A Cross Sectional Study Characterization and Antimicrobial Susceptibility Pattern of Clinical Isolates of Acinetobacter at a Tertiary Health Care Teaching Hospital, Bhavnagar, Gujarat

Authors
Dr Chirag N. Ghoghari¹, Dr Kairavi J. Desai, M.B.B.S., M.D.²
¹(M.D.), Microbiology, Department of Microbiology
²Professor and Head, Department of Microbiology
Government Medical College & Sir Takhtsinhji Hospital, Bhavanagar – 364001, Gujarat, India

Abstract
Introduction: Acinetobacter is considered an important nosocomial pathogen because of its intrinsic as well as acquired antibiotic resistance. Hospital acquired infection is most common. The genus Acinetobacter consists of Gram negative, facultative aerobic organisms that are ovoid in shape and may appear as gram negative coccobacilli. This study conducted in a tertiary care centre from August 2014 to March 2016.

Material and Method: Sample like blood pus and other body fluid are collected from 72 patients into wide mouth open sterile container. Samples processed by microscopy by wet mount and gram stain. Samples cultured on Mac Conkey and Blood Agar media by standard loop method for semi-quantitative culture and incubated aerobically for 24 hrs at 37°C. Antibiotic sensitivity testing by Kirby Bauer method according to CLSI guidelines.

Result: All 72 cases observed more commonly in patients with hospital admitted patients. Bacteria isolated included A.baumanii with a prevalence of 88.88%, followed by A. Lwoffii spp 11.11% were also isolated.

Conclusion: Risk factor associated with nosocomial infections are associated with duration of hospital stay, more common among patients with catheterization and Mechanical ventilation, Surgical site infection subjects. Further, long term studies investigating the occurrence of complications in patients with XDR and PDR studies for studying the efficacy of antimicrobial therapy in preventing further complications in patients with Hospital acquired infections.

Keyword: Acinetobacter Baumanii, Acinetobacter Lwoffii, CLSI- Clinical laboratory standard institute. XDR- Extended Drug Resistance. PDR- Pan Drug resistance.

INTRODUCTION
In 1911 Beijerinck, a dutch microbiologist working in delft, isolated and described the organism which is now recognized as Acinetobacter (2008)⁴. Brison and prevot proposed the generic designation, Acinetobacter in 1954. In 1971, the subcommittee on Taxonomy of moraxella & accompany bacteria suggested that the genus Acinetobacter shall include only oxidase negative bacteria, non motile, non fermenting, gram negative coccobacilli.

DNA homology has led to recognition of at least 25 genomo species by various workers¹⁰⁸. To date only 10 are named by Dijkshoorn L, Nemec A., Seifert H(2007)²⁹.
Genospecies 1: A.calcoaceticus
Genospecies 2: A.Baumannii
Genospecies 4: A.Hemolyticus
Genospecies 5: A.Junii
Genospecies 7: A.Jonsani
Genospecies 8: A.Lwoffii
Genospecies 12: A.Radioresistens
A.Ursingii, A. Schindleri, A.Venctianus are the others.
The other genospecies are unnamed.
Acinetobacter species are saprophytic and ubiquitous and can be found in natural environment like soil, water, food and commonly in hospital environment. Acinetobacer is consider as a part of commensal flora of man in groin, axilla and digit spaces. In this parts flora is residing as opportunistic pathogens. Cutaneous colonization can be seen in approximately 25% OF Population. 7 % of adults and children shows transient pharyngeal colonization. It is difficult to differentiate between colonization and infection with this organism and hence attribute the exact morbidity and mortality associated with infections due to this organism.
Acinetobacter species are increasingly being recognized as a major pathogen causing nosocomial infections, including Ventilator associated pneumonia, particularly in patients admitted to intensive care units. Carbapenems are often used as last source due to multidrug resistant gram negative bacilli.
Indian study shows that major organism casuing hospital acquired infections are pseudomonas spp, acinetobacter spp, candida spp, Escherichia coli and klebsiella are most common in tertiary care hospital. Among this bugs acinetobacter is a growing problem and widely spread among worldwide.
Carbapenem resistant organism have the ability to rapidly disseminate within institute and may lead to poor patient outcome when infections occurs. Therefore early detection and identification of these multidrug resistant acinetobacter species is of great clinical importance. Monitoring of bacterial infection and drug sensitivity pattern of the organism is important for empirical therapy. Therefore , the purpose of this study was to examine antibiotic sensitivity pattern of Acinetobacter isolates from Blood , pus, sputum, various body fluids and catheters of patients admitted in tertiary care hospital Bhavnagar over an period of August 2014 to March 2016 has been taken in to consideration.
Most reports in india do not report the species involved in human infections and address the infections at only genus level. Speciation of isolates is important in the epidemiology of acinetobacter infections. In view of the increasing challenges posed by this organism in health care institutes, this present study was undertaken to isolate and speciate acinetobacter from clinical samples and to determine their antibiogram.

AIMS AND OBJECTIVES
1. To study HAI and VAP cases and correlation in patients admitted in tertiary care hospital, bhavnagar.
2. To study HAI in control healthy group.
3. To find out various species of Acinetobacter prevalent in & around Bhavnagar city.
4. To find out the antibiotic sensitivity pattern among those isolates.
5. To find out age & sex preference of Acinetobacter infections.
6. To find out the correlation between the duration of stay in hospital and the Acinetobacter infections.

REVIEW OF LITRACTURE
1. Current taxonomy
The genus Acinetobacter is characterized by a long history of taxonomic changes. These organisms have been moved from the family Neisseriaceae to the family Moraxellaceae. There are at least 25 different Acinetobacter strains which fulfill the criteria to be considered distinct species. These have been identified by DNA-DNA hybridization studies. These studies have also been used to delineate 15 genomic species (gen. sp.) which do not yet have valid names. These genomic species are
commonly labeled by the initials of their authors e.g. Tjernberg and Ursing (TU) or Bouvet and Jeanjean²⁹.

Acinetobacters are Gram negative coccobacilli, that are strictly aerobic and non-motile (occasionally showing twitching motility)²⁰. The organisms exist as bacilli during rapid growth and coccobacilli in the stationary phase and have a tendency of retaining crystal violet, thus may be incorrectly identified as Gram-positive cocci.

It is difficult to differentiate *Acinetobacter* isolates according to their phenotypic characteristics³³,⁸³. This has led to the use of the term *A. calcoaceticus* – *A. baumannii* complex³³. The complex includes genomic species 1 (*A. calcoaceticus*), 2 (*A. baumannii*), gen. sp. 3, and 13TU, which show an extremely close relationship²⁰. *A. baumannii* seems to be the species of greatest clinical importance. Repeated isolation of other species from the *A. calcoaceticus* – *A. baumannii* complex might be significant, especially if clinical symptoms are also present²⁰,⁸³. *A. calcoaceticus* is an environmental species that has been recovered from soil and water but has not been implicated in serious clinical disease⁸³.

2. Species of clinical importance

Acinetobacter spp. may form part of the human skin flora. Not all species of the genus *Acinetobacter* have their natural habitat in the environment. The skin carriage rate of all *Acinetobacter* species can be as high as 75% among hospitalized patients, and up to 25% among healthy individuals⁹². *A. baumannii* and gen. sp. 13TU, on the other hand, were found only rarely on human skin in the study by Seifert et al., which looked at the distribution of *Acinetobacter* spp. on human skin of 40 cardiology patients and 40 healthy controls⁹².

Figure 1 below shows the delineation of *Acinetobacter* genomic species.

