INTRODUCTION

Hypertension is the main factor for morbidity and mortality worldwide (Kearney et al., 2005; Staessen, Wang, Bianchi, & Birkenhager, 2003; Stokes, Kannel, Wolf, D'Agostino, & Cupples, 1989). However, the specific pathogenesis of hypertension is still unclear. (Mein, Caulfield, Dobson, & Munroe, 2004). Several studies have shown that the etiology and pathogenesis of hypertension are likely to comprise a multifactorial disorder resulting from environmental factors...
(overweight, alcohol, and smoke) and genetic factors or their interaction (Carretero & Oparil, 2000; Lu et al., 2015). Recently, hypertension has been found to be the main factor in the occurrence of myocardial infarction, stroke, cardiac and renal failure and later lesions of the retina of the eyes (Mosterd et al., 1999), and that has also been steadily increasing in China for the past several years.

Hypertension can reduce the function of which is easy to form atherosclerosis (Fujimaki et al., 2015), and atherosclerosis is the main pathological basis of coronary heart disease (Lefevre & Puymirat, 2017; Savoia et al., 2017). SMARCA4 (OMIM: 603254) and ZC3HC1 (OMIM: 603254) are high-risk genes for coronary heart disease. At present, there are many researches about the association between SMARCA4 and ZC3HC1 and coronary heart disease. For examples, GWAS study showed that SMARCA4 was related to coronary heart disease (Kathiresan, Voight, et al., 2009) and myocardial infarction (Martinelli et al., 2010). Previous studies were also identified rs11879293, rs12232780, rs2072382, and rs1529729 variants' effect on hypertension and dyslipidemia-related disease (Fujimaki et al., 2015; Liu et al., 2011). Guo et al. (2017) found the variant in the SMARCA4 was associated with coronary heart disease susceptibility in Han Chinese population. Linseman et al. (2017) identified that ZC3HC1 was associated with protection from coronary artery disease. However, few studies have examined the association between SMARCA4 and ZC3HC1 and coronary heart disease. For the current study, we evaluated the association between eight SNPs in SMARCA4 and ZC3HC1 and hypertension risk. For the current study, we evaluated the association between eight SNPs in SMARCA4 and ZC3HC1 and hypertension risk. For the current study, we evaluated the association between eight SNPs in SMARCA4 and ZC3HC1 and hypertension risk. For the current study, we evaluated the association between eight SNPs in SMARCA4 and ZC3HC1 and hypertension risk. For the current study, we evaluated the association between eight SNPs in SMARCA4 and ZC3HC1 and hypertension risk. For the current study, we evaluated the association between eight SNPs in SMARCA4 and ZC3HC1 and hypertension risk. For the current study, we evaluated the association between eight SNPs in SMARCA4 and ZC3HC1 and hypertension risk. For the current study, we evaluated the association between eight SNPs in SMARCA4 and ZC3HC1 and hypertension risk. For the current study, we evaluated the association between eight SNPs in SMARCA4 and ZC3HC1 and hypertension risk.

All subjects were from the Chinese Han population living in Shaanxi province. Hypertensive subjects were defined as having a systolic blood pressure (SBP) of at least 140 mmHg and a diastolic blood pressure (DBP) of at least 90 mmHg (de Menezes, Oliveira, & Ma, 2014). All the hypertensive patients were not only required to be free of other cardiovascular diseases, metabolic diseases, cancers or familial hereditary disease, but diagnosed with hypertension before the age of 70 years. Normotensive controls were recruited from the same hospital. These individuals were never treated with antihypertensive medications, and their SBP were less than 140 mmHg and DBP less than 90 mmHg. They had no family history of hypertension.

2.3 SNP selection and genotyping

Eight SNPs in ZC3HC1 and SMARCA4 had minor allele frequencies greater than 5% in the 1000 Genomes Project (http://www.internationalgenome.org/). A GoldMag-Mini Purification Kit (GoldMag Co. Ltd.) was performed to extract genomic DNA from whole blood. DNAs were stored at −80°C until analysis. DNA concentrations were measured using a NanoDrop 2000 (Thermo Scientific). The primers were designed online (https://agenax.com/online-tools/). Agena MassARRAY Assay Design 4.0 software was used to design multiplexed SNP MassEXTEND assay, and SNP genotyping was performed utilizing the Agena MassARRAY RS1000 as recommended by the manufacturer. Agena Typer 4.0 software was used to perform data management and analyses.

