Majorana Neutrino and W_R at TeV scale $e p$ Colliders

U. Kaya

Ankara University, Faculty of Science,
Department of Physics, 06100 Tandoğan, Ankara, TURKEY

M. Sahin

Usak University, Science and Letters Faculty
Department of Physics, 64100, Usak, TURKEY

S. Sultansoy

TOBB Economy and Technology University,
06520 Sogutozu, Ankara, TURKEY and
National Academy of Sciences, Institute of Physics, Baku, Azerbaijan

Abstract

Production of heavy Majorana neutrino N_e predicted by left-right symmetric extension of the Standard Model at future TeV scale $e p$ colliders have been considered. In order to estimate potential of $e p$ colliders for N_e search we consider backgroundless process $e^- p \rightarrow e^+ X$ which is consequence of Majorana nature of N_e. It is shown that linac-LHC and linac-FCC based $e p$ colliders will cover much wider regions of N_e and W_R masses than corresponding linear electron-positron colliders.
1. INTRODUCTION

The discovery of the Higgs boson \[1, 2\] has completed basics of the Standard Model (SM). However, this is not the end of the story. First of all, SM could not answer many fundamental questions; for instance, left-handed structure of charged weak currents is put by hand, mass and mixing pattern of the SM fermions are not clarified etc. For these reasons a number of Beyond the SM (BSM) models are developed. Fortunately, future running of the LHC with upgraded parameters will shed light on answers for some of these questions. Secondly, Higgs field provides only 2% of the mass of the visible universe. In order to understand the origin of remaining 98% we should clarify basics of the QCD, especially small-\(x\) (Bjorken) region. This is why the QCD Explorer option of the LHC-based \(ep\) colliders is mandatory \[3\].

TeV scale colliders can be classified using colliding particles or collider types. While the first classification includes hadron-hadron, lepton-hadron and lepton-lepton collisions the other includes collider types with ring-ring, linac-ring and linac-linac options. Concerning the energy frontiers linac-ring type colliders provide the sole realistic way to handle (multi) TeV scale in lepton-hadron collisions at constituent level \[4\] (see, also, review \[5\]). Certainly, hadron colliders (LHC and FCC) should be considered as the main discovery tools for new particles. In this respect, priority of lepton-lepton or lepton-hadron colliders will be determined by the LHC or FCC results. If the observed BSM physics will be connected to the first family fermions, \(ep\) colliders will have priority due to larger center-of-mass energy comparing to electron-positron colliders.

Left-handed structure of charged weak currents has most elegant explanation in \(SU_L(2) \times SU_R(2) \times U(1)_{B-L}\) models \[6\], where the mass of \(W_R\) boson is much higher than the mass of \(W_L\) boson. In addition, these models predict existence of the second heavy Z boson, as well as, three heavy Majorana neutrinos \((N_e, N_\mu, N_\tau)\) and a number of additional Higgs bosons, including double-charged ones. Therefore, there are a lot of interesting phenomena, that can be investigated at TeV energy colliders. For example, production of \(W_R\) at hadron colliders, followed by \(W_R \rightarrow N_l l\) decays, leads to a very clear signature, namely two same-sign leptons in association with two jets \[7\]. Recently, the process \(pp \rightarrow W_R + X\) followed by \(W_R \rightarrow lljj\) decay has been investigated by CMS collaboration \[8\], where 2.8\(\sigma\) excess at \(m(ee jj) = 2.1\) TeV is observed. However, only one of the 14 reconstructed events contains same-sign electrons, while it is expected half of the events to be same-sign in the case of
Majorana N_e.

In this paper, we analyze production of N_e at future ep colliders via the back-groundless process $e^- p \rightarrow e^+ X$. In Section 2 tentative parameters of possible LHC and FCC based ep colliders are presented. A brief description of the $SU_L(2) \times SU_R(2) \times U(1)_{B-L}$ model is given in Section 3. In Section 4, we show production cross-sections depending on N_e mass for several values of W_R mass and different center-of-mass energies, as well as 3σ and 5σ plots in N_e-W_R mass plane. Rough comparison of pp, ep and e^+e^- colliders potentials for N_e investigation is performed in Section 5. Finally, in Section 6 we give some conclusions and recommendations.

2. FUTURE TEV SCALE EP COLLIDERS

Electron-proton scattering experiments have played a very important role in the development of our knowledge of the structure of matter. For example, quark-parton structure was discovered in deep-inelastic scattering. As mentioned above, QCD Explorer option ($E_e = 60$ GeV) of the LHC-based ep colliders (LHeC) is mandatory for clarifying dynamics of strong interactions at extremely small-x and, at the same time, sufficiently high Q^2 region. In addition, EIC (e-RHIC) will give opportunity to investigate another critical region, namely, $x \approx 1$.

