INTRODUCTION

The Gulf of Gabes, located in the south eastern part of Tunisia, is considered as one of the most productive areas in the Mediterranean (Boudouresque & Meinesz, 1982). It is also the most important area for fishing in Tunisia (Jabeur et al., 2000). The coexistence of various industrial and urban activities in this region disrupts the stability of the ecosystem. Trawling is the most anthropogenic activity that disrupts the growth of seagrass and its associated fauna in the Gulf of Gabes (Ben Mustapha, 1995). After habitat destruction, introduced species are the second greatest threat to the local fauna.

Because of their great diversity in terms of number of species, but also because of their number of life history strategies, there is an increasing interest in using parasites as biological or ecological indicators of their fish host life conditions. Indeed, parasite communities appear to be important drivers of biodiversity, shape host population dynamics, alter interspecific competition and influence energy flow (Marcogliese, 2005). Moreover, all these factors can be influenced by environment disturbance (Sasal et al., 2007). Thus, the study of parasite communities of fishes can be used to identify contaminated habitats (Khan & Thulin, 1991; Schludermann et al., 2005) and verify the equilibrium of ecosystems (Bartoli et al., 2005).

Several studies of helminths have been made in the Gulf of Gabes such as Monogenea and Cestoda (Neifar et al., 2004; Derbel et al., 2007). Some studies on fish digeneans have been conducted in the North of Tunisia (Gargouri Ben Abdallah & Maamouri, 2008; Gargouri Ben Abdallah et al., 2010). This is the first attempt to survey the Digenea fauna off the southern coast (Gulf of Gabes). Our study aimed to list the Digenea species found in marine fish species in the Gulf of Gabes. The results presented in our paper also showed a possible use of parasites to reflect threats to the ecosystem in this region.

MATERIALS AND METHODS

Fish were caught off the coast of the Gulf of Gabes at Skhira (34° 05’ N; 10° 01’ E), Kerkenah (34° 45’ N; 11° 17’ E), and Sidi Mansour...
(34° 46' N; 10° 48' E) by local fishermen. The specimens, coming from the coastal fishing, were identified using Fisher et al. (1987) and Whitehead et al. (1984). These fish were dissected as soon as they had died and examined for digeneans. Living parasites were partially compressed beneath slide and coverslip and examined using an optical microscope. Some parasites were slightly compressed between a slide and coverslip and fixed with 70 % alcohol. Some living specimens were washed in cold saline then fixed in hot saline and preserved in 5 % formalin. All fixed specimens were stained with Semichon's acetic carmine. After dehydration using graded ethanol series, the parasites were cleared in clove oil and mounted in Canada balsam for identification.

We use the diversity index $M = N/N'$ (N: number of parasite species/N': number of fish species examined).

RESULTS AND DISCUSSION

During this study, 779 of teleost fishes from the Gulf of Gabes were examined for digenetic trematodes, comprising 32 species from 28 genera and 14 families. 53 species of trematodes were collected (Table I). These parasites belong to 42 genera and 15 families. 24 species, reported from Mediterranean Sea, are recorded for the first time off the coast of Tunisia (Table I). Among these species Lecithochirium sp. is reported from a new host Sardinella aurita, but it is a preadult that occurs in the swim bladder with prevalence of 13.89 % S. aurita may be an accidental host (Fig. 1). One metacercariae, Stephanostomum sp. encysted on the skin of Mullus surmuletus.

