Maternal Urinary Triclosan Concentration in Relation to Maternal and Neonatal Thyroid Hormone Levels: A Prospective Study

Xu Wang,1 Fengxiu Ouyang,1 Liping Feng,2 Xia Wang,1 Zhiwei Liu,3 and Jun Zhang1

1MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
2Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, North Carolina, USA
3Department of Neonatology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

BACKGROUND: Triclosan (TCS) is a synthetic antibacterial chemical widely used in personal care products. TCS exposure has been associated with decreased thyroid hormone levels in animals, but human studies are scarce and controversial.

OBJECTIVE: We evaluated the association between maternal TCS exposure and thyroid hormone levels of mothers and newborns.

METHODS: TCS was measured by high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS) in urine samples collected during gestational weeks 38.8 ± 1.1 from 398 pregnant women in a prospective birth cohort enrolled in 2012–2013 in Shanghai, China. Maternal serum levels of free thyroxine (FT4), thyroid-stimulating hormone (TSH), and thyroid peroxidase antibody (TPOAb) were obtained from medical records. Cord blood levels of free triiodothyronine (FT3), FT4, TSH, and TPOAb were measured. Multiple linear and logistic regression models were used to examine the relationship between maternal urinary TCS and thyroid hormone levels.

RESULTS: TCS was detectable (≥0.1 ng/mL) in 98.24% of maternal urine samples with tertile of urinary TCS levels: low (<0.1–2.75 μg/g.Cr), medium (2.75–9.78 μg/g.Cr), and high (9.78–427.38 μg/g.Cr). With adjustment for potential confounders, cord blood log(FT3)pmol/L concentration was 0.11 lower in newborns of mothers with medium and high urinary TCS levels compared with those with low levels. At third trimester, the high TCS concentration was associated with 0.03 (95% CI: −0.08, −0.02) lower maternal serum log(FT4)pmol/L, whereas the medium TCS concentration was associated with 0.15 (95% CI: −0.28, −0.03) lower serum log(TSH)mIU/L with adjustment for covariates.

CONCLUSIONS: Our results suggest significant inverse associations between maternal urinary TCS and cord blood FT3 as well as maternal blood FT4 concentrations at third trimester. https://doi.org/10.1289/EHP500

Introduction

Triclosan (TCS) is a synthetic liposoluble broad-spectrum bacteriostatic germicide to varieties of bacteria, fungi, and viruses (Ahn et al. 2008). It has been widely used in personal care products such as toothpastes, soaps, shampoos, and cosmetics with concentrations of 0.1–10% for more than 40 years (Jones et al. 2000). After being absorbed into the human body, TCS is mainly excreted via urine (Krishnan et al. 2010). In pregnant women, maternal serum TCS can pass through the placental barrier and reach the fetus, evidenced by its detection in the umbilical cord blood of newborns (Peters 2005).

The structure of TCS resembles thyroxine (T4), and previous researchers have found TCS might disrupt thyroid hormone levels (Allmyr et al. 2009; Dann and Hontela 2011). Animal studies have shown that TCS exposure significantly decreases serum totals of the hormones T4 (Crofton et al. 2007; Paul et al. 2010) and triiodothyronine (T3) (Paul et al. 2010) in a dose-dependent manner in rats and reduced total T4 in pregnant rats (Axelstad et al. 2013). A few epidemiologic studies have examined this topic in humans (Cullinan et al. 2012; Geens et al. 2015) and have generated conflicting results. Specifically, a recent study reported an inverse association between TCS and FT4 levels in women (Geens et al. 2015). An U.S. national study observed a positive association between TCS and total T3 concentrations in adolescents (Koepppe et al. 2013).

Proper thyroid hormone levels are critical for fetal growth and maintaining pregnancy (Sarkhail et al. 2016). During early pregnancy, the fetus relies entirely on transplacental transfer of maternal thyroid hormones and normal maternal thyroid function (Patel et al. 2011). Maternal thyroid homeostasis also contributes substantially to fetal development during the remaining part of pregnancy (Patel et al. 2011). Even minor changes in thyroid homeostasis may affect fetal neurological development. For example, significant lower intelligence quotient (IQ) scores were observed in children of women with thyroid deficiency during pregnancy, even though hormone levels were inside the population reference range (Haddow et al. 1999; Morreale de Escobar et al. 2000).

Exposure to thyroid-disrupting chemicals may result in altered serum thyroid hormone levels, which may have adverse effects on developing fetuses. However, the effect of TCS exposure on maternal and neonatal thyroid hormone levels is unclear. To our knowledge, no previous study has examined this topic in pregnant women. Therefore, we aimed to evaluate the association between maternal TCS exposure and thyroid hormone levels of mothers and newborns.

Methods

Study Design and Participants

This study used data from the Shanghai Obesity and Allergy Cohort, a prospective birth cohort study initiated and maintained at the International Peace Maternity and Child Hospital (IPMCH) in Shanghai, China. The primary objective of this cohort study is to examine environmental and maternal risk factors of childhood obesity and allergic diseases. Eligible study participants were recruited at the IPMCH (n = 680) between June 2012 and February 2013. Eligibility criteria included singleton pregnancy, gestational age ≥28 weeks, and Shanghai residency with intention to remain in Shanghai for the following 2 years. A face-to-face questionnaire interview was conducted at enrollment to
collect demographic information including age, education level, maternal weight before pregnancy, and smoking and alcohol consumption before and during pregnancy. Medical history, including thyroid disease before and during pregnancy was abstracted from medical records. A spot urine sample was also collected for measuring TCS concentration during gestational weeks 38.8 ± 1.1 and was stored at −80°C until analysis. At the time of delivery, cord blood was collected from newborns and centrifuged to obtain the serum fractions.

