Composition formulas of Fe-based transition metals-metalloid bulk metallic glasses derived from dual-cluster model of binary eutectics

Gul Jabeen Naz1, Dandan Dong1,2, Yaoxiang Geng3, Yingmin Wang1 & Chuang Dong1

It is known that bulk metallic glasses follow simple composition formulas \([\text{cluster}]\{\text{glue atom}\}_{1\text{ or }3}\) with 24 valence electrons within the framework of the cluster-plus-glue-atom model. Though the relevant nearest-neighbor cluster can be readily identified from a devitrification phase, the glue atoms remains poorly defined. The present work is devoted to understanding the composition rule of Fe-(B,P,C) based multi-component bulk metallic glasses, by introducing a cluster-based eutectic liquid model. This model regards a eutectic liquid to be composed of two stable liquids formulated respectively by cluster formulas for ideal metallic glasses from the two eutectic phases. The dual cluster formulas are first established for binary Fe-(B,C,P) eutectics:

\[\text{[Fe-Fe}_{14}\text{]}\text{B}_2\text{Fe} + \text{[B-B}_{2}\text{Fe}_{8}\text{]} \approx \text{Fe}_{83.3}\text{B}_{16.7} \text{ for eutectic Fe}_{83}\text{B}_{17}, \]

\[\text{[P-Fe}_{14}\text{]}\text{P} + \text{[P-Fe}_{9}\text{]}\text{P} \approx \text{Fe}_{82.8}\text{P}_{17.2} \text{ for Fe}_{83}\text{P}_{17}, \]

\[\text{[C-Fe}_6\text{]}\text{Fe}_3 + \text{[C-Fe}_{9}\text{]}\text{C} \approx \text{Fe}_{82.6}\text{C}_{17.4} \text{ for Fe}_{82.7}\text{C}_{17.3}. \]

The second formulas in these dual-cluster formulas, being respectively relevant to devitrification phases Fe2B, Fe3P, and Fe3C, well explain the compositions of existing Fe-based transition metals-metalloid bulk metallic glasses. These formulas also satisfy the 24-electron rule. The proposition of the composition formulas for good glass formers, directly from known eutectic points, constitutes a new route towards understanding and eventual designing metallic glasses of high glass forming abilities.

Since their first synthesis in 1995, Fe-based bulk metallic glasses (BMGs) have drawn increasing attention due to their soft magnetic properties, high glass forming ability, excellent corrosion resistance, and low manufacturing cost1-6. These BMGs are of metal-metalloid type, where the metal concentration is close to 80 at. % and the metalloid elements are mostly P, C, B, and Si7. To increase the glass forming ability, multi-element alloying is generally conducted, by adding late transition metals such as Cr and Mo, early transition metals such as Zr, Hf, and Nb, rare earth metals such as Y, La, and trivalent simple metals Al and Ga8–14. For instance, the critical rod diameter of fully glassy state can reach 2.5 mm for Fe77Ga3P9.5C4B4Si2.5, 4 mm for Fe76Mo2Ga2P10C4B4Si2 and 6 mm for Fe66Co10Mo4(P0.45C0.2B0.2Si0.15)2013, 15–17. To understand and eventually to design these BMGs of such complex chemistry, practical and quantitative alloy design methods should be developed.

In our previous works, the cluster-plus-glue-atom model has been proposed to describe the idealized local units of bulk metallic glasses18. The compositions of all binary BMGs can be precisely interpreted19, 20. In this model, an amorphous structure of high glass forming ability is dissociated into a characteristic first-neighbor cluster plus one or three glue atoms located between the clusters. In such a definition, there is no solvent or solute. The cluster is derived following stringent procedures from corresponding devitrification crystal. The number of glue atoms, being 1 or 3, comes from an analysis of existing good glass forming compositions18–20. These special numbers should be correlated to the way the clusters are packed. As a speculative explanation, if the clusters are densely packed following FCC-like style and if the glue atoms fill the octahedral interstices between the clusters, the number ratio of the cluster and the glue atoms is 1:1, i.e., the number of glue atom is 1. Similarly, the number of 3 might be correlated to a BCC-like inter-cluster configuration, where the glue atoms occupy all the octahedral interstices. The clusters are isolated from each other to avoid the cluster-type local order from being extended to longer-ranges that would eventually break the non-crystalline amorphous state. The total number of valence

1Key Laboratory for Materials Modification by Laser, Ion and Electron Beam (Dalian University of Technology), Ministry of Education, Dalian, 116024, China. 2Department of Physics, Dalian University, Dalian, 116622, China. 3School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China. Correspondence and requests for materials should be addressed to C.D. (email: dong@dlut.edu.cn)
the accurate calculation of e/u. Therefore, despite of our previous success in understanding various metal-metal
magnetic compositions. Also the lack of precise information on cluster radius and atomic density hinders
the well-established procedures, the appropriate glue atoms are poorly defined, often empirically fitted from
known BMG compositions. Also the lack of precise information on cluster radius and atomic density hinders
the accurate calculation of e/u. Therefore, despite of our previous success in understanding various metal-metal
metallic glass systems such as Cu-(Zr, Hf, Ti), Ni-(Nb, Ta)15,20, the composition rule for metal-metalloid ones is
still missing.

In this paper, the cluster-plus-glue-atom structural model and the relevant composition formulas will be used
to understand the composition rule of Fe-(B,P,C)-based transition metal-metalloid multicomponent BMGs. The
above-mentioned difficulties will be particularly addressed, by introducing a new approach towards obtaining the
appropriate Fe-(B,P,C) binary cluster formulas, which is based on the dual cluster formulism for eutectic liquids26. After obtaining the basic Fe-(B,P,C) formulas, compositions of some typical Fe-(B,P,C) based binary, ternary and
multi-component BMGs will be explored on the basis of the binary basic formulas. It will be shown that the good
glass-forming compositions are well interpreted using the cluster formulas containing nearly 24 valence electrons.

