There’s more to Relevance than Downloads

Stephan Sigg
Aalto University
stephan.sigg@aalto.fi

Eemil Lagerspetz
Ella Peltonen
Petteri Nurmi
Sasu Tarkoma

1 Department of Computer Science, University of Helsinki
PO Box 64, FI-00014, University of Helsinki, Finland
firstname.lastname@cs.helsinki.fi

2 Helsinki Institute for Information Technology HIIT
Department of Computer Science, University of Helsinki

ABSTRACT
The value of mobile apps is traditionally measured by metrics such as the number of downloads, installations, or user ratings. A problem with these measures is that they reflect actual usage at most indirectly. Indeed, analytic companies have suggested that retention rates, i.e., the number of days users continue to interact with an installed app are low. We conduct the first independent and large-scale study of retention rates and usage behavior trends in the wild. We study their impact on a large-scale database of app-usage data from a community of 339,842 users and more than 213,667 apps. Our analysis shows that, on average, applications lose 70% of their users in the first week, while very popular applications (top 100) lose only 45%. It also reveals, however, that many applications have more complex usage behavior patterns due to seasonality, marketing, or other factors. To capture such effects, we develop a novel app-usage behavior trend measure which provides instantaneous information about the “hotness” of an application. We identify typical trends in app popularity and classify applications into archetypes. From these, we can distinguish, for instance, trendsetters from copycat apps. In our results, roughly 40% of all apps never gain more than a handful of users. Less than 0.4% of the remaining 60% are constantly popular, 1% flop after an initial steep rise, and 7% continuously rise in popularity. We conclude by demonstrating that usage behavior trend information can be used to develop better mobile app recommendations. With the proposed usage-based measures (retention and trend), we are able to shift sovereignty in app recommendations back to where it really matters: actual usage statistics, in contrast to download count and user ratings which are prone to manipulation by people.

Keywords
Mobile Analytics; Application Popularity; Trend Mining

1. INTRODUCTION
How valuable and good is my mobile application? With the popularity of mobile apps continuing rapid growth, answering this question has become far from straightforward. According to numbers published in 2016, the most popular application stores, Google Play and Apple’s App Store, both feature more than 1.6 million applications already. Given this plethora of apps, many simply vanish in this digital cornucopia. Indeed, studies on app marketplaces have shown that overall rating and the nature of user reviews are key drivers in application download decisions. This sovereignty of people and individuals reduces the chances of apps within a small community of users to ever become known within the greater public due to the small number of ratings, even if rating score is high and usage frequent. Ratings are well-known to be vulnerable to spam and rating fraud. At the same time, studies on app usage behavior have shown that downloads and ratings can be misleading as users often install apps to try them out and rate apps negatively for a wide range of reasons, such as technical problems or lack of features.

Instead of relying on installation counts or ratings, analytics companies often use retention rate to measure the success of mobile apps. Retention rate reflects the number of days that users continue to interact with an application after installing it. Among others, retention rate can inform developers of the engagement with their app or it can be used by advertisers to determine the price of advertising. Reports by analytics companies suggest that retention rates of most applications are low, since only a small fraction of users continue to use the apps. Even 80% drop of usage is reported common within a week from the first use. However, thus far no independent information about retention rates of mobile apps in the wild has been available.

http://www.appbrain.com/stats
http://appshopper.com/
http://info.localytics.com/blog/the-8-mobile-app-metrics-that-matter
http://andrewchen.co/new-data-shows-why-losing-80-of-your-mobile-users-is-normal-and-that-the-best-apps-do-much-better/
As our first contribution, we present results from the first independent study of retention rates in the wild. We perform our study on usage behavior data recorded in the frame of the Carat project [24] collected from 339,842 Android devices over a period of three years (June 2012 – July 2015). Our results indeed confirm that, on average, applications lose 70% of their users within a week from first use. However, these effects are mediated by the number of users an application has. For applications with 10 or more users, retention rates below 30% are rare, and retention rates increase with the popularity of the app. We also demonstrate that retention rates alone are not a sufficient measure of an app’s success as they ignore fluctuation in instantaneous usage, the effects of seasonality, external factors, and other long-term usage behavior trends. To capture and quantify these effects, novel metrics for mobile analytics are required.

As our second contribution, we develop a novel app-usage trend filter, which provides instantaneous information about the "hotness" of an application. Our filter captures the relative popularity of apps based on daily use. It indicates behavior trends regardless of absolute volume and categorizes apps to App trend patterns that can be used to predict the future relevance of an app, or to categorize apps. Characteristic trend patterns include Flop, Hot, Dominant or Marginal apps (Figure 1). We validate the benefits of our app-usage filter through a large-scale analysis of mobile app usage trends in the wild. We first consider carefully selected applications, which are widely acknowledged as hits or flops, and demonstrate that the usage behavior trend-filter can correctly identify them. We then apply our filter to all apps in the dataset, characterizing their popularity. Our results show 40% are Marginal apps, and in the remaining 60%, only 0.4% are Dominant, 1% are Flops, and 7% are Hot.

As a practical use case, we analyse the performance of a state-of-the-art mobile app recommender [35] with respect to trends. Our analysis shows that only 3.6% of the recommendations are for apps which are currently rising in popularity, and that overall recommendations have low novelty and temporal diversity. We also demonstrate that the accuracy of the recommendations can be improved by considering trend information. Trend information not only helps the app developers, but can also help users to discover more relevant apps.

Summarising, our usage-based measures retention and trend are able to shift sovereignty in app recommendations back to where it really matters: actual usage statistics, in contrast to download count and user ratings which are prone to manipulation by people.

2. RELATED WORK

Mobile app recommendation systems utilise a multitude of features to rate the relevance or quality of a respective app. Among these, user reviews are a prominent source for app recommendation systems [10]. However, empirical studies have shown that reviews typically contain several topics, which are seldom reflected by the overall rating [25, 18]. Motivated by these studies, several works on using sentiment analysis and summarisation techniques for mining app reviews have been proposed. Chen et al. [8] identify reviews that are most informative to the developers, whereas Guzman and Maalej [14] use sentiment analysis and language processing to extract user opinions for different features in a mobile app. Recommendations, however, are prone to fraud and are inaccurate and noisy as they are based on free-form textual descriptions. Guerrouj et al. [13] mine feature requests from StackOverflow discussions and demonstrate that the amount of feature requests has a significant effect on overall ratings, with popular and highly rated applications receiving significantly fewer changes and feature requests than less successful ones. Jovian et al. point out that version information should further impact the recommendation score as the quality of an app might be affected by the change in version [22]. This is implicitly also covered by our approach as changes in the usage trend might result from a version update.

