DIOPHANTINE CORRECT OPEN INDUCTION

SIDNEY RAFFER

Abstract. We give an induction-free axiom system for diophantine correct open induction. We reduce the problem of whether a finitely generated ring of Puiseux polynomials is diophantine correct to a problem about the value-distribution of a tuple of semialgebraic functions with integer arguments. We use this result, and a theorem of Bergelson and Leibman on generalized polynomials, to identify a class of diophantine correct subrings of the field of descending Puiseux series with real coefficients.

Introduction

Background. A model of open induction is a discretely ordered ring whose semiring of non-negative elements satisfies the induction axioms for open formulas.

Equivalently, a model of open induction is a discretely ordered ring \(R \), with real closure \(F \), such that every element of \(F \) lies at a finite distance from some element of \(R \).

The surprising equivalence between these two notions was discovered by Shepherdson [7]. This equivalence enabled him to identify naturally occurring models of open induction made from Puiseux polynomials. Let \(F \) be the field of descending Puiseux series with coefficients in some fixed real closed subfield of \(\mathbb{R} \). Puiseux’s theorem implies that \(F \) is real closed. There is a unique ordering on \(F \), in which the positive elements are the series with positive leading coefficients. Define an “integer part” function on \(F \) as follows:

\[
\left\lfloor \sum_{i<M} a_i t^{i/D} \right\rfloor = \lfloor a_0 \rfloor + \sum_{i>0} a_i t^{i/D}
\]

where \(\lfloor a_0 \rfloor \) is the usual integer part of the real number \(a_0 \).

The image of \(\lfloor \cdot \rfloor \) is the subring \(R \) of \(F \) consisting of all Puiseux polynomials with constant terms in \(\mathbb{Z} \). Since every Puiseux series is a finite distance from its leading Puiseux polynomial, it is immediate that every element of \(F \) is a finite distance from some element of \(R \). The discreteness of the ordering on \(R \) is a consequence of the polynomials in \(R \) having integer constant terms. By Shepherdson’s equivalence, \(R \) is a model of open induction.

I am grateful to my advisor Attila Máté, and to Roman Kossak for his kind assistance over many years. The material here is based in part on my dissertation “Diophantine Properties of Ordered Polynomial Rings,” submitted to the City University of New York, June 2000.

1 A formula is “open” if it is quantifier-free.

2 Consequently, the inequality \(r \leq x < r + 1 \) defines a function \(r = \lfloor x \rfloor \) from \(F \) onto \(R \). This function is the natural counterpart of the usual integer part operator from \(\mathbb{R} \) onto \(\mathbb{Z} \).

3 A descending Puiseux series with real coefficients has the form \(\sum_{i<M} a_i t^{i/D} \), where \(M \) is an integer, \(D \) is a positive integer, and the \(a_i \) are real.
There has been some effort to find other models of open induction in the field of real Puiseux series F, satisfying additional properties of the ordered ring of integers. Perhaps the most extreme possibility in this regard is that F contains a model of open induction that is diophantine correct. We shall say that an ordered ring is \textit{diophantine correct} if it satisfies every universal sentence true in the ordered ring of integers. We refer to the theory of diophantine correct models of open induction as DOI. To make this notion precise, we shall assume that ordered rings have signature $(+ - \cdot \leq 0 1)$. All formulas will assumed to be of this type. Diophantine correctness amounts to the requirement that an ordered ring not satisfy any system of polynomial equations and inequalities that has no solution in the ring of integers.

Shepherdson’s models are not diophantine correct.\(^4\) However, there are other models of open induction in the field of real Puiseux series, notably the rings constructed by Berarducci and Otero \cite{BerarducciOtero}, which are not obviously not diophantine correct. More generally, it seems to be unknown whether the field of real Puiseux series has a diophantine correct integer part.

\textbf{Problem.} \textit{Let F be the field of Puiseux series with coefficients in a real closed subfield E of \mathbb{R} of positive transcendence degree over the rationals. Must (Can) F contain a model of DOI other than \mathbb{Z}?}

We prove in Section 2 that the field E must have positive transcendence degree, otherwise the only model of DOI contained in F is \mathbb{Z}.

\textbf{Wilkie’s Theorems and the Models of Berarducci and Otero.} Wilkie \cite{Wilkie} gave necessary and sufficient conditions for an ordinary (unordered) ring R to have an expansion to an ordered ring that extends to a model of open induction. These conditions are

\begin{enumerate}
 \item For each prime p, there must be a homomorphism $h_p : R \to \mathbb{Z}_p$, where \mathbb{Z}_p is the ring of p-adic integers.\(^5\)
 \item It must be possible to discretely order the ring R.
\end{enumerate}

These conditions are independent. For example, the ring $R = \mathbb{Z}[t, (t^2 + 1)/3]$ is discretely ordered by making t infinite.\(^6\) But the equation $1 + x^2 = 3y$ is solvable in R but not in \mathbb{Z}_3, so there is no homomorphism from R into \mathbb{Z}_3.

Conversely, let $g(t)$ be the polynomial $(t^2 - 13)(t^2 - 17)(t^2 - 221)$. The ring $R = \mathbb{Z}[t, t + 1/(1 + g(t)^2)]$ can be mapped homomorphically to \mathbb{Z}_p for every p, but cannot be discretely ordered: The second generator minus the first is between two integers if t is not.

Wilkie \cite{Wilkie} gave conditions under which an ordered ring can be extended so as to preserve these two conditions (using a single ordering.) We paraphrase his results.

\(^4\)For example, there are positive solutions of the equation $x^2 = 2y^2 \text{ via the Puiseux polynomials } x = \sqrt{2}t$ and $y = t$.

\(^5\)This is equivalent to the condition that for every positive integer n and every prime p there is a homomorphism from R onto the ring $\mathbb{Z}/p^n\mathbb{Z}$.

\(^6\)To prove discreteness, first show that $R/3R$ is a nine-element field. If H is a polynomial with integer coefficients and if $r = H(t, (t^2 + 1)/3)$ is finite but not an integer, then r has the form $a/3^n$, where $3 \nmid a$ and $n > 0$. Map the equation $3^n H(t, (t^2 + 1)/3) = a$ to $R/3R$ to get a contradiction.

\(^7\)To find a homomorphism h from R into \mathbb{Z}_p, use the fact that the polynomial $g(x)$ has p-adic zeros for all p. See \cite{Oesterle}. Set $h_p(x) = r$, where r is a p-adic zero of g, and set $h_p(x + 1/(1 + g^2)) = r + 1$, and show that h_p extends to a homomorphism from R into \mathbb{Z}_p.

Theorem (Wilkie’s Extension Theorem). Let R be discretely ordered ring. Suppose that for every prime p there is a homomorphism $h_p : R \to \mathbb{Z}_p$. Let F be a real closed field containing R and let $s \in F$. Then

1. If s is not a finite distance from any element of $R[\mathbb{Q}]$, and s is not infinitely close to any element of the real closure of R in F, then $R[s]$ is discretely ordered as a subring of F, and the homomorphisms h_p can be extended to $R[s]$ by assigning p-adic values to s arbitrarily.
2. If $s \in R[\mathbb{Q}]$, then choose $n \in \mathbb{Z}$ so that $ns \in R$. Choose $m \in \mathbb{Z}$ so that n divides $h_p(ns) - m$ in \mathbb{Z}_p, for every prime p. Put $r = (ns - m)/n$. Then $R[r]$ is discretely ordered, and the homomorphisms h_p extend to $R[r]$ via $h_p(r) = (h_p(ns) - m)/n$.

