Genetics in Idiopathic Pulmonary Fibrosis Pathogenesis, Prognosis, and Treatment

Amarpreet Kaur1, Susan K. Mathai2* and David A. Schwartz2

1 Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO, United States,
2 Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver School of Medicine, Aurora, CO, United States

Idiopathic pulmonary fibrosis (IPF), the most common form of idiopathic interstitial pneumonia (IIP), is characterized by irreversible scarring of the lung parenchyma and progressive decline in lung function leading to eventual respiratory failure. The prognosis of IPF is poor with a median survival of 3–5 years after diagnosis and no curative medical therapies. Although the pathogenesis of IPF is not well understood, there is a growing body of evidence that genetic factors contribute to disease risk. Recent studies have identified common and rare genetic variants associated with both sporadic and familial forms of pulmonary fibrosis, with at least one-third of the risk for developing fibrotic IIP explained by common genetic variants. The IPF-associated genetic loci discovered to date are implicated in diverse biological processes, including alveolar stability, host defense, cell–cell barrier function, and cell senescence. In addition, some common variants have also been associated with distinct clinical phenotypes. Better understanding of how genetic variation plays a role in disease risk and phenotype could identify potential therapeutic targets and inform clinical decision-making. In addition, clinical studies should be designed controlling for the genetic backgrounds of subjects, since clinical outcomes and therapeutic responses may differ by genotype. Further understanding of these differences will allow the development of personalized approaches to the IPF management.

Keywords: idiopathic pulmonary fibrosis, MUC5B, pulmonary fibrosis, interstitial lung disease, telomeres

INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is the most common form of the idiopathic interstitial pneumonias (IIPs). IPF is characterized by progressive scarring of the lung parenchyma, which leads to dyspnea and declining pulmonary function and eventually to respiratory failure. The median survival after diagnosis of IPF is 3–5 years (1). In 2011, the American Thoracic Society/European Respiratory Society issued a new classification scheme in which they defined IPF as a specific form of chronic, progressive fibrosing interstitial pneumonia of unknown etiology, occurring mainly in older adults and associated with radiological and/or histopathological pattern of usual interstitial pneumonia (UIP) (2). The prognosis of IPF remains poor despite recently approved medical therapies (3, 4).

Numerous epidemiologic and genetic studies illustrate that genetic and environmental factors contribute to the risk of IPF (5, 6). The most convincing early evidence to support a genetic basis for IPF came from twin studies and studies focusing on familial clustering of the disease, a syndrome termed familial interstitial pneumonia (FIP) (7–9). Recent studies have identified several specific
genetic variants that confer risk for development of IPF (10, 11). Discovery of disease-associated genetic variants has improved our understanding of the ways inherited risk factors influence disease risk. However, fundamental questions persist regarding the ways in which complex genetic risk factors interact with environmental exposures to influence disease pathogenesis.

In this review, we briefly discuss the current literature regarding the role of common and rare variants in disease pathogenesis and prognosis and how this may influence clinical management in the future. Genetic variants and loci associated with IPF involve abnormalities in alveolar stability, host defense, cell–cell barrier function, and cell senescence, all of which are all thought to contribute to the pathogenesis of IPF. We conclude by discussing how treatment decisions might be affected by these findings and how better understanding of genetic variation and disease could allow for a more personalized approach to the treatment of IPF.

Rare and Common Variants Associated with IPF

Genetic variants, both rare and common, are associated with sporadic and familial forms of pulmonary fibrosis. Numerous rare variants (those with minor allele frequency of <0.1%) play a role in FIP (≥2 members of the same family with interstitial pneumonia; FIP) (Table 1). Familial studies have identified FIP-associated variants related to alveolar stability [SFTPC (12, 13), SFTP A1(14), SFTP A2(15), ATP-binding cassette-type 3 (ABCA3) (16), and NAF1 (17)] as well as five genes linked to telomere biology [TERT (18), TERC (18), DKC1 (19), TINF2 (7, 20), RTEL1 (21–23), and PARN] (24).