Dual-cluster formulas for eutectic liquids

In this section, the cluster-plus-glue-atom approach for eutectic composition interpretation will be explored in
detail, covering 1) dual-cluster model of eutectic liquids, and 2) its application in the composition interpretation
of binary Fe-rich eutectic points, close to which most Fe-based BMGs are formed.

Dual-cluster model of eutectic liquids

As already stated in ref. 26, binary eutectic liquids are characterized, in terms of the cluster-plus-glue-atom model for describing short-range-order local structures, by:

1. **Two stable liquid subunits issued from the two eutectic phases, and**
2. **Each subunit formulated as $[\text{cluster}](\text{glue atoms})_{\text{specific}}$ of ideal metallic glasses**

A binary eutectic composition is therefore expressed as $[\text{cluster}_\alpha + \text{cluster}_\beta](\text{glue atoms})_{\text{specific type of ideal metallic glasses}}$, where the two clusters in the brackets belong to the two liquid subunits resulted from the corresponding eutectic phases α and β.

The identification of the right clusters from eutectic phases then becomes the key step toward establishing the
dual-cluster model for a eutectic liquid. Here the clusters are derived from the eutectic phases that bound
the eutectic point. Yet, in a given crystal structure, there are often multiple nearest-neighbor clusters. There are
two criteria for the selection of the right cluster (called the principal cluster) in the cluster formula, the
maximum cluster isolation and atomic dense packing21. A cluster of such a type satisfies ideal atomic interaction and constitutes the most strongly bonded part in the structure. This cluster is then assumed to be inherited from the
liquid state, via the amorphous solid state, down to the devitrification/eutectic phase from which it is derived. The
well-measured eutectic points serve a good check for the appropriate matching of glue atoms. In the next part,
the Fe-(B,P,C) binary eutectic compositions relevant to Fe-based BMGs will be addressed using the dual-cluster
formulism, and from which the basic formulas for glass-forming formulas will be derived.

Dual-cluster formulas of Fe-rich Fe-(B, P, C) binary eutectics

It has been well-established that BMG compositions satisfy simple composition formulas $[\text{principal cluster}](\text{glue atom})_{\text{specific type}}$ with $e/u \approx 24$, where the principal cluster is derived from a devitrification phase. The binary Fe-(B,P,C) BMG-relevant eutectic points will be analyzed via the dual cluster formulism.

For the Fe-B-based BMGs, the relevant eutectic point is Fe$_{63}$B$_{37}$ and the eutectic phases are γ-Fe (FCC, Cu type) and BFe$_2$ (tetragonal, Al$_4$Cu type).

The γ-Fe phase is characterized by a unique cuboctahedral cluster $[\text{Fe-Fe}_{12}]$ (Fig. 1a), typical for FCC metals that do not contain any solute (B is almost insoluble with Fe). In expressing a cluster, the center atom is placed first and is separated from the 1st-neighboring ones by a hyphen, both square-bracketed. As far as the liquid
structure is concerned, on which our model is really based, it is widely accepted that the nearly pure Fe liquid structure is in fact related to the high-temperature BCC δ-Fe phase27, characterized by a unique rhombicuboctahedron $[\text{Fe-Fe}_{14}]$ cluster (Fig. 1b). Therefore, in dealing with the Fe-B system, the BCC $[\text{Fe-Fe}_{14}]$ cluster will be used instead.

The other crystalline phase BFe$_2$ is the devitrification phase for the Fe-B-based BMGs, and the cluster formula issued from this phase should be responsible for the glass formation. In the unit cell of BFe$_2$ (Al$_4$Cu structure type), there are two non-equivalent sites, B at (0, 0, 0.25) and Fe at (0.1661, 0.6661, 0). All crystal structure data are taken from Pearson’s handbook28. Two clusters can be defined centered by the two sites, i.e., Fe-centered $[\text{Fe-Fe}_{14}]$ with coordination number (CN) of 15 (Fig. 1c), and a B-centered Archimedean octahedral antiprism
CN10 $[\text{B-B}_{10}$(Fig. 1d).
The degree of cluster isolation is measured by comparing the complete cluster size (i.e., the number of atoms in the cluster) with the one with a reduced size after considering inter-cluster overlapping. For the ideal case in which no overlap between the neighboring clusters occurs, the two sizes are equal. However, in general, clusters overlap with each other due to the periodic constraint. The two clusters \([\text{Fe-B}_{4}\text{Fe}_{11}]\) and \([\text{B-B}_{2}\text{Fe}_{8}]\) are respectively reduced to \([\text{Fe-B}_{0.5}]\) and \([\text{B-Fe}_{2}]\) (Fig. 2) after overlapping, with the latter demonstrating a better cluster isolation (a larger reduced cluster size of three atoms). Therefore, the B-centered \([\text{B-B}_{2}\text{Fe}_{8}]\) cluster is selected as the principal cluster to enter into the BFe\(_2\)-relevant glass-forming formula.

Then, two principal clusters \([\text{Fe-Fe}_{14}]\) and \([\text{B-B}_{2}\text{Fe}_{8}]\) are respectively derived. After trying all combinations of two, four, and six glue atoms of Fe and B, the two clusters plus four glue atoms B\(_2\)Fe\(_2\) matches perfectly the experimental eutectic point at Fe\(_{83}\)B\(_{17}\):
\[\text{[Fe-Fe}_{14} + \text{B-B}_{2}\text{Fe}_{8}]\text{B}_{2}\text{Fe}_{2} = \text{Fe}_{25}\text{B}_{5} \approx \text{Fe}_{83.3}\text{B}_{16.7}\] (Fig. 3).