Of 680 eligible women who were enrolled, those with assisted conception (n = 15) or syphilitic disease (n = 3) were excluded. Thirty-nine subjects did not have urine samples collected and were excluded. Also, women with urine samples with creatinine concentrations of ≤0.05 g/L or ≥3.0 g/L were excluded (n = 3). Among the remaining 620 women, 430 cord blood samples were collected from their newborns with 1 sample per newborn. In addition, women with diagnosed hypothyroidism, subclinical hypothyroidism, and hyperthyroidism before pregnancy were excluded (n = 11). Women with gestational hyperthyroidism, hypothyroidism, or subclinical hypothyroidism were also excluded (n = 21) (Perinatal Medicine Branch of Chinese Medical Association 2012). In the final analysis, 398 mother–infant pairs were included.

We obtained signed informed consent from all participants and the study was approved by the institutional review board of the Xinhua hospital, Shanghai Jiao Tong University School of Medicine and IMPC.

Measurement of Maternal Urinary TCS Concentration
Urinary TCS concentration was quantified using high-performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS, Agilent 1290–6490, Agilent Technologies Inc, USA) (Chen et al. 2012). First, we used ammonium acetate buffer (pH = 5.0, 1 mmol/L) to dilute 4 mL of urine sample and internal isotope to 6 mL, then used β-glucuronides (Type H-1 from Helix Pomatia, Sigma-Aldrich) to deconjugate and incubated the samples at 37°C overnight. Second, we used solid-phase extraction (500 mg/3 mL; Supelco, ENVI-18) to purify the samples and centrifuged them using a high-speed vacuum centrifuge (Thermos, SPD 121P); then the residue was dissolved in 250 µL of 0.1 N HCl (pH = 5) and added 17 pmol of internal standard (13C14 TCS, Type H-1 from Helix Pomatia, Sigma-Aldrich) to make the final concentration 26 pmol/μL. After being centrifuged, the samples were transferred to the HPLC-MS/MS system. The limit of detection (LOD) was 0.1 ng/mL (based on a signal-to-noise ratio of 3). Quality assurance and quality control (QA/QC) procedures were carried out for all analyses (Westgard et al. 1981) to avoid external contamination. To account for differences in urinary analyte concentrations caused by urine dilution, the urinary TCS concentration was normalized to creatinine concentration (Koepp et al. 2013), which was measured using Enzymatic Creatinine 2 Reagents (ECRE 2) on a discrete analyzer (7100 Hitachi, Tokyo, Japan).

Measurement of Thyroid Hormones in Cord Blood
Cord blood serum samples were collected and kept at −80°C until thyroid hormones were assayed. Serum of cord blood free triiodothyronine (FT3), FT4, thyroid-stimulating hormone (TSH), and thyroid peroxidase antibody (TPOAb) concentrations were determined by chemiluminescent microparticle immunoassay using the Architect system (Abbott Laboratories, Abbott Park, IL, USA). QA/QC procedures were performed for all thyroid hormones analyses in accordance with Architect system.

Maternal Thyroid Function
We abstracted maternal thyroid function during pregnancy from medical records. Maternal serum FT3, TSH, and TPOAb levels were screened during the first (≤13 weeks gestation), second (14–27 weeks), and third (≥28 weeks gestation) trimesters when participants underwent their routine prenatal care at the IMPC. During our study period, maternal serum FT4 and TSH in the first and the second trimester were measured by electrochemiluminescent microparticle immunoassays using the Architect system (Roche GMBH, Mannheim, Germany). FT4 and TSH in the third trimester as well as TPOAb were measured via chemiluminescent microparticle immunoassay using the Architect system (Abbott Laboratories, Abbott Park, IL, USA).

Diagnosis of gestational hyper/hypothyroidism was made by the treating obstetrician based on guidelines for diagnosing and treating thyroid diseases during and after pregnancy for the Chinese population (Endocrinology Branch of Chinese Medical Association 2012). The reference intervals were 12.91–22.35 pmol/L for FT4 and 0.05–5.17 mIU/L for TSH at the first trimester by Roche’s Architect system; 9.81–17.26 pmol/L for FT4 and 0.39–5.22 mIU/L for TSH at the second trimester by Roche’s Architect system. At the third trimester, the reference intervals of FT4 and TSH were 9.63–18.33 pmol/L and 0.28–5.07 mIU/L respectively by Abbott’s Architect system (Endocrinology Branch of Chinese Medical Association 2012). The normal clinical range of serum TPOAb by Abbott’s Architect system is below 5.61 IU/mL (Wang et al. 2013). All subjects accepted treatment after they were diagnosed with gestational hyperthyroidism or hypothyroidism or subclinical gestational hypothyroidism in our cohort. Therefore, we excluded these women in the final analysis to reduce bias.

