Article

Abundance and Population Dynamics of the Key Insect Pests and Agronomic Traits of Tomato (*Solanum lycopersicon* L.) Varieties under Different Planting Densities as a Sustainable Pest Control Method

Khalid A. Asiry *,†, Md. Nurul Huda † and Magdi A. A. Mousa †

Sustainable Agriculture Research Group, Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P. O. Box. 80208, Jeddah 21589, Saudi Arabia

* Correspondence: kasiry@kau.edu.sa; Tel.: +966-551-110-507
† These authors equally contributed to the work.

Abstract: In Saudi Arabia, the tomato is susceptible to a wide range of insect pests that could destroy this valuable vegetable crop, cause yield losses, and affect fruit quality and quantity. Insecticides are widely applied to protect tomatoes and control pests that develop a resistance to pesticides, but these affect human health and have a negative impact on the environment. The application of Good Agriculture Practices (GAP) is a worthwhile sustainable alternative for controlling insect pests in tomato fields. To investigate the population dynamics of the major pests affecting tomato growth and yield, two commercial varieties (Areenez F1 and Tala F1) were cultivated at three plant spacings (30 × 50 cm, 60 × 50 cm, and 90 × 50 cm) under the conditions of the desert climate. The experiments were conducted in the field in 2020 and 2021 and were laid out in a Randomized Complete Block Design (RCBD) with each treatment repeated for 4 times. A total of 14 major insect pests including *Empoasca fabae*, *Bemisia tabaci*, *Orosius orientalis*, *Acheta domesticus*, and *Lasius niger* were recorded on a weekly basis. The results showed that the mean abundances of *E. fabae*, *O. orientalis*, and *B. tabaci* were higher in the 30 × 50 cm plant spacing, whereas the 90 × 50 cm plant spacing resulted in a higher abundance of *A. domesticus* and *L. niger*. The measured agronomic traits, plant height (cm), plant dry mass (g), and total yield/ha (ton) of both the tomato varieties were significantly increased when the plants were spaced at 60 cm between plants and 50 cm between rows. We recommend that growing tomato plants at 60 cm between plants and 50 cm between rows may reduce the need to apply pesticides given that this plant spacing significantly reduced the abundance of some key insect pests and enhanced the tomato fruit yield.

Keywords: solanaceae crops; plant spacing; IPM; sustainable production; pest control; fruit yield; GAP

1. Introduction

The tomato (*Solanum lycopersicon* L.), from the family Solanaceae, is one of the most important vegetable crops widely cultivated for both the fresh market and processing. Historically, tomatoes are known to originate from the Americas, particularly, Central and South, from Mexico to Peru, and Southern North America, [1]. Due to its high nutritional value in the human diet, the tomato is widely used as the major vegetable in many countries [2]. Tomatoes are rich in several vitamins and minerals [3,4] and these vitamins and beta-carotene act as antioxidants for the neutralization of the detrimental free radicals in the blood [2]. Globally, in 2020, the tomato was found to be the second largest vegetable crop after the potato with 5,051,983 hectares of cultivable land allocated for tomato growing, and the total yield was estimated at 186,821,216 metric tons [5]. Its high nutritional value and low market price means that the tomato is a popular vegetable crop in Saudi Arabia, grown...
both commercially and in home gardens. In 2020, Saudi Arabia dedicated 12,454 hectares of cultivable land to tomato growing with a total production of 3,18,614 metric tons [5].

However, the production of tomatoes has been affected by several abiotic and biotic factors. Crop infestation by several pests (insects, weeds, and diseases) is a major constraint that reduces yields and the quality of marketable fruit [6]. There are numerous key insect pests considered as the critical pests associated with tomato growth and productivity, including: whitefly, *Bemisia tabaci* (Gennadius) (Hemiptera: Aleyrodidae); jassid, *Empoasca fabae* (Harris) (Homoptera: Cicadellidae); tomato leaf miner, *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae); African bollworm, *Helicoverpa armigera* (Hubner) (Lepidoptera: Noctuidae); thrips, *Thrips tabaci* (Haliday) (Thysanoptera: Thripidae); and aphids (Hemiptera: Aphidoidea) [6,7]. Currently, insect pest control is solely dependent on pesticides, which have been used in agriculture for over a century to secure food production and have demonstrated their ability to increase the global food production [8], even though they pose known risks to human health and the environment. The continuous use of chemical pesticides has also resulted in the development of pest resistance and the annihilation of beneficial insects [8,9].

To overcome the human health problems of using pesticides to secure the growth and productivity of the tomato, it is highly recommended to follow sustainable production of tomatoes in the open field and under controlled agriculture, thus the application of pesticides would only be as a last resort [10]. An Integrated Pest Management (IPM) strategy is a global time-dependent issue, which includes: the combined application of cultural control, physical control, mechanical control, trap cropping, biological control, and the proper use of selective pesticides [8]. One of the promising and sustainable IPM procedures to control insect pests is the application of Good Agriculture Practices (GAP) in tomato fields. Adjusting the plant spacing is one of the appropriate GAP methods for pest control that also increases the utilization of space, light, and the uptake of nutrients to promote healthy and vigorous plants, ultimately leading to a high yield and a better quality of tomato production [11–13]. The abundance of the insect pest populations has been reported to be affected by crop plant spacing, and the severity of the insect pest infestation has been found to increase with the increase in planting density [11]. Several empirical studies have found higher insect pest populations at the lower plant spacings due to the higher amount of food availability for the pests compared to a higher plant spacing [11,14,15]. Moreover, the genetic diversity within a single crop could hinder the growth of herbivore pests and their survival [16]. However, to the best of our knowledge, no study has been conducted to investigate the effectiveness of plant spacing and plant diversity on the abundance of insect pests and their relationship with tomato production in Saudi Arabia.

Considering the above view of the economic importance of the tomato and the damage caused by its major insect pests, the current study aimed to investigate the effects of plant spacing, as a sustainable gap method, across two separate varieties of tomato on the abundance and temporal distribution of the main insect pests and their effects on growth and fruit yield of the two tomato varieties.

2. Materials and Methods
2.1. Field Site

The experimental site is located in at Hada Al-Sham (21°48′3″ N, 39°43′25″ E) Al-Jamoom, Saudi Arabia. The soil is sandy loam with a pH of 7.8 and an EC of 1.79 dsm-1 [17]. The soil characteristics are shown in Table 1.
Table 1. Soil physical and chemical properties of the experimental site at the Agriculture Research Station of King Abdulaziz University, Hada AlSham, Al-Jamoom, Saudi Arabia.

pH (Unit)	EC (ds/m)	Sandy Loam Soil Particle Size (%)	Organic Matter (%)	Organic Carbon (%)	Available Macro Nutrients (%)					
		Sand	Silt	Clay	Sand	Silt	Clay	N	P	K
7.83	1.79	84.21	14.05	1.74	0.453	0.500	0.215	0.070	0.781	

Total elements (mg/kg)	Cr	Pb	Ni	Cd	Mn	Fe	Ca (%)	Mg (%)	Cu	Zn	Na (%)
	0.11	4.21	0.52	0.06	144.44	239.40	1.38	1.15	4.78	32.98	0.14

2.2. Plant Materials

Seeds of two commercial tomato varieties “Areenez F1” (Enza Zaden, the Netherlands) and “Tala F1” (Sant Martí de Provençals, Barcelona) were obtained from the local market in Jeddah, Saudi Arabia.

2.3. Tomato Field Trials

Seedlings of the two tomato varieties were transplanted in December 2020 and 2021 at plant spacings of 30 × 50 cm (T1–126 plants/plot), 60 × 50 cm (T2–66 plants/plot), and 90 × 50 cm (T3–42 plants/plot) in experimental plots of 3 m × 7 m with 2 m intervals. The experiment was laid out in a Randomized Complete Block Design (RCBD) with four replications. The tomato plants were irrigated using a surface drip irrigation system designed and installed two weeks before the planting. The irrigation dripper capacity was 0.9 gallon/hour and the distance between each two drippers was 0.6 m. The irrigation system operated twice per day for 10 min each time to supply the plants with water. All recommended agricultural practices for growing tomatoes under arid conditions were applied [18].

2.4. Specimen’s Sampling Techniques

Two weeks after transplanting, the levels of the major tomato insect pests were monitored on a weekly basis. The sampling procedure for the collected insects is described in the following two sections (Sections 2.4.1 and 2.4.2).

2.4.1. Pitfall Trapping

The ground-dwelling insect pests were collected by the pitfall trap method as described by Thomas [19]. Two pitfall traps (9-cm-diameter × 10.8-cm-deep) were placed in each managed plot; one at the center of each plot, while another was placed about 10 cm from the edge of the plot. Each trap was filled with 50% propylene glycol and was deployed for one week. The pitfall traps were collected on a weekly basis and the insect pests were preserved in 70% ethanol for further observations [19].

2.4.2. Yellow Sticky Trap

Yellow sticky traps were used for collecting the different foliage-dwelling insect pests. One yellow sticky trap with nonpoisonous gum was placed in the middle of each experimental plot. The yellow sticky trap was collected on a weekly basis and conserved within a fridge at the Lab of Plant Protection, King Abdulaziz University, for further investigation.

2.5. Specimen Identification

The collected samples were enumerated and identified to the genus and species level using taxonomic keys [20–26].

2.6. Measurements

The plant height (cm) and plant dry mass (g) were measured at the end of the growing season using representative samples from each plot. The number and weight of fresh fruits
per plant were recorded every week until the end of the growing season and the data were used to calculate the total number of fruits/plant, the fruit yield, and the total fruit yield (ton/ha).

2.7. Data Analysis

The data captured by the pitfall traps and yellow sticky traps were subjected to an analysis of variance (ANOVA) using SAS version 9.2. The data were transformed by using the formula: \(\ln (N + 1) \), to reach the assumption of the normality and consistency of variance. Following this, a two-way ANOVA was employed to observe the effects of the plant spacing and variety on the mean population of the total number of the studied insects and the interaction between these two factors and the yield of tomatoes. The block was included as a covariate random effect and a post hoc Tukey’s test was conducted for pairwise comparisons among the treatment means, which showed significant effects [27].

To observe the temporal distribution of key insect pests, a separate repeated-measures ANOVA was conducted to evaluate the effect of the following factors: time (12 weeks), variety (two levels), plant spacing treatments (3 levels), and the interaction between these three factors on the mean abundance of the different pests. This design also added the block as a covariate random effect. A correlation analysis was performed using SAS version 9.2 to evaluate the relationship between the total number of pests and the agronomic traits of the tomato as two explanatory variables. Tables and figures were prepared from the untransformed means and standard errors to simplify the interpretation.

3. Results

3.1. Abundance of Insects Pests as Affected by Tomato Genotypes and Planting Spacing

Our findings showed that a total of 20,779 and 21,840 insects under the orders of Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera, Orthoptera, and Thysanoptera were collected from plots of the tomato varieties ‘Areenez F1’ and ‘Tala F1’, respectively (Table 2). The plant spacing significantly affected the mean abundance of jassid—\textit{Empoasca fabae} (Harris) (Hemiptera: Cicadellidae), brown leaf hopper—\textit{Orosius orientalis} (Matsumura) (Hemiptera: Cicadellidae), whitefly—\textit{Bemisia tabaci} (Gennadius) (Hemiptera: Aleyrodidae), house cricket—\textit{Acheta domesticus} (Linnaeus) (Insecta: Orthoptera: Gryllidae), and black garden ant—\textit{Lasius niger} (Linnaeus) (Hymenoptera: Formicidae). The mean abundance of \textit{E. fabae}, \textit{O. orientalis}, and \textit{B. tabaci} was higher at the plant spacing of 30 × 50 cm, while \textit{A. domesticus} and \textit{L. niger} were extremely abundant at the plant spacing of 90 × 50 cm.

