Research Article

Isolation, identification, and antibiogram studies of *Salmonella* species and *Escherichia coli* from boiler meat in some selected areas of Bangladesh

Abu Saim Al-Salauddin1,* Mohammad Farhad Hossain1, Amit Dutta1, Shahin Mahmud2, Md. Shariful Islam2, Sukumar Saha1, S. M. Lutful Kabir1

1Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh, 2Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhanshuni Science and Technology University, Santosh, Tangail-1902, Bangladesh

ABSTRACT

Background: The present study was carried out for the isolation, identification of *Salmonella* and *Escherichia coli* from broiler meat samples (leg muscle, breast muscle and drumstick) which were collected from different upazilla markets of Mymensingh, Gazipur, and Sherpur districts during the period of January 2015 to May 2015.

Methods: A total of 60 samples were subjected to bacterial isolation and identification by using cultural, biochemical, and polymerase chain reaction assays.

Results: Using standard bacteriological techniques *E. coli* was isolated from 50 (83.33%) samples and *Salmonella* spp. from 18 (31.66%) samples. Furthermore, the isolates were subjected to antibiogram studies by disk diffusion method using eight commonly used antibiotics. Antibiogram studies revealed that gentamicin, ciprofloxacin, and norfloxacin were highly sensitive against all the isolated bacteria, whereas most of the isolates were resistant to amoxicillin, erythromycin, and tetracycline. Out of all the isolates, 5 isolates of *E. coli* and 3 isolates of *Salmonella* were found multidrug resistant.

Conclusions: The study revealed the presence of multidrug resistant *Salmonella* and *E. coli* in broiler meat sold in live bird market of different upazilla.

Keywords: Broiler meat, *Salmonella* spp., *Escherichia coli*, Antibiogram

INTRODUCTION

Foodborne diseases and poisoning are the widespread and great public health concerns of the modern world. Both developed and developing countries are largely affected by foodborne infections. Foodborne diseases not only affect people’s health and well-being but also have an economic impact on individuals and the countries1 while the impact in case of developing countries like Bangladesh is higher. It reduces markedly social and economic productivity of the countries.2 Because of the relatively high frequency of contamination of poultry with pathogenic bacteria, raw products are responsible for a significant number of cases of human food poisoning. Contamination of poultry meat during processing, handling, marketing, and storage prior to cooking, can lead to food poisoning illness in humans.
Bangladesh is an agriculture based country. As such poultry rearing is considered superior to the others in the agricultural sector because of an almost assured in a relatively short period of time. Poultry meat substantially contributes to the human diet. In Bangladesh, broiler meat is an important and low-cost source of animal protein. This encourages the consumption of broiler meat by the large of consumers. Various pathogenic microbes such as Salmonella and Escherichia coli have been implicated to reduce the growth of broiler. The modern poultry industry can produce market ready broiler chickens in <6 weeks through genetic selection, improved feeding and keen health management practices including usage of antibiotics as therapeutic agents to treat bacterial diseases in intensive farming systems. Resistance against frequently used antibiotics has been observed in bacteria present in poultry since the introduction of these antimicrobial agents in poultry. The rise in antibiotic resistance has been reported in the past two decades in many countries including Bangladesh. Therefore, this study was designed to isolate and identify the associated bacteria prevalent in broiler meat and to find out the effective antibiotics against the bacteria through antibiogram studies.

METHODS

Collection and transportation of samples

A total of 60 dressed broiler carcasses were collected during the period of January 2015 to May 2015 and immediately brought to Bacteriology Laboratory of the Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh through maintaining cool chain using ice box. After that samples were processed immediately for the isolation and identification of Salmonella and E. coli. Isolation of associated bacteria

For the isolation of bacteria 10 g of meat (thigh muscle, breast muscle, and drumstick) were taken in a sterile pack and allowed to prepare meat homogenates by adding 90 ml of 0.1% peptone water using stomacher blender. The primary culture was performed in nutrient agar and nutrient broth media. For sub-culturing, suspected bacteria were inoculated separately onto different bacteriological media under the aseptic condition and incubated at 37°C for 24 hrs. Pure cultures were achieved by further sub culturing on selective agar.

