Self-rated and Medical Outcomes in the Women’s Health Initiative: The Aging Continuum, Health, Morbidity, Mortality

Robert Brunner*, Marcia L. Stefanick, Aaron K. Aragaki, Shirley A.A. Beresford, F. Allan Hubbell, Andrea LaCroix, Dorothy S. Lane, Stephen R. Rapp, Monika M. Safford, Nazmus Saquib, Nelson B. Watts and Nancy Fugate Woods

1University of Nevada School of Medicine, Reno, NV, USA
2Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, USA
3WHI Clinical Coordinating Center, Seattle, WA, USA
4University of Washington, Seattle, WA, USA
5University of California, Irvine, Chao Family Comprehensive Cancer Center, CA, USA
6Department of Psychiatry and Behavioral Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
7Department of Preventive Medicine, Stony Brook, New York, USA
8University of Alabama, Birmingham, AL, USA
9Prevention Research Center, School of Medicine, Stanford University, Stanford, CA, USA
10Mercy Health Osteoporosis and Bone Health Services, Cincinnati OH, USA
11Biobehavioral Nursing, University of Washington, Seattle, WA, USA

Abstract

Background: Self-rated health (SRH) predicts all-cause mortality in many studies; whereas, SRH has been inconsistently related to disease specific death, at least in part because often carefully documented cause of death is lacking.

Methods: Physician-adjudicated cardiovascular disease (CVD), cancer, and other outcomes were evaluated in the Women’s Health Initiative (WHI) multi-ethnic Observational Study (OS) cohort of 93,675 postmenopausal women, aged 50 to 79 years. SRH was assessed by the RAND36 at baseline and three years later.

Results: After adjusting for confounders, compared with women reporting excellent health, the risk of all-cause death among women reporting fair/poor health was significantly higher (HR=1.91, CI 1.68, 2.16) during a 7.6 year (1.6) follow-up, as were risks of death from CVD (HR=2.12, CI 1.65, 2.71) and from cancer (HR=1.40, CI 1.15, 1.69) but not accidental death (HR=1.39, CI 0.69, 2.76). Compared with women whose scores did not change over the initial three years of follow-up, SRH that worsened significantly was associated with higher risk of all-cause (HR=2.06), CVD (HR=1.71) and cancer (HR=2.22) mortality; whereas, women with improved SRH had significantly lower all-cause, CVD and cancer mortality risks (HR: 0.78, 0.80, and 0.79, respectively).

Conclusions: Low SRH and a decrease in SRH over three years were strongly associated with increased risks of all-cause, CVD, cancer and other cause mortality after more than 7 years of follow-up in post-menopausal women. Lower SRH was also associated with incident CVD and cancer.

Keywords: Self-reported health; Women; Mortality

Introduction

When healthy or unhealthy individuals are asked to rate their current global health status (self-rated health: SRH), low SRH has significantly predicted all-cause mortality years later in many studies [1,2]. These findings hold even after adjustment for confounders. There are numerous replications of the SRH all-cause mortality link but links to specific disease mortality and morbidity have been inconsistent. For example, using the National Death Index, SRH was strongly associated with death due to diabetes, respiratory disorders and infections, but only moderately associated with deaths due to heart disease, stroke and cancer in one study [3] whereas, SRH predicted cancer mortality, but not death from stroke or heart disease [4]. By examining a range of disease-specific outcomes, in a very large cohort, this study may provide additional insight into as SRH as a precursor to incident disease.

As a large multi-ethnic, geographically diverse, and well-characterized cohort of nearly 94,000 women the Women’s Health Initiative (WHI) Observational Study (OS) provides physician adjudicated health outcomes including cause specific deaths. In addition, WHI has extensive demographic, health, physical and psychosocial measures. The present study aims to clarify the relationships of SRH with cardiovascular disease (CVD), cancer and “other” disease events and deaths. In WHI, assessment of SRH at baseline and follow-up in the cohort also allows examination of change in SRH, and predictors of SRH change. It is hypothesized that morbidity and mortality will have similar relationships to SRH and that SRH will predict endpoints occurring years later after adjustment for multiple, relevant variables. We also report mortality and morbidity relationships with the RAND36 general health scale (GHS), a composite score of five questions that includes SRH.

SRH is a commonly used measure, so it is important to have a thorough understanding of its behavior, its biases, and what exactly it measures. In the WHI cohort studies that included SRH showed that participants reporting fair or poor health were nearly 12 times as likely to meet frailty criteria as those reporting excellent health [5]. In the present analysis of WHI OS participants, SRH is examined as a
predictor of all-cause and disease-specific mortality and morbidity over a 7.6 year (s.d.=1.6) mean time span [6].

Methods

Study population

The Women’s Health Initiative (WHI) Observational Study (OS) enrolled 93,676 postmenopausal women, aged 50 to 79 years, between 1994 and 1998 [7]. Details of recruitment and baseline assessments have been previously described [8]. Enrollment in the OS required likely participation for at least 3 years, absence of “serious emotional problems, mental illness, or too much stress” [9] and written informed consent, as approved by each clinical centers’ Human Subjects Institutional Review Board. Less than 5% of participants (n=4452) had asked to stop follow-up or were lost to follow-up.

Assessment of Self-rated health

Measures of SRH are taken from the RAND36 [10], which have been shown to have high validity and reliability in older adults [11]. The first RAND36 item, “general self-rated health” was the primary predictor measure with the “General Health Subscale(GHS),” a combined score of 5 items that includes SRH (plus: sick easier than others, as healthy as anybody I know, expect my health to get worse, my health is excellent) was also analyzed.

