Original Paper

Can Customer Intimacy Strategy Generate Intention to Buy?

MS. Eric Santosa

1 Economics & Business Faculty, Unisbank University, Semarang, Indonesia

Received: April 11, 2020 Accepted: April 21, 2020 Online Published: May 7, 2020

doi:10.22158/elp.v3n1p57 URL: http://dx.doi.org/10.22158/elp.v3n1p57

Abstract

Creating customer intention to buy is obviously a major task of every marketer and/or firm. Many tactics are exercised to generate the intention, in which a buying behavior is hopefully occurred. A customer intimacy strategy supposedly be a particular way to do it. However, its power to generate the intention hypothetically is not straight forward, but through other variables. It is commonly known, in accordance with the Theory of Planned Behavior (TPB), the intention could be predicted by consumer attitude and subjective norm. Meanwhile, the attitude and subjective norm theirselves are frequently in-line with the product's performance. Therefore, the purpose of the study is to investigate the power of customer intimacy strategy in creating the customer intention to buy through the product's brand equity and both the consumer attitude and subjective norm. A 108 sample is withdrawn from those who recognize, are interested of and want to buy Dagadu products. Amos 16.0 and SPSS 16.0 are employed in analyzing data. The result shows that the customer intimacy strategy has significant effects to the brand equity, attitude and subjective norm. In addition, the brand equity also has a significant influence to the intention.

Keywords

customer intimacy, brand equity, attitude, subjective norm, intention to buy

1. Introduction

Commonly the consumption goods market contains numbers of likely similar products. It absolutely leads to tight competition among the similar products. While generating customers’ intention to buy is inevitably an obligation of every marketer and/or firm, the goal certainly depends on an efficacy of a selected strategy. A suitable product firstly determines the success of the goal. It should be based on a market preference, otherwise a failure takes place. Though the product has high quality and well-designed, but if it is not in accordance with the market preference, the desire is distant. Secondly, a situation analysis is should be carefully taken into account (Hunger & Wheelen, 2001; Thompson, Strickland III, & Gamble, 2010). While it considers the competitive advantage of the product, the
activities or strategy of competitors should be receptively respected. Treacy and Wiersma (1997) introduce three strategies to generate customers, i.e., *product leadership*, *operational excellence* and *customer intimacy*. They insist not to implement the three simultaneously, since a concentration supposedly is a critical matter. Santosa (2011, 2014a) investigates the efficacy of the *product leadership* and *customer intimacy*, particularly their effect to brand equity and customer’s loyalty. The results show that their effect whether to brand equity and customer’s loyalty are significant. Further, he examines the power of product leadership in generating customers’ intention to buy (2013a, 2015b). The findings demonstrate that through variables such as perceived quality, perceived value and attitude, the product leadership is able to produce the intention.

While the product leadership can create the customer’s intention, an interesting question likewise arises as follows, can the customer intimacy strategy establish the intention as well? Following the study of Santosa (2011, 2014a) the effects of whether the product leadership or customer intimacy to the brand equity are significant. In addition the finding of some studies (i.e., Cathy et al., 1995; Aydin & Ulengin, 2015; Hakkak et al., 2015; Walangitan et al., 2015) point out that the brand equity significantly affects the intention. Furthermore, Shin et al. (2014) examine that there are significant effects as well of brand equity to attitude and to the intention, and similarly, Santosa (2013a, 2015b) identifies that the brand equity affects the intention through subjective norm. Consequently, it is supposed that the customer intimacy strategy can create the intention to buy too. Thereby, the purpose of the study is to identify the effect of the customer strategy to the customer intention to buy, particularly through the brand equity, customer attitude, and subjective norm. Hopefully, it will be a bridge of other previous study. The findings also will be expectantly support the theory of Treacy and Wiersma (1997). The empirical data are drawn from Dagadu’s customers. It is assumed that the brand is a successful brand which inspired others to imitate it, or try to produce something similar (Trieha, 2014; Wirausaha Online, 2014). Some theoretical reviews, our methods and analysis are provided, and our findings are reported.

2. Formulating Hypotheses

a. The Relation between Customer Intimacy and Brand Equity

Customer intimacy especially produces a unique one-to-one product design (Zeithaml & Bitner, 2003). This unique design allows the product to be superior and distinctive (Cravens, 2000). It apparently encourages the favorable customer’s cognitive process. Furthermore, Santosa’s study (2014) indicates that there is an effect of customer intimacy strategy on brand equity. As a result, a hypothesis can be withdrawn as follows:

\[\text{H1: Customer intimacy influences brand equity} \]

b. The Relationship between Customer Intimacy with Attitude and Subjective Norm

While the strategy is on line with the company’s effort to meet consumers’ preferences which is created by the long-term relationship along with customers, the products and/or services produced hopefully are in accordance with the customers; satisfaction (Zeithaml & Bitner, 2003, 2003).
http://www.topdimension.eu; Agilier, 2014; Gruber, 2011; MISC, 2014; Sandvall, 2013). Basically, an attitude is a total evaluation of a concept, which might generated whether by affective or cognitive system. The affective system will produce an affective response, such as moods, emotion, or even an attitude (Peter & Olson, 2002). An attitude comprises knowledge and perception which are along with experiences and information involved (Schiffman & Kanuk, 2000). Whereas a subjective norm illustrates one’s perception to do something in accordance with other’s wants, it relates his/her motivation to comply the wants (Azjen, 1991). Thereby, hypotheses can be pulled out as follows:

H2: Customer intimacy affects one’s attitude
H3: Customer intimacy affects one’s subjective norm

c. The Relationship between Brand Equity with Attitude and Subjective Norm

The formulation of the following hypothesis is based on some considerations as follows:

(1) Brand equity might be depicted as an added value of a brand and/or the product which drives consumers to think, feel and act toward the brand and/or the product (Kotler & Keller, 2006).

