Bowel preparation quality scales for colonoscopy

David Kastenberg, Gerald Bertiger, Stuart Brogadir

David Kastenberg, Division of Gastroenterology and Hepatology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States

Gerald Bertiger, Hillmont GI, Flourtown, PA 19031, United States

Stuart Brogadir, Medical Affairs, Ferring Pharmaceuticals, Inc, Parsippany, NJ 07054, United States

ORCID number: David Kastenberg (0000-0002-3995-2282); Gerald Bertiger (0000-0003-4731-2362); Stuart Brogadir (0000-0002-3608-7211).

Author contributions: Kastenberg D planned the first draft of the manuscript; all authors contributed to writing of the manuscript and approved the final version for submission.

Conflict-of-interest statement: David Kastenberg has received research support from and served as a consultant for Medtronic, and is on the advisory boards of Ferring Pharmaceuticals Inc. and Salix Pharmaceuticals. Gerald Bertiger has served as a consultant and has been a part of the speakers bureau for Ferring Pharmaceuticals Inc. Stuart Brogadir is an employee of Ferring Pharmaceuticals Inc. Editorial support was provided by The Curry Rockefeller Group, LLC, which was funded by Ferring Pharmaceuticals.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Received: March 13, 2018
Peer-review started: March 14, 2018
First decision: April 18, 2018
Revised: May 16, 2018
Accepted: May 26, 2018
Article in press: May 26, 2018
Published online: July 14, 2018

Abstract

Colorectal cancer (CRC) is the third most common cancer and second leading cause of cancer-related death in the United States. Colonoscopy is widely preferred for CRC screening and is the most commonly used method in the United States. Adequate bowel preparation is essential for successful colonoscopy CRC screening. However, up to one-quarter of colonoscopies are associated with inadequate bowel preparation, which may result in reduced polyp and adenoma detection rates, unsuccessful screens, and an increased likelihood of repeat procedure. In addition, standardized criteria and assessment scales for bowel preparation quality are lacking. While several bowel preparation quality scales are referred to in the literature, these differ greatly in grading methodology and categorization criteria. Published reliability and validity data are available for five bowel preparation quality assessment scales, which vary in several key attributes. However, clinicians and researchers continue to use a variety of bowel preparation quality measures, including nonvalidated scales, leading to potential confusion and difficulty when comparing quality results among clinicians and across clinical trials. Optimal clinical criteria for bowel preparation quality remain controversial. The use of validated bowel preparation quality scales with stringent but simple scoring criteria would help clarify clinical trial data as well as the performance of colonoscopy in clinical practice related to quality measurements.

Key words: Colonoscopy; Bowel preparation; Aronchick scale; Ottawa Bowel Preparation Scale; Boston Bowel Preparation Scale
INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer, with an estimated risk of occurring in 1 of 18 persons during their lifetime, and is the second most common cause of cancer-related adult deaths in the United States[1,2]. Approximately 135000 new CRC cases and 50000 CRC deaths were projected to occur in 2017 in the United States[1]. For average risk individuals, the United States Preventive Services Task Force and other public health and professional medical bodies recommend CRC screening using colonoscopy, computerized tomography colonography, sigmoidoscopy, double-contrast barium enema, high-sensitivity guaiac or immunochemical fecal occult blood testing, or stool DNA testing (which is combined with immunochemical blood testing) beginning at the age of 50 years[4-6]. Colonscopy is a preferred and the most widely used method for CRC screening in the United States[4-6], based on data showing this procedure is correlated with decreased CRC incidence and deaths, most likely through the detection and removal of premalignant polyps[4-10].

Adequate bowel preparation is essential to ensure sufficient visualization of the colonic mucosa and to optimize lesion detection for successful colonoscopy utilized for CRC screening[4,11]. However, study data indicate that up to one-quarter of colonoscopies may be conducted with inadequate bowel preparation[12,13], which is correlated with lower detection of polyps and adenomas vs adequate preparation (typically good/excellent quality)[12-14,16]. A meta-analysis of 27 studies found that inadequate bowel preparation for colonoscopy CRC screening reduced detection of small adenomas by 47% (OR = 0.53, CI: 0.46-0.62; P < 0.001) vs adequate preparation (excellent/good/fair); this relationship was weaker but still significant for advanced adenomas (OR = 0.74, CI: 0.62-0.87; P < 0.001)[17]. Other studies have reported overall adenoma miss rates of 42%-48% for initial colonoscopies with inadequate or low-quality bowel preparation, based on findings at repeat colonoscopies[13,18]. Inadequate bowel preparation for colonoscopy may also result in prolonged procedures, more frequent repeat colonoscopies (at shorter than recommended intervals) and related increased costs, lower cecal intubation rates, and higher risk of electrocautery[6,11,19-21]. Studies in various international populations have found that inadequate cleansing is a factor in approximately 20%-70% of incomplete colonoscopies[22-25]. Professional gastroenterology societies recommend that clinical practices aim for minimum adequate bowel preparation rates of 85%-90%, and that bowel preparation quality be documented at the time of the screening[6,26].

Currently, no standard criteria or definition exists for qualitative terms such as "adequate", "inadequate", "excellent", "good", "fair", or "poor"; in some scales, adequate cleansing is defined as a composite of "good" and "excellent"[11,26]. Physician reporting on quality of bowel preparation, as well as overall colonoscopy quality, is highly inconsistent and often missing important elements, which may be attributable to lack of clear and consistent quality assessment standards[27]. Therefore, this review was conducted to summarize and discuss currently available bowel preparation quality scales and highlight the benefits of using a reliable and validated scale in both clinical practice and clinical trials of bowel preparation agents.

COMPONENTS OF A BOWEL PREPARATION QUALITY SCALE

Essential attributes of a dependable bowel preparation quality scale include reliability and validity[11]. Scale reliability involves the degree to which an instrument yields reproducible, or consistent, results for the same investigator (intrarater reliability) or among different investigators (interrater reliability), upon repeated testing[11,28]. Validity indicates how well the scale measures what it is designed to assess, which can be determined via several methods[29]. Validity may be assessed by comparison with results of other established and accepted scales used for the same purpose (i.e., bowel preparation quality) in the same test population, referred to as construct validity. Scale validity may also be assessed by correlation with other specific criteria measuring relevant clinical outcomes, in this case, overall colonoscopy quality; this is referred to as criterion-related validity or predictive validity[29,30].

