A short introduction to local fractional complex analysis

Yang Xiao-Jun

Department of Mathematics and Mechanics, China University of Mining and Technology, Xuzhou Campus, Xuzhou, Jiangsu, 221008, P. R. C

dyangxiaojun@163.com

This paper presents a short introduction to local fractional complex analysis. The generalized local fractional complex integral formulas, Yang-Taylor series and local fractional Laurent’s series of complex functions in complex fractal space, and generalized residue theorems are investigated.

Key words: Local fractional calculus, complex-valued functions, fractal, Yang-Taylor series, local fractional Laurent series, generalized residue theorems

MSC2010: 28A80, 30C99, 30B99

1 Introduction

Local fractional calculus has played an important role in not only mathematics but also in physics and engineers [1-12]. There are many definitions of local fractional derivatives and local fractional integrals (also called fractal calculus). Hereby we write down local fractional derivative, given by [5-7]

\[f^{(a)}(x_0) = \frac{d^a f(x)}{dx^a} \bigg|_{x=x_0} = \lim_{\Delta x \to 0} \frac{\Delta^a f(x) - f(x_0)}{(x-x_0)^a} \]

with \(\Delta^a f(x) = \Gamma(1+\alpha) \Delta f(x) - f(x_0) \), and local fractional integral of \(f(x) \), denoted by [5-6,8]

\[a I^b_{-b} f(x) = \frac{1}{\Gamma(1+\alpha)} \int_a^b f(t) dt = \frac{1}{\Gamma(1+\alpha)} \lim_{\Delta x \to 0} \sum_{j=0}^{N-1} f(t_j)(\Delta t_j)^a \]

with \(\Delta t_j = t_{j+1} - t_j \) and \(\Delta t = \max\{\Delta t_1, \Delta t_2, \Delta t_j, \ldots\} \), where for \(j = 0, \ldots, N-1 \), \([t_j, t_{j+1}]\) is a partition of the interval \([a, b]\) and \(t_0 = a, t_N = b \).

More recently, a motivation of local fractional derivative and local fractional integral of complex functions is given [11]. Our attempt, in the present paper, is to continue to study local fractional calculus of complex function. As well, a short outline of local fractional complex analysis will be established.
2 Local fractional calculus of the complex-variable functions

In this section we deduce fundamentals of local fractional calculus of the complex-valued functions. Here we start with local fractional continuity of complex functions.

2.1 Local fractional continuity of complex-variable functions

Definition 1
Given \(z_0 \) and \(|z - z_0| < \delta \), then for any \(z \) we have [11]

\[
|f(z) - f(z_0)| < \varepsilon^\alpha. \tag{2.1}
\]

Here complex function \(f(z) \) is called local fractional continuous at \(z = z_0 \), denoted by

\[
\lim_{z \to z_0} f(z) = f(z_0). \tag{2.2}
\]

A function \(f(z) \) is called local fractional continuous on the region \(\mathfrak{R} \), denoted by

\[
f(z) \in C_\alpha (\mathfrak{R}).
\]

As a direct result, we have the following results:

Suppose that \(\lim_{z \to z_0} f(z) = f(z_0) \) and \(\lim_{z \to z_0} g(z) = g(z_0) \), then we have that

\[
\lim_{z \to z_0} [f(z) \pm g(z)] = f(z_0) \pm g(z_0), \tag{2.3}
\]

\[
\lim_{z \to z_0} [f(z) g(z)] = f(z_0) g(z_0), \tag{2.4}
\]

and

\[
\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f(z_0)}{g(z_0)}, \tag{2.5}
\]

the last only if \(g(z_0) \neq 0 \).

2.2 Local fractional derivatives of complex function

Definition 2
Let the complex function \(f(z) \) be defined in a neighborhood of a point \(z_0 \). The local fractional derivative of \(f(z) \) at \(z_0 \) is defined by the expression [11]

\[
z_0 D_z^\alpha f(z) = \lim_{z \to z_0} \frac{\Gamma(1 + \alpha)[f(z) - f(z_0)]}{(z - z_0)^\alpha}, 0 < \alpha \leq 1. \tag{2.6}
\]

If this limit exists, then the function \(f(z) \) is called to be local fractional analytic at \(z_0 \), denoted by

\[
z_0 D_z^\alpha f(z), \quad \frac{d^\alpha}{dz^\alpha} f(z)\bigg|_{z=z_0} \text{ or } f^{(\alpha)}(z_0).
\]
Remark 1. If the limits exist for all \(z_0 \in \mathbb{R} \), then \(f(z) \) is said to be local fractional analytic in a region \(\mathbb{R} \), denoted by

\[
f(z) \in D(\mathbb{R})
\]

Suppose that \(f(z) \) and \(g(z) \) are local fractional analytic functions, the following rules are valid [11].

\[
\frac{d^\alpha (f(z) \pm g(z))}{dz^\alpha} = \frac{d^\alpha f(z)}{dz^\alpha} \pm \frac{d^\alpha g(z)}{dz^\alpha};
\]

(2.7)

\[
\frac{d^\alpha (f(z)g(z))}{dz^\alpha} = g(z)\frac{d^\alpha f(z)}{dz^\alpha} + f(z)\frac{d^\alpha g(z)}{dz^\alpha};
\]

(2.8)

\[
\frac{d^\alpha \left(\frac{f(z)}{g(z)} \right)}{dz^\alpha} = \frac{g(z)\frac{d^\alpha f(z)}{dz^\alpha} + f(z)\frac{d^\alpha g(z)}{dz^\alpha}}{g(z)^2}
\]

(2.9)

if \(g(z) \neq 0 \);

\[
\frac{d^\alpha (Cf(z))}{dz^\alpha} = C \frac{d^\alpha f(z)}{dz^\alpha},
\]

