A NOTE ON CARLITZ’S TYPE \(q \)-CHANGHEE NUMBERS AND POLYNOMIALS

DMITRY V. DOLGY, GWAN-WOO JANG, HYUCK-IN KWON, AND TAEKYUN KIM

Abstract. In this paper, we consider the Carlitz’s type \(q \)-analogue of Changhee numbers and polynomials and we give some explicit formulae for these numbers and polynomials.

1. Introduction

Let \(p \) be an odd prime number. Throughout this paper, \(\mathbb{Z}_p \), \(\mathbb{Q}_p \) and \(\mathbb{C}_p \) will denote the ring of \(p \)-adic integers, the field of \(p \)-adic numbers and the completion of the algebraic closure of \(\mathbb{Q}_p \). The \(p \)-adic norm is normalized as \(|p|_p = \frac{1}{p} \). Let \(q \) be an indeterminate in \(\mathbb{C}_p \) such that \(|1 - q|_p < p^{-1} \). The \(q \)-analogue of number \(x \) is defined as \([x]_q = q^x - 1 - q^{x-1} \). As is well known, the Euler polynomials are defined by the generating function to be

\[
\frac{2}{e^t + 1} e^{xt} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!} \quad \text{ (see [1 - 14]).} \tag{1.1}
\]

When \(x = 0 \), \(E_n = E_n(0), (n \geq 0) \), are called the Euler numbers. In [1,2,3] L. Carlitz considered the \(q \)-analogue of Euler numbers which are given by the recurrence relation as follows:

\[
\mathcal{E}_{0,q} = 1, \quad q(q\mathcal{E}_q + 1)^n + \mathcal{E}_{n,q} = \begin{cases}
[2]_{q^n}, & \text{if } n = 0, \\
0, & \text{if } n > 1.
\end{cases}
\]

with the usual convention about replacing \(\mathcal{E}_q^n \) by \(\mathcal{E}_{n,q} \).

He also considered \(q \)-Euler polynomials which are defined by

2010 Mathematics Subject Classification. 11B68; 11S80.

Key words and phrases. Carlitz’s type \(q \)-Changhee numbers and polynomials.
\[E_{n,q}(x) = \sum_{l=0}^{n} \binom{n}{l} [x]_{q}^{n-l} q^l x_{l,q}, \quad \text{(see [2, 3]).} \quad (1.2) \]

In [8, 9, 10], Kim defined the fermionic \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \) as follows:

\[I_{-q}(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x) = \lim_{N \to \infty} \frac{1}{[p^N]_{-q}} p^{N-1} \sum_{x=0}^{p^N-1} f(x)(-q)^x, \quad (1.3) \]

where \(f(x) \) is a continuous function on \(\mathbb{Z}_p \) and \([x]_{-q} = \frac{1+q}{1(-q)^x}\).

From (1.3), he derived the following formula for the Carlitz’s \(q \)-Euler polynomials:

\[\int_{\mathbb{Z}_p} [x+y]^n_q d\mu_{-q}(y) = E_{n,q}(x), \quad (n \geq 0), \quad \text{(see [7, 10]).} \quad (1.4) \]

When \(x = 0 \), \(E_{n,q} = \int_{\mathbb{Z}_p} [x]^n_q d\mu_{-q}(x) \) are Carlitz’s \(q \)-Euler numbers.

The Changhee polynomials are defined by the generating function to be

\[\frac{2}{2+t(1+t)^x} = \sum_{n=0}^{\infty} Ch_n(x) \frac{t^n}{n!}, \quad \text{(see [5, 6]).} \quad (1.5) \]

Thus, by (1.5), we get

\[E_n(x) = \sum_{k=0}^{n} S_2(n,k) Ch_k(x), \quad Ch_n(x) = \sum_{k=0}^{n} S_1(n,k) E_k(x), \quad (n \geq 0), \quad (1.6) \]

