Time evolution of vibrational temperatures in a CO₂ glow discharge measured with infrared absorption spectroscopy

B L M Klarenaar 1, R Engeln 1, D C M van den Bekerom 2, M C M van de Sanden 1,2, A S Morillo-Candas 3 and O Guaitella 3,4

1 Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
2 Dutch Institute for Fundamental Energy Research, 5600 HH Eindhoven, The Netherlands
3 Laboratoire de Physique des Plasmas, Ecole Polytechnique-CNRS-Univ Paris-Sud-UPMC, F-91128 Palaiseau, France

E-mail: olivier.guaitella@lpp.polytechnique.fr

Received 7 July 2017, revised 26 September 2017
Accepted for publication 2 October 2017
Published 26 October 2017

Abstract

Vibrational temperatures of CO₂ are studied in a pulsed glow discharge by means of time-resolved in situ Fourier transform infrared spectroscopy, with a 10 μs temporal resolution. A method to analyze the infrared transmittance through vibrationally excited CO₂ is presented and validated on a previously published CO₂ spectrum, showing good agreement between fit and data. The discharge under study is pulsed with a typical duty cycle of 5–10 ms on-off, at 50 mA and 6.7 mbar. A rapid increase of the temperature of the asymmetric stretch vibration (T₃) is observed at the start of the pulse, reaching 1050 K, which is an elevation of 550 K above the rotational temperature (T_rot) of 500 K. After the plasma pulse, the characteristic relaxation time of T₃ to T_rot strongly depends on the rotational temperature. By adjusting the duty cycle, the rotational temperature directly after the discharge is varied from 530 to 860 K, resulting in relaxation times between 0.4 and 0.1 ms. Equivalently, as the gas heats up during the plasma pulse, the elevation of T₃ above T_rot decreases strongly.

Keywords: carbon dioxide plasma, glow discharge, vibrational temperature, Fourier transform infrared spectroscopy

1. Introduction

Efficient reduction of CO₂ to CO is a key step in the process of storing renewable energy in the form of hydrocarbon fuels [1–4]. A promising route for this dissociation process is through selective excitation of the asymmetric stretch vibration of CO₂ in a non-equilibrium plasma [5–7]. Studies on vibrational excitation of CO₂ are often done in the field of CO₂ lasers, reporting vibrational temperatures which are elevated with respect to the translational temperature [8–11]. These measurements are performed in continuous glow discharges, determining vibrational excitations depending on e.g. gas composition, pressure, plasma current, and reduced electric field. Time-resolved measurements on pulsed CO₂ discharges are only rarely performed [12]. However, such measurements could give detailed insight into the time evolution of vibrational state densities, including excitation and relaxation times, and can be used for comparison and validation of (rate constants used in) kinetic models of CO₂ discharges.

When studying the vibrational excitation of CO₂, all vibrational modes should be taken into account. Quantum numbers ν₁, ν₂, and ν₃ are used to represent the symmetric stretch, doubly degenerate bending, and asymmetric stretch mode, respectively. Additionally, the contribution of ν₂ to the angular momentum is described using number ℓ₂. Since the
Possible methods for detecting vibrational state densities include spontaneous Raman scattering [16, 17] and coherent anti-Stokes Raman scattering [18, 19]. These spatially and time-resolved techniques are well suited to determine Raman active vibrations, like those of CO, O₂, and N₂. For CO₂, however, only the symmetric stretch mode is Raman active [20], hence the densities of the asymmetric stretch mode (and bending mode) cannot be determined. On the other hand, these modes are strongly IR active [20] and therefore it is possible to determine the vibrational state densities using IR emission spectroscopy [16, 21, 22]. However, reabsorption of emitted IR radiation by the optically thick CO₂ makes it particularly difficult to determine densities deeper inside the discharge.

Using IR absorption spectroscopy, one is able to accurately determine vibrational state densities inside the plasma over several orders of magnitude. To this purpose, tunable diode lasers (TDL) are used as an IR source to determine densities in CO₂ lasers [9, 11]. Although TDLs can scan mode hop free only very narrow frequency ranges (in the order of single wavenumbers), a well selected range can contain absorption lines of multiple vibrational levels. Unfortunately, the nature of operation prohibits easy implementation of time-resolved measurements. The quickly pulsed and chirped (several wavenumbers) quantum cascade laser is a good alternative, but has its own challenge in the form of the peak-distorting rapid passage effect [23].

To combine the ability of doing time-resolved measurements with measuring IR absorption over a wider wavenumber range, we use in situ Fourier transform infrared (FTIR) spectroscopy. Rivallan et al [12] already showed its suitability to detect time-resolved absorption lines in a glow discharge using an air/CO₂ mixture. We exploit the homogeneity of the positive column of the glow discharge [24] to study the time evolution of the vibrational temperatures of CO₂ and CO (formed in the discharge), during plasma ignition, development to steady state, and during relaxation directly after the plasma pulse.

2. Experimental methods

The experimental setup is schematically shown in figure 1(a). The plasma reactor is made of Pyrex and is cylindrically shaped with an inner diameter of 2 cm and a length of 23 cm, with BaF₂ windows at the sides. The electrodes and gas in- and outlet are both 17 cm apart. A 50 mA DC current is achieved by connecting a 50 kΩ resistor in series and applying 4.0 kV (2.5 kV over the resistor and 1.5 kV over the reactor). A high-voltage probe (LeCroy, PPE 20KV) and an oscilloscope (LeCroy, LT584M) are used to monitor the voltage. The power supply is triggered using a pulse generator (TTi, TGP110), resulting in square pulses with rise and fall times in the order of a couple μs. The plasma is pulsed with a typical time of 5–10 ms on–off. A basic trigger scheme is shown in figure 1(b).

The incoming gas consists of pure CO₂ (Air Liquide, Alphagaz 1) and the gas flow is controlled at 7.4 sccm using a mass flow controller (Bronkhorst, F-201CV). Pressure is maintained at 6.7 mbar with a scroll pump (Edwards, XDS5) and a manual valve, while the pressure is measured using a pressure gauge (Pfeiffer, CMR 263). With the reactor dimensions as mentioned earlier, the gas residence time is in the order of seconds.

