Optic radiation injury in patients with aneurismal subarachnoid hemorrhage: a preliminary diffusion tensor imaging report

Sung Ho Jang1, Chul Hoon Chang2, Young Jin Jung3, Seong Ho Kim3, Jeong Pyo Seo*1*

1 Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Namku, Daegu, Republic of Korea
2 Department of Neurosurgery, College of Medicine, Yeungnam University, Namku, Daegu, Republic of Korea

Funding: This work was supported by the National Research Foundation (NRF) of Korea Grant funded by the Korean Government (MSIP) (2015R1A2A2A01004073).

Abstract

Visual field defect is one of the various clinical manifestations in patients with subarachnoid hemorrhage (SAH). Little is known about the pathogenic mechanism of visual field defect in SAH. In the current study, we investigated the diffusion tensor imaging (DTI) finding of the optic radiation in patients with SAH following rupture of a cerebral artery aneurysm. We recruited 21 patients with aneurismal SAH (12 males, 9 females, mean age, 52.67 years; range, 41–68 years) who showed no definite lesion along the visual pathway. Twenty-one age-and sex-matched normal control subjects were also recruited. DTI data were acquired at an average of 5.9 weeks (range: 3–12 weeks) after onset and reconstruction of the optic radiation was performed using DTI-Studio software. The fractional anisotropy value, apparent diffusion coefficient value, and fiber number of the optic radiation were measured. The fractional anisotropy value of the optic radiation was significantly decreased, and the apparent diffusion coefficient value was significantly increased, in patients with aneurismal SAH than in normal control subjects. However, there was no significant difference in the fiber number of the optic radiation between patients with aneurismal SAH and normal control subjects. The decrement of fractional anisotropy value and increment of apparent diffusion coefficient value of the optic radiation in patients with aneurismal SAH suggest optic radiation injury. Therefore, we recommend a thorough evaluation for optic radiation injury in patients with aneurismal SAH.

Key Words: nerve regeneration; diffusion tensor imaging; optic radiation; subarachnoid hemorrhage; visual field defect; neural regeneration

Introduction

Rupture of a cerebral artery aneurysm can lead to spontaneous subarachnoid hemorrhage (SAH). It is known to accompany various neurological sequelae, including visual impairment (Sarner and Rose, 1967; van Gijn et al., 2007; Schweizer et al., 2012; Rabinstein, 2013). Visual field defect, sequelae of which have been reported in approximately 50% of patients with SAH, is one of the visual problems observed in patients with SAH (Tsementzis and Williams, 1984; Obuchowska et al., 2011). However, little is known about the pathogenic mechanism of visual field defect in SAH following rupture of a cerebral artery aneurysm.

Visual field defect is a typical clinical symptom of optic radiation (OR) injury (Mizrachi et al., 2005; Jang and Seo, 2015; Seo et al., 2015). A thorough examination in the aspects of safety and performance of activity of daily living for diagnosis of OR injury would be important for stroke patients (Gall et al., 2010). Conventional brain CT or brain MRI has mainly been used in the diagnosis of OR injury; however, it is limited because the OR cannot be distinguished from adjacent neural structures on these images (Kan and Matsubayashi, 1978; Zhang et al., 2006). In contrast, diffusion tensor imaging (DTI) allows three-dimensional reconstruction and evaluation of the OR (Werring et al., 1999; Berman et al., 2009; Hofer et al., 2010; Yeo et al., 2012a). Using DTI, a few studies have reported on OR injury in stroke patients (Yoshida et al., 2006; Polonara et al., 2011; Seo et al., 2013). However, there is no study reporting OR injury in patients with SAH. In the current study, we investigated the DTI finding of the OR in patients with SAH following rupture of a cerebral artery aneurysm.

