Genome structure and evolution of Antirrhinum majus L

Miaomiao Li, Dongfen Zhang, Qiang Gao, Yingfeng Luo, Hui Zhang, Bin Ma, Chunhai Chen, Annabel Whibley, Yu’e Zhang, Yinghao Cao, Qun Li, Han Guo, Junhui Li, Yanzhai Song, Yue Zhang, Lucy Copsey, Yan Li, Xiuxiu Li, Ming Qi, Jiawei Wang, Yan Chen, Dan Wang, Jinyang Zhao, Guocheng Liu, Bin Wu, Lili Yu, Chunyan Xu, Jiang Li, Shancen Zhao, Yijing Zhang, Songnian Hu, Chengzhi Liang, Ye Yin, Enrico Coen and Yongbiao Xue

Snapdragon (Antirrhinum majus L.), a member of the Plantaginaceae family, is an important model for plant genetics and molecular studies on plant growth and development, transposon biology and self-incompatibility. Here we report a near-complete genome assembly of A. majus cultivar J17 (A. majus cv. J17) comprising 510 Megabases (Mb) of genomic sequence and containing 37,714 annotated protein-coding genes. Scaffolds covering 97.12% of the assembled genome were anchored on eight chromosomes. Comparative and evolutionary analyses revealed that a whole-genome duplication event occurred in the Plantaginaceae around 46–49 million years ago (Ma). We also uncovered the genetic architectures associated with complex traits such as flower asymmetry and self-incompatibility, identifying a unique duplication of TCP family genes dated to around 46–49 Ma and reconstructing a near-complete ψ S-locus of roughly 2 Mb. The genome sequence obtained in this study not only provides a representative genome sequenced from the Plantaginaceae but also brings the popular plant model system of Antirrhinum into the genomic age.

The genus Antirrhinum belongs to the family Plantaginaceae and includes about 20 species with the chromosome number of 2n = 2x = 16. Antirrhinum originated in Europe and is mainly distributed in Europe, Asia and Africa around the Mediterranean coast. Different species in the genus Antirrhinum exhibit differences in flower colour, flower pattern, fragrance and flowering time; interspecific hybridization has also been described. The genus exhibits two major mechanisms that promote outcrossing: insect pollination (entomophily) and self-incompatibility1–3. The self-compatible Antirrhinum was domesticated as a garden ornamental over 2,000 years ago1.

Antirrhinum has served as a model system for molecular and developmental genetics for the past three decades1–4. Several key floral genes were first identified in Antirrhinum including founding members of the MADS (DEFICIENS) and TCP (CYCLOIDEA) gene families, MYB genes controlling petal epidermal cell shape (MIXTA) or flower colour (ROSEA and VENOSA) and SLFs (S-Locus F-box) controlling self-incompatibility5–12. Isolation and analysis of genes in Antirrhinum have been facilitated by the availability of endogenous active transposons13–15. For example, five transposable elements (Tam1, Tam2, Tam3, Tam4 and Tam11)16–18 have contributed to the identification of floral homeotic genes. However, so far these studies have been carried out without the benefit of a genome sequence to provide an overall evolutionary and architectural context for these genes, transposons and traits.

Here we report a near-complete genome assembly of A. majus. We annotated 37,714 protein-coding genes on the basis of expression and homology evidence. The assembly was generated by combining whole-genome shotgun (WGS) sequencing of short reads on the Illumina platform and single-molecule real time (SMRT) long reads on the Pacific Biosciences (PacBio) platform. Most of the assembled sequences were anchored onto chromosomes to form eight pseudomolecules using a genetic map. Comparative analysis based on this sequence reveals that the Plantaginaceae and Solanaceae diverged from their most recent ancestor about 62 Ma, and that a whole-genome duplication (WGD) event occurred around 46–49 Ma. We found that the WGD contributed to the evolution of the TCP gene family related to flower asymmetry in A. majus. We also analysed the near-complete genomic structure of the pseudo (ψ) S-locus of A. majus of roughly 2 Mb, which contained 102 genes including 37 SLF genes. The genome sequence provided here will accelerate genomic and evolutionary studies in this model species.

Results
Genome sequencing, assembly and annotation of A. majus. We sequenced a highly inbred Antirrhinum line (A. majus cv. J17) using a combination of Illumina short-read and PacBio long-read sequencing technologies. The genome size was estimated from
To evaluate the assembled genome quality, we aligned 25,651 expressed sequence tags (ESTs) of *Antirrhinum* downloaded from National Center for Biotechnology Information (NCBI) nucleotide database to the assembled genome, and found that 96.59% of the ESTs could be mapped. Alignments between the assembled genome and three sequenced Bacterial Artificial Chromosomes (BACs) indicated an average nucleotide accuracy of 99.65% in the assembly. BUSCO’s analysis showed 93.88% complete genes at the genome mode and 93.40% at the protein mode, which suggested that the quality of the assembled *Antirrhinum* genome sequence was comparable to that of other published plant genomes (*Petunia* and *Arabidopsis*) (Supplementary Fig. 5–7 and Supplementary Data Set 2). Taken together, these results suggested that the *A. majus* genome assembly was both highly accurate and near completion.

We predicted a total of 37,714 protein-coding genes with an average transcript length of 3,166 base pairs (bp) by using a combination of ab initio and evidence-based methods. We used *Antirrhinum* EST sequences and RNA-seq data from six major tissues: leaf, root, stem, stamen, pistil and pollen (Supplementary Data Set 3) to confirm the expression of the genes. Approximately 89% of the genes were functionally annotated. The average gene density in *Antirrhinum* was one gene per 15.5 kilobase (kb), which is about three times lower than *Arabidopsis* (one gene per 4.5 kb) and slightly higher than tomato (one gene per 25.7 kb). Genes were distributed unevenly, being more abundant towards the ends of the chromosomal arms (Fig. 1). We identified genes encoding 981 transfer RNAs, 800 microRNAs, 10 ribosomal RNAs (18S, 28S, 5.8S and 5S) and 622 small nuclear RNAs. A total of 268.3 Mb (52.6%) of sequences was annotated as repeats, including a wealth of class 2 retrotransposon insertions (Supplementary Fig. 5–7 and Supplementary Data Set 2).

We found 95 transposable elements belonging to the En/Spm/CACTA family. Three subfamilies (Tam2, Tam4 and Tam11) had copies with 100% identity, suggesting recent duplication/transposition events. We also identified 166.21 Mb comprising long-terminal repeat (LTR) retrotransposons, with sequence similarity between copies indicating a mean divergence time of ~0.86 Ma. Bursts of Gypsy and Copia retrotransposon insertions were detected at 0.1–0.2 Ma and 120–130 Ma, respectively. These results suggest that the *Antirrhinum* genome has a long history of...
active transposition (Supplementary Table 11, Supplementary Fig. 8 and Supplementary Data Set 4).

