ABSTRACT

The Galactic center region near \(l \approx 0^\circ 2 \) hosts a mixture of nonthermal linear filaments and thermal radio continuum features associated with the radio arc. *Chandra* observations of this region reveal an X-ray filament and diffuse emission with an extent of roughly 60' \times 2' and 5' \times 3', respectively. The X-ray filament lies at the edge of the nonthermal radio filaments and the dense molecular shell G0.13−0.13 that has an unusually high kinetic temperature \(\geq 70 \) K. These observations demonstrate that the G0.13−0.13 molecular cloud and the nonthermal radio filaments of the arc are interacting. The diffuse X-ray emission is correlated with the molecular shell and is fitted either by two-temperature (1 and 10 keV) thermal emission or by power-law and 1 keV thermal gas. Fluorescent 6.4 keV line emission is also detected throughout the molecular shell. This cloud coincides within the error circle of a steady unidentified EGRET source, 3EG J1746−2851. We argue that low-energy cosmic-ray electrons produce the power-law continuum by bremsstrahlung and 6.4 keV line emission from the filament and the diffuse cloud with the implication on the origin of the Galactic ridge X-ray emission. The strong 6.4 keV Fe line emission seen from other Galactic center clouds could be produced in a similar fashion rather than via fluorescent emission induced by a transient hard X-ray source in the Galactic center. In addition, heating by ionization induced by low-energy cosmic-ray electrons are also responsible for the high temperature of G0.13−0.13. The gamma-ray source is a result of bremsstrahlung by the high-energy tail of the electron energy distribution.

Subject headings: cosmic rays — Galaxy: center — ISM: abundances — X-rays: ISM

1. INTRODUCTION

The Galactic center radio continuum arc is a complex system of thermal and nonthermal features distributed near \(l \approx 0^\circ 2 \). The nonthermal components of the arc—the linear filaments—are long (>15'), narrow (=5'−10'), linearly polarized synchrotron-emitting structures tracing organized magnetic fields that run perpendicular to the Galactic plane (Yusef-Zadeh, Morris, & Chance 1984; Tsuibo et al. 1985; Sofue et al. 1986; Yusef-Zadeh & Morris 1987; Inoue et al. 1984; Reich, Sofue, & Matsuo 2000). Recently, Tsuibo, Ukita, & Handa (1997, hereafter TUH) and Oka et al. (2001) have detected a CS and CO molecular cloud with a size of about 3' × 4' centered at G0.13−0.13 and G0.11−0.11, respectively. The G0.13−0.13 molecular cloud is about 7 pc in diameter (assuming a distance of 8 kpc) and is distinguished from other clouds within the inner 30' of the Galactic center by exhibiting an enhanced kinetic temperature \(T_k \approx 70 \) K and by being relatively isolated from the rest of clouds in the Galactic center (Oka et al. 2001). A morphological argument has been made for a site of the interaction between the dense molecular shell G0.13−0.13 and the neighboring nonthermal filaments (NTFs; see TUH and Oka et al. 2001).

Here we present high-resolution *Chandra* observations of the Galactic center radio arc and report the detection of enhanced diffuse continuum and 6.4 keV line emission as well as filamentary X-ray emission from G0.13−0.13. Earlier ASCA X-ray observations suggested the presence of diffuse, hot (10 keV) X-ray gas throughout this region (Koyama et al. 1996). We present an alternative power-law and thermal fit to the diffuse X-ray gas in G0.13−0.13. In addition, the power-law component and strong Fe 6.4 keV line are consistent with bremsstrahlung and collisional ionization by low-energy cosmic-ray electrons. The implication of such a mechanism for the origin of the hard X-ray emission from the Galactic ridge is also discussed. The associated heating explains the high kinetic temperature of the G0.13−0.13 molecular cloud. This is the strongest evidence yet of the interaction with NTFs, leading us to identify the Galactic center EGRET source 3EG J1746−2851 (Hartman et al. 1999) with the X-ray feature and G0.13−0.13 molecular cloud.

