Characterization and wear behaviours of aluminium alloy/reinforced with agricultural waste particulates at different loads

Abdullahi Tanko Mohammed1 · Ogheneblorhie Clifford Ogheneme1 · Shaibu Lasisi2 · Isah Aliyu2 · Abdullahi Guruza1 · Suraj Jare Olagunju3 · Habeeb Muhammed Sani3 · Idawu Yakubu Suleiman4

Received: 17 February 2022 / Accepted: 18 May 2022 / Published online: 26 May 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022, corrected publication 2022

Abstract
The research investigates the morphology and wear behaviours of Al–Mg-Si alloy reinforced with palm kernel shell powder (PKSP) for developing composites. PKSP with particle size of 100 μm was prepared for the studies at different weight percentages of 3, 6, 9, 12, and 15 PKSP to developed composites for the investigations. The PKSP was characterized by X-ray fluorescence (XRF). The morphology of the alloy and composites was characterized by scanning electron microscopy (SEM) attached with energy-dispersive spectroscopy (EDS). The XRF revealed elements such as carbon (C) and oxygen (O2) with other elements as traces. The PKSP as a reinforcer had improved the morphology and wear rate behaviours positively. Morphologies revealed that the composites produced showed no voids and discontinuities of PKSP particulates in the composites. The wear resistance of the matrix and composites increases with increase in load and decreases with increase in the weight percentage of PKSP. The minimum wear rate was obtained at the load of 10 N while highest at an applied load of 30 N. The wear rate of the alloy lost under load of 10 N was 1.31 times greater than that of alloy reinforced with 15 wt.% PKSP with minimum wear rate. The composites could be used as brake rotors, pistons, and connecting rods in the automobile industries.

Keywords Wear resistance · Particulates · Palm kernel shell powder · Aluminium · Magnesium · Silicon · Applied loads

Nomenclature
PKSP Palm kernel shell powder
Al Aluminium
Mg Magnesium
Si Silicon
XRF X-ray fluorescence
SEM Scanning electron microscopy
EDS Energy-dispersive spectroscopy
ASTM American Society for Testing and Materials
CTE Coefficient of thermal expansion
O2 Oxygen
μm Micrometre

1 Department of Mechanical Engineering, Waziri Umaru Federal Polytechnic, Kebbi State, Birnin Kebbi, Nigeria
2 Department of Metallurgical Engineering, Waziri Umaru Federal Polytechnic, Kebbi State, Birnin Kebbi, Nigeria
3 Department of Mechanical Engineering, Federal Polytechnic Nekede, Imo State, Owerri, Nigeria
4 Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka, Nigeria

1 Introduction
The growing demands in the automotive and aerospace industries for reduction in energy consumption and producing more fuel-efficient vehicles continue to be a big challenge. Aluminium matrix composites (AMCs) have a unique combination of chemical, mechanical, and physical properties which cannot be attained with the use of monolithic materials [1]. This is why AMCs were regarded as promising materials for automotive and aerospace industries [2]. The automobile parts made from these composites include connecting rods, brake drum, and cylinder head and were relatively low in cost of processing when compared to others. However, the problem with unreinforced aluminium alloys
is the poor tribological properties which can be resolved by reinforcing the alloys with other materials such as fly ash, Al₂O₃, SiO₂, Fe₂O₃, TiC, B₄C, and SiC. With these reinforcements, their morphologies and tribological properties were greatly improved [3–5].

In an attempt to overcome the high cost of ceramic reinforcements being imported, there is growing interest of researches on the use of agricultural wastes as an alternative reinforcement in composite fabrication as being reported by the previous works [5–12]. It was also reported that reinforcement materials determine significantly the overall desired property of developed composites and led to the decrease in wear rate of the investigated composites [13].

