Review of Naturopathy of Medical Mushroom, *Ophiocordyceps Sinensis*, in Sexual Dysfunction

Kanitta Jiraungkoorskul, Wannee Jiraungkoorskul

Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand

ABSTRACT

Sexual dysfunctions including desire, arousal, orgasm, and pain disorders are increasing worldwide due to etiological factors and aging. Several types of treatment are claimed in modern medicine, but they have serious side effects and higher costs. In fact, alternative approaches, such as the intake of plants, fungi, and insects, or their extracts, have also been practiced to enhance sexuality and ameliorate illness with notable successes. However, the scientific evidence related to the mechanisms and efficacy of these alternative medicines is both scarce and all too often unconvincing. *Ophiocordyceps sinensis* is an Ascomycetes fungus parasitic to Lepidoptera larvae, and has long been used as medicine to treat many illnesses and promote longevity in Chinese society. Previous investigations have shown that *O. sinensis* has many pharmacological activities. This review has focused on illustrating that *O. sinensis* can enhance libido and sexual performance, and can restore impaired reproductive functions, such as impotency or infertility, in both sexes.

Key words: Aphrodisiac, fungi, mushroom, *Ophiocordyceps sinensis*, sexual dysfunction

APHRODISIAC PLANTS

The third International Consultation on Sexual Medicine held in Paris in July 2009 defined the disorders of sexual function as a problem or situation that occurs during any phase of the sexual response cycle that makes the individual or couple unhappy in the sexual activity.[1‑3] The sexual response cycle consists of four stages: Excitement, plateau, orgasm, and resolution.[4‑3]

From this cycle, sexual dysfunction can be classified into four patterns: (i) Desire disorders, or the lack of sexual desire or moody in sex or lack of libido; (ii) Arousal disorders, or nonstimulation during sexual activity due to vaginal dryness or impotence; (iii) Orgasm disorders, or the delay or absence of the feeling of pleasure or climax; (iv) Pain disorders, or feeling hurt during intercourse, dyspareunia, vaginismus.[6‑7] Among many therapeutic approaches is the use of sildanefit citrate (Viagra), which has been reported to successfully modify the hemodynamics in the penis,[8‑9] but with limited efficacy, unpleasant side effects, and contraindications in certain disease conditions.[10‑11] Many plants have been reported to possess aphrodisiac potential, being employed as remedies for sexual dysfunction and also reviewed by researchers from many countries such as Africa,[12] Canada,[13] India,[14‑17] Nigeria,[18] Thailand,[19] Turkey,[20] and USA.[21] The aphrodisiac plants can be classified into three groups depend on the phytochemical substances: (i) Substances that enhance libido, i.e., sexual desire, arousal; (ii) substances that enhance sexual potency, i.e., effectiveness of erection; and (iii) substances that enhance sexual pleasure.[14]

Ophiocordyceps sinensis, one of the medicinal mushrooms, has long been in ethnomycological medicinal use in Bhutan,[21] China,[25] India,[24] Nepal,[23,26] and Tibet.[27] Its synonym with *Sphaeria sinensis* and *Cordyceps sinensis*. *Cordyceps sinensis* is used worldwide as traditional medicinal mushrooms and fungi to relieve symptoms of various diseases.[20] It is commonly known as caterpillar fungus or Cordyceps mushroom. Its taxonomy is as follows: Fungi (Kingdom), Dikarya (Subkingdom), Ascomycota (Phylum), Pezizomycotina (Subphylum), Sordariomycetes (Class), Hypocreae (Order), Hypocreomycetidae (Subclass), Hypocreales (Order), Hypocreomycetidae (Family), *Ophiocordyceps* (Genus).[28] There are around 140 widespread species belonging to the genus *Ophiocordyceps*, first described scientifically by British mycologist Tom Petch (1870–1948).[29]