Next step is to assign the four glue atoms to each cluster, producing two individual cluster formulas. There are actually only two kinds of combinations for glue atoms, B\(_2\)Fe-Fe and BFe\(_2\)-B. \([\text{B-B}_{2}\text{Fe}_{8}]\) after being matched with each of the four possibilities, produces the following formulas:
\[\text{[B-B}_{2}\text{Fe}_{8}]\text{Fe} = \text{Fe}_{75}\text{B}_{25}, \quad \text{[B-B}_{2}\text{Fe}_{8}]\text{BFe}_{2} = \text{Fe}_{71.4}\text{B}_{28.6}, \quad \text{[B-B}_{2}\text{Fe}_{8}]\text{B} = \text{Fe}_{66.7}\text{B}_{33.3}, \quad \text{[B-B}_{2}\text{Fe}_{8}]\text{BFe}_{2} = \text{Fe}_{64.3}\text{B}_{35.7}\].
Melt-quenched Fe-B metallic glasses are usually formed in the composition range of 72–88 at.% Fe 29–32. The Fe-richest \([\text{B-B}_{2}\text{Fe}_{8}]\text{Fe}\) is then chosen because it is the only one falling in the glass forming range. Recently, we have shown that the optimal glass forming composition is exactly at the composition defined by the established formula \([\text{B-B}_{2}\text{Fe}_{8}]\text{Fe} = \text{Fe}_{75}\text{B}_{25}\) 33. It will also be illustrated that this formula is responsible for most Fe-B-based BMGs. The determination of cluster formula for glass formation from dual cluster formulism of eutectic liquid therefore constitutes a simple and accurate route towards BMG formulation, which overcomes the ambiguity in glue atom definition.

The Fe-P based BMGs are related to eutectic point Fe\(_{83}\)P\(_{17}\), involving two eutectic phases \(\alpha\)-Fe and Fe\(_3\)P. \(\alpha\)-Fe (BCC, W type) is characterized by the same rhombidodecahedral cluster as \(\delta\)-Fe (Fig. 1b). However, considering the substantial solubility of P in \(\alpha\)-Fe and the negative enthalpy of mixing between P and Fe, it is reasonable to assume a P-centered \([\text{P-Fe}_{14}]\) cluster, rather than \([\text{Fe-Fe}_{14}]\) as in the Fe-B case.

Fe\(_3\)P is a commonly identified devitrification phase for BMGs 34, 35. It is of Ni\(_3\)P structure type. There exist four non-equivalent sites in its unit cell, one being occupied by P and the other three by Fes. From the four sites are developed four clusters, i.e., capped trigonal prism CN9 \([\text{P-Fe}_{3}]\), CN14 \([\text{Fe-P}_{2}\text{Fe}_{12}]\), CN13 \([\text{Fe-P}_{3}\text{Fe}_{16}]\) and CN14...
The degree of isolation is the highest for the P-centered one, with the reduced cluster being [P-Fe 3]. The Fe-centered clusters are reduced to [Fe-Ph 2], but from much larger initial sizes than the P-centered one. Therefore, the P-centered capped trigonal prism [P-Fe 9] is taken as the principal cluster, instead of any of the Fe-centered ones.

After matching with appropriate glue atoms, a dual cluster formula is proposed to interpret the eutectic point composition Fe83P17: [P-Fe 14] + [P-Fe9]P 3Fe = Fe24P5 ≈ Fe82.8P17.2 (Fig. 5).

There are two options to separate the glue atoms P 3Fe, either P 3-Fe or P 2Fe-P 1. [P-Fe 9], after being matched with each of the four possibilities, gives [P-Fe 9]Fe = Fe90.9P9.1, [P-Fe 9]P 1 = Fe81.8P18.2, [P-Fe 9]P 2Fe = Fe76.9P23.1, and [P-Fe 9]P 3 = Fe69.2P30.8. Fe-P metallic glasses have been obtained by liquid quenching over a composition range of 13~24 at.% P36, 37. Among the four formulas, [P-Fe 9]P 2Fe is chosen as it is in the glass forming zone. [P-Fe 9], being also in the range but quite close to the eutectic point, is eliminated because glass formation composition usually deviates from the eutectic one38. As will be illustrated later, [P-Fe 9]P 2Fe is indeed responsible for BMG formation in multi-component Fe-P-based alloys.

Fe-C-based BMGs are related to eutectic point Fe 83C 17, involving two eutectic phases γ-Fe and Fe 3C. γ-Fe (FCC, Cu type) is characterized by cuboctahedral cluster [Fe-Fe 12]; however, since it dissolves a substantial amount of C in its octahedral interstitial site, the more reasonable cluster should be C-centered octahedron [C-Fe6] (Fig. 6a), rather than [Fe-Fe 12] (when a substitutional type of solute is nearly insoluble) or [C-Fe 12] (C is too small to be a substitutional element).

The commonly observed devitrification phase for the Fe-C-based BMGs is cementite Fe 3C. The three non-equivalent sites, one C and two Fe, define capped trigonal prism CN9 [C-Fe9], CN15 [Fe-C9Fe12], and CN 14 [Fe-C10CFe12] (Fig. 6). These clusters are reduced respectively to [C-Fe9], [Fe-CFe12], and [Fe-C9Fe9]. Therefore, the first one [C-Fe9] is chosen as the principal cluster for Fe 3C, which is the same cluster type as [P-Fe9] from Fe-P.