The Hemiuridae Lühe, 1901 represents the dominant family (12 species) followed by the Opecoelidae with 11 species in the Gulf of Gabes (Table I). This result is similar to that in the North Adriatic Sea where the Hemiuridae is the predominant family (Paradižnik & Radujković, 2007). However, Opecoelidae Ozaki, 1925 is the most important family in the Scandola Nature Reserve off Corsica and off the Lebanese coast (Bartoli et al., 2005; Saad-Fares, 1985). Members of Hemiuridae generally occur in the stomach, an acid environment to which they are well adapted (Bray, 1990; Pankov et al., 2006). The predominance of this family in the Gulf of Gabes may be a result of the resistance of this group to the environmental disturbance. Pérez-del Olmo et al. (2007) showed an increase in the diversity and abundance of the hemiuroids in the post-oil spill samples off the coast of Spain. These authors related the predominance of the hemiuroids to the enhancement of the populations of the benthic species such as the harpacticoid copepods, due to organic enrichment. Indeed, Acartia spp. are opportunistic harpacticoids which are known to serve as second intermediate hosts of a number of hemiuroids (Gibson & Bray, 1986). The analysis of the diversity of Digenea in the Gulf of Gabes shows that the most species of digeneans parasitize one host species (46 Digenea species), four were found in two host species and two were found in three host species. Some Digenea are known to be generalized in the Mediterranean Sea, such as Diphterostomum brusinae (Stossich, 1889), Hemiurus communis Odhner, 1905, and Lepocreadium pegorchis (Stossich, 1901). In the Gulf of Gabes, we found them in only one host fish although we examined several potential hosts. The failure transmission of digeneans to potential host may be related to environmental changes.

Fig. 1. – Lecithochirium sp. from Sardinella aurita. General morphology, ventral view. Scale bar = 150 μm.
Digenea species	Digenea family	Fish species	Fish family	Dates of collect (month/year)	P (%)	Abundance	Mean intensity
Bucephalus anguilae Špakuloa, Macko, Berrilli & Dezfili, 2002	Bucephalidae	Anguilla anguilla (n = 8)	Anguillidae	12/2005	37.50	2.80	7.60
Deropristis inflata (Molin, 1859)	Deropristidae	Anguilla anguilla	Anguillidae	12/2005	100.00	8.50	8.50
Terrestes acanthocephala (Stossich, 1887) *	Felodistomidae	Caranx cryosophila (n = 16)	Carangidae	11/2005-2/2007	32.00	4.40	1.40
Rhizocotyla galaeta (Rudolfi, 1819) *	Bucephalidae	Lichia amia (n = 7)	Carangidae	8/2005-9/2006	100.00	33.50	33.50
