Nutrition Journal

Short report

Differential susceptibility to obesity between male, female and ovariectomized female mice

Jina Hong, Renee E Stubbins, Rebekah R Smith, Alison E Harvey and Nomelí P Núñez*

Address: Department of Nutritional Sciences, University of Texas at Austin, Austin, Texas, USA
Email: Jina Hong - j_hong@mail.utexas.edu; Renee E Stubbins - reyoung91@gmail.com; Rebekah R Smith - rebekahrs2004@yahoo.com; Alison E Harvey - aeharvey@mail.utexas.edu; Nomelí P Núñez* - nomeli@mail.utexas.edu
* Corresponding author

Abstract

Background: The prevalence of obesity has increased dramatically. A direct comparison in the predisposition to obesity between males, premenopausal females, and postmenopausal females with various caloric intakes has not been made. To determine the effects of sex and ovarian hormones on the susceptibility to obesity, we conducted laboratory studies with mice. To eliminate confounders that can alter body weight gain, such as age and food consumption; we used mice with the same age and controlled the amount of calories they consumed.

Methods: We determined sex-specific susceptibility to obesity between male, non-ovariectomized female, and ovariectomized female mice. To compare susceptibility to gaining body weight between males and females, animals from each sex were exposed to either a 30% calorie-restricted, low-fat (5% fat), or high-fat (35% fat) diet regimen. To establish the role of ovarian hormones in weight gain, the ovaries were surgically removed from additional female mice, and then were exposed to the diets described above. Percent body fat and percent lean mass in the mice were determined by dual energy x-ray absorptiometry (DEXA).

Results: In all three diet categories, male mice had a greater propensity of gaining body weight than female mice. However, ovariectomy eliminated the protection of female mice to gaining weight; in fact, ovariectomized female mice mimicked male mice in their susceptibility to weight gain. In summary, results show that male mice are more likely to become obese than female mice and that the protection against obesity in female mice is eliminated by ovariectomy.

Conclusion: Understanding metabolic differences between males and females may allow the discovery of better preventive and treatment strategies for diseases associated with body weight such as cancer and cardiovascular disease.

Background

The prevalence of overweight and obesity has increased dramatically in the US population [1]. It is predicted that by 2030, 86% adults will be overweight or obese, and by 2048, all American adults will become overweight or obese [1]. The role gender plays in the susceptibility to obesity is not fully understood, specifically the role ovarian hormones play. Epidemiological studies that focus on
determining the role gender has on the susceptibility to obesity have provided valuable information, showing that "women generally have a larger proportion of body mass as fat, and are more likely to deposit fat subcutaneously and on their lower extremities; men are more likely to deposit fat in the abdominal region" [2]. However, epidemiological studies have been limited by confounding factors (e.g., occupational differences between males and females) in determining the role gender and ovarian hormones play in the susceptibility to obesity. Confounding factors that can alter the effects of gender and ovarian hormones on the susceptibility to obesity include: 1) occupation differences between males and females (some jobs require more physical activity than others), 2) recreational physical activity differences between males and females, 3) differences in initial body composition at the beginning of the study between the sexes, 4) concomitant food intake pattern differences between males and females, and 5) reproductive differences (e.g., weight fluctuations during and after pregnancy). In animal studies, however, many of these confounding factors and others, such as age and genetics, can be controlled for; moreover, experimental animals can be closely monitored throughout the study to measure factors that affect body weight gain (e.g., initial body weight, diet, calorie intake, and physical activity). Review of the animal literature investigating the predisposition to obesity between males, females and ovariectomized females, revealed a lack of studies in this area. In fact, a direct comparison in the predisposition to obesity between males, females and ovarian hormones, revealed a lack of studies in this area. However, we have not simultaneously compared the predisposition to obesity between male, female and ovariectomized females on various diet regimens has not been made. We and others have shown that male mice have a higher susceptibility to become obese compared to female mice [3,4]. Moreover, we have shown that removal of ovarian hormones (surgical removal of the ovaries by ovariectomy) increased the susceptibility of female mice to become obese [5,6]. However, we have not simultaneously compared the predisposition to obesity between male, female and ovariectomized female mice receiving different diets. We conducted studies in mice to eliminate confounding factors that affect susceptibility to obesity, such as age, genetics, calorie intake and diet. Our results show that male mice are more susceptible to obesity than female mice, and that ovariectomy eliminates the protection against weight gain in female mice; in fact, ovariectomized female mice appear to mimic the male mice in their susceptibility to weight gain and percent body fat levels.

