ORIGINAL ARTICLE

Protein kinase C isozymes regulate matrix metalloproteinase-1 expression and cell invasion in Helicobacter pylori infection

Olga Sokolova,1 Michael Vieth,2 Michael Naumann1

ABSTRACT

Background Protein kinase C (PKC) signalling is often dysregulated in gastric cancer and therefore represents a potential target in cancer therapy. The Gram-negative bacterium Helicobacter pylori, which colonises the human stomach, plays a major role in the development of gastritis, peptic ulcer and gastric adenocarcinoma.

Objective To analyse the role of PKC isozymes as mediators of H pylori-induced pathogenesis.

Methods PKC phosphorylation was evaluated by immunoblotting and immunohistochemistry. Gene reporter assays, RT-PCR and invasion assays were performed to assess the role of PKC in the regulation of activator protein-1 (AP-1), matrix metalloproteinase-1 (MMP-1) and the invasion of H pylori-infected epithelial cells.

Results H pylori induced phosphorylation of PKC isozymes α, β, θ in AGS cells, which was accompanied by the phosphorylation of PKC substrates, including PKCα and myristoylated alanine-rich C kinase substrate (MARCKS), in a CagA-independent manner. Phospholipase C, phosphatidylinositol 3-kinase and Ca2+ were crucial for PKC activation on infection; inhibition of PKC diminished AP-1 induction and, subsequently, MMP-1 expression. Invasion assays confirmed PKC involvement in H pylori-induced MMP-1 secretion. In addition, analysis of biopsies from human gastric mucosa showed increased phosphorylation of PKC in active H pylori gastritis and gastric adenocarcinoma.

Conclusion The targeting of certain PKC isozymes might represent a suitable strategy to interfere with the MMP-1-dependent remodelling of infected tissue and to overcome the invasive behaviour of gastric cancer cells.

INTRODUCTION

Serine/threonine kinases of the protein kinase C (PKC) family are important molecules in the regulation of cellular differentiation, proliferation, apoptosis, adhesion and migration.1 PKC signalling participates in the regulation of gastric acid production2 and is often dysregulated in gastric cancer.3 4 Several PKC isoforms have been implicated in invasion and metastasis; however, the molecular mechanisms are still not well understood. The PKC family consists of at least 10 isozymes classified into three main groups (figure 1A). Conventional PKC (cPKC) α, βI, βII and γ bind Ca2+ and phosphatidyserine and require diacylglycerol (DAG) for further activation. The novel PKC (nPKC) δ, ε, θ, η possess a functional C1 domain, but their C2-like domains do not contain Ca2+-binding residues. Therefore, nPKC isozymes are regulated by DAG and phosphatidylserine, but not by Ca2+. The atypical PKCs (PKCζ and PKCλ)
lack both functional C1 and C2 domains and are neither Ca\(^{2+}\)-nor DAG-dependent.5

In addition to their regulation by lipid second messengers, phosphorylation of conserved Ser/Thr sites within the C3 domain plays an important role in stabilisation and catalytic competence of PKC. Phosphorylation allows for the binding of the kinase domain to pseudosubstrate (within their own regulatory domain) to keep the enzyme in a latent conformation or promotes PKC binding to real substrates for full activation.6

Helicobacter pylori colonises the stomach in at least 30–50% of the world’s population and increases the risk of peptic ulcers and gastric cancer. H. pylori secretes effector molecules (lipopolysaccharide, VacA) into the extracellular space or injects them (CagA, muropeptides) directly into the cytoplasm of the host cell via the type IV secretion system (T4SS).7 8 Thereby *H pylori* controls the inflammatory, proliferative, pro- and anti-apoptotic cellular statuses.8 Other bacterial factors, including adhesins, urease, flagellae and components of the outer membrane, also contribute to the colonisation of the gastric mucosa.9 Bacteria–gastric epithelial cell interactions lead to induction of a range of matrix metalloproteinases (MMPs).10 11 MMPs participate in extracellular matrix (ECM) remodelling, the cleavage of cell adhesion molecules (eg, E-cadherin) and the processing and activation of chemoattractants and ligands for growth factor receptors,12 which leads to an increase in epithelial permeability and promotes leucocyte infiltration into the gastric mucosa.

The involvement of PKC in many cellular functions and in pathophysiology, for example, carcinogenesis, suggests that PKC may play a role in *H pylori* infection. However, very few studies have addressed the activation of PKC during *H pylori* infection. Obst et al13 have demonstrated the translocation of PKCa to the plasma membrane in *H pylori*-infected AGS cells, and Brandt et al14 have shown the *H pylori*-induced phosphorylation of PKCa and PKCb in these cells. There is only limited knowledge about the functional role of PKC in *H pylori* infection. By using a number of inhibitors, PKC has been demonstrated to participate in *H pylori*-induced alteration of the barrier properties of the

Figure 1 *H pylori* activates protein kinase C (PKC). (A) The protein domains of the PKC family members, showing the pseudosubstrate (dark blue rectangle), the C1 domain that binds DAG, phosphatidylserine and phorbol esters, the C2 domain that binds Ca\(^{2+}\) or PIP2 (in the case of nPKC), and the C3 kinase domain. Also shown in orange are the conserved Ser/Thr residues phosphorylated during *H pylori* infection. (B) AGS cells were infected with *H pylori* P1 wt, *cagA* or *virB7* mutants for different periods of time or were stimulated with PMA for 1 h. Cell lysates were analysed by immunoblotting using antibodies as indicated. Unphosphorylated PKC\(\alpha\) and PKC\(\beta\) served as loading controls. (C) Analysis of phosphorylation of PKC substrates in cells treated as described in (B). GAPDH was immunodetected to show equal protein amounts in the cell samples.
epithelium15 and NF-κB-dependent cyclooxygenase-2 expression in gastric epithelial cells.16 Contradictory data exist concerning PKC involvement in IL-8 regulation in the gastric epithelium on infection.17, 18

The aim of this study was to investigate the mechanisms and the functional consequences of \textit{H. pylori}-induced PKC activation. We show here that \textit{H. pylori} induces PKC in gastric epithelial cells, which involves the classical upstream PKC regulators PI3K, phospholipase C\textgreek{y} (PLC\textgreek{y}) and Ca2+. Our data demonstrate for the first time that PKC contributes to c-Fos expression and activator protein-1 (AP-1) induction, which leads to matrix metalloproteinase-1 (MMP-1) up-regulation on activator protein-1 (AP-1) induction, which leads to matrix

RESULTS

\textit{H. pylori} induces phosphorylation of PKC\textgreek{z}, PKC\textdagger, PKC\textdagger\textdagger and PKC\textalpha

While studying the effect of \textit{H. pylori} on PKC, a transient increase in phosphorylation was observed within 30 min for PKC\textgreek{z} (Ser657), within 30–60 min for PKC\textdagger (Thr505) and within 5–6 h for PKC\textdagger\textdagger following infection with P1 wt strain (figure 1A, B). Phorbol myristate acetate (PMA), a membrane-permeable substitute for DAG, was used as a positive control. To investigate the involvement of \textit{H. pylori} virulence factors in PKC phosphorylation, AGS cells were infected with \textit{H. pylori} mutants deficient in either CagA or VirB7 protein, which is required for the integrity of the T4SS. Both mutations adhered equally to AGS cells (data not shown). The cagA, but not the virB7, mutant induced PKC\textgreek{z} phosphorylation. No differences between the wt, cagA or virB7 mutants were observed for PKC\textdagger or PKC\textdagger\textdagger phosphorylation (figure 1B). Thus, \textit{H. pylori} induced transient phosphorylation of cPKC\textgreek{z} in a CagA-independent, but T4SS-dependent manner; however, nPKC\textdagger and nPKC\textdagger\textdagger were induced in a CagA- and T4SS-independent manner. No changes were detected in the Ser497, Ser729 and Thr410/Thr403 phosphorylation of PKC\textgreek{z}, PKC\textdagger and PKC\textdagger\textdagger, respectively (figure 1B). Further, infection of AGS cells with \textit{H. pylori} induced phosphorylation of PKC\textgreek{\textmu}, a nPKC target,22 at the sites that correlate closely with kinase activity (figure 1B).

