The insulating activity of the *Drosophila* BX-C chromatin boundary

Fub-1 is parasegmentally regulated by lncRNA read-through

Airat Ibragimov¹,², Xin Yang Bing³,⁴, Yulii Shidlovskii⁵, Mike Levine³, Pavel Georgiev⁶, Paul Schedl¹

¹: Department of Molecular Biology, Princeton University, Princeton NJ 08544
²: Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia.
³: Lewis Sigler Institute, Princeton University, Princeton, NJ. 08544
⁴: Present address: BlueRock Therapeutics, Cambridge, Ma 20142
⁵: Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia;
⁶: Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia;

*Corresponding authors:

E-mail: pschedl@princeton.edu (PS)
E-mail: airati@princeton.edu (AI)

Keywords: chromatin boundary / lncRNA / Bithorax / insulator / CTCF / Fub-1
ABSTRACT

Though long non-coding RNAs (lncRNAs) represent a substantial fraction of the Pol II transcripts in multicellular animals, only a few have known functions. Here we report that the blocking activity of the Bithorax complex (BX-C) Fub-1 boundary is segmentally regulated by its own lncRNA. The Fub-1 boundary is located between the Ultrabithorax (Ubx) gene and the bxd/pbx regulatory domain, which is responsible for regulating Ubx expression in parasegment PS6/segment A1. Fub-1 consists of two hypersensitive sites, HS1 and HS2. HS1 is an insulator while HS2 functions primarily as a lncRNA promoter. To activate Ubx expression in PS6/A1 enhancers in the bxd/pbx domain must be able to bypass Fub-1 blocking activity. We show that expression of the Fub-1 lncRNAs in PS6/A1 from the HS2 promoter inactivates Fub-1 insulating activity. Inactivation is due to readthrough as the HS2 promoter must be directed towards HS1 to disrupt blocking.
The vast majority of Pol II transcripts encoded by the genomes of multicellular animals correspond to long non-coding RNAs (lncRNAs), not mRNAs. Their wide distribution in the genome and the fact that their expression is often coordinated with genes in the immediate vicinity has led to the idea that they have functions in gene regulation and chromosome organization (Herman et al., 2022; Li and Fu, 2019; Núñez-Martínez and Recillas-Targa, 2022; Statello et al., 2021). Unlike the sequences of protein coding mRNAs, which are typically conserved across species, the primary sequences of lncRNAs are usually not very well conserved. However, some lncRNAs contain short sequence blocks that exhibit a relatively high degree of conservation, even though most of the lncRNA is divergent. In these instances, the lncRNA itself has regulatory activities. A classic example is the mammalian X chromosome inactivation lncRNA Xist. Conserved RNA sequence blocks within the Xist transcript function in recruiting Polycomb (PcG) silencing factors and targeting the transcript to the X chromosome (Jacobson et al., 2022; Lu et al., 2020; Pandya-Jones et al., 2020). Other lncRNAs, like the HoxA complex lncRNA HOT1IP encode RNA sequences that recruit chromatin modifiers that help promote gene expression (Wang et al., 2011). In other cases, the lncRNA itself does not appear to have important functions. Instead, it is the regulatory elements (enhancers, silencers and promoters) that control the expression of the lncRNA that are functionally important. For example, the expression of the Myc gene is downregulated by a mechanism in which the promoter for the PVT1 lncRNA competes with Myc for physical interactions with a set of shared enhancers. In other cases, the transcription of the lncRNA appears to be the important regulatory function. Isoda et al. found that transcription of ThymoD lncRNA helps regulate the expression of Bcl11b, a gene that plays an important role in specifying T cell fate (Isoda et al., 2017). Transcription of the lncRNA induces the demethylation of recognition sites for the chromosomal architectural protein CTCF, enabling CTCF to bind to these sites and induce looping between the Bcl11b enhancers and the Bcl11b gene.

In the studies reported here we have investigated the role of lncRNAs in regulating the chromatin organization and expression of the homeotic gene, Ultrabithorax (Ubx), in the Drosophila bithorax complex (BX-C). Ubx together with abdominal-A (abd-a) and Abdominal-B (Abd-B) are responsible for specifying the identity of the nine parasegments (PS)/segments that form the posterior 2/3rds of the fly ((Maeda and Karch, 2015): Fig. 1). Parasegment identity depends upon a series of nine regulatory domains that direct the temporal and tissue specific
patterns of expression of the three BX-C homeotic genes. Ubx is responsible for specifying parasegments PS5 (adult cuticle segment T3) and PS6 (adult cuticle segment A1). Its expression in these two parasegments is controlled by the \textit{abx/bx} and \textit{bxd/pbx} regulatory domains respectively. \textit{abd-a} expression in PS7-PS9 is directed by the \textit{iab-2-iab-4} regulatory domains, while \textit{Abd-B} expression in PS10-14 is regulated by the \textit{iab-5-iab-9} regulatory domains. Each regulatory domain has an initiation element, a set of tissue-specific enhancers, and Polycomb Response Elements (PREs) (Iampietro et al., 2010; Maeda and Karch, 2015, 2006). Early in development, a combination of maternal, gap and pair-rule gene proteins interact with the initiation elements in each regulatory domain, and set the domain in either the “\textit{off}” or “\textit{on}” state. The BX-C regulatory domains are sequentially activated along the anterior-posterior axis of the embryo. For example, in PS5(T3) \textit{abx/bx} is activated, while the remaining BX-C domains including \textit{bxd/pbx} are “\textit{off}”, and it is responsible for regulating \textit{Ubx} expression in this parasegment. Both \textit{abx/bx} and \textit{bxd/pbx} are turned on in PS6(A1); however, \textit{Ubx} expression, and parasegment identity depend on the \textit{bxd/pbx} domain. Once the activity state of the domain is set in early embryos, it is remembered during the remainder of development by the action of Polycomb Group proteins (PcG: \textit{off}) and trithorax group proteins (Trx: \textit{on}). Each domain also contains tissue and stage specific enhancers which drive the expression of its target homeotic gene in a pattern appropriate for proper development of the parasegment it specifies.

In order to properly specify parasegment identity, the nine BX-C regulatory domains must be functionally autonomous. Autonomy is conferred by boundary elements (insulators) that flank each domain (Maeda and Karch, 2015). The role of boundaries is BX-C regulation is best understood in the \textit{Abd-B} region of the complex. Mutations that inactivate \textit{Abd-B} boundaries cause a gain-of-function (GOF) transformation in segment identity. For example, the \textit{Fab-7} boundary separates the \textit{iab-6} and \textit{iab-7} regulatory domains which are responsible for specifying PS11(A6) and PS12 (A7) identity respectively (Gyurkovics et al., 1990). When \textit{Fab-7} is deleted, the \textit{iab-6} initiator activates the \textit{iab-7} domain in PS11(A6) and \textit{iab-7} instead of \textit{iab-6} drives \textit{Abd-B} expression in this parasegment as well as in PS12(A7). This results in the duplication of the PS12/A7 segment. However, blocking crosstalk between adjacent regulatory domains is not the only function of BX-C boundaries. The three homeotic genes and their associated regulatory domains are arranged so that all but three of the domains are separated from their targets by one or more intervening boundaries. For this reason, all but two (\textit{Fub} and \textit{Mcp}) of the internal BX-C
boundaries must also have bypass activity (Hogga et al., 2001; Kyrchanova et al., 2019b, 2019a, 2015). For example, *Fab-7* has bypass activity and it mediate regulatory interactions between *iab-6* and *Abd-B*. However, when *Fab-7* is replaced by generic fly boundaries (e.g., *scs* or *su(Hw)*) or by BX-C boundaries that lack bypass activity (*Mcp*) these boundaries block crosstalk but do not support bypass (Hogga et al., 2001; Kyrchanova et al., 2017). As a consequence, *Abd-B* expression in PS11/A6 is driven by *iab-5* not *iab-6* and this results in a loss-of-function phenotype.

In the *Ubx* region of the complex, the *bxd/pbx* regulatory domain is separated from the *Ubx* gene by a boundary, *Fub-1* (Fig. 1) (Bowman et al., 2014, p. 27; Mateo et al., 2019). This boundary would have to be bypassed so that *bxd/pbx* can direct *Ubx* expression in PS5/A1. Unlike the *Abd-B* region of the complex where multiple boundaries are located between the *iab-5* and *iab-6* regulatory domain, there is only one boundary between *bxd/pbx* and the *Ubx* gene. As a consequence, the bypass mechanism might differ from that deployed elsewhere in BX-C. Here we show that segmentally regulated transcription of a lncRNA disrupts the blocking activity of *Fub-1*, enabling enhancers in the *bxd/pbx* regulatory domain to activated *Ubx* in PS6/A1 cells.
Figure 1. The organization of the genes and regulatory domains in BX-C.

The *Drosophila melanogaster* Bithorax complex (BX-C), which contains the Hox genes *Ubx*, *abd-A* and *Abd-B*, is shown in relation to where these three genes are expressed in an embryo. There are nine cis-regulatory domains that are responsible for regulation of *Ubx* (*abx/bx* and *bxd/pbx* domains), *abd-A* (*iab-2-4* domains) and *Abd-B* (*iab-5-7* and *iab-8,9* domains), and for the development of parasegments 5 to 13 (PS)/segments (T3-A8). The anterior limit of expression of the three Hox gene is indicated by color coding: red: *Ubx*; blue: *abd-A*; green: *Abd-B* (reviewed in (Maeda and Karch, 2015)). The lines with colored circles mark chromatin boundaries. dCTCF, Pita, and Su(Hw) binding sites at the boundaries are shown as red, blue, and yellow circles/ovals, respectively. Embryonic enhancers are indicated by pink, blue and green bars on coordinate line. On the bottom of the figure, the molecular maps of the Fub-1 and Fab-7 boundaries are shown, including their deletions. Transposase/nuclease hypersensitive sites are shown as black boxes above the coordinate bar. The proximal and distal deficiency endpoints of the Fub-1 and Fab-7 deletions used in the replacement experiments are indicated by vertical lines. The attP, lox, and frt sites used in genome manipulations are shown as green, violet, and blue triangles, respectively.
RESULTS

The bxd/pbx regulatory domain: boundaries and lncRNAs

The bxd/pbx regulatory domain controls Ubx expression in A1/PS6. This domain is off in more anterior parasegments (segments), while it is turned on in A1/PS6 and more posterior parasegments. The bxd/pbx domain is bracketed by the Fub boundary on the centromere distal side and Fub-I on the centromere proximal side. The chromosomal architectural proteins CTCF, Pita and Su(Hw) are associated with Fub in ChIP experiments, and like boundaries the Abd-B region of BX-C Fub deletions result in a GOF transformation of PS6(A1) into PS7(A2). The Fub-I boundary has only been defined molecularly. ATAC-seq mapping in nuclear cycle 14 embryos indicate that this boundary includes two chromatin-specific transposase hypersensitive regions: HS1 ~ 200 bp and HS2 ~ 300 bp (Figure 1) (Hannon et al., 2017). In ChIP experiments Fub-I is bound by the chromosomal architectural proteins CTCF, CP190, Zw5, Pita, and Elba (Bowman et al., 2014, p. 27; Ueberschär et al., 2019; Zolotarev et al., 2016) (Sup Fig.2). In addition, RNA Pol II and the histone mark for active transcription, H3K4me3 both map to Fub-I. Consistent with results described below, the signal for H3K4me3 in PS7 cell ChIPs is greater than that observed in mixed ChIPs (Bowman et al., 2014, p. 27). In between Fub-I and the Ubx promoter there are two prominent Zelda peaks and a putative enhancer (Sup Fig.2) (Harrison et al., 2011).

