Synthesis and Anticancer Activity of Triazole Linked Macrocycles and Heterocycles

Avula Srinivas¹,* and Enugala Kalyan Rao²

¹ Department of Chemistry, Vaagdevi Degree & PG College Kishanpura, Warangal, Telangana, India 506001
² Department of Physical Sciences, Kakatiya Institute of Technological Sciences Warangal, Telangana, India 506015

* Corresponding author: E-mail: avula.sathwikreddy@gmail.com

Received: 10-23-2020

Abstract

Synthesis of macrocyclic enones starting from alkyl ether and triazole as a linker was achieved using click reaction and intramolecular aldol condensation. The newly synthesized macrocyclic enone was successfully utilized as a dipolarophile in 1,3-dipolar cycloaddition. The dipoles generated from hydrazine hydrochloride, hydroxylamine and guanidine hydrochloride were reacted with macrocyclic enone to give a new class of spiro aminopyrimidines, phenyl pyrazoles and isoxazoles grafted macrocycles in good yield. The structures of newly synthesized compounds were confirmed with IR, NMR and mass spectroscopy and evaluated for their anti cancer activity.

Keywords: Triazoles; click reaction; internal aldol condensation; macrocyclic enones; anticancer activity

1. Introduction

Carbohydrates are most important class of bio-molecules, their structural components have an important role in biological processes and organic synthesis.¹ In the chemical, pharmaceutical, food, cosmetic and detergent industries they act as readily available intermediates stocks for large scale applications² and also they have an important role in cell physiology in the form of glycoconjugates (glycolipids, glycoproteins and polysaccharides) and in many biological processes such as intercellular recognition, bacterial and viral infection, cancer metastasis, apoptosis and neuronal proliferation, etc.³ The introduction of a carbohydrate moiety into a system often imparts interesting properties such as hydrophilicity, lowered noxious and escalated bioactivities;⁴ organic chemists have linked carbohydrates to various biologically potent compounds to escalate their biological applications, such as steroids, amino acids and other therapeutic agents.⁵ One of the methods used to link a carbohydrate moiety with a potential compound is via a triazole ring using the well known click-chemistry reaction.⁶ The strategy of linking a carbohydrate moiety with another species via a triazole ring is gaining importance in organic synthesis, natural products chemistry and bio chemistry.⁷ The stability, polar nature and possible hydrogen bonding ability of a triazole ring combined with the biocompatibility and presence of stereogenic centers, the stereogenic centers of a carbohydrate moiety make glucal- based triazoles very interesting for organic synthetic chemists.

Macrocyclic compounds with large cavities are found to have potential application in chemistry, biology and nanotechnology,⁸,⁹ With potent biological activities, heteroatoms-containing macro cyclic compounds are present in natural products.¹⁰ Heterocyclic compounds are known to interact with various proteins and heterocyclic units are constituent parts of magnificent molecular ligands;¹¹ such compounds can also act as magic eye for chiral molecules and can be used for selective metal ion and anion remembrance.¹²,¹³ The Cu(I)-catalyzed alkynes–azide cycloaddition is the most useful modality for the fashioning of diversification of 1,2,3-triazole grafted macrocycles.¹⁵ In recent years 1,2,3-triazoles have large attraction in supramolecular chemistry because of their dual nature to act as both hydrogen bond donors and acceptors sixteen,¹⁷ due to their firmness and lyomerous properties, these triazoles can be of more conspicuous use as a non-peptide inhibitors.¹⁸ Furthermore, they exhibit large variety of medical activities.¹⁹ Triazole glycosides are also present in the structures of various antiviral drugs such as Ribavirin and β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide.²⁰ Isoxazole derivatives are pertinent class of bioactive...
molecules, which express glaring activities such as protein tyrosinephosphatase 1 inhibitors,21 antiviral,22 antihelmintic,23 antiinflammatory,24 anticonvulsant,25 insecticidal,26 antitubercular,27 immunomodulatory,28 and hypolipidemic.29 Moreover pyrazoles and their derivatives could be considered as possible antimicrobial agents,30 activities of the other derivatives include antidepressant,31 antiarthritic32 and cerebroprotectors.33 Some aryl pyrazoles were reported to act as non nucleoside human immunodeficiency virus (HIV-1) reverse transcriptase inhibitors,34 COX-2 inhibitors,35–37 activators of the nitric oxide receptors and soluble guanylate cyclase activity.38 On the other hand, the pyrimidines have special place and have contributed exceptionally to biological and medicinal fields,39 with activities such as antitubercular,40 and calcium channel blockers,41 and also many pyrimidines42 have displayed diverse pharmaceutical activities depending upon the geometry and type of substituents attached to the ring.43 3-Azido-3-deoxythymidine (AZT), 44 a pyrimidine derivative, has been found to be an eloquent antiviral agent against HIV type 1 in vitro, and has been found to decrease mortality and opportunistic infections in patients with AIDS.

