Determinantes das Propriedades Funcionais e Estruturais de Grandes Artérias em Indivíduos Saudáveis

Determinest of Functional and Structural Properties of Large Arteries in Healthy Individuals

Elaine Cristina Tolezani, Valéria Costa-Hong, Gustavo Correia, Alfredo José Mansur, Luciano Ferreira Drager, Luiz Aparecido Bortolotto
Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP – Brasil

Resumo

Fundamento: Alterações das propriedades de grandes artérias são correlacionadas a maior risco cardiovascular. Recentes diretrizes incluem a avaliação dessas propriedades para detecção de doença subclínica. O estabelecimento de valores de referência dos métodos para essa avaliação e de determinantes dos parâmetros arteriais e suas correlações em indivíduos saudáveis é importante para a estratificação dos pacientes.

Objetivo: Avaliar, em adultos saudáveis, a distribuição dos valores de velocidade de onda de pulso e de diâmetro, espessura íntima-média e distensão relativa da artéria carótida, além de avaliar os determinantes demográficos e clínicos desses parâmetros e suas correlações.

Métodos: Foram avaliados 210 indivíduos (54% mulheres; idade média, 44 ± 13 anos) sem evidência de doença cardiovascular. A velocidade de onda de pulso carótida-femoral foi medida com o aparelho Complior®. Propriedades funcionais e estruturais da carótida foram avaliadas por ultrassom de radiofrequência.

Resultados: As seguintes médias foram obtidas: velocidade de onda de pulso, 8,7 ± 1,5 m/s; diâmetro, 6,707,9 ± 861,6 µm; espessura íntima-média, 601 ± 131 µm; distensão relativa, 5,3 ± 2,1%. Não houve diferenças significativas conforme sexo ou raça. Na análise de regressão logística linear múltipla, os fatores independentemente relacionados aos parâmetros vasculares foram: velocidade de onda de pulso, com idade (p < 0,01) e triglicéridos (p = 0,02); espessura íntima-média, com idade (p < 0,01); diâmetro, com creatinina (p = 0,03) e idade (p = 0,02); distensão relativa, com idade (p < 0,01) e pressão arterial sistólica (p = 0,02) e diastólica (p = 0,01). A velocidade de onda de pulso apresentou correlação positiva com a espessura íntima-média (p < 0,01) e com a distensão relativa (p < 0,01), e o diâmetro, com a distensão (p = 0,03).

Conclusão: Em indivíduos saudáveis, o principal fator relacionado à medida da rigidez aórtica foi a idade, enquanto que a idade e a pressão diastólica foram relacionadas com a medida funcional da carótida. A estrutura da carótida é diretamente relacionada à rigidez aórtica, que, por sua vez, é inversamente relacionada à capacidade funcional da carótida. (Arq Bras Cardiol. 2014; 103(5):426-432)

Palavras-chave: Artérias; Pressão Arterial; Rígidez Arterial; Análise de Onda de Pulso; Espessura Íntima-Média Carotídea.

Abstract

Background: Changes in the properties of large arteries correlate with higher cardiovascular risk. Recent guidelines have included the assessment of those properties to detect subclinical disease. Establishing reference values for the assessment methods as well as determinants of the arterial parameters and their correlations in healthy individuals is important to stratify patients.

Objective: To assess, in healthy adults, the distribution of the values of pulse wave velocity, diameter, intima-media thickness and relative distensibility of the carotid artery, in addition to assessing the demographic and clinical determinants of those parameters and their correlations.

Methods: This study evaluated 210 individuals (54% women; mean age, 44 ± 13 years) with no evidence of cardiovascular disease. The carotid-femoral pulse wave velocity was measured with a Complior® device. The functional and structural properties of the carotid artery were assessed by using radiofrequency ultrasound.