Besides directing the expression of Ubx in PS6(A1) and more posterior parasegments, the bxd/pbx domain also controls the expression of two lncRNAs, bxd and F1HS2 (Fig 5D). Peace et al found that the bxd lncRNA initiates from a promoter close to the pbx enhancer and extends into the region located in between Fub-I and the Ubx promoter (Pease et al., 2013). The bxd lncRNA is first detected at the blastoderm stage as a broad band that extends from PS5/A1 to PS12 (A7). Between the onset of gastrulation and stage 10 bxd lncRNA expression resolves into a series of 8 stripes of differing intensity that span parasegments PS5-PS12. The bxd lncRNA then disappears when germband retraction commences. Peace et al also detected a second bxd/pbx dependent lncRNA, F1HS2. Like bxd lncRNA it is expressed in PS6 (A1) and more posterior parasegments. This lncRNA is encoded by sequences located between Ubx and Fub-I including sequences in Fub-I HS1 and based on the in situ experiments of Peace et al., it likely originates from HS2. As F1HS2 shares exon sequences with the bxd lncRNA, it is not clear whether it is expressed in the period between the blastoderm stage and the onset of germband retraction. However, the F1HS2
lncRNA is detected in PS6/A1 and more posterior segments after the bxd lncRNA disappears at the onset of germband retraction.

As has been reported for the regulatory elements associated with other lncRNAs, the Fub-1 hypersensitive sites are evolutionarily conserved. As shown in Sup Fig.3, key sequence blocks within HS1 and HS2 are detected not only in other members of the Sophophora subgenus, but also in D. virilis a distantly related member of the Drosophila subgenus. The conserved blocks in HS1 include the dCTCF recognition site, while in HS2 the conserved blocks include several GAGA motifs which correspond to binding sites for the GAGA factor (GAF) as well as the predicted transcription start sites for the F1^{HS2} lncRNA.

Fub-1 subdivides the Ubx regulatory domains

These observations, together with the studies of Bowman et al. which showed that Fub-1 marks the border of a Polycomb histone H3K27me3 domain in PS5 cells would predict that Fub-1 delimits the endpoint of two adjacent TADs. The centromere distal TAD would encompass the bxd/phx regulatory domain and end at Fub boundary which is located downstream of the abd-A transcription unit (Bender and Lucas, 2013; Bowman et al., 2014, p. 27). The centromere proximal TAD would encompass the entire Ubx transcription unit and end at a predicted Pita/CP190 boundary, Fub-2, that is located between the 3’ end of the Ubx gene and the 5’ end of modSP.
Figure 2: Chromatin topology in bxd/pbx domain in WT and in Fub-1 deletion. (A) Morphology of the abdominal segments of WT and F1^{attP} flies. (B) Micro-C contact map of the WT and F1^{attP} embryos at 800 bp resolution. The black arrow points to a sub-TAD formed by Fub-1 and Fub boundaries. The Ubx promoter is linked to the bxd PRE by a LDIC, that is marked at the apex by an interaction dot (*). The bxd PRE forms an interaction dot (> with the bx PRE as does the Ubx promoter (x). (C) Micro-C contact map of the WT and F1^{attP} embryos at 400 bp resolution.

To test these predictions, we used Micro-C to examine the TAD organization of Ubx and its two regulatory domains in 12-18h embryos. As shown in Fig. 2 both regulatory domains (plus the Ubx transcription unit) are encompassed in a large TAD that extends from Fub-2 on the centromere proximal side of Ubx to Fub on the distal side. Within this large TAD, there is a ~50 kb sub-TAD which spans bxd/pbx and is delimited by Fub-1 on the left and Fub on the right (Fig. 2 arrow). This bxd/pbx sub-TAD includes several smaller chromosomal segments that exhibit a high density of internal contacts (HDIC). The endpoint for one of these HDIC domains maps to Fub-1, while the other endpoint maps to the bxd PRE. There is a second HDIC domain linking Fub-1 to sequences just upstream of the Ubx promoter. The Ubx promoter is also linked to the bxd PRE by a lower density of
Fub-1 is not required to block crosstalk between abx/bx and bxd/pbx.

A BX-C boundary in the location of Fub-1 would be expected to have two regulatory functions. One would be blocking crosstalk between abx/bx and bxd/pbx while the other would be bypass so that enhancers in the bxd/pbx domain would be able to drive Ubx expression in PS6/A1. To test for blocking activity, we generated a 1168-bp deletion (F1attP) that retains an attP site for boundary replacement experiments (Figure S1A). Deletions of boundaries elsewhere in BX-C typically result in a GOF transformations. This transformation arises because initiators in the domain centromere proximal (right: Fig. 1) to the boundary are able to active the domain distal to the boundary (left: Fig. 1) in a parasegment in which the distal domain would normally be silent (Barges et al., 2000; Bender and Lucas, 2013; Gyurkovics et al., 1990; Karch et al., 1994; Postika et al., 2021). For this reason, we anticipated that the bxd/pbx domain would be inappropriately activated by initiators in abx/bx in PS5, and in adults we would observe a GOF transformation of T3 (PS5) towards A1 (PS6). Unexpectedly, however, F1attP flies do not show any evidence of a GOF transformation and their morphology is indistinguishable from wild type (WT) (Fig. 2A).

A plausible explanation for this result is that there is a nearby element that can substitute for Fub-1 and block crosstalk between abx/bx and bxd/pbx. Fig. 2B,C show that the sub-TAD linking Fub-1 to Fub that encompassed the bxd/pbx regulatory domain disappears in the Fub-1 deletion. However, a new sub-TAD that includes Fub does not appear to be formed. Instead, the element located just upstream of the Ubx promoter forms a sub-TAD domain with the bxd PRE (see interaction dot (Fig 2B,C *) at apex). It would appear that this topological configuration is sufficient to block crosstalk between initiators in abx/bx and bxd/pbx when the activity state of these domains in T3 (PS5) is set during early embryogenesis.
The Fub-1 element does not block enhancers in bxd/pbx from activating reporters.

Although Fub-1 defines one end-point of a TAD and marks the border for the PcG H3K27me3 histone mark in PS5 nuclei, the finding that Fub-1 deletions have no phenotype raises the possibility that it is actually “within” the bxd/pbx regulatory domain. If this is the case then reporters inserted between Fub-1 and the element just upstream of the Ubx promoter should respond to bxd/pbx enhancers, but be insulated from enhancers in the abx/bx regulatory domain. To test this possibility, we analyzed the pattern of expression of reporters inserted into the FI\text{attP} site with and without the Fub-1 boundary.

We first examined the DsRed reporter used to mark the Fub-1 deletion in DsRed-F1\text{attP}. Fig. 3 shows that DsRed is expressed throughout the posterior ~2/3rds of Fub-1 deletion embryos, with an anterior limit corresponding to the anterior border of PS6/A1. Thus, as expected from the lack of phenotypic effects of the Fub-1 deletion, the reporter is insulated from the abx/bx domain, but is subject to regulation by the bxd/pbx domain. We next introduced the 1168-bp Fub-1 fragment together with a GFP reporter flanked by \\textit{f\text{rt}} sites back into the DsRed-F1\text{attP} platform (Figure S1). In the resulting insert the Fub-1 element is flanked by DsRed on the proximal Ubx side, and GFP on the distal bxd/pbx side. The reporters were then excised individually to give DsRed-Fub-1 and Fub-1-GFP (Figure S1). As shown in Fig. 3, the anterior border of expression of both DsRed and GFP corresponds to the PS6/A1 as is observed for DsRed when the Fub-1 element is deleted. Thus Fub-1 is unable to block the bxd/pbx enhancers from activating the DsRed reporter in PS6/A1 cells (and more posterior parasegments/segments) and this reporter is also “located” within the bxd/pbx regulatory domain.

These findings fit with previous enhancer trap studies which showed that P-element insertions around the Ubx promoter displayed two distinct patterns of expression. An enhancer trap located 13-bp upstream of the Ubx transcription start site had a PS5/T3 anterior border indicating that it is regulated by the abx/bx domain. In contrast, an enhancer trap located 196 bp upstream of the start site had an anterior limit of expression shifted to PS6/A1 (McCall et al., 1994). Taken together with the experiments described in the previous section, it would appear that
the Ubx promoter region is sufficient for the functional autonomy of the abx/bx and bxd/pbx regulatory domains under laboratory growth conditions.

Figure. 3. DsRed and GFP markers trap enhancer activity in Fub-1 replacements. DsRed (in red) and GFP (in green) expression in stage 14 embryos in the Fub-1 deletion and in two replacements as indicated. Hoechst was used to stain nuclei (in blue). DsRed expression in F1attP-DsRed begins in PS6/A1. In DsRed-F11168 and F11168-GFP expression patterns of both markers are limited to PS6/A1-PS13/A8, consistent with the idea that Ubx promoter region demarcate abx/bx and bxd/pbx domains.

Fub-1 replacements of Fab-7 do not block crosstalk between iab-6 and iab-7

The results described above are unexpected for several reasons. First, Fub-1 defines the proximal endpoint of a TAD that extends to Fab and encompasses the bxd/pbx regulatory domain. Second it also corresponds to the proximal border of the PcG H3K27me3 histone mark in PS5 nuclei where abx/bx should be “on” and bxd/pbx should be “off”. Third, both of the Fub-1 sub-elements, HS1 and HS2, are evolutionarily conserved. In spite of these properties, deletion of Fub-1 does not result in a detectable GOF transformation of T3/PS5 into A1/PS6. This is likely explained by the presence of the boundary element upstream of the Ubx promoter which is able to
block crosstalk between initiators in abx/bx and pbx/bxd. However, this would not explain why Fub-1 fails to block the pbx/bxd enhancers from activating a DsRed reporter when interposed between the enhancers and the reporter. These observations raise a novel possibility: even though Fub-1 has many of the characteristic chromosome architectural functions of boundary elements it differs from other boundaries in flies and other organisms in that it lacks insulating activity.