In order to improve the above mentioned global solutions in which recommendations are identical for all users, individual preferences are considered. Peifeng et al. argue that an app recommendation system has to take into account also the set of already installed apps [36]. They compare a ‘tempting’ value of a new application to a ‘satisfactory’ value of already installed applications of the same type. A recommendation is then provided only if the former exceeds the latter. Another example is AppJoy [35], which employs item-based collaborative filtering to recommend apps based on personalized usage patterns. AppBrain compiles recommendations within the same category by monitoring the installation history of apps. Also, AppAware [11] provides recommendations by integrating the context information of mobile devices. Moreover, users often use several apps within the same category [37] and the overall usage session times tend to be short, and depend on a wide range of contextual factors [4, 9]. Responding to this observation, the AppTrends approach was proposed to consider actual usage data and to base the recommendation on frequency of co-usage of apps [11]. Combinations of these individual recommendation systems to form multi-objective app recommendations have the potential to further improve accuracy in the recommendations [34].

All of the above solutions focus on the user but not on the actual popularity or quality of an app. Also, Petsas et al. [26] demonstrated that user preferences tend to be highly clustered and following various trends over time, with users showing interest in a small set of app categories at a time. Our work complements existing solutions by providing mechanisms for analysing and understanding application usage relative to the dynamics of the app’s instantaneous popularity in a marketplace.

Some commercial app analytics tools, such as Google Mobile Analytics and Countly’s Mobile Analytics, follow a similar path by focusing on monitoring statistics of individual apps, covering information about usage session frequencies, lengths of usage sessions, extent of in-app purchases, and so forth. In contrast to our work, these solutions provide little insight into the usage of the app relative to other apps.

http://www.count.ly
http://www.google.com/mobile/analytic/mobile
http://www.appbrain.com
Commercial trend mining systems include Google Trends\(^6\), which monitors the frequency of words in search queries related to real-world events, and the trending topics list of Twitter, which uses the frequency of hashtags and noun expressions to determine popular topics. Related academic works include detecting emerging trends in real-time from Twitter [3, 6, 23], mining of news discussions or other text documents for trends [32, 27], and analysis of web behavior dynamics [28]. Our work is capable of operating solely on app usage information whereas these works operate on co-frequency patterns between words or n-grams. Moreover, these works only focus on a short time span, whereas we consider the entire lifecycle of an application.

3. DATASET

Our work considers data recorded with Carat [24], a stock Android and IOS mobile app to propose personalized recommendations to improve a device’s battery life. Carat uses energy-efficient and non-invasive instrumentation to record the state of the device, including the process list, and active apps. Carat has been deployed on over 800,000 smartphones, roughly half of which are Android devices. The community of users that contribute data to Carat is spread all over the world, with users in roughly 200 countries, and a strong presence in USA, most of Europe, India, and Japan.

For this paper, we consider a subset of the data that contains measurements from 339,842 Android devices over a period of three years (June 2nd, 2012 – July 14th, 2015). We limit our analysis to Android devices as the data obtained on Android devices can be uniquely mapped into individual applications [33], whereas data obtained on iOS devices can not. As part of our analysis, we assess the popularity of apps within categories. To carry out this analysis, we combine the crowdsourced data with category information from Google Play. The resulting dataset includes a total of 13,779,666 app usage records from 339,842 users and 213,667 apps in 47 categories. We only use the leaf categories of Google Play. Games and Family, for instance, are groups of categories, while two of their individual categories are Games: Racing and Family: Action.

The scale of the dataset we consider in our analysis is an order of magnitude larger than in previous works. For example, Harman et al. [15] considered a dataset containing reviews from 30,000 apps, whereas Böhmer et al. [4] considered measurements from 4,125 users and 22,626 applications.

Ethical Considerations: We analyse aggregate-level data which contains no personally identifiable information. The privacy protection mechanisms of Carat are detailed in [24]. Data collection by Carat is subject to the IRB process of University of California, Berkeley. Users of Carat are informed about the collected data and give their consent to use data from their devices.

4. ANALYSIS OF RETENTION RATES

The few existing academic studies on mobile app usage have mainly been able to characterize factors that drive download decisions [15, 19, 26] without being able to determine what happens once the app has been installed on the device. While some studies have relied on measurements taken on the handsets, they have focused on overall usage and how that is influenced by contextual factors [4, 9, 29], leaving commercial reports by mobile analytics companies the only source of information about what happens once the app has been downloaded. Reports of analytics companies suggest that

\(^{6}\)google.com/trends

\(^{7}\)carat.cs.helsinki.fi

Figure 2: Retention rates and their distribution

(a) Retention rate largely depends on the initial number of users, with popular apps staying healthy for longer periods of time.

(b) Empirical cumulative distribution of retention rate for Apps with at least 1,000 users.

Usage dwindles significantly after installation (i.e., low retention), and reportedly, even 80% of users stopping to use the application is common. In this section we present the first independent and large-scale study to investigate whether this indeed is the case.

4.1 Retention Rate

Retention rate on day \(d\) is defined as the percentage of users that continue using the application \(d\) days after first usage. To estimate retention rates, we identify for each user and application the first and last time the user launched the application. To ensure usage behaviour is correctly captured, for each app we only consider those users who had not been using the app within 7 days of the last measurement day (July 14th 2015).

The retention rates of mobile apps in our dataset are illustrated in Figure 2a. From the figure we can observe that, while retention rates of many applications indeed are low, there are several apps with a healthier usage lifecycle. Overall, for all apps, the first day retention is as low as 36% with 7 day retention falling below 30%. However, our results also suggest that this effect is mainly due to many apps receiving only very few users. Indeed, retention rates for apps with at least 10 users show much healthier behaviour, with first day retention being close to 50%. For apps with at least 1000 users the same figure rises to 62%. For the most popular 100 apps, first day retention is even as high as 68% and after 7 days the retention remains higher than 50%. In summary, our analysis supports the view that retention rates of apps tend to be low, with the usage witnessing a steep decline particularly after the first use. However, our analysis also calls into contention some of the claims made by analytics companies, indicating that the number of users mediates the retention of applications, with even apps with as few as 10 users witnessing significantly better retention rates.