Because the urinary samples for determining maternal TCS exposure levels were collected during gestational weeks 38.8 ± 1.1, we examined the TCS-associated changes of thyroid hormone levels at third trimester.

Statistical Analysis
Concentrations of urinary TCS and serum thyroid hormones below the LOD were replaced with values equal to the LOD divided by the square root of 2 (Li et al. 2013). Because TCS and thyroid hormone concentrations were not normally distributed, the data were log10-transformed for TCS, and natural log-transformed for thyroid hormone concentrations. We used urinary creatinine concentrations to correct urinary TCS concentrations:

\[
\text{Creatinine-corrected TCS} = \frac{\text{TCS (ng/mL)} / \left(\text{Cr (g/L)}\right)}{\text{Cr (g/L)}/\text{Cr (g/L)}}
\]

To compare maternal urinary trioclasin (TCS) concentration by characteristics of mothers and their infants, Student’s t-test and ANOVA F-test were used.

We also grouped the study participants into low, medium, and high tertiles based on their maternal urinary TCS levels. To examine associations between maternal urinary TCS levels and maternal and cord blood thyroid hormone levels, multiple linear regression models were performed for the continuous variable of thyroid hormone concentrations as a dependent variable, and multiple logistic regressions were used for binary outcome variables (positive vs. negative TPOAb). Model 1 was unadjusted; Model 2 was adjusted for potential confounders, which included maternal age, education level, passive smoking, parity, gestational age at delivery (for cord blood thyroid hormone measures as outcomes), or gestational age when maternal thyroid hormones
Maternal ages ranged from 22 to 42 years with a mean of 29.8 [standard deviation (SD) 3.4] years. The majority had a college education (n = 331, 83.2%) or a master degree or higher (n = 44, 11%), and a prepregnancy BMI between 18.5 and 24.99 kg/m² (n = 294, 73.9%). Only one participant smoked; however, 24.6% (n = 98) of women confirmed passive smoke exposure (i.e., husband smoking). Among all newborns, 54% (n = 215) were male and 46% (n = 183) were female. There were 1.5% (n = 6) of newborns born preterm (gestation age <37 weeks). Maternal urinary TCS levels did not differ by characteristics of mothers and newborns (Table 1).

Table 2 shows the distribution of maternal urine TCS, cord blood thyroid hormone, and maternal thyroid hormone concentration at the third trimester. TCS concentrations were ≥LOD (0.1 ng/mL) in 98.24% of maternal urine samples. Additionally, a high variability in the levels of TCS was observed between the participants, with TCS concentrations ranging between LOD–89.36 ng/mL and 0.04–427.38 μg/g Cr. This suggests a wide range of exposure doses and frequencies of TCS in this cohort. Maternal serum thyroid hormone levels were measured at 34.3 (SD, 1.2) gestational weeks at third trimester and were detectable in all women. The geometric mean (GM) of maternal serum FT₃ was 12.43 (SD1.36) pmol/L, and the GM of maternal serum TSH was 1.50 (0.77) mIU/L. FT₄ concentrations were ≥LOD (1.54 pmol/L) in 67.59% of cord blood samples, and FT₄ concentrations were ≥LOD (9.0 pmol/L) in 99.75% of cord blood samples. Their medians, distributions, percentiles, and ranges are described in Table 2.

Table 3 shows the associations between maternal urinary TCS concentrations (μg/g Cr) and cord blood FT₃, FT₄, and TSH levels. There were no significant associations between maternal urinary TCS concentrations and cord blood FT₃ or TSH concentrations. However, maternal urinary TCS exhibited a significant inverse association with cord blood FT₄ levels. Specifically, cord blood log(FT₄) concentration was 0.11 (95% CI: −0.18, −0.03) pmol/L lower in newborns of mothers with medium TCS levels compared with newborns of mothers with low TCS levels in multivariable regression models with adjustment for potential confounders (maternal age, education level, passive smoking, parity, gestational age, and prepregnancy BMI). These results were consistent when comparing high and low

Table 1. The characteristics of 398 mothers and their infants, and maternal urinary triclosan (TCS) concentration.

Characteristic	n	Log₁₀TCS/Cr (μg/g Cr)	p-Value
		mean ± SD	
Maternal age (years)			
<30	202	0.81 ± 0.71	0.13
30–35	172	0.71 ± 0.60	
≥35	24	0.97 ± 0.67	
Maternal education			
High School or lower	22	0.90 ± 0.55	0.53
College	331	0.77 ± 0.66	
Master’s degree or above	44	0.78 ± 0.74	
Prepregnancy BMI (kg/m²)			
<18.5	61	0.86 ± 0.65	0.49
18.5–24.9	294	0.76 ± 0.66	
≥25	43	0.82 ± 0.70	
Husband smoked during pregnancy			
No	295	0.77 ± 0.67	0.70
Yes	98	0.80 ± 0.64	
Gestational age (weeks)			
<37	6	0.77 ± 0.12	0.93
37–40	367	0.77 ± 0.67	
>40	26	0.83 ± 0.57	
Parity			
0	347	0.77 ± 0.67	0.81
≥1	51	0.80 ± 0.64	
Infant sex			
Male	215	0.79 ± 0.60	0.75
Female	183	0.77 ± 0.62	
Neonatal TPOAb			
Negative	364	0.78 ± 0.66	0.84
Positive	34	0.76 ± 0.71	
Maternal TPOAb			
Negative	357	0.78 ± 0.67	0.74
Positive	41	0.74 ± 0.62	