The choice of m in Case (2) is always possible because n will be a unit in \mathbb{Z}_p for all p prime to n. Suppose n has prime decomposition $\prod p_i^{e_i}$. For each of the prime divisors p_i of n, choose $m_i \in \mathbb{Z}$ so close to $h_{p_i}(ns)$ that $m_i \equiv h_{p_i}(ns) \mod p_i^{e_i}$. Then use the Chinese remainder theorem to get $m \equiv m_i \mod p_i^{e_i}$.

The point is that starting with an ordered ring R and homomorphisms h_p as above, one can extend R to a model of open induction by repeatedly adjoining missing integer parts of elements of a real closure of R. We give an example of how this is done. Let $R = \mathbb{Z}[t]$, and let F be the field of real Puiseux series. Let $h_p : R \to \mathbb{Z}_p$ be the homomorphism given by the rule
denoted $h_p(f(t)) = f(1 + p + p^2 + \ldots)$.

Think of the polynomial $s = t^2/36$ as an element of some fixed real closure of R. Then s has no integer part in R. We shall adjoin an integer part via Case (2). Since $36s \in R$, we must find $m \in \mathbb{Z}$ so close to $h_p(36s) = 1 + 2p + 3p^2 + \ldots$ that 36 will divide $h_p(36s) - m$. This is only an issue for $p = 2, 3$, since otherwise 36 is a unit. It is enough to solve the congruences

$$m \equiv 1 + 2 \cdot 2^1 \mod 2^2$$
$$m \equiv 1 + 2 \cdot 3^1 \mod 3^2.$$

Here $m = 25$ does the job. Thus we adjoin $(36s - 25)/36 = (t^2 - 25)/36$ to R.

To continue, the element $\sqrt{2}t$ is not within a finite distance of any element of the ring $R_1 = \mathbb{Z}[t, (t^2 - 25)/36]$. We can fix that via Case (1) by adjoining $\sqrt{2}t + r$, where r is any transcendental real number. The fact that r is transcendental insures that $\sqrt{2}t + r$ is not infinitely close to any element of the real closure of R_1. We can extend the maps h_p to R_1 by assigning p-adic values to $\sqrt{2}t + r$ arbitrarily.

The models of open induction in [1] are constructed, with some careful bookkeeping, by iterating the procedure just described. Up to isomorphism, the result is a polynomial ring R over \mathbb{Z} in infinitely many variables that becomes a model of open induction by adjoining elements r/n ($r \in R, n \in \mathbb{Z}$) in accordance with Case (2) of Wilkie’s extension theorem. We suspect that all of these rings are diophantine correct. As we shall see, the question turns on how subtle are the polynomial identities that can hold on the integer points of a certain class of semialgebraic sets.

The plan of the paper is as follows. In Section 1 we give a simplified axiom system for DOI. In Section 2 we give number-theoretic conditions for a finitely

8In the sense of the p-adic metric.

9h_p is the unique homomorphism from R into \mathbb{Z}_p taking t to $1/(1-p) = 1 + p + p^2 + \ldots$.

DIOPHANTINE CORRECT OPEN INDUCTION 3
generated ring of Puiseux polynomials to be diophantine correct: We show how the diophantine correctness of such a ring is a problem about the distributions of the values at integer points of certain tuples of generalized polynomials. In Section 3 we give some recent results on generalized polynomials, and in Section 4 we use these results to give a class of ordered rings of Puiseux polynomials for which consistency with the axioms of open induction and diophantine correctness are equivalent.

1. Axioms for DOI

In this section we prove that DOI is equivalent to all true (in \(\mathbb{Z}\)) sentences \(\forall \bar{x} \exists y \phi\), with \(\phi\) an open formula. The underlying reason for this fact is that compositions of the integer part operator with semialgebraic functions suffice to witness the existential quantifier in every true \(\forall \bar{x} \exists y \phi\) sentence.

Theorem 1.1. DOI is axiomatized by the set of all sentences true in the ordered ring of integers of the form \(\forall x \forall x_1 \ldots \forall x_n \exists y \phi\), with \(\phi\) an open formula.

The proof requires two lemmas. The first is a parametric version of the fact that definable subsets in real closed fields are finite unions of intervals.

Let \(F\) be a real closed field and \(\phi(x, \bar{y})\) a formula. For each \(\bar{r} \in F\), the subset of \(F\) defined by \(\phi(x, \bar{r})\) can be expressed as a finite union \(I_1, \bar{r} \cup \ldots \cup I_n, \bar{r}\), where the \(I_i, \bar{r}\) are either singletons or open intervals with endpoints in \(F \cup \{\pm \infty\}\). We shall require the fact that for each \(\phi\) there are formulas \(\gamma_i(x, \bar{r})\) such that for every \(\bar{r}\), the \(\gamma_i(x, \bar{r})\) define such intervals \(I_i, \bar{r}\).

Lemma 1.2. Let \(\phi(x, \bar{y})\) be a formula in the language of ordered rings. Then there is a finite list of open formulas \(\gamma_i(x, \bar{y})\) such that the theory of real closed fields proves the following sentences:

\[
(1) \forall x, \bar{y} (\phi(x, \bar{y}) \leftrightarrow \bigvee_i \gamma_i(x, \bar{y}))
\]

\[
(2) \bigwedge_i \forall \bar{y} ((\exists x \forall \gamma_i(x, \bar{y})) \lor
(\exists x \exists \gamma_i(x, \bar{y}) \leftrightarrow x < z)) \lor
(\exists z \forall x (\gamma_i(x, \bar{y}) \leftrightarrow x > z)) \lor
(\exists z, w \forall x (\gamma_i(x, \bar{y}) \leftrightarrow z < x < w)))
\]

Formula (1) asserts that for any tuple \(\bar{r}\) in a real closed field, the set defined by \(\phi(x, \bar{r})\) is the union of the sets defined by the \(\gamma_i(x, \bar{r})\). Formula (2) asserts that each set defined by \(\gamma_i(x, \bar{r})\) is either empty, or a singleton, or an open interval.

Proof. This is a well-known consequence of Thom’s Lemma. See [8].

The next Lemma shows that in models of OI, a one-quantifier universal formula is equivalent to an existential formula.

Lemma 1.3. For every formula \(\forall x \phi(x, \bar{y})\) with \(\phi\) open, there are open formulas \(\psi_i(x, \bar{y})\) such that

\[OI \vdash \forall \bar{y} ((\forall x \phi(x, \bar{y})) \leftrightarrow \bigwedge_i \exists x_i \psi_i(x_i, \bar{y})).\]

A generalized polynomial is an expression made from arbitrary compositions of real polynomials with the integer part operator. See [2].
The idea of the proof is as follows: If the formula $\forall x \phi(x, \overline{r})$ holds in some model R of open induction, with $\overline{r} \in R$, then the formula $\phi(x, \overline{r})$ must hold for all elements x of the real closure of R, except for finitely many intervals U_i of length at most 1. The existential formula $\exists x_i \psi_i(x_i, \overline{y})$ says that for some $e_i \in R$, the set U_i is included in the open interval $(e_i, e_i + 1)$.