Comparative genomic analysis of A. majus. Self-alignment analysis revealed duplicated and triplicated regions between and within chromosomes. Paralogous relationships among the eight *Antirrhinum* chromosomes revealed 45 major duplications and two triplications, collectively containing 1,841 pairs of paralogous genes (Fig. 1 and Supplementary Data Set 5). We performed all-against-all comparisons to identify 2,115 single-copy genes of *Antirrhinum* with orthologues in nine angiosperm species (*A. majus*, *Arabidopsis thaliana*, *Amborella trichopoda*, *Carica papaya*, *Oryza sativa*, *Petunia hybrida*, *Prunus mume*, *Solanium lycopersicum*, and *Vitis vinifera*). The resulting phylogenetic tree (Fig. 2a) show that the *Antirrhinum* lineage split from potato and tomato lineages around 62 Ma, consistent with the results of Bell et al.25.

For inter-species comparative genomic studies, we examined the synteny of *Antirrhinum* chromosomes and those of *V. vinifera*. The selected syntenic gene numbers are more than 50 in each block.

Fig. 2 | Genome evolution of A. majus. a, Phylogenetic tree of angiosperm species including their divergence time on the basis of orthologues of single-gene families. The red star highlights the genome duplication in the *A. majus* lineage. The number in each node indicates Ma between two divergent branches. Green/red numbers indicate expansion and contraction gene families. *A. trichopoda* was used as an outgroup. Bootstrap values for each node are above 100%. b, Synteny blocks among chromosomes of *A. majus*, *V. vinifera* and *S. lycopersicum*. The numbers represent individual chromosomes. c, Density distributions of Ks for paralogous genes among *A. majus*, *V. vinifera* and *S. lycopersicum*. d, A Venn diagram of shared orthologues among four species of *A. majus*, *S. lycopersicum*, *A. thaliana* and *O. sativa*. Each number represents a gene family number shared among the genomes.
and *Solanum lycopersicum*. We found only small syntenic blocks between the *A. majus* and the *V. vinifera* or *S. lycopersicum* chromosomes (Fig. 2b). We also compared *A. majus* with *Sesamum indicum, Olea europaea, Helianthus annuus* and *Coffea arabica*, which all belong to Lamiales. Large syntenic blocks were found between the *Antirrhinum* genome and these species, especially between *Antirrhinum* chromosomes 1, 2, 6 and 8 and *C. arabica* chromosomes 3, 1/1, 4/7, and 6, respectively (Supplementary Figs. 9 and 10).

We identified the syntenic blocks within the *A. majus* genome through intragenome comparisons. We calculated the density distribution of synonymous substitution rate per gene (Ks) between the collinear paralogous genes and inferred paleotetraploidy event in *Antirrhinum*. A peak at around 0.57–0.60 indicated that a WGD, which was Plantaginaceae-specific, occurred around 46–49 Ma (Fig. 2c), clearly after the divergence of *Antirrhinum* lineage from the lineage of potato and tomato.

We then compared the complexity of gene families between *Antirrhinum* and other species: 9,503 gene families were shared by *Antirrhinum*, *Arabidopsis*, rice and tomato; 6,677 gene families were possibly contracted in *Antirrhinum*, while the other 3,778 gene families were expanded (Fig. 2d). Gene-set enrichment analysis (GSEA) analysis results showed that gene families encoding protein kinase activity, catalytic activity, transporter activity and ATP-binding activity were most obviously expanded (Supplementary Table 12). Transcription factor gene families, such as AP2, C2H2, GRAS, were expanded in species belonging to the order Lamiales (*TCP* and *Trihelix*), and several sequenced angiosperms with floral symmetry. The TCP family is divided into two clades, class I (PCF) and II, and class II is further divided into two clades, CIN and CYC/TB1. Both eudicot and monocot share a subfamily containing *CIN* and *DIC* genes that belong to the CIN/TB1 clade. However, the basal angiosperm *A. trichopoda*, which has radially symmetrical flowers, lacks any members of the class II CYC/TB1 clade. Two monocots and several eudicots also have radially symmetrical flowers (Fig. 3). These findings suggest that the TCP class II CYC/TB1 clade appeared after the emergence of radially symmetrical flowers, and the initial role of CYC/TB1 clade was thus not likely to be involved in the control of floral symmetry (Fig. 3 and Supplementary Data Set 8).

We identified a total of 30 putative functional TCP family genes in *Antirrhinum*: 13 class I genes and 17 class II genes (10 in the CIN clade and 7 in the CYC/TB1 clade) (Supplementary Data Set 8). Syntenic block and Ks analyses of the orthologous gene pairs revealed that both WGD and tandem duplication contributed to the expansion of TCP family members. A previous study showed that *CIN* and *DIC* have partial redundancy in the control of flower asymmetry and exhibit only partially similar expression patterns in floral meristems in *A. majus*, and the two genes act together to...
establish the flower asymmetry in *A. majus*. We found that the CYC and DICH genes reside on a pair of syntenic regions including 79 homologous gene pairs (Supplementary Table 14). The *Ks* analysis results show that this syntenic block was retained from the Plantaginaceae-specific WGD event. Previous phylogenetic analysis suggested that zygomorphic flowers independently evolved from actinomorphic ancestors more than 25 times. On the basis of fossil records, it was proposed that clearly zygomorphic flowers emerged in various lineages roughly 50 Ma, concurrent with the occurring time of the WGD event. These results suggest that the WGD to generate both CYC and DICH genes played a critical role in the evolution of zygomorphic flowers in the *Antirrhinum* lineage.

Furthermore, two MYB-class genes RAD and DIV, acting downstream of CYC/DICH in the control of floral symmetry, interact with the DRIF gene. The DRIF has homologous copies with similar *Ks* to CYC/DICH, and they are also located at a WGD-derived syntenic block. These results further support the idea that the key regulators of floral asymmetry were retained from the genes generated by the WGD in *Antirrhinum*.

Structure of the ψS-locus in *A. majus* and its gene collinearity in self-incompatible species. In previous cytological investigations, we found that the *Antirrhinum* S-locus is located in a heterochromatin region on the short arm of chromosome 8 (ref. 33). The cultivated species *A. majus* is self-compatible, carrying a pseudo (ψ)S-locus. Scanning the *A. majus* genome for conserved (FBA/DICH) genes played a critical role in the evolution of zygomorphic flowers in the *Antirrhinum* lineage.

