IN VITRO ASSESSMENT OF ANTHELMINTIC AND ALPHA-AMYLASE INHIBITION OF SCHLEICHERA OLEOSA (LOUR.) OKEN LEAF EXTRACTS

SHAMBADITYA GOSWAMI*, RAVINDRA PAL SINGH²

*Department of Pharmacy, Research Scholar, Suresh Gyan Vihar University, Jaipur, Rajasthan, India. ²Department of Pharmacy, Faculty of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India. Email: shambambaharma@gmail.com

ABSTRACT

Objective: The present study deals with the effects of Schleicheria oleosa (Lour.) Oken leaf extracts on helminths and alpha-amylase inhibition. Identification of phytochemicals and physicochemical analysis were also performed.

Methods: Different concentrations (25, 50, and 100 mg/ml) of petroleum ether, acetone, chloroform, ethanol, and aqueous extracts of the leaf were used to examine the effects. For the evaluation of in vitro anthelmintic activity, several earthworms (Eisenia fetida, Perionyx excavates, and Pheretima posthuma) and nematode (Ascaridia galli) were taken, while albendazole was used as a standard drug and Tween 80 (3%) in normal saline (0.9% NaCl) was considered as a control treatment. In vitro alpha-amylase inhibition of different extracts (10–100 mg/ml) was done spectrophotometrically by dinitrosalicylic acid - starch azure method.

Results: The ethanolic extract showed the maximum presence of phytochemicals among all the extracts, which included alkaloids, tannins, flavonoids, saponin glycosides, phenolic compounds, resins, and amino acids. The outcomes of the determination of physicochemical parameters and fluorescence characters provided the satisfactory results. Significant anthelmintic activity was established by the ethanolic and aqueous extracts of the leaf among all the extracts and the responses, so observed, were dose responsive. Inhibition of alpha-amylase by ethanolic and aqueous extracts was significant with the IC₅₀ value of 36.63 and 73.94 µg/ml, respectively, when compared to standard acarbose.

Conclusion: The ethanolic extract was the more potent candidate for both the effects, and the effect of extract was best against A. galli, P. posthuma, and E. fetida at higher concentration. Isolation and characterization of therapeutic constituents would be the future interest.

Keywords: Schleicheria oleosa (Lour.) Oken, Earthworms, Nematodes, Anthelmintic activity, Alpha-amylase.

INTRODUCTION

Schleicheria oleosa (Lour.) Oken (family: Sapindaceae), is a deciduous tree available throughout Southeast Asia and India, is commonly known as “Kusum” and “Lac tree.” The different parts of this plant have enormous traditional uses to treat different ailments. The leaves are used as fodder for domestic animals [1,2], whereas the bark paste is used for the treatment of malaria and dysentery. In the Himalayan area of Nepal, the fruits are used traditionally as anthelmintic [3], and the seed oil is used for acne, itching, hair growth, and burns; moreover, the whole plant is used as antidiabetic traditionally [4].

Helminthiasis is an extensive infection among the human beings distributed in the tropical region largely due to climate and unhygienic conditions [5,6]. Helminths include flatworms and roundworms or nematodes, which mainly affect the liver, skin, intestine, and liver [7]. To treat ailments like worm infection, usage of herbs is long practice [8-10]. Although the synthetic drugs of benzimidazole group such as albendazole and mebendazole are effective against tapeworms, hookworms, and roundworms [11], their long practice can cause severe side effects such as bone marrow depression and elevated liver enzymes [12].

Diabetes is an important and prior health problem which affected more than 400 million people globally in 2014 and caused 1.5 million deaths in 2012. There is the same alarming condition in Southeast Asia region along with India, and by 2035, the condition will be the worst [13]. Several phytoconstituents of medicinal plants can decrease the postprandial glucose level by inhibiting alpha-amylase [14] as they facilitate the hydrolysis of the starch and its digestion [15,16].

Nevertheless, the plant is used to treat helminthiasis and diabetes; traditionally, the scientific evaluations yet have not been done. Moreover, the phytochemical screening, physicochemical analysis, and fluorescence studies of the plant parts have been evaluated in the present research.