NOMENCLATURE

The name *Cordyces* comes from Latin words *Cordi-* “club,” *ceps-* “head,” and *sinensis* “Chinese.”[30] *Cordyceps sinensis* was discovered about 2000 years ago as an exotic medicinal mushroom described in traditional Chinese and Tibetan medicine. The British mycologist Miles Joseph Berkeley (1803–1889) first described it in 1843 as *Sphaeria sinensis* Berk. Later in 1878, Italian mycologist Pier Andrea Saccardo (1845–1920) renamed it as *Cordyceps sinensis* (Berk.) Sacc.[31] Based on molecular phylogenetic study, “Cordyceps” was separated into four genera: *Cordyceps, Ophiocordyceps, Metacordyceps*, and *Elaphocordyceps*, and it was also shown that *C. sinensis* is part of a clade based on the
concept of *Ophiocordyceps* Petch; the correct name for it now is *Ophiocordyceps sinensis* (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones and Spatafora.[30] The vernacular name of *O. sinensis* is dòng chóng xiǎo cǎo meaning “winter-worm, summer-plant, or summer-grass, winter-insect” in Chinese. Other names are *bub* (Bhutanese), *rupsendooder* (Dutch), *kinanloisikka* (Finnish), *ghaas fajoond* (Hindi), *chu kaso* (Japanese), dong chug ha cho (Korean), jeevan buti, keeda ghass, chyou kira, sanjevani bhooti, keera jhar (Nepali), dbyar rtswa dgu or yartsa gunba (Tibetan), and chong cao (Thai).[34]

MORPHOLOGICAL CHARACTERISTICS

O. sinensis is the composite of a genus of fungi that grows on the larva of insects. To date, more than 350 related species have been found worldwide based on fungus and insect hosts. The most widespread insect is in order Lepidoptera, especially *Thitarodes*, formerly classified as *Hepialus*.[35] In the winter season, the infected larva will be changed into a sclerotium and covered by the intact exoskeleton to withstand the cold temperature, which is regarded as “winter worm.” In the summer season, a clavate stroma of the fungus grows from the sclerotium and emerged from the ground appearing as an herb, which is regarded as “summer grass.” *Hepialus armoricanus* Oberthür is the host insect species of *O. sinensis*. It consists of two parts, the fruiting body (fungus) and the worm (caterpillar). The caterpillar is invaded by *O. sinensis* mycelia and thus the two parts show similar constituents and pharmacological functions.[36]

PHYTOCHEMICAL SUBSTANCES

The major phytochemical constituents of *O. sinensis* are (i) Proteins: Cadaverine, caroline, cordymin, flavin, methylpyrimidine, peroloyrine, putresine, spermidine, spermine, tryptophan,[37,38] (ii) Nitrogenous compounds: Adenine, adenosine, cordyceamides, cordycedipeptide, cordycep, cordymin, cordysinin, dideoxyadenosine, guanine, guanosine, hypoxanthine, inosine, thymidine, thymine, uracil, uridine;[39-44] (iii) Sterols: Campesterol, cholesterol, daucosterol, ergosterol, sitisterol, stigmasteral;[45,46] (iv) Fatty acids: Docosanoic acid, lauric acid, lignoceric acid, linoleic acid, myristic acid, oleic acid, palmitic acid, palmitoleic acid, pentadecanoic acid, stearic acid, succinic acid;[47,48] (v) Phenolic acids: Acetovanillone, hydroxybenzoic acid, protocatechuic acid, salicylic acid, syringic acid, vanillic acid;[49] (vi) Isoflavones: Daidzein, genistein, glycitein, orobol;[40] (vii) Polysaccharides and sugar derivatives: Cordysinocan, glucan, heteroglycan, manniotol, mannogluacan;[50-54] (viii) Vitamins, inorganic and volatile compounds.[55]