Fig. 4 | Genomic features of the ψS-locus of *A. majus* and its synteny with the S-locus regions of *A. hispanicum*. **a**, Chromosomal locations of three scaffolds covering the ψS-locus region of *A. majus*. A genetic recombination map of chromosome 8 is shown on the top panel. The x axis shows its physical distance (Mb) and the y axis its genetic distance (cM). A schematic representation of chromosome 8 is shown in the middle panel with a red dot indicating its centromere. The ψS-locus is depicted as a blue box on its short arm. A vertical red line in the chromosome indicates the RAD gene. The lower panel shows three scaffolds of Sc29, Sc276 and Sc184 covering the ψS-locus region. **b**, Transcriptional profiles of the ψS-locus and its flanking regions of *A. majus*. The light orange shadow denotes the predicted ψS-locus region (SLF1–SLF37). This region between RAD and SLF37 contains a total number of 102 annotated genes. The bottom panel is a schematic representation of the SLF genes. Orange squares indicate the ψSLF genes and green arrows the other annotated genes (I: a putative MYB family transcription factor; II and III, putative RNA-binding proteins and IV, a putative phosphate-dependent transferase). **c**, The synteny of the S-locus regions between *A. majus* and *S. lycopersicum* and its gene collinearity with the *A. hispanicum* genome. Different colours indicate syntenic and inversion regions between the ψS-locus and *S. lycopersicum* (transformation-competent artificial chromosome) sequences and *A. hispanicum* S-locus, an *S-RNase* allele, suggesting that the *S-RNase* gene was found in every sequenced *S-locus* of *A. hispanicum* and its syntenic and inversion regions between the ψS-locus and *S. lycopersicum*. Expression analysis showed that 30 SLF genes were expressed in either pollen or anthers indicating they could play a role in pollen function. The number of SLF genes in the *A. majus* ψS-locus is more than twice that found in *S. lycopersicum* (15 SLF genes including 11 pseudogenes) and that the ψS-locus of *A. majus* contains the largest number of active SLF genes annotated so far in a plant genome (Fig. 4b and Supplementary Data Sets 9–11).

We compared the ψS-locus sequence with nine assembled TAC (transformation-competent artificial chromosome) sequences from four S haplotypes of self-incompatible *A. hispanicum*. Gene collinearity between S-alleles was revealed in the genomic region extending from *AhSLF12* to *AhSLF13* (Fig. 4c). An intrachromosome inversion around the S-locus was found to occur in the *S* haplotype of *A. hispanicum* as described previously. In contrast to the ψS-locus of *A. majus*, an *S-RNase* gene was found in every sequenced *A. hispanicum* S allele, suggesting that the *S-RNase* had been deleted in the ψS-locus. Notably, a pseudo-gene *AmSLF18* in the *A. majus*
ψS-locus had an orthologue in the S haplotype in *A. hispanicum*, which had a complete coding sequence and was expressed, suggesting the latter is an active gene in the S-locus and the former lost function, possibly following the loss of S-RNase ([Fig. 4c](#) and Supplementary Data Set 11). The orthologous SLFs among different haplotypes show a low allelic diversity, consistent with our previous finding.

The nonsynonymous (Ka) and synonymous (Ks) substitution rates of the 12 collinear SLF gene pairs showed that the values of SLFs are lower than that of S-RNase in *Antirrhinum*, and the allelic SLF genes showed a ratio of Ka/Ks = 0.41, consistent with a negative frequency-dependent selection detected previously. Only SLF14 appears to be a positively selected gene (Ka/Ks > 1) (Supplementary Data Set 12). The average divergence time of these orthologous SLF genes was estimated to be 4 Ma, similar to an estimated early *Antirrhinum* species divergence time of less than 5.3 Ma. However, the average divergence time of the S-RNases of *A. hispanicum* is estimated to be around 62–120 Ma, similar to the species divergence between *Antirrhinum* and Solanaceae species estimated in our study (Supplementary Data Set 13). These results suggest that the divergence of S-RNase occurred before the WGD and they were well maintained in the lineage of *Antirrhinum*. Our results showed that a near-complete ψS-locus of *A. majus* was identified.

Discussion

The genome sequence of *A. majus* reported here represents a sequenced genome of a species belonging to the family Plantaginaceae, and reveals a WGD specific to this family. Zygomorphy in the *Antirrhinum* lineage is thought to have arisen in the late Cretaceous period in the fossil record, as a mechanism facilitating insect-mediated pollination. We show that two key TCP genes controlling zygomorphy are collinear on a syntenic block generated by the WGD of the Plantaginaceae, suggesting that the duplication may have provided a genetic basis for the evolution of this trait. An independent WGD may have been involved in the evolution of zygomorphy in *Glycine*, and the missing type I Mbp MADS-box genes family resulted in bilaterally symmetrical flowers in the Orchidaceae. The timing of the WGD event in the Plantaginaceae corresponds to the age of this family on the basis of the molecular dating approaches. WGD events have been considered to be catalysts for species diversification and evolutionary novelty in plants.

The availability of more species with completely sequenced genomes in the Plantaginaceae and their relatives may help clarify the role of the WGD in the expansion and evolution of the family.

The *Antirrhinum* genome also sheds light on the evolution of self-incompatibility. The fine genomic structure of the ψS-locus from *A. majus* reveals a large number of pollen SLFs, probably due to gene duplication, recombination suppression, purifying selection and frequency-dependent selection associated with the S-locus. Relatively low allelic diversity was observed between orthologous SLFs among different haplotypes, compared with the paralogues within a haplotype, perhaps because extensive divergence would lead to recognition and self-inactivation of S-RNase resulting in loss of self-incompatibility. The deletion of S-RNase in cultivated *A. majus* could be responsible for the loss of self-incompatibility, giving an essentially irreversible transition. Such deletions may account for why self-compatible species are difficult or almost impossible to revert back to self-incompatible species (Doll's Law).

The high microlinearity of the S-locus between self-incompatible and self-compatible *Antirrhinum* indicates that the deletion of S-RNase in self-compatible species was a recent event. In fact, some mutated SLF genes in different haplotypes also arose recently. The physical size of the S-locus in *S. lyrata* is much larger than that in *A. majus* (17 Mb compared to 2 Mb), yet it contains fewer SLF genes (17 compared to 37). Less repetitive sequences are found in the ψS-locus and S loci of *Antirrhinum* compared with that of *Solanum*, suggesting that an increase of the gene numbers through unequal crossovers possibly results in the *Antirrhinum* S-locus, and that repetitive element enrichments could underlie the large physical size and low gene density of the S-locus of *Solanum*, enhanced perhaps by its centromeric location.

In conclusion, the assembled *A. majus* sequence provides a reference genome for the Plantaginaceae and will be helpful for genetic, genomic and evolutionary studies in both *Antirrhinum* and other flowering plants. For example, studies on a natural hybrid zone between *Antirrhinum* species using this genome sequence as a reference have revealed patterns of selection and gene flow underlying the evolution of flower colour pattern. We hope the resource will be a useful stimulus to further studies.

Methods

Plant materials. The seeds of cultivated *Antirrhinum* (*A. majus* JI7) were surface-sterilized and plated on Murashige-Skoog (1/2 MS) plates (x1/2 MS salts, 0.23% myo-Inositol and x1 Gamborg's B5 vitamin mixture, all from Sigma grown in growth chambers (160 h/8 h, light/dark) with white fluorescent light (100 μmol m⁻² s⁻¹) at 22 °C. After avoiding light for 72 h, we harvested leaf tissues and extracted DNA using the cetlytrimethylammonium bromide (CTAB) method.