Ectenurus lepidus Looss, 1907 *	Hemiuridae	Trachurus trachurus (n = 18)	Carangidae	5-10/2005-6/2005	33.00	0.33	1.00
Monascus filiformis (Rudolfi, 1819) *	Felodistomidae	Trachurus trachurus	Carangidae	6-10/2005	33.00	0.77	2.30
Bucephalus margaritae (Ozaki & Ishibashi, 1934) *	Bucephalidae	Trachinotus ovatus (n = 5)	Carangidae	4/2005	40.00	0.50	1.50
Lectobothrium jaffense Fisch, 1982 *	Hemiuridae	Trachinotus ovatus	Carangidae	4/2005	80.00	1.60	2.00
Parahemiurus merus (Linton, 1910) *	Hemiuridae	Sardinella aurita (n = 72)	Clepeidae	1-6/2005-7/2005	40.28	2.05	5.10
Aphanurus stossichii Monticelli, 1891	Hemiuridae	Sardinella aurita	Clepeidae	1-6/2005-7/2005	40.28	0.28	7.00
		Sardinina pikiardus (n = 30)	Clepeidae	5-10/2005	76.67	1.43	1.87
Lectobothrium sp.	Hemiuridae	Sardinella aurita	Clepeidae	6/2005	33.33	1.38	4.10
Prosohynchus aequalea Odhner, 1905	Bucephalidae	Conger conger (n = 3)	Congridae	1-6/2005	66.66	8.00	12.00
Lectobothrium rufiviride (Rudolfi, 1819) *	Hemiuridae	Conger conger	Congridae	6/2005	66.66	5.00	7.50
Helicometra fasciata (Rudolfi, 1819)	Opecoelidae	Symbiosus tinca (n = 49)	Labridae	2-3/2005	49.00	4.81	9.83
		Labris viridis (n = 41)	Labridae	2-3/2005	34.10	1.65	4.85
		Sciacna umbra (n = 14)	Sciaenidae	2-3/2005	21.40	0.35	1.66
Schikka balaudretroma sparisonae (Manter, 1937)	Haploplanchnida	Chelon labrosus (n = 12)	Mugilidae	10/2005	28.00	2.42	8.50
		Liza aurata (n = 12)	Mugilidae	12/2005-8/2007	41.66	3.08	7.40
		Liza saliens (n = 11)	Mugilidae	9/2006-11/2007	45.45	1.81	4.00
		Sparisona cretense (n = 30)	Sparidae	9-10/2005	53.00	6.26	11.75
Digroaster contracta Looss, 1902	Haploporidae	Liza aurata	Mugilidae	8/2007	41.66	3.08	7.40
		Liza saliens	Mugilidae	11/2007	9.00	0.27	3.00
Robina aurata Pankov, Webster, Blasco-Costa, Gilsbin, Littlewood & Kostadinova, 2006 *	Hemiuridae	Liza aurata	Mugilidae	8/2007	16.66	0.33	2.00
Saccoceolium obesum Looss, 1902	Haploporidae	Liza saliens	Mugilidae	9/2006	18.00	0.27	1.50
Haploplanchnus caudatus (Srivastava, 1939)	Haploplanchnida	Mugil cephalus (n = 11)	Mugilidae	9/2006-11/2007	18.18	0.18	1.00
Haploplanchnus pachysonus (Eysenhardt, 1829)	Haploplanchnida	Mugil cephalus	Mugilidae	9/2006-11/2007	63.63	1.09	1.71
Saturnius papermai Overstreit, 1977 *	Hemiuridae	Mugil cephalus	Mugilidae	11/2007	18.18	0.36	2.00
Opecoeloides farcatus (Lühe, 1900) *	Opecoelidae	Mullus surmuletus (n = 72)	Mullidae	2-3-4/2006	52.77	3.43	6.47
		Mullus barbatius (n = 24)	Mullidae	9/2005	45.83	4.00	8.72
Poracanthium farcatum Dollfus, 1948 *	Opecoelidae	Mullus surmuletus	Mullidae	2-3-4/2006	13.88	0.40	3.57