Identification of associated bacteria

Cultural, morphological, and biochemical characteristics were studied to identify the bacterial flora. The cultural characteristics or colonial morphology of the bacteria grown on the eosin methylene blue (EMB) and xylose lysine deoxycholate (XLD) agar were recorded. Gram staining was performed to study the morphology and staining characteristics of the bacteria. Biochemical tests, such as sugar fermentation, methyl red (MR), voges-proskauer (VP), and indole tests, were performed to identify the bacteria tentatively.

Molecular characterization by polymerase chain reaction (PCR)

Bacterial DNA template was prepared by using boiling method. All the samples were examined by two pairs of primers (Table 1) to detect 16S rRNA gene of E. coli and histidine transport operon gene of Salmonella spp. Thermal profiles used in PCR are discussed (Tables 2 and 3). PCR products were separated on 2% agarose gel, stained with ethidium bromide and photographed using a Gel documentation system (BioRad).

Antibiotic sensitivity test

Antibiotic susceptibility test was performed by disk diffusion method using the commercial antibiotic disk on Mullar-Hinton agar to assess the susceptibility and resistance pattern of the isolates. For this purpose, eight different antibiotic discs were obtained from commercial sources (Himedia, India and Oxoid Ltd. England). The selected antibiotics used were ciprofloxacin (5 μg/disc), azithromycin (30 μg/disc), amoxicillin (30 μg/disc), gentamicin (10 μg/disc), norfloxacin (10 μg/disc), erythromycin (30 μg/disc), streptomycin (10 μg/disc), and tetracycline (30 μg/disc). The interpretation on susceptibility was done according to the guidelines of Clinical and Laboratory Standard Institute (CLSI, 2012) formerly known as NCCLS.

RESULTS

After 2 hrs culture in nutrient broth, the clear transparent broth were changed to turbid, which indicates bacterial growth. EMB agar plates streaked with the organism and incubated at 37°C for 24 hrs. The growth of E. coli was indicated smooth circular, greenish black color colonies with

Table 1: Primers used in this study.
Primers
ECO-1
ECO-2
Upper strand
Lower strand
a metallic sheen. XLD agar plates streaked with the organism and incubated at 37°C for 24 hrs aerobically, and the growth of *Salmonella* was indicated by smooth, circular, and black centered colonies. A series of biochemical test especially selective for *Salmonella* and *E. coli* were performed. *E. coli* can ferment all the five basic sugars (dextrose, sucrose, lactose, maltose, and mannitol) and produce acid and gas. *E. coli* also showed the positive reaction in MR and Indole test but negative to VP reaction. Furthermore *Salmonella* ferment three basic sugars (dextrose, maltose, and mannitol) but does not ferment sucrose and lactose and *Salmonella* showed a positive reaction to MR and negative to Indole, VP reaction.

All the isolates of *E. coli* were positive to 16S rRNA gene amplification, and histidine transport operon gene amplification were positive for all *Salmonella* isolates (Figures 1 and 2). *E. coli* was most prevalent organism in all samples comparing to *Salmonella* (Table 4).

Antibiogram studies

Based on the susceptibility to antibiotics, the bacteria were categorized into three group’s viz. sensitive, intermediate, and resistance. Out of eight antibiotics used this study, ciprofloxacin, gentamicin, streptomycin, and norfloxacin were found to be sensitive to all isolates of *Salmonella* and *E. coli*, whereas amoxicillin and erythromycin were resistant against most of the isolates. The antibiotic sensitivity patterns have been summarized in Figures 3 and 4.

