The quality of antenatal care in rural Tanzania: what is behind the number of visits?
Nyamtema, A.S.; de Jong, A.; Urassa, D.P.; Hagen, J.P.; van Roosmalen, J.

published in
BMC Pregnancy and Childbirth
2012

DOI (link to publisher)
10.1186/1471-2393-12-70

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Nyamtema, A. S., de Jong, A., Urassa, D. P., Hagen, J. P., & van Roosmalen, J. (2012). The quality of antenatal care in rural Tanzania: what is behind the number of visits? BMC Pregnancy and Childbirth, 12, [70]. https://doi.org/10.1186/1471-2393-12-70

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 11. May. 2022
The quality of antenatal care in rural Tanzania: what is behind the number of visits?

Angelo S Nyamtema1*, Alise Bartsch-de Jong2, David P Urassa3, Jaap P Hagen4 and Jos van Roosmalen2,4

Abstract

Background: Antenatal care (ANC) provides an important opportunity for pregnant women with a wide range of interventions and is considered as an important basic component of reproductive health care.

Methods: In 2008, severe maternal morbidity audit was established at Saint Francis Designated District Hospital (SFDDH), in Kilombero district in Tanzania, to ascertain substandard care and implement interventions. In addition, a cross-sectional descriptive study was carried out in 11 health facilities within the district to assess the quality of ANC and underlying factors in a broader view.

Results: Of 363 severe maternal morbidities audited, only 263 (72%) ANC cards were identified. Additionally, 121 cards (with 299 ANC visits) from 11 facilities were also reviewed. Hemoglobin and urine albumin were assessed in 22% – 37% and blood pressure in 69% - 87% of all visits. Fifty two (20%) severe maternal morbidities were attributed to substandard ANC, of these 39 had severe anemia and eclampsia combined. Substandard ANC was mainly attributed to shortage of staff, equipment and consumables. There was no significant relationship between assessment of essential parameters at first ANC visit and total number of visits made (Spearman correlation coefficient, r = 0.09; p = 0.13). Several interventions were implemented and others were proposed to those in control of the health system.

Conclusions: This article reflects a worrisome state of substandard ANC in rural Tanzania resulting from inadequate human workforce and material resources for maternal health, and its adverse impacts on maternal wellbeing. These results suggest urgent response from those in control of the health system to invest more resources to avert the situation in order to enhance maternal health in this country.
view the quality of antenatal care services and underlying factors in Kilombero district, Tanzania.

Methods

Study area
Kilombero is a rural district located in the south-western part of Tanzania. In 2002 it had a total population of 321,661 people with an annual population growth rate of 2.6% [10]. Antenatal care services are offered in 44 health facilities including a 372-bed SFDDH (including maternity waiting home services), a 120 bed capacity Illovo (parastatal) hospital, 4 public health centers and 38 private and public dispensaries scattered around the district.

Sample size and sampling technique
The first phase of the 4 M study involved audit of all mothers with severe maternal morbidities and mortalities at SFDDH. The inclusion criteria and the auditing process have been described elsewhere [11]. The second phase of the study involved stratified sampling technique to obtain 11 health facilities out of 44 health institutions in Kilombero district (25% representation fulfilling the criteria of 2 hospitals, 2 health centers and 7 dispensaries). All clients who came for antenatal clinics on the day of study were included in this study.

Data collection
Data of the first phase (severe maternal morbidities audit) was collected and entered in Access database. The second phase of the study was a cross-sectional descriptive study involving in-charge of health facilities. Verbal informed consent was obtained from all interviewees i.e. in-charge of health facilities and clients whose ANC cards were reviewed. Confidentiality, privacy and cultural values were also taken into consideration.