Following the successful introduction, inspired by the biological profile of triazoles, macrocycles, isoxazoles, pyrazoles and pyrimidines, and in the continuation of our work on biologically active heterocycles45–52 we have developed a series of novel triazole linked furanose pyranose macrocycles, their heterocyclic counterparts and evaluated their anticancer activity.

2. Results and Discussion

The key intermediate 8 required for the synthesis of compounds 9, 10 and 11 was prepared according to the procedure outlined in the Scheme 1. 1-(2-(4-Bromobutoxy)phenyl)ethanone (2), prepared from 2-hydroxyacetophenone by treating with 1,4-dibromopropane in DMF in the presence of K\textsubscript{2}CO\textsubscript{3}, followed by sodium azide gave macrocycle 8 (Scheme 1). Compound 8 was then reacted with hydroxylamine, hydrazine hydrochloride and guanidine hydrochloride at reflux temperature to give macrocyclic derivatives 9, 10 and 11.

The key intermediate 20 required for the synthesis of compounds 21, 22 and 23 was prepared according to the procedure outlined in the scheme 2. 1-(2-(4-Bromobutoxy)phenyl)ethanone (2), prepared from 2-hydroxyacetophenone by treating with 1,4-dibromopropane in DMF in the presence of K\textsubscript{2}CO\textsubscript{3}, followed by sodium azide to give its corresponding azide, is converted into triazole 7 (82%) by using 1,3-dipolar cycloaddition with propargyl ether 16, carried out at ambient temperature in the presence of CuSO\textsubscript{4} and sodium ascorbate in a mixture of 1:1 CH\textsubscript{2}Cl\textsubscript{2}–H\textsubscript{2}O, oxidation of compound 18 with IBX gave aldehyde, which is subjected to internal aldol condensation to give macrocycle 53 20 (Scheme 2). Compound 20 was then reacted with hydroxylamine, hydrazine hydrochloride and guanidine hydrochloride at reflux temperature to give macrocyclic derivatives 21, 22 and 23. The structures of synthesized compounds were determined by IR, NMR, MS spectra and evaluated for their anticancer activity.

3. In vitro Cytotoxicity

Anticancer activity of the compounds 9, 10, 11, 21, 22 and 23 was determined on the basis of measurement of in vitro growth inhibition of tumor cell lines in 96 well plates by cell-mediated reduction of tetrazolium salt to the formation of water insoluble crystals using doxorubicin as a standard. The cytotoxicity was assessed against a panel of four different human tumor cell lines: A549 derived from human alveolar adenocarcinoma epithelial cells (ATCC No.CCL-185), HeLa derived from human cervical cancer cells (ATCC No. CCL-2), MDA-MB-231 derived from human breast adenocarcinoma cells (ATCC No. HTB22), MCF-7 (Michigan cancer Foundation cell line) and HEK 293 (normal human embryonic kidney cell line) using the MTT assays.54 The IC\textsubscript{50} values were calculated

Compound	A549	Hela	IC\textsubscript{50} values in \textmu M	MDAMB231	MCF-7	HEK 293
9	6.22	5.42	6.39	1.82	>100	>100
10	7.02	3.92	4.01	10.07	>100	>100
11	>100	3.76	4.21	>100	>100	>100
21	12.09	2.98	3.97	>100	>100	>100
22	>100	3.56	3.75	15.99	>100	>100
23	6.01	5.05	6.05	1.90	>100	>100
Doxorubicin	0.459	0.509	0.91	1.07	>100	>100
from the plotted absorbance data for the dose-response curves. IC\textsubscript{50} values (in μM) are indicated as mean ±SD of three independent experiments. From the data reported in Table 1, most of the prepared compounds possessed significant cytotoxicity effect on all the tested cell lines and potencies of some of the compounds were comparable to the standard doxorubicin, the most widely used drug for the treatment of tumors. Among the tested compounds 9 and 23 showed the most potent activity against MCF-7 cell line with IC\textsubscript{50} value of 1.82 and 1.90 μM, whereas 10, 11, 21 and 22 showed promising activity against MDA-MB-231 and HeLa cell lines.

4. Experimental

Commercial grade reagents were used as supplied, solvents (except those of analytical reagent grade) were dried and purified according to the literature when necessary. Reaction progress and purity of the compounds were checked by thin-layer chromatography (TLC) on pre-coated silica gel F254 plates from Merck and compounds were visualized either by exposure to UV light or by dipping in 1% aqueous potassium permanganate solution. Silica gel chromatographic columns (60–120 mesh) were used for the separations. By using Perkin–Elmer 141 polarimeter.

