Function of Biohydrogen Metabolism and Related Microbial Communities in Environmental Bioremediation

Ying Teng1*, Yongfeng Xu1,2, Xiaomi Wang1 and Peter Christie1

1 Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China, 2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China

Hydrogen (H2) metabolism has attracted considerable interest because the activities of H2-producing and consuming microbes shape the global H2 cycle and may have vital relationships with the global cycling of other elements. There are many pathways of microbial H2 emission and consumption which may affect the structure and function of microbial communities. A wide range of microbial groups employ H2 as an electron donor to catalyze the reduction of pollutants such as organohalides, azo compounds, and trace metals. Syntrophy coupled mutualistic interaction between H2-producing and H2-consuming microorganisms can transfer H2 and be accompanied by the removal of toxic compounds. Moreover, hydrogenases have been gradually recognized to have a key role in the progress of pollutant degradation. This paper reviews recent advances in elucidating role of H2 metabolism involved in syntrophy and hydrogenases in environmental bioremediation. Further investigations should focus on the application of bioenergy in bioremediation to make microbiological H2 metabolism a promising remediation strategy.

Keywords: bioremediation, hydrogenase, H2 consumption, H2 metabolism, H2 production

INTRODUCTION

It is well established that the main sources of molecular hydrogen (H2) are geochemical and anthropogenic activities and the main sink is the biological consumption of H2 in soil ecosystems. The H2 cycle can influence air quality and climate indirectly via effects on the oxidative capacity of the atmosphere (Ehhalt and Rohrer, 2009). In addition, the H2 cycle plays an important role in microbial metabolism due to numerous microbial processes that depend on H2 production and consumption (Vignais and Billoud, 2007; Greening et al., 2015b). For example, most of the tropospheric H2 is consumed by soils due to the capacity of the majority of H2-oxidizing bacteria displaying high affinity for H2 in soils to recycle it (Constant et al., 2010). H2 is also a key metabolic compound in many anoxic ecosystems and its oxidation may support deep subsurface lithoautotrophic microbial ecosystems (Chivian et al., 2008; Nyyssonen et al., 2014; Wu et al., 2015; Bagnoud et al., 2016). The activities of H2-producing and consuming microbes therefore shape the global H2 cycle and may have vital relationships with the global cycling of other elements including carbon, sulfur, and nitrogen.

The first H2-oxidizing microorganisms were discovered in the 1900s (Kaserer, 1905; Stephenson and Stickland, 1931). The physical properties of H2 (e.g., its diffusion coefficient, 4×10^{-9} m2 s$^{-1}$, and redox potential, E0 = −0.42 V, make it relatively active in biological processes.
microbial hydrogenases have been used in the remediation of pollutants (Lovley, 1993, 2008; Lovley and Coates, 2000; Vignais and Billoud, 2007). Thus, the use of hydrogenases for the remediation of polluted soils might be a promising strategy. In this review we attempt to integrate our understanding of the role of H2 metabolism in environment and environmental bioremediation processes and summarize the knowledge of H2 metabolism and hydrogenases involved in bioremediation.

MICROBIAL H2-PRODUCING PROCESSES AND THEIR IMPACT ON THE ENVIRONMENT

Fermentative Hydrogen Production From Organic Compounds

H2 is a key compound in the metabolism of many anaerobes, as well as a few aerobes, which owed the capacity to use this energy-rich molecule when it is available in the environment and derive electrons from its oxidation to drive energy generation. In the absence of external electron acceptors, many anaerobic bacteria can exploit carbohydrate rich substrates to produce H2 by reducing prostions continuously. As described previously (Das and Vezirgolu, 2001; Das and Vezirgolu, 2008; Hallenbeck, 2009), the fermentative process generating H2 comprises two major pathways. In the first, butane 2,3 diol fermentation or mixed acid fermentation produces H2 via formate decomposition where glucose is transformed to pyruvate and then releases electrons to produce H2 under hydrogenase through a series of oxidation and reduction reactions (Figure 1A). The second is an NADH pathway in which H2 is produced by the re-oxidation of NADH (Figure 1B). In the various pyruvate metabolic pathways, H2 is usually produced by butyric acid fermentation, mixed acid fermentation, and bacterial ethanol fermentation (Ren et al., 2005). Fermentative microorganisms such as Clostridium spp. (e.g., C. butyricum and C. acetobutylicum) (Fang et al., 2006; Zhang et al., 2006), rumen flora (e.g., Butyrivibrio fibrisolvens, Eubacterium limosum, Megasphaera elsdenii, Ruminococcus flavefaciens, and Ruminococcus albus) (Miller and Wolin, 1973; Joyner et al., 1977; Miller and Wolin, 1979; Chaucheyras-Durand et al., 2010), Enterobacter spp. (e.g., E. cloacae and E. aerogenes) (Kumar and Das, 2000; Fabiano and Perego, 2002), Pyrococcus furiosus and Thermococcus litoralis (Malik et al., 1989; Rákhey et al., 1999; Schwartz et al., 2013) have been found to effectively produce H2 via different pyruvate metabolic pathways. Hydrogenase enzymes also play an important role in fermentative H2 production (Woodward et al., 2000; Trchounian et al., 2012). In general, H2 production could be catalyzed by a soluble [FeFe]-hydrogenase or a special class of membrane bound [NiFe]-hydrogenase (Ech). For example, Escherichia coli can transform intermediary fermentation products to the gaseous products H2 and CO2 by formate hydrogenlyase reaction.
FIGURE 1 | Syntrophic interactions between hydrogen-producing and hydrogen-consuming microbes in pollutant degradation. FM, Fermentative microbe; AOM, Anaerobic CO oxidation microbe; NFB, Nitrogen-fixing bacteria; OHRB, Organohalide-respiring bacteria; SRB, Sulfate-reducing bacteria; MRB, Metal-reducing bacteria; ADDB, Azo dyes decolorization bacteria. (A) The progress of formate oxidation coupled to H_2 formation in *E. coli* (derived from Sawers, 1994; Hallenbeck, 2009; Trchounian et al., 2012). The FHL complex consist of a Ech type membrane-bound H_2-evolving [NiFe] hydrogenase coupled to a formate dehydrogenase (FdH) and membrane integral subunits. (B) The progress of re-oxidation of NADH coupled to H_2 formation in *T. roseopersicina* (derived from Jenney and Adams, 2008; Maróti et al., 2010). The Hyd is a membrane-bound H_2-evolving [FeFe] hydrogenase. Fd, ferredoxin. (C) The progress of anaerobic CO oxidation coupled to H_2 formation in *C. hydrogenoformans* (derived from Svetlichny et al., 1991; Soboh et al., 2002). The Ech is a membrane-bound H_2-evolving [NiFe] hydrogenase. Fd, ferredoxin. (D) The progress of producing H_2 as a byproduct of N_2 fixation. The nitrogenase complex consist of a Fe protein and MoFe protein. (E) The role of H_2 in reductive dechlorination in *Dehalococcoides* spp. (derived from Jugder et al., 2016). MBH, membrane-bound uptake hydrogenase. Cyt, cytochrome. MK, menaquinone; MKH$_2$, dihydromenaquinone. Rdh, reductive dehalogenase. R-Cl, organohalide. (F) The role of H_2 in reductive PTEs in *Desulfovibrio fructosovorans* (derived from Chardin et al., 2003; Cao et al., 2014). Hyb is a membrane-bound H_2-uptake [NiFe]-hydrogenase. Fd, ferredoxin. M, PTEs. MS, metal sulfides. (G) The role of H_2 in reductive azo compounds in *Shewanella decolorationis* (derived from Hong et al., 2007, 2008). Hya, membrane-bound uptake [NiFe]-hydrogenase. Cyt, cytochrome. MK, menaquinone; MKH$_2$, dihydromenaquinone. AZR, azo reductase. R-N = N-R’, azo compounds.