To evaluate the in vitro anthelmintic activity of different plant extracts, different earthworms such as Eisenia fetida (Family: Lumbricidae), Perionyx excavates (Family: Megacoelidae), and Pheretima posthuma (Family: Annelida) and nematodes (Ascaridia galli) have been selected in the present study for their anatomical and physiological uniformities with the intestinal worms.

MATERIALS AND METHODS

Plant material

The leaves of S. oleosa (Lour.) Oken were collected from the forest area of Nichlal, Maharajganj district, Uttar Pradesh, in the flowering season of February and March 2017. The clean leaves were air dried for 3 months. Indian Council of Agricultural Research-Kamla Nehru Krishi Vigyan Kendra, Sultanpur, Uttar Pradesh, India (accession no. 02/2017), authenticated the plant parts.

Preparation of crude extracts

The shade dried coarsely powdered of leaves of the plant was subjected for successive solvent extraction according to the polarity. The different solvent extracts were petroleum ether (SEPE), chloroform (SECE), acetone (SEAcE), ethanol (SEEE), and water (SEAE). The cold maceration process was employed for the aqueous extract, and the continuous hot percolation process was employed for the others. After
the extraction, the solvents were removed by distillation, and residues were preserved in the refrigerator at 2–8°C to use in the experiments.

Preliminary phytochemical screening

To confirm the presence or absence of different chemical constituents such as alkaloids, saponin glycosides, tannins, flavonoids, phenolic compounds, steroids, proteins, and amino acids, the preliminary phytochemical studies with different solvent extracts were performed according to the standard procedure [17].

Physicochemical analysis

The WHO recommended procedure was employed to evaluate different physicochemical parameters such as total ash, acid-insoluble ash and water-soluble ash values, extractive values with different solvents, loss on drying, and foreign matters [18].

Fluorescence study

The leaf powder and treated with different solvents were subjected for the fluorescence study. The observations were made under daylight, short UV light at 254 nm, and long UV light at 365 nm [19].

Collection and authentication of worms

Different earthworms such as *E. fetida*, *P. excavates*, and *P. posthuma* were collected from moist soil and waterlogged areas. The domestic chicken (*Gallus gallus*) was freshly slaughtered to obtain the nematodes (*A. galli*). All the worms were washed with saline water to remove foreign and soil particles. Department of Zoology, HRPG College Khalilabad, Uttar Pradesh (Accession no: 09-Zoo-17), authenticated all the worms.

In vitro anthelmintic activity

In vitro anthelmintic activity was performed with all the extracts by taking different earthworms and nematodes according to the previous studies with slight modifications [5,20,21]. Almost equal sizes of *P. posthuma*, *E. fetida*, *P. excavates*, and *A. galli* were chosen (each group, n=6) for the activity. Similar studies using these models have been reported earlier [22–24].

The standard drug, albendazole, and all the extracts (dissolved in 3% Tween 80 in normal saline) were prepared in 25, 50, and 100 μg/mL concentrations, while Tween 80 (3%) in normal saline (0.9% NaCl) was considered as control treatment and kept in separate Petri dishes, containing the worms. Paralysis time (PT in min) was noted while there was no motility of the worms even after extensive shaking and death time (DT in min) was recorded when there was a loss of motility even after dipping the worms in the warm water of 50°C.

The statistical evaluation was performed by one-way ANOVA; the results were expressed as ±standard deviation (SD) using Graph Pad Prism 7.4 (n=6) and p<0.05 was considered statistically significant.

In vitro alpha-amylase inhibition activity

The assay was performed following the standard methods with minor modifications [25,26]. 0.5% w/v starch solution was prepared by mixing 250 mg starch azure in 50 ml of 20 mM sodium phosphate buffer (pH 6.9) with 6.7 mM NaCl at pH 65°C for 15 min. Plant extracts were prepared in different concentrations from 10 to 100 mg/ml by dissolving in dimethyl sulfoxide (DMSO). 1 ml of each plant extract was mixed with 1 ml of enzyme solution, which was prepared by mixing 0.0253 g of alpha-amylase in 100 ml cold distilled water. To the 1 ml of the above solution, 1 ml of starch solution was added, and the tube was incubated for 5 min at 25°C. The colorimetric reagent was prepared by mixing 12 g sodium potassium tetraborate tetrahydrate in 2 M NaOH (8 ml) and 96 mM 3,5-dinitrosalicylic acid (20 ml), which was added to the above solution and placed on a water bath at 80°C for 15 min followed by cooling and adding of 9 ml distilled water.

