Recent progress in two dimensional Mxenes for photocatalysis: a critical review

To cite this article: Tahir Haneef et al 2023 2D Mater. 10 012001

View the article online for updates and enhancements.

You may also like

- (Invited) MXenes for High-Energy, High-Power Batteries and Electrochemical Capacitors
 Yury Gogotsi

- Exploring MXene-based materials for next-generation rechargeable batteries
 Yuanji Wu, Yingjuan Sun, Jiefeng Zheng et al.

- (Invited) MXenes: From Fundamental Science to Emerging Applications
 Narendra Kurra and Yury Gogotsi
TOPICAL REVIEW

Recent progress in two dimensional Mxenes for photocatalysis: a critical review

Tahir Haneef¹, Kashif Rasool¹*, Jibran Iqbal¹, Rab Nawaz³, Muhammad Raza Ul Mustafa¹⁵, Khaled A Mahmoud²*, Tapati Sarkar⁷* and Asif Shahzad⁷*

¹ Civil and Environmental Engineering Department, The University of Alabama in Huntsville, Huntsville, AL 35899, United States of America
² Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), PO Box 5825, Doha, Qatar
³ College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
⁴ Fundamental and Applied Sciences Department (FASD), Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia
⁵ Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
⁶ Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
⁷ Department of Materials Science and Engineering, Uppsala University, Box 35, SE-75103 Uppsala, Sweden
* Authors to whom any correspondence should be addressed.
E-mail: krasool@hbku.edu.qa and asifshzd8@gmail.com

Keywords: transition metal carbide, 2D MXenes, photocatalysis, hydrogen evolution, carbon dioxide reduction, organic pollutants, wastewater treatment

Abstract

Transition metal carbides and nitrides, generally known as MXenes have emerged as an alternative to improve photocatalytic performance in renewable energy and environmental remediation applications because of their high surface area, tunable chemistry, and easily adjustable elemental compositions. MXenes have many interlayer groups, surface group operations, and a flexible layer spacing that makes them ideal catalysts. Over 30 different members of the MXenes family have been explored and successfully utilized as catalysts. Particularly, MXenes have achieved success as a photocatalyst for carbon dioxide reduction, nitrogen fixation, hydrogen evolution, and photochemical degradation. The structure of MXenes and the presence of hydrophilic functional groups on the surface results in excellent photocatalytic hydrogen evolution. In addition, MXenes’ surface defects provide abundant CO₂ adsorption sites. Moreover, their highly efficient catalytic oxidation activity is a result of their excellent two-dimensional nanomaterial structure and high-speed electron transport channels. This article comprehensively discusses the structure, synthesis techniques, photocatalytic applications (i.e. H₂ evolution, N₂ fixation, CO₂ reduction, and degradation of pollutants), and recyclability of MXenes. This review also critically evaluates the MXene-based heterostructure and composites photocatalyst synthesis process and their performance for organic pollutant degradation. Finally, a prospect for further research is presented in environmental and energy sciences.

1. Introduction

Currently, there is a great focus on developing efficient, stable, and recyclable semiconductor catalysts to counter energy shortage, global warming, and environmental pollution challenges [1, 2]. There have been many semiconductor catalysts discovered over the past few decades, such as TiO₂ [3], ZnO [4], Fe₃O₄ [2], graphitic carbon nitride (g-C₃N₄) [5], and BiOX (X = Cl, Br) [6]. The photocatalysts are used for the conversion of CO₂ into hydrocarbon fuel, the photocatalytic evolution of hydrogen, and the degradation of pollutants. The photocatalytic activity of these materials is not adequate to make them suitable for industrial applications due to the weak absorption of visible light in semiconductor materials, the rapid recombination rate of photogenerated electron–hole pairs, lack of active sites, inability to regenerate, and instability [7–10]. As a result, a great deal of effort has gone into improving the
photocatalytic activity and other desired properties of semiconductor catalysts. These efforts include element doping, surface sensitization, facet control, and assembly of heterojunctions [11]. In many different strategies, heterostructure photocatalyst designs have been developed to improve the separation efficiency of photogenerated charge carriers [12].

Two-dimensional (2D) frameworks have received much attention since the discovery of monolayered graphene in 2004 [13]. Since then, 2D materials exhibiting excellent catalytic, optoelectronic, and electronic properties have been developed, such as black phosphorous [14], layered double hydroxides (LDHs) [15], transition metal chalcogenides, etc [16]. 2D materials enhance photocatalytic activity because their structure prevents charge carriers from recombination. MXene, first developed in 2011, is one of the most interesting classes of 2D nanomaterials and has been proposed for numerous applications including energy production [17–22], magnetic shielding effects [23–26], energy storage batteries [27–32] and capacitors [33–36], medical and biomedical applications [37–42], water splitting [43–47] and water/wastewater purification [1, 48–50]. In water purification, MXenes are being used in membrane fabrication, adsorption, and photocatalysis of organic contaminants [51–55]. The following factors account for the successful applications of MXenes in photocatalysis: (a) wet chemical etching results in surface functional group formation that make MXene surfaces negatively charged and results in the formation of stable dispersions [56]. (b) Tuning the surface chemistry of MXene can influence the bandgap alignment [57]. (c) Because of their conductive metal cores, MXenes have high metallic conductivity and great electron acceptance abilities [58, 59]. Therefore, MXenes are considered a potential addition to 2D engineering materials and are being widely investigated for a variety of photocatalytic applications. Using MXene as an enhancement material, it might be possible to promote charge carrier separation, function as robust support, limit the size of photocatalysts or enhance reactant adsorption in these applications [11, 60]. As a substrate, MXenes could host either one or more catalysts to achieve higher photocatalytic activity [61]. Furthermore, Schottky barriers form between MXenes and semiconductor catalysts that could inhibit the recombination of charge carriers during photocatalysis [52, 62]. Additionally, the large specific surface area of MXenes provides many active sites for photocatalysis [11, 63, 64].

Owing to the unique properties of MXenes, there is a rapid growth in research on the synthesis and use of MXenes and MXene-based nanomaterials for photocatalytic applications. Up to now, titanium carbide MXene (Ti$_3$C$_2$T$_x$) is the most studied MXene member and hence many recent articles have reviewed Ti$_3$C$_2$ MXene’s potential for energy conversion and storage applications including supercapacitors and batteries, however, a few have focused on its use in photocatalytic applications [46, 59, 63, 65–68]. In 2021, Liqun et al reviewed the photocatalytic application of MXenes [55, 69]. However, the author only focused on one member of the MXene family, Ti$_3$C$_2$. Moreover, the review is short and does not cover all the work published on the concentrated topic, and lacks critical analysis. To develop an innovative future framework, we believe it is necessary to carefully review, discuss, and analyze all the published work in this field. To our knowledge, no comprehensive review has been published covering the structure, synthesis, photocatalytic applications, and recyclability of MXenes. It is imperative to conduct a literature review that describes synthesis techniques and photocatalytic applications of MXenes along with their structure and reusability. Presenting the latest studies and developments in this important field along with challenges and recommendations will surely increase the attention of the scientific community. Thus, in this review, we have focused on the structure, synthesis, and photocatalytic applications of MXenes. Hydrogen (H$_2$) evolution, nitrogen (N$_2$) fixation, carbon dioxide (CO$_2$) reduction, degradation of organic/inorganic pollutants, and recyclability of MXenes have been explored and discussed in detail. Finally, the challenges and future perspectives in research in MXenes have been discussed in this review.

2. Structure of MXenes

MXenes are new emerging 2D materials composed of transition metal carbides and nitrides exfoliated from MAX phases (M$_{n+1}$AX$_n$) (M = Mo, Ti, Cr, A = Al, Ga, Ge, Si, and X = C, N); the structure as well as the composition of MXenes depend on the MAX phases. Generally, MAX phases can be classified into various types based on the initial stoichiometric ratio of selected elements such as 211, 312, 413 etc depending on the value of n in the MAX phase which usually ranges between 1 and 3. The first MXenes, Ti$_3$C$_2$T$_x$ exfoliated from the Ti$_3$AlC$_2$ (312) MAX phase was reported by Naguib et al [70, 71]. MXenes have exhibited tremendous structural properties which could make them an excellent potential class of 2D materials in the field of photocatalysis. The following properties of MXenes could play important roles in photocatalysis: (a) 2D MXenes have a large surface area, which boosts catalytic activity and flexibility of the catalyst. (b) Planar structures of 2D MXenes provide abundant surface atoms and enough space for compounding with semiconductor photocatalysts. (c) The main structural feature of 2D MXenes is that its thickness is extremely low.

MXenes have a hexagonal structure like the ternary nitrides and carbides phase (MAX phase) since they are derived by etching the A atoms of their precursor material. MXene crystals have a hexagonally close-packed (HCP) structure. It has
been noted that M$_2$X MXenes exhibit an HCP sequence (ABABAB), while M$_3$X$_2$ and M$_4$X$_3$ have a face centered cubic (FCC) sequence (ABCABC) [71]. An atomic arrangement like this is important when synthesizing MXenes that involve M elements with HCP ordering in bulk states. For instance, a recent density functional theory (DFT) calculation has revealed greater stability for hexagonal molybdenum carbides (Mo$_3$C$_2$T$_x$ or Mo$_4$C$_3$T$_x$) compared with their FCC counterparts [72, 73]. Furthermore, based on the formation energies of MXenes, it is found that Mo$_3$C$_2$T$_x$ and Mo$_4$C$_3$T$_x$ are unstable because their M atoms are arranged like those of rock salt; however, Mo$_2$CT$_x$ is stable. The unstable Mo–C bonds are prevented by inserting another transition metal, Ti, into the structure, which bonds with C and prevents them from becoming unstable. By doing so, a collection of ordered double-M element 2D carbides are formed, such as (Mo$_2$Ti)C$_2$T$_x$ and (MoTi)$_2$C$_3$T$_x$ [74, 75]. In addition, figures 1(a)–(c) shows the three different parts of the structure of Ti$_3$C$_2$T$_x$: the interlayer skeleton, the interlayer structure, and the surface terminating groups [69, 76, 77]. An intramolecular skeleton is formed when Ti atoms are stacked with C atoms alternately to create ionic bonds, which is the basis for the entire main structure [78]. Neutron diffraction studies completed on the interlayer region demonstrated that the interaction between the layers is developed by hydrogen bonds between either the F or O atoms on the surface, as well as van der Waals forces between the atoms [79]. It is not only the orientation of –OH in the sheet that affects the strength of the interlayer hydrogen bonding, but also the number and distribution of –OH groups. Whenever water molecule occurs between layers, it is also capable of hydrogen bonding. Additionally, the Ti$_3$C$_2$T$_x$ main structure is covered by a large number of randomly distributed terminal groups [69]. The characteristics of the Ti$_3$C$_2$T$_x$ produced are greatly influenced by the surface groups, which may be studied using electron energy loss spectroscopy (TEM), neutron scattering, and nuclear magnetic resonance spectroscopy (NMR) methods [80, 81]. MXene terminations are generally randomly distributed and mixed, which depends majorly on the synthesized conditions, transition metal elements, and post-synthesis treatments [7].

As far as their morphology is concerned, most MXenes exhibit accordion-like multilayer structures. Nevertheless, MXenes with different structures have also been synthesized [7]. As shown in figures 1(d) and (e), Naguib et al [70] produced scroll-like Ti$_3$C$_2$T$_x$ with radii less than 20 nm by using sonication for exfoliation. Additionally, the ethanediamine-treated flower-like Ti$_3$C$_2$T$_x$ was prepared by hydrothermal treatment for 8 h at 80 °C (figure 1(f)) [82]. The presence of MXene nanofibers and nanoribbons has been observed in some cases [7].

3. Synthesis of MXenes

MXenes are emerging 2D nanomaterials derived from MAX phases (M$_{n+1}$AX$_n$) which are ternary nitrides and carbides [83]. A MAX phase can be fabricated by combining an element from early d-block transition
metals such as Ti (M) group A element (Al) and C or N (X) (figure 2(a)) [84], 211 (M₂AX), 312 (M₃AX₂), and 413 (M₄AX₃) MAX phases can be synthesized by changing the initial concentration of the elements and synthesis protocols. MXenes are generally synthesized by etching the A layer from the above mentioned MAX phases by an etching process [55, 73]. MXenes can be further categorized into three kinds based on the initial stoichiometric ratio of the selected elements: (a) The most common form of MXene is a mono-M element containing one transition metal. (b) Solid-solution M elements MXenes constitute a second of MXenes, which contain two different configurations of transition metals in the same layer [85]. (c) A third type of MXenes is the sordered double-M elements M’M”Xene. Just M₁X₂ and M₁X₃ are examples of double-M elements M’M”Xene [73, 86].

In comparison to the M–X bonds, the M–A bonds are generally weaker and more reactive, therefore the MXenes are fabricated after removing A-elements from the MAX phases [88]. In contrast to the van der Waals interaction found in layered materials such as graphite and transition metal dichalcogenides, the metal bond created between the Mₙ₊₁Xₙ layers is much stronger [46]. The higher strength and rigidity of MXenes are advantageous to their long-term performance for photocatalytic applications. In 2011, Naguib et al [70], synthesized the first MXene by etching Ti₃AlC₂ with hydrofluoric acid (HF), while up to now several MXenes have been synthesized via different advanced techniques as shown in figure 2(b) [87]. By wet-chemical etching MAX phases, these subsequent MXenes are formed. The most common methods of etching include HF etching, fluoride etching, and a few others. The synthesis methods of
Table 1. Different synthesis methods of MXene and applications.

Materials	Method	Application	Efficiency %	References
MXene/NiFe₂O₄	One-step hydrothermal method	Microwave absorption	40	[89]
Nickel-cobalt layered double	Heterojunction surface	Photocatalytic bactericidal	—	[90]
hydroxide/MXene				
Ti₃C₂Tₓ MXene nanosheets	Controlled oxidation action	MXsorption of mercury	90	[91]
Ti₃CTₓ MXene	3D spheroid-type cultures	Biocompatibility and	98	[92]
		biophysical		
Ti₃C₂Tₓ MXene	Intensive layer delamination and acid	Inexpensive precursor	—	[93]
	etching	material		
Cr₂CTₓ MXene	Etching	Hydrogen evolution reaction	85	[94]
TiO₂@Ti₃C₂ nanoflowers MXene	In situ Transformation	Photocatalytic activity	97	[95]
Mo₂CTₓ MXene	Mo₂Ga₂C by etching	Thermal stability	—	[96]

MXenes may affect their efficiency in various applications as shown in table 1.

3.1. MAX phase etching by hydrofluoric acid

Most MAX phases can be etched with hydrofluoric acid at various temperatures to produce different MXenes, depending on the different HF parameters such as concentration and environmental conditions like room temperature (figures 3(a)–(d)) table 2 [70, 84, 97–100]. HF has very high selectivity as an etchant, allowing it to selectively remove distinct kinds of SiC [101]. The etching conditions for the MAX phase containing Al vary based on different factors such as particle size, atomic bond, and structure of transition metal [102]. As an example, in the most commonly investigated Ti₃C₂Tₓ, 0.5 g Ti₃AlC₂ MAX phase is progressively introduced to 10 ml etchant and agitated with a Teflon magnetic bar at room temperature [103]. The slow addition of Ti₃AlC₂ MAX is preferred, to inhibit the formation of excessive bubbles during the exothermic reaction. Hydrogen bonds and van der Waals bonds keep the layers of the fabricated MXene powders (2-dimensional) together [104]. However,
it is important to recognize that using high concentrations of HF as an etchant can cause a lot of defects in the Ti$_3$C$_2$T$_x$ nanosheets, and a prolonged etching period can also damage the MXene’s layered structure. The following model equations can be used to illustrate the fabrication of MXenes [83, 107]:

\[
3\text{HF} + M_{n+1}X_n \rightarrow M_{n+1}X_n + 3/2 \text{H}_2 + \text{AF}_3 + 3/2 \text{H}_2
\]

(1)

\[
2\text{H}_2\text{O} + M_{n+1}X_n \rightarrow 2\text{H}_2 + 2M_{n+1}X_n(\text{OH})_2
\]

(2)

\[
2\text{HF} + 2M_{n+1}X_n \rightarrow 2\text{H}_2 + M_{n+1}X_nF_2.
\]

(3)

In the first stage, the MXene layers are formed after the reaction of A layers of MAX phases with HF or fluoride ions, while in the second stage the MAX phases’ A atoms are substituted with –OH, –O, and/or –F groups. During the third stage reaction, the interaction between the M$_{n+1}$X$_n$ layers becomes weak causing loosely packed, graphite-like layered structures to form. In the presence of surface functional groups (–OH, –O, and/or –F), MXene surfaces become negatively charged, resulting in the formation of stable dispersions (flake sizes range from 1 to 10 µm) [83]. Several novel MXenes, including Mo$_2$C, Ti$_2$C, and Ti$_3$SiC$_2$, have been prepared using the HF etching method [108]. Furthermore, because HF is a very corrosive acid, its extensive use as an etchant is not only hazardous for humans but also pollutes the environment. Moreover, this process cannot synthesize stable MXenes (Ti$_{n+1}$N$_n$) based on nitride-based metals [109]. Therefore, it is necessary to develop environmentally friendly and more versatile protocols for MXene synthesis.

HF is highly toxic, reactive, and corrosive, therefore, it is hazardous for regular use in the lab, and hence, its direct use should be avoided. As an alternative to the direct use of HF, MXenes can be produced by an etching agent prepared by combining fluoride salts (such as MF and FeF$_3$) and strong acids (H$_2$SO$_4$ and HCl) [109]. Fluoride salts react in situ with the strong acids to produce hydrogen fluoride through the process of etching, the strong acids provide the H$^+$ and the fluoride salts release the F$^-$. In the meantime, cations and water molecules can intercalate into MXenes, increasing interlayer distance and weakening interlayer contact, resulting in material delamination during sonication [117]. Hence, this approach simplifies the process that involves the use of concentrated HF and a time-consuming multi-step procedure, allowing a one-step synthesis of MXenes. Yin’s group has developed Ti$_3$C$_2$T$_x$ by etching, intercalating, and exfoliating Ti$_3$AlC$_2$ powder with HCl/fluorides in water under ultrasonication as shown in figure 3(e) [110]. Similarly, Ghidiu et al [116], effectively produced Ti$_3$C$_2$T$_x$ clay using an HCl/LiF combination as the etching agent. During the etching process, LiF interacts with HCl (equation (4)) to generate HF, and the quantity of HF may be precisely controlled without harming the Ti$_3$C$_2$T$_x$ structure. In comparison with pure HF, the LiF and HCl mixture performed better as an etchant, and the produced Ti$_3$C$_2$ exhibited no nanoscale defects [116, 118]. Monolayered or multilayered MXenes can be obtained immediately by washing away the reaction products, as in situ produced HF etches the Ti$_3$AlC$_2$ [119]. Notably, a clay-like paste obtained from this process can be repeatedly rolled into flexible and free-standing films, showing the material has good flexibility and strength as shown in figure 3(f) [111]. Likewise, MXenes like Ti$_3$C [120], Ti$_3$CN [121, 122], Cr$_2$TiC$_2$ [122], and (Nb$_{0.8}$Zr$_{0.2}$)$_2$C$_3$ [30] were also synthesized by etching other MAX phases with LiF and HCl mixed solution:

\[
\text{HCl} + \text{LiF} \rightarrow \text{HF} + \text{LiCl}.
\]

(4)

In addition, a combination of various fluoride salts such as MF, FeF$_3$, CaF$_2$, and acids might also be used as etchants to synthesize MXenes. Furthermore, difluorides such as KH$_2$F or NH$_4$HF$_2$ are viable etchants for Ti$_3$AlC$_2$. In Ti$_3$AlC$_2$, both etching, and intercalation of cations take place concurrently, and the cations can enhance Ti$_3$C$_2$T$_x$ interplanar space, maintaining the 2D flake structure of the material [104]. As reported in related publications, MXenes can also be synthesized by etching MAX phases using a hydrothermal process. Peng et al [123] reported the preparation of two types of 2D MXenes (Nb$_2$C and Ti$_3$C) without the direct use of HF, and using instead, NaBF$_4$ and HCl hydrothermal etching as a method of preparation. In the hydrothermal environment,
NaBF₄ interacts with HCl to produce HF in situ. The MAX phase is then etched with HF as a fluorine source, generating the corresponding MXenes, namely Ti₃C₂Tₓ and Nb₂C [87, 123]. Comparing fluoride etching with HF etching, fluoride etching exhibits more advantages, such as bigger flakes, fewer defects, higher interlayer spacing due to cation intercalation, and simpler operation. As an additional benefit, the sonication treatment can directly create single layers or a few layers of MXenes without using any organic molecular reagent [124]. In contrast with MXenes obtained by HF etching, this method is unable to produce the accordion-like morphology of MXenes, which require higher etching temperatures and longer etching times. Furthermore, the etching process is dynamic, and the conditions for conversion for different kinds of MXenes may vary.

3.2. MAX phase etching by other methods

Besides etching methods using HF and fluoride salts, several new etching techniques for MXene manufacturing have recently been discovered [125]. In a recent report, Li et al [126], described a typical alkali-hydrothermal method for the preparation of Ti₃C₂Tₓ (T = OH, –O) MXene (figure 4(a) [103]). This approach is based on the Bayer process, which is widely utilized in the bauxite refining industry. The entire process is fluoride-free, and multilayer Ti₃C₂Tₓ with a purity of approximately 92% (via 27.5 M NaOH, 270 °C) was formed. It was the first time that an alkali etching method was used to synthesize high-purity multilayer MXenes [126]. The hydrothermally fabricated Ti₃C₂Tₓ has a larger interlayer distance and a higher specific surface area than Ti₃C₂Tₓ synthesized through conventional HF etching, because of the hydrothermal slow-release mechanism. Since the hydrothermal etching method avoids the need for high consistency HF, it is also more effective for synthesizing Ti₃C₂Tₓ thin films [127].

The electrochemical etching technique has been shown to have a promising etching impact on MAX precursors, allowing for the selective removal of layer nano components. Sun et al [128], proved an effective electrochemical etching route for preparing Ti₃C₂Tₓ MXene. A layer of Ti₃C₂Tₓ MXene on Ti₂Al was formed after electrochemically etching Al from porous Ti₃AlC in diluted hydrochloric acid (figure 4(b)). The MXenes only contain –Cl terminal groups, along with the more common –O and –OH groups. Furthermore, the electrochemical etching process can also over-etch the parent MAX phases into carboide-derived carbons (CDC). To produce MXenes without over-etching, a careful balance is required in the etching parameters [128]. In addition, electrochemical etching products are hydrophilic in absence of fluorine terminations due to the HF-free etching. This method overcomes the etching energy barrier, gives a flexible range of etching conditions, and allows a variety of etchants to be used.

The electrochemical etching method offers a more environmentally friendly route for the production of 2D MXenes with an accurately controllable surface [127, 129]. The introduction of an electrochemical etching technique using diluted hydrochloric acid to produce MXenes provides a viable solution to the long-standing problem of excessive HF concentration. Nevertheless, for large-scale production to be successful, issues about low yield need to be resolved.

In a recent study, for the first time, researchers reported a new route of MXene synthesis via the Lewis acidic etching system [130, 131]. The Ti₃SiC₂ phase was immersed in Cu Lewis molten salt at 750°C (figure 4(c)) [132]. Ti₃C₂Clₓ MXene in powdered form was obtained after the chemical reaction between Ti₃SiC₂ and CuCl₂. Then Ti₃C₂Clₓ was further washed with ammonium persulfate ((NH₄)₂S₂O₈) to obtain the final product MS-Ti₃C₂Cl₂ (molten salt-MXene) [131]. The chloride ion plays a crucial role in Lewis acidic etching as it does in electrochemical etching. This technique can potentially be used with any Lewis acid salt with a greater redox potential than the corresponding A element [133]. Lewis acidic etching system enables the fabrication of new 2D materials that are impossible or extremely difficult to obtain via conventional synthesis methods. This method broadens the variety of MAX-phase precursors that may be employed, and it opens up new possibilities for fine-tuning the surface chemistry and characteristics of MXenes [134].

MAX etching is also reported using halogen as an etchant. In Shi et al’s work, the authors used I₆ to etch Ti₃AlC₂ at 100°C with anhydrous acetonitrile, resulting in Ti₃C₂Iₓ that resembles an accordion-like structure [135]. A solution of 1 M HCl was applied afterward to remove any residual AlI₃ formed during the etching process. In the HCl solution, -I groups are transformed to –OH and –O due to the instability of the surface groups. This method enabled the production of fluorine-free Ti₃C₂Tₓ (T = O, OH). The recent research of Jawaid and colleagues reported that Ti₃AlC₂ was etched in organic solvents containing halogens and interhalogens, providing homogeneous Cl, Br, or I terminations on synthesized MXenes (figure 4(d)) [136]. The halogen groups on the surface were not converted as the etching process was conducted inside a glove box and the final products were stored in tetrahydrofuran solvent [134].

3.3. Delamination of MXenes

The synthesized MXene is produced in multilayers and delamination is required to produce MXene sheets with just one or a few layers. In the etching process, hydrogen bonds and van der Waals forces substitute the strong M–A bonds, so multi-layer MXenes can be layered by adding intercalators. Despite this, MXenes exhibit much stronger interlaminar interactions than graphite, it still has approximately 2–6
times the strength of graphite [138, 139]. Therefore, the transparent tape method cannot form a single layer of MXene by mechanical peeling. A common method of delaminating MXenes is to intercalate the material before mechanical stirring. The interlayer spacing of Ti$_3$C$_2$T$_x$ flakes can be widened using intercalation compounds, which results in weaker interactions between the 2D layers [140, 141]. An appropriate solvent for the intercalating agent and material should be carefully chosen during the intercalation and delamination processes. Two steps are involved in introducing the intercalator into the 2D sheet. Using the ultrasonic treatment and centrifugation steps combined in this step, it is possible to separate the layered material from the multilayer (nonlayered). The desired sheet size and density determine the ultrasonic processing stage. The resulting colloidal solution will comprise scattered 2D
sheets of electrostatically stabilized MXenes that are processable and functional, as well as stable against aggregation or clumping [142]. Furthermore, the steps of ultrasonic processing are adapted according to the type of etching techniques used and the application requirements. To produce smaller flakes with more flaws, it is necessary to increase the ultrasonic power and duration of the ultrasonic process. MXene concentration in the solution is also affected by the technique and type of intercalator that is used during synthesis [87, 143]. Even though ultrasonic treatment was utilized to delaminate the few-layer thick MXenes in initial reports, the delaminated layers had a low yield because MXenes interact strongly with each other. Therefore, it is crucial to break the prevailing interlayer forces to separate the stacked nanosheets of MXenes. It has proven feasible to weaken interlayer interactions and increase the interlayer spacing between these layers by injecting organic molecules or inorganic ions into them [134].

Various organic solvents such as dimethyl sulfoxide (DMSO), hydrazine monohydrate (HM), and N,N-dimethylformamide (DMF), have been used as intercalates for multilayer MXene exfoliation [142]. Even though DMSO exhibited promising results when used as an agent for intercalation of Ti$_3$C$_2$Tx, it does not affect the intercalation of other MXenes, such as V$_2$CT$_x$ or Mo$_2$CT$_x$. In contrast with DMSO, the organic bases with relatively large molecule tetrabutylammonium hydroxide (TBAOH), hydroxyl choline, and n-butylamine, exhibit universal intercalating nature [144]. Han et al [145] reported that the bond interaction between the Ti-Ti and Ti-Al inside the Ti$_3$C$_2$Tx layers are the main impediments besides the van der Waals forces. In a hydrothermal process, TMAOH is diffused and intercalated into multilayer MXenes, resulting in their subsequent delamination figure 5(a). Ascorbic acid was utilized as a moderate reductant to prevent MXenes from oxidizing at high temperatures. Figure 5(b) shows the AFM image

![Figure 5](image-url)
of bilayered 2D Ti$_3$C$_2$T$_x$ nanosheets with a thickness of 1.7 nm (figure 5(c)), which confirmed the successful fabrication [145]. Furthermore, the TMAOH could intercalate and delaminate the MXene with the help of microwaves, although the yield of monolayer MXene nanosheets was relatively low, limiting its preparative applications [146, 147]. Since TMAOH is one of the main ingredients in commercial etchants for Al, Xuan et al reported that the high reactivity between TMAOH and Al atoms made TMAOH a suitable etchant and intercalator for synthesizing monolayers of Ti$_3$C$_2$T$_x$ from Ti$_3$AlC$_2$, where other organic intercalators (DMSO, urea, and hydrazine) were not effective [134, 148]. Currently, delamination of multilayer MXenes is typically performed on products generated by HF etching or other aqueous etching processes. Therefore, further exploration is needed to determine how organic intercalators can be used in non-aqueous systems.

4. Photocatalytic applications of MXenes

4.1. Basic principle of photocatalysis

Photoelectrochemical devices were introduced by Fujishima and Honda in 1972, which decompose water into oxygen and hydrogen when exposed to visible light. Furthermore, they claimed that water splitting could take place regardless of the voltage applied, as long as certain conditions were met [149]. In general, photocatalytic reactions can be broken down into the following five main steps: (a) light absorption, (b) charge separation, (c) charge migration, (d) interfacial charge transfer, and (e) surface reaction [150]. The efficiency of photocatalysis can be influenced by each of these stages. To improve and optimize the photocatalytic reaction, each factor needs to be tuned for practical application. In an aqueous solution, three major active groups participate in the photocatalytic reaction: OH (hydroxyl radical), h$^+$ (hole), and O$^{2-}$ (superoxide radical), where OH is the main oxidant [151]. There is a notable fact that electrons can only be excited from the valence band (VB) to the conduction band (CB) as long as the energy of the incident photons ($h\nu$) exceeds or equals the bandgap (E_g) of the photocatalyst. A negatively charged high-reactive electron (e$^−$) is generated in the CB, leaving an electropositive hole (h$^+$) in the VB, thus resulting in the photoexcited electrons and holes. The incident light’s wavelength must fulfill the following criteria [7]:

\[\lambda \leq \frac{ch}{E_g}. \]

(5)

In the equation, c stands for velocity of light, λ for wavelength, and h for Planck’s constant, while E_g denotes the semiconductor bandgap.

TiO$_2$ and ZnO are the most commonly used photocatalysts, however, their wide band gaps make them less effective in sunlight. Only 9.3% of the solar light consists of ultraviolet light, which can generate electron–hole pairs in these semiconductors. Many advances were made toward the synthesis of visible-light-active TiO$_2$ and ZnO utilizing various approaches, including surface alteration and bandgap generation [67]. Currently, many studies are being carried out using semiconductors having bandgaps suitable for the absorption of visible light of the solar spectrum for photocatalysis [68]. However, recent studies on MXenes and MXene-based materials show high electrical conductivity, large specific surfaces, and abundant metal exposure. MXenes and MXene-based have the potential as a cocatalyst to develop photocatalytic activity by enhancing the partitioning of photoexcited charge carriers [152]. MXenes are not usually semiconductors and due to their high electrical conductivity, they can provide an excellent platform for semiconducting materials to create composites/heterostructure photocatalysts. So, during photocatalysis, irradiation excites electrons in the semiconductor and photogenerated electrons flow into the conduction band quickly because MXene has a promising electron-trapping property that lets electrons and holes partition efficiently. The electrons from the MXene layers interact with oxygen to produce O$_2^−$, while the h$^+$ interacts with water to produce OH radicals [153]. Carbon dioxide and water are both formed when superoxide radicals and hydroxyl radicals react with pollutant molecules [154]. The present review analyzes the use of MXenes in the field of photocatalysis from four research sections: hydrogen evolution reactions (HER), CO$_2$ reduction reactions (CO$_2$RR), N$_2$ fixation, and pollutant degradation.

4.2. Photocatalytic hydrogen evolution

As global warming and energy shortages affect human life globally, they have become worldwide concerns during the last few decades. H$_2$ gas is a clean combustion fuel and offers a higher energy density compared to fossil fuels, making it an ideal energy source to replace fossil fuels [155, 156]. The energy density of diesel is 45.5 mega joules per kilogram (MJ kg$^{-1}$), which is slightly lower than the energy density of gasoline, which is 45.8 MJ kg$^{-1}$. The energy density of hydrogen is approximately 120 MJ kg$^{-1}$, almost three times greater than that of diesel or gasoline [157]. Water electrolysis, coal gasification, electrocatalysis, and photocatalysis are four main methods that are used to prepare H$_2$ to date. Photocatalytic H$_2$ evolution is considered promising because it is sustainable and does not produce secondary pollutants [155]. H$_2$ evolution process consists of three steps, namely, (a) the initial formation of h$^+$ + e$^−$ (b) the production of H$^+$ and (c) the formation of 1/2 H$_2$. H$^+$ adsorption state directly impacts the final hydrogen evolution efficiency in step (c) and is one of the most important factors that can be represented by
the Gibbs adsorption free energy $|\Delta G_{H^+}|$ [158]. As of today, a large number of photocatalysts, including metal sulfides, titanium dioxide (TiO$_2$), barium titanate (BaTiO$_3$), g-C$_3$N$_4$, and Sr$_2$Ta$_2$O$_7$, have been investigated for H$_2$ evolution [159]. However, the photocatalysts exhibit relatively low light utilization capacity and fast recombination of photogenerated carriers, which limits their practical application [160]. In this context, the development of new photocatalysts for H$_2$ evolution has great significance.

In recent years, MXenes have been recognized as promising candidates for photocatalytic H$_2$ production [69, 140]. Based on simulation calculations, it was discovered that $\Delta G_{H^+} = 0.927$ eV when all Ti$_3$C$_2$T$_x$ surface groups are –F, and strong adsorption occurs. A catalyst with all surface groups as –O has $|\Delta G_{H^+}|$ of 0.003 eV, which is superior to the commonly used catalyst Pt ($\Delta G_{H^+} = 0.090$ eV). The most desirable value for $|\Delta G_{H^+}|$ should be zero [161, 162]. Apart from contributing to the three steps of HER, Ti$_3$C$_2$T$_x$ can also assist in electron–hole separation because of the hydrophilic group on its surface, suitable Gibbs adsorption free energies, and excellent electron transfer efficiency [69, 163]. MXenes anchored onto the monolayer of Ti$_3$C$_2$T$_x$ were used as photocatalysts that enabled the photocatalytic evolution of H$_2$ over TiO$_2$. The effects of Ti$_3$C$_2$T$_x$ on the photocatalytic activity of TiO$_2$ were evaluated, by irradiating various TiO$_2$/Ti$_3$C$_2$T$_x$ nanocomposites with light and using CH$_2$OH as a hole scavenger for photocatalytic H$_2$ evolution [164]. In general, TiO$_2$/Ti$_3$C$_2$T$_x$ nanocomposites displayed better photocatalytic performance than pure TiO$_2$, because of Ti$_3$C$_2$T$_x$’s ability to separate photo-induced charge carriers. In the presence of 5% monolayer Ti$_3$C$_2$T$_x$, the maximum amount of H$_2$ was produced (2.71 mmol g$^{-1}$ h$^{-1}$) that was approximately nine times greater than that of pure TiO$_2$ particles (0.29 mmol g$^{-1}$ h$^{-1}$). This is due to the enhanced separation of photogenerated e^-/h^+ in TiO$_2$, as verified by photoluminescence and transient photocurrent responses, as well as electrochemical impedance spectrum measurements [165]. Additionally, quantum dot (QDs) Ti$_3$C$_2$T$_x$ or monolayer Ti$_3$C$_2$T$_x$ are both more active in H$_2$ evolution.

As a hole scavenger, lactic acid was used to study the effect of MXene on the photocatalytic hydrogen production of ZnCdS under visible light irradiation. Compared with ZnCdS nanoparticles and TM, ZTNM composites improved the efficiency of photocatalytic hydrogen production significantly, and the optimal hydrogen production efficiency of ZTNM-3 was 3.3 times that of ZnCdS nanoparticles [166].

Despite its advantages, monolayer Ti$_3$C$_2$T$_x$ has several disadvantages such as (a) its preparation is complex, (b) the catalyst has low structural stability and is easily oxidized, and (c) monolayer or few-layer structures are difficult to manipulate. At present, few-layered structures are fabricated electrostatically (self-assembly) or using in situ growth. In situ growth significantly improves the stability of composite catalysts over electrostatic self-assembly [69, 155, 167]. Xiao et al. [168] fabricated a 1D/2D CdS/Ti$_3$C$_2$ heterojunction by in situ solvothermal methods for H$_2$ generation. 1D/2D Schottky heterojunctions between CdS and Ti$_3$C$_2$ provide accelerated charge separation as well as a lower Schottky barrier for solar-driven hydrogen evolution from water splitting due to their specific interface characteristics. The CdS/Ti$_3$C$_2$ nanosheets are seven times more active than the CdS nanorods in photocatalytic hydrogen evolution suggesting a synergistic response between n-type semiconductor CdS and 2D Ti$_3$C$_2$ MXene. Yang et al. [169] found that Ti$_3$C$_2$ MXene@TiO$_2$/CuInS$_2$ (M@T/CIS) exhibited a 356.27 μmol g$^{-1}$ h$^{-1}$ rate of H$_2$ evolution, which is 69 and 636 times higher than that of M@T and CIS, respectively, highlighting its potential as photocatalysts for H$_2$ evolution. The following synergistic effects were attributed to the enhanced photocatalytic H$_2$ evolution activity increased light-harvesting ability, enhanced charge separation by Ti$_3$C$_2$/CIS Schottky junction and large number of active sites on the surface of Ti$_3$C$_2$ MXene, due to its numerous functional groups.

In a recent study, photocatalytic H$_2$ evolution over hierarchical Ti$_3$C$_2$T$_x$ MXene@In$_2$S$_3$-NiS is presented in which NiS is coupled with a Schottky heterojunction of Ti$_3$C$_2$T$_x$ MXene@In$_2$S$_3$ using photodeposition technique as shown in the figure 6 [170]. Morphology of the synthesized nanocomposites is depicted in the SEM and TEM images as shown in the figures 6(a)–(c). It was reported that H$_2$ generation rate over the optimized In$_2$S$_3$-3%NiS was approximately 29.0 times higher than that of bare In$_2$S$_3$ (figure 6(e)). Coupling of MXene to form Ti$_3$C$_2$T$_x$ MXene@In$_2$S$_3$-NiS nanocomposites resulted in further improvement in H$_2$ generation (figure 6(f)). In another study, Huang et al. [171] prepared P-doped tubular g-C$_3$N$_4$/Ti$_3$C$_2$ (PTCN/TC) MXene by self-assembly approach. The H$_2$ evolution rate was highest for PTCN/TC (2.20 μmol g$^{-1}$ h$^{-1}$), as it was 4.3 and 2.0 times higher than that of pure bulk g-C3N4 and PTCN, respectively. The metallic Ti$_3$C$_2$ served as a sink for electrons and a collector for photons in this composite. Furthermore, ultrathin Ti$_3$C$_2$ flakes that showed exposed terminal metal sites as a co-catalyst displayed higher photocatalytic reactivity in H$_2$ evolution than carbon materials. Very recently, Cao et al. [172] reported the successful fabrication of MXene/ZnxCd1-xS photocatalysts for H$_2$ evolution. The resulting photocatalysts provided excellent photocatalytic performance, with the best rate of H$_2$ evolution at 14.17 mmol g$^{-1}$ h$^{-1}$. High-efficiency photocatalysis is attributed to the enhanced separation ability of photocarriers and optimal band structure with enhanced oxidation capacity of the valence band of MXene/ZnxCd1-xS photocatalysts. As shown in table 3, Ti$_3$C$_2$T$_x$ results in a greater...
yield of H₂ compared to the base catalyst alone. In summary, hydrogen production doubled after loading with Ti₃C₂Tₓ. The reason for this incredible promotion is mainly due to the following three aspects of Ti₃C₂Tₓ, (a) it provides a high throughput channel as a co-catalyst during which the excited electrons can pass through while holes cannot, (b) its hydrophilicity, and (c) its adsorption on hydrogen has a Gibbs free energy of zero. It is important to dedicate more resources to studying MXene QDs as opposed to their

Table 3. Photocatalytic hydrogen production of various MXene-based photocatalysts.

Photocatalysis	Sacrificial agent	Light source	H₂ production rate (mmol g⁻¹ h⁻¹)	Improvement times (bare catalysts)	References
CdₓZnₓS/Ti₃C₂	Na₂SO₃/Na₂S	300 W Xenon lamp	9.07	33 (traditional Pt)	[174]
Ti₃C₂MXene@TiO₂/ZnInSₓ	Na₂S/Na₂SO₃	300 W Xenon lamp	1.18	9.1 and 4.6 (M@TiO₂ and pure ZIS, respectively)	[175]
PtO@Ti₃C₂/TiO₂	—	300 W Xenon lamp	2.54	3 (TiO₂)	[176]
1D CdS/2D Nb₂CTₓ (m = 1–3)/MXene	Methanol	Visible light	5.30	1.7 (CdS)	[177]
HCN/Ti₃C₂	TEOA	3 W LED	4.22	2 and 8 (HCN and BCN, respectively)	[179]
Ti₃C₂/SnNbOₓ	Methanol	300 W Xenon lamp	0.17	2 (SNO nanoplate)	[180]
CdₓZnₓS/Ti₃C₂	Na₂S/Na₂SO₃	300 W Xenon lamp	15.03	2.7 (CZS)	[181]
BQ/Ti₃C₂/ultrathin g-C₃N₄	TEOA	300 W Xenon lamp	18.42	47.2 and 19.4 (BCN and UCN, respectively)	[182]
Protonated g-C₃N₄/Ti₃C₂Tₓ	TEOA	300 W Xenon lamp	1.409	24 and 8 (TiO₂ and g-C₃N₄, respectively)	[184]
Protonated g-C₃N₄/Ti₃C₂	TEOA	300 W Xenon lamp	2.18	2.5 and 2.6 (g-C₃N₄ and g-C₃N₄)	[185]

Figure 6. (a) Fabrication of MX@InₓS₃-NiS ternary heterostructures. (b) Schematic illustration for the fabrication of MX@InₓS₃-NiS ternary heterostructures. (b) FESEM. (a), (b) Reproduced from [170]. © IOP Publishing Ltd All rights reserved. (c) and (d) TEM images of the composite. (e) Comparison of H₂ generation rates over bare InₓS₃ and InₓS₃-NiS composites. (f) Over bare InₓS₃, MX@InₓS₃-NiS, and InₓS₃-Pt composites.
sheet counterparts. Thus, a greater understanding of MXene QDs and their influence on activity is highly desired both from an experimental and computation perspective.

4.3. Photocatalytic reduction of CO$_2$

Photocatalytic CO$_2$ reduction has received enormous attention in recent decades to simultaneously address the greenhouse effect and the energy shortage. The conversion of CO$_2$ into CH$_4$, CO, CH$_3$OH, HCHO, and HCOOH has been studied extensively using a variety of photocatalysts [187–191]. The reduction of CO$_2$ with photocatalysts is still challenging due to the low utilization rate of carriers, the low thermodynamic stability of CO$_2$ molecules, and the insufficient adsorption and activation of CO$_2$ molecules. Therefore, a highly efficient photocatalyst with high CO$_2$ reduction activity must be developed [60]. Several recent studies suggested that MXenes may serve as a co-catalyst in photocatalytic CO$_2$ reduction due to its remarkable physicochemical properties. The potential of MXene for photocatalysis has been demonstrated by numerous theoretical and experimental studies recently [72, 192–194]. The Ti$_3$C$_2$T$_x$ MXene-based semiconductor is gaining wide attention as a photocatalytic substrate that is capable of outperforming graphene and noble metals as a co-catalyst in CO$_2$ reduction.

In addition, Ti$_3$C$_2$T$_x$ can allow fast separation of photogenerated charge carriers for light-harvesting materials, which can achieve high photoconversion efficiencies. MXenes offer a large surface area, enriched active adsorption sites, and a good interface contact to allow efficient charge carrier separation [60]. Furthermore, the Ti$_3$C$_2$T$_x$ layer exhibits a variety of terminated functional groups, such as O, OH, C, and F, encouraging the need for specific functionalization [72]. Photocatalytic CO$_2$ reduction follows a five-step process: light adsorption, charge separation, CO$_2$ adsorption, surface redox reaction, and product desorption [195]. Charge separation occurs during the recombination of electrons and holes when the photocatalyst’s CB is greater than the redox potential of CO$_2$ [69]. There are several factors dictating which of these two competing processes is predominant. As a result of CO$_2$ adsorption and photogenerated electrons and holes moving from the crystal structure to the surface, the catalyst undergoes a redox reaction. Following the de-attachment of the product, the CO$_2$ reduction reaction from photocatalysis is completed [196, 197]. Recently, Li et al [173] fabricated g-C$_3$N$_4$/MXene (MCT) for photocatalytic CO$_2$ reduction, which showed excellent performance. As a gray powder, MCT was obtained under an N$_2$ atmosphere by heating g-C$_3$N$_4$ and Ti$_3$C$_2$T$_x$ mixed in a 10:3 mass ratio respectively at 250°C for 2 h. After treatment with HF, it is evident that the Al layers in Ti$_3$ALC$_x$ have been stripped away. The mesoporous surface morphology of mesoporous g-C$_3$N$_4$ allows gas molecules to be adsorbed at numerous sites due to its large surface area. Ti$_3$C$_2$T$_x$ has enhanced contact with mesoporous g-C$_3$N$_4$ due to their morphologies, that resulted in remarkable improvements in the electron separation as well as the efficiency of multiple electron reactions including CO$_2$ reduction. As a result of illumination to excite electrons of the semiconductor into the excitation state, Ti$_3$C$_2$T$_x$ MXene comprises a capacitor that coordinates heterojunction effects. Due to the rapid transfer of electrons, electrons and holes are separated more easily. The steady rise and stable decline of the photocurrent corresponding to the ON and OFF states of the light, respectively, reflect the improved separation of photogenerated electron–hole pairs in Ti$_3$C$_2$T$_x$ and its electron reservoir capabilities. In this case, Ti$_3$C$_2$ MXene is a cocatalyst that enhances charge separation and provides the active sites necessary for the reduction reaction. As a result of the photocatalytic activity of the MCT sample for CO$_2$ reduction, several organic products were generated, among which CO and CH$_4$ were the dominant product. Mesoporous MCT produces 2.4 times more CH$_4$ than mesoporous g-C$_3$N$_4$ (MC). This evidences the excellent selectivity and activity of MCT. Additionally, a high-speed electronic system in the MXene catalyst enables MCT to also effectively separate charge carriers [173]. In another study ZnO loaded Ti$_3$C$_2$ MXene compounds (Ti$_3$C$_2$−OH/ZnO) was synthesized by a facile electrostatic self-assembly method and used as a co-catalyst for CO$_2$ photoreduction [198]. Formation of Ti$_3$C$_2$−OH/ZnO composite structure due to electrostatic self-assembly between negatively charged Ti$_3$C$_2$−OH and positively charged ZnO was revealed by the SEM and high resolution TEM images (figures 7(a) and (b)). The surface-alkalinized Ti$_3$C$_2$−OH/ZnO played an important role in increasing the transfer efficiency of of photoinduced charge carriers and ultimately improving the CO$_2$ molecules adsorption, resulting in higher photocatalytic CO$_2$ reduction as depicted in figure 7(C). It was reported that evolution rates of CO and CH$_4$ was 30.30 µmol g$^{-1}$ h$^{-1}$ and 20.33 µmol g$^{-1}$ h$^{-1}$, respectively, which are much higher than the earlier reported values.

In another study, Tahir et al [199] fabricated 2D porous g-C$_3$N$_4$ (PCN) coupled exfoliated 3D Ti$_3$C$_2$T$_x$ MXene (TiC) nanosheets with TiO$_2$ nanoparticle (NPs) via in-situ growth in a single step through HF treatment approach (figure 8(a)). Figures 8(b) and (c) depict efficacious fabrication of PCN/TiC which can augment the area of interfacial interaction for facilitating the migration of charge carriers. Importantly, the TiO$_2$ NPs were visible on the Ti$_3$C$_2$ nanosheets. PCN/TiC showed excellent performance for photocatalytic CO$_2$ reduction by
Figure 7. (a) SEM and (b) HR-TEM images of Ti$_3$C$_2$–OH/ZnO. (c) CO$_2$ adsorption behaviors of Ti$_3$C$_2$ and Ti$_3$C$_2$–OH; (d) CO$_2$-temperature-programmed desorption spectra of ZnO, Ti$_3$C$_2$/ZnO and Ti$_3$C$_2$–OH/ZnO. Reprinted from [173], © 2021 Elsevier B.V. All rights reserved.

Figure 8. (a) Schematic illustrating the synthesis process. (b) SEM image of Ti$_3$C$_2$/Au. (c) SEM image of r-Ti$_3$C$_2$/Au. (d) Reaction rate of ammonia concentrations under white light illumination. (e) Reaction of ammonia under visible light exposure. (a)–(e) Reproduced from [210] with permission from the Royal Society of Chemistry. (f) Ammonia production under both lights conditions.
generating CO and CH$_4$ products. As compared to TiC-24/PCN, TiC-96/PCN, and PCN composite samples, 10TiC-48/PCN produced CO and CH$_4$ at the maximum rates of 317.3 and 78.55 μmol g$^{-1}$ h$^{-1}$. The CO and CH$_4$ evolution results were 9.9 and 6.7 folds higher using 10 TiC-48/PCN composite than pristine sample PCN (figures 8(d) and (e)). The reason for this is the lower separation efficiency of photogenerated charges with pure PCN, so only a smaller number of electrons can combine effectively with CO$_2$ for activation of the gas. In composite materials, photoluminescence analysis (PL) is an effective method of investigating charge separation and recombination efficiency. In pristine PCN, PL intensity is very high due to the high recombination probability of the single charge carrier, while the PL emission peaks of samples TiC-24, TiC-48, and TiC-96 are significantly smaller than those of PCN. It might be due to the metallic nature of MXenes as well as its dark color. In contrast, PL intensity was significantly reduced when PCN was anchored to TiC-48 to form a TiC-48/PCN heterojunction composite. The composite samples demonstrate efficient charge carrier separation by using Ti$_3$C$_2$T$_x$ MXene decorated with TiO$_2$ NPs and attached to 2D porous g-C$_3$N$_4$ sheets [199]. Moreover, a highly efficient ‘storage capacitor’ is created when Ti$_3$C$_2$T$_x$ forms a heterojunction with g-C$_3$N$_4$. Electrons transfer quickly to Ti$_3$C$_2$T$_x$ on the semiconductor surface, but holes cannot. As a result, the material’s photocatalytic performance is greatly improved, and the electron–hole recombination is greatly reduced. Meanwhile, abundant defects on the surface of Ti$_3$C$_2$T$_x$ act as excellent adsorption sites for CO$_2$ [193]. Low et al [200] prepared TiO$_2$/Ti$_3$C$_2$ composite for photocatalytic reduction of CO$_2$. The TiO$_2$ was tightly bonded to the Ti$_3$C$_2$, and the composites had a rice crust appearance. It was found that the optimized TiO$_2$/Ti$_3$C$_2$ composite produced CH$_4$ at a higher rate than commercial TiO$_2$ and also had very good photostability. According to the experimental and theoretical results, Ti$_3$C$_2$’s ultrahigh electrical conductivity and light absorption properties allowed carriers to be separated efficiently [200].

The above examples show Ti-MXene’s potential for highly selective photocatalytic CO$_2$ conversion, which is a positive signal that they will have broad applications both theoretically and computationally shortly. Thus, coupling various semiconductive photocatalysts to Ti$_3$C$_2$T$_x$ requires extensive research. In addition, simulation of a structure with such properties will provide a better understanding of Ti$_3$C$_2$T$_x$’s adsorption, activation, and charge transfer mechanisms. However, the use of Ti$_3$C$_2$T$_x$ is relatively smaller in photocatalytic reduction of CO$_2$ than in photocatalytic hydrogen evolution. The reason is because of its instability and the fact that it has its carbon resources, which can interfere with the photocatalytic reduction of CO$_2$. The results listed in table 4 demonstrate that among limited reports, Ti$_3$C$_2$T$_x$ with both single-layered and multilayered structures displays an obvious production enhancement.

4.4. Photocatalytic N$_2$ fixation

Nitrogen is an essential component of all living organisms in the form of proteins and nucleic acids. Despite the high concentration of nitrogen in the atmosphere, most living organisms are mostly able to use the nitrogen element as ammonia (NH$_3$) or NO$^-$ or NO$_3^-$. In the industrial sector, ammonia is a crucial ingredient in fertilizers and is produced through the Haber-Bosch process, which uses N$_2$ and H$_2$ as feedstocks. In
light of the solid bonding between the NN bonds (945 kJ mol⁻¹), such a process requires a high quantity of energy, causing a variety of environmental and energy issues. Recent developments in photocatalytic N₂ fixation utilizing solar energy have been considered a promising option for generating ammonia under mild environmental conditions. In contrast, rapid photogenerated charge carriers and N₂ activation are strongly contested to this technology. Recently, MXene photocatalysts have been used in the photocatalytic N₂ fixation reaction to address these issues.

Recently, Fang et al [209] prepared BiOBr/MXene-Ti₃C₂ composite catalysts using electrostatic adsorption and self-assembly. BiOBr/Ti₃C₂ prepared in 10 wt.% exhibits the best performance for the photocatalytic fixation of N₂. BiOBr/Ti₃C₂ showed up to 234.6 µmol g⁻¹ h⁻¹ evolution rate of NH₃, which is approximately 48.8 and 52.4 times greater than that of pure BiOBr and Ti₃C₂, respectively. With the presence of designed double oxygen and titanium vacancies for BiOBr/Ti₃C₂, localized electrons are capable of adsorbing and activating N₂, having the ability to be reduced to NH₃ by the interfacial electrons of BiOBr/Ti₃C₂. Furthermore, the in-situ Fourier transform infrared results indicate that continuous protonation processes lead to the generation of NₓHₙ species. Additionally, according to density functional theory calculations, titanium vacancies (VTi) induce high absorption energy for nitrogen atoms on the surface of BiOBr/Ti₃C₂. Particularly, the P-electron feedback caused by VTi can elongate the N₂ bond by 31.6% by effectivly weakening the N≡N triple bond. Moreover, from the above study, the built-in electric field is demonstrated to drive charge transfer at the local interface after the coupling of BiOBr and Ti₃C₂Tₓ. As a result of the electron trap (Schottky junction) between BiOBr and Ti₃C₂Tₓ, a special structure is formed. By capturing and accumulating photosensitive electrons, it can assist in promoting multielectron NRR. On top of that, the large specific Brunauer–Emmett–Teller (BET) surface area of MXene [51] in heterojunction materials and their black appearance can provide a high level of 'reaction sites' and improve the light adsorption capacity [209].

In another study, Chang et al [210] employed a controlled solvent-driven approach to synthesize partially reduced layered Ti₃C₂Tₓ MXene and integrate it with Au nanospheres in a sandwich-like structure (figure 8). There are many low-valence titanium sites on r-Ti₃C₂Tₓ, which serve as active sites for capturing and activating N₂ molecules. By taking advantage of the embedded Au nanospheres, the activated N₂ is reduced with plasmonic hot electrons. It is also important to note that the sandwich architecture prevents the Ti₃C₂Tₓ layers from self-stacking, allowing the active sites to be exposed for utilization. The r-Ti₃C₂/Au has an incredibly high N₂ photo-fixation activity due to the abundance of Ti(++) active sites and localized surface plasmon resonance (LSPR) effect working together. To utilize Ti₃C₂ MXene for N₂ photo-fixation, the Ti₃C₂ MXene’s active sites are important for N₂ adsorption and activation [110]. Similarly, an RuO₂-loaded TiO₂–MXene was developed by Hao et al [211] for photocatalytic N₂ fixation. Their method uses TiO₂, Ti₃C₂Tₓ, and RuO₂ as light collectors, electron mediators, and N₂ adsorbents, respectively. In the present study, RuO₂ NPs were primarily located on the Ti₃C₂Tₓ matrix rather than on TiO₂. Therefore, upon irradiation with light, photogenerated electrons transferred first from TiO₂ to Ti₃C₂Tₓ, and then migrated to RuO₂ for reduction of the adsorbed N₂ on the RuO₂. It is possible that such intermediate photogenerated charge carrier transfers during the sample preparation could contribute to extending the lifetime of the various photogenerated charge carriers. Consequently, RuO₂/TiO₂/Ti₃C₂ displayed significantly higher photocatalytic N₂ fixation activity than the TiO₂, RuO₂, TiO₂/Ti₃C₂, and TiO₂/RuO₂, respectively [211]. In short, photocatalytic N₂ fixation using Ti₃C₂-based photocatalysts is a viable way to improve NH₃ production through photocatalytic N₂ fixation. However, MXene-based photocatalysts have been controversial regarding their photocatalytic N₂ fixation mechanism. The key question is how N₂ molecules adsorb on Ti₃C₂Tₓ MXene. In this regard, future experiments, and studies on the N₂ adsorption model for Ti₃C₂-based photocatalysts are highly desired. Additionally, in general, very little work has been done on MXenes for photocatalytic N₂ fixation, and the yield rate needs to be increased (table 5).

| Table 5. Comparison of photocatalysts including MXene for N₂ fixation. |
|--------------------------|---------------|-----------------|----------------------------|
| Photocatalysts | Light source | NH₃ production rate (µmol g⁻¹ h⁻¹) | References |
| Bi₂O₃Br₂/Ti₃C₂ | 300 W xenon lamp | 277.74 | [212] |
| Nb₂O₃/C/CdS/C@C@g/C₇N₄ | 300 W xenon lamp | 927.00 | [213] |
| MXene@TiO₂ | 300 W xenon lamp | 110.00 | [214] |
| CdS@Ti₃C₂ | 300 W xenon lamp | 293.06 | [215] |
| Ti₃C₂/Ti/TiO₂ | 300 W xenon lamp | 422.00 | [216] |
| TiO₂@C@g/C@C₅N₄ | 300 W xenon lamp | 250.60 | [217] |

4.5. Photocatalytic degradation of pollutants
Photocatalytic degradation occurs through the generation of oxidizing holes by photocatalytic
semiconductor materials. Oxidation of dissolved oxygen can lead to the formation of superoxide radicals, singlet oxygen, and hydroxyl radicals. It is possible for these species to directly oxidize substrates. The Ti$_3$C$_2$T$_x$ material has a wealth of surface groups and active sites, making it a good adsorbent for many substrates. Therefore, Ti$_3$C$_2$T$_x$ has been particularly attractive as a photoactive degradation catalyst and has been investigated by several researchers. For example, the photocatalytic structure of ZnCdS/TiO$_2$/Na-MXene composites was prepared by Qin et al [218] to obtain excellent photocatalysts with high photo-corrosion resistance. MXene was wrapped by Na$^+$ and ZnCdS nanoparticles under hydrothermal conditions, slowing down further oxidation of Ti$_3$C$_2$ MXene into TiO$_2$ and improving MXene utilization. A ZnCdS/TiO$_2$/Na-MXene composite with an optimal adsorption capacity to methylene blue reached 299.68 mg g$^{-1}$, confirming that the MXene content was crucial for the removal of an organic dye. The reported adsorption capacity was achieved by performing a dye adsorption experiment under dark conditions. Further, the degradation capabilities of ZnCdS/TiO$_2$/Na-MXene composite for methylene blue were assessed under UV light and the synthesized composites exhibited excellent photocatalytic degradation of dye in a short period. ZnCdS layer intercalation increased the basal distances in ZnCdS/TiO$_2$/Na-MXene from 10.59 Å to 15.21 Å, which could encourage the transportation and adsorption of organic pollutants. ZnCdS/TiO$_2$/Na-MXene showed 9.3 times higher degradation efficiency than pure ZnCdS in 120 min [218]. Another research group prepared Ti$_3$C$_2$T$_x$ (001-T/MX) photocatalyst by hydrothermal treatment of Ti$_3$C$_2$T$_x$ (MXene) and utilised it for the photodegradation of carbamazepine (figure 9). The adsorption of of carbamazepine onto pristine MXene and 001-T/MX composite was about 5% and 7%, respectively, which is very low removal efficiency (figure 4(c)). Whereas, photodegradation removal rate was very higher under UV light irradiation as showed in the figure 9(b).

Besides, Zou et al [219] prepared MXene-Ti$_3$C$_2$/MoS$_2$ composites to be used under visible light illumination for the first time in photocatalytic degradation of ranitidine (RAN) and to reduce nitrosoamine dimethylamine (NDMA) formation potential (NDMA-FP). These composites were analysed in terms of the morphology, chemical composition, and structural properties which revealed the generation of a heterojunction between MoS$_2$ and Ti$_3$C$_2$T$_x$. This separated electron–hole pairs and facilitated charge transfer, resulting in improved photocatalytic performance. MXene-Ti$_3$C$_2$/MoS$_2$ composite showed the highest RAN degradation and mineralization efficiency in 60 min, with an NDMA-FP of 2.01%. The degradation of RAN was greatly aided by radicals, including the radicals \bulletO$_2^-$, h^+, and \bulletOH, but it was the \bulletOH radicals that were responsible for the majority of the photocatalytic activity.

In addition, Sharma et al [3] reported 2D ternary ZnO–Bi$_2$WO$_6$–Ti$_3$C$_2$ for photocatalyst degradation of colorless pharmaceutical pollutants. X-ray diffraction confirmed the formation of the individual materials and nanocomposites, while electron microscopy determined the 2D morphology. ZnO–Bi$_3$WO$_6$–Ti$_3$C$_2$ under sunlight irradiation, exhibited a maximum 77% degradation of ciprofloxacin in 160 min. According to the mechanistic analysis, electrons flow from ZnO and Bi$_2$WO$_6$ to Ti$_3$C$_2$T$_x$ during nanocomposite formation, indicating that the MXene plays a vital role in separating photo-generated charges and improving the photocatalytic activity. In addition to increasing the efficiency of photo-generated charge carrier separation, Fang et al [220] found that Ti$_3$C$_2$T$_x$ could enhance the adsorption capacity of Ag$_2$WO$_4$ for antibiotic pollutants such as tetracycline hydrochloride and sulfadimidine.

The adsorption and photocatalytic reactions were simulated using dark and light conditions, respectively, for testing the removal of antibiotic pollutants. Ti$_3$C$_2$T$_x$ showed negligible direct adsorption capacity for pollutants under dark conditions, but it improved the dispersion and prevented the aggregation of Ag$_2$WO$_4$, thus increasing its adsorption capacity for antibiotics. Combining enhanced adsorption capacity and improved photocatalyst carrier separation efficiency, Ag$_2$WO$_4$/Ti$_3$C$_2$T$_x$ exhibited significantly higher photocatalytic degradation activity compared to both pristine Ti$_3$C$_2$T$_x$ and Ag$_2$WO$_4$. Table 6 reports a summary of the photocatalytic degradation of contaminants using MXenes.

5. Recyclability of MXenes

The recyclability of MXenes and the ability to retain their properties are among the most important research subjects in terms of efficiency and cost minimization in recent years [221, 222]. The feasibility of regeneration has been demonstrated using hydrochloric acid, HNO$_3$, or Ca(NO$_3$)$_2$, alcohol, and thiourea [222–225]. For instance, Khan and Andreescu [222] found that recycling Ti$_3$C$_2$T$_x$ with 0.2 M HCl to remove Cs ions resulted in a sorbent removal rate of more than 90%. According to Shahzad et al’s [226] experiment, the authors achieved nearly 100% reusability of MX-SA$_{4:2}$ with 8 M hydrochloric acid. In another study, it was found that the MXene/alginate structure is more stable than calcium nitrate crosslinking, which leads to higher absorption rates than non-cross-linked compounds [227].

It is crucial to determine whether a photocatalyst can be stable since its photo-corrosion strictly limits its application [228]. A cycling test was performed for the degradation of antibiotics using the Ag$_2$WO$_4$/Ti$_3$C$_2$ MXene to verify their reusability. After three cycles, a clear
reduction trend in cyclical production has been observed, as estimated removal efficiencies for tetracycline hydrochloride and sulfadimidine have both declined by approximately 9% and 22%, respectively. Reduction probably occurs as a result of photocorrosion, photolysis, or photocatalyst damage during reuse. It was generally expected that a small amount of Ag would be generated during the initial fabrication of Ag$_2$WO$_4$/Ti$_3$C$_2$ MXene since the terminal metal sites of Ti$_3$C$_2$ MXene exhibit strong oxidation and reduction reactivity. Nevertheless, the XRD patterns of Ag$_2$WO$_4$/Ti$_3$C$_2$ did not change before and after the reaction, indicating that the MXene maintains good stability [220]. Testing of monolayer
Table 6. Summary of photocatalytic degradation of pollutants.

Photocatalyst	Pollutant	Light Source	Degradation/ Removal	References
MXene-Handmade (MX-H)	Methylene Blue	Visible light	98%	[231]
TiO₂(TMEO₂-x)/Ti₃C₂	Bisphenol A	Xenon lamp 300 W	90%	[232]
(A-TOTC)				
Ti₃C₂	Methylene Blue, rhodamine B and methyl orange	Xenon lamp 300 W	90%, 83.41% and 44.26%	[233]
MXene/NH₂-MIL-88B	Cr(VI) and methyl orange	Visible light	93.4 and 96.9	[234]
MXene/ZnIn₂S₄	Rhodamine B	UV light	90	[235]
ZnO/MXene	Rhodamine B	Xenon lamp 300 W	97	[236]
TiO₂/αTi₃C₂	Tetracycline hydrochloride	Visible light	92.1	[237]
Ag/g-C₃N₄/Ti₃C₂	Methylene blue and tetracycline hydrochloride	300 W xenon lamp	>90	[228]
MXene/Ag₂S				
CuFe₂O₄/Ti₃C₂	Methylene blue	Visible light	94	[238]
Ti₃C₂/TiO₂	Perfluorooctanoic acid	300 W xenon lamp	100	[239]

TiO₂/Ti₃C₂Tx showed that their photocatalytic H₂ evolution rate dropped from 2.7 to 2.3 mmol g⁻¹ h⁻¹ after four cycles of reaction [229]. Although Ti₃C₂Tx nanoparticles are generally unstable in water containing dissolved oxygen, Ti₃C₂Tx nanoparticles could be stabilized by removing the dissolved oxygen with Ar gas [230]. Therefore, dissolved O₂ was removed through de-aeration with ultrapure Ar gas before photocatalytic H₂ evolution could occur. Ti₃C₂Tx nanoparticles are less likely to oxidize when exposed to photo-induced e⁻. In such reaction circumstances, Ti₃C₂Tx can be fairly constant. An XRD pattern of the used TiO₂/Ti₃C₂Tx after photocatalysis showed no notable change in the crystal structure. Nonetheless, as compared to the clean sample, there was a modest decrease in utilized TiO₂/Ti₃C₂Tx light absorption, likely due to TiO₂ particle detachment from the nanocomposites [165, 229].

6. Challenges and future perspectives

MXenes have been attracting enormous attention in the fields of photocatalysis and many others such as energy storage, ion batteries, and sensor technology. The study of MXenes is still in its early stages, and its prospects are primarily as follows:

(a) To fabricate Ti₃C₂ photocatalysts, a multistep process that combines Ti₃C₂Tx with other composites before hybridizing them is usually utilized, which greatly slows down the fabrication process. There is a need to develop novel fabrication methods to reduce the synthetic time and maximize the feasibility of experiments.

(b) Theoretically, there exists a wide variety of MAX precursors, which can be prepared experimentally, and a larger variety of MXene types must be explored to enrich the MXene family.

(c) Specifically, the problem lies in the instabilities of the composite material, which result in unstable photocatalytic performances. Several existing solutions employ single-layer or few-layer structured materials.

(d) MXenes band structure must be explored to expand the material chemistry, structural diversity, and potential applications of these materials. MXenes are predicted to be direct band gap semiconductors theoretically, but their experimental synthesis continues to present challenges.

(e) Till date, research activities have been focused on hydrogen evolution and pollutant degradation, but little research has been accomplished on oxygen evolution, water splitting total, oxygen reduction, etc.

(f) The development of more active composite catalysts should be prioritized, as well as extending their application to other emerging fields.

(g) MXenes can be paired with efficient and cheap semiconductors to enhance their photocatalytic performance and commercial viability.

Further applications of Ti₃C₂Tx MXene in photocatalysis depend upon the material’s development. Various methods to enhance the stability of the Ti₃C₂Tx MXene structure should be investigated, starting with synthetic approaches. Moreover, Ti₃C₂Tx MXene should be further explored for its hydrophilicity as well as its rich surface groups, particularly in liquid phase photocatalysis.

Since the first report of MXenes in 2011, this research area has been growing rapidly. In recent years, MXenes have received considerable attention for photocatalytic applications for their inherent characteristics, which include superior hydrophilicity, metal-like conductivity, large surface area to volume ratio, excellent microwave absorbing properties, and rich surface chemistry. In this review, we have summarized the recent development of synthesizing Ti₃C₂Tx MXenes, and Ti₃C₂Tx-based photocatalysts for different environmental decontamination applications such as hydrogen evolution,
reduction of CO₂, N₂ fixation, degradation of pollutants, and water splitting. Even though Ti₃C₂Tx 2D MXene has been studied for many years, there is still much to learn about its photocatalytic behavior and applications. Considering its numerous advantages and characteristics, Ti₃C₂Tx is a compound that needs further investigation, and it is expected to play a very significant role in the field of photocatalysis.

Data availability statement
All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments
The authors K R and K A M are thankful to the Qatar Environment and Energy Research Institute at the Hamad Ben Khalifa University of Qatar Foundation for supporting this research. Also A S and T S gratefully acknowledge funding from the ÅForskningsfond (Grant No. 21-231), Stiftelsen Olle Engkvist Byggmästare (Grant No. 214-0346), and the Swedish Research Council (Grant Nos. 2017-05030 and 2021-03675).

ORCID iDs
Kashif Rasool https://orcid.org/0000-0002-7759-8448
Khaled A Mahmoud https://orcid.org/0000-0003-1246-4067
Tapati Sarkar https://orcid.org/0000-0003-4754-2504
Asif Shahzad https://orcid.org/0000-0002-1578-6670

Reference
[1] Sharma S K et al 2021 MXenes based nano-heterojunctions and composites for advanced photocatalytic environmental detoxification and energy conversion: a review Chemosphere 291 132923
[2] Imran M et al 2020 UV light enabled photocatalytic activity of α-Fe₂O₃ nanoparticles synthesized via phase transformation Mater. Lett. 258 126748
[3] Wang P, Lu X, Boyjoo Y, Wei X, Zhang Y, Guo D, Sun S and Liu J 2020 Pillar-free TiO₂/Ti₃C₂Tx composite with expanded interlayer spacing for high-capacity sodium ion batteries J. Power Sources 451 227756
[4] Varnagiris S, Urbonavicius M, Tuckute S and Lelis M 2021 Formation of Zn-rich ZnO films with improved bulk and surface characteristics by approach of magnetron sputtering technique Thin Solid Films 738 138967
[5] Sharma V, Kumar A, Kumar A and Krishivan V 2022 Enhanced photocatalytic activity of two dimensional ternary nanocomposites of ZnO–BoV–Ti₃C₂Tx MXene under natural sunlight irradiation Chemosphere 287 132119
[6] Zhang R et al 2021 Controlled engineering of tunable 3D-BiOX (X= Cl, Br) hierarchical nanostructures via dopamine-mediated synergistic interactions for efficient visible-light absorption photocatalysis Appl. Surf. Sci. 574 151683
[7] Hong L-F et al 2020 Recent progress of two-dimensional MXenes in photocatalytic applications: a review Mater. Today Energy 18 100521
[8] Huang Y et al 2016 Bifunctional catalytic material: an ultrastable and high-performance surface defect CeO₂ nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation J. Environ. Manage. 181 779–87
[9] Ahn S et al 2020 A 2D titanium carbide mxene flexible electrode for high-efficiency light-emitting diodes Adv. Mater. 32 2000919
[10] Seredych M et al 2022 Delamination of MXenes using bovine serum albumin Colloids Surf. A 641 128580
[11] You Z, Liao Y, Li X, Fan J and Xiang Q 2021 State of the art recent progress in MXene-based photocatalysts: a comprehensive review Nanoscale 13 9463–504
[12] Biswal I et al 2021 Recent progress on strategies for the preparation of 2D/2D MXene/CuNx nanocomposites for photocatalytic energy and environmental applications Catal. Sci. Technol. 11 1222
[13] Novoselov K S et al 2004 Electric field effect in atomically thin carbon films Science 306 666–9
[14] Nakanniev P et al 2019 Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets Nat. Mater. 18 156–62
[15] Jaramillo-Fierro X, González S, Jaramillo H A and Medina F 2020 Synthesis of the ZnTiO₃/TiO₂ nanocomposite supported in ecuadorian clays for the adsorption and photocatalytic removal of methylene blue dye Nanomaterials 10 1891
[16] Jin C et al 2019 Observation of moiré excitons in WS₂/WSe₂ heterostructure superlattices Nature 567 76–80
[17] Yang C, Huang H, He H, Yang L, Jiang Q and Li W 2021 Recent advances in MXene-based nanoarchitectures as electrode materials for future energy generation and conversion applications Coord. Chem. Rev. 435 213806
[18] Dixit F et al 2022 Application of MXenes for water treatment and energy-efficient desalination: a review J. Hazard. Mater. 423 127050
[19] Bhat A et al 2021 Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications 2D Mater. 5 1–21
[20] Tahir M, Sharryna A, Mansoor R, Khan A A, Tasleem S and Tahir B 2022 Titanium carbide MXene nanoarchitectures as catalysts and cocatalysts for photocatalytic fuel production: a review ACS Appl. Nano Mater. 5 18–54
[21] Ghodbane M, Said Z, Tiwhi A K, Syam Sundar I, Li C and Boumeddane B 2022 4E (energy, energy, economic and environmental) investigation of LFR using MXene based silicone oil nanofluids Sustain. Energy Technol. 49 101715
[22] Thirupal V, Yuvakkumar R, Senthil Kumar P, Ravi G and Velauthapillai D 2022 Flexible preparation and characterization of MXene® platinum nanocomposite for energy conversion applications Fuel 317 123493
[23] Yang M, Yang Z, Lv C, Wang Z, Lu Z, Lu G, Jia X and Wang C 2022 Electrosyn bifunctional MXene-based electronic skins with high performance electromagnetic shielding and pressure sensing Compos. Sci. Technol. 221 109313
[24] Miao Z, Chen X, Zhou H, Liu P, Fu S, Yang J, Gao Y, Ren Y and Rong Dong 2022 Interfacing MXene flakes on a magnetic fiber network as a stretchable, flexible, electromagnetic shielding fabric Nanomaterials 12 20
[25] Liang L, Yao C, Yan X, Feng Y, Hao X, Zhou B, Wang Y, Ma J, Liu C and Shen C 2021 High-efficiency electromagnetic interference shielding capability of magnetic Ti₃C₂Tₓ MXene/CNT composite film J. Mater. Chem. A 9 24560–70
[26] Wang Y, Qi Q, Yin G, Wang W and Yu D 2021 Flexible, ultra-thin, and mechanically robust waterborne polyurethane/Ti₃C₂Tₓ MXene/nickel ferrite hybrid aerogels for high-performance electromagnetic interference shielding ACS Appl. Mater. Interfaces 13 21831–43
Rasheed T 2022 MXenes as an emerging class of two-dimensional materials for advanced energy storage devices J. Mater. Chem. A 10 4558–84
Ezika A C, Sadiku E R, Idumah C I, Ray S S and Hamnam Y 2022 On energy storage capacity of conductive MXene hybrid nanoarchitectures J. Energy Storage 45 103686
Liu Y-H, Wang C-Y, Yang S-L, Cao F-F and Ye H 2022 3D MXene architectures as sulfur hosts for high-performance lithium-sulfur batteries J. Energy Chem. 66 429–39
Aslam M K et al 2021 2D MXene materials for sodium ion batteries: a review on energy storage J. Mater. Chem. 37 102478
Xu X et al 2021 Progress and perspective: mXene and MXene-based nanomaterials for high-performance energy storage devices Adv. Electron. Mater. 7 2000967
Lipton J, Wang G-M, Alhabeb M, Maleksi K, Antonio F, Kong J, Gogotsi Y and Taylor A D 2019 Mechanically strong and electrically conductive multilayer MXene nanocomposites Nanoscale 11 20295–300
Mahmood M, Zulfiquar S, Warsi M F, Aalid M, Shakir I, Haider S, Agboola P O and Shahid M 2022 Nanostructured V$_2$O$_3$ and its nanohybrid with MXene as an efficient electrode material for electrochemical capacitor applications Carbohydr. Polym. 48 2345–54
Chen J, Chen H, Chen M, Zhou W, Tian Q and Wong C-P 2020 Nacre-inspired surface-engineered MXene nanocellulose composite film for high-performance supercapacitors and zinc-ion capacitors J. Chem. Eng. 428 131180
Yu L, Xiong Z, Zhang W, Wang D, Shi H, Wang C, Niu X, Wang C, Yao L and Yan X 2022 SnO$_2$/SnS$_2$ heterostructure@MXene framework as high performance anodes for hybrid lithium-ion capacitors Electrochim. Acta 409 139981
Xue J et al 2022 Self-assembled Ti$_3$C$_2$T$_x$-MXene/PTh composite electrodes for electrochemical capacitors J. Mater. Sci. Mater. Electron. 33 1–10
Vankayala R et al 2022 MXenes and their composites for medical and biomedical applications MXenes and Their Composites (Amsterdam: Elsevier) pp 499–524
Huang H et al 2022 Biomedical engineering of two-dimensional MXenes Adv. Drug. Deliv. Rev. 184 114178
Iravani S and Varma R S 2021 MXenes and MXene-based materials for tissue engineering and regenerative medicine: recent advances Adv. Mater. 2 2906–17
Lu B, Zhu Z, Ma B, Wang W, Zhu R and Zhang J 2021 2D MXene nanomaterials for versatile biomedical applications: current trends and future prospects Small 17 2100946
Huang J, Li Z, Mao Y and Li Z 2021 Progress and biomedical applications of MXenes Nano. Sci. 2 1480–508
Huifeng X et al 2021 Novel two-dimensional MXene for biomedical applications Prog. Chem. 33 752
Tang Y, Yang C, Xu X, Yang Y, Henzie J, Que W and Yamauchi Y 2022 MXene nanoarchitectonics: defect-engineered 2D MXenes towards enhanced electrochemical water splitting Adv. Energy Mater. 12 2103860
Sharma K et al 2022 Recent progress on MXenes and MOFs hybridic structure, synthetic strategies and catalytic water splitting Int. J. Hydrog. Energy accepted (https://doi.org/10.1016/j.ijhydene.2022.01.004)
Qiao J et al 2021 Research progress of MXene-based catalysts for electrochemical water-splitting and metal-air batteries Energy Storage Mater. 43 509–30
Chang H, Li X, Shi L, Zhu Y-R and Yi T-F 2021 Towards high-performance electrocatalysts and photocatalysts: design and construction of MXenes-based nanocomposites for water splitting Chem. Eng. J. 421 129944
Wang J, Wei X, Song W, Shi X, Wang X, Zhong W, Wang M, Ju J and Tang Y 2021 Plasmonic enhancement in water splitting performance for NiFe layered double hydroxide-NiO/1TiC MXene heterojunction ChemSusChem 14 1946–54
Kwon O et al 2022 A Comprehensive Review of MXene-based Water-treatment Membranes and Technologies: Recent Progress and Perspectives Desalination 522 115448
Ma X-Y, Fan T-T, Wang G, Li Z-H, Lin J-H and Long Y-Z 2022 High performance GO/MXene/PPS composite filtration membrane for dye wastewater treatment under harsh environmental conditions J. Compos. Commun. 19 100192
Wang Y et al 2022 Ti$_3$C$_2$T$_x$ MXene nanoflakes embedded with copper indium selenide nanoplates for desalination and water purification through high-efficiency solar-driven membrane evaporation ACS Appl. Mater. Interfaces 14 5876–86
Shahzad A et al 2017 Two-dimensional Ti$_3$C$_2$T$_x$ MXene nanosheets for efficient copper removal from water ACS Sustain. Chem. Eng. 5 11481–8
Shahzad A, Rasool K, Nawaz M, Miran W, Jang J, Mozhadila M, Mahmoud K A and Lee D S 2018 Heterostructural TiO$_2$/Ti$_3$C$_2$T$_x$ (MXene) for photocatalytic degradation of atipamezole petrolatum carbamazepine Chem. Eng. J. 349 748–55
Saeed M A et al 2022 2D MXene: a potential candidate for photovoltaic cells! A critical review Adv. Sci. 9 2104743
Iftan M et al 2021 Synthesis and characterization of nanomaterial-modified black TiO$_2$ nanoparticles and their performance evaluation for the photocatalysis of phenolic compounds from wastewater Materials 14 7422
Mathis T S, Maleksi K, Goad A, Sarycheva A, Anayee M, Foucher A C, Hantanaisirasakul K, Shuck C F, Stach E A and Gogotsi Y 2021 Modified MAX phase synthesis for environmentally stable and highly conductive Ti$_3$C$_2$T$_x$ MXene ACS Nano 15 6420–9
Seredych M et al 2019 High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis Chem. Mater. 31 3324–32
Hermawan A, Hasegawa T, Asakura Y and Yin S 2021 Enhanced visible-light-induced photocatalytic NO$_2$ degradation over (Ti, C)-BiOBr/Ti$_3$C$_2$T$_x$ MXene nanocomposites: role of Ti and C doping Sep. Purif. Technol. 270 118815
Im I J, Sohn E J, Kim S, Jung M, Son A, Zoh K-D and Yoon Y 2021 Review of MXene-based nanocomposites for photocatalysis Chemosphere 270 129478
Kuang P, Low J, Cheng B, Yu J and Fan J 2020 MXene-based photocatalysts J. Mater. Sci. Technol. 56 18–44
Zhong Q, Li Y and Zhang G 2021 Two-dimensional MXene-based and MXene-derived photocatalysts: recent developments and perspectives Chem. Eng. 409 128093
Soni V, Singh P, Phan Quang H H, Parwaz Khan A A, Baijai A, Van Le Q, Thakur V K, Thakur S, Nguyen V-H and Raiizada P 2022 Emerging architecture titanium carbide (Ti$_3$C$_2$T$_x$) based photocatalyst toward degradation of hazardous pollutants: recent progress and perspectives Chemosphere 293 133541
Li K, Lu X, Zhang Y, Liu K, Huang Y and Liu H 2020 Bi$_2$O$_3$/Ti$_3$C$_2$T$_x$ heterojunctions for enhanced phototactic removal of water-borne contaminants Environ. Res. 185 109409
Huang K, Li C, Li H, Ren G, Wang L, Wang W and Meng X 2020 Photocatalytic applications of two-dimensional Ti$_3$C$_2$ MXenes: a review ACS Appl. Nano Mater. 3 9581–603
Deysher G et al 2019 Synthesis of Mo$_2$VAlC$_3$ MAX phase and two-dimensional Mo$_2$V$_3$C$_4$ MXene with five atomic layers of transition metals ACS Nano 14 2904–17
Dai J, Yan C, Handoko A D, Seh Z W, Li H and Liu Z 2018 Ultrathin two-dimensional materials for photo- and photocatalytic hydrogen evolution Mater. Today 21 749–70
Lim K R G, Handoko A D, Nemani S K, Wyatt B, Jiang H-Y, Tang J, Anasori B and Seh Z W 2020 Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion ACS Nano 14 10834–64
[67] Prasad C et al 2020 Recent advances in MXenes supported semiconductors based photocatalysts: properties, synthesis and photocatalytic applications J. Ind. Eng. Chem. 85 1–33

[68] Zhang K et al 2021 Insights into different dimensional MXenes for photocatalysis Chem. Eng. J. 424 130340

[69] Li X et al 2021 Applications of MXene (Ti3C2Tx) in photocatalysis: a review Adv. Mater. 2 1570–94

[70] Naguib M, Kartoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y and Barsoum M W 2011 Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 Adv. Mater. 23 4248–53

[71] Nguyen T P, Tian Nguyen D M, Tran D L, Le H K, Vo D-V N, Lam S S, Varma R S, Shokouhimehr M, Nguyen C C and Le Q V 2020 MXenes applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction Mol. Catal. 486 110890

[72] Tahir M et al 2021 Titanium carbide (Ti3C2Tx) MXene as a promising co-catalyst for photocatalytic CO2 conversion to energy-efficient fuels: a review Energy Fuels 35 10374–404

[73] Anasori B, Lukatskaya M R and Gogotsi Y 2017 2D metal carbides and nitrides (MXenes) for energy storage Nat. Rev. Mater. 2 1–17

[74] Salim O, Mahmoud K A, Pant K K and Joshir K K 2019 Introduction to MXenes: synthesis and characteristics J. Mater. Today Chem. 14 100191

[75] Kumar J A et al 2021 Methods of synthesis, characteristics, and environmental applications of MXene: a comprehensive review Chemosphere 286 131607

[76] Xue Q et al 2017 Photoluminescence Ti3C2Tx MXene quantum dots for multicolor cellular imaging Adv. Mater. 29 1604847

[77] Er D, Li J, Naguib M, Gogotsi Y and Shenyov V B 2014 Ti3C2Tx MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries ACS Appl. Mater. Interfaces 6 11175–9

[78] Sarycheva A and Gogotsi Y 2020 Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene Chem. Mater. 32 3480–8

[79] Wang L, Zhang M, Yang B, Tan J, Ding X and Li W 2021 Recent advances in multidimensional (1D, 2D, and 3D) composite sensors derived from MXene: synthesis, structure, application, and perspective Small Methods 5 2100409

[80] Hope M A, Forse A C, Griffith K J, Lukatskaya M R, Ghidini M, Gogotsi Y and Grey C P 2016 NMR reveals the surface functionalisation of Ti3C2Tx MXene Phys. Chem. Chem. Phys. 18 5099–102

[81] Yu F, Sorrentino A and Lichtfouse E 2021 Environmental applications of two-dimensional transition metal carbides and nitrides for water purification: a review Environ. Chem. Lett. 19 1–28

[82] Xiao Z, Yang Z, Li Z, Li P and Wang R 2019 Synchronous gains of areal and volumetric capacities in lithium–sulfur batteries promised by flower-like porous Ti3C2T x matrix ACS Nano 13 3404–12

[83] Dixit F, Zimmermann K, Dutta R, Prakash N J, Barbeau B, Mohseni M and Kandasubramanian B 2021 Application of MXenes for water treatment and energy-efficient desalination: a review J. Hazard. Mater. 423 127870

[84] Sokol M, Nata V, Kota S and Barsoum M W 2019 On the chemical diversity of the MAX phases Trends Chem. 1 210–23

[85] Anosri B and Gogotsi Y 2019 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications (Cham: Springer)

[86] Anosri B and Gogotsi Y 2019 Introduction to 2D transition metal carbides and nitrides (MXenes) 2D Metal Carbides and Nitrides (MXenes) (Berlin: Springer) pp 3–12

[87] Meng W et al 2021 Advances and challenges in 2D MXenes: from structures to energy storage and conversions Nano Today 40 101273

[88] Naguib M, Barsoum M W and Gogotsi Y 2021 Ten years of progress in the synthesis and development of MXenes Adv. Mater. 33 2103593

[89] Qiu F et al 2021 Synthesis, characterization and microwave absorption of MXene/NiFe2O4 composites Chem. Int. 47 24713–20

[90] Gao X et al 2021 Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber Chem. Eng. 419 130019

[91] Shahzad A, Rasool K, Iqbal J, Jang J, Lim Y, Kim B, Oh J-M and Lee D S 2022 MX sorption of mercury: exceptional reduction for titanium carbide/carboxamide MXenes Environ. Res. 205 112532

[92] Lim G P et al 2021 Synthesis, characterization and biophysical evaluation of the 2D Ti3C2Tx MXene using 3D spheroid-type cultures Chem. Int. 47 22567–77

[93] Jolly S, Paranatham M P and Naguib M 2021 Synthesis of Ti3C2T x MXene from low-cost and environmentally friendly precursors Mater. Today Adv. 10 100131

[94] Zhou X et al 2021 A simple approach to synthesis of co-Cr3C2T x MXene for efficient hydrogen evolution reaction Ceram. Int. 20 100668

[95] Quyen V T, Grummitt I R, Birrell R, Stapinski L, Barrett E L, Boyle J, Teesson M and Newton N C 2021 Advanced synthesis of MXene-derived nanoflower-shaped TiO2@Ti3C2Tx heterojunction to enhance photocatalytic degradation of Rhodamine B Environ. Technol. Innov. 13 101286

[96] Guo Y et al 2020 Synthesis of two-dimensional carbide Mo2CxT x MXene by hydrothermal etching with fluorides and its thermal stability Chem. Int. 46 19590–6

[97] Naguib M, Mashatlar O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y and Barsoum M W 2012 Two-dimensional transition metal carbides ACS Nano 6 1322–31

[98] Wang J, Shen M, Liu Z and Wang W 2022 MXene materials for advanced thermal management and thermal energy utilization Nano Energy 97 107177

[99] Ibrahim Y, Meslam M, Eid K, Salah B, Abdullah A M, Osozeman K I, Elzahraky A, Sharaa M A and Sillanpää M 2022 A review of MXenes as emergent materials for dye removal from wastewater Sep. Puriﬁ. Technol. 282 1200083

[100] Feng X, Yu Z, Sun Y, Long R, Shan M, Li X, Liu Y and Liu J 2021 Review MXenes as a new type of nanomaterial for environmental applications in the photocatalytic degradation of water pollutants Chem. Int. 47 3721–43

[101] Károlyházy G, Beke D, Zalka D, Lenk S, Krafoiski O, Kamarás K and Gali Á 2020 Novel method for electroless etching of 6H–SiC Nanomaterials 10 538

[102] Zhang C, Ma Y, Zhang X, Abdolhosseinizadeh S, Sheng H, Lan W, Pakdel A, Heier J and Nüesch F 2020 Two-dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications Energy Environ. Mater. 3 29–55

[103] Greaves M et al 2021 Investigating the rheology of 2D titanium carbide (MXene) dispersions for colloidal processing: progress and challenges J. Mater. Res. 36 1–23

[104] Alhabeb M et al 2017 Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx), MXene Chem. Mater. 29 7633–44

[105] Mallakpour S, Behranvand H and Hussain C M 2021 MXene (MAX) nanosheets: structure, synthesis, and various applications Ceram. Int. 47 26585–97

[106] Li J et al 2021 Intercalation-induced reversible electrochemical behavior of two-dimensional Ti3C2Tx MXene in organic electrolytes ChemElectroChem 8 151–6

[107] Qin R et al 2021 Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors Mater. Today Phys. 21 100527

[108] Rasool K et al 2021 Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes) Mater. Today 30 80–102

[109] VahidMohammadi A, Rosen J and Gogotsi Y 2021 The world of two-dimensional carbides and nitrides (MXenes) Science 372 6547

[110] Tang R, Xiøng S, Gong D, Deng Y, Wang Y, Su L, Ding C, Yang L and Liao C 2020 Ti3C2Tx 2D MXene: recent progress
and perspectives in photocatalysis ACS Appl. Mater. Interfaces. 12 56663–80

[111] Zhao R, Di H, Wang C, Hui X, Zhao D, Wang R, Zhang L and Yin L 2020 Encapsulating ultralfine Sb nanoparticles in Na+ Pre-intercalated 2D porous Ti$_3$C$_2$Tx MXene nanostructures for enhanced potassium storage performance ACS Nano 14 13938–51

[112] Zhang W and Zhang X 2022 The effect of ultrasound on synthesis and energy storage mechanism of Ti$_2$C-Tx MXene Ultrason. Sonochem. 89 106122

[113] Li Z, Pepas L, Tasker F, Reidy J and Khalaf Y 2015 Synthesis and thermal stability of two-dimensional carbide MXene Ti$_3$C$_2$ Mater. Sci. Eng. B 191 33–40

[114] Halim J et al 2016 Synthesis and characterization of 2D molybdenum carbide (MXene) Adv. Funct. Mater. 26 3118–27

[115] Naguib M, Mochalin V N, Barsoum M W and Gogotsi Y 2014 25th anniversary article: mxenes: a new family of two-dimensional materials Adv. Mater. 26 992–1005

[116] Ghidini M, Lukatskaya M R, Zhao M-Q, Gogotsi Y and Barsoum M W 2014 Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance Nature 516 78–81

[117] Nan J et al 2021 Nanoengineering of 2D MXene-based materials for energy storage applications Small 17 1902085

[118] Wang B et al 2021 Boomong development and present advances of two dimensional MXenes for photodetectors Chem. Eng. J. 403 126336

[119] Salim O, Canning D and Kabudula C 2019 Introduction to MXenes: synthesis and characteristics Mater. Today Chem. 14 100191

[120] Benchakr M et al 2020 One MAX phase, different MXenes: a guideline to understand the crucial role of etching conditions on Ti$_3$C$_2$T$_x$ surface chemistry Appl. Surf. Sci. 530 147209

[121] Wu Y et al 2021 MXenes advanced materials in potassium ion batteries Chem. Eng. J. 404 126565

[122] Cheng Y-W et al 2018 Two-dimensional, ordered, double transition metal carbides (MXenes): a new family of promising catalysts for the hydrogen evolution reaction J. Phys. