REPDIGITS AS PRODUCTS OF CONSECUTIVE BALANCING OR
LUCAS-BALANCING NUMBERS

SAI GOPAL RAYAGURU AND GOPAL KRISHNA PANDA

Abstract. Repdigits are natural numbers formed by the repetition of a single digit. In this paper, we explore the presence of repdigits in the product of consecutive balancing or Lucas-balancing numbers.

Keywords: Balancing numbers, Lucas-balancing numbers, repdigits, divisibility sequence.

1. Introduction

The balancing sequence \{B_n : n \geq 0\} and the Lucas-balancing sequence \{C_n : n \geq 0\} are solutions of the binary recurrence \(x_{n+1} = 6x_n - x_{n-1}\) with initial terms \(B_0 = 0, B_1 = 1\) and \(C_0 = 1, C_1 = 3\) respectively. The balancing sequence is a variant of the sequence of natural numbers since natural numbers are solutions of the binary recurrence \(x_{n+1} = 2x_n - x_{n-1}\) with initial terms \(x_0 = 0, x_1 = 1\). The balancing numbers have certain properties identical with those of natural numbers [9]. It is important to note that the balancing sequence is a strong divisibility sequence, that is, \(B_m | B_n\) if and only if \(m | n\) [5].

In the year 2004, Liptai [2] searched for Fibonacci numbers in the balancing sequence and observed that 1 is the only number of this type. In a recent paper [6], the second author proved that there is no perfect square in the balancing sequence other than 1. Subsequently, Panda and Davala [8] verified that 6 is the only balancing number which is also a perfect number.

For a given integer \(g > 1\), a number of the form \(N = a\left(\frac{a^{m-1}}{g-1}\right)\) for some \(m \geq 1\) where \(a \in \{1, 2, \ldots, g-1\}\) is called a repdigit with respect to base \(g\) or \(g\)-repdigit. For \(g = 10\), \(N\) is simply called a repdigit and if, in addition, \(a = 1\), then \(N\) is called a repunit. Luca [3] identified the repdigits in Fibonacci and Lucas sequences. Subsequently, Faye and Luca [1] explored all repdigits in Pell and Pell-Lucas sequences. Marques and Togbé [4] searched for the repdigits which are product of consecutive Fibonacci numbers. In this paper, we search for repdigits in the balancing and Lucas-balancing sequences. In addition, we also explore repdigits which are product of consecutive balancing or Lucas-balancing numbers.

2. Main Results

In this section, we prove some theorems assuring the absence of certain class of repdigits in the balancing and Lucas-balancing sequences. As generalizations, we also show that the product of consecutive balancing or Lucas-balancing numbers is never a repdigit with more than one digit.

In the balancing sequence, the first two balancing numbers \(B_1 = 1\) and \(B_2 = 6\) are repdigits. We have checked the next 200 balancing numbers, but none is a repdigit. The following theorem excludes the presence of some specific types of repdigits in the balancing sequence.
Theorem 2.1. If m, n and a are natural numbers, $m \geq 2$, $a \neq 6$, and $1 \leq a \leq 9$, then the Diophantine equation

$$B_n = a\left(\frac{10^m - 1}{9}\right)$$

has no solution.

\textit{Proof.} To prove this theorem, we need all the least residues of the balancing sequence modulo 3, 4, 5, 7, 8, 9, 11, and 20 (see [7]). We list them in the following table.

Row no.	m	$B_n \mod m$	Period
1	3	0, 1, 0, 2	4
2	4	0, 1, 2, 3	4
3	5	0, 1, 1, 0, 4, 4	6
4	7	0, 1, 6	3
5	8	0, 1, 6, 3, 4, 5, 2, 7	8
6	9	0, 1, 6, 8, 6, 1, 0, 8, 3, 1, 3, 8	12
7	10	0, 1, 6, 2, 6, 1, 0, 10, 5, 9, 5, 10	12
8	20	0, 1, 6, 15, 4, 9, 10, 11, 16, 5, 14, 19	12

\textit{Table 1.}

Since $m \geq 2$, it follows that $n \geq 3$. We claim that m is odd. Observe that if m is even, then

$$11 \mid \frac{10^m - 1}{9} \mid B_n$$

and from the seventh row of Table 1, it follows that $6 \mid n$ and consequently $B_6 \mid B_n$. Since $10 \mid B_6$, it follows that $10 \mid B_n = a \cdot \frac{10^m - 1}{9}$, which is a contradiction. Now, to complete the proof, we distinguish eight different cases corresponding to the values of a.

