Chemical stability of Ca$_3$Co$_{4-x}$O$_{9+z}$/CaMnO$_{3-z}$ p–n junction for oxide-based thermoelectric generators

Anette Eleonora Gunnaesa, Raluca Tofana, Kristian Berlanda, Sandeep Gorantlab, Thomas Storaas, Temesgen Debelo Desissac, Matthias Schradae, Matthias Schrade, Clas Persson, Mari-Ann Einarsrud, Kjell Wiik, Truls Norby and Nikola Kanas

Abstract

An all-oxide thermoelectric generator for high-temperature operation depends on a low electrical resistance of the direct p–n junction. Ca$_3$Co$_{4-x}$O$_{9+z}$ and CaMnO$_{3-z}$ exhibit p-type and n-type electronic conductivity, respectively, and the interface between these compounds is the material system investigated here. The effect of heat treatment (at 900 °C for 10 h in air) on the phase and element distribution within this p–n junction was characterized using advanced transmission electron microscopy combined with X-ray diffraction. The heat treatment resulted in counter diffusion of Ca, Mn and Co cations across the junction, and subsequent formation of a Ca$_2$Co$_{14}$Mn$_{14}$O$_{98+6}$ interlayer, in addition to precipitation of Co-oxide, and accompanying diffusion and redistribution of Ca across the junction. The Co/Mn ratio in Ca$_2$Co$_{14}$Mn$_{14}$O$_{98+6}$ varies and is close to 1 (y = 0) at the Ca$_2$Co$_{14}$Mn$_{14}$O$_{98+6}$/CaMnO$_{3-z}$ boundary. The existence of a wide homogeneity range of 0 ≤ y ≤ 1 for Ca$_2$Co$_{14}$Mn$_{14}$O$_{98+6}$ is corroborated with density functional theory (DFT) calculations showing a small negative mixing energy in the whole range.

Introduction

For waste heat harvesting at high temperatures and oxidizing conditions, thermoelectric generators (TEGs) based on oxides represent an interesting technology, enabling increased energy efficiency of any high-temperature process where heat harvesting is viable. Oxide-based thermoelectrics exhibit modest efficiencies compared with state-of-the-art non-oxides, but offer in principle superior stability at high temperatures in air (oxidizing conditions). The stability is however jeopardized by the need for metallic interconnects to form well-conducting contacts between the oxide p- and n-type legs, since the metals are noble (rare and expensive) or they will oxidize over time. Cracking or exfoliation due to differences in coefficients of thermal expansion (CTEs) between ceramic conductors and metal interconnects represent additional challenges.

TEGs with direct contact between the p- and n-type legs without metallic interconnects in between have however been proposed. By avoiding the metallic interconnects, manufacturing becomes both simpler and less expensive. Such a direct oxide p–n junction faces however not only challenges in terms of high contact resistances from charge carrier depletion, but also stability issues related to interdiffusion and formation of new phases at the interface region. These stability issues are addressed in the present investigation for the specific case of Ca$_3$Co$_{4-x}$O$_{9+z}$/CaMnO$_{3-z}$.

According to Woermann et al., Ca$_3$Co$_{4-x}$O$_{9+z}$ is stable up to 926 °C in air, at which it decomposes to Ca$_2$Co$_2$O$_6$ and a CaO-Ca$_2$O (ss). Ca$_3$Co$_{4-x}$O$_{9+z}$ is described with a homogeneity range of Ca$_3$Co$_{4-x}$O$_{9+z}$ with x between −0.03 and +0.17 at 900 °C. The homogeneity range increases towards Co-rich compositions with increasing temperatures and becomes narrowly sharp, where it ends at a single point. The stoichiometry of Ca$_3$Co$_{4-x}$O$_{9+z}$ in our investigation corresponds to x within the homogeneity range as mentioned above, giving a maximum operating temperature of 900 °C.
identical a, c, and β parameters, but different b parameters: $a = 4.8376$ Å, $c = 10.833$ Å, $\beta = 98.06$, $b_1 = 4.5565$ Å, and $b_2 = 2.8189$ Å.

CaMnO$_{3-\delta}$ has an orthorhombic perovskite type structure, with lattice constants $a = 5.279$ Å, $b = 7.448$ Å and $c = 5.264$ Å at room temperature. Upon heating in air, the oxygen content is reduced and structural phase transitions occur at 893 and 913 °C with resulting tetragonal and cubic structural modifications, respectively. However, the phase transition temperatures are strongly dependent on the oxygen stoichiometry. According to the CaMnO$_{3-\delta}$ phase diagram the cubic-to-tetragonal and tetragonal-to-orthorhombic transformations occur when $3 - \delta = 2.965$ and 2.98, respectively, at 900 °C. Oxygen stoichiometry in air is reported to be 2.94 at 900 °C, and hence CaMnO$_{3-\delta}$ should be in the cubic phase domain considering the heat treatment used in this work.

Golovkin et al. have reported phase diagrams of the system Ca–Mn–Co–O. Ca$_3$Co$_{1-x}$O$_9$ has a certain solid solubility of Mn, and the formation of a quaternary phase Ca$_3$Co$_{1-x}$Mn$_x$O$_9$ is described by several authors. This phase has been reported to have a K$_2$CdCl$_4$ type of structure, the same as the pristine Ca$_3$Co$_2$O$_6$ phase, with space group $C23$. Both Hervoches et al. and Kanas et al. have confirmed a wide homogeneity range for Ca$_3$Co$_{1-x}$Mn$_x$O$_9$, extending from $y = 0$ to 1.

To establish all-oxide thermoelectric generators for operation in air at high temperatures, a detailed understanding of the processes taking place at the p–n junction at typical operating temperatures is decisive. In this investigation, we present a comprehensive study of the interdiffusion and formation of secondary phases at the Ca$_3$Co$_{4-x}$O$_{9+y}$/CaMnO$_{3-\delta}$ interface in air at 900 °C.

Results and discussion

The SEM cross section view of the specimen in Fig. 1 shows the interface between the relatively dense CaMnO$_{3-\delta}$ and the porous Ca$_3$Co$_4$O$_{9+y}$ layer after heat treatment at 900 °C for 10 h. The distribution of Co (pink), Mn (blue) and Ca (green) at and in the vicinity of the interface between Ca$_3$Co$_{4-x}$O$_{9+y}$ and CaMnO$_{3-\delta}$ is visualized in the bottom left inset in Fig. 1.

Two distinctly different regions are identified at the junction: “Region (a)” which is a ~10 µm thick porous region at the porous Ca$_3$Co$_{4-x}$O$_{9+y}$ side with a high density of Co-rich grains (pink in Fig. 1, bottom right inset).

“Region (b)” is a ~2 µm thick dense interphase region with a significantly higher Ca/Mn ratio compared to the bulk CaMnO$_{3-\delta}$ (green layer in Fig. 1, bottom right inset). Chemical analysis, topographically performed across the junction (Fig. 2), is in agreement with the observations from Fig. 1. The variations in the concentration of Ca, Mn and Co across the interface are given in Fig. 2b. Mn is seen to diffuse far into the porous Ca$_3$Co$_{4-x}$O$_{9+y}$, while the Mn concentration in Region (b) is lower than in the main bulk phase of CaMnO$_{3-\delta}$. Enhanced level of Ca is observed in Region (b) (interphase region) while a depletion in Ca is obvious in Region (a) (porous region). There is a moderate gradient in the Co concentration all through the Ca$_3$Co$_{4-x}$O$_{9+y}$ layer until we reach the boundary between Region (a) and (b), followed by a steep decrease across Region (b).
EDS analysis are given in Table 1. The compositions in positions 1 and 5 correspond to CaMnO_{3–d} and Ca_{3}Co_{4–x}O_{9–d}, respectively, while position 6 most probably correspond to mixture of Ca_{3}Co_{4–x}O_{9–d} and Co_{3}O_{4}. Position 3 (Region (b)) correspond to the quaternary phase, Ca_{3}Co_{1+y}Mn_{1–y}O_{6}^{22–24} where the ratio between Ca and the sum of Mn and Co is 1.53 which is close to 1.5 as expected in Ca_{3}Co_{1+y}Mn_{1–y}O_{6}. We suggest that position 4 is representative for the porous region (Region (a)) due to the ratio Ca/(Mn + Co) is 1.33, which is between Ca_{3}Co_{4–x}O_{9–d} (≈0.75) and Ca_{3}Co_{1+y}Mn_{1–y}O_{6} (1.53), hence a mixture of Ca_{3}Co_{1+y}Mn_{1–y}O_{6} and Ca_{3}Co_{4–x}O_{9–d}. Position 2 shows a cation ratio between CaMnO_{3–d} and Ca_{3}Co_{1+y}Mn_{1–y}O_{6} and may be a mix of these two phases. It should be emphasized that there are uncertainties related to these calculations, both in the accuracy of the measurement as well as the fact that spot analysis also may include elements from phases below the point of analysis. Besides Ca redistribution, a thin densified reaction layer of Ca_{3}Co_{1+y}Mn_{1–y}O_{6} is formed as a result of Co entering into CaMnO_{3–d}. Variations in the Co/Mn ratio across the Ca_{3}Co_{1+y}Mn_{1–y}O_{6} reaction layer is expected as this forms a diffusion barrier for both cations and allows a wide range of mixing ratios, as seen from the steepness of both the Mn- and Co-profiles in Region (b) [Fig. 2].