Common variants (defined as minor allele frequency of >5%) also appear to play a role in FIP risk (1). The most widely replicated risk variant (rs35705950) is a common variant with a large effect size and therefore accounts for a substantial risk in IPF. In fact, it has been estimated the MUC5B promoter variant accounts for 30% of the risk of developing IPF (41, 51).

Alveolar Stability

Surfactant proteins are synthesized in the endoplasmic reticulum (ER) of alveolar type II cells (AECII) and transported to and stored in the lamellar bodies until secretion into the alveolar space (25, 26). Rare variants identified in the genes encoding surfactant protein C and A (SFTPC, SFTP A1, and SFTP A2) have been associated with pulmonary fibrosis (53). SP-C is a small hydrophobic protein produced by AECII s that requires the C-terminus for initial folding steps in the ER before secretion into the alveolar space (26). SFTP C rare variants are mutations that lie in the BRICHOS domain within the C-terminus of SP-C. The BRICHOS domain is critical for proper folding and trafficking (5, 26). Coding mutations in this region lead to accumulation of misfolded protein resulting in increased ER stress and activation of the unfolded protein response (26, 54). Mutations in the gene that encodes surfactant protein A (SFTP A2) have also been linked to FIP (15) and have been associated with increased ER stress as well (28, 55). Rare variants have also been identified in another gene involved with surfactant processing, ABCA3, in FIP families (16, 56). ABCA3 is a transporter protein mainly expressed in AECII s and is involved in the transport of lipids across plasma membranes (29, 57). In AECII s, ABCA3 mutations cause abnormal processing, trafficking, and functionality of the ABCA protein, leading to retention of lipids in the ER, ER stress, and apoptotic signaling (30). These mutations are expressed in a recessive manner, where as mutations in SFTP A2 and SFTP C are dominantly expressed (56).

In 2011, Lawson et al. (58) demonstrated that fibrotic remodeling in response to low-dose bleomycin was more severe in mice in which ER stress was induced, either through mutant SFTP C in AECII s or by administration of tunicamycin, a chemical known to induce ER stress. In addition to effects on apoptosis, ER stress may induce biological pathways involved in cell differentiation (59, 60) through which epithelial cells acquire phenotypic characteristics of mesenchymal cells, a process known as...
Risk allele(s)	Gene	Gene function	Observed effect of risk variant on survival in iPF	Reference
rs408392	IL1RN	Inhibitor of pro-inflammatory effect of IL-1alpha and IL-1beta	(27, 42)	
rs419598	IL8	Pro-inflammatory cytokine	Reduced	(43, 44)
rs2637988			Reduced	(10)
rs4073			Reduced	(10, 27, 46, 47)
rs2227307			Reduced	(48)
rs2609255	FAM13A	Signal transduction		(10)
rs3775291	TLK3	Pathogen recognition and activation of innate immunity	Reduced	(10)
rs2736100	TERT	Enzyme in telomerase complex maintaining telomere length	Reduced	(10, 27, 46, 47)
rs2395655	HLA-DRB1	Major histocompatibility complex—immune system		(10)
rs2076295	DSP	Tightly links adjacent cells		(10)
rs11191865	OBFC1	Stimulates the activity of DNA polymerase-alpha-primase	Reduced	(10)
rs35705950	MUCSB	Influence on rheological properties of airway mucus, mucociliary transport, and airway defense	Improved	(10, 11, 27, 41, 49, 50)
rs7934606	MUC2	Mucin production		(10)
rs111521887	TOLLIP	Regulator of innate immune responses mediated by toll-like receptor and the transforming growth factor β signaling pathway	Reduced	(11)
rs5743894				
rs2743890				
rs1278769	ATP11A	Phospholipid translocation		(10)
rs7144383	MDGA2	Cell-cell interaction		(11)
rs1981997	MAPT	Promotes microtubule assembly and stability		(10)
rs17690703	SSP2L2C	Protein cleavage		(11)
rs12610495	DPP9	Cell-cell adhesion		(10)
rs1800470	TGFβ1	Set of peptides that controls proliferation, differentiation, and other functions in many cell types		(11)

