DIABETOGENIC EFFECT OF STATINS: MOLECULAR MECHANISMS

Nuray Arı
Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara Turkey.

ABSTRACT
Statins, HMG CoA inhibitors, are potent hypolipidemic drugs. They are used for the prevention of cardiovascular diseases and some of the most commonly used drugs worldwide. Long-term statin therapy can cause a modest increase in new-onset diabetes risk, and there is great interest in the mechanisms for this adverse effect. Main proposed mechanisms are increased insulin resistance and some defects in insulin secretion. Many factors can affect the risk including pre-existing diabetic risk, older age and potency of statin. But clearly, the benefits of these drugs in preventing cardiovascular disease outweigh the potential risk of diabetes. The aim of this review is to give underlying pathomechanisms and clinical relevance of diabetogenic effect of statins.

Keywords: adverse effect, diabetogenicity, mechanism, risk, statins.

INTRODUCTION
Cardiovascular disease (CVD) is an important cause of mortality, and hypercholesterolemia is the major CVD risk factor. Statins (HMGCoA) reductase inhibitors were first approved by the FDA in 1987 and they are still the first-choice drugs for their potent hypcholesterolemic properties. Since then statins have become the most prescribed drugs worldwide. They have also pleiotropic effects facilitating cardioprotective properties including benefits on endothelial function, decreasing inflammation and atherosclerotic plaque stabilization. Other pleiotropic mechanisms of statins are improvement of bone diseases and central nervous system diseases. On the other hand, despite well-known clinical benefit of statins on CV prevention, their possible adverse effects cannot be disregarded. In addition increased in liver enzymes and development of myopathy, clinical trials show an increase in new-onset diabetes mellitus (NODM) by statin therapy, especially in the presence of diabetic risk factors, such as insulin resistance with impaired glucose control, obesity, metabolic syndrome, Asian ancestry, woman, elderly people, lower LDL (low density lipoprotein)-C levels, or large LDL-C reduction. Data suggest a 10-22% increased risk of NODM comparing to nonusers. The risk increases with intensive treatment. While this is a drug class effect, recent data suggest that pravastatin and pitavastatin have no or week effects on glucose homeostasis. Type 2 diabetes mellitus (T2DM) is a major risk factor for CV outcomes. Statins are recommended and prescribed to diabetic patients to prevent CV complications. The consensus of their benefits on CV risk reduction is more important than their adverse diabetogenic effect. Currently, on the market there are seven statin drugs: Atorvastatin, pitavastatin, simvastatin fluvastatin, rosuvastatin, lovastatin and pravastatin. When they are classified, pravastatin and rosuvastatin are hydrophilic; atorvastatin, fluvastatin, lovastatin, pitavastatin and simvastatin are lipophilic statins. NODM risk was observed first in the JUPITER trial in 2008. Then greater attention has been given to this issue, and by the time the risk has been supported by many trials. In JUPITER study the risk was found to be increased with high statin doses and there were no new NODM cases among patients with no diabetes risk factors at baseline. After the FDA evaluation, in March 2012, NODM risk warning was inserted to all statin packages. The risk is limited to people with diabetes risk factors. According to data, the risk of diabetes-induced complications, such as microvascular complications are not increased by statins.

Available online on 15.07.2021 at http://ujpr.org
Universal Journal of Pharmaceutical Research
An International Peer Reviewed Journal
Open access to Pharmaceutical research
This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial Share Alike 4.0 License which permits unrestricted non commercial use, provided the original work is properly cited
Volume 6, Issue 3, 2021
The risk of NODM by different statins are arguable. Dormuth et al.,29 reported that higher potency statins can cause moderate risk increase compared with lower potency statins. It appears the risk is in parallel with their HMGCoA reductase inhibition capacity. It was suggested that lipophilic statins are more diabetogenic than the hydrophilic ones.9,29,31. But recent clinical data have indicated that there is no difference between them regarding the risk of NODM32. Thus we need more data to determine potential differences among statins. Recent evidence suggests that pravastatin has week diabetogenic effect.33 In a new cohort study, with moderate-intensity therapy, rosuvastatin was found to be less diabetogenic than pitavastatin.32

