Spatial variations in the estimated production of reactive oxygen species in the epithelial lung lining fluid by iron and copper in fine particulate air pollution

Scott Weichenthala,b,*, Maryam Shekarrizfardc, Ryan Kulkab, Pascale S. J. Lakeyd, Kenan Al-Rijlehf, Sabreena Anowar, Manabu Shiraivali, Marianne Hatzopoulo

Background: Certain metals may play an important role in the adverse health effects of fine particulate air pollution (PM$_{2.5}$), but few models are available to predict spatial variations in these pollutants.

Methods: We conducted large-scale air monitoring campaigns during summer 2016 and winter 2017 in Toronto, Canada, to characterize spatial variations in iron (Fe) and copper (Cu) concentrations in PM$_{2.5}$. Information on Fe and Cu concentrations at each site was paired with a kinetic multilayer model of surface and bulk chemistry in the lung epithelial lining fluid to estimate the possible impact of these metals on the production of reactive oxygen species (ROS) in exposed populations. Land use data around each monitoring site were used to develop predictive models for Fe, Cu, and their estimated combined impact on ROS generation.

Results: Spatial variations in Fe, Cu, and ROS greatly exceeded that of PM$_{2.5}$ mass concentrations. In addition, Fe, Cu, and estimated ROS concentrations were 15, 18, and 9 times higher during summer compared with winter with little difference observed for PM$_{2.5}$. In leave-one-out cross-validation procedures, final multivariable models explained the majority of spatial variations in annual mean Fe ($R^2 = 0.68$), Cu ($R^2 = 0.79$), and ROS ($R^2 = 0.65$).

Conclusions: The combined use of PM$_{2.5}$ metals data with a kinetic multilayer model of surface and bulk chemistry in the human lung epithelial lining fluid may offer a novel means of estimating PM$_{2.5}$ health impacts beyond simple mass concentrations.

Keywords: PM$_{2.5}$; Metals; Oxidative stress; Land use regression; Epidemiology

Ambient fine particulate air pollution (PM$_{2.5}$) is associated with a range of adverse cardiovascular and respiratory outcomes and is an important contributor to global disease burden. However, surprisingly little is known about the specific components/sources of PM$_{2.5}$ that are most relevant to health and exposures are traditionally assigned as particle mass concentrations.

Of the potential candidates, metal components in PM$_{2.5}$ are thought to play an important role in determining overall PM$_{2.5}$ health effects owing to their ability to cause oxidative stress in biological systems. However, few models are available to estimate spatial variations in PM$_{2.5}$ metal concentrations for use in population-based studies. Moreover, separating the individual health effects of specific metal components remains a challenge owing to strong correlations between elements. An alternative approach is to examine the combined impact of multiple elements based on a shared mechanisms of action: oxidative stress.

Lakey et al recently developed a kinetic multilayer model of surface and bulk chemistry in the lung epithelial lining fluid (KM-SUB-ELF). This model can be used to estimate reactive oxygen species (ROS) concentrations (nM; i.e., OH, HO$_2$, O$_2$−, H$_2$O$_2$) generated in the human respiratory tract in response to inhaled pollutants including Cu and Fe in PM$_{2.5}$. Briefly, the KM-SUB-ELF model estimates ROS generation in the lung epithelial lining fluid by resolving mass transport and chemical reactions between pollutants and antioxidants/surfactants in the lung. This model provides chemical baseline estimates of exogenous ROS concentrations generated in response to Fe and Cu in PM$_{2.5}$ but does not resolve endogenous ROS generated via biological interactions and/or responses of the immune system. Nevertheless, this model may provide a useful means of estimating the combined health impacts of Fe and Cu in PM$_{2.5}$.

