ARTICLE

Associations between Body Mass Index and Breast Cancer Markers

Ishita Saha1 Poonam Singh2 Sunit Kumar Medda3 Rabindra Nath Das4*

1. Department of Physiology, Calcutta Medical College and Hospital, Kolkata, W.B., India
2. Department of Statistics, University of Delhi, Delhi, India
3. Kalyani J.N.M. Hospital, Kalyani, Nadia, West Bengal, India
4. Department of Statistics, The University of Burdwan, Burdwan, West Bengal, India

ARTICLE INFO

Article history
Received: 22 April 2020
Accepted: 18 June 2020
Published: 30 June 2020

Keywords:
Adiponectin
Breast cancer biomarkers
BMI
Leptin
Resistin
Joint mean variance modeling

ABSTRACT

Body mass index (BMI) and breast cancer biomarkers (BCBs) such as resistin, leptin adiponectin, monocyte chemoattractant protein-1 (MCP-1) and homeostasis model assessment of insulin resistance (HOMA-IR) are highly associated with each other. The report has focused the inter-relationship between BMI and BCBs based on probabilistic modeling. It has been shown that mean BMI is directly associated with leptin (P<0.0001) and MCP-1 (P=0.0002), while it is inversely associated with adiponectin (P=0.0003), HOMA-IR (P<0.0001), and it is higher for healthy women (P=0.0116) than breast cancer women. In addition, variance of BMI is inversely associated with resistin (P=0.1450). On the other hand, mean MCP-1 is directly associated with BMI (P<0.0001). Mean resistin is directly associated with the interaction effect of BMI and leptin (BMI*Leptin) (P=0.0415), while its variance is directly associated with BMI (P=0.0942), and it is inversely associated with BMI*Adiponectin (P=0.1518). Leptin is directly associated with BMI (P<0.0001). Also adiponectin is inversely associated with BMI (P=0.0001), BMI*Leptin (P=0.0415), while its variance is directly associated with BMI (P=0.0942), and it is inversely associated with BMI*Adiponectin (P=0.1518). Leptin is directly associated with BMI (P=0.0001). Also adiponectin is inversely associated with BMI (P=0.0001), BMI*Leptin (P=0.1729), while it is directly associated with Age*BMI (P=0.0017) and BMI*Resistin (P=0.0615). It can be concluded that BMI and BCBs are strongly associated with each other. Care should be taken on BMI for breast cancer women.

1. Introduction

BMI has been a fundamental psychosocial issue among human beings for millennia. It is a composite measure of height and weight, which is defined as BMI= Weight(kg) / Height(m²). An individual fatness index is measured by BMI. It is considered as the risk factor for the growth of many diseases such as breast cancer, diabetes, cardiovascular diseases, etc. [1-5]. In general, BMI less than or equal to 25 kg/m² is treated as the normal, otherwise it is considered as obesity.

Excess weight has been associated with a variety of cancers such as postmenopausal breast, colon, renal, esophageal, endometrial etc. The International Research Agency on Cancer has predicted that BMI causes 9% of breast cancer, 25% of renal cancer, 11% of colon cancer, 39% of endometrial cancer, and 37% of esophageal cancer [6]. Calle et al. [7] pointed that BMI was associated with a greater risk of death from 14 cancers such as esophagus, liver, colon and rectum, gallbladder, kidney, pancreas, non-Hodgkin
lymphoma, stomach, multiple myeloma, breast, prostate, cervix, uterus, and ovary, and it was predicted that BMI may account for 20% of all cancer deaths in women and 14% in men [7].

BMI is a well-known risk factor for postmenopausal breast cancer, whereas debatable outcomes have been presented in premenopausal women [8-10]. A large sample meta-analysis reported an inverse association between BMI and the chance of premenopausal breast cancer [11]. Recently, two large prevention data studies have shown that premenopausal women with higher BMI are at increased risk for growing breast cancer [12,13].

The relationships between BMI and BCBs are still contradictable [8,9,11,14-16]. These can be studied based on statistical modeling of BMI on the BCBs such as leptin, resistin, adiponectin and MCP-1 and other explanatory variables. Again, each BCB should be modeled on BMI and other explanatory variables. The current report focuses the associations between BMI and BCBs based on modeling of BMI, MCP-1, adiponectin, resistin, and leptin. For a data set given in [17,18], these models have been studied in [19-23]. From these models, the relationships between BMI and BCBs are reported in the current article.

