LINEAR OPERATORS WITH COMPACT SUPPORTS, PROBABILITY MEASURES AND MILITYUTIN MAPS

VESKO VALOV

Abstract. The notion of a regular operator with compact supports between function spaces is introduced. On that base we obtain a characterization of absolute extensors for 0-dimensional spaces in terms of regular extension operators having compact supports. Milyutin maps are also considered and it is established that some topological properties, like paracompactness, metrizability and \(k \)-metrizability, are preserved under Milyutin maps.

1. Introduction

In this paper we assume that all topological spaces are Tychonoff. The main concept is that one of a linear map between function spaces with compact supports. Let \(u : C(X, E) \rightarrow C(Y, E) \) be a linear map, where \(C(X, E) \) is the set of all continuous functions from \(X \) into a locally convex linear space \(E \). We say that \(u \) has compact supports if for every \(y \in Y \) the linear map \(T(y) : C(X, E) \rightarrow E \), defined by \(T(y)(h) = u(h)(y), h \in C(X, E) \), has a compact support in \(X \). Here, the support of a linear map \(\mu : C(X, E) \rightarrow E \) is the set \(s(\mu) \) of all \(x \in \beta X \) such that for every neighborhood \(U \) of \(x \) in \(\beta X \) there exists \(h \in C(X, E) \) with \((\beta h)(\beta X - U) = 0 \) and \(\mu(h) \neq 0 \). Recall that \(\beta X \) is the Čech-Stone compactification of \(X \) and \(\beta h : \beta X \rightarrow \beta E \) the extension of \(h \). Obviously, \(s(\mu) \subset \beta X \) is closed, so compact. When \(s(\mu) \subset X \), \(\mu \) is said to have a compact support.

In a similar way we define a linear map with compact supports when consider the bounded function sets \(C^*(X, E) \) and \(C^*(Y, E) \) (if \(E \) is the real line \(\mathbb{R} \), we simply write \(C(X) \) and \(C^*(X) \)). If all \(T(y) \) are regular linear maps, i.e., \(T(y)(h) \) is contained in the closed convex hull \(\text{convh}(X) \) of \(h(X) \) in \(E \), then \(u \) is called a regular operator.

Haydon [19] proved that Dugundji spaces introduced by Pelczynski [26] coincides with the absolute extensors for 0-dimensional compact spaces (br., \(X \in AE(0) \)). Later Chigogidze [10] provided a more general definition of \(AE(0)- \) spaces in the class of all Tychonoff spaces. The notion of linear operators with
compact supports arose from the attempt to find a characterization of $AE(0)$-spaces similar to the Pelczynski definition of Dugundji spaces. Here is this characterization (see Theorems 4.1-4.2). For any space X the following conditions are equivalent: (i) X is an $AE(0)$-space; (ii) for every C-embedding of X in a space Y there exists a regular extension operator $u: C(X) \to C(Y)$ with compact supports; (iii) for every C-embedding of X in a space Y there exists a regular extension operator $u: C^*(X) \to C^*(Y)$ with compact supports; (iv) for any C-embedding of X in a space Y and any complete locally convex space E there exists a regular extension operator $u: C^*(X, E) \to C^*(Y, E)$ with compact supports.

It is easily seen that $u: C(X, E) \to C(Y, E)$ (resp., $u: C^*(X, E) \to C^*(Y, E)$) is a regular extension operator with compact supports iff there exists a continuous map $T: Y \to P_c(X, E)$ (resp., $T: Y \to P^*_c(X, E)$) such that $T(y)$ is the Dirac measure δ_y at y for all $y \in X$. Here, $P_c(X, E)$ (resp., $P^*_c(X, E)$) is the space of all regular linear maps $\mu: C(X, E) \to E$ (resp., $\mu: C^*(X, E) \to E$) with compact supports equipped with the pointwise convergence topology (we write $P_c(X)$ and $P^*_c(X)$ when $E = \mathbb{R}$). Section 2 is devoted to properties of the functors P_c and P^*_c (actually, P^*_c is the well known functor P_β [9] of all probability measures on βX whose supports are contained in X). It appears that $P_c(X)$ is homeomorphic to the closed convex hull of $e_X(X)$ in $\mathbb{R}^{C(X)}$ provided X is realcompact, where e_X is the standard embedding of X into $\mathbb{R}^{C(X)}$ (Proposition 2.4), and $P_c(X)$ is metrizable iff X is a metric compactum (Proposition 2.5(ii)).

In Section 3 we consider regular averaging operators with compact support and Milyutin maps. Milyutin maps between compact spaces were introduced by Pelczynski [26]. There are different definitions of Milyutin maps in the non-compact case, see [1], [28] and [37]. We say that a surjection $f: X \to Y$ is a Milyutin map if f admits a regular averaging operator $u: C(X) \to C(Y)$ having compact supports. This is equivalent to the existence of a map $T: Y \to P_c(X)$ such that $f^{-1}(y)$ contains the support of $T(y)$ for all $y \in Y$. It is shown, for example, that for every product Y of metric spaces there is a 0-dimensional product X of metric spaces and a perfect Milyutin map $f: X \to Y$ (Corollary 3.10). Moreover, every p-paracompact space is an image under a perfect Milyutin map of a 0-dimensional p-paracompact space (Corollary 3.11).

In the last Section 5 we prove that some topological properties are preserved under Milyutin maps. These properties include paracompactness, collection-wise normality, (complete) metrizability, stratifiability, δ-metrizability and k-metrizability. In particular, we provide a positive answer to a question of Shchepin [31] whether every $AE(0)$-space is k-metrizable (see Corollary 5.5).

Some of the result presented here were announced in [33] without proofs.
Everywhere in this section E, F stand for locally convex linear topological spaces and $C(X, E)$ is the set of all continuous maps from a space X into E. By $C^*(X, E)$ we denote the bounded elements of $C(X, E)$. Let $\mu: C(X, E) \to F$ (resp., $\mu: C^*(X, E) \to F$) be a linear map. The support of μ is defined as the set $s(\mu)$ (resp., $s^*(\mu)$) of all $x \in \beta X$ such that for every neighborhood U of x in βX there exists $f \in C(X, E)$ (resp., $f \in C^*(X, E)$) with $(\beta f)(\beta X - U) = 0$ and $\mu(f) \neq 0$, see [36]. Obviously, $s(\mu)$ and $s^*(\mu)$ are closed in βX, so compact. Let us note that in the above definition $(\beta f)(\beta X - U) = 0$ is equivalent to $f(X - U) = 0$. We also use $s^*(\mu)$ to denote the support of the restriction $\mu|C^*(C, E)$ when μ is defined on $C(X, E)$ (in this case we have $s^*(\mu) \subset s(\mu)$).

Lemma 2.1. Let μ be a linear map from $C(X, E)$ (resp., from $C^*(X, E)$) into F, where E and F are norm spaces.

(i) If V a neighborhood of $s(\mu)$ (resp., $s^*(\mu)$), then $\mu(f) = 0$ for every $f \in C(X, E)$ (resp., $f \in C^*(X, E)$) with $(\beta f)(V) = 0$.

(ii) If the restriction $\mu|C^*(X, E)$ is continuous when $C^*(X, E)$ is equipped with the uniform topology, then $\mu(f) = 0$ provided $f \in C(X, E)$ (resp., $f \in C^*(X, E)$) and $(\beta f)(s(\mu)) = 0$ (resp., $(\beta f)(s^*(\mu)) = 0$).

(iii) In each of the following two cases $s(\mu)$ coincides with $s^*(\mu)$: either $s(\mu) \subset X$ or μ is a non-negative linear functional on $C(X)$.

Proof. When μ is a linear map on $C(X, E)$, items (i) and (ii) were established in [36, Lemma 2.1]: the case when μ is a linear map on $C^*(X, E)$ can be done by similar arguments. To prove (iii), we first suppose that $s(\mu) \subset X$. Then $s^*(\mu)$ is the support of the restriction $\mu|C^*(X, E)$ and $s^*(\mu) \subset s(\mu)$. So, we need to show that $s(\mu) \subset s^*(\mu)$. For a given point $x \in s(\mu)$ and its neighborhood U in βX there exists $g \in C(X, E)$ with $g(X - U) = 0$ and $\mu(g) \neq 0$. Because $g(s(\mu)) \subset E$ is compact, we can find $\epsilon > 0$ such that $s(\mu)$ is contained in the set $W = \{y \in X : ||g(y)|| < \epsilon\}$, where $||.||$ denotes the norm in E. Let $B_{\epsilon} = \{z \in E : ||z|| \leq \epsilon\}$ and $r: E \to B_{\epsilon}$ be a retraction (i.e., a continuous map with $r(z) = z$ for every $z \in B_{\epsilon}$). Then $h(y) = g(y)$ for every $y \in W$, where $h = r \circ g$. Hence, choosing an open set V in βX such that $V \cap X = W$, we have $(\beta(h - g))(V) = 0$. Since V is a neighborhood of $s(\mu)$, by (i), $\mu(h) = \mu(g) \neq 0$. Therefore, we found a map $h \in C^*(X, E)$ such that $\beta h(\beta X - U) = 0$ and $\mu(h) \neq 0$. This means that $x \in s^*(\mu)$. So, $s(\mu) = s^*(\mu)$.

Now, let $E = F = \mathbb{R}$ and μ be a non-negative linear functional on $C(X)$. Suppose there exists $x \in s(\mu)$ but $x \notin s^*(\mu)$. Then, for some neighborhood U of x in βX, we have

\begin{equation}
(1) \quad \mu(h) = 0 \text{ for every } h \in C^*(X) \text{ with } h(X - U) = 0.
\end{equation}
Since \(x \in s(\mu) \), there exists \(f \in C(X) \) such that \(f(X - U) = 0 \) and \(\mu(f) \neq 0 \). Now, we use an idea from [21, proof of Theorem 1]. We represent \(f \) as the sum \(f^+ + f^- \), where \(f^+ = \max\{f, 0\} \) and \(f^- = \min\{f, 0\} \). Since both \(f^+ \) and \(f^- \) are 0 outside \(U \) and \(\mu(f) = \mu(f^+) + \mu(f^-) \neq 0 \) implies that at least one of the numbers \(\mu(f^+) \) and \(\mu(f^-) \) is not 0, we can assume that \(f \geq 0 \). By (1), \(f \) is not bounded. Therefore, there is a sequence \(\{x_n\} \subset X \) such that \(\{t_n = f(x_n) : n \geq 1\} \) is an increasing and unbounded sequence. We set \(t_0 = 0 \) and for every \(n \geq 1 \) define the function \(f_n \in C^*(X) \) as follows: \(f_n(x) = 0 \) if \(f(x) \leq t_{n-1} \), \(f_n(x) = f(x) - t_{n-1} \) if \(t_{n-1} < f(x) \leq t_n \) and \(f_n(x) = t_n - t_{n-1} \) provided \(f(x) > t_n \). Let also \(h_n = t_n \cdot f_n \) and \(h = \sum_{n=1}^{\infty} h_n \). Then \(h \) is continuous and for every \(n \geq 1 \) we have
\[
(2) \quad t_n(f - f_1 - f_2 - ... - f_n) \leq h - h_1 - h_2 - ... - h_n.
\]

Since all \(f_n \) and \(h_n \) are bounded and continuous functions satisfying \(f_n(X - U) = h_n(X - U) = 0 \), it follows from (1) that \(\mu(h_n) = \mu(f_n) = 0 \), \(n \geq 1 \). So, by (2), \(t_n \cdot \mu(f) \leq \mu(h) \) for every \(n \). Hence, \(\mu(f) = 0 \) which is a contradiction. Therefore, \(s(\mu) = s^*(\mu) \).

We say that a linear map \(\mu \) on \(C(X, E) \) (resp., on \(C^*(X, E) \)) has a compact support if \(s(\mu) \subset X \) (resp., \(s^*(\mu) \subset X \)). If \(\mu \) takes values in \(E \), then it is called regular provided \(\mu(f) \) belongs to the closure of the convex hull \(\text{conv } f(X) \) of \(f(X) \) for every \(f \in C(X, E) \) (resp., \(f \in C^*(X, E) \)). Below, \(C_k(X, E) \) (resp., \(C^*_k(X, E) \)) stands for the space \(C(X, E) \) (resp. \(C^*(X, E) \)) with the compact-open topology.

Proposition 2.2. Let \(E \) be a norm space. A regular linear map \(\mu \) on \(C(X, E) \) (resp., \(C^*(X, E) \)) has a compact support in \(X \) if and only if \(\mu \) is continuous on \(C_k(X, E) \) (resp., \(C^*_k(X, E) \)).