A commonly used criterion for overall quality of CRC screening colonoscopy is the adenoma detection rate (ADR), defined as the proportion of all CRC screening colonoscopies performed by a physician that reveal
at least one adenoma[6,31]. Studies have shown that colonoscopy ADR is strongly, inversely associated with reduced interval CRC rates (CRC diagnosed between the time of screening colonoscopy and the scheduled time of surveillance colonoscopy, which was up to 10 years[32,33], and that increasing ADRs are correlated with reduced CRC incidence and mortality[34]. Some data also indicate that the polypl detection rate (PDR), the number of patients with at least one polypl removed during screening CRC, may also be a useful parameter of colonoscopy quality, particularly since it appears to correlate well with ADR[6]. However, use of the PDR raises additional questions related to the precise definition of “polypl”. Other questions include whether the detection rates of sessile serrated polyplps (SSPs), advanced adenomas, and multiple adenomas (as opposed to a “one and done” approach) should be used as key indicators of colonoscopy quality in addition to the ADR and PDR[6,36-38]. However, clinical data are insufficient for resolution of these issues, and no guidelines for correlation of bowel preparation quality with detection rates for SSPs, advanced adenomas, and multiple adenomas have yet been established[6]. Thus, ADR appears to be the best criterion currently available, as it is relatively easy to measure and has been shown to correlate with interval cancer rate.

The cecal intubation rate, an indicator of colonoscopy completion (reaching the cecum or anastomosis, if present), is another acknowledged quality measure[6,21,26]. Cecal intubation is essential for visualization of the proximal colon, including the caecum, where many colorectal neoplasms are located, in particular SSPs[6]. However, data on the independent association of cecal intubation rate with CRC risk have been mixed[32,35]. Longer withdrawal time is associated with higher ADR and higher-SSP detection and is also a key criterion of colonoscopy quality secondary to ADR[6,36-38].

Another recommended criterion of colonoscopy quality is the level of adherence to recommended post-polypectomy and post-cancer surveillance intervals, which are based on study data[16,39,40]. The United States Multi-Society Task Force on Colorectal Cancer (USMSTFCC) has recommended that this criterion may serve as the overall indication of clinical adequacy of a bowel preparation[11]. Intra-procedure flushing and suctioning to remove fluid and semisolid debris is often performed during colonoscopy[11]. Therefore, the USMSTFCC recommends that bowel preparation quality should be assessed on withdrawal after washing and suctioning[11]. This criterion relates primarily to clinical adequacy, where washing and suctioning is taken into account, and is less relevant for the comparison of different bowel preparation agents, where pre-wash grading of bowel cleanse quality may better reflect preparation agent efficacy.

VALIDATED BOWEL PREPARATION SCALES

The most well established and commonly used validated bowel preparation quality scales in clinical trials include the Aronchick Scale[41,42], the Boston Bowel Preparation Scale (BBPS)[43-49], and the Ottawa Bowel Preparation Scale (OBPS)[50] (Table 1). Other instruments that have been validated, but are less commonly used, include the Harefield Cleansing Scale (HCS)[51] and the Chicago Bowel Preparation Scale (CBPS)[52] (Table 1). A summary of validation studies is found in Table 2.

Aronchick scale

The Aronchick Scale was the first bowel preparation quality scale to be evaluated for reliability[41,42]. This scale characterizes the percentage of the total colonic mucosal surface covered by fluid or stool, without scoring for separate colon segments, and is performed before washing or suctioning (Table 1). A validity study found that interobserver reliability kappa intraclass correlation coefficients (ICCs) were high for the cecum (0.76) and the total colon (0.77), but were reduced for the distal colon (0.31) and ascending colon segments[42]. The Aronchick Scale is one of the most commonly used validated bowel preparation quality scales in clinical trials and clinical practice.

Ottawa Bowel Preparation Scale

The OBPS measures mucosal cleanliness by colon segment, including the right colon, mid-colon, and rectosigmoid colon, on a scale of 0 (excellent) to 4 (inadequate) for each (Table 1 and Figure 1), and is also scored before washing or suctioning[50]. However, in contrast to the Aronchick scale, the OBPS measures fluid quantity separately, with scores ranging from 0 (small volume) to 2 (large volume) for the total colon. Additionally, the OBPS does not tie scoring to subjective estimates of the percentage of the mucosa that is visible, while the investigators suggested might improve interobserver reliability (Table 1)[50]. In a study of reliability and validity compared with the Aronchick scale, the Pearson correlation coefficients for interobserver ratings were superior for the OBPS vs the Aronchick (0.89 vs 0.62, respectively; $P < 0.001$)[50]. Similarly, the kappa ICCs also significantly favored the OBPS vs the Aronchick scale [0.94 (95%CI: 0.91-0.96) vs 0.77 (95%CI: 0.65-0.84), respectively; $P < 0.001$]. Interrater consistency was found to be stronger with the OBPS vs the Aronchick scale, and reliability and agreement of the OBPS for the three different colon segments measured were very high, and not significantly different between segments (0.92 kappa, right colon; 0.88 kappa, mid-colon; 0.89 kappa, rectosigmoid; 0.94 kappa, total colon).

