How study of naturally occurring ocular disease in animals improves ocular health globally

Brian C. Gilger, DVM, MS, DACVO, DABT*

Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC

*Corresponding author: Dr. Gilger (bgilger@ncsu.edu)
doi.org/10.2460/javma.22.08.0383

ABSTRACT
In this article, which is part of the Currents in One Health series, the role of naturally occurring ocular disease in animals is reviewed with emphasis on how the understanding of these ocular diseases contributes to one health initiatives, particularly the pathogenesis and treatment of ocular diseases common to animals and humans. Animals spontaneously develop ocular diseases that closely mimic those in humans, especially dry eye disease, herpes virus infection (cats), fungal keratitis (horses), bacterial keratoconjunctivitis, uveitis, and glaucoma. Both uveitis and glaucoma are common in domestic animals and humans, and many similarities exist in pathogenesis, genetics, and response to therapy. Furthermore, the study of inherited retinal disease in animals has particularly epitomized the one health concept, specifically the collaborative efforts of multiple disciplines working to attain optimal health for people and animals. Through this study of retinal disease in dogs, innovative therapies such as gene therapy have been developed. A unique opportunity exists to study ocular disease in shared environments to better understand the interplay between the environment, genetics, and ocular disease in both animals and humans. The companion Currents in One Health by Gilger, AJVR, December 2022, addresses in more detail recent studies of noninfectious immune-mediated animal ocular disease and their role in advancing ocular health globally.

Dry Eye Disease

Dry eye disease (DED) or keratoconjunctivitis sicca is very common in domestic animals, particularly dogs. DED is ocular surface inflammation resulting from a decrease in aqueous tear production or a reduction in other tear components (Figure 1). The normal tear film is critically important for ocular surface health, as it provides nutrition, lubrication, and immune homeostasis as a major component of the innate immune barrier of the eye. Without normal tears, chronic irritation and microbial overgrowth may occur due to a reduction of antibacterial peptides and IgA in the tears. Dog breeds such as the American Cocker Spaniel and West Highland White Terrier may have a high prevalence of DED that is > 5%. Humans also suffer from DED with an estimated prevalence of > 11% in patients over the age of 50. In dogs and humans, clinical signs of DED are similar and include conjunctival redness, mucoid discharge, and irritation with chronicity, corneal scarring, and vascularization. Decreased vision and eventually blindness may develop unless effective treatment is initiated. Although the cause of DED is multifactorial...
with substantial environmental influences (eg, lack of humidity, exposure to smoke), most DED cases in dogs and humans have an immune-mediated pathogenesis. Therefore, the study of DED in dogs is particularly important to generate new therapeutics. Over 30 years ago, Kaswan et al reported that topical ocular application of cyclosporine not only increased tear production in DED canines but also improved clinical signs associated with DED such as reduction of opacity, conjunctival hyperemia, and vascularization. These observations led to the global use of calcineurin inhibitors for the treatment of DED in dogs and humans (eg, the development of Restasis), and calcineurin inhibitors are now the leading treatment for DED in humans and dogs over the past 30 years.

More recently, Murphy et al demonstrated efficacy in DED dogs of topical lifitegrast, a novel immunosuppressive small-molecule pharmaceutical that antagonizes lymphocyte function–associated antigen-1. These findings translated to the approval of Xiidra in July 2016 in the US for the treatment of DED in humans. Further study of ocular surface inflammatory conditions and tear film in animals, primarily in dogs, including study of mucins and lipids, is being performed by several laboratories, including those headed by Drs. Sara Thomasy, Brian Leonard, and Lionel Sebbag.

Corneal Disease

The cornea, a clear external window into the eye, is a highly sensitive tissue complex composed of the external epithelium, middle stroma, and internal Descemet-endothelium layers. The cornea is also highly innervated, so injury or infection in this tissue can result in ocular pain. Animals spontaneously develop corneal inflammation and infections that closely mimic those in humans. Examples include corneal and conjunctival herpesvirus infection, which is particularly common in cats; fungal keratitis (horses); and bacterial keratoconjunctivitis, which may develop in all species. Studies of new methods to control these infections in animals may pave the way for new treatment paradigms in humans. Examples include the use of ocular photodynamic therapy, atmospheric plasma therapy, new antibacterials, antifungals, and antivirals.