Proof. We consider only the case when \(\mu \) is a map on \(C(X, E) \), the other one is similar. Suppose \(s(\mu) = H \subset X \). Since \(\mu \) is regular, \(\mu(f) \in \text{conv } f(X) \) for every \(f \in C(X, E) \). This yields \(||\mu(f)|| \leq ||f|| \), \(f \in C^*(X, E) \). Hence, the restriction \(\mu|C^*(X, E) \) is continuous with respect to the uniform topology. So, by Lemma 2.1(iii), for every \(f \in C(X, E) \) the value \(\mu(f) \) depends only on the restriction \(f|H \). Therefore, the linear map \(\nu : C(H, E) \to E, \nu(g) = \mu(\tilde{g}) \), where \(\tilde{g} \in C(X, E) \) is any continuous extension of \(g \), is well defined. Note that such an extension \(\tilde{g} \) always exists because \(H \subset X \) is compact. Moreover, the restriction map \(\pi_H : C_k(X, E) \to C_k(H, E) \) is surjective and continuous. Since \(\mu = \nu \circ \pi_H \), \(\mu \) would be continuous provided \(\nu : C_k(H, E) \to E \) is so. Next claim implies that for every \(g \in C(H, E) \) we have \(\nu(g) \in \text{conv } g(H) \) and \(||\nu(g)|| \leq ||g|| \), which guarantee the continuity of \(\nu \).
Claim 1. $\mu(f) \in \text{conv } f(H)$ for every $f \in C(X, E)$

Indeed, if $\mu(f) \not\in \text{conv } f(H)$ for some $f \in C(X, E)$, then we can find a closed convex neighborhood W of $\text{conv } f(H)$ in E and a function $h \in C(X, E)$ such that $\mu(f) \not\in W$, $h(X) \subset W$ and $h(x) = f(x)$ for all $x \in H$. As it was shown above, the last equality implies $\mu(f) = \mu(h)$. Hence, $\mu(f) = \mu(h) \in \text{conv } h(X) \subset W$, which is a contradiction.

Now, suppose $\mu: C_k(X, E) \to E$ is continuous. Then there exists a compact set $K \subset X$ and $\epsilon > 0$ such that $||\mu(f)|| < 1$ for every $f \in C(X, E)$ with $\sup\{||f(x)|| : x \in K\} < \epsilon$. We claim that $s(\mu) \subset K$. Indeed, otherwise there would be $x \in s(\mu) - K$, a neighborhood U of x in βX with $U \cap K = \emptyset$, and a function $g \in C(X, E)$ such that $g(X - U) = 0$ and $\mu(g) \neq 0$. Choose an integer k with $||\mu(kg)|| \geq 1$. On the other hand, $kg(x) = 0$ for every $x \in K$. Hence, $||\mu(kg)|| < 1$, a contradiction. \hfill \Box

Now, for every space X and a locally convex space E let $P_c(X, E)$ (resp., $P^*_c(X, E)$) denote the set of all regular linear maps $\mu: C(X, E) \to E$ (resp., $\mu: C^*(X, E) \to E$) with compact supports equipped with the weak (i.e. pointwise) topology with respect to $C(X, E)$ (resp., $C^*(X, E)$). If E is the real line, we write $P_c(X)$ (resp., $P^*_c(X)$) instead of $P_c(X, \mathbb{R})$ (resp., $P^*_c(X, \mathbb{R})$). It is easily seen that a linear map $\mu: C(X) \to \mathbb{R}$ (resp., $\mu: C^*(X) \to \mathbb{R}$) is regular if and only if μ is non-negative and $\mu(1) = 1$. If $h: X \to Y$ is a continuous map, then there exists a map $P_c(h): P_c(X) \to P_c(Y)$ defined by $P_c(h)(\mu)(f) = \mu(f \circ h)$, where $\mu \in P_c(X)$ and $f \in C(Y)$. Considering functions $f \in C^*(Y)$ in the above formula, we can define a map $P_c^*(h): P^*_c(X) \to P^*_c(Y)$. It is easily seen that $s(P_c(h)(\mu)) \subset h(s(\mu))$ (resp., $s^*(P_c^*(h)(\mu)) \subset h(s^*(\mu))$) for every $\mu \in P_c(X)$ (resp., $\mu \in P^*_c(X)$). Moreover, $P_c(h_2 \circ h_1) = P_c(h_2) \circ P_c(h_1)$ and $P^*_c(h_2 \circ h_1) = P^*_c(h_2) \circ P^*_c(h_1)$ for any two maps $h_1: X \to Y$ and $h_2: Y \to Z$. Therefore, both P_c and P^*_c are covariant functors in the category of all Tychonoff spaces and continuous maps. Let us also note that if X is compact then $P_c(X)$ and $P^*_c(X)$ coincide with the space $P(X)$ of all probability measures on X.

For every $x \in X$ we consider the Dirac’s measure $\delta_x \in P_c(X, E)$ defined by $\delta_x(f) = f(x)$, $f \in C(X, E)$. In a similar way we define $\delta_x^* \in P^*_c(X, E)$. We also consider the maps $i_X: X \to P_c(X, E)$, $i_X(x) = \delta_x$, and $i^*_X: X \to P^*_c(X, E)$, $i^*_X(x) = \delta_x^*$. Next proposition is an easy exercise.

Proposition 2.3. Let $h: X \to Y$ be a map.

(i) The map $i_X: X \to P_c(X)$ is a closed C-embedding, and $i^*_X: X \to P^*_c(X)$ is a closed C^*-embedding;

(ii) The map $P_c(h)$ is a (closed) C-embedding provided h is a (closed) C-embedding;
(iii) The map $P^*_c(h)$ is a (closed) C^*-embedding provided h is a (closed) C^*-embedding.

There exists a natural embedding $e_X: X \rightarrow \mathbb{R}^{C(X)}$, $e_X(x) = (f(x))_{f \in C(X)}$. Denote by $M^+(X)$ the set of all regular linear functionals on $C(X)$ with the pointwise topology and consider the map $m_X: M^+(C) \rightarrow \mathbb{R}^{C(X)}$, $m_X(\mu) = (\mu(f))_{f \in C(X)}$. It easily seen that m_X is also an embedding extending and $m_X(M^+(X))$ is a closed convex subset of $\mathbb{R}^{C(X)}$. Moreover, $P_c(X) \subset M^+(X)$. It is well known that for compact X the space $P(X)$ is homeomorphic with the convex closed hull of $e_X(X)$ in $\mathbb{R}^{C(X)}$. A similar fact is true for $P_c(X)$.

Proposition 2.4. If X is realcompact, then $P_c(X)$ is homeomorphic to the closed convex hull of $e_X(X)$ in $\mathbb{R}^{C(X)}$.

Proof. Obviously, $m_X(P_c(X))$ is a convex subset of $\mathbb{R}^{C(X)}$ containing the set $\text{conv} \ e_X(X)$. It suffices to show that $m_X(P_c(X))$ coincides with the set $B = \text{conv} \ e_X(X)$. Suppose $\mu \in P_c(X)$. By Lemma 2.1(ii) and Proposition 2.2, for every $f \in C(X)$ the value $\mu(f)$ is determined by the restriction $f|s(\mu)$. So, there exists an element $\nu \in P(s(\mu))$ such that $\mu(f) = \nu(f|s(\mu))$, $f \in C(X)$ (see the proof of Proposition 2.2). Since the set $P_f(s(\mu))$ of all measures from $P(s(\mu))$ having finite supports is dense in $P(s(\mu))$ [17], there is a net $\{\nu_\alpha\}_{\alpha \in A} \subset P_f(s(\mu))$ converging to ν in $P(s(\mu))$. Each ν_α can be identified with the measure $\mu_\alpha \in P_c(X)$ defined by $\mu_\alpha(f) = \nu_\alpha(f|s(\mu))$, $f \in C(X)$. Moreover, the net $\{\mu_\alpha\}_{\alpha \in A}$ converges to ν in $P_c(X)$. Then $\{m_X(\mu_\alpha)\}_{\alpha \in A} \subset \text{conv} \ e_X(X)$ and converges to $m_X(\mu)$ in $\mathbb{R}^{C(X)}$. So, $m_X(\mu) \in B$. In this way we obtained $m_X(P_c(X)) \subset B$.

On the other hand, since $m_X(M^+(X))$ is a closed and convex subset of $\mathbb{R}^{C(X)}$ containing $e_X(X)$, $B \subset m_X(M^+(X))$. So, the elements of B are of the form $m_X(\mu)$ with μ being a regular linear functional on $C(X)$. Since X is realcompact, according to [21, Theorem 18], any such a functional has a compact support in X. Therefore, $B \subset m_X(P_c(X))$. □

There exists a natural continuous map $j_X: P_c(X) \rightarrow P^*_c(X)$ assigning to each $\mu \in P_c(X)$ the measure $\nu = \mu|C^*(X)$. By Lemma 2.1 and Proposition 2.2, $s(\mu) = s^*(\nu)$ and $\mu(f)$ and $\nu(g)$ depend, respectively, on the restrictions $f|s(\mu)$ and $g|s^*(\nu)$ for all $f \in C(X)$ and $g \in C^*(X)$. This implies that j_X is one-to-one. Using again Lemma 2.1 and Proposition 2.2, one can show that j_X is surjective. According to next proposition, j_X is not always a homeomorphism.

A subset A of a space X is said to be bounded if $f(A) \subset \mathbb{R}$ is bounded for every $f \in C(X)$. This notion should be distinguished from the notion of a bounded set in a linear topological space.

Proposition 2.5. For a given space X we have:

(i) The map j_X is a homeomorphism if and only if X is pseudocompact;
(ii) $P_c(X)$ is metrizable if and only if X is compact and metrizable.
Proof. (i) Obviously, if X is pseudocompact, then $C(X) = C^*(X)$ and j_X is the identity on $P_c(X)$. Suppose X is not pseudocompact and choose $g \in C(X)$ and a discrete countable set $\{x(n) : n \geq 1\}$ in X such that $\{g(x(n)) : n \geq 1\}$ is unbounded and discrete in \mathbb{R}. For every $n \geq 2$ define the measures $\mu_n \in P_c(X)$ and $\nu_n \in P^*_c(X)$ as follows: $\mu_1 = \delta_{x(1)}$, $\mu_n = (1 - 1/n)\delta_{x(1)} + \sum_{k=2}^{n+1}(1/n)^2\delta_{x(k)}$ and $\nu_1 = \delta^*_{x(1)}$, $\nu_n = (1 - 1/n)\delta^*_{x(1)} + \sum_{k=2}^{n+1}(1/n)^2\delta^*_{x(k)}$. Obviously, $j_X(\mu_n) = \nu_n$ for all $n \geq 1$ and $s(\mu_n) = s^*(\nu_n) = \{x(1), x(2), \ldots, x(n+1)\}$, $n \geq 2$. So, $g(\bigcup_{n=1}^{\infty} s(\mu_n))$ is unbounded in \mathbb{R}. This, according to [35, Proposition 3.1] (see also [3]), means that the sequence $\{\mu_n\}_{n \geq 1}$ is not compact. On the other hand, it is easily seen that $\{\nu_n\}_{n \geq 2}$ converges in $P^*_c(X)$ to ν_1. Consequently, j_X is not a homeomorphism.

(ii) First we prove that $P_c(\mathbb{N})$ is not metrizable, where \mathbb{N} is the set of the integers $n \geq 1$ with the discrete topology. For every $n \geq 1$ let $K(n) = P_c(\{1, 2, \ldots, n\})$. Obviously, every $K(n)$ is homeomorphic to a simplex of dimension $n - 1$ and $K(n) \subset K(m)$ for $n \leq m$. Moreover, $P_c(\mathbb{N}) = \bigcup_{n \geq 1} K(n)$.

Claim 2. $P_c(\mathbb{N})$ is nowhere locally compact.

Indeed, otherwise there would be $\mu \in P_c(\mathbb{N})$ and its open neighborhood $O(\mu)$ in $P_c(\mathbb{N})$ with $\overline{O(\mu)}$ being compact. Then, by [35, Proposition 3.1], $S = \cup\{s(\nu) : \nu \in O(\mu)\}$ is a bounded subset of \mathbb{N}. Hence, $S \subset \{1, 2, \ldots, p\}$ for some $p \geq 1$. The last inclusion means that $O(\mu) \subset K(p)$, so $\dim O(\mu) \leq p - 1$. Therefore, $O(\mu)$ being open in $P_c(\mathbb{N})$ is also open in each $K(n)$, $n \geq p$. Since every open subset of $K(n)$ is of dimension $n - 1$, we obtain that $\dim O(\mu) > p - 1$, a contradiction.

Now, suppose $P_c(\mathbb{N})$ is metrizable and fix $\mu \in P_c(\mathbb{N})$. Since $P_c(\mathbb{N})$ is nowhere locally compact and $K(n)$, $n \geq 1$, are compact, $U(\mu) - K(n) \neq \emptyset$ for all $n \geq 1$ and all neighborhoods $U(\mu) \subset P_c(\mathbb{N})$ of μ. Using the last condition and the fact that μ has a countable local base (as a point in a metrizable space), we can construct a sequence $\{\mu_n\}_{n \geq 1}$ converging to μ in $P_c(\mathbb{N})$ such that $\mu_n \notin K(n)$ for all n. Consequently, $s(\mu_n) \notin \{1, 2, \ldots, n\}$, $n \geq 1$. To obtain a contradiction, we apply again [35, Proposition 3.1] to conclude that $s(\mu) \cup \bigcup_{n \geq 1} s(\mu_n)$ is a bounded subset of \mathbb{N} because $\{\mu, \mu_n : n \geq 1\}$ is a compact subset of $P_c(\mathbb{N})$. Therefore, $P_c(\mathbb{N})$ is not metrizable.