A prospective study of the OBPS aimed to identify an optimal cut-off score for bowel preparation adequacy/inadequacy in 211 patients undergoing colonoscopy at a single center[53]. The receiver operating characteristic (ROC) analysis used in this study found that an OBPS score cutoff of > 8 identified inadequate bowel preparation with a sensitivity of 100% and a specificity of 91%. Another study in 150 consecutive patients undergoing colonoscopy reported strong concordance...
Table 1 Validated bowel preparation quality scales

Scale name	Score	Rating/description	Other scale properties/characteristics
Aronchick Scale	1	Excellent: Small volume of liquid; > 95% of mucosa seen	Total score range: Minimum 1 (excellent) to maximum 5 (inadequate)
	2	Good: Clear liquid covering 5%-25% of mucosa, but > 90% of mucosa seen	Scoring performed before washing or suctioning
	3	Fair: Semisolid stool could not be suctioned or washed away, but > 90% of mucosa seen	No separate ratings for segments: global colon rating only
	4	Poor: Semisolid stool could not be suctioned or washed away and < 90% of mucosa seen	No threshold for adequate/inadequate provided
Ottawa Bowel Preparation Scale (by colon segment)	0	Inadequate: Repeat preparation/screening needed	Total score (obtained by adding scores for each segment)
	1	Excellent: Mucosal detail clearly visible, almost no stool residue; if fluid present, it is clear, almost no stool residue	Minimum 0 (excellent) to maximum 14 (inadequate)
	2	Good: Some turbid fluid or stool residue, but mucosal detail still visible without need for washing/suctioning	Scoring performed before washing or suctioning
	3	Fair: Some turbid fluid of stool residue obscuring mucosal detail; however, mucosal detail becomes visible with suctioning, washing not needed	No threshold for adequate/inadequate provided
	4	Poor: Stool present obscuring mucosal detail and contour; a reasonable view is obtained with suctioning and washing	No threshold for adequate/inadequate provided
Ottawa Bowel Preparation Scale (total colon fluid)	0	Inadequate: Solid stool obscuring mucosal detail and not cleared with washing and suctioning	Total score (obtained by adding scores for each segment + total colon fluid score) range: Minimum 0 (small amount of fluid) to maximum 2 (large amount of fluid)
	1	Moderate amount of fluid	Scoring performed before washing or suctioning
	2	Large amount of fluid	Single score for the total colon
	3	Small amount of fluid	No threshold for adequate/inadequate provided
Boston Bowel Preparation Scale (by colon segment)	0	Unprepared colon segment with mucosa not seen because of solid stool that cannot be cleared	Total score (obtained by adding scores for each segment) range: Minimum 0 (very poor) to maximum 9 (excellent)
	1	Portion of mucosa of the colon segment seen, but other areas of segment not well seen because of staining, residual stool, and/or opaque liquid	Scoring performed after washing or suctioning
	2	Minor amount of residual staining, small fragments of stool, and/or opaque liquid	Segments separately rated: Right colon (including cecum and ascending colon); transverse (includes hepatic and splenic flexures); and left colon (descending and sigmoid colon, and rectum)
	3	Entire mucosa of colon segment well seen, with no residual staining, small fragments of stool, or opaque liquid	Threshold optimally is total score of ≥ 6 AND ≥ 2 per segment segment
Harefield Cleansing Scale (by colon segment)	0	Irremovable, heavy, hard stools	Total score (obtained by adding scores for each segment) range: Minimum 0 (very bad) to maximum 20 (very good)
	1	Semisolid, only partially removable stools	Scoring performed after washing or suctioning
	2	Brown liquid/fully removable semi-solid stools	Segments separately rated: Rectum, sigmoid, left, transverse, right colon
	3	Clear liquid	Threshold for successful cleansing = Grade A: no segment scored < 3 or 4, or Grade B: ≥ 1 segment scored 2 but no segment < 2; Unsucce
	4	Empty and clean	ssful cleansing = Grade C: ≥ 1 segment scored 1 but no segment < 1, or Grade D: ≥ 1 segment scored 0
Chicago Bowel Preparation Scale (by colon segment)	0	Unprepared colon segment with stool that cannot be cleared (> 15% of mucosa not seen)	Total score (obtained by adding scores for each segment) range: Minimum 0 (unprepared) to maximum 36 (excellent)
	5	Portion of mucosa in segment seen after cleaning, but up to 15% of the mucosa not seen because of retained material	Scoring performed before (fluid) and after (mucosal cleaning) washing or suctioning
	10	Minor residual material after cleaning, but mucosa of segment generally well seen	Segments separately rated: Right (cecum to mid-hepatic flexure), transverse (mid-hepatic flexure to mid-splenic flexure), and left colon (mid-splenic flexure to distal rectum)
	11	Entire mucosa of segment well seen after washing or suctioning	No threshold for adequate/inadequate provided
	12	Entire mucosa of segment well seen before washing or suctioning	Not incorporated into total score for segments
Chicago Bowel Preparation Scale (total colon)	0	Little fluid (< 50 cc)	Total score range: Minimum 0 (little fluid) to maximum 3 (large amount of fluid)
	1	Minimal amount of fluid (51-150 cc)	Scoring performed before washing or suctioning
	2	Moderate amount of fluid (151-300 cc)	No threshold for adequate/inadequate provided
	3	Large amount of fluid (> 300 cc)	Not incorporated into total score for segments
Table 2: Reliability and validation data for bowel preparation scales

