Scenario Model Predictive Control for Data-Based Energy Management in Plug-In Hybrid Electric Vehicles

Sebastian East and Mark Cannon

Abstract—One of the major limitations of optimization-based strategies for allocating the power flow in hybrid powertrains is that they rely on predictions of future power demand. These predictions are inherently uncertain as they are dependent on complex human behaviors that are challenging to model accurately. This article proposes a data-based scenario model predictive control (MPC) framework, where the inputs are determined at each control update by optimizing the power allocation over multiple previous examples of a route being driven. The proposed energy management optimization is convex, and results from scenario optimization are used to bound the confidence that the one-step-ahead optimization will be feasible with given probability. It is shown through numerical simulation that scenario MPC obtains the same reduction in fuel consumption as nominal MPC with full preview of future driver behavior and that the scenario MPC optimization can be solved efficiently using a tailored optimization algorithm.

Index Terms—Hybrid and electric vehicles, optimization algorithms, predictive control for nonlinear systems.

I. INTRODUCTION

Plug-in hybrid electric vehicles (PHEVs) have a powertrain that includes an internal combustion engine, an electric motor, and a battery that can be charged from an external source. This configuration is typically chosen to obtain the benefits of all-electric propulsion (e.g., zero tailpipe emissions and regenerative braking) with a smaller battery than would be required for an all-electric vehicle, whilst also ensuring that the total combined range available before a recharge is at a useful level. The key differentiators between a PHEV and a “mild” hybrid electric vehicle (HEV) are the size of the battery and the charging method: the battery in an HEV is much smaller and cannot be charged from an external source and is therefore typically only used for regenerative braking and to accelerate the vehicle from stationary.

Multiple studies have demonstrated that the energy consumption (and consequently, the range) of a PHEV is strongly determined by the controller that allocates the driver’s power demand to the engine and motor (a comprehensive review of control methods is provided in [1]). A simple strategy is to allocate all of the power demand to the motor until the battery is empty, and then only use the motor to regeneratively brake and start the vehicle from a standstill until the end of the journey. However, blended strategies, where power is delivered from both sources simultaneously and the fraction delivered from each is varied throughout the journey, are potentially much more effective. In particular, optimization-based strategies, where the power allocation is determined using numerical optimization of a mathematical representation of the powertrain can considerably reduce fuel consumption without affecting total battery discharge. Many approaches to optimization-based energy management have been considered, including dynamic programming [2], Pontryagin’s minimum principle [3], equivalent consumption minimization strategy [4], and model predictive control (MPC) [5].

A major limitation of any optimization-based strategy is that its effectiveness is conditional on an accurate prediction of the future behavior of the driver (specifically, the velocity of the vehicle and the torque at the wheels throughout the remaining journey). This prediction is nontrivial and depends on a range of factors that may be challenging to model and predict, including the route, the geometry of the road, traffic conditions, and driving style. A common approach is to fit a model (such as a neural network [6], [7] or Markov-based model [8], [9]) to driver behavior data and then use the model to generate predictions that are fed into the energy management optimization. One of the fundamental limitations of this approach is that the model must necessarily be conditioned on a large number of environmental variables (e.g., road geometry and speed limits) that vary throughout a given journey and may themselves be uncertain. Consequently, these techniques can only generally be used to generate “short-horizon” predictions (e.g., up to ~20 s into the future); long-horizon predictions (i.e., predictions of an entire journey lasting minutes or hours) remain an open problem [10].

In this article, a data-based scenario MPC is proposed where the power split is determined at each sampling instant by optimizing the predicted fuel consumption over multiple previous examples of the route being driven. The primary benefit of this approach is that predictions of driver behavior (that inherently account for route-specific variables, such as road geometry and speed limits) can be made over arbitrarily...
long horizons, and an explicit driver model is not required. The proposed method is applicable both when a vehicle repeatedly completes the same route (e.g., public transportation and delivery/collection vehicles) and when the route to be driven is provided by a navigation device (or the vehicle is being driven autonomously). It could also be combined with a statistical method that automatically identifies the route being driven from previous driver behavior (such as that proposed in [11]), but this is not investigated in this article.

The main contributions of this article are given as follows.

1) A convex scenario MPC framework that minimizes fuel consumption across multiple predictions of future driver behavior. The approach incorporates nonlinear losses in the engine, motor, and battery; limits on the energy stored in the battery; and limits on the power delivered by both the electric motor and the internal combustion engine. Importantly, the scenario MPC framework directly optimizes the state-of-charge trajectory over the entire prediction horizon and does not rely on tracking a reference trajectory (as proposed in, for example, [5]). Results from scenario optimization [12] provide a bound on the confidence that the one-step-ahead MPC optimization will be feasible with a given probability, given the number of scenarios considered in the optimization.

2) An alternating direction method of multipliers (ADMM) algorithm tailored to the structure of the scenario MPC optimization problem, where each iteration has \(O(NS)\) memory and computational cost (where \(N\) is the prediction horizon length and \(S\) is the number of scenarios).

3) A set of numerical studies in which a nominal MPC strategy with access to accurate predictions of future driver behavior is compared against scenario MPC, for which predictions are generated directly from previously recorded journeys on the same route (i.e., the controller has no preview of the journey being simulated). Remarkably, it is found that the scenario MPC obtains the same fuel consumption as nominal MPC.

This is not the first paper proposing scenario MPC for energy management: it was previously applied to a charge sustaining hybrid electric vehicle in [13], but that paper considered a linearized vehicle model, a prediction horizon of only ten samples, and scenarios were generated using perturbations of a nominal prediction obtained from the nonparametric model proposed in [14].

This article builds on the authors’ previous work on convex optimization-based energy management in [15] and [16]. In those cases, only a single prediction of future driver behavior was considered, and the extension to multiple scenarios presented here is original work. In addition, the authors have previously investigated the use of graphics processing units (GPUs) for accelerating ADMM when used to solve similar scenario-based resource allocation problems in [17]. PHEV energy management was also used as an illustrative example in that paper, but the scenarios were generated using random perturbations of a nominal trajectory (rather than the data-based framework proposed in this article), and the energy management problem was considerably simplified and therefore not suitable for supervisory control as proposed here.

The rest of this article is structured as follows. In Section II, the energy management problem is formulated mathematically. Section III presents the SMPC controller, and the algorithm used to solve the corresponding optimization problem is presented in Section IV. The results of numerical experiments are presented and discussed in Section V.

Notation: The set of integers from \(a \in \mathbb{Z}\) to \(b \in \mathbb{Z}\) (inclusive) is denoted by \([a, \ldots, b]\). For a given set \(S\), the set of nonnegative (positive) elements of \(S\) is denoted by \(S_+\) (\(S_{++}\)), and the set of nonpositive (negative) elements of \(S\) is denoted by \(S_-\) (\(S_{--}\)). The Minkowski sum of sets \(A\) and \(B\) is \(A \oplus B = \{x+y : x \in A, y \in B\}\). The notation \(M_{ij}\) (\(M_{ii}\)) refers to the \(i\)th column (row) of matrix \(M\). The function \(\text{vec}(M)\) returns a column vector containing the columns of matrix \(M\) stacked sequentially from left to right. All inequalities are considered elementwise in the context of vectors. The symbols \(\mathbf{1}\) and \(\mathbf{0}\), respectively, denote a vector of ones and a vector of zeros (dimensions can be inferred from their context).