(2) Brand equity lead consumers to have a favorable attitude toward the brand and/or the product (Peter & Olson, 2002).

(3) Brand equity leads to brand attitude which provokes a favorable perception of the brand’s or product’s value and its quality (Schiffman & Kanuk, 2000).

(4) While an attitude is a total evaluation of a concept, generated by whether affective or cognitive system (Peter & Olson, 2002), which comprises knowledge and perception along with experiences and information involved (Schiffman & Kanuk, 2000), the finding of Shin et al. (2014) denote that there is a significant effects of brand equity to attitude.

Thereby, the following hypothesis is:

H4: Brand Equity affects one’s attitude

Furthermore, while a subjective norm illustrates one’s perception to do something in accordance with other’s wants, which relates his/her motivation to comply the wants (Azjen, 1991), the finding of Santosa (2013a, 2015b) demonstrates that the brand equity affects the intention through subjective norm. So, can be hypothesized as follows:

H5: Brand Equity affects one’s subjective norm

d. The Relationship between Brand Equity and Behavioral Intention

Since an intention supposedly ignited by such driving forces who later on creates a particular behavior, it presumed as an indicator of the behavior probability (Ajzen, 1991). In addition, some studies (Cathy et al., 1995; Shin et al., 2014; Aydin & Ulengin, 2015; Hakkak et al., 2015; Walangitan et al., 2015) apparently denote the relationship between brand equity and intention. As a result, a hypothesis might be proposed as follows:

H6: Brand Equity affects Behavioral Intention
e. The Relationship among Variables Attitude, Subjective Norm, and Intention to buy

Fishbein and Ajzen (1975) proclaim that intention is predicted by attitude and subjective norm. Such studies (i.e., Jyh, 1998; Okun & Sloane, 2002; Martin & Kulina, 2004; Wiethoff, 2004; Marrone, 2005; Kouthouris & Spontis, 2005; Santosa, 2013b; Santosa, 2014a; Santosa, 2014b; Santosa, 2015a) support the theory of planned behavior that two predictors of intention are attitude and subjective norm. Therefore, such hypotheses can be formulated as follows:

\[\text{H7: The more favorable the Attitude is, the greater the Behavioral Intention will be.} \]
\[\text{H8: The more favorable the Subjective Norm is, the greater the Behavioral Intention will be.} \]

f. Effect of the Hypotheses already Formulated: an intervene position of the Attitude and Subjective Norm

It is hypothesized that brand equity affects the behavioral intention. Further, it is hypothesized that brand equity affects both attitude and subjective norm. While it is hypothesized as well that whether attitude or subjective norm affects behavioral intention, consequently, both attitude and subjective norm likely post as mediator. Therefore, next hypotheses can be drawn as follows:

\[\text{H9: Attitude mediates the relationship between brand equity and behavioral intention} \]
\[\text{H10: Subjective norm mediates the relationship between brand equity and behavioral intention} \]

3. Research Model

Based on the hypotheses a research model can be developed as follows in Figure 1:
Identification:

CI : Customer Intimacy
BE : Brand Equity
Ab : Attitude toward Behavior
SN : Subjective Norm
BI : Behavioral Intention

4. Methods

The population of the study is consumers who know Dagadu, are interested of and want to buy the products, and live at Central Java, Indonesia. A sample is drawn using the convenience and judgment technique (Cooper & Schindler, 2008). Data are collected by questionnaires, which consist of five items for the customer intimacy variable, four items for the brand equity variables, six items for the attitude variables, six items for the subjective norm variables, and four items for the behavioral intention. They are distributed to respondents who live at Semarang, Yogyakarta, and other cities at Central Java. After examining the forms for the data’s completion, 108 out of the 110 questionnaire forms are accepted which supposed meet the sample adequacy (Ghozali, 2004, 2007; Hair et al., 1995). A Likert scale is operated corresponding to a five-point scale ranging from 1 (=completely disagree) to 5 (=completely agree). The instrument, which denotes to indicators, will firstly be justified through confirmatory factor analysis, Construct Reliability and Variance Extracted. Further, data are analyzed by employing Amos 16.0.

