Mechanistic Models as Framework for Understanding Biomarker Disposition: Prediction of Creatinine-Drug Interactions

Daniel Scotcher1, Vikram Arya2, Xinning Yang2, Ping Zhao2, Lei Zhang3, Shiew-Mei Huang2, Amin Rostami-Hodjegan1,4 and Aleksandra Galetin1,

Creatinine is widely used as a biomarker of glomerular filtration, and, hence, renal function. However, transporter-mediated secretion also contributes to its renal clearance, albeit to a lesser degree. Inhibition of these transporters causes transient serum creatinine elevation, which can be mistaken as impaired renal function. The current study developed mechanistic models of creatinine kinetics within physiologically based framework accounting for multiple transporters involved in creatinine renal elimination, assuming either unidirectional or bidirectional-OCT2 transport (driven by electrochemical gradient). Robustness of creatinine models was assessed by predicting creatinine-drug interactions with 10 perpetrators; performance evaluation accounted for 5% intra-individual variability in serum creatinine. Models showed comparable predictive performances of the maximum steady-state effect regardless of OCT2 directionality assumptions. However, only the bidirectional-OCT2 model successfully predicted the minimal effect of ranitidine. The dynamic nature of models provides clear advantage to static approaches and most advanced framework for evaluating interplay between multiple processes in creatinine renal disposition.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? ✔ Serum creatinine can be elevated by drugs that inhibit renal transporters that can be incorrectly interpreted as kidney injury. In vitro data suggest that creatinine transport by OCT2 is driven by electrochemical gradient, supporting bidirectional mechanism of OCT2. Data on quantitative contribution of individual transporters to creatinine renal disposition are inconsistent.

WHAT QUESTION DID THIS STUDY ADDRESS? ✔ Can mechanistic creatinine model enable prediction of creatinine-drug interactions? Is bidirectional transport of OCT2 an important consideration for creatinine renal disposition?

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? ✔ Physiologically based creatinine model for prediction of creatinine-drug interactions (steady-state and time course). The most comprehensive performance evaluation of static and dynamic creatinine models, with consideration of intra-individual variability in serum creatinine.

HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, AND/OR THERAPEUTICS? ✔ Recommendation to consider bidirectional transport mechanism of OCT2 when assessing OCT2/MATE-mediated interactions. Physiological structure of creatinine model allows extension to patient populations and investigation of the intra-individual variability in serum creatinine.

Serum creatinine is a widely used clinical biomarker of glomerular filtration rate and overall renal function. Current guidelines for chronic kidney disease and acute kidney injury define these conditions partly through serum creatinine measurements.1,2 In the case of chronic kidney disease, serum creatinine is used to calculate estimated glomerular filtration rate (eGFR) with equations validated against exogenously administered filtration markers (e.g., iothalamate).3,4 The eGFR often guides optimal drug dose adjustments for patients with impaired renal function.5 Creatinine is mostly unbound in plasma,6 supporting the use of its plasma clearance as a glomerular filtration rate (GFR) marker. Despite the high correlation between GFR and creatinine renal excretion clearance, the latter exceeds the former at the population level, indicative of active secretion mediated by transporters expressed in the proximal tubule.

1Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK; 2Office of Clinical Pharmacology, Office of Translational Sciences, Centre for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA; 3Office of Research and Standards, Office of Generic Drugs, Centre for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA; 4Certara, Sheffield, UK; 5Present address: Bill & Melinda Gates Foundation, Seattle, Washington, USA; *Correspondence: Aleksandra Galetin (Aleksandra.Galetin@manchester.ac.uk)
cells. Net secretion represents on average 9% of creatinine renal excretion clearance (CL\text{R}) based on inulin as a GFR marker in subjects with normal renal function, although this contribution varies widely (2–15%) between studies. Data based on iothalamate and iohexol as alternative GFR markers suggest up to 24% and 38% contribution of active secretion to creatinine clearance, respectively. Current \textit{in vitro} data on creatinine specificity for renal transporters are inconsistent, with involvement of organic cation transporter 2 (OCT2) and organic anion transporter 2 (OAT2) indicated on the basolateral membrane, and multidrug and toxin extrusion (MATE)1 and MATE2-K transporters, on the apical (luminal facing) membrane of the proximal tubule cells (Table S1). In addition, involvement of OAT4 and OCT3 has been proposed.

The use of creatinine clearance (or its estimate based on serum concentration) as biomarker of renal function assumes a parallel change in transporter-related secretion and glomerular filtration in the event of kidney injury. The above assumption can be violated when the transporter activities are modulated for reasons not related to kidney injury resulting in false impression (based on creatinine clearance) of renal injury. Several drugs have been associated with transient elevations in serum creatinine attributed to inhibition of transporters involved in creatinine secretion (Figure 1), with no serious adverse renal events. Although average increases in serum creatinine as a result of renal transporter inhibition typically fall below the clinical threshold for acute kidney injury, this may not be the case for some individuals. Potential for misinterpretation of elevated serum creatinine as a loss of renal function in the patient highlights importance of in-depth understanding of transporter-mediated creatinine-drug interactions, and ability to predict these \textit{a priori}.

The physiologically-based pharmacokinetic (PBPK) modeling approach is widely used for quantitative prediction of drug-drug interactions (DDIs). PBPK models for DDI predictions rely upon quantitative translation of \textit{in vitro} data through use of \textit{in vitro-in vivo} extrapolation (IVIVE). Examples of creatinine models and their application to predict effects following administration of different drugs have been reported in the literature. In contrast to those examples, the current study developed physiologically based creatinine models accounting for its synthesis and mechanistic description of processes occurring in the renal proximal tubule. These mechanistic models incorporated multiple transporters involved in creatinine renal elimination, assuming either unidirectional or bidirectional OCT2 transport (driven by electrochemical gradient). Accounting for bidirectional transport by OCT2 was previously demonstrated as an important consideration in PBPK simulation of cimetidine-metformin DDI. In a companion paper, technical details of the stepwise development of physiologically based creatinine models accounting for its synthesis and mechanistic description of processes occurring in the renal proximal tubule are provided.
of mechanistic creatinine models and their refinement with clinical creatinine-trimethoprim interaction data are reported.

