Magnetoelectronic properties of graphene dressed by a high-frequency field

O. V. Kibis1,2, S. Morina2,3, K. Dini2, and I. A. Shelykh2,3,4

1 Department of Applied and Theoretical Physics, Novosibirsk State Technical University, Karl Marx Avenue 20, Novosibirsk 630073, Russia
2 Science Institute, University of Iceland, Dunhagi 3, IS-107, Reykjavik, Iceland
3 Division of Physics and Applied Physics, Nanyang Technological University 637371, Singapore and
4 ITMO University, Saint Petersburg 197101, Russia

Solving the Schrödinger problem for electrons in graphene subjected to both a stationary magnetic field and a strong high-frequency electromagnetic wave (dressing field), we found that the dressing field drastically changes the structure of Landau levels in graphene. As a consequence, the magnetoelectronic properties of graphene are very sensitive to the dressing field. Particularly, it is demonstrated theoretically that the dressing field strongly changes the optical spectra and the Shubnikov-de Haas oscillations. As a result, the developed theory opens a way for controlling magnetoelectronic properties of graphene with light.

PACS numbers: 73.22.Pr, 78.67.Wj, 72.80.Vp

I. INTRODUCTION

Since the discovery of graphene4, its unique electronic properties have aroused enormous interest in the scientific community6–8. Particularly, the magnetoelectronic properties of graphene — effects caused by the influence of a stationary magnetic field on the electron energy spectrum6–8, optical characteristics9–15 and electronic transport16–23 — are in the focus of attention. Since a magnetic field effectively controls electronic properties of graphene, studies on the subject are important from viewpoint of both fundamental physics and graphene-based electronics. Besides a stationary magnetic field, an effective tool to manipulate electronic properties is a strong high-frequency electromagnetic field. Since the system “electron + strong electromagnetic field” should be considered as a whole, the bound electron-field object — “electron dressed by electromagnetic field” (dressed electron) — became a commonly used model in modern physics24–25. The physical properties of dressed electrons have been studied in both atomic systems24,26 and various condensed-matter structures, including bulk semiconductors27–29, quantum wells30–36, quantum rings37–40, etc. In graphene, a dressing field can strongly modify both the electron energy spectra and electronic transport41–43. Particularly, magno-like electronic effects (so-called photovoltaic Hall effect, etc) can be induced by a dressing field in the absence of a stationary magnetic field42,43. Therefore, one can expect that the magnetoelectronic properties of graphene are strongly affected by a dressing field as well. However, a consistent theory describing magnetoelectronic properties of dressed graphene was not elaborated up to now. The present paper is aimed to fill partially this gap.

II. MODEL

To describe the magnetoelectronic properties of dressed graphene, we have to solve the Schrödinger problem for electrons in graphene subjected to both a linearly polarized electromagnetic wave (dressing field) and a stationary magnetic field, \(\mathbf{B} \), directed perpendicularly to the layer.

![FIG. 1: (Color online) Sketch of the system under consideration: A graphene layer subjected to both a linearly polarized electromagnetic wave (EM) with the electric field amplitude \(E_0 \) and a stationary magnetic field, \(\mathbf{B} \), directed perpendicularly to the layer.](image)

\[\hat{H} = v \mathbf{\sigma} \cdot \left(\hat{\mathbf{p}} + \frac{\hbar}{c} (\mathbf{A}_0 + \mathbf{A}_B) \right), \]

where \(v \) is the electron velocity at the Dirac point, \(\hat{\mathbf{p}} = (\hat{p}_x, \hat{p}_y) \) is the operator of electron momentum in the graphene layer, \(e \) is the modulus of electron charge, \(\mathbf{A}_0 = (c E_0/\omega, \cos \omega t, 0, 0) \) is the vector potential of the linearly polarized electromagnetic wave propagating perpendicularly to the graphene plane, \(E_0 \) is the amplitude
of electric field of the wave, ω is the wave frequency, $\mathbf{A}_B = (-By, 0, 0)$ is the vector potential of the stationary magnetic field, $\mathbf{B} = (0, 0, B)$, which is assumed to be directed perpendicularly to the graphene layer, and $\sigma_i = (\sigma_x, \sigma_y, \sigma_z)$ is the vector of Pauli matrices written in the basis of two orthogonal electron states arisen from the two crystal sublattices of graphene. Formally, these two basis states, $|+\rangle$ and $|-\rangle$, correspond to the two opposite orientations of the pseudospin along the z-axis, $\sigma_z|\pm\rangle = \pm|\pm\rangle$.