The reduced electric field under these conditions is estimated by using a similar reactor, equipped with two metal rods radially pointing inside the positive column of the reactor. Measuring the potential difference over the rods while maintaining a continuous discharge of 50 mA at 6.7 mbar gives a reduced field of 60 Td. The electron number density is then calculated, using table 1 in [25] for the electron drift velocity, to be 10¹⁰ cm⁻³.

The reactor is positioned in the sample compartment of an FTIR spectrometer (Bruker, Vertex 70), shown in figure 1(a). Time resolved measurements are performed by operating the spectrometer in the step-scan mode. In this mode, the interferometer assumes a position, relaxes for 60 ms, and awaits a trigger signal, e.g. from a pulse generator. After receiving a trigger, the DC signal of the IR detector (MCT) is repetitively read out with a period of 10 μs, hence, 1100 repetitions result in a measured time period of 11 ms. Four trigger series are averaged per interferometer position (53, 323 in total), whereafter the interferometer moves to the next position and the procedure is repeated, building a 2D interferogram. Fourier transforming the interferogram gives a time-resolved intensity spectrum with a 10 μs resolution and a spectral resolution of 0.2 cm⁻¹. A trigger scheme including the pulse generator, the gating of the power supply of the reactor, and the read-out by the IR detector is shown in figure 1(b).
The infrared light that reaches the detector is a combination of three contributions:

- Light emitted by the IR source of the spectrometer, going through the interferometer, then through the reactor towards the detector.
- Spontaneous emission from the plasma that is directly emitted towards the detector.
- Spontaneous emission from the plasma that first enters the interferometer and is reflected back through the reactor towards the detector.

To be able to study the light absorption from the IR source through the reactor, the intensity spectrum should be corrected for other spectrally resolved contributions. Light that is emitted from the plasma directly towards the detector only induces an interferogram offset, which is not apparent after Fourier transformation. On the other hand, plasma emission that is reflected by the interferometer is spectrally resolved: it depends on the mirror position of the interferometer which frequencies are reflected. The intensity spectrum should be corrected for this and accordingly a time-resolved measurement is performed while blocking all light from the IR source, revealing only the plasma emission.

After subtracting the emission from the intensity spectrum, the time-resolved transmittance is calculated by dividing the remainder by the spectral profile of the IR source. This common background is taken after purging the reactor with nitrogen and operating the FTIR spectrometer in its conventional mode. The spectral region between 1975 and 2400 cm$^{-1}$ contains lines of both CO and asymmetric-stretch transitions of CO$_2$ and is analyzed using the fitting algorithm, discussed in the next section.

3. Computational algorithm

3.1. Database and fitting parameters

The measured FTIR spectra result from infrared absorption by a molecular population which is not in thermal equilibrium. To be able to accurately analyze these spectra, an algorithm has been developed to calculate and fit these non-equilibrium infrared transmittance spectra. The basic flowchart for the algorithm can be seen in figure 2.

The algorithm makes use of the HITEMP-2010 database [26], which contains transition energies, Einstein A coefficients, broadening constants, etc, of a wide variety of molecules. Transition data for CO$_2$ is available up to $\nu_3 = 6 \rightarrow 7$, while vibrational transitions of CO are documented as far as $\nu_{CO} = 14 \rightarrow 15$. Transitions of both these vibrational quanta (i.e. $(\nu_1, \nu_2, \nu_3) \rightarrow (\nu_1, \nu_2, \nu_3 + 1)$ and $(\nu_{CO}) \rightarrow (\nu_{CO} + 1)$) are present in the region of interest of 1975–2400 cm$^{-1}$. The rotationless transition energies of the ground state to the first level are centered around 2349 cm$^{-1}$ and 2143 cm$^{-1}$, for CO$_2$ and CO, respectively [13, 27]. Depending on the measurement conditions, the CO and CO$_2$ lines will partially overlap. Hence, in an accurate analysis CO should be included.

Symbol	Description	Guess
T_{rot}	Rotational temperature	600 K
$T_{\nu_{1,2}}$	$\nu_{1,2}$ temperature of CO$_2$	600 K
T_3	ν_3 temperature of CO$_2$	600 K
T_{CO}	Vib. temperature of CO	600 K
c_{th}	Thermal variable	0.1
α	CO$_2$ conversion factor	0.3
p	Pressure	Var.

Before continuing to calculate a spectrum, several parameters have to be set. Table 1 shows the parameters that are included in the fit. The rotational temperature T_{rot} is assumed to be the same for molecules of CO$_2$ and CO, and equal to the translational temperature [9]. The vibrational temperature, however, is split into different parameters. Since modes ν_1
and \(n_2 \) of CO\(_2\) are Fermi coupled, they are described with one temperature, \(T_{1,2} \) [13]. For the asymmetric stretch mode \(T_3 \) is used, and \(T_{CO} \) is used for the vibrational temperature of CO.

Absorption spectroscopy is a line-of-sight technique, i.e. under the present experimental conditions measured spectra result from absorption over the full length of the reactor. As figure 1 shows, this length is not completely filled by the discharge in two greatly different temperature regions: thermal gas and non-thermal plasma. Therefore, \(f_{th} \), the volume fraction of thermal gas is introduced. For the analysis in this study, this fraction is fixed at (23–17 cm)/23 cm \(\approx \) 0.26, based on the length of the reactor and the positioning of the electrodes. \(T_{th} \) describes the translational energy and rovibrational densities in this volume, having a lower and upper limit of 273 K and \(T_{rot} \), respectively, and is fitted using thermal variable \(c_{th} \) (0 \(\leq c_{th} \leq 1 \)):

\[
T_{th} = c_{th} \cdot (T_{rot} - 273) + 273. \tag{1}
\]

To calculate the number densities of molecules in the thermal and non-thermal region, \(n_{th} \) and \(n_{nth} \), respectively, it is assumed that the pressure in both parts is equal, \(p \). Additionally, in the non-thermal part the translational temperature is assumed to be equal to the rotational temperature. Using the ideal gas law results in equations (2) and (3):

\[
n_{th, eff} = f_{th} n_{th} = f_{th} \frac{p}{k_B T_{th}}, \tag{2}
\]

\[
n_{nth, eff} = (1 - f_{th}) n_{nth} = (1 - f_{th}) \frac{p}{k_B T_{rot}}, \tag{3}
\]

where \(k_B \) is the Boltzmann constant. \(n_{th, eff} \) and \(n_{nth, eff} \) are, respectively, the effective thermal and non-thermal number densities, i.e. the apparent number densities over the full line-of-sight of the absorption measurement.