5. Result and Discussion

a. Confirmatory Factor Analysis

The confirmatory factor analysis is not simultaneously carried out, but done in phases. The first phase contains two variables, i.e., Customer Intimacy (CI) and Subjective Norm (SN). The second phase examines two variables, attitude (Ab) and Behavioral Intention (BI). The third phase considers one variable, i.e., Brand Equity (BE). The process illustrated at Appendix A, while its result exemplified at Table 1.
Table 1. The Result of CFA on Variables CI, BE, Ab, SN and BI

Indicators	Loading Factor	threshold	Criteria
CI1	0.572	0.4	Valid
CI2	0.485	0.4	Valid
CI3	0.603	0.4	Valid
CI4	0.650	0.4	Valid
CI5	0.641	0.4	Valid
b	0.929	0.4	Valid
ev	0.935	0.4	Valid
NB	0.905	0.4	Valid
MC	0.919	0.4	Valid
BE1	0.384	0.4	Not Valid
BE2	0.535	0.4	Valid
BE3	0.868	0.4	Valid
BE4	0.608	0.4	Valid
BI1	0.656	0.4	Valid
BI2	0.781	0.4	Valid
BI3	0.720	0.4	Valid
BI4	0.628	0.4	Valid

Source: data analysis.

All indicators denote of more than 0.4 which indicate of their validity (Ferdinand, 2002) except BE1.

b. The Structural Equation Model

The model has one initial independents variable (CI) and four dependent variables (BE, Ab, SN, BI) in which the three dependent variables (BE, Ab, SN) at some extent are treated as independent variables as well. Since the purpose of the study is eagerly to know the relationship between the one initial independents variable (CI) and the primary dependent variables (BE, Ab, SN, BI), likewise among the four dependent variables separately and simultaneously, a Structural Equation Modelling (SEM) is employed (Hair et al., 1995). In addition, the use of SEM will give advantages such as fast, accurate and more detail. It is possible since the method performs a unification of factor analysis and path analysis (Ghozali, 2004, 2007).

An initial structural equation model is drawn by connecting all variables as hypothesized. This model is likely not thoroughly appropriate to expectancy, since all indicators, i.e., Chi-Square/Prob, Cmin/df, GFI, AGFI, TLI, RMSEA, do not meet the criteria (Appendix B). Consequently, a modification model is generated by connecting e1↔e2 and e3↔e4, This modification model seemingly produces better scores than before (Table 2, Figure 2).
Table 2 denotes that although not all the model’s indicators meet the criteria, most (Chi-square, Cmin/df, GFI, TLI and RMSEA) equalize the requirements. It means that the model’s data are in accordance with the structural parameter. As a result, the model is worthy of use.

Evaluation of Normality. Evaluation of normality is carried out by univariate test (Ferdinand, 2002; Ghozali, 2004). It is exercised by scrutinizing the skewness value whether its critical ratio values are less or equal to ±2.58. As a matter of fact, there is one variable, i.e., SN, whose c.r of the skewness value are more than ±2.58. As a consequent, it indicates that univariately the data distribution is not normal. To check further, a multivariate test is executed. The result of the data analysis shows up that the multivariate critical value is 18,937. It is more than 2.58 as required (Appendix C). As a result, the normality test needs a bootstrap analysis.

Table 2. The Second Indicators Resulted from Modification

Indicators	Initial Scores	Second Scores	Threshold	Justification
Chi-square/Prob	226.136/0.000	27.172/0.205	40.790/p>0.05	Meet the criterion
Cmin/df	9.422	1.235	≤ 5	Meet the criterion
GFI	0.768	0.949	High	Meet the criterion
AGFI	0.564	0.896	≥ 0.9	Not meet the criterion
TLI	0.741	0.903	≥ 0.9	Meet the criterion
RMSEA	0.281	0.047	0.05 s.d 0.08	Meet the criterion

Source: Data Analisis.

Bootstrap Analysis. A bootstrap analysis is used to gain a fit model, since the normality test does not meet the pre-requisite. A Bollen-Stine’s bootstrap analysis illustrates the following: (a) The model fits better in 242 bootstrap samples, (b) it fits equally well in 0 bootstrap samples, (c) it fit worse or failed to fit in 258 bootstrap samples, (d) testing the null hypothesis that the model is correct, Bollen-Stine bootstrap p=0.517. The result indicates that the probability is more than 0.05 which denotes that it can reject the null hypothesis. In addition, the model’s indicators of goodness of fit indicate that most meet the requirements (Appendix D). Consequently, the model is worthy of use.
Outliers. Evaluation of the outliers can be carried out by either a univariate test or a multivariate test (Ferdinand, 2002). The univariate test is successfully employed by firstly converting the data to Z-scores, which should be less than ±3.0 (Hair et al., 1995). The result indicates that most of the variables’ Z-scores are less than ±3.0, except BE1, ev3, NB2, and MC3, which their scores are more than ±3.0 (Appendix E). Therefore, the existence of outliers is indicated.

To check further, a multivariate outliers test is needed. It determines the chi-square value which subsequently is used as the upper limit, which could be calculated by searching on a chi-square table whose degree of freedom is equal to the number of variables employed, which is 17, under the degree of significance (p)=0.001. The chi-square value is found to be 40.790. In fact, most of the scores for Mahalanobis’s distance are less than 40.790, except observations number 1, which inevitably suggests outliers (Appendix F). However, because there is no specific reason to dismiss them, the outliers are worth being used (Ferdinand, 2002).

