Cell line-dependent variability in HIV activation employing DNMT inhibitors

Guerau Fernandez¹, Steven L. Zeichner¹,²*

Abstract

Long-lived reservoirs of Human Immunodeficiency Virus (HIV) latently infected cells present the main barrier to a cure for HIV infection. Much interest has focused on identifying strategies to activate HIV, which would be used together with antiretrovirals to attack reservoirs. Several HIV activating agents, including Tumor Necrosis Factor alpha (TNFα) and other agents that activate via NF-kB are not fully effective in all latent infection models due to epigenetic restrictions, such as DNA methylation and the state of histone acetylation. DNA methyltransferases (DNMT) inhibitors like 5-aza-2’-deoxycytidine (Aza-CdR) and histone deacetylase (HDAC) inhibitors like Trichostatin A (TSA) have been proposed as agents to enhance reactivation and have shown activity in model systems. However, it is not clear how the activities of DNMT and HDAC inhibitors range across different latently infected cell lines, potential models for the many different latently infected cells within an HIV patient. We determined HIV activation following treatment with TNFα, TSA and Aza-CdR across a range of well known latently infected cell lines. We assessed the activity of these compounds in four different Jurkat T cell-derived J-Lat cell lines (6.3, 8.4, 9.2 and 10.6), which have a latent HIV provirus in which GFP replaces Nef coding sequence, and ACH-2 and J1.1 (T cell-derived), and U1 (promonocyte-derived) cell lines with full-length provirus. We found that Aza-CdR plus TNFα activated HIV at least twice as well as TNFα alone for almost all J-Lat cells, as previously described, but not for J-Lat 10.6, in which TNFα plus Aza-CdR moderately decreased activation compared to TNFα alone. Surprisingly, a much greater reduction of TNFα-stimulated activation with Aza-CdR was detected for ACH-2, J1.1 and U1 cells. Reaching the highest reduction in U1 cells with a 75% reduction. Interestingly, Aza-CdR not only decreased TNFα induction of HIV expression in certain cell lines, but also decreased activation by TSA. Since DNMT inhibitors reduce the activity of provirus activators in some HIV latently infected cell lines the use of epigenetic modifying agents may need to be carefully optimized if they are to find clinical utility in therapies aimed at attacking latent HIV reservoirs.

Findings

Despite the effectiveness of Highly Active Antiretroviral Therapy (HAART) for Human Immunodeficiency Virus type 1 (HIV-1) infection, patients cannot be cured due to the persistence of long-lived reservoirs of cells latently infected with HIV ([1-5] and reviewed in [6-11]). Much interest has focused on attacking this reservoir of HIV latently infected cells. A potentially useful strategy, sometimes termed “shock and kill” [12], aims to attack the latent reservoir treating patients with HIV-activating agents to stimulate HIV replication in the latently infected cells while blocking new infection of cells with antiretrovirals.

One activation approach employs agents like phorbol esters (e.g. 12-O-Tetradecanoylphorbol-13-acetate (TPA), prostratin) [13], interleukins (IL-2, IL-7) [14-18] and cytokines (e.g. tumor necrosis factor alpha (TNFα)) [19] that directly activate HIV gene expression via well-known transcriptional activation pathways, like NF-kB, but many such agents are toxic or incompletely effective in vivo [14,16,20,21]. Other approaches target the provirus’ epigenetic environment, employing histone deacetylase (HDAC) inhibitors (HDACIs) like trichostatin A (TSA) [22,23], suberoylanilide hydroxamic acid (SAHA) [22,24], sodium butyrate [25,26], and valproic acid [27,28], and/or DNA methyltransferase (DNMT) inhibitors (DNMTIs) like 5-aza-2’-deoxycytidine (Aza-CdR) [29], with some strategies combining approaches [30] (and reviewed in [6,31]). In addition, to increase the efficiency of viral activators, combining the use of activators...
with compounds aimed at limiting the toxicity of the activator, as shown with buthionine sulfoximine [32] may play a major role in optimizing treatment strategies.