Molecular mechanisms
Diabetogenic effect of statins reflect inhibition of HMGCoA reductase. Statins decrease synthesis of mevalonate products causing to impaired pancreatic β-cell function, but the exact mechanism(s) of diabetogenesis are still unclear.13 It seems some defects on insulin release mechanisms are the major contributors to statin-induced diabetes.14,34,35. Several molecular mechanisms have been argued in the literature: Statins can disturb insulin secretion affecting calcium channels in the β-cells; They downregulate GLUT4 (glucose transporter) resulting hyperglycemia; they decrease some downstream products, such as coenzyme Q10, farnesyl and geranylgeranyl pyrophosphates. Depletion of these important products disturbs intracellular signalling. Other mechanisms are inhibition of adipocyte differentiation, modulation of leptin and adiponectin. Genetic links and epigenetic regulations via differential expression of specific micro RNAs have also roles.14,12,32,36.

Pancreatic β-Cells and L-type Ca2+ channels
In the pancreatic β-cells, voltage gated Ca2+ (CaV; L-type ) channels play an important role in insulin release. Dysregulation of these channels impair glucose homeostasis.8. It is suggested that long-term cholesterol synthesis may disrupt the channel function together with insulin vesicle mobilization.37 There is no clear mechanism proposed for this phenomena, however these effects may be due to conformational changes of the membrane and channel subunits.38,39,40 On the other hand, statins have beneficial pleiotropic effects on the CV system by activating ATP-dependent potassium channels in the CV tissue. However, opening of these channels in the pancreatic β-cells causes inhibition of insulin secretion and this may lead to NODM.38

Glucose transporters and caveolin
Statins can inhibit both calcium channel and glucose transporter 2 (GLUT2, predominant isofrom in β-cells) protein expressions resulting disruption of insulin synthesis and release. GLUT2, KATP and CaV channel-mediated signalling chain is an important for insulin biosynthesis and release. On the other hand, HMG CoA reductase inhibition disrupts synthesis of isoprenoids, then the expression of GLUT4 is inhibited and causes impairment of glucose uptake. Caveolin-1 is an important protein which is localized in caveolae-rich regions where GLUT4 is translocated by insulin.42 Khan et al.,38 observed that simvastatin treatment in mice, caveolar vesicle docking is inhibited. Takaguri et al.,40 also reported an alteration of GLUT4 translocation and reduced level after atorvastatin, but not pravastatin. Shortly, statins may disrupt translocation of GLUT4 in muscle, liver and adipose tissue, leading reduced glucose uptake, increased insulin resistance and hyperglycemia.14

Insulin Signalling
Statin treatment may disturb insulin transduction cascade and can lead to insulin resistance.14 Statins may alters phosphorylation steps and small G proteins.7,8 RhoA and Rab4, small G proteins, have roles in the insulin signal cascade. Rab4 is a critical protein for glucose transport. It has been reported that GLUT4 expression was reduced because of decreased Rab4 function in adipocytes after atorvastatin.40

Ubiquinone, adiponectin and leptin
Evidence indicate the role of ubiquinone (CoQ10), adiponectin and leptin on glucose metabolism. Statins may affect glucose homeostasis via CoQ10, adiponectin and leptin.12,30 CoQ10 have a role in the regulation of mitochondrial function, which is important for pancreatic β-cells. Statins may induce myopathy by reducing CoQ10 production, however it is not well known yet whether there is a link between risk of insulin resistance or increased risk of NODM. In adipocytes CoQ10 can reverse the reduction of GLUT4 induced by simvastatin.41 Experimental data indicate that CoQ10 improves pancreatic β-cell function, insulin sensitivity and mitochondrial function.42 We need more research about supplementation of CoQ10 to protect development of NODM during statin therapy. Reduced adiponectin levels may associate with obesity, insulin resistance and diabetes. Some results indicate that adiponectin can decrease insulin resistance12,38. Statin trials have been shown a decrease, increase, or no change in adiponectin levels.35 Hydrophilic statins have generally been shown to increase adiponectin levels. Pitavastatin in some studies, improves insulin sensitivity and it has consistently been shown to increase adiponectin levels12,35. It is not clear whether lipophilic and hydrophilic statins have differential effect on adiponectin levels. Leptin, satietly factor, has been shown to be decreased by atorvastatin, rosuvastatin and simvastatin, but not by pravastatin or pitavastatin, in clinical studies.32,43 Statins may increase food intake and weight gain in the long term. This may associate with decreases in leptin expression, but the results are still conflicting.43