To test whether Fub-1 lacks insulating activity we took advantage of the Fab-7^{attPS0} (^{F7}^{attPS0}) replacement platform (Wolle et al., 2015) (Figure 1). In this platform, the Fab-7 boundary was deleted, and an attP site introduced in its place. The deletion of Fab-7 fuses the iab-6 and iab-7 regulatory domains, enabling parasegment-specific initiation elements in iab-6 to ectopically activate iab-7 (Karch et al., 1994; Wolle et al., 2015). As a consequence, iab-7 drives Abd-B expression in PS11, transforming PS11/A6 into a duplicate copy of PS12/A7 (Figure 1). The attP site in the ^{F7}^{attPS0} can be used to insert any sequences of interest to test for two different boundary functions. The first is blocking crosstalk between iab-6 and iab-7, while the second is supporting bypass so that iab-6 can regulated Abd-B in PS11/A6.

Figure 4. Testing boundary activity of Fub-1 sequences. (A) Top: Schematic presentation of Fab-7 substitution. Bottom: Fub-1 fragments used in the replacement experiments. On the right
side, the insulator activity with the various fragments in the $F^{7}\text{attP50}$ insertion site in adults as judged from cuticle preps. The number of "+" signs reflects the strength of insulator activity, where "++++" is full blocking, and "-" is lack of detectable blocking activity, respectively. Designations are the same as described in Figure 1. (B) Morphology of the male abdominal segments (numbered) in $F_{1}^{1168}, HS1^{248}_{R}, HS2^{505}_{S}, HS1^{358}_{S}, HS1^{358mCTCF}, HS1^{358R}, HS1^{248}_{R}$ and $HS1^{248R}$ replacements. (C) Abd-B expression in Fab-7 replacement embryos. Each panel shows a confocal image of the embryonic CNS of stage 15 embryos stained with antibodies against Abd-B (cyan). The filled red arrowheads show morphological features indicative of GOF transformations. The empty red arrowheads show the signs of the LOF transformation, which is directly correlated with the boundary function of tested DNA fragments. The WT expression pattern of Abd-B in the embryonic CNS is characterized by a stepwise gradient of increasing protein level from PS10/A5 to PS14/A8. In $F^{7}\text{attP50}$ embryos Abd-B expression level in PS11/A6 is roughly equal to that in PS12/A7, indicating iab-7 drives Abd-B expression in PS11/A6 (GOF phenotype). Consistent with the adult phenotype, in F_{1}^{1168} and $HS1^{248}_{R}-HS2^{505}_{S}$ Abd-B expression in PS11/A6 is the same as in $F^{7}\text{attP50}$. The Abd-B expression pattern in $HS1^{358}_{S}$ and $HS1^{248}_{R}$ replacement is also consistent with the adult cuticular phenotypes: Abd-B expression is reduced in both PS10/A5 and PS11/A6 (LOF phenotype) compared with WT. In contrast, mutation of dCTCF site in $HS1^{358mCTCF}$ results in the loss of blocking activity and Abd-B expression pattern similar to $F^{7}\text{attP50}$.

In the first experiment, we used the $F^{7}\text{attP50}$ replacement platform to test the blocking activity of a 1168-bp sequence spanning entire deletion, $Fub-I^{1168}_{R}$, and a 753-bp sequence including only hypersensitive sites, $HS1^{248}_{R}-HS2^{505}_{S}$ (R6.22: 3R:16748578-16749330) inserted in the same 5'→3' orientation as the endogenous $Fub-I$ element. Figure 4B and S4 show that males carrying either the 1168 bp or the 753 bp replacements lack A6 just like the starting $F^{7}\text{attP50}$ deletion. This result indicates that these two $Fub-I$ fragments do not prevent cross-talk between iab-6 and iab-7. The $HS1^{248}_{R}-HS2^{505}_{S}$ replacement gain-of-function (GOF) phenotype is reflected in the pattern of Abd-B expression in the embryonic CNS which closely matches that of the starting $F^{7}\text{attP50}$ deletion (Fig 4C). We also inserted the two $Fub-I$ fragments in the reverse orientation; however, in this case also neither of the fragments rescued the GOF phenotype of the $F^{7}\text{attP50}$ deletion (Fig. 5).

HS1 has boundary activity

Previous replacement experiments have shown that dCTCF associated BX-C boundaries like Mcp are able to block crosstalk between iab-6 and iab-7 (Postika et al., 2018). For this reason, we wondered whether HS1 alone has blocking activity. We used two different HS1 fragments to test this possibility. One was 358 bp (R6.22: 3R: 16748578-16748935) and included all of the HS1 sequences plus the sequences located between HS1 and HS2. The other, a 248 bp fragment (R6.22: 3R: 16748578-16748825), contains only the HS1 region. These fragments were inserted in both
the forward and reverse orientations. We also tested a 505 bp fragment spanning the HS2 (R6.22: 3R: 16748826-16749330) in both the forward and reverse orientations (Sup Fig. 4,5). While HS2 lacks blocking activity (Sup Fig. 4,5), Fig. 4B shows that both of the HS1 fragments block crosstalk between iab-6 and iab-7 and rescue the GOF transformation of A6 into A7. The rescuing activity is orientation independent. In all four cases, however, the morphology of the A6 segment resembles that normally observed in A5, not A6. This LOF phenotype is observed when the Fab-7 replacements have insulating activity but cannot support bypass (Hogga et al., 2001; Kyrchanova et al., 2017). Consistent with this conclusion, Abd-B expression in the embryonic CNS is suppressed in A5 and A6 by the HS1 fragments (Fig. 4C).

dCTCF recognition sequences were found to be required for the blocking activity of other CTCF associated BX-C boundaries (Kyrchanova et al., 2017, 2016, p. 8). This is also true for the dCTCF site in HS1. Fig. 4 shows that a mutation in the HS1 dCTCF binding site completely disrupts insulating activity. Like the starting F7μPS0 platform, the adult HS1358μCTCF males lack the A6 segment indicating that PS11/A6 is fully transformed into a copy of PS12/A7 (Figure 4B and S4). Consistent with a loss of blocking activity, the pattern of Abd-B expression in HS1358μCTCF embryos is similar to that of F7μPS0 (Figure 4C).

Read-through transcription from HS2 abrogates HS1 insulator function

The finding that fragments containing only HS1 have insulating activity, while the full-length Fub-1 fragment does not, suggests that when HS2 is present it inactivates the HS1 boundary. One likely mechanism is transcriptional read-through. Studies on the induction of the chicken lysozyme gene by bacterial lipopolysaccharides (LPS) by Lefevre et al. [36], showed that LPS treatment activated the transcription of a lncRNA through a CTCF boundary (Lefevre et al., 2008). Read-through transcription resulted in the inactivation of the boundary enabling distal enhancers to bypass the boundary and turn on the lysozyme gene.

To test this hypothesis, we inserted a 229-bp SV40 transcription terminator in between HS2 and HS1 to give the HS2505R-SV40-HS1248R replacement (Figure 5A). Unlike the starting HS2505R-HS1248R line, an A6-like segment is present in HS2505R-SV40-HS1248R males (Figure 5B, S4). However, blocking is not fully restored to the level of HS1248R alone. In HS2505R-SV40-HS1248R males, the A6 tergite is slightly reduced in size while the sternite is absent. In the embryonic CNS, Abd-B expression in PS11 is clearly elevated, but less so than either that observed in either
To confirm that the partial reactivation of blocking activity is due to a reduction in transcriptional readthrough, we generated a similar construct, HS2^{505R}-mSV40-HS1^{248R}, in which the polyadenylation sequences in the SV40 fragment were mutated. In contrast to HS2^{505R}-SV40-HS1^{248R}, the insulating activity of HS2^{505R}-mSV40-HS1^{248R} is substantially compromised and only a residual A6 tergite is observed (Figure 5B, S4).

In these experiments the SV40 termination element will not only suppress transcription through HS1, but also into the neighboring iab-7 regulatory domain. To rule out possibility that the SV40 element “rescues” the blocking activity of HS1 by reducing transcription into the iab-7 regulatory domain, we placed it downstream of HS1 instead between HS2 and HS1. Fig. 5B and S4 shows that just like HS2^{505R}-HS1^{248R}, HS2^{505R}-HS1^{248R}-SV40 has no boundary function: A6 is absent in males carrying the replacement, indicating that cells in PS11/A6 have assumed a PS12/A7 identity. The Abd-B expression pattern in the embryonic CNS also closely matches that of HS2^{505R}-HS1^{248R} line (Fig. 5C). Similar results were obtained when the same construct (SV40-HS1^{249}-HS2^{505}) was inserted in the forward orientation so that the HS2 element is “pointing” towards iab-6 (Fig 5, S4).

To provide further evidence that transcriptional read-through from HS2 is responsible for disrupting the blocking activity of HS1, we generated a replacement, HS2^{505}-HS1^{248R}, in which the $5' \rightarrow 3'$ orientation of HS2 was inverted with respect to HS1. If transcription from HS2 is unidirectional, then the blocking activity of HS1 should be unaffected when HS2 is “pointing” away from HS1. Consistent with this prediction, HS1 retains blocking activity in HS2^{505}-HS1^{248R}. Fig. 5C shows that the pattern of Abd-B expression in the embryonic CNS in both PS10 and PS11 is reduced by HS2^{505}-HS1^{248R}, while the cuticle phenotype in adult males resembles HS1^{248} (Figure 5B). Taken together, these results show that read-through transcription from HS2 is responsible for the inactivation of HS1 boundary function.
Figure 5. Read-through transcription inactivates HS1 insulator. (A) Schematic representation of sequences tested in F^{mimP}_{70}. SV40 terminator is shown as a light blue arrow, poly(A) sites are marked as vertical red lines. All other designations are the same as described in Figure 4. (B) Morphology of the male abdominal segments (numbered) of Fab-7 replacements. (C) Abd-B expression in CNS of Fab-7 replacement embryos. Embryos were stained and marked as in Fig 4. (D) Schematic presentation of F^{mimP} landing platform with HS1$^{248}-$HS2505R and HS2$^{505R}-$HS1248R replacements. All designations are the same as described in Figure 1. Characterized bxd lncRNA transcripts are presented under coordinate line. The smFISH strand-specific probes are shown as one light blue arrow (see Table S2 for sequences). (E) Morphology of the abdominal segments of HS1$^{248}-$HS2505R and HS2$^{505R}-$HS1248R flies. The red arrow shows the signs of the LOF phenotype: complete reduction of A1 segment and the appearance of postnotal tissue on its place.
Transcription from HS2 promoter cannot overcome five dCTCF sites

Transcriptional read-through by RNA Polymerase II (Pol II) could disrupt HS1 boundary activity by temporarily displacing dCTCF as well as other boundary associated factors. If this is the case, it seemed possible that the presence of additional dCTCF sites in HS1 would counteract the effects of transcription from HS2 either by helping to maintain boundary function as Pol II reads through or by inhibiting Pol II elongation. To test this possibility, we inserted four additional dCTCF sites in an HS1 Sph I restriction site located close to the endogenous dCTCF site. Fig 5B shows that the addition of 4 dCTCF sites (HS2<sup>505R-HS1^{248R-CTCF^{x4}}) is sufficient to rescue the blocking activity of HS1. As observed for HS1 alone, HS2<sup>505R-HS1^{248R-CTCF^{x4}} males have a tergite and sternite whose morphology resembles that seen in A5. Likewise, the pattern of Abd-B expression in the CNS in HS2<sup>505R-HS1^{248R-CTCF^{x4}} is similar to that observed for HS²⁴⁸ (Fig. 5C).