Scale	Study	Colons (n)	Raters (n)	Reliability	Validity
Aronchick	Aronchick[41], 2004	80	5	ICC values for:	NR
				Total colon: 0.77	
				Cecum: 0.76	
				Distal colon: 0.31	
OBPS	Rostom et al[39], 2004	97	2	ICC values for:	Comparisons with Aronchick scale
				Right colon: 0.92	PCC: 0.89 OBPS vs 0.62 Aronchick
				Mid colon: 0.88	ICC: 0.94 OBPS vs 0.77 Aronchick
				Rectosigmoid colon: 0.89	
	Chan et al[40], 2011	211	NR	NR	Cutoff scores for adequacy/inadequacy
					Optimal cutoff for inadequate ≥ 8: Sensitivity, 100%, specificity, 91%
	Lai et al[45], 2009	633	22	ICC values:	Correlations with VAS
				0.74/0.77 wtd κ	PCC (physicians vs nurses): r = 0.60
OBPS	Lai et al[45], 2009	633	22	ICC values for:	PCC: r = -0.62 (P < 0.001); AUC of ROC analysis similar for PDR, ADR, right-sided adenomas, and SSAs
				Total colon: 0.91	
				Right colon: 0.88	
				Transverse colon: 0.83	
				Left colon: 0.79	
OBPS	Calderwood et al[46], 2010	119	12	ICC values for:	Correlations with surveillance recommendations after normal CSP
				Total colon: 0.91	Score < 5: 100% recommended ≤ 1 yr
				Right colon: 0.88	Scores 5-6: mean recommended interval 4.3 (± 3.9) yr
				Transverse colon: 0.83	Scores ≥ 6: 100% recommended 10 yr
				Left colon: 0.79	Scores 0-2: 96% recommended ≤ 1 yr
OBPS	Calderwood et al[46], 2014	2516	74	NR	Physician-recommended CSP interval after negative CSP
					Scores ≥ 6 (≥ 2 each segment): 90% recommended 10 yr
					Scores 0-2: 96% recommended ≤ 1 yr
OBPS	Schindler et al[48], 2016	3	40¹	ICC values, all raters (all segment and total scores): 0.93	NR
	Gao et al[49], 2013	1012	13	ICC values:	PDR
				0.987/0.671 wtd κ	Scores ≥ 5 superior vs < 5 (35% vs 18%; P < 0.05)
	Kim et al[50], 2014	482	6	ICC values:	PDR
				Total colon: 0.90/0.63 wtd κ	Scores ≥ 8 superior vs scores < 8 (44.9% vs 33.0%; P = 0.04)
				Right colon: 0.93/0.91 wtd κ	Colonscope withdrawal time
				Transverse colon: 0.88/0.86 wtd κ	PCC: r = -0.167 (P < 0.001)
				Left colon: 0.50/0.38 wtd κ	Colonscope insertion time
					PCC: r = 0.018 (P = 0.695)
OBPS	Clark et al[51], 2016	438	4	ICC values by BBPS scores:	ADR (> 5 mm) miss rates by BBPS score:
				0 and 3: 1.0	3: 5.6
				2: 0.81	2: 5.2
				1: 0.80	1: 15.9
OBPS	Halphen et al[52], 2013	337	4	ICC value:	Score of 2 noninferior to 3 for missed adenoma > 5 mm
				0.457	Best score cutoff for satisfactory bowel preparation ≥ 2 for each segment: Sensitivity, 99% and specificity, 83%
				Test-retest κ values:	Correlation with Aronchick scale
				Range, 0.33 ± 0.85	PCC: r = 0.83
				Intrarater²: 0.28 to 0.64	AUC of ROC analysis (vs Aronchick score scales)
				Internal consistency³:	0.945 total colon
				0.81/0.86	
OBPS	Gerard et al[53], 2013	150	4¹	ICC values for:	Correlations of scores with adequate cleansing
				Total colon: 0.86/0.72 wtd κ	Adequate: Scores of 25-36 (≥ 95% of mucosa visualized)
				Right colon: 0.89/0.83	Inadequate: Scores of 0-24 (< 95% of mucosa visualized)

¹Raters included endoscopy nurses (n = 17), gastroenterology faculty (n = 14), and gastroenterology fellows (n = 9); Generalized k for global agreement; ²Cronbach’s alpha; ³Raters included three gastroenterologists and one physician’s assistant; ADR: Adenoma detection rate; AUC: Area under the curve; BBPS: Boston Bowel Preparation Scale; CBPS: Chicago Bowel Preparation Scale; CSP: Colonoscopy; HCS: Harefield Cleansing Scale; ICC: Interobserver reliability kappa intraclass correlation coefficient; NA: Not applicable; NR: Not reported; OBPS: Ottawa Bowel Preparation Scale; PCC: Pearson correlation coefficient; PDR: Polypl detection rate; ROC: Receiver operating characteristic; SSA: Sessile serrated adenoma; VAS: Visual analogue scale; wtd: Weighted.
The BBPS has been validated in multiple clinical studies. Developed in 2009, this scale was designed to address specific issues affecting bowel preparation quality and scoring: (1) The scale stipulates that scoring is to be conducted upon withdrawal and after all flushing and suctioning of fluid have been completed; (2) scoring is applied by colon segments, as in the OBPS, based on potential for variance in bowel preparation between segments; and (3) subjective, qualitative terms, such as excellent, good, fair, or poor, are replaced by numbered scores that are correlated to more clearly described colonic conditions, including features such as staining, liquid, and stool fragments (Table 1). Each segment of the colon is scored from 0 to 3, with higher scores indicating superior cleansing, and summed for a total score that can range from 0 to 9 (Table 1).

The initial validation study for the BBPS involved 633 CRC screening colonoscopies in a single center, and was applied by endoscopists who had undergone training on how to use the scale before participating in the study. The median BBPS total score was 6. The ICC for interobserver agreement of total BBPS scores was 0.74 (95% predictive interval: 0.67-0.80), and the weighted kappa value for intraobserver agreement was 0.77 (95%CI: 0.66-0.87). Validity assessment was based on the correlations of BBPS scores with relevant clinical outcomes and more traditional scale categories, including “excellent,” “good,” “fair,” “poor,” or “unsatisfactory.” Of the 633 patients who received a CRC screening colonoscopy, 243 (38%) had at least one polyp detected, and the PDR was significantly higher for patients with BBPS scores ≥ 5 vs those for patients with BBPS score < 5 (40% vs 24%, respectively; P < 0.02). The frequency of repeat colonoscopy attributable to inadequate bowel preparation was significantly higher in patients with scores < 5 vs those with scores ≥ 5 (73% vs 2% of cases, respectively; P < 0.001). Total BBPS scores were inversely associated with colonoscopic insertion (r = -0.16; P < 0.003) and withdrawal times (r = -0.23; P < 0.001). In addition, a significant trend in mean BBPS score correlating with excellent, good, fair, poor, or unsatisfactory, as separately scored by the raters, was observed (P < 0.001 for trend).

A follow-up study investigated interobserver reliability and clinical outcome correlations of BBPS scores for individual segments, and relationship of scores to polyp detection in 119 screening colonoscopies rated by nine full-time faculty and three fellows at a single center. All (100%) raters judged the bowel preparation adequate to exclude polyps > 5 mm with a ≥ 8 BBPS score, vs 88% of physicians when the score was 7, 82% when the score was 6, 33% when the score was 5, and 0% with a score of ≤ 4. Thus, a score of ≥ 6 was a particularly important threshold, since approximately 80% of physicians found the bowel preparation adequate at that score vs only one-third or less at BBPS scores of ≤ 5. In patients who had undergone a normal screening colonoscopy, a score of < 5 prompted all physicians to recommend repeat colonoscopy within one year, while a score of ≥ 7 was correlated with a recommendation for the next colonoscopy to occur in 10 years (among all physicians). BBPS segment scores were positively correlated with improved PDRs for the left and right colon, but no association was found for the transverse colon.