Assessment of covariates and predictors

During screening (baseline) and follow-up visits three years later, cohort members completed standardized self-administered questionnaires providing information on demographics, family, reproductive and medical histories, smoking and alcohol use, personal habits, thoughts and feelings and recreational physical activity [12]. Specifically, we determined ethnicity, education, body mass index (BMI), hormone therapy (HT) use, disability (greater than one) in activities of daily living (ADL), natural parents still alive or age at death. Depressive symptoms were assessed by self-report using Burnum’s 8-item scale for depressive disorders (major depression and dysthymia) [13]. This scale combines 6 questions from the Center of Epidemiologic Studies Depression Scale (CES-D) about frequency of depressive symptoms from with 2 questions from the Diagnostic Interview Schedule about symptom duration. Because the distribution of scores was highly skewed, suggesting a bimodal distribution a cut point greater than or equal to 0.06 was used to dichotomize the continuous score [14]. Physical function scores (lowest function [0] to highest [100]) were calculated from the 10-iterAND36 physical functioning subscale. These questionnaires measured the number of chronic illnesses, and frequency of medical assessments (outside of the study) that included physical and eye exams, Pap smears, ECGs, blood pressure checks. During the baseline clinic visit and again three years later trained and certified Clinical Center staff performed anthropometric measurements. In this study, we examined white blood cell counts (WBC) from baseline blood specimens that were processed and preserved following established protocols.

Ascertainment of outcomes

Outcomes in this report cover an average of 7.6 years’ follow-up. Details of definitions, classifications of “outcomes” (diseases and causes of death), and methods of their ascertainment and documentation are published [15]. Outcomes were ascertained from questionnaires mailed annually to participants. Proxies were contacted only if participants did not respond to the mailed questionnaires or to follow-up telephone calls. This was often how death notification was obtained. Hospital records, laboratory and pathology results, death certificate information and autopsy reports were gathered according to protocol. In addition, WHI staff searched the National Death Index and obtained death certificates to determine cause of death.

Trained physician adjudicators at each site evaluated the complete information and made the decision on cause of death. These records were further evaluated and classified by Coordinating Center adjudicators with discrepancies resolved collaboratively.

Statistical analysis

Fewer than 1% of participants reported “poor” health, so we formed a combined category with the “fair” respondents to produce the primary exposure variable, baseline SRH, defined as excellent, very good, good or fair/poor health level. We analyzed baseline characteristics (age, ethnicity etc.) by level of SRH and provided age-adjusted p-values. SRH groups were further described by annualized health care utilization rates (physical and eye exams, Pap smears, ECGs, blood pressure checks). The primary statistical analysis of SRH effect was time from study enrollment to event based on the Cox regression model with time from enrollment in the OS as the time variable. Potential confounding was addressed by including age (linear), race/ethnicity, BMI (quintiles and linear), education, marital status, smoking status, alcohol consumption, menopausal hormone therapy (HT) use and depressive symptoms. Baseline hazard functions were allowed to vary by 5-year age groups, number of chronic diseases, disability, current health care provider, mammogram within 2 years of enrollment and physical functioning (quintiles). Our stratified Cox model aimed to control confounding as thoroughly as practical and ensure proportionality, without introducing sparse-data biases. We present hazard ratios (HR) and 95% confidence intervals from these Cox models and base statistical significance on a 1 degree-of-freedom test of trend. Change in SRH (year 3 minus baseline) was defined as worsened, no change, or improved. For SRH change analyses, time-to-event began at Year 3 and the Cox regression models included additional stratification on baseline SRH.

Three subgroup analyses were performed to determine whether associations of SRH and all-cause mortality were consistent across age groups, education levels, and race/ethnicity with statistical significance based on the test of interaction between SRH and these select subgroups. Additional analyses were conducted to further understand the mechanism underlying the association of SRH with mortality. Similar multivariable Cox regression models were used to determine whether incident medical events (CHD, stroke, invasive breast cancer, colorectal cancer, and hip fracture) were associated with SRH. As a post-hoc analysis, a nominal polychotomous logistic regression model with change in SRH (improve/same/worsen) as the response was regressed on change in weight and change in fruit/vegetable consumption with adjustment for age, race/ethnicity, education and height. It was hypothesized that improvements in both health behavior (e.g., consumption of fruits and vegetables) and objective measures (e.g., weight) would correspond to improved SRH.

All analyses were conducted using SAS software, version 9.2 (SAS Institute Inc, Cary, North Carolina). All statistical tests were 2-sided and P-value <0.05 was considered statistically significant.