Proof of Lemma 1.3. Let γ_i be the formulas given by the statement of Lemma 1.2, using $\neg \phi$ in place of ϕ. Thus Formula (1) of Lemma 1.2 now reads

\begin{equation}
(\star) \quad \forall x, \overline{y} (\neg \phi(x, \overline{y}) \leftrightarrow \bigvee_i \gamma_i(x, \overline{y})).
\end{equation}

By Tarski's Theorem, choose quantifier free formulas $\alpha_i(z, \overline{y})$ and $\beta_i(z, \overline{y})$ such that the theory of real closed fields proves

\[\forall z, \overline{y} (\alpha_i(z, \overline{y}) \leftrightarrow \forall w (\gamma_i(w, \overline{y}) \rightarrow z < w)) \]

and

\[\forall z, \overline{y} (\beta_i(z, \overline{y}) \leftrightarrow \forall w (\gamma_i(w, \overline{y}) \rightarrow w < z)). \]

If F is a real closed field, and if $\overline{r} \in F$, then $\alpha_i(x_i, \overline{r})$ defines all elements x_i of F such that x_i is less than any element of the set defined by $\gamma_i(x, \overline{r})$. Similarly, $\beta_i(x_i, \overline{r})$ defines all elements x_i of F such that x_i is greater than any element of the set defined by $\gamma_i(x, \overline{r})$.

Define the formula $\psi_i(x_i, \overline{y})$ required by the conclusion of the Lemma to be

\[\alpha_i(x_i, \overline{y}) \land \beta_i(x_i + 1, \overline{y}). \]

We must prove that the equivalence

\[\forall \overline{y} ((\forall x \phi(x, \overline{y})) \leftrightarrow \bigwedge_i \exists x_i \psi_i(x_i, \overline{y})) \]

holds in every model of open induction R.

For the left-to-right direction, let \overline{r} be a tuple from R, and suppose that R satisfies $\forall x \phi(x, \overline{r})$. For each i we must find g in R such that

\begin{equation}
(\star\star) \quad R \models \alpha_i(g, \overline{r}) \land \beta_i(g + 1, \overline{r}).
\end{equation}

Let F be a real closure of R. Let $I_{i, \overline{r}}$ be the open interval of F defined by the formula $\gamma_i(x, \overline{r})$.

The interval $I_{i, \overline{r}}$ cannot be unbounded: It must have both endpoints in F. Otherwise $I_{i, \overline{r}}$ would meet R.\footnote{If R is an ordered ring and F is a real closure of R, then R is cofinal in F. [4].} If $I_{i, \overline{r}}$ did meet R, then the universal sentence (\star), would give an element $c \in R$ for which $\neg \phi(c, \overline{r})$ holds, contrary to our assumption that $R \models \forall x \phi(x, \overline{r})$. Therefore $I_{i, \overline{r}}$ is a bounded open interval.

If the interval $I_{i, \overline{r}}$ is empty, then every $g \in R$ will trivially satisfy condition $(\star\star)$, and the proof will be complete. Therefore, we can assume that $I_{i, \overline{r}}$ is nonempty. Formula (\star) then implies that the half-open intervals defined by the formulas $\alpha_i(x_i, \overline{r})$ and $\beta_i(x_i + 1, \overline{y})$ will each have an endpoint in F, i.e., they will not be of the form $(-\infty, \infty)$.

The least number principle for open induction\footnote{In a model of open induction R, if a non-empty set $S \subseteq R$ is defined, possibly with parameters, by an open formula, and if S is bounded below, say by b, then S has a least element. Otherwise if $s \in S$ then the set of non-negative $x \in R$ such that $x + b \leq s$ is inductive. See [7].} implies that there is a greatest element $g \in R$ such that $R \models \alpha_i(g, \overline{r})$. The maximality of g implies that $R \models \neg \alpha_i(g + 1, \overline{r})$. Hence $g + 1$ is at least as large as some element of $I_{i, \overline{r}}$. Since $I_{i, \overline{r}}$
disjoint from R, it follows that $g + 1$ is greater than every element of I_i, F. Therefore $\beta_i(g + 1, \bar{r})$ holds in R. We have found g satisfying the required condition (**).

For the right-to-left direction of the equivalence, assume that for every i, we have elements $b_i \in R$ such that

$$R \models \alpha_i(b_i, \bar{a}) \wedge \beta_i(b_i + 1, \bar{a}).$$

This same formula will hold in F, hence for each i,

$$F \models \forall w (\gamma_i(w, \bar{a}) \rightarrow b_i < w) \wedge \forall w (\gamma_i(w, \bar{a}) \rightarrow w < b_i + 1).$$

The last displayed statement asserts that every element b of F satisfying $\gamma_i(b, \bar{a})$ lies between b_i and $b_i + 1$. But no element of R lies between b_i and $b_i + 1$. Therefore for every $b \in R$,

$$R \models \neg \bigwedge_i \gamma_i(b, \bar{a}).$$

This assertion, together with (**), gives the conclusion $R \models \exists x \phi(x, \bar{a})$. \hfill \Box

Proof of Theorem 1.1. Let T be the theory of all sentences true in \mathbb{Z} of the form $\forall x_1 \forall x_2 \ldots \forall x_n \exists y \phi$, with ϕ an open formula. We prove the equivalence $T \leftrightarrow DOI$.

$T \Rightarrow DOI$:

It is immediate that $T \Rightarrow DOR + \forall_1(\mathbb{Z})$. It remains to verify that T proves all instances of the induction scheme for open formulas. For each open formula ϕ, the induction axiom

$$\forall \mathfrak{T}((\phi(\mathfrak{T}, 0) \wedge \forall y \geq 0 (\phi(\mathfrak{T}, y) \rightarrow \phi(\mathfrak{T}, y + 1))) \rightarrow \forall z \geq 0 \phi(\mathfrak{T}, z))$$

is logically equivalent to

$$\forall \mathfrak{T} \forall z \exists y (z \geq 0 \rightarrow (y \geq 0 \wedge \phi(\mathfrak{T}, 0) \wedge ((\phi(\mathfrak{T}, y) \rightarrow \phi(\mathfrak{T}, y + 1)) \rightarrow \phi(\mathfrak{T}, z))).$$

The latter belongs to T.

$DOI \Rightarrow T$:

Suppose that $R \models DOI$. Let $\phi(\mathfrak{T}, y)$ be an open formula such that

$$\mathbb{Z} \models \forall \mathfrak{T} \exists y \phi(\mathfrak{T}, y).$$

We prove that $R \models \forall \mathfrak{T} \exists y \phi(\mathfrak{T}, y)$.

By Lemma 1.3, there are open formulas ψ_i such that OI proves the equivalence

$$\forall \mathfrak{T}((\exists y \phi(\mathfrak{T}, y)) \iff \bigvee_i \forall z_i \psi(\mathfrak{T}, z_i)).$$

The last two displayed assertions imply that $\mathbb{Z} \models \forall \bar{x} \bigvee_i \forall z_i \psi(\mathfrak{T}, z_i))$. But R is diophantine correct, therefore $R \models \forall \bar{x} \bigvee_i \forall z_i \psi(\mathfrak{T}, z_i))$. Since R is a model of OI, the above equivalence holds in R. Therefore $R \models \forall \bar{x} \exists y \phi(\bar{x}, y)$. \hfill \Box