Besides, a thermopower across the Ca_{3}Co_{1+y}Mn_{1–y}O_{6} reaction layer in TEG is directly affected by the Co/Mn ratio in Ca_{3}Co_{1+y}Mn_{1–y}O_{6}, where the thermopower increases as Co/Mn ratio decreases.\(^{24}\)

The polished plane view surface was further analyzed by XRD for phase clarification, where the main reflections corresponded to CaMnO_{3–d} and Ca_{3}Co_{4–x}O_{9–d} (Fig. 4).

With respect to the annealing temperature (900 °C), which is close to the Co_{3}O_{4}/CoO phase transition in air,\(^{26}\) Co will definitely be oxidized during cooling and at room temperature to exist as Co_{3}O_{4}. The broad and unsymmetrical set of reflections marked with "**" fits well to the trigonal structure of Ca_{3}Co_{1+y}Mn_{1–y}O_{6} with space group R3c.\(^{22}\) These results are in good agreement with our EDS compositional analysis (Fig. 3 and Table 1).

A detailed TEM/EDS analysis of the interface between CaMnO_{3–d} and Region (b) is presented in Fig. 5, where (a) to (d) are STEM-image and EDS analysis, while (e) and (f) are TEM-image and SAD zone axis patterns, respectively. The most striking feature is the sharp boundary between CaMnO_{3–d} and Region (b) shown by the yellow line in Fig. 5(e). Above the yellow line the Ca_{3}Co_{1+y}Mn_{1–y}O_{6} phase is confirmed by the SAD [12–1] zone axis patterns shown in (f), and further supported by the EDS analysis in (b)–(d) showing the presence of Ca, Co and Mn. The absence of Co and presence of Ca and Mn below the yellow line ((b)–(d)) confirm the presence of only CaMnO_{3–d} in this region. Although we expect some diffusion of Co into the

Table 1: a at% of cations at the spots given in Fig. 3. The uncertainties in Ca, Co and Mn are ±1 at%, while for O it is ±5 at% and is due to the inherent accuracy of the EDS method. The phases dominating at the various spots are suggested based on the ratio between the cations. Also included is the expected ratio between the cations (Ca/(Mn + Co)) in stoichiometric CaMnO_{3–d}, Ca_{3}Co_{1+y}Mn_{1–y}O_{6} and Ca_{3}Co_{4–x}O_{9–d}, respectively.

Spot	Ca	Co	Mn	O	Co + Mn	Ca/(Co + Mn)	Phase	Region
1	20	0–1	20	60	20	1.00	CaMnO_{3–d}	—
2	28	6	14	53	20	—	—	—
3	29	11	8	53	19	—	—	—
4	28	13	8	52	21	—	—	—
5	20	22	3	57	25	—	—	—
6	16	23	2	60	25	—	—	—
CaMnO_{3–d}	1	1	1.5	0.75	—	—	—	—
Ca_{3}Co_{1+y}Mn_{1–y}O_{6}	1.5	—	—	—	—	—	—	—
Ca_{3}Co_{4–x}O_{9–d}	0.75	—	—	—	—	—	—	—
CaMnO$_{3-\delta}$ phase (Fig. 2), the concentration is below the detection limit in (d).

The CaMnO$_{3-\delta}$ grains are identified as the low temperature (LT) orthorhombic CaMnO$_{3-\delta}$ phase (Fig. 4) and the appearance of the CaMnO$_{3-\delta}$ grains in Fig. 5(e) indicate high defect concentration appearing as a line pattern.

The high defect concentration is probably due to tensile stresses in CaMnO$_{3-\delta}$ originating from the phase transition between the high temperature cubic phase (HT) to the LT phase, which is followed by a significant volume contraction.