Subjects and Methods

Subjects

Twenty-one patients with SAH (9 males, 12 females, mean age 53.43 years, range 40–68 years) and 21 age-matched normal control subjects with no history of neurologic or psychiatric diseases (12 males, 9 females, mean age, 52.67 years; range, 41–68 years) were recruited for this study. Among 140 patients with SAH admitted for rehabilitation in the Department of Rehabilitation of Yeungnam University Hospital, Republic of Korea, 21 consecutive patients were recruited according to the following inclusion criteria: 1) first ever stroke; 2) age: 21–69 years; 3) hemorrhage in the subarachnoid space due to aneurismal rupture revealed by brain CT (Figure 1); 4) DTI scanning was performed during the early stage (between three weeks and three months after onset); 5) no intraventricular hemorrhage, intracerebral hemorrhage, or hydrocephalus; and 6) no definite lesion along the visual pathway, including the OR on brain MRI (T1-weighted, T2-weighted, and fluid attenuated inversion recovery [FLAIR] images), confirmed by a neuroradiologist. The Institutional Review Board of Yeungnam University Hospital approved the study protocol (approval No. 2014-01-425), and this study was conducted retrospectively.

Table 1 summarizes the demographic data from patients with aneurismal SAH and normal controls. Causes of SAH for 21 patients were as follows: the anterior communicating artery aneurysm rupture (n = 15, 71.4%), anterior cerebral artery aneurysm...
Jang SH, Chang CH, Jung YI, Kim SH, Seo JP (2018) Optic radiation injury in patients with aneurismal subarachnoid hemorrhage: a preliminary diffusion tensor imaging report. Neural Regen Res 13(3):563-566. doi:10.4103/1673-5374.228763

Jang SH, Chang CH, Jung YI, Kim SH, Seo JP (2018) Optic radiation injury in patients with aneurismal subarachnoid hemorrhage: a preliminary diffusion tensor imaging report. Neural Regen Res 13(3):563-566. doi:10.4103/1673-5374.228763

Centre with the Functional Magnetic Resonance Imaging of the
affine multi-scale two-dimensional registration at the Oxford
b
reconstruction matrix = 128 × 128 matrix; thickness = 2.3 mm;
matrix = 96 × 96; echo time = 76 ms; number of excitations = 1;
view = 221 × 221 mm
commissure line. Imaging parameters were as follows: field of
non-collinear diffusion sensitizing gradients, we acquired 65
of 5.9 weeks (range: 3
rupture (n = 3, 14.2%), posterior communicating artery aneurysm
rupture (n = 1, 4.8%), middle cerebral artery aneurysm rupture (n
= 1, 4.8%), and basilar artery aneurysm rupture (n = 1, 4.8%).
The neurosurgical procedure for ruptured aneurysm was performed in
20 patients (aneurysm clipping in 17 patients and aneurysm coil-
ing in 3 patients). Fisher CT grade was used to assess the severity
of SAH (average grade: 2.9 ± 0.7) (Fisher et al., 1980).

Diffusion tensor imaging
Using a 1.5-T Philips Gyroscan Intera system (Philips, Ltd, Best,
The Netherlands) equipped with a synergy-L Sensitivity En-
coding (SENSE) head coil with a single-shot, spin-echo planar
imaging pulse sequence, DTI data were acquired at an average
of 5.9 weeks (range: 3–12 weeks) after onset. For each of the 32
non-collinear diffusion sensitizing gradients, we acquired 65
contiguous slices parallel to the anterior commissure-posterior
commissure line. Imaging parameters were as follows: field of
view = 221 × 221 mm²; repetition time = 10,726 ms; acquisition
matrix = 96 × 96; echo time = 76 ms; number of excitations = 1;
reconstruction matrix = 128 × 128 matrix; thickness = 2.3 mm;
b = 1,000 s/mm²; and echo planar imaging factor = 67.
Eddy current-induced image distortions were removed using
affine multi-scale two-dimensional registration at the Oxford
Centre with the Functional Magnetic Resonance Imaging of the
Brain (FMRIB) Software Library (FSL; www.fmrib.ox.ac.uk/fsl)

Table 1 Demographic data of patients with aneurismal SAH and normal control subjects

	Patients (n = 21)	Normal controls (n = 21)
Age (year)	53.43±1.57	52.67±1.43
Sex (male/female, n)	9/12	12/9
Duration after onset (weeks)	3.88±2.11	0/6/11/4
Fisher’s grading (grade)	3/2/3/4	0/6/11/4
Ruptured artery (ACoA/A/ACA/PCA/MCA/BA)	15/3/3/1/1/1	0/6/11/4

M: Male; F: female; SAH: subarachnoid hemorrhage; ACoA: anterior communicating artery; ACA: anterior cerebral artery; PCA: posterior communicating artery; MCA: middle cerebral artery; BA: basilar artery.