Nucleosomes occupy specific positions on the HIV LTR [22,33,34], with the nucleosome occupying the position termed ‘nuc-1’ at a regulatory region of the LTR 610 to 720 bp 3’ to the transcription start site having significant inhibitory effects on HIV expression. Chromatin condensed around nuc-1 in its deacetylated form presents a block to HIV expression. Following hyperacetylation and chromatin remodeling, mediated by the recruitment of histone acetylases by transcription factors binding directly or indirectly to the LTR, or by Tat, the nuc-1 block is removed [22,33,35-37]. HDACIs, by shifting histones to a more acetylated state facilitate remodeling and removal of the block [38,39]. DNMTIs likely activate HIV because, at least in some cells, the LTR contains two CpG islands (particularly island 2) that can be hypermethylated and the hypermethylated DNA can recruit methyl-CpG binding domain (MDB) protein family members, notably MDB2. MDB2 recruited to the LTR can serve a bridging function between DNA and chromatin-modifying factors, such as HDACs [29]. Several studies linked retroviral promoter CpG methylation with transcription inactivation [40-42] and cellular gene silencing [43]. DNMTIs can moderately activate HIV alone, but in some systems they significantly enhance agents, like TNFα, that directly activate the HIV LTR, probably because activation is limited due to proviral DNA hypermethylation [29,44,45].

While DNMTIs and HDACIs significantly enhance HIV activation in some latently infected cells, their ability to enhance activation across a wider range of latently infected cells is currently unknown. The breadth of activating ability is important, since complete or close-to-complete eradication of latently infected cells may be required to cure HIV infection. To better assess the breadth of activity of activators representative of both direct activators and activators acting via epigenetic effects we surveyed the ability of three prototypical HIV direct activators and activators acting via epigenetic mechanisms to enhance activation across a wider range of latently infected cells.

Before embarking on a survey of the activators across cell lines, we undertook further optimization experiments, initially performing order-of-addition experiments using J-Lat 6.3 (Fig.1), in which Aza-CdR had been shown to enhance activation mediated by TNFα [29], since inhibiting DNA methylation well before addition of the direct transcriptional activator TNFα could be required for maximal activation. Detection and quantification of GFP positive cells from a live-gated population was performed at 48 h using a FACScalibur cytometer (BD Biosciences, San Jose CA), analyzed with Cell Quest Pro software (BD Biosciences, San Jose CA).

For Aza-CdR alone did not activate [29], but TNFα alone produced significant increases in GFP positive cells, and Aza-CdR enhanced activation with TNFα treatment. We calculated the fold increase of activation due to Aza-CdR, that is the activation observed with TNFα plus Aza-CdR divided by the activation with TNFα alone (TNFα+Aza-CdR/TNFα, (FI-Aza)), which expresses the fold increase due to the addition of Aza-CdR. FI-Aza showed that the greatest activation occurred when J-Lat
6.3 cells were treated with both compounds simultaneously (Fl-Aza=3.8). Although there were differences in the extent of activation that depended on the order of addition, Aza-CdR always enhanced activation of J-Lat 6.3 by TNFα, with Fl-Aza ranging between 3.8 and 1.9.

To determine when Aza-CdR most enhanced TNFα or TSA activation, a time-course experiment was performed using J-Lat 6.3 cells. Percent GFP positive cells using FACS analysis (Fig. 2A) and p24 production using an enzyme-linked immunosorbent assay (ELISA) (Perkin Elmer, Waltham, MA) (Fig. 2B) were determined for all time points and treatment conditions. Aza-CdR in combination with TNFα reached its maximum effect at 48 h post-induction when per cent GFP positive cells where quantified. Moreover, p24 production did not increase significantly beyond 48 h, losing Aza-CdR’s enhancing effect when combined with TNFα at later time points. Due to the lack of synergy between TSA and Aza-CdR...
Figure 2 Time-course activation by TNFα and TSA alone or in combination with Aza-CdR in J-Lat 6.3 cells.