(2.10)

where \(C \) is a constant;

If \(y(z) = (f \circ u)(z) \) where \(u(z) = g(z) \), then

\[
\frac{d^\alpha y(z)}{dz^\alpha} = f^{(\alpha)}(g(z))(g^{(\alpha)}(z))^{\alpha}.
\]

(2.11)

2.3 Local fractional Cauchy-Riemann equations

Definition 3

If there exists a function

\[
f(z) = u(x,y) + i^\alpha v(x,y),
\]

(2.12)

where \(u \) and \(v \) are real functions of \(x \) and \(y \). The local fractional complex differential equations

\[
\frac{\partial^\alpha u(x,y)}{\partial x^\alpha} - \frac{\partial^\alpha v(x,y)}{\partial y^\alpha} = 0
\]

(2.13)

and

\[
\frac{\partial^\alpha u(x,y)}{\partial y^\alpha} + \frac{\partial^\alpha v(x,y)}{\partial x^\alpha} = 0
\]

(2.14)

are called local fractional Cauchy-Riemann Equations.

Theorem 1

Suppose that the function

\[
f(z) = u(x,y) + i^\alpha v(x,y)
\]

(2.15)
is local fractional analytic in a region \mathcal{R}. Then we have

$$\frac{\partial^\alpha u(x,y)}{\partial x^\alpha} - \frac{\partial^\alpha v(x,y)}{\partial y^\alpha} = 0$$

(2.16)

and

$$\frac{\partial^\alpha u(x,y)}{\partial y^\alpha} + \frac{\partial^\alpha v(x,y)}{\partial x^\alpha} = 0.$$

(2.17)

Proof. Since $f(z) = u(x,y) + i^\alpha v(x,y)$, we have the following identity

$$f^{(\alpha)}(z_0) = \lim_{z \to z_0} \Gamma(1 + \alpha) \left[f(z) - f(z_0) \right]/(z - z_0)^\alpha.$$

(2.18)

Consequently, the formula (2.18) implies that

$$\lim_{\Delta z \to 0} \frac{\Gamma(1 + \alpha) \left[f(z + \Delta z) - f(z) \right]}{\Delta z^\alpha}$$

$$= \lim_{\Delta x \to 0 \atop \Delta y \to 0} \frac{\Gamma(1 + \alpha) \left[u(x + \Delta x, y + \Delta y) - u(x, y) + i^\alpha \left(v(x + \Delta x, y + \Delta y) - v(x, y) \right) \right]}{\Delta x^\alpha + i^\alpha \Delta y^\alpha}.$$

(2.19)

In a similar manner, setting $\Delta y \to 0$ and taking into account the formula (2.19), we have

$$\left(\Delta y \right)^\alpha \to 0$$

such that

$$f^{(\alpha)}(z_0) = \lim_{\Delta y \to 0} \frac{\Gamma(1 + \alpha) \left[u(x, y + \Delta y) - u(x, y) + i^\alpha \left(v(x, y + \Delta y) - v(x, y) \right) \right]}{i^\alpha \Delta y^\alpha}.$$

(2.20)

Hence

$$f^{(\alpha)}(z_0) = -i^\alpha \frac{\partial^\alpha u(x,y)}{\partial y^\alpha} + \frac{\partial^\alpha v(x,y)}{\partial x^\alpha}.$$

(2.21)

If $\Delta x \to 0$, from (2.19) we have $\left(\Delta x \right)^\alpha \to 0$ such that

$$f^{(\alpha)}(z_0) = \lim_{\Delta x \to 0} \frac{\Gamma(1 + \alpha) \left[u(x + \Delta x, y) - u(x, y) + i^\alpha \left(v(x + \Delta x, y) - v(x, y) \right) \right]}{\Delta x^\alpha}.$$

(2.22)

Thus we get the identity

$$f^{(\alpha)}(z_0) = \frac{\partial^\alpha u(x,y)}{\partial x^\alpha} + i^\alpha \frac{\partial^\alpha v(x,y)}{\partial x^\alpha}.$$

(2.24)

Since $f(z) = u(x,y) + i^\alpha v(x,y)$ is local fractional analytic in a region \mathcal{R}, we have the following formula

$$f^{(\alpha)}(z_0) = \frac{\partial^\alpha u(x,y)}{\partial x^\alpha} + i^\alpha \frac{\partial^\alpha v(x,y)}{\partial x^\alpha} = -i^\alpha \frac{\partial^\alpha u(x,y)}{\partial y^\alpha} + \frac{\partial^\alpha v(x,y)}{\partial y^\alpha}.$$

(2.25)

Hence, from (2.25), we arrive at the following identity
and
\[\frac{\partial^\alpha u(x,y)}{\partial x^\alpha} - \frac{\partial^\alpha v(x,y)}{\partial y^\alpha} = 0 \] \hspace{1cm} (2.26)

and
\[\frac{\partial^\alpha u(x,y)}{\partial y^\alpha} + \frac{\partial^\alpha v(x,y)}{\partial x^\alpha} = 0. \] \hspace{1cm} (2.27)

This completes the proof of Theorem 1.

Remark 2. Local fractional C-R equations are sufficient conditions that \(f(z) \) is local fractional analytic in \(\mathbb{R} \).

