It has long been known that the disorder we currently call schizophrenia is characterized by progressive clinical and cognitive change, as well as structural brain anomalies. Kraepelin himself in his series of textbooks (particularly documented in 1919) illustrated his own views of what the cellular damage to the cortex must look like, although there is no evidence that this was actually based on any research findings. However, as early as the late 1920s, a few fairly large pneumoencephalographic studies had been conducted, which showed on a more macroscopic level that large ventricles were characteristic of patients with chronic schizophrenia. At the time, this was assumed to represent a degenerative process.

To date, numerous other structural brain differences between chronic patients with schizophrenia and controls have been reported from computed tomography (CT) and magnetic resonance imaging (MRI) studies. These include nonlocalized reduced gray-matter and white-matter changes, temporal lobe volume reductions, and, particularly, anomalies of the superior temporal gyrus and temporal and frontal lobe white-matter connections, ie, arcuate, uncinate, and fornix. Some of the early pneumoencephalographic studies repeated the evaluations of patients a few years later and clearly showed progressive change that correlated with clinical deterioration, but only present in some patients. It should be noted that, while there were certainly other treatments available at the time of these studies, neuroleptics had not yet been introduced. This is important, since recently there has been much interest in the idea that neuroleptics might be responsible for certain progressive brain changes (see below), but clearly this cannot be the complete explanation. Beginning in the late 1980s, we conducted a longitudinal study of individuals who had a first psychotic episode...
and were admitted to hospital, and were then reevaluated in the community as part of a 10-year longitudinal study of brain changes in schizophrenia.10-14 While Figure 1 illustrates an extreme example of what was observed when subjects from this study were rescanned, it was clear from these longitudinal data that ventricular enlargement is progressive, and not a developmentally fixed parameter as previously thought.15 Despite this, it is likely that the progression begins early and can be detected even before the onset of clinical symptoms. At the first hospitalization, we and others could already detect many differences, although not all differences were reported in chronic patients and, also, not to the same extent as they were seen in the chronic patients.8,10,11 Over the past decade, there have been several short-term longitudinal studies. First, there are the studies beginning with an initial scan at the first episode (Table I) with varying results.10-14,16-26 In the studies from our own cohort, we found ventricular enlargement over time and whole hemispheric volume decreases over a 5- to 10-year period12-14; some independent investigative groups support this as well (Table I), while other studies support variable regional changes. However, whether these progressive changes are correlated with outcome, and are thus clinically relevant, remains unclear.

Interestingly, the studies of chronic patients more consistently show ventricular increases over time, particularly in the more severely ill patients (Table II).27-38 This discrepancy could be explained if ventricular enlargement is secondary to underlying changes in the cortex that may begin earlier (Table III)39-42 and, when they are extensive enough, are detected indirectly by progressive ventricular enlargement. Thus, ventricular enlargement would more consistently be seen later in the course of the illness. We further hypothesize that the cortical brain regions most affected are those involved in language processing (ie, superior temporal gyrus and its connections) and that the symptoms of schizophrenia develop on the basis that these pathways are anomalous.

The questions that then remain are:

![Figure 1. Magnetic resonance imaging (MRI) of a female patient who initially was scanned at the time of hospitalization for a first episode of schizophrenia. At the tenth year of follow-up, at age 34, she was an outpatient with a diagnosis of chronic schizophrenia stabilized with predominantly negative symptoms. She also had a brother with chronic schizophrenia, but he did not participate in the longitudinal study.]

Study	Number of patients/ number of controls	Years of follow-up	Findings
DeGreef et al,a 1991	13/8	1-2	No change in ventricles, change associated with poor outcome
Lieberman et al,a 2001	51/13	1-2	Decreased hemisphere, cerebellum, increased ventricles and associated with good outcome, no decrease in superior temporal gyrus
DeLisi et al,a,b 1991, 1992, 1995, 1997, 2004	50/20, 26/10	4-5, 10	Decreased frontal lobe, associated with good outcome
Gur et al,b 1998	20/17	2-3	Decreased left superior temporal gyrus and planum temporale
Kasai et al,b 2003	13/14	1.5	No ventricle change
Jaskiw et al,d 1994 (CT)	7/0	5-8	No ventricle change
Sponheim et al,d 1991 (CT)	15/0	1-3	No ventricle change
Vita et al,d 1994 (CT)	9/0	2-4	No ventricle change
Wood et al,d 2001	30/26	0.5-4.2	Decreased whole brain
Cahn et al,d 2002	34/36	1	Decreased gray matter, increased ventricle, associated with poor outcome and medication
James et al,d 2002	16/16	2.7/1.7	No change
Ho et al,d 2003	73/23	3.0	Decreased frontal white matter and increased cerebrospinal fluid