Data analysis
Quantitative data was analyzed using SPSS software. The principal summary measures were proportions of essential parameters assessed during ANC visits and the corresponding 95% confidence intervals (95% CI). The relationship between assessment of essential parameters at first visit and the total number of visits made was determined using correlation analysis. Essential parameters (BP, Hb and albumin in urine) measured at first ANC visit were scored i.e., each parameter was given one point when it appeared that it was assessed, making a maximum score of 3. The authors hypothesized that by assessing these parameters, involving her blood sample, urine sample and physique, a woman would feel adequately assessed and hence motivated to make more visits. Although blood and urine samples are also used for other tests, it was logically assumed that these tests may not have changed in the way how a woman felt to be assessed during the first visit. Mothers with complications of abortion, ectopic pregnancies and those who started ANC visits after 20 weeks of gestation were excluded from this correlation analysis because they were not expected to make a recommended minimum of four visits.

Qualitative data was analyzed using a method described by Graneheim and Lundman [13]. Analysis included thorough reading of the transcribed text to identify meaning units. The meaning units were then condensed, abstracted, coded and then categorized according to similarities and differences in content.

Results

Findings from the audit phase
Of all 363 women with severe maternal morbidities admitted at SFDDH from October 2008 to July 2010, ANC cards were found in only 263 (72%). Of the women
without ANC cards some left them at home, others had not started ANC visits and the rest were misplaced within the hospital. Out of the total 754 ANC visits made by these 263 women with antenatal cards, BP, Hb and albumin in urine were assessed in only 69%, 25% and 22% respectively. The audit team attributed 52 (20%) of the 263 mothers with ANC cards to substandard antenatal care. Of these 39 (75%) were mothers presenting with severe anemia in pregnancy and eclampsia combined who had attended ANC clinics regularly but the respective parameters were never checked. During audit it was not clear whether the substandard assessment of these parameters was due to poor supply of essential ANC equipment, drugs and consumables or because of poor performance of care providers. Correlation analysis indicated that there was no significant relationship between the assessment of essential parameters at first visit and the total number of ANC visits made by 63 women who qualified for analysis (Spearman correlation coefficient, r = 0.09; p = 0.13).

Findings from cross sectional descriptive study
Antenatal cards belonging to 121 pregnant women attending in 11 antenatal clinics in Kilombero district were reviewed with an average of 11 (ranging from 4 – 35) cards from each facility. Of these cards, 95 (79%) belonged to women with primary education, only one belonged to a client with post secondary education. Of all women 107 (88%) were peasants, 7 (6%) petty businesswomen and 7 (6%) were either employee in the public or nongovernmental institutions. More than a quarter (26%) of these women were primigravida, 51% were gravida 2–4 and 92% were married.

Out of the total 299 ANC visits made hemoglobin estimation, glucose and albumin in urine were assessed in almost one third (27% – 37%) of the visits (Table 1). Although majority (83%) of mothers had made at least 2 ANC visits, blood group and rhesus status, and VDRL were tested in only 7% and 48% respectively (Table 2). With exception of Hb estimation, HIV test, blood grouping and rhesus status, and provision of mebendazole, the rest of the routine services recommended for ANC in Tanzania were statistically significantly more checked / provided in the hospitals than in lower health facilities.

Of all women 63 (52%) had at least one risk factor. Of women with risk factors 27 (42%) were under 20 years of age, 12 (19%) had short stature less than 150 cm and 11 were grand multiparous. Delivery advice was provided to only 40 (33%) women attending ANC on the day of study. The most frequent delivery advice (93%) given to women with risk factors was hospital delivery, when to go and use of maternity waiting home. On the other hand, 25 (40%) women with risk factors reported that they did not receive any advice on the delivery plan. On the contrary, 93 (77%) women reported that they were satisfied with the ANC services they received in these facilities. This number included women who had a risk factor but never received any delivery advice.