The local fractional partial equations
\[\frac{\partial^{2\alpha} u(x,y)}{\partial x^{2\alpha}} + \frac{\partial^{2\alpha} u(x,y)}{\partial y^{2\alpha}} = 0 \] \hspace{1cm} (2.28)

and
\[\frac{\partial^{2\alpha} v(x,y)}{\partial x^{2\alpha}} + \frac{\partial^{2\alpha} v(x,y)}{\partial y^{2\alpha}} = 0 \] \hspace{1cm} (2.29)

are called local fractional Laplace equations, denoted by
\[\nabla^{\alpha} u(x,y) = 0 \] \hspace{1cm} (2.30)

and
\[\nabla^{\alpha} v(x,y) = 0, \] \hspace{1cm} (2.31)

where
\[\nabla^{\alpha} = \frac{\partial^{2\alpha}}{\partial x^{2\alpha}} + \frac{\partial^{2\alpha}}{\partial y^{2\alpha}} \] \hspace{1cm} (2.32)

is called local fractional Laplace operator.

Remark 3. Suppose that \(\nabla^{\alpha} u(x,y) = 0 \) is a local fractional harmonic function in \(\mathbb{R} \).

2.4 Local fractional integrals of complex function

Definition 4

Let \(f(z) \) be defined, single-valued and local fractional continuous in a region \(\mathbb{R} \). The local fractional integral of \(f(z) \) along the contour \(C \) in \(\mathbb{R} \) from point \(z_p \) to point \(z_q \), is defined as [11]

\[I_{C^{\alpha}} f(z) = \frac{1}{\Gamma(1+\alpha)} \lim_{\epsilon \to 0} \sum_{i=0}^{n-1} f(z_i)(\Delta z_i)^{\alpha} \] \hspace{1cm} (2.33)

where for \(i = 0,1,\ldots,n \), \(\Delta z_i = z_i - z_{i-1} \), \(z_0 = z_p \) and \(z_n = z_q \).
For convenience, we assume that
\[z_0 I_z^{(a)} f(z) = 0 \]
(2.34)
if \(z = z_0 \).

The rules for complex integration are similar to those for real integrals. Some important results are as follows [11]:

Suppose that \(f(z) \) and \(g(z) \) be local fractional continuous along the contour \(C \) in \(\mathbb{R} \).

\[
\frac{1}{\Gamma(1+\alpha)} \int_C \left[(f(z) + g(z))(dz)^\alpha \right] = \frac{1}{\Gamma(1+\alpha)} \int_C f(z)(dz)^\alpha + \frac{1}{\Gamma(1+\alpha)} \int_C g(z)(dz)^\alpha;
\]
\[(2.35) \]

\[
\frac{1}{\Gamma(1+\alpha)} \int_C kf(z)(dz)^\alpha = \frac{k}{\Gamma(1+\alpha)} \int_C f(z)(dz)^\alpha,
\]
\[(2.36) \]

for a constant \(k \); \n
\[
\frac{1}{\Gamma(1+\alpha)} \int_C f(z)(dz)^\alpha = \frac{1}{\Gamma(1+\alpha)} \int_{z_1} f(z)(dz)^\alpha + \frac{1}{\Gamma(1+\alpha)} \int_{z_2} f(z)(dz)^\alpha,
\]
\[(2.37) \]

where \(C = C_1 + C_2 \):

\[
\frac{1}{\Gamma(1+\alpha)} \int_{z_1} f(z)(dz)^\alpha = -\frac{1}{\Gamma(1+\alpha)} \int_{z_2} f(z)(dz)^\alpha;
\]
\[(2.38) \]

\[
\left| \frac{1}{\Gamma(1+\alpha)} \int_C f(z)(dz)^\alpha \right| \leq \frac{1}{\Gamma(1+\alpha)} \int_C \left| f(z) \right|(dz)^\alpha \leq ML,
\]
\[(2.39) \]

where \(M \) is an upper bound of \(f(z) \) on \(C \) and \(L = \frac{1}{\Gamma(1+\alpha)} \int_C \left| (dz)^\alpha \right| \).

Theorem 2

If the contour \(C \) has end points \(z_p \) and \(z_q \) with orientation \(z_p \) to \(z_q \), and if function \(f(z) \) has the primitive \(F(z) \) on \(C \), then we have

\[
\frac{1}{\Gamma(1+\alpha)} \int_C f(z)(dz)^\alpha = F(z_q) - F(z_p).
\]
\[(2.40) \]

Remark 4. Suppose that \(f(z) \in D(\mathbb{R}) \). For \(k = 0,1,...,n \) and \(0 < \alpha \leq 1 \) there exists a local fractional series

\[
f(z) = \sum_{n=0}^{\infty} \frac{f^{(n\alpha)}(z_0)}{\Gamma(1+n\alpha)} (z-z_0)^{n\alpha}\]
\[(2.41) \]

with \(f^{(n\alpha)}(z) \in D(\mathbb{R}) \), where \(f^{(n\alpha)}(z) = D_z^{(n\alpha)} \cdots D_z^{(n\alpha)} f(z) \).

This series is called Yang-Taylor series of local fractional analytic function (for real function case, see [12].)
Theorem 3

If \(C \) is a simple closed contour, and if function \(f(z) \) has a primitive on \(C \), then [11]

\[
\frac{1}{\Gamma(1+\alpha)} \oint_C f(z) \, (dz)^\alpha = 0. \tag{2.42}
\]

Corollary 4

If the closed contours \(C_1, C_2 \) is such that \(C_2 \) lies inside \(C_1 \), and if \(f(z) \) is local fractional analytic on \(C_1, C_2 \) and between them, then we have [11]

\[
\frac{1}{\Gamma(1+\alpha)} \int_{C_1} f(z) \, (dz)^\alpha = \frac{1}{\Gamma(1+\alpha)} \int_{C_2} f(z) \, (dz)^\alpha. \tag{4.43}
\]

Theorem 5

Suppose that the closed contours \(C_1, C_2 \) is such that \(C_2 \) lies inside \(C_1 \), and if \(f(z) \) is local fractional analytic on \(C_1, C_2 \) and between them, then we have [11]

\[
\frac{1}{\Gamma(1+\alpha)} \int_{C_1} f(z) \, (dz)^\alpha = \frac{1}{\Gamma(1+\alpha)} \int_{C_2} f(z) \, (dz)^\alpha. \tag{2.44}
\]

3 Generalized local fractional integral formulas of complex functions

In this section we start with generalized local fractional integral formulas of complex functions and deduce some useful results.

