Testing multivariate uniformity based on random geometric graphs

B. Ebner, F. Nestmann and M. Schulte

December 21, 2018

Abstract

We present new families of goodness-of-fit tests of uniformity on a full-dimensional set \(W \subset \mathbb{R}^d \) based on statistics related to edge lengths of random geometric graphs. Asymptotic normality of these statistics is proven under the null hypothesis as well as under fixed alternatives. The derived tests are consistent and their behaviour for some contiguous alternatives can be controlled. A simulation study suggests that the procedures can compete with or are better than established goodness-of-fit tests.

1 Introduction

The analysis of point patterns in a given study area is of particular interest in a wide variety of fields, such as astronomy (e.g. occurrence of high energetic events in a sky map), biology (e.g. locations of sightings of threatened species) or geology (e.g. locations of raw materials). The concept of uniformity of the observations stands for the absence of structure in the data. Thus, testing uniformity of random vectors is a natural starting point for serious statistical inference involving any cluster analysis or multimodality assumption. To be specific, let \(n \in \mathbb{N} \) and

\[
\mathcal{X}_n := \{X_1, \ldots, X_n\}
\]

be the data set, where \(X_1, \ldots, X_n \) are independent identically distributed (i.i.d.) random vectors taking values in a given measurable set \(W \subset \mathbb{R}^d, d \geq 1 \), of positive finite volume, called...
the observation window. We want to test the null hypothesis

\[H_0 : X \sim \mathcal{U}(W) \]

with \(X \) being an independent copy of \(X_1 \) and \(\mathcal{U}(W) \) denoting the uniform distribution on \(W \) against general alternatives. Further applications are testing pseudo random number generators, see e.g. [19] Section 3.3], or testing if i.i.d. random vectors in \(\mathbb{R}^d \) follow a given absolutely continuous distribution, which is, by the Rosenblatt transformation, see [28], theoretically equivalent to testing uniformity on the \(d \)-dimensional unit cube \([0, 1]^d\), although this transformation is hard to compute in many cases. The problem of testing uniformity has been investigated in classical papers in the univariate case, see [24] for a survey and [3] for a recent article, and, hitherto far less studied, in the multivariate setting, see [4, 5, 7, 12, 18, 22, 30, 31, 33], for which an empirical study was conducted in [26]. The cited methods include classical goodness-of-fit testing approaches as the Kolmogorov-Smirnov test, see [18], nearest neighbour concepts, see [12] and the references therein, the distances of the data points to the boundary of the observation window, see [7], or the volume of the largest ball that can be placed in the observation window and does not cover any data point, see [5]. The related problem of testing for complete spatial randomness of a point pattern (i.e., the points are a realisation of a homogeneous Poisson point process) is also of ongoing interest, see e.g. monographs like [2, 10] or the recent publications [11, 15].

We approach the testing problem (1) by examining the local properties of the data by means of random graphs. Using random graphs for testing uniformity is a known but not widely used concept, see [14, 20, 26]. Our new approach is to consider statistics of the random geometric graph \(\operatorname{RGG}(\mathcal{X}_n, r_n) \), \(r_n > 0 \): It has the realisations of the random vectors in \(\mathcal{X}_n \) as vertices, and any two distinct vertices \(x, y \in \mathcal{X}_n \) are connected by an edge if \(\| x - y \| \leq r_n \), where \(\| \cdot \| \) stands for the Euclidean norm. This random graph model was introduced by Gilbert for an underlying Poisson point process in [13] and is thus also called Gilbert graph. For further details see [25] and the references cited therein. Our test statistics are related to the edge lengths of \(\operatorname{RGG}(\mathcal{X}_n, r_n) \) and are defined by

\[L_n(\beta) := \frac{1}{2} \sum_{(x, y) \in \mathcal{X}_n^2, \star} 1\{ \| x - y \| \leq r_n \} \| x - y \|^\beta, \quad \beta \in \mathbb{R}. \]

Here \(\sum_{(x, y) \in \mathcal{X}_n^2, \star} \) stands for the sum over all pairs of distinct points of \(\mathcal{X}_n \) (such sums are called \(U \)-statistics), and \(1\{ \cdot \} \) is the indicator function. Notice that \(L_n(0) \) counts the number
of edges and $L_n(1)$ is the total edge length of $RGG(\mathcal{X}_n, r_n)$. These statistics differ from nearest neighbour methods, see e.g. [8, 12] and the references therein, as such that they rely on all interpoint distances not exceeding r_n, whereas nearest neighbour methods take only distances between points and their k-nearest neighbours into account. An extensive theory of properties and the asymptotic behaviour of $L_n(\beta)$ in the complete spatial randomness setting can be found in [27]. Figure 1 provides a visualisation of different point models and selected random geometric graphs. For definitions of the CLU and CON alternatives we refer to Section 5.

Based on the asymptotically standardised statistics $L_n(\beta)$, we propose the test statistics

$$T_{e,n}(\beta) := \left(\frac{L_n(\beta) - \frac{1}{2}n(n-1) \int_{\mathbb{R}^2} 1\{\|x-y\| \leq r_n\} \|x-y\|^\beta d(x,y)}{\sqrt{\frac{d_{\beta,d}}{2(2\beta+d)} n r_n^{\beta+d/2}}} \right)^2$$

and

$$T_{a,n}(\beta) := \left(\frac{L_n(\beta) - \frac{d_{\beta,d}}{2(2\beta+d)} n(n-1) r_n^{\beta+d}}{\sqrt{\frac{d_{\beta,d}}{2(2\beta+d)} n r_n^{\beta+d/2}}} \right)^2,$$

where $\beta > -d/2$ and rejection of H_0 will be for large values of $T_{j,n}(\beta), j \in \{e,a\}$.

In order to derive distributional limit theorems for $L_n(\beta)$, $T_{e,n}(\beta)$ and $T_{a,n}(\beta)$, we apply a central limit theorem from [17] for triangular schemes of U-statistics. For $\beta = 0$ the statistic $L_n(\beta)$ was considered as application in [17]. Here, we generalise these findings to $\beta \in (-d/2, \infty)$, which is technical for $\beta \in (-d/2, 0)$, and present them in more detail. Moreover, the focus of the present paper is on statistical tests based on $L_n(\beta)$ and their properties, which even for $\beta = 0$ goes clearly beyond what was studied in [17].

In [33] some U-statistics based on interpoint distances are proposed as test statistics for uniformity on the unit cube (beside two other statistics based on data depth and normal quantiles). In contrast to $L_n(\beta)$, these U-statistics take all interpoint distances into account and not only the small ones, whence their kernels do not depend on n (i.e., the summand associated with two given points from the sample is the same for all $n \in \mathbb{N}$). The tests for multivariate uniformity studied in [4, 30] are also based on U-statistics with fixed kernels, which are more involved to compute than the distances between the sample points. For U-statistics with fixed kernels as considered in [4, 30, 33], the asymptotic behaviour is much easier to analyse than for $L_n(\beta)$, where the kernels depend on the parameters n and r_n and their interplay.
Figure 1: Realisations of uniform data in $W = [0, 1]^2$ (first row), the CON alternative (second row) and the CLU alternative (third row). Point data (first column), $RGG(\mathcal{X}_n, 0.03)$ (second column) and $RGG(\mathcal{X}_n, 0.06)$ (third column), $n = 100$.

This paper is organised as follows. In Section 2 we derive the theory for $L_n(\beta)$, including formulae for the mean and the variance as well as central limit theorems, in a general setting. The two families of test statistics $T_{j,n}(\beta)$, $j \in \{e, a\}$, are discussed in Section 3 and their limiting behaviour is given under H_0 and under fixed alternatives. The behaviour for some contiguous alternatives is studied in Section 4. Section 5 provides a simulation study and a comparison to existing methods. We finish the paper with comments on open problems and research perspectives in Section 6.
2 Properties of $L_n(\beta)$

Let $\mathcal{X}_n = \{X_1, \ldots, X_n\}$, where $n \geq 2$ and X_1, \ldots, X_n are i.i.d. random vectors distributed according to a density f, whose support is contained in a measurable set $W \subset \mathbb{R}^d$ of positive finite volume. In the following, we assume without loss of generality that $\text{Vol}(W) = 1$, i.e., W has volume one. For some of our results we need the additional assumption that

$$\limsup_{r \to 0} \frac{\text{Vol}(\{x \in W : d(x, \partial W) \leq r\})}{r} < \infty. \quad (2)$$

Here, we use the notation $d(x, A) := \inf_{y \in A} \|x - y\|$ for $x \in \mathbb{R}^d$ and $A \subset \mathbb{R}^d$. The assumption (2) requires that the volume of the set of points in W that are in the r-neighbourhood of the boundary of W is at most of order r and seems to be no significant restriction. For many sets W, for example all compact and convex W, the limit superior in (2) equals the surface area of W. The expression in (2) is related to the so-called (outer) Minkowski content. For a definition as well as some results on its finiteness we refer to [1].

Let (r_n) be a sequence of positive real numbers such that $r_n \to 0$ as $n \to \infty$. In the following $B^d(x, r)$ stands for the d-dimensional closed ball with centre $x \in \mathbb{R}^d$ and radius $r > 0$, and $\kappa_d := \pi^{d/2}/\Gamma(d/2 + 1)$ is the volume of the d-dimensional unit ball $B^d(0,1)$. We denote by $L^2(W)$ the space of all square-integrable functions on W. For the special case $\beta = 0$ the formulae of the following theorem can be also found in [17, Equations (4.2) and (4.3)].

Theorem 2.1 For $\beta > -d$ and $f \in L^2(W)$,

$$\mathbb{E}L_n(\beta) = \frac{n(n-1)}{2} \int_{W^2} 1\{\|x - y\| \leq r_n\} \|x - y\|^\beta f(x) f(y) \, d(x, y) \quad (3)$$

and

$$\lim_{n \to \infty} \frac{\mathbb{E}L_n(\beta)}{n^{2+\beta d}} = \frac{d\kappa_d}{2(\beta + d)} \int_W f(x)^2 \, dx. \quad (4)$$

Proof: Equation (3) follows from

$$\mathbb{E}L_n(\beta) = \frac{n(n-1)}{2} \mathbb{E} 1\{\|X - Y\| \leq r_n\} \|X - Y\|^\beta,$$

where X and Y are independent random vectors distributed according to the density f. Notice
that
\[\mathbb{E}1\{ \|X - Y\| \leq r_n\} \|X - Y\|^\beta = \int_{W^2} 1\{\|x - y\| \leq r_n\} \|x - y\|^\beta f(x) f(y) \, d(x,y) \]
\[\leq \int_{W^2} 1\{\|x - y\| \leq r_n\} \|x - y\|^\beta f(x)^2 \, d(x,y) \]
\[\leq \frac{d \kappa_d}{\beta + d} r_n^{\beta + d} \int_W f(x)^2 \, dx, \]
where we used the inequality of arithmetic and geometric means and spherical coordinates. This yields
\[\limsup_{n \to \infty} \frac{\mathbb{E}L_n(\beta)}{n^2 r_n^{\beta + d}} \leq \frac{d \kappa_d}{2(\beta + d)} \int_W f(x)^2 \, dx. \] (5)

In the following we use the shorthand notation \(f_C(x) := \min\{f(x), C\} \) for \(C > 0 \) and \(x \in W \). It follows from Lemma A.1 that, for any \(C > 0 \),
\[\lim_{n \to \infty} \frac{1}{r_n^{\beta + d}} \int_{B^d(x,r_n)} \|x - y\|^\beta f_C(y) \, dy = \frac{d \kappa_d}{\beta + d} f_C(x) \]
for almost all \(x \in W \). Now the dominated convergence theorem yields
\[\lim_{n \to \infty} \frac{1}{r_n^{\beta + d}} \int_{W^2} 1\{\|x - y\| \leq r_n\} \|x - y\|^\beta f_C(x) f_C(y) \, d(x,y) = \frac{d \kappa_d}{\beta + d} \int_W f_C(x)^2 \, dx. \]
Together with
\[\int_{W^2} 1\{\|x - y\| \leq r_n\} \|x - y\|^\beta f(x) f(y) \, d(x,y) \]
\[\geq \int_{W^2} 1\{\|x - y\| \leq r_n\} \|x - y\|^\beta f_C(x) f_C(y) \, d(x,y) \]
we obtain
\[\liminf_{n \to \infty} \frac{\mathbb{E}L_n(\beta)}{n^2 r_n^{\beta + d}} \geq \frac{d \kappa_d}{2(\beta + d)} \int_W f_C(x)^2 \, dx. \]
Now letting \(C \to \infty \) and the monotone convergence theorem yield
\[\liminf_{n \to \infty} \frac{\mathbb{E}L_n(\beta)}{n^2 r_n^{\beta + d}} \geq \frac{d \kappa_d}{2(\beta + d)} \int_W f(x)^2 \, dx. \]
Combining this with (5) proves (4). \(\square \)

Theorem 2.1 states exact formulae for the mean and easy to compute asymptotic approximations under fairly general assumptions including the behaviour of \(\mathbb{E}L_n(\beta) \) under \(H_0 \), which is a direct consequence. We write \(g \equiv h \) to indicate that two functions \(g, h : W \to \mathbb{R} \) are identical almost everywhere.
Corollary 2.2 If $\beta > -d$ and $f \equiv 1_W$, then
\[
\mathbb{E}L_n(\beta) = \frac{n(n-1)}{2} \int_{W^2} 1\{\|x-y\| \leq r_n\} \|x-y\|^\beta \, d(x,y)
\]
and
\[
\lim_{n \to \infty} \frac{\mathbb{E}L_n(\beta)}{n^2 r_n^{\beta+d}} = \frac{d \kappa_d}{2(\beta + d)}.
\]

Recall that the degree of a vertex in a graph is the number of edges emanating from it. The average degree \bar{D}_n of the vertices in $\text{RGG}(\mathcal{A}_n, r_n)$ is given by $\bar{D}_n = 2L_n(0)/n$. Thus, it follows from Theorem 2.1 that $\mathbb{E}\bar{D}_n$ is of the same order as nr_n^d as $n \to \infty$. For the special choice $f \equiv 1_W$ Corollary 2.2 implies
\[
\lim_{n \to \infty} \frac{\mathbb{E}\bar{D}_n}{\kappa_d nr_n^d} = 1.
\]

In the next theorem we present exact and asymptotic formulae for the variance of $L_n(\beta)$, which generalise the findings from [17, Section 4] for $\beta = 0$.

Theorem 2.3 Let $\beta > -d/2$ and $f \in L^3(W)$.

(a) Then,
\[
\text{Var} L_n(\beta) = \frac{n(n-1)}{2} \int_{W^2} 1\{\|x-y\| \leq r_n\} \|x-y\|^{2\beta} f(x) f(y) \, d(x,y)
\]
\[
+ n(n-1)(n-2) \int_W \left(\int_W 1\{\|x-y\| \leq r_n\} \|x-y\|^\beta f(y) \, dy \right)^2 f(x) \, dx
\]
\[
- n(n-1)(n-3/2) \left(\int_{W^2} 1\{\|x-y\| \leq r_n\} \|x-y\|^\beta f(x) f(y) \, d(x,y) \right)^2.
\]

(b) For $f \not\equiv 1_W$,
\[
\lim_{n \to \infty} \frac{\text{Var} L_n(\beta)}{\sigma_{\beta,f}^{(1)n^2 r_n^{2\beta+d} + \sigma_{\beta,f}^{(2)n^3 r_n^{2\beta+2d}}} = 1,
\]
\[
\text{where}
\]
\[
\sigma_{\beta,f}^{(1)} := \frac{d \kappa_d}{2(\beta + d)} \int_W f(x)^2 \, dx
\]
\[
\text{and}
\]
\[
\sigma_{\beta,f}^{(2)} := \frac{d^2 \kappa_d^2}{(\beta + d)^2} \left(\int_W f(x)^3 \, dx - \left(\int_W f(x)^2 \, dx \right)^2 \right).
\]

(c) If $f \equiv 1_W$, W satisfies \([2]\) and $nr_n^{d+1} \to 0$ as $n \to \infty$, then
\[
\lim_{n \to \infty} \frac{\text{Var} L_n(\beta)}{n^2 r_n^{2\beta+d}} = \frac{d \kappa_d}{2(\beta + d)}.
\]
Notice that the orders of the two terms in the denominator in (8) differ by \(nr_n^d\), which is the order of the expected average degree. For \(\sigma_{f,\beta}^{(1)}, \sigma_{f,\beta}^{(2)} > 0\) this means that the first (second) term dominates if \(\mathbb{E}D_n \to 0 (\mathbb{E}D_n \to \infty)\) as \(n \to \infty\), while both terms contribute to the limit if \(\mathbb{E}D_n \to c \in (0, \infty)\) as \(n \to \infty\). For all choices of \(f \in L^3(W)\) we have \(\sigma_{f,\beta}^{(1)} > 0\). The Cauchy-Schwarz inequality implies

\[
\left(\int_W f(x)^2 \, dx \right)^2 \leq \int_W f(x)^3 \, dx \int_W f(x) \, dx = \int_W f(x)^3 \, dx
\]

with equality if and only if \(f \equiv 1_W\). So \(\sigma_{f,\beta}^{(2)} \geq 0\) with equality if and only if \(f \equiv 1_W\).