The molecular fractions of CO\(_2\) and CO are calculated using conversion factor \(\alpha \), defined as

\[
\alpha = \frac{[CO]}{[CO] + [CO_2]}, \tag{4}
\]

where [CO\(_2\)] and [CO] are the molecular concentrations of CO\(_2\) and CO, respectively. It is expected that towards the exhaust of the reactor the concentration of CO increases. However, the spatial profile is unclear and will be studied in future work. In the fitting model, the molecular fractions of CO\(_2\) and CO are therefore treated as invariant over the length of the reactor and equal in both the thermal and non-thermal part. Fitted values of \(\alpha \) should be regarded as spatially averaged.

Other than CO\(_2\) and CO, IR transmittance spectra reveal only insignificant amounts of O\(_3\) (O\(_2\) is not IR active). Therefore, following the dissociation reaction

\[
2CO_2 \rightarrow 2CO + O_2, \tag{5}
\]

it is assumed that for every two CO molecules, one O\(_2\) molecule is present in the reactor. This results in equations (6) and (7) for the molecular fractions of CO\(_2\) and CO, accordingly:

\[
f_{CO_2} = \frac{1 - \alpha}{1 + \alpha/2}, \tag{6}
\]

\[
f_{CO} = \frac{\alpha}{1 + \alpha/2}. \tag{7}
\]

To calculate the molecular number densities of thermal and non-thermal CO\(_2\) and CO, these fractions should be multiplied by equations (2) and (3).

3.2. Calculating the spectrum

3.2.1. Calculate rovibrational state distributions. After defining the fitting parameters the fitting process is started. The first step in constructing a transmittance spectrum is calculating the thermal and non-thermal rovibrational state distributions. For this, it is assumed that energies of rotational levels and energies of different vibrational modes are independent. In literature, this is a widely used approximation, though it should be noted that it becomes less accurate for higher vibrational states [9, 28–30].

The population \(N_s \) of state \(s \), having rotational state \(J \) and vibrational state(s) \(\nu_i \), can then be calculated, using:

\[
N_s = N_{s,rot,J} \prod_i \phi_{vib,\nu_i}. \tag{8}
\]

Here, \(N \) is the total number of molecules per unit volume and \(i \) is an index for vibrational modes (i.e. 1, 2, and 3 for CO\(_2\), while CO only has one vibrational mode). \(\phi_{rot,J} \) and \(\phi_{vib,\nu_i} \) are the fraction of molecules in the rotational state and vibrational state(s) of \(s \), respectively.

\(\phi_{rot,J} \) is calculated assuming a Boltzmann distribution:

\[
\phi_{rot,J} = \frac{g_{rot,J}}{Q_{rot}} \exp \left(-\frac{hcE_{rot,J}}{k_B T_{rot}} \right), \tag{9}
\]

where \(h \), \(c \), and \(k_B \) are the Planck constant, the speed of light, and the Boltzmann constant, respectively. The energy \(E_{rot,J} \) of rotational state \(J \) is calculated using the rotational constant \(B \), centrifugal distortion constant \(D \), and third order correction factor \(H \) as listed for all isotopologues of CO\(_2\) and CO that are included in the algorithm, in table 2. The rotational degeneracy \(g_{rot,J} \) is a product of the factor \((2J + 1)\) and a rotational-state-dependent factor \(\phi_{rot,J} \) normalized and its sum over all \(J \) is equal to one, as done in McDowell et al [32].

Going back to equation (8), in the plasma a Treanor distribution is assumed for vibrational states, which Dan

Isotopologue	\(B \) \((\text{cm}^{-1}) \)	\(D \) \((10^{-6} \text{ cm}^{-1}) \)	\(H \) \((10^{-12} \text{ cm}^{-1}) \)
\(^{12}\text{C}^{16}\text{O}_2 \) [14]	0.39022	0.1333	0.0090
\(^{12}\text{C}^{18}\text{O}_2 \) [14]	0.39024	0.1332	0.0090
\(^{16}\text{O}^{12}\text{C}^{18}\text{O} \) [14]	0.36819	0.1187	0.0075
\(^{16}\text{O}^{12}\text{C}^{17}\text{O} \) [14]	0.37862	0.1255	0.0082
\(^{16}\text{O}^{16}\text{O} \) [33]	1.9225	6.121	5.7
\(^{12}\text{C}^{16}\text{O} \) [34]	1.8380	5.593	5.5
\(^{12}\text{C}^{18}\text{O} \) [34]	1.8310	5.550	4.9

\[f_{CO} = \frac{\alpha}{1 + \alpha/2}. \tag{7} \]
Table 3. List of values for G_1 and $\omega_x x$ (both in cm^{-1}) for CO_2 (see footnote 5) and CO, calculated from [14, 33, 34].