Let us complete the proof of (ii). If X is compact metrizable, then $P_c(X)$ is metrizable (see, for example [17]). Suppose $P_c(X)$ is metrizable. Then, by Proposition 2.3(i), X is also metrizable. If X is not compact, it should contain a C-embedded copy of \mathbb{N} and, according to Proposition 2.3(ii), $P_c(X)$ should contain a copy of $P_c(\mathbb{N})$. So, $P_c(\mathbb{N})$ would be also metrizable, which is not possible. Therefore, X is compact and metrizable provided $P_c(X)$ is metrizable. □
Proposition 2.6. If one of the spaces $P_c(X)$ and $P_c^*(X)$ is Čech-complete, then X is pseudocompact.

Proof. We prove first that none of the spaces $P_c[0,\infty)$ and $P_{c}^{*}(\mathbb{Z})$ is Čech-complete. Indeed, suppose $P_c[0,\infty)$ is Čech-complete. Since $P_c[0,\infty)$ is Lindelöf (as the union of the compact sets $K(n) = P_c[0,\infty)(\{1, 2, \ldots, n\})$), it is a σ-paraconsistent in the sense of Arhangel’skii [2]. So, there exists a perfect map g from $P_c[0,\infty)$ onto a separable metric space Z. Then the diagonal product $q = g\triangle j_n \colon Z \times P_{c}^{*}(\mathbb{Z})$ is perfect (because g is perfect) and one-to-one (because j_n is one-to-one). Thus, q is a homeomorphism. Since $P_{c}^{*}(\mathbb{Z})$ is second countable [9], $Z \times P_{c}^{*}(\mathbb{Z})$ is metrizable. Consequently, $P_c[0,\infty)$ is metrizable, a contradiction (see Proposition 2.5(ii)).

Suppose now that $P_{c}^{*}(\mathbb{Z})$ is Čech-complete, so it is a Polish space. Since $P_{c}^{*}(\mathbb{Z})$ is the union of the compact sets $K^*(n) = P_{c}^{*}(\{1, 2, \ldots, n\})$, $n \geq 1$, there exists $m > 1$ such that $K^*(m)$ has a non-empty interior. Then $K(m) = P_c[0,\infty)(\{1, 2, \ldots, m\})$ has a non-empty interior in $P_c[0,\infty)$ because $K(m) = j_{n}^{-1}(K^*(m))$. According to Claim 2, this is again a contradiction.

If X is not pseudocompact, there exists a function $g \in C(X)$ and a discrete set $A = \{x_n : n \geq 1\}$ in X such that $g(x_n) \neq g(x_m)$ for $n \neq m$ and $g(A)$ is a discrete unbounded subset of \mathbb{R}. Since $g(A)$ is C-embedded in \mathbb{R}, it follows that A is also C-embedded in X. So, A is a C-embedded copy of \mathbb{N} in X. Then, by Proposition 2.3, $P_c(X)$ contains a closed copy of $P_c[0,\infty)$ and $P_{c}^{*}(X)$ contains a closed copy of $P_{c}^{*}(\mathbb{Z})$. Since non of $P_c[0,\infty)$ and $P_{c}^{*}(\mathbb{Z})$ is Čech-complete, non of $P_c(X)$ and $P_{c}^{*}(X)$ can be Čech-complete. This completes the proof. \square

We say that an inverse system $S = \{X_\alpha, p_\beta^\alpha, A\}$ is factorizing [11] if for every $h \in C(X)$, where X is the limit space of S, there exists $\alpha \in A$ and $h_\alpha \in C(X_\alpha)$ with $h = h_\alpha \circ p_\alpha$. Here, $p_\alpha \colon X \rightarrow X_\alpha$ is the α-th limit projection. According to [9], P_{c}^{*} is a continuous functor, i.e. for every factorizing inverse system S the space $P_{c}^{*} (\text{lim} S)$ is the limit of the inverse system $P_{c}^{*}(S) = \{P_{c}^{*}(X_\alpha), P_{c}^{*}(p_\beta^\alpha), A\}$. The same is true for the functor P_{c}.

Proposition 2.7. P_c is a continuous functor.

Proof. Let $S = \{X_\alpha, p_\beta^\alpha, A\}$ be a factorizing inverse system with a limit space X and let $\{\mu_\alpha : \alpha \in A\}$ be a thread of the system $P_c(S)$. For every $\alpha \in A$ we consider the measure $\nu_\alpha = j_{X_\alpha}(\mu_\alpha)$. Here, $j_{X_\alpha} : P_c(X_\alpha) \rightarrow P_{c}^{*}(X_\alpha)$ is the one-to-one surjection defined above. It is easily seen that $\{\nu_\alpha : \alpha \in A\}$ is a thread of the system $P_{c}^{*}(S)$, so it determines a unique measure $\nu \in P_{c}^{*}(X)$ (recall that P_{c}^{*} is a continuous functor). There exists a unique measure $\mu \in P_c(X)$ with $j_X(\mu) = \nu$. One can show that $P_c(p_\alpha)(\mu) = \mu_\alpha$ for all α. Hence, the set $P_c(X)$ coincides with the limit set of the system $P_c(S)$. It remains to show that for every $\mu^0 \in P_c(X)$ and its neighborhood U in $P_c(X)$ there exists $\alpha \in A$ and a neighborhood V of $\mu^0 = P_c(p_\alpha)(\mu^0)$ in $P_c(X_\alpha)$ such that $P_c(p_\alpha)^{-1}(V) \subset U$. We can suppose that $U = \{\mu \in P_c(X) : |\mu(h_i) - \mu^0(h_i)| < \epsilon, i = 1, 2, \ldots, k\}$.
for some $\epsilon > 0$ and $h_i \in C(X)$, $i = 1, 2, \ldots, k$. Since S is factorizing, we can find $\alpha \in A$ and functions $g_i \in C(X_\alpha)$ such that $h_i = g_i \circ p_\alpha$ for all $i = 1, \ldots, k$. Then $V = \{\mu_\alpha \in P_c(X_\alpha) : |\mu_\alpha(g_i) - \mu_\alpha^0(g_i)| < \epsilon, i = 1, 2, \ldots, k\}$ is the required neighborhood of μ_α^0.

\section{Milyutin maps and linear operators with compact supports}

For every linear operator $u : C(X, E) \to C(Y, E)$, where E is a locally convex linear space, and $y \in Y$ there exists a linear map $T(y) : C(X, E) \to E$ defined by $T(y)(g) = u(g)(y)$, $g \in C(X, E)$. We say that u has compact supports (resp., u is regular) if each $T(y)$ has a compact support in X (resp., each $T(y)$ is regular). In a similar way we define a linear operator with compact supports if $u : C(X, E) \to C^*(Y, E)$ (resp., $u : C^*(X, E) \to C^*(Y, E)$ or $u : C^*(X, E) \to C(Y, E)$). Let us note that a linear map $u : C(X, E) \to C(Y, E)$ (resp., $u : C^*(X, E) \to C^*(Y, E)$) is regular and has compact supports iff the formula

\[(3) \quad T(y)(g) = u(g)(y) \text{ with } g \in C(X, E) \text{ (resp., } g \in C^*(X, E))\]

produces a continuous map $T : Y \to P_c(X_\alpha, E)$ (resp., $T : Y \to P_c^*(X, E)$). If $f : X \to Y$ is a surjective map, then a liner operator $u : C(X, E) \to C(Y, E)$ (resp., $u : C^*(X, E) \to C^*(Y, E)$) is called an averaging operator for f if $u(\varphi \circ f) = \varphi$ for every $\varphi \in C(Y, E)$ (resp., $\varphi \in C^*(Y, E)$). It is easily seen that $u : C(X, E) \to C(Y, E)$ (resp., $u : C^*(X, E) \to C^*(Y, E)$) is a regular averaging operator for f with compact supports if and only if the map $T : Y \to P_c(X, E)$ (resp., $T : Y \to P_c^*(X, E)$) defined by (3), has the following property: the support of every $T(y)$, $y \in Y$, is contained in $f^{-1}(y)$. Such a map T will be called a map associated with f. It is also clear that if $T : Y \to P_c(X, E)$ (resp., $T : Y \to P_c^*(X, E)$) is a map associated with f, then the equality (3) defines a regular averaging operator $u : C(X, E) \to C(Y, E)$ (resp., $u : C^*(X, E) \to C^*(Y, E)$) for f with compact supports.

A surjective map $f : X \to Y$ is said to be Milyutin if f admits a regular averaging operator $u : C(X) \to C(Y)$ with compact supports, or equivalently, there exists a map $T : Y \to P_c(X)$ associated with f. A surjective map $f : X \to Y$ is called weakly Milyutin (resp., strongly Milyutin) if there exists a map $T : Y \to P^*_c(X)$ (resp., $T : P_c(Y) \to P_c(X)$) such that $s^*(g(y)) \subset f^{-1}(y)$ for all $y \in Y$ (resp., $s(g(\mu)) \subset f^{-1}(s(\mu))$ for all $\mu \in P_c(Y)$). Obviously, every strongly Milyutin map is Milyutin. Moreover, if $T : Y \to P_c(X)$ is a map associated with f, then the map $j_X \circ T : Y \to P^*_c(X)$ is witnessing that Milyutin maps are weakly Milyutin. One can also show that if $f : X \to Y$ is weakly Milyutin, then its Čech-Stone extension $\beta f : \beta X \to \beta Y$ is a Milyutin map.

We are going to establish some properties of (weakly) Milyutin maps.
Proposition 3.1. Let \(f : X \to Y \) be a weakly Milyutin map and \(E \) a complete locally convex space. Then \(f \) admits a regular averaging operator \(u : C^*(X, E) \to C^*(Y, E) \) with compact supports.

Proof. Let \(T : Y \to P^*_c(X) \) be a map associated with \(f \). For every \(g \in C^*(X, E) \) let \(B(g) = \text{conv} \ g(X) \) and consider the map \(P^*_c(g) : P^*_c(X) \to P^*_c(B(g)) \). Since \(B(g) \) is a closed and bounded in \(E \) and \(E \) is complete, by [5, Theorem 3.4 and Proposition 3.10], there exists a continuous map \(b : P^*_c(B(g)) \to B(g) \) assigning to each measure its barycenter. The composition \(e(g) = b \circ P^*_c(g) : P^*_c(X) \to E \) is a continuous extension of \(g \) (we consider \(X \) as a subset of \(P^*_c(X) \)). Now, we define \(u : C^*(X, E) \to C^*(Y, E) \) by \(u(g) = e(g) \circ T \). This a linear operator because \(e(g)(\mu) = \int_X g d\mu \) for every \(\mu \in P^*_c(X) \). Since \(e(g) \) is a map from \(P^*_c(X) \) into \(B(f) \), the linear map \(\Lambda(y) : C^*(X, E) \to E, \Lambda(y)(g) = u(g)(y) \), is regular for all \(y \in Y \).

So, it remains to show that the support of each \(\Lambda(y) \) is compact and it is contained in \(f^{-1}(y) \). Because \(T \) is associated with \(f \), \(K(y) = s^*(T(y)) \) is a compact subset of \(f^{-1}(y), y \in Y \). We are going to show that if \(h|K(y) = g|K(y) \) with \(h, g \in C^*(X, E) \), then \(\Lambda(y)(h) = \Lambda(y)(g) \). That would imply the support of \(\Lambda(y) \) is contained in \(K(y) \subset f^{-1}(y) \), and hence it should be compact. To this end, observe that \(T(y) \) can be considered as an element of \(P(K(y)) \) - the probability measures on \(K(y) \). So, \(T(y) \) is the limit of a net \(\{\mu_\alpha \} \subset P(K(y)) \) consisting of measures with finite supports. Each \(\mu_\alpha \) is of the form \(\sum_{i=1}^{k(\alpha)} \lambda_i^\alpha \delta_{x_i^\alpha} \),

where \(x_i^\alpha \in K(y) \) and \(\lambda_i^\alpha \) are positive reals with \(\sum_{i=1}^{k(\alpha)} \lambda_i^\alpha = 1 \). Then \(\{e(g)(\mu_\alpha)\} \) converges to \(e(g)(T(y)) \) and \(\{e(h)(\mu_\alpha)\} \) converges to \(e(h)(T(y)) \). On the other hand, \(e(h)(\mu_\alpha) = \int_X h d\mu_\alpha = \sum_{i=1}^{k(\alpha)} \lambda_i^\alpha h(x_i^\alpha) \) and \(e(g)(\mu_\alpha) = \sum_{i=1}^{k(\alpha)} \lambda_i^\alpha g(x_i^\alpha) \). Since \(h|K(y) = g|K(y) \), \(h(x_i^\alpha) = g(x_i^\alpha) \) for all \(\alpha \) and \(i \). Hence, \(e(h)(T(y)) = e(g)(T(y)) \) which means that \(\Lambda(y)(h) = \Lambda(y)(g) \). Therefore, \(u \) is a regular averaging operator for \(f \) and has compact supports. \(\square \)

Corollary 3.2. Let \(X \) be a complete bounded convex subset of a locally convex space and \(f : X \to Y \) be a weakly Milyutin map such that \(f^{-1}(y) \) is convex for every \(y \in Y \). Then there exists a map \(g : Y \to X \) such that \(g(y) \in f^{-1}(y) \) for all \(y \in Y \).

