A Phosphatidylinositol/Phosphatidylcholine Transfer Protein Is Required for Differentiation of the Dimorphic Yeast *Yarrowia lipolytica* from the Yeast to the Mycelial Form

Maria Carmen Lopez, Jean-Marc Nicaud, Henry B. Skinner,* Chantal Vergnolle, Jean Claude Kader, Vytas A. Bankaitis,* and Claude Gaillardin

Laboratoire de Génétique Moléculaire et Cellulaire, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, Institut National Agronomique Paris-Grignon, 78850 Thiverval-Grignon, France; *Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005; and †Laboratoire de Physiologie Cellulaire et Moléculaire, Université Pierre et Marie Curie, 75252 Paris, Cedex 05, France

Abstract. The SEC14Sc gene encodes the phosphatidylinositol/phosphatidylcholine transfer protein (PI/PC-TP) of *Saccharomyces cerevisiae*. The SEC14Sc gene product (SEC14pSc) is associated with the Golgi complex as a peripheral membrane protein and plays an essential role in stimulating Golgi secretory function. We report the characterization of SEC14vL, the structural gene for the PI/PC-TP of the dimorphic yeast *Yarrowia lipolytica*. SEC14vL encodes a primary translation product (SEC14pvL) that is predicted to be a 497-residue polypeptide of which the amino-terminal 300 residues are highly homologous to the entire SEC14pSc, and the carboxy-terminal 197 residues define a dispensible domain that is not homologous to any known protein. In a manner analogous to the case for SEC14pSc, SEC14pvL localizes to punctate cytoplasmic structures in *Y. lipolytica* that likely represent Golgi bodies. However, SEC14pvL is neither required for the viability of *Y. lipolytica* nor is it required for secretory pathway function in this organism. This nonessentiality of SEC14pvL for growth and secretion is probably not the consequence of a second PI/PC-TP activity in *Y. lipolytica* as cell-free lysates prepared from Δsec14ΔL strains are devoid of measurable PI/PC-TP activity in vitro. Phenotypic analyses demonstrate that SEC14pvL dysfunction results in the inability of *Y. lipolytica* to undergo the characteristic dimorphic transition from the yeast to the mycelial form that typifies this species. Rather, Δsec14ΔL mutants form aberrant pseudomycelial structures as cells enter stationary growth phase. The collective data indicate a role for SEC14pvL in promoting the differentiation of *Y. lipolytica* cells from yeast to mycelia, and demonstrate that PI/PC-TP function is utilized in diverse ways by different organisms.

All eukaryotic cells have the ability to execute both protein and lipid sorting events. While much has recently been learned about the mechanisms by which proteins traffic between intracellular compartments, or by which proteins are retained in specific organelles, considerably less is known about the intracellular trafficking of lipids. Yet, it is obvious that lipid traffic must also encompass a set of essential cellular activities. For example, intracellular organelles exhibit unique lipid compositions (van Meer, 1989; Pagano, 1990). Moreover, whereas the ER represents the major compartment of lipid synthesis in the eukaryotic cell, other intracellular compartments that experience a significant influx of ER-deprived lipids (e.g., Golgi complex and mitochondria) nevertheless manage to maintain characteristic lipid compositions in their respective membranes. As the specific lipid composition of an organelle is likely to play an important role in determining organelle function, the demonstration of lipid heterogeneity between distinct organelle membranes indicates a role for lipid sorting in the establishment and maintenance of compartmental identity within the cell. Lipid trafficking is also likely to be essential for the maintenance of organelar integrity, especially in the case of the ER which provides the bulk lipid that sustains vesicle-mediated protein traffic through the secretory pathway. Wieland et al. (1987) have argued that massive retrieval of bulk lipid from the Golgi back to the ER is required to spare the latter from rapidly consuming itself in the process of donating lipid to later stages of the secretory pathway.

Four general mechanisms for intracellular lipid traffic have been entertained (reviewed in Bishop and Bell, 1988;

© The Rockefeller University Press, 0021-9525/94/04/113/15 $2.00
The Journal of Cell Biology, Volume 124, Number 1, April 1994 113-127

113
Phospholipid transfer proteins (PL-TPs) have long been considered attractive candidates for executing intracellular lipid traffic of the sort exemplified by mechanism (iv). These PL-TPs are cytostolic proteins that have the capability of acting as diffusible carriers that transport lipid monomers between membrane bilayers in vitro, and are distinguished on the basis of the phospholipid headgroup specificities they exhibit in the in vitro transfer reaction (Wirtz, 1991; Cleves et al., 1991a).

Although PL-TPs have been extensively characterized with respect to the biochemistry of their catalytic properties, an appreciation of their in vivo role has been elusive. The finding that the Saccharomyces cerevisiae SEC14 gene product (SEC14pYC) is a phosphatidylinositol/phosphatidylcholine transfer protein (PI/PC-TP) whose function is essential for both yeast Golgi secretory function and for cell viability, provided the initial insight into the biological function of a PL-TP (Bankaitis et al., 1989, 1990). As such, the analysis of SEC14pYC function has set the paradigm for PL-TP function in vivo. A considerable body of evidence indicates that SEC14pYC plays an essential role in controlling the PC content of yeast Golgi membranes (Cleves et al., 1991; McGee et al., 1994).

Although the precise mechanism by which SEC14pYC achieves such a control of Golgi phospholipid composition has not yet been resolved, current data raise the issue of whether SEC14pYC functions as a genuine PI/PC-TP in vivo (for a discussion see McGee et al., 1994). Since SEC14pYC presently defines the sole in vivo model for PL-TP function, the question of how generally applicable the SEC14pYC paradigm is to the in vivo function of other PL-TPs, or even other PI/PC-TPs, is an important one. The widely divergent yeasts Kluyveromyces lactis and Schizosaccharomyces pombe exhibit polyepitides both structurally and functionally homologous to SEC14pYC as judged by: (a) comparison of primary sequences inferred from nucleotide sequence analysis of the respective genes; and (b) the ability of these heterologous SEC14ps to fulfill all essential SEC14pYC functions when expressed in S. cerevisiae (Bankaitis et al., 1989; Salama et al., 1990; Skinner, H. B., and V. A. Bankaitis, manuscript in preparation). These findings have raised the possibility that the biological function of PI/PC-TPs might be conserved across wide evolutionary distances. A rigorous test of this possibility requires the availability of sec14 mutants in other organisms.

In this report, we describe the isolation and characterization of SEC14pYC, the structural gene for the major PI/PC-TP of the dimorphic yeast Yarrowia lipolytica. This yeast is widely diverged from both S. cerevisiae and S. pombe (Barns et al., 1991) and is typified by two distinct developmental forms, the yeast and the mycelial forms, whose predominance can be controlled at the level of the growth medium (Rodriguez and Dominguez, 1984). Our data indicate a considerable level of functional homology between SEC14pYC and SEC14pYL as evidenced by the ability of the latter to efficiently substitute for the essential function of the former S. cerevisiae. Also, in a manner entirely analogous to the SEC14pYC paradigm, we find that SEC14pYL is a PI/PC-TP that localizes to what are likely to be Y. lipolytica Golgi bodies. However, in stark contrast to the case of SEC14pYC in S. cerevisiae, SEC14pYL is neither required for the cellular viability of Y. lipolytica nor is it required for efficient secretory pathway function. Furthermore, we provide strong evidence to indicate that the nonessentiality of SEC14pYL for growth and secretion in Y. lipolytica is not attributable to the presence of a functionally redundant PI/PC-TP activity. Finally, the only phenotypic consequence of SEC14pYL dysfunction we have discerned is the inability of Δsec14Δ Y. lipolytica strains to undergo the dramatic yeast-mycelial transition that is typical of this species. The collective data demonstrate that, irrespective of the functional relatedness of SEC14pYC and SEC14pYL, these PI/PC-TPs are involved in controlling distinct physiological processes in their respective host organisms.

Materials and Methods

Strains, Media, and Genetic Methods

A description of the plasmids and genotypes of the yeast strains used in this study is given in Table 1. The Y. lipolytica strains used in this study were derived from three distinct haploid strains: E122, IM12, and W29 (Table I). Standard complex and minimal media included YPD and NBY medium, respectively (Sherman et al., 1986). In experiments where secretion of alkaline protease or acid phosphatase was determined, cells were grown on YPdm and low-P medium, respectively (Nicaud et al., 1989; Lopez and Dominguez, 1988). Escherichia coli K12 strains T1J and HB101 were routinely employed for propagation of plasmids, and were cultured on standard LB and 2XYT media (Sambrook et al., 1989).

Yeast genetic techniques employed published procedures. Integrative transformation of Y. lipolytica with linearized plasmids was accomplished by the lithium acetate procedure of Xuan et al. (1990), while routine introduction of ARS-CEN plasmids into Y. lipolytica was via electroporation (Fourrier et al., 1993). The authenticity of integration events, or other allelic replacement events, was routinely confirmed by Southern hybridization analysis.