Let us introduce the new two orthonormal states,

$$\psi_0^\pm = \frac{|+\rangle \pm |-\rangle}{\sqrt{2}} e^{\mp i(\alpha/2) \sin \omega t}, \quad (2)$$

where $\alpha = 2veE_0/\hbar \omega^2$ is the dimensionless parameter describing the interaction between an electron in graphene and a dressing field. Since Eq. (2) defines the complete system of basis states of graphene at any time t, one can seek solutions of the Schrödinger problem as $\psi(r, t) = a^+(r, t)\psi_0^+ + a^-(r, t)\psi_0^-$, where $r = (x, y)$ is the electron radius-vector in the graphene plane. Substituting the wave function into the Schrödinger equation with the Hamiltonian, $i\hbar \partial \psi(r, t)/\partial t = \hat{H}\psi(r, t)$, we arrive at the two differential equations,

$$i\hbar \hat{a}^\pm(r, t) = \pm v \left[\hat{p}_x - \frac{eBy}{c} \right] a^\pm(r, t) \pm ivc\pm i\alpha \sin \omega t \hat{p}_y a^\mp(r, t), \quad (4)$$

which describe the quantum dynamics of dressed electrons in the graphene layer. Applying the conventional Floquet theory of periodically driven quantum systems to the wave function, we can rewrite it as $\psi(r, t) = e^{-i\omega t/\hbar}\phi(r, t)$, where the function $\phi(r, t)$ periodically depends on time, $\phi(r, t) = \phi(r, t + 2\pi/\omega)$, and $\tilde{\varepsilon}$ is the quasi-energy of an electron. Since the quasi-energy (the energy of dressed electron) is the physical quantity which plays the same role in periodically driven quantum systems as an usual energy in stationary ones, the present analysis of the Schrödinger problem is aimed to find the energy spectrum of dressed electron, $\tilde{\varepsilon}$. Taking into account the periodicity of the function $\phi(r, t)$, one can seek the coefficients $a^\pm(r, t)$ in Eq. (4) as a Fourier expansion,

$$a^\pm(r, t) = e^{-i\omega t/\hbar} \sum_{n = -\infty}^{\infty} a^\pm_n(r) e^{in\omega t}. \quad (5)$$

Substituting the expansion into the expression and applying the Jacobi-Anger expansion, $e^{iz \sin \theta} = \sum_{n = -\infty}^{\infty} J_n(z) e^{in\theta}$, to transform the exponent in the right side, one can rewrite Eq. (4) as

$$\tilde{\varepsilon}a_n^+(r) = \pm v \left[\hat{p}_x - \frac{eBy}{c} \right] a_n^+(r) \pm iv \sum_{n' = -\infty}^{\infty} J_{n-n'}(\pm\alpha) \hat{p}_y a_{n'}^+(r). \quad (6)$$

It should be noted that Eq. (6) still describes exactly the initial Schrödinger problem. Next we will make some approximations.