To further shed light on the retention patterns, Figure 2b illustrates the empirical cumulative distribution function of retention rates for apps with at least 1,000 users. In the plot we separately consider the retention rates of day 1, day 3 and 7. These days were chosen for our results to be comparable with results published by analytics companies\(^7\). From the plot we can see that high retention rates are rare. Indeed, only 10 – 40% of apps have retention rates of 70%, and a mere 3% of apps is able to achieve 75% retention rate on day 7. However, from the figure we also observe that extreme drops are rare, with less than 10% of applications having retention rates below 30%, i.e., the 80% drop reported in the literature is not common for apps that have been able to attract a sufficient user base.
We observed similar patterns for apps with less than 1,000 users. However, since there are orders of magnitude more apps with only a handful of users, as opposed to, for instance, hundreds of users, the retention rate of the entire data is then biased. Apps with 100 users or less are very volatile in terms of retention rate, since a drop of a single user already decreases retention by 1% or more. The plot for apps with at least 10 users follows a similar, but more jagged pattern, and rises much faster with retention rates around 10% lower than in Figure 2b.

This also further supports our earlier finding of retention being mediated by the size of the user base. To verify this, we used Spearman correlation to assess the statistical dependency between usage counts and retention rates. To limit potential biases and noise in the retention rate estimates, we only considered apps with at least 10 users. The resulting analysis revealed the correlation to be statistically significant for all days \(d = 1, \rho = 0.199, p < .001; d = 3, \rho = 0.185, p < .001 ; d = 7, \rho = 0.165, p < 0.001\). For applications with higher usage count, correlations were slightly lower, but remained consistently significant.

For apps with only 10 – 15 users, some fraction of the retention could be potentially explained by developers of the apps continuing to test and use their app. Unfortunately identifying these users from the Carat data is not possible.

4.2 Beyond Retention Rates

While retention is able to reflect the long-term attractiveness of an app to individual users, it does not cover instantaneous popularity, trends or seasonal patterns. In particular, when the popularity of an app changes, this does not necessarily affect its retention rate. Furthermore, apps with seasonal usage patterns, such as recommendation of lunch places, nearby gas stations or vacation-related are unfairly treated by retention rates. This is in particular true when the time window is short, such as the often cited 1-day/3-day/7-day retention characteristics. For instance, Figure 3 depicts usage patterns for exemplary applications from first day of usage up until 100 days of usage. The selection of applications was done automatically using a peak detection algorithm that identifies significant peaks in usage after the initial slide in usage.

In the figure, GasBuddy is a representative example of apps with clear seasonal patterns. It compares fuel prices at nearby gas stations. The use of the application dwindles after day 1, but has recurrent spikes at biweekly and monthly intervals. Other examples include the Adobe Air game store/platform (regular peaks), or Angry Birds (many small peaks). Utilities, such as the music identifying SoundHound, Google Translate, and Google Earth (both irregular peaks) are used on-demand as their value to users is situational.

To capture these effects and to provide a more accurate view of the usage of an application, we next develop a novel trend mining approach for capturing application lifecycles.

5. MINING REAL-TIME TRENDS

We propose instantaneous application usage as a novel metric to accurately characterise the momentary hotness of mobile apps. Existing metrics, such as aggregated installation counts, co-installed apps and user reviews, often contain noise and biases making them an unreliable measure of an app’s success or failure. Moreover, these measures ignore effects of temporal and other seasonal or external factors. Figure 4 provides an overview of our toolbox for identifying and characterizing application usage trends. These cover (please refer to Figure 4 for details):

(A) **Group apps with similar trend pattern** Given prototype trend patterns (e.g. Dominant, Flop, Hot, Marginal (cf. Figure 1)), a set of apps is clustered according to their similarity to these prototypes. This module enables us to identify apps that resemble one of the four trend patterns.

(B) **Extract representative patterns** From a group of apps, compute a consensus pattern as the mean over all patterns in the group. We use this module, for instance, to identify a representative pattern of a Google Play category by computing the consensus for all apps in the category (cf. (D)). It can be applied to arbitrary groups of apps, for instance, to compare their average popularity (e.g. different groups of games or applications from a specific developer).

(C) **Determining the App Lifecycle** An application can be at various stages inside their application lifecycle. For instance, beginning (initial stage), middle (rising), end (over the top). To find the stage of an app within a particular lifecycle, we apply alignment approaches between the representative trend pattern and the app usage statistics.

(D) **Calculate the trend of specific categories** To uncover the popularity trend of Google Play categories, we determine the consensus of the category to represent the overall trend.

(E) **Spot apps that drive the trend** We isolate dominant apps in a category that drive the usage trend. This is achieved by normalising the performance of the app against the performance of the category (using (B)). The resulting pattern displays the performance of the app with respect to all other apps in the same category. A positive slope in the pattern indicates that the app is performing better than its category while a negative slope indicates underperformance.

(F) **Filter apps with prototype patterns** We utilize the distance of an apps usage pattern to a prototype pattern in order to filter apps which closely resemble the prototype pattern. This module can be used, for instance, in analysis and recommendation of apps. In particular, since the usage trend is normalized against the trend of the category, the user or developer learns if the app is driving a trend or merely dominated by other apps in the category.

For all above modules, the first step in the processing of real-time usage data is to extract from users interacting with a particular app on a specific day the usage frequency of individual apps (Figure 5), i.e., for each day, how often it was active across all mobile devices. Note that usage frequency is not proportional to installation count due to retention. The usage frequency data is potentially discontinuous (this is especially true for apps resembling the Marginal pattern), and absolute values of different apps vary. To meaningfully compare app usage trends, normalization with respect to the total usage count (relative popularity over time) and within maximum usage of the app (popularity within a particular day) is therefore necessary. In particular, for the number \(c_{\text{usg}}(i)\) of users interacting with a particular app on day \(i\), we normalize \(c_{\text{usg}}(i)\) to \(c_{\text{usg}}(i) = \frac{c_{\text{usg}}(i)}{\text{max}(c_{\text{usg}}(j))}\) into \([0, 1]\). Missing data is interpolated for discontinuous usage patterns. These normalised app usage patterns can then be exploited for comparison with other patterns and for further processing.
Figure 3: App usage patterns do not always follow a simple falloff graph as suggested by retention rate.

![Figure 3: App usage patterns do not always follow a simple falloff graph as suggested by retention rate.](image)

Figure 4: Description of a selection of trend mining procedures on real-time app usage data.