(Seo et al., 2013). The FA value, ADC value, and fiber number (the number of fiber bundles) of the OR were measured in both hemispheres using DTI-Studio software (Laboratory of Brain Anatomical MRI, Johns Hopkins Medical Institute).

Statistical analysis
Statistical analysis was performed using SPSS 17.0 for Windows
(SPSS Inc., Chicago, IL, USA). Data are expressed as the mean ±
SD. The FA value, ADC value, and fiber number of the OR were
compared between patients and normal controls, and between
the left and right hemispheres using independent samples t-test.
A level of P < 0.05 was considered statistically significant.

Results
The ORs were reconstructed in 84 hemispheres of 42 whole
subjects (100%). The DTI findings of patients with aneurismal
SAH and normal controls are shown in Table 2 and Figure 2.
The FA value of the OR was significantly decreased, and the
ADC value was significantly increased, in patients with aneurismal
SAH compared with those in the normal control subjects
(both P < 0.05). However, there was no significant difference in
the fiber number of the OR between patients with aneurismal
SAH and normal control subjects (P > 0.05). No difference in
any of DTI parameters (FA, ADC and fiber number) of the OR
was observed between the left and right hemispheres in patients
with aneurismal SAH or normal control subjects (P > 0.05).

Discussion
In the current study, we recruited patients with aneurismal
SAH who did not show any specific lesion in the visual path-
way, including the OR, on brain MRI, and adopted three DTI

Figure 1 Brain CT images and diffusion tensor tractography images of patients with aneurismal SAH.
(A) Brain CT images of a 40-year-old male patient showing subarach-
noid hemorrhage and intracerebral hemorrhage (yellow arrows). (B) Diffusion tensor tractography images of the optic radiation in the pa-
tient (red color: right optic radiation, yellow color: left optic radiation).
(C) Diffusion tensor tractography images of the optic radiation in a
normal control male aged 52 years. (D) Seed and target regions of in-
terest. R: Right; A: anterior; ROI: region of interest.
parameters (the FA, ADC, and fiber number) to assess the state of the OR. FA value was significantly decreased and ADC value was significantly increased in patients with aneurismal SAH than in normal control subjects. But there was no significant difference in the fiber number of the OP between patients with aneurismal SAH and normal control subjects. FA value indicates the degree of directionality of water diffusion and reflects the integrity of white matter microstructures, such as axon, myelin, and microtubule (Assaf and Pasternak, 2008; Neil, 2008). ADC value represents the magnitude of water diffusion (Assaf and Pasternak, 2008; Neil, 2008; Jang and Jang, 2016). Fiber number indicates the total number of neural fibers in a neural tract (Jang and Jang, 2016). The decrement of FA value and increment of ADC value of the OR in patients with aneurismal SAH suggest OR injury. Many studies have reported on visual impairment in patients with SAH (Tsementzis and Williams, 1984; Chan et al., 1997; Hara et al., 2003; Obuchowska et al., 2010, 2011; Walkden and Brennan, 2012). Most of these studies focused on visual problems caused by lesions in the visual pathway, except for the OR, such as the eye, optic nerve, or optic chiasm (Tsementzis and Williams, 1984; Chan et al., 1997; Hara et al., 2003; Obuchowska et al., 2010; Walkden and Brennan, 2012). To the best of our knowledge, only a few studies have reported results that appeared to be related to injury of the OR (Liu et al., 2007; Obuchowska et al., 2011). In 2007, Liu et al. reported that the ADC value in normal appearing white matter in the occipital lobe, as well as the whole cerebral lobe, except for the frontal lobe, was increased in patients with aneurismal SAH in the subacute stage. In 2011, Obuchowska et al. reported detection of visual field defects in 50% of 23 patients with SAH who were treated with aneurismal clipping. The relatively frequent types of visual field defects include constricted field (47.8%), multiple peripheral foci (26.1%), and superior field defect (17.4%). They suggested that the pattern of these abnormalities corresponds to damage to the anterior segment of the visual pathways such as optic nerve or optic chiasm. However, in this study, we found differences in DTI parameters consistent with OR injury located in the posterior portion of the visual pathway in patients with aneurismal SAH.