Concerning BSM, new physics higher electron and/or proton beam energies are needed. In Table 1 we present tentative parameters for possible LHC and FCC based ep collider options. OPL, ERL and OPERL denotes one pulse linac, energy recovery linac and one pulse energy recovery linac, respectively. ERL60 is continuous wave superconducting recirculating energy-recovery linac, which has been chosen as the main line for LHeC (see section 7.1.2 in LHeC CDR [9]). OPL60 and OPL140 options for LHeC are considered in Section 7.1.4 of the LHeC CDR, and OPERL150 option is considered in Section 7.1.5, where this option is named as higher-energy LHeC ERL option. Luminosity for OPL500 and OPERL500 options for LHeC are estimated by assuming that electron beam powers are the same as in the OPL140 and OPERL150 cases, respectively (in this case L is inverse proportional to E_e). Parameters for the first three options of FCC-based ep colliders are taken from [10]. Luminosity values for the last two options are taken same as OPL140 and OPERL150 LHeC options for following reason: the loss due to higher electron energy E_e is compensated by
smaller proton beam size due to higher E_p.

Table I. Parameters of possible LHC and FCC based ep colliders.

	E_e, GeV	E_p, TeV	\sqrt{s}, TeV	L, 10^{33} cm$^{-2}$ s$^{-1}$	L_{int}, fb$^{-1}(10^7$ s)
ERL60-LHC	60	7	1.3	1([9])	10
OPL60-LHC	60	7	1.3	0.09([9])	0.9
OPL140-LHC	140	7	2.0	0.04([9])	0.4
OPL500-LHC	500	7	3.7	0.01	0.1
OPERL150-LHC	150	7	2.0	100([9])	1000
OPERL500-LHC	500	7	3.7	30	300
ERL60-FCC	60	50	3.5	10([10])	100
FCC-e80	80	50	4.0	23([10])	230
FCC-e120	120	50	4.9	12([10])	120
OPL1000-FCC	1000	50	14.1	0.04	0.4
OPERL1000-FCC	1000	50	14.1	100	1000

3. MODEL DESCRIPTION

The minimal left-right symmetric model is based on $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ gauge symmetry. Fermions are grouped in $L - R$ symmetric form:

$$q_L = \begin{pmatrix} u \\ d \end{pmatrix}_L : (3, 2, 1, 1/3); \quad q_R = \begin{pmatrix} u \\ d \end{pmatrix}_R : (3, 1, 2, 1/3); \quad (1)$$

$$l_L = \begin{pmatrix} \nu \\ l \end{pmatrix}_L : (1, 2, 1, -1); \quad l_R = \begin{pmatrix} N \\ l \end{pmatrix}_R : (1, 1, 2, -1). \quad (2)$$

In this model electric charge is given by

$$Q_{em} = I_{3L} + I_{3R} + \frac{B - L}{2} \quad (3)$$
The Higgs sector contains one bidoublet and two triplets:

\[\Phi = \begin{pmatrix} \phi_0^0 & \phi_1^+ \\ \phi_2^- & \phi_0^0 \end{pmatrix} : (1, 2, 2, 0); \quad \Delta_L = \begin{pmatrix} \delta_L^+ / \sqrt{2} & \delta_L^{++} \\ \delta_L^0 & -\delta_L^+ / \sqrt{2} \end{pmatrix} : (1, 3, 1, 2); \quad (4) \]

\[\Delta_R = \begin{pmatrix} \delta_R^+ / \sqrt{2} & \delta_R^{++} \\ \delta_R^0 & -\delta_R^+ / \sqrt{2} \end{pmatrix} : (1, 1, 3, 2). \quad (5) \]

Therefore, there are two additional intermediate vector bosons \((W_R \text{ and } Z_R) \) as well as a number of additional scalar bosons (2 neutral, 2 charged and 2 double charged). The most stringent limit on \(W_R \) mass from low energy data, namely, \(m_{W_R} > 2.5 \text{ TeV} \), comes from \(K_L - K_S \) mixing [11]. Search for \(W_R \rightarrow lN_l \) performed by ATLAS and CMS using 7 TeV data lead to the same limit for \(m_{N_l} \) around 1 TeV [12, 13]. Recent CMS analysis of this channel increases the limit up to 3 TeV [8].

