High quality draft genomic sequence of Arenimonas donghaensis DSM 18148T

Fang Chen, Hui Wang, Yajing Cao, Xiangyang Li and Gejiao Wang

Abstract

Arenimonas donghaensis is the type species of genus Arenimonas which belongs to family Xanthomonadaceae within Gammaproteobacteria. In this study, a total of five type strains of Arenimonas were sequenced. The draft genomic information of A. donghaensis DSM 18148T is described and compared with other four genomes of Arenimonas. The genome size of A. donghaensis DSM 18148T is 2,977,056 bp distributed in 51 contigs, containing 2685 protein-coding genes and 49 RNA genes.

Keywords: Arenimonas, Arenimonas donghaensis, Comparative genomics, Genome sequence, Xanthomonadaceae

Introduction

Arenimonas donghaensis DSM 18148T (= H03-R19T = KACC 11381T) was isolated from seashore sand [1] which belongs to family Xanthomonadaceae. So far, the genus Arenimonas contained seven species, Arenimonas donghaensis (type species) [1], Arenimonas malthae [2], Arenimonas oryziterrae [3], Arenimonas composti [3], Arenimonas metalli [4], Arenimonas daejeonensis [5] and Arenimonas daechungensis [6]. These bacteria were isolated from seashore sand [1], oil-contaminated soil [2], rice rhizosphere [3], compost [3], iron mine [4], compost [5] and sediment of a eutrophic reservoir [6], respectively. The species A. composti [3] was previously classified as Aspromonas composti [7].

The common characteristics of the Arenimonas strains are Gram-staining-negative, aerobic, rod-shaped, non-spore-forming, oxidase-positive, non-indole-producing, non-nitrate-reducing, containing iso-C16:0 and iso-C15:0 as the major fatty acids, phosphatidylglycerol and phosphatidylethanolamine as the major polar lipids, Q-8 as the major respiratory quinone, and possessing relatively high DNA G + C content (63.9–70.8 mol %) [1–7].

In order to provide genome information and determine genomic differences of Arenimonas species, we performed genome sequencing of strains A. donghaensis DSM 18148T, A. composti KCTC 12666T, A. malthae CCUG 53596T, A. metalli CF5-1T and A. oryziterrae KCTC 22247T. In this study, we report the genomic features of A. donghaensis DSM 18148T and compare it to the close relatives.

Organism information

Classification and features

Strain A. donghaensis DSM 18148T shares 93.1–95.7 % 16S rRNA gene identities with the other six type strains of Arenimonas species. A. malthae CC-1Y-1T (DQ239766) (95.7 %), A. daejeonensis T7-07T (AM229325) (95.7 %), A. metalli CF5-1T (HQ698842) (94.6 %), A. oryziterrae YC6267T (EU376961) (94.3 %), A. composti TR7-09T (AM229324) (94.3 %) and A. daechungensis CH15-1T (JN033774) (93.1 %). A 16S rRNA gene based neighboring phylogenetic tree of the related strains was obtained using MEGA 5.05 software [8] (Fig. 1).

Cells of A. donghaensis DSM 18148T are Gram-negative, aerobic, non-spore-forming, straight or slightly curved rods, motile by means of a single polar flagellum. Colonies are yellowish white, translucent and convex on R2A agar after 3 d cultivation (Fig. 2). API ID 32 GN and Biolog GN2 MicroPlate systems (bioMe’rieux) were used to investigate sole carbon source utilization, and β-hydroxybutyric acid, L-alaninamide, L-glutamic acid and glycyll-L-glutamic acid could be utilized by strain DSM 18148T (Table 1).

The major fatty acids of A. donghaensis DSM 18148T are iso-branched types, such as iso-C16:0, iso-C15:0 and iso-C17:03OH [1]. Major isoprenoid quinone of this
The bacterium is Q-8 [1]. Diphosphatidylglycerol (DPG), PG and PE are the major polar lipids of this strain [1].

Genome sequencing information

Genome project history

Genome sequencing project of *A. donghaensis* DSM 18148T was carried out in April, 2013 and was finished in two months. The obtained high-quality draft genome of *A. donghaensis* DSM 18148T has been deposited at DDBJ/EMBL/GenBank under accession number AVCJ00000000. The version described in this study is the first version, AVCJ01000000. The genome sequencing project information is summarized in Table 2.

