Coherence for Skew-Monoidal Categories

Tarmo Uustalu
Institute of Cybernetics at Tallinn University of Technology, Estonia

tarmo@cs.ioc.ee

I motivate a variation (due to K. Szlachányi) of monoidal categories called skew-monoidal categories where the unital and associativity laws are not required to be isomorphisms, only natural transformations. Coherence has to be formulated differently than in the well-known monoidal case. In my (to my knowledge new) version, it becomes a statement of uniqueness of normalizing rewrites. I present a proof of this coherence theorem and also formalize it fully in the dependently typed programming language Agda.

1 Introduction

Mac Lane’s monoidal categories are ubiquitous in category theory, mathematics and computer science. One of their remarkable properties is the coherence theorem stating that, in any monoidal category, any two parallel maps that are “formal” (in the sense that they are put together from the identity, composition, the tensor, the two unitors and the associator) are equal. In other words, in the free monoidal category over a given set of objects, any two maps with the same domain and codomain are equal. This theorem is both beautiful and extremely useful. (There is also a simple necessary and sufficient condition for existence of a map between two given objects in the free monoidal category.)

Szlachányi [16] has recently introduced a variation of monoidal categories, called skew-monoidal categories. The important difference from monoidal categories is that the unitors and associator are not required to be isomorphisms. His study was motivated by structures from quantum physics. In my joint work with Altenkirch and Chapman [1], I ran into the same definition when generalizing monads to non-endofunctors.

In a free skew-monoidal category over a set of objects, general uniqueness of parallel maps is lost. But it is still only reasonable to enquire whether some kind of coherence theorems are possible like they exist for many types of categories, e.g., Cartesian categories etc.

In this paper, I state and prove one such theorem. I obtained it by playing with Beylin and Dybjer’s formalization [3] of Mac Lane’s coherence theorem. Essentially, I looked at the high-level proof structure and checked what can be kept in the skew-monoidal case and what must necessarily be given up at least if one sticks to the same overall proof idea. The theorem states that maps to certain objects—“normal forms”—are unique. As a corollary, the same holds also for maps from “reverse-normal forms”. For maps with different domains and co-domains no information is given.

I have formalized this result in the dependently typed programming (DTP) language Agda. I found it a very interesting exercise. Of course this is by no means uncommon with DTP projects, but certainly a project like this forces one to think carefully about deep matters in programming with the identity type in intensional type theory.

The structure of this short paper is as follows. I first define skew-monoidal categories, compare them to monoidal categories, and give some examples. Then I present the coherence statement and proof (as formalized in Agda), describe the rewriting intuition behind it and also hint at what everything means category-theoretically.
The accompanying Agda formalization of the whole development and more (approximately 750 lines; self-contained, only propositional equality (the identity type) is taken from the library) is available from http://cs.ioc.ee/~tarmo/papers/

2 Skew-monoidal categories

Skew-monoidal categories of Szlachányi [16] are a variation of monoidal categories, originally due to Mac Lane [14].

A (left) skew-monoidal category is a category \(\mathcal{C} \) together with a distinguished object \(I \), a functor \(\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C} \) and three natural transformations \(\lambda, \rho, \alpha \) typed

\[
\begin{align*}
\lambda_A : I \otimes A &\to A \\
\rho_A : A &\to A \otimes I \\
\alpha_{A,B,C} : (A \otimes B) \otimes C &\to A \otimes (B \otimes C)
\end{align*}
\]

satisfying the laws

\[
\begin{align*}
\text{(a)} & \quad 1 \otimes 1 &\xrightarrow{\rho} & 1 &\xleftarrow{\lambda} 1 \\
\text{(b)} & \quad (A \otimes 1) \otimes B &\xrightarrow{\alpha_{A,B}} & A \otimes (1 \otimes B) \\
\text{(c)} & \quad (1 \otimes A) \otimes B &\xrightarrow{\alpha_{A,B}} & 1 \otimes (A \otimes B) \\
\text{(d)} & \quad (A \otimes B) \otimes 1 &\xrightarrow{\alpha_{A,B}} & A \otimes (B \otimes 1) \\
\text{(e)} & \quad (A \otimes (B \otimes C)) \otimes D &\xrightarrow{\alpha_{A,B\otimes C,D}} & A \otimes ((B \otimes C) \otimes D)
\end{align*}
\]

A monoidal category is obtained, if \(\lambda, \rho, \alpha \) are additionally required to be isomorphisms. Here this requirement is not made.

When dropping the requirement of isomorphisms from the definition of monoidal categories, the key question is of course which half of each of the three isomorphisms should be kept and how the laws (coherence conditions) should be stated. In a left skew-monoidal category \(\lambda \) “reduces”, \(\rho \) “expands” and \(\alpha \) “associates to the right”. With this decision, the monoidal category laws (c), (d), (e) can be stated in only one way. But for (a) there are two choices (\(\lambda_I \circ \rho_I = id_I \) and \(\rho_I \circ \lambda_I = id_{I\otimes I} \)) and for (b) even three. The “correct” options turn to be those we have chosen.