(Figure 1A) (Sawers, 1994). Soboh et al. (2004) report that a ferredoxin-dependent [NiFe]-hydrogenase and a NADH-dependent [Fe]-hydrogenase may catalyze H_2 evolution from NADH in *Thermoanaerobacter tengcongensis*. Production of H_2 by fermentation in *Thermotoga maritima* is catalyzed by a heterotrimeric [FeFe]-hydrogenase and two cytoplasmic [NiFe]-hydrogenases have been identified in *Thiocapsa roseopersicina* (Figure 1B) (Jenney and Adams, 2008; Maróti et al., 2010).

Anaerobic Carbonic Monoxide (CO) Oxidation

There are several microbes owing different types of hydrogenogens that grow anaerobically in the dark and can unitize CO as the sole energy source to produce H_2 (Figure 1C). Uffen (1976) and Fox et al. (1996a,b) showed that *Rhodospirillum rubrum* can produce H_2 by oxidation of CO with the reduction of protons under the catalysis of a complex enzyme consisting of a CO-insensitive [NiFe]-hydrogenase and carbon monoxide dehydrogenase. A typical example of this group is the strictly anaerobic *Carboxydothermus hydrogenoformans* which contains a multi-enzyme membrane-bound [NiFe]-hydrogenase (Ech) complex (Figure 1C) (Svetlichny et al., 1991; Soboh et al., 2002). These enzymes together can oxidize CO and subsequently reduce the protons derived from H_2O to form molecular H_2. *Carboxydocella thermautotrophica* (Sokolova et al., 2002), *Thermosinus carboxydivorans* (Sokolova et al., 2004), *Thermocina carboxydiphila* (Sokolova et al., 2005), and
Thermolithobacter carboxydovorans (Sokolova et al., 2007) are also thermophilic hydrogenogens.

Production of H₂ as a Byproduct of N₂ Fixation

Nitrogen fixation is one of the main processes of biogenic H₂ production and is catalyzed by nitrogenase (Figure 1D). Approximately 30–50% of the entire reduction power consumed by nitrogenase is laterally tracked to H₂ evolution (Brewin, 1984; Evans et al., 1987). However, H₂ is not both a competitive inhibitor of N₂ fixation and also represents a net loss of energy unless the H₂ can be reprocessed by means of the uptake hydrogenase (Kosourova et al., 2014). Many H₂-utilizing microorganisms such as the aerobic H₂-oxidizing bacteria in soils reduce the loss of energy (Stein et al., 2005; Maimaiti et al., 2007; Constant et al., 2008; Osborne et al., 2010; Annan et al., 2012; Greening et al., 2015b). Many rhizobia can symbiotically fix dinitrogen in the root nodules of legumes and produce H₂ concomitantly. The most-studied symbiotic nitrogen-fixing bacteria in legumes include *Bradyrhizobium japonicum*, *Mesorhizobium mediterraneum*, *Sinorhizobium meliloti*, and *Rhizobium leguminosarum* (Nour et al., 1995; Spanik, 2000; Laranjo et al., 2014). In addition, strains of *Azobacter* (Cocking, 2003) and various cyanobacteria (e.g., *Anabaena cylindrica*, *Nostoc muscorum*, and *Westiellopsis prolifica*) (Bulen et al., 1965; Fay, 1992; Nandi and Sengupta, 1998; Das and Vezirouglu, 2001; Das and Vezirouglu, 2008) can produce hydrogen through the nitrogen fixation process. Gest and Kamen (1949) report that *Rhodospirillum rubrum* can evolve significant amounts of H₂ in the light and this is termed the photoproduction of H₂ caused by nitrogenase-catalyzed reduction of protons (Bulen et al., 1965). Photoproduction of H₂ was subsequently discovered in other phototrophic bacteria such as *Rhodobacter capsulatus*, *Rhodobacter sphaeroides*, *Rhodobacter palustris*, *Thiocapsa roseopersicina*, and *Halobacterium halobium* (Vincenzini et al., 1982; Gogotov et al., 1991; Khan and Bhatt, 1991; Krahn et al., 1996; Fascetti et al., 1998).

Effects of Microbial Hydrogen Production on Environment

Atmospheric H₂ is derived mainly from anthropogenic activities and oxidation of atmospheric methane (CH₄) and non-methane hydrocarbons. An H₂ mixing ratio of 0.53 ppmv is typically found in the global atmosphere (Novelli et al., 1999) and participates in atmospheric chemical cycles of H₂O and greenhouse gasses as well as various pollutants (Schlegel et al., 1976; Crutzen and Fishman, 1977; Salvi and Subramanian, 2015; Talibi et al., 2017). In addition, H₂ is a potential future energy carrier that may significantly affect the atmospheric H₂ budget when used on a large scale (Brenninmeijer et al., 2003; Petersen et al., 2011). It has been estimated that the total amount of H₂ emissions into the troposphere each year is approximately 107 Tg (Rhee et al., 2006). Tromp et al. (2003) reported that the concentrations of stratospheric H₂O and ozone and stratospheric temperatures would be affected by these H₂ emissions. Moreover, the potential impacts of an increase in anthropogenic H₂ emissions on the concentration of other trace gasses such as CH₄ and CO) are also proposed.

About 7–11% of the global H₂ pool is contributed by all oceanic, lake, and soil organisms (Schwartz et al., 2013). ‘Hot spots’ can be found in hypersaline cyanobacterial mats, with the release of H₂ concentrations between 16,000 and 90,000 ppmv (Nielsen et al., 2015), which might be the main source of H₂ emission from lake surface waters to the atmosphere. Numerous studies show that both cell counts of cyanobacteria and their N₂ fixation rates are correlated with the H₂ concentration of lake water (Conrad et al., 1983; Schütz et al., 1988; Schmidt and Conrad, 1993). Furthermore, the production of fermentation H₂ and organic acids is a key component in the biogeochemistry of microbial mats, which promotes close interactions between anoxygenic phototrophs, cyanobacteria and heterotrophic bacteria (Otaki et al., 2012; Lee et al., 2014; Nielsen et al., 2015). However, almost all of the H₂ produced from hypoxic sediments is also consumed by the sediments (Schwartz et al., 2013). The effects of hydrogen consumption on microbial communities in sediments therefore deserve further study.