Following initial model optimization against trimethoprim clinical data, critical evaluation of the ability of different creatinine models to predict quantitatively creatinine-drug interactions with 10 perpetrator drugs was performed. This performance evaluation accounted for intra-individual variability in serum creatinine. To test the robustness of creatinine models, perpetrators selected showed different inhibitory effect on transporters involved in creatinine renal disposition. In addition, the creatinine models were compared with respect to their ability to describe the mechanisms of creatinine secretion and re-absorption.

METHODS
Initial evaluation of the creatinine-drug interaction risk via OAT1, OCT2, and MATEs
Serum creatinine profiles, drug plasma concentration-time data, and fraction unbound in plasma ($f_{u,p}$) for 11 inhibitors were collated and analyzed, as detailed in Scotcher et al.

There was no literature evidence on the direct effect of these inhibitors on creatinine synthesis. Literature reported half-maximal inhibitory concentration (IC_{50}) data for individual transporters of interest were collated; whenever possible in vitro inhibition data obtained with creatinine as transporter probe were used (Table 1).

Initial qualitative evaluation of clinical creatinine-drug interaction potential was performed using the basic DDI prediction model. In brief, compounds’ classification toward risk of clinical creatinine interaction was based on proposed unbound maximum concentration in plasma ($C_{max,u}$)/IC_{50} cutoffs of 0.1 and 0.02 for OCT/OAT and MATE transporters, respectively. Changes in serum creatinine < 5%, associated with intra-individual variability in serum creatinine, were classed as “negative.”

Physiological structure of creatinine models
Detailed description of the stepwise development of mechanistic kidney models for creatinine and corresponding assumptions are reported in a companion paper. Two models were selected for subsequent performance evaluation of their ability to predict creatinine-drug interactions. The workflow of model development and compartmental structure of the models are presented in Figure S1 and Figure 2. The models differed in describing the mechanism of transport by OCT2, assuming either unidirectional uptake of creatinine via OCT2, or bidirectional transport (net membrane permeation) of creatinine via OCT2. The bidirectional-OCT2 model considered the role of membrane potential in the electrochemical gradient driven transport rate by OCT2, as described in Eqs. 1 and 2:

$$J_{O→O2} = Cl_{int,OCT2,preMP} \cdot \frac{N}{(e^N - 1)} \cdot (C_o \cdot f_{ion,o} - e^N \cdot C_i \cdot f_{ion,i})$$

$$N = \frac{z \cdot \Phi \cdot F}{R \cdot T}$$

where $J_{O→O2}$ is the net flux via OCT2 in direction outside to inside of cell; $Cl_{int,OCT2,preMP}$ is intrinsic clearance of OCT2, before impact of membrane potential is applied; C_o and C_i are concentrations of creatinine outside and inside the proximal tubule cell, respectively; $f_{ion,o}$ and $f_{ion,i}$ are the ionized

Table 1 Summary of perpetrator drug properties

Perpetrator drug	C_{max} in µM (Dose)	$f_{u,p}$	OAT2	OCT2	MATE1	MATE2-K	Largest reported % change in S_{Cr} (Dose)
Cimetidine	12 (1,600 mg/day)	0.824	102.3	36.3	3.78	23.7	25.8 (1,600 mg/day)
DX-619	22.0 (800 mg/day)	0.320	1,000*	0.94	0.82	0.1	32.3 (800 mg/day)
Cobicistat	1.55 (150 mg/day)	0.063	24.1	10.7	4.1	22.5	10.6 (150 mg/day)
Dolutegravir	13.1 (100 mg/day)	0.006	1,000*	8.25	5.8	49.3	16.7 (100 mg/day)
Indomethacin	5.59 (50 mg)	0.060	2.1	1,000	1,000	1,000	0 (150 mg/day)
Pyrimethamine	2.3 (50 mg)	0.112	1,000*	0.93	0.17	0.35	26.1 (75 mg/week)
Famotidine (low dose)	0.39 (40 mg/day)	0.724	184	27.9	0.27	7.3	1 (40 mg/day)
Famotidine (high dose)	0.93 (200 mg)	0.724	184	27.9	0.27	7.3	17.9 (800 mg/day)
Ranolazine	6.01 (2,000 mg/day)	0.372	109	7.42	0.25	0.28	10.6 (25 mg/day)
Trimethoprim	0.625 (mg/kg/day)	0.005	1,000*	0.38	0.25	0.28	10.6 (25 mg/day)
Trimethoprim	6.9 (20 mg/kg/day)	0.510	1,000*	25.8	1.62	0.58	31* (20 mg/kg/day)
Ranitidine	3.72 (300 mg/day)	0.728	1,000*	2.41	5.6	3.4	0 (300 mg/day)

C_{max}, maximal plasma concentration; $f_{u,p}$, fraction unbound in plasma; IC_{50}, half-maximal inhibitory concentration; S_{Cr}, serum creatinine.

References listed in Table S3.

IC_{50} values obtained using creatinine as a probe, except for DX-619 (creatinine as probe for OCT2, tetraethylammonium as probe for MATE1 and MATE2-K), rifilpirin (metformin as probe for OCT2, MATE1 and MATE2-K), and indomethacin (creatinine as probe for OAT2, metformin as probe for OCT2, MATE1 and MATE2-K).

No pre-incubation with inhibitor, although other studies suggest pre-incubation effects on IC_{50} (see Supplemental Material, Section 3).

No inhibition observed, IC_{50} set to 1,000 µM for simulation of creatinine-drug interactions.

Co-administered with 200 mg dapsone.

Value falls to 12.0% after adjusting for placebo-control.

Represents largest mean value, largest reported change in specific individual was 181%.
fraction of creatinine outside and inside the proximal tubule cell, respectively; \(z, \phi, F, R, \) and \(T \) are the valence of creatinine, the membrane potential, Faraday's constant, the Gas constant, and the absolute temperature, respectively.

