Research Papers

Neocosmospora spp. associated with dry root rot of citrus in South Africa

Vladimiro GUARNACCIA1,2,3,*, **Jan V AN NIEKERK**3,4, **Pedro W. CROUS**5, **Marcelo SANDOVAL–DENIS**5

1 Centre for Innovation in the Agro-Environmental Sector, AGROINNOVA, University of Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy
2 Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy
3 Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
4 Citrus Research International, P.O. Box 28, Nelspruit 1200, South Africa
5 Westerdijk Fungal Biodiversity Institute Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands

*Corresponding author. E-mail: vladimiro.guarnaccia@unito.it

Summary. Citrus is one of the most important fruit crops cultivated in South Africa. Internationally, citrus dry root rot is a common disease in major citrus production areas. Several abiotic and biotic factors are involved in disease development, in which *Neocosmospora* species are important biotic agents. The diversity of *Neocosmospora* species associated with dry root rot symptoms of *Citrus* trees cultivated in South Africa was evaluated using morphological and molecular analyses. Multi-locus analysis was conducted, based on fragments of seven loci including: ATP citrate lyase (*acl1*), calmodulin (*cal*), internal transcribed spacer region of the rRNA (ITS), large subunit of the rRNA (LSU), RNA polymerase largest subunit (*rpb1*), RNA polymerase second largest subunit (*rpb2*), and translation elongation factor 1-alpha (*tef1*). A total of 62 strains representing 11 *Neocosmospora* species were isolated from crowns, trunks and roots of citrus trees affected by dry root rot, as well as from soils sampled in affected citrus orchards. The most commonly isolated taxa were *N. citricola*, *N. ferruginea* and *N. solani*, while rarely encountered taxa included *N. brevis*, *N. crassa*, *N. hypothemenni* and *N. noneumartii*. Furthermore, four *Neocosmospora* species are also newly described, namely *N. addoensis*, *N. citricola*, *N. gamtoosensis* and *N. lerouxii*.

Keywords. Citrus decline, morphology, multigene phylogeny, systematics.

INTRODUCTION

Citrus is one of the most important world fruit crops, and South Africa is among the largest producers and exporters of citrus fruit (FAOSTAT, 2019). Citrus dry root rot (DRR) is a common problem among citrus growers, reported in major production areas such as Australia (Broadbent, 2000), Florida, California and Texas in the United States of America (Graham et
al., 1985), Italy (Polizzi et al., 1992), Oman (Nemec et al., 1980; Bender, 1985), Pakistan (Kore and Mane, 1992; Conzulex et al., 1997; Verma et al., 1999; Rehman et al., 2012), Turkey (Kurt et al., 2020), Tunisia, Greece and Egypt (El-Mohamedy, 1998; Yaseen and D’Onghia, 2012).

While the aetiology of DRR is multifactorial and not completely understood, it is usually attributed to Neocosmospora (Fusarium) solani sensu lato. However, several species of Neocosmospora, but also Fusarium, are commonly found in orchard soils and citrus plants. These two closely related fusarioid genera encompass important plant pathogens, and are associated with major diseases of citrus (Menge, 1988; Derrick and Timmer, 2000; Sandoval-Denis et al., 2018), including DRR, root rot, feeder root rot, wilt, twig dieback and citrus decline (Menge, 1988; Spina et al., 2008). Fusarium equiseti was recovered from citrus roots in Florida (Smith et al., 1988), while F. proliferatum, F. sambucinum and Neocosmospora solani were found in Greece (Malikoutsaki-Mathioiud et al., 1987). Fusarium oxysporum f. sp. citri was reported as responsible for the wilt of citrus in Tunisia (Hannachi et al., 2014). Fusarium oxysporum and strains first assigned to “F. ensiforme” and later reidentified as Neocosmospora brevis were also reported from DRR in Italy (Sandoval-Denis et al., 2018; 2019), while a number of Neocosmospora species have been reported in association with DRR of citrus in Europe (Sandoval-Denis et al., 2018).

Neocosmospora (Hypocreales, Nectriaceae), comprises species with varied ecologies, including saprobes, endophytes, and plant and animal pathogens. Pathogenic species of Neocosmospora are known to affect more than 100 plant host families and diverse animal species, including humans (Sandoval-Denis et al., 2019). Although Neocosmospora (1899) is an old and well-established name, recent phylogenetic, morphological and ecological data (Lombard et al., 2015) provided additional support for this genus as one of several distinct fusarioid genera in the Nectriaceae. Follow-up revisions have corrected the taxonomy of most Neocosmospora species known to date, including the main pathogenic clades (Sandoval-Denis and Crous, 2018; Sandoval-Denis et al., 2019).

Previous studies have demonstrated how DRR, caused by the association between stressed plants and Neocosmospora species, can generate sudden decline of plants weakened by abiotic and biotic factors, such as root injuries, Phytophthora root rot, graft incompatibility, poor drainage, poor soil aeration, excess fertilizer, or soil pH (Menge, 1988; Polizzi et al., 1992). Chlorosis, poor vigour, wilt, leaf abscission and degeneration are visible in affected plants for several years before they suddenly die. Examination of scaffold roots, crowns and basal trunks usually shows wood staining (Timmer et al., 1979; Timmer 1982). Rot of the fibrous roots is also visible and associated with canopy size reductions, defoliation, dieback and sloughing of root cortices (Nemec and Baker, 1992). This disease has been managed by planting resistant rootstocks. However, during the last decade, trifoliolate orange (Poncirus trifoliata) rootstocks, which are very susceptible to DRR, have been widely used, due to their resistance to virus and soilborne pathogens (i.e.: Citrus Tristeza Virus) (Fang et al., 1998).

Since 2013, sudden, devastating decline and death of citrus trees has been reported in the Gamtoos and Sundays River Valleys production areas in the Eastern Cape province of South Africa. This decline is typically observed on 4- to 10-year-old trees with the trifoliolate rootstocks Carrizo citrange and Swingle citrumelo. As scions, these declining trees are of various citrus types, including lemons, oranges and mandarins. To date, little is known about DRR-like diseases in citrus orchards in South Africa. Given the importance of citrus production, and specifically in the two areas of South Africa, as well as the relevant economic impact of DRR in other countries, further research was needed to increase understanding of the aetiology of this disease.

Morphological, cultural and molecular characteristics of the fungal species associated with symptomatic trees were investigated in this study by employing large-scale sampling to isolate the pathogens involved, and to identify their strains according to modern taxonomic concepts via morphological characterization and multilocus DNA sequence data. In 2018 several surveys were conducted in citrus orchards with the aims to: (1) conduct extensive surveys to sample symptomatic plant material; (2) cultivate as many of the associated fungi as possible; (3) conduct DNA multi-locus sequence analyses combined with morphological characterization of isolates obtained; and (4) compare the obtained results with known wood decay fungi previously associated with trees displaying characteristic DDR symptoms.

MATERIALS AND METHODS

Sampling, fungal collection and isolation

The Patensie (Gamtoos River Valley) and Kirkwood (Sundays River Valley) areas were surveyed during the second half of 2018. During these visits, the external and internal symptoms of diseased trees were examined. Scaffold roots, crown and trunk portions taken from between soil level and scion unions, were collected in
both the survey areas. Samples were each transversally cut into 3-cm-thick discs, which allowed observation of internal wood decay symptoms.

Wood fragments (3 × 3 mm) were cut from necrotic and healthy tissues and also from the margins between them. Each fragment was then surface sterilised by soaking in 70% ethanol for 5 s, 4% sodium hypochlorite for 90 s, sterile water for 60 s and then dried on sterile filter paper. Fragments were placed on potato dextrose agar (PDA) amended with 100 μg mL⁻¹ streptomycin (PDA-S), and were then incubated at 25°C. Characteristic Neocosmospora colonies were collected from these plates by hyphal tipping onto clean PDA-S plates. The isolates used in this study are maintained in the culture collection of the Department of Plant Pathology, University of Stellenbosch, Stellenbosch, South Africa, and at the Westerdijk Fungal Biodiversity Institute (CBS), Utrecht, The Netherlands (Table 1).