The formula (9) coincides with (8) for \(f \equiv 1_W\). Nevertheless we have to impose for (9) additional conditions on the boundary of \(W\) and on the sequence \((r_n)\). They ensure that the sum of the second and the third term in (7) does not have an asymptotic order that is less than \(n^2r_n^{2\beta+2d}\) but still larger than \(n^2r_n^{2\beta+d}\). The following example shows that this can happen due to boundary effects (see also [17, Section 4]). For \(W = [0, 1] , f \equiv 1_W , \beta = 0\) and \(r_n < 1/2\), we have

\[
\int_0^1 \left(\int_0^1 1\{|x-y| \leq r_n\} \, dy \right)^2 \, dx = 2 \int_0^{r_n} (r_n + x)^2 \, dx + (1 - 2r_n)4r_n^2
\]

\[
= \frac{2}{3}(8r_n^3 - r_n^3) + (1 - 2r_n)4r_n^2 = 4r_n^2 - \frac{10}{3}r_n^3
\]

and

\[
\int_{[0,1]^2} 1\{|x-y| \leq r_n\} \, d(x,y) = 2 \int_0^{r_n} r_n + x \, dx + (1 - 2r_n)2r_n
\]

\[
= 4r_n^2 - r_n^3 + (1 - 2r_n)2r_n = 2r_n - r_n^2.
\]

Thus, the sum of the second and the third term in (7) equals

\[
n(n-1)(n-2)(4r_n^2 - \frac{10}{3}r_n^3 - 4r_n^2 + 4r_n^3 - r_n^4) - \frac{1}{2}n(n-1)(2r_n - r_n^2)^2.
\]

If \(nr_n^2 \to \infty\) as \(n \to \infty\), this is of a higher order than the first term in (7).

Theorem 3.3 in [27] states asymptotic variances for the same statistics \(L_n(\beta)\) with an underlying homogeneous Poisson point process of intensity \(n\) (i.e., \(f \equiv 1_W\) and the number of points is Poisson-distributed with mean \(n\)). In contrast to (9), these formulae show the same phase transition depending on the behaviour of \(nr_n^d\) as we have in (8) for \(f \not\equiv 1_W\).
Proof of Theorem 2.3. A straightforward computation shows that

\[
\mathbb{E}L_n(\beta)^2 = \frac{n(n-1)}{2} \mathbb{E}\{\|X_1 - X_2\| \leq r_n\} \|X_1 - X_2\|^{2\beta}
\]

\[
+ n(n-1)(n-2) \mathbb{E}\{\|X_1 - X_2, X_1 - X_3\| \leq r_n\} \|X_1 - X_2\|^{2\beta} \|X_1 - X_3\|^{2\beta}
\]

\[
+ \frac{(n)^4}{4} \mathbb{E}\{\|X_1 - X_2\|, \|X_3 - X_4\| \leq r_n\} \|X_1 - X_2\|^{2\beta} \|X_3 - X_4\|^{2\beta}.
\]

Here, \(X_1, \ldots, X_4\) are independent random vectors with density \(f\) and \((\cdot)_k\) denotes the \(k\)th descending factorial. Combining this with (3) yields (7).

Observe that the asymptotic behaviour of the first and the third term in (7) follows immediately from Theorem 2.1. By the inequality of arithmetic and geometric means and spherical coordinates, we obtain

\[
\frac{1}{r_n^{2\beta+2d}} \int_W \left(\int_W 1\{\|x - y\| \leq r_n\} \|x - y\|^\beta f(y) \, dy \right)^2 f(x) \, dx
\]

\[
\leq \frac{1}{3r_n^{2\beta+2d}} \int_{W^3} 1\{\|x_1 - x_2\|, \|x_1 - x_3\| \leq r_n\} \|x_1 - x_2\|^\beta \|x_1 - x_3\|^\beta
\]

\[
(f(x_1)^3 + f(x_2)^3 + f(x_3)^3) \, d(x_1, x_2, x_3)
\]

\[
\leq \frac{d^2 \kappa_d^2}{(\beta + d)^2} \int_W f(x)^3 \, dx.
\]

On the other hand, Lemma A.1 and the dominated convergence theorem imply

\[
\lim_{n \to \infty} \frac{1}{r_n^{2\beta+2d}} \int_W \left(\int_W 1\{\|x - y\| \leq r_n\} \|x - y\|^\beta f_C(y) \, dy \right)^2 f_C(x) \, dx = \frac{d^2 \kappa_d^2}{(\beta + d)^2} \int_W f_C(x)^3 \, dx
\]

for each \(C > 0\). Recall that \(f_C(x) = \min\{f(x), C\}\) for \(x \in W\). Now letting \(C \to \infty\) and the monotone convergence theorem yield

\[
\liminf_{n \to \infty} \frac{1}{r_n^{2\beta+2d}} \int_W \left(\int_W 1\{\|x - y\| \leq r_n\} \|x - y\|^\beta f(y) \, dy \right)^2 f(x) \, dx \geq \frac{d^2 \kappa_d^2}{(\beta + d)^2} \int_W f(x)^3 \, dx.
\]

This, together with (10) and the observation that \(\sigma_{\beta,f}^{(1)} \sigma_{\beta,f}^{(2)} > 0\), completes the proof of (8).

For the proof of (9) we define \(W_{-r_n} := \{x \in W : d(x, \partial W) \geq r_n\}\). Now straightforward computations yield

\[
\frac{d^2 \kappa_d^2}{(\beta + d)^2} r_n^{2\beta+2d} \text{Vol}(W_{-r_n}) \leq \int_W \left(\int_W 1\{\|x - y\| \leq r_n\} \|x - y\|^\beta \, dy \right)^2 \, dx \leq \frac{d^2 \kappa_d^2}{(\beta + d)^2} r_n^{2\beta+2d} \text{Vol}(W)
\]

and

\[
\frac{d^2 \kappa_d^2}{(\beta + d)^2} r_n^{2\beta+2d} \text{Vol}(W_{-r_n})^2 \leq \left(\int_{W^2} 1\{\|x - y\| \leq r_n\} \|x - y\|^\beta \, dx, dy \right)^2 \leq \frac{d^2 \kappa_d^2}{(\beta + d)^2} r_n^{2\beta+2d} \text{Vol}(W)^2.
\]
It follows from (2) that there exists a constant $C_W \in (0, \infty)$ such that
\[
0 \leq \text{Vol}(W) - \text{Vol}(W_{-r_n}) \leq \text{Vol}\{x \in W : d(x, \partial W) \leq r_n\} \leq C_W r_n.
\] (11)

Together with $\text{Vol}(W) = 1$ this means that the absolute value of the sum of the second and the third term in (7) can be bounded by
\[
\frac{3d^2 \kappa_d^2}{(\beta + d)^2} C_W n^3 r_n^{3\beta + 2d + 1} + \frac{d^2 \kappa_d^2}{2(\beta + d)^2} n^2 r_n^{2\beta + 2d}.
\]

Together with the asymptotic order of the first term in (7), which is as in the proof of (8), this proves (9).

In the following we use the abbreviation
\[
\sigma_{\beta,f,n} := \sqrt{\sigma_{\beta,f,n}^{(1)} + \sigma_{\beta,f,n}^{(2)}},
\]
with $\sigma_{\beta,f,n}^{(1)}, \sigma_{\beta,f,n}^{(2)}$ as in Theorem 2.3 for $\beta > -d/2$ and $n \in \mathbb{N}$. Moreover, we write D for convergence in distribution and $N_m(\mu, \Sigma)$ for an m-dimensional Gaussian random vector with mean vector $\mu \in \mathbb{R}^m$ and positive semidefinite covariance matrix $\Sigma \in \mathbb{R}^{m \times m}$. In the univariate case the index m is omitted.

Theorem 2.4 Let $\beta > -d/2$, $f \in L^3(W)$ and assume that $n^2 r_n^d \to \infty$ as $n \to \infty$. If $f \not\equiv 1_W$ or if $f \equiv 1_W$, W satisfies (2) and $nr_n^{d+1} \to 0$ as $n \to \infty$, then
\[
\frac{L_n(\beta) - \mathbb{E} L_n(\beta)}{\sigma_{\beta,f,n}} \xrightarrow{D} N(0,1) \quad \text{as} \quad n \to \infty.
\]

For $\beta = 0$ a central limit theorem as Theorem 2.4 is established in [17, Section 4]; see also [32] and the references therein. In [25, Section 3.5] central limit theorems for subgraph counts of random geometric graphs are derived, which include the number of edges $L_n(0)$ as special case. Notice that $n^2 r_n^d \to \infty$ as $n \to \infty$ means that the expected number of edges goes to infinity as $n \to \infty$ (see Theorem 2.1), which is a reasonable assumption for a central limit theorem involving edge lengths. The additional assumptions for $f \equiv 1_W$ are the same as in Theorem 2.3(c) and are used to ensure that the rescaled variances converge to one. Theorem 2.4 is proved next to the following corollary concerning the behaviour under H_0.

Corollary 2.5 Let $\beta > -d/2$, $f \equiv 1_W$ and assume that W satisfies (2).

(a) If $n^2 r_n^d \to \infty$ and $nr_n^{d+1} \to 0$ as $n \to \infty$, then
\[
\frac{L_n(\beta) - \frac{n(n-1)}{2} \int_{W^2} 1\{||x-y|| \leq r_n\} ||x-y||^\beta d(x,y)}{\sqrt{\frac{d \kappa_d}{2(\beta + d)}} nr_n^\beta} \xrightarrow{D} N(0,1) \quad \text{as} \quad n \to \infty.
\]
(b) If \(n^{2}r_{n}^{d} \to \infty \) and \(n^{2}r_{n}^{d+2} \to 0 \) as \(n \to \infty \), then
\[
L_{n}(\beta) = \frac{d_{k_{d}}}{2(\beta + d)} n(n-1)r_{n}^{\beta + d} \sqrt{\frac{d_{\kappa_{d}}}{2(2\beta + d)} nr_{n}^{\beta + d/2}} \xrightarrow{\mathcal{D}} N(0, 1) \quad \text{as} \quad n \to \infty.
\]

It can be seen from Corollary 2.2 that in part (a) of the previous corollary \(L_{n}(\beta) \) is centred with its expectation, while in (b) the asymptotic expectation is used. In the latter situation, the assumptions on \((r_{n}) \) are stricter. For the statistics \(L_{n}(\beta) \) with respect to an underlying homogeneous Poisson point process (i.e. the case of complete spatial randomness) central limit theorems are shown in [27, Section 5.1].

Proof of Corollary 2.5. Part (a) is an immediate consequence of Theorem 2.4 (3) and the definition of \(\sigma_{\beta, f, n} \). For the proof of (b) recall that \(W_{-r_{n}} = \{ x \in W : d(x, \partial W) \geq r_{n} \} \). It follows from (3) that
\[
\frac{d_{k_{d}}}{2(\beta + d)} \text{Vol}(W_{-r_{n}}) n(n-1)r_{n}^{\beta + d} \leq E L_{n}(\beta) \leq \frac{d_{k_{d}}}{2(\beta + d)} \text{Vol}(W) n(n-1)r_{n}^{\beta + d}.
\]
Together with (11), which is valid because we assume (2), and \(\text{Vol}(W) = 1 \) this yields
\[
|E L_{n}(\beta) - \frac{d_{k_{d}}}{2(\beta + d)} n(n-1)r_{n}^{\beta + d}| \leq \frac{d_{k_{d}}}{2(\beta + d)} C W n^{2} r_{n}^{\beta + d+1}
\]
so that
\[
\lim_{n \to \infty} \frac{|E L_{n}(\beta) - \frac{d_{k_{d}}}{2(\beta + d)} n(n-1)r_{n}^{\beta + d}|}{\sqrt{\frac{d_{\kappa_{d}}}{2(2\beta + d)} nr_{n}^{\beta + d/2}}} \leq \lim_{n \to \infty} \frac{\sqrt{d_{k_{d}}(2\beta + d)} C W nr_{n}^{d/2+1}}{\sqrt{2(\beta + d)}} = 0.
\]
Hence, the assertion of (b) follows from (a). \(\square \)

We prepare the proof of Theorem 2.4 by several lemmas, which are formulated for the following more general setting, required later: We assume that the underlying points of \(\mathcal{X}_{n} \) are distributed according to some density \(f_{n} \in L^{2}(W) \) and that \(f_{n}(x) \to f(x) \) as \(n \to \infty \) for almost all \(x \in W \).

For \(n \in \mathbb{N} \) we define
\[
W_{f_{n}} := \{(x, m) \in W \times [0, \infty) : m \leq f_{n}(x)\}
\]
and let \(\tilde{X}_{1}, \ldots, \tilde{X}_{n} \) be independent and uniformly distributed points in \(W_{f_{n}} \). We denote the collection of these points by \(\tilde{\mathcal{X}}_{n} \). For a point \(\tilde{x} \in W_{f_{n}} \) we often use the decomposition \(\tilde{x} = (x, m) \) with \(x \in W \) and \(m \in [0, f_{n}(x)] \). Observe that the first components of \(\tilde{X}_{1}, \ldots, \tilde{X}_{n} \) are distributed according to the density \(f_{n} \) in \(W \). For \(\beta \in \mathbb{R} \) we define
\[
\tilde{L}_{n}(\beta) := \frac{1}{2} \sum_{(x_{1}, m_{1}), (x_{2}, m_{2}) \in \tilde{\mathcal{X}}_{n}^{2}} 1\{\|x_{1} - x_{2}\| \leq r_{n}\} \|x_{1} - x_{2}\|^{\beta}.
\]
If \(f_n = f \), \(\hat{L}_n(\beta) \) has the same distribution as \(L_n(\beta) \). For \(M > 0 \) and \(a \geq 0 \) we define

\[
\hat{L}_{n,M}(\beta) := \frac{1}{2} \sum_{((x_1,m_1),(x_2,m_2)) \in \mathfrak{F}^2_{n,*}} 1\{m_1, m_2 \leq M\} 1\{\|x_1 - x_2\| \leq r_n\} \|x_1 - x_2\|^\beta
\]

(14)

and

\[
\hat{L}_{n,a,M}(\beta) := \frac{1}{2} \sum_{((x_1,m_1),(x_2,m_2)) \in \mathfrak{F}^2_{n,*}} 1\{m_1, m_2 \leq M\} 1\{n^{-2/d}a < \|x_1 - x_2\| \leq r_n\} \|x_1 - x_2\|^\beta.
\]

Moreover, we use the abbreviations \(f_{n,M}(x) := \min\{f_n(x), M\} \) and \(f_M(x) := \min\{f(x), M\} \) for \(x \in W \).