Notice also that (a-c) are directed versions of the original Mac Lane axioms [14]. Later Kelly [9] discovered that (a), (c), (d) can be derived from (b) and (e). For skew-monoidal categories, this is not the case!

There is also an analogous notion of a right skew-monoidal category. It is important to realize that the opposite category \(\mathcal{C}^{\text{op}} \) of a left skew-monoidal category \(\mathcal{C} \) is right skew-monoidal, not left-skew monoidal. But the “reverse” version \((\mathcal{C}^{\text{op}})^{\text{rev}} \) of \(\mathcal{C}^{\text{op}} \) (obtained by swapping the arguments of \(\otimes \) and also \(\lambda \) and \(\rho \)) is left skew-monoidal.

In the rest of this text, my focus is on left skew-monoidal categories. Speaking of a skew-monoidal category without specifying its skew, I mean the left skew.

Here are some examples of skew-monoidal categories.
Example 1 A simple example of a skew-monoidal category resulting from skewing a numeric addition monoid is the following.

View the partial order \((\mathbb{N}, \leq)\) of natural numbers as a thin category. Fix some natural number \(n\) and define \(1 = n\) and \(x \otimes y = (x - n) + y\) where \(-\) is “truncating subtraction”. We have \(\lambda_X : (n - n) + x = 0 + x = x\), \(\rho_x : x \leq x\) and \(n = (x - n) + n\), \(\alpha_{x,y,z} : (((x - n) + y) - n) + z \leq (x - n) + (y - n) + z\) (by a small case analysis).

Example 2 The category of pointed sets and point-preserving functions has the following skew-monoidal structure.

Take \(l = (1, \ast)\) and \((X, p) \otimes (Y, q) = (X + Y, \text{inl} p)\) (notice the “skew” in choosing the point). We define \(\lambda_X : (1, \ast) \otimes (X, p) = (1 + X, \text{inl} \ast) \rightarrow (X, p)\) by \(\lambda_X (\text{inl} \ast) = p\), \(\lambda_X (\text{inr} x) = x\) (this is not injective). We let \(\rho_X : (X, p) \rightarrow (X + 1, p) = (X, \text{inl} p) \otimes (1, \ast)\) by \(\rho_X x = \text{inl} x\) (this is not surjective). Finally we let \(\alpha_{X,Y,Z} : ((X, p) \otimes (Y, q)) \otimes (Z, r) = ((X + Y) + Z, \text{inl} (\text{inl} p)) \rightarrow (X + (Y + Z), \text{inl} p) = (X, p) \otimes ((Y, q) \otimes (Z, r))\) be the obvious isomorphism.

Example 3 Given a monoidal category \((\mathcal{C}, \otimes, I)\). Given also a lax monoidal comonad \((D, e, m)\) on \(\mathcal{C}\). The category \(\mathcal{C}\) has a skew-monoidal structure given by \(I^D = I\), \(A \otimes^D B = A \otimes DB\). The unitors and associator are the following:

\[
\begin{align*}
\lambda^D_A &= I \otimes DA \xrightarrow{\lambda^A} DA \xrightarrow{e} A \\
\rho^D_A &= A \xrightarrow{\rho^A} A \otimes I \xrightarrow{A \otimes e} A \otimes D I \\
\alpha^D_{A,B,C} &= (A \otimes DB) \otimes DC \xrightarrow{(A \otimes DB) \otimes \delta^C} (A \otimes D B) \otimes D (D C) \xrightarrow{\alpha^D_{A,B,D \otimes C}} A \otimes (D B \otimes D (D C)) \xrightarrow{A \otimes m_{B,C}} A \otimes D (B \otimes D C)
\end{align*}
\]

A similar skew-monoidal category is also obtained with an oplax monoidal monad.

Example 4 Consider two categories \(\mathcal{F}\) and \(\mathcal{C}\) and a functor \(J : \mathcal{F} \rightarrow \mathcal{C}\). The functor category \(\mathcal{C}^{\mathcal{F}}\) has a skew-monoidal structure given by \(I = J\), \(F \otimes G = \text{Lan}_J F \cdot G\) (assuming that the left Kan extension \(\text{Lan}_J F : \mathcal{C} \rightarrow \mathcal{C}\) exists for every \(F : \mathcal{F} \rightarrow \mathcal{C}\)). The unitors and associator are the canonical natural transformations \(\lambda_F : \text{Lan}_J J \cdot F \rightarrow F\), \(\rho_F : \text{Lan}_J F \cdot J\), \(\alpha_{F,G,H} : \text{Lan}_J (F \cdot G) \cdot H \rightarrow \text{Lan}_J F \cdot \text{Lan}_J G \cdot H\). This category becomes properly monoidal under certain conditions on \(J\). \(\rho\) is an isomorphism, if \(J\) is fully-faithful. \(\lambda\) is an isomorphism, if \(J\) is dense. (This is the example from our relative monads work \([1]\). Relative monads on \(J\) are skew-monomoids in the skew-monoidal category \(\mathcal{C}^{\mathcal{F}}\).)