Scheme 1
Reagents and conditions: (a) 1,4-dibromobutane, K2CO3, DMF; (b) NaN3; (c) sodium ascorbate, CuSO4·5H2O, H2O, CH2Cl2; (d) 60% ACOH; (e) NaIO4, CH2Cl2; (f) KOH; (g) NH2OH·HCl, NaOAc, AcOH; (h) guanidine hydrochloride; (i) PhNNH2, NaOAc, AcOH.
optical rotations were measured on a 2 mL cell with a path length of 1 dm with CHCl₃ or CDCl₃ as the solvent. By using Fisher–Johns apparatus all melting points were measured and are uncorrected. IR spectra were recorded as KBr disks on a Perkin–Elmer FT IR spectrometer. The ¹H NMR and ¹³C NMR spectra were recorded on a Varian Gemini spectrometer (300 MHz for ¹H and 75 MHz for ¹³C). Chemical shifts are reported as δ ppm against TMS as the internal reference and coupling constants (J) are reported in Hz units. Mass spectra were recorded on a VG micro mass 7070H spectrometer. Elemental analysis (C, H, N) were determined by a Perkin–Elmer 240 CHN elemental analyzer and were within ±0.4% of theoretical values.

1-(2-(4-Bromobutoxy)phenyl)ethanone (2)

2-Hydroxyacetophenone (1.2 g, 8.8 mmol), a catalytic amount of potassium carbonate and 1,4-dibromobutane (1.9 g, 8.8 mmol) were stirred in DMF at 0 °C to room temperature for 8 h, the reaction mixture was quenched with NH₄Cl, thereafter the reaction mixture was concentrated under reduced pressure, the product was extracted with ethyl acetate, washed with brine and dried over sodium sulphate and purified by column chromatography (60–120 mesh, 12% ethyl acetate in hexane) to give compound 2 (2 g, 7.3 mmol, 84%). Mp 189 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.37–7.42 (m, 2H, Ar-H), 7.10–7.12 (m, 2H, Ar-H), 4.09 (m, 2H, CH₂), 3.50 (m, 2H, CH₂), 2.56 (s, 3H, CH₃), 1.90–1.62 (m, 4H, CH₂); ¹³C NMR (75 MHz, CDCl₃): δ 196.0, 162.1, 134.0, 122.5, 120.2, 117.9, 68.4, 30.5, 29.5, 29.1; MS: m/z (M⁺+H) 271. Anal. Calcd for C₁₂H₁₅BrO₂: C, 53.15; H, 5.58; Found: C, 52.98; H, 5.45.

1-(2-(4-(5-(((3aR,5R,6R,6aR)-5-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofururo[2,3-d][1,3]dioxol-6-yl oxy)methyl)-1H-1,2,3-triazol-1-yl)butoxy)phenyl)ethanone (5)

The compound 2 (1.90 g, 6.9 mmol) and sodium azide (0.500 g, 7.6 mmol) was stirred in methanol at reflux
temperature for 6 h, the reaction mixture was concentrated under reduced pressure, the product extracted with ethyl acetate and evaporated to give 3 (1.50 g) in quantitative yield as a yellow coloured liquid, which was used for the next reaction.

To the solution containing alkyne 4 (1.45 g, 4.88 mmol) azide 3 (1.50 g, 6.4 mmol) in dichloromethane (10 mL) and water (10 mL) were added CuSO₄·5H₂O (0.110 g) and sodium ascorbate (0.114 g); the resulting suspension was stirred at room temperature for about 6 h, the mixture was diluted with 5 mL dichloromethane and 5 mL water. The organic phase was separated, washed with brine, dried over sodium sulphate and concentrated under reduced pressure; the crude product thus obtained was purified by column chromatography on silica gel (60–120 mesh, hexane/EtOAc 65:35) to afford 5 (3.290 g, 6.1 mmol, 76%) as a white powder. Mp 249 °C. 1H NMR (300 MHz, CDCl₃): δ 8.04 (s, 1H, Ar-H), 7.32–7.10 (m, 4H, Ar-H), 5.56 (d, J = 3.7 Hz, 1H, C₁H), 4.63 (m, 1H, C₂H), 4.59 (2H, CH₂), 4.41 (dd, J₁ = 3.1 Hz, J₂ = 7.3 Hz, 1H, C₂H), 4.19–4.13 (m, 4H, CH₂), 4.09–3.96 (m, 3H, C₄H₂), 4.04–3.96 (m, 3H, C₃H₂), 3.75 (dd, J₁ = 8.8 Hz, J₂ = 4.1 Hz, 1H, C₃H), 3.70 (dd, J₁ = 8.8 Hz, J₂ = 4.1 Hz, 1H, C₃H), 3.65 (dd, J₁ = 8.3 Hz, J₂ = 4.1 Hz, 1H, CH₂), 3.60 (2H, CH₂), 3.60 (2H, CH₂), 3.52 (s, 3H, CH₃), 3.17–1.75 (m, 4H, 2×CH₂), 3.15 (s, 3H, CH₃), 1.78–1.75 (m, 4H, 2×CH₂), 1.75 (s, 3H, CH₃), 1.40 (s, 3H, CH₃), 1.36 (s, 6H, 2×CH₃); 13C NMR (75 MHz, CDCl₃): δ 156.4, 142.5, 131.9, 128.9, 121.4, 117.8, 114.6, 111.6, 107.1, 83.6, 72.9, 66.5, 50.6, 36.9, 26.9, 23.9. MS: m/z 136.7, 131.5, 128.9, 121.4, 117.8, 114.6, 119.6, 113.4, 83.6, 73.0, 70.6, 66.9, 50.9, 26.4, 24.0; MS: m/z (M+H⁺) 442. Anal. Calcd for C₂₃H₂₇N₃O₆: C, 62.57; H, 7.02; N, 12.01.