Isotopologue	Mode	G_1	$\omega_x x$
12C16O$_2$ [14]	ν_1	1333.93	2.93
	ν_2	667.47	-0.38
	ν_3	2349.16	12.47
13C16O$_2$ [14]	ν_1	1334.32	2.93
	ν_2	648.63	-0.37
	ν_3	2283.49	11.71
16O12C18O [14]	ν_1	1295.72	2.76
	ν_2	662.47	-0.39
	ν_3	2332.15	12.34
16O12C18O [14]	ν_1	1296.04	2.76
	ν_2	643.44	-0.36
	ν_3	2265.98	11.59
12C16O [33]	ν_{CO}	2143.24	13.29
13C16O [34]	ν_{CO}	2096.03	12.70
14C16O [34]	ν_{CO}	2092.09	12.65

et al [9] experimentally confirmed to be accurate up to $\nu_3 = 9$ in very similar glow discharges [35]. It should be noted that the Treanor distribution overestimates the population of higher energy levels, close to the dissociation energy [35, 36]. However, in the conditions under study, only states up to $\nu_3 = 4$ show a contribution to the transmittance above noise level, well below the dissociation limit. $\phi_{\text{vib},i}$, then becomes:

$$\phi_{\text{vib},i} = \frac{g_{\text{vib},i}}{Q_{\text{vib},i}} \exp \left(\frac{-h c}{k_B T_i} \left(G_{1,i} - \nu_i (\nu_i + 1) \omega_x x_{\text{eff}} \right) / T_{\text{rot}} \right).$$ (10)

Here, $g_{\text{vib},i}$ is the degeneracy of vibrational mode ν_i (for CO$_2$ $g_{\text{vib},\nu_1} = g_{\text{vib},\nu_2} = 1$, $g_{\text{vib},\nu_3} = \nu_3 + 1$ and for CO $g_{\text{vib},\nu_{\text{CO}}} = 1$). $G_{1,i}$ is the energy spacing between the ground and first vibrational level, and $\omega_x x_{\text{eff}}$ is the anharmonicity, listed in table 3 for the isotopologues of CO$_2$ and CO that are included in the algorithm. Cross terms are not taken into account, since the vibrational modes are treated as independent. It is inherent to the Treanor distribution that the harmonic part is scaled with vibrational temperature T_i ($= T_{\text{rot}}$) for $i = 1, 2, 3, \text{CO}_2$), while the anharmonic part is scaled with the translational temperature. In equation (10) the translational temperature is substituted by T_{rot}, under the previously made assumption that these temperatures are equal. When for thermal gas $T_i = T_{\text{rot}} = T_0$, equation (10) reduces back to a Boltzmann distribution.

Similar to the rotational partition sum, the partition sum of vibrational modes $Q_{\text{vib},i}$ is determined such that the fractions $\phi_{\text{vib},i}$ are normalized:

$$\sum_{i=0}^{\nu_i,\text{max}} \phi_{\text{vib},i} = 1.$$ (11)

Here, ν_i,max is the maximum vibrational state taken into account ($\nu_i,\text{max} = [40, 70, 35, 30]$ for $i = 1, 2, 3, \text{CO}_2$), chosen such that all levels up to at least 6 eV are included in the calculation. It prevents the normalization being significantly influenced by the previously mentioned overpopulation of higher vibrational states resulting from the Treanor distribution.

3.2.2. Calculate line strengths. The next step is the calculation of the line strength, starting from the Einstein A coefficient A_{tot} for spontaneous emission from upper state u to lower state 1. This coefficient is listed in the HITEMP database. The line strength S_j of transition j can be calculated as follows [31]:

$$S_j = \frac{I_u g_{\text{tot},u} A_{\text{tot}}}{8\pi c^2 \rho_j} \left(\frac{N_1}{g_1 N} - \frac{N_u}{g_u N} \right) \left(1 - \frac{\rho_j}{\rho_u} \right),$$ (12)

where I_u is the fractional abundance of the isotopologue as listed in [31], ρ_j is the transition energy as listed in the HITEMP database, and g_1 and g_u are the total rovibrational degeneracy of the lower and upper state, respectively.

Equation (8) is now used to compute the lower and upper state densities, N_1 and N_u, respectively.

Although equation (12) is derived using the relations between spontaneous emission and stimulated emission and absorption coefficients under the assumption of thermal-equilibrium black-body radiation, it is also valid in situations where there is no thermal equilibrium [37].

3.2.3. Apply temperature and pressure broadening. The HITEMP database lists for each line a self- and air-broadened half-width, as well as a CO$_2$-broadened half-width for CO. Broadening due to pressure from other molecular species is approximated as if it were from air. The Lorentzian pressure broadening profile is convolved with the Gaussian shaped Doppler broadening and multiplied by the line strength S_j. This results in a Voigt-shaped cross section $\sigma_j(\nu)$, unique for every line j [38, 39]. The Voigt shape is applied using the empirical expression by Whiting [39, 40].

3.2.4. Calculate transmittance. The transmittance T_0 is calculated using the Beer–Lambert law [29]:

$$T_0(\nu) = \prod_{n=\text{air}}^{\text{air},\text{eff}} \prod_{f=f_{\text{CO}}}^{\text{f}_{\text{CO}}} \exp \left(-L n \sum_{j=1}^{\text{num}\text{em}} \sigma_j(\nu) \right),$$ (13)

5 For values of ν_2 a full contribution of angular momentum is included (i.e. $l_2 = \nu_2$). Furthermore, Fermi resonance between (ν_1, ν_2, ν_3) and $(\nu_1 - 1, \nu_2 + 2\nu_3, \nu_3)$ induces a Fermi-level dependent energy shift which is not included in the listed values for ν_1. In the fitting algorithm, these shifts are calculated as described in [14, 15].

6 It would be physically accurate to replace the rotational degeneracy $g_{\text{rot},u}$ in equation (12) by the total degeneracy g_u. However, $g_{\text{rot},u}$ is used because of how A_{tot} is determined in the HITEMP database [31].
Transmission data is digitally extracted from the article and divided by an artificial background.

where \(L \) is the length of the reactor. The transmittance is constructed from a product of four exponents, i.e. the contributions of thermal and non-thermal \(\text{CO}_2 \) and \(\text{CO} \).

3.2.5. Apply instrumental broadening

In the last step, the broadening of the instrument is applied. The final transmittance is obtained by convolving \(T_v \) with the instrumental line shape of the FTIR. A three-term Blackman–Harris is used as the apodization function for the Fourier transform, resulting in a spectral line shape which can be very well approximated by a Gaussian [41]. For the spectrometer settings used in this study, the full-width at half-maximum of this Gaussian is determined to be 0.27 cm\(^{-1}\).