II. Problem Formulation

This section presents a mathematical model of a parallel, pretransmission PHEV powertrain that is used to formalize the energy management problem and later used for simulation. The model used in this article is the same as that used in [16] (and is also similar to vehicle models used in the PHEV energy management literature, e.g., [2]–[5]), and the reader is therefore referred to [16] for a more in-depth exposition; only the details required to understand the following sections are included here. Fig. 1 shows a simplified diagram of the powertrain under consideration, for which the relevant behavior of the driver can be described completely by the vehicle’s velocity, \(v(t)\), and the road gradient, \(\theta(t)\), for all \(t \in [0, T]\), where \(T \in (0, \infty)\) is the duration of the journey (the problem is not to control the behavior of the vehicle in an autonomous sense). From this description of driver behavior, the rotational speed of the wheels, \(\omega_w(t)\), and power demanded at the wheels, \(P_{\text{dev}}(t)\), are defined by

\[
\omega_w(t) := v(t)/r_w \tag{1}
\]

(1)

(1)

\(\text{where} \ r_w \in \mathbb{R}_{++}\ \text{is the effective radius of the wheels}\) and the longitudinal vehicle model

\[
P_{\text{dev}}(t) := \left[m \ddot{v}(t) + \frac{1}{2} \rho_a v(t)^2 C_d A + C_r m g \cos \theta(t) + m g \sin \theta(t) \right] v(t) \tag{2}
\]

PROBLEM FORMULATION

\[m \in \mathbb{R}_{++}\ \text{is the mass}, \ \rho_a \in \mathbb{R}_{++}\ \text{is the density of air}, \ C_d \in \mathbb{R}_{++}\ \text{is the drag coefficient}, \ A \in \mathbb{R}_{++}\ \text{is the frontal area}, \ C_r \in \mathbb{R}_{++}\ \text{is the rolling resistance}, \ \text{and} \ g \in \mathbb{R}_{++}\ \text{is the acceleration due to gravity (it is also assumed that} \ v(t) \ \text{is differentiable everywhere). Consequently, there are four parameters that must be controlled for all} \ t \in [0, T] \ \text{in order that the operation of the powertrain is well defined:}

1) the state of the engine, \(\sigma(t) \in \{0, 1\}\), where \(\sigma(t) = 1\) implies that the engine is ON and the clutch engaged, and \(\sigma(t) = 0\) implies that the engine is OFF and the clutch disengaged;
The battery is modeled as an equivalent circuit consisting of an internal resistance only so that the rate of depletion of the battery’s internal energy, $u(t)$, is modeled by the function $g : \mathbb{R} \times \mathbb{R}_+ \times \mathbb{R}_+ \mapsto \mathbb{R}$, which is defined as

$$u(t) := g(P_c(t), V(t), R(t)) := \frac{V(t)^2}{2R(t)} \left(1 - \frac{1 - 4R(t)}{V(t)}P_c(t)\right)$$

for all $t \in [0, T]$. For the purposes of this formulation, it is assumed that $u(t)$ is Riemann integrable. The objective of optimization-based energy management is to minimize the fuel consumed during a given journey, i.e., to obtain values $d(t)^* := (\sigma(t)^*, r(t)^*, P_{\text{brk}}(t)^*, P_{\text{eng}}(t)^*)$ that minimize

$$\inf_{d(t) \in D(t)} m_f(T).$$

Here, $D(t)$ is a time-dependent set that enforces hard constraints on the torque, rotational speed, power, and energy of each of the components shown in Fig. 1 (see [16] for a more complete description). In particular, the engine power has instantaneous upper and lower bounds (which also implicitly impose bounds on the motor and battery power)

$$P_{\text{eng}}(t) \leq P_{\text{eng}}(t) \leq \bar{P}_{\text{eng}}(t) \quad \forall t \in [0, T]$$

and the state of charge of the battery is constrained between upper and lower limits

$$E_{\text{min}} \leq E(t) \leq E \quad \forall t \in [0, T].$$

Obtaining a solution to (5) is intractable in general due to the complex constraints on system operation and the fact that the solution depends on the power and velocity required of the vehicle in the future, which cannot be known with complete precision a priori.

III. Scenario MPC

We propose an MPC framework for solving (5) approximately, in which the control variables are updated at a frequency of 1 Hz1 throughout the journey by solving a discrete-time optimal control problem and held constant between each update. To aid the presentation of the proposed framework, we begin by considering the deterministic case where, at each variable update instant, the controller has a single prediction of the vehicle’s future velocity, $\nu := (\nu_0, \ldots, \nu_{N-1}) \in \mathbb{R}^N$, and the gradient of the road, $\theta := (\theta_0, \ldots, \theta_{N-1}) \in \mathbb{R}^N$, where $N \in \mathbb{N}$ is the length of the prediction horizon2; later, this formulation will be extended to consider the case of multiple predictions. It is assumed that

1The approach can be readily extended to an arbitrary sampling interval, subject to the associated MPC optimization solution times.

2Note that, for the example variable ν, the notation $\nu(t)$ is used to represent the simulated velocity at time t, whereas the notation $\nu_{\hat{t}}$ is used to represent the velocity predicted by the MPC at time $\nu_{\hat{t} + k}$.

![Diagram of the loss functions and variables that are used in the mathematical formulation of the energy management problem. The directions of the arrows represent the direction of power transfer. Symbols are included to indicate how the power flows are combined at the summing junctions.](image-url)
the predictions are also sampled at 1 Hz, although this is not required and the methods presented here can be extended to an arbitrary sampling interval. The predicted rotational speed of the wheels, \(\omega_{w,k} \in \mathbb{R} \), and driver’s power demand, \(P_{dv,k} \in \mathbb{R} \), can then be determined for all \(k \in \{0, \ldots, N-1\} \) using similar forms of (1) and (2) (the accelerations \(\ddot{v}_k \) can be calculated using numerical differentiation of \(v \)).

A. Convex MPC

It has previously been demonstrated in [15] that if the gear selection, braking power, and engine switching control are predetermined (by either a heuristic or optimization-based method), then the problem of determining the optimal power split between the motor and internal combustion engine with respect to (5) can be reduced to a convex optimization problem under minor further approximation,\(^3\) and this is the approach taken here. Again, only sufficient detail is reproduced here to understand the following development, and interested readers are referred to [15] for more details.

To achieve the convex energy management formulation, first, the engine and motor maps are approximated as strictly convex quadratic functions\(^4\)

\[
f(P_{\text{eng}}(t), \omega_{\text{eng}}(t)) \approx \alpha_2(\omega_{\text{eng}}(t))P_{\text{eng}}(t)^2 + \alpha_1(\omega_{\text{eng}}(t))P_{\text{eng}}(t) + \alpha_0(\omega_{\text{eng}}(t))
\]

where \(\alpha_2(x) > 0 \forall x \in \text{dom}(\alpha_2) \) and

\[
h(P_{\text{em}}(t), \omega_{\text{em}}(t)) \approx \beta_2(\omega_{\text{em}}(t))P_{\text{em}}(t)^2 + \beta_1(\omega_{\text{em}}(t))P_{\text{em}}(t) + \beta_0(\omega_{\text{em}}(t))
\]

where \(\beta_2(x) > 0 \forall x \in \text{dom}(\beta_2) \). Then, at each MPC update when in operation, the following steps are taken to obtain the convex formulation as presented in [15].