Abundance of Pests	Total Number	F Values	\(\text{Mean} \pm \text{SE} \)		
\(30 \text{ cm} \)	\(60 \text{ cm} \)	\(90 \text{ cm} \)			
\textit{Empoasca fabae}	11359	12.37 **	1057.50 ± 29.09 a	915.50 ± 29.55 b	866.75 ± 23.95 b
\textit{Orosius orientalis}	1397	61.14 ***	133.50 ± 2.02 a	112.25 ± 1.65 b	103.50 ± 2.02 c
\textit{Bemisia tabaci}	5762	8.14 **	548.75 ± 18.85 a	458.75 ± 22.99 b	433.00 ± 21.57 b
\textit{Tuta absoluta}	254	0.63 N	18.25 ± 1.65 a	21.25 ± 1.70 a	24.00 ± 4.78 a
\textit{Nezara viridula}	236	3.53 N	22.75 ± 1.38 a	14.25 ± 1.11 a	22.00 ± 4.43 a
\textit{Heliothrips sp.}	91	0.97 N	7.50 ± 0.50 a	6.50 ± 1.04 a	8.75 ± 1.44 a
\textit{Neoceratitis cyanescens}	145	1.44 N	11.00 ± 0.41 a	12.50 ± 0.65 a	12.75 ± 1.11 a
\textit{Acheta domesticus}	462	13.15 **	29.50 ± 1.94 c	38.75 ± 3.45 b	47.25 ± 1.89 a
\textit{Melanoplus bispinatus}	294	1.09 N	23.25 ± 1.11 a	24.50 ± 1.55 a	25.75 ± 0.85 a
\textit{Trimerotropis pellidipennis}	61	0.56 N	4.25 ± 1.31 a	5.25 ± 0.25 a	5.75 ± 1.31 a
\textit{Melanoplus differentialis}	69	1.05 N	5.25 ± 0.63 a	5.50 ± 0.65 a	6.50 ± 0.65 a
\textit{Otiorhynchus sulcatus}	170	0.31 N	13.25 ± 1.49 a	14.25 ± 2.29 a	15.00 ± 1.00 a
Table 2. Cont.

Abundance of Pests	Total Number	F Values	Mean ± SE		
		30 cm	60 cm	90 cm	
Lasius niger	402	121.98 ***	23.75 ± 0.85 c	32.75 ± 0.85 b	44.00 ± 0.91 a
Leptysma marginicollis	77	0.73 N	7.00 ± 0.91 a	5.75 ± 0.48 a	6.50 ± 0.65 a

Variety Tala F1					
Empoasca fabae	12324	8.58 **	1136.00 ± 36.54 a	1012.50 ± 37.17 b	932.50 ± 29.13 b
Orosius orientalis	1417	159.30 ***	134.50 ± 1.32 a	114.25 ± 1.11 b	105.50 ± 1.04 c
Bemisia tabaci	5893	8.07 **	558.75 ± 20.56 a	470.00 ± 20.73 b	444.50 ± 20.61 b
Tuta absoluta	233	3.76 N	17.50 ± 1.19 a	15.50 ± 2.10 a	25.25 ± 3.82 a
Nezara viridula	253	1.67 N	19.00 ± 1.58 a	21.50 ± 1.44 a	22.75 ± 1.49 a
Heliothrips sp.	83	0.43 N	7.75 ± 1.11 a	6.50 ± 0.96 a	6.50 ± 0.87 a
Neoceratitis cyanescens	140	0.27 N	11.25 ± 0.75 a	11.75 ± 0.63 a	12.00 ± 0.82 a
Achetia domesticus	475	6.35 *	30.50 ± 2.78 b	39.75 ± 3.33 ab	48.25 ± 4.80 a
Melanoplus bispinosus	284	0.77 N	22.75 ± 1.11 a	23.75 ± 0.85 a	24.50 ± 1.04 a
Trimerotropis pellidipennis	70	3.79 N	4.00 ± 1.00 a	5.75 ± 1.03 a	7.75 ± 0.95 a
Melanoplus differentialis	77	1.08 N	5.75 ± 1.03 a	6.25 ± 0.63 a	7.25 ± 0.63 a
Otiorhynchus sulcatus	138	0.37 N	11.00 ± 1.41 a	11.00 ± 2.61 a	10.50 ± 1.26 a
Lasius niger	413	170.28 ***	24.50 ± 0.65 c	33.50 ± 0.65 b	45.25 ± 1.11 a
Leptysma marginicollis	80	3.46 N	7.25 ± 0.85 a	5.25 ± 0.48 a	7.50 ± 0.65 a

For F values * = significant at \(p < 0.05 \), ** = significant at \(p < 0.01 \), *** = significant at \(p < 0.001 \), N = non-significant.

The mean with same letter in each row are not significantly different \((p<0.05) \).

3.2. The Temporal Distribution of Insects as Affected by Tomato Genotypes and Plant Spacing

As shown in Figures 1 and 2, triple significant interactions between plant spacing treatments, tomato varieties, and time of sampling for the insects *O. orientalis* \((F_{22,143} = 3.33, \ p < 0.0001) \) and *N. viridula* \((F_{22,143} = 1.69, \ p < 0.0315) \) were observed.

For both tomato varieties, the highest population of *O. orientalis* was observed on 26 December 2020, at the 30 × 50 cm plant spacing, and it instantly decreased on 2 January 2021, and then increased again on 9 January 2021. After 9 January, the abundance of *O. orientalis* started to decrease within the three plant spacings until its further decline on 23 January, following which it started to increase again until its peak on 6 February, but with the plant spacing of 90 × 50 cm. *O. orientalis* sharply decreased on February 13 and kept a nearly straight-line trend until end of the cropping season on 13 March. The only exception was on 26 December 2020 for the tomato variety 'Tala', where the population of *O. orientalis* was extremely low (Figure 1).

