Sinusoidal obstruction syndrome: A systematic review of etiologies, clinical symptoms, and magnetic resonance imaging features

Yun Zhang, Han-Yu Jiang, Yi Wei, Bin Song

ORCID number: Yun Zhang (0000-0001-9621-1408); Han-Yu Jiang (0000-0002-7726-1618); Yi Wei (0000-0003-3993-9747); Bin Song (0000-0001-7007-6367).

Author contributions: Zhang Y, Jiang HY, and Wei Y contributed equally to the work; Zhang Y conceptualized and designed the review together with Wei Y; Zhang Y and Jiang HY carried out the analysis; Zhang Y drafted the initial manuscript; Song B reviewed and approved the final manuscript as submitted.

Conflict-of-interest statement: The authors report no relevant conflicts of interest.

PRISMA 2009 Checklist statement: The manuscript was prepared and revised according to the PRISMA 2009 Checklist.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Received: March 23, 2019

Abstract

BACKGROUND
Sinusoidal obstruction syndrome (SOS) is a kind of rare liver disease which is characterized by damage to small hepatic vessels, affecting particularly the sinusoidal endothelium. Due to the special etiology and high mortality, early diagnosis of SOS is significant for clinical survival and prognosis.

AIM
To generalize the common etiologies and clinical symptoms of SOS and summarize the characteristic magnetic resonance imaging (MRI) features so as to provide more valuable information for early diagnosis of SOS.

METHOD
We searched PubMed, Web of science, Wanfang Data, China Knowledge Resource Integrated, VIP, and Cochrane Library databases without a limiting period and the types of articles. The search process mainly revolved around the etiologies, common clinical symptoms, and MRI imaging features of SOS. Ultimately, 29 full articles were included in this review and 222 articles were excluded.

RESULTS
Eleven case reports included 13 patients. The etiologies of these patients including chemotherapy (5/13), medicinal herbs containing pyrrolidine alkaloids (PAs, e.g. Tusanqi) (4/13), hematopoietic stem cell transplantation (HSCT) (2/13), drug toxicity (6-thioguanine) (1/13), and “poppers”, a recreational drug used during anal intercourse (1/13). Ascites, abdominal pain and swelling, jaundice were the most common clinical symptoms. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transpeptidase (GGT), total bilirubin (TBil), direct bilirubin (DBil), and prothrombin time (PT) had varying degrees of elevation.
Heterogeneous signals on T1 weighted imaging/T2 weighted imaging (T1WI/T2WI), heterogeneous enhancement of liver parenchyma, ascites, hepatomegaly, narrowing and blurring of intrahepatic inferior vena cava and three main hepatic veins, edema around the portal vein, and gallbladder wall edema were the most common MRI imaging features of SOS.

CONCLUSION

In the West, SOS was mostly secondary to HSCT. Some SOS developed in the process of chemotherapy for hepatic metastatic tumor. A few SOS were caused by toxicity of certain drugs. In the East, Tusanqi was a major cause of SOS. Ascites, abdominal pain and swelling, jaundice were the common clinical symptoms. Elevations of ALT, AST, GGT, ALP, TBil, and DBil could be used as predictors of liver function damage. Numerous characteristic MRI imaging features could provide more valuable information for early diagnosis of SOS.

Key words: Sinusoidal obstruction syndrome; Hematopoietic stem cell transplantation; Chemotherapy; Tusanqi; Ascites

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: In total, 11 case reports and 18 case series were systematically reviewed. These articles stated the main causes of sinusoidal obstruction syndrome (SOS) and summarized the common clinical symptoms and abnormal laboratory indicators. Numerous characteristic magnetic resonance imaging features could provide more valuable information for early diagnosis of SOS.

Citation: Zhang Y, Jiang HY, Wei Y, Song B. Sinusoidal obstruction syndrome: A systematic review of etiologies, clinical symptoms, and magnetic resonance imaging features. *World J Clin Cases* 2019; 7(18): 2746-2759

URL: https://www.wjgnet.com/2307-8960/full/v7/i18/2746.htm

DOI: https://dx.doi.org/10.12998/wjcc.v7.i18.2746

INTRODUCTION

Sinusoidal obstruction syndrome (SOS) is a rare liver vascular injury disease, characterized by damage to small hepatic vessels, affecting particularly the sinusoidal endothelium, which result in complications such as intrahepatic congestion, liver damage, and portal hypertension[1]. SOS was previously called as hepatic veno-occlusive disease until some researchers suggested that the main site of toxic injury is hepatic sinusoidal endothelium rather than hepatic veins[2]. Hepatomegaly, ascites, and elevated serum bilirubin levels are the characteristic manifestations of SOS. In addition, severe SOS is associated with a high mortality rate and most deaths result from multi-organ failure[3].

Although liver biopsy is the gold standard for the diagnosis of SOS, leukopenia and poor liver function resulting from hematological diseases or advanced tumors make this operation difficult. The Baltimore criteria, the modified Seattle criteria, and the European Society for Blood and Marrow Transplantation criteria are the three main criteria for diagnosing SOS[4-6]. However, these criteria are usually appropriated for SOS secondary to haemopoietic stem cell transplantation (HSCT), including a little of clinical information but not involving imaging findings. In recent years, magnetic resonance imaging (MRI) has been increasingly used to detect and evaluate liver diseases. In 2017, Chinese scholars combined the etiologies of SOS in Chinese and proposed the new diagnostic criteria for SOS, namely, the Nanjing criteria. The criteria focus on the diagnosis of SOS caused by pyrrolidine alkaloids (PAs), and incorporate clinical information and imaging findings[7].

Considering the complexity of etiologies and the limitation of liver biopsy, non-invasive imaging methods are significant for SOS differential diagnosis. This systematic review collected the current research on SOS, aiming at generalizing the common etiologies and clinical symptoms of SOS and summarizing the characteristic MRI imaging features for providing more valuable information in SOS early diagnosis.
MATERIALS AND METHODS

Protocol and registration
This systematic review was registered at the international prospective register of systematic reviews platform (PROSPERO; registration number: CRD42019127258). This study followed the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

Search strategy
We searched all the literature from PubMed, Web of science, Cochrane Library, Wanfang Data, China Knowledge Resource Integrated, and VIP databases. The following set of keywords was used for the English search strategy: [(sinusoidal obstruction syndrome) OR (hepatic veno-occlusive disease)] AND [(MRI) OR (magnetic resonance imaging) OR (MR imaging)]. Chinese search items were used in the latter three databases, as follows: [(Gandou Zuse) OR (Gan Xiaojingmai Bise)] AND [(Cigongzhen) OR (MRI)]. Last search was performed on January 28, 2019.