Factors affecting ANC services delivery
BP machines, stethoscopes, weighing scales, HIV test kits, folic acid, mebendazole and SP drugs for IPT were available in nearly all (91% – 100%) facilities during the period of this study. Hb estimation machines were available in less than two thirds (64%) of the health facilities. The respondents (in charge of health facilities) reported that some essential equipment like BP machines were of poor quality leading to short durability contributing to the shortage. Glucostik and albustik kits were available only in 18% and 27% of all health facilities respectively. Hb estimation machines, Glucostik and albustik kits were completely unavailable in these facilities for up to 12 months before the study. Generally, there was severe shortage of staff for antenatal care in all dispensaries and health centers. Shortage of qualified staff and irregular

Table 1 Proportions of check ups of parameters and prophylactic drugs recommended for every ANC visit

Parameters	Hospitals (ANC visits = 127)	First Level Health Facilities (ANC visits = 172)	Total% (visits = 299)			
	%	95% CI	%	95% CI	%	95% CI
Weight	89	84 - 94	74	67 - 81	80	
Blood pressure	98	96 - 99	78	72 - 84	87	
Hb estimation	45	34 - 54	32	25 - 39	37	
Albumin in urine	47	38 - 56	20	14 - 26	32	
Glucose in urine	42	33 - 51	15	10 - 20	27	
Iron tablets	77	70 - 84	45	38 - 54	59	
Folate tablets	71	63 - 79	45	38 - 54	56	

NB: *Only data from the second phase of the study (cross sectional descriptive study) is included here; First Level Health Facilities = health centers & dispensaries.

Table 2 Proportions of check ups of parameters and prophylactic drugs recommended at least once during ANC period

Parameters	Hospitals Clients = 43	First Level Health Facilities Clients = 78	Total clients n = 121			
	%	95% CI	%	95% CI	%	95% CI
Height	93	88 - 99	56	45 - 67	69	
HIV Test	91	82 - 99	74	64 - 84	80	
VDRL Test	67	53 - 81	37	26 - 48	48	
Blood group & Rhesus factor	5	1 - 12	9	3 - 15	7	
Mebendazole	77	64 - 90	54	43 - 65	62	

NB: Only data from the second phase of the study (cross sectional descriptive study) is included; First Level Health Facilities = dispensaries and health centers.
supply of essential equipment, drugs and consumables were considered by 91% and 64% of the respondents respectively as the major underlying factors for substandard ANC (Table 3).

Interventions
A list of strategic interventions for quality ANC improvement in the district were proposed and implemented as a result of audit. These included regular feedback to ANC providers, recommendations were shared with the regional and district health authorities to improve staffing levels, essential supplies and equipment, and supportive supervision for quality antenatal care. The Medical Store Department (MSD), the central government supplier of medical equipment, drugs and consumables, was also contacted through a series of meetings and advised to improve the ordering and supply mechanisms to enhance quality and availability of essential supplies.

Discussion
This article reveals a state of poor assessment of essential parameters for antenatal care in rural Tanzania despite adoption of goal-oriented ANC with a limited number of visits. Despite the complexity of interacting factors, antenatal education, screening and treatment of common causes of maternal and perinatal mortalities and morbidities such as pre-eclampsia and anemia constitute a body of benefits of ANC interventions [5,14,15]. The effectiveness of such ANC interventions has been linked to its quality, access and coverage [15]. The fact that comparable findings indicating substandard provision of vital ANC services have been repeatedly reported in rural sub-Saharan Africa since the last decade, suggest dormant health systems, an alarming state reported in rural sub-Saharan Africa since the last decade. The fact that comparable findings indicating substandard provision of ANC services have been repeatedly reported in rural sub-Saharan Africa since the last decade, suggest dormant health systems, an alarming state reported in rural sub-Saharan Africa since the last decade.

Table 3 Factors affecting quality antenatal care in Kilombero district

Factors affecting quality antenatal care	Proportions of respondents n = 11
Shortage of qualified staff	91%
Irregular supply of ANC equipment and drugs	64%
Regular but inadequate supplies	45%
Cultural factors and ignorance among pregnant women	36%
Lack of staff motivation	27%
Poor infrastructure for ANC	18%
Long distance to the health facility with ANC services	9%

The fact that 20% of severe maternal morbidities were attributed to substandard ANC suggests a remarkable proportion of adverse pregnancy outcome that could be reduced by improving this program. These findings suggest also that women from rural Tanzania belong to a group that would need quality ANC the most in the world [14]. The high prevalence of ANC attendance in sub-Saharan Africa [8,21] and positive attitude about antenatal care despite its poor quality [22], offer an important opportunity for quality maternal care improvement. These findings pose a great challenge to those in control of health systems in sub-Saharan Africa to invest more resources in antenatal care in order to accelerate maternal health in rural areas.

