Lipid Nanocapsules Loaded with Rhenium-188 Reduce Tumor Progression in a Rat Hepatocellular Carcinoma Model

Submitted by Emmanuel Lemoine on Fri, 07/18/2014 - 09:45

Titre: Lipid Nanocapsules Loaded with Rhenium-188 Reduce Tumor Progression in a Rat Hepatocellular Carcinoma Model

Type de publication: Article de revue

Auteur: Vanpouille-Box, Claire [1], Lacœuille, Franck [2], Roux, Jerôme [3], Aubé, Christophe [4], Garcia, Emmanuel [5], Lepareur, Nicolas [6], Oberti, Frédéric [7], Bouchet, Francis [8], Noiret, Nicolas [9], Garin, Etienne [10], Benoît, Jean-Pierre [11], Couturier, Olivier-François [12], Hindré, François [13]

Editeur: Public Library of Science

Type: Article scientifique dans une revue à comité de lecture

Année: 2011

Langue: Anglais

Date: 2011/03/07

Numéro: 3

Pagination: e16926

Volume: 6

Titre de la revue: PLoS ONE

ISSN: 1932-6203

Mots-clés: Animals [14], Carcinoma, Hepatocellular/blood/enzymology/pathology [15], Catheterization [16], Disease Models, Animal [17], Disease Progression [18], Kinetics [19], Lipids/chemistry/pharmacokinetics [20], Liver Neoplasms/blood/enzymology/pathology [21], Magnetic Resonance Imaging [22], Male [23], Nanocapsules/chemistry [24], Radioisotopes [25], Rats [26], Rats, Wistar [27], Rhenium/chemistry/pharmacokinetics [28], Survival Analysis [29], Tissue Distribution [30], Transaminases/metabolism [31], Tumor Burden [32], Vascular Endothelial Growth Factor A/blood [33]
Résumé en anglais

Background

Due to their nanometric scale (50 nm) along with their biomimetic properties, lipid nanocapsules loaded with Rhenium-188 (LNC188Re-SSS) constitute a promising radiopharmaceutical carrier for hepatocellular carcinoma treatment as its size may improve tumor penetration in comparison with microspheres devices. This study was conducted to confirm the feasibility and to assess the efficacy of internal radiation with LNC188Re-SSS in a chemically induced hepatocellular carcinoma rat model.

Methodology/Principal Findings

Animals were treated with an injection of LNC188Re-SSS (80 MBq or 120 MBq). The treated animals (80 MBq, n = 12; 120 MBq, n = 11) were compared with sham (n = 12), blank LNC (n = 7) and 188Re-perrhenate (n = 4) animals. The evaluation criteria included rat survival, tumor volume assessment, and vascular endothelial growth factor quantification.

Following treatment with LNC188Re-SSS (80 MBq) therapeutic efficiency was demonstrated by an increase in the median survival from 54 to 107% compared with control groups with up to 7 long-term survivors in the LNC188Re-SSS group. Decreased vascular endothelial growth factor expression in the treated rats could indicate alterations in the angiogenesis process.

Conclusions/Significance

Overall, these results demonstrate that internal radiation with LNC188Re-SSS is a promising new strategy for hepatocellular carcinoma treatment.

URL de la notice

http://okina.univ-angers.fr/publications/ua3597 [34]

DOI

10.1371/journal.pone.0016926 [35]

Lien vers le document

http://dx.doi.org/10.1371/journal.pone.0016926 [35]

Liens

1. http://okina.univ-angers.fr/publications?f%5Bauthor%5D=5681
2. http://okina.univ-angers.fr/franck.lacoeuille/publications
3. http://okina.univ-angers.fr/jerome.roux/publications
4. http://okina.univ-angers.fr/ch.aube/publications
5. http://okina.univ-angers.fr/emmanuel.garcion/publications
6. http://okina.univ-angers.fr/publications?f%5Bauthor%5D=5684
7. http://okina.univ-angers.fr/f.oberti/publications
8. http://okina.univ-angers.fr/publications?f%5Bauthor%5D=5685
9. http://okina.univ-angers.fr/publications?f%5Bauthor%5D=5686
10. http://okina.univ-angers.fr/publications?f%5Bauthor%5D=5687
11. http://okina.univ-angers.fr/j.benoit/publications
12. http://okina.univ-angers.fr/olivierfrancois.couturier/publications
13. http://okina.univ-angers.fr/f.hindre/publications
14. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=964
15. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=7820
16. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=7821
17. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=1100
18. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=6090
19. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=1145
20. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=7822
21. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=7823
22. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=6040
23. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=968
24. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=7817
25. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=7824
26. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=975
[27] http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=976
[28] http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=7825
[29] http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=7826
[30] http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=7827
[31] http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=7828
[32] http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=7829
[33] http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=7830
[34] http://okina.univ-angers.fr/publications/ua3597
[35] http://dx.doi.org/10.1371/journal.pone.0016926

Publié sur Okina (http://okina.univ-angers.fr)