**Subglottal pressure P_s is obtained using Equation 28

Figure 14. Fundamental frequency vs subglottal pressure
To analyze the above circuit two scenarios are considered.

a) **When voltage is constant and components values are variable**: The current in the circuit is different for normal and pathological voices. Current variations are inversely related to variations in fundamental frequencies of normal or pathological voices.

Figure 16 shows the variations of output current (I) of the equivalent electrical circuit as a function of the vocal folds length for normal and pathological voices. It is clear from Figure 16 that as the vocal folds length is decreasing the output current (I) is also decreasing.

b) **When voltage is variable and components values are constant**: The current in the circuit is different for normal and pathological voices. This is inversely related to variations in fundamental frequencies of normal or pathological voices.

6. CONCLUSION AND FUTURE SCOPE

Improvement of health and non-invasive diagnosis and treatment of chronic diseases are the major requirements in Biomedical Field. Voice disorders can have a significant negative impact on the social and professional life. Although such disorders are often underestimated, their early detection and accurate diagnosis are necessary to reduce serious consequences. The health of persons may be severely affected by their individual pathological voice conditions. This may financially burden such patients and even the society at large. One of the most frequently utilized tools to diagnose these vocal disorders is a laryngoscope. Laryngoscopy, an invasive and painful technique, is an expensive time-consuming process that requires trained personnel to perform the test. To address these issues, researchers have been experimenting with non-invasive techniques for detecting vocal disorders. This paper has successfully presented an alternate non invasive diagnostic method to accurately and quickly classify voice disorders. The proposed method provides an opportunity to further improve the existing medical techniques that are necessary to diagnose voice disorders. The results obtained in this paper reveal the essence and mechanism for the pathological voice and establish a theoretical
and experimental foundation for pathological voice detection. Physical & glottal parameters are defined, related and their impact on normal & pathological voices has been presented in the paper. Stiffness \((k_1)\) and Viscous Resistance \((r_1)\) are higher for pathological voices. The Dependence of glottal parameters on physical parameters is also studied and verified. It is also concluded that if \(k_1\), \(r_1\), or both change then \(F_0\), and NAQ, SQ, OQ and CIQ change. All these variations enable us to distinguish between normal and pathological voices. Compared to normal voices, the pathological voices have shown increased values of both physical & glottal parameters. Further acoustic & electrical models have been synthesized that also detect pathological voices. As future work, authors plan to develop database and try other classification methods to reach a definitive diagnosis for Vocal folds disorders.

ACKNOWLEDGMENT

The authors are thankful to the Special Manpower Development Program, Chip-to-System Design (SMDP-C2SD), initiated by the Ministry of Electronics & Information Technology (MeitY), Govt. of India, for providing lab facilities in the School of VLSI Design and Embedded Systems, NIT, Kurukshetra.
REFERENCES

Amami, R., & Smiti, A. (2017). An incremental method combining density clustering and support vector machines for voice pathology detection. *Computers & Electrical Engineering, 57*, 257–265. doi:10.1016/j.compeleceng.2016.08.021

Baken & Orlikoff. (2000). Clinical measurement of speech & voice (2nd ed.). Cengage Learning.

Barry, W. J., & Putzer, M. (2015). *Saarbrucken Voice Database*. Institute of Phonetics, University of Saarland. http://www.stimmdatenbank.coli.uni-saarland.de/

Cataldo, Leta, Lucero, & Nicalato. (2006). Synthesis of voiced sounds using low-dimensional models of the vocal cords and tim-varying subglottal pressure. *Mechanical Research Communications, 33*, 250-260. doi:10.1016/j.mechrescom.2005.05.007

Flanagan, J., & Landgraf, L. (1968). Self Oscillating source for vocal-tract synthesizers. *IEEE Transactions on Audio and Electroacoustics, 16*(1), 57–64. doi:10.1109/TAU.1968.1161949

Forero, Kohler, Vellasco, & Cataldo. (2014). Classification of Vocal Aging Using parameters extracted from glottal signal. *Journal of Voice, 28*, 532-537. doi: 10.1016/j.jvoice.2014.02.001

Hirano. (1974). Morphological structure of the vocal cord as a vibrator and its variations. *Folia Phoniatr., 26*(2), 89–94. doi: 10.1159/000263771

Ishizaka, K., & Flanagan, J. L. (1972). Synthesis of voiced sounds from a two-mass model of the vocal cords. *The Bell System Technical Journal, 51*(6), 1233–1268. doi:10.1002/j.1538-7305.1972.tb02651.x

Ishiki, N. (1977). Functional Surgery of the Larynx. Kyoto University.

Kaneko, T., Asano, H., Naito, J., Kobayashi, N., Hayashi, K., & Kitamura, T. (1972). Biomechanics of the vocal cords-on damping ratio. *J. Jpn. Bronchoesophagol. Soc.*, 25(3), 133–138. doi:10.2468/jbes.25.133

Mittal, V., & Sharma, R. K. (2020). Voice Signal Analysis with the Application in Biomedicine. *Sensor Letters, 18*(2), 122–127. doi:10.1166/sl.2020.4187

Mokhkari, Story, Alku, & Ando. (2018). Estimation of the glottal flow from speech pressure signals: Evaluation of three variants of iterative adaptive inverse filtering using computational physical modeling of voice production. *Speech Communication, 104*, 24-38. doi: 10.1016/j.specom.2018.09.005

Ramsay. (2019). Mechanical speech synthesis in early talking automata. *Acoustics Today, 15*, 11-19. doi: 10.1121/AT.2019.15.2.11

Riede. (2011). *Subglottal pressure and fundamental frequency control in contacts calls of juvenile alligator mississippiensis*. doi:10.1242/jeb.051110

Teffahi, H. (2009). A Two-Mass model of the vocal cords: determination of control parameters. *Proceeding International Conference on Multimedia Computing and Systems*. doi:10.1109/MMCS.2009.5256726

Teixeira, J. P., Alves, N., & Fernandes, P. O. (2020). Vocal Acoustic Analysis:ANN Versos SVM in Classification of Dysphonic Voices and Vocal Cords Paralysis. *International Journal of E-Health and Medical Communications, 11*(1), 37–51. doi:10.4018/IJEHMC.2020010103

Titze, I. R. (1989a). On the relation between subglottal pressure and fundamental frequency in phonation. *The Journal of the Acoustical Society of America, 85*(2), 901–906. doi:10.1121/1.397562 PMID:2926005

Titze, I. R. (1989b). Physiologic and acoustic differences between male and female voices. *The Journal of Acoustical Society of America, 85*, 1699-1707. doi: 10.1121/1.397959

Van den Berg, J. (1958). Myoelastic-aerodynamic theory of voice production. *Journal of Speech Hearing Research, 1*, 227-244. doi: 10.1044/jshr.0103.227

Yao, X., Jitsuhiro, T., Miyajima, C., Kitaoka, N., & Takeda, K. (2015). Modeling of Physical Characteristics of Speech under stress. *IEEE Signal Processing Letters, 22*(10), 1801–1805. doi:10.1109/LSP.2015.2434732
Yao, X., Xu, N., Liu, X., Jaing, A., & Zhang, X. (2018). Research on speech under stress based on glottal source using a physical model. *IEEE Access: Practical Innovations, Open Solutions, 6*, 44473–44482. doi:10.1109/ACCESS.2018.2860130