Segmental regulation of the HS1 boundary by HS2 dependent transcriptional read-through

Taken together, the findings in the previous sections suggest that Fub-1 likely functions as a boundary in its endogenous context; however, its’ boundary activity is segmentally regulated by transcriptional read-through from HS2. This model makes two predictions. First, the activity of the HS2 promoter should be controlled by the bx/d/pbx regulatory domain. Second, when transcriptional read-through is prevented, Fub-1 blocking activity would be expected to interfere with Ubx regulation by the bx/d/pbx regulatory domain. We have tested these predictions.

HS2 promoter activity is controlled by the bx/d/pbx regulatory domain

In order to test the first prediction, a probe that specifically recognizes transcripts originating from the HS2 promoter is required. As noted above, Pease et al., 2013 found that there are (at least) two distinct “sense” lncRNAs, bx/d and F^{1HS2}, expressed under the control of the bx/d/pbx regulatory domain that could potentially read-through HS1 and be complementary to sequences in the region between HS1 and the Ubx promoter. For this reason, transcripts originating from the HS2 promoter and extending through HS1 towards the Ubx promoter cannot be unambiguously identified as being derived from HS2.

On the other hand, antisense (proximal to distal) transcripts from this region are not detected in WT embryos. Thus, it would be possible to assay the promoter activity of HS2 by reversing its orientation in the genome. For this purpose, we generated two different Fub-1
replacements in which the 5’→3’ orientation of the HS2 element was reversed so that it would generate “antisense” transcripts. In the first, we inserted a fragment, HS1248-505R, into F1\textsubscript{attP} that contains both Fub-1 hypersensitive sites (Fig.5D). However, the 5’→3’ orientation of HS2 in this fragment was reversed so that it is pointing away from HS1. In this case transcripts expressed from the HS2 promoter would extend into the bxd/phx domain, instead of transcribing through HS1. In the second, we inserted a Fub-1 fragment in F1\textsubscript{attP} containing both hypersensitive sites, HS2\textsuperscript{505R-HS1248R}, but in the reverse orientation so that transcription from HS2 would read-through HS1 towards the bxd/phx regulatory domain (Fig.5D).

Antisense transcripts in WT, HS1248-505R and HS2\textsuperscript{505R-HS1248R} embryos were then visualized using smFISH probes spanning a 1463 bp bxd sequence located just distal to the attP site (Fig.5D). Fig. 6 shows that antisense transcripts complementary to the smFISH probes are not detected in WT embryos. In contrast, segmentally restricted antisense transcripts are expressed in both of the Fub-1 replacements. Like the DsRed and GFP reporters described above (Fig. 3), the antisense transcripts are detected in PS6/A1 through PS13/A8. These findings show that the HS2 promoter in the Fub-1 replacements is regulated by the bxd/phx domain, while it is insulated from regulatory elements in the abx/bx domain. The transcripts levels in HS1248-505R and HS2\textsuperscript{505R-HS1248R} embryos are not, however, equivalent. The signal is noticeable greater in HS1248-505R than it is in HS2\textsuperscript{505R-HS1248R}. This could reflect the fact that the smFISH probes are complementary to sequences immediately adjacent to HS2 in the HS1248-505R replacement, whereas the polymerase must traverse HS1 in the HS2\textsuperscript{505R-HS1248R} replacement. Alternatively, since HS1 is located between the HS2 promoter and the bxd/phx regulatory domain, it may attenuate regulatory interactions, and at least the initial activation in PS6 may depend upon the enhancers thought to be located between the Ubx promoter and Fub-1.

Transcriptional read through is required to abrogate HS1 blocking activity in PS5/A1

The second prediction is that transcriptional read-through from HS2 into HS1 is required to relieve the blocking activity of HS1, enabling regulatory interactions between the bxd/phx domain and Ubx in PS5/A1. This prediction also holds. As shown in Fig. 2, the morphology of the A1 segment in HS2\textsuperscript{505R-HS1248R} replacement flies is similar to that in WT. In this replacement transcripts originating in HS2 read through HS1 into the bxd/phx regulatory domain. A different result is obtained for the replacement, HS1248-505R, in which the HS2 promoter is directed away
from HS1. $HS1^{248}-HS2^{505R}$ flies show evidence of a strong loss-of-function (LOF) transformation (Fig. 5E). This replacement transforms the first abdominal segment into the third thoracic: the first abdominal tergite is reduced or absent, in addition, the posterior third thoracic segment is partly transformed to a posterior second thoracic segment – the halters enlarged and pointing downward (Fig. 2B). These phenotypes are known as bithoraxoid (bxd) and postbithorax (pxb) respectively (Bender et al., 1983). $HS1^{248}-HS2^{505R}$ homozygotes also display very low viability and sterility.
Figure 6. *HS2* drives transcription in tissue-specific manner. smFISH of stage 14 embryos of indicated genotype. In *WT* embryos no antisense (proximal to distal) transcripts were detected. By contrast, in *HS1²⁴⁸-HS2^{505R}* and *HS2^{505R}-HS1^{248R}* antisense transcripts are detected from PS6/A1.
through PS13/A8. Note that the intensity of smFISH signal is higher in $HS1^{248}-HS2^{505R}$ than in $HS2^{505R}-HS1^{248R}$.

DISCUSSION

While a very large percentage of the Pol II transcripts in multicellular eukaryotes are lncRNAs, what roles they play in the expression coding mRNAs and in development largely unknown. Here we have investigated the functional properties of a lncRNA gene, $F1^{HS2}$, that is located in the bxd/pbx regulatory domain of *Drosophila* BX-C. As has been observed for many other lncRNA genes, the RNA sequences encoded by $F1^{HS2}$ are not well conserved and it is the functional properties of the two $F1^{HS2}$ regulatory elements, $HS1$ and $HS2$, that are important. We show here that $HS1$ is a dCTCF dependent boundary element, while $HS2$ is a developmentally regulated promoter that directs transcription through $HS1$ inactivating its boundary function in parasegments that require *Ubx* function.

The arrangement of the three homeotic genes and the nine parasegment specific regulatory domains in the *Drosophila* BX-C complicates the coordination between the 3D organization of the complex and the requirements for regulatory interactions. In order to specify segment identity, the nine regulatory domains are segregated into topologically independent loops by boundary elements. This physical organization helps to block crosstalk between initiation elements in adjacent domains in the early embryo, while later in development it helps restrict the spread of PcG silencing from inactive to active domains (Kyrchanova et al., 2015; Maeda and Karch, 2015). However, in order to direct the proper expression of their target homeotic gene, all but three of the regulatory domains must be able to bypass one or more intervening boundary elements. In the case of the *Ubx* gene, the bxd/pbx regulatory domain is separated from its target promoter by the *Fub-1* boundary, and by a second boundary element located close to the *Ubx* promoter.

The *Fub-1* boundary is subdivided into two elements, $HS1$ and $HS2$. $HS1$ like other boundaries in BX-C has a dCTCF site, is bound by dCTCF *in vivo* and is able to function as a generic insulator. While $HS2$ may contribute to the boundary function of *Fub-1*, it does not have insulating activity on its own. Instead, it has promoter activity, and can function as an enhancer trap. In its normal context, the $HS2$ promoter is controlled by the bxd/pbx regulatory domain. The bxd/pbx regulatory domain is set in the off state in parasegments (segments) anterior to PS6/A1 at the blastoderm stage and is repressed during the remainder of development by PcG dependent
silencing. In PS6/A1 (and more posterior segments) the bxd/pbx regulatory domain is set in the on state, activating the stage and tissue specific enhancers in this domain. These stage and tissue specific enhancers activate the HS2 promoter in PS6/A1 and more posterior parasegments and transcription from this promoter through HS1 disrupts Fub-1 boundary function (Fig. 7). This enables stage and tissue specific enhancers in bxd/pbx to activate Ubx expression in PS5/A1 and more posterior parasegments. In addition to the F1HS2 lncRNA, at least one other segmentally regulated lncRNA, bxd lncRNA, is transcribed through the Fub-1 boundary and thus could also disrupt the blocking activity of the Fub-1 boundary in PS6/A1 and more posterior parasegments.

Several lines of evidence are consistent with this mechanism. When HS1 is used to replace the Fab-7 boundary, it functions like other generic fly boundaries and blocks crosstalk between the iab-6 and iab-7 initiators, but does not support boundary bypass. This blocking activity is also orientation independent. In contrast, neither HS2 alone nor the intact Fub-1 element are able to block crosstalk between iab-6 and iab-7 and both replacements exhibit the same GOF transformations as the starting F7attP replacement platform. In these Fab-7 replacement experiments the defects in Fub-1 blocking activity arise from transcriptional readthrough from the HS2 promoter. This conclusion is supported by two lines of evidence. First, introducing the SV40 transcription termination polyadenylation element in between HS2 and HS1 partially rescues the blocking defect. Rescuing activity is not due to the increased distance between HS2 and HS1 as a SV40 element with mutations in the polyadenylation signal significantly compromising its rescuing activity. In addition, the SV40 termination element must be located between HS1 and HS2 as rescue is not observed when it is placed downstream of HS1. Second, when HS2 is inverted so that transcription proceeds away from HS1, boundary function is also restored.

A similar mechanism appears to regulate Fub-1 boundary activity in its endogenous context; however, in this case boundary activity is segmentally regulated. In PS5 and more anterior parasegments, the bxd/pbx regulatory domain is maintained in an “off” state by a PcG based mechanism. As a consequence, the Fub-1 HS2 promoter is inactive (Fig.7). In PS6 (A1) (and more posterior parasegments) the bxd/pbx domain is in the “on” state and it activates transcription from the Fub-1 HS2 promoter. When HS2 is oriented so that transcription proceeds through HS1, boundary activity is abrogated in PS6/A1 and more anterior parasegments/segments (Fig. 7). This enables enhancers in the bxd/pbx regulatory domain to activate Ubx transcription. Consistent with parasegment specific differences in the 3D topology imaging studies of fly embryos by Mateo et
al., showed that the *Ubx* region of BX-C undergoes a reorganization in PS5/T3 and PS6/A1 (Mateo et al., 2019). This rearrangement would be blocked when *HS2* is oriented away from *HS1*. In this case, boundary activity is retained and the stage and tissue enhancers in the *bxd/pbx* regulatory domain are unable to activate *Ubx* expression (Fig. 7). This leads to a LOF phenotype much like that observed in PS11/A6 in *Fab-7* replacement experiments when the *HS1* boundary blocks crosstalk but does not support bypass.