Let us assume that the wave frequency, ω, is far from resonant electron frequencies corresponding to electron transitions between the different Landau levels in graphene, and, therefore, the inter-level absorption of the wave by electrons is absent. Thus, the considered electron system is conservative. Next, we have to take into account that the expansion coefficients in Eq. (6), $a_n^\pm(r)$, are the quantum amplitudes of the absorption (emission) of n photons by an electron. Since the considered nonresonant field can be neither absorbed nor emitted by an electron, the amplitudes are very small, $|a_n^\pm(r)| \ll 1$. Assuming the zero-order Bessel function, $J_0(\alpha)$, to be far from zero, the aforesaid leads to the estimation

$$\left| \frac{J_n(\alpha) \hat{p}_y a_n^+(r)}{J_0(\alpha) \hat{p}_y a_0^+(r)} \right| \ll 1, \quad (7)$$

where $n = \pm 1, \pm 2, \ldots$. It follows from the inequality that the main contribution to the sum in Eq. (6) arises from terms with $n' = 0$, which describe the elastic interaction between an electron and the dressing field. Therefore, small terms with $a_{n\neq 0}^\pm(r)$ in Eq. (6) can be omitted. It should be noted that such a neglect of high-frequency nonresonant terms in Eq. (6) is physically identical to the rotating wave approximation (RWA) which is conventionally used to describe various quantum systems under periodical pumping (see, e.g., Refs. 24, 25). Within this approach, Eq. (6) turns into the equation

$$\tilde{\varepsilon}a_0^+(r) = \pm v \left[\hat{p}_x - \frac{eBy}{c} \right] a_0^+(r) \pm ivJ_0(\alpha) \hat{p}_y a_0^+(r). \quad (8)$$

Formally, Eq. (8) can be treated as a stationary Schrödinger equation, $\hat{H}_0a_0(r) = \tilde{\varepsilon}a_0(r)$, with the effective Hamiltonian

$$\hat{H}_0 = \sigma_z v \left[\hat{p}_x - \frac{eBy}{c} \right] - \sigma_y v J_0(\alpha) \hat{p}_y, \quad (9)$$

where $a_0(r)$ is the pseudospinor with the two components, $a_0^\pm(r)$. Applying the unitary transformation, $\hat{U} = (\sigma_z + \sigma_x)/\sqrt{2}$, to the Hamiltonian, we arrive at the transformed Hamiltonian, $\hat{H}' = \hat{U} \hat{H}_0 \hat{U}$, which has the well-behaved form

$$\hat{H}' = \sigma_x \tilde{v}_x \left[\hat{p}_x - \frac{eBy}{c} \right] + \sigma_y \tilde{v}_y \hat{p}_y, \quad (10)$$

where the quantities $\tilde{v}_x = v$ and $\tilde{v}_y = vJ_0(\alpha)$ should be treated as components of the velocity of dressed electron along the x, y axes. It should be noted that the electron velocity along the polarization vector of the dressing field, $\tilde{v}_x = v$, is not changed by the the dressing field, whereas the electron velocity in the perpendicular direction, $\tilde{v}_y = vJ_0(\alpha)$, drastically depends on the field because of the Bessel-function factor.
If the magnetic field is absent, $B = 0$, the Hamiltonian $[10]$ can be diagonalized trivially and results in the anisotropic energy spectrum of dressed electrons 32,

$$\tilde{\varepsilon} = \pm \hbar \nu \sqrt{k_x^2 + k_y^2 J^2_0(\alpha)}, \quad (11)$$

where $k = (k_x, k_y)$ is the electron wave vector in the graphene plane. If a graphene layer is exposed to the magnetic field, $B \neq 0$, the Hamiltonian $[10]$ is mathematically identical to the known Hamiltonian of “bare” graphene subjected to the same magnetic field, where the velocity of “bare” electron, $\mathbf{v} = (v, v)$, should be replaced with the velocity of dressed electron, $\tilde{\mathbf{v}} = (\tilde{v}_x, \tilde{v}_y)$. As a consequence, the electron eigenenergies and eigenfunctions corresponding to the Landau levels in dressed graphene can be easily obtained from well-known those for “bare” graphene 2 with the formal replacement, $v \rightarrow \tilde{v} \sqrt{|J_0(\alpha)|}$. Particularly, the energies of the Landau levels in dressed graphene read as

$$\tilde{\varepsilon}_n = \text{sgn}(n) \hbar \nu_B \sqrt{|n| \sqrt{|J_0(\alpha)|}}, \quad (12)$$

