Background
The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is an essential regulator of viral replication and a critical determinant of the HTLV-induced diseases. These include the aggressive and fatal malignancy of CD4+ T-lymphocytes termed adult T-cell leukemia (ATL) [1-3]. Several lines of evidence indicate that p40\text{tax} is the oncogene responsible for viral lymphocyte-transforming and leukemogenic properties [4-7]. Mechanistically, several biochemical features of the protein can cooperate to...
transform, among them transcriptional stimulation of cellular signal transducers, cytokines [8-11] and anti-apoptotic effectors. ‘Tax’ capacity to stimulate aneuploidy and to interfere with DNA repair [12] could indirectly support malignant progression. A major mechanistic explanation for the mitogenic and immortalizing effects of the Tax oncoprotein is provided by its ability to stimulate the G1-to S-phase transition in T-cells [6,13-15].

In mammalian cells, G1-progression is controlled by the sequential activation of several cyclin-dependent kinases (CDKs), starting with CDK4, CDK6 and CDK2. Tax activates CDK4, CDK6 and CDK2 leading to phosphorylation of retinoblastoma (Rb) tumor suppressor proteins and liberation of the transcription factor E2F [6,16]. Moreover, Tax may also induce Rb degradation [17] and increases cellular E2F synthesis [18,19]. Several indirect effects of Tax and features of HTLV-infected cells may support the impact of Tax on CDK. For example, HTLV-1-infected T-cells contain increased levels of cyclin D2 [16,20,21], which upon binding to CDK4 forms functional holoenzyme complexes. Cyclin D2 expression is upregulated by interleukin-2 receptor (IL2-R) signals [22-24]. Tax may cooperate with interleukin-2 (IL-2) signaling either indirectly through stimulating the expression of IL-2Rα or directly by activating the cyclin D2 promoter [21,25]. Furthermore, expression of CDK inhibitory proteins, like p18INK4C [20], p19INK4D and p27Kip1 [16,26] is reduced in the presence of Tax. By contrast, the inhibitory protein p21CIP1 is strongly upregulated in Tax-containing cells [20,27]. Tax also represses the function of distinct tumor suppressor proteins which interfere with G1- to S-phase transition. These include p16INK4A, p15INK4B [26,28,29] and p53 [30-35].

The protein-protein contact with the components of the cyclin D/CDK complexes provides a major explanation for the G1-phase stimulating effects of Tax. The Tax interaction with the CDK and cyclin component is direct and specific. This interaction is detectable in vitro, in transfected fibroblasts, HTLV-1-infected T-cells, and ATL-derived cultures [36,37]. The Tax-CDK complex represents an active holoenzyme. Direct association with Tax enhances CDK4 activity. This increased kinase activity in the presence of Tax may be explained by intensified association of CDK4 and its positive cyclin regulatory subunit and by resistance of the complex to inhibition by p21CIP1 [36,37].

To understand the molecular mechanism of the Tax-mediated CDK4 activation, the interacting domains of Tax and CDK4 were characterized. Here we show that a segment of 40 amino acids derived from the N-terminus of Tax is sufficient to bind CDK4 and cyclin D2. To define a Tax-binding domain, a series of CDK4 deletion mutants was tested in different assays. These point at two regions derived from the N- and C-terminus of CDK4 which upon deletion consistently result in reduced binding capacity. The potential of these isolated regions to interact with Tax was demonstrated by mammalian two-hybrid analysis. These experiments concurrently revealed Tax-binding at the N- and C-terminus of CDK4.

Results and discussion
Capacity of the isolated N-terminus of Tax to bind cyclin D2- and CDK4
N-terminal Tax mutants bind neither CDK4 nor cyclin D2 and are incapable to stimulate CDK holoenzyme activity. This indicates that the region is required for binding and activation. To investigate whether this segment is also sufficient for binding to cyclin D2 and CDK4, the coding sequence of the N-terminal fragment (codons 1–40) was cloned into the prokaryotic expression vector PET29b+ (Figure 1A). The corresponding protein (TaxM1-R40) and Taxwt were produced in E. coli and coupled to S-protein agarose (Figure 1B). To demonstrate direct interaction, in vitro binding assays were performed. For this purpose, 35S-labeled cyclin D2, CDK4 and, as a control, cyclin E were synthesized in vitro. All in vitro translation reactions resulted in major bands of the expected size in equal amounts (Figure 1C Input). Cyclin E was produced in two previously observed isoforms [38]. Bands of minor intensity are most probably due to incorrect in vitro translation products and were ignored for quantitation. For binding analysis aliquots of the agarose-coupled TaxM1-R40 and Taxwt (Figure 1B) were incubated with the in vitro-translated proteins. As Figure 1C (Precipitation) shows, incubation with TaxM1-R40 and Taxwt resulted in significant amounts of cyclin D2 and CDK4. By contrast, both of the cyclin E isoforms were significantly less precipitated. Three independent experiments were quantitated. They revealed a 3.5 – 5 fold increased protein binding of TaxM1-R40 to CDK4 and cyclin D2 compared to the cyclin E control (Figure 1D). The binding to CDK4 of the N-terminal peptide compared with full length Tax was slightly reduced. This may indicate structure differences rather than the contribution of other Tax regions in CDK4 binding. The interaction of the N-terminal Tax fragment with cyclin D2 could be reproduced with natural folded proteins in pull down experiments (Figure 1E). Cyclin D2- and cyclin E-containing lysates derived from transfected 293T cells were incubated with bacterially expressed TaxM1-R40 and Taxwt, immobilized on S-agarose (Figure 1B). Subsequent analysis of bound proteins by immunoblots revealed that the N-terminal Tax peptide interacted with cyclin D2 but not with cyclin E. In summary, these results demonstrate that a N-terminal peptide of Tax, spanning amino acids 1 – 40, is sufficient for direct and specific interaction with both, cyclin D2 and CDK4. These results are in agreement with the capacity of the 40 N-ter-
Figure 1