While it is clear that *Fub-1* boundary function is subject to negative and positive regulation by elements in the *bxd/pbx* domain, and that this is important for the proper specification of PS6/A1, there are a number of outstanding questions. One is whether transcription from the *HS2* promoter is necessary to inactivate *HS1* earlier in development. As described above, *bxd* IncRNA transcripts emanating from a promoter in *pbx* extend through both *HS2* and *HS1*. If *HS1* is sensitive to read-through from *HS2*, one would think that it would also be disrupted by transcriptional read-through of the *bxd* IncRNA. However, since Pease et al found that transcription of the *bxd* IncRNA is not required for normal development, it would appear that this IncRNA is dispensable, at least when *Fub-1 HS2* is present. While we do not know the pattern of *F1*^{HS2} or *bxd* IncRNAs expression after embryogenesis, the fact that reversing *HS2* results in morphological defects in adults would argue that *F1*^{HS2} is likely expressed during the larval and pupal stages.
Figure 7. Model showing changes in TAD organization.
Top: In WT the 3D organization of the \textit{bxd/phx} regulatory domain transitions from one state to another when it activates \textit{Ubx} expression (see also \cite{Mateo2019}). In PS5 (T3) and more anterior parasegments, the \textit{bxd/phx} domain is encompassed in a large TAD that extends from \textit{Fub-1} to \textit{Fub} (large triangle). Within this large TAD there are two HDIC domains. One extends from \textit{Fub-1} to the \textit{bxl} PRE, while the other extends from the \textit{bxl} PRE to \textit{Fub}. In PS6 and more posterior parasegments the 3D organization of the domain is dynamic and depends upon whether the \textit{Fub-1} \textit{HS2} promoter is active or not. When the promoter is inactive (in between bursts), the \textit{Fub-1} boundary is expected to be functional and that TAD/HDIC organization would resemble that in more anterior parasegments. When the enhancers in \textit{bxd/phx} activate \textit{HS2}, transcriptional readthrough disrupts \textit{Fub-1} boundary activity generating a new TAD organization that links enhancers in \textit{bxd/phx} to the \textit{Ubx} promoter. \textit{F1naiP}: Deletion of the \textit{Fub-1} boundary eliminates the large \textit{Fub-1} \leftarrow \textit{Fub} TAD in all parasegments. In this case, an element upstream of the \textit{Ubx} promoter functions to insulate \textit{abx/bx} from \textit{bxd/phx} in PS5/T3. \textit{HS1248-HS2540R}. In this replacement \textit{HS2} is inverted so that the \textit{HS2} promoter is pointed away from \textit{HS1} towards the \textit{bxd/phx} regulatory domain. Though \textit{bxd/phx} activates the promoter in PS6/A1 and more posterior parasegments, \textit{Fub-1} boundary activity is not disrupted. \textit{HS2540R-HS1248R}: In this replacement, \textit{Fub-1} is inverted. Though \textit{HS2} promoter activity in PS6 (A1) and more posterior parasegments is reduced in this configuration compared to WT, it is sufficient to disrupt \textit{Fub-1} boundary activity and enable \textit{bxd/phx} to regulate \textit{Ubx} expression.
Another question is raised by the Micro-C contact pattern in WT and the Fub-1 deletion. In WT, Fub-1 and Fub define a TAD that encompasses bxd/phx. Fub-1 also corresponds to a boundary for two smaller HDIC domains, one with a second endpoint close to the Ubx promoter and another with a second endpoint close to the bxd PRE. In the Fub-1 deletion, the proximal endpoint of the bxd/phx TAD shifts to the Ubx promoter region, while the two HDIC domains collapse into one. If the function of HS2 is to inactivate HS1 in the posterior 2/3rds of the embryo, one would expect that this would disrupt the Fub-1 ↔ Fub TAD, much like the Fub-1 deletion. There could be several reasons for this discrepancy. Since the HS2 promoter should not be active in cells anterior to PS6/A1, it is possible that these cells are responsible for generating the Fub-1 ↔ Fub TAD seen in the Micro-C experiments. Alternatively, the disruption in HS1 function might only occur during a burst of transcription (Fig. 7). Recent studies have shown that transcription of most genes is not continuous but rather occurs in discrete bursts (Rodriguez and Larson, 2020; Tunnacliffe and Chubb, 2020). The frequency, duration and amplitude of the burst can vary substantially. In some experimental systems, bursts can last several minutes or longer while the intervals between bursts may be only 10s of seconds (Bothma et al., 2014; Fukaya et al., 2016). For other genes, the intervals between bursts can be 30 min or more and the bursts may last only a minute or two (Alexander et al., 2019). If disruption of HS1 blocking activity is directly coupled to the act of transcription (as appears to be the case0, then there may only be small windows of time in which the activity of the Fub-1 boundary is compromised and bxd/phx enhancers can activate the Ubx promoter. In this case, the Fub-1 boundary would flip back and forth from an inactive and active state (Fig.7).

A related issue would be the mechanism activating HS2 transcription when the Fub-1 boundary is reversed (the HS1^248-HS2^505R replacement) so that HS1 is interposed between HS2 and the bxd/phx domain. One would have expected that HS1 would block the bxd/phx enhancers from activating HS2 transcription. In this case, boundary function would be retained, resulting in a loss-of-function transformation of PS6/A1 into PS5/T3 because in would prevent bxd/phx from regulating Ubx. One possibility is that the putative enhancers in the region between the Ubx promoter and Fub-1 (see 2218S enhancer in Sup Fig. 2) are able to activate a sufficient level of HS2 dependent transcription to disrupt HS1 boundary function. An alternative/additional possibility is that the blocking activity of HS1 is not sufficient to completely suppress regulatory interactions between bxd/phx and HS2. Potentially consistent with this idea is the finding that the
orientation of the *Fub*-1 element in the *Fab*-7 replacements does not seem to be important. When *HS2* is adjacent to *iab*-6 it inactivates the blocking activity of *HS1*. This would be the expected result since reporters in BX-C are activated when the regulatory domain in which they are inserted is turned *on* in the early embryo. In this case, *iab*-6 would drive *HS2* expression in PS11(A7) cells and this would inactivate the blocking activity of *HS1* in cell in this parasegment, giving a GOF transformation of PS11/A6. The unexpected result is that a GOF transformation of PS11/A6 into PS12/A7 is also observed when the *Fub*-1 replacement is inserted so that *HS2* is next to *iab*-7. Since *iab*-7 is “off” in PS11, this would imply that *HS2* must be activated by the *iab*-6 regulatory domain. A similar scenario could be at play when *Fub*-1 is inserted in the opposite orientation in its endogenous location: *HS1* blocks but does not completely eliminate interactions between the *bxd/pbx* enhancers and the *HS2* promoter. This is probably not unexpected. While interposed boundaries significantly reduce enhancer:promoter contacts, they are not completely eliminated (Fukaya et al., 2016). In addition, once activated, transcription from *HS2* through *HS1* should weaken *HS1* boundary activity and this in turn would facilitate further transcription.

Perhaps the most puzzling question is what function does *Fub*-1 play in BX-C regulation? Since there is no obvious GOF phenotype when *Fub*-1 is deleted, it differs from other boundaries in BX-C that have been analyzed in that would appear to be dispensable. On the other hand, when present, it must be inactivated in PS6/A1 (and more posterior parasegments) so that the *bxd/pbx* domain can regulate *Ubx* expression. Interestingly, like *cis*-acting elements for many other lncRNAs, both of the *Fub*-1 boundary sub-elements are conserved in the *Sophoraphora* sub-genus (Sup Fig.3). It is also conserved in *D.virilis* which is a member of the *Drosophila* sub-genus. *D.virilis* differs from *melanogaster* in that the *Ubx* gene and its two regulatory domains, *abx/bx* and *bxd/pbx*, are separated from the *abd-A* and *Abd-B* genes. In spite of this rearrangement, the *Fub*-1 sequences are conserved. The fact that *Fub*-1 is present in distantly related species would argue that *Fub*-1 has an important function under some type of selective condition (that we have yet to discover) which is commonly encountered by a wide range of *Drosophila* species.
MATERIALS AND METHODS

Key resources table

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Abd-B antibody	Developmental Studies Hybridoma	1A2E9
Mouse anti-DsRed antibody	Santa Cruz Biotechnology	sc-390909
Rabbit anti-GFP antibody	Thermo Fisher Scientific	A-11122
goat anti-mouse Alexa Fluor 546	Thermo Fisher Scientific	A-11030
goat anti-rabbit Alexa Fluor 488	Thermo Fisher Scientific	A-11008
Chemicals, peptides, and recombinant proteins		
Paraformaldehyde 20% solution, EM Grade	Electron Microscopy Sciences	15713-S
Formaldehyde, 16%, methanol free, Ultra Pure	Polysciences Inc	18814-10
PBS - Phosphate-Buffered Saline (10X) pH 7.4, RNase-free	Thermo Fisher	AM9624
Tween 20	Sigma	P1379
Triton X-100	Bio-rad	161-0407
Tris base	Sigma	11814273001
Methanol	Fisher Chemical	203403
SSC, 20X	Thermo Fisher Scientific	15557044
Formamide	Thermo Fisher Scientific	17899
Dextran sulfate	Sigma	D8906
Salmon Sperm DNA	Thermo Fisher Scientific	AM9680
Ribonucleoside Vanadyl Complex	NEB	S1402S
Nuclease-free BSA	Sigma	126609
Item	Manufacturer	Catalog Number
--	-------------------------	----------------
Triethylammonium Acetate	Sigma	625718
dGTP (100 MM)	VWR	76510-208
dTTP (100 MM)	VWR	76510-224
Lonza NuSieve 3:1 Agarose	Thermo Fisher Scientific	BMA50090
T4 DNA ligase	NEB	M0202L
Biotin-11-dCTP	Jen Bioscience	NU-809-BIOX
Biotin-14-dATP	Jen Bioscience	NU-835-BIO14
Qubit dsDNA HS Assay Kit	Life Technologies Corp.	Q32851
Phase Lock Gel™, QuantaBio - 2302830, Phase Lock Gel Heavy	VMR	10847-802
NEBNext Ultra II DNA Library Prep Kit for Illumina	NEB	E7645S
Ampure Xp 5ml Kit	Thermo Fisher Scientific	NC9959336
Hifi Hotstart Ready Mix	Thermo Fisher Scientific	501965217
Dynabeads MyOne Streptavidin C1	Life Technologies Corp.	65001
cOmplete™, EDTA-free Protease Inhibitor Cocktail	Sigma	11873580001
N,N-Dimethylformamide	Sigma	227056
Potassium acetate solution	Sigma	95843
DSG (disuccinimidy1 glutarate)	Thermo Fisher Scientific	PI20593
T4 Polynucleotide Kinase - 500 units	NEB	M0201S
DNA Polymerase I, Large (Klenow) Fragment - 1000 units	NEB	M0210L
End-it Dna End Repair Kit	Thermo Fisher Scientific	NC0105678
Proteinase K recomb. 100 mg	Sigma	3115879001
Nuclease Micrococcal (s7)	Thermo Fisher Scientific	NC9391488
--------------------------	--------------------------	-----------
EGS (ethylene glycol bis(succinimidyl succinate))	Thermo Fisher Scientific	PI21565