Lemma 2.6 Let \(\beta > -d/2 \), \(M \geq 1 \), \(a > 0 \) and assume that \(n^2 r_n^d \to \infty \) as \(n \to \infty \) and that \(\lim_{n \to \infty} \text{Var} \(\hat{L}_{n,M}(\beta) \)/\(\sigma_{\beta,f_M,n}^2 \) = 1 \). Then,

\[
\lim_{n \to \infty} \mathbb{E}\left(\frac{\hat{L}_{n,M}(\beta) - \mathbb{E}\hat{L}_{n,M}(\beta)}{\sigma_{\beta,f_M,n}} - \frac{\hat{L}_{n,a,M}(\beta) - \mathbb{E}\hat{L}_{n,a,M}(\beta)}{\sigma_{\beta,f_M,n}} \right)^2 = 0
\]

(15)

and

\[
\lim_{n \to \infty} \frac{\text{Var} \(\hat{L}_{n,a,M}(\beta) \)}{\sigma_{\beta,f_M,n}^2} = 1.
\]

Proof: By definition, we have that

\[
\hat{L}_{n,M}(\beta) - \hat{L}_{n,a,M}(\beta) = \frac{1}{2} \sum_{((x_1,m_1),(x_2,m_2)) \in \mathfrak{F}^2_{n,*}} 1\{m_1, m_2 \leq M\} 1\{\|x_1 - x_2\| < n^{-2/d}a\} \|x_1 - x_2\|^\beta.
\]

Now a similar computation as in the proof of Theorem 2.3(a) yields that

\[
\text{Var}(\hat{L}_{n,M}(\beta) - \hat{L}_{n,a,M}(\beta)) \leq I_1 + I_2
\]

with

\[
I_1 := \frac{n^2}{2} \int_{W^2} 1\{x - 2y \leq n^{-2/d}a\} \|x - y\|^{2\beta} f_{n,M}(x) f_{n,M}(y) \, dx \, dy
\]

\[
I_2 := n^3 \int_{W} \left(\int_{W} 1\{x - 2y \leq n^{-2/d}a\} \|x - y\|^{\beta} f_{n,M}(y) \, dy \right)^2 f_{n,M}(x) \, dx.
\]

Note that \(I_1 \) and \(I_2 \) correspond to the first two terms in (17), whereas the third term in (17) was omitted since it is non-positive. Now short computations show that

\[
\frac{I_1}{\sigma_{\beta,f_M,n}^2} \leq \frac{d \kappa_d M^2}{2(2\beta + d)} \frac{n^2 r_n^{-2\beta/d} a^2 a^{2\beta/d}}{\sigma_{\beta,f_M}^{(1)} n^2 r_n^{2\beta/d}} = \frac{d \kappa_d M^2 a^{2\beta/d}}{2(2\beta + d) \sigma_{\beta,f_M}^{(1)} (n^2 r_n^d)^{2\beta/d+1}}
\]
and
\[
\frac{I_2}{\sigma_{\beta,M,n}^2} \leq \frac{d^2 \kappa M^2 n^3 n^{-4+2\beta/d} a^{2+2d}}{\sigma_{\beta,M,n}^{(1)}} = \frac{d^2 \kappa M^2 a^{2+2d}}{(\beta+d)^2 \sigma_{\beta,M,f}^{(1)} n^{(n^2 r_n^d)^{2\beta/d+1}}}
\]

Since \(n^2 r_n^d \to \infty\) as \(n \to \infty\) and \(2\beta/d+1 > 0\), this provides (15). Now (16) follows from combining (15) and \(\lim_{n \to \infty} \text{Var} L_n, M(\beta)/\sigma_{\beta,f,M,n}^2 = 1\). □

Lemma 2.7 Let \(\beta > -d/2\), \(M \geq 1\), \(a > 0\) and assume that \(n^2 r_n^d \to \infty\) as \(n \to \infty\) and that \(\lim_{n \to \infty} \text{Var} L_n, M(\beta)/\sigma_{\beta,f,M,n}^2 = 1\). Then,

\[
\frac{L_n, M(\beta) - \mathbb{E} L_n, M(\beta)}{\sigma_{\beta,f,M,n}} \xrightarrow{D} N(0,1) \quad \text{as} \quad n \to \infty
\]

and

\[
\frac{L_n, M(\beta) - \mathbb{E} L_n, M(\beta)}{\sigma_{\beta,f,M,n}} \xrightarrow{D} N(0,1) \quad \text{as} \quad n \to \infty.
\]

Proof: From (16) we know that \(\lim_{n \to \infty} \text{Var} L_n, a, M(\beta)/\sigma_{\beta,f,M,n}^2 = 1\). If \(\beta \geq 0\), then

\[
\lim_{n \to \infty} \sup_{(x,m_x),(y,m_y) \in W_{f_n}} \mathbf{1}\{m_x, m_y \leq M\} \mathbf{1}\{n^{-2/d} a \leq \|x-y\| \leq r_n\} \|x-y\|^\beta
\]

\[
\leq \lim_{n \to \infty} \frac{r_n^{\beta}}{n^{\beta+d/2}} = \lim_{n \to \infty} \frac{1}{\sqrt{n^{2 \beta/d_n}}} = 0,
\]

while for \(\beta \in (-d/2,0)\),

\[
\lim_{n \to \infty} \sup_{(x,m_x),(y,m_y) \in W_{f_n}} \mathbf{1}\{m_x, m_y \leq M\} \mathbf{1}\{n^{-2/d} a \leq \|x-y\| \leq r_n\} \|x-y\|^\beta
\]

\[
\leq \lim_{n \to \infty} \frac{n^{-2\beta/d} a^{\beta}}{n^{\beta+d/2}} = \lim_{n \to \infty} \frac{a^{\beta}}{(n^{2 \beta/d_n})^{1/2+\beta/d}} = 0.
\]

Denoting by \((X_1^{(n)}, m_{X_1^{(n)}})\) an uniformly distributed point in \(W_{f_n}\), we obtain

\[
\lim_{n \to \infty} \sup_{(x,m) \in W_{f_n}} \mathbb{E} \mathbf{1}\{m_x, m_{X_1^{(n)}} \leq M\} \mathbf{1}\{n^{-2/d} a \leq \|x-X_1^{(n)}\| \leq r_n\} \|x-X_1^{(n)}\|^\beta
\]

\[
= \lim_{n \to \infty} \frac{1}{r_n^{\beta+d}} \sup_{x \in W} \int_W \mathbf{1}\{n^{-2/d} a \leq \|x-y\| \leq r_n\} \|x-y\|^\beta f_{n,M}(y) \, dy
\]

\[
\leq \lim_{n \to \infty} \frac{d \kappa M \beta + d}{r_n^{\beta+d}} = \lim_{n \to \infty} \frac{d \kappa M \beta + d}{n^{\beta+d}} = 0.
\]

Thus, (17) follows from Theorem 2.1. Combining the \(L^2\)-covergence in (15) with (17) yields (15). □
In the following we use the abbreviation \(\mathcal{F}_{n,M}(x) := \max\{f_n(x) - M, 0\} \) for \(x \in W \) and \(M \geq 0 \).

Lemma 2.8 For \(n \in \mathbb{N}, \beta > -d/2 \) and \(M \geq 1 \),

\[
\mathbb{E}\left(\frac{\mathcal{L}_n(\beta) - \mathbb{E}\mathcal{L}_n(\beta) - \mathcal{L}_{n,M}(\beta) - \mathbb{E}\mathcal{L}_{n,M}(\beta)}{\sigma_{\beta,f,n}} \right)^2 \leq \frac{d \kappa_d}{(2\beta + d)} \frac{n^2 r_n^{2\beta + d}}{\sigma_{\beta,f,n}^2} \int_W \mathcal{F}_{n,M}(x)^2 + M \mathcal{F}_{n,M}(x) \, dx
\]

\[+ \frac{18d^2 \kappa_d^2}{(2\beta + d)^2} \frac{n^3 r_n^{2\beta + 2d}}{\sigma_{\beta,f,n}^2} \int_W M^2 \mathcal{F}_{n,M}(x) + M \mathcal{F}_{n,M}(x)^2 + \mathcal{F}_{n,M}(x)^3 \, dx.\]

Proof: By definition we have

\[
\mathcal{L}_n(\beta) - \mathcal{L}_{n,M}(\beta) = \frac{1}{2} \sum_{((x,m_2),(y,m_3)) \in \mathcal{F}_n^2} 1\{m_1 > M \text{ or } m_2 > M\} 1\{\|x - y\| \leq r_n\} \|x - y\|^{\beta}.
\]

From similar arguments as in the proofs of Theorem 2.3(a) and Lemma 2.6 it follows that

\[
\text{Var}(\mathcal{L}_n(\beta) - \mathcal{L}_{n,M}(\beta)) \leq I_1 + I_2
\]

with

\[
I_1 := \frac{n^2}{2} \int_{W_n^2} 1\{m_1 > M \text{ or } m_2 > M\} 1\{\|x_1 - x_2\| \leq r_n\} \|x_1 - x_2\|^{2\beta} d((x_1,m_1),(x_2,m_2))
\]

\[
I_2 := n^3 \int_{W_n^3} 1\{m_1 > M \text{ or } m_2 > M\} 1\{m_1 > M \text{ or } m_3 > M\} 1\{\|x_1 - x_2\| \leq r_n\} 1\{\|x_1 - x_3\| \leq r_n\} \|x_1 - x_2\|^{\beta} \|x_1 - x_3\|^{\beta} d((x_1,m_1),(x_2,m_2),(x_3,m_3)).
\]

For \(I_1 \) we obtain the bound

\[
I_1 \leq n^2 \int_{W_2} 1\{\|x - y\| \leq r_n\} \|x - y\|^{2\beta} \mathcal{F}_{n,M}(x) (\mathcal{F}_{n,M}(y) + M) \, d(x,y)
\]

\[\leq n^2 \int_{W_2} 1\{\|x - y\| \leq r_n\} \|x - y\|^{2\beta} (\mathcal{F}_{n,M}(x)^2 + M \mathcal{F}_{n,M}(x)) \, d(x,y)
\]

\[\leq \frac{d \kappa_d}{2\beta + d} n^2 r_n^{2\beta + d} \int_W \mathcal{F}_{n,M}(x)^2 + M \mathcal{F}_{n,M}(x) \, dx.
\]

Because of

\[
1\{m_1 > M \text{ or } m_2 > M\} 1\{m_1 > M \text{ or } m_3 > M\} \leq 1\{m_1 > M\} + 1\{m_2 > M, m_3 > M\},
\]

14
we have

\[I_2 \leq n^3 \int_{W^3} \mathbf{1}\{ \|x_1 - x_2\| \leq r_n\} \mathbf{1}\{ \|x_1 - x_3\| \leq r_n\} \|x_1 - x_2\|^\beta \|x_1 - x_3\|^\beta
\]

\[(\tilde{f}_{n,M}(x_1) f_n(x_2) f_n(x_3) + f_n(x_1) \tilde{f}_{n,M}(x_2) \tilde{f}_{n,M}(x_3)) \, d(x_1, x_2, x_3). \]

Using that \(f_n(x) \leq \tilde{f}_{n,M}(x) + M \) for \(x \in \mathbb{R}^d \), we obtain

\[\tilde{f}_{n,M}(x_1) f_n(x_2) f_n(x_3) + f_n(x_1) \tilde{f}_{n,M}(x_2) \tilde{f}_{n,M}(x_3) \leq 6 \max_{k,i \in \{1,2,3\}} M^{3-k} \tilde{f}_{n,M}(x)^k. \]

This implies

\[I_2 \leq 18d^2 \kappa_n^2 (\beta + d)^2 n^3 \int_{W^3} \int_{\mathbb{R}^d} M^2 \tilde{f}_{n,M}(x) + M \tilde{f}_{n,M}(x)^2 + \tilde{f}_{n,M}(x)^3 \, dx, \]

which completes the proof.

We recall that \(f_M(x) := \min\{f(x), M\} \) for \(x \in W \) and \(M \geq 0 \).

Lemma 2.9 Let \(\beta > -d/2 \), \(M \geq 1 \) and \(f_n = f \), \(n \in \mathbb{N} \). If \(f \not\equiv 1_W \) or if \(f \equiv 1_W \), \(W \) satisfies \(\text{(2)} \) and \(nr_n^{d+1} \to 0 \) as \(n \to \infty \), then

\[\lim_{n \to \infty} \frac{\text{Var} \tilde{L}_{n,M}(\beta)}{\sigma_{\beta,f_M,n}^2} = 1. \]

Proof: For \(M \geq 1 \) and \(f \equiv 1_W \), \(f_M \equiv 1_W \) and the statement is the same as Theorem \(\text{2.3(c)} \) because \(\tilde{L}_{n,M}(\beta) \) follows the same distribution as \(L_n(\beta) \). For \(f \not\equiv 1_W \) one can show as in the proof of Theorem \(\text{2.3(a)} \) that

\[\text{Var} \tilde{L}_{n,M}(\beta) = \frac{n(n - 1)}{2} \int_{W^2} \mathbf{1}\{ \|x - y\| \leq r_n\} \|x - y\|^{2\beta} f_M(x) f_M(y) \, d(x,y) \]

\[+ n(n - 1)(n - 2) \int_{W} \left(\int_{W} \mathbf{1}\{ \|x - y\| \leq r_n\} \|x - y\|^{\beta} f_M(y) \, dy \right)^2 f_M(x) \, dx \]

\[- n(n - 1)(n - 3/2) \left(\int_{W^2} \mathbf{1}\{ \|x - y\| \leq r_n\} \|x - y\|^{\beta} f_M(x) f_M(y) \, d(x,y) \right)^2. \]

Now the assertion can be proved as Theorem \(\text{2.3(b)} \).

Proof of Theorem 2.4: We consider the same setting as in the previous lemmas with \(f_n = f \) for \(n \in \mathbb{N} \) so that \(L_n(\beta) \) has the same distribution as \(\tilde{L}_n(\beta) \), which we study throughout this proof. For \(f \equiv 1_W \) the assertion follows from \(\text{(18)} \) in Lemma 2.7 because, for \(M \geq 1 \), \(\tilde{L}_n(\beta) \) has the same distribution as \(\tilde{L}_{n,M}(\beta) \), \(\sigma_{\beta,f_M,n} = \sigma_{\beta,f,n} \) and Lemma 2.9 guarantees that the variance condition in Lemma 2.7 is satisfied. So we assume \(f \not\equiv 1_W \) in the sequel.
Let $h : \mathbb{R} \to \mathbb{R}$ be bounded Lipschitz function whose Lipschitz constant is at most one and let $\varepsilon > 0$. In the following we show

$$\lim_{n \to \infty} \left| \mathbb{E} h \left(\frac{\overline{T}_n(\beta) - \mathbb{E}\overline{T}_n(\beta)}{\sigma_{\beta,f,n}} \right) - \mathbb{E} h(\mathcal{N}(0,1)) \right| \leq \varepsilon,$$ \hspace{1cm} (19)

which yields the assertion.

For $M \geq 1$ the triangle inequality implies

$$\left| \mathbb{E} h \left(\frac{\overline{T}_n(\beta) - \mathbb{E}\overline{T}_n(\beta)}{\sigma_{\beta,f,n}} \right) - \mathbb{E} h(\mathcal{N}(0,1)) \right| \leq \left| \mathbb{E} h \left(\frac{\overline{T}_n(\beta) - \mathbb{E}\overline{T}_n(\beta)}{\sigma_{\beta,f,n}} \right) - \mathbb{E} h \left(\frac{\overline{T}_{n,M}(\beta) - \mathbb{E}\overline{T}_{n,M}(\beta)}{\sigma_{\beta,f,n}} \right) \right|$$

$$+ \left| \mathbb{E} h \left(\frac{\overline{T}_{n,M}(\beta) - \mathbb{E}\overline{T}_{n,M}(\beta)}{\sigma_{\beta,f,n}} \right) - \mathbb{E} h \left(\frac{\overline{T}_{n,M}(\beta) - \mathbb{E}\overline{T}_{n,M}(\beta)}{\sigma_{\beta,f,M,n}} \right) \right|$$

$$+ \left| \mathbb{E} h \left(\frac{\overline{T}_{n,M}(\beta) - \mathbb{E}\overline{T}_{n,M}(\beta)}{\sigma_{\beta,f,M,n}} \right) - \mathbb{E} h(\mathcal{N}(0,1)) \right| \quad (20)$$

$$=: R_{1,n,M} + R_{2,n,M} + R_{3,n,M}.$$

It follows from Lemma 2.7 (notice that the variance condition is satisfied because of Lemma 2.9) that $R_{3,n,M}$ vanishes for any $M \geq 1$ as $n \to \infty$. The Lipschitz property of h, the Cauchy-Schwarz inequality and Lemma 2.8 imply that

$$R_{1,n,M}^2 \leq \mathbb{E} \left(\frac{\overline{T}_n(\beta) - \mathbb{E}\overline{T}_n(\beta)}{\sigma_{\beta,f,n}} - \frac{\overline{T}_{n,M}(\beta) - \mathbb{E}\overline{T}_{n,M}(\beta)}{\sigma_{\beta,f,n}} \right)^2$$

$$\leq \frac{d\kappa_d}{(2\beta + d)} \mathbb{E} \frac{n^{2+2d}}{\sigma_{\beta,f,n}^2} \int_W f_M(x)^2 + M f_M(x) \, dx$$

$$+ \frac{18d^2\kappa_d^2}{(2\beta + d)^2} \frac{n^{2+2d}}{\sigma_{\beta,f,n}^2} \int_W M^2 f_M(x) + M f_M(x)^2 + \overline{T}_M(x)^3 \, dx.$$

Here the terms depending on n can be bounded by some constants. The dominated convergence theorem with the upper bounds $2f^2$ and $3f^3$ leads to

$$\lim_{M \to \infty} \int_W f_M(x)^2 + M f_M(x) \, dx = 0$$

and

$$\lim_{M \to \infty} \int_W M^2 f_M(x) + M f_M(x)^2 + \overline{T}_M(x)^3 \, dx = 0.$$

Hence, there exists an $M_1 \geq 1$ such that $\lim_{n \to \infty} R_{1,n,M} \leq \varepsilon/2$ for $M > M_1$.