The contribution of soils to the atmospheric H₂ reservoir is more complex because soils are the main sink of the global H₂ cycle, accounting for about 75 to 80% of atmospheric absorption (Constant et al., 2009; Ehnhalt and Rohrer, 2009). However, nitrogen-fixing bacteria that form symbioses with legumes or free-living N₂ fixing bacteria can generate large amounts of H₂ as a by-product during N₂ fixation (Orr et al., 2011; Mus et al., 2016). It has been estimated that H₂ concentrations inside N₂-fixing legume nodules range from 9,000 to 27,000 ppmv (Hunt et al., 1988; Witty, 1991; Witty and Minchin, 1998), so that diffusion losses during the growing season might reach 240,000 L H₂ (Dong et al., 2003). Thus, the intensity of these H₂ emissions to soils is determined by the hydrogen-metabolic capabilities of rhizobacterial symbionts (Hup⁺ or Hup⁻ genotypes) in nodules through an uptake [NiFe]-hydrogenase (Evans et al., 1988; Annan et al., 2012). In the Hup⁺ legume rhizosphere the energy of H₂ can be recycled by the [NiFe]-hydrogenase, while H₂ is released into the surrounding soil in the Hup⁻ legume rhizosphere. There is thus increasing evidence that H₂ released into surrounding soils plays a key role in increasing plant biomass via the enrichment of aerobic H₂-oxidizing bacteria (HOB), or plant growth-promoting rhizobacteria (PGPR) in both legumes and non-legumes (Dong et al., 2003; Maimaiti et al., 2007). Different H₂ mixing ratios found in natural ecosystems may indeed lead to changes in soil microbial community structure and coordinated feedback of community functions. Constant et al. (2008) found that soil actinomycetes (such as *Streptomyces* sp. PCB7) are the main users of trace level of H₂ in soils and might be key contributors to the function of soils as a sink in the global H₂ cycle. Subsequently, Khdhiri et al. (2017) validated their own hypothesis by showing that the taxonomic response of the soil microbial community composition to H₂ exposure is inconsistent across land use types. Piché-Choquette et al. (2018) revealed that H₂ supports metabolic and energetic flexibility in microorganisms supplying a variety of ecosystem services via dose-response relationships between environmentally relevant
H₂ concentrations and the biological sinks of H₂, CH₄, and CO in soils.

ROLE OF H₂ IN ENVIRONMENTAL BIOREMEDIATION

The H₂ produced both biogenically and abiogenically can be released and provided to support for the growth and metabolism of hydrogenotrophic prokaryotes (Karyakin et al., 2007). H₂ metabolism fulfills a critical role in the ecosystems of many microbial biotopes (Vignais and Billoud, 2007; Schwartz et al., 2013; Greening et al., 2016). It is currently considered that a wide range of microbial groups employ H₂ as an electron donor to catalyze the reduction of pollutants such as organohalides, azo compounds and potentially toxic elements.

Organohalides

Organohalides are recalcitrant, toxic, highly persistent, globally prevalent, and carcinogenic environmental contaminants. Organohalide-respiring bacteria (OHRB) have been isolated from polluted soils, sludges, sediments, aquifers, freshwaters, and marine habitats, and they are of considerable importance in bioremediation processes and natural halogen cycles (Zanaroli et al., 2015). Most OHRB discovered to date belong to Desulfomonile, Dehalococcoides, Dehalobacter, Desulfotobacterium, Desulfofronsomas, and Sulfospirillum (formerly Dehalospirillum) as reviewed by Jugder et al. (2015). Reductive dechlorination is an anaerobic respiration process that utilizes H₂ as electron donor to dehalorespire these halogenated organics (Figure 1E) (Zanaroli et al., 2015; Agarwal et al., 2017). The process of electron via electron transport phosphorylation from the oxidation of the H₂ to reductive dechlorination of organohalides involving membrane associated oxidoreductases (Figure 1E) (Jugder et al., 2016). Membrane-bound hydrogenases (MBH) are the initial oxidizers to take up the electrons released from molecular H₂, which play a vital role in organohalide respiration (Jugder et al., 2013, 2015, 2016). The reductive dehalogenation of organohalides is typically catalyzed by dehalogenating enzyme systems coupled to ATP synthesis, reductive dehalogenases (Rdases) replace the halogen substituent with a hydrogen atom, reducing the toxicity and recalcitrance to biodegradation (Figure 1E) (Adrian and Loeffer, 2016; Gevorgyan et al., 2018). Sequencing data of genomes reveal that OHRB possess as many as 36 putative Rdases. After transformation to lower halogenated organics under anaerobic conditions, these toxic compounds can subsequently be mineralized by aerobic bacteria (Jugder et al., 2015). Desulfomonile tiedjei strain DCB1-1 is one of the best-described dechlorinating anaerobes. The strain, first discovered by Suffita et al. (1982), reductively dechlorinates 3-chlorobenzoate while replacing the chlorine atom with hydrogen from H₂, whereby providing energy for bacterial growth (Shelton and Tiedje, 1984; Dolfing and Tiedje, 1986; Dolfing and Tiedje, 1987). The strain was then noted to consume H₂ with 3-chloro-, 3-bromo-, 3-iodobenzoate, tetrachloroethene (PCE), trichloroethene (TCE) (Cole et al., 1995), and chlorophenols (Mohn and Kennedy, 1992) as electron acceptors (DeWeerd et al., 1991). During the dehalogenation of 3-chlorobenzoate, formate was the most effective electron donor, followed by H₂, pyruvate, and acetate.

Dehalococcoides strains are also some of the best known species capable of reductively dechlorinating a wide range of haloorganics including chlorinated benzenes, biphenyls, dioxins, ethenes, naphthalenes, and brominated diphenyl ethers. For example, trichloroethene is a commonly used solvent that possesses high toxicity and is a suspect carcinogen. The complete reductive dechlorination of tetrachloroethylene (PCE) and trichloroethylene (TCE) to non-toxic ethylene was first observed under methanogenic conditions by mixed cultures (Freedman and Gossett, 1989). Although H₂ also served as the electron donor, methanol was more effective in sustaining the reductive dechlorination process. Holliger et al. (1993) isolated an anaerobic bacterial culture, previously named as PER-K23, from an anaerobic packed-bed column. By using H₂ and formate as the only electron donors, PCE or TCE was reductively transformed to ethane via cis-1,2-dichloroethene (cis-1,2-DCE), chloroethene, and ethene, which was coupled to bacterial growth. The key role of hydrogenases in metabolizing these pollutants is underscored by the fact that both uptake (Hup type) and energy-conserving hydrogenases (Hyc or Ech type) were found in the genome of Dehalobacter restrictus PER-K23 (Rupakula et al., 2013). Maymó-Gatell et al. (1997) then isolated a dehalogenator, strain 195, and characterized it as Dehalococcoides ethenogenes. To date, Dehalococcoides species are the only bacteria known to be capable of completely dechlorinating chloroethene. Genomic analysis of Dehalococcoides ethenogenes 195 showed that several hydrogenase genes including the membrane-bound periplasmic Hup, cytoplasmic Vhu, and membrane-bound Ech and Hyc [NiFe]-hydrogenases (Groups 1, 3, 4, and 4, respectively), and a membrane-bound Hym [Fe]-hydrogenases has potential roles in electron transport, which are capable of completing anaerobic dechlorination of the solvents PCE and TCE to vinyl chloride (VC) and ethane (Vignais et al., 2001; Morris et al., 2006).

Unlike other halorespiring bacteria, Dehalococcoides spp. use only H₂ as an obligate electron donor for the dechlorination reaction, and no other electron acceptors support growth. For example, D. ethenogenes strain 195 grew only on H₂ as electron donor for both bacterial growth and PCE reduction rather than formate, lactate, methanol, ethanol, glucose, pyruvate, or yeast extract (Maymó-Gatell et al., 1997). In addition, Dehalococcoides sp. CBDB1 was the first purified isolate of a bacterium relying on the energy obtained from stoichiometrical dehalorespiration of chlorobenzenes (CB) such as 1,2,3-trichlorobenzene (TCB) and 1,2,3,4-tetrachlorobenzene (TeCB) (Adrian et al., 2000). Both Dehalococcoides sp. 195 and CBDB1 exhibit reductive dehalogenation of chlorophenols (Adrian et al., 2007). Kube et al. (2005) compared the genome sequence of Dehalococcoides sp. CBDB1 with Dehalococcoides ethenogenes strain 195 and revealed that the hydrogenases previously described for strain...
195 are also present in strain CBDB1. Chloroform (CF, CHCl₃) is a non-polar solvent that is ubiquitous and is toxic to humans. The biodegradation of CF involves two processes, (1) dehalorespiration in which CF is dechlorinated to dichloromethane (DCM, CH₂Cl₂) by employing H₂ as electron donor under the action of uptake hydrogenase, and (2) a fermentative process in which DCM is transformed to H₂, acetate and carbon dioxide. Lee et al. (2012) report the involvement of *Dehalobacter* in dehalorespiration of CF [Equation (2)].

\[
\text{CHCl}_3 + H_2 \rightarrow \text{CH}_2\text{Cl}_2 + H^+ + \text{Cl}^- \quad (2)
\]

Despite these findings in respiration of organohalides, there is no real consensus on the involvement of various membrane associated components.