* First records in Tunisia.

Table I. – List of Digenean species collected from teleost fishes of Gulf of Gabes and their epidemiologic values.
Digenea species	Digenea family	Fish species (number of specimens)	Fish family	Dates of collects (month/year)	P (%)	Abundance	Mean intensity
Proctotrema bacillioveum (Odhner, 1911) *	Opecoelidae	*Mullus surmuletus*	Mullidae	2-3-4/2006	20.83	1.46	7.00
Stephanostomum sp.	Acanthocotylidae	*Mullus surmuletus*	Mullidae	9/2005	25.00	1.79	7.16
Prosohyochoeboides arcuatus (Linton, 1900) *	Bucephalidae	*Pomatomus saltatrix* (n = 14)	Pomatomidae	7/2005	85.00	4.57	5.30
Paracryptogenius alysi (Stossich, 1885)	Cryptogenimidae	*Staenia umbra*	Staenidae	10/2005-7/2007	21.40	0.71	3.33
Pleurorchis polyorchis (Stossich, 1889) *	Acanthocotylidae	*Staenia umbra*	Staenidae	10/2005	7.00	0.07	1
Lecithobothrium texanum (Chandler, 1941) *	Hemiuridae	*Euthynnus alleteratus* (n = 14)	Scombridae	11/2005-5/2007	92.85	18.14	19.53
Lectobothrium excisum (Rudolphi, 1819)	Hemiuridae	*Scomber japonicus*	Scombridae	7-8/2005	33.30	0.70	2.11
Prostomium orientalis (Layman, 1930) *	Lepocreadiidae	*Scomber japonicus*	Scombridae	5-7-8/2005	29.60	0.62	2.12
Podocotyle temensis Fischthal & Thomas, 1970 *	Opecoelidae	*Scomber japonicus*	Scombridae	7-8/2005	7.40	0.09	1.25
Lecithobothrium musculus (Loos, 1907) *	Hemiuridae	*Serranus scriba* (n = 21)	Serranidae	4/2005-7/2007	38.09	0.47	2.50
Bacigli erismensis Fischthal, 1980	Faustulidae	*Boops boops*	Sparidae	9/2005	27.77	2.00	7.20
Robnikolofiusium maritinezomezi López-Román, Gijón-Botel, Kim & Vilca-Choque, 1992 *	Gyliauchenidae	*Boops boops*	Sparidae	9/2005	5.55	0.16	3.00
Macvicaria crassigula (Linton, 1910)	Opecoelidae	*Diplodus annularis* (n = 43)	Sparidae	1-4-7-11/2005	11.60	0.13	1.20
Penacrinus barbatus (Stossich, 1886)	Opecoelidae	*Diplodus vulgaris* (n = 33)	Sparidae	11-12/2005-4/2006	15.15	0.24	1.60
Diplorhynchus brasianus (Stossich, 1889)	Zoogonididae	*Diplodus puntazzo* (n = 19)	Sparidae	12/2005	47.36	1.10	2.33
Pseudotrypanorhynchus bisielatis Saad-Fares & Maillard, 1986	Opecoelidae	*Diplodus vulgaris*	Sparidae	2/2005-4/2006	6.06	0.33	5.50
Aphallus tubarium Rudolphi, 1819	Cryptogenimidae	*Dentex dentex* (n = 11)	Sparidae	12/2005-2/2006	36.36	1.45	4.00
Hemimerus communis Odhner, 1905	Hemiuridae	*Dentex dentex*	Sparidae	2/2006	18.18	0.81	4.50
Holochris pygmeus Stossich, 1901	Lepocreadiidae	*Lithognathus mormyrus* (n = 30)	Sparidae	2-5/2005	20.00	0.56	2.83
Macvicaria mormyr (Stossich, 1885)	Opecoelidae	*Lithognathus mormyrus*	Sparidae	2-5/2005	10.00	0.20	2.00
Centrodon spinosissima (Stossich, 1883)	Mesometridae	*Sarpa salpa* (n = 20)	Sparidae	1/2006-10-2007	10.00	0.95	9.50
Lepocreadia anguilla (Stossich, 1901)	Lepocreadiidae	*Sarpa salpa*	Sparidae	1/2006-10-2007	30.00	3.05	10.16
Mesometra brazycyloca Lühe 1901	Mesometridae	*Sarpa salpa*	Sparidae	1/2006-10-2007	35.00	0.50	1.40
Mesometra orbicularis (Rudolphi, 1819)	Mesometridae	*Sarpa salpa*	Sparidae	1/2006-10-2007	60.00	4.20	7.00
Robnikolofiusium squamulatus Rudolphi, 1819	Gyliauchenidae	*Sarpa salpa*	Sparidae	1/2006-10-2007	50.00	6.55	13.10
Wardula capillata (Rudolphi, 1819)	Mesometridae	*Sarpa salpa*	Sparidae	1/2006-10-2007	10.00	0.10	1.00
Allopecoelus pedicellatus (Stossich, 1887)	Opecoelidae	*Sparus aurata* (n = 22)	Sparidae	11/2005	9.09	0.13	1.50
Macvicaria obovata (Molin, 1859)	Opecoelidae	*Sparus aurata*	Sparidae	11/2005	36.36	0.90	2.50
Allopecoelus turnisertis Derbel & Neifar, 2009 *	Opecoelidae	*Solea aegyptiaca* (n = 60)	Soleidae	5/9/2005-3/2007	13.30	3.50	0.46

* First records in Tunisia.

Table I (continued). – List of Digenean species collected from teleost fishes of Gulf of Gabes and their epidemiologic values.
In this case, the helminth infects its preferential host species (Mackenzie, 1999).