16
A short computation using the Lipschitz continuity of h and the Cauchy-Schwarz inequality shows that
\[
R_{2,n,M} \leq \left| \frac{\sigma_{\beta,f_{M,n}}}{\sigma_{\beta,f,n}} - 1 \right| \left| \mathbb{E} \left[\frac{\tilde{L}_{n,M}(\beta) - \mathbb{E}\tilde{L}_{n,M}(\beta)}{\sigma_{\beta,f_{M,n}}} \right] \right| \leq \left| \frac{\sigma_{\beta,f_{M,n}}}{\sigma_{\beta,f,n}} - 1 \right| \frac{\sqrt{\text{Var} \tilde{L}_{n,M}(\beta)}}{\sigma_{\beta,f_{M,n}}}.
\]

By the monotone convergence theorem and the assumption $f \neq 1_W$, we have $\sigma_{\beta,f_{M}}^{(1)} \to \sigma_{\beta,f}^{(1)} > 0$ and $\sigma_{\beta,f_{M}}^{(2)} \to \sigma_{\beta,f}^{(2)} > 0$ as $M \to \infty$. Together with the definitions of $\sigma_{\beta,f_{M,n}}$ and $\sigma_{\beta,f,n}$ this implies that there exists an $M_2 \geq 1$ such that
\[
\lim_{n \to \infty} \left| \frac{\sigma_{\beta,f_{M,n}}}{\sigma_{\beta,f,n}} - 1 \right| \leq \frac{\varepsilon}{2}
\]
for $M > M_2$. Since, by Lemma 2.9, $\lim_{n \to \infty} \sqrt{\text{Var} \tilde{L}_{n,M}(\beta)/\sigma_{\beta,f_{M,n}}} = 1$, we obtain $\lim_{n \to \infty} R_{2,n,M} \leq \varepsilon/2$ for $M > M_2$. Thus, choosing $M > \max\{M_1, M_2\}$ in (20) and letting $n \to \infty$ yields (19) and completes the proof.

\section{3 Testing for uniformity}

Motivated by Corollary 2.5 we propose testing goodness-of-fit of H_0 in (1) against general alternatives based on the families of statistics
\[
T_{e,n}(\beta) = \left(\frac{L_n(\beta) - \frac{1}{2}n(n-1) \int_{W^2} 1\{\|x-y\| \leq r_n\} \|x-y\|^\beta d(x,y)}{\sqrt{\frac{dn_d}{2(2\beta+d)} n^{\beta+d/2}}} \right)^2
\]
(21)

and
\[
T_{a,n}(\beta) = \left(\frac{L_n(\beta) - \frac{dn_d}{2(2\beta+d)} n^{\beta+d/2} r_n^{\beta+d}}{\sqrt{\frac{dn_d}{2(2\beta+d)} n^{\beta+d/2}}} \right)^2 ,
\]
(22)
depending on $\beta > -\frac{d}{2}$ and $r_n \in (0,\infty)$. The choice of the sequence (r_n) is discussed in Section 5, where we introduce a parameter k. The indices e and a are abbreviations for 'exact' and 'asymptotic', and they point out that $T_{e,n}(\beta)$ involves $\mathbb{E}L_n(\beta)$, which can be difficult to compute depending on the shape of the observation window W, while $T_{a,n}(\beta)$ uses a simple asymptotic approximation of $\mathbb{E}L_n(\beta)$. Rejection of H_0 will be for large values of $T_{j,n}(\beta)$, $j \in \{a,e\}$. Empirical critical values for $W = [0,1]^d$ can be found in Tables 8 to 12 for dimensions $d = 2, 3$ and sample sizes $n \in \{50, 100, 200, 500\}$. Notice that under H_0 and some mild assumptions on (r_n) and W the continuous mapping theorem and Corollary 2.5 yield
\[
T_{j,n}(\beta) \overset{D}{\to} \chi^2_1 \text{ as } n \to \infty, \quad j \in \{a,e\}, \beta > -d/2.
\]
Here χ^2_1 denotes a random variable having a chi-squared distribution with one degree of freedom. In the following theorem we consider the asymptotic behaviour of $T_{e,n}(\beta)$ and $T_{a,n}(\beta)$ under fixed alternatives. We write $\overset{p}{\longrightarrow}$ for convergence in probability.

Theorem 3.1 Let $\beta > -d/2$ and $f \not= 1_W$. If $n^2r_n^d \to \infty$ as $n \to \infty$, then

$$T_{e,n}(\beta) \overset{p}{\longrightarrow} \infty \quad \text{and} \quad T_{a,n}(\beta) \overset{p}{\longrightarrow} \infty \quad \text{as} \quad n \to \infty.$$

Proof: Throughout this proof we denote the terms that are squared in (21) and (22) by $\overline{L}_{e,n}(\beta)$ and $\overline{L}_{a,n}(\beta)$, respectively. In the following we will show that

$$\overline{L}_{j,n}(\beta) \overset{p}{\longrightarrow} \infty \quad \text{as} \quad n \to \infty$$

(23)

for $j \in \{a, e\}$, which implies the assertion.

Let $M \geq 1$ and $f_n := f$ for $n \in \mathbb{N}$. Recall the definitions of $\overline{L}_n(\beta)$ and $\overline{L}_{n,M}(\beta)$ from (13) and (14). Since $\overline{L}_n(\beta)$ and $L_n(\beta)$ have the same distribution, we can assume without loss of generality that they are identical. All edges that contribute to $\overline{L}_{n,M}(\beta)$ also contribute to $\overline{L}_n(\beta)$ so that $\overline{L}_{n,M}(\beta) \leq \overline{L}_n(\beta)$. This implies that, for $j \in \{e, a\}$,

$$\overline{L}_{j,n}(\beta) = \frac{L_{n,M}(\beta) - \mathbb{E} \overline{L}_{n,M}(\beta)}{\sqrt{\frac{dn_d}{2(2\beta+d)n^\beta d/2}}} + \frac{\mathbb{E} \overline{L}_{n,M}(\beta) - mn_j(\beta)}{\sqrt{\frac{dn_d}{2(2\beta+d)n^\beta d/2}}} =: S_{1,n} + S_{2,j,n}$$

with

$$mn_e(\beta) = \frac{1}{2} n(n-1) \int_{W^2} 1 \{\|x-y\| \leq r_n\} \|x-y\|^\beta d(x,y)$$

and

$$mn_a(\beta) = \frac{dn_d}{2(\beta + d)} n(n-1)r_n^{\beta + d}.$$

Using the same arguments as in the proof of Theorem 2.1 one can show that

$$\lim_{n \to \infty} \frac{\mathbb{E} \overline{L}_{n,M}(\beta)}{n^2r_n^{\beta + d}} = \frac{dn_d}{2(\beta + d)} \int_W f_M(x)^2 \, dx.$$

By the Cauchy-Schwarz inequality, we have

$$\int_W 1 \, dx = 1 = \int_W f(x) \, dx < \sqrt{\int_W f(x)^2 \, dx} \sqrt{\int_W 1 \, dx} = \sqrt{\int_W f(x)^2 \, dx}$$

since $f \not= 1_W$. Together with the monotone convergence theorem this implies that we can choose $M \geq 1$ such that

$$\lim_{n \to \infty} \frac{\mathbb{E} \overline{L}_{n,M}(\beta)}{n^2r_n^{\beta + d}} \geq \frac{dn_d}{2(\beta + d)}(1 + \varepsilon)$$
for some \(\varepsilon \in (0, \infty) \). Since, by Theorem 2.1

\[
\lim_{n \to \infty} \frac{m_{n,j}(\beta)}{n^{2\beta+d}} = \frac{d\kappa_d}{2(\beta + d)}
\]

for \(j \in \{e, a\} \), this shows that \(S_{2,e,n} \) and \(S_{2,a,n} \) behave at least as \(\frac{\sqrt{d\kappa_d(2\beta+d)}}{\sqrt{2(\beta+d)}}n^{r_n^d/2} \) as \(n \to \infty \).

From the Chebyshev inequality and Lemma 2.9 it follows that

\[
\lim_{n \to \infty} \mathbb{P}\left(|S_{1,n}| \geq \frac{\sqrt{d\kappa_d(2\beta+d)}}{2\sqrt{2(\beta+d)}}n^{r_n^d/2} \varepsilon_n r_n^d \right) \leq \lim_{n \to \infty} \frac{\text{Var} \bar{L}_{n,M}(\beta)}{\frac{d\kappa_d}{2(\beta+d)} n^{2\beta+d} + \frac{\sigma_{\beta,f_M}^2}{n^{2r_n^d}} + \frac{\sigma_{\beta,f_M}^2}{n^{2r_n^d}}}
\]

\[
= \frac{16(\beta + d)^2}{(d\kappa_d)^2\varepsilon^2} \lim_{n \to \infty} \frac{\sigma_{\beta,f_M}^1 n^{2\beta+d} + \sigma_{\beta,f_M}^2 n^{2r_n^d}}{n^{2r_n^d}} = 0,
\]

which implies (23) for \(j \in \{a, e\} \).

\[\square\]

Theorem 3.1 yields consistency of \(T_{e,n}(\beta) \) and \(T_{a,n}(\beta) \) against each fixed alternative \(f \neq 1_W \).

4 Behaviour under contiguous alternatives

Let \(g \in L^2(W) \) be such that \(g \neq 0 \) and \(\int_W g(x) \, dx = 0 \) and let \((a_n)\) be a positive sequence such that \(a_n \to 0 \) as \(n \to \infty \). In the following we always tacitly assume that \(1 + a_n g(x) \geq 0 \) for all \(x \in W \) and \(n \in \mathbb{N} \). This guarantees that \(1_W + a_n g \) is a density. In the sequel we denote by \(\bar{T}_{e,n}(\beta) \) and \(\bar{T}_{a,n}(\beta) \) our test statistics in (21) and (22) computed on \(n \) i.i.d. points \(\tilde{X}_1, \ldots, \tilde{X}_n \) distributed according to the density \(1_W + a_n g \) (i.e., we have a triangular scheme).

Theorem 4.1 Let \(\beta > -d/2 \) and assume that \(W \) satisfies (2), that \(n^2 r_n^d \to \infty \), \(nr_n^{d+1} \to 0 \) and \(\min\{nr_n^{d+1}, r_n/a_n\} \to 0 \) as \(n \to \infty \) and that, for \(r > 0 \),

\[
\int_W \mathbf{1}\{d(x, \partial W) \leq r\} |g(x)| \, dx \leq C_{W,g} r
\]

with some constant \(C_{W,g} \in (0, \infty) \). Then the following assertions hold:

(a) If \(nr_n^{d+2}/a_n^2 \to \gamma \in [0, \infty) \) as \(n \to \infty \), then

\[
\bar{T}_{e,n}(\beta) \xrightarrow{d} \left(Z + \frac{\sqrt{d\kappa_d(2\beta+d)}}{\sqrt{2(\beta+d)}} \int_W g(x)^2 \, dx \gamma \right)^2 \text{ as } n \to \infty
\]

with \(Z \sim N(0, 1) \).
(b) If \(nr_n^d a_n^2 \to \infty \) as \(n \to \infty \), then
\[
\bar{T}_{e,n}(\beta) \xrightarrow{P} \infty \quad \text{as} \quad n \to \infty.
\]

(c) If, additionally, \(n^2 r_n^{d+2} \to 0 \) as \(n \to \infty \), the statements of (a) and (b) also hold for \(\bar{T}_{a,n}(\beta) \).

The condition \((24)\) requires that the fluctuations of \(g \) in an \(r \)-neighbourhood of the boundary of \(W \) are at most of order \(r \). Because we assume \((2)\), this is always the case if \(g \) is bounded. The limiting random variable in Theorem \(4.1\)(a) follows a non-central chi-squared distribution with one degree of freedom. For \(nr_n^{d+2} a_n^2 \to 0 \) as \(n \to \infty \) Theorem \(4.1\) implies that \(\bar{T}_{e,n}(\beta) \) and \(\bar{T}_{a,n}(\beta) \) behave exactly as \(T_{e,n}(\beta) \) and \(T_{a,n}(\beta) \) under \(H_0 \). As the following result shows one can slightly modify Theorem \(4.1\) if \(g \) vanishes close to the boundary of \(W \). By \(\text{supp} \, g \), we denote the support of \(g \), i.e., the set of all \(x \in W \) such that \(g(x) \neq 0 \). For \(A,B \subset \mathbb{R}^d \) let \(d(A,B) := \inf_{x \in A, y \in B} \| x - y \| \).

Theorem 4.2 Let \(\beta > -d/2 \) and assume that \(d(\text{supp} \, g, \partial W) > 0 \), that \(W \) satisfies \((2)\) and that \(n^2 r_n^d \to \infty \) and \(nr_n^{d+1} \to 0 \) as \(n \to \infty \). Then, (a), (b) and (c) of Theorem \(4.1\) hold.

We prepare the proofs of Theorem \(4.1\) and Theorem \(4.2\) with several lemmas. By \(\bar{L}_n(\beta) \) we denote the statistic \(L_n(\beta) \) with respect to i.i.d. points \(\bar{X}_1, \ldots, \bar{X}_n \) distributed according to the density \(1 + a_n g \), while \(L_n(\beta) \) is with respect to \(n \) i.i.d. points uniformly distributed in \(W \).

Lemma 4.3 Assume that \(W \) and \(g \) satisfy \((24)\) and let \(n \geq 2 \). Then, for any \(\beta > -d \),
\[
\left| \mathbb{E} \bar{L}_n(\beta) - \mathbb{E} L_n(\beta) - \frac{n(n-1) a_n^2}{2} \int_{W^2} 1\{\| x - y \| \leq r_n \} \| x - y \|^\beta g(x)g(y) \, dx \, dy \right| \leq \frac{C_{W,g} \kappa_d}{\beta + d} n^2 r_n^{3 + d} a_n.
\]

Moreover, for any \(\beta > -d/2 \),
\[
\left| \text{Var} \bar{L}_n(\beta) - \text{Var} L_n(\beta) \right| \leq C \left(n^2 r_n^{2(3+d)} a_n a_n + r_n + n^3 r_n^{2(3+2d)} a_n (a_n + r_n + a_n^2 + a_n^3 + a_n^2 r_n) \right)
\]
with some constant \(C \in (0, \infty) \) depending on \(\beta, d, C_{W,g} \) and \(g \).

