INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a type of head and neck cancer that exhibits a distinct geographic distribution. NPC arises from the epithelial cells that line the surface of the nasopharynx. Globally, it is estimated that about 130,000 people were affected by NPC in 2018 and incidence is reported to be highest in southern China, Southeast Asia and North Africa. In areas with high incidence of NPC, almost
all undifferentiated NPC have evidence of EBV infection. EBV infection is the most widely and deeply studied pathogenic factor of NPC. Available options for the treatment of NPC include concurrent chemoradiotherapy, adjuvant chemotherapy, induction chemotherapy and immunotherapy. While NPC responds to concurrent chemoradiotherapy, local recurrence and distant metastasis remain as the main causes of mortality in NPC patients. Additionally, development of resistance to both chemotherapy and radiotherapy further limits treatment options for some NPC patients. These challenges raise an urgent need to elucidate the molecular basis of NPC and to leverage this knowledge for the development novel therapeutic strategies against NPC.

The 16kDa placenta specific gene 8 (PLAC8), also known as onzin, was first characterized to be highly expressed in the mouse placenta. This gene was later found to be expressed in various cell types, including myeloid cells, lymphoid cells and epithelial cells of the lungs and intestines. PLAC8 appears to play an important role in normal tissue homeostasis. Its deficiency has been associated with congenital immune deficiency in mice, and its function has been reported to modulate the cell cycle in pancreatic cancer cells and cell proliferation in hepatocellular carcinoma cells. This gene has also been reported to regulate the expression of genes involved in cell growth, autophagy and epithelial-mesenchymal transition (EMT).

Autophagy (macro-autophagy) is the process by which a cell digests its cellular components, including organelles and recycles them. Autophagy has been shown to modulate a wide range of cellular processes, including cellular responses to oxidation and nutritional stress, and tumorigenesis. The role of autophagy in cancer is complex, and its function may vary depending on a number of biological factors, including tumour type, stage of progression and genetic background, as well as invasion and metastasis. Autophagy refers to the process through which certain physiologic and pathologic conditions trigger the transformation of epithelial cells into mesenchymal cells. It is characterized by the loss of polarity by epithelial cells and their acquisition of migratory and invasive capacity, properties strongly associated with cancer cells. Moreover, it has been shown that the relationship between autophagy and EMT varies between different tumour types. For instance, it has been reported that while inhibiting autophagy favours EMT in papillary thyroid carcinomas, suppression of autophagy inhibits EMT in hepatocellular.

Considering our previous findings that PLAC8 influences EMT via the TGF-β/SMAD pathway and that the TGF-β/SMAD pathway is reported to be involved in autophagy, we wondered whether as part of this EMT-regulating network, PLAC8 might also modulate the autophagic pathway in NPC cells. To address this question, we investigated whether PLAC8 knockout in NPC cells affects the autophagic pathway and how this alters cell proliferation, apoptosis and EMT.

2 | MATERIALS AND METHODS

2.1 | Cell culture

CNE-2, a human nasopharyngeal squamous cell carcinoma cell line, was obtained from the China Center for Type Culture Collection (CCTCC) at Wuhan University. The cells were cultured in RPMI 1640 medium (Biosun) supplemented with 10% FBS (Gibco, Thermo Fisher), in a humidified incubator at 37°C, 5% CO2.

2.2 | Generation of koPLAC8 CNE-2 cells

Services for the generation of koPLAC8 CNE-2 cells (PLAC8-knockout CNE-2 cells) were procured from Biocytogen, a Beijing-based biotechnology company (www.bbctg.com.cn). To this end, the PLAC8 intron between exons 2 and 3 was targeted through CRISPR/Cas9 and substituted with the puromycin resistance gene via homologous recombination. Puromycin resistance screening identified koPLAC8 clones, which were confirmed using PCR, sequencing and Western blotting.