Intracellular localisation plays an important role in PKC function.2, 6 Treatment with \textit{H. pylori} (or PMA) led to an accumulation of phosphorylated PKC\textgreek{z} in the membranes and nuclei of AGS cells (supplementary figure 1A–C). In contrast to PMA, \textit{H. pylori} promoted no translocation of PKC isoforms δ and θ from the cytosol to membranes and nuclei (supplementary figure 1B).

To analyse the phosphorylation of PKC substrates, we used an antibody to phosphorylated Ser residues surrounded by Arg or Lys at the −2 or +2 positions and a hydrophobic residue at the +1 position.23 Figure 1C shows that wt and CagA-deficient \textit{H. pylori} induced a strong increase in Ser-phosphorylation of PKC substrates in AGS cells. Infection with the virB7 mutant led to a less prominent phosphorylation of PKC substrates. Actin-binding protein myristoylated alanine-rich C kinase substrate (MARCKS), a downstream target of cPKC and nPKC,24 was phosphorylated in infected cells with the wt and cagA mutant of \textit{H. pylori} within 1 h. Again, phosphorylation induced by the virB7 mutant was less prominent (figure 1C).

The P12 wt and vacA mutant of \textit{H. pylori}, as well as the P1 wt, induced the phosphorylation of PKC substrates. Heat-inactivated bacteria were not able to move, settle on the surface of the AGS cells (data not shown), or induce the phosphorylation of PKC substrates (supplementary figure 1D). Additionally, experiments using Transwell plates demonstrated that \textit{H. pylori} does not induce any phosphorylation of PKC substrates in the absence of direct contact with AGS cells (supplementary figure 1D). Thus, the adherence of living \textit{H. pylori} to host cells is required for PKC induction.

To study PKC activity in vivo, human gastric biopsies were analysed by immunohistochemistry. A pan-specific antibody, which recognises phosphorylation within the activation loop (Ser497, Ser505 and Ser506 of PKC\textgreek{z}, PKC\textdagger and PKC\textdagger\textdagger, respectively), was used (supplementary figure 2). PKC phosphorylation was determined in the gastric tissue of patients with \textit{H. pylori}-active

MATERIALS AND METHODS

The antibodies and the chemicals used in this work are described in supplementary tables 1 and 2. The descriptions of the procedures for preparation of cell lysates, immunoblotting, immunofluorescence, immunohistochemistry, RNA isolation, RT-PCR, transfection, the reporter gene assay, the invasion and wound healing assays are provided in the online data supplement.

Cell culture and bacteria

AGS (ATCC) and HCA-7 (European Collection of Cell Cultures, Salisbury, UK) cells were grown in RPMI 1640 medium (PAA Laboratories, Pasching, Austria) supplemented with 10% fetal calf serum (FCS) and penicillin/streptomycin. Cells derived from human prenatal stomach tissue (HSC, Innoprot, Derio, Spain) were cultured as described previously.19 Sixteen hours before infection, the cell medium was replaced with fresh RPMI 1640 supplemented with 0.5% FCS.

The wild-type (wt) \textit{H. pylori} P1 strain and isogenic mutants cagA and virB7 or P12 wt and its VacA deficient mutant were cultured for 48–72 h, as described previously,20 and added to AGS cells at a multiplicity of infection of 100. In a set of experiments, the bacteria were loaded into the upper inserts of a 100 mm Transwell plate (Costar, Corning, New York, USA), and thereby separated from AGS cells cultured in the bottom chamber by a polycarbonate membrane (0.4 μm pore size).

Patients and tissue samples

Stomach biopsy specimens were obtained from 160 patients (age range 19–96 years) according to the recommendations of the updated Sydney System21 and were examined by the same experienced gastrointestinal pathologist who was blinded to the clinical and endoscopic data. Biopsies were stained with H\textgreek{2}E and also with Warthin–Starry—silver stain for detection of \textit{H. pylori}. Histological features of the gastric mucosa, including inflammation and atrophy were scored according to the updated Sydney System.21 Diagnosis of neoplasia was made according to the WHO classification 2010.

Statistical analyses

Statistical analyses of the results were performed using the Student \textit{t} test. The data are expressed as the mean fold changes from at least three separate experiments ± SEM with the value of the control arbitrarily normalised to 1; \textit{p}<0.05 was considered significant. The immunohistochemical data were analysed using analysis of variance (IBM SPSS 18). The statistical decisions were two-tailed with a critical probability of \textit{q}=5% using a post-hoc \	extit{t}-test.
gastritis or gastric adenocarcinoma, but not in the non-infected normal gastric mucosa (table 1).

In the non-infected group, 100% of specimens demonstrated an immunoreactivity less than the median of all variables (3 cells/hpf). In the ‘Hp-gastritis’ and ‘adenocarcinoma’ groups, 52.6% and 81.5% of specimens, respectively, were strongly positive for phospho-PKC. In the studied biopsies, no changes in the expression of PKCβ were observed (supplementary table 3).

H pylori-induced activation of PKC involves PLCγ1, Ca2+, tyrosine kinases and PI3K

The PKC activator DAAG is mainly produced from phosphatidylinositol 4,5-bisphosphate (PIP2) or phosphatidylcholine (PC) through direct cleavage with phosphatidylinositol-specific PLC (PI-PLC) or PC-specific PLC (PC-PLC), respectively.28 Pretreatment of AGS cells with U73122 or D609, selective inhibitors of PI-PLC or PC-PLC, respectively, reduced the phosphorylation of PKC substrates and MARCKS following infection (figure 2A). Thus, the H pylori-induced activation of PKC involves PC-PLC and PI-PLC.

PI-PLC comprises a group of Ca2+-dependent enzymes, including PLCβ, γ, δ, ε, ξ and PLCη families.26 PLCβ and PLCγ are the most studied isozymes. PLCβ (four isoforms) is induced in response to the activation of G protein-coupled transmembrane receptors. PLCβ5 is ubiquitous, whereas PLCβ1 is not expressed in the stomach; PLCβ2 and PLCβ4 are highly expressed in cells of haematopoietic origin as well as in the cerebellum and retina.27 PLCγ (two isoforms) is stimulated on activation of receptor and non-receptor tyrosine kinases.27 PLCγ1 is widely distributed, whereas PLCγ2 is expressed primarily in cells of haematopoietic origin. To determine the role of particular isozymes in infected cells, transient transfections with siRNAs targeting either PLCγ1 or PLCβ3 were performed. In contrast to PLCβ5, PLCγ1 depletion suppressed H pylori-induced phosphorylation of PKC substrates, including MARCKS (figure 2B,C). Therefore, PI-PLCγ1 contributes to PKC regulation on H pylori infection.

H pylori has been shown to provoke a CagA-independent increase of [Ca2+]i, in gastric epithelial cells.28 Investigating the role of Ca2+ in PKC activation, we found that the phosphorylation of PKC substrates was dramatically reduced on treatment of the cells with the Ca2+-chelator BAPTA-AM prior to infection (figure 2D). Additionally, the tyrosine kinase inhibitor genistein and PI3K inhibitor LY294002 diminished the phosphorylation of PKC substrates, especially MARCKS (figure 2E). Taken together, these data indicate that Ca2+, tyrosine kinases and PI3K are involved in PKC regulation during infection of epithelial cells with H pylori.