Binding of the isolated Tax N-terminus to CDK4 and cyclin D2. A) Physical map of Tax's functional domains and the position of the N-terminal peptide. B) Tax\textsubscript{wt} and Tax\textsubscript{M1-R40} were produced in E. coli and coupled to S-protein agarose. The figure depicts a coomassie brilliant blue-stained SDS-PAA gel loaded with the purified protein coupled to S-protein agarose and samples before and after induction with IPTG. C) CDK4, cyclin D2 and cyclin E were translated \textit{in vitro} and incubated with S-agarose coupled, E.coli-produced Tax\textsubscript{wt} and Tax\textsubscript{M1-R40}. Bound proteins were detected in gels by phosphoimaging (precipitation). To control for equal insert, aliquots of the radioactive proteins were subjected to gel electrophoresis (input). D) The radioactive signals of bound proteins of two independent experiments were quantitatively evaluated. The figure depicts the mean relative binding. E) For \textit{in vivo} pull-down analysis, cyclin D2 and cyclin E plasmids were transfected into 293T cells. Lysates were incubated with S-agarose coupled to Tax\textsubscript{wt} or the N-terminal peptide (Tax\textsubscript{M1-R40}). Bound proteins and aliquots of the lysates were subjected to gel electrophoresis and immunoblotting, using polyclonal cyclin D2 and cyclin E antibodies.
minal amino acids of Tax to bind CDK4 in a yeast two-hybrid system and in pull down analyses [39]. In extension, we demonstrated that the interaction with naturally folded CDK4 protein produced in human cells. The binding of both, CDK4 and cyclin D2, by this Tax domain could cause a spatially close positioning of these proteins and thus stimulate CDK4 – cyclin D2 holoenzyme formation. This could be part of the mechanistic explanation for the enhancement of CDK4 kinase activity induced by a synthetic N-terminal Tax peptide [39]. Furthermore, this may explain the increased affinity of cyclin to CDK in the presence of Tax [36]. In addition, Tax could influence kinase activity through mediating cyclin phosphorylation by its direct contact [14]. This phosphorylation appears in cyclins which are actively complexed to cognate CDKs [40,41] and may impair cyclin degradation via the ubiquitin proteasome pathway [42].

Relevance of N- and C-terminal CDK4 regions for Tax-binding in vitro

In order to understand whether domains, which are relevant for regulating CDK4 activity, are affected by Tax, Tax-binding CDK4 sequences were defined. For this purpose, a series of deletion mutants was generated which cover the complete coding region of CDK4 (Figure 2A). To identify CDK4 sequences, which are relevant for Tax-binding in the absence of other cellular components, in vitro binding assays were performed. Aliquots of the S-protein agarose matrix coupled Taxα (Figure 1B) were incubated with the in vitro-translated, 35S-labeled CDK4 mutants. Subsequently, Tax-bound CDK4 mutants were collected (Figure 2B Pull down). Equal inset of the in vitro-translated proteins was verified (Figure 2B Input). As a background control, uncoupled S-protein agarose was incubated with the in vitro-translated proteins. The immobilized proteins were subjected to gel electrophoresis and quantitated by measuring the radioactivity of the specific bands. To determine relative Tax-binding, the ratio between the specific signal and the background was calculated. The results of three independent experiments (Figure 2C) show reduced relative binding compared to wild-type of three CDK4 deletion mutants in two regions. Two of them, CDK4ΔM1-F31 and CDK4ΔH30-V72, affected a N-terminal region. In addition, a C-terminal mutant CDK4ΔL272-E303 did interact at reduced levels with Tax. Thus, the N-terminal region from amino acids 1–72 and the C-terminal region from amino acids 272–303 of the CDK4 protein directly interact with Tax. Alternatively, the deletion of these regions may reduce the protein’s affinity to Tax by affecting its conformation.