The reinforced aluminium matrix alloys have made significant strides from laboratory toward commercialization. But understanding the factors that influence the morphology and wear properties of these materials is really a challenge because they are sensitive to the type and nature of reinforcement, the mode of manufacture, and the details of fabrication processing of the composite after initial manufacture [13, 14]. It is generally agreed that the resistance to wear of AMCs was created by reinforcement and the higher the volume fraction of particles, the better the resistance will be; however, there is an optimum value of the reinforcement which gives maximum wear resistance to the material [14].

The various discontinuous dispersed utilizing palm kernel shell powder (PKSP) is one of the solid wastes by product reinforcement available in large quantities in Nigeria. Hence, composites with palm kernel shell powder as reinforcement may likely succeed the cost, time, and hazards associated with the imported ceramic materials for better applications.

The PKSP is a great environmental threat causing damage to the land and the surrounding area where these wastes are being dumped. An effective way of utilizing the palm kernel shell powder was to subject it to treatment and convert to powder under controlled conditions. Many studies have investigated the use of mussel shell powder as agro-wastes as reinforcement for automobile parts with improvement [14]. The weight fractions of palm kernel shell powder at particle size of 100 µm were varied from 0 to 15 wt.%. The PKSP was characterized by X-ray fluorescence to ascertain the compositions and the morphologies of the alloy and composites, and the wear mechanisms were investigated by scanning electron microscopy (SEM).

Therefore, this research work is part of an effort aimed at considering the potential wide range of agro-waste powders for the development of low-cost aluminium-based composites with the potential use in wear applications among others.

2 Materials and methods

2.1 Preparation of palm kernel shell powder (PKSP)

The palm kernel shell obtained from the palm oil producer in Nsukka, South East of Nigeria, was prepared by washing with water and detergent to remove the oil and dirt. It was sun-dried for 2 weeks and pulverized to form palm kernel powder (PKSP). Palm kernel shell powder (PKSP) prepared was subjected to sieve analysis. The arrangement of the sieves was done using a sieve scale in which the ratio of the aperture widths of adjacent sieves. Sieve sizes from 100 to 63 µm were arranged in a stack with the coarsest sieve on the top and the finest at the bottom. The arranged sieves were placed in a sieve shaker which vibrates the materials vertically. A particle size of 100 µm of palm kernel shell powder was utilized for this work. Figure 1 shows the palm kernel shell and powder respectively.

The elemental analysis of the carbonized palm kernel shell powder was analyzed by an energy-dispersive X-ray spectrometer (Mini pal 4 ED-XRF machine, made by Panalytical, Netherlands, was used). The sample was weighed and ground in a mortar and pressed in a hydraulic press to produce pellets. The pellets were loaded in the sample chamber of the spectrometer and a voltage of 30 kV and current of 1 mA were applied to the X-rays to excite the sample for 10 min. The spectrum from the sample was then analyzed to determine the concentration of the elements in the sample. The chemical compositions of the PKSP are presented in Table 1.

![Fig. 1 Palm kernel shell powder (PKSP) at 100 µm](image-url)
2.2 Charge calculation

The compositions of aluminium alloy are presented in Table 2 while Table 3 presents the charge calculations for the composites.

2.3 Production of Al–Mg–Si/PKSP particulate composites

Based on the charge calculations shown above, the alloy ingots were melted at 750 °C in a graphite crucible using an oil-fired graphite furnace [15]. After removing the dross as a result of dirt, oils, and impurities, 3 wt.% of the preheated PKSP was introduced into the melt at a constant feed rate. The preheat treatment was conducted at 300 °C for about 30 min. A mechanical stirrer made up of stainless steel was utilized to ensure thorough mixing simultaneously. The stirring lasted for almost 10 min. Afterwards, the mixture was poured into the already prepared sand mould of 25 × 70 mm, allowed to solidify, and presented in Fig. 2. The same procedures were repeated for 6, 9, 12, and 15 wt.% PKSP reinforcements, respectively.