A detailed TEM/EDS analysis of Region (a) is given in Fig. 6. The EDS analysis in Fig. 6(c) confirms the formation of a Co-oxide rich phase, however connected to a phase containing Ca, Co and Mn. SAD [12–11] zone axis patterns identified this phase to be Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$ (Fig. 6(d)) showing that Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$ also may be formed quite far from the initial interface between Ca$_3$Co$_{4-\delta}$O$_{9\delta}$ and CaMnO$_{3-\delta}$. The reason for the formation of Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$ far into Region (a) is a combination of Co depletion of the Ca$_3$Co$_{4-\delta}$O$_{9\delta}$ phase, due to diffusion of Co towards CaMnO$_{3-\delta}$ and counter diffusion of Mn into the Ca$_3$Co$_{4-\delta}$O$_{9\delta}$ phase (some solid solubility19,20). At some critical composition, Ca$_3$Co$_{4-\delta}$O$_{9\delta}$ will decompose and form Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$ and a Co-oxide rich phase. The depletion of Ca in Region (a) (Fig. 2b) suggests that Ca diffuses towards Region (b), which is intuitively surprising since diffusion seemingly takes place against its concentration gradient.

However, assuming that the thermodynamic activity (chemical potential) of calcium in the Ca$_3$Co$_{4-\delta}$O$_{9\delta}$ phase is much higher than in the Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$ phase there will be a thermodynamic driving force for Ca-diffusion from Region (a) to Region (b). This explains the enhanced Ca concentration in Region (b) and Ca depletion in Region (a) (Fig. 2b). However, the formation of Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$ depends on diffusion of Mn through the increasing layer of dense Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$ which is expected to follow the parabolic law. Hence, the formation of Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$ will virtually stop with time, corresponding to a fixed thickness of the Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$ layer. The effect of counter diffusion and the formation of Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$ on TEG performance is thoroughly elaborated in a previous paper by Kanas et al.6 Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$ forms together with Ca$_3$Co$_{4-\delta}$O$_{9\delta}$ and CaMnO$_{3-\delta}$ a p–p–n junction which exhibits ohmic behavior and a transverse thermoelectric effect, boosting the open-circuit voltage of the module. Furthermore, the electron energy levels of Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$ are located intermediate of those of Ca$_3$Co$_{4-\delta}$O$_{9\delta}$ and CaMnO$_{3-\delta}$, which reduces the depletion of charge carriers at the Ca$_3$Co$_{4-\delta}$O$_{9\delta}$–Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$ and Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$–CaMnO$_{3-\delta}$ interfaces, as compared to initial Ca$_3$Co$_{1+y}$O$_{9\delta}$–CaMnO$_{3-\delta}$ p–n interface.6

DFT results for the mixing energy of Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$ depicted in Fig. 7 show small negative values for the entire composition range, with a shallow minimum at $y = 0.25$, corresponding to a mixing energy of -5 meV per formula unit. According to the DFT calculations the most stable Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$ composition should be in the vicinity of $y \sim 0.25$, corresponding to a [Co]/[Mn] ratio of ~ 1.67.

Nevertheless, the negative mixing energy obtained in the entire range from $y = 0.1$ to 0.9 supports the existence of solid solubility in the whole range from $y = 0$ to 1, as confirmed by Hervoches et al.22 and Kanas et al.24 A small mixing energy is reasonable given that Co and Mn have similar atom sizes, and the DFT result serves to confirm that the nature of chemical bonding is not greatly affected by the substitution. At finite temperature the free energy would clearly show a broad minimum dominated by the entropy term which was not considered in these 0 K calculations.

All in all, the comprehensive structural analysis of the Ca$_3$Co$_{4-\delta}$O$_{9\delta}$–CaMnO$_{3-\delta}$ p–n junction gives an important overview of the complexity, described by counter diffusion and formation of several reaction products at the interface. In high-
temperature applications the hot side of this TEG boosts the overall performance through a high open circuit voltage which occurs due to counter diffusion of cations resulting in formation of Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$ with a high thermopower.634

Conclusions

The Ca$_3$Co$_{4-x}$O$_{9+d}$/CaMnO$_{3-d}$ p-n junction is not stable at 900 °C as a new Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$ intermediate phase forms through counter diffusion of Ca, Co and Mn. On the CaMnO$_{3-d}$ side, a thin dense layer of Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$ with variable composition forms, in which further in-diffusion of Co is slow. On the Ca$_3$Co$_{4-x}$O$_{9+d}$ side, Mn diffusion into Ca$_3$Co$_{4-x}$O$_{9+d}$ together with Co deficiency give decomposition into Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$ and Co-oxide. The diffusion profiles are in qualitative agreement with our recently published data on Co diffusion in CaMnO$_{3-d}$. DFT calculations and experimental evidence support the wider homogeneity range (0 ≤ y ≤ 1) of Ca$_3$Co$_{1+y}$Mn$_{1-y}$O$_6$.