Differential equations describing proximal tubule cell concentrations for the uptake-OCT2 (Eq. 3) and bidirectional-OCT2 (Eq. 4) models are shown below; the full set of model equations is listed in ref. 18.
Prediction of Creatinine-Drug Interactions
Scotcher et al.

In vivo to mediate efflux under of creatinine in the blood/interstitium and cell, respectively. (bidirectional, before impact of membrane potential is accounted for), MATE1 and MATE2-K, and the fraction ionized of creatinine in the blood/interstitium and cell, respectively.

MATE transport is proton gradient driven and was assumed to mediate efflux under in vivo physiological conditions. Passive permeability in proximal tubule and re-absorption in remaining tubular regions of nephron were initially implemented by IVIVE of in vitro apparent permeability data scaled by corresponding tubular surface areas; subsequently, this parameter was also optimized by clinical data. Nakada et al. (2018) reported a static model for describing trimethoprim-creatinine interaction and related changes in serum creatinine concentrations and creatinine CL\textsubscript{R}. This one-compartment model accounted for processes of filtration, secretion, and re-absorption, but lacked physiological complexity of the models in the current study. In order to benchmark models and their predictive performance, the Nakada model was also considered in comparative performance evaluation in the current study (implementation details in Supplementary Material, Section 5).

The plasma concentration-time profiles of all perpetrator drugs were described using one-compartment or two-compartment pharmacokinetic models, as described in ref. 18 (Figure S2 for dolutegravir, as an example). For fomotidine, different pharmacokinetic models were required for the high and low doses. The inhibitory effect of perpetrator drugs on OCT2, OCT2, MATE1, and MATE2-K transporters in uptake-OCT2 model is described by Eq. 5, adapted from ref. 24 and using in vitro data listed in Table 1. Analogous equation was applied by replacing transporter intrinsic clearance (\text{CL}\textsubscript{int}) in Eq. 5 with net flux rate (J; see Eqs. 1 and 2) for OCT2 in the OCT2-bidirectional model, but using Eq. 5 for OCT2, MATE1, and MATE2-K. Equivalent equation was applied for simulation of creatinine-drug interactions with the Nakada model (see Eq. S3).

$$ \text{CL}_{\text{int},\text{j,inh}}(t) = \frac{\text{CL}_{\text{int,j}}}{1 + \frac{C_{\text{inh,j,up}}(t)}{I_{C_{\text{inh,j,up}}}}} $$

where \text{CL}_{\text{int},\text{j,inh}}(t) is the intrinsic clearance of the \text{j}th transporter at time t after accounting for inhibition, \text{CL}_{\text{int,j}} is the intrinsic clearance of \text{j}th transporter (see Eqs. 3 and 4), \text{C}_{\text{inh,j,up}}(t) is the plasma concentration of perpetrator \text{j} at time t, \text{f}_{\text{inh,j,up}} is the fraction unbound in plasma for perpetrator \text{j}, and \text{IC}_{\text{inh,j}} is the unbound concentration of perpetrator \text{j} causing 50% inhibition of transporter \text{i}.

Creatinine-drug interactions were simulated following the study designs described in respective clinical studies. Simulations were performed for a nominal duration of 96 hours to ensure steady-state serum creatinine concentrations in the simulation before initiating administration of perpetrators.

Evaluation of predictive performance of creatinine mechanistic models
Creatinine physiologically based models developed in the current study were optimized by creatinine-trimethoprim clinical interaction data to recover creatinine CL\textsubscript{R}; use of CL\textsubscript{R} data alone (without perturbation by interaction) were insufficient. The creatinine-trimethoprim interaction data were excluded from the evaluation of the model performance, consistent with PBPK modeling best practices. Predictive performance of unidirectional or bidirectional OCT2 creatinine models was evaluated by assessing the number of data points within prediction limits Eqs. S4–S7. Where individual serum creatinine concentration data were reported, mean values were also calculated to evaluate prediction success. Predictive performance was evaluated using either (a) maximum change (single perpetrator administration) or steady-state changes (repeated administration) in serum creatinine, or (b) complete profiles of creatinine-drug interactions, where these were reported. The latter case included data following withdrawal of drug (i.e., serum creatinine returning to baseline).

Commonly applied twofold limits were modified to account for intra-individual variability in baseline serum creatinine concentration (limits Eqs. S4–S7). Consideration of stricter prediction limits was adapted from Guest et al. to ensure appropriate distinction of true-negative and false-negative interaction prediction (i.e., when observed percentage change in serum creatinine concentration is close to 0%). The limits coalesce when the observed change is 0% and approach the traditional twofold limits with more pronounced interaction. These new prediction limits considered intra-individual percentage coefficient of variation in baseline serum creatinine concentration (CV\textsubscript{CV}). The EuBIVAS Project recently reported CV\textsubscript{CV} of 4.4% and 4.7% based on enzymatic and alkaline picrate methods, respectively, and CV\textsubscript{CV} of 4.7% was used in the current study.

Models of creatinine and perpetrator drugs, described as systems of ordinary differential equations, were implemented in Simulink version 8.9 (R2017a), The MathsWorks (Natick, MA), using a variable-step numerical solver. The exact solver was automatically selected by the Simulink software, but was typically ode15s (numerical differentiation formulas). Solver settings were not changed from the default values, with the exception that relative tolerance was set to 1/100,000. Simulation data were exported to Matlab R2017a, The MathsWorks for statistical analyses and generation of figures.
RESULTS