Recombinant DNA Methodologies

Recombinant DNA techniques were performed essentially as described by Sambrook et al. (1989). A Y. lipolytica cDNA library consisting of 18,000 clones, with an average insert size of 1.6 kb, was generated from strain W29 in the S. cerevisiae expression vector pFL61. This vector is a 2 µm circle plasmid that carries the URA3 gene for selection purposes and provides the yeast PGK promoter to drive the strong constitutive expression of cloned DNA (Minet et al., 1992). RNA prepared from strain W29 growing exponentially on YPd was converted to cDNAs which were subsequently cloned into the S. cerevisiae expression vector pFL61. The primers used to amplify a segment of SEC14pYC by PCR were 5'-GGTCAACGATCTGAGAAACCTGTCGTCCTGTACGGATT-3' (primer b) and 5'-ATGAGATCCGTATCCGCTTGAGATCTGTCCGCT-3' (primer c). These primers were designed taking into account the Y. lipolytica codon bias (Nicaud et al., 1989) and correspond to codons specifying residues 141-152 and 202-213 of the SEC14pYC and SEC14pYL primary sequence, respectively, which are conserved (Salama et al., 1990). For amplification

The Journal of Cell Biology, Volume 124, 1994
Table I. Plasmids and Strains Used

Name	Description	Source or reference
pcTY11	*S. cerevisiae* YEp vector carrying LEU2, ADE3, and SEC14	V. Bankaitis
pFL61	*S. cerevisiae* expression vector based on PGK promoter and terminator, carrying URA3	Minet et al., 1992
pINA62	5.6-kb Sall fragment carrying LEU2\textgamma in pBR322	Gaillardin and Ribet, 1987
pINA237	pBR322载体携带的 URA3 \textgamma 和 ARS-CEN18	Fournier et al., 1993
pINA300\textgamma	1.5-kb Sall fragment carrying URA3\textgamma in pBR322	This laboratory
pINA476	XPR2 terminator and LEU2\textgamma gene in pBR322	Tharaud et al., 1992
pINA540	7.2-kb Sau3A fragment carrying SEC14\textgamma in pINA62	This work
pINA543	3.6-kb HindIII-Sau3A fragment carrying SEC14\textgamma in pINA62	This work
pINA651	1.5-kb Sall fragment carrying URA3\textgamma from plNA300' into pINA651 (sec14::URA3)	This work
pINA653	3.6-kb HindIII-Sau3A fragment carrying SEC14\textgamma in pINA237	This work
pINA656	pINA300' with filled-in EcoRI site	This work
pINA657	0.48-kb NruI-Xhol internal deletion of SEC14\textgamma in pINA656 (sec14\Delta1)	This work
pINA926	1.6-kb cDNA of SEC14\textgamma in pFL61	This work
pINA929	2.7-kb StuI-BalI deletion of SEC14\textgamma in pBR322	This work
pINA930	3.1 kb PstI fragment carrying LEU2\textgamma in pINA929 (sec14\Delta2::LEU2)	This work
pRES10	*S. cerevisiae* SEC14 cDNA in pTZ18	D. Malehorn and Bankaitis

Strain

Strain	Genotype
CTY1-1A	MATa, ura3-52, Δhis3-200, lys2-801, sec14-1
CTY558	MATa, ade2, ade3, leu2, Δhis3-200, ura3-52, sec14-1::HIS3/pCTY11
MCL35	MATa, ura3-52, Δhis3-200, lys2-801, sec14-1::pINA926
W29	MatA
E122	MatA, lys11-23, Δleu2-270, Δleu2-270, Δura3-302
PO1a	MatA, Δleu2-270, Δura3-302
JM12	MatB, leu2-35, lys5-12, ura3-18
MCL8	MatA/MatB, +/Δleu2-270, +/lys11-23, +/his-1, Δura3-302/Δura3-302, SEC14/SEC14::URA3
MCL9	MatA, lys11-23, Δleu2-270, Δura3-302/pINA653
MCL9D	MatA, lys11-23, Δleu2-270, Δura3-302, sec14::URA3/pINA653
MCL12	MatA, lys11-23, Δleu2-270, Δura3-302, sec14::URA1
MCL25	MatA, lys11-23, Δleu2-270, Δura3-302, sec14::URA3
MCL27	MatA, Δleu2-270, Δura3-302, sec14::URA3
MCL28	MatB, leu2-35, lys5-12, ura3-18
MCL29	MatB, leu2-35, lys5-12, ura3-18, sec14::URA3
MCL30	MatB, leu5-12, ura3-18, sec14::URA3
MCL41	MatA, Δleu2-270, Δura3-302, sec14Δ2::LEU2

Y. lipolytica

Strain	Genotype
E122+pINA653	MCL9 + HindIII-Sall fragment of pINA652
E122 derivative, see Material and Methods	MCL9 segregant
PO1a+HindIII-Sall fragment of pINA652	MCL9 derivatives, see Material and Methods
JM12+NotI-digested pINA62	MCL9 + HindIII-Sall fragment of pINA652
JM12+HindIII-Sall fragment of pINA652	MCL9 + NotI-digested pINA62
PO1a+SpfI fragment of pINA930	MCL9 + HindIII-Sall fragment of pINA652

of *Y. lipolytica* DNA, the PCR reactions contained 150 ng of DNA, and 25 pmoles of each primer in a final reaction volume of 50 μl. 30 amplification cycles (94°C, 20 s; 45°C, 1 min; 72°C, 1 min) were conducted using a GeneAmp PCR reagent kit (Perkin-Elmer Corp., Norwalk, CT). The 219-bp PCR product was purified on an agarose gel, rendered blunt-ended by treatment with T4 DNA polymerase, and subcloned into the unique EcoRV site of BluescriptTM KS or SK vectors (Stratagene Corp., La Jolla, CA). This cloned PCR product was used as a probe to screen a genomic library of *Y. lipolytica* DNA (Xuan et al., 1990). The DNA sequence of SEC14\textgamma was obtained by the method of Sanger et al. (1977), and the nucleotide and inferred amino acid sequences were analyzed using Version 7 of the UWCGC package (Devereux et al., 1984).

Three different mutant sec14\textgamma alleles were constructed. First, pINA652 (see Fig. 2 b) carries a simple sec14\textgamma::URA3 disruption allele. This plasmid was constructed by inserting the URA3\textgamma gene, as a 1.5-kb Sall restriction fragment (from pINA300; see Table I), into the unique Xhol site present in pINA651, thus disrupting the SEC14p YL coding sequence 162 codons downstream of the initiator codon. Second, the sec14\textgamma\Delta1 allele represents a 0.4-kb deletion bounded by the NruI and Xhol sites of SEC14\textgamma, and this allele is carried on pINA657 (see Fig. 2 c). This plasmid was constructed by ligating the ClaI-NruI (blunted) and the XhoI (blunted)-SphI fragments of pINA651 into plNA30ff cleaved with ClaI and SphI. Third, a complete deletion of SEC14\textgamma was obtained by the method of Boecke et al., 1987. Plasmids were targeted to the genomic SEC14\textgamma gene with the sec14\textgamma\Delta2 allele was via a two step gene substitution protocol (Boecke et al., 1987). Plasmids were targeted to the
genomic SEC14 gene, and Ura+ transformants of Y. lipolytica were selected. The transformants were challenged with 5-fluoroorotic acid (1.25 mg/ml) on YNB medium supplemented with uracil (10 µg/ml) to select for strains cured of vector sequences by homologous recombination between SEC14 sequences flanking the integrated vector. The recombinants in which the desired gene replacement event had occurred were identified by Southern analysis (Table 1).

Immunohistochemical Techniques

The kinetics of transport of the alkaline extracellular protease (AEP) was monitored in the appropriate strains by pulse-chase experiments followed by immunoprecipitation of AEP from cell-free extracts prepared from cells harvested at various times post-chase as described by Fabre et al. (1992). A monoclonal antibody anti-SEC14p secretion serum raised against a TrpE-SEC14p fusion protein (Bankaitis et al., 1989) was used to visualize SEC14p by immunoblotting. Yeast cells were grown to stationary phase in YNB at 28°C, and immunoblotting was performed as described by Fabre et al. (1991). The anti-SEC14p serum was used at a 1:500 dilution and the immunoblots were developed with an alkaline phosphatase-conjugated secondary antibody obtained from Promega Biotech (Madison, WI) (1: 10,000 dilution).

Immunofluorescence experiments were performed as previously described (Pringle et al., 1989; Cleves et al., 1991b). Y. lipolytica cells were grown in minimal medium to mid-logarithmic phase, and the cells were fixed in situ by incubation with formaldehyde (3.7% final concentration) for 1 h at room temperature, and incubated overnight at 4°C to allow further fixation. The fixed cells were transferred to spheroplasts and attached to coverslips by a 5 min centrifugation at 1,000 g in a Cytospin 2 centrifuge (Shandon Inc., PA). Cells were subsequently immersed in ice-cold methanol (5 min), rinsed in ice-cold acetone (30 s), flooded with blocking buffer (0.01% Tween 20, 1% BSA in phosphate buffered saline), and incubated with mouse anti–KEX2p and rabbit anti–rat PI-TP antibodies in blocking buffer at concentrations of 44 and 49 µg/ml, respectively. Spheroplasts were exhaustively washed in blocking buffer and incubated with sheep anti–mouse antibodies (15 µg/ml) for 2 h. This step permitted further decoration of bound mouse antibodies and amplification of the mouse antibody-dependent (i.e., anti-KEX2p) immunofluorescence signal. After another round of extensive washing with blocking buffer, cells were incubated in the presence of Texas red–conjugated donkey anti–sheep and FITC-conjugated donkey anti–rabbit antibodies (Jackson Immunoresearch, West Grove, PA) for 2 h at a concentration of 30 µg/ml each. After a last wash in blocking buffer, the staining profiles were visualized with a Nikon Optiphot epifluorescence microscope equipped with differential interference contrast optics and a Dage series 68 ST video camera (Dage-MTI Inc., Wilbash, WI) coupled to an Image-1 analysis system (Universal Imaging, Westchester, PA). Image processing was performed as described by Wang et al. (1993). The images were printed with a Sony UP-5000 color video printer (Sony, Montvale, NJ).