To generate the RILs, *A. majus* JI7 stock (TA7–7) was crossed to *A. charidemi* (PacBio) platform for single-molecule, real-time (SMRT) sequencing we generated a total of 2.5 × 10⁶ paired-end sequencing libraries with insert sizes from 170bp to 20kb for standard WGS sequencing. For small-insert (< 2 kb) libraries, DNA was fragmented, end repaired, ligated to Illumina paired-end adaptors, size selected and purified by PCR amplification. For large-insert (> 2 kb) mate-paired libraries, about 20–50 μg genomic DNA was fragmented, and biotin-labelled adaptors were annealed to the fragment ends before self-ligation to form circularized DNA. This library was re-fragmented and target sequences (that is, the long molecule ends) were enriched using biotin/streptavidin, and then prepared for sequencing. All of the above libraries were sequenced on Illumina Genome Analyzer sequencing platforms. In total, we generated about 90.85 Gb (roughly × 144.24 reads) using the Pacific Biosciences GATR platform for single-molecule, real-time (SMRT) sequencing we generated a total of 25.89 Gb from 30 SMRT cells, with an average subread length of 5.2 kb and a N50 size of 13.4 kb. The 48 individual RILs were genotyped using the WGS sequencing. We obtained a total of 201.49 Gb sequencing data and the average sequencing depth of each sample was 4.5 Gb (x8.2). 92.40% of the reads could be mapped into the genome.

The genome size was evaluated using the total length of sequence reads divided by sequencing depth as described.

WGS. High-quality genomic DNA was extracted from young leaves of cultivated *A. majus* JI7 using the CTAB method. According to the manufacturer's instructions ([Illumina HiSeq 2000](#)), we constructed a total of 2 × 10⁶ paired-end sequencing libraries with insert sizes from 170bp to 20kb for standard WGS sequencing.

Genome assembly. The assembly was performed on HPC (High Performance Computing) system with 40 nodes, each one having 16 CPU cores and 128 GB of RAM. The operating system was CentOS 6.3 64-bit (Linux). We corrected the PacBio long reads using the Canu pipeline; then assembled them into contigs ([N50 = 733 kb; total length = 510 Mb](#)). The Canu pipeline parameters were: genome size = 600 Mb, error rate = 0.013. We further polished the PacBio assembled contigs using Quiver. We used the mate-pair sequences to connect the contig sequences with SPSPACE. Initially, we used R 30 connections to support connection of contig sequences into a scaffold. We then repeated this process iteratively using the result of the scaffolding as input but reducing the connection support by five. The final assembly spans were produced with the connection support parameter set to 10.

We constructed the linkage map and organize scaffolds into pseudochromosomes, we ressequenced individual RILs and their parents. The raw reads generated from the Illumina-Pipeline included low-quality, adaptor contaminated and duplicated
reads. Reads were filtered using Trimmmomatic with default parameters, retaining only reads longer than 50 bp after quality trimming. We used BWA-mem (http://bio-bwa.sourceforge.net/) with default settings to align filtered reads to the assembled genome. SNPs and indels were called using GATK FilterSNPs to filter out low-quality (mapping quality <30) alignments and the Genome Analysis Toolkit (GATK) (http://www.broadinstitute.org/gatk/) UnifiedGenotyper to call SNPs. The SNPs were filtered using the GATK VariantFilter program with the following criteria: clusterWindowSize:10, MQQ:48=(MQQ/1.00 DP)=0.1, QUAL:30.0, DP:4.523, 444 SNPs were filtered between the parents on 1,386 contigs and used to filter out unmatched SNPs or extremely unevenly distributed SNPs in the RIL population. A total of 4,198,995 filtered SNPs and 2,300 bin markers were obtained on 1,381 contigs for the linkage map construction. Published markers were used to validate the linkage map (Supplementary Table 5 and Supplementary Data Set 1). Fifty SNP sliding windows were used to create bins to find recombination sites. JoinMap4.1 (https://www.software.s提质e.kaezyna.nl/index.php/JoinMap/) ML methods were used to cluster the bins into LGs, and then the MstMap (http://www.mstmap.org/download.html) Kosambi model was used to compute the order of the bins. The final map anchored 1,280 contigs to eight linkage groups.

To evaluate the assembled genome quality, we first mapped the illumina NGS data to the genome using BWA-mem (http://bio-bwa.sourceforge.net/). Then we aligned the EST sequence download from NCBI (http://www.ncbi.nlm.nih.gov/nucest/?term=EST%20Antirrhinum) using BLAT. Finally, we used BUSCO (http://busco.ezlab.org/v3/) to examine the gene content with Embryophytaodb database and parameters. We used BWA-mem with default settings to align three BAC sequences to the assembled genome. GenBank numbers of the three BACs are AA935269.1, FJ407691.1 and FJ407701.1 with lengths of 85, 51 and 111.3 kb, separately.

Gene structure annotation and functional annotation. The gene annotation in the A. majus genome was performed by a combination of ab initio and evidence-based methods. The protein sequences from three sequenced plants, namely, A. thaliana, C. papaya and S. tuberosum, were aligned to the genome using TBLASTN with an E value cut-off of 1 × 10−10. The homologous genomic sequences were aligned against the matching proteins using GeneWise (https://www.ebi.ac.uk/Tools/pfa/genewise/) for accurate spliced alignments. For ab initio prediction, Augustus (http://augustus.gobics.de) and GlimmerHMM were run on the repeat masked genome with parameters trained from the closely related species and partial or small genes that had less than 150 bp coding length were divided into ESTs. ESTs were aligned to the genome using BLAT to generate the aligned sequences, which were linked according to the overlap using PASA. Finally, we aligned all the RNA reads to the reference genome by TopHat (https://ccb.jhu.edu/software/tophat/index.shtml), assembled the transcripts using Cufflinks under default parameters and predicted the open reading frames to get reliable transcripts with HMM-based training parameters. To finalize the gene set, all the predictions were combined using GLEAN to produce the consensus gene set. On the other hand, another gene annotation in the snapdragon genome was performed using the Gramene pipeline. The evidence included 167 messenger RNAs and 25,310 ESTs of Antirrhinum from the NCBI nucleotide database (https://www.ncbi.nlm.nih.gov/nucest), and SwissProt proteins for plants which were filtered removing redundant sequences with a minimum threshold of 80% for both identity and coverage, which left us with 340,312 sequences. Meanwhile, the mRNAs and ESTs of eudicot species were downloaded from NCBI and filtered to remove redundant sequences with a cut-off of 90% for both identity and coverage, resulting in 2,332,979 complementary DNAs and 152,396 ESTs. All these data were downloaded in this study and assembled into contigs using SOAPdenovo-trans v.1.03 (http://soap.genomics.org.cn/SOAPdenovo-Trans.html), and the assembled contigs were used as same-species EST evidence.

The genes with protein length <100 amino acids and expression level in RNA-seq data <1 RPKM were discarded. In the end, the predicted genes were obtained after selecting the longer ones between overlapping genes. Gene functions were assigned according to the best match derived from the alignments to the integral database consisting of annotated proteins in Arabidopsis (https://www.arabidopsis.org/download_files/Proteins/TAIR10_protein_lists/TAIR10_pep_2011214) databases and SwissProt proteins using BLASTP, with 30% minimum identity and coverage as threshold. We annotated motifs and domains using InterProScan by searching against publicly available databases, including ProDom (http://prodom.prabir.fr/), PRINTS (www.bionf.manchester.ac.uk/dbbrowser/PRINTS/), Pfam (http://pfam.xfam.org/), SMART (http://smart.embl-heidelberg.de/), PANTHER (http://www.pantherdb.org/), SUPERFAMILY (http://supfam.eni.edu/SUPERFAMILY), PIR (http://pir.georgetown.edu/) and PROSITE (http://prosite.expasy.org/). Both CPGP program and gene prediction evidence such as poor coding ability and protein length were used to filter the non-coding genes. All data for the evidence-based prediction were downloaded from corresponding databases on 5 January 2017, with the minimal length of 150 bp per 50 amino acids.

