Background

Vegetative growth in crop plants is generally associated with the above and below-ground biomass. The vigorous vegetative growth has been used as an indicator for stress resistance and high yield due to the potential source to sink mobilization of reserves stored in vegetative plant parts, viz., stem, leaves, and roots [1–4]. Therefore, many studies have used derived traits and/or indices of vegetative growth, including fresh weight [5, 6], dry weight [7], index of cell water content [8], Delf’s index [9], stem reserve mobilization [2], surface expansion [9], and leaf succulence [9]. Plant biomass is a complex trait and usually refers to the quality of plants in their natural state. For example, the estimation of water contents by comparing fresh and dry weight is a commonly practiced technique in many crops [10–12]. Owing to its complex nature and underlying genetics, it is pertinent to understand the genetic regulators of biomass development in crop plants.

Cotton contributes hefty shares as raw material for the textile industry. Significant variation of biomass-related traits like fresh weight, dry weight, water content, and root shoot ratio, generally influenced by environmental factors, is present among modern cultivars and wild relatives [3, 13]. There was a hypothesis that greater seedling biomass-related traits like water content and root shoot ratio could enhance the chances that cotton seedlings resist pests and diseases, and may improve the ability to tolerate abiotic stress [14–16]. Yet, there is a clear lack of studies concerning the genetic regulation of seedling biomass in crop plants, especially in cotton. To date, a still fewer study has been reported for genetic control of seedling
biomass-related traits in cotton. Multigenic control and elusive environmental influences make it difficult to understand the genetic control and development of molecular markers for seedling biomass-related traits [17]. Owing to advances in omics, recent reports suggested the identification of molecular markers concerning seedling biomass-related traits in different species, viz., rice [18], Brassica [19], and wheat [20–22].

Recent advances in sequencing technology have led to extensive Genome-wide association studies (GWAS) in crop plants [17, 18, 23–26]. Based on population genetics and genome analysis of natural genetic populations, GWAS has proven to be an efficient tool for understanding the relationship between phenotype and associated genetic variation [27–29]. At present, the previously published molecular markers related to seedling biomass-related traits were mainly determined by traditional QTL methods utilizing F2 populations and RIL populations [18–20, 22]. Furthermore, diploid Gossypium arboreum, which is the ancestors of the modern cultivated allo-tetraploid cotton should be an ideal model for basic research in cotton [30].

The present study aimed to systematically investigate the genetic regulation of early plant biomass in the germplasm of G. arboreum accessions by utilizing high-quality resequencing and GWAS. Moreover, we further screened the candidate genes of GWAS by transcriptome data. The yielded information regarding SNPs and putative candidate genes identified could effectively enrich the excellent genetic resources of complex traits like biomass in cotton.

Results

Phenotypic characterization of seedling biomass-related traits in G. arboreum

In the current study, the seedling biomass was evaluated by the fresh weight, dry weight, root shoot ratio, and water content traits. Totally, 11 seedling biomass-related traits were recorded in the 215 G. arboreum accessions (Table S2). Three replicates (R1, R2, R3) were recorded for each trait, as shown in Fig. 1, the range of replicates was similar to their average values (AV). The broad sense heritability for each trait was also calculated, and the result showed the RFW, RSR_FW, SFW, and TFW had higher heritability values (above 96.00%), whereas the RSR_DW had the lowest broad sense heritability (80.40%). Further descriptive analysis showed that the coefficient of variation (CV%) of all the traits ranged from 1.96 to 28.41% (Table 1; Table S3). The water content traits showed the lowest CV% values than other biomass-related traits. As shown in Table 1, the CV of average shoot water content (SWC_AV), average root water content (RWC_AV), and average total water content (TWC_AV) were 1.98, 2.78, and 1.96% respectively. The phenotypes associated with all the biomass-related traits showed a normal or toward a normal distribution, as shown in the frequency distribution plots (Fig. S2) and the Skewness / Kurtosis values (Tables S1; S3), hence, all the traits could meet the follow-up genome-wide association analysis.