1) The predicted values of engine state, \(\sigma_k \), braking power, \(P_{\text{brk},k} \), and gear selection, \(r_k \), are determined using the external control strategy for all \(k \in \{0, \ldots, N-1\} \).

2) The predicted values of powertrain output power, \(P_k \), are determined using a similar form of (4) (i.e., indexed by \(k \) instead of \(t \)) for all \(k \in \{0, \ldots, N-1\} \).

3) The set \(\mathcal{P} \) is defined as the subset of values of \(0, \ldots, N-1 \) where the engine is switched ON, i.e.,

\[
\mathcal{P} := \{k : \sigma_k = 1\}.
\]

4) The predicted values of engine speed, \(\omega_{\text{eng},k} \), and motor speed, \(\omega_{\text{em},k} \), are determined for all \(k \in \{0, \ldots, N-1\} \) using a similar form of (3).

5) The predicted rate of fuel consumption, \(\dot{m}_{f,k} \in \mathbb{R}_+ \), and battery output power, \(P_{c,k} \in \mathbb{R} \), is defined by the quadratic functions

\[
\dot{m}_{f,k} := f_k(P_{\text{eng}}(t)) := \alpha_{2,k}P_{\text{eng},k}^2 + \alpha_{1,k}P_{\text{eng},k} + \alpha_{0,k}.
\]

\[
P_{c,k} := h_k(P_{\text{em},k}) := \beta_{2,k}P_{\text{em},k}^2 + \beta_{1,k}P_{\text{em},k} + \beta_{0,k}
\]

where \(\alpha_{i,k} := \alpha_i(\omega_{\text{eng},k}) \) and \(\beta_{i,k} := \beta_i(\omega_{\text{em},k}) \), for all \(i \in \{0,1,2\} \) and \(k \in \{0, \ldots, N-1\} \).

6) The open-circuit voltage and resistance of the battery, \(V_k \) and \(R_k \), are assumed to be fixed \textit{a priori} and not considered as part of the optimization (for small variations in battery SOC, it can be effective to set \((V_k, R_k) = (V(t), R(t)) \) for all \(k \in \{0, \ldots, N-1\} \)).

7) The predicted rate of battery depletion, \(u_k \in \mathbb{R} \), is defined as equal to the function

\[
u_k := g_k(P_{\text{em},k}) := \frac{V_k^2}{2R_k} \left(1 - \sqrt{1 - \frac{4R_k}{V_k}h_k(P_{\text{em},k})} \right)
\]

for all \(k \in \{0, \ldots, N-1\} \).

8) Values of \(u_k \in \mathbb{R} \) and \(\bar{u}_k \in \mathbb{R} \) are generated for all \(k \in \{0, \ldots, N-1\} \) so that the box constraints \(\underline{u}_k \leq u_k \leq \bar{u}_k \) enforce instantaneous power limits on all powertrain subsystems, contain the arguments of \(f_k(\cdot) \) and \(h_k(\cdot) \) to the domain in which they are strictly increasing, and deliver sufficient electrical power when the engine is OFF (i.e., for all \(k \notin \mathcal{P} \)).

Consequently, the fuel consumption at each timestep \(k \) can be modeled in terms of the battery’s internal power by the convex function \(F_k : \{u_k, \bar{u}_k\} \mapsto \mathbb{R}_+ \), defined as

\[
F_k(u_k) := f_k(p_k - g_k^{-1}(u_k)) \forall k \in \{0, \ldots, N-1\}
\]

where \(g_k^{-1} : \{u_k, \bar{u}_k\} \mapsto \{g_k^{-1}(u_k), g_k^{-1}(\bar{u}_k)\} \) models the motor’s output power as a function of the battery’s internal power (the inverse function exists for all \(k \in \{0, \ldots, N-1\} \) [20, Lemma 3.2.5]) and is defined as

\[
g_k^{-1}(u_k) := \frac{\beta_{1,k}}{2\beta_{2,k}} \left(\sqrt{\frac{R_k u_k^2}{\beta_{2,k} V_k^2} + \frac{u_k - \beta_0}{\beta_{2,k}} + \frac{\beta_{1,k}}{4\beta_{2,k}}} \right) - \frac{\beta_{1,k}}{2\beta_{2,k}}.
\]

As the control inputs are constant between update instants, the predicted internal energy of the battery, \(x_k \), is given by

\[
x_k := x(t) - \sum_{i=0}^{k-1} u_i \forall k \in \{1, \ldots, N\}.
\]

Therefore, the problem of determining the optimal battery power allocation (which implicitly determines the optimal motor and engine power) reduces to the convex minimization

\[
\min_{(u,x)} \sum_{k \in \mathcal{P}} F_k(u_k) \quad \text{s.t. } x = 1x(t) - \Psi u
\]

\[
\mu \leq u \leq \bar{u}
\]

\[
1x \leq x \leq 1\bar{x}
\]

(MPC)

where \(u := (u_0, \ldots, u_{N-1}) \), \(\bar{u} := (\bar{u}_0, \ldots, \bar{u}_{N-1}) \), \(x := (x_1, \ldots, x_N) \), and \(\Psi \) is a lower triangular matrix of ones. Problem (MPC) is convex as the objective functions \(F_k \) are all convex [15], and the decision variables are only subject to affine equality and inequality constraints, which are also

\(^3\)There is an alternative method for achieving a convex formulation, as presented in [18], but the method presented in [15] results in an optimization problem with preferable structure. The solutions obtained using both methods are mathematically equivalent.

\(^4\)This is a common approach and has been shown to achieve a very close approximation of the true loss maps (see, e.g., [19, Sec. 7]).
convex. The MPC input is then defined by \(u^*_0 \), where \(u^* \) is the minimizing argument of (MPC). The following lemmas are proven in [20, Sec. 4.1].

Lemma 1: If (MPC) is feasible, then the solution exists and is unique.

Lemma 2: Problem (MPC) is feasible if and only if \(\mathcal{F}_k \neq \emptyset \) \(\forall k \in \{1, \ldots, N\} \), where \(\mathcal{F}_0 := \{x(t)\} \), and \(\mathcal{F}_{k+1} := [\mathcal{F}_k \oplus -[\mu_k, \pi_k]] \cap \{\mathcal{V}_k, \Theta_k\} \forall k \in \{0, \ldots, N - 1\} \).

B. Scenario Optimization

A limitation of the MPC energy management strategy based on the solution of (MPC) is that it relies on a single, deterministic prediction of \(v \) and \(\theta \), which will typically be inaccurate. The ideas presented in Section III-A are now extended to the stochastic case using scenario optimization.

Consider the case where \(v \) and \(\theta \) are drawn from sets \(\mathcal{V} \) and \(\Theta \), according to an associated probability measure, and the stochastic optimization problem that minimizes the expected fuel consumption across all possible realizations of \(v \) and \(\theta \) is

\[
\begin{align*}
\min_{(u, v)} & \quad \mathbb{E}_{v \sim P(v), \theta \sim \rho(\theta)} \left[\sum_{\mathcal{P}(v, \theta)} F_k(u_k, v_k, \theta_k) \right] \\
\text{s.t.} & \quad x = 1x(t) - \Psi u, \\
& \quad \mu(v, \theta) \leq u \leq \pi(v, \theta) \quad \forall (v, \theta) \in \mathcal{V} \times \Theta \\
& \quad 1x \leq x \leq 1\tau.
\end{align*}
\]

The following can be proven using minor modifications to the proofs of Lemmas 1 and 2 in [20, Sec. 4.1]:

Lemma 3: If (SMPC) is feasible, then the solution exists and is unique.