Proof. Let \(T : Y \to P^*_c(X) \) be a map associated with \(f \). By [5, Proposition 3.10], the barycenter \(b(\mu) \) of each measure \(\mu \in P^*_c(X) \) belongs to \(X \) and the map \(b : P^*_c(X) \to X \) is continuous. Since the support of each \(T(y) \), \(y \in Y \), is compact subset of \(f^{-1}(y) \) and \(\text{conv} \ s^*(T(y)) \subset f^{-1}(y) \) (recall that \(f^{-1}(y) \) is convex), \(b(T(y)) \in f^{-1}(y) \). So, the map \(g = b \circ T \) is as required. \(\square \)

Recall that a set-valued map \(\Phi : X \to Y \) is lower semi-continuous (br., lsc) if for every open \(U \subset Y \) the set \(\Phi^{-1}(U) = \{x \in X : \Phi(x) \cap U \neq \emptyset\} \) is open in \(X \).
Lemma 3.3. For every space X and a linear space E the set-valued map $\Phi_X: P_c(X,E) \to X$, (resp., $\Phi_X^*: P_c^*(X,E) \to X$) defined by $\Phi_X(\mu) = s(\mu)$, (resp., $\Phi_X^*(\mu) = s^*(\mu)$) is lsc.

Proof. A similar statement was established in [4, Lemma 1.2.7], so we omit the arguments. □

Proposition 3.4. Let $f: X \to Y$ be a weakly Milyutin map. Then we have:

(i) $\beta f: \beta X \to \beta Y$ is a Milyutin map;

(ii) f is a Milyutin map provided f is perfect.

Proof. Let $T: Y \to P_c^*(X)$ be a map associated with f. To prove (i), observe that $P_c(i): P_c^*(X) \to P_c(\beta X)$ is an embedding, where $i: X \to \beta X$ is the standard embedding (see Proposition 2.3(iii)). Because $P_c(\beta X) = P(\beta X)$ is compact, we can extend T to a map $\tilde{T}: \beta Y \to P(\beta X)$. It suffices to show that \tilde{T} is a map associated with βf. To this end, consider the lsc map $\Phi = \beta f \circ \Phi_{\beta X} \circ \tilde{T}: \beta Y \to \beta Y$. Since Φ is lsc and $\Phi(y) = y$ for all $y \in Y$, $\Phi(y) = y$ for any $y \in \beta Y$. This means that the support of any $\tilde{T}(y), y \in \beta Y$, is contained in $(\beta f)^{-1}(y)$. So, βf is a Milyutin map.

The proof of (ii) follows from (i) and the following result of Choban [12, Proposition 1.1]: if βf admits a regular averaging operator and f is perfect, then f admits a regular averaging operator $u: C(X) \to C(Y)$ such that

$$ \inf \{ h(x) : x \in f^{-1}(y) \} \leq u(h)(y) \leq \sup \{ h(x) : x \in f^{-1}(y) \} $$

for every $h \in C(X)$ and $y \in Y$. This implies that the support of each linear map $T(y): C(X) \to \mathbb{R}$, $y \in Y$, defined by (3), is contained in $f^{-1}(y)$. Hence, $s(T(y))$ is compact because so is $f^{-1}(y)$ (recall that f is perfect). Therefore, f is a Milyutin map. □

Proposition 3.5. Let $f: X \to Y$ be a Milyutin map. Then, in each of the following cases f is strongly Milyutin: (i) $f^{-1}(K)$ is compact for every compact set $K \subset Y$; (ii) every closed and bounded subset of X is compact.

Proof. Let $u: C(X) \to C(Y)$, $u(h)(y) = g(y)(h)$, be a corresponding regular averaging operator with compact supports, where $g: Y \to P_c(X)$ is a map associated with f. We are going to extend g to a map $\tilde{g}: P_c(Y) \to P_c(X)$ such that $s(\tilde{g}(\mu)) \subset f^{-1}(s(\mu))$ for all $\mu \in P_c(Y)$. Let $\mu \in P_c(Y)$ and $K = s(\mu) \subset Y$. Then $g(K)$ is a compact subset of $P_c(X)$. Hence, by [35, Proposition 3.1], $H = \bigcup \{ s(g(y)) : y \in K \}$ is a bounded and closed subset of X. Since $s(g(y)) \subset f^{-1}(y)$ for all $y \in Y$, $H \subset f^{-1}(K)$. So, in each of the cases (i) and (ii), H is compact. Define $\tilde{g}(\mu): C(X) \to \mathbb{R}$ to be the linear functional $\tilde{g}(\mu)(h) = \mu(u(h)), h \in C(X)$. One can check that $\tilde{g}(\mu)(h) = 0$ provided $h(H) = 0$. This means that the support of $\tilde{g}(\mu)$ is a compact subset of H, so $\tilde{g}(\mu) \in P_c(X)$. Moreover, \tilde{g}, considered as a map from $P_c(Y)$ to $P_c(X)$
is continuous and satisfies the inclusions \(s(\tilde{g}(\mu)) \subset f^{-1}(s(\mu)), \mu \in P_c(Y) \). Therefore, \(f \) is strongly Milyutin.

A map \(f: X \to Y \) is said to be 0-invertible [20] if for any space \(Z \) with \(\dim Z = 0 \) and any map \(p: Z \to Y \) there exists a map \(q: Z \to X \) such that \(f \circ q = p \). Here, \(\dim Z = 0 \) means that \(\dim \beta Z = 0 \). We say that \(f: X \to Y \) has a metrizable kernel if there exists a metrizable space \(M \) and an embedding \(X \subset Y \times M \) such that \(\pi_Y|X = f \), where \(\pi_Y: Y \times M \to Y \) is the projection.

Next theorem is a generalization of [13, Theorem 3.4] and [20, Corollary 1].

Theorem 3.6. Let \(f: X \to Y \) be a surjection with a metrizable kernel and \(Y \) a paracompact space. Then the following conditions are equivalent:

1. \(f \) is (weakly) Milyutin;
2. The set-valued map \(f^{-1}: Y \to X \) admits a lsc compact-valued selection;
3. \(f \) is 0-invertible.

Proof. \((i) \Rightarrow (ii)\) Let \(f \) be weakly Milyutin and \(T: Y \to P_c^*(X) \) is a map associated with \(f \). By Lemma 3.3, the map \(\Phi_X^*: P_c^*(X) \to X \) is lsc, so is the map \(\Phi_X^* \circ T \). Moreover, \(\Phi_X^*(T(y)) = s^*(T(y)) \subset f^{-1}(y) \) for all \(y \in Y \). Hence, \(\Phi_X^* \circ T \) is a compact-valued selection of \(f^{-1} \).

\((ii) \Rightarrow (iii)\) Suppose \(M \) is a metrizable space such that \(X \subset Y \times M \) and \(\pi_Y|X = f \). Suppose also that \(f^{-1} \) admits a compact-valued lsc selection \(\Phi: Y \to X \). To show that \(f \) is 0-invertible, take a map \(p: Z \to Y \) with \(\dim Z = 0 \), and let \(Z_1 = (\beta p)^{-1}(Y) \). Then \(Z_1 \) is paracompact (as a perfect preimage of \(Y \)) and \(\dim Z_1 = 0 \) because \(\beta Z_1 = \beta Z = 0 \) is 0-dimensional. The set-valued map \(\pi_M \circ \Phi \circ p_1: Z_1 \to M \) is lsc and compact-valued, where \(\pi_M: Y \times M \to M \) is the projection and \(p_1 = (\beta p)|Z_1 \). According to [23], \(\pi_M \circ \Phi \circ p_1 \) admits a (single-valued) continuous selection \(q_1: Z_1 \to M \). Finally, the map \(q: Z \to X \), \(q(z) = (p(z), q_1(z)) \) is the required lifting of \(p \), i.e. \(f \circ q = p \).

\((iii) \Rightarrow (i)\) By [28], there exists a perfect weakly Milyutin map \(p: Z \to Y \) with \(Z \) being a 0-dimensional paracompact. Then, by Proposition 3.4(ii), \(p \) is a Milyutin map. Since \(f \) is 0-invertible, there exists a map \(g: Z \to X \) with \(f \circ g = p \). If \(T: Y \to P_c(Z) \) is a map associated with \(p \), then \(\tilde{T} = P_c(g) \circ T: Y \to P_c(X) \) is a map associated with \(f \) because \(s(\tilde{T}(y)) \subset g(p^{-1}(y)) \subset f^{-1}(y) \) for all \(y \in Y \). Hence, \(f \) is a Milyutin map.

Corollary 3.7. Let \(f: X \to Y \) be a surjective map such that either \(X \) and \(Y \) are metrizable or \(f \) is perfect. Then the following are equivalent: \(i) \) \(f \) is weakly Milyutin; \(ii) \) \(f \) is Milyutin; \(iii) \) \(f \) is strongly Milyutin.

Proof. If \(X \) and \(Y \) are metrizable, this follows from Proposition 3.5 and Theorem 3.6. In case \(f \) is perfect, we apply Propositions 3.4 and 3.5.

A space \(Z \) is called a \(k_2 \)-space if every function on \(Z \) is continuous provided it is continuous on every compact subset of \(Z \).
Theorem 3.8. The product f of any family $\{f_\alpha : X_\alpha \to Y_\alpha, \alpha \in A\}$ of weakly Milyutin maps is also weakly Milyutin. If, in addition, $Y = \prod\{Y_\alpha : \alpha \in A\}$ is a $k_\mathbb{R}$-space and for every $\alpha \in A$ the closed and bounded subsets of X_α are compact, then f is Milyutin provided each f_α is Milyutin.

Proof. Let $T_\alpha : Y_\alpha \to P_c^*(X_\alpha)$ be a map associated with f_α for each α. Then, by Proposition 3.4, βf_α is a Milyutin map and $\beta T_\alpha : \beta Y_\alpha \to P(\beta X_\alpha)$ is associated with βf_α. So, $u_\alpha : C(\beta X_\alpha) \to C(\beta Y_\alpha)$, $u_\alpha(h)(y) = \beta T_\alpha(y)(h)$, $y \in \beta Y_\alpha$ and $h \in C(\beta X_\alpha)$, is a regular averaging operator for βf_α. Let $X = \prod\{X_\alpha : \alpha \in A\}$, $\tilde{X} = \prod\{\beta X_\alpha : \alpha \in A\}$, $\tilde{Y} = \prod\{\beta Y_\alpha : \alpha \in A\}$ and $\tilde{f} = \prod\{\beta f_\alpha : \alpha \in A\}$. According to [26], there exists a regular averaging operator $u : C(\tilde{X}) \to C(\tilde{Y})$ for \tilde{f} such that $u(h \circ p_\alpha) = u_\alpha(h) \circ q_\alpha$, $\alpha \in A$, $h \in C(\beta X_\alpha)$, where $p_\alpha : \tilde{X} \to \beta X_\alpha$ and $q_\alpha : \tilde{Y} \to \beta Y_\alpha$ are the projections. This implies that, if $\tilde{T} : \tilde{Y} \to P(\tilde{X})$ is the map associated to \tilde{f} and generated by u, we have $s(\tilde{T}(y)) \subset \prod\{s(T_\alpha(q_\alpha(y))) : \alpha \in A\}$, $y \in Y$. Hence, $s(\tilde{T}(y)) \subset f^{-1}(y)$ for every $y \in Y$. So, \tilde{T} maps Y into the subspace H of $P(\tilde{X})$ consisting of all measures $\mu \in P(\tilde{X})$ with $s(\mu) \subset X$. Now, let $\pi : \beta X \to \tilde{X}$ be the natural map and $P(\pi) : P(\beta X) \to P(\tilde{X})$. Then, $\theta = P(\pi)|P_c^*(X) : P_c^*(X) \to H$ is a homeomorphism (for more general result see [9, Proposition 1]). Therefore, $T = \theta^{-1} \circ (\tilde{T}|Y) : Y \to P_c^*(X)$ is a map associated with f. Thus, f is weakly Milyutin.

