Strength Conversion Factors for Concrete Based On Specimen Geometry, Aggregate Size and Direction of Loading

V Srinivasa Reddy, M V Seshagiri Rao, S Shrihari

Abstract: The main goal of this study is to find out the effect of effect of specimen shape and size, aggregate size and directions of loading and placement on the compressive strength of M20, M40, M60 and M80 grades of concrete. During the experimental study, different shaped and sized concrete specimens of different concrete mix designs were tested for compressive strength at 28 days. For casting the concrete samples, totally four different moulds were utilized, which were two different sizes of cubes and two different sizes of cylinders. The cubic moulds were 100 and 150 mm. The cylindrical moulds were 150×300 and 100×200 mm. So the relationship between size and shape effect on compressive strength of concrete samples is evaluated. Casted cubes and cylinders are tested for the compressive strength under axial compression on completion of 28 days as per IS: 516-1999. In this study, the effect of specimen sizes, specimen shapes, and placement directions on concrete compressive strengths for various grades widely used is evaluated. In addition, correlations between compressive strengths with size, shape, and placement direction of the specimen are investigated. It was found that with the increase of the size of the concrete specimen, compressive strength tends to decrease. The effect of grade of concrete on the shape effect of the compressive strength decreases as the specimen size increases regardless of strength level. Conversion factors of 0.80 to 0.90 were suggested for converting compressive strength of cylinders to compressive strength of cubes. For cubes, when the placement direction is parallel to the loading direction, the compressive strength is higher than the normal case. As aggregate size increases, compressive strength is found to be increasing.

Index Terms- specimen shape and size, Conversion factors, strength correction factors, aggregate size, loading direction.

I. INTRODUCTION

Determining the compressive strength of concrete is one of the most crucial stages of construction works as the mechanical and durability properties of the concrete depends on the compressive strength of the concrete. To maintain a control on the quality of concrete, concrete samples are casted in various moulds according to various standards adopted in various countries. On the other hand, it is known that different shapes and sizes of concrete samples can cause variations in results of compressive strength. This paper is focused to study the effect of specimen sizes and shapes on compressive strength of concrete. Many previous studies and experimental investigations have been conducted in order to find out how changing specimen shape and size could influence the results. In this study conversion factors are proposed to convert the compressive strength results of different specimens based on size, shape, aggregate size and placement direction. For most countries, sizes and shapes of test specimens to determine the compressive strength of the concrete are different. However, commonly used specimens are cylinders and cubes. Due to the differences in the shape, height/diameter ratio, and end restraint due to the machine platens, cylinder and cube strengths obtained from the same batch of concrete could differ.

II. OBJECTIVES OF THE PRESENT WORK

1. To evaluate the effect of specimen shape and size on the compressive strength of M20, M40, M60 and M80 grade concretes.
2. To suggest strength conversion factors for M20, M40, M60 and M80 grade concrete specimens of different shapes and sizes.
3. To compare the compressive strengths of concrete cubes of M20, M40, M60 and M80 grades when subjected to loading parallel and perpendicular to the placement of concrete.
4. To evaluate the effect of aggregate size on the compressive strength of M20, M40, M60 and M80 grade concrete specimens of different shapes and sizes.

III. MIX PROPORTIONS

The mix proportions of M20 and M40 grade concrete are designed using IS: 10262-2009 and mix proportions for M60 and M80 grade concrete are designed using Entroy and Shacklock’s empirical graphs. The mix proportions and materials required for one cubic meter are given in table 1 below.

Grade of the Concrete	Mix proportions	Cement kg/m³	Micro-silica kg/m³	Fly ash	Fine Aggregate kg/m³	Coarse Aggregate kg/m³	Water L
M20	1: 2.90: 3.14: 0.54	320.4	-	927.3	1005.4	173 L	
M40	1: 2.25: 2.56: 0.42	390.7	-	876	999.7	164.1 L	

TABLE 1: MIX PROPORTIONS AND QUANTITIES PER 1 CU. M. OF M20, M40, M60 AND M80 GRADE CONCRETES
Strength Conversion Factors for Concrete Based On Specimen Geometry, Aggregate Size and Direction of Loading

Sample type and size in mm	Lateral surface area/volume ratio (mm$^{-1}$)	Area on which load applied mm2
Cyl.100×200	0.050	7850
Cyl.150×300	0.033	17662.5
Cube 100	0.060	10000
Cube 150	0.040	22500

* bwc—by weight of cement

IV. LATERAL SURFACE AREA/VOLUME RATIO

The table 2 presents the lateral surface/volume ratio and load application area for different concrete specimen shapes and sizes.