Note: TPOAb, thyroid peroxidase antibody. A TPOAb negative: <5.61 IU/mL. A TPOAb positive: ≥5.61 IU/mL.

were measured; Model 3 was additionally adjusted for prepregnancy body mass index (BMI) categories based on the World Health Organization classification (WHO 2000). Women were divided into three weight levels: normal weight defined as BMI of 18.5–24.99 kg/m², underweight as BMI of <18.5 kg/m², overweight and obese as BMI of ≥25 kg/m². We computed the percent changes of thyroid hormone concentrations for each 10-fold increase in maternal urinary TCS concentration by the following formula: $\beta = \log_{10} 1 \times 100$, where β = coefficient from the multiple regression models.

Table 2. The distribution of maternal urinary triclosan (TCS), cord blood thyroid hormone, and maternal serum thyroid hormone concentration at the third trimester.

Concentration	n	GM (95% CI)	25th	50th	75th	95th	Range
Maternal urine TCS measures							
TCS (ng/mL)	398	2.87 (2.47, 3.30)	1.06	2.52	7.69	37.85	LOD^−89.36
Creatinine (g/L)	398	0.48 (0.45, 0.51)	0.29	0.54	0.81	1.42	0.05−2.01
Creatinine-adjusted TCS (μg/g Cr)	398	6.00 (5.16, 6.96)	2.12	4.83	16.90	87.74	0.04−427.38
Cord blood thyroid hormones							
FT₃ (pmol/L)	391	1.61 (1.55, 1.65)	1.54	1.72	2.02	2.46	LOD^−3.73
FT₄ (pmol/L)	396	13.70 (13.57, 13.90)	12.90	13.78	14.68	16.25	LOD^−18.44
TSH (mIU/L)	396	5.49 (5.21, 5.75)	3.96	5.01	6.90	15.57	1.73−39.16
Maternal serum thyroid hormonec							
FT₃ (pmol/L)	370	12.43 (12.30, 12.55)	11.60	12.40	13.50	14.80	8.7−16.2
TSH (mIU/L)	370	1.50 (1.43, 1.58)	1.17	1.54	2.10	3.17	0.18−4.82

Note: FT₃, free triiodothyronine; FT₄, free thyroxine; GM, geometric mean; TSH, thyroid-stimulating hormone.

A TCS limit of detection (LOD) = 0.1 ng/mL. TCS concentrations were ≥LOD in 98.24% of maternal urine samples. A FT₃ LOD = 1.54 pmol/L. FT₃ concentrations were ≥LOD in 67.59% of cord blood samples. A FT₄ LOD = 9.0 pmol/L. FT₄ concentrations were ≥LOD in 99.75% of cord blood samples.

Among 398 subjects, maternal serum FT₃ and TSH concentration were able to be abstracted from medical records of 378 subjects. This information was missing in 20 subjects. FT₄ was not measured or recorded in medical records for all pregnant women.

All analyses were performed using the SAS 9.2 software (SAS Institute Inc., Cary, NC, USA). The level of significance was two-sided p-value ≤0.05.
The associations between maternal urinary triclosan (TCS) and cord blood FT3, FT4, and TSH levels among 398 mother-infant pairs.

Cord blood thyroid hormone levels

TCS concentration (μg/g Cr)	Cord blood FT3 (pmol/L)	p Value	Reference	Model 1	Model 2	Model 3
Province tertiles						
Low tertile (n=132)	0.55 ± 0.28	0.004	Reference	-0.11	-0.18	-0.20
Medium tertile (n=133)	0.45 ± 0.33	0.000	Reference	-0.11	-0.18	-0.20
High tertile (n=133)	0.43 ± 0.29	0.002	Reference	-0.11	-0.18	-0.20
Percent change in FT3						
Province tertiles						
Low tertile (n=132)	-0.06 ± 0.10	0.01	Reference	-0.06	-0.10	-0.10
Medium tertile (n=133)	-0.05 ± 0.16	0.02	Reference	-0.05	-0.10	-0.10
High tertile (n=133)	-0.08 ± 0.11	0.003	Reference	-0.08	-0.10	-0.10
Percent change in FT3						
Model 2: adjusted for maternal age, education, passive smoking, parity, gestational age at delivery.						
Model 3: further adjusted for prepregnancy BMI categories (<18.5 kg/m² and ≥25 kg/m²) and adjustment for potential confounders.						

Note: FT3, free triiodothyronine; FT4, free thyroxine; TSH, thyroid-stimulating hormone.