Correlations of 11 seedling biomass-related traits

We performed a Pearson correlation analysis among the fresh weight, dry weight, root shoot ratio, and water content traits in 215 G. arboreum accessions. As shown in Fig. 2, the RWC (root water content) has a highly positive correlation with TWC (total water

![Fig. 1 Phenotypes and broad sense heritability of seedling biomass-related traits in 215 G. arboreum accessions.](image-url)
GWAS
A total of 1,425,003 high-quality SNPs with MAF > 0.05 and a missing rate < 20% were identified in the published studies [30] for the same 215 G. arboreum accessions. These high-quality filtered SNPs were used to perform GWAS for 11 seedling biomass-related traits in our study. We summarized and analyzed the detected SNPs (Figs. S3-S10; Table S4). As shown in Table S4, most SNPs
Fig. 3 Genome-wide association study for RWC. a Manhattan and quantile-quantile (Q-Q) plots of RWC. b The confidence intervals and LD block analysis. c Genotype analysis of SNP Chr07_93706195
were detected from the SWC and RWC traits, especially for RWC_R2 (455 SNPs). It is worth noting that the RWC_R2 was peaked at Chr11_19663606 on the Chr11 chromosome, and its -log P was 6.26 (Fig. 3; Table S4). We have also detected plenty of SNPs for the TDW traits, but unfortunately, their -log P values were relatively lower (Table S4; Fig. S8). Only two SNPs, namely SNP Chr02_7231541 (−log P = 6.39) and SNP Chr02_7231541 (−log P = 6.33), were reached the significant level. All the fresh weight traits including SFW, RFW, and TFW have detected fewer numbers of SNPs, and their -log P values were also relatively low with no SNP reaching the threshold (−log P > 6.15) (Table S4; Figs. S3-S5). Interestingly, we also observed that the SFW_R1 and TFW_R1 both peaked at SNP Chr04_96569153 (−log P = 5.65 and 5.61 respectively) and all the fresh traits have detected more SNP numbers on Chr04. Based on the threshold (−log P > 6.15), a total of 83 significant SNPs were detected (Table S5). Most (60) SNPs correspond to the intergenic regions, and only five significant SNPs were present in coding sequences with four SNPs in intron and one SNP (SNP Chr11_74811634) in the exonic (non-synonymous) region.

Putative candidate genes were detected by LD blocks with significant SNPs. The water content traits had more significant SNPs detected than other traits. For the root water content trait, as shown in Fig. 3, one peak signal (SNP Chr07_93706195) was identified on RWC_AV, RWC_R1, and RWC_R3. This peak was located upstream of Ga07G2433 and its allele was “T/C”. We further performed a genotype analysis for this site, the result found accessions that carried the “T” genotype had significantly higher water content than the “C” genotype. The shoot water content trait has detected a continuous stronger signal in the interval of 73.00-76.00 Mb on chr11 (Fig. 4). However, the LD-block analysis found that SNPs in this interval had a weaker linkage relationship (Fig. 5a). The SNP Chr11:74923286 was the strongest signal on chromosome 11, and it could be detected on SWC_AV, SWC_R2, and SWC_R3 (Figs. 4, 5). The allele of this site was “C/T”, and the further genotype analysis showed the “C” genotype accessions had significantly higher water content than “T” genotype accession (Fig. 5b).

As shown in Table S6, a total of 69 candidate genes were identified. Most of them are related to water content traits. Among them, 18 candidate genes associated with the shoot and root water content traits were detected on the Chr11 chromosome. Nevertheless, there are also a few candidate genes of root shoot ratio and dry weight that have been detected. For example, Ga03G1298 and Ga03G1299 were related to RSR_FW_R2. Ga02G0456 and Ga10G1342 were detected from RSR_FW_R2 and RDW_R1 respectively.

Comparison of expression patterns for GWAS candidate genes
In order to further analyze the GWAS candidate genes, we selected four representative materials for candidate gene expression analysis and qRT-PCR verification. Those four Asian cotton accessions were “AHQIZM”, “DPL971”, “WMSLDMH” and “DGXH”. The “WMSLDMH” and “DGXH” accessions have higher fresh weight, and water content than “AHQIZM” and “DPL971”, especially for the root samples (Table S2). And the transcriptome data (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA751791) of the four G. arboreum accessions, previously have been sequenced by our group (unpublished study).

