Surgical Phase Recognition in Laparoscopic Cholecystectomy

Yunfan Li1, Vinayak Shenoy1, Prateek Prasanna1, I.V. Ramakrishnan1, Haibin Ling1, and Himanshu Gupta1

Stony Brook University, Stony Brook NY 11790, USA

Abstract. Automatic recognition of surgical phases in surgical videos is a fundamental task in surgical workflow analysis. In this report, we propose a Transformer-based method that utilizes calibrated confidence scores for a 2-stage inference pipeline, which dynamically switches between a baseline model and a separately trained transition model depending on the calibrated confidence level. Our method outperforms the baseline model on the Cholec80 dataset, and can be applied to a variety of action segmentation methods.

Keywords: Surgical Phase Recognition · Deep Learning · Robot-assisted surgery.

1 Introduction

Surgical workflow analysis is an important field in robot-assisted surgery research, which has great potential in improving patient safety and achieving better surgery outcomes\cite{12}. In particular, automatic segmentation of surgical steps is important for subsequent surgical training, intraoperative assistance and workflow optimization\cite{15,6}.

Early methods for surgical phase recognition utilized statistical models like conditional random field\cite{1,17} and hidden Markov models(HMMs)\cite{18,16,4}. However, these methods are limited in representation capacity and were unable to model complicated long-term temporal relations. Later, long short-term memory(LSTM) network\cite{9} was introduced for long-term temporal dependency modeling. SV-RCNet\cite{10} combined ResNet\cite{8} with LSTM in an end-to-end fashion to model the spatio-temporal relations between video frames. Czempiel et al.\cite{2} proposed a multi-stage TCN model named TeCNO, which explores long-term temporal relations from pre-computed spatial features.

The introduction of Transformer\cite{19} models saw a major shift in the paradigm of sequential modeling and significant improvement in various computer vision related tasks, including surgical phase recognition. Gao et al.\cite{5} proposed a Transformer-based network which combines pre-computed spatial and temporal embeddings within a fixed temporal window to predict surgical phase labels.
Czempiel et al. [3] introduced a novel attention regularization loss within the Transformer framework to encourage the model to focus on high-quality frames during training.

Laparoscopic Cholecystectomy (LC) procedures in most cases follow a series of necessary steps [13]. Based on this observation, we first devised an inference scheme which transitions between a set of 2-class classifiers based on previous and current predictions. The intuition is that in surgeries where the steps are strictly followed, there are only two possibilities as to which phase a certain frame can belong to. Additionally, we found that 2-class classifiers are better at distinguishing between two neighboring steps than a full-class classifier. We will evaluate this methodology and discuss its limitations.

Subsequently, we devised another inference scheme based on confidence levels from the baseline model, the intuition being that when the baseline model is less confident about the prediction, we can switch to a 2-class model with higher accuracy. In safety critical applications such as surgical phase recognition, classification models should not only be accurate, but also indicate when they are likely to be wrong [14]. However, modern deep learning models like the Transformers usually suffer from miscalibration issues [7], therefore producing over-confident predictions, which limits the chance for human intervention or other alternative methods. Therefore, we propose a complementary scheme which addresses the problem of over-confident Transformer models using temperature scaling, an effective confidence calibration method, and achieves better results than the baseline model.

2 Methodology

2.1 Dataset

The Cholec80 dataset [18] includes 80 videos of laparoscopic cholecystectomy procedures with a resolution of 1920×1080 or 854×480 pixels recorded at 25 frames-per-second (fps). The dataset defines 7 surgical stages for the procedure, and tool presence labels are provided for multi-task learning. Following previous works, all videos are subsampled to 1 fps, and all frames are resized to 250×250 pixels. For fair comparison, we use 40 videos for training, 8 videos for validation, and 32 videos for testing across all experiments.

2.2 Transformer model

Unlike a sequence-to-sequence model that processes input one at a time, a transformer model relies on self-attention mechanism to attend to the entire input sequence at once. The scoring functionality of the self-attention allows the model to focus on only the relevant parts of the input.

The traditional transformer model (Fig. 1) is a stack of encoders and decoders. Each encoder if broken into two sub-layers: a multi-head self-attention
mechanism and point-wise feed forward network. The output of an encoder layer is the input to the subsequent encoder layer in the stack. The decoder layer - in addition to the two sub-layers in the encoder - has another multi-head attention layer that performs attention over encoder output.

