CPP2-p16MIS treatment–induced colon carcinoma cell death in vitro and prolonged lifespan of tumor-bearing mice

Lifeng Wang†, Haijin Chen†, Jinlong Yu*, Xiaohua Lin, Jia Qi, Chunhui Cui, Lang Xie and Shuxin Huang

Abstract

Background: Cell-penetrating peptides (CPPs) are a research hotspot due to their noninvasive delivery ability. Among the identified CPPs, the TAT and R8 peptides have been preferentially applied to transduction into different cells. However, this process is nonselective among various cells. Recent research suggested that CPP2 could selectively penetrate human colorectal cancer (CRC) cells.

Methods: Using in vitro experiments, the mean fluorescence intensity of fluorescein isothiocyanate–labeled CPPs (CPPs–FITC) incubated with different cell lines was compared to corroborate the colon tumor targeting ability of CPP2. The targeting ability of CPP2 was determined in the same way in tumor-bearing mice. We synthesized antitumor peptides by fusing CPP2 to the minimal inhibitory sequence of p16 (p16MIS), which had the ability to restore the function of lost p16, the expression of which was absent in tumor cell lines of various origins. The antitumor effect of the combined peptide was tested in both CRC cell lines and tumor-bearing mice.

Results: In each CRC cell line, the mean fluorescence intensity of CPP2–FITC was higher than that of the TAT–FITC (p < 0.001) and R8–FITC (p < 0.001) groups. CPP2–p16MIS, the targeting carrier, showed a higher antitumor response in the in vitro cell research. CPP2–p16MIS showed a prolonged mean lifespan of tumor-bearing mice, further characterizing its role in specific tumor-targeting ability in vivo. Survival analysis showed that the mice treated with CPP2–p16MIS had significantly longer survival than the mice treated with phosphate-buffered saline (p < 0.05) or those treated with control peptides, including the CPP2 (p < 0.05) and p16MIS (p < 0.05) groups.

Conclusion: CPP2 could more selectively penetrate CRC cells than TAT or R8 as well as effectively deliver the p16MIS to the tumor.

Keywords: Cell-penetrating peptides, Colon cancer, Targeting delivery, CPP2, Molecular therapy

Background

Peptides that consist of several cellular or viral proteins were recently determined able to readily penetrate cellular plasma membranes. Because of the specialty of noninvasive and negligibly cytotoxic transport through macropinocytosis and/or endocytosis, they were named cell-penetrating peptides (CPPs) [1, 2]. Accordingly, CPPs have significant biomedical potential as ideal molecular delivery agents. To date, CPP sequences have been used to generate CPP–molecular fusion, leading to the development of cell-permeable peptides/proteins [3], nucleic acids [4], small interfering RNAs [5], peptide nucleic acids [6], small-molecule therapeutics [7], quantum dots [8], and magnetic resonance imaging contrast agents [9]. For example, TAT peptide, one of the earliest identified CPPs, has been heavily utilized for its high solubility and diverse target range [10, 11]. The R8 peptide could also non-selectively penetrate all neoplastic and non-neoplastic cells. For these reasons, here we used TAT and R8 as non-selectively permeable CPP controls.

Although CPPs have been widely used to enhance the intracellular delivery of various cargoes and nanoparticles [12–14], the poor selection between neoplastic and

* Correspondence: yujinlong640506@163.com
† Equal contributors
1 Department of General Surgery, Zhu Jiang Hospital of Southern Medical University, Guang Zhou, China
Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
non-neoplastic cells restricted the in vivo application of the CPPs identified to date [15]. CPP cell specificity is especially important for cancer therapy to minimize side effects on normal cells [16]. Therefore, the development of non-toxic, cancer-specific CPPs for effective cancer treatments is greatly needed. Kondo, E et al. [17] recently identified several tumor lineage–homing CPPs, among which CPP2 could more easily penetrate LoVo human colon adenocarcinoma cells than other tumor cell lines. To gain insight into the targeting ability of CPP2 in CRC, HCT116, SW480, and HL-7702 cells were used for comparison with LoVo cells in the in vitro experiments.