Potentially Toxic Elements (PTEs)

Potentially toxic elements display environmental durability, biological accumulation, and potential biological toxicity. The remediation of PTEs can be achieved by sulfate-reducing bacteria (SRB) or metal-reducing bacteria that can utilize H₂ or other organic compounds as terminal electron donors to reduce the PTEs. Tebo and Obraztsova (1998) isolated the first sulfate-reducing bacterium from PTE-polluted sediments named *Desulfotomaculum reducens* sp. nov. strain MI-1, which can utilize H₂ as terminal electron donor and metals [such as Cr(VI), Mn(IV), Fe(III), and U(VI)] as electron acceptors accompanied by bacterial growth. Thus far, more than 40 SRB species have been identified, including *Desulfovibacter*, *Desulfotomaculum* and *Desulfomicrobium*, and others (Leloup et al., 2009; Mizuno et al., 2012; Hussain et al., 2016; Li et al., 2018). Subsequently, due to the advantages of SRB (no secondary pollution and strong adaptability), they have been used in the bioremediation of PTEs (Li et al., 2018). Generally speaking, there are two steps involved in the mechanism of SRB removal of PTEs from wastewaters: (i) SRB utilize sulfate as electron acceptor to oxidize simple organic compounds to generate bicarbonate ion and hydrogen sulfide under anaerobic conditions [Equation (3)], and (ii) the hydrogen sulfide generated reacts with dissolved PTE to form insoluble metal sulfide precipitates [Equation (4)] (Kieu et al., 2011; Singh et al., 2011; Li et al., 2017).

\[
2\text{CH}_2\text{O} + \text{SO}_4^{2-} \rightarrow 2\text{HCO}_3^- + \text{H}_2\text{S} \quad (3)
\]

\[
\text{H}_2\text{S} + \text{M}^{2+} \rightarrow 2\text{H}^+ + \text{MS(S)} \quad (4)
\]

Where CH₂O represents simple organic compounds (such as acetate and lactate), M represents PTEs, and MS represents metal sulfides. Because of their special characteristics with the corresponding metal sulfides readily forming precipitates, SRBs have been used to treat PTE-polluted wastewaters (e.g., uranium-containing, chromium-containing and antimony-containing wastewaters, organochlorines, and other pollutants) (Li et al., 2018). Lovley and Phillips (1994) showed that the bioremediation effect of *Desulfovibrio vulgaris* which utilizes H₂ as the electron donor catalyzed by the c₃ cytochrome functions as a Cr(VI) reductase in Cr(VI)-contaminated waters was superior to the previously described Cr(VI) reductive microorganisms. Kieu et al. (2011) reported that the PTE removal efficiencies of Cu²⁺, Ni²⁺, Zn²⁺, and Cr⁶⁺ in anaerobic semi-continuous stirred tank reactors containing a consortium of SRB reached 94–100% after 4 weeks under experimental conditions. In addition, several microbial genera reduced uranium to form easily precipitated reduced U(IV) species, and this has been used successfully in soil remediation (Phillips et al., 1995; Fredrickson et al., 2000; Valls and De Lorenzo, 2002).

Several uptake hydrogenases were considered to have potential application in the bioremediation of PTEs. The [NiFe] uptake hydrogenases in group I including membrane-bound respiratory uptake hydrogenases that couple H₂ oxidation to catalyze metal reduction (Figure 1F). For example, [NiFe]-uptake hydrogenase from SRB can reduce toxic chromate VI to form a less toxic product (Chardin et al., 2003). In addition, technetium VII is reduced by *Desulfovibrio fructosovorans* through this mechanism (Tabak et al., 2005), and hydrogenases involving in metal reduction have also been observed in other metals including ferrum (Fe) (Coppi et al., 2004), platinum (Riddin et al., 2009), and lead (Deplanche et al., 2010). A comprehensive analysis of the genome sequence of the metal-reducing bacterium (*Shewanella oneidensis*) has been conducted, and has predicted that an [Fe]-hydrogenase and several cytochromes are involved in the electron transport and metal reduction processes (Heidelberg et al., 2002). However, the potential application of microbes with different subgroup hydrogenases for PTE respiration is not enough, requiring further study including the biochemical investigations of these different subgroup hydrogenases.

Other Pollutants

Azo compounds undergo dissimilatory azoreduction by *Shewanella decolorationis* S12 under anaerobic conditions. This strain utilized azo compounds as carbon source for growth by azo reductase which is sustained by the H₂ supply. The strain also catalyzed H₂-dependent reduction of Fe(III) and humic substances (Coppi et al., 2004; Hong et al., 2008). Brigé et al. (2008) show that *Shewanella decolorationis* MR-1 utilized azo dye amaranth as electron acceptor for microbial energy conservation. Mutambanengwe et al. (2007) show the decolorization of a wide range of azo dyes with sulfate-reducing microbes (SRM) and hydrogenases might be involved in the degradation process. A multicomponent electron transfer chain has been proposed to be involved in the extracellular reduction of azo compounds. The electron transfer components consist of the cytoplasm/outer membrane, periplasm, c-type cytochromes, and menaquinone (Hong et al., 2007; Brigé et al., 2008). Hya type [NiFe]-hydrogenase or Hyd type [Fe]-hydrogenase act as a critical hub mediating the oxidation of H₂ to provide electrons for azoreduction metabolism (Figure 1G) (Hong et al., 2008).

H₂-dependent reduction has been reported in nitroaromatic compounds (Watrous et al., 2003). In a strict anaerobe, *Clostridium acetobutylinicum*, an [Fe]-hydrogenase is responsible for the reduction of nitro substituents of 2,4,6-trinitrotoluene
(TNT) to the corresponding hydroxylamine in an acidogenic environment.

Factors Affecting the Utilization of Hydrogen by Degrading Bacteria in the Environment

There are many factors affecting the utilization of H$_2$ by degrading bacteria in the environment such as H$_2$ source, H$_2$ transfer process and other environmental factors (including trophic hierarchies, external pH, osmotic conditions, concentration of carbon sources and their mixtures and microbial community and other physiochemical factors).

Methanogens were found to affect the interspecies H$_2$ transfer of dehalorespiring bacteria, which might promote or inhibit the dechlorination process (Smatlak et al., 1996; Fennell et al., 1997; Yang and McCarty, 1998). Johnson et al. (2008) demonstrated the dechlorination of stress-related net cell growth by *Dehalococcoides ethenogenes* strain 195 (DE195) which was isolated and then transited to a smooth phase. Although *Methanobacterium congolense* (MC) can compete with DE195 for hydrogen, adverse effects of the dechlorination rate were not observed (Men et al., 2012). This is mainly because the H$_2$ threshold required for dechlorination is very low, so that even though methane production consumes a large amount of H$_2$, it does not compete for dechlorination (Yang and McCarty, 1998; Men et al., 2012). In syntrophic communities, H$_2$-producing bacteria and H$_2$-consuming methanogens perceive the redox conditions and affect each other’s metabolism (Stams and Plugge, 2009). Several studies have shown that the reduction dechlorination can be promoted in some communities in the presence of methanogens (Vogel and McCARTY, 1985; Heimann et al., 2006; Kong et al., 2014). In addition, a recent study found that *Methyllobacter* seemed to be tolerant to TCE and may play a vital role in TCE degradation (Kong et al., 2014). Although many studies have assessed the association between methanogens and dechlorination bacteria, the mechanism by which methanogens affect dechlorinating communities remains unclear.