Table 1 XRF analysis of palm kernel shell powder

Elements	C	O	Si	Al	Fe	Ca
%	61.70	37.40	0.40	0.10	0.20	0.30

Table 2 Composition of Al-1.0 Mg-0.8%Si alloy

Elements	Al	Si	Mg	Fe	Mn	Cu	Others
wt.%	balance	0.8	1.00	0.03	0.10	0.15	0.10

Table 3 Summary of charge calculations in grams (g)

PKSP and elements	0 wt.% PKSP	3 wt.% PKSP	6 wt.% PKSP	9 wt.% PKSP	12 wt.% PKSP	15 wt.% PKSP
Mussel shell powder (MSP)	0	25.45	50.90	76.34	101.79	127.24
Silicon (Si)	5.09	5.09	5.09	5.09	5.09	5.09
Magnesium	8.48	8.48	8.48	8.48	8.48	8.48
Aluminium	834.7	809.2	783.8	758.3	732.8	707.5
Total	848.3	848.3	848.3	848.3	848.3	848.3

![Fig. 2](image) The casting to the finished products

![Fig. 3](image) The scanning electron microscope
Fig. 4 Morphology of the aluminium alloy matrix

Fig. 5 Morphologies of the aluminium alloy/3 wt.% PKSP
2.4 Wear test

The wear behaviours of the tested samples (alloy and composites) were determined using the pin-on-disc test under dry conditions as per ASTM G99-95 standards. The wear test specimens were 8 mm in diameter and 30 mm. The counterpart disc materials were made up of En-31 steel heat treated with 8 mm thick and surface roughness of 10 and Ra of 0.1. The initial weight of the specimen was measured using an electronic weighing machine with an accuracy of three digits (0.001g). During the experiment, the pin (specimen) was pressed against the rotating disc with distance (500 mm). The experiment was conducted at different loads (10, 20, and 30 N) in order to investigate the wear behaviour of the investigated alloy and composites. Mass loss (ΔM), wear loss (W), and coefficient of friction (μ) between the particles were determined by using the pin-on-disc wear test unit. The sliding distance (L) was calculated in order to detect the wear rate as given in Eq. 1 [15, 16].

\[
L = 2\pi R^2 nt
\]

(1)

where R is the radius of the counterpart disc (20 mm), n is the number of revolutions (200 rpm), t is the testing time (20 min), and π is a constant ($\frac{22}{7}$).

However, the volume of worn material (ΔV) was obtained from Eq. (2) [17].

\[
\Delta V = \frac{\Delta m}{\rho}
\]

(2)

where Δm and ρ are the mass loss and density of the alloy and composites, respectively.

From Eqs. (1) and (2), the wear rate (W) of the alloy and composites is calculated in Eq. (3) [18].

\[
W = \frac{\Delta V}{(\rho x L)} \text{ (mm}^3/N \text{ } \cdot \text{m)}
\]

(3)

where ΔV, P, and L are the worn material, applied load, and sliding distance. The characterization was carried out by using a scanning electron microscope (SEM) presented in Fig. 3.

![Fig. 6 Morphologies of the aluminium alloy/6 wt.% PKSP](image)

Fig. 6 Morphologies of the aluminium alloy/6 wt.% PKSP
3 Results and discussion

3.1 XRF analysis

The chemical compositions of the palm kernel shell powder in EDS are presented in Fig. 1 and Table 1, respectively. The analysis showed that C, O, Si, and Ca are the major constituents while Fe and Al are the minor elements of the powder. However, carbon and oxygen played vital roles when used as a filler in the aluminium matrix composites for industrial applications. The presence of hard elements like C, Si, and Fe suggested that the palm kernel shell powder can be used as a particulate reinforcement in various metal matrixes according the previous findings [18, 19].