Results

Baseline characteristics and SRH, as reported by 99% (N=93021) of OS women, which includes all variables in the analysis plan are shown...
	Fair/poor	Good	Very Good	Excellent	P-Value				
	N	%	N	%	N	%	N	%	<0.001
Ethnicity									
White	6106	67.2	23542	79.3	32871	87.2	15067	90.9	<0.001
Black	1620	17.8	3289	11.1	2071	5.5	561	3.4	
Hispanic	822	9.0	1252	4.2	1043	2.8	391	2.4	
American Indian	97	1.1	146	0.5	120	0.3	53	0.3	
Asian/Pacific Islander	259	2.8	1003	3.4	1070	2.8	331	2.0	
Unknown	188	2.1	437	1.5	509	1.4	173	1.0	
Education									<0.001
0-8 years	608	6.8	556	1.9	278	0.7	86	0.5	
Some high school	864	9.6	1348	4.6	820	2.2	217	1.3	
High school diploma/GED	1870	20.8	5766	19.6	5641	15.1	1730	10.5	
School after high school	3357	37.4	11546	39.2	13635	36.5	5169	31.4	
College degree or higher	2286	25.4	10217	34.7	17024	45.5	9251	56.2	
Body mass index (BMI), kg/m²									<0.001
<25	2198	24.5	9306	31.8	16636	44.6	9413	57.5	
25-<30	2716	30.2	10251	35.0	13129	35.2	5142	31.4	
>=30	4071	45.3	9732	33.2	7515	20.2	1817	11.1	
Marital status									<0.001
Never married	466	5.2	1489	5.0	1710	4.6	689	4.2	
Divorced / Separated	1868	20.7	4634	15.7	5490	14.6	2627	15.9	
Widowed	1942	21.5	5797	19.6	6125	16.3	2267	13.7	
Presently married/Living as married	4742	52.6	17608	59.6	24184	64.5	10936	66.2	
Smoking									<0.001
Never smoked	4426	49.7	15050	51.4	19111	51.3	8176	49.8	
Past smoker	3668	41.2	12103	41.3	16099	43.2	7449	45.4	
Current smoker	816	9.2	2128	7.3	2020	5.4	796	4.8	
Alcohol									<0.001
Non/past drinker	4736	52.6	10576	35.9	9202	24.6	3346	20.3	
<1 drink/week	2532	28.1	9832	33.4	12131	32.4	4761	28.9	
1-14 drinks/week	1503	16.7	8071	27.4	14299	38.2	7442	45.1	
>14 drinks/week	225	2.5	988	3.4	1846	4.9	952	5.8	
ADL disability (>=1 limitation)									<0.001
Yes	610	6.7	556	1.9	351	0.9	115	0.7	
HT use status									
Never used	4295	47.3	12519	42.2	14456	38.4	6412	38.7	<0.001
Past user	1566	17.2	4832	16.3	5367	14.3	2070	12.5	
Current user	3227	35.5	12291	41.5	17823	47.3	8082	48.8	
Number of chronic diseases									<0.001
= 0	542	6.0	4131	13.9	10340	27.4	7533	45.4	
= 1	1955	21.5	10096	34.0	15145	40.2	6238	37.6	
= 2	2916	32.1	9562	32.2	9213	24.4	2324	14.0	
= 3	2132	23.4	4376	14.7	2488	6.6	417	2.5	
= 4	1041	11.4	1204	4.1	440	1.2	59	0.4	
>=5	506	5.6	300	1.0	58	0.2	5	0.0	
Current health care provider									<0.001
Yes	8439	94.2	27935	95.1	35615	95.3	15375	93.6	
Mammogram in the last 2 years									<0.001
No	7061	78.5	23002	78.1	27709	74.0	11450	69.6	
Yes	1873	20.8	6301	21.4	9512	25.4	4931	30.0	
Don’t Know	57	0.6	134	0.5	199	0.5	77	0.5	
Age mother died									<0.001
<=60yrs	1372	20.0	3704	16.5	4016	14.8	1557	13.9	
60-69	1050	15.3	3348	14.9	3729	13.8	1524	13.6	
70-79	1786	26.0	5737	25.6	6822	25.2	2778	24.8	
80-89yrs	1932	28.2	6814	30.4	8710	32.1	3693	32.9	
>=90yrs	717	10.5	2793	12.5	3842	14.2	1657	14.8	
Natural father still alive									<0.001
Participants with better SRH were slightly younger (p<0.001), with a mean age of 62.1 years (excellent health) and 64.2 with fair or poor SRH. SRH was significantly associated with ethnicity. Visual examination of these ethnicity data suggested that Black and Hispanic women had proportionally more fair/poor than excellent SRH responses than did White women. Current smoking and alcohol abstinence both tended to be more frequent among those reporting fair/poor SRH than excellent SRH. Women with poorer SRH reported more chronic illnesses and they had parents with shorter life spans (Table 1). There was a modest positive association between parents' age at death and SRH. There were large differences in self-reported chronic illnesses at baseline, i.e. only 6% of women reporting fair/poor health had no chronic illnesses compared with 45% of women reporting excellent health. Overall, a small number of participants reported having a disability that interfered with activities of daily living (ADL). However, less than 1% of women reporting very good and excellent health had ADL interference compared with 6% of women with fair/poor health. The RAND36 physical functioning and general health constructs (GHS) indicated large differences across SRH groups. Depressive symptoms, though uncommon, were associated with poorer SRH. White blood cell counts were also slightly higher with poorer SRH. Women with higher SRH completed more routine health care provider was similar and non-linear across SRH groups. Fair/poor SRH was associated with 13-15% lower rates of SRH responses than did White women. Current smoking and alcohol use, hormone therapy, disability, depression and BMI. After adjustment for these confounders, the risk of death among women reporting fair/poor health was nearly double that of women reporting excellent health over the average of 7.6 years' follow-up (HR = 1.91, 1.68, 2.16). The all-cause death rate did not differ significantly between “very good” and excellent SRH. Risk of CVD death was more than two-fold higher in women reporting fair/poor health, and cancer death was 40% higher. The “other” medical death category was nearly tripled with fair/poor SRH. Also, these deaths from causes other than CVD and cancer, in fully adjusted models, differed between very good and excellent SRH by 20%. Accidental death was not associated with SRH. In subgroup analyses, the association of SRH with all-cause mortality was not modified by race/ethnicity (p-int = 0.94), age (p-int = 0.13), or education (p-int = 0.53), and the risk associated with “fair/poor” SRH was similar among diverse groups. For example, the HR (95% CI), comparing fair/poor to excellent SRH was 1.81(1.64, 2.00) among Whites and 1.87(1.43, 2.43) among Blacks.

Results of analyses using the RAND36 General Health Subscale are shown in table 3b. The pattern of relationships with death was similar to that for the single SRH item, with lowest quintile and two lowest quintiles being significantly associated with all-cause, CVD, cancer and “other” mortality compared with the best health category, while accidental death was not significantly associated with SRH.

SRH was significantly associated with incident CHD, stroke and hip fractures with participants reporting “fair/poor” SRH experiencing approximately 50% higher risk of incident CHD, stroke, and hip fracture over the follow-up period compared with those reporting “excellent,” SRH with hazard ratios (95% CI) of 1.7 (1.38, 2.11), 1.46 (1.17,1.82), and 1.41 (1.06, 1.88), respectively. In contrast, SRH was not associated with invasive breast cancer or colorectal cancer (Table 4). The screening (baseline) surveys were repeated at year 3 of the study by 90% (n=82031) of women who were not lost to follow-up or death (n=91130). Results of analyses of difference score (i.e. the baseline score minus the score at year 3) categorized as improved, no change or worse, are presented in table 5a. Compared with women who did not change SRH over the three-year period, when SRH declined.

No	8118	90.3	26730	90.7	33601	89.7	14281	86.7
Yes	627	7.0	2170	7.4	3261	8.7	1944	11.8
Don't Know	246	2.8	557	1.9	596	1.6	243	1.5
Age father died							<0.001	
<60yrs	1816	23.2	5538	21.3	6342	19.3	2602	18.6
60-69	1728	22.0	5531	21.3	6874	20.9	2786	19.9
70-79	2221	28.4	7425	28.6	9322	28.4	4057	29.0
80-89yrs	1666	21.3	5857	22.6	8004	24.4	3521	25.2
>=90yrs	405	5.2	1615	6.2	2314	7.0	1004	7.2

Table 1: Baseline Characteristics by self-Rated Health at Baseline: Women’s Health Initiative Observational Study (n=93676).