The community of Digenea species shows that 16 species of fishes are parasitized by different families of Digenea species. Little interspecific competition and enough available space and resources may exist in the hosts. In this study, there are more species of Digenea than species of fish. The number of helminth species per host species was variable. Only Symphodus ocellatus (n = 40), Symphodus cinereus (n = 36) and Pagrus caeruleostictus (n = 34) were entirely devoid of Digenea. By contrast, in the literature, digenean parasites are known to be present in these hosts in the Mediterranean Sea. For example, in the nature reserve off Corsica, five species were collected from S. ocellatus and two species from S. cinereus (Bartoli et al., 2005). Allopodocotyle pedicellata (Stossich, 1887) is collected from P. caeruleostictus off the Lebanese coast (Saad-Fares, 1985). Among the possible reasons explaining the complete absence of certain Digenea in the Gulf of Gabes is the absence or low prevalence of the intermediate host. In addition, the environmental change can affect parasite transmission. For example, Bartoli & Boudouresque (1997) show the low prevalence of digenean species from S. ocellatus in the sites colonized by the introduced alga Caulerpa taxifolia. Many introduced algal species are widespread in the Gulf of Gabes such as C. taxifolia, Caulerpa racemosa and Halophila stipulacea. As the result of this invasion, the infralittoral communities have changed. Several authors have described the highly floristic changes, which have occurred in invaded areas with C. taxifolia (Verlaque & Fritayre, 1994; Villele & Verlaque, 1995). The structure of the population of most species of fish has changed, and the number of individuals and the biomass have declined significantly. As far as invertebrates are concerned, the changes are less conspicuous. It is mainly the numbers of the polychaeta and mollusc individuals which have declined. Additional sampling is necessary to support these hypotheses.

The analysis of parasite species richness of different hosts showed that Sarpa salpa has the richest fauna (six species). The helminth fauna of this teleost is distinct consisting mainly of members of two families (Mesometridae and Gyliacuchenidae). These species have many adaptive characteristics favouring the settlement on the peculiar gut wall of this herbivorous fish and to survive in a medium rich in plant detritus. Bartoli (1987) suggested that the digeneans of S. salpa are not true parasites but endocommensal symbionts. So, these species are not immunogenic, or at least only slightly so, since they do not feed upon the host itself but upon its intestinal chime. In most cases this results in a high parasite density with the co-occurrence of the various species.

Several authors use the diversity index M, which reflects the digenean species diversity in a specific geographical area (Bartoli et al., 2005; Oguz & Bray 2006; Keser et al., 2007). In the Gulf of Gabes this index is M = 1.7. After Bartoli et al. (2005) the highest ratio (3.8) is observed in the Scandola Nature reserve. By contrast the lowest ratio is reported for the Adriatic and North-western Italian coast (M ≤ 2), while an intermediate situation is observed for the Eastern Mediterranean (M > 2). The diversity of Digenea in the Gulf of Gabes is the lowest and closer to that found in the Adriatic (Fig. 2).

The comparison of the data reported for the Sparidae in the Gulf of Gabes with the north east of Tunisia (M = 2.9) (Gargouri Ben Abdallah & Maamouri, 2008) shows lower diversity in the Gulf of Gabes (M = 2.3). This result can be explained by the changes in the structure and the function of marine ecosystem in the south of Tunisia by human activities and the impact of exotic species. In contrast, the north coast shows...
lower impact of the trawling because the bottom is mainly rocky not favouring this type of fisheries (Ben Mustapha et al., 2002).