Species	Genomic species*	Type or reference strain	Reference(s)
A. baumannii	2	ATCC 19060[^T]	51, 542
A. hongkongensis	7	DSM 14957[^T]	72
A. calcoaceticus	1	ATCC 23655[^T]	51, 542
A. baumannii	3	DSM 14957[^T]	72
A. haemolyticus	4	ATCC 17906[^T]	51, 542
A. johnsonii	7	ATCC 17909[^T]	51, 542
A. junii	5	ATCC 17908[^T]	51, 542
A. hawaiensis	9	ATCC 15959[^T]	51, 542
A. parma	NIPH384[^T]	393	
A. radioresistens	12	IAM 13106[^T]	51, 401, 542
A. schindleri	NIPH1034[^T]	392	
A. tawnii	DSM 14971[^T]	72	
A. tjeniae	DSM 1492[^T]	72	
A. venum	NIPH137[^T]	392	
A. venules	ATCC 31012	573	
3	ATCC 19004	51, 542	
6	ATCC 17979	51, 542	
10	ATCC 17924	51, 542	
11	ATCC 11171	51, 542	
13TU	ATCC 17903	542	
13BJ, 14TU	ATCC 17905	53, 542	
14BJ	CCUG 14816	53	
15BJ	SEIP 23.78	53	
15TU	M 513a	542	
16	ATCC 17988	53	
17	SEIP 947.314	53	
Between 1 and 3	10095	190	
Close to 13TU	10090	190	

* Unless indicated otherwise, genomic species delineation is according to Bouvet and Grinstein (51) and Bouvet and Jeanjean (53). BI, Bouvet and Jeanjean; TU, Tjernberg and Ursing.

* "A. venum" is found in marine water but does not yet have formal species status.

Figure 1: Delineation of *Acinetobacter* genomic species. Reproduced from: (Peleg A.Y., 2008)⁸³

A. baumannii is the main genomic species associated with nosocomial outbreaks²⁰. Many reports of infection due to *A. baumannii* however do not include the necessary tests for specific identification to species level, but give a presumptive identification²⁰. There is a need for further investigations to define the clinical significance of *Acinetobacter* species other than *A. baumannii*, because these isolates are often considered as contaminants derived from the environment²⁰. However, genomic species 3 and 13TU have been implicated in nosocomial infections and *A. johnsonii* has been reported to cause catheter related bacteremia. The main sites of infections due to *A. baumannii* are the lower respiratory tract and the urinary tract²⁰.

3. Epidemiology

Acinetobacter may form part of the skin flora, mostly in moist regions such as the axillae, groin
and toe webs. They have also been isolated from the oral cavity and respiratory tract of healthy adults. The carriage rate in non-hospitalized patients, apart from on the skin, is generally low.\(^{20}\) Debilitated hospitalized patients have a high rate of colonization, especially during nosocomial Acinetobacter outbreaks. The predominant site of colonization in these patients is the skin, but respiratory tract or digestive systems may also be colonized. The differences between carriage rates between outpatients and hospitalized patients suggest that infecting or colonizing organisms in hospital patients may be acquired from cross-transmission or from hospital environmental sources and is usually not derived from endogenous patient sources.\(^{20}\) Colonization or infection with multidrug-resistant Acinetobacter is associated with the following risk factors: prolonged hospital stay, admission to an intensive care unit (ICU), mechanical ventilation, and exposure to broad spectrum antibiotics, recent surgery, invasive procedures, and severity of the underlying disease.\(^{66}\)

To investigate the environmental habitat of Acinetobacter, the distribution and frequency of Acinetobacter species in a variety of purchased and harvested fresh fruit and vegetables have been studied. Acinetobacter was isolated in 17% (30 of 177) samples of the produce. A. baumannii complex formed 56% of all isolates from cucumbers, peppers, mushrooms, lettuces, potatoes, corns, cauliflowers, radishes, mushrooms, melons, cabbages, apples, and beans. According to this study hospital food could be a natural habitat and a source for A. baumannii acquisition and subsequent colonization of the digestive tract of hospitalized patients.\(^{21}\)

A. baumannii has also been isolated from wounds of injured American and British soldiers from Afghanistan and Iraq. These strains were multidrug-resistant and mostly were part of polymicrobial infections.\(^{78}\) The sources for these infections were unknown, but it was suggested that prolonged environmental contamination of military field hospitals played a role as Acinetobacter species can survive in both moist and dry environments.\(^{38}\) Interestingly, in a study done in France, A. baumannii strains were isolated from body lice of homeless people. The researchers demonstrated that body lice were vectors of A. baumannii. This indicated that A. baumannii was epidemic in human body lice. A. baumannii association with body lice is likely due to undiagnosed transient A. baumannii bacteremia in people infected with body lice.\(^{57}\)

A review article by R B Patvardhan\(^{105}\) provided examples of locations in the hospital environment where Acinetobacter has been isolated. Common sources for this organism included ventilator tubing, suction catheters, humidifiers, containers of distilled water, urine collection jugs, intravenous nutrition, multi-dose vials of medication, potable water, moist bedding articles, and inadequately sterilized reusable arterial transducers.\(^{105}\) In an outbreak of Acinetobacter infection in burns patients, wet mattresses served as environmental reservoirs of Acinetobacter.\(^{89}\) Contaminated bedding materials may play an important role in the nosocomial spread of these organisms.\(^{20}\) Medical equipment can get contaminated through contact with both the patients and staff during handling. Therefore hospital staff may be responsible for contaminating equipment if they do not adhere to infection control measures. In respiratory ICUs, respiratory equipment can be a source of persistent outbreaks due to inadequate decontamination after use.\(^{20}\)

Acinetobacter has an ability to persist in the hospital environment, thus are able to cause extended outbreaks.\(^{20}\) In one outbreak, the presence of airborne Acinetobacter species was demonstrated by settle plates.\(^{16}\) The source of these organisms was probably the skin of infected or colonized patients, and/or contaminated fomites, e.g. bed linen and curtains. Airborne Acinetobacter produces extensive environmental contamination, and was found to persist in the environment for up to 13 days after patient discharge.\(^{16}\) Thus, there is a possible interchange between patients, hospital
staff and inanimate items, allowing the survival of nosocomially important pathogens. Acinetobacter differ from other gram negative bacteria in that they spread easily in the environment surrounding infected or colonized patients. In an in vitro study it was shown that the ability of A. baumannii strains to survive under dry conditions varied greatly. This ability correlated well with the source of the strain. Those strains which were isolated from dry sources tended to survive longer than the ones derived from wet sources.

4. Pathogenesis of Acinetobacter infections

Acinetobacters cause opportunistic infections because of limited number of virulence factors and are thus considered as low grade pathogens. Recently, there have been a number of case-reports of fulminating community – acquired pneumonia which indicated that these organisms may sometimes be highly pathogenic and cause invasive disease. There are certain characteristics of this organism that can enhance its virulence. These include the presence of a capsular polysaccharide which makes the organism to be hydrophilic, the ability to adhere to human epithelial cells in the presence of fimbriae and/or capsular polysaccharides, the production of lipases which can damage tissue lipids and the presence of cell wall lipopolysaccharide and lipid A which are potentially toxic. The lipopolysaccharide causes resistance to complement in human serum and acts synergistically with capsular exopolysaccharide. Little else is known about Acinetobacter’s lipopolysaccharide endotoxin potential in humans. The capsule is a major virulence factor and is presumed to protect bacteria from host defenses. Quorum – sensing as a widespread regulatory mechanism in gram negative bacteria has been found in clinical isolates of Acinetobacter. It might be a central mechanism for auto-induction of multiple virulence factors in Acinetobacter. Mixed infections involving Acinetobacter and other bacteria are more virulent than infections with Acinetobacter species alone. Acinetobacter species have the ability to obtain the necessary iron for growth in the human body. This is also an important virulence determinant.

5. Clinical manifestations of Acinetobacter baumannii infections

a. Nosocomial bloodstream infections

The major and frequent manifestation of infection caused by A. baumannii is bacteremia, followed by respiratory tract and surgical wound infections. During a nationwide, concurrent surveillance study done in the USA (1995 – 2002), to examine trends in the epidemiology and microbiology of nosocomial bloodstream infections, A. baumannii was the 10th most common etiologic agent. This organism was responsible for 1.3% of all monobacterial nosocomial bloodstream infections (0.6 bloodstream infection per 10 000 admissions). The mean interval between admission and infection was 26 days for Acinetobacter species and most of the infections were in patients admitted in intensive care unit. A. baumannii bloodstream infection had a crude mortality rate of 34% - 43.4% in ICU, and 16.3% in the general wards. Pseudomonas aeruginosa (crude mortality - 38.7%) and Candida species (crude mortality - 39.2%) were the only organisms with crude mortality rates above A. baumannii (crude mortality 34-43.4%) in ICU patients.

b. Nosocomial pneumonia

There is a persistent seasonal variation in the rate of Acinetobacter infection. This variation tends to increase in late summer for all major infection sites. Presently the most important role of Acinetobacter is as a cause of nosocomial pneumonia, mostly following the use of mechanical ventilation in ICU patients. The role played by Acinetobacter species in ventilator associated pneumonia (VAP) appears to be increasing. An increase from 0.64% to 6.4% in the incidence of nosocomial pneumonia due to Acinetobacter between 1976–1990 has been reported in a surveillance program of the Nosocomial Infections Surveillance (NNIS)
System in the USA which involved adult and pediatric patients.