What this study adds

Certain metal components in PM$_{2.5}$ are thought to contribute to air pollution health effects. However, few models are available to estimate exposures for individual metals or their impact on important biological mechanisms such as oxidative stress. In this study, we combined data for PM$_{2.5}$ iron and copper with a kinetic multilayer model of surface and bulk chemistry in the lung epithelial lining fluid. In doing so, we estimated the impact that these metals may have on the production of reactive oxygen species in exposed populations. The models presented offer a novel means of estimating PM$_{2.5}$ health impacts in population-based studies.
In this study, our goal was to characterize possible spatial variations in the combined impact of Fe and Cu in PM$_{2.5}$ on ROS production in exposed populations by combining spatial monitoring data with the KM-SUM-ELF model. Land use regression models were developed to predict spatial variations in ROS, Fe, and Cu in Toronto, Canada, for use in future cohort studies.

Methods

Spatial monitoring study

Two large-scale PM$_{2.5}$ monitoring campaigns were conducted across Toronto, Canada, during August/September 2016 (summer) and February/March 2017 (winter). During summer sampling, daily mean temperatures ranged from 18.3°C to 27.2°C, whereas winter temperatures ranged from −8.8°C to 7.5°C. Total precipitation was similar during summer (38.2 mm) and whereas winter temperatures ranged from −8.8°C to 7.5°C. Finally, sites were identified manually, maximizing spatial cov-

Monitoring sites were identified to capture the variability of microenvironments in Toronto while maximizing spatial coverage. A neighborhood map of the city was used whereby each neighborhood was characterized in terms of road den-

Combustion of Fe and Cu ions in the epithelial lining fluid was estimated using known airborne concentrations of Fe and Cu in PM$_{2.5}$, according to the following equation:

$$\text{ELF concentration} = \frac{\text{Ambient concentration of } Fe/Cu \times \text{Breathing rate} \times \text{PM deposition rate} \times \text{Fractional solubility} \times \text{Accumulation time}}{\text{MW} \times \text{Total ELF volume}}$$

where MW is the molecular weight of the species, breathing rate was assumed to be 1.5 m/h, and total PM deposition rate was set to 45%, and total ELF volume was 20 ml. The solubilities of Fe and Cu were assumed to be 0.1 and 0.4, respectively.

PM$_{2.5}$ metals analyses

Copper and iron concentrations in PM$_{2.5}$ samples were deter-

Estimating reactive oxygen species concentrations using a kinetic multilayer model of surface and bulk chemistry in the lung epithelial lining fluid model

The KM-SUB-ELF model was recently developed and described in detail by Lakey et al. Briefly, the model consists of a surface surfactant layer containing lipids and proteins and the epithelial lining fluid bulk with a thickness of 0.5 μm, which is the average thickness of ELF in bronchi. The bulk layer contains four anti-

Statistical analyses

Multivariable linear regression models were used to estimate spatial variations in Fe, Cu, and their impact on ROS generation.
in the human respiratory tract. Separate models were developed for summer (based on 67 sites) and for annual mean concentrations as too few sites were available to justify separate models for winter. The database for annual mean concentrations was generated by averaging values across the summer and winter seasons. For sites missing winter PM$_{2.5}$ data, multivariable linear regression models were used to predict missing values (i.e., for winter PM$_{2.5}$, Fe, and Cu) based on PM$_{2.5}$ mass and composition data from the 28 sites with complete data for both seasons. These predictive models are shown in Supplemental Table S1; http://links.lww.com/EE/A16 and had R^2 values ranging from 0.70 to 0.82. R^2 values decreased in leave-one-out cross-validation procedures (ranging from 0.55 for Fe to 0.37 for PM$_{2.5}$), but root mean square errors remained low (e.g., 0.79 μg/m3 for PM$_{2.5}$) (Supplemental Table S1; http://links.lww.com/EE/A16). In total, models for annual averages are based on data for 67 sites.