Previous studies have identified many factors influencing parasite species richness such as host traits, latitude, geographical range, phylogeny and the number of host individuals examined per species. The low diversity of Digenea in the Gulf of Gabs shows an unstable ecosystem with a decrease of the biomass and densities of hosts. In contrast, the higher digenean diversity in the Scandola Nature reserve is related to the stability of the equilibrium of the ecosystem (Bartoli et al., 2005). Thus the diversity of Digenea reflects the stability of the site. Parasite communities may be good indicators of environmental disturbance because they reflect complex interactions between a possible stressor and either free-living larval stages or populations of their intermediate and final hosts (Overstreet, 1988; Schludermann et al., 2003). On the other hand, a diverse and abundant community of parasites may be reflective of a diverse and abundant community of hosts. Hudson et al. (2006) suggested that a healthy ecosystem should be one with many parasites because they reflect the presence of many different types of organisms based on the variety of complex life cycles (Marcogliese & Cone, 1997). The disturbance in the Gulf of Gabs is essentially a result of the impact of overfishing and the use of destructive fisheries such as illegal trawling causing the degradation of Posidonia oceanica (Hattour, 1991; Ben Mustapha, 1995; Ramos-Esplá et al., 2000). A decline in the cover of P. oceanica has been recorded in many parts of the Mediterranean Sea, and has been attributed to several natural and anthropogenic impacts. Illegal trawling has been identified as one of the most important direct causes of large scale degradation of P. oceanica meadows (Martin et al., 1997; Pasqualini et al., 2000; González-Corraa et al., 2005; Kiparissis et al., 2011). The impact of trawling on P. oceanica produces a reduction of canopy cover and an increase of detritus by erosion, which has an important influence on the invertebrate community (Sánchez-Jerez & Ramos-Esplá, 1996). Sea grass beds are spatially complex and biologically productive ecosystems that provide habitats and food resources for a diversified fish fauna and act as an important nursery area for many species. The damage of this ecosystem causes a qualitative and quantitative change in the structure of intermediate hosts, and therefore a modification in the frequency of Digenea fauna.

ACKNOWLEDGEMENTS

We are grateful to Dr R.A. Bray for useful comments and linguistic revision.

REFERENCES

Bartoli P. & Boudouresque C.F. Transmission failure of digenean parasites (Digenea) in sites colonized by the recently introduced invasive alga Caulerpa taxifolia. Mar Ecol Progr Series, 1997, 154, 253-260.

Bartoli P., Gibson D.I. & Bray R.A. Digenean species diversity in teleost fish from a nature reserve of Corsica, France (Western Mediterranean), and a comparison with other Mediterranean regions. Journal of Natural History, 2005, 39, 47-70.

Ben Mustapha K. The Gulf of Gabès: a case study in the Mediterranean decline in fishing out the Mediterranean. 21st session of the G.F.C.M. Spain, Greenpeace International, Netherlands, 1995, 8-9.

Ben Mustapha K., Komatsu T., Hattour A., Sammari Ch., Zarrour S., Souissi A. & El Abed A. Tunisian mega benthos from infra (Posidonia medows) and circalittoral (Coralligenous) sites. Bull Inst Natn Scien Tech Mer de Salambô, 2002, 29, 23-36.

Boudouresque C.F. & Meinesz A. Découverte de l’herbier de Posidonie. Cab parc nation port-Cros Fr, 1982, 4, 1-79.

Bray R.A. Hemiuiridae (Digenea) from marine fishes of the southern Indian Ocean: Dinurinae, Elytrophallinae, Glomericirrinae and Plururinae. Systematic Parasitology, 1990, 17, 183-217.

Derbel H., Boudaya L. & Neifar L. Pseudodiplectanum syriicum n. sp. (Monogenea: Diplectanidae), a parasite of Synapturichthys kleinii (Teleostei: Soleidae) from off Tunisia. Systematic Parasitology, 2007, 68, 225-231.

Fischer W., Bauchot M.L. & Schneider M. Fiches FAO d’identification des espèces pour les besoins de la pêche. Méditerranée et Mer Noire. Zone de pêche 37. Vertébrés. FAO, Rome, 1987, Vol. 2, 761-1530.

Fichtthal J.H. Some digenetic trematodes of marine fishes especially those from Red Sea immigrant fishes, from Israel’s Mediterranean coast and their zoogeography, especially those from Red Sea immigrant fishes. Zool Scr, 1980, 9, 11-23.

Gargouri Ben Abdallah L., Maamouri F. Digenean fauna diversity in sparid fish from Tunisian coasts. Bull Eur Ass Fish Pathol, 2008, 28 (4), 129-136.

Gargouri Ben Abdallah L., Elbohli S. & Maamouri F. Dige nean diversity in labeid fish from the Bay of Bizerte in Tunisia. Journal of Helminthology, 2010, 84, 27-33.