Morphological studies of isolates

Morphological studies were carried out as indicated elsewhere (Leslie and Summerell, 2006; Sandoval-Denis and Crous, 2018; Sandoval-Denis et al., 2019). Macroscopic characteristics and fungal colony appearance of each isolate was determined after culturing on oatmeal agar (OA), potato dextrose agar (PDA) and synthetic nutrient-poor agar (SNA; Nirenberg, 1976), and incubation for 7–14 d at 24°C in darkness under a 12 h/12 h light/dark cycle using cool fluorescent light. Colour nomenclature follows that of Rayner (1970). Fungal micromorphology was studied using 7–14-d-old cultures on carnation leaf agar (CLA; Fisher et al., 1982) and SNA, incubated at 24°C in a 12 h/12 h near UV light/dark cycle. Photomicrographs were captured using a Nikon Eclipse 80i microscope with Differential Interference Contrast (DIC) optics and a Nikon AZ100 dissection microscope, both equipped with a Nikon DS-Ri2 high definition colour digital camera. Measurements were recorded using Nikon NIS-elements D software v. 4.50, from at least 50 randomly selected elements for each structure.

Molecular studies of isolates

Total genomic DNA was extracted from isolates grown on malt extract agar (MEA; Crous et al., 2019), incubated for 7 d at room temperature (approx. 24°C). Mycelium was scraped from the colony surfaces with the aid of sterile scalpels, and DNA was isolated using the Wizard® Genomic DNA purification Kit (Promega Corporation) following the manufacturer’s protocol.

Seven gene fragments were PCR amplified using the following primer combinations with protocols described elsewhere: acl1-230up and acl1-1220low for the larger subunit of the ATP citrate lyase (acl1; Gräfenhan et al., 2011), CAL-228F and CAL2Rd for calmodulin (cal; Carbono and Kohn, 1999; Quaedvlieg et al., 2014), ITS4 and ITS5 for the internal transcribed spacer region of the rRNA (ITS; White et al., 1990), LR0R and LR5 for a partial fragment of the large subunit of the rRNA (LSU; Vilgalys and Hester, 1990; Vilgalys and Sun, 1994), Fa and G2R for the RNA polymerase largest subunit (rpb1; O’Donnell et al., 2010), 5f2 and 7cr plus 7cf and 11ar for two non-contiguous fragments of the RNA polymerase second largest subunit (rpb2; Liu et al., 1999; Sung et al. 2007), and EF-1 and EF-2 for the translation elongation factor 1-alpha gene (tefl; O’Donnell et al., 2008). Sequencing was carried out in both directions on an ABI Prism 3730XL DNA Analyzer (Applied Biosystems) using the same primer pairs used for amplification, plus the internal sequencing primers F6, F8 and R8 for rpb1 (O’Donnell et al., 2010). Consensus sequences were assembled using Seqman Pro v. 10.0.1 (DNASTAR).

Sequence alignments were constructed and analysed individually for each gene partition, including DNA sequences representing the phylogenetic diversity of Neocosmospora selected according to recently published phylogenies (Guarnaccia et al., 2019; Sandoval-Denis et al., 2019). Alignments were achieved using MAFFT (Katoh et al., 2019) as implemented on the European Bioinformatics Institute (EMBL-EBI) portal (www.ebi.ac.uk), and were visually inspected and then manually corrected if needed using MEGA v. 6 (Tamura et al., 2013).

Phylogenetic analyses were based on two independent algorithms: Maximum-Likelihood, using Random Accelerated (sic) Maximum Likelihood (RAxML) v. 8.2.10 (Stamatakis, 2014) and Bayesian inference (BI) under MrBayes v. 3.2.6 (Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003). The analyses were carried out using the CIPRES Science Gateway portal (www.phylo.org: Miller et al., 2012). Single-gene phylogenies were compared visually to check for topological conflict between significantly supported clades, and then as combined multilocus phylogenies (Mason-Gamer and Kellogg, 1996; Wiens 1998). A first analysis based on combined rpb2 and tefl sequence data was directed to identify Neocosmospora spp. from isolates obtained from symptomatic citrus trees. A second analysis including the combined seven gene dataset was directed to clarify the phylogeny of South African citrus Neocosmospora isolates with uncertain phylogenetic position or deter-
Table 1. Collection data and GenBank accession numbers of isolates included in this study.

Species	Strain number	Country	Host	GenBank sequence accession number						
				Species Strain number	**Country**	**Host**		**GenBank sequence accession number**		
				ad	**cal**	**ITS**	**LSU**	**rpb1**	**rpb2**	**tefl**
Geejayessia atrofusca	NRRL 22316	USA	Staphylea trifolia	-	-	AF178423	AF178392	JX171496	EU329502	AF178361
Geejayessia cicatricum	CBS 125552	Slovenia	Dead twig	HQ728171	HQ728145	MH875038	HQ728153	HM626644		
Neocosmospora addoensis	CBS 146508 = VG268 = CPC 37126	South Africa	*Citrus sinensis* - crown	MW218003	MW218050	MW173040	MW173031	MW218096	MW446573	MW248739
	CBS 146509 = VG279 = CPC 37127	South Africa	*Citrus sinensis* - crown	MW218004	MW218051	MW173041	MW173032	MW218097	MW446574	MW248740
	CBS 146510T = VG281 = CPC 37128	South Africa	*Citrus sinensis* - crown	MW218005	MW218052	MW173042	MW173033	MW218098	MW446575	MW248741
Neocosmospora ampla	CBS 202.32T	German East Africa	Coffea sp.	-	-	LR583701	LR583909	-	LR583815	LR583594
Neocosmospora bataticola	CBS 144397	USA	Ipomoea batatas	MW218006	MW218053	AF178407	AF178376	MW218099	EU329509	AF178343
	CBS 144398T	USA	Ipomoea batatas	MW218007	MW218054	AF178408	AF178377	MW218100	FJ240381	AF178344
Neocosmospora borneensis	CBS 145462T	Indonesia	Bark or recently dead tree	-	-	AF178415	AF178384	-	EU329515	AF178352
Neocosmospora bostryoides	CBS 144.25NT	Honduras	Soil	MW218008	MW218055	LR583704	LR583912	MW218101	LR583818	LR583597
	CBS 392.66	Unknown Bertholletia excelsa	MW218009	MW218056	LR583705	LR583913	MW218102	LR583819	LR583598	
Neocosmospora brevicona	CBS 204.31T	Indonesia	Gladiolus sp.	MW218010	MW218057	LR583707	LR583915	MW218103	LR583821	LR583600
Neocosmospora brevis	CBS 130326	USA	Human eye	-	-	DQ094351	DQ236393	-	EF470136	DQ248669
VG150	South Africa	*Citrus sinensis* - crown	-	-	MW173043	-	-	MW446576	MW248742	
VG152	South Africa	*Citrus sinensis* - crown	-	-	MW173044	-	-	MW446577	MW248743	
VG157	South Africa	*Citrus sinensis* - crown	-	-	MW173045	-	-	MW446578	MW248744	
Neocosmospora catenata	CBS 143228	USA	Stegostoma fasciatum	MW218011	MW218058	KC808255	KC808255	MW218104	KC808354	KC808213
CBS 143229T	USA	Stegostoma fasciatum	MW218012	MW218059	KC808256	KC808256	MW218105	KC808355	KC808214	
Neocosmospora citricola	CBS 146511 = VG202 = CPC 37129	South Africa	*Citrus sinensis* - crown	MW218013	MW218060	MW173046	MW173034	MW218106	MW446579	MW248745
CBS 146512 = VG307 = CPC 37130	South Africa	*Citrus sinensis* - crown	MW218014	MW218061	MW173047	MW173035	MW218107	MW446580	MW248746	
CBS 146513T = VG343 = CPC 37131	South Africa	*Citrus sinensis* - crown	MW218015	MW218062	MW173048	MW173036	MW218108	MW446581	MW248747	
VG17	South Africa	*Citrus sinensis* - crown	-	-	MW173049	-	-	MW446582	MW248748	
VG30	South Africa	*Citrus sinensis* - crown	-	-	MW173050	-	-	MW446583	MW248749	
VG139	South Africa	*Citrus sinensis* - crown	-	-	MW173051	-	-	MW446584	MW248750	
VG140	South Africa	*Citrus sinensis* - crown	-	-	MW173052	-	-	MW446585	MW248751	
VG183	South Africa	*Citrus sinensis* - crown	-	-	MW173053	-	-	MW446586	MW248752	
VG197	South Africa	*Citrus sinensis* - root scaffold	-	-	MW173054	-	-	MW446587	MW248753	
VG203	South Africa	*Citrus sinensis* - crown	-	-	MW173055	-	-	MW446588	MW248754	
Table 1. (Continued).

