DERIVING SOME PROPERTIES OF STANLEY-REISNER RINGS FROM THEIR SQUAREFREE ZERO-DIVISOR GRAPHS

Ashkan Nikseresht

Received: 9 December 2020; Revised: 9 June 2021; Accepted: 11 June 2021
Communicated by John D. LaGrange

Abstract. Let Δ be a simplicial complex, \(I_\Delta \) its Stanley-Reisner ideal and \(R = K[\Delta] \) its Stanley-Reisner ring over a field \(K \). In 2018, the author introduced the squarefree zero-divisor graph of \(R \), denoted by \(\Gamma_{sf}(R) \), and proved that if \(\Delta \) and \(\Delta' \) are two simplicial complexes, then the graphs \(\Gamma_{sf}(K[\Delta]) \) and \(\Gamma_{sf}(K[\Delta']) \) are isomorphic if and only if the rings \(K[\Delta] \) and \(K[\Delta'] \) are isomorphic. Here we derive some algebraic properties of \(R \) using combinatorial properties of \(\Gamma_{sf}(R) \). In particular, we state combinatorial conditions on \(\Gamma_{sf}(R) \) which are necessary or sufficient for \(R \) to be Cohen-Macaulay. Moreover, we investigate when \(\Gamma_{sf}(R) \) is in some well-known classes of graphs and show that in these cases, \(I_\Delta \) has a linear resolution or is componentwise linear. Also we study the diameter and girth of \(\Gamma_{sf}(R) \) and their algebraic interpretations.

Mathematics Subject Classification (2020): 13F55, 13C70, 05C25, 05E40
Keywords: Squarefree monomial ideal, simplicial complex, squarefree zero-divisor graph, Cohen-Macaulay ring, linear resolution

Ashkan Nikseresht
Department of Mathematics
College of Sciences
Shiraz University
Shiraz, 71457-13565, Iran
e-mail: ashkan_nikseresht@yahoo.com