Cell Senescence

Telomeres are repetitive nucleotide sequences at the ends of chromosomes that protect them from progressive shortening during the normal cell replication process (62). Telomeres restore telomere length and consist of two major components: telomerase reverse transcriptase (encoded by TERT) and telomerase RNA (encoded by TERC) (18, 37). Mutations in telomerase components were initially identified in the setting of dyskeratosis congenita (DKC), a rare inherited syndrome of telomere shortening characterized by oral leukoplakia, abnormal skin hyperpigmentation, and dystrophic nails, with pulmonary fibrosis present in about 20% of patients; bone marrow failure can also be a complication of DKC (32). More recent studies have found an association between numerous genes in the telomerase maintenance pathway and FIP, including those related to catalytic activity (TERT and TERC) (7, 32) and telomere stabilization (DKC1, PARN, and RTELI) (19, 21). These pathogenic variants cause dysfunction of telomerase activity leading to accelerated telomere shortening (32, 63) in peripheral blood and the lung (32–34). Thus far, TERT variants are the most frequently identified rare variants associated with pulmonary fibrosis; they are found in ~15% of FIP (7, 32) and in 1–3% of sporadic cases (34). A recent whole-exome sequencing study identified TERT, RTELI, and PARN variants previously associated with FIP to be associated with sporadic IPF, further supporting the role of telomere dysfunction in IPF pathogenesis and highlighting the genetic commonalities between FIP and sporadic IPF (64).

Telomere dysfunction has further been implicated in IPF as evidence has suggested that short telomeres are not exclusively related to telomerase rare variant mutations. One study found that 25% of sporadic IPF subjects and 24% of familial IPF subjects, without identified mutations for TERT or TERC, had short telomeres. In addition, all subjects within this specific study who...
had a mutation in TERT or TERC and pulmonary fibrosis also had short telomeres (33).

The mechanisms by which telomere defects provoke lung disease are not fully understood. Defects in telomere maintenance have been linked to epithelial cell senescence and an impaired response to epithelial injury (65). During successive cycles of cell division, telomere shortening occurs and eventually leads to activation of the DNA-damage pathways, which result in apoptosis or senescence (32). In certain situations, cellular senescence is appropriate, but premature senescence can impair lung epithelial homeostasis and lead to stimulation of a lung remodeling response (66), resulting in fibrotic lesions (63). One study demonstrated increased epithelial cell senescence in IPF lung tissue by measuring B-galactosidase staining (a marker of senescence) and found that B-galactosidase staining was positive in all IPF cases but was not present in normal lung (67) supporting a role for senescent epithelial cells in IPF pathogenesis. Future studies are necessary to clarify the precise role of cellular senescence in lung injury response and fibrotic remodeling in IPF.

Host Defense

In 2011, genome-wide linkage analysis and targeted genetic sequencing identified a single nucleotide polymorphism (SNP) on chromosome 11 that was associated with both FIP and IPF (41). The SNP, rs35705950, was found to be a gain-of-function variant associated with increased expression of MUC5B. Heterozygous (GT) and homozygous (TT) individuals had an odds ratio for developing disease of 6.8 and 20.8 for FIP, and 9.0 and 21.8 for IPF, respectively, supporting the strength of the SNP's role for developing disease of 6.8 and 20.8 for FIP, and 9.0 and 21.8 for IPF, and 9.0 and 21.8 for IPF

The SNP, rs35705950, was found to be a gain-of-function molecule, and IPF patients and associated with greater impairment of gas exchange (89). Recently, a genome-wide imputation-based association analysis identified two risk alleles, DRB1*15:01 and DQB1*06:02, found to be associated with fibrotic idiopathic interstitial pneumonias (48). Although not definitive, HLA association with IPF may suggest that autoimmunity may play a role in pulmonary fibrosis; further characterizing the pathophysiologic connection between this genetic variation and disease this remains an area of active investigation.