Data collation

Clinical and *in vitro* inhibition data (Tables 1 and 2) were collated for trimethoprim, cimetidine, DX-619, cobicistat, dolutegravir, pyrimethamine, famotidine, ranolazine, and rilpivirine; these drugs were associated with renal transporter inhibition leading to changes in serum creatinine concentration. In addition, the data set included indomethacin and ranitidine, which exhibited minimal effect on serum creatinine. Therefore, clinical trimethoprim-creatinine data (76 measurements from six studies) were used to refine some of the key model parameters, while retaining relative contributions of each transporter to overall proximal tubule uptake and efflux as in the IVIVE approach. In the uptake-OCT2 model, OCT2 and OCT2 had similar contributions to creatinine transport-er-mediated uptake in the proximal tubule (54% and 54%, respectively), whereas MATE2-K (76%) had larger contributions from six studies) were used to refine some of the key model parameters, while retaining relative contributions of each transporter to overall proximal tubule uptake and efflux as in the IVIVE approach. In the uptake-OCT2 model, OCT2 and OCT2 had similar contributions to creatinine transport-er-mediated uptake in the proximal tubule (46% and 54%, respectively), whereas MATE2-K (76%) had larger contributions than MATE1 (24%) to transporter-mediated efflux (Table S6). The total transporter uptake $\text{CL}_{\text{int,u}}$ was 67-fold greater than total transporter efflux $\text{CL}_{\text{int,u}}$. Relative transporter activities for the bidirectional-OCT2 model were concentration-dependent, with maximum contribution of OCT2 of 54% to creatinine uptake under basolateral-cellular sink conditions (i.e., concentration inside cell << concentration outside cell); at the other extreme, under cellular-basolateral sink conditions, OCT2-mediated efflux dominated over uptake by OCT2. Following successful recovery of the observed creatinine CL_{R}, creatinine models were applied to predict creatinine-drug interactions with 10 perpetrator drugs. The inhibitory effects on OCT2, OCT2, MATE1, and MATE2-K were considered using corresponding in *vito* IC$_{50}$ data. Impact of complete transporter inhibition on the simulated steady-state creatinine concentrations in plasma and proximal tubule cell and

Qualitative evaluation of the creatinine-drug interaction risk via OCT2, OCT2, and MATEs

A qualitative approach for evaluation of renal transporter DDI risk was initiated. *In vitro* transporter IC$_{50}$ data obtained with creatinine as a transporter probe were used where available to overcome any potential substrate-dependant inhibition issues associated with OCT2/MATEs (Table 1). In this preliminary analysis, most drugs that caused transient elevated serum creatinine were correctly identified for subsequent follow-up clinical evaluation, with $C_{\text{max},u}/IC_{50}$ exceeding cutoff of 0.02 for MATE1 (Figure 3). However, false-negative (e.g., ranitidine and lower dose famotidine) and false-positive (e.g., cobicistat) outcomes were evident, consistent with previous analysis performed with metformin IC$_{50}$ data. Similar trend was noted for MATE2-K, with weaker relationship for OCT2 and no apparent trend for OCT2 (Figure 3).

Quantitative model-based prediction of creatinine-drug interactions

Physiologically based kidney models for creatinine were developed and accounted for the roles of transporters and passive permeability via transcellular and paracellular routes in the proximal tubule. In contrast to previous modeling attempts, mechanistic creatinine models developed here explicitly defined the proximal tubule cell compartment, including membrane localization of OAT2 and OCT2 (basolateral) and MATE1 and MATE2-K (apical) transporters (Figure 2). In addition, the role of the resting membrane potential on transport rate and direction was considered for OCT2, as described previously for metformin.

Stepwise approach in creatinine model development is illustrated in Figure S1. Initial proteomic-informed IVIVE of CL_{int} underestimated creatinine CL_{R} by up to 14%. Therefore, clinical trimethoprim-creatinine data (76 measurements from six studies) were used to refine some of the key model parameters, while retaining relative contributions of each transporter to overall proximal tubule uptake and efflux as in the IVIVE approach. In the uptake-OCT2 model, OCT2 and OCT2 had similar contributions to creatinine transport-er-mediated uptake in the proximal tubule (46% and 54%, respectively), whereas MATE2-K (76%) had larger contributions than MATE1 (24%) to transporter-mediated efflux (Table S6). The total transporter uptake $\text{CL}_{\text{int,u}}$ was 67-fold greater than total transporter efflux $\text{CL}_{\text{int,u}}$. Relative transporter activities for the bidirectional-OCT2 model were concentration-dependent, with maximum contribution of OCT2 of 54% to creatinine uptake under basolateral-cellular sink conditions (i.e., concentration inside cell << concentration outside cell); at the other extreme, under cellular-basolateral sink conditions, OCT2-mediated efflux dominated over uptake by OCT2.

Following successful recovery of the observed creatinine CL_{R}, creatinine models were applied to predict creatinine-drug interactions with 10 perpetrator drugs. The inhibitory effects on OCT2, OCT2, MATE1, and MATE2-K were considered using corresponding *in vitro* IC$_{50}$ data. Impact of complete transporter inhibition on the simulated steady-state creatinine concentrations in plasma and proximal tubule cell and

Table 2 Summary of perpetrator drug pharmacokinetic models

Perpetrator drug	CL (L/hour)	V_z^c (L)	k_a (1/hour)	Q (L/hour)	V_z^c (L)	K_m (µM)	V_{max} (µmol/hour)
Cimetidine	39.20	115.80	1.57	-	-	-	-
DX-619	9.00	114.80	-	-	-	-	-
Cobicistat	10.00	67.40	0.49	-	-	-	-
Dolutegravir	0.65	9.09	4.73	0.43	3.08	-	-
Indomethacin	3.77	7.71	1.86	2.24	19.30	-	-
Pyrimethamine	1.14	137.18	2.04	-	-	-	-
Famotidine (low dose)	60.74	89.46	0.27	-	-	-	-
Famotidine (high dose)	116.00	715.00	1.14	-	-	-	-
Ranolazine	22.40	110.00	0.06	-	-	4.80	128.6
Rilpivirine	8.84	142.83	0.19	11.96	311.62	-	-
Trimethoprim	3.78	97.82	4.37	-	-	-	-
Ranitidine	33.40	135.00	0.72	-	-	-	-

V_z and V_c represent the volumes of the central (plasma) and peripheral compartments, respectively.

Pharmacokinetic model parameters

- CL, clearance; C_p, plasma concentration; k_a, absorption rate constant; K_m, Michaelis constant; Q, inter-compartment clearance; V_{max}, maximum rate of elimination; V_z, volume of compartment indicated by subscript z.
proximal tubule cell-to-plasma partition coefficient was investigated; summary of different scenarios and their effect on rate-determining step in creatinine disposition is in Table S7. The data for trimethoprim were not included in model performance evaluation to separate the “model development” and “verification” data sets and ensure robust evaluation. Three models were considered in this analysis, namely the uptake-OCT2 and bidirectional-OCT2 mechanistic creatinine models as described above, and a mechanistic static model reported in the literature (“Nakada model”).