where $\nu_B = \sqrt{2v/l_B}$ is the cyclotron frequency of graphene, $l_B = \sqrt{\hbar/eB}$ is the magnetic length, $\text{sgn}(n)$ is the signum function, and $n=0, \pm 1, \pm 2...$ is the number of Landau level in the conductivity band ($n > 0$) and the valence band ($n < 0$). As expected, the energies (12) exactly coincide with those in “bare” graphene 2 if the dressing field is absent ($\alpha = 0$). To avoid misunderstandings, one should keep in mind that the present theory is elaborated under condition (7). Therefore, Eqs. (8)–(12) will manifest itself in various magneto-optical and magneto-transport phenomena. For definiteness, we will use the conventional formalism based on the Kubo formula 15. Within this approach, the diagonal components of the conductivity tensor read as

$$\sigma_{ii} = \frac{1}{\pi S} \text{Tr}(\hat{\nu}_i \text{Im} G(\varepsilon + i0)\hat{\nu}_i \text{Im} G(\varepsilon + i0)), \quad (15)$$

with the absorption coefficient, β_γ. Combining the theory elaborated above and the known theory of magneto-optical absorption in “bare” graphene (see, e.g., Ref. 15), we arrive at the expression for the absorption coefficient in dressed graphene,

$$\beta_\gamma = \sum_{n,m} \frac{2e^2\tilde{v}^2\gamma(\rho_n - \rho_m)(1 + \delta_{n,0} + \delta_{m,0})\delta_{n,m,\pm 1}}{l_B^2 \hbar c \omega_{nm}(\alpha)^2 + \gamma^2}, \quad (13)$$

FIG. 2: (Color online) The absorption coefficient of intrinsic graphene, β_γ, at the temperature $T = 0$ as a function of the probing field frequency, ω_B, for the decay rate $\Gamma = 1$ meV. The photon energy of dressing field is $\hbar \nu = 3$ meV and the different curves correspond to the different field intensities: (1) $I_0 = 0$; (2) $I_0 = 3.51$ W/cm2; (3) $I_0 = 6.24$ W/cm2. The insert shows the dependence of the absorption coefficient, β_γ, on the photon energy, $\hbar \nu$, and the electron-field interaction parameter, $\alpha = 2e\nu_B E_0/\hbar^2$. In order to analyze the longitudinal conductivity of dressed graphene in the presence of a magnetic field, let us use the conventional formalism based on the Kubo formula 15. Within this approach, the diagonal components of the conductivity tensor read as

$$\sigma_{ii} = \frac{1}{\pi S} \text{Tr}(\hat{\nu}_i \text{Im} G(\varepsilon + i0)\hat{\nu}_i \text{Im} G(\varepsilon + i0)), \quad (15)$$

$$\sigma_{ii} = \frac{1}{\pi S} \text{Tr}(\hat{\nu}_i \text{Im} G(\varepsilon + i0)\hat{\nu}_i \text{Im} G(\varepsilon + i0)), \quad (15)$$

III. OPTICAL AND TRANSPORT EFFECTS

Let dressed graphene be subjected to a weak linearly polarized electromagnetic wave with the frequency ω (probing field). The probing field can induce electron transitions between the dressed Landau levels $[12]$ which are accompanied by absorption of the field. Conventionally, this optical effect can be described by the absorption coefficient, β. Combining the theory elaborated

$$\sigma_{ii} = \int d\varepsilon \left[-\frac{\partial f(\varepsilon)}{\partial \varepsilon} \right] \sigma_{ii}(\varepsilon), \quad (14)$$

with

$$\sigma_{ii}(\varepsilon) = \frac{e^2}{\pi S} \text{Tr}(\hat{\nu}_i \text{Im} G(\varepsilon + i0)\hat{\nu}_i \text{Im} G(\varepsilon + i0)), \quad (15)$$

The field-induced modification of the Landau levels $[12]$ will manifest itself in various magneto-optical and magneto-transport phenomena. For definiteness, we will focus the attention on the optical absorption and longitudinal conductivity of dressed graphene.

