Likelihood Construction of Hawkes Process in Insurance Claim Settlement Process

N Ilyas, N Sunusi, Anisa and St Sahriman
Department of Statistics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km.10 Tamalanrea, Makassar-Indonesia
ntitisanusi@gmail.com

Abstract. The construction of the likelihood equation in the point process models plays a very important role, especially to obtain a good estimator of the parameters of a model. This paper aims to construction of the likelihood of Hawkes process in solving the problem of the claim filing process in the nonlife insurance company. In the construction process, the excitation function with exponential decay is used. The result shows that the total likelihood function of the process depend on probability no claim at time \(t \), the number of policyholder at time \(t \), and the excitation function.

1. Introduction
Hawkes processs is one of simple point process that is often used in studies of seismology, Deoxiribo Nucleat Acid modeling, finance [1], insurance problem[2], [3]. In 2010, Stabile and Torrisi [2] have examined the possibility of ruin problems using Hawkess processes. In insurance premium matters, another important thing is the determination of premium in general as described by Jang and Dassios & Dassios, Jang and Dassios & Dassios, in 2012 [4]. In 1998, Arjas studied about claim process estimation through regression model Zero-Inflated Poisson [5].

The use of Point process models in the claim submission process assumes claims as points on a certain time interval. The occurrence of claim settlement is explained completely by a stochastic process, where two claims that occur at different times occur in sequence as was done by Nurtiti et al 2016 [3]. This study examines a model point process in discussing to calculate claim reserves. The determination of claim reserves discussed by Nurtiti et all uses the assumption that the time of submission of each claim is a random variable.

Until now, the problem of submitting claims to insurance companies is still being studied because it is not easy to predict. This is because the time for filing claims from each event is random. Besides that, submission of claims in insurance companies, including recurring events, but the frequency is not the same as the number of accidents that occur in everyday life. In the study of mathematical modeling, models that can explain events like this are known as point processes. Thus, the process of submitting claims to insurance companies can be described through point process modeling. This study aims to construct the likelihood equation model of claims settlement process for Hawkes process with the excitation function is exponential decay.

2. Hawkes Process
Hawkes process is a process class where the arrival rate of events depends on past events - that is, a self-exciting process and next we will examine in detail the most famous exciting process, that is, Hawkes process [6].

Definition 1. Point Process

Let \((T_1, T_2, \ldots) \) be a sequence of random variables that has the value in \([0, +\infty) \), with \(\mathbb{P}(0 \leq T_1 \leq T_2 \leq \ldots) = 1 \), and the number of points in a bounded region is almost surely finite, then the sequence of \((T_1, T_2, \ldots) \) is called a point process [7].

Definition 2. One Dimensional Hawkes Process

Let \(N(t) \) be a point process with characterized by

\[
\lambda(t) = \lambda + \int_0^t \mu(t - s) \, dN(s)
\]

where \(\lambda(t) \) is intensity, so it is called the one dimensional Hawkes process where \(\lambda > 0 \) and the function \(\mu(t) \) is a positive function and satisfies \(\int_0^\infty \mu(s) \, ds < 1 \).

3. **Likelihood Function of Point Process Model**

Let \(N(t) \) be a point process on \([0, T] \) for \(T < \infty \) and let \(\{T_1, T_2, \ldots, T_n\} \) be a realization of event times of \(N(t) \) over the period \([0, T] \). The data likelihood \(L \) defined as a parameter function set \(\theta \) as follows [7]:

\[
L(\theta) = \prod_{i=1}^n \lambda(T_i) e^{-\int_0^{T_i} \lambda(s) \, ds}
\]

(2)

Based on the likelihood formula along the lines, at some time \(t \), the history \(\mathcal{H}_t \) is the histories of times of events \(T_1, T_2, \ldots, T_n \), up to but not including time \(t \). We define \(f^* := f(\mathcal{H}_t) \) as the function of the conditional probability density of time at the next event \(T_{n+1} \) given the history of previous event \(T_1, T_2, \ldots, T_n \). Define that \(\mathbb{P}(T_{n+1} \in (t, t + dt]) = f(T_{n+1} \mid \mathcal{H}_t) \, dt \).