Species	Strain number¹	Country	Host	GenBank sequence accession number²
Neocosmospora crassa	CBS 144386T	France	Unknown	MW218016 MW218063
Neocosmospora cucurbitae	CBS 410.62	Netherlands	Cucurbita viticifolia	- - MW173061 MW173037 MW173060 MW173037
Neocosmospora cyanescens	CBS 518.82T	Netherlands	Human foot	MW218017 MW218064
Neocosmospora diminuta	CBS 144390T	Unknown	Coelocaryon preussi	- - MW173061 MW173037 MW173060 MW173037
Neocosmospora elegans	CBS 144395	Japan	Xanthoxylum piperitum	- - MW173061 MW173037 MW173060 MW173037
Neocosmospora falciformis	CBS 475.67T	Puerto Rico	Human mycetoma	MW218021 MW218068
Neocosmospora ferruginea	CBS 109028T	Switzerland	Human subcutaneous nodule	- - MW173061 MW173037 MW173060 MW173037

(Continued)
Species	Strain number1	Country	Host	GenBank sequence accession number2	acl	cal	ITS	LSU	rpb1	rpb2	tef1	
Neocosmospora gamsii	CBS 143207T	USA	bronchoalveolar lavage fluid									
	CBS 143211	USA	Humidifier coolant									
Neocosmospora gamtoosensis	CBS 146502T = VG16 = CPC 37120	South Africa	Citrus sinensis - crown	MW218023 MW218070 MW173063 MW173038 MW218116 MW446611 MW248762								
Neocosmospora haematococca	CBS 119600T	Sri Lanka	Dying tree									
Neocosmospora hypothenemi	CBS 145464T	Benin	Hypothenemus hampei	MW218024 - LR583715 LR583923 MW218117 JF741716 JF740850								
	CBS 145466	Uganda	Hypothenemus hampei	MW218025 MW218071 - - MW173066 - - MW446614 MW248765								
VG11	South Africa	Citrus sinensis - crown	- -	MW173064 - -	MW446612 MW248763							
VG14	South Africa	Citrus sinensis - crown	- -	MW173065 - -	MW446613 MW248764							
VG49	South Africa	Citrus sinensis - root scaffold	- -	MW173066 - -	MW446614 MW248765							
VG189	South Africa	Citrus sinensis - crown	- -	MW173067 - -	MW446615 MW248766							
VG328	South Africa	Citrus sinensis - crown	- -	MW173068 - -	MW446616 MW248767							
Neocosmospora ipomoeae	CBS 353.87	Netherlands	Gerbera sp.	MW218026 MW218072 LR583717 LR583925 MW218119 LR583831 DQ247639								
CBS 833.97	Netherlands	Rosa sp.	MW218027 MW218073 LR583719 LR583927 MW218120 LR583833 LR583611									
Neocosmospora keratoplastica	CBS 490.63T	Japan	Human	MW218028 MW218074 LR583721 LR583929 MW218121 LT906562 LT906670								
CBS 144389	Belgium	Greenhouse humic soil	MW218029 MW218075 LR583722 LR583930 MW218122 LR583836 LR583613									
Neocosmospora lerouxiix	CBS 146514T = VG48 = CPC 37132	South Africa	Citrus sinensis - root scaffold	MW218030 MW218076 MW173069 MW173039 MW218123 MW446617 MW248768								
Neocosmospora lichenicola	CBS 509.63	Brazil	Air	- - LR583728 LR583936 - - LR583843 LR583618								
CBS 623.92T	Germany	Human necrotic wound	- - LR583730 LR583938 - - LR583845 LR583620									
Neocosmospora liriodendri	CBS 117481T	USA	Liriodendron tulipifera	MW218031 MW218077 AF178404 AF178373 MW218124 EU329506 AF178340								
Neocosmospora longisima	CBS 126407T	New Zealand	Tree bark	- - LR583731 LR583939 - - LR583846 LR583621								
Neocosmospora macrospera	CBS 142424T	Italy	Citrus sinensis	MW218032 MW218078 LT746266 LT746281 MW218125 LT746331 LT746218								
CPC 28193	Italy	Citrus sinensis	MW218033 MW218079 LT746268 LT746283 MW218126 LT746333 LT746220									

(Continued)
Species	Strain number	Country	Host	ad	cal	ITS	LSU	rpc1	rpc2	tefl	
Neocosmospora martii	CBS 115659TT	Germany	Solanum tuberosum	-	-	JX435206	JX435206	JX435256	JX435156		
Neocosmospora metavorans	CBS 135789TT	Greece	Human pleural effusion	MW218034	MW218080	LR583738	LR583946	MW218127	LR583849	LR583627	
Neocosmospora mori	CBS 143219	Spain	Human foot	MW218035	MW218081	LR583744	LR583948	MW218128	LR583851	LR583629	
Neocosmospora mori	CBS 145467TT	Japan	Morus alba	-	-	DQ943055	DQ236347	-	-	EU329499	AF178358
Neocosmospora noneumartii	CBS 115658TT	Israel	Solanum tuberosum	MW218036	MW218082	LR583745	LR583949	MW218129	LR583630		
Neocosmospora oblonga	CBS 130325T	USA	Human eye	-	-	LR583746	LR583950	LR583853	LR583631		
Neocosmospora paracemartii	CBS 123669TT	Argentina	Solanum tuberosum	-	-	LR583747	LR583951	LR583855	DQ247549		
Neocosmospora parcemososa	CBS 115695TT	South Africa	Soil	MW218037	MW218083	JX435199	JX435199	JX435249	JX435149		
Neocosmospora persoae	CBS 144142T	Italy	Persea americana	MW218038	MW218084	LT991940	LT991947	MW218130	LT991909	LT991902	
Neocosmospora petrophila	CBS 203.32	South Africa	Pelargonium sp.	MW218039	MW218085	DQ943202	DQ236362	MW218131	LR583857	DQ246835	
Neocosmospora piperis	CBS 145470TT	Brazil	Piper nigrum	-	-	AF178422	AF178539	-	-	AF178360	
Neocosmospora pisi	CBS 123669TT	USA	Progeny of parentals from Pisum sativum and soil	-	-	LR583755	LR583957	LR583862	LR583636		
Neocosmospora protoensiformis	CBS 145471T	Venezuela	Dicot tree	-	-	AF178399	AF178368	LR583646	KY556454		
Neocosmospora pseudoradicicola	CBS 145472TT	Papua New Guinea	Diseased cocoa pods	MW218041	MW218087	JF740899	JF740899	MW218133	JF741084	JF740757	
Neocosmospora quercicola	CBS 141.90T	Italy	Quercus cerris	-	-	LR583760	LR583964	LR583869	DQ247634		
Neocosmospora regularis	CBS 230.34T	Netherlands	Pisum sativum	-	-	LR583763	LR583967	LR583873	LR583643		
Neocosmospora solivicola	CBS 123846T	USA	Liriodendron tulipifera	-	-	LR583766	LR583971	LR583876	LR583646		
Neocosmospora solani	CBS 140079TT	Slovenia	Solanum tuberosum	MW218042	MW218088	KT313633	KT313633	KT313623	KT313611		
VG36	South Africa	Citrus sinensis - root scaffold	-	-	MW173072	-	-	MW446621	MW248771		
VG38	South Africa	Citrus sinensis - root scaffold	-	-	MW173073	-	-	MW446622	MW248772		

(Continued)
Species	Strain number	Country	Host	GenBank sequence accession number	acl	cal	ITS	LSU	rpb1	rpb2	tef1
Neocosmospora sp. (FSSC12)	CBS 143212	USA	Turtle egg	MW218043 MW218089	-	-	MW173074	-	MW446623 MW248773		
Neocosmospora spathulata	CBS 143226	USA	Kemps Ridley turtle	MW218044 MW218090	-	-	MW173075	-	MW446624 MW248774		
Neocosmospora stercicola	CBS 142481\(T\)	USA	Human synovial fluid	MW218045 MW218091	-	-	MW173076	-	MW446625 MW248775		
Neocosmospora suttoniana	CBS 143214\(T\)	USA	Human wound	MW218046 MW218092	-	-	MW173077	-	MW446626 MW248776		
Neocosmospora tonkinensis	CBS 115.40\(T\)	Vietnam	Musa sapientium	MW218048 MW218094	-	-	MW173078	-	MW446627 MW248777		
Neocosmospora vasinfecta	CBS 446.93	Japan	Soil	MW218049 MW218095	-	-	MW173079	-	MW446628 MW248778		
CBS 533.65	USA	Unknown	Solanum lycopersicum	MW218049 MW218095	-	-	MW173080	-	MW446629 MW248779		

1 CBS: Westerdijk Fungal Biodiversity Institute (WI), Utrecht, The Netherlands; CPC: Collection of P.W. Crous, held at WI; NRRL: Agricultural Research Service Culture Collection, National Center for Agricultural Utilization Research, USDA, Peoria, IL, USA; VG: Working collection of J. Van Niekerk held at Department of Plant Pathology, University of Stellenbosch, South Africa; ET: Ex-epitype, IT: Ex-isotype, NT: Ex-lectotype.