A. GFP positive cell quantification by FACS analysis at 24, 48 and 72 h post-induction for all treatments and treatment combinations using J-Lat 6.3 cell line. GFP positive cells from the live population, defined by forward versus side scatter gating, were quantified. 20,000 events per treatment condition were analyzed.

B. p24 antigen production determined using an enzyme-linked immunosorbent assay (ELISA) (Perkin Elmer, Waltham, MA) for all post-induction time points and treatments as for panel A.

C. Cell viability of the different treatments and treatment combinations for all time points determined with MTS assay (Promega, Madison, WI). Final activator compound concentrations were, for Aza-CdR (2.5 μM), TNFα (10 ng/ml) and TSA (1.5 μM). Results are the mean ± standard deviation (SD).
we determined 48 h to be the best time point to analyze further data based on TNFα plus Aza-CdR results. Cell viability for all time points and treatment conditions (Fig. 2C) were performed using MTS assay (Promega, Madison, WI). TNFα alone does not strongly activate J-Lat 6.3, 8.4 and 9.2 cells, as shown in Fig. 3A, and as reported [29]. TNFα can, at most, achieve 20% activation in these three cell lines. In contrast, in J-Lat 10.6, TNFα activates ~80% of the cells, which enabled us to determine the effect of combining Aza-CdR with TNFα and TSA when the provirus is highly activated by TNFα. Surprisingly, the combination of Aza-CdR and TNFα did not increase or maintain activation in J-Lat 10.6, but instead moderately decreased activation (p ≤ 0.1) (Fig. 3B) in per cent GFP positive cells while activation from the combination of Aza-CdR and TNFα was significantly lower when p24 was determined (p ≤ 0.05) (Fig. 3C). The reduction of activation in J-Lat 10.6 suggested that Aza-CdR could have, in some latently infected cells, a detrimental effect when combined with an activator, particularly when activation via other pathways, such as those stimulated by TNFα, is great (Fig. 3C). Cell viability did not differ between TNFα and Aza-CdR, alone or in combination (Fig. 3D), so cell toxicity could not account for the observations. Of note, we did not detect a synergistic effect when TNFα and TSA were combined when percent GFP positive cells were quantified. As shown in the time-course experiment in Fig. 2 this synergy can be detected in earlier time points but not at 48 h post-induction when Aza-CdR reaches maximal effect. When p24 production is determined, we only could see this TSA-TNFα synergy in J-Lat 8.4 cells because TNFα activation in this cell line is strongly blocked (Fig. 3C).