3.3. Validation of the algorithm

The computational algorithm is tested on non-thermal data, obtained from literature. Dang et al [9] performed IR absorption measurements on a glow discharge in a gas mixture of 10% \(\text{CO}_2 \), 38% \(\text{N}_2 \), and 52% \(\text{He} \) at a pressure of 20 mbar and a plasma current of 10 mA. They used a diode as an infrared source, resulting in a very narrow scanning range from 2284.2 to 2284.6 cm\(^{-1}\). The transmission graph they provided in [9] has been digitally extracted and divided by an artificial background, resulting in the transmittance in figure 3. All features in the spectrum originate from transitions in \(\text{CO}_2 \), since \(\text{N}_2 \) and \(\text{He} \) are not IR active, while \(\text{CO} \), which is formed in the plasma, is not active in this wavenumber region.

The spectrum is fitted using the algorithm, not including any thermal gas, nor instrumental broadening, since this broadening is not significant in regard to temperature and pressure broadening when using a diode as an IR source. The best fit, which is shown in figure 3, is obtained with \(T_{rot} = 491 \text{ K} \), \(T_{1_2} = 517 \text{ K} \), and \(T_{3} = 2641 \text{ K} \). Although Dang et al do not provide temperatures for this measurement, a \(T_3 \) elevation with respect to \(T_{rot} \) of 2150 K is comparable to those under similar conditions listed in [9], i.e. between 1500 and 2500 K.

4. Results

4.1. Adding thermal-volume fraction

Figure 4 shows a measurement taken at 2 ms in the discharge of a 5–10 ms on–off duty cycle at 50 mA and 6.7 mbar. The spectrum is fitted once with \(f_{th} \) set to 0 and once with the default value of 0.26, in order to illustrate the effect of adding a thermal-volume fraction to the calculation of the transmittance spectra. Both fits are respectively shown in panels (a) and (b), including residuals.

The effect of adding thermal gas is most visible around 2349 cm\(^{-1}\), which is the central wavenumber of the line structure of the \((0, 0^0, 0) \rightarrow (0, 0^0, 1)\) transition of \(^{12}\text{C}^{16}\text{O}_2\). In panel (a), symmetrically around this point an oval shape indicates a discrepancy between data and fit. This discrepancy is further exposed in the residual. The general shape of the residual is typical for a transmittance spectrum of \(\text{CO}_2 \) in the vibrational ground state, which is fitted with a too high rotational temperature.

In panel (b), this discrepancy has disappeared by adding to the fitting conditions that 26% of the gas in the reactor volume is thermal. The temperature of the thermal gas fraction is fitted at 363 K, while the rotational temperature of the non-thermal fraction increased from 661 K in (a) to 729 K in

![Figure 3](image-url) Figure 3. A fit, using the algorithm, on \(\text{CO}_2 \) data from Dang et al [9]. Transmission data is digitally extracted from the article and divided by an artificial background.

![Figure 4](image-url) Figure 4. Two fits on the same \(\text{CO}_2 \) and \(\text{CO} \) data at 2 ms in the discharge with a 5–10 ms on–off duty cycle at 50 mA and 6.7 mbar. In panel (a) \(f_{th} = 0 \), assuming a non-thermal population over the whole reactor, while in (b) \(f_{th} = 0.26 \). The residual is shown on the same scale as the data.
(b). Also T_{rot}, $T_{1,2}$ and T_3 from the fitted spectra significantly increase from (a) to (b). These temperatures largely represent the ratio of the ground state density over the density of vibrationally excited states. At temperatures below 400 K, thermally distributed CO$_2$ and CO mainly populate the ground state (82% and 99.96%, respectively). Hence, if the thermal volume is not included in the fitting model, the ground-state density in the non-thermal part apparently increases, lowering the fitted vibrational temperatures.

4.2. Fitting a time-resolved series

Figure 5 shows the time-resolved measurement series at 6.7 mbar, 50 mA, and a 5–10 ms on–off sequence. In panel (a), the fitted T_{rot}, $T_{1,2}$, T_3, T_{CO}, and T_{th} are plotted versus time. The gray section marks the plasma-on phase. Panels (b)–(e) represent examples of the fitted spectra at the time points that are indicated by the dashed vertical lines in panel (a). The total fits are shown in black, while the colored spectra represent the individual contributions of transitions of the forms $(\nu_1, \nu_2, \nu_3) \rightarrow (\nu_1, \nu_2', (\nu_3 + 1))$ and $(\nu_{\text{CO}}) \rightarrow (\nu_{\text{CO}} + 1)$. The residual of the total fit is included below each panel. Lines at energies larger than 2235 cm$^{-1}$ mainly belong to CO$_2$, while lines of CO are mostly located below this energy. Panel (f) shows a detail of panel (c).

Panel (a) shows the temperature behavior as a function of time, and starts right before the plasma is switched on, with all temperatures of the non-thermal part in equilibrium at 400 K (T_{CO} is not sensitive around this temperature and is stuck at the lower fitting boundary of 273 K). At this temperature ν_3 state densities are very low, and accordingly, in panel (b) hardly any lines are visible for $\nu_3 > 0$. Hereafter, T_3 and T_{CO} increase rapidly until a maximum is reached at 0.70 ms. In panel (c), this is seen as an increase of lines coming from $\nu_3 = 1 \rightarrow 2$ and $2 \rightarrow 3$, and $\nu_{\text{CO}} = 1 \rightarrow 2$. Continuing in time, T_{th} and $T_{1,2}$ follow a similar growth and all temperatures of the non-thermal part develop towards a non-thermal equilibrium between 850 and 1050 K. In panel (d), at 4.00 ms, the CO$_2$ and CO spectra become wider as a result from an increased density of higher rotational, ν_1, and ν_2 states. At 5.00 ms the plasma turns off and the non-thermal-volume part equilibrates within tens of μs. In panel (e), a transmittance spectrum is shown at 7.00 ms, with all temperatures half-way relaxed towards the initial conditions in panel (b). The thermal temperature T_{th} only increases and decreases slightly during and after the pulse, staying between 300 and 400 K. During the full cycle, the fitted CO$_2$ conversion factor α stays practically constant around 0.18.