3 The coherence theorem

I now give a sufficient criterion for equality of two parallel maps in the free skew-monoidal category.

I first present the minimal technical development leading to a statement and proof of the result, not commenting at all on what everything means category-theoretically. (This development follows the Agda formalization.) Then I give a rewriting “interpretation” of the story. Finally I explain the categorical meaning of the result.

The objects of the free skew-monoidal category over a set \(\text{Var}\) of objects are given by the set of “object expressions” \(\text{Tm}\) defined inductively as follows:

\[
\begin{align*}
X & : \text{Var} \\
\cdot & : \text{Tm} \\
A & : \text{Tm} \\
B & : \text{Tm} \\
A \otimes B & : \text{Tm}
\end{align*}
\]
The maps between two objects \(A\) and \(B\) are given by the set \(A \Rightarrow B\) of “map expressions” quotiented by the relation \(\doteq\) of “derivable equality”. The former is defined inductively by the rules

\[
\begin{align*}
\text{id} : A &\Rightarrow A \\
\text{id} \circ g : A &\Rightarrow C \\
f : A &\Rightarrow C \\
g : B &\Rightarrow D \\
f \odot g : A \otimes B &\Rightarrow C \otimes D \\
\lambda : \cdot I \otimes A &\Rightarrow A \\
\rho : A &\Rightarrow A \otimes \cdot I \\
\alpha : (A \otimes B) \otimes C &\Rightarrow A \otimes (B \otimes C)
\end{align*}
\]

while the latter is defined inductively by the rules

\[
\begin{align*}
\text{J} &\doteq \text{I} \\
\text{X} &\doteq \text{N} \\
\text{X} \otimes \text{N} &\doteq \text{Nf}
\end{align*}
\]

We define “normal forms” of object expressions as the set \(\text{Nf}\) defined inductively by

\[
\begin{align*}
\text{J} : \text{Nf} &\Rightarrow \text{X} : \text{Var} \\
\text{N} : \text{Nf} &\Rightarrow \text{X} \otimes \text{N} : \text{Nf}
\end{align*}
\]

Normal forms embed into object expressions via the function \(\text{emb} : \text{Nf} \rightarrow \text{Tm}\) defined recursively by

\[
\begin{align*}
\text{emb} \text{J} &\doteq \text{I} \\
\text{emb} \text{X} \otimes \text{N} &\doteq \text{X} \otimes \text{emb} \text{N}
\end{align*}
\]

Let \([-\ldots\) : \(\text{Tm} \rightarrow \text{Nf} \rightarrow \text{Nf}\) be the function defined recursively by the element of \(\text{Tm}\) by

\[
\begin{align*}
\text{\ldots} \text{X} \text{N} &\doteq \text{X} \otimes \text{N} \\
\text{\ldots} \text{I} \text{N} &\doteq \text{N} \\
\text{\ldots} \text{A} \otimes \text{B} \text{N} &\doteq \text{\ldots} \text{A} \text{\ldots} \text{B} \text{N}
\end{align*}
\]

Every object expression is assigned a normal form with the normalization function \(\text{nf} : \text{Tm} \rightarrow \text{Nf}\) defined by

\[
\text{nf} \text{A} = \text{\ldots} \text{A} \text{J}
\]

We can make some first important observations.

Proposition 1

1. For any \(f : A \Rightarrow B\) and \(N : \text{Nf}\), \(\text{\ldots} \text{A} \text{N} = \text{\ldots} \text{B} \text{N} \).
2. For any $f : A \Rightarrow B$, $nf A = nf B$.

Proof:

1. By induction on f.
2. Immediate from (1). □

Proposition 2 For any $N : Nf$, $nf (\text{emb } N) = N$.

Proof: By induction on N. □

Proposition 3 For any $f : A \Rightarrow \text{emb } N$, $nf A = N$.

Proof: An immediate combination of Propositions 1(2) and 2. □

Let now $\langle \langle \cdot \rangle \rangle : \Pi A : \text{Tm. } \Pi N : Nf. A \otimes \text{emb } N \Rightarrow \text{emb } (\llbracket A \rrbracket N)$ be the function defined by

\[
\begin{align*}
\langle \langle X \rangle \rangle N &= \text{id} \\
\langle \langle I \rangle \rangle N &= \lambda \\
\langle \langle A \otimes B \rangle \rangle N &= \langle \langle A \rangle \rangle (\llbracket B \rrbracket N) \circ \text{id} \circ \langle \langle B \rangle \rangle N \circ \alpha
\end{align*}
\]

To every object expression we assign a “normalizing” map expression with the function $nm : \Pi A : \text{Tm. } A \Rightarrow \text{emb } (nf A)$ defined by

\[nm A = \langle \langle A \rangle \rangle \text{id} \circ \rho\]

We are ready to state our result.