Acarbose of different concentrations (10–100 mg/ml) was referred to standard drug. Blanks for each extract were prepared by omitting enzyme solution by phosphate buffer (pH 6.9) and color reagent was added before the starch solution. Controls were prepared by taking 1 ml DMSO instead of plant extract, the rest of the procedure was performed same as with plant extracts. The absorbance of standard, samples, and blanks was measured at 540 nm in UV spectrophotometer. The enzyme inhibitory activity was calculated by following formula:

\[
\text{Alpha–amylase inhibitory activity (\%) } = \frac{\text{ΔA Control} - \text{ΔA Sample}}{\text{ΔA Control}} \times 100
\]

Where, A=Absorbance

ΔA Control= A of Test – A of Blank

ΔA Sample=A of Test – A of Blank

The statistical evaluation was performed by linear regression analysis; the results were expressed as ±SD using Graph Pad Prism 7.4 (n=3). The results were analyzed by one-way ANOVA followed by Tukey’s multiple comparison tests and p<0.001 was considered statistically significant.

RESULTS AND DISCUSSION

Preliminary phytochemical screening

The preliminary phytochemical screening of the plant leaf extracts affirmed the maximum presence of chemical constituents in SEEE and SEAE while comparing to others and the data have been tabulated in Table 1, which showed the presence of alkaloids, tannins, flavonoids, saponin glycosides, phenolic compounds, resins, and amino acids in SEEE.

The presence of these phytochemicals has a direct effect on helminthiasis. Alkaloid causes paralysis of helminths by interfering with local homeostasis which has the vital role in the development of worms [27]. Saponin glycosides, found in the wide variety of higher plants, can cause the damage integument and subsequent paralysis of the worms [6]. The previous literature described the presence of tannins in plant extracts can cause damage of cuticles of helminths by binding with the glycoproteins present on it [28,29]. Phenolic compounds and flavonoids are involved in energy generation process, damage in cuticle, and ultimately cause the paralysis and death of the worms [30].

Moreover, alkaloids, tannins, phenolic compounds, and flavonoids accelerate insulin secretion and reduce the absorption of glucose in intestine [31]. All these phytochemicals, as reported in literature, possess alpha-amylase inhibition activity [32].

Physicochemical analysis and fluorescence study

Plant leaf powder was subjected for the evaluation of different physicochemical parameters and fluorescence study, which represented the characteristic properties of the leaf of *S. oleosa* (Lour.) Oken. The results of the above studies were given in Tables 2 and 3, respectively.

Ash values were found to be the highest (6.21%) while water-insoluble ash was the lowest (3.22%). Extractive values were found mostly in the aqueous extract (27.3%), followed by ethanolic extract (26.1%), ethyl acetate, chloroform, acetone, and hexane extract.

Table 1: Preliminary phytochemical screening of Schleicheria oleosa (Lour) Oken leaf

Phytochemicals	SEPE	SECE	SEAE	SEE	SEAE
Alkaloids	-	-	-	+	-
Saponin glycosides	-	-	-	+	-
Tannins	-	+	+	+	+
Phenolic compounds	+	+	+	+	+
Flavonoids	-	-	+	+	-
Resins	-	-	-	-	-
Protein and amino acids	-	+	-	-	+

* indicates "presence" and - indicates "absence" of phytochemicals in the test.

SEPE: Solvent extracts of petroleum ether; SECE: Solvent extracts of chloroform, SEAE: Solvent extracts of acetone, SEE: Solvent extracts of ethanol, SEAE: Solvent extracts of water
In vitro anthelmintic activity

For the support of the folkloric use of *S. olesoa* (Lour.) Oken as anthelmintic [3], an in vitro assay was performed by noting down the PT and lethal time in minutes of all extracts. Due to the anatomical and physiological resemblance with the human intestinal worms and parasites, different earthworms and nematodes were selected for the activity. In the observed results, the earthworms and nematodes like *E. fetida*, *P. excavates*, *P. posthuma*, and *A. galli* were denoted as EP, PE, PP, and AG, respectively. The effect on all the worms of standard drug albendazole was significant and dose dependent which supports the reported related literature [33,34].

