Diversity and use of ethno-medicinal plants in the region of Swat, North Pakistan

Akhtar et al.
Diversity and use of ethno-medicinal plants in the region of Swat, North Pakistan

Naveed Akhtar1,2, Abdur Rashid3, Waheed Murad4 and Erwin Bergmeier2*

Abstract

Background: Due to its diverse geographical and habitat conditions, northern Pakistan harbors a wealth of medicinal plants. The plants and their traditional use are part of the natural and cultural heritage of the region. This study was carried out to document which medicinal plant species and which plant parts are used in the region of Swat, which syndrome categories are particularly concerned, and which habitat spectrum is frequented by collectors. Finally, we assessed to which extent medicinal plants are vulnerable due to collection and habitat destruction.

Methods: An ethnobotanical survey was undertaken in the Miandam area of Swat, North Pakistan. Data were collected through field assessment as well as from traditional healers and locals by means of personal interviews and semi-structured questionnaires.

Results: A total of 106 ethno-medicinal plant species belonging to 54 plant families were recorded. The most common growth forms were perennial (43%) and short-lived herbs (23%), shrubs (16%), and trees (15%). Most frequently used plant parts were leaves (24%), fruits (18%) and subterranean parts (15%). A considerable proportion of the ethno-medicinal plant species and remedies concerns gastro-intestinal disorders. The remedies were mostly prepared in the form of decoction or powder and were mainly taken orally. Eighty out of 106 ethno-medicinal plants were indigenous. Almost 50% of the plants occurred in synanthropic vegetation while slightly more than 50% were found in semi-natural, though extensively grazed, woodland and grassland vegetation. Three species (Aconitum violaceum, Colchicum luteum, Jasminum humile) must be considered vulnerable due to excessive collection. Woodlands are the main source for non-synanthropic indigenous medicinal plants. The latter include many range-restricted taxa and plants of which rhizomes and other subterranean parts are dug out for further processing as medicine.

Conclusion: Medicinal plants are still widely used for treatment in the area of Swat. Some species of woodlands seem to be adapted to wood-pasture, but vulnerable to overcollecting, and in particular to deforestation. It is suggested to implement local small-scaled agroforestry systems to cultivate vulnerable and commercially valuable ethno-medicinal woodland plants under local self-government responsibility.

Keywords: Ecosystem services, Ethnobotany, Medicinal plants, Miandam, Phytomedicine, Plant applications, Plant conservation, Vernacular plant names

* Correspondence: erwin.bergmeier@bio.uni-goettingen.de
1Department of Vegetation Analysis and Phytodiversity, Albrecht von Haller Institute of Plant Sciences, Georg August University, Göttingen 37073, Germany
2Full list of author information is available at the end of the article
Introduction

Plants are an important source of traditional medicine for the treatment of various diseases [1]. It has been estimated that herbal medicines are used by more than 80% of the world's population in developing countries to meet their primary healthcare needs [2]. In Pakistan, the available modern healthcare services are either insufficient or inaccessible and unaffordable to the majority of people. In addition, due to illiteracy and poverty most of the population is dependent on traditional phytomedicine to cure various ailments. As the country has diverse socio-economic, ethnic, linguistic and cultural areas, as well as unique biodiversity, copious knowledge of indigenous medicinal plants and their use in treating human ailments might reasonably be expected. More than 10% of the national flora of Pakistan (600-700 plant species) are used for medicinal purposes [3]. Phytomedicinal research in Pakistan is a recent activity and the documentation of ethnomedicinal plant knowledge and its applications are ongoing [3-6]. The loss of precious medicinal plant wealth due to overgrazing, agricultural expansion, environmental degradation, acculturation and deforestation, enhanced by population pressure and poverty, has been reported by various researchers [3,7-10] but information on which medicinal plant species in particular are vulnerable, and why, is lacking.

Traditional resources of medicinal plants from Chitral, North Pakistan, have been evaluated [7,11]. Several studies exist on the ethnomedicinal use of plants in different regions of Swat, North Pakistan [8,12-15]. In an ethnomedicinal study from the valley of Miandam, Swat, a total of 179 plant species have been listed [16], with medicinal use reported for 27 plants, but without reference to local names, habitats, and which parts of these plants are used. Recording the indigenous knowledge of medicinal plants is an urgent task. Traditional knowledge is usually passed verbally from generation to generation, and valuable information about medicinal plants is easily lost if not preserved in written form. The main objective of the present study was therefore to survey and to document the scattered indigenous knowledge of medicinal plants of the Miandam valley as basis for future phytochemical and pharmacological studies. Moreover, and for the first time in any region of Pakistan, the medicinal plants of the study area are classified according to their biological and distributional properties as well as ecological preference. It is essential to know where and in which habitats ethno-medicinal plants occur, as such knowledge is a prerequisite to identify vulnerable plant species susceptible to collecting or habitat change.

Study area

The valley of Miandam, Swat, is a well-known summer resort in northern Pakistan. Located about 50 km northeast of Saidu Sharif, the valley lies between 35° 4’ N and 72° 29-32’ E in the mountain range of Hindu Raj [17]. The study area ranges between 1400 to 3900 m a.s.l. It is a narrow valley with a number of gorges, bounded on the north, east and south by high mountains. Its western boundary is the river Swat. Gujars (Indian Aryans) and Yousafzai (Pakhtoon) are the two main tribes residing in the area. Their main source of income is agriculture (nearly 41%) [18] and most of the population of the study area is directly or indirectly engaged in it. Miandam is a mountainous region and the cultivated land is insufficient for subsistence. Additional sources of income are daily wages and salaries (20%), foreign and domestic remittances (17%), forest products including medicinal plants (12%) and other professions (10%). Findings from [19] reveal that 59% of the households in north-western Pakistan derive their income from the forests.

Due to its considerable variation in altitude, temperature, topography, soil type and moisture, the vegetation of Miandam Valley can be classified into a series of altitudinal belts, namely dominated by *Olea ferruginea* and *Quercus oblongata* (montane), *Pinus wallichiana*, *Abies pindrow*, *Picea smithiana* and *Quercus seneocarppifolia* (montane), and alpine-subalpine flora, respectively [16]. See also the vegetation maps of the northern Pakistan regions of Chitral and Hunza [20,21].