Growth conditions and genomic DNA preparation

A. donghaensis DSM 18148T was cultivated aerobically in LB medium at 28 °C for 3 d. The DNA was extracted, concentrated and purified using the QiAamp kit according to the manufacturer’s instruction (Qiagen, Germany).
Genome sequencing and assembly

The whole-genome sequence of *A. donghaensis* DSM 18148\(^T\) was determined using the Illumina Hiseq2000 [9] with the Paired-End library strategy (300 bp insert size) at Shanghai Majorbio Bio-pharm Technology Co., Ltd. [10] (Shanghai, China). A total of 9,571,421 reads with an average read length of 93 bp (885.9 Mb data) was obtained. The detailed methods of library construction and sequencing can be found at Illumina’s official website [9]. Using SOAPdenovo v1.05 [11], these reads were assembled into 51 contigs (>200 bp) with a genome size of 2,977,056 bp and an average coverage of 332.4 x.

Genome annotation

The draft sequence of strain *A. donghaensis* DSM 18148\(^T\) was submitted to NCBI Prokaryotic Genome Annotation Pipeline [12] for annotation according to

Table 1: Classification and general features of *A. donghaensis* strain DSM 18148\(^T\) according to the MIGS recommendations [21]

MIGS ID	Property	Term	Evidence code
	Classification	Domain Bacteria	TAS [22]
		Phylum Proteobacteria	TAS [23]
		Class Gammaproteobacteria	TAS [24, 25]
		Order Xanthomonadales	TAS [24, 26]
		Family Xanthomonadaceae	TAS [24, 26]
		Genus Arenimonas	TAS [1]
		Species Arenimonas donghaensis	TAS [1]
		Type strain: HO3-R19\(^T\) (= KACC 11381\(^T\) = DSM 18148\(^T\))	
	Gram stain	negative	TAS [1]
	Cell shape	straight or slightly curved rod	TAS [1]
	Motility	motile	TAS [1]
	Sporulation	non-spore-forming	TAS [1]
	Temperature range	4–37 °C	TAS [1]
	Optimum temperature	28 °C	TAS [1]
	pH range; Optimum	7.0–9.0; 8.0	TAS [1]
	Carbon source	casein, tyrosine and gelatin; β-hydroxybutyric acid, L-alaninamide, L-glutamic acid and glycyll-L-glutamic acid	IDA
	GS-6	Habitat seashore sand	TAS [1]
	MIGS-6.3	Salinity 0–3 % NaCl (w/v)	TAS [1]
	MIGS-22	Oxygen requirement aerobic	TAS [1]
	MIGS-15	Biotic relationship free-living	NAS
	MIGS-14	Pathogenicity non-pathogen	NAS
	MIGS-4	Geographic location Pohang city, Korea	TAS [1]
	MIGS-5	Sample collection not reported	
	MIGS-4.1	Latitude not reported	
	MIGS-4.2	Longitude not reported	
	MIGS-4.4	Altitude not reported	

Evidence codes – IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [27].

Table 2: Project information

MIGS ID	Property	Term
	Finishing quality	High-quality draft
MIGS-28	Libraries used	Illumina Paired-End library (300 bp insert size)
MIGS-29	Sequencing platforms	Illumina Hiseq2000
MIGS-31.2	Fold coverage	332.4x
MIGS-30	Assemblers	SOAPdenovo v1.05
MIGS-32	Gene calling method	GeneMarkS+
	Locus Tag	N788
	GenBank ID	AVCJ000000000
	GenBank Date of Release	2014/08/25
	GOLD ID	GI0067066
MIGS-13	BIOPROJECT	PRNA214575
	Source Material Identifier	DSM 18148
	Project relevance	Genome comparison

The draft sequence of strain *A. donghaensis* DSM 18148\(^T\) was submitted to NCBI Prokaryotic Genome Annotation Pipeline [12] for annotation according to
the draft WGS annotation guideline at this website. This annotation pipeline combines the GeneMarkS+ algorithm with the similarity-based gene detection approach to calling gene. The function of the predicted genes from the automatic result was manually modified through BlastX analysis against the NCBI protein database with E-value cutoff 1×10^{-20}.