For *Nezara viridula* (Linnaeus) (Hemiptera: Pentatomidae) in the three tested plant spacings, the first appearance was on 26 December 2020, after which it slightly increased on 9 January 2021, and its peak was on 27 February (Figure 2). Then, *N. viridula* gradually decreased until the end of the season for the higher plant spacing. For tomato variety 'Tala F1', the abundance of *N. viridula* appeared for the first time on 26 December 2020, and sharply increased until 9 January for the lower plant spacing, and the *N. viridula* population disappeared on 16 January for the higher plant spacings. *N. viridula* fluctuated for all plant spacings until 20 February 2021. The insect abundance sharply increased for plant spacings 30 × 50 cm and 60 × 50 cm until 6 March. Following this, the insect abundance decreased significantly for all three plant spacings until the end of the season on 27 February.
Figure 1. Temporal distribution of *Orosius orientalis* within three plant spacings (30 × 50 cm, 60 × 50 cm and 90 × 50 cm) of two tomato varieties [Areenez F1 (A) and Tala F1 (B)] (the mean of *Orosius orientalis*/week ± SE).
3.3. Tomato Agronomic Traits

The applied plant spacings strongly affected the measured growth and yield traits of both the tested tomato varieties, i.e., plant height (cm), no. of fruits/plant, fruit yield/plant (g), total yield/ha (ton), and dry mass/plant (g) (Table 3). For both varieties, the lower plant spacing (30 × 50 cm) enhanced the heights of the tomato plants. Higher numbers of fruits/plant, fruit yield/plant (g), and dry mass/plant (g) were observed at the highest plant spacing (90 × 50 cm), while the maximum fruit yield (ton/ha) was recorded at the plant spacing of 60 × 50 cm.
Table 3. Plant height (cm), number of fruits/plant, fruit yield/plant (g), total yield (ton/ha), and dry mass/plant (g) as affected by three plant spacings (30 × 50 cm, 60 × 50 cm, and 90 × 50 cm) in two tomato varieties during the winter season of 2020–2021.

Plant Spacing (T)	Plant Height (cm)	No. of Fruits/Plant	Fruit Yield/Plant (g)	Total Yield (ton/ha)	Dry Mass/Plant (g)
30 × 50 cm	76.50 ± 2.74 a	11.73 ± 0.75 c	671.54 ± 36.83 c	40.28 ± 2.21 b	82.19 ± 3.67 b
60 × 50 cm	69.50 ± 2.62 ab	21.85 ± 1.04 b	1691.87 ± 42.13 b	53.15 ± 1.32 a	103.99 ± 3.95 a
90 × 50 cm	65.75 ± 2.24 b	24.85 ± 1.55 a	1969.99 ± 104.24 a	39.38 ± 2.08 b	113.76 ± 5.48 a
F-test	*	*	***	***	***

LSD 7.6246 2.972 205.56 5.7505 12.482

Variety (V)

Variety	Plant Height (cm)	No. of Fruits/Plant	Fruit Yield/Plant (g)	Total Yield (ton/ha)	Dry Mass/Plant (g)
Areenez F1	69.75 ± 2.26 a	17.83 ± 1.71 b	1427.35 ± 178.20 a	43.73 ± 2.38 a	95.67 ± 4.75 a
Tala F1	71.42 ± 2.57 a	21.12 ± 1.01 a	1461.58 ± 175.46 a	44.81 ± 2.48 a	104.29 ± 5.55 a
F-test	NS	*	NS	NS	NS

LSD 6.2255 2.4266 167.84 4.6952 10.191

T x V

T x V	F-test
	NS

Means within each column followed by the same letter are not significantly different at level $p < 0.05$. (*) and (***), significant at $p < 0.05$ and $p < 0.001$, respectively; (NS), not significant.

3.4. Correlation between Insect Pests and Agronomic Traits of Tomatoes

The relationship between the insect pests and the agronomic traits of the tested tomato variety Areenez F1 is presented in Table 4. The data showed that *E. fabae* was negatively correlated with the number of fruits/plant at the 30 × 50 cm plant spacing. Also, *O. orientalis* exhibited a significant negative correlation with dry mass/plant (g) at the 30 cm plant spacing. A significant negative correlation was shown between the adult of *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae) and plant height (cm), fruit yield/plant (g), total yield/ha (ton), and dry mass/plant (g) at the 30 × 50 cm plant spacing. Moreover, *A. domesticus* exhibited a significant positive correlation with fruit yield/plant (g) and total yield/ha (ton) at the 60 × 50 cm plant spacing. However, *B. tabaci*, *N. viridula*, *Melanoplus bispinosus* (Scudder) (Orthoptera: Acrididae), and *L. niger* did not have any significant effect on the studied agronomic traits, i.e., plant height (cm), number of fruits/plant fruit yield/plant (g), total yield/ha (ton), and dry mass/plant (g) in the tomato variety Areenez F1.
Table 4. Correlation (r) between the insect pest population and the agronomic traits of the tomato variety ‘Areenez F1’, the plants were grown at three different plant spacings (30 × 50 cm, 60 × 50 cm and 90 × 50 cm) during the winter season of 2020–2021.

Pests	Plant Spacing	Agronomic traits				
		Plant Height	Number of	Fruit	Total	Dry Mass/
		(cm)	Fruits/Plant	Yield/Plant	Yield/Ha	Plant (g)
Empoasca fabae	30 cm	−0.42	−0.98 *	−0.66	−0.66	0.84
	60 cm	0.49	0.54	0.50	0.50	−0.73
	90 cm	−0.32	−0.73	−0.66	−0.66	0.57
Orosius orientalis	30 cm	0.141	−0.049	0.082	0.0815	−0.016 *
	60 cm	−0.130	0.647	0.601	0.6009	−0.484
	90 cm	−0.001	−0.580	−0.605	−0.6055	0.589
Bemisia tabaci	30 cm	0.75	−0.14	0.06	0.06	−0.02
	60 cm	−0.05	0.20	0.14	0.14	−0.62
	90 cm	−0.20	−0.80	−0.63	−0.63	0.49
Tuta absoluta	30 cm	−0.003 *	0.249	−0.021 *	−0.0208 *	−0.008 *
	60 cm	−0.171	−0.093	−0.113	−0.1128	−0.133
	90 cm	0.327	−0.819	−0.952	−0.9529	0.996
Nezara viridula	30 cm	−0.126	−0.529	−0.799	−0.8001	0.825
	60 cm	−0.822	0.035	0.032	0.0321	−0.756
	90 cm	0.594	−0.656	−0.691	−0.6905	0.665
Acheta domesticus	30 cm	0.295	0.887	0.293	0.2941	−0.571
	60 cm	0.058	0.023	0.010 *	0.0097 *	−0.002
	90 cm	−0.059	0.986	0.905	0.904	−0.784
Melanoplus bispinosus	30 cm	0.061	−0.147	0.034	0.034	0.8 × 10⁻⁵
	60 cm	0.061	−0.674	−0.625	−0.6246	0.372
	90 cm	−0.602	0.476	0.486	0.485	−0.453
Lasius niger	30 cm	0.219	0.250	0.590	0.5898	−0.547
	60 cm	−0.821	0.470	0.477	0.477	−0.983
	90 cm	0.959	−0.920	−0.435	−0.436	0.529