Suppose now that Y is a $k_\mathbb{R}$-space, f_α are Milyutin maps and the closed and bounded subsets of each X_α are compact. We already proved that there exists a regular averaging operator $u : C^*(X) \to C^*(Y)$ for f and a corresponding to u map $T : Y \to P_c^*(X)$ associated with f such that $s^*(T(y)) \subset \prod\{s(T_\alpha(q_\alpha(y))) : \alpha \in A\} \subset f^{-1}(y)$ for every $y \in Y$. Here, each $T_\alpha : Y_\alpha \to P_c(X_\alpha)$ is a map associated with f_α (recall that f_α are Milyutin maps). For any $h \in C(X)$ and $n \geq 1$ define $h_n \in C^*(X)$ by $h_n(x) = h(x)$ if $|h(x)| \leq n$, $h_n(x) = n$ if $h(x) \geq n$ and $h_n(x) = -n$ if $h(x) \leq -n$. Since for every $y \in Y$ the support $s^*(T(y)) \subset X$ is compact, $h|s^*(T(y)) = h_n|s^*(T(y))$ with $n \geq n_0$ for some n_0. Hence, the formula $v(h)(y) = \lim u(h_n)(y)$, $y \in Y$, defines a function on Y. Let us show that $v(h)$ is continuous. Since Y is a $k_\mathbb{R}$-space, it suffices to prove that $v(h)$ is continuous on every compact set $K \subset Y$. Then each of the sets $T_\alpha(K_\alpha) \subset P_c(X_\alpha)$ is compact, where $K_\alpha = q_\alpha(K)$. By [35, Proposition 3.1], $Z_\alpha = \cup\{s(\mu) : \mu \in T_\alpha(K_\alpha)\}$ is bounded in X_α and, hence compact (recall that all closed and bounded subsets of X_α are compact). Let Z be the closure in X of the set $\cup\{s^*(\mu) : \mu \in T(K)\}$. Since $Z \subset \prod\{Z_\alpha : \alpha \in A\}$, Z is also compact. So, there exists m such that $h|Z = h_m|Z$ for all $n \geq m$. This implies that $v(h)|K = u(h_m)|K$. Hence, $v(h)$ is continuous on K. Since for every $y \in Y$ the support of $T(y)$ is compact and each $u(h)(y)$, $h \in C^*(X)$, depends on $h|s^*(T(y))$, $v : C(X) \to C(Y)$ is linear and the support of $T'(y) \in P_c(X)$ is contained in $s^*(T(y)) \subset f^{-1}(y)$, where $T' : Y \to P_c(X)$ is defined by $T'(y)(h) = \cdots$
v(h)(y), h ∈ C(X), y ∈ Y. Moreover, it follows from the definition of v that it is regular and v(ϕ ◦ f) = ϕ for every ϕ ∈ C(Y). Therefore, v is a regular averaging operator for f with compact supports.

Corollary 3.9. A product of perfect Milyutin maps is also Milyutin.

Proof. Since any product of perfect maps is perfect, the proof follows from Corollary 3.7 and Theorem 3.8.

Corollary 3.10. Let \(Y = \prod \{Y_\alpha : \alpha \in A \} \) be a product of metrizable spaces. Then there exists a 0-dimensional product \(X \) of metrizable spaces space and a 0-invertible perfect Milyutin map \(f : X \to Y \).

Proof. By [12, Theorem 1.2.1], for every \(\alpha \in A \) there exists a 0-dimensional metrizable space \(X_\alpha \) and a perfect Milyutin map \(f_\alpha : X_\alpha \to Y_{\alpha} \). Then, by Corollary 3.9, \(f = \prod \{f_\alpha : \alpha \in A \} \) is a perfect Milyutin map from \(X = \prod \{X_\alpha : \alpha \in A \} \) onto \(Y \). It is easily seen that \(f \) is 0-invertible because each \(f_\alpha \) is 0-invertible (see Theorem 3.6). Moreover, since \(\dim X_\alpha = 0 \) for each \(\alpha \), \(\dim X = 0 \).

Recall that \(X \) is a \(p \)-paracompact space [2] if it admits a perfect map onto a metrizable space.

Corollary 3.11. For every \(p \)-paracompact space \(Y \) there exists a 0-dimensional \(p \)-paracompact space \(Y \) and a perfect 0-invertible Milyutin map \(f : X \to Y \).

Proof. Since \(Y \) is \(p \)-paracompact, it can be considered as a closed subset of \(M \times \mathbb{I}^r \), where \(M \) is metrizable and \(r \geq \aleph_0 \). There exist perfect Milyutin maps \(g : M_0 \to M \) and \(h : M_0 \to \mathbb{I}^r \) with \(g \) being the Cantor set [26] and \(M_0 \) a 0-dimensional metrizable space. [12, Theorem 1.2.1]. Then the product map \(\Phi = g \times h : M_0 \times \mathbb{C}_r \) is a perfect 0-invertible Milyutin map (see Corollary 3.10), and let \(T : M \times \mathbb{I}^r \to P_c(M_0 \times \mathbb{C}_r) \) be a map associated with \(\Phi \). Define \(X = \Phi^{-1}(Y) \) and \(f = \Phi(x) \). Since \(X \) is closed in \(M_0 \times \mathbb{C}_r \), it is a 0-dimensional \(p \)-paracompact. Since \(\Phi \) is 0-invertible (as a product of 0-invertible maps, see Theorem 3.6), so is \(f \). To show that \(f \) is Milyutin, observe that \(X \) is \(C \)-embedded in \(M_0 \times \mathbb{C}_r \). So, \(P_c(X) \) is embedded in \(P_c(M_0 \times \mathbb{C}_r) \) such that \(T(y) \in P_c(X) \) for all \(y \in Y \). This means that \(T|Y \) is a map associated with \(f \). Hence, \(f \) is Milyutin.

Now, we provide a specific class of Milyutin maps. Suppose \(B \subset Z \) and \(g : B \to D \). We say that \(g \) is a \(Z \)-normal map provided for every \(h \in C(D) \) the function \(h \circ g \) can be continuously extended to a function on \(Z \). A map \(f : X \to Y \) is called 0-soft [10] if for any 0-dimensional space \(Z \), any two subspaces \(Z_0 \subset Z_1 \subset Z \), and any \(Z \)-normal maps \(g_0 : Z_0 \to X \) and \(g_1 : Z_1 \to Y \) with \(f \circ g_0 = g_1|Z_0 \), there exists a \(Z \)-normal map \(g : Z_1 \to X \) such that \(f \circ g = g_1 \).

Proposition 3.12. Every 0-soft map is Milyutin.
Proof. Let $f : X \to Y$ be 0-soft. Consider Y as a C-embedded subset of $\mathbb{R}^{C(Y)}$ and let $\varphi : Z \to \mathbb{R}^{C(Y)}$ be a perfect Milyutin map with $\dim Z = 0$ (see Corollary 3.10). Since Y is C-embedded in $\mathbb{R}^{C(Y)}$, $g_1 = \varphi|Z_1 : Z_1 \to Y$ is a Z-normal map, where $Z_1 = \varphi^{-1}(Y)$. Because f is 0-soft, there exists a Z-normal map $g : Z_1 \to X$ with $f \circ g = g_1$. Now, for every $h \in C(X)$ choose an extension $e(h) \in C(Z)$ of $h \circ g$ (such $e(h)$ exist since g is Z-normal). Define $v : C(X) \to C(Y)$ by $v(h) = u(e(h))|Y$, where $u : C(Z) \to C(\mathbb{R}^{C(Y)})$ is a regular averaging operator for φ having compact supports. The map v is linear because for every $y \in Y$ $u(e(h))(y)$ depends on the restriction $e(h)|\varphi^{-1}(y)$. By the same reason v has compact supports. Moreover, v is a regular averaging operator for f. Hence, f is Milyutin.

\[\Box \]

4. $AE(0)$-spaces and Regular Extension Operators with Compact Supports

Let X be a subspace of Y. A linear operator $u : C(X, E) \to C(Y, E)$ is said to be an extension operator provided each $u(f)$, $f \in C(X, E)$ is an extension of f. One can show that such an extension operator u is regular and has compact supports if and only if there exists a map $T : Y \to P_c(X, E)$ such that $T(x) = \delta_x$ for every $x \in X$. Sometimes a map $T : Y \to P_c(X, E)$ satisfying the last condition will be called a P_c-valued retraction. The connection between u and T is given by the formula $T(y)(f) = u(f)(y)$, $f \in C(X, E)$, $y \in Y$.

Pełczyński [26] introduced the class of Dugundji spaces: a compactum X is a Dugundji space if for every embedding of X in another compact space Y there exists an extension regular operator $u : C(X) \to C(Y)$ (note that u has compact supports because X is compact). Later Haydon [19] proved that a compact space X is a Dugundji space if and only if it is an absolute extensor for 0-dimensional compact spaces (br., $X \in AE(0)$). The notion of $X \in AE(0)$ was extended by Chigogidze [10] in the class of all Tychonoff spaces as follows: a space X is an $AE(0)$ if for every 0-dimensional space Z and its subspace $Z_0 \subset Z$, every Z-normal map $g : Z_0 \to X$ can be extended to the whole of Z.

We show that an analogue of Haydon’s result remains true and for the extended class of $AE(0)$-spaces.

Theorem 4.1. For any space X the following conditions are equivalent:

(i) X is an $AE(0)$-space;

(ii) For every C-embedding of X in a space Y there exists a regular extension operator $u : C(X) \to C(Y)$ with compact supports;

(iii) For every C-embedding of X in a space Y there exists a regular extension operator $u : C^*(X) \to C^*(Y)$ with compact supports.

Proof. (i) \Rightarrow (ii) Suppose X is C-embedded in Y and take a set A such that Y is C-embedded in \mathbb{R}^A. It suffices to show there exists a regular extension
operator $u: C(X) \rightarrow C(\mathbb{R}^A)$ with compact supports, or equivalently, we can find a map $T: \mathbb{R}^A \rightarrow P_c(X)$ with $T(x) = \delta_x$ for all $x \in X$. By Corollary 3.10, there exists a 0-dimensional space Z and a Milyutin map $f: Z \rightarrow \mathbb{R}^A$. This means that the map $g: \mathbb{R}^A \rightarrow P_c(Z)$ associated with f is an embedding. Since X is C-embedded in \mathbb{R}^A, the restriction $f|f^{-1}(X)$ is a Z-normal map. So, there exists a map $g: Z \rightarrow X$ extending $f|f^{-1}(X)$ (recall that $X \in AE(0)$). Then $T = P_c(g) \circ g: \mathbb{R}^A \rightarrow P_c(X)$ has the required property that $T(x) = \delta_x$ for all $x \in X$.

(ii) \Rightarrow (iii) Let X be C-embedded in Y and $u: C(X) \rightarrow C(Y)$ a regular extension operator with compact supports. Then $u(f) \in C^*(Y)$ for all $f \in C^*(X)$ because u is regular. Hence, $u|C^*(X): C^*(X) \rightarrow C^*(Y)$ is a regular extension operator with compact supports.

(iii) \Rightarrow (i) Suppose X is C-embedded in \mathbb{R}^A for some A and $u: C^*(X) \rightarrow C^*(\mathbb{R}^A)$ is a regular extension operator with compact supports. So, there exists a map $T: \mathbb{R}^A \rightarrow P_c(X)$ with $T(x) = \delta_x$, $x \in X$. Assume that A is the set of all ordinals $\{\lambda: \lambda < \omega(\tau)\}$, where $\omega(\tau)$ is the first ordinal of cardinality τ.

For any sets $B \subset D \subset A$ we use the following notations: $\pi_B: \mathbb{R}^A \rightarrow \mathbb{R}^B$ and $\pi^D_B: \mathbb{R}^D \rightarrow \mathbb{R}^B$ are the natural projections, $X(B) = \pi_B(X)$, $p_B = \pi_B|X$ and $p^B = \pi^D_B|X(D)$. A set $B \subset A$ is called T-admissible if for any $x \in X$ and $y \in \mathbb{R}^A$ the equality $\pi_B(x) = \pi_B(y)$ implies $p_c^*(p_B)(\delta_x) = p_c^*(p_B)(T(y))$. Let us note that if B is T-admissible, then there exists a map

$$(4) \quad T_B: \mathbb{R}^B \rightarrow p^*_c(X(B)) \text{ such that } T_B(z) = \delta_x \text{ for all } z \in X(B).$$

Indeed, take an embedding $i: \mathbb{R}^B \rightarrow \mathbb{R}^A$ such that $\pi_B \circ i$ is the identity on \mathbb{R}^B, and define $T_B = p^*_c(p_B) \circ T \circ i$.

Claim 3. For every countable set $B \subset A$ there exists a countable T-admissible set $D \subset A$ containing B.

We construct by induction an increasing sequence $\{D(n)\}_{n \geq 1}$ of countable subsets of A such that $D \subset D(1)$ and for all $n \geq 1$, $x \in X$ and $y \in \mathbb{R}^A$ we have

$$(5) \quad p^*_c(p_{D(n)}(\delta_x)) = p^*_c(p_{D(n)})(T(y)) \text{ provided } \pi_{D(n+1)}(x) = \pi_{D(n+1)}(y).$$

Suppose we have already constructed $D(1), \ldots, D(n)$. Since $D(n)$ is countable, the topological weight of $X(D(n))$ is \aleph_0. So is the weight of $p^*_c(X(D(n)))$ [9]. Then the map $p^*_c(p_{D(n)}(\delta_x)) \circ T: \mathbb{R}^A \rightarrow p^*_c(X(D(n)))$ depends on countable many coordinates (see, for example [27]). This means that there exists a countable set $D(n + 1)$ satisfying (5). We can assume that $D(n + 1)$ contains $D(n)$, which completes the induction. Obviously, the set $D = \bigcup_{n \geq 1} D(n)$ is countable. Let us show it is T-admissible. Suppose $\pi_D(x) = \pi_D(y)$ for some $x \in X$ and $y \in \mathbb{R}^A$. Hence, for every $n \geq 1$ we have $\pi_{D(n+1)}(x) = \pi_{D(n+1)}(y)$ and, by (5), $p^*_c(p_{D(n)})(\delta_x) = p^*_c(p_{D(n)})(T(y))$. This means that the support of each measure $p^*_c(p_{D(n)})(T(y))$ is the point $p_{D(n)}(x)$. The last relation implies that the support
of $P_c^*(p_D)(T(y))$ is the point $p_D(x)$. Therefore, $P_c^*(p_D)(T(y)) = P_c^*(p_D)(\delta_x)$ and D is T-admissible.