Results: The means of the following parameters were: pulse wave velocity, 8.7 ± 1.5 m/s; diameter, 6,707.9 ± 861.6 µm; intima-media thickness, 601 ± 131 µm; relative distensibility, 5.3 ± 2.1%. No significant difference related to sex or ethnicity was observed. On multiple linear logistic regression, the factors independently related to the vascular parameters were: pulse wave velocity, to age (p < 0.01) and triglycerides (p = 0.02); intima-media thickness, to age (p < 0.01); diameter, to creatinine (p = 0.03) and age (p = 0.02); relative distensibility, to age (p < 0.01) and systolic and diastolic blood pressures (p = 0.02 and p = 0.01, respectively). Pulse wave velocity showed a positive correlation with intima-media thickness (p < 0.01) and with relative distensibility (p < 0.01), while diameter showed a positive correlation with distensibility (p = 0.03).

Conclusion: In healthy individuals, age was the major factor related to aortic stiffness, while age and diastolic blood pressure related to the carotid functional measure. The carotid artery structure was directly related to aortic stiffness, which was inversely related to the carotid artery functional property. (Arq Bras Cardiol. 2014; 103(5):426-432)

Keywords: Arteries; Arterial Pressure; Vascular Stiffness; Pulse Wave Analysis; Carotid Intima-Media Thickness.

Correspondência: Valéria Costa-Hong
Avenida Dr. Eneas de Carvalho Aguiar, Cerqueira Cesar. CEP 05403-000, São Paulo, SP – Brasil
E-mail: hong.valeria@gmail.com
Artigo recebido em 23/10/13; revisado em 26/02/14; aceito em 05/05/14.

DOI: 10.5935/abc.20140124
Introdução

A importância da rigidez arterial no desenvolvimento de doenças cardiovasculares tem sido salientada nos últimos anos. Alterações das propriedades funcionais e estruturais de grandes artérias são correlacionadas a maior risco cardiovascular em diferentes populações1-4 e, embora consideradas intrínsecas ao processo de envelhecimento vascular5,6, sofrem influência de outras doenças e fatores de risco7,8, como sexo, dislipidemia, diabetes, aumento da frequência cardíaca (FC), fumo9, hipertensão arterial, doença renal crônica e obesidade10-12.

Novos e acessíveis métodos tornaram possível a avaliação não invasiva das propriedades funcionais e estruturais de grandes artérias. As diretrizes europeias de hipertensão arterial13 e as VI Diretrizes Brasileiras de Hipertensão14 incluem medidas de rigidez aórtica e da espessura íntima-média (EIM) da artéria carótida como métodos para avaliação de possível doença cardiovascular subclínica do paciente hipertenso.

A rigidez aórtica e a EIM da artéria carótida são importantes parâmetros para avaliação de risco cardiovascular, sendo atualmente utilizadas para detecção de doença subclínica, minimizando prognósticos mais graves. Para avaliação da rigidez, a medida da velocidade de onda de pulso (VOP) aparece como padrão-ouro, por conta da reprodutibilidade e da confiabilidade do método, além de ter-se demonstrado sua associação com risco cardiovascular em diferentes populações, independentemente de fatores de risco relacionados15,16.

Para que as medidas da rigidez arterial e das demais propriedades arteriais possam expressar a presença da doença cardiovascular subclínica, é necessário estabelecer um padrão de referência dos métodos de avaliação da estrutura e da função arteriais. Além disso, os principais determinantes clínicos e demográficos dos parâmetros obtidos com esses métodos e suas correlações precisam ser estabelecidos.

Em nosso meio, um padrão de referência para esses métodos e para a avaliação dos principais determinantes da função e da estrutura das grandes artérias ainda não foi estabelecido, sendo este a finalidade do presente estudo.

Os objetivos deste estudo foram avaliar em adultos saudáveis o seguinte: (1) a distribuição dos valores de VOP aórtica, do diâmetro, da EIM e da distensão relativa da artéria carótida, para definir valores de referência para os métodos aplicados; (2) os principais determinantes demográficos e clínicos dos parâmetros obtidos com esses métodos; e (3) as correlações entre os parâmetros arteriais obtidos pelos diferentes métodos.

Métodos

Foram incluídos 210 adultos com idades entre 18 e 80 anos, de ambos os sexos, sem uso de medicação, assintomáticos e sem evidência de doença cardiovascular atual, após avaliação clínica e laboratorial. Tais indivíduos haviam participado como grupos controle de projetos de pesquisa já realizados e devidamente autorizados pelo Comitê de Ética da Faculdade de Medicina da Universidade de São Paulo (Tabela 1).