For the first time, the evaluation of prediction success of creatinine-drug interactions accounted also for the 5% intra-individual variability in serum creatinine. The newly developed prediction limits allowed apparently negative changes in creatinine concentrations observed in some instances (likely arising from intra-individual variability) to be considered in the evaluation of model predictive performance (Supplementary Material, Section 7). The need for more restrictive limits than those used generally for DDI prediction arises from smaller observed changes in serum creatinine (typically not exceeding ~30% increase) than considered clinically relevant for metabolism or transporter DDIs. The ability of the mechanistic creatinine models to predict changes in creatinine CLR could not be assessed for all creatinine-drug interactions investigated due to limited availability of clinical data.

Based upon maximum or steady-state change in serum creatinine data, the uptake-OCT2 model (59%) and Nakada model (61%) had similar overall predictive performance when considering the percentage of serum creatinine data (n = 117 measurements) within prediction error limits, with slightly worse performance of the bidirectional-OCT2 model (51%; Table 3). Overall trends remained when all creatinine data were included in the analysis (i.e., consideration of profiles of serum creatinine changes including potential return to baseline; Figure S3 and Table S8). The uptake-OCT2 model had slightly better predictive performance for drugs that caused >15% elevation in serum creatinine, for example, DX-619 and cimetidine. Uptake-OCT2 and mechanistic static model by Nakada predicted a false-positive interaction for ranitidine (up to 35% increase in serum creatinine at the highest dose), in contrast to no changes in serum creatinine reported clinically. Such false-positive prediction for ranitidine was not apparent with the bidirectional-OCT2 model. Regardless of the model used, an overall underprediction of the magnitude of interaction was evident (Figure 4 and Figure S4), in particular for cobicistat, dolutegravir, ranolazine, and ripipirine.
Table 3 Performance of creatinine models in predicting creatinine-drug interactions, considering only maximum change or changes at perpetrator steady-state for each study

Perpetrator drug	Total number of S_{Cr} measurements (n studies)	% within prediction limits\(^a\)	% Underpredicted\(^a\)	% Overpredicted\(^a\)						
	Uptake-OCT2 model	Bidirectional-OCT2 model	Nakada model	Uptake-OCT2 model	Bidirectional-OCT2 model	Nakada model	Uptake-OCT2 model	Bidirectional-OCT2 model	Nakada model	
Cimetidine	8 (6)	50	38	50	50	63	50	0	0	0
DX-619	77\(^b\) (1)	74\(^c\)	60\(^d\)	75\(^e\)	18\(^f\)	39\(^f\)	12\(^g\)	8\(^g\)	1\(^g\)	13\(^g\)
Cobicistat	1 (1)	0	0	0	0	0	0	0	0	0
Dolutegravir	2 (2)	0	0	0	100	100	100	0	0	0
Indomethacin	2 (1)	100	100	100	0	0	0	0	0	0
Pyrimethamine	4 (2)	75	75	100	25	25	0	0	0	0
Famotidine (low dose)	1 (1)	100	100	100	0	0	0	0	0	0
Famotidine (high dose)	2 (1)	0	0	0	100	100	100	0	0	0
Ranolazine	5 (1)	40	0	0	60	100	100	0	0	0
Rilpivirine	9 (1)	0	0	0	100	100	100	0	0	0
Ranitidine	6 (5)	0	83	33	0	0	0	100	17	67
All\(^h\)	117 (22)	59	51	61	31	47	27	10	2	12
All\(^i\)	47 (22)	38	40	40	47	53	49	15	6	11

S_{Cr}, serum creatinine.

\(^a\)See Eqs. S4–S7 for prediction limits.

\(^b\)Includes data from $n = 11$ individual subjects for DX-619, remaining data represent mean values reported in literature.

\(^c\)Value becomes 86% if mean data are considered.

\(^d\)Value becomes 71% if mean data are considered; S_{Cr}.

\(^e\)Value becomes 14% if mean data are considered.

\(^f\)Value becomes 29% if mean data are considered.

\(^g\)Value becomes 0% if mean data are considered.

\(^h\)Mean data for DX-619 considered.
DISCUSSION

Transient increase in serum creatinine is commonly observed as a result of transporter-mediated interactions, in particular, via OCT2/MATE inhibition. Despite this, creatinine is not deemed as the most sensitive endogenous biomarker for these transporters. However, considering its wide use as a biomarker of renal function, ability to...
correctly predict and differentiate renal transporter inter-
action from reduced renal function due to drug-induced
kidney injury is important. The current study developed
a physiologically based creatinine model incorporating
multiple processes in the proximal tubule in a mecha-
nistic manner. The primary goal was the assessment of
the creatinine models’ ability to predict creatinine-drug
interactions via different renal transporters (individual or
combined).

Predictive performance of creatinine models
The current analysis represents the most systematic eval-
uation of creatinine models to-date; models investigated
differed in their complexity and physiological description
of proximal tubule. This evaluation showed overall com-
parable predictive performance of static and dynamic models when assessing maximum steady-state effect of
perpetrators on serum creatinine. Ability of current mod-
els to predict correctly minor (< 10%) changes in serum
creatinine is seen as an advantage to less mechanistic
approaches that may result in false-positive outcomes.
A mechanistic creatinine model that featured bidirec-
tional OCT2 transport was the only model that correctly
predicted negligible interaction between ranitidine and
creatinine (Table 3). Consideration of the electrochemi-
cal gradient driving force for OCT2 transport is consistent
with previously reported metformin PBPK model.16,17 in
vitro data demonstrating an effect of membrane potential
on creatinine accumulation (Table S1), and in vitro data
reporting efflux transport of tetraethylammonium and
acetylcholine by OCT2.34,35 Despite current limited num-
er of perpetrators to test this model, OCT2 transport
driving force is seen as an important consideration for
complex interactions with dual OCT2/MATE inhibitors, in
particular in cases when inhibitor’s intracellular concen-
tration may be higher than in plasma.