Fe and Cu concentrations were modeled as percentages of total PM$_{2.5}$ mass concentrations (e.g., Fe/PM$_{2.5}$ × 100%) to improve model fit (relative to absolute metal concentrations) and to reduce correlations between the two elements. Models for ln(Fe) and ln(Cu) are presented in the supplemental material (Tables S4 and S5; http://links.lww.com/EE/A16) but are not discussed further as they did not perform as well as models for proportions of Fe and Cu in PM$_{2.5}$. Our model building procedure followed several steps: (1) Single variable linear regression models were examined for each of the candidate predictor variables outline above; (2) Variables that were associated with the outcome (i.e., 95% confidence interval excluded the null) were retained for potential inclusion in the final model; (3) Spearman’s correlations were determined for the candidate predictors identified in step 2 and highly correlated variables ($r > 0.7$) were removed (retaining the best predictor of each correlated pair); for parameters with multiple buffer sizes, the buffer size that contained crustal elements (i.e., Al, Si, Ca) related to resuspended soil; and (3) A grouping of Mn and Zn. As ROS concentrations were derived from Fe and Cu, Spearman correlations between summer Fe and Cu and ROS were high at 0.93 and 0.95, respectively. Correlations between annual ROS concentrations and Fe and Cu were 0.94 and 0.96, respectively.

Final land use regression models for Fe, Cu, and their estimated impact on ROS generation in the lung lining fluid are shown in Table 2 (annual) and Supplemental Table S2 (winter). These predictive models are shown in Supplemental Table S1; http://links.lww.com/EE/A16). In total, models for annual averages are based on data for 67 sites.

Mapping the land use regression models

Maps of exposure surfaces were generated by first dividing the city of Toronto into grid cells of 100 x 100 meters using ArcMap. Next, the final set of predictors for land use regression models for Fe, Cu, and ROS were computed for the mid-point of each grid cell. Finally, the predicted values for each mid-point were calculated and associated with the corresponding grid cell for mapping.

Results

Descriptive statistics for ambient PM$_{2.5}$ mass concentrations and Fe, Cu, and their estimated impact on ROS generation in the lung lining fluid are shown in Table 2 and Supplemental Table S2. For PM$_{2.5}$ and ROS, predicted values were also calculated and associated with the corresponding grid cell for mapping.

Table. Descriptive statistics for PM$_{2.5}$ (μg/m3), Fe (ng/m3), Cu (ng/m3), and the Estimated Impact of Fe and Cu on ROS (nM) in Toronto, Canada

Pollutant and Season	Mean (SD)	Minimum	5th	25th	50th	75th	95th	Maximum
Summer (n=67)								
PM$_{2.5}$	6.41 (0.78)	4.85	5.16	5.90	6.32	6.84	7.82	8.53
Fe	103 (51)	40.0	51.8	79.8	92.8	114	184	375
Cu	4.22 (2.20)	1.14	1.88	3.32	3.81	4.63	7.77	18.1
ROS	75.9 (17)	36.5	46.7	67.6	74.7	83.8	107.1	144.0
Winter (n=42)								
PM$_{2.5}$	5.33 (0.88)	4.01	4.34	4.80	5.13	5.66	6.38	8.80
Fe	8.45 (6.8)	2.47	2.75	4.23	5.73	10.9	25.8	28.1
Cu	0.265 (0.19)	0.0654	0.0841	0.133	0.190	0.315	0.627	0.794
ROS	10.0 (6.58)	2.97	3.48	5.38	7.50	12.5	23.8	27.7
Annual (n=67)								
PM$_{2.5}$	5.93 (0.97)	4.29	4.74	5.33	5.67	6.30	7.76	9.36
Fe	57.2 (28)	22.2	27.4	43.1	51.4	64.7	112	196
Cu	2.29 (1.2)	0.666	1.01	1.68	2.10	2.52	4.35	9.43
ROS	52.4 (14.1)	23.8	32.6	44.3	50.8	57.6	76.9	115.3

Based on 67 sites monitored during summer, 28 sites monitored during both summer and winter, and predicted values for 39 sites missing winter data.
Figure 1. Correlations between PM$_{2.5}$ metals during summer. A, Network plot with more highly correlated metals grouped more closely together and linked by darker, thicker lines (dashed lines indicate inverse correlations). Numeric correlation values are illustrated in B.
of Fe concentrations; cross-validation \(R^2 \) values for the summer and annual mean Fe models were 0.53 and 0.68, respectively.