Proof: It follows from \((3)\) in Theorem \(2.1\) that
\[
\mathbb{E} \bar{L}_n(\beta) - \mathbb{E} L_n(\beta) = \frac{n(n-1) a_n^2}{2} \int_{W^2} 1\{\| x - y \| \leq r_n \} \| x - y \|^\beta g(x)g(y) \, dx \, dy + n(n-1) a_n \int_{W^2} 1\{\| x - y \| \leq r_n \} \| x - y \|^\beta g(x) \, dx \, dy.
\]
We have
\[
\int_{W^2} 1\{|x-y| \leq r_n\}|x-y|^\beta g(x)\, d(x, y) = \frac{d\kappa_d r_n^{\beta+d}}{\beta + d} \int_W g(x)\, dx \\
+ \int_W 1\{d(x, \partial W) \leq r_n\} \left(\int_W 1\{|x-y| \leq r_n\}|x-y|^2 \, dy - \frac{d\kappa_d r_n^{\beta+d}}{\beta + d}\right) g(x)\, dx.
\]
Here, the first term is zero since \(\int_W g(x)\, dx = 0\). By (24), the absolute value of the second term can be bounded by
\[
\frac{d\kappa_d}{\beta + d} r_n^{\beta+d} \int_W 1\{d(x, \partial W) \leq r_n\}|g(x)|\, dx \leq \frac{d\kappa_d C_{W,g}}{\beta + d} r_n^{\beta+d+1},
\]
which proves (25).

From Theorem 2.3(a) we can deduce
\[
\text{Var} \tilde{L}_n(\beta) - \text{Var} L_n(\beta) = \mathbb{E}\tilde{L}_n(2\beta) - \mathbb{E}L_n(2\beta) \\
+ n(n-1)(n-2) \int_{W^3} 1\{|x-y_1|, |x-y_2| \leq r_n\}|x-y_1|^\beta |x-y_2|^\beta \\
\left(a_n(2g(y_1) + g(x)) + a_n^2 (g(y_1)g(y_2) + 2g(y_1)g(x)) \\
+ a_n^3 g(y_1)g(y_2)g(x) \right)\, dy_1, y_2, x \\
- \frac{4n - 6}{n(n-1)} (\mathbb{E}\tilde{L}_n(\beta) - \mathbb{E}L_n(\beta)) (\mathbb{E}\tilde{L}_n(\beta) + \mathbb{E}L_n(\beta)) \\
= \tilde{R}_{1,n} + R_{2,n} - R_{3,n}.
\]
It follows from
\[
\frac{n(n-1)a_n^2}{2} \left| \int_{W^2} 1\{|x-y| \leq r_n\}|x-y|^\beta g(x) g(y)\, d(x, y) \right| \leq \frac{d\kappa_d}{2(\beta + d)} \int_W g(x)^2\, dx \, n^2 r_n^{2\beta+d} a_n^2
\]
and (25) that
\[
|\tilde{R}_{1,n}| \leq \frac{d\kappa_d}{2(\beta + d)} \int_W g(x)^2\, dx \, n^2 r_n^{2\beta+d} a_n^2 + \frac{d\kappa_d C_{W,g}}{2\beta + d} n^2 r_n^{2\beta+d+1} a_n.
\]
From
\[
\mathbb{E}\tilde{L}_n(\beta) + \mathbb{E}L_n(\beta) \leq \frac{d\kappa_d}{2(\beta + d)} \left(1 + \int_W (1 + a_n g(x))^2\, dx \right) n^2 r_n^{\beta+d} \\
= \frac{d\kappa_d}{2(\beta + d)} \left(2 + a_n^2 \int_W g(x)^2\, dx \right) n^2 r_n^{\beta+d},
\]

21
\[
\frac{n(n-1)a^2_n}{2} \left| \int_{W^2} 1 \{ \| x-y \| \leq r_n \} \| x-y \|^\beta g(x)g(y) \, d(x,y) \right| \leq \frac{d\kappa_d}{2(\beta + d)} \int_W g(x)^2 \, dx \, n^{2}\beta+d, a^2_n
\]
and (25) we conclude
\[
|\tilde{R}_{3,n}| \leq C_3 \frac{1}{n} (n^2 r_n^{\beta+d}, a^2_n + n^2 r_n^{\beta+d+1}, a_n)(1 + a^2_n) n^{2}\beta+d
\]
\[
\leq C_3 n^3 r_n^{2\beta+2d} a_n(a_n + r_n + a^2_n + a^2_n r_n)
\]
with some constant \(C_3 \in (0,\infty) \) depending on \(\beta, d, C_{W,g} \) and \(g \).

By similar arguments as for the second term in (27), one obtains
\[
n^3 \left| \int_{W^3} 1 \{ \| x-y_1 \|, \| x-y_2 \| \leq r_n \} \| x-y_1 \|^\beta \| x-y_2 \|^\beta a_n(2g(y_1) + g(x)) \, d(y_1, y_2, x) \right|
\leq \frac{6d^2\kappa^2_C W_{,g} n^3 r_n^{2\beta+2d+1}, a_n}.
\]

Moreover, one can show the inequality
\[
n^3 \left| \int_{W^3} 1 \{ \| x-y_1 \|, \| x-y_2 \| \leq r_n \} \| x-y_1 \|^\beta \| x-y_2 \|^\beta
\]
\[
\left(a^2_n (g(y_1)g(y_2) + 2g(y_1)g(x)) + a^3_n g(y_1)g(y_2)g(x) \right) \, d(y_1, y_2, x) \right|
\leq \frac{3d^2\kappa^2_d}{(\beta + d)^2} \int_W g(x)^2 \, dx \, n^3 r_n^{2\beta+2d}, a^2_n + \frac{d^2\kappa^2_d}{(\beta + d)^2} \int_W |g(x)|^3 \, dx \, n^3 r_n^{2\beta+2d}, a^3_n.
\]

Summarising, it follows that
\[
|\tilde{R}_{2,n}| \leq C_2 n^3 r_n^{2\beta+2d} a_n(a_n + r_n + a^2_n)
\]
with some constant \(C_2 \in (0,\infty) \) depending on \(\beta, d, C_{W,g} \) and \(g \). Combining the estimates for \(\tilde{R}_{1,n}, \tilde{R}_{2,n} \) and \(\tilde{R}_{3,n} \) completes the proof of (26). \(\square \)

Lemma 4.4 Let \(\beta > -d/2 \) and assume that \(W \) satisfies (2), that \(n^2 r_n^d \to \infty \) and \(\max\{n_n^{d+1}, n r_n^d a^3_n\} \to 0 \) as \(n \to \infty \) and that
\[
\lim_{n \to \infty} \frac{\text{Var} \tilde{L}_n(\beta) - \text{Var} L_n(\beta)}{n^2 r_n^{2\beta+d}} = 0.
\]

Then,
\[
\frac{\tilde{L}_n(\beta) - \mathbb{E} L_n(\beta)}{\sqrt{\frac{d\kappa_d}{2(2\beta+d)} n r_n^{\beta+d/2}}} \overset{D}{\to} N(0,1) \quad \text{as} \quad n \to \infty.
\]

We prepare the proof of Lemma 4.4 with the following inequality.
Lemma 4.5 For $p, q > 0$, $v \in L^{p+q}(W)$ and $a > 0$,

$$\int_W \max\{v(x) - a, 0\}^p \, dx \leq \frac{1}{a^q} \int_W |v(x)|^{p+q} \, dx.$$

Proof: We have that

$$\int_W |v(x)|^{p+q} \, dx \geq \int_W 1\{v(x) \geq a\}(v(x) - a)^p a^q \, dx = a^q \int_W \max\{v(x) - a, 0\}^p \, dx,$$

which is the desired inequality. \hfill \Box

Proof of Lemma 4.4 In the following we consider the framework from the Lemmas 2.6, 2.7 and 2.8 with $f \equiv 1_W$ and $f_n := 1_W + a_n g$, $n \in \mathbb{N}$. Then, $\hat{L}_n(\beta)$ has the same distribution as $\tilde{L}_n(\beta)$. For the latter we will prove convergence to $N(0, 1)$ after an appropriate rescaling.

It follows from (28) and Theorem 2.3(c) that

$$\lim_{n \to \infty} \frac{\text{Var} \hat{L}_n(\beta)}{\sigma^2_{\beta, f, n}} = \lim_{n \to \infty} \frac{\text{Var} \tilde{L}_n(\beta) - \text{Var} L_n(\beta)}{\sigma^2_{\beta, f, n}} + \lim_{n \to \infty} \frac{\text{Var} L_n(\beta)}{\sigma^2_{\beta, f, n}} = 1. \quad (29)$$

For the rest of this proof we choose $M = 2$. Lemma 2.8 yields

$$\mathbb{E}\left(\frac{\tilde{L}_n(\beta) - \mathbb{E} \tilde{L}_n(\beta)}{\sigma_{\beta, f, n}} \right)^2 \leq \frac{d \kappa_d (2 \beta + d)}{(\beta + d)^2} \int_W \tilde{f}_{n,M}(x)^2 + M \tilde{f}_{n,M}(x) \, dx$$

$$+ \frac{18d^2 \kappa_d^2 (\beta + d) \xi_n^2}{(\beta + d)^2} \int_W M^2 \tilde{f}_{n,M}(x) + M \tilde{f}_{n,M}(x)^2 + \tilde{f}_{n,M}(x)^3 \, dx. \quad (30)$$

It follows from Lemma 4.5 (with $p = 1$, $q = 2$ and $p = 2$, $q = 1$, respectively) that

$$\int_W \tilde{f}_{n,M}(x) \, dx = a_n \int_W \max\{g(x) - 1/a_n, 0\} \, dx \leq a_n^3 \int_W |g(x)|^3 \, dx$$

and

$$\int_W \tilde{f}_{n,M}(x)^2 \, dx = a_n^2 \int_W \max\{g(x) - 1/a_n, 0\}^2 \, dx \leq a_n^3 \int_W |g(x)|^3 \, dx.$$

Moreover, we have

$$\int_W \tilde{f}_{n,M}(x)^3 \, dx = a_n^3 \int_W \max\{g(x) - 1/a_n, 0\}^3 \, dx \leq a_n^3 \int_W |g(x)|^3 \, dx.$$

Since $\sigma^2_{\beta, f, n} = \sigma^2_{\beta, f, n} \xi_n^{2\beta+d}$, the right-hand side of (30) is at most of order

$$\frac{n^2 \kappa_d^2 \xi_n^{2\beta+d}}{\sigma^2_{\beta, f, n}} a_n^3 + \frac{n^2 \kappa_d^{3\beta+2d}}{\sigma^2_{\beta, f, n}} a_n^3 = \frac{1 + n \kappa_d d}{\sigma^2_{\beta, f, n}} a_n^3,$$
which vanishes as \(n \to \infty \). This means that
\[
\lim_{n \to \infty} \mathbb{E} \left(\frac{\hat{L}_n(\beta) - \mathbb{E}\hat{L}_n(\beta)}{\sigma_{\beta,f,n}} - \frac{\hat{L}_{n,M}(\beta) - \mathbb{E}\hat{L}_{n,M}(\beta)}{\sigma_{\beta,f,n}} \right)^2 = 0. \tag{31}
\]
Together with (29) we see that
\[
\lim_{n \to \infty} \text{Var} \frac{\hat{L}_{n,M}(\beta)}{\sigma_{\beta,f,n}} = 1. \tag{32}
\]
It follows from Lemma 2.7, where the variance condition is satisfied because of (32) and \(\sigma_{\beta,f,n}^2 = \sigma_{\beta,f,M}^2 \), that
\[
\hat{L}_{n,M}(\beta) - \mathbb{E}\hat{L}_{n,M}(\beta) \sim \mathcal{N}(0,1) \quad \text{as} \quad n \to \infty.
\]
Because of the \(L^2 \)-convergence in (31) this yields
\[
\frac{\hat{L}_n(\beta) - \mathbb{E}\hat{L}_n(\beta)}{\sigma_{\beta,f,n}} \overset{\mathcal{D}}{\to} \mathcal{N}(0,1) \quad \text{as} \quad n \to \infty,
\]
which completes the proof.

Proof of Theorem 4.1: By Lemma 4.3 we have that
\[
\frac{\mathbb{E}\hat{L}_n(\beta) - \mathbb{E}L_n(\beta)}{\sqrt{\frac{\kappa_d}{2d} \frac{1}{n^\beta+2/n}}} = T_n + R_n \tag{33}
\]
with
\[
T_n := \frac{\sqrt{2\beta + d} (n-1) \alpha_n^2}{\sqrt{2d\kappa_d} r_n^\beta+2/n} \int_W \mathbf{1} \{ \|x - y\| \leq r_n \} \|x - y\|^\beta g(x)g(y) \, d(x,y)
\]
and a remainder term \(R_n \) satisfying
\[
|R_n| \leq C_Wd \sqrt{2d\kappa_d(2\beta + d) \frac{\alpha_n^2}{n^\beta+2/n}}. \tag{34}
\]
As in the proof of Theorem 2.1 one can show that
\[
\lim_{n \to \infty} \frac{T_n}{nr_n^d/2a_n^2} = \frac{\sqrt{d\kappa_d(2\beta + d)}}{\sqrt{2(\beta + d)}} \int_W g(x)^2 \, dx. \tag{35}
\]
For \(\gamma = 0 \) one obtains \(\lim_{n \to \infty} T_n = 0 \) and \(\lim_{n \to \infty} R_n = 0 \). The latter follows from the assumption \(\min \{ nr_n^d/2a_n^2, r_n/a_n \} \to 0 \) as \(n \to \infty \), whence, by (34), \(R_n \) vanishes directly or is of a lower order than \(T_n \) and, thus, also vanishes.

For \(\gamma > 0 \) or \(nr_n^d/2a_n^2 \to \infty \) as \(n \to \infty \), we have that \(\lim_{n \to \infty} r_n/a_n = 0 \). Indeed, if there was a subsequence \((n_m) \) such that \(r_{n_m}/a_{n_m} \geq c \) for some \(c > 0 \), we would have \(n_mr_{n_m}/a_{n_m} \geq
Because of (34) and (35) it follows from \(\lim_{n \to \infty} r_n/a_n = 0 \) that \(\lim_{n \to \infty} R_n/T_n = 0 \), whence \(T_n \) is the leading summand in (33).

Assume that \(nr_n^{-d/2} a_n^2 \to \gamma \in [0, \infty) \) as \(n \to \infty \). By (26), we have

\[
\lim_{n \to \infty} \frac{\Var \tilde{L}_n(\beta) - \Var L_n(\beta)}{n^2 r_n^{23+d} a_n^2} \leq C \lim_{n \to \infty} a_n(a_n + r_n) + nr_n^{-d} a_n(a_n + r_n + a_n^2 + a_n^3 + a_n^2 r_n) = 0,
\]

where we also used that \(a_n, r_n, nr_n^{-d+1} \to 0 \) as \(n \to \infty \). Now Lemma 4.4 implies

\[
\frac{\tilde{L}_n(\beta) - \mathbb{E}\tilde{L}_n(\beta)}{\sqrt{\frac{d\kappa_d(2\beta + d)}{2(\beta + d)} \int_W g(x)^2 \gamma, 1}} \xrightarrow{\mathbb{P}} N(0, 1) \quad \text{as} \quad n \to \infty.
\]

This together with (33) and the above analysis of the asymptotic behaviour of \(T_n \) and \(R_n \) yields

\[
\frac{\tilde{L}_n(\beta) - \mathbb{E}\tilde{L}_n(\beta)}{\sqrt{\frac{d\kappa_d(2\beta + d)}{2(\beta + d)} \int_W g(x)^2 \gamma, 1}} \xrightarrow{\mathbb{P}} N(0, 1) \quad \text{as} \quad n \to \infty.
\]

Now (a) follows from the continuous mapping theorem.