We utilized the important transcriptomic profiles and compared the different expression levels of GWAS candidate genes in the four cotton accessions (Table S7). Three periods were analyzed, as shown in Fig. 6, the Ga10G1342 gene was highly expressed in all the three periods, and interestingly, it was higher expressed in “AHQIZM” and “DPL971” both on the 8d and 12d after sowing. However, the Ga11G0096 gene showed the opposite expression pattern, with higher expression levels in “WMSLDMH” and “DGXH” than “AHQIZM” and “DPL971”, especially for the periods of 2d and 8d after sowing. Ga03G1298 has a lower expression on the 2d, and it was increased on the 8d and showed different expression levels among the four cotton accessions on the 12d after sowing. Ga09G2054 showed higher expression on the 2d, and the FPKM value of “AHQIZM” and “DPL971” was higher than the other two accessions. While on the 8d after sowing, little difference can be detected among the four accessions, and it showed an obvious expression change on the 12d after sowing.

The TPM expression data of the GWAS candidate genes for the Asian cotton standard line cv Shixiya1 have also been downloaded from cottonFGD.org [31]. Forty genes with TPM expression data of different organizations included root, stem, leaf, and flower, were obtained (Table S8). As shown in Fig. S11, the Ga03G1298 have higher TPM expression levels in the leaf samples, whereas Ga09G2054 and Ga10G1342 have higher TPM expression levels in the root samples.

qRT-PCR verification
As shown in Fig. 7, five genes (Ga03G1298, Ga09G2054, Ga10G1342, Ga11G0096, and Ga11G2490) were selected to test and verify their relative expression level in the four representative Asian cotton accessions. Root and leaf samples of 12 das after sowing were collected and used in this study. The qRT-PCR result showed that
the Ga03G1298 gene showed higher expression in the leaf samples than in the root samples. Yet, the other four genes especially for Ga11G0096 had a higher relative expression on the root samples, which were consistent with their FPKM/TPM expression result. In addition, we also found the Ga10G1342 gene has detected higher relative expression levels in root samples of “AHQJZM” and “DPL971” than “DGXH” and “WMSLDMH”.

Discussion

Early development of plants is critical for providing a strong base for further development. Seedling stage biomass has been extensively studied in plants with its potential relation to the stress environments [4, 5, 19, 20, 23]. Investigating biomass and its related traits is also of significance to major characteristics, viz., yield, plant structure, fertilizer use efficiency. For instance,
a study concerning upland cotton suggested that bud fresh weight along with other morphological parameters are important indicators of cold tolerance [32]. Similar reports have been published emphasizing the importance of early plant biomass and its role as an indirect morphological marker for yield and disease resistance in plants [33, 34]. However, due to the complex inheritance of plant biomass, there is an apparent lack of studies identifying biological markers associated with plant biomass.
The progress of molecular markers identification of biomass and its related traits in cotton is relatively slow. At present, only a few studies have reported molecular markers or QTLs associated with seedling biomass-related traits in cotton. Tang et al. (2017) [35] used cross combination xinluzaomian 35 × Yinong 2 to construct a genetic map using F2 population and subsequently identified 3 QTLs of leaf fresh weight and 4 QTLs of leaf dry weight. An association analysis study of salt stress in upland cotton identified SNP D10_61258588 was associated with leaf fresh-weight, and SNP A10_95330133 was associated with the leaf relative water content [36]. Shang et al. (2016) identified 2 QTLs (qRW-chr11-1, qRW-CHR11-2) for root fresh weight and 2 QTLs (qRSR-chr21-1, qRSR-chr25-1) for root shoot ratio trait at 9 days after nitrogen deficiency [16]. Therefore, it is pertinent to perform more systematic molecular identification and provide mechanistic insights for complex traits. In this study, we systematically investigated the early plant biomass and performed a GWAS study for fresh weight, dry weight, water content, and root shoot ratio traits in Asian cotton.