The eutectic point Fe 82.7C 17.3 is explained by the dual cluster formula: [C-Fe 9] + [C-Fe9]Fe 3C = Fe92.3C7.7, Fe 82.3C17.4. There are two possibilities to separate the Fe 3C glue atoms: Fe1-FeC2 and Fe1C2-Fe1C2. The [C-Fe9] cluster, after being matched with each of the three possibilities, produces cluster formulas [C-Fe9]Fe92.3C7.7, [C-Fe9]Fe 92.3C17.4, and [C-Fe9]Fe 92.3C17.4. The only reasonable formula is the last one because the first and the second ones fall on the other side of the eutectic point. Therefore, the only possible pair of cluster formulas, as shown in Fig. 7, are [C-Fe9]Fe92.3 + [C-Fe9]C17.4. The latter formula is expected to correspond to good
glass formers because it is related to a devitrification phase. For Fe-C binary alloys, the glass forming ability is weak and there is no report on the best glass former in this system, though the glassy state by liquid quenching has been reported near eutectic point.

Figure 5. Interpretation of eutectic point Fe₈₃P₁₇ by the dual-cluster formula [P-Fe₁₄]P + [P-Fe₉]P₂Fe derived from eutectic phases α-Fe and Fe₃P (Ni₃P).

Figure 6. Clusters in C-containing γ-Fe (a: octahedron) and in CFe₃ (b) capped trigonal prism CN₉ [C-Fe₉]), (c) CN₁₁₅ [Fe-C₉Fe₁₃], and (d) CN 14 [Fe-C₃Fe₁₄].

Figure 7. Interpretation of Fe₈₂.₇C₁₇.₃ eutectic point by the dual-cluster formula [C-Fe₆]Fe₃ + [C-Fe₉]C₂Fe from eutectic phases γ-Fe(C) and Fe₃C.
Compositions, at. %	Average transition metals M	Cluster formulas	Critical size/ mm	Mass density p/g cm⁻³	e/u	Ref.		
[B-B,Fe]Fe₇₉B₄C₄Si₃P₁₀, Fe₇₄Mo₆B₂.₅C₇.₅P₁₀, Fe₆₅Cr₂Mo₉B₆C₈P₁₀, Fe₇₇Ga₃B₄C₄Si₂.₅P₉.₅	[B-B₁ₓSi₁₋ₓMₓ]M₁	40µ	7.19	7.14	25.8	86		
Fe₇₂Y₂B₂	M₂₇Y₂B₂	Fe	2	6.8	—	28.1	32, 42	
Fe₇₉Sc₂B₂	M₂₇Sc₂B₂	Fe	2	6.7	—	26.8	42	
Fe₇₂Er₂B₂	M₂₇Er₂B₂	Fe	2	6.7	—	27.7	42	
Fe₆₉CoB₂	M₂₇B₂	Fe	2	6.7	—	26.1	43	
Fe₇₉GdB₂	M₂₇Ga₁₂B₁₁	Fe	2	6.7	—	26.2	44	
Fe₇₂Zr₂B₂	M₂₇Zr₂B₂	Fe	2	7.1	—	28.2	45, 46	
Fe₆₉NbB₂	M₂₇B₂	Fe	2	7.3	—	23.2	47	
Fe₇₂NbB₂	M₂₇B₂	Fe	2	7.3	—	23.5	47	
Fe₇₂NbB₂	M₂₇B₂	Fe	2	7.4	—	24.2	47	
Fe₇₁Y₂B₂	M₂₇Y₂B₂	Fe	1.5	7.4	7.3	26.1	72	
[P-Fe]P-Fe-based								
Fe₆₉Ni₈P₂₀	M₄₈P₂₀	Fe₆Ni₁₈	[P-M₉]P₀₁₈M₀₁₄	—	8.6	—	24.4	55
Fe₆₉P₁₀C₁₀	M₄₈P₁₀C₁₀	Fe	2	7.1	7.32	23.6	34	
Fe₆₉P₁₀C₁₀	M₄₈P₁₀C₁₀	Fe	2	7.1	7.35	24.1	66	
Fe₆₉Ni₈P₁₀	M₄₈Ni₁₈	Fe₆Ni₁₈	[P-M₉]P₀₁₈M₀₁₄	—	8.5	—	24.6	62
Fe₆₉P₁₀B₈	M₄₈P₁₀B₈	Fe	2	7.1	—	24.1	63	
Fe₆₉P₁₀C₁₀	M₄₈P₁₀C₁₀	Fe	1.5	6.8	—	23.8	64	
Fe₆₉Ni₂O₁₇	M₄₈P₁₇	Fe₆Ni₁₈	[P-M₉]P₀₁₈M₀₁₄	—	8.2	—	25.0	65
Fe₆₉C₁₀O₁₀	M₄₈P₁₀C₁₀	Fe	2	7.9	—	25.2	65	
Fe₆₉Mo₈P₁₀	M₄₈P₁₀Mo₈	Fe	2	8.4	—	26.3	65	
Fe₆₉P₁₀C₁₀	M₄₈P₁₀C₁₀	Fe	2	9.9	—	27.6	66	
Fe₆₉M₄₁B₂₀C₉₆P₁₀	M₄₈B₂₀C₉₆P₁₀	Fe₆₁Mo₄₅	[P-M₉]B₈₋₉C₉₂₋₉P₁₀M₀₄₅	—	7.1	—	24.1	63
Fe₆₉Co₉₈Ga₂₀B₉₆P₁₀	M₄₈Ga₂₀B₉₆P₁₀	Fe	4	7.3	7.3	23.8	67, 68	
Fe₆₉B₂₀C₁₀P₁₀	M₄₈B₂₀C₁₀P₁₀	Fe	4	7.3	7.3	23.8	67, 68	
Fe₆₉Al₂₀Ga₂₀B₉₆P₁₀	M₄₈Al₂₀Ga₂₀B₉₆P₁₀	Fe	1.5	6.9	—	23.8	14, 69	
Fe₆₉Ga₂₀B₉₆P₁₀	M₄₈Ga₂₀B₉₆P₁₀	Fe	2	6.9	—	23.7	70	
Fe₆₉Ga₂₀B₉₆P₁₀	M₄₈Ga₂₀B₉₆P₁₀	Fe	2.5	7.2	—	23.9	71	
Fe₆₉Ga₂₀B₉₆P₁₀	M₄₈Ga₂₀B₉₆P₁₀	Fe	2.5	7.1	—	24.1	72, 73	
Fe₆₉M₄₁Ga₂₀B₉₆P₁₀	M₄₈Ga₂₀B₉₆P₁₀	Fe	2.5	7.2	—	24.2	35	
Fe₆₉Co₂₀Cr₂₀Mo₂₀Ga₂₀B₉₆P₁₀	M₄₈Ga₂₀B₉₆P₀₁₀M₀₄₅	3	7.3	—	23.9	74		
Fe₆₉M₄₁B₂₀C₉₆P₁₀	M₄₈B₂₀C₉₂₋₉P₁₀M₀₄₅	3	7.3	—	23.6	75		
Fe₆₉Cr₂₀Mo₂₀Ga₂₀P₁₀	M₄₈Ga₂₀P₀₁₀M₀₄₅	2.5	7.3	—	23.8	75		
Fe₆₉B₂₀C₁₀P₁₀	M₄₈B₂₀C₁₀P₁₀	Fe	3	7.3	—	24.3	76	
Fe₆₉B₂₀C₁₀P₁₀	M₄₈B₂₀C₁₀P₁₀	Fe	3	7.3	—	24.3	76	
Fe₆₉B₂₀C₁₀P₁₀	M₄₈B₂₀C₁₀P₁₀	Fe	3	7.4	—	24.1	76	