TRADITIONAL USES

O. sinensis is traditionally used[56,57] as antidiabetic,[56-62] antiinflammatory,[49,56,63] antimicrobial,[56,65] antioxidant,[66,68] and antitumor agent.[44,49-71] against hypcholesterolemia;[72,73] and for immunoimmulatory properties.[74,75] It is also used for treatment in several diseases such as cardiovascular,[76,79] gastrointestinal,[80] hepatic,[81-83] neuromuscular,[84,85] renal,[56,85,86] and respiratory diseases.[87] Meena et al.[88] reported that laboratory-cultured mycelia powders of *O. sinensis* are safe and nontoxic up to 2 g/kg body weight dose. Oral administration of laboratory-cultured mycelia powders of *O. sinensis* did not show any sign of toxicity, as no significant change was observed in organ weight and serological parameters in rats. However, there was a significant increase in food intake, body weight gain, and hematological parameters such as white and red blood cells, hemoglobin, and lymphocytes in treated groups. Histopathology of vital organs also supported the nontoxic effect of *O. sinensis*.

SEXUAL PERFORMANCE ENHANCEMENT AND/OR IMPROVEMENT

Medicinal plants have attracted great interest from researchers around the world because of their positive bioactive effects.[89] However, there are still not many data available about the positive action on sexual dysfunction of this medicinal mushroom, *O. sinensis*. During the review, searches were done on scientific databases such as ScienceDirect, SpringerLink, PubMed, Google Scholar. Moreover, internet searches were performed on the search engine. Different combinations of keywords as well as synonyms for keywords were used during the searches. This review has illustrated the properties of *O. sinensis* in sexual performance as follows.

In vitro and in vivo animal study

Several reports have previously demonstrated that *C. sinensis* could stimulate steroid production or steroidogenesis in both primary normal mouse Leydig cells and tumor cells[90-93] and also in human granulosa lutein cells.[94] Huang et al.[95] reported that *C. sinensis* (0.02 mg and 0. 2 mg) were fed per gram of body weight to immature or mature mice for 7 days, significantly can induced the plasma testosterone levels but did not have that effect on the weights of reproductive organs. Ji et al.[96] reported that the hot water extract of *C. sinensis* has a mild beneficial effect on sexual function in castrated rats.

CLINICAL STUDY

Guo[99] reported that when *C. sinensis* supplement was administered to 22 males for 8 weeks, it showed 33% increase in sperm count and 29% decrease in the sperm malformations, and 79% increase in the sperm survival rate. Huang et al.[100] reported that *C. sinensis* dietary supplement can cause the prevention and improvement of adrenal glands and thymus hormones, and the infertile sperm count improved by 300%. Wan et al.[101] reported that when *C. sinensis* supplement to 189 both men and women, libido decreased and there was improvement of symptoms and desire by 66%. Dong and Yao[102] reported that *C. sinensis* supplement caused improvement of libido and desire at 86% in women.

MECHANISM

Steroidogenesis stimulation

The carbohydrate moiety of the glycoprotein luteinizing hormone/chorionic gonadotropin plays an important role in recognizing luteinizing hormone receptor to activate a signal pathway for steroidogenesis.[103] Therefore, the polysaccharides and/or glycoproteins in *C. sinensis* may be similar to luteinizing hormone in structure and have the ability to recognize luteinizing hormone receptors on Leydig cells to stimulate testosterone production.[97]

Luteinizing hormone binds to its receptors to activate G-proteins and, in turn, adenylate cyclase, which can increase cyclic AMP formation. cAMP will then stimulate protein kinase A (PKA), which will phosphorylate proteins. The phosphorylated proteins will further phosphorylate other proteins or induce new protein synthesis, i.e. steroidogenic acute regulatory protein.[104] The function of steroidogenenic acute regulatory protein is to transfer free cholesterol from the cytoplasm into the inner membrane of mitochondria, where cytochrome P450 side-chain cleavage enzyme converts cholesterol to pregnenolone.[105,106] Pregnenolone will then be transported to smooth endoplasmic reticulum for testosterone synthesis, which is an essential steroid hormone for reproduction in males.[107] It has also been shown that activation of the protein kinase C (PKC) signal pathway can strongly modulate Leydig cell
steroidogenesis. Chen et al. explained that C. sinensis activated both PKA and PKC signal transduction pathways to stimulate cell steroidogenesis.