Proposition 4 (Main lemma) 1. For any $f : A \Rightarrow B$ and $N : Nf$, $\langle \langle A \rangle \rangle N \Rightarrow \langle \langle B \rangle \rangle N \circ f \otimes \text{id}$. (This statement is well-formed, as $\llbracket A \rrbracket N = \llbracket B \rrbracket N$ by Proposition 1(1).)

2. For any $f : A \Rightarrow B$, $nm A \Rightarrow nm B \circ f$. (This statement is well-formed, as $nf A = nf B$ by Proposition 1(2).)

Proof:

1. By induction on f. This is a tedious but simple proof with six cases, some are tricky for formalization! Read the Agda development.

 Of course the proof relies on the equality of map expressions being induced by the five coherence conditions. All of them are needed and exactly in the versions chosen (remember that for conditions (a), (b) there were multiple inequivalent options).

2. Follows from (1). □

Proposition 5 For any $N : Nf$, $nm (\text{emb } N) \Rightarrow \text{id}$. (This statement is well-formed, as $nf (\text{emb } N) = N$ by Proposition 2.)

Proof: By induction on N. □

Proposition 6 (Main theorem) For any $f : A \Rightarrow \text{emb } N$, $nm A \Rightarrow f$. (This statement is well-formed, because $nf A = N$ by Proposition 3).
Proof: By combining Propositions 4(2) and 5.

Of course nothing prevents us from playing the reverse game. We can define a set \(\text{Nf}^r \) and functions \(\text{emb}^r : \text{Nf}^r \to \text{Tm} \), \([-]^r : \text{Tm} \to \text{Nf}^r \to \text{Nf}^r \) and \(\text{nf}^r : \text{Tm} \to \text{Nf}^r \):

\[
\begin{array}{c|c|c}
\text{J}^r : \text{Nf}^r & \text{X} : \text{Var} & \text{R} : \text{Nf}^r \\
\rightarrow & \otimes & \\
\end{array}
\]

\[
\text{emb}^r \text{J}^r = 1 \\
\text{emb}^r \text{R} \otimes \text{X} = \text{emb}^r \text{R} \otimes \text{X} \\
\text{[X]}^r \text{R} = \text{R} \otimes \text{X} \\
\text{[I]}^r \text{R} = \text{R} \\
\text{[A \otimes B]}^r \text{R} = \text{[B]}^r \text{([A]}^r \text{R)} \\
\text{nf}^r \text{A} = \text{[A]}^r \text{J}^r
\]

Further we can define functions \(\langle\langle - \rangle\rangle : \Pi \text{A} : \text{Tm} \), \(\Pi \text{R} : \text{Nf}^r \). \(\text{emb}^r \text{([A]}^r \text{R)} \Rightarrow \text{emb}^r \text{R} \otimes \text{A} \) and \(\text{nm}^r : \Pi \text{A} : \text{Tm} \). \(\text{emb}^r \text{([R}^r \text{A)} \Rightarrow \text{A} \) and propositions as above hold for them. Furthermore, \(\text{nf} \text{A} = \text{nf} \text{B} \) if and only if \(\text{nf}^r \text{A} = \text{nf}^r \text{B} \).

Thus we see that for two object expressions \(\text{A} \) and \(\text{B} \) to have exactly one map expression between them (up to \(\cong \)), it suffices to have \(\text{A} = \text{emb}^r \text{R} \) or \(\text{B} = \text{emb} \text{N} \) for some \(\text{R} \) or \(\text{N} \) (i.e., \(\text{A} \) in reverse normal form or \(\text{B} \) in normal form).

It is important to notice that this is merely a sufficient condition for a unique map expression between two object expressions. It is perfectly possible have a unique map expression between \(\text{A} \) and \(\text{B} \) even if \(\text{A} \) is not a reverse normal form and \(\text{B} \) is not a normal form. The simplest example is \(\text{A} = \text{B} = \text{X} \), since we have only the map \(\text{id} : \text{X} \Rightarrow \text{X} \).

At the same time it is easy to find pairs of object expressions \(\text{A} \) and \(\text{B} \) with \(\text{nf} \text{A} = \text{nf} \text{B} \) (which is the same as \(\text{nf}^r \text{A} = \text{nf}^r \text{B} \)) with no or several map expressions between them.

Some examples of absence of map expressions:

- there is no map expression from \(\text{X} \) to \(\text{I} \otimes \text{X} \) (although both have \(\text{X} \otimes \text{J} \) as the normal form);
- there is no map expression from \(\text{X} \otimes ((\text{Y} \otimes \text{Z}) \otimes \text{I}) \) to \((\text{X} \otimes \text{Y}) \otimes (\text{Z} \otimes \text{I}) \) (despite both having \(\text{X} \otimes (\text{Y} \otimes (\text{Z} \otimes \text{J})) \) as the normal form).