2.4 Statistical analysis

All statistical analyses were performed using Microsoft Excel and SPSS 19.0 (SPSS). All p values were two-sided (p < .05 was considered as achieving the threshold of statistical significance). Each SNP frequency in the control subjects was tested by deviation from Hardy–Weinberg equilibrium by the Fisher’s test. Allele frequencies and genotype frequencies for each SNP in cases and controls were compared by the chi-squared test/Fisher’s exact test to determine the associations between genotypes and hypertension risk. Odds ratio (OR) values and 95% confidence intervals (CIs) measured the risk allele effect size using unconditional logistic regression analysis (Bland & Altman, 2000). Four genetic models (codominant, dominant, recessive, and log-additive) were used to evaluate the potential association of ZC3HC1 and SMARCA4 polymorphisms with risk and clinical parameters of hypertension. Finally, the Haploview was used to construct haplotype and genetic association at significant polymorphism loci and to estimate the pairwise linkage disequilibrium (LD), haplotype software (version4.2) and SHEsis software platform (http://...
for significant deviation from Hardy–Weinberg equilibrium ($p < .05$), a chi-square analysis revealed that no significant differences in allele frequency distributions of SNPs between the hypertension patients group and the healthy control analyzed. In other words, there is no statistically significant association between allele and hypertension risk.

3.3 Associations between genotype frequencies and hypertension risk

As shown in Table 3, logistic regression analyses revealed that the genotype “T/C” of rs1464890 in ZC3HC1 was associated with a decreased risk of hypertension in the codominant model (OR = 0.48, 95% CI, 0.47–0.98, $p = .044$) and dominant model (OR = 0.65, 95% CI, 0.46–0.93, $p = .016$), respectively. Rs4507692 in ZC3HC1 was associated with a 0.69-fold and a 0.66-fold decreased risk of hypertension under the codominant model and dominant model, respectively. The genotype “G/A-A/A” of rs11879293 in SMARCA4 was significantly associated with decreasing the risk of hypertension under the dominant model (OR = 0.70; 95% CI = 0.49–0.99, $p = .044$). Rs1122608 in SMARCA4 was also significantly associated with a decreased risk of hypertension in the dominant model (OR = 0.61; 95% CI = 0.38–0.99, $p = .047$ for the “G/T-T/T” genotype) and log-additive model (OR = 0.61; 95% CI = 0.38–0.98, $p = .038$), respectively. Furthermore, the statistical power of our study was more than 80%.

3.4 Associations between haplotype analyses and hypertension risk

Linkage disequilibrium and haplotype analyses of the SNPs in the case and control samples were further studied. Haplotype analysis detected the block in ZC3HC1 (Figure 1). Rs2242487, rs1464890, and rs4507692 had very strong

TABLE 1 General characteristics of the study population

variable	Cases ($n = 350$)	Controls ($n = 483$)	p value
Gender			
Male	204	183	37.9
Female	146	300	
Age, yr (mean ± SD)	62.68 ± 10.7	50.37 ± 7.9	$<.01^b$

a p values were calculated by Student’s t tests.

b p values were calculated from two-sided chi-squared tests.

TABLE 2 Allele frequencies in cases and controls and odds ratio estimates for hypertension risk

SNP	Gene(s)	Locus	Alleles (A/B)	MAF	Case	Control	p values	OR (95%CI)	p^a value	p^b value
rs2242487	ZC3HC1	7q32.2	A/G	0.233	0.270	0.249	0.82 (0.66–1.03)	.088	.011	
rs1464890	ZC3HC1	7q32.2	T/C	0.277	0.314	0.247	0.94 (0.68–1.04)	.102	.013	
rs4507692	ZC3HC1	7q32.2	T/C	0.277	0.314	0.246	0.84 (0.68–1.04)	.108	.014	
rs11879293	SMARCA4	1p13.2	A/G	0.237	0.259	0.097	0.89 (0.71–1.12)	.313	.039	
rs12232780	SMARCA4	1p13.2	A/G	0.199	0.213	0.135	0.91 (0.72–1.16)	.466	.058	
rs2072382	SMARCA4	1p13.2	T/C	0.337	0.280	0.018	0.018b	1.31 (1.06–1.62)	.012	.002
rs1529729	SMARCA4	1p13.2	C/T	0.224	0.228	0.091	0.98 (0.78–1.24)	.871	.109	
rs1122608	SMARCA4	1p13.2	T/G	0.066	0.084	0.561	0.77 (0.53–1.12)	.169	.021	