To assess how the combinations of Aza-CdR, TNFα, and TSA affect HIV activation in other HIV latently infected cells, we studied the ability of these agents, alone and together, to activate HIV in ACH-2, U1 and J1.1 cells (Fig. 4A), other lines in which TNFα strongly activates HIV expression [52]. Since these cells harbor a latent HIV provirus that does not have nef replaced with GFP, we assessed activation by measuring p24 48 h after treatment with the activators using ELISA (Perkin Elmer, Waltham, MA). TNFα powerfully activated HIV expression in these cells, as previously described, but as we observed with J-Lat 10.6, treating ACH-2, U1 and J1.1 cells with Aza-CdR significantly decreased activation by TNFα, from 23% (J1.1, p ≤ 0.05) to 40% (ACH-2, p ≤ 0.05), to 75% (U1, p ≤ 0.05). In ACH-2 cells, but not in any other of the cell lines studied, Aza-CdR also significantly decreased activation following treatment with TSA alone (57%, p ≤ 0.05), or TSA + TNFα (45%, p ≤ 0.05). Impaired cell viability, as with J-Lat cells, could not explain this reduction in activation (Fig. 4B). Thus, in certain circumstances, a DNMTI can decrease activation by agents acting both through the NF-κB pathway and mediated by an HDACI. However, a decrease in activation produced by Aza-CdR was not observed in all the non-J-Lat cell lines under all conditions. In J1.1 cells, Aza-CdR did not decrease activation by TSA or TSA plus TNFα. Overall, the ability of the DNMTI Aza-CdR to help activate HIV replication (or to inhibit the activation produced by other agents) exhibited a strong cell line dependence: In U1 and J1.1 cell lines, Aza-CdR inhibited activation by TNFα, but not by TSA or TNFα plus TSA, while in ACH-2 cells Aza-CdR inhibited activation by both TNFα and TSA when used alone or in combination. Table 1 summarizes the effect of Aza-CdR and TNFα when added simultaneously in all latently infected cells tested, highlighting that the effects due to the combination of agents may be detrimental or helpful, depending on the cell line studied. The data presented in this report complements the findings by Kauder et al. [29] and Blaskova et al. [44] regarding the effects of Aza-CdR in activating latently infected cells. In those studies, cell lines H12 and 2D12 [44] and all the J-Lat clones except for A2 clone [29] showed increased activation with Aza-CdR used in combination with TNFα in comparison with TNFα alone (the A2 clone showed the same levels of activation with or without Aza-CdR). The detrimental effect we observed with Aza-CdR in certain latently infected cell lines induced by viral activators like TNFα (ACH-2, J1.1 and U1) highlights the complexity of HIV activation, the importance of studies utilizing a broad range of cell lines, and the broad range of effects that may be observed in different infected cells.

The differential effects on HIV activation of epigenetic agents may not be entirely unexpected, since the chromatin structure of the LTR can differ for the proviruses integrated into one cell line or another [53]. It will require much additional work to understand the mechanisms responsible for the differential responses to epigenetic activators, but a few potential explanations may be considered. Aza-CdR may have complicated effects, since the activation of some genes may inhibit others [54-56], so differences in the methylation and hence activation state of cellular genes in the latently infected cell lines could account for the differences in activation observed with Aza-CdR: In J-Lat 6.3, 8.4 and 9.2 cells, Aza-CdR may have direct effects, leading to the demethylation of the LTR, enhancing activation, while in the other lines Aza-CdR may help activate other cellular genes that directly or indirectly inhibit HIV activation, since differential expression of certain cellular genes can be associated with the maintenance of latency [57,58].
Figure 3 HIV activation by TNFα and TSA alone or in combination with Aza-CdR in four J-Lat cell lines. A. GFP positive cell quantification by FACS analysis at 48 h post-induction of J-Lat 6.3, 8.4, 9.2 and 10.6 cell lines treated with TNFα or Aza-CdR alone or in combination. 20,000 events from the live population defined by forward versus side scatter gating were analyzed. B. Proviral activation as determined by percent GFP positive cells for the different treatments and treatment combinations in the four J-Lat cells (J-Lat 6.3, 8.4, 9.2 and 10.6 indicated on each panel). C. p24 antigen production for all treatments and treatment combinations at 48 h post-induction. D. Cell viability of the different treatments and treatment combinations determined with an MTS assay (Promega, Madison, WI) at 48 h. Cells were cultured in RPMI with 10% FBS. Two million cells were seeded and treated with the different compounds for 48 h. The compound order of addition was determined as described in Fig. 1: agents were added at time 0 h, with no further additional steps. After 48 h, cells were washed twice with chilled 1x PBS and fixed in 2% formaldehyde as in the FACS analysis described in the Fig. 1 legend. At the same time, supernatants from the different treatment conditions were stored at -80°C until further use. p24 antigen was determined using ELISA (Perkin Elmer, Waltham, MA) from the stored supernatants. Final activator compound concentrations were, for Aza-CdR (2.5 μM), TNFα (10 ng/ml) and TSA (1.5 μM). Results are the mean ± standard deviation (SD). Statistical analysis (Student’s t-test) was performed using the STATA software package (StataCorp LP, College Station, TX), * p ≤ 0.05.
Figure 4 HIV activation by TNFα and TSA in ACH-2, U1, and J1.1 latently infected cell lines with or without Aza-CdR. A. p24 antigen production in ACH-2, U1 and J1.1 cell lines for all treatments and treatment combinations at 48 h post-induction. Cells were cultured in RPMI with 10% FBS. 2 million cells were treated with the different compounds for 48 h. The compound order of addition was determined in Fig. 1. After 48 h, cells were pelleted at 1400 rpm for 7 min and discarded. Supernatants from the different treatment conditions were stored at -80°C until further use. p24 antigen was determined using ELISA (Perkin Elmer, Waltham, MA) from the stored supernatants. B. Cell viability of the different treatments and treatment combinations shown in panel A, determined with an MTS assay (Promega, Madison, WI) at 48 h post-treatment. Compound final concentrations of the activators were Aza-CdR (2.5 μM), TNFα (10 ng/ml) and TSA (1.5 μM). Results are the mean ± standard deviation (SD). Statistical analysis (Student’s t-test) was performed using STATA software package (StataCorp LP, College Station, TX), * p ≤ 0.05.
In HIV infected patients, the latently infected cells harbor many different proviruses. While the frequency of latently infected cells in the periphery is low, perhaps 1 in 10^6 cells, the total number of latently infected cells within a patient has been estimated to be as high as 10^6-10^7 total cells [59]. The latently infected lines we examined may not be completely representative of latently infected cells as they exist in vivo, but the great potential variability in host cell chromosomal location and epigenetic and transcriptional environments of proviruses from as many as 10^6-10^7 total latently infected cells suggests that, at least for some latently infected cells that exist in vivo, DNMTs and HDACs may inhibit HIV activation, as we describe here. While it is clear that DNMTs and HDACs offer promise as agents to attack the reservoir, our findings suggest that it may be necessary to carefully optimize HIV activation strategies so that some treatment or combination of treatments is active across large numbers of latently infected cells. For effective clinical applications, fairly elaborate combinations of activators and co-activators may be required to assure that essentially all proviruses are induced into active replication.