Multicollinearity and Singularity. According to the output from Amos, the determinant of the sample covariance matrix should be equal to 964089,522. This value is far above zero. Consequently, it belongs to no multicollinearity or singularity category (Appendix G).

Test of Hypotheses. The regression weights output indicates that the influence of CI on BE, BE on Ab and SN, CI on Ab and SN, SN on BI, and BE on BI are significant. The influence of Ab on BI under assumption that p<0.10, belongs to be significant as well (Table 3).
Table 3. Regression Weights: (Group number 1-Default model)

	Estimate				
BE	0.482	0.074	6.561	***	par_11
SN	5.632	1.810	3.111	0.002	par_5
Ab	7.934	1.580	5.023	***	par_6
Ab	4.661	1.422	3.277	0.001	par_7
SN	4.697	1.630	2.881	0.004	par_8
NB	0.045	0.002	22.044	***	par_1
MC	0.045	0.002	24.082	***	par_2
BI	0.011	0.006	2.035	0.042	par_3
b	0.048	0.002	26.009	***	par_4
ev	0.044	0.002	27.344	***	par_9
BI	0.010	0.006	1.650	0.099	par_10
BI	0.304	0.110	2.762	0.006	par_14

Source: Amos output.

Intervene Position Test. Based on Table 4, the total effects of BE-BI=0.426. Likewise, it points up the total effects of BE-Ab (0.441), Ab-BI (0.178), BE-SN (0.305) and SN-BI (0.199). The sum of the total effects of BE-Ab and Ab-BI is 0.619. Whereas the sum of the total effects of BE-SN and SN-BI is 0.504. These mean that whether the sum of the total effects of BE-Ab and Ab-BI or the sum of the total effects of BE-SN and SN-BI is bigger than the total effects of BE-BI. Consequently, both Ab and SN are mediators.

Table 4. Standardized Total Effects

	CI	BE	Ab	SN
BE	0.536	0.000	0.000	0.000
Ab	0.524	0.441	0.000	0.000
SN	0.446	0.305	0.000	0.000
ev	0.490	0.412	0.935	0.000
b	0.486	0.409	0.929	0.000
BI	0.336	0.426	0.178	0.199
MC	0.410	0.280	0.000	0.919
NB	0.404	0.276	0.000	0.905

Source: Amos output.
6. Discussion

Table 3 shows that the influence of CI to BE is denoted by \(p=0.000 \). It means that the influence of CI to BE is significant. Likewise the influences of CI to AB and CI to SN belong to be significant as well, since their probabilities are less than 0.05 (\(p=0.001 \) and \(p=0.004 \)). The probabilities of BE to AB, BE to SN, and BE to BI are also less than 0.05, indicating that the influence of the variables are significant (\(p=0.000, p=0.002, \) and \(p=0.006 \)). While the influence of SN to BI is positively less than 0.05 (\(p=0.042 \)), the influence of AB to BI has probability more than 0.05 (\(p=0.088 \)). However, it can be categorized to be significant when the threshold is altered from 0.05 to 0.10.

Testing of intervene position indicates that whether the indirect effect of BE to BI through AB, or the indirect effect of BE to BI through SN, is bigger than the direct effect. Consequently, both AB and SN post as mediators.

7. Conclusion

The hypotheses of, i.e., “Customer intimacy influences brand equity (H1)”, “Customer intimacy affects one’s attitude (H2)” and “Customer intimacy affects one’s subjective norm (H3)” are really empirically supported. Likewise, the hypotheses of “Brand Equity affects one’s attitude (H4)”, “Brand Equity affects one’s subjective norm (H5)”, and “Brand Equity affects Behavioral Intention (H6)” are also empirically supported. The findings are in accordance with studies of Shin et al. (2014), Santosa (2015), Cathy et al. (1995), Aydin (2015), Hakkak (2015) Walangitan et al. (2015).

The influence of both attitude and subjective norm to behavioral intention (H7, H8) are also empirically supported. The findings are also in favor with other studies such as Jyh (1998) Okun and Sloane (2002), Martin and Kulinna (2004), Wiethoff (2004), Marrone (2005), Kouthouris and Spontis (2005), Santosa (2013), Santosa (2014) and Santosa (2015), that support the theory of planned behavior, in which attitude and subjective norm are predictors of behavioral intention. This can be explained by the intention to buy, while being determined by attitude (Fishbein & Ajzen, 1975), and likewise shaped by the subjective norm, obviously suggests that whatever happens to the attitude or the subjective norm, the intention to buy apparently also follows, and the alteration of intention to buy is in accordance with the change of them.

The hypotheses of Ab and SN as mediators (H9, H10) are also supported. As a matter of fact, all hypotheses are successfully proven. The consequences of the study carries out two things, firstly that the findings contribute as a bridge of other previous studies. Secondly the study justifies the theory of Treacy and Wiersma (1997).

Back to the title of the manuscript, i.e., “Can Customer Intimacy Strategy Generate Customer Intention to Buy?” The answer is, yes and not. The meaning of yes is, that the effect of the customer intimacy strategy later on generates the behavioral intention, particularly intention to buy. Whereas the meaning of not is, the stategy could not directly generate the intention. However, it is empirically supported that customer strategy leads to the creation of behavioral intention, particularly intention to buy, whether
through brand equity, through both brand equity-attitude and brand equity-subjective norm, or through both attitude and subjective norm.