Where \(S_2(n,k) \) is Stirling number of the second kind and \(S_1(n,k) \) is the Stirling number of the first kind. In [10], the higher-order Carlitz’s \(q \)-Euler polynomials are written by the fermionic \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \) as follows:

\[\sum_{n=0}^{\infty} e_{n,q}^{(r)}(x) \frac{t^n}{n!} = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} e^{[x_1+\cdots+x_r+x]} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_r), \quad (n \geq 0). \quad (1.7) \]

In this paper, we consider the Carlitz’s type \(q \)-Changhee polynomials and numbers and we give explicit formulas for these numbers and polynomials.
2. Carlitz’s type q-Changhee polynomials

In this section, we assume that $t \in \mathbb{C}_p$ with $|t|_p < p^{-1}$. From (1.3) and (1.5), we note that

$$
\int_{\mathbb{Z}_p} (1 + t)^{x+y} d\mu_{-1}(y) = \frac{2}{2 + t} (1 + t)^z = \sum_{n=0}^{\infty} Ch_n(x) \frac{t^n}{n!}, \quad (n \geq 0),
$$

(2.1)

Thus, by (2.1), we get

$$
\int_{\mathbb{Z}_p} (x + y)^n d\mu_{-1}(y) = Ch_n(x), \quad (n \geq 0),
$$

(2.2)

where $(x)_0 = 1$, $(x)_n = x(x-1)\cdots(x-n+1)$, $(n \geq 1)$.

In the viewpoint of (1.4), we consider the Carlitz’s type q-Changhee polynomials which are derived from the fermionic p-adic q-integral on \mathbb{Z}_p as follows:

$$
\int_{\mathbb{Z}_p} (1 + t)^{x+y} q d\mu_{-1}(y) = \sum_{n=0}^{\infty} Ch_{n,q}(x) \frac{t^n}{n!}.
$$

(2.3)

Thus, by (2.3), we get

$$
\sum_{n=0}^{\infty} Ch_{n,q}(x) \frac{t^n}{n!} = \sum_{k=0}^{\infty} \int_{\mathbb{Z}_p} [x + y]^k q d\mu_{-1}(y) \frac{1}{k!} \left(\log(1 + t) \right)^k
$$

$$
= \sum_{k=0}^{\infty} \int_{\mathbb{Z}_p} [x + y]^k q d\mu_{-1}(y) \sum_{n=k}^{\infty} S_1(n, k) \frac{t^n}{n!}
$$

(2.4)

$$
= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} E_{k,q}(x) S_1(n, k) \right) \frac{t^n}{n!}
$$

Indeed,

$$
\sum_{k=0}^{n} S_1(n, k) \int_{\mathbb{Z}_p} [x + y]^k q d\mu_{-1}(y) = \sum_{k=0}^{n} S_1(n, k) \frac{1}{(1-q)^k} \sum_{l=0}^{k} \binom{k}{l} q^l (-1)^l \frac{[2]_q}{1 + q^{l+1}}
$$

$$
= [2]_q \sum_{k=0}^{n} \sum_{l=0}^{k} \frac{1}{(1-q)^k} \binom{k}{l} q^l (-1)^l S_1(n, k) \frac{1}{1 + q^{l+1}}.
$$

Therefore, by (2.4), we obtain the following theorem.
Theorem 2.1. For \(n \geq 0 \), we have

\[
Ch_{n,q}(x) = [2]^n \sum_{k=0}^{n} \frac{1}{(1-q)^k} \binom{k}{l} q^lx(-1)^k \frac{S_1(n,k)}{1+q^{l+1}}
\]

\[
= \sum_{k=0}^{n} S_1(n,k) E_{n,q}(x).
\]

From (1.4), we note that

\[
\sum_{n=0}^{\infty} \varepsilon_{n,q}(x) \frac{t^n}{n!} = \int_{Z_p} e^{[x+y]q^t d\mu_{-q}(y)}.
\] (2.5)

By (2.5), we get

\[
\sum_{k=0}^{\infty} Ch_{k,q}(x) \frac{1}{k!} (e^t - 1)^k = \int_{Z_p} e^{[x+y]q^t d\mu_{-q}(y)} = \sum_{n=0}^{\infty} \varepsilon_{n,q}(x) \frac{t^n}{n!}.
\] (2.6)