A further validation study was aimed at identifying a cut-off score for adequacy/inadequacy of bowel preparation. This retrospective study of 2516 normal CRC screening colonoscopies performed by 74 endoscopists found that follow-up was recommended in 10 years for 90% of cases with a total BBPS score ≥ 6 in which all three segments had scores ≥ 2 (n = 2295), while 96% of examinations with total BBPS scores of 0-2 (n = 26) recommended follow-up within one year (Figure 2). Screenings with total scores of 3-5 (n = 167) had variable recommendations. Based on these findings, the investigators suggested that a total BBPS score of ≥ 6 and/or all segment scores ≥ 2 may serve as a standard definition of “adequate for 10-year follow-up.” However, a prospective, observational study in a large, national endoscopic consortium found that inadequate single BBPS segment scores at the initial, average-risk screening colonoscopy were correlated with significantly greater risk of polyps at a second colonoscopy, suggesting that both a total score of ≥ 6 and all segment scores ≥ 2 should be required as an adequacy standard for 10-year follow-up. This assessment was affirmed by a study in 438 colonoscopies in men, which found that BBPS segment scores of 2 or 3 (with 2 being noninferior to 3) was indicative of adequate bowel preparation for detection of adenomas > 5 mm, and for repeat colonoscopy at standard, guideline-recommended intervals (both parameters are USMSTFCC-recommended criteria for bowel preparation adequacy).
Harefield Cleansing Scale

The HCS, developed in the 1990s, is scored by colon segment, as are the OBPS and BBPS. Like the BBPS, the HCS is also scored after washing and suctioning are completed, and replaces qualitative terms (e.g., “excellent” or “good”) with direct descriptions of cleaning quality correlated with score numbers (Table 1). Grading is performed in five colon segments and ranges from 0-4 (higher numbers indicating better quality of cleanse) for each. Although total scores are derived by adding the separate segment scores, an “acceptable” score is possible only when the mucosa is 100% visible in all five colon segments. A validation study of the HCS compared with the Aronchick scale in 337 colonoscopies reviewed by four gastroenterologists found that there was a high degree of Pearson correlation between the two scales ($r = 0.833$), and the Spearman correlation coefficient was -0.778 (correlation is negative because improved cleanse quality is represented by different directions in the HCS and Aronchick scale). The ROC curve analysis vs the Aronchick scale showed an area under the curve of 0.945, and a sensitivity of 99% and specificity of 83% at the optimum score cut-off point.

Interrater reliability analysis yielded an ICC of 0.457 (95%CI: 0.366-0.539). Cohen kappa scores for individual segments between investigators showed slight-to-fair agreement ranging from 0.15-0.27. Internal consistency was acceptable, based on a Cronbach alpha coefficient of 0.81, and the test-retest reliability assessment showed an overall kappa of 0.639. No analyses of correlations with relevant clinical outcomes such as the ADR or adherence to recall guidelines were performed, due to insufficient patient population.

Chicago Bowel Preparation Scale

Like the HCS, the CBPS was developed to address perceived limitations in other commonly used bowel preparation scales. Scoring is performed both before and after washing or suctioning, and a separate fluid score is included as a secondary measure (not incorporated into the total score as in the OBPS). The total and fluid scoring categories were designed to measure both the quality of visualization and the intraprocedural effort required to clean the mucosa to attain adequate visualization. These parameters were intended to help clinicians assess the cleansing efficacy of different bowel preparations. A CBPS validation study prospectively compared the results of the CBPS with the OBPS, the BBPS, and a theoretical, dichotomous scale that simply defined “adequate cleansing” as ability to see $\geq 95\%$ of the mucosa (after it was cleansed), with “inadequacy” being defined as visibility in $< 95\%$ in 150 colonoscopies at a single center. In this study, kappa coefficients for interrater agreement were higher for the CBPS (0.624-0.702) than the OBPS (0.493-0.655) and the BBPS (0.545-0.661), but these differences were not significant. Kappa coefficients for the total colon fluid scores for the CBPS and OBPS, and Pearson correlations coefficients for interrater agreement, were also similar. For the OBPS, scores from 8-10 were graded inadequate; for the BBPS, a score of ≤ 4 was graded inadequate; and for the CBPS, total scores ≤ 24 were graded inadequate. No clinically relevant parameters were assessed for validation in this study.

ADDITIONAL VALIDATED SCALE COMPARISON DATA

The OBPS and the BBPS were compared in a study that reviewed prospectively collected data from patients who underwent CRC screening or surveillance colonoscopies over a two-year period between August 2013 and July 2015. Of the 655 colonoscopies, overall detection rates for polyp, adenoma, right-side adenoma, and sessile serrated adenoma (SSA) were 42.8%, 32.8%, 20.8%, and 1.2%, respectively. A significant Pearson correlation was observed between the two scales ($P < 0.001$).
However, the ROC curves for the OBPS vs the BBPS were not significantly different for the detection rates, respectively, for polyps (0.550 vs 0.513), adenoma (0.544 vs 0.519), right-side adenoma (0.469 vs 0.516), and SSA (0.712 vs 0.790). The investigators concluded that the choice of either the OBPS or the BBPS may not strongly affect the measurement of bowel preparation quality.

DISCUSSION

Quality scales

All currently available bowel preparation quality scales are imperfect, have limitations, and are dependent upon subjective descriptions of luminal contents expressed as categories (“excellent”, “good”, etc.) or numbers, depending on the scale utilized. A standard, fully validated, and universally accepted scale for use in clinical practice and trials has not yet been established. Among the scales, the Aronchick scale is the most well-known and widely used clinically and in clinical trials to date; however, this scale rates cleanse quality of the colon as a whole and provides no details regarding differences between individual segments.

