The ground states of the two-component order parameter superconductor

M. M. Doria¹(a), A. R. de C. Romaguera² and F. M. Peeters³,⁴

¹Departamento de Física dos Sólidos, Universidade Federal do Rio de Janeiro - 21941-972 Rio de Janeiro, Brazil
²Departamento de Física, Universidade Federal Rural de Pernambuco - 52171-900 Recife, Pernambuco, Brazil
³Departamento de Física, Universidade Federal do Ceará - 60455-760 Fortaleza, Ceará, Brazil
⁴Departement Fysica, Universiteit Antwerpen - Groenenborgerlaan 171, B-2020 Antwerpen, Belgium, EU

received 26 July 2010; accepted in final form 22 September 2010
published online 29 October 2010

PACS 74.20.De – Phenomenological theories (two-fluid, Ginzburg-Landau, etc.)
PACS 03.50.De – Classical electromagnetism, Maxwell equations
PACS 74.25.Bt – Thermodynamic properties

Abstract – We show that in presence of an applied external field the two-component order parameter superconductor falls in two categories of ground states, namely, in the traditional Abrikosov ground state or in a new ground state fitted to describe a superconducting layer with texture, that is, patched regions separated by a phase difference of π. The existence of these two kinds of ground states follows from the sole assumption that the total supercurrent is the sum of the two individual supercurrents and is independent of any consideration about the free energy expansion. Uniquely defined relations between the current density and the superfluid density hold for these two ground states, which also determine the magnetization in terms of average values of the order parameters. Because these ground-state conditions are also Bogomolny equations we construct the free energy for the two-component superconductor which admits the Bogomolny solution at a special coupling value.

Copyright © EPLA, 2010

Introduction. – Many thermodynamic and transport phenomena in superconductivity can be explained on the basis of a macroscopic order parameter, as shown by the phenomenological approach of Ginzburg and Landau (GL), proposed many years before Leon Cooper found that a weak attraction binds electrons near to the Fermi surface to form pairs. From the GL theory Abrikosov predicted the existence of two types of superconductors according to the dimensionless coupling κ, thus proving that this theory is well suited to describe alloys, which are κ > 1/√2 superconductors, able to sustain a stable vortex state in presence of an external applied field [1]. Central to the present analysis is the observation that at the core of Abrikosov’s treatment lives a condition which is totally independent of the Ginzburg-Landau free energy. This condition is the requirement that the macroscopic order parameter fulfils a ground-state equation and from it the supercurrent and the superfluid densities are shown to be directly related to each other. It also follows from this condition that the magnetization is proportional to the spatial average of the superfluid density, a mean field result that remains valid in the presence of thermal fluctuations [2]. Therefore the ground-state condition for the one-component order parameter (1COP) superconductor lives at a more fundamental level than the Ginzburg-Landau free energy expansion. To attain full predictive power from the magnetization expression the superfluid density must be determined in terms of fundamental parameters, and, at this point, the free energy considerations becomes valuable, as shown by Abrikosov, who obtained from the GL theory the magnetization as a function of the temperature T and of the external applied magnetic field, H, taken to be near to the upper critical field \(H_{c2}\) [3].

In this letter we show that for the two-component order parameter (2COP) superconductor the requirement that the macroscopic order parameter fulfils a ground-state equation leads to just two possibilities, namely, the Abrikosov ground state, applied individually to each one of the components, and a new ground state that describes a textured superconducting layer because of the intrinsic phase difference of π between its distinct regions. Therefore we find here that for the 2COP superconductor the ground-state condition also exists and lives in a more fundamental level than the free energy expansion. In case

(a)E-mail: mmd@if.ufrj.br
the local field is equal to the applied one, the Abrikosov ground state locks the 1COP into the lowest Landau level, whereas this new 2COP ground state takes contributions from all Landau levels.

In 1976 Bogomolny [4–7] found, while working in string theory, extra properties for the GL theory valid for \(\kappa = 1/\sqrt{2} \): first-order equations, instead of the second-order variational equations (Ampère’s law and the GL equation) solve the GL theory. The Bogomolny’s first-order equations share a common feature with the Abrikosov’s treatment of the GL theory: one of these equations is exactly the Abrikosov ground-state condition.