2. Diophantine Correct Rings of Puiseux Polynomials

Let \mathcal{P} denote the ring of Puiseux polynomials with real coefficients. We will think of Puiseux polynomials interchangeably as formal objects and as functions from the positive reals to the reals. The following theorem describes the conditions for a finitely generated subring of \mathcal{P} to be diophantine correct, in terms of the coefficients of a list of generating polynomials. We shall use this theorem to investigate the diophantine correct subrings of \mathcal{P}. To simplify notation we temporarily assume that not all the coefficients of the generating polynomials are algebraic numbers.
Theorem 2.1. Let \(f_1 \ldots f_n \in \mathcal{P} \). Assume that the \(f_i \) are non-constant, and that the field \(F \) generated by the coefficients of the \(f_i \) has transcendence degree at least 1 over \(\mathbb{Q} \). Let \(\bar{r} = r_1 \ldots r_l \) be a transcendence basis for \(F \) over \(\mathbb{Q} \). Then

1. There is an open formula \(\theta(x_1 \ldots x_l, y_1 \ldots y_n) \) such that \(\theta(\bar{r}, \bar{y}) \) holds in \(\mathbb{R} \) at \(\bar{y} \) if and only if for some \(t \geq 1 \), \(\bigwedge_{i=1}^{l} y_i = f_i(t) \).
2. Choose \(\theta \) as in (1). The ring \(\mathbb{Z}[\bar{f}] \) is diophantine correct if and only if for every open neighborhood \(U \subseteq \mathbb{R}^l \) of \(\bar{r} \) and for every positive integer \(M \), there are points \(\bar{s} \in U \) and integers \(\bar{m} \) in such that \(\min_i |m_i| > M \) and \(\mathbb{R} \models \theta(\bar{s}, \bar{m}) \).

We give two examples to show how Theorem 2.1 can be used to determine whether a given subring of \(\mathcal{P} \) is diophantine correct.

Example 2.2. Let \(R = \mathbb{Z}[t, f(t) - r_1] \), where \(r_1 \) is a real transcendental and \(f \) is a polynomial with algebraic coefficients. The formula \(\theta(r_1, y_1, y_2) \) expresses the condition

\[
\exists t \geq 1 (y_1 = t \land y_2 = f(y_1) - r_1).
\]

Eliminating the quantifier we obtain\(^{13}\)

\[
\theta(r_1, y_1, y_2) : y_1 \geq 1 \land f(y_1) - y_2 = r_1.
\]

It follows that the ring \(R \) is diophantine correct if and only if there are positive integers \(\bar{y} \) making \(f(y_1) - y_2 \) arbitrarily close to \(r_1 \).

It is known\(^{14}\) that the values of \(f(y_1) - y_2 \) are either dense in the real line, if \(f \) has an irrational coefficient other than its constant term, or otherwise discrete. In the former case \(R \) is diophantine correct. In the latter case \(f(y_1) - y_2 \) could only approach \(r_1 \) by being equal to \(r_1 \), which is impossible since \(r_1 \) is transcendental.

Example 2.3. Let \(R = \mathbb{Z}[t, \sqrt{2}t - r, 2\sqrt{2}t - s] \), with \(r \) and \(s \) algebraically independent. Then \(R \) is diophantine correct if and only if the point

\[
(\sqrt{2}y_1 - y_2, 2\sqrt{2}y_1(\sqrt{2} - y_2)y_1 - y_3)
\]

can be made arbitrarily close to \((r, s) \). This is a non-linear approximation problem, and there is no well-developed theory of such problems. In this case the identity

\[
(\sqrt{2}y_1 - y_2)^2 = (2\sqrt{2}y_1(\sqrt{2} - y_2)y_1 - y_3) - (2x^2 - y^2 - y_3)
\]

implies that the point \((*)\) cannot tend to the pair \((r, s)\) unless \(r^2 - s \) is an integer. Hence the requirement that \(r \) and \(s \) be algebraically independent cannot be met.

The most general case of Theorem 2.1 cannot be written down explicitly, because the algebraic relations between coefficients can be arbitrarily complex. But, following the notation of Theorem 2.1, the fact that the \(r_i \) are algebraically independent implies that in the relation \(\theta(\bar{x}, \bar{y}) \), if \(\bar{x} \) is restricted to a small enough neighborhood of \(\bar{r} \) then each \(x_i \) is a semialgebraic function of \(\bar{y} \).\(^{15}\) Therefore the problem of whether a finitely generated ring of Puiseux polynomials is diophantine correct always has the form: “Are there tuples of integers \(\bar{y} \) such that the points

\[
(\sigma_1(\bar{y}), \ldots, \sigma_n(\bar{y}))
\]

tend to the point \(\bar{r} \)?” where the \(\sigma_i \) are semialgebraic functions.

This general type of problem is undecidable, since it contains Hilbert’s tenth problem.\(^{16}\) But the rings that we actually want to use to construct models of open

\(^{13}\)For the sake of clarity we neglect the translation into the language of ordered rings.

\(^{14}\)This is a consequence of Weyl’s Theorem on uniform distribution. See [3], p71.

\(^{15}\)See [8], p32, Lemma 1.3.

\(^{16}\)For example, \(f(y_1, \ldots, y_{n-2})^2 + (\sqrt{2}y_{n-1} - y_n)^2 \) can be made arbitrarily close to a given number \(r \) between 0 and 1 if and only if \(f \) has an integer zero.
induction have a special form, which leads to a restricted class of problems that may well be decidable. (See Section 3.)

We return to Theorem 2.1, and the conditions for \(Z[f] \) to be diophantine correct. The idea of the proof is to think of the polynomials \(f_i(t) \) as functions of both \(t \) and \(\bar{r} \).

If \(\phi \) is an open formula, then the statement that \(\phi(f) \) holds in \(Z[f] \) can be expressed as another open formula \(\psi(\bar{r}) \). The latter must hold on an entire neighborhood of \(\bar{r} \), since the \(r_i \) are algebraically independent. If \(Z[f] \models \phi(f) \) then we can try to perturb the \(r_i \) a tiny bit for very large \(t \) so as to make the values \(f_i(\bar{r}, t) \) into integers. The formula \(\theta \) expresses the relation between the perturbed values of \(\bar{r} \) and the resulting integer values of \(f \).

We hope that this explanation motivates the use of following three Lemmas. We omit the straightforward proofs.

Lemma 2.4. Let \(f_1, f_2 \ldots f_n \in \mathcal{P} \). Let \(\phi(\bar{x}) \) be an open formula. Then \(Z[\bar{f}] \models \phi(f) \) if and only if for all sufficiently positive \(t \in \mathbb{R} \), the formula \(\phi(\bar{x}) \) holds in \(\mathbb{R} \) at the tuple of real numbers \(\bar{f}(t) \).

Lemma 2.5. Let \(\bar{f} = f_1(t) \ldots f_n(t) \in \mathcal{P} \). The ordered ring \(Z[\bar{f}] \) is diophantine correct if and only if for every open formula \(\phi(\bar{x}) \) such that \(Z[\bar{f}] \models \phi(\bar{f}) \), there exists \(\bar{m} \in \mathbb{Z} \) such that \(\mathbb{Z} \models \phi(\bar{m}) \).

Lemma 2.6. Suppose that \(\phi(\bar{x}) \) is a formula and \(\bar{r} \in \mathbb{R}^n \) is a tuple of algebraically independent real numbers.\(^{17}\) If \(\mathbb{R} \models \phi(\bar{r}) \), then there is a neighborhood \(U \) of \(\bar{r} \) such that for every \(\bar{u} \in U \), \(\mathbb{R} \models \phi(\bar{u}) \).

