VARIOUS ASPECTS OF PEPTIC ULCER IN PATIENTS WITH LIVER CIRRHOSIS

Željka SAVIĆ1,2, Dragomir DAMJANOV1,2, Vladimir VRAČARIĆ1,2, Dijana KOSIJER1,2, Dimitrije DAMJANOV1,2 and Tihomir ORLIĆ2

Summary

Introduction. The occurrence of peptic ulcer in patients with liver cirrhosis is intriguing due to its frequency and complexity. The aim of the present study was to investigate the incidence of peptic ulcer in patients with liver cirrhosis. Results. It was found that in these patients the usual aggressive factors of the gastric environment do not play a major role in ulcerogenesis; however, researches noticed the importance of reduced mucosal defense which, in portal hypertension, has the features of hypertensive portal gastropathy. The presence of Helicobacter pylori infection decreases with the severity of liver cirrhosis. Non-steroidal anti-inflammatory drugs play an important role in peptic ulcer bleeding in cirrhotic patients, but the data are limited and contradictory. Peptic ulcer bleeding is the most frequent etiology of nonvariceal bleeding and it is associated with a great number of complications. Conclusion. Helicobacter pylori infection cannot be considered the key risk factor for the development of peptic ulcer in patients with liver cirrhosis. The role of non-steroidal anti-inflammatory drugs is accepted, although the data are controversial. The treatment of peptic ulcer in cirrhotic patients is identical to the treatment of peptic ulcer in patients without liver cirrhosis, except in cases of bleeding ulcers. There are specific therapeutic protocols for peptic ulcer bleeding in patients with liver cirrhosis.

Key words: Peptic Ulcer; Liver Cirrhosis; Hypertension; Portal; Helicobacter pylori; Anti-Inflammatory Agents, Non-Steroidal; Gastric Mucosa; Peptic Ulcer Hemorrhage; Risk Factors

Introduction

Liver cirrhosis (LC) is a huge health issue. It is a disease which deteriorates the quality of life and has a high mortality rate, mainly caused by complications which are well documented and clear from the etiopathogenic, clinical, and therapeutic aspects [1]. Global liver cirrhosis deaths increased from around 676,000 deaths in 1980 (1.54% of global deaths) to 1,029,042 deaths in 2010 (1.95% of the global total). In the Republic of Serbia, there were 822 (537 – 1,212), 854 (607 – 1,185), 1,041 (833 – 1,378) and 951 (721 – 1,203) deaths (95% uncertainty intervals) in 1980, 1990, 2000, 2010, respectively [2].
Peptic ulcer (PU) is a continuous active disease with a significant social aspect. The cumulative lifetime-prevalence of PU ranges from 8% to 14% [3].

Due to its incidence and complexity, the occurrence of PU in patients with LC has been intriguing clinicians and researchers for decades. The etiopathogenic mechanisms of PU in LC patients are not completely clear yet, as opposed to the incidence of PU in general population.

Earlier researches have established a connection between the severity of liver disease and PU incidence, and it was considered that the liver disease was the “primum movens” for PU, which was called “hepatogenic ulcer”. The clinical findings of increased incidence of PU in LC, despite reduction in gastric acid output, may be explained by relative disturbance of the balance between aggressive and protective mechanism, the latter being diminished [4].

The point prevalence of PU in patients with liver cirrhosis is 11.7%. The annual incidence of PU in these patients is 4.3%, with 2.8% accounting for duodenal ulcer (DU), and 1.4% for gastric ulcer (GU), which is 20 – 47 times higher incidence rate compared to the non-cirrhotic population [5, 6]. Other authors have found a similar point prevalence of PU in patients with liver cirrhosis, 10.5% [7], or even higher (24.3–38.5%) [8, 9].

A significantly higher prevalence of GU was found in patients with LC who have hepatic venous pressure gradient (HVPG) >12 mmHg, amounting to 20.8% compared to 4% in healthy controls [10].

The prevalence of GU in patients with LC is higher compared to the general population. Aggressive factors taking part in the pathogenesis of GU are lower, however, the defensive factors of gastric mucosa are also reduced due to portal hypertension (PH) [11].

In healthy (non-cirrhotic) population, the prevalence of GU accounts for 2% or less. Tomoda et al. found a prevalence of GU of 20% in patients with LC [12]. Other researches found the presence of GU in 15% of patients with decompensated LC and ascites, 3.3% in compensated patients, and 1.7% in healthy controls [13].