We also study here a 2COP free energy because the new ground-state condition is one of its Bogomolny equations. This means that at a particular coupling, defined to be \(\kappa = 1/\sqrt{2} \), like for the 1COP case, the minimum of this 2COP free energy is reached by first-order equations instead of second-order ones, which are then defined as 2COP Bogomolny equations. Therefore this 2COP free energy theory is a unique generalization of the 1COP GL theory. Previously proposed 2COP GL theories [8–12] do not consider such generalizations that will be considered elsewhere.

One-component order parameter (1COP) ground state. – On the basis that the superconducting state can be described by a macroscopic wave function, \(\psi \), the supercurrent density is \(\vec{J} = (q/2m)(\psi^* \vec{D} \psi + c.c.) \), \(\vec{D} = (h/i) \vec{\nabla} - (q/e) \vec{A} \). Without invoking the GL theory, Ampère’s law, \(\vec{\nabla} \times \vec{h} = (4\pi/e)\vec{J} \), is exactly solved for the local field, \(\vec{h} = \vec{\nabla} \times \vec{A} \), in terms of \(\psi \) by assuming the ground-state condition,

\[
D_\pm \psi = 0,
\]

where \(D_\pm = D_1 \pm iD_2 \). This ground-state condition applies for a bulk superconductor with continuous axial symmetry along the applied field direction (\(\vec{H} = H\hat{z}_3 \)), such that fields only dependent on the coordinates orthogonal to it, \((x_1, x_2) \). From the real and imaginary parts of eq. (4), we find that the supercurrent and superfluid densities are related by

\[
\vec{J} = -\frac{hq}{2m} \vec{\nabla} \times (|\psi|^2 \hat{z}_3).
\]

The integration of Ampère’s law gives that the local field is

\[
h_3 = H - \frac{hq}{mc} |\psi|^2, \quad \text{and} \quad 4\pi M = -\frac{hq}{mc} (|\psi|^2). \tag{6}
\]

The integration of Ampère’s law gives that the local field is

\[
h_3 = H - \frac{hq}{mc} |\psi|^2, \quad \text{and} \quad 4\pi M = -\frac{hq}{mc} (|\psi|^2). \tag{6}
\]

is the magnetization. For the 1COP case the spatial average value is over the orthogonal coordinates, such as for the magnetic induction, \(\vec{B} = \vec{H} + 4\pi \vec{M} \), which becomes \(\vec{B} \equiv (h_3)\hat{z}_3 = (f^2 x_h/S)\hat{z}_3 \), since along the third direction and under translational invariance, it suffices to consider integration over the unit cell area \(S \). For a constant field \((A_1 = -H x_2, A_2 = 0) \), eq. (4) is just the lowest Landau level condition whose solution is

\[
\psi = \sum_k c_k e^{i k x_1 - \frac{4\pi}{mc} (x_2 + \frac{h_3}{q})}.
\]
The set of wave numbers k and the constants c_k are determined by imposing periodic conditions to the order parameter and fixing the number of vortices within the unit cell area. One obtains that $B = N \Phi_0 / S$, for N vortices within the cell. Notice that the order parameter of eq. (7) together with the local magnetic field of eq. (6) stem just from the ground-state condition. Nevertheless they describe the vortex state without invoking the free energy, that only enters to select the vortex state of lowest free energy. As shown by Brandt [1], the order parameter of eq. (7) and the local field of eq. (6) provide an excellent description of the full GL free energy solution for fields in the range $0.5 H_{c2} \leq H \leq H_{c2}$. Therefore the ground-state condition of eq. (4) does describe the GL theory for an applied field not necessarily near to H_{c2}.

Two-component order parameter (2COP) ground state. — Along the crystal’s major axis, where the mass tensor is diagonal, and an appropriate combination of the two order parameters is taken, the supercurrent is expressed by $j = j_1 + j_2$, $j_1 = (q/2m) (\psi^* \sigma \psi)$, $j_2 = c.c.$, $j = 1, 2$. The Abrikosov ground state assumes translational invariance along the applied field such that the condition of eq. (4) applies to both components, and the local field becomes $h_3 = H - (\hbar q / mc)(|\psi|^2 + |\psi|^2)$. However, this new ground state satisfies a distinct condition given by