3.2 Microstructural analysis

As established earlier, microstructures of materials played an important role in the overall performance of engineering materials such as composites [20, 21]. The physical properties of the composites however depend on the microstructure, reinforcement particle size, shape, and distribution within the matrix. Figures 4, 5, 6, 7, 8, and 9 present the morphologies of the matrix, 3–12 wt.% at 3 wt.% interval, respectively. It was also found that there was good bonding between matrix and palm kernel shell particulates at different weight percentages. The microstructures of the composites revealed no discontinuities and reasonable uniform distribution of palm kernel shell powder within the matrix. There was good
retention and good interfacial bonding of palm kernel shell powder particles in the composites. The results were also in agreement with the previous works [22, 23].

3.3 Wear analysis

From Figs. 10 and 11 and Table 4, respectively, it is obvious that the wear rate of the Al-Si-Mg/palm kernel shell powder (PKSP) particle composite increases when the load changed from 10 to 30 N. Wear resistance also increases with the increase in palm kernel shell powder content. The beneficial effect of the reinforcement on the wear resistance of the composites was observed to be the best at low load [24]. This could be attributed to the fact that palm kernel shell powder particles acted as hard solid particles and improve the wear rate [25]. However, Figure 10 shows that the least wear rate occurred in the composite containing 15 wt.% of PKSP reinforcement and the highest wear rate was observed for the unreinforced Al-1Mg-0.8Si alloy. As applied load increases, the friction at the contact surface of the material and rotating disc obviously increases and increases the wear rate. This is also similar to the results obtained by Saravanakumar et al. [26] and Sandeep et al. [27]. An increase in palm kernel shell powder in the composite restricts deformation of the matrix material with respect to load; hence, the wear rate for the higher content of palm kernel shell powder composites is lower from Figs. 10 and 11 and similar to the work of Chhak et al. [28]. The composites exhibited higher wear resistance at higher applied loads, which can be attributed to the presence of PKSP on the counter surface, which act as a transfer layer and effective barriers to prevent large-scale fragmentation of the Al-Mg-Si matrix [29, 30].
The worn surface of the alloy in Fig. 11a without applied load showed the material removal line on the specimen only. Figure 11b shows the morphology of the composite at 15 wt.% PKSP particulates at minimum wear rate at applied load of 10 N. It was observed that larger plastic deformation was noticed on the composites under load of 30 and 20 N compared with 10 N. From the results, specimen under load of 30 and 20 N experienced greater weight loss when compared with that of composite under 10 N. This is also similar to the findings of previous works [24, 25].

Fig. 9 Morphologies of the aluminium alloy/15 wt.% PKSP

Fig. 10 Variation of weight rate with wt.% of PKSP in Al–Mg-Si at 10, 20, and 30 N
The use of palm kernel shell powder (PKSP) of particle size 100 μm by dispersing it into Al–Mg-Si via liquid metallurgy was carried out and the following conclusions were drawn from the results:

1. The palm kernel shell powder is a potential reinforcer that had improved the morphology and wear rate behaviours studied.
2. Microstructures clearly revealed that the composite materials produced by the stir casting method showed no voids and discontinuities of PKSP particulates in the matrix which resulted in sound castings.
3. It was noted that the wear rate of the base alloy lost under load of 10 N was 1.31 times greater than that for the alloy reinforced with 15 wt.% of PKSP with better wear resistance. The wear resistance of the composites increases with increase in the applied load and decreases with increase in weight percent of PKSP.
4. The composites could be recommended to be used in tribological areas such as brake rotors, pistons, and connecting rods in the automobile industries.