Experimental models: Organisms/strains

Organism	Description	Source	Accession
y[1] M{GFP[E.3xP3]=vas-Cas9.RFP-}ZH-2A w[1118]		Bloomington Drosophila Stock Center	55821
w[1], ΦC31 (y+); TM6, Tb, Hm/Sb		This lab	N/A
w[1]; TM6, Tb, Hm/Sb		This lab	N/A
Fub-1^{attP}		This paper	N/A
Fab-7^{attP50}		This lab	Wolle et al., 2015
P{w+[mC]=ovo-FLP.R}M1A, w[*]		Bloomington Drosophila Stock Center	8727
y[1] w[67c23] P{y+[mDint2]=Crey}1b; D[*]/TM3, Sb[1]		Bloomington Drosophila Stock Center	851

Oligonucleotides

Oligonucleotide	Description	Source	Accession
Fub-1_probeset	Sequence see “Supplemental Data Table 2”	Biosearch Technologies	N/A

Software and algorithms

Software	Description	Source
Fiji (ImageJ)		Schindelin et al., 2012 fiji.sc
NIS element		Nikon microscope.healthcare.nikon.com/products/software/nis-elements
Graphpad Prism 8		GraphPad Software graphpad.com
Tool	Description	Website
-------------------------	--	---
HiGlass	Kerpediev et al., 2018	higlass.io
bwa	Li H. and Durbin R., 2009	bwa.sourceforge.net/
samtools	Github/open source	samtools.github.io
pairsamtools	Github/open source	github.com/mirnylab/pairsamtools
pairix	Github/open source	github.com/4dn/dcic/pairix
cooler	Abdennur, N., and Mirny, L., 2019	github.com/mirnylab/cooler
Miniconda	Anaconda	docs.conda.io/en/latest/miniconda.html
Snakemake	Github/open source	snakemake.github.io
Other	Confocal microscope	Leica STELLARIS 5
	Stereomicroscope	Nikon Nikon SMZ18

Fly strains

The following stocks were used in these experiments: y[1] M{GFP[E.3xP3]=vas-Cas9.RFP-}ZH-2A w[1118] (BDSC_55821), w[1], ΦC31 (y+); TM6, Tb, Hm/Sb, w[1]; TM6, Tb, Hm/Sb, P[w[+mC]=ovo-FLP.R]M1A, w[*] (BDSC_8727), y[1] w[67c23] P[y[+mDint2]=Crey]1b; D[*]/TM3, Sb[1] (BDSC_851) was used for all transgenesis. y[1] M{GFP[E.3xP3]=vas-Cas9.RFP-}ZH-2A w[1118] (BDSC_55821) was used for CRISPR/Cas9 genome editing. y[1] w[67c23] P[y[+mDint2]=Crey]1b; D[*]/TM3, Sb[1] (BDSC_851) was used for Cre/loxP recombination to remove DsRed from CRISPR-generated DsRed insertions. w[1]; TM6, Tb, Hm/Sb, P[w[+mC]=ovo-FLP.R]M1A, w[*] (BDSC_8727) was used for Flp/frt recombination to
remove GFP from ΦC31-mediated insertions. All flies were kept on standard fly cornmeal-molasses-yeast media.

Generation of F1^{attP} by CRISPR-Cas9–induced homologous recombination

For generating double-stranded DNA donor template for homology-directed repair, we used pHDDsRed vector (Addgene plasmid no. 51434). The final plasmid contains genetic elements in the following order: [bxd proximal arm]-[attP]-[loxP]-[3×P3-dsRed-SV40polyA]-[loxP]-[bxd distal arm] (fig. S1). Homology arms were PCR amplified from the Bloomington Drosophila Stock Center line no. 55821 genomic DNA using the following primers:

- AGCTCTCGAGAGCGATGGAACCGTTTCTG
- GTAGATCTCGGTTTACGACTGGC

TTGCGGCCGCATTTCTACGTTAATC
- AAGCATGCCAAATGGAGGCTGC

For the proximal arm (1001-bp fragment), and

For the distal arm (1002-bp fragment). Targets for Cas9 were selected using “CRISPR optimal target finder”—the program from O’Connor-Giles Laboratory. The following gRNA sequences: AGTCGATCGTAAACCGGAG and TTATAGACGTAGAAATGTA, were inserted into the pU6-BbsI-chiRNA vector (Addgene plasmid no. 45946). A mixture of the donor vector (500ng/ml) and two gRNA vectors (100ng/ml each) was injected into embryos of y[1] M{GFP[E.3xP3]=vas-Cas9.RFP-}ZH-2A w[1118] (no. 55821 from the Bloomington Drosophila Stock Center). Injectees were grown to adulthood and crossed with w[1]; TM6/Sb line. Flies positive for dsRed signal in eyes were selected into a new separate line. The successful integration of the recombination plasmid was verified by PCR and corresponded to the removal of 1168 bp within the Fub-1 region (genome release R6.22: 3R:16,748,143..16,749,310).

Generation the replacement lines

For the F1^{attP} replacement, the recombination plasmid was designed de novo and contains several genetic elements in the following order: [loxP]-[pl]-[frt]-[3P3-GFP]-[frt]-[attb] (fig. S1). All elements were assembled within the pBluescript SK vector. loxP site is located before polylinker [pl] and in combination with the second site, which is located in the platform, used for excision of DsRed marker gene and plasmid body. Two frt sites are used to excise GFP marker. DNA fragments used for the replacement experiments were generated by PCR amplification and verified by sequencing (presented in the Supplementary Methods).
The strategy of the Fab-7 replacement lines creation is described in detail in (Wolle et al., 2015).

Cuticle samples preparation

3 day adult male flies were collected in 1.5ml tubes and stored in 70% ethanol at least 1 day. Then ethanol was replaced with 10% KOH and flies were heated at 70°C for 1h. After heating flies were washed with dH2O two times and heated again in dH2O for 1h. After that digested flies were washed three times with 70% ethanol and stored in 70% ethanol. The abdomen cuticles were cut off from the rest of the fly using fine tweezer and a needle of an insulin syringe and put in a droplet of glycerol on a microscope slide. Then the abdomens were cut longitudinally on the mid-dorsal side through all of the tergites with the syringe. Then the cuticles were flattened with a coverslip. Photographs in the bright or dark field were taken on the Nikon SMZ18 stereomicroscope using Nikon DS-Ri2 digital camera, processed with Fiji bundle 2.0.0-rc-46.

Embryo Immunostaining

Embryo Immunostaining was performed as previously described (Deshpande et al., 1999). Primary antibodies were mouse monoclonal anti-Abd-B at 1:40 dilution (1A2E9, generated by S. Celniker, deposited to the Developmental Studies Hybridoma Bank), mouse monoclonal anti-DsRed at 1:50 dilution (Santa Cruz Biotechnology) and rabbit polyclonal anti-GFP at 1:500 dilution (Thermo Fisher Scientific). Secondary antibodies were goat anti-mouse Alexa Fluor 546 (Thermo Fisher Scientific) and goat anti-rabbit Alexa Fluor 488 (Thermo Fisher Scientific). Stained embryos were mounted with VECTASHIELD antifade mounting medium (Vector Laboratories). Images were acquired on a Leica STELLARIS 5 confocal microscope and processed using ImageJ 1.53f51 (Schindelin et al., 2012).

Electrophoretic mobility shift assay

Electrophoretic mobility shift assay was performed using γ-32P–labeled DNA probes as described previously (Kyrchanova et al., 2018; Wolle et al., 2015).

smFISH

smFISH was performed as previously described (Little et al., 2013). Quasar 670-conjugated bxd probes were ordered from LGC Biosearch Technologies. Sequences are listed in Supplementary Table 4). Embryos were collected overnight and then dechorionated in Clorox, fixed in 4% paraformaldehyde, and devitellinized in methanol. The hybridization with the FISH probes was
performed overnight at 37°C in hybridization buffer (10% dextran sulfate, 0.01% salmon sperm single-strand DNA, 1% vanadyl ribonucleoside, 0.2% bovine serum albumin, 4×SSC, 0.1% Tween-20, and 35% formamide). The resulting preparations were washed twice with wash buffer, 1 h each, at 37°C and mounted in VECTASHIELD antifade mounting medium. Images were acquired on a Leica STELLARIS 5 confocal microscope with 40x HC PL APO CS2 1.3 NA oil immersion objective. Image denoising was performed using NIS elements "Advanced denoising" tool.

Micro-C library construction

Embryos were collected on yeasted apple juice plates in population cages. Plates were laid for 4 hours, incubated for 12 hours at 25°C, then subjected to fixation. Embryos were collected in nylon mesh sieves, dechorionated for 2 mins in 3% sodium hypochlorite, rinsed with deionized water, and transferred to glass vials containing 5 mL PBST (0.1% Triton-X in PBS), 7.5 mL N-heptane, and 1.5mL fresh 16% formaldehyde. Crosslinking was carried out at room temperature for exactly 15 mins on an orbital shaker at 250rpm, followed by addition of 3.7 mL 2M Tris-HCl pH7.5 and shaking for 5 mins to quench the reaction. Embryos were washed twice with 15 mL PBST and subjected to secondary crosslinking. Secondary crosslinking was done in 10mL of freshly prepared 3mM final DSG and ESG in PBST for 45 mins at room temperature with passive mixing. Reaction was quenched by addition of 3.7mL of 2M Tris-HCl pH7.5 for 5 mins, washed twice with PBST. Embryos were snap-frozen and stored at -80°C until library construction.

Micro-C libraries were prepared as previously described (Batut et al., 2022) with the following modification: we used 50uL of 12-16hr embryos, non-sorted for each biological replicate. 60U of MNase was used for each reaction to digest chromatin to 80% mononucleosome vs 20% dinucleosome ratio. Libraries were barcoded, pooled and subjected to paired-end sequencing on an Illumina Novaseq S1 100 nt Flowcell (read length 50 bases per mate, 6-base index read).