1-(2-(4-((3aR,5R,6R,6aR)-5-(5,12-Dihydroxyethyl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)methyl)-1H-1,2,3-triazol-1-yl)butoxy)phenyl) ethanol (6)

A mixture of 5 (3 g, 5.6 mmol) in 60% aq. AcOH (25 mL) was stirred at room temperature for 12 h. Reaction mixture was neutralized with anhydrous NaHCO₃ (15 g) and extracted with EtOAc (3×40 mL). The combined organic layers were dried (Na₂SO₄) evaporated and the residue was purified by column chromatography (60–120 mesh silica gel, 40% ethyl acetate in petroleum ether) to afford 6 (3.290 g, 6.1 mmol, 92%) as a pale yellow solid. Mp 256 °C. 1H NMR (300 MHz, CDCl₃): δ 8.09 (s, 1H, Ar-H), 7.36–7.20 (m, 4H, Ar-H), 5.46 (d, J = 3.7 Hz, 1H, C₁H), 4.43 (m, 1H, C₂H), 4.39 (m, 2H, CH₂), 4.31 (d, J = 3.1 Hz, 1H, C₂H), 4.18–4.12 (m, 4H, CH₂), 4.06–3.99 (m, 3H, C₄H₂), 3.96 (s, 3H, CH₃), 3.65 (dd, J₁ = 8.8 Hz, J₂ = 4.1 Hz, 1H, CH₂), 3.60 (2H, CH₂), 2.44 (brs, 1H, OH), 1.78–1.75 (m, 4H, 2×CH₂), 1.52 (brs, 1H, OH), 1.41 (s, 3H, CH₃), 1.30 (s, 3H, CH₃), 1.26 (s, 3H, CH₃); 13C NMR (75 MHz, CDCl₃): δ 196.5, 161.5, 142.4, 133.6, 129.7, 120.9, 117.9, 108.2, 98.6, 81.9, 79.6, 70.6, 47.4, 26.4, 25.1, 20.9; MS: m/z (M⁺+Na⁺) 514. Anal. Calcd for C₂₃H₂₈N₃O₇: C, 58.64; H, 6.77; N, 8.55; Found: C, 58.39; H, 6.55; N, 8.36.

(5aS,9aR,Z)-8,9a,18,19,20,21-Hexahydro-4H-benzo[j]pyrano[2,3-o][1,2,3]triazolo[5,1-c][1,9,4]dioxaacyclohexadecin-12(5aH)-one (8)

To the solution of diol 6 (2.4 g, 4.88 mmol) in CH₂Cl₂ (5 mL), NaO₂ (0.530 g, 2.48 mmol) was added at 0 °C and stirred at room temperature for about 6 h. The reaction mixture was filtered and washed with CH₂Cl₂ (2×10 mL), dried over Na₂SO₄ and evaporated to give keto aldehyde 7 (2 g) in quantitative yield as a yellow liquid, which was used for the next reaction.

The reaction mixture of keto aldehyde and KOH in methanol was stirred at reflux temperature for about 6 h, the methanol was then removed from the reaction mixture, the product was extracted with ethyl acetate and washed with brine, dried over sodium sulphate, evaporated and the residue was purified by column chromatography (60–120 mesh silica gel, 40% ethyl acetate in petroleum ether) to afford 8 (1.6 g, 3.62 mmol, 92%) as a pale yellow solid. Mp 226 °C. 1H NMR (300 MHz, CDCl₃): δ 8.12 (s, 1H, Ar-H), 8.10–7.56 (m, 4H, Ar-H), 7.12 (d, J = 6.2 Hz, 1H, =CH), 6.52 (d, J = 6.6 Hz, 1H, =CH), 5.58 (d, J = 3.7 Hz, 1H, C₁H), 4.04–3.98 (m, 1H, C₁H), 4.63 (m, 1H, C₁H), 4.60 (2H, CH₂), 4.41 (d, J = 3.1 Hz, 1H, C₁H), 3.96–3.92 (m, 4H, CH₂), 3.62 (dd, J₁ = 8.8 Hz, J₂ = 4.1 Hz, 1H, C₁H), 1.75–1.72 (m, 4H, 2×CH₂), 1.24 (s, 6H, 2×CH₃); 13C NMR (75 MHz, CDCl₃): δ 187.5, 158.2, 146.0, 142.5, 136.7, 131.5, 128.9, 125.6, 120.9, 119.6, 114.6, 119.6, 103.4, 83.6, 73.0, 70.6, 66.9, 50.9, 26.4, 24.0; MS: m/z (M⁺+H⁺) 442. Anal. Calcd for C₂₃H₂₇N₃O₇: C, 62.7; H, 6.16; N, 9.52; Found: C, 62.39; H, 5.95; N, 9.26.