Para cálculo da amostra, considerou-se um número mínimo de 30 pacientes por faixa etária, com base no poder de detectar alterações na medida de VOP conforme reprodutibilidade e sensibilidade do exame observadas em nosso serviço. O método tem coeficientes de reprodutibilidade intraobservador e interobservador de 0,935 e 0,890, respectivamente. Esse número mínimo de participantes foi calculado pelo programa estatístico JMP. Assim, subdividindo-se a população em sete faixas de idade, a partir dos 18 até os 80 anos, atingimos 210 indivíduos. No entanto, pela dificuldade de se obterem indivíduos acima de 70 anos e quando comorbididades, mantivemos o mesmo número de indivíduos calculado inicialmente, distribuídos conforme curva populacional, com predomínio entre 41 e 50 anos.

Os termos de consentimento informado foram assinados nos respectivos projetos. Fizeram parte do projeto Chest-BR, que avaliou indivíduos sem doença cardiovascular clínica, 143 pacientes. Todos foram submetidos a avaliação clínica completa, exames laboratoriais, teste ergoespirométrico e ecocardiograma, não sendo evidenciada nenhuma alteração em qualquer dessas avaliações.

A avaliação clínica incluiu cuidadosa anamnese para obtenção de dados, como idade, sexo, etnia, e presença ou não dos critérios de exclusão. A etnia foi registrada conforme referida pelos próprios indivíduos, que foram classificados em brancos, negros, pardos e amarelos. Para melhor apresentação dos resultados, a população estudada foi dividida entre brancos e não brancos. O peso e a altura foram determinados com roupas leves e sem sapatos, utilizando aparelho Filizola, modelo Personal. O índice de massa corporal (IMC) foi determinado utilizando-se a fórmula: peso corporal (kg)/estatura (m)². A determinação da pressão arterial sistólica e diastólica braquial (PAS e PAD, respectivamente), bem como da FC, foi realizada de acordo com a fórmula: peso corporal (kg)/estatura (m)². A pressão de pulso (PP) foi determinada pela fórmula: PAS – PAD.

Tabela 1 – Lista de projetos de pesquisa utilizados como banco de dados

Número de protocolo de aprovação	Nome do projeto
2431/04/51	O Impacto da Síndrome da Apneia Obstrutiva do Sono nas Propriedades Estruturais e Funcionais das Grandes Artérias
721/04	Influência do polimorfismo dos genes receptores adrenérgicos alf2-1, alf2-c e beta 1 na regulação cardiovascular de filhos de hipertensos
2403/04/23	Determinantes da rigidez arterial e da espessura íntima-média de carótida em hipercolesterolemia familiar
852/03	Chest BR
A avaliação laboratorial foi realizada no laboratório da instituição, após 12 horas em jejum.

Indivíduos que apresentassem qualquer uma das seguintes condições clínicas não participaram do estudo: insuficiência renal crônica (creatinina > 1,4 mg/dL); insuficiência hepática; hipertensão arterial sistêmica (pressão arterial (PA) > 140/90 mmHg ou em uso de medicação); doenças inflamatórias; neoplasias; distúrbios endócrinos; doenças hematológicas; doenças vasculares periféricas; hipercolesterolemia (colesterol total > 240 mg/dL ou em uso de medicação); miocardiopatias; valvopatias; doenças congênitas; e obesidade (IMC > 30).

Métodos de avaliação dos parâmetros arteriais

A medida da VOP é obtida automaticamente pelo registro de ondas de pulso simultâneas captadas por sensores externos sobre dois pontos conhecidos da árvore arterial (carótida e femoral) e calculada como a distância entre os dois pontos de medida dividida pelo tempo percorrido entre os mesmos, fornecido pelo software do aparelho. O aparelho Complior® (Gonesse, França), já validado e utilizado em diversos estudos em nosso laboratório\(^{19-22}\), foi empregado para a obtenção das medidas. A VOP foi avaliada no segmento arterial carótida-femoral, representando a medida do trânsito da onda de pulso pela aorta. Para obter o valor da VOP de cada paciente, foram selecionadas dez curvas, com boa qualidade, sendo, então, a média calculada. As curvas foram adquiridas com o indivíduo em decúbito dorsal horizontal.

