The Data Acquisition and Control System for Thomson Scattering on ATF

K.A. Stewart, R.R. Kindsfather†, D.A. Rasmussen
Oak Ridge National Laboratory,
P.O. Box 2009, Oak Ridge, TN 37831
615-574-1312

ABSTRACT
The 2-dimensional Thomson Scattering System measuring electron temperatures and densities in the Advanced Toroidal Facility (ATF) is interfaced to a VAX-8700 computer system running in a clustered configuration. Calibration, alignment, and operation of this diagnostic is under computer control. Extensive CAMAC instrumentation is used for timing control, data acquisition, and laser alignment. This paper will discuss the computer hardware and software, system operations, and data storage and retrieval.

DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

* Research sponsored by the Office of Fusion Energy, under Contract No. DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc
† Presently employed by Igen, Inc., 1530 E. Jefferson ST., Rockville, MD 20852

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
The Data Acquisition and Control System for
Thomson Scattering on ATF

I. Introduction

The 2-dimensional Thomson Scattering diagnostic operating on the Advanced Toroidal Facility (ATF) torsatron at the Oak Ridge National Laboratory (ORNL) measures electron temperatures and densities at 15 points along a vertical chord providing a map of a toroidal cross section with multiple shots. The light source is a pulsed ruby laser. The light is detected by fiber optic bundles which direct the scattered light to 15 polychromators. The light is collected by 5 or 7 photomultiplier tubes, and then measured by 12-channel analog to digital integrators. This system is a modification of the Thomson Scattering system that operated on the Impurity Studies Experiment (ISX) tokamak\(^1\). The modifications were due to the geometric differences in the machines as well as efforts to improve the system.

The data acquisition and control system that operated and controlled Thomson Scattering on ISX was also modified for ATF. These modifications included conversion to a new computer system, revisions required to utilize a synchronization and timing system, conversion to a new data management facility, and improvements to the user interface and to data storage and retrieval.

II. Hardware

The data acquisition and control system for Thomson Scattering is interfaced to the Fusion Energy Division’s (FED) VAX computer system. This system consists of two VAX computers, an 8700 and 8600, running in a clustered configuration. All ATF user and data disks are clustered enabling users to have access to the data from either computer. Both computers have two bit-serial CAMAC highways. At present, all ATF data acquisition is performed on the VAX-8700 with the VAX-8600 used as back-up in case of failure.

The ATF CAMAC system consists of 40 crates supporting 21 diagnostics. Six of these crates support Thomson Scattering. Three crates located in an electrically shielded screen
room, one in the experiment enclosure, and one in the laser room, one floor beneath the
experiment, are linked to a bit serial highway of fiber optics interfaced to the ATF CAMAC
highway by Kinetic Systems U-port adapters. A bit-serial highway of ribbon cable supports
one crate located in the experiment control room.

The Thomson Scattering diagnostic extensively uses CAMAC instrumentation for tim-
ing, data acquisition, experiment control, and user interaction. The CAMAC instruments
can be functionally categorized into four groups: data acquisition, translation and align-
ment, laser diagnostic, and timing.

III. Software

The Thomson Scattering software (TSCAT) can be grouped into three related areas:
user interaction, data acquisition and storage, and data display.

The user interaction software consists of a menu of commands. After each shot the
experimentalist can select commands to change attenuator or voltage values, setup for
calibration shots, display data from the last shot, change spectrometer position, input
laser firing times, begin a sequence of shots, and automatically or manually charge laser.

The data acquisition and storage software is entered by the charge command or, when
in automatic operations, by the T-30 second ATF trigger. The system displays status
information throughout this process.

Attenuator values, photomultiplier tube voltages, and scattered light signals are written
to the terminal screen with the display software. Separate software is used to retrieve,
analyze, and display the data between shots or after the day’s run.

The Thomson Scattering software uses the services of three software packages. These
packages form the central software components for ATF. They are a synchronization and
monitoring system (SAMS)2 that provides task management and timing information, a
data management system (DMG)3 that provides storage and retrieval capabilities for raw
and analyzed data, and the ORNL CAMAC driver package.

IV. Operations
TSCAT provides the user with three modes of operations: manual, automatic, and calibrate.

The manual mode enables the user to start the shot sequence on command. This mode is used when running laser diagnostics and synchronization with ATF is not necessary.

Automatic mode is the usual mode of operation and requires very little user interaction. Laser time, attenuation values, and voltage settings are preset. The shot sequence is initiated by the ATF T-30 second signal. Data is acquired, display, and stored automatically.

Calibration mode is used for wavelength and spectral calibration shots. These shots require little user interaction, but are not synchronized with ATF. Data from these shots are stored in special calibration files.

V. Data storage and Retrieval

One of the major improvements to TSCAT was the data storage and retrieval software. On ISX, data were acquired on a VAX-780 computer and transmitted to a PDP-10 for analysis and storage. TSCAT was essentially a stand-alone diagnostic system. On ATF, TSCAT is integrated into the ATF computer system though its use of DMG. DMG provides TSCAT with data storage and retrieval though subroutine calls from a run-time library of routines invoked as a sharable image. TSCAT's data are stored using five of the six data models DMG provides; scalar, vector, array, sivdata (single independent variable with constant increment), and nsivdata (single variable with varying increment).
References

1. R.R. Kindsfather et al., "Two-dimensional Thomson Scattering System for ATF," Rev.
 Sci. Instrum. vol.56, p.p. 1816-1818, 1986.

2. D.E. Greenwood, "The Synchronization and Monitoring System for ATF Data Acqui-
 sition," Fifth Conference on Real-Time Computer Applications in Nuclear Particle and
 Plasma Physics, May 12-14, 1987.

3. K.L. Kannan and L.R. Baylor, "The ATF Data Management System," Fifth Confer-
 ence on Real-Time Computer Applications in Nuclear Particle and Plasma Physics,
 May 12-14, 1987.