\textbf{Case I:} $a = 1$. Assume that B_n is of the form $\frac{10^m - 1}{9}$ for some m. Since m is odd, $B_n \equiv 1 \pmod{11}$ and also $B_n \equiv 11 \pmod{20}$. From the last row of Table 1, it follows that if $B_n \equiv 11 \pmod{20}$ then $n \equiv 7 \pmod{12}$. But, from the seventh row of Table 1, it follows that whenever $n \equiv 7 \pmod{12}$, $B_n \equiv 10 \pmod{11}$—a contradiction to $B_n \equiv 1 \pmod{11}$. Hence, no B_n is of the form $\frac{10^m - 1}{9}$.

\textbf{Case II:} $a = 2$. If $B_n = 2 \cdot \frac{10^m - 1}{9}$, then $B_n \equiv 2 \pmod{5}$. But, in view of the third row of Table 1, it follows that for no value of n, $B_n \equiv 2 \pmod{5}$. Hence, B_n cannot be of the form $2 \cdot \frac{10^m - 1}{9}$.

\textbf{Case III:} $a = 3$. If $B_n = 3 \cdot \frac{10^m - 1}{9}$, then $B_n \equiv 0 \pmod{3}$. But, in view of the first row of Table 1, $n \equiv 0, 2 \pmod{4}$. So, $B_2 \mid B_n$ and consequently $2 \mid \frac{10^m - 1}{9}$, which is a contradiction. Hence, B_n cannot be of the form $3 \cdot \frac{10^m - 1}{9}$.

\textbf{Case IV:} $a = 4$. If $B_n = 4 \cdot \frac{10^m - 1}{9}$, then $B_n \equiv 0 \pmod{4}$ and in view of the second row of Table 1, it follows that $17 \mid B_n$. Since $17 \mid B_4$, it follows that $17 \mid (10^m - 1)$. But this is possible if $16 \mid m$, which is a contradiction since m is odd. Hence, B_n cannot be of the form $B_n = 4 \cdot \frac{10^m - 1}{9}$.
REPDIGITS AS PRODUCTS

Case V: \(a = 5 \). If \(B_n = 5 \cdot \frac{10^m - 1}{9} \), then \(B_n \equiv 0 \pmod{5} \) and in view of the third row of Table I this is possible only if \(3 \mid n \). Hence, \(B_3 \mid B_n \) and since \(7 \mid B_3 \), it follows that \(7 \mid \frac{10^m - 1}{9} \), which implies that \(6 \mid m \), a contradiction since \(m \) is odd. Hence, \(B_n \) cannot be of the form \(B_n = 5 \cdot \frac{10^m - 1}{9} \).

Case VI: \(a = 7 \). If \(B_n = 7 \cdot \frac{10^m - 1}{9} \), then \(B_n \equiv 0 \pmod{7} \) and in view of the fourth row of Table I this is possible only if \(3 \mid n \). Hence, \(B_3 \mid B_n \) and since \(5 \mid B_3 \), it follows that \(5 \mid \frac{10^m - 1}{9} \), which is a contradiction. Hence, \(B_n \) cannot be of the form \(B_n = 7 \cdot \frac{10^m - 1}{9} \).

Case VII: \(a = 8 \). If \(B_n = 8 \cdot \frac{10^m - 1}{9} \), then \(B_n \equiv 0 \pmod{8} \) and in view of the fifth row of Table I this is possible only if \(8 \mid n \). Hence, \(B_8 \mid B_n \) and since \(17 \mid B_8 \), it follows that \(17 \mid (10^m - 1) \). But this is possible if \(16 \mid m \), which is a contradiction since \(m \) is odd. Hence, \(B_n \) cannot be of the form \(B_n = 8 \cdot \frac{10^m - 1}{9} \).

Case VIII: \(a = 9 \). If \(B_n = 9 \cdot \frac{10^m - 1}{9} \), then \(B_n \equiv 0 \pmod{9} \) and in view of the sixth row of Table I this is possible only if \(6 \mid n \). Consequently, \(B_6 \mid B_n \) and since \(11 \mid B_6 \), it follows that \(11 \mid \frac{10^m - 1}{9} \). But this is possible only if \(m \) is even, which is a contradiction since \(m \) is odd. Hence, \(B_n \) cannot be of the form \(B_n = 9 \cdot \frac{10^m - 1}{9} \).

Thus, (2.1) has no solution if \(m \geq 2 \) and \(a \neq 6 \). This completes the proof. \(\square \)

We next study the presence of repdigits in the products of consecutive balancing numbers. The product \(B_1B_2 = 6 \) is a repdigit. So a natural question is: "Is there any other repdigit which is a consecutive product of balancing numbers?" In the following theorem, we answer this question in negative.

