A pilot study using machine learning methods about factors influencing prognosis of dental implants

Seung-Ryong Ha1a, Hyun Sung Park2a, Eung-Hee Kim3, Hong-Ki Kim4, Jin-Yong Yang5, Junyoung Heo6, In-Sung Luke Yeo7*

1Department of Prosthodontics, Dankook University College of Dentistry Jukjeon Dental Hospital, Yongin, Republic of Korea
2Private Practice, The Seoul Dental Clinic, Seongnam, Republic of Korea
3Biomedical Knowledge Engineering Lab., Seoul National University School of Dentistry, Seoul, Republic of Korea
4Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
5Private Practice, Yang's Dental Clinic, Seoul, Republic of Korea
6Department of IT Engineering, Hansung University, Seoul, Republic of Korea
7Department of Prosthodontics and Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea

PURPOSE. This study tried to find the most significant factors predicting implant prognosis using machine learning methods. MATERIALS AND METHODS. The data used in this study was based on a systematic search of chart files at Seoul National University Bundang Hospital for one year. In this period, oral and maxillofacial surgeons inserted 667 implants in 198 patients after consultation with a prosthodontist. The traditional statistical methods were inappropriate in this study, which analyzed the data of a small sample size to find a factor affecting the prognosis. The machine learning methods were used in this study, since these methods have analyzing power for a small sample size and are able to find a new factor that has been unknown to have an effect on the result. A decision tree model and a support vector machine were used for the analysis.

RESULTS. The results identified mesio-distal position of the inserted implant as the most significant factor determining its prognosis. Both of the machine learning methods, the decision tree model and support vector machine, yielded the similar results. CONCLUSION. Dental clinicians should be careful in locating implants in the patient's mouths, especially mesio-distally, to minimize the negative complications against implant survival.

KEYWORDS: Machine learning; Decision tree; Support vector machine; Dental implant; Implant prognosis

INTRODUCTION

Prosthodontic restoration plans to guide the locations of dental implants are utterly important. Inadequate implant placement makes the restorative procedure difficult. Fabricating prosthesis is sometimes impossible for a misplaced implant, and removing the implant is considered. The prosthodontic procedures without the removal of implant lead to undesired outcomes biomechanically and aesthetically.

There are many possible reasons for implant misplacement, one of which appears to be that the precise implant placement directly depends on the amount of bone at the planned site. There are several studies trying to find some factors affecting implant prognosis and survival. Such studies generally used the logistic regression methods or other traditional tools to infer the factors statistically.
els evaluate the influences of the factors on the implant survival, including the age, installed site, and bone quality, which are the variables already planned to be investigated. However, modern data mining tools including machine learning methods are considered necessary in analyzing the effects of the various variables associated with the implant surgery, which include mesio-distal position, bucco-lingual angulation, and the depth of an implant. Two advantages of these machine learning methods are to precisely analyze the data of a small sample size and to detect a new factor affecting the results.8 Those two features are the requirements that many clinical studies need in the field of dentistry, the sample size of which is usually small.

The decision tree, one of the machine learning methods, is often used for classification and prediction and consists of a root node on the top, internal nodes for grouping criteria, links for nodes, and leaves as the final classification using a recursive partitioning method. A decision tree is appropriate for discovering patterns from binomial data with a learning binomial function.9 Many researchers in medical science are currently applying the decision tree model in diverse fields.10,11

The support vector machine is a supervised learning method used to determine the decision surface with the best classification of data.12 This method showed at least equal or better performance to that of other classification methods such as Bayesian classifier or artificial neural network.13 Medical researchers use support vector machines in various research areas, such as diagnosing Alzheimer’s disease through single-photon emission computed tomography image classification, discriminating breast cancer patients from a control group based on nucleosides in urine samples, and prognosis of drugs for heart failure patients.1416 However, support vector machines have not been used in the field of prosthodontics.

This study tried to find the determinant location factors of an inserted implant, which influences implant survival or complication. Additionally, both the decision tree and the support vector machine investigated whether there was a new factor affecting the implant prognosis.

MATERIALS AND METHODS

The data were collected from the retrospective chart review and filtered very carefully at at Seoul National University Bundang Hospital for one year (IRB No. B-0602-030-016). Subjects included in the analysis were partially edentulous patients who wanted their consecutively missing teeth to be restored by implants, having the implants placed without surgical stents. The patients having well-controlled hypertension or diabetes were included. However, smokers and patients with any other systemic disease that was likely to compromise implant survival were excluded.17,18

After consulting with a prosthodontist about implant location, all operations included in this study were performed by a maxillofacial surgeon with the same surgical protocol. The surgeon placed 667 implants in the mouths of 198 patients according to the anatomic guide structures. Two dental implant systems (Osstem, Osstem Co., Busan, Korea, and Implantium, Dentium Co., Yongin, Korea) were used. All subsequent prosthodontic procedures were similarly performed by a prosthodontist. The problems that were confronted during the prosthodontic procedure were assessed and the final prostheses were evaluated by the prosthodontist. A year after prosthodontic restoration, the prosthodontist evaluated the implant’s location, features, and biomechanical aspects with relation to the outcome.