Table 4 Wear analyses for the alloy and composites at different applied loads (10, 20, and 30 N)

Load (N)	wt.% PKSP reinforcement	Wear rate = mm³/N·m
10	0 wt.% PKSP	2.77E-08
	3 wt.% PKSP	2.22E-08
	6 wt.% PKSP	1.80E-08
	9 wt.% PKSP	1.40E-08
	12 wt.% PKSP	1.01E-08
	15 wt.% PKSP	7.01E-09
20	0 wt.% PKSP	2.99E-08
	3 wt.% PKSP	2.54E-08
	6 wt.% PKSP	2.09E-08
	9 wt.% PKSP	1.65E-08
	12 wt.% PKSP	1.27E-08
	15 wt.% PKSP	8.12E-09
30	0 wt.% PKSP	3.23E-08
	3 wt.% PKSP	2.75E-08
	6 wt.% PKSP	2.35E-08
	9 wt.% PKSP	1.98E-08
	12 wt.% PKSP	1.57E-08
	15 wt.% PKSP	9.89E-09
Acknowledgements The authors are highly grateful to the Department of Metallurgical and Materials Engineering Technologists, University of Nigeria, Nsukka, and the Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, South Africa.

Author contribution All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Abdullahi Tank Mohammed, Ogheneblorhie Clifford Oghene, Shaibu Lasisi, Isah Aiyi, Abdullahi Guroza, Suraj Jare Olagunju, Habeeb Muhammed Sani, and Idawu Yakubu Suleiman. The first draft of the manuscript was written by Abdullahi Tank Mohammed and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Declarations

Competing interests The authors declare no competing interests.