Today, there are many major advances in the management of ventilated patients and there is routine use of effective procedures to disinfect respiratory equipment. These have not affected the increased incidence of VAP due to Acinetobacter. Although it is often very difficult to distinguish upper respiratory tract colonization from true pneumonia, ventilator-associated pneumonia due to A. baumannii does occur. The acquisition of A. baumannii infection in the ICU is associated with a high APACHE II score, cardiovascular failure, respiratory failure, previous infection, previous antibiotic therapy, use of mechanical ventilation and the presence of a central venous or urinary catheter.

The prognosis associated with nosocomial pneumonia is considerably worse than that due to other Gram-negative or Gram-positive bacteria, except for Pseudomonas aeruginosa. Acinetobacter nosocomial pneumonia is a severe disease in ventilated patients. It is not easy to ascertain whether such critically ill patients would have survived if nosocomial pneumonia had not occurred. Fagon et al. looked at the extent to which nosocomial pneumonia increased mortality and hospital stay in ventilated patients by performing a matched retrospective cohort study in a Paris hospital. The authors diagnosed pneumonia by use of quantitative culture of samples from protected specimen brush and observation of intracellular organisms from bronchoalveolar lavage. They were able to match cases and controls for confounders like severity of underlying illness, age and reason for ventilation.

VAP caused by Pseudomonas or Acinetobacter species was associated with considerable mortality in excess of that due to the underlying disease alone. The mortality attributed to Acinetobacter or Pseudomonas infection exceeded 40%, with a relative risk of death of 2.5. There was also a significantly prolonged hospital stay in the ICU by more than 10 days in patients diagnosed with pneumonia.

c. Traumatic battlefield and other wound infections

Injured and ischemic tissue in trauma patients facilitates colonization with A. baumannii. A. baumannii has been isolated from wounds of war casualties from Iraq and Afghanistan. In one study A. calcoaceticus-baumannii complex formed 32.5% of initial wound cultures. It did not appear to directly contribute to any substantial morbidity (viz. persistent nonunion or amputation), thus signifying that this organism is of low pathogenicity in wound infections. Gunshot wounds and external fixation tend to be associated with increased risk of Acinetobacter infection.

Most Acinetobacter infections in war casualties are caused by highly antibiotic-resistant strains. These infections occur in critically ill patients with severe traumatic injuries. These organisms are acquired through nosocomial transmission in field hospitals. Murray et al. found that Acinetobacter species were not isolated from wounds immediately after or soon after injury from casualties who were treated at a US Military field hospital in Iraq. In a study by Petersen et al., which looked at trauma related infections in Iraqi war casualties, Acinetobacter followed by Pseudomonas species, and Escherichia coli were the most common wound isolates. Environmental contamination and transmission of organisms within healthcare facilities seem to play a significant role in acquiring Acinetobacter wound infection.

The circumstances of combat are extremely challenging. Infection control measures such as cohorting, isolation and even proper hand washing techniques are very difficult, especially in mass casualty situations. This leads to ongoing colonization, and at the end, to wound infection. Complicated soft tissue and bone infection may follow. An increase in the rate of osteomyelitis caused by Acinetobacter was described in soldiers stationed in southwest India. Traumatic wounds related to natural disasters may also involve Acinetobacter. A. baumannii has been isolated from traumatic...
wounds sustained during an earthquake in Marmara, northwest of Turkey.75.

d. Urinary Tract Infections (UTI)
In many cases A. baumannii isolated from respiratory secretions and urinary tract specimens collected from hospitalized patients signify colonization rather than infection33. Most infections due to this organism are from organ systems with a high fluid content, e.g. respiratory tract, peritoneal fluid and the urinary tract. These infections are associated with indwelling devices.33. A. baumannii is not usually implicated in uncomplicated UTI in healthy outpatients.80. In a study looking at trends in Gram-negative pathogen distribution in ICUs (1986 – 2003)35, Acinetobacter isolates comprised 1.6% of pathogens associated with UTIs in the ICU. Investigators in Spanish hospitals looked at 206 patients colonized or infected with A. baumannii. UTIs constituted 23%, second only to respiratory tract infections (39%)85. A. baumannii UTIs tend to show seasonal variability.33 The reason for the seasonal variability is unknown, but was observed also in a study done by McDonald68.

e. Meningitis
There is a steady increase in cases of nosocomial, post-neurological surgery A. baumannii meningitis 80,52. Community-acquired meningitis due to A. baumannii on the other hand is very rare52. Patients with post-neurological surgery central nervous system (CNS) infection tend to be young, acquire the infection in hospital, commonly have no severe underlying diseases, and have a slow clinical course.63 Mortality due to Acinetobacter meningitis has been cited to be 23%.90. In this case series, patients were predominantly adult males and the most significant risk factor was the presence of a continuous connection between the ventricles and the external environment. The median time to develop Acinetobacter meningitis following a neurosurgical procedure was 12 days (range 1-40 days)90. These types of infections can be prevented by maintaining a closed drainage system together with timely removal of the ventricular catheters. Furthermore, the selective pressure of the antibiotics used in the neurosurgical ICU favors the growth of multi-drug resistant Acinetobacter. Pseudomeningitis may occur, where the CSF culture is positive for Acinetobacter in the absence of clinical and laboratory features of meningitis 52. Contamination of the CSF may occur during specimen collection as this organism is increasingly prevalent in the hospital environment and may colonize the skin. The specimen may also become contaminated due to contaminated specimen tubes and in the laboratory, contaminated pipettes and media. In a study by Chen23, lumbar puncture derived Acinetobacter isolates were more clinically insignificant than those obtained from previously placed ventricular drains. Differentiating between clinically significant and insignificant isolates enables clinicians to avoid unnecessary antibiotic treatments and helps with timely and accurate treatment of infected patients.23 Most significant cases are associated with neurosurgical procedures 23,52. With regard to clinical signs and symptoms in Acinetobacter meningitis, fever was the most common presentation in a study by Siegman-Igra90. Neck stiffness and other symptoms suggestive of meningitis were frequently absent. In the study by Chen et al23, the absence of fever, meningeal signs and seizures correlated with the isolation of insignificant CSF Acinetobacter isolates. Most cases of Acinetobacter meningitis (20 – 50%) were found to be polymicrobial90,23.

f. Other clinical presentations
There are a limited number of case reports of Acinetobacter endocarditis in the literature. The precise species identification remains an issue in these case reports81. Cases reported in the literature involved both native and prosthetic valves 95,74,39. Risk factors for gram negative infective endocarditis are diabetes mellitus type I, endoscopy of the gastrointestinal or genital tract,
patients with congenital heart diseases, dental surgery, and patients with right-sided endocarditis. Any breach of the integument can lead to Acinetobacter seeding of a heart valve. A maculopapular rash involving the palms and soles has been reported in cases of Acinetobacter endocarditis. Splenomegaly seems to be a common, but not a dominant feature of Acinetobacter endocarditis. The prognosis of Acinetobacter prosthetic valve endocarditis (PVE) has been more favorable than PVE due to other pathogens. This might be due to the low virulence of Acinetobacter species.

Acinetobacter can cause ulcerative keratitis and corneal ulcers. These infections may be related to the use of contact lenses or follow eye surgery. There is an association between high levels of contamination of contact lenses with Acinetobacter and occurrence of adverse responses. Acinetobacter are not regarded as normal flora, but there is a small proportion of the general population that carries low numbers of this organism on their skin. Acinetobacter causing eye infections may have been transferred to the eye by the hands or from the hands to the contact lens.