Phospholipid Transfer Assays

Cells were harvested from exponential or stationary phase Y. lipolytica cultures that had been grown in either YPD or YNB medium. Cell pellets were washed twice with 0.4 M sucrose, 6 mM EDTA, 1 mM cysteine, 9 mM 2-mercaptoethanol, 0.1 M Tris-HCL, pH 7.5. The cells were disrupted by mechanical agitation in the presence of glass beads using a Braun-Melsung cell homogenizer. Cell lysates were clarified by centrifugation at 12,000 g for 15 min and the resulting supernatant was further centrifuged at 100,000 g for 1 h. The supernatant was collected and brought to 75% saturation by the slow addition of powdered ammonium sulfate with gentle stirring. After a 3-h incubation at 4°C, the resulting precipitate was collected by centrifugation at 8,000 g for 30 min, and resuspended in a minimal volume of 10 mM sodium phosphate, pH 7.2, 10% glycerol, 8 mM 2-mercaptoethanol, 10 mM NaCl. The resulting suspension was dialyzed against 20 vol of the same buffer. Finally, the dialyzed sample was adjusted to pH 5.1, centrifuged at 8,000 g for 30 min to remove insoluble material, and readjusted to pH 7.2. The PI- and PC-transfer activities of this cytosolic fraction with [32P]orthophosphate (32P; 10 µCi/ml) for 30 min at 25°C with shaking for steady-state 32P-labeling experiments, yeast were grown in synthetic complete medium overnight, subcultured, and then presented with 32P (10 µCi/ml) for a period of five to six cell generations at 25°C with shaking to permit steady-state labeling of cellular phospholipids (Atkinson et al., 1980; Klig et al., 1985). For both types of radiolabeling experiments, phospholipids were extracted by the method of Atkinson (1984). Yeast cells were pelleted by a low speed spin (500 g), washed in ice cold TCA (5%) for 20 min with subsequent pellets, and the pellet resuspended in 1 ml polar extraction solvent (Steiner and Lester, 1972) with heating at 85°C for 20 min. Phospholipids were recovered from the cell suspension by a wash in CHCl3/CH3OH/butylated hydroxytoluene (BHT) (2: 1: 0.00058, dried under N2 gas, and resuspended in CHCl3/CH3OH/BHT. Radiolabeled phospholipids were resolved by two-dimensional chromatography using Whatman SGB1 paper (Steiner and Lester, 1972). First dimension solvent was CHCl3/CH3OH/NH4OH/H2O (22: 9: 1: 0.26) and second dimension solvent was CHCl3/CH3OH/CH3COOH/H2O (8: 1: 1.25: 0.25). Labeled phospholipids were detected by autoradiography, and identified by comparison to commercial standards. Individual phospholipid species were cut from the chromatography paper, and were quantitated by scintillation counting.

Enzyme Assays

Periplasmic acid phosphatase was measured as described by Lopez and Dominguez (1988). Cells were washed with deionized water and incubated at 35°C in 450 µl of 0.1 M maleic acid–sodium maleate buffer, pH 6.2, containing 6.7 mM p-nitrophenyl-phosphate. The reaction was terminated by adding 750 µl of 0.1 M NaOH, and the amount of p-nitrophenol released was estimated at 410 nm.

Results

Isolation of the SEC14 Gene

We used a PCR strategy to recover genomic SEC14 clones and a complementation strategy to recover cDNA clones of SEC14 (see Materials and Methods). A 219-bp genomic fragment of Y. lipolytica DNA was amplified that had the potential to encode an open reading frame sharing 74% identity with the expected portion of the SEC14 primary sequence. This PCR product was then used as a probe for the in situ screening of a plasmid genomic library of Y. lipolytica DNA propagated in E. coli. Three identical plasmids, designated pINA540, were isolated from a total of 15,000 clones screened, and a 3.9-kb HindIII-Sau3A fragment containing the entire SEC14 gene was subcloned into pBR322 to generate pINA651 (Table 1).

The Y. lipolytica cDNA expression library was transformed into the ura3-52, sec14-1 S. cerevisiae strain CTY1-1A and Ura+ transformants were selected at 25°C, a permissive temperature for sec14-1 yeast strains. A total of approximately 20,000 Ura+ transformants were screened for growth at a temperature restrictive for sec14-1 by replica plating onto uracil deficient minimal medium and incubation at 37°C. Two colonies capable of such growth were obtained, and two criteria were employed to demonstrate that the unselected Ts phenotype was due to a plasmid-linked trait. First, isolation and characterization of spontaneous segregants that had lost plasmid under nonselective conditions revealed that plasmid-cured derivatives failed to grow at 37°C. Second, plasmids were recovered from the two Ts Ura+ transformants by transformation into E. coli. Subsequent transformation of CTY1-1A with each of the two isolated plasmid clones revealed a complete coincidence of inheritance of both Ura+ and Ts+ in the transformants. Restriction analysis of both sec14-1 complementing cDNA indicated that the two plasmids carried identical cDNA in-
sents of approximately 1.6 kb; a result confirmed by nucleotide sequence analysis (see below). Henceforth, these cDNAs will be considered under a single plasmid designation, pINA926 (Table I). Moreover, the restriction maps of the cDNA clones corresponded closely to that deduced for the candidate genomic SEC14_{sc} clone identified by in situ hybridization.

These data suggested that the SEC14_{sc} genomic and cDNA clones identified a <i>Y. lipolytica</i> homolog of SEC14_{pc}. This was further confirmed by plasmid shuffle/colony sectoring experiments designed to test the ability of the cloned cDNAs to complement, or suppress, the lethality associated with the experiments designed to test the ability of the cloned cDNAs null alleles by haploid <i>S. cerevisiae</i> strains (Bankaitis et al., 1989). <i>S. cerevisiae</i> strain CTY558 (ade2, ade3, leu2, ura3, sec14Δ1::HIS3) carries plasmid pCTY11, a YEplac195_{ADH1} vector where the SEC14_{pc} gene is under the control of an attenuated SEC14_{pc} promoter and drives the synthesis of SEC14_{pc} in yeast at a rate similar to that normally sustained by the genomic SEC14_{pc} locus (Table I; Whitters et al., 1993). Strain CTY558 is absolutely dependent on pCTY11 for viability as this plasmid complements the haploid lethal sec14Δ1::HIS3 allele. Moreover, CTY558 forms uniformly red colonies on all media, a characteristic phenotype of ade2 strains of <i>S. cerevisiae</i>, whereas ade2, ade3 double mutants are white. Thus, loss of pCTY11 from CTY558 can be visually scored by the appearance of white sectors or white colonies in a wide variety of media, a characteristic phenotype of Sec14_{sc}. Henceforth, these segregants were now dependent on the 3' end of the first intron, within codon 9 of SEC14_{sc}. The 5'-splice sites of both introns corresponded to a GTAGGAGP_u motif which diverges from the consensus GTATGT 5'-splice motif of <i>S. cerevisiae</i> at the third and fourth positions. This diverged 5'-splice site sequence may represent a general feature of <i>Y. lipolytica</i> introns as the <i>Yarrowia</i> pyruvate kinase structural gene also contains an intron with a GTAGAGP_u 5'-splice motif (Strick et al., 1992). Another feature of the first SEC14_{sc} intron was the absence of a consensus TACTAAC box, a canonical motif that defines the site of lariat formation (Teem et al., 1984). Instead, an abbreviated TAAC box is observed (Fig. 1). We also noted that the 3'-splice acceptor CAG sequences for both SEC14_{sc} and pyruvate kinase introns were all situated one nucleotide downstream from their corresponding TACTAAC boxes, a surprisingly close arrangement compared to <i>S. cerevisiae</i> (Patterson and Guthrie, 1991).

Nucleotide Sequence of Genomic SEC14_{sc} Gene and SEC14_{sc} cDNA

The sequences of both the SEC14_{sc} cDNA insert of pINA926 and the genomic clone represented by pINA651 were determined. The nucleotide sequence of the 3.1-kb PstI-Sau3A restriction fragment derived from the pINA651 insert is presented in Fig. 1. A single open reading frame with the potential to encode a 491-residue polypeptide extending from nucleotides 1,430 to 2,902 was detected. However, no obvious initiation codon was identified because of the presence of an ochre termination codon at position 1,427 of the nucleotide sequence. This finding raised the possibility of at least one intron within the genomic SEC14_{sc} clone. To further clarify the physical organization of SEC14_{sc} we compared the genomic and cDNA sequences. The SEC14_{sc} cDNA sequence revealed an insert of 1,602 bp that was terminated by a run of 32 consecutive A residues and exhibited a 1,491-nucleotide open reading frame. These data were consistent with Northern analyses that indicated SEC14_{sc} to encode an mRNA of approximately 1.6 kb (not shown). The initiator codon identified on the cDNA sequence corresponded to an ATG at position 419 of the genomic sequence. The cDNA sequence also indicated that transcription initiated at least 39-nucleotides upstream of the initiator codon, and terminated 12-nucleotides upstream from a (TAG...TAGT...TTT) transcription termination consensus sequence identified by Zaret and Sherman (1982) in <i>S. cerevisiae</i> that is also a common feature of <i>Y. lipolytica</i> genes (Fig. 1; Strick et al., 1992). Thus, the composite nucleotide sequence data indicated that the primary SEC14_{sc} transcript was at least 2,590 nucleotides in length and contained two introns near the 5' end of the message (Fig. 1). The first intron spanned 465 nucleotides and was positioned between SEC14_{sc} codons 6 and 7. The second intron spanned 526 nucleotides and initiated eight nucleotides downstream from the 3' end of the first intron, within codon 9 of SEC14_{sc}. The 5'-splice sites of both introns corresponded to a GTAGAGP_u motif which diverges from the consensus GTATGT 5'-splice motif of <i>S. cerevisiae</i> at the third and fourth positions. This diverged 5'-splice site sequence may represent a general feature of <i>Y. lipolytica</i> introns as the <i>Yarrowia</i> pyruvate kinase structural gene also contains an intron with a GTAGAGP_u 5'-splice motif (Strick et al., 1992). Another feature of the first SEC14_{sc} intron was the absence of a consensus TACTAAC box, a canonical motif that defines the site of lariat formation (Teem et al., 1984). Instead, an abbreviated TAAC box is observed (Fig. 1). We also noted that the 3'-splice acceptor CAG sequences for both SEC14_{sc} and pyruvate kinase introns were all situated one nucleotide downstream from their corresponding TACTAAC boxes, a surprisingly close arrangement compared to <i>S. cerevisiae</i> (Patterson and Guthrie, 1991).

