A 4.7 kb cDNA clone (ArLDL2-1a) coding for the rat low density lipoprotein (LDL) receptor was isolated from a Agt-11 rat liver cDNA library (1,2). The DNA sequence of the entire coding region and portions of the 5' and 3' untranslated regions is shown in Figure 1. The open reading frame codes for an 879 amino acid polypeptide with a theoretical molecular weight of 96,632, which is larger than the size of the human (3) and rabbit (4) LDL receptors. A signal sequence of 21 amino acids was also present in both the rat (Fig 1) and human (3) receptors.
The 5 structural domains of the rat LDL receptor shared sequence homology with the human, rabbit and bovine receptors (3,4,5, Table 1). Position of cysteine residues was conserved in the ligand-binding and EGF-precursor domains (Fig.1). The ligand-binding domain had 7 cysteine-rich repeated sequences similar to the rabbit and human receptors, however, the rat receptor contained one additional amino acid in the gap between the 4th and 5th repeat.

There were 4 potential sites for N-linked glycosylation and 26 potential sites for O-linked glycosylation (Fig.1). One feature unique to the rat LDL receptor was the presence of 3 repeated sequences of 6 amino acids in the O-linked sugar domain. The significance of these 3 repeated sequences is unknown.

Receptor	Percent Sequence Homology to the Rat LDL Receptor				
	Ligand Binding Domain (293*)	EGF Precursor Homology Domain (400)	O-Linked Sugar Domain (77)	Transmembrane Domain (25)	Cytoplasmic Domain (50)
Human	78	84	41	55	88
Rabbit	73	84	35	60	90
Bovine	ND	ND	36	59	92

* Number of amino acids
ND Not determined because the DNA sequence is unknown
† The order of the authors may not reflect their relative contribution

REFERENCES
1. Clarke, C.F. et al. (1987) Molec. Cell Biol. 7: 3138-3146
2. Tanaka, R.D., et al. (1987) Fed. Proc. 46: 2158.
3. Yamamoto, T. et al. (1984) Cell. 39: 27-38.
4. Yamamoto, T. et al. (1986) Science 232: 1230-1237.
5. Russell, D. W. et al. (1984) Cell. 37: 577-585.