TABLE 2: LATERAL SURFACE/VOLUME RATIO AND LOAD APPLICATION AREA FOR DIFFERENT SPECIMENS

Sample type and size in mm	Lateral surface area/volume ratio (mm$^{-1}$)	Area on which load applied mm2
Cyl.100×200	0.050	7850
Cyl.150×300	0.033	17662.5
Cube 100	0.060	10000
Cube 150	0.040	22500

V. EFFECT OF SPECIMEN SHAPE AND SIZE ON COMpressive STRONGTH OF CONCRETE

The figure 1 presents variation of compressive strength of various grades of cylindrical and cube concrete specimens.

FIGURE 1: VARIATION OF COMpressive STRONGTH OF VARIOUS GRADES OF CYLINDRICAL AND CUBE CONCRETE SPECIMENS.

VI. COMpressive STRONGTH CONVERSION FACTORS

The table 3 presents the compressive strength conversion factors based on various shapes and sizes of specimens of M20 and M40 grade.

TABLE 3: COMpressive STRONGTH CONVERSION FACTORS OF CYLINDRICAL AND CUBE CONCRETE SPECIMENS OF M20 AND M40 GRADE
The table 4 presents the compressive strength conversion factors of cylindrical and cube concrete specimens of M60 and M80 grade.

TABLE 4: COMPRESSIVE STRENGTH CONVERSION FACTORS OF CYLINDRICAL AND CUBE CONCRETE SPECIMENS OF M60 AND M80 GRADE

Specimen shape	Cylinder 100φmmx200mm	Cylinder 150φmmx300mm	Cube 100mm	Cube 150mm
Cylinder				
100φmmx200mm	1.00	1.16	0.84	0.95
150φmmx300mm	0.86	1.00	0.70	0.80
Cube				
100mm	1.19	1.43	1.00	1.24
150mm	1.05	1.25	0.80	1.00

To convert compressive strength of the specimen to the strength of other specimens (with different cross sectional area), the specimen’s compressive strength should be multiplied by the values which were obtained from the table 5.

TABLE 5: COMPRESSIVE STRENGTH MULTIPLICATION FACTORS OF CYLINDRICAL AND CUBE CONCRETE SPECIMENS OF DIFFERENT GRADE CONCRETES

Compressive Strength	Cylinder 100φmmx200mm	Cylinder 150φmmx300mm	Cube 100mm	Cube 150mm
M20	0.95	0.80	1.24	1
M40	0.95	0.80	1.24	1
M60	0.98	0.90	1.05	1
M80	0.98	0.90	1.05	1

VII. EFFECT OF LOADING AND PLACEMENT DIRECTIONS ON COMPRESSIVE STRENGTHS

The table 6 presents the compressive strengths based on loading and placement directions.

TABLE 6: COMPRESSIVE STRENGTHS BASED ON LOADING AND PLACEMENT DIRECTIONS FOR DIFFERENT GRADE CONCRETES OF VARIOUS SPECIMEN SIZES

Specimen shape	Specimen size (mm)	Grade of the concrete	Compressive Strength (MPa)	
			Placement direction parallel to loading direction	Placement direction perpendicular to loading direction
Cube	100	M20	36.90	35.14
		M40	64.17	61.11
		M60	83.35	72.48
		M80	107.61	93.57
	150	M20	29.76	28.34
		M40	51.74	49.28
		M60	79.38	69.03
		M80	102.48	89.11
VIII. EFFECT OF COARSE AGGREGATE SIZE ON COMPRESSIVE STRENGTHS OF CONCRETE

The table 7 presents the compressive strengths of various grades of concrete specimens of different size and shape made with 20mm and 10mm coarse aggregate.

Specimen shape	Specimen size (mm)	Grade of the concrete	(20mm CA) Compressive Strength (MPa)	(10mm CA) Compressive Strength (MPa)
Cylinder	100×200 (diameter × length)	M20	26.92	24.23
		M40	46.82	42.14
		M60	67.65	60.89
		M80	87.33	78.60
	150×300 (diameter × length)	M20	22.67	20.40
		M40	39.42	35.48
		M60	62.13	55.92
		M80	80.20	72.18
Cube	100	M20	35.14	31.63
		M40	61.11	55.00
		M60	72.48	65.23
		M80	93.57	84.21
	150	M20	28.34	25.51
		M40	49.28	44.35
		M60	69.03	62.13
		M80	89.11	80.20

IX. DISCUSSIONS

The cube with a 100mm size had the highest compressive strength of all. For this reason, that size of test cube should be more representative, and any cube size below 100 mm cube seems to be unsuitable for testing the compressive strength of concrete. The ratio of the cube strength to cylinder strength with increasing compressive strength of concrete decreases progressively from 1.24 to 1.05. Above-mentioned 1.24 and 1.05 are the ratios corresponding to the cylinder compressive strengths of 20-40 MPa and 60-80MPa, respectively.

The compressive strength was insignificantly affected by changing l/d ratio as the strength of concrete increases. For high-strength concrete (HSC), the influence of specimen shape is not so significant. For cubes, size effect difference with placement direction is insignificant. This is because the failure of cubes occurs not due to lateral expansion but due to crushing and the lateral expansion is restrained due to the end restraint occurred by the machine platens.

For cubes, when the placement direction is parallel to the loading direction, the compressive strength is higher than the normal case. HSC shows more brittle behavior than NSC. This means that the size of fracture process zone and the size effect of HSC, respectively, are smaller and more apparent than NSC. For cubes, because the face of casting is rough compared to the other faces. When load acted on it, it doesn't share the load uniformly and hence the face other than the face of casting is tested. Casting face with the load uneven may cause the cracks prior giving the low compressive strength. In the uniaxial compression test, smaller contact area between the specimen surface and steel platen of test machine resulting in lower friction-based shear forces in small specimens. It has been observed that the restraining effect due to friction between the specimen and the platens extends over the entire height of the cube. But in the case of the cylinder, it remains unaffected. Hence, it is clear that the total stress that will be created in the cube will be higher compared with the cylinder specimen. This will result in a higher value of the compressive strength in cubes than the cylinder even by employing the same concrete mix.

X. CONCLUSIONS

The current work investigated a narrative approach of finding the effect of specimen shape and size, aggregate size and directions of loading and placement on the compressive strength. Based on the results reported in this work and key findings during the experimental investigations, the following conclusions are drawn:

1. With increase of the size of the concrete specimen, compressive strength tends to decrease. The cube with a 100mm size had the highest compressive strength of all.
2. The effect of grade of concrete on the shape effect of the compressive strength decreases as the specimen size increases regardless of strength level. More specifically, for M60 and M80, the difference of compressive strengths between cylinders and cubes is more rapidly disappeared than that of M20 and M40 grades of concrete.
3. Conversion factors of 0.80 to 0.90 were suggested for converting compressive strength of cube to compressive strength of cylinder. The ratio of the cube strength to cylinder strength with increasing compressive strength of concrete decreases progressively from 1.24 to 1.05. Above-mentioned 1.24 and
1.05 are the ratios corresponding to the cylinder compressive strengths of 20–40 MPa and 60–80 MPa, respectively.

4. For cubes, when the placement direction is parallel to the loading direction, the compressive strength is higher than the normal case. For normal strength concrete (NSC) (M20 and M40 grades), the size effect difference with displacement direction is not distinct compared to high strength concrete (HSC) (M60 and M80 grades).

5. To study the wall effect, compressive strength results of different specimens have been plotted against surface/volume ratio of samples. By increasing the ratio of lateral surface to volume, compressive strength has a steady decreasing trend. Increasing the ratio of surface/volume, in fact means that for each cubic meter of the specimens, there is an increasing amount of surface area. As a result, specimens with higher ratio of surface area/volume are willing to have less compressive strength.