Our interpretation of the SEC14_{sc} nucleotide sequence predicted a gene product of 497 residues (58 kD), a prediction confirmed by identification of the SEC14p_{sc} in immunoblots of <i>Y. lipolytica</i> cell-free extracts (see below). Thus, SEC14p_{sc} is predicted to be considerably larger than the SEC14_{ps} of <i>S. cerevisiae</i> (35 kD), <i>K. lactis</i> (34 kD), and <i>S. pombe</i> (33 kD); all of which are of approximately 300 residues in length (Bankaitis et al., 1989; Salama et al., 1990). Alignment of the SEC14p_{sc} primary sequence with those of SEC14p_{pc} and SEC14p_{ps} revealed that the first 300 residues of SEC14p_{sc} shared 65 and 65.8% identities, respectively, with the full-length primary sequences of these SEC14p_{ps} species. The carboxy-terminal 197 SEC14p_{sc} residues have no counterpart in SEC14p_{ps} and SEC14p_{pc} primary sequences and share no significant similarity with protein sequences currently entered in protein data bases. One notable feature of the carboxy-terminal SEC14p_{sc} domain is a proline-rich region that is followed by a leucine-rich region in which 23 leucine residues are found between residues 338 and 372 (Fig. 1).

SEC14p_{sc} Function Is Not Essential for the Viability of <i>Y. lipolytica</i>

The SEC14_{sc} gene is essential for cell viability in <i>S. cerevisiae</i> (Patterson and Guthrie, 1991).
Figure 1. SEC14yl sequence. The nucleotide sequence of the genomic PstI-Sau3a fragment is given, as is the inferred protein sequence (in one letter code). Consensus sequences for intron splicing and transcription termination are underlined, as are potential transcription initiation elements. Vertical arrows indicate the 5'- and 3'-boundaries of the cDNA clones. The positions of PCR primers b and c used for amplification of SEC14yl are indicated by horizontal arrows. Relevant restriction sites are indicated above the nucleotide sequence, and the start of the COOH-terminal SEC14yl tail that is absent from SEC14pL of \textit{S. cerevisiae} \cite{Bankaitis}, but it is not yet known what the sec14yl and sec14pL null phenotypes are in \textit{K. lactis} and \textit{S. pombe}, respectively. We used two different strategies to determine whether SEC14yl was essential for the viability of \textit{Y. lipolytica}. First, we used a plasmid segregation test to determine the essentiality of SEC14yl for vegetative growth of \textit{Y. lipolytica}. Strain MCL9 contains pINA653, a centromeric SEC14yl, LEU2yl plasmid (Table I). The genomic SEC14yl gene of MCL9 was replaced by the sec14yl::URA3yl allele \cite{Materials and Methods}, and the expected disruption event was confirmed by Southern analysis. The sec14yl::URA3yl strains were then cultured on leucine-rich medium to relieve the nutritional selection pressure for pINA653, and we monitored the subsequent ability of these merodiploid strains to undergo spontaneous curing of pINA653. If the sec14yl::URA3yl allele represented a haploid-lethal mutation, the strains would experience an unrelenting selection pressure for retention of pINA653 and no spontaneous curing of this plasmid would be observed. If sec14yl::URA3yl were a nonlethal mutation, however, spontaneous curing of pINA653 should occur at a detectable frequency and Leu+ segregants should appear. Surprisingly, Leu+ segregants were readily obtained and exhibited normal growth rates on both minimal and YPD media, indicating that the sec14yl::URA3yl allele did not affect \textit{Y. lipolytica} cell viability. Similar experiments with sec14yl::Δ yielded the same results. Finally, we attempted direct substitution of sec14yl by sec14yl::LEU2yl, an allele that represents a deletion of the amino-terminal 453 residues of SEC14yl. A variety of \textit{Y. lipolytica} strains (JM12, E122, and POLa) were transformed by the 4.25-kb SphI fragment from pINA930 (Fig. 2). Leu+ transformants were recovered at the usual frequencies and were confirmed by Southern analysis to have experienced the expected gene replacement (not shown). Thus, SEC14yl is not essential for vegetative growth of \textit{Y. lipolytica}.

To determine if SEC14yl is required for spore germination, one of the SEC14yl alleles of diploid strain MCL8 (Table I) was replaced by the sec14yl::URA3yl disruption allele and the resulting heterozygote was subjected to random spore analysis \cite{Barth and Weber, 1985}. Approximately 50\% of the meiotic progeny analyzed (84/200) inherited...
sec14pr::URA3rL as judged by their Ura+ phenotypes. Similar frequencies of inheritance were recorded for the control markers LYS5rL (114/200) and HIS3rL (105/200) which were also segregating in this cross. All Ura+ spores tested carried sec14pr::URA3rL as determined by Southern analysis, and grew at wild-type rates on both minimal and YPD media. We did note, however, that germination of the sec14pr::URA3rL segregants was typically delayed for approximately one day, relative to SEC14rL progeny, regardless of whether germination occurred on minimal or YPD media (not shown). Nevertheless, these data clearly demonstrate that SEC14rL is not an essential gene in Y. lipolytica.

SEC14pr represents the major PI/PC-TP of Y. lipolytica

We considered several possibilities for why SEC14pr::URA3rL is nonessential for Y. lipolytica viability. Included in this SEC14rL is a duplicated gene, and that SEC14pr::URA3rL is not the major PI/PC-TP of Y. lipolytica. To address the former issue, we used both nucleic acid hybridization and protein immunoblotting strategies. To search for SEC14rL homologs at the nucleotide sequence level, we generated a radiolabeled probe by PCR using oligonucleotides b and c as synthetic primers and SEC14pr::URA3rL carried on pRS150 as template (Materials and Methods; Table I), and performed hybridizations to the appropriately digested and immobilized genomic DNAs. As demonstrated on Fig. 3a, the probe hybridized to the diagnostic 3.7-kb PstI fragment of SEC14rL in wild-type Y. lipolytica DNA, and to the expected 3.3-kb PstI fragment of sec4Al DNA. These experiments were repeated under various stringencies of hybridization with the full-length genomic SEC14rL as probe and no other hybridizing species were detected (not shown). Although we cannot formally exclude the possibility that we failed to detect some distantly related genetic homolog of SEC14rL, these data identify SEC14rL as a unique gene that represents Y. lipolytica closest homolog to SEC14pr.

Since the primary sequence of the first 300 SEC14pr residues shares a 65% identity to that of the entire SEC14pr (see above), we used immunoblotting to visualize Y. lipolytica polypeptides that are recognized by a polyclonal rabbit anti-SEC14pr serum (Bankaitis et al., 1989). These antibodies identified a 58-kD SEC14pr-immunoactive polypeptide in lysates prepared from a wild-type Y. lipolytica strain (Fig. 3b) in agreement with predictions derived from SEC14rL primary sequence. This 58-kD polypeptide species was not detected in lysates prepared from haploid Y. lipolytica strains harboring either the sec14pr::URA3rL or sec4Al alleles (Fig. 3b). To determine if SEC14pr is the major, if not only, Y. lipolytica PI/PC-TP, we measured the PI/PC-TP activities of cytosolic fractions prepared from wild-type and sec4Al Y. lipolytica strains (see Materials and Methods and Fig. 4). Wild-type Y. lipolytica cytosol exhibited a robust, protein-dependent transfer of PI and PC in the in vitro transfer assay. Under standard assay conditions, up to 12.5% of the total radiolabeled PC and 15% of the total radiolabeled PI present in donor membranes was transferred to acceptor membranes. In marked contrast, however, cytosol prepared from a sec4Al mutant exhibited no significant PI- or PC-transfer activity (Fig. 4). On the basis of our experience with the PI/PC-transfer assays, we estimate that other PL-TPs capable of transferring either PI or PC would contribute less than 15% of the total cellular PI/PC-TP activity in a wild-type Y. lipolytica cell (not shown). These results were obtained regardless of whether the Y. lipolytica strains were grown in minimal or YPD medium, or whether stationary phase or logarithmic phase cultures were analyzed (not shown). The collective data indicate that the homology between SEC14pr and SEC14pr extended to a conservation of PI/PC-TP activity, and identified SEC14pr as certainly the major PI/PC-TP of Y. lipolytica.

Y. lipolytica is proficient in PC biosynthesis via the CDP-Choline pathway

The nonessentiality of SEC14pr function for the viability of Y. lipolytica is in stark contrast to the essential requirement of SEC14pr for the viability of S. cerevisiae. How-
ever, one mechanism for alleviating the essential SEC14p requirement of *S. cerevisiae* involves the inactivation of the CDP-choline pathway for PC biosynthesis via the CDP-choline pathway (Kennedy and Weiss, 1956; Cleves et al., 1991b). To test whether the nonessentiality of SEC14p might reflect a natural incompetence of *E. lipolytica* in the biosynthesis of PC, we estimated bulk membrane steady state PL compositions of wild-type and sec14rLA2::LEU2 strains when cultured in I+C+ medium, as opposed to I-C- medium did not alter the steady state bulk membrane compositions of these strains grown in I+C+ medium without inositol and choline (I'C') or medium without inositol and choline (I'C'), and radiolabeled with [32P]orthophosphate in either a 30-min pulse, or to steady-state, as indicated. Bulk cellular phospholipids were subsequently extracted, resolved, and individually quantitated as described in Materials and Methods. Quantitation of the major phospholipid species phosphatidylycerine (PS), phosphatidylethanolamine (PE), phosphatidylcholine (PC), and phosphatidylcholine (PI) is presented as mole percentage of total phospholipid. Minor phospholipid species such as phosphatic acid, cardiolipin, and methylated forms of PE collectively constituted less than 1% of total phospholipid. Values for the wild-type strain (POh) are represented by the solid bars, whereas values for the sec14rLA2::LEU2 strain (MCL41) are represented by the striped bars. These phospholipid profiles represent the averages of three independent determinations in which the deviation for each phospholipid species was less than 2% of total phospholipid.