As propriedades funcionais e anatômicas da carótida direita foram avaliadas por um sistema ultrassonográfico pulsátil do tipo echotracking (Wall-Track System, Pie Medical, Maastricht, Holanda), que utiliza análise de sinais de radiofreqüência e que foi desenvolvido para medir os movimentos das paredes de grandes artérias superficiais a partir da localização pelo modo B da ecografia vascular convencional. O método foi validado e utilizado para estudos clínicos na literatura\(^{23-26}\). A precisão desse sistema é de 30 μm para medida do diâmetro diastolico e de menos de 1 μm para a variação pulsátil do diâmetro (diferença entre os diâmetros sistólico e diastólico). Analisou-se a artéria carótida comum direita 2 cm abaixo da bifurcação da carótida, tendo-se tomado as seguintes medidas: EIM, diâmetro da carótida, variação sístol-diastólica da carótida batimento a batimento e percentual dessa variação sístol-diastólica\(^{27-29}\).

Análise estatística

O teste de Kolmogorov-Smirnov foi utilizado para avaliar os dados contínuos quanto à sua distribuição. As variáveis foram expressas em média ± desvio padrão (DP), mediana [percentis 25 – 75] ou porcentagem, conforme apropriado.

O coeficiente de correlação (r) entre dados clínicos, antropométricos, bioquímicos, VOP e parâmetros da carótida foi obtido pelo método de Pearson para as variáveis de distribuição normal, e de Spearman para as variáveis de distribuição não paramétrica.

Para comparações entre as variáveis dos diferentes grupos, foi utilizado o teste de Análise de Variância (ANOVA), confirmando-se as diferenças pelo teste Tukey-Kramer.

Para avaliar os fatores independentemente associados às alterações vasculares funcionais e estruturais, foram utilizados diferentes modelos de regressão linear (uni- e multivariados), considerando-se como variáveis dependentes os parâmetros da VOP e da artéria carótida (diâmetro, distensão ou EIM). Para as análises multivariadas, as seguintes variáveis foram consideradas independentes: idade, sexo, etnia, tabagismo, peso, altura, IMC, PAS, PAD, PP, glicemia, colesterol total, LDL-colesterol, HDL-colesterol, triglicérides e proteína C-reativa. Para cada modelo, apresentaram-se os parâmetros estimados, DP, nível descritivo de significância (p) e coeficiente de correlação (r).

O programa JMP, versão 5.0, foi usado para a análise estatística, e os valores de p < 0,05 foram considerados estatisticamente significativos.

Resultados

As principais características clínicas, laboratoriais e demográficas dos indivíduos encontram-se na Tabela 2.

Medidas das propriedades arteriais

As seguintes médias foram obtidas: VOP, 8,7 ± 1,5 m/s; diâmetro da carótida, 6,707,9 ± 861,6 μm; EIM da carótida, 601 ± 131 μm; e distensão relativa da carótida, 5,3 ± 2,1%.

Correlação com parâmetros demográficos

Não houve diferencia significativa dos parâmetros vasculares em relação ao sexo e à etnia.

Correlação com a idade

Notamos correlação significativa e positiva da idade com VOP (r = 0,50; p ≤ 0,01), diâmetro (r = 0,18; p ≤ 0,01) e EIM da artéria carótida (r = 0,28; p ≤ 0,01), e negativa com a distensão relativa da carótida (r = -0,33; p ≤ 0,01).

Tabela 2 – Características clínicas, laboratoriais e demográficas dos pacientes, n = 210

Variáveis	Amostra (210)
Idade, anos	44 ± 13
Sexo feminino, n (%)	109 (54)
Brancos, n (%)	141 (76)
Índice de massa corporal, kg/m²	25 ± 3
Pressão arterial sistólica, mmHg	118 ± 13
Pressão arterial diastólica, mmHg	75 ± 10
Creatinina, mg/dL	0,9 ± 0,2
Colesterol total, mg/dL	191 ± 32
Triglicérides, mg/dL	100 ± 32
LDL-colesterol, mg/dL	120 ± 28
HDL-colesterol, mg/dL	39 ± 6
Hematócrito, %	42 ± 3
Glicemia, mg/dL	92 ± 7
A Tabela 3 apresenta a distribuição de valores da VOP, diâmetro, distensão relativa e EIM da carótida de acordo com diferentes faixas etárias. Notamos um aumento progressivo de VOP, diâmetro e EIM da carótida, além de uma diminuição da distensão relativa da carótida por categoria.