2. Materials and Methods

2.1 Materials

The data set can be found in the UCI Machine Learning Repository, and its detailed description is given in [17,18]. For immediate using of the covariates in the report, these are restated as BMI (kg/m\(^2\)), Age, HOMA-IR, Insulin (μU/mL), Glucose (mg/dL), Adiponectin (μg/mL), Resistin (ng/mL), MCP-1, Leptin(ng/mL), Types of Patient (TYOP) (1=healthy controls; 2=patients).

2.2 Statistical Methods

The considered data set given in [17,18] is a multivariate data set. The interested responses are BMI, resistin, MCP-1, adiponectin, leptin which are all positive continuous heterogeneous and non-normally distributed. These are required to be modeled herein. These can be appropriately modeled using joint generalized linear models (JGLMs) adopting both the Log-normal and Gamma distributions, which are clearly given in [24-26]. Both the JGLMs under the Log-normal and Gamma distributions are very shortly given in recent articles [22-23], which are not reproduced herein. For more discussions on JGLMs, readers can visit [24,25].

2.3 Statistical and Graphical Analysis

For ready reference, first we examine BMI model on age, insulin, glucose, and BCBs. The detailed analysis is given by Das et al. [19]. It is mentioned herein that BMI and BCBs such as MCP-1, resistin, leptin and adiponectin can be modeled adopting JGLMs under both the Log-normal & Gamma distributions [24-26]. Log-normal JGLMs fit of BMI is better than the Gamma fit, which is presented in Table 1, and its fitting diagnostic is revealed in Figure 1. Figure 1(a) displays the absolute residuals plot against the predicted BMI values, which is closely a flat straight line, implying that variance is constant with the running means. Figure 1(b) represents the normal probability plot of the fitted BMI mean Log-normal model in Table 1. No lack of fit is identified in both the figures. So, Log-normal fitted BMI model (Table 1) is an approximate form of its true model. Fitted BMI mean & dispersion models are as follows:

Fitted Log-normal BMI mean (\(\hat{Z}\)) model (from Table 1) is

\[
\hat{Z} = \log(\text{BMI}) = 3.0370 - 0.0421 \text{HOMA-IR} + 0.0015 \text{Glucose} + 0.0123 \text{Insulin} - 0.0068 \text{Adiponectin} + 0.0001 \text{MCP-1} + 0.0053 \text{Leptin} - 0.0708 \text{TYOP},
\]

and the BMI fitted Log-normal variance (\(\hat{\sigma}^2\)) model is

\[
\hat{\sigma}^2 = \exp(-4.445 - 0.018 \text{Insulin} - 0.019 \text{Resistin} + 0.015 \text{Age}).
\]
Biomarker MCP-1 analysis is given by Kim et al. [20], and for ready reference it is reproduced in Table 2. Fitted MCP-1 mean & dispersion models are as follows:

MCP-1 Gamma fitted mean ($\hat{\mu}$) model (from Table 2) is

$$\hat{\mu} = \exp(5.1791 - 0.0265 \text{Insulin} + 0.0455 \text{BMI} - 0.0192 \text{Leptin} + 0.0009 \text{Insulin} \times \text{Leptin})$$

and MCP-1 Gamma fitted dispersion ($\hat{\sigma^2}$) model (from Table 2) is

$$\hat{\sigma^2} = \exp(0.7374 - 0.0868 \text{Insulin} - 0.0293 \text{Age} + 0.0553 \text{Glucose} - 0.0997 \text{Leptin} - 0.0405 \text{Resistin} + 0.0007 \text{Glucose} \times \text{Leptin} + 0.0010 \text{Leptin} \times \text{Resistin})$$

Table 1. Results for mean and dispersion models for BMI from Log-Normal and Gamma fit