Colon segments cleansing

Guidance is somewhat vague for clinicians regarding grading of the entire colon when individual segments are suboptimally cleansed. This issue may arise more often in the proximal colon, which is harder to clean than other segments and more likely to contain flat lesions such as sessile serrated polyps/adenomas\(^{50,51}\). Segment-specific bowel preparation quality scales, such as the OBPS or BBPS, may provide a clearer distinction between cleanse quality of the proximal colon compared with other segments. Furthermore, establishing a minimum acceptable score for adequacy within each colon segment, as has been done for the BBPS, is helpful in determining overall colon cleansing adequacy. A BBPS validation study provided information used to create an “adequate cleansing” threshold score of at least 2 in each of three colon segments\(^{44,57}\). It should also be noted, however, that one study found no significant difference between the BBPS and OBPS regarding key indicators of colonoscopy quality, such as the PDR and ADR, in screening or surveillance colonoscopy\(^{58}\). Concerning the HCS and CBPS, each has reported acceptable reliability data, although the CBPS validation study was based on findings from only two raters\(^{51,52}\). While the HCS validation assessment was the only one to provide test-retest and internal consistency data for reliability, its validity evaluation was based only on correlations with the Aronchick scale\(^{50}\). Although the CBPS was compared with the OBPS and BBPS, no correlations of this scale with key clinical outcomes, such as ADR and adherence to screening and surveillance colonoscopy intervals, have been reported\(^{52}\). The CBPS has more specific definitions and requires measurement of fluid suctioned (Table 1), but the complexity may be challenging for the clinician to assess correctly; thus, it may not easily translate to clinical practice. Hence, the usefulness of these scales for clinical practice or trials remains unclear.

Several unique, nonvalidated bowel preparation scales have been developed for use in trials of agents including oral sulfate solution (OSS) (Suprep\(^\text{®}\), Braintree Laboratories, Braintree, MA, United States\(^{59}\)), OSS plus sulfate-free electrolyte lavage solution (Suclear\(^\text{®}\), Braintree Laboratories, Braintree, MA, United States\(^{60}\)), and polyethylene glycol electrolyte solution plus ascorbic acid (Moviprep\(^\text{®}\), Salix Pharmaceuticals, Bridgewater; NJ, United States\(^{59,61,62}\). The grading criteria used in these study- and product-specific scales often differ greatly from validated scales.

The substantial ramification of using nonvalidated scales is illustrated by a post hoc analysis of data from two sodium picosulfate and magnesium citrate (P/MC) clinical trials. Investigators analyzed the data from the studies after altering the definition of “adequate” in the Aronchick scale, which had been used in the original trials, to more closely resemble what has been used
in some studies utilizing nonvalidated scales55. With this revised definition, > 98% of all P/MC patients were considered responders, compared with 79%-87% using the original OBPS and Aronchick scale categorization criteria. Multiple studies have used more than one validated scale from among the Aronchick, OBPS, and BBPS scales for assessment of bowel preparation quality, providing additional comparative data63-70. Generally, the results of these trials have been concordant in assessment of bowel preparation quality, with similar mean total scores being reported for overall quality, and similar comparative assessments of different bowel preparations.

While scales for assessment of bowel preparation quality for CRC screening colonoscopy have improved, establishing a standard, validated scale is essential to optimize CRC colonoscopy screening. The Boston bowel preparation scale has several limitations, but appears nonetheless to be the best available option, and is therefore recommended as the current standard for use in clinical practice. Given the importance preparation plays in CRC colonoscopy screening, the need to repeat the procedure when cleansing is inadequate, it may be advantageous for clinicians to adopt one language to describe cleansing quality. The continued use of multiple scales with varying criteria may undermine the validity of study findings and the accuracy of colonoscopy for CRC screening and surveillance.

For colonoscopy clinical trials, the use of different, and sometimes nonvalidated, scales across studies is one of many reasons comparisons between studies is fraught with difficulties. By incorporating a standard, validated grading scale, we may ensure that the findings are generalizable and comparable with other studies and facilitate progress in the development of future bowel preparations. Future developments in bowel preparation quality assessment are likely to involve establishment of an improved “gold standard” and further refinement of the accuracy of quality assessment. Continued improvement of quality standards for CRC prevention, further studies of ADR and withdrawal time, and recommended years of follow-up are also warranted.

REFERENCES

1. Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A, Jemal A. Colorectal cancer statistics, 2017. CA Cancer J Clin 2017; 67: 177-193 [PMID: 28248415 DOI: 10.3332/cac.213959]

2. US Preventive Services Task Force. Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JW Jr, Garcia FAR, Gillman MW, Harper DM, Kemper AR, Krist AH, Kurth AE, Landefeld CS, Mangione CM, Owens DK, Phillips WR, Phipps MG, Pignone MP, Siu AL. Screening for colorectal cancer: US Preventive Services Task Force recommendation statement. JAMA 2016; 315: 2564-2575 [PMID: 27304597 DOI: 10.1001/jama.2016.5898]

3. Winawer SJ, Zauber AG, Fletcher RH, Stillman JS, O’Brien MJ, Lieberman DA, Burt RW, Levin TR, Bond JH, Brooks D, Byers T, Hyman N, Kirk L, Thorson A, Simnangc C, Johnson D, Rex DK. Guidelines for colonoscopy surveillance after polypectomy: a consensus update by the US Multi-Society Task Force on Colonorectal Cancer and the American Cancer Society. CA Cancer J Clin 2006; 56: 143-159; quiz 184-185 [PMID: 16737947 DOI: 10.3322/canjclin.56.3.143]

4. Lieberman D, Ladabaum U, Cruz-Correa M, Ginsburg C, Inadomi JM, Kim LS, Giardello FM, Wender RC. Screening for colorectal cancer and evolving issues for physicians and patients: a review. JAMA 2014; 316: 2135-2145 [PMID: 27893135 DOI: 10.1001/jama.2016.17418]

5. U.S. Preventive Services Task Force. Screening for colorectal cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 2008; 149: 627-637 [PMID: 18838716 DOI: 10.7326/0003-4819-149-9-2008011040-00241]

6. Rex DK, Schoenfeld PS, Cohen J, Pike IM, Adler DG, Fenerty MB, Lieb JG 2nd, Park WG, Rizk MK, Sawhney MS, Shaheen NJ, Wani S, Weinberg DS. Quality indicators for colonoscopy. Gastrointest Endosc 2015; 81: 31-53 [PMID: 25480100 DOI: 10.1016/j.gie.2014.07.058]