The prosthodontic evaluations were categorized into cases according to the chart records. If a patient had several implants, more than one case could exist. The authors processed the descriptive evaluations into several features designated in nominal form for the analysis. During this process, some cases that lacked sufficient information for evaluation were excluded. Therefore, a total of 53 patients and 59 cases were analyzed, and the machine learning method was applied because of the small sample size.

The features consisted of explanatory variables and output variables. The explanatory variables were divided into controllable variables, which could be managed by dentists, and host variables (Table 1 and Table 2). As explained above, these variables had nominal values. In Table 1, for example, the ‘immediate implantation’ variable has ‘Yes’ or ‘No’, and the other variables have ‘ Adequate’ or ‘Inadequate’. In Table 2, the ‘site of placement’ variable has ‘Maxilla’, ‘Mandible’, or ‘Both’, and the ‘posterior site of placement’ variable has ‘ premolar’, ‘molar’, or ‘ both’.

There were two kinds of output variables: the first was the survival of the implant, evaluated as whether the implant was osseointegrated or not; and the second was complications of the implant, evaluated as any discomfort or defect despite of adequate function with osseointegration (Table 3). The result variable has one of ‘Survival’ and ‘Osseo-disintegration’. The complication variable has one of ‘None’, ‘Thread/Implant exposure’, ‘Screw loosening’, ‘Loading problem’, and ‘Others’.

All the features had nominal values in this study. Therefore, we selected a decision tree model among many available machine learning methods. Also, we used the support vector machine since this method is widely utilized in various fields including medical science. The authors trained and tested the decision tree using the collected data. Learning and classification of the factors affecting survival and complication were accomplished for the decision tree model analysis, using WEKA (Waikato Environment for Knowledge Analysis, University of Waikato, Hamilton, New Zealand) - Java based machine learning software. All possible combinations of features were made for the support vector machine. For each combination of features, cross validation was performed on the support vector machine. Linear function was used for classification by the support vector machine. The evaluation of support vector machine classification by machine learning was carried out by leave-one-out-cross-validation (LOOCV), which classified one sample with machine learning that was trained using the
other 58 samples. The accuracy, defined as true positive and negative over the whole sample, was calculated with the confusion matrix.

RESULTS

The decision tree model for implant survival is presented in Fig. 1. The mesio-distal position was the most significant factor determining implant prognosis (accuracy = 0.93).

The decision tree model for complications of implant is shown in Fig. 2. Thread/fixture exposure appeared when the implant was placed with bone graft even when the implants were placed adequately (accuracy = 0.64). Support vector machine with LOOCV - survival measure of implant is presented in Table 4. Support vector machine with LOOCV - complication measure of implant is shown in Table 5.
DISCUSSION

First, both the decision tree model and support vector machine clearly identified ‘mesio-distal position’ as the most important factor during implant treatment. Both complication and survival of implant were associated with this factor in the decision tree model and most sets of the support vector machine also included this factor.

The decision tree model showed that the implant functions successfully without osseo-disintegration when placed appropriately in the mesio-distal position. Even when this condition was inappropriate, there was no problem unless the placement was in the anterior part of jaw. According to features of the decision tree model, the mesio-distal position variables potentially affected the survival of the implant to a greater extent because they were located in the root of the tree (Fig. 1, accuracy = 0.93).

Regarding complications, noticeable thread exposure appeared when the implant was placed with bone graft. Thread/fixture exposure occurred even when the implants were placed with the appropriate bucco-lingual angulation and mesio-distal position in the maxilla and mandible. This result indicated that there was thread exposure even with adequate bucco-lingual angulation of the implant axis. In
addition, loading problems occurred if the implant was placed without bone graft, inappropriate bucco-lingual angulation, and appropriate mesio-distal position. This loading problem led to non-axial loading on the implant (Fig. 2, accuracy = 0.64).

