Thermal fitness costs and benefits of developmental acclimation in fall armyworm

Bame Segaiso, Honest Machekano, Ross N. Cuthbert, Casper Nyamukondiwa

PII: S2468-2276(22)00275-7
DOI: https://doi.org/10.1016/j.sciaf.2022.e01369
Reference: SCIAF 1369

To appear in: Scientific African

Received date: 19 November 2021
Revised date: 24 June 2022
Accepted date: 7 September 2022

Please cite this article as: Bame Segaiso, Honest Machekano, Ross N. Cuthbert, Casper Nyamukondiwa, Thermal fitness costs and benefits of developmental acclimation in fall armyworm, Scientific African (2022), doi: https://doi.org/10.1016/j.sciaf.2022.e01369

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier B.V. on behalf of African Institute of Mathematical Sciences / Next Einstein Initiative.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Thermal fitness costs and benefits of developmental acclimation in fall armyworm

Bame Segaiso, Honest Machekano, Ross N. Cuthbert & Casper Nyamukondiwa

a Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.

b Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa.

GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany

d School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, United Kingdom

e Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa

*Corresponding author email: nyamukondiwa@biust.ac.bw
Abstract

Global increases in mean temperatures and changes in precipitation patterns due to climate change, coupled with anthropogenic pathways, have intensified biological invasions of pest insects. Continuous exposure to bouts of acute and chronic heat and fasting stresses (during e.g., droughts) might improve performance under recurring stresses, therefore enhancing/reducing fitness within- or across- life stages (i.e., ‘carry-over’ effects). Here, we examined developmental acclimation effects in the invasive fall army worm *Spodoptera frugiperda* — a highly invasive economic insect pest of cereal crops, particularly maize — using standardized heat tolerance metrics. Specifically, we assessed the effects of acute (3h) and chronic (3 days) heat treatments (at 32 °C, 35 °C, 38 °C), as well as fasting (48h), on 3rd instar larvae, and tested fitness traits (critical thermal maxima [CT\text{max}] and heat knockdown time [HKDT]) at a later life stage (4\text{th}/5\text{th} larval instar). Acclimation to heat stress and fasting had significant fitness costs (lower CT\text{max}) across majority of treatments. However, both heat and fasting acclimation improved HKDT (except for 35 and 38°C [acute acclimation] and 35°C [chronic acclimation]). Our results suggest context-specific developmental acclimation costs and benefits in *S. frugiperda*. In particular, heat and fasting acclimation potentially have fitness costs and benefits for subsequent developmental stages facing high temperature stress. These results are important for estimating the effects of prior stressful events on future survival of invasive insect species and may be significant in predicting pest population dynamics under changing environmental conditions.

Keywords: global change biology; invasive alien species; phenotypic plasticity; *Spodoptera frugiperda*; thermal adaptation.
1.1 Introduction

Biological invasions are a growing ecological and economic threat worldwide (Bellard et al., 2016; Diagne et al., 2021). The success and impact of invasive alien species may interact synergistically with environmental changes, such as increasing temperature for improved survival chances of invasive species, but potential synergies between these processes remain largely unknown (Ricciardi et al., 2021). Insects are among the most impactful taxa worldwide when they invade, owing to a myriad of introduction pathways and rapid human-mediated dispersal, driving some of the highest economic costs worldwide among invasive species (Cuthbert et al., 2021; Venette & Hutchinson, 2021). The fall armyworm (FAW) Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) is an economic invasive insect pest of South America origin (Sparks, 1979) that attacks cereal crops, particularly maize. It first invaded the African region through west Africa in 2016 (Goergen et al., 2016; Stokstad, 2017), and by 2017, it had spread to the whole of eastern Africa and parts of southern Africa including Botswana (Day et al., 2017; Stokstad 2017), before spreading to the Middle East and Asia (India) in 2018 (EPPO, 2020; Sharanabasappa et al., 2019).

FAW is a highly multivoltine polyphagous pest, feeding on over 350 plant species across different families (Midega et al., 2018; Montezano et al., 2018; 2019), with a high preference for maize. Larvae feed on leaves, stems, and economic parts of plants e.g., maize cobs, thereby causing economic damage (Rwomushana, 2019). To reach the adult stage, they go through six instar stages, that may take as little as ~11 days (at 32 °C) (Du Plessis et al., 2020). However, FAW larva has striking host plasticity, varying from five to ten instar stages depending on host plant (Ali et al., 1990; Murúa et al., 2003); reportedly having more ‘instars on sub-optimal hosts. This host plasticity facilitates development on less favourable hosts (Esperk et al., 2007) or droughts. Given this host plasticity, African invasion by the FAW represent a substantial biosecurity threat. For example, FAW has threatened maize production
across the world, e.g., the pest accounted for ~17.7 million tones in maize losses across 12 African countries to date (FAO, 2021). Maize remains nevertheless, a staple food for over 200 millions of people globally (Nuss & Tanumihardjo, 2010) and accounts for 40% of the cereal production in Sub-Saharan Africa (FAOSTAT, 2016) with economic, social and political significance. Thus, FAW continental invasion and associated crop losses exacerbates the food security crises in Africa (see e.g., Sasson, 2012).

Bio-physical environmental conditions experienced during early life stages of an organism are significant determinants of many key fitness life history traits (Chown & Nicolson, 2004). In particular, factors such as individual diet, feeding frequency, temperature and relative humidity (RH) environments during early-life stages have significant effects on subsequent developmental stages (Mutamiswa et al., 2019; Sasmita et al., 29; Sgro et al., 2016). Determining the effects of within-developmental stage phenotypic plasticity has been the focus of research for decades (West-Eberhard, 2003; Chown & Nicolson, 2004; Sgro et al., 2016). However, the effects across developmental stages within-generation remain scarce (but see Terblanche & Chown, 2006; Zeilstra & Fischer, 2005), despite their ecological significance. For example, insect developmental stages may be spatially separated, raising questions about how environmental history may differentially shape fitness of subsequent developmental stages within the same generation, but across new environments (e.g., Nyamukondiwa & Terblanche 2010). Indeed, FAW developmental stages may also occupy ≥2 spatially distinct bio-physical environments (Melo et al., 2014) resulting in likely different fitness consequences in subsequent instars. Through adult flight migrations (Nagoshi et al., 2012) and larval silking (FAO, 2018), FAW uses this behavioral adaptation to extend its geographical range into novel areas to circumvent inter- and intra-specific competition. However, it is not known whether prior environment affects fitness of subsequent developmental stages, or aids invasiveness of FAW. Previous studies have nevertheless
documented that overcoming environmental barriers, e.g., of temperature and desiccation tolerance, are critical for invasion success (Richardson & Pysek 2006). For this reason, invasive insects often have high basal stress tolerance, phenotypic plasticity (Nyamukondiwa et al., 2010; Kelley, 2014; Wan & Yang, 2016; Machekano et al., 2018) and metabolic flexibility (Smit et al., 2021).