6. Compressive strength results were strongly influenced by their specimen sizes and wall effect. When the concrete bonds are weaker, the results of compressive strengths seem to be more uniform, since the compressive strength of the samples are controlled by their bonds’ strength.

7. By decreasing the ratio of lateral surface/volume of specimens, the compressive strength increases.

8. The cylinder specimen indicated a small change in compressive strength when the l/d ratio changed from 1.0 to 2.0; compared to cubes. In fact, compressive strength for cylinder increased as l/d increased; whereas for cube, there was a reduction in compressive strength.

9. As aggregate size increases, compressive strength is found to be increasing.

REFERENCES

1. Arioz, O., Ramyak, K., Tuncau, M., Tuncau, A., & Cil, I. (2007). Some factors influencing effect of core diameter on measured concrete compressive strength. ACI Materials Journal, 291-296.

2. Bazant, Z.P., 1984. Size effect in blunt fracture; concrete, rock, metal. J. Eng. Mech. ASCE 110 (4), 516–535.

3. Bazant, Z.P., 1987. Fracture energy of heterogeneous material and simulation. In: SEM–RILEM International Conference on Fracture of Concrete and Rock, pp. 390–402.

4. Bazant, Z.P., 1993. Size effect in tensile and compressive quasibrittle failures. In: JCI International Workshop on Size Effect in Concrete Structures, pp. 141–160.

5. Bazant, Z.P., Xiang, Y., 1997. Size effect in compression fracture: splitting crack band propagation. J. Eng. Mech. ASCE 123 (2), 162–172.

6. Benjamin, J.R., Cornell, C.A., 1970. Probability, Statistics, and Decision for Civil Engineers. McGraw-Hill Publishing Company, New York (Section 4.3). CEB-FIP Model Code, 1990, 1993. Comite Euro-International du Beton (CEB), Bulletin D’Information No. 203/205, Lausanne, 437 pp.

7. BESHIR, H., A. A. ALMUSALAM and M. MALEHUDDIN, 2003. Effect of coarse aggregate quality on the mechanical properties of high strength concrete. Construction and Building Materials 17: 97–103.

8. Carpinteri, A., Chiaia, B., and Ferro, G. (1998). Size effect on nominal tensile strength of concrete structures: Multifractality of material ligaments and dimensional transition from order to disorder. Materials and Structures, 28:311–317.

9. Chin, M.S., Mansur, M.A., Wee, T.H., 1997. Effects of shape, size, and casting direction of specimens on stress–strain curves of high-strength concrete. ACI Mater. J. 94 (5), 209–219.

10. Del V.iso, J., Carmona, J., & Ruiz, G. (2006). Shape and size effects on the compressive strength of high-strength concrete. Cement and Concrete Research, 386–395.

11. Del V.iso, J., J. Carmona and G. Ruiz, 2008. Shape and size effects on the compressive strength of high strength concrete. Cement Concrete Res., 38(3): 386-395.

12. Del V iso, J.R., Carmona, J.R. and Ruiz, G. “Shape and size effects on the compressive strength of high strength concrete,” Cement and Concrete Research, 38, 2008, 386-395.

13. Elwet, D.J. and G. Fu, 1995. Compression Testing of Concrete: Cylinders vs. Cubes. Transportation Research and Development Bureau, New York State Department of Transportation, Albany.

14. Gonneeran, H.F., 1925. Effect of size and shape of test specimen on compressive strength of concrete. Proc. ASTM, 25: 237–250.

15. Gonneeran, H.F., 1925. Effect of size and shape of test specimen on compressive strength of concrete. ASTM Proc. 25, 237–250.

16. Gyengo, T., 1938. Effect of type of test specimen and gradation of aggregate on compressive strength of concrete. J. ACI 33, 269–283.

17. IML, 2003. Library, 8th ed. IML, Inc. Jansen, D.C., Shah, S.P., 1997. Effect of length on compressive strain softening of concrete. J. Eng. Mech. ASCE 123 (1), 25–35.

18. J.R. Del V iso, J.R. Carmona, G. Ruiz, Shape and Size Effects On The Compressive Strength Of High-Strength Concrete, Cement And Concrete Research 3 (2008) 386–395.