7. Austin H, Henley SJ, King J, Richardson LC, Eberman C. Changes in colorectal cancer incidence rates in young and older adults in the United States: what does it tell us about screening. Cancer Causes Control 2014; 25: 191-201 [PMID: 24249437 DOI: 10.1007/s10552-013-0321-y]

8. Chen C, Stock C, Hoffmeister M, Brenner H. Public health impact of colonoscopy use on colorectal cancer mortality in Germany and the United States. Gastrointest Endosc 2018; 87: 213-221.e2 [PMID: 28431951 DOI: 10.1016/j.gie.2017.04.005]

9. Murphy CC, Sandler RS, Sanoff HK, Yang YC, Lund JL, Baron JA. Decrease in incidence of colorectal cancer among individuals 50 years or older after recommendations for population-based screening. Clin Gastroenterol Hepatol 2015; 13: 903-909.e6 [PMID: 27690707 DOI: 10.1016/j.cgh.2016.08.037]

10. Zauber AG, Winawer SJ, O’Brien MJ, Lansdorp-Vogelaar I, van Ballegooijen M, Hankey BF, Shi W, Bond JH, Schapiro M, Panish JF, Stewart ET, Wyde JD. Colonic polypectomy and long-term prevention of colorectal-cancer deaths. N Engl J Med 2012; 366: 687-696 [PMID: 22356322 DOI: 10.1056/NEJMoa1100370]

11. Johnson DA, Barkun AN, Cohen LB, Dominitz JA, Kaltenbach T, Martel M, Robertson DJ, Boland CR, Giardello FM, Lieberman DA, Levin TR, Rex DK, US Multi-Society Task Force on Colorectal Cancer. Optimizing adequacy of bowel cleansing for colonoscopy: recommendations from the US multi-society task force on colorectal cancer. Gastroenterology 2014; 147: 903-924 [PMID: 25239068 DOI: 10.1053/j.gastro.2014.07.002]

12. Harewood GC, Sharma VK, de Garmo P. Impact of colonoscopy preparation quality on detection of suspected colonic neoplasia. Gastrointest Endosc 2003; 58: 76-79 [PMID: 12838225 DOI: 10.1067/mge.2003.294]

13. Lehwohl B, Kastrinos F, Glick M, Rosenbaum AJ, Wang T, Neugut AI. The impact of suboptimal bowel preparation on adenoma miss rates and the factors associated with early repeat colonoscopy. Gastrointest Endosc 2011; 73: 1207-1214 [PMID: 21481857 DOI: 10.1016/j.gie.2011.01.051]

14. Froehlich F, Wietlisbach V, Couvreur JJ, Burmard B, Vader JP. Impact of colonoscopy cleansing on quality and diagnostic yield of colonoscopy: the European Panel of Appropriateness of Gastrointestinal Endoscopy European multicenter study. Gastrointest Endosc 2005; 61: 378-384 [PMID: 15758907 DOI: 10.1016/S0002-9070(04)02776-2]

15. Sherer EA, Inder TD, Imperiale TF. The effect of colonoscopy preparation quality on adenoma detection rates. Gastrointest Endosc 2012; 75: 545-553 [PMID: 22138085 DOI: 10.1016/j.gie.2011.09.022]

16. Adler A, Wegscheider K, Liebold D, Amaldal A, Altenheuck J, Drossel R, Mayr M, Moehl B, Scheel M, Schröder A, Gerber K, Stange G, Roll S, Gauker U, Wiedenmann B, Altenhofen L, Rosch T. Factors determining the quality of screening colonoscopy: a prospective study on adenoma detection rates, from 12,134 examinations (Berlin colonoscopy project 3, BECOP-3). Gastrointest Endosc 2013; 78: 720-726 [PMID: 24025037 DOI: 10.1016/j.gie.2013.02.035]

17. Sulz MC, Kröger A, Prakash M, Manzer CN, Heinrich H, Misselwitz B. Meta-analysis of the effect of bowel preparation on adenoma detection: early adenomas affected stronger than advanced adenomas. PLoS One 2016; 11: e0154149 [PMID: 27257916 DOI: 10.1371/journal.pone.0154149]
on screening colonoscopy. *Gastrointest Endosc* 2012; 75: 1197-1203

[RPMID: 22831531 DOI: 10.1016/j.gie.2012.01.005]

Rex DK, Imperiale TF, Lavrinovich DR, Bratcher LL. Impact of bowel preparation on efficiency and cost of colonoscopy. *Am J Gastroenterol* 2002; 97: 1696-1700 [PMID: 12135020 DOI: 10.1111/j.1572-0241.2002.00527.x]

Smith CL, Roy A, Kalra AP, Daskalakis C, Kastenberg D. Adenoma detection on repeat colonoscopy after previous inadequate preparation. *J Gastroenterol Hepatol Res* 2013; 2: 911-917

[ASGE Standards of Practice Committee, Saltzman JR, Cash BD, Pasha SF, Early DS, Muthusamy VR, Khushab MA, Chathadi KV, Fanelli RD, Chandrasekhar V, Lightdale JR, Fonkalsrud L, Schottinger JE, Quinn VP, Ghaei NR, Levin TR, Quisenberry CP. Adenoma detection rate. *Am J Gastroenterol* 2012; 107: 87-95 [PMID: 2296211 DOI: 10.1016/j.ajg.2012.06.005]

Rees CJ, Thomas Gibson S, Rutter MD, Baragwanath P, Pullan R, Feeny M, Haslam N, British Society of Gastroenterology, the Joint Advisory Group on GI Endoscopy, the Association of Coloproctology of Great Britain and Ireland. UK Key performance indicators and quality assurance standards for colonoscopy. Gut 2016; 65: 1923-1929 [PMID: 27531829 DOI: 10.1136/gutjnl-2016-312044]

Koido S, Okusa T, Nakae K, Yokoyama T, Shibuya T, Sakamoto N, Uchiyama K, Arakawa H, Osada T, Nagahara A, Watanabe S, Tajiri H. Factors associated with incomplete colonoscopy at a Japanese academic hospital. *World J Gastroenterol* 2014; 20: 6961-6967

[PMID: 24944489 DOI: 10.3748/wjg.v20.i22.6961]