2 acl: ATP citrate lyase largest subunit; cal: calmodulin; ITS: internal transcribed spacer region of the rDNA; LSU: large subunit of the rDNA; rpb1: RNA polymerase largest subunit; rpb2: RNA polymerase second largest subunit; tef1: translation elongation factor 1-alpha. Sequences generated in the present study are shown in **bold font**.
mined as putative novel species in the previous analyses. For RAxML analyses, the default parameters were selected and clade stability was determined by bootstrap (BS) analysis using 1000 repetitions. Bayesian analyses consisted of two parallel runs of 5 M generations, with the stop-rule on, set to 0.01. The sampling frequency was set to 1000 generations, and consensus trees and posterior probability values (PP) were calculated after discarding the first 25% of sampled trees as the burn-in fraction. The best evolutionary model for each gene partition was determined using MrModelTest v. 2.3 (Nylander, 2004).

RESULTS

Sampling, fungal collection and isolation

In the Patensie and Kirkwood areas, diseased trees initially showed yellowing, wilting leaves and dieback of branch tips. Symptoms subsequently progressed with defoliation and sudden decline before the plants died. Inspection of affected trees showed cracks or blisters on the trunks above the crowns with, rarely, gum exudates (Figure 1). If each trunk was transversely cut, brown to black discolouration and necrosis of the vascular tissue became visible with different extensions (Figure 2). Similar discolouration and stains were visible into the scaffold roots. Symptoms were observed in orchards older than 8 years. Incidence of symptomatic plants was in some cases up to 50% of affected trees in orchards.

A total of 62 monosporic isolates resembling those of Neocosmospora were collected from the sampled citrus trees. Among them, 33 isolates were obtained from the Kirkwood area and 29 from Patensie. Thirty-eight were isolated from trunk portions, 22 from scaffold roots, and two from soil surrounding infected roots. Among the isolates collected from trunks, 17 were from necrotic tissue, two from healthy tissue and 14 from the margins between necrotic and healthy tissues.

Phylogenetic studies and identification of the pathogens

A first analysis, based on combined rpb2 and tef1 loci, was conducted to identify the Neocosmospora isolates obtained from symptomatic citrus trees. The dataset contained 129 isolates, representing 62 South African isolates, as well as 67 ex-type or reference strains representing 46 taxa in Neocosmospora, and two outgroup taxa (Geeyajessia atrofuscus NRRL 22316 and G. cicatriscum CBS 125552). The alignment included 2290 positions (1614 rpb2, 676 tef1) of which 748 were variable (480 rpb2, 268 tef1), and 562 positions were phylogenetically informative sites (379 rpb2, 183 tef1). For both gene partitions, a GTR + I + G model was selected and incorporated in the analyses. The BI lasted for 1,855,000 generations, and the consensus tree and PP were calculated from 1392 trees after discarding 494 trees as burn-in fraction. Phylogenetic trees inferred using ML and BI analyses resulted in very similar topologies, and therefore only the ML tree is presented in Figure 3a. The South African isolates were distributed among 11 distinct phylogenetic lineages, of which seven corresponded to known Neocosmospora species, which were, in order of frequency of isolation: N. ferruginea and N. solani (15 isolates each), N. hypothemieni (five isolates), N. brevis (three isolates), N. noneumartii (two isolates), and N. crassa and N. falciformis (one isolate each). The remaining 20 South African isolates grouped within four undescribed phylogenetic lineages, among which 15 isolates clustered in a well-supported clade (“Neocosmospora sp. 1", BS = 93/PP = 0.96), sister to N. bataticola; three isolates (VG268, 279 and 281) clustered in a fully-supported clade (“Neocosmospora sp. 2", BS = 100/PP = 100), sister to N. metavaranis; while two isolates (singletons VG16 and VG48) were resolved as single lineages (respectively, “Neocosmospora sp. 3" and “Neocosmospora sp. 4"), however, with low statistical support values compared with those in the rpb2 and tef1 analyses.

To further assess the phylogenetic position of the putative novel phylogenetic clades, a second, more robust multi-locus phylogenetic analysis was performed using seven loci (acl, cal, ITS, LSU, rpb1, rpb2 and tef1) and selected strains representing closely related species, as determined in the previous phylogenetic assessment of the genus Neocosmospora. The combined dataset included 5904 positions (616 acl, 573 cal, 467 ITS, 480 LSU, 1489 rpb1, 1613 rpb2 and 666 tef1) from 47 strains, representing a subset of 28 phylogenetic clades of Neocosmospora, plus two outgroup taxa. From the total sites included, 1405 were variable (188 acl, 103 cal, 100 ITS, 34 LSU, 372 rpb1, 390 rpb2 and 218 tef1), and 856 were phylogenetically informative (81 acl, 82 cal, 70 ITS, 22 LSU, 196 rpb1, 266 rpb2 and 139 tef1). Optimal model selection for each gene partition was determined as follows: GTR + G for tef1, GTR + I + G for LSU and ITS; K80 + G for acl, K80 + I + G for cal, and SYM + I + G for rpb1 and rpb2. The BI lasted for 1,520,000 generations, and PP were calculated from 1141 trees after discarding 380 trees as the burn-in fraction. The BI analysis (shown in Figure 3b) confirmed the topology obtained by ML.

The analyses confirmed the results obtained in the two-locus phylogeny, and the four novel lineages were resolved with high BS and PP support. Neocosmospora sp. 2 and representative isolates of clade Neocosmospora spp. associated with dry root rot of citrus in South Africa
Figure 1. Dry root rot symptoms of citrus observed in South Africa. Tree decline progression: initial leaves wilting (A), yellowing, loss of leaves, and dieback of branch tips (B) and plant death (C). External cracks or blisters on the trunk portion above the crown (D) and internal dry rot (E) of the same plant. Gum exudate at the crown level (F). Brown to black discolouration and necrosis of the vascular tissue visible in longitudinal and transverse sections (G).
Neocosmospora spp. associated with dry root rot of citrus in South Africa

sp. 1 were both resolved as fully supported clades (BS = 100/PP = 100), while the lone lineages Neocosmospora sp. 3 and Neocosmospora sp. 4 were confidently resolved as well-supported branches (respectively, BS = 96/PP = 0.97 and BS = 86/PP = 0.96). These four phylogenetic lineages are therefore here proposed as the novel species Neocosmospora addoensis, N. citricola, N. gamtoosensis and N. lerouxii.

Taxonomy

Neocosmospora addoensis Sand.-Den. & Guarnaccia, sp. nov. – MycoBank MB837939; Figure 4.

Etymology. Named after the geographical area Addo, South Africa where first collected.

Ty pus. South Africa, Eastern Cape, Kirkwood, from Citrus sinensis crown, May 2018, V. Guarnaccia (holo-type CBS H-24565 designated here, culture ex-type CBS 146510 = CPC 37128 = VG281).

Conidiophores borne on aerial mycelium, 53.5–425 μm long, unbranched or less commonly laterally branched, bearing terminal single phialides, proliferating percurrently; aerial phialides monophialidic, subulate to subcylindrical, smooth- and thin-walled, 34–64.5 × 2–4 μm, with short and flared apical collarettes and inconspicuous periclinal thickening; aerial conidia arranged in false heads on phialide tips, hyaline, broadly ellipsoidal to clavate and slightly asymmetrical, smooth- and thin-walled, aseptate, (5.5–)7–10(–14.5) × (2–)3–4 μm (av. 8.5 × 3 μm). Sporodochia pale luteous to pale peach coloured, formed abundantly on carnation leaves. Sporodochial conidiophores unbranched or laterally and irregularly branched bearing apical groups of 2–3 monophialides; sporodochial phialides subulate to subcylindrical, 12.5–25 × 2–4.5 μm, smooth and thin-walled, commonly proliferating sympodially, collarettes and periclinal thickening absent or inconspicuous. Sporodochial conidia falcate, slightly curved dorsoventrally to almost straight, broadest near the half portion or the upper third, tapering towards both ends, with blunt and slightly curved apical cells and blunt, sometimes inconspicuous foot-like basal cells, (1–)2–5-septate, predominantly 4-septate, hyaline, smooth- and thick-walled; one-septate conidia: (18.5–)19–24(–25) × 3–4.5 μm (av. 21.5 × 4 μm); two-septate conidia: (24–)26–30 × 3.5–5 μm (av. 27.5 × 4.5 μm); three-septate conidia: (27–)33–43(–45) × (3–)4–5.5(–6) μm (av. 38 × 5 μm); four-septate conidia: (39–)42–47.5(–51.5) × 4.5–6 μm (av. 49 × 5.5 μm); five-septate conidia: (37.5–)42.5–51 × 5–6 μm (av. 47 × 5.5 μm). Chlamydospores subspherical to spherical, hyaline to pale yellow, smooth-walled or slightly roughened, thick-walled, 4–10 μm, single or in chains, terminal or intercalary on hyphae and conidia.

