Introduction

An abundant Cambrian fauna is known from the marine clastic sediments of the Skryje-Týřovice and Příbram-Jince basins of the Barrandian area. Due to an abundant occurrence and suitable preservation, trilobites and agnostids have attracted attention since the early 19th century and were studied by numerous researchers (e.g. Schlotheim 1823, Beyrich 1845, Barrande 1846, 1852, 1872; summary see Šnajdr 1958 and Bruthansová et al. 2007).

Several trilobite and agnostid genera established by Hawle and Corda (1847) were based on species described by Barrande (1846). Two of them, Battus rex BARRANDE, 1846 and Battus granulatus BARRANDE, 1846 from Cambrian sediments of the Skryje-Týřovice Basin were designated as type species of two agnostid genera, namely Condylopyge HAWLE et CORDA, 1847 and Pleuroctenium HAWLE et CORDA, 1847. The very specific cephalic and pygidial morphology of these two genera led Raymond (1913, p. 139) to place them in a separate family Condylopygidae RAYMOND, 1913 which includes Condylopyge and Pleuroctenium, while the position of the recently established Tyragnostus VALIČEK, 2006 is unresolved; all type species of these genera originate from the Buchava Formation of the Skryje-Týřovice Basin.

The aim of this contribution is to revise and figure three specimens of Condylopyge from the Příbram-Jince Basin of the Barrandian area (the Czech Republic; Text-fig. 1) which are housed in institutional collections.

Condylopyge in the Barrandian area

Condylopyge was for a long time known only from the Skryje-Týřovice Basin (summary Šnajdr 1958, Fatka 2005). Disarticulated exoskeletal remains of this large agnostid are usually quite abundant in fossil associations characterizing the middle and higher stratigraphical levels of the Buchava Formation (Šnajdr 1958). It commonly occurs together with...
several other agnostids such as Phalagnostus nudus, Pleuroctenium granulatum granulatum, Skryjagnostus pompeckji, Peronopsis div. sp., Phalacroma bibullatum, Diplorrhina triplicata and is usually associated with remains of paradoxid, conocoryphid and solenopleurid trilobites, cinctan echinoderms and hyoliths (see Prantl 1947, Fatka 2005).

In the Příbram-Jince Basin, the presence of Condylopyge was published for the first time by Fatka and Kordule (1992, p. 50). Later, Valiček and Szabad (2002, pl. 1, fig. 1) figured the internal mould of a quite small isolated cephalon collected from the oldest faunal association of the Jince Formation at the foot of the slope known as Vinice near Jince (Text-fig. 1). These authors classified this specimen as Condylopyge rex but without any discussion.

Fatka et al. (2004, tab. 3) revised the stratigraphical ranges of taxa established in the Jince Formation, including agnostids. The occurrence of Condylopyge cf. rex was reported from the lower stratigraphical levels of the Eccaparadoxides pusillus Zone as well as from the oldest layers of the Onymagnostus hybridus Biozone sensu Fatka and Szabad (2014).

1. foot of the slope known as Vinice near Jince (locality 15 in Fatka and Kordule 1992); lowermost levels of the Acadolenus snajdri Zone sensu Fatka and Szabad (2014).
2. locality Potůček near Rejkovice (= locality 12 in Fatka and Kordule 1992); lower levels of the Paradoxides (Eccaparadoxides) pusillus Zone sensu Fatka and Szabad (2014). Specimens CGS CW 17 and CGS FK 63.
3. foot of the slope known as Vinice near Jince (locality 20 in Fatka and Kordule 1992); lower levels of the Onymagnostus hybridus Biozone sensu Fatka and Szabad (2014). Specimen CGS CW 18.

Text-fig. 1. The Czech Republic with the position of the Příbram-Jince Basin (A), distribution of Cambrian rocks of the Jince Formation in the Příbram-Jince Basin (B), geographic position of discussed localities (C), stratigraphic ranges of Condylopyge in the Jince Formation of the Příbram-Jince Basin (D).