Parente F, Marino B, Crosta C. Bowel preparation before colonoscopy in the era of mass screening for colorectal cancer: a practical approach. *Dig Liver Dis* 2000; 31: 87-95 [PMID: 18676211 DOI: 10.1016/j.dld.2008.06.005]

Audibert C, Perlaky A, Glass D. Global perspective on colonoscopy use for colorectal cancer screening: A multi-country survey of practicing endoscopists. *Contemp Clin Trials Commun* 2017; 7: 116-121 [PMID: 29696175 DOI: 10.1016/j.cctc.2017.06.008]

Rembacken B, Hasson C, Riemann JF, Chilton A, Rutter M, Dumonceau JM, Omar M, Ponchon T. Quality in screening colonoscopy: position statement of the European Society of Gastrointestinal Endoscopy (ESGE). *Endoscopy* 2012; 44: 957-968

[PMID: 22987217 DOI: 10.1055/s-0032-1325686]

Sharma RS, Rossos PG. A Review on the Quality of Colonoscopy Reporting. *Can J Gastroenterol Hepatol* 2016; 2016: 9423142

[PMID: 27446877 DOI: 10.1155/2016/9423142]

Carmenes EG, Zeller RA. Reliability and validity assessment. *London: SAGE Publications, 1979 [DOI: 10.1111/j.1365-2036.2006.03080.x]

Karras DJ. Statistical methodology II. Reliability and validity assessment in study design, Part B. *Acad Emerg Med* 1997; 4: 144-147

[PMID: 9043544 DOI: 10.1111/j.1533-2721.1997.tb03723.x]

Nunnally JC, Bernstein IH. Psychometric theory. 3rd ed. New York: McGraw-Hill, 1994

Clark BT, Rustagi T, Laine L. What level of bowel prep quality requires early repeat colonoscopy: systematic review and meta-analysis of the impact of preparation quality on adenoma detection rate. *Am J Gastroenterol* 2014; 109: 1714-1723; quiz 1724 [PMID: 25135006 DOI: 10.1038/ajg.2014.223]

Kaminski MF, Regula J, Kraszewska E, Polkowski M, Wojciewiecz U, Didkowska J, Zwieko M, Rupinski M, Nowacki MP, Butruk E. Quality indicators for colonoscopy and the risk of false interval cancer. *N Engl J Med* 2010; 362: 1795-1803 [PMID: 20463339 DOI: 10.1056/NEJMoa0907667]

Corley DA, Jensen CD, Marks AR, Zhao WK, Lee JK, Doubeni CA, Zauber AG, de Boer J, Frawman BH, Schottinger JE, Quinn VP, Ghaei NR, Levin TR, Quisenberry CP. Adenoma detection rate and risk of colorectal cancer and death. *N Engl J Med* 2014; 370: 1298-1306 [PMID: 24693890 DOI: 10.1056/NEJMoa130906]

Kaminski MF, Wieczyszy P, Rupinski M, Wojciechowska U, Didkowska J, Kraszewska E, Kobiela J, Franzczyk R, Rupinska M, Kocot B, Chaber-Chcipanska A, Pachelewski J, Polkowski M, Regula J. Increased rate of adenoma detection associates with reduced risk of colorectal cancer and death. *Gastroenterology* 2017; 153: 98-105
Validation of a new bowel preparation scale for measuring colon cleansing for colonoscopy: the chicago bowel preparation scale. Clin Transl Gastroenterol 2013; 4: e43 [PMID: 24309440 DOI: 10.1038/ctg.2013.16]

Chan M, Birnstein E, Patel N, Chan L, Laine L, Kline M. Ottawa score of 8 or greater is an optimal cut-off score for inadequate bowel preparation. Am J Gastroenterol 2011; 106: S431-S432

Martino M, Krankovic I, Caccaro R, Scacchi M, Cesaro R, Foster DB, Raiser MW, Holden JL, Karrison TG. Comparison of bowel preparation for colonoscopy: consideration between different tools and different healthcare professionals. Gastrointest Endosc 2013; 45S: S195-S196 [DOI: 10.1016/S1508-8658(13)05587-7]

Parmar R, Martel M, Rostom A, Barkun AN. Validated scales for colon cleansing: a systematic review. Am J Gastroenterol 2016; 111: 197-204; quiz 205 [PMID: 26782820 DOI: 10.1038/ajg.2015.417]

Clare BT, Protiva P, Nagar A, Imaeda A, Ciarelegio MM, Deng Y, Laine L. Quantification of adequate bowel preparation for screening or surveillance colonoscopy in men. Gastroenterology 2016; 150: 396-405; quiz e14-e15 [PMID: 26439436 DOI: 10.1053/j.gastro.2015.09.041]

Lee YJ, Kim ES, Cho KB, Park KS, Lee Jy, Lee YS, Choi WY, Kwon TH. SU1731 Comparison of Ottawa and Boston bowel preparation scales for adenoma detection rate. Gastrointest Endosc 2016; 83 Suppl: AB413 [DOI: 10.1016/j.gi.2016.03.1043]

DiPalma JA, Rodriguez R, McGowan J, Cleveland M. A randomized clinical study evaluating the safety and efficacy of a new, reduced-volume, oral sulfate colon-cleansing preparation for colonoscopy. Am J Gastroenterol 2009; 104: 2275-2284 [PMID: 19584830 DOI: 10.1038/ajg.2009.389]

Rex DK, DiPalma JA, McGowan J, Cleveland M. A comparison of oral sulfate solution with sodium picosulfate: magnesium citrate in split doses as bowel preparation for colonoscopy. Gastrointest Endosc 2014; 80: 1113-1123 [PMID: 25028274 DOI: 10.1016/j.gie.2014.05.329]

Bitoun A, Ponchon T, Barthet M, Coffin B, Dugué C, Halphen M, Norcol Group. Results of a prospective randomised multicentre controlled trial comparing a new 2-L ascorbic acid plus polyethylene glycol and electrolyte solution vs. sodium phosphate solution in patients undergoing elective colonoscopy. Aliment Pharmacol Ther 2006; 24: 1631-1642 [PMID: 17094774 DOI: 10.1111/j.1365-2036.2006.03167.x]