There was a single case report about a Shiga toxin-producing A. haemolyticus strain from Uruguay. This involved a 3-month old baby who presented with bloody diarrhea of 12 hours’ duration without pyrexia or other previous illnesses. Fecal samples were inoculated onto MacConkey sorbitol plates. All sorbitol negative colonies were recovered after 48h of incubation. These were then analyzed by PCR to detect the presence of shiga-toxin 1/shiga-toxin 2 (Stx 1/ Stx 2) – encoding organisms. The presence of stx2-related sequence was then confirmed by PCR. A specially designed PCR suggested that the Shiga toxin genes of A. haemolyticus were carried in an infective bacteriophage. The usual enteropathogenic pathogens were not detected from the patient’s stool samples.

6. Laboratory identification.
Acinetobacters are non-fastidious organisms that grow well on common laboratory media. Clinical isolates, mostly A. baumannii, gen spp. 3, and 13TU, grow at 35 - 37 °C or higher, whilst some other genomic species grow only at lower temperatures. Most Acinetobacter strains can grow in a simple mineral medium containing a single carbon and energy source. Some Acinetobacter species outside the A. Calcoaceticus-A. baumannii complex may not grow on MacConkey agar. Some species may show hemolysis on sheep blood agar (e.g. A. haemolyticus). Members of the A. calcoaceticus – A. baumannii complex are never hemolytic on sheep blood agar. However, there is no single metabolic test which enables unambiguous identification of Acinetobacter species from other similar bacteria.

7. Antimicrobial Susceptibility Testing
Antibiotic susceptibility testing of the isolates are performed by Kirby-Bauer disc diffusion method. The antibiotic concentration of disc used and zone size interpretation is in accordance with Clinical Laboratory Standards Institute (CLSI). These drugs are Ampicillin-Sulbactum, ceftriaxone-Sulbactum, tobramycin, ceftazidime, ciprofloxacin, pipracillin-tazobactum, ofloxacin, gentamycin and amikacin. Commercially available six mm disks are used. All antibiotics were used for sensitivity testing only for gram negative bacteria as per Clinical Laboratory Standards Institute (CLSI) guidelines.

IDENTIFICATION BY AUTOMATED SYSTEMS
Precise species identification of Acinetobacter is not necessary in the routine clinical laboratory. The term A. baumannii group is sufficient for laboratory diagnosis. Exact strain identification may be required for epidemiologic purposes to identify strain relatedness. Various methods are available for molecular typing of strains for epidemiological purposes. There are also molecular methods which have been validated for
the identification of Acinetobacter. Examples of these molecular methods are: amplified 16S rRNA gene restriction analysis, high resolution fingerprint analysis by amplified fragment length polymorphism, ribotyping, tRNA spacer fingerprinting, restriction analysis of the 16S – 23S rRNA intergenic spacer region and sequencing of the rpoB gene. All the above mentioned methods are too labor intensive to be used routinely in the clinical microbiology laboratory. Manual and semi-automated commercial identification systems are currently being used for species identification in the clinical microbiology laboratory. Examples are the API 20NE, Vitek 2, Phoenix, and Microscan Walk Away systems. The problem with these systems is their limited database content and the fact that they use identification substrates which have not been tailored specifically for Acinetobacter identification. All the currently available commercial methods cannot differentiate clinically relevant members of the A. calcoaceticus – A. baumannii complex. A. baumannii, Acinetobacter genomic species 3, and Acinetobacter genomic species 13TU are uniformly identified as A. baumannii. It is thus advisable to use the term A. baumannii group instead of A. calcoaceticus – A. baumannii complex when referring to these species. The distinction between A. baumannii group and Acinetobacter spp. outside the A. baumannii group has important infection control implications. Acinetobacter spp. outside the A. baumannii group rarely causes nosocomial outbreaks and therefore do not necessitate infection control measures.

DNA – DNA relatedness is used to classify Acinetobacter isolates into genomic species. The different DNA hybridization methods which have been employed are the nitrocellulose filter method, the S1 endonuclease method, the hydroxyapatite method and a quantitative bacterial dot filter method. The latter method is the simplest, with the others being more labor intensive and not suitable for routine microbiological use. The DNA – DNA hybridization method is the gold-standard among the few validated methods for identification of Acinetobacter species.

METHODOLOGY

Study area and period
A study conducted, in a tertiary care hospital attached to a teaching Institution, to study the occurrence of Acinetobacter infection among patients admitted and treated at tertiary health care institute, Bhavnagar.

The study was conducted from August 2014 to March 2016 in Sir Takhtsinhji General Hospital, Bhavnagar, Gujarat.

Source population
Patient was randomly selected child, adult to old patients (0-85 years) diagnosed with Acinetobacter infection and presenting to inpatient department of tertiary health care Institute were included in the present study.

Sample size
This study comprised of 72 patients diagnosed with acinetobacter infections.

Inclusion criteria for Acinetobacter cases:-
- Patients coming to inpatient department of Sir T Hospital, Bhavnagar and resides in health care for more than 48 hours.

Exclusion criteria for Acinetobacter Cases:-
One or more combination of the following
- Asymptomatic patients
- Outdoor patients department.
- Stool samples
- Patients who had already taken antibiotic before sample taken

Selection of type cases/subjects:
A detailed history was taken with emphasis on age, sex, occupation and duration of symptoms, socio economic status, personal hygiene were recorded. Latest reports all cases were collected from the patient. The samples were collected at inpatient department of medicine at Sir T Hospital, Bhavnagar, after explaining in detail about clean catch sample to the patient.
Specimen collection
Patient was asked to collect sample in a wide mouth sterile container. In case of Blood in Hartley’s Broth and for Pus in sterile swab stick and all other samples were collected in sterile wide mouth container.

Transporting the Specimen:
The sample was transported to microbiology laboratory within 1 hrs so that overgrowths of bacteria do not occur.

Direct smear Examination
Smear was prepared from sample, stained by gram stain technique and examined under oil immersion lens for presence of bacteria and pus cells.

Culture:
Within 2 hrs of Sample collection, culture was done by strict aseptic universal precautions on Mac Conkey and blood agar media using standard measured wire loop technique. Plates were incubated for 24 hrs under aerobic condition. After 24 hrs of incubation all samples showing colony appearance of 4 same type was considered to be significant for processing. Those colonies developed on Mac Conkey media was further preceded by gram stain, motility check by wet mount preparation and biochemical reaction and then antibiotic sensitivity test on Muller Hinton agar by Kirby-Bauer’s disc diffusion method following Clinical Laboratory Standards Institute (CLSI) guidelines. Results were not considered for more than three clinical isolates obtained on isolation and the sample was considered to be contaminated.

Identification of organism:
Colony appears as smooth, small, dome shaped, pale with pinkish tinge on Mac Conkey media and Creamy white, smooth on Blood agar, they were preceded for gram stain. By help of gram stain colonies were divided into two groups and further tested for biochemical reaction as per standard guideline for identification.
Figure: Mac Conkey agar Shows smooth colorless colony with dome shaped appearance Gram Stain Preparation

In Gram stain Acinetobacter appear as Gram negative coco-bacilli

Biochemical Reactions:
As Acinetobacter is Gram negateve coco-bacilli, were further tested for oxidase test, indole production, methyl red test, citrate utilization, urease test, Triple sugar iron test and OF (glucose) test for identification.

Biochemical reaction of Acinetobacter species

Test	A.Baumanii	A.lwoffii
TSI	K/K	K/K
Citrate test	+Ve	-Ve
Urease	Variable	-Ve
Indole	-Ve	-Ve
MR	-Ve	-Ve
Glucose	+Ve	-Ve
Galactose	+Ve	-Ve
Rhamnose	+Ve	-Ve
Lactose	+Ve	-Ve
Maltose	Variable	-Ve
OF Test	Oxidative & Non-fermentative	Non-oxidative & Fermentative

All Media were used in this study are Readymade Dehydrated base from Hi Media, Laboratories Ltd; India, was prepared as per manufacturer’s instructions.