* = significant at p < 0.05

The relationship between the pests and the agronomic traits of the tomato variety Tala F1 is shown in Table 5. The total abundance of O. orientalis exhibited a significant positive correlation with dry mass/plant (g) at the 60 × 50 cm plant spacing. In addition, B. tabaci showed a significant positive correlation with dry mass/plant (g) at the 90 × 50 cm plant spacing. Moreover, N. viridula showed a significant positive relationship with plant height (cm) and the number of fruits/plant at the 90 × 50 cm and 60 × 50 cm plant spacings, respectively. Moreover, N. viridula exhibited a significant negative correlation with fruit yield/plant (g) and total yield/ha (ton) at the 60 × 50 cm plant spacing, but the total abundance of A. domesticus showed a significant positive correlation with fruit yield/plant (g) and total yield/ha (ton) at the 60 × 50 cm plant spacing. Finally, M. bispinosus exhibited a significant negative correlation with plant height (cm) at the 60 × 50 cm plant spacing. However, E. fabae, T. absoluta, and L. niger did not have any significant effect on the studied agronomic traits, i.e., plant height (cm), number of fruits/plant, fruit yield/plant (g), total yield/ha (ton), and dry mass/plant (g) in the tomato variety Tala F1.
'Tala F1', which are commercial cultivated varieties in Saudi Arabia, at three plant spacings × ‘Tala F1'; the plants were grown at three different plant spacings (30 cm, 60 cm and 90 cm) during the winter season of 2020–2021. The mean abundance of *Neoceratitis cyanescens* (Thripidae), *B. tabaci* (Hemiptera: Aleyrodidae), and *O. orientalis* (Diptera: Tephritidae), was not significantly different for both tested tomato varieties was highly affected by the applied plant spacings. In both tomato varieties, the mean abundance of *E. fabae* was higher in the 30 cm plant spacing, whereas the mean abundance of *A. domesticus* was higher in the 90 cm plant spacing. Moreover, the total cumulative mean abundance of *T. absoluta*, *Heliothrips* sp. (Bouche) (Thysanoptera: Thripidae), *Neoceratitis cyanescens* (Bouche) (Diptera: Tephritidae), *M. bispinosus*, *Trimerotropis pallidipennis* (Burmeister) (Orthoptera: Acrididae), *Melanoplus differentialis* (Thomas) (Orthoptera: Acrididae), *Otiorhynchus sulcatus* (Fabricius) (Coleoptera: Curculionidae), and *Leptysma marginicollis* (Serville) (Orthoptera: Acrididae) was not significantly different between the three plant spacing treatments used and the two tested tomato varieties. These findings were in line with the results of Arif et al. [28] and Momtaz et al. [29], who observed the highest population of *B. tabaci*, *T. tabaci*, and *Amrasca devastans* in a cotton crop with narrow plant spacings. Mesbah et al. [30] also observed the highest number of *B. tabaci*

Pests	Plant Spacing	Plant Height (cm)	No. of Fruits/Plant	Fruit Yield/Plant (g)	Total Yield (ton/ha)	Dry Mass/Plant (g)
Empoasca fabae	30 cm	−0.10	0.89	0.77	0.77	−0.14
	60 cm	−0.79	−0.82	−0.89	−0.89	−0.01
	90 cm	0.009	0.64	0.61	0.61	0.17
Orosius orientalis	30 cm	0.388	−0.760	−0.828	−0.828	−0.083
	60 cm	0.694	−0.059	−0.002	−0.002	0.003 *
	90 cm	−0.427	−0.122	−0.238	−0.239	0.099
Bemisia tabaci	30 cm	−0.10	0.89	0.77	0.77	−0.14
	60 cm	−0.71	−0.14	−0.14	−0.45	0.55
	90 cm	0.26	−0.49	−0.47	−0.47	0.95 *
Tuta absoluta	30 cm	−0.172	−0.362	−0.132	−0.131	0.148
	60 cm	−0.693	−0.61	−0.731	−0.731	−0.002
	90 cm	0.323	−0.664	−0.502	−0.501	0.726
Nezara viridula	30 cm	0.958	−0.024	−0.184	−0.185	−0.496
	60 cm	0.178	0.003 *	−0.015 *	−0.015 *	0.943
	90 cm	0.006 *	0.983	0.981	0.981	−0.197
Acheta domesticus	30 cm	0.138	0.149	0.068	0.068	−0.895
	60 cm	0.397	−0.024	0.021 *	0.021 *	−0.254
	90 cm	−0.8 E−05	−0.988	−0.975	−0.975	0.359
Melanoplus bispinosus	30 cm	0.068	0.639	0.376	0.375	−0.509
	60 cm	−0.012 *	0.706	0.707	0.707	−0.244
	90 cm	−0.067	−0.914	−0.981	−0.981	0.125
Lasius niger	30 cm	−0.618	−0.083	−0.6 × 10⁻⁶	−0.2 × 10⁻⁶	0.508
	60 cm	−0.580	−0.002	0.2 × 10⁻⁵	0.2 × 10⁻⁵	−0.592
	90 cm	−0.002	−0.994	−0.987	−0.986	0.290