Methods and procedures
At six weeks of age, C57BL/6 male, female and ovariectomized female mice (Charles River Laboratories) were randomized (15 per group) to receive one of three diet regimens: 30% calorie-restricted (CR), low-fat (5% fat) (LF), or high-fat (35% fat) (HF). A table with detailed diet formulations has been previously published [6]. Briefly, the CR diet contained 27% protein, 54% carbohydrate, and 6% fat; the LF diet contained 19.2% protein, 67.3% carbohydrate, and 4.3% fat; and the HF diet contained 26% protein, 26% carbohydrate, and 35% fat. The CR diet was modified so that the mice received 70% of the mean daily caloric consumption but 100% of the vitamins and minerals of the LF groups. Mice were singly housed, received their dietary treatments for 20 weeks, provided with their respective diets either ad libitum or calorie restricted, and kept on a 12-h light/dark cycle. Food consumption was recorded twice weekly and body weight weekly. Animal protocol was approved by the Institutional Animal Care and Use Committee at the University of Texas at Austin.

Ovariectomy
Surgical removal of the ovaries is a well-characterized approach to mimic the postmenopausal state in mice [3]. In short, mice were anesthetized with Avertin. Hair was clipped over the surgical area and scrubbed with Betadine and ethanol wipe. A small midline incision (~1 cm) was made in the skin halfway between the middle of the back and the base of the tail, starting at the last rib. The skin was moved to one side, and a small incision was made through the peritoneal lining on each side. The entire ovary was removed with a single cut between the fallopian tube and the uterine horn. The skin was then closed with a surgical staple.

Body composition
Body composition was determined using a GE Lunar Piximus Densitometer [3]. Briefly, at the end of the study, carcasses were stored at 80°C. To determine body fat levels frozen carcasses were thawed for 24 hours at 4°C. The thawed carcasses were placed on a tray lying face down with limbs and tail outstretched. Carcasses were weighed and scanned individually. A General Electric (GE)-supplied software (version 1.46) was used to exclude the heads from each mouse from the image area; then estimates of percent lean and fat were obtained directly from the DEXA instrument output.

Statistical analyses
Two-way analysis of variance (ANOVA) was used to assess the effects of sex and diet within the various groups. We report the results of ANOVA and a posteriori comparison of the means using Tukey's Honestly Significant Difference procedure. To make comparisons within the groups, α was set to 0.05 (e.g. CR male vs. HF male; and between groups, CR male vs. CR female). Analysis was done in the final body weight and percent body fat of the mice.

Results
For twenty weeks, male, female and OVX female mice were exposed to either a CR, LF, or HF diet. Baseline body
weight for all male mice was 20 ± 0.1 grams (± SE); values among the various groups were not significantly different (p > 0.05). Final body weight for CR male mice was 20 ± 0.2, LF 35 ± 0.8, and HF mice 46 ± 1.0. Baseline average body weight for all female mice was 18 ± 0.2 grams; there were no significant differences between groups. Final body weight for female groups was: CR 18 ± 0.3, LF 27 ± 0.7, and HF 32 ± 1.3. Baseline body weight for all OVX-female mice was 20 ± 0.2 grams; baseline weights were not significantly different among OVX mice. Final body weight for OVX-female groups was: CR 22 ± 0.4, LF 32 ± 1.0, and HF 47 ± 2.1.

Fig 1A shows that all three male groups had greater propensity to gain weight and become obese than female mice (p < 0.05). Moreover, male mice consuming the LF diet developed body weights similar to female mice consuming the HF diet (p > 0.05). Differences in body weight between male and female mice were also reflected in differences in body fat levels (Fig 1B), with male mice having more body fat in all three diet categories than female mice (p < 0.05). To determine the effect of ovarian hormones on susceptibility to obesity in female mice, ovaries were surgically removed from 45 additional female mice, then divided into groups of 15 mice and given the three diets described above. Fig 1A shows that ovariectomized female mice resembling the male mice in their susceptibility to weight gain. Results also show that body fat levels in ovariectomized female mice were almost identical to those of male mice (Fig 1B). With respect to lean mass, values tended to be lower in male and OVX-female mice and higher in female mice. Lean body mass for male mice was (percent ± SE): CR 73 ± 1.0, LF 59 ± 1.9, and HF 42 ± 1.6; for female mice: CR 77 ± 1.4, LF 69 ± 1.7, and HF 56 ± 1.5; and for OVX-female mice: CR 71 ± 1.2, LF 55 ± 2.3, and HF 38 ± 3.6.

Discussion

Review of the literature shows that no studies have made a direct comparison in susceptibility to body weight gain between males, females, and ovariectomized females consuming various diet regimens. Our studies show that male mice are more susceptible to obesity than female mice, and that ovariectomy eliminates the protection of female mice against obesity.