At the concentration of 100 mg/ml, the standard drug was more effective against all worms. The results were presented in graphical form; Figs. 1-3 described the effect of plant extract on EP, PE, PP, and AG at different concentrations. There was no effect on the worms in control treatment as the worms were healthy throughout the experiment.

Among all the extracts, SEEE is considered more effective against all the earthworms and nematodes while comparing with others. Moreover, SEEE showed greater effect on *A. galli* (DT: 41.03±4.21 minutes at 100 mg/ml) with the increasing dose than the other earthworms, and among the earthworms; the extract has greater significant effect on *E. fetida* (DT: 56.1±2.41 min at 100 mg/ml) and *P. posthuma* (DT: 57.1±5.48 min at 100 mg/ml) while comparing to *P. excavates* (DT: 62.31±3.44 min at 100 mg/ml). It has been reported in earlier studies that the ethanolic extract of *Clerodendrum viscousum* was more effective against *A. galli* than *P. posthuma* in 50, 100, and 200 mg/ml dose [35]. Likewise, at lower concentration (10 and 50 mg/ml), *Baliospermum montanum* Muell. Arg. was proved as potent anthelmintics against *A. galli* than *P. posthuma*. At the higher concentration, the plant was equally potent against them. In addition, this study has reported that the ethanolic extract was more potent than aqueous extract [36].

Table 2: Physicochemical analysis of *Schleichera oleosa* (Lour.) Oken leaf

Sr. No	Parameters	Value
1.	Ash values	6.21% w/w
2.	Acid-insoluble ash	4.72% w/w
3.	Water-soluble ash	3.22% w/w
4.	Extractive values with organic solvent	8.2% w/w
5.	Chloroform	12.3% w/w
6.	Acetone	9.7% w/w
7.	Ethyl acetate	17.2% w/w
8.	Ethanol	26.1% w/w
9.	Water	27.3% w/w
10.	Loss on drying	5.7±0.3 mg/g
11.	Foreign matter	2.15% w/w

Table 3: Fluorescence analysis of *Schleichera oleosa* (Lour.) Oken leaf

Sr. No	Reagents	Daylight	Short UV	Lower UV
1.	Leaf Powder (LP)	DG	Bl	YG
2.	LP±1 N HCl	GBr	Br	DBr
3.	LP±HCl (50%)	GBi	DBi	DBi
4.	LP±1 N NaOH	YG	DBr	GBl
5.	LP±H2SO4 (50%)	GBr	DBi	RBr
6.	LP±HI (50%)	YG	LBi	GBl
7.	LP±NH4+	LG	RG	DG
8.	LP±GAA	GBl	LBr	RBr
9.	LP±Ethanol	GBr	GBr	DG
10.	LP±KOH (50%)	YG	LG	DG

The present study also confirmed that SEEE was more effective than SEAE. In the case of SEAE, the effectiveness was more against the nematode (DT: 59.21±3.56 min at 100 mg/ml), and almost equal against the earthworms. In the earlier literature, the significant anthelmintic activity of chloroform extract of other plants against earthworms has been reported [37,38]. Tannins containing acetone extract were evaluated for the anthelmintic activity against *Haemonchus contortus* egg hatching in the previous literature which was considered as potent anthelmintics [39]. Similarly, this present paper also described the...
significant effect of the SECE and SEAcE on *A. galli* (DT: 113.45±4.11 min and 105.78±3.25 min at 100 mg/ml, respectively) but not as significant as the ethanolic one. The results also exhibited the poor effect of SEPE extract had a very little effect on the worms.

The results exhibited clearly the effects of all the extracts were dose dependent; at 25 mg/ml, SEEE was more effective against all the worms and SEAE was found effective against *A. galli* (Fig. 4a). In Fig. 4b, it has been found that at 50 mg/ml dose SEEE showed best result against *A. galli* than *P. posthuma*. At the higher concentration, 100 mg/ml, the response of SEEE and SEAE was most potent against the nematodes (Fig. 4c).

In vitro alpha-amylase inhibition activity

Inhibitor of alpha-amylase enzyme is a better oral hypoglycemic agent as they control diabetes by interfering with the absorption of glucose [40]. The present evaluation of *in vitro* alpha-amylase inhibition was done by dinitrosalicylic acid - starch azure method, for the support of its traditional use as an antidiabetic plant. At the range of 10–100 mg/ml, standard drug (acarbose) exhibited alpha-amylase inhibition 19.25±0.06–62.38±0.05 (IC$_{50}$ value 78.56), whereas SEEE and SEAE showed the inhibition in the same concentration range from 32.40±0.95 to 83.51±1.0 (IC$_{50}$ value 36.63) and 19.62±0.90 to 62.30±2.03 (IC$_{50}$ value 73.94), respectively. Similar studies of the plant *S. oleosa* (Lour.) Oken showed similar effect; at the lower concentration (1–50 mg/ml) ethanolic and aqueous extract showed better inhibition activity while comparing to other extracts of ethyl acetate, pet ether, and chloroform [41]. The present study revealed that at higher concentration (60–100 mg/ml) also ethanolic and aqueous extracts were more significant than others. Figs. 5 and 6 represented the comparison of alpha-amylase inhibition activity and the IC$_{50}$ values of different extracts while compared to acarbose, respectively. At 100 µg/ml, the enzyme inhibition of the other extracts: SEPE (19.53±0.16), SECE (33.39±1.31), and SEAcE (45.61±2.08) proved SEEE and SEAE more potent.

CONCLUSION

The present study unrevealed the plant *S. oleosa* (Lour.) Oken as a potent anthelmintics and antidiabetics supporting the traditional beliefs. The
ethanolic and aqueous extract of the plant was manifested as more effective against helminthiasis, especially against the nematodes, as well as showed better alpha-amylase inhibition activity. The identification of the secondary metabolites of the plant parts to explore the constituents responsible for the activity and molecular level mechanism will be the future interest.

AUTHORS’ CONTRIBUTION

Goswami Shamshaditya: Performs all experimental works, designing of results, and manuscript preparations. Singh Ravindra Pal is a research advisor and performs statistical analysis and manuscript editing. Both the authors read and approved the final manuscript.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest.

REFERENCES

1. Devendra C, Thomas D, Jabbar MA, Zerbini E. Improvement of Livestock Production in Crop-Animal Systems in Agro-ecological Zones of South Asia. Nairobi, Kenya: International Livestock Research Institute (ILRI); 2000.
2. Meshram N, Ojha M, Singh A, Alexander A, Sharma M. Significance and Res Ced: Schleichera oleosa. Asian J Pharm Res 2015;5:61-4.
3. Prasad B, Subedi L. Medicinal Plant Diversity and their Pharmacological aspects of Nepal Himalayas. Pharmacognosy J 2011;3:6-17.
4. Goswami S, Singh RP. Aurveicid phytochemical and pharmacological review of Schleichera oleosa (Lour.) Oken: A traditional plant with enormous biological activity. World J Pharm Res;2017;6:295-309.
5. Goswami S, Mishra KN, Mishra A, Singh AP, Singh P, Singh P. Comparative assessment of in-vitro anthelmintic studies of some plants from Indian origin. J Pharm Res 2016;10:154-8.
6. Hrckova G, Velebny S. Parasitic helminths of humans and animals: Health impact and control. In: Pharmacological Potential of Selected Natural Compounds in the Control of Parasitic Diseases. 1st ed. Vienna: Springer-Verlag Wien; 2013. p. 29-99.
7. Wakelin D. Helminths: Pathogenesis and defenses. In: Baron S, editor. Helminths: Pathogenesis and defenses. In: Baron S, editor. Parasitic helminths of humans and animals: Health impact and control. In: Pharmacological Potential of Selected Natural Compounds in the Control of Parasitic Diseases. 1st ed. Vienna: Springer-Verlag Wien; 2013. p. 29-99.
8. Wakelin D. Helminths: Pathogenesis and defenses. In: Baron S, editor. Helminths: Pathogenesis and defenses. In: Baron S, editor. Parasitic helminths of humans and animals: Health impact and control. In: Pharmacological Potential of Selected Natural Compounds in the Control of Parasitic Diseases. 1st ed. Vienna: Springer-Verlag Wien; 2013. p. 29-99.
9. Vardanyan RS, Hruby VJ. Synthesis of Essential Drugs. 1st ed. Amsterdam: Elsevier Science; 2006.
10. Block JH, Beale JM, editors. Wilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry. Philadelphia, PA: Lippincott Williams and Wilkins; 1998.
11. WHO. Global Reports on Diabetes. Geneva: WHO; 2016.
12. Funke I, Melzig MF. Traditionally used plants in diabetes therapy: Phytotherapeutics as inhibitors of alpha-amylase activity. Rev Bras Farmacognos 2006;16:1-5.
13. Agarwal P, Gupta R. Alpha-amylase inhibition can treat diabetes mellitus. J Med Heal Sci 2016;5:1-8.
14. Gavade B, Barooqui M. Screening of phytochemicals and in vitro antidiabetic activity of Bauhinia racemosa Lam. leaves. Asian J Pharm Clin Res 2018;11:190-3.
15. Khandelwal KR. Practical Pharmacognosy : Techniques and Experiments. 16th ed. New Delhi: Nirlal Prakashan; 2008.
16. WHO. Quality Control Methods for Medicinal Plant Materials. Geneva: WHO; 1998.
17. Goswami S. Preliminary phytochemical screening and standardisation of leaves of Catharanthus roseus (L.) G. Don. Indian J Res Pharm Biotechnol 2009;1:24-7.
18. WHO. Quality Control Methods for Medicinal Plant Materials. Geneva: WHO; 2009.
19. Pandey A, Goswami S, Tripathi P, Singh AP. An in vitro evaluation of anthelmintic activity of Zingiber zerumbet rhizomes and Cucurbita maxima seeds on Pheretima posthuma model: A comparative study. J Pharm Bioallied Sci 2011;3:317.
20. Manke MB, Dhawale SC, Jankhade PG. Anthelmintic potential of Helicteres isora bark extract against Pheretima posthuma. Asian Pac J Trop Dis 2015;5:313-5.
21. Cáceres AL, Flores-Giubi ME, Romero-Rodríguez MC, Alvarenga NL. In vitro anthelmintic activity and chemical composition of methanol extracts and fractions of Croton paraguayensis and Vernonia brasiliiana against Escherichia coli. Asian Pac J Trop Dis 2015;7:71-4.
22. Karthi J, Thamizhozhi M, Saravanan C, Ahamed KA, Niruban KC. In vitro anthelmintic activity of leaves extracts of Caesalpinia bonducuella (L). Pharm Lett 2011;3:317-9.
23. Erman KA, El-Bahy NM. In vitro and in vivo screening of anthelmintic activity of ginger and curcumin on Ascaridia galli. Parasitol Res 2013;112:3679-86.
24. Nickavar B, Abolhasani L, Izadjahan P. α-Amylase inhibition activities of six Salvia species. Iran J Pharm Res 2008;7:297-303.
25. Giancarlo S, Rosa LM, Nadaji F, Franceso M. Hypoglycaemic activity of two spices extracts: Rhus coriaria L. and Bambus persicum Boiss. Nat Prod Res 2006;20:882-6.
26. Lavanya B, Krishna PS, Nagarjuna S, Reddy PY. In-vitro comparative study of anthelmintic activity of Brassica juncea and Brassica oleracea. J Pharm Res 2011;4:2907-9.
27. Balqiu U, Hanbali M, Rinidar, Athailllah F, Ismail, Azt, et al. Cuticular surface damage of Ascaridia galli adult worms treated with Fetcichia merrilli betel nuclei extract in vitro. Vet World 2017;10:732-7.
28. Williams AR, Ropiak HM, Frycanas G, Desroes S, Mueller-Harvey I, Thamsborg SM. Assessment of the anthelmintic activity of medicinal plant extracts and purified condensed tannins against free-living and parasitic stages of Oesopogastomum dentatum. Parasit Vectors 2014;7:518.
29. Agrawal S, Bhawas A, Choudhary P, Singh S, Keskar N, Chaturvedi M. In vitro and in vivo antidiabetic potential of Schleichera oleosa. J Pharm Clin Res 2017;10:280-3.