Hypothalamus–pituitary–gonad axis
Aphrodisiac activity of C. sinensis has been reported because of the testosterone-like metabolites and libido-promoting activity. Moreover, Wang et al. reported that C. sinensis contains a factor that enhances corticosteroid hormone. In the study, the water-crude extract of C. sinensis was investigated for its pharmacological function on primary rat adrenal cell cultures. However, the authors are not sure about the mechanism of C. sinensis-induced steroidogenesis, whether its mechanism acts on the adrenal glans or via the hypothalamus–pituitary axis.

Phytochemical substance
It is possible that the C. sinensis supplement might affect spermogenesis through the effect of cordycepin (3’deoxyadenosine), because the increased serum cordycepin concentration paralleled the enhancement of sperm production and increased testosterone levels. Leu et al. and Tuli et al. reported that cordycepin was an adenosine analog that increased the plasma testosterone concentration and associated with adenosine receptors to activate the cAMP-PKA-STAR signal pathway and steroidogenesis in mouse Leydig cells.

CONCLUSION
In conclusion, sexual dysfunction is one of the important health problems affecting men and women. Of the available treatments, several are pharmacologically proven and tested medications. However, there are significant users of unrecognized medical plants and mushrooms for sexual health. Ophiocordyceps species have been traditionally used as for the enhancement of sexual function, but direct evidence is lacking. This review paper descriptively highlights the naturopathy of the medicinal mushroom, O. sinensis, in sexual dysfunction. This review shows that O. sinensis supplementation increased the total sperm number, the percentage of motile sperm cells, and serum testosterone.