Relevance of the N-terminal CDK4 domain for binding in vivo

In order to characterize CDK4 sequences relevant for in vivo interaction, Tax and the CDK4 deletion mutants were coexpressed in transfected 293T cells in equal amounts (Figure 3A, lysates). Subsequently, coimmunoprecipitation experiments were performed (Figure 3A, α-Tax-IP) using a Tax-specific antibody. The resulting immunoblots were stained with CDK4 and Tax-specific immune reactions. These revealed a reduced affinity of Tax to some mutants, in particular to CDK4ΔH30-V72 and CDK4ΔA182-K211. To quantitate binding, the amounts of coimmunoprecipitated CDK4- and Tax-proteins were determined. The ration of both was taken as relative binding. The mean from two independent experiments shows that three CDK4 deletion mutants (CDK4ΔH30-V72, CDK4ΔS150-R181, CDK4ΔA182-K211) in two regions have significantly reduced binding affinity to Tax (Figure 3B). The mutants CDK4ΔH30-V72 and CDK4ΔM1-F31, which also appears to be reduced in binding, represent the same N-terminal region, which was identified in the in vitro binding assays. In addition, two mutants in the central part of CDK4 (CDK4ΔS150-R181, CDK4ΔA182-K211) resulted in reduced Tax binding. Since this central region was not required in vitro, its deletion may affect the CDK4 structure in vivo, thus rendering it inaccessible for Tax-binding. The deletion of the C-terminal amino acids (CDK4ΔL272-E303) did not affect Tax-binding, indicating that this part is not essential for in vivo-binding and may be replaced by cellular factors. Moreover, this result may indicate that in vivo the N-terminus is sufficient for Tax-binding. Thus, the in vivo binding experiments confirmed the relevance of the N-terminal CDK4 region for Tax-binding.

Tax-binding activity of isolated CDK4 regions in vivo

To investigate the affinity to Tax of those CDK4 regions, which upon deletion affected Tax-binding, mammalian two-hybrid assays were performed. All corresponding CDK-sequences were cloned into the DNA-binding domain containing vector(Figure 4A). The N-terminal region, which was found to be important for Tax-binding in vitro and in vivo, is included in plasmid pCDK4ΔM1-V71. The other regions, which affected Tax-binding in only one assay, are represented by the constructs CDK4ΔV242-E303 (C-terminal region) and CDK4ΔS150-K211 (central region). As a control, CDK4ΔL100-T745 was constructed, which contains a region whose deletion did not affect Tax-binding in all assays. In addition, the deletion mutant CDK4ΔH30-V72 was inserted into the two-hybrid vector. The coding sequence of the CDK4-binding Tax domain (amino acids M1 – R40) was assembled into the DNA activation domain containing other two-hybrid vector. To test for interaction, human fibroblasts (293 cells) were co-transfected with these constructs and luciferase assays were performed. Whereas Firefly luciferase indicated the binding activity, Renilla luciferase, which is constitutively expressed from one plasmid, was analyzed as internal transfection control. Relative luciferase activity was calculated as the ratio of Firefly to Renilla luciferase activity. The mean relative
Figure 2

Identification of a CDK4 region important for direct Tax interaction. A) For binding assays, CDK4 mutants were constructed via PCR and cloned into the mammalian expression vector pcDNA3.1MycHis. B) CDK4 and its mutants were translated in vitro and reacted with S-agarose-coupled Taxwt. As a control, translated proteins were also incubated with uncoupled S-Agarose. Examples of resulting phosphorimager scans are shown. C) The diagram shows the mean Tax binding and standard deviation of three independent experiments that were quantitatively evaluated.
Deletion of two regions in CDK4 interferes with Tax-binding in vivo. A) Tax and CDK4 mutants were coexpressed in transfected 293T cells. The complexes were immunoprecipitated by monoclonal Tax antibodies and protein A sepharose. To detect Tax-bound CDK4 mutants, complexes and lysate controls were subjected to gel-electrophoresis and Western blotting. One representative experiment is shown. B) Luminescence emitted by specific bands of two independent experiments was quantitative evaluated and the mean relative Tax binding was calculated.
luciferase activity of three independent experiments is shown in Figure 4B. Only two of the CDK4 constructs, CDK4_{M1-V71} and CDK4_{V242-E303}, yielded significant amounts of relative luciferase activity, indicating direct interaction with Tax_{M1-R40}. This demonstrates that the N-terminal region of CDK4 (peptide CDK4_{M1-V71}), which
upon deletion reduced binding affinity in vivo and in vitro, bound Tax\textsubscript{M1-R40} in the two-hybrid assay. In agreement with the notion that the binding domain is absent, the mutant CDK4\textsubscript{\textit{dh30-v72'}} lacking 42 of these amino acids, consistently showed no binding capacity in all assays. The peptide CDK4\textsubscript{\textit{s150-k211'}} which represents the CDK4 region affecting Tax-binding exclusively in vivo, revealed no binding in the two-hybrid assay. In contrast, the C-terminal peptide CDK4\textsubscript{\textit{v242-e303'}} representing the region of CDK4 affecting Tax-binding in vitro, bound Tax\textsubscript{M1-R40}. In agreement with the other assays, the peptide CDK4\textsubscript{\textit{l100-t149}} did not bind. Taken together, the results of all binding assays consistently identified the CDK4 N-terminus as main interaction domain for Tax (Figure 5A). The CDK4 C-terminus, which could directly interact with Tax, may cooperate with the N-terminus, although it was not essential for Tax-binding in vivo.