19. Kim, J.H.J., Yi, S.T., Kim, J.K., 2004. Size effect of concrete members applied with flexural compressive stresses. Int. J. Fracture 126 (1), 79–102.

20. Kim, J.K., Eo, S.H., 1990. Size effect in concrete specimens with dissimilar initial cracks. Mag. Concrete Res. 42 (153), 233–238.

21. Kim, J.K., Yi, S.T., Kim, J.H.J., 2001. Effect of specimen sizes on flexural compressive strength of concrete. ACI Struct. J. 98 (3), 416–424.

22. Kim, J.K., Yi, S.T., Park, C.K., Eo, S.H., 1999. Size effect on compressive strength of plain and spirally reinforced concrete cylinders. ACI Struct. J. 96 (1), 88–94.

23. Kim, J.K., Yi, S.T., Yang, E.L., 2000. Size effect on flexural compressive strength of concrete specimens. ACI Struct. J. 97 (2), 291–296.

24. M. Tokyay, M. Ozdemir, Specimen Shape and Size Effect On The Compressive Strength Of Higher Strength Concrete. Cement And Concrete Research 27 (8) (1997) 1281-1289.

25. Malaikah, A. S. (2009). Effect of Specimen Size and Shape on the Compressive Strength of High Strength Concrete. Pertanika Journal of Science & Technology, 87-96.

26. Malaikah, A.S., 2009. Effect of specimen size and shape on the compressive strength of high strength concrete. Pertanika J. Sci. Technol., 13(1): 87-96.

27. Mansur, M.A., Islam, M.M., 2002. Interpretation of concrete strength for nonstandard specimens. J. Mater. Civ. Eng. ASCE 14 (2), 151–155.

28. Markeset, G., 1995. A compressive softening model for concrete. In:Wittmann, F.H. (Ed.), Fracture Mechanics of Concrete Structures, FRAMCOS-2, AEDIFICATIO Publishers, pp. 435–443.

29. Markeset, G., Hillerborg, A., 1995. Softening of concrete in compression localization and size effects. Cement Concrete Res. 25 (4), 702–708.

30. Murdoch, J.W., Kesler, C.E., 1957. Effect of length to diameter ratio of specimen on the apparent compressive strength of concrete. ASTM Bull. 221, 68–73.

31. S.T. Yi, E.I. Yang, J.C. Choi, Effect Of Specimen Sizes, Specimen Shapes and Placement Directions on Compressive Strength of Concrete. Nuclear Engineering And Design 236 (2006) 115-127.

32. Tokyay, M. and M. Ozdemir, 1997. Specimen shape and size effect on the compressive strength of higher strength concrete. Cement Concrete Res., 27(8): 1281-1288.

33. Tokyay, M., & Ozdemir, M. (1997). Specimen Shape and Size Effect On the Compressive Strength of Higher Strength Concrete. Cement and Concrete Research, 1281-1288.

34. Turkel, A., & Ozkul, M. H. (2010). size and wall effects on compressive strength of concrete. ACI Materials Journal, 372-379.

35. Turkel, A., & Ozkul, M. H. (2010). Size and Wall Effects On Compressive Strength of Concretes. ACI Materials Journal, 372-379.

36. Yi, S.T., Kim, J.H.J., Kim, J.K., 2002. Effect of specimen sizes on ACI rectangular stress block for concrete flexural members. ACI Struct. J. 99 (5), 701–708.

37. Zheng, J.J. and C.Q. Li, 2002. Three-dimensional aggregate density in concrete with wall effect. ACI Mater. J., 99(6): 568-575.
AUTHORS PROFILE

Dr. V Srinivasa Reddy is a Professor in Department of Civil Engineering at Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India. He has nearly 100 publications in various journals and conferences. He has authored 3 Chapters and 2 Books in Civil Engineering.

Dr. M V Seshagiri Rao is a Professor in Department of Civil Engineering at CVR College of Engineering, Hyderabad, India. He has nearly 200 publications in various journals and conferences. He has authored 5 Chapters and 4 Books in Civil Engineering.

Dr. S Shrihari is a Professor in Department of Civil Engineering at JBIT, Hyderabad, India. He has nearly 10 publications in various journals and conferences.