Experimental

Phase-pure CaMnO$_{3-d}$ powder was synthesized by solid-state reaction using a stoichiometric ratio of CaCO$_3$ (Inframat Advanced Materials, >99% purity) and MnO$_2$ (Sigma Aldrich, >99% purity) precursors, mixed and heated twice at 1200 °C for 14 h in air with grinding in between. A dense CaMnO$_{3-d}$ pellet (diameter 12 mm, thickness 4 mm) was formed by cold isostatic pressing (CIP) at 200 MPa followed by sintering at 1300 °C for 14 h in air using a heating rate of 200 K h$^{-1}$ and cooling rate of 100 K h$^{-1}$. The dense CaMnO$_{3-d}$ pellet was ground and polished with SiC papers and diamond paste to 1 μm. Ca$_3$Co$_{4-x}$O$_{9+d}$ powder, with the nominal stoichiometry Ca$_3$Co$_{3-y}$O$_{9+d}$, was prepared by spray pyrolysis (CerPoTech AS, Norway), and a Ca$_3$Co$_{4-x}$O$_{9+d}$ layer was produced by tape casting according to ref. 6. The tape was cast, laminated, and attached onto the polished CaMnO$_{3-d}$ surface by pressing at 10 MPa and 80 °C for 3 min. The sample was then calcined at 450 °C for 1 h in air to remove organics and further heated at 900 °C for 10 h. Firm adhesion between Ca$_3$Co$_{4-x}$O$_{9+d}$ and CaMnO$_{3-d}$ was obtained after the heat treatment.

The sample was subsequently embedded in epoxy and divided in pieces for both cross section and plane view examinations. The specimens were ground with SiC paper, and final polishing was done with colloidal Al$_2$O$_3$ (0.05 μm). For the plane view examination, the specimen was polished down stepwise from the Ca$_3$Co$_{4-x}$O$_{9+d}$ side. The exposed area was analyzed by scanning electron microscopy (SEM) with energy dispersive X-ray energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) in between each polishing step. Cross section specimens were examined by a combination of SEM and transmission electron microscopy (TEM) enabling structural studies at both micro- and nanoscale. The TEM specimen, covering a ~15 μm long region across the CaMnO$_{3-d}$/Ca$_3$Co$_{4-x}$O$_{9+d}$ interface, was cut out by use of a focused ion beam (FIB) and thinned down to about 100 nm. EDS was conducted to map and quantify the elemental composition globally and locally by SEM and TEM, respectively. To improve statistics, line scan data sets were added after aligning the onset of the dense interface region.

A Rigaku MiniFlex600 system using Cu Kα radiation and fluorescence correction was used for the XRD investigation, while a Hitachi TM3000 SEM, a JEOL2010F TEM operated at 200 kV and a Cs probe corrected FEI Titan G2 60-300 TEM operated at 300 kV were used for the SEM and TEM studies.
The mixing energy of Ca₃Co₁₋ₓMnₓO₆ was calculated within the spin-polarized density functional theory (DFT) utilizing the projector-augmented-plane wave method as implemented in VASP, and choosing the generalized-gradient approximation functional PBE. A supercell consisting of $2 \times 2 \times 2$ primitive unit cells was used to emulate the solid solution, which was set up by randomly replacing 2, 4, 6, 8, 10, 12, and 14 of the 16 Mn atoms with Co atoms in the Ca₃Co₁₋ₓMnₓO₆ supercell. To obtain an estimate of the mixing energy, we rely on a ferromagnetic ordering with spin aligned in the Brillouin zone. Atomic coordinates and unit cell were relaxed until the total energy varied by less than 0.03 meV per formula unit.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Financial support from the Research Council of Norway under the program Nano2021 to the project (number 228854) “Thermoelectric materials: Nanostructuring for improving the energy efficiency of thermoelectric generators and heat-pumps” (THELMA) conducted by NTNU, UiO, SINTEF, FFI, UiS and UiA.