1Test of association between self-rated health and baseline characteristic adjusted for age.
2Includes CHD (MI, angina, CABG/PTCA), CHF, stroke, treated diabetes, history of cancer, arthritis, hypertension (medication or high blood pressure). 2 or more falls 12 months prior to enrollment, emphysema, and hip fracture after age 55.
there was a two-fold increased risk of subsequent all-cause mortality (2.06 HR 1.89, 2.23) whereas improved scores lowered risk of death (0.78 HR, 0.70, 0.87). These relationships were statistically significant in fully adjusted models including baseline SRH score as a possible confounding variable. As with baseline SRH, accidental death was not associated with change in SRH. A post-hoc analysis demonstrated that participants who lost weight were more likely to report improved SRH than lower SRH; OR (95%CI) = 1.07 (1.05, 1.09) for a decrease of 5 lb. per year (15 lb. difference between baseline and year 3). Participants who ate more “healthful” foods were also more likely to report improved SRH than lower SRH; OR (95%CI) = 1.06 (1.04, 1.08) for an increase of 0.5 serving of fruits/vegetables per year (1.5 serving difference between baseline and Y3).

Change in the General Health Subscale of the RAND36 produced similar results to those for SRH (Table 5b).

Discussion
In this large multi-ethnic U.S. cohort of postmenopausal women, aged 50 to 79 years, at baseline, who were then followed for an average of 7.6 years in the WHI Observational Study, participants’ self-rating of their health (self-rated health: SRH) was a strong predictor of all-
Table 3b: Multivariable adjusted Risk of Death Associated with RAND36 General Health Subscale at Baseline.

Cause of Death by General Health	Min Adjust^a	Full Adjust^b					
Event	AnnPer	HR	95% CI	P-trend	HR	95% CI	P-trend
Total Death	<0.001	<0.001					
1st quintile (Worst)	1978	(1.65%)	2.72 (2.50, 2.96)	1.41 (1.27, 1.56)			
2nd quintile	946	(1.00%)	1.62 (1.47, 1.78)	1.14 (1.02, 1.26)			
3rd quintile	1216	(0.79%)	1.32 (1.21, 1.44)	1.05 (0.96, 1.16)			
4th quintile	1061	(0.69%)	1.22 (1.11, 1.34)	1.07 (0.97, 1.18)			
5th quintile (Best)	927	(0.52%)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)			
CVD Death	<0.001	<0.001					
1st quintile (Worst)	677	(0.56%)	3.61 (3.06, 4.24)	1.41 (1.16, 1.72)			
2nd quintile	270	(0.29%)	1.75 (1.44, 2.12)	1.01 (0.82, 1.24)			
3rd quintile	339	(0.22%)	1.51 (1.26, 1.81)	1.05 (0.87, 1.27)			
4th quintile	251	(0.16%)	1.15 (0.95, 1.40)	0.94 (0.77, 1.14)			
5th quintile (Best)	225	(0.13%)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)			
Cancer Death	<0.001	0.05					
1st quintile (Worst)	634	(0.53%)	1.75 (1.54, 1.98)	1.23 (1.05, 1.43)			
2nd quintile	390	(0.41%)	1.32 (1.14, 1.51)	1.06 (0.91, 1.23)			
3rd quintile	553	(0.36%)	1.16 (1.02, 1.32)	1.01 (0.88, 1.15)			
4th quintile	546	(0.36%)	1.23 (1.09, 1.40)	1.11 (0.98, 1.27)			
5th quintile (Best)	490	(0.27%)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)			
Accidental Death	0.05	0.91					
1st quintile (Worst)	43	(0.04%)	1.63 (1.02, 2.61)	1.06 (0.59, 1.91)			
2nd quintile	20	(0.02%)	1.00 (0.57, 1.76)	0.84 (0.46, 1.54)			
3rd quintile	35	(0.02%)	1.01 (0.62, 1.65)	0.85 (0.50, 1.45)			
4th quintile	31	(0.02%)	0.93 (0.56, 1.53)	0.88 (0.52, 1.48)			
5th quintile (Best)	34	(0.02%)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)			
Other Death	<0.001	<0.001					
1st quintile (Worst)	582	(0.48%)	4.44 (3.69, 5.34)	1.77 (1.41, 2.21)			
2nd quintile	243	(0.26%)	2.38 (1.93, 2.94)	1.47 (1.17, 1.85)			
3rd quintile	264	(0.17%)	1.59 (1.29, 1.95)	1.17 (0.94, 1.46)			
4th quintile	217	(0.14%)	1.36 (1.10, 1.69)	1.16 (0.93, 1.44)			
5th quintile (Best)	164	(0.09%)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)			

^aAdjusted for age (linear) and race/ethnicity. Baseline hazard functions were allowed to vary by 5-year age groups.

^bAdjusted for age (linear), race/ethnicity, BMI (quintiles and linear), education, marital status, smoking status, alcohol consumption, HT use and depressive symptoms. Baseline hazard functions were allowed to vary by 5-year age groups, number of chronic diseases, disability, current health care provider, mammogram within 2 years of enrollment and physical functioning (quintiles).

Table 3c: Adjudicated Risk of Death by Self-Rated Health.

Adjudicated outcome by Self-Rated Health	Min Adjust^c	Full Adjust^d					
Event	AnnPer	HR	95% CI	P-trend	HR	95% CI	P-trend
CHD	<0.001	<0.001					
Fair/Poor	524	(0.83%)	3.98 (3.33, 4.77)	1.71 (1.38, 2.11)			
Good	1058	(0.48%)	2.46 (2.09, 2.90)	1.47 (1.23, 1.76)			
Very Good	675	(0.23%)	1.38 (1.17, 1.64)	1.11 (0.93, 1.32)			
Excellent	187	(0.14%)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)			
Stroke	<0.001	<0.001					
Fair/Poor	366	(0.58%)	2.50 (2.08, 3.00)	1.46 (1.17, 1.82)			
Good	788	(0.36%)	1.64 (1.39, 1.92)	1.18 (0.98, 1.41)			
Very Good	637	(0.22%)	1.17 (1.00, 1.38)	1.02 (0.86, 1.22)			
Excellent	208	(0.16%)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)			
Invasive Breast Cancer	0.57	0.22					
Fair/Poor	308	(0.49%)	1.03 (0.89, 1.20)	1.09 (0.91, 1.30)			
Good	1098	(0.50%)	1.06 (0.95, 1.18)	1.09 (0.97, 1.23)			
Very Good	1419	(0.50%)	1.06 (0.96, 1.18)	1.07 (0.96, 1.19)			
Excellent	580	(0.46%)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)			
Colorectal Cancer	0.01	0.17					
Fair/Poor	106	(0.17%)	1.50 (1.13, 2.00)	1.20 (0.85, 1.70)			
Good	329	(0.15%)	1.42 (1.13, 1.78)	1.26 (0.98, 1.62)			
Very Good	346	(0.12%)	1.25 (1.00, 1.56)	1.18 (0.94, 1.49)			
Excellent	120	(0.09%)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)			
Table 4: Multivariable adjusted Risk of Adjudicated Outcomes Associated with Self-Rated Health at Baseline.