Input	Processing	Output	Description
(A)			Grouping apps with similar trend patterns. To compare different apps of varying popularity, we normalize each timeseries with respect to its maximum value. In particular, let \(c_{\text{app}}(i) \) be the number of users that had this app among their active apps over the period of day \(i \). We then normalize \(c_{\text{app}}(i) \) to \(c_{\text{app}}(i) = \frac{c_{\text{app}}(i)}{\max\{c_{\text{app}}(i)\}} \) into \([0, 1]\). Then, days without usage are interpolated: \(c_{\text{norm}}(i) = \frac{c_{\text{app}}(k) - c_{\text{app}}(j)}{k - j} \), \(j < i < k \in \mathbb{N} \) and aligned with respect to their peak value: \(c_{\text{norm}}(f(i)) = c_{\text{app}}(i); f(i) = i - \text{arg max}\{c_{\text{app}}(i)\} \). K-means clustering is used since cluster count is predetermined (e.g. Flop, Hot, Dominant). Features are described in Figure 5.
(B)			Identifying representative trend patterns. From all usage timeseries \(TS_i \) in one cluster \(C = \{ TS_1, \ldots, TS_n \} \), a consensus timeseries \(c(C) \) is constructed as the mean over all time series in that cluster: \(c(C) = \frac{1}{n} \sum_{i=1}^{n} TS_i \) (cf. figure 5a).
(C)			Determining the App Lifecycle. After normalising the usage evolution of a single app (cf. (A)), its Lifecycle is found using alignment methods[31]. A sub-sequence similar to usage pattern \(p = p_1 \ldots p_k \) is found in a longer sequence \(s = s_1 \ldots s_n \) via integer programming: \(M_{ij} = \min (M_{i-1,j-1} + d, M_{i-1,j} + d, M_{i,j-1} + d) \). The \(M_{ij} \) track the minimum cost to align \(p_1 \ldots p_k \) with \(s_1 \ldots s_j \). \(M_{ij} = 0 \) to allow the pattern to start at any position within \(s \). Careful choice of the penalty \(d \) is crucial to produce good matchings.
(D)			Calculating the trend of specific categories. After normalising the usage evolution of apps of a specific category (cf. (A)), their consensus is calculated as detailed in (B).
(E)			Spotting of apps that drive the trend. In order to identify apps that drive the trend in their category, the app’s usage evolution is first normalised with respect to the total daily usage data (cf. (A)) and then again with respect to the usage evolution of the category (cf. (D)).
(F)			Filter apps with prototype patterns. To filter e.g. only rising stars from a collection of apps, after normalisation (cf. (A)), the Euclidean distance of the individual app usage pattern is calculated in the space spanned by the features detailed in figure 7.

Figure 5: App-usage data from Android: process name, installation count, and daily usage.

timestamp	app name	installations	usage
2012/01/01	com.ceruleanstudios.trillian.android	48	2
2012/01/01	com.comodo.pimsecure	30	2
2012/01/01	com.contapps.android	55	4
2012/01/01	com.cumberland.tutarifa	87	4
2012/01/01	com.diggreader	7	1
2012/01/01	com.diune.pictures	18	1

Figure 6: App trend patterns with example apps.

5.1 Features and Clustering

Individual apps follow distinct instantaneous trends. This is depicted in Figure 6 for a selection of exemplary apps after normalization. We are interested in identifying the four main trends ‘rising in popularity’ (Hot), ‘falling in popularity’ (Flop), ‘constant high popularity’ (Dominant) and ‘no popularity’ (Marginal) (cf. figure 6a). Although there are more and fine-grained trends to be found in the data, we focus in our study on these four, since they are found prominently in the data and have the potential to imply clear
recommendation for both app developer and app user. In particu-
lar, figure 7a depicts the distribution of mean cluster sizes we found
after 10 runs of k-means with \(k = 20 \). The Marginal pattern was
constantly found by about one order of magnitude more often than
all other patterns (not shown in the figure). The three main trends
Hot, Flop, and Dominant have been prominently found among the
clusters computed in all runs of the k-means algorithm (cf. for in-
stance, figure 7b). As visible from figure 7a, on average, the three
largest clusters jointly represent about \(\frac{1}{3} \) of the apps with a long
tail of small clusters. This shows that, although more than the Hot,
Flop, and Dominant (and Marginal) patterns can be found in the
data, their relevance is rather small. We leave the study of further
clusters to future work and focus in this paper on the prototype
clusters identified in figure 6a.

Figure 6b, 6c and 6d depict exemplary app usage evolutions for
specific apps filtered with one of these prototype trend patterns (cf.
Module (F) in Figure 4). While more complex patterns can also
be found with the proposed modules, these are combinations of the
above patterns. Furthermore, we are mostly interested in the in-
stantaneous trend of the application and less in historical data. We
expect that the former three basic trends will approximately resem-
ble the three characteristic patterns illustrated in Figure 6a. Apps
with very low usage (Marginal pattern) closely resemble \(f(x) = 1 \),
a straight line with constant value ‘1’. This is due to our pre-
processing of applications in order to make them comparable: Nor-
malisation with respect to the highest observed daily use followed
by the interpolation of missing values.

In order to compare normalized usage patterns of applications to
each other, to consensus patterns of groups of apps or to trend
patterns as specified in Figure 4, we measure similarity via Eu-
clidean distance in a feature space spanned by Area Under the
Curve (AUC), Relative Peak location (Peak), Slope and Variance
(cf. Figure 8). The choice of these features is owed to the na-
ture of the four trend patterns to distinguish. Peak and Slope are
able to distinguish Hot or Flop patterns, whereas the AUC distin-
guishes those from the other two constant patterns which have a
much larger AUC. Finally, Variance and AUC are able to distinguish
between Dominant and Marginal as the latter will have low
variance and high AUC.

With these features, trend patterns are clustered with k-means clus-
tering according to their similarity to the four main trend pat-
tterns (Figure 4 (A)). We utilise k-means since the number of clus-
terheads is fixed by the four trend patterns Hot, Flop, Dominant,
and Marginal.