Nonhealing superficial corneal ulceration has many synonyms in animals and humans, including indolent ulcers, recurrent erosions, and superficial chronic nonhealing corneal epithelial defects. These lesions are common in dogs, horses, and humans and have very similar clinical features, namely chronic superficial corneal ulcers with loss of epithelium, redundant nonhealing epithelial edges, and a lack of causative infectious agents (Figure 2).

Study of this naturally occurring disease in dogs has led to a better understanding of the pathogenesis and development of new therapeutic approaches, such as the use of topical substance P and use of new antibiotics, such as tetracyclines. It was found recently that a gene defect in NOG gene in Boxers may increase their susceptibility to developing chronic superficial ulceration. The NOG gene encodes for the noggin protein, which plays a role in the proliferation of limbal stem cells that are responsible for epithelialization of corneal defects. Further study is needed on the role of noggin protein deficiency and corneal ulceration in dog breeds other than Boxers and in humans.

Dogs also develop spontaneous corneal endothelial cell dystrophies and degenerations. The genetic origin of these diseases in dogs is poorly understood; however, many of these conditions are similar clinically to Fuchs dystrophy and other endothelial dystrophies in humans. Therapeutic interventions to improve endothelial function, such as the use of the rho kinase inhibitor netarsudil in dogs with spontaneous endothelial dysfunction, may also benefit...
humans with Fuchs dystrophy. Work from the laboratory of Drs. Sara Thomasy and Brian Leonard is at the forefront in translating these novel treatments of canine corneal diseases to humans.

Although very rare, dogs and cats have been diagnosed with mucopolysaccharidosis (MPS), or lysosomal storage diseases, which are genetic disorders resulting from a defect in the enzymes to degrade polysaccharides, resulting in tissue accumulation of these sugars and subsequent pathology. In addition to numerous systemic health abnormalities, including heart disease and orthopedic and neurologic changes, storage diseases (ie, MPS 1, IIIa, VI) may spontaneously develop ocular diseases, such as retinal degeneration, glaucoma, and corneal cloudiness (Figure 3). 

Naturally occurring MPS in dogs and cats have been instrumental in the understanding of pathogenesis of the disease and evaluating treatments, such as enzyme replacement therapy, hematopoietic bone marrow transplants, and gene therapy. Mucopolysaccharidoses I and VI cause blindness primarily through the development of corneal opacities, a result of the buildup of intra- and extracellular glycosaminoglycans. Recently, gene therapy to replace the missing α-L-iduronidase (IDUA) gene in MPS 1, or the arylsulfatase B (ARSB) gene in MPS VI, has been developed, and when delivered to the corneal stroma using an adeno-associated virus (AAV) vector, the corneal opacity rapidly clears. These promising therapies are being translated for treatment of these blinding disorders in humans.

Because of the anatomic similarity between animals’ corneas and humans, the study of naturally occurring infectious keratitis translates well to human diseases. Animals, including humans, share the propensity to develop infections after corneal injuries. Once infections develop, they induce severe inflammation, pain, and loss of vision. Study of pathogenesis of herpesvirus and fungal or bacterial keratitis is important to not only prevent blindness in animals but also provide an excellent one health opportunity to study the disease for humans. A great example is fungal keratitis, a disease that occurs in many animals, but the 2 most common species that are affected are horses and humans (Figure 4).

The pathogenic organisms (eg, Candida, Aspergillus, and Fusarium spp) are the most common causative pathogenic organisms in humans and horses. The study of disease pathogenesis, pathogenic organisms, and treatment of fungal keratitis translates between species. For example, a new antifungal, luliconazole, is effective against both equine and human fungal keratitis. Furthermore, advanced treatment of fungal keratitis, such as photodynamic therapy or cold atmospheric plasma treatment, is being evaluated in horses and humans fungal keratitis.

Uveitis

The uveal tract of the eye consists of the iris, ciliary body, and choroid. It is the vascular portion of the eye and is the primary site of the blood-ocular
and vitreal cellular infiltrates and inflammatory debris. Corneal opacity, hyperpigmented iris, cataract formation, species and, as can be seen in this horse, include diffuse (Figure 5).

Use of an AAV delivering equine IL-10 will be the first approved by the USDA, a clinical trial in horses of the therapies for uveitis in both horses and humans. Immunosuppressive gene therapies are in the preclinical evaluation stages and, if determined safe, may be effective therapies for uveitis in both horses and humans. If approved by the USDA, a clinical trial in horses of the use of an AAV delivering equine IL-10 will be the first of its kind in any animal for the long-term treatment of naturally occurring uveitis. These studies are reviewed in more detail in the companion Currents in One Health by Gilger, AJVR, December 2022.

Glaucoma

Glaucoma is associated with an elevated intraocular pressure that leads to vision loss by primarily damaging the retinal ganglion cells and optic nerve. Glaucoma is classified as primary or secondary to other ocular diseases such as uveitis. Primary glaucoma can be further divided into primary open-angle, primary closed-angle, and primary congenital glaucoma. Although several domestic animals develop glaucoma, it is very common in dogs. In fact, in some dog breeds such as the American Cocker Spaniel, it is particularly prevalent. Although there are some anatomical differences in drainage outflow in the canine eye compared with the human eye (such as no Schlemm’s canal in dogs), there are many similarities between the disease entities of primary canine and human glaucoma. Furthermore, many of the glaucoma treatments used in human medicine are effective in the dog, such as the use of topical prostaglandin analogs. Therefore, shared development of medications, glaucoma surgical procedures, and intracameral implants are mutually beneficial for canine and human patients. Human glaucomas are genetically heterogeneous, and multiple genetic loci have been identified. Recently, genetic associations with canine glaucoma have been determined, including those affecting ADAMTS10, ADAMTS17, myocilin, nebulin, COL1A2, RAB22A, and SRBD1. However, except for myocilin, there is very limited crossover in genetic biomarkers identified between human and canine glaucoma. This lack of known genetic similarities has not stopped the use of the canine glaucoma model to evaluate the efficacy and safety of antiglaucoma medication and devices, such as intraocular implants delivering prostaglandin analogs. Although these sustained-release intracameral implants (Figure 6) are not yet marketed for canine glaucoma, the safety and efficacy of intracameral implants in dogs have been demonstrated and may mark a substantial advance in the treatment of canine primary glaucoma.

Cataracts

Cataracts, or opacities of the lens of the eye, develop in most domestic species and can be a result of genetic defects or secondary to inflammation, trauma, or diabetes mellitus (Figure 7). Spontaneous, genetic, and diabetic cataracts are particularly common in dogs. The genetic basis of canine cataracts is being discovered; for example, juvenile cataracts in Wirehaired Pointing Griffon Dogs were shown to be associated with an FYCO1 frameshift deletion. Catarract surgery and intraocular lens placement are common surgeries performed by veterinary ophthalmologists. Surgical technique, instrumentation, and perioperative therapeutics are similar between human and canine patients. One particular area of one health-type research has been

Figure 5—Chronic uveitis. Signs of uveitis are similar across species and, as can be seen in this horse, include diffuse corneal opacity, hyperpigmented iris, cataract formation, and vitreal cellular infiltrates and inflammatory debris.
in the evaluation and prevention of posterior capsular opacity (PCO), a condition that results in development of opacity in the eye and decreased vision from lens epithelial regrowth and/or posterior lens capsule fibrosis after cataract surgery. Dogs develop a rapid and severe PCO after canine cataract surgery. Therefore, dogs (and their lens capsules) have been instrumental in the research of surgical technique, intraocular lens design, drug delivery, and postoperative therapeutics, such as the use of NSAIDS, to prevent the development of PCO in dogs and humans.

Retinal Disease

Study of inherited retinal disease in domestic animals has epitomized the one health concept, specifically the collaborative efforts of multiple disciplines working to attain optimal retinal health for people and animals. Study of inherited retinal degenerations, their genetic basis, and optimized therapies, such as gene therapy in dogs, has revolutionized treatment for these blinding conditions in humans. Work by Drs. Gus Aguirre and Greg Acland in the Briard dog with RPE65 deficient retinal degeneration, a naturally occurring model of Leber congenital amaurosis, paved the way for the development of the first gene therapy approved by the FDA (Luxturna) for treatment of retinal degeneration. Studies of genetic retinal disease in dogs that have human analogues are ongoing, and at least 16 different genetic mutations resulting in retinal degeneration in dogs have been identified (Figure 8). Through this work, innovative therapies to prevent retinal degeneration are being developed.

Conclusions

The study of the etiopathogenesis, pathophysiology, genetics, and treatment of naturally occurring ocular disease in veterinary patients, especially dogs, cats, and horses, translates well to human eye disease because of similarities of ocular anatomy, physiology, and shared environments between animals and humans. These similarities support the collaborative, multisectoral, and transdisciplinary approach that defines the one health initiative. Veterinarians at all levels, therefore, are at the forefront of the one health process through their study of ocular disease, whether it is in their practice, clinic, university hospital, or research laboratory. We all share the one health goal of achieving optimal ocular health for all by recognizing the interconnection between people, animals, and their shared environment.

Acknowledgments

No external funding was used in the development of this manuscript.
References

1. Rubin C, Myers T, Stokes W, et al. Review of Institute of Medicine and National Research Council recommendations for one health initiative. Emerg Infect Dis. 2013;19(12):1913–1917. doi:10.3201/eid1912.121659
2. King LJ, Anderson LR, Blackmore CG, et al. Executive summary of the AVMA One Health Initiative Task Force report. J Am Vet Med Assoc. 2008;233(2):259–261. doi:10.2460/jamava.233.2.259
3. CDC. One health. Reviewed September 13, 2022. Accessed September 16, 2022. https://www.cdc.gov/onehealth/
4. Periman LM, Perez VL, Saban DR, Lin MC, Neri P. The immunological basis of dry eye disease and current topical treatment options. J Ocul Pharmacol Ther. 2020;36(3):137–146. doi:10.1089/jopt.2019.0069
5. O’Neill DG, Brodbelt DC, Keddy A, Church DB, Sanchez RF. Keratoconjunctivitis sicca in dogs under primary veterinary care in the UK: an epidemiological study. J Small Anim Pract. 2021;62(8):636–645. doi:10.1111/j acad.13382
6. Dana R, Bradley JL, Guerin A, et al. Estimated prevalence and incidence of dry eye disease based on coding analysis of a large, all-age United States health care system. Am J Ophthalmol. 2019;202:47–54. doi:10.1016/j.ajo.2019.01.026
7. Gilger BC. Immune relevant models for ocular inflammatory diseases. ILAR J. 2018;59(3):352–362. doi:10.1093/ilar/ily022
8. Leonard BC, Stewart KA, Shaw GC, et al. Comprehensive clinical, diagnostic, and advanced imaging characterization of the ocular surface in spontaneous aqueous deficient dry eye disease in dogs. Cornea. 2019;38(12):1568–1575. doi:10.1097/ICO.0000000000002081
9. Kaswan RL, Salisbury M-A, Ward DA. Spontaneous canine keratoconjunctivitis sicca. A useful model for human keratoconjunctivitis sicca: treatment with cyclosporin A eye drops. Arch Ophthalmol. 1989;107(8):1210–1216. doi:10.1001/archopi.1989.01070020276038
10. Wilson SE, Perry HD. Long-term resolution of chronic dry eye symptoms and signs after topical cyclosporine treatment. Ophthalmology. 2007;114(1):76–79. doi:10.1016/j.ophtha.2006.05.077
11. Murphy CJ, Bentley E, Miller PE, et al. The pharmacologic assessment of a novel lymphocyte function-associated antigen-1 antagonist (SAR 1118) for the treatment of keratoconjunctivitis sicca in dogs. Invest Ophthalmol Vis Sci. 2011;52(6):3174–3180. doi:10.1167/iovs.09-40578
12. Ledbetter EC, Joslin AR, Sputrus CB, Badanes Z, Mohammed HO. In vivo confocal microscopic features of naturally acquired canine herpesvirus-1 and feline herpesvirus-1 dendritic and punctate ulcerative keratitis. Am J Vet Res. 2021;82(11):903–911. doi:10.2460/ajvr.82.11.903
13. Cullen M, Jacob ME, Cornish V, et al. Multi-locus DNA sequence analysis, antifungal agent susceptibility, and fungal keratitis outcome in horses from Southeastern United States. PLoS One. 2019;14(3):e0212414. doi:10.1371/journal.pone.0214214
14. Hewitt JS, Allbaugh RA, Kende DE, Sebag L. Prevalence and antibiotic susceptibility of bacterial isolates from dogs with ulcerative keratitis in Midwestern United States. Front Vet Sci. 2020;7:583965. doi:10.3389/fvets.2020.583965
15. Ledbetter EC, Badanes ZI, Chan RX, et al. Comparative efficacy of topical ophthalmal ganciclovir and oral fomivirsen in cats with experimental ocular feline herpesvirus-1 epithelial infection. J Ocul Pharmacol Ther. 2022;38(5):339–347. doi:10.1089/jop.2022.0001
16. Roberts D, Cotter HVT, Cubeta M, Gilger BC. In vitro susceptibility of Aspergillus and Fusarium associated with equine keratitis to new antifungal drugs. Vet Ophthalmol. 2020;23(5):918–922. doi:10.1111/vop.12774
17. Large TP, Mack S, Villiers E, Oliver J. In vitro susceptibility of canine corneal bacterial pathogens to three cross-linking protocols. Vet Ophthalmol. Published online June 17, 2022. doi:10.1111/vop.13006
18. Wu D, Smith SM, Stine JM, et al. Treatment of spontaneous chronic corneal epithelial defects (SCCEDs) with diamond burr debridement vs combination diamond burr debridement and superficial grid keratotomy. Vet Ophthalmol. 2018;21(6):622–631. doi:10.1111/vop.12556
19. Miller DD, Hasan SA, Simmons NL, Stewart MW. Recurrent corneal erosion: a comprehensive review. Clin Ophthalmol. 2019;13:325–335. doi:10.2147/OPH.S157430
20. Meurs KM, Montgomery K, Friedenberg SG, Williams B, Gilger BC. A defect in the NOG gene increases susceptibility to spontaneous superficial chronic corneal epithelial defects (SCCED) in Boxer dogs. BMC Vet Res. 2021;17(1):254. doi:10.1186/s12917-021-02955-1
21. Paley GL, Wagoner MD, Afshari NA, et al. Corneal wound healing, recurrent corneal erosions, and persistent epithelial defects. In: Albert and Jakobiec’s Principles and Practice of Ophthalmology. Springer; 2022:331–360. doi:10.1007/978-3-030-42634-7_22
22. Murphy CJ, Marfurt CF, McDermott A, et al. Spontaneous chronic corneal epithelial defects (SCCED) in dogs: clinical features, innervation, and effect of topical SP, with or without IGF-1. Invest Ophthalmol Vis Sci. 2001;42(10):2252–2261.
23. Bentley E, Abrams GA, Covitz D, et al. Morphology and immunohistochemistry of spontaneous chronic corneal epithelial defects (SCCED) in dogs. Invest Ophthalmol Vis Sci. 2001;42(10):2262–2269.
24. Thomasy SM, Cortes DE, Hoehn AL, Calderon AC, Li JY, Murphy CJ. In vivo imaging of corneal endothelial dystrophy in Boston Terriers: a spontaneous, canine model for Fuchs’ endothelial corneal dystrophy. Invest Ophthalmol Vis Sci. 2016;57(9):OCT495-OCT503. doi:10.1167/iovs.15-18885
25. Casanova MI, Echeverria N, Bowman MA, et al. Topical netarsulid for the treatment of canine corneal endothelial degeneration. Invest Ophthalmol Vis Sci. 2022;63(7):2748-A0237. 2022 ARVO Annual Meeting abstract.
26. Leonard BC, Kermanian CS, Michalak SR, et al. A retrospective study of corneal endothelial dystrophy in dogs (1991–2014). Cornea. 2021;40(5):578–585. doi:10.1097/ICO.0000000000002488
27. Ellinwood NM, Wang P, Sreen T, et al. A model of mucopolysaccharidosis IIIb (Sanfilippo syndrome type IIIb): N-acetylaspar-t-a-D-glucosaminidase deficiency in Schipperke dogs. J Inherit Metab Dis. 2003;26(5):499–504. doi:10.1016/S0165-2480(03)00743-8
28. Younglingam G, Pollard T, Sheron D, Jolly RD, Hopwood JJ. Identification of a mutation causing mucopolysaccharidosis type IIIA in New Zealand Huntaway dogs. Genomics. 2002;79(2):150–153. doi:10.1006/geno.2002.6699
29. Shull RM, Helman RG, Spellacy E, Constantopoulos G, Munger RJ, Neufeld EF. Morphologic and biochemical studies of canine mucopolysaccharidosis I. Am J Pathol. 1984;114(5):487–495. doi:10.21595/ajpath.1984
30. Haskins ME, Aguirre GD, Jezek PF, Desnick RJ, Patterson DF. The pathology of the feline model of mucopolysaccharidosis I. Am J Pathol. 1983, 112(1):27–36.
31. Haskins ME, Aguirre GD, Jezek PF, Patterson DF. The pathology of the feline model of mucopolysaccharidosis VI. Am J Pathol. 1980;101(3):657–674.
32. Newkirk KM, Atkins RM, Dickson PI, Rohrbach BW, McEntee MF. Ocular lesions in canine mucopolysaccharidosis I and response to enzyme replacement therapy. Invest Ophthalmol Vis Sci. 2011;52(8):5130–5135. doi:10.1167/iovs.10-6751

33. Aguirre G, Stramm L, Haskins M. Feline mucopolysaccharidosis VI: general ocular and pigment epithelial pathology. Invest Ophthalmol Vis Sci. 1983;24(8):991–1007.

34. Miyadera K, Konatzer L, Llanga TA, et al. Intrastromal gene therapy presents and reverses advanced corneal clouding in a canine model of mucopolysaccharidosis I. Mol Ther. 2020;28(6):1455–1463. doi:10.1016/j.ymthe.2020.04.004

35. Crabtree E, Gilger BC, Hirsch M, et al. Prevention of experimental autoimmune uveitis through topical suppressor of cytokine signaling-1 mimetic peptide. Invest Ophthalmol Vis Sci. 2008;49(10):4133–4138. doi:10.1167/iovs.07-1925

36. Lowder C, Belfort R Jr, Lightman S, et al; Ozurdex HURON Study Group. Dexamethasone intravitreal implant for noninfectious intermediate or posterior uveitis. Arch Ophthalmol. 2011;129(5):545–553. doi:10.1001/archophthalmol.2010.339

37. Plummer CE, Polk T, Sharma J, et al. Open label safety and efficacy pilot to study mitigation of equine recurrent uveitis through topical suppressor of cytokine signaling-1 mimetic peptide. Sci Rep. 2022;12(1):7177. doi:10.1038/s41598-022-11338-x

38. Crabtree E, Gilger BC, Hirsch M, et al. Prevention of experimental autoimmune uveitis by intravitreal AAV-EqIL-10. Invest Ophthalmol Vis Sci. 2021;62(8):994. 2021 ARVO Annual Meeting abstract.

39. Crabtree E, Uribe K, Smith S, et al. Prevention of experimental autoimmune uveitis by intravitreal AAV-EqIL-10. PLoS One. 2022;17:in press.

40. Komáromy AM, Bras D, Esson DW, et al. The future of canine glaucoma therapy. Vet Ophthalmol. 2019;22(5):726–740. doi:10.1111/vop.12678

41. Park SA, Komáromy AM. Biomechanics of the optic nerve head and sclera in canine glaucoma: a brief review. Vet Ophthalmol. 2021;24(4):316–325. doi:10.1111/vop.12923

42. Yun S, Lee D, Kang S, et al. Proteomic analysis of aqueous humor in canine primary angle-closure glaucoma in American Cocker Spaniel dogs. Vet Ophthalmol. 2021;24(5):520–532. doi:10.1111/vop.12937

43. Samuelson D, Streit A. Microanatomy of the anterior uveoscleral outflow pathway in normal and primary open-angle glaucomatous dogs. Vet Ophthalmol. 2012;15(suppl 1):47–53. doi:10.1111/j.1463-5224.2011.00943.x

44. McLeinan GJ, Telle MR, Nilles J, et al. Imaging post-trabecular outflow pathways in spontaneous canine glaucoma. Invest Ophthalmol Vis Sci. 2019;60(9):3184. 2019 ARVO Annual Meeting abstract.