Methods

Regular field surveys were carried out in the Miandam valley from September 2010 through July 2011 in order to document the habitats and indigenous uses of ethnomedicinal plants of the valley. The surveys were carried out at different seasons so as to obtain identifiable plants and multiple information and also to cross-check the information provided by the local informants during earlier visits. We interviewed a small group of chiefly elder people of both Gujars and Yousufzai tribes who were highly esteemed in their societies due to their sound knowledge of medicinal plants. Structured questionnaires, formal and informal interviews and participatory observations were used to inquire about vernacular names, used plant parts and the process of remedy preparation. We did not encounter controversial issues among the informants but commonly received complementary information. Moreover, for each plant species growth forms (tree, shrub, woody climber, perennial herb, annual or biennial herb), plant status (indigenous, established alien, cultivated), abundance in the area (common, scattered, rare) and habitat preferences (arable fields, ruderal sites, wetland, woodland, mountain grassland) were recorded. Voucher specimens were identified using relevant standard literature [22-25] and submitted to the Herbarium PUP at the Department of Botany, University of Peshawar. Plant nomenclature was updated using the World Checklist of
Plant family	Taxon name	Local name	Parts used	Medicinal uses, remedies	Growth form	Plant status	Frequency	Habitat
Amaranthaceae	Amaranthus viridis	Chalvaray	Leaves	Leaf extract is emollient, also used for curing cough and asthma.	Annual	Indigenous	Common	Ruderal
Anacardiaceae	Pistacia chinensis	Shnai	Insect galls, leaves and bark	Powdered insect galls, bark and leaves are topical antiseptic, also for curing jaundice and liver diseases.				
Apiaceae	Bupleurum longicaule	Gillo	Whole plant	Powdered plant is mixed with milk and used as laxative	Tree	Established	Scattered	Woodland
Apiaceae	Coriandrum sativum	Dhanyal	Whole plant	Stimulant and carminative	Annual	Indigenous	Common	Arable
Apiaceae	Foeniculum vulgare	Kaga vanalay	Fruit	Powdered fruit is mixed with sugar, taken with a cup of milk for curing urinary problems (dysuria); dry fruits are carminative and laxative				
Apiaceae	Pimpinella diversifolia	Watani kaga	Fruit	Powdered fruits are carminative	Perennial	Indigenous	Scattered	Woodland
Apiaceae	Heracleum candicans	Kadu panra	Root	Decoction of root against colic and asthma	Perennial	Indigenous	Scattered	Wetland
Araceae	Anisomma japonic	Marjarai	Rhizome	Rhizome bolus is given orally to livestock for respiratory problems	Perennial	Indigenous	Scattered	Woodland
Araliaceae	Hedera nepalensis	Prewata	Leaves	Juice from leaves for curing diabetes, also considered as blood purifier	Woody climber	Indigenous	Common	Woodland
Asclepiadaceae	Periploca aphylla	Barara	Stem, fruits	Milky juice of stern and fruit applied to swellings; stem latex as antimycotic for curing dermatitis in livestock				
Asteraceae	Artemisia scoparia	Jaukay	Shoot and seeds	Respiratory stimulant, anthelmintic, purgative and against earache	Biennial	Indigenous	Common	Woodland
Asteraceae	Cichorium intybus	Han	Root	Decoction of fresh root for treatment of fever	Perennial	Indigenous	Common	Ruderal
Asteraceae	Echinops echinatus	Ghwand Saray Ghanwala	Root	Powdered root applied to wounds of cattle for killing maggots; also to kill lice	Perennial	Indigenous	Scattered	Wetland
Asteraceae	Launaea procumbens	Shauda pai	Leaves	Mixture of powdered leaves with sugar to enhance lactation in livestock	Perennial	Indigenous	Common	Ruderal
Asteraceae	Sonchus asper	Shauda pai	Shoot	Shoots fed to livestock for enhancing lactation	Annual	Indigenous	Common	Ruderal
Asteraceae	Taraxacum sp.	Ziar gulai	Leaves and roots	Grinded leaves are tonic, root decoction against kidney and liver disorders	Perennial	Indigenous	Common	Ruderal
Asteraceae	Xanthium strumarium	Ghishkay	Leaves	Leaf decoction recommended in malarial fever	Annual	Indigenous	Common	Ruderal
Table 1 Medicinal plants of the Miandam area with their medicinal properties, and biological, ecological and chorological characteristics (Continued)

Family	Genus	Common Name	Part Used	Use	Life Span	Growth Form	Habitat
Berberidaceae	*Berberis lycium*	Kwaray	Root bark	Dried root bark given orally as body tonic	Shrub	Indigenous	Scattered woodland
Berberidaceae	*Podophyllum hexandrum*	Kakora	Rhizome	Powdered rhizome used to cure liver diseases	Perennial	Indigenous	Scattered woodland
Boraginaceae	*Cynoglossum lanceolatum*	Gat Gul	Whole plant	Powdered plant taken with a decoction of *Coriandrum sativum* fruits as laxative	Perennial	Indigenous	Common Woodland
Boraginaceae	*Onosma hispida*	Khwaga abai	Root	Used to color mustard oil which is applied for smoothing hair	Perennial	Indigenous	Common Ruderal
Brassicaceae	*Brassica campestris*	Sharshum	Seeds	Oil, extracted from seeds, is used as ointment, for massage of body and hair	Annual	Cultivated	Common Arable
Brassicaceae	*Brassica campestris var. rapa*	Tepar	Leaves, roots	Against stomachache and ulcer problems	Annual	Cultivated	Common Arable
Brassicaceae	*Capsella bursa-pastoris*	Bambesa	Leaves and seeds	Paste of fresh leaves with milk for curing diarrhea; seeds are stimulant and diuretic	Annual	Indigenous	Common Ruderal
Brassicaceae	*Nasturtium officinale*	Talmera	Young shoot	Young shoot against constipation and stomachache	Perennial	Indigenous	Common Wetland
Buxaceae	*Sarcococca saligna*	Ladanr	Leaves	Heated in mustard oil and applied to muscular pain; infusion of leaves orally for rheumatism	Perennial	Indigenous	Common Woodland
Cannabaceae	*Cannabis sativa*	Bang	Leaves	Leaves in bandage for wound healing; powdered leaves as anodyne, sedative, tonic and narcotic; juice added with milk and nuts as a cold drink ("Tandai") generating a pleasant excitement; "Charah" is also prepared from it	Annual	Indigenous	Common Arable
Caprifoliaceae	*Sambucus wightiana*	Benakai	Leaves, fruits and flowers	Poultice from leaves and flowers to treat burns and rheumatism; berries are purgative and used in dropsy	Shrub	Indigenous	Rare Woodland
Caprifoliaceae	*Viburnum grandiflorum*	Ghuze meva	Fruit	Fresh fruit is eaten to cure stomach problems	Shrub	Indigenous	Common Woodland
Caryophyllaceae	*Arenaria griffithii*	Kinar	Shoot	Dried shoot powder with honey after meal as antispasmodic	Perennial	Indigenous	Common Woodland
Caryophyllaceae	*Silene vulgaris*	Matorangay	Shoot	Shoot against stomachache and as emollient	Perennial	Indigenous	Common Woodland
Caryophyllaceae	*Stellaria media*	Oulalai	Whole plant	Decoction is considered as purgative	Annual	Indigenous	Common Arable
Chenopodiaceae	*Chenopodium album*	Sarmay	Whole plant	Dried powdered plant considered as carminative and diuretic agent	Annual	Indigenous	Common Ruderal
Clusiaceae	*Hypericum perforatum*	Shin chai	Shoot	Used as diuretic and its tea is stimulant and analgesic	Perennial	Indigenous	Scattered woodland