Abbreviations: Alleles A/B, Minor/major alleles; CI, confidence interval; HWE, Hardy–Weinberg equilibrium; MAF, minor allele frequency; OR, odds ratio; SNP, single-nucleotide polymorphism.

aSite with HWE $p \leq .05$ excluded; b p values were calculated using two-sided chi-squared test. p values were adjusted by Bonferroni correction. $^p < .05$ indicates statistical significance; $^p < .05$ indicates statistical significance.
SNP	Model	Genotype	Genotype frequency	p²-value	OR (95% CI)	Study power
			Control (%)	Case (%)		
ZC3HC1						
rs2242487	Codominant	G/G	262 (54.4)	209 (59.7)	.158 1	
		A/G	180 (37.3)	119 (34.0)	0.71 (0.49–1.03)	
		A/A	40 (8.3)	22 (6.3)	0.69 (0.35–1.38)	
	Dominant	G/G	262 (54.4)	209 (59.7)	.054 1	
		A/G-A/A	220 (45.6)	141 (40.3)	0.71 (0.50–1.01)	
	Recessive	G/G-A/G	442 (91.7)	328 (93.7)	.479 1	
		A/A	40 (8.3)	22 (6.3)	0.78 (0.40–1.54)	
	Log-additive	—	—	—	.069 0.77 (0.59–1.02)	
rs1464890	Codominant	C/C	232 (48.1)	183 (52.3)	.044 1	.925
		T/C	197 (40.9)	140 (40.0)	0.68 (0.47–0.98)	.014 0.72 (0.55–0.94)
		T/T	53 (11.0)	27 (7.7)	0.55 (0.29–1.02)	
	Dominant	C/C	232 (48.1)	183 (52.3)	.016 1	.978
		T/C-T/T	250 (51.9)	167 (47.7)	0.65 (0.46–0.93)	
	Recessive	C/C-T/C	429 (89.0)	323 (92.3)	.149 1	
		T/T	53 (11.0)	27 (7.7)	0.65 (0.35–1.18)	
	Log-additive	—	—	—	.014 0.72 (0.55–0.94)	
rs4507692	Codominant	C/C	233 (48.2)	183 (52.3)	.049 1	.905
		C/T	197 (40.8)	140 (40.0)	0.69 (0.48–0.99)	.015 0.72 (0.55–0.94)
		T/T	53 (11.0)	27 (7.7)	0.55 (0.29–1.03)	
	Dominant	C/C	233 (48.2)	183 (52.3)	.019 1	.969
		C/T-T/T	250 (51.8)	167 (47.7)	0.66 (0.47–0.93)	
	Recessive	C/C-C/T	430 (89)	323 (92.3)	.158 1	
		T/T	53 (11.0)	27 (7.7)	0.65 (0.36–1.19)	
	Log-additive	—	—	—	.015 0.72 (0.55–0.94)	
SMARCA4						
rs11879293	Codominant	G/G	258 (53.4)	204 (58.3)	.110 1	
		G/A	200 (41.4)	126 (36.0)	0.68 (0.47–0.97)	
		A/A	25 (5.2)	20 (5.7)	0.87 (0.41–1.81)	
	Dominant	G/G	258 (53.4)	204 (58.3)	.044 1	.898
		G/A-A/A	225 (46.6)	146 (41.7)	0.70 (0.49–0.99)	
	Recessive	G/G-G/A	458 (94.8)	330 (94.3)	.960 1	
		A/A	25 (5.2)	20 (5.7)	1.02 (0.49–2.09)	
	Log-additive	—	—	—	.101 0.79 (0.59–1.05)	
rs12232780	Codominant	G/G	293 (60.7)	221 (63.1)	.210 1	
		G/A	174 (36.0)	119 (34.0)	0.72 (0.50–1.04)	
		A/A	16 (3.3)	10 (2.9)	0.72 (0.26–2.00)	
	Dominant	G/G	293 (60.7)	221 (63.1)	.073 1	
		G/A-A/A	190 (39.3)	129 (36.9)	0.72 (0.51–1.03)	
	Recessive	G/G-G/A	467 (96.7)	340 (97.1)	.678 1	
		A/A	16 (3.3)	10 (2.9)	0.81 (0.30–2.22)	
	Log-additive	—	—	—	.080 0.76 (0.55–1.04)	

(Continues)
linkage disequilibria; compared to the “GCC” wild-type, the haplotype “ATT” was associated with a decreased risk of hypertension (OR = 0.75; 95% CI = 0.56–0.99; \(p = .044 \)) after adjustments for age and gender (Table 4).