Acknowledgments
This review article was funded in part by the Thailand Research Fund and the Commission on Higher Education: Research Grant for Mid-Career University Faculty. Thanks should be addressed to the members of the Fish Research Unit, Department of Pathobiology, Faculty of Science, Mahidol University for their support. The authors also give many thanks to the anonymous referees and the editor for their perceptive comments on and positive criticism of this review article.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Montorsi F, Basson R, Adaikan G, Becher E, Clayton A, Giuliano F, et al. Sexual Medicine Sexual Dysfunctions in Men and Women. The 3rd International Consultation on Sexual Medicine. Paris: Health Publication Ltd; 2010. p. 1300.
2. Lewis RW, Fugl-Meyer KS, Corona G, Hayes RD, Laumann EO, Moreira ED Jr, et al. Definitions/epidemiology/risk factors for sexual dysfunction. J Sex Med 2010;7:1598-607.
3. Akinloye OO, Yirusa R. Assessment of complementary and alternative medicine (CAM) usage to enhance male sexual performance in Ogbomoso metropolis. J Public Health Epidemiol 2011;3:271-4.
4. Basson R. Human sexresponse cycles. J Sex Marital Ther 2001;27:33-43.
5. Basson R, Broto LA, Laan E, Redmond G, Utian WH. Assessment and management of women’s sexual dysfunctions: Problematic desire and arousal. J Sex Med 2005;2:291-300.
6. Hatzimouratidis K, Hatzichristou D. Sexual dysfunctions: Classifications and definitions. J Sex Med 2007;4:2411-50.
7. Bhuga D, Colommini G. Sexual dysfunction: Classification and assessment. BJPsych Adv 2013;19:48-55.
8. Mulhall J, Barnas J, Avin N, Anderson M, Parker M. Sildenafil citrate response correlates with the nature and the severity of penile vascular insufficiency. J Sex Med 2005;2:104-8.
9. Esharabdi SM, Koraona EA, Alghobairy M, Abou-Alghar M. Clinical predictive factors of sildenafil response: A penile hemodynamic study. Andrology 2015;3:241-6.
10. Shinlapawittayatorn K, Chattipakorn S, Chattipakorn N. Effect of sildenafil citrate (Viagra) combined with nitrate on the heart. Circulation 2002;102:2516-21.
11. Shrestha S, Shrestha AK, Park JH, Lee DY, Cho JG, Shrestha B, et al. Aphrodisiac properties of some Zimbabwean medicinal plants formulations. Afr J Biotechnol 2009;8:6402-7.
12. Bella AJ, Shamroil R. Traditional plant aphrodisiacs and male sexual dysfunction. Phytother Res 2014;28:831-5.
13. Malviya N, Jain S, Gupta VB, Vyas S. Recent studies on aphrodisiac herbs for the management of male sexual dysfunction—a review. Acta Pol Pharm 2011;68:3-8.
14. Singh R, Singh S, Jeyabalan G, Ali A. An overview on traditional medicinal plants as aphrodisiac agent. J Pharm Physiol 2012;1:43-68.
15. Singh R, Singh S, Jeyabalan G, Ali A, Sernval A. Medicinal plants used to treat sexual dysfunction: A review. Int J Rec Adv Pharm Res 2013;3:29-35.
16. Chauhan NS, Sharma V, Diox V, Takkar M. A review on plants used for improvement of sexual performance andurity. Biomed Res Int 2014;2014:886802.
17. Erhabor JO, Idu M, Udo FO. Ethnomedical survey of medicinal plants used in the treatment of male infertility among the IFA Niki people of Ini local government area of Akwa Ibom State, Nigeria. Res J Recent Sci 2013;2:5-11.
18. Wattanathorn J, Pengphukhiv P, Muchimupura S, Sripantikulchai K, Sripantikulchai B. Aphrodisiac activity of Kaempferia parviflora. Am J Agricult Biol Sci 2012;7:11-20.
19. Abudayyak M, OÄ°zdemir N, Özkan G. Toxic potentials of ten herbs commonly used for aphrodisiac effect in Turkey. Turk J Med Sci 2015;45:496-506.
20. Oketch-Rabah HA. Monilia whitei, a medicinal plant from Africa with aphrodisiac and antidepressant properties: A review. J Diet Suppl 2012;9:272-84.
21. Cannon PF, Hywel-Jones NL, Maczezy N, Norbu L, Samsud TT, Lumphuk P. Steps towards sustainable harvest of Ophiocordyceps sinensis in Bhutan. Biodivers Conserv 2009;18:2263-81.
22. Chien J, Lee S, Cao Y, Peng Y, Winker D, Yang D. Ethnornycological use of medicinal Chinese caterpillar fungus, Ophiocordyceps sinensis (Berk.) G.H. Sung et al. (Ascomycetes) in Northern Yunnan Province, SW China. Int J Med Mushrooms 2010;12:427-54.
23. Panda AK, Sivain KC. Traditional uses and medicinal potential of Cordyceps sinensis of Sikkim. J Ayurveda Integ Med 2011;2:9-13.
24. Devkota S, Yarsagumba [Cordyceps sinensis] (Berk. & Sacc.), Traditional utilization in Dolpa district, Western Nepal. Our Nature 2008;4:48-52.
25. Childs G, Chowdup N. Indigenous management strategies and socioeconomic impacts of Yartsa Gunbu [Ophiocordyceps sinensis] harvesting in Nuubi and Tsum, Nepal. Himalaya 2014;34:8-22.
26. Winkler D.Yartsa Gunbu [Cordyceps sinensis] and the fungal commodification of Tibet’s rural economy. Econ Bot 2008;62:291-306.
27. Vaidya JG, Lamroad PY. Traditional medicinal mushrooms and fungi of India. Int J Med Mushrooms 2000;2:6.
28. Mishra RN, Upadhyay Y. Cordyceps sinensis: The Chinese Rasayan-Current research scenario. Int J Res Pharm Biomed Sci 2011;2:1563-9.
29. Xing X, Guo S. The structure and histochemistry of sclerotia of Ophiocordyceps sinensis. Mycologia 2008;100:616-25.
30. Chakraborty S, Chowdhury S, Nandi G. Review on Yarsagumba [Cordyceps sinensis] an exotic medicinal mushroom. Int J Pharmacogn Phytother Res 2014;6:339-46.
31. Shrestha B, Tanaka E, Han JL, Oh J, Han SK, Lee KH, et al. A brief chronicle of the genus Cordyceps, the oldest valid genus in Conocyphaceae, Ascomycota. Mycobiol 2014;42:93-9.
32. Sung GH, Hywel-Jones NL, Sung JM, Luangsaw-aard JJ, Shrestha B, Sapatara JW. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 2007;57:65.
33. Shrestha S, Shrestha AK, Park JH, Lee DY, Cho JG, Shrestha B, et al. Review on pharmacologically active metabolites from Yarsagumba (Ophiocordyceps sinensis), an Epitome of Himalayan ELixir. Nepal J Sci Technol 2013;4:49-58.
34. Siddique SS, Arif M, Babu R, Shamim M. Wonder drug – An insect and fungus relationship [Helioporus-Cordyceps] through biotechnological approaches. Biol Med 2011;3:70-5.
35. Wang XL, Yoo YJ. Host insect species of Ophiocordyceps sinensis: A review. Zoonoses 2011;43-59.
36. Qi W, Zhang Y, Yan YB, Lei W, Wu ZX, Liu N, et al. The protective effect of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, on diabetic osteopenia in alloxan-induced diabetic rats. Evid Based Complement Alternat Med 2013;2013:985636.
37. Wei X, Xu N, Wu D, He Y. Determination of branched-aminio acid content in fermented Cordyceps sinensis mycelium by using FT-NIR spectroscopy technique. Food Bioprocess Technol 2014;7:184-90.
KANITTA JIRAUNGKOORSKUL and W ANNEE JIRAUNGKOORSKUL: Mushroom in Sexual Dysfunction