On the other hand,

\[
\sum_{k=0}^{\infty} Ch_{k,q}(x) \frac{1}{k!} (e^t - 1)^k = \sum_{k=0}^{\infty} Ch_{k,q}(x) \sum_{n=k}^{\infty} S_2(n,k) \frac{t^n}{n!}
\]

\[
= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} Ch_{k,q}(x) S_2(n,k) \right) \frac{t^n}{n!}.
\] (2.7)

Thus, by (2.6) and (2.7), we get the following theorem.

Theorem 2.2. For \(n \geq 0 \), we have

\[
\varepsilon_{n,q}(x) = \sum_{k=0}^{n} Ch_{k,q}(x) S_2(n,k).
\]
From Theorem 1, we note that
\[
\sum_{n=0}^{\infty} Ch_{n,q}(x) \frac{t^n}{n!} = [2]q \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} S_1(n,k) \frac{1}{(1-q)^k} \sum_{l=0}^{k} \binom{k}{l} q^l x (-1)^l \sum_{m=0}^{\infty} (-q^l+1)^m \right) \frac{t^n}{n!},
\]
(2.8)

Therefore, by (2.8), we obtain the following theorem.

Theorem 2.3. The generating function of the Carlitz’s type \(q \)-Changhee polynomials is given by
\[
[2]q \sum_{m=0}^{\infty} (-q)^m (1+t)^{[m+x]_q} = \sum_{n=0}^{\infty} Ch_{n,q}(x) \frac{t^n}{n!}.
\]

In particular, \(x = 0 \), we have
\[
[2]q \sum_{m=0}^{\infty} (-q)^m (1+t)^{[m]_q} = \sum_{n=0}^{\infty} Ch_{n,q} \frac{t^n}{n!}.
\]

From (1.3), we easily note that
\[
q I_{-q}(f_1) + I_{-q}(f) = [2]q f(0), \text{ where } f_1(x) = f(x+1).
\]
(2.9)

Thus, by (2.9), we get
\[
q \int_{\mathbb{Z}_p} (1+t)^{[x+1+y]_q} d\mu_{-q}(y) + \int_{\mathbb{Z}_p} (1+t)^{[x+y]_q} d\mu_{-q}(y) = [2]q (1+t)^{[x]_q}. \quad (2.10)
\]

By (2.3) and (2.10), we get
\[
\sum_{n=0}^{\infty} \left(q Ch_{n,q}(x+1) + Ch_{n,q}(x) \right) \frac{t^n}{n!} = [2]q \sum_{n=0}^{\infty} (x)_q \frac{t^n}{n!}, \quad (2.11)
\]
Comparing the coefficients on the both sides of (2.11), we get

\[qCh_{n,q}(x + 1) + Ch_{n,q}(x) = [2]_q \left([x]_q \right)_n = [2]_q \sum_{l=0}^{n} S_1(n, l)[x]_q^l, \quad (n \geq 0). \tag{2.12} \]

Therefore, we obtain the following theorem.

Theorem 2.4. For \(n \geq 0 \), we have

\[qCh_{n,q}(x + 1) + Ch_{n,q}(x) = [2]_q \sum_{l=0}^{n} S_1(n, l)[x]_q^l. \]

From (2.12), we have

\[\sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} \left([x + y]_q \right)_n d\mu_{-q}(y) t^n = \sum_{n=0}^{\infty} \frac{Ch_{n,q}(x) t^n}{n!}. \tag{2.13} \]

Thus, by (2.13), we get

\[\int_{\mathbb{Z}_p} \left([x + y]_q \right)_n d\mu_{-q}(y) = \frac{Ch_{n,q}(x)}{n!}, \quad (n \geq 0). \]

Now, we observe that

\[(1 + t)[x + y]_q = (1 + t)[x]_q + q^r[y]_q = (1 + t) [x]_q \cdot (1 + t) q^r[y]_q. \tag{2.14} \]

