Random Access to Grammar Compressed Strings

Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao Satti, and Oren Weimann
Random Access to Compressed Strings

text
DNA
XML
Random Access to Compressed Strings

• What is the ith character?

• What is the substring at $[i,j]$?

• Does pattern P appear in text? (perhaps with k errors?)
Random Access to Grammar Compressed Strings

AGTAGTAG \(N = 8 \)

- Grammar based compression captures many popular compression schemes with no or little blowup in space [Charikar et al. 2002, Rytter 2003].
- Lempel-Ziv family, Sequitur, Run-Length Encoding, Re-Pair, ...

\[X_7 \rightarrow X_6 X_3 \]
\[X_6 \rightarrow X_5 X_5 \]
\[X_5 \rightarrow X_3 X_4 \]
\[X_4 \rightarrow T \]
\[X_3 \rightarrow X_1 X_2 \]
\[X_2 \rightarrow G \]
\[X_1 \rightarrow A \]

\(n = 7 \)

\(\leq n \)

\(N \)

1 2 3 4 5 6 7 8
Tradeoffs and Results

- What is the ith character?
 - O(N) space
 - O(1) query

- What is the substring at $[i,j]$?
 - O(n) space
 - O(log N + j - i) query
Application: Black-Box Compressed String Matching

• Does “AGGA” appear in the text (perhaps with k errors)?
Application: Black-Box Compressed String Matching

• Total time $O(n \log N + m + \text{Blackbox}(m))$.

• Does “AGGA” appear in the text (perhaps with k errors)?

• Total time $O(n \log N + m + \text{Blackbox}(m))$.
Extension: Compressed Trees

- Linear space in compressed tree.
- Fast navigation operations (select, access, parent, depth, height, subtree_size, first_child, next_sibling, level_ancestor, nca).
Heavy Path Decomposition
Heavy Path Decomposition
Heavy Path Decomposition
Random Access Query

• The path from root to i goes through $O(\log N)$ heavy paths

• Query: Binary search all heavy paths on the way

 $O(\log n) \cdot O(\log N)$
Random Access Query

- The path from root to \(i \) goes through \(O(\log N) \) heavy paths
- Query: Binary search all heavy paths on the way

 \[O(\log n) \cdot O(\log N) \]
The path from root to i goes through $O(\log N)$ heavy paths.

Query: Binary search all heavy paths on the way

$O(\log n) \cdot O(\log N) = O(\log N/x)$ Telescopes to $O(\log N)$

Space: Each IBSTs uses linear space => total $O(n^2)$ space for all heavy paths.
O(n) Representation of Heavy Paths

- Search for i on heavy path = lowest ancestor of distance i.
O(n) Representation of Heavy Paths

- Search for \(i \) on heavy path = lowest ancestor of distance \(i \).
- A heavy path decomposition of heavy path representation.
- In-path: \(O(\log N/x) \) time, total \(O(n) \) space.
O(n) Representation of Heavy Paths

- Search for i on heavy path = lowest ancestor of distance i.
- A heavy path decomposition of heavy path representation.
- In-path: $O(\log N/x)$ time, total $O(n)$ space.
- Between-paths: $O(\log N/x)$ time, total $O(n \log n)$ space.
O(n) Representation of Heavy Paths

- Search for \(i \) on heavy path = lowest ancestor of distance \(i \).
- A heavy path decomposition of heavy path decomposition.
- In-path: \(O(\log N/x) \) time, total \(O(n) \) space.
- Between-paths: \(O(\log N/x) \) time, total \(O(n \log n) \) space.
O(n) Representation of Heavy Paths

- Search for i on heavy path = lowest ancestor of distance i.
- A heavy path decomposition of heavy path decomposition.
- In-path: $O(\log N/x)$ time, total $O(n)$ space.
- Between-paths: $O(\log N/x)$ time, total $O(n \log n)$ space.
• Search for i on heavy path = lowest ancestor of distance i.

• A heavy path decomposition of heavy path decomposition.

• In-path: $O(\log \frac{N}{x})$ time, total $O(n)$ space.

• Between-paths: $O(\log \frac{N}{x})$ time, total $O(n \log n)$ space.

$O(n^{\alpha(n)})$
O(n) Representation of Heavy Paths

- Search for i on heavy path = lowest ancestor of distance i.
- A heavy path decomposition of heavy path decomposition.
- In-path: $O(\log N/x)$ time, total $O(n)$ space.
- Between-paths: $O(\log N/x)$ time, total $O(n \log n)$ space.
- $O(n)$ with bittricks
Summary

• Random access and substring decompression.
 • $O(n)$ space and $O(\log N + \text{length of substring})$ time.

• Black compressed (approximate) string matching.

• Random access in compressed trees.