1. foot of the slope known as Vinice near Jince (locality 15 in Fatka and Kordule 1992); lowermost levels of the Acadolenus snajdri Zone sensu Fatka and Szabad (2014).
2. locality Potůček near Rejkovice (= locality 12 in Fatka and Kordule 1992); lower levels of the Paradoxides (Eccaparadoxides) pusillus Zone sensu Fatka and Szabad (2014). Specimens CGS CW 17 and CGS FK 63.
3. foot of the slope known as Vinice near Jince (locality 20 in Fatka and Kordule 1992); lower levels of the Onymagnostus hybridus Biozone sensu Fatka and Szabad (2014). Specimen CGS CW 18.

Repository

Figured specimens from the Jince Formation of the Příbram-Jince Basin are housed in the collections of the Czech Geological Survey, Prague (inventory numbers CGS CW 17, CW 19 and FK 63, Text-fig. 2a–2c respectively). For comparison figured specimens from the Skryje-Týřovice Basins are housed in the collections of the Palaeontological Department of the National Museum, Prague (inventory numbers NM-L43011a, NM-L43014 and NM-L43013, Text-fig. 2d–2f respectively).
Systematic palaeontology

Phylum *Arthropoda* von Siebold, 1848
Order *Agnostida* Salter, 1864
Superorder *Agnostina* Salter, 1864
Superfamily *Condylopygoidea* Raymond, 1913
Family *Condylopygidae* Raymond, 1913

Remarks. Like numerous earlier authors, we follow Kobayashi (1962) in recognizing the *Condylopygoidea* at the level of superfamily, while the family concept is that of Raymond (1913). *Condylopygoidea* differs from Agnastoidea M’Coy, 1849 by (1) the characteristic expansion of the anterior glabellar lobe, (2) the apparent presence of occipital structures instead of basal lobes, (3) the presence of three anterior segments in an otherwise axiolobate pygidium, and (4) the supposed retention of a cephalothoracic aperture (see Rushton 1979, p. 45). *Condylopygoidea* are therefore the most distinctive members of the Agnostina (see Shergold et al. 1990, Shergold and Laurie 1997).

Genus *Condylopyge* Hawle et Corda, 1847

Type species: Battus rex Barrande, 1846, p. 17; middle Cambrian, Drumian, *Paradoxides (Eccaparadoxides) pusillus* Zone, Buchava Formation, Skryje-Týřovice Basin, Barrandian area, the Czech Republic.

Diagnosis. See Shergold and Laurie (1997, p. 383).

Discussion. The type species was briefly described by Barrande (1846, p. 17) as Battus Rex. In the following year, Hawle and Corda (1847, p. 50, tab. 3, fig. 24) provided a German diagnosis of their new genus *Condylopyge*, which was based on morphology of the only one known specimen.
At the end of the 19th century, three other species and one subspecies were described, namely *Agnostus cambriensis* Hicks, 1871; *Agnostus regius* Sjögren, 1872; *Agnostus regulus* Matthew, 1886 and *Agnostus rex* var. *transsectus* Matthew, 1896.

The study by Hawle and Corda (1847) was repeatedly cited by Jaekel (1909, p. 380), but this author did not mention the genus *Condylopyge* and surprisingly established a new genus *Paragnostus* with type species *Agnostus rex*. This approach was rejected by Raymond (1913, p. 138) and all subsequent authors with the argument that the same species is the type of *Condylopyge* Hawle et Corda, 1847. *Condylopyge* was briefly discussed by Kobayashi (1939, p. 107, table), who listed six species and two subspecies, all ranging from the early to mid middle Cambrian. Shergold et al. (1990, p. 57) and Shergold and Laurie (1997, p. 383) give the stratigraphic range of *Condylopyge* from the *Protolenus* Zone of Avalonia to the *Psychagnostus punctuosus* Zone of Baltica.