Srinivas and Rao: Synthesis and Anticancer Activity ...
diana-6-(5,1)-triazola-3-(5,6)-furo[2,3-d][1,3]-dioxo-
l-1(2,1)-benzencycloundecaphane-2-am}(10)

To the solution of 8 (0.050 g, 0.113 mmol) and
guanidine hydrochloride (0.029 g, 0.3 mmol) in ethanol
(20 mL) was added aq. NaOH solution (5 mL). The re-
action was refluxed for about 6 h. Then it was
poured in cold 10% HCl (50 mL) solution and the precip-
itate obtained was collected by filtration, washed with
water until free from acid and recrystallized from tolu-
ene-ethanol (3:2) to give pure 10 as a white solid (0.019
g, 0.04 mmol, 63%). Mp 266 °C. 1H NMR (300 MHz,
CDCl3): δ 8.02 (s, 1H, Ar-H), 7.12 (s, 2H, NH2), 6.94–
7.10 (m, 4H, Ar-H), 5.49 (d, J = 3.7 Hz, 1H, C-H), 4.66 (s,
2H, CH2), 4.53 (m, 1H, CH2), 4.39 (m, 1H, CH), 3.90–
3.83 (m, 4H, 2×CH2), 3.62 (dd, J1 = 7.1 Hz, 1H, C3H), 3.04 (m, 2H, CH2), 2.54 (m, 1H, CH), 1.78–
1.90 (m, 4H, 2×CH3); 13C NMR (75 MHz, CDCl3): δ 164.5, 163.2, 154.5, 142.6, 128.9, 126.8,
120.4, 112.4, 105.9, 83.0, 77.6, 72.4, 65.8, 50.6, 43.6,
32.0, 27.0, 24.0; MS: m/z (M++Na) 267. Anal. Calcd for
C12H24O3Si: C, 58.97; H, 9.90; Found: C, 58.62; H,
6.07; N, 17.01.

(34R,53R,33R)-32,32-Dimethyl-21-phenyl-24,25,
334,336-hexahydro-2H,6H,14,11-dioxo-6(5,1)-tria-
azola-2(3,5)-pyrazola-3(5,6)-furo-[2,3-
1(2,1)-benzencycloundecaphane (11)
The mixture of compound 8 (0.050 g, 0.113 mmol),
phenylhydrazine (0.025 g, 0.23 mmol) and anhydrous so-
dium acetate (0.012 g, 0.14 mmol) in glacial acetic acid
(20 mL) was refluxed for about 7 h. The reaction mixture
was concentrated in vacuo and cooled at room tempera-
ture, the solid thus separated was filtered off, then
washed thoroughly with water, the unmilled product thus obtained
was purified by column chromatography on silica gel with
hexane-ethyl acetate as eluent to afford pure compound 11
(0.044 g, 0.08 mmol, 73%). Mp 276 °C. 1H NMR (300
MHz, CDCl3): δ 8.09 (s, 1H, Ar-H), 7.25–7.10 (m, 5H,
Ar-H), 6.95–7.14 (m, 4H, ArH), 5.40 (d, J = 3.7 Hz, 1H,
C3H), 5.25 (d, J = 1.8 Hz, 1H, CHN), 4.54 (s, 2H, CH2),
4.50 (m, 1H, C2H), 4.38 (m, 1H, C3H), 3.90–3.85 (m, 4H,
CH2), 3.59 (dd, J1 = 3.1 Hz, J2 = 7.3 Hz, 1H, C3H), 3.01
(m, 2H, CH2), 1.89–1.78 (m, 4H, 2×CH2); 13C NMR
(75 MHz, CDCl3): δ 157.1, 151.5, 140.0, 139.7, 138.4,
134.2, 131.5, 129.5, 128.6, 120.4, 116.9, 114.5, 112.0,
105.9, 85.0, 83.5, 82.3, 72.4, 66.5, 50.4, 48.1, 32.6, 27.1,
23.8; MS: m/z (M++H) 409. Anal. Calcd for C16H12O3Si:
C, 59.74; H, 6.27; N, 17.42; Found: C, 59.59; H, 6.07;
N, 17.01.