Thus, by (2.14), we get

\[\sum_{n=0}^{\infty} Ch_{n,q}(x) \frac{t^n}{n!} = \int_{\mathbb{Z}_p} (1 + t)[x + y]_q d\mu_{-q}(y) \]

\[= \sum_{n=0}^{\infty} \sum_{k=0}^{n} S_1(n, k) \int_{\mathbb{Z}_p} \left([x]_q + q^r[y]_q \right)^k d\mu_{-q}(y) \frac{t^n}{n!} \]

\[= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \sum_{l=0}^{k} \binom{k}{l} S_1(n, k) [x]_q^{k-l} q^r \left[E_{l,q} \right] \right) \frac{t^n}{n!}. \tag{2.15} \]

Therefore, by (2.15), we obtain the following theorem.

Theorem 2.5. For \(n \geq 0 \), we have

\[Ch_{n,q}(x) = \sum_{k=0}^{n} \sum_{l=0}^{k} \binom{k}{l} S_1(n, k) [x]_q^{k-l} q^r \left[E_{l,q} \right]. \]
From (1.3), we note that

\[
\int_{\mathbb{Z}_p} f(x)d\mu(x) - q^x = \lim_{N \to \infty} \frac{1}{p^N - q} \sum_{x=0}^{p^N-1} f(x)(-q)^x
\]

where \(d \in \mathbb{N}\) with \(d \equiv 1 \pmod{2}\). For \(d \in \mathbb{N}\) with \(d \equiv 1 \pmod{2}\), we have

\[
\int_{\mathbb{Z}_p} f(x)d\mu(y) - q^x = \lim_{N \to \infty} \frac{1}{dp^N - q} \sum_{a=0}^{d-1} \sum_{x=0}^{p^N-1} f(a + dx)(-q)^{a + dx}.
\]

By (2.17), we get

\[
\int_{\mathbb{Z}_p} (1 + t)^{|x+y|} d\mu(y)
\]

\[
= \sum_{a=0}^{d-1} (-q)^a \int_{\mathbb{Z}_p} (1 + t)^{\frac{a+x}{d} + y} q^x d\mu(y)
\]

\[
= \sum_{a=0}^{d-1} (-q)^a \int_{\mathbb{Z}_p} \left(\sum_{k=0}^{\infty} \frac{[d]_{q^k}^k E_{k,q}(\frac{a+x}{d}) S_1(n,k)}{k!} \right) \frac{t^n}{n!}
\]

Therefore, by (2.3) and (2.18), we obtain the following theorem.

Theorem 2.6. For \(n \geq 0\), we have

\[
Ch_{n,q}(x) = \sum_{a=0}^{d-1} (-q)^a \sum_{k=0}^{\infty} \frac{[d]_{q^k}^k E_{k,q}(\frac{a+x}{d}) S_1(n,k)}{k!}.
\]

For \(r \in \mathbb{N}\), the higher-order Carlitz’s type \(q\)-Changhee polynomials are also given by the multivariate fermionic \(p\)-adic \(q\)-integral as follows:

\[
\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (1 + t)^{|x_1+x_2+\cdots x_r+x|} d\mu_q(x_1) \cdots d\mu_q(x_r) = \sum_{n=0}^{\infty} \frac{Ch_{n,q}^{(r)}(x)^n}{n!}.
\]
Thus, we note that

\[
\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (1 + t)^{x_1 + x_2 + \cdots + x_r} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_r)
\]

\[
= \sum_{k=0}^{\infty} \left(\sum_{n=0}^{\infty} S_1(n, k) \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \frac{1}{k!} \left(\log(1 + t) \right)^k \right) t^n
\]

\[
= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} S_1(n, k) \mathcal{E}_{k,q}^{(r)}(x) \right) \frac{t^n}{n!}.
\]

(2.20)

By (2.19) and (2.20), we get

\[
Ch^{(r)}_{n,q}(x) = \sum_{k=0}^{n} S_1(n, k) \mathcal{E}_{k,q}^{(r)}(x).
\]

(2.21)

When \(x = 0 \), \(Ch^{(r)}_{n,q} = Ch^{(r)}_{n,q}(0) \) are called the Carlitz’s type \(q \)-Changhee numbers.