4. PRODUCTION OF MAJORANA NEUTRINO AT TEV ENERGY EP COL-LIDERS

For numerical calculations we include interactions of \(W_R \) boson with fermions, namely,

\[\mathcal{L} = -\frac{g_R}{2\sqrt{2}} \left[\bar{e}_\gamma^\mu \left(1 + \gamma^5\right) \nu + \bar{d}_\gamma^\mu \left(1 + \gamma^5\right) u \right] W_R^{-\mu} + h.c. \quad (6) \]

into the CalcHEP software [14]. At this stage we ignore possible mixing in fermions and vector boson sectors. In Fig. 1 we present production cross-sections as a function of \(m_N \) for \(\sqrt{s} = 1.3 \text{ TeV} \) and different values of \(m_{W_R} \). Similar distributions for \(\sqrt{s} = 2.0, 4.0 \) and 14.1 TeV are presented in Figs.2, 3 and 4, respectively. Keeping in mind, integral luminosity values given in the last column of the Table 1, one can see that ERL60, OPL60 and OPL140 options of the LHC based \(ep \) colliders could not provide essential contributions to the \(N_e \) investigation.

In order to estimate the potential of \(ep \) colliders for \(N_e \) search, we consider back-groundless process \(e^- p \rightarrow e^+ X \) which is consequence of Majorana nature of \(N_e \). Corresponding Feynman diagram is shown in Fig. 5. In this case cross-sections given in Figs. 1 – 4 should be multiplied by factor 1/2. In Figs. 6 – 9, we present 3\(\sigma \) (observation) and 5\(\sigma \) (discovery)
Figure 1. N_e production cross-sections for different m_{W_R} at $\sqrt{s} = 1.3\, TeV$

Figure 2. N_e production cross-sections for different m_{W_R} at $\sqrt{s} = 2.0\, TeV$
Figure 3. N_e production cross-sections for different m_{WR} at $\sqrt{s} = 4.0\, TeV$

Figure 4. N_e production cross-sections for different m_{WR} at $\sqrt{s} = 14.1\, TeV$
Figure 5. Feynmann diagram for $e^{-}p \rightarrow e^{+} + X$

Figure 6. Observation (3σ) and discovery (5σ) limits in the $m_{N_{e}} - m_{W_{R}}$ plane for OPERL150 and OPERL500 options of LHeC.

plots in $m_{N_{e}} - m_{W_{R}}$ plane. For 3σ and 5σ limits we use 9 and 25 events, respectively. As one can see from Fig. 6, LHC based ep colliders could probe larger $m_{W_{R}}$ mass values than LHC if N_{e} has relatively light mass.
Figure 7. Observation (3σ) limit in the $m_{N_e} - m_{W_R}$ plane for FCC-e80, FCC-e120, ERL60-FCC and OPL1000-FCC.
Figure 8. Discovery (5σ) limit in the $m_{N_e} - m_{W_R}$ plane for FCC-e80, FCC-e120, ERL60-FCC and OPL1000-FCC.
5. ROUGH COMPARISON OF \(pp, ep \) AND \(e^+e^- \) COLLIDERS

As it is mentioned in the introduction, TeV scale \(ep \) colliders are crucial for understanding of the origin of 98% of the mass of the visible universe. Concerning BSM physics, detailed comparison of physics search potential of (multi)TeV scale hadron, lepton and lepton-hadron colliders should be performed for each phenomena (such as new particles and new interactions). Rough estimations \[15\] show that \(ep \) colliders are advantageous comparing to lepton colliders for a lot phenomena. Moreover, analysis of excited electron production performed in the article by O.Cakir et al.\[16\] "show that LC\(\oplus\)LHC is more promising than the LHC and much more promising than the LC for the processes considered". In this analysis following collider parameters were used: \(\sqrt{s} = 14 \) TeV and \(L = 10^{34} cm^{-2}s^{-1} \) for LHC, \(\sqrt{s} = 0.5 \) TeV and \(L = 10^{34} cm^{-2}s^{-1} \) for LC, \(\sqrt{s} = 3.74 \) TeV and \(L = 10^{31} cm^{-2}s^{-1} \) for LC\(\oplus\)LHC.

In principle, for effective planning of the post-LHC energy frontier colliders comparison of LHC, LHeC and ILC (for 2020s), as well as FCC (\(pp \) and \(ep \) options), linac-FCC (\(ep \)
and γp options), CLIC and muon collider (for 2030s), search potentials for different BSM phenomena should be performed.

Considering N_e production, lepton collider capacity is kinematically limited by $m_{N_e} < 0.5$ TeV at ILC [17] and $m_{N_e} < 1.5$ TeV at CLIC [18]. As one can see from Figs. 6–9, linac-LHC and especially linac-FCC based ep colliders will cover much higher m_{N_e} values. Below we consider specific examples for LHC and FCC.

1) LHC example: Let us assume that N_e and W_R masses are 0.5 TeV and 8 TeV, respectively. In this case ERL500-LHC will give opportunity to discover N_e at 5σ level, whereas LHC will not reach even 2σ level.