2. OBSERVATIONS AND RESULTS

An account of *Chandra* observations of the Galactic center arc has been given earlier (Yusef-Zadeh et al. 2002). The X-ray spectrum was extracted from an almost rectangular region, as shown in Figure 1. We used Sherpa to fit the extracted spectrum with either (1) an absorbed power-law plus thermal model, using the MEKAL model for the thermal component (Mewe, Gronenschild, & van den Oord 1985), or (2) an absorbed, two-temperature model. Each component of the two-temperature fit was permitted to have different temperatures and volume emission measures, while the elemental abundances (Si, S, Ar, Ca, and Fe) were constrained to be identical for both components. For both models 1 and 2, we added a Gaussian component fixed at 6.4 keV, to account for fluorescent iron K\(\alpha \) line emission. Diffuse X-ray emission pervades the Galactic center region, making the extraction of a non–X-ray background nearly impossible. We accounted for the non–X-ray background by using the *Chandra* X-ray Center’s “blanksky” fields. The background spectrum was extracted from the same region as the source spectrum, in order to avoid any possible response-dependent affects.

An adaptively smoothed X-ray image of a region near G0.13−0.13 (Fig. 1, right) shows diffuse X-ray emission distributed prominently in a rectangular area of \(\sim 5.3 \) square. The
full-resolution X-ray image of the same region (Fig. 1, left) reveals a linear X-ray filament with a size of $60'' \times 2''$. A compact source is also detected toward the filament at R.A. = $17^\circ 46' 21.56'',\ decl. = -28^\circ 52' 56.8''$ (epoch 2000). The enhanced diffuse and filamentary X-ray gas coincides with the CS and CO cloud G0.13−0.13 (see TUH and Oka et al. 2001). The box drawn in Figure 1 shows the extent of the G0.13−0.13 CS cloud. Figure 2 shows contours of CS (1−0) emission from the molecular cloud shell G0.13−0.13 with velocities in the range of $V_{LSR} = 15−45$ km s$^{-1}$ (TUH). The contours are superposed on a low-resolution X-ray distribution between 0.5 and 9 keV, which is displayed as a gray scale. There is a strong spatial correlation between the diffuse X-ray gas and the CS line emission. The CS cloud is limb-brightened and the X-ray images of Figure 1 show a strong X-ray filament to the north tracing the edge of the CS cloud. The estimated masses of the high-density CS and the CO clouds are $(2−3.6) \times 10^6$ M$_\odot$, respectively.

TUH argue that the northwestern limb of the CS molecular shell with a density of 6×10^4 cm$^{-3}$ is dynamically interacting with the Galactic center radio filaments because of the distorted structure as well as the large line width of the CS cloud, which exceeds 40 km s$^{-1}$. The enhanced kinetic temperature of the CO cloud G0.13−0.13 plus the abrupt velocity of the CS cloud at 40 km s$^{-1}$ provide additional support to the idea that this is an unusual cloud that is possibly interacting with the NTFs (Oka et al. 2001). The X-ray and molecular gas distributions noted in Figure 2 also coincide with a steady source of strong gamma-ray emission between 30 MeV and 10 GeV as detected by EGRET on board the Compton Gamma Ray Observatory.

The cross in Figure 2 shows the position of 3EG J1746−2851 (Hartman et al. 1999), with the error bar containing the 95% confidence contour. The photon index is $\alpha = 1.7 \pm 0.7$, and its flux is estimated to be 1.2×10^{-6} photons cm$^{-2}$ s$^{-1}$ with energies greater than 100 MeV, corresponding to 10^{40} photons s$^{-1}$ at the distance of the Galactic center.

Figure 3 shows two different images of the fluorescent emission (Fe Kα) at 6.4 keV. The left panel shows the fitted value for the Gaussian normalization to each of these spectra, and the right panel shows an adaptively smoothed 6.4 keV image. In general, the images correlate well, lending support to each method and in turn the correlation of 6.4 keV emission with the CS (1−0) contours. In particular, we note that each method...
shows three extended “blobs” in the southwest edge of the CS cloud with strong 6.4 keV line emission. These blobs with a size of $\approx 1\arcmin$ do not show any obvious relation to point sources in the full-resolution data. The low-resolution 6.4 keV image produced from ASCA observations show 6.4 keV emission from this region (Koyama et al. 1996).

Figure 4 shows contours of the X-ray filament superposed on the $\lambda 20$ cm continuum image of the NTFs. The X-ray filament appears to be situated at the outer boundary but parallel to a number of small radio filaments having the same dimension as the X-ray filament. The nearest radio filament is displaced by $\sim 15\arcsec$ from the X-ray filament, but there is diffuse $\lambda 90$ cm emission at a level of 200–245 mJy per beam coincident with the X-ray filament (Anantharamaiah et al. 1991).