Other external stressors, such as lack of food, have also been documented to influence insect thermal tolerance in complex, often in unpredictable ways (Nyamukondiwa & Terblanche, 2009). Fasting can occur when there is a lack of adequate food (due to various environmental perturbations) to meet the energy requirements for biological processes in the insect’s body (McCue., 2010). This food deprivation stress is presumed to result in a trade-off in insect thermal tolerance (Scharf et al., 2016) due to cross talk or cross tolerance (Sinclair et al., 2013). Several studies have supported this notion, as fasting pre-treatment often impairs cold tolerance in insects (Gotcha et al., 2018; Kenny et al., 2008). However, fasting acclimation appears not to have any effects on heat tolerance (see Gotcha et al., 2018; Scharf et al., 2016). Nevertheless, how stressful traits in one developmental stage interact with the subsequent developmental stages and environments remains unknown in FAW, despite evidence for phenotypic plasticity within and across ontogeny (see e.g., West-Eberhard, 2003; Sgrò et al., 2016) and across different developmental stages and seasons/environments (i.e., ‘carry-over’ effects) (Norris, 2005; Harrison et al., 2011; Fayet et al., 2016; Ezeakacha & Yee, 2019).

Despite overwhelming evidence of the effects of prior environment on insect fitness (Nyamukondiwa & Terblanche, 2010; Fayet et al., 2016; Ezeakacha & Yee, 2019), few studies have investigated developmental acclimation effects for invasive insects with a view of making inferences for pest invasiveness. Nevertheless, investigation of the effect of environmental history has large ecological implications for organismal fitness under changing
environments. Unravelling developmental acclimation is important in determining how species may react to changes in environment across developmental stages and seasons, and how this may shape their fitness and by extension, their population dynamics. This has downstream implications on designing pest control strategies e.g., through development of early warning systems. Here, we thus examined innate within-generation developmental temperature and fasting acclimation effects on heat tolerance in *S. frugiperda* following high temperature acute and chronic acclimation, as well as fasting. Given its tropical origin, heat tolerance may remain a key trait that facilitates invasion, and more-so in arid and semi-arid environments such as Botswana. We hypothesise that temperature and food deprivation stress in one instar may have heat tolerance fitness costs or benefits across other subsequent non-acclimated developmental stages (developmental acclimation). Confirmation of positive adaptive developmental acclimation effects may have implications on *S. frugiperda* invasiveness under heterogeneous stressful environments associated with changing climate. This knowledge is important in informing spatially-dependant *S. frugiperda* pest management strategies.

2.1 Materials and Methods

2.1.1 Insect rearing and maintenance

Field populations of *S. frugiperda* were collected as 2nd-5th instar larvae from infested maize crops in two commercial farms; Talana farms (S22°.13467; E28°.59468) and Motloutse River farm, Bobonong Village, Central district of Botswana, and placed in 50 ml vials containing artificial diet, adopted from Tefera *et al.* (2010). Both collection areas are within the same region and experience similar climatic environments. Specimens were reared in Memmert climate chambers (Memmert GmbH + Co. KG, Schwabach, Germany) in the laboratory at optimal conditions (28±1 °C, 65±10% RH) and fed on the same artificial insect diet
Both pupae and moths were kept in Bugdorm cages (Megaview Science Co., Ltd, Taichung, Taiwan) in climate chambers. All adult moths were fed on 10% sucrose solution \textit{ad libitum}. To obtain the next generation of FAW for experimental use, moths were mated in oviposition cages containing a 4-week-old maize plant (as oviposition substrate). Following oviposition, eggs were allowed to incubate and hatch on the host plant. After hatching, 1st instar neonates were subsequently transferred to vials containing the artificial diet (Tefera et al., 2010). Each vial comprised three larvae, reared up to 3rd instar after hatching in the laboratory. However, following moulting to the 3rd instar stage, all larvae were transferred into individual vials in preparation for the experiments and simultaneously to circumvent larval cannibalism, which is usually more apparent from the 3rd instar onwards (see Rwomushana, 2019). Experiments were run using these lab-reared 3rd instar specimens from F\textsubscript{1} to F\textsubscript{4} generations, randomised across the treatments. We assumed that laboratory adaptation has insignificant effects on thermal fitness across the three tested generations, as has been observed in similar experiments (Opperman 2018; but see Hoffman et al., 2001). Acclimation treatments were done following moulting of 3rd instar larvae, and heat tolerance traits (i.e., critical thermal maxima \([\text{CT}_{\text{max}}]\) and heat knockdown time \([\text{HKDT}]\)) were tested on 4th instar larvae following acute acclimation and 5th instar larvae following chronic acclimation (as majority of the larvae moulted twice during the 3-day chronic acclimation plus one day recovery period).

2.1.2 Acclimation experiments

Experimental treatments (acclimation) comprised acute and chronic sub-lethal high temperature acclimation and fasting. This was undertaken in 3rd instar larvae by exposing insects to temperatures of 28.0 (control) 32.0, 35.0 and 38.0 ± 1.0 °C (each under 65 ±10% RH) for 3 hours (acute) and 3 days (chronic) acclimation treatments (see Table 1) in
Memmert climate chambers. Temperatures selected for acclimation were ecologically relevant and based on a previous study that showed temperatures across Botswana to reach up to 42 °C during heat waves (Moses, 2017; see Fig. 1), and considering that the optimal temperature range of *S. frugiperda* is 26-30 °C (Du Plessis *et al.*, 2020). From the optimum temperature range, 28 °C was selected as the control temperature and 3-4 °C was added to establish mild high temperatures for acclimation, based on modified protocols from Mutamiswa *et al.* (2019). Control insects were kept at optimal environmental conditions of 28±1°C and 65±10% RH during experimental treatments before measuring thermal fitness traits (Fig. 1). Following both acute and chronic acclimation, insects were allowed to recover at optimal conditions (28±1°C and 65±10% RH) for 24 hours before measuring physiological traits.

To determine the effects of feeding status on the thermal fitness of *S. frugiperda*, 3rd instar larvae were deprived of food (fasted) for 48 hours. All fasting acclimations were done using a constant time period (48 hours), and results were directly compared to those of acute and chronic temperature treatments. Larvae were removed from artificial diet at 3rd instar and individually placed into empty 50 ml vials without any food, but with a water source (cotton wad, to prevent desiccation associated mortality) for 48 hrs. The larvae were kept under benign conditions (28±1 °C, 65 ± 10% RH; 12L:12D) to ensure that food deprivation was the only limiting factor. Post 48 hrs, larvae were returned to individual vials with access to food (artificial diet) and water *ad libitum* for 24 hours to allow recovery. Measurement of thermal traits was conducted 24 hours post-recovery following methods by Gotcha *et al.* (2018). Control larvae were provided with artificial diet and kept at optimal temperatures and RH (28±1 °C and 65±10%) throughout prior to running experiments.