8. Limitations and Future Directions

There are some limitations of the study, firstly, the customer intimacy is supposed operated by indicators as follows, the diversification of the product is in line with consumers’ taste; the product’s message is personal; customer oriented; managers, staffs and employees are responsive; and personalized program. They are fully genuine which are not employed in such topic beforehand. Though based on CFA test they belong to valid indicators (Table 1), it is not impossible that other indicators might be employed which might contribute better results.

Secondly, it likely the model is not in accordance with the title. The customer intimacy variable is not directly regressed to the behavioral intention variable. It is based on such point of view as follows. Since an intention to buy does not likely arise spontaneously but through something impressively, the brand equity variable is supposed worthy to trigger the intention. However, it might be possible, under such assumption, that the customer intimacy is regressed directly to the intention.

Thereby, it is recommended to carry out such study which firstly, exploring other indicators of the customer intimacy variable. Secondly, developing other model that leads to regress directly the customer intimacy to the intention.

References

Agilier. (2014). *Discipline of the Market Makers by Michael Treacy and Fred Wiersma*. Retrieved May 8, 2014, from http://www.agilier.com/book-reviews/

Ajzen, I. (1991). The Theory of Planned Behavior. *Organizational Behavior and Human Decision Processes, 50*, 179-211. https://doi.org/10.1016/0749-5978(91)90020-T

Ajzen, I., & Fishbein, M. (1980). *Understanding Attitudes and Predicting Social Behavior*. Englewood Cliffs, NJ: Prentice Hall.

Aydin, G., & Ulengin, B. (2015). Effect of Consumer-Based Brand Equity on Purchase Intention: Considering Socioeconomic Status and Gender as Moderating Effects. *Journal of Euromarketing, 24*(3), 107-118. https://doi.org/10.9768/0024.02-3.107

Cathy, J., Walgren, C., Ruble, C. A., & Donthu, N. (1995). Brand Equity, Brand Preference, and Purchase Intent. *Journal of Advertising, 24*(3), 25-40. https://doi.org/10.1080/00913367.1995.10673481

Cooper, D. R., & Schindler, P. S. (2008). *Business Research Methods*. Boston: McGraw-Hill/Irwin.

Cravens, D. W. (2000). *Strategic Marketing* (6th ed.). Boston: Irwin-McGraw-Hill.

Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effect of Price, Brand, and Store Information on Buyer’s Product Evaluations. *Journal of Consumer Research, 5*(September), 138-142.
Ferdinand, A. (2002). *Structural Equation Modeling Dalam Penelitian Manajemen*. Semarang: BP Undip.

Fishbein, M., & Ajzen, I. (1975). *Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research*. Reading, MA: Adisson-Wesley.

Ghozali, I. (2004). *Model Persamaan Struktural: Konsep dan Aplikasidengan Program Amos Ver 5.0*. Semarang: BP Undip.

Ghozali, I. (2007). *Aplikasi Analisis Multivariate dengan program SPSS*. Semarang: BP Undip.

Gruber, S. (2011). *Sales Strategy: Structure for Customer Intimacy*. Retrieved May 8, 2014, from http://www.thesalesbenchmarkingindex.com/

Hair et al. (1995). *Multivariate Data Analysis*. New Jersey: Prentice Hall.

Hakkak, M., Vahdati, H., & Nejad, S. H. M. (2015). Study the Role of Customer Based Brand Equity in the Brand Personality Effect on Purchase Intention. *International Journal of Asian Social Science*, 5(7), 369-381. https://doi.org/10.18488/journal.1/2015.5.7/1.7.369.381

Hunger, J. D., & Wheelen, T. L. (2001). Strategic Management. In Diterjemahkan oleh Julianto Agung. Yogyakarta: Penerbit Andi.

Jyh, S. C. (1998). The Effect of Attitude, Subjective Norm, and Perceived Behavioral Control on Consumers’ Purchase Intentions: The Moderating Effects of Product Knowledge and Attention to Social Comparison Information. *Proc.Natl. Sci. Counc. ROC (C)*, 9(2), 298-308.

Kotler, P. (2000). *Marketing Management, the Millenium Edition*. Upper Saddle River, New Jersey: Prentice-Hall Inc.

Kotler, P., & Armstrong, G. (2000). *Prinsip-Prinsip Pemasaran* (8th ed.). Interpreted by Damos Sihombing and Wisnu Candra Kristiaji. Jakarta: Penerbit Erlangga.

Kotler, P., & Keller, K. L. (2006). *Marketing Management* (12th ed.). Upper Saddle River, New Jersey: Pearson Education Inc.

Kotler, P., & Keller, K. L. (2013). *Marketing Management* (14th ed.). Edinburg Gate, Harlow: Pearson Education Limited.

Kouthouris, C. H., & Spontis, A. (2005). Outdoor Recreation Participation: An Application of the Theory of Planned Behavior. *The Sport Journal*, 8(3). United States Sport Academy.