Not surprisingly, final ROS models reflected components of both the Fe and Cu models with length of highways within 300 meters being the strongest predictor of ROS in both summer and annual models. Other important predictors of annual mean ROS generation included rail line proximity, population density, proximity to Pearson airport, and industrial land use within 200 meters. Distance to city center appeared in all three annual models with increasing distance from city center associated with higher concentrations. This primarily reflects the fact that Toronto is surrounded by major highways/roadways, and thus, moving further from the city center brings you closer to these major sources of exposure. Mean variance inflation factors were less than 2 for all final models.

Exposure surfaces for summer and annual mean Fe, Cu, and their estimated combined impact on ROS are shown in Figure 4. These surfaces highlight the elevated concentrations of PM\(_{2.5}\) metals during the summer months and their subsequent increased capacity to generate ROS in the lung during this time period. In particular, two areas of the Fe and ROS surfaces stand out in the upper right and lower left-hand corners of each surface; these areas reflect large rail yards which appear to be important local sources of iron in PM\(_{2.5}\). Scatter plots are available in Supplemental Figures S4 and S5; http://links.lww.com/EE/A16 illustrating the relationship between PM\(_{2.5}\), Fe, Cu, and total ROS concentrations as well as specific ROS species (which are dominated by H\(_2\)O\(_2\)). Interestingly, the scatter plot in Figure 5 illustrates that equivalent PM\(_{2.5}\) mass concentrations can contribute to the generation of substantially different ROS concentrations (often differing by more than a factor of 2) owing to large seasonal differences in Fe and Cu.

Discussion

Surprisingly little is known about the specific components of PM\(_{2.5}\) that are most relevant to health and population-based exposure assessment continues to rely on bulk particle mass concentrations. Metal components in PM\(_{2.5}\) are generally thought to play an important role in determining overall PM\(_{2.5}\) health effects\(^2\); however, few models are available to predict exposures in epidemiological studies and separating the individual effects of specific metals remains a challenge.

In this study, we combined information on Fe and Cu in PM\(_{2.5}\) with a kinetic multilayer model of surface and bulk chemistry in the epithelial lining fluid to estimate the impact of these metals on the production of ROS in the human lung lining fluid. In general, our findings suggest that spatial variations in Fe, Cu, and their combined impact on ROS are considerably greater than spatial variations in PM\(_{2.5}\) mass concentrations. Moreover, our results suggest that large seasonal differences may exist in PM\(_{2.5}\) metal concentrations that ultimately lead to more ROS production in response to PM\(_{2.5}\) during the summer months. This seasonal difference is likely explained by increased snow cover/rain during the winter months in Toronto which would tend to minimize particle resuspension. More importantly, this finding suggests that resuspended particles containing metals from sources such as brake wear\(^{19,20}\) (or rail lines) may be an interesting target for future risk management activities (in addition to direct
tailpipe emissions) if ROS is ultimately tied to adverse health effects. Furthermore, our results indicate that equivalent PM$_{2.5}$ mass concentrations may elicit dramatically different biological responses; therefore, if the generation of ROS is an important mechanism contributing to PM$_{2.5}$ health effects, relying solely on PM$_{2.5}$ mass concentrations likely contributes substantially to exposure measurement error in epidemiological studies even if the mass concentrations themselves are measured without error. Our findings also shed light on an important ongoing question in air pollution epidemiology: Why do we continue to see important health effects at very low PM$_{2.5}$ mass concentrations? Whereas PM$_{2.5}$ mass concentrations in Toronto were low and the range was small ($\approx 4–9\ \mu g/m^3$), spatial variations in the estimated impact of Fe and Cu on ROS generation were much larger; therefore, a 1-unit change in exposure on the scale of PM$_{2.5}$ mass concentration likely translates into a much larger change on the ROS scale which ultimately may be more biologically relevant. Moreover, it is important to note that the predicted magnitude of ROS generation in response to Fe and Cu (i.e., more than 200nM in some areas during summer) is biologically relevant as normal human ROS concentrations are approximately 100nM and elevated H$_2$O$_2$ concentrations have been observed in respiratory disease patients including adult asthmatics. Moreover, although the ROS model contained many of the same predictors as the Fe and Cu models, the added value of the ROS models relates to the fact that it estimates the combined impact of these two components on ROS using a single parameter rather than two separate parameters. Indeed, separating the individual health impacts of Cu and Fe is difficult owing to collinearity and the use of a single parameter to estimate their combined impact on an important mechanism of action seems advantageous. However, all three models should be explored in future epidemiological studies to verify this hypothesis.