Model	Covariates	Log-normal	Gamma						
		Estimate	s.e.	t-value	P-Value	Estimate	s.e.	t-value	P-Value
Mean	Constant	3.0370	0.08363	36.3122	<0.0001	3.0460	0.08367	36.4013	<0.0001
	Glucose (x3)	0.0015	0.000843	1.7961	0.0753	0.0016	0.00085	1.8502	0.0670
	Insulin (x4)	0.0123	0.00338	3.8502	0.0002	0.0121	0.00318	3.8281	0.0002
	HOMA-IR (x5)	-0.0421	0.01033	-4.0823	<0.0001	-0.0421	0.01019	-4.1333	<0.0001
	Leptin (x6)	0.0053	0.00063	8.2341	<0.0001	0.0052	0.00065	8.0953	<0.0001
	Adiponectin (x7)	-0.0068	0.001843	-3.7363	0.0003	-0.0068	0.00186	-3.6552	0.0004
	MCP-1 (x9)	0.0001	0.00005	3.8724	0.0002	0.0001	0.00006	3.7272	0.0003
	Patient’s typ (Fx10)	-0.0708	0.02758	-2.5681	0.0116	-0.0699	0.02768	-2.5241	0.0130
Dispersion	Constant	-4.445	0.7261	-6.1224	<0.0001	-4.358	0.7167	-6.0821	<0.0001
	Age (x1)	0.015	0.0107	1.3652	0.1751	0.013	0.0108	1.2652	0.2085
	Resistin (x8)	-0.019	0.0132	-1.4683	0.1450	-0.020	0.0134	-1.5082	0.1344
	Insulin (x4)	-0.018	0.0156	-1.1764	0.2413	-0.019	0.0157	-1.2233	0.2239

AIC= 613.9 AIC=615.062

Biomarker adiponectin analysis is given by Das and Lee [21], and for ready reference it is reproduced in Table 3. Fitted adiponectin mean & dispersion models are as follows.

Adiponectin Gamma fitted mean ($\hat{\mu}$) model (from Table 3) is

$$\hat{\mu} = \exp(6.7778 - 0.1475 \text{BMI} - 0.0617 \text{Age} + 0.0020 \text{Age} \times \text{BMI} - 0.0662 \text{Resistin} + 0.0282 \text{Leptin} + 0.0018 \text{BMI} \times \text{Resistin} - 0.0008 \text{BMI} \times \text{Leptin})$$

and Adiponectin Gamma fitted variance ($\hat{\sigma^2}$) model (from Table 3) is

$$\hat{\sigma^2} = \exp(-2.318 + 0.017 \text{Age})$$
Table 3. Results for mean and dispersion models for Adiponectin from Log-Normal and Gamma fit

Model	Covariate	Log-normal fit	Gamma fit						
		Estimate	S.E.	t-value	P-value	Estimate	S.E.	t-value	P-value
Mean	Constant	6.8667	1.0012	6.858	<0.0001	6.7778	0.9853	6.879	<0.0001
	Age (x1)	-0.0627	0.0178	-3.525	0.0006	-0.0617	0.0174	-3.550	0.0006
	BMI (x2)	-0.1512	0.0367	-4.122	<0.0001	-0.1475	0.0361	-4.087	<0.0001
	AGE*BMI	0.0020	0.0006	3.067	0.0027	0.0020	0.0006	3.214	0.0017
	Leptin (x6)	0.0217	0.0184	1.179	0.2409	0.0282	0.0180	1.566	0.1202
	Resistin (x8)	-0.0701	0.0296	-2.371	0.0195	-0.0662	0.0289	-2.293	0.0237
	BMI*Resistin	0.0020	0.0010	2.003	0.0476	0.0018	0.0010	1.886	0.0615
	BMI*Leptin	-0.0006	0.0006	-0.976	0.3312	-0.0008	0.0006	-1.372	0.1729
Dispersion	Constant	-2.325	0.6674	-3.483	0.0007	-2.318	0.6595	-3.515	0.0006
	Age (x1)	0.019	0.0114	1.690	0.0939	0.017	0.0112	1.553	0.1233

Biomarker resistin analysis is given by Das and Lee[22], and for ready reference it is reproduced in Table 4. Fitted resistin mean & dispersion models are as follows:

Resistin Gamma fitted mean (µ̂) model (from Table 4) is
\[\hat{\mu} = \exp(1.6651 - 0.0306 \text{Leptin} - 0.0052 \text{Age} + 0.0888 \text{Adiponectin} + 0.5421 \text{TYOP} + 0.1087 \text{HOMA-IR} + 0.0007 \text{MCP-1} + 0.0015 \text{Age} \times \text{HOMA-IR} - 0.0028 \text{BMI}) + 0.0068 \text{Glucose} + 0.0014 \text{BMI} \times \text{Leptin} - 0.0010 \text{Glucose} \times \text{Adiponectin} - 0.0009 \text{Leptin} \times \text{Adiponectin}) \]

and Resistin Gamma fitted variance (σ̂²) model (from Table 4) is
\[\hat{\sigma}^2 = \exp(-4.8464 + 0.7971 \text{TYOP} + 0.1090 \text{BMI} + 0.0129 \text{Leptin} + 0.1885 \text{Adiponectin} - 0.0083 \text{BMI} \times \text{Adiponectin}) \]