Epithelial Integrity

The 2013 GWAS by Fingerlin et al. (10) identified multiple susceptibility loci for fibrotic IIP, including two cell-cell adhesion molecules, DSP and DPP9. DSP gene expression was increased in lung tissue of individuals with IIP and varied by genotype for a variant in intron 5 (10, 91). DSP encodes for desmoplakin, a critical component of desmosome structure important in cell-cell adhesion. Desmosomes mechanically link cells and stabilize tissue architecture. In addition, they are involved in the regulation of cell proliferation, differentiation, migration, and apoptosis (92). The association between DSP variants and IPF, as well as the relationship between DSP variants and lung expression of this gene, was confirmed more recently by Mathai et al. (91) IPF lung has higher gene expression of DSP. However, IPF subjects with the rs2076295 variant were found to have lower DSP expression, suggesting that differential DSP expression may play a role in a subset or sub-phenotype of IPF (91). This association further implicates the airway epithelium in the pathogenesis of IPF, as DSP appears to be localized primarily to the airway epithelia and not to alveolar epithelial cells. The role of DSP in IPF pathogenesis remains an area of active investigation.
PROGNOSIS

Genetic variants, both rare (telomere related) and common (MUC5B and TOLLIP), may play a role in predicting disease outcomes and have prognostic implications. Short telomeres (<10th percentile adjusted for age) have been identified in a considerable portion of IPF patients, regardless of genetic mutations (33, 34). Patients with shorter telomeres have worse transplant-free survival in multiple independent cohorts (46, 93). Furthermore, a small observational study suggested that increased rates of bone marrow suppression and medication-related complications following lung transplantation are more common in IPF patients with telomerase mutations and/or short telomeres (94). Telomere length testing has been suggested as a component of pretransplant workup in IPF patients, although further prospective study is required before these observations can be utilized routinely in patient care (95).

Common polymorphisms, MUC5B and TOLLIP, have also shown promise as prognostic indicators (11, 50). A retrospective study of two separate IPF cohorts demonstrated improved survival in patients with the rs35709590 variant (49). In addition, carriers of at least 1 T allele of MUC5B polymorphism were found to have at least 50% improved survival and better lung function compared to those with the GG genotype (49). These findings were consistent with previous studies, which demonstrated an association between MUC5B variant and less severe pathological changes (96) and slower decline in FVC (50). Similarly, a TOLLIP variant was also associated with differential survival. The minor allele at rs5743890 (G) in TOLLIP is protective and associated with reduced susceptibility to IPF. However, those who developed IPF despite having the protective allele had increased mortality (11). At this time, there are no clinical guidelines suggesting genetic testing in the routine care and counseling of IPF patients (95), and further research is needed to identify the clinical implications of these preliminary findings.

TREATMENT

Approaches to therapy in IPF have been limited by the poorly understood pathophysiology of this progressive disease. In addition, the unpredictable clinical course of IPF, lack of validated biomarkers, and low clinical predictive value to animal models (97) have been barriers to identifying therapies. Despite these challenges, recent advances in understanding the pathophysiology of IPF have allowed for identification of novel treatment targets. Currently, two available medications, pirfenidone (4) and nintedanib (3), have been shown to reduce the rate of lung function decline among IPF patients. However, neither approved drug is curative.