By (1.7) and (2.19), we get

\[
\sum_{k=0}^{\infty} Ch^{(r)}_{k,q}(x) \frac{1}{k!} \left(e^t - 1 \right)^k = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} e^{x_1 + x_2 + \cdots + x_r + x} d\mu_{-q}(x_1) \cdots d\mu_{-q}(x_r)
\]

\[
= \sum_{n=0}^{\infty} \mathcal{E}_{n,q}^{(r)}(x).
\]

(2.22)

On the other hand,

\[
\sum_{k=0}^{\infty} Ch^{(r)}_{k,q}(x) \frac{1}{k!} \left(e^t - 1 \right)^k = \sum_{k=0}^{\infty} Ch^{(r)}_{k,q}(x) \sum_{n=k}^{\infty} S_2(n, k) \frac{t^n}{n!}
\]

\[
= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} Ch^{(r)}_{k,q}(x) S_2(n, k) \right) \frac{t^n}{n!}.
\]

(2.23)

Comparing the coefficients on the both sides of (2.22) and (2.23), we have

\[
\mathcal{E}_{n,q}^{(r)}(x) = \sum_{k=0}^{n} Ch^{(r)}_{k,q}(x) S_2(n, k).
\]

(2.24)
A NOTE ON CARLITZ’S TYPE q-CHANGHEE NUMBERS AND POLYNOMIALS

References

1. L. Carlitz, Expansions of q-Bernoulli numbers, Duke Math. J., 25 (1958), 355-364.
2. L. Carlitz, q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc., 76 (1954), 332-350.
3. L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J., 15 (1948), 987-1000.
4. B.-M. Kim, J. Jeong, S.-H. Rim, Some explicit identities of Changhee-Genocchi polynomials and numbers, Adv. Difference Equ. 2016 2016:202, 12 pp.
5. D. S. Kim, T. Kim, J. J. Seo, A note on Changhee polynomials and numbers, Adv. Studies Theor. Phys. 7 (2013), no. 20, 993-1003.
6. D. S. Kim, T. Kim, J. J. Seo, S.-H. Lee, Higher-order Changhee numbers and polynomials, Adv. Studies Theor. Phys. 8 (2014), no. 8, 365-373.
7. D. S. Kim, T. Kim, Some symmetric identities for the higher-order q-Euler polynomials related to symmetry group S_3 arising from p-adic q-fermionic integrals on \mathbb{Z}_p, Filomat, 30 (2016), no. 7, 1717-1721.
8. T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory., 76 (1999), no. 2, 320-329.
9. T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288-299.
10. T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys. 14 (2007), 15-27.
11. J. G. Lee, L.-C. Jang, J.-J. Seo, S.-K. Choi, H.-I. Kwon, On Appell-type Changhee polynomials and numbers, Adv. Difference Equ. 2016 2016:160, 10 pp.
12. E.-J. Moon, J.-W. Park, A note on the generalized q-Changhee numbers of higher order, J. Comput. Anal. Appl., 20 (2016), no. 3, 470-479.
13. T. Kim, H.-I. Kwon, J. J. Seo, Degenerate q-Changhee polynomials, J. Nonlinear Sci. Appl. 9 (2016), no. 5, 2389-2393.
14. T. Kim, T. Mansour, S.-H. Rim, J.-J. Seo, A note on q-Changhee polynomials and numbers, Adv. Studies Theor. Phys., 8 (2014), no. 1, 35-41.

Hanrimwon, Kwangwoon University, Seoul 139-701, Republic of Korea
E-mail address: dol@mail.ru

Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
E-mail address: gwjang@kw.ac.kr

Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
E-mail address: sura@kw.ac.kr

Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
E-mail address: tkkim@kw.ac.kr