Before further discussion on the fitted temperatures, the fit of the calculated spectra to the data is studied in more detail. To this purpose, a parameter scan of several fitting parameters is performed while calculating the reduced chisquared, χ^2_{red} [42]:

$$\chi^2_{\text{red}} = \frac{1}{N - n} \sum_{i=1}^{N} \frac{(O_i - F_i)^2}{\sigma^2_i}.$$ \hspace{1cm} (14)

Here, N is the number of wavenumber points, n is the number of fitting parameters, and O and F is the observed and fitted transmittance, respectively. σ^2 is the variance of the noise on the data, calculated from a wavenumber region without spectral activity. In short, χ^2_{red} represents the normalized ratio of the variance of the residual of the fit to the variance of the
noise on the data. The closer χ^2_{red} is to 1, the better the model fits the data, though $\chi^2_{\text{red}} < 1$ means that the model is overfitting.

In figure 6, χ^2_{red} is plotted for parameter scans of T_{rot}, $T_{1,2}$, T_3, and T_{CO} for the time points of figures 5(b)–(e). The plots are constructed by fitting the data while fixing one of these temperatures at various values (horizontal axis) and calculating χ^2_{red} of the resulting fit (vertical axis). In this way, χ^2_{red} forms a shape with its minimum at the original fit outcome, generally in the shape of a parabola; a higher or lower temperature respectively results in too strong or too weak peaks for vibrationally excited species. However, at -0.15 ms and 7.00 ms T_{CO} as well as T_3 at -0.15 ms show an asymmetric shape, leveling off at lower temperatures. At these temperatures, the densities of excited v_{CO} and v_3 become so small, that the remaining transmittance peaks are not distinguishable from noise. In figure 5(a), this explains T_{CO} being fitted too low before the plasma pulse and after 7.00 ms.

Furthermore, the width of the parabola shape can be used as an indication for the sensitivity of the fitted transmittance to a particular parameter. T_{rot} and $T_{1,2}$ show equally sharp shapes with an average half width at $\chi^2_{\text{red}} = \chi^2_{\text{red,min}} + 0.5$ of 30 K and 27 K, respectively. The shapes of T_3 are with a half width of 67 K twice as broad, while those of T_{CO} are by far widest at 357 K. A variation in the measured transmittance (e.g. resulting from a fluctuation in the plasma conditions of the emission background with respect to the normal transmission measurement, see section 2) is therefore likely to cause largest deviations in the fitted T_{CO}.

4.3. Influence of initial gas mixtures

To further discuss the temperature development during the plasma cycle, the fitting results of different cycles are compared in figure 7, where panel (a) shows data from the same experiment as figure 5(a). During this $5–10$ ms on–off pulse, a molecule experiences on average ca. 150 discharges before leaving the reactor. The fitted conversion factor of $\alpha = 0.18$ corresponds to a mixture of 75.2% CO$_2$, 16.5% CO, and 8.3% O$_2$ (see equations (6) and (7)). In contrast to this, in panel (b) the fit outcome of a measurement is shown where a molecule sees only one plasma pulse. To achieve this, the flow rate is increased from 7.4 sccm to 166 sccm of CO$_2$ while the plasma-off time is increased to 150 ms. Now, the residence time of the gas of ca. 100 ms is well below the off time, purging the reactor of most CO and O$_2$ before the next discharge. Accordingly, this measurement is referred to as the single-pulse measurement. It should be noted that the conversion during a single discharge is not enough to be able to accurately fit α or T_{CO}.

Practically, due to the longer plasma-off time, the measurement time increases from the regular two times 2 h (transmission and emission measurement) to two times 10 h, which makes it challenging to maintain constant discharge conditions and IR detector temperature. Further increasing the flow rate reduces the required off time and therefore the measurement time, but would also increase the renewal of the
gas during the discharge, which is already 5%. The injection of thermal gas in an ongoing discharge is likely to influence the temperature dynamics and should therefore be minimized.

Comparing the graphs in figures 7(a) and (b), the development of temperatures over time is similar: when the plasma turns on, T_3 rapidly increases with a maximum around 0.7 ms, after which T_{rot} and $T_{rot,3}$ increase and all temperatures level off in a non-thermal equilibrium. The temperatures quickly thermalize after plasma-off, which takes somewhat longer in the single-pulse measurement. The difference in absolute values of the temperatures between (a) and (b) is to a large extent explained by the lower initial temperatures, resulting from a full renewal with cold gas before the next pulse. Furthermore, during the single pulse the temperatures show irregularities, best visible between 2 and 5 ms, which result from variations between single discharges. When the plasma-off time is small, discharges ignite more stable. Other differences, such as the increased $T_{rot,3}$ between 0 and 2 ms, are attributed to the absence of interactions of CO2 with CO or O2, this being the prominent difference between the plasma conditions.

4.4. Excitation of the asymmetric stretch mode

Focussing on the excitation of the asymmetric stretch vibration of CO2, potentially relevant for an efficient dissociation, it is examined whether an elevated T_3 is typical for the start of a discharge. To do so, figure 7(c) shows the result of a measurement where the 5–10 ms on-off pulse is preceded by a 0.75–0.75 ms on-off pre-pulse. The temperature development during the pre-pulse matches the first 0.75 ms in the pulse of panel (a). At the start of the 5 ms pulse, T_3 peaks again, but reaches a lower maximum. The pulse continues comparable to the one in panel (a). After the pre-pulse, the relaxation of T_3 to T_{rot} takes longer than at the end of the 5 ms plasma pulse and when after 0.75 ms the 5 ms pulse starts, T_3 is not fully relaxed yet.