2.3 | siRNA gene knockdown

To knockdown genes, siRNAs against Beclin-1 (si-Beclin-1) or control siRNA (si-NC) were transfected into cells using Lipofectamine 2000 (Invitrogen, Thermo Fisher Scientific; catalog number) according to the manufacturer’s protocol. The following anti-Beclin-1 siRNA and non-targeting control siRNA were used: Beclin-1: 5'-CAG TTT GGC ACA ATC AAT-3'), non-targeting siRNA: 5'-UUC UCC GAA CGU GUC AGC-Utt-3'). SiRNA oligos were purchased from the Gene Technology Co. Cells were transfected with anti-Beclin-1 siRNA or non-targeting siRNA and incubated for 12 hours, after which they were used in subsequent experiments. Beclin-1 knockdown levels were determined by RT-qPCR and Western blotting 12 hours post-transfection.

2.4 | Cell migration and invasion assay

5 × 10⁵ cells were seeded onto a Transwell chambers. The cells were then placed in culture for 48 hours, following which we analysed their migration and invasion capacity using 0.1% crystal violet. Cells on the lower chambers were stained. Five fields were randomly selected for cell counting, and cell images were taken under a microscope at 200× magnification. We next counted the number of cells that migrated through the membrane, and computed the migration and invasion scores as previously described.

2.5 | Tandem mRFP-GFP fluorescence microscopy

To monitor the autophagic flux, we used a tandem monomeric RFP-GFP-tagged LC3 (tfLC3) reporter to as previously described. To evaluate tandem fluorescent LC3 puncta, cells were transfected with tfLC3 alone or co-transfected with siRNA (anti-Beclin-1 or non-targeting siRNA) and tfLC3. 48 hours post-transfection, the cells were washed with 1X PBS and immediately analysed via confocal microscopy using a Zeiss LSM 710 confocal microscope system
Zeiss). Images analysis was performed by the ZENLE confocal analysis software (Carl Zeiss).

2.6 Transmission electron microscopy

For transmission electron microscopy, cells were grown on 6-well plates and divided into two groups, the control group and koPLAC8 group and cultured for 24 hours. They were trypsinized and rinsed with 1X PBS. The cells were then collected by centrifugation at 1000 g for 5 minutes and fixed by resuspension in 2.5% glutaraldehyde and incubation for 2 hour. After fixation, samples were treated with 2% osmium tetroxide in 0.1 M sodium cacodylate buffer and dehydrated through a graded series of acetone before embedment in resin. Finally, the samples were sectioned at a thickness of 65 nm and processed for TEM. TEM analysis was done with a Hitachi electron microscope H-600 (Hitachi, Ltd.).

2.7 Xenograft model experiment

Male BALB/c-nu mice (n = 16; 4-5 weeks of age, 17-21 g) were obtained from Vital River Laboratory Animal Technology, Beijing, China. The animal experiments were approved by the Committee on Ethics of Animal Experiments of Renmin Hospital of Wuhan University and performed in compliance with the Guide for the Care and Use of Laboratory Animals from the National Institutes of Health. The mice were reared under specific pathogen-free conditions, with a 12 hour light/dark cycle and access to water and food ad libitum. The nude mice were then divided into two groups comprising the control group and the koPLAC8 group (both n = 8). Then, the cells (1 × 10^6; control or koPLAC8) were subcutaneously injected into the flank of each mouse. After 3 weeks, all the mice were killed. The xenograft tissue was dissected, fixed and stained.