Theorem 2.2. If \(m, n, k \) and \(a \) are natural numbers such that \(m > 1 \) and \(1 \leq a \leq 9 \), then the Diophantine equation

\[
B_nB_{n+1} \cdots B_{n+k} = a\left(\frac{10^m - 1}{9}\right)
\]

has no solution.

Proof. Firstly, we show that (2.2) has no solution for \(k \geq 2 \). Assume to the contrary that (2.2) has a solution in positive integers \(n, m, a \) for \(k \geq 2 \). Then, \(2 \mid (n + i) \) and \(3 \mid (n + j) \) for some \(i, j \in \{0, 1, \ldots, k\} \). Since \(2 \mid B_2 \) and \(5 \mid B_3 \), it follows that \(2 \mid B_{n+i} \) and \(5 \mid B_{n+j} \). Hence, \(10 \mid B_nB_{n+1} \cdots B_{n+k} = a\left(\frac{10^m - 1}{9}\right) \), which is a contradiction. Hence, (2.2) has no solution for \(k \geq 2 \).

We next show that (2.2) has no solution if \(k = 1 \). If \(k = 1 \), (2.2) reduces to

\[
B_nB_{n+1} = a\left(\frac{10^m - 1}{9}\right).
\]

One of \(n \) and \(n + 1 \) is even and consequently, either \(B_n \) or \(B_{n+1} \) is also even. Hence, \(a \in \{2, 4, 6, 8\} \). Since \(m > 1 \), \(B_nB_{n+1} \geq 11 \) and hence \(n \) must be greater than 1.

In the following table we list all the least residues of \(B_nB_{n+1} \) modulo 5 and 100, which will be useful in the proof.
THE FIBONACCI QUARTERLY

m	$B_nB_{n+1} \mod m$	Period
5	0, 1, 0	3
100	20, 0, 6, 10, 40, 56, 70, 30, 56, 80, 70, 6, 40, 60, 6, 50, 0, 56, 10, 90, 56, 20, 30, 6, 50, 20, 6, 90, 60, 56, 50, 56, 60, 90, 6, 20, 80, 6, 30, 20, 56, 90, 10, 56, 0, 50, 6, 60, 40, 6, 70, 80, 56, 30, 70, 56, 40, 10, 6, 0	60

Table 2.

If $a = 2$ or $a = 4$, then

$$B_nB_{n+1} = a \cdot \frac{10^m - 1}{9} \equiv a \pmod{5}.$$

If $a = 8$, then

$$B_nB_{n+1} = 8 \cdot \frac{10^m - 1}{9} \equiv 3 \pmod{5}.$$

Similarly, if $a = 6$, then

$$B_nB_{n+1} = 6 \cdot \frac{10^m - 1}{9} \equiv 66 \pmod{100}.$$

Since the least residues of the last three congruences do not appear in the appropriate row of Table 2, it follows that B_nB_{n+1} is not a repdigit if $n > 1$. This completes the proof.

In Theorem 2.1, we proved the absence of certain type of repdigits in the sequence of balancing numbers. However, in case of Lucas-balancing numbers, $C_1 = 3$ and $C_3 = 99$ are two known repdigits. Thus, a natural question is: "Does this sequence contain any other larger repdigit?" In the following theorem, we answer this question in negative.

Theorem 2.3. If m, n and a are natural numbers and $1 \leq a \leq 9$, then the Diophantine equation

$$C_n = a \left(\frac{10^m - 1}{9} \right) \tag{2.3}$$

has the only solutions $(m, n, a) = (1, 1, 3), (2, 3, 9)$.

Proof. To prove this theorem, we need all the least residues of the Lucas-balancing sequence modulo 5, 7 and 8. We list them in the following table.

Row no.	m	$C_n \mod m$	Period
1	5	1, 3, 2, 4, 2, 3	6
2	7	1, 3, 3	3
3	8	1, 3	2

Table 3.
Among the first three Lucas-balancing numbers $C_1 = 3$ and $C_3 = 99$ are repdigits and (2.3) is satisfied for $(m, n, a) = (1, 1, 3), (2, 3, 9)$. Now, let $n \geq 4$ and hence $m \geq 3$. Since C_n is always odd, $a \in \{1, 3, 5, 7, 9\}$. Since no zero appears in the first two rows of Table 3, it follows that C_n is not divisible by 5 or 7 and hence the possible values of a are limited to 1, 3, 9.

If $a \in \{1, 9\}$, then

$$C_n = a \cdot \frac{10^m - 1}{9} \equiv 10^m - 1 \equiv 7 \pmod{8}.$$

Similarly, if $a = 3$, then

$$C_n = 3 \cdot \frac{10^m - 1}{9} \equiv 5 \pmod{8}.$$

Since, the least residues 5 and 7 do not appear in the last row of Table 3, it follows that (2.3) has no solution for $n > 3$. This completes the proof.