References: Akhtar et al. *Journal of Ethnobiology and Ethnomedicine* 2013, 9:25, http://www.ethnobiomed.com/content/9/1/25
Family	Genus/Species	Common Name	Part Used	Medicinal Uses	Lifeform	Origin	Habitats
Convolvulaceae	Convolvulus arvensis	Prewatai	Whole plant	Purgative, also applied in skin disorders	Perennial, climber	Indigenous	Common Arable
Cuscutaceae	Cuscuta reflexa	Zelai	Whole plant	Decoction for urine control, diabetes and blood purification; plant extract used as anti-lice	Perennial, climber	Established alien	Scattered Arable
Dioscoreaceae	Dioscorea deltoidea	Kanis zelai	Rhizome	Powdered rhizome mixed with powdered root of Berberis lycium, the mixture is used for treatment of jaundice and ulcers	Perennial, climber	Indigenous	Scattered Woodland
Ebenaceae	Diospyros kaki	Sur amlok	Ripe fruits	Laxative	Tree	Cultivated	Common Arable
Ebenaceae	Diospyros lotus	Tour amlok	Dried ripe fruits	Carminative, purgative and causing flatulence; boiled in milk and taken against constipation and dysentery	Tree	Cultivated	Common Arable
Elaeagnaceae	Elaeagnus umbellata	Ghanum ranga	Flowers, leaves	Decoction of flowers used twice a day to cure heart diseases; decoction of leaves against cough; mature raw seeds eaten as vitamin C source	Shrub	Indigenous	Rare Woodland
Euphorbiaceae	Euphorbia wallichii	Shangla	Whole plant	Dried leaves and seeds given to children in bowel complaints; plant juice against ringworm	Perennial	Indigenous	Common Woodland
Euphorbiaceae	Ricinus communis	Harhandha	Seeds	Seed oil demulcent and to evacuate bowels in children	Shrub	Established alien	Scattered Ruderal
Fabaceae	Indigofera heterantha	Ghwarija	Root and leaves	Dried powdered root taken with glass of water against scabies; leaves against stomach problems	Shrub	Indigenous	Common Woodland
Fabaceae	Lathyrus aphaca	Korkamanai	Seed	Decoction of the seed 3 times a day for wound healing	Annual	Indigenous	Scattered Arable
Fabaceae	Lotus corniculatus	Fateh khana	Whole plant	Decoction of dried powdered plant with ghee or boiled water against sexual debility and backache	Perennial	Indigenous	Scattered Woodland
Fagaceae	Quercus oblongata	Banj	Fruit	Powdered fruits in urinary infection	Tree	Indigenous	Common Woodland
Fagaceae	Quercus floribunda	Tour banj	Fruit	Powdered fruits for treating gonorrea and urinary disease	Tree	Indigenous	Common Woodland
Fumariaceae	Corydalis stewartii	Mamera	Floral shoot	Decoction of floral shoot to cure eye diseases	Biennial	Indigenous	Scattered Mountain grassland
Geraniaceae	Geranium wallichianum	Srazela	Root	Root decoction with pods of Pistacia chinensis to treat cough and fever and urinary complaints	Perennial	Indigenous	Common Woodland
Hippocastanaceae	Aesculus indica	Jawaz	Seeds and bark	Fruits are anthelmintic and given to horses in colic; plant oil externally used against rheumatism; nuts against colic and to cure chest diseases in horses, donkeys and mules	Tree	Indigenous	Scattered Woodland
Table 1 Medicinal plants of the Miandam area with their medicinal properties, and biological, ecological and chorological characteristics (Continued)