The rRNA genes were identified by rRNA scan-SE (http://wiki.garr.agsc.edu/Wiki/index.php/Ascan-SE) with eukaryote parameters. For rRNA identification, we aligned the A. thaliana rRNA sequences against the A. majus genome by using BLASTN with an E value of 1 × 10−10. The sRNA and miRNA predictions were made using INFERNAL software (http://eddylab.org/infernal/) and by searching against the Rfam database (http://rfam.xfam.org/).

The classification of genes into families was carried out by BLASTP all against all comparisons of predicted proteins using the duplicate_gene_classifier module integrated within MCScan (http://chibba.pgm.uga.edu/mcscan2/) with default parameters. The MCScan software classified the duplicate genes of one genome into whole genome/segmental (≥2 homologous gene pairs in collinear blocks), tandem (consecutive repeat), proximal (in nearby chromosomal region both sides of the gene) and transposon (modes other than collinear and proximal) duplications. Remaining genes were defined as singletons. The rTAK database (http://itak.felcbi.ogi-bin/itak/index.cgi) was used to analyse transcription factor family expansion and to assign genes to specific families.

Genome repeat element identification. Repetitive sequences and transposable elements in the genome were identified using the combination of de novo and homology-based approaches at both the DNA and protein levels. Briefly, we first constructed a de novo repeat library for snapdragon by usingLTR-FINDER (http://lifte.fudan.edu.cn/ltr_finder/) and passed this to Repeat Modeler v.1.08 with default parameters. This library was aligned to the PGSB Repeat Element Database (http://pgsb.helmholtz-muenchen.de/plant/repeat/) to generate the classification information for each repeat family. For identification of transposable elements at the DNA level, RepeatMasker was applied using both the repeat database we had built and Repbase (http://www.girinst.org/repbase). Next, we executed RepeatProteinMask (http://www.repeatmasker.org/) in a WU-BLASTX search against the transposable element protein database to further identify identified transposable elements. The overlapping transposable element-related proteins were identified using TBLASTN with an E value cut-off of 1 × 10−5. The snRNA and miRNA predictions were made using RNA22 (http://www.riken.jp/res/rp02a22/). The snoRNA and miRNA predictions were made using Infernal software (http://eddylab.org/infernal/) and by searching against the Rfam database (http://rfam.xfam.org/).

Gene family and synteny. To identify gene family groups, we analysed protein-coding genes from nine plant species, A. majus (this study), S. tuberosum (ftp://ftp.ncbi.nlm.nih.gov.genomes/Solanum_tuberosum/), P. axillaris (ftp://ftp.solgenomics.net/genomes/Petunia/), C. papaya (ftp://ftp.solgenomics.net/genomes/Caranthus_papaya_inflata/), S. lycopersicum (ftp://ftp.solgenomics.net/annotation_euk/Solanum_lycopersicum/101/), A. thaliana (https://www.arabidopsis.org/), TAIR10 (ftp://ftp.arabidopsis.org/Tair10 Beta), C. papaya (http://www.plantgdb.org/CpGBD/), O. murine (http://www.rosacea.org/), and V. vinifera (ftp://ftp.genoscope.cns.fr/extern/Download/Projet/Projet_ML_data/12X/), O. sativa (http://rice.plantbiology.msu.edu/), A. thaliana (http://www.arabidopsis.org/), and A. thaliana (http://www.arabidopsis.org/TAIR10 Beta). We performed an all-against-all comparison using BLASTP with an E value cut-off of 1 × 10−10, and the OrthoMCL method was used to cluster the BLASTP results into paralogous and orthologous clusters. In total, 2,115 single-copy gene families were used to reconstruct the phylogenetic tree. First, the proteins of single-copy gene families were aligned by MUSCLE. Following alignment, the protein was reverse-transcribed into the coding sequence and four-fold degenerate sites were extracted from each alignment and concatenated to create one super gene for each species. We used ModelTest to select the best model (http://darwin.unige.ch/modeltest/) to identify WGD events within the A. majus genome. Proteins were aligned to each other with BLASTP and a filter threshold of 1 × 10−10 was used to identify homologous proteins. MCScanX with default parameters (http://chibba.pgm.uga.edu/mcscan2/) was used to find collinear blocks, each containing at least five collinear gene pairs. The KS value was calculated with the PAML yN00+GAMMA model (http://abacus.gene.ucl.ac.uk/software/paml.html). Intronagene dot plot comparison of A. majus was carried out using the SynMap tool from the online CoGe portal (http://genomemvolution.org/CoGe/). GbE microsynteny analysis of each collinear block was performed using SynMap and SynFind also in the CoGe portal. The divergence times of C. papaya–A. thaliana (~55.1–90.6 Ma) and dicot–dicot divergence was calculated using the SynMap tool from the online CoGe portal (http://genomemvolution.org/CoGe/).
tissue mixture was obtained from three plants. For the rest of the tissues (pistil, pollen and stamen), each tissue mixture was sampled from at least 10 plants. All plants used in RNA-seq were grown at the environment as that used for genomic sequencing and were confirmed with consistent growth. RNA libraries (300–500 bp fragments) were constructed using the mRNA-Seq Prep Kit (Illumina). Then, we sequenced all libraries using Illumina HiSeq 2000 (2 × 100 bp). FastQC\(^{(\text{QC})}\) qualified reads were mapped to the genome guided by the final gene model using hisat2 (https://www.bioinformatics.babraham.ac.uk/projects/lastqc/) and the expression level for each gene was calculated by Stringtie\(^{(97)}\).

Construction of BAC library. High-molecular-weight DNA of over 2 Mbp from Antirrhinum (A. majus) line) was extracted from leaf nuclei according to Liu and Whitter\(^{(98)}\) and partially digested with HinIII. BAC vector preparation, ligation and transformation of TransformMaxTM EPI300TM Escherichia coli (EPICENTRE Biotechnologies) by electroporation followed the described method\(^{(99)}\). BAC DNA was digested with HinIII and size-fractioned with a field inversion agarose gel electrophoresis to estimate the insert length. A total of 114,816 clones were selected and stored in 384-well plates.

FISH. Immature 1.5–3.0 mm Antirrhinum flower buds were harvested and fixed in Carnoy’s solution (ethanol:glacial acetic acid, 3:1) and stored at −20 °C. BAC clones were isolated and labelled with digoxigenin-16-DUTP or biotin-11-DUTP by nick translation. FISH was performed on the pachytene chromosomes as described\(^{(100)}\). Chromosomes were counterstained with 4′,6-diamindino-phenylindole (DAPI) in an antifade solution. Chromosomes and FISH signal images were captured with an Olympus BX53 fluorescence microscope conjunct with a micro charge-coupled device camera. Three experiments were performed\(^{(101)}\).