Figure 5. Phospholipid profiles of wild-type and sec14rLA2::LEU2 strains of *Y. lipolytica*. The appropriate strains were either grown in medium replete with inositol and choline (I'C) or medium without inositol and choline (I'C'), and radiolabeled with [32P]orthophosphate in either a 30-min pulse, or to steady-state, as indicated. Bulk cellular phospholipids were subsequently extracted, resolved, and individually quantitated as described in Materials and Methods. Quantitation of the major phospholipid species phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylcholine (PC), and phosphatidylcholine (PI) is presented as mole percentage of total phospholipid. Minor phospholipid species such as phosphatic acid, cardiolipin, and methylated forms of PE collectively constituted less than 1% of total phospholipid. Values for the wild-type strain (POh) are represented by the solid bars, whereas values for the sec14rLA2::LEU2 strain (MCL41) are represented by the striped bars. These phospholipid profiles represent the averages of three independent determinations in which the deviation for each phospholipid species was less than 2% of total phospholipid.

Figure 4. Phospholipid transfer activity in lysates from wild-type and sec14rLA strains of *Y. lipolytica*. PC (a) and PI (b) transfer activity was measured in cytosol prepared from the wild-type strain E122 (WT, ♦), and from the sec14rLA strain MCL12 (□). Cytosol was incubated with liposomes containing either [3H]-PC or [3H]-PC (transferable lipids), and [3H]-cholesterol oleate (non-transferable lipid), with purified maize mitochondria (2 mg protein) for 30 min at 30°C. Mitochondria were subsequently resolved from the liposomes by pelleting at 12,000 g for 10 min, the pellet resuspended in 2% Triton X-100, and the radioactivity measured by liquid scintillation counting. Transfer activity was expressed as percentage of radioactivity transferred from liposomes to mitochondria.
SECl4pvl is Required for Y. lipolytica Differentiation from the Yeast to the Mycelial Form

Wild-type strains of Y. lipolytica exhibit a clear dimorphic phenotype. On yeast nitrogen base minimal media, Y. lipolytica grows in the yeast mode and forms elongated cells only upon entering stationary phase. On YPD medium, however, these cells grow as a mixture of yeast cells and filamentous hyphae that results in a rough colony morphology on plates (Rodriguez and Dominguez, 1984). Thus, mutants unable to form hyphae are readily detected on solid YPD medium as these form smooth colonies (Fournier et al., 1991). We noted that all strains in which the SEC14p allele had been replaced by secl4p::URA3or, secl4p::Δι, or secl4p::Δ2::LEU2 formed uniformly smooth colonies on solid YPD medium while isogenic wild-type strains formed typically rough colonies (Fig. 6a). We also compared the cell morphology of isogenic wild-type (MCL28) and secl4p::URA3 (MCL30) strains pregrown in the yeast form on liquid YNB medium and transferred to liquid YPD medium to induce the morphological transition. As shown in Fig. 6b, a rapid invasion of the wild type culture by hyphae was observed. In contrast, the secl4p::URA3 strain was entirely deficient in the formation of elongated cells under these growth conditions, even after prolonged incubation. Authentic mycelium was never observed, even when the secl4p::URA3 strain was grown on media favoring hyphae formation (not shown). This strain did, however, acquire a pseudomycelial morphology upon entry into stationary phase with a concomitant formation of cell aggregates (Fig. 6b).

To further confirm that the morphological defect observed for secl4p strains was the result of SECl4pvl dysfunction, we tested whether reintroduction of SECl4p into such strains could reverse the morphological defect. An autonomously replicating LEU2, SECl4p plasmid (pINAL653; see Table I) was transformed into a secl4pΔι strain (MCL12) by selection for Leu+. All such transformants regained the ability to form hyphae as evidenced by their rough colony morphology. Moreover, subsequent curing of pINAL653 resulted in reacquisition of the mutant smooth colony phenotype. These results indicated that the defect in mycelium formation was a consequence of SECl4pvl dysfunction.

Subcellular Localization of SECl4pvl

SECl4pvc localizes as a peripheral membrane protein of the S. cerevisiae Golgi complex (Cleves et al., 1991b). This assignment of SECl4pvc localization is operationally defined by: (a) the cofractionation of the membrane-associated SECl4pvc with membrane fractions containing the Golgi integral membrane protein KEX2p; and (b) the coincidence of SECl4pvc and KEX2p localization as judged by double label immunofluorescence experiments (Cleves et al., 1991b). KEX2p is a protease that is involved in the proteolytic processing of specific prohormone precursors at sites of dibasic residues (Fuller et al., 1989). Since the phenotypic consequences for loss of PI/PC-TP function are very different in Y. lipolytica as opposed to S. cerevisiae, we wished to determine the intracellular distribution of SECl4pvl.

Treatment of fixed wild-type Y. lipolytica cells with a primary rabbit anti-SECl4pvc serum and FITC-conjugated donkey anti-rabbit secondary antibodies yielded a bright punctate staining pattern against a slight background of diffuse cytoplasmic staining in all cells analyzed (Fig. 7). This profile was judged to be SECl4pvl specific since: (a) exclusion of the anti-SECl4pvc antibodies from the staining regimen; or (b) use of fixed secl4pΔι::LEU2 cells in the complete staining regimen, led to a complete loss of FITC staining (not shown). Moreover, these SECl4pvl positive structures failed to colocalize with mitochondria or the nucleus as judged by comparing the FITC and DAPI staining profiles. We did note, however, that SECl4pvl positive structures frequently exhibited some clustering in a perinuclear region of the cell (Fig. 7). We estimate that at least 85% of the several hundred cells analyzed exhibited this sort of perinuclear clustering of SECl4pvl positive structures.

To determine whether SECl4pvl is associated with Y. lipolytica Golgi bodies, we attempted to identify Y. lipolytica Golgi bodies, using a primary mouse anti-KEX2p antiserum and appropriate Texas red–conjugated antibodies (see Materials and Methods). The rationale for using these primary KEX2p antibodies was that the Y. lipolytica XPR6 gene product exhibits several properties that identify it as a KEX2p homolog. First, the XPR6 gene of Y. lipolytica encodes an endoprotease that has been implicated in KEX2p-like proteolytic processing, at dibasic residues, of the alkaline extracellular protease precursor during its transit through a late Golgi compartment (Matoba et al., 1988; Matoba and Ogrydziak, 1989). Second, the XPR6p primary sequence is inferred to share significant homology with that of KEX2p (Ogrydziak, D., personal communication). Finally, immunoblotting of Y. lipolytica lysates with anti-KEX2p serum reveals a single KEX2p-immunoreactive species (110 kD) that is not observed when lysates prepared from 2×pr6 strains are similarly probed (not shown). Thus, we used XPR6p as a putative Y. lipolytica Golgi marker, and the XPR6p staining profile is shown in Fig. 7. As in the case of SECl4pvl, the XPR6p staining profile was punctate in character with numerous XPR6p positive structures per cell. This staining pattern was very similar to that observed for SECl4pvl, even with respect to the clustering of XPR6p-containing structures in perinuclear regions. Again, either exclusion of XPR6p antibodies or use of 2×pr6 strains of Y. lipolytica in the complete staining regimen precluded detection of Texas red signal (not shown).

Superimposition of the SECl4pvl and XPR6p profiles by digital image processing revealed a high degree of colocal-
Figure 6. sec14Δ strains fail to execute the transition from yeast to mycelium. Wild-type (MCL28) and sec14Δ::URA3Δ (MCL30) strains were grown on either solid (a) or liquid (b) YPD medium at 28°C. (a) Colony morphology after 36 h of growth on solid YPD medium is typified by the rough phenotype for the wild-type strain (left) and the smooth phenotype for the sec14Δ::URA3Δ strain (right). (b) Cell morphology after 2 h (top) or 24 h (bottom) of growth in liquid YPD medium at 28°C. The mycelial form taken by the wild-type strain (MCL28, left) is in sharp contrast to the pseudomycelial form adopted by the sec14Δ::URA3Δ strain (MCL30, right).
Figure 7. SEC14p\(^{YL}\) colocalizes with the presumptive Golgi marker XPR6p. The wild-type \(Y.\) lipolytica strain POla was grown to early logarithmic phase in YNB medium, cells were fixed in 3.7 % formaldehyde, and prepared for immunofluorescence microscopy as described in Materials and Methods. The XPR6p profile was revealed by sequential incubation of cells with a primary mouse polyclonal antibody raised against the \(S.\) cerevisiae KEX2p, a secondary polyclonal sheep anti-mouse antiserum, and Texas red–conjugated donkey anti-sheep antibodies (top left). The SEC14p\(^{YL}\) profile was revealed by serial incubation of these same cells with a primary rabbit antiserum directed against the \(S.\) cerevisiae SEC14p and secondary FITC-conjugated donkey anti-rabbit antibodies (top right). Areas of colocalization appear yellow in the computer-generated composite image (bottom left). A Nomarski image is shown in the bottom right panel. Both the XPR6p and SEC14p\(^{YL}\) signals were completely abolished by either the exclusion of the corresponding primary antibodies from the staining regimen, or by introduction of \(\Delta xpr6\) and \(\Delta sec14^{YL}\) alleles into the \(Y.\) lipolytica strain to be tested.