$$\vec{\sigma} \cdot \vec{D} \psi = 0,$$

where \vec{D} are the Pauli matrices, the generators of the SU(2) group: $\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, and $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. These matrices live on a vector representation of the $O(3)$ group, and so this ground state contains an orientation and a direction in space, associated to the physical superconducting layer linked to the crystal’s major axes. Take the two components of eq. (8), $D_3 \psi_1 + D_3 \psi_2 = 0$ and $D_+ \psi_1 - D_3 \psi_2 = 0$ to separate the two order parameters in second-order equations: $(D_3^2 + D_3^2) \psi_1 = 0$ and $\psi_2 = -i \hbar q / c$. We show that this new 2COP ground state is truly three-dimensional, although it describes fields that evanesce from a layer, opposite to the Abrikosov ground state, which is two-dimensional and describes a translational invariant bulk state along the third direction. We obtain the exponential decay away from the layer in presence of H such that the local field is dominated by the applied field, $h_3 \approx H > 0$. The kinetic energy within the orthogonal plane is positive, $(D_3^2 + D_3^2) \psi_1 \geq 0$, $i = 1, 2$, and so, we must have that $D_3^2 \psi_2 \leq 0$ in order to obtain a non-trivial solution for the second equation. We take the gauge $A_3 = 0$ and that the layer is at $x_3 = 0$, such that $\psi_1 = \exp(-|q| x_3) \psi_1(x_1, x_2)$, $i = 1, 2$, to obtain that

$$\begin{align*}
(D_3^2 + D_3^2) \psi_1 &= \left(\frac{\hbar q}{c} \right)^2 \psi_1, \\
(D_3^2 + D_3^2) \psi_2 &= \left(\frac{\hbar q}{c} \right)^2 \psi_2.
\end{align*}$$

For the case $h_3 = H$ the system admits the general solution

$$\Psi = \sum_{n=0}^{\infty} C_n e^{-q_3(n)|x_3|} \left(\mathbf{\psi}_n(x_1, x_2), \right),$$

$$q_3(n) = \sqrt{2n \frac{q H}{\hbar c}},$$

where $(D_3^2 + D_3^2) \psi_n = (\hbar q H / c)(2n + 1) \psi_n$ and $\psi_{n=0} = 0$ by definition. The first term retrieves the lowest Landau level condition for the 1COP ($q_3 = 0$, $\psi_2 = 0$) and so the above 2COP contains both two- and three-dimensional contributions. We stress that each pair (ψ_n), ψ_n is bound by the same coefficients c_k and wave numbers k, but not necessarily two different pairs.

The major result of this letter is that under the ground-state condition of eq. (8), the supercurrent becomes

$$j = -\frac{\hbar q}{2m} \vec{\nabla} \cdot \left(\mathbf{D} \mathbf{\psi} \right).$$

The integration of Ampère’s law gives that

$$\vec{H} = -\frac{\hbar q}{mc} \mathbf{D} \mathbf{\psi},$$

and $4\pi \vec{M} = \frac{\hbar q}{mc} (\mathbf{D} \mathbf{\psi})$. for the local magnetic field and for the magnetization, respectively. The latter is a three-dimensional average value defined as $\vec{B} \equiv \langle \vec{H} \rangle = \int d^2 x \vec{h} / V$ for the magnetic induction, where V is the volume of the unit cell.

In conclusion several ground states with elaborate magnetic patterns can be constructed from our explicit 2COP solution Ψ, given by eqs. (11) and (12). As previously discussed these ground states are textured which means that they have neighbor regions phases separated by π in order to render that $\langle \mathbf{D} \mathbf{\psi} \rangle = 0$, yielding a vanishing magnetization along the layer. This in plane magnetization must vanish inside the bulk of the superconductor, and there are several ways to do it, either by considering two distinct layers with opposite in plane magnetization, stripes [22] or checkerboard patterns [29] inside a single layer.

Virial relation. — We provide another derivation of eqs. (6) and (14) from the ground-state conditions, eqs. (4) and (8). This derivation brings insight into the kinetic energy and is based on the scalar virial relation [30–32] instead of the supercurrent density. The scalar virial relation holds for both the 1COP and the 2COP and states that the applied field times the magnetic induction is proportional to the average kinetic energy plus twice the average field energy:

$$\vec{H} \cdot \vec{B} = \frac{8\pi}{\hbar} \left(\frac{D \mathbf{\psi}}{2m} \right)^2 + 2 \left(\frac{\vec{h}^2}{8\pi} \right).$$

The kinetic energy is expressed along the crystal’s major axis, taken appropriate combinations of the
two components, that bring it to the above form. We briefly review the 1COP case, considered by Klein and Pöttger [33] sometime ago. The virial relation is \(H/4\pi = \langle |D_1\psi|^2 + |D_2\psi|^2 + 2m + \hbar^2 |/4\pi \), and from it, we obtain eq. (6). To show this, express the kinetic energy in terms of the ground-state condition of eq. (4): \(\sum_{j=1}^2 |D_j\psi|^2 = \sum_{j=1}^2 \nabla_j (\psi^* D_j \psi) + |D_1\psi|^2 + (\hbar q/c) h_3 |3|^2 \). The total derivative term does not contribute to the average kinetic energy because of periodic boundary conditions. One obtains that \(H(h_3)/4\pi = (h q/2mc)(h_3 |3|^2 + \hbar^2 |/4\pi \). Then one easily verifies that the solution for this relation is indeed given by eq. (6). Similarly the average kinetic energy of eq. (15) can be expressed through the ground-state condition, using that

\[
\langle |\hat{D}\Psi|^2 \rangle = \langle |\hat{\sigma} \cdot \hat{D}\Psi|^2 \rangle + (h q/c)(\hbar \cdot \Psi^1 \sigma \Psi).
\]

The virial relation of eq. (15) leads to the local field of eq. (14), by introducing eq. (8) into the above expression.

The kinetic energy density is intrinsically positive, and so, helpful to understand why in presence of \(H \) the 2COP has the top component in a Landau level higher than the bottom one, according to eq. (11). Take a constant applied field along the third direction in eq. (8), use eqs. (14) and (16), and neglect the fourth-order term under the assumption of weak order parameter because of the proximity to the normal state. It follows that \(\langle |\hat{D}\Psi|^2 \rangle / (h q/c) \approx H|\psi_1|^2 - |\psi_2|^2 \rangle \), indicating that \(\langle |\psi_1|^2 \rangle \approx |\psi_2|^2 \rangle \). An interesting property is that \(\langle \Psi^1 \sigma \Psi \rangle = 0 \) holds for each pair \(\Psi \) given by \(\langle n \rangle, D_+ \langle n \rangle / i h q_3(n) \).

Ginzburg-Landau theory. – The 2COP GL theory with Bogomolny solution has three temperature-independent parameters, \(\alpha(T) \), \(i = 1, 2, 3 \), that form a vector and consequently introduce intrinsically preferred directions for the superconductor. Nevertheless it has a single dimensionless coupling that for \(\kappa = 1/\sqrt{2} \) admits a Bogomolny solution, as shown below.

We briefly review the derivation of the Bogomolny solution for the 1COP GL theory, whose free energy is \(F(\hat{B}, T) = \langle |\hat{D}\Psi|^2 / 2m - \alpha(T)|\psi|^2 + \beta |\psi|^4 / 2 + \hbar^2 / 8\pi \rangle \), where \(\alpha(T) = (T_c - T) \) near to the transition and \(\beta > 0 \), rendering possible to have a non-trivial solution \(\psi \) in case that \(\alpha(T) > 0 \). Expressing quantities in dimensionless units based on the coherence length, \(\xi(T)^2 = \hbar^2 / 2m|\alpha(T)| \), and the thermodynamic magnetic field, \(H_c(T)^2 / 4\pi = \alpha(T)/3 \), one finds that the GL theory only depends on a single dimensionless temperature-independent coupling \(\kappa = H_{c2}(T) / (\sqrt{2} H_c(T)) = m(c/h q) \times \sqrt{\beta / (2 \pi)} \), the upper critical field being \(H_{c2}(T) = \Phi_0 / 2\pi \xi(T)^2 \). Hereafter we use the dimensionless quantities: \(\tilde{r} = r / \xi(T)^2 \), \(\tilde{A} = (2\pi \xi^2 \Phi_0) A (D = (h / \xi) \tilde{D}, \tilde{D} = \nabla \psi / i, \tilde{A} = \tilde{B} + \hbar / H_c, H_c = H / H_c, F = F(H_c^2 / 4\pi) \). For instance, the thermodynamic relation \(\tilde{H} = 4\pi \partial F / \partial \tilde{B} \) becomes in reduced units

\[
\tilde{H} = (1/2\kappa^2) \partial F / \partial \tilde{B}.
\]