Based on 1,425,003 high-quality SNPs, we identified 83 significant SNPs, and successfully detected 69 putative candidate genes related to seedling biomass-related traits. After integrating with the transcriptome data in four representative accessions, we finally screened out 5 genes (Ga03G1298, Ga09G2054, Ga10G1342, Ga11G0096, and Ga11G2490) that may be most closely related to the seedling biomass related traits. Ga03G1298 was identified for the RSR_FW trait. It could encode the light-harvesting complex-like protein OHP1 and may play a photoprotective role in the thylakoid membrane in response to light stress. In Arabidopsis, a recent study [37] found the OHP1 protein was localized at the thylakoid membranes, and it could form a trimeric complex with OHP2 and High Chlorophyll Fluorescence 244 (HCF244). In this study, we found “AHQJZM” and “DPL971” had lower RSR_FW values than “WMSLDMH” and “DGXH” (Table S2). Interestingly, the TPM and qRT-PCR results both showed the Ga03G1298 expressed higher in leaves than roots. And we also found the Ga03G1298 was higher expressed in the lower RSR_FW cotton accessions (“AHQJZM” and “DPL971”) on leaf samples, and this may further prove the Ga03G1298 gene is closely related to the RSR_FW trait. The gene name of Ga09G2054 is LBC10. It is a Ubiquitin-conjugating enzyme E2 10. This gene was identified by the RWC trait, however, in our qRT-PCR result, it didn't show a significant expression difference in root samples among the four representative cotton accessions. Ga10G1342 (RPS15) could encode 40S ribosomal protein S15. A recent study revealed that the ribosomal protein RPS15 exhibited bactericidal activity against Gram-positive Staphylococcus aureus in amphioxus Branchiostoma japonicum [38]. In Arabidopsis thaliana, Kathleen et al. (2010) found the ribosomal protein S15a could be classified into two categories (Type I and Type II), and further knock down experiment suggested the RPS15aE isoform (Type II S15a) may act as regulators of translational activity [39]. Whereas in our study, the Ga10G1342 gene was identified in the RDW trait, which means that this gene may be closely associated with the root dry weight in cotton. The FPKM of this gene showed a higher expression level in “AHQJZM” and “DPL971” than “WMSLDMH” and “DGXH” on the period of 12das after sowing. Our qRT-PCR result also showed the same expression pattern in the root, which may further validate the importance of this gene.

Ga11G0096 (CYP76A2) was associated with the SWC and TWC trait, which could encode the cytochrome P450 76A2. As early as 1993, Toguri et al. cloned this gene in eggplant seedlings and attributed it to the CYC76 gene family [40]. Unfortunately, still, no study have revealed the detailed function of this gene in plants. Our study found this gene was expressed in the root samples but not expressed in the leaf samples, and this may indicate that the CYC76 gene has tissue expression specificity. Ga11G2490 is a new gene found in cotton. This gene was identified in the shoot water content trait, which means this gene may also be associated with the water content in cotton seedlings.

Fig. 7 qRT-PCR verification for 5 selected genes
of fresh weight (RSR_FW) calculated by the FW and DW values. Root shoot ratio (RSR) and water content (WC) were firstly, then 105 °C, 12 h) to dry and weighed. Third, the used in this study is the same as the genotype data previously published by our team in Nature Genetics [30].

Methods

Plant material and data collection

A panel of 215 G. arboreum accessions obtained from Midterm Gene Bank of Cotton Research Institute, Chinese Academy of Agricultural Sciences, were used for this study. Given the limitations of field evaluation, this study used the seed bag nursery method to study the seedling stage biomass of Asian cotton in 2017 in a greenhouse to avoid environmental influence. Seeds of each accession were first sterilized with 15% H2O2 for half an hour and rinsed with sterile water at least five times. Next, we carefully planted the seeds in the medium-sized seed germination bag with tweezers, each bag with 12 seeds, and three replicated for each cotton accession. Twenty milliliters sterile water for each bag was irrigation water and cultured in a greenhouse (light/dark photoperiod = 16 h / 8 h, relative humidity 60 - 65%, and day/night temperature = 26 °C / 28 °C). And 2 weeks later, similar plants for each accession were sampled and were directly cut into two parts of the root and the shoot by scissors (Fig. S1). The phenotyping process mainly included three processes. First, fresh weight (FW) recording, samples were absorbed the surface water by filter papers and weighed by an electronic balance. Second, dry weight (DW) recording, samples were put in an oven (80 °C, 30 min firstly, then 105°C, 12 h) to dry and weighed. Third, the root shoot ratio (RSR) and water content (WC) were calculated by the FW and DW values. Root shoot ratio of fresh weight (RSR_FW) = root fresh weight (RFW) / shoot fresh weight (SFW) × 100%; Root shoot ratio of dry weight (RSR_DW) = root dry weight (RDW) / shoot dry weight (SDW) × 100%; water content (WC) = (FW - DW) / FW × 100%.