Correlação com variáveis antropométricas

A distensão relativa da carótida apresentou correlação significativa e negativa com o IMC (r = -0,21; p = 0,03), enquanto o diâmetro da carótida apresentou correlação significativa e positiva com o IMC (r = 0,22; p = 0,002). A VOP não se correlacionou com os parâmetros antropométricos dessa população.

Correlação com pressão arterial e frequência cardíaca

A VOP correlacionou-se significativamente e posicionalmente com PAS (r = 0,24; p ≤ 0,01), PAD (r = 0,26; p ≤ 0,01) e PP (r = 0,17; p = 0,01), e o diâmetro da carótida teve correlação significativa e inversa com PAS (r = -0,19; p = 0,01), PAD (r = -0,32; p ≤ 0,01) e FC (r = -0,18; p = 0,01). Por outro lado, a EIM da carótida teve correlação significativa e positiva com PAS (r = 0,15; p = 0,03), PP (r = 0,18; p = 0,01) e FC (r = 0,16; p = 0,03).

Categorizamos os indivíduos conforme a classificação das VI Diretrizes Brasileiras de Hipertensão14 com o intuito de projetar os valores de VOP aórtica, EIM, diâmetro e distensão relativa da carótida de acordo com categorias de PA ainda não consideradas como hipertensão arterial (Tabela 4).

Utilizando o teste ANOVA, pudemos observar que tanto a VOP quanto o diâmetro da carótida apresentaram aumento por faixa de PA, enquanto a distensão de carótida foi menor na faixa de pressão limitrofe.

Correlação de parâmetros vasculares com variáveis laboratoriais

A VOP correlacionou-se com colesterol (r = 0,21; p < 0,01), triglicérides (r = 0,26; p < 0,01), LDL-colesterol (r = 0,15; p = 0,04), HDL-colesterol (r = 0,14; p = 0,04) e glicemia (r = 0,19; p < 0,01). O diâmetro correlacionou-se com triglicérides (r = 0,25; p < 0,01), hematócrito (r = 0,26; p < 0,01), hemoglobina (r = 0,25; p < 0,01), glicemia (r = 0,21; p = 0,03) e creatinina (r = 0,40; p < 0,01). A distensão relativa correlacionou-se com colesterol (r = -0,27; p < 0,01), LDL-colesterol (r = -0,18; p = 0,01), triglicérides (r = -0,33; p < 0,01) e glicemia (r = -0,21; p < 0,01). A EIM correlacionou-se com colesterol (r = 0,18; p = 0,01) e triglicérides (r = 0,16; p = 0,03).

Fatores determinantes dos parâmetros vasculares

Na análise de regressão logística linear múltipla, os fatores determinantes independentes dos parâmetros vasculares, com os respectivos valores de r e nível de significância do modelo, foram: (1) idade e triglicérides para VOP (r = 0,52; p < 0,01) e distensão relativa da carótida (r = 0,65; p < 0,01); idade para EIM (r = 0,42; p ≤ 0,01) e diâmetro (r = 0,42; p < 0,01); (2) PAS e PAD (r = 0,65; p < 0,01) para distensão de carótida; (3) creatinina (r = 0,42; p < 0,01) para o diâmetro (Tabela 5).

Correlação entre os parâmetros vasculares obtidos na população estudada

Os resultados da regressão logística linear múltipla, com os respectivos valores de r e nível de significância do modelo, foram: VOP (r = 0,41; p < 0,01) mostrou correlação com EIM e distensão; o diâmetro da carótida (r = 0,26; p < 0,01) apresentou correlação com a distensão (Tabela 5).