The process of forming compact aggregates involves both physicochemical and biological interactions (Stams and Plugge, 2009). When the compact aggregates are formed in anaerobic bacteria and methanogenic archaea, the rate of H$_2$ transfer between two species increases significantly (Lettinga et al., 1988; Stams and Plugge, 2009). Several studies have also shown that the inter-microbial distances affect both their specific growth rates and biodegradation rates (Ishii et al., 2005; Stams et al., 2006; Stams and Plugge, 2009). Thus, forming compact aggregates might be an important factor influencing the biodegradation rates of degrading bacteria.

It is well known that trophic hierarchies occur because different functional members of the community provide each other with a matrix and basic cofactors, and eliminate inhibitory metabolites (Schink, 1997; Rittmann and McCarty, 2012). DeWeerd et al. (1991) reported that acetylene, molybdate, selenate, and metronidazole can inhibit dehalogenation, sulfite reduction and H$_2$ metabolism, indicating that the reduction of sulfite and dehalogenation may share part of the same electron transport chain. However, some environmental factors might accelerate the degradation of pollutants by promoting H$_2$ utilization. For example, cobalamin has a positive effect on the dechlorination process as a co-factor of the reductive dehalogenases (Yan et al., 2012). *Desulfovibrio vulgaris* Hildenborough (DVH) possesses the full set of genes required for the biosynthesis of adenosylcobalamin, a derivative of vitamin B12 which might result in an increased concentration of the corrinoid co-factor (vitamin B12) in co-cultures, taken up and utilized immediately by *Dehalococcoides* species (Rodionov et al., 2004). In addition, the main factors influencing H$_2$ utilization such as external pH, osmotic conditions, concentration of carbon sources and their mixtures, microbial community and other physiochemical factors mainly affected growth and the physiological activity including uptake hydrogenase and pollutant degrading enzymes of the degrading bacteria (Richter and Gescher, 2014; Trchounian and Trchounian, 2014, 2015; Trchounian et al., 2017a).

INTERSPECIES HYDROGEN TRANSFER DURING SYNTROPHIC GROWTH

Syntrophy coupling mutualistic interactions between hydrogen-/formate-producing and hydrogen-/formate-consuming microorganisms is essential for biofuel production, pollutant degradation, and global carbon cycling (Kleinsteuber et al., 2012; Sieber et al., 2012; Morris et al., 2013). When sulfate is limited or unavailable, SRBs can also mediate the transfer of H$_2$ between species, which provides the bacterial species with a very versatile metabolism adapted to complex ecological environments. Odom and Peck (1981) first documented the transfer of the redundant H$_2$ evolved from substrate fermentation by SRBs to other H$_2$ consuming bacteria. Using a defined two-member continuous culture, Drzyzga et al. (2001) demonstrated that the sulfate reducer *Desulfovibrio* sp. strain SULF1 can use the dehalorespiring *Desulfotibacterium frappieri* TCE1 as a ‘biological electron acceptor’ to sustain growth. They also noted that dehalogenation of tetrachloroethene (PCE) was inhibited at sulfate concentrations above 2.5 mM, while PCE was completely dehalogenated to cis-dichloroethene (cis-DCE) with 1 mM sulfate or without sulfate addition (Drzyzga and Gottschal, 2002). In this community, *Desulfovibrio vulgaris* Hildenborough (DVH) can grow syntrophically with *Dehalococcoides ethenogenes* strain 195 (DE195), thus enhancing the robustness of bacterial growth and the dechlorination activity of trichloroethene (Men et al., 2012). The syntrophical interaction with sulfate reducers has been shown to result in more effective transfer of H$_2$, thereby facilitating faster dechlorination and more robust growth of dehalogenating strains compared with gaseous H$_2$ (Men et al., 2012). The syntrophic relationship between methanogens and archaea also involves interspecies H$_2$ transfer in the process of converting long-chain fatty acids (Stams and Plugge, 2009). Subsequently, Ziels et al. (2017) found several formate hydrogenases and dehydrogenases in the enriched genome bins (GBs) of both their codigesters. In the process of CF dechlorination, interspecies H$_2$ transfer was observed in the
form of acetogenesis and methanogenesis by Lee et al. (2012), which required syntrophic partners to maintain low \(\text{H}_2 \) partial pressures.

The possible processes of syntrophic interactions between \(\text{H}_2 \)-producing and \(\text{H}_2 \)-consuming microbes in pollutant degradation are shown in Figure 1. Previous studies have shown that \(\text{H}_2 \)-forming bacteria and \(\text{H}_2 \)-utilizing bacteria sense redox conditions, influencing each other’s metabolism in syntrophic communities (Stams and Plugge, 2009). Interspecies electron transfer mechanisms underlie thermodynamically favorable syntrophic processes (Gieg et al., 2014). In anoxic environments, butyrate oxidations involving energy-dependent reactions were possible to be applied in syntrophic degradation of organohalides. For example, the standard free reaction enthalpies (\(\Delta G^0 \)) of butyrate oxidations and organohalide degradations were as follows [Equation (5) Müller et al., 2010; Equation (6) Jugder et al., 2016]:

\[
\text{Butyrate}^- + 2\text{H}_2\text{O} \rightarrow 2\text{Acetate}^- + \text{H}^+ + 2\text{H}_2 (\Delta G^0) = +48.3\text{kJ/mol} \]
\[
\text{H}_2 + \text{R} - \text{Cl} \rightarrow \text{R} - \text{H} + \text{HCl} (\Delta G^0) = -131\text{to} - 192\text{kJ/mol} \]

Based on energy balance toward \(\text{H}_2 \) production and consumption analysis, we propose that the energy-transforming reactions between \(\text{H}_2 \) production and organohalide degradations might be involved in syntrophic \(\text{H}_2 \) production and consumption microorganisms. Dehalogenating microorganisms (such as Dehalococcoides sp. strain BAV1 and Dehalococcoides ethenogenes strain 195) can utilize acetate as carbon source and \(\text{H}_2 \) as electron donor when grown in isolation, exhibiting limited dechlorination activity and low growth rates (He et al., 2003a,b). Thus, a promising method might be to develop improved bioremediation strategies by enhancing the strong growth and dechlorination activity of dehalogenating microorganisms (Men et al., 2012). However, many interspecies \(\text{H}_2 \) transfer interactions are syntrophic, and thus only present in complex microbial communities but not in pure cultures. In complex microbial consortia, \(\text{H}_2 \) indirectly mediates electron shuttle between electron donors and acceptors. Hydrogenotrophic bacteria can profit from the \(\text{H}_2 \) produced from their syntrophic partners, thereby transforming pollutants. Thus, both \(\text{H}_2 \)-producing and \(\text{H}_2 \)-consuming microorganisms are essential for their own growth and might also promote the degradation of pollutants (Stams and Plugge, 2009).

