Local Current-Activated Growth of Individual Nanostructures with High Aspect Ratios

Jorgen F. Rufner, Cecile S. Bonifacio, Troy B. Holland, Amiya K. Mukherjee, Ricardo H.R. Castro and Klaus van Benthem*

Department of Chemical Engineering and Materials Science, University of California, 1 Shields Ave, Davis 95616, CA, USA

(Received 12 August 2013; final form 10 October 2013)

Supplementary Material Available Online

The development of vertical nanoelectronics is hindered by limited control over the growth of nanostructures in specific directions. A scanning tunneling microscopy tip was used as a guide to locally consolidate individual nanoparticles and grow metallic nanopillars with high aspect ratios. Consolidation from random agglomerates occurs through electromigration and diffusion in a temperature gradient. The results of this study provide a new avenue for the controlled growth of complex metallic nanostructures for future three-dimensional architectures.

Keywords: Sintering, In situ Transmission Electron Microscopy, Nanoparticles, Crystal Growth

Introduction Local directional control of the growth of nanomaterials remains a great challenge faced by the materials community for the development of novel three-dimensional devices with enhanced performance.[1,2] The architecture of complex vertical electronics is difficult to obtain with current methods for manufacturing. Hence, there is a need for new strategies. The growth of one-dimensional nanostructures is one of the most promising fields to achieve these goals.[3–6] Although it is relatively simple to grow nanowires by strategic placement of surface catalysts, the control of their shape and direction during growth remains a major challenge.[7,8] Atom-by-atom deposition is one possibility to synthesize nanowires with designed patterns.[9] However, the time required for high-quality depositions is relatively long, and more robust techniques are desirable.[10] Sintering is an established field for materials densification that has recently been revitalized due to the promising effects of electric fields on decreasing processing temperatures.[11–13] During sintering, particle consolidation is enabled by thermally activated neck formation between individual particles. Necking can, however, also be triggered at lower temperatures through the application of an electrical bias. The mechanisms of enhanced mass transfer in the presence of an electrical field remain unclear.[14] For electrically conducting materials, local Joule heating of particle contact areas can enhance local diffusion and hence promote neck formation.[14] Morsi et al. have demonstrated local current-activated sintering within compacted powder agglomerates underneath a moving conducting tip.[15] Here, we present a new technique to locally grow one-dimensional structures with a high aspect ratio by using an electrically biased scanning tunneling microscopy (STM) probe to induce directional sintering upon contact with nanoparticles.

Results and Discussion Nickel nanoparticles with an average diameter of 20 nm were drop-casted onto a holey amorphous carbon film on transmission electron microscopy specimen grids. Inside the scanning transmission electron microscope (STEM), a DC electrical bias was directly applied to nickel nanoparticle agglomerates. The electrical circuit was set up such that an STM tip mounted on the transmission electron microscopy (TEM) sample holder acted as the positive electrode while the specimen grid served as the negative electrode connected to the microscope ground (cf. Figure 1(a)). Figure 1(b) shows a bright field STEM image of one of the particle agglomerates. A constant DC voltage of +2.5 V was applied to the STM tip for approximately

*Corresponding author. Email: benthem@ucdavis.edu

© 2013 The Author(s). Published by Taylor & Francis. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.
Figure 1. Sketch of the experimental setup. (a) An STM tip mounted on a TEM specimen holder is contacting an agglomerate of nickel nanoparticles mounted on an amorphous carbon support film. The TEM specimen grid serves as a second electrode connected to the microscope ground. (b) STEM bright field image of the nickel agglomerate in close contact to the STM tip.

Figure 2. Experimentally observed current versus time for the full duration of the in situ TEM experiment. All biasing steps are shown in sequence beginning with $+2.5 \text{ V}$. The observed current begins to rise with particle/agglomerate rearrangement at $+4.0 \text{ V}$, filament growth at $+4.5 \text{ V}$, and rapid consolidation of the Ni filament onto the STM tip at $+5.5 \text{ V}$.

200 s. Thereafter, the bias was increased to $+5.5 \text{ V}$ in increments of 0.5 V every 200 s while the resulting current through the particle agglomerate was recorded as a function of time. No external heating was applied.