Hitherto sixteen species are assigned to *Condylopyge*; *Condylopyge amitina* Rushiton, 1966, Purley Shale, Britain; *Condylopyge antiqua* Elucki et Pilolla, 2004, Campo Pisano Formation, Sardinia, Italy; *Condylopyge cambrensis* (Hicks, 1871), Newgale Formation, Wales, Britain; *Condylopyge carinata* Westergård, 1936, Alum Shale Formation, Sweden and Chamberlains Brook Formation, Newfoundland, Canada; *Condylopyge carinata vicina* Egorova in Savitskiy et al., 1972, Siberian Platform, Russia; *Condylopyge cruzensis* Liñán et Gozalo, 1986, Valdemiedes Formation, Spain and Tröbitz Formation, Germany; *Condylopyge eli* Geyer, 1998, Jebel Wawrmast Formation, Morocco; *Condylopyge globosa* (Illing, 1916), Abbey Shales, Britain; *Condylopyge imperator* Howell, 1935, Couloma Formation, France; *Condylopyge matutina* Dean, 2005, Çal Tepe Formation, Turkey; *Condylopyge regia* (Sjögren, 1872), Alum Shale Formation, Sweden; *Condylopyge rex* (Barrande, 1846), Buchava Formation, Barrandian area, Czech Republic; *Condylopyge regulus* (Matthew, 1886), Handford Brook Formation, Massachusetts, the U.S.A.; *Condylopyge spinigera* Westergård, 1946, Alum Shale Formation, Sweden and possibly also Chamberlains Brook Formation, Newfoundland, Canada; *Condylopyge transsectus* (Matthew, 1896), Chamberlain’s Brook Formation, Massachusetts, U.S.A.

Nomina nuda
Condylopyge ishensis Perf. (ex Korzhey 2012); *Condylopyge etaerus* in Fletcher, 1972.

Condylopyge cf. rex (Barrande, 1846)

Text-fig. 2a–c

1992 *Condylopyge cf. rex*; Fatka and Korule, p. 50.

2004 *Condylopyge cf. rex*; Fatka et al., p. 377.

Material and locality. The internal mould of a broken cephalon (CGS CW 17, Text-fig. 2a) and an external mould of a pygidium (CGS FK 63, Text-fig. 2b), preserved in purple-brown fine greywacke. Both specimens were collected at the locality Potůček near Rejkovice (= locality 12 in Fatka and Kordule 1992) in lower levels of the *Paradoxides (Eccaparadoxides) pusillus* Zone sensu Fatka and Szabad (2014).

The internal mould of a cephalon (CGS CW 18, Text-fig. 2c) preserved in green-grey mudstone and collected by one of the authors (V.K.) from the man-made excavation at the foot of the slope known as Vinice near Jince (locality 20 in Fatka and Kordule 1992) in lower levels of the *Onymagnostus hybridus* Zone sensu Fatka and Szabad (2014).

Description. Cephalon roughly rectangular, gently rounded in front with slightly medially flattened surface. Postero-lateral sides slightly diverging. Axis convex, well vaulted, reaching about 80 percent of the total cephalic length and more than half the cephalon width. Anteroglabella triangular in outline with rounded anterior and postero-lateral margins, sagittal length of anteroglabella about three-quarters of the width. Postero-glabella slightly longer (sag.) than wide (tr.), reaching slightly more than two-thirds the width of the anteroglabella. A small median tubercle developed in the centre of the postero-glabella, a more massive spine is present at the posterior end of the postero-glabella. Border furrow relatively wide, shallow, border moderately wide.

Pygidium without marginal spines, slightly longer than wide. The convex border of uniform width, anteriorly narrower. The axis long with an expanded rounded posterior lobe. Axis bears a distinct elongated keel ending at the posterior lobe. F1 and F2 orientated forward, F3 bent slightly backward.

Thoracic segments unknown.

Discussion. The lectotype of *Condylopyge rex* was selected by Šnajdr (1958, p. 52) from Barrande’s original collection housed in the National Museum Prague (coll. Barrande ČC 237, No. 1034, NM-L.16556), and was figured by Barrande (1852, pl. 49, fig. 5a, b), Šnajdr (1958, pl. 2, fig. 1), Horný and Bastl (1970, pl. 1, fig. 2), Shergold et al. (1990, fig. 19.2) and Shergold and Laurie (1997, fig. 240.3).

For comparison, three specimens of *Condylopyge rex* from the Skryje-Týřovice Basin are presented here (Text-fig. 2d–2f). The C. *cf. rex* pygidium is morphologically identical to that of the type species (compare Text-fig. 2b and 2e). Morphology of both cephalas from the Jince Formation of the Příbram-Jince Basin agree with toptype specimens of *C. rex* from the Buchava Formation of the Skryje-Týřovice Basin. However, the median tubercle is situated in the middle of the postero-glabella, while in specimens of *C. rex* from the Skryje-Týřovice Basin this tubercle is located more anteriorly (compare Text-fig. 2a and 2e with 2d and 2f). This morphological feature excludes a definitive assignment to the type species.
Distribution. *Condylopyge rex* (Barrande, 1846) was originally described from the “Pod hruškou” locality near Týřovice (Snajdr 1958, Fatka 2005). It is one of the abundant agnostids occurring in the higher stratigraphical levels of the Buchava Formation in the Skryje-Týřovice Basin of the Barrandian area (Snajdr 1958, Fatka 2005). This large agnostid has subsequently been found in Baltica, Avalonia and several areas in West Gondwana.