Moreover, to investigate whether the in vitro findings were consistent with in vivo findings, fluorescence isothiocyanate (FITC)-labeled CPP delivery was examined in a mouse model of xenograft human colon tumor cells. We found that it was possible for CPP2 to target colon tumor cells and investigated its potential use in peptide-based molecule delivery systems. We subsequently attempted to develop a colon tumor–selective molecular delivery system by leveraging CPP2. Many studies have shown that p16 mRNA expression was absent in tumor cell lines of various origins. Loss of p16 expression was also verified in many different tumors [18–20]. Based on these results, we synthetized an antitumor peptide by fusing CPP2 to the minimal inhibitory sequence of p16 (p16MIS), which had the ability to restore the lost p16 function via the GPG sequence [21–23], and generated a CPP2-fusion peptide for targeting CRC cells.

Methods

Materials

The peptides used in this study were purchased from Shanghai GL Biochem Corporation Ltd. (Shanghai, China). RPMI 1640 medium, trypsin-ethylenediaminetetraacetic acid, fetal bovine serum (FBS), penicillin, and streptomycin were purchased from Gibco Life Technologies (Grand Island, NY, USA), while 4’,6-diamidino-2-phenylindole (DAPI) was obtained from Roche (Basel, Switzerland). The experiments were performed in thirty-two 4-week-old BALB/c-nude mice provided by the Animal Experimental Center of Southern Medical University. The experimental animals were selected through ethical approval. The study protocol was approved by the ethics committee of Zhujiang hospital of Southern Medical University.

Cell lines

HCT116, SW480, and LoVo cells were obtained from the American Type Culture Collection, which performed the cell line authentication using DNA fingerprinting by short tandem repeat analysis. The HL-7702 normal human hepatocyte cell line was purchased from cell bank of the Chinese Academy of Sciences (Shanghai, China), which performed cell line authentication using the DNA fingerprinting method by monitoring the DXS52, Apo-B, MD17S5, and D2S44 primers.

Cell viability

Each CPP’s toxicity in each cell line was determined by trypan blue dye exclusion. The reduction in viable cell number was examined at the indicated intervals. Cells were loaded on an automatic cell counter (IC1000; Countstar, Shanghai, China), and viable cell number was assessed according to trypan blue dye exclusion.

Peptide synthesis

The amino acid peptide sequences were as follows: CPP2, DSLKSYWYLQKFSWR; TAT, GRKKRRQRRRPF; R8, RRRRRRRR; P16MIS, GPGFLDTLVHLHRGPPRRR; and CPP2-p16MIS, DSLKSYWYLQKFSWRGPGFLDTLVHLRGPPRRR. Human hepatocyte cell line was purchased from cell bank of the Chinese Academy of Sciences (Shanghai, China), which performed cell line authentication using DNA fingerprinting by monitoring the DXS52, Apo-B, MD17S5, and D2S44 primers.

Cell penetration assay

The specific targeting ability of CPP2 was found in LoVo cells as previously described [17]. However, it remains unclear whether CPP2 still has this selective permeability in other tumor cell lines of the same origin. To further confirm this point in colon tumor cell lines, several tumor lines, including SW480 and HCT116 cells, were analyzed in this experiment. HL-7702 and LoVo cells were incubated as negative and positive controls, respectively, while TAT and R8 were used for comparison with CPP2.

Each cell line was seeded into six-well plates at 2.0 × 10^5 per well in triplicate and grown in 2.5 mL of growth medium (90 % RPMI 1640 medium, 10 % FBS) before the CPP penetration test. The cells were incubated at 37 °C for 24 h and the permeation tests were conducted...
at approximately 80% confluence. The culture medium was replaced with 2.5 mL of mixed growth medium containing 0.3 μM FITC-labeled peptides as previously described. The FITC-labeled peptides were first dissolved in phosphate-buffered saline (PBS) and then added to the RPMI 1640 medium with PBS. The cells were incubated with complexes for 12 h at 37 °C, followed by sufficient washing with PBS to clean the extracellular FITC-CPPs. The cell nucleus was dyed with DAPI which was then discarded, and the cells were washed thoroughly with PBS. Each cell line was examined under an inverted fluorescence microscope (IX71; OLYMPUS, Tokyo, Japan). Five areas were chosen and photographed randomly under the microscopic vision fields (Fig. 1a). Mean fluorescence intensity (MFI) and the positive area of each picture was calculated by using Image J software (National Institutes of Health, Maryland, USA). “Positive rate” here means fluorescein isothiocyanate (FITC) area/4',6-diamidino-2-phenylindole (DAPI) area in the figure.

**In vivo fluorescence detection**
The in vivo distribution of three FITC-labeled CPPs was examined 3 h after intraperitoneal injection into tumor-bearing mice. The tumor mass growing on the nude mice was examined using an in vivo imaging system (Kodak in Vivo Imaging System F; Rochester, New York, USA) to detect the accumulation of the FITC-labeled peptides.

**Survival analysis**
Twenty 5-week-old male mice inoculated with SW480 cells were randomly divided into four groups. Two weeks after the inoculation, CPP2-p16MIS, CPP2, p16MIS, and PBS were abdominally administered accordingly. The peptide treatment process was divided into three courses with a 3-day interval between each. In each course, CPP2-p16MIS and its counterparts were administered intraperitoneally every 8 h into the corresponding mice at a dosage of 100 μg per mouse.

**Statistical analysis**
The data are shown as x ± s. SPSS 21.0 statistical software was used to process the data using one-way analysis of variance, while Tukey’s honest significant differences method was applied to multiple compare among groups and Kaplan-Meier analysis was used for the survival analysis.

**Results**

**In vitro fluorescence peptide penetration assay**
The intracellular incorporation efficiency of each CPP was semi-quantitatively measured by the detection of mean fluorescence intensity against the background and positive rate. Comparing the mean fluorescence intensities and positive rates of three CRC cell lines, we concluded that CPP2 a higher MFI and positive rate than both R8 and TAT (p < 0.05). Comparison of the MFI in HL-7702 revealed that neither CPP2 vs R8 nor CPP2 vs TAT showed any statistically significant difference (Fig. 1c). Figures 1b even showed the positive rate of CPP2 in HL-7702 is not higher than R8 (p > 0.05) and lower than TAT (p < 0.05). The experimental findings indicated that CPP2 was preferentially internalized by colon adenocarcinoma cells, while R8 and TAT permeated tumor cells relatively poorly by comparison and were preferentially taken in by HL-7702 (Fig. 1a–c).

**In vitro antitumor function test**
Antitumor peptides (CPP2-p16MIS) were designed by fusing CPP2, a cell-penetrating domain, to the p16MIS to restore the lost p16 function via the GPG sequence. We explored the anti-tumor function of the synthetic peptides in CRC cells by comparison with p16MIS and CPP2. In three repeat experiments, CPP2-p16MIS had higher cytocidal effects than both CPP2 (p < 0.05) and p16MIS (p < 0.05). CRC cells treated with CPP2-p16MIS showed maximal cytocidal effects (approximately 45% of the cells were dead 24 h after transduction with the 10 μM peptide). However, the efficiency of p16MIS is greatly reduced since its lacks the CPP2 portion. As a transduction domain, CPP2 itself did not demonstrate cellular toxicity at the same dose. As for the non-neoplastic HL-7702 cells, none of the three peptides significantly affected their viability at tumor cell suppression doses. This might be correlated with the fact that the p16 protein could be endogenously expressed by HL-7702. Following a single treatment, approximately 63% of the cells treated by 10 μM CPP2-p16MIS died at 48 h post-introduction, so we speculated the peptide’s effect might maintain for at least a few days (Fig. 2a). In a nutshell, the results showed that the CPP2-p16MIS peptide, which combined the merits of CPP2 and p16MIS, could successfully permeate CRC cells and induce CRC cell apoptosis. Moreover, these data also suggest that CPP2 would elevate the antitumor efficiency of p16MIS in particular tumor lineages.