The probing field can induce electron transitions between the dressed Landau levels $[12]$ which are accompanied by absorption of the field. Conventionally, this optical effect can be described by the absorption coefficient, β. Combining the theory elaborated

$$\sigma_{ii} = \frac{1}{\pi S} \text{Tr}(\hat{\nu}_i \text{Im} G(\varepsilon + i0)\hat{\nu}_i \text{Im} G(\varepsilon + i0)), \quad (15)$$

with

$$\sigma_{ii}(\varepsilon) = \frac{e^2}{\pi S} \text{Tr}(\hat{\nu}_i \text{Im} G(\varepsilon + i0)\hat{\nu}_i \text{Im} G(\varepsilon + i0)), \quad (15)$$

The field-induced modification of the Landau levels $[12]$ will manifest itself in various magneto-optical and magneto-transport phenomena. For definiteness, we will focus the attention on the optical absorption and longitudinal conductivity of dressed graphene.

The probing field can induce electron transitions between the dressed Landau levels $[12]$ which are accompanied by absorption of the field. Conventionally, this optical effect can be described by the absorption coefficient, β. Combining the theory elaborated

$$\sigma_{ii} = \frac{1}{\pi S} \text{Tr}(\hat{\nu}_i \text{Im} G(\varepsilon + i0)\hat{\nu}_i \text{Im} G(\varepsilon + i0)), \quad (15)$$

with

$$\sigma_{ii}(\varepsilon) = \frac{e^2}{\pi S} \text{Tr}(\hat{\nu}_i \text{Im} G(\varepsilon + i0)\hat{\nu}_i \text{Im} G(\varepsilon + i0)), \quad (15)$$
where \(\varepsilon \) is the electron energy, \(f(\varepsilon) \) is the Fermi distribution function, \(S \) is the area of the graphene layer, \(\tilde{v}_{x,y} \) is the operator of electron velocity along the \(x, y \) axes, \(G(\varepsilon) \) is the Green’s function of the effective Hamiltonian \(H \), and the broken brackets in Eq. \(\text{(15)} \) correspond to averaging over all possible configuration of random distributions of scatterers. Applying the conventional Green’s function technique within the self-consistent Born approximation, Shon and Ando calculated the conductivity of graphene for the cases of short-range scatterers and long-range ones in the most general form\(^\text{16} \). Particularly, they demonstrated that the self-energy is the same for the both kinds of scatterers. As to the vertex corrections, they vanish in the case of short-range scatterers but should be taken into account for long-range ones. In order to incorporate a dressing field into this known approach, we have to just replace the electron velocity in “bare” graphene, \(\tilde{v} \), with the velocity renormalized by the dressing field, \(\tilde{v} \), in the expression \(\text{(15)} \). It should be noted that the conductivity \(\text{(15)} \) can be calculated analytically in the important case of weak scattering, when the scatterer-induced broadening of Landau levels, \(\Gamma \), is much less than the energy interval between nearest Landau levels. Taking into account the contribution of only Landau level at the Fermi energy and assuming the scattering processes in graphene to be caused by a long-range “white noise” disorder, we can write the conductivity \(\text{(15)} \) as

\[
\sigma_{xx}(\varepsilon) = \sigma_0 |n| \left[1 - \frac{\pi|\varepsilon|^{2}(\varepsilon - \varepsilon_n)^2}{2\Gamma(\hbar \omega_B)^2} \right],
\]

where \(\sigma_0 = e^2/\pi^2\hbar \) is the conductivity of intrinsic graphene, and \(n = \pm 1, \pm 2, \pm 3… \) is the number of Landau level at the Fermi energy. As to the case of short-range disorder, it is described by the same expression \(\text{(16)} \) which should be just multiplied by the factor 2. As expected, the conductivity \(\text{(16)} \) exactly coincides with the known expression\(^\text{16} \) if a dressing field is absent \((E_0 = 0) \). The Shubnikov-de Haas oscillations of conductivity calculated within the approach\(^\text{16} \) for a graphene layer with short-range disorder are presented in Fig. 3 for various parameters of the dressing field.