Although the overall predictive ability of the mechanistic
static and dynamic models was comparable when predicting
steady-state effect of perpetrators, additional criteria should
be considered in model evaluation. The mechanistic dy-
namic models allowed quantitative integration of creatinine
renal disposition, interrogation of mechanistic assumptions,
and identification of knowledge gaps and uncertainties (in
fraction transported, permeability data, and tubular re-ab-
sorption). All reported above is consistent with quantitative systems
pharmacology approach (i.e., a useful model is one that
permits new mechanistic insight to be gained).36 In addi-
tion, dynamic models allowed simulation of time course of
changes in serum creatinine, together with newly proposed
prediction limits that accounted for intra-individual variability
in serum creatinine for the evaluation of prediction success
of biomarker interactions.

**Rate-determining step and contribution of specific
transporters in creatinine renal disposition**
Current modeling efforts identify uptake via OCT2 and OAT2
as rate-determining processes driving creatinine disposi-
tion in the proximal tubule cells. Despite underprediction
of creatinine active secretion by bottom-up proteomics-in-
formed IVIVE (limitations discussed in ref. 18), current study
provides the most robust to-date estimate of the relative
creatinine transport clearances for OCT2, OAT2, MATE1,
and MATE2-K and passive permeability to support model
development (Table S6). Consequences of complete
inhibition of individual transporters on proximal tubule cell-
to-plasma partition coefficient and rate-determining step in
creatinine disposition are summarized in Table S7. Many
clinical creatinine–drug interactions can be rationalized by
inhibition of MATEs alone (Figure 3), and role of this trans-
porter is supported by clinical genotyping studies (Table
S9). Likewise, OCT2 genotype data support its role in cre-
atinine renal disposition (Table S9), together with in silico
structural modeling of creatinine interactions with variants
of OCT2.37 Conversely, confidence toward the in vivo role
of OAT2 is limited by inconsistent in vitro uptake data from
OAT2-transfected cell lines,38 limited genetic variability, and
lack of drugs known or expected to inhibit OAT2 in vivo.

Accurate estimation of fraction transported is a general
challenge associated with development of PBPK models for
transporter substrates. Overlapping substrate specificity18,33
and inconsistencies in in vitro data between laboratories
(Table S1) contribute to this. The latter may be due to dif-
fences in transporter expression in specific transfected
cell lines, proportion of transporter protein located in plasma
membrane (vs. intracellular pool), and/or proteomic meth-
ods used. Use of different cell culture/assay conditions may
also affect transporter functional activity; for example, in
vitro creatinine transport studies use varying levels of gluta-
mate in culture medium despite its proposed relevance for
OAT2 uptake transport in vitro. Furthermore, net observed
transmembrane effects may be a poor reflection of the ac-
tivity of individual transporter(s), as several transporters may
be acting in opposing and/or parallel directions. As such,
quantifying transport rates, and fraction transported by a
particular transporter from observed “net effect” data (e.g.,
in vivo CLinf) may be challenging without clear understand-
ing of the rate-determining step or availability of selective
transporter inhibitors.12 In silico cell models may assist with
delineation of relevant kinetic parameters/processes, but
typically rely upon availability of rich data.39

Does creatinine undergo tubular re-absorption?
Optimized apparent permeability in the uptake-OCT2
(29 cm/s × 10−6) and bidirectional-OCT2 (14 cm/s × 10−6)
creatinine models were order of magnitude greater than
average reported in vitro apparent permeability
(1.15 cm/s × 10−6). This trend was evident also in the static
Nakada model, which required a fraction re-absorbed
of 34% to recover creatinine-trimetridohprin interaction
data; value that was much higher than < 10% predicted
by available mechanistic re-absorption models.40 So far,
limited evidence supports possibility of saturable tubu-
lar reabsorption of creatinine,41 whereas reports of urine
flow dependent CLinf or creatinine-to-inulin clearance ratio
have inconsistent findings.42–44 One potential candidate for
creatinine tubular re-absorption is OAT4 expressed on the
apical membrane of the proximal tubule,45 although rele-
vant in vitro data to support this are equivocal.10,15 OCT2
may also mediate creatinine re-absorption at the basolat-
eral membrane of proximal tubule cells, particularly under
conditions of MATE inhibition. Potential role of OCT2 in creatinine re-absorption is supported also by finding that the bidirectional-OCT2 model improved the prediction of negligible clinical creatinine-ranitidine interaction compared with other models (Figures 3 and 4). Consideration of active tubular re-absorption may refine existing models and high estimates of passive re-absorption currently required in all models to recapitulate the observations.

Although creatinine is commonly considered as completely unbound in plasma, scarce primary studies are available, whereas a creatinine binding site of albumin has been reported. An additional consideration is that the blood-to-plasma concentration ratio of 1 was assumed in the model due to lack of supporting data. Creatinine is OAT2 substrate (expressed in red blood cells), and showed saturable uptake into human red blood cells. Given the scarcity of measured and blood-to-plasma ratio data, and their importance in the models, measurements using modern techniques would be beneficial.

Relevance of renal disposition of MATE inhibitors
The underprediction trend seen for certain interactions in the current data set may be a reflection of the pragmatic approach that relied on simulated plasma concentrations of inhibitors to drive transporter inhibition. This assumption may not be correct for inhibitors of MATE transporters, which face the intracellular space and tubular filtrate rather than plasma. Mechanistic modeling of cellular perpetrator concentrations was beyond the scope of the current study, and challenged by information gaps on whether the perpetrators themselves are substrates for renal transporters (Table S10). A preliminary approach was applied to estimate the unbound proximal tubule luminal (i.e., filtrate) to plasma concentration ratio \(K_{fu,pl} \) of perpetrators (Table S10). Although improvement of underprediction was seen in the case of famotidine \(K_{fu,pl} = 9.5 \), it also led to overprediction of interaction for ranitidine \(K_{fu,pl} = 15.8 \), highlighting a need for further refinement and consideration of mechanistic models of perpetrator renal disposition for evaluation of such interactions.