To substantiate that the phosphorylation of PKC substrates reflects PKC catalytic activity, bisindolylmaleimide 1 (BIS I), a selective inhibitor of conventional and novel PKC, was used. The phosphorylation of PKC substrates and MARCKS in response to H pylori or PMA was completely abolished in BIS I-treated cells (figure 2F). Importantly, BIS I demonstrated no toxicity towards H pylori, in contrast to many other PKC inhibitors, including rottlerin (supplementary figure 3) and calphostin C (data not shown).

Inhibition of PKC reduces MMP-1 expression in H pylori-infected cells

While studying the role of PKC activation, we observed that BIS I significantly inhibited MMP-1 gene expression (figure 3A) and protein accumulation (figure 3B) both in H pylori-infected and in PMA-treated AGS cells. MMP-1 expression following infection with P12 wt reached a maximum at 6 h post-infection (figure 3C), and MMP-1 accumulated in the membranes and nuclei of infected cells (figure 3D). MMP-1 gene up-regulation depended on the strain used for infection, and the P1 strain was less potent in inducing MMP-1 than the P12 strain (figure 3A,E). The cagA H pylori mutant was as effective as the wt, but the virB7 mutant up-regulated MMP-1 to a lesser extent (figure 3E,F).

Importantly, BIS I suppressed the MMP-1 expression induced by P12 wt in both the human HCA-7 colon cancer cell line and in primary stomach cells (supplementary figure 4A). Importantly, in both cell systems H pylori P12 wt induces PKC, which leads to phosphorylation of PKC substrates (supplementary figure 4B). HSC constitutively express mRNA from Muc-Sac and Muc-6 genes and stain positive for H+, K+ -ATPase and pancytokeratins (supplementary figure 4C), which is consistent with normal epithelial cells.

PKC regulates MMP-1 by activating AP-1 transcription factor

The MMP-1 promoter is predominantly regulate by AP-1 (figure 4A).29 Infection with H pylori led to a 4.4-fold increase in AP-1 activity (figure 4B). A more pronounced effect on AP-1 activity was achieved by treatment with PMA (51.5-fold induction; figure 4B). Pretreatment of the cells with BIS I completely abolished PMA-induced and diminished H pylori-induced AP-1 transactivation (figure 4B). AP-1 is a dimer that consists of Fos (c-Fos, Fosβ), Fra-1, Fra-2) and Jun (c-Jun, JunD, JunB) proteins and is positively regulated by mitogen-activated protein kinases (MAPK) (figure 4C).31 H pylori has been shown to activate a heterodimer composed of c-Fos and c-Jun.32 While exploring the molecular mechanism of AP-1 activation, we observed a strong phosphorylation of ERK1/2, JNK1/2, p38, c-Jun, ATF-2, JNK up-stream kinase MKK4, and accumulation of c-Jun and c-Fos in both H pylori- and PMA-treated cells (figure 4D). BIS I abolished all of the effects of PMA and reduced H pylori-induced c-Fos and c-Jun up-regulation. Surprisingly, in the infected cells, BIS I had no effect on the phosphorylation of ERK, p38 or JNK, which are considered to be up-stream regulators of c-Fos and c-Jun (figure 4C,D). The infection of AGS cells with wt H pylori and mutants showed that c-Jun was expressed following infection with the virB7 mutant, but delayed in comparison to the wt, which is in agreement with a report by Ding et al.33 However, phosphorylation of JNK1/2 and p38 was clearly decreased.

Table 1 Protein kinase C (PKC) phosphorylation in human gastric mucosa tissue

Gastric mucosa biopsies	Number of specimens	Age (years)	Gender M	Gender F	Mean±SEM, cells/hpf	p Value
Non-infected	36	19–72	20	16	1.06±0.28	0.039*
Hp-gastritis	38	32–82	24	14	25.32±5.18	
Adenoma	21	31–82	11	10	11.10±2.15	
Adenocarcinoma	65	34–96	29	36	61.37±7.56	0.001*

*p < 0.05 versus ‘non-infected’ group, as determined by the Dunnett t-test.
T4SS-dependent (supplementary figure 5). These results indicate that in *H pylori*-treated cells, PKC is involved in up-regulation of the AP-1 members c-Fos and c-Jun, but the exact integrative mechanism and bacterial factors involved remain elusive.

Additionally, we found no accumulation of the AP-1 co-activator polyomavirus enhancer activator-3 (PEA3), which might promote MMP-1 expression in infected cells (data not shown). Therefore, PKCa, PKCd and PKCq control *H pylori*-induced MMP-1 expression through c-Fos.

Overexpression of PKC leads to AP-1 activation

To substantiate that PKCa, PKCd and PKCq regulate AP-1 in AGS cells, gene reporter assays were performed (figure 5E). Overexpression of constitutively active PKCa, δ and θ led to the transactivation of the AP-1 reporter gene 48 h post-transfection (1.8-, 1.3- and 3.5-fold, respectively) and 72 h post-transfection (2.8-, 4- and 2.1-fold, respectively). Immunoblotting revealed an accumulation of c-Fos in cells overexpressing PKC, which correlated with AP-1 activity and MMP-1 accumulation, and was most prominent in PKCq-overexpressing cells (figure 5F). PKC overexpression did not induce the accumulation or phosphorylation of c-Jun (figure 5F). Thus, the PKC isoforms α, δ and θ regulate c-Fos leading to AP-1 activation in gastric cells.

PKC promote invasion of AGS cells in *H pylori* infection

To further analyse the role of PKC in MMP-1 secretion, invasion assays using collagen I-coated filters were performed. Figure 6A...
shows that co-culturing of AGS cells with \textit{H. pylori} led to enhanced cellular invasion, which was less prominent on infection with the \textit{virB7} mutant strain in comparison to the \textit{wt} and \textit{cagA} strains. To assess the role of MMP-1 in \textit{H. pylori}-induced invasiveness, AGS cells were transfected with siRNA targeting MMP-1. Depletion of MMP-1 inhibited both basal and \textit{H. pylori}-induced MMP-1 expression in AGS cells (figure 6B) and suppressed invasion in response to \textit{H. pylori} (figure 6A). Treatment of the cells with the PKC inhibitor BIS I prior to infection markedly reduced the number of invading cells (figure 6C). Similar results were obtained for PMA.

Depletion of PKC\(\alpha\), PKC\(\beta\) and PKC\(\theta\), which is crucial for MMP-1 production in response to \textit{H. pylori}, abolished transmigration of infected cells, indicating a functional role for these

Figure 3 \textit{H. pylori} up-regulates MMP-1 in a protein kinase C (PKC)-dependent manner. BIS I-treated or non-treated AGS cells were incubated with \textit{H. pylori} P12 wt, PMA (A–D) or \textit{H. pylori} P1 wt or the \textit{cagA} and \textit{virB7} mutants (E, F) for 3 h or for the indicated periods of time. MMP-1 expression was analysed by qRT-PCR (A, C, E) or immunoblotting (B, D, F). The graphs in (B) summarise the densitometric analysis of three independent immunoblots (experiments). GAPDH, occludin and histone H3 were immunodetected to show the appropriate fractionation and equal protein amounts in the cell samples. Bacterial lysate was used as a negative control. \(p<0.05\), \(p<0.01\) versus non-stimulated cells; \#\(p<0.05\), ##\(p<0.01\) versus BIS I-free stimulated cells.