Marrone, S. R. (2005). Attitudes, Subjective Norms, and Perceived Behavioral Control: Critical Care Nurses’ Intentions to Provide Culturally Congruent Care to Arab Muslims. In *Research Report* (unpublished). Columbia University Teachers College.

Mars. (2013). *Competitive Strategies in Operational Excellence, Customer Intimacy and Product Leadership*. Retrieved May 8, 2014, from http://www.marsdd.com/mars-library/competitive-strategies-in-operational-excellence-customer-intimacy-and-product-leadership
Martin, J. J., & Kulina, P. H. (2004). Self-Efficacy Theory and Theory of Planned Behavior: Teaching Physically Active Physical Education Classes. *Research Quarterly for Exercise and Sport, 75*(3), 288-297. https://doi.org/10.1080/02701367.2004.10609161

MISC. (2014). *In Pursuit of Customer Intimacy and Operational Excellence*. Retrieved May 8, 2014, from http://www.mismagazine.com/in-pursuit-of-customer-intimacy-and-operational-excellence/

Okun, M. A., & Sloane, E. S. (2002). Application of Planned Behavior Theory to Predicting Volunteer Enrollment by College Students in A Campus-Based Program. In *Social Behavior and Personality*. Tempe: Arizona State University. https://doi.org/10.2224/sbp.2002.30.3.243

Peter, J., & Olson, J. C. (2002). *Consumer Behavior and Marketing Strategy* (6th ed.). New York: McGraw-Hill Company.

Sandvall, F. (2013). *Finding the Best Total Solution*. Retrieved May 8, 2014, from http://www.sbrconsulting.com//

Santosa, M. S. E. (2011). *Pengaruh Product Leadership, Service Excellence, dan Customer Intimacy Terhadap Brand Equity dan Dampaknya Terhadap Customer Loyalty*. Penelitian mandiri, Tidak dipublikasikan.

Santosa, M. S. E. (2013a). *Pengaruh Product Leadership Terhadap Perceived Value dan Perceived Quality, dan Dampaknya Terhadap Niat Untuk Beli Melalui Attitude dan Subjective Norm*. Penelitian mandiri, Tidak dipublikasikan.

Santosa, M. S. E. (2013b). Understanding Customers’ Behavior to Chosing “Lembah Ngosit” Restaurant Using The Theory of Planned Behavior. *Equilibrium, 1*(1), 40-55.

Santosa, M. S. E. (2014a). Can Product Leadership be a Predictor of a Customer’s Loyalty? *Journal of Indonesian Economy and Business, 29*(1), 74-88. https://doi.org/10.22146/jieb.v29i1.6214

Santosa, M. S. E. (2014b). *Pengaruh Efek Atraksi Terhadap Pengambilan Keputusan Konsumen Menurut Teori Perilaku Yang Terencanakan (Theory of Planned Behavior)*. Unisbank: Penelitian belum dipublikasikan.

Santosa, M. S. E. (2015a). Attraction Effect on Consumer’s Decision Making. *International Journal of Applied Business and Research (IJABER), 13*(4), 1758-1780.

Santosa, M. S. E. (2015b). The Power of Product Leadership in Generating Customers’ Intention to Buy: The Case of Dagadu. *Journal of Indonesian Economy and Business, 30*(2), 159-172.

Schiffman, L. G., & Kanuk, L. L. (2000). *Consumer Behavior* (7th ed.). Upper Saddle River, New Jersey: Prentice-Hall Inc.

Shin, N., Kim, H., Lim, S., & Kim, C. (2014). The Effect of Brand Equity on Brand Attitude and Brand Loyalty in Exhibition. *SHS Web Of Om Conferences, 12*, 1-7. https://doi.org/10.1051/shsconf/20141201018

Thompson, A. A., Strickland, A. J. III, & Gamble, J. E. (2010). *Crafting and Executing Strategy: The Quest for Competitive Advantage* (17th ed.). Boston: McGraw-Hill Irwin.
Treacy, M., & Wiersma, F. (1997). *The Discipline of Market Leaders: Choose Your Customers, Narrow Your Focus, Dominate Your Market*. Massachusetts: Addison-Wesley.

Trieha, U. (2014). *Branding “Dagadu”, Inspirasi Tumbuhnya Bisnis Penjualan Kaos Oblong Khas Daerah*. Retrieved June 5, 2015, from http://ensiklo.com/

Walangitan, A., Pangemanan, S. S., & Rumokoy, F. S. (2015). Analyzing the Impact of Brand Equity on Consumer Purchase Intention of Etude House Cosmetic Product in Manadol. *Jurnal EMBA, 3*(2), 758-766.

Wiethoff, C. (2004). Motivation to Learn and Diversity Training: Application of the Theory of Planned Behavior. *Human Resource Development Quarterly, 15*(3). https://doi.org/10.1002/hrdq.1103

Wiriausaha Online. (2014). *Belajar Dari KisahSukses Kaos Dagadu*. Retrieved June 5, 2015, from http://menjadiwirausaha.com/

Zeithaml, V. A., & Bitner, M. J. (2003). *Services Marketing* (3rd ed.). Boston: McGraw-Hill.