Inflammation
Inflammation can promote insulin resistance and/or diabetes.24 Statins generally exert anti-inflammatory effects mainly by their pleiotropic effects. Statin use reduces C-reactive protein and may decrease the risk of myocardial infarction.12 They also reduce many inflammatory events, such as changing cytokine profiles. They reduce tumor necrosis factor (TNF) and interleukin (IL)-6 (pro-inflammatory cytokines). But, conversely, they can increase IL-1β (pro-inflammatory cytokine), by reducing prenylation of proteins. According to the “inflammatory hypothesis of statins” they exert pro-inflammatory effects in dysmetabolic states by activating of some inflammasomes leading
IL-mediated insulin resistance. This concept requires more study. Genetic link 
HMG CoA reductase single nucleotide polymorphisms (SNPs) can lead to a small increase in the risk of NODM A study (Mendelian) showed this association between genetic variation in the HMG CoA reductase gene (rs17238484 and rs12916 alleles) and increased risk of NODM by statin treatment. On the other hand, epigenetic changes can explain NODM risk such as, miRNA regulation, and DNA methylation (DNAm), particularly at genes for lipid or insulin regulation. A recent epigenome-wide association study has investigated the association between statin use and changes in DNAm at sites in CpGs genome and found an evidence on DNAm partially mediating statins’ effects.

Increased hepatic gluconeogenesis is an important mechanism for statin-induced NODM. However, the exact mechanism(s) is not clear. Aging is a strong risk factor for NODM and aging associated molecules may have roles on the development of NODM in statin use. It has been reported that aging related molecule Sirt6 may repress gluconeogenesis, In a recent study, simvastatin has been shown to induce miR-495 (a novel inhibitor of Sirt6) and down regulate Sirt6 expression in mice liver. Hence, this leads gluconeogenesis in the liver. Further, mRNA levels of Pck1, G6pc, and Pparg1, as a gluconeogenesis genes, was found to increased in the liver of statin treated mice. Thus, it is suggested that Sirt6 activation may be a good strategy to prevent NODM.

DISCUSSION AND CONCLUSION

After the JUPITER study, potential mechanisms involving on statin-induced NODM has been searched intensively. It seems a multiple mechanisms are involved in this adverse effect. Potentiating insulin resistance (increased hepatic gluconeogenesis, inhibition of GLUT4 translocation) or decreased insulin release (β-cell dysfunction) have been proposed as major mechanisms. There is also genetic link and intense research is going at the molecular level. Statin type (potency, dose), patient characteristics (cardiovascular risk, age) and the pre-diabetic state are possible determining factors. Statins are associated with a modest increase in the risk (about one per thousand patient-years) and their benefits in preventing CVD outweigh the risk of NODM. It is important that before starting therapy the risk of NODM should be determined.

During therapy, patients should be monitored for glycemic control. Lifestyle changes and controlled diet are important to reduce the risk. Moderate-intensive statin therapy is less diabetogenic than intensive therapy. If diabetes develops, it should be managed according to the guidelines. Statins are recommended diabetic patients since they benefit from therapy regarding to CV risk. In chronic diabetic patients, the effect of statins on glycemic control is small and may be clinically not important. It is not recommended to stop the statin therapy in patients with NOD since statins have important effect in reducing CV risk. On the other hand, statins may have fewer benefits in elderly people because of they have a short life expectancy and comorbidities. Thus, the benefits and disadvantages of statins should be evaluated carefully in elderly individuals.