With survival-associated variants (e.g., MUC5B and TOLLIP) (74), it is possible that genotypes will define subtypes with differential responses to therapy. Identifying distinct sub-phenotypes in IPF may enable the application of targeted therapy on a pathway-specific basis. For example, it may be possible to use telomere length or TERT genotype to identify a group of patients who would benefit from telomere-directed therapy (95). Oldham and colleagues (98) found that some carriers with TOLLIP polymorphism may benefit from treatment with oral N-acetylcysteine (NAC). More specifically, of those that received NAC, subjects with TT genotype for rs3750920 (TOLLIP) had decreased risk for the trial’s composite end point of death, hospitalization, or 10% decrement in forced vital capacity. In contrast, subjects with the CC genotype for rs3750920 had increased risk for the composite endpoints of the NAC intervention study (98). While NAC has not been shown to be effective in IPF in aggregate (99), it is possible that patients have differential response to this therapy (or other therapies) based on TOLLIP genotype (100). More prospectively designed studies are needed before genetic variation can be utilized routinely when choosing therapies for individual patients.

CONCLUSION

This review focuses on the relationship between genetic variants and IPF. In addition to sequence variation, epigenetic changes (such as DNA methylation) (101–104) and gene expression changes are associated with disease risk and phenotype (103, 105, 106). Further studies are necessary to better understand the relationships between genetic variation and epigenetic and gene expression variation in terms of disease risk and phenotype.

Given the growing body of evidence that genetic variants influence disease risk as well as disease progression and clinically meaningful patient outcomes, it will be critical to account for genetic variation in future clinical trials. Such prospective studies and analyses that focus on the relationship between genotype and therapeutic response will be crucial in personalizing and improving IPF therapy.

AUTHOR CONTRIBUTIONS

AK and SM researched and wrote first draft of manuscript; DS edited and revised document. All the authors read and approved final version of manuscript.

FUNDING

This manuscript was supported by the National Institutes of Health NIH-NHLBI R01-HL097163.
10. Fingerlin TE, Murphy E, Zhang W, Peljto AL, Brown KK, Steele MP, et al. Telomerase and idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol (2006) 35(1):107–14. doi:10.1165/rcmb.2005-0505OC

9. Javaheri S, Lederer DH, Pella JA, Mark GJ, Levine BW. Idiopathic pulmonary fibrosis and causes dyskeratosis congenita. J Clin Invest (2015) 125(5):2151–60. doi:10.1172/JCI78963

8. Maitra M, Wang Y, Gerard RD, Mendelson CR, Garcia CK. Surfactant protein A2 mutations associated with pulmonary fibrosis lead to protein instability and endoplasmic reticulum stress. J Biol Chem (2010) 285(29):22103–13. doi:10.1074/jbc.M110.112467

7. Tsakiri KD, Cronkhite JT, Kuan PJ, Xing C, Raghu G, Weissler JC, et al. Heterozygous RTEL1 mutations are associated with familial interstitial pneumonia. Proc Natl Acad Sci U S A (2012) 109(20):7783–8. doi:10.1073/pnas.1208112109

6. Daccord C, Maher TM. Recent advances in understanding idiopathic pulmonary fibrosis. Dis Model Mech (2013) 6(1):9–17. doi:10.1242/dmm.010736

5. Kropski JA, Lawson WE, Young LR, Blackwell TS. Genetic studies provide clues on the pathogenesis of idiopathic pulmonary fibrosis. Dis Model Mech (2013) 6(1):1–9. doi:10.1242/dmm.010736

4. Nathan N, Giraud V, Picard C, Nunes H, Dastot-Le Moal F, Copin B, et al. Rare variants in RTEL1 are associated with familial interstitial pneumonia and causes dyskeratosis congenita. J Clin Invest (2015) 125(5):2151–60. doi:10.1172/JCI78963

3. Kropski JA, Mitchell DB, Markin C, Polosukhin VV, Choi L, Johnson JE, et al. Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita. Am J Physiol Lung Cell Mol Physiol (2000) 279(6):L1191–8.

2. Horowitz D, et al. Peripheral blood proteins predict mortality in idiopathic pulmonary fibrosis. Chest (2012) 64(5):371–7. doi:10.1378/chest.11-2009

1. Kropski JA, Mitchell DB, Markin C, Polosukhin VV, Choi L, Johnson JE, et al. Novel dyskerin (DKC1) mutation is associated with familial interstitial pneumonia. Chest (2014) 146(1):e1–7. doi:10.1378/chest.13-2224

Kaur et al.