CONCLUSION AND PERSPECTIVES

Metabolism of \(\text{H}_2 \) including \(\text{H}_2 \) production and \(\text{H}_2 \) consumption have been recognized as a potential driving force affecting the structure of microbial communities and may even change community functions. Although the contribution of \(\text{H}_2 \) metabolism to entire ecosystem processes is recognized in hydrothermal vents, anoxic sediments and animal guts (Vignais and Billoud, 2007; Schwartz et al., 2013), the role of \(\text{H}_2 \) metabolism and hydrogenases in ecosystems are not fully elucidated. Further advances in exploiting the function of biohydrogen metabolism and related microbial communities in environmental bioremediation are expected to result from (i) using metagenome sequencing, single-gene fluorescence in situ hybridization, the functional gene arrays (GeoChip) and in situ mass spectrometry to track the dynamics of pollutant-degrading bacteria involving in \(\text{H}_2 \) metabolism and the interplay between pollutant-degrading bacteria and \(\text{H}_2 \)-metabolism bacteria in degradation process; (ii) effects of soil conditions on \(\text{H}_2 \)-consuming microorganisms degrading pollutants; (iii) structural studies of hydrogenases or the synergistic action of other enzymes (such as ATPase and Rdase) involving in the process of environmental bioremediation and enhancing these enzymes activity through protein engineering; (iv) integrative analyses of genomic, transcriptomic, and epigenomic data in these environmental bioremediation process.

To date, environmentally friendly management techniques named “3B” techniques (biological carbon sequestration, bioenergy, and bioremediation) have been proposed to further enhance biodiversity and mitigate environmental stressors (Teng et al., 2012). Environmental \(\text{H}_2 \) is an energy source for aerobic \(\text{H}_2 \) oxidizers, sulfate reducers, acetogens and methanogens and is also a source of reducing power for anaerobic bacteria and anoxicogenic phototrophs (Schwartz et al., 2013). Syntrophy coupling mutualistic interactions between \(\text{H}_2 \)-producing and \(\text{H}_2 \)-consuming microorganisms is not restricted to the transfer of reducing agents such as \(\text{H}_2 \) or formate, but can also involve the exchange of organic, sulfurous and nitrogenous compounds or the removal of toxic compounds. Nevertheless, there is still a considerable need for appropriate research initiatives to apply those microbial groups to the bioremediation of contaminated soils. However, soil is a complex and dynamic biological system. From the soil to the microorganism, bioavailability of pollutants involves a full process of adsorption and desorption, transport, and uptake by microorganisms which are also affected by the soil conditions such as soil organic matter, soil minerals, soil moisture, soil aggregates and so on (Ren et al., 2018; Teng and Chen, 2019).

Proton ATPase or other membrane bound secondary transporters affect hydrogenase activity and thus \(\text{H}_2 \) metabolism (Trchounian et al., 2011; Gevorgyan et al., 2018). So, structural studies of hydrogenases or other synergistic enzymes (such as ATPase and Rdase) involving in the process of environmental bioremediation are vital important in directing protein engineering, for example, in rendering these enzymes activity to promote the degradation efficiency of pollutants via identification of factors linked to the protein environment of the active site. Studies of \(\text{H}_2 \) metabolism and regulation will also be important in engineering microorganisms at the cellular level to maximize the degradation efficiency of pollutants. Since hydrogenases and other synergistic enzymes have been shown to play an important role in the degradation of pollutants, it is also tempting to consider that analysis of genomic, transcriptomic,
and epigenomic data of these enzymes in environmental bioremediation process will likely provide vital insights into the hydrogenase participates in degradation mechanism of pollutants.

In conclusion, this review provides a comprehensive framework for H₂ production and H₂ consumption in environmental bioremediation processes. The syntrophy coupling mutualistic interaction between H₂-producing and H₂-consuming microorganisms could be applied to the removal of toxic compounds. In addition, several uptake hydrogenases are also considered to have potential application in the bioremediation of those toxic compounds. The use of this bioenergy may provide a low-input and ecologically friendly bioremediation strategy for the future.

REFERENCES

Adrian, L., Hansen, S. K., Fung, J. M., Gorisch, H., and Zinder, S. H. (2007). Growth of Dehalococcoides strains with chlorophenols as electron acceptors. Environ. Sci. Technol. 41, 2318–2323. doi: 10.1021/es062076m

ADRAIN, L., AND LOEFER, F. E. (2016). Organohalide-Respiring Bacteria. Berlin: Springer. doi: 10.1007/978-3-662-49875-0

Adrian, L., Szewczyk, U., Wecke, J., and Gorisch, H. (2000). Bacterial dehalorespiration with chlorinated benzenes. Nature 408, 580–583. doi: 10.1038/35046063

Agarwal, V., Miles, Z. D., Winter, J. M., Eustáquio, A. S., El Gamal, A. A., and Adrian, L. (2016). Growth of organohalide respiring bacteria in heterogeneous habitats. Environ. Sci. Technol. 50, 2325–2334. doi: 10.1021/acs.est.5b04040

Agarwal, V., Miles, Z. D., Winter, J. M., Eustáquio, A. S., El Gamal, A. A., and Adrian, L. (2016). Growth of organohalide respiring bacteria in heterogeneous habitats. Environ. Sci. Technol. 50, 2325–2334. doi: 10.1021/acs.est.5b04040

FUNDING

This study was funded by the Outstanding Youth Fund of Jiangsu Province (No. BK20150049), the National Natural Science Foundation of China (Grant Nos. 41671327 and 41571308), and the Special Project on the Basis of the National Science and Technology of China (2015FY110700).

AUTHOR CONTRIBUTIONS

YT, YX, and XW collected the data. YT and YX drafted the article. YT, XW, and PC critically revised the article.

Funding

This study was funded by the Outstanding Youth Fund of Jiangsu Province (No. BK20150049), the National Natural Science Foundation of China (Grant Nos. 41671327 and 41571308), and the Special Project on the Basis of the National Science and Technology of China (2015FY110700).

Chivian, D., Brodie, E. L., Alm, E. J., Culley, D. E., Dehal, P. S., DeSantis, T. Z., et al. (2008). Environmental genomics reveals a single-species ecosystem deep within earth. Science 322, 275–278. doi: 10.1126/science.1155495

Cocking, E. C. (2003). Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252, 169–175. doi: 10.1023/A:1024106605806

Cole, J. R., Fathepure, B. Z., and Tiedje, J. M. (1995). Tetrachloroethene and 3-chlorobenzoate dechlorination activities are co-induced in Desulfovomonile tiedjei DCB-1. Biodegradation 6, 167–172. doi: 10.1007/BF00695347

Conrad, R., Aragno, M., and Seiler, W. (1983). Production and consumption of hydrogen in a eutrophic lake. Appl. Environ. Microbiol. 45, 502–510.

Constant, P., Poissant, L., and Villemur, R. (2008). Isolation of Streptomyces sp. PCR9, the first microorganism demonstrating high-affinity uptake of tetrocyclic H2. ISME J. 2, 1066–1076. doi: 10.1038/isjme.2008.59

Constant, P., Poissant, L., and Villemur, R. (2009). Tetrocyclic H2 budget and the response of its soil uptake under the changing environment. Sci. Total Environ. 407, 1809–1823. doi: 10.1016/j.scitotenv.2008.10.064

Coppi, M. Y., O’Neil, R. A., and Lovley, D. R. (2004). Identification of an uptake hydrogenase required for hydrogen-dependent reduction of Fe (III) and other electron acceptors by Geobacter sulfurreducens. J. Bacteriol. 186, 3202–3208. doi: 10.1128/JB.186.30.3202-3028.2004

Cronin, P. J., and Fishman, J. (1977). Average concentrations of OH in the troposphere, and the budgets of CH₄, CO, H₂ and CH₂Cl₂. Geophys. Res. Lett. 4, 321–324. doi: 10.1029/GL004i008p00321

Das, D., and Veziroglu, T. N. (2008). Advances in biological hydrogen production processes. Int. J. Hydrogen Energ. 33, 6046–6057. doi: 10.1016/j.ijhydene.2008.07.098

Das, D., and Veziroglu, T. N. (2001). Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energ. 26, 13–28. doi: 10.1016/S0360-3199(00)00058-6

Deplanche, K., Caldelari, I., Mikheenko, I. P., Sargent, F., and Macaske, L. E. (2010). Involvement of hydrogenases in the formation of highly catalytic Pd (0) nanoparticles by bioreduction of Pd (II) using Escherichia coli mutant strains. Microbiology 156, 2630–2640. doi: 10.1099/mic.0.036681-0

DeWeerd, K., Concannon, E., and Sufita, J. M. (1991). Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxanes by Desulfovomonile tiedjei. Appl. Environ. Microbiol. 57, 1929–1934.