Evolutionary analysis of TCP family genes. Syntenic block identification and Ks analysis were carried out using MCscan\(^{(102)}\) and the PAML\(^{(103)}\) m80 NG model, respectively. MEGA\(^{(104)}\) was used for the multiple alignment and phylogenetic tree construction. Expression pattern was carried out with MeV. TF family annotation was carried out using the website of plantTFDB (http://planttfdb.cbi.pku.edu.cn/prediction.php).

The annotations and sequences of Arauca coerulea\(^{(105)}\) were downloaded from the website https://img.jgi.doe.gov/example OV/Phalaenopsis equestris\(^{(106)}\) were downloaded from http://orchardbase.itps.ncku.edu.tw./ Petunia axillaris and Petunia inflata were downloaded from https://solgenomics.net/organism/Petunia_axillaris/genome and https://solgenomics.net/organism/Petunia_inflata/genome, respectively.

The functional known protein members in TCP families were downloaded from the original experimental papers and used as marker proteins for TCP subfamily identification. Two putative TCP family genes (Am03g34120 with partial TCP domains and Am01g42140 with two tandem TCP domains) were excluded from phylogenetic analyses. Syntenic block and Ks analysis detected three gene pairs derived from WGD. Am08g20570/Am06g32830 (Ks = 0.99) and Am08g20570/Am06g53450 (Ks = 0.76) were located in a large syntenic block with 79 homologous gene pairs (median Ks = 0.85), while Am08g18340/Am06g39840 (Ks = 0.58) were located in a block with 11 homologous gene pairs (median Ks = 1.01).

Known MYB family TFs involved in zygomorphic flower control, DEFICIENS (AGL11919), were BlastP searched against the proteome. The protein sequences for DRIF-2 (Q8S9H7), DIVL (DQ202477) and RAD (Q8S9H7), were downloaded from https://www.ncbi.nlm.nih.gov/nuccore/304928687 and 267071955. All data that support the findings of this study are also available from the corresponding authors upon request.

Received: 11 April 2018; Accepted: 14 December 2018; Published online: 28 January 2019

References
1. Schwarz-Sommer, Z., Davies, R. & Hudson, A. An everlasting pioneer: the story of Antirrhinum research. Nat. Rev. Genet. 4, 655–664 (2003).
2. Nettancourt, D. Incompatibility in Angiosperms (Springer, Berlin, 1977).
3. Franklin-Tong, V. E. Self-Incompatibility in Flowering Plants (Springer, Berlin, 2008).
4. Coen, E. S., Carpenter, R. & Martin, C. Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell 47, 285–296 (1986).
5. Sommer, H., Beltrán, J. P. & Huisjes, P. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9, 605–613 (1990).
6. Tröbner, W., Ramirez, L. & Motte, P. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 11, 4703–4704 (1992).
7. Luo, D., Carpenter, R., Vincent, C., Cospey, L. & Coen, E. Origin of floral asymmetry in Antirrhinum. Nature 383, 794–799 (1996).
8. Luo, D. et al. Control of organ asymmetry in flowers of Antirrhinum. Cell 99, 367–376 (1999).
9. Glover, B. J., Perez-Rodrigues, M. & Martin, C. Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor. Development 125, 3497–3508 (1998).
10. Schwinn, K. et al. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18, 831–851 (2006).
11. Lai, Z. et al. An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol. Biol. 50, 29–42 (2002).
12. Qiao, H. et al. The F-box protein AhSLF-3 controls the pollen function of S-RNase-based self-incompatibility. Plant Cell 16, 2307–2322 (2004).
13. Hudson, A., Critchley, I. & Erasmus, Y. The transposable element Tam1 from Antirrhinum majus shows structural homology to the maize transposon En/Spm and has no sequence specificity of insertion. Mol. Gen. Genet. 228, 201–208 (1991).
14. Kreková, K. et al. Molecular analysis of paramutant plants of Antirrhinum majus and the involvement of transposable elements. Mol. Gen. Genet. 209, 499–507 (1987).
15. Held, R., Nakan, W. K., Krause, A., Saedler, H. & Sommer, H. Structural analysis of Tam1, a transposable element from Antirrhinum majus, reveals homologies to the Ac element from maize. Plant Mol. Biol. 16, 369–371 (1991).
16. Luo, D., Coen, E. S., Doyle, S. & Carpenter, R. Pigmentation mutants produced by transposon mutagenesis in Antirrhinum majus. Plant J. 1, 89–99 (1991).
17. Galego, L. & Almeida, J. Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes Dev. 16, 868–891 (2002).
18. Koren, S., Wielen, B. P., Berlin, K., Müller, J. R. & Phillips, A. M. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 732–736 (2017).
19. Marten, R. & Walter, P. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. BMC Bioinformatics 15, 211 (2014).
20. Schwarz-Sommer, Z. et al. A molecular recombination map of Antirrhinum majus, BMC Plant Biol. 10, 279 (2010).
21. Feng, X. et al. Evolution of allotely in Antirrhinum. Plant Cell 21, 2999–3007 (2009).
23. Simão, F. A. et al. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

24. Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).

25. Bell, C. D., Soltis, D. E. & Soltis, P. S. The age and diversification of the angiosperms re-visited. Am. J. Bot. 97, 1296–1303 (2010).

26. Cubas, P., Lauter, N., Dobele, J. & Coen, E. The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 18, 215–222 (1999).

27. Cubas, P. in Developmental Genetics and Plant Evolution (eds Cronk, Q. C. B. et al.) Ch. 13 (Taylor & Francis, London, 2002).

28. Raimundo, J. et al. A subcellular tug of war involving three MYB-like proteins underlies a molecular antagonism in Antirrhinum flower symmetry. Plant Cell 25, 527–538 (2013).

29. Reardon, W. et al. Different outcomes for the MYB floral symmetry genes DIVARICATA and RADIALIS during the evolution of derived actinomorphy in Plantago. New Phytol. 202, 716–725 (2014).

30. Preston, J. C., Martínez, C. C. & Hileman, L. C. Gradual disintegration in the angiosperm. In Developmental Genetics and Plant Evolution (eds Cronk, Q. C. B. et al.) Ch. 13 (Taylor & Francis, London, 2002).

31. Donoghue, M., Ree, R. & Baum, D. Phylogeny and the evolution of flower in. Developmental Genetics and Plant Evolution (eds Cronk, Q. C. B. et al.) Ch. 13 (Taylor & Francis, London, 2002).

32. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics 30, 2114–2120 (2014).

33. Kubo, K. et al. Gene duplication and genetic exchange drive the evolution of S-RNase-based self-incompatibility in Petunia. Nat. Plants 1, 14005 (2015).

34. Zhou, J. et al. Structural and transcriptional analysis of CYC2-like genes in Antirrhinum. Sex Reprod Prod. 16, 165–177 (2003).

35. Kubo, K. et al. Gene duplication and genetic exchange drive the evolution of S-RNase-based self-incompatibility in Petunia. Nat. Plants 1, 14005 (2015).