Family	Genus	Common Name	Part Used	Medicinal Properties	Habitat			
Juglandaceae	Juglans regia	Ghwaz	Fruit, bark, leaves	Dried fruit mixed with coconut and honey used as tonic; bark (locally called Dandasa) for cleaning and sparkling of teeth; decoction of leaves against eczema and intestinal worms	Tree			
Lamiaceae	Ajuga bracteosa	Booti	Whole plant	Locally, decoction of the plant or its powder swallowed with water before breakfast for the treatment of throat sore, internal colic, purifying blood and epilepsy; decoction for curing jaundice and hypertension	Perennial Indigenous Common Common Ruderal			
Lamiaceae	Mentha spicata	Podina	Leaves and stem	Carminative	Perennial Cultivated Common Common Arable			
Lamiaceae	Mentha royleana	Valenay	Whole plant	Decoction of leaves for treatment of diarrhea in children; powdered plant mixed with sugar for prevention of vomiting and dyspepsia	Perennial Indigenous Common Common Ruderal			
Lamiaceae	Nepeta cataria	Pisho botai	Flowers and leaves	Dried leaves and flowering tops carminative	Perennial Indigenous Scattered Mountain grassland			
Lamiaceae	Otostegia limbata	Spin azghai	Whole plant	Juice of leaves applied to gums for treatment of gum problems in children; dried powder of plant is used in jaundice	Perennial Indigenous Common Woodland			
Lamiaceae	Isodon rugosus	Spearkai	Leaves	Dried leaves put in mouth as remedy for toothache	Shrub			
Lamiaceae	Oreganum vulgare	Shamakay	Whole plant	Diuretic and against toothache and earache	Perennial Indigenous Common Woodland			
Lamiaceae	Salvia lanata	Spera botai	Leaves	Paste of leaves applied to toes laceration in hot and moist season	Perennial Indigenous Scattered Woodland			
Lamiaceae	Salvia moorcroftiana	Kherghwag	Leaves	Brassica campestris oil applied to fresh leaves tied round for healing of wounds	Perennial Indigenous Common Ruderal			
Lamiaceae	Thymus linearis	Chi botai	Shoots	Tea of shoots advised for treating pain and fever	Perennial Indigenous Common Mountain grassland			
Liliaceae	Allium sativum	Ouga	Bulb and leaves	Boiled and the cooled extract administered against diarrhea, dysentery and for lowering blood pressure; bulbs stimulant; leaves diuretic, aphrodisiac and expectorant; antiseptic; juice applied to soothe irritation caused by scorpion and hornet stings	Perennial Cultivated Common Arable			
Family	Genus	Species	Part(s)	Uses	Habit	Origin	Type	Type
-------------	------------------------	-------------------	------------------	--	----------------	------------------	--------------	---------------
Liliaceae	Allium cepa	Piaz	Bulb and leaves	Bulbs stimulant; leaves diuretic; aphrodisiac and expectorant; also antiseptic and juice applied to soothe irritation caused by scorpion and hornet sting; Mountaineers have it with them while crossing high altitude passes as it enhances the intake of oxygen	Perennial	Cultivated	Common	Arable
Liliaceae	Colchicum luteum	Qaimat guallay	Whole plant	Blood purifier, laxative and aphrodisiac; fried corms are used for joints pain	Perennial	Indigenous	Rare	Mountain grassland
Liliaceae	Polygonatum multiflorum	Noorealam	Rhizome	Rhizome infusion against dysentery; referred aphrodisiac	Perennial	Indigenous	Scattered	Woodland
Liliaceae	Polygonatum verticillatum	Noorealam	Rhizome	Against rheumatism and as aphrodisiac	Perennial	Indigenous	Scattered	Woodland
Malvaceae	Abelmoschus esculentus	Bhindi	Fruits	Emollient, demulcent and diuretic	Annual	Cultivated	Scattered	Arable
Malvaceae	Melia azedarach	Tora bakyana, shandai	Fruits, shoots, bark, leaves	Dried, crushed fruits against gastric trouble, fever and cough; dry leaves mixed with wheat flour used as anthelmintic in livestock; decoction of the bark considered anti-allergic; extraction of leaves used by women against head lice; leaves, young branches or fermented fruits are given as carminative to cattle, when belly is swollen through gas accumulation due to overeating	Tree	Established	Scattered	Woodland
Moraceae	Ficus palmata	Inzer	Flowers and fruits	Fresh floral parts as demulcent; juice extracted from fruit as expectorant	Tree	Cultivated	Common	Arable
Moraceae	Morus alba	Toot	Fruit	Fruit to treat constipation and cough	Tree	Indigenous	Common	Arable
Oleaceae	Jasminum humile	Rambil chambil	Roots and flowers	Powdered roots as anthelmintic and diuretic; juice extracted from flowers against skin diseases, headache and mouth rash	Shrub	Indigenous	Rare	Woodland
Oleaceae	Olea europaea	Khona	Leaves	Decoction of leaves as gargle considered as remedy for toothache, mouth and gum diseases	Tree	Cultivated	Scattered	Arable
Oxalidaceae	Oxalis corniculata	Tarukey	Whole plant	Decoction of plant to enhance digestion	Annual	Indigenous	Common	Ruderal
Paeoniaceae	Paeonia emodi	Mamekh	Rhizome	Powdered rhizome with milk to cure backache and general weakness	Perennial	Indigenous	Scattered	Woodland
Papaveraceae	Papaver somniferum	Qashqash	Capsule, seeds	Capsules and seeds as narcotic; dried capsule to make tea for cough and fever	Annual	Indigenous	Scattered	Arable
Plantainaceae	Plantago lanceolata	Jabai	Leaves	Leaves applied to treat bedsores, inflamed surfaces and candidiasis	Perennial	Indigenous	Scattered	Ruderal
--------------	---------------------	-------	--------	---	-----------	------------	-----------	---------
Plantainaceae	Plantago major	Ghwa jabai	Seeds, leaves	Leaves applied to treat bedsores and candidiasis	Perennial	Indigenous	Scattered	Ruderal
Platanaceae	Platanus orientalis	Chinar	Bark	Powdered bark taken orally to control diarrhea	Tree	Indigenous	Scattered	Woodland
Poaceae	Avena sativa	Jamdaray	Fruit	Fried in ghee and milk, the paste is considered as general body tonic and aphrodisiac	Annual	Cultivated	Common	Arable
Poaceae	Cynodon dactylon	Kabal	Whole plant	Decoction as blood purifier and to control nose bleed; chewed and placed on wound to stop bleeding and as topical anti-septic	Perennial	Indigenous	Common	Ruderal
Polygonaceae	Rumex dentatus	Shalkhay	Rhizome, leaves	Rhizome and leaves as poultice for wound healing	Annual	Indigenous	Common	Ruderal
Portulacaceae	Portulaca oleracea s.l.	Warkharae	Shoot	Shoot decoction against liver and kidney diseases	Annual	Cultivated	Common	Arable
Primulaceae	Primula denticulata	Mamera	Stem base	Infusion of young stem base ophthalmic	Perennial	Indigenous	Common	Woodland
Punicaceae	Punica granatum	Nangoray, Anar	Fruit	Dried fruit in bolus form for removal of intestinal helminths	Shrub	Cultivated	Scattered	Arable
Ranunculaceae	Aconitum violaceum	Zaharmora, Da Ghra Zahar	Rhizome	Rhizomes, wrapped in sheep or goat intestine and thoroughly boiled in milk; milk discarded and rhizomes crushed into powder, taken against rheumatism and arthritis; administering as such may cause death or mental problems if overdozed	Perennial	Indigenous	Rare	Woodland
Ranunculaceae	Caltha alba	Makan path	Leaves	Leaves laxative in nature	Perennial	Indigenous	Scattered	Wetland
Ranunculaceae	Delphinium denudatum	Jadwar	Rhizome	Rhizome powder with water to cure cough and fever	Perennial	Indigenous	Scattered	Woodland
Rosaceae	Fragaria bucharica	Da zmaki toot	Root, fruit	Powdered root useful in disease of urinary tract; fruits carminative and laxative	Perennial	Indigenous	Common	Woodland
Rosaceae	Prunus armeniaca	Khubanai	Stem	Gum obtained from stem famed as anticancer	Tree	Cultivated	Common	Arable
Rosaceae	Prunus domestica	Alucha	Fruits	Fruit laxative	Tree	Cultivated	Common	Arable
Rosaceae	Rosa moschata	Gulab	Flowers	Decoction of flowers for curing stomach disorders	Shrub	Indigenous	Scattered	Woodland
Rosaceae	Spiraea spec.	Krachae	Flowers	Tea from its flowers to ease natal pain	Shrub	Indigenous	Common	Woodland
Family	Genus and Species	Common Name	Part(s) Used	Medicinal Properties	Growth Form	Indigenous Distribution		
--------------	----------------------------	-------------	--------------	---	-------------	-------------------------		
Rutaceae	Skimmia laureola	Nazar pana	Leaves	Burnt incense to expel evils and evil eyes; tea for indigestion, smoke considered as antiseptic	Shrub	Indigenous, Common, Woodland		
Rutaceae	Zanthoxylum armatum	Dambbara	Fruit	Fruits as antipyretic and for treating stomachache	Shrub	Indigenous, Scattered, Woodland		
Saxifragaceae	Bergenia stracheyi	The Spinsar Gat Pana	Rhizome	Powdered rhizome with milk in the mornings as tonic	Perennial	Indigenous, Common, Woodland		
Simaroubaceae	Ailanthus altissima	Backyanra	Bark	Bark juice mixed with milk to cure dysentery and diarrhea	Tree	Established, Common, Arable		
Solanaceae	Atropa acuminata	Bargak	Leaves	Poulstice of leaves against pain and rheumatism	Perennial	Indigenous, Scattered, Woodland		
Solanaceae	Capsicum annuum	Marchakay	Fruits	Carminative	Annual	Cultivated, Common, Arable		
Solanaceae	Datura stramonium	Batora	Leaves, seeds and flowers	Poulstice of flowers applied to wounds to reduce pain; seeds narcotic in nature	Annual	Indigenous, Common, Ruderal		
Solanaceae	Solanum nigrum	Kachmacho	Leaves and fruit	Leave paste applied to treat skin inflammation, fruits against fever	Annual	Indigenous, Common, Ruderal		
Solanaceae	Solanum virginianum	Marraghonay	Fruit	Decoction of fruit diuretic and anthelmintic	Perennial	Indigenous, Scattered, Ruderal		
Solanaceae	Withania somnifera	Kotilal	Whole plant	Aphrodisiac	Shrub	Indigenous, Scattered, Ruderal		
Thymelaeaceae	Daphne mucronata	Laighonai	Fruits, leaves	Poulstice from fruits and leaves against rheumatism	Shrub	Indigenous, Common, Woodland		
Ulmaceae	Celtis australis	Tagha	Fruits, bark	Fruits against colic and amenorrhea; bark decoction as anti-allergic	Tree	Indigenous, Scattered, Woodland		
Urticaceae	Debregeasia saeneb	Ajlai	Leaves	Fresh ground leaves in paste form for blistered feet	Shrub	Indigenous, Common, Woodland		
Verbinaceae	Verbena officinalis	Sharnakai	Whole plant	Decoction is anti-malarial	Perennial	Indigenous, Common, Ruderal		
Selected Plant Families (http://apps.kew.org/wcsp/home.do) and The Plant List (www.theplantlist.org/). Family assignment in this paper follows the Flora of Pakistan [25].