Boron trifluoride diethyl etherate (690 µL of a 40 wt%
solution in diethyl ether, 11.02 mmol) was added drop
wise and the reaction mixture was stirred for 90 min. The
mixture was poured into a saturated solution of NaHCO3.
The organic layer was washed with water, dried over Na-
2SO4 and concentrated under reduced pressure. Column
chromatography on silica gel (PE/EtOAc, 3:1) yielded the
title compound 13 (2.24 g, 10 mmol, 95%) as a colourless
syrup. [α]D = 115.5 (c = 1.00, CHCl3). 1H NMR (300
MHz, CDCl3): δ 5.87–5.84 (m, 2H, =CH), 4.95 (m, 1H,
OCH), 4.03–3.99 (m, 1H, CH), 4.12–4.09 (m, 4H, OCH3),
2.20 (s, 6H, COCH3); 13C NMR (75 MHz, CDCl3): δ
170.2, 127.2, 125.8, 73.6, 65.1, 64.0, 62.5, 21.1; MS: m/z
(M++H) 215. Anal. Calcd for C10H14O5: C, 56.07; H, 6.59;
Found: C, 55.82; H, 6.35.

(2R,3S)-2-((tert-Butylidemethylsilyloxy)methyl)-3,6-di-
hydro-2H-pyran-3-ol (15)
At room temperature diacetate 13 (2.10 g, 9.8 mmol)
was treated with a catalytic amount of sodium methoxide
in methanol (100 mL). The free hydroxyl unsaturated gly-
coside was obtained after evaporation of the solvent in
quantitative yield and used without further purification.
This diol was treated with 2.50 equiv. of TBDMSCl (3.14
mmol), 2.6 equiv. of NEt3 (3.2 mL, 23 mmol), and
0.05 equiv. of imidazole (30 mg, 0.44 mmol) in CH2Cl2
(30 mL) at room temperature for 24 h (until TLC analysis
showed no more starting material). After addition of 25
mL of water and extraction with 3×30 mL of CH2Cl2, the
organic layer was dried under reduced pressure. After
evaporation of the solvent the residue was purified by col-
umn chromatography using petroleum ether/ethyl acetate
as the eluent yielding the title compound 15 (1.94 g, 7.6
mmol, 85%) as a colourless syrup. 1H NMR (300 MHz,
CDCl3): δ 6.0–5.82 (m, 2H, =CH), 5.42 (d, J = 6.5 Hz, 1H,
CH), 4.50 (bs, 1H, OH), 4.20–4.12 (m, 1H, CH), 3.91–
3.80 (m, 4H, CH2), 0.98 (s, 9H, t-Bu), 0.24 (s, 6H, CH3);
13C NMR (75 MHz, CDCl3): δ 127.5, 125.6, 84.6, 81.5,
73.6, 62.7, 25.6, 18.1; MS: m/z (M++Na) 267. Anal. Calcd
for C16H22O5Si: C, 58.97; H, 9.90; Found: C, 58.62; H,
9.75.

tert-Butylidemethyl((2R,3S)-3-(prop-2-ynyloxy)-3,6-di-
hydro-2H-pyran-2-yl)methoxysilane (16)
In toluene (1.6 mL) the solution of alcohol 14 (0.400
g, 1.63 mmol, 1.0 equiv.) was added, 35% aqueous solution
of NaOH (1.6 mL), propargyl bromide (80% solution
in toluene, 363 µL, 2.4 mmol, 1.5 equiv.), and n-Bu4NHSO4
(280 mg, 0.8 mmol, 0.5 equiv.) was added. After 6 h of
vigoruous stirring at room temperature, Et3NH (1.6
mL) was added. The reaction mixture was stirred for 1 h,
poured into ice water, cautiously neutralized by addition of
a 3M solution of hydrochloric acid, and extracted with
EtOAc. The combined organic extracts were washed with
brine, dried over MgSO4, filtered and concentrated under
reduced pressure. The crude material was purified by flash
chromatography on silica gel (hexane/EtOAc 85:15) to afford propargyl ether as a colorless oil (0.345 g, 1.21 mmol, 75%). 1H NMR (300 MHz, CDCl3): δ 6.03–5.80 (m, 2H, =CH), 4.69 (t, J = 3.9 Hz, 1H, CH), 3.68 (dd, J1 = 8.9 Hz, J2 = 4.1 Hz, 1H, OCH), 3.99–3.89 (m, 6H, CH2), 3.20 (s, 1H, CH), 0.96 (s, 9H, t-Bu), 0.23 (s, 6H, CH3); 13C NMR (75 MHz, CDCl3): δ 127.2, 124.9, 78.0, 76.2, 74.2, 64.2, 63.2, 58.5, 25.3, 18.5; MS: m/z (M++H) 283. Anal. Caled for C15H26O3Si: C, 63.78; H, 9.28; Found: C, 63.62; H, 9.58.