Micro-C data processing

Micro-C data for *D. melanogaster* were aligned to a custom genome edited from the Berkeley Drosophila Genome Project (BDGP) Release 6 reference assembly (dos Santos et al., 2015) with BWA-MEM (Li and Durbin, 2009) using parameters -S -P -5 -M. Briefly, the custom genome was designed to remove the visually obstructive ~5.6kb DIVER_I-int repeat element between Fub-1 and Fub. The specific region deleted was the entire repeat element, chr3R: 16756620-16762262.
from the dm6 reference FASTA file. The resultant BAM files were parsed, sorted, de-duplicated, filtered, and split with pairtools (https://github.com/mirnylab/pairtools). We removed pairs where only half of the pair could be mapped, or where the MAPQ score was less than three. The resultant files were indexed with pairix (https://github.com/4dn-dcic/pairix). The files from replicates were merged with pairtools before generating 100bp contact matrices with Cooler (Abdennur and Mirny, 2020). Finally, balancing and mcool file generation was performed with Cooler’s zoomify tool. The mcool files were visualized using HiGlass (Kerpedjiev et al., 2018).
ACKNOWLEDGMENTS

We are grateful to the Center for Precision Genome Editing and Genetic Technologies for Biomedicine of IGB RAS and the Core Facilities Center of IGB RAS for providing research equipment. We thank Tatyana Smirnova for technical assistance and advice on smFISH data acquisition and analysis. We thank Girish Deshpande, Tsutomu Aoki, Olga Kyrchanova and Oleg Bylino for insightful discussions throughout the course of this work. This work was supported by R35 GM126975 to P.S. and R01 GM118147 to M.L. Immunostaining analysis was supported by Russian Science Foundation, Project No. 19-74-30026 (to P.G.). Part of this work (bioinformatics analysis) was supported by Russian Science Foundation, Project No. 20-14-00201 (to Y.S.).

AUTHOR CONTRIBUTION

Conceptualization, A.I., P.S. and P.G.; Methodology, A.I., P.S. and P.G.; Investigation, A.I. and X.B.; Writing – Original Draft, A.I. and P.S.; Writing – Review & Editing, A.I., P.S. P.G. and M.L.; Funding Acquisition, P.S., P.G., Y.S. and M.L.; Resources, P.S. and P.G.; Supervision, P.S., P.G and M.L.

COMPETING INTERESTS

The authors declare no competing interests.
Table S1. The sequence of $HS2^{505R}$-$HS1^{248R}$-$CTCF^{4x}$ fragment containing multimerized binding sites for dCTCF (CTCF4x). The binding sites are marked in red.

Sequence (5' to 3')
CAGCTTATAAACGTAGAAATGTATGGAGAAAATCTTATATTGTCATGATATAATTATAAG
ATTTTTAAGTAAAAATCTTTTCATATTAAAGAAAAAAGAAAAATTTTTGAAAAATGAATT
GAAATTTCTGTGCACCTTTATCATATTCTGCGCCACGGCGCTATCAAATGAAGAGAG
TGAGAGACCTGAAAGATACTGGAATCTGAGGAGAAATGAGTCCTGAAATACTCATC
AAAACGAAAAAGCCAAAGCTCATATTTCTGCTGGTGGTGGATGAAAAAGCTGATTT
TTTCTGGCTCGTTCACCAACCACCGCGCCACATTCCAGTTTCAGCTCCGCGCAGA
CGTCTGTTCAGGGGCAGTCGATGAGCGATATCTGACAAAAAGCGCAAGACAAACAA
AAAAGCAAAGGCTCATAGCAAGCCAAATAATAATTTGAAAAATTCCGAAATTAGACAA
GTGAAGATTGAAAATATAAAGAAACCCGGAAGAAAGATAATTACACAAAGCTACGA
GATATAAAATTCTGTTTTAAATATATACCCGAAAAATAGGTGGAAACGCATATTTTTCG
TCAGATGGCGGCACAGTGGTCTG(TspI)GCCATCAGCTGGCGCAGATGTCGAGCG
GTTCCGAAATCCATAGATGGCGCCATGAAAGCGATAGTGGCGACAGATGTGCTGCT
CGAGTCAGATGTCGCTCTCCGACAGATGTCGCTG(TspI)GCCATCTATGGAGATTC
GTTTCTGTTCATATTTGAGCTCATCGTTCGCTCCAGTTCAGTTAGAGCCACTGTCCTT
TGAAGTTTGTCTATGTTACATAACATAAAATATGTTAAATGAAATGTTAGAATTAAAA
AAGGGGGCGCAATATTTTCGCTTTTAGCT

Table S2. Sequences of smFISH probes covering 1463-bp region in bxd domain.

Oligonucleotide sequences	Probe set name: Fub-1
1	tcggtcacttcataatttgtt
2	agtcatcttttctcggtttg
3	gcaacatctgcaaatattctg
4	gcaacagggcaaaagcatcg
5	aataaatttgcggcagcac
6	tgccacacgctctatgaat
7	atatcatggtgttcaccgta
8	ttatgaagtcgtcaagggcg
9	ccaactgcctcatatacaca
10	caagggctctgtaagaggat
11	cgggcaatttggaaacactt
12	tgtacacttttctcggtgg
13	gaaactgccttcatattgga
14	atggaccaacactgatggtt
15	gattcaactagtgttccccgg
16	ttttggtgctgggttaaat
17	gcagctcttttaagcagtt
18	tccataatccacccagacgc
	Sequence
---	------------------
19	acttatctgccctttttaac
20	cttttttacggatcccttg
21	atgaatgtgtgtgcagttgt
22	aatggcaggactcgtaactc
23	gctgcctgctatatattaattt
24	ggaatttgtatggcttttgac
25	caacatgaccaattttgtccg
26	tatctgtgagaatgcccggcat
27	tatgatatgctttcatcggg
28	tataatgcccaagcgacattt
29	tcaacaggctgctgctaaaaa
30	accctttcaatgcaagca
31	caaaatggggtgcccagat
32	gcctaaaacaggtgaaaaaga
33	cctacaactgggtcagttt
Figure S1. Strategy for creating Fub-1 deletion and replacement lines. Top: schematic representation of the regulatory region containing the Ubx gene. The F1attP line was obtained through the substitution of a 1168-bp region with attP site and the dsRed gene, flanked by loxP sites. The coordinates of the deletion are dm6 3R:16,748,143..16,749,310. The plasmid that contains tested fragment and GFP marker gene was injected into the F1attP line. In the next step, GFP gene was excised by CRE-mediated recombination between the frt sites. During the final step, the dsRed gene was excised by recombination between the loxP sites. As a result, the tested elements were inserted in place of the 1168-bp deletion.
Figure S2. Chip-seq profiles of different chromatin proteins and histone modifications across bx/bx domain. ChIP-seq profiles for H3K4me3, H3K27me3, Pol II, CTCF, CP190, Zw5, Pita, Elba3, Insv, Zld, GAF. The putative enhancers are indicated by a pink bar below coordinate line.
Figure S3. Fub-1 sequence conservation. Sequence comparison of Fub-1 boundaries from *D. virilis*, *D. pseudoobscura*, *D. erecta*, *D. sechellia* and *D. melanogaster*. The Fub-1 sequences of
D. melanogaster and four other Drosophila species were assembled, and stacked up with the ClustalO program to align the high homology region conserved among the five species. Sequences that are homologous in all four Drosophila species are highlighted in shades of blue representing degree of conservation. The dCTCF recognition sequence in HSI, GAGA-motifs and predicted TSS are enclosed in red rectangles.

Figure S4. Morphology of the abdominal segments (numbered) in males carrying different variants of Fub-1 in Fab-7attP50 platform in the dark field.
Figure S5. Morphology of the abdominal segments (numbered) in males carrying \(HS2^{505} \) and \(HS2^{505R} \) fragments in \(Fab-7^{attP50} \).
REFERENCES

Abdennur, N., Mirny, L.A., 2020. Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics 36, 311–316. https://doi.org/10.1093/bioinformatics/btz540

Alexander, J.M., Guan, J., Li, B., Maliskova, L., Song, M., Shen, Y., Huang, B., Lomvardas, S., Weiner, O.D., 2019. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. Elife 8, e41769. https://doi.org/10.7554/eLife.41769

Barges, S., Mihaly, J., Galloni, M., Hagstrom, K., Muller, M., Shanower, G., Schedl, P., Gyurkovics, H., Karch, F., 2000. The Fab8 boundary defines the distal limit of the bithorax complex iab-7 domain and insulates iab-7 from initiation elements and a PRE in the adjacent iab-8 domain. Development 127, 779–790. https://doi.org/10.1242/dev.127.4.779

Batut, P.J., Bing, X.Y., Sisco, Z., Raimundo, J., Levo, M., Levine, M.S., 2022. Genome organization controls transcriptional dynamics during development. Science 375, 566–570. https://doi.org/10.1126/science.abi7178

Bender, W., Akam, M., Karch, F., Beachy, P.A., Peifer, M., Spierer, P., Lewis, E.B., Hogness, D.S., 1983. Molecular Genetics of the Bithorax Complex in Drosophila melanogaster. Science 221, 23–29. https://doi.org/10.1126/science.221.4605.23

Bender, W., Lucas, M., 2013. The Border Between the Ultrabithorax and abdominal-A Regulatory Domains in the Drosophila Bithorax Complex. Genetics 193, 1135–1147. https://doi.org/10.1534/genetics.112.146340

Bothma, J.P., Garcia, H.G., Esposito, E., Schlissel, G., Gregor, T., Levine, M., 2014. Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos. Proc Natl Acad Sci U S A 111, 10598–10603. https://doi.org/10.1073/pnas.1410022111

Bowman, S.K., Deaton, A.M., Domingues, H., Wang, P.I., Sadreyev, R.I., Kingston, R.E., Bender, W., 2014. H3K27 modifications define segmental regulatory domains in the Drosophila bithorax complex. eLife 3, e02833. https://doi.org/10.7554/eLife.02833

Deshpande, G., Calhoun, G., Yanowitz, J.L., Schedl, P.D., 1999. Novel functions of nanos in downregulating mitosis and transcription during the development of the Drosophila germline. Cell 99, 271–281. https://doi.org/10.1016/s0092-8674(00)81658-x

dos Santos, G., Schroeder, A.J., Goodman, J.L., Strelets, V.B., Crosby, M.A., Thurmond, J., Emmert, D.B., Gelbart, W.M., FlyBase Consortium, 2015. FlyBase: introduction of the Drosophila melanogaster Release 6 reference genome assembly and large-scale migration of genome annotations. Nucleic Acids Res 43, D690-697. https://doi.org/10.1093/nar/gku1099

Eagen, K.P., Aiden, E.L., Kornberg, R.D., 2017. Polycomb-mediated chromatin loops revealed by a subkilobase-resolution chromatin interaction map. Proc Natl Acad Sci U S A 114, 8764–8769. https://doi.org/10.1073/pnas.1013711114

Fukaya, T., Lim, B., Levine, M., 2016. Enhancer Control of Transcriptional Bursting. Cell 166, 358–368. https://doi.org/10.1016/j.cell.2016.05.025

Gyurkovics, H., Gausz, J., Kummer, J., Karch, F., 1990. A new homeotic mutation in the Drosophila bithorax complex removes a boundary separating two domains of regulation. EMBO J 9, 2579–2585.