Aggressive Factors of Gastric Mucosa in Patients with PU and LC

In patients with LC, the secretion of gastric acid (Hydrochloric acid - HCl) is reduced or possibly normal [14]. Tabaqchali and Dawson did not find a disorder of HCl secretion in patients with LC, except after portacaval anastomosis where it was found that basal secretion of HCl was increased, but without an accompanying increase to the maximum histamine stimulation [15].

Scobie and Summerskill found a significant decrease of basal and maximal (histamine stimulated) HCl secretion in patients with LC and concluded that this was not connected to the etiology or severity of the liver disease, nor with the presence or degree of the collateral portal circulation [16].

Lam examined the basal acid output (BAO) and the maximal acid output (MAO) after pentagastrin stimulation, and fasting and postprandial gastrin levels in patients with LC. The mean values of BAO and MAO were significantly lower compared to healthy controls. The fasting gastrin level was significantly higher, and the postprandial gastrin response was significantly increased and prolonged [17].

Gaur et al. examined the basal and pentagastrin-stimulated gastric secretion in patients with LC, in patients with non-cirrhotic portal fibrosis and in control groups. They found that the maximum volume and secretion of the gastric acid was significantly lower in the first two groups compared to the control groups. The authors did not establish a connection between the gastric hyposecretion and the degree of hepatocellular dysfunction, but they believed that the aforementioned could be secondary to portal hypertension and collateral circulation [18].

Savarino et al. examined 24-hour gastric pH-metry in patients with LC and found that these patients had significant hypoacidity during the entire circadian cycle compared to the control group of healthy subjects [19].

Patients with LC have normal basal pepsin levels, but a reduced response to stimulation. In patients with atrophic gastritis, pepsinogen levels are significantly lower in patients with LC compared to patients without liver diseases [20].

Classic aggressive factors of gastric environment, such as HCl and pepsin, do not have a significant impact on the pathogenesis of PU in LC.

Defensive Factors of Gastric Mucosa in PU Occurrence in Patients with LC

The increased susceptibility of gastric mucosal damage, associated with portal hypertensive gastropathy (PHG), usually caused by alcohol, aspirin and bile salts, was first described during the 1980s. Gastric mucosa in PH has PHG features with unique functional and morphological disruptions which make it susceptible to harmful agents. Such gastric mucosa has microvascular changes, even though the total gastric blood flow is unchanged. The essence lies in the redis-

Abbreviations

PU – peptic ulcer
GU – gastric ulcer
DU – duodenal ulcer
PUB – peptic ulcer bleeding
LC – liver cirrhosis
HVPG – hepatic venous pressure gradient
BAO – basal acid output
MAO – maximal acid output
PHG – portal hypertensive gastropathy
PH – portal hypertension
HCl – hydrochloric acid
H. pylori – Helicobacter pylori
NSAID – non-steroidal anti-inflammatory drug
PPI – proton pump inhibitors
GI – gastrointestinal
turbation of gastric blood flow with disrupted inflow of blood, and therefore oxygen in the gastric mucosa itself [21, 22].

Patients with LC and PH also have increased plasma endothelin-1 level, which is a powerful vasoconstrictor, as well as increased tumor necrosis factor-α, which has cytotoxic properties. The gastric mucus secretion, the content of gastric mucin and their precursor hexosamine, is reduced. Production of bicarbonates is also reduced. The mucosa of the stomach with PHG has a reduced proliferation of mucosal epithelial cells. The prostaglandin E2 content is significantly lower, especially in mucosal congestion. The increase in nitric oxide may contribute to the increased sensitivity to mucosal noxae in PHG [11].

Ulcer Healing

Proliferation of epithelial cells in the ulcer margin and angiogenesis at the bottom of the ulcer are essential for ulcer healing. The gastric ulcer healing in PHG is slow, primarily due to the inhibition of epithelial proliferation in the ulcer margin [23].

In the study of Siringo et al., after 8 weeks of therapy, GU healing occurred in 67% of patients with LC and 84% of patients without LC. Ulcer recurrence was higher in patients with LC (50%) than in patients without LC (30%) [5].

