NEW DESCRIPTION OF SELF-DUAL METRICS

J. Tafel
Institute of Theoretical Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland, email: tafel@fuw.edu.pl

Abstract. We show that Plebański’s equation for self-dual metrics is equivalent to a pair of equations describing canonical transformations in 2-dimensional phase spaces. Examples of linearizations of these equations are given.

PACS number: 04.20(Cv, Jb) 02.40(Ky, Tt)

1 Introduction

Plebański [1] showed that complex metrics with the self-dual Riemann tensor [2], to be referred to as self-dual metrics, can be described in terms of one function Ω satisfying so-called Plebański’s first equation

\[\Omega_{,q} \Omega_{,p} = \Omega_{,p} \Omega_{,q} = 1, \]

(1)

Given Ω the corresponding metric reads

\[g = \Omega_{,q} dq dq + \Omega_{,p} dp dp + \Omega_{,\tilde{q}} d\tilde{q} d\tilde{q} + \Omega_{,\tilde{p}} d\tilde{p} d\tilde{p}. \]

(2)

He also proposed an equivalent equation known as Plebański’s second equation. At present there are several other descriptions of self-dual metrics [3, 4, 5, 6] (note that an erroneous sign in Husain’s equation was corrected and an equivalence of the latter equation to (1) was proved [7]). Much attention was payed to possible complete integrability of the self-duality conditions (see [8] and references therein).

In this paper we represent self-dual metrics in the form

\[g = \{u, v\}_{q \tilde{q}} dq dq + \{u, v\}_{p \tilde{p}} dp dp + \{u, v\}_{\tilde{q} \tilde{p}} d\tilde{q} d\tilde{p} + \{u, v\}_{q \tilde{p}} dq d\tilde{p}, \]

(3)

where the Poisson brackets are taken with respect to indicated coordinates, e.g. \(\{u, v\}_{q \tilde{q}} = u_{,q} v_{,\tilde{q}} - u_{,\tilde{q}} v_{,q} \). Functions u and v are subject to the equations

\[\{u, v\}_{qp} = 1 \]

(4)

\[\{u, v\}_{\tilde{q} \tilde{p}} = 1 . \]

(5)

Thus, u and v are related to q, p and to \(\tilde{q}, \tilde{p} \) by canonical transformations. Solving (4) and (5) requires correlating these transformations. In section 3 we show that these equations can be linearized under some assumptions on functions generating the canonical transformations.
It is convenient to denote coordinates q, p by $z^A, A = 1, 2,$ and coordinates \tilde{q}, \tilde{p} by \tilde{z}^A. Partial derivatives of any function f with respect to these coordinates will be denoted by $f_{,A}$ and $f_{,\tilde{A}}$, respectively. Instead of $\{u, v\}_{z^A\tilde{z}^B}$ we will write $\{u, v\}_{AB}$. In this notation metric (2) reads
\[g = \Omega_{,A\tilde{B}} dz^A d\tilde{z}^B \] (6) and metric (3) reads
\[g = \{u, v\}_{A\tilde{B}} dz^A d\tilde{z}^B. \] (7)

2 Equivalence of formulations

Let u and v satisfy equations (4) and (5). Then
\[\{u, v\}_{A[B, C]} = \{u, v\}_{B[A, C]} = 0, \] (8) hence there are functions Ω_A such that
\[\{u, v\}_{AB} = \Omega_{A\tilde{B}} \] (9)
and $\Omega_{[A,C]}$ do not depend on coordinates \tilde{z}^A. One can shift Ω_A by functions of z^A to achieve $\Omega_{[A,C]} = 0$. From this property it follows that there is a function Ω such that $\Omega_A = \Omega_{,A}$. Thus,
\[\{u, v\}_{A\tilde{B}} = \Omega_{,A\tilde{B}} \] (10) and metric (7) takes the form (6). Substituting (4), (5) and (10) into the identity
\[\{u, v\}_{q\tilde{q}}\{u, v\}_{p\tilde{p}} - \{u, v\}_{q\tilde{p}}\{u, v\}_{p\tilde{q}} = \{u, v\}_{qp}\{u, v\}_{\tilde{q}\tilde{p}} \] (11) shows that Ω satisfies Plebański’s equation (1).

To prove that the reverse transformation exists is less straightforward. Let us use the antisymmetric tensors ϵ^{AB} and $\epsilon^{A\tilde{B}}$ to raise indices in a standard way, e.g. $p^A = \epsilon^{AB}p_B$. This notation allows to write equations (4) and (5) in the form
\[v^{A}u_{,A} = 1 \] (12)
\[v^{A}\tilde{u}_{,A} = 1. \] (13)
Assume that a function Ω satisfies the equation
\[\Omega_{,AB}\Omega_{,\tilde{C}}\delta^{\tilde{B}C} = \epsilon_{AC}, \] (14) which is equivalent to (1). Our aim is to prove the existence of solutions u, v of equations (10), (12) and (13).