* = significant at *p* < 0.05

4. Discussion

Plant density is one of the most important Good Agriculture Practices (GAP) that can be a significant variable associated with the abundance of insect pests and crop production [11–13]. Therefore, we planted seedlings of two tomato varieties, ‘Areenze F1’ and ‘Tala F1’, which are commercial cultivated varieties in Saudi Arabia, at three plant spacings to investigate the abundance and population dynamics of insect pests and their relationship with the crop growth and productivity. The mean abundance of *E. fabae*, *O. orientalis*, *B. tabaci*, *A. domestica*, and *L. niger* for both tested tomato varieties was highly affected by the applied plant spacings. In both tomato varieties, the mean abundance of *E. fabae*, *O. orientalis*, and *B. tabaci* was higher in the 30 × 50 cm plant spacing, whereas the mean abundance of *A. domestica* and *L. niger* was higher in the 90 × 50 cm plant spacing. Moreover, the total cumulative mean abundance of *T. absoluta*, *Heliothrips* sp. (Bouche) (Thysanoptera: Thripidae), *Neoceratitis cyanescens* (Bezzi) (Diptera: Tephritidae), *M. bispinosus*, *Trimerotropis pallidipennis* (Burmeister) (Orthoptera: Acrididae), *Melanoplus differentialis* (Thomas) (Orthoptera: Acrididae), *Otiorhynchus sulcatus* (Fabricius) (Coleoptera: Curculionidae), and *Leptysma marginicollis* (Serville) (Orthoptera: Acrididae) was not significantly different between the three plant spacing treatments used and the two tested tomato varieties. These findings were in line with the results of Arif et al. [28] and Momtaz et al. [29], who observed the highest population of *B. tabaci*, *T. tabaci*, and *Amrasca devastans* in a cotton crop with narrow plant spacings. Mesbah et al. [30] also observed the highest number of *B. tabaci*
(Genn.), *Aphis gossypii* (Glov.), *Empoasca lybica debarg*, and *Thrips tabaci*, at a narrow plant spacing (25 x 59.16 cm), while the lowest abundance of these insects was observed at a wider plant spacing (50 x 118.32 cm). Also, the low plant spacings (an increased plant density) enhanced the abundance of jassid, whitefly, and thrips in cotton [31,32], *Tetranychus urticae* in cucumber [33], *B. tabaci* in cucumber [34], sunflower beetle, spittlebug, stem borer, and *P. cordata* in sunflower [11], sweet potato [35], sweet pea [36], and cotton [37]. On the other hand, the highest numbers of sucking insects were observed in the high planting density, while the lowest numbers were observed in the low planting density, which might be due to the high amount of food availability in the high planting density treatments and the lower amount of food availability in the low planting density treatments [11,15]. Solangi et al. [38] reported that the jassid and whitefly populations showed a significant difference in abundance among various studied tomato genotypes, which contrasted with our findings, and might be due to the genetic background and growth habit of the tested tomato varieties. Similarly, higher abundances at lower plant densities (higher planting spaces) were observed for *B. tabaci* in cucurbit varieties [39], and common bean [40], and for whitefly, jassid, thrip, and red-spider mite in cotton [41], thrips and whitefly in cotton [37], and for jassid among okra genotypes [42].

Plant spacing is one of the most important factors, which significantly affects the growth, development, and yield of tomatoes. The appropriate planting density increases the utilization of space, light, and the uptake of nutrients, leading to the high yield and better quality of tomato production [12,13]. The results of our study revealed that for both tested tomato varieties, the maximum yield (ton/ha) was observed when tomato plants were spaced at 60 cm between plants and 50 cm between rows, while the tallest plants were at the 30 x 50 cm plant spacing. The maximum fruits/plant, yield/plant (g), and dry mass/plant (g) were recorded for the plant spacing of 90 x 50 cm. It has been reported that planting tomatoes at 20 cm between plants and 25 cm between rows significantly increased the plant heights, while the maximum yield/plant was obtained at a plant spacing of 30 cm X 35 cm [43]. Our results are partially supported by the findings of Guade [44], Maboko and Du Plooy [45], and Tuan and Mao [46], who reported that a higher plant density gave the minimum yield and a lower plant density gave the highest yield of tomatoes. Moreover, Falodun and Emede [47] reported higher yields (ton/ha) of tomatoes at the 75 x 40 cm plant spacing and 75 x 50 cm plant spacing than that at the 75 x 60 cm plant spacing.

Our results indicated that both tomato varieties differed significantly in the number of fruits/plant, where ‘Tala F1’ produced the highest number of fresh fruits/plant. Additionally, plants of the tomato variety ‘Tala F1’ showed the maximum heights (cm), dry mass (g), fruit yield/plant (g), and total yield (ton/ha) where the differences were not significant. Overall, adjusting plant spacing, as one of the Good Agriculture Practices (GAP), can be considered a sustainable eco-friendly method to reduce the abundance of important insect pests in tomato fields, and thus reduce the reliance on chemical pesticides which leads to the remission of their global risks to human health and the environment.

5. Conclusions

Our study focused on plant spacing, as a Good Agriculture Practice, a sustainable control method of the key insect pests in two tomato varieties ‘Tala F1’ and ‘Areenze F1’, which are widely cultivated in Saudi Arabia. We found that growing tomatoes at a plant spacing of 60 x 50 cm partially discouraged the development of the most abundant pest populations in the tomatoes and produced the maximum yield of fresh fruit. This may add some information for use in the IPM programs, specifically under organic farming for controlling tomato insect pests in Saudi Arabia. We conclude that growing tomatoes at 60 cm between plants and 50 cm between rows may reduce the need to apply pesticides given that this plant spacing significantly reduced the abundance of several key insect pests and enhanced tomato fruit yield.
Author Contributions: Conceptualization, M.N.H., K.A.A. and M.A.A.M.; methodology, M.N.H.; software, M.N.H.; formal analysis, M.N.H.; data curation, M.N.H., M.A.A.M. and K.A.A.; writing—original draft preparation, M.N.H.; writing—review and editing, K.A.A. and M.A.A.M.; visualization, M.N.H.; supervision, K.A.A. and M.A.A.M.; project administration, K.A.A. All authors have read and agreed to the published version of the manuscript.