Figure 2. Small (A), medium (B) or large (C) extensions of internal discoulouration in transverse sections through citrus tree trunks.
Figure 3. Maximum-likelihood (ML) phylograms obtained from combined \(rpb2\) and \(tef1\) (A) and \(acl\), \(cal\) ITS, \(LSU\), \(rpb1\), \(rpb2\) and \(tef1\) (B) sequences, of 62 isolates of \textit{Neocosmospora} spp. from South African \textit{Citrus} (shown in red), and representative and ex-type isolates of \textit{Neocosmospora}. Names of new species described here are shown in bold font. Numbers on the nodes are ML bootstrap values greater than 70% followed by Bayesian posterior probability values greater than 0.95. Branch lengths are proportional to distance. Ex-type, ex-epitype and ex-neotype strains are indicated, respectively, with T, ET and NT. The trees are rooted to \textit{Geejeyesia atrofusca} (NRRL 22316 and \textit{G. cicatricum} (CBS 125552).
Figure 4. *Neocosmospora addoensis* (ex-type culture CBS 146510). (a and b) sporodochia formed on the surface of carnation leaves; (c to f) sporodochial conidiophores and phialides; (g to i) aerial conidiophores; (j and k) aerial conidia; (l) sporodochial conidia. Scale bars: a and b = 100 μm; c to l = 10 μm.
Culture characteristics. Colonies on PDA reaching 79 mm diam. at 24°C after 7 d (growth rate: 4.1–5.6 mm d⁻¹). Colony surface white to primrose, becoming scarlet to bay, flat with abundant dense aerial mycelium, cottony to woolly; colony reverse pale luteous to sulphur yellow, a vivid scarlet to rust pigment can be formed. On SNA, white to pale buff, membranous to woolly with scant aerial mycelium, becoming powdery; colony reverse white to pale buff. On OA, pale luteous to pale rosy buff, flat, membranous to cottony; colony reverse pale luteous to pale rosy buff.

Additional materials examined. South Africa, Eastern Cape, Patensie, from *Citrus sinensis* crown, May 2018, V. Guarnaccia (CBS 146508 = CPC 37126 = VG268, CBS 146509 = CPC 37127 = VG279).

Notes. Both phylogenetic analyses resolved *Neocosmospora addoensis* as the closest genetic relative to *N. metavorans* (96 to 98% sequence similarity among individual gene datasets). *Neocosmospora metavorans* is a frequent opportunistic pathogen of animals, including humans (Sandoval-Denis et al., 2019). Nevertheless, in addition to its genetic exclusivity, these two species are morphologically quite distinct, particularly in the size and septation of the aerial conidia (aseptate, up to 14.5 μm in *N. addoensis* and multisepate, up to 25 μm in *N. metavorans*), while sporodochial conidia of *N. addoensis* are more slender (up to 6 μm wide) than those of *N. metavorans* (up to 7.5 μm wide).

Neocosmospora addoensis is characterized by its small and slender macroconidia, which are much smaller than the average macroconidial type in *Neocosmospora*. Based on its macroconidial size, this species is close to *N. brevis* and *N. pseudoradicicola*; however, these two species are well-delimited phylogenetically, clustering in far separate lineages of the genus (96% sequence similarity with *N. brevis* and 97% with *N. pseudoradicicola*). Morphologically, *N. addoensis* differs from *N. pseudoradicicola* by its macroconidial shape and curvature, with more rounded apical cells, rather inconspicuous foot cells and less pronounced dorsoventral curvature; and from *N. brevis* by the absence of aerial macroconidia and slightly more elongated and hooked macroconidial apical cells.

Neocosmospora citricola Guarnaccia & Sand.-Den., sp. nov. – MycoBank MB837940; Figure 5.

Etymology. In reference to occurrence of this fungus on *Citrus* plants.

Typus. South Africa, Eastern Cape, Patensie, from *Citrus sinensis* crown, May 2018, V. Guarnaccia (holotype CBS H-24566 designated here, culture ex-type CBS 146513 = CPC 37131 = VG343).

Conidiophores borne on aerial mycelium, 66.5–198.5 μm long, unbranched or irregularly laterally branched, bearing terminal single phialides; **aerial phialides** monopodialic, subulate to subcylindrical, smooth- and thick-walled, 39.5–73.5 × 2–4.5 μm, each showing a discrete flared collarette and inconspicuous to evident periclinal thickening; **aerial conidia** arranged in false heads on phialide tips, hyaline, broadly ellipsoid to obovoidal, rarely clavate, smooth- and thin-walled, 0–1-septate, (6–)9–17–(24.5) × 3–5–(6.5) μm (av. 13 × 4.5 μm). **Sporodochia** pale luteous to pale orange, formed abundantly on carnation leaves and on the agar surface. **Sporodochial conidiophores** laterally and irregularly branched, bearing single terminal monopodialic or terminal groups or up to three monopodialic; **sporodochial phialides** subulate to subcylindrical, 11–27.5 × 3–5.5 μm, smooth and thin-walled, with inconspicuous or absent apical collarettes and periclinal thickening. **Sporodochial conidia** falcate, curved dorsoventrally to almost straight, each with broadening in the upper third, tapering towards both ends, with a blunt to papillate and slightly curved apical cell and a blunt, foot-like basal cell, (2–)3–5–(6)–septate, predominantly five-septate, hyaline, robust, smooth- and thick-walled; two-septate conidia, 44 × 5.7 μm; three-septate conidia: 33.5–49.5 (–58) × 4.5–6 μm (av. 43 × 5.5 μm); four-septate conidia: (46.5–)47.5–56–(59.5) × 5–6.5 μm (av. 52 × 6 μm); five-septate conidia: (49.5–)53–60.5–(65) × (4.5–)5.5–6.5–(7) μm (av. 57 × 6 μm); six-septate conidia: 60 × 6 μm. **Chlamydospores** subspherical to spherical, hyaline to pale golden brown, smooth to slightly roughened and thick-walled, 5–10 μm, single or in chains, terminal or intercalary on hyphae and conidia.

Culture characteristics: Colonies on PDA reaching 69 mm diam. at 24°C after 7 d (growth rate: 3.2–4.9 mm d⁻¹). Colony surfaces straw, buff to pale luteous, with pale luteous to orange centres and abundant aerial mycelium, flat, felty, woolly to cottony with abundant concentric rings of aerial mycelium, colony reverse pale luteous to orange. On SNA, white and translucent, flat, woolly, becoming slightly pulverulent with sporulation, colony reverse white. On OA, saffron to peach, flat, membranous to cottony, colony reverse intense peach to flesh.

Additional materials examined. South Africa, Eastern Cape, Patensie, from *Citrus sinensis* crown, May 2018, V. Guarnaccia (CBS 146511 = CPC 37129 = VG302, CBS 146512 = CPC 37130 = VG307).

Notes. *Neocosmospora citricola* resolved as a highly supported monophyletic clade, basal to a fully supported lineage containing *N. bataticola* and *N. elegans*, which clearly differentiated genetically (96 to 98% sequence similarity to *N. citricola* in the single gene datasets).
Figure 5. *Neocosmospora citricola* (ex-type culture CBS 146513). (a and b) sporodochia formed on the surface of carnation leaves; (c to f) sporodochial conidiophores and phialides; (g and h) aerial conidiophores; (I and j) aerial conidia; (k) sporodochial conidia. Scale bars: a and b = 100 μm; c to k = 10 μm.
Although genetically distant, Neocosmospora citricola is morphologically similar to N. nirenbergiana, N. piperis and N. protoensiformis (92% sequence similarity with N. nirenbergiana and 96% with N. piperis and N. protoensiformis; data not shown), the four species producing very similar macroconidia in shape and overall size. Nevertheless, N. citricola differs from N. nirenbergiana and N. piperis by the absence of aerial macroconidia. Conversely, N. nirenbergiana and N. piperis do not produce aerial conidia, and the aerial conidiophores of N. citricola are much more robust than those of N. nirenbergiana and N. piperis. Neocosmospora protoensiformis also lacks aerial macroconidia; however, in addition to forming smaller microconidia (up to 15 μm long, average size 7.6 × 3.6 μm in N. protoensiformis vs up to 24 μm long, average size 13 × 4.5 μm in N. citricola), and shorter sporodochial phialides (up to 19.5 μm long in N. protoensiformis vs up to 27.5 μm long in N. citricola), macroconidia of N. protoensiformis differ from those of N. citricola by usually being more tapered at both ends.

Neocosmospora gamtoosensis Sand.-Den. & Guar- naccia, sp. nov. – Mycobank MB837941; Figure 6.

Etymology. Named after the valley where this fungus was collected, Gamtoos River Valley, South Africa.

Type. South Africa, Eastern Cape, Patensie, from Citrus sinensis (holo-crown, May 2018, V. Guarnaccia was collected, Gamtoos River Valley, South Africa.

Conidiophores borne on aerial mycelium, 96.5–291 μm long, unbranched or irregularly laterally branched, bearing terminal single phialides; aerial phialides monophialidic, subulate to subcilindrical, smooth- and thin-walled, 17.5–61 × 2–3.5 μm, collarettes and pericinial thickening evident; aerial conidia arranged in false heads on phialide tips, hyaline, broadly ellipsoid, ovoid to short clavate, smooth- and thin-walled, aszate, (4.5–)5.5–9(–11.5) × 2–3.5(–6) μm (av. 7 × 3 μm). Sporodochia citrine to honey, formed abundantly on carnation leaves. Sporodochial conidiophores commonly unbranched and densely packed, bearing terminal, single monopialides or groups of 2–3 phialides; sporodochial phialides lageniform to ampulliform, 7.5–17 × 3–5 μm, smooth and thin-walled, each with an often conspicuous pericinal thickening and a reduced, flared collarette. Sporodochial conidia falcate, slightly curved dorsoventrally to almost straight on their ventral faces, broadening in the upper third, tapering towards both ends, with blunt and hooked apical cells and blunt to slightly pointed and extended foot-like basal cells, (4–)5–6–7-septate, predominantly five-septate, hyaline, smooth- and thick-walled; four-septate conidia: (37–)40–55(–56.5) × 4.5–5.5 μm (av. 48.5 × 5 μm); five-septate conidia: (46.5–)51.5–60(–62) × 4.5–5.5 μm (av. 56 × 5 μm); six-septate conidia: 55.5–64(–65) × 4.5–5.5 μm (av. 60 × 5 μm); seven-septate conidia: 60.5 × 5 μm. Chlamydospores subspherical, hyaline to pale yellow, inconspicuously roughened, thick-walled, 5–12 μm diam., single or forming chains or clusters, terminal or intercalary on hyphae.

Culture characteristics: Colonies on PDA reaching 60 mm diam. at 24°C after 7 d (growth rate: 3.8–4.3 mm d⁻¹). Colony surfaces pale luteous, amber to pure yellow, flat with abundant dense aerial mycelium in radial patches, cottony to woolly, colony reverse pale luteous to vivid pure yellow. On SNA, colonies white to pale buff, translucent, flat, woolly with scant aerial mycelium, becoming slightly powdery; reverse white to pale buff. On OA, the colonies are pale luteous, pale buff to primrose, flat, membranous to cottony, and colony reverse pale luteous to pale rosy buff.

Notes. In the combined rpfb2 and tef1 analysis, Neocosmospora gamtoosensis formed an unsupported lone lineage, basal to a larger lineage containing N. hypothenemi, N. perseae and N. pseudoradicicola. The combined seven-loci analysis resolved N. gamtoosensis within the larger lineage, with high statistical support for all the earlier listed species. Base pair similarities between the novel species and its closest relatives ranged from 98% in the combined dataset to between 96 and 99% in the individual gene datasets.

Neocosmospora gamtoosensis is morphologically reminiscent of N. hypothenemi, both species having predominantly five-septate macroconidia of very similar size and shape; however, N. gamtoosensis has conspicuously flared collarettes on its aerial phialides, also producing shorter (length up to 11.5 μm, average = 7 μm in N. gamtoosensis vs up to 13.5 μm, average = 8.2 μm in N. hypothenemi), aszate aerial conidia, and honey coloured sporodochia (yellow-green in N. hypothenemi), and lacking reddish pigments on PDA. Neocosmospora noneumartii, another genetically distant (97% sequence similarity in the combined analysis), but morphologically similar species, differs from N. gamtoosensis by forming dimorphic conidia from aerial phialides and longer sporodochial conidia (five-septate sporodochial conidia of average length 56 μm vs 63 μm in N. noneumartii). Neocosmospora gamtoosensis is also morphologically very similar to N. lerouxii. However, N. gamtoosensis has shorter (five-septate sporodochial conidia average length 63 μm in N. lerouxii) and more curved sporodochial conidia.

Neocosmospora lerouxii Guarnaccia & Sand.-Den., sp. nov. – Mycobank MB837942; Figure 7.
Figure 6. *Neocosmospora gamtoosensis* (ex-type culture CBS 146502). (a to c) Sporodochia formed on the surface of carnation leaves; (d and e) sporodochial conidiophores and phialides; (f to h) aerial conidiophores; (i and j) aerial conidia; (k) sporodochial conidia. Scale bars: a and b = 100 μm; c to k = 10 μm.
Figure 7. Neocosmospora lerouxii (ex-type culture CBS 146514). (a and b) sporodochia formed on the surface of carnation leaves; (c) sporodochial conidiophores and phialides; (d to g) aerial conidiophores and phialides; (h and i) aerial conidia; (j) sporodochial conidia. Scale bars: a and b = 100 μm; d and e = 50 μm; f to j = 10 μm.
Etymology. In memory of Dr Hennie Le Roux (10 Jul 1967 – 4 Oct. 2016), who made major contributions to the South African and international citrus industries.

Typus. South Africa, Eastern Cape, Patensie, from *Citrus sinensis* root scaffold, May 2018, V. Guarnaccia (holotype CBS H-24567 designated here, culture ex-type CBS 146514 = CPC 37132 = VGE8).

Conidiophores borne on aerial mycelium, 139.5–295 \(\mu \text{m} \) long, simple or most commonly abundantly and irregularly branched, proliferating percurrently, bearing terminal single phialides; **aerial phialides** monophialidic, subulate to subcylindrical, smooth- and thin-walled, 37–61.5 \(\times \) 2–4 \(\mu \text{m} \), with pericllinal thickening and collarettes abundant; **aerial conidia** arranged in false heads on phialide tips, hyaline, ovate, broadly ellipsoidal to subspherical, hyaline to pale yellow-brown, smooth- and thick-walled; two-septate conidia, 29 \(\times \) 4 \(\mu \text{m} \); three-septate conidia: 40 \(\times \) 5 \(\mu \text{m} \); four-septate conidia: (44–)45–49(–50.5) \(\times \) (4–)4.5–5 \(\mu \text{m} \); five-septate conidia: (46.5–)56.5–67(–73.5) \(\times \) 4.5–5(–6.5) \(\mu \text{m} \); six-septate conidia: 60–74 \(\times \) 4.5–5.5 \(\mu \text{m} \) (av. 67 \(\times \) 5 \(\mu \text{m} \)). **Chlamydoospores** subspherical to spherical, hyaline to pale yellow-brown, smooth- and thick-walled, 4–8 \(\mu \text{m} \) diam., single or in chains, terminal or intercalary on hyphae.

Culture characteristics. Colonies on PDA reaching 61 mm diam. at 24°C after 7 d (growth rate: 3.5–4.3 mm d\(^{-1}\)). Surfaces buff, pale luteous to pale flesh, with abundant and dense whitish aerial mycelium, flat to slightly raised, feltly to cottony. Colony reverse pale luteous, quickly becoming amber to sulphur yellow, with or without pale apricot patches. On SNA, colonies white and translucent, flat, feltly, with white reverse sides. On OA, colonies white, saffron to buff, flat, membranous to cottony, with reverse sides buff to pale luteous with pale salmon patches.

Notes. The combined rpb2 plus tef1 analysis showed this taxon to form a well-supported (BS = 74, PP = 0.96) lone lineage, basal to a larger, unsupported lineage containing *N. catenata*, *N. cyanescens*, *N. ferruginea*, *N. macrospora*, and *N. spatulata*, and the undescribed phylogenetic species FSSC 12. The analysis of the combined seven-gene dataset confirmed the previous results, with all the species described here resolved as highly- to fully-supported monophyletic clades. Genetic similarity between *N. lerouxii* and its closest phylogenetic relatives also support phylogenetic exclusivity of *N. lerouxii* (98% sequence similarity with all the above taxa in the combined alignment, and 97 to 99% similarity for the individual gene datasets).