Theorem 6

Suppose that \(f(z) \) is local fractional analytic within and on a simple closed contour \(C \) and \(z_0 \) is any point interior to \(C \). Then we have

\[
\frac{1}{(2\pi)^a} \frac{1}{i^a} \frac{1}{\Gamma(1+\alpha)} \oint_C \frac{f(z)}{(z-z_0)^a} \, (dz)^\alpha = f(z_0). \tag{3.1}
\]

Proof. From (2.44), we arrive at the formula

\[
\frac{1}{(2\pi)^a} \frac{1}{i^a} \frac{1}{\Gamma(1+\alpha)} \oint_C \frac{f(z)}{(z-z_0)^a} \, (dz)^\alpha = \frac{1}{(2\pi)^a} \frac{1}{i^a} \frac{1}{\Gamma(1+\alpha)} \oint_{C_1} \frac{f(z)}{(z-z_0)^a} \, (dz)^\alpha. \tag{3.2}
\]

where \(C_1 : |(z-z_0)^a| = \epsilon^\alpha \).

Setting \(|(z-z_0)^a| = \epsilon^\alpha \) implies that

\[
z^a - z_0^a = \epsilon^\alpha E_\alpha \left(i^a \theta^a\right) \tag{3.3}
\]
Taking (3.3) and (3.4), it follows from (3.2) that
\[
\frac{1}{(2\pi)^\alpha} \cdot \frac{1}{\Gamma(1+\alpha)} \int_0^{2\pi} \frac{f(z_0 + \varepsilon E(i\theta))}{\varepsilon E_\alpha(i \theta^\alpha)} E_\alpha(i \theta^\alpha) (d\theta)^\alpha \cdot \lim_{\varepsilon \to 0} \frac{1}{(2\pi)^\alpha} \cdot \frac{1}{\Gamma(1+\alpha)} \int_0^{2\pi} f(z_0 + \varepsilon E(i\theta)) (d\theta)^\alpha.
\]
From (3.5), we get
\[
\frac{1}{(2\pi)^\alpha} \cdot \frac{1}{\Gamma(1+\alpha)} \int_0^{2\pi} \left(\lim_{\varepsilon \to 0} f(z_0 + \varepsilon E(i\theta)) \right) (d\theta)^\alpha = \frac{f(z_0)}{(2\pi)^\alpha} \cdot \frac{1}{\Gamma(1+\alpha)} \int_0^{2\pi} (d\theta)^\alpha.
\]
Furthermore
\[
f(z_0) = \frac{f(z_0)}{(2\pi)^\alpha} \cdot \frac{1}{\Gamma(1+\alpha)} \int_0^{2\pi} (d\theta)^\alpha = f(z_0).
\]
Substituting (3.7) into (3.6) and (3.3) implies that
\[
\frac{1}{(2\pi)^\alpha} \cdot \frac{1}{\Gamma(1+\alpha)} \int_0^{2\pi} \left(\lim_{\varepsilon \to 0} f(z_0 + \varepsilon E(i\theta)) \right) (d\theta)^\alpha (dz)^\alpha = f(z_0).
\]
The proof of the theorem is completed.
Likewise, we have the following corollary:

Corollary 7

Suppose that \(f(z) \) is local fractional analytic within and on a simple closed contour \(C \) and \(z_0 \) is any point interior to \(C \). Then we have
\[
\frac{1}{(2\pi)^\alpha} \cdot \frac{1}{\Gamma(1+\alpha)} \int_0^{2\pi} \left(\lim_{\varepsilon \to 0} f(z_0 + \varepsilon E(i\theta)) \right) (d\theta)^\alpha (dz)^\alpha = f(z_0).
\]

Proof. Taking into account formula (3.1), we arrive at the identity.

Theorem 8

Suppose that \(f(z) \) is local fractional analytic within and on a simple closed contour \(C \) and \(z_0 \) is any point interior to \(C \). Then we have
\[
\frac{1}{(2\pi)^\alpha} \cdot \frac{1}{\Gamma(1+\alpha)} \int_0^{2\pi} \left(\lim_{\varepsilon \to 0} f(z_0 + \varepsilon E(i\theta)) \right) (d\theta)^\alpha (dz)^\alpha = f(z_0).
\]

Proof. Taking \(f(z) = 1 \), from (3.9) we deduce the result.

Theorem 9

Suppose that \(f(z) \) is local fractional analytic within and on a simple closed contour \(C \) and \(z_0 \) is any point interior to \(C \). Then we have
\[
\frac{1}{\Gamma(1+\alpha)} \oint_C \frac{(dz)^\alpha}{(z-z_0)^{\alpha n}} = 0, \text{ for } n > 1.
\] (3.10)

Proof. Taking \(f(z) = 1 \), from (3.9) we deduce the result.

4 Complex Yang-Taylor’s series and local fractional Laurent’s series

In this section we start with a Yang-Taylor’s expansion formula of complex functions and deduce local fractional Laurent series of complex functions.