Abbreviations
Aza-CdR: 5-aza-2'-deoxycytidine; DNMT: DNA methyltransferase; DNMTI: DNMT inhibitor; GFP: green fluorescent protein; HAART: highly active antiretroviral therapy; HDAC: histone deacetylase; HDACi: HDAC inhibitor; HIV-1: Human Immunodeficiency Virus type 1; LTR: Long Terminal Repeat; MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; SAHA: suberoylanilide hydroxamic acid; TAR: Trans-activation response element; TNFa: tumor necrosis factor alpha; TSA: trichostatin A

Acknowledgements
This work was funded in part by a Children’s Research Institute, Children’s National Medical Center Research Advisory Committee award to SZ and by the District of Columbia Developmental Center for AIDS Research (DC CFAR). GF is a Beatrice de Pins Fellow of the Departament d’Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya. The following reagents were obtained through the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH: J-Lat full length Clones 6.3, 8.4, 9.2 and 10.6 from Dr. Eric Verdin, ACH-2, J1.1 and U1/HIV-1 from Dr. Thomas Folks.

Author details
1. Center for Cancer and Immunology Research, Children’s Research Institute, Children’s National Medical Center, Washington DC, USA. 2. Departments of Pediatrics and Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine, Washington DC, USA.

Authors’ contributions
GF carried out the experiments, data analysis and drafted the manuscript. SZ participated in the design of the study and data analysis, and drafted the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 30 June 2010 Accepted: 13 October 2010

Published: 13 October 2010

Table 1 Effect of AZA-CdR in TNFα HIV latently infected cell activation

	Control	AZA-CdR	TNFα	TNFα + AZA-CdR
J-Lat	6.3	0.0 ± 0.0	62 ± 0.6	23136 ± 5080
	8.4	0.0 ± 0.0	0.0 ± 0.0	1613 ± 485
	9.2	30 ± 0.8	83 ± 4	26490 ± 2798
	10.6	80 ± 10	190 ± 48	87578 ± 1071
ACH-2	11083 ± 670	15445 ± 12	85997 ± 12654	51347 ± 11353
U1	12 ± 1	44 ± 5	20805 ± 2150	
J1.1	21475 ± 1475	19577 ± 1335	207468 ± 890	

Mean p24 (pg/ml) ± standard deviation.