There was no previous study that examined this topic among pregnant women. Among nonpregnant population, previous studies yielded conflicting results on the association between TCS exposure and thyroid hormone levels. Two studies indicated that the use of TCS-containing toothpaste might not alter thyroid function in nonpregnant population. In one of the studies, there were no identified significant associations between exposure of TCS-containing toothpaste and thyroid hormone among 12 healthy adult volunteers (Allmyr et al. 2009). In the other study, among 132 cardiovascular patients with an average age of 62 years, no evidence of detected changes in blood thyroid hormone in TCS exposed individuals was found (Cullinan et al. 2012). For the first of the two studies, the findings could be due to the small sample size and short exposure duration; for the second study, the findings could be due to the lack of data on the use of other TCS products and objective measurements of plasma or urinary TCS concentrations among the participants. However, terlives: cord blood log(FT3) was 0.11 (95% CI: −0.19, −0.03) pmol/L lower in the high tertile (p = 0.004). There was no difference in cord blood log(FT3) levels between medium and high tertiles of TCS groups [adjusted mean difference: 0.01 (95% CI: −0.07, 0.08) pmol/L, p = 0.81]. Overall, each 10-fold increase in maternal urinary TCS was associated with decreased cord FT3 (percent change = −4.88%, 95% CI: −9.52, −0.20%) with adjustment for potential confounders.

Table 4 shows the associations between maternal urinary TCS concentrations (μg/g Cr) and maternal blood FT4 and TSH levels at third trimester. Maternal urinary TCS exhibited a significant inverse association with maternal blood FT4 and TSH. Specifically, high tertile of urinary TCS concentrations was associated with 0.03 lower in maternal log(FT3) pmol/L (95% CI −0.06, −0.006) in the adjusted model. With each 10-fold increase in maternal urinary TCS, maternal blood FT4 was 1.98% lower (95% CI: −3.92%, −0.10%) with adjustment for potential confounders. The medium tertile of maternal urinary TCS concentration was associated with 0.15 lower level of maternal blood log(TSH) mIU/L (95% CI: −0.28, −0.03) with adjustment for covariates at third trimester. However, when comparing high and low tertiles, the differences of maternal log(TSH) were not statistically significant (p > 0.05).

No statistically significant associations were observed between maternal TCS exposure and positive maternal or cord blood TPOAb (≥5.61 IU/mL) in any of our analyses (Table 5).

Discussion

Thyroid homeostasis undergoes significant physiologic changes during pregnancy, and therefore is potentially sensitive and vulnerable to environmental disruptors such as TCS exposure. Our study is the first to explore the relationship between prenatal TCS exposure and maternal and neonatal thyroid hormone levels in a birth cohort. We found evidence of inverse associations between maternal TCS exposure and maternal FT4 and neonatal FT3 levels. A medium maternal urinary TCS level was associated with lower maternal TSH concentrations at third trimester, but this relationship was not found in the high urinary TCS level group. No association was found between maternal TCS exposure and positive TPOAb in either maternal or cord blood.

Evidences from animal experiments suggest that TCS exposure have negative association with T3 (Crofton et al. 2007; Paul et al. 2010) and T3 (Paul et al. 2010) in rats, and reduced T3 in pregnant rats (Axelstad et al. 2013). In another study, plasma T3 and T4 levels were not affected by TCS exposure in Xenopus laevis (Fort et al. 2010). However, contrary to the Fort claims, others believed that they provided the evidence of thyroid axis disruption by TCS (Veldhoven et al. 2006).
The associations between maternal urinary triclosan (TCS) and maternal FT4 and TSH level at the third trimester among 378 pregnant women.

- Model 1: unadjusted model.
- Model 2: adjusted for maternal age, education, passive smoking, parity, gestational age at which maternal thyroid hormones were measured.
- Model 3: adjusted for maternal age, education, passive smoking, parity, gestational age at which maternal thyroid hormones were measured, and (low) blood TSH levels.

TCS (ng/mL)	Maternal FT4 (pmol/L)	Maternal FT3 (nmol/L)	Maternal TSH (mIU/L)
2.53 ± 0.11	3.7 ± 0.47	0.47 ± 0.79	0.49 ± 0.76
2.33 ± 0.10	3.5 ± 0.47	0.44 ± 0.79	0.47 ± 0.76
2.32 ± 0.11	3.6 ± 0.47	0.45 ± 0.79	0.48 ± 0.76

- Reference: TSH limit of detection (LOD) = 0.03 mIU/L.

- Percent change in TSH, FT4, and FT3 by increasing Maternal urinary TCS levels.

- In this study, a significant inverse association was found between maternal urinary TCS and cord blood FT3 as well as maternal blood FT4 concentrations at third trimester. Although how TCS disrupts thyroid hormones is still unclear, our findings are biologically plausible based on evidence from animal studies concluding that TCS had the potential to influence thyroid function by changing the activity of glucuroniltransferase in Phase II (the reaction of conjugations) in the liver (Schuur et al. 1998; Wang et al. 2004). The glucuronidation in Phase II is the key step for T4 inactivation. Therefore, the decreased T4 level may result from increased T4 clearance through activating enzymes. Another study suggests that TCS exposure leads to hypothyroxinemia via increased hepatic catabolism (Paul et al. 2010). However, we noted that TCS is a low efficient thyroid hormone disruptor that manifests mild effects on thyroid hormone metabolism. In addition, it is uncertain whether the mechanisms by which thyroid disruption occurs in rats are the same in humans.

- In terms of the inverse association between mature maternal urine TCS levels and maternal blood TSH concentrations, we speculate that a medium level of TCS may inhibit TSH secretion by acting as negative feedback to the hypothalamic-pituitary-thyroid axis based on the similar structure of TCS and T4. However, the inverse association for maternal blood TSH was not observed when comparing high and low maternal urine TCS levels. Due to the scarcity of relevant mechanism studies, the interpretation of these results needs to be unfolded with additional studies.

- As previously stated, TCS is a liposoluble substance, and can be detected in the umbilical cord blood of newborns with the serum concentration of TCS ranged from 0.5 to 5.0 ng/g (Peters 2005), which indicates that TCS can be transferred through the placenta from mothers to fetuses during pregnancy. The thyroid hormone alternations associated with TCS exposure differ between pregnant women and newborns in this study. Differences in metabolism, distribution kinetics, and other susceptibility factors between mother and fetus might contribute to another study revealed a negative association between urinary TCS and blood FT4 levels in obese women (Geens et al. 2015). In contrast, a positive association was observed between TCS and total T3 concentrations in adolescents from NHAHES data (Koeppe et al. 2013).

When comparing the geometric mean of this study to other studies, the TCS exposure of our cohort fell within the medium level. The geometric mean of maternal urinary TCS concentration was 2.87 ng/mL in this study, which was higher than previous studies of pregnant women in Norway (<2.3 ng/mL) (Bertelsen et al. 2014), and Denmark (<2.1 ng/mL) (Frederiksen et al. 2014), but lower than cohorts from Canada (12.64 ng/mL) (Arbuckle et al. 2015), the United States (13.8 ng/mL) (LaRocca et al. 2014), and the U.S. NHANES (17 ng/mL) (Woodruff et al. 2011).

Currently, there are no clinical normal ranges for cord serum levels of FT3, FT4, and TSH yet in China. The levels of cord blood thyroid hormone in this study were similar to what were reported in previous Chinese studies (Liang et al. 2002; Wang and Xu 2002). For example, one study demonstrated that the mean ± SD of cord serum FT3 was 2.06 ± 0.60 pmol/L, FT4 was 13.94 ± 2.65 pmol/L and TSH was 7.86 ± 3.81 mIU/L, respectively, by screening 1.121 newborns in China in 2001 using electrochemiluminescent microparticle immunoassays in the Beckman Architect system (Liang et al. 2002). In our study, the geometric mean of FT3 was 1.61 ± 0.35 pmol/L, FT4 was 13.70 ± 1.47 pmol/L and TSH was 5.49 ± 0.73 mIU/L measured by chemiluminescent microparticle immunoassay using the Architect system.
the results (Frederiksen 2001). It could also be due to differences in exposure levels of TCS between mother and fetus during gestation. In addition, the process of transferring thyroid hormones from mother to fetus might be another possible mechanism of the observed differences (Vulisma et al. 1989).

Our study has several advantages. First, a prospective birth cohort design was used to evaluate the association between maternal TCS exposure and thyroid hormone levels in newborns. Second, gestational thyroid disease diagnosis was based on integrated data during the whole pregnancy by professional physicians and an in-depth analysis after excluding women with gestational hyperthyroidism, hypothyroidism, or subclinical hypothyroidism was performed. Finally, due to the large range of maternal urinary TCS levels, this study from 398 mother–infant pairs afforded us decent power to detect small-scale associations.

Our study also has limitations. First, due to an observational and cross-sectional study for maternal thyroid hormone analysis, we cannot establish the causality. These findings need to be substantiated through further research. Second, we assessed urinary levels of TCS from the urine at a single time point late in pregnancy. However, a recent study evaluating the reliability of TCS measures in repeated urine samples from Norwegian pregnant women reported that the repeated measures of urinary TCS concentration (at 17, 23, and 29 weeks of gestation) on the same woman were correlated. The intraclass correlation coefficient (ICC) was 0.49, indicating moderate reproducibility (Bertelsen et al. 2014). Another recent study reported that a single spot urine sample can be used to accurately predict an individual’s overall geometric mean TCS concentration corresponding to low, medium, or high exposure. The overall prediction accuracy was 86.7% (Weiss et al. 2015). In our analysis, we have also categorized maternal TCS concentrations in tertiles. In addition, any misclassification of TCS exposure levels, if exist, is most likely to be nondifferential, which may have drawn the association results toward the null. Third, we did not collect the information on the use of personal care products, which would have been helpful in trying to ascertain routes of exposure and to potentially explain the wide range of TCS values. However, lack of this information has no impact on our key study objectives and conclusions. Finally, other confounders, which may affect thyroid hormone levels, were not measured, including iodine intake or urinary iodine concentrations and other environmental compounds. However, iodine is fortified in salt in China (Shi et al. 2015), and we excluded those women with thyroid disease before during pregnancy in this report. The results of this study were less likely to be biased by the iodine deficiency.

In summary, we observed a significant inverse association between maternal urinary TCS and cord blood FT3 as well as maternal blood FT4 and TSH concentrations at third trimester. Future study is needed to examine whether TCS exposure during perinatal period, a highly sensitive window, may profoundly affect child neurobehavioral development.

Acknowledgments
This study was supported by grants from the National Natural Science Foundation of China (81372954, 81673178, 81273091, 81102139). Z.L. was supported by the Shanghai Municipal Commission of Health and Family Planning Project (20124127).

