Data model as agile basis for evolving calibration software

Gijs Verdoes Kleijn for Hugo Buddelmeijer
OmegaCEN, Kapteyn Astronomical Institute, University of Groningen
WP lead Imaging Pipelines, MICADO Data Flow Team
OmegaCEN family business

- Astro-IT expertise center
- WISE information systems
- Data center (Petabyte scale, with CIT)

Instrument	1st light	System	1st light
OCAM@VST	2011	AstroWISE	2006
MUSE@VLT	2014	MuseWISE	2013
Euclid	2022	EuclidDPS	2018
MICADO	2025	MicadoWISE	2022
OmegaCEN family business

- Astro-IT expertise center
- WISE information systems
- Data center (Petabyte scale, with CIT)

Instrument	1st light	System	1st light
OCAM@VST	2011	AstroWISE	2006
MUSE@VLT	2014	MuseWISE	2013
Euclid	2022	EuclidDPS	2018
MICADO	2025	MicadoWISE	2022

Calibration scientist: gaining insight by trend analysis over years of observations
Glue for evolving system [instrument hardware, calibration software]

Basic reqs:	FIXED FOREVER (MICADO: 50uas, 20mmag)
Phase:	design & implementation
	operations
instrument hardware:	evolving detailed specs
	degradation, unpredicted behavior
instrument calib plan:	evolving calibration reqs
	update
calibration software:	adapt recipes and pipeline
	commissioning -> major update
	early operations -> adapt all
	routine -> refine all based on insight from years-of-data
Evolving system [instrument hardware, calibration software]

Basic reqs:	FIXED FOREVER (MICADO: 50uas, 20mmag)	
Phase:	design & implementation	operations
instrument hardware:	evolving detailed specs	degradation, unpredicted behavior
instrument calib plan:	evolving calibration reqs	update
calibration software:	adapt recipes and pipeline	commissioning -> major update early operations -> adapt all routine -> refine all based on insight from years-of-data

Diagram:
- OCAM@VST with AstroWISE, early operations 2011-2012
Evolving system [instrument hardware, calibration software]

Basic reqs:	FIXED FOREVER (MICADO: 50uas, 20mmag)	
Phase:	design & implementation	operations
instrument hardware:	evolving detailed specs	degradation, unpredicted behavior
instrument calib plan:	evolving calibration reqs	update
calibration software:	adapt recipes and pipeline	commissioning -> major update
	early operations - adapt all routine -> refine all based on insight from years-of-data	

OCAM@VST with AstroWISE, early operations 2011-2012

“Calibrate instrument, not data”
Solution: link it all in a data model centric digital framework

Data Model in machine readable framework

- Calibration reqs
 - Calibration Plan
 - data items
 - software recipe specs

Calibration reqs (accuracy & precision data item,...)
Calibration Plan (procedure, duration, prerequisites,...)
data items (data classes & dependencies,...)
software recipe specs (algorithm, procedure, validation,...)

Calib Framework -> Instrument -> System
- 2005 ODOCO: Tex+Python -> OCAM@VST -> AstroWISE
- 2010 NoName: xml+Python -> MUSE@VLT -> MuseWISE
- 2017 Calib Framework: Sphinx -> Euclid -> EuclidDPS
- 2020 CalibCADO Framework -> MICADO -> MicadoWISE

Instrument team readable!
Extremely Large Telescope & MICADO Near-IR imager+spectrograph

1.5B€, 100s people

75m

MICADO

27 Sep 19
Extremely Large Telescope & MICADO Near-IR imager + spectrograph

Actively controlled telescope + PSF:
- 40 meter: 1000 alignable segments
- Adaptive optics (\geq2 deformable mirrors)

Gravity-invariant instrument:
- 3 imaging modes, 1 spectro (slit)
- 5 wheels (incl. 30 filters)
- Atmospheric Dispersion Corrector (moving glass)
- 9 H4RG detectors (1.5 and 4 mas pixels)

Data flow rate / 24hrs:
- $\leq 1E4$ raw exposures
- ≤ 6.7 Tbyte
Extremely Large Telescope & MICADO Near-IR imager+spectrograph

Actively controlled telescope + PSF:
- 40 meter: 1000 alignable segments
- adaptive optics (\geq2 deformable mirrors)

Gravity-invariant instrument:
- 3 imaging modes, 1 spectro (slit)
- 5 wheels (incl. 30 filters)
- Atmospheric Dispersion Corrector (moving glass)
- 9 H4RG detectors (1.5 and 4 mas pixels)

Data flow rate / 24hrs:
- \leq 1E4 raw exposures
- \leq 6.7 Tbyte

"First ever" versus "minimal calibration time"

Calibrate instrument with maximum use science data
CalibCADO Framework: implementation

Details in “Using VODML with MICADO”, Buddelmeijer, Sat Oct 12, IVOA DM WG at DOT
New in CalibCADO: integrated specification of data simulator & pipeline prototype

VODSL: Data model
VODML: Data model
PYTHON: pipeline prototyping
SQL: archiving

FITS: imaging data
YAML: instrument model for data simulator
RST: consortium documentation
PDF: ESO documentation

Instrument team readable!

Details in “Using VODML with MICADO”, Buddelmeijer, Sat Oct 12, IVOA DM WG at DOT
Conclusions

Data-model-centric **Calibration Plan** is agile glue for consistent evolution of instrument & calibration software.
Conclusions

Data-model-centric **Calibration Plan** is agile glue for consistent evolution of instrument & calibration software

- ELT+MICADO: unprecedented active control, size, cost
 - **Calibration Plan** ever more important
 - Implemented CP in software with agile VO data modelling
 - Shared instrument model data simulator and calibration pipeline
 - opens way to bayesian calibration
Data-model-centric **Calibration Plan** is agile glue for consistent evolution of instrument & calibration software

- ELT+MICADO: unprecedented active control, size, cost
 - **Calibration Plan** ever more important
 - Implemented CP in software with agile VO data modelling
 - Shared instrument model data simulator and calibration pipeline
 - opens way to bayesian calibration

@IVOA: 3 Data Model talks: Dabin, Buddelmeijer, Nutma!
Example outputs facilitated by data model + framework

ODOCO Calibration Framework for OmegaCAM, 2004

Monitoring the Photometric Calibration

Auto-generated MICADO ESO recipe diagram here
Scratch slides after this one
Outline

1. OmegaCEN family business
2. Evolving instrument systems
3. ELT-MICADO’s unprecedented active control & size
4. Approach to evolving calibration software development: framework
5. Framework smaak: MICADO
6. Hugo’s add to family business: integrated detailed design of simulator & pipeline
7. Closing punch
Pipeline and data simulator share instrument model specification documents.

- Instrument Model
- Data Model + Machine readable framework
- Specification documents
- Data Simulator
- Simulated Data
- Pipeline prototypes

Diagram showing the relationship between pipeline prototypes, simulated data, and data simulator, with the instrument model sharing specification documents.