\(\Delta xpr6\) and \(\Delta sec14^{YL}\) mutants exhibit wild-type secretory pathway function

The viability of \(\Delta sec14^{YL}\) strains indicated that SEC14p\(^{YL}\) was largely dispensable for secretory functions in \(Y.\) lipolytica, the localization of SEC14p\(^{YL}\) to what are presumed to be \(Y.\) lipolytica Golgi bodies notwithstanding. To investigate this issue further, we compared the kinetics of secretion of a periplasmic acid phosphatase and an AEP in wild-type and \(\Delta sec14^{YL}\) mutant stains. The \(sec14^{m::URA3}\) allele interrupts SEC14p\(^{YL}\) after residue 163 (Fig. 1 and 2). As interruption of SEC14p\(^{nc}\) at residue 234 represents a null mutation (i.e., \(sec14^{m::HIS3};\) Bankaitis et al., 1989), we believe that \(sec14^{m::URA3}\) also represents a null mutation.

AP is a highly glycosylated enzyme whose synthesis is derepressed upon imposition of phosphate limitation on cells grown on minimal medium (Lopez and Dominguez, 1988). On such a medium, both wild-type and \(sec14^{m::URA3}\) strains remained in the yeast form and grew at identical rates (Fig. 8 A). Analysis of extracellular AP activity at various times post-induction revealed that the kinetics of appearance and the amounts of AP activity at the cell surface were very similar in both wild-type and \(sec14^{m::URA3}\) strains (Fig. 8 B). In contrast to AP, AEP is induced when cells are grown in YPD medium; a condition where wild-type cells undergo differentiation from yeast cells to hyphae but \(sec14^{m::URA3}\) strains cannot (see above). AEP is synthesized as a 55-kD...
The study of SEC14p function in *S. cerevisiae* has established a paradigm for PI/PC-TP function in vivo. Penetrating clues as to the mechanism of SEC14p function in vivo have been forthcoming from a genetic analysis of mutants that no longer require SEC14p for Golgi secretory function and cell viability (Cleves et al., 1989; Cleves et al., 1991b). These studies revealed that inactivation of a particular one of the two pathways available for PC biosynthesis in *S. cerevisiae* effects bypass of the normally essential SEC14p requirement. This PC biosynthetic pathway of interest, the CDP-choline pathway, consists of three reactions that result in the incorporation of free choline into PC via a cytidine-based mechanism (Kennedy and Weiss, 1956). The finding that the cellular requirement for SEC14p is obviated by inactivation of a specific avenue for PC biosynthesis has led to the proposal that SEC14p is involved in controlling the phospholipid composition of yeast Golgi membranes: a function that is consistent with what one might expect of a genuine PL-TP (Cleves et al., 1991a,b). However, while subsequent biochemical analyses indicate that SEC14p does indeed control the PC content of yeast Golgi membranes, thereby confirming a basic tenet of that hypothesis, those same biochemical studies have raised the possibility that such control of Golgi PC content may well use a mechanism that does not involve genuine lipid transfer (McGee et al., 1994). Rather, the idea that SEC14p acts as a Golgi phospholipid sensor through which a Golgi-localized aspect of the CDP-choline pathway is regulated must also be considered (McGee et al., 1994). Yet, the in vitro PI/PC-TP activity of SEC14p is believed to somehow reflect an essential functional property of SEC14p as evidenced by the ability of a mammalian PI/PC-TP, which exhibits no primary se-

Discussion

The study of SEC14p function in *S. cerevisiae* has established a paradigm for PI/PC-TP function in vivo. Penetrating clues as to the mechanism of SEC14p function in vivo have been forthcoming from a genetic analysis of mutants that no longer require SEC14p for Golgi secretory function and cell viability (Cleves et al., 1989; Cleves et al., 1991b). These studies revealed that inactivation of a particular one of the two pathways available for PC biosynthesis in *S. cerevisiae* effects bypass of the normally essential SEC14p requirement. This PC biosynthetic pathway of interest, the CDP-choline pathway, consists of three reactions that result in the incorporation of free choline into PC via a cytidine-based mechanism (Kennedy and Weiss, 1956). The finding that the cellular requirement for SEC14p is obviated by inactivation of a specific avenue for PC biosynthesis has led to the proposal that SEC14p is involved in controlling the phospholipid composition of yeast Golgi membranes: a function that is consistent with what one might expect of a genuine PL-TP (Cleves et al., 1989a,b). However, while subsequent biochemical analyses indicate that SEC14p does indeed control the PC content of yeast Golgi membranes, thereby confirming a basic tenet of that hypothesis, those same biochemical studies have raised the possibility that such control of Golgi PC content may well use a mechanism that does not involve genuine lipid transfer (McGee et al., 1994). Rather, the idea that SEC14p acts as a Golgi phospholipid sensor through which a Golgi-localized aspect of the CDP-choline pathway is regulated must also be considered (McGee et al., 1994). Yet, the in vitro PI/PC-TP activity of SEC14p is believed to somehow reflect an essential functional property of SEC14p as evidenced by the ability of a mammalian PI/PC-TP, which exhibits no primary se-

Figure 8. Protein secretion in wild-type and *sec14* strains. Isogenic *Y. lipolytica* strains were monitored for their growth (a), periplasmic phosphatase activity (b), and secretion of alkaline extracellular protease (c). The two strains, MCL28 (*SEC14*) and MCL30 (*sec14*), were cultured in low phosphate medium at 28°C (a and b) or in YPD medium (c). At the indicated times, culture samples were analyzed for OD and periplasmic phosphatase activity (b). 1 U of phosphatase activity is defined as the amount of enzyme releasing 1 nmole of *p*-nitrophenol in 1 min at 30°C. To monitor protease secretion (c), cells were pulse-radiolabeled for 2 min with [3H] leucine (3,000 Ci/mole, L-[4,5-3H]-leucine; Amersham) and subjected to a chase with cold leucine (1% final concentration). Samples were taken at the indicated times post-chase, and cell-associated AEP was immunoprecipitated from clarified cell lysates with anti-AEP serum, immunoprecipitates were resolved by SDS-PAGE, and visualized after fluorography at -80°C. Positions of the 55-kD AEP precursor, and the 30-kD mature AEP, are indicated at left.
quence similarity to SEC14p^{sc}, to complement the <i>S. cerevisiae</i> sec14⁻¹ mutation (for a discussion see Skinner et al., 1993). Moreover, although it is not yet precisely clear as to why SEC14p^{sc}-mediated control of Golgi membrane PC content is an essential activity in <i>S. cerevisiae</i>, it has recently been suggested that SEC14p^{sc} function might be a prerequisite for the appropriate turnover of inositol phospho-

lipids in yeast Golgi membranes so that Golgi secretory function can be stimulated (Whitters et al., 1993).

One of the many important questions that has arisen since the establishment of SEC14p^{sc} as a paradigm for the in vivo function of a PL-TP is how generally applicable are the basic features of the SEC14p^{sc} paradigm to the in vivo function of other PL-TPs, or even other PI/PC-TPs. An examination of this issue requires the isolation and characterization of sec14 mutants in organisms unrelated to <i>S. cerevisiae</i>. The demonstration that the widely divergent yeasts <i>K. lactis</i> and <i>S. pombe</i> each exhibit a polypeptide with high primary sequence similarity and functional homology to SEC14p^{sc}, coupled with the ability of expression of a mammalian PI/PC-TP to correct sec14⁻¹ growth and secretory defects in <i>S. cerevisiae</i>, have led to a proposal that the biological function of PI/PC-TPs might be conserved across wide evolutionary distances (Bankaitis et al., 1989; Salama et al., 1990; Cleves et al., 1991a; Skinner et al., 1993). A rigorous test of this possibility requires the availability of sec14 mutants in other organisms. For this reason, we characterized SEC14p^V function and localization. The <i.Y. lipolytica</i> system was well suited for these studies due to: (a) its facility for genetic manipulation; (b) the vast evolutionary distance that separates this dimorphic yeast from <i>S. cerevisiae</i> (Barns et al., 1991); and (c) for its unusual capacity to secrete high levels of protein into the extracellular medium.

Our data indicate that, while certain aspects of SEC14p^V function are conserved with respect to those of SEC14p^{sc}, these polypeptides control different biological processes in their respective host organisms. The similarities are several-fold. First, the SEC14p^V is a 497-amino acid polypeptide whose first 300 residues exhibit a 65% identity to the 304-amino acid SEC14p^{sc}, and a 66% identity to the 301 residue SEC14p^{sc} (Fig. 1). This level of primary sequence conservation is commonly observed when <i.Y. lipolytica</i> gene products are compared to their <i>S. cerevisiae</i> counterparts (Daviddow et al., 1987; Strick et al., 1992). Although SEC14p^V exhibits a 197-residue carboxy-terminal extension that is not represented in SEC14p^{sc}, SEC14p^{KL}, or SEC14p^{sp}, we have thus far failed to detect an important role for this domain in SEC14p^V function in vivo as all consequences associated with loss of SEC14p^V function in <i.Y. lipolytica</i> (e.g., loss of measurable intracellular PI/PC-TP activity and impairment of the developmental switch from the yeast to the mycelial mode of growth) are corrected by expression of SEC14p^V that lacks this COOH-terminal domain. The only detectable consequence of deletion of this domain is an apparent reduction in SEC14p^V stability in vivo (not shown). Thus, the SEC14p^{sc}-like domain of SEC14p^V represents its functional domain. Second, the ability of SEC14p^V expression to complement the lethality of sec14 null mutations in <i>S. cerevisiae</i> indicates that SEC14p^V fulfills all of the essential SEC14p^{sc} functions in the heterologous system. The biochemical basis for the functional relatedness between SEC14p^{sc} and SEC14p^V was confirmed by: (a) in vitro experiments that demonstrated SEC14p^V to be a PI/PC-TP; and (b) that, as expected, it was the functional SEC14p^{sc}-like domain of SEC14p^V that represented its PI/PC-TP domain (Fig. 4). Finally, double-label immunofluorescence experiments demonstrated a substantial, albeit not absolute, colocalization of SEC14p^V with the presumptive <i.Y. lipolytica</i> Golgi marker XPR6p (Fig. 7). The general pattern of SEC14p^V and XPR6p staining was a disperse punctate staining in the <i.Y. lipolytica</i> cytoplasm, much like that which has been observed for Golgi-specific staining in <i>S. cerevisiae</i> and <i>S. pombe</i> (Franzusoff et al., 1991; Cleves et al., 1991b; Redding et al., 1991; Chappell and Warren, 1989; Preuss et al., 1992). These data lead us to conclude that, in direct analogy to the localization of SEC14p^{sc} in <i>S. cerevisiae</i>, SEC14p^V is associated, at least in part, with the <i.Y. lipolytica</i> Golgi complex. This conclusion must be considered tentative, however, as the suitability of XPR6p as a <i.Y. lipolytica</i> Golgi marker is based largely on circumstantial evidence (i.e., its homology to the <i>S. cerevisiae</i> Golgi marker KEX2p; see above) and is not yet rooted in evidence obtained from more direct subcellular localization experiments. Nonetheless, the association of SEC14p^V with compartments of the <i.Y. lipolytica</i> secretory pathway is probable.