4 | DISCUSSION

Genetic studies have provided insight into numerous diseases, including hypertension. Eight SNPs in ZC3HC1 and SMARCA4 have been investigated in other diseases. In this study, we examined 833 subjects (350 patients with hypertension and 483 healthy controls) to determine whether they were associated with the risk of hypertension in the Han Chinese population. Our results suggest that rs1464890 and rs4507692 (ZC3HC1), rs11556924 (SMARCA4) and rs1122608 (SMARCA4) were conducive to play a protective role against the risk of hypertension. In addition, the “ATT” ZC3HC1 haplotype was associated with a 0.75-fold decreased risk of hypertension.

ZC3HC1 (zinc finger, C3HC-type containing 1) was also called NIPA (nuclear interaction partner of ALK), which could monitor the timing of mitotic entry and was thought to contribute to the development of carcinogenesis together with oncogenic proteins (Li & Morris, 2008). Studies have been shown that mediators of angiogenesis may play an important role in the regulation of endothelial integrity and inflammation and it was possible that changes in the stability and functional properties of ZC3HC1 protein may play a role in the endothelial dysfunction (Schunkert et al., 2011), especially in the coronary heart disease and hypertension. Recently, a genome-wide association study, reported by Linseman et al. (2017), found that ZC3HC1 polymorphism was associated with a protective role in coronary artery disease. Kunnas and Nikkari (2015) reported the association of ZC3HC1 rs11556924 genetic variant with hypertension in a Finnish population. However, in previous studies, many reports only focused on the association of genetic variant in ZC3HC1 (rs11556924) with diseases, the genetic polymorphism of other locus in ZC3HC1 were little reported. Therefore, in our research, we studied the relationship between

![FIGURE 1](Image) Linkage disequilibrium (LD) plots containing four SNPs from ZC3HC1
ZC3HC1 SNPs (rs2242487, rs1464890, and rs4507892) and hypertension in Chinese Han population, and we found that the polymorphism of ZC3HC1 (rs1464890) has a strong protective effects on the hypertension.

SMARCA4 (also known as BRG1) is located in chromosomal region of 19p13.2, and its protein is the important catalytic component of the SWI/SNF complexes (Moes-Sosnowska et al., 2015). It is composed of multiple domains, a conserved C-terminal bromodomain, the less characterized N-terminal region which has crucial effect on DNA binding, recruitment of SWI/SNF, and the recognition of modified histone proteins (Singh, D’Silva, & Holak, 2006). SMARCA4 is located closely to the low-density lipoprotein receptor gene and disrupting chromatin structure regulates the transcription of various genes using the chemical energy of adenosine triphosphate hydrolysis (Mulholland, Xu, Sugiyama, & Zhao, 2012). In our research, we found rs11879293 and rs1122608 in SMARCA4 seemed to have strong protective effects on the hypertension. However, the previous studies, Guo et al. (2017) found rs11879293 was associated with decreasing the risk of coronary heart disease, and another study found rs11879293 was associated with increasing the risk of hepatocellular carcinoma is more pronounced in males, younger individuals, and nondrinkers (Pan et al., 2007). Kathiresan, Willer, et al. (2009) found the loci rs1122608 was associated with elevating the risk of low-density lipoprotein cholesterol and coronary heart disease in Caucasian population. At present, there were no relevant reports on the relationship between rs11879293 and rs1122608 in SMARCA4 seemed to have strong protective effects on the hypertension. However, the previous studies, Guo et al. (2017) found rs11879293 was associated with decreasing the risk of coronary heart disease, and another study found rs11879293 was associated with increasing the risk of hepatocellular carcinoma is more pronounced in males, younger individuals, and nondrinkers (Pan et al., 2007). Kathiresan, Willer, et al. (2009) found the loci rs1122608 was associated with elevating the risk of low-density lipoprotein cholesterol and coronary heart disease in Caucasian population. At present, there were no relevant reports on the relationship between rs11879293 and rs1122608 with hypertension. Therefore, in future studies, we will consider that the SMARCA4 may function differently in varying disease mechanisms.

To sum up, in our study, we confirmed two genes (ZC3HC1 and SMARCA4) are associated with risk of hypertension in Han Chinese population for the first time, which may provide new data to facilitate earlier diagnosis and promote early prevention, and shed light on the new candidate genes and new ideas for the study of subsequent occurrence mechanism of hypertension. Some potential limitations of our current study should be considered when interpreting the results. Investigating these SNPs should use more clinical data with bigger samples. Our current research is fundamental; further functional studies and larger population-based prospective studies are required to understand the genetic factors underlying hypertension.