Gibson D.I. & Bray R.A. The Hemiuiridae (Digenea) of fishes from the northeast Atlantic. Bulletin of the British Museum (Natural History) (Zoology), 1986, 51 (1), 1-125.

González-Corraa J.M., Bayle J.T., Sanchez-Lizaso J.L., Vallee C., Sánchez-Jerez P. & Ruiz J. Recovery of deep Posidonia oceanica meadows degraded by trawling. J Exp Mar Biol Ecol, 2005, 320, 65-76.

Hattour A. Le chalutage dans les eaux tunisiennes. Réalités et considérations législatives, particulièrement dans les Golfs de Tunis et de Gabès. Notes Inst Natn Scien Tech Mer de Salambô NS, 1991, 1, 1-26.

Hudson P.J., Dobson A.P. & Lafferty K.D. Is a healthy ecosystem one that is rich in parasites? Trends in Ecology and Evolution, 2006, 21 (7), 381-385.
JABEUR CH., GOBERT B. & MISSAOUI H. Typologie de la flottille de pêche côtière dans le Golfe de Gabès (Tunisie). Aquat Living Resour, 2000, 13, 421-428.

KESER R., BRAY R.A., OGUZ M.C., CELEN S., ERODOGAN S., DOĞUTÜRK S., AKLANOGLÜ G. & MARTI B. Helminth parasites of digestive tract of some teleost fish caught in the Dardanelles at Çanakkale, Turkey. Helminthologia, 2007, 44 (4), 217-221.

KIAN R.A. & KICENIU J. Effects of crude oils on the gastrointestinal parasites of two species of marine fish. Journal of Wildlife Diseases, 1983, 19, 253-258.

KIAN R.A. & THULIN J. Influence of pollution on parasites of aquatic animals. Advances in Parasitology, 1991, 30, 201-288.

KIPARISSIS S., FAKIRES E., PAPATHEODOROU G., GERAGA M., KORNAROS M., KAPARELITOS A. & FERENTINOS G. Illegal trawling and induced invasive algal spread as collaborative factors in a Posidonia oceanica meadow degradation. Biol Invasions, 2011, 13, 669-678.

MACKENZIE K. Parasites as pollution indicators in marine ecosystems: a proposed early warning system. Marine Pollution Bulletin, 1999, 38 (11), 955-959.

MARCOGLIESE D.J., CONE D.K. Parasite communities as indicators of ecosystem stress. Parasitologia, 1997, 39 (3), 227-232.

MARCOGLIESE D.J. Parasites of the superorganism: are they indicators of ecosystem health? International Journal for Parasitology, 2005, 35, 705-716.

MARTIN M.A., SANCHEZ-LIZASO J.L. & RAMOS-ESPLÁ A. A. Quantification del impacto de las artes de arrastre sobre la pradera de Posidonia oceanica (L.) Delile. Publ Espest Esp Oceanogr, 1997, 23, 243-253.

NEIFAR L., EÜZET L. & BEN HASSINE O.K. New species of the Monocotylidae (Monogenea) from the stingray Dasyatis tortonesei Capape´ (Euselachii, Dasyatidae) off the Tunisian coast, with comments on host specificity and the specific identities of Mediterranean stingrays. Systematic Parasitology, 2000, 47, 43-50.

NEIFAR L., EÜZET L. & BEN HASSINE O.K. Heteronchocotyle gymnurae sp.n. (Monogenea: Hexbothriidae) from the Mediterranean Sea. Comparative Parasitology, 2001, 68, 91-96.

NEIFAR L., EÜZET L. & OLIVER G. Lamellodiscus (Plathelminthes, Monogenea, Diplectanidae) nouveaux parasites branchiaux des poissons marins du genre Pagrus (Teleostei, Sparidae). Zoosystema, 2004, 26, 365-376.

OGÜZ M.C. & BRAY R.A. Digeneric trematodes of some teleost fish off the Mudanya Coast (Sea of Marmara, Bursa, Turkey). Helminthologia, 2006, 43, 161-167.