Figure 2 shows a plot of the recorded current between the STM tip and the microscope ground as a function of time. Initially, no significant current was observed due to the presence of mostly insulating surface oxide layers that cover the metallic nanoparticles.[16,17] During the holding interval with a constant bias of $+4.0 \text{ V}$ the observed current abruptly increases to approximately $60 \mu\text{A}$. This observation coincides with some particle rearrangement (see Supplementary online video clip) and is consistent with previously observed dielectric breakdown behavior of surface oxide films covering individual nanoparticles.[16,18] The experimentally observed current continued to increase linearly to approximately $70 \mu\text{A}$ albeit at a reduced rate. Once the particle agglomerate became conducting, gradually increasing currents during the holding intervals were observed for each bias setting. Morphological changes of the particle agglomerate were minimal for most bias settings. Dramatic materials transport leading to particle coarsening and longitudinal nanopillar growth was observed at $U_{\text{tip}} = +4.5 \text{ V}$, while the position of the STM tip relative to the powder agglomerate remained fixed for the duration of the experiment. During the subsequent bias interval at $+5.5 \text{ V}$, a sudden current increase was observed coinciding with the consolidation of the remaining particle agglomerate and the already grown pillar into a large and dense sphere. During consolidation, mass is conserved and all the nickel previously making up the as-grown nanopillar and the remaining agglomerate was consumed by the formation of a large sphere attached to the STM tip.

The dynamic growth of the nanopillar and subsequent consolidation was recorded as a video clip of simultaneously acquired annular dark field and bright field STEM images and is attached in the Supplemental online materials. Figure 3 shows a series of STEM micrographs that were extracted from the as-acquired video clip during annealing at $+4.5 \text{ V}$. Significant morphological changes of the particle agglomerate are observed in Figure 3(a) and 3(b), followed by unidirectional growth of a nickel nanopillar in the direction parallel to the STM tip (Figure 3(c)–(f)) and subsequent transverse growth (Figure 3(g)–(j)). The encircled area in Figure 3(a) shows a soft agglomerate of nickel particles with a significant open pore volume. Before any growth of the nickel filament is initiated, shrinkage of the agglomerate is observed by elimination of the pore volume (Figure 3(b)). The agglomerate is partly supported by the amorphous carbon film with some particles extending into the vacuum (encircled).

Figure 3(b)–(e) shows the successive densification of the particle agglomerate and the initiation of
one-directional growth of a nickel pillar. As the length of the filament increases, the carbon support film attached to the opposite side of the nanopillar is elastically pushed away from the STM tip. After 118 s at +4.5 V, the unidirectional growth of the nanopillar ceased (Figure 3(f)). Instead, transverse growth continued for the remainder of the holding interval and results in a significantly increased diameter. The longitudinal growth mode terminates when the encircled nanoparticles in Figure 3(a), 3(b) and 3(e) are fully consumed. Figure 3(f) reveals the introduction of a planar growth defect with an inclination angle of $(56 \pm 2)^\circ$ relative to the growth direction. This angle is in excellent agreement with the angle inclined by $\langle 111 \rangle$ and $\langle 100 \rangle$ directions in cubic metals and suggests the defect to be parallel to the (111) planes with the nanopillar growing along the (100) direction. Subsequent Figure 3(g)–(j) indicates further materials transport from the remainder of the particle agglomerate to the nanopillar.