36. Schwartz-Sommer, Z. et al. A linkage map of an F3 hybrid population of Antirrhinum majus and A. mollis. Genetics 163, 699–710 (2003).

37. Wirtz, S. The distribution of self-sterility alleles in populations. Genetics 24, 538–552 (1939).

38. Vieira, C. P., Vieira, J. & Charlesworth, D. Evolution of the cycloidea gene family in Antirrhinum and Misopates. Mol. Biol. Evol. 16, 1474–1783 (1999).

39. Jabbour, F., Nadot, S. & Damerval, C. Evolution of floral symmetry: a state of the art. C. R. Biol. 332, 219–231 (2009).

40. Zhang, G. et al. The Apostasia genome and the evolution of orchids. Nature 549, 379–383 (2017).

41. Schranz, M. E., Mohammadi, S. & Edger, P. P. Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. Curr. Opin. Plant Biol. 15, 147–153 (2012).

42. Tank, D. C. et al. Nested radiations and the pulse of angiosperm diversification – increased diversification rates often follow whole genome duplications. New Phytol. 207, 454–467 (2015).

43. Soltis, P. S. & Soltis, D. E. Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant Biol. 30, 159–165 (2016).

44. Igic, B. & Kohn, J. R. The distribution of plant mating systems: study bias against obligately outcrossing species. Evolution 60, 1098–1103 (2006).

45. Li, W. & Chetelat, R. T. Unilateral incompatibility geneeu1 encodes an S locus F-box protein expressed in pollen of Solanum species. Proc. Natl Acad. Sci. USA 112, 4417–4422 (2015).

46. Bradley, D. et al. Evolution of flower color pattern through selection on regulatory small RNAs. Science 358, 925–928 (2017).

47. Allen, G. C., FloreVergara, M. A., Krasynanski, S., Kumar, S. & Thompson, W. F. A modified protocol for rapid DNA isolation from plant tissues using cetrimoniumbromide. Nat. Protoc. 1, 2320–2325 (2006).

48. Xue, Y., Carpenter, R., Dickinson, H. & Coen, E. Origin of allelic diversity in Antirrhinum S locus RNAs. Plant Cell 8, 805–814 (1996).

49. Li, R. et al. The sequence and de novo assembly of the giant panda genome. Nature 463, 311–317 (2010).

50. Bolger, A. M., Lobos, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics 30, 2114–2120 (2014).

51. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at arXiv: https://arxiv.org/abs/1303.3997 (2013).

52. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

53. McMicken, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

54. Wu, Y., Bhat, P. R., Close, T. J. & Lonardi, S. Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet. 4, e1000212 (2008).

55. Autschl, S. F. & Gish, W. Local alignment statistics. Methods Enzymo. 266, 460–480 (1996).

56. Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res. 14, 988–995 (2004).

57. Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: a two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004).

58. Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

59. Campbell, M. A., Haas, B. J., Hamilton, J. P., Mount, S. M. & Bueler, C. R. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 7, 327 (2006).

60. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

61. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

62. Christie, G. E. et al. Creating a honey bee consensus gene set. Genome. Biol. 13, R7 (2013).

63. di Luca, G., Miao, L., Ware, D. & Stein, L. Evidence-based gene predictions in plant genomes. Genome Res. 19, 1912–1923 (2009).

64. Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 4, 24, W345–W349 (2007).

65. Lee, S. & Suh, K. The distribution of plant mating systems: study bias against obligately outcrossing species. Evolution 60, 1098–1103 (2006).

66. Letunic, I., Doerks, T. & Bork, P. SMART: recent updates, new sequence features and support vector machine. Nucleic Acids Res. 43, D257–D260 (2015).

67. Mi, H. et al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 45, D131–D139 (2017).

68. Liang, C., Mao, L., Ware, D. & Stein, L. Evidence-based gene predictions in plant genomes. Genome Res. 19, 1912–1923 (2009).

69. Kawahara, Y. et al. Improvement of the Orozya sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6, 4 (2013).

70. Rice, D. W. et al. Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm. Amborella. Science. 342, 1468–1473 (2013).
100. Jiang, J., Gill, B. S., Wang, G. L., Ronald, P. C. & Ward, D. C. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc. Natl Acad. Sci. USA 92, 8794–8797 (1995).

101. Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

102. Filiault, D. et al. The Aquelegia genome: adaptive radiation and an extraordinarily polymorphic chromosome with a unique history. Preprint at bioRxiv https://doi.org/10.1101/264101 (2018).

103. Cai, J. et al. The genome sequence of the orchid Phalaenopsis equestris. Nat. Genet. 47, 65–72 (2015).

104. Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: A sequence logo generator. Genome Res. 14, 1188–1190 (2004).

105. Wang, Y. et al. GSA: Genome Sequence Archive. Genomics Proteomics Bioinformatics 15, 14–18 (2017).

106. BIG Data Center Members. The BIG Data Center: from deposition to integration to translation. Nucleic Acids Res. 45, D18–D24 (2017).

Acknowledgements
This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB20010302), the Ministry of Science and Technology of China (2013CB945102), the National Natural Science Foundation of China (31401045 and 31221063) and Y. Luo acknowledges the Youth Innovation Promotion Association of Chinese Academy of Sciences (no. 2017140). We thank F. Zhao and X. Zhou (Institute of Plant Physiology and Ecology, SIBS, CAS) for maintaining the genome website and S. Ou (Michigan State University) for technical help inLTR analysis.

Author contributions
Y.X., H.Z., D.Z. and M.L. designed the experiments. M.L., Y.L., D.Z., A.W., E.C. and Y.X. wrote the manuscript. Q.G, B.M., C.C., Y.L., Q.L., YZ., H.G., J.L., YZ., Y.S., L.C., A.W., Y.C., Y.L., M.Q., J.W., Y.C., D.W., J.Z., G.L., B.W., L.Y., C.X., J.L., S.Z., YZ., S.H., C.L., Y.Y., E.C. and Y.X. analysed the data and performed the experiments.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41477-018-0349-9.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to C.L., Y.Y., E.C. or Y.X.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main text, or Methods section).

- The exact sample size \((n) \) for each experimental group/condition, given as a discrete number and unit of measurement
- An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
 Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. \(F, t, r \)) with confidence intervals, effect sizes, degrees of freedom and \(P \) value noted
 Give \(P \) values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s \(d \), Pearson’s \(r \)), indicating how they were calculated
- Clearly defined error bars
 State explicitly what error bars represent (e.g. SD, SE, CI)

Software and code

Policy information about availability of computer code

Data collection

We constructed a total of 2×100 paired-end sequencing libraries with insert sizes from 170 bp to 20 kb for standard WGS sequencing using Illumina HiSeq 2000/2. Using the Pacific Biosciences (PacBio) platform for single-molecule, real time (SMRT) sequencing get the 3rd reads	

Data analysis

Software used are listed as follows:	
CANU 1.5	
BWA : version 0.7.17	
SMRT analysis software (v2.3.1)	
SSPACE v3.0	
GATK v2.7-2	
joinMAP v4.1	
MSTmap v1.0	
NUcmer: MUMmer Package v3.23	
BLASTP : ncbi-BLAST v2.2.28	
BLASTN : ncbi-BLAST v2.2.28	
Cufflinks v2.2.1	
LTR_FINDER v1.0.2	
RepeatModeler (v1.0.3)	
RepeatMasker (v3.2.9)	
For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Genome assembly data have been deposited at NCBI BioProject ID under accession codes PRJNA227267. The raw sequence data reported in this paper have been deposited in the Genome Sequence Archive103 in BIG Data Center104, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, under accession numbers PRJCA000223 and PRJCA001050 that are publicly accessible at http://bigd.big.ac.cn/gsa. We built the Antirrhinum genome website at http://bioinfo.sibs.ac.cn/Am, providing a portal to genome browser, Blast, data download and gene expression functions. All data that support the findings of this study are also available from the corresponding authors upon request.