Consider the special case of symmetry along the third direction defined by \(H \) and decompose the kinetic energy using the key condition to obtain that the free energy is \(F = \langle |D_1\psi|^2 + h_3\hbar_3 |3|^2 - \hbar^4 / 2 + \kappa^2 \hbar^2 \rangle \). A straightforward rearrangement of the terms leads to \(F = -1/2 + B + F_0 \), where \(F_0 = \langle |D_1\psi|^2 + (h_3 + \hbar^2 / 2) / 2 + (\kappa - 1/2) / (h_3^2) \rangle \). For \(\kappa = 1/\sqrt{2} \) is positive and the first-order differential equations, \(D_+ \psi = 0 \) and \(h_3 + \hbar^2 / 2 = 0 \), hold at the minimum since \(F_0 = 0 \). Consequently, at this particular coupling, vortices do not interact as the free energy is additive in their number, \(N \), and \(F = -1/2 + B \), where the magnetic induction is \(B = N \Phi_0 / S \).

The 2COP GL theory which has a Bogomolny symmetry is

\[
F = \left(\langle |\tilde{D}\Psi|^2 / 2m - \tilde{\alpha}(T)\psi^\dagger \sigma \Psi + \beta \langle \Psi^1 \psi^\dagger \rangle + \frac{\hbar}{4\pi} \right). \quad (17)
\]

The out-of-plane coupling, \(\alpha_3 \), is associated to \(T_c \), whereas the in plane ones, \(\alpha_1 \) and \(\alpha_2 \), are related to \(\theta \) transitions. The simplest of all situations, \(\alpha_1 = \alpha_2 = 0 \), brings some insight into the problem since the remaining quadratic coupling becomes \(-\alpha_3(T)/(|\psi_1|^2 - |\psi_2|^2) \). In this case \(\psi_1 \) admits a non-trivial solution below \(T_c \) \((\alpha_3(T) > 0) \), whereas \(\psi_2 \) does not, and must vanish.

However above \(T_c \) \((\alpha_3(T) < 0) \) a non-trivial solution for \(\psi_2 \) must be prevented and this is done by assuming that \(\alpha_3 \) vanishes above \(T_c \). We get further insight into the properties of this theory by doing a \(SU(2) \) rotation

\[
\Psi_R = U(T) \Psi, \quad \text{such that} \quad \tilde{\alpha}(T) \cdot U(T) \sigma U(T) = |\tilde{\alpha}(T)| \sigma_3.
\]

Under this transformation the free energy becomes \(F = \langle |\tilde{D}\tilde{\Psi}_R|^2 / 2m - |\tilde{\alpha}(T)| \Psi_R^1 \sigma_3 \Psi_R + \beta (\Psi_R^1 \Psi_R^1)^2 / 2 + \hbar^2 / 8\pi \rangle \). According to the previous argument we conclude that no stable second component is possible, namely, \(\psi_{R_2} = 0 \) turning this theory essentially into a 1COP GL theory for \(\psi_{R_1} \). Notice, however, an important difference, \(\psi_{R_1} \) does not vanish at \(T_c \) because of the presence of \(\alpha_1 \) and \(\alpha_2 \), assuming that these parameter only vanish above \(T_c \).

The previously defined quantities \(H_c(T) \), \(\xi(T) \), and \(H_{c2}(T) \) depend on \(|\tilde{\alpha}(T)| \) instead and this leads to the same dimensionless \(\kappa \) of the 1COP case. For instance the one-dimensional surface energy barrier for the 2COP theory of eq. (17) is found to be \(|\alpha| \)-independent and only \(\kappa \)-dependent, exactly like for the 1COP case, because the above rotation is possible. However for the three-dimensional problem we demand from the theory that the ground-state condition of eq. (8) applies to \(\Psi \) and not to \(\Psi_R \). This will halt the rotation preventing the theory to become a one-component freeenergy, but keeping its single scale properties. Reduced units are defined as before, and the free energy becomes

\[
F = \left(\langle |\tilde{D}\Psi|^2 - \frac{\tilde{\alpha}}{|\tilde{\alpha}|} \Psi^1 \sigma \Psi + \frac{1}{2} \langle \Psi^1 \psi^\dagger \rangle^2 + \kappa^2 \hbar^2 \right), \quad (18)
\]