Next we show part (b). It follows from (26) that

\[
\frac{\Var \tilde{L}_n(\beta)}{(n^2 r_n^{23+d} a_n^2)^2} \leq C a_n(a_n + r_n) + nr_n^{-d} a_n(a_n + r_n + a_n^2 + a_n^3 + a_n^2 r_n) + \frac{\Var L_n(\beta)}{(n^2 r_n^{23+d} a_n^2)^2}.
\]

The first term on the right-hand side vanishes as \(n \to \infty \) since \(a_n, r_n, nr_n^{-d+1} \to 0 \) and \(nr_n^{-d/2} a_n^2 \to \infty \) as \(n \to \infty \). Because \(\Var L_n(\beta) \) behaves as \(n^2 r_n^{2\beta+d} \), the second term is of order \(1/(nr_n^{-d/2} a_n^2)^2 \) and converges to zero as \(n \to \infty \). We thus have

\[
\lim_{n \to \infty} \frac{\Var \tilde{L}_n(\beta)}{(n^2 r_n^{23+d} a_n^2)^2} = 0 \quad \text{and} \quad \frac{\tilde{L}_n(\beta) - \mathbb{E}\tilde{L}_n(\beta)}{n^2 r_n^{23+d} a_n^2} \xrightarrow{\mathbb{P}} 0 \quad \text{as} \quad n \to \infty.
\]

Together with the fact that \(T_n \) is the dominating term in (33) and (35), this means that

\[
\frac{\tilde{L}_n(\beta) - \mathbb{E}\tilde{L}_n(\beta)}{\sqrt{\frac{d\kappa_d(2\beta + d)}{2(\beta + d)} \int_W g(x)^2 \gamma, 1}} \xrightarrow{\mathbb{P}} \sqrt{d\kappa_d(2\beta + d)} \int_W g(x)^2 \gamma, 1 \quad \text{as} \quad n \to \infty.
\]

Because of \(nr_n^{-d/2} a_n^2 \to \infty \) as \(n \to \infty \) this implies

\[
\frac{\tilde{L}_n(\beta) - \mathbb{E}\tilde{L}_n(\beta)}{\sqrt{\frac{d\kappa_d}{2(\beta + d)} \int_W g(x)^2 \gamma, 1}} \xrightarrow{\mathbb{P}} \infty \quad \text{as} \quad n \to \infty,
\]

which proves part (b).
Part (c) follows from \(\text{(12)}\) in the proof of Corollary 2.5.

Proof of Theorem 4.2: Without loss of generality we can assume that \(r_n < d(\text{supp} \ g, \partial W)\) for each \(n\). Consequently, the assumption \(\text{(24)}\) is satisfied with \(C_{W,g} = 0\) for \(r = r_n\). Now the proof of Theorem 4.1 works without the additional assumption that \(\min\{nr_n^{d/2+1}a_n, r_n/a_n\} \to 0\) as \(n \to \infty\) because \(R_n = 0\).

From Theorem 4.1 and Theorem 4.2, we conclude that under the stated assumptions the tests based on \(\tilde{T}_{e,n}(\beta)\) and \(\tilde{T}_{a,n}(\beta)\) are able to detect alternatives which converge to the uniform distribution at rate \(a_n\). Moreover, the theorems could be the foundation of establishing local optimality of the tests by applying the third Le Cam lemma, see Section 5.2 of [21] for a short review of the needed methodology.

5 Simulation

In this section we compare the finite-sample power performance of the test statistics \(T_{e,n}(\beta)\) and \(T_{a,n}(\beta)\), \(\beta > -d/2\), \(n \in \mathbb{N}\), with that of some competitors. Since the \(d\)-dimensional hyper-cube \([0,1]^d\) is the mostly used observation window, we restrict our simulation study to this case with \(d \in \{2, 3\}\). Particular interest will be given to the influence on the finite-sample power of \(\beta\) and \(r_n\) in dependence of the chosen alternatives. In each scenario, we consider the sample sizes \(n \in \{50, 100, 200, 500\}\) and set the nominal level of significance to 0.05. Since the test statistics depend on the parameter \(\beta\) and the choice of \(r_n\) and the empirical finite sample quantile is in some cases far away from the quantile \(\chi^2_{1, 0.95} \approx 3.8415\) of the limiting distribution, we simulated critical values for \(T_{e,n}(\beta)\) and \(T_{a,n}(\beta)\) with 100 000 replications, see Tables 9 to 12. Each stated empirical power of the tests in Tables 4 to 8 is based on 10 000 replications and the asterisk \(*\) denotes a rejection rate of 100%.

Since there is a vast variety of ways to choose the parameters \(\beta\) and \(r_n\), we chose the parameter configurations to fit the limiting regimes of Corollary 2.5 as well as the following additional property: From [6] we know that the expectation of the average degree \(\bar{D}_n\) behaves as \(\kappa_dnr_n^d\) for \(n \to \infty\) under \(H_0\). This observation motivates the following choices of the radius \(r_n\) for \(T_{e,n}(\beta)\), namely

\[r_n = \left(\frac{k}{nr_n^d}\right)^{1/2}, \quad k \in \{1, \ldots, 10\},\]

which satisfies \(n^2r_n^d \to \infty\) and \(nr_n^{d+1} \to 0\) as \(n \to \infty\) and ensures \(\mathbb{E}\bar{D}_n \to k\) as \(n \to \infty\) under \(H_0\). For the test statistic \(T_{a,n}(\beta)\) the additional condition \(n^2r_n^{d+2} \to 0\) as \(n \to \infty\) has to be fulfilled,
so we choose
\[r_n := \left(\frac{k}{n^{3/2} \kappa_d} \right)^{\frac{1}{d}}, \quad k \in \{1, \ldots, 10\}, \]
to guarantee this additional assumption for \(d \in \{2, 3\} \). In this case we have \(\mathbb{E} \bar{D}_n \to 0 \) as \(n \to \infty \), which for \(d = 2 \) is always the case if \(n^2 r_n^{d+2} \to 0 \) as \(n \to \infty \).

The expected value \(\mathbb{E} L_n(\beta) \) depends on the observation window \(W \) as well as on the dimension \(d \geq 2 \). The following lemma provides exact formulae of \(\mathbb{E} L_n(\beta) \) for each of the cases simulated.

Lemma 5.1 Assume \(\beta > -d \) and \(f \equiv 1_W \).

(a) If \(d = 2 \), \(W = [0, 1]^2 \) and \(r_n \leq 1 \), then
\[
\mathbb{E} L_n(\beta) = \frac{n(n-1)}{2} \left(\frac{2 \pi}{\beta + 2} r_n^{\beta+2} - \frac{8 \pi}{\beta + 3} r_n^{\beta+3} + \frac{2}{\beta + 4} r_n^{\beta+4} \right).
\]

(b) If \(d = 3 \), \(W = [0, 1]^3 \) and \(r_n \leq 1 \), then
\[
\mathbb{E} L_n(\beta) = \frac{n(n-1)}{2} \left(\frac{4 \pi}{\beta + 3} r_n^{\beta+3} - \frac{6 \pi}{\beta + 4} r_n^{\beta+4} + \frac{8}{\beta + 5} r_n^{\beta+5} - \frac{1}{\beta + 6} r_n^{\beta+6} \right).
\]

Proof: Let \(d \in \{2, 3\} \), \(W = [0, 1]^d \) and \(r_n \leq 1 \). We apply Corollary 2.2 to obtain
\[
\mathbb{E} L_n(\beta) = \frac{n(n-1)}{2} \int_{W^2} 1\{\|x - y\| \leq r_n\} \|x - y\|^\beta \, d(x, y)
= \frac{n(n-1)}{2} \int_{B^d(0, r_n)} \|y\|^\beta \int_{\mathbb{R}^d} 1\{x \in W, x - y \in W\} \, dx \, dy
= \frac{n(n-1)}{2} \int_{B^d(0, r_n)} \|y\|^\beta \text{Vol}(W \cap (W + y)) \, dy
= \frac{n(n-1)}{2} \int_{B^d(0, r_n)} \|y\|^\beta \prod_{j=1}^d (1 - |y_j|) \, dy,
\]
with \(y = (y_1, \ldots, y_d) \in \mathbb{R}^d \). The formulae in (a) and (b) follow now from a longer calculation with polar coordinates. \(\square \)

As competitors to the new test statistics we consider the distance to boundary test (DB-test), see [7], the maximal spacing test (MS-test), see [5, 16], the nearest neighbour type test (NN-test) of [12] as well as the Bickel-Rosenblatt test (BR-test) presented in [31]. We follow the descriptions of the DB- and MS-tests given in [12].

For the NN-test we consider the family of statistics
\[
NN_n^{(\beta)} := \sum_{x \in \mathcal{F}_n} s_n^{(\beta)}(x, \mathcal{F}_n)
\]
in dependence of $\beta \in (0, \infty)$, where J is the number of nearest neighbours, with $x^{(k)}$ being the kth nearest neighbour of $x \in \mathcal{X}_n$ and

$$\xi^{(\beta)}_{n,J}(x, \mathcal{X}_n) := \sum_{k=1}^{J} (\kappa_d n^{1/d} \|x - x^{(k)}\|^{d})^{\beta}.$$

To avoid boundary problems in the computation of the NN-test, we used the same toroid metric in the simulation as in [12]. Since rejection rates depend crucially on the power β and the number of neighbours J taken into account, we chose different values for β and J for the two alternatives where the choice was motivated by Table 2 in [12]. Notice that this test is consistent, but one has to be careful to choose the correct rejection region, which depends on the choice of β.

As a further competitor we consider the fixed bandwidth Bickel-Rosenblatt test (BR-test) on the unit cube, studied in [31]. Using the notation of [31], the corresponding test statistic is

$$I_0^2(h) = -I_{n,1}^2(h) + I_{n,2}^2(h) + W_h(0) + n (W_h \ast \overline{U} \ast U)(0),$$

with

$$I_{n,1}^2(h) = 2 \sum_{i=1}^{n} (W_h \ast U)(X_i) \quad \text{and} \quad I_{n,2}^2(h) = \frac{2}{n} \sum_{1 \leq i < j \leq n} W_h(X_i - X_j),$$

where $h > 0$ is a fixed bandwidth. For the sake of completeness we restate the following abbreviations. The convolution product operator is denoted by \ast, $U = 1_{[0,1]^d}$ is the density of the uniform distribution over the unit hypercube $[0,1]^d$ and for any function g we define $\overline{g}(x) := g(-x)$ and $g_h(x) := g(x/h)/h^d$ with $h > 0$. Furthermore, we set $W := \overline{K} \ast K$, where K is a product kernel on \mathbb{R}^d, that is, $K(u) = \prod_{i=1}^{d} k(u_i)$, $u = (u_1, \ldots, u_d) \in \mathbb{R}^d$ with a kernel k on \mathbb{R} (so k is bounded and integrable). Using the arguments and techniques in [31], direct calculations for $d = 2$ and $k(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$, $x \in \mathbb{R}$, being the standard normal density function, give for $h > 0$,

$$I_{n,1}^2(h) = 2 \sum_{i=1}^{n} \left(\Phi \left(\frac{X_{i,1} - 1}{\sqrt{2h}} \right) - \Phi \left(\frac{X_{i,1}}{\sqrt{2h}} \right) \right) \left(\Phi \left(\frac{X_{i,2} - 1}{\sqrt{2h}} \right) - \Phi \left(\frac{X_{i,2}}{\sqrt{2h}} \right) \right),$$

$$I_{n,2}^2(h) = \frac{1}{2\pi nh^4} \sum_{1 \leq i < j \leq n} \exp\left(-\frac{(X_{i,1} - X_{j,1})^2}{4h^2}\right) \exp\left(-\frac{(X_{i,2} - X_{j,2})^2}{4h^2}\right).$$
and
\[W_h(0) = \frac{1}{4\pi h^4}, \]
\[n(W_h \star U \star U)(0) = \frac{4n}{\pi h^2} \left[\sqrt{\pi} \left(\Phi \left(\frac{1}{\sqrt{2h}} \right) - \frac{1}{2} \right) + h \exp \left(-\frac{1}{4h^2} \right) - 1 \right]^2, \]
where \(\Phi \) is the standard normal distribution function and \(X_{i,j} \) denotes the \(j \)th component of the random vector \(X_i \), with \(i \in \{1, \ldots, n\} \) and \(j \in \{1, 2\} \).

The BR-test rejects the null hypothesis for large values of \(I_n^2(h) \). Notice that the asymptotic distribution of \(I_n^2(h) \) is known, see [31], but not in a closed form. Hence we simulated critical values of \(I_n^2(h) \) for \(h \in \{0.1, 0.25, 0.5, 1\} \), which can be found in Table 2.

\(n \)	\(\Phi^{-1}(\sqrt{0.9}) \)	\(\Phi^{-1}(\sqrt{0.9}) \)
50	9113.028	827.3781
100	17048.245	1616.5611
200	32839.801	3186.1990
500	80073.212	7876.7591

Table 2: Critical values of the BR-statistic \(I_n^2(h) \)

Following the studies in [6, 12], we simulated a contamination and a clustering model as alternatives to the uniform distribution. The contamination alternative (CON) is given by the mixture
\[(1 - q_1 - q_2)\mathcal{U}([0,1]^d) + q_1 N_d(c_1, \sigma_1^2 I_d) + q_2 N_d(c_2, \sigma_2^2 I_d), \]
under the condition that all simulated points are located in \([0,1]^d\). Here, \(I_d \in \mathbb{R}^{d \times d} \) denotes the identity matrix of order \(d \). The chosen parameters are given in Table 3 where \(\Phi^{-1}(p) \), \(p \in (0,1) \), denotes the \(p \)-quantile of a standard normal distribution. See Figure 1, second row, for a realisation of this model, where the normally distributed contamination points are filled points and filled squares, respectively.

\(d \)	\(q_1 \)	\(q_2 \)	\(c_1 \)	\(c_2 \)	\(\sigma_1 \)	\(\sigma_2 \)
2	0.135	0.24	(0.25, 0.25)	(0.7, 0.7)	0.15 \cdot \Phi^{-1}(\sqrt{0.9})	0.2 \cdot \Phi^{-1}(\sqrt{0.9})
3	0.135	0.24	(0.25, 0.25, 0.25)	(0.7, 0.7, 0.7)	0.15 \cdot \Phi^{-1}(\sqrt{0.9})	0.2 \cdot \Phi^{-1}(\sqrt{0.9})

Table 3: Parameter configuration of the CON-alternatives

The clustering alternative (CLU) is motivated by a fixed number of data points version of a Matérn cluster processes, see Section 12.3 in [2], and is designed to destroy the independence.
One first chooses a radius r_{clus} and simulates $\frac{n}{5}$ random points with the uniform distribution $\mathcal{U}([-r_{\text{clus}}, 1 + r_{\text{clus}}]^d)$, that act as centres of clusters. These points will not be part of the final sample. In a second step, one generates 5 points around each centre in a ball with radius r_{clus}. These points are generated independently of each other and follow uniform distributions on the mentioned balls. If a point falls outside $[0, 1]^d$, it is replaced by a point that follows a $\mathcal{U}([0, 1]^d)$ distribution. In the following we set $r_{\text{clus}} = 0.1$ and a realisation of this model can be found in Figure 1 third row. The clustering alternative is not included in the framework of our theoretical results since the points are, by construction, not independent. Nevertheless it is interesting to see how the test statistics behave for such alternatives, which were also considered in the simulation study in [7].

We now present the simulation results for $d = 2$. Table 4 exhibits the empirical percentage of rejection of the competing procedures under discussion. An asterisk stands for power of 100%, and in each row the best performing procedures have been highlighted using boldface ciphers. Clearly, $I_n^2(0.1)$ and $NN_{n,15}^{(0.5)}$ dominate the other procedures for the CON-alternative, but as noted in [12] the performance of $NN_{n,J}^{(0.5)}$ might even increase for bigger values of J. Comparison with $T_{e,n}(\beta)$ for $\beta = -0.5$ (see Table 5) shows that the presented new methods are for sample sizes of $n = 100, 200, 500$ as good as and for $n = 50$ nearly as good as the best competitor $I_n^2(0.1)$. As one can witness throughout the Tables 3 and 6 $T_{e,n}(\beta)$ dominates $T_{a,n}(\beta)$ for small sample sizes, while the power is similar to the best competitors. In case of the CLU alternative $T_{e,n}(\beta)$ gives the overall highest performance for $\beta = -0.5$ over small sample sizes of $n = 50, 100, 200$, while the only procedure that is better for $n = 500$ is again $NN_{n,15}^{(0.5)}$. Notice that the asymptotic version $T_{a,n}(\beta)$ might even achieve higher performance if one considers bigger radii, since it attains the highest rates for the biggest values of k. A closer look at these tables reveals the dependency of the new tests on the choice of β and k. Interestingly, the highest performance is given for both alternatives and $T_{j,n}(\beta)$, $j \in \{a,e\}$, for the choice of $\beta = -0.5$. The best choice of k obviously depends on the sample size.

Observe that the simulation results for $d = 3$ in Tables 7 and 8 show higher rejection rates for $T_{j,n}(\beta)$ than in the bivariate setting. Since the other methods were too time consuming to implement or to simulate we restrict the comparison to the DB-test. As can be seen in Table 7 the new tests dominate the DB-method for $\beta = -0.5$ and nearly for every value of k.