4.1 Complex Yang-Taylor’s expansion formula

Definition 5
Let \(f(z) \) be local fractional analytic inside and on a simple closed contour \(C \) having its center at \(z = z_0 \). Then for all points \(z \) in the circle we have the Yang-Taylor series representation of \(f(z) \), given by

\[
f(z) = f(z_0) + \frac{f^{(1)}(z_0)}{\Gamma(1+\alpha)} (z-z_0)^\alpha + \frac{f^{(2\alpha)}(z_0)}{\Gamma(1+2\alpha)} (z-z_0)^{2\alpha} + \ldots + \frac{f^{(k\alpha)}(z_0)}{\Gamma(1+k\alpha)} (z-z_0)^{k\alpha} + \ldots
\] (4.1)

For \(C : |z - z_0| \leq R^\alpha \), we have the complex Yang-Taylor series

\[
f(z) = \sum_{k=0}^{\infty} a_k (z-z_0)^{k\alpha}.
\] (4.2)

From (3.44) the above expression implies

\[
a_k = \frac{1}{(2\pi)^i} \frac{1}{\Gamma(1+\alpha)} \oint_C \frac{f(z)}{(z-z_0)^{k+1}\alpha} (dz)^\alpha = \frac{f^{(k\alpha)}(z_0)}{\Gamma(1+k\alpha)},
\] (4.3)

for \(C : |z - z_0| \leq R^\alpha \).

Successively, it follows from (4.3) that

\[
f(z) = \sum_{k=0}^{\infty} a_k (z-z_0)^{k\alpha},
\] (4.4)

where

\[
a_k = \frac{1}{(2\pi)^i} \frac{1}{\Gamma(1+\alpha)} \oint_C \frac{f(z)}{(z-z_0)^{k+1}\alpha} (dz)^\alpha = \frac{f^{(k\alpha)}(z_0)}{\Gamma(1+k\alpha)},
\] (4.5)
for \(C : |z - z_0|^\alpha \leq R^\alpha \).

Hence, the above formula implies the relation (4.2).

Theorem 10

Suppose that complex function \(f(z) \) is local fractional analytic inside and on a simple closed contour \(C \) having its center at \(z = z_0 \). There exist all points \(z \) in the circle such that we have the Yang-Taylor’s series of \(f(z) \)

\[
f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^{k\alpha},
\]

where

\[
a_k = \frac{1}{(2\pi)^{1+\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_C \frac{f(z)}{z - z_0} (dz)^\alpha = \frac{f^{(k\alpha)}(z_0)}{\Gamma(1+k\alpha)},
\]

for \(C : |z - z_0|^\alpha \leq R^\alpha \).

Proof. Setting \(C_1 : |z - z_0|^\alpha = R^\alpha \) and using (3.1), we have

\[
f(z) = \frac{1}{(2\pi)^{1+\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_C \frac{f(\xi)}{z - \xi} (d\xi)^\alpha.
\]

Taking \(\xi \in C_1 \), we get

\[
\frac{|z - z_0|^{\alpha}}{|\xi - z_0|^{\alpha}} = q^{\alpha} < 1
\]

and

\[
\frac{1}{(\xi - z)^{\alpha}} = \frac{1}{(\xi - z_0)^{\alpha}} \cdot \frac{1}{1 - (z - z_0)^{\alpha}}
\]

\[
= \frac{1}{(\xi - z_0)^{\alpha}} \cdot \frac{1}{1 - \left(\frac{z - z_0}{\xi - z_0}\right)^{\alpha}}
\]

\[
= \sum_{n=1}^{\infty} \frac{1}{(\xi - z_0)^{n+1}\alpha} (z - z_0)^{n\alpha}.
\]

Substituting (4.8) into (4.6) implies that
Taking the Yang-Taylor formula of analytic function into account, we have the following relation

\[
f(z) = \sum_{n=0}^{N-1} \frac{f^{(n\alpha)}(z_0)(z-z_0)^{n\alpha}}{\Gamma(1+n\alpha)} + R_N,
\]

(4.10)

where \(R_N \) is reminder in the form

\[
R_N = \frac{1}{(2\pi)^a i^a} \cdot \frac{1}{\Gamma(1+\alpha)} \sum_{c_1}^\infty \left[\frac{f(\xi)(z-z_0)^{n\alpha}}{(\xi-z_0)^{(n+1)\alpha}} \right] (d\xi)^a.
\]

(4.11)

There exists a Yang-Taylor series

\[
f(z) = \sum_{n=0}^{\infty} \frac{f^{(n\alpha)}(z_0)(z-z_0)^{n\alpha}}{\Gamma(1+n\alpha)}
\]

(4.12)

where is \(f(z_0) \) is local fractional analytic at \(z = z_0 \).

Taking into account the relation \(\frac{(z-z_0)^{n\alpha}}{(\xi-z_0)^{(n+1)\alpha}} = q^{\alpha} < 1 \) and \(|f(z)| \leq M \), from (4.11) we get

\[
|R_N| \\
\leq \frac{1}{(2\pi)^a i^a} \cdot \frac{1}{\Gamma(1+\alpha)} \sum_{c_1}^\infty \left[\frac{f(\xi)(z-z_0)^{n\alpha}}{(\xi-z_0)^{(n+1)\alpha}} \right] (d\xi)^a
\]

(4.13)

\[
\leq \frac{1}{(2\pi)^a \Gamma(1+\alpha)} \sum_{c_1}^\infty \left[\frac{|M|}{(\xi-z_0)^{\alpha}} \right] (d\xi)^a
\]

\[
\leq \frac{(2\pi)^a R^a}{(2\pi)^a \Gamma(1+\alpha) 1-q^a}
\]

Furthermore

\[
\lim_{N \to \infty} R_N = 0.
\]

From (4.9), we have
\[f(z) = \sum_{n=1}^{\infty} \left[\frac{1}{(2\pi)^i} \frac{1}{\Gamma(1+\alpha)} \frac{f(\xi)(d\xi)^\alpha}{\xi^{n+1}} \right] (z-z_0)^{n\alpha}. \]

(4.14)

Hence

\[a_n = \frac{1}{(2\pi)^i} \frac{1}{\Gamma(1+\alpha)} \frac{f(\xi)(d\xi)^\alpha}{\xi^{n+1}}. \]

(4.15)

Hence the proof of the theorem is completed.