In conclusion, the current study evaluated physiologically based creatinine models for prediction of transporter-mediated creatinine-drug interaction. Increasing evidence of OCT2 bidirectional transport mechanism supports its consideration in the model. The physiological structure of the models has added advantage over static methods; it allows simulations of dynamics of creatinine-drug interactions over time, investigation of the interplay of transporter processes and provides an excellent platform for investigation of the intra-individual and interindividual variability in serum creatinine. Considering knowledge gaps in creatinine renal disposition highlighted here, it is important to refine and re-evaluate the mechanistic model when new data become available. In contrast to static models, the physiological basis of the mechanistic creatinine model allows its future application to specific populations (e.g., impaired renal function) and corresponding evaluation of transporter-mediated interaction risk in this patient cohort.

Supporting Information. Supplementary information accompanies this paper on the CPT: Pharmacometrics & Systems Pharmacology website (www.psp-journal.com).

Funding. Daniel Scotcher was supported in part by an appointment to the Research Participation Program at the Center for Drug Evaluation and Research, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and the US Food and Drug Administration (FDA).

Conflict of Interest. As an Associate Editor for Clinical Pharmacometrics & Systems Pharmacology, Ping Zhao was not involved in the review or decision process for this paper. All other authors declared no competing interests for this work.

Author Contributions. D.S., V.A., X.Y., P.Z., L.Z., S.-M.H., A.G., and A.R.-H. wrote the manuscript. D.S., V.A., X.Y., P.Z., L.Z., S.-M.H., A.G., and A.R.-H. designed the research. D.S. analyzed the data.

Disclaimer. The opinions expressed in this paper are those of the authors and should not be interpreted as the position of the US Food and Drug Administration (FDA).

1. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2, 1–138 (2012).
2. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3, 1–150 (2013).
3. Levey, A.S. et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 145, 247–254 (2006).
4. Levey, A.S. et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150, 604–612 (2009).
5. Matzke, G.R. et al. Drug dosing consideration in patients with acute and chronic kidney disease—a clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 80, 1122–1137 (2011).
6. Farrell, P.C., Grib, N.L., Fry, D.L., Popovich, R.P., Boviac, J.W. & Babb, A.L. A comparison of in vitro and in vivo solute-protein binding interactions in normal and uremic subjects. Trans. Am. Soc. Artif. Intern. Organs 18, 268–276 (1972).
7. Shemesh, O., Golbets, H., Kriss, J.P. & Myers, B.D. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int. 28, 830–838 (1985).
8. Soveri, I. et al. Measuring GFR: a systematic review. Am. J. Kidney Dis. 64, 411–424 (2014).
9. Seegmiller, J.C., Burns, B.E., Schinostock, C.A., Lieszke, J.C. & Larson, T.S. Discordance between intermittent and iohexol urinary clearances. Am. J. Kidney Dis. 67, 49–55 (2016).
10. Lepist, E.J. et al. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat. Kidney Int. 86, 350–357 (2014).
11. Ganea, A., Zhao, F. & Huang, S.M. Physiologically based pharmacokinetic model of drug transporters to facilitate individualized dose prediction. J. Pharm. Sci. 106, 2204–2208 (2017).
12. Guo, Y. et al. Advancing predictions of tissue and intracellular drug concentrations using in vitro, imaging and physiologically based pharmacokinetic modeling approaches. Clin. Pharmacol. Ther. 104, 865–869 (2018).
13. Grinstein, M. et al. Physiologically based pharmacokinetic modeling in regulatory science: an update from the U.S. Food and Drug Administration’s office of clinical pharmacology. J. Pharm. Sci. 108, 21–25 (2019).
14. Nakada, T., Kudo, T., Kume, T., Kusuhara, H. & Ito, K. Quantitative analysis of elevation of serum creatinine via renal transporter inhibition by trimethoprim in healthy subjects using physiologically-based pharmacokinetic model. Drug Metab. Pharmacokinet. 33, 103–110 (2018).
15. Imamura, Y. et al. Prediction of fluoroquinolone-induced elevation in serum creatinine levels: a case of drug-endogenous substance interaction involving the inhibition of renal secretion. Clin. Pharmacol. Ther. 89, 81–88 (2011).
16. Nishiyama, K., Toshimoto, K., Lee, W., Ishiguro, N., Bister, B. & Sugiyama, Y. Physiologically-based pharmacokinetic modeling analysis for quantitative
17. Burt, H. et al. Metformin and cimetidine: physiologically based pharmacokinetic modelling to investigate transporter mediated drug–drug interactions. Eur. J. Pharm. Sci. 88, 70–82 (2016).

18. Scotcher, D. et al. A novel physiologically-based model of creatinine renal disposition to integrate current knowledge of systems parameters and available clinical observations. (2020), in press, https://doi.org/10.1002/jpsp4.12509

19. US Food and Drug Administration. In Vitro Metabolism and Transporter Mediated Drug-Drug Interaction Studies Guidance for Industry [Draft Guidance]. (Center for Drug Evaluation and Research, Silver Spring, MD, 2017). <https://www.fda.gov/media/101469/download>.

20. Dong, Z., Yang, X., Arya, V. & Zhang, L. Comparing various in vitro prediction criteria to assess the potential of a new molecular entity (mme) to inhibit OAT2 and mate transporters in vivo: pI-076 [abstract]. Clin. Pharmacol. Ther. 99, 594 (2016).

21. Carobene, A. et al. The Eudrivas Project: within- and between-subject biological variation data for serum creatinine using enzymatic and alkaline picrate methods and implications for monitoring. Clin. Chem. 63, 1527–1536 (2017).

22. Terada, T. & Inui, K. Physiological and pharmacokinetic roles of H+/organic cation antiporters (MATE/SCL47A). Biochem. Pharmacol. 75, 1689–1696 (2008).

23. Stein, A.M. & Looby, M. Benchmarking QSP models against simple models: a path to improved comprehension and predictive performance. CPT Pharmacometrics Syst. Pharmacol. 7, 487–489 (2018).