Helicobacter pylori Infection – the Role in Ulcerogenesis and PU Bleeding in Patients with LC

Helicobacter pylori (H. pylori) is a human pathogen that is transferred from one human to another causing chronic active gastritis in all colonized subjects. This may lead to _PU_, atrophic gastritis, gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. Eradication of _H. pylori_ results in healing of gastritis and may prevent long-term complications of the infection [24].

In populations of Northern Europe and North America, about one-third of adults are still infected, whereas in south and east Europe, South America, and Asia, the prevalence of _H. pylori_ is often higher than 50%. Low socioeconomic conditions in childhood are confirmed to be the most important risk factors for _H. pylori_ infection [25].

In duodenal ulcer (DU), _H. pylori_ infection is present in around 90 – 100% of cases, and in gastric ulcer (GU) in around 60 – 100% of cases. Eradication of _H. pylori_ drastically reduces the annual recurrence of DU [26].

A lower incidence of _H. pylori_ infection is recorded in PU bleeding (PUB). Authors from Novi Sad have found that the presence of _H. pylori_ in GU bleedings to be 58.33%, and 69.8% in DU bleedings [27]. They have also found that _H. pylori_ _per se_ is not a risk factor for PUB, but that it does have a synergistic effect with taking non-steroidal anti-inflammatory drugs (NSAIDs), OR = 3.13, p < 0.01. It was concluded that taking alcohol significantly increases the probability of PUB (OR = 3.25, p < 0.01) [28]. The use of alcohol in certain regions of Serbia is a significant problem [29].

H. pylori infection is significantly less present in patients with LC, even compared to the general population of medium-developed countries. Gastric mucosa in PHG is not a suitable element for _H. pylori_ colonization. Colonization of gastric mucosa with _H. pylori_ is 26% in patients with LC and PH, and 38% in patients without PH [30].

Alempijević et al. found that the infection with _H. pylori_ is present in 36% of patients with LC, regardless of the presence of PU, and that in this case _H. pylori_ infection does not impact the development of the ulcer disease [31].

Kim et al. found the presence of _H. pylori_ infection in patients with LC and PU in 35.6% of cases, and in 34.9% of cases in patients with LC without PU. The prevalence of _H. pylori_ infection decreases, and the frequency of PU increases proportionally to the severity of the LC [8].

Other authors have found PU incidence in a group of patients with LC, who were infected with _H. pylori_, to be eight times higher compared to the non-infected patients [32].

Certain researches show that _H. pylori_ infection was present in 40 – 89% of patients with LC, which was probably conditioned by the methods used to establish the infection. Studies that used serological tests found greater incidence of _H. pylori_ infection [13, 33, 34].

H. pylori infection rate in cirrhotic patients with PU is 35.5 – 51.92%. Although _H. pylori_ is not the predominant etiologic factor of PU in LC, it should be treated. Early eradication of _H. pylori_ infection is connected to the reduced risk of recurrent PU in patients with LC [35].

This is in contrast with the research done by Lo et al. who concluded that eradication of _H. pylori_ infection in patients with LC and DU was not efficient in preventing ulcer recurrence [36]. In general population the approach to diagnostics and treatment of _H. pylori_ infection significantly reduced the incidence of DU [37].

To sum up, the presence of _H. pylori_ infection in patients with PU in LC is significantly lower compared to the presence of this infection in patients with PU without LC. The prevalence of _H. pylori_ infection is not different in patients with LC and PH and those without PU. The prevalence of _H. pylori_ infection decreases with the severity of liver disease, but there is no simultaneous change in the incidence of PU. Therefore, this infection cannot be considered one of the key factors of PU incidence in patients with LC.

Non-steroidal Anti-Inflammatory Drugs: the Role in Ulcerogenesis and Peptic Ulcer Bleeding in Patients with Liver Cirrhosis

Aspirin and other NSAIDs are a significant cause of PU in general population. Their use can be found in up to 60% of patients with PU [38].

In a study done by Bang et al., the prevalence of PU in LC was 18%. The prevalence of taking ulce-
Peptic Ulcer Therapy in Patients with Liver Cirrhosis

Treatment of non-complicated PU in patients with LC is not different from treatment of PU in patients without LC. The therapy of PUB in patients with LC has its own specificities, regarding the basic liver disease. It is necessary to point out the extensive application of PPI within chronic therapy of patients with LC without PU. These drugs are used by 25% to 40% of patients with cirrhosis without clearly documented indications. Without arguments for the application of these drugs, patients with LC are at risk for developing bacterial infections and sepsis with multiple organ dysfunction, deterioration of liver function and bad prognosis [48, 49].