Claim 4. Any union of T-admissible sets is T-admissible.

Suppose B is the union of T-admissible sets $B(s)$, $s \in S$, and $\pi_B(x) = \pi_B(y)$ with $x \in X$ and $y \in \mathbb{R}^A$. Then $\pi_B(s)(x) = \pi_B(s)(y)$ for every $s \in S$. Hence, $P_c^*(p_B)(T(y)) = P_c^*(p_B(s))(\delta_x)$, $s \in S$. So, the support of each $P_c^*(p_B)(T(y))$ is the point $p_B(x)$ because $p_B(x) = \bigcap \{ (g_{B(s)})^{-1}(p_B(x)) : s \in S \}$. This means that B is T-admissible.

Claim 5. Let $B \subset A$ be T-admissible. Then we have:

(a) $X(B)$ is a closed subset of \mathbb{R}^B;

(b) $P_B(V)$ is functionally open in $X(B)$ for any functionally open subset V of X.

Since B is T-admissible, according to (4) there exists a map $T_B : \mathbb{R}^B \to P_c^*(X(B))$ such that $T_B(z) = \delta_z$ for all $z \in X(B)$. To prove condition (a), suppose $\{z_\alpha : \alpha \in \Lambda \}$ is a net in $X(B)$ converging to some $z \in \mathbb{R}^B$. Then $\{T_B(z_\alpha)\}$ converges to $T_B(z)$. But $T_B(z_\alpha) = \delta_{z_\alpha} \in i_{X(B)}(X(B))$ for every α and, since $i_{X(B)}(X(B))$ is a closed subset of $P_c^*(X(B))$ (see Proposition 2.3(i)), $T_B(z) \in i_{X(B)}(X(B))$. Hence, $T_B(z) = \delta_y$ for some $y \in X(B)$. Using that $i_{X(B)}$ embeds $X(B)$ in $P_c^*(X(B))$, we obtain that $\{z_\alpha\}$ converges to y, so $y = z \in X(B)$.

To prove (b), let V be a functionally open subset of X and $g : X \to [0, 1]$ a continuous function with $V = g^{-1}((0, 1])$. Then $u(g) \in C^*(\mathbb{R}^A)$ with $0 \leq u(g)(y) \leq 1$ for all $y \in \mathbb{R}^A$ and let $W = u(g)^{-1}((0, 1])$. Since $\pi_B(W)$ is functionally open in \mathbb{R}^B (see, for example [34]), $\pi_B(W) \cap X(B)$ is functionally open in $X(B)$. So, it suffices to show that $p_B(V) = \pi_B(W) \cap X(B)$. Because $u(g)$ extends g, we have $V \subset W$. So, $p_B(V) \subset \pi_B(W) \cap X(B)$. To prove the other inclusion, let $z \in \pi_B(W) \cap X(B)$. Choose $x \in X$ and $y \in W$ with $\pi_B(x) = \pi_B(y)$. Then $P_c^*(p_B)(T(y)) = P_c^*(p_B)(\delta_x) = \delta_z$ (recall that B is T-admissible). Hence, $s^*(T(y)) \subset p_B^{-1}(z)$. Since $y \in W$, $T(y)(g) = u(g)(y) \in (0, 1]$. This implies that $s^*(T(y)) \cap V = \emptyset$ (otherwise $T(y)(g) = 0$ because $g(X - V) = 0$, see Proposition 2.1(iii)). Therefore, $z \in p_B(V)$, i.e. $\pi_B(W) \cap X(B) \subset p_B(V)$. The proof of Claim 5 is completed.

Let us continue the proof of (iii) \Rightarrow (i). Since A is the set of all ordinals $\lambda < \omega(\tau)$, according to Claim 3, for every λ there exists a countable T-admissible set $B(\lambda) \subset A$ containing λ. Let $A(\lambda) = \bigcup \{ B(\eta) : \eta < \lambda \}$ if λ is a limit ordinal, and $A(\lambda) = \bigcup \{ B(\eta) : \eta \leq \lambda \}$ otherwise. By Claim 4, every $A(\lambda)$ is T-admissible. We are going to use the following simplified notations:

$$X_\lambda = X(A(\lambda)), \ p_\lambda = p_{A(\lambda)} : X \to X_\lambda \text{ and } p_\lambda^\eta : X_\eta \to X_\lambda \text{ provided } \lambda < \eta.$$
Since A is the union of all $A(\lambda)$ and each X_λ is closed in $\mathbb{R}^{A(\lambda)}$ (see Claim 5(a)), we obtain a continuous inverse system $S = \{X_\lambda, p^0_\lambda, \lambda < \eta < \omega(\tau)\}$ whose limit space is X. Recall that S is continuous if for every limit ordinal γ the space X_γ is the limit of the inverse system $\{X_\lambda, p^0_\lambda, \lambda < \gamma\}$. Because of the continuity of S, $X \subseteq AE(0)$ provided $X_1 \subseteq AE(0)$ and each short projection $p^{\lambda+1}_\lambda$ is 0-soft. The space X_1 being a closed subset of $\mathbb{R}^{A(1)}$ is a Polish space, so an $AE(0)$ [10]. Hence, it remains to show that all $p^{\lambda+1}_\lambda$ are 0-soft.

We fix $\lambda < \omega(\tau)$ and let $E(\lambda) = A(\lambda) \cap (B(\lambda) \cup B(\lambda + 1))$. Since $E(\lambda)$ is countable, there exists a sequence $\{\beta_n\} \subseteq A(\lambda)$ such that $\beta_n \leq \lambda$ for each n and $E(\lambda) \subseteq C(\lambda) \subseteq A(\lambda)$, where $C(\lambda) = \cup \{B(\beta_n) : n \geq 1\}$. By Claim 4, the sets $C(\lambda)$ and $D(\lambda) = B(\lambda) \cup B(\lambda + 1) \cup C(\lambda)$ are countable and T-admissible. Consider the following diagram:

\[
\begin{array}{ccc}
X_{\lambda+1} & \xrightarrow{p^{\lambda+1}_D} & X_\lambda \\
\downarrow{p^{A(\lambda+1)}_D} & & \downarrow{p^{A(\lambda)}_C} \\
X(D(\lambda)) & \xrightarrow{p^{D(\lambda)}_C} & X(C(\lambda))
\end{array}
\]

We are going to prove first that the diagram is a cartesian square. This means that the map $g: X_{\lambda+1} \to Z$, $g(x) = (p^{A(\lambda+1)}_D(x), p^{\lambda+1}_A(x))$, is a homeomorphism. Here $Z = \{(x_1, x_2) \in X(D(\lambda)) \times X_\lambda : p^{D(\lambda)}_C(x_1) = p^{A(\lambda)}_C(x_2)\}$ is the fibered product of $X(D(\lambda))$ and X_λ with respect to the maps $p^{D(\lambda)}_C$ and $p^{A(\lambda)}_C$. Let $z = (x(1), x(2)) \in Z$. Since $(D(\lambda) - C(\lambda)) \cap (A(\lambda) - C(\lambda)) = \emptyset$ and $A(\lambda + 1) = (D(\lambda) - C(\lambda)) \cup (A(\lambda) - C(\lambda)) \cup C(\lambda)$, there exists exactly one point $x \in \mathbb{R}^{A(\lambda+1)}$ such that $\pi^{A(\lambda+1)}_{D(\lambda)}(x) = x(1)$ and $\pi^{A(\lambda+1)}_{A(\lambda)}(x) = x(2)$. Choose $y \in \mathbb{R}^A$ with $\pi_{A(\lambda+1)}(y) = x$. Since $D(\lambda)$ and $A(\lambda)$ are T-admissible, $P_\gamma^* (p^{D(\lambda)}(T(y))) = \delta_{x(1)}$ and $P_\gamma^* (p^{A(\lambda)}(T(y))) = \delta_{x(2)}$. Consequently, $p^{A(\lambda+1)}_{D(\lambda)}(H) = x(1)$ and $p^{A(\lambda+1)}_{A(\lambda)}(H) = x(2)$, where H is the support of the measure $P_\gamma^* (p^{A(\lambda+1)}(T(y)))$. Hence, $H = \{x\}$ is the unique point of $X_{\lambda+1}$ with $g(x) = z$. Thus, g is a surjective and one-to-one map between $X_{\lambda+1}$ and Z. To prove g is a homeomorphism, it remains to show that g^{-1} is continuous. The above arguments yield that $x = g^{-1}(z)$ depends continuously from $z \in Z$. Indeed, since $D(\lambda) \cap A(\lambda) = C(\lambda)$, we have

\[
x(1) = (a, b) \in \mathbb{R}^{D(\lambda) - C(\lambda)} \times \mathbb{R}^{C(\lambda)} \text{ and } x(2) = (b, c) \in \mathbb{R}^{C(\lambda)} \times \mathbb{R}^{A(\lambda) - C(\lambda)},
\]

where $z = (x(1), x(2)) \in Z$. Hence, $g^{-1}(z) = (a, b, c)$ is a continuous function of z.

Since $D(\lambda)$ and $C(\lambda)$ are countable and T-admissible sets, both $X(D(\lambda))$ and $X(C(\lambda))$ are Polish spaces and $p^{D(\lambda)}_C$ is functionally open (see Claim 5(b)).
Hence, $P_{C(A)}^{D(\lambda)}$ is 0-soft [10]. This yields that $P_{\lambda}^{\lambda+1}$ is also 0-soft because the above diagram is a cartesian square. □

Next proposition provides a characterization of $AE(0)$-spaces in terms of extension of vector-valued functions. This result was inspired by [7].

Theorem 4.2. A space $X \in AE(0)$ if and only if for any complete locally convex space E and any C-embedding of X in a space Y there exists a regular extension operator $C^*(X,E) \to C^*(Y,E)$ with compact supports.

Proof. Suppose $X \in AE(0)$ and X is C-embedded in a space Y. Then by Theorem 4.1(iii), there exists a regular extension operator $v: C^*(X) \to C^*(Y)$ with compact supports. This is equivalent to the existence of a P_e^*-valued retraction $T: Y \to P_e^*(X)$. We can extend each $f \in C^*(X,E)$ to a continuous bounded map $e(f): P_e^*(X) \to E$. Indeed, let $B(f) = \text{conv } f(X)$ and consider the map $P_e^*(f): P_e^*(X) \to P_e^*(B(f))$. Obviously, $B(f)$ is a bounded convex closed subset E, so it is complete. Then, by [5, Theorem 3.4 and Proposition 3.10], there exists a continuous map $b: P_e^*(B(f)) \to B(f)$ assigning to each measure $\nu \in P_e^*(B(f))$ its barycenter $b(\nu)$. The composition $e(f) = b \circ P_e^*(f): P_e^*(X) \to B(f)$ is a bounded continuous extension of f. We also have

(6) \[e(f)(\mu) = \int_X f d\mu \] for every $\mu \in P_e^*(X)$.

Finally, we define $u: C^*(X,E) \to C^*(Y,E)$ by $u(f) = e(f) \circ T$, $f \in C^*(X,E)$. The linearity of u follows from (6). Moreover, for every $y \in Y$ the linear map $\Lambda(y): C^*(X,E) \to E$, $\Lambda(y)(f) = u(f)(y)$, is regular because $\Lambda(y)(f) \in \text{conv } f(X)$. Using the arguments from the proof of Proposition 3.1 (the final part), we can show that each $\Lambda(y)$, $y \in Y$, has a compact support which is contained in $K(y) = s^*(T(y)) \subset X$. Therefore, u is a regular extension operator with compact supports.

The other implication follows from Theorem 4.1. Indeed, since \mathbb{R} is complete, there exists a regular extension operator $u: C^*(X) \to C^*(Y)$ provided X is C-embedded in Y. Hence, by Theorem 4.1(iii), $X \in AE(0)$. □

Recall that a space X is an absolute retract [10] if for every C-embedding of X in a space Y there exists a retraction from Y onto X.

Corollary 4.3. Let X be a convex bounded and complete subset of a locally convex topological space. Then X is an absolute retract provided $X \in AE(0)$.