Tabela 3 – Distribuição da velocidade de onda de pulso (VOP), diâmetro da carótida, espessura íntima-média (EIM) da carótida e distensão relativa da carótida, de acordo com a faixa etária em indivíduos aparentemente saudáveis

Idade (anos)	n	VOP (m/s)	Diâmetro da carótida (µm)	EIM (µm)	Distensão relativa da carótida (%)
≤ 30	34	7,60 ± 1,04	6268 ± 974	514 ± 119	7,53 ± 2,96
31-40	40	8,27 ± 1,28	6529 ± 782	577 ± 147	5,91 ± 2,09
41-50	65	8,80 ± 1,82	6741 ± 948	608 ± 112	5,13 ± 1,72
51-60	35	9,22 ± 1,37	6903 ± 690	610 ± 78	4,16 ± 1,01
≥ 61	29	9,76 ± 1,66	6795 ± 682	718 ± 120	4,13 ± 0,75

Tabela 4 – Distribuição dos valores dos parâmetros funcionais e estruturais das grandes artérias, de acordo com a classificação da pressão arterial

Classificação da pressão arterial	n	VOP (m/s)	Diâmetro da carótida (µm)	Distensão relativa da carótida (%)	EIM (µm)
Ótima se < 120 x 80 mmHg	92	8,39 ± 1,62	6541 ± 769	5,94 ± 2,52	586 ± 143
Normal se 120/130 x 80/85 mmHg	42	8,83 ± 1,67	6629 ± 895	5,35 ± 2,60	614 ± 147
Limitrofe se 130/140 x 85/90 mmHg	68	9,03 ± 1,60	6968 ± 900	5,02 ± 2,46	612 ± 144

*p < 0,05, ótima vs. limitrofe. VOP: velocidade de onda de pulso; EIM: espessura íntima-média.
Discussão

Nosso estudo mostrou a distribuição dos valores dos parâmetros arteriais obtidos por métodos não invasivos em indivíduos saudáveis. Em relação à metodologia para as propriedades da carótida, este é o primeiro estudo realizado no Brasil em uma população saudável, visto que somos a única instituição brasileira a utilizar essa metodologia já validada em outros países. Além disso, foi possível determinar as principais variáveis clínicas, antropométricas e laboratoriais correlacionadas aos parâmetros obtidos por esses métodos, e também as relações entre os parâmetros arteriais. É importante ressaltar que os indivíduos não apresentavam nenhuma evidência clínica de doença cardiovascular e nem faziam uso de medicamentos, sendo possível estabelecer valores de referência, sobretudo para a avaliação da artéria carótida por radiofrequência. Quanto aos parâmetros carotídeos, nossos dados compõem uma base de dados para registro internacional de valores de EIM.

Com relação à medida da VOP carótida-íemoral, o valor médio nessa população de 210 indivíduos sem doença clínica manifesta, cuja média de idade é de 44 anos, foi de 8,7 m/s, um valor inferior ao obtido em população normal em outros países para média de idade semelhante. Provavelmente, diferenças étnicas podem explicar os valores discrepantes, visto que a população brasileira tem um elevado grau de miscigenação. No Brasil, estudo realizado com a população de Vitória (ES), como parte do estudo MONICA, mostrou valores de VOP associados a etnia, sendo maior em afrodescendentes. Em nossa população, não encontramos diferenças entre brancos e não brancos, talvez pela não presença de indivíduos com patologias associadas, como observado na população do estudo MONICA. Como os indivíduos afrodescendentes têm mais hipertensão arterial e, em nosso estudo, não avaliámos pacientes com essa condição clínica, isso poderia justificar a não diferença étnica encontrada em nossos dados. A média da VOP na população do estudo de Vitória foi de 9,2 m/s, enquanto que, na nossa, foi de 8,7 m/s.

Os valores normais obtidos por nosso estudo podem servir como referência para a implementação da VOP como uma importante ferramenta para detectar lesões subclínicas ou pré-sintomáticas de órgãos alvo na avaliação de rotina do paciente em nosso meio. Apenas recentemente, um estudo envolvendo 13 centros europeus e que incluiu dados de 1.455 indivíduos normais mostrou os valores de normalidade de VOP para uma população europeia. A maioria dos estudos que demonstrou ser a VOP um importante marcador de risco cardiovascular em diferentes populações, assim como o estudo europeu de valores de normalidade, utilizou a metodologia que aplicamos em nosso estudo.