References
1. Bukrinsky M, Stanwick T, Dempsey M, Stevenson M: Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science 1991, 254:423-427.
2. Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JA, Baseler M, Lloyd AL, Nowak MA, Fauci AS: Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci USA 1997, 94:13193-13197.
3. Finzi D, Herrmannova M, Pierson T, Caruth LM, Back C, Chaisson RE, Quinn TC, Chadwick K, Margolick J, Brookmeyer R, et al: Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 1997, 278:1295-1300.
4. Wong JK, Hazarch M, Gunther HF, Havlir DV, Ignacio CC, Spina CA, Richman DD: Discovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 1997, 278:1291-1295.
5. Dinoso JB, Kim SY, Weigand AM, Palmer SE, Ganne J, Chaisson RE, O’Shea A, Callender M, Spivak A, Brennan T, et al: Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy. Proc Natl Acad Sci USA 2009, 106:9403-9408.
6. Colin L, Van Lint C: Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 2009, 6:111.
7. Richman DD, Margolias DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ: The challenge of finding a cure for HIV infection. Science 2009, 323:1304-1307.
8. Dahl V, Josefsson L, Palmer S: HIV reservoirs, latency, and reactivation: prospects for eradication. Antiviral Res 2010, 85:286-294.
9. Cueno M, Lopez-Huertas MR, Perez-Olmeda M, Alcami J: Understanding HIV-1 latency provides clues for the eradication of long-term reservoirs. Nat Rev Microbiol 2009, 7:798-812.
10. Mariden ND, Zack JA: Eradication of HIV: current challenges and new directions. J Antimicrob Chemother 2009, 63:710.
11. Geeraert L, Kraus G, Pomerantz RJ: Hide-and-seek: the challenge of viral persistence in HIV-1 infection. Annu Rev Med 2008, 59:487-501.
12. Hamer DH: Can HIV be Cured? Mechanisms of HIV persistence and strategies to combat it. Curr HIV Res 2004, 2:99-111.
13. Kulkosky J, Cuinan DM, Roman J, Dornadula G, Schnell M, Boyd MR, Pomerantz RJ: Prostratin: activation of latent HIV-1 expression suggests a potential inducive adjuvant therapy for HAART. Blood 2001, 98:3005-3015.
14. Dybul M, Hidago B, Chun TW, Nelson M, Migueles SA, Justement JS, Herpin B, Perry C, Hallahan CW, Davey RT, et al: Pilot study of the effects of intermittent interleukin-2 on human immunodeficiency virus (HIV)-specific immune responses in patients treated during recently acquired HIV infection. J Infect Dis 2002, 185:61-68.
15. Chun TW, Engels D, Mizzell SB, Hallahan CW, Fishette M, Park S, Davey RT Jr, Dybul M, Kovacs JA, Metcalf JA, et al: Effect of interleukin-2 on the pool of latently infected, resting CD4+ T cells in HIV-1-infected patients receiving highly active anti-retroviral therapy. Nat Med 1999, 5:651-655.
16. Stellbrink HJ, van Lunzen J, Westby M, O’Sullivan E, Schneider C, Adam A, Weitem L, Kuhlmann B, Hoffmann C, Fenske S, et al: Effects of interleukin-2 plus highly active antiretroviral therapy on HIV-1 replication and proviral DNA (COSMIC trial). AIDS 2002, 16:1479-1487.

17. Wang FX, Xu Y, Sullivan J, Souder E, Argris EG, Acheampong EA, Fisher J, Sierra M, Thomson MM, Jannera R, et al: IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART. J Clin Invest 2005, 115:128-137.