For zero magnetic field and constant order parameter the minimum of the 2COP GL potential gives the
values for the two physically relevant order parameters. Using that \((\Psi^2) = (\Psi^2)^T\), the GL potential becomes, \(F_P = -1/2 + (\Psi^2 - \bar{\alpha}/|\bar{\alpha}|)^2/2\), whose minimum is reached at \(|\psi_1|^2 = (|\bar{\alpha}| + \alpha_3)/2|\bar{\alpha}|\), \(|\psi_2|^2 = (|\bar{\alpha}| - \alpha_3)/2|\bar{\alpha}|\), and \(\theta = -\alpha_3/\alpha_1\). Notice that it is always true that \(|\psi_1| > |\psi_2|\), and that above \(T_c\) they become equal, assuming that \(\alpha_1\) and \(\alpha_2\) exist above the transition. This restores a \(U(1)\) invariance to the theory. A change of sign in \(\alpha_1(T)\) or \(\alpha_2(T)\) changes the phase \(\theta\) but not the minimum of \(|\psi_1|\) and \(|\psi_2|\). The transformation \(\alpha_1 \rightarrow -\alpha_1\) and \(\alpha_2 \rightarrow -\alpha_2\) is a symmetry of the minimum, equivalent to a \(\theta \rightarrow \theta + \pi\) rotation. This theory has a Bogomolny solution for \(\kappa = 1/\sqrt{2}\), given by \(\vec{\alpha} \cdot \vec{D}\Psi = 0\) and \(\vec{h} + \Psi^1 \vec{D}\Psi - \bar{\alpha}/|\bar{\alpha}| = 0\), as the free energy can be expressed by,

\[
F = \langle |\vec{\alpha} \cdot \vec{D}\Psi|^2 + \left[\vec{h} + (\Psi^1 \vec{D}\Psi - \bar{\alpha}/|\bar{\alpha}|)\right]/2 \rangle^2/2, \\
\quad + \left(\kappa^2 - 1/2\right) \left(\vec{h}^2 + (\bar{\alpha}(T)/|\bar{\alpha}(T)|)\right) \cdot \vec{B}/2 - 1/2. \quad (19)
\]

Thus the 2COP free energy studied here is distinct from all other free energies studied so far [8–12] because the ground-state condition holds in two different applied field \(H\) and \(\kappa\) regimes, showing that it is a unique generalization of the 1COP GL theory: \(\kappa > 1/\sqrt{2}\) and \(0.5H_{c2} < H \leq H_{c2}\) (Abrikosov), and also \(\kappa > 1/\sqrt{2}\) throughout the whole \(H\) regime (Bogomolny).

In conclusion, we have found here a textured ground state for the two-component order parameter whose intrinsic transverse magnetic moment averages to zero along the superconductor layer because of \(\pi\) phase difference between distinct regions. This ground state solves one of the Bogomolny equations of a free energy obtained here. The ground-state condition lives in a more fundamental level than that of the free energy expansion.

We thank E. H. BRAND and S. S. Sugui jr. for helpful discussions. Part of this work was supported by the bilateral project between Flanders and Brazil. MMD also thanks CNPq, Capes and FAPERJ (Brazil).