Study selection
All articles related to SOS etiologies, clinical symptoms, and MRI findings were considered. The exclusion criteria were as follows: (1) Duplicate publications among databases; (2) Duplicate publications by the same author; (3) Letter, comments, or conference papers; (4) Reviews; (5) Neither in English nor in Chinese; (6) Not related to human; (7) Not related to this systematic review; and (8) Cannot extract detailed data.

Data extraction
Twenty-nine studies were included in the final analysis, and none of them were randomized controlled trials or cohort studies. We classified the included studies into two categories: Case reports and case series. If detailed data could be extracted for every patient in studies, it would be classified as case reports, otherwise case series.

The following data were collected by two independent investigators: Author, country, published year, patient enrollment, number, age, sex, primary disease, etiology, time of duration, diagnosis method, MRI equipment information, scanning sequence, frequent clinical symptoms, laboratory indexes, and main MRI findings. A third author participated in a disagreement in the findings of two authors, which was solved by discussion.

Study quality
Given the characteristics of our included articles, there was no ready-made quality assessment scale for case reports and case series. Therefore, we referred to some literature and revised the existing quality assessment scale as follows: (1) Patient enrollment: Are the patients consecutively and prospectively enrolled? (2) Demographic data: Is the basic information of sex and age clearly reported? (3) Clinical presentation data: Are the clinical symptoms clearly reported? (4) Laboratory test data: Are the laboratory test data clearly reported? (5) Diagnostic workup: Is the diagnosis based on pathological results? and (6) Imaging findings: Are the imaging manifestations clearly reported?

Notably, case reports were not related to patient enrollment, therefore patient enrollment was not assessed in the study quality.

RESULTS

Search results
A total of 251 articles were initially searched. After removal of duplicates (n = 37), 214 articles were subjected to screening of abstracts and full-texts. Following careful review of abstracts and full-texts, a total of 185 articles were excluded due to not meeting the inclusion criteria. Finally, 29 articles met the inclusion criteria and were included in this systematic review (Figure 1).

Characteristics of the studies
Among 29 articles included in this systematic review, 20 were in Chinese and 9 in English. According to the case number and information integrity of the literature, 29 articles were classified as either case reports (n = 11) or case series (n = 18).

According to the quality assessment criteria above, we conducted the quality evaluation of all the included literature. The evaluation results are shown in Tables 1 and 2, and we used two stars to represent the highest quality. The characteristic information of all the patients in 29 studies is shown in Tables 3 and 4.
Etiologies and clinical symptoms of SOS

Eleven cases reports included 13 individual cases of SOS from 6 counties (USA, Netherlands, UK, Japan, Korea, and China). These patients were admitted from 1999 to 2017. Among the 13 cases, 7 were males and 6 were females (average age: 47.9 ± 18.0; age range: 17-75).

The clinical characteristics of 13 cases are shown in Table 5. Five cases were secondary to chemotherapy after liver metastases. The chemotherapy cycles ranged from 4 to 8. All the 5 cases presented no obvious clinical symptoms, but the laboratory examination data indicated different degrees of liver damage. In addition, 4 cases were caused by Tusanqi. Ascites was the most common clinical symptom.

Seventeen out of 18 case series were reported by Chinese researchers, and the other one was reported by researchers in Hong Kong, China. All the patients were admitted from 1998 to 2017. Patient enrollment was neither consecutive nor prospective in any case series. Eighteen case series included 497 patients, including 310 males and 187 females. All studies had specific demographic data.

Of the 18 cases series, the patients in 8 cases series were reported to have underlying diseases, including trauma, stroke, alcoholic liver cirrhosis, chronic body pain, hypertension, myocardial infarction, drinking, diabetes, diseases of the respiratory system (tuberculosis and upper respiratory infection), and some diseases related to Chinese medicine (menstrual disorder). SOS in about 465 (93.6%) patients was caused by PAs (Tusanqi), and the time of duration from 10 days to 18 months. Five cases were secondary to tumor chemotherapy or immunotherapy, and four were caused by HSCT. The rest of the patients had no obvious inducing factors.

Not all the 497 patients had detailed records of clinical manifestations and laboratory examination data. Most of the studies recorded the presence or absence of clinical symptoms and described the variation trend of laboratory indicators. Stomach ache, abdominal swelling, and jaundice were the major three symptoms. More serious symptoms were reported in 3 cases series, including hepatic encephalopathy, upper gastrointestinal bleeding, and yellow urine staining. The increase of laboratory indexes, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), alkaline phosphatase (ALP), total bilirubin (TBil), and direct bilirubin (DBil), were reported in 16 case series.

Characteristic MRI imaging features

Of all the 510 patients, 250 underwent 256 MRI examinations (12 patients underwent 18 MRI examinations in one study). The scanning sequences included T1WI, T2WI, and multi-phase dynamic enhanced scanning. Among 256 MRI examinations, 8 cases underwent diffusion weighted imaging scans, 22 cases underwent hepatobiliary
Table 1 Quality assessment of 11 case reports

Case No.	Authors	Demographic data	Clinical symptom data	Laboratory examination data	Diagnostic workup	Imaging findings
1	Hu et al.[17]	**	**	**	**	**
2	Kang et al.[18]	**	**	**	**	**
3	Yan[23]	**	**	**	**	**
4	Yoneda et al.[22]	**	**	**	**	**
5	Kawa et al.[32]	**		**	**	**
6	Morotele et al.[8]	**		**	**	**
7	van den Bosch et al.[13]	**		**	**	**
8	Marasco et al.[9]	**		**	**	**
9	Liu et al.[34]	**		**	**	**
10	Choi et al.[28]	**		**	**	**
11	Arakawa et al.[29]	**		**	**	**

*: Quality assessment score.

scans, and 39 cases underwent susceptibility weighted imaging (SWI) scans. In all valid imaging data, the main MRI imaging features were heterogeneous signals on T1WI/T2WI, heterogeneous enhancement, and ascites. All characteristic MRI imaging features are shown in Table 6.