Table 4. Results for mean & dispersion models for Resistin from Log-Normal and Gamma fit

Model	Covariates	Gamma fit	Log-normal fit						
		Estimate	s.e.	t-value	P-value	Estimate	s.e.	t-value	P-value
Mean	Constant	1.6651	0.7909	2.165	0.0377	2.0242	0.81494	2.484	0.0146
	Age (x1)	-0.0052	0.0033	-1.547	0.1249	-0.0663	0.00345	-1.817	0.0721
	Leptin (x6)	-0.0306	0.0226	-1.352	0.1793	-0.0256	0.02334	-1.097	0.2751
	Adiponectin (x8)	0.0888	0.0553	1.607	0.1111	0.0483	0.05623	0.860	0.3917
	MCP-1 (x9)	0.0007	0.0001	4.402	<0.0001	0.0007	0.00015	4.253	<0.0001
	Patient’s typ (Fx10)	0.5421	0.1084	4.999	<0.0001	0.4341	0.11120	3.904	0.0001
	HOMA-IR (x5)	-0.1087	0.0593	-1.832	0.0698	-0.1026	0.06124	-1.675	0.0969
	Age*HOMA-IR	0.0015	0.0009	1.631	0.1059	0.0016	0.00096	1.637	0.1046
	BMI (x2)	-0.0028	0.0175	-0.158	0.8747	-0.0003	0.01808	-0.015	0.9880
	Leptin*BMI	0.0014	0.0007	2.064	0.0415	0.0011	0.00072	1.529	0.1293
	Glucose (x3)	0.0068	0.0062	1.084	0.2808	0.0030	0.00650	0.456	0.6493
	Adiponectin*Glucose	-0.0010	0.0006	-1.656	0.1007	-0.0006	0.00061	-1.000	0.3196
	Leptin*Adiponectin	-0.0009	0.0005	-1.807	0.0736	-0.0006	0.00052	-1.180	0.2407
Dispersion	Constant	-4.8464	1.7259	-2.808	0.0059	-4.6565	1.8505	-2.516	0.0134
	Leptin (x6)	0.0129	0.0091	1.427	0.1566	0.0124	0.00888	1.412	0.1609
	Patient’s typ (Fx10)	0.7971	0.3097	2.574	0.0114	0.8184	0.3140	2.606	0.0105
	BMI (x2)	0.1090	0.0645	1.689	0.0942	0.1081	0.0690	1.567	0.1201
	Adiponectin (x7)	0.1885	0.1468	1.284	0.2020	0.1771	0.1542	1.149	0.2532
	BMI*Adiponectin	-0.0083	0.0058	-1.444	0.1518	-0.0081	0.0060	-1.342	0.1825

AIC | 729.369 | 731.2
3. Results

In Table 1, it is shown that mean BMI is directly associated with leptin (P<0.0001) and MCP-1 (P=0.0002), while it is inversely associated with adiponectin (P=0.0003), HOMA-IR (P<0.0001), and it is higher for healthy women (P=0.0116) than breast cancer women. In addition, variance of BMI is inversely associated with resistin (P=0.1450). On the other hand, from Table 2, mean MCP-1 is directly associated with BMI (P<0.0001). In Table 3, it is shown that mean adiponectin is inversely associated with BMI (P<0.0001), BMI*Leptin (P=0.1729), while it is directly associated with Age*BMI (P=0.0017) and BMI*Resistin (P=0.0615). From Table 4, it is noted that mean resistin is directly associated with BMI*Leptin (P=0.0415), while its variance is directly associated with BMI (P=0.0942), and it is inversely associated with BMI*Adiponectin (P=0.1518). In Table 5, it is shown that mean leptin is directly associated with BMI (P<0.0001).

4. Discussion

The summarized analyses of BMI, MCP-1, adiponectin, resistin and lepin are given in Tables (1-5). From Table 1, mean BMI is directly associated with leptin (P=0.0001), or MCP-1 (P=0.0002), concluding that it increases as leptin, or MCP-1 rises. In addition, it is inversely associated with adiponectin (P=0.0003), or HOMA-IR (P<0.0001), interpreting that it increases as adiponectin, or HOMA-IR decreases. Mean BMI is inversely associated with patient types (P=0.0116), indicating that BMI is higher for healthy women than breast cancer women. Variance of BMI is partially inversely associated with resistin (P=0.1450), interpreting that BMI variance rises as resistin level decreases. It is noted that partially significant effect is treated as confounder in epidemiology.