Support vector machine with LOOCV showed outstanding performance in linear kernel function (Table 4, Table 5). In the survival measure, two sets with only four features were sufficient to classify the result of the implant with high accuracy (0.95). One of the sets consisted of the following features: site of placement-maxilla or mandible; site of placement in jaw-anterior, posterior, or both; posterior or site of placement; and mesio-distal position for restoration. The other set included the following: site of placement in jaw-anterior, posterior, or both; implant insertion depth; bucco-lingual angulation; and mesio-distal position for restoration. Interestingly, all of the sets had one common feature, mesio-distal position for restoration (Table 4). As Bryant (1998) found, most sets showed that the site of placement, whether it is on the maxilla or mandible, was important.4

Regarding complication of implants, the support vector machine indicated that six factors were important in order to predict the prognosis with the best accuracy (0.746). All sets commonly included the following four factors: site of placement in jaw-anterior, posterior, or both; bone graft; bucco-lingual angulation; and mesio-distal position for restoration. The other factors in these sets were bone graft resorption, immediate implantation, and implant length.

In the present study, the machine learning method was selected for analysis.25,26 This term was first used in the literature by Samuel, who proposed a learning game through alternating features and weighted values.20 Thereafter, the machine learning method integrated with computation theory was studied as a new research area in the 1980s. Document classification, information searching, and various other areas utilize machine learning methods.21,22

Many practitioners have realized how agonizing it is to encounter unexpected situations during implant placement. We also know how important it is to reach consensus between surgical operation and biomechanical prosthetic rehabilitation. Knowledge of the factors primarily considered during the operation would be very valuable for functional rehabilitation. Several factors have been proposed by other researchers, including quality and quantity of bone, history of trauma to the region, proximity of important structures (sinus, inferior alveolar nerve), need for bone grafting, degree of arterial blood supply, and rate of tissue healing.6 For implant fixture, a wider diameter and long length are known to be important factors for the survival of the implant.23,24 The shape of dental implants has been one of the most contested aspects and may have an effect on implant biomechanics.25

It has been demonstrated that bone loss of 1.5 to 2 mm apical to the implant-abutment junction would occur after uncovering surgery.26 Moreover, it has been documented that this bone loss could result in less inter-implant crestal bone loss if inter-implant distance is greater than 3 mm.27

Table 4. Support vector machine with LOOCV - survival measure of implant (top 5 results)

Factors	Accuracy
Site of placement	0.95
Site of placement in jaw	
Posterior site of placement	
Mesio-distal position for restoration	
Site of placement in jaw	
Implant insertion depth	0.95
Bucco-lingual angulation	
Mesio-distal position for restoration	
Site of placement in jaw	0.95
Bone graft	
Bone graft resorption	0.95
Bucco-lingual angulation	
Mesio-distal position for restoration	
Site of placement in jaw	0.95
Bucco-lingual angulation	
Mesio-distal position for restoration	
Crown-root ratio	

Table 5. Support vector machine with LOOCV - complication measure of implant (top 5 results)

Factors	Accuracy
Site of placement in jaw	
Bone graft	
Bone graft resorption	0.75
Immediate implantation	
Bucco-lingual angulation	
Mesio-distal position for restoration	
Site of placement in jaw	
Bone graft	
Bone graft resorption	0.75
Bucco-lingual angulation	
Mesio-distal position for restoration	
Implant length	
Site of placement in jaw	
Bone graft	
Bone graft resorption	0.75
Immediate implantation	
Bucco-lingual angulation	
Mesio-distal position for restoration	
Implant length	
Site of placement in jaw	
Bone graft	
Bone graft resorption	0.73
Bucco-lingual angulation	
Mesio-distal position for restoration	
Therefore, it has been suggested that two implants must be spaced more than 3 mm apart.27 It is commonly observed that it is more difficult to increase inter-implant distance at the anterior than posterior. This results from differences in mesio-distal width of the crowns at the anterior and posterior. Therefore, the residual bone must be carefully studied to place implant fixtures in mesio-distally correct positions for anterior implants. It will ensure at least 3 mm of the inter-implant distance. Moreover, it may indicate that wider diameter implants may be of limited use in the anterior.

CONCLUSION

Adequate mesio-distal positioning of the implant significantly affected the implant prognosis. Thus, site of placement was the most critical feature in this pilot study, as also indicated in other research. The small sample size demonstrated the strength of the machine learning method. However, traditional statistical tools should be applied with large samples to verify our conclusion.