Antimicrobial Susceptibility Testing:
Antibiotic susceptibility testing of the isolates was performed by Kirby-Bauer disc diffusion method. The antibiotic concentration of disc used and zone size interpretation was in accordance with Clinical Laboratory Standards Institute (CLSI). Drugs used and their concentration are Ampicillin-Sulbactum (20:15mcg), ceftriaxone-Sulbactum(30:15mcg), tobramycin (20mcg), ceftazidime (30mcg), ciprofloxacin (5mcg), pipracillin-tazobactum (100:10mcg), ofloxacin (5mcg), gentamycin (10mcg) and amikacin (30mcg). Commercially available six mm disks (Himedia Laboratories, Mumbai) were used. All antibiotics were used for sensitivity testing only for gram negative bacteremia as per Clinical Laboratory Standards Institute (CLSI) guidelines.

Quality controls:
Standard operational procedures were followed with sterile precaution during processing of each
sample. All the instruments used for sample processing were checked every day for proper functioning before processing. *Pseudomonas Aeruginosa* ATCC 27853 was used as a reference strain.

Observation and Results

Figure 1: Age distribution of Acinetobacter cases

Figure 2: Sex distribution in Acinetobacter cases

Figure 3: Sample wise distribution of Acinetobacter species

Figure 4: Species of Acinetobacter found in male and female.

Figure 5: Result according to Hospital Stay group:

Figure 6: Distribution according to Hospital Area

Figure 7: Antibiotic sensitivity pattern of various clinical isolates of Acinetobacter
DISCUSSION

In present study 72 non duplicate, non Consecutive clinically diagnosed cases of Acinetobacter were studied during 20 months duration period from August 2014 to March 2016. Out of total 72 samples, 90% (65 cases) is A.baumannii and 10% (7 cases) is of A.Lwoffii. A.baumannii was the most common species isolated followed by A.Lwoffii. A.baumannii is among the most common of multidrug resistant clinical isolates in the Asia, Europe and India and is a major threat moving forward. It has already been notified by Infectious Disease Society of America as a “red alert” pathogen. Larson et al 1986 shows that Acinetobacter was most common gram negative organisms carried on the skin of hospital personnel.

Age wise distribution of Acinetobacter Cases:

In the present study, incidence was seen to be highest in age group 0-20 years with total 24 cases out of total 72 cases. In Which 16 isolates were in < 1 Month child group.

Study	Age group	Study
Dr Rahul Kamble et al102,Mumbai,India. | 0-10 | Mustaba Moosavian et al11, Iran | 0-10 |
Dr Azinun nahar et al10, Dhaka,Bangladesh | 0-10 | Dr Deveshni Reddy et al103, Durban,South africa | 0-10 |
Present study(2016) | 0-10 year |

Dr Rahul Kamble et al102, Mumbai, 2015 also shows similar result of higher incidence in age 0-10 year (29.1%) patient. The next highest incidence was in group 20-30 years (20.4%). The lesser of age showed the Highest incidence of Acinetobacter infections. The findings are consistent with other studies. Other studies have reported Acinetobacter infection more common in pediatric age group.

Sex wise distribution of Acinetobacter cases

In the present study, Male to female ratio was 1:1.32 in our study. females (56.94%) were more commonly affected than males (43.05%). Review article was published in IJCM in 2015, by Dr Rahul Kamble et al102, Mumbai,2015 also mentioned that chances of Acinetobacter infection are more common in Female (55.30%), is comparable to our study result 56.94%.

Most common species isolated:

A.baumannii was the commonest clinical type 65 (90.18%). This finding is consistent with other studies in India and abroad. Studies like study Dr Rahul Kamble et al102,Mumbai,India, ;Dr Namita Jaggi et al104, Gurgaon, Haryana,Dr Devanshi Reddy et al103, Durban, South Africa Showed A.baumannii being most common organism with incidence of 87.2%, 98% and 85%, respectively.

Duration of hospital stay:

As from our study, it is shown that longer duration period of hospital stay increase chance of colonization of bacteria because of instrumentation and hospitalization, which is more frequent in younger peoples. It is comparable to studies done by Dr Namita Jaggi et al104 & Dr Rahul Kamble et al102, Mumbai, India.

Antibiotic sensitivity pattern:

In present study acinetobacter spp. are highly sensitive to Meropenam, Pipracillin-tazobactum, and Ceftriaxone-Sulbactum, while more resistant to Ampicillin-Sulfactum, Ceftazidine, Amikacin, Gentamycin and tobramycin. The sensitivity pattern are similar to other studies like Dr Rahul Kamble et al102 ;Dr Azinun nahar et al108, Dhaka, Bangladesh ;Dr Namita Jaggi et al104, Gurgaon, Haryana, Dr Devanshi Reddy et al103, Durban, South Africa, for higher drugs which are more sensitive. In present study susceptibility to
Ampicillin-Sulbactum, Clotrimoxazole, Amikacin, Ciprofloxacin, Tobramycin and Gentamycin is reduced, it may be because of geographical distribution of organism or other host immune response and bacterial virulence factors.

CONCLUSION
In developing countries like INDIA where increasing cases of and poor hygienic practices are prevalent, chances of Hospital acquired infection are high. The important clinical concerns of Acinetobacter in hospitalized individuals are its contribution to morbidity, either risk of developing a symptomatic infection or its more serious risks of developing other complications. Prompt diagnosis is essential for the patient to reduce the morbidity.

I was found to be more positive in Female hospitalized patient. Most common age group was 0-20 year in both male and female. Increase chance of Acinetobacter is also correlate with increase in duration of hospital stay.

In present study A. Baumannii was isolated most commonly in both male and female. The high prevalence of Bacteremia of 59.72 % in this study is of major public health importance. The predominant pathogen was A. Baumannii and this organism is beginning to acquire resistance to some of the clinically used antibiotics. The level of resistance to antibiotics recorded in this study is of great concern.

SUMMARY
The present study was conducted for a period of 20 months from August 2014 to March 2016 in the Department of Microbiology, Government Medical college and Sir Takhtsihji General Hospital, Bhavnagar, Gujarat.

Blood, pus and sputum samples from the patients not having any type of drug consumption History were collected at In Patient Department at Sir Takhtsihji General Hospital, Bhavnagar, Gujarat. Patient From Outpatient Department are excluded. The present study includes total 72 clinically diagnosed, non-duplicate and non consecutive cases of Acinetobacter Isolates.

Most common age group found positive for Acinetobacter was between 0-20 years with 24(33.33%)isolates & lowest in 46-55 years with 5(6.94%).

Females were more commonly affected than males with female to male ratio 1.32:1. Most commonly affected age group is 0-20 years.

Out of 72 positive cases A. Baumannii was most common species 65(90.18%) found. It was also most common in female 37 (39%) and male 12 (48%) patient. 2nd most common species was A. Lwoffii, 7 cases isolated (9.8%).

In my study amongst 72 cases 64% of isolates were coming from Ward area only 35% cases were come from ICU & 1% case were come from OPD.

Amongst 72 samples, 45(62%) cases were from blood, 23(32%) cases were from Pus discharge or wound infection, 2(3%) sample from sputum and 1(1%), 1(1%) sample from IJV Tip & LSCS wound gap were isolated.

In this study maximum number of cases were having 3-10 days duration of stay in hospital.

As far as antibiotic susceptibility was concerned, all isolates were tested for susceptibility to Ampicillin-Sulbactum, ceftriaxone-sulbactum, cefazidime, levofloxacin, piperacillin-tazobactum, ciprofloxacin, ofloxacin, gentamycin and tobramycin and meropenem. Acinetobacter spp. are more sensitive to meropenem, piperacillin-tazobactum and ceftriaxone-sulbactam and less sensitive to, ampicillin-sulbactum, ciprofloxacin, ofloxacin, gentamycin, amikacin, tobramycin and ceftazidime.

ACKNOWLEDGMENT
Thesis is a lone ranger’s voyage and foray, which would not have been possible without sincere and irreproachable guidance and help of several individuals who invested their time and intelligence and extended their valuable assistance in the preparation and carry through this study.
First and foremost, I humbly give all praise and honor to The Almighty and my parents for their love, affection, motivation and blessings. I extend my deep sense of gratitude and sincere respect towards my teacher and guide Dr Kairavi J. Desai, Professor and Head, Department of Microbiology, Government medical college Bhavnagar, for her constant sharing invaluable experience and guidance throughout this journey. I appreciate all her enthusiasm, time, expertise and motivation to make my P.G. experience productive and stimulating. From bottom of my heart I would like to thank you mam for your constructive criticisms, immense support not only during this study but also in printing and publications.