4.2 Singular point and poles

Definition 6
A singular point of a function \(f(z) \) is a value of \(z \) at which \(f(z) \) fails to be local fractional analytic. If \(f(z) \) is local fractional analytic everywhere in some region except at an interior point \(z = z_0 \), we call \(f(z) \) an isolated singularity.

If

\[f(z) = \frac{\phi(z)}{(z-z_0)^{n\alpha}} \]

(4.16)

and

\[\phi(z) \neq 0 \]

(4.17)

where \(\phi(z) \) is local fractional analytic everywhere in a region including \(z = z_0 \), and if \(n \) is a positive integer, then \(f(z) \) has an isolated singularity at \(z = z_0 \), which is called a pole of order \(n \).

If \(n = 1 \), the pole is often called a simple pole;
if \(n = 2 \), it is called a double pole, and so on.

4.3 Local fractional Laurent’s series

Definition 7
If \(f(z) \) has a pole of order \(n \) at \(z = z_0 \) but is local fractional analytic at every other point inside and on a contour \(C \) with center at \(z_0 \), then

\[\phi(z) = (z-z_0)^{n\alpha} f(z) \]

(4.18)

is local fractional analytic at all points inside and on \(C \) and has a Yang-Taylor series about \(z = z_0 \) so that
This is called a local fractional Laurent series for \(f(z) \).

More generally, it follows that
\[
f(z) =
\sum_{k=-\infty}^{\infty} a_k (z - z_0)^{ka},
\]
(4.20)
as a local fractional Laurent series.

For \(C : r^\alpha < |z - z_0|^\alpha < R^\alpha \) we have a local fractional Laurent series
\[
f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^{ka}.
\]
(4.21)

From (3.44), the above expression implies that
\[
a_k = \frac{1}{(2\pi)^{i}\cdot(1+\alpha)} \oint_{C} \frac{f(z)}{(z - z_0)^{(k+1)\alpha}} (dz)^{\alpha},
\]
(4.22)
where \(C : r^\alpha < |z - z_0|^\alpha < R^\alpha \).

Setting \(C_1 : |z - z_0|^\alpha = r^\alpha \) and \(C_2 : |z - z_0|^\alpha = R^\alpha \), from (2.44) we have
\[
f(z) = \frac{1}{(2\pi)^{i}\cdot(1+\alpha)} \oint_{C_1} \frac{f(z)}{(z - z_0)^{(k+1)\alpha}} (dz)^{\alpha} - \frac{1}{(2\pi)^{i}\cdot(1+\alpha)} \oint_{C_2} \frac{f(z)}{(z - z_0)^{(k+1)\alpha}} (dz)^{\alpha}
\]

Successively, it follows from the above that
\[
f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^{ka},
\]
(4.23)
where
\[
a_k = \frac{1}{(2\pi)^{i}\cdot(1+\alpha)} \oint_{C} \frac{f(z)}{(z - z_0)^{(k+1)\alpha}} (dz)^{\alpha},
\]
(4.24)
for \(C : r^\alpha \leq |z - z_0|^\alpha \leq R^\alpha \).

Theorem 11

If \(f(z) \) has local fractional analytic at every other point inside a contour \(C \) with center at \(z_0 \),

then \(f(z) \) has a local fractional Laurent series about \(z = z_0 \) so that
\[
f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^{ka}, 0 < \alpha \leq 1,
\]
(4.25)
where for \(C : r^\alpha < |z - z_0|^\alpha < R^\alpha \) we have
\[a_k = \frac{1}{(2\pi)^a} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_C \frac{f(z)}{(z-z_0)^{\alpha+1}} (dz)^a. \] (4.26)

Proof. Setting \(C_1 : |z-z_0|^a = r^a \) and \(C_2 : |z-z_0|^a = R^a \), from (2.44) we have that

\[f(z) = \frac{1}{(2\pi)^a} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_C \frac{f(\xi)}{(\xi-z_0)^\alpha} (d\xi)^a - \frac{1}{(2\pi)^a} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_C \frac{f(\xi)}{(\xi-z_0)^\alpha} (d\xi)^a. \] (4.27)

Taking the right side of (4.27) into account implies that for \(\xi \in C_2 \)

\[\left| \frac{(\xi-z_0)^\alpha}{(z-z_0)^\alpha} \right| = \frac{|\xi-z_0|^a}{R^a} = q^a < 1 \] (4.28)

and

\[|f(\xi)| \leq M. \] (4.29)

By using (4.29) it follows from (4.27) that

\[\frac{1}{(2\pi)^a} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_C \frac{f(\xi)}{(\xi-z_0)^\alpha} (d\xi)^a = \frac{1}{(2\pi)^a} \cdot \frac{1}{\Gamma(1+\alpha)} \sum_{n=0}^{\infty} \oint_C \frac{f(\xi)}{(\xi-z_0)^{\alpha+n+1}} (d\xi)^a (z-z_0)^{-na}. \] (4.30)

From (4.27) we get

\[\frac{1}{(2\pi)^a} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_C \frac{f(\xi)}{(\xi-z_0)^\alpha} (d\xi)^a = \frac{1}{(2\pi)^a} \cdot \frac{1}{\Gamma(1+\alpha)} \sum_{n=0}^{\infty} \oint_C \frac{f(\xi)}{(\xi-z_0)^{\alpha+n+1}} (d\xi)^a (z-z_0)^{-na} + R_N \] (4.31)

where

\[\lim_{N \to \infty} R_N = \lim_{N \to \infty} \frac{1}{(2\pi)^a} \cdot \frac{1}{\Gamma(1+\alpha)} \sum_{n=0}^{\infty} \oint_C \frac{f(\xi)}{(\xi-z_0)^{\alpha+n+1}} (d\xi)^a (z-z_0)^{-na} \]

is reminder.