REFERENCES

1. Brault M, Ray J, Gomez YH, Mantzoros CS, Daskalopoulou SS. Statin treatment and new-onset diabetes: a review of proposed mechanisms. Metabolism 2014; 63: 735–745. https://doi.org/10.1016/j.metabol.2014.02.014
2. Anyanwugua U, Idiris I, Donnelly R. Drug-induced diabetes mellitus: Evidence for statins and other drugs affecting glucose metabolism. Clin Pharmacol Ther 2016; 99(4): 390-400. https://doi.org/10.1002/cpt.274
3. Ramkumar S, Raghunath A, Raghunath S. Statin therapy: Review of safety and potential side effects. Acta Cardiol Sin 2016; 32(6): 631-639. https://doi.org/10.6515/ac20160611a
4. Cumaoğlu A, Ozsoy G, Iätz AM, Arıçoglu A, Karasu C, Arı N. Effect of long term, non cholesterol lowering dose of fluvastatin treatment on oxidative stress in brain and peripheral tissues of streptozotocin-diabetic rats. Eur J Pharmacol 2011; 654(1): 80-5. https://doi.org/10.1016/j.ejphar.2010.11.035
5. Davignton J. Beneficial cardiovascular pleiotropic effects of statins. Circulation 2004; 109(23 Suppl 1): III93-43
6. Kavalipati N, Shah I, Ramakrishan A, Vasnavala H. Pleiotropic effects of statins. Indian J Endocrinol Metab 2015; 19(5): 554-62. https://doi.org/10.4103/2230-8210.163106
7. Muscogiuri G, Sarno G, Gaetaldelli A, et al. The good and bad effects of statins on insulin sensitivity and secretion. Endocr Res 2014; 39(4): 137-43. https://doi.org/10.3109/07435800.2014.952018
8. Oesterle A, Laufs U, Liao JK. Pleiotropic effects of statins on the cardiovascular system. Circ Res 2017; 120(1): 229-243. https://doi.org/10.1161/CIRCRESAHA.116.308537
9. Núñez-Cortés JM, Amenós AC, Gimilio JFA, et al. Consensus on the statin choice in patients with impaired glucose metabolism: Results of the DIANA Study. Am J Cardiovasc Drugs 2017; 17(2): 135-142. https://doi.org/10.1007/s40256-016-0197-9
10. Cybulska B, Klosiewicz-Latoszek L. How do we know that statins are diabetogenic, and why? Is it an important issue in the clinical practice? Kardiol Pol 2018; 76(8): 1217-1223. https://doi.org/10.5603/KP.a2018.0150
11. Pinal-Camarena I, Casal-Dominguez M, Mammena AL. Statins: pros and cons. Med Clin (Barc) 2018; 150(10): 398-402. https://doi.org/10.1016/j.medcli.2017.11.030
12. Chan DC, Pang J, Watts GF. Pathogenesis and management of the diabetogenic effect of statins: a role for adiponectin and coenzyme Q10? Curr Atheroscler Rep 2015; 17(1): 472. https://doi.org/10.1007/s11883-014-0472-7
13. Carmena R, Betteridge DJ. Diabetogenic action of mechanisms. Curr Atheroscler Rep 2019; 21(6): 23. https://doi.org/10.1007/s11883-019-0780-0
14. Galicia-García U, Jebari S, Larrea-Sebal A, et al. Statin treatment-induced development of Type 2 diabetes: From clinical evidence to mechanistic insights. Int J Mol Sci 2020;21(13):4725. https://doi.org/10.3390/ijms21134725
15. Ray K. Statin diabetogenicity: guidance for clinicians. Cardiovasc Diabetol 2013; 12(Suppl 1): S1
16. Chogut B, Magazine R, Bairy KL. Statin use and risk of diabetes mellitus. World J Diabetes 2015; 6(2): 352-7. https://doi.org/10.4239/wjd.v6.i2.352
17. Ridker PM. The JUPITER Trial. Results, controversies, and implications for prevention. Circulation: Cardiovascular Quality and Outcomes. 2009; (2):279–285. https://doi.org/10.1161/CIRCOUTCOMES.109.868299
18. Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008; 359(21):2195-207. https://doi.org/10.1056/NEJMoa0807640