Os parâmetros de função e estrutura das grandes artérias para valores de referência normais podem ser representados de diferentes formas. Do ponto de vista prático, a forma de apresentar deve levar em conta os achados fisiopatológicos que afetam esses parâmetros. A rigidez arterial aumenta com a idade e a PA, que são, portanto, os principais determinantes da VOP e da EIM da carótida, como demonstrado em vários estudos e também em nossa população. Os valores de normalidade em nosso estudo foram apresentados por décadas de idade e também conforme a categoria de PA, não incluindo hipertensão arterial. Com base nos resultados em cada faixa etária e categoria de PA, é possível identificar os indivíduos com maior risco e representar em qual faixa de normalidade cada um está inserido.
Apesar de reconhecida em diversas populações, a associação do envelhecimento com as propriedades vasculares que demonstramos em nosso estudo é importante para definir o impacto que o envelhecimento tem sobre tais propriedades na população brasileira. Por exemplo, os valores de VOP aumentaram da terceira para a sexta década de vida cerca de 1,3 vez em nossa população; no estudo europeu\(^{15}\), os valores aumentaram 1,75 vez.

Outro fator que participa do mecanismo fisiopatológico das alterações das propriedades vasculares, sendo um determinante importante das mesmas, é a PA. Em nosso estudo, não avaliamos pacientes hipertensos, mas foi possível categorizar os indivíduos pelos valores de PA em níveis ótimo, normal e limitrofe, conforme recomendado pelas VI Diretrizes Brasileiras de Hipertensão\(^{14}\). De forma muito interessante, pudemos observar que os valores de VOP carótida-femoral foram significativamente maiores nos indivíduos com PA limitrofe (entre 130/85 mmHg e 140/90 mmHg) do que naqueles com nível ótimo (< 120/80 mmHg). Na mesma direção, a distensão da carótida foi menor nos pacientes com pressão limitrofe do que naqueles com pressão ótima. No estudo de referência europeu, os autores avaliaram também pacientes com hipertensão arterial não tratada e observaram aumento progressivo da VOP de acordo com a classificação da PA, sendo significativamente maior nos pacientes com hipertensão estágios II e III do que nos demais estratos. Como o número de indivíduos analisados foi grande, foi possível subdividir, de forma combinada, as categorias de baixa etária e as categorias de PA. Assim, verificou-se um aumento de cerca de 1,5 vez da VOP entre os indivíduos mais jovens com pressão ótima e os mais idosos com hipertensão. Em nosso estudo, devido ao menor número de indivíduos, não fizemos a mesma análise, mas é possível que haja o mesmo tipo de correlação. Embora essa relação entre PA e VOP seja bem reconhecida há quase um século, tanto nossos resultados quanto os do estudo europeu sugerem que o aumento da VOP com a PA não seja simplesmente atribuível ao aumento da PA com a idade, mas que o efeito da idade é incrementado pela PA mais elevada.

O perfil lipídico, sobretudo os níveis de triglicérides, foi relacionado a ambos os parâmetros funcionais e estruturais das grandes artérias. O papel dos lípides nas propriedades das grandes artérias tem sido motivo de discussão, com alguns resultados mais controversos. Em nossa experiência prévia com pacientes portadores de hipercolesterolemia familiar, os níveis de triglicérides foram um determinante importante tanto da VOP quanto da distensão da carótida\(^{17,18}\).

Outro achado de destaque do nosso estudo e inédito em nosso meio se refere às associações dos parâmetros obtidos com as duas metodologias de avaliação arterial. Constatamos que a medida da VOP foi diretamente relacionada à EIM da carótida, mostrando íntima correlação entre uma alteração funcional sistêmica e alteração estrutural mais localizada. Também observamos correlação inversa e significativa entre a medida da VOP carótida-femoral e a distensão relativa da artéria carótida. Essa associação da VOP com a EIM já havia sido demonstrada em estudo com 564 indivíduos\(^{29}\), metade dos quais hipertensos, mas, após correção para outros fatores de risco, a associação desapareceu, persistindo apenas a associação da VOP com a presença de placas ateroscleróticas. Em nosso estudo, a associação persistiu significativa mesmo após correção para os principais fatores de risco cardiovascular, e não avaliamos a presença de placas.