Table I. Brain changes over time in first-episode schizophrenia.
• Is the progression an artifact of neuroleptic medication or some other physiological process unrelated to the illness pathology; or is it central to the process and begin prior to the clinical syndrome?
• Is the progression due to decreased myelination or a faulty pruning process during adolescence?
• Is the progression sufficient to explain all the brain changes seen in schizophrenia?

Neuroleptics and progressive brain change

Lieberman and colleagues recently published a paper in the *Archives in General Psychiatry* from a study comparing olanzapine with haloperidol in first-episode patients and comparing any brain changes to control changes over time. They claim that, over a 2-year period, whole gray matter volume decreases significantly more in patients administered haloperidol than in controls or patients on olanzapine. However, the time of the follow-up MRI scans was short; there were many dropout subjects in this study and disproportionately among the groups; and some time periods were missing in one group entirely, thus hampering interpretation of these results.

There have now been several other studies attempting to examine the question of neuroleptic effects on brain structure. While it appears consistently in most, but not all, studies that the caudate enlarges with typical neuroleptics, the changes seen with respect to other cortical

Table II. Brain changes over time in chronic schizophrenia.

Study	Number of patients/number of controls	Years of follow-up	Findings
Davis et al, 27 1998 (CT)	53/13	5	Increased ventricles, poor outcome only
Illowsky et al, 28 1998 (CT)	13/0	7-9	No change in ventricles
Kemali et al, 29 1989 (CT)	18/8	3	Increased ventricles (1/3 patients)
Mathalon et al, 30 1998	24/25	0.7-7.5	Decreased gray matter, increased cerebrospinal fluid, decreased superior temporal gyrus
Nair et al, 31 1997	18/5	1.1-3.8	Increased ventricles, poor outcome only
Nasrallah et al, 32 1986 (CT)	11/0	3	No change in ventricles
Rapoport et al, 33 1997; Jacobsen et al, 34 1998; 35 1998; Thompson et al, 36 2001; Keller et al, 37 2003	16-24	1.5-4	Increased ventricles, decreased hemispheres, temporal lobe, superior temporal gyrus, hippocampus, thalamus, and striatum
Vita et al, 38 1988 (CT)	15/0	2-5	No change in ventricles
Woods et al, 39 1990 (CT)	9/0	1-4.5	Increased ventricles (8/9 patients)

Table III. Studies of brain changes in prodromal patients.

Study	No of subjects	Follow-up diagnosis	Initial findings	Change in follow-up
Pantelis et al, 40 2003	21	1 year; 10 psychotic, 11 nonpsychotic	Decreased right temporal, left inferior frontal, cingulate bilaterally	Decreased left parahippocampal gyrus, left fusiform, left orbitofrontal, left cerebellum, cingulate bilaterally, left temporal
Wood (unpublished data)	75	1 year; 23 psychotic, 52 nonpsychotic	Decreased left and right anterior cingulate, left parahippocampal gyrus, left temporal lobe gray, right prefrontal, thalamus	Decreased right and left temporal, right and left superior temporal gyrus, left cingulate, left and right uncinate, left fusiform, left uncus, left and right parahippocampal gyrus, right amygdala; no ventricle change
Lawrie et al, 41 2002	66	2 years; 19 psychotic, 47 nonpsychotic	Decreased left and right anterior cingulate, left parahippocampal gyrus, left temporal lobe gray, right prefrontal, thalamus	Decreased right and left temporal, right and left superior temporal gyrus, left cingulate, left and right uncinate, left fusiform, left uncus, left and right parahippocampal gyrus, right amygdala; no ventricle change
Job et al, 42 2005	65	1.5 years; 18 psychotic	Decreased left and right anterior cingulate, left parahippocampal gyrus, left temporal lobe gray, right prefrontal, thalamus	Decreased right and left temporal, right and left superior temporal gyrus, left cingulate, left and right uncinate, left fusiform, left uncus, left and right parahippocampal gyrus, right amygdala; no ventricle change
Johnstone et al, 43 2002	65	1.5 years; 18 psychotic	Decreased left and right anterior cingulate, left parahippocampal gyrus, left temporal lobe gray, right prefrontal, thalamus	Decreased right and left temporal, right and left superior temporal gyrus, left cingulate, left and right uncinate, left fusiform, left uncus, left and right parahippocampal gyrus, right amygdala; no ventricle change
regions and ventricular enlargement have yet to be shown to be due to medication (Table IV). 43-51