Results and discussion
Plant diversity, use and applications
A total of 106 ethno-medicinal plant species belonging to 96 genera and 54 plant families were recorded. The plants have been used to treat a wide range of diseases from simple headache to complex disorders of kidney and liver. The results are presented in Table 1 with family names in alphabetical order, taxon name, local name, parts used, medicinal use, growth form, plant status, frequency and habitat preference. Perennial herbs were the most common growth form among medicinal plants (43%), followed by annuals and biennials (23%), shrubs (16%) and trees (15%) As far as documented the use of herbs for remedy preparation in the study area is in consistence with other studies [11,26-40].

Ninety-nine of the species (93%) are used for human ailments, three species (3%) for livestock cure and four (4%) to treat both human and livestock ailments. No less than 44 plant species were used to treat gastro-intestinal disorders such as dyspepsia, dysentery and stomach-ache followed by the treatment of dermatological diseases with more than 25 herbal remedies. Ten species were used against skeletal-muscular complaints like rheumatism, backache and muscular pain. Sixteen species were used to cure respiratory problems such as cough and asthma, fourteen for urinary complaints, twelve for cardio-vascular complaints and circulatory diseases, twelve to treat fever and headache, eleven for genital and sexual diseases, six for dental problems, six for ear, nose, throat (ENT) and eyes diseases, two for nerve disorders, one species (Spiraea spec.) was used to ease childbirth, and eighteen species for other purposes (wounds, cuts, narcotic, tonic, anticancer and tumor) (Table 2). The leaves of Skimmia laureola are used for spiritual purposes.

A single plant species may be used to cure several human ailments (Table 2). Some of the remedies were prepared by combining different plants such as the powdered rhizome of Dioscorea deltoidea mixed with powdered root of Berberis lycium for the treatment of jaundice and ulcers. Similarly, root decoction of Geranium wallichianum with pods of Pistacia chinensis was used for curing urinary complaints, cough and fever. According to traditional healers, complex medicines of two or more plant species are more potent than those prepared with single species. This has been attributed to interactive effects of the plants [41]. The most common medicinal recipe preparation was in powder form followed by decoction, infusion, juices, poultice and paste.

The traditional healers and local herbalists of the region usually utilize every part of the plant. However, the use of a particular plant part depends on the plant habit and user’s needs. The most frequently used plant parts in the preparation of herbal remedies were leaves (29%), followed by fruit (18%), roots and rhizomes (17%), and whole plants (7%). Seeds (9%), flowers (8%), bark (7%), bulbs (2%), capsules, floral shoots and insect gall (1% each) have also been used. The use of specific plant parts suggests that these parts have strongest medicinal properties but it needs biochemical analysis and pharmaceutical screening to cross-check the local information. Our findings of the frequent use of green leaves in the preparation of remedies corroborate the results of [42-46].

Different liquids such as water, juices, sugar, tea, honey, mustard oil, desi ghee (butter) and milk are mixed with plants or plant parts during the preparation of the remedies. The prepared remedies are mostly administered orally (77%), less frequently dermally (10%) or both orally and dermally (12%). Only 1% is administered through ears or eyes.