**In vivo potential peptide complex application research**
To further explore the potential in vivo application of these peptides, we primarily compared the targeting ability of the peptides in orthotopically transplanted models using athymic nude mice. In the first phase, twelve 4-week-old male mice were randomly divided into three groups by inoculated cell type. Next, each nude mouse was subcutaneously inoculated with 5 × 10⁶ CRC cells. Fourteen days post-transplant, the in vivo distribution of three FITC-labeled CPPs was examined 3 h after injection. The tumor mass growing on each nude
Fig. 1 (See legend on next page.)
mouse was detected under the in vivo imaging system because of the accumulation of the FITC peptides. In the model mice injected with FITC-CPPs, the fluorescent signal from neoplasms derived from FITC-labeled CPP2 was more intense than that of R8 or TAT (p < 0.05). Significantly different from CPP2 (p ≤ 0.05); b significantly different from R8 (p ≤ 0.05). Comparisons of CPP2 vs R8 and CPP2 vs TAT showed no statistical significance in HL-7702 cells (p > 0.05). Significantly different from CPP2 (p ≤ 0.05); c significantly different from R8 (p ≤ 0.05).

Discussion and conclusion
Here we described a kind of CRC-targeting peptide. CPP2 has the potential to preferentially penetrate CRC cells. The permeable process shows no significant cytotoxicity, which means that CPP2 has the capacity to be used as an in vivo molecular vehicle. In vivo research, CPP2 did have the ability to preferentially accumulate in colonic tumor lesions in sharp contrast to the normal organs. A well studied protein p16, which had an antitumor potential, here were used to create an antitumor peptides with CPP2. Compared with CPP2 and p16MIS, CPP2-p16MIS has the advantages of non-cytotoxic delivery as well as antitumor properties in targeted CRC therapy which was confirmed in cell experiments. CPPs as an emerging biomedical delivery system have been...
Fig. 3  

(a) In vivo fluorescence imaging of three representative cell-penetrating peptides (CPPs) and phosphate-buffered saline are displayed by tumor cell line 3 h after the injection of 300 μg of CPPs into nude mice. The tumor mass (red arrow) demonstrated that CPP2 had high selectivity for colorectal cancer cells. R8 and TAT were employed here as representative non-selectively permeable CPP. Green on black and rainbow were the two different capture modes. In the rainbow mode, signal intensity here also meant fluorescence intensity, which was reflected by diverse colors: red > orange > yellow > green > blue (pictured at right).

(b) The tumor mass and organs were excised 3 h after the intraperitoneal injection of the CPPs. The heart, liver, and spleen are arranged in the first row, the lungs, kidneys, and tumor mass are shown in the second row, and a part of the small intestine is shown in the last row. Fluorescence imaging of a variety of organs further verified the in vivo imaging results.
highly anticipated since they can translocate across biological membranes and are capable of transporting their cargo inside live cells with minimal invasiveness [24]. HIV-1 transcriptional activator TAT protein [10], the Antennapedia homeodomain of *Drosophila* [25], and poly-arginine (*n* = 4–16) [22, 26] have been the most widely studied CPPs with respect to enhancing the intracellular delivery of CPP-conjugated molecules. Non-selective internalization of CPPs into various cells is the limiting factor for cell-type or tissue-specific targeting applications such as cancer treatments [11]. Therefore, the development of a target-specific drug delivery system is a primary concern for improving the therapeutic efficacy of drugs while reducing their effective doses and side effects [27]. Van Duijnghoven et al. [28] found that radiolabeled activatable CPPs can detect matrix metalloproteinase activity within tumors. Some studies also found a few other carriers for drug delivery [27, 29]. Accordingly, many more experiments are needed to corroborate some special CPPs’ ultimate targeting ability. Here we described the CPP2 structure and demonstrated its unique function of targeting CRC cells, but its mechanism remains unknown. In vivo experiments showed mice injected with TAT-FITC and R8-FITC mainly had hotspots around their lungs. This phenomenon might be correlated with the physical structure of the lungs. Abundant CPPs absorbed into the blood gathered in the lung area because of the capillary network that caused the blood to flow relatively slowly. In addition, we also observed a lot of CPP uptake in the liver in HCT116 inoculated mice. Whether different CPPs had different metabolic time in liver still needs more study. The special ability of CPP2 might offer a new thought to CRC diagnosis and treatment. It may also lead to targeted anticancer therapy in the near future, but the only way we will realize this beautiful dream is for everyone to put their shoulders to the wheel.