Continued...
Compositions, at. %

Compositions, at. %	Average transition metals M	Cluster formulas	Critical size/ nm	Mass density ρ/g cm⁻³	e/u	Ref.
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		2	8.7		
Fe₆₆Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		12	8.7		
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		6	8.6	80	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		4	8.6	80	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		4	8.8	80	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.5	8.6	54	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.5	8.6	54	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		6	8.5	11	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		9	8.4	11	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		9	8.6	11	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		9	8.6	11	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	
Fe₆₄Cr₄Mo₂B₄C₁₅	M₂B₂C₁₅		1.2	8.7	83	

Table 1. Fe-metalloid-based bulk metallic glass compositions and their interpretation using the binary cluster formulas [B₂Fe₈]Fe₁ (Z = 12, r₁ = 0.2170 nm), [P-Fe₉]P₂Fe (Z = 13, r₁ = 0.2337 nm), and [C-Fe₉]C₂Fe (Z = 13, r₁ = 0.2184 nm). The critical diameter sizes for fully glassy ingots, estimated and measured densities, and e/u's are also shown. Calculated mass densities are used only when experimental densities are not available.

From the dual cluster formulas for binary eutectics, three basic cluster formulas are established: [B₂Fe₈]Fe₁, [P-Fe₉]P₂Fe and [C-Fe₉]C₂Fe, which are related to devitrification phases Fe₂B, Fe₃P, and Fe₃C, respectively. They will be used as the basis for BMG composition analysis.

Cluster formulas for Fe-based metallic glasses

Fe-based metallic glasses usually have complex compositions but can always be regarded as being developed from M-(B,C,P) binary systems.

Existing Fe-(B,C,P)-based multi-component compositions with good glass forming abilities are carefully scrutinized using the proposed binary basic formulas within the framework of the cluster-plus-glue atom model. The Fe-(B,C,P)-based multi-component compositions are shown in Table 1. As the example, BMG Fe₇₉Mo₄B₄C₄Si₃P₁₀ of a critical size of 4 mm is chosen to illustrate the procedures of composition interpretation, as stated below.

1. Select the alloys with good glass forming abilities;
 - This step guarantees, to the maximum degree, that the compositions selected corresponds to high glass forming ability, as our approach only works for ideal metallic glasses stabilized at specific compositions.
 - This is of course often inaccurate, especially in multi-component systems, as the trial-and-error experiments become quite tedious. In BMG series Fe₇₉Mo₄B₄C₄Si₃P₁₀ with a maximum diameter thickness is Fe₇₉Mo₄B₄C₄Si₃P₁₀.

2. Classify the elements into transition metals (M), Rare Earth metals (RE), simple metals Al and Ga, and metalloids;
 - Fe₇₉Mo₄B₄C₄Si₃P₁₀ is then converted into (Fe₀.₉₅Mo₀.₀₅)(B₄C₄Si₃P₁₀) where the composition with the maximum diameter thickness is Fe₇₉Mo₄B₄C₄Si₃P₁₀.

3. Determine the basic binary formula for glass formation;
 - Being P-rich, M₇₉(B₄C₄Si₃P₁₀) should be based on the Fe-P binary formula [P-Fe₉]P₂Fe.

4. Convert the atomic percent composition into the cluster formula;
 - By multiplying the total number of atoms per unit cluster formula (Z), the atomic percent composition is converted to the cluster formula of the alloy following the basic binary formulas. The basic formula containing Z = 13 atoms, the composition Fe₇₉Mo₄B₄C₄Si₃P₁₀ is multiplied by 13 to obtain (Fe₇₉Mo₄B₄C₄Si₃P₁₀) = M₇₉(B₄C₄Si₃P₁₀).