Morphologically, *Neocosmospora lerouxii* most closely resembles the three distantly related species *N. gamtoosensis*, *N. hypothenemi* and *N. noneumartii* (respectively, 97, 98 and 97% sequence similarity, in the seven-loci combined dataset). While the three species were clustered in well-separated lineages in all analyses, morphologically they share very similar characteristics. Although *N. lerouxii* has similar macroconidial shape to *N. gamtoosensis* and *N. hypothenemi*, the macroconidia of *N. lerouxii* are longer and straighter than in the other two species (five-septate macroconidia average length 62 \(\mu \text{m} \) vs 56 \(\mu \text{m} \) in *N. gamtoosensis* and 59 \(\mu \text{m} \) in *N. hypothenemi*). Macroconidia of *N. lerouxii* also have thinner walls in comparison to those of *N. noneumartii*. In addition, has a slower growth rate in culture than *N. noneumartii*, (3.5–4.3 mm d\(^{-1}\) for *N. lerouxii* vs 4.7–8 mm d\(^{-1}\) in *N. noneumartii*).

DISCUSSION

Since 2013, severe sudden decline and death of citrus plants has been observed in citrus production areas of the Eastern Cape province of South Africa. Several species of *Colletotrichum*, *Diaportheae* and *Botryosphaeriaceae* have been reported as causing wood decay of citrus plants internationally (Guarnaccia and Crous, 2018; Mayorquin et al., 2019; Berraf-Tebbal et al., 2020; Esparham et al., 2020; Bezerra et al., 2021). Considering the very large economic losses to the South African citrus industry due to the observed sudden decline of trees, and because no surveys and isolations had been previously conducted for this disease and associated pathogens in the Eastern Cape citrus production area, a large-scale survey of affected citrus plants was required. The present study provides the first preliminary survey and sampling of citrus trees affected by dry root rot, and characterization of *Neocosmospora* diversity related to the observed disease in two important citrus production areas of South Africa.
Neocosmospora species are well-established in geographical areas with Mediterranean, sub-tropical or tropical climates, where these fungi are associated with diseases of important agricultural crops (Sandoval-Denis et al., 2018; Guarnaccia et al., 2018; Guarnaccia et alii, 2019).

Fusarium oxysporum, F. proliferatum and N. solani s. tr. were previously considered as pathogens associated with dry root rot of citrus plants. (Menge, 1988; Adesemoye et al., 2011). Specifically F. oxysporum and N. solani were previously reported from South Africa. Diversity of Fusarium (three species) and Neocosmospora (five species) was revealed associated with dry root rot in restricted areas of three European countries by Sandoval-Denis et al. (2018). However, that study considered it likely that many other Neocosmospora spp. would also be isolated if a wider sampling area was surveyed.

In the present study, several citrus orchards in two major citrus production area of South Africa were investigated. A total of 62 Neocosmospora strains were collected from symptomatic tree trunks, roots and soil surrounding the roots. Phylogenetic analyses as well as morphological characters, revealed ten Neocosmospora species associated with infections on Citrus in South Africa, plus one species (N. falciformis) from soil from affected citrus orchards. The analyses included several of the closest related taxa to each of the Neocosmospora species recovered, based on BLAST searches of NCBI’s GenBank nucleotide database. The final phylogenetic tree revealed four previously undescribed species (N. addoensis, N. citricola, N. gamtoosensis, and N. lerouxii) and six known species (N. brevis, N. crassa, N. ferruginea, N. hypothenemi, N. noneumartii, and N. solani) all of which were always associated with abovementioned symptomatic material.

Neocosmospora citricola, N. ferruginea and N. solani were the predominant species, largely found associated with the affected tissues of symptomatic plants cultivated in all the investigated orchards. Although follow-up studies will conduct pathogenicity trials to confirm these observations, it is assumed that these species represent the major biotic factors causing DRR of citrus in South Africa as they were consistently associated with the symptoms described from the diseased trees. These results also partially confirm what was recently demonstrated after surveys conducted in Mediterranean countries, where N. ferruginea (formerly FSSC28) and N. solani were isolated from typical DRR of citrus (Sandoval-Denis et al., 2018). Neocosmospora citricola was not found before the present study, and considering the broad distribution on affected plants, this fungus is likely to be important in DRR. Neocosmospora addoensis was isolated with low frequency, from one orchard and from necrotic trunk tissue. The other novel species described in this study, N. gamtoosensis and N. lerouxii, were found only sporadically, and are thus not considered as important pathogens. However, their description provides new insights into the taxonomy of Neocosmospora. Neocosmospora brevis, N. crassa, N. hypothenemi and N. noneumartii were also isolated sporadically, and future studies will investigate their roles in DRR. The complexity of pathogens associated with artificially reproducing DRR of citrus is well-known (Graham et al., 1985), but needs to be confirmed in further field trials. Furthermore, additional surveys in South Africa and other citrus-producing areas, and pathogenicity trials of Neocosmospora spp. in association with abiotic factors, should also be conducted.

The present study has provided the first overview of Neocosmospora diversity associated with DRR of citrus trees in South Africa, and has given useful information about taxonomic characterization within Neocosmospora. All the Neocosmospora species were isolated from crowns, trunks, roots and soil from the affected citrus orchards. Infected propagation material and soil can spread the pathogens nationally and internationally as the fungi can survive as chlamydospores in the soil and systemic infections in plant material. Further studies are required to resolve the host range and pathogenicity of all the species recovered. These fungi can survive as endophytes or as latent infections within citrus plants, so healthy propagation material should be used by growers. Favourable climatic conditions and, especially, plant stress factors could also play major roles in disease development. Further research on the epidemiology of DRR of citrus should be conducted to develop specific knowledge as the basis for effective disease prevention and management.

LITERATURE CITED

Adesemoye A.O., Eskalen A., Faber B., Bender G., O’Connell N., ... Shea, T. 2011. Current knowledge on Fusarium dry root rot of citrus. Citrograph 2: 29–33.

Bender G.S. 1985. Dry Root Rot of Citrus—Factors Which Increase the Susceptibility of Trees to Infection by Fusarium solani. PhD dissertation, University of California, Riverside, CA, USA.

Berraf-Tebbal A., Mahamed A.E., Aigoun-Mouhous W., Špetik M., Čechová J., ... Eichmeier A. 2020. Lasiodyplodia mitidjana sp. nov. and other Botryosphaeriaceae species causing branch canker and dieback of Citrus sinensis in Algeria. PloS one 15: e0232448.

Bezerra J.D.P, Crous P.W., Aiello D., Gullino M.L., Polizzi G., Guarnaccia V. 2021. Genetic diversity and pathogenicity of Botryosphaeriaceae species associated with symptomatic citrus in Europe. Plants 10: 492.
Neocosmospora spp. associated with dry root rot of citrus in South Africa

Broadbent P. 2000. Dry root rot or sudden death. In: Timmer LW, Garnsey SM, Graham JH (eds) Compendium of Citrus Diseases, 2nd edn. APS Press, St. Paul, p. 71

Carbone I., Kohn L.M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycologia* 91: 553–556.

Conzulex W., Ramallo J., Ploper L.D. 1997. Identification of *Fusarium solani* (Mart.) associated with decline and root rot of grapefruit (*Citrus paradisi*). *Avana Agroindustrial* 18: 7–8.

Crous P.W., Verkley G.J.M., Groenewald J.Z., Houbrazen, J. 2019. *Westerdijk Laboratory Manual Series 1*: Fungal Biodiversity. Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.

Derrick K.S., Timmer L.W. 2000. Citrus Blight and other diseases of recalcitrant etiology. *Annual Review of Phytopathology* 38: 181–205.

El-Mohamedy R.S.R. 1998. Studies on wilt and root rot Disease of Some Citrus Plants in Egypt. PhD thesis, Fac Agric Ain Shams Univ, Cairo, Egypt, 227 pp.

Esparham N., Mohammadi H., Gramaje D. 2020. A survey of trunk disease pathogens within citrus trees in Iran. *Plants* 9: 754.

Fang D.Q., Federici C.T., Roose M.L. 1998. A high-resolution linkage map of the citrus tristeza virus resistance gene region in *Poncirus trifoliata* (L.) Raf. *Genetics* 150: 883–890.

FAOSTAT 2019. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#home. Accessed 26 February 2020.

Fisher N.L., Burguess L.W., Toussoun T.A., Nelson P.E. 1982. Carnation leaves as a substrate and for preserving cultures of *Fusarium* species. *Phytopathology* 72: 151–153.

Gräfenhan T., Schroers H.J., Nirenberg H.I., Seifert K.A. 2011. An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in *Cosmospora, Acremonium, Fusarium, Stilbella*, and *Volutella*. *Studies in Mycology* 68: 79–113.

Graham J.H., Bransky R.H., Timmer L.W., Lee R.F., Marais, L.J. 1985. Comparison of citrus tree declines with necrosis of major roots and their association with *Fusarium solani*. *Plant Disease* 69: 1055–1058.