Proof of Theorem 2.1. To prove Part (1), let \(f_i(t) = g_i(\bar{c}, t) \), where \(g_i \) is a polynomial with integer coefficients, and the \(c_i \) are algebraic over the field \(\mathbb{Q}(\bar{r}) \). Then \(c_i \) can be defined from the \(r_i \), say by a formula \(\gamma_i(\bar{r}, \bar{c}) \). Eliminate quantifiers from the formula

\[
\exists t \geq 1 \exists \bar{w} \ (y_i = g_i(\bar{w}, t) \land \gamma_i(\bar{w}, \bar{x}))
\]

to obtain an open formula \(\theta_i(\bar{x}, y_i) \), and let \(\theta \) be the conjunction of the \(\theta_i \).

To prove the left-to-right direction of Part (2), assume that \(Z[\bar{f}] \) is diophantine correct, and let \(\bar{r} \) and \(\theta \) be as in Part (1). Let \(U \subseteq \mathbb{R}^l \) be an open set containing \(\bar{r} \), and fix a positive integer \(M \). We must find \(\bar{s} \in U \) and \(\bar{m} \in \mathbb{Z}^n \), with \(|m_i| > M \), such that \(\theta(\bar{s}, \bar{m}) \) holds in \(\mathbb{R} \).

Since \(U \) is open, there is a formula \(\gamma(\bar{x}) \) which holds at \(\bar{r} \), and which defines an open set included in \(U \). By Tarski’s theorem, there is an open formula \(\theta_1(\bar{y}) \) such that

\[
\mathbb{R}CF \models \theta_1(\bar{y}) \Leftrightarrow \exists x (\bigwedge_i |y_i| > M) \land \gamma(\bar{x}) \land \theta(\bar{x}, \bar{y})).
\]

The formula \(\theta_1(\bar{f}(t)) \) must hold in \(\mathbb{R} \) for all sufficiently large \(t \), since the functions \(f_i(t) \) tend to infinity with \(t \), and since moreover we can witness the above existential quantifier with \(\bar{r} \). Therefore, by Lemma 2.4, \(Z[\bar{f}] \models \theta_1(\bar{f}) \).

Since \(Z[\bar{f}] \) is diophantine correct, it follows that there are integers \(\bar{m} \in \mathbb{Z}^n \) satisfying \(\theta_1(\bar{y}) \). Substituting \(\bar{m} \) for \(\bar{y} \) in the above equivalence, the right hand side gives a tuple \(\bar{s} \in \mathbb{R} \) such that

\[
\mathbb{R} \models (\bigwedge_i |m_i| > M) \land \gamma(\bar{s}) \land \theta(\bar{s}, \bar{m})).
\]

\(^{17}\) Algebraically independent over \(\mathbb{Q} \).
Since $\gamma(\bar{x})$ defines a subset of U, the displayed statement confirms that \bar{s} and \bar{m} are the tuples required.

To prove the right-to-left direction of Part (2), let ϕ be an open formula such that $\mathbb{R}[\bar{f}] \models \phi(\bar{f})$. We prove that there are integers \bar{m} such that $\phi(\bar{m})$ holds in \mathbb{Z}. It will follow immediately from Lemma 2.5 that $\mathbb{Z}[\bar{f}]$ is diophantine correct.

Since ϕ is open and since $\phi(\bar{f})$ holds in $\mathbb{Z}[\bar{f}]$, it follows from Lemma 2.4 that $\phi(f_1(t), \ldots, f_n(t))$ holds in \mathbb{R} for all sufficiently positive t. Choose $k > 1$ such that $\phi(f_1(t), \ldots, f_n(t))$ holds in \mathbb{R} for $t > k$.

The set of points $(f_1(t), \ldots, f_n(t))$ with $1 \leq t \leq k$ is bounded. Therefore we can choose $M \in \mathbb{Z}$ so large that if $t \geq 1$ and if $\min_i |f_i(t)| > M$, then $t > k$. For this choice of M, the formula $\psi(\bar{x})$ will hold in \mathbb{R} at \bar{r}, where $\psi(\bar{x})$ is the formula

$$\forall \bar{y} \left((\theta(\bar{x}, \bar{y}) \land \left(\bigwedge_i |y_i| > M \right) \right) \rightarrow \phi(\bar{y}).$$

By Lemma 2.6, the subset of \mathbb{R}^l defined by $\psi(\bar{x})$ must include a neighborhood U of \bar{r}. By hypothesis, we can choose $\bar{s} \in U$ and $\bar{m} \in \mathbb{Z}^n$ so that

$$\mathbb{R} \models \theta(\bar{s}, \bar{m}) \land \bigwedge_i |m_i| > M.$$

Instantiating the universal quantifier in $\psi(\bar{s})$ with \bar{m}, we conclude that $\phi(\bar{m})$ holds in \mathbb{Z}.

Remark 2.7. If the f_i have algebraic coefficients, then $\mathbb{R}[\bar{f}]$ is diophantine correct if and only if there is a sequence of real numbers u_i tending to infinity such that $\bar{f}(u_i) \in \mathbb{Z}^n$. To prove this, one takes the transcendence basis \bar{r} to empty in the proof of Theorem 2.1 and one follows the proof, making all the necessary changes. This case is not important for our purposes because of the following fact.

Proposition 2.8. There are no models of DOI of transcendence degree one.

Proof. Suppose by way of contradiction that R is a model of DOI of transcendence degree 1. Let a be a non-standard element of R. Let $b \in R$ be an integer part of $\sqrt[3]{2}a$. Then there is a nonzero polynomial p with integer coefficients such that $p(a, b) = 0$. We can assume that p is irreducible over the rationals. Since R is diophantine correct, the equation $p(x, y) = 0$ must have infinitely many standard solutions. We shall prove that this is impossible.

Write $p = p_0 + \ldots + p_n$, where p_i is homogeneous of degree i, and $p_n \neq 0$. Then $p(a, b)$ has the form $\sum_{i=0}^n p_i(1, b/a)a^i$.

Observe that b/a is finite, in fact infinitely close to $\sqrt[3]{2}$, hence all the values $p_i(1, b/a)$ are finite. It follows that for $p(a, b)$ to be zero, $p_n(1, b/a)$ must be infinitesimal; otherwise $p_n(1, b/a)a^n$ would dominate all the other terms $p_i(1, b/a)a^i$, and then $p(a, b)$ could not even be finite.

Since b/a is infinitely close to $\sqrt[3]{2}$, it follows that $p_n(1, \sqrt[3]{2}) = 0$. Since p_n has integer coefficients, the polynomial $y^3 - 2$ must divide $p_n(1, y)$. It follows that $y^3 - 2x^3$ divides p_n.

But if $f(x, y)$ is any polynomial with integer coefficients irreducible over the rationals, and if f has infinitely many integer zeros, then the leading homogeneous part of f must be a constant multiple of a power of a linear or quadratic form.\(^{18}\)

\(^{18}\)See [6], p266.
This is not the case for p_n, thanks to the factor $y^3 - 2x^3$. Therefore p cannot have infinitely many integer solutions. This is the required contradiction.

3. Generalized Polynomials

Special Sequences of Polynomials. We now focus on a restricted class of rings, which arise by adjoining sequences of integer parts using Wilkie’s extension theorem (given in the Introduction.) A similar but more general type of sequence was defined in [1] to construct normal models of open induction.

Definition 3.1. A sequence of polynomials is **special** if it has the form

$$f_0(t), f_1(t) - r_1, \ldots, f_n(t) - r_n,$$

where

1. $f_0(t) = t$, and the coefficients of $f_1(t)$ are algebraic.
2. The r_i are algebraically independent real numbers.
3. For $i > 1$, the polynomial f_i has the form $g_i(t, r_1 \ldots r_{i-1})$ where g_i is a polynomial with algebraic coefficients.