Based on this, it is examined whether a repeating rapid excitation with an incomplete relaxation can lead to further elevation of T_3. To this purpose, the results of an on–off cycle of 0.3–0.3 ms is shown in figure 7(d). From the graph, it can be seen that T_3 never completely relaxes, but its maximum excitation is not higher than for the other cycles. Besides, T_{rot} and $T_{rot,3}$ stay relatively high and constant between 650 and 725 K. T_3 relaxation after the pulse takes place with a similar speed as for the single pulse in panel (b).

To quantify the relaxation of T_3 to T_{rot} for all panels of figure 7, the difference between these two temperatures after plasma off is fitted with a single exponential decay. The relaxation after the pre-pulse in panel (c) is fitted as well. The results are shown on a logarithmic scale and normalized to the initial temperature difference in figure 8(a). The labels of the data correspond to the panels of figure 7. The fitted exponential curves are presented as solid black lines and are in good agreement with the data.

The different slopes show that the characteristic decay time varies strongly between data sets. While most experimental conditions during these plasma-off phases are similar, the rotational or translational temperature ranges from 530 K during the pre-pulse relaxation (c) to 860 K during the relaxation of (a) and (c). Figure 8(b) shows the fitted characteristic times versus the rotational temperature during the relaxation. Since T_{rot} varies over time, the decay time is plotted versus the average rotational temperature during a time period of twice the fitted characteristic decay time. The horizontal error bars represent twice the standard deviation of T_{rot} over this same period. The graph indicates a strong decrease of the decay time with increasing rotational temperature. This agrees with increasing rate constants for ν_3 relaxation with increasing translational temperature [43, 44].

The rotational temperature dependence of T_3 relaxation to T_{rot} should be apparent in the plasma-on phase as well. To illustrate this, panel (c) of figure 8 shows T_3–T_{rot} during the discharges of figure 7 versus the rotational temperature. All graphs develop similarly towards an equilibrium between relaxation and excitation, e.g. by electron impact, starting with a rapid increase at low T_{rot} when the discharge ignites. After reaching equilibrium around the maximum, the
equilibrium temperature gradually decreases with increasing T_{rot}. The rotational temperature dependence of this decrease is proportional to the one of the T_3 to T_{rot} decay time in figure 8(b). This illustrates the influence of translational temperature dependent relaxation on the T_3 elevation during a discharge.

The fact that the single-pulse measurement (b) shows the same development, but does not align with the rest, can be explained by the absence of CO for the single pulse versus a fitted 16.5%, 17.7%, and 22.0% of CO for (a), (c), and (d), respectively. It is known from literature that CO can stimulate vibrational excitation of the asymmetric stretch mode of CO2 [13]. Hence, the substantial concentration of CO in pulses (a), (c), and (d) results in a higher equilibrium temperature for T_3.

On the other hand, this effect should limit the excitation of T_{CO}, which becomes apparent with a comparison to the modeling work of Gorse and Capitelli [45]. Their self-consistent and time dependent model of a DC discharge, starting in pure CO, is run at very similar conditions, at a pressure of 6.7 mbar, a fixed translational temperature of 500 K, a reduced electric field of 60 Td, and an electron density of 10^{10} cm$^{-3}$.

The modeling results show an initial increase of T_{CO}, which stops and slowly reverses when at 7 ms enough deactivating species like CO2 are formed. The effect of CO2 on the vibrational temperature of CO is well visible when comparing concentrations and temperatures. With up to a few percent of CO2 in the model of [45], T_{CO} can reach 3500 K, while with 75% of CO2 in figure 7(a) of the current work, at $T_{\text{rot}} = 500$ K, T_{CO} does not exceed 1350 K.

5. Conclusions

We have demonstrated a method to determine elevated vibrational temperatures of CO2 and CO in a glow discharge in a time-resolved way, using in situ Fourier transform infrared spectroscopy. An algorithm is developed to analyze the measured transmittance spectra. As the outer ends of the reactor are filled with gas at a temperature colder than the gas in the discharge, a thermal-volume fraction is introduced in the model. The algorithm has been used to fit a previously published CO2 spectrum, showing highly vibrationally excited CO2 transitions. There is a very good agreement between fit and data.

To study the influence of the initial gas mixture, a measurement where the gas residence time is much longer than the plasma period is compared to one where the gas is fully renewed between two pulses. Both show a qualitatively similar development of temperatures over time. Absolute differences are attributed to the significantly increased presence of CO and O2 in the multiple-pulse measurement in regard to the single-pulse measurement. Due to the shorter plasma-off time of the multiple-pulse measurement, the discharge ignites in a more stable and consistent way.

It is experimentally shown that the temperature dependence of T_3 relaxation is likely to be the leading mechanism for the decrease of T_3 elevation with increasing T_{rot}. The T_3 peak found at the start of a sufficiently long plasma pulse is therefore not so much a consequence of a starting discharge, but is caused by a low T_{rot}. Hence, to gain higher excitations of the asymmetric stretch mode, potentially relevant for the efficient dissociation of CO2, relaxation could be strongly impeded by keeping the gas temperature low. In this regard, this study will be continued with measurements on a reactor in which the gas temperature can be manipulated by circulating a temperature controlled liquid trough a double reactor wall.

Acknowledgments

This work is partially funded by the Netherlands Organisation for Scientific Research (NWO), under reference 713.013.003, and partially by LABEX Plas@par receiving financial aid managed by the French National Research Agency (ANR) under the references ANR-11-IDEX-0004-0, and ANR-16-CE06-0005.