Guarnaccia V., Crous P.W. 2018. Species of *Diaporthe* on *Camellia* and *Citrus* in the Azores Islands. *Phytopathologia Mediterranea* 57: 307–319.

Guarnaccia V., Sandoval-Denis M., Aiello D., Polizzi G., Crous, P.W. 2018. *Neocosmospora perseae* sp. nov., causing trunk cankers on avocado in Italy. *Fungal Systematics and Evolution* 1: 131–140.

Guarnaccia V., Aiello D., Polizzi G., Crous, P.W., Sandoval-Denis M. 2019. Soilborne diseases caused by *Fusarium* and *Neocosmospora* spp. on ornamental plants in Italy. *Phytopathologia Mediterranea* 58: 127–137.

Hannachi L., Rezgui S., Cherif M. 2014. First report of mature citrus trees being affected by *Fusarium* wilt in Tunisia. *Plant Disease* 98: 566.

Huelsenbeck J.P., Ronquist F. 2001. MrBayes: Bayesian inference of phylogeny. *Bioinformatics* 17: 754–755.

Katoh K., Rozewicki J., Yamada K.D. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. *Briefings in Bioinformatics* 20: 1160–1166.

Kore S.S., Mane A.V. 1992. A dry root rot disease of kagzilime (*Citrus aurantifolia*) seedling caused by *Fusarium solani*. *Journal of Maharashtra Agricultural Universities* 17: 276–278.

Kurt Ş., Uysal A., Soylu E., Kara M., Soylu S. 2020. Characterization and pathogenicity of *Fusarium solani* associated with dry root rot of citrus in the eastern Mediterranean region of Turkey. *Journal of General Plant Pathology* 86: 326–332.

Leslie J.F., Summerell B.A. 2006. *The Fusarium laboratory manual*. Blackwell Publishing, Ames.

Liu Y.J., Whelen S., Hall B.D. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. *Molecular Biology and Evolution* 16: 1799–1808.

Lombard L., Van der Merwe N.A., Groenewald J.Z., Crous P.W. 2015. Generic concepts in Nectriaceae. *Studies in Mycology* 80: 189–245.

Malikoutsaki-Mathiodi M., Bourbos V.A., Skoudridakis M.T. 1987. La pourriture sèche des racines – une maladie très grave des agrumes en Grèce. *EPPO Bulletin* 17: 335–340.

Mason-Gamer R., Kellogg E. 1996. Testing for phylogenetic conflict among molecular data sets in the tribe *Triticeae* (*Gramineae*). *Systematic Biology* 45: 524–545.

Mayorquin J.S., Nouri M.T., Peacock B.B., Trouillas F.P., Douhan G.W., … Eskalen A. 2019. Identification, Pathogenicity, and Spore Trapping of *Colletotrichum karstii* associated with twig and shoot dieback in California. *Plant Disease* 103: 1464–1473.

Menge J.A. 1988. Dry root rot. In: Whiteside JO, Garnsey SM, Timmer LW (eds), *Compendium of Citrus diseases*, 14–15. APS Press, USA.

Miller M.A., Pfeiffer W., Schwartz T. 2012. The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. In: *Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the extreme to the campus and beyond*, 1–8. Association for Computing Machinery, USA.
Nemec S., Baker R. 1992. Observations on {\it Fusarium solani} naphthazarin toxins, their action, and potential role in citrus plant disease. Proceedings of the 7th meeting of the International Society of Citiculture, Acireale, Italy, International Society of Citiculture, Riverside, pp. 832–837.

Nemec S., Baker R., Burnett H. 1980. Pathogenicity of {\it Fusarium solani} to citrus roots and its possible role in blight etiology. Proceedings of the Florida State Horticultural Society 93: 36–41.

Nirenberg H.I. 1976. Untersuchungen über die morphologische und biologische differenzierung in der Fusa-

Nemec S., Baker R. 1992. Observations on {\it Fusarium solani} naphthazarin toxins, their action, and potential role in citrus plant disease. Proceedings of the 7th meeting of the International Society of Citiculture, Acireale, Italy, International Society of Citiculture, Riverside, pp. 832–837.

Nemec S., Baker R., Burnett H. 1980. Pathogenicity of {\it Fusarium solani} to citrus roots and its possible role in blight etiology. Proceedings of the Florida State Horticultural Society 93: 36–41.

Nirenberg H.I. 1976. Untersuchungen über die morphologische und biologische differenzierung in der Fusa-

Nylander J.A.A. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

O’Donnell K., Sutton D.A., Fothergill A., McCarthy D., Rinaldi M.G., ... Geiser D.M. 2008. Molecular phylogenetic diversity, multilocus haplotype nomenclature, and in vitro antifungal resistance within the {\it Fusarium solani} species complex. Journal of Clinical Microbiology 46: 2477–2490.

O’Donnell K, Sutton DA, Rinaldi MG, Sarver, B. A., Balajee, S. A., ... Aoki T. 2010. Internet-accessible DNA sequence database for identifying fusaria from human and animal infections. Journal of Clinical Microbiology 48: 3708–3718.

Polizzi G., Magnano di San Lio G., Catara A. 1992. Dry root rot of citranges in Italy. Proceedings of the International Society of Citiculture. VII International Citrus Congress, Acireale 1992: 890–893.

Quaedvlieg W., Binder M., Groenewald J.Z., Summerell, B.A., Carnegie, A.J., ... Crous P.W. 2014. Introducing the consolidated species concept to resolve species in the Teratosphaeriaceae. Persoonia 33: 1–40.

Rayner R.W., 1970. A Mycological Colour Chart. Kew, UK: Commonwealth Mycological Institute.

Rehman A., Rehman A., Javed N., Mehboob S. 2012. Toxin production by {\it Fusarium solani} from declining citrus plants and its management. African Journal of Biotechnology 11: 2199–2203.

Ronquist F., Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioin-
matics 19: 1572–1574.

Sandoval-Denis M., Crous P.W. 2018. Removing chaos from confusion: assigning names to common human and animal pathogens in {\it Neocosmospora}. Persoonia 41: 109–129.

Sandoval-Denis M., Guarnaccia V., Polizzi G., Crous P.W. 2018. Symptomatic {\it Citrus} trees reveal a new pathogenic lineage in {\it Fusarium} and two new {\it Neocosmospora} species. Persoonia 40: 1–25.

Sandoval-Denis M., Lombard L., Crous P.W. 2019. Back to the roots: a reappraisal of {\it Neocosmospora}. Persoonia 43: 90–185.

Smith I.M., Dunez J., Phillips D.H., Lelliott R.A., Archer S.A. 1988. European handbook of plant diseases. Blackwell Scientific Publications, UK.

Spina S, Coco V, Gentile A, Catara A., Cirvilleri G. 2008. Association of {\it Fusarium solani} with rolabc and wild type Troyer Citrange. Journal of Plant Pathology 90: 479–486.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.

Sung G.H., Sung J.M., Hywel-Jones N.L., Spatafora J. W. 2007. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution 44: 1204–1223.

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.

Timmer L.W. 1982. Host range and host colonization, temperature effects, and dispersal of {\it Fusarium oxysporum} f. sp. citri. Phytopathology 72: 698–702.

Timmer L.W., Garnsey S.M., Grimm G.R., El-Gholl N.E., Schoutties C.L. 1979. Wilt and dieback of Mexican lime caused by {\it Fusarium oxysporum}. Phytopathology 69: 730–734.

Verma K.S., Narhey S., Singh N. 1999. Occurrence and control of dry root rot of citrus seedlings. Plant Disease Research 14: 31–34.

Vilgalys R., Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several {\it Cryptococcus} species. Journal of Bacteriology 172: 4238–4246.

Vilgalys R., Sun B.L. 1994. Ancient and recent patterns of geographic speciation in the oyster mushroom {\it Pleurotus} revealed by phylogenetic analysis of ribosomal DNA sequences. Proceedings of the National Academy of Sciences of the United States of America 91: 4599–4603.

White T.J., Bruns T., Lee S., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innes MA, Gelfand DH, Sninsky et al. (eds), PCR Protocols: a Guide to Methods and Applications: 315–322. Academic Press, USA.

Wiens J.J. 1998. Testing phylogenetic methods with tree congruence: phylogenetic analysis of polymorphic morphological characters in phrynosomatid lizards. Systematic Biology 47: 427–444.

Yaseen T., D’Onghia A.M. 2012. {\it Fusarium} spp. associated to citrus dry root rot: An emerging issue for Mediterranean citiculture. Acta Horticulturae 940: 647–655.