2.1.3 Heat tolerance metrics
To test the effects of heat and fasting acclimation on heat tolerance, (i) CT_{max} – the maximum temperature allowing insect activity, and (ii) HKDT – the time taken to knock down an insect following acute heat stress, were measured (Chown & Nicolson, 2004). Both traits are ecologically sound heat tolerance indices (Lutterschmidt & Hutchison, 1997; Huey & Kearney, 2020) and correlate well with insect biogeographical patterns. For CT_{max}, individual 4th instar (for acute acclimation) and 5th instar (for chronic acclimation) larvae were placed into an insulated double jacketed chamber with ten ‘organ pipes’ connected to a programmable bath filled with 1:1 water: propylene glycol, which regulates the flow of liquid around the chamber (Grant GP200-R4, Grant Instruments, UK) (Nyamukondiwa & Terblanche, 2009). Critical thermal maxima experiments started at 28 °C (FAW optimum temperature) from which temperature was gradually increased using a ramping rate of 0.25 °C/min until the larvae reached upper temperature limit of activity (CT_{max}) (Nyamukondiwa & Terblanche, 2009) (Table 1). This ramping rate is faster than the natural diel increase in temperature, but nevertheless slower and thus ecologically more relevant than other ramping rates used in literature e.g., 0.5 °C/minute (reviewed in Chown & Nicolson, 2004). A thermocouple (type K, 36 SWG) connected to a digital thermometer (Fluke 54 series II, Fluke Cooperation, China; accuracy: 0.05 °C) was inserted into the organ pipe to record the chamber temperature. The experimental procedure was repeated 3 times to yield $n \approx 30$ larvae per treatment (30 replications). In this study, CT_{max} was defined as the temperature at which an individual larva lost co-ordinated muscle function (self-righting) and ability to respond to mild prodding using a thermally inert object.

Heat knockdown time was assessed on 4th instar larvae (following acute acclimation) and 5th instar larvae (following chronic acclimation) using standardized protocols (Nyamukondiwa & Terblanche, 2009). We used treatment-specific heat knockdown temperatures, derived from each treatment’s CT_{max} value plus 2 °C. This heat knockdown temperature is ecologically
sufficient to elicit heat knockdown effects in insects (see e.g., Hoffman et al., 2003; Mutamiswa et al., 2019). Thus, knockdown temperatures of 53.0, 50.0, 51.4, and 50.7 °C were used as acute knockdown temperatures for 28 (control) 32, 35, and 38 °C acclimation pre-treatments respectively, whereas 53.0, 51.6, 51.9 and 50.8 °C were used as chronic knockdown temperatures for 28 (control) 32, 35, and 38 °C acclimation pre-treatments, respectively. Ten individual larvae were placed in 1.5 ml microcentrifuge tubes and placed in a Memmert climate chamber (HPP 260, Memmert GmbH + Co.KG, Germany) set at various temperatures as indicated above. Temperatures above CT_{max} cause heat coma in insects and are often used in HKDT assays (see Nyamukondiwa et al., 2011). A video recording camera (HD Covert Network Camera, DS-2CD6412FWD-20, Hikvision Digital Technology Co., Ltd, China) linked to a computer was connected to the climate chamber and used to monitor knockdown activity and timing. Heat knockdown time was defined as the time (in minutes) at which an individual larva lost activity following acute heat stress.

2.1.4 Data analysis

Data analyses were all performed using R, version 4.1.1 (R Development Core Team, 2021). The residuals were first checked for normality and variance homogeneity using Shapiro–Wilks and Levene’s tests, respectively, and were found to violate normality and homogeneity of variance assumptions. Kruskal-Wallis tests were thus used to examine CT_{max} and HKDT as a function of treatment for each respective acute and chronic exposure treatment (i.e., four separate models). Dunn tests were used post-hoc for pairwise comparisons, with p-values adjusted via the Holm method (Ogle et al., 2021).

We summarized the magnitude of both CT_{max} and HKDT following acclimation using methods by Tarusikirwa et al. (2020) and Mutamiswa et al. (2019). Specifically, we calculated the magnitude of change in thermal fitness conferred by the acclimation treatment.
using the formula below, where the mean heat tolerance (CT_{max} / HKDT) after each treatment was divided by the mean control CT_{max} or HKDT results of which were tabulated into Table 1.

Magnitude of change = \(\frac{\text{Final CT}_{\text{max}} (\text{or HKDT}) \text{ for each treatment}}{\text{Control CT}_{\text{max}} (\text{or HKDT})} \)

where a value > 1 denotes beneficial acclimation effects, whereas a value < 1 denotes potentially deleterious acclimation effect (see Leori *et al*., 1994; Marais & Chown, 2008)

3.1 Results

For acute exposures, CT_{max} differed significantly among control group, 32 °C, 35 °C and fasting acclimation treatments (\(\chi^2 = 58.397, \text{df} = 4, p < 0.001 \)). Control group 4th instar CT_{max} was significantly higher than 32 °C, 35 °C and fasting acclimation treatments (all \(p < 0.01 \)), but not 38 °C (\(p > 0.05 \)). In turn, 38 °C treatment CT_{max} was significantly greater than 32 °C, 35 °C and fasting acclimation groups (all \(p < 0.05 \)). CT_{max} following fasting acclimation significantly exceeded the 32 °C treatment (\(p < 0.05 \)) (Fig. 2a). In addition, heat tolerance (CT_{max}) for acute treatments was significantly lower than chronic exposure treatments (\(\chi^2 = 35.070, \text{df} = 4, p < 0.001 \)). For chronic acclimation, Control group CT_{max} was again highest, and significantly greater than 32 °C, 38 °C and fasting acclimation treatments (all \(p < 0.05 \)), but not 35 °C (\(p > 0.05 \)). CT_{max} at the 35 °C treatment was also significantly greater than 38 °C and following fasting acclimation (both \(p < 0.05 \)) (Fig. 2b).