ORECCHIA P. & PAGGI L. Aperti di sistematica e di ecologia degli elminti parassiti di pesci marini studiati presso l’Istituto di Parasitologia dell’Università di Roma. Parasitologia, 1978, 20, 73-89.

OVERSTREET R.M. Aquatic pollution problems, southeastern U.S. coasts: histopathology indicators. Aquatic Toxicology, 1988, 11, 213-239.

PANKOV P., WEBSTER B.L., BLASCO-COSTA I., GIHON D.I., LITTERWOOD D.T.J., BALBUEÑA J.A. & KOSTADINOVA A. Robinia aurata n. g., n. sp. (Digenea: Hemeriidae) from the mugilid Liza aurata with a molecular confirmation of its position within the Hemiuroidea. Parasitology, 2006, 133, 217-227.

PAPOUTSOGLOU S.E. Metazoan parasites of fishes from Saronicos Gulf Athens-Greece. Thalassographica, 1976, 1, 69-102.

PARAJŽNIK V. & RADUKOVIĆ B. Digenea trematodes in fish of the North Adriatic Sea. Acta Adriat, 2007, 48 (2), 115-129.

PASQUALINI V., CLABAUT P., PERGENT G., BENOYSLLE L. & PERGENT-MARTINI C. Contribution of side scan sonar to the management of Mediterranean littoral ecosystems. International Journal of Remote Sensing, 2000, 21 (2), 367-378.

PEREZ-DEL OLMO A., RAGA J.A., KOSTADINOVA A. & FERNÀNDEZ M. Parasite communities in Boops boops (L.) (Sparidae) after the Prestige oil-spill: detectable alterations. Marine Pollution Bulletin, 2007, 54, 266-276.

RADUKOVIĆ B.M., ORECCHIA P. & PAGGI L. Parazites des poissons marins du Montenegro : Digenes (Marine fish parasites from the Montenegro). Acta Adriat, 1989, 30 (1/2), 137-187.

RAMOS-ESPLÁ A.A., GUILLEN J.E., BAYLE J.T. & SÁNCHEZ-JEREZ P. Artificial anti-trawling reefs off Alicante, South-Eastern Iberian Peninsula: evolution of reef block and set designs, in: Artificial Reefs in European Seas. Jensen A.C., Collins K.J., Lockwood A.P.M. (eds). Kluwer Academic publ, 2000, 195-218.

SAAD-FARES A. Trématodes de poissons des côtes du Liban. Spécificité. Transmission et approche populationnelle [Thesis]. Université des Sciences et Techniques du Languedoc, Montpellier, 1985, 435 p.

SÁNCHEZ-JEREZ P. & RAMOS-ESPLÁ A.A. Detection of environmental impacts by bottom trawling on Posidonia oceanica (L.). Delile meadows: sensitivity of fish and macroinvertebrate communities. J Aquat Ecosyst Health, 1996, 5, 239-253.

SASAL P., MOUILLOT D., FICHET R., CHIFFLET S. & KULHICKI M. The use of fish parasites as biological indicators of anthropogenic influences in coral-reef lagoons: a case study of Apogonidae parasites in New-Caledonia. Marine Pollution Bulletin, 2007, 54, 1697-1706.

SCHUDERMANN C., KONECNY R., LAINGRUBER S., LEWIS J.W., SCHIEMER F., CHOVANEC A. & SURES B. Fish macroparasites as indicators of heavy metal pollution in river sites in Austria. Parasitology, 2003, 126, 861-869.

SEY O. Parasitic helminths occurring in Adriatic fishes. Acta Adriat, 1970, 13 (6), 1-16.

WHITEHEAD P.J.P., BAUCHOT M.L., HUREAU J.C., NIELSON J. & TORTONESE E. Fishes of the north-eastern Atlantic and Mediterranean (Vol. 1). UNESCO, Paris, 1984, 510 p.

Accepted on February 22nd, 2012

Received on September 9th, 2011

Parasite. 2012, 19, 129-135