19. Beneke R, Bajmócz S, Dachs JH. The risk of hepatotoxicity, new onset diabetes and rhabdomyolysis in the era of high-intensity statintherapy: Does statin type matter? Progress in Cardiovasc Dis 2016; 59:145-152. https://doi.org/10.1016/j.pcad.2016.08.001

20. Culver AL, Ockenie IS, Balasubramanian R, et al. Statin use and risk of diabetes mellitus in postmenopausal women in the Women’s Health Initiative. Arch Intern Med 2012; 172; 144-152 https://doi.org/10.1001/archinternmed.2011.625

21. Sattar N, Taskinen MR. Statins are diabetogenic–myth or reality? Atheroscler Suppl 2012; 13(1):1-10. https://doi.org/10.1016/j.atherosclerosissup.2012.06.001

22. Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative metaanalysis of randomised statin trials. Lancet 2010; 375:735-42. https://doi.org/10.1016/S0140-6736(09)61965-6

23. Thompson PD, Panza G, Zaleski A, Taylor B. Statin-associated side effects. J Am Coll Cardiol 2016; 24: 67(20):2395-2410. https://doi.org/10.1016/j.jacc.2016.02.071

24. Ridker PM, Pradhan A, Miao F, Davidson J, Libby P, Glynis RJ. Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial. Lancet 2012; 380:565-71. https://doi.org/10.1016/S0140-6736(12)61990-8

25. U.S. Food and Drug Administration. FDA drug safety communication: important safety label changes to cholesterol-lowering statin drugs. FDA Drug Safety Communication.

26. Bell DSH, Di Nicolantonio JJ, O’Keefe JH. Is lowering statin drugs. FDA Drug Safety Communication.

27. Chryssant SG. New onset diabetes mellitus induced by statins: Current evidence. Postgraduate Medicine 2017; 129(4):430-435. https://doi.org/10.1080/00325481.2017.1292107

28. Wallenmaq C. Statins and new-onset diabetes: Benefit-risk balance. Rev Med Suisse 2019; 15 (659): 1454-1457.

29. Dorrnuth CR, Filion KB, Paterson JM, et al. Higher potency statins and the risk of new diabetes: Multicentre, observational study of administrative databases. BMJ 2014; 348:g2344. https://doi.org/10.1136/bmj.g2344

30. Agouridis AP, Kostapanos MS, Elisaf MS. Statins and the diabetogenic action of statins: Current evidence. Postgraduate Medicine 2017; 129(4): 430-435. https://doi.org/10.1080/00325481.2017.1292107

31. Chryssant SG. New onset diabetes mellitus induced by statins: Current evidence. Postgraduate Medicine 2017; 129(4):430-435. https://doi.org/10.1080/00325481.2017.1292107

32. Guenther SJ, Rahme E, Lasheen A. Use of continuous exposure variables when examining dose-dependent pharmacological effects - Application to the association between exposure to higher statin doses and the incidence of diabetes. J Popul Ther Clin Pharmacol 2017; 24(1):5-15. https://doi.org/10.22374/1701-6222.24.1.1

33. Liu WT, Lin C, Tsai MC, et al. Effects of pitavastatin, atorvastatin and rosuvastatin on the risk of new-onset diabetes mellitus: A single-center cohort study. Biomedicines 2020; 8:499. https://doi.org/10.3390/biomedicines8110499

34. Laasko M, Kuusisto J. Diabetes secondary to treatment with statins. Curr Diab Rep 2017; 17(2):10. https://doi.org/10.1007/s11892-017-0837-8

35. Robinson JG. Statins and diabetes risk: how real is it and what are the mechanisms? Curr Opin Lipidol. 2015; 26(3):228-35. https://doi.org/10.1097/MOL.0000000000000172