Fig. 1. Transformer Model

The attention function maps a query Q with all the keys K. Its output is a weighted sum of all its value vectors V, where the weights are softmax scores computed using Q and K. We can think of the query as the search bar in youtube search that is mapped against a set of keys (video title, etc) associated with candidate videos in their database, then present the best matched values (videos). Each scaled dot-product attention unit in the multi-head attention learns a set of weights, W_Q, W_K, and W_V. The weights are multiplied with input, x_t at timestep t to produce query vector ($q_t = x_tW_Q$), key vector ($k_t = x_tW_K$) and value vector ($v_t = x_tW_V$). Each unit computes the attention of Q with K using:

$$Attention(Q,K,V) = \text{softmax}(\frac{QK}{\sqrt{d_Q}})V$$

where Q, K and V are matrices where tth row are q_t, k_t and v_t respectively. Each unit in the multi-head attention learns its own set of weights. The outputs are concatenated and fed to the feed-forward layers.

2.3 Baseline model

We adopt Trans-SVNet as our baseline model, which achieved state-of-the-art results on the Cholec80 dataset. To be consistant with previous works, we
first preprocess the dataset as specified in TMRNet [11]. Following the training pipeline of Trans-SVNet, we established a baseline result according to our dataset split.

2.4 Transition models

Transition models are trained in the same way as the baseline model, except that we only train 2-class classifiers on two neighboring phases at a time. In total, this process yields 6 transition models. The intuition behind this approach is that 2-class predictors can better distinguish between two sequential phases than the 7-class model, as demonstrated in Table 1.

Model	Accuracy (%)
Trans-SVNet (baseline)	87.44
Trans_{1-2}	96.04
Trans_{2-3}	95.19
Trans_{3-4}	94.71
Trans_{4-5}	97.85
Trans_{5-6}	93.48
Trans_{6-7}	83.47

2.5 Transition-based inference

Inference strategy Upon training the transition models, we designed our inference scheme as follows: (1) Initialize a buffer \(B_N \) which stores the latest \(N \) predictions and fill it with 1; (2) At each timestep, we look at the majority element in \(B_N \), if the majority element is \(i \) \((i < 7)\), we use \(Trans_{i,(i+1)} \) for predicting the current label; if \(i \) is 7, we use \(Trans_{6,7} \); (3) Append the current prediction to \(B_N \) and pop out the oldest prediction from \(B_N \). The buffer size \(N \) is set to 100.

Results and discussion Table 2 shows the results from transition-based inference strategy. As we can see, it does not show improvement upon the baseline model. This strategy is good at avoiding noisy predictions from the baseline model, in which case the predicted phase labels tend to jump back and forth during transition periods. However, it also suffers from cascading effect as shown in Fig. 2, which means a streak of incorrect predictions can lead to using the wrong transition model much further in the video, which causes bad overall results.
Confidence-based inference

Expanding on the previous strategy, we devised another strategy which relies on the confidence level output from the baseline model. Intuitively, when the output logits have a low value, it is less confident in its prediction than an otherwise high value. Based on this relative confidence level, we can set a threshold and switch to a transition model when the confidence of the model is below a desired level.

Inference strategy We define our confidence-based inference strategy as follows: (1) Define a threshold t_{conf} for the confidence score and the latest prediction $p_{\text{last}} = 1$; (2) For each timestamp, use the baseline model to get a prediction p_{base} and the corresponding confidence level c_{base}; if $c_{\text{base}} > t_{\text{conf}}$, update p_{last} to p_{base}; if $c_{\text{base}} \leq t_{\text{conf}}$, we look at the value of $p_{\text{last}} = i \ (i < 7)$, and use $Trans_{i,i+1}$ to generate a substitute prediction p_s, then update p_{last} to p_s; when p_{last} is 7, we simply use $Trans_{6,7}$.

Confidence calibration While modern deep leaning models have dramatically improved neural network accuracy, they are also more prone to miscalibration (cite). This problem persists when applying our confidence-based inference strategy, as it heavily relies on reasonable confidence scores from the model. To address this issue, we apply temperature scaling (cite) after training to achieve a better calibrated model. Temperature scaling uses a single scalar parameter $T > 0$ for calibration. Given the logit vector z, the new confidence score is

$$\hat{q} = \max_k \sigma_{SM}(z/T)^{(k)}$$

(1)

σ_{SM} is the Softmax (cite) function, whereas $k = \{1 \ldots K\}$ is one of the K classes. We use negative log-likelihood (NLL) [7] and expected calibration error (ECE) [7] as metrics for measuring the level of calibration. For both metrics, smaller values correspond to better calibration. The calibration results are shown in Table 3.
Table 3. Confidence calibration results.

Model	NLL	ECE
baseline	0.576	0.215
calibrated	0.402	0.031

Results and discussion Table 2 shows the results of the confidence-based inference strategy. As we can see, without calibration, the strategy performs poorly due to over-confident logits from the baseline model. With temperature scaling, our strategy was able to outperform the baseline model, demonstrating the effectiveness of confidence calibration.