DISCUSSION

This article systematically reviewed the current available literature related to the etiologies, clinical symptoms, and MRI imaging findings of SOS. In the West, SOS was mostly secondary to HSCT, while some SOS developed in the process of chemotherapy for hepatic metastatic tumor. However, the toxic effects of some special drugs also resulted in the occurrence of SOS, although they have been rarely reported[8,9]. In the East, especially in China, SOS was often caused by Tusanqi, a plant containing PA that always be used in the herbal medicines. Ascites, abdominal pain and swelling, and jaundice were the common symptoms. ALT, AST, ALP, GGT, and TBil were the main laboratory indicators for diagnosing liver damage. Heterogeneous signals on T1WI/T2WI, heterogeneous enhancement of liver parenchyma, ascites, hepatomegaly, narrowing and blurring of inferior vena cava (IVC) and three main hepatic veins, edema around the portal vein, and gallbladder wall edema were the most common MRI imaging features of SOS.

Our article presents several advantages. First of all, this is the first systematic review that combined clinical information and MRI imaging features of SOS. Second, English and Chinese databases were retrieved at the same time for ensuring the comprehensiveness of this review. To avoid duplicate articles or data, the rigorous studies screening program was also developed. In addition, we formulated the unique quality evaluation criteria based on the nature of the included literature.

SOS was first reported as an early complication of HSCT in 1979[10]. The cause of the disease is usually associated with sinusoidal endothelial cell cytotoxicity induced by a series of conditioning treatments prior to HSCT. The overall incidence of SOS is related to the diagnosis criteria and type of transplantation, with an incidence of up to 60%[11]. Some risk factors for SOS related to HSCT have been identified, including existing liver disease (chronic hepatitis, liver fibrosis, and cirrhosis), prior history of liver radiant examination, and the effects of some drugs used in the process of conditioning[12]. In addition, Al Jefri et al[4] pointed out that if a patient was too young or too old, or accepted allogeneic transplantation, the possibility of morbidity was greatly increased. In our included literature, van den Bosch et al[13] reported 2 patients who received HSCT due to a history of leukemia. Both of the patients had no history of chronic liver disease, and one of the patients was only 17 years old. However, both of the patients developed severe abdominal pain, hepatomegaly, and ascites approximately 2 wk after receiving HSCT, and the patients who received allogeneic transplantation progressed rapidly to upper gastrointestinal bleeding. Therefore, we believed that the occurrence of these 2 SOS cases is consistent with that mentioned by Al Jefri et al[8].

In recent years, preoperative chemotherapy has been widely used as a primary
Table 2 Quality assessment of 18 case series

Case No.	Authors	Patients enrollment	Demographic data	Clinical symptom data	Laboratory examination data	Diagnostic workup	Imaging findings
1	Chen et al[33]	*	**	*	*	*	*
2	Xu[34]	*	**	*	*	*	*
3	Ye et al[35]	*	**	*	**	*	*
4	Zheng et al[36]	*	**	*	*		**
5	Ren et al[37]	*	**	*	**	*	*
6	Geng et al[38]	*	**	*	*	*	*
7	Chen et al[39]	*	**	*	*	*	*
8	Zhang et al[40]	*	**	*	*	*	*
9	Li et al[41]	*	**	*	**	*	*
10	Hu et al[42]	*	**	*	*	*	*
11	Li et al[43]	*	**	*	*	*	*
12	Li et al[44]	*	**	*	**	*	*
13	Yu et al[45]	*	**	*	**	*	*
14	Rong[46]	*	**	*	**	*	*
15	Pei et al[47]	*	**	*	**	*	*
16	Zhou et al[48]	*	**	*	**	*	*
17	Guo[49]	*	**	*	**	*	*
18	Yang[50]	*	**	*	**	*	*

*: Quality assessment score.

means of prolonging the survival rate of patients with liver metastasis from gastrointestinal cancer, especially colorectal cancer[16-18]. Whereas, the use of several cytotoxic agents has been reported to link with irreversible liver damage[11-14]. Oxaliplatin, as an important composition of the modern chemotherapy regimens, has been proven several times in relation to the incidence of SOS[15,16]. Indeed, out of 13 patients in 11 case reports, 5 patients were related to chemotherapy for liver metastasis from colorectal cancer and gastric adenocarcinoma[17,18,21]. All the patients received oxaliplatin-based adjuvant chemotherapy or S-1 and oxaliplatin (SOX) regimen chemotherapy. Five patients were identified with SOS during the chemotherapy cycle from 4 wk to 11 wk. All the 5 patients had abnormalities in laboratory indicators and moderate to severe splenomegaly. Overman et al[22] have shown that a 50% increase in spleen volume after oxaliplatin chemotherapy can be used as a predictor of SOS. These studies suggested that SOS should be considered if the cancer patient suddenly presented signs of splenomegaly or TBil elevation or persistent thrombocyte decline after a period of chemotherapy.

Furthermore, an animal study revealed that hepatic sinusoidal endothelial cells were equally sensitive to the toxic effects of PAs[23]. It has been reported that PAs-containing medicinal herbs (Tusanqi) can cause SOS[23]. A systematic review[7] has demonstrated that Tusanqi is a principal cause of SOS in China and the disease could develop within several days. Moreover, the elevation levels of bilirubin and ALT were significantly associated with poor outcomes. As showed in our study, 465 (93.6%) of the 497 patients were caused by Tusanqi, and these patients were almost Chinese. Most of them used Tusanqi soaked in wine to relieve body pain or to treat traumatic injury, and some others took it as a nutritional supplement. The duration of intake of Tusanqi ranged from 3 d to 4 years. The differences in onset time may be linked to personal physique and dose and mode of the medicine herbs. In addition, we found that patients caused by Tusanqi more likely presented obvious clinical symptoms. This might be related to the mixed ingredients of the herbal medicines, which might contain a variety of toxic ingredients in addition to PAs. However, we were not sure if intaking PAs-containing herbs for multiple doses as a nutritional supplement was associated with the toxic accumulation and severer symptoms.