References
Ahn KC, Zhao B, Chen J, Cherednichenko G, Sanmarti E, Denison MS, et al. 2008. In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: receptor-based bioassay screens. Environ Health Perspect 116:1203–1206, PMID: 18795164, https://doi.org/10.1289/ehp.11200.
Allmyr M, Panagiotidis G, Sparve E, Diczfalussy U, Sandborg-Englund G. 2009. Human exposure to triclosan via toothpaste does not change CYP3A4 activity or plasma concentrations of thyroid hormones. Basic Clin Pharmacol Toxicol 105:339–344, PMID: 19868543, https://doi.org/10.1111/j.1742-7843.2009.00456.x.
Arbuckle TE, Marro L, Davis K, Fisher M, Ayotte P, Bélanger P, et al. 2015. Exposure to free and conjugated forms of bisphenol A and triclosan among pregnant women in the MIREC cohort. Environ Health Perspect 123:277–281, doi:, PMID: 25494523, https://doi.org/10.1289/ehp.1408187.
Axelstad M, Boberg J, Vinggaard AM, Christiansen S, Hass U. 2013. Exposure to triclosan reduces thyroxine levels in pregnant and lactating rats and in directly exposed offspring. Food Chem Toxicol 50:129–134, PMID: 23973514, https://doi.org/10.1016/j.fct.2013.05.050.
Bertelsen RJ, Engell SM, Jusko TA, Calafat AM, Hoppin JA, London SJ, et al. 2014. Reliability of triclosan measures in repeated urine samples from pregnant newborns. J Expos Sci Environ Epidemiol 24:194–201, PMID: 24472755, https://doi.org/10.1038/jes.2013.95.
Chen M, Zhu P, Xu B, Zhao R, Giao S, Chen X, et al. 2012. Determination of nine environmental phenols in urine by ultra-high-performance liquid chromatography–tandem mass spectrometry. J Anal Toxicol 36:608–615, PMID: 22989423, https://doi.org/10.1093/jat/bks072.
Crofton KM, Paul KB, Devito MJ, Hedge JM. 2007. Short-term in vivo exposure to the water contaminant triclosan: evidence for disruption of thyroxine. Environ Toxicol Pharmacol 24:194–197, PMID: 21783810, https://doi.org/10.1016/j.etap.2007.04.008.
Cullinan MF, Palmer JE, Carle AD, West MJ, Seymour GJ. 2012. Long term use of triclosan toothpaste and thyroid function. Sci Total Environ 416:75–79, PMID: 22197412, https://doi.org/10.1016/j.scitotenv.2011.11.063.
Dann AB, Hontela A. 2011. Triclosan: environmental exposure, toxicity and mecha-
nisms of action. J Appl Toxicol 31:285–311, PMID: 21462230, https://doi.org/10.1002/jat.1660.
Fort DJ, Rogers RL, Gorschuk JW, Navarro LT, Peter R, Plautz JR. 2010. Triclosan and
anuran metamorphosis: no effect on thyroid-meditated metamorphosis in
 Xenopus laevis. Toxicol Sci 113:392–400, PMID: 19917620, https://doi.org/10.1093/toxsci/kfp280.
Frederiksen H, Jensen TK, Jørgensen N, Kyhl HB, Husby S, Skakkebæk NE, et al.
2014. Human urinary excretion of non-persistent environmental chemicals: an
overview of Danish data collected between 2008 and 2012. Reproduction
147:555–565, PMID: 24395915, https://doi.org/10.1530/REP-13-0522.
Frederiksen MC. 2001. Physiologic changes in pregnancy and their effect on
drug disposition. Semin Perinatol 25:120–123, PMID: 11453606.
Geens T, Diruc AT, Dirinck E, Malarvannan G, Van Gaal L, Jorens PG, et al.
2015. Daily intake of bisphenol A and triclosan and their association with anthropometric data,
thyroid hormones and weight loss in overweight and obese individuals. Environ Int
76:88–105, PMID: 25575039, https://doi.org/10.1016/j.envint.2014.12.003.
Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, et al. 1999.
Maternal thyroid deficiency during pregnancy and subsequent neuropsycholog-
ical development of the child. N Engl J Med 341:549–555, https://doi.org/10.1056/NEJM199908193410801.
Jones RD, Jampani HB, Newman JH, Lee AS. 2000. Triclosan: a review of effective-
ness and safety in health care settings. Am J Infect Control 28:184–196, PMID:
10760227.
Keepee ES, Ferguson KK, Colacino JA, Meeker JD. 2013. Relationship between uri-
nary triclosan and paraben concentrations and serum thyroid measures in
NHANES 2007–2008. Sci Total Environ 445-446:299–305, PMID: 23340023,
https://doi.org/10.1016/j.scitotenv.2012.12.052.
Krishnan K, Gagné M, Nong A, Aywald LL, Hays SM. 2010. Biomonitoring equiva-
 lents for triclosan. Regul Toxicol Pharmacol 58:10–17, PMID: 20541577.
LaRocca J, Binder AM, McElrath TF, Michels KB. 2014. The impact of first trimester
phthalate and phenol exposure on IGF2/H19 genomic imprinting and birth out-
comines. Environ Res 133:285–288, PMID: 24972507, https://doi.org/10.1016/j.
envres.2014.04.032.