To get an impression about the molecular interaction with the folded protein, a three-dimensional structure of CDK4 was calculated (Figure 5B). It resembles the structure of cdk2, which was determined from crystallized protein by
X-ray diffraction, containing [43]. As cdk2, the predicted structure is bi-lobated, containing a β-sheet-rich N-terminal and a alpha-helix-rich C-terminal region. This structure reveals that the N- and C-terminus of CDK4 are neighbouring. Thus, it is possible that both together provide a non-continuous binding domain for Tax. The N-terminus contains the PSTAIRE helix of CDK4, which is part of the CDK's cyclin D2 binding domain. Its rotation during the activation of CDK4 is required to unblock the catalytic cleft of the kinase [44]. Binding of Tax to this region may influence its spatial arrangement. Thus, Tax in cooperation with cyclin D2 could support formation of the active conformation and stimulate CDK4 activity by influencing the PSTAIRE helix.

Conclusion
The 40 N-terminal amino acids of Tax are sufficient to bind cyclin D2 and CDK4. Within CDK4 a N- and a C-terminal domain are relevant for Tax binding. These domains are neighbouring in the predicted three dimensional protein structure. Taken together, these findings suggest that Tax stimulates G1- to S-phase transition by supporting the association of CDK4 and cyclin D2. Furthermore, they support the conclusion that CDK4 activity is stimulated through conformational changes of the enzyme directly mediated by Tax.

Methods
Generation of CDK4 deletion mutants
All CDK4 deletion mutants were generated via PCR [45]. In order to introduce the internal deletions, 16 different primers were used, two outside 28-mer oligonucleotides spanning the 5' and 3' ends of the CDK4 open reading frame (CDK4S and CDK4AS) and 14 chimeric oligonucleotides designed to carry the 5' and 3' sequences flanking the deleted regions. After three rounds of PCR with Pwo polymerase (Roche, Mannheim, Germany), the deleted clones CDK4H30-V72, CDK4V70-L100, CDK4R101-L120, CDK4H30-S150, CDK4S150-R181, CDK4R181-L200, CDK4D211-S240, CDK4G242-M275 were created. To engineer the N-terminal CDK4H30-F31 and C-terminal CDK4D211-K211, CDK4D211-L241, CDK4V242-M275 were created. To engineer CDK4dM121-S150, CDK4dS150-R181, CDK4dA182-K211, E303 deletion clones, one round of PCR was performed using an internal 5' primer or 3' primer in combination with the outside primers. These sites into the pcDNA3.1(-)/Myc-His A expression vector (Invitrogen, Karlsruhe, Germany). The resulting PCR products and the pet 29b + vector (Novagen, Bad Soden, Germany) were digested with BamHI and HindIII and ligated via these sites into the pcDNA3.1(-)/Myc-His A expression vector (Invitrogen, Karlsruhe, Germany). The resulting clones were verified by nucleotide sequencing.

Comunmunoprecipitation
Human 293T cells were kept and transfected for communoprecipitations as described [36]. Briefly, cells were lysed in buffer containing 50 mM Tris, 150 mM NaCl, 0.2% Tween 20, 1 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride and 10 µg/ml aprotinin. To immunoprecipitate Tax and associated proteins cleared protein supernatant (0.7 to 1 mg whole protein) were incubated for 1 h at 4°C with 1 µg of monoclonal Tax antibody and the immune complexes were collected by protein A-Sepharose Cl4B (Pharmacia) beads (1 h at 4°C). Beads with the precipitated proteins were washed three times with lysis buffer. An aliquot of protein supernatant was taken as lysate control (40 µg whole protein). Immunoprecipitates and lysate controls were separated on gels and electro-blotted. Subsequently, membranes were incubated with 5% nonfat dry milk to block unspecific binding before reacting them with a 1:200 dilution of monoclonal Tax antibody for 1 h at room temperature. Membranes were washed and incubated with a 1:2.500 dilution of an anti-mouse immunoglobulin G-horse-radish peroxidase conjugate (Amersham, Freiburg, Germany). Bound antibodies were visualized with an enhanced chemiluminescence detection system (Amersham) and CCD-camera. The luminescence of specific bands was quantitated from the digitalized image by using the program AIDA (raytest Isotopenmesgeräte GmbH, Straubenhardt, Germany).