Dolfing, J., and Tiedje, J. M. (1986). Hydrogen cycling in a three-tiered methanogenic coculture. Arch. Microbiol. 149, 102–105. doi: 10.1007/BF00425073
Evans, H. J., Harker, A., Papen, H., Russell, S. A., Hanus, F., and Zuber, M. (1987). “The importance of hydrogen recycling in nitrogen fixation by legumes,” in *World Crops: Cool Season Food Legumes*, ed. R. J. Summerfield (Dordrecht: Springer), 777–791.

Heinemann, M. C., et al. (2015b). “Atmospheric hydrogen scavenging: from enzymes to ecosystems.” *Appl. Environ. Microbiol.* 81, 1190–1199. doi: 10.1128/aem.03364-14

Heinemann, M. C., Batstone, D. J., and Jakobsen, R. (2006). *Methanosarcina* spp. Drive vinyl chloride dechlorination via interspecies hydrogen transfer. *Appl. Environ. Microbiol.* 72, 2942–2949. doi: 10.1128/AEM.72.4.2942-2949.2006

Holliger, C., Schraa, G., Stams, A., and Zehnder, A. (1993). A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to ethylene under methanogenic conditions. *Appl. Environ. Microbiol.* 59, 2991–2997.

Hong, Y., Guo, J., and Sun, G. (2008). Identification of an uptake hydrogenase for hydrogen-dependent dissimilatory azoreduction by *Shewanella decolorationis* S12. *Appl. Environ. Microbiol.* 80, 517–524. doi: 10.1128/s00253-008-1597-9

Hong, Y. G., Xu, M. Y., Guo, J., Xu, Z. C., Chen, X. J., and Sun, G. P. (2007). Respiration and growth of *Shewanella decolorationis* S12 with an azo compound as the sole electron acceptor. *Appl. Environ. Microbiol.* 73, 64–72. doi: 10.1128/AEM.01415-06

Hunt, S., Gatto, S. T., and Layzell, D. B. (1988). Model of gas exchange and diffusion in legume nodules. *Planta* 173, 128–141. doi: 10.1007/BF00394497

Hussain, A., Hasan, A., Javid, A., and Qazi, I. J. (2016). Exploited application of sulfate-reducing bacteria for concomitant treatment of metallic and non-metallic wastes: a mini review. *3 Biotech* 6:119. doi: 10.1007/s13205-016-0437-3

Ishii, S., Kosaka, T., Hori, K., Hotta, Y., and Watanabe, K. (2005). Coaggregation of *Rhodopseudomonas palustris* with *Candidatus Intracellularibacter devanatesii* in legume nodules. *Appl. Environ. Microbiol.* 71, 7838–7845. doi: 10.1128/AEM.71.12.7838-7845.2005

Jenney, F. E., and Adams, M. W. (2008). Hydrogenases of the model hyperthermophile *Methanothermobacter thermautotrophicus*. *Annu. Rev. Microbiol.* 62, 621–663. doi: 10.1146/annurev.micro.53.040808.091908

Jenney, F. E., and Adams, M. W. (2008). Hydrogenases of the model hyperthermophile *Methanothermobacter thermautotrophicus*. *Annu. Rev. Microbiol.* 62, 621–663. doi: 10.1146/annurev.micro.53.040808.091908

Joyner, A., Winter, W., and Godbout, D. (1977). Studies on some characteristics of hydrogen production by cell-free extracts of rumen anaerobic bacteria. *Can. J. Microbiol.* 23, 346–353. doi: 10.1139/m77-051