A spectrum is extracted from the rectangular region of diffuse X-ray gas that is spread over four chips of the detector. The spectrum covers the densest region of the CS cloud $G0.13+0.13$. The point sources have been removed before the spectrum is fitted. The spectrum of the diffuse X-ray gas is equally well fitted by two different models. One is thermal bremsstrahlung with two temperatures at 0.97 and 10.5 keV and a 6.4 keV Gaussian corresponding to the fluorescent Fe Kα emission with column density $N_{\text{HI}} \sim 5.6 \times 10^{22} \text{ cm}^{-2}$. The thermal flux of the absorption-corrected spectrum integrated over the box shown in Figure 1 between 0.5 and 10 keV gives 2.7×10^{-11} and $1.8 \times 10^{-11} \text{ ergs cm}^{-2} \text{ s}^{-1}$ for the low- and high-temperature components, respectively. Alternative spectral fitting using weighted response files was done with a combination of a power law with a photon index $\alpha = 1.38$, a single temperature of 0.97 keV, and a 6.4 keV Gaussian line with $N_{\text{HI}} \sim 6.8 \times 10^{22} \text{ cm}^{-2}$. The fluxes of the absorption-corrected spectrum for the 0.97 keV component and the power-law component give 2.3×10^{-10} and $1.6 \times 10^{-11} \text{ ergs cm}^{-2} \text{ s}^{-1}$, respectively. The 6.4 keV line emission in both models give $1.2 \times 10^{-12} \text{ ergs cm}^{-2} \text{ s}^{-1}$. The fitted values are shown in Table 1. Both models give equally well-fitted spectra with the value of $\chi^2 \approx 1.2$. We also note in the left panel of Figure 3 a strong correlation between the amplitude of the power-law fit and the strength of the 6.4 keV line emission that in turn is correlated spatially with the CS line emission. The spectrum of the X-ray filament that is included in the model fits could not easily be isolated from the contribution from the background diffuse gas. Using different areas around the filament as well
as including the filament and the surrounding diffuse cloud, the extracted spectra were fitted equally well by either a power-law or thermal model and showed similar characteristics to that of the surrounding diffuse gas cloud, with α ranging between 1.3 and 1.4. The only difference in the two fitted spectra is the apparent overabundance of Fe with large error. The contribution of the 6.4 keV line that is not resolved from the 6.7 keV emission may be responsible for the large error.

3. DISCUSSION

The spectrum of the diffuse X-ray emission coincident with the G0.13–0.13 molecular cloud can be satisfactorily modeled as emission from a two-component thermal plasma with temperatures of ∼1 and 10 keV. Although similar two-temperature models have been invoked previously within the Galactic center region (Koyama et al. 1996), the production and confinement of the inferred hot component within the Galactic center region are problematic.

This is also true of the Galactic X-ray ridge emission, but recently it has been demonstrated that bremsstrahlung from low-energy cosmic-ray electrons more naturally explains the spectrum below 10 keV and the strength of the Fe 6.4 keV line (Valinia et al. 2000). The nonthermal spectrum below 10 keV is consistent with the power-law component detected above 10 keV (Yamasaki et al. 1997; Valinia & Marshall 1998). Their results indicate a fractional ionization of ∼1.3 at 1 keV and ∼1.4 over the range of 1–10 keV (Valinia et al. 2000). The only difference in the two fitted spectra is the kinetic temperature (≈70 K) of G0.13 and therefore is likely reconciled with an iron abundance of twice solar.

Here we show that this model also applies to G0.13–0.13. First, we note that the absorption-corrected spectrum is well-fitted by a soft thermal component plus a power law. The photon index of α ∼ 1.38 is consistent with that expected from bremsstrahlung by low-energy (≤100 keV) cosmic-ray electrons, −1.3 to −1.4 over the range of 1–10 keV (Valinia et al. 2000). The calculations of Valinia et al. yield a photon production rate per H nucleus of 1.4 × 10^20 photons s^{-1} H^{-1} keV^{-1} at 1 keV and a production of 6.4 keV Fe line photons of 4.8 × 10^{22} U photons s^{-1} H^{-1}, where U is the energy density of a low-energy cosmic-ray electron in units of eV cm^{-3}. Adopting a total mass of G0.13–0.13 of 10^6 M⊙ and a distance of 8 kpc, our measured fluxes of the power-law component at 1 keV and in the 6.4 keV line correspond to cosmic-ray energy densities of 1.1 and 1.9 eV cm^{-3}, respectively. Solar abundances are assumed in Valinia et al.’s calculation, so an iron abundance of twice solar would reconcile the continuum and iron line fluxes. Although our fit to the thermal component (Table 1) gives a somewhat higher iron abundance, it is poorly determined and, in any case, could differ from the iron abundance in the cold cloud. Within the uncertainties in the shape of the electron spectrum, the model reproduces the observed ratio of the 6.4 keV line to the continuum and requires a reasonable energy density in cosmic-ray electrons. In comparison, we note that Valinia et al. (2000) estimate that U ≈ 0.2 eV cm^{-3} would be sufficient to explain the Galactic ridge emission.