ACKNOWLEDGMENTS

We are grateful to the patients and control subjects for their participation in this study. We also thank the clinicians and hospital staff who obtained the blood samples and performed data collection for this study.

CONFLICT OF INTEREST

The authors have no conflict of interest to disclose.

ORCID

Tianbo Jin https://orcid.org/0000-0001-8378-6624

REFERENCES

Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005). Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263–265. https://doi.org/10.1093/bioinformatics/bth457

Bland, J. M., & Altman, D. G. (2000). Statistics notes. The odds ratio. BMJ, 320(7247), 1468.

Carretero, O. A., & Oparil, S. (2000). Essential hypertension. Part I: Definition and etiology. Circulation, 101(3), 329–335.

de Menezes, T. N., Oliveira, E. C., & Ma, D. S. F. (2014). Validity and concordance between self-reported and clinical diagnosis of hypertension among elderly residents in northeastern Brazil. American Journal of Hypertension, 27(2), 215–221. https://doi.org/10.1093/ajh/hpt181

Fujimaki, T., Oguri, M., Horibe, H., Kato, K., Matsuoka, R., Abe, S., … Yamada, Y. (2015). Association of a transcription factor 21 gene polymorphism with hypertension. Biomedical Reports, 3(1), 118–122. https://doi.org/10.3892/br.2014.371

Guo, X., Wang, X., Wang, Y., Zhang, C., Quan, X., Zhang, Y., … Wang, C. (2017). Variants in the SMARCA4 gene was associated with coronary heart disease susceptibility in Chinese han population. Oncotarget, 8(5), 7350–7356. https://doi.org/10.18632/oncotarget.14387

TABLE 4 Haplotype analysis results in this study

Haplotypes	Without adjusted	With adjusted							
	OR (95% CI)	p-value	OR (95% CI)	p* -value					
rs2242487	rs1464890	rs4507692	Freq	p	Adjusted by gender and age.				
G	C	C	0.701	—	—				
A	T	T	0.253	0.83 (0.66–1.03)	.095	1	—		
G	T	T	0.045	0.94 (0.58–1.53)	.810	0.75 (0.56–0.99)	.044	0.55 (0.29–1.02)	.056

Note: The bold values and p < .05 indicate statistical significance.

Abbreviations: CI, confidence interval; OR, odds ratio; SNP, single nucleotide polymorphism.
Kathiresan, S., Voight, B. F., Purcell, S., Musunuru, K., Ardissino, D., Mannucci, P. M., … Altshuler, D. (2009). Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. *Nature Genetics*, 41(3), 334–341. https://doi.org/10.1038/ng.327

Kathiresan, S., Willer, C. J., Peloso, G. M., Demissie, S., Musunuru, K., Schadt, E. E., … Cupples, L. A. (2009). Common variants at 30 loci contribute to polygenic dyslipidemia. *Nature Genetics*, 41(1), 56–65. https://doi.org/10.1038/ng.291

Kearney, P. M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P. K., & He, J. (2005). Global burden of hypertension: Analysis of worldwide data. *Lancet*, 365(9455), 217–223. https://doi.org/10.1016/S0140-6736(05)17741-1

Kunns, T., & Nikkari, S. T. (2015). Association of zinc finger, C3HC-type containing 1 (ZC3HC1) rs11556924 genetic variant with hypertension in a Finnish population, the TAMRISK study. *Medicine (Baltimore)*, 94(32), e1221. https://doi.org/10.1097/md.00000000000001221

Lefvere, G., & Puymirat, E. (2017). Hypertension and coronary artery disease: New concept? *Annales De Cardiologie Et D’angiologie (Paris)*, 66(1), 42–47. https://doi.org/10.1016/j.ancard.2016.10.011

Li, R., & Morris, S. W. (2008). Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy. *Medicinal Research Reviews*, 28(3), 372–412. https://doi.org/10.1002/med.20109

Linseman, T., Soubeyrand, S., Martinuk, A., Nikpay, M., Lau, P., & McPherson, R. (2017). Functional validation of a common non-synonymous coding variant in ZC3HC1 associated with protection from coronary artery disease. *Circulation: Cardiovascular Genetics*, 10(1). https://doi.org/10.1161/circgenetics.116.001498