I am extremely grateful and obliged to Dr sameer shah, Professor and Head, Department of Medicine, Government medical college Bhavnagar, for his unbiased help to identify the cases and control patient for the study. I am sincerely thankful to our college’s respected Dean, Dr. Vikas Sinha, Government Medical College, Bhavnagar, Dr M.P. Singh, Medical Superintendent and also to the former Dean, Dr. P. R. Jha for providing facility at the institute to complete this dissertation work.

I would always remain obliged to my lifelong teachers Dr Ravindra Jadeja, Dr. Rashmika Parmar, Dr Shirish Patel, Dr Saklai Malek, Dr Beena Jagad, Dr Jatin Sarvaiya, Dr Pooja Dholakiya for their support and constant productive guidance and constructive nagging my knowledge to make this study on a better horizon. Thanks to my dear friend Dr suvas patel & Dr Tushar Agasti for his constant awareness and tidiness towards thesis and my colleagues Dr Vishal pandya for their help during the experiments.

Finally, I am greatly thankful to the wonderful staff of my Department, Mukeshbhbai, Hariom bhai, Shezad bhai and Sunita for helping me in bacteriology section and Truptiben in collecting and transport of all specimens.

I am also thankful to all the patients without whom this project would have never become a reality.

REFERENCES

1. Bonomo RA ,Szabo D.:Mechanism of Multidrug Resistance in Acinetobacter Species and pseudomonas aeruginosa.Clin Inf Dis2006 ;43:49-56
2. Cisneros JM,Reyes JM,,Pachon J,Beceril B,Cabarello FJ,Garcia-Garmendia JL,At al Bacteremia due to A. Baumannii Epidemiology.Clinical Findings and prognostic features. aeruginosa.Clin Inf Dis:1996:22:1026-1032.
3. David M Allen,Barry J.Hartman,Chapter 219.In : Mandell,Douglas & Bennett’s principle & practice of Infectious disease 6th edition .Editors:Gerald mandell,John Benett:2005,2,2632-2635.
4. Anathnarayan & Textbook of Microbiology 9th Edition :page 397-398
5. Topley & wilson’s Textbook of Microbiology Diseases. New York: Churchill Livingstone 875-905, 2006.
6. Mackie & McCartney Clinical microbiology, 14th edition:14page no: 294.
7. District-Laboratory-Practice-in-Tropical-CountriesPart-2, Monica-Cheesbrough chapter 7.12
8. Collier L, Balow A, Sussman M, Duerden BI. Topley and Wilson’s Microbiology and microbial infections. 9th ed. Systematic Bacteriology. Vol. 2, London: Arnold; 969-95
9. Koneman’s Color Atlas and textbook of diagnostic microbiology, 5th edition, chapter 5:page no 286-288.
10. Bailey Scott Diagnostic Microbiology, 13th edition, Page no 245
11. CLSI guideline 2012, page no 126-142.
12. Koneman’s Color Atlas and textbook of diagnostic microbiology, 5th edition, chapter 5 page 294 on table no 5.
13. Harrison’s Principle of Internal Medicine, 19th edition, part 8, Section 2, Chapter 162, page 861
14. Bailey Scott Diagnostic Microbiology, 13th edition, Chapter 73, Page no 921
15. Jawetz, Melnick, & Adelberg’s Medical Microbiology 24th edition chapter 9.
16. Allen K.D., Green H. T. (1987). Hospital outbreak of multi-resistant Acinetobacter anitratus: an airborne mode of spread? Journal of Hospital Infection (9), 110-119.
17. Anstey N. M., Currie. B. J., Withnall K. M. (1992). Community-Acquired Acinetobacter Pneumonia in the Northern Territory of Australia. Clinical Infectious Diseases, 14(1), 83-91.
18. Arroyo L.A., Mateos. I., Gonzalez V., Aznar J. (2009). In Vitro Activities of Tigecycline, Minocycline, and Colistin-Tigecycline Combination against Multi- and Pandrug-Resistant Clinical Isolates of Acinetobacter baumannii Group. Antimicrobial Agents Chemotherapy, 53(3), 1295-1296.
19. Berenbaum M.C. (1978). A Method for Testing for Synergy with Any Number of Agents Journal of Infectious Diseases, 137(2), 122-130.
20. Bergogne-Berezin E., Towner K.J. (1996). Acinetobacter spp. as Nosocomial Pathogens: Microbiological, Clinical, and Epidemiological Features. Clinical Microbiological Reviews,148-165.
21. Berlau J., Aucken. H. M., Houang E., Pitt T.L. (1999). Isolation of Acinetobacter spp. including A. baumannii from vegetables: implications for hospital-acquired infections. Journal of Hospital Infection, 42, 201-204.
22. Bonapace C.R., White. R. L., Friedrich L.V., Bosso J.A. (2000). Evaluation of antibiotic synergy against Acinetobacter baumannii: a comparison with Etest, time-kill, and checkerboard methods. Diagnostic Microbiology and Infectious Disease 38, 43-50.
23. Chen H., Lai C., Chan Y. & other authors (2005). Clinical significance of Acinetobacter species isolated from cerebrospinal fluid. Scandinavian Journal of Infectious Diseases, 37, 669-675.
24. Cisneros J.M., Rodriguez-Bano J. (2002). Nosocomial bacteremia due to Acinetobacter baumannii: epidemiology, clinical features and treatment. Clinical Microbiology and Infection, 8(11), 687–693.
25. Cisneros J.M., Reyes. M. J., Pachón J., & other authors (1996). Bacteremia due to Acinetobacter baumannii: epidemiology, clinical findings, and prognostic features. Clinical Infectious Diseases, 22(6), 1026-1032.
26. CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that grow aerobically; Approved Standard - Seventh Edition. CLSI document M7-A7. Wayne, PA. Clinical Laboratory Standards Institute; 2006.
27. CLSI. Performance Standard for antimicrobial susceptibility testing; Twentieth informational supplement. CLSI document M100-S20. Wayne, PA: Clinical Laboratory Standards Institute; 2010.
28. Corrigan K.M., Harmis N. Y., Willcox M.D.P. (2001.). Association of Acinetobacter species with contact lens–induced adverse responses. Cornea, 20(5),463-466.
29. Dijkshoorn L, Nemea A., Seifert H. (2007). An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nature reviews: Microbiology, 5,
30. Eliopoulos G.M., Moellering R.C., Jr. (1982). Antibiotic synergism and antimicrobial combinations in clinical infections Reviews of Infectious Diseases, 4(2), 282-293.
31. Fagon J., Chastre J., Hance A.J., & other authors. (1993). Nosocomial pneumonia in ventilated patients: A cohort study evaluating attributable mortality and
hospital stay. American Journal of Medicine 94, 281-288.

32. Falagas M. E., Karveli E. A., Kelesidis I. and Kelesidis T. (2007). Community-acquired Acinetobacter infections EUR J Clin Microbiol Infect Dis 26, 857-868.

33. Fournier P.E., Richet. H. (2006). The epidemiology and control of Acinetobacter baumannii in health care facilities. Clinical Infectious Diseases 42, 692-699.

34. Garnacho-Montero J., Ortiz-Leyba C., Herrera-Melero I., & other authors. (2008). Mortality and morbidity attributable to inadequate empirical antimicrobial therapy in patients admitted to the ICU with sepsis: a matched cohort study. Journal of Antimicrobial Chemotherapy 61, 436-441.

35. Gaynes R., Edwards J. R. (2005). Overview of nosocomial infections caused by Gram-negative bacilli. Clinical Infectious Diseases 41, 848-854.

36. Getchell-White S.I., Donowitz L. G., Gröschel D.H.M. (1989). The inanimate environment of an intensive care unit as a potential source of nosocomial bacteria: evidence for long survival of Acinetobacter calcoaceticus. Infection Control and Hospital Epidemiology, 10(9), 402-407.