Baltica. *C. rex* has been reported from southern Sweden (Tullberg 1880, Westergård 1946, Ahlberg et al. 2009, Weidner and Nielsen 2014), the Oslo area of Norway (Høyberget and Bruton 2008) and from Pleistocene erratic boulders of northern Germany (Rudolph 1990, 1994, Buchholz 2004).

Avalonia. *C. rex* has been known from Britain (Illing 1916, Rushton 1979, Rees et al. 2013) and from south-eastern Newfoundland (Howell 1925, Hutchinson 1962, Fletcher 1916, Rushton 1979, Rees et al. 2013) and from south-eastern Avalonia and several areas in West Gondwana.

West Gondwana. This agnostid species is documented from areas assigned to the Armorican Terrain Assemblage, namely in the Iberian Chains of Spain (Sdzuy 1961, Liñan and Gozalo 1986, Chirivella et al. 2009, Gozalo et al. 2011), in Montagne Noire of France (Courtesolle 1973, Álvaro et al. 1998), and in the Franconian Forest and Leipzig area of Germany (Elicki 1997, Sdzuy 2000, Elicki and Geyer in Heuse et al. 2010, Geyer 2010).

Condylopyge sp.

2002 *Condylopyge rex* (Barrande, 1846); Valiček and Szabad, p. 75–76, pl. 1, fig. 1.

Material and locality. Internal moulds of two cephalic shields preserved in fine yellow decalcified concretion. These specimens have not been housed to date in an official collection. They allegedly come from the foot of the slope known as Vinice near Jince (locality 15 in Fatka and Kordule 1992) in the lowermost levels of the *Acadolemus snajdri* Zone sensu Fatka and Szabad (2014).

Remarks. A description of these two specimens was not published by Valiček and Szabad (2002). The one small figure of a cephalon does not provide sufficient information for species determination. Consequently, determination of the species is not followed and classification in open nomenclature is preferred for this poorly documented and inaccessible material.

Conclusions

The exoskeleton of the cephalic shield does not show morphological characters decisive for determination of species in *Condylopyge*; reliable species assignment should be based on morphology of both pygidial and cephalic shields. Rare and poorly preserved specimens are to be left in open nomenclature. Consequently, the oldest cephalic shields of agnostids established in the Jince Formation are determined as *Condylopyge* sp., rare specimens established in higher stratigraphical levels are classified as *Condylopyge cf. rex*.

Acknowledgements

We thank Jan Ove Ebbestad (Uppsala University, Sweden) and Petr Budil (Czech Geological Survey Prague, Czech Republic) for their helpful review and the linguistic improvements.

Jan Wagner (National Museum Prague) is acknowledged for his kind editorial help. This research was supported by Pvouk P44 of the Ministry of Education, Youth and Sports of the Czech Republic. Martin Valent (National Museum Prague) is acknowledged for access to specimens held in the collections of the National Museum Prague and for help with photography.

References

Álvaro, J. J., Courjault-Radé, P., Chauvel, J. J., Dabard, M. P., Debronne, F., Feist, R., Pillola, G. J., Vennin, E., Vizcaíno, D. (1998): New Cambrian stratigraphic framework of the Pardailhan and Minervois nappes (southern Montagne Noire). – Geologie de la France, 2: 3–12.

Ahlberg, P., Axheimer, N., Babcock, L. E., Eriksson, M. E., Schmitz, B., Terfelt, F. (2009): Cambrian high-resolution biostratigraphy and carbon isotope chemostratigraphy in Scania, Sweden: first record of the SPICE and DICE excursions in Scandinavia. – Lethaia, 42(1): 2–16. http://dx.doi.org/10.1111/j.1502-3931.2008.00127.x

Barrande, J. (1846): Notice préliminaire sur le Système Silurien et les trilobites de Bohême. – C. L. Hirschfeld, Leipsic, vii+97 pp.