As opposed to the authors’ hypothesis there was no significant relationship between assessment of essential parameters of pregnant women at the first ANC visit and total number of visits. These results could partly be explained by lack of alternative of these women and the presence of high degree of ignorance which was manifested by high satisfaction in the circumstance of poor quality of ANC services. These findings suggest also that improvement of ANC may not necessarily improve attendance in this region.

Health care providers attributed substandard ANC to irregular supply of essential equipment and drugs, poor infrastructure for ANC and shortage of staff. The fact that Hb was estimated in only 37% of ANC visits despite Hb estimation machines being available in 64% of health facilities raise more questions on the performance, accountability, commitment of health care providers and supervision in the health sector. Our findings recommend more resources to ensure regular essential supplies, drugs and equipment, train more skilled staff and carry out supportive supervision in order to improve ANC services [14,16].

Limitations
The statistical analysis assumed that all observations were independent. However, in a first level health facility (dispensary or health center) there are usually few health workers who perform ANC. These are likely to repeat mistakes or deliver good care on all mothers they attend in ANC. Thus, consultations by the same health worker may not necessarily be independent from each other, and even more so if some equipment is missing. Validity of ANC card data: it was assumed that all data in the ANC cards were true. However, some tests may have been done, but not recorded; some tests may have been recorded, but not done. It was not possible to cross-check through the interview with mothers whether all these parameters were performed or not. The fact that satisfaction to ANC services is subjective, the results posed a potential limitation. Satisfaction can be influenced
by a number of factors including knowledge on the required types of services and attitude of the individual clients. Based on these factors, clients might have expressed different levels of satisfaction even if they received similar services.

Conclusions

This article reflects a worrisome state of substandard antenatal care in rural Tanzania resulting from complex interacting factors including persistent lack of skilled human and material resources as well as irresponsible leadership in the health sector. Findings from this audit program suggest substantial adverse impact on maternal wellbeing resulting from poor quality of ANC. These results suggest urgent response from those in control of the health system to invest more resources in antenatal care to avert the situation and enhance maternal health in Tanzania.

Abbreviations

ANC: Antenatal care; CI: Confidence intervals; SFDDH: Saint Francis designated district hospital.

Competing interests

The authors declare that they have no competing interests.

Acknowledgments

The authors would like to acknowledge the contribution of Tanzanian intern doctors and Dutch medical students who took part in data collection as well as in the audit team. They would like to thank the hospital administration and the district health authority for allowing this study to be conducted in their health facilities.

Author details

1. Department of Obstetrics and Gynaecology, Saint Francis Referral Hospital, Ifakara, Tanzania. 2. Department of Medical Humanities, EMGO Institute for Health and Care Research, VU University Medical Centre, Amsterdam, The Netherlands. 3. Department of Community Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania. 4. Department of Obstetrics, Leiden University Medical Centre, Leiden, The Netherlands.

Authors’ contributions

ASN, ABJ and JvR designed and took part in the audit process and data analysis. DPU contributed to writing of the manuscript. All authors read and approved the final manuscript.