Liu, Y., Zhou, D., Zhang, Z., Song, Y., Zhang, D. I., Zhao, T., … He, L. (2011). Effects of genetic variants on lipid parameters and dyslipidemia in a Chinese population. *Journal of Lipid Research*, 52(2), 354–360. https://doi.org/10.1194/jlr.P007476

Lu, X., Wang, L., Lin, X. U., Huang, J., Charles Gu, C., He, M., … Gu, D. (2015). Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension. *Human Molecular Genetics*, 24(3), 865–874. https://doi.org/10.1093/hmg/ddu478

Martineilli, N., Girelli, D., Lufighi, B., Pinotti, M., Marchetti, G., Malerba, G., … Bernardi, F. (2010). Polymorphisms at LDLR locus may be associated with coronary artery disease through modulation of coagulation factor VIII activity and independently from lipid profile. *Blood*, 116(25), 5688–5697. https://doi.org/10.1182/blood-2010-03-277079

Mein, C. A., Caulfield, M. J., Dobson, R. J., & Munroe, P. B. (2004). Genetics of essential hypertension. *Human Molecular Genetics*, 13(99001), 169R–175. https://doi.org/10.1093/hmg/ddh078

Moes-Sosnowska, J., Szafron, L., Nowakowska, D., Dansonka-Miszewska, A., Budzilowska, A., Konopka, B., … Kupryjanczyk, J. (2015). Germline SMARCA4 mutations in patients with ovarian small cell carcinoma of hypercalcemic type. *Orphanet Journal of Rare Diseases*, 10, 32. https://doi.org/10.1186/s13023-015-0247-4

Mosterd, A., D’Agostino, R. B., Silbershatz, H., Sytkowski, P. A., Kannel, W. B., Grobbee, D. E., & Levy, D. (1999). Trends in the prevalence of hypertension, antihypertensive therapy, and left ventricular hypertrophy from 1950 to 1989. *New England Journal of Medicine*, 340(16), 1221–1227. https://doi.org/10.1056/nejm199904223401601

Mulholland, N., Xu, Y., Sugiyama, H., & Zhao, K. (2012). SWI/SNF-mediated chromatin remodeling induces Z-DNA formation on a nucleosome. *Cell & Bioscience*, 2, 3. https://doi.org/10.1186/2045-3701-2-3

Pan, H., Niu, D. D., Feng, H., Ng, L. F., Ren, E. C., & Chen, W. N. (2007). Cellular transcription modulator SMARCE1 binds to HBV core promoter containing naturally occurring deletions and represses viral replication. *Biochimica Et Biophysica Acta (BBA)—Molecular Basis of Disease*, 1772(9), 1075–1084. https://doi.org/10.1016/j.bbadis.2007.06.005

Savioa, C., Battistoni, A., Calvez, V., Cesarito, V., Montefusco, G., & Filippini, A. (2017). Microvascular alterations in hypertension and vascular aging. *Current Hypertension Reviews*, 13(1), 16–23. https://doi.org/10.2174/1573402113666170505115010

Schunkert, H., König, I. R., Kathiresan, S., Reilly, M. P., Assimes, T. L., Holm, H., … Erdmann, J. (2011). Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. *Nature Genetics*, 43(4), 333–338. https://doi.org/10.1038/ng.784

Shi, Y. Y., & He, L. (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. *Cell Research*, 15(2), 97–98. https://doi.org/10.1038/sj.cr.7290272

Singh, M., D’Silva, L., & Holak, T. A. (2006). DNA-binding properties of the recombinant high-mobility-group-like AT-hook-containing region from human BRG1 protein. *Biological Chemistry*, 387(10–11), 1469–1478. https://doi.org/10.1515/bc.2006.184

Staessen, J. A., Wang, L., Bianchi, G., & Birkenhager, W. H. (2003). Essential hypertension. *Lancet*, 361(9369), 1629–1641. https://doi.org/10.1016/s0140-6736(03)13302-8

Stokes, J., 3rd, Kannel, W. B., Wolf, P. A., D’Agostino, R. B., & Cupples, L. A. (1989). Blood pressure as a risk factor for cardiovascular disease. The Framingham Study—30 years of follow-up. *Hypertension*, 13(5 Suppl), I13–I18. https://doi.org/10.1161/01. hyp.13.5_suppl.i13

How to cite this article: Ma H, He Y, Bai M, et al. The genetic polymorphisms of ZC3HC1 and SMARCA4 are associated with hypertension risk. *Mol Genet Genomic Med*. 2019;7:e942. https://doi.org/10.1002/mgg3.942