Conclusion

In patients with liver cirrhosis there is a significant presence of peptic ulcer. Aggressive factors taking part in the pathogenesis of peptic ulcer are reduced, as well as defensive factors of gastric mucosa. *Helicobacter pylori* infection cannot be considered one of the key factors in the development of peptic ulcer in these patients. The importance of using non-steroidal anti-inflammatory drugs is undeniable, though controversial. Peptic ulcer appears more frequently in advanced liver cirrhosis. Peptic ulcer bleeding is the most frequent cause of non-variceal bleeding in these patients.

Treatment of non-complicated peptic ulcer in patients with liver cirrhosis does not differ from the treatment of peptic ulcer in patients without liver cirrhosis. The peptic ulcer bleeding in patients with liver cirrhosis has some specificities and therapeutic postulates. In the therapy of patients with liver cirrhosis without peptic ulcer, it is necessary to take a restrictive approach in applying proton pump inhibitors due to the risk for developing serious bacterial infections.
References

1. Savić Ž, Vraćaric V, Hadnadev L, Petrović Z, Damjanov D. Iskustvo u lečenju nekih komplikacija portne hipertenzije kod alkoholne ciroze jetre. Vojnosanit Pregl. 2011;68(11):917-22.
2. Mokdad AA, Lopez AD, Shahraz S, Lozano R, Mokdad AH, Stanaway J, et al. Liver cirrhosis mortality in 187 countries between 1980 and 2010: a systematic analysis. BMC Med. 2014;12:145.
3. Del Valle J, Chey WD, Scheiman JM. Acid peptic disorders. In: Yamada T, Alpers DH, editors. Textbook of gastroenterology. 4th ed. Philadelphia: Lippincott Williams and Wilkins; 2003. p. 1322-76.
4. Thiel H. “Hepatogenic ulcer” theories and facts. Z Gastroenterol. 1978;16(2):73–84.
5. Siringo S, Burroughs AK, Bolondi L, Muia A, Di Febo G, Miglioli M, et al. Peptic ulcer and its course in cirrhosis: an endoscopic and clinical prospective study. J Hepatol. 1995;22(6):633-41.
6. Siringo S, Vaira D, Menegatti M, Piscaglia F, Sofia S, Gaetani M, et al. High prevalence of Helicobacter pylori in liver cirrhosis. Dig Dis Sci. 1997;42(10):2024-30.
7. Calvet X, Navarro M, Gil M, Lafont A, Sanfelix I, Brulet E, et al. Epidemiology of peptic ulcer disease in cirrhotic patients: role of Helicobacter pylori infection. Am J Gastroenterol. 1998;93(12):2501-7.
8. Kim DJ, Kim HY, Kim SJ, Hahn TH, Jang MK, Baik GH, et al. Helicobacter pylori infection and peptic ulcer disease in patients with liver cirrhosis. Korean J Intern Med. 2008;23(1):16-21.
9. Kamalaporn P, Sobhonslidusak A, Jatchavala J, Atisook K, Rattanasiri S, Pramoolsinsap C. Factors predisposing to peptic ulcer disease in asymptomatic cirrhotic patients. Aliment Pharmacol Ther. 2005;21(12):1459-65.
10. Chen LS, Lin HC, Hwang SJ, Lee FY, Hou MC, Lee SD. Prevalence of gastric ulcer in cirrhotic patients and its relation to portal hypertension. J Gastroenterol Hepatol. 1996;11(1):59-64.
11. Kitano S, Dolgor B. Does portal hypertension contribute to the pathogenesis of gastric ulcer associated with liver cirrhosis? J Gastroenterol Hepatol. 2000;35(2):79-86.
12. Tomoda J, Mizuno M, Sugihara T, Itano T, Tsuji T. Gastric mucosal lesion in liver disease: impaired gastric mucosal defence mechanism in rats with induced liver injury and in patients with liver cirrhosis. J Gastroenterol Hepatol. 1989;4(Suppl 1):136–9.
13. Wu CS, Lin CY, Liaw YF. Helicobacter pylori pylori in cirrhotic patients with peptic ulcer disease: a prospective, case controlled study. Gastrointest Endosc. 1995;42(5):424–7.