GWAS

The genotype data of the 215 G.arboreum accessions used in this study is the same as the genotype data previously published by our team in Nature Genetics [30]. Software BWA (Burrows–Wheeler Aligner program, ver. 0.7.10) and GATK (Genome Analysis ToolKit, ver.3.2–2) were utilized to perform reads mapping, and SNP calling followed their Standardized process specification, respectively [41, 42]. After filtering, a total of 1,425,003 high-quality SNP markers (MAF>0.05, missing rate per site<10%) were screened out and were further utilized to perform GWAS for 11 seedling biomass-related traits (including the average values and replicates for each trait). An EMMAX model (Efficient Mixed-model Association Expedited) [43] was chosen to perform the GWAS in this study, and the -log10 (P) value was calculated for each SNP. The significant threshold was evaluated with the formula $P = 0.5/n$ (where n is the total number of high-quality SNPs) [44], and -log $P > 6.15$ was set as the significant threshold. The newly updated G. arboreum genome (download from cottonFGD.org) [31] was set as the reference genome. Genes were identified in the regions of significant SNPs and stronger LD-blocks around the significant SNPs.

LD block analysis

The confidence intervals were identified by IGV software [45], and LD blocks around the significant SNPs were estimated by TASSEL 5.2.51 software [46].

Candidate gene expression analysis

The transcriptome data comes from two studies. One study (unpublished) was completed by our team, which mainly completed the mRNA sequencing of the roots of “AHQJZM”, “DPL971”, “WMSLDMH” and “DGXH” in three different periods (samples were collected after 2d, 8d and 12d after sowing, “d” represent “das”). Each root sample had two replicates, and the plant culture method was similar to our methods of planting 215 G. arboreum accessions. We extracted the FPKM (fragments per kilobase of exon model per million mapped fragments) data of GWAS candidate genes in this study for further comparative analysis. Another study is for G. arboreum cultivar Shixiya1 RNA-seq analysis. We downloaded the TPM (Trans per kilobase of exon model per million mapped reads) expression data from the CottonFGD.org website (data accession: PRJNA594268). And we further analyzed the TPM data of different tissues (root, stem, and flowers) for our GWAS candidate genes.

For further gene screening analysis, the candidate genes of GWAS were first excluded by the transcriptome data when the gene was not expressed in any tissues. Then, the expression data (FPKM or TPM) of candidate genes were plotted by TBtools v0.67 [47] based on their average FPKM or TPM data. And genes with a larger difference in expression levels among the four materials (“AHQJZM”, “DPL971”, “WMSLDMH”, and “DGXH”) were selected for further qRT-PCR verification. Genes with the expression level fold change > 1.5 or < 0.67 were considered significant.
qRT-PCR
The root and leaf samples of four cotton accessions (“AHQJZM”, “DPL971”, “WMSLDMH”, and “DGXH”) on the 12 das after sowing were collected and stored at −80°C until further RNA extraction. Total RNA was extracted for each root sample by using a Plant RNA Purification Kit (Tiangen, Beijing, China). The qRT-PCR was performed by 7500 Fast ABI (Applied Biosystems, Foster City, CA, USA) with TransStart Top Green qPCR SuperMix kit (TransGen Biotech) according to the manufacturer’s instructions. The qRT-PCR reaction system had a final volume of 20μL, which consisted of 2μl of cDNA sample, 10μl of 2 × TransStart Green qPCR SuperMix, 0.4μl of Passive Reference Dye, 6.8μl of ddH2O, and 0.8μl of primers. The reactions were amplified at 95°C for 30s, followed by 40 cycles of 95°C for 5s, 60°C for 15s, and 72°C for 10s, and then 95°C for 30s, 60°C for 1min, and 95°C for 15s. All reactions were set with three independent biological replications. Primers were designed using Primer5.0 software. The gene β-actin was used as a reference. Primers of selected genes are listed in Table S1. The relative expression levels of selected candidate genes were calculated by the 2^ΔΔCt method [48].