Cause of Death by Change in Self-Rated Health	Min Adjust¹⁴	Full Adjust¹⁵						
	Event	AnnPer	HR	95% CI	P-trend¹⁶	HR	95% CI	P-trend
Total Death								
Worsened	1360	(1.44%)	1.64	(1.52, 1.77)	2.06	(1.89, 2.23)		
No Change	1880	(0.84%)	1.00		1.00			
Improved	594	(0.89%)	1.09	(0.98, 1.20)	0.78	(0.70, 0.87)		
CVD Death					^{0.006}	^{<0.001}		
Worsened	345	(0.37%)	1.37	(1.18, 1.58)	1.71	(1.46, 2.01)		
No Change	553	(0.25%)	1.00		1.00			
Improved	174	(0.26%)	1.13	(0.94, 1.35)	0.80	(0.66, 0.97)		
Cancer Death					^{<0.001}	^{<0.001}		
Worsened	619	(0.66%)	1.87	(1.68, 2.09)	2.22	(1.97, 2.51)		
No Change	773	(0.35%)	1.00		1.00			
Improved	227	(0.34%)	0.99	(0.85, 1.16)	0.79	(0.66, 0.93)		
Accidental Death					0.85	0.37		
Worsened	28	(0.03%)	1.27	(0.78, 2.07)	1.45	(0.84, 2.52)		
No Change	47	(0.02%)	1.00		1.00			
Improved	21	(0.03%)	1.43	(0.83, 2.48)	1.06	(0.57, 1.96)		
Other Death					^{<0.001}	^{<0.001}		
Worsened	338	(0.36%)	1.66	(1.43, 1.93)	2.29	(1.93, 2.71)		
No Change	455	(0.20%)	1.00		1.00			
Improved	149	(0.22%)	1.11	(0.91, 1.35)	0.69	(0.55, 0.85)		

¹⁴Adjusted for age (linear) and race/ethnicity. Baseline hazard functions were allowed to vary by 5-year age groups.
¹⁵Adjusted for age (linear), race/ethnicity, BMI (quintiles and linear), education, marital status, smoking status, alcohol consumption, HT use and depressive symptoms. Baseline hazard functions were allowed to vary by 5-year age groups, number of chronic diseases, disability, and current health care provider, mammogram within 2 years of enrollment, physical functioning (quintiles), and prior history of disease.
¹⁶From a multivariable Cox proportional hazards model.

Table 5a: Multivariable adjusted Risk of Death (after three years of follow-up) Associated with Change in Self-Rated Health (Year 3 - Baseline).

Cause of Death by Change in General Health	Min Adjust¹⁷	Full Adjust¹⁸						
	Event	AnnPer	HR	95% CI	P-trend¹⁹	HR	95% CI	P-trend
Total Death								
Worsened >10	1214	(1.59%)	2.02	(1.82, 2.26)	1.95	(1.74, 2.19)		
Worsened 5 to 10	901	(0.95%)	1.21	(1.08, 1.36)	1.16	(1.03, 1.31)		
No change	515	(0.72%)	1.00		1.00			
Improved 5 to 10	671	(0.79%)	1.05	(0.93, 1.19)	0.94	(0.83, 1.07)		
Improved >10	419	(0.83%)	1.20	(1.05, 1.37)	0.93	(0.80, 1.07)		
CVD Death					^{<0.001}	^{<0.001}		
Worsened >10	307	(0.40%)	1.57	(1.29, 1.92)	1.53	(1.23, 1.89)		
Worsened 5 to 10	256	(0.27%)	1.03	(0.84, 1.27)	1.02	(0.82, 1.27)		
No change	162	(0.23%)	1.00		1.00			
Improved 5 to 10	200	(0.24%)	1.01	(0.81, 1.26)	0.90	(0.71, 1.13)		
Improved >10	116	(0.23%)	1.04	(0.81, 1.34)	0.76	(0.58, 0.99)		
Cancer Death					^{<0.001}	^{<0.001}		
Worsened >10	542	(0.71%)	2.33	(1.97, 2.75)	2.26	(1.90, 2.69)		
Worsened 5 to 10	376	(0.39%)	1.31	(1.10, 1.56)	1.27	(1.06, 1.52)		
No change	209	(0.29%)	1.00		1.00			
cause, CVD and cancer mortality after adjusting for known risk factors and important confounding variables. SRH was significantly associated with cardiovascular and fracture endpoints, but not with cancer. Approximately 15% of the women who rated their health as fair or poor at baseline died during the subsequent 7.6 years of follow-up compared with 3.6% of women who rated their health as excellent at study outset. Other studies report SRH relationships with total mortality of similar magnitude [16,17]. Absolute numbers have varied by age, health of the cohort and plus other demographic and health factors.

Poor/fair baseline SRH or worsening of SRH (compared to no change) from baseline to 3 years later was strongly associated with all-cause, as well as CVD- and total cancer specific mortality. Baseline SRH and changes in SRH were also strongly related to “other” deaths (i.e. not CVD or cancer), but not to accidental deaths. Both SRH and GHS were strongly associated with prediction of all cause or disease-specific mortality. In situations where patient burden is a concern, SRH can be ascertained with a single question.