In vitro binding and pull down assays
35S-methionine labeled CDK4 and mutants were produced in vitro with a rabbit reticulocyte-based in vitro transcription/translation system (Promega, Mannheim, Germany). To prevent the expression of the myc/his-tag, the inset plasmids were digested with HindIII prior to translation. Translation was performed in E.coli and coupled to S-protein-agarose as previously described [36]. For a binding assay 5-10 µl of the in vitro-translated protein was diluted in 500 µl of RIPA buffer (10 mM Tris [pH 7.4], 150 mM NaCl, 2 mM EDTA, 1 % Nonidet P-40, 0.5 % desoxycholat, 0.1 % sodium dodecyl sulfate). An aliquot of 10 µl was taken as an inset control. The S-protein-agarose-bound Tax protein (15 µl) was incubated with the radioactive proteins for 1 h at 4°C, washed with RIPA-buffer and recovered by boiling the beads in loading buffer. Proteins were sized on an SDS-12% polyacrylamide gel, quantitated and visualized by a phosphorimager.

TaxM1-R40 was generated via PCR, using the primers TaxM1-R40-5’-pet-S and TaxM1-R40-3’-pet-AS and plasmid pcTax [46] as template. Resulting PCR products and the pet 29b + vector (Novagen, Bad Soden, Germany) were digested with BamHI and HindIII and ligated. Resulting clones were verified via sequencing. Cyclin D2 and cyclin E were transfected in 293T cells and lysates were prepared as previously described [36]. A lysate control was performed with 40 µg whole protein. Lysates containing 0.5 – 1 mg whole protein were incubated with E.coli-produced TaxMet or TaxM1-R40 coupled to Ni-NTA agarose for 1 h, washed
with lysis buffer and recovered by boiling the beads in loading buffer. Proteins were sized on a 12%-SDS-PAA gel, transferred onto a nitrocellulose transfer membrane and stained with specific antibodies.

Mammalian two-hybrid assay

All constructs for mammalian two-hybrid assay were generated via PCR. The TaxM1-R40 construct PCR was performed with the primer TaxM1-R40 -M2H-S and TaxM1-R40 -M2H-A using the plasmid pcTax as a template. For the CDK4 constructs CDK4_{dv70-L100} the pcDNA3.1(-)/Myc-His A construct was used as a template. The resulting PCR products were digested with KpnI and XbaI. For the other CDK4 constructs CDK4_{M1-V71}, CDK4_{L100-T149}, CDK4_{S150-K211} and CDK4_{A182-S242-E303} the CDK4 full length pcDNA3.1(-)/Myc-His A construct was used as a template. The resulting PCR products were digested with BamHI and XbaI. The digested products were ligated into the vectors pBind and pAct (CheckMate Mammalian two-hybrid system, Promega). The vector pG5Luc contains the reporter gene (Firefly luciferase). Human 293 cells were transfected with Lipofectamine reagents (Invitrogen). The luciferase-assay was performed with the Dual-Luciferase reporter assay (Promega) using a microplate luminometer.

Oligonucleotides

Designation for primers correspond to the plasmid names. The oligonucleotides sequences were as follows:

- **CDK4S**, 5'-ATTTACGGATCCACCATGGCTACCTCTC-3' (outer primer);
- **CDK4AS**, 5'-ATCCCCAAGCTTCTCCGGATTACCTTCA-3' (outer primer);
- **CDK4_{M1-V71}**,
- **CDK4_{L100-T149}**,
- **CDK4_{S150-K211}**
- **CDK4_{A182-S242-E303}**

- **CDK4_{dv70-L100}**,
- **CDK4_{M1-V71}**,
- **CDK4_{L100-T149}**
- **CDK4_{S150-K211}**

- **CDK4_{M1-R40}** -M2H-S, 5'-TCATCTAGAATGGCCCATTTC-CCAGGGTT-3' (outer primer);
- **CDK4_{M1-R40}** -M2H-AS, 5'-ATTGGTACCTAGGCGGGCCGAA-CATAGTC-3' (outer primer);
- **CDK4_{M1-V71}**,
- **CDK4_{L100-T149}**
- **CDK4_{S150-K211}**