Figure 4 \textit{H. pylori} up-regulates AP-1 in a protein kinase C (PKC)-dependent manner. (A) The composition of MMP-1 promoter.30 The AP-1 element binds members of the c-Fos and c-Jun family of transcription factors. c/EBP\(\beta\), CCATT/enhancer binding protein-\(\beta\); SBE, STAT binding element; TIE, TGF\(\beta\) inhibitory element. (B) A reporter gene assay was performed using an inducible reporter construct encoding the firefly luciferase gene under the control of the AP-1 binding element. Firefly luciferase activity was normalised relative to Renilla’s one. BIS I-treated/non-treated AGS cells were incubated with \textit{H. pylori} P12 wt or PMA for 3 h. \(p<0.05\), \(p<0.01\) vs non-stimulated cells; \#\(p<0.05\), ##\(p<0.01\) vs BIS I-free stimulated cells. (C) Regulation of c-jun and c-fos expression by MAPK. (D) BIS I-treated cells were incubated with P12 wt or PMA for 1 h. The cell lysates were analysed by immunoblotting using antibodies as indicated.
isozymes in invasion (figure 6D). Depletion of PKCa, PKCb or PKCc had a less prominent effect in PMA-treated cells (figure 6D). To confirm the regulatory role of PKCa, δ and θ in invasion, constitutively active isozymes were overexpressed. Figure 6E shows that PKC overexpression increased the number of invading cells. Taken together, these results indicate that MMP-1-dependent collagen I digestion involves PKC in *H pylori*-infected cells.

Invasion is an integrative process that depends on the adhesive and migratory behaviours of cells, in addition to their proteolytic activity towards the ECM. Therefore, involvement of PKC in regulation of cellular motility was investigated using a wound healing assay. In contrast to PMA, the P1 and P12 strains of *H pylori* did not stimulate wound healing (supplementary figure 6A,B). Treatment with *H pylori* or PMA for 24 h slightly decreased the total number of AGS cells (data not shown). Thus, *H pylori*-induced invasion depends mainly on the increased proteolytic activity of AGS cells. BIS I, but not siRNAs against PKCa, PKCb or PKCc, inhibited PMA-induced cell migration (supplementary figure 6A,C). Therefore, several PKC isozymes are engaged to stimulate both the proteolytic activity and migration of PMA-treated cells, leading to increased cell invasiveness.

In addition to the wound healing assay, the involvement of PKC in *H pylori*-induced scattered phenotype was studied, and no effects of BIS I or PKC-specific siRNAs on cell morphology were found (supplementary figure 7). However, PMA-induced AGS cell spreading was completely blocked by BIS I but not by siRNAs against PKCa, PKCb or PKCc (supplementary figure 7).

DISCUSSION

The aim of this work was to investigate the activity and role of PKC isozymes in infected gastric epithelial cells. We show here that, on *H pylori* infection, cPKCa is phosphorylated within its hydrophobic motif and accumulates in both membranes and nuclei, which might represent sources of DAG35 and PKCα-interacting proteins. Autophosphorylation of the hydrophobic motif of PKCa has been reported to stabilise the enzyme and to be triggered by the mammalian target of rapamycin complex 2 and HSF90. Further, our results demonstrate that nPKCs δ and θ are transiently phosphorylated within their activation loops in a T4SS-independent manner. This finding is consistent
Figure 6 Helicobacter pylori stimulates the invasive properties of AGS cells in a PKC-dependent fashion. (A) The cells were treated with control or MMP-1-targeting siRNAs, applied to the Transwell plate and further incubated with *H pylori* P1 wt, cagA and virB7 mutants, or PMA (4 nM) for 18 h, and the percentage invasion through collagen I-coated filters towards 5% FCS was determined. The migration rate through uncoated filters served as a methodological control. (B) The invasion assay was performed using cells treated with scr or PKC-targeting siRNAs and then stimulated with *H pylori* P12 wt or PMA. (E) The invasion assay was performed using cells overexpressing constitutively active PKC isozymes. (F) *H pylori* T4SS and T4SS-independent factors are required for PKC activation and MMP-1 up-regulation. *p<0.05, **p<0.01 versus non-stimulated cells, #p<0.05, versus stimulated cells, ##p<0.01 versus stimulated mock-transfected cells.

Our experiments using BAPTA-AM further confirm a contributory role of intracellular Ca\(^{2+}\) in PKC activation on infection. As functional T4SS (but not CagA) is required for Ca\(^{2+}\) release during *H pylori* infection,\(^{28}\) we propose that T4SS is implicated in the regulation of Ca\(^{2+}\)-activated PKC isozymes. Consistently, phosphorylation of Ca\(^{2+}\)-regulated PKC is T4SS-dependent.

It has previously been shown that PI3K signalling is activated by *H pylori*,\(^{30}\) PI3K, which phosphorylates PIP2 and leads to PI3K generation, has been implicated in PDK-1 activation. Here, PI3K inhibition diminished the phosphorylation of PKC substrates and MARCKS in response to *H pylori* infection. Moreover, tyrosine kinases, which act up-stream of PLCs and PI3K, play a role in PKC activation during infection with *H pylori*, as demonstrated using genistein.

While studying PKC in vivo, we detected an increase of phosphorylated PKC in patients with *H pylori*-induced gastritis or gastric adenocarcinoma, which indicates that post-translational modulations of these enzymes may be crucial for *H pylori*-induced pathogenesis.

Given our results demonstrating that *H pylori* induces the phosphorylation of PKC\(\alpha\), PKC\(\beta\) and PKC\(\delta\), we focused on their role in infected gastric epithelial cells. All of these PKC isozymes are involved in regulation of the cytoskeleton, adherence junctions and barrier permeability in the gastrointestinal epithelium.\(^{41}\) PKC may play a role in the pathogenesis of *H pylori*-caused diseases by affecting the integrity of the gastric epithelium.\(^{15}\)
Gastric mucosa disturbances in response to *H pylori* implicate a range of MMPs, including MMP-1.²⁰ MMP-1 not only degrades collagen I-III, VII, VIII and X, gelatin, and entactin,³⁰ but also has functions extending beyond the degradation of the ECM components. For example, MMP-1 was found in the nucleus where it appears to confer resistance to apoptosis.²² Cytokines, growth factors and LPS induce MMP-1 synthesis via MAPK cascades in different cell types.⁴⁵,⁴⁴ MMP-1 is often up-regulated in gastric ulcers and cancer.¹²,¹⁴,¹⁶,¹⁸,¹⁹ Our data indicate that *H pylori* stimulates MMP-1 synthesis in gastric epithelial cells, which is in accordance with published data.¹¹,¹⁵,¹⁶ Although both P1 and P12 belong to the type I cagA⁺ vacA⁺ katA⁺ flaA⁺ strains, P1 was less potent in inducing MMP-1 than the P12 strain; this finding requires further investigation. We found that MMP-1 accumulates in membranous structures and nuclei of infected cells. Further, our results show that similar to PKC activation, MMP-1 expression requires both functional T4SS and other T4SS-independent bacterial factors, for example, OipA.³⁴ Using the PKC inhibitor BIS I or PKC-specific siRNAs, we discovered that PKCα, PKCβ and PKCθ up-regulate MMP-1, leading to enhanced invasion by infected AGS cells. Importantly, we observed no significant enhancement of migration on infection. Therefore, it is apparent that *H pylori*-stimulated invasion depends mainly on the proteolytic, but not the migratory, activity of AGS cells. The inhibitory effect of BIS I on MMP-1 expression was not restricted to AGS cells and was also detected in tumour HCA-7 cells and non-cancerous HSC, which suggests that this represents a common phenomenon.

It is well established that PMA, which induces a sustained activation of almost all of the PKC isoforms, up-regulates MMP-1.²⁵ In this study, PMA stimulated MMP-1 synthesis, invasion and migration of AGS cells. Depletion of one particular PKC isoform (eg, PKCβ) had a weak effect on these processes, probably because of a contributory role of intact PKC isoforms activated by PMA.

