Bending behaviour of insulated ribbed plywood plate during drying of accumulated moisture

A Kukule1 and K Rocens2
1,2 Riga Technical University, Institute of Structural Engineering and Reconstruction, Kipsalas Street 6A/6B, Riga, LV 1048, Latvia

E-mail: aiva.kukule@rtu.lv

Abstract. The current paper presents the results of an experimental verification of the methodology to evaluate lasting moisture impact on ribbed plates. Conditions of building envelope for ribbed plywood plate with polystyrene insulation were simulated. Internal moisture due to the surface exposure to different temperatures and ambient air humidity was accumulated. Within ten months the total mass of the plate increased by 9.7%. After that the plate was dried until its initial mass was reached. Within these three months the plate was loaded in 4-point bending to evaluate its deflection depending on accumulated moisture. After the experiment it was found that the methodology is applicable to assess the effects of lasting moisture impact.

1. Introduction

Nowadays building designs need to fulfill with criteria of energy efficiency, minimum environmental impact and also provide healthy and safe condition for building occupants. Light weight structures are becoming a promising alternative in attaining the imposed criteria even in countries with a masonry tradition. Moreover the ease to incorporate a thick insulation layer between the wooden studs makes light weight buildings relatively simple to build, sustainable and renewable. [1]

Also the airtightness of buildings and controlled air circulation are increasingly important to achieve energy efficient buildings. [2] [3] Studies have already been carried out on hygrothermal behaviour of vertical light weight walls with an exterior air barrier and with OSB as interior vapour retarder. [4] There is also an ongoing research of the composite plywood plates with increased specific stiffness [5] [6] that could be also used as building envelope. For such plates hygrothermal performance has great influence on deformation and durability [7] since wood properties are dependent on the moisture content and moisture damage is one of the main causes of building envelope deterioration. [8]

Therefore the goal was set to verify methodology for evaluation of lasting moisture impact on wooden construction. Ribbed plywood plate with expanded polystyrene insulation was selected as the research object. Conditions of building envelope construction were simulated. Moisture was accumulated in the inner layers of the plate due to the surface exposure to different temperatures and ambient air humidity. This process lasted about 10 months. After that the plate was dried to its initial moisture content approximately within 3 months. The plate was loaded in 4-point bending to evaluate moisture impact on its deflection. The measured data are presented and analysed.
2. Dimensions and materials of the test plate

A ribbed plate was made to evaluate impact of accumulated moisture on the behavior of wooden construction during drying. The dimensions of the plate are shown in figure 1. The sheetings and ribs were made of birch plywood “Riga Ply” of thickness 6.5 mm. Polystyrene insulation EPS 60 “Estplast” of thickness 100 mm was placed between the ribs. All parts of the plate were glued together with polyurethane wood adhesive “Bison PU MAX D4”. The XPS sheets around the perimeter of the plate shown in figure 1 were not components of the plate and were used only in order to ensure the temperature difference between fridge and room (see 4.1). Since the plate previously was used to study moisture flow through the inner layers [9], in order to prevent moisture flow through the side surfaces of plate they were covered with a sealant. For collecting data the plate was equipped with cables and eleven sensors.

![Figure 1. Dimensions of ribbed plate and positioning of the sensors. [9]](image)

Initial mass of the plate and its components are given in the table 1. The initial moisture of plywood was 8.5% determined according to the standards EN 322:1993 [10] and EN 326-1:1994 [11]. Ten plywood specimens of initial mass not less than 20 g were used. These test specimens were placed in the drying oven at a temperature of 103±2 °C until constant mass was reached. It was assumed that constant mass is reached when the results of two successive weighing operations, carried out in an interval of 6 h, did not differ more than 0.1% of the mass of the test specimen. The samples were weighed using scales with an accuracy of 0.01 grams.

Material	Mass, kg
Plywood “Riga Ply”	8.165
Polystyrene EPS 60 “Estplast”	0.935
Sealant, cables and sensors	2.230
Total:	11.330

Table 1. Initial mass of the plate and its components.
3. Experimental setup

3.1. Moisture accumulation in the plate

The moisture was accumulated due the temperature gradient and relative humidity gradient along the thickness of the plate during the first stage of the test which started in the spring of 2016 when behavior of building envelope was simulated. The plate was placed on the top of fridge leaving its door open like it is shown in figure 2. Internal temperature and relative humidity were measured therefore plate was equipped with sensors and cables. The measurements were taken once per minute. [9]

Experimental conditions on the warm surface of the plate were like for realistic indoor conditions where due the heating and solar radiation the fluctuations of temperature and relative humidity can occur. The relative humidity at room was 18.6 to 90.9% and the temperature was 11.8 to 33.3 °C. The relative humidity at fridge was 16.8 to 59.3% and the temperature at the start of experiment was 14.4 °C reaching -18.6 °C about in six hours.

![Figure 2. Experimental setup for simulation of building envelope conditions.](image)

3.2. Loading of plate during drying of accumulated moisture

In the winter of 2017 the plate was removed from the fridge and left at room conditions to dry out for about three months. The relative humidity at room was 20.0 to 49.0% and the temperature was 13.0 to 21.0 °C. During drying the plate was placed on the stand thus ensuring free exposure of ambient air to the both sheetings of plate. During drying time the plate was weighed with an accuracy of ±0.005 kg to determine the average moisture content of plywood and to evaluate its effect on the deflection of plate in bending. The moisture content of plywood was determined assuming that plywood absorbs all moisture accumulated in plate, since polystyrene is not a hygroscopic material and also results of the test carried out before experiment showed that moisture absorption by polystyrene is negligible.