To our knowledge, this is the first study to model spatial variations in the combined impact of Fe and Cu in PM$_{2.5}$ on ROS generation in the human lung. Indeed, such models are of interest as the application of oxidative stress assays (primarily related to the depletion of dithiothreitol or antioxidants such as glutathione) has gained significant traction in the epidemiological literature as several studies have reported stronger associations with these new metrics than with traditional PM$_{2.5}$ mass concentrations. Nevertheless, recent evidence also suggests that it is important to consider both ROS generation and antioxidant depletion as common oxidative potential assays including the dithiothreitol (DTT) assay may not capture the ROS activity of some PM components including Fe. Moreover, it is not clear how ROS generation estimated using the KM-SUB-ELF model may relate to other common particle oxidative potential assays including DTT, electron spin resonance (ESR), or ascorbate/glutathione depletion. To date, existing evidence suggests that ROS generation estimated using Fe and Cu concentrations in the KM-SUB-ELF model is at least moderately correlated with these metrics. For example, a recent evaluation of five oxidative potential metrics for PM$_{10}$ samples reported correlations for Cu and the above oxidative potential assays ranging from 0.48 to 0.71. Ultimately, the more important question is which of these assays is the best predictor of adverse health effects and which (if any) are superior to particle mass concentration in

![Figure 3](image-url)
this respect. At a minimum, the KM-SUB-ELF model may serve as a cost-effective means of estimating the oxidative potential of airborne particles when Fe and Cu data are available in the absence of filter media (e.g., historical data) or when detailed chemical analyses of filter samples are not possible.

Although this study had many important advantages including a large simultaneous monitoring network for PM$_{2.5}$ metals and numerous geographic predictor variables, it is important to note several limitations. First, only 28 sites had monitoring data for both summer and winter; therefore, winter data had to be predicted for many sites used in the annual models. However, models used to predict missing data performed well with high R^2 values and low root mean square errors (RMSE). One exception was the model for winter PM$_{2.5}$ which had a lower R^2 value.
in leave-one-out cross-validation procedures but also a low RMSE. Ultimately, prediction error in the outcome variables used in annual models likely contributed to greater uncertainty (i.e., wider 95% confidence intervals) in the slopes for independent variables in land use regression models but would not bias the slopes for these variables.

It is also important to note that estimated values for ROS reflect exogenous ROS concentrations generated in the lung in response to Fe and Cu in PM\textsubscript{2.5} and not total ROS generated in response to the entire pollutant mixture. Indeed, additional ROS may be produced through biological responses not considered by the model (e.g., macrophage activation) or in response to ambient O\textsubscript{3} or quinones which can be handled by KM-SUB-ELF but were not considered here owing to the absence of monitoring data. Therefore, model estimates of ROS presented here likely underestimate the total oxidative burden caused by inhaled pollutant mixtures. Future studies should aim to incorporate O\textsubscript{3} and quinone measurements to obtain a more complete picture of the overall impact of ambient air pollution mixtures on ROS generation in the human lung. Moreover, model estimates of ROS generation are not intended to capture individual-level differences in ROS production owing to variance in factors such as age, genetics, or disease status. Rather, the KM-SUB-ELF model provides estimates of ROS generation under a certain set of conditions (described in the Methods section), thus allowing us to evaluate potential spatial differences in ROS generation in conjunction with PM\textsubscript{2.5} metals. In particular, our results reflect a range of assumed metal solubilities or differences in solubilities between sampling sites. Likewise, our model does not include other transition metals that could contribute to the generation of ROS in the lung. As noted above, the overall consequence of these limitations is likely an underestimation of the impact of PM\textsubscript{2.5} components on ROS generation as well as imprecise estimation of spatial differences in ROS generation if metal solubilities differed substantially between monitoring sites.