37. Giamarellos-Bourboulis E.J., Xiouchaki E., Giamarello H. (2001). Interactions of colistin and rifampin on multidrug-resistant Acinetobacter baumannii. Diagnostic Microbiology and Infectious Disease 40, 117-120.

38. Giamarello H., Antoniadou A., Kanellakopoulou K. (2008). Acinetobacter baumannii: a universal threat to public health? International Journal of Antimicrobial Agents 32, 106-119.

39. Gordon N.C., Wareham. D. W. (2009). A review of clinical and microbiological outcomes following treatment of infections involving multidrug-resistant Acinetobacter baumannii with tigecycline. Journal of Antimicrobial Chemotherapy, 63, 775-780.

40. Gradon J.D., Chapnick. E. K., Lutwick L. I. (1992). Infective endocarditis of a native valve due to Acinetobacter: Case report and review. Clinical Infectious Diseases, 14(5), 1145-1148.

41. Groth G., Sirok. A., Gadea P., & other authors (2006). Shiga toxin 2-producing Acinetobacter haemolyticus associated with a case of bloody diarrhea. Journal of Clinical Microbiology,44(10), 3838-3841.

42. Haddad F.A., Van Horn.K., Carbonaro C., & other authors (2005). Evaluation of antibiotic combinations against multidrug-resistant Acinetobacter baumannii using the E-test. European Journal of Clinical Microbiology and Infectious Diseases 24(577), 577-579.

43. Hogg G. M., Barr J. G. a. Webb. C. H. (1998). In-vitro activity of the combination of colistin and rifampicin against multidrug-resistant strains of Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy 41, 494-496.

44. Ikonomidis A., Pournaras S., Maniatis A.N. (2006). Discordance of meropenem versus imipenem activity against Acinetobacter baumannii. International Journal of Antimicrobial Agents 28, 374-378.

45. Jiménez-Mejías M.E., Pachón J., Becerril B., & other authors (1997). Treatment of multidrug-resistant Acinetobacter baumannii meningitis with Ampicillin/ Sulbac-tam. Clinical Infectious Diseases, 24(5), 932-935.

46. Johnson E. N., Burns T. C., Hayda R.A., & other authors (2007). Infectious complications of open type III tibial fractures among combat casualties. Clinical Infectious Diseases, 45, 409-415.

47. Joly-Guillou M.L. (2005). Clinical impact and pathogenicity of Acinetobacter. Clinical Microbiology And Infection, 11, 868-873.
48. Jones R.N., Sader H. S., Fritsche T.R., Rhomberg P.R. (2006). Carbapenem Susceptibility Discords among Acinetobacter Isolates. Clinical Infectious Diseases 42, 158.

49. Kallel H., Bahloul M., Hergafi L., & other authors (2006). Colistin as a salvage therapy for nosocomial infections caused by multidrug-resistant bacteria in the ICU International Journal of Antimicrobial Agents, 28, 366-369.

50. Karageorgopoulos D. E., Falagas. M. E. (2008). Current control and treatment of multidrug-resistant Acinetobacter baumannii infections Lancet Infectious Diseases 8, 751-762.

51. Kau H., Tsai C., Kao S., & other authors (2002). Corneal ulcer of the side port after phacoemulsification induced by Acinetobacter baumannii. Journal of Cataract and Refractive Surgery, 28, 895-897.

52. Kim M., Peleg A. Y., Lodise T.P., & other authors (2009). Management of meningitis due to antibiotic-resistant Acinetobacter species. Lancet Infectious Diseases 9, 245-255.

53. Klastersky J., Zinner S. H. (1982). Synergistic combinations of antibiotics in Gram-negative bacillary infections. Reviews of Infectious Diseases, 4(2), 294-301.

54. Ko K.S., Yoeun Suh J., Tae Kwon K., & other authors (2007). High rates of resistance to colistin and polymyxin B in subgroups of Acinetobacter baumannii isolates from Korea Journal of Antimicrobial Chemotherapy 60, 1163-1167.

55. Kocazeybek B.K., Arabaci U., Erenturk S., Akdur H. (2002). Investigation of various antibiotic combinations using the E-test method in multiresistant Pseudomonas aeruginosa strains. Chemotherapy 48, 31-35.

56. Krcmery V., Demitrovicova A., Hricak V., Kisac P. (2010). Endocarditis due to Gram-negative bacteria. International Journal of Infectious Diseases, 2010(1), 1.

57. La Scola B., Raoult D. (2004). Acinetobacter baumannii in human body Resurgence Emerging Infectious Diseases, September, 10 (9), 1671-1673.

58. Leung W., Chu C., Tsang K., & other authors (2006). Fulminant community-acquired Acinetobacter baumannii pneumonia as a distinct clinical syndrome. Chest, 129, 102-108

59. Levin A.S., Levy C. E., Edison A., & other authors (2003). Severe nosocomial infections with imipenem-resistant Acinetobacter baumannii treated with ampicillin/sulbactam International Journal of Antimicrobial Agents 21, 58-62.

60. Lewis R.E., Diekema D.J., Messer S.A., & other authors (2002). Comparison of E-test, chequerboard dilution and time-kill studies for the detection of synergy or antagonism between antifungal agents tested against Candida species. Journal of Antimicrobial Chemotherapy 49, 345-351.

61. Li J., Rayner C. R., Nation R. L., & other authors (2006). Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 50(9), 2946-2950

62. Lortholary O., Fagon. J., Hoi A.B., & other authors (1995). Nosocomial acquisition of multiresistant Acinetobacter baumannii: risk factors and prognosis. Clinical Infectious Diseases, 20(4), 790-796.

63. Lu C., Chang W., Chuang Y., Chang H. (1999). Gram-negative bacillary meningitis in adult post-neurosurgical patients. Surgical Neurology 43(52), 438-444.

64. Manikal V.M., Landman D., Saurina G., & other authors (2000). Endemic carbapenem-resistant Acinetobacter species in Brooklyn, New York: citywide prevalence, Interinstitutional spread, and relation to antibiotic usage. Clinical Infectious Diseases 31, 101-106.

65. Manno G., Ugolotti E., Belli M. L., & other authors (2003). Use of the E test to
Assess Synergy of Antibiotic Combinations Against Isolates of Burkholderia cepacia-Complex from Patients with Cystic Fibrosis. European Journal of Clinical Microbiology and Infectious Diseases 22,28-34.

66. Maragakis L.L., Perl T. M. (2008). Acinetobacter baumannii: epidemiology, antimicrobial resistance and treatment options. Clinical Infectious Diseases 46, 1254-1263.

67. Matthaio D.K., Michalopoulos A., Rafailidis P.I., & other authors (2008). Risk factors associated with the isolation of colistin-resistant Gram-negative bacteria: A matched case-control study. Critical Care Medicine 36(3), 807-811.

68. McDonald L.C., Banerjee S. N., Jarvis W.R. (1999). Seasonal Variation of Acinetobacter Infections: 1987–1996. Clinical Infectious Diseases 29,1133-1137.

69. Moellering R.C., (1979). Antimicrobial Synergism: An Elusive Concept. Journal of Infectious Diseases, 140(4), 639-641.

70. Montero A., Ariza J., Corbella X., & other authors (2004). Antibiotic combinations for serious infections caused by carbapenem-resistant Acinetobacter baumannii in a mouse pneumonia model Journal of Antimicrobial Chemotherapy 54, 1085-1091.

71. Murray C.K. (2006). Bacteriology of war wounds at the time of injuryMilitary Medicine, 171(9), 826-829.

72. Navon-Venezia S., Leavitt A., Carmeli Y. (2007). High tigecycline resistance in multidrug-resistant Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy 59, 772-774.

73. Norden C.W., Wentzel H., Keleti E. (1979). Comparison of techniques for measurement of in vitro antibiotic synergism. Journal of Infectious Diseases, 140(4), 629-633

74. Olut A.I., Erkek E. (2005). Early prosthetic valve endocarditis due to Acinetobacter baumannii: A case report and brief review of the literature. Scandinavian Journal of Infectious Diseases,1, 919-921

75. Oncul O., Keskin O., Acar H.V., & other authors (2002). Hospital-acquired infections following the 1999 Marmara earthquake. Journal of Hospital Infection, 51, 47-51.