2.8 Western blot analysis

For Western blot analysis, cells were plated onto 6-well plates at a seeding density of 3 × 10^4 cells per well. The cells were then cultured overnight as described in section 2.1. The cells were then harvested and lysed on ice with ice-cold RIPA buffer supplemented with protease inhibitor cocktail (Cell Biolabs). Protein concentrations were then determined using the BCA assay method (Thermo Fisher Scientific). Prior to SDS-PAGE, the protein samples were
denatured. SDS-PAGE was then used to resolve equal amounts of total protein (30-50 μg) on precast 10% polyacrylamide gels (Bio-Rad Laboratories). Next, the proteins were transferred onto a PVDF membrane (Thermo Fisher Scientific). Non-specific antibody binding was blocked by incubating membranes (with rocking) in 5% non-fat milk at room temperature for 1 hour. Next, membranes were incubated with the following primary antibodies overnight at the indicated dilutions: rabbit polyclonal p-AKT antibody, dilution 1:500 (Abcam, cat. no. ab8805), rabbit monoclonal mTOR, dilution 1:500 (Abcam, cat. no. ab32391), rabbit monoclonal p-AKT(Ser473) antibody, dilution 1:500 (Abcam, cat. no. ab81283), rabbit monoclonal p-mTOR (Ser-9) antibody, dilution 1:1000 (Abcam, cat. no. ab75814), rabbit monoclonal SQSTM1/P62 antibody, dilution 1:1000 (CST, cat. No. 39749S), rabbit monoclonal Beclin-1 antibody, dilution 1:1000 (CST, cat. No. 2774), rabbit monoclonal LC3 antibody, dilution 1:1000 (CST, cat. No. 2978) and rabbit monoclonal GAPDH antibody, dilution 1:1000 (CST, cat. No. 2803). The membranes were then incubated with anti-rabbit IgG (1:20 000) for 1 hour at room temperature. The immunoreactive bands were shown in the infrared laser imaging system and quantified using Odyssey software (LI-COR). Results are expressed as the ratio of the mean band density of experimental groups to that of the control group after normalization to GAPDH.

2.9 Data analysis

All statistical data analyses were done using SPSS software, version 22.0 (SPSS Inc). All quantitative data are presented as mean ± standard deviation. Chi-square test and student t tests were applied as deemed appropriate different types of data analyses. P values of P < .05 are considered to indicate statistically a difference.
A

	koPLAC8	3MA	si-Beclin-1
Migration			
Invasion			

B

	koPLAC8	3MA	LC3-I	LC3-II	P62	E-cadherin	Vimentin	GAPDH

C

	koPLAC8	3MA	si-Beclin-1

GFP

![GFP Image]

mRFP

![mRFP Image]

Merge

![Merge Image]

Bar Charts:

- **Number of migrating cells**: Significantly increased with koPLAC8 and si-Beclin-1.
- **Number of invading cells**: Increased with koPLAC8 and si-Beclin-1.

Note: The results indicate that koPLAC8 and si-Beclin-1 significantly affect cell migration and invasion in the context of the experiments performed.
3 | RESULTS

3.1 PLAC8 knockout induces autophagy in NPC cells

To investigate the impact of PLAC8 knockout on autophagy, we employed TEM to examine the presence of autophagosomes in koPLAC8 cells. Relative to the control cells, this analysis revealed a striking expansion of the autophagosome compartment in koPLAC8 cells (Figure 1A). To ascertain that these autophagosomes result in increased autophagy, we took advantage of the mRFP-GFP-LC3 reporter to monitor the effect of PLAC8 on the autophagic flux. When this reporter is localized within in autolysosomes, it fluoresces red because the GFP signal is quenched under the acidic conditions in the lysosomal lumen. The RFP, which is stable under low pH, remains active in the lysosomal lumen. Upon analysis, we observed increased red and green spots colocalization in koPLAC8 cells, indicating maturation of autophagosomes in these cells (Figure 1B,C). Furthermore, koPLAC8 resulted in an increased number of yellow and red spots (Figure 1D), suggesting that koPLAC8 activated autophagy. To establish whether autophagy was indeed activated in koPLAC8 cells, the level of autophagy marker, Beclin-1, was analysed by Western blot. This analysis revealed a markedly elevation of Beclin-1 protein levels in koPLAC8 cells, as well as an increase of LC3-II/LC3-I protein ratio. In addition, p62 protein levels were reduced in koPLAC8. Together, these observations suggest that PLAC8 knockout induces autophagy (Figure 1E,F).