The pathogenic mechanism of neural injury in SAH has not been elucidated. There are few studies on this topic (Liu et al., 2007; Yeo et al., 2012b). In 2007, Liu et al. reported that SAH may cause global mild vasogenic edema in white matter and deep gray matter, but was detected by measuring the ADC value in the subacute stage of SAH. Therefore, this result indicates that SAH can cause injury to white matter, which is located far from the subarachnoid space. In 2012, Yeo et al. demonstrated injury of the corticospinal tract at the midbrain in patients with SAH (Yeo et al., 2012b). They suggested that injury of the corticospinal tract at the midbrain occurred through chemical (a blood clot itself can cause extensive damage) or mechanical mechanisms (increased intracranial pressure or direct mass) (van Gijn et al., 1985; Chua et al., 2009). Considering the results of the previous studies, we can assume that SAH may cause injury to the OR, which is located far from the arachnoid space, as well as near to the arachnoid space in the occipital lobe. Further studies are required to analyze the distance from the arachnoid space. In addition, DTI studies addressing follow up from acute stage to chronic state should be performed to clarify the pathogenic mechanism.

In conclusion, using DTI, we investigated the OR state in aneurismal SAH. Results from this study demonstrated that the values of FA and ADC parameters were consistent with OR injury. Therefore, we recommend a thorough examination to evaluate OR injury in patients with aneurismal SAH. To the best of our knowledge, this is the first DTI study addressing OR injury in patients with aneurismal SAH. However, limitations of this study should be considered. First, DTI analysis is operator dependent and it may cause false negative or false positive results for the fiber tracks due to fiber complexity or crossing fiber effect (Yamada, 2009). Second, the lack of clinical data

Table 2 Data on diffusion tensor imaging parameters of the optic radiation in patients with aneurismal SAH and normal control subjects

Parameter	Right	Left	Total	Right	Left	Total	P-value
FA	0.477±0.045	0.494±0.046	0.486±0.046	0.500±0.030	0.504±0.028	0.503±0.030	0.046*
ADC	0.896±0.132	0.857±0.070	0.876±0.106	0.841±0.026	0.837±0.034	0.839±0.031	0.033*
Fiber number (voxel number)	371.0±132.7	398.9±145.3	384.9±138.1	420.6±116.9	442.7±130.7	431.6±125.9	0.109

Data are expressed as the mean ± SD from 21 cases in each group. SAH: Subarachnoid hemorrhage; FA: fractional anisotropy; ADC: apparent diffusion coefficient. *P < 0.05.

Figure 2 Comparison of diffusion tensor imaging parameters between patients with aneurismal subarachnoid hemorrhage and normal controls.

Data are expressed as the mean ± SD of 21 cases in each group. *P < 0.05 (independent samples t-test). FA: Fractional anisotropy, ADC: apparent diffusion coefficient.
regarding ocular or OR injury, such as visual field study, which could not be included because we conducted this study retrospectively. Third, we recruited a small number of patients from patients with SAH who had been admitted for rehabilitation. Therefore, there is a possibility that among all patients with SAH, we recruited patients with severe clinical manifestations. Further prospective studies involving larger numbers of patients and including clinical evaluations of OR injury should be performed. In addition, in-depth DTI studies on the anterior visual pathway such as optic nerve, optic chiasm, and optic tract should also be encouraged.

Author contributions: SHJ conceived and designed the study, was responsible for fundraising, data acquisition, manuscript development and writing. CHC, YJJ, SHK and IPS were in charge of data acquisition. IPS contributed to paper development, writing and authorization. All authors approved the final version of this manuscript.

Conflicts of interest: None declared.

Financial support: This work was supported by the National Research Foundation (NRF) of Korea Grant funded by the Korean Government (MSIP) (201401A0104075).