Appendixes

Appendix A

Standardized Regression Weights: (Group number 1 - Default model)

| Estimate |
|---|---|
| CI1 <--- CI | .572 |
| CI2 <--- CI | .485 |
| CI3 <--- CI | .603 |
| CI4 <--- CI | .650 |
| CI5 <--- CI | .641 |
| NB <--- SN | .905 |
| MC <--- SN | .919 |
Standardized Regression Weights: (Group number 1 - Default model)

Estimate	
ev <--- Ab	.935
b <--- Ab	.929
BI1 <--- BI	.656
BI2 <--- BI	.781
BI3 <--- BI	.720
BI4 <--- BI	.628

Chi-square = 71.372
prob = .000
cmin/df = 4.198
GFI = .868
AGFI = .721
TLI = .921
RMSEA = .173

Chi-square = .587
prob = .444
cmin/df = .587
GFI = .997
AGFI = .973
TLI = 1.059
RMSEA = .000

Published by SCHOLINK INC.
Standardized Regression Weights: (Group number 1 - Default model)

Estimate
BE1 <--- BE
BE2 <--- BE
BE3 <--- BE
BE4 <--- BE

Appendix B

chi-square = 226.136
prob = .000
cmin/df = 9.422
GFI = .768
AGFI = .564
TLI = .741
RMSEA = .281

Assessment of normality (Group number 1)

Variable	min	max	skew	c.r.	kurtosis	c.r.
CI	14,000	25,000	.208	.883	-.166	-.353
BE	8,000	20,000	-.020	-.086	.451	.958
Ab	36,000	225,000	.556	2.359	.077	.164
SN	49,000	225,000	.902	3.825	.661	1.401
ev	6,000	15,000	.083	.354	-.315	-.669
b	6,000	15,000	.066	.280	-.311	-.660
BI	10,000	20,000	-.108	-.459	-.746	-1.582
Variable | min | max | skew | c.r. | kurtosis | c.r.
---|------|-------|------|------|--------|------
MC | 6,000 | 15,000 | .213 | .904 | -.157 | -.333
NB | 6,000 | 15,000 | .280 | 1,186 | -.023 | -.048
Multivariate | 51,281 | 18,937 |

Appendix D

Bootstrap

The model fit better in 242 bootstrap samples.
It fit about equally well in 0 bootstrap samples.
It fit worse or failed to fit in 258 bootstrap samples.
Testing the null hypothesis that the model is correct, Bollen-Stine bootstrap p = .517

Appendix E

Z-Score

	N	Minimum	Maximum	Mean	Std. Deviation			
Zscore(CI1)	108	-2.70605	1.33432	.0000000	1.0000000			
Zscore(CI2)	108	-2.52334	1.56447	-3.3452889E-16	1.0000000			
Zscore(CI3)	108	-2.32287	2.17704	-3.0619295E-15	1.0000000			
Zscore(CI4)	108	-2.44008	1.51285	.0000000	1.0000000			
Zscore(CI5)	108	-1.33302	1.40920	-1.3445716E-16	1.0000000			
Zscore(CI)	108	-1.96178	2.57245	-1.1079784E-16	1.0000000			
	Valid N	Z-score(BE1)	1.0000000	-3.03427	1.20324	.0000000	108	1.00000000
-------	---------	---------------	-----------	----------	---------	-----------	-----	-------------
		Z-score(BE2)	1.0000000	-2.21312	1.66283	-3.5481533E-16	108	1.00000000
		Z-score(BE3)	1.0000000	-1.87760	1.63883	.0000000	108	1.00000000
		Z-score(BE4)	1.0000000	-1.18050	2.42783	-4.5369456E-16	108	1.00000000
		Z-score(BE)	1.0000000	-1.72088	2.77562	.0000000	108	1.00000000
		Z-score(b1)	1.0000000	-1.85733	2.07584	.0000000	108	1.00000000
		Z-score(b2)	1.0000000	-2.90618	1.81363	.0000000	108	1.00000000
		Z-score(b3)	1.0000000	-2.12067	1.78329	-1.8905432E-15	108	1.00000000
		Z-score(b)	1.0000000	-2.24160	2.23239	-1.8905432E-15	108	1.00000000
		Z-score(ev1)	1.0000000	-2.04799	2.23297	-1.1486601E-15	108	1.00000000
		Z-score(ev2)	1.0000000	-1.83790	2.02885	-2.0027205E-16	108	1.00000000
		Z-score(ev3)	1.0000000	-3.42527	2.05516	.0000000	108	1.00000000
		Z-score(ev)	1.0000000	-2.35508	2.50508	-3.6364543E-15	108	1.00000000
		Z-score(NB1)	1.0000000	-2.71512	1.88461	.0000000	108	1.00000000
		Z-score(NB2)	1.0000000	-3.01569	1.82735	.0000000	108	1.00000000
		Z-score(NB3)	1.0000000	-2.50276	1.83358	-6.0578801E-16	108	1.00000000
		Z-score(NB)	1.0000000	-2.30177	2.21807	-3.0291404E-15	108	1.00000000
		Z-score(MC1)	1.0000000	-1.74651	2.02596	.0000000	108	1.00000000
		Z-score(MC2)	1.0000000	-2.87243	1.95593	-6.5612697E-16	108	1.00000000
		Z-score(MC3)	1.0000000	-3.58134	1.94415	-1.1846798E-15	108	1.00000000
		Z-score(MC)	1.0000000	-2.18845	2.32784	.0000000	108	1.00000000
		Z-score(SN)	1.0000000	-1.57186	2.79497	.0000000	108	1.00000000
		Z-score(BI1)	1.0000000	-1.67818	1.87562	.0000000	108	1.00000000
		Z-score(BI2)	1.0000000	-2.13844	1.82073	.0000000	108	1.00000000
		Z-score(BI3)	1.0000000	-1.38206	1.43421	-5.0588321E-16	108	1.00000000
		Z-score(BI4)	1.0000000	-2.66158	.91664	.0000000	108	1.00000000
		Z-score(BI)	1.0000000	-2.24465	2.04601	.0000000	108	1.00000000
		Valid N (listwise)	1.0000000	108				
Appendix F

Observations farthest from the centroid (Mahalanobis distance) (Group number 1)

Observation number	Mahalanobis d-squared	p1	p2
79	63,860	.000	.000
78	32,016	.000	.000
31	26,357	.002	.001
80	25,098	.003	.000
61	25,068	.003	.000
73	24,734	.003	.000
76	24,025	.004	.000
92	23,315	.006	.000
88	23,315	.006	.000
95	19,555	.021	.000
44	18,843	.027	.000
28	17,811	.037	.001
41	16,136	.064	.021
6	15,529	.077	.039
48	15,032	.090	.061
23	14,275	.113	.157
5	14,023	.122	.159
38	13,617	.137	.217
97	13,555	.139	.166
35	12,999	.163	.300
45	12,989	.163	.223
74	12,533	.185	.344
50	12,224	.201	.415
67	11,910	.218	.499
72	11,739	.228	.507
30	11,160	.265	.748
94	11,121	.267	.694
25	10,788	.291	.793
71	10,667	.299	.787
105	10,227	.332	.906
Observation number	Mahalanobis d-squared	p1	p2
--------------------	-----------------------	------	------
69	10,120	.341	.901
55	9,774	.369	.954
19	9,725	.373	.942
53	9,399	.401	.975
54	8,870	.449	.997
39	8,824	.454	.996
49	8,802	.456	.993
64	8,775	.458	.990
13	8,123	.522	1,000
81	8,096	.524	1,000
70	8,029	.531	.999
40	7,958	.538	.999
46	7,772	.557	1,000
3	7,743	.560	.999
93	7,736	.561	.999
42	7,659	.569	.999
22	7,548	.580	.999
24	7,377	.598	1,000
66	7,231	.613	1,000
102	7,224	.614	.999
16	7,181	.618	.999
86	7,148	.622	.999
63	7,120	.625	.998
17	7,062	.631	.998
57	6,994	.638	.998
84	6,585	.680	1,000
33	6,498	.689	1,000
91	6,489	.690	1,000
34	6,486	.690	.999
96	6,377	.702	1,000
68	6,090	.731	1,000
11	6,072	.733	1,000
14	5,857	.754	1,000
Observation number	Mahalanobis d-squared	p1	p2
-------------------	-----------------------	-----	-----
52	5.799	.760	1.000
9	5.762	.764	1.000
87	5.723	.767	1.000
62	5.243	.813	1.000
12	5.138	.822	1.000
10	5.120	.824	1.000
26	5.100	.825	1.000
21	4.913	.842	1.000
51	4.817	.850	1.000
100	4.603	.867	1.000
90	4.577	.870	1.000
103	4.558	.871	1.000
85	4.493	.876	1.000
99	4.472	.878	1.000
56	4.325	.889	1.000
58	4.314	.890	1.000
7	4.170	.900	1.000
47	4.162	.900	1.000
32	4.129	.903	1.000
108	4.063	.907	1.000
27	3.936	.916	1.000
4	3.867	.920	1.000
75	3.858	.921	1.000
89	3.626	.934	1.000
18	3.597	.936	1.000
106	3.427	.945	1.000
36	3.208	.955	1.000
29	3.200	.956	1.000
77	3.199	.956	1.000
82	3.197	.956	1.000
15	3.082	.961	1.000
37	2.924	.967	1.000
65	2.534	.980	1.000
Appendix G

Sample Covariances (Group number 1)

CI	BE	Ab	SN	ev	b	BI	MC	NB	
CI	5,831								
BE	2,812	4,727							
Ab	49,486	50,609	1532,112						
SN	43,224	39,831	815,399	1609,358					
ev	2,068	2,152	67,480	34,225	3,397				
b	2,613	2,479	72,826	42,321	2,918	4,009			
BI	1,908	2,422	40,767	39,030	1,759	1,956	5,382		
MC	1,902	1,949	35,804	73,114	1,471	1,798	1,648	3,934	
NB	2,094	1,688	38,277	71,980	1,641	2,083	1,911	2,697	3,928

Condition number=29270,467

Eigenvalues

2401,867 757,603 5,142 3,689 2,208 1,164,745,178,082

Determinant of sample covariance matrix=964089,522