Some examples of multiple map expressions:

- \(\text{id} \neq \rho \circ \lambda : \text{I} \otimes \text{I} \Rightarrow \text{I} \otimes \text{I} \),
- \(\text{id} \neq \rho \circ \text{id} \circ \text{id} \circ \lambda \circ \alpha : (\text{X} \otimes \text{I}) \otimes \text{Y} \Rightarrow (\text{X} \otimes \text{I}) \otimes \text{Y} \),
- \(\lambda \neq \text{id} \circ \text{id} : \text{I} \otimes (\text{I} \otimes \text{X}) \Rightarrow \text{I} \otimes \text{X} \).

Rewriting interpretation Let us see what we have established from the rewriting perspective.

The elements of \(\text{Tm} \) can be thought of as terms over \(\text{Var} \) made of \(\text{I} \) and \(\otimes \). The elements of \(\text{A} \Rightarrow \text{B} \) should be thought of as rewrites of \(\text{A} \) into \(\text{B} \). \(\lambda \), \(\rho \), \(\alpha \) are rewrite rules, \(\otimes \) allows applying rewrite rules inside a term, \(\text{id} \) is the nil rewrite, \(\circ \) is sequential composition of two rewrites. The relation \(\cong \) provides a congruence on rewrites of one term to another.

With \(\text{Nf} \) we have carved out from the set of all terms \(\text{Tm} \) some terms that we have decided to consider to be in normal form. \(\text{emb} \) is the inclusion of this set \(\text{Nf} \) into \(\text{Tm} \).
With \(\text{nf} \, A \) we have assigned to every term a particular normal form, which we define to be its (unique) normal form. Notice that this is an entirely rewriting-independent definition of normalization.

Proposition 1 says that one term can only be written into another, if their normal forms are the same. Proposition 2 says that a normal form’s normal form is itself. Proposition 3 is the obvious conclusion that, if a term rewrites to a normal form, it is that term’s normal form.

With \(\text{nm} \, A \) we have at least one (canonical) rewrite of any term \(A \) to its normal form.

Proposition 4 says that the canonical normalizing rewrite \(\text{nm} \, A \) of a term \(A \) factors through all other rewrites of it. Proposition 5 says that the canonical normalizing rewrite of a normal form (into itself) is the nil rewrite.

Proposition 6 tells us that any normalizing rewrite of a term \(A \) is equal to the canonical normalizing rewrite \(\text{nm} \, A \). Thus all normalizing rewrites of \(A \) are equal.

Categorical meaning Categorically speaking we have established a relationship between two categories \(\text{Tm} \), which is the free skew-monoidal category over \(\text{Var} \), and \(\text{Nf} \), which is the free strictly monoidal category over \(\text{Var} \).

The category \(\text{Tm} \) has \(\text{Tm} \) as the set of objects, \((A \Rightarrow B) / \cong \) the set of maps between objects \(A, B \), id the identity, \(\circ \) composition, \(f \) as the unit, \(\otimes \) the tensor, \(\lambda, \rho \) and \(\alpha \) the unitors and associator. The category \(\text{Nf} \) is discrete and has \(\text{Nf} \) \((\text{set of lists over} \, \text{Var})\) as the set of objects.

\(\text{emb} \) with the trivial map mapping is clearly a functor from \(\text{Nf} \) to \(\text{Tm} \).

With \(\text{nf} : \text{Tm} \rightarrow \text{Nf} \) we provide an object mapping for a functor from \(\text{Tm} \) to \(\text{Nf} \). Proposition 1, stating that, for any \(f : A \rightarrow B \), we have \(\text{nf} \, A = \text{nf} \, B \), tells us that \(\text{nf} \) with the constant identity map mapping is a functor from \(\text{Tm} \) to \(\text{Nf} \) (“if \(f : A \rightarrow B \), then \(L \, f : L \, A \rightarrow L \, B \)").

Proposition 2, stating that \(\text{nf} \, (\text{emb} \, N) = N \), establishes that identity has the correct type for being the counit, if \(\text{nf} \) were a left adjoint of \(\text{emb} \) (“\(\varepsilon : L \, (R \, N) \rightarrow N \)”).

The polymorphic function \(\text{nm} : \Rightarrow \text{emb} \, (\text{nf} \, A) \) is, by its typing, a candidate for the unit of the adjunction (“\(\eta : A \Rightarrow R \, (L \, A) \)”). The main lemma (Proposition 4), stating that, if \(f : A \Rightarrow B \), then \(\text{nm} \, A = \text{nm} \, B \circ f \), establishes that \(\text{nm} \) is a natural transformation (“\(R \, (L \, f) \circ \eta = \eta \circ f \)”).

Proposition 5, stating \(\text{nm} \, (\text{emb} \, N) = \text{id} \), establishes one of the adjunction laws (“\(R \, \varepsilon \circ \eta = \text{id} \)”).