Habitats and conservation of ethno-medicinal plants
Eighty-two out of 106 medicinal plants are indigenous to the area while the others are cultivated (19) or established alien plants (5). The latter groups are of no conservation concern as they are common (17) or scattered (7) in the study area. Also among the indigenous medicinal plants the majority of species is common (59%) or scattered (35%) in the area, thus neither of immediate conservation concern. Only five medicinal plant species (6%) are rare in the study area: Aconitum violaceum, Colchicum luteum, Elaeagnus umbellata, Jasminum humile and Sambucus wightiana. Sambucus and Elaeagnus are woodland shrubs of which leaves and fruits or leaves and flowers, respectively, are collected for medicinal purposes. Since this kind of harvesting is non-destructive, the rarity of the shrub species is apparently not caused by overcollection. In contrast, populations of Aconitum violaceum, Colchicum luteum and Jasminum humile may be harmed since rhizomes, corms or whole plants are collected, respectively. In these cases, plant populations should be monitored to avoid overcollection.

The synanthropic flora (i.e., occurring in arable fields or ruderal sites) contains a high proportion of the ethno-medicinal plants. Slightly under 50% (51) out of the 106 ethno-medicinal plant species occur in man-made habitats (in arable fields 27 species, most of which being cultivated; another 24 in ruderal sites). Since they can be expected to grow abundantly in or near settlements, or are even cultivated and harvested, they may be collected without much effort, and in suitable quantities. Slightly more than 50% (55) of the ethno-medicinal plant species encountered in the study area occur in semi-natural habitats (though extensively grazed or otherwise used). Most species of the latter group (47) occurred in
different kinds of woodland, while only few occur in wetlands (4) and mountain grasslands (4). Mountain grassland medicinal plants known in the Miandam valley comprise Colchicum luteum, Corydalis stewartii, Nepeta cataria and Thymus linearis. Since Himalayan mountain floras are rich [45-47] and the local almost certainly contains more species of pharmaceutical value, we assume that the habitat is too remote and too difficult to access to be of much interest as a “medicinal plant hunting area” for the people in the Miandam valley.

Woodlands are the main source for non-synanthropic indigenous medicinal plants. They comprise 21 woody plants (apart from the climber Hedera nepalensis, seven trees and thirteen shrubs), two short-lived and 24 perennial herbs. Almost half of the perennial herbs are dug to collect the stem base (Primula denticulata) or chiefly the rhizomes (Aconitum violaceum, Arisaema jacquemontii, Bergenia griffithii, Artemisia scoparia, Delphinium denudatum, Elaeagnus umbellata, Ficus palmata, Geranium wallichianum, Henacyleum candidans, Melia azedarach, Morus alba, Papaver somniferum, Ricinus communis)

Syndrome category	Plants
Gastrointestinal disorders	Aesculus indica, Alanthus altissima, Ajuga bracteosa, Allium sativum, Artemisia scoparia, Brassica campestris var. rapa, Bupleurum longicaule, Capsella bursa-pastoris, Caltha palustris, Celsis australis, Capsicum annuum, Chenopodium album, Colchicum luteum, Convallaria arvensis, Coriandrum sativum, Cynoglosus lanceolatum, Dioscorea deltoidea, Diospyros kaki, Diospyros lotus, Euphorbia wallichii, Foeniculum vulgare, Fragaria chusanica, Heracleum candicans, Hypericum perforatum, Indigofera heterantha, Jasminum humile, Melia azedarach, Mentha spicata, Mentha royleana, Nasturtium officinale, Nepeta cataria, Oxalis comiculata, Pimpinella diversifolia, Plantago major, Platani orientalis, Polygonatum verticillatum, Prunus domestica, Pumica granatum, Ricinus communis, Rosa moschata, Sambucus wightiana, Skimmia laurenula, Solanum nigrum, zincodorum, Zanthoxylum armatum
Dermatological and topical diseases	Abelmoschus esculentus, Allium cepa, Allium sativum, Amaranthus viridis, Brassica campestris, Celsis australis, Convallaria arvensis, Cuscuta reflexa, Cynodnon dactylon, Datura stramonium, Debregesia saeneb, Echinops echninatus, Euphorbia walllichii, Indigofera heterantha, Jasminum officinale, Juglans regia, Melia azedarach, Onosma hisipda, Periploca aphylla, Pistacia chinensis, Plantago lanceolata, Plantago major, Salvia lanata, Sambucus wightiana, Silene vulgaris, Skimmia laurenula, Solanum nigrum
Respiratory illness	Abelmoschus esculentus, Allium cepa, Allium sativum, Amaranthus viridis, Arisaema jacquemontii, Arenaria griffithii, Artemisia scoparia, Delphinium denudatum, Elaeagnus umbellata, Ficus palmata, Geranium wallichianum, Henacyleum candicans, Melia azedarach, Morus alba, Papaver somniferum, Ricinus communis
Skeleto-muscular problems	Aesculus indica, Aconitum violaceum, Atropa acuminata, Colchicum luteum, Daphne mucronata, Lotus corniculatus, Parma emodi, Polygonatum verticillatum, Sambucus wightiana, Sarcococca saligna
Cardio-vascular complaints and circulatory diseases	Ajuga bracteosa, Allium sativum, Colchicum luteum, Cuscuta reflexa, Dioscorea deltoidea, Elaeagnus umbellata, Hedera nepalensis, Ototegia limbat, Pistacia chinensis, Podophyllum hexandrum, Portulaca oleracea, Taraxacum spec.
Fever, headache, analgesic	Cichorium intybus, Delphinium denudatum, Geranium wallichianum, Hypericum perforatum, Jasminum humile, Melia azedarach, Papaver somniferum, Solanum nigrum, Thymus lineani, Verbena officinalis, Xanthium strumarium, Zanthoxylum armatum
Urinary complaints	Abelmoschus esculentus, Allium cepa, Allium sativum, Capsella bursa-pastoris, Chenopodium album, Cuscuta reflexa, Foeniculum vulgare, Fragaria vesca, Hypericum perforatum, Portulaca oleracea, Quercus oblangeata, Quercus fimbunda, Solanum virginianum, Taraxacum spec.
Dental problems	Isodon rugosus, Juglans regia, Olea europaea, Origanum vulgare, Ototegia limbat, Rumex dentatus
ENT complaints	Ajuga bracteosa, Artemisia scoparia, Corydalis stewartii, Origanum vulgare, Primula denticulata
Nerve disorders (anodyne, epilepsy, sedative)	Ajuga bracteosa, Cannabis sativa
Genital and sexual diseases	Allium cepa, Allium sativum, Avena sativa, Celsis australis, Colchicum luteum, Geranium wallichianum, Lotus corniculatus, Polygonatum multiflorum, Polygonatum verticillatum, Quercus dilatata, Withania somnifera
Others (wounds, cuts, narcotic, tonic, tumor, anticancer and stimulant)	Allium cepa, Allium sativum, Avena sativa, Berberis lycium, Bergenia stracheyi, Cannabis sativa, Capsella bursa-pastoris, Coriandrum sativum, Cynodnon dactylon, Datura stramonium, Juglans regia, Lathyrus aphaca, Paeonia emodi, Papaver somniferum, Periploca aphylla, Prunus armeniaca, Salvia macrosphila, Taraxacum spec.
Delivery	Spiraea spec.
two, these species are range-restricted taxa of Himalayan or narrower distribution. Due to their biochemical components they are largely unpalatable for livestock, hence fairly resistant under the widespread practice of wood-pasture, but may be vulnerable to overcollecting for medicinal purposes, although so far only Aconitum violaceum is considered rare in the study area. A currently more serious threat to the ethno-medicinal plant wealth of the woodlands as well as to the social and economic basis of the rural population in northern Pakistan is excessive timber exploitation leading to deforestation and habitat destruction.