We have

\[
f(T_{121}, T_{222}, T_{323}) = \prod_{i=1}^n f(T_i \mid \mathcal{H}_{i-1}) = \prod_{i=1}^n f^*(T_i)
\]

(3)

The event intensity \(\lambda(t) \) is correspondence to terms of the conditional density \(f^* \) and its cumulative distribution function \(F^* \) [8].

The Hawkes process has clustering effect, self-exciting property, and long memory. This is reflected in the conditional intensity function:

\[
\lambda^*(t) = \lambda + \int_0^t \mu(t - s) \, dN(s)
\]

(4)

where \(\lambda > 0 \) be the background intensity, \(\mu > 0 \) is the function of excitation describing how much the intensity is affected by past jumps.

The maximum likelihood estimation will be very effective and its asymptotic normality, consistency, and efficiency were proved in Ogata (1978) [9].

4. **Methodology**

To construct of likelihood equation of Hawkes process for claim process, the exponential decay excitation function is used. We choose an excitation function, namely the most commonly used exponential decay:

\[
\mu(t) = \alpha e^{-\beta t}
\]

(5)

Thus, from now on our conditional intensity function will be:

\[
\lambda^*(t) = \lambda + \alpha \sum_{s \in \mathcal{S}} e^\beta(t-s)
\]

(6)

Thus, each arrival makes the intensity immediately jump up by \(\alpha \) and over time the impact of the arrival decays exponentially at rate \(\beta \).
5. Result

Likelihood Construction of Hawkes Process

Let θ be the parameters of Hawkes Process. Maximum likelihood estimation of the Hawkes Process can be found by maximizing the function of likelihood in equation (2). The maximum likelihood estimate $\hat{\theta}$ is defined to be $\hat{\theta} = \arg\max_{\theta} L(\theta)$.

Let $N(t)$ be a point process on $[0,T]$ for $T < \infty$ and $\{T_1,T_2,\ldots,T_n\}$ is the set of event times of $N(t)$ in time interval $[0,T]$. The likelihood L of data as equation (2) denoted by:

$$L(\theta) = \prod_{i=1}^{n} \lambda(T_i) \exp - \int_0^{T_i} \lambda(t) dt.$$

(7)

The event intensity $\lambda(t)$ can be denoted in terms of the function of conditional density f^* and as correspondence with cumulative distribution function F^*[8]:

$$\lambda(t) = \frac{f^*(t)}{1-F^*(t)}.$$

(8)

In this study a likelihood equation will be constructed that can be used to estimate the parameters of the claim filing model. Suppose that t_i is the time of filing a claim- T_i is time of claim occurrence at the time to t_{i+1} and T_i is a random variable that denote time of claim occurrence. The likelihood function for the occurrence claim-T_i is a probability density function for submission of claims at a certain time if it is known that there are no claim until time t_i so that for occurrence a claim at time t_i, we obtained

$$L_i = f(T_i|T > t_i) = \frac{d}{dt} F(T_i|T > t_i) = \frac{\pi(t_i)}{1-F(t_i)} = \frac{f(t_i)}{S(t_i)}.$$

(9)

Equation (*) is contribution of likelihood equation (L_i) to filing claim-T_i, $\lambda(t_i)$ is hazard rate at time t_i. When we assume that $s_i = t_i - \tau$ is time of claim-ith occurrence in time interval $[t_i, t_{i+1}]$ where $0 < s_i < 1$, then

$$L_i = \frac{S(t_i + s_i)S(t_i)}{S(t_i)}.$$

(10)