Abbreviations
CPPs, cell-penetrating peptides; CRC, colorectal cancer; CPPs-FITC, fluorescein isothiocyanate–labeled CPPs; DAPI, 4′,6-diamidino-2-phenylindole; FBS, fetal bovine serum; p16MIS, minimal inhibitory sequence of p16; PBS, phosphate-buffered saline

Acknowledgments
We thank Shanghai GL Biochem Corporation Ltd. (Shanghai, China) for providing all of the peptides used in the experiment, Eisaku Kondo et al. for their valuable research achievements that provided a foundation for our research, and Zhao Liang (Pathology Department, Southern Medical University, Guangzhou, China) for providing useful discussions.

Funding
This project supported by the Natural Science Foundation of Guangdong Province, China (Grant No.1015105150100026). The design of the study and collection, analysis and interpretation of data and the manuscript writing were independently completed by the authors of this paper.

Availability of data and materials
The datasets supporting the conclusions of this article are included within the article and its additional files.

Authors’ contributions
HC and LW together participated in the design of the study and performed the statistical analysis. JY and LW performed the experimental work and drafted the paper. JQ and XL participated in analysis of data and revision of the manuscript. CC and LX provided some of reagents and chemicals to conduct the experiments and provided the data analysis tools. HC and SH collected data and revised the manuscript. All authors contributed to revise the manuscript and approved it. HC and LW contributed equally to this work and should be considered co-first authors.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The experiments were performed in thirty-two 4-week-old BALB/c-nude mice provided by the Animal Experimental Center of Southern Medical University. The experimental animals were selected through ethical approval. The study protocol was approved by the ethics committee of Zhujiang hospital of Southern Medical University.

Author details
1Department of General Surgery, Zhu Jiang Hospital of Southern Medical University, Guang Zhou, China. 2Department of Ophthalmology, Zhu Jiang Hospital of Southern Medical University, Guang Zhou, China.

Received: 23 January 2016 Accepted: 4 July 2016
Published online: 02 August 2016
21. Fahraeus R, Lain S, Ball KL, Lane DP. Characterization of the cyclin-dependent
kinase inhibitory domain of the INK4 family as a model for a synthetic tumour
suppressor molecule. Oncogene. 1998;16(5):587–96.

22. Kondo E, Seto M, Yoshikawa K, Yoshino T. Highly efficient delivery of p16
antitumor peptide into aggressive leukemia/lymphoma cells using a novel
transporter system. Mol Cancer Ther. 2004;3(12):1623–30.

23. Kondo E, Tanaka T, Miyake T, Ichikawa T, Hirai M, Adachi M, Yoshikawa K,
Ichimura K, Ohara N, Moriwa A, et al. Potent synergy of dual antitumor
peptides for growth suppression of human glioblastoma cell lines. Mol Cancer Ther.
2008;7(6):1461–71.

24. Lin Y, Zhang H, Liang J, Li K, Zhu W, Fu L, Wang F, Zheng X, Shi H, Wu S,
et al. Identification and characterization of alaphvirus M1 as a selective
oncolytic virus targeting ZAP-defective human cancers. Proc Natl Acad Sci
U S A. 2014;111(42):E4504–12.

25. Derossi D, Jollett AH, Chassing A, Prochiantz A. The third helix of the
Antennapedia homeodomain translocates through biological membranes.
J Biol Chem. 1994;269(14):10444–50.

26. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiyama Y.
Arginine-rich peptides. An abundant source of membrane-permeable
peptides having potential as carriers for intracellular protein delivery. J Biol
Chem. 2001;276(8):5836–40.

27. Lim KJ, Sung BH, Shin JR, Lee YW, da Kim J, Yang KS, Kim SC. A cancer
specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv
into cancer cells. PLoS One. 2013;8(6):e66084.

28. van Duijnhoven SM, Robillard MS, Nicolay K, Grilli H. Tumor targeting of
MWP-2/9 activatable cell-penetrating imaging probes is caused by
tumor-independent activation. J Nucl Med. 2011;52(2):279–86.

29. Tian H, Lin L, Chen J, Chen X, Park TG, Maruyama A, RG D targeting
hyaluronic acid coating system for PEI-PBLG polycation gene carriers.
J Control Release. 2011;155(1):47–53.