ORCID

Seung-Ryong Ha https://orcid.org/0000-0003-4176-6865
Hong-Ki Kim https://orcid.org/0000-0002-2610-4321
Jin-Yong Yang https://orcid.org/0000-0002-6731-1992
Junyoung Heo https://orcid.org/0000-0001-6407-6678
In-Sung Luke Yeo https://orcid.org/0000-0002-6780-2601

REFERENCES

1. Academy of Osseointegration. 2010 Guidelines of the Academy of Osseointegration for the provision of dental implants and associated patient care. Int J Oral Maxillofac Implants 2010;25:620-7.
2. Kohner JS. Implant team: problems and solutions with osseointegrated implants. Pract Periodontics Aesthet Dent 1992;4:27-32.
3. Garber DA, Belser UC. Restoration-driven implant placement with restoration-generated site development. Compend Contin Educ Dent 1995;16:796, 798-802, 804.
4. Bryant SR. The effects of age, jaw site, and bone condition on oral implant outcomes. J Prosthodont 1998;71:546-9.
5. Omran MT, Miley DD, McLeod DE, Garcia MN. Retrospective assessment of survival rate for short endosseous dental implants. Implant Dent 2015;24:185-91.
6. Tolstunov L. Implant zones of the jaws: implant location and related success rate. J Oral Implantol 2007;33:211-20.
7. Walton JN, MacEntee MI. Choosing or refusing oral implants: a prospective study of dentulous volunteers for a clinical trial. Int J Prosthodont 2005;18:483-8.
8. Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000;16:906-14.
9. Mitchell TM. Machine Learning. New York: McGraw-Hill; 1997. p. 414.
10. Gambhir SS, Hoh CK, Phelps ME, Madar I, Maddahi J. Decision tree sensitivity analysis for cost-effectiveness of FDG-PET in the staging and management of non-small-cell lung carcinoma. J Nucl Med 1996;37:1428-36.
11. Nakano Y, Takeshita T, Kanie N, Shiota S, Shibata Y, Suzuki N, Yoneda M, Hirofui T, Yamashita Y. Supervised machine learning-based classification of oral malodor based on the microbiota in saliva samples. Artif Intell Med 2014;60:97-101.
12. Ward JJ, McGuiffin L, Buxton BE, Jones DT. Secondary structure prediction with support vector machines. Bioinformatics 2003;19:1650-5.
13. Chen J, Xing Y, Xi G, Chen J, Yi J, Zhao D, Wang J. A comparison of four data mining models: Bayes, neural network, SVM and decision trees in identifying syndromes in coronary heart disease. Advances in Neural Networks-ISNN 2007: Springer, 2007. p. 1274-9.
14. Bullinger D, Frohlich H, Klaus F, Neubauer H, Frickenschmidt A, Heneges C, Zell A, Laufer S, Gleiter CH, Liebich H, Kammerer B. Bioinformatical evaluation of modified nucleosides as biomedical markers in diagnosis of breast cancer. Anal Chim Acta. 2008;618:29-34.
15. Fung G, Stoeckel J. SVM feature selection for classification of SPECT images of Alzheimer’s disease using spatial information. Knowl Inf Syst 2007;11:243-58.
16. Son YJ, Kim HG, Kim EH, Choi S, Lee SK. Application of support vector machine for prediction of medication adherence in heart failure patients. Healthc Inform Res 2010;16:253-9.
17. Hwang D, Wang HL. Medical contraindications to implant therapy: part I: absolute contraindications. Implant Dent 2006;15:353-60.
18. Hwang D, Wang HL. Medical contraindications to implant therapy: Part II: Relative contraindications. Implant Dent 2007;16:13-23.
19. Michalski RSE, Carbonell JGE, Mitchell TME. Machine learning: an artificial intelligence approach. New York: Springer-Verlag; 1984.
20. Samuel AL. Some studies in machine learning using the game of checkers. IBM J Res Dev 2000;44:206-26.
21. Freitag D. Machine learning for information extraction in informal domains. Mach Learn 2000;39:169-202.
22. Sebastiani F. Machine learning in automated text categoriza- tion. Acm Comput Surv 2002;34:1-47.
23. Ivanoff CJ, Senerberby I, Johansson C, Rangert B, Lekholm U. Influence of implant diameters on the integration of screw implants. An experimental study in rabbits. Int J Oral Maxillofac Surg 1997;26:141-8.
24. Winkler S, Morris HF, Ochi S. Implant survival to 36 months as related to length and diameter. Ann Periodontol 2000;5:22-31.
25. Lin S, Shi S, LeGeros RZ, LeGeros JP. Three-dimensional finite element analyses of four designs of a high-strength silicon nitride implant. Implant Dent 2000;9:53-60.
26. Herrmann JS, Cochran DL, Nummikoski PV, Buser D. Crestal bone changes around titanium implants. A radiographic evaluation of unloaded nonsubmerged and submerged implants in the canine mandible. J Periodontol 1997;68:1117-30.
27. Tarnow DP, Cho SC, Wallace SS. The effect of inter-implant distance on the height of inter-implant bone crest. J Periodontol 2000;71:546-9.