Note that a ring $\mathbb{Z}[f]$ generated by a special sequence contains the polynomial t. As a consequence, a polynomial is algebraic over $\mathbb{Z}[f]$ if and only if its coefficients are algebraic over the field generated by the coefficients of the f_i.

Example 3.2. The sequence of polynomials $t, \sqrt{2}t - r^2, rt - s$, where r, s are algebraically independent real numbers, is not a special sequence because rt is not a polynomial in r^2 and t. The sequence $t, 2t - r, (r^2 + s)t - s$ is not a special sequence because $(r^2 + s)t$ is not a polynomial in r and t.

The conditions for a ring generated by a special sequence to be diophantine correct can be written out explicitly.

Proposition 3.3. Suppose that $f_0(t), f_1(t) - r_1, \ldots, f_n(t) - r_n$ is a special sequence, with $0 < r_i < 1$. Let $R = \mathbb{Z}[f]$. Choose polynomials $g_i(t, r)$ as in Item (3) of Definition 3.1.

Define the polynomials σ_i inductively as follows. Let $\sigma_1(y_0) = f_1(y_0)$. For $i > 1$, let

$$\sigma_i(y_0 \ldots y_{i-1}) = g_i(y_0, \sigma_1(y_0) - y_1, \ldots, \sigma_{i-1}(y_0 \ldots y_{i-2}) - y_{i-1}).$$

Then

1. R is diophantine correct if and only if the system of inequalities

$$|\sigma_1(y_0) - y_1 - r_1| < \epsilon$$

$$|\sigma_2(y_0, y_1) - y_2 - r_2| < \epsilon$$

$$\ldots$$

$$|\sigma_n(y_0, y_1 \ldots y_{n-1}) - y_n - r_n| < \epsilon$$

has integer solutions y_i for every positive ϵ.
2. For all sufficiently small positive ϵ, if \bar{y} is a solution to the inequalities (1) then $y_i = \lfloor \sigma_i(y_0 \ldots y_{i-1}) \rfloor$.

Proof. Item (1) simply spells out Theorem 2.1 for rings generated by special sequences. Item (2) follows from the assumption that the r_i are in the interval $(0, 1)$, hence so are the values $\sigma_i(y_0 \ldots y_{i-1}) - y_i$ if ϵ is small enough.

□
There is another way to think of the inequalities in Proposition 3.3. Since the equation $y_i = \lfloor \sigma_i(y_0 \ldots y_{i-1}) \rfloor$, holds for all small enough ϵ, it follows that

$$\sigma_i(y_0 \ldots y_{i-1}) - y_i = \lfloor \sigma_i(y_0 \ldots y_{i-1}) \rfloor$$

where $\lfloor \cdot \rfloor$ is the fractional part operator, defined by $\lfloor x \rfloor = x - \lfloor x \rfloor$. Replacing y_1 with $\lfloor \sigma_1(y_0) \rfloor$ in the right hand side of the above equation and continuing in this fashion, we eventually obtain an expression for $\lfloor \sigma_i(y_0 \ldots y_{i-1}) \rfloor$ as a function of y_0 alone, where the expression is built from constants and the ring operations and the fractional and integer part operators. Following [2], we will call such expressions bounded generalized polynomials. The reason for performing this transformation is to relate our questions about diophantine correct rings to a substantial body of results about the distribution of the values of generalized polynomials.

Proposition 3.4. Assume $0 < r_i < 1$. For each system of polynomial inequalities

$$|\sigma_1(y_0) - y_1 - r_1| < \epsilon$$
$$|\sigma_2(y_0, y_1) - y_2 - r_2| < \epsilon$$
$$\ldots$$
$$|\sigma_n(y_0, y_1 \ldots y_{n-1}) - y_n - r_n| < \epsilon$$

there is an associated system of bounded generalized polynomial inequalities

$$\bigwedge_{i=1}^{n} |\gamma_i(y_0) - r_i| < \epsilon$$

where the γ_i are defined by

$$\gamma_i(y_0) = \sigma_i(y_0 \ldots y_{i-1}) - y_i,$$

and the y_i for $i > 0$ are defined recursively by

$$y_i = \lfloor \sigma_i(y_0 \ldots y_{i-1}) \rfloor.$$

Specifically

$$\gamma_1(y_0) = \lfloor \sigma_1(y_0) \rfloor$$
$$\gamma_2(y_0) = \lfloor \sigma_2(y_0, \lfloor \sigma_1(y_0) \rfloor) \rfloor$$
$$\gamma_3(y_0) = \lfloor \sigma_3(y_0, \lfloor \sigma_1(y_0) \rfloor, \lfloor \sigma_2(y_0, \lfloor \sigma_1(y_0) \rfloor) \rfloor) \rfloor$$
$$\ldots$$

For all sufficiently small $\epsilon > 0$ an integer y_0 satisfies the associated system if and only if there are integers $y_1 \ldots y_n$ such that $y_0 \ldots y_n$ satisfies the original system.

Since open induction is essentially the theory of abstract integer parts, there is an obvious connection between open induction and generalized polynomials, yet a systematic study of generalized polynomials vis-à-vis open induction remains to be done.

There are generalized polynomial identities, that hold for all integers, such as

$$\{\sqrt{2}x\}^2 = \{2\sqrt{2}x\{\sqrt{2}x\}\}.$$

Observe that this phenomenon can be explained by the fact that the ring

$$\mathbb{Z}[t, \sqrt{2}t - r, 2\sqrt{2}rt - s],$$
where \(r \) and \(s \) are algebraically independent real numbers, does not extend to a model of open induction. Indeed, we have the identity

\[
H(t, \sqrt{2}t - r, 2\sqrt{2}rt - s) = s - r^2,
\]

where \(H(x, y, z) = 2x^2 - y^2 - z \); so the ring is not discretely ordered. Substituting \(\{\sqrt{2}x\} \) for \(r \) and \(\{2\sqrt{2}x\sqrt{2}x\} \) for \(s \) one immediately deduces the generalized polynomial identity mentioned above.

Do all generalized polynomial identities arise in this way from ordered rings that violate open induction?

Theorems on Generalized Polynomials. The study of systems of polynomial inequalities of type

\[
|\sigma_1(y_0) - y_1| < \epsilon \\
|\sigma_2(y_0, y_1) - y_2| < \epsilon \\
\ldots \\
|\sigma_n(y_0, y_1 \ldots y_{n-1}) - y_n| < \epsilon
\]

(*)

goes back at least to Van der Corput. He proved

Theorem 3.5 (Van der Corput [9]). If a system of polynomial inequalities of type (*) has a solution in integers then it has infinitely many integer solutions. Moreover, the set \(S \subseteq \mathbb{Z} \) of integers \(y_0 \) for which there is a solution \(y_0 \ldots y_n \) is syndetic.\(^\text{19}\)

As far we know no one has given an algorithm for the solvability of arbitrary systems of type (*). We believe that if a system of type (*) with real algebraic coefficients has no integer solutions, then this fact is provable from the axioms of open induction.

By far the most far-reaching results on generalized polynomials are to be found in Bergelson and Leibman [2]. We paraphrase an important result from this paper, for use in Section 4.