Lemma 4: Problem (SMPC) is feasible if and only if \(\mathcal{F}_{k+1} \neq \emptyset \) \(\forall k \in \{1, \ldots, N\} \), where \(\mathcal{F}_0 := \{x(t)\} \), \(\mathcal{F}_{1} := [\mathcal{F}_0 \oplus -[\mu_0, \pi_0]] \cap \{\mathcal{V}_0, \Theta_0\} \), and \(\mathcal{F}_{k+1} := [\mathcal{F}_k \oplus -[\mu_k, \pi_k]] \cap \{\mathcal{V}_k, \Theta_k\} \forall k \in \{0, \ldots, N - 1\}, s \in 1, \ldots, S\}.

From a computational perspective, (SMPC) has two significant advantages relative to (6). First, (SMPC) is convex and deterministic and can therefore be readily solved using standard convex optimization algorithms. Second, (SMPC) does not require the driver’s behavior to be modeled explicitly, and the scenarios can be drawn from a database obtained from previous examples of a given route (or its constituent parts, assembled from available data). An additional advantage of (SMPC) from a control perspective is that it allows a separate control vector for each scenario (i.e., \(u \in \mathbb{R}^{N \times S} \)) rather than a single control vector that minimizes the objective across all predictions. This is preferable as, at any given instant along the prediction horizon, one scenario may predict high speed and/or acceleration, whereas another may predict that the vehicle is moving slowly or is stationary (this places conflicting requirements on the predicted control input which cannot satisfy both simultaneously). The predicted control trajectories in (SMPC) can therefore be interpreted as samples of a control probability density function, which is a more general representation than that considered in (6). The solution of (SMPC) provides a meaningful MPC law since the first element of each predicted control sequence is constrained to be equal so that the feedback law is defined by \(u(t) := \tau^* \), where \(\tau^* \) is obtained from the minimizing argument of (SMPC).

A limitation of (SMPC) is that the solution only converges in the limit as \(S \to \infty \) (the error term between the solution of (SMPC) and the expected cost with respect to the true probability distribution is \(O(S^{-1/2}) \) [21]). This may become problematic if both a large number of scenarios and a long prediction horizon is required, as (SMPC) has \(O(\text{NS}) \) decision variables. An efficient ADMM algorithm for the solution of (SMPC) is presented in the following to address this issue. A further limitation is that the solution of (SMPC) represents \(S \) deterministic, open-loop policies, so the optimal value of (SMPC) does not necessarily converge to the resulting closed-loop cost as \(S \to \infty \). Possible modifications to the
proposed framework that addresses this optimality gap are discussed in Section V-B in light of the numerical results that follow.

C. Feasibility

This section addresses the feasibility of (SMPC) when implemented in closed loop. In particular, results from scenario MPC are used to obtain a bound on the number of scenarios, S, required to provide a given confidence that the one-step-ahead instance of (SMPC) will be feasible with a given probability.

Assumption 1: The first element of the predictions of velocity and road gradient is accurate measurements of the vehicle’s current velocity and the current road gradient and is therefore equal for each scenario, i.e., $v_{0,s} = v(t)$ and $\theta_{0,s} = \theta(t)$ for all $s \in \{1, \ldots, S\}$.

Under Assumption 1, $u_{0,s} = u(t)$ and $\overline{u}_{0,s} = \overline{u}(t)$ for all $s \in \{1, \ldots, S\}$ (where $u(t) \in \mathbb{R}$ and $\overline{u}(t) \in \mathbb{R}$ are the lower and upper limits on battery power at time t, respectively).

Assumption 2: $u(t) \leq \overline{u}(t)$ for all $t \in \{0, \ldots, T\}$.

Assumption 2 can reasonably be expected to hold in general using the method outlined in [15] and must hold in practice (the battery must do something). Consequently, Lemma 4 implies that a given instance of (SMPC) is feasible if and only if

$$x(t) - \overline{u}(t) \leq \overline{x}$$

(7)

$$x(t) - u(t) \geq \underline{x}$$

(8)

$$x(t) - \overline{u}(t) - \sum_{i=1}^{N-1} \overline{u}_{i,s} \leq \overline{x}$$

(9)

$$x(t) - u(t) - \sum_{i=1}^{N-1} u_{i,s} \geq \underline{x}$$

(10)

for all $k \in \{1, \ldots, N-1\}$ and $s \in \{1, \ldots, S\}$. The physical interpretation of the conditions (7) and (9) being violated is that so much regenerative braking is used/expected that the powertrain will be forced to overcharge the battery. It can reasonably be assumed that any given vehicle will be designed so that all of the required braking power can be delivered by the mechanical brakes; therefore, it follows that the power allocated to the electric system can always be modified to ensure that (7) and (9) hold. However, driveability issues may be introduced if the relative fraction of braking power required from the motor and mechanical brakes changes significantly from one MPC update to the next, in order to ensure that (7) holds. The physical interpretation of the conditions (8) and (10) being violated is that so much drive power is demanded/expected from the powertrain that the battery will be forced to discharge. In this case, either the engine needs to be switched ON to help meet the driver’s power demand [which can also introduce driveability issues if this action is taken to ensure (8)] or if the engine is already ON, and the power delivered by the powertrain will need to be reduced below that demanded by the driver (which could be dangerous if it occurs, for example, during an overtaking maneuver).

Assumption 3: The scenarios are generated so that (9) and (10) always hold.

Assumption 3 reflects the fact that the above considerations can be considered when determining the engine switching and braking control used for the predictions. Consequently, problem (SMPC) is feasible at time t if and only if (7) and (8) hold, and feasible at time $t+1$ if and only if

$$x(t) - \tau^*(t) - \overline{u}(t+1) \leq \overline{x} \quad \text{and} \quad x(t) - \tau^*(t) - u(t+1) \geq \underline{x}$$

(11)

where $u^*(t)$ and $\tau^*(t)$ are obtained from the solution of (SMPC) at time t. Given the above physical interpretations of these constraints, the concept of feasibility here is synonymous with the powertrain operating as intended at the current time.

Now, note that problem (SMPC) is equivalent to

$$\min_{\{u,x,\tau\} \in \kappa} \frac{1}{S} \sum_{s=1}^{S} \sum_{k \in P_s} f_{k,s} \left(p_{k,s} - \frac{1}{\beta_{k,s}} (u_{k,s}) \right)$$

(12a)

s.t. $x(t) \leq \tau \in [\underline{x} + u_{1,s}, \overline{x} + \overline{u}_{1,s}]$$

\forall s \in \{1, \ldots, S\}$

(12b)

(where κ is a convex constraint set), which is the form of problem considered in [12]. To apply the results of [12], assume that (SMPC) is feasible at time t and define the violation probability for the one-step-ahead feasibility condition (11) as

$$V(\tau^*(t)) := \mathbb{P} \left[x(t) - \tau^*(t) \notin [\underline{x} + u(t+1), \overline{x} + \overline{u}(t+1)] \right]$$

where $u(t+1)$ and $\overline{u}(t+1)$ can be interpreted as an unseen sample of the random variables $u_{1,s}$ and $\overline{u}_{1,s}$ in (SMPC). The support rank of constraint (12b) is one, since the constraint fixes a single degree of freedom of the decision variable (u, x, τ) (see [12, Definition 3.6]). Therefore, the confidence bound

$$\mathbb{P} \left[V(\tau^*(t)) > \beta \right] \leq B(\epsilon; S, 0) = (1 - \epsilon)^S$$

(13)

on the violation (i.e., one-step-ahead infeasibility) probability of (SMPC) immediately follows from [12, Th. 4.1]. More generally, if R samples are discarded (using any criteria, e.g., a greedy strategy), then the right-hand side of (13) can be replaced with $B(\epsilon; S, R)$, where B is the beta distribution.