Jugder, B., Ertan, H., Lee, M., Manefield, M., and Marquis, C. P. (2015). Reductive dehalogenases come of age in biological destruction of organohalides. *Trends Biotechnol.* 33, 595–610. doi: 10.1016/j.tibtech.2015.07.004
Lettinga, G., Zehnder, A., Grotenhuis, J., and Hulshoff Pol, L. (1988). “Granular
Khdhiri, M., Piché-Choquette, S., Tremblay, J., Tringe, S. G., and Constant, P.
Jugder, B., Welch, J., Aguey-Zinsou, K., and Marquis, C. P. (2013). Fundamentals
Teng et al. Biohydrogen Metabolism in Environmental Bioremediation
Kosourov, S., Leino, H., Murukesan, G., Lynch, F., Sivonen, K., Tsygankov,
Khan, M. T., and Bhatt, J. (1991). Polyethylene glycol mediated fusion of
Kaserer, H. (1905). Über die Oxydation des Wasserstoffes und des Methans durch
Khan, M. T., and Bhatt, J. (1991). Polyethylene glycol mediated fusion of
Kosourov, S., Leino, H., Murukesan, G., Lynch, F., Sivonen, K., Tsygankov,
Khan, M. T., and Bhatt, J. (1991). Polyethylene glycol mediated fusion of
Kosourov, S., Leino, H., Murukesan, G., Lynch, F., Sivonen, K., Tsygankov,
Khan, M. T., and Bhatt, J. (1991). Polyethylene glycol mediated fusion of
Kosourov, S., Leino, H., Murukesan, G., Lynch, F., Sivonen, K., Tsygankov,
Khan, M. T., and Bhatt, J. (1991). Polyethylene glycol mediated fusion of
Kosourov, S., Leino, H., Murukesan, G., Lynch, F., Sivonen, K., Tsygankov,
Khan, M. T., and Bhatt, J. (1991). Polyethylene glycol mediated fusion of
Kosourov, S., Leino, H., Murukesan, G., Lynch, F., Sivonen, K., Tsygankov,
Khan, M. T., and Bhatt, J. (1991). Polyethylene glycol mediated fusion of
Kosourov, S., Leino, H., Murukesan, G., Lynch, F., Sivonen, K., Tsygankov,
Khan, M. T., and Bhatt, J. (1991). Polyethylene glycol mediated fusion of
Kosourov, S., Leino, H., Murukesan, G., Lynch, F., Sivonen, K., Tsygankov,
Khan, M. T., and Bhatt, J. (1991). Polyethylene glycol mediated fusion of
Kosourov, S., Leino, H., Murukesan, G., Lynch, F., Sivonen, K., Tsygankov,
Mutamangwwe, C., Togo, C., and Whiteley, C. (2007). Decolorization and degradation of textile dyes with biosiliciludigene hydrogenases. Biotechnol. Prog. 23, 1095–1100. doi: 10.1021/bp070147v
Nandi, R., and Sengupta, S. (1998). Microbial production of hydrogen: an overview. Crit. Rev. Microbiol. 24, 61–84. doi: 10.1080/10408419891294181
Nielsen, M., Revsbech, N. P., and Kuhl, M. (2015). Microsensor measurements of hydrogen gas dynamics in cyanobacterial microbial mats. Front. Microbiol. 6:726. doi: 10.3389/fmicb.2015.00726
Nour, S. M., Cleyet-Marel, J.-C., Normand, P., and Fernandez, M. P. (1995). A filamentous anoxygenic photosynthetic bacterium. Antonie Van Leeuwenhoek 67, 115–120. doi: 10.1007/BF00871633
Orr, C. H., James, A., Leifert, C., Cooper, J. M., and Cummings, S. P. (2011). Carbon, nitrogen, and phosphorus transformations in a road transportation sector using hydrogen energy system. Renew. Sustain. Energy Rev. 15, 3132–3151. doi: 10.1016/j.rser.2011.02.004
Petersen, J. M., Zielinski, F. U., Pape, T., Seifert, R., Moraru, C., Amann, R., et al. (2012). Production of hydrogen from deep crystalline rocks of the Fennoscandian shield. ISME J. 6, 126–138. doi: 10.1038/ismej.2011.125
Ren, X. Y., Zeng, G. M., Tang, L., Wang, J. J., Wan, J., Liu, Y., et al. (2018). Sorption, transport and biodegradation-an insight into bioavailability of persistent organic pollutants in soil. Sci. Total Environ. 601, 1154–1163. doi: 10.1016/j.scitotenv.2017.08.089
Rhee, T., Brenninkmeijer, C., and Röckmann, T. (2006). The overwhelming role of soils in the global atmospheric hydrogen cycle. Atmos. Chem. Phys. 6, 1611–1625. doi: 10.5194/acp-6-1611-2006
Richter, K., and Gescher, J. (2014). Accelerated glycerol fermentation in Escherichia coli using methanogenic formate consumption. Bioresour. Technol. 126, 389–391. doi: 10.1016/j.biortech.2014.04.011
Ruddin, T., Govender, Y., Gercke, M., and Whiteley, C. (2009). Two different hydrogenase enzymes from sulphate-reducing bacteria are responsible for the bioreductive mechanism of platinum into nanoparticles. Enzyme Microb. Technol. 45, 267–273. doi: 10.1016/j.enzmtec.2009.06.006
Rittmann, B. E., and McCarty, P. L. (2012). Environmental Biotechnology: Principles and Applications. New York, NY: Tata McGraw-Hill Education.
Rodionov, D. A., Dubchak, I., Arkin, A., Alm, E., and Gelfand, M. S. (2004). Reconstruction of regulatory and metabolic pathways in metal-reducing δ-proteobacteria. Genome Biol. 5:R90. doi: 10.1186/gb-2004-5-11-r90
Rupakula, A., Kruse, T., Boeren, S., Holliger, C., Smidt, H., and Maillard, J. (2013). The restricted metabolism of the obligate organohalide respiring bacterium Dehalobacter restrictus: lessons from tiered functional genomics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368:20120325. doi: 10.1098/rstb.2012.0325
Salvi, B., and Subramaniam, K. (2015). Sustainable development of road transportation sector using hydrogen energy system. Renew. Sustain. Energy Rev. 51, 1132–1155. doi: 10.1016/j.rser.2015.07.030
Sawers, G. (1994). The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie Van Leeuwenhoek 66, 57–88. doi: 10.1007/BF00871633
Schilter, D., Camara, J. M., Huynh, M. T., Hammes-Schiffer, S., and Rauchfuss, T. B. (2016). Hydrogenase enzymes and their synthetic models: the role of metal hydrides. Chem. Rev. 116, 8693–8749. doi: 10.1021/acs.chemrev.6b00180
Schink, B. (1997). Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61, 262–280.
Schlegel, H. G., Gottschalk, G., and Pfennig, N. (1976). “Symposium on Microbial production and utilization of gases (H2, CH4, CO),” in Proceedings of the Symposium on Microbial Production and Utilization of Gases (H2, CH4, CO), (Göttingen: Akademie der Wissenschaften).
Schmidt, U., and Conrad, R. (1993). Hydrogen, carbon monoxide, and methane dynamics in Lake Constance. Limnol. Oceanogr. 38, 1214–1226. doi: 10.4319/lo.1993.38.6.1214
Schütz, H., Conrad, R., Goodwin, S., and Seiler, W. (1988). Emission of hydrogen from deep and shallow freshwater environments. Biogeochemistry 5, 295–311. doi: 10.1007/BF02180069
Schwartz, E., Fritsch, J., and Friedrich, B. (2013). “H2-metabolizing prokaryotes,” in The Prokaroytes, eds M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, and E. Stackebrandt (New York, NY: Springer), 119–199.
Seshadri, R., Adian, L., Fouts, D. E., Eisen, J. A.,Phillipps, A. M., Methe, B. A., et al. (2005). Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science 307, 105–108. doi: 10.1126/science.110226
Shelton, D. R., and Tiedje, J. M. (1988). Isolation and partial characterization of the fermenting bacterium Desulfovibrio desulfuricans DSM 6511 from deep and shallow freshwater environments. Appl. Environ. Microbiol. 48, 840–848.
Sieber, J. R., McNerney, M. J., and Gunsalus, R. P. (2012). Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu. Rev. Microbiol. 66, 429–452. doi: 10.1146/annurev-micro-090110-102844
Singh, R., Kumar, A., Kirrolia, A., Kumar, R., Yadav, N., Bishnoi, N. R., et al. (2011). Removal of sulphate, COD and Cr (VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study. Bioresour. Technol. 102, 677–682. doi: 10.1016/j.biortech.2010.08.041
Smith, C. R., Gossett, J. M., and Zinder, S. H. (1996). Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture. Environ. Sci. Technol. 30, 2850–2858. doi: 10.1021/es9602455
Soboh, B., Linder, D., and Hedderich, R. (2002). Purification and catalytic properties of a CO-oxidizing H2-evolving enzyme complex from Carboxydothermus hydrogenoferax. Eur. J. Biochem. 269, 5712–5721. doi: 10.1046/j.1432-1327.2002.02383.x
Soboh, B., Linder, D., and Hedderich, R. (2004). A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. Microbiol. 150, 2451–2463. doi: 10.1099/mi.0.27159-0
Yan, J., Ritalahti, K. M., Wagner, D. D., and Löffler, F. E. (2012). Unexpected specificity of interspecies cobamide transfer from Geobacter spp. to organohalide-respiring Dehalococcoides mccartyi strains. *Appl. Environ. Microbiol.* 78, 6630–6636. doi: 10.1128/AEM.01535-12

Yang, Y., and McCarty, P. L. (1998). Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. *Environ. Sci. Technol.* 32, 3591–3597. doi: 10.1021/es980363n

Zanaroli, G., Negroni, A., Häggblom, M. M., and Fava, F. (2015). Microbial dehalogenation of organohalides in marine and estuarine environments. *Curr. Opin. Biotechnol.* 33, 287–295. doi: 10.1016/j.copbio.2015.03.013

Zhang, H., Bruns, M. A., and Logan, B. E. (2006). Biological hydrogen production by *Clostridium acetobutylicum* in an unsaturated flow reactor. *Water Res.* 40, 728–734. doi: 10.1016/j.watres.2005.11.041

Ziels, R. M., Sousa, D. Z., Stensel, H. D., and Beck, D. A. (2017). DNA-SIP based genome-centric metagenomics identifies key long-chain fatty acid-degrading populations in anaerobic digesters with different feeding frequencies. *ISME J.* 11, 112–123. doi: 10.1038/ismej.2017.143

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Teng, Xu, Wang and Christie. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.