The main theorem (Proposition), which is a conclusion from Propositions 4 and 5 and states that \(f : A \Rightarrow \text{emb} \, N \) implies \(\text{nm} \, A = f \), is a proof of the equivalent adjunction law in terms of the left transpose (“\(R \, f \circ \eta = f \)”).

The other adjunction laws are trivial as \(\text{Nf} \) is a discrete category. Hence our coherence result really establishes that \(\text{nf} \) and \(\text{emb} \) provide an adjunction between \(\text{Tm} \) and \(\text{Nf} \).

In fact, much more can be proved. As already mentioned above, the category \(\text{Nf} \) is strictly monoidal. The unit is \(J \) (the empty list) and the tensor is \(\boxdot \) (concatenation of lists). More, it is the free strictly monoidal category over \(\text{Var} \). The functors \(\text{Tm} \rightarrow \text{Nf} \) and \(\text{emb} : \text{Nf} \rightarrow \text{Tm} \) are lax skew-monoidal. Further, the unit and (trivially) the counit are lax skew-monoidal too, so the adjunction between \(\text{Tm} \) and \(\text{Nf} \) is a lax skew-monoidal adjunction. The Agda development has the full proofs.

Also, I have downplayed here a further fact (which the proof however relies on implicitly) that the adjunction between \(\text{Tm} \) and \(\text{Nf} \) factors through the discrete functor category \([\text{Nf}, \text{Nf}] \).
Equality of normal forms in Agda My development makes heavy use of equality reasoning on normal forms. Notice in particular that the statements of Propositions 4–6 are well-formed only since Propositions 1-3 (stating equalities of normal forms) hold.

In the Agda formalization, based on intensional type theory, I model equality of normal forms with propositional equality (the identity type) on Nf. In the sense of the Agda development, the maps of Nf are exactly proofs of equality propositions $N \equiv N'$. In particular, identity is refl and composition is trans.

Discreteness is the uniqueness of identity proofs principle. A consequence of this is that, if N and N' are equal only propositionally with a proof p, and not definitionally, then we cannot form the proposition $f \equiv g$ for two map expressions $f : A \Rightarrow \text{emb} \ N$ and $g : A \Rightarrow \text{emb} \ N'$. What is well-formed is $\text{subst}(A \Rightarrow \text{emb} \ - \) \ P \ f \ = \ g$. For example, one Agda formulation of Proposition 6 could be

$$\Pi f : A \Rightarrow \text{emb} \ N. \ \text{subst}(A \Rightarrow \text{emb} \ - \) \ (\text{fnfemb} \ f) \ (\text{nm} \ A) \ = \ f$$

where fnfemb is the proof of Proposition 3, i.e., of $\Pi f : A \Rightarrow \text{emb} \ N. \ \text{nf} \ A \ \equiv \ N$, the left transpose operation of the adjunction between nf and emb.

Working with subst (or alternatives, like with and pattern-matching on propositional equality proofs, or rewrite) is tedious.

I was therefore relieved to find that, for this project, there is a neat alternative. Substitution for N in the type $A \Rightarrow \text{emb} \ N$ of a map expression f based on $p : N \equiv N'$ can be replaced by postcomposition of f with $\text{femb} \ p : \text{emb} \ N \Rightarrow \text{emb} \ N'$ where

$$\text{femb} \ p = \text{subst}(\text{emb} \ N \Rightarrow \text{emb} \ - \) \ p \ (\text{id} \ \{\text{emb} \ N\})$$

is the identity map expression on $\text{emb} \ N$ with its codomain “adjusted” to $\text{emb} \ N'$.

For any $f : A \Rightarrow \text{emb} \ N$ and $p : N \equiv N'$, it is the case that $\text{femb} \ p \circ f = \text{subst}(A \Rightarrow \text{emb} \ - \) \ P \ f$.

In particular, Proposition 6 can say,

$$\Pi f : A \Rightarrow \text{emb} \ N. \ \text{femb} \ (\text{fnfemb} \ f) \circ \text{nm} \ A \ = \ f$$

An additional advantage is that the map mapping part of the functor emb from Nf to Tm, which is otherwise obscured in the Agda formalization, becomes manifest. For example, Proposition 6 explicitly obtains the form “$R \ f^\dagger \circ \eta = f$”, in which we immediately recognize one of the adjunction laws.

4 Related work

Skew-monoidal categories were first studied as such by Szlachányi [16] in the context of structures for quantum computing. They immediately attracted the interest of Lack, Street, Buckley and Garner [10, 11, 5]. Lack and Street [11] proved a coherence theorem, which is different from the one here: they give a necessary and sufficient condition for equality two parallel maps of the free skew-monoidal category.

I first met a skew-monoidal category in my work with Altenkirch and Chapman [1] on relative monads: we noticed and made use of the skew-monoidal structure (non-endo)-functor categories. The context categories of Blute, Cockett and Seely [4] have the skew-monoidal category data and laws as part of the structure.

