Landform type mediates compositional change in a hurricane-disturbed subtropical forest

Robert L. Spicer¹, Ariel E. Lugo² and Nathan Ruhl¹*

Abstract

Background: Categorization of topographical features into landform type is a long-standing method for understanding physiographic patterns in the environment. Differences in forest composition between landform types are driven primarily by concurrent differences in soil composition and moisture, but also disturbance regime. Many studies have focused on the interaction between fire disturbance, succession, and landforms, but the effects of hurricane disturbance on compositional differences between landforms are poorly understood. In the study presented here, we assess compositional and structural differences between landform types in the tree community of a young sub-tropical forest that is frequently subjected to hurricanes. Specifically, we ask whether the tree community (1) changed structurally over the study period, (2) experienced compositional change over the study period, (3) is compositionally different between landform types, and (4) exhibits compositional change mediated by landform type.

Results: The tree community experienced significant structural change over the course of our study, but compositional change was only significant for some landforms.

Conclusion: Despite large-scale, intense, and frequent hurricane disturbance to our study system, compositional change in the tree community was localized and only significant for some landform types.

Keywords: Hurricane, Forest, Community, Composition, Change, Succession, Landform

Background

Topographic variation (the combination of elevation and orientation) introduces complexity to the spatial variation of a host of factors including light availability (Tateno and Takeda 2003), climate (Bader and Ruijten 2008), soil moisture (Foster 1988; Hunter and Parker 1993), drainage patterns (Nobre et al. 2011), soil depth, nutrient concentrations (Brubaker et al. 1993; Enoki et al. 1997; Schimel et al. 1985; Zak et al. 1991), and total soil nutrient accumulation (Scatena and Lugo 1995). Topographic variation, in association with climactic and geologic factors, creates physiographic patterns that invite typology (Grossman et al. 1999), so many ecological classification methods for considering physiographic patterns relative to biota exist (reviewed by Sims and Uhlig 1992; Klijn and Udo de Haes 1994; Kent et al. 1997; Simensen et al. 2018). The common theme with all ecological classification tools is that they help us identify, manage, and appreciate patterns in the environment.

One commonly used ecological classification tool is categorization of terrestrial habitats by landform type. Landform type is in the “habitat” family of classification tools that focus on ecological classification according to the physical environment (drainage patterns and elevation in this case), which have been shown to be more repeatable than other classification methods (Hearn et al. 2011). Landform type is one of the older ecological classification tools, dating back to at least 1961 (Hills), and is often implemented as best suited to the system being studied. The combined topography/drainage pattern approach to ecological classification is powerful for its broad utility and transferability across...
Differences in forest compositional change (successional trajectories) between landform types have been noted for some time (Host et al. 1987), and it is thought that these patterns in forests are driven primarily by concurrent differences in soil composition and moisture, but also disturbance regime (Barnes et al. 1998; White and Host 2008). Many studies have focused on the interaction between fire disturbance, succession, and landforms (e.g., Chu et al. 2017; Keeton and Franklin 2004), but few have addressed wind effects in the same context (Sinton et al. 2000) and less so in tropical latitudes. Hurricanes are the dominant vector of disturbance for many tropical and sub-tropical forests (Lugo 2008) and manifest as a combination of both wind and rain/flood disturbance, and the effects of hurricanes on successional differences between landform types are therefore poorly understood compared to other vectors of disturbance. Like fire disturbance, hurricane disturbance alters a forest community in both positive and negative ways (Lugo 2008) and the effects of disturbance interact with topography (Scatena and Lugo 1995).

It has been demonstrated that hurricane effects differ between landform types in sub-tropical forests (Bellingham 1991), but whether those effects translate into compositional change, succession, or differences in successional trajectory between landform types has not been assessed. Addressing this gap in our understanding of tropical and sub-tropical forests is important and timely because a change in intensity or frequency of hurricanes as a result of climate change (Emanuel and Sobel 2013) could have a profound influence on the structure, composition, and/or function of these forests. More generally, despite many studies taking a top-down (regional/local) perspective to succession, there is an unmet need for “bottom-up” studies that link physiographic characteristics, such as landforms, to succession (Nave et al. 2017) as a generalized process shared across many ecosystems. In the study presented here, we utilize an older dataset to assess the importance of landform type on compositional change in the tree community of a young sub-tropical forest that is frequently subjected to hurricanes. Specifically, we ask whether the tree community (1) changed structurally over the study period, (2) experienced compositional change over the study period, (3) is compositionally different between landform types, and (4) exhibits compositional change mediated by landform type.

Materials and methods

Study site

The Jardín Botánico and Bosque Estatal del Nuevo Milenio (JB-BN; Fig. 1) are urban moist secondary sub-tropical forest plots that together form part of the Ecological Corridor of San Juan. All plots were located on lands previously used as an agricultural experimentation station affiliated with the University of Puerto Rico and used for a variety of science and conservation-related agricultural activities. When this study started in 1997, the forest was about 60 years old (Despiau Batista 1997), making the forest about 68 years old at the conclusion of our study in 2005 (Lugo et al. 2006).

While our study site is frequently disturbed by hurricanes (Table 1), the intensity and severity of disturbance depends on the trajectory, strength, and orientation of the storm relative to the location of the study forest. Hurricane Georges struck Puerto Rico in 1998 (the year after we initiated this study) as a category three storm and caused widespread damage to infrastructure and agriculture as a result of extreme rainfall (720 mm), winds (185 km/h), and storm surge (3.05 m; Silva-Araya et al. 2018). Our study site was exposed to the strongest quadrat of hurricane Georges as it passed over the Island and hurricane Georges had the strongest visible effects of the nine hurricanes and storms in Table 1. In contrast, our site was exposed to the weakest quadrangle of hurricane Hugo, which had similar strength as Georges, but followed a trajectory north of Puerto Rico.

Storm Jeanne struck the island of Puerto Rico in 2004 (the year before the conclusion of our study) but did not have as strong an effect on the trees of JB-BN as Hurricane Georges did in 1998. Jeanne did produce significant rainfall over the 8 h it took to pass over the Island. The winds of hurricane Georges were four times more powerful than those of Jeanne because wind power is the cube of velocity. Hurricane Debby passed north of Puerto Rico, and its main effects on Puerto Rico were high rainfall with winds being less powerful because they originated on the weakest quadrangle of the hurricane. Hurricane Jose, passing north and east of Puerto Rico, and hurricane Lenny, passing south and east, were less powerful hurricanes, and despite being measurable at the San Juan Airport, their effects on JB-BN were minor.

Field sampling

Data for this study were originally collected as part of a descriptive study of JB-BN tree biodiversity by Despiau Batista (1997). The initial data collection occurred during the months of June and July 1997 and utilized ten random plots of 254 m² for each of four landform types (40 plots total) on the same southwest aspect at an elevation of 15 to 65 m above mean sea level. Plot size was maintained across the study, but two sites were rectangular while the rest were circular (Fig. 1).

Simple landform types (slope, ridge, draw, riverine) were assigned by Despiau Batista (1997) a priori using USGS topographic maps and confirmed via ground-checking drainage patterns. Landform type was not recorded for a few sites, so the study presented here ultimately utilized 33 of the original 40 plots (8 ridge, 9 slope, 8 riverine, and 8 draw; Fig. 1; Appendix 1). Trees with a diameter at breast height (DBH) equal to or greater than 4 cm were recorded and
identified to species (after Molina and Alemañy 1997), tree height was estimated using a clinometer, and trees were marked with aluminum tags for future identification. The plots were surveyed again in 2005 between the months of June and September by Lugo et al. (2005). Tagged trees were re-measured for DBH and height while new trees with DBH > 4 cm were given ID’s and their DBH and height were recorded.

Statistical methods

Structural differences (DBH and height) were compared between landforms (within each study year) using Kruskal-

Table 1 Hurricanes and storms that struck JB-BN during our study (1997–2005) and for the 10 years prior to the study

Year	Hurricane/Storm	Station	Sustained Surface Wind (knots)	Peak surface wind (knots)	Total Rainfall (cm)
1989	Hugo	San Juan (Carolina) Airport	67	80	7.62
1995	Marilyn	San Juan (Carolina) Airport	23	39	6.40
1996	Bertha	San Juan (Carolina) Airport	42	52	3.96
1996	Hortense	San Juan (Carolina) Airport	43	54	24.00
1998	Georges	San Juan (Carolina) Airport	69	81	13.36
1999	Jose	San Juan (Carolina) Airport	20	26	3.30
1999	Lenny	San Juan (Carolina) Airport	29	34	6.38
2000	Debby	Rio de la Plata	Missing	Missing	26.11
2004	Jeanne	San Juan (Carolina) Airport	43	62	15.19
Wallis tests with Steel-Dwass pair-wise contrasts and between years (1997 vs. 2005) using Wilcoxon tests (JMP 13) grouped by landform type. Some trees included in the PERMANOVA and NMDS procedures (below) were missing height measurements in both 1997 (n = 18) and 2005 (n = 11), so these trees were excluded (0.8% of pooled data) (Table 2).

Whole-forest compositional change across years (1997 to 2005) was assessed via permutational multivariate analysis of variance (PERMANOVA; Adonis function, Bray-Curtis distance, Vegan package, R 3.4). The PERMANOVA results for between-landform differences in species diversity

Pairwise PERMANOVA	1997 F	1997 p	2005 F	2005 p		
Draw vs. ridge	2.738	0.164	0.006	2.848	0.169	0.078
Draw vs. riverine	1.241	0.081	1.000	1.771	0.112	0.0594
Draw vs. slope	1.886	0.112	0.246	2.482	0.142	0.0390
Ridge vs. riverine	4.666	0.250	0.006	5.388	0.278	0.006
Ridge vs. slope	1.309	0.080	1.000	1.175	0.073	1.000
Riverine vs. slope	4.196	0.219	0.012	5.019	0.251	0.006

Whole-forest compositional change from 1997 to 2005
A factorial PERMANOVA of the pooled data was not possible due to heterogeneous dispersions between landform types (permutest: $F_3, 62 = 3.6073, p = 0.03$) and unequal samples sizes between groups. A single factor PERMANOVA between years (1997 and 2005) indicated that there was no significant compositional change in the tree community between sampling periods ($F_{1, 65} = 0.3108, R^2 = 0.0048, p = 0.983$).

Compositional differences between landforms in 1997 and 2005
PERMANOVA of both the 1997 and 2005 forest communities (separately) indicated a significant effect due to landform type (1997: $F_3, 29 = 2.617, R^2 = 0.213, p < 0.001$; 2005: $F_3, 29 = 3.003, R^2 = 0.237, p < 0.001$). The NMDS ordinations with landform factor fitting for 1997 (stress = 0.182 in two dimensions, $r^2 = 0.4113, p = 0.001$, Fig. 2a) and 2005 (stress = 0.167, $r^2 = 0.3962, p = 0.001$, Fig. 2b) also indicated a significant difference in biodiversity between landform types in both years. Pairwise PERMANOVA indicated that riverine sites were significantly different than slope and ridge sites in both 1997 and 2005 (Table 2).

Results

Structural change between landform types and years

During 1997, the DBH of trees at riverine sites was significantly greater than those at ridge and slope sites and marginally greater than draw sites (Tables 3 and 4). The DBH of the average tree increased significantly from 1997 to 2005 at ridge and draw sites, increased marginally at riverine sites, and did not increase significantly at slope sites (Tables 3 and 5). During 2005, DBH was still significantly greater at riverine sites compared to other landform types, but DBH at slope sites was lesser than draw and ridge sites (Table 4). Tree height was significantly higher for draw sites than slope or river sites in both 1997 and 2005 (Tables 3 and 4), but the mean tree height decreased significantly across all sites from 1997 to 2005 (Tables 3 and 5). The number of stems declined from 1997 to 2005 for all landform types (20.55% across the whole forest), but the decline in stems was more severe at ridge and slope sites (ridge = 34.47%, slope = 28.08%; Table 3).
biodiversity over the course of the study related to landform type. Procrustes rotation indicated a high degree of concordance between sampling periods ($m^2 = 0.057$, $r = 0.97$, $p = 0.001$). Procrustes residuals differed significantly between landform types (Fig. 3; one-way ANOVA: DF = 3, $F_{3, 29} = 3.258$, $R^2 = 0.252$, $p = 0.036$), and post hoc tests indicated that residuals for riverine sites were significantly lower than for ridge ($p = 0.013$) and draw ($p = 0.011$) sites. Species centroids relative to landform ellipses are given in Appendix 2; species codes are defined in Appendix 3.

Discussion

Over the 8-year period of our study, JB-BN was structurally altered by hurricane disturbances, but the whole-forest composition of the tree community did not change significantly. Whole-forest differences in the tree community over time were not significant, but there were significant differences in the tree community over time attributable to landform type, suggesting differences in succession between landform types. Successional change in forests is classically considered to be a function of soil depth and acute disturbance events (e.g., fire), but succession is a complex phenomenon operating at multiple scales in space-time (Breugel et al. 2019) and can occur without a predictable trajectory (Chazdon et al. 2007), which is how we consider succession here. Also, unlike successions initiated by fires or clearcutting that homogeneously reset the system to early stages, compositional change after a hurricane resets stands to earlier stages depending on the exposure of the landform to prevailing winds and the effects of winds on trees.

Structural change to the forest was detected for both tree height (all sites) and DBH (except at slope sites).

Table 3 Descriptive statistics for forest structure metrics by landform type in 1997 and 2005

Variable	Year	Statistic	Draw	Ridge	Riverine	Slope	Whole forest
DBH (cm)	1997	Mean	11.66	9.81	14.45	10.24	11.06
		SD	10.72	7.47	12.67	8.49	9.57
		n	319	671	335	359	1918
	2005	Mean	11.96	10.69	15.18	10.26	11.70
		SD	9.57	7.74	12.70	9.10	9.80
		n	312	499	317	463	1591
Height (m)	1997	Mean	10.00	8.59	9.70	8.31	8.93
		SD	4.70	3.54	5.45	3.62	4.21
		n	317	669	333	582	1901
	2005	Mean	8.00	7.24	7.42	7.52	7.50
		SD	2.93	2.62	2.79	3.58	3.03
		n	311	499	317	453	1580
Tree abundance	1997	n	319	671	335	593	1918
	2005	n	312	499	317	463	1591
% Change			−2.24	−34.47	−5.68	−28.08	−20.55

Sample size is lower for height because of missing data points.

Table 4 Statistical tests comparing forest structural metrics between landform types

	1997 DBH	2005 DBH	1997 height	2005 height
Kruskal-Wallis	χ^2	p	χ^2	p
Between landforms	26.924	< 0.001	62.538	< 0.001
	36.152	< 0.001	24.458	< 0.001
Steel-Dwass test	Z	p	Z	p
Riverine—slope	4.519	< 0.001	7.419	< 0.001
Riverine—draw	2.553	0.052	2.959	0.016
Riverine—ridge	4.753	< 0.001	4.764	< 0.001
Slope—draw	−1.549	0.008	−4.539	< 0.001
Slope—ridge	0.180	0.098	−3.965	< 0.001
Draw—ridge	1.756	0.395	1.400	0.499

Positive Z-scores indicate the mean of the first group (2005) is larger than the mean of the second group (1997) and vice versa for negative scores.

1DF = 3
Wind power was likely responsible for the reduction in tree height via selective effects on canopy structure (Brokaw and Grear 1991; Uriarte et al. 2019). The increase in tree DBH reflects positive conditions for tree growth after the hurricane due to moisture availability, soil fertility, and light/space availability. Thus, the hurricane disturbances that affected our study site had positive (tree diameter change), negative (reduction in tree height and number of stems), and neutral effects (no overall compositional change) on the forest. It is important to note that while hurricane disturbance has an obvious and negative effect on tree mortality (Uriarte et al. 2019) and societal infrastructure, hurricanes can also have a positive effect on forests by opening canopy gaps (Brokaw 1985), which stimulate growth and productivity, increasing structural complexity (Xi et al. 2019), and redistributing soil nutrients (Gutiérrez del Arroyo and Silver 2018).

At JB-BN, tree community composition changed more at ridge and draw sites than riverine and slope sites. Normally, ridges and slopes have greater species richness than valleys (Scatena and Lugo 1995), which partially explains our results. One might expect that stands with a higher number of species are more likely to experience a change in biodiversity when disturbed compared to stands with fewer species because low diversity stands have species with greater dominance that are less likely to be lost while species in diverse stands are less dominant and have higher probability of not overcoming the disturbance. Also, slope and riverine locations are at lower elevations relative to draw and ridge sites and therefore less exposed to winds, but riverine locations are more likely to experience disturbance from flooding, which slows microbial decomposition and tree growth (Silver et al. 1999).

Differences in community composition between landform types were greatest for ridge and draw sites, but the table below shows the statistical tests comparing forest structural metrics between years:

	DBH (cm) 2005–1997	Height (m) 2005–1997		
Kruskal-Wallis	χ²	p	χ²	p
Between years	14.122	< 0.001	133.283	< 0.001
Steel-Dwass test				
Draw	2.036	0.042	−5.933	< 0.001
Ridge	3.472	< 0.001	−8.028	< 0.001
Riverine	1.915	0.056	−4.419	< 0.001
Slope	0.797	0.425	−5.928	< 0.001

Positive Z-scores indicate the mean of the first group (2005) is larger than the mean of the second group (1997) and vice versa for negative scores

DF = 1

Fig. 2 NMDS ordinations of the forest tree biodiversity in 1997 (a) and 2005 (b) with factor fit of landform type. Riverine sites = triangles, draw sites = circles, slope sites = closed squares, ridge sites = open squares.
reduction in the number of trees between 1997 and 2005 was greatest for ridge and slope sites. There appears to be a difference in mortality between landform types that is poorly aligned with successional change in our study system, an observation that we feel is most likely attributable to the young age (68 years) of the forest we studied. Young forests have lower resistance to successional change than older/mature forests, and so, the successional trajectory and rate of change in young forests (such as ours) may differ from those of similar older forests (such as that studied by Heartsill Scalley et al. 2010).

The compositional change that we measured at JB-BN, as in other studies of succession, are the result of biotic interactions and environmental heterogeneity (Boose et al. 2004; Uriarte et al. 2012; Hogan et al. 2016). Successional dynamics that are not significant at one spatial scale (whole forest) can become significant at smaller spatial scales (landform type) because these scales are ecologically relevant to the disturbance (as in this study and that of Mollot et al. 2008) or biotic interactions. These results, while both informative and intriguing, need to be interpreted with the knowledge that the disturbance regime at JB-BN is shaped by more than just frequent hurricanes. Prior to European colonization, Puerto Rico was 100% forested (Little et al. 1974), but by the late 1940s, only 6% of the island remained forested, and only 1% of the primary forest remained (Lugo 2004; Roberts 1942). The forest at JB-BN is a relatively young forest and may respond differently to hurricane disturbance than an older forest. Likewise, disturbance via humans and hurricanes (Beard et al. 2005; Boose et al. 1994), as well as the effects of competition, is unlikely to be equally distributed across species (Batista and Platt 2003; Zimmerman et al. 1994) or the landscape (Comita et al. 2010).

Conclusion

Collectively, our results suggest a complicated interaction between landform type and hurricane disturbance mediates successional change and ecosystem dynamics/function in JB-BN. Despite large-scale, intense, and frequent disturbance to our study system, compositional change in the tree community was localized and only significant for some landform types. In the context of a change in hurricane intensity or frequency due to global warming, our results suggest that the effects may be differentially spread across forest communities. It is our view that landform classification is most useful for studies that seek to identify generalizable patterns that might also occur in other ecosystem types composed of differing species groups (e.g., succession in a boreal forest vs. a sub-tropical forest vs. a grassland) than to compare related sets of ecosystems composed of similar species groups (e.g., succession in a sub-tropical forest vs. another sub-tropical forest) unless such studies employ strictly defined typology. In our study, we utilize a very basic landform classification scheme that can be scaled and generalized to many habitat types. The generalizable characteristics of the landform typology make it useful for ecological classification efforts based on functional classes (nonphylogenetic groupings; Duckworth et al. 2000), studies of primary succession (e.g., McKenna et al. 2019), and “bottom-up” studies of succession.
Appendix 1

Table 6 Sampling locations by sampling method and landform type

Site ID	Latitude	Longitude	Plot shape	Landform type
2	18° 23'05.20" N	66° 03' 16.10" E	Circular	Ridge
3	18° 23'03.70" N	66° 03' 17.10" W	Circular	Slope
4	18° 23'03.00" N	66° 03' 15.10" W	Circular	Slope
6	18° 23'00.70" N	66° 03' 16.00" W	Circular	Riverine
7	18° 23'00.50" N	66° 03' 13.80" W	Rectangular	Riverine
8	18° 23'04.20" N	66° 03' 13.20" W	Circular	Draw
9	18° 23'02.20" N	66° 03' 13.10" W	Circular	Draw
10	18° 22'57.80" N	66° 03' 12.50" W	Circular	Riverine
11	18° 22'59.90" N	66° 03' 12.20" W	Circular	Slope
13	18° 22'57.20" N	66° 03' 10.30" W	Circular	Slope
14	18° 22'56.10" N	66° 03' 08.90" W	Circular	Slope
15	18° 22'55.60' N	66° 03' 09.10' W	Circular	Slope
16	18° 22'54.50' N	66° 03' 07.30' W	Circular	Slope
17	18° 22'57.60' N	66° 03' 05.60' W	Circular	Slope
18	18° 22'57.60' N	66° 03' 04.50' W	Circular	Slope
19	18° 22'59.40' N	66° 03' 03.70' W	Circular	Ridge
21	18° 22'55.60' N	66° 03' 05.10' W	Circular	Ridge
22	18° 22'59.40' N	66° 03' 02.50' W	Circular	Draw
23	18° 23'00.90' N	66° 03' 01.00' W	Circular	Draw
24	18° 22'58.00' N	66° 02' 59.70' W	Circular	Draw
25	18° 22'56.40' N	66° 03' 00.50' W	Circular	Draw
26	18° 22'57.90' N	66° 03' 03.10' W	Rectangular	Ridge
27	18° 22'55.40' N	66° 03' 03.20' W	Circular	Ridge
28	18° 22'53.60' N	66° 03' 03.50' W	Circular	Riverine
29	18° 22'53.60' N	66° 03' 01.70' W	Circular	Ridge
31	18° 22'52.20' N	66° 03' 00.00' W	Circular	Ridge
32	18° 22'50.70' N	66° 03' 00.30' W	Circular	Riverine
33	18° 22'58.00' N	66° 02' 58.30' W	Circular	Draw
34	18° 22'48.20' N	66° 02' 58.60' W	Circular	Riverine
35	18° 22'47.30' N	66° 02' 57.60' W	Circular	Riverine
36	18° 22'49.90' N	66° 02' 58.40' W	Circular	Ridge
37	18° 22'46.10' N	66° 02' 55.20' W	Circular	Riverine
38	18° 22'47.20' N	66° 02' 54.90' W	Circular	Draw

1. All sites were 254 m² (circular = radius of 9 m; rectangular = sides of 10 m and 25.4 m)
2. Coordinates are approximate for this site
Fig. 4. NMDS ordinations of the forest tree biodiversity in 1997 (A) and 2005 (B) with factor fit of landform type showing species centroids. Riverine sites = triangles, draw sites = circles, slope sites = closed squares, ridge sites = open squares. Species codes are defined in Appendix 3.
Appendix 3

Table 7 Species found in JB-BN with species codes used in the Appendix 1 NMDS ordinations and found in Appendix G of the Forest Inventory and Analysis (FIA) user guide (https://www.fia.fs.fed.us/library/database-documentation/historic/ver6/FIADB_User_Guide_P2_6-1-1_final.pdf). For all species, SPGRPCD = 54 and MAJGRP = 3

Species	NMDS species code	Forest service species code #
Acrocomia media	ACME	6023
Adenanthera pavanina	ADPA	6028
Albizia procera	ALPR	6060
Andira inermis	ANIN	6114
Annona montana	ANMO	6127
Annona muricata	ANMU	6218
Annona reticulata	ANRE	6129
Ardisia obovate	AROB	6164
Areca catechu	ARCA	6167
Artocarpus heterophyllus	ARHE	6173
Schefflera actinophylla	Brac	0888
Byrsonima spicata	BYSP	6313
Callistemon citrinus	CACI	6328
Calophyllum calaba	CACA	
Calyptranthes sintenisii	CASI	6356
Calyptranthes sylvestris	CASY	
Cananga odorata	CAOD	6370
Casearia arborea	CAAR	6403
Casearia decandra	CADE	6406
Casearia guianensis	CAGU	6407
Casearia sylvestris	CASSY	6410
Cassia fistula	CAFI	6415
Cassia javanica	CAJA	6418
Cecropia sceveriana	CESC	
Cecropia schreberiana	CESH	6443
Ceiba pentandra	CEPE	6449
Dypsis lutescens	CHLU	6966
Chrysophyllum argenteum	CHAR	6539
Chrysophyllum caimito	CHCA	6541
Chrysophyllum pauciflorum	CHPA	6543
Citharexylum fruticosum	CIFR	0859
Coccoloba uvifera	COUV	6670
Cocos nucifera	CONU	0908
Cordia sebestens	COSE	
Crescentia cujete	CRCU	6761
Cupania americana	CUAM	6790
Delonix regia	DERE	6883
Erythrina fusca	ERFU	
Eucalyptus robusta	EURO	0514
Syzygium jambos	EUJA	8701
Faramea occidentalis	FAOC	7146
Table 7 Species found in JB-BN with species codes used in the Appendix 1 NMDS ordinations and found in Appendix G of the Forest Inventory and Analysis (FIA) user guide (https://www.fia.fs.fed.us/library/database-documentation/historic/ver6/FIADB_User_Guide_P2_6-1-1_final.pdf). For all species, SPGRPCD = 54 and MAJGRP = 3 (Continued)

Species	NMDS species code	Forest service species code
Ficus benjamina	FIBE	7150
Ficus citrifolia	FICI	0877
Ficus laevigata	FILA	
Ficus lutea	FILU	7158
Genipa americana	GEAM	7235
Grevillea robusta	GRRO	7273
Gualacum officiale	GUOF	7279
Guapira fragrans	GUFR	7285
Guarea guidonia	GUGU	7290
Homalium racemosum	HORA	7422
Hura crepitans	HUCR	7434
Hymenaea courbaril	HYCO	7442
Inga fagifolia	INFA	
Inga fastuosa	INGFA	
Inga laurina	INLA	7470
Inga vera	INVE	7474
Lagerstroemia speciosa	LASP	7533
Mammeea americana	MAAM	7652
Mangifera indica	MAIN	0885
Manilkara bidentata	MABI	7662
Melaleuca quinquemervia	MEQU	0992
Melicoccus bijugatus	MEBI	7717
Miconia tetandra	MITE	7822
Thespesia grandiflora	MOSP	8786
Muntingia calabura	MUCL	7867
Myrcia deflexa	MYDE	7887
Myrcia splendidens	MYSP	7891
Ocotea leucosylon	OCLE	7994
Peltophorarum pterocarpum	PEPT	8121
Persea americana	PEAM	7211
Petitia domingensis	PEDO	8141
Phoebe elongata	PHEL	
Pilocarpus racemosus	PIEI	8171
Pimenta racemosa	PIRA	8177
Psidium guajava	PSGU	8356
Pterocarpus indicus	PTIN	8407
Quaranibea turbinata	QUTU	8422
Roystonea barinquena	ROBO	8489
Schefflera morototoni	SCMO	8558
Schoepfia schreberi	Shsc	8573
Spathodea campanulata	SPCA	8644
Spondias mombin	SPMO	8650
Swietenia macrophylla	SWMA	8679
Table 7 Species found in JB-BN with species codes used in the Appendix 1 NMDS ordinations and found in Appendix G of the Forest Inventory and Analysis (FIA) user guide (https://www.fia.fs.fed.us/library/database-documentation/historic/ver6/ForRB_User_Guide_P2_6-1-1_final.pdf). For all species, SPGRPCD = 54 and MAJGRP = 3 (Continued)

Species	NMDS species code	Forest service species code
Swietenia macrophylla × mahagoni	SWMAMA	
Swietenia mahagoni	SWMA	O940
Syzygium malaccense	SYMA	
Tabebuia aurea	TAAU	
Tabebuia glomerata	TAGL	
Tabebuia heterophylla	TAHE	8713
Tabebuia rosea	TARO	8716
Hibiscus tilicace	Tati	7412
Tamarindus indica	TAIN	O897
Tectona grandis	TEGR	8744
Terminalia catappa	TECA	8750
Vitex divaricate	VIDI	8873
Zanthoxylum martinicense	ZAMA	8931

Abbreviations
DBH: Diameter at breast height; JB-BN: Jardín Botánico and Bosque Estatal del Nuevo Milenio Study Site; NMDS: Non-metric multi-dimensional scaling; PERMANOVA: Permutational analysis of variance.

Acknowledgements
We are grateful for helpful comments on the project from Michael Grove and Courtney Richmond. Ivan Vicéns and Luis Omar Ortiz López collected 2005 field data, and 1997 data are from Despiau Batista (1997). Olga Ramos assisted with the production of our study map.

Authors’ contributions
RLS contributed to the statistical analysis and writing of the manuscript. AEL contributed to the sampling plan, data collection, and writing of the manuscript. NR contributed to the analysis plan, statistical analysis, and writing of the manuscript, and is the corresponding author. The author(s) read and approved the final manuscript.

Funding
This research was conducted in cooperation with the University of Puerto Rico.

Availability of data and materials
Data will be deposited with Dryad upon acceptance of the manuscript for publication.

Ethics approval and consent to participate
This work was conducted in accordance with all applicable laws.

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Biological Science, Rowan University, Glassboro, NJ 08028, USA. 2International Institute of Tropical Forestry, United States Department of Agriculture Forest Service, Jardín Botánico Sur, Río Piedras, PR, USA.

Received: 20 December 2019 Accepted: 4 March 2020
Published online: 30 May 2020

References
Anderson M, Walsh DCI (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr 83(4):557–574
Arbizu PM (2019) pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.3. https://github.com/pmartinezarbizu/pairwiseAdonis . Accessed 7 June 2019.
Bader MY, Ruijten JJA (2008) A topography-based model of forest cover at the alpine tree line in the tropical Andes. J Biogeogr 35(4):711–723
Bames BV, Pregitzer KS, Spies TA, Spooner VH (1982) Ecological forest site classification. J Forestry 80(8):493–498
Bames BV, Zak DR, Denton SR and Spurr SH. (1998) Forest ecology. 4th Edition, John Wiley & Sons, Inc., New York.
Batista WB, Platt WJ (2003) Tree population responses to hurricane disturbance: syndromes in a South-Eastern USA old-growth forest. J Ecol 91(2):197–212
Beard KH, Vogt KA, Vogt DJ, Scatena FN, Covich AP, Sigurdardottir R, Siccama TG, Crowl TA (2005) Structural and functional responses of a subtropical forest to 10 years of hurricanes and droughts. Ecol Monogr 75(3):345–361
Bellingham PJ (1991) Landforms influence patterns of hurricane damage: evidence from Jamaican montane forests. Biotropica 23(4a):427–433
Boose ER, Foster DR, Fluet M (1994) Hurricane impacts to tropical and temperate forest landscapes. Ecol Monogr 64(4):369–400
Boose ER, Serrano MJ, Foster DR (2004) Landscape and regional impacts of hurricanes in Puerto Rico. Ecol Monogr 74(2):335–352
Breugel MV, Craven D, Lai HR, Ballon M, Turner BL, Hall JS (2019) Soil nutrients and dispersal limitation shape compositional variation in secondary tropical forests across multiple scales. J Ecol 107(2):566–581
Brokaw NVL (1985) Gap-phase regeneration in a tropical forest. Ecology 66(3):682–687
Brokaw NVL, Grear JS (1991) Forest structure before and after Hurricane Hugo at three elevations in the Luquillo Mountains, Puerto Rico. Biotropica 23(4):386–392
Brubaker SC, Jones AJ, Lewis DT, Frank K (1993) Soil properties associated with landscape positions and management. Soil Sci Soc Am J 57(1):235–239
Chazdon RL, Letcher SG, Breugel MV, Martínez-Ramos M, Bongers F, Finegan B (2007) Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philos Trans R Soc B Biol Sci 362(1478):273–289