How does PKC regulate MMP-1? PMA has been reported to activate ERK and JNK,⁴⁷ leading to AP-1 assembly on the MMP-1 promoter.³⁰,⁴⁵ Consistently, PMA activates MAPK and AP-1 in AGS cells, and BIS I abolishes this effect. *H pylori* also induces MAPK, c-Jun and c-Fos, and activates AP-1 in AGS cells.³⁸,³⁹ We found that BIS I suppresses c-Fos and c-Jun expression and AP-1 activity in infected cells. Surprisingly, BIS I had no effect on the phosphorylation of ERK or JNK, which mediate MMP-1 induction by *H pylori*.¹⁹,⁴⁶ These observations suggest that c-Jun and c-Fos regulation by PKC occurs apart from MAPK. In particular, the serum response factor (SRF) and members of the CREB/ATF family that control (together with Elk-1) c-Fos expression (figure 6F) are regulated by several Ca²⁺-dependent kinases, including PKC.⁴⁷ Further, depletion of PKCα, PKCβ and PKCθ suppresses *H pylori*-induced c-Fos accumulation, and c-Fos depletion diminishes MMP-1 expression, indicating an important role of these PKC isoforms in c-Fos-dependent MMP-1 up-regulation. Indeed, in uninfected AGS cells, overexpression of active PKCα, PKCβ and PKCθ increased the amount of c-Fos, AP-1 activity and invasion through collagen-coated filters.

With respect to the mechanistic role of *H pylori* virulence factors, pronounced T4SS-dependent and T4SS-independent processes exist.⁴⁸ Future work on the identification of the bacterial factor(s) responsible for PKC activation will give additional insights into the mechanisms of gastric mucosa colonisation by *H pylori* and could provide a comprehensive picture of host–microbial interaction.

Acknowledgements We thank G Baier and S Shaw for the PKC expression constructs, U Lendelock and S Krueger for the MMP-1 primers, S Kahler for the antibody to H⁺, K⁺-ATPase, and B Peters for help in ANODA.

Contributors OS: experiments, analysis, interpretation of data and manuscript preparation; MW: biopsy collection, immunohistochemistry, MN: interpretation of data, manuscript preparation, and study supervision.

Funding The work was funded in part by the Deutsche Forschungsgemeinschaft (SFB 854) and the Bundesministerium für Bildung und Forschung (FORSYS, BMBF-0313922) by grants to MN.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

REFERENCES

1. Mackay HA, Twelves CJ. Targeting the protein kinase C family: are we there yet? Nat Rev Cancer 2007;7:554–62

2. El-Zaazari M, Zawas Y, Tessier A, et al. Intracellular calcium release and protein kinase C activation stimulate sonic hedgehog gene expression during gastric acid secretion. Gastroenterology 2010;139:2181–71.e1

3. Schwartz KG, Jiang J, Kelsen D, et al. Protein kinase C-a: a novel target for inhibiting gastric cancer cell invasion. J Natl Cancer Inst 1993;85:802–7.

4. Lin KY, Fang CL, Uen YH, et al. Overexpression of protein kinase Calpha mRNA may be an independent prognostic marker for gastric carcinoma. J Surg Oncol 2008;97:538–43.

5. Newton AC. Protein kinase C poised to signal. Am J Physiol Endocrinol Metab 2010;298:E395–402.

6. Parker PJ, Murray-Rust J, PKC at a glance. J Cell Sci 2004;117:131–2.

7. Odenbreit S, Puls J, Sedmera B, et al. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 2000;287:1497–500.

8. Blaser MJ, Attherton JC. Helicobacter pylori persistence: biology and disease. J Clin Invest 2004;113:321–33.

9. Andersen LP. Colonization and infection by Helicobacter pylori in humans. Helicobacter 2007;12:12–15.

10. Menges M, Chan CC, Zeitl M, et al. Higher concentration of matrix-metalloproteinase 1 (interstitial collagenase) in Helicobacter pylori- compared to NSAID-induced gastric ulcers. Z Gastroenterol 2000;38:887–91.

11. Gőz M, Göző P, Smolka AJ. Epithelial and bacterial metalloproteinases and their inhibitors in Helicobacter pylori infection of human gastric cells. Am J Physiol Gastrointest Liver Physiol 2001;281:G261–32.

12. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the apoptosis of tissue remodelling. Nat Rev Mol Cell Biol 2007;8:221–33.

13. Obst B, Schütz S, Ledig S, et al. Helicobacter pylori-induced apoptosis in gastric epithelial cells is blocked by protein kinase c activation. Microbe Pathog 2002;33:167–75.

14. Brandt S, Wessler S, Hartig R, et al. Helicobacter pylori activates protein kinase delta to control Rd1 in MAP kinase signaling; role in AGS epithelial cell scattering and elongation. Cell Motil Cytoskeleton 2003;59:874–92.

15. Terrés AM, Pajares JM, Hopkins AM, et al. Helicobacter pylori disrupts epithelial barrier function in a process inhibited by protein kinase C activators. Infect Immun 1998;66:2943–50.

16. Chang YJ, Wu MS, Lin JT, et al. Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori involves TLR2/TLR9 and c-Src-dependent nuclear factor-kappaB activation. Mol Pharmacol 2004;66:1465–77.

17. Beales IL, Calam J. Stimulation of Ig-like production in human gastric epithelial cells by Helicobacter pylori, IL-1beta and TNF-alpha requires tyrosine kinase activity, but not protein kinase C. Cytokine 1997;9:514–20.

18. Kossai K, Yoshikawa T, Yoshida N, et al. Helicobacter pylori water extract induces interleukin-6 production by gastric epithelial cells. Dig Dis Sci 1999;44:237–42.

19. Krueger S, Hundertmark T, Kalinski T, et al. Helicobacter pylori encoding the pathogenicity island activates matrix metalloproteinase-1 in gastric epithelial cells via JNK and ERK. J Biol Chem 2006;281:2369–75.

20. Chen Y, Al-Shoul I, Kepl D, et al. Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J Cell Biol 2003;161:249–55.

21. Dixon M, Denta R, Yardley J, et al. Classification of grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol 1996;20:1161–81.

22. Rozengurt E, Rey D, Waldron RT. Protein kinase D signalling. J Biol Chem 2005;280:13205–8.

23. Nishikawa K, Toker A, Johannes FJ, et al. Determination of the specific substrate sequence motifs of protein kinase C isoforms. J Biol Chem 1997;272:952–60.