3 Conclusion

In this technical report, we explored incorporating transitional constraints into surgical phase recognition with Transformer models. Through experiments, we discovered that applying local transitional constraints can lead to catastrophic cascading effects, while in the meantime avoids noisy boundaries. Our proposed confidence-based inference strategy was able to leverage the superior performance of 2-class models and achieved better overall accuracy.
References

1. Katia Charrière, Gwénoëlle Quellec, Mathieu Lamard, David Martiano, Guy Caugueul, Gouenou Costrieux, and Béatrice Cochener. Real-time analysis of cataract surgery videos using statistical models. Multimedia Tools and Applications, 76(21):22473–22491, 2017.
2. Tobias Czempiel, Magdalini Paschali, Matthias Keicher, Walter Simson, Hubertus Feussner, Seong Tae Kim, and Nassir Navab. Tecno: Surgical phase recognition with multi-stage temporal convolutional networks. In International conference on medical image computing and computer-assisted intervention, pages 343–352. Springer, 2020.
3. Tobias Czempiel, Magdalini Paschali, Daniel Ostler, Seong Tae Kim, Benjamin Busam, and Nassir Navab. Opera: Attention-regularized transformers for surgical phase recognition. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 604–614. Springer, 2021.
4. Olga Dergachyova, David Bouget, Arnaud Huault, Xavier Morandi, and Pierre Jannin. Automatic data-driven real-time segmentation and recognition of surgical workflow. International journal of computer assisted radiology and surgery, 11(6):1081–1089, 2016.
5. Xiaojie Gao, Yueming Jin, Yonghao Long, Qi Dou, and Pheng-Ann Heng. Transsvnet: accurate phase recognition from surgical videos via hybrid embedding aggregation transformer. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 593–603. Springer, 2021.
6. Carly R Garrow, Karl-Friedrich Kowalewski, Linhong Li, Martin Wagner, Mona W Schmidt, Sandy Engelhardt, Daniel A Hashimoto, Hannes G Kenngott, Sebastian Bodenstedt, Stefanie Speidel, et al. Machine learning for surgical phase recognition: a systematic review. Annals of surgery, 273(4):684–693, 2021.
7. Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In International Conference on Machine Learning, pages 1321–1330. PMLR, 2017.
8. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
9. Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.
10. Yueming Jin, Qi Dou, Hao Chen, Lequan Yu, Jing Qin, Chi-Wing Fu, and Pheng-Ann Heng. Sv-rcnet: workflow recognition from surgical videos using recurrent convolutional network. IEEE transactions on medical imaging, 37(5):1114–1126, 2017.
11. Yueming Jin, Yonghao Long, Cheng Chen, Zixu Zhao, Qi Dou, and Pheng-Ann Heng. Temporal memory relation network for workflow recognition from surgical video. IEEE Transactions on Medical Imaging, 40(7):1911–1923, 2021.
12. Lena Maier-Hein, Swaroop S Vedula, Stefanie Speidel, Nassir Navab, Ron Kikinis, Adrian Park, Matthias Eisenmann, Hubertus Feussner, Germain Forestier, Stamatia Giannarou, et al. Surgical data science for next-generation interventions. Nature Biomedical Engineering, 1(9):691–696, 2017.
13. Arnab Majumder, Maria S. Altieri, and L. Michael Brunt. How do i do it: laparoscopic cholecystectomy. Annals of Laparoscopic and Endoscopic Surgery, 5(0), 2020.
14. Jooyoung Moon, Jihyo Kim, Younghak Shin, and Sangheum Hwang. Confidence-aware learning for deep neural networks. In international conference on machine learning, pages 7034–7044. PMLR, 2020.
15. Nicolas Padoy. Machine and deep learning for workflow recognition during surgery. Minimally Invasive Therapy & Allied Technologies, 28(2):82–90, 2019.
16. Nicolas Padoy, Tobias Blum, Hubertus Feussner, Marie-Odile Berger, and Nassir Navab. On-line recognition of surgical activity for monitoring in the operating room. In AAAI, pages 1718–1724, 2008.
17. Gwénolé Quellec, Mathieu Lamard, Béatrice Cochener, and Guy Cazuguel. Real-time segmentation and recognition of surgical tasks in cataract surgery videos. IEEE transactions on medical imaging, 33(12):2352–2360, 2014.
18. Andru P Twinanda, Sherif Shehata, Didier Mutter, Jacques Marescaux, Michel De Mathelin, and Nicolas Padoy. Endonet: a deep architecture for recognition tasks on laparoscopic videos. IEEE transactions on medical imaging, 36(1):86–97, 2016.
19. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.