Statistical analyses
The basic descriptive analysis and frequency distribution of the 11 seedling biomass-related traits were performed by GraphPad Prism 8 [49]. The broad sense heritability was calculated by lme4 package in R software [50]. A correlation analysis between different seedling biomass-related traits was performed by R software using the “corrplot” package. The grouping significance test of genotype was used the two-tailed t-test in GraphPad Prism 8, and P-value < 0.05 is regarded as significant.

Abbreviations
GWAS: Genome wide association study; SFW: Shoot fresh weight; RFW: Root fresh weight; TFW: Total fresh weight; SDW: Shoot dry weight; RDW: Root dry weight; TFW: Total dry weight; SFW: Shoot water content; RFW: Root water content; TWC: Total water content; RSR: Root shoot ratio; LD: Linkage disequilibrium; TPM: Trans per kilobase of exon model per million mapped reads; FPKM: Fragments per kilobase of exon per million; qRT-PCR: Quantitative real time polymerase chain reaction; SNP: Single nucleotide polymorphism; G. arboreum: Gossypium arboreum L.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12870-022-03443-w.

Acknowledgements
We are thankful to the national mid-term genebank for cotton in Institute of Cotton Research of Chinese Academy of Agricultural Sciences (ICRAAS) for kindly providing us with Asian cotton seeds.

Authors’ contributions
X.D. and D.H conceived and designed the experiment. D.H. conducted experiments, analyzed the data, and wrote the manuscript. M.F.N revised the grammar. S.H. and G.S also performed the GWAS analysis, Y.G. finished the qRT-PCR experiment, and all the other authors revised the manuscript. All authors reviewed and approved the final manuscript.

Funding
This work was supported by Independent project of State Key Laboratory of cotton biology (Grant No. CB2019C02). The sponsors had no role in the design or conception of the study, the collection, management and analysis of the data, the preparation, writing and review of the manuscript; or the decision to submit the manuscript for publication.

Availability of data and materials
All data in this article are available. The RNA sequences raw data of root samples were deposited in the Biological Research Project Data (BioProject), National Center for Biotechnology Information (NCBI), accession: PRJNA751791. And other phenotypic and gene expression data are included in this article and its supplementary information files.

Declarations
Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no conflict of interest.

Author details
1 Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China. 2 Anyang Institute of Technology, Anyang 455000, China.

Received: 19 June 2021 Accepted: 11 January 2022
Published online: 27 January 2022