The plate was loaded in 4-point bending (guided by EN 789:2004 [12]). The loading scheme of the plate is shown in figure 3. Load and reaction forces were applied by rollers of diameter 30 mm. The distance was 300 mm between both load points and 400 mm between each support and nearest load point. Since it was planned to carry out a series of loading, the load was chosen such that only elastic
deformations would occur in the most stressed areas of the plate. The load did not exceed $0.4F_{\text{max}}$ where F_{max} is the maximum load calculated according to EN 1995-1-1:2004. [13] Load of 2.0 kN was chosen for testing and was applied to plate in four steps – 0.5, 1.0, 1.5 and 2.0 kN – reaching maximum value in 20 to 30 minutes. Deflection was measured with deflection gauges at midpoint of each side of the plate. The deflection of the midpoint of the plate was determined as average value of both measurements. Accuracy of deflection gauges was 0.01 mm.

![Figure 3. Loading scheme and displacement of deflection gauges (I-1 and I-2).](image)

4. Results
The results are shown in figure 4. Generally the test can be divided into three stages:
A – the plate is placed on the top of fridge as shown in figure 2, moisture is accumulated due the temperature gradient and relative humidity gradient along the thickness of the plate (299 days);
B – the plate is removed from the fridge and left at room conditions to dry out to its initial mass, the plate is loaded in 4-point bending periodically to measure its deflection (86 days);
C – the plate is dried to equilibrium moisture corresponding to the room conditions (66 days).

First time the plate was weighed and loaded in 4-point bending before it was placed on top of the fridge. Initial mass of the plate was 11.330 kg. During the stage “A” additional moisture of 1.095 kg was accumulated that is 9.7% of initial mass of the plate. Average moisture of plywood changed from 8.5% to 23.1%. The deflection before and after accumulation of moisture was 0.84 and 1.16 mm respectively.

During stage “B” the plate was dried to mass of 11.340 kg. The difference of this and initial mass is 0.010 kg that is within the range of measurement error. Average moisture of plywood changed from 23.1% to 8.6%. The deflection after drying to initial mass of the plate was 0.87 mm. As the precision of the deflection gauges was 0.01 mm and the difference between deflections corresponding to initial mass (11.330 kg) and mass after drying (11.340 kg) did not exceed 0.03 mm, it can be assumed that difference of deflections also is within the range of measurement error.

During stage “C” the plate was dried to equilibrium moisture corresponding to the room conditions. Between the last two measurements 17 days elapsed.
KEY:
A – accumulation of moisture (299 days);
B – drying to the initial moisture content (86 days);
C – drying to the equilibrium moisture content corresponding to the room conditions (66 days).

Figure 4. Mass of the plate, moisture of the plywood and deflection of the plate.

5. Conclusions
A method to evaluate lasting impact of moisture on ribbed plywood plate used as building envelope construction is proposed in this paper. To achieve this goal the plate was loaded in four-point bending before accumulation of moisture due the surface exposure to different temperatures and ambient air humidity, after accumulation of this moisture and after drying out.

After reaching initial mass of plate no substantial changes of the plywood properties were detected. Also test results shows that the deflection under loading before accumulation of moisture and after drying out to the initial mass practically has the same value and the difference of deflection is almost within the range of measurement error. The experimental verification confirms applicability of the methodology to evaluate lasting moisture impact on ribbed plates.
Acknowledgement.
The research leading to these results has received the funding from Latvia state research programme under grant agreement “INNOVATIVE MATERIALS AND SMART TECHNOLOGIES FOR ENVIRONMENTAL SAFETY, IMATEH”.

References
[1] Li Q, Rao J and Fazio P 2009 Development of HAM tool for building envelope analysis Build Environ 44(5) pp 1065–73
[2] Jokisalo J, Kurnitski J, Korpi M, Kalamees T and Vinha J 2009 Building leakage, infiltration, and energy performance analyses for Finnish detached houses Build Environ 44(2) pp 377–87
[3] Viitanen H, Vinha J, Salminen K, Ojanen T, Peukuri R, Paajanen L and Lähdesmäki K 2010 Moisture and Bio-deterioration Risk of Building Materials and Structures J. Build Phys 33 pp 201–24
[4] Langmans J, Klein R and Roels S 2012 Hygrothermal risks of using exterior air barrier systems for highly insulated light weight walls: A laboratory investigation Build Environ 56 pp 192–202
[5] Frolovs G, Rocens K and Sliseris J 2015 Comparison of a load bearing capacity for composite sandwich plywood plates Proc. Int. Scient. Pract. Conf. (Rezekne) vol 1 pp 39–45
[6] Sliseris J and Rocens K 2013 Experimental and Numerical Investigation of Plywood Panel with Curved Ribs Construction Science 14 pp 79–88
[7] Rocens K 1979 Technological Regulation of the Properties of Wood (Riga: Zinatne) p 224 (in Russian)
[8] Piot A, Woloszyn M, Brau J and Abele C 2011 Experimental wooden frame house for the validation of whole building heat and moisture transfer numerical models Energy Build 43 pp 1322–8
[9] Kukule A, Rocens K, Lukasenoks A and Frolovs G 2017 Change of moisture distribution in ribbed plate with different opposite surface temperatures Proc. Engineering vol 172 pp 612–9
[10] EN 322:1993 Wood-based panels – Determination of moisture content
[11] EN 326-1:1994 Wood-based panels – Sampling, cutting and inspection – Part 1: Sampling and cutting of test pieces and expression of test results
[12] EN 789:2004 Timber structures – Test methods – Determination of mechanical properties of wood based panels
[13] EN 1995-1-1:2004 Eurocode 5 – Design of timber structures – Part 1-1: General - Common rules and rules for buildings