Improvement in SRH (compared to no change) resulted in about a 20% lower risk of death from both CVD and cancer consistent with research by others addressing improvement in SRH [18-22]. Future research might consider how health behavior changes and/or improvements in modifiable intermediate health measures (e.g. better blood pressure control) may improve SRH as an intermediary to reduced mortality. Post-hoc analysis showed that improved SRH coincided with weight loss and increased fruit and vegetable consumption. Of possible relevance to these observations, Shirom et al. [23] found that improved SRH scores were associated with an improvement in HDL-C and triglyceride levels.

Several other studies that have differentiated the relationship of SRH with cancer death from all cause mortality have reported a significant linear relationship between SRH and cancer mortality in men and women combined [24,25]. In the Zutphen Study [26] and the Brazilian “EPOCA” Research Project on Population Aging and Cancer [25], SRH was a significant predictor of cancer death in men. In contrast, in Epic II, the association between poor self-reported physical functional health and cancer mortality was relatively weak and was not significant after exclusion of deaths in the first 2 years [27].

Lower health ratings have been more strongly associated with mortality for adults with higher education and/or higher income relative to their lower SES counterparts [28], and a number of studies have reported that SRH is a much stronger predictor of mortality in Whites than Blacks [29] with differences in the distribution of scores associated with ethnic origin [30]. As we report here, SRH was significantly higher in Whites than in other ethnicities ($P<0.001$) in the WHI OS cohort; however, our subgroup analyses found that the association between SRH and all-cause mortality was not modified by race (1.81 among Whites and 1.87 among Blacks). In addition, the association between SRH and all-cause mortality was not modified by age (p-int = 0.13), or education (p-int = 0.53) in our study, demonstrating the value of considering SRH in diverse groups. In recent work, Black respondents’ SRH did not differ, on average, from White respondents if health-care status, health behaviors and social status were controlled [31].

Studies have reported that SRH at one point in time has substantial predictive power for medical care utilization but not necessarily for utilization of preventive health tests [32]. We found that WHI participants with higher SRH were more likely to complete routine health screening exams (Pap test, mammogram) than those with poorer SRH. In the lower SRH groups, rates of ECG were higher and regular physical exams were slightly less frequent. The proportion of women having a current health care provider was similar across SRH levels. Prior history of health problems did not appear to be related to predictive differences among SRH groups, although women with poorer SRH reported having more chronic illnesses.

A few studies have shown a modest relationship of family history to SRH [33]; however, a 10-year longer increment of parental life-span was associated with an approximate 0.20 reduction in the adjusted odds ratio for offspring having fair, poor, or very poor SRH [34]. Parental life span might impact how one rates their health as well as affecting important cardiovascular risk factors [35]. In WHI, SRH was significantly lower in women who reported that their parents had shorter life-spans.

While most studies have reported that SRH predicts mortality, an understanding of the many factors that contribute to the perception of one’s own health remains unclear. A succinct conceptualization of the issue states that “self-rated health is a deceptively simple variable that likely measures a great deal more than disease burden” [36]. One explanation is that self-rated health is a relatively inclusive measure encompassing multiple psychosocial factors [37]. Among those factors,
we found that SRH varies by age, race/ethnicity and education. The presence of serious medical conditions lowers average SRH [3], and controlling for medical conditions determined by clinical exam or physician diagnosis, reduced the predictive power of SRH in some [38], though not all studies [39–41].

When SRH and other indicators of well-being are measured concurrently, physical functioning is more strongly associated with SRH than mental health or social functioning [42,43]. Nevertheless, with depression SRH, is lower [44], and adjustment for depression attenuates the strength of the relationship with mortality [44,45]. Subjective well-being, also measured by a single item (“overall feeling of well-being during the past month”), has been associated with adverse clinical outcomes in much the same way as SRH [45]. The latter study argued that subjective well-being and SRH are modestly correlated but are not predicted by the same factors and do not predict outcomes to the same extent because subjective well-being assesses the interplay between perceived health and chronic life stresses. Self-efficacy and internal locus of control also predict mortality and are positively correlated with SRH. Self-efficacy significantly predicts mortality after controlling for SRH [46].

Other studies have examined change in SRH with disease incidence and mortality [47]. Some studies have suggested that SRH change is a stronger predictor of mortality than SRH at baseline [17] and others have not [48]. In WHI, worsening SRH doubled the risk of subsequent all-cause mortality compared with women whose scores did not change over the three-year period, and improved scores were associated with approximately 25% lowered risk of death compared with no change. This relationship was statistically significant in a fully adjusted model that included baseline SRH score as a possible confounder, suggesting that change in SRH and the cause of the change may be important to consider in future studies.

In our study, with higher white blood cell count SRH was lower (current clinical relevancy is not being asserted), similar to a finding that inflammatory activity, assessed by IL-6 and hs CRP levels, was associated with exhaustion and SRH in CHD women [49]. SRH may be sensitive to processes such as chronic inflammation implicated in CHD and cancer through multiple psychological and physiological pathways. This hypothesis suggests clinical consideration of poor self-reported physical health as an indicator of important underlying conditions that may have not yet been diagnosed and this indicator is not represented in traditional risk assessment.

Strengths of this WHI study include the population size and detailed history, race/ethnic and geographical diversity, low drop-out rates, verified medical event endpoints, long-term follow-up and non-fatal medical event. WHI is one of the few studies to look at cause-specific mortality and prospective changes in SRH. Most studies of SRH and mortality have involved relatively short follow-up (usually no more than five years). Longer follow-up periods, such as one three-year period [47], can be helpful in determining the extent to which SRH is a measure that adds to mortality prediction by disease burden alone. Furthermore, important variables, including SRH itself, may change over the course of a long follow-up period. As follow-up duration lengths, SRH stability cannot be assumed.

Limitations of the study are that it included older women only, so the results may not apply to men or younger adults, and the study was not specifically designed to directly assess psychosocial, personality or cognitive factors that may influence the self-assessment of health. The general effectiveness of SRH as a “predictor” is supported by the Norfolk-Epic Study 1 finding a relationship with all cause mortality in both young and old [42]; in Epic 2, the relationship was stronger in women than men [43]. Future research might consider how to improve the predictive power of SRH. For example, combining spouse-rated and self-rated health has been shown to predict mortality better than using SRH alone [50]. It is also important to continue to explore the association of mortality with interactions of SRH and clinical, biological and physiological states [51].