Genetics and IPF
pulmonary fibrosis. *Am J Respir Crit Care Med* (2012) 185(1):67–76. doi:10.1164/rccm.201101-0058OC

45. ODwyer DN, Armitage ME, Trujillo G, Cooke G, Keane MP, Fallon PG, et al. The toll-like receptor 3 L142F polymorphism and disease progression in idiopathic pulmonary fibrosis. *Am J Respir Crit Care Med* (2013) 188(12):1442–50. doi:10.1164/rccm.201304-0766OC

46. Stuart BD, Lee JS, Kozlita J, Noth I, Devine MS, Glazer CS, et al. Effect of telomere length on survival in patients with idiopathic pulmonary fibrosis: an observational cohort study with independent validation. *Lancet Respir Med* (2014) 2(7):557–65. doi:10.1016/S2213-2600(14)70124-9

47. Kropski JA, Blackwell TS, Loyd JE. The genetic basis of idiopathic pulmonary fibrosis. *Eur Respir J* (2015) 45:1717–27. doi:10.1183/09031936.00163814

48. Fingerlin TE, Zhang W, Yang IV, Ainsworth HC, Russell PH, Blumhagen RZ, et al. Genome-wide imputation study identifies novel HLA locus for pulmonary fibrosis and potential role for auto-immunity in fibrotic idiopathic interstitial pneumonia. *BMC Genet* (2016) 17(1):74. doi:10.1186/s12863-016-0377-2

49. Peljto AL, Zhang Y, Fingerlin TE, Ma SF, Garcia JG, Richards TJ, et al. Association between the MUC5B promoter polymorphism and survival in patients with idiopathic pulmonary fibrosis. *JAMA* (2013) 309(21):2232–9. doi:10.1001/jama.2013.3827

50. Stock CJ, Sato H, Fonseca C, Banya W, AS, Molyneaux PL, Adamali H, et al. Mucin 5B promoter polymorphism is associated with idiopathic pulmonary fibrosis but not with development of lung fibrosis in systemic sclerosis or sarcoidosis. *Thorax* (2013) 68(5):436–41. doi:10.1136/thoraxjnl-2012-201786

51. Evans CM, Fingerlin TE, Schwarz MI, Lynch D, Kurche J, Warg L, et al. Idiopathic pulmonary fibrosis: a genetic disease that involves mucociliary dysfunction of the peripheral airways. *Physiol Rev* (2016) 96(4):1567–91. doi:10.1152/physrev.00004.2016

52. Mathai SK, Yang IV, Schwarz MI, Schwartz DA. Incorporating genetics into the identification and treatment of idiopathic pulmonary fibrosis. *BMC Med* (2015) 13:191. doi:10.1186/s12916-015-0434-0

53. Lawson WE, Grant SW, Ambrosini V, Womble KE, Dawson EP, Lane KB, et al. Genetic mutations in surfactant protein C are a rare cause of sporadic cases of IPF. *Nature* (2014) 505(7483):412–6. doi:10.1038/nature12807

54. Horimana Y, Ohshimo S, Bonella F, Tanaka S, Ishikawa N, Hattori N, et al. MUC5B promoter polymorphism in Japanese patients with idiopathic pulmonary fibrosis. *Respirology* (2015) 20(3):439–44. doi:10.1111/resp.12466

55. Wang C, Zhuang Y, Guo W, Cao L, Zhang H, Xu L, et al. Mucin 5B promoter polymorphism and interstitial lung abnormalities. *Thorax* (2015) 70(7):557–65. doi:10.1136/thoraxjnl-2014-205320

56. Roy MG, Livraghi-Butrico A, Fletcher AA, McElwee MM, Evans SE, Boerner RM, et al. Muc5b is required for airway defence. *Respir Med* (2014) 15(43):15. doi:10.1016/j.rmed.2013.12.006