Theorem 3.6 (Bergelson and Leibman [2]). Let \(g : \mathbb{Z} \to \mathbb{R}^n \) be a map whose components are bounded generalized polynomials. Then there is a subset \(S \subseteq \mathbb{Z} \) of density\(^\text{20}\) zero such that the closure of the set of values of \(g \) on the integers not in \(S \) is a semialgebraic set \(C \). (I.e. \(C \) is definable by a formula with real parameters in the language of ordered rings.) If the coefficients of \(g \) are algebraic then \(C \) is definable without parameters.

4. A Class of Diophantine Correct Ordered Rings

The next theorem identifies a class of diophantine correct ordered rings made from special sequences of polynomials.

\(^{19}\)A subset \(S \) of \(\mathbb{Z} \) is syndetic if there are finitely many integers \(v_i \in \mathbb{Z} \) such that the union of translates \(\bigcup_i S + v_i \) is equal to \(\mathbb{Z} \). Equivalently, the gaps between the elements of \(S \) have bounded lengths.

\(^{20}\)Density means here Folner density, defined as follows. A Folner sequence (in \(\mathbb{Z} \)) is a sequence of finite subsets \(s_i \) of \(\mathbb{Z} \) such that for every \(n \in \mathbb{Z}, \lim_{m \to \infty} |(s_m + n) \Delta s_m|/|s_m| = 0 \). Here \(\Delta \) means symmetric difference, and \(s_m + n = \{x + n : x \in s_m\} \). A set of integers \(S \) has Folner density zero if \(\lim_{m \to \infty} |S \cap s_n|/|s_n| = 0 \) for every Folner sequence \(s_n \).
Theorem 4.1. For $i = 1 \ldots n$ let $g_i(t, x_1, \ldots, x_{i-1})$ be polynomials with algebraic coefficients. For each n-tuple of algebraically independent real numbers \bar{r} such that $0 < r_i < 1$, let $R_{\bar{r}}$ be the ring
\[
\mathbb{Z}[t, g_1(t) - r_1, g_2(t, r_1) - r_2, \ldots, g_n(t, r_1, \ldots, r_{n-1}) - r_n]
\]

Then

1. If the ring $R_{\bar{r}}$ extends to a model of open induction for one algebraically independent n-tuple \bar{r} then it does so for all such n-tuples \bar{r}.
2. If the rings $R_{\bar{r}}$ extend to models of open induction, then there is an open subset S of the unit box $[0,1]^n$ such that for all algebraically independent $\bar{r} \in S$, the ring $R_{\bar{r}}$ is diophantine correct.

Proof of (1). Let \bar{r} be an n-tuple of real numbers with algebraically independent coordinates. Since the ring $R_{\bar{r}}$ is generated by algebraically independent polynomials, $R_{\bar{r}}$ will extend to a model of open induction if and only if it is discretely ordered. (See the section on Wilkie’s theorems in the Introduction.) If $R_{\bar{r}}$ is not discretely ordered, then there is an identity of polynomials in t of the form
\[
H(t, g_1(t) - r_1, \ldots, g_n(t, r_1, \ldots, r_{n-1}) - r_n) = K(\bar{r}),
\]
where H and K are polynomials and H has integer coefficients. If such an identity holds for one tuple \bar{r} with algebraically independent coordinates, then it holds for them all. \hfill \Box

Proof of (2). The case $n = 1$ is done in Example 2.2. We show there that one can take S to be the interval $(0,1)$. Assume $n > 1$, and assume that the rings $R_{\bar{r}}$ extend to models of open induction. The proof will proceed by induction on n.

Copying Proposition 3.3, we construct a sequence of polynomials σ_i inductively as follows: Let $\sigma_1(y_0) = f_1(y_0)$. For $i > 1$, let
\[
\sigma_i(y_0 \ldots y_{i-1}) = g_i(y_0, \sigma_1(y_0) - y_1, \ldots, \sigma_{i-1}(y_0 \ldots y_{i-2}) - y_{i-1}).
\]

Then the ring $R_{\bar{r}}$ is diophantine correct if and only if for all positive ϵ the inequalities
\[
|\sigma_1(y_0) - y_1 - r_1| < \epsilon \\
|\sigma_2(y_0, y_1) - y_2 - r_2| < \epsilon \\
\hdots \\
|\sigma_n(y_0, y_1 \ldots y_{n-1}) - y_n - r_n| < \epsilon
\]

have integer solutions y_i. As in Proposition 3.4, we define the generalized polynomials
\[
\gamma_i(y_0) = \sigma_i(y_0 \ldots y_{i-1}) - y_i,
\]
where y_i is defined inductively by
\[
y_i = \lfloor \sigma_i(y_0 \ldots y_{i-1}) \rfloor.
\]

Then for small enough ϵ the inequalities $|\gamma_i(y_0) - r_i| < \epsilon$ hold for y_0 if and only if the inequalities (\ast) hold for y_0 and some choice of integers $y_1 \ldots y_n$.

By Theorem 3.5, there is a subset B of \mathbb{Z} of Følner density 0 such that the closure of the points $\gamma(x)$ for $x \notin B$ is a semialgebraic set C defined over \mathbb{Q}.
If the cell decomposition of C has an n-dimensional cell, then C contains an open subset of $[0,1]^n$ and the theorem is proved. Otherwise, there is a non-zero polynomial h with integer coefficients such that

$$h(\gamma_1(x) \ldots \gamma_n(x)) = 0$$

for all integers x not in B.

Our goal is to prove that this is impossible, by showing that if such an equation held, then R would not be discretely ordered.

By the induction hypothesis there is an open set $S \subseteq [0,1]^{n-1}$ such that for all points $\bar{s} \in S$ with algebraically independent coordinates, the rings $R_{\bar{s}}$ are diophantine correct.

Fix a point $\bar{s} \in S$ with algebraically independent coordinates. We shall need to know that there are integers $m \notin B$ for which the point $(\gamma_1(m) \ldots \gamma_{n-1}(m))$ comes arbitrarily close to \bar{s}.

Let $\epsilon > 0$. Since $R_{\bar{s}}$ is diophantine correct, Proposition 3.3 Part (1) and Proposition 3.4 imply that there is an integer m such that

$$(**) \quad |(\gamma_1(m) \ldots \gamma_{n-1}(m)) - \bar{s}| < \epsilon.$$

By Theorem 3.5 the solutions to $(**)$ are syndetic. But no syndetic set has Folner density zero. Therefore, for each $\epsilon > 0$ there is an integer $m \notin B$ satisfying $(**)$.

Fix a sequence of integers $m_i \notin B$ such that the point $(\gamma_1(m_i) \ldots \gamma_{n-1}(m_i))$ tends to \bar{s}.

Define $V \subseteq \mathbb{Z}^{n+1}$ to be the set of all points

$$(m_i, [g_1(m_i)], [g_2(m_i, \gamma_1(m_i))], \ldots, [g_n(m_i, \gamma_1(m_i) \ldots \gamma_{n-1}(m_i))])$$

for $i = 1, 2, \ldots$

The equation $h(\gamma_1(m_i) \ldots \gamma_n(m_i)) = 0$ holds for all i. Therefore, the equation

$$h(\sigma_1(y_0) - y_1 \ldots \sigma_n(y_0 \ldots y_{n-1}) - y_n) = 0$$

holds for all points $(y_0 \ldots y_n) \in V$. Let $H(\bar{y})$ denote the polynomial on the left of the above expression, so $H(\bar{y})$ has algebraic coefficients and vanishes on V.

We claim that H must have a non-constant factor with rational coefficients. We shall prove this by arguing that the Zariski closure of V over the complex numbers includes a hypersurface in \mathbb{C}^{n+1}. The vanishing ideal of that hypersurface will be principal, and defined over \mathbb{Q}, hence generated by a rational polynomial. That rational polynomial will be a divisor of H.