- **CDK4_{dv70-L100}**,
- **CDK4_{dv70-L100}**
- **CDK4_{dv70-L100}**
- **CDK4_{dv70-L100}**

- **CDK4_{M121-S150}**S, 5'-CAGCGTCTGACTGTCCACCCA-GATCCITTCATGGTCTTC-3';
- **CDK4_{S150-R181}S**, 5'-AACATTCTGGACAGATCAGTGTTA-CACITCGTGGACCGA-3';
- **CDK4_{S150-R181}AS**, 5'-TCCGTACCATGAGTCACGTCCTGGACAGATCAGTGTTA-CACITCGTGGACCGA-3';
- **CDK4_{S150-R181}AS**, 5'-GCTCCCGAAAGTTCTCTGGCCITCGTGGACCGA-3';
- **CDK4_{M121-S150}AS**, 5'-GATGACTGGCGCTCAGATGCTCCGTGCGCCCGT-3';
- **CDK4_{S150-R181}AS**, 5'-ACGGGCGGAAGATCACGTCCTGGACCGA-3';
- **CDK4_{S150-K211}S**, 5'-GATGACTGGCGCTCAGATGCTCCGTGCGCCCGT-3';
- **CDK4_{S150-K211}AS**, 5'-ATTTACGGATCCATGGTGGCCCT-CAAG-3';
- **CDK4_{S150-K211}AS**, 5'-GCTTTTGAGCATCCCAATAGGACATATCTGGACAAG-3';
- **CDK4_{S150-K211}AS**, 5'-CTTGTCCAGATATGTCCTATTGGATGCTCAAAAGC-3';
- **CDK4_{S150-K211}AS**, 5'-GAAACGATCAAGGATCTGGGT-GGAACAGTCAAGCTG-3';
- **CDK4_{S150-K211}AS**, 5'-CAGCTTGACTGTTCCACCCA-GATCCITTCATGGTCTTC-3';
- **CDK4_{S150-K211}AS**, 5'-GCTCCCGAAAGTTCTCTGGCCITCGTGGACCGA-3';
- **CDK4_{S150-K211}AS**, 5'-GATGACTGGCGCTCAGATGCTCCGTGCGCCCGT-3';
CDK4\textsubscript{K150,K211} -pet-AS: 5'-GGATCCGATCGACATCCGAC-GAAACACATCT-3';

CDK4\textsubscript{V42,E390} -pet-S: 5'-CCTTGATCCAGATGATCCCT-GCCCCGT-3';

Tax\textsubscript{R40} -pet-S: 5'-GATCGGATCCGATGGCCCATTTC-GAGCCGAACATAGTCCCCCAGAGATG-3'; GAAACATCTC-3';

Tax\textsubscript{R40} -pet-AS: 5'-CTAATAGCTTATAGCGGG-GCCGAACATAGTCCCCCAGAGATG-3';

Competing interests
The author(s) declare, that they have no competing interests.

Authors' contributions
KF performed most of the experiments. BM did experiments shown in Figure 1. Both KF and RG participated in experimental design, data interpretation and writing of manuscript. All authors have critically read the manuscript and approved the final version to be published.

Acknowledgements
We thank Kerstin Haller and Ewa Blazejewska for helpful discussions. This work was supported by the Deutsche Forschungsgemeinschaft (SFB466-C3) and the Wilhelm Sander-Stiftung (2004.019.1).