If the confidence that the violation probability is no greater than β is β, then the lower bound on the number of scenarios required to meet a given confidence of violation probability is

$$S \geq \frac{\log (1 - \beta)}{\log (1 - \epsilon)^5}$$

(14)

This bound is shown in Fig. 2. One-step-ahead feasibility (and by induction, recursive feasibility) is only guaranteed with

Note that, while the set κ depends on the S random samples of V and Θ and is therefore “stochastic,” the problem of interest here is whether the solution of (SMPC) remains feasible with respect to an additional randomly sampled constraint of the form of (12b) only and not every constraint from (SMPC) (i.e., κ does not change when the new scenario is sampled). Therefore, κ can be considered deterministic, and the relevant support rank is that of constraint (12b).

5Note that, while the set κ depends on the S random samples of V and Θ and is therefore “stochastic,” the problem of interest here is whether the solution of (SMPC) remains feasible with respect to an additional randomly sampled constraint of the form of (12b) only and not every constraint from (SMPC) (i.e., κ does not change when the new scenario is sampled). Therefore, κ can be considered deterministic, and the relevant support rank is that of constraint (12b).
complete certainty in the limit as $S \to \infty$. However, note that (14) is a lower bound on the confidence of constraint violation probability, which will only be tight when the state of charge of the battery is “close” to its limits (i.e., one-step-ahead feasibility is guaranteed when the battery’s state of charge is “far” from its limits, as it will not be possible to exceed the limits within two sampling intervals). It is not common for the state of charge of the battery to approach its upper or lower bounds more than once or twice during a given journey (see, e.g., [3, Sec. 5], [5, Sec. 5], [22, Sec. 5], and the results that follow), so high confidence of feasibility throughout a given journey may be obtained with a modest number of scenarios. For example, a bound on constraint violation of $\hat{\epsilon} = 0.1$ can be achieved with confidence of $\hat{\beta} \geq 0.9$ using just $S = 22$ scenarios. This can be improved to $V(r^*(t)) \leq 0.01$ with a confidence of $\hat{\beta} \geq 0.99$ by using $S = 459$ scenarios.

IV. Optimization Algorithm

It was shown in [16] that ADMM can be used to solve the deterministic case (MPC) in a fraction of a second for prediction horizons exceeding 1000 time steps and that it is generally orders of magnitude faster than the general-purpose convex optimization software CVX [23] with SDPT3 [24]. Therefore, in this section, we extend the ADMM algorithm in [16] to the scenario optimization (SMPC).

1) Algorithm: Problem (SMPC) is equivalent to the equality constrained problem

$$\min_{(u, x, \tau)} \frac{1}{S} \sum_{s=1}^{S} \left(\sum_{k \in P_s} (f_{k,s}(p_{k,s} - g_{k,s}^{-1}(u_{k,s}))) + \sum_{k=0}^{N-1} (I_{u_{k,s}}(u_{k,s}) + I_{x_k}(x_{k+1,s})) \right)$$

s.t. $u = \zeta, \quad x = \Phi x(t) - \Psi \zeta, \quad 1 \tau = u_0^T$,

which is in turn equivalent to

$$\min_{\tilde{u}, \tilde{x}} \tilde{f}(\tilde{u}) \quad \text{s.t.} \quad A\tilde{u} + B \tilde{x} = c$$

where

$$\tilde{u} := (\text{vec}(u), \text{vec}(\chi)), \quad \tilde{x} := (r, \text{vec}(\zeta))$$

$$\tilde{f}(\tilde{u}) := \frac{1}{S} \sum_{s=1}^{S} \left(\sum_{k \in P_s} (f_{k,s}(p_{k,s} - g_{k,s}^{-1}(u_{k,s}))) + \sum_{k=0}^{N-1} (I_{u_{k,s}}(u_{k,s}) + I_{x_k}(x_{k+1,s})) \right)$$

$$A := \begin{bmatrix} I & 0 \\ O & I \end{bmatrix}, \quad B := \begin{bmatrix} O & -I \\ O & I \otimes \Psi \end{bmatrix}$$

$c := (0, 1x(t), 0)$.

Now, define the augmented Lagrangian function $L_\rho : \mathbb{R}^{2NS} \times \mathbb{R}^{1+NS} \times \mathbb{R}^{2(N+1)S} \to \mathbb{R}$ as

$$L_\rho(\tilde{u}, \tilde{x}, \lambda) := \frac{1}{S} \sum_{s=1}^{S} \left(\sum_{k \in P_s} (f_{k,s}(p_{k,s} - g_{k,s}^{-1}(u_{k,s}))) + \sum_{k=0}^{N-1} (I_{u_{k,s}}(u_{k,s}) + I_{x_k}(x_{k+1,s})) + \frac{\rho_1}{2} \| u_{s_k} - \zeta_{s_k} + \psi_{s_k} \|^2 + \frac{\rho_2}{2} \| x_{s_k} + \Psi \zeta_{s_k} - 1x(t) + \psi_{s_k} \|^2 + \frac{\rho_3}{2} (r - u_{0,s_k} + \phi_k)^2 \right)$$

where $\lambda := (\text{vec}(v), \text{vec}(\psi), \phi)$ is a vector of Lagrange multipliers and $v \in \mathbb{R}^N, \psi \in \mathbb{R}^{N+1}, \phi \in \mathbb{R}^S$. Problem (17) is the canonical form of the optimization problem considered in [25], where it is shown that the ADMM iteration

$$u^{(i+1)} := \arg \min_{\tilde{u}} L_\rho(\tilde{u}, \tilde{x}^{(i)}, \lambda^{(i)}), \quad \tilde{x}^{(i)} := \tilde{x}^{(i)} + \rho_1 (\tilde{x}^{(i)} - \tilde{x}^{(i-1)}) \quad (18a)$$

$$\tilde{x}^{(i)} := \arg \min_{\tilde{x}} L_\rho(\tilde{u}^{(i)}, \tilde{x}, \lambda^{(i)}), \quad \tilde{x}^{(i)} := \tilde{x}^{(i)} + \rho_2 (\tilde{x}^{(i)} - \tilde{x}^{(i-1)}) \quad (18b)$$

$$\tilde{r}^{(i)} := \tilde{r}^{(i)} + \rho_3 (\tilde{r}^{(i)} - \tilde{r}^{(i-1)})$$

converges to the (unique, in this case) solution. The optimality and convergence of a given iterate $(\tilde{v}^{(i)}, \tilde{x}^{(i)}, \tilde{r}^{(i)})$ is indicated by the sizes of the residual variables defined by

$$r^{(i)} := \begin{bmatrix} \text{vec}(u^{(i)}) - \text{vec}(\zeta^{(i)}) \\ \text{vec}(x^{(i)}) - 1x(t) + \Psi \zeta^{(i)} \end{bmatrix} \quad \text{and} \quad \epsilon \equiv \max \left\{ \| r^{(i)} \|, \| s^{(i)} \| \right\} \leq \epsilon$$

The proof is provided for a single, scalar value of ρ, but trivially extends to the case where ρ can be represented by a diagonal matrix with positive elements. Also, note that (SMPC) has only affine inequality constraints, so feasibility is a sufficient condition for strong duality [26, Proposition 5.3.1].
is met, where $\epsilon \in \mathbb{R}_{++}$ is a predetermined convergence threshold. The iteration (18) can be made to terminate at a point that can be made arbitrarily close to the unique minimizing argument of (SMPC) by setting the termination threshold, ϵ, arbitrarily close to zero.