36. Paseban M, Butler AE, Davidson J. Mechanisms of statin-induced new-onset diabetes. J Cell Physiol 2019; 234: 12551-12561. https://doi.org/10.1002/jcp.28123

37. Xia F, Xie L, Mihic A, et al. Inhibition of cholesterol biosynthesis impairs insulin secretion and voltage-gated calcium channel function in pancreatic beta-cells. Endocrinol 2008; 149: 5136–45. https://doi.org/10.1210/en.2008-080161

38. Sehra D, Sehra S, Sehra ST. Cardiovascular pleiotropic effects of statins and new onset diabetes: is there a common link: do we need to evaluate the role of KATP channels? Expert Opin Drug Saf 2017; 7:823-831. https://doi.org/10.1080/14740336.2017.1338269

39. Khan T, Hamilton MP, Mundy ID, Chua SC, Scherer PE. Impact of simvastatin treatment on adipose tissue: Pleiotropic effects in vivo. Endocrinology 2019; 150: 5262–5272. https://doi.org/10.1210/en.2019-00603

40. Takagari A, Satoh K, Iagaki M, Tokumitsu Y, Ichikara K. Effects of atorvastatin and pravastatin on signal transduction related to glucose uptake in 3T3L1 adipocytes. J Pharmacol Sci 2008; 107(1):80-89. https://doi.org/10.1254/jphs.fp0072403

41. Ganesan S, Ito MK. Coenzyme Q10 ameliorates the reduction in GLUT4 transporter expression induced by simvastatin in 3T3-L1 adipocytes. Metab Syndr Relat Disord 2013; 11:251-5. https://doi.org/10.1089/met.2012.0177

42. Schroeder MM, Belloito Jr RJ, Hudson RA, McNerney MF. Effects of antioxidants coenzyme Q10 and lipoid acid on interleukin-1β-mediated inhibition of glucose-stimulated insulin release from cultured mouse pancreatic islets. Immunopharmacol Immunotoxicol 2005; 27:109-22. https://doi.org/10.1080/10420194.2016.1180093

43. Singh P, Zhang Y, Sharma P, et al. Statins decrease leptin expression in human white adipocytes. Physiol Rep 2018; 6(2):e13566. https://doi.org/10.1484/JPHS.F.0072403

44. Henrikso BD, Schertzer JD. Is immunity a mechanism contributing to statin-induced diabetes? Adipocyte 2015; 4(4):232-8. https://doi.org/10.1080/21623945.2015.1024394

45. Collins PD,Sattar N. Glycaemic effects of non-statin lipid-lowering therapies. Curr Cardiol Rep 2016; 18(12): 133. https://doi.org/10.1007/s11886-016-0479-y

46. Ochoa-Rosales C, Portilla-Fernandez E, Nano J, et al. Epigenetic link between statin therapy and type 2 diabetes. Diabetes Care 2020; 43:875-884. https://doi.org/10.2337/db19-1828

47. Shi MY, Bang IH, Han CY, Lee DH, Park BH, Bae EJ. Statin suppresses sirtuin 6 through miR-495, increasing FoxO1-dependent hepatic gluconeogenesis. Theranostics 2020; 10(25):11416-11427. https://doi.org/10.7150/thno.49570

48. Yandrapalli S, Malik A, Gubler K, et al. Statins and the potential for higher diabetes mellitus risk. Expert Rev Clin Pharmacol 2019; 12(9):825-830. https://doi.org/10.1080/17512433.2019.1659133

49. Horodinschi RN, Stanescu AMA, Bratu OG, et al. Treatment with statins in elderly patients. Medicina (Kaunas, Lithuania) 2019; 55(11):72. https://doi.org/10.3390/medicina55110721

50. Betteridge DJ, Carmena R. The diabetogenic action of statins-mechanisms and clinical implications. Nat Rev Endocrinol 2016; 12(2):99-110. https://doi.org/10.1038/nrendo.2015.194