((2R,3S)-3-(Prop-2-ynoxy)-3,6-dihydro-2H-pyran-2-yl)methanol (17)

In THF the stirred solution of 16 (0.325 g, 1.152 mmol), catalytic amount of TBAF was added and stirred the reaction mixture at room temperature for about 15 min, the mixture was worked up with ethyl acetate (20 mL). The combined organic extracts were washed with brine, dried over MgSO4, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel (60–120 mesh, hexane/EtOAc 70:30) to afford alcohol 17 as a yellow oil (0.285 g, 1.69 mol, 85%). 1H NMR (300 MHz, CDCl3): δ 5.95–5.75 (m, 2H, =CH), 4.65 (d, J = 3.9 Hz, 1H, CH), 4.52 (brs, 1H, OH), 4.09–4.11 (m, 4H, OCH2), 3.64 (dd, J1 = 8.9 Hz, J2 = 4.1 Hz, 1H, OCH), 3.76 (d, J = 6.8 Hz, 2H, OCH2), 3.28 (s, 1H, CH); 13C NMR (75 MHz, CDCl3): δ 127.2, 125.6, 78.3, 76.1, 74.1, 64.2, 61.4, 58.0; MS: m/z (M++H) 169. Anal. Caled for C9H12O2Si: C, 64.22; H, 7.10; Found: C, 64.02; H, 6.95.

1-(2-(4-(5-(((2R,3S)-2-(Hydroxymethyl)-3,6-dihydro-2H-pyran-3-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)butoxy)phenyl)ethanone (20)

To a solution containing alkyne 17 (0.285 g, 1.69 mol) in glacial acetic acid (0.5 mL), 4-methylmorpholine N-oxide (0.165 g, 0.33 mmol, 64%). Mp 219–221 °C. 1H NMR (300 MHz, CDCl3): δ 8.09 (s, 1H, ArH), 7.36–7.18 (m, 4H, ArH), 7.12 (d, J = 3.2 Hz, 1H, =CH), 6.59 (d, J = 3.9 Hz, 1H, =CH), 5.87–5.84 (m, 2H, =CH), 4.68 (s, 2H, CH2), 3.99–3.95 (m, 4H, CH2), 3.87 (m, 2H, CH), 3.70 (m, 2H, CH2), 1.70–1.62 (m, 4H, CH2); 13C NMR (75 MHz, CDCl3): δ 167.2, 157.6, 142.6, 140.6, 135.7, 131.6, 128.9, 126.4, 120.8, 115.2, 71.9, 67.6, 50.9, 24.1; MS: m/z (M++H) 382. Anal. Caled for C27H29N5O3: C, 66.13; H, 6.08; N, 11.02; Found: C, 65.89; H, 5.85; N, 10.86.

(3R,3’S)-Phenyl-24,25,35,36-tetrahydro-2’H,3’H,6’H-4,11-dioxo-6(5,1)-triazolo-2(3,5)-pyrazola-3(2,3)-pyrana-1(1,2)-benzenaclycoundecaphane (21)

A mixture of compound 20 (0.200 g, 0.52 mmol), phenylhydrazine (0.100 g, 0.92 mmol) and anhydrous sodium acetate (0.100 g, 1.21 mmol) in glacial acetic acid (20 mL) was refluxed for 7 h. The reaction mixture was cooled at room temperature, the solid thus separated was filtered, washed thoroughly with water, the unprocessed product thus obtained was purified by column chromatography on silica gel with hexane–ethyl acetate as eluent to afford pure compound 21 (0.165 g, 0.33 mmol, 64%). Mp 219–221 °C. 1H NMR (300 MHz, CDCl3): δ 8.16 (s, 1H, ArH), 7.67–7.49 (m, 4H, ArH), 7.28–7.24 (m, 5H, ArH), 7.28–7.24 (m, 5H, ArH), 7.28–7.24 (m, 5H, ArH), 0.16 (s, 9H, CH3). 13C NMR (75 MHz, CDCl3): δ 157.8, 151.6, 142.6, 131.7, 129.9, 128.7, 126.1, 126.0, 117.6, 116.8, 115.6, 85.4, 74.1, 72.6, 66.1, 64.7, 51.2, 47.6, 32.6, 23.9; MS: m/z (M++Na) 494. Anal. Caled for C27H29N5O3: C, 68.77; H, 6.02; N, 14.85; Found: C, 68.59; H, 5.97; N, 14.51.

Srinivas and Rao: Synthesis and Anticancer Activity...
To aq. NaOH (0.020 g, 0.5 mmol) solution (5 mL) the solution of 20 (0.050 g, 0.13 mmol) and guanidine hydrochloride (0.030 g, 0.31 mmol) in ethanol (20 mL) was added. The reaction mixture was refluxed, TLC (EtOAc : petroleum ether, 2:1) showed that the reaction was completed after 6 h. Then it was poured in cold 10% HCl (50 mL) solution and the obtained precipitate was collected by filtration, washed with water until free from acid and recrystallized from toluene-ethanol (3:2) to give pure 22 as a brown solid (0.031 g, 0.08 mmol, 61%) as a brown solid. Mp 279–281 °C.