A. Variable Updates and Complexity

The \bar{u} ADMM update (18a) is equivalent to

$$
\bar{u}_0^{(i+1)} = \arg \min_{\bar{u}_0} \left(f_{0,s}(p_{0,s} - g_{0}^{-1}(u_{0,s}^{i})) + \mathcal{I}_{\bar{u}_0}(u_{0,s}^{i}) \right)
$$

$$
+ \frac{\rho_1}{2} \left(u_{0,s}^{i} - \phi_0^{(i)} + v_0^{(i)} \right)^2
$$

$$
+ \frac{\rho_2}{2} \left(\tau^{(i)} - u_{0,s}^{i} + \phi_1^{(i)} \right)^2
$$

$\forall s \in \{1, \ldots, S\}$

$$
u_0^{(i+1)} = \frac{1}{\nu_0} \left(\bar{u}_{0,s}^{i} - \phi_1^{(i)} + v_0^{(i)} \right)
$$

$\forall s \in \{0, \ldots, S\}$,

The \bar{x} ADMM update (18b) is equivalent to

$$
\tau^{(i+1)} = \frac{1}{S} \sum_{s=1}^{S} \left(u_{0,s}^{i+1} + \phi_1^{(i+1)} \right)
$$

$$
\zeta^{(i+1)} = \frac{1}{\rho} \left(\rho_1 I + \rho_2 \Psi^T \Psi \right)^{-1}
$$

$$
\times \left(\rho_1 (u_{s,s}^{i+1} + v_{s,s}^{i}) - \rho_2 \Psi^T (x_{s,s}^{i} - 1x(t) + y_{s,s}^{i}) \right).
$$

The computation of $\tau^{(i+1)}$ scales linearly with S regardless of whether parallel processing is used, but since this is a scalar sum, it is typically computationally inexpensive. The computation required to solve the linear system of equations ($\rho_1 I + \rho_2 \Psi^T \Psi \boldsymbol{x} = \boldsymbol{b}$) with $\boldsymbol{x} \in \mathbb{R}^N$ and $\boldsymbol{b} \in \mathbb{R}^N$ and evaluate the matrix–vector product $\Psi^T \boldsymbol{x}$ scales linearly with N (the proof of the former is available in [27, Appendix D], while multiplication by Ψ^T is a cumulative sum). Therefore, the computation of $\zeta^{(i+1)}$ scales as $\mathcal{O}(N)$ if the S updates are performed in parallel or $\mathcal{O}(NS)$ if they are performed sequentially. The Cholesky factors required for the solution of the linear system of equations (see [27, Appendix D] for details) are the same for each scenario so only need storing once. Therefore, the memory cost of the update is $\mathcal{O}(N)$.

The computation of residual updates (19) scales linearly with N and S (the only nontrivial computations are multiplication by Ψ, which is equivalent to a cumulative sum, and multiplication by $(I_S \otimes [1,0,\ldots,0]^{T})$, which is a mathematical representation of a simple operation that copies the value of $(\tau^{(i)} - \tau^{(i+1)})$ into entries of a sparse column vector). In addition, $\mathcal{O}(NS)$ memory storage is required to store the variables $\tau^{(i)}$ and $\zeta^{(i)}$ for the computation of $s^{(i+1)}$ at the following iteration. The λ update is equivalent to $\lambda^{(i+1)} = \lambda^{(i)} + \mu^{(i+1)}$.

V. NUMERICAL EXPERIMENTS

The performance of the proposed SMPC was investigated using numerical simulations of a PHEV completing 49 instances of a 13-km route, as shown in Fig. 3. The key property of these data is that they represent multiple trips of the same route and can therefore be readily implemented in the scenario MPC framework. In addition, it was obtained using four different drivers, in weather conditions including “dry,” “wet,” and “foggy,” which therefore implies that an energy management strategy that performs well across all journeys is robust to variations in driving style and weather. Detailed descriptions of the traffic conditions are unavailable, but start–stop artifacts are absent from the data, suggesting that the traffic was generally light. The route is a 6.5-km return trip and includes a junction (visible from the speed drop at \sim5 km and returning at \sim9 km) and a roundabout at the midway point (visible from the speed drop at 6.5 km). The first half of the route is predominantly uphill, and therefore, the second half is predominantly downhill. The PHEV was modeled for simulation as an 1800-kg passenger vehicle with a 100-kW engine, 50-kW motor, and a 21.5-Ah battery, which is representative of the vehicle used to obtain the data. For each journey, two controllers were used.

1) A nominal MPC law defined by $u(t) := u_0^\star$, where u_0^\star is the first element of the minimizing argument of (MPC). At each control variable update instance, the MPC used a single scenario that was a completely accurate representation of driver behavior during the entire remaining portion of the journey and was solved using the ADMM algorithm from [16].

2) A scenario MPC law defined by $u(t) := \tau^\star$ where τ^\star was obtained from the solution of (SMPC) using the ADMM algorithm described in Section IV. At each
control variable update instance, the MPC used scenarios generated from the 48 examples of driver behavior other than the one being used for simulation; the full method is described in Section V-A.

For both controllers, the gear ratio was selected using a simple vehicle speed-based heuristic, the engine was always switched ON if the rotational speed of the engine was greater than its minimum speed (and otherwise switched OFF), and the mechanical braking power was set as a fixed fraction of braking power. The choice of these heuristics is not important for the purposes of this article, only that the same heuristics are used for both MPC approaches. For each journey, the state of charge of the battery was initialized at 60% and constrained between 40% and 100%. These simulation parameters were chosen to ensure that the lower state-of-charge constraint was active during the simulations, as the solution of (SMPC) becomes significantly harder under this condition.

The parameters ρ_1 and ρ_2 in the ADMM algorithm were set at $\rho_1 = 2.34 \times 10^{-4}$ and $\rho_2 = 8.86 \times 10^{-9}$ (as in [15]), and ρ_3 was set as equal to ρ_1 (as they both correspond to constraints on power). The termination criterion was set at $\epsilon = 0.1$ (this value was found to be sufficiently low to avoid the constraint satisfaction issue discussed in [16, §5-C]). The simulations were programmed in MATLAB and run on a 2.60-GHz Intel i7-9750H CPU.

A. Scenario Generation

A database was available to the controller where arrays of velocity, road gradient, and time data, indexed by the longitudinal position within the route, l, and sampled at a resolution of 1 m, were available for all of the 49 journeys used for simulation. Before the start of each simulated journey, the position indexed data for $S = 48$ journeys (i.e., every journey except the one representing the actual journey to be simulated) was retrieved. The data used for simulation were indexed by time, and at each sample time $t \in \{0, \ldots, T-1\}$ during a simulated journey, the scenarios were generated using the following steps.