ORCID iDs

B L M Klarenaar @https://orcid.org/0000-0003-1544-8011
R Engeln @https://orcid.org/0000-0002-4687-7436
D C M van den Bekerom @https://orcid.org/0000-0002-7554-2539
A S Morillo-Candas @https://orcid.org/0000-0002-6974-1240
O Guaitella @https://orcid.org/0000-0002-6509-6934

References

[1] Centi G, Quadrelli E A and Perathoner S 2013 *Energy Environ. Sci*. 6 1711
[2] van Rooij G J, van den Bekerom D C M, den Harder N, Minea T, Berden G, Bongers W A, Engeln R, Graswinckel M F, Zoethout E and van de Sanden M C M 2015 *Faraday Discuss*. 183 233–48
[3] Bogaerts A, Kozak T, van Laer K and Snoeckx R 2015 *Faraday Discuss*. 183 217–32
[4] Brehmer F, Welzel S, van de Sanden M C M and Engeln R 2014 *J. Appl. Phys.* 116 123503
[5] Capezzuto P, Cramarossa F, D’Agostino R and Molinari E 1976 *J. Phys. Chem.* 80 882–8
[6] Legasov V A, Zhivotov V K, Krasheninnikov E G, Krotov M F, Patrushev B I, Rusanov V D, Rykunov G V, Spektor A M, Fridman A A and Sholin G V 1978 *Sov. Phys. Dokl.* 238 66–9
[7] Fridman A 2008 *Plasma Chemistry* (New York: Cambridge University Press)
[8] Siemsen K, Reid J and Dang C 1980 *IEEE J. Quantum Electron.* 16 668–76
[9] Dang C, Reid J and Garside B K 1982 *Appl. Phys. B* 27 145–51
[10] Andreev S N and Savinov S Yu 1995 Bull. Lebedev Phys. Inst. 6 26–30
[11] Andreev S, Zakharov V, Ochkin V and Savinov S 2004 Spectrochim. Acta A 60 3361–9
[12] Rivallan M, Aiello S and Thibault-Starzyn F 2010 Rev. Sci. Instrum. 81 103111
[13] Witterman W J 1987 The CO2 Laser (Berlin: Springer)
[14] Suzuki I 1968 J. Mol. Spectrosc. 25 479–500
[15] Amat G and Piment B 1965 J. Mol. Spectrosc. 16 278–90
[16] Plönjes E, Palm P, Lee W, D Chidley M, Adamovich I V, R Lemert W and Rich J 2000 Chem. Phys. 260 353–66
[17] Lee W, Adamovich I V and Lemert W R 2001 J. Chem. Phys. 114 1178–86
[18] Doerk T, Ehlbeck J, Jaurenk P, Stafo J, Uhlenbusch J and Wotka T 1992 Il Nuovo Cimento D 14 1051–63
[19] Kishimoto T, Wenzel N and Grosse-Wilde H 1992 Spectrochim. Acta A 47 51–60
[20] Shimanouchi T 1972 Tables of molecular vibrational frequencies, consolidated volume 1 Technical Report NSRDS-NBS 39 National Bureau of Standards Gaithersburg, MD (https://doi.org/10.6028/NBS.NSRDS.39)
[21] Depraz S, Perrin M and Souffian A 2012 J. Quant. Spectrosc. Radiat. Transfer 113 1–13
[22] Depraz S, Perrin M, Rivière P and Souffian A 2012 J. Quant. Spectrosc. Radiat. Transfer 113 14–25
[23] Welzel S, Hempel F, Hühner M, Lang N, Davies P B and Röpcke J 2010 Sensors 10 6861–900
[24] Raizer Yu P 1991 Gas Discharge Physics (Berlin: Springer)
[25] Roznerski W and Leja K 1984 J. Phys. D: Appl. Phys. 17 279–85
[26] Rothman L, Gordon I, Barber R, Dothe H, Gamache R, Goldman A, Perevalov V, Tashkun S and Tennyson J 2010 J. Quant. Spectrosc. Radiat. Transfer 111 2139–50
[27] Huber K P, Herzberg G, Gallagher J W and Johnson R D III 2016 Constants of diatomic molecules NIST Chemistry WebBook, NIST Standard Reference Database Number 69 ed P J Linstrom and W G Mallard (National Institute of Standards and Technology: Gaithersburg, MD)
[28] Fischer J, Gamache R, Goldman A, Rothman L and Perrin A 2003 J. Quant. Spectrosc. Radiat. Transfer 82 401–12
[29] Herzberg G 1960 Molecular Spectra and Molecular Structure II. Infrared and Roman Spectra of Polyatomic Molecules 9th edn (London: Van Nostrand)
[30] Hoskins L C 1975 J. Chem. Educ. 52 568
[31] Šimecková M, Jacquemart D, Rothman L S, Gamache R R and Goldman A 2006 J. Quant. Spectrosc. Radiat. Transfer 98 130–55
[32] McDowell R S 1988 J. Chem. Phys. 88 356
[33] Mantz A, Maillard J P, Rok W B and Narahari Rao K 1975 J. Mol. Spectrosc. 57 155–9
[34] Chen D W, Narahari Rao K and McDowell R S 1976 J. Mol. Spectrosc. 61 71–8
[35] Treanor C E 1968 J. Chem. Phys. 48 1798
[36] Berthelot A and Bogaerts A 2017 J. Phys. Chem. C 121 8236–51
[37] Gamache R R and Rothman L S 1992 J. Quant. Spectrosc. Radiat. Transfer 48 519–25
[38] Rothman L et al 1998 J. Quant. Spectrosc. Radiat. Transfer 60 665–710
[39] Gharavi M and Buckley S G 2004 Appl. Spectrosc. 58 468–73
[40] Whiting E 1968 J. Quant. Spectrosc. Radiat. Transfer 8 1379–84
[41] Nuttall A 1981 IEEE Trans. Acoust. Speech Signal Process. 29 84–91
[42] Dros M 2009 Dealing with Uncertainties 2nd edn (Berlin: Springer)
[43] Blauer J A and Nickerson G R 1973 A survey of vibrational relaxation rate data for processes important to CO2—N2—H2O infrared plume radiation Technical Report AFRPL-TR-73-57 Ultrasystems, Inc. (http://dtic.mil/dtic/tr/fulltext/u2/771554.pdf)
[44] Kozák T and Bogaerts A 2014 Plasma Sources Sci. Technol. 23 045004
[45] Gorse C and Capitelli M 1984 Chem. Phys. 85 177–87