We know that $\frac{S(t_i + s_i)}{S(t_i)} = \frac{\exp[-\int_{t_i}^{t_i+s_i} \mu(t+\sigma) d\sigma]}{\exp[-\int_{t_i}^{t_i} \mu(t+\sigma) d\sigma]}$ denote probability that no claim occurs in interval $(t_i, t_i + s_i)$, and $\lambda(t + s_i)$ is hazard rate of filing claim at time $t_i + s_i$. Thus, likelihood function for all time of claim filing is $\prod_{i=1}^{n} \frac{\exp[-\int_{t_i}^{t_i+s_i} \mu(t+\sigma) d\sigma]}{\exp[-\int_{t_i}^{t_i} \mu(t+\sigma) d\sigma]} \lambda(t_i + s_i)$.

In claim settlement process, total likelihood function is number of policyholder that no claim filing process at time t denoted by $(1 - q_t)^n$ in probability no claim process $p_t^n = (1 - q_t)^n - d$, where $p_t^n = t$ is the number of claim process at time t_i and q_t is the number of policyholder at time t; and p_t^n is probability no claim at time t denoted by $1 - q_t$, so that total likelihood function is:

$$L(\theta) = (1 - q_t)^n d \prod_{i=1}^{n} \frac{\exp[-\int_{t_i}^{t_i+s_i} \mu(t+\sigma) d\sigma]}{\exp[-\int_{t_i}^{t_i} \mu(t+\sigma) d\sigma]} \lambda(t_i + s_i).$$

(11)

So the total likelihood function of Hawkes model for claim occurrence is:

$$L(\theta) = (1 - q_t)^n d \prod_{i=1}^{n} \frac{\exp[-\int_{t_i}^{t_i+s_i} \mu(t+\sigma) d\sigma]}{\exp[-\int_{t_i}^{t_i} \mu(t+\sigma) d\sigma]} \left[\lambda + \mu \sum_{i=1}^{n} e^{\Theta(t_i - \tau)} \right].$$

(12)

6. Conclusion

The total likelihood equation in the claim settlement process in an insurance company plays a very important role. Therefore, accurate likelihood construction is needed. Likelihood function of Hawkes model for claim occurrence with exponential decay excitation function shows that the total likelihood
function of the process depend on probability no claim at time \(t \), the number of policyholder at time \(t \), and the excitation function.

7. Acknowledgement
The authors would like to acknowledge to research grant of Hasanuddin University who has support the implementation of this research.

References
[1] Embrechts, P., Liniger, T. and Lin, L. (2011): Multivariate Hawkes Processes: An Application to Financial Data. Journal of Applied Probability, 48A, 367-378.
[2] Stabile, G. and G. L. Torrisi. (2010): Risk processes with nonstationary Hawkes arrivals. Methodol. Comput. Appl. Prob., 12, 415-429.
[3] Nurtiti Sunusi, Aidawayati R, Irmayani, 2016. Study of Insurance Claim using Point Process Models, Indian Journal of Science and Technology, 29(8).
[4] Dassios, A. and Jang, J. (2012): A Double Shot Noise Process and Its Application in Insurance. J. Math. System Sci., 2, 82-93.
[5] Arjas E. The claims reserving problem. In non-life insurance: Some structural ideas. Astin Bulletin. 1998; 19(2):139–52.
[6] Hawkes, A.G. (1971). Point spectra of some mutually exciting point processes. J. Roy. Statist. Soc. Ser. B Stat. Methodol., pp.438-443.
[7] Daley DJ, Vere-Jones D. An introduction to the theory of point processes. Elementary Theory and Methods. 2nd ed. New York: Springer; 2003.
[8] Rasmussen, J. 2011. Temporal Point Process: the conditional Intensity Function.
[9] Rasmussen, J.G. 2013. Bayesian inference for Hawkes processes. Methodology and Computing in Applied Probability, 15(3): 623–642. ISSN 1387-5841.
[10] Ogata, Y. (1978). Statistical models for earthquake occurrences and residual analysis for point processes. J. Amer. Stat. Assoc., 83(401), 9-27.