In view of the limitations of current diagnostic criteria for SOS, more non-invasive diagnosis methods have to be confirmed. Recently, an increasing number of studies have demonstrated that many characteristic imaging features can improve the early diagnostic efficiency for SOS[23-27]. Through analyzing MRI features of our included cases, we found that heterogeneous signals on T1WI/T2WI, heterogeneous
Table 3: Characteristic information of patients in 11 case reports

No.	Authors	Country	Publication year	Patient No	Sex (male/female)	Age (average)	Primary disease	Etiology	Time of duration	Diagnostic method
1	Hu et al[17]	China	2014	2	(2/0)	71/63	/	Tusanqi (UK)	Clinical manifestations + laboratory examination + imaging	
2	Kang et al[18]	China	2015	1	Female	62	/	Tusanqi (UK)	Biopsy	
3	Yan[19]	China	2015	1	Male	65	Liver cirrhosis	Tusanqi (300g) (UK)	Biopsy	
4	Yoneda et al[20]	Japan	2015	1	Female	75	Hepatic metastasis of colonic carcinoma	Preoperative chemotheraphy (Pmab + m-FOLFOX6)	6 cycles (preoperative) + 4.5 month (postoperative)	Biopsy
5	Kawa et al[21]	Japan	2016	1	Female	40	Rectal cancer underwent high anterior resection and partial liver resection due to liver metastasis	Oxaliplatin-based chemotherapy (mFOLFOX6)	6 mo	Biopsy
6	Mortele et al[22]	USA	2001	1	Male	32	/	“Poppers”, a recreational drug used during anal intercourse	Biopsy	
7	van den Bosch et al[23]	Netherlands	1999	2	(1/1)	17/34	Lymphocytic leukemia/acute myeloid leukemia	Bone marrow transplantation (UK)	Percutaneous puncture + histological examination / autopsy	
8	Marasco et al[24]	UK	2016	1	Male	50	Ulcerative colitis	6-thioguanine (UK)	Clinical manifestations + imaging	
9	Liu et al[25]	China	2017	1	Male	52	Gastric adenocarcinoma	5-1 and oxaliplatin (SOX) regimen (Biopsy)		
10	Choi et al[26]	Korea	2016	1	Female	22	Laparoscopic right hemicolecotomy for ascending colon cancer	Oxaliplatin-based adjuvant chemotherapy	Four cycles	Biopsy
11	Arakawa et al[27]	Japan	2013	1	Female	40	Low anterior resection for advanced rectal cancer	Oxaliplatin-based chemotherapy	Eight cycles	Biopsy

UK: Unknown.

Enhancement of liver parenchyma, ascites, hepatomegaly, narrowing and blurring of intrahepatic IVC and hepatic veins, periportal edema, and gallbladder wall edema were the major MRI features of SOS. Most of the patients presented patchy or diffuse...
No.	Authors	Country	Publication year	Patient enrollment	Patient No.	Year range	Sex (male/female)	Age (range, average)	Primary disease	Etiology	Time of duration	Diagnostic method
1	Chen et al[33]	China	2016	Retrospective	8	2006-2013	5/3	21-67, 42	/	Tusanqi	3-18 mo	Biopsy (5) Clinical manifestations + imaging (3)
2	Xu[34]	China	2015	Retrospective	11	2004-2012	9/2	37-65, 49	/	Tusanqi	15-50 d	Biopsy (2) Clinical manifestations + imaging (9)
3	Ye et al[35]	China	2015	Retrospective	20	2010-2012	1/19	36-76, 51	Trauma or stroke	Tusanqi	10 d-6 mo	Biopsy (12) Clinical manifestations + laboratory examination + imaging (8)
4	Zheng et al[36]	China	2015	Retrospective	4	2012-2014	4/0	45-66	Tusanqi, Alcoholic liver cirrhosis, trauma, body pain	Tusanqi (600-1500 g)	1-4 mo	Clinical manifestations + imaging
5	Ren et al[37]	China	2017	Retrospective	239	2010-2017	151/88	15-86 (59.6 ± 10.9)	Trauma, Hypertension on, extravasated blood, URI	Tusanqi	UK	Biopsy (48), Clinical manifestations + imaging
6	Geng et al[38]	China	2009	Retrospective	4	2007-2008	1/3	42-72, 57	/	Tusanqi	12-60 d	Clinical manifestations
7	Chen et al[39]	China	2012	Retrospective	45	1998-2011	23/22	33-73, 57	Trauma	Tusanqi	2-16 wk	Biopsy (21) Clinical manifestations + laboratory examination + imaging (8)
8	Zhang et al[40]	China	2012	Retrospective	15	2005-2011	12/3	42-65	/	Tusanqi	1-6 mo	Biopsy (6) DSA (1) Clinical manifestations + laboratory examination + MRI
9	Li et al[41]	China	2011	Retrospective	4	2009-2011	2/2	27-63, 35	/	Tusanqi	(3), chemotherapy (1)	Biopsy (2) Clinical manifestations + imaging
10	Hu et al[42]	China	2011	Retrospective	5	2006-2011	4/1	40-60	Trauma history (3), health fitness (1)	Tusanqi	≥2 mo	Biopsy (2) Clinical manifestations + imaging
abnormal enhancement of liver parenchyma, some were focused on the second hepatic portal and presented “clover”, “claw-shaped”, or irregular enhancement, and a few presented hepatic lobe predominant enhancement. “Clover” and “claw-shaped” types of enhancement were the two distinctive MRI imaging features. This may be related to the opening of small blood vessels around the main hepatic veins resulting from obstruction of the hepatic sinus outflow tract, which resulted in an increase in blood supply. Ascites, periportal edema, and gallbladder wall edema may be associated with blockage of portal blood flow and impaired liver function.