39. Huang LF, Guo FQ, Liang YZ, Chen BM. Determination of adenosine and cordycepin in Cordyceps sinensis and C. militaris with HPLC-ESI-MS. Zhongguo Zhong Yao Za Zhi 2004;29:392-4.

40. Johl TA, Tai HH, Feng BM. Cordyceamides A and B from the culture liquid of Cordyceps sinensis (Berk.) Sacc. Chem Pharm Bull (Tokyo) 2009;57:99-101.

41. Bok JW, Lerner L, Chilton J, Klingeman H, Towers GH. Antithrombotic sterols from the mycelia of Cordyceps sinensis. Phytochemistry 1989;28:619-26.

42. Wang JL, Li X, Wang S, Qiu S, et al. Theoretical searches and spectral computations of preferred conformations of various absolute configurations for a novel cyclopestide A from the culture liquid of Cordyceps sinensis. Spectrochim Acta A Mol Biomol Spectrosc 2013;136C:1401-8.

43. Yue E, Sun M, Lee M, Lee K, Cho JY, Cho S, et al. Cordycepin is a novel chemical suppressor of Epstein-Barr virus replication. Oncoscience 2014;1:186-81. ECollection 2014.

44. Amanwut P, Porasuphatana S, Sichanha T, Natkhang T. Toxicity evaluation of cordycepin and its delivery system for sustained in vitro anti-tumor activity. Nanoscale Res Lett 2015;10:152.

45. Nakamura K, Shinozuka K, Yashikawa N. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis. J Pharmacol Sci 2015;127:53-6.

46. Bokesch DM, Strominger JL. The common bacterial pathogen Neisseria gonorrhoeae interacts with IκBα. J Bacteriol 2015;197:1390-9.

47. Guo LX, Xu XM, Liang FR, Yuan JP, Peng J, Wu CF, et al. Morphological observations and fatty acid composition of indocultivated Cordyceps sinensis at a high-altitude laboratory on Sejila mountain in Tibet. J Ethnopharmacol 2016;181:102-9.

48. Yang ML, Kuo PC, Hwang TL, Wu TS. Anti-inflammatory principles from Cordyceps sinensis from Sejila Mountain, Tibet. PLoS One 2015;10:e0126095.

49. Jia JM, Tao HH, Feng BM. Cordyceamides A and B from the culture liquid of Cordyceps sinensis with HPLC-ESI-MS. Zhongguo Zhong Yao Za Zhi 2009;34:50-3.