Field-specific reporting

Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☐ Life sciences ☐ Behavioural & social sciences ☐ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size A total of 48 RILs were used for linkage map construction. Line 337.

Data exclusions

- Line 386-401: The raw reads generated from the Illumina-Pipeline included low-quality, adapter contaminated and duplicated reads. Reads were filtered using Trimmomatic50 with default parameters.
- SAMtools52 to filter out low-quality (mapping quality <30) alignments
- filtered using the GATK VariantFiltration program with the following criteria: clusterWindowSize:10, MQ0>=4& ((MQ0/ (1.0* DP)) >0.1), QUAL<50.0, DP<5.
- 4. filter out unmatched SNPs and not homozygous for parents

Line 438:mRNAs and ESTs of eudicot species were downloaded from NCBI and filtered to remove redundant sequences with a cutoff of 90% for both identity and coverage.

Line 459: the CPC program71 and gene prediction evidence such as poor coding ability and protein length were used to filter the noncoding genes.

Line 533: BLASTP and a filter threshold of 1e-5
Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description	Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, quantitative experimental, mixed-methods case study).
Research sample	State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the sample chosen. For studies involving existing datasets, please describe the dataset and source.
Sampling strategy	Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and what criteria were used to decide that no further sampling was needed.
Data collection	Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.
Timing	Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample cohort.
Data exclusions	If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established.
Non-participation	State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no participants dropped out/declined participation.
Randomization	If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description	Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, hierarchical), nature and number of experimental units and replicates.
Research sample	Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxo, source, sex, age range and any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, describe the data and its source.
Sampling strategy	Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.
Data collection	Describe the data collection procedure, including who recorded the data and how.
Timing and spatial scale	Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which the data are taken.
Data exclusions	If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established.
Reproducibility	Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to repeat the experiment failed OR state that all attempts to repeat the experiment were successful.
Randomization	Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were controlled. If this is not relevant to your study, explain why.
Blinding

Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why blinding was not relevant to your study.

Did the study involve field work?
- ☐ Yes
- ☒ No

Field work, collection and transport

Field conditions

Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location

State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access and import/export

Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, the date of issue, and any identifying information).

Disturbance

Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

Materials & experimental systems

n/a	Involved in the study
☒	Unique biological materials
☒	Antibodies
☒	Eukaryotic cell lines
☒	Palaeontology
☒	Animals and other organisms
☒	Human research participants

Methods

n/a	Involved in the study
☒	ChIP-seq
☒	Flow cytometry
☒	MRI-based neuroimaging

Unique biological materials

Policy information about availability of materials

Obtaining unique materials: No unique materials in this study.

Antibodies

Antibodies used

No antibody was used in this study.

Validation

No antibody was used in this study.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)

No eukaryotic cell line was used in this study.

Authentication

No eukaryotic cell line was used in this study.

Mycoplasma contamination

No eukaryotic cell line was used in this study.

Commonly misidentified lines
(See ICLAC register)

No eukaryotic cell line was used in this study.

Palaeontology

Specimen provenance

No palaeontologist’s materials was used in this study.

Specimen deposition

No palaeontologist’s materials was used in this study.
Dating methods

No palaeontological materials were used in this study.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Animals and other organisms

Policy information about [ARRIVE guidelines](https://www ARRIVEguidelines.org/) recommended for reporting animal research

Laboratory animals	no animals’ data was used in this study.
Wild animals	no animals’ data was used in this study.
Field-collected samples	no animals’ was used in this study.

Human research participants

Policy information about [studies involving human research participants](https://www.nature.com/nature/about/research-ethics-guidelines.html)

Population characteristics	No human’s data was used in this study
Recruitment	No human’s data was used in this study

ChIP-seq

Data deposition

- Confirm that both raw and final processed data have been deposited in a public database such as [GEO](https://www.ncbi.nlm.nih.gov/geo/).

- Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links	No ChIP-seq used in this study.
May remain private before publication.	
Files in database submission	No ChIP-seq used in this study.
Genome browser session (e.g. UCSC)	No ChIP-seq used in this study.

Methodology

Replicates	No Methodology used in this study.
Sequencing depth	No Methodology used in this study.
Antibodies	No Methodology used in this study.
Peak calling parameters	No Methodology used in this study.
Data quality	No Methodology used in this study.
Software	No Methodology used in this study.

Flow Cytometry

Plots

- Confirm that:
 - The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
 - The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a ‘group’ is an analysis of identical markers).
 - All plots are contour plots with outliers or pseudocolor plots.
 - A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation	No flow cytometry used in this study.
Instrument	No flow cytometry used in this study.
Software | No flow cytometry used in this study.
---|---
Cell population abundance | No flow cytometry used in this study.
Gating strategy | No flow cytometry used in this study.

☐ Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type	No Magnetic resonance imaging used in this study
Design specifications	No Magnetic resonance imaging used in this study
Behavioral performance measures	No Magnetic resonance imaging used in this study

Acquisition

Imaging type(s)	No Magnetic resonance imaging used in this study
Field strength	No Magnetic resonance imaging used in this study
Sequence & imaging parameters	No Magnetic resonance imaging used in this study
Area of acquisition	No Magnetic resonance imaging used in this study

- **Diffusion MRI**
 - Not used

Preprocessing

Preprocessing software	No Magnetic resonance imaging used in this study
Normalization	No Magnetic resonance imaging used in this study
Normalization template	No Magnetic resonance imaging used in this study
Noise and artifact removal	No Magnetic resonance imaging used in this study
Volume censoring	No Magnetic resonance imaging used in this study

Statistical modeling & inference

Model type and settings	No Magnetic resonance imaging used in this study
Effect(s) tested	No Magnetic resonance imaging used in this study

- **Specify type of analysis:**
 - Whole brain
 - ROI-based
 - Both

- **Statistic type for inference**
 - See Eklund et al. 2016

- **Correction**
 - No Magnetic resonance imaging used in this study

Models & analysis

n/a	Involved in the study
Functional and/or effective connectivity	Yes
Graph analysis	Yes
Multivariate modeling or predictive analysis	Yes

- **Functional and/or effective connectivity**
 - Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, mutual information).

- **Graph analysis**
 - Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, etc.).

- **Multivariate modeling and predictive analysis**
 - Specify independent variables, features extraction and dimension reduction, model, training and evaluation metrics.