Funding: The research was funded by the Deanship of Scientific Research (DSR) of King Abdulaziz University, Jeddah, Saudi Arabia.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: This study was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia under Grant no. RG-2-155-43. Therefore, the authors acknowledged the administrative, technical, and financial support by DSR, King Abdulaziz University, Jeddah, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Warnock, S.J. National habitats of lycopersicon species. Hortscience 1991, 26, 466–471. [CrossRef]
2. Alam, M.S.; Huda, M.N.; Rahman, M.S.; Azad, A.K.M.; Rahman, M.M.; Molla, M.M. Character association and path analysis of tomato (Solanum lycopersicum L.). J. Biosci. Agric. Res. 2019, 22, 1815–1822. [CrossRef]
3. Huda, M.N.; Jahan, T.; Taj, H.F.E.; Asiry, K.A. A Newly Emerged Pest of Tomato [Tomato Leaf Miner, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae): In Bangladesh—A Review on Its Problems and Management Strategies. J. Agric. Ecol. Res. Int. 2020, 21, 1–16. [CrossRef]
4. Bugti, G.A. Varietal Preference of Insect Pests on Tomato Crop in District Naseerabad Balochistan Pakistan. J. Entomol. Zool. Stud. 2016, 4, 328–330.
5. FAOSTAT. FAOSTAT Statistical Database. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 25 September 2022).
6. Ofori, E.S.K.; Yeboah, S.; Nunoo, J.; Quarтеу, E.K.; Torgby-Tetteh, W.; Gasu, E.K.; Ewusie, E.A. Preliminary studies of insect diversity and abundance on twelve accessions of tomato, Solanum lycopersicum L. grown in a coastal Savannah Agro-ecological zone. J. Agric. Sci. 2014, 6, 72–82. [CrossRef]
7. Mungai, J.; Ouko, J.; Heiden, M. Processing of Fruits and Vegetables in Kenya; Printed by Agricultural Information Centre: Nairobi, Kenya, 2000.
8. Thomine, E.; Mumford, J.; Rusch, A.; Desneux, N. Using crop diversity to lower pesticide use: Socio-ecological approaches. Sci. Total Environ. 2022, 804, 150156. [CrossRef]
9. Matthews, G.A. Attitudes and behaviours regarding use of crop protection products—A survey of more than 8500 smallholders in 26 countries. J. Crop Prot. 2008, 27, 834–846. [CrossRef]
10. Son, D.; Somda, I.; Legreve, A.; Schiflers, B. Effect of plant diversification on pest abundance and tomato yields in two cropping systems in Burkina Faso: Farmer practices and integrated pest management. Int. J. Biol. Chem. Sci. 2018, 12, 101–119. [CrossRef]
11. Akinkunmi, O.Y.; Akintoye, H.A.; Umeh, V.C.; AdeOluwa, O.O. Influence of spacing on the feeding activities of major pests of sunflower and their associated damage. Agric. Biol. J. N. Am. 2012, 3, 233–236. [CrossRef]
12. Amare, G.; Gebremedhin, H. Effect of Plant Spacing on Yield and Yield Components of Tomato (Solanum lycopersicum L.) in Shewarobit, Central Ethiopia. Scientifica 2020, 2020, 8357237. [CrossRef] [PubMed]
13. Ara, N.; Bashar, M.; Begum, S.; Kakon, S. Effect of spacing and stem pruning on the growth and yield of tomato. Int. J. Sustain. Crop Prod. 2007, 2, 35–39.
14. Asghar, M.; Hassan, T.; Arshad, M.; Aziz, A.; Latif, M.T.; Sabir, A.M. Effect of plant spacing on incidence of rice planthoppers in transplanted rice crop. Int. J. Trop. Insect Sci. 2021, 41, 575–585. [CrossRef]
15. Sorouj, R.; Raja, N. Effect of nitrogen fertilizer levels and spacing on rice gall midge and leaf folder damage. Int. Rice Res. Newsl. 1982, 7, 10.
16. Wetzel, W.C.; Kharouba, H.M.; Robinson, M.; Holyoak, M.; Karban, R. Variability in plant nutrients reduces insect herbivore performance. Nature 2016, 539, 425–427. [CrossRef] [PubMed]
17. Mousa, M.A.A.; Al-Qurashi, A.D. Growth and yield of cowpea (Vigna unguiculata L.) cultivars under water Deficit at different growth stages. Legum. Res. 2018, 41, 702–709. [CrossRef]
18. Mousa, M.A.A.; Al-Qurashi, A.D.; Bakhshawain, A.A.S. Response of tomato genotypes at early growing stages to irrigation water salinity. J. Food Agric. Environ. 2013, 11, 501–507.
19. Thomas, D.B. Nontoxic Antifreeze for Insect Traps. Entomol. News 2008, 119, 361–365. [CrossRef]
20. Blatchley, W.S. An Illustrated Descriptive Catalogue of the Coleoptera or Beetles (Exclusive of the Rhynchophora) Known to Occur in Indiana: With Bibliography and Descriptions of New Species; Nature Pub. Co.: Indianapolis, Indiana, 1910; p. 1386. [CrossRef]
21. Borrer, D.J.; White, R.E. A Field Guide to Insects: America North of Mexico; Houghton Mifflin Company: Boston, MA, USA, 1970; Volume 19.

22. Brues, C.T.; Melansder, A.L. Classifications of Insects; Harvard College: Cambridge, MA, USA, 1932; p. 673.

23. Choate, P.M. Introductions to the Identifications of Insects and Related Arthropods; 2003; pp. 1–13. Available online: https://entnemdept.ufl.edu/choate/insectid.pdf (accessed on 25 September 2022).

24. Gibb, P.T.; Oseto, C. Insect Collections and Identifications; Academic Press Publishing: London, UK, 2019; p. 354.

25. Richards, O.W.; Davies, R.G. Imms’ General Textbook of Entomology: Classification and Biology, 10th ed.; Chapman and Hall: London, UK, 1977; Volume 2.