From Table 2, it is observed that MCP-1 is directly associated with BMI (P<0.0001), indicating that it increases as BMI increases. This is also observed from the BMI model as stated above. From Table 3, it is noted that mean adiponectin is inversely associated with BMI (P<0.0001), indicating that it decreases as BMI rises. This is also observed from BMI model. Mean adiponectin is directly associated with BMI*Resistin (P=0.0615), concluding that it rises as the interaction effect BMI*Resistin increases. In addition, mean adiponectin is inversely associated with BMI*Leptin (P=0.1729), indicating that it decreases as BMI*Leptin rises. Moreover, mean adiponectin is directly associated with Age*BMI (P=0.0017), concluding that it rises as the interaction effect of Age*BMI increases. This implies that overweight women at older ages have higher level of adiponectin. From Table 4, mean resistin is directly associated with the interaction effect of BMI*Leptin (P=0.0415), concluding that it rises as interaction effect of BMI*Leptin increases. Variance of resistin is directly associated with BMI (P=0.0942), interpreting that it in-
creases as BMI increases. Variance of resistin is inversely associated with BMI*Adiponectin (P=0.1518), indicating that it rises as BMI*Adiponectin decreases. From Table 5, mean leptin is directly associated with BMI (P<0.0001), indicating that it rises as BMI rises. This is also observed in BMI model. All the above summarized associations between BMI and BCBs are displayed in Table 6.

Table 6. Associations between BMI & breast cancer biomarkers

Model	Response	Associated with	Association types	P-value
Mean	BMI (x2)	Leptin (x6)	Directly	<0.0001
		Adiponectin (x7)	Negative	0.0003
		MAC-1 (x9)	Directly	0.0002
		HOMA-IR (x5)	Inversely	<0.0001
		Patient’s type (Fx10)	Inversely	0.0116
Dispersion	Resistin (x8)		Inversely	0.1450
Mean	MCP-1(x9)	BMI (x2)	Directly	<0.0001
		BMI*Leptin	Directly	0.0415
		BMI (x2)	Directly	0.0942
		BMI*Adiponectin	Inversely	0.1518
Mean	Leptin (x6)	BMI (x2)	Directly	<0.0001
		BMI (x2)	Directly	<0.0001
		Age*BMI	Directly	0.0017
		BMI*Resistin	Directly	0.0615
		BMI*Leptin	Inversely	0.1729

The present derived associations between BMI and BCBs are little compared with the previous findings as the earlier research articles have not considered all these BCBs along with BMI. In addition, the earlier articles have not considered probabilistic joint modeling to derive these associations. All these reported results herein are only based on the articles [19-23].

5. Conclusions

The report examines the associations between BMI and BCBs such as MCP-1, leptin, adiponectin and resistin. These associations are reported herein considering the models of BMI and each BCB. From these models, it can be concluded that BMI and BCBs are associated in both mean and variance models. BMI increases as leptin, or MCP-1 increases, or adiponectin, or resistin, or HOMA-IR decreases. Many interaction effects such as BMI*Leptin and BMI*Adiponectin are associated with resistin, while BMI*Resistin, BMI*Leptin and Age*BMI are associated with adiponecctin. The report gives clear associations between BMI and BCBs which are very helpful to the researchers and medical practitioners. Medical practitioners and women should care on BMI along with breast cancer biomarkers.

Conflict of Interest

The authors confirm that this article content has no conflict of interest.

References

[1] Williams CL, Hayman LL, Daniels SR, Robinson TN, Steinberger J, Paridon S, Bazzarre T. Cardiovascular health in childhood: A statement for health professionals from the Committee on Atherosclerosis, Hypertension, and Obesity in the Young (AHOY) of the Council on Cardiovascular Disease in the Young, American Heart Association. Circulation, 2002, 106(1): 143-160.

[2] US Dept Health and Human Services. The Surgeon General’s Call to Action to Prevent and Decrease Overweight and Obesity. Rockville, MD: US Department of Health and Human Services, Public Health Service, Office of the Surgeon General, 2001.