How early do the brain changes begin?

There are two large and interesting independent studies of people with a prodromal syndrome that is high likely to lead to schizophrenia—one in Scotland42 and another in Melbourne,39 Australia (Table III). Both these studies have performed very parallel investigations. Initially during the prodrome, a change in brain structure seems to be present in the temporal lobe volume and cingulated. On follow-up in those who have gone onto a psychotic episode, further changes can be seen in the cingulate, temporal lobe, and parahippocampal gyrus. These two independent studies have results that are not entirely consistent with each other, but it is interesting that neither show ventricular enlargement or its progression at this stage. In general, while both research groups see initial changes in temporal and frontal lobes in people who later develop schizophrenia and progressive change in the time interval from prodrome to onset of clinical illness, the specific changes that are clearly predictive of illness need to be further delineated.

What is the cause?

The underlying basis for the changes detected by imaging could be related to abnormalities in axonal integrity and organization that begin to take place during the normal adolescent neuronal pruning and reorganizational process, and continue throughout the lifetime of the individual during aging and brain response to normal stresses.52,53 In some individuals, it may even begin prenatally,54 but last a lifetime. Perhaps examining white matter integrity will give clues. We now have the techniques in MRI, ie, diffusion tensor imaging (DTI) and magnetization transfer (MT). DTI55 focuses on the diffusion of water in the brain. Two measurements based on DTI images are the apparent diffusion coefficient (ADC), which measures the water content and reflects the amount of cerebrospinal fluid (CSF),56 and fractional anisotropy (FA), which measures the direction of flow or, indirectly, the lining up of fibers. The FA is high when fibers are orientated in one direction and low when there is diffusion and the fibers are more disorganized. The ADC is high when the water content is high and low when the water content is low. Magnetization transfer (MT) is a proton-weighted MRI image that can give information about the integrity of myelin, in particular with the quantification of the magnetization transfer ratio (MTR).57

The most recent focus of our research group has been to extend the previous longitudinal studies back in time from the first episode to the study of individuals at high genetic risk for schizophrenia who are in the age range for peak incidence of developing the disorder. Current preliminary data are illustrated on 15 such adolescents.

Study	Patients	Treatment	Duration	Findings
Dazzan et al,44 2005	84 first-episode	Typical antipsychotic versus atypical antipsychotic versus no treatment	36 months	Increased thalamus (atypical), increased right ventricle (typical), decreased frontal (typical)
Garver et al,45 2005	19	Typical antipsychotic versus atypical antipsychotic versus no treatment	1 month	Increased cortical gray (atypical), no change (typical)
Lieberman et al,46 2005	161	Haloperidol versus olanzapine	Maximum 24 months	Decrease in gray matter, no change with haloperidol or olanzapine
Massana et al,47 2005	11 first-episode	Risperidone	3 months	Increased caudate
Lang et al,47 2001	30 first-episode	Risperidone	12 months	No change in caudate
Scheepers et al,48 2001	28 nonresponders	Clozapine	5 months	Decreased left caudate in clozapine responders only
Corson et al,49 1999	23 male	Typical antipsychotic versus atypical antipsychotic	24 months	Increased caudate (typical), decreased caudate (atypical)
Chakos et al,50 1994	29 first-episode	Typical antipsychotic	18 months	Increased caudate
Keshavan et al,51 1994	?	Typical antipsychotic	?	Increased caudate