IV. DISCUSSION AND CONCLUSIONS

Deriving the effective Hamiltonian \(\text{(10)} \), we assumed that the electromagnetic wave is nonresonant. This allowed us to neglect the inter-level absorption of the wave by electrons. However, we took also into account the scattering-induced broadening of Landau levels, \(\Delta = \hbar/\tau \), where \(\tau \) is the electron scattering time. For the self-consistency of the developed theory, we need to exclude the scattering-induced intra-level absorption of the wave by electrons within a broadened Landau level. Therefore, we have to assume the wave frequency, \(\omega \), to be high enough in order to satisfy the inequality \(\omega \tau \gg 1 \). It is well-known that the nonresonant (collisional) absorption of wave energy by conduction electrons is negligibly small under this condition. Therefore, an electromagnetic wave which is both high-frequency and nonresonant can be treated as a purely dressing (nonabsorbable) field (see, e.g., Refs.\(^\text{34–36} \)). Such a purely dressing field should be used in experiments.

Physically, the absorption peaks in Fig. 2 correspond to the resonant electron transitions between dressed Landau levels, which are induced by a probing field. As to the Shubnikov-de Haas oscillations of the conductivity plotted in Fig. 3, their maxima correspond to the crossing of the Landau levels and the Fermi level. Since the distance between Landau levels \(\text{(12)} \) depends on a dressing field, the field-induced shifting of the maxima of the curves plotted in Figs. 2–3 appears. Besides the shifting, the dressing field leads to the anisotropy of magnetoelectronic properties caused by the nonequivalence of the electron velocities along the \(x, y \) axes, \(\tilde{v}_x \neq \tilde{v}_y \). Namely, it follows from Eqs. \(\text{(13)} \) and \(\text{(15)} \) that \(\beta_y / \beta_x = \sigma_{yy} / \sigma_{xx} = |J_0(\alpha)| \). It should be noted that the discussed field-induced effects are most pronounced if the parameter of electron-field interaction, \(\alpha = 2e\hbar E_0/\hbar \omega^2 \), is large enough. Due to the giant electron velocity in graphene, \(\nu \approx 1 \times 10^6 \) m/s, this condition can be satisfied for relatively weak intensities of the dressing field (see Figs. 2–3). As a consequence, the optical and transport measurements are appropriate to detect the field-induced modification of electron energy spectrum \(\text{(12)} \) for experimentally reasonable parameters of the dressing field.

Physically, the considered features of the magnetoelectronic properties originate from the anisotropy of the en-
ergy spectrum of dressed electrons \((11)\) along the \(x, y\) axes. In turn, the anisotropy is caused by linear polarization of a dressing field. In the case of circularly polarized dressing field with the same electric field amplitude \(E_0\) and frequency \(\omega\), the anisotropic spectrum \((11)\) turns into the isotropic gapped one,

\[
\tilde{\varepsilon} = \pm \sqrt{\left(\varepsilon_g/2\right)^2 + \left(\hbar \omega/2\right)^2},
\]

where \(\varepsilon_g = \sqrt{(2\nu_0 E_0/\omega)^2 + (\hbar \omega)^2} - \hbar \omega\) is the field-induced gap. Combining the theory of gapped graphene subjected to a magnetic field\(^{14}\) and the theory of graphene layer dressed by a circularly polarized electromagnetic wave\(^{14}\), we easily arrive from the Hamiltonian \((1)\) at the energy spectrum of Landau levels in the \(K\) point of Brillouin zone,

\[
\tilde{\varepsilon}_n = \pm \sqrt{(\hbar \omega B)^2 (n + 1/2 \mp 1/2) + \varepsilon_g^2},
\]

where \(n = 0, 1, 2, \ldots\) is the number of Landau level, and the upper and lower signs correspond to the conductivity and valence band, respectively. As to the Landau levels at the \(K'\) point, their structure can be also described by Eq. \((15)\), where the signs \(\pm\) under the square root should be replaced with the opposite signs, \(\mp\). It should be noted that the energy spectrum \((15)\) is correct for weak magnetic fields satisfying the condition \(\hbar \omega B \ll \varepsilon_g\) (for the opposite case of strong magnetic fields see Ref.\(^{18}\)). In contrast to Eq. \((12)\), the energy spectrum \((15)\) does not contain the Bessel function, \(J_0(\alpha)\). Mathematically, this means that the dependence of the magnetoelectronic properties of graphene on a dressing field is more pronounced in the case of linear polarization. Thus, a linearly polarized dressing field is preferable from experimental viewpoint.