DISCUSSION

In the recent study, *E. coli* and *Salmonella* were isolated from broiler.11,12 Considering all the 60 samples *E. coli* was isolated from 50 (83.33%) samples. These findings is supported with some of the previous study13,14 where described the prevalence of 51% in the broiler. In this study, the prevalence of *Salmonella* was 30% in broiler.15-17

Isolates of *E. coli* observed in EMB agar revealed smooth, circular, greenish black color colonies with metallic sheen and pink color colonies on McConkey agar.18-21 In Gram’s staining, the morphology of the isolated bacteria exhibited Gram-negative, short rod arranged in single or paired.22,23 The *Salmonella* revealed smooth, circular, black centered colonies on XLD agar.24,25 Morphology of the *Salmonella* exhibited Gram-negative, arranged in single or pair and motile.26,27

| Table 2: Thermal profiles used to amplify 16S rRNA gene in *E. coli*. |
|-------------------------|-----------------|--------|---|
| PCR condition | Temperature (°C) | Time | Cycle |
| Initial denaturation | 95 | 5 mins | 1 |
| Denaturation | 94 | 45 sec | |
| Annealing | 52 | 45 sec | 30 |
| Extension | 72 | 1 min | |
| Final extension | 72 | 5 mins | 1 |

E. coli: Escherichia coli, PCR: Polymerase chain reaction

| Table 3: Thermal profiles used to amplify genus-specific *Salmonella*. |
|-------------------------|-----------------|--------|---|
| PCR condition | Temperature (°C) | Time | Cycle |
| Initial denaturation | 94 | 5 mins | 1 |
| Denaturation | 94 | 30 sec | |
| Annealing | 56 | 30 sec | 30 |
| Extension | 72 | 45 sec | |
| Final extension | 72 | 5 mins | 1 |

PCR: Polymerase chain reaction

| Table 4: Summary of isolated bacteria from broiler meat of different upazilla markets. |
|-----------------------------|------------------|------------------|
| District (number of samples) | Number of isolates |
| Mymensingh (30) | *E. coli* (25) | *Salmonella* spp.(9) |
| Gazipur (15) | *E. coli* (12) | *Salmonella* spp.(5) |
| Sherpur (15) | *E. coli* (13) | *Salmonella* spp.(4) |

E. coli: Escherichia coli
For the confirmation of the presence of *E. coli* in the samples ECO-1 and ECO-2 primer was used in the PCR to amplify the 16S rRNA gene of *E. coli* and for the amplification of histidine transport operon gene to confirm *Salmonella* spp. Upper strand and Lower strand primer was used.

In the present study, it was found that the *E. coli* isolated from broiler were sensitive to ciprofloxacin and gentamicin. Resistance of *E. coli* was observed against erythromycin, amoxicillin, and amoxicillin.5,32,34,43 The possession of such factors by the *E. coli* isolates signify the fact that the organisms might have gained the resistance property due to the indiscriminate use of antibiotics. The occurrence of isolated bacteria should be considered as hazardous to health and advocate the preventing risk factors. However, in the present study, ciprofloxacin were proved to be the best antibiotics to treat *E. coli* infection since they were highly effective.41,44

It was revealed that *Salmonella* spp. were sensitive to ciprofloxacin, gentamicin and azithromycin28,29 and resistant to erythromycin, and amoxicillin.30-32

CONCLUSION

E. coli and *Salmonella* spp. were isolated from the meat samples of broilers collected from different upazilla live bird market of Mymensingh, Gazipur, and Sherpur districts in Bangladesh. Prudent use of antibiotics should be considered in broiler production (where permissible) since many strains are resistant to common antibiotics, and some were multidrug resistant as described in this study. Potential drug resistant pathogens in otherwise normal broilers may be a serious public health concern. Current findings warrants further studies with the isolated strains of bacteria.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Animal Ethics Committee