References

1 S. Twaha, J. Zhu, Y. Yan and B. Li, Renewable Sustainable Energy Rev., 2016, 65, 698–726.
2 W. Liu, Q. Jie, S. E. Kim and Z. Ren, Acta Mater., 2015, 87, 357–376.
3 A. Becker, R. Chavez, N. Petermann, G. Schierning and R. Schmechel, J. Electron. Mater., 2013, 42, 2297–2300.
4 R. Chavez, S. Angst, J. Hall, F. Maculewicz, J. Stoetzel, H. Wiggers, L. T. Hung, N. Van Nong, N. Pyrdz, G. Span, D. E. Wolf, R. Schmechel and G. Schierning, J. Phys. D Appl. Phys., 2018, 51, 014005.
5 G. Span, M. Wagner, S. Holzer and T. Grasser, 25th International Conference on Thermoelectrics, ICT, Vienna, 6–10 August, 2006.
6 N. Kanas, M. Bittner, S. P. Singh, T. D. Desissa, T. Norby, A. Feldhoff, T. Grande, K. Wiik and M.-A. Einarsrud, ACS Omega, 2018, 3, 9899–9906.
7 E. Woermann and A. Muan, J. Inorg. Nucl. Chem., 1970, 32, 1455–1459.
8 D. Sedmidubsky, V. Jakes, O. Jankovsky, J. Leitner, Z. Sofer and J. Hejtmancik, J. Solid State Chem., 2012, 194, 199–205.
9 N. Kanas, S. P. Singh, M. Rotan, M. Saleemi, M. Bittner, A. Feldhoff, T. Norby, K. Wiik, T. Grande and M.-A. Einarsrud, J. Eur. Ceram. Soc., 2018, 38, 1592–1599.
10 Y. Miyazaki, Solid State Ionics, 2004, 172, 463–467.
11 Y. Miyazaki, M. Onoda, T. Oku, M. Kikuchi, Y. Ishii, Y. Ono, Y. Morii and T. Kajitani, J. Phys. Soc. Jpn., 2002, 71, 491–497.
12 A. C. Masset, C. Michel, A. Maignan, M. Herrvieu, O. Toulemonde, F. Studer and B. Raveau, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, 62, 166–175.
13 M. Schrade, H. Fjeld, T. G. Finstad and T. Norby, J. Phys. Chem. C, 2014, 118, 2908–2918.
14 K. R. Poeppelmeier, M. E. Leonowicz, J. C. Scanlon, J. M. Longo and W. B. Yelon, J. Solid State Chem., 1982, 45, 71–79.
15 H. Taguchi, M. Nagao, T. Sato and M. Shimada, J. Solid State Chem., 1989, 78, 312–315.
16 E. I. Goldyrev, I. A. Leonidov, M. V. Patrakeev and V. L. Kozhevnikov, J. Solid State Electrochem., 2016, 16, 1187–1191.
17 E. I. Leonidova, I. A. Leonidov, M. V. Patrakeev and V. L. Kozhevnikov, J. Solid State Electrochem., 2011, 15, 1071–1075.
18 B. V. Golovkin and G. V. Bazuev, Russ. J. Gen. Chem., 2010, 80, 213–218.
19 A. Bhaskar, C.-J. Liu and L.-C. Huang, J. Electroceram., 2013, 31, 129–133.
20 J. L. Chen, Y. S. Liu, C.-J. Liu, L.-C. Huang, C. L. Dong, S. S. Chen and C. L. Chang, J. Phys. D: Appl. Phys., 2009, 42, 135418–135423.
21 V. G. Zubkov, G. V. Bazuev, A. P. Tyutyunnik and I. F. Berger, J. Solid State Chem., 2001, 160, 293–301.
22 C. H. Hervoches, H. Okamoto, A. Kjekshus, H. Fjellvåg and B. C. Hauback, J. Solid State Chem., 2009, 182, 331–338.
23 G. V. Bazuev, V. G. Zubkov, I. F. Berger and V. N. Krasil’nikov, Russ. J. Inorg. Chem., 2001, 46, 317–322.
24 N. Kanas, S. P. Singh, T. D. Desissa, T. Norby, K. Wiik, T. Grande and M.-A. Einarsrud, Materials, 2019, 12, 497–507.
25 T. D. Desissa, N. Kanas, S. P. Singh, K. Wiik, M.-A. Einarsrud and T. Norby, Phys. Chem. Chem. Phys., 2018, 20, 2754–2760.
26 M. Chen, B. Hallstedt and L. J. Gauckler, J. Phase Equilib., 2003, 24, 212–227.
27 G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 59, 1758–1775.
28 G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, 54, 11169–11186.
29 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865–3868.