Figure 7: Distribution of cluster sizes and exemplary prototype
clusters found among the clusters

5.2 Impact of App Categories
In trend analysis, we are interested in the popularity of specific
apps with respect to others. However, apps can fall into various
categories and might not be comparable, such as, for instance, cat-
egories Game and Business. In particular, in the Google Play Store,
some categories might increase in popularity while others decrease.
This can be seen in Figure 9a where the trend of the exemplary
categories Game-educational, Books and Reference, and Comics
is plotted (cf. (D) ‘Calculating the trend of specific categories’ in
Figure 4). The displayed consensus trend of the categories shows
distinct slope.

Overly successful apps have a significant impact on the trend of
their category. An example is the impact of Facebook on its cate-
gory Social. The Facebook app dominates the performance of the
category as indicated in Figure 9b. Compared to the consensus of
all apps in this category, com.facebook.katana features with 0.2105
the smallest Euclidean Distance in the feature space. Smaller copy-
cat apps branch part of the success and popularity of dominant
one. Due to the success of popular apps like, for instance, What-

tApp, many other similar apps are published and users attracted
to this category not only follow the leading app but also try other,
similar, possibly localized, alternatives, such as WeChat (Weixin)
in China. Smaller apps might then appear to follow a rising trend
but merely benefit from the overall popularity of the category.

For a fair comparison of apps that belong to different categories,
the overall trend of the categories should therefore be subtracted
out.

For recommendation or analysis purpose, apps that drive the trend
are especially interesting over copycat-apps which are worse than
the trend. To objectively measure the performance of an app, free
of the influence of its category, we calculate its performance rela-
tive to the performance of its category (cf. (E) Spotting apps that
drive the trend in Figure 4). To illustrate that normalisation against
the overall trend in a category is beneficial to identify the actual
instantaneous performance of an app consider Figure 10 for three
 exemplary apps in one category. Figure 10a plots the consensus of
the app category. Looking at individual app’s performance (Fig-

\[
\begin{align*}
\text{Area under the curve} & \quad \text{Relative location of the TS’ peak} \\
\text{AUC(TS)} & = \sum_{k=1}^{n} f(k) \\
\text{Peak(TS)} & = \arg \max_{f(k)} (f(k) - f(1)) \\
\text{Slope of the normalised TS} & = \frac{f(k) - f(1)}{k-1} \\
\text{Variance} & = \frac{1}{n} \sum_{k=1}^{n} (f(k) - f(1))^2 \\
\end{align*}
\]

Figure 8: Features exploited for an app usage time series
\(TS = (f(1), f(2), \ldots, f(n))\) to judge the similarity of
their shape. \(\mu(TS)\) is the arithmetic mean of the timeseries.
Figure 10: Performance of individual apps relative to the performance in their cluster.

Figure 11: Exemplary popular apps chosen for comparison

Table 1: Categorization of example applications.

App	Category	Pattern	Distance
Vine	Entertainment	Hot	0.4220
Evernote	Productivity	Hot	0.3956
Snapchat	Social	Hot	0.5399
Path	Social	Dominant	0.4467
WhatsApp	Communication	Dominant	0.1186
Flappy Bird	Game - Arcade	Flop	0.0575
Weibo	Social	Flop	0.2343
QQ	Social	Flop	0.2854

6. EMPIRICAL EVALUATION

To demonstrate the value of the trend filter, we carried out experiments using the Carat dataset. We first show that our trend filter is capable to identify known success and failure stories. Afterwards, we present a categorization of trends within different application categories on Google Play.

6.1 Validation

We begin our evaluation by demonstrating that trends can detect known phenomena, such as widely known popular and unpopular apps. We examine eight popular apps (cf. figure 11), four of which are widely believed to be exceeding expectations and four which have been extremely popular once but which have significantly dwindled since.

After grouping these apps according to the four representative trend patterns (cf. Figure 4, module (A)), three of the popular apps, Vine, Evernote, and Snapchat are classified as Hot apps, whereas WhatsApp is classified as a Dominant type. Table 1 illustrates the distance of each app to the nearest of the four representative trend patterns. From the table we observe that the distance from the Hot trend pattern for Snapchat is 25% higher than for the other apps. This reflects also the lower app-store ratings it has received compared to the other apps.

We can see this also in the trend pattern the app experiences as compared to the other apps (cf. Figure 12a and Figure 12b). We can see that Snapchat features a steadily rising cumulative mean but also exhibits up and down fluctuations which affect its categorization. Evernote, in comparison, achieves a more stable long-term popularity and features a steep raise in its more recent trend. Nevertheless, our analysis is able to correctly identify a positive trend for each of these apps.

From the underperforming apps only three (Flappy Bird, Weibo and QQ) are classified as Flops. From the distances in Table 1, we observe that Flappy Bird, Weibo and QQ are very close to the archetypical flop pattern, whereas the distance of Path to the Dominant pattern is high, suggesting that it is still in transition between lifecycle states. The graphical comparison between Flappy Bird and Path in Figure 12c stresses this observation: While Flappy Bird follows closely an archetypical Flop-pattern, the evolution of Path has returned to past levels after a temporary high.

It is important to stress here that the Flop pattern should not be interpreted as negative. On the contrary, it indicates that the app was successful to gather a huge user base in short time, but experienced high loss in users quickly thereafter, i.e., it has low retention rate. As discussed in Section 4.1, it is a natural matter of retention rate that the usage drain is significant, and Flop simply means that the app has surpassed its ‘best before’ date. As an example, consider the Angry Birds series of apps. As indicated in Figure 12d, the patterns of most Angry Birds apps closely resemble the Flop pattern (shifted by their respective release date) even if most of them can be considered to be exceptionally successful. Furthermore, we can
observe that a series of apps in the same theme or product family has the potential to benefit each other as a compounding effect. We see in Figure 12d how the much older Angry Birds Friends and Angry Birds Seasons are released. These peaks can also be observed at very similar times for the original Angry Birds and the older Angry Birds Seasons.

6.2 Large-Scale Study of Application Trends

We next analyse the distribution of Flop, Hot and Dominant apps (Figure 6a) within various categories. Throughout all categories, about 40% or more of the apps are marginal. This means that from all apps in Google Play, less than 60% ever gather more than a handful of users. Table 2 summarizes the frequency of the four main trend patterns in exemplary Google Play categories.

We cluster the remaining 60% to a particular trend pattern when the Euclidean Distance to the respective cluster centroid (Hot, Flop, Marginal or Dominant patterns) is below 0.4. In our tests, this distance was able to clearly separate the apps belonging to one of the four patterns from those that do not belong to it (cf. Figure 13). In the figure, we have calculated the mean Euclidean distance of groups of apps to their nearest cluster centroid. The figure compares the mean distance of apps that are associated with a respective trend pattern to those that feature an Euclidean distance greater than 0.4.