1) The longitudinal position of the vehicle was obtained from $l(t) = \sum_{i=0}^{t-1} v(i)$.
2) For each of the $S = 48$ journeys that had been retrieved from the database, a scenario was generated by the following.
 a) Resampling the position-indexed velocity (\hat{v}) and road gradient ($\hat{\theta}$) data for the remaining simulation distance in terms of time at a rate of 1 Hz.
 b) Calculating the scenario road gradient and velocity values using the “blending” coefficient $e^{-0.25k}$ and

 \[
 \begin{bmatrix}
 \hat{\theta}_{k,s} \\
 \hat{v}_{k,s}
 \end{bmatrix} := \begin{bmatrix}
 \theta(t) \\
 v(t)
 \end{bmatrix} e^{-0.25k} + \begin{bmatrix}
 \hat{\theta}_{k,s} \\
 \hat{v}_{k,s}
 \end{bmatrix} (1 - e^{-0.25k})
 \forall k \in \{0, \ldots, N-1\}. \tag{21}
 \]

 \[7\text{The acceleration values used in the longitudinal power model (2) were obtained from } a_{l,t} := \hat{v}(t)e^{-0.25} + \hat{\theta}(t) \text{ for all } k \in \{0, \ldots, N-1\}, \text{ where } \hat{v}(t) \text{ is the vehicle's simulated acceleration at time } t \text{ and } \hat{\theta} \text{ is obtained by numerically differentiating } \theta. \text{ The values of } v, \theta \text{ were not numerically differentiated directly as additional acceleration may be introduced by (21), which would distort the predicted power demand.}

The principle of this approach is that the predictions are made entirely using other data “previously” recorded from the route and that the controller has no additional information about the current journey. The “blending” process (21) was included as it was found that the near-horizon predictions (i.e., $k \in \{0, \ldots, 5\}$) were otherwise highly inaccurate due to the uncertainty in the velocity at any given point in the journey, as shown in Fig. 3. An example of the predictions generated using the above process is shown in Fig. 4. It can be observed in Fig. 3 that while there is uncertainty in the velocity at any given point on the route, there is also some discernible structure: for example, there is a roundabout at the midpoint of the journey and the velocity in all examples drops at this point. It is interesting to note that the long-horizon predictions presented in the top of Fig. 4 do not retain this structure, and the predictions at the later time steps do not correlate with the simulated velocities at all. It can, however, also be seen that as the vehicle approaches certain points in the journey (corresponding to locations at which the data has reduced variability), the mid-horizon predictions begin to accurately approximate the simulated velocity. For example, it can be seen in the middle plot that the first ~100 s of the predictions accurately matches the simulated profile.

B. Results

Fig. 5 shows the closed-loop simulation results using both nominal MPC controller and scenario MPC. A useful artifact of the test data is that the vehicle is traveling downhill (and therefore regenerating) for the second half of the journey, so each journey terminates with the same state of charge when using both controllers, and the comparative optimality can be determined by comparing fuel consumption directly.
The results are remarkable: the scenario MPC state-of-charge trajectories and fuel consumption closely match those obtained using nominal MPC, and the total fuel consumption is equal (to within meaningful precision) across all 49 journeys. The suboptimality introduced to the nominal MPC controller by the model approximations in the engine, motor, and battery is also negligible (see the results obtained using dynamic programming for the same dataset in [20, §4.3.2]), so the scenario MPC also obtains an extremely close approximation of the globally optimal solution. This is made more remarkable by the fact that the driver behavior is collected from four different drivers, which implies that modeling an individual driver’s behavior may not be necessary to achieve optimal performance.

An explanation for this performance is that, although the optimal state-of-charge trajectories vary with respect to time, they match extremely closely with respect to distance. This is shown in Fig. 6(a), where the closed-loop state-of-charge trajectories from Fig. 5(a) are resampled with respect to the completed distance of the journey and can be seen to match closely during the first half of the journey when the car is driving uphill and drive power is required from the engine. These results suggest that energy management solutions that consider driver uncertainty may be improved by considering completed distance as the independent variable in the optimization, instead of the time-based formulation that is overwhelmingly common in the literature. For the approach presented here, it may be possible to reformulate (SMPC) in this way with a single control trajectory across the prediction horizon, which would therefore ensure that the open-loop predicted cost would converge to the closed loop as $S \rightarrow \infty$ and reduce the computational cost of the solution. However, the trajectories in Fig. 6(a) diverge in the second half of the journey. This is because the vehicle is descending a hill and is either braking or coasting, so the energy that can be regenerated depends on losses such as aerodynamic drag. It is possible that a route that is not as evenly partitioned into an ascending phase and a descending phase may cause the scenario controller to behave more poorly. A systematic investigation into these possibilities and issues is an interesting direction for future work.

The results in Fig. 6(a) show that the lower state-of-charge constraint is violated by up to $\sim 0.2\%$ (if the constraints were violated then the simulation was allowed to continue, and the behavior of the driver was not modified as discussed in Section III-C). The bound (14) provides a confidence of $\hat{\beta} \geq 0.92$ for a violation probability of $\hat{\epsilon} = 0.05$ when using $S = 48$ scenarios, so a portion of this constraint violation can be attributed to an insufficient number of predictions. This is supported by the results in Fig. 6(b), which shows the results from Fig. 6(a) repeated with only $S = 5$ scenarios, for which the constraint violation increases up to a maximum of $\sim 0.5\%$ (more scenarios could not be tested due to a lack of data). It is worth noting, however, that the bound (14) is dependent on the scenarios being sampled from the uncertainty set $\mathcal{V} \times \Theta$, and the one-step-ahead predictions obtained using the blending process (21) are not empirical. Therefore, it may also be possible to reduce the rate and severity of constraint violations by sampling the one-step-ahead predictions alone from a separate distribution, possibly conditioned on the current road gradient, and vehicle velocity and acceleration. Nonetheless, the observed constraint violation is likely to be lower than the uncertainty in the battery state estimate, so it may not become an issue in practice.

Fig. 7 shows the power-split control actions for each of the journeys when using scenario MPC and includes the power demanded by the driver, P_{drv}, the power delivered by the motor, P_{em}, and the fraction of power delivered by the motor...
relative to the total demand power, all sampled with respect to distance (these results are not illustrated with respect to time as they become indiscernible). Again, these results show a strong correlation between the control actions determined for each journey at any given position along the route. An interesting additional artifact is that during the first half of the journey (where the vehicle is ascending the hill), the power fraction delivered by the motor generally switches between 100% and ∼50%. The portions where the motor is delivering 100% of the powertrain’s output generally correspond to sections of the journey where the power demand drops to a very low level or braking occurs, i.e., the regions where the motor is required to deliver/accept all of the driver’s demand power. These results appear to support the rationale of equivalence factor-based approaches to power-split optimization [4], although further analysis is required to determine whether this behavior is observed more generally.