24. Gertz, M. et al. Cyclosporine inhibition of hepatic and intestinal CYP3A4, uptake and efflux transporters: application of PBPK modeling in the assessment of drug–drug interaction potential. Pharm. Res. 30, 761–780 (2013).

25. US Food and Drug Administration. Physiologically Based Pharmacokinetic Analyses — Format and Content: Guidance for Industry. (Center for Drug Evaluation and Research, Silver Spring, MD, 2018). <https://www.fda.gov/media/101469/download>.

26. Kuepfer, L. et al. Applied concepts in PBPK modeling: how to build a PBPK/PD model. CPT Pharmacometrics Syst. Pharmacol. 5, 516–531 (2016).

27. Scotcher, D., Jones, C.R., Galetin, A. & Rostami-Hodjegan, A. Delineating the role of various factors in renal disposition of digoxin through application of physiologically based kidney model to renal impairment populations. J. Pharmacol. Exp. Ther. 360, 484–495 (2017).

28. Tsamandouras, N. et al. Development and application of a mechanistic pharmacokinetic model for simvastatin and its active metabolite simvastatin acid using an integrated population PBPK approach. Pharm. Res. 32, 1864–1883 (2015).

29. Guest, E.J., Aarons, L., Houston, J.B., Rostami-Hodjegan, A. & Galetin, A. Critique of the two-fold measure of prediction success for ratios: application for the assessment of drug–drug interactions. Drug Metab. Dispos. 39, 170–173 (2011).

30. Chu, X., Blasby, S., Chan, G.H., Nunes, I. & Evers, R. The complexities of interpreting reversibly observed serum creatinine levels in drug development: does a correlation with inhibition of renal transporters exist? Drug Metab. Dispos. 44, 1498–1509 (2016).

31. Nakada, T., Kudo, T., Kume, T., Kusuhara, H. & Itou, K. Estimation of changes in serum creatinine and creatinine clearance caused by renal transporter inhibition in healthy subjects. Drug Metab. Pharmacokinet. 34, 233–238 (2019).

32. Chien, H.C. et al. Rapid method to determine intracellular drug concentrations in cellular uptake assays: application to metformin in organic cation transporter 1-transfected human embryonic kidney 293 cells. Drug Metab. Dispos. 44, 356–364 (2016).

33. Chu, X. et al. Clinical probes and endogenous biomarkers as substrates for transporter drug–drug interaction evaluation: perspectives from the international transporter consortium. Clin. Pharmacol. Ther. 104, 836–864 (2018).

34. Urakami, Y., Akazawa, M., Saito, H., Okuda, M. & Inui, K. cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter oct2 predominantly expressed in the human kidney. J. Am. Soc. Nephrol. 13, 1703–1710 (2002).

35. Lips, K.S. et al. Polyspecific cation transporters mediate luminal release of acetylcarnine from bronchial epithelium. Am. J. Respir. Cell Mol. Biol. 33, 79–88 (2005).

36. Benson, N. Quantitative systems pharmacology and empirical models: friends or foes? CPT Pharmacometrics Syst. Pharmacol. 8, 135–137 (2019).

37. Sajib, A.A., Islam, T., Paul, N. & Yeasmin, S. Interaction of N316019 variants of SLC22A2 with metformin and other drugs— an in silico analysis. J. Genet. Eng. Biotechnol. 16, 769–775 (2018).

38. Zamek-Gliszczynski, M.J. et al. Transporters in drug development: 2018 ITC recommendations for transporters of emerging clinical importance. Clin. Pharmacol. Ther. 106, 890–899 (2018).

39. Ménonchet, K., Kenworthy, K.E., Houston, J.B. & Galetin, A. Simultaneous assessment of uptake and metabolism in rat hepatocytes: a comprehensive mechanistic model. J. Pharmacol. Exp. Ther. 341, 2–15 (2012).

40. Scotcher, D., Jones, C., Rostami-Hodjegan, A. & Galetin, A. Novel minimal physiologically-based model for the prediction of passive tubular reabsorption and renal excretion clearance. Eur. J. Pharm. Sci. 94, 59–71 (2016).

41. Goldman, R., Yadley, R.A. & Nourek, D.S. Comparison of endogenous and exogenous creatinine clearances in man. Proc. Soc. Exp. Biol. Med. 125, 205–210 (1967).

42. Sirotta, J.H., Baldwin, D.S. & Villarreal, H. Diurnal variations of renal function in man. J. Clin. Invest. 29, 187–192 (1950).

43. Vree, T.B., Hekster, Y.A., Hafkenscheid, J.C., van Dalen, R. & Friesen, W.T. The influence of urine flow on renal clearance of creatinine in patients with normal and impaired kidney function. Drug Intell. Clin. Pharm. 15, 194–198 (1981).

44. Matsuizaki, T., Scotcher, D., Darwich, A.S., Galetin, A. & Rostami-Hodjegan, A. Towards further verification of physiologically-based kidney models: predictability of the effects of urine-flow and urine-pH on renal clearance. J. Pharmacol. Exp. Ther. 368, 157–168 (2019).

45. Ekaratnapawong, S. et al. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylic exchanger in the proximal tubules. J. Pharmacol. Sci. 94, 297–304 (2004).

46. Varshney, A., Rehan, M., Subbarao, N., Rabbani, G. & Khan, R.H. Elimination of endogenous toxin, creatinine from blood plasma depends on albumin conformation: site specific umeosity toxicity & impaired drug binding. PLoS One 6, e17230 (2011).

47. Sager, G., Smaglyukova, N. & Fuskovaag, O.M. The role of OAT2 (SLC22A7) in the cyclic nucleotide biokinetics of human erythrocytes. J. Cell. Physiol. 233, 5972–5980 (2018).

48. Yoshida, K. et al. In vitro–in vivo extrapolation of metabolism-and transporter-mediated drug–drug interactions—overview of basic prediction methods. J. Pharm. Sci. 106, 2209–2213 (2017).

© 2020 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of the American Society for Clinical Pharmacology and Therapeutics. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.