50. Huang BM, Li XG, Pan WD, Lou HY, Liu RM, Xiao JH, Zhong JJ. New cytochalasins from medicinal Cordyceps. J Nat Prod 2007;70:1356-7.

51. Lu JW, Chang NC, Jayakumar T, Liao JC, Lin MJ, Wang SH, et al. Activity of a novel heteroglycan from cultured mycelia of Cordyceps sinensis on human platelet activation by activating adenylate cyclase/cyclic AMP. Thromb Res 2014;80:1107-12.

52. Chang Y, Wu DT, Meng LZ, Wang LY, Lu GP, Cheong KL, Hu DJ, et al. Chain conformation and immunomodulatory activity of the extracts from the mycelia of Cordyceps sinensis. Biol Pharm Bull 2003;26:94-7.

53. Kuo YC, Tsai WJ, Wang YJ, Chang SC, Lin CY, Shiao MS. Regulation of bronchoalveolar lavage fluids cell function by the immunomodulatory agents from Cordyceps sinensis. Life Sci 2001;68:1067-81.

54. Wu DT, Meng LZ, Wang LY, Lu GP, Cheong KL, Hu DJ, et al. Cordycepin contributes to the hypotensive and vasorelaxant activities of Cordyceps sinensis. Life Sci 2000;66:1369-76.

55. Yang ML, Yuan JM, Zeng HY, Guo Y, Zeng JH, et al. Cordyceps sinensis inhibits human platelet activation by activating adenylate cyclase/cyclic AMP. Thromb Res 2014;80:1107-12.

56. Ye WK, Chen Y, Lin Y, Li YJ, Gao S. Efficacy of in vitro propagation of Cordyceps sinensis for prevention of contrast-induced nephropathy in patients with acute coronary syndrome undergoing elective percutaneous coronary intervention. J Clin Exp Med 2017;6:5585-64.

57. Chang Y, Hsu WH, Lu JW, Jayakumar T, Liao JC, Lin MJ, et al. Inhibitory mechanisms of CME-1, a novel polysaccharide from the mycelia of Cordyceps sinensis, in platelet activation. Curr Pharm Biotechnol 2015;16:223-33.

58. Manchakul T, Opyo E, Playford CJ, Playford RJ. Reparative properties of the traditional Chinese medicine Cordyceps sinensis (Chinese caterpillar mushroom) using HTZ22 cell culture and rat gastric damage models of injury. Br J Nutr 2011;105:1303-10.

59. Liu YK, Shen IB. Inhibitive effect of Cordyceps sinensis on experimental hepatic fibrosis and its possible mechanism. World J Gastroenterol 2009;3:529-33.

60. Cheng YJ, Shyu WC, Teng YH, Lan YH, Lee SD. Antagonistic interaction between Cordyceps sinensis and exercise on protection in fulminating hepatic failure. Am J Chin Med 2014;42:1199-213.

61. Peng Y, Tao Y, Wang Q, Shen L, Yang T, Liu Z, et al. Ergosterol is the active compound of cultured mycelium Cordyceps sinensis on antiliver fibrosis. Evid Based Complement Alternat Med 2014;2014:537234.

62. Singh KP, Meena HS, Negi PS. Enhancement of neuromuscular activity by natural specimens and cultured mycelia of Cordyceps sinensis in mice. Indian J Pharm Sci 2014;76:498-61.

63. Zhang DW, Wang ZL, Qi WJ, Zhao GH. The effects of Cordyceps sinensis phytosterogen on estrogen deficiency-induced osteoporosis in ovariectomized rats. BMC Complement Altern Med 2014;14:484.

64. Liu X, Zeng ZF, Xiong LF, Zhou QL, Gao SM, et al. Cordyceps sinensis protects against liver and heart injuries in a rat model of chronic kidney disease: A metabolic analysis. Acta Pharmacol Sin 2014;35:697-706.