26. Westwood, J.O. An Introductions to the Moderns Classifications of Insects; London, Longman, Orme, Brown, Green, and Longmans: London, UK, 1840; p. 599.

27. Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed.; McGraw Hill Book Co.: Singapore, 1984; pp. 207–208.

28. Arif, M.J.; Gogi, M.D.; Mirza, M.; Zia, K.; Hafeez, F. Impact of Plant Spacing and Abiotic Factors on Population Dynamics of Sucking Insect Pests of Cotton. Pak. J. Biol. Sci. 2006, 9, 1364–1369. [CrossRef]

29. Mohamed, S.O.S. Effects of Cotton Plant Spacing on Insect Infestation, Natural Enemies and Yield, Gezira State, Sudan. Master’s Dissertation, University of Gezira, Wad Madani, Sudan, 2017.

30. Alvi, A.; Iqbal, N.; Iqbal, J.; Ali, K.; Shahid, M.; Jaleel, W.; Khan, H.; Khan, T. Population Dynamics of Whitefly and Thrips under the Irrigated Conditions of East Gojjam Zone, Ethiopia. Int. J. Sci. Basic Appl. Res. 2017, 17, 174–178. [CrossRef]

31. Mohamed, M.A.; El-Aassar, M.R.; Mourad, A.A. Effect of planting dates and spaces on the infestation of cucumber varieties with two-spotted spider mite, Tetramychus urticae Koch. Menoufja J. Plant Prot. 2017, 2, 249–256. [CrossRef]

32. Singh, H.; Kaur, P.; Mukherjee, J. Impact of weather parameters and plant spacing on population dynamics of sucking pests of cotton in south western Punjab. J. Agric. Phys. 2015, 15, 167–174.

33. Mohamed, M.A.; El-Aassar, M.R.; Mourad, A.A. Effect of planting dates and spaces on the infestation of cucumber varieties with two-spotted spider mite, Tetramychus urticae Koch. Menoufja J. Plant Prot. 2017, 2, 249–256. [CrossRef]

34. Mohamed, M.A. Impact of planting dates, spaces and varieties of infestation of cucumber plants with whitefly, Bemisia tabaci (Genn.). J. Basic Appl. Zool. 2012, 65, 17–20. [CrossRef]

35. Abd El-Malak, V.S.G.; Salem, A.A. Influence of planting spaces and hybrid on the population of six arthropods attacking sweet potato plant. Ann. Agric. Moshtohor. 2002, 40, 1797–1806.

36. Emam, A.K.; Hegab, M.F.A.H.; Tantawy, M.A.M. Effect of planting space and date on the population densities of certain insect pests infesting sweetpea plants at Qalyobia Governorate. Ann. Agric. Sci. Moshtohor. 2006, 44, 299–308.

37. Alvi, A.; Iqbal, N.; Iqbal, J.; Ali, K.; Shahid, M.; Jaleel, W.; Khan, H.; Khan, T. Population Dynamics of Whitefly and Thrips under Different Row Spacing and Plant Density Conditions in a Cotton Field of Punjab, Pakistan. Pak. J. Zool. 2021, 53, 685. [CrossRef]

38. Solangi, B.K.; Khoso, F.N.; Shafique, M.A.; Ahmed, A.M.; Gilal, A.A.; Talpur, M.M.A.; Dhiloo, K.H. Host plant preference of sucking pest complex to different tomato genotypes. J. Entomol. Zool. Stud. 2017, 5, 293–297.

39. Amro, M.A.R.M. Population fluctuation of certain arthropod pests inhabiting selected cucurbit varieties and their resistance status to the main sap sucking pests. Egypt. J. Agric. Res. 2008, 36, 697–709.

40. El-Lakwah, F.A.; El-Khayat, E.F.; Rady, G.H.H.; Monia, M.A.; Wahba, B.S. Impact of varieties on infestation of common bean plants with pests. Egypt. J. Entomol. Res. 2010, 88, 1121–1140. [CrossRef]

41. Majeed, M.Z.; Javed, M.; Riaz, M.A.; Afzal, M. Population Dynamics of Sucking Pest Complex on Some Advanced Genotypes of Cotton under Unsprayed Conditions. Pak. J. Zool. 2016, 48, 475–480. [CrossRef]

42. Iqbal, J.; Hasan, M.; Ashfaq, M.; Sahi, S.T.; Ali, A. Screening of okra genotypes against jassid, anuracis biguttula biguttula (ishida) (homoptera: Cicadellidae). Pak. J. Agric. Sci. 2008, 45, 448–451.

43. Hussen, S.; Kemal, M.; Wase, M. Effect of Intra-row Spacing on Growth and Development of Tomato (Lycopersicum esculentum Mill.) Var. Roma VF, at the experimental site of Wollo University, South Wollo, Ethiopia. Int. J. Sci. Basic Appl. Res. 2013, 10, 19–24.

44. Guade, Y.F. Effect of Intra-Row Spacing on Growth and Development of Tomato (Solanum lycopersicum L.) Variety Roma-VF under the Irrigated Conditions of East Gojjam Zone, Ethiopia. Am. Eurasian J. Agric. Environ. Sci. 2017, 17, 174–178. [CrossRef]

45. Maboko, M.M.; Du Plooy, C.P. Response of Field-Grown Indeterminate Tomato to Plant Density and Stem Pruning on Yield. Int. J. Veg. Sci. 2018, 24, 612–621. [CrossRef]

46. Tuan, N.; Mao, N. Effect of Plant Density on Growth and Yield of Tomato (Solanum lycopersicum L.) at Thai Nguyen, Vietnam. Int. J. Plant Soil Sci. 2015, 7, 357–361. [CrossRef]

47. Falodun, E.J.; Emede, T.O. Influence of plant spacing on the growth and yield of tomato (Lycopersicon esculentum Mill.) Varieties. Agrosearch 2019, 19, 46–58. [CrossRef]