Table IV. Neuroleptics and brain morphology over time.
15 controls, and 15 of their siblings with chronic schizophrenia (*Figures 2 to 6*). *Figure 2* shows a DTI comparison of FA in high-risk subjects with controls illustrating evidence of reduced FA (or directional axonal organization) already taking place in the left posterior superior temporal gyrus. *Figure 3* shows evidence of higher ADC (or water content, ie, CSF) already evident in the left parahippocampal gyrus and right superior temporal gyrus in the high-risk patients. This is more widespread in those with schizophrenia, suggesting that atrophic changes occur early and could be progressing into later stages of illness. *Figures 4 and 5* show that MT changes are also present, ie, changes in fiber membranes in the superior frontal gyrus and posterior cingulate. In addition, we have been performing functional MRI (fMRI) lexical decision task, as previously developed, which has the ability to show lateralized activation in the supe-

![Figure 2. Diffusion tensor imaging (DTI). Fractional anisotropy (FA) of 15 subjects at high genetic risk for schizophrenia. Sagittal view showing FA reduced in the left posterior superior temporal gyrus in high-risk subjects compared with controls (*P*<0.01, minimum cluster size =100). Talairach coordinates of cluster peaks: *x*=−41, *y*=−36, *z*=9.](image)

![Figure 3. Sagittal, coronal, and axial views of the region in the vicinity of the left parahippocampal gyrus and right superior frontal gyrus, where the apparent diffusion coefficient (ADC) was higher both in (A, C) subjects at high genetic risk for schizophrenia and (B, D) the patients with schizophrenia *P*<0.01, cluster size >200 mm³ as compared with controls. Sagittal, coronal, and axial views of the region in the left superior frontal gyrus and left middle frontal gyrus shows that subjects at high genetic risk for schizophrenia (E, G) and patients with schizophrenia (F, H) had higher ADC compared with controls: *P*<0.01, cluster size >200 mm³ in these regions as well.](image)
rior temporal gyrus in normal individuals. In our pre-
liminary analyses, less lateralized activation is seen in the
individuals at high-risk for schizophrenia than controls,
similar but to a lesser extent than what is seen in the
patients with chronic schizophrenia (Figure 6). These
studies taken together indicate that changes are occur-
ring early in the brains of people who are likely to later
develop schizophrenia, and that these changes are rele-
vant to those regions of the brain that are involved in
language processing.

Conclusion

It appears that brain structural change is detectable in both
gray and white matter prior to illness onset, that active
progression of the changes may also begin prior to the
onset of clinical symptoms, that progressive brain changes
may account for the brain structural anomalies seen in
chronic schizophrenia, and that the structures involved in
language processing are affected. White-matter anomalies
in the anatomical connections relevant to language and/or
myelination of these connections could be involved. The ability to have specific MRI predictors of who will develop schizophrenia among those at high risk appears hopeful for the near future. Having the ability to predict the development of illness will then lead to studies to determine whether early pharmacological treatment will prevent the cortical progressive brain cortical change and, in doing so, have a significant effect on clinical outcome.

This work was supported by R21 MH071720-01 from the National Institute of Mental Health. The co-authors wish to thank the following investigators from the Center for Advanced Brain Imaging at the Nathan S. Kline Institute for assistance in developing and implementing the new MRI protocol as well as image analysis for preliminary pilot data shown here: Babak Ardekani, Craig Branch, Matthew Hopftman, and Raj Sangoi.