[3] National Institutes of Health. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults - the evidence report. Obes Res., 1998. 6 (suppl 2): 51-209S.

[4] Gunter MJ, Xie X, Yue X, Kabat GC et al. Breast Cancer Risk in Metabolically Healthy but Overweight Postmenopausal Women. Cancer Res. 2015, 75(2): 270-274.

[5] Key TJ, Appleby PN, Reeves GK, Roddam A, Dorgan JF, Longcope C, et al. Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J Natl Cancer Inst., 2003, 95(16): 1218-1226.

[6] International Agency for Research on Cancer, World Health Organization. Weight control and physical activity. In: Vainio H, Bianchini F, eds. International Agency for Research on Cancer handbooks of cancer prevention, Lyon, France: IARC Press, 2002, 6.

[7] Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med., 2003, 348: 1625-1638.

[8] Van Den Brandt PA, Spiegelman D, Yaun SS et al. Pooled analysis of prospective cohort studies on height, weight, and breastcancer risk. Am J Epidemiol., 2000, 152: 514-27.

[9] Morimoto LM, White E, Chen Z et al. Obesity, body size, and risk of postmenopausal breast cancer: The
Women’s Health Initiative (United States). Cancer Causes Control, 2002, 13: 741-51.

[10] Lahmann PH, Hoffmann K, Allen N et al. Body size and breast cancer risk: findings from the European Prospective Investigation into Cancer and nutrition (EPIC). Int J Cancer, 2004, 111: 762-71.

[11] Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet, 2008; 371:569-78.

[12] Cecchini RS, Costantino JP, Cauley JA et al. Body mass index and the risk for developing invasive breast cancer among high risk women in Nsabp P-1 and Star Breast Cancer Prevention Trials. Cancer Prev Res (Phila), 2012,5: 583-92.

[13] Macis D, Guerrieri-Gonzaga A, Gandini S. Circulating adiponectin and breast cancer risk: a systematic review and meta-analysis. International Journal of Epidemiology, 2014: 1226-1236.

[14] Dumitrescu RG, Cotarla I. Understanding breast cancer risk - where do we stand in 2005? J Cell Mol Med., 2005, 9: 208-221.

[15] Crisóstomo J, Matafome P, Santos-Silva D, Gomes AL, Gomes M, et al. Hyperresistinemia and metabolic dysregulation: a risky crosstalk in obese breast cancer. Endocrine, 2016, 53(2): 433-442.

[16] Patricio M, Pereira J, Crisóstomo J, Matafome P, Gomes M, Seiça R, Caramelo F. Using Resistin, glucose, age and BMI to predict the presence of breast cancer. BMC Cancer, 2018, 18(1): 18-29.

[17] Paz-Filho G, Lim EL, Wong ML, Licinio J. Associations between adipokines and obesity-related cancer. Front Biosci., 2011, 16: 1634-1650.

[18] Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, et al. The hormone resistin links obesity to diabetes. Nature, 2001, 409: 307-312.

[19] Das RN, Lee Y, Mukherjee S, Oh S. Relationship of body mass index with diabetes & breast cancer biomarkers. J Diabetes and Management, 2019,. 9(1): 163-168.

[20] Kim J, Das RN, Lee Y, Sahoo RK. Association of monocyte chemotactic protein-1 with age, glucose, BMI, insulin and other breast cancer biomarkers. Oncology and Radiotherapy, 2019, 13(1): 005-009.

[21] Das RN, Lee Y. Association of Serum Adiponectin with Age, BMI and Other Breast Cancer Biomarkers. J Blood Lymph, 2018, 8(4): 233.

[22] Das RN, Lee Y. Association of resistin with BMI, age diabetes and breast cancer biomarkers. Journal of Oncology Research and Treatment, 2019, 4(1): 135.

[23] Das RN, Lee Y. Relationship of leptin with glucose, BMI, age, insulin and breast cancer biomarkers. Arch Gen Intern Med., 2019, 3(1): 01-03.

[24] Lee Y, Nelder JA, Pawitan Y. Generalized Linear Models with Random Effects (Unified Analysis via H-likelihood). Second Edition, London: Chapman & Hall, 2017.

[25] Das RN, Lee Y. Log-normal versus gamma models for analyzing data from quality-improvement experiments. Quality Engineering, 2009, 21(1): 79-87.

[26] Lesperance ML, Park S. GLMs for the analysis of robust designs with dynamic characteristics. Journal Quality Technology, 2003, 35: 253-263.