5. Confirm the 24-electron rule;
The calculation is done by using \(\varepsilon = \frac{1.25^* \eta}{3} \times \frac{Z}{r_1^3} \), where \(\rho_i \) is the atomic density (number of atoms per unit volume), \(Z \) the total number of atoms in the cluster formula, and \(r_1 \) the cluster radius of the basic binary clusters. The cluster radius \(r_1 \) of a complex alloy is an unknown parameter but can take the value of the relevant basic binary cluster. This is a reasonable simplification because at most \(M_1 \) is mainly composed of 3d transition metals of similar atomic sizes like Cr and Mn. Even if large atoms such as Mo and Ta are introduced, their amounts are minor so that their influence on \(r_1 \) can be ignored. Atomic density \(\rho_i \) can be transformed from mass density \(\rho \) by multiplying \(\rho \) with Avogadro constant \(N_0 \) and divided by the average atomic weight \(\sum C_i A_i \) (\(C_i \) and \(A_i \) are respectively the atomic fraction and atomic weight of element \(i \) in the alloy). \(\rho_i \) is also equal to the reciprocal of average atomic volume \(\frac{4}{3} \pi r_1^3 \), where \(\eta \) is the atomic packing efficiency and is empirically fitted as 0.671 from the experimentally measured densities in Fe-P based metallic glasses following the method reported in ref. 29. By using this atomic packing efficiency, densities can be evaluated for all Fe-P-based compositions as shown in Table 1. \(e/u = 24.4 \) for \(M_7\text{Mo}_4\text{B}_4\text{C}_4\text{Si}_3\text{P}_{10} = \text{[P-M]M}_1\text{B}_0.5\text{C}_0.5\text{Si}_0.4\text{P}_0.3 \) can be calculated using a calculated mass density of \(7.2 \text{ g/cm}^3 \).

Typical Fe-metalloid-based metallic glass alloys are collected (mostly BMGs but some ternary alloys with weak glass forming abilities are also included) and explained using the procedures stated above, with their cluster formulas, critical sizes, calculated and experimental densities, and \(e/u \)’s illustrated in Table 1. The estimated mass densities \(\rho_{\text{cal.}} \) are calculated by using atomic packing efficiency of 0.7 for Fe-B-based alloys, 0.671 for Fe-P-based, and 0.77 for Fe-C-based. It is noted that RE is not commonly used in Fe-B-based BMGs, except one example Fe\(_{71.2}\)Y\(_{4.8}\)B\(_{24}\) which is understood as a partial substitution of the glue atom Fe by Y. RE elements are practically missing in Fe-P-based BMGs. However, RE's are often present in Fe-C-based BMGs. Al and Ga, practically missing in Fe-(B, C)-based BMGs, are frequently present in Fe-P-based BMGs, with their amounts taking up to 1 atom in the formula.

As a further exploration of Table 1, the glass forming ability (critical size) is again shown in Fig. 8 as a function of \(e/u \) ratio. It is clear that \(e/u \) is not well satisfied for Fe-B and Fe-C based BMGs. This discrepancy can be understood as arising from the uncertain density and cluster radius values. As has been stated, in alloy systems containing covalent bonds, the estimation of atomic densities cannot be made accurate. What is more important is the basic binary cluster radius \(r_1 \) which is related to \(e/u \) following \(\varepsilon \approx \frac{1.25^* \eta}{3} \times \frac{Z}{r_1^3} \). In general, the cluster radius \(r_1 \) is calculated by averaging all the nearest neighbour distance. However, such an averaging is complicated by multi-alloying, and to simplify the calculation, here we always use those of binary systems and inevitably multiple alloying introduces cluster radius variations. Since \(e/u \) is inversely proportional to the cube of \(r_1 \), tiny variations induces quite large change in \(e/u \). It is noted that most of the added constituent elements in Fe- (B, C)-based multicomponent BMGs have larger atomic radii, so the alloying should result in increased cluster radii and henceforth decreased \(e/u \) values.

For instance, in Fe-C-based BMGs, the composition with maximum glass diameter thickness, Fe\(_{90}\)Cr\(_{10}\)Mo\(_{4}\)Co\(_{8}\)B\(_{3}\)C\(_{2}\)Y\(_{2}\), is interpreted by the cluster formula \([\text{C-M}]\text{Y}_9\text{B}_{0.8}\text{C}_{0.9}\)M\(_1\). Here Co, Cr and Mo all show negative enthalpies of mixing with C so that they should prefer the cluster shell sites, just like Fe’s. In Fe-C based binary cluster \([\text{C-Fe}]\), 1\(^{st}\) neighbour distances are 2.0065 Å (one Fe), 2.0111 Å (one), 2.0197 Å (two), 2.0212 Å (two), 2.3734 (two) and 2.8064 Å (one) and their average value is 2.18362 Å, which is used as the cluster radius \(r_1 \). The change in radius \(\Delta r \) as caused by adding other alloying elements is assessed by considering the Goldschmidt radii difference of the new alloying elements with respect to those that they replace in the shell sites (the center atom remains unchanged, being C). The atomic radii of Fe, Co, Cr, and Mo are respectively 1.27, 1.25, 1.28, and 1.40 Å. The cluster radius change can be calculated as the weighted sum of all the atomic radius differences from the alloying elements: \(\Delta r = (14/77)*(1.4-1.27) + (15/77)*(1.28-1.27) + (9/77)*(1.25-1.27) \approx \)}
0.023 Å, where the three radius differences correspond those of Co, Cr, and Mo, respectively. The new cluster radius becomes: $r_1 + \Delta r = 2.184 + 0.023 = 2.207$ Å. With this new radius, e/u is calculated, i.e., 25.5, which is much less than previously calculated using the binary cluster radius.

Conclusions

The present paper solves an important issue regarding the establishment of the composition formulas for BMGs, via eutectic composition interpretation in Fe-rich metalloid-containing BMGs using the cluster-plus-glue-atom model. The dual-cluster formulas for Fe-rich Fe-(B,P,C) binary eutectics are first proposed: $[\text{Fe}-\text{Fe}_{14}]_0.023$ Å, where the three radius differences correspond those of Co, Cr, and Mo, respectively. The new cluster radius becomes: $r_1 + \Delta r = 2.184 + 0.023 = 2.207$ Å. With this new radius, e/u is calculated, i.e., 25.5, which is much less than previously calculated using the binary cluster radius.

References

1. Inoue, A., Shaffer, B. L., Yavari, A. R. & Greer, A. L. Mechanical properties of Fe-based bulk glassy alloys in Fe-B-Si-Nb and Fe-Ga-P-C-Si systems. *J. Mater. Res.* 18, 1487–1492 (2003).
2. Amiya, K., Urata, A., Nishiyama, N. & Inoue, A. Magnetic properties of (Fe,Co)–B–Si–Nb bulk glassy alloys with high glass-forming ability. *Journal of Applied Physics* 97, 105913, doi:10.1063/1.1859211 (2005).
3. Rastogi, P. K. & Dwivedi, P. Rate of crystallization of an amorphous Fe75Si15C10 alloy. *Journal of Non-Crystalline Solids* 5, 1–16, doi:10.1016/0022-3093(70)90192-4 (1970).
4. Inoue, A., Shaffer, B. L. & Takeuchi, A. Fabrication, properties and applications of bulk glassy alloys in late transition metal-based systems. *Materials Science and Engineering: A* 444, 18–25, doi:10.1016/j.msea.2006.02.416 (2006).
5. Inoue, A. & Nishiyama, N. New Bulk Metallic Glasses for Applications as Magnetic-Sensing, Chemical, and Structural Materials. *MRS Bulletin* 32, 651–658, doi:10.1557/mrs2007.128 (2007).
6. Lu, Z. P., Liu, C. T., Carmichael, C. A., Porter, W. D. & Deve, S. C. Bulk Glass Formation in an Fe-Based Fe–Y–Zr–M (M = Cr, Co)–Mo–B System. *Journal of Materials Research* 19, 921–929, doi:10.1557/jmr.2004.13.921 (2004).
7. Suryanarayana, C. & Inoue, A. Iron-based bulk metallic glasses. *International Materials Reviews* 58, 131–166, doi:10.1179/174328013Y.0000000007 (2013).
8. Boudreaux, D. S. & Gregor, J. M. Structure simulation of transition metal-metalloid glasses. *Journal of Applied Physics* 48, 152, doi:10.1063/1.323301 (1977).
9. Inoue, A. & Gook, J. S. Effect of additional elements (M) on the thermal stability of supercooled liquid in Fe72-xAl5Ga21P16B4Mx glassy alloys. *Mater. Trans. JIM* 37, 32–38 (1996).
10. Inoue, A., Zhang, T. & Takeuchi, A. Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe–TM–B (TM = IV–VII group transition metal) system. *Applied Physics Letters* 71, 464–466, doi:10.1063/1.119580 (1997).
11. Ponnamalam, V., Poon, S. J. & Shiflet, G. J. Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. *Journal of Materials Research* 19, 1320–1323, doi:10.1557/jmr.2004.0176 (2011).
12. Wang, W. H. Roles of minor addition in formation and properties of bulk metallic glasses. *Progress in Materials Science* 52, 540–596, doi:10.1016/j.pmatsci.2006.07.003 (2007).
13. Waseda, Y. & Chen, H. S. A Structural Study of Metallic Glasses Containing Boron. *Phys. stat. sol.* 49, 387–392 (1978).
14. Inoue, A., Shinkohara, Y. & Gook, J. S. Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by Copper mold casting. *Materials Transactions, JIM* 36, 1427–1433 (1995).
15. Inoue, A. & Sa, A. Bulk Glassy Fe–Cu–P–C–Si–Al–Mo–B–Ni–Nb alloys with High Glass-Forming Ability, High Saturation Magnetization and Good Soft Magnetic Properties. *Materials Transactions* 43, 1235–1239 (2002).
16. Shen, B. L., Akiba, M. & Inoue, A. Effect of Cr addition on the glass-forming ability, magnetic properties, and corrosion resistance in FeMoGaPCBSi bulk glassy alloys. *Journal of Applied Physics* 100, 043523, doi:10.1063/1.2335939 (2006).
17. Li, F., Shen, B., Makino, A. & Inoue, A. Excellent soft-magnetic properties of (Fe,Co)–Mo–(Fe,C)/Si bulk glassy alloys with ductile deformation behavior. *Applied Physics Letters* 91, 234101, doi:10.1063/1.2920608 (2007).
18. Dong, C. et al. From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses. *Journal of Physics D: Applied Physics* 40, R273–R291, doi:10.1088/0022-3727/40/15/r01 (2007).
19. Wang, Z. et al. Characteristics of cluster formulas for binary bulk metallic glasses. *Journal of Alloys and Compounds* 654, 340–343, doi:10.1016/j.jalcom.2015.08.244 (2016).
20. Zhang, S. et al. Composition formulas of Ni-(Nb, Ta) bulk metallic glasses. *Intermetallics* 85, 176–179, doi:10.1016/j.intermet.2017.02.019 (2017).
21. Luo, L. J. et al. 24 electron cluster formulas as the ‘molecular’ units of ideal metallic glasses. *Philosophical Magazine* 94, 2520–2540, doi:10.1080/14786435.2014.205242 (2014).
22. Wang, Z. R. et al. Composition design principles of Fe-based bulk metallic glasses using the cluster-plus-glue-atom model. *Acta Materialia* 111, 366–376, doi:10.1016/j.actamat.2016.03.072 (2016).
23. Chen, J. X., Wang, Q., Wang, Y. M., Qiang, J. B. & Dong, C. Cluster formulae for phase alloys. *Philosophical Magazine Letters* 90, 683–688, doi:10.1080/09500839.2010.495556 (2010).
24. Sha, Z. D. et al. The basic polyhedral clusters, the optimum glass formers, and the composition-structure-property (glass-forming ability) correlation in Cu–Zr metallic glasses. *Journal of Applied Physics* 107, 063508, doi:10.1063/1.3339683 (2010).