A surprising distinction between SEC14p^{sc} and SEC14p^V function in vivo was forthcoming from gene disruption experiments. Whereas SEC14p^{sc} is essential for the viability of wild-type <i.S. cerevisiae</i> (Bankaitis et al., 1989), SEC14p^V clearly was not required for the viability of <i.Y. lipolytica</i> under conditions of vegetative growth or germination from spores. Moreover, SEC14p^V dysfunction was of no consequence to secretory pathway function in <i.Y. lipolytica</i>, as determined by comparing the efficiency and kinetics of AP and AEP secretion in wild-type and sec14⁻¹ strains (Fig. 8, b and c). The nonessentiality of SEC14p^V is not readily explained by the presence of some redundant function as evidenced by our inability to detect SEC14p^V homologs by nucleic acid hybridization experiments or immunoblotting experiments with anti-SEC14p^{sc} serum (Fig. 3, a and b). Moreover, phospholipid transfer assays using lysates prepared from wild-type and sec14⁻¹ mutant strains of <i.Y. lipolytica</i> identified SEC14p^V as the major, and perhaps the only, <i.Y. lipolytica</i> PI/PC-TP (Fig. 4). Thus, the available evidence leads us to conclude that SEC14p^V (and therefore PI/PC-TP activity) is genuinely nonessential for <i.Y. lipolytica</i> viability. Our finding that <i.Y. lipolytica</i> has an active CDP-choline pathway for PC biosynthesis also excludes from further consideration the trivial possibility that the nonessentiality of SEC14p^V could result from <i.Y. lipolytica</i> being naturally incompetent for PC synthesis via this pathway (Fig. 5); a mechanism by which the normally essential SEC14p^{sc} function can be bypassed in <i.S. cerevisiae</i> (Cleves et al., 1991b). These data further reinforce the distinction between the in vivo functions of SEC14p^{sc} and SEC14p^V. Thus, irrespective of the significant aspects of functional similarity shared by SEC14p^{sc} and SEC14p^V, these PI/PC-TPs are involved in controlling distinct physiological processes in their respective host organisms. Finally, the finding that SEC14p^V is a genuinely nonessential function in <i.Y. lipolytica</i> provides yet another clear example where a PL-TP does not play an essential role in the recycling of bulk...
membrane lipid from the late stages of the secretory pathway back to the ER (Wieland et al., 1987; Rothman, 1990; Cleves et al., 1991a,b).

While SEC14pvt function is not essential for Yarrowia viability, our genetic data demonstrated a requirement for SEC14pvt in the dimorphic transition of the yeast form into the mycelial form. Yarrowia \textit{sec14} \textit{dt} mutants were uniformly incapable of forming hyphae, even under growth conditions that favor mycelium formation in wild-type cells, and therefore exhibited a smooth colony phenotype, as opposed to the rough colony morphology typical of wild-type strains (Fig. 6, a and b). This differentiation from yeast to mycelium is a very poorly understood developmental program that involves a dramatic reorientation with respect to cell morphology (avoid to filamentous, mode of culture growth (exponential to linear), and mechanism of cell division (budding mode to septation). The inability of \textit{sec14} \textit{dt} strains to assume a true mycelial form when the culture achieves stationary phase (Fig. 6 b), indicates a role for SEC14p YL in promoting at least one of these transition steps.

How might SEC14pvt function in promoting the dimorphic transition event? There is evidence to suggest that execution of the dimorphic transition program in another yeast, \textit{Candida tropicalis}, might require enhanced turnover of phosphatidylinositol (Uejima et al., 1987). Additional support for a role for PI metabolism in this differentiation event is provided by the observation that addition of free inositol to \textit{C. tropicalis} inhibits the transition of yeast cells to mycelium (Tani et al., 1979), and the demonstration of an involvement for the RAS signal transduction pathway in controlling a less well-developed version of the dimorphic transition event in \textit{S. cerevisiae} (Gimeno et al., 1992). Indeed, one can easily imagine that a PI/PC-TP could somehow play a role in controlling PI metabolism via its PI-transfer activity (perhaps by acting to present inositol phospholipid to an appropriate phospholipase) and therefore exert a significant influence on a cellular process that uses PI turnover for its execution. Thus, the clear elements of conservation between these PI/PC-TPs notwithstanding, it is possible that SEC14pvt and SEC14psc may play mechanistically divergent roles in their respective organisms. However, there is in vivo evidence to suggest that, although the primary function of SEC14psc appears to be a regulatory activity directed at the control of Golgi membrane PC content (McGee et al., 1994), the ultimate consequence of SEC14psc function may be to either generate the appropriate PL composition in the yeast Golgi complex so that the requisite level of PI turnover can be sustained to drive Golgi secretory processes (Cleves et al., 1991a; Whitters et al., 1993), or to maintain an appropriate diacylglycerol pool in yeast Golgi membranes (McGee et al., 1994). These concepts are based largely on the behavior of sacl mutants that exhibit: (a) the ability to suppress mutations in the actin structural gene of yeast in an allele-specific manner (Novick et al., 1989); (b) the ability to suppress \textit{sec14} \textit{dt} null mutations (Cleves et al., 1989); and (c) a novel inositol auxotrophy that is not related to an inositol biosynthetic difficulty, but to an elevated inositol requirement for growth (Whitters et al., 1993). Thus, the possibility also remains that SEC14psc and SEC14pvt may play mechanistically similar regulatory roles in their respective host organisms in vivo, but that the regulatory function of these proteins is simply coupled to downstream circuits that have different target processes. In that regard, it will be of great interest to determine what role the \textit{Y. lipolytica} Golgi complex plays in promoting the dimorphic transition developmental program.

We wish to thank R. S. Fuller for mouse anti-\textit{Kex2} antibodies, D. Ozyrdziak for supplying an XPR6 disruption cassette, C. D'Enfert for the construction of the \textit{Y. lipolytica} cDNA library, and M. Minet, E. Fabre, and J. M. Beckerich for helpful discussions. We are especially grateful to Ray Zinkowski for his patient and expert assistance with the image processing experiments.

This work was supported by the Institut de la Recherche Agronomique, by the Centre National de la Recherche Scientifique, by an EEC grant (BIOT-C791-0267 DSCN), and by a grant from the National Institutes of Health (GM44530). M. C. Lopez was supported in part by a joint postdoctoral fellowship from the Spanish Ministerio de Educacion y Ciencia and the French Ministere de la Recherche et de la Technologie.

Received for publication 13 October 1993 and in revised form 3 January 1994.

References

Akinshin, K. D. 1984. \textit{Saccharomycyes cerevisiae} recessive suppressor that circumvents phosphatidylserine deficiency. \textit{Genetics}. 108:553-543.

Akinshin, K., S. Fogel, and S. A. Henry. 1980. Yeast mutant defective in phosphatidylserine synthesis. \textit{J. Biol. Chem.} 255:6653-6661.

Bankaitis, V. A., D. E. Malehorn, S. D. Enrr, and R. Greene. 1989. The \textit{Saccharomycyes cerevisiae} \textit{SEC14} gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex. \textit{J. Cell Biol.} 108:1271-1281.

Bankaitis, V. A., J. R. Aitken, A. E. Cleves, and W. Dowhan. 1990. An essential role for a phospholipid transfer protein in yeast Golgi function. \textit{Nature} \textit{(Lond.)}. 347:561-562.

Barns, S. M., D. J. Lane, M. L. Sogin, C. Bibeau, and W. G. Weisburg. 1991. Evolutionary relationships among pathogenic \textit{Candida} species and relatives. \textit{J. Bacteriol.} 173:2250-2255.

Barth, G., and H. Weber. 1985. Improvement of sporulation in the yeast \textit{Yarrowia lipolytica}. \textit{Antonie van Leeuwenhoek}. 51:167-177.

Bishop, W. R., and R. M. Bell. 1988. Assembly of phospholipids into cellular membranes: biosynthesis, transmembrane movement and intracellular translocation. \textit{Annu. Rev. Cell Biol.} 4:579-610.

Boecke, J. D., F. Lacroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine-5-phosphate decarboxylase in yeast: 5-fluoro-orotic acid resistance. \textit{Mol. Gen. Genet.} 197:345-346.

Chappell, T. G., and G. Warren. 1989. A galactosyltransferase from the fission yeast \textit{Schizosaccharomycyes pombe}. \textit{J. Cell Biol.} 109:2693-2702.