57. Seibold MA, Smith RW, Urbanek C, Groshong SD, Cosgrove GP, van Moorsel CHM. Effect of Muc5b promoter polymorphism on disease progression and survival in idiopathic interstitial pneumonias. *Respirology* (2016) 21(4):712–7. doi:10.1111/resp.12728

58. Wei R, Li C, Zhang M, Jones-Hall YL, Myers JL, Noth I, et al. Association between MUC5B and TERT polymorphisms and different interstitial lung disease phenotypes. *Transl Res* (2014) 163(5):494–502. doi:10.1016/j.trsl.2013.12.006

59. Peljo AL, Selman M, Kim DS, Murphy E, Tucker L, Pardo A, et al. The MUC5B promoter polymorphism is associated with idiopathic pulmonary fibrosis in a Mexican cohort but is rare among Asian ancestries. *Chest* (2015) 147(2):460–4. doi:10.1378/chest.14-0867

60. Shihore A, Žižkova V, Kocourková L, Petkova J, Bourou E, Nunes H, et al. Association study for 26 candidate loci in idiopathic pulmonary fibrosis patients from four European populations. *Front Immunol* (2016) 7:274. doi:10.3389/fimmu.2016.00274

61. Seibold MA, Smith RW, Urbanek C, Groshong SD, Cosgrove GP, Brown KK, et al. The idiopathic pulmonary fibrosis honeycomb cyst contains a mucociliary pseudostriatified epithelium. *PLoS One* (2013) 8(3):e58658. doi:10.1371/journal.pone.0058658

62. Nakano Y, Yang IV, Walks AD, Watson AM, Helling BA, Fletcher AA, et al. MUC5B promoter variant rs35705950 affects MUC5B expression in the distal airways in idiopathic pulmonary fibrosis. *Am J Respir Crit Care Med* (2016) 193(4):464–6. doi:10.1164/rccm.201509-1872LE

63. Mathai SK, Schwartz DA, Wang LA. Genetic susceptibility and pulmonary fibrosis. *Curr Opin Pulm Med* (2014) 20(5):429–35. doi:10.1097/MCP.0000000000000074

64. Armanios M, Alder JK, Parry EM, Karim B, Strong MA, Greider CW. Short telomeres are sufficient to cause the degenerative defects associated with aging. *Am J Hum Genet* (2009) 85(6):823–32. doi:10.1016/j.ajhg.2009.10.028

65. Petrovski S, Todd JL, Durham MT, Wang Q, Chien JW, Kelly FL, et al. An exome sequencing study to assess the role of rare genetic variation in pulmonary fibrosis. *Am J Respir Crit Care Med* (2017) 196(1):82–93. doi:10.1164/rccm.201610-2088OC

66. Kaur et al. Genetics and IPF
80. Araki T, Putman RK, Hatabu H, Gao W, Dupuis J, Latourelle JC, et al. Development and progression of interstitial lung abnormalities in the Framingham heart study. *Am J Respir Crit Care Med* (2016) 194(12):1514–22. doi:10.1164/rccm.201512-2523OC

81. Putman RK, Hatabu H, Araki T, Gudmundsson G, Gao W, Nishino M, et al. Association between interstitial lung abnormalities and all-cause mortality. *JAMA* (2016) 315(7):672–81. doi:10.1001/jama.2016.0518

82. Chung JH, Pelito AL, Chawla A, Talbert JL, McKean DF, Rho B-H, et al. CT imaging phenotypes of pulmonary fibrosis in the MUC5B promoter site polymorphism. *Chest* (2016) 149(5):1215–22. doi:10.1016/j.chest.2015.11.009

83. Parker D, Prince A. Innate immunity in the respiratory epithelium. *Am J Respir Cell Mol Biol* (2010) 131(1):40–9. doi:10.1111/j.1656-6041.2009.01287.x