Taking contractions of (10) with v^{A} or u^{A} and using (12) we can replace equations (10) by
\[v_{,\tilde{B}} = v^{A}\Omega_{,AB} \] (15)
and

\[u, \dot{B} = u^A \Omega_{,A\dot{B}}. \tag{16} \]

It follows from (14)-(16) that

\[v^B u, \dot{B} = v^A u^C (\Omega_{,A\dot{B}} \Omega_{,C\dot{B}}) = v^A u_A. \tag{17} \]

Thus, equation (13) is satisfied if equations (12) and (14)-(16) are satisfied.

Let us write equations (15) and (16) as

\[D_{\dot{B}} v = 0 \tag{18} \]

\[D_{\dot{B}} u = 0, \tag{19} \]

where operators \(D_{\dot{B}} \) are given by

\[D_{\dot{B}} = \partial_{\dot{B}} + \Omega^A_{,\dot{B}} \partial_A. \tag{20} \]

Vectors \(D_{\dot{B}} \) are part of a null basis for metric (2). In view of twistor constructions related to self-dual metrics [9] it is not surprising that \(D_{\dot{B}} \) commute provided equation (14) is satisfied,

\[[\partial_{\dot{B}} + \Omega^A_{,\dot{B}} \partial_A, \partial_{\dot{C}} + \Omega^D_{,\dot{C}} \partial_D] = 2 \Omega^A_{,[\dot{B}\dot{C}],A} \partial_D = 2(\Omega^A_{,[\dot{B}\dot{C}],A} \partial_D = 0. \tag{21} \]

Let \(v \) be a solution of (18). It remains to solve equations (12) and (19), which form a linear system for a function \(u \). The system is integrable since all the operators \(D_{\dot{B}} \), \(v^A \partial_A \) commute due to (21) and the equality

\[[\partial_{\dot{B}} + \Omega^C_{,\dot{B}} \partial_C, v^A \partial_A] = (v^A \partial_A) = 0 \tag{22} \]

forced by (18). Thus, equations (10), (12), (13) have solutions and we obtain the following theorem.

Theorem 1. All complex self-dual metrics can be locally represented in the form (3), where \(u \) and \(v \) are subject to equations (4) and (5).

Note that if \(u, v \) and all the coordinates are real, then metric (3) is real with the signature \(+ + --\). The same signature is obtained when \(u \) and \(iv \) are real and

\[\tilde{q} = \epsilon \tilde{q}, \quad \tilde{p} = -\epsilon \tilde{p}, \quad \epsilon = \pm 1, \tag{23} \]

where the bar denotes the complex conjugate. Simple conditions of this kind are not available for the Euclidean signature of \(g \). This difficulty appears also in other approaches to self-duality [5, 6].

Equations (11) and (15) possess point symmetries which are easy to obtain if we denote \(u, v \) by \(f^A \) and write equations (11), (15) as

\[\det(\frac{\partial f^A}{\partial z^B}) = \det(\frac{\partial f^A}{\partial z^B}) = 1. \tag{24} \]
Let new variables f'^A be functions of f^B, new coordinates z'^A be functions of z^B and \tilde{z}'^A be functions of \tilde{z}^B. This transformation preserves equations (24) provided

$$\text{det} \left(\frac{\partial f'^A}{\partial f^B} \right) = \text{det} \left(\frac{\partial z'^A}{\partial z^B} \right) = \text{det} \left(\frac{\partial \tilde{z}'^A}{\partial \tilde{z}^B} \right) = c, \quad (25)$$

where c is a constant. In terms of Poisson brackets equations (25) read

$$\{u', v'\}_{uv} = \{q', p'\}_{qp} = \{\tilde{q}', \tilde{p}'\}_{\tilde{q}\tilde{p}} = c. \quad (26)$$

There are also natural discrete symmetries given by an appropriate interchange of variables. All above transformations preserve the metric modulo a constant factor.

3 Reductions to linear equations

In terms of a generating function $S(v, q, \tilde{q}, \tilde{p})$, where \tilde{q}, \tilde{p} appear as parameters, solutions u, v of (4) are given implicitly by

$$p = S_v, \quad u = S_w. \quad (27)$$

Similarly, equation (5) can be formally solved by means of a generating function $\tilde{S}(v, \tilde{q}, q, p)$,

$$\tilde{p} = \tilde{S}_{\tilde{q}}, \quad u = \tilde{S}_w. \quad (28)$$

Functions S and \tilde{S} should be correlated in such a way that solutions u, v obtained from (27) or (28) coincide.