REFERENCES

1. Abd-Elghany SM, Sallam KI, Abd-Elkhaliek A, Tamura T. Occurrence, genetic characterization and antimicrobial resistance of *Salmonella* isolated from chicken meat and giblets. Epidemiol Infect. 2015;143(5):997-1003.
2. Abgottspon H, Stephan R, Bagutti C, Brodmann P, Häichler H, Zurfluh K. Characteristics of extended-spectrum cephalosporin-resistant *Escherichia coli* isolated from Swiss and imported poultry meat. J Food Prot. 2014;77(1):112-5.
3. Aguirre AA, Quan TJ, Cook RS, McLean RG. Cloacal flora isolated from wild black-bellied whistling ducks (*Dendrocygna autumnalis*) in Laguna La Nacha, Mexico. Avian Dis. 1992;36(2):459-62.
4. Ahmed AM, Shimabukuro H, Shimamoto T. Isolation and molecular characterization of multidrug-resistant strains of *Escherichia coli* and *Salmonella* from retail chicken meat in Japan. J Food Sci. 2009;74(7):M405-10.
5. Akond MA, Hassan SM, Alam S, Shirin M. Antibiotic resistance of *Escherichia coli* isolated from poultry and poultry environment of Bangladesh. Am J Environ Sci. 2009;5:47-52.
6. Alcaine SD, Warnick LD, Wiedmann M. Antimicrobial resistance in nontyphoidal *Salmonella*. J Food Prot. 2007;70(3):780-90.
7. Al-Ghamdi MS, El-Morsy F, Al-Mustafa ZH, Faiz M, Al-Rahman M. Bacterial organisms isolated from healthy chicken in the Eastern province of Saudi Arabia and their pattern of resistance to antimicrobial agents. Sci J King Faisal Univ Basic Appl Sci. 2001;2:14-21.
8. Amapa DF. Antibiotic resistance in poultry. Int J Poult Sci. 2009;8:404-8.
9. Awad-Alla ME, Abdien HM, Dessouki AA. Prevalence of bacteria and parasites in White Ibis in Egypt. Vet Ital. 2010;46(3):277-86.
10. Barua H, Biswas PK, Olsen KE, Shil SK, Christensen JP. Molecular characterization of motile serovars of *Salmonella enterica* from breeder and commercial broiler poultry farms in Bangladesh. PLoS One. 2013;8(3):e57811.
11. Beutin L, Geier D, Zimmermann S, Aleksic S, Gillespie HA, Whittam TS. Epidemiological relatedness and clonal types of natural populations of Escherichia coli strains producing shiga toxin between Stx genotype and Stx2 expression level in Shiga 96 toxin-producing Escherichia coli O157 strain in separate population of cattle and sheep. Appl Environ Microbiol. 1991;63:2175-80.

12. Boerlin P, White DG. Antimicrobial resistance and its epidemiology. Antimicrib Ther Vet Med. 2013;4:27-43.

13. Capita RC, Calleja M, Pieetro M, Fernandez M, Del CG, Moreno B. Incidence and pathogenicity of Yersinia spp. isolates from poultry in Spain. Food Microbiol. 2002;19:295-301.

14. Carbas B, Cardoso L, Coelho AC. Investigation on the knowledge associated with foodborne diseases in consumers of northeastern Portugal. Food Control. 2012;30:54-7.

15. Cardinale E, Perrier Gros-Claude JD, Tall F, Cissé M, Guéyeand EF, Salavi G. Prevalence of Salmonella and campylobacter in retail chicken carcasses in senegal. Rev Élev Méd Vét Pays Trop. 2003;56:13-6.

16. Centers for Disease Control and Prevention (CDC). Notes from the field: multistate outbreak of Salmonella altona and Johannesburg infections linked to chicks and ducklings from a mail-order hatchery - United States, February-October 2011. MMWR Morb Mortal Wkly Rep. 2012;61(11):195.

17. Cheesbrough M. Microbiology. Medical Laboratory Manual for Tropical Countries. 1st Edition, Volume. 2. London: English Language Book Society; 1985: 400-80.