Fig. 8 shows the time taken for the first MPC optimization (i.e., the longest horizon) of each journey using both nominal and scenario MPC. The averages for nominal and scenario MPC were 0.098 s and 4.8 s, respectively, so the scenario approach does not meet the real-time requirement for the hardware used for these experiments. However, the ADMM iteration can be accelerated using parallel processing, and it has been demonstrated that the computational time of a similar ADMM algorithm can be significantly reduced using a GPU [17] (the algorithm was implemented in the vectorized sequential MATLAB code here; the MATLAB \
gpuArray\ data type was investigated but not found to provide a performance benefit). Therefore, it is possible that the algorithm could be accelerated to meet the real-time requirement when implemented on suitable hardware. In addition, the overall state-of-charge trajectories in Fig. 6(a) closely match those in Fig. 6(b), so it may be possible to accelerate the algorithm and reduce the occurrence of constraint violations without negatively affecting the performance (in terms of increased fuel consumption) by using fewer scenarios for the long-horizon predictions and more for the one-step-ahead predictions. A systematic investigation into these possibilities is left to future work, but nevertheless, the ADMM algorithm still provides a clear benefit for this problem relative to general-purpose convex optimization software as the solution times with CVX were found to be far too slow for the scenario MPC to be implemented in closed loop.

VI. CONCLUSION

This article presents a data-based approach to MPC for PHEV energy management, where the predictions of future
driver behavior are made directly from recorded examples of drivers previously completing a route. Results from scenario optimization are used to determine a bound on the confidence that the one-step-ahead optimization will be feasible with a given probability, and an efficient ADMM algorithm is proposed for the solution of the associated scenario MPC optimization problem. The performance of the scenario MPC algorithm is investigated through simulations of a passenger vehicle completing the same route multiple times, where it is found to obtain an extremely close approximation of the completed distance, instead of the time-based formulation well the performance observed in this study translates to predictions of future driver behavior.

The presented results have significant implications for future development and investigation of power-split optimal control techniques for PHEVs. First, it has been demonstrated that previously recorded examples of a given route being driven are a powerful surrogate for the model-based prediction methods commonly found in the literature and that long-horizon predictions of future driver behavior can reliably be made directly from these data. Future work will investigate how well the performance observed in this study translates to more diverse driving conditions. Second, the results strongly suggest that future investigations on this topic should consider formulating the energy management problem in terms of completed distance, instead of the time-based formulation commonly proposed in the literature.

ACKNOWLEDGMENT

The authors would like to thank Prof. Luigi del Re and Dr. Philipp Polterauer at Johannes Kepler University Linz, Linz, Austria, for generously sharing the driver data used in this publication and assisting with its processing.

REFERENCES

[1] C. M. Martinez, X. Hu, D. Cao, E. Velenis, B. Gao, and M. Wollers, “Energy management in plug-in hybrid electric vehicles: Recent progress and a connected vehicles perspective,” IEEE Trans. Veh. Technol., vol. 66, no. 6, pp. 4534–4549, Jun. 2017.
[2] S. J. Moura, H.-K. Fathy, D. S. Callaway, and J. L. Stein, “A stochastic optimal control approach for power management in plug-in hybrid electric vehicles,” IEEE Trans. Control Syst. Technol., vol. 19, no. 3, pp. 545–555, May 2011.
[3] S. Stockar, V. Marano, G. Rizzoni, and L. Guzzella, “Optimal control for plug-in hybrid electric vehicle applications,” in Proc. Amer. Control Conf., Jun. 2010, pp. 5024–5030.
[4] A. Sciarretta and L. Guzzella, “Control of hybrid electric vehicles,” IEEE Control Syst., vol. 27, no. 2, pp. 60–70, Apr. 2007.
[5] C. Sun, S. J. Moura, X. Hu, J. K. Hedrick, and F. Sun, “Dynamic traffic feedback data enabled energy management in plug-in hybrid electric vehicles,” IEEE Trans. Control Syst. Technol., vol. 23, no. 3, pp. 1075–1086, May 2015.
[6] C. Sun, X. Hu, S. J. Moura, and F. Sun, “Velocity predictors for predictive energy management in hybrid electric vehicles,” IEEE Trans. Control Syst. Technol., vol. 23, no. 3, pp. 1197–1204, May 2015.
[7] Z. Chen, C. C. Mi, J. Xu, X. Gong, and C. You, “Energy management for a power-split plug-in hybrid electric vehicle based on dynamic programming and neural networks,” IEEE Trans. Veh. Technol., vol. 63, no. 4, pp. 1577–1580, May 2013.
[8] X. Zeng and J. Wang, “A parallel hybrid electric vehicle energy management strategy using stochastic model predictive control with road grade preview,” IEEE Trans. Control Syst. Technol., vol. 23, no. 6, pp. 2416–2423, Nov. 2015.
[9] S. Di Cairano, D. Bernardini, A. Bemporad, and I. V. Kolmanovsky, “Stochastic MPC with learning for driver-predictive vehicle control and its application to HEV energy management,” IEEE Trans. Control Syst. Technol., vol. 22, no. 3, pp. 1018–1031, May 2014.
[10] Y. Zhou, A. Ravey, and M.-C. Péra, “A survey on driving prediction techniques for predictive energy management of plug-in hybrid electric vehicles,” J. Power Sources, vol. 412, pp. 480–495, Feb. 2019.
[11] Y. Larsson, L. J. Mårdh, B. Egardt, and S. Karlsson, “Commute route optimized energy management of hybrid electric vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 15, no. 3, pp. 1145–1154, Jun. 2014.
[12] G. Schildbach, L. Fagiano, and M. Morari, “Randomized solutions to convex programs with multiple chance constraints,” SIAM J. Optim., vol. 23, no. 4, pp. 2479–2501, 2013.
[13] M. Josevska, A. Katriniok, and D. Abel, “Scenario MPC for fuel economy optimization of hybrid electric powertrains on real-world driving cycles,” in Proc. Amer. Control Conf. (ACC), May 2017, pp. 5629–5635.
[14] M. Josevska and D. Abel, “Tube-based MPC for the energy management of hybrid electric vehicles with non-parametric driving profile prediction,” in Proc. Amer. Control Conf. (ACC), Jul. 2016, pp. 623–630.
[15] S. East and M. Cannon, “An ADMM algorithm for MPC-based energy management in hybrid electric vehicles with nonlinear losses,” in Proc. IEEE Conf. Decis. Control (CDC), Dec. 2018, pp. 2641–2646.
[16] S. East and M. Cannon, “Energy management in plug-in hybrid electric vehicles: Convex optimization algorithms for model predictive control,” IEEE Trans. Control Syst. Technol., vol. 28, no. 6, pp. 2191–2203, Nov. 2020.
[17] Z. Qureshi, S. East, and M. Cannon, “Parallel ADMM for robust quadratic optimal resource allocation problems,” in Proc. Amer. Control Conf. (ACC), Jul. 2019, pp. 3402–3407.
[18] B. Egardt, N. Murgovski, M. Pourabdollah, and L. J. Mårdh, “Electromobility studies based on convex optimization: Design and control issues regarding vehicle electrification,” IEEE Control Syst., vol. 34, no. 2, pp. 32–49, Apr. 2014.
[19] N. Murgovski, L. Johansson, S. Jöberger, and B. Egardt, “Component sizing of a plug-in hybrid electric powertrain via convex optimization,” Mechatronics, vol. 22, no. 1, pp. 106–120, 2012.
[20] S. East, “Optimal energy management in electric vehicles: Convex optimization for model predictive control,” Ph.D. dissertation, Univ. Oxford, 2020.
[21] A. Shapiro, “Asymptotic behavior of optimal solutions in stochastic programming,” Math. Oper. Res., vol. 18, no. 4, pp. 829–845, Nov. 1993.
[22] Z. Qureshi, S. East, and M. Cannon, “Parallel ADMM for robust quadratic optimal resource allocation problems,” in Proc. Amer. Control Conf. (ACC), May 2017, pp. 5629–5635.