65. Singh M, Tulssawari R, Koganti P, Chauhan A, Manikam M, Misra K. Cordyceps sinensis increases hypoxia tolerance by inducing heme oxygenase-1 and metallothionein via Nrf2 activation in human lung epithelial cells. Biomed Res Int 2013;2013:592609.

66. Morena H, Singh KP, Negi PS, Ahmed Z. Sub-acute toxicity of mycelial Himalayan entomogenous fungus Cordyceps sinensis (Berk.) Sacc. in rats. J Ethnopharmacol 2013;151:381-7.

67. Gurb-Faikin A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol Med Trends 2006;2:119-93.

68. Huang BM, Huang YM, Chen CE, Leu SF. Effects of extracted Cordyceps sinensis on steroidogenesis in MA-10 mouse Leydig tumor cells. Biol Pharm Bull 2003;26:1523-5.

69. Kuo YC, Tsai WJ, Wang YJ, Chang SC, Lin CY, Shiao MS. Regulation of bronchoalveolar lavage fluids cell function by the immunomodulatory agents from Cordyceps sinensis. Life Sci 2001;68:1067-81.

70. Guo Y. Medicinal chemistry, pharmacology and clinical applications of fermented mycelia of Cordyceps sinensis and JinShuBao capsule. J Mod Diag Ther 1988;1:217-37.

71. Guo Y. Medicinal chemistry, pharmacology and clinical applications of fermented mycelia of Cordyceps sinensis and JinShuBao capsule. J Mod Diag Ther 1988;1:217-37.

72. Huang Y, Liu J, Liu H, Wang Y. Effects of fermented mushroom of Cordyceps sinensis, rich in selenium, on uterine cervix cancer. Evid Based Complement Alternat Med 2014;2014:173180.

73. Li XG, Pan WD, Lou HY, Liu RM, Xiao JH, Zhong JJ. New cytochalasins from medicinal Cordyceps trojanae that inhibit their inhibitory activities against human cancer cells. J Biomed Med Lett 2015;25:1823-6.

74. Yamaguchi Y, Katoga S, Nakamura K, Shinzoku K, Kunitomo M. Antioxidant activity of the extracts from fruiting bodies of cultured Cordyceps sinensis. Phytother Res 2000;14:647-9.

75. Koh JH, Kim JM, Chang UJ, Suh HJ. Hypolipidemic effect of hot-water extract from mycelia of Cordyceps sinensis. Biol Pharm Bull 2003;26:94-7.

76. Yan XF, Zhang YZ, Yao HY, Guan Y, Zhu JP, Zhang LH, et al. Cardiovascular protection and antioxidant activity of the extracts from the mycelia of Cordyceps sinensis act partially via adenosine receptors. Phytother Res 2013;27:1597-604.

77. Zhao K, Lin Y, Li YJ, Gao S. Efficacy of long-term Cordyceps sinensis for prevention of contrast-induced nephropathy in patients with acute coronary syndrome undergoing elective percutaneous coronary intervention. J Clin Exp Med 2017;6:5585-64.

78. Guo Y. Medicinal chemistry, pharmacology and clinical applications of fermented mycelia of Cordyceps sinensis and JinShuBao capsule. J Mod Diag Ther 1988;1:217-37.

79. Huang Y, Liu J, Liu H, Wang Y. Effects of fermented mushroom of Cordyceps sinensis, rich in selenium, on uterine cervix cancer. Evid Based Complement Alternat Med 2014;2014:173180.
Kanitta Jiraungkoorskul, received her B.PH. in Environmental Science and Technology, and M.Sc. in Industrial Hygiene and Safety with thesis in title “Factors affecting urinary cadmium level and health risk assessment among farmer in Phrathatphadaeng Subdistrict, Mae Sod District, Tak Province.

Wannee Jiraungkoorskul, is currently working as Assistant Professor in Department of Pathobiology, Faculty of Science, Mahidol University, Thailand. She received her B.Sc. in Medical Technology, M.Sc. in Physiology, and Ph.D. in Biology. Dr. Wannee Jiraungkoorskul’s current research interests are aquatic toxicopathology and efficiency of medicinal herbs.