Observe from table 2 that for the apps associated with one of the trend patterns, the Marginal apps are most similar to their respective trend pattern and the mean Euclidean distance for Hot, Dominant and Flop apps is for all categories sharply concentrated around 0.3. The distance of the remaining apps to their nearest trend pattern is significantly higher. This means that they might follow other, more complex patterns or experience constant fluctuation. We leave the study of further, more complex trend patterns to also represent these apps open for future research.

Of the apps associated with one of the four main trend patterns, less than 0.1% gather a constantly high user base (Dominant apps). Fewer than 1% are Flops, i.e., apps that have once gathered a very large user base for a short period of time but have then drastically lost popularity. Finally, apps associated to the Hot category account for about 2-7% of all relevant apps. These apps are quickly rising in popularity. It might be trendy apps that will become Flops in the Future or also indicate future trending Dominant apps. Considering the Euclidean distance of all individual apps to the mean in their respective Google Play category, we observe that the mean and variance are in the order of 0.95 and 0.2 for all categories.

7. PRACTICAL USAGE OF APP TRENDS

To demonstrate the practical value of our work, we now consider how trend information can affect app recommendations. We have implemented AppJoy [35] as a representative example of current state-of-the-art app recommenders, and compared the recommendations provided by AppJoy against current trend patterns. AppJoy operates on so-called usage scores, which are constructed by aggregating the following information: (i) time elapsed since the last interaction with an app, (ii) frequency of the user interactions with an app, and (iii) total duration of time the user has interacted with an app. Accordingly, AppJoy bases its recommendations on information sources that correspond to metrics which are used by handset-based mobile analytics tools, such as Google Mobile Analytics and Countly.

To generate recommendations, AppJoy uses a Slope One Prediction model that compares a user’s profile to other users with similar application usage history. Formally, we define $S(u)$ as the set of applications used by user u. Given an application i and user u, we define $R_{u,j}$ as the set of relevant applications j used by other users together with i, i.e., $R_{u,j} = \{i| i \in S(u), j \notin S(u), \#S_{i,j} > 0 \}$ where $S_{i,j}$ is the set of users who have used both i and j. The relevance of application j for user u is then given by:

$$ P(u_j) = \frac{1}{\text{size}(R_{u,j})} \sum_{i \in R_{u,j}} (\text{dev}_{u,i,j} + u_i). $$

(1)

Here dev is the average of the usage scores between users who have used both i and j:

$$ \text{dev}_{u,i,j} = \sum_{w \in S_{i,j}} \frac{u_{w,i} - u_{w,j}}{\text{size}(S_{i,j})}. $$

(2)

Given the relevance scores $P(u_j)$, AppJoy returns the top N items with the highest score as recommendations.

To illustrate the value of trend and lifecycle information, we ran the AppJoy recommender and our trend analysis for a subset of the data containing 4,500 users and 1,000 most frequently used applications in the dataset. As our test period we selected October 2014, due to little seasonal fluctuations, and as training data we selected all data accumulated between January 2014 and September 2014. Given the test data, we used AppJoy to generate recommendations in an incremental fashion for each week. In particular, we generated recommendations for the first week, then included the data from this period in the training data and generated recommendations for the second week, and so on. We also generated trends for every week, taking into account the lifecycles of the past year, starting from January 1st 2014. We counted (i) how many recommended applications can be classified as Flop or Hot apps, (ii) how these compare with the total number of em Flop and Hot apps in the top 1000 applications. We also calculated temporal diversity, novelty, and accuracy for the recommendation lists [21]. Diversity presents how the recommendations change over time, whereas
Figure 13: Mean Euclidean distance to the respective cluster centroid (Hot, Dominant, Flop, Marginal) for apps associated with the respective trend pattern (low Euclidean Distance) compared to those not associated with it (high Euclidean Distance).

Table 2: Percentage of Marginal, Flop, Dominant, and Hot apps for 17 exemplary categories

Category	Marginal apps(%)	Dominant apps(%)	Flop apps(%)	Hot apps(%)
Books and Reference	43.28	26.85	1.14	19.72
Business	38.16	31.94	41.27	38.78
Comics	31.94	41.27	38.78	49.81
Communication	41.27	38.78	49.81	47.21
Education	38.78	49.81	47.21	38.62
Entertainment	49.81	47.21	38.62	42.54
Family	47.21	38.62	42.54	40.30
Finance	38.62	42.54	40.30	46.16
Game (Action, Arcade, Puzzle)	42.54	40.30	46.16	41.35
Health and Fitness	40.30	46.16	41.35	40.15
Lifestyle	46.16	41.35	40.15	44.78
Media and Video	41.35	40.15	44.78	43.97
News and Magazines	40.15	44.78	43.97	39.62
Personalisation	44.78	43.97	39.62	
Productivity	43.97	39.62		
Tools	39.62			
Travel and Local				

Table 3: Statistics of 20 best recommendations from 1000 applications during a month.

W	Rec. Stars	Rec. Flops	Total Stars	Total Flops	Div. Nov.	Acc. Div. w/o flops	Nov. w/o flops	Acc. w/o flops
1	8	5	217	163	0.02	-	-	-
2	7	6	229	158	0.80	0.99	0.90	0.12
3	8	7	232	154	0.62	0.84	0.54	0.73
4	10	9	225	150	0.56	0.75	0.50	0.68

novelty describes how many new recommendations there are seen compared to the later ones. Novelty of the recommendations relates closely to the trends, because changes in trends should affect new recommendations. Formally these metrics are defined as follows:

\[
\text{diversity}(L_1, L_2, N) = \frac{|L_2 \setminus L_1|}{N} \quad (3)
\]

\[
\text{novelty}(L_1, N) = \frac{|L_1 \setminus A_t|}{N} \quad (4)
\]

\[
\text{accuracy}(L_1, A) = \frac{\text{size}(L_1 \cap A)}{\text{size}(A)} \quad (5)
\]

Results of our analysis are shown in Table 3 for the top-20 recommendations given to all users. The results indicate that the number of Hot apps recommended for each week is quite small and comparable to the number of Flop apps recommended in the same time. Given that we have generated in total 90,000 recommendations for 4,500 users each week, the amount of Hot recommended corresponds to a very small percentage of the entire set of recommendations. In the data set of 1000 apps, more than 200 applications each week can be classified as Hot, and about 160 applications as Flop. On average, only 3.6% Hot apps are recommended, compared to 4.3% Flops. When Flops are removed from the recommendations, both novelty and diversity decrease, but accuracy increases slightly. The main reason for this behaviour is that the metrics used by AppJoy to generate recommendations require sufficient amount of usage before an app is recommended. However, once sufficient usage has been observed, the app can already be past its “best before” date as the recommendation model does not separate between Hot and Flop apps. Integrating usage trend information as part of the recommendation process can help to overcome this issue and improve the overall quality of recommendations.