76. Pachon-Ibanez M.E., Fernandez-Cuenca C. F.,Docobo-Perez F.,& other authors(2006).Prevention of rifampicin resistance in Acinetobacter baumannii in an experimental pneumonia murine model, using rifampicin associated with imipenem or sulbactam. Journal of Antimicrobial Chemotherapy 58, 689-692.

77. Pantopoulou A., Giamarellos-Bourboulis. E. J., Raftogannis M., & other authors (2007).

78. Colistin offers prolonged survival in experimental infection by multidrug-resistant Acinetobacter baumannii: the significance of co-administration of rifampicin. International Journal of Antimicrobial Agents 29, 51-55.

79. Paolino K., Erwin D., Padharia V., & other authors (2007). In vitro activity of colistin against multidrug-resistant Gram-negative bacteria isolated at a major Army hospital during the military campaigns in Iraq and Afghanistan. Clinical Infectious Diseases, 45, 140-141.

80. Park Y.K., Jung S., Park K., & other authors (2009). Independent emergence of colistin-resistant Acinetobacter spp. isolates from Korea. Diagnostic Microbiology and Infectious Disease 64, 43-51.

81. Peleg A.Y., Seifert H., Paterson D.L. (2008). Acinetobacter baumannii: Emergence of a successful pathogen. Clinical Microbiology Reviews 21(3), 538-582.

82. Peleg A.Y., Potoski B. A., Rea R., & other authors (2007). Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary
report. Journal of Antimicrobial Chemotherapy, 59, 128-131.

83. Petersen K, Riddle M. S., Danko J.R., & other authors (2007). Trauma-related Infections in Battlefield Casualties From Iraq. Annals of Surgery, 245(5), 803–811.

84. Principe L., D’Arezzo S., Capone A., Petrosillo N., Visca P. (2009). In vitro activity of tigecycline in combination with various antimicrobials against multidrug resistant Acinetobacter baumannii. Annals of Clinical Microbiology and Antimicrobials 8(18), 1-10.

85. Rhomberg P.R., Jones R. N. (2003). Antimicrobial spectrum of activity for meropenem and nine broad spectrum antimicrobials: report from the MYSTIC Program (2002) in North America. Diagnostic Microbiology and Infectious Disease 47, 365-372.

86. Rodriguez-Baño J., Cisneros J. M., Fernández-Cuenca F.R. & other authors (2004). Clinical features and epidemiology of Acinetobacter baumannii colonization and infection in Spanish hospitals. Infection Control and Hospital Epidemiology, 25(10), 819-824.

87. Saballs M, Pujol M., Tubau F. & other authors (2006). Rifampicin/imipenem combination in the treatment of carbapenem resistant Acinetobacter baumannii infections. Journal of Antimicrobial Chemotherapy, 58, 697-70090.

88. Schwalbe R., Steele-Moore L., Goodwin A.C. (Ed.). (2007). Antimicrobial Susceptibility Testing Protocols. New York: CRC Press.

89. Scott P., Deye G., Srinivasan A., & other authors (2007). An outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus Complex infection in the US Military health care system associated with military operations in Iraq. Clinical Infectious Diseases 44, 1577-1584.

90. Seifert H., Dijkshoorn L., Gerner-smidt P., & other authors (1997). Distribution of Acinetobacter Species on Human Skin: Comparison of Phenotypic and Genotypic Identification Methods. Journal of Clinical Microbiology 35(11), 2819-2825.

91. Sherertz R.J., Sullivan M. L. (1985). An Outbreak of Infections with Acinetobacter calcoaceticus in Burn Patients: Contamination of patients' mattresses. Journal of Infectious Diseases, 151(2), 252-258.

92. 90.Siegman-IgraY,Bar-Yosef S.,GoreaA., Avram J.(1993).Nosocomial Acinetobacter meningitis secondary to invasive procedures: Report of 25 cases and review. Clinical Infectious Diseases 17(5), 843-849.

93. Smolyakov R., Borer A., Riesenber k K., & other authors (2003). Nosocomial multi-drug resistant Acinetobacter baumannii bloodstream infection: risk factors and outcome with ampicillin- sulbactam treatment. Journal of Hospital Infection 54, 32-38.

94. Song J. Y., Cheong H. J., Lee J., & other authors (2009). Efficacy of monotherapy and combined antibiotic therapy for carbapenem-resistant Acinetobacter baumannii pneumonia in an immunosuppressed mouse model. International Journal of Antimicrobial Agents 33, 33-39.

95. Song J.Y., Lee J., Heo J. Y., & other authors (2008). Colistin and rifampicin combination in the treatment of ventilator-associated pneumonia caused by carbapenem resistant Acinetobacter baumannii. International Journal of Antimicrobial Agents 32, 281-283.

96. Souli M., Rekatsina. P.D., Chryssouli Z., & other authors (2009). Does the activity of the combination of imipenem and colistin in vitro exceed the problem of resistance in metallo-ß- lactamase-producing Klebsiella pneumoniae...
isolates? Antimicrobial Agents And Chemotherapy, 53(5), 2133-2135.
97. Starakis I., Blikas A., Siagris D., & other authors (2006). Prosthetic valve endocarditis caused by Acinetobacter lwoffi. A case report and review. Cardiology in Review 14, 45-49.
98. Swenson J. M., Killgore G. E., Tenover F.C. (2004). Antimicrobial susceptibility testing of Acinetobacter spp. by NCCLS broth microdilution and disk diffusion methods. Journal of Clinical Microbiology, 42(11), 5102-5108.
99. Thamlikitkul V., Tiengrim S., Tribuddharat C. (2007). Comment on: high tigecycline resistance in multidrug-resistant Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy 10, 177-178.
100. Thornsberry C., Hill. B. C., Swenson J.M., McDougal L.K. (1983). Rifampin: Spectrum of Antibacterial Activity. Reviews of Infectious Diseases, 5, Supplement 3, S412-S417.
101. Timurkaynak F., Can F., Azap O.K., & other authors (2006). In vitro activities of non-traditional antimicrobials alone or in combination against multidrug-resistant strains of Pseudomona aeruginosa and Acinetobacter baumannii isolated from intensive care units. International Journal of Antimicrobial Agents 27, 224-228.
102. Towner K.J. (2009). Acinetobacter: an old friend, but a new enemy. Journal of Hospital Infection 73, 355-363.
103. Tripodi M., Durante-Mangoni E., Fortunato R., & other authors (2007). Comparative activities of colistin, rifampicin, imipenem and sulbactam/ampicillin alone or in combination against epidemic multidrug-resistant Acinetobacter baumannii isolate producing OXA-58 carbapenemases. International Journal of Antimicrobial Agents 30, 537-540.
104. Rahul kamble and other authors (2015). Acinetobacter species in health care setting: clinical significance and antimicrobial sensitivity. International journal of current microbiology and applied sciences, volume 4 page no 861-869.
105. Deveshni Reddy & other authors (2014). Acinetobacter Baumannii Infections in Paediatric ICU of a tertiary hospital in south Africa: RDDV04
106. Namita jaggi & other authors (2012). Acinetobacter isolates intertiary health care setting: clinical significance and antimicrobial sensitivity. Journal of microbiology and current disease, volume 2 page no 57-63.
107. R.B. Patwardhan, P.K. Dhakephalkar & Authors (2008): A study on nosocomial pathogens in ICU with special reference to multiresistant Acinetobacter baumannii harbouring multiple plasmids; Indian j med res page no 178-187.
108. B N Chaudhuri , V balaji , R iyer & U Shekhar & Authors (2011): Incidence of ESBL Producers amongst Gram-negative Bacilli Isolated from Intra-abdominal Infections across India (Based on SMART Study. 2007 Data) the journal of association of india
109. Azinun Nahar , Saheda Anwar & Authors (2012): Isolation of acinetotoacter and their antimicrobial resistance pattern in an ICU of a tertiary care hospital in Dhaka, Bangladesh. BJMM; 06(01): 03-06.
110. Ali faisal saleem, Imran ahmed & Authors (2010): Pan-resistant Acinetobacter infection in neonates in Karachi, Pakistan: J Infect Dev Ctries 2010;4(1):030-037.