References
1. Osame M: Pathological mechanisms of human T-cell lymphotropic virus type I-associated myelopathy (HAM/TSP). J Neurovirol 2002, 8:359-364.
2. Matsuoka M: Human T-cell leukemia virus type I and adult T-cell leukemia. Oncogene 2003, 22:5131-5140.
3. Matsuoka M: Human T-cell leukemia virus type I (HTLV-I) infection and the onset of adult T-cell leukemia (ATL). Retrovirology 2005, 2:27.
4. Grassmann R, Berchdot S, Radant I, Alt M, Fleckenstein B, Sodroski JG, Haseltine W, Ramstedt U: Role of human T-cell leukemia virus type I X region proteins in immortalization of primary human lymphocytes in culture. J Virol 1992, 66:4570-4575.
5. Akagi T, Shimotohno K: Proliferative response of Tax1-transduced primary human T cells to anti-CD3 antibody stimulation by an interleukin-2-independent pathway. J Virol 1993, 67:1211-1217.
6. Schmitt I, Rosin O, Rohwer P, Gossen M, Grassmann R: Stimulation of cyclin-dependent kinase activity and G1-to-S-phase transition in human lymphocytes by the human T-cell lymphotropic virus type I Tax protein. J Virol 1998, 72:633-640.
7. Azran I, Schavinsky-Khrapunsky Y, Aboud M: Role of Tax protein in human T-cell leukemia virus type-I leukemogenesis. Retrovirology 2004, 1:20.
8. Waldele K, Schneider G, Ruckes T, Grassmann R: Interleukin-13 overexpression by tax transactivation: a potential autocrine stimulus in human T-cell leukemia virus-infected lymphocytes. J Virol 2004, 78:6081-6090.
9. Chung HK, Young HA, Goon PK, Heidecker G, Prinzler GL, Shimo- zato O, Taylor GP, Bangham CR, Darby D: Activation of interleukin-13 expression in T cells from HTLV-I-infected individuals and in chronically infected cell lines. Blood 2003, 102:1430-1436.
10. Azimi N, Brown K, Bamford RN, Tagaya Y, Siebenlist U, Waldmann TA: Human T cell lymphotropic virus type I Tax protein trans-activates interleukin 15 gene transcription through an NF-kappaB site. Proc Natl Acad Sci USA 1998, 95:2452-2457.
11. Ruckes T, Saul D, Van Snick J, Hermine O, Grassmann R: Autocrine antiapoptotic stimulation of cultured adult T-cell leukemia cells by overexpression of the chemokine I-309. Blood 2001, 98:1150-1159.
12. Marriott SJ, Lemoine FJ, Jeang KT: Damaged DNA and mi- crounted chromosomes: human T cell leukemia virus type I tax oncoprotein and genetic lesions in transformed cells. J Biol Chem 2002, 92:292-298.
13. Liang MH, Geisbert T, Yao Y, Hinrichs SH, Giam CZ: Human T- lymphotropic virus type I oncprotein tax promotes S-phase entry but blocks mitosis. J Virol 2002, 76:4022-4033.
14. Neuvécle C, Low KG, Faldarelli F, Schmitt I, Majone F, Grassmann R, Jeang KT: Human T-cell leukemia virus type I Tax and cell cycle progression: role of cyclin D-cdk and p110Rb. Mol Cell Biol 1998, 18:3620-3632.
15. Neuvécle C, Jeang KT: Cell cycle dysregulation by HTLV-I: role of the tax oncoprotein. Front Biosci 2002, Td157-163.
16. Iwanaga R, Ohtani K, Satoh T, Shimotohno K: Molecular mechanism of cell cycle progression induced by the oncogene product Tax of human T-cell leukemia virus type I. Oncogene 2001, 20:2055-2067.
17. Kehn K, Fuente CL, Strous K, Bere R, Jiang H, Brady J, Mahieux R, Pumfrey A, Bonatti ME, Kashanchi F: The HTLV-I Tax oncoprotein targets the retinoblastoma protein for proteasomal degradation. Oncogene 2005, 24:525-540.
18. Ohtani K, Iwanaga R, Arai M, Huang Y, Matsumura Y, Nakamura M: Cell type-specific EZF activation and cell cycle progression induced by the oncogene product Tax of human T-cell leukemia virus type I. J Biol Chem 2000, 275:11154-11163.
19. Lemasson I, Thebault S, Sardet C, Devaux C, Mesnard JM: Activation of EZF-mediated transcription by human T-cell leukemia virus type I Tax protein in a p16(INK4A)-negative T-cell line. J Biol Chem 1999, 273:23398-233604.
20. Akagi T, Ono H, Shimotohno K: Expression of cell-cycle regulatory genes in HTLV-I infected T-cell lines: possible involvement of Tax1 in the altered expression of cyclin D2, p18Ink4c and p21Waf1/Cip1/Sdi1. Oncogene 1996, 12:1645-1652.
21. Santiago F, Clark E, Chong S, Molina C, Mozafari F, Mahieux R, Fujii M, Azimi N, Kashanchi F: Transcriptional up-regulation of the cyclin D2 gene and acquisition of new cyclin-dependent kinase partners in human T-cell leukemia virus type 1-infected cells. J Virol 1999, 73:9917-9927.
22. Martino A, Holmes JH, Lord JD, Moon JJ, Nelson BH: Stat5 and Sp1 regulate transcription of the cyclin D2 gene in response to IL-2. J Immunol 2001, 166:1723-1729.