Conclusion

The Miandam valley in northern Pakistan is very rich in commercially and pharmaceutically important ethno-medicinal plant species. The locals, in particular traditional healers, have centuries-old knowledge regarding the uses of the plants, and the locals use these species in a traditional way for curing a wide spectrum of diseases. Few species were found to be vulnerable probably due to overcollection. Especially perennial woodland herbs with rhizomes are of conservation concern. The local inhabitants depend on plants for the treatment of diseases but not all are familiar with the proper collection, parts to be used, preservation and storage. In contrast, local traditional healers are familiar with proper collection and use of medicinal plants, and they should be involved in efforts of conservation and sustainable use of ethno-medicinal plant resources. In view of the outstanding importance and ecosystem services of woodlands and forests in northern Pakistan the currently widespread and uncontrolled deforestation is a serious threat both to ecological and social sustainability as well as to the long-term economic basis of the local population [19]. It is also a threat to the ethno-medicinal plant wealth. For purposes of plant conservation and to increase the locals’ income we suggest to cultivate vulnerable woodland medicinal plants of commercial value in newly designed and locally administered self-government agroforestry systems. Due to the specific habitat demands of many woodland plant species better results may be obtained through well managed agroforestry systems than in ex-situ sites [48].

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

NA carried out the field work, analyzed the data and drafted the manuscript. EB revised the whole manuscript and contributed to the editing and interpreting of the data. AR conceptualized and designed the study while WM helped in the initial drafting of the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This research was funded by HEC (Higher Education Commission of Pakistan) under the Faculty Development Program of the Islamia College University Peshawar, Pakistan. We are indebted to all villagers, guides and informants who shared their knowledge with us.

Author details

1. Department of Botany, Islamia College University, Peshawar 25000, Pakistan.
2. Department of Vegetation Analysis and Phytodiversity, Albrecht von Haller Institute of Plant Sciences, Georg August University, Göttingen 37073, Germany.
3. Centre of Plant Diversity, University of Peshawar, Peshawar 25000, Pakistan.
4. Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan.

Received: 26 November 2012 Accepted: 8 April 2013

Published: 15 April 2013

References

1. Bakó SP, Bakfur MJ, John J, Bala EI: Ethnomedicinal and phytochemical profile of some savanna plant species in Nigeria. Int J J Bot 2005, 11:147–150.
2. WHO: Traditional medicine, growing needs and potential. WHO Policy Perspectives on Medicines 2002, 2:1–6.
3. Shinwari ZK: Medicinal plants research in Pakistan. J Med Plants Res 2010, 4:161–176.
4. Abbasi AM, Khan MA, Ahmad M, Zafar M: Medicinal plant biodiversity of Lesser Himalayas, Pakistan. New York, Dordrecht, Heidelberg, London: Springer; 2012.
5. Sher Z, Khan Z, Hussain F: Ethnobotanical studies of some plants of Chagharzai Valley, District Buner, Pakistan. Pakistan J Bot 2011, 43:1445–1452.
6. Shinwari ZK, Rehman M, Watanabe T, Yoshikawa Y: Medicinal and aromatic plants of Pakistan: A pictorial guide. Kohat, PK: Kohat University of Science and Technology; 2006.
7. Hussain F, Shah SM, Sher H: Traditional resource evaluation of some plants of Mastuj, District Chitral, Pakistan. Pakistan J Bot 2007, 39:339–354.
8. Ibrar M, Hussain F, Amir S: Ethnobotanical studies on plant resources of Ranyal hills, District Shangla, Pakistan. Pakistan J Bot 2007, 39:329–337.
9. Khan SW, Khatoon S: Ethnobotanical studies of some useful herbs of Haramosh and Bugrote valleys in Gilgit, Northern areas of Pakistan. Pakistan J Bot 2008, 40:43–58.
10. Sher H, Hussain SK: Ecological survey and rapid vulnerability assessment of medicinal and aromatic plants of Mandam, Pakistan. Peshawar, PK: WWF PK; 2007.
11. Ali H, Qaiser M: The ethno-botany of Chitral Valley, Pakistan, with particular reference to medicinal plants. Pakistan J Bot 2009, 41:2009–2041.
12. Hamayun M, Khan SA, Sohni EY, Lee UJ: Folk medicinal knowledge and conservation status of some economically valued medicinal plants of District Swat, Pakistan. J Ethnopharmacol 2006, 11:101–113.
13. Hussain F, Sher H, Ibrar M, Durani MJ: Ethnomedicinal uses of plants of District Swat, Pakistan. Pakistan J Plant Sci 2011, 11:137–158.
14. Sher H, Hussain F: Ethnobotanical evaluation of some plant resources in Northern part of Pakistan. J Biotechnol 2006, 84:4066–4076.
15. Shinwari ZK, Gilani SS: Sustainable harvest of medicinal plants at Bulasba Nullah, Astore (Northern Pakistan). J Ethnopharmacol 2003, 84:289–298.
16. Adnan SM, Khan A, Latif A, ShinwariZA: Threats to the sustainability of ethno-medicinal uses in Northern Pakistan. A case study of Miandam valley, District Swat, NWFP, Pakistan. J Ethnopharmacol 2002, 84:4066–4076.
17. Porter SC: Quaternary glacial record in Swat Kohistan, West Pakistan. Geol Soc Am Bull 1970, 81:1421–1446.
18. Rechid M: Resource management plan for Swat Forest Range of Swat Forest Division. Forest Management Center NWFP, Forest Department & Intercooperation SDC: Government of Switzerland; 1999.
19. Rabbif, Bauer S, Ildaliya J: Contribution of forests to rural inequality reduction: present scope and future options for rural development and sustainable use of forests. Int J J Dev World 2010, 17:4–14.
20. Nüsser M, Dickoré WB: A tangle in the triangle: vegetation map of the eastern Hindukush (Chitral, northern Pakistan). Erdkunde 2002, 56:37–59.
21. Eberhardt E, Dickoré WB, Miehe G: Vegetation map of the Batura Valley (Hunza Karakorum, North Pakistan). Erdkunde 2007, 61:95–112.
22. Nasir E, Ali SI: Flora of Pakistan. No. 1-131. Karachi, PK: University of Karachi; 1970–1979.
23. Nasir E, Ali SI: Flora of Pakistan. No. 132–192. Karachi, PK: University of Karachi; 1980–2005.
24. Nasir E, Ali SI: Flora of West Pakistan and Kashmir. Islamabad: Pakistan Agriculture Research Council; 1970–1995.
25. Ali SI, Qaiser M: Flora of Pakistan. Karachi, PK: University Press; 1993–2012.
26. Abbasi AM, Khan MA, Ahmad M, Zafar M, Khan H, Muhammad N, Sultan S: Medicinal plants used for the treatment of jaundice and hepatitis based on socio-economic documentation. *African J Biotechnol* 2009, 8:1643–1650.