Received: 8 January 2012 Accepted: 23 July 2012
Published: 23 July 2012

References

1. Osungbade K, Oginn S, Olumide A: Content of antenatal care services in secondary health care facilities in Nigeria: Implication for quality of maternal health care. Int J Qual Health Care 2008, 20:346–351.
2. Lindmark G, Crattingius S: The scientific basis of antenatal care. Acta Obstetricia et Gynaecologica Scandinavica 1991, 70:105–109.
3. Chan KL, Kean LH: Routine antenatal management at the booking clinic. Curr Obstet Gynaecol 2004, 14:79–85.
4. Nyamtema AS, Urassa DP, van Roosmalen J: Maternal health interventions in resource limited countries: a systematic review of packages, impacts and factors for change. BMC Pregnancy Childbirth 2011, 11:30.
5. Simonna DJ, M Gottardo V, Gianfranco G, Daniel PS: What is the effectiveness of antenatal care. Copenhagen: WHO Regional Office for Europe; http://www.euro.who.int/Document/E87997.pdf.
6. Ministry of Health & Social Welfare: Focused Antenatal care, Malnutrition and Syphilis in Pregnancy. Orientation package for Service Providers. Dar es Salaam, Tanzania: Reproductive and Child Health Section; 2002.
7. Villar J, Ba’ageel H, Piaggio G, Lumbiganon P, Belizán JM, Farnot U, Al-Mazrou Y, Carroli G, Pinol A, Donner A, et al: WHO antenatal care randomized trial for the evaluation of a new model of routine antenatal care. Lancet 2001, 357:1551–1564.
8. Tanzania National Bureau of Statistics: Tanzania Demographic and Health Survey, 2004–2005: Dar es Salaam: Tanzania National Bureau of Statistics; 2005:131–138.
9. WHO: Operational Research on Reproductive Health. New Delhi: WHO Regional Office for South-East Asia; 2000.
10. The 2002 Tanzania population and census results. http://www.tanzania.go.tz/census.html.
11. Nyamtema AS, Bartsch-de Jong A, Urassa DP, van Roosmalen J: Using audit to enhance quality maternity care in resource limited countries: lessons learnt from rural Tanzania. BMC Pregnancy Childbirth 2011, 11:94.
12. UNICEF/WHO/UNFPA: Guidelines for monitoring the availability and use of obstetric services. New York: UNICEF; 1997.
13. Graneheim UH, Lundman B: Qualitative content analysis in nursing research: concepts, procedures and measures to achieve trustworthiness. Nurse Educ Today 2004, 24:105–112.
14. Zancanato G, Mosolomba R, Guerenti L, Franchi M: Antenatal care in developing countries: The need for a tailored model. Semin Fetal Neonatal Med 2006, 11:15–20.
15. Acharya S: How effective is antenatal care to promote maternal and neonatal health? Int J Gynecol Obstet 1995, 50(Suppl. 2):35–542.
16. Urassa DP, Carlstedt A, Nyström L, Massawe S, Lindmark G: Quality assessment of antenatal program for anaemia in rural Tanzania. Int J Qual Health Care 2002, 14:441–448.
17. Bolter C, Wyss K, Masawa D, Tanner M: Quality and comparison of antenatal care in public and private providers in the United Republic of Tanzania. Bull World Health Organ 2003, 81:116–122.
18. Malabika S, Gerhard S, Elin L, Sylvia K, Manuela De A, Florian N, Theodora M, Issack L, Olaf M: Quality of antenatal care in rural southern Tanzania: a reality check. BMC Research Notes 2010, 3:209.
19. Mwanikik PK, Kabiru EW, Mbugua GC: Utilisation of antenatal and maternity services by mothers seeking child welfare services in Mbeere District, Eastern Province, Kenya. East Afr Med J 2002, 79:184–187.
20. Anya SE, Abba H, Lamin ES J: Antenatal care in The Gambia: Missed opportunity for information, education and communication. BMC Pregnancy Childbirth 2008, 8:9.
21. Department of State for Health and Social Welfare: Report on the national survey on maternal, perinatal, neonatal and infant mortality and contraceptive prevalence: Banjul. DoSHS/G/02; 2002.
22. Mwifadhi M, Brigit O, Joanna Schellenberg A, Haws RA, Mushi AK, Hassan M, Marcel T, David S: The use of antenatal and postnatal care: perspectives and experiences of women and health care providers in rural southern Tanzania. BMC Pregnancy Childbirth 2009, 9:10.

Cite this article as: Nyamtema et al.: The quality of antenatal care in rural Tanzania: what is behind the number of visits?. BMC Pregnancy and Childbirth 2012 12:70.