30
6 Conclusions and open problems

We have introduced two new families of consistent goodness-of-fit tests of uniformity based on random geometric graphs. As the simulation section shows, the presented methods are serious competitors to existing methods, even dominating them for right choices of the parameters β and r_n (or k). Clearly, a natural question is to find (data dependent) best choices of them. Another obvious extension of the presented methods would be to find tests of uniformity on (lower dimensional) manifolds, including special cases of directional statistics as the circle or the sphere (for existing methods see Chapter 6 of either [21] or [23]). Section 4 invites to further investigate in view of concepts of locally optimal tests. Since the approach is fairly general, an extension would be testing the fit of X_1, \ldots, X_n to some parametric family $\{f(\cdot, \vartheta) : \vartheta \in \Theta\}$ of densities for a specific parameter space Θ (eventually the procedures would use a suitable estimator $\hat{\vartheta}_n$ of ϑ). In view of the special interest in the case of unknown support of the data, see [5, 6], we indicate that the definition of $T_{a,n}(\beta)$ is not dependent on the shape of the underlying observation window and therefore is applicable in this setting (as long as the observation window has volume one).

Acknowledgements

The authors thank Norbert Henze and Steffen Winter for fruitful discussions.

References

[1] L. Ambrosio, A. Colesanti, and E. Villa. Outer Minkowski content for some classes of closed sets. *Math. Ann.*, 342(4):727–748, 2008.

[2] A. Baddeley, E. Rubak, and R. Turner. *Spatial Point Patterns: Methodology and Applications with R*. Chapman and Hall/CRC Press, 2015.

[3] L. Baringhaus, D. Gaigall, and J. P. Thiele. Statistical inference for L^2-distances to uniformity. *Comput. Stat.*, 33(4):1863–1896, 2018.

[4] R. Bartoszyński, D. K. Pearl, and J. Lawrence. A multidimensional goodness-of-fit test based on interpoint distances. *J. Amer. Statist. Assoc.*, 92(438):577–586, 1997.
[5] J. R. Berrendero, A. Cuevas, and B. Pateiro-López. A multivariate uniformity test for the case of unknown support. *Stat. Comput.*, 22(1):259–271, 2012.

[6] J. R. Berrendero, A. Cuevas, and B. Pateiro-López. Testing uniformity for the case of a planar unknown support. *Canad. J. Statist.*, 40(2):378–395, 2012.

[7] J. R. Berrendero, A. Cuevas, and F. Vázquez-Grande. Testing multivariate uniformity: The distance-to-boundary method. *Canad. J. Statist.*, 34(4):693–707, 2006.

[8] G. Biau and L. Devroye. *Lectures on the Nearest Neighbor Method*. Springer, 2015.

[9] P. Billingsley. *Probability and Measure*. Wiley, 1979.

[10] N. Cressie. *Statistics for Spatial Data*. Wiley, 1993.

[11] B. Ebner, N. Henze, M. A. Klatt, and K. Mecke. Goodness-of-fit tests for complete spatial randomness based on Minkowski functionals of binary images. *Electron. J. Stat.*, 12(2):2873–2904, 2018.

[12] B. Ebner, N. Henze, and J. E. Yukich. Multivariate goodness-of-fit on flat and curved spaces via nearest neighbor distances. *J. Multivar. Anal.*, 165:231–242, 2018.

[13] E. N. Gilbert. Random plane networks. *J. Soc. Ind. Appl. Math.*, 9:533–543, 1961.

[14] E. Godehardt, J. Jaworski, and D. Godehardt. The application of random coincidence graphs for testing the homogeneity of data. In *Classification, Data Analysis, and Data Highways (Potsdam, 1997)*, pages 35–45. Springer, 1998.

[15] L. Heinrich. Gaussian limits of empirical multiparameter K-functions of homogeneous Poisson processes and tests for complete spatial randomness. *Lith. Math. J.*, 55(1):72–90, 2015.

[16] N. Henze. On the consistency of the spacings test for multivariate uniformity, including on manifolds. *J. Appl. Probab.*, 55(2):659–665, 2018.

[17] S. R. Jammalamadaka and S. Janson. Limit theorems for a triangular scheme of U-statistics with applications to inter-point distances. *Ann. Probab.*, 14:1347–1358, 1986.

[18] A. Justel, D. Pena, and R. Zamar. A multivariate Kolmogorov-Smirnov test of goodness of fit. *Statist. Probab. Lett.*, 35:251–259, 1997.
[19] D. E. Knuth. *The art of computer programming*, volume 2: Seminumerical algorithms. Addison-Wesley, 3rd. edition, 2011.

[20] E. O. Krauczi. Joint cluster counts from uniform distribution. *Probab. Math. Statist.*, 33(1):93–106, 2013.

[21] C. Ley and T. Verdebout. *Modern Directional Statistics*. Chapman and Hall/CRC Press, New York, 2017.

[22] J. Liang, K. Fang, H. F., and R. Li. Testing multivariate uniformity and it’s applications. *Math. Comp.*, 70(233):337–355, 2001.

[23] K. V. Mardia and P. E. Jupp. *Directional Statistics*. Wiley, 2000.

[24] Y. Marhuenda, D. Morales, and M. C. Pardo. A comparison of uniformity tests. *Statistics*, 39(4):315–328, 2005.

[25] M. Penrose. *Random geometric graphs*. Oxford University Press, 2003.

[26] A. Petrie and T. R. Willemain. An empirical study of tests for uniformity in multidimensional data. *Comput. Statist. Data Anal.*, 64:253–268, 2013.

[27] M. Reitzner, M. Schulte, and C. Thäle. Limit theory for the Gilbert graph. *Adv. Appl. Math.*, 88:26–61, 2017.

[28] M. Rosenblatt. Remarks on a multivariate transformation. *Ann. Math. Stat.*, 23(3):470–472, 1952.

[29] W. Rudin. *Real and complex analysis*. McGraw-Hill, 2nd edition, 1974.

[30] G. J. Székely and M. L. Rizzo. A new test for multivariate normality. *J. Multivariate Anal.*, 93(1):58–80, 2005.

[31] C. Tenreiro. On the finite sample behavior of fixed bandwidth Bickel-Rosenblatt test for univariate and multivariate uniformity. *Comm. Statist. Simulation Comput.*, 36:827–846, 2007.

[32] N. C. Weber. Central limit theorems for a class of symmetric statistics. *Math. Proc. Cambridge Philos. Soc.*, 94(2):307–313, 1983.
Appendix A A consequence of Lebesgue’s differentiation theorem

Lemma A.1 Let \(g : \mathbb{R}^d \rightarrow \mathbb{R} \) be a measurable function with \(\| g \|_\infty := \sup_{y \in \mathbb{R}^d} |g(y)| < \infty \) and let \(\beta > -d \). Then, for almost all \(x \in \mathbb{R}^d \),

\[
\lim_{r \to 0} \frac{1}{r^{\beta+d}} \int_{B^d(x,r)} \| x - y \|^\beta g(y) \, dy = \frac{d \kappa_d}{\beta + d} g(x).
\]

Proof: We choose \(p > 1 \) subject to \(p \beta > -d \). Then for any \(x \in \mathbb{R}^d \) and \(r > 0 \),

\[
\left| \frac{1}{r^{\beta+d}} \int_{B^d(x,r)} \| x - y \|^\beta g(y) \, dy - \frac{d \kappa_d}{\beta + d} g(x) \right|
\leq \frac{1}{r^d} \int_{B^d(x,r)} \| y - x \|^{\beta} \frac{1}{r^\beta} |g(y) - g(x)| \, dy
\leq \left(\frac{1}{r^d} \int_{B^d(x,r)} \| y - x \|^{p \beta} \frac{1}{r^{p \beta}} \, dy \right)^{1/p} \left(\frac{1}{r^d} \int_{B^d(x,r)} |g(y) - g(x)|^{p/(p-1)} \, dy \right)^{(p-1)/p}
\leq \left(\frac{d \kappa_d}{p \beta + d} \right)^{1/p} \left(\frac{1}{r^d} \int_{B^d(x,r)} |g(y) - g(x)|^{p/(p-1)} \, dy \right)^{(p-1)/p},
\]

where we have used the Hölder inequality in the second last step. By Lebesgue’s differentiation theorem (see, for example, [29, Theorem 8.8]), we have

\[
\lim_{r \to \infty} \frac{1}{r^d} \int_{B^d(x,r)} |g(y) - g(x)| \, dy = 0.
\]

for almost all \(x \in \mathbb{R}^d \). Since \(|g(y) - g(x)|^{p/(p-1)} \leq \left(2 \| g \|_\infty \right)^{1/(p-1)} |g(y) - g(x)| \), we have

\[
\lim_{r \to \infty} \frac{1}{r^d} \int_{B^d(x,r)} |g(y) - g(x)|^{1/(p-1)} \, dy = 0.
\]

for almost all \(x \in \mathbb{R}^d \). Together with the above inequalities this proves the statement. \(\square \)

Appendix B A central limit theorem for a triangular scheme of \(U \)-statistics

In the following we provide a central limit theorem for second-order \(U \)-statistics of a triangular scheme of random vectors, which is a slight generalisation of [17, Theorem 2.1].
For each $n \in \mathbb{N}$ let $Y_1^{(n)}, \ldots, Y_n^{(n)}$ be i.i.d. random vectors in \mathbb{R}^d, whose distribution may depend on n. We use the shorthand notation $\mathcal{Y}_n = \{Y_1^{(n)}, \ldots, Y_n^{(n)}\}$, $n \in \mathbb{N}$, in the sequel. For $n \in \mathbb{N}$ let $h_n : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ be a bounded, symmetric and measurable function and let

$$S_n := \frac{1}{2} \sum_{(y_1, y_2) \in \mathcal{Y}_n^2} h_n(y_1, y_2).$$

The random variables S_n, $n \in \mathbb{N}$, are so-called second order U-statistics. The following theorem provides a sufficient criterion for the convergence of (S_n), after rescaling, to a standard Gaussian random variable.

Theorem B.1 Let S_n, $n \in \mathbb{N}$, be as above. Assume that $\text{Var} S_n > 0$ for all $n \in \mathbb{N}$ and let $\sigma_n > 0$, $n \in \mathbb{N}$, be such that $\lim_{n \to \infty} \text{Var} S_n / \sigma_n^2 = 1$. If

$$\lim_{n \to \infty} \frac{1}{\sigma_n} \sup_{y_1, y_2 \in \mathbb{R}^d} |h_n(y_1, y_2)| = 0 \quad \text{and} \quad \lim_{n \to \infty} \frac{n}{\sigma_n} \sup_{y \in \mathbb{R}^d} \mathbb{E}|h_n(y, Y_1^{(n)})| = 0,$$

then

$$\frac{S_n - \mathbb{E} S_n}{\sigma_n} \overset{D}{\to} N(0, 1) \quad \text{as} \quad n \to \infty.$$

Proof: In the special case that $(Y_i^{(n)})_{1 \leq i \leq n < \infty}$ are identically distributed, this is a slightly re-written version of [17, Theorem 2.1]. Otherwise, there are measurable maps $T_n : [0, 1] \to \mathbb{R}^d$, $n \in \mathbb{N}$, such that $Y_i^{(n)}$, $i \in \{1, \ldots, n\}$, has the same distribution as $T_n(U)$, where U is a uniformly distributed random variable on $[0, 1]$ (see, for example, the proof of Theorem 29.6 in [9]). For $n \in \mathbb{N}$ define $\tilde{h}_n : [0, 1]^2 \ni (u_1, u_2) \mapsto h_n(T_n(u_1), T_n(u_2))$ and let $\mathcal{U}_n := \{U_1, \ldots, U_n\}$, where U_1, \ldots, U_n are independent and uniformly distributed on $[0, 1]$. Then, S_n has the same distribution as

$$\tilde{S}_n := \frac{1}{2} \sum_{(u_1, u_2) \in \mathcal{U}_n^2} \tilde{h}_n(u_1, u_2).$$

Since the assumptions of the theorem are satisfied for the U-statistics (S_n), they must also hold for the U-statistics (\tilde{S}_n). As the underlying random variables of (\tilde{S}_n) are identically distributed, we are in the previously discussed special case for which the central limit theorem holds. This completes the proof. \square
Table 4: Empirical rejection rates of the different competitors \((d = 2)\)

Alt.	\(n\)	\(I_n^2(0.1)\)	\(I_n^2(0.25)\)	\(I_n^2(0.5)\)	\(I_n^2(1)\)	\(NN_{n,1}^{(0.5)}\)	\(NN_{n,15}^{(0.5)}\)	DB	MS
CON	50	74	40	33	6	16	66	31	6
	100	96	66	56	9	19	90	58	14
	200	*	91	83	14	25	98	89	25
	500	*	*	99	36	41	*	*	41
CLU	50	80	34	31	42	78	67	28	36
	100	73	30	27	41	74	82	28	48
	200	61	26	24	41	58	90	28	52
	500	45	23	22	41	32	96	29	47

B. Ebner and F. Nestmann,
Karlsruhe Institute of Technology (KIT),
Institute of Stochastics,
Englerstr. 2, D-76131 Karlsruhe, Germany.
E-mail: Bruno.Ebner@kit.edu and Franz.Nestmann2@kit.edu

M. Schulte,
University of Bern,
Institute of Mathematical Statistics and Actuarial Science,
Alpeneggstr. 22, CH-3012 Bern, Switzerland
E-mail: Matthias.Schulte@stat.unibe.ch
Alt.	β	$n\backslash k$	1	2	3	4	5	6	7	8	9	10	15	20	25		
		50	39	54	61	66	69	71	72	72	72	67	60	51			
CON	-0.5	100	59	77	85	90	92	94	95	95	95	96	96	96	95		
		200	82	95	98	99	99	*	*	*	*	*	*	*	*	*	
		500	99	*	*	*	*	*	*	*	*	*	*	*	*	*	
CLU		50	95	97	97	96	94	91	88	86	83	80	68	59	53		
		100	91	96	97	97	97	96	95	94	93	92	82	73	65		
		200	81	92	95	96	96	96	96	95	91	86	79				
		500	59	77	85	89	91	92	93	94	94	94	92	90			
		50	41	57	64	68	70	71	71	71	69	59	45	34			
CON	0	100	64	80	88	91	93	94	95	96	96	96	94	92			
		200	85	96	99	*	*	*	*	*	*	*	*	*	*	*	
		500	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
CLU		50	95	96	95	91	87	81	75	68	64	59	43	35	31		
		100	92	96	96	96	95	93	92	89	86	82	64	51	43		
		200	83	92	94	96	95	95	95	94	93	92	84	74	63		
		500	61	80	86	89	91	92	93	93	93	91	88	84			
		50	40	53	59	63	64	64	63	61	58	40	25	16			
CON	1	100	60	77	85	89	91	93	94	94	94	93	89	82			
		200	83	96	98	99	99	*	*	*	*	*	*	*	*	*	
		500	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
CLU		50	91	91	86	78	67	56	47	41	37	34	29	28	29		
		100	88	92	92	91	88	85	80	74	68	63	40	32	29		
		200	79	88	91	91	91	90	89	88	86	83	69	54	42		
		500	56	75	81	85	87	88	89	89	89	85	79	73			
		50	29	38	43	45	44	43	41	38	35	31	15	8	8		
CON	5	100	44	61	71	77	80	81	83	83	83	84	83	77	64	45	
		200	65	86	93	96	97	98	99	99	99	99	99	99	99	99	
		500	97	*	*	*	*	*	*	*	*	*	*	*	*	*	*
CLU		50	72	68	56	42	30	24	24	24	25	27	29	30	30		
		100	69	75	73	69	62	55	48	41	35	30	25	26	27		
		200	57	69	73	74	72	70	68	65	61	57	39	29	26		
		500	36	53	61	65	69	70	71	71	71	65	57	50			