The hypothesized low-energy electron population would be the dominant source of ionization and heating within the G0.13–0.13 molecular cloud, explaining in particular the high kinetic temperature (∼70 K) of G0.13–0.13 (Oka et al. 2001) and possibly the high abundance of SiO emission in the vicinity of the arc correlating with the distribution of the 6.4 keV line emission (Martín-Pintado et al. 1997). The ionization cross section for H$_2$ by electrons is $2 × 10^{-17}$ cm$^{-2}$ [E(keV)]$^{-1}$ (e.g., Voit 1991), and for the electron spectrum of Valinia et al. (2000), the ionization rate is ≈2 × 10^{-14} s^{-1} H^{-1}, 1000 times the value for molecular clouds in the solar neighborhood. The effect on the cloud can be estimated using the calculations of Maloney, Hollenbach, & Tielens (1996; see their eq. [15] and their Fig. 3a) for ionization and heating by X-rays, as the effects are similar. Their results indicate a fractional ionization of ∼10^{-6} and a gas temperature of 50–100 K. The enhanced abundance of SiO gas can be explained perhaps by the impact of low-energy cosmic rays with dust grains.

The X-ray filament has a similar spectrum to the diffuse emission associated with G0.13–0.13 and therefore is likely to be produced by the same mechanism. In this scenario, the emission (in both the continuum and the 6.4 keV line), which is enhanced by ∼1.5 times that from G0.13–0.13, is generated in a volume of the cloud containing 1% of its mass, ∼10^6 M⊙ of material. The required energy density is therefore increased to ∼150 eV cm^{-3}, which is still small compared with the ∼3 × 10^5 eV cm^{-3} of a 1 mG magnetic field. A plausible source of the enhanced cosmic-ray electrons is the acceleration at the interaction site between the G0.13–0.13 cloud and the NTF radio filaments of the arc (see Tuh and Oka et al. 2001). The distribution of diffuse and filamentary X-ray gas lying at the edge of the NTFs imply the presence of nonthermal high-energy electrons in the vicinity of the diffuse X-ray source. The X-ray filament being distributed parallel to the NTFs is strongly...
suggestive of an interaction of X-ray gas with NTFs. In particular, the displacement of the X-ray and radio filaments from each other suggests that the high-energy component of the cosmic-ray electrons produces synchrotron radio emission from a highly organized magnetic field, whereas the low-energy cosmic-ray electrons produce bremsstrahlung emission from the edge of the CS G0.13−0.13 cloud. The local cloud material is heated to ~3000 K and is predicted to be predominantly atomic with a fractional ionization of ~10^{-2} (Maloney et al. 1996).

The G0.13−0.13 cloud and the diffuse and filamentary X-ray features lie within the 95% error circle of the unidentified EGRET source 3EG J1746−2851. This suggests that the source arises as a result of the interaction of the filament with the cloud (see an alternative interpretation by Pohl 1997). The $E^{-1.7}$ photon spectrum of 3EG J1746−2851 matches onto the cloud spectrum at about 10 keV when extended down to X-ray energies. This suggests that the EGRET source is also produced by bremsstrahlung and that the electron spectrum extends up to GeV energies (to E_{max}, say), with an $E^{-1.7}$ dependence in this range. The required energy density in high-energy electrons is $\approx 300E_{\text{max}}/(100 \text{ GeV})$ eV cm$^{-3}$. This model is supported by the spectral index measurements of the NTFs between centimeter and millimeter wavelengths. The spectral indices (α, where $S \propto \nu^\alpha$) are positive along the vertical filaments of the arc but, there is an anomalous filament near G0.16−0.15 with $p \sim -0.35$ (Anantharamaiah et al. 1991), consistent with synchrotron emission from GeV electrons with an $E^{-1.7}$ spectrum. Close inspection of the spectral index map of Anantharamaiah et al. indicates a value similar to that of the anomalous filament near the X-ray filament. Future high-resolution spectral index measurements of this region should give a more accurate value of p in this unusual region.