In summary, our analysis clearly indicates that recommendations provided by AppJoy do not reflect dynamics in actual application usage. Other state-of-the-art recommenders, such as Djinn [17] and GetJar [30], are based on similar usage information and are hence likely to exhibit similar patterns compared to usage trends. To facilitate users to discover up and coming applications, and to help them avoid apps that are long past their popularity peak, the trend information could be integrated as part of the recommendation process, for instance, by considering it as part of the usage scores used by AppJoy or considering more complex dynamics models, for example, as part of latent factor models [20].

7.1 Application Potential

We have demonstrated the benefits of considering mobile app trend information for mobile analytics and app recommender systems. Another use for trend information is providing developers early feedback about the current popularity of their applications, which
they can then use to take countermeasures against negative popularity fluctuations. Trend state can further be correlated with other factors, such as usability gathered through interaction metrics [29], to provide more detailed feedback of the possible reasons in popularity fluctuations.

Beyond providing app developers with tools to understand the state of their app, trend can also be used for marketplace analytics to support advertising strategies. On the device side, trend status can be used as an additional metric to identify most redundant applications for removal to reduce clutter on the user interface. The app-filter also enables detecting apps that are rapidly gaining in popularity, which could be used, for instance, by in-app advertisers to entice new app developers as customers or for dynamic pricing models.

Application trends are also potentially a powerful source of information for characterizing and understanding user interactions, and trend information can be used to support user modelling. For example, users with consistently many Hot applications are continually shifting their application usage, whereas those with many Flop or Marginal apps are likely to remain faithful to the apps they originally chose.

7.2 Limitations

Our measurements were collected using a custom mobile application, which itself is naturally prone to retention. Carat collects measurements continuously in the background of the mobile device, but only sends the data when launched. Accordingly, as long as the user launches the application once after a sufficiently long period from initial use, we obtain sufficient data to carry out our analysis. To further limit potential biases caused by users stopping to use Carat, we only considered users who had used Carat over a sufficiently long period, e.g. a month.

While comparing the popularity of apps within a category, we relied on category information extracted directly from Google Play. On Google Play, the categorization of an app is the responsibility of the developer, and consequently similar apps are likely to contain variations in their categorizations. An alternative would be to rely on topic models to derive a categorization of the apps; e.g., Gorla et al. [12] have demonstrated the use of Latent Dirichlet Allocation (LDA) for mining categories from app store data. Alternatively, trend information could be integrated as part of the topic models together with additional factors, such as number and nature of ratings, and contents of user reviews.

8. SUMMARY AND CONCLUSION

We have presented the first ever independent study of retention rates in the wild. Our analysis shows that, on average, applications lose 70% of their users in the first week, but the effect is mediated by overall user count as applications with over 1,000 users show much higher retention rates. We also demonstrated that, contrary to reports in the literature, severe losses in usage are rare, with less than 10% of apps losing over 80% of users in the first week. We demonstrate that retention rates are an insufficient metric of an application’s success as they ignore effects of seasonality and external factors. In particular, we demonstrated that applications follow different trend patterns which are not captured by retention.

As second contribution, we proposed a novel app-filter that can categorize applications according to their currently followed usage trend. We focused on four characteristic trends: Marginal apps with only few users, Dominant applications of permanent high popularity, Hot apps with rapidly increasing popularity, and Flop apps with drastic drop of the usage. We observed that about 40% of the apps are Marginal. We analysed application categories from Google Play and show that, for example, during the year 2014, 7.5% of communication apps have been Hot, only 0.1% were Dominant, and almost 2% were Flops. This kind of analysis can, in the future, lead application developers to follow needs and desires of the users in faster pace.

As a practical use case of our work, we considered how our trend-filter can benefit mobile app recommenders by enabling recommendations to focus on those apps that are rising in popularity. Trend pattern analysis can be used to strengthen existing heuristics such as interaction rate, download counts, and reviews, and even give more direct way to produce in the wild recommendations taking into account the usage history and trend-pattern of the application. Our analysis shows that only 3.6% of the recommendations are for apps which are currently rising in popularity, and that overall recommendations have low novelty and temporal diversity. We also demonstrate that the accuracy of the recommendations can be improved by considering trend information.

9. REFERENCES

[1] D. Bae, K. Han, J. Park, and M. Y. Yi. Apptrends: A graph-based mobile app recommendation system using usage history. In Big Data and Smart Computing (BigComp), 2015 International Conference on, pages 210–216. IEEE, 2015.

[2] R. Baeza-Yates, D. Jiang, F. Silvestri, and B. Harrison. Predicting the next app that you are going to use. In Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, WSDM ’15, pages 285–294, New York, NY, USA, 2015. ACM.

[3] J. Benhardus and J. Kalita. Streaming trend detection in Twitter. International Journal on Web Based Communities, 9:122 – 139, 2013.

[4] M. Böhmer, B. Hecht, J. Schöning, A. Krüger, and G. Bauer. Falling asleep with angry birds, facebook and kindle: A large scale study on mobile application usage. In Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services, MobileHCI ’11, pages 47–56, New York, NY, USA, 2011. ACM.

[5] M. Böhmer and A. Krüger. A study on icon arrangement by smartphone users. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13, pages 2137–2146, New York, NY, USA, 2013. ACM.

[6] M. Cataldi, L. Di Caro, and C. Schifanella. Emerging Topic Detection on Twitter Based on Temporal and Social Terms Evaluation. In Proceedings of the Tenth International Workshop on Multimedia Data Mining, 2010.

[7] R. Chandy and H. Gu. Identifying spam in the ios app store. In Proceedings of the 2Nd Joint WICOW/AIRWeb Workshop on Web Quality, WebQuality ’12, pages 56–59, New York, NY, USA, 2012. ACM.