Barrande, J. (1852): Système Silurien du Centre de la Bohême, 3e Partie, Crustacés, Trilobites. 2 vols. – Chez l’auteur et éditeur, Prague, Paris, 935 pp. + 51 pls. http://dx.doi.org/10.5962/bhl.title.14776

Barrande, J. (1872): Système Silurien du Centre de la Bohème, Supplément au vol. 1. Trilobites, crustacé divers et poissons. – Chez l’auteur et éditeur, Prague, Paris, 647 pp.

Beyrich, E. (1845): Über einige böhmisches Trilobiten. – G. Reimer, Berlin, 47 pp.

Buchholz, A. (2004): Ein Geschiebe der *Hypagnostus parvifrons*-Zone (Mittelkambrium B3) mit feinstratigraphischer Schichtung und seltenen sowie neuen Trilobiten. – Archiv für Geschiebekunde, 501–524.

Bruthansová, J., Fatka, O., Budil, P., Král, J. (2007): 200 years of trilobite research in the Czech Republic. – In: Mikulic, M. G., Landing, E., Kluesendorf, J. (eds), Fabulous fossils – 300 years of worldwide research on trilobites. New York State Museum Bulletin, 507: 51–80.

Chirivella, J. B., Dies Álvarez, M. E., Gozalo, R., Liñan, E. (2009): Los Agnostina (Trilobita) del piso 5 del Cámbrico (Leonien-Caesaraugustiense inferior) de las Cadenas Ibéricas (NE de España). – In: Palmquist, P., Pérez-Claros, J. A. (eds), Comunicaciones de las XXV Jornadas de la Sociedad Española de Paleontología, Universidad de Málaga, Málaga, p. 155–159.

Courtesolle, R. (1973): Le Cambrien de la Montagne Noire. Biostratigraphie. – Laboratoire de Géologie CEARN de la Faculté des Sciences de Toulouse, Toulouse, 241 pp.
Dean, W. T. (2005): Trilobites from the Çal Tepe Formation (Cambrian), Near Seydişehir, Central Taurides, southwestern Turkey. – Turkish Journal of Earth Sciences, 14: 1–71.

Elicki, O. (1997): Biostratigraphic data of the German Cambrian – present state of knowledge. – Freiberger Forschungshefte, C 466(4): 155–165.

Elicki, O., Pilolla, G. L. (2004): Cambrian microfauna and palaeoecology of the Campo Pisano Formation at Gutturu Pala (Inglesiente, SW Sardinia, Italy). – Bolletino della Società Paleontologica Italiana, 43: 383–401.

Fatka, O. (2005): Association of fossils and history of research at the Týřovice – “Pod hruškou” locality (Middle Cambrian, Skryje-Týřovice Basin, Barrandian area). – Journal of the Czech Geological Society, 49(3-4): 107–117.

Fatka, O., Kordule, V. (1992): New fossil sites in the Jince Formation (Middle Cambrian, Bohemia). – Věstník Českého geologického ústavu, 67(1): 47–60.

Fatka, O., Kordule, V., Szabad, M. (2004): Stratigraphic distribution of Cambrian fossils in the Příbram-Jince Basin (Barrandian area, Czech Republic). – Senckenbergiana lethaea, 84(1/2): 369–384.

Fatka, O., Szabad, M. (2014): Biostratigraphy of Cambrian Paradoxides beds at Manuels, Newfoundland. – Bulletins of American Paleontology, 11: 1–140.

Hicks, H. (1871): Description of new species of fossils from beds at Manuels, Newfoundland. – Bulletins of American Paleontology, 11: 1–140.

Horny, R., Basil, F. (1970): Type specimens of fossils in the National Museum Prague, I. Trilobita. – National Museum, Prague, 356 pp.

Hoyberget, M., Bruton, D. L. (2008): Middle Cambrian trilobites of the suborders Agnostina and Eodiscina from the Oslo Region, Norway. – Palaeontographica, Abteilung A, 286: 1–87.

Howell, B. F. (1925): The faunas of the Cambrian Paradoxides beds at Manuels, Newfoundland. – Bulletins of American Paleontology, 11: 1–140.