Figure 4 shows the length of and the corresponding growth rate for the nanopillar as a function of time. After a total of 962 s, i.e. approximately 70 s of biasing at +4.5 V, longitudinal growth of the filament is initiated with a growth rate as high as 16 nm/s. Growth continues for roughly 80 s before it terminates with the filament reaching a length around 320 nm. When longitudinal growth stops, the nanopillar continues to grow in the perpendicular direction. During growth, the nanopillar is subject to compressive stress as the STM tip and the TEM grid remained fixed in position. Eventually compressive stress is accommodated by the formation of the planar defect described above, which may represent twinning or a stacking fault. At a bias of +4.5 V, the length of the nanopillar starts shrinking as indicated in Figure 4. After a total time of approximately 1,500 s rapid consolidation into a large sphere was observed.
The nanopillar grows through transport of nickel atoms from the particle agglomerate towards its contact with the stationary STM tip, as indicated by Figure 3. The direction for longitudinal growth is parallel to the direction of the electric current, and electromigration is, therefore, one possible transport mechanism. This hypothesis was confirmed by subsequent experiments during which the applied bias and, hence, the current direction, was reversed. Instead of consolidating onto the STM tip, the nanoparticles broke free of the tip and consolidated on the carbon support. Material transport was only observed towards the negative electrode. As the observed currents are of the order of 100 μA, with current densities in excess of 10^{11} A m^{-2}, significant Joule heating of the growing nanopillar, the amorphous carbon, and the remaining particle agglomerate occurred during the in situ experiments. An estimation of the sample temperature based on Joule heating and thermal conduction revealed unphysical results of more than 10^4 K, indicating that radiative heat losses inside the TEM vacuum chamber must have been significant. However, Figure 3(d)–(h) reveals diffraction contrast indicating crystallinity of the growing nanopillar. Figure 3(f) reveals the formation of a planar growth defect for a current of approximately 1.3 × 10^5 nA. It is, therefore, concluded that the local temperature remained below 1,455°C, i.e. the melting point for bulk Ni. However, the current density is the highest at the contact between the growing nanostructure and the STM tip, and local melting in this area or during the final rapid consolidation cannot be neglected. TEM analysis before and after the in situ experiment revealed that the total volume of Ni was conserved, i.e. evaporation of Ni under ultra-high vacuum conditions did not occur. The electron beam of the TEM was not found to have any significant influence on the observed morphological changes as beam current densities during STEM imaging remained 4 and 5 orders of magnitude lower than those created by in situ biasing.

Thermally activated diffusion must contribute as a growth mechanism. For the experimental setup reported in this study, the STM tip serves as a heat sink due to its large thermal mass compared with the amorphous carbon film, and enables the observed mass flow from the particle agglomerate on the amorphous carbon support to the relatively colder STM tip.

The encircled area in Figure 3(a) shows an agglomerate of nickel particles with significant open pore volume extending into the vacuum. Before any growth is initiated, shrinkage of the agglomerate is observed by the elimination of the pore volume indicating thermally activated mass transfer rather than electromigration. During subsequent filament growth, the same agglomerate further reduces in volume indicating that it serves as a materials source for the growth process. The particle agglomerates located on the amorphous carbon remain
comparatively unchanged during the longitudinal growth (Figure 3(c)–(f)), with minor changes in their shape and some particle coarsening due to Ostwald ripening. More significant neck formation and Ostwald ripening are observed at a later stage (Figure 3(h)–(j)). It is, therefore, concluded that the driving force for the observed growth behavior is the reduction of free surface energy for the nickel agglomerate, which is facilitated by both electromigration and thermal diffusion. Furthermore, it is energetically more favorable for nickel to support filament growth in the absence of the carbon film, while the presence of the amorphous carbon film stabilizes the Ni agglomerate and hinders coarsening. Strong adhesion of Ni to carbon is consistent with previously observed wetting of Ni nanoparticles by graphene layers at elevated temperatures during in situ TEM experiments.[21,22]

Termination of the longitudinal growth coincides with the introduction of the planar growth defect into the filament, after which transverse growth is initiated. The ohmic resistance associated with the defect structure scatters the conducting electrons and, thus, causes local heating, i.e. a local barrier for further thermal diffusion and longitudinal growth. Transverse growth of the nanopillar is initiated due to a reduced thermal gradient and limited current density, hence leading to a reduction of the nanopillar aspect ratio (Figure 3(d)–(j)). Eventually, the metal filament and remaining metal particle agglomerates consolidate rapidly and form a large spherical volume on the STM tip. Since the position of the STM tip remained constant for the duration of the experiment, compressive stress within the nanopillar created by the longitudinal growth has likely induced the formation of the observed planar growth defect.

Conclusion In summary, we report the longitudinal growth of a nickel nanopillar guided by the STM tip. Growth occurs through two complementary mechanisms: electromigration and diffusion in a thermal gradient. The length of the growing pillar is determined by incorporated growth defects that limit the thermal diffusion to the growth front. The reported study provides an avenue for the growth of metallic nanostructures with high aspect ratios. Arbitrary shapes may be obtained by moving the STM tip. Such utilization of a nanoscale pen may be suitable for three-dimensional printing of nanostructured electrodes and complex wiring assemblies.

Supplementary online material More detailed information on experiments is available at http://dx.doi.org/10.1080/21663831.2013.855272.