84. Zhou Y, Wang X, Liu M, Hu Q, Song L, Ye L, et al. A critical function of toll-like receptor-3 in the induction of anti-human immunodeficiency virus activities in macrophages. *Immunology* (2010) 131(1):40–9. doi:10.1111/j.1656-6041.2009.01287.x

85. Falfán-Valencia R, Camarena A, Juárez A, Becerril C, Montaño M, Csíneser J, et al. Major histocompatibility complex and alveolar epithelial apoptosis in idiopathic pulmonary fibrosis. *Hum Genet* (2005) 118(2):235–44. doi:10.1007/s00439-005-0035-7

86. Aquino-Galvés A, Pérez-Rodríguez M, Camarena A, Falfán-Valencia R, Ruiz V, Montaño M, et al. MICA polymorphisms and decreased expression of the MICA receptor NKGD2 contribute to idiopathic pulmonary fibrosis susceptibility. *Hum Genet* (2009) 125(5–6):639–48. doi:10.1007/s00439-009-0666-1

87. Xue J, Gochuico BR, Alawad AS, Feghali-Bostwick CA, Noth I, Nathan SD, et al. The HLA class II allele DRB1*1501 is over-represented in patients with idiopathic pulmonary fibrosis. *PLoS One* (2011) 6(2):e14715. doi:10.1371/journal.pone.0014715

88. Zhang J, Xu D, Xu K, Wu B, Zheng M, Chen J, et al. HLA-A and HLA-B gene polymorphism and idiopathic pulmonary fibrosis in a Han Chinese population. *Respir Med* (2012) 106(10):1456–62. doi:10.1016/j.rmed.2012.06.015

89. Zhang H-P, Zou J, Xie P, Gao F, Mu H-J, et al. Association of HLA and cytokine gene polymorphisms with idiopathic pulmonary fibrosis. *Kaohsiung J Med Sci* (2015) 31(12):613–20. doi:10.1016/j.kjms.2015.10.007

90. Erlich HA, Pedersen BS, Rabinovich E, Hennessy CE, Davidson EJ, Murphy E, et al. Relationship of DNA methylation and gene expression in idiopathic pulmonary fibrosis. *Am J Respir Crit Care Med* (2014) 190(11):1263–72. doi:10.1164/rccm.201408-1452OC

91. Helling BA, Yang IV. Epigenetics in lung fibrosis: from pathobiology to treatment perspective. *Curr Opin Pulm Med* (2015) 21(3):454–62. doi:10.1097/MCP.0000000000000191

92. Sanders YY, Ambalavanan N, Halloran B, Zhang X, Liu H, Crossman DK, et al. Altered DNA methylation profile in idiopathic pulmonary fibrosis. *Am J Respir Crit Care Med* (2017) 157(1):91–9. doi:10.1164/rccm.201704-0646OC

93. Yang IV, Pedersen BS, Rabinovich E, Hennessy CE, Davidson EJ, Murphy E, et al. Association between interstitial lung abnormalities and all-cause mortality. *Am J Respir Crit Care Med* (2012) 186(6):525–35. doi:10.1164/rccm.201201-0077OC

94. Sanders YY, Ambalavanan N, Halloran B, Zhang X, Liu H, Crossman DK, et al. Altered DNA methylation profile in idiopathic pulmonary fibrosis. *Am J Respir Crit Care Med* (2012) 186(6):525–35. doi:10.1164/rccm.201201-0077OC

95. Yang IV, Pedersen BS, Rabinovich E, Hennessy CE, Davidson EJ, Murphy E, et al. Association between interstitial lung abnormalities and all-cause mortality. *Am J Respir Crit Care Med* (2012) 186(6):525–35. doi:10.1164/rccm.201201-0077OC

96. Yee WH, Kao SY, Chen SY, Lin JF, Hwang Y, et al. Expression of ciliary-associated genes defines novel molecular subtypes of idiopathic pulmonary fibrosis. *Thorax* (2015) 69(12):1114–21. doi:10.1136/thoraxjnl-2012-202943

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Kaur, Mathai and Schwartz. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.