In summary, we developed a model to estimate spatial variations in the impact of PM\textsubscript{2.5} metals on the generation of ROS in the human lung lining fluid in Toronto, Canada. Estimated spatial variations in ROS generation exceeded that of PM\textsubscript{2.5} mass concentrations and seasonal differences suggested that summer PM\textsubscript{2.5} contributes more to ROS than winter likely owing to decreased particle resuspension during the winter months. Our findings highlight the potential importance of nontailpipe emission sources (e.g., brake/rail ware) with respect to PM\textsubscript{2.5} and the combined use of PM\textsubscript{2.5} metals data with a kinetic multilayer model of surface and bulk chemistry in the human lung epithelial lining fluid may offer a novel means of estimating PM\textsubscript{2.5} health impacts beyond simple mass concentrations.

Conflicts of interest statement
The authors declare that they have no conflicts of interest with regard to the content of this report.

This study was supported by Health Canada and a Collaborative Health Research Projects Grant (Canadian Institute for Health Research (CIHR)/Natural Sciences and Engineering Research Council of Canada (NSERC)), S.W. also received support from a GRePCEC salary award funded by the Cancer Research Society, the Quebec Ministry of Economy, Science and Innovation, and FRQS (Fonds de Recherche du Québec-Santé).

Data Access: Data and code are available upon request.

Acknowledgments
We would like to thank Hongyu You, David Van Rijswijk, Keith Van Ryswyk, Angelos Anastassioupolous, and Arman Ganji for helping with data collection during the field campaigns.

References
1. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1659–1724.
2. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biol Inter. 2006;160:1–40.
3. Li N, Hao M, Phalen RF, Hinds WC, Nel AE. Particulate air pollutants and asthma: a paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin Immunol. 2003;109:250–265.
4. Zhang J, Sun L, Barrett O, Bertazon S, Underwood FE, Johnson M. Development of land-use regression models associated with airborne particulate matter in a North American city. Atmos Environ. 2015;106:165–177.
5. Lakey PSJ, Berkemeier T, Tong H, Arangio AM, Lucas K, Posch U, Shiraiwa M. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci Rep. 2016;6:32916.
6. Mudway IS, Kelly FJ. Oxzone and the lung: a sensitive issue. Mol Aspects Med. 2000;21:1–48.
7. van der Vliet A, O’Neill CA, Cross CE, et al. Determination of low-molecular-mass antioxidant concentrations in human respiratory tract lining fluids. Am J Physiol Lung C. 1999;276:1289–1296.
8. Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nature Chem Biol. 2008;4:278–286.
9. Pöschl U, Shiraiwa M. Multiphase chemistry at the atmosphere–biosphere interface influencing climate and public health in the anthropocene. Chem Rev. 2015;115:4440–4475.
10. Spier C, Little D, Trim S, Johnson T, Linn W, Hackney J. Activity patterns in elementary and high school students exposed to oxidant pollution. J Expo Anal Environ Epid. 1991;1:277–293.
11. U.S. EPA. Exposure Factors Handbook 2011 Edition (Final Report). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F, 2011.
12. Sarangapani R, Wexler AS. The role of dispersion in particle deposition in human airways. Toxicol Sci. 2000; 54: 229–236.
13. Remillard S, Basset G, Lecossier D, et al. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol. 1986;60:532–538.
14. Walters DV. Lung lining liquid—the hidden depths. Neonatology. 2002;81(1 suppl):2–5.
15. Connell DP, Winter SE, Conrad VB, Kim M, Crist KC. The Steubenville Comprehensive Air Monitoring Program (SCAMP): concentrations and solubilities of PM2.5 trace elements and their implications for source apportionment and health research. *J Air Waste Manage*. 2006;56:1750–1766.