Assume that S and \tilde{S} are linear in \tilde{p} and p, respectively,

$$S = S'(v, q, \tilde{q}) + \tilde{p}a(v, q, \tilde{q}), \quad \tilde{S} = \tilde{S}'(v, q, \tilde{q}) + p\tilde{a}(v, q, \tilde{q}). \quad (29)$$

Substituting (29) into (27) and (28) leads to the following conditions guaranteeing the uniqueness of u and v

$$\tilde{a}_{\tilde{q}} = a_q^{-1}, \quad \tilde{a}_v = a_va^{-1}_q \quad (30)$$

$$S'_{vq} + a_q\tilde{S}'_{\tilde{q}} = 0, \quad S'_{v} - \tilde{S}'_{w} + a_w\tilde{S}'_{\tilde{q}} = 0. \quad (31)$$

Equations (30) form a nonlinear system for the functions a and \tilde{a}. Given a and \tilde{a} it remains to solve linear equations (31) for functions S' and \tilde{S}'.

Equations (30) are integrable with respect to \tilde{a} provided a satisfies the following quasilinear equation

$$a_{vq} + a_qa_{v\tilde{q}} - a_va_{q\tilde{q}} = 0. \quad (32)$$

Simple solutions of (32) can be found by assuming that one of the second derivatives of a vanishes. For instance, for $a_{vq} = 0$ one obtains $a = \tilde{q}(v + q)$. For this function a equations (31) yield

$$S = F_q + \tilde{p}\tilde{q}(v + q), \quad (33)$$

4
where function $F(v, q, \tilde{q})$ is subject to the linear equation

$$F_{vq} + F_{v\tilde{q}} - F_{q\tilde{q}} = 0. \quad (34)$$

In this case the corresponding metric (3) possesses the translational Killing vector $\partial_p - \partial_{\tilde{p}}$. For this reason it must belong to the class of generalized Hawking metrics [6].

If $a_{,v\tilde{q}} = 0$ then the generating function S can be put into the form

$$S = F_{,v} - e^q F_{,\tilde{q}} + \tilde{p}(q\tilde{q} + e^q v + c(q)). \quad (35)$$

Here c is an arbitrary function of q, with its derivative denoted by \dot{c}, and F has to satisfy the linear equation

$$F_{vq} + (\tilde{q} + e^q v + \dot{c})F_{v\tilde{q}} - e^q F_{vq} - e^q F_{\tilde{q}} = 0. \quad (36)$$

If $a_{,q\tilde{q}} = 0$ one obtains

$$S = F_{,\tilde{q}} + \tilde{p}(v\tilde{q} + e^{-v} q + c(v)) \quad (37)$$

and the following linear equation for F

$$e^{-v} F_{,v\tilde{q}} + (e^{-v} q - \tilde{q} - \dot{c})F_{,q\tilde{q}} + F_{,vq} + F_{,q} = 0. \quad (38)$$

Given a solution F of equation (36) or (38) one can find functions u, v from relations (27) and then construct the corresponding self-dual metric (3). Up to the best knowledge of the author the reduction of the Plebański equation, for some ansatz, to the linear equations (36) or (38) is new.

4 Conclusions

We have shown that all self-dual metrics can be represented in the form (3), where functions u, v have to satisfy equations (4) and (5) defining canonical transformations in a 2-dimensional phase space.

The new formulation creates new possibilities of construction of self-dual metrics. Equations (4), (5) are equivalent to linear ones (34), (36) or (38) under the assumption that functions u, v are given by (27) and S takes the form (33), (35) or (37). An open problem is whether these linear reductions admit interesting solutions other than gravitational instantons of Hawking [10].

In our opinion the new formulation can be also useful as a new tool in classification of completely integrable equations. It is well known that many of these equations can be considered as reductions of the self-dual Yang-Mills equations [11] or the self-dual Einstein equations [12] (see also [8]). Perhaps, due to a new form of self-duality conditions, one can obtain in this way further completely integrable equations.

Acknowledgements. This work was partially supported by the Polish Committee for Scientific Research (grant 1 P03B 075 29).
References

[1] Plebański J 1975 *J. Math. Phys.* **16** 2395
[2] Penrose R 1976 *Gen. Rel. Grav.* **7** 31
[3] Ashtekar A, Jacobson T and Smolin L 1988 *Commun. Math. Phys.* **115** 631
[4] Chakravarty S, Mason L J and Newman E T 1991 *J. Math. Phys.* **32** 1458
[5] Grant J D E 1993 *Phys. Rev.* **D48** 2606
[6] Husain V 1994 *Class. Quantum Grav.* **11** 927
[7] Jakimowicz M and Tafel J 2005 *work in preparation*
[8] Mason L J and Woodhouse N M J 1996 *Integrability, self-duality and twistor theory* (Clarendon Press, Oxford)
[9] Penrose R and Rindler W 1986 *Spinors and spacetime*, vol. II (Cambridge University Press, Cambridge)
[10] Hawking S W 1977 *Phys. Let.* **60A** 81
[11] Ward R S 1985 *Phil. Trans. R. Soc.* **A315** 451
[12] Dunajski M, Mason L J and Woodhouse N M J 1998 *J. Phys. A: Math. Gen.* **31** 6019