[8] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang. AR-miner: Mining Informative Reviews for Developers from Mobile App Marketplace. In Proceedings of the 36th International Conference on Software Engineering (ICSE), 2014.

[9] M. de Reuver, H. Bouwman, N. Heerschap, and H. Verkasalo. Smartphone Measurement: do People Use Mobile Applications as they Say they do? In Proc. International Conference on Mobile Business (ICMB), 2012.
[10] B. Fu, J. Lin, L. Li, C. Faloutsos, J. I. Hong, and N. M. Sadeh. Why people hate your app: making sense of user feedback in a mobile app store. In Proceedings of The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2013.

[11] A. Girardello and F. Michaelelles. Appware: Which mobile applications are hot? In Proceedings of the 12th International Conference on Human Computer Interaction with Mobile Devices and Services, MobileHCI ‘10, pages 431–434, New York, NY, USA, 2010. ACM.

[12] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. Checking app behavior against app descriptions. In Proceedings of the 36th International Conference on Software Engineering, ICSE 2014, pages 1025–1035, New York, NY, USA, 2014. ACM.

[13] L. Guerrouj, S. Azad, and P. C. Rigby. The influence of App churn on App success and StackOverflow discussions. In Proceedings of the 22nd IEEE International Conference on Software Analysis, Evolution, and Reengineering, 2015.

[14] E. Guzman and W. Maalej. How Do Users Like This Feature? A Fine Grained Sentiment Analysis of App Reviews. In Proceedings of the IEEE Requirements Engineering Conference (RE), 2014.

[15] M. Harman, Y. Jia, and Y. Zhang. App store mining and analysis: Msr for app stores. In Proceedings of the 9th IEEE Working Conference on Mining Software Repositories, MSR ’12, pages 108–111, Piscataway, NJ, USA, 2012. IEEE Press.

[16] N. Jindal and B. Liu. Opinion spam and analysis. In Proceedings of the 2008 International Conference on Web Search and Data Mining, WSDM ’08, pages 219–230, New York, NY, USA, 2008. ACM.

[17] A. Karatzoglou, L. Baltrunas, K. Church, and M. Böhmer. Climbing the app wall: Enabling mobile app discovery through context-aware recommendations. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM ’12, pages 2527–2530, New York, NY, USA, 2012. ACM.

[18] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan. What Do Mobile App Users Complain About? IEEE Software, 32:70–77, 2015.

[19] H.-W. Kim, H. L. Lee, and J. E. Son. An exploratory study on the determinants of smartphone app purchase. In The 11th International DSI and the 16th APDSI Joint Meeting, Taipei, Taiwan, 2011.

[20] Y. Koren. Collaborative filtering with temporal dynamics. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2009.

[21] N. Lathia, S. Hailes, L. Capra, and X. Amatriain. Temporal diversity in recommender systems. In Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’10, pages 210–217, New York, NY, USA, 2010. ACM.

[22] J. Lin, K. Sugiyama, M.-Y. Kan, and T.-S. Chua. New and improved: modeling versions to improve app recommendation. In Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval, pages 647–656. ACM, 2014.

[23] M. Mathioudakis and N. Koudas. TwitterMonitor: Trend Detection over the Twitter Stream. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, 2010.

[24] A. J. Oliner, A. P. Iyer, I. Stoica, E. Lagerspetz, and S. Tarkoma. Carat: Collaborative energy diagnosis for mobile devices. In Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, pages 10:1–10:14, New York, NY, USA, 2013. ACM.

[25] D. Pagano and W. Maalej. User feedback in the appstore: An empirical study. In Proceedings of the 21st IEEE International Requirements Engineering Conference, 2013.

[26] T. Petsas, A. Papadogiannakis, M. Polychronakis, E. P. Markatos, and T. Karagiannis. Rise of the planet of the apps: A systematic study of the mobile app ecosystem. In Proceedings of the 2013 Conference on Internet Measurement Conference, IMC ’13, pages 277–290, New York, NY, USA, 2013. ACM.

[27] A. Popescul, G. W. Flake, S. Lawrence, L. H. Ungar, and C. L. Giles. Clustering and identifying temporal trends in document databases. In Advances in Digital Libraries, 2000. Proceedings. IEEE, pages 173–182. IEEE, 2000.

[28] K. Radinsky, K. Svore, S. Dumais, J. Teevan, A. Bocharov, and E. Horvitz. Modeling and predicting behavioral dynamics on the web. In Proceedings of the 21st International Conference on World Wide Web, 2012.

[29] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and S. Shayandeh. Appinsight: Mobile app performance monitoring in the wild. In OSDI, volume 12, pages 107–120, 2012.

[30] K. Shi and K. Ali. Getjar mobile application recommendations with very sparse datasets. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12, pages 204–212, New York, NY, USA, 2012. ACM.

[31] S. Sigg, D. Gordon, G. v. Zengen, M. Beigl, S. Haseloff, and K. David. Investigation of context prediction accuracy for different context abstraction levels. IEEE Transactions on Mobile Computing, 11(6):1047 –1059, June 2012.

[32] O. Streibel and R. Alnemr. Trend-based and reputation-versed personalized news network. In Proceedings of the 3rd International Workshop on Search and Mining User-generated Contents, SMUC ’11, pages 3–10, New York, NY, USA, 2011. ACM.

[33] H. Truong, E. Lagerspetz, P. Nurmi, A. Oliner, S. Tarkoma, and N. Asokan. The company you keep: mobile malware infection rates and inexpensive risk indicators. In Proceedings of the 23rd international conference on World wide web (WWW), pages 39 – 50. ACM, 2014.

[34] X. Xia, X. Wang, J. Li, and X. Zhou. Multi-objective mobile app recommendation: A system-level collaboration approach. Computers & Electrical Engineering, 40(1):203–215, 2014.

[35] B. Yan and G. Chen. Appjoy: Personalized mobile application discovery. In Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, MobiSys ’11, pages 113–126, New York, NY, USA, 2011. ACM.

[36] P. Yin, P. Luo, W.-C. Lee, and M. Wang. App recommendation: a contest between satisfaction and temptation. In Proceedings of the sixth ACM international conference on Web search and data mining, pages 395–404. ACM, 2013.

[37] N. Zhong and F. Michaelelles. Google Play is Not a Long Tail Market: An Empirical Analysis of App Adoption on the Google Play App Market. In Proceedings of the 28th Annual ACM Symposium on Applied Computing, 2013.