References
1. Chilton EW, Seido SL, Mohammed S, Santos C, Timko MP. QTL mapping of ineffective nodulation and nitrogen utilization-related traits in the IC-1 mutant of cowpea. Crop Sci. 2017;58(1):264–72.
2. Piepho HP, Nazir MF, Shah MK. Design and analysis of a trial to select for stress tolerance. Commun Biometry Crop Sci. 2015;11(1):1–9.
3. Shah AN, Yang G, Tanveer M, Iqbal J. Leaf gas exchange, source–sink relationship, and growth response of cotton to the interactive
effects of nitrogen rate and planting density. Acta Physiol Plant. 2017;39(5):119.
4. Yang M, Wang C, Hassan M, Wu Y, et al. QTL mapping of seedling biomass and root traits under different nitrogen conditions in bread wheat (Triticum aestivum L.). J Integr Agric. 2021;20(5):1180–92.
5. Singh K, Gupta N, Dhingra M. Effect of temperature regimes, seed priming and priming duration on germination and seedling growth on American cotton. J Environ Biol. 2018;39(1):83–91.
6. Xiao S, Liu L, Wang H, Li D, Li C. Exogenous melatonin accelerates seed germination in cotton (Gossypium hirsutum L.). PLoS One. 2019;14(6):e0216575.
7. Kabambe VH. Screening cotton (Gossypium hirsutum L.) genotypes for drought tolerance under screen house conditions in Malawi. Acad J. 2018;10:48–57.
8. Park IS, Kim DI. Significance of fresh weight to dry cell weight ratio in plant cell suspension cultures. Biotechnol Tech. 1993;7(9):627–30.
9. Mantovani A. A method to improve leaf succulence quantification. Braz Arch Biol Technol. 1999;41(1):9–14.
10. Huang P, De-Bashan L, Crocker T, Klepper JW, Bashan Y. Evidence that fresh weight measurement is imprecise for reporting the effect of plant growth-promoting (rhizo)bacteria on growth promotion of crop plants. Biol Fertil Soils. 2016;53:199–208.
11. Farag A. Effectiveness of exopolysaccharidases and biofilm forming plant growth promoting rhizobacteria on salinity tolerance of faba bean (Vicia faba L.). Afr J Microbiol Res. 2012;6(17):399–404.
12. Huang W, Ratkowsky DA, Hui C, Wang P, Shi P. Leaf fresh weight versus dry weight: which is better for describing the scaling relationship between leaf biomass and leaf area for broad-leaved plants? Forests. 2019;10(3):256.
13. Fan X, Zhao L, Zhai H, Wang Y, Sun G. Functional characterization of ATN6K overexpression in cotton under drought and salt stress. Sci Agric Sin. 2018;51:4230–40.
14. Ananthi K, Vijayaraghavan H. Development of drought tolerant index in cotton genotypes based on relative water content and yield. Asian J Bio Sci. 2012;7(2):138–44.
15. Cook CG, El-Zik KM. Cotton seedling and first-bloom plant characteristics: relationships with drought-influenced boll abscission and lint yield. Crop Sci. 1992;32(6):1464–7.
16. Shang L, Cai S, Ma L, et al. Seedling root QTLs analysis on dynamic development and upon nitrogen deficiency stress in upland cotton. Euphytica. 2016;207:645–63.
17. He S, Wang P, Zhang YM, Dai P, Du X. Introggression leads to genomic divergence and responsible for important traits in upland cotton. Front Plant Sci. 2020;11:929.
18. Nayeripasand L, Garoosi GA, Ahmadikah A. Genome-wide association study (GWAS) to identify salt-tolerance QTLs carrying novel candidate genes in Rice during early vegetative stage. Rice. 2021;14(1):1–21.
19. Hou LT, Wang TY, Jain HJ, Wang J, Liu LZ. QTL mapping for seedling dry weight and fresh weight under salt stress and candidate genes analysis in Brassica napus L. Acta Agron Sin. 2017;43(2):179–89.
20. Anna I, Daniela M, Anna RM, Pasquale DV, Vito M, Pina F, et al. Mapping QTL for root and shoot morphological traits in a durum wheat x T. dicoccum segregating population at seedling stage. Int J Genomics. 2017;2017:687639. https://doi.org/10.1155/2017/6876393.
21. Yang Y, Wan H, Yang F, Xiao C, Zhou Y. Mapping QTLs for enhancing early biomass derived from Aegilops tauschii in synthetic hexaploid wheat. PLoS One. 2020;15(6):e0234882.
22. Zhou XG, Jing RL, Hao ZF, Chang XP, Zhang ZB. Mapping QTL for seedling root traits in common wheat. Sci Agric Sin. 2005;38:1951–7.
23. Li D, Komivi D, Zhang Y, Wei X, Wang L, Zhang Y, et al. GWAS uncovers differential genetic bases for drought and salt tolerances in sesame at the germination stage. Genes-Basel. 2018;9(2):87.
24. Liu R, Gong J, Xiao X, Zhang Z, Li J, Liu A, et al. GWAS analysis and QTL identification of fiber quality traits and yield components in upland cotton using enriched high-density SNP markers. Front Plant Sci. 2018;9:1067.
25. Su J, Pang C, Wei H, Li L, Liang B, Wang C, et al. Identification of favorable SNP alleles and candidate genes for traits related to early maturity via GWAS in upland cotton. BMC Genomics. 2016;17(1):687.
49. Lazareno S. GraphPad prism (version 1.02). Trends Pharmacol Sci. 1994;15(9):353–4.
50. BoeckPD, Bakker M, Zwitser R, et al. The estimation of item response models with the lmer function from the lme4 package in R. J Stat Softw. 2011;39(12). https://doi.org/10.18637/jss.v039.i12.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.