Figure 1

A, shows the body weight profiles for male, female and OVX female C57BL/6 mice fed CR, LF, or HF diets for 20 weeks. Male mice had a greater propensity to gain weight and become obese than female mice (p < 0.05). However, ovariectomy removed the female mice’s protection against gaining weight, and in fact, ovariectomized female mice patterned like male mice in their susceptibility to weight gain (p > 0.05). Within male and female mice, after week 10 the body weights were significantly different among all groups (CR vs. LF vs. HF), before then only the CR mice had significantly lower body weights than LF and HF mice at week 5 (p < 0.05). For female vs. male mice (CR male vs. CR female, LF male vs. LF female, HF male vs. HF female) values were significant different at all time points respectively (p < 0.005). However, values were not significantly different between male and OVX female mice (p > 0.005). Percent body fat was determined by DEXA. Abbreviations: 30% calorie-restricted diet (CR), 5% low-fat diet (LF), 35% high-fat diet (HF). B, shows the percent body fat levels in male, female, and OVX-female C57BL/6 mice. Body fat levels between male and female mice were significantly different, with male mice having more body fat in all three diet categories than female mice (p < 0.05). Body fat levels in ovariectomized female mice were almost identical to those of male mice (within each category, male CR vs. CR OVX-female).
Obesity is associated with an increased risk for a variety of metabolic and cardiovascular diseases [10-12]. Adult men are more likely to die from cancer and cardiovascular disease (CVD) than women [11,12]. Our hypothesis is that the difference in susceptibility to diseases such as cancer and CVD between males and females is due in part to fundamental physiological differences, including those that influence susceptibility to body weight gain. Furthermore, we propose that understanding metabolic differences between males and females may lead to the discovery of better treatments and preventive strategies for chronic diseases such as cancer.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JH, RRS, AEH, participated in data collection, and data analysis, RES participated in manuscript preparation and editing. NPN participated in study design, data analysis and manuscript preparation. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by grants ACS RSG CNE-113703 (NPN), NCI IK22CA127519-01A1 (NPN); and by NIEHS National Institutes of Health Grant ES09145 & National Institute of Environmental Health Sciences Center grants ES007784.

References
1. Wang Y, Beydoun MA, Liang L, Caballero B, Kumanyika SK: Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity 2008, 16(10):2323-2330.
2. Power ML, Schullin J: Sex differences in fat storage, fat metabolism, and the health risks from obesity: possible evolutionary origins. British Journal of Nutrition 2008, 99:931-40.
3. Yakar S, Nunez NP, Pennisi P, Brodt P, Sun H, Fallavollita L, Zhao H, Scavo L, Novosyadlyy R, Kursan N, Stannard B, East-Palmer J, Smith NC, Perkins SN, Fuchs-Young R, Barrett JC, Hursting SD, LeRoith D: Increased tumor growth in mice with diet-induced obesity: impact of ovarian hormones. Endocrinology 2006, 147:5826-34.
4. Catala-Niell A, Estrany ME, Proenza AM, Gianotti M, Llado I: Skeletal muscle and liver oxidative metabolism in response to a voluntary isocaloric intake of a high fat diet in male and female rats. Cellular Physiology and Biochemistry 2008, 22:327-36.
5. Nunez NP, Perkins SN, Smith NC, Berrigan D, Berendes DM, Varticovski L, Barrett JC, Hursting SD: Obesity accelerates mouse mammary tumor growth in the absence of ovarian hormones. Nutrition Cancer 2008, 60(4):534-41.
6. Núñez NP, Carpenter CL, Perkins SN, Berrigan D, Jaque SV, Ingles SA, Bernstein L, Forman MR, Barrett JC, Hursting SD: Extreme obesity reduces bone mineral density: complementary evidence from mice and women. Obesity (Silver Spring) 2007, 15:1980-7.
7. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, Karin M: Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007, 317:121-4.
8. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pizzell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA: Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444:337-42.
9. Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bennis JE, Xie R, Disch JS, Ng PY, Nunees J,
Lynch AV, Yang H, Galonek H, Israeli K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, Westphal CH. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007, 450:712-6.

10. Case A, Paxson C. Sex differences in morbidity and mortality. Demography 2005, 42:189-214.

11. American Cancer Society: Cancer Facts & Figures 2007. American Cancer Society; 2007.

12. National Heart, Lung, and Blood Institute: Morbidity & Mortality: 2007 Chart on Cardiovascular, Lung, and Blood Diseases. NIHBI 2007.