Hannon, C.E., Blythe, S.A., Wieschaus, E.F., 2017. Concentration dependent chromatin states induced by the bicoid morphogen gradient. eLife 6, e28275. https://doi.org/10.7554/eLife.28275

Harrison, M.M., Li, X.-Y., Kaplan, T., Botchan, M.R., Eisen, M.B., 2011. Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition. PLoS Genet 7, e1002266. https://doi.org/10.1371/journal.pgen.1002266

Herman, A.B., Tsitsipatis, D., Gorospe, M., 2022. Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell 82, 2252–2266. https://doi.org/10.1016/j.molcel.2022.05.027
Hogga, I., Mihaly, J., Barges, S., Karch, F., 2001. Replacement of Fab-7 by the gypsy or scs insulator disrupts long-distance regulatory interactions in the Abd-B gene of the bithorax complex. Mol Cell 8, 1145–1151. https://doi.org/10.1016/s1097-2765(01)00377-x

Iampietro, C., Gummalla, M., Muteru, A., Karch, F., Maeda, R.K., 2010. Initiator elements function to determine the activity state of BX-C enhancers. PLoS Genet 6, e1001260. https://doi.org/10.1371/journal.pgen.1001260

Isoda, T., Moore, A.J., He, Z., Chandra, V., Aida, M., Denholtz, M., Piet van Hamburg, J., Fisch, K.M., Chang, A.N., Fahl, S.P., Wiest, D.L., Murre, C., 2017. Non-coding Transcription Instructs Chromatin Folding and Compartmentalization to Dictate Enhancer-Promoter Communication and T Cell Fate. Cell 171, 103-119.e18. https://doi.org/10.1016/j.cell.2017.09.001

Jacobson, E.C., Pandya-Jones, A., Plath, K., 2022. A lifelong duty: how Xist maintains the inactive X chromosome. Curr Opin Genet Dev 75, 101927. https://doi.org/10.1016/j.gde.2022.101927

Karch, F., Galloni, M., Sipos, L., Gausz, J., Gyurkovics, H., Schedl, P., 1994. Mcp and Fab-7: molecular analysis of putative boundaries of cis-regulatory domains in the bithorax complex of Drosophila melanogaster. Nucleic Acids Res 22, 3138–3146.

Kerpedjiev, P., Abdennur, N., Lekschas, F., McCallum, C., Dinkla, K., Strobelt, H., Luber, J.M., Ouellette, S.B., Azhir, A., Kumar, N., Hwang, J., Lee, S., Alver, B.H., Pfister, H., Mirny, L.A., Park, P.J., Gehlenborg, N., 2018. HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol 19, 125. https://doi.org/10.1186/s13059-018-1486-1

Kyrchanova, O., Kurbidaeva, A., Sabirov, M., Postika, N., Wolle, D., Aoki, T., Maksimenko, O., Mogila, V., Schedl, P., Georgiev, P., 2018. The bithorax complex iab-7 Polycomb response element has a novel role in the functioning of the Fab-7 chromatin boundary. PLOS Genetics 14, e1007442. https://doi.org/10.1371/journal.pgen.1007442

Kyrchanova, O., Mogila, V., Wolle, D., Deshpande, G., Parshikov, A., Cléard, F., Karch, F., Schedl, P., Georgiev, P., 2016. Functional Dissection of the Blocking and Bypass Activities of the Fab-8 Boundary in the Drosophila Bithorax Complex. PLoS Genet 12, e1006188. https://doi.org/10.1371/journal.pgen.1006188

Kyrchanova, O., Mogila, V., Wolle, D., Magbanua, J.P., White, R., Georgiev, P., Schedl, P., 2015. The boundary paradox in the Bithorax complex. Mechanisms of Development 138, 122–132. https://doi.org/10.1016/j.mod.2015.07.002

Kyrchanova, O., Sabirov, M., Mogila, V., Kurbidaeva, A., Postika, N., Maksimenko, O., Schedl, P., Georgiev, P., 2019a. Complete reconstitution of bypass and blocking functions in a minimal artificial Fab-7 insulator from Drosophila bithorax complex. Proc Natl Acad Sci U S A 116, 13462–13467. https://doi.org/10.1073/pnas.1907190116

Kyrchanova, O., Wolle, D., Sabirov, M., Kurbidaeva, A., Aoki, T., Maksimenko, O., Kyrchanova, M., Georgiev, P., Schedl, P., 2019b. Distinct Elements Confer the Blocking and Bypass Functions of the Bithorax Fab-8 Boundary. Genetics 213, 865–876. https://doi.org/10.1534/genetics.119.302694

Kyrchanova, O., Zolotarev, N., Mogila, V., Maksimenko, O., Schedl, P., Georgiev, P., 2017. Architectural protein Pita cooperates with dCTCF in organization of functional boundaries in Bithorax complex. Development 144, 2663–2672. https://doi.org/10.1242/dev.149815

Lefevre, P., Witham, J., Lacroix, C.E., Cockerill, P.N., Bonifer, C., 2008. The LPS-Induced Transcriptional Upregulation of the Chicken Lysozyme Locus Involves CTCF Eviction and Noncoding RNA Transcription. Mol Cell 32, 129–139. https://doi.org/10.1016/j.molcel.2008.07.023

Levo, M., Raimundo, J., Bing, X.Y., Sisco, Z., Batut, P.J., Ryabichko, S., Gregor, T., Levine, M.S., 2022. Transcriptional coupling of distant regulatory genes in living embryos. Nature 605, 754–760. https://doi.org/10.1038/s41586-022-04680-7
Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760. https://doi.org/10.1093/bioinformatics/btp324

Li, X., Fu, X.-D., 2019. Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat Rev Genet 20, 503–519. https://doi.org/10.1038/s41576-019-0135-1

Little, S.C., Tikhonov, M., Gregor, T., 2013. Precise developmental gene expression arises from globally stochastic transcriptional activity. Cell 154, 789–800. https://doi.org/10.1016/j.cell.2013.07.025

Lu, Z., Guo, J.K., Wei, Y., Dou, D.R., Zarnegar, B., Ma, Q., Li, R., Zhao, Y., Liu, F., Choudhry, H., Khavari, P.A., Chang, H.Y., 2020. Structural modularity of the XIST ribonucleoprotein complex. Nat Commun 11, 6163. https://doi.org/10.1038/s41467-020-20040-3

Maeda, R.K., Karch, F., 2015. The open for business model of the bithorax complex in Drosophila. Chromosoma 124, 293–307. https://doi.org/10.1007/s00412-015-0522-0

Maeda, R.K., Karch, F., 2006. The ABC of the BX-C: the bithorax complex explained. Development 133, 1413–1422. https://doi.org/10.1242/dev.02323

Mateo, L.J., Murphy, S.E., Hafner, A., Cinquini, I.S., Walker, C.A., Boettiger, A.N., 2019. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49–54. https://doi.org/10.1038/s41586-019-1035-4

McCall, K., O’Connor, M.B., Bender, W., 1994. Enhancer traps in the Drosophila bithorax complex mark parasegmental domains. Genetics 138, 387–399. https://doi.org/10.1038/nmeth.2019

Núñez-Martínez, H.N., Recillas-Targa, F., 2022. Emerging Functions of IncRNA Loci beyond the Transcript Itself. Int J Mol Sci 23, 6258. https://doi.org/10.3390/ijms23116258

Pandya-Jones, A., Markaki, Y., Serizay, J., Chitiashvili, T., Mancia Leon, W.R., Damianov, A., Chronis, C., Papp, B., Chen, C.-K., McKee, R., Wang, X.-J., Chau, A., Sabri, S., Leonhardt, H., Zheng, S., Guttmann, M., Black, D.L., Plath, K., 2020. A protein assembly mediates Xist localization and gene silencing. Nature 587, 145–151. https://doi.org/10.1038/s41586-020-2703-0

Pease, B., Borges, A.C., Bender, W., 2013. Noncoding RNAs of the Ultrabithorax Domain of the Drosophila Bithorax Complex. Genetics 195, 1253–1264. https://doi.org/10.1534 genetics.113.155036

Postika, N., Metzler, M., Affolter, M., Müller, M., Schedl, P., Georgiev, P., Kyrchanova, O., 2018. Boundaries mediate long-distance interactions between enhancers and promoters in the Drosophila Bithorax complex. PLoS Genet 14, e1007702. https://doi.org/10.1371/journal.pgen.1007702

Postika, N., Schedl, P., Georgiev, P., Kyrchanova, O., 2021. Mapping of functional elements of the Fab-6 boundary involved in the regulation of the Abd-B hox gene in Drosophilamelanogaster. Sci Rep 11, 4156. https://doi.org/10.1038/s41598-021-83734-8

Rodriguez, J., Larson, D.R., 2020. Transcription in Living Cells: Molecular Mechanisms of Bursting. Annu Rev Biochem 89, 189–212. https://doi.org/10.1146/annurev-biochem-011520-105250

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji - an Open Source platform for biological image analysis. Nat Methods 9, 10.1038/nmeth.1529. 2019. https://doi.org/10.1038/nmeth.1529

Statello, L., Guo, C.-J., Chen, L.-L., Huarte, M., 2021. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22, 96–118. https://doi.org/10.1038/s41580-020-00315-9

Tunnacliffe, E., Chubb, J.R., 2020. What Is a Transcriptional Burst? Trends Genet 36, 288–297. https://doi.org/10.1038/s41576-019-00315-9

Ueberschär, M., Wang, H., Zhang, C., Kondo, S., Aoki, T., Schedl, P., Lai, E.C., Wen, J., Dai, Q., 2019. BENSolo factors partition active chromatin to ensure proper gene activation in Drosophila. Nat Commun 10, 5700. https://doi.org/10.1038/s41467-019-13558-8
Wang, K.C., Yang, Y.W., Liu, B., Sanyal, A., Corces-Zimmerman, R., Chen, Y., Lajoie, B.R., Protacio, A.,
Flynn, R.A., Gupta, R.A., Wysocka, J., Lei, M., Dekker, J., Helms, J.A., Chang, H.Y., 2011. A long
noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature
472, 120–124. https://doi.org/10.1038/nature09819

Wolle, D., Cleard, F., Aoki, T., Deshpande, G., Schedl, P., Karch, F., 2015. Functional Requirements for
Fab-7 Boundary Activity in the Bithorax Complex. Mol Cell Biol 35, 3739–3752.
https://doi.org/10.1128/MCB.00456-15

Zolotarev, N., Fedotova, A., Kyrchanova, O., Bonchuk, A., Penin, A.A., Lando, A.S., Eliseeva, I.A.,
Kulakovskiy, I.V., Maksimenko, O., Georgiev, P., 2016. Architectural proteins Pita, Zw5, and ZIPIC contain homodimerization domain and support specific long-range interactions in Drosophila.
Nucleic Acids Res 44, 7228–7241. https://doi.org/10.1093/nar/gkw371