How do our findings relating healthy habits to SRH relate to improved health outcomes over time? Adopting a healthier lifestyle, with exercise, healthy eating, recommended bodyweight and smoking cessation, which would improve physical functioning, may be beneficial, even in old age as was supported in post-hoc analyses. How SRH changes is not well understood. The hypothesis that individuals with low SRH may benefit from targeted preventive interventions, such as management of known risk factors and increased uptake of positive lifestyle behaviors should be tested. How SRH scores might interact with traditional risk factor scores should be explored. Our study results and the literature review suggest that addressing self-efficacy and negative affect should occur in concert with working to change health habits, especially those related to physical functioning.

Acknowledgement

The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through contracts HHSN268201100004C, HHSN268201100001C, HHSN268201100002C, HHSN268201100003C, HHSN268201100004C, and HHSN27120110004C.

Program Office: (National Heart, Lung, and Blood Institute, Bethesda, Maryland) Jacques Rossouw, Shari Ludlam, Dale Burwen, Joan McCowan, Leslie Ford, and Nancy Geller.

Clinical Coordinating Center: Clinical Coordinating Center. (Fred Hutchinson Cancer Research Center, Seattle, WA) Garnel Anderson, Ross Prentice, Andrea LaCroix, and Charles Kooperberg.

Investigators and Academic Centers: (Brigham and Women's Hospital, Harvard Medical School, Boston, MA) JoAnn E. Manson; (MedStar Health Research Institute/Howard University, Washington, DC) Barbara V. Howard; (Stanford Prevention Research Center, Stanford, CA) Marcia L. Stefanick; (The Ohio State University, Columbus, OH) Rebecca Jackson; (University of Arizona, Tucson/Phoenix, AZ) Cynthia A. Thomson; (University at Buffalo, Buffalo, NY) Jean Wactawski-Wende; (University of Florida, Gainesville/Jacksonville, FL) Marian Limacher; (University of Iowa, Iowa City/Davenport, IA) Robert Wallace; (University of Pittsburgh, Pittsburgh, PA) Lewis Küller; (Wake Forest University School of Medicine, Winston-Salem, NC) Sally Shumaker.

Women's Health Initiative Memory Study: (Wake Forest University School of Medicine, Winston-Salem, NC) Sally Shumaker.