Some other weakened versions of monoidal categories with the unitors and associator not isomorphisms are the pseudocategories of Burroni [6] (like left skew-monoidal categories but with λ “expanding”) and Grandis d-lax 2-categories [8] (α “associating to the left”).
Laplaza [12] studied coherence for a version of semimonoidal categories with associativity not an isomorphism in the 1970s.

Coherence is generally related to equational reasoning and through that to term rewriting. Beke [2] considered replacing the question of uniqueness of equality proofs (equality of parallel maps in categories with isomorphisms only) with uniqueness of (normalizing) rewrites of maps (equality of parallel maps in a more general setting). He also asked whether coherence could be proved for structures like skew-monoidal categories.

5 Conclusion and future work

My main conclusion is the same as Beke’s [2]: for skew-structured categories (with natural transformations instead of natural isomorphisms), coherence is not about uniqueness of equality proofs in an equational theory, but about uniqueness of rewriting (typically normalization) proofs in a rewrite system. A skew coherence theorem can give a new insight into the proof of the corresponding non-skew theorem. In my case, I realized I could heavily build on the proof of Beylin and Dybjer [3] of coherence for monoidal categories. It literally felt that all of my proof was already present in theirs, only the theorem was missing!

My next goal is to formulate and prove a similar coherence theorem for skew-closed categories of Street [15], a skew version of Eilenberg and Kelly’s (non-monoidal) closed categories [7]. A coherence theorem for closed categories was obtained by Laplaza [13]. Like in this paper, I aim at a proof formalized in Agda. Coherence proofs tend to have a conceptually interesting high-level structure, but underneath they involve many tedious uninspiring case distinctions; it is more than easy to make mistakes.

Acknowledgements

I thank my anonymous reviewers for their useful comments.

This research was supported by the ERDF funded Estonian CoE project EXCS and ICT National Programme project “Coinduction”, the Estonian Science Foundation grant no. 9475 and the Estonian Ministry of Education and Research target-financed research theme no. 0140007s12.

References

[1] T. Altenkirch, J. Chapman & T. Uustalu (2010): Monads need not be endofunctors. In L. Ong, ed.: Proc. of 13th Int. Conf. on Foundations of Software Science and Computation Structures, FoSSaCS 2010 (Paphos, March 2010), Lect. Notes in Comput. Sci. 6014, Springer, 2010, pp. 297–311, doi: 10.1007/978-3-642-12032-9_21

[2] T. Beke (2011): Categorification, term rewriting and the Knuth-Bendix procedure. J. of Pure and Appl. Alg. 215(5), pp. 728–740, doi: 10.1016/j.jpaa.2010.06.019

[3] I. Beylin & P. Dybjer (1996): Extracting a proof of coherence for monoidal categories from a proof of normalization for monoids. In S. Berardi & M. Coppo, eds.: Selected Papers from Int. Wksh. on Types for Proofs and Programs, TYPES ’95 (Torino, June 1995), Lect. Notes in Comput. Sci. 1158, Springer, Berlin, pp. 47–61, doi: 10.1007/3-540-61780-9_61

[4] R. F. Blute, J. R. G. B. Cockett & R. A. G. Seely (1997): Categories for computation in context and unified logic. J. of Pure and Appl. Alg. 116(1–3), pp. 49–98, doi: 10.1016/s0022-4049(96)00162-4

[5] M. Buckley, R. Garner, S. Lack & R. Street (2013): Skew-monoidal categories and the Catalan simplicial set. arXiv preprint arXiv:1307.0265. Available at http://arxiv.org/abs/1307.0265

[6] M. M. Campbell & P. Dybjer (2005): A category-theoretic account of functional programming. In G. Dowek, ed.: Proc. of 13th Conf. on Theoretical Aspects of Computer Software, TACAS 2005 (San Francisco, March 2005), Lect. Notes in Comput. Sci. 3440, Springer, 2005, pp. 6–23, doi: 10.1007/11394905_2

[7] M. M. Campbell & P. Dybjer (2006): A category-theoretic account of functional programming. In C. Talcott, ed.: Proc. of 6th Int. Conf. on Mathematics of Program Construction, MPC 2006 (Paris, June 2006), Lect. Notes in Comput. Sci. 4090, Springer, 2006, pp. 6–23, doi: 10.1007/11758238_2

[8] M. M. Campbell & P. Dybjer (2007): A category-theoretic account of functional programming. In D. Deneux & C. Talcott, eds.: Proc. of Int. Conf. on Principles of Knowledge Representation and Reasoning, KR 2007 (Ann Arbor, July 2007), AAAI Press, 2007, pp. 60–70, doi: 10.1613/jkm.3519

[9] M. M. Campbell & P. Dybjer (2008): A category-theoretic account of functional programming. In M. Bidoit & C. Kirchner, eds.: Proc. of Int. Conf. on New Trends in Programming Methodologies, NPM 2008 (Montreal, June 2008), Lect. Notes in Comput. Sci. 4947, Springer, 2008, pp. 291–300, doi: 10.1007/978-3-540-69252-9_31