Acknowledgements

The authors are thankful to CSIR- New Delhi for the financial support (Project funding No 02/247/15/EMR-II), Director, CSIR- IICT, Hyderabad, India, for NMR and MS spectral analysis and Shanthi Research foundation for their moral support.

6. Reference

1. (a) A. Farran, C. Cai, M. Sandoval, Chem. Rev. 2015, 115, 6811–6853. DOI:10.1021/cr500719h
(b) A. Varki, Glycobiology 1993, 3, 97–130. DOI:10.1093/glycob/3.2.97

2. N. Galonde, K. Nott, A. Debuigne, J. Chem. Tech. Biotechnol. 2012, 87, 451–471. DOI:10.1002/jctb.3745

3. (a) M. E. Caines, H. Zhu, M. Vuckovic, J. Bio. Chem. 2008, 283, 31279–31283. DOI:10.1074/jbc.C800150200
(b) H. Shirato, S. Ogawa, H. Ito, J. Virol. 2008, 82, 10756–10767. DOI:10.1128/JVI.00802-08
(c) S. Nagaraj, K. Gupta, V. Pisarev, Nat. Med. 2007, 13, 828–835. DOI:10.1038/nm1609

4. (a) C. R. Bertozzi, L. L. Kiessling, Chem. Glyc. Bio. Sci. 2001, 291, 2357–2364. DOI:10.1126/science.1059820
(b) T. Angata, A. Varki, Chem. Rev. 2002, 102, 439–470. DOI:10.1021/cr000407m

5. (a) V. K. Tiwari, R. C. Mishra, A. Sharma, R. P. Tripathi, Mini Rev. Med. Chem. 2012, 12, 1497–1519. DOI:10.2174/138955712803832654
(b) V. K. Tiwari, B. B. Mishra, K. B. Mishra, N. Mishra, A. S. Singh, Chen, Chem. Rev. 2016, 116, 3086–3240. DOI:10.1021/acs.chemrev.5b00408
(c) K. B. Mishra, B. B. Mishra, V. K. Tiwari, Carbohydr. Res. 2014, 399, 2–7. DOI:10.1016/j.carres.2014.09.001
(d) D. Kumar, K. B. Mishra, B. B. Mishra, V. K. Tiwari, Steroids 2014, 80, 71–79. DOI:10.1016/j.steroids.2013.11.022

6. R. Huisgen, G. Szeitlm, L. Moebius, Chem. Ber. 1967, 100, 2494–2507. DOI:10.1002/cher.19671000806

7. (a) F. G. Haras, R. Alonso, G. Alonso, J. Med. Chem. 1979, 22, 491–496. DOI:10.1021/jm00191a007
(b) J. C. Morris, J. Chiche, C. Grellier, J. Med. Chem. 2011, 54, 6905–6918. DOI:10.1021/jm200892a

8. (a) V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem. Int. Ed. 2000, 39, 3349–3391. DOI:10.1002/1521-3773(20000102)39:19<3349::AID-ANIE3349>3.0.CO;2-X
(b) C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverley, J. Sampaio, F. M. Raymo, J. F. Stoddart, J. R. Heath, Science 2000, 289, 1172–1175. DOI:10.1126/science.289.5482.1172

9. (a) E. M. Driggers, S. P. Halle, J. Lee, N. K. Terrett, Nat. Rev. Drug. Discov. 2008, 7, 608–624. DOI:10.1038/nrd2590
(b) D. B. Amabilino, J. F. Stoddart, Chem. Rev. 1995, 95, 2725–2828. DOI:10.1021/cr00040a005
(c) G. R. Pettit, Y. Kamano, C. L. Herald, J. Nat. Prod. 1986, 49, 661–664. DOI:10.1021/nl05046a017

10. P. Corvalin, Antimicrob. Agents Chemother. 1990, 34, 2291–2296. DOI:10.1128/AAC.34.12.2291

11. (a) J. A. Wells, L. McClendon, Nature 2007, 450, 1001–1009. DOI:10.1038/nature06526
Srinivas and Rao: *Synthesis and Anticancer Activity ...*
Povzetek

Iz alkil etrov in triazolov kot distančnikov smo s kombinacijo klik reakcije in intramolekularne aldolne kondenzacije uspešno izvedli sintezo makrocikličnih enonov. Nove makrociklične enone smo uspešno uporabili tudi kot dipolarofile v 1,3-dipolarnih cikloadicijah. Dipole smo pripravili iz hidrazin hidroklorida, hidroksilamina in gvanidin hidroklorida ter jih reagirali z makrocikličnimi enoni; te reakcije so z dobrimi izkoristki vodile do nastanka novih spiro makrociklov substituiranih z aminopirimidini, fenil pirazoli in izoksazoli. Strukture novih produktov smo potrdili z IR, NMR in masno spektrometrijo ter določili njihovo aktivnost proti rakastim celicam.