3.2 Autophagy inhibitor 3-MA reverses the cell proliferation inhibited and apoptosis induced by PLAC8 knockout

3-MA is a widely used specific inhibitor of autophagy.26 To establish whether the cell proliferation or colony formation inhibited and apoptosis induced by PLAC8 knockout emanate from autophagy induction, we used 3-MA to block autophagy and investigated its effect on these processes in koPLAC8 cells. To this end, we treated the cells with 3-MA for 24h, 48h and 72h and then carried out a CCK8 assay. This analysis revealed that relative to the controls, the proliferation of the CNE-2 cells was significantly inhibited by koPLAC8 and this effect could be reversed by treating the koPLAC8 cells with 3-MA (P < .05, Figure 2A,B). This observation was further confirmed by treating the cells with 3-MA and performing a colony formation assay. This analysis revealed that koPLAC8 cells treated with 3-MA formed more colonies relative to the untreated controls (P < .01) (Figure 2C,D). We next monitored the effect of autophagy inhibition on apoptosis in koPLAC8 cells. This analysis also revealed a markedly reduced rate of apoptosis upon treatment of koPLAC8 cells with 3-MA treatment, relative to the untreated koPLAC8 cells (P < .01) (Figure 2E,F). Taken together, these results demonstrate that inhibition of autophagy reverses the cell proliferation inhibited and apoptosis induced by knockout of PLAC8.

3.3 Beclin-1 knockdown reverses the cell proliferation inhibited and apoptosis induced by knockout of PLAC8

Beclin-1 is a critical modulator of autophagy.27 To further investigate the relationship between PLAC8 and autophagy, we knocked down with siRNA and interrogated its effect on proliferation, colony formation and apoptosis of koPLAC8 cells. To this end, we first successfully knocked down Beclin-1 by siRNA (Figure 3A,B) and assessed cell proliferation using the CCK8 assay. This analysis revealed that the proliferation of CNE-2 cells was significantly inhibited by koPLAC8 and this effect could be reversed by treating the koPLAC8 cells with Si-Beclin-1 after 24, 48 or 72 hours (P < .05) (Figure 3C,D). This observation was further confirmed by the results of colony formation assays in Beclin1-knockdown koPLAC8 CNE-2 cells. This analysis revealed that Beclin-1 knockdown in koPLAC8 resulted in the formation of more colonies relative non-knockdown koPLAC8 cells (P < .01) (Figure 3E,F). Next, we monitored the effect of Beclin-1 knockdown on apoptosis in koPLAC8 cells. This analysis revealed that reduced levels of Beclin-1 in koPLAC8 markedly decreased apoptosis relative to the non-knockdown cells (P < .01) (Figure 3G,H). Taken together, these results demonstrate that down-regulation of Beclin-1 reverses the cell proliferation inhibited and apoptosis induced by knockout of PLAC8.

3.4 Autophagy induced by knockout of PLAC8 suppresses EMT in NPC cells

We next wondered whether the autophagy induction resulting from PLAC8 knockout affects EMT in NPC cells. To address this question, we used the koPLAC8 cells to perform the Transwell assay and quantified the number of migrating and invading cells. This analysis revealed that migration and invasion by koPLAC8 cells was significantly reduced relative to the controls (Figure 4A). To investigate the role of PLAC8 knockout induced autophagy on cell invasion and migration further, we inhibited autophagy pharmacologically, using 3-MA or Beclin-1 knockdown. Scale bars: 50 μm. Results show the mean ± SEM from triplicate experiments. *P < .05, **P < .01
observations suggested that both 3-MA and Beclin-1 knockdown are potent inhibitors of koPLAC8-induced autophagy in CNE-2 cells (Figure 4B). Similar results were obtained by monitor in the autophagic flux with the mRFP-GFP-LC3 reporter, as both 3-MA treatment and Beclin-1 knockdown in koPLAC8 resulted in decreased yellow and red spots (Figure 4C). We next assessed the number of migrating and invading cells using the Transwell assay. This experiment indicated that the number of migrating and invading koPLAC8 cells was markedly reduced upon treatment with 3-MA or Beclin-1 knockdown, relative to the negative controls (Figure 4A).