In addition, several studies reported that the patients who underwent hepatobiliary scans presented diffuse or reticular low signals in the liver parenchyma. Yoneda et al. conducted a correlation analysis between organic anion transporting polypeptides 1B3 (OATP1B3) and function of hepatocytes. The results showed that SOS led to hepatocyte function impairment and the signal in the hepatobiliary phase was related to the degree of hepatocyte injury. In addition, Choi et al. and Arakawa et al. reported SOS cases of focal hepatic lesions during oxaliplatin chemotherapy, which were misdiagnosed as liver metastases. This result suggested that sometimes the focal hepatic lesions should be considered as the occurrence of SOS, and liver biopsy instead of hepatectomy should be used as the initial examination plan. Furthermore, Guo et al. indicated that the lesion areas presenting hypo-intensity on SWI and T2*WI were consistent with the abnormal enhancement in the portal vein phase in enhanced MRI. It may be related to the phenomenon that macrophages phagocytose and decompose red blood cells, and the decomposed red blood cells flow
Table 5 Clinical characteristics of 13 patients in 11 case reports, n (%)

Variable	No. of patients with available data	Value
Sex (male/female)	13	7/6
Age, yr	13	47.9
Underlying disease		
None	13	4 (30.8)
Postoperative liver metastasis of advanced colorectal cancer	13	3 (23.1)
Leukemia	13	2 (15.4)
Liver cirrhosis	13	1 (7.7)
Hepatic metastasis of colonic carcinoma	13	1 (7.7)
Gastric adenocarcinoma	13	1 (7.7)
Clinical symptom		
Ascites	13	7 (53.8)
Abdominal swelling	13	4 (30.8)
Pleural effusion	13	4 (30.8)
Hepatomegaly	13	3 (23.1)
Jaundice	13	3 (23.1)
Stomach ache	13	3 (23.1)
Weak	13	3 (23.1)
Lower limbs edema	13	2 (15.4)
Lower limbs lassitude	13	2 (15.4)
Loss of appetite	13	2 (15.4)
Yellow urine	13	2 (15.4)
Oliguria	13	1 (7.7)
Esophageal varices	13	1 (7.7)
PVH	13	1 (7.7)
Etiology		
Chemotherapy	13	5 (38.5)
Tusanqi	13	4 (30.8)
Hematopoietic stem cell transplantation	13	2 (15.4)
“Poppers,” a recreational drug used during anal intercourse	13	1 (7.7)
Drug toxicity (6-thioguanine)	13	1 (7.7)
Laboratory index		
ALP, U/L	11	206.4
ALT, U/L	9	836.2
AST, U/L	8	1284.25
GGT, U/L	7	155.42
LDH, U/L	3	5608.33
TBil, μmol/L	9	63.11
DBil, μmol/L	5	35
Alb, g/L	5	37.52
TBA, g/L	2	27.65
T-CHE, U/L	2	3242
TP, g/L	1	47.7
CA-125, U/mL	1	299.1

PVH: Portal hypertension; ALP: Alanine aminotransferase; AST: Aspartate aminotransferase; ALP: Alkaline phosphatase; GGT: Gamma-glutamyl transpeptidase; TBil: Total bilirubin; DBil: Direct bilirubin; prothrombin time; Alb: Albumin; TBA: Total bile acid.

This systematic review had several limitations. First, due to the low incidence of SOS, not enough high-quality literature was included in our study. Second, due to the lack of more complicate data, we were not able to analyze the relationship between MRI features and patient survival prognosis. In addition, some of the included into the DISSE gap, which produces a large amount of hemosiderin. This result provided a new possibility for the diagnosis of SOS, especially for the patients with renal insufficiency or allergies to contrast agents.
Table 6 Magnetic resonance imaging features of all 256 examinations, n (%)

MRI feature	Number of cases
Heterogeneous signals on T1WI/T2WI	221 (86.3)
Heterogeneous enhancement	189 (73.8)
Ascites	189 (73.8)
Hepatomegaly	167 (65.2)
Narrowing and blurring of intrahepatic IVC	167 (65.6)
Gallbladder wall edema	121 (47.3)
Narrowing of three main hepatic veins	105 (41.1)
Edema around the portal vein, “cuffing”	90 (35.2)
Narrowing and blurring of intrahepatic veins	52 (20.3)
Collateral circulation opens	37 (14.6)
Splenomegaly	32 (12.5)
Narrowing and blurring of portal vein	28 (10.9)
Dilated and twisted small vessels	17 (6.6)
Hypo-intensity on HBP	17 (6.6)
Dilated hepatic arteries	12 (4.7)
"Halo signs" around the hepatic vein and intrahepatic IVC	11 (4.3)
Restricted diffusion	5 (2.0)
Gastrointestinal edema	4 (1.6)
Multiple hyperplasia nodules	2 (0.8)
Caudate lobe enlargement	2 (0.8)
Focal nodules or masses	1 (0.4)
Dilated spleen vein	1 (0.4)

MRI: Magnetic resonance imaging; IVC: Inferior vena cava.

literature was relatively obsolete, and the MRI models and parameters of each center were also different, which may lead to misjudgment of image results due to insufficient understanding of MRI signs.

Summary and outlook
Although with low incidence, SOS still requires clinical attention because of its rapid progression and high mortality. In the West, in addition to being secondary to HSCT, the patients with liver metastasis from colorectal cancer should be highly alert to the occurrence of SOS. Furthermore, the hepatotoxic effects of some special drugs have to be brought to the attention of the public again. In the East, especially in China, while recognizing the efficacy of Chinese herbal medicine, we cannot ignore the potential harm to liver sinusoidal endothelial cells either. Ascites, abdominal pain and swelling, and jaundice are the common symptoms for the diagnosis of SOS. ALT, AST, ALP, GGT, and TBil can be used as predictors of liver function damage induced by SOS. Heterogeneous signals on T1WI/T2WI, heterogeneous enhancement of liver parenchyma, hepatomegaly, narrowing and blurring of intrahepatic IVC and hepatic veins, perportal edema, and gallbladder wall edema are the major MRI features of SOS. In addition, to further improve the non-invasive diagnosis of SOS, more MRI techniques need to be developed and applied, such as hepatobiliary scan of Gd-EOB MRI, SWI, and other functional imaging methods.

ARTICLE HIGHLIGHTS

Research background
Sinusoidal obstruction syndrome (SOS), also referred to as veno-occlusive disease, is a rare liver vascular injury that is highly lethal. It is pathologically characterized by the damage of hepatic sinusoidal endothelial cells, impeded sinusoidal blood flow, congestive sinusoidal dilatation, and perisinusoidal fibrosis. Understanding the epidemiological characteristics and imaging features of SOS is vital for clinical diagnosis and treatment.