27. Adnan M, Hölscher D: Medicinal plant abundance in degraded and reforested sites in Northwest Pakistan. *Mit Res Dev* 2010, 30:25–32.

28. Ali H, Sannai J, Sher H, Rashid A: Ethnobotanical profile of some plant resources in Malam Jabba valley of Swat, Pakistan. *J Med Plants Res* 2011, 5:4676–4687.

29. Awan MR, Iqbal Z, Shah SM, Jamal Z, Jan G, Afzal M, Majid A, Gul A: Studies on traditional knowledge of economically important plants of Kaghan Valley, Mansehra District, Pakistan. *J Med Plants Res* 2011, 5:3958–3967.

30. Badshah L, Hussain F: People preferences and use of local medicinal flora in District Tank, Pakistan. *J Med Plants Res* 2011, 5:22–29.

31. Hazrat A, Shah J, Ahmad S, Nisar M, Jan AK, Sikanand: Medicinal plants of Usherai Valley, Dir, NWFP, Pakistan. *Pakistan J Bot* 2010, 42:31–34.

32. Iqbal H, Sher Z, Khan Z: Medicinal plants from salt range, Pind Dadan Khan, District Jhelum, Punjab, Pakistan. *J Med Plants Res* 2011, 5:2157–2168.

33. Jabeen A, Khan MA, Ahmad M, Zafar M, Ahmad F: Indigenious uses of economically important flora of Margallah Hills National Park, Islamabad, Pakistan. *Afr J Biotechnol* 2009, 8:763–784.

34. Jan G, Khan MA, Farhatullah, Jan FG, Ahmad M, Jan M, Zafar M: Ethnobotanical studies on some useful plants of Dir Kohistan valleys, KPK, Pakistan. *Pakistan J Bot* 2011, 43:1849–1852.

35. Khan M, Musharraf S, Shrivastva ZK: Ethnobotanical importance of halophytes of Noshipho salts mine, District Karak, Pakistan. *Res Pharmacuet Biotechnol* 2011, 3:46–52.

36. Mahmood A, Qureshi RA, Mahmood A, Sangi Y, Shaheen H, Ahmad I, Nawaz Z: Ethnobotanical survey of common medicinal plants used by people of District Mirpur, AJK, Pakistan. *J Med Plants Res* 2011, 5:4493–4498.

37. Razaq A, Rashid A, Ali H, Ahmad H, Islam M: Ethnomedicinal potential of plants of Changa Valley District, Shangla, Pakistan. *Pakistan J Bot* 2010, 4:3463–3475.

38. Pieroni A, Sheikh QZ, Ali W, Tony B: Traditional medicines used by Pakistani migrants from Mirpur living in Bradford, northern England. *Complement Ther Med* 2008, 16(2):81–86.

39. Teklehaimanot T, Giday M: Ethnobotanical study of medicinal plants used by people in Zegie Peninsula, Northwestern Ethiopia. *J Ethnobiol Ethnomed* 2007, 3:1–21.

40. Yineger H, Kelbessa E, Bekele T, Lulekai E: Plants used in traditional management of human ailments at Bale Mountains National Park, South eastern Ethiopia. *J Med Plants Res* 2008, 2:132–153.

41. Okello J, Siegawa P: Medicinal plants used by communities of Ngai Subcounty, Apac District, northern Uganda. *Afr J Ecol* 2007, 45:76–83.

42. Kala CP: Ethnomedicinal botany of the Apatani in the eastern Himalayan region of India. *J Ethnobiol Ethnomed* 2005, 1:11–18.

43. Muthu C, Ayyanar M, Raja N, Ignacimuthu S: Medicinal plants used by traditional healers in Kancheepuram District of Tamil Nadu, India. *J Ethnobiol Ethnomed* 2006, 2:483–53.

44. Mundal W, Ahmad A, Gilani SA, Khan MA: Indigenous knowledge and folk use of medicinal plants by the tribal communities of Hazar Nao Forest. *J Med Plants Res* 2011, 5:1072–1086.

45. Adnan M, Begum S, Khan AL, Tareen AM, Lee I-J: Medicinal plants and their uses in selected temperate zones of Pakistani Hindukush-Himalaya. *J Med Plants Res* 2012, 6:4113–4127.

46. Bhat JA, Kumar M, Bussmann RW: Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwal Himalaya India. *J Ethnobiol Ethnomed* 2013, 9:1.

47. Khan SM, Page S, Ahmad H, Shaheen H, Ullah Z, Ahmad M, Harper DM: Medicinal flora and ethnoecological knowledge in the Naran Valley, Western Himalaya, Pakistan. *J Ethnobiol Ethnomed* 2013, 9:4.

48. Sher H, Hussain F, Sher H: Ex-situ management study of some high value medicinal plant species in Swat, Pakistan. *Ethnobot Res Appl* 2010, 8:17–24.

doi:10.1186/1746-4269-9-25

Cite this article as: Akhtar et al.: Diversity and use of ethno-medicinal plants in the region of Swat, North Pakistan. *Journal of Ethnobiology and Ethnomedicine* 2013 9:25.