Since \(|f(\xi)| \leq M \), taking \(\left| \frac{\xi-z_0}{z-z_0} \right|^a = q^a < 1 \), we have

\[|R_N| \leq \frac{1}{(2\pi)^a} \cdot \frac{1}{\Gamma(1+\alpha)} \sum_{n=0}^{\infty} \left| \oint_C \frac{f(\xi)}{(\xi-z_0)^{\alpha+n+1}} (d\xi)^a \right| \left| \frac{\xi-z_0}{z-z_0} \right|^a. \]
\[\frac{1}{(2\pi)^\alpha} \frac{1}{\Gamma(1+\alpha)} \sum_{n=-\infty}^{\infty} \left[\frac{1}{c_i} \left| \frac{1}{(\xi - z_0)^\alpha} \right| \frac{1}{z - z_0} \right] (d\xi)^\alpha \]

Furthermore

\[\lim_{N \to \infty} R_N = 0. \]

Hence

\[-\frac{1}{(2\pi)^\alpha} \frac{1}{i^\alpha} \frac{1}{\Gamma(1+\alpha)} \sum_{n=-\infty}^{\infty} \left[\frac{1}{c_i} \left| \frac{1}{(\xi - z_0)^\alpha} \right| \frac{1}{z - z_0} \right] (d\xi)^\alpha \]

\[= \frac{1}{(2\pi)^\alpha} \frac{1}{i^\alpha} \frac{1}{\Gamma(1+\alpha)} \sum_{n=0}^{\infty} \left[\frac{1}{c_i} \left| \frac{1}{(\xi - z_0)^\alpha} \right| \frac{1}{z - z_0} \right] (d\xi)^\alpha \]

Combing the formulas (4.30) and (4.33), we have the result.

Hence, the proof of the theorem is finished.

5 Generalized residue theorems

In this section we start with a local fractional Laurent series and study generalized residue theorems.

Definition 8
Suppose that \(z_0 \) is an isolated singular point of \(f(z) \). Then there is a local fractional Laurent series

\[f(z) = \sum_{k=0}^{\infty} a_k (z-z_0)^{\alpha k} \]

valid for \(|z-z_0|^\alpha \leq R_\alpha \). The coefficient \(a_{-\alpha} \) of \((z-z_0)^{-\alpha} \) is called the generalized residue of \(f(z) \) at \(z = z_0 \), and is frequently written as

\[\text{Res}_{z=z_0} f(z). \]

One of the coefficients for the Yang-Taylor series corresponding to
\[\phi(z) = (z-z_0)^{n \alpha} f(z), \quad (5.3) \]

the coefficient \(a_{-1} \) is the residue of \(f(z) \) at the pole \(z = z_0 \). It can be found from the formula

\[\text{Res} f(z) = a_{-1} = \lim_{z \to z_0} \frac{1}{(1+n\alpha)} \frac{d^{(n-1)\alpha}}{dz^{(n-1)\alpha}} \left((z-z_0)^{n \alpha} f(z) \right) \quad (5.4) \]

where \(n \) is the order of the pole.

Setting \(f(z) = \sum_{k=-\infty}^{\infty} a_k (z-z_0)^{k \alpha} \), the expression (5.3) yields

\[\phi(z) = (z-z_0)^{n \alpha} \sum_{k=-\infty}^{\infty} a_k (z-z_0)^{k \alpha} = a_{-\alpha} + a_{-\alpha+1} (z-z_0)^{\alpha} + a_{-1} (z-z_0)^{(n-1)\alpha} + \ldots \quad (5.5) \]

We know that this is

\[a_{-1} = \frac{\phi^{(n-1)\alpha}(z_0)}{\Gamma(1+n\alpha)}, \quad (5.6) \]

which is the coefficient of \((z-z_0)^{(n-1)\alpha}\).

The generalized residue is thus

\[\text{Res} f(z) = a_{-1} = \frac{\phi^{(n-1)\alpha}(z_0)}{\Gamma(1+n\alpha)}, \quad (5.7) \]

where \(\phi(z) = (z-z_0)^{n \alpha} f(z) \).

Corollary 12

If \(f(z) \) is local fractional analytic within and on the boundary \(C \) of a region \(\mathcal{R} \) except at a number of poles \(a \) within \(\mathcal{R} \), having a residue \(a_{-1} \), then

\[\frac{1}{(2\pi)^\alpha \Gamma(1+\alpha)} \oint_C f(z)(dz)^\alpha = \text{Res} f(z) \quad (5.8) \]

Proof. Taking into account the definitions of local fractional analytic function and the pole we have local fractional Laurent’s series

\[f(z) = \sum_{k=-\infty}^{\infty} a_k (z-z_0)^{k \alpha} \quad (5.9) \]

and therefore

\[f(z) = \cdots + a_{-\alpha} (z-z_0)^{-n \alpha} + \cdots + a_{-1} (z-z_0)^{-\alpha} + a_0 + \cdots + a_{\alpha} (z-z_0)^{n \alpha} + \cdots. \quad (5.10) \]

Hence we have the following relation

\[\frac{1}{\Gamma(1+\alpha)} \oint_C f(z)(dz)^\alpha = \frac{1}{\Gamma(1+\alpha)} \oint_C \left(\sum_{k=-\infty}^{\infty} a_k (z-z_0)^{k \alpha} \right)(dz)^\alpha. \quad (5.11) \]
furthermore

\[\frac{1}{\Gamma(1+\alpha)} \oint_C f(z)(dz)^{\alpha} = \frac{1}{\Gamma(1+\alpha)} \oint_C \frac{a_1}{(z-z_0)^{\alpha}}(dz)^{\alpha} . \]