Table 5: Empirical rejection rates for T_n ($d = 2$)
Alt.	β	$n\backslash k$	1	2	3	4	5	6	7	8	9	10	15	20	25
CON	50	16	18	22	25	27	30	31	33	34	35	**36**	35	32	
CON	100	17	22	27	32	36	40	43	46	48	50	57	60	**61**	
CON	200	18	26	34	41	45	51	56	60	63	66	77	82	**85**	
CON	500	24	36	47	56	64	71	76	80	83	86	94	97	**99**	
CLU	50	65	79	85	89	91	92	**93**	93	93	92	88	83		
CLU	100	41	55	66	72	77	81	83	85	87	87	89	90	88	
CLU	200	22	31	38	45	50	55	59	62	65	68	75	78	**80**	
CLU	500	11	14	17	20	22	25	26	29	30	32	40	46	**50**	
CON	50	59	76	86	91	90	**92**	93	92	92	89	81	71		
CON	100	38	53	66	74	78	81	83	84	85	85	**88**	87	84	
CON	200	20	31	37	47	54	59	63	66	68	70	75	77	**78**	
CON	500	12	14	18	21	23	27	28	31	31	34	41	46	**51**	
CLU	50	63	75	81	84	85	**86**	86	86	85	84	76	63	48	
CLU	100	39	54	63	69	73	76	78	80	81	81	81	79	74	
CLU	200	21	30	37	43	48	52	56	59	61	63	69	70	70	
CLU	500	11	13	16	19	22	23	25	27	28	30	37	41	**43**	
CON	50	13	15	17	18	20	**22**	21	22	21	21	19	14	10	
CON	100	15	17	20	22	25	27	29	31	33	34	37	38	37	
CON	200	16	19	23	27	32	36	39	41	44	47	56	61	**65**	
CON	500	18	24	31	38	43	49	54	58	63	65	78	86	**90**	
CLU	50	45	57	61	64	**65**	65	64	62	60	60	58	48		
CLU	100	30	38	44	48	52	55	57	58	60	60	58	48		
CLU	200	17	22	25	29	32	35	37	39	41	43	**47**	47	47	
CLU	500	10	11	12	14	15	16	17	18	19	19	23	**25**	25	

Table 6: Empirical rejection rates for T_{a} ($d = 2$)
Alt.	β	$n\backslash k$	1	2	3	4	5	6	7	8	9	10	15	20	25	DB
CON	50	92 95 **96** 96 96 96 95 95 94 93 88 82 75	59													
	100	* *	89													
	200	* *	22													
	500	* *	22													
CLU	50	* 99 98 96 94 92 89 86 83 80 67 58 52	22													
	100	* * * * 99 98 97 96 94 92 81 71 62	22													
	200	* * * * * * * 99 99 99 99 93 85 77	22													
	500	* *	23													
CLU	50	99 97 92 84 77 70 64 58 54 50 38 32 30	23													
	100	* * 99 98 95 90 85 80 75 70 53 43 36	23													
	200	* * * * * * * 99 98 96 94 91 75 61 51	23													
	500	* *	23													
CON	50	91 **94** 94 93 92 90 88 84 81 78 54 35 23	23													
	100	99 *	23													
	200	* * * * * * * * * * * * * * * * * * * *	23													
	500	* * * * * * * * * * * * * * * * * * * *	23													
CLU	50	98 83 60 47 39 34 31 29 29 28 26 26 25	23													
	100	* 99 94 80 68 57 49 43 39 36 28 26 25	23													
	200	* * * 99 97 91 83 75 68 61 41 32 29	23													
	500	* * * * * * * * * * * * * * * * * * * *	23													
CON	50	82 **84** 82 78 72 65 57 49 43 35 14 8 8	23													
	100	98 99 99 99 * 99 99 98 98 97 86 63 40	23													
	200	* * * * * * * * * * * * * * * * * * * *	23													
	500	* * * * * * * * * * * * * * * * * * * *	23													
CLU	50	75 24 23 24 25 25 25 26 26 26 27 27 27	23													
	100	**98** 75 39 25 24 24 24 23 24 24 25 25	23													
	200	* 99 91 73 53 38 30 27 24 24 24 24 24	23													
	500	* * * 99 98 96 91 84 75 66 33 25 23	23													

Table 7: Empirical rejection rates for $T_e (d = 3)$
Alt.	n/k	1	2	3	4	5	6	7	8	9	10	15	20	25	
CON	50	58	69	74	77	**78**	78	78	77	77	76	69	61	51	
	100	74	86	91	94	95	96	96	**97**	97	97	97	96	95	
	200	86	96	99	99	*	*	*	*	*	*	*	*	*	
	500	97	*	*	*	*	*	*	*	*	*	*	*	*	
CLU	50	99	*	*	99	99	99	99	98	98	97	89	76	58	
	100	99	*	*	*	*	*	*	*	*	*	99	98	95	
	200	97	*	*	*	*	*	*	*	*	*	*	*	*	
	500	74	91	96	98	99	99	99	*	*	*	*	*	*	
CON	50	62	72	75	76	76	76	78	77	75	74	72	66	54	42
	100	70	88	91	94	95	96	96	**97**	97	96	96	95	94	
	200	85	96	99	*	*	*	*	*	*	*	*	*	*	
	500	98	*	*	*	*	*	*	*	*	*	*	*	*	
CLU	50	99	*	99	99	99	99	98	97	95	93	73	45	26	
	100	99	*	*	*	*	*	*	*	*	*	99	94	84	
	200	96	*	*	*	*	*	*	*	*	*	*	*	99	
	500	76	91	96	98	99	99	99	*	*	*	*	*	*	
CON	50	57	67	71	**73**	73	73	72	70	69	67	54	40	26	
	100	72	85	90	93	94	95	95	**96**	96	95	95	93	91	
	200	85	96	98	99	*	*	*	*	*	*	*	*	*	
	500	97	*	*	*	*	*	*	*	*	*	*	*	*	
CLU	50	99	99	99	98	97	96	93	88	81	72	29	12	6	
	100	99	*	*	*	*	*	*	99	99	99	94	75	48	
	200	96	99	*	*	*	*	*	*	*	*	99	96	96	
	500	72	89	94	97	98	99	99	99	99	99	*	99	99	
CON	50	50	55	59	**60**	60	59	57	54	52	48	30	16	7	
	100	61	75	81	85	87	88	**89**	89	89	87	82	76	76	
	200	74	90	95	97	98	99	99	99	99	*	*	*	*	
	500	90	99	*	*	*	*	*	*	*	*	*	*	*	
CLU	50	96	96	93	89	79	66	49	34	22	15	9	14	18	
	100	95	97	**98**	98	97	96	95	93	90	85	50	18	5	
	200	86	95	97	**98**	98	98	98	98	97	93	83	66	66	
	500	55	74	82	87	90	92	93	94	94	95	94	93	89	

Table 8: Empirical rejection rates for T_a ($d = 3$)
β	nW	1	2	3	4	5	6	7	8	9	10	15	20	25
-0.5	50	3.5153	3.5611	3.647	3.7462	3.8577	4.0189	4.1838	4.329	4.507	4.669	5.6829	6.5529	7.326
	100	3.684	3.71	3.7186	3.7786	3.8392	3.8834	3.9411	3.9977	4.0764	4.1492	4.2377	4.3413	4.4547
0	200	3.824	3.8526	3.8901	3.9967	4.0955	4.1722	4.2381	4.3089	4.3638	4.4217	4.5089	4.6034	4.7071
1	500	3.3335	3.3605	3.3875	3.4051	3.4226	3.4394	3.4562	3.4729	3.4896	3.5063	3.5231	3.5406	3.5581
5	50	3.4684	3.5063	3.5446	3.5829	3.6212	3.6595	3.6978	3.7360	3.7742	3.8124	3.8506	3.8888	3.9270
	100	3.6407	3.7174	3.8564	4.0146	4.174	4.362	4.5674	4.8123	5.0666	5.3091	5.6104	6.2407	6.9071
1	200	3.7272	3.7692	3.8592	3.9879	4.188	4.3889	4.5259	4.7382	4.9674	5.2089	5.4905	5.8034	6.1905
5	500	3.7983	3.8088	3.8921	4.0282	4.1471	4.3119	4.4813	4.6592	4.7908	4.9432	5.0955	5.2057	5.3192

Table 9: Empirical critical values for $T_e (d = 2)$
β	$n \backslash k$	1	2	3	4	5	6	7	8	9	10	15	20	25
-0.5	50	3.059	3.4495	3.4895	3.5476	3.6013	3.6136	3.671	3.7402	3.8304	3.8987	4.4778	5.2045	6.1158
0	100	3.3636	3.6174	3.6356	3.6774	3.6665	3.6884	3.724	3.773	3.8006	3.8531	4.1379	4.5676	5.1179
1	200	3.6098	3.6475	3.6837	3.7082	3.728	3.7441	3.7669	3.7857	3.7967	3.8159	4.0084	4.2671	4.5564
2	500	3.6948	3.7277	3.7479	3.7491	3.7536	3.7463	3.7814	3.7909	3.837	3.8487	3.8895	4.0106	4.122
42	50	3.5348	3.6357	3.8551	3.6055	3.9197	3.6414	3.8381	4.0619	3.9305	3.8376	4.8105	5.8258	6.8581
	100	3.2805	3.721	3.4082	3.872	3.8025	3.8163	3.8778	3.844	4.0201	4.205	4.4408	4.84	5.7245
	200	3.5862	3.5359	3.728	3.6373	3.5344	3.8531	3.8196	3.8274	3.8627	3.7838	3.976	4.521	4.7926
	500	3.3917	3.8812	3.9251	3.568	3.913	3.7914	3.7388	3.7294	3.8093	3.7881	3.9171	4.0679	4.1481
5	50	3.0182	3.4862	3.5104	3.5512	3.6001	3.6774	3.7808	3.9017	4.0562	4.1931	5.0547	6.1696	7.4639
	100	3.5107	3.5938	3.6393	3.6181	3.6692	3.7113	3.7541	3.8079	3.8998	3.968	4.4981	5.1274	5.9715
	200	3.6403	3.7021	3.7011	3.7226	3.7307	3.7443	3.8137	3.835	3.8984	3.8807	4.1639	4.5612	4.9969
	500	3.682	3.7521	3.7587	3.781	3.7749	3.7912	3.8095	3.8242	3.8517	3.8635	3.931	4.1156	4.3126
500	50	3.2332	3.167	3.331	3.4236	3.4419	3.5016	3.5726	3.6696	3.8171	3.9049	4.5556	5.4372	6.4344
	100	3.154	3.4374	3.5352	3.5248	3.6007	3.6177	3.6573	3.6886	3.7474	3.8571	4.2155	4.6772	5.3163
	200	3.3493	3.5723	3.6399	3.6894	3.6745	3.6561	3.7296	3.7904	3.7717	3.7667	4.0233	4.2971	4.6231
	500	3.5735	3.6706	3.7452	3.7067	3.7459	3.7472	3.7381	3.7855	3.7764	3.813	3.8827	3.9822	4.1625

Table 10: Empirical critical values for T_a ($d = 2$)
β	$n \setminus k$	1	2	3	4	5	6	7	8	9	10	15	20	25
-0.5	50	3.291	3.4152	3.6171	3.8073	3.9982	4.179	4.3982	4.5908	4.7811	4.9581	5.9169	6.687	7.2964
	100	3.5113	3.6402	3.8774	4.0916	4.3269	4.5864	4.8626	5.1119	5.3263	5.6027	6.8917	8.1342	9.2808
	200	3.6032	3.7398	3.9406	4.1741	4.414	4.715	4.9566	5.2263	5.4921	5.7925	7.3647	8.778	10.19
	500	3.7113	3.8272	4.0474	4.2397	4.4686	4.7166	5.0007	5.2743	5.5108	5.7829	7.2489	8.147	10.3807
0	50	3.1545	3.3134	3.4272	3.9481	4.0208	4.3308	4.4546	4.5199	4.7144	4.9395	5.8986	6.6639	7.391
	100	3.586	3.7246	3.9569	4.1844	4.2736	4.6567	4.9779	5.1929	5.5419	5.8016	7.1195	8.4343	9.559
	200	3.5915	3.7587	3.9103	4.2356	4.439	4.7096	5.1048	5.3459	5.6768	5.9974	7.6054	9.1797	10.6337
	500	3.6335	3.7929	4.0581	4.2893	4.5389	4.7968	5.1122	5.3755	5.6666	5.944	7.5246	9.2364	10.8763
1	50	3.1978	3.2985	3.4761	3.7027	3.8968	4.0746	4.282	4.4805	4.6267	4.797	5.7106	6.2775	6.6809
	100	3.4313	3.5603	3.7796	4.0027	4.2631	4.5141	4.7796	5.0626	5.314	5.5933	6.8797	8.0612	9.1192
	200	3.5185	3.6853	3.8858	4.1833	4.413	4.7079	4.9798	5.2699	5.5453	5.8156	7.4537	8.887	10.2664
	500	3.6457	3.7906	4.0316	4.2263	4.4733	4.721	5.0232	5.335	5.5669	5.9183	7.4302	9.0472	10.723
5	50	3.0234	3.0631	3.1429	3.2483	3.3453	3.4346	3.5348	3.6421	3.7032	3.7805	4.2232	4.4042	4.4337
	100	3.2868	3.3212	3.4543	3.6047	3.7154	3.8567	4.0369	4.1956	4.3376	4.5078	5.277	5.9176	6.4958
	200	3.3949	3.4875	3.6135	3.7985	3.9709	4.13	4.2746	4.4308	4.6418	4.8225	5.8187	6.7304	7.6005
	500	3.5393	3.6181	3.7635	3.8794	4.0342	4.2151	4.3972	4.6339	4.7776	4.9825	5.9785	7.0771	8.2448

Table 11: Empirical critical values for T_e ($d = 3$)
β	n\k	1	2	3	4	5	6	7	8	9	10	15	20	25
-0.5	50	3.2597	3.4875	3.7513	4.0104	4.3327	4.6857	5.0597	5.4407	5.8605	6.3121	8.7125	11.3174	14.1969
	100	3.2199	3.5981	3.7745	4.0337	4.2606	4.5426	4.8688	5.2008	5.5666	5.9118	7.8884	10.063	12.3647
	200	3.6179	3.6867	3.7927	3.9873	4.1672	4.3922	4.6249	4.8978	5.1767	5.4394	7.0396	8.7485	10.5914
	500	3.6869	3.7585	3.8528	3.9549	4.1134	4.2601	4.4272	4.6144	4.8305	5.0434	6.1219	7.3977	8.7644
0	50	3.3955	3.4367	3.8551	4.3677	4.918	5.172	5.1173	5.7192	6.3221	6.9259	9.1035	12.138	15.1724
	100	3.2805	3.481	4.1082	3.872	4.6225	4.563	5.3235	5.329	6.0867	6.125	8.5008	10.89	13.2845
	200	3.5862	3.5359	3.9098	4.1676	4.195	4.7623	4.6985	5.282	5.2746	5.8607	7.6772	9.5313	11.4006
	500	3.3917	3.8812	3.9251	4.1553	3.913	4.2818	4.6642	4.5909	4.9962	5.3339	6.2479	7.9489	9.2872
1	50	3.1833	3.4018	3.7233	4.1124	4.4785	4.855	5.31	5.7959	6.2698	6.7732	9.603	12.6136	15.9305
	100	3.2867	3.5733	3.8195	4.1181	4.3869	4.7105	5.0822	5.4852	5.8748	6.327	8.5753	11.1363	13.8202
	200	3.4985	3.6399	3.8368	4.0294	4.2826	4.5365	4.8227	5.1292	5.4417	5.7801	7.6549	9.6059	11.761
	500	3.6849	3.7417	3.8808	3.9683	4.1648	4.3516	4.5512	4.7898	5.0224	5.2462	6.5491	8.0747	9.6426
5	50	2.4588	3.2078	3.4256	3.7305	4.0282	4.3659	4.7462	5.1398	5.5282	5.9654	8.2712	10.6489	13.3085
	100	2.9862	3.3926	3.6124	3.8096	4.0335	4.3441	4.6368	4.9501	5.2748	5.6764	7.5187	9.5585	11.7511
	200	3.3645	3.5133	3.6722	3.8172	4.0221	4.255	4.4754	4.7343	4.9896	5.3268	6.8046	8.4616	10.1664
	500	3.5962	3.6743	3.7579	3.859	4.0147	4.1344	4.3064	4.4773	4.7088	4.8687	5.9855	7.2618	8.4907

Table 12: Empirical critical values for T_a ($d = 3$)