25. Sha, Z., Feng, Y. & Li, Y. Statistical composition-structure-property correlation and glass-forming ability based on the fullicosahedra in Cu–Zr metallic glasses. *Applied Physics Letters* 96, 061903 (2010).
26. Ma, Y. P. et al. Composition formulas of binary eutectics. *Scientific reports* 5, 17880, doi:10.1038/srep17880 (2015).
27. Suzuki, T. Metastable Mischcillt Gap Island in FeB and FeSi. *Journal of the Physical Society of Japan* 41, 2520–2540, doi:10.1063/1.3339683 (1976).
28. Villars, P. L. D. C. Pearson’s handbook of crystallographic data for intermetallic phases (ASM International, 1985).
29. Ray, R., C.-P. Chou, R. H. & Davis, L. A. Iron-boron glasses Density mechanical and thermal behavior. *Scripta Metallurgica* 11, 973–978 (1977).
30. Luborsky, F. E. & Liebermann, H. H. Crystallization kinetics of FeB amorphous alloys. *Appl. Phys. Lett.* 33, doi:10.1063/1.93039 (1978).
31. Hasegawa, R. R. & Inoue, A. Iron boron metallic glasses. *J. Appl. Phys.* 49, doi:10.1063/1.325328 (1978).
32. Huang, X. M., Wang, X. D. & Jiang, X. Z. Origin of high glass forming ability of Y-containing FeB-based alloys. *Journal of Alloys and Compounds* 485, L35–L38, doi:10.1016/j.jallcom.2009.06.049 (2009).
33. Geng, Y. X. et al. Composition formulas of Fe–B binary amorphous alloys. *Journal of Non-Crystalline Solids* 432, 453–458, doi:10.1016/j.jnoncrysol.2015.11.004 (2016).
74. Shen, T. D. & Schwarz, R. B. Bulk ferromagnetic glasses prepared by flux melting and water quenching. *Applied Physics Letters* **75**, 49, doi:10.1063/1.124273 (1999).
75. Gu, X. J., Poon, S. J., Shiflet, G. J. & Widom, M. Ductility improvement of amorphous steels: Roles of shear modulus and electronic structure. *Acta Materialia* **56**, 88–94, doi:10.1016/j.actamat.2007.09.011 (2008).
76. Liu, F., Yang, Q., Pang, S., Ma, C. & Zhang, T. Ductile Fe-Based BMGs with High Glass Forming Ability and High Strength. *Materials Transactions* **49**, 231–234, doi:10.2320/matertrans.MRA2007186 (2008).
77. Shen, B. L., Akiba, M. & Inoue, A. Excellent soft-ferromagnetic bulk glassy alloys with high saturation magnetization. *Applied Physics Letters* **88**, 131907, doi:10.1063/1.2189910 (2006).
78. Gu, X. J., Poon, S. J. & Shiflet, G. J. Mechanical properties of iron-based bulk metallic glasses. *Journal of Materials Research* **22**, 344–351, doi:10.1557/jmr.2007.0036 (2007).
79. Gu, X. J., McDermott, A. G., Poon, S. J. & Shiflet, G. J. Critical Poisson's ratio for plasticity in Fe–Mo–C–B–Ln bulk amorphous steel. *Applied Physics Letters* **88**, 211905, doi:10.1063/1.2206149 (2006).
80. Gu, X. J., Poon, S. J. & Shiflet, G. J. Effects of carbon content on the mechanical properties of amorphous steel alloys. *Scripta Materialia* **57**, 289–292, doi:10.1016/j.scriptamat.2007.05.006 (2007).
81. Pang, S. J., K. Asami, T. Z. & Inoue, A. Bulk glassy Fe–Cr–Mo–C–B alloys with high corrosion resistance. *Corros. Sci.* **44**, 1847–1856 (2002).
82. Lu, Z. P., Liu, C. T., Thompson, J. R. & Porter, W. D. Structural amorphous steels. *Physical review letters* **92**, 245503, doi:10.1103/PhysRevLett.92.245503 (2004).
83. Shen, J., Chen, Q., Sun, J., Fan, H. & Wang, G. Exceptionally high glass-forming ability of an FeCoCrMoCB alloy. *Applied Physics Letters* **86**, 151907, doi:10.1063/1.1897426 (2005).
84. Iqbal, M., Akhter, J. I., Zhang, H. F. & Hu, Z. Q. Synthesis and characterization of bulk amorphous steels. *Journal of Non-Crystalline Solids* **354**, 3284–3289, doi:10.1016/j.jnoncrysol.2008.02.009 (2008).
85. Ward, L., Miracle, D., Windl, W., Senkov, O. N. & Flores, K. Structural evolution and kinetics in Cu-Zr metallic liquids from molecular dynamics simulations. *Physical Review B* **88**, 134205 (2013).
86. Takahara, Y. Irreversible structural relaxation in Fe–B–Si amorphous alloys. *Materials Science and Engineering: A* **231**, 128–133, doi:10.1016/S0921-5093(97)00071-3 (1997).
87. Xu, T. et al. Tuning glass formation and brittle behaviors by similar solvent element substitution in (Mn,Fe)-based bulk metallic glasses. *Materials Science and Engineering: A* **626**, 16–26, doi:10.1016/j.msea.2014.12.048 (2015).

Acknowledgements
This work is supported by the National Key Research and Development Program (2016YFB1100103), by Natural Science Foundation of China (11674045), by the Science Challenging Program (TZ2016004), and by the International Science and Technology Cooperation Program of China (2015DFR60370).

Author Contributions
G.J.N. collected and analyzed the Fe- (B, P, C) based bulk metallic glasses. C.D. proposed the model. D.D.D., Y.X.G., and Y.M.W. helped with composition interpretation. All authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017