(5.12)

From (3.9), it is shown that

\[\frac{1}{(2\pi)^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_C f(z)(dz)^{\alpha} = \frac{1}{(2\pi)^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \oint_C \frac{a_1}{(z-z_0)^{\alpha}}(dz)^{\alpha} = a_1 . \]

(5.13)

Hence we have the formula

\[\frac{1}{\Gamma(1+\alpha)} \oint_C f(z)(dz)^{\alpha} = (2\pi)^{\alpha} i^{\alpha} a_1 . \]

(5.14)

Taking into account the definition of generalized residue, we have the result.

This proof of the theorem is completed.

From (5.8), we deduce the following corollary:

Corollary 13

If \(f(z) \) is local fractional analytic within and on the boundary \(C \) of a region \(\mathcal{R}^\alpha \) except at a finite number of poles \(z_0, z_1, z_2, \ldots \), within \(\mathcal{R}^\alpha \), having residues \(a_{-1}, b_{-1}, c_{-1}, \ldots \) respectively, then

\[\frac{1}{(2\pi)^{\alpha}} i^{\alpha} \Gamma(1+\alpha) \oint_C f(z)(dz)^{\alpha} = \sum_{i=0}^{\infty} \text{Res} f(z) = a_{-1} + b_{-1} + c_{-1} + \ldots . \]

(5.15)

It says that the local fractional integral of \(f(z) \) is simply \((2\pi)^{\alpha} i^{\alpha} \) times the sum of the residues at the singular points enclosed by the contour \(C \).

6 Applications: Gauss formula of complex function

Theorem 14

Suppose that \(f(z) \) is local fractional analytic and \(\omega \) is any point, then for the circle

\[|z - \omega|^\alpha = |R^\alpha E_\alpha (i^{\alpha} \theta^\alpha)| \]

we have

\[f(\omega) = \frac{1}{(2\pi)^{\alpha}} \cdot \frac{1}{\Gamma(1+\alpha)} \int_0^{2\pi} f(\omega + RE(i\theta))(d\theta)^{\alpha} . \]

(6.1)

Proof. By using (3.1) there exists a simple closed contour \(C \) and \(z_0 \) is any point interior to \(C \) such that

\[f(\omega) = \frac{1}{(2\pi)^{\alpha}} i^{\alpha} \Gamma(1+\alpha) \oint_C f(z)(dz)^{\alpha} . \]

(6.2)

When \(C \) can been taken to be \(\omega^\alpha + R^\alpha E_\alpha (i^{\alpha} \theta^\alpha) \) for \(\theta \in [0, 2\pi] \), substituting the relations

\[(z - \omega)^\alpha = R^\alpha E_\alpha (i^{\alpha} \theta^\alpha) \]

(6.3)
and
\[(dz)^\alpha = i^\alpha R^\alpha E_\alpha \left(i^{\alpha \theta} \right) (d\theta)^\alpha, \quad (6.4) \]
in (6.2) implies that
\[f(\omega) = \frac{1}{(2\pi)^{\alpha} i^{\alpha}} \frac{1}{\Gamma(1+\alpha)} \int_{C} \frac{f(\omega + RE(i\theta)) i^\alpha R^\alpha E_\alpha \left(i^{\alpha \theta} \right) (d\theta)^\alpha}{R^\alpha E_\alpha \left(i^{\alpha \theta} \right)} \quad (6.5) \]
and some cancelling gives the result.

References

[1] K.M.Kolwankar, A.D.Gangal. Fractional differentiability of nowhere differentiable functions and dimensions. Chaos, 6 (4), 1996, 505–513.
[2] A.Carpinteri, P.Cornetti. A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos, Solitons and Fractals, 13, 2002, 85–94.
[3] F.B.Adda, J.Cresson. About non-differentiable functions. J. Math. Anal. Appl., 263 (2001), 721–737.
[4] A.Babakhani, V.D.Gejji. On calculus of local fractional derivatives. J. Math. Anal. Appl., 270, 2002, 66–79.
[5] F. Gao, X.Yang, Z. Kang. Local fractional Newton’s method derived from modified local fractional calculus. In: Proc. of the second Scientific and Engineering Computing Symposium on Computational Sciences and Optimization (CSO 2009), 228–232, IEEE Computer Society, 2009.
[6] X.Yang, F. Gao. The fundamentals of local fractional derivative of the one-variable non-differentiable functions. World Sci-Tech R&D, 31(5), 2009, 920-921.
[7] X.Yang, F.Gao. Fundamentals of Local fractional iteration of the continuously non-differentiable functions derived from local fractional calculus. In: Proc. of the 2011 International Conference on Computer Science and Information Engineering (CSIE2011), 398–404, Springer, 2011.
[8] X.Yang, L.Li, R.Yang. Problems of local fractional definite integral of the one-variable non-differentiable function. World Sci-Tech R&D, 31(4), 2009, 722-724.
[9] J.H He. A new fractional derivation. Thermal Science. 15, 1, 2011, 145-147.
[10] W. Chen. Time–space fabric underlying anomalous disution. Chaos, Solitons and Fractals, 28 , 2006, 923–929.
[11] X.Yang. Fractional trigonometric functions in complex-valued space: Applications of complex number to local fractional calculus of complex function. ArXiv:1106.2783v1 [math-ph].
[12] X.Yang. Generalized local fractional Taylor’s formula for local fractional derivatives. ArXiv:1106.2459v1 [math-ph].