Following acute 3rd instar acclimation exposures, HKDT differed significantly among treatment groups (\(\chi^2 = 51.220, \text{df} = 4, p < 0.001 \)). Control HKDT was significantly lower than 32 °C and fasting acclimation groups (both \(p < 0.05 \)), but not 35 °C or 38 °C (both \(p > 0.05 \)). Fasting acclimation and 32 °C treatment groups had the highest HKDT, which significantly exceeded 35 °C and 38 °C (all \(p < 0.001 \)) (Fig. 2c). For chronic exposures, HKDT again significantly differed among treatments (\(\chi^2 = 32.332, \text{df} = 4, p < 0.001 \)). Control group HKDT
was significantly lower than 32 °C, 38 °C and fasting acclimation groups (all p < 0.01), but not 35 °C (p > 0.05), whereas 38 °C significantly exceeded 35 °C (p < 0.05) (Fig. 2d).

Chronic and acute acclimation had contrasting results on the direction of both CT\textsubscript{max} and HKDT plasticity (Table 1). Both acute and chronic acclimation, as well as fasting, yielded negative deleterious plastic effects (i.e., negative magnitude; see Table 1) for CT\textsubscript{max}, whereas positive effects on HKDT were exhibited following chronic exposure and fasting, but not acute exposures beyond 32 °C.

4.0 Discussion

Population dynamics of individuals that may occupy multiple spatially-distinct habitat environments can be highly complex (Webster et al., 2002). As such, sub-lethal stressful conditions experienced during early developmental stages e.g., early instars of the larvae, may be important in determining key life history traits, either manifesting as beneficial through e.g., developmental acclimation effects (see Chown & Nicolson, 2004), or as deleterious (see e.g., Marais & Chown, 2008). Our results showed that fasting and high temperature acclimation at the 3rd instar larval stage had mixed effects on the heat tolerance of subsequent developmental stages (4th instar larval stage) in FAW, tested as CT\textsubscript{max} and HKDT, and following both acute and chronic acclimation. In particular, fasting, acute and chronic high temperature acclimation of 3rd instars reduced CT\textsubscript{max} of 4th instar larval stage of \textit{S. frugiperda}. This may point to a deleterious effect of developmental acclimation conditions tested here on \textit{S. frugiperda} heat tolerance. Thus, the prior exposure to sub-lethal environmental stressors early in life may have negative consequences for subsequent developmental stages, synonymous to deleterious acclimation (Marais & Chown, 2008), and suggest that both the acclimation treatment and CT\textsubscript{max} stress test effects are additive (Jorgensen et al., 2021). Although chronic acclimation was lower than control, it generally
had higher $C_{T_{\text{max}}}$ than the acute acclimation treatments at the same temperatures. However, HKDT assays yielded contrasting results from those of $C_{T_{\text{max}}}$, with both fasting and specific high temperature acclimation treatments increasing heat tolerance (HKDT) for both acutely and chronically acclimated 3$^{\text{rd}}$ instar $S. \text{frugiperda}$. Our results, thus, confirm that acclimatory exposure of one developmental stage may have fitness costs and benefits to subsequent developmental stages, and that these costs and benefits depend on the context of the fitness metric being tested (e.g., $C_{T_{\text{max}}}$ vs HKDT). Thus, exposure to sub-lethal stress during development may have fitness and survival consequences on later life stages (Klockmann et al., 2017), and by inference, could affect the propensity of invasive species establishment success in novel environments.

While acclimatory conditions experienced during one life stage of an organism can have fitness costs and benefits within that life stage, acclimatory effects can also manifest across developmental stages. Developmental acclimation effects are adaptive and may presumably facilitate ‘carry-over’ stress resistance under novel stressful environments. $Spodoptera \text{frugiperda}$ is a highly invasive economic insect pest of cereal crops, particularly maize. Given the mobility of its life stages e.g., larva (through silking) and adults (through flight), it is largely unknown how previous environments may shape fitness of the same and/or subsequent life stages, and by inference, invasion propensity thereof. Our results showed that most acute and chronic heat acclimation treatments, as well as fasting, significantly depressed $C_{T_{\text{max}}}$. This result means that sub-lethal food deprivation and heat stress at the 3$^{\text{rd}}$ instar stage larvae may have negative $C_{T_{\text{max}}}$ fitness consequences on 4$^{\text{th}}$ and 5$^{\text{th}}$ instar larvae and probably by extension, other subsequent developmental stages. Climate change is often associated with episodes of acute and chronic heat stress, and prolonged droughts that may limit food resources (IPCC, 2014; Stillman, 2019). Thus, the deleterious effects of acclimation treatments recorded here may mean that frequent episodes of environmental heat
and food deprivation stress faced in nature may offset heat tolerance of subsequent developmental stages, affecting population dynamics of invasive species. The reason for the negative effects of heat acclimation reported here are largely unknown. However, it may point to the notion that the stress faced during acclimation treatment and CT_{max} assays is additive (see Jorgensen et al., 2021). Moreover, we also speculate that we may have missed certain acclimatory cues or specific treatment combinations that specifically elicits CT_{max} acclimation responses. Thus, future studies may need to explore differential temperature and time combinations at all higher instar stages of the larvae that may elicit acclimation. One more interesting result observed here is that a treatment to one stress may also have negative effects on a divergent stress. For example, 3^{rd} instar acute and chronic fasting acclimation had deleterious consequences on 5^{th} instar larval CT_{max}. This may point to the notion that injury associated with diverging environmental stresses may be the same (see e.g., Shen et al., 2015; Farahani et al., 2020), and that divergent stress effects may thus be additive. Nevertheless, the lack of beneficial acclimation effects for heat acclimation reported here is consistent with studies on *Tuta absoluta*, that reported no beneficial acclimation effects following chronic high temperature acclimation (Tarusikirwa et al., 2020).

By contrast, both acute and chronic 3^{rd} instar larvae acclimation had beneficial effects on subsequent larval HKDT, albeit for specific treatments ($32 \, ^\circ \text{C}$ and fasting for acute acclimation, and $32, 38 \, ^\circ \text{C}$ and fasting for chronic acclimation). Conditions eliciting acclimation responses are highly complex and often context-dependent (Chown & Nicolson, 2004; Sgro et al., 2016; Mutamiswa et al., 2019). This agrees with our results, that observed positive acclimation responses were specific to certain heat acclimation groups and corroborates with previous reports suggesting that conditions conferring acclimation responses are highly context-dependent (see Mutamiswa et al., 2019). Similarly, acute heat acclimation at 35 and 38 $^\circ \text{C}$, and chronic heat acclimation at 35 $^\circ \text{C}$, had no significant effects
on HKDT. This result means that heat wave episodes associated with climate change on 3rd instar larvae of *S. frugiperda* may have positive or neutral effects on subsequent developmental stages in the context of HKDT but not CT\textsubscript{max}. Thus, *S. frugiperda* may have fitness benefits under projected heat stress in terms of enduring long durations of mild to high temperature stress associated with changing climates, potentially translating into greater invasiveness and resilience in high temperature tropical habitats.