We have shown that the strong Fe 6.4 keV line emission from the G0.13−0.13 cloud can be explained by impact ionization by low-energy cosmic-ray electrons. A similar interpretation may well be applicable to the diffuse line emission detected from other Galactic center molecular clouds, notably Sgr B2 and Sgr C, and throughout the inner 2° of the Galactic center (e.g., Murakami, Koyama, Maeda 2001a; Murakami et al. 2001b; Wang, Gotthelf, & Lang 2002). This has been interpreted in terms of fluorescent emission resulting from irradiation by an intense source of hard X-rays (Sunyaev, Markovitch, & Pavlinsky 1993; Koyama et al. 1996). As no such source is apparent, it has been hypothesized that a transient source, perhaps associated with Sgr A*, is responsible. However, a low-energy cosmic-ray electron population permeating the Galactic center region would explain this. The geometry of the 6.4 keV emission from the northeast edge of the CS cloud is not consistent with a powerful flare from the Galactic center. The excess of supernova remnants detected in the Galactic center region (Gray 1994) is likely to be responsible for enhancing the flux of high-energy cosmic-ray particles in the central regions of the Galaxy.

This work was funded by NASA grants NAS58-39073 and GO0-1096X. We thank M. Tsuboi for providing us with the CS images.

REFERENCES

Anantharamaiah, K. R., Pedlar, A., Ekers, R. D., & Goss, W. M. 1991, MNRAS, 249, 262
Gray, A. D. 1994, Proc. Astron. Soc. Australia, 11, 79
Hartman, R. C., et al. 1999, ApJS, 123, 79
Inoue, M., Takahashi, T., Tabara, H., Kato, J., & Tsuboi, M. 1984, PASJ, 36, 633
Koyama, K., Maeda, Y., Sonobe, T., Takeshima, T., Tanaka, Y., & Yamauchi, S. 1996, PASJ, 48, 249
Maloney, P. R., Hollenbach, D. J., & Tielens, A. G. G. M. 1996, ApJ, 466, 561
Martín-Pintado, J., de Vicente, P., Fuente, A., & Planesas, P. 1997, ApJ, 482, L45
Mewe, R., Gronenschild, E. H. B. M., & van den Oord, G. H. J. 1985, A&AS, 62, 197
Murakami, H., Koyama, K., & Maeda, Y. 2001a, ApJ, 558, 687
Murakami, H., Koyama, K., Tsujimoto, M., & Y. Sakano. 2001b, ApJ, 550, 297
Oka, T., Hasegawa, T., Sato, F., Tsuboi, M., & Miyazaki, A. 2001, PASJ, 53, 779
Pohl, M. 1997, A&A, 317, 441
Reich, W., Sofue, Y., & Matsuo, H. 2000, PASJ, 52, 355
Sofue, Y., Inoue, M., Handa, T., Tsuboi, M., Hirabayashi, H., Morimoto, M., & Akabane, K. 1986, PASJ, 38, 475
Sunyaev, R. A., Markovitch, M., & Pavlinsky, M. 1993, ApJ, 407, 606
Tsuboi, M., Inoue, M., Handa, T., Tabara, H., & Kato, T. 1985, PASJ, 37, 359
Tsuboi, M., Ukita, N., & Handa, T. 1997, ApJ, 481, 263 (TUH)
Valinia, A., & Marshall, F. E. 1998, ApJ, 505, 134
Valinia, A., Tatischeff, V., Arnauld, K., Ebisawa, K., & Ramaty, R. 2000, ApJ, 543, 733
Voit, G. M. 1991, ApJ, 377, 158
Wang, Q. D., Gotthelf, E. V., & Lang, C. C. 2002, Nature, 415, 148
Yamasaki, N. Y., et al. 2001, ApJ, 550, 297
Yamasaki, N. Y., Ohashi, T., Tsuboi, M., Yamauchi, S., Kamae, T., Kaneda, H., Makishima, K., & Koyama, K. 1996, A&AS, 120, 393
Yamasaki, N. Y., et al. 1997, ApJ, 481, 821
Yamauchi, S., Kawada, M., Koyama, K., Kunieda, H., & Tawara, Y. 1990, ApJ, 365, 532
Yusef-Zadeh, F., Law, C., Wardle, M., Wang, Q. D., Fruscione, A., Lang, C. C., & Cotera, A. 2002, ApJ, in press
Yusef-Zadeh, F., & Morris, M. 1987, ApJ, 320, 545
Yusef-Zadeh, F., Morris, M., & Chance, D. 1984, Nature, 310, 557