Research motivation
Although biopsy is the golden standard for SOS diagnosis, it is invasive and cannot be easily implemented in practice work. Currently, the diagnosis of SOS usually depends on clinical
criteria, such as the Baltimore criteria and the modified Seattle criteria. However, the diagnosis of SOS only based on clinical criteria is lack of high specificity. In recent years, magnetic resonance imaging (MRI) has been increasingly used in the differential diagnosis of SOS and shows a good prospect. Combining clinical information and MRI features of SOS could greatly improve the efficiency of SOS diagnosis.

Research objectives
The main objective of this systematic review is to summarize the major etiologies, clinical symptoms, and MRI features of SOS.

Research methods
Published articles on PubMed, Web of Science, Wanfang Data, China Knowledge Resource Integrated, VIP, and Cochrane Library databases were searched. The search process mainly reviewed around the etiologies, common clinical symptoms, and MRI imaging features of SOS. Last search was performed on January 28, 2019.

Research results
In total, 11 case reports and 18 case series were systematically reviewed. Chemotherapy for patients with liver metastasis of colorectal cancer, intake of medicine herbs containing pyrrolidine alkaloids (PAs, e.g. Tusanqi), and condition treatment prior to haemopoietic stem cell transplantation were the main etiologies of SOS. Hepatomegaly, ascites, abdominal swelling, and jaundice were the frequent clinical symptoms of SOS. Some laboratory indexes, including alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyl transpeptidase, total bilirubin, and direct bilirubin had varying degrees of elevation. Hepatic parenchyma heterogeneity, ascites, hepatomegaly, narrowing of intrahepatic inferior vena cava and hepatic veins, edema around the portal vein, and gallbladder wall edema were the most common MRI imaging features of SOS.

Research conclusions
Although this systematic review included not enough high-quality publications due to the low incidence of SOS, the findings of this review help clinicians to know about the epidemiological and imaging features of SOS and provide a more reliable and accurate diagnosis of SOS.

Research perspectives
In the future, more high-quality prospective studies need to be conducted. Moreover, to further improve the diagnostic efficiency for SOS, some up-to-date imaging techniques, such as functional MRI, need to be developed and applied, including hepatobiliary scan of Gd-EOB MRI, susceptibility weighted imaging, and other functional imaging methods.

REFERENCES
1. Valla DC, Cazals-Hatem D. Sinusoidal obstruction syndrome. *Clin Res Hepatol Gastroenterol* 2016; 40: 378-385 [PMID: 27038846 DOI: 10.1016/j.clinre.2016.01.006]
2. Delieve LD, Shulman HM, McDonald GB. Toxic injury to hepatic sinusoids: sinusoidal obstruction syndrome (veno-occlusive disease). *Semin Liver Dis* 2002; 22: 27-42 [PMID: 11928077 DOI: 10.1055/s-2002-23204]
3. Coppell JA, Richardson PG, Soffier R, Martin PL, Kernan NA, Chen A, Guinan E, Vogelsang G, Krishnan A, Giralt S, Revta C, Carreau NA, Jacobelli M, Carreras E, Rauutu T, Barbui T, Antin JH, Niederwieser D. Hepatic veno-occlusive disease following stem cell transplantation: incidence, clinical course, and outcome. * Biol Blood Marrow Transplant* 2010; 16: 157-168 [PMID: 20766729 DOI: 10.1016/j.bmmt.2009.08.024]
4. Al Jefri AH, Abujuzar H, Al-Ahmari A, Al Rawas A, Al Zahran Z, Alhejazi A, Bekadja MA, Ibrahim A, Lahouctme M, Ousia S, Bazarbachi A. Veno-occlusive disease/sinusoidal obstruction syndrome after haematopoietic stem cell transplantation: Middle East/North Africa regional consensus on prevention, diagnosis and management. *Bone Marrow Transplant* 2017; 52: 588-591 [PMID: 27892944 DOI: 10.1038/bmt.2016.300]
5. Mohy M, Malard F, Abecassis M, Aerts E, Alaskan AS, Aljurf M, Arat M, Bader P, Baron F, Bazarbachi A, Blaise D, Ciceri F, Corbacioglu S, Dalle JH, Dignan F, Fukuda T, Huyh A, Masszi T, Michallet M, Nagler A, NoChonghiale M, Okamoto S, Pagliuca A, Peters C, Petersen FB, Richardson PG, Rauutu T, Savani BN, Wallihluf E, Yakoub-Agha I, Duarte RF, Carreras E. Revised diagnosis and severity criteria for sinusoidal obstruction syndrome/veno-occlusive disease in adult patients: a new classification from the European Society for Blood and Marrow Transplantation. *Bone Marrow Transplant* 2016; 51: 906-912 [PMID: 27183098 DOI: 10.1038/bmt.2016.130]
6. Zhang Y, Liu Y, Xie W, Zou X, Xu J, Wang J. Chinese Society of Gastroenterology Committee of Hepatobiliary Disease. Expert consensus on the clinical management of pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome. *J Gastroenterol Hepatol* 2019; 34: 634-642 [PMID: 30669184 DOI: 10.1111/jgh.14612]
7. Wang X, Qi X, Guo X. Tusanqi-Related Sinusoidal Obstruction Syndrome in China: A Systematic Review of the Literatures. *Medicine (Baltimore)* 2015; 94: e942 [PMID: 26061322 DOI: 10.1097/md.0000000000000942]
8. Mortelé KJ, Van Vlierbergh E, Wiesner W, Ros PR. Hepatic veno-occlusive disease: MRI findings. *Abdom Imaging* 2002; 27: 523-526 [PMID: 12172990 DOI: 10.1007/s00261-001-0097-5]
9. Marasco G, Scasio E, Rennelli M, Colecchia A, Golfieri R, Festi D, Bazzoli F, Duby RJ, Belluzzi A. MRI Patterns in a Case of 6-Thioguanine-Related Hepatic Sinusoidal Obstruction Syndrome. *Am J Gastroenterol* 2016; 111: 767 [PMID: 27249976 DOI: 10.1038/ajg.2016.210]
10. Jacobs P, Miller JL, Uys CJ, Dietrich BE. Fatal veno-occlusive disease of the liver after chemotherapy,
whole-body irradiation and bone marrow transplantation for refractory acute leukaemia. S Afr Med J 1979; 55: 5-10 [PMID: 371033].