Comparisons for HKDT experimental traits have often been investigated using a more constant temperature (see Chown & Nicolson 2004). However, here, we used different heat knockdown temperatures to investigate HKDT across different acute and chronic temperature treatments. Thus, differences in results reported here may also be partly due to the treatment-specific heat knockdown temperature methodology used in our study. Furthermore, the results also showed the positive beneficial effects of acclimation to a divergent stress trait (fasting) on a different stressor (heat tolerance [HKDT]). Such cross tolerance represents shared co-evolutionary response mechanisms to stress traits involved (see Gotcha et al., 2018), and represent another facet that may help invasive species survive highly variable stressful environments, e.g., through integrated stress resistance (see discussions in Renault et al., 2015). Cross tolerance results reported here are nevertheless in contrast with reports on *Ceratitis rosa*, where fasting resulted in increased CT\textsubscript{max} and reduced HKDT (Gotcha et al., 2018). These results indicate that fasting has dissimilar effects on different traits used to measure heat tolerance, and that elicitation of acclimation responses are trait dependant.

Results obtained here thus mean that food deprivation (i.e., temporary absence of host plants) during mid-season droughts, and other plant-damaging natural disasters such as hailstorms, may provide a benefit in periods of rapid heat shock, such as heat waves, through cross tolerance developmental acclimation effects. Increased heat tolerance (HKDT) reported here for certain treatments may represent context-specific expression of heat shock proteins and
other hormonal heat stress regulators (Hoffmann et al., 2003; King & Macrae, 2015). Heat shock proteins and hormonal activation due to heat stress usually occur over a certain temperature threshold, which are context-dependent but usually range from 39 – 41 °C (Qazi et al., 2019). Similar results were observed in Drosophila mojavensis (Patterson & Crow, 1940), where high temperature acclimation at one developmental stage increased HKDT in subsequent developmental stages (Diaz et al., 2021). Indeed, sublethal high temperature stress may influence physiological traits in addition to other life history traits e.g., fecundity and longevity (Nguyen & Amano, 2010). A study on Plutella xylostella (L.) showed that high temperature acclimation on larval stages had effects on adult stages, affecting oviposition patterns and adult life span (Zhang et al., 2015). Our results thus indicate that timing of sublethal high temperature stress such as heat waves may enhance thermal fitness and survival of other life stages of invasive pest insects. Therefore, survival of S. frugiperda may increase in hot tropical areas even during high temperature incidences. Inclusion of effects of extreme high temperature incidences in pest management forecasts will increase accuracy of invasive species biogeographical patterns (Skendžić et al., 2021). Likewise, processes and events at one developmental stage and in a particular season may have far-reaching consequences for other developmental stages in a different season; a phenomenon called ‘carry-over’ effects (Harrison et al., 2011). While this phenomenon has largely been explored in migratory birds, little is known on how this affects the fitness of migratory insects in general (but see Galarza et al., 2019), and invasive insects in particular. Future work should accordingly examine carry-over effects in S. frugiperda and assess how they may shape population dynamics and pest invasiveness. We also observed that acclimation responses were trait-dependant and observed such positive effects only for HKDT; a more acute heat stress metric compared to CT_{max}. We thus speculate, with caveats, that the differences in chronic exposure to stress during CT_{max} and HKDT assays may also have affected differential acclimation responses
reported here. Future studies should thus look at more acute CT_{max} ramping methodologies e.g., 0.5 or 1 °C/minute (see e.g., Terblanche et al., 2007) to try and capture potential acclimation cues that we may have missed.

Costs and benefits of plastic acclimation are difficult to predict and are not uniform across species, metrics tested and acclimation treatments. A study done by Alemu et al., (2017) showed that age, increasing rate of temperature change and duration of heat hardening resulted in a benefit or increase in CT_{max}. Factors such as body mass have also been shown to have a cost on HKDT (Nyamukondiwa et al., 2018). Our results thus show mixed but context (trait)-dependent effects of both acute and chronic developmental acclimation. Specifically, we first show that while both heat and fasting acclimation at one developmental stage negatively affected heat tolerance measured as CT_{max}, it contrastingly improved another heat tolerance trait (HKDT), suggesting differential trait related acclimation responses. The positive beneficial acclimation responses for HKDT were, however, treatment dependant, suggesting specific cues eliciting acclimation for the HKDT trait. Second, we show that while heat acclimation had negative effects (additive stress effects [see Jøgensen et al., 2021]) for CT_{max} (same stressor), acclimation to a divergent stress (food deprivation) may also have additive stress effects on a different stress (heat tolerance [CT_{max}]). These results support our hypothesis that abiotic stress in one developmental stage may have fitness costs and benefits in the subsequent developmental stages (e.g., Ezeakacha & Yee, 2019). We could, however, not find acclimation responses for CT_{max} and other treatments for HKDT. We speculate that we may have missed exact treatment combinations that elicit acclimation response for CT_{max} and these specific treatments for HKDT. Thus, future work should consider more comprehensive acclimation treatment combinations. Forecasting of insect pest invasions are usually done through prediction of how changes in mean temperature affect insect pest population dynamics (Zhang et al., 2015). Our results provide a step into understanding costs
and benefits of developmental acclimation in *S. frugiperda* and how it may affect pest population dynamics. Future pest forecasting models should thus incorporate developmental acclimation responses and by extension, ‘carry-over’ and integrated stress resistance effects (see e.g., Norris & Taylor, 2006; Nyamukondiwa *et al.*, 2022) to potentially improve accuracy of model outputs and pest early warning systems.

Availability of data and material

The datasets during and/or analysed during the current study available from the corresponding author on reasonable request.

Submission declaration and conflict of interest statement

This work has not been previously published. Authors declare no conflict of interests.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

All authors declare no conflict of interests.

Funding
BS, HM, and CN acknowledge funding from the Botswana International University of Science and Technology (BIUST). RC acknowledges funding from the Alexander von Humboldt Foundation.

Authors' contributions

Project conceptualization and management: BS HM CN.

Data curation: BS.

Formal analysis: RC CN.

Investigation: BS HM.

Visualization and validation: BS HM RC CN.

Writing – original draft: BS HM CN.

Writing, review and editing: BS HM RC CN.

Acknowledgements

We acknowledge the Botswana International University of Science and Technology for financially supporting this project as well as the Botswana Ministry of Agriculture extension officers and respective farmers who assisted in the sourcing of insects used in the project.
References

Alemu, T., Alemneh, T., Pertoldi, C., Ambelu, A., & Bahrndorff, S. (2017). Costs and benefits of heat and cold hardening in a soil arthropod. *Biological Journal of the Linnean Society, 122*(4), 765-773.