Proof. Suppose X is C-embedded in a space Y. According to [5, Theorem 3.4 and Proposition 3.10], the barycenter of each $\mu \in P_e(X)$ belongs to X and the map $b: P_e(X) \to X$ is continuous. Since $X \in AE(0)$, by Theorem 4.1, there exists a P_e-valued retraction $T: Y \to P_e(X)$. Then $r = b \circ T: Y \to X$ is a retraction. □
Lemma 4.4. Let $X \subset Y$ and $u: C(X) \to C(Y)$ be a regular extension operator with compact supports. Suppose every closed bounded subset of X is compact. Then there exists a map $T_c: P_c(Y) \to P_c(X)$ (resp., $T_c^*: P_c^*(Y) \to P_c^*(X)$) such that $P_c(i) \circ T_c$ (resp., $P_c^*(i) \circ T_c^*$) is a retraction, where $i: X \to Y$ is the embedding of X into Y.

Proof. For every $\mu \in P_c(Y)$ define $T_c(\mu): C(X) \to \mathbb{R}$ by $T_c(\mu)(f) = \mu(u(f))$, $f \in C(X)$. Obviously, each $T_c(\mu)$ is linear. Let us show that $T_c(\mu) \in P_c(X)$ for all $\mu \in P_c(Y)$. Since u has compact supports, the map $T: Y \to P_c(X)$ generated by u is continuous. Hence, $T(s(\mu))$ is a compact subset of $P_c(X)$ (recall that $s(\mu) \subset Y$ is compact). Then by [2] (see also [35, Proposition 3.1]), $H(\mu) = \cup \{ s(T(y)) : y \in s(\mu) \}$ is closed and bounded in X, and hence compact. Let us show that the support of $T_c(\mu)$ is compact. That will be done if we prove that $s(T_c(\mu)) \subset H(\mu)$. To this end, let $f(H(\mu)) = 0$ for some $f \in C(X)$. Consequently, $T(y)(f) = 0$ for all $y \in s(\mu)$. So, $u(f)(s(\mu)) = 0$. The last equality means that $T_c(\mu)(f) = 0$. Hence, each $T_c(\mu)$ has a compact support and T_c is a map from $P_c(Y)$ to $P_c(X)$. It is easily seen that $P_c(i)(T_c(\mu)) = \mu$ for all $\mu \in P_c(i)(P_c(X))$. Therefore, $P_c(i) \circ T_c$ is a retraction from $P_c(i)$ onto $P_c(i)(P_c(X))$.

Now, we consider the linear operators $T_c^*(\nu): C^*(X) \to \mathbb{R}$, $T_c^*(\nu)(h) = \nu(u(h))$ with $\nu \in P_c^*(Y)$ and $h \in C^*(X)$. Observed that $u(h) \in C^*(Y)$ for $h \in C^*(X)$ because u is a regular operator, so the above definition is correct. To show that T_c^* is a map from $P_c^*(Y)$ to $P_c^*(X)$, for every $\nu \in P_c^*(Y)$ take the unique $\mu \in P_c(Y)$ with $j_Y(\mu) = \nu$. Then $s(\mu) = s(\nu)$ according to Proposition 2.1. Hence, $T_c^*(\nu)(h) = 0$ provided $h \in C^*(X)$ with $h|s(T_c(\mu)) = 0$. So, the support of $T_c^*(\nu)$ is contained in $s(T_c(\mu))$. This means that T_c^* maps $P_c^*(Y)$ into $P_c^*(X)$. Moreover, one can show that $P_c^*(i) \circ T_c^*$ is a retraction.

Ditor and Haydon [14] proved that if X is a compact space, then $P(X)$ is an absolute retract if and only if X is a Dugundji space of weight $\leq \aleph_1$. A similar result concerning the space of all σ-additive probability measures was established by Banakh-Chigogidze-Fedorchuk [6]. Next theorem shows that the same is true when $P_c(X)$ or $P_c^*(X)$ is an AR.

Theorem 4.5. For a space X the following are equivalent:

(i) $P_c(X)$ (resp., $P_c^*(X)$) is an absolute retract;
(ii) $P_c(X)$ (resp., $P_c^*(X)$) is an AE(0);
(iii) X is a Dugundji space of weight $\leq \aleph_1$.

Proof. (i) \Rightarrow (ii) This implication is trivial because every AR is an AE(0).

(ii) \Rightarrow (iii) It suffices to show that X is compact. Indeed, then both $P_c(X)$ and $P_c^*(X)$ are AE(0) and coincide with $P(X)$. So, by Corollary 4.3, $P(X)$ is an AR. Applying the mentioned above result of Ditor-Haydon, we obtain that X is a Dugundji space of weight $\leq \aleph_1$.

Suppose X is not compact. Since $P_c(X)$ (resp., $P_c^*(X)$) is an $AE(0)$-space, it is realcompact. Hence, so is X as a closed subset of $P_c(X)$ (resp., $P_c^*(X)$). Consequently, X is not pseudocompact (otherwise it would be compact), and there exists a closed C-embedded subset Y of X homeomorphic to \mathbb{N} (see the proof of Proposition 2.6). Since Y is an $AE(0)$, according to Theorem 4.1, there exists a regular extension operator $u: C(Y) \to C(X)$ with compact supports.

Then, by Lemma 4.4, $P_c(Y)$ (resp., $P_c^*(Y)$) is homeomorphic to a retract of $P_c(X)$ (resp., $P_c^*(X)$). Hence, one of the spaces $P_c(Y)$ and $P_c^*(Y)$ is an $AE(0)$ (as a retract of an $AE(0)$-space). Suppose $P_c^*(Y) \in AE(0)$. Since $P_c^*(Y)$ is second countable, this implies $P_c^*(Y)$ is Čech-complete. Hence, by Proposition 2.6, Y is pseudocompact, a contradiction. If $P_c(Y) \in AE(0)$, then $P_c(Y)$ is metrizable according to a result of Chigogidze [10] stating that every $AE(0)$-space whose points are G_δ-sets is metrizable (the points of $P_c(Y)$ are G_δ because $j_Y: P_c(Y) \to P_c^*(Y)$ is an one-to-one surjection and $P_c^*(Y)$ is metrizable). But by Proposition 2.5(ii), $P_c(Y)$ is metrizable only if Y is compact and metrizable. So, we have again a contradiction.

(iii) \Rightarrow (i) This implication follows from the stated above result of Ditor and Haydon [14].

5. Properties preserved by Milyutin maps

In this section we show that some topological properties are preserved under Milyutin maps. Let \mathcal{F} be a family of closed subsets of X. We say that X is collectionwise normal with respect to \mathcal{F} if for every discrete family $\{F_\alpha : \alpha \in A\} \subset \mathcal{F}$ there exists a discrete family $\{V_\alpha : \alpha \in A\}$ of open in X sets with $F_\alpha \subset V_\alpha$ for each $\alpha \in A$. When X is collectionwise normal with respect to the family of all closed subsets, it is called collectionwise normal.

Theorem 5.1. Every weakly Milyutin map preserves paracompactness and collectionwise normality.

Proof. Let $f: X \to Y$ be a weakly Milyutin map and $u: C^*(X) \to C^*(Y)$ a regular averaging operator for f with compact supports.

Suppose X is collectionwise normal, and let $\{F_\alpha : \alpha \in A\}$ be a discrete family of closed sets in Y. Then $\{f^{-1}(F_\alpha) : \alpha \in A\}$ is a discrete collection of closed sets in X. So, there exists a discrete family $\{V_\alpha : \alpha \in A\}$ of open sets in X with $f^{-1}(F_\alpha) \subset V_\alpha$, $\alpha \in A$. Let $V_0 = X - \bigcup\{f^{-1}(F_\alpha) : \alpha \in A\}$ and $\gamma = \{V_\alpha : \alpha \in A\} \cup \{V_0\}$. Since γ is a locally finite open cover of X and X is normal (as collectionwise normal), there exists a partition of unity $\xi = \{h_\alpha : \alpha \in A\} \cup \{h_0\}$ on X subordinated to γ such that $h_\alpha(f^{-1}(F_\alpha)) = 1$ for every α. Observe that $h_{\alpha(1)}(x) + h_{\alpha(2)}(x) \leq 1$ for any $\alpha(1) \neq \alpha(2)$ and any $x \in X$. So, $u(h_{\alpha(1)})(y) + u(h_{\alpha(2)})(y) \leq 1$ for all $y \in Y$. This yields that $\{u(h_\alpha)^{-1}(\{1/2, 1\}) : \alpha \in A\}$ is a disjoint open family in Y. Moreover,
Let \(X \) be paracompact and \(\omega \) an open cover of \(Y \). So, there exists a locally finite open cover \(\gamma \) of \(X \) which an index-refinement of \(f^{-1}(\omega) \). Let \(\xi \) be a partition of unity on \(X \) subordinated to \(\gamma \). It is easily seen that \(u(\xi) \) is a partition of unity on \(Y \) subordinated to \(\omega \). Hence, by [24], \(Y \) is paracompact. \(\square \)

Corollary 5.2. Let \(f : X \to Y \) be a weakly Milyutin map and \(X \) a (completely) metrizable space. Then \(Y \) is also (completely) metrizable.

Proof. Let \(T : Y \to P^*_c(X) \) be a map associated with \(f \). Then \(\phi = \Phi^*_X \circ T : Y \to X \) is a lsc compact-valued map (see Lemma 3.3 for the map \(\Phi^*_X \)) such that \(\phi(y) \subset f^{-1}(y) \) for every \(y \in Y \). Since \(Y \) is paracompact (by Theorem 4.1), we can apply Michael’s selection theorem [25] to find an upper semi-continuous (br., usc) compact-valued selection \(\psi : Y \to X \) for \(\phi \) (recall that \(\psi \) is usc provided the set \(\{y \in Y : \psi(y) \cap F \neq \emptyset\} \) is closed in \(Y \) for every closed \(F \subset X \)). Then \(f|X_1 : X_1 \to Y \) is a perfect surjection, where \(X_1 = \bigcup\{\psi(y) : y \in Y\} \). Hence, \(Y \) is metrizable as a perfect image of a metrizable space.

If \(X \) is completely metrizable, then so is \(Y \). Indeed, by [1, Theorem 1.2], there exists a closed subset \(X_0 \subset X \) such that \(f|X_0 : X_0 \to X \) is an open surjection. Then \(Y \) is complete (as a metric space being an open image of a complete metric space). \(\square \)

Proposition 5.3. Let \(f : X \to Y \) be a weakly Milyutin map with \(X \) being a product of metrizable spaces. Then we have:

(i) The closure of any family of \(G_\delta \)-sets in \(X \) is a zero-set in \(X \);

(ii) \(X \) is collectionwise normal with respect to the family of all closed \(G_\delta \)-sets in \(X \).

Proof. Let \(X = \prod\{X_\gamma : \gamma \in \Gamma\} \), where each \(X_\gamma \) is metrizable. Suppose \(u : C^*(X) \to C^*(Y) \) is a regular averaging operator for \(f \) with compact supports.

(i) Let \(G \) be a union of \(G_\delta \)-sets in \(Y \). Then so is \(f^{-1}(G) \) in \(X \) and, by [22, Corollary], there exists \(h \in C^*(X) \) with \(h^{-1}(0) = f^{-1}(G) \). Since \(h(T(y)) = 0 \) for each \(y \in G \), \(u(h)(G) = 0 \). On the other hand, \(\inf\{h(x) : x \in T(y)\} > 0 \) for every \(y \notin \overline{G} \). Hence, \(u(h)(y) > 0 \) for any \(y \notin \overline{G} \). Consequently, \(u(h)^{-1}(0) = \overline{G} \).

(ii) Let \(\{F_\alpha : \alpha \in A\} \) be a discrete family of closed \(G_\delta \)-sets in \(Y \). Then so is the family \(\{H_\alpha = f^{-1}(F_\alpha) : \alpha \in A\} \) in \(X \). Moreover, by (i), each \(F_\alpha \) is a zero-set in \(Y \), hence \(H_\alpha \) is a zero-set in \(X \).

We can assume that \(\Gamma \) is uncountable (otherwise \(X \) is metrizable and the proof follows from Theorem 5.1). Consider the \(\Sigma \)-product \(\Sigma(a) \) of all \(X_\gamma \) with a base-point \(a \in X \). Since \(\Sigma(a) \) is \(G_\delta \)-dense in \(X \) (i.e., every \(G_\delta \)-subset of \(X \) meets \(\Sigma(a) \)), \(\Sigma(a) \) is \(C \)-embedded in \(X \) [32] and
Proof. We consider only the case $k = 1$. Let $W_0 = \Sigma(a) - \{W_a : a \in A\}$. Choose a partition of unity $\{h_a : a \in A\} \cup \{h_0\}$ in $\Sigma(a)$ subordinated to the locally finite cover W_0 of $\Sigma(a)$ such that $h_0(W_a \cap \Sigma(a)) = 1$ for each a. Since $\Sigma(a)$ is C-embedded in X, each h_a can be extended to a function g_a on X. Because of (7), $g_\alpha(H_a) = 1$, $\alpha \in A$. The density of $\Sigma(a)$ in X implies that $g_\alpha(x) = g_\alpha(x')$ for any $x \in X$. As in the proof of Theorem 5.1, this implies that $F_a \subset U_a = u(g_\alpha)^{-1}((1/2, 1])$ and the family $\{V_\alpha : \alpha \in A\}$ is disjoint. Then, as in the proof of [16, Theorem 5.1.17], there exists a discrete family $\{V_\alpha : \alpha \in A\}$ of open subsets of Y with $F_a \subset V_\alpha$, $\alpha \in A$.