23. Moon JJ, Rubio ED, Martino A, Krumm A, Nelson BH: A permissive role for phosphatidylinositol 3-kinase in the Stat5-mediated expression of cyclin D2 by the interleukin-2 receptor. J Biol Chem 2004, 279:5520-5527.
24. Fung MM, Chu YK, Fink JL, Wallace A, McGuire KL: IL-2- and STAT5-regulated cytokine gene expression in cells expressing the Tax protein of HTLV-I. Oncogene 2005, 24:496-2463.
25. Huang H, Hu-Li J, Chen H, Ben Sasson SZ, Paul WE: IL-4 and IL-13 production in differentiated T helper type 2 cells is not IL-4 dependent. J Immunol 1997, 159:3731-3738.
26. Suzuki T, Narita T, Uchida-Toita M, Yoshida M: Down-regulation of the INK4 family of cyclin-dependent kinase inhibitors by tax protein of HTLV-I through two distinct mechanisms. Virology 1999, 259:384-391.
27. Geraseto A, Diella F, Mollet JC, Cara A, Michielini P, Grassmann R, Franchini G, Klotman ME: p53 functional impairment and high p21Waf1/cip1 expression in human T-cell lymphotropic/ leukemia virus type I-transformed T cells. Blood 1996, 88:1551-1560.
28. Suzuki T, Kitao S, Matsumi H, Yoshida M: HTLV-I Tax protein interacts with cyclin-dependent kinase inhibitor p16INK4A and counteracts its inhibitory activity towards. EMBO J 1996, 15:1607-1614.
29. Low KG, Dorner LF, Fernando DB, Grossman J, Jeang KT, Comb MJ: Human T-cell leukemia virus type I Tax releases cell cycle arrest induced by p16INK4a. J Virol 1997, 71:1956-1962.
30. Akagi T, Ono H, Tsuchida N, Shimotohno K: Aberrant expression and function of p53 in T-cells immortalized by HTLV-I Tax1. FEMS Lett 1997, 406:263-266.
31. Mulloy JC, Kislyakova T, Cereseto A, Casareto L, LoMonico A, Fullen J, Lorenzi MV, Cara A, Nicot C, Giam C, Franchini G: Human T-cell lymphotropic/leukemia virus type I Tax abrogates p53-induced cell cycle arrest and apoptosis through its CREB/ATF functional domain. J Virol 1998, 72:8852-8860.
32. Pise-Masison CA, Choi KS, Radonovich M, Dittmer J, Kim SJ, Brady JrN: Inhibition of p53 transactivation function by the human T-cell lymphotropic virus type I Tax protein. J Virol 1998, 72:1165-1170.
33. Reid RL, Lindholm PF, Mireskandari A, Dittmer J, Brady JrN: Stabilization of wild-type p53 in human T-lymphocytes transformed by HTLV-I. Oncogene 1993, 8:3029-3036.
34. Ariumi Y, Kaida A, Lin JY, Hirota M, Masui O, Yamaoka S, Taya Y, Shi-motohno K: HTLV-I tax oncoprotein represses the p53-mediated trans-activation function through coactivator CBP sequestration. Oncogene 2000, 19:1491-1499.
35. Van PL, Yim KW, Jin DY, Dapolito G, Kurimasa A, Jeang KT: Genetic evidence of a role for ATM in functional interaction between human T-cell leukemia virus type I Tax and p53. J Virol 2001, 75:396-407.
36. Haller K, Wu Y, Derow E, Schmitt I, Jeang KT, Grassmann R: Physical interaction of human T-cell leukemia virus type I Tax with cyclin-dependent kinase 4 stimulates the phosphorylation of retinoblastoma protein. Mol Cell Biol 2002, 22:3327-3338.
37. Kehn K, Deng L, De La FC, Strous K, Wu K, Maddukuri A, Baylor S, Rufner R, Pumfery A, Bottazzi ME, Kashanchi F: The role of cyclin D2 and p21/waf1 in human T-cell leukemia virus type I infected cells. Retrovirology 2004, 1:6.
38. Resnitzky D, Gossen M, Bujard H, Reed SI: Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol 1994, 14:1669-1679.
39. Li J, Li H, Tsai MD: Direct binding of the N-terminus of HTLV-I tax oncoprotein to cyclin-dependent kinase 4 is a dominant path to stimulate the kinase activity. Biochemistry 2003, 42:6921-6928.
40. Matsumuige H, Roussel MF, Ashmun RA, Sherr CJ: Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 1991, 65:701-713.
41. Steiner P, Philipp A, Lukas J, Godden-Kent D, Pagano M, Mittnacht S, Bartek J, Eilers M: Identification of a Myc-dependent step during the formation of active G1 cyclin-ckd complex. EMBO J 1995, 14:4814-4826.
42. Diehl JA, Zindy F, Sherr CJ: Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes & Development 1997, 11:957-972.
43. De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH: Crystal structure of cyclin-dependent kinase 2. Nature 1993, 363:595-602.
44. Pavletich NP: Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol 1999, 287:821-828.
45. Pont-Kingdon G: Creation of chimeric junctions, deletions, and insertions by PCR. Methods Mol Biol 2003, 226:511-516.
46. Rimsky L, Hauber J, Dukovich M, Malim MH, Langlois A, Cullen BR, Greene WC: Functional replacement of the HIV-1 rev protein by the HTLV-I rex protein. Nature 1988, 335:738-740.