As to experimental observability of the discussed effects, it should be noted that the employed parameters of the dressing field (the photon energy of meV scale and the field intensity of \(\text{W/cm}^2\)) can be easily realized experimentally with using such conventional sources of THz radiation as quantum cascade lasers and free electron lasers (see, e.g., Refs.\(^{55,56}\)).

Summarizing the aforesaid, we can conclude that a strong high-frequency electromagnetic field (dressing field) substantially modifies magnetoelectronic properties of graphene in contrast to the conventional conductors with the parabolic dispersion of electrons. Particularly, such resonant effects as optical absorption and Shubnikov-de Haas oscillations are very sensitive to the field. Therefore, a dressing field can be considered as a perspective tool to manipulate the magnetoelectronic properties of graphene. Since graphene serves as a basis for nanoelectronic devices, the developed theory opens a new way to control their characteristics.

V. ACKNOWLEDGMENTS

The work was partially supported by FP7 IRSES project QOCaN, FP7 ITN project NOTEDEV, Rannis project BOFEHYSS, Singaporean Ministry of Education under AcRF Tier 2 grant MOE2015-T2-1-055. OVK thanks RFBR project 14-02-00033 and Russian Ministry of Education and Science for the support. IAS thanks the Russian Target Federal Program “Research and Development in Priority Areas of Development of the Russian Scientific and Technological Complex for 2014–2020” of the Ministry of Education and Science of Russia (project 14.587.21.0020) for the support.

Appendix A: Borders of applicability of the theory

In order to simplify comparison of the developed theory and experiments, we summarize the conditions of applicability of the theory:

(i) The dressing field is assumed to be off-resonant. Therefore, the frequency of the dressing field, \(\omega\), should be far from resonant frequencies corresponding to electron transitions between different Landau levels;

(ii) To exclude the scattering-induced intra-level absorption of the wave by electrons within a broadened Landau level, we have to assume the wave frequency, \(\omega\), to be high enough in order to satisfy the inequality \(\omega \tau \gg 1\). It is well-known that the nonresonant (collisional) absorption of wave energy by conduction electrons is negligibly small under this condition. Therefore, a dressing field which satisfies both the nonresonant condition (i) and the high-frequency condition (ii) can be treated as a purely dressing (non-absorbable) field;

(iii) The effective Hamiltonian \((19)\) is derived by reducing the infinite system of quantum dynamics \((10)\) to the sole equation \((5)\). This reducing is correct under the condition \(|J_n(\alpha)/J_0(\alpha)| \ll 1\), where \(J_n(\alpha)\) is the Bessel function of the first kind, \(\alpha = 2\nu_0 E_0/\hbar \omega^2\) is the dimensionless parameter describing the interaction between an electron in graphene and a dressing field, \(\nu\) is the electron velocity in graphene, \(E_0\) is the amplitude of the dressing field, \(\omega\) is the frequency of the dressing field, and \(n = \pm 1, \pm 2, \pm 3, \ldots\). Thus, the dressing field amplitude, \(E_0\), and the field frequency, \(\omega\), should be chosen to keep the Bessel function, \(J_0(\alpha)\), far from zero;

(iv) The calculation of the conductivity \((14)–(15)\) within the approach\(^{16}\) was performed under the condition \(\Gamma/\varepsilon_F \ll 1\), where \(\Gamma\) is the scatterer-induced broadening of Landau levels, and \(\varepsilon_F\) is the Fermi energy. Therefore, the developed theory of transport effects is adequate if the scattering is weak enough.