Acknowledgements JFR, CSB, and KvB acknowledge funding through a University of California Laboratory Fee Grant (#12-LR-238313). TBH and KvB acknowledge partial funding from the Army Research Office under grant #W911NF-12-1-0491-0 (Program Manager Dr S. Mathaudu). TBH and AKM were supported by the Office of Naval Research (Program Manager Dr L. Kabacoff) under grant #N00014-10-1-0632. JFR was partially funded though the LANL-UC Davis Materials Design Institute and RHR was funded through NSF CAREER DMR 1055504.

References

[1] Parkin SSP, Hayashi M, Thomas L. Magnetic domain-wall racetrack memory. Science. 2008;320:190–194.

[2] Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial JP, Gogna P. New directions for low-dimensional thermoelectric materials. Adv Mater. 2007;19:1043–1053.

[3] Gautam UK, Fang XS, Bando Y, Zhan JH, Golberg D. Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube—In nanowire core-shell heterostructures. Am Chem Soc Nano. 2008;2:1015–1021.

[4] Yang PD, Yan RX, Fardy M. Semiconductor nanowire: what’s next? Nano Lett. 2010;10:1529–1536.

[5] Li Y, Qian F, Xiang J, Lieber CM. Nanowire electronic and optoelectronic devices. Mater Today. 2006;9:18–27.

[6] Brune H, Giovannini M, Bromann K, Kern K. Self-organized growth of nanostructure arrays on strain-relief patterns. Nature. 1998;394:451–453.

[7] Ross FM. Controlling nanowire structures through real time growth studies. Rep Prog Phys. 2010;73:114501.

[8] Bachmann J, Jing J, Knez M, Barth S, Shen H, Mathur S, Goesele U, Nielsch K. Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. J Am Chem Mater. 2007;129:9554–9555.

[9] Zhang TR, Dong WJ, Keeter-Brewer M, Konar S, Njabon RN, Tian ZR. Site-specific nucleation and growth kinetics in hierarchically nanosyntheses of branched ZnO crystallites. J Am Chem Soc. 2006;128:10960–10968.

[10] Olevsky EA, Kundakuri S, Froyen L. Consolidation enhancement in spark-plasma sintering: impact of high heating rates. J Appl Phys. 2007;102:114913.

[11] Garay JE. Current-activated, pressure-assisted densification of materials. In: Clarke DR, Ruhle M, Zok F, editors. Annual review of materials research, Vol 40. Palo Alto: Annual Reviews; 2010. p. 445–468.

[12] Castro R, van Benthem K. Sintering: mechanisms of convention nanodensification and field assisted processes. Heidelberg: Springer; 2013.

[13] Holland TB, Mukherjee AK. Spark plasma sintering. In: Lakner M, editor. Combustion synthesis: novel routes to novel materials. Sharjah: Bentham Science Publishers Ltd.; 2010.

[14] Morski K, Moon KS, Kassegne S, Ugle R, Villar E. Novel current-activated tip-based sintering (CATS): localization of spark plasma sintering. Scr Mater. 2009;60:745–748.

[15] Bonifacio CS, Rufner J, Holland TB, van Benthem K. In situ transmission electron microscopy study of dielectric breakdown of surface oxides during electric field-assisted sintering of nickel nanoparticles. Appl Phys Lett. 2012;101093107.

[16] Bonifacio C, Holland TB, van Benthem K. Evidence of surface cleaning during electric field assisted sintering. Scr Mater. 2013;69:769–772.

[17] Bonifacio C, Holland TB, van Benthem K. Time dependent dielectric breakdown of surface oxides during electric field-assisted sintering. Acta Mater. 2013; in press.
[19] Holland TB, Thron AM, Bonifacio CS, Mukherjee AK, van Benthem K. Field assisted sintering of nickel nanoparticles during in situ transmission electron microscopy. Appl Phys Lett. 2010;96:243106.

[20] Kwapulinski P, Rasek J, Gierak Z. Scattering of conductivity electrons on grain boundaries in metals. Phys Stat Sol (a). 1988;107:299–304.

[21] Sinclair R, Itoh T, Chin R. In situ TEM studies of metal-carbon reactions. Microsc Microanal. 2002;8:288–304.

[22] Thron A, Greene P, Liu K, van Benthem K. In-situ observation of equilibrium transitions in Ni films; agglomeration and impurity effects. Ultramicroscopy. 2013; submitted.