References

1. Idler EL, Benyamini Y (1997) Self-rated health and mortality: a review of twenty-seven community studies. J Health Soc Behav 38: 21-37.
2. Grant MD, Piotrowski ZH, Chappell R (1985) Self-reported health and survival in the Longitudinal Study of Aging, 1984-1986. J Clin Epidemiol 48: 375-387.
3. Benjamins MR, Hummer RA, Eberstein IW, Nam CB (2004) Self-reported health and adult mortality risk: an analysis of cause-specific mortality, Soc Sci Med 59: 1297-1306.
4. Tsui J, Minami Y, Kiyi PM, Hisanichi S, Asano H, et al. (1994) The predictive power of self-rated health, activities of daily living, and ambulatory activity for cause-specific mortality among the elderly: a three-year follow-up in urban Japan. J Am Geriatr Soc 42: 153-156.
5. Woods NF, LaCroix AZ, Gray SL, Aragaki A, Cochrane BB, et al. (2005) Frailty: emergence and consequences in women aged 65 and older in the Women's Health Initiative Observational Study. J Am Geriatr Soc 53: 1321-1330.
6. McGinn AP, Kaplan RC, Vergheese J, Rosenbaum DM, Psaty BM, et al. (2008) Walking speed and risk of incident ischemic stroke among postmenopausal women. Stroke 39: 1233-1239.
7. [No authors listed] (1998) Design of the Women's Health Initiative clinical trial.
and observational study. The Women’s Health Initiative Study Group. Control Clin Trials 19: 61-109.
8. Hays J, Hunt JR, Hubbell FA, Anderson GL, Limacher M, et al. (2003) The Women’s Health Initiative recruitment methods and results. Ann Epidemiol 13: S18-77.
9. Anderson GL, Mansson J, Wallace R, Lund B, Hall D, et al. (2003) Implementation of the Women’s Health Initiative study design. Ann Epidemiol 13: S5-17.
10. Hays RD, Sherbourne CD, Mazel RM (1993) The RAND 36-Item Health Survey 1.0. Health Econ 2: 217-227.
11. Bohannon RW, DePasquale L (2010) Physical Functioning Scale of the Short-Form (SF) 36: internal consistency and validity with older adults. J Geriatr Phys Ther 33: 16-18.
12. Langer RD, White E, Lewis CE, Kotchen JM, Hendrix SL, et al. (2003) The Women’s Health Initiative Observational Study; baseline characteristics of participants and reliability of baseline measures. Ann Epidemiol 13: S107-121.
13. Burnam MA, Wells KB, Leake B, Landsverk J (1988) Development of a brief screening instrument for detecting depressive disorders. Med Care 26: 775-789.
14. Tuunainen A, Langer RD, Klauber MR, Kripke DF (2001) Short version of the CES-D (Burnam screen) for depression in reference to the structured psychiatric interview. Psychiatry Res 103: 261-270.
15. Curb JD, McKiernan A, Heckbert SR, Kooperberg C, Stanford J, et al. (2003) Outcomes ascertainment and adjudication methods in the Women’s Health Initiative. Ann Epidemiol 13: S122-128.
16. Ford J, Spallek M, Dobson A (2008) Self-rated health and a healthy lifestyle are the most important predictors of survival in elderly women. Age Ageing 37: 194-200.
17. Gillty EJ, Vollaard AM, Kromhout D (2012) Self-rated health and physician-rated health as independent predictors of mortality in elderly men. Age Ageing 41: 165-171.
18. Han B, Phillips C, Fennucci L, Bandeen-Roche K, Jytha M, et al. (2005) Change in self-rated health and mortality among community-dwelling disabled older women. Gerontologist 45: 216-221.
19. Ferraro KF, Kelley-Moore JA (2001) Self-rated health and mortality among black and white adults: examining the dynamic evaluation thesis. J Gerontol B Psychol Sci Soc Sci 56: S196-205.
20. Nielsen AB, Siersma V, Kreiner S, Hirt LC, Drivsholm T, et al. (2009) The impact of changes in self-rated general health on 28-year mortality among middle-aged Danes. Scand J Prim Health Care 27: 160-166.
21. Bath PA (2003) Differences between older men and women in the self-rated health-mortality relationship. Gerontologist 43: 387-395.
22. Erdogan-Giltci E, van Doorslaer E, Bago d’Uva T, van Lenthe F (2010) Do self-perceived health changes predict longevity? Soc Sci Med 71: 1981-1988.
23. Shirom A, Toker S, Melamed S, Shapiro I (2012) The relationships between self-rated health and serum lipids across time. Int J Behav Med 19: 73-81.
24. Mason C, Katzmanzy PT, Craig CL, Gauvin L (2007) Mortality and self-rated health in Canada. J Phys Act Health 4: 423-433.
25. Santiago LM, Novaes Cde O, Mattos IE (2010) Self-rated health (SRH) as a predictor of mortality in elderly men living in a medium-size city in Brazil. Arch Gerontol Geriatr 51: e86-93.
26. Piljs LT, Feskens EJ, Kromhout D (1993) Self-rated health, mortality, and chronic diseases in elderly men. The Zulphen Study, 1985-1990. Am J Epidemiol 138: 840-848.
27. Myint PK, Luben RN, Surtees PG, Wainwright NW, Welch AA, et al. (2006) Respiratory function and self-reported functional health: EPIC-Norfolk population study. Ann Epidemiol 16: 492-500.
28. Dowd JB, Zajacova A (2007) Does the predictive power of self-rated health for subsequent mortality risk vary by socioeconomic status in the US? Int J Epidemiol 36: 1214-1221.
29. Lee SJ, Moody-Ayers SY, Landefeld CS, Walter LC, Lindquist K, et al. (2007) The relationship between self-rated health and mortality in older black and white Americans. J Am Geriatr Soc 55: 1624-1629.
30. Menec VH, Shooshatri S, Lambert P (2007) Ethnic differences in self-rated health among older adults: a cross-sectional and longitudinal analysis. J Aging Health 19: 62-86.
31. Lo CC, Howell RJ, Cheng TC (2013) Disparities in Whites’ versus Blacks’ self-rated health: social status, health-care services, and health behaviors. J Community Health 38: 727-733.
32. van Doorsslaer E, Koolman X, Jones AM (2004) Explaining income-related inequalities in doctor utilisation in Europe. Health Econ 13: 629-647.
33. Singh-Manoux A, Martikainen P, Ferrie J, Zins M, Marmot M, et al. (2006) What does self rated health measure? Results from the British Whitehall II and French GAZEL cohort studies. J Epidemiol Community Health 60: 364-372.
34. Frederiksen H, McGuire M, Jeune B, Gaist D, Nybo H, et al. (2002) Do children of long-lived parents age more successfully? Epidemiology 13: 334-339.
35. Terry DF, Evans JC, Pencina MJ, Murabito JM, Vasan RS, et al. (2007) Characteristics of Framingham offspring participants with long-lived parents. Arch Intern Med 167: 438-444.
36. Strawbridge WJ, Wallhagen MI (1999) Self-rated health and mortality over three decades. Research on Aging 21: 402-416.
37. Gold M, Franks P, Erickson P (1996) Assessing the health of the nation. The predictive validity of a preference-based measure and self-rated health. Med Care 34: 163-177.
38. Fang XH, Meng C, Liu XH, Wu XG, Liu HJ, et al. (2003) [Study on the relationship between self-rated health situation and health status in the elderly-an 8-year follow-up study from Multidimensional Longitudinal Study of Aging in Beijing]. Zhonghua Liu Xing Bing Xue Za Zhi 24: 184-188.
39. Idler EL, Angel RJ (1990) Self-rated health and mortality in the NHANES-I Epidemiologic Follow-up Study. Am J Public Health 80: 446-452.
40. Benyamini Y, Idler EL (1999) Community studies reporting association between self-rated health and mortality. Res Aging 21: 392-401.
41. Goldman N, Glei DA, Chang MC (2004) The role of clinical risk factors in understanding self-rated health. Ann Epidemiol 14: 49-57.
42. Mavaddat N, Kinmonth AL, Sanderson S, Surtees P, Bingham S, et al. (2011) What determines Self-Rated Health (SRH)? A cross-sectional study of SF-36 health domains in the EPIC-Norfolk cohort. J Epidemiol Community Health 65: 800-806.
43. Myint PK, Luben RN, Surtees PG, Wainwright NW, Wareham NJ, et al. (2010) Physical functional health predicts the incidence of coronary heart disease in the European Prospective Investigation into Cancer-Norfolk prospective population-based study. Int J Epidemiol 39: 996-1003.
44. Kamphuis MH, Geerlings MJ, Giampoli S, Nissinen A, Grobbbee DE, et al. (2009) The association of depression with cardiovascular mortality is partly explained by health status. The FINE Study. J Affect Disord 114: 184-192.
45. Ried LD, Tsuch MJ, Handberg E, Nyanteh H (2006) Validating a self-report measure of global subjective well-being to predict adverse clinical outcomes. Qual Life Res 15: 675-686.
46. Fry PS, Debats DL (2006) Sources of life strengths as predictors of late-life mortality and survivorship. Int J Aging Hum Dev 62: 303-334.
47. Krzyzanowski M, Wysocik M (1986) The relation of thirteen-year mortality to ventilatory impairment and other respiratory symptoms: the Cracow Study. Int J Epidemiol 15: 56-64.
48. Nielsen AB, Siersma V, Kreiner S, Hirt LC, Drivsholm T, et al. (2009) The impact of changes in self-rated general health on 28-year mortality among middle-aged Danes. Scand J Prim Health Care 27: 160-166.
49. Janszky I, Lekander M, Blom M, Georgiades A, Ahnve S (2005) Self-rated health and vital exhaustion, but not depression, is related to inflammation in women with coronary heart disease. Brain Behav Immun 19: 555-563.
50. Ayalon L, Covinsky KE (2009) Spouse-rated vs self-rated health as predictors of mortality. Arch Intern Med 169: 2156-2161.
51. Jylhä M (2009) What is self-rated health and why does it predict mortality? Towards a unified conceptual model. Soc Sci Med 69: 307-316.