Ali, A., & R.G. Luttrell. (1990). Survival of fall armyworm (Lepidoptera: Noctuidae) immatures on cotton. *Florida Entomologist, 73*, 459-465.

Bellard, C., Cassey, P., Blackburn, T.M. (2016). Alien species as a driver of recent extinctions. *Biology Letters, 12*, 20150623.

Chown, S. L. Nicolson, S. (2004). *Insect Physiological Ecology: Mechanisms and Patterns*. Oxford University Press.

Cuthbert, R.N., Diagne, C., Haubrock, P. J., Turbelin, A.J. Courchamp, F. (2021). Are the “100 of the world’s worst” invasive species also the costliest?. *Biological Invasions, 1*-10.

Day, R., Abrahams, P., Bateman, M., Beale, T., Clottey, V., Cock, M. Witt, A. (2017). Fall armyworm: impacts and implications for Africa. *Outlooks on Pest Management, 28*, 196-201.

Diagne, C., Leroy, B., Vaissière, A.C., Gozlan, R. E., Roiz, D., Jarić, I. Courchamp, F. (2021). High and rising economic costs of biological invasions worldwide. *Nature, 592*, 571-576.

Diaz, F., Kuijper, B., Hoyle, R.B., Talamantes, N., Coleman, J. M. Matzkin, L.M. (2021). Environmental predictability drives adaptive within-and transgenerational plasticity of heat tolerance across life stages and climatic regions. *Functional Ecology, 35*, 153-166.

Du Plessis, H., Schlemmer, M. L.Van den Berg, J. (2020). The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). *Insects, 11*, 228.
EPPO. (2020). *Spodoptera frugiperda* (LAPHFR) - distribution [WWW document]. EPPO global database. https://gd.eppo.int/taxon/LAPHFR/distribution.

Esperk, T., Tammaru, T. Nylin, S. 2007. Intraspecific variability in number of larval instars in insects. *Journal of Economic Entomology* 100, 627-645.

Ezeakacha, N.F. Yee, D.A. (2019). The role of temperature in affecting carry-over effects and larval competition in the globally invasive mosquito *Aedes albopictus*. *Parasites & Vectors*, 12, 1-11.

FAO. (2018). Integrated management of the Fall Armyworm on maize: A guide for Farmer Field Schools in Africa. *Rome Italy*.

FAO. (2021). Global Action for Fall Armyworm Control. *Rome, Italy*.

FAOSTAT, D. (2016). Food balance sheets. *FAO Statistical Databases: Rome, Italy*.

Farahani, S., Bandani, A.R., Alizadeh, H., Goldansaz, S.H. Whyard, S. (2020). Differential expression of heat shock proteins and antioxidant enzymes in response to temperature, starvation, and parasitism in the Carob moth larvae, *Ectomyelois ceratoniae* (Lepidoptera: Pyralidae). *PloS One*, 15, e0228104.

Fayet, A.L., Freeman, R., Shoji, A., Kirk, H.L., Padget, O., Perrins, C.M. Guilford, T. (2016). Carry-over effects on the annual cycle of a migratory seabird: an experimental study. *Journal of Animal Ecology*, 85, 1516-1527.

Galarza, J.A., Dhaygude, K., Ghaedi, B., Suisto, K., Valkonen, J. Mappes, J. (2019). Evaluating responses to temperature during pre-metamorphosis and carry-over effects at post-metamorphosis in the wood tiger moth (*Arctia plantaginis*). *Philosophical Transactions of the Royal Society B*, 374, 20190295.
Goergen, G., Kumar, P.L., Sankung, S.B., Togola, A. Tamò, M. (2016). First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. *PloS One*, 11, e0165632.

González-Tokman, D., Córdoba-Aguilar, A., Dátilo, W., Lira-Noriega, A., Sánchez-Guillén, R.A. Villalobos, F. (2020). Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. *Biological Reviews*, 95, 802-821.

Gotcha, N., Terblanche, J.S. Nyamukondiwa, C. (2018). Plasticity and cross-tolerance to heterogeneous environments: divergent stress responses co-evolved in an African fruit fly. *Journal of Evolutionary Biology*, 31, 98-110.

Harrison, X.A., Blount, J.D., Inger, R., Norris, D.R., & Bearhop, S. (2011). Carry-over effects as drivers of fitness differences in animals. *Journal of Animal Ecology*, 80, 4-18.

Hoffmann, A.A., Hallas, R., Sinclair, C. Partridge, L. (2001). Rapid loss of stress resistance in Drosophila melanogaster under adaptation to laboratory culture. *Evolution*, 55, 436-438.

Hoffmann, A.A., Sørensen, J.G. Loeschcke, V. (2003). Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. *Journal of Thermal Biology*, 28, 175-216.

Huey, R.B., & Kearney, M.R. (2020). Dynamics of death by heat. *Science*, 369, 1163-1163.

Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2014: Synthesis Report. *Intergovernmental Panel on Climate Change, Geneva* p 52. Doi: https://www.ipcc.ch/report/ar5/wg2/
Jørgensen, L.B., Malte, H., Ørsted, M., Klahn, N.A. Overgaard, J. (2021) A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress. *Scientific Reports*, 11, 1-14.

Kelley, A.L. (2014). The role thermal physiology plays in species invasion. *Conservation Physiology* 10, DOI: cou045. doi: 10.1093/conphys/cou045.

Kenny, M.C., Wilton, A. Ballard, J.W.O. (2008). Seasonal trade-off between starvation resistance and cold resistance in temperate wild-caught Drosophila simulans. *Australian Journal of Entomology*, 47, 20-23.

King, A.M., & MacRae, T.H. (2015). Insect heat shock proteins during stress and diapause. *Annual Review of Entomology*, 60, 59-75.

Klockmann, M., Kleinschmidt, F. Fischer, K. (2017). Carried over: Heat stress in the egg stage reduces subsequent performance in a butterfly. *PLoS One*, 12, e0180968.

Leroi, A.M., Bennett, A.F. Lenski, R.E. (1994). Temperature acclimation and competitive fitness: an experimental test of the beneficial acclimation assumption. *Proceedings of the National Academy of Sciences*, 91, 1917-1921.

Lutterschmidt, W.I. Hutchison, V.H. (1997). The critical thermal maximum: data to support the onset of spasms as the definitive end point. *Canadian Journal of Zoology*, 75, 1553-1560.

Machekano, H., Mutamiswa, R., Nyamukondiwa, C. 2018. Evidence of rapid spread and establishment of *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae) in semi-arid Botswana. *Agriculture & Food Security*, 7, 48 https://doi.org/10.1186/s40066-018-0201-5.