11. Tunner HH, Rana N, Milani C, Darko A, Al-Homsy SA. Gastrointestinal and hepatic complications of hematopoietic stem cell transplantation. World J Gastroenterol 2012; 18: 1851-1860 [PMID: 22563164 DOI: 10.3748/wjg.v18.i16.1851].

12. Duraggan FL, Wynn RF, Hadzie N, Karani J, Quaglia A, Pagliuca A, Veyes P, Potter MN. Haematology and Oncology Task Force of British Committee for Standards in Haematology; British Society for Blood and Marrow Transplantation. BSH/BSIHM guideline: diagnosis and management of veno-occlusive disease (sinosoidal obstruction syndrome) following hematopoietic stem cell transplantation. Br J Haematol 2013; 163: 444-457 [PMID: 234102514 DOI: 10.1111/bjh.12558].

13. van den Bosch MA, van Hoe L. MR imaging findings in two patients with hepatic veno-occlusive disease following bone marrow transplantation. Eur Radiol 2000; 10: 1290-1293 [PMID: 10939493 DOI: 10.1007/s003300000330].

14. Zorzi D, Laurent A, Pawlik TM, Lauwers GY, Vauhney JN, Abdalla EK. Chemotherapy-associated hepatotoxicity and surgery for colorectal liver metastases. Br J Surg 2007; 94: 274-286 [PMID: 17315288 DOI: 10.1002/bjs.5719].

15. Douillard JY, Cunningham D, Roth AD, Navarro M, James RD, Karasek P, Jandik P, Iveson T, Carmichael J, Alakl M, Gruia G, Awad L, Rougier P. Irinotecan combined with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancer 2000; 355: 1041-1047 [PMID: 10744089].

16. Dwege K, Knitter S, Pethy S, Beierle AS, Bahra M, Schmelze M, Schmuck RB, Lohnes P, Raschzok N, Ollinger R, Sinn M, Streebker B, Sauer IM, Pratschke J, Andreou A. Hepatotoxicity following systemic therapy for colorectal liver metastases and the impact of chemotherapy-associated liver injury on outcomes after curative liver resection. Eur J Surg Oncol 2017; 43: 1668-1681 [PMID: 28599872 DOI: 10.1016/j.ejso.2017.05.006].

17. Hu JS, Xia RM, Zhu GF. MRI in the diagnosis of small hepatic veno-occlusive disease (report of 2 cases and review of literature). Zhongguo Linchuang Yixue Yingshang Zazhi 2014; 25: 53-55.

18. Kang Z, Guo H. Veno-occlusive disease: A case report. Beijing Yixue 2015; 3: 301-302 [DOI: 10.15932/j.2053-9713.2015.3.035].

19. Robinson SM, Wilson CH, Burt AD, Manas DM, White SA. Chemotherapy-associated liver injury in patients with colorectal liver metastases: a systematic review and meta-analysis. Ann Surg Oncol 2012; 19: 4287-4299 [PMID: 22766941 DOI: 10.1245/s10434-012-0438-8].

20. Van L. Clinical analysis of hepatic veno-occlusive disease induced by gynura root: One Case report and review of the literature. Ann Surg Oncol. M.Sc. Thesis, Dalian Medical University, 2015.

21. Yoneda M, Motai O, Ikeda H, Inoue D, Yoshida K, Kitaot A, Kozak A, Kobayashi S, Gabata T, Ideka H, Nakamura K, Owta T. Correlation between Gd-EOB-DTPA-enhanced MR imaging findings and OATP1B3 expression in chemotherapy-associated sinusoidal obstruction syndrome. Abdom Imaging 2015; 40: 2099-3103 [PMID: 26187715 DOI: 10.1007/s00261-015-0503-3].

22. Overman MJ, Maru DM, Chamsangave C, Loey EM, Wang H, Pathak P, Eng C, Hoff PM, Vauhney JN, Wolff RA, Kopetz S. Oxaliplatin-mediated increase in spleen size as a biomarker for the development of hepatic sinusoidal injury. J Clin Oncol 2010; 28: 2549-2555 [PMID: 20466923 DOI: 10.1200/jco.2009.27.5701].

23. DeLeve LD, McCuskey RS, Wang X, Hu L, McCuskey MK, Epstein RB, Kanel GC. Characterization of a reproducible rat model of hepatic veno-occlusive disease. Hepatology 1999; 29: 1779-1791 [PMID: 10347121 DOI: 10.1002/hep.10509615].

24. Wang JY, Gao H. Tasaqi and hepatic sinusoidal obstruction syndrome. J Dig Dis 2014; 15: 105-107 [PMID: 24526632 DOI: 10.1111/1751-2888.12112].

25. Yu S, Fang Z, Bao Q, Su J, Du R. MRI features of 6 cases of Sinusoidal Obstruction Syndrome. Zhongguo Linchuang Yixue 2013; 11: 861-863 [DOI: 10.3969/j.issn.1005-5813.2013.11.018].

26. Shin NY, Kim MJ, Lim JS, Park MS, Chung YE, Choi JY, Kim KW, Park YN. Accuracy of gadoxetic acid-enhanced magnetic resonance imaging for the diagnosis of sinusoidal obstruction syndrome in patients with chemotherapy-treated colorectal liver metastases. Eur Radiol 2012; 22: 864-871 [PMID: 22180766 DOI: 10.1007/s00330-011-2333-x].

27. Li X, Yang X, Xu D, Li Q, Kong X, Lu Z, Bai T, Xu K, Ye J, Song Y. Magnetic Resonance Imaging Findings in Patients With Pyrrolizidine Alkaloid-Induced Hepatic Sinusoidal Obstruction Syndrome. Clin Gastroenterol Hepatol 2017; 15: 955-957 [PMID: 28129645 DOI: 10.1016/j.cgh.2016.07.014].

28. Choi JH, Won YW, Kim HS, Oh YH, Lim S, Kim HJ. Oxaliplatin-induced sinusoidal obstruction syndrome mimicking metastatic colon cancer in the liver. Oncol Lett 2016; 11: 2861-2864 [PMID: 27073565 DOI: 10.3892/ol.2016.4286].