12. DeLisi LE, Tew W, Xie SH, et al. A prospective follow-up study of brain morphology and cognition in first episode schizophrenic patients. Biol Psychiatry. 1995;38:349-360.
13. DeLisi LE, Grimson R, Sakuma M, Tew W, Kushner M, Hoff AL. Schizophrenia as a chronic active brain process: a study of progressive brain structural change subsequent to the onset of schizophrenia. Psychiatry Res-Neuromag. 1997;74:129-140.
14. DeLisi LE, Sakuma M, Maurizio A, Hoff AL. Ten-year follow-up of ventricular enlargement in first-episode patients with schizophrenia. Psychiatric Res-Neuromag. 2004;130:57-70.
15. Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987;44:660-669.
16. DeGreef G, Asharti M, Wu H, Borenstein M, Geisler S, Lieberman J. Follow-up MRI study in first-episode schizophrenia. Relationship of neuroanatomical changes to clinical outcome. Schizophr Res. 1995;1:5-22.
17. Lieberman J, Chakos M, Wu H, et al. Longitudinal study of brain morphology in first episode schizophrenia. Biol Psychiatry. 2001;49:487-499.
18. Gur RE, Cowell P, Turetsky BJ, et al. A follow-up magnetic resonance imaging study of schizophrenia. Eur Arch Psychiatry. 1998;248:145-152.
19. Kasai K, Shenton ME, Salisbury DF, et al. Progressive decrease of left superior temporal gyrus gray matter volume in patients with first-episode schizophrenia. Am J Psychiatry. 2003;160:156-164.
20. Jaskiw GE, Juliano DM, Hertzman M, et al. A prospective pilot study of the utility of metabolite imaging study of schizophrenia. Schizophr Res. 2004;18:121-134.

REFERENCES

1. Kraepelin E. Dementia Praevox and Paraphrenia. Barclay RM, trans. New York, NY: Krieger; 1971.
2. DeLisi LE. Defining the course of brain structural growth and plasticity in schizophrenia. Psychiatry Res-Neuromag. 1999;92:1-9.
3. Moore MD, Nathan AR, Elliot G, et al. Encephalophographic studies in mental disease. Am J Psychiatry. 1935;92:43-67.
4. Haug JO. Pneumoencephalographic studies in mental disease. Acta Psychiat Neurol Scand Suppl. 1963;151-111-104.
5. Haug JO. Pneumoencephalographic evidence of brain atrophy in acute and chronic schizophrenic patients. Acta Psychiatr Neurol Scand. 1982;8:66:374-383.
6. Huber G. Pneumoencephalographische und psychopathologische bilder bei endogen psychosen. Berlin, Germany: Springer; 1957.
7. Jacobi W, Winkler H. Encephalographische studien an chronische schizophrenen. Arch Psychiat Nervenkrankheiten. 1927;81:299-332.
8. Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res. 2001;49:1-52.
9. Kubicki M, McCarley RW, Shenton ME. Evidence for white matter abnormalities in schizophrenia. Can J Psychiatry. 2005;18:121-134.
10. DeLisi LE, Hoff A, Schwartz J, et al.Brain morphology in first-episode schizophrenic-like psychotic patients: a quantitative magnetic resonance imaging study. Biol Psychiatry. 1991;29:159-175.
11. DeLisi LE, Stritzke P, Riordan H, et al. The timing of brain morphological changes in schizophrenia and their relationship to clinical outcome. Biol Psychiatry. 1992;31:241-254.

Comprensión de los cambios estructurales del cerebro en la esquizofrenia

La esquizofrenia es una enfermedad progresiva, crónica, que se origina por cambios estructurales cerebrales, tanto de la sustancia blanca como de la sustancia gris. Es probable que estos cambios comiencen antes de la aparición de los síntomas clínicos en regiones corticales, especialmente aquellas relacionadas con el procesamiento del lenguaje. Más tarde estos cambios pueden ser detectados por un progresivo crecimiento de los ventrículos. La tecnología actural de imágenes por resonancia magnética puede aportar una valiosa herramienta para detectar precozmente cambios atípicos corticales y anomalías en el procesamiento del lenguaje que podrían permitir de identificar personas susceptibles de desarrollar una esquizofrenia.

Comprender les modifications structurales cérébrales dans la schizophrénie

La schizophrénie est une maladie progressive chronique pour laquelle on retrouve, à l’origine, des modifications cérébrales structurales des substances grise et blanche. Il est probable que ces modifications surviennent avant le début de l’apparition des symptômes cliniques dans les régions corticales, surtout celles concernées par le processus du langage. Plus tardivement, elles peuvent être détectées par un élargissement ventriculaire progressif. L’IRM (imagerie par résonance magnétique) actuelle peut être un outil précieux pour détecter les modifications précoces d’atrophie corticale et d’anomalies de processus du langage qui permettraient d’identifier les personnes susceptibles de développer une schizophrénie.