Howell, B. F. (1935): Cambrian and Ordovician Trilobites from Hérald, Southern France. – Journal of Paleontology, 9(3): 222–238.

Hoyberget, M., Bruton, D. L. (2008): Middle Cambrian trilobites of the suborders Agnostina and Eodiscina from the Oslo Region, Norway. – Palaeontographica, Abteilung A, 286: 1–87.
Rudolph, F. (1990): Bestimmungshilfe für Geschiebesammler. 9. Die Gattung Condylopyge Hawle et Corda, 1847. – Geschiebekunde aktuell, 6(2): 69–71.

Rudolph, F. (1994): Die Trilobiten der mittelkambrischen Geschiebe. – Verlag F. Rudolph, Wankendorf, 309 pp.

Rushton, A. W. A. (1966): The Cambrian trilobites from the Purley Shales of Warwickshire. – Monograph of the Palaeontographical Society, London, 120(511): 1–55.

Rushton, A. W. A. (1979): A review of the Middle Cambrian Agnostida from the Abbey Shales, England. – Alcheringa, 3(1): 43–61.

Salter, J. W. (1864): On some new fossils from the Lingula-Flags of Wales. – Quarterly Journal of the Geological Society of London, 20: 234–241.

Savitskiy, V. E., Evtushchenko, V. M., Egorova, L. I., Kontorovich, A. E., Shabanov, Y. Y. (eds) (1972): Kembrij Sibirskoy platformy (Yudomai–Olenekskiy type section, Kuonamskiy Complex deposits). – Trudy Sibirskiy nauchno-issledovatel’skiy Institut geologii, geofiziki i mineral’nogo syr’ya (SNIIGGiMS), 130: 1–199. (in Russian)

Schlotheim, E. F. von (1823): Nachträge zur Petrefactenkunde. Abth. 2. – Becker’schen Buchhandlung, Gotha, 114 pp.

Sdzuy, K. (1961): Das Kambrium Spaniens, Teil II: Trilobiten. – Abhandlungen, Akademie der Wissenschaften und der Literatur, Mathematisch-Naturwissenschaftlichen Klasse, 1961(7-8): 499–690.

Sdzuy, K. (2000): Das Kambrium des Frankenwaldes. 3. Die Lippertsgrüner Schichten und ihre Fauna. – Senckenbergiana lethaea, 79(2): 301–327.

Shergold, J. H., Laurie, J. R. (1997): Suborder Agnostina Salter, 1864. – In: Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology, Part O, Arthropoda 1, Trilobita, Revised, Geological Society of America and University of Kansas, Boulder (Colorado) and Lawrence (Kansas), p. 331–383.

Shergold, J. H., Laurie, J. R., Sun Xiaowen (1990): Classification and review of the trilobite order Agnostida Salter, 1864: an Australian perspective. – Report, Bureau of Mineral Resources, Geology and Geophysics, 296: 1–93.

Sjögren, A. (1872). Om några försteningar i Ölands Kambriska lager. – Geologiska Föreningens i Stockholm Förhandlingar, 1: 67–80. (in Swedish)

Tullberg, S. A. (1880): Om Agnostus-arterna i de Kambriska aflagringarne vid Andrarum. – Sveriges Geologiska Undersökning C, 42: 1–37. (in Swedish)

Valiček, J. (2006): A new agnostid trilobite from the Skryje-Týřovice area (Middle Cambrian, Jince Formation, Barrandian area, Czech Republic). – Palaeontologia Bohemiae, 10: 43–46.

Valiček, J., Szabad, M. (2002): Revision early Middle Cambrian trilobite fauna from Central Bohemia. – Palaeontologia Bohemiae, 7(2): 75–98.

Weidner, T., Nielsen, A. T. (2014): A highly diverse trilobite fauna with Avalonian affinities from the Middle Cambrian Acidusus atavus Zone (Drumian Stage) of Bornholm, Denmark. – Journal of Systematic Palaeontology, 12(1): 23–92.

Westergård, A. H. (1936): Paradoxides oelandicus beds of Öland. – Sveriges Geologiska Undersöknings C, 394: 1–66.

Westergård, A. H. (1946): Agnostidea of the Middle Cambrian of Sweden. – Sveriges Geologiska Undersökning C, 477: 1–140.