2) FCC example: Let us assume that N_e and W_R masses are 2 TeV and 27 TeV, respectively. In this case, OPERL1000-FCC will give opportunity to discover Ne at 3σ level, whereas FCC will not reach even 2σ level.

6. CONCLUSION

In this paper we analyzed production of heavy Majorana neutrino via W_R exchange at future ep colliders. The analysis results show that:

1) linac-LHC and linac-FCC based ep colliders will cover much wider regions of N_e and W_R masses than ILC and CLIC,

2) ep colliders seems to be advantageous comparing to corresponding pp colliders for some regions of N_e and W_R masses.

ACKNOWLEDGMENTS

Authors are grateful to Y. O. Gunaydin for useful discussion and valuable comments.

[1] ATLAS Collaboration, G. Aad, et all, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Physics Letters B, 716, (2012), 1-29.

[2] CMS Collaboration, S. Chatrchyan, et all, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Physics Letters B, 716, (2012), 30-61.
[3] S. Cetin, S. Sultansoy, G. Unel, Why QCD Explorer stage of the LHeC should have high(est) priority, (2013), arXiv:1305.5572 [physics.acc-ph].

[4] S. Sultansoy, Linac ring type colliders: Second way to TeV scale, Eur.Phys.J. C33 (2004), 1064-1066.

[5] A. N. Akay, H. Karadeniz, S. Sultansoy, Review of Linac-Ring Type Collider Proposals, Int.J.Mod.Phys. A25 (2010), 4589-4602.

[6] J. C. Pati and A. Salam, Phys. Rev. D 10 (1974) 275; R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 566 (1975); R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 2558 (1975); G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12, 1502 (1975); P. Minkowski, Phys. Lett. B 67 (1977) 421; R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44 (1980) 912; G. Senjanovic, Nucl. Phys. B 153 (1979) 334; B.A. Arbuzov and S.F. Sultanov, Sov. J. Nucl. Phys. 33 (1981) 223; A. Maiezza, M. Nemevsek, F. Nesti, G. Senjanovic, Phys.Rev. D82 (2010) 055022; M. Nemevsek, F. Nesti, G. Senjanovic, Y. Zhang, Phys.Rev. D83 (2011) 115014; S. Bertolini, A. Maiezza, F. Nesti, Phys.Rev. D89 (2014) 095028; A. Maiezza, M. Nemevsek, Phys.Rev. D90 (2014) 095002; G. Senjanovic, V. Tello, arXiv:1408.3835 [hep-ph].

[7] W-Y. Keung, G. Senjanovic, Majorana Neutrinos and the Production of the Right-handed Charged Gauge Boson, Phys.Rev.Lett. 50 (1983), 1427.

[8] CMS Collaboration, S. Chatrchyan, et all, Search for heavy neutrinos and W bosons with right-handed couplings in proton-proton collisions at sqrt(s) = 8 TeV, Eur. Phys. J. C 74 (2014), 3149; arXiv:1407.3683v2 [hep-ex].

[9] J L Abelleira Fernandez, et all, A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector, J. Phys. G: Nucl. Part. Phys. 39 (2012), 075001.

[10] F. Zimmermann, Challenges for Highest Energy Circular Colliders, KEK Accelerator Seminar, 31 July 2014, Scuba, Japan.

[11] Y. Zhang et al, Right-handed quark mixings in minimal left-right symmetric model with general CP violation, Phys. Rev. D76, 091301(R) (2007).

[12] ATLAS Collaboration, G. Aad, et all, Search for heavy neutrinos and right-handed W bosons in events with two leptons and jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector, Eur.Phys.J. C72 (2012) 2056; arXiv:1203.5420v2 [hep-ex].

[13] CMS Collaboration, S. Chatrchyan, et all, Search for heavy neutrinos and W[R] bosons with
right-handed couplings in a left-right symmetric model in pp collisions at $\sqrt{s} = 7$ TeV,
Phys. Rev. Lett. 109 (2012) 261802; arXiv:1210.2402v3 [hep-ex].

[14] A.Belyaev, N.Christensen, A.Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Computer Physics Communications 184 (2013), pp. 1729-1769; arXiv:1207.6082v2 [hep-ph].

[15] S. Sultansoy et al., A Review of TeV Scale Lepton-Hadron and Photon-Hadron Colliders, Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee, p4329.

[16] O. Cakir, A. Yilmaz, S. Sultansoy, Single production of excited electrons at future e^-e^+, ep and pp colliders, Phys.Rev. D70 (2004), 075011; arXiv:hep-ph/0403307v5.

[17] ILC webpage: https://www.linearcollider.org/ILC

[18] CLIC webpage: http://clic-study.web.cern.ch/