Research ethics: The study was approved by the institutional review board of Yeungnam University Hospital (approval No. 2014-01-425). The study followed the Declaration of Helsinki and relevant ethical principles.

Declaration of participant consent: The authors certify that they have obtained all appropriate participant consent form. In the form, participants have given their consent for their images and other clinical information to be reported in the journal. The participants understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Data sharing statement: Datasets analyzed during the current study are available from the corresponding author on reasonable request.

Plagiarism check: Checked twice by iThenticate.

Peer review: Externally peer reviewed.

Open access statement: This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under identical terms.

References
Assal Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34:51-61.
Berman JJ, Glass HC, Miller SP, Mukherjee P, Ferriero DM, Barkovich AJ, Vigneron DB, Henry RG (2009) Quantitative fiber tracking analysis of the optic radiation correlated with visual performance in premature newborns. AJNR Am J Neuroradiol 30:120-124.
Chan JW, Hoyt WF, Ellis WG, Gress D (1997) Pathogenesis of acute monocular blindness from leaking anterior communicating artery aneurysms: report of six cases. Neurology 48:680-683.
Chua CO, Chahboune H, Braun A, Dummula K, Chua CE, Yu J, Ungvari Z, Zemtzensis SA, Williams A (1984) Ophthalmological signs and prognosis in patients with a subarachnoid haemorrhage. Neurochirurgia (Stuttg) 27:133-135.
van Gijn J, Kerr RS, Rinkel GJ (2007) Subarachnoid haemorrhage. Lancet 369:306-318.
van Gijn J, van Dongen KJ, Vermeulen M, Hidra A (1985) Perimesencephalic hemorrhage: a nonaneurysmal and benign form of subarachnoid hemorrhage. Clin Neurol Neurosurg 87:67-70.
Schweitzer TA, Al-Khindi T, Loch Macdonald R (2012) Diffusion tensor imaging as a surrogate marker for outcome after perimesencephalic subarachnoid hemorrhage. Clin Neurol Neurosurg 114:798-800.
Seo JY, Choi BY, Chang CH, Jung YJ, Byun WM, Kim SH, Kwon YH, Jang SH (2013) Diffusion tensor imaging findings of optic radiation in patients with putaminal hemorrhage. Eur Neurol 69:236-241.
Seo YS, Kim SH, Jang SH (2015) Bilateral homonymous quadrantanopia due to optic radiation injury in a patient with traumatic brain injury. Am J Phys Med Rehabil 94:e116.
Smith SM, Jenkinson M, Woolrich MW, Beckmann CE, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RR, Sanders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23 Suppl 1:S208-219.
Vanninen RL (2007) Subarachnoid hemorrhage in the subacute stage: elevated apparent diffusion coefficient in normal-appearing brain tissue after rebleeding. Radiology 241:518-525.
Werring DJ, Clarke CA, Parker GI, Miller DH, Thompson AJ, Barker GI (1999) A direct demonstration of both structure and function in the visual system: combining diffusion tensor imaging with functional magnetic resonance imaging. Neuroimage 9:352-58.
Yeo SS, Kim SH, Kim OL, Kim MS, Jang SH (2012a) Optic radiation injury in a patient with traumatic brain injury. Brain Inj 26:891-895.
Yeo SS, Choi BY, Chang CH, Kim SH, Jung YJ, Jang SH (2012b) Evidence of corticospinal tract injury at midbrain in patients with subarachnoid hemorrhage. Stroke 43:3209-3214.
Yoshida M, Ida M, Nguyen TH, Iba-Zizen MT, Bellinger L, Stielenart JL, Nagao T, Kikuchi S, Hara T, Shiba T, Kitahara K, Cabanas EA (2006) Resolution of homonymous visual field loss documented with functional magnetic resonance and diffusion tensor imaging. J Neuroophthalmol 26:11-17.
Zhang X, Kedar S, Lynn MJ, Newman NJ, Biousse V (2006) Homonymous hemianopia in stroke: JAMA Neurol 63:180-183.

Copyedited by Li CH, Song LP, Zhao M