To proceed, choose an infinite subset V_0 of V such that the Zariski closure Z of V_0 is an irreducible component of the Zariski closure of V. We will show that Z is a hypersurface in \mathbb{C}^{n+1} by arguing that no non-zero complex polynomial $k(y_0 \ldots y_{n-1})$ vanishes on V_0.

Just suppose that $k(y_0 \ldots y_{n-1})$ did vanish on V_0. Since $V_0 \subseteq \mathbb{R}^{n+1}$, we can assume that k has real coefficients. Since the coordinates of \bar{s} are algebraically independent, it follows that $k(t, g_1(t) - s_1, \ldots, g_{n-1}(t, s_1 \ldots s_{n-2}) - s_{n-1})$ is not the zero polynomial. Write

21 See [8] Chapter 3.
22 Semialgebraic sets of codimension at least one satisfy nontrivial polynomial equations. [8]
23 Let s_i be the set of integers between $-i$ and i. Then s_i is a Folner sequence. If D is any syndetic set of integers, then choose M so that D meets every interval of length M. Then $\liminf_{i \to \infty} |D \cap s_i|/|s_i|$ will be at least $1/M$, so D cannot have density 0.
\[k(t, g_1(t) - s_1, \ldots, g_{n-1}(t, s_1 \ldots s_{n-2}) - s_{n-1}) = \sum_{i=1}^{L} k_i(\bar{s})t^i \]

with \(k_L(\bar{s}) \neq 0 \). Choose a neighborhood \(U \) of \(\bar{s} \) on which \(k_L(\bar{x}) \) is bounded away from zero. Then we can choose \(M \) so large that for \(t > M \) and for \(\bar{x} \in U \), it holds that

\[(***) \quad k(t, g_1(t) - x_1, \ldots, g_{n-1}(t, x_1 \ldots x_{n-2}) - x_{n-1}) \neq 0. \]

Now choose \(i \) so that

1. \(m_i > M \).
2. \((\gamma_1(m_i) \cdots \gamma_{n-1}(m_i)) \in U \).
3. \((m_i, [g_1(m_i)], [g_2(m_i, \gamma_1(m_i))], \ldots, [g_n(m_i, \gamma_1(m_i) \cdots \gamma_{n-1}(m_i))]) \in V_0. \)

Substituting \(\gamma_1(m_i) \cdots \gamma_{n-1}(m_i) \) for \(x_1 \ldots x_{n-1} \) and also \(m_i \) for \(t \) in (***), we obtain

\[k(m_i, g_1(m_i) - \gamma_1(m_i), \ldots, g_{n-1}(m_i, \gamma_1(m_i), \ldots, \gamma_{n-2}(m_i)) - \gamma_{n-1}(m_i)) \neq 0. \]

Looking at the definition of the \(\gamma_i \), we see that the above inequation is equivalent to

\[k(m_i, [g_1(m_i)], [g_2(m_i, \gamma_1(m_i))], \ldots, [g_n(m_i, \gamma_1(m_i), \ldots, \gamma_{n-1}(m_i))]) \neq 0. \]

But this is a contradiction, because the point

\[(m_i, [g_1(m_i)], [g_2(m_i, \gamma_1(m_i))], \ldots, [g_n(m_i, \gamma_1(m_i), \ldots, \gamma_{n-1}(m_i))]) \]

is an element of \(V_0 \), hence \(k \) vanishes at this point. We conclude that \(Z \), which is the Zariski closure of \(V_0 \), is a hypersurface in \(\mathbb{C}^{n+1} \).

The vanishing ideal \(I \subseteq \mathbb{C}[y] \) of \(Z \) is principal. Since \(Z \) is the Zariski closure of a set of points with integer coordinates, \(I \) has a generator \(Q \) in \(\mathbb{Q}[y] \). The polynomial \(Q \) is the divisor of \(H \) that we were after.

To complete the proof, suppose \(H \) factors as \(Q \cdot P \). Then the coefficients of \(P \) are real algebraic numbers, and we have the following equality of polynomials:

\[Q(y) \cdot P(y) = h(\sigma_1(y_0) - y_1 \ldots \sigma_n(y_0 \ldots y_{n-1}) - y_n) \]

Substituting \(g_i(t, s) - r_i \) for \(y_i \) \((i = 1 \ldots n)\) in the last equation, we obtain

\[A \cdot B = h(r_1 \ldots r_n), \]

where

\[A = Q(t, g_1(t) - r_1, \ldots, g_n(t, r_1 \ldots r_{n-1}) - r_n) \]

and

\[B = P(t, g_1(t) - r_1, \ldots, g_n(t, r_1 \ldots r_{n-1}) - r_n). \]

Working in the ordered ring

\[\mathbb{Q}[t, g_1(t) - r_1, g_2(t, r_1) - r_2, \ldots, g_n(t, r_1, \ldots, r_{n-1}) - r_n], \]

we have that \(A \cdot B \) is finite, and neither is infinitesimal, therefore both are finite. But \(A \) has the form \(A_1/n \), where \(A_1 \) is a polynomial with integer coefficients. Thus \(A_1 \) is a finite transcendental element of \(R_{\bar{x}} \). But then \(R_{\bar{x}} \) is not discretely ordered, contrary to our assumption that \(R_{\bar{x}} \) extends to a model of open induction. \(\square \)
Remark 4.2. Theorem 4.1 is almost certainly not giving the whole truth. We believe that a ring $R_{\bar{r}}$ generated by a special sequence is diophantine correct if and only if it extends to a model of open induction, with no restrictions on the tuple \bar{r} beyond algebraic independence. We also believe that a theorem like Theorem 4.1 holds for the more general sequences of Puiseux polynomials used to construct models of open induction in [1]. To prove this, one must extend the results of [2] to an appropriate class of “generalized” semialgebraic functions, that is, compositions of semialgebraic functions with the integer part operator.

References

[1] Berarducci, A. and Otero, M. A recursive nonstandard model of normal open induction, Journal of Symbolic Logic 61 (1996), no. 4, 1228-1241.
[2] Bergelson, V. and Leibman, A. Distribution of Values of Bounded Generalized Polynomials, Acta. Math. 198 (2007), no. 2, 155-230.
[3] Borevich, B. I. and Shafarevich, I. R., Number Theory, Academic Press, New York, 1966.
[4] Brumfiel, G. Partially Ordered Rings and Semi-Algebraic Geometry, Cambridge University Press, Cambridge, 1979.
[5] Cassels, J.W.S Diophantine Approximation, Cambridge University Press, Cambridge, 1957.
[6] Mordell, L.J. Diophantine Equations, Academic Press, London, 1969.
[7] Shepherdson, J. A Nonstandard Model for a Free Variable Fragment of Number Theory, Bull. L’Acad, Pol. Sci. 112 (1964), 79-86.
[8] Van den Dries, L. Tame Topology and O-Minimal Structures, Cambridge University Press, Cambridge, 1998.
[9] Van der Corput, J. G. Diophantische Ungleichungen II. Rythmische Systeme A, B, Acta. Math. 159 (1932), 209-328.
[10] Wilkie, A. Some Results and Problems on Weak Systems of Arithmetic, Logic Colloquium ’77 (A. Macintyre et al, eds.), North-Holland, 1978, pp. 285-296.

Phnom Penh, Cambodia
E-mail address: sraffer@gmail.com