24. Überall F, Gisbrecht S, Hellbert K, et al. Conventional PKC-alpha, novel PKC-epsilon and PKC-theta, but not atypical PKC lambda are MARCKS kinases in intact NIH 3T3 fibroblasts. J Biol Chem 1997;272:4072–8.
25. Pollard TD, Earnshaw WC. Cell Biology. Philadelphia, PA: Elsevier Inc, 2008:468–72.
26. Katan M. New insights into the families of PLC enzymes: looking back and going forward. Biochim J 2005;391:67–9.
27. Rebecchi MJ, Pentyala SN. Structure, function, and control of phosphoinositide-specific phospholipase C. Physical Rev 2000;80:1291–335.
28. Marlink KL, Bacon KD, Sheppard BC, et al. Effects of Helicobacter pylori on intracellular Cal – signalling in normal human gastric mucous epithelial cells. Am J Physiol Gastrointest Liver Physiol 2003;285:G163–76.
29. Vinzenzi MP, White LA, Schroen DJ, et al. Regulating expression of the gene for matrix metalloproteinase-1 (collagenase): mechanisms that control enzyme activity, transcription, and mRNA stability. Crit Rev Eukaryot Gene Exp 1996;6:391–411.
30. Chakrabarti S, Mandal M, Das S, et al. Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 2003;253:269–85.
31. van Dam H, Castellazzi M. Distinct roles of Jun: fos and Jun: aTF dimers in oncogenesis. Oncogene 2001;20:2453–64.
32. Meyer-ter-Vehn T, Borgatti P, Capitani S, et al. Helicobacter pylori stimulates gastric epithelial cell MMP-1 secretion via CagA-dependent and -independent ERK activated protein kinase/ERK pathway by conventional, novel, and atypical protein kinase C isotypes. J Biol Chem 2002;277:320–30.
33. Bornancin F, Parker PJ. Phosphorylation of protein kinase C-alpha on serine 657 controls the accumulation of active enzyme and contributes to its phosphatase-resistant state. J Biol Chem 1999;272:3544–9.
34. Wu JY, Lu H, Sun Y, et al. Balance between PAE-3 and activator protein 1 regulates Helicobacter pylori-stimulated matrix metalloproteinase 1 expression. Cancer Res 2008;68:5111–20.
35. Neri LM, Borgatti P, Capitani S, et al. Nuclear diacylglycerol produced by phosphoinositide-specific phospholipase C is responsible for nuclear translocation of protein kinase C-alpha. J Biol Chem 1998;273:29738–44.
36. Martelli AM, Bortol R, Tabellini G, et al. Molecular characterization of protein kinase C-alpha binding to lamin A. J Cell Biochem 2002;86:320–30.
37. Yamamoto KK, Gonzalez GA, Biggs WH, et al. Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature 1986;324:494–8.
38. Tabassam FH, Graham DI, Yamaoka Y. Helicobacter pylori activate epidermal growth factor receptor- and phosphatidylinositol 3-Oh kinase-dependent Akt and glycogen synthase kinase beta phosphorylation. Cell Microbiol 2009;11:70–82.
39. Toker A, Newton AC. Cellular signaling: pivoting around PDK-1. Cell 2003;103:185–8.
40. Nagy TA, Frey MR, Yan F, et al. Helicobacter pylori regulates cellular migration and apoptosis by activation of phosphatidylinositol 3-kinase signaling. J Infect Dis 2005;191:541–51.
41. Farhadi A, Keshavarzian A, Ranjbaran Z, et al. The role of protein kinase C isozymes in modulating injury and repair of the intestinal barrier. J Pharmacol Exp Ther 2006;316:1–7.
42. Limb GA, Matter K, Murphy G, et al. Matrix metalloproteinase-1 associates with intracellular organelles and confers resistance to lamin A/C degradation during apoptosis. Am J Pathol 2005;166:1555–63.
43. Mackay AR, Ballin M, Pelina ND, et al. Effect of phorbol ester and cytokines on matrix metalloproteinase and tissue inhibitor of metalloproteinase expression in tumour and normal cell lines. Invasion Metastasis 1992;12:168–84.
44. Lai WC, Zhou M, Shankararaman U, et al. Differential regulation of lipopolysaccharide-induced monocyte MMP-1 and MMP-9 by p38 and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases. J Immunol 2003;170:6244–9.
45. Inoue T, Yashiro M, Nishimura S, et al. Matrix metalloproteinase-1 expression is a prognostic factor for patients with advanced gastric cancer. Int J Mol Med 1999;4:73–7.
46. Pilling MR, Marjanovic N, Kim SY, et al. Helicobacter pylori stimulates gastric epithelial cell MMP-1 secretion via CagA-dependent and -independent ERK activation. J Biol Chem 2003;278:18722–31.
47. Schömberger DC, Marais RM, Marshall CJ, et al. Activation of the mitogen-activated protein kinase/ERK pathway by conventional, novel, and atypical protein kinase C isotypes. Mol Cell Biol 1998;18:790–8.
48. Backert S, Naumann M. What a disorder: proinflammatory signaling pathways induced by Helicobacter pylori. Trends Microbiol 2010;18:479–86.
49. Yamamoto KK, Gonzalez GA, Biggs WH, et al. Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature 1986;324:494–8.
Supplementary Figure 1

A

H. pylori (P12)	CYTOSOL	MEMBRANES	NUCLEI	WL	
0 h	0	0.3	0.5	1	3
p-PKCα					
PKCα					
PKCδ					
PKCθ					
GAPDH					
Occludin					
Histone H3					

B

PMA	CYTOSOL	MEMBRANES	NUCLEI	WL	
0 h	0	0.3	0.5	1	3
p-PKCα					
PKCα					
PKCδ					
PKCθ					
GAPDH					
Occludin					
Histone H3					

C

H. pylori (P12)	CYTOSOL	MEMBRANES	NUCLEI	WL	p-PKCα fold change
0 h	0	0.3	0.5	1	3
PMA	0	0.3	0.5	1	3

D

| TranswellR plates | PMA | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 |
|-------------------|-----|
| p-MARCKS | |
| GAPDH | |
Sokolova et al. Supplementary Figure 2

Non-infected

Hp-Gastritis

Adenoma

Adenocarcinoma
Sokolova et al. Supplementary Figure 3

DMSO
BIS I + *H. pylori* (P12), 1 h
Rottlerin + *H. pylori* (P12), 1 h
Sokolova et al. Supplementary Figure 4

A

HCA-7

MMP-1 mRNA, fold change

**

H. pylori (P12)

B

HSC

MMP-1 mRNA, fold change

**

H. pylori (P12)

PMA

**

#

PMA

HCA-7

BIS I

Non-stimulated

H. pylori (P12)

MMP-1 mRNA, fold change

**

PMA

**

#

PMA

C

AGS

HSC

RevTr

- +

- +

Muc 5AC

HSC

H+, K+-ATPase

Muc 6

Cytokeratins

GAPDH

HSC

P-Substrates of PKC

GAPDH
Sokolova et al. Supplementary Figure 5

H. pylori (P1)		wt	cagA⁻	virB7⁻	PMA																
0.5	0.3	0.5	1	3	6	9	0.3	0.5	1	3	6	9	0.5	0.3	0.5	1	3	6	9	1	h

- p-ERK1/2
- p-p38
- c-Fos
- p-JNK1/2
- p-c-Jun
- c-Jun
- GAPDH
Sokolova et al. Supplementary Figure 7

A

-

H. pylori (P12)

B

-

PMA
Olga Sokolova et al.

Protein kinase C isoforms regulate matrix metalloproteinase-1 expression and cell invasion in Helicobacter pylori infection

DATA SUPPLEMENT

SUPPLEMENTARY MATERIAL AND METHODS

Preparation of cell lysates and immunoblotting

Whole-cell extracts were prepared with a modified RIPA buffer as described. Aliquots of the lysates were boiled with sample buffer comprising 50 mM Tris-HCl, pH 6.8, 2% SDS, 10% Glycerol, 100 mM DTT, and 0.1% bromphenol blue for 5 min. Sub-cellular fractions of AGS cells were prepared with a ProteoExtract kit (Calbiochem/Merk KGaA) according to the manufacturer’s instructions. The proteins were separated by SDS-PAGE, electrotransferred onto Immobilon-P transfer polyvinylidene fluoride membranes (Millipore, Schwalbach, Germany) and stained with antibodies overnight at +4°C. Immunoreactivity was detected using the enhanced chemiluminescence detection kit Amersham™ ECL™ (GE Healthcare, Buckinghamshire, UK).

RNA isolation and RT-PCR

Total RNA was extracted with the TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and further cleaned using RNeasy® Plus Micro kit (Qiagen GmbH, Hilden, Germany). cDNA was synthesized from 1 µg of RNA using a random hexamer primer and RevertAid™ First Strand cDNA Synthesis kit (Fermentas, EU). cDNA was amplified as described1 using following primers: 5’-CTGAAGGTGATGAAGCAGCC-3’ (forward) and 5’-AGTCCAAGAGAATGGCCGAG-3’ (reverse) for MMP-1, 5’-TCCAAAATCAAGTGGGGCGATGCT-3’ (forward) and 5’-CCACCTGGTGCTGACCCACC-3’ (reverse) for GAPDH, 5’-CTCACCCTAGCAGCAGCAGAACC-3’ (forward) and 5’-GCACGGATGGAGGAGTAGGT-3’ (reverse) for mucin 5AC, 5’-
CCAATGACAGTGACCACCAG-3’ (forward) and 5’-CTCAAGTGGGGGAGTTGTGT-3’ (reverse) for mucin 6 (BioTeZ Berlin-Buch GmbH, Berlin, Germany). Serial dilutions of the dipeptidyl peptidase IV gene cloned into a pCR®2.1-TOPO vector and primers 5’-GATGCTACAGCTGACAGTCGC-3’ (forward), 5’-TGGTGACCATGTGACCCACTG-TGGTGACCATGTGACC’ (reverse) served for the generation of a calibration curve.