14. Fraser AG, Pounder RE, Burroughs AK. Gastric secretion and peptic ulceration in cirrhosis. J Hepatol. 1993;19(1):171–82.
15. Tabaqchali S, Dawson AM. Peptic ulcer and gastric secretion in patients with liver disease. Gut. 1964;5:417-21.
16. Scobie BA, Summerskill WH. Reduced gastric acid output in cirrhosis: quantitation and relationships. Gut. 1964;5:422-8.
17. Lam SK. Hypergastrinaemia in cirrhosis of liver. Gut. 1976;17(9):700-8.
18. Gaur SK, Vij JC, Sarin SK, Anand BS. Gastric secretion in cirrhosis and non-cirrhotic portal fibrosis. Digestion. 1988;39(3):151-5.
19. Savarino V, Mela GS, Zentilin P, Mansi C, Mele MR, Vigneri S, et al. Evaluation of 24-hour gastric acidity in patients with hepatic cirrhosis. J Hepatol. 1996;25(2):152-7.
20. Mitsunaga A, Yokoyama S, Hashimoto H, Hirose H, Adachi H, Kurokawa K, et al. Clinical study of the aggressive factors of the gastric mucosa in liver cirrhosis. J Gastroenterol Hepatol. 1989;4 Suppl 1:266–7.
21. Sarfeh IJ, Soliman H, Waxman K, Coccia M, Rypins EB, Bui HX, et al. Impaired oxygenation of gastric mucosa in portal hypertension. The basis for increased susceptibility to injury. Dig Dis Sci. 1989;34(2):225-8.
22. Auroux J, Lamarque D, Roudot-Thoraval F, Deforges L, Chaumette MT, Richardet JP, et al. Gastroduodenal ulcer and erosions are related to portal hypertensive gastropathy and recent alcohol intake in cirrhotic patients. Dig Dis Sci. 2003;48(6):1118-23.
23. Baatar D, Kitano S, Yoshida T, Bandoh T, Ninomiya K, Tsuibo S. Delayed healing of acetic acid-induced gastric ulcer in portal hypertensive rats. Eur Surg Res. 1999;31(4):340-6.
24. Sugano K, Taek J, Kuipers EJ, Graham DY, El-Omar EM, Miura S, et al. Kyoto global consensus report on Helicobacter pylori gastritis. Gut. 2015;64(9):1353-67.
25. Buseh LH, Zagari RM, Bazzoli F. Epidemiology of Helicobacter pylori infection. Helicobacter. 2014;19(Suppl 1):1-5.
26. Kuipers EJ, Thijjs J, Festen HP. The prevalence of Helicobacter pylori in peptic ulcer disease. Aliment Pharmacol Ther. 1995;9 Suppl 2:59-69.
27. Savić Ž. Faktori rizika za nastanak krvarenja iz peptičkog ulkusa gastroduodenuma [Magistarska teza]. Novi Sad: Medicinski fakultet Novi Sad; 2004.
28. Savić Ž, Hadnadev LJ, Damjanov D, Knežević A, Petrović Z, Pešić T, et al. Faktori rizika za krvenanje iz peptičkog ulkusa (solisti ili orkestar). Medicina danas. 2011;10(4-6):113-8.
29. Savić Ž, Dickov A, Hadnadev LJ, Damjanov D, Petrović Z, Knežević A, et al. Epidemiološki i klinički profil alkoholizma i konsekutivne ciroze jetre na teritoriji Novog Sada. Medicina danas. 2011;10(7-9):266-70.
30. McCormick PA, Sankey EA, Cardin F, Dhillon AP, McIntyre N, Burroughs AK. Congestive gastropathy and Helicobacter pylori: an endoscopic and morphometric study. Gut. 1991;32(4):351-4.
31. Alempijević T, Krstić M, Antonić V, Krstić S. Učestalost infekcije s Helicobacter pylori kod osoba obolelih od ciroze jetre. Srp Arh Celok Lek. 2007;135(9-10):536-40.
32. Dore MP, Mura D, Deledda S, Maragkoudakis E, Pironati A, Reaelli G. Active peptic ulcer disease in patients with hepatitis C virus-related cirrhosis: the role of Helicobacter pylori infection and portal hypertensive gastropathy. Can J Gastroenterol. 2004;18(8):521-4.
33. Calvet X, Navarro M, Gil M, Mas P, Rivero E, Sanfelix I, et al. Seroprevalence and epidemiology of Helicobacter pylori infection in patients with cirrhosis. J Hepatol. 1997;26(6):1249-54.