Cleves, A. E., P. J. Novick, and V. A. Bankaitis. 1989. Mutations in the \textit{Sac} \textit{G1} gene suppress defects in yeast Golgi and yeast actin function. \textit{J. Cell Biol.} 109:2959-2959.

Cleves, A. E., T. P. McGee, and V. A. Bankaitis. 1991a. Phospholipid transfer proteins: a biological debut. \textit{Trends Cell Biol.} 1:30-34.

Cleves, A. E., T. P. McGee, E. A. Whitters, K. M. Champion, J. R. Aitken, W. Dowhan, M. Goebel, and V. A. Bankaitis. 1991b. Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. \textit{Cell}. 64:789-800.

Davidow, L. S., F. S. Kaczmarek, L. R. De Zecuw, S. W. Conlon, M. R. Lauth, D. A. Pereira, and A. E. Franke. 1987. The fission yeast \textit{Schizosaccharomycyes pombe} \textit{XPR6} gene. \textit{Curr. Genet.} 109:377-383.

Devereux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequences and analysis programs for the VAX. \textit{Nucleic Acids Res.} 12: 387-395.

Fabre, E., C. Tharaud, and C. Gaillardin. 1992. Intracellular transit of a yeast protease is rescued by trans-complementation with its prodomain. \textit{J. Biol. Chem.} 21:15049-15055.

Fournier, P., L. Guyaneux, M. Chasles, and C. Gaillardin. 1991. Scarcity of \textit{ARS} sequences isolated in a morphogenesis mutant of the yeast \textit{Yarrowia lipolytica}. \textit{Year}. 7:25-36.

Fournier, P., A. Abbas, M. Chasles, B. Kudla, D. M. Ozyrdziak, D. Yaver, J. W. Xuan, A. Peito, A. M. Ribet, C. Feyneder, F. He, and C. Gaillardin. 1993. Colocalization of centromeric and replicative functions on \textit{ARS} isolated from the yeast \textit{Yarrowia lipolytica}. \textit{Proc. Natal. Acad. Sci. USA}. 90:4912-4916.

Franzusoff, A., K. Redding, J. Crosby, R. S. Fuller, and R. Schekman. 1991. Localization of components involved in protein transport and processing through the yeast Golgi apparatus. \textit{J. Cell Biol.} 112:27-37.

Fuller, R. S., A. Brake, and J. Thorner. 1989. Yeast prohormone processing enzyme (\textit{KEX2} gene product) is a Ca2+-dependent serine protease. \textit{Proc. Natl. Acad. Sci. USA}. 86:1434-1438.
Klig, L. S., L. Friedli, and E. Schmid. 1990. Phospholipid biosynthesis in Can-
dida albicans: regulation by the precursors inositol and choline. J. Bacteriol. 172:4407-4414.

Klig, L. S., M. J. Homann, G. M. Carman, and S. A. Henry. 1985. Coordinate regulation of phospholipid synthesis in Saccharomyces cerevisiae: pleiotropically constitutive opil mutant. J. Bacteriol. 162:1135-1141.

Lopez, M. C., and A. Dominguez. 1988. Purification and properties of a glyco-
protein acid phosphatase from the yeast form of Yarrowia lipolytica. J. Basic Microbiol. 28:249-263.

Matoba, S., and D. M. Oygrzydai. 1985. A novel location for dippe-
tidylaminopeptidase processing sites in the alkaline extracellular protease of Yarrowia lipolytica. J. Biol. Chem. 260:5037-5043.

Matoba, S., J. Fukuyama, R. A. Wing, and D. M. Oygrzydai. 1988. Intracellu-
ar precursors and secretion of alkaline extracellular protease of Yarrowia lipolytica. Mol. Cell. Biol. 8:4904-4916.

Mcgee, T. P., H. B. Skinner, E. A. Whitters, and V. A. Bankai-
tis. 1994. A phosphatidylinoositol transfer protein controls the phosphatidyl-
choline content of yeast Golgi memranes. J. Cell Biol. 124:273-287.

Minet, M., M. E. Dufout, and F. Lacrouxe. 1992. Complementation of Saccharomyces cerevisiae auxotrophic mutations by Arabidopsis thaliana cDNAs. Plant J. 2:417-422.

Nicaid, J. M., E. Fabre, J. M. Beckerich, P. Fournier, and C. Galliardini. 1989. Cloning, sequencling, and amplification of the alkaline extracellular protease (XPR2) gene of the yeast Y. lipolytica. J. Biotechnol. 12:285-298.

Novick, P., B. C. Osmond, and D. D. Botstein. 1989. Suppressors of yeast ac-
tin mutations. Genetics. 121:659-674.

Pagano, R. E. 1990. Lipid traffic in eukaryotic cells: mechanisms for intracellu-
lar transport and organelle-specific enrichment of lipids. Curr. Opin. Cell.
Biol. 2:652-663.

Patterson, B., and C. Guthrie. 1991. A U-rich tract enhances usage of an alter-
native 3'-splice site in yeast. Cell. 64:181-187.

Preuss, D., J. Mulliolland, A. Franausoff, N. Segev, and D. Botstein. 1992. Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. Mol. Biol. Cell. 3:789-803.

Pringle, J. R., Preston, A. Adams, T. Stearns, D. Drubin, B. Haaster, and E. Jones. 1989. Fluorescence microscopy methods for yeast. Methods Cell Biol. 31:357-435.

Ritter, K., C. Holcomb, and R. S. Fuller. 1991. Immunolocalization of KEX2 protease identifies a putative late Golgi compartment in the yeast Sac-
charomyces cerevisiae. J. Cell Biol. 113:527-538.

Rodriguez, C., and A. Dominguez. 1984. The growth characteristics of Yarrowia lipolytica: morphology and induction of mycelium formation. Can. J. Microbiol. 30:605-612.

Rothman, J. E. 1991. Phospholipid transfer market. Nature (Lond.). 347: 519-520.

Salama, S. R., A. E. Cleves, D. E. Malehorn, E. A. Whitters, and V. A.

Bankaitis. 1990. Cloning and characterization of Kluyveromyces lactis SECT4, a gene whose product stimulates Golgi secretory function in Sac-
charomyces cerevisiae. J. Bacteriol. 172:4510-4521.

Sambrook, J., E. P. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Lab-
oratory Manual. 2nd edition. Cold Spring Harbor Laboratory Press, Cold
Spring Harbor, NY.

Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74:5463-5467.

Sherman, P., G. R. Fink, and J. B. Hicks. 1983. Methods in Yeast Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

Skinner, H. B., J. G. Alb, Jr., E. A. Whitters, G. M. Helminkamp, Jr., and V. A. Bankaitis. 1993. Complementation of a Saccharomyces cerevisiae Golgi de-
fect by a mammalian phospholipid transfer protein. EMBO (Eur. Mol. Biol. Organ.) J. 12:4775-4784.

Steiner, M. R., and R. E. Lester. 1972. In vitro studies of phospholipid synthe-
sis in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 158:401-410.

Strick, C. A., L. C. James, M. M. D'Onnell, M. G. Gollaher, and A. E. Franke. 1970. The isolation and characterization of the pyruvate kinase-
coding gene from the yeast Yarrowia lipolytica. Gene. 118:65-72.

Tani, Y., Y. Yamada, and T. Kamihara. 1979. Morphological change in Can-
dida tropicalis PK 233 caused by ethanol and its prevention by myo-inositol. Biochem. Biophys. Res. Commun. 91:351-355.

Teem, J. L., N. Abovich, N. F. Kaufner, W. F. Schwindinger, J. R. Warner, A. Levy, J. Woolford, R. J. Leer, M. M. C. van Raamsdonk-Duin, W. H. Mage, R. J. Planta, L. Schlutz, J. D. Friesen, H. Fried, and M. Rosbach. 1984. A comparison of yeast ribosomal protein gene DNA sequences. Nucleic Acids Res. 12:8295-8312.

Tharandt, C., and C. Galliardini. 1992. Secretion of human blood coagula-
tion factor XIIla by the yeast Yarrowia lipolytica. Gene. 121:111-119.

Uejima, Y., T. Koga, and T. Kamihara. 1987. Enhanced metabolism of phos-
phatidylinoositol in Candida tropicalis in association with filamentous growth caused by ethanol. FEBS (Fed. Eur. Biochem. Soc.) Lett. 214:127-129.

Van Meer, G. 1989. Lipid traffic in animal cells. Ann. Rev. Cell Biol. 5:247-275.

Voeller, D. R., 1991. Organele biogenesis and intracelluar lipid transfer in eukaryotes. Microbiol. Rev. 55:543-560.

Wang, Y., P. A. Loomis, R. P. Zinkowski, and L. I. Binder. 1993. A novel tau transcript in cultured human neuroblastoma cells expressing nuclear tau. J. Cell Biol. 121:257-267.

Whitters, E. A., A. E. Cleves, T. P. McGee, H. B. Skinner, and V. A. Bankai-
tis. 1993. SAC1P is an integral membrane protein that influences the cellular requirement for phospholipid transfer protein function and inositol in yeast. J. Cell Biol. 122:79-94.

Wieland, F. T., M. L. Gleason, T. A. Serafini, and J. E. Rothman. 1987. The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell. 50:289-300.

Wirtz, K. W. A. 1991. Phospholipid transfer proteins. Ann. Rev. Biochem. 60:73-90.

Xuan, J. W., P. Fournier, N. Declerck, M. Chasles, and C. Galliardini. 1990. Overlapping reading frames at the LYS3 locus in the yeast Yarrowia lipolytica. Mol. Cell. Biol. 9:4795-4806.

Zaret, K. S., and F. Sherman. 1982. DNA sequence required for efficient trans-
cription termination in yeast. Cell. 28:563-573.