Li X, Ying GG, Zhao JL, Chen ZF, Lai HJ, Su HC. 2013. 4-Nonylphenol, bisphenol-A
and triclosan levels in human urine of children and students in China, and the
effects of drinking these bottled materials on the levels. Environ Int 52:81–86,
PMID: 21794921, https://doi.org/10.1016/j.envint.2011.03.026.
Liang GX, Li YM, Zhang HK. 2002. Umbilical cord blood screening for thyroid
function. Clinical Medicine 23:27–28.
Morreale de Escobar G, Obrègon MJ, Escobar del Rey F. 2000. Is neurophysiologi-
cal development related to maternal hypothryroidism or to maternal hypothyroxi-
nemia? J Clin Endocrinol Metab 85:3975–3987, PMID: 11095417, https://doi.org/10.1210/jcem.85.11.8961.
Patel J, Landers K, Li H, Mortimer RH, Richard K. 2011. Delivery of maternal thyroid
hormones to the fetus. Trends Endocrinol Metab 22:164–170, PMID: 21414798,
https://doi.org/10.1016/j.tem.2011.02.002.
Paul KB, Hedge JM, DeVito MJ, Crofton KM. 2010. Short-term exposure to triclosan
decreases thyroxine in vivo via upregulation of hepatic catabolism in young
Long-Evans rats. Toxicol Sci 113:367–379, PMID: 19910387, https://doi.org/10.1093/toxsci/kfp271.
Perinatal Medicine Branch of Chinese Medical Association. 2012. The guideline of
thyroid diseases diagnosis and therapy during and after pregnancy. Chinese
Journal of Perinatal Medicine 15:385–403.
Peters RJB. 2005. Man-Made Chemicals in Maternal and Cord Blood. TNO Report
B&O-A R 2005/129, Amsterdam, Netherlands: Netherlands Organisation for
Applied Scientific Research.
Sarkhail P, Mehran L, Askari S, Tahmasebinjad Z, Tohidi M, Azizi F. 2016.
Maternal thyroid function and autoimmunity in 3 trimesters of pregnancy and
their offspring’s thyroid function. Horm Metab Res 48:20–26, PMID: 26566101,
https://doi.org/10.1055/s-0035-1555878.
Schuur AG, Legger FF, van Meeteren ME, Moonen MJ, van Leeuwen-Bol I, Bergman A, et al. 1998. In vitro inhibition of thyroid hormone sulfa-
 tion by hydroxylated metabolites of halogenated aromatic hydrocarbons. Chem Res
Toxicol 11:1075–1081, PMID: 9760292, https://doi.org/10.1021/tr9800049.
Shi X, Han C, Li C, Mao J, Wang W, Xie X, et al. 2015. Optimal and safe upper limits
of iodine intake for early pregnancy in iodine-sufficient regions: a cross-
 sectional study of 7190 pregnant women in China. J Clin Endocrinol Metab
100:1630–1638, PMID: 25629556, https://doi.org/10.1210/jc.2014-3704.
Veldhoen N, Skirow RC, Osachoff H, Wrigmore H, Clapson DJ, Gunderson MP,
et al. 2008. The bactericidal agent triclosan modulates thyroid hormone-
associated gene expression and disrupts postembryonic anuran development.
Aquat Toxicol 80:217–227, PMID: 17010155, https://doi.org/10.1016/j.aquatox.
2006.08.010.
Vulsma T, Gons MH, de Vlijder JJ. 1989. Maternal-fetal transfer of thyroxine in
genital hypothyroidism due to a total organization defect or thyroid agenesis. N Engl J Med
321:13–16, PMID: 2733742, https://doi.org/10.1056/NEJM198907063210103.
Wang HQ, Xu WL. 2002. Neonatal umbilical cord blood T3, T4, TSH, FT3 and FT4 level
and clinical significance. Chinese Journal of Laboratory Medicine 04:355.
Wang LD, Falany CN, James MO. 2004. Triclosan as a substrate and inhibitor of 3
phosphoadenosine 5-phosphosulfate-sulfotransferase and UDP-glucuronoyl
transferase in human liver fractions. Drug Metab Dispos 32:1162–1169, PMID:
15269185, https://doi.org/10.1124/dmd.104.000273.
Wang T, Lu J, Xu M, Xu Y, Li M, Liu Y, et al. 2013. Urinary bisphenol A concen-
tration and thyroid function in Chinese adults. Epidemiology 24:295–302, PMID:
23337242, https://doi.org/10.1097/EDE.0b013e318280e02f.
Weiss L, Arbuckle TE, Fisher M, Ramsay T, Mallick R, Hauser R, et al. 2015.
Temporal variability and sources of triclosan exposure in pregnancy. Int J Hyg
Environ Health 218:507–513, PMID: 26009209, https://doi.org/10.1016/j.
ijheh.2015.04.003.
Westgard JO, Barry PL, Hunt MR, Groth T. 1981. A multi-rule Shewhart chart for
quality control in clinical chemistry. Clin Chem 27:495–501, PMID: 7471403.
WHO (World Health Organization). 2000. Obesity: Preventing and Managing the
Global Epidemic. Report of a WHO Consultation. World Health Organization
Technical Report Series 894. Geneva, Switzerland: WHO.
Woodruff TJ, Zota AR, Schwartz JM. 2011. Environmental chemicals in pregnant
women in the United States: NHANES 2003–2004. Environ Health Perspect
119:878–885, https://doi.org/10.1289/ehp.1002727.