29. Arakawa Y, Shimada M, Utsumoara T, Imura S, Morine Y, Ikemoto T, Hanaka J, Sugimoto K, Band O. Oxaliplatin-related sinusoidal obstruction syndrome mimicking metastatic liver tumors. Hepatol Res 2013; 43: 685-689 [PMID: 23730707 DOI: 10.1111/1872-034X.120114.x].

30. Gao T, Li X, Yang X, Kong X, Liu H, Bai T, Xu K, Ye J, Song Y. Gadoxetic Acid-Enhanced Hepatobiliary-Phase Magnetic Resonance Imaging for Pyrrolizidine Alkaloid-Induced Hepatic Sinusoidal Obstruction Syndrome and Association with Liver Function. Sci Rep 2019; 9: 1231 [PMID: 30718698 DOI: 10.1038/s41598-018-37775-1].

31. Kawai T, Yamaizaki S, Iwama A, Higaki T, Sugitani M, Takayama T. Focal Sinusoidal Obstruction Syndrome Caused by Oxaliplatin-Induced Chemotherapy: A Case Report. Hepat Mon 2016; 16: e37572 [PMID: 27822263 DOI: 10.5812/hepatmon.37572].

32. Liu F, Cao X, Ye J, Fan X, Kan X, Song Y. Oxaliplatin-induced hepatic sinusoidal obstruction syndrome in a patient with gastric cancer: A case report. Med Clin Oncol 2018; 8: 453-456 [PMID: 29460859 DOI: 10.3892/mco.2017.1540].

33. Chen ZH, Tang D, Gao ZF, Zhang YS. MRI analysis of 8 cases of acute hepatic sinus obstruction syndrome caused by "tusanqi". Zhongguo Linchuang Yixue 2015; 7: 1194-1195.

34. Ye TH, Liang HM, Ye J, Zheng CS, Xiong B, Pan F, Xia XW. CT and MR findings of hepatic sinusoidal obstruction syndrome caused by Gynura segetum. Zhonghua Jie Fu Fang Sheng Za Zhi 2015; 3: 27-33 [DOI: 10.3877/cma.j.issn.2095-5782.2015.01.007].

35. Zheng WK, Wang MR. Clinical characteristic analysis of hepatic veno-occlusive disease induced by.
gynura segetum in patients with alcoholic liver cirrhosis. Zhongguo Ganzangbing Zazhi (Dianzi Ban) 2015; 1: 51-54 [DOI: 10.3969/j.issn.1674-7380.2015.01.18]

37 Ren XF, Zhu Ge YZ, Chen SY, Yang L, Jiang HX, Zhang XL, Ma X, Xie WF, Liu YM, Xu JM; Gastroenterology HCGoCSo. Gynura segetum-related hepatic sinusoidal obstruction syndrome: a national multicenter clinical study. Zhonghua Xiaohua Zazhi 2017; 37: 523-529 [DOI: 10.3760/cma.j.issn.0254-1432.2017.08.004]

38 Geng CZ, Gao Y, Fan SF. MRI of hepatic sinusoidal obstruction syndrome caused by Gynura segetum. Zhonghua Fangshexue Zazhi 2009; 43: 312-314 [DOI: 10.3760/cma.j.issn.1005-1201.2009.03.020]

39 Chen HZ, Shao H, Geng CZ, Lv JS, Zhang ZQ. Value of liver imaging scan in diagnosing hepatic veno-occlusive disease caused by Sedum Aizoon. Linchuang Gandanbing Zazhi 2012; 28: 376-379

40 Zhang LX, Wu JP, Xu H, Zu MH, Jiao XD, Zhou JH, Bao ZW, Liu JH. The diagnosis and differential diagnosis of hepatic veno-occlusive disease. Xieru Fangshexue Zazhi 2012; 21: 987-990 [DOI: 10.3969/j.issn.1008-794X.2012.12.003]

41 Li YF, Li HJ. Imaging findings in four patients with hepatic veno-occlusive disease. Cigongzhen Chengxiang 2011; 2: 416-419 [DOI: 10.3969/j.issn.1674-8034.2011.06.005]

42 Hu Z, Zhang P, Yao HQ. The Value of CT and Low Field MRI in the Diagnosis of Hepatic Veno-occlusive Disease (5 cases report and literature review). Zhongguo CT He MRI Zazhi 2011; 46: 11-12, 24 [DOI: 10.3969/j.issn.1672-5131.2011.06.004]

43 Li YB, Gao XM, Chen JL. MRI findings of Hepatic Veno-occlusive Disease. Zhengzhou Daxue Xuebao (Yixue Ban) 2015; 50: 289-291, 292 [DOI: 10.13705/j.issn.1671-6825.2015.02.039]

44 Li C, Xu K, Hou JX. The Differential Diagnosis of BCS (type II) and Hepatic Sinusoidal Obstruction Syndrome by CE-MRA. Zhongguo CT He MRI Zazhi 2014; 49: 95-98 [DOI: 10.3969/j.issn.1672-5131.2014.08.31]

45 Rong XX. Clinical features of Hepatic sinusoidal obstruction syndrome and progress in diagnosis and therapy: analysis of 51 cases. M.Sc. Thesis, Huazhong University of Science and Technology. 2015

46 Pei YG, Hu DY, Shen YQ, Wang QX, Hu LW. The value of MSCT and MRI in the diagnosis of hepatic veno-occlusive disease. Zhonghua Ganzangbing Zazhi 2010; 18: 150-152 [DOI: 10.3766/cma.j.issn.1007-3475.2010.02.018]

47 Zhou H, Wang YX, Lou HY, Xu XJ, Zhang MM. Hepatic sinusoidal obstruction syndrome caused by herbal medicine: CT and MRI features. Korean J Radiol 2014; 15: 218-225 [PMID: 24643319 DOI: 10.3348/kjr.2014.15.2.218]

48 Guo TT. Additional value in the diagnosis of hepatic diseases clinical researches based on Gadoteric Acid-Enhanced Magnetic Resonance Imaging. M.Sc. Thesis, Huazhong University of Science and Technology. 2015

49 Yang XQ. Magnetic Resonance Imaging Features in Pyrrolizidine Alkaloid-induced Hepatic Sinusoidal Obstruction Syndrome. M.Sc. Thesis, Huazhong University of Science and Technology. 2018