A space X is called k-metrizable [29] if there exists a k-metric on X, i.e., a non-negative real-valued function d on $X \times \mathcal{R}(X)$, where $\mathcal{R}(X)$ denotes the family of all regularly closed subset of X (i.e., closed sets $F \subset X$ with $F = \text{int}_X(F)$) satisfying the following conditions:

(K1) $d(x, F) = 0$ iff $x \in F$ for every $x \in X$ and $F \in \mathcal{R}(X)$;

(K2) $F_1 \subset F_2$ implies $d(x, F_2) \leq d(x, F_1)$ for every $x \in X$;

(K3) $d(x, F)$ is continuous with respect to x for every $F \in \mathcal{R}(X)$;

(K4) $d(x, \bigcup\{F_\alpha : \alpha \in A\}) = \inf\{d(x, F_\alpha) : \alpha \in A\}$ for every $x \in X$ and every increasing linearly ordered by inclusion family $\{F_\alpha\}_{\alpha \in A} \subset \mathcal{R}(X)$.

If $\mathcal{K}(X)$ is a family of closed subsets of X, then a function $d : X \times \mathcal{K}(X) \rightarrow \mathcal{R}$ satisfying conditions (K1) – (K3) with $\mathcal{R}(X)$ replaced by $\mathcal{K}(X)$ is called a monotone continuous annihilator of the family $\mathcal{K}(X)$ [15]. When $\mathcal{K}(X)$ consists of all zero sets in X, then any monotone continuous annihilator is said to be a δ-metric on X [15]. The well known notion of stratifiability [8] can be express as follows: X is stratifiable iff there exists a monotone continuous annihilator on X for the family of all closed subsets of X.

A space X is perfectly k-normal [30] provided every $F \in \mathcal{R}(X)$ is a zero-set in X.

Theorem 5.4. Every weakly Milyutin map $f : X \rightarrow Y$ preserves the following properties: stratifiability, δ-metrizability, and perfectly k-normality. If, in addition, $\text{cl}_X(f^{-1}U) = f^{-1}(\text{cl}_Y(U))$ for every open $U \subset Y$, then f preserves k-metrizability.

Proof. We consider only the case f satisfies the additional condition which is denoted by (s) (the proof of the other cases is similar). Let $u : C^*(X) \rightarrow C^*(Y)$ be a regular averaging operator for f having compact supports, and $d(x, F)$ be a k-metric on X. We may assume that $d(x, F) \leq 1$ for any $x \in X$ and $F \in \mathcal{R}(X)$, see [29]. Let $F_G = \text{cl}_X(f^{-1}(\text{int}_Y(G)))$ for each $G \in \mathcal{R}(Y)$,
and define \(h_G(x) = d(x, F_G) \). Consider the function \(\rho : Y \times \mathcal{RC}(Y) \to \mathbb{R} \), \(\rho(y, G) = u(h_G)(y) \). We are going to check that \(\rho \) is a k-metric on \(Y \).

Suppose \(G(1), G(2) \in \mathcal{RC}(Y) \) and \(G(1) \subset G(2) \). Then \(F_{G(1)} \subset F_{G(2)} \), so \(h_{G(2)} \leq h_{G(1)} \). Consequently, \(\rho(y, G(2)) \leq \rho(y, G(1)) \) for any \(y \in Y \). On the other hand, obviously, \(\rho(y, G) \) is continuous with respect to \(y \) for every \(G \in \mathcal{RC}(Y) \). Hence, \(\rho \) satisfies conditions (K2) and (K3).

Suppose \(G \in \mathcal{RC}(Y) \). Then \(s^*(T(y)) \subset f^{-1}(y) \subset F_G \) for every \(y \in \text{int}_Y(G) \), where \(T : Y \to P^e(X) \) is the associated map to \(f \) generated by \(u \). Consequently, \(h_G(s^*(T(y))) = 0 \) which implies \(u(h_G)(y) = 0 \), \(y \in \text{int}_Y(G) \). On the other hand, if \(y \notin G \), then \(s^*(T(y)) \cap F_G = \emptyset \) and \(h_G(x) > 0 \) for all \(x \in s^*(T(y)) \). Since \(u(h_G)(y) \geq \inf \{ h_G(x) : x \in s^*(T(y)) \} \) (recall that \(u \) is an averaging operator for \(f \)), \(u(h_G)(y) > 0 \). Hence, \(u(h_G)(y) = \rho(y, G) = 0 \) iff \(y \in G \), so \(\rho \) satisfies condition (K1).

To check condition (K4), suppose \(\{ G(\alpha) : \alpha \in A \} \subset \mathcal{RC}(Y) \) is an increasing linearly ordered by inclusion family and \(G = \text{cl}_Y(\cup \{ G(\alpha) : \alpha \in A \}) \). Using that \(f \) satisfies condition (s), we have \(F_G = \text{cl}_X(\cup \{ F_{G(\alpha)} : \alpha \in A \}) \). Since \(\{ F_{G(\alpha)} : \alpha \in A \} \) is also increasing and linearly ordered by inclusion, according to condition (K4), \(h_G(x) = \inf \{ h_{G(\alpha)}(x) : \alpha \in A \} \) for every \(x \in X \). Let \(y \in Y \) and \(\epsilon > 0 \). Then for every \(x \in X \) there exists \(\alpha_x \in A \) such that \(h_{G(\alpha_x)}(x) < h_G(x) + \epsilon \). Choose a neighborhood \(V(x) \) of \(x \) in \(X \) such that \(h_{G(\alpha_x)}(z) < h_G(z) + \epsilon \) for all \(z \in V(x) \). Since \(s^*(T(y)) \) is compact, it can be covered by finitely many \(V(x(i)) \), \(i = 1, \ldots, n \), with \(x(i) \in s^*(T(y)) \). Let \(\beta = \max \{ \alpha_x(i) : i \leq n \} \). Then \(h_{G(\beta)}(x) < h_G(x) + \epsilon \) for all \(x \in s^*(T(y)) \). The last equality yields \(\rho(y, G(\beta)) \leq \rho(y, G) + \epsilon \) because \(u(h_G)(y) \) and \(u(h_{G(\beta)})(y) \) depend only on the restrictions \(h_{G(\beta)}|s^*(T(y)) \) and \(h_G|s^*(T(y)) \), respectively. Thus, \(\inf \{ \rho(y, G(\alpha)) : \alpha \in A \} \leq \rho(y, G) \). The inequality \(\rho(y, G) \leq \inf \{ \rho(y, G(\alpha)) : \alpha \in A \} \) is obvious because \(G \) contains each \(G(\alpha) \), so \(\rho \) satisfies condition (K4). Therefore, \(Y \) is k-metrizable. \(\square \)

Next corollary provides a positive answer to a question of Shchepin [31].

Corollary 5.5. Every \(AE(0) \)-space is k-metrizable.

Proof. Let \(X \) be an \(AE(0) \)-space of weight \(\tau \). By [10, Theorem 4], there exists a surjective 0-soft map \(f : \mathbb{N}^\tau \to X \). Since \(\mathbb{N}^\tau \in AE(0) \) (as a product of \(AE(0) \)-space) and every 0-soft map between \(AE(0) \)-spaces is functionally open [10, Theorem 1.15], \(f \) satisfies condition (s) from the previous theorem. On the other hand, \(\mathbb{N}^\tau \) is k-metrizable as a product of metrizable spaces [29, Theorem 15]. Hence, the proof follows from Proposition 3.12 and Theorem 5.4. \(\square \)

References

[1] S. Ageev and E. Tymchatyn, *On exact atomless Milyutin maps*, Topology Appl. 153, 2-3 (2005), 227–238.
[2] A. Arhangel’skii, *On a class of spaces containing all metrizable and all locally compact spaces*, Mat. Sb. **67**, 1 (1965), 55–85 (in Russian).

[3] A. Arhangel’skii, *On linear homeomorphisms of function spaces*, Soviet Math. Dokl. **25** (1982), 852–855.

[4] J. Baars and J. de Groot, *On topological and linear equivalence of certain function spaces*, CWI Tracts **86** (Centrum Wisk. Inform., Amsterdam, 1992).

[5] T. Banakh, *Topology of probability measure spaces II*, Mat. Stud. **5** (1995), 88–106 (in Russian).

[6] T. Banakh, A. Chigogidze and V. Fedorchuk, *On spaces of σ-additive probability measures*, Topology and Appl. **133** (2003), 139–155.

[7] I. Baars and J. de Groot, *On topological and linear equivalence of certain function spaces*, CWI Tracts **86** (Centrum Wisk. Inform., Amsterdam, 1992).

[8] T. Banakh, A. Chigogidze and V. Fedorchuk, *On spaces of σ-additive probability measures*, Topology and Appl. **133** (2003), 139–155.

[9] A. Chigogidze, *Extension of normal functors*, Moscow Univ. Math. Bull. **39**, 6 (1984), 31–35.

[10] A. Chigogidze, *Noncompact absolute extensors in dimension n, n-soft mappings, and their applications*, Math. USSR Izvestiya **28**, 1 (1987), 151–174.

[11] A. Chigogidze, *Inverse spectra*, North-Holland Mathematical Library 53, North-Holland 1996.

[12] M. Choban, *Topological structure of subsets of topological groups and their quotient spaces*, in Topological structures and algebraic systems, Mat. Issled. **44**, Kishinev, 1977, 117–163 (in Russian).

[13] S. Ditor, *Averaging operators in C(S) and lower semicontinuous selections of continuous maps*, Trans. Amer. Math. Soc. **175** (1973), 195–208.

[14] S. Ditor and R. Haydon, *On absolute retracts, P(S), and complemented subspaces of C(Dω1)*, Studia Math. **56**, 3 (1976), 243–251.

[15] A. Dranishnikov, *Simultaneous annihilation of families of closed sets, k-metrizable and stratifiable spaces*, Soviet Math Dokl. **19**, 6 (1978), 1466–1469.

[16] R. Engelking, *General Topology*, PWN, Warszawa 1977.

[17] V. Fedorchuk and V. Filippov, *General Topology: basic constructions*, Moskow Univ. 1988 (in Russian).

[18] S. Gul’ko, *Properties of sets that lie in Σ-products*, Dokl. Acad. Nauk SSSR **237**, 3 (1978), 505–508 (in Russian).

[19] R. Haydon, *On a problem of Pelczynski: Milutin spaces, Dugundji spaces and AE(0 − dim)*, Studia Math. **52** (1974), 23–31.

[20] B. Hoffman, *A surjective characterization of Dugundji spaces*, Proc. Amer. Math. Soc. **76** (1979), 151–156.

[21] E. Hewitt, *Linear functionals on spaces of continuous functions*, Fund. Math. **37** (1950), 161–189.

[22] B. Klebanov, *Remarks on subsets of Cartesian products of metric spaces*, Comment. Math. Univ. Caroliniae **23**, 4 (1982), 767–784.

[23] E. Michael, *Selected selection theorems*, Americam Math. Monthly **63** (1956), 233–238.

[24] E. Michael, *A note on paracompact spaces*, Proc. Amer. Math. Soc. **4** (1953), 831–638.

[25] E. Michael, *A theorem on semi-continuous set-valued functions*, Duke Math. J. **26**, 4 (1959), 647–656.

[26] A. Pelczynski, *Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions*, Dissertation. Math. **58** (1968), 1–89.

[27] E. Pol and R. Pol, *Remarks on Cartesian products*, Fund. Math. **93** (1976), 57–69.
[28] D. Repovš, P. Semenov and E. Ščepin, On zero-dimensional Milutin maps and Michael selection theorems, Topology Appl. 54 (1993), 77–83.

[29] E. Shchepin, Topology of limit spaces of uncountable inverse spectra, Russian Math. Surveys 315 (1976), 155–191.

[30] E. Shchepin, On topological products, groups, and a new class of spaces more general than metric spaces, Soviet Math. Dokl. 17, 1 (1976), 152–155.

[31] E. Shchepin, Personal communication, 1986.

[32] M. Tkačenko, The notion of o-tightness and C-embedded subspaces of products, Topology and Appl. 15, 1 (1983), 93–98.

[33] V. Valov, Milutin mappings and AE(0)-spaces, C.R. Acad. Bulgare Sci. 40, 11 (1987), 9–12.

[34] V. Valov, Another characterization of AE(0)-spaces, Pacific J. Math. 127 (1987), 199–208.

[35] V. Valov, Function spaces, Topology and Appl. 81 (1997), 1–22.

[36] V. Valov and D. Vuma, Function spaces and Dieudonne completeness, Quaestiones Mathematicae 21, 3-4 (1998), 303–309.

[37] V. Valov, Probability measures and Milutin maps between metric spaces, J. Math. Anal. Appl. 350 (2009), 723–730.