We then decided to further explore the mechanisms through which PLAC8 knock-out activates autophagy in koPLAC8 cells. Published studies have reported that EMT is closely related to invasion and migration in NPC. To address this question, we explored the EMT marker proteins. This analysis revealed that relative to the control cells, the epithelial marker E-cadherin was strikingly elevated in koPLAC8 cells. On the contrary, we observed a significantly lower expression of the mesenchymal marker Vimentin, in the koPLAC8 cells relative to controls. We next treated the koPLAC8 cells with 3-MA or knocked down Beclin-1 and monitored the expression levels of E-cadherin and Vimentin. This analysis revealed a down-regulation of E-cadherin and up-regulated Vimentin relative to the non-treated and non-knocked down koPLAC8 cells (Figure 4B, Sig.1). Taken together, these observations indicate that autophagy induced by knockout of PLAC8 inhibits the EMT in NPC cells.

3.5 | PLAC8 knockout inhibits AKT/mTOR signalling during autophagy

We next wondered about the mechanisms by which PLAC8 knock-out activates autophagy in koPLAC8 cells. Inhibition of the AKT/mTOR signalling pathway is known to potently induce autophagy. We therefore wondered PLAC8 knockout might inhibit AKT activation and consequently, its downstream target, mTOR. To answer this question, we examined the state of AKT/mTOR signalling in CNE-2 cells. From this analysis, we did not observe any significant changes in the levels of AKT and mTOR (Figure 5A,B). However, the levels of phosphorylated AKT and mTOR were reduced in the koPLAC8 cells, indicating suppressed AKT/mTOR signalling. To assess whether PLAC8 might directly modulate AKT activation, we performed a co-localization immunofluorescence assay. This experiment revealed complete co-localization between PLAC8 and AKT, suggesting a direct interaction between the two proteins. To explore whether the two proteins can directly interact, we carried out a co-immunoprecipitation experiment, which revealed interaction between PLAC8 and AKT (Figure 5C,D). Together, these results indicate that PLAC8 regulates AKT activation and suggests a mechanism through which PLAC8 knockout inhibits the activation of the AKT/mTOR signalling, thereby activation autophagy in NPC cells.

3.6 | Knockout of PLAC8 induced autophagy and inactivated AKT/mTOR signalling pathway in vivo

Next, we used mouse xenograft models to study the effect of PLAC8 on NPC in vivo. Staining for the biomarkers of autophagy (Beclin-1, LC3-II and P62) using immunofluorescence and immunohistochemistry showed that the tumour cells in the koPLAC8 group had higher autophagy activity compared with that in the control group. Moreover, the Phosphorylation of AKT and mTOR in the koPLAC8 group had lower activity compared with that in the control group (Figure 6A-C). These results showed that knockout of PLAC8 induced autophagy and inactivated AKT/mTOR signalling pathway in vivo.

4 | DISCUSSION

We have previously reported roles for PLAC8 in the modulation of proliferation, apoptosis, EMT and response to radiotherapy in NPC cells. Here, we report findings from our investigation of the mechanisms through which PLAC8 influences proliferation, apoptosis and EMT in NPC cells.
Previous reports have indicated that inhibition of PLAC8 impairs tumour proliferation in pancreatic and prostate cancers by suppressing autophagy.15,30 We therefore wondered, whether loss of PLAC8 function might have similar effects in nasopharyngeal cancer cells. Results from this study revealed a significant expansion of the autophagosome compartment upon PLAC8 knockout in NPC cells. Further, our analyses show that the ratio of LC3-II/LC3-I as well as that of Beclin-1 was up-regulated in koPLAC8 cells. Conversely, PLAC8 knockout resulted in a downmodulation P62 levels. Together, these results confirmed that koPLAC8 induces autophagy in NPC cells. And xenograft model experiments showed koPLAC8 induces autophagy. In addition, pharmacologic inhibition of autophagy with 3-MA or by siRNA-mediated knockdown of Beclin-1 during ko-PLAC8-induced autophagy resulted in a significant reversal of these outcomes. Leading to significantly increased cell viability, reduced apoptosis and enhanced EMT. Contrary to the increased cell growth reported in pancreatic and prostate cancer following PLAC8-induced autophagy, our data strongly suggest that PLAC8 suppresses autophagy and that this leads to increase the cell growth in NPC cells.