45. Choquet H, Wiggs JL, Khawaja AP. Clinical implications of recent advances in primary open-angle glaucoma genetics. Eye (Lond). 2020;34(1):29–39. doi:10.1038/s41433-019-0632-7

46. Balikov DA, Jacobson A, Prosov L. Glaucoma syndromes: insights into glaucoma genetics and pathogenesis from monogenic syndromic disorders. Genes (Basel). 2021;12(9):1403. doi:10.3390/genes12091403

47. Pugh CA, Farrell LL, Carlisle AJ, et al. Arginine to glutamine variant in olfactomedin like 3 (OLFML3) is a candidate for severe goniodysgenesis and glaucoma in the Border Collie dog breed. Vet Ophthalmol. 2019;22(5):943–954. doi:10.1111/vop.12923

48. Oliver JAC, Wright H, Massida PA, Burmeister LM, Mellers CS. A variant in OLFML3 is associated with punctate lgment abnormality and primary closed-angle glaucoma in Border Collies from the United Kingdom. Vet Ophthalmol. 2020;23(1):25–36. doi:10.1111/vop.12680

49. Komáromy AM, Koshi KL, Park SA. Looking into the future: gene and cell therapies for glaucoma. Vet Ophthalmol. 2021;24(suppl 1):16–33. doi:10.1111/vop.12858

50. Ghosh C, Rajagopalan L, Ugarte S, et al. Intracocular pressure-lowering efficacy of a sustained-release bimatoprost implant in dog eyes pretreated with selective laser trabeculoplasty. J Ocul Pharmacol Ther. 2022;38(4):311–318. doi:10.1089/jop.2021.0104

51. Miller PE, Eaton JS. Medical anti-glaucoma therapy: beyond the drop. Vet Ophthalmol. 2021;24(suppl 1):2–15. doi:10.1111/vop.12843

52. Lee SS, Dibas M, Almazan A, Robinson MR. Dose-response of intracameral bimatoprost sustained-release implant and topical bimatoprost in lowering intraocular pressure. J Ocul Pharmacol Ther. 2019;35(3):138–144. doi:10.1089/jop.2018.jop.00985

53. Rudd Garces G, Christen M, Loechel R, Jagannathan V, Leeb-Traub T. FYCO1 framseshed deletion in Wirehaired Pointing Griffon Dogs with juvenile cataract. Genes (Basel). 2022;13(2):334. doi:10.3390/genes13020334

54. Wormstone IM, Wormstone YM, Smith AJO, Eldred JA. Posterior capsule opacification: what’s in the bag? Prog Retin Eye Res. 2021;82:100905. doi:10.1016/j.preteyeres.2020.100905

55. Bras ID, Colitz CM, Saville WJ, Gemensky-Metzler AJ, Wilkie DA. Posterior capsular opacification in diabetic and nondiabetic canine patients following cataract surgery. Vet Ophthalmol. 2006;9(5):317–327. doi:10.1111/j.1465-5224.2006.00458.x

56. Wormstone IM, Eldred JA. Experimental models for posterior capsule opacification research. Exp Eye Res. 2016;142:2–12. doi:10.1016/j.exer.2015.04.021

57. Chandler HL, Barden CA, Lu P, Kusewitt DF, Colitz CM. Prevention of posterior capsular opacification through cyclooxygenase-2 inhibition. Mol Vis. 2007;13:677–691.

58. Beltran WA. Use of canine models of inherited retinal degeneration to test novel therapeutic approaches. Vet Ophthalmol. 2009;12(3):192–204. doi:10.1111/j.1463-5224.2009.00694.x

59. Acland GM, Aguirre GD, Bennett J, et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther. 2005;12(6):1072–1082. doi:10.1016/j.ymthe.2005.08.008

60. Bunel M, Chaudieu G, Hamel C, et al. Natural models for retinitis pigmentosa: progressive retinal atrophy in dog breeds. Hum Genet. 2019;138(5):441–453. doi:10.1007/s00439-019-01999-6