34. Chen JJ, Changchien CS, Tai DI, Chou SS, Lee CM, Kuo CH. Role of Helicobacter pylori in cirrhotic patients with peptic ulcer. A serological study. Dig Dis Sci. 1994;39(7):1565-8.
35. Chang SS, Hu HY. Helicobacter pylori: effect of coexisting diseases and update on treatment regimens. World J Gastrointest Pharmacol Ther. 2015;6(4):127-36.
36. Lo GH, Yu HC, Chan YC, Chen WC, Hsu PI, Lin CK, et al. The effects of eradication of Helicobacter pylori on the recurrence of duodenal ulcers in patients with cirrhosis. Gastrointest Endosc. 2005;62(3):350-6.
37. Jovanović I, Đurić P, Alempijević T, Sokić-Milutinović A, Kršć M, Milosavljević T. Ulkusna bolest dvanaestopalačnog creva tokom dvadeset godina nakon otkrića Helicobacter pylori - iskustvo iz jednog centra. Med Pregl. 2010;63(3-4):258-61.
38. Quan C, Talley NJ. Management of peptic ulcer disease not related to Helicobacter pylori or NSAIDs. Am J Gastroenterol. 2002;97(12):2950-61.
39. Bang CS, Baik GH, Kim JH, Kim JB, Suk KT, Yoon JH, et al. Peptic ulcer disease in liver cirrhosis and chronic hepatitis: impact of portal hypertension. Scand J Gastroenterol. 2014;49(9):1051-7.
40. Luo JC, Leu HB, Hou MC, Huang CC, Lin HC, Lee FY, et al. Cirrhotic patients at increased risk of peptic ulcer bleeding: a nationwide population-based cohort study. Aliment Pharmacol Ther. 2012;36(6):542–50.
41. Nojkov B, Cappell M. Distinctive aspects of peptic ulcer disease, Dieulafoy’s lesion, and Mallory-Weiss syndrome in patients with advanced alcoholic liver disease or cirrhosis. World J Gastroenterol. 2016;22(1):446-66.
42. Rudler M, Rousseau G, Benosman H, Massard J, Deforges L, Lebray P, et al. Peptic ulcer bleeding in patients with or without cirrhosis. different diseases but the same prognosis? Aliment Pharmacol Ther. 2012;36(2):166-72.
43. Savić Ž, Hadnadjev Lj, Damjanov D, Petrović Z, Mrdja Z, Knežević A, et al. Upper gastrointestinal bleeding in patients with alcohol liver disease. In: V Congress of Internal Medicine for the South-Eastern Europe: abstract book; 2009 March 6-9; Beograd, Serbia. Internist. 2009;2(Suppl 1):27.
44. Svoboda P, Konečny M, Martinek A, Hrabovský V, Procházka V, Ehrmann J. Acute upper gastrointestinal bleeding in liver cirrhosis patients. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2012;156(3):266-70.
45. D’Amico G, De Franchis R, Cooperative Study Group. Upper digestive bleeding in cirrhosis. Post-therapeutic outcome and prognostic indicators. Hepatology. 2003;38(3):599-612.
46. Ardevol A, Ibanez-Sanz G, Profitos J, Aracil C, Castellvi JM, Alvarado E, et al. Survival of patients with cirrhosis and acute peptic ulcer bleeding compared with variceal bleeding using current first-line therapies. Hepatology. In press. doi: 10.1002/hep.29370.
47. Kuo MT, Yang SC, Lu LS, Hsu CN, Kuo YH, Kuo CH, et al. Predicting risk factors for rebleeding, infections, mortality following peptic ulcer bleeding in patients with cirrhosis and the impact of antibiotics prophylaxis at different clinical stages of the disease. BMC Gastroenterol. 2015;15:61.
48. Picardi A, Vesapasiani-Gentilucci U. Proton pump inhibitor prescription abuse and sepsis in cirrhosis. World J Gastrointest Pharmacol Ther. 2016;7(1):1-4.
49. Bajaj JS, Ratliff SM, Heuman DM, Lapane KL. Proton pump inhibitors are associated with a high rate of serious infections in veterans with decompensated cirrhosis. Aliment Pharmacol Ther. 2012;36(9):866-74.