16. Manousakas M, Papaefthymiou H, Eleftheriadis K, Katsanou K. Determination of water-soluble and insoluble elements in PM2.5 by ICP-MS. *Sci Total Environ*. 2014;493:694–700.

17. Heal MR, Hibbs LR, Agius RM, Beverland LJ. Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK. *Atmos Environ*. 2005;39:1417–1430.

18. Ghio AJ, Turi JL, Yang F, Garrick LM, Garrick MD. Iron homeostasis in the lung. *Biol Res*. 2006;39:67–77.

19. Grigoratos T, Martini G. Non-exhaust traffic related emissions. Brake and tyre wear PM. European Commission Joint Research Centre. Report EUR 26648 EN. Available at: http://publications.jrc.ec.europa.eu/repository/bitstream/JRC89231/jrc89231-online%20final%20version%202.pdf. Accessed May 6, 2018.

20. Schauer JJ, Lough GC, Shafer MM, et al. Characterization of metals emitted from motor vehicles. *Res Rep Health Eff Inst*. 2006;133:1–76.

21. Aldakheel FM, Thomas PS, Bourke JE, Matheson MC, Dharmage SC, Lowe AJ. Relationship between adult asthma and oxidative stress markers and pH in exhaled breath condensate: a systematic review. *Allergy*. 2016;71:741–757.

22. Kietzmann D, Kahl R, Müller M, Burchardi H, Kettler D. Hydrogen peroxide in expired breath condensate of patients with acute respiratory failure and with ARDS. *Intensive Care Med*. 1993;19:78–81.

23. Corradi M, Pignatti P, Brunetti G, et al. Comparison between exhaled and bronchoalveolar lavage levels of hydrogen peroxide in patients with diffuse interstitial lung diseases. *Acta Biomed*. 2008;79(1 suppl): 73–78.

24. Weichenthal S, Lavigne E, Evans G, Poliitt K, Burnett RT. Ambient PM2.5 and risk of emergency room visits for myocardial infarction: impact of regional PM2.5 oxidative potential: a case-crossover study. *Environ Health*. 2016;15:46.

25. Strak M, Janssen N, BeeLEN R, et al. Long-term exposure to particulate matter, NO2, and oxidative potential of particulate and diabetes in a large national health survey. *Environ Int*. 2017;108:228–236.

26. Maikawa CL, Weichenthal S, Wheeler A, et al. Particulate oxidative burden as a predictor of exhaled nitric oxide in children with asthma. *Environ Health Perspect*. 2016;124:1616–1622.

27. Xiong Q, Yu H, Wang R, Wei J, Verma V. Rethinking the dithiothreitol (DTT) based PM oxidative potential: measuring DTT consumption versus ROS generation. *Environ Sci Technol*. 2017;51:6507–6514.

28. Janssen NAH, Yang A, Strak M, et al. Oxidative potential of particulate matter collected at sites with different source characteristics. *Sci Total Environ*. 2014;472:572–581.

29. Hellack B, Quass U, Nickel C, Wick G, Schins RPF, Kuhlbusch AJ. Oxidative potential of particulate matter at a German motorway. *Environ Sci Processes Impacts*. 2015;17:868–876.

30. Boogaard H, Janssen NAH, Fischer PH, et al. Contrasts in oxidative potential and other particulate matter characteristics collected near major streets and background locations. *Environ Health Perspect*. 2012;120:185–191.

31. Calas A, Uzu G, Kelly FJ, et al. Comparison between five acellular oxidative potential measurement assays performed with detailed chemistry on PM10 samples from the city of Chamonix (France). *Atmos Chem Phys*. 2017;18:7863–7875.