Marais, E. Chown, S. L. (2008). Beneficial acclimation and the Bogert effect.*Ecology Letters*, 11, 1027-1036.
McCue, M.D. (2010). Starvation physiology: reviewing the different strategies animals use to survive a common challenge. *Comparative Biochemistry and Physiology A* 156, 1–18.

Melo, E.P.D., Degrande, P.E., Lima Junior, I.D.S.D., Suekane, R., Kodama, C. Fernandes, M. G. (2014). Spatial arrangement and damage by the fall armyworm *Spodoptera frugiperda* (JE Smith) (Lepidoptera: Noctuidae) on maize. *Revista Ceres*, 61, 343-349.

Midega, C.A., Pittchar, J.O., Pickett, J.A., Hailu, G.W. Khan, Z.R. (2018). A climate-adapted push-pull system effectively controls fall armyworm, *Spodoptera frugiperda* (JE Smith), in maize in East Africa. *Crop Protection*, 105, 10-15.

Montezano, D.G., Sosa-Gómez, D.R., Specht, A., Roque-Specht, V.F., Sousa-Silva, J.C., Paula-Moraes, S.D. Hunt, T.E. (2018). Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. *African Entomology*, 26, 286-300.

Montezano, D.G., Specht, A., Sosa-Gómez, D.R., Roque-Specht, V.F., de Paula-Moraes, S.V., Peterson, J.A. Hunt, T. E. (2019). Developmental parameters of Spodoptera frugiperda (Lepidoptera: Noctuidae) immature stages under controlled and standardized conditions. *Journal of Agricultural Science* 11, 76-89. https://doi.org/10.5539/jas.v11n8p76.

Moses, O. (2017). Heat wave characteristics in the context of climate change over past 50 years in Botswana. *Environmental Science*.

Mutamiswa, R., Machekano, H., Chidawayika, F., Nyamukondiwa, C. (2019). Life-stage related responses to combined effects of acclimation temperature and humidity on the thermal tolerance of Chilo partellus (Swinhoe) (Lepidoptera: Crambidae). *Journal of Thermal Biology*, 79, 85-94.

Murúa, M.G., Vera, M.T., Abraham, S., Jurcz, M.L., Prieto, S., Head, G.P., Willink, E. (2008). Fitness and mating compatibility of Spodoptera frugiperda (Lepidoptera: Noctuidae)
populations from different host plant species and regions in Argentina. *Annals of the Entomological Society of America*, 101, 639-649.

Nagoshi, R.N., Meagher, R.L., Hay-Roe, M. (2012). Inferring the annual migration patterns of fall armyworm (Lepidoptera: Noctuidae) in the United States from mitochondrial haplotypes. *Ecology and Evolution*, 2, 1458-1467.

Nguyen, T.T., Amano, H. (2010). Temperature at immature and adult stages differentially affects mating duration and egg production of Neoseiulus californicus females mated once (Acari: Phytoseiidae). *Journal of Asia-Pacific Entomology*, 13, 65-68.

Norris, D.R. (2005). Carry-over effects and habitat quality in migratory populations. *Oikos*, 109(1), 178-186.

Norris, D.R., Taylor, C.M. (2006). Predicting the consequences of carry-over effects for migratory populations. *Biology Letters*, 2, 148-151.

Nuss, E.T., Tanumihardjo, S.A. (2010). Maize: a paramount staple crop in the context of global nutrition. *Comprehensive Reviews in Food Science and Food Safety*, 9, 417-436.

Nyamukondiwa, C., Kleynhans, E., Terblanche, J.S. (2010). Phenotypic plasticity of thermal tolerance contributes to invasion potential of Mediterranean fruit flies (*Ceratitis capitata*). *Ecological Entomology*, 35, 565-575.

Nyamukondiwa C., Terblanche J.S. (2009). Thermal tolerance in adult Mediterranean and Natal fruit flies (*Ceratitis capitata* and *Ceratitis rosa*): effects of age, gender and feeding status. *Journal of Thermal Biology*, 34, 406–414.
Nyamukondiwa, C., Terblanche, J.S. (2010). Within-generation variation of critical thermal limits in adult Mediterranean and Natal fruit flies Ceratitis capitata and Ceratitis rosa: thermal history affects short-term responses to temperature. *Physiological Entomology*, 35, 255-264.

Nyamukondiwa, C., Terblanche, J.S., Marshall, K E., Sinclair, B.J. (2011). Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae). *Journal of Evolutionary Biology*, 24, 1927-1938.

Nyamukondiwa, C., Chidawanyika, F., Machekano, H., Mutamiswa, R., Sands, B., Mgidiswa, N., & Wall, R. (2018). Climate variability differentially impacts thermal fitness traits in three coprophagic beetle species. *PLoS One*, 13(6), e0198610.

Nyamukondiwa, C., Machekano, H., Chidawanyika, F., Mutamiswa, Ma, G., Ma, C.S. (2022). Geographic dispersion of invasive crop pests: the role of basal, plastic climate stress tolerance and other complementary traits in the tropics. *Current Opinion in Insect Science*, 50, 100878.

Ogle, D.H., Doll, J.C., Wheeler, P., Dinno, A. (2021). FSA: Fisheries Stock Analysis. R package version 0.9.1, https://github.com/droglenc/FSA.

Opperman, E.J. (2018). Mechanisms of population establishment in insect invasions: Drosophilidae as a model system. MSc Thesis, University of Stellenbosch.

Patterson, J.T., Crow, J.F. (1940). XII. Hybridization in the mulleri group of Drosophila. *University of Texas Publications*, 4032, 251-256.

Overgaard, J., Sørensen, J.G. (2008). Rapid thermal adaptation during field temperature variations in Drosophila melanogaster. *Cryobiology*, 56, 159-162.
Qazi, H.A., Jan, N., Ramazan, S., John, R. (2019). Protein modification in plants in response to abiotic stress. In Protein Modificomics (pp. 171-201). Academic Press.

Renault, D., Henry, Y., Colinet, H. (2015). Exposure to desiccating conditions and cross-tolerance with thermal stress in the lesser mealworm Alphitobius diaperinus (Coleoptera: Tenebrionidae). Revue D'écologie, 70, 33-41.

Ricciardi, A., Iacarella, J.C., Aldridge, D.C., Blackburn, T.M., Carlton, J.T., Catford, J.A., Wardle, D.A. (2021). Four priority areas to advance invasion science in the face of rapid environmental change. Environmental Reviews, 29, 119-141.

Richardson, D.M., Pysek, P. (2006). Plant invasions merging the concepts of species invasiveness and community invisibility. Progress in Physical Geography, 30, 409-431.