Transfection
AGS cells (1 x 10^5 cells/35 mm dish) were transfected with 20 nM siRNA (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) using siLentFect™ Lipid Reagent (BioRad) in Opti-MEM™ I culture medium (Invitrogen) supplemented with 5% FCS. A scrambled sequence that does not lead to the specific degradation of any known cellular mRNA was used as a control. For overexpression experiments, the cells were transfected with 0.2 µg of DNA using Effectene® transfection reagent (Qiagen) (DNA/Effectene ratio was 1:10). At 24 h of transfection, cells were starved in RPMI 1640 medium for 16-18 h and then infected with H. pylori or stimulated with PMA. Constitutivly active forms of bovine PKCα (A25E) and human PKC0 (A148E) cloned into pEF vector were donated by G. Baier (Innsbruck Medical University, Austria). Alanine to glutamic acid substitution at the pseudosubstrate sequence prevents its binding to the kinase domain and, thus, supports an “open” active conformation of PKC.[2] Constitutively active (T507E) human PKCδ in the pCEFL vector was a gift of S. Shaw (National Cancer Institute, Bethesda, USA). Replacement of the threonine residue with a glutamic acid residue mimics phosphorylation and activates PKCδ.[3]

Reporter gene assay
AGS cells were seeded onto a 24-well plate at a density of 3.5 x 10^4 cells per well in Opti-MEM™ I culture medium supplemented with 5% FCS. Reverse transfection was performed using 0.04:0.001 µg of Firefly AP-1:Renilla Luciferase plasmids (Cignal™ AP1 Reporter Assay Kit, SABiosciences,
Frederick, MD, USA) and 0.2 µg of a vector of interest using SureFECT™ transfection reagent (SABiosciences). A construct that encodes firefly luciferase under the control of a TATA box without any additional tandem repeats of the AP-1 transcription response element was used as a negative control. At 48 or 72 h post-transfection, cells were either left untreated or were stimulated with *H. pylori* or PMA and harvested further with Passive Lysis Buffer (Promega, Madison, WI, USA). Luciferase activity was estimated using the Dual-Luciferase Reporter Assay System (Promega) with a Lumat LB 9507 luminometer (Berthold Technologies, Bad Wildbad, Germany). The firefly luciferase activity was normalised relative to *Renilla*’s activity. In some experiments, cell lysates were boiled with the sample buffer and used for immunoblotting.

Invasion assay

AGS cells (1 x 10^5) were loaded into the upper chamber of a 24-well Transwell® plate (Costar, Corning, NY, USA) and cultured on polycarbonate filters (8-µM pore size) coated with collagen I (0.01 mg/insert) in RPMI1640 medium containing 0.5% FCS. After 2 h, cells were left untreated or were stimulated with *H. pylori* or PMA in the presence/absence of BIS I. The cells were allowed to invade toward 5% FCS for 18 h. Invaded cells on the bottom side of the membrane were washed, exposed briefly to trypsin, collected with PBS and counted. Percent invasion was determined by dividing the number of cells that translocated through the collagen I-coated filters by the number of total cells per well. Experimental replicates were performed in triplicate.

Migration assay

Migration of AGS cells was studied using the Oris™ Cell Migration Assay (AMS Biotechnology Ltd., Abingdon, UK) according to the manufacturer instructions. Briefly, 5 x 10^4 cells/well were seeded into a 96-well plate containing cell seeding stoppers. After overnight incubation, a 2-mm diameter cell-free zone at the centre of each well was created by removing of the cell seeding stoppers. Cell growth medium was replaced with fresh RPMI 1640 containing 5% FCS, and cells
were incubated with *H. pylori* or PMA. After 24 h of treatment, cells were rinsed with PBS and stained with Calcein AM reagent. Fluorescent cells in the detection zone (applying the detection mask) were imaged by fluorescence microscope BZ-8100 (Objective CFI Plan Apo 4x; Keyence Corporation, Osaka, Japan). The cell-free area was measured using BZ-Analyzer software (Keyence Corporation).

Immunostaining

HSC (8.4 x 10^4) were seeded onto glass slides coated with 0.04 mg Matrigel™ in a 24-well plate. After 4 days in culture, the cells were fixed with 4% paraformaldehyde (Sigma, Saint Louis, USA) and permeabilized with 0.1% Triton® X-100 (Sigma) in PBS. Unspecific binding was blocked with 10% normal goat serum (Sigma). Mouse anti-pan cytokeratin antibody (recognizes human cytokeratins 1, 4, 5, 6, 8, 10, 13, 18, 19; Sigma) and anti-H^+, K^+-ATPase (recognizes α subunit; Antibodies-online GmbH, Aachen, Germany) were used in dilutions 1:200 and 1:100, respectively. Cy3-conjugated anti-mouse antibody was from Dianova (Jackson ImmunoResearch Laboratories, West Grove, USA). Cells were also stained in the absence of primary antibodies to evaluate non-specific secondary antibody reaction. Hoechst 33342 (Invitrogen, Carlsbad, USA) in dilution 1:1000 was used to stain nuclei. Images were taken using a fluorescence microscope BZ-8100 (Keyence Corporation, Osaka, Japan).

Immunohistochemistry

For retrieval of antigens, deparaffinised sections were heated in citrate buffer (pH 6.0) using a microwave oven for 20 min. Endogenous peroxidase was blocked by 20 min-incubation in 0.3% hydrogen peroxide within absolute methanol. Sections were washed, and non-specific binding was blocked with a pre-immune serum (Merck, Germany). Overnight incubation at +4°C was carried for binding of the primary rabbit polyclonal antibodies (dilution 1:50), including anti-phospho-PKC (pan) (αThr497, δThr505, θThr538) (Abcam, Cambrige, UK) and PKC0 (Abnova, Taipei City,
Taiwan). Then, 30 min-incubation with biotinylated secondary antibody was performed, followed by substrate binding by using streptavidin-biotin-peroxidase method. Counterstaining with haemalaun was carried out additionally in all cases. For all stains, negative and positive controls were performed, and staining was repeated until internal controls showed appropriate results.

PKCθ immunostaining was evaluated semiquantitatively according to the Remmele immunoreactive score (IRS).[4, 5] Briefly, the percentage of positively stained epithelial cells was divided into five grades of 0-4 (0%, <10%, 10-50%, 51-80%, >80%) and multiplied by the intensity the immunohistochemical reaction scaled from 0 to 3. To quantify phospho-PKC (pan) immunostaining, an evaluation of positively stained cells per high power field (hpf) was carried out.