Notably, our results show that autophagy and apoptosis are activated CNE-2 cells upon PLAC8 knockout. Additionally, the increased rate of apoptosis resulting from PLAC8 knockout was strongly countered by inhibition of autophagy both pharmacological with 3-MA or by siRNA-mediated silencing of Beclin-1. Up to now, the association between apoptosis and autophagy in NPC has been unclear. We are aware of one study reporting the transformation of autophagy and apoptosis through the interaction between the anti-apoptotic protein Bcl-2 and the autophagic protein Beclin-1.31 It is well established that apart from being an important factor in the formation of autophagosomes,32 Beclin-1 is also an important component of the Beclin-1-Bcl-2 complex.33 In this study, we found that PLAC8 potently suppresses autophagy and apoptosis in NPC cells and that
In this study, we observed that koPLAC8 inhibits the activation of autophagy upon PLAC8 knockout, thereby activating autophagy of NPC cells. However, there are still some limitations in this work. We only used CNE-2 as the cell model of NPC. If we could add another cell models that are more native and of the NPC origin, such as c666-1 and NPC43, our results would be more representative, and the relationship between the expression of PLAC8 and the carcinogenesis of EBV might also be elucidated. Further studies should be performed to explore these problems.

Taken together, our results show that loss of PLAC8 promotes autophagy by inhibiting the AKT/mTOR pathway, thereby inhibiting proliferation and EMT, while promoting apoptosis in NPC cells (Figure 7). These results suggest that some small molecule drugs targeting PLAC8 can be designed for the treatment of NPC in the future.

FIGURE 7 A schematic depiction of the PLAC8/AKT/mTOR signalling axis and its influence on cell proliferation, apoptosis and EMT in NPC cells

that PLAC8 knockout inhibits activation of the AKT/mTOR pathway, thereby activating autophagy of NPC cells.

CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

AUTHOR CONTRIBUTION
Mao-Ling Huang involved in data curation; Cheng-Lin Qi and Rui Yang involved in formal analysis; Shi-Ming Chen involved in funding acquisition; Yang Jiang involved in investigation; You Zou involved in project administration; Jian-Fei Sheng, Yong-Gang Kong and Ze-Zhang Tao involved in supervision.

DATA AVAILABILITY STATEMENT
The data sets used and/or analysed during the current study are available from the corresponding author on reasonable request.

ORCID
Shi-Ming Chen https://orcid.org/0000-0002-1216-004X

REFERENCES
1. Chen Y-P, Chan ATC, Le Q-T, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet. 2019;394:64-80.
2. Dai W, Zheng H, Cheung AK, Lung ML. Genetic and epigenetic landscape of nasopharyngeal carcinoma. Chin Clin Oncol. 2016;5:16.
3. Zhang Y, Chen L, Hu GQ, et al. Gemcitabine and cisplatin induction chemotherapy in nasopharyngeal carcinoma. N Engl J Med. 2019;381(12):1124-1135.
4. Xu M, Yao Y, Chen H, et al. Genome sequencing analysis identifies Epstein-Barr virus subtypes associated with high risk of nasopharyngeal carcinoma. Not Genet. 2019;51:1131-1136.
5. Lee AW, Ng WT, Chan YH, Sze H, Chan C, Lam TH. The battle against nasopharyngeal cancer. Radiat Oncol. 2012;10:272-278.
6. Wang S, Claret FX, Wu W. MicroRNAs as therapeutic targets in nasopharyngeal carcinoma. Front Oncol. 2019;9:756.
7. Galaviz-Hernandez C, Stagg C, de Ridder G, et al. Plac8 and Plac9, novel placental-enriched genes identified through microarray analysis. Gene. 2003;309:81-89.
8. Li M, Liu D, Wang L, Wang W, Wang A, Yao Y. Expression of placent-specific B in human oocytes, embryos, and models of in vitro implantation. Fertil Steril. 2016;106(781–789):e782.
9. Jia Y, Ying X, Zhou J, et al. The novel KLF4/PLAC8 signaling pathway regulates lung cancer growth. Cell Death Dis. 2018;9:603.
10. Li C, Ma H, Wang Y, et al. Excess PLAC8 promotes an unconventional ERK2-dependent EMT in colon cancer. J Clin Invest. 2014;124:2172-2187.

11. Zhu B, Ju S, Chu H, et al. The potential function of microRNAs as biomarkers and therapeutic targets in multiple myeloma. Oncol Lett. 2018;15:6094-6106.

12. Ledford JG, Kovarova M, Koller BH. Impaired host defense in mice lacking ONZI. J Immunol. 2007;178:5132-5143.

13. Kaistha BP, Lorenz H, Schmidt H, et al. PLAC8 localizes to the inner plasma membrane of pancreatic cancer cells and regulates cell growth and disease progression through critical cell-cycle regulatory pathways. Cancer Res. 2016;76:96-107.

14. Zou L, Chai J, Gao Y, Guan J, Liu Q, Du JJ. Down-regulated PLAC8 promotes hepatocellular carcinoma cell proliferation by enhancing PI3K/Akt/GSK3beta/Wnt/beta-catenin signaling. Biomed Pharmacother. 2016;84:139-146.

15. Kinsey C, Balakrishnan V, O'Dell Michael R, et al. Plac8 links oncogenic mutations to regulation of autophagy and is critical to pancreatic cancer progression. Cell Rep. 2014;7:1143-1155.

16. Suzuki H, Osawa T, Fujiyoka Y, Noda NN. Structural biology of the core autophagy machinery. Curr Opin Struct Biol. 2017;43:10-17.

17. Lahiri V, Hawkins WD, Klonisky DJ. Watch what you (self-) eat: autophagic mechanisms that modulate metabolism. Cell Metab. 2019;29:803-826.

18. Antunes F, Erustes AG, Costa AJ, et al. Autophagy and intermittent fasting: the connection for cancer therapy? Clinics (Sao Paulo). 2018;73:e814s.

19. Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28:15-33.

20. Lahiri V, Hawkins WD, Klonisky DJ. Watch what you (self-) eat: autophagic mechanisms that modulate metabolism. Cell Metab. 2019;29:803-826.

21. Han LL, Jia L, Wu F, Huang C. Sirtuin6 (SIRT6) promotes the EMT of human bladder cancer cells. J Cell Biochem. 2019;120:5118-5127.

22. Tong H, Yin H, Hossain MA, et al. Starvation-induced autophagy promotes the invasion and migration of human bladder cancer cells via TGF-beta1/Smad3-mediated epithelial-mesenchymal transition activation. J Cell Biochem. 2019;120:5118-5127.

23. Gugnoni M, Sancisi V, Gandolfi G, et al. Cadherin-6 promotes the invasion and migration of human bladder cancer cells. J Cell Biochem. 2019;120:5118-5127.

24. Gao L, Wang Z, Lu D, Huang J, Liu L, Hong L. Paeonol induces cytoprotective autophagy via blocking the Akt/mTOR pathway in ovarian cancer cells. Cell Death Dis. 2019;10:609.

25. Khan T, Relitti N, Brindisi M, et al. Autophagy modulators for the treatment of oral and esophageal squamous cell carcinomas. Med Res Rev. 2019;10:1002-1060.

26. Chen J, Yu Y, Li S, et al. MicroRNA-30a ameliorates hepatic fibrosis by inhibiting Beclin1-mediated autophagy. J Cell Mol Med. 2017;21:3679-3692.

27. Zou Y, Yang R, Huang ML, et al. NOTCH2 negatively regulates metastasis and epithelial-Mesenchymal transition via TRAF6/AKT in nasopharyngeal carcinoma. J Exp Clin Cancer Res. 2019;38:456.

28. Liu C, Zhang L, Cui W, et al. Epigenetically upregulated GEFT-derived invasion and metastasis of rhabdomyosarcoma via epithelial mesenchymal transition promoted by the Rac1/Cdc42-PAK signalling pathway. EBioMedicine. 2019;50:122-134.

29. Huang M-L, Qi C-L, Zou Y, et al. Plac8-mediated autophagy regulates nasopharyngeal carcinoma cell function via AKT/mTOR pathway. J Cell Mol Med. 2020;24:7778–7788. https://doi.org/10.1111/jcmm.15409.