References

1. Lancaster L, Lung MH, Sujan D (2013) Utilization of agro-industrial waste in metal matrix composites: towards sustainability. World Acad Sci Eng Technol Int J Environ Ecol Eng 7(1):87–92
2. Abdulwahab M, Dodo RM, Suleiman IY, Gubi AI, Umar I (2017) Wear behaviour of Al-7%Si-0.3%Mg/melon shell ash particulate composites. Heliyon J 3(8):1–9
3. Selvam JD, Smart DR, Dinaharan I (2020) Microstructure and some mechanical properties of fly ash particulate reinforced AA6061 aluminum alloy composites prepared by compocasting. Mater Des 49:28–34
4. Bobic B, Mitrovic S, Bobic M, Bobic I (2009) Corrosion of aluminum and zinc-aluminum alloys based metal matrix composites. Tribol Ind 31(3 & 4):44–54
5. Mahendra KV, Radhakrisna A (2010) Characterization of stir cast Al-Cu-(fly ash+SIC) hybrid metal matrix composites. J Compos Mater 44(8):989–1005
6. Zuhailawati H, Samayamuthirian P, Mohd Haizu CH (2007) Fabrication of low cost aluminium matrix composite reinforced with silica sand. J Phys Sci 18(1):47–55
7. Madakson PB, Yawas DS, Apasi A (2012) Characterization of coconut shell ash for potential utilization in metal matrix composites for automotive applications. Int J Eng Sci Technol (IJEST) 4(3):1190–1198
8. Alaneme KK, Olubambi PA (2018) Corrosion and wear behaviour of rice husk ash alumina reinforced Al–Mg–Si alloy matrix hybrid composites. J Mater Res Technol 2:188–194
9. Gladston JA, Sheriff NM, Dinaharan I, Selvam JD (2015) Production and characterization of rich husk ash particulate reinforced Al6061 aluminum alloy composites by compocasting. Trans Nonferrous Met Soc China 25:683–691
10. Obasi NA, Ukadilou J, Eze E, Akubugo EI, Okorie UC (2012) Proximate composition, extraction, characterization and comparative assessment of coconut and melon seeds and seed oils. Pak J Biol Sci 15:1–9
11. Apasi A, Yawas DS, Abdulkareem S, Kolawole MY (2016) Improving mechanical properties of aluminum alloy through addition of coconut shell-ash. J Sci Technol 36:34–43
12. Usman A, Raji A, Hassan M, Waziri N (2014) A comparative study on the properties of Al-7%Si-rice husk ash and Al-7%Si-bagasse ash composites produced by stir casting. Int J Eng Sci 3:1–7
13. Suleiman IY, Sani AS, Mohammed TA (2018) Investigation of mechanical, microstructure, and wear behaviors of Al-12%Si/ reinforced with melon shell ash particulates. Int J Adv Manuf Technol 97(9–12):4137–4144
14. Kumar GV, Rao CS, Selvaraj N (2016) Mechanical and tribological behavior of particle reinforced aluminum metal matrix composites—a review. J Miner Mater Charact Eng 10:59–91
15. Karthikeyan A, Nallusamy S (2017) Investigation on mechanical properties and wear behavior of Al-Si-SiC-graphite composite using SEM and EDAX. IOP Conf Ser Mater Eng Sci 225:1–10
16. ASTM G31 Standards (1994) Metals Test Methods and Analytical Procedures, Vol. 3, Wear and erosion; metal corrosion. Annual Book of ASTM Standards, Philadelphia, C. L. F. Rocha, D. A.
17. Chandila NK, Yashpal K, ChandraShekhar SJ (2017) Review on analysis of stir casting aluminium metal matrix composites from agro-industrial waste. J Mater Sci 5(4):35–46
18. Phanibhushana MV, Chandra Prasad KN, Niranjana HB (2017) Study of wear characteristics of hematite reinforced aluminum metal matrix composites. Mater Today Proc 4(2):3484–3493
19. Xavier LF, Paramasivam S (2016) Wear behavior of aluminum metal matrix composite prepared from industrial waste. Sci World J 9:212–223
20. Prasad DS, Krishna AR (2012) Tribological properties of A356.2/RHA composites. J Mech Sci Technol 28:367–372
21. Afolabi D, Temitope T, Hanim A, Ariff M, Mazlan N, Sofri S (2016) Significant effect of rice husk and sugarcane bagasse pore formers on the microstructure and mechanical properties of porous Al2O3/Ni composites. J Alloy Compd 743:323–331
22. Fatile OB, Akinruli JI, Amori AA (2016) Carbine, microstructure and mechanical behaviour of stir-cast Al-Mg-Si alloy matrix hybrid composite reinforced with corn cob ash and silicon. Int J Eng Technol Innov 6(1):55–67
23. Chauhan MH, Irfan M, Chauhan MA (2017) Variation of mechanical properties (tensile strength h & microstructure) of Al6061 / (Al2O3, and fly ash), Hybrid Metal. Int Res J Eng Technol 4(7):2407–2414
24. Viney K, Gupta RD, Batra NK (2014) Comparison of mechanical properties and effect of sliding velocity on wear properties of Al 6061, Mg 4%, fly ash and Al 6061, Mg 4%, graphite 4%, fly ash hybrid metal matrix composite. 3rd Int Conf Mater Process Charact 6:365–375
25. Parthasarathi NL, Borah U, Albert SK (2013) Correlation between coefficient of friction and surface roughness in dry sliding wear of Aisi 316 L (N) stainless steel at elevated temperatures. Comput Model New Technol 17(1):51–63, 2018
26. Saravanakumar A, Sivalingam S, Rajesh L (2018) Dry sliding wear of AA2219 / Gr metal matrix composites. Mater Today Phys 5:8321–8327
27. Sandeep S, Nanda T, Pandey OP (2018) Effect of particle size on dry sliding wear behaviour of sillimanite reinforced aluminum matrix composites. Ceram Int 44(1):104–114
28. Chhak V, Chattopadhyay H, Dora TL (2020) A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites. J Manuf Process 56:1059–1074
29. Chhak V, Chattopadhyay H (2020) Fabrication and heat treatment of graphene nanoplatelets reinforced aluminum nanocomposites. Mater Sci Eng A 791:13922–13940
30. Ramsheth HH, Sani MF, Kokabi AH (2015) Microstructure and mechanical properties of MoSi2–MoSi2 joints brazed by Ag–Cu–Zr interlayer. Trans Nonferrous Met Soc Chin 25:197–202

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.