SUPPLEMENTARY TABLES

Supplementary Table 1 Antibodies used for immunoblotting

Antibody	Source	Manufacturer	
Phospho-PKC (pan)	Rabbit	Abcam	
Phospho-PKCα (Thr497)			
Occludin	Mouse	BD Biosciences Pharmingen, San Jose, CA, USA	
PKCδ			
PKCθ			
PLCγ1			
MMP-1	Rabbit	Calbiochem/Merk KGaA, Darmstadt, Germany	
c-Fos			
Histone H3			
Phospho-ATF-2 (Thr71)			
Phospho-ERK1/2 (Thr202/Tyr204)			
Phospho-MARCKS (Ser152/156)			
Phospho-JNK(Thr183/Tyr185)			
Phospho-c-Jun (Ser63)			
Phospho-PKC (pan) (βII Ser660)			
Phospho-PKCδ (Thr505)			
Phospho-PKCδ (Ser643)			
Phospho-PKCμ (Ser744/748)			
Phospho-PKC0 (Thr538)			
Phospho-PKCζ/λ (Thr410/403)			
Phospho-SEK1/MKK4 (Thr261)			
Phospho-Ser-substrates of PKC P			
PKCμ			
GAPDH	Mouse	Chemicon International, Temecula, CA, USA	
Compound	Concentration	Manufacturer	Cellular targets
---------------------------	---------------	---	---------------------------------------
BIS I LY294002	5 µM	Calbiochem/Merk KGaA, Darmstadt, Germany	cPKC, nPKC
	20 µM		PI3K
	10 µM		cPKC, nPKC
	5 µM		PI-PLC
PMA	66 nM	Cell Signalling Technology Inc., Danvers, MA, USA	DAG-binding proteins
BAPTA-AM	10 µM	SIGMA-ALDRICH CHEMIE GmbH, Steinheim, Germany	Ca^{2+}
Genistein	150 µM		Tyrosin kinases

NOTE. Inhibitors were added to the cells 30 min prior to *H. pylori* or PMA treatment.

Supplementary Table 3 PKCθ expression in human gastric mucosa tissue

Gastric mucosa biopsies	Number of specimens	Age	Gender	Mean IRS +SEM	IRS interpretation, (number of specimens/%)				
			M	F	n	w	m	s	
Non-infected	32	19 - 72	20	12	4.72 ± 0.37	1/3.1	10/31.3	20/62.5	1/3.1
Hp-Gastritis	31	32 - 82	20	11	4.74 ± 0.40	0/0	15/48.4	16/51.6	0/0
Adenoma	21	31 - 82	11	10	5.81 ± 0.53	1/4.8	2/9.5	17/80.9	1/4.8
Adenocarcinoma	59	40 - 96	26	33	5.36 ± 0.30	1/1.7	19/32.2	38/64.4	1/1.7

NOTE. No significant variance between the groups was determined by the ANOVA global test. M, male; F, female; n, negative; w, weak; m, moderate; s, strong expression.
SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1 *H. pylori* activates PKC. AGS cells were infected with *H. pylori* P12 wt (A, C) or were stimulated with PMA (B, C) for the various times indicated, and sub-cellular fractions were prepared. Immunoblotting was performed using antibodies against phosphorylated and unphosphorylated forms of PKC isozymes. GAPDH, occludin and histone H3 were immunodetected to show the appropriate fractionation and equal protein amount in the cell samples. (C) The graphs summarize the densitometric analysis of 3 independent immunoblots (experiments). *p<0.05, **p<0.01 vs non-stimulated cells (0 hours) within each subcellular fraction. (D) AGS cells were infected with P1wt, P12 wt, its isogenic VacA-deficient mutant or with heat-inactivated bacteria (hi) for 1 or 3 h. Heat-inactivated *H. pylori* were prepared by incubating the bacteria suspension at +70°C for 15 min. In a set of experiments, Transwell® permeable supports (pore size 0.4 µM) were used to separate *H. pylori* P1wt from AGS cells grown in the bottom chamber. Pore-permeable PMA was used as a positive control. The whole cell lysates were prepared and immunoblotting was performed using antibodies as indicated. GAPDH was immunodetected to show equal protein amounts in the cell samples.

Supplementary Figure 2 Histologic examination of phospho-PKC (pan) expression in human antral gastric mucosa. High-power field confocal images are shown. Magnification, 200x. Scale bares = 200 µM.

Supplementary Figure 3 In contrast to rottlerin, BIS I does not affect viability of *H. pylori*. *H. pylori* P12 wt was incubated in RPMI 1640 medium supplemented with 5 µM BIS I or 10 µM rottlerin for 1 h. The bacteria suspension was diluted in PBS and plated onto GC agar supplemented with horse serum, vancomycin, trimethoprim, nystatin and vitamins. The bacterial colonies grew in microaerophilic conditions for 3 days, and then the photos were taken using a VersaDoc™ Imaging System (BioRad, Hercules, CA, USA).
Supplementary Figure 4 *H. pylori* up-regulates MMP-1 in a PKC-dependent manner. (A) BIS I-treated or non-treated HCA-7 cells or HSC were incubated with *H. pylori* P12 wt or PMA for 7 h. MMP-1 expression was analysed by qRT-PCR. *p<0.05, **p<0.01 vs non-stimulated cells; #p<0.05, ##p<0.01 vs BIS I-free stimulated cells. (B) BIS I-treated or non-treated HCA-7 cells or HSC were incubated with *H. pylori* P12 wt for 4 h. The whole cell lysates were prepared and immunoblotting was performed using antibodies as indicated. GAPDH was immunodetected to show equal protein amounts in the cell samples. (C) Characteristics of cultured human stomach cells (HSC) derived from prenatal stomach tissue. Expression of proteins typical for stomach epithelium (mucin 5AC, mucin 6, pan-cytokeratins and H^+, K^+-ATPase) was analysed in non-treated HSC by RT-PCR and immunostaining. GAPDH expression served as an internal control in RT-PCR. AGS cells served as a positive control. Muc 5AC, mucin 5AC; Muc 6, mucin 6. Cytokeratins and H^+, K^+-ATPase are pseudocolored in yellow; Hoechst 33342 nuclear stain is pseudocolored in margenta.

Supplementary Figure 5 *H. pylori* activates MAPK. AGS cells were infected with *H. pylori* P1 wt or the cagA and virB7 mutants for various times indicated or were stimulated with PMA for 1 h, and the cell lysates were prepared. Immunoblotting was performed using antibodies as indicated.

Supplementary Figure 6 In contrast to PMA, *H. pylori* does not accelerate wound healing. AGS cells grown on an uncoated 96-well plate were infected with different *H. pylori* strains as indicated or stimulated with 4 nM PMA in fresh RPMI 1640 containing 5% FCS in the presence or absence of BIS I for 24 h (A, B). The cells were labelled with Calcein AM and imaged (B). Relative area covered by the cells was calculated (A, C). (C) AGS cells were transfected with siRNAs against PKCα, PKCδ or PKC0 prior to stimulations. *p<0.05, **p<0.01, vs respective control; #p<0.05, vs PMA-stimulated cells.
Supplementary Figure 7 *H. pylori* induces cell scattering in a PKC-independent manner. AGS cells were either pre-treated with BIS I or transfected with PKC-targeting siRNAs and then infected with *H. pylori* P12 wt (A) or PMA (B) for 3 h. Cell morphology was monitored with an inverted Nikon Eclipse TC100 microscope.

SUPPLEMENTARY REFERENCES

1 Sokolova O, Bozko PM, Naumann M. *Helicobacter pylori* suppresses glycogen synthase kinase 3beta to promote beta-catenin activity. *J Biol Chem* 2008;283:29367-74.

2 Ghaffari-Tabrizi N, Bauer B, Villunger A, et al. Protein kinase Ctheta, a selective upstream regulator of JNK/SAPK and IL-2 promoter activation in Jurkat T cells. *Eur J Immunol* 1999;29:132-42.

3 Liu Y, Graham C, Li A, et al. Phosphorylation of the protein kinase C-theta activation loop and hydrophobic motif regulates its kinase activity, but only activation loop phosphorylation is critical to in vivo nuclear-factor-kappaB induction. *Biochem J* 2002;361:255-65.

4 Remmele W, Stegner H. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. *Pathologe* 1987;8:138-40.

5 Allred D, Harvey J, Berardo M, et al. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. *Mod Pathol* 1998;11:155-68.