Rwomushana, I. (2019). Spodoptera frugiperda (fall armyworm). Invasive Species Compendium, (29810). Wallingford, UK: CABI. DOI:10.1079/ISC.29810.20203373913.

Sasson, A. (2012). Food security for Africa: an urgent global challenge. Agriculture and Food Security, 1, 1-16.

Sasmita, H.I., Tu, W.C., Bong, L.J., Neoh, K.B. (2019). Effects of larval diets and temperature regimes on life history traits, energy reserves and temperature tolerance of male Aedes aegypti (Diptera: Culicidae): optimizing rearing techniques for the sterile insect programmes. Parasites and Vectors, 12, 1-16.

Scharf, I., Wexler, Y., MacMillan, H.A., Presman, S., Simson, E., Rosenstein, S. (2016). The negative effect of starvation and the positive effect of mild thermal stress on thermal tolerance of the red flour beetle, Tribolium castaneum. The Science of Nature, 103, 20.
Sgro, C.M., Terblanche, J.S., Hoffmann, A.A. (2016). What can plasticity contribute to insect responses to climate change? *Annual Review of Entomology*, 61, 433-451.

Sharanabasappa, S., Kalleshwaraswamy, C.M., Poorani, J., Maruthi, M.S., Pavithra, H.B., Diraviam, J. (2019). Natural enemies of Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae), a recent invasive pest on maize in South India. *The Florida Entomologist*, 102, 619-623.

Shen, Q., Zhao, L., Xie, G., Wei, P., Yang, M., Wang, S., Tang, B. (2015). Cloning three Harmonia axyridis (Coleoptera: Coccinellidae) heat shock protein 70 family genes: regulatory function related to heat and starvation stress. *Journal of Entomological Science*, 50, 168-185.

Sinclair, B.J., Ferguson, L.V., Salehipour-Shiraz, G., MacMillan, H.A. (2013) Cross tolerance and cross talk in the cold: relating low temperature to desiccation and immune stress in insects. *Integrative and Comparative Biology*, 53, 545-556.

Skendžić, S., Zovko, M., Živkovic, I.P., Lešić, V., Lemić, D. (2021). The Impact of Climate Change on Agricultural Insect Pests. *Insects*, 12, 440. https://doi.org/10.3390/insects12050440.

Smit, C., Javal, M., Lehmann, P., & Terblanche, J.S. (2021). Metabolic responses to starvation and feeding contribute to the invasiveness of an emerging pest insect. *Journal of Insect Physiology*, 128, 104162.

Sparks, A.N. (1979). A review of the biology of the fall armyworm. *Florida Entomologist*, 82-87.

Stillman, J.H. (2019). Heat Waves, the New Normal: Summertime Temperature Extremes Will Impact Animals, Ecosystems, and Human Communities. *Physiology*, 34, 86-100.
Stokstad, E. (2017). New crop pest takes Africa at lightning speed. *Food Security*, 6337, 473-474.

Tarusikirwa, V.L., Mutamiswa, R., English, S., Chidawanyika, F., Nyamukondiwa, C. (2020). Thermal plasticity in the invasive south American tomato pinworm Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae). *Journal of Thermal Biology*, 90, 102598.

Tefera, T. (2010). Mass rearing of stem borers, maize weevil, and larger grain borer insect pests of maize. CIMMYT, https://repository.cimmyt.org/handle/10883/815 (Accessed 15 July 2021).

Terblanche, J.S., Chown, S.L. (2006). The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae). *Journal of Experimental Biology*, 209, 1064-1073.

Terblanche, J.S., Deere, J.A., Clusella-Trullas, S., Janion, C., Chown, S.L. (2007). Critical thermal limits depend on methodological context. *Proceedings of the Royal Society B*, 274, 2935-2943.

Venette, R.C., Hutchison, W.D. (2021). Invasive Insect Species: Global Challenges, Strategies & Opportunities. *Frontiers in Insect Science*, 1, doi: 10.3389/finsc.2021.650520.

Wan, F.H., Yang, N.W. (2016). Invasion and management of agricultural alien insects in China. *Annual Review of Entomology*, 61, 77-98.

Webster, M.S., Marra, P.P., Haig, S.M., Bensch, S., Holmes, R.T. (2002). Links between worlds: unraveling migratory connectivity. *Trends in Ecology & Evolution*, 17, 76-83.

West-Eberhard, M.J. (2003). *Developmental Plasticity and Evolution*. Oxford University Press.
Zeilstra, I., Fischer, K. (2005). Cold tolerance in relation to developmental and adult temperature in a butterfly. *Physiological Entomology*, 30, 92-95.

Zhang, W., Rudolf, V.H., Ma, C.S. (2015). Stage-specific heat effects: timing and duration of heat waves alter demographic rates of a global insect pest. *Oecologia*, 179, 947-957.
Table legends

Table 1: Magnitude and direction of change of critical thermal maxima and heat knockdown time. Magnitude < 1 indicates deleterious (negative) effects of acclimation, whereas magnitude > 1 indicates beneficial (positive) effects of acclimation.

Figure legends

Figure 1: Experimental flow diagram indicating acclimated developmental stages, type of acclimation (acute versus chronic), acclimation temperatures (28 [control]; 32; 35 and 38 °C) and the traits tested (HKDT and CT$_{\text{max}}$). Traits were tested on instar 4 in acute acclimation and instar 5 in chronic acclimation pre-treatments. Heat knockdown temperatures were acclimation treatment temperature-specific, and were derived from average CT$_{\text{max}}$ values, following methods by Hoffman et al., (2003), CT$_{\text{max}}$ = critical thermal maximum; HKDT = heat knockdown time.

Figure 2: Critical thermal maxima (CT$_{\text{max}}$ [a, b]) and heat knockdown time (HKDT [c, d]) following acute (a, c) and chronic (b, d) temperature treatments. For all fasting pre-treatments, organisms were deprived of food for 48h. In the boxplots, the horizontal bars display the median, the box gives the interquartile ranges, and the whiskers show the largest and smallest values up to 1.5 × interquartile range. Points are raw data. Acute and chronic represents acute and chronic acclimations.
Tables

Table 1: Magnitude and direction of change of critical thermal maxima and heat knockdown time.

Type of acclimation	Acclimation temperature (°C)	*Magnitude of change (CT$_{max}$) (folds)	*Magnitude of change (HKDT) (folds)
Acute	32	0.968	1.175
	35	0.974	0.840
	38	0.995	0.832
Chronic	32	0.991	1.290
	35	0.099	1.240
	38	0.995	1.572
Fasting	28	0.981	1.130

*Magnitude < 1 indicates deleterious (negative) effects of acclimation, whereas magnitude > 1 indicates beneficial (positive) effects of acclimation
Figures

Figure 1
Figure 2.