18. Hyeon JY, Chon JW, Hwang IG, Hwang IG, Hwang HS, Kim MS, Kim YS, et al. Genus-specific detection of Campylobacter pathogen-specific and conserved genes expressed in vivo using the polymerase chain reaction (PCR). J Vet Diagn Invest. 1993;5:368-71.

19. Cohen ND, Neibergs HL, McGruder ED, Whitford HW, Behle RW, Ray PM, et al. Genus-specific detection of Salmonellae using the polymerase chain reaction (PCR). J Vet Diagn Invest. 1993;5:368-71.

20. Cowan ST. Cowan and Steel’s Manual for Identification of Medical Bacteria. 2nd Edition. Cambridge, London: Cambridge University Press; 1985: 138-9.

21. de Jong A, Thomas V, Simjee S, Godinho K, Schiessl B, Klein U, et al. Pan-European monitoring of susceptibility to human-use antimicrobial agents in enteric bacteria isolated from healthy food-producing animals. J Antimicrob Chemother. 2012;67(3):638-51.

22. Derakhshanter A, Chanbapour R. A study on avian cellulites on broiler chickens. Vet Arch. 2002;72:277-84.

23. Donado-Godoy P, Byrne BA, Hume M, Leon M, Perez-Gutierrez E, Vives Flores MJ, et al. Molecular characterization of Salmonella Paratyphi B dT+ and Salmonella Heidelberg from poultry and retail chicken meat in Colombia by pulsed-field gel electrophoresis. J Food Prot. 2015;78(4):802-7.

24. Dozois CM, Daigle F, Curtiss R 3rd. Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc Natl Acad Sci U S A. 2003;100(1):247-52.

25. Ellerbroek L, Narapati D, Phu Tai N, Poosaran N, Pinthong R, Sirimalaisuwann A, et al. Antibiotic resistance in Salmonella isolates from imported chicken carcasses in Bhutan and from pig carcasses in Vietnam. J Food Prot. 2010;73(2):376-9.

26. Englen MD, Ladely SR, Fedorka-Cray PJ. Isolation of Campylobacter and identification by PCR. Methods Mol Biol. 2003;216:109-21.

27. Fratamico PM, Bagi LK, Cray WC Jr, Narang N, Yan X, Medina M, et al. Detection by multiplex real-time polymerase chain reaction assays and isolation of Shiga toxin-producing Escherichia coli serogroups O26, O45, O103, O111, O121, and O145 in ground beef. Foodborne Pathog Dis. 2011;8(5):601-7.

28. Gai W, Wang J, Wang J, Cui Z, Qu Z, Cui J, et al. Molecular classification and drug resistance analysis of Escherichia coli isolated from poultry in China. Int J Clin Exp Med. 2015;8(1):836-44.

29. Hasina B. Enteropathotypic characterization of Escherichia coli isolated from diarrhoeic calves and their antibiogram study. M.S. Thesis, Department of Microbiology and Hygiene. Mymensingh: BAU; 2006: 68.

30. Hassan J, Parvej MS, Rahman MB, Khan MS, Rahman MT, Kamal T, et al. Prevalence and characterization of Escherichia coli from rectal swab of apparently healthy cattle in Mymensingh, Bangladesh. Microbes Health. 2014;3:12-4.

31. Honda T, Arita M, Takeda Y, Miwatani T. Further evaluation of the Biken test (modified Elek test) for detection of enterotoxigenic Escherichia coli producing heat-labile enterotoxin and application of the test to sampling of heat-stable enterotoxin. J Clin Microbiol. 1982;16(1):60-2.

32. Huang TM, Lin TL, Wu CC. Antimicrobial susceptibility and resistance of chicken Escherichia coli, Salmonella spp. and Pasteurella multocida isolates. Avian Dis. 2009;53(1):89-93.

Cite this article as: Al-Salauddin AS et al. Int J Basic Clin Pharmacol. 2015 Oct;4(5):999-1003.