In Theorem 2.2, we noticed that no product of consecutive balancing numbers is a repdigit with more than one digit, though the only product $B_1B_2 = 6$ is a single digit repdigit. The following theorem negates the possibility of any repdigit as product of consecutive Lucas-balancing numbers.

Theorem 2.4. If m, n, k and a are natural numbers and $1 \leq a \leq 9$, then the Diophantine equation

$$C_nC_{n+1} \cdots C_{n+k} = a \left(\frac{10^m - 1}{9} \right)$$

(2.4)

has no solution.

Proof. All the Lucas-balancing numbers are odd and in view of (2.4), $a \in \{1, 3, 5, 7, 9\}$. It is easy to see that (2.4) has no solution if $m = 1, 2$. In the following table we list all the nonnegative residues of Lucas-balancing numbers and their consecutive product modulo 5, 7 and 8 which will play an important role in proving this theorem.

m	$C_n \mod m$	$C_nC_{n+1} \cdots C_{n+k} \mod m$
5	1, 3, 2, 4, 2, 3	$\in \{1, 2, 3, 4\}$
7	1, 3, 3	$\in \{1, 2, 3, 4, 5, 6\}$
8	1, 3	$\in \{1, 3\}$

Table 4.

For $m \geq 3$, $C_nC_{n+1} \cdots C_{n+k} = a \left(\frac{10^m - 1}{9} \right) \equiv 7a \pmod{8}$. But from the last row of Table 4, it follows that $7a \equiv 1, 3 \pmod{8}$ and hence $a = 5$ or $a = 7$. Now, reducing (2.4) modulo a we get $C_nC_{n+1} \cdots C_{n+k} \equiv 0 \pmod{a}$. Since, 0 does not appear as a residue of $C_nC_{n+1} \cdots C_{n+k}$ modulo 5 or 7, it follows that (2.4) has no solution for $m \geq 3$. This completes the proof.
3. Conclusion

In the last section, we noticed that the Lucas-balancing sequence contains only two repdigits namely $C_1 = 3$ and $C_3 = 99$, while we could not explore all repdigits in the balancing sequence. In Theorem 2.1, we proved that B_n is not a repdigit ($B_n \neq a \left(\frac{10^m - 1}{9} \right)$), with more than one digit, if $a \neq 6$. Thus, repdigits in the balancing sequence having all digits 6 is yet unexplored. In this connection, one can verify that if $n \not\equiv 14 \pmod{96}$ then B_n is not a repdigit. Further, if $m \not\equiv 1 \pmod{6}$, then also B_n is not a repdigit. We believe that, $B_1 = 1$ and $B_2 = 6$ are the only repdigits in the balancing sequence. It is still an open problem to prove the existence or nonexistence of repdigits that are 6 times of some repunit other than $B_2 = 6$.

Acknowledgment: It is a pleasure to thank the anonymous referee whose comments helped us in improving the paper to a great extent.

References

[1] B. Faye and F. Luca, Pell and Pell-Lucas numbers with only one distinct digit, Ann. Math. Inform. 45 (2015), 55–60.

[2] K. Liptai, Fibonacci balancing numbers, Fibonacci Quart., 42 (2004), 330–340.

[3] F. Luca, Fibonacci and Lucas numbers with only one distinct digit, Port. Math., 57 (2000).

[4] D. Marques and A. Togbé, On repdigits as product of consecutive Fibonacci numbers, Rend. Istit. Mat. Univ. Trieste, 44 (2012), 393–397.

[5] G.K. Panda, Some fascinating properties of balancing numbers, Congr. Numer., 194 (2009), 185–189.

[6] G.K. Panda, Arithmetic progression of squares and solvability of the Diophantine equation $8x^4 + 1 = y^2$, East-West J. Math., 14.2 (2012), 131–137.

[7] G.K. Panda and S.S. Rout, Periodicity of balancing numbers, Acta Math. Hungar., 143.2 (2014), 274–286.

[8] G.K. Panda and R.K. Davala, Perfect balancing numbers, Fibonacci Quart., 53.2 (2015), 261–264.

[9] P.K. Ray, Balancing and Cobalancing Numbers, Ph.D. Thesis, National Institute of Technology, Rourkela, (2009).

MSC2010: 11B39, 11A63, 11B50.

Department of Mathematics, National Institute of Technology, Rourkela-769008, Odisha, India
E-mail address: saigopalrs@gmail.com

Department of Mathematics, National Institute of Technology, Rourkela-769008, Odisha, India
E-mail address: gkpanda_nit@rediffmail.com