REFERENCES

[1] Brandt Ernst Helmut, Rep. Prog. Phys., 58 (1995) 1465.
[2] Rosenberg Baruch and Li Dingping, Rev. Mod. Phys., 82 (2010) 109.
[3] De Gennes P. G., Superconductivity in Metals and Alloys (Persus Book, Mass.) 1989.
[4] Bogomolny E. B., Sov. J. Nucl. Phys., 4 (1976) 449.
[5] Jacobs Laurence and Rebbi Claudio, Phys. Rev. B, 19 (1979) 4486.
[6] Luk’yanchuk I., Phys. Rev. B, 63 (2001) 174504.
[7] Mohamed F., Troyer M., Blatter G. and Luk’yanchuk I., Phys. Rev. B, 65 (2002) 224504.
[8] Das M. P., Hong-Xing He and Choy T. C., Int. J. Mod. Phys. B, 2 (1988) 1513.
[9] Sigrist Manfred and Ueda Kazuo, Rev. Mod. Phys., 63 (1991) 239.
[10] Berlinsky A. J., Petter A. L., Franz M., Kallin C. and Soininien P. I., Phys. Rev. Lett., 75 (1995) 2200.
[11] Robert Joynt and Taimafer Louis, Rev. Mod. Phys., 74 (2002) 235.
[12] Babaev Egor and Speight Martin, Phys. Rev. B, 72 (2005) 180502.
[13] Huenfer S., Hossain M. A., Damascelli A. and Sawatzky G. A., Rep. Prog. Phys., 71 (2008) 062501.
[14] Bussmann-Holder A., Simon A., Keller H. and Bishop A. R., J. Supercond. Novel Magn., 23 (2010) 365.
[15] Moon Eun Gook and Sachdev Subir, Phys. Rev. B, 80 (2009) 035117.
[16] Kohsaka Y., Taylor C., Fujita K., Schmidt A., Lupien C., Hanaguri T., Azuma M., Takano M., Esaki H., Takagi H., Uchida S. and Davis J. C., Science, 5187 (2007) 315.
[17] Wilson S. D., Dai P., Li S., Chi S., Kang H.-J. and Lynn J. W., Nature, 442 (2006) 59.
[18] Haug D., Hinkov V., Suchanek A., Inosov D. S., Christensen B. N., Niedermayer C., Bourges P., Sinai Y., Park J. T., Ivanov A., Lin C. T., Mesot J. and Keimer B., Phys. Rev. Lett., 103 (2009) 017001.
[19] Chuang T.-M., Allan M. P., Lee Jenho, Xie Yang, Ni Ni, Bud’ko S. L., Boebinger G. S., Canfield P. C. and Davis J. C., Science, 327 (2010) 181.
[20] Drew A. J., Pratt F. L., Lancaster T., Blundell S. J., Baker P. J., Liu R. H., Wu G., Chen X. H., Watanabe I., Malik V. K., Dubroka A., Kim K. W., Rössle M. and Bernhard C., Phys. Rev. Lett., 101 (2008) 097010.
[21] Yildirim T., Phys. Rev. Lett., 101 (2008) 057010.
[22] Berg Erez, Fradkin Eduardo, Kivelson Steven A. and Tranquada John M., New J. Phys., 11 (2009) 115004.
[23] Norman Michael R., Science, 325 (2009) 1080.
[24] Gurevich A. and Vinokur V. M., Phys. Rev. Lett., 97 (2006) 137003.
[25] Tanaka Y., Phys. Rev. Lett., 88 (2001) 017002.
[26] Gurevich A. and Vinokur V. M., Phys. Rev. Lett., 90 (2003) 047004.
[27] Helmut R. Brand, Mauro M. Doria and Harald Pleiner, Phys. Rev. Lett., 60 (1988) 2810.
[28] Tanaka Y., Crisan A., Shivagan D. D., Iyo A., Tokiwa K. and Watanabe T., Jpn. J. Appl. Phys., 72 (2008) 054407.
[29] Tanaka Y., Crisan A., Shivagan D. D., Iyo A., Tokiwa K. and Watanabe T., Jpn. J. Appl. Phys., 72 (2008) 054407.
[30] Kohsaka Y., Taylor C., Fujita K., Schmidt A., Lupien C., Hanaguri T., Azuma M., Takano M., Esaki H., Takagi H., Uchida S. and Davis J. C., Science, 5187 (2007) 315.
[31] Wilson S. D., Dai P., Li S., Chi S., Kang H.-J. and Lynn J. W., Nature, 442 (2006) 59.
[32] Haug D., Hinkov V., Suchanek A., Inosov D. S., Christensen B. N., Niedermayer C., Bourges P., Sinai Y., Park J. T., Ivanov A., Lin C. T., Mesot J. and Keimer B., Phys. Rev. Lett., 103 (2009) 017001.
[33] Chuang T.-M., Allan M. P., Lee Jenho, Xie Yang, Ni Ni, Bud’ko S. L., Boebinger G. S., Canfield P. C. and Davis J. C., Science, 327 (2010) 181.
[34] Drew A. J., Pratt F. L., Lancaster T., Blundell S. J., Baker P. J., Liu R. H., Wu G., Chen X. H., Watanabe I., Malik V. K., Dubroka A., Kim K. W., Rössle M. and Bernhard C., Phys. Rev. Lett., 101 (2008) 097010.
[35] Yildirim T., Phys. Rev. Lett., 101 (2008) 057010.