18. Lehman G, Ylitalo G, Bosch RJ, Margolis DM: Interleukin-7 induces HIV type 1 outgrowth from peripheral resting CD4+ T cells. J Acquir Immune Defic Syndr 2004, 36:1103-1104.

19. Chun TW, Engel D, Mizell SB, Ehler LA, Fauci AS: Induction of HIV-1 replication in latently infected CD4+ T cells using a combination of cytokines. J Exp Med 1998, 188:83-91.

20. Lafeuillade A, Poggi C, Chadapaud S, Hittinger G, Chouraqui M, Pomerantz R, Martin MA: Expression of latent HIV induced by the potent HDAC inhibitor suberoylanilide hydroxamic acid. AIDS Res Hum Retroviruses 2009, 25:207-212.

21. Bohan C, York D, Srinivasan A: Sodium butyrate activates human immunodeficiency virus long terminal repeat-directed expression. Biochem Biophys Res Commun 1978, 114:889-905.

22. Sheridan PL, Mayall TP, Verdin E, Jones KA: Histone acetyltransferases regulate HIV-1 enhancer activity in vitro. Genes Dev 1997, 11:3327-3340.

23. Archin NM, Espeseth A, Parker D, Hazuda D, Margolis DM: Recruitment of chromatin-modifying enzymes by CXCR4 and CCR5 in HIV-1 latently infected cells. J Virol 2009, 83:3355-3366.

24. Chun TW, Davey RT Jr, Engel D, Lane HC, Fauci AS: Re-emergence of HIV after stopping therapy. Nature 1999, 401:874-875.

25. Van Lint C, Emiliani S, Ott M, Verdin E: Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone deacetylation. J Exp Med 1996, 181:1112-1120.

26. Moog C, Kurtz-Simon G, Schierwagen C, Obert G: Histone acetyltransferases regulate HIV-1 enhancer activity in vitro. Genes Dev 1997, 11:3327-3340.

27. Archen NM, Espeseth A, Parker D, Hazuda D, Margolis DM: Induction of latent HIV infection by the potent HDAC inhibitor suberoylanilide hydroxamic acid. AIDS Res Hum Retroviruses 2009, 25:207-212.

28. Taniguchi Y, Nosaka K, Yasunaga J, Maeda M, Mueller N, Okayama A, Matsuoka M: Silencing of human T-cell leukemia virus type 1 gene transcription by epigenetic mechanisms. Retrovirology 2005, 264.

29. Lornicz MC, Schubeler D, Groudine M: Methylation-mediated proviral silencing is associated with MeCP2 recruitment and localized histone H3 deacetylation. Mol Cell 2001, 7:793-792.

30. Curradi M, Izzo A, Badaracco G, Lattnerberger N: Molecular mechanisms of gene silencing mediated by DNA methylation. Mol Cell Biol 2002, 22:3157-3173.

31. Blazkova J, Treibjala K, Gondois-Fey F, Halpon F, Philibert P, Guiguen P, Verdin E, Oliva D, Van Lint C, Heijna J, Hirsch C: CpG methylation controls reactivation of HIV from latency. PLoS Pathog 2009, 5:e1000554.

32. Jeeninga RE, Westendorp EP, van Gerven ML, Berkhorst B: HIV-1 latency in actively dividing human T cell lines. Retrovirology 2008, 5:37.

33. Jordan A, Binagwaho E, Verdin E: HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J 2003, 22:1686-1877.

34. Perez RL, Rowe T, Justement JS, Butera ST, June CH, Folks TM: An HIV-1-infected T cell clone defective in IL-2 production and Ca2+ mobilization after CD3 stimulation. J Immunol 1991, 147:3145-3148.

35. Clouse KA, Powell D, Washington I, Poli G, Strebek F, Farrar W, Barstad P, Kovacs J, Fauci AS, Folks TM: Monokine regulation of human immunodeficiency virus-1 expression in a chronically infected human T cell clone. J Immunol 1989, 142:441-458.