Outro estudo, que incluiu 2.000 finlandeses\(^{30}\), utilizando metodologias diferentes tanto para a VOP quanto para a EIM, a primeira não foi correlacionada significativamente à segunda na população geral — apenas em indivíduos mais idosos. No entanto, assim como em nosso estudo, a VOP foi inversamente relacionada à medida da distensibilidade da carótida, reforçando a importância da relação entre a rigidez aórtica e a capacidade funcional da carótida. Esse dado é importante para mostrar que dois métodos que avaliam propriedades funcionais similares, mas de formas diferentes, mostram resultados equivalentes em uma população de indivíduos saudáveis.

Limitações do estudo

Comparado a outros estudos populacionais, o nosso apresentou um número menor de indivíduos e, consequentemente, houve limitação para estabelecer critérios de normalidade. Uma parte desses indivíduos não realizou avaliação clínica e laboratorial completa, sendo excluídos da análise. No entanto, como a maior parte dos indivíduos realizou uma investigação completa, tanto clínica como laboratorial, para avaliação de doença cardiovascular, tornou-se uma população bem selecionada, sem evidência de doença associada e, assim, os dados podem ser usados como referência para comparação com populações que apresentem patologias diversas.

Conclusão

Em indivíduos sem doença cardiovascular clinicamente manifesta, a rigidez da aorta medida pela VOP aumenta com o envelhecimento, enquanto que os parâmetros funcionais locais da artéria carótida são relacionados independentemente com a idade e com a PAD. Nesta mesma população, os parâmetros funcionais e estruturais vasculares também estão associados, de tal forma que a estrutura da artéria carótida mensurada pela EIM é diretamente relacionada à rigidez da aorta, enquanto essa última tem uma relação inversa à capacidade funcional da artéria carótida.

Esses achados ajudam a entender os fatores relacionados às medidas de função e estrutura de grandes vasos e como elas se relacionam na ausência de doença cardiovascular manifesta. Estabelecer essas relações é muito importante para a aplicação clínica da metodologia na avaliação dos parâmetros vasculares na presença de doenças clínicas, e assim trazer subsídios para a aplicação do método em nossa população.

Contribuição dos autores

Concepção e desenho da pesquisa: Tolezani EC, Mansur AJ, Bortolotto LA, Drager LF; Obtenção de dados: Tolezani EC, Costa-Hong V; Análise e interpretação dos dados e revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Tolezani EC, Costa-Hong V, Bortolotto LA, Drager LF; Análise estatística: Tolezani EC, Costa-Hong V, Bortolotto LA; Redação do manuscrito: Tolezani EC, Bortolotto LA; Captação de paciente: Correia G, Mansur AJ.
Potencial conflito de interesse
Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento
O presente estudo não teve fontes de financiamento externas.

Referências
1. Laurent S, Boutouyrie P, Asmar R, Cautier I, Laloux B, Guize L, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37(5):1236-41.
2. Naijar SS, Scuteri A, Lakatta EG. Arterial aging: is it an immutable cardiovascular risk factor? Hypertension. 2005;46(3):454-62.
3. Cohn JN. Arterial stiffness, vascular disease, and risk of cardiovascular events. Circulation. 2006;113(3):601-3.
4. Sutton-Tyrrell K, Naijar SS, Boudreau RM, Venkitachalam L, Kupelian V, Simonsick EM, et al. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation. 2005;111(25):3384-90.
5. Liao D, Arnett DK, Tyroler HA, Riley WA, Chambless LE, Szklo M, et al. The Reference Values for Arterial Measurements Collaboration. Arq Bras Cardiol. 2014;103(5):426-432

Vinculação acadêmica
Este artigo é parte de tese de Doutorado de Elaine Cristina Tolezani pela Faculdade de Medicina da Universidade de São Paulo.