Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
COVID-19 in unequally ageing European regions

Ilya Kashnitsky a,b,⁎, José Manuel Aburto a,c

⁎ Corresponding author at: Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Denmark.
E-mail addresses: ilya.kashnitsky@gmail.com (I. Kashnitsky), jmaburto@sdu.dk, jose.aburto@sociology.ox.ac.uk (J.M. Aburto).

a Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Denmark.

b Faculty of Spatial Sciences, University of Groningen, The Netherlands.

c Department of Sociology & Leverhulme Centre for Demographic Science, University of Oxford, United Kingdom.

ARTICLE INFO
Article history: Available online 28 August 2020

ABSTRACT

The COVID-19 pandemic is unequally claiming lives across age groups. Since death risks increase sharply with age for people infected by SARS-CoV-2 (Ferguson et al., 2020), the new coronavirus poses great challenges to populations with larger proportions of fragile people at older ages. Differences in population age compositions partly explain the spread and the crude fatality measures of the disease (Dowd et al., 2020). Looking at population age structures is therefore critically important to assess the potential impact of COVID-19 on mortality in Europe, the oldest part of the world with considerable variations in the degree of ageing (Kashnitsky and Schöley, 2018).

We explore differences in population age structures across European NUTS-3 regions1 (Eurostat, 2020) focusing on the crude estimate of the proportion of population expected to die due to COVID-19 (see Fig. 1). We assume that 5/6 of the populations get infected (Walker et al., 2020) and experience age-specific infection-fatality ratios (IFRs) modelled by the Imperial College COVID-19 Response Team. We adjust IFRs by sex ratios of age-specific case-fatality ratios observed in the European countries that are included in the COVerAGE-DB. Thus, we effectively introduce a summary measure of population age structures focused on the most vulnerable to the pandemic. Such an estimate for the total European population is 1%. The map reflects the unequal population age structures rather than the precise figures on COVID-19 fatality. It is a case-if scenario that highlights the possible effect of the population age structures, a demographic perspective. This analysis clearly shows the contribution of regional differences in population age structures to the magnitude of the pandemic – other things equal, we expect to see a four-fold variation in average regional infection-fatality ratios across Europe due only to differences in the population structures.

© 2020 Published by Elsevier Ltd.

1 NUTS stands for Nomenclature of Territorial Units for Statistics. This hierarchical system of territorial division is an attempt to unify geographical levels across Europe and facilitate cross-country comparisons. NUTS-3 level usually correspond to the unit size of county, like in Sweden, or departments in France.
are registered (Russell et al., 2020). The final proportion of the population infected is difficult to predict and depends on the interventions taken that vary across countries and regions (Flaxman et al., 2020). Finally, other dimensions of structural differences in the populations may play an important role in the way the pandemic spreads, i.e., health inequalities (Nepomuceno et al., 2020) or the compositional structure of the households (Esteve, Permanyer, Boertien, & Vaupel, 2020).

Despite the limitations, the regional differences in age structures shown here are relevant for the story of the unfolding pandemic and can inform potential scenarios in Europe, as long as the relative differences in fatality between age groups stay proportional. Unlike the data on COVID-19, data on European population age structures are of great quality and shed light on the possible hotspots of the ongoing pandemic, which is highly relevant for planning public health interventions. The map reflects the unequal population age structures rather than the precise figures on COVID-19 fatality. Within Europe, population age structure differences alone can cause four-fold differences in the exposure to COVID-19 death risks.

The map highlights that if the spread of the disease is not mitigated, the most affected regions are likely to be the remote periphery with relatively old populations, which in some countries are also less likely to have enough access to healthcare (Verhagen et al., 2020). The first months of fighting the pandemic in Europe showed that the unprecedented interventions were mostly successful (Flaxman et al., 2020) but we are nowhere close to herd immunity even in the most affected areas (Vollmer et al., 2020), and the possibility of the second wave cannot be excluded.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References

Block, P., Hoffman, M., Raabe, I. J., Dowd, J. B., Rahal, C., Kashyap, R., & Mills, M. C. (2020). Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world. *Nature Human Behaviour*, 4(6), 588–596. https://doi.org/10.1038/s41562-020-0898-6.

Dowd, J. B., Andriano, L., Brazel, D. M., Rotondi, V., Block, P., Ding, X., Liu, Y., & Mills, M. C. (2020). Demographic science aids in understanding the spread and fatality rates of COVID-19. *Proceedings of the National Academy of Sciences*. 10/ggsd5b.

Esteve, A., Permanyer, I., Boertien, D., & Vaupel, J. W. (2020). National age and coresidence patterns shape COVID-19 vulnerability. *Proceedings of the National Academy of Sciences*. https://doi.org/10.1073/pnas.2008764117.

Kashnitsky, I., Schöley, J. (2018). Regional population structures at a glance. *The Lancet*, 392, 10143, 209–210. https://doi.org/10/dfnv.

Eurostat. (2020). Population on 1 January by age, sex and NUTS 3 region. https://ec.europa.eu/eurostat/web/regions/data/database.

Riffe, T., Acosta, E. (2020). COVerAGE-DB: A database of COVID-19 cases and deaths by age. https://doi.org/10.17605/OSF.IO/MPWJQ.

Ferguson, N., Laydon, D., Nedjadi Gilani, C., Imai, N., Ainslie, K., Baguelin, M., … Ghani, A. (2020). Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand. https://doi.org/10/ggqtdx.

Flaxman, S., Mishra, S., Gandy, A., Unwin, H., Coupland, H., Mellan, T., … Bhatt, S. (2020). Report 13: Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in 11 European countries. https://doi.org/10/ggrbmf.

Nepomuceno, M. R., Acosta, E., Alburez-Gutierrez, D., Aburto, J. M., Gagnon, A., & Turra, C. M. (2020). Besides population age structure, health and other demographic factors can contribute to understanding the COVID-19 burden. *Proceedings of the National Academy of Sciences*, 117(25), 13881–13883. https://doi.org/10.1073/pnas.2008760117.

Russell, T. W., Hellewell, J., Jarvis, C. I., Zandelovortan, K., Abbott, S., Ratnayake, R., … Kucharski, A. J. (2020). Estimating the infection and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the Diamond Princess cruise ship, February 2020. *Eurosurveillance*, 25(12), 2000256. https://doi.org/10.2807/1560-7917.es.2020.25.12.2000256.

Verhagen, M. D., Brazel, D. M., Dowd, J. B., Kashnitsky, I., & Mills, M. C. (2020). Forecasting spatial, socioeconomic and demographic variation in COVID-19 health care demand in England and Wales. *BMC Medicine*, 18(1), 203. https://doi.org/10.1186/s12916-020-01646-2.

Vollmer, M., Mishra, S., Unwin, H., Gandy, A., Melan, T., Bradley, V., … Bhatt, S. (2020). Forecasting global COVID-19 mortality and healthcare demand. https://doi.org/10.25561/78677.

Walker, P. G. T., Whittaker, C., Watson, O. J., Baguelin, M., Winskill, P., Hamlet, A., & Ghani, A. C. (2020). The impact of COVID-19 and strategies for mitigation and suppression in low- and middle-income countries. *Science*, 369(6502), 413–422. https://doi.org/10.1126/science.abc0035.