Infants and iCubs
Law, James; Lee, Mark; Hülsen, Martin; Shaw, Patricia

Published in:
Procedia Computer Science
DOI:
10.1016/j.procs.2011.09.034
Publication date:
2012
Citation for published version (APA):
Law, J., Lee, M., Hülsen, M., & Shaw, P. (2012). Infants and iCubs: Applying Developmental Psychology to Robot Shaping. Procedia Computer Science, 7, 272-274. https://doi.org/10.1016/j.procs.2011.09.034

Document License
CC BY-NC-ND

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk
Infants and iCubs: Applying Developmental Psychology to Robot Shaping

James Law, Mark Lee, Martin Hiilse, Patricia Shaw

Developmental Robotics Lab, Dept. of Computer Science, Aberystwyth University, Wales, UK

Abstract

Achieving sentient robots will not only require understanding of neuro-models that generate behaviour from structure, but will also need research into the role of development, that is how behaviour determines structure. We emphasise infant sensory-motor development and identify an explicit framework that can guide the design of similar developmental processes in robotics. We show how human development sequences can be mapped on to robotic platforms and how constraints on perception and action can be utilised so that staged behaviour and learning may take place. The growth of increasing competence can be managed by this method of unsupervised shaping by constraints.

Keywords: Autonomous Robots; Unsupervised Shaping; Developmental Learning

1. Introduction

The golden vision for robotics research is to discover the principles that determine how truly autonomous, cognitive robots might be created. No existing robots can approach anywhere near this goal, mainly because of our very considerable gaps in understanding. To appreciate the enormity of the task, consider what is expected of a truly autonomous agent. They must be capable of continuously developing within their environment; they must be motivated to explore and learn new abilities; and they must be able to adapt and build upon these abilities. They must also be sentient in that they possess sensory awareness; that is, they experience sensations in terms of their own body, and this includes models of themselves and others so that they can understand their own agency as a distinct entity in the environment as well as viewing and dealing with others as similar agencies.

The Embodiment movement in robotics has made much progress in shifting the focus away from programming and AI methods by recognising the central influence of the body and its morphological properties on the development of cognition. This includes all the sensory-motor subsystems as the essential substrate upon which all cognitive functions are built. This grounding, in the body and its basic sensory-motor facilities, is a key principle that appears to have fundamental significance.

In current robotics research neuroscience supplies structural data for brain models that generate behaviour. However, such approaches do not cover the growth processes that create and influence those structures. We work from a different premise and are exploring the developmental aspects of behaviour. While neuro-models generate behaviour from structure, we are exploring how behaviour determines structure. We argue that research on developmental learning for...
Increasing torque

Improvement of torso pitch

Low occurrence of unknown

Smoother body rotation whilst

Neck movements

Low occurrence of unknown

Torso pitch & yaw

Few improvements in eye and

Eyes

Low occurrence of unknown

Neck

Full body visual search

Improvement of torso yaw

Few improvements in torso yaw

Vergence

Eye, head & torso pitch & roll

Torso roll, pitch & yaw

Eye saccade

Low occurrence of unknown

Low occurrence of unknown

Learning to build mappings and hence learn the correlation between sensor and motor spaces. Learning of mappings is

between different constraints and when they are relevant in the developmental sequence, see Fig. 2. We use associative
development sequence is shown in Fig. 1. From such data, a constraint table can be created: this shows the relationship

birth, whereas wrist control does not appear to start until the 6th month. As an illustration, an abstraction of the motor
development, we have derived sets of constraints that will shape similar development in a robot.

then gradually eased or lifted, allowing the infant to advance into a new stage of development [3]. By identifying stages

abilities from primitive beginnings. Shaping refers to the refinement and mastery of a sequence of skills as they become

progressively harder: in essence, shaping is a staged process of development [1]. Shaping is normally described as

a supervised learning technique, but during very early infancy there is little scope for proper supervision. We have
developed a method of unsupervised shaping and designed mechanisms whereby the effect of shaping is achieved

using simple intrinsic motivation instead of externally imposed goal structures. In this approach, called LCAS, (Lift-

Constraint, Act, Saturate) [2], the gradual learning of sensory and motor skills is achieved through the modulating

influence of a dynamic constraint network.

2. The importance of constraints

Human infants are restricted in their development by a wide range of constraints. These include cognitive, sensory-

motor, anatomical and hardware properties of the agent, as well as general maturational limitations and environmental

effects. By reducing complexity or bandwidth such constraints restrict the task space and effectively act to shape

learning, limiting interactions and reducing the perceived complexity of the environment [1,3]. These constraints are

then gradually eased or lifted, allowing the infant to advance into a new stage of development [3]. By identifying stages

in infant development, we have derived sets of constraints that will shape similar development in a robot.

3. Development in the iCub robot

From the infant development literature we have extracted the timings and level of development of sensor and motor

systems that are applicable to our iCub robot. For example, neck control develops over the first three months after

birth, whereas wrist control does not appear to start until the 6th month. As an illustration, an abstraction of the motor
development sequence is shown in Fig. 1. From such data, a constraint table can be created: this shows the relationship

between different constraints and when they are relevant in the developmental sequence, see Fig. 2. We use associative

learning to build mappings and hence learn the correlation between sensor and motor spaces. Learning of mappings is
driven by novelty, with the robot repeating actions that result in novel changes in sensory spaces. Eventually, the robot will have investigated the available space, and learning will saturate. A measure of habituation triggers the removal or relaxation of a constraint, resulting in a stage transition or improvement of resolution. The learning cycle then begins again. A detailed description of the constraints releasing framework can be found in [4] and [2]. See [5] for more on cross-modal coordination.

4. Human-Robot interaction

Intrinsic activity actually simplifies the motivation mechanisms in that goals are created, not given, and thus removes the need for explicit goals. Of course, any goals that we desire for the system must be achieved entirely through shaping by user interaction. Our work on the Rossi project is examining affordances and their grounding in experience. See [6] for further details.

5. Summary

The combination of the Embodied Intelligence perspective on the importance of sensory-motor structures and the Developmental Robotics emphasis on the grounding of very early experience provides a powerful multi-disciplinary paradigm for research into autonomy and cognitive growth. We believe that knowledge of the finer patterns of development and the associated constraints will provide an understanding of robot shaping that will have wide applicability for robotics research. Our research programme is working towards full scale demonstrations of autonomous cognitive growth on an iCub humanoid robot.

Acknowledgements

We are grateful for support through the projects: IM-CLeVeR, ICT-IP-231722 and ROSSI, ICT-216125.

References

[1] J. Bruner, Acts of Meaning, Harvard University Press, Cambridge, MA, 1990.
[2] M. Lee, Q. Meng, F. Chao, Staged competence learning in developmental robotics, Adaptive Behaviour 15 (3) (2007) 241–255.
[3] J. Rutkowska, Scaling up sensorimotor systems: Constraints from human infancy, Adaptive Behaviour 2 (1994) 349–373.
[4] M. Lee, Q. Meng, F. Chao, Developmental learning for autonomous robots, Robotics and Autonomous Systems 55 (9) (2007) 750–759.
[5] M. Hulse, S. McBride, M. Lee, Fast learning mapping schemes for robotic hand-eye coordination, Cognitive Computation 2 (1) (2010) 1–16.
[6] M. Hulse, S. McBride, J. Law, M. Lee, Integration of active vision and reaching from a developmental robotics perspective, IEEE Transactions on Autonomous Mental Development 4 (2) (2010) 355–367.