Genome properties

The whole genome of *A. donghaensis* DSM 18148T is 2,977,056 bp in length, with a G+C content of 68.7% (Fig. 3 and Table 3), and distributed in 51 contigs (>200 bp). Of the 2735 predicted genes, 2685 (98.17%) are protein-coding genes, 49 (1.79%) are RNA genes and 1 (0.04%) are pseudogenes. A total of 472 (17.26%) CDSs
were assigned with putative functions, while the remaining ones were annotated as hypothetical proteins. The result of protein function classification is shown in Table 4, which was performed by searching all the predicted coding sequences of strain DSM 18148^T against the Clusters of Orthologous Groups protein database [13] using BlastP algorithm with E-value cutoff 1×10^{-10}. A more detailed summary of the genome properties about this strain is provided in Table 3.

Insights from the genome sequences

Strain *A. donghaensis* DSM 18148^T can only use several sole carbon sources and cannot assimilate glucose and other sugars [1]. Genome analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) [14] orthology and pathway assignment analysis revealed this strain has a complete TCA cycle, but lacks the hexokinase which catalyzes the first step of glycolysis, as well as the glucose-6-phosphate dehydrogenase, gluconolactonase and 6-phosphogluconate dehydrogenase that responsible for the oxidative phase of pentose phosphate pathway. This is in agreement with the experimental result that this bacterium can only use several sole carbon sources.

The general features of the five *Arenimonas* sequenced genomes are summarized in Table 5. Orthologs clustering analysis was performed using OrthoMCL [15] with Match cutoff of 50 % and E-value Exponent cutoff of 1×10^{-5} for the five *Arenimonas* genomes. These five *Arenimonas* bacteria share 1014 genes, which are classified into 21 COG functional categories. The major categories are energy production and conversion (8.7 %), amino acid transport and metabolism (8.7 %), coenzyme transport and metabolism (5.8 %), lipid transport and metabolism (5.1 %), translation, ribosomal structure and biogenesis (12.4 %), replication, recombination and repair (5.2 %), cell wall/membrane/envelope biogenesis (5.9 %), posttranslational modification, protein turnover, chaperones (6.3 %), general function prediction only (8.4 %), function unknown (7.3 %) and signal transduction mechanisms (5.3 %) (Fig. 4 and Table 6).

There are 601 strain-specific genes for *A. donghaensis* DSM 18148^T which may contribute to species-specific features of this bacterium. Among them, 359 are classified into 20 COG functional categories major belonging to transcription (63.6 %), general function prediction only (8.5 %), function unknown (7.3 %) and signal transduction mechanisms (9.0 %). The remaining 242

Table 3 Genome statistics
Attribute
Genome size (bp)
DNA coding (bp)
DNA G + C (bp)
DNA scaffolds
Total genes
Protein coding genes
RNA genes
Pseudo genes
Genes in internal clusters
Genes with function prediction
Genes assigned to COGs
Genes with Pfam domains
Genes with signal peptides
Genes with transmembrane helices
CRISPR repeats

Table 4 Number of genes associated with general COG functional categories
Code

J
K
L
B
D
T
M
N
U
O
C
G
E
F
H
I
P
Q
R
S
-

The total is based on the total number of protein coding genes in the genome.

Chen et al. Standards in Genomic Sciences (2015) 10:59 Page 5 of 8
unique genes (40.3%) are not classified into any COG categories (Fig. 4 and Table 7). In addition, the five Arenimonas strains had a pan-genome [16] size of 7501 genes. The nucleotide diversity (\(\pi\)) was calculated using MAUVE v2.3 [17] and DnaSP v5 [18]. The five genomes of Arenimonas species had a nucleotide diversity (\(\pi\)) value of 0.18, which means an approximate genus-wide nucleotide sequence homology of 82%.

The clustered regularly interspaced short palindromic repeats (CRISPRs) mediate resistance to foreign genetic material and thus inhibit horizontal gene transfer [19]. Screening the CRISPRs system in the five Arenimonas genomes using CRISPRfinder program online [20] found that only one CRISPR system (on contig 41) exist in genome of A. composti KCTC 12666\(^T\). This CRISPR length is 5331 bp, with 29 bp direct repeat (DR) sequences be separated by 87 spacers.

Fifteen available genome sequences of the family Xanthomonadaceae were chosen for genomic based phylogenetic analysis, including the five Arenimonas genomes that were sequenced by us. In total, 1014 core protein sequences were extracted using the cluster algorithm tool OrthoMCL with default parameters [15].

Table 5 General features of the five Arenimonas genomes

Strains	Source	Size (Mb)	CDSs	rRNA clusters	tRNAs	Draft/finished	Genome status	GenBank no.
A. composti KCTC 12666\(^T\)	Compost	3.16	2849	3	45	Draft	95	81,415 AWXU00000000
A. donghaensis DSM 18148\(^T\)	Seashore sand	2.98	2685	4	45	Draft	51	159,562 AVCI00000000
A. malthae CCUG 53596\(^T\)	Oil-contaminated soil	3.11	2861	5	44	Draft	221	29,626 AVCH00000000
A. metalli CF5-1\(^T\)	Iron mine	3.06	2775	2	44	Draft	65	99,300 AVCK00000000
A. oryziterrae KCTC 22247\(^T\)	Rice rhizosphere	3.09	2897	3	45	Draft	45	441,364 AVCI00000000

Fig. 4 Genome comparison among the five Arenimonas species. Venn diagram illustrates the number of genes unique or shared among the five Arenimonas genomes.

Table 6 Number of genes in the core genome of the five analyzed Arenimonas genomes associated with general COG functional categories

Code	Value	% age	Description
A	1	0.10	RNA processing and modification
C	88	8.68	Energy production and conversion
D	16	1.58	Cell cycle control, cell division, chromosome partitioning
E	88	8.68	Amino acid transport and metabolism
F	42	4.14	Nucleotide transport and metabolism
G	20	1.97	Carbohydrate transport and metabolism
H	59	5.82	Coenzyme transport and metabolism
I	52	5.13	Lipid transport and metabolism
J	126	12.43	Translation, ribosomal structure and biogenesis
K	44	4.34	Transcription
L	53	5.23	Replication, recombination and repair
M	60	5.92	Cell wall/membrane/envelope biogenesis
N	12	1.18	Cell motility
O	64	6.31	Posttranslational modification, protein turnover, chaperones
P	32	3.16	Inorganic ion transport and metabolism
Q	22	2.17	Secondary metabolites biosynthesis, transport and catabolism
R	85	8.38	General function prediction only
S	74	7.30	Function unknown
T	54	5.33	Signal transduction mechanisms
U	27	2.66	Intracellular trafficking, secretion, and vesicular transport
V	11	1.08	Defense mechanisms
-	0	0.00	Not in COGs

The total is based on the total number of protein coding genes in the core genome.
Table 7 Number of strain-specific genes of *A. donghaensis* DSM 18148T associated with general COG functional categories

Code	Value	% age	Description
C	15	2.50	Energy production and conversion
D	3	0.50	Cell cycle control, cell division, chromosome partitioning
E	17	2.83	Amino acid transport and metabolism
F	3	0.50	Nucleotide transport and metabolism
G	6	1.00	Carbohydrate transport and metabolism
H	15	2.50	Coenzyme transport and metabolism
I	9	1.50	Lipid transport and metabolism
J	7	1.16	Translation, ribosomal structure and biogenesis
K	38	6.32	Transcription
L	11	1.83	Replication, recombination and repair
M	25	4.16	Cell wall/membrane/envelope biogenesis
N	4	0.67	Cell motility
O	10	1.66	Posttranslational modification, protein turnover, chaperones
P	18	3.00	Inorganic ion transport and metabolism
Q	6	1.00	Secondary metabolites biosynthesis, transport and catabolism
R	51	8.49	General function prediction only
S	44	7.32	Function unknown
T	54	8.99	Signal transduction mechanisms
U	7	1.16	Intracellular trafficking, secretion, and vesicular transport
V	16	2.66	Defense mechanisms
-	242	40.27	Not in COGs

The total is based on the total number of strain-specific genes of *A. donghaensis* DSM 18148T.

Fig. 5 A phylogenetic tree highlighting the phylogenetic position of *A. donghaensis* DSM 18148T. The conserved protein was analyzed by OrthoMCL with Match Cutoff 50 % and E-value Exponent Cutoff 1-e^-5 [15]. The phylogenetic tree was constructed based on the 1014 single-copy conserved proteins shared among the fifteen genomes. The phylogenies were inferred by MEGA 5.05 with NJ algorithm [8], and 1000 bootstrap repetitions were computed to estimate the reliability of the tree. The genome accession numbers of the strains are shown in parentheses.
The neighbor-joining (NJ) phylogenetic tree showed that the five Arenimonas species clustered into the same branch (Fig. 5), which is in accordance with the 16S rRNA gene-based phylogeny (Fig. 1).

Similar to A. donghaensis DSM 18148T, the TCA cycle is complete and hexokinase is absent in all the five Arenimonas strains. The proteins responsible for the oxidative phase of pentose phosphate pathway are also incomplete in five Arenimonas strains, this may be part of the reasons that the five Arenimonas strains can only use several single carbon sources.

Conclusions
To the best of our knowledge, this report provides the first genomic information of the genus Arenimonas. The genomic based phylogeny is in agreement with the 16S rRNA gene based one indicating the usefulness of genomic information for bacterial taxonomic classification. Analysis of the genome shows certain correlation between the genotypes and the phenotypes especially on utilization of sole carbon sources.

Abbreviations
KACC: Korean Agricultural Culture Collection; DSMZ: German Collection of Microorganisms and Cell Cultures; DPG: Diphosphatidylglycerol; PG: Phosphatidylglycerol; PE: Phosphatidylethanolamine.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
FC performed the genomic analysis and wrote the draft manuscript. HW and YC performed the comparative genomic analysis. XL helped the bioinformatics analysis. GW organized the study and revised the manuscript. All authors read and approved the manuscript.

Acknowledgments
This work was supported by the National Natural Science Foundation of China (31470226).

Received: 22 September 2014 Accepted: 5 August 2015
Published online: 26 August 2015

References
1. Kwon SW, Kim BY, Weon HY, Baek YK, Go SJ. Arenimonas donghaensis gen. nov., sp. nov., isolated from seashore sand. Int J Syst Evol Microbiol. 2007;57:954–8.
2. Young CC, Kämpfer P, Ho MJ, Busse HJ, Huber BE, Arun AB, et al. Arenimonas malthae sp. nov., a gammaproteobacterium isolated from an oil-contaminated site. Int J Syst Evol Microbiol. 2007;57:2790–3.
3. Aslam Z, Park JH, Kim SW, Jeon CO, Chung YR. Arenimonas oxyteneae sp. nov., isolated from a field of rice (Oryza sativa L.) managed under a no-tillage regime, and reclassification of Asprononas composti as Arenimonas composti comb. nov. Int J Syst Evol Microbiol. 2009;59:2967–72.
4. Chen F, Shi Z, Wang G. Arenimonas metalli sp. nov., isolated from an iron mine. Int J Syst Evol Microbiol. 2012;62:1744–9.
5. Jin L, Kim KK, An KG, Oh HM, Lee ST. Arenimonas daejeonisii sp. nov., isolated from compost. Int J Syst Evol Microbiol. 2012;62:1674–8.
6. Huy H, Jin L, Lee YK, Lee KC, Lee JS, Yoon JH, et al. Arenimonas daejeongensis sp. nov., isolated from the sediment of a eutrophic reservoir. Int J Syst Evol Microbiol. 2013;63:484–9.
7. Jin L, Kim KK, Im WT, Yang HC, Lee ST. Asprononas composti gen. nov., sp. nov., a novel member of the family Xanthomonadaceae. Int J Syst Evol Microbiol. 2007;57:1876–80.
8. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGAS: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.
9. Illumina. [http://www.illumina.com.cn/]