[10] M. M. Campbell & P. Dybjer (2009): A category-theoretic account of functional programming. In T. Sato, ed.: Proc. of 2nd Intl. Conf. on Applications of Formal Methods,’s in Software Engineering, FMSE 2009 (Tokyo, September 2009), Lect. Notes in Comput. Sci. 5855, Springer, 2009, pp. 45–52, doi: 10.1007/978-3-642-04449-7_5

[11] M. M. Campbell & P. Dybjer (2010): A category-theoretic account of functional programming. In A. D. Gordon, ed.: Proc. of 15th Int. Conf. on Practice and Theory in the Static Analysis, PATA 2010 (Girona, October 2010), Lect. Notes in Comput. Sci. 6453, Springer, 2010, pp. 174–185, doi: 10.1007/978-3-642-16459-1_12

[12] M. M. Campbell & P. Dybjer (2011): A category-theoretic account of functional programming. In J. P. Bowen & M. J. Odersky, eds.: Proc. of 4th Int. Conf. on Static Analysis, SAS 2011 (Nimberg, August 2011), Lect. Notes in Comput. Sci. 6887, Springer, 2011, pp. 323–340, doi: 10.1007/978-3-642-22795-6_21

[13] M. M. Campbell & P. Dybjer (2012): A category-theoretic account of functional programming. In B. Beckert & C. Drossel, eds.: Proc. of 10th Int. Conf. on Mathematics of Program Construction, MPC 2012 (London, June 2012), Lect. Notes in Comput. Sci. 7381, Springer, 2012, pp. 42–62, doi: 10.1007/978-3-642-31109-9_3

[14] M. M. Campbell & P. Dybjer (2013): A category-theoretic account of functional programming. In M. Bidoit, ed.: Proc. of 19th Conf. on Principles of Knowledge Representation and Reasoning, KR 2013 (Busan, May 2013), AAAI Press, 2013, pp. 309–311, doi: 10.5555/2495624.2495660

[15] M. M. Campbell & P. Dybjer (2014): A category-theoretic account of functional programming. In D. Deneux & C. Kirchner, eds.: Proc. of Int. Conf. on New Trends in Programming Methodologies, NPM 2014 (Atlanta, May 2014), Lect. Notes in Comput. Sci. 8419, Springer, 2014, pp. 291–300, doi: 10.1007/978-3-319-05105-8_31
[6] A. Burroni (1971): *T-catégories (catégories dans un triple)*. Cahiers de topologie et géométrie différentielle catégoriques 12(3), pp. 215–321. Available at http://www.numdam.org/item?id=CTGDC_1971__12_3_215_0.

[7] S. Eilenberg & M. Kelly (1966): *Closed categories*. In S. Eilenberg, D. K. Harrison, S. Mac Lane & H. Röhrl, eds.: *Proc. of Conf. on Categorical Algebra (La Jolla, 1965)*, pp. 421–562, doi: 10.1007/978-3-642-99902-4_22.

[8] M. Grandis (2006): *Lax 2-categories and directed homotopy*. Cahiers de topologie et géométrie différentielle catégoriques 47(2), pp. 107–128. Available at http://www.numdam.org/item?id=CTGDC_2006__47_2_107_0.

[9] G. M. Kelly (1964): *On MacLane’s conditions for coherence of natural associativities, commutativities, etc.* J. of Alg. 1(4), pp. 397–402, doi: 10.1016/0021-8693(64)90018-3.

[10] S. Lack & R. Street (2012): *Skew monoidales, skew warpings and quantum categories*. Theory and Appl. of Categ. 26, pp. 385–402. Available at http://www.tac.mta.ca/tac/volumes/26/15/26-15abs.html.

[11] S. Lack & R. Street (2013): *Triangulations, orientals, and skew monoidal categories*. arXiv preprint arXiv:1302.4488. Available at http://arxiv.org/abs/1302.4488.

[12] M. L. Laplaza (1972): *Coherence for associativity not an isomorphism*. J. of Pure and Appl. Alg. 2(2), pp. 107–120, doi: 10.1016/0022-4049(72)90016-3.

[13] M. L. Laplaza (1977): *Coherence in nonmonoidal closed categories*. Trans. of Amer. Math. Soc. 230, pp. 293–311, doi: 10.1090/s0002-9947-1977-0444404-9.

[14] S. Mac Lane (1963): *Natural associativity and commutativity*. Rice Univ. Stud. 49(4), pp. 28–46. Available at http://hdl.handle.net/1911/62865.

[15] R. Street (2013): *Skew-closed categories*. J. of Pure and Appl. Alg. 217(6), pp. 973–988, doi: 10.1016/j.jpaa.2012.09.020.

[16] K. Szlachányi (2012): *Skew-monoidal categories and bialgebroids*. Adv. in Math. 231(3–4), pp. 1694–1730, doi: 10.1016/j.aim.2012.06.027.