36. Folks TM, Justement J, Kinter D, Norelli S, El Daker S, Valente S, Rotili D, Altucci L, Verdin E: Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. Science 1987, 238:800-802.

37. Emiliani S, Van Lint C, Fischele W, Pars P Jr, Ott M, Brady J, Verdin E: A point mutation in the HIV-1 Tat responsive element is associated with postintegration latency. Proc Natl Acad Sci USA 1996, 93:6377-6381.

38. Emiliani S, Fischele W, Ott M, Van Lint C, Amella CA, Verdin E: Mutations in the tat gene are responsible for human immunodeficiency virus type 1 postintegration latency in the U1 cell line. J Virol 1998, 72:1666-1670.

39. Poli G, Kinter A, Justement JS, Kehrl JH, Bressler P, Stanley S, Fauci AS: Tumor necrosis factor alpha functions in an autocrine manner in the induction of human immunodeficiency virus expression. Proc Natl Acad Sci USA 1990, 87:782-786.

40. Verdin E: DNase I-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1. J Virol 1991, 65:6790-6799.

41. Capo KA, Alassio AW, Rine TD, Hans AN, Greenman D, Jones DA: Limited gene activation in tumor and normal epithelial cells treated with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine. Mol Pharmacol 2004, 65:18-27.

42. Yu XH, Yue X, Yang XG, Liu F, Lu FZ, Liu HL: 5-Aza-2'-deoxycytidine (5-AZA-CdR) leads to down-regulation of Dnmt1o and 5-AZA-CdR silences Dnmt1o in tumor and normal epithelial cells. Mol Pharmacol 2004, 65:18-27.

43. Benkherroub A, Chen R, Xiao M, Ouyang W, Howard BH, Nakatani Y, Jeang KT: Activation of integrated provirus requires histone acetyltransferase p300 and P/CAF coactivators for HIV-1 Tat. J Biol Chem 1998, 273:24898-24905.

44. Marban C, Suzanne S, Dequidt F, de Walque S, Redel L, Van Lint C, Aunis D, Roth O: Recruitment of chromatin-modifying enzymes by C/TIP2 promotes HIV-1 transcriptional silencing. EMBO J 2007, 26:412-423.

45. Jiang G, Espeseth A, Hazuda D, Margolis DM: c-Myc and Sp1 contribute to proviral latency by recruiting histone deacetylase 1 to the human immunodeficiency virus type 1 promoter. J Virol 2007, 81:10914-10923.

46. Cullen BJ, He G, Melander C, Rucker VC, Derivan PB, Margolis DM: Targeted derepression of the human immunodeficiency virus type 1 long terminal repeat by pyrrole-imidaole polyamines. J Virol 2002, 76:13249-13254.

47. Lucic M, Marcello A, Cocrono A, Giacca M: Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. Embo J 2003, 22:6550-6561.

48. Heijna J, H ijakova P, Plachy J, Eleder D, Stepanets V, Svoboda J: CpG island protects Rous sarcoma virus-derived vectors integrated into nonpermissive cells from DNA methylation and transcriptional suppression. Proc Natl Acad Sci USA 2001, 98:565-569.

49. Fernandez and Zeichner Virology Journal 2010, 7:266 http://www.virologyj.com/content/7/1/266 Page 9 of 10
58. Krishnan V, Zeichner SL. Host cell gene expression during human immunodeficiency virus type 1 latency and reactivation and effects of targeting genes that are differentially expressed in viral latency. J Virol 2004, 78:9458-9473.

59. Chun TW, Camath L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, Hermankova M, Chadwick K, Margolick J, Quinn TC, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 1997, 387:183-188.

doi:10.1186/1743-422X-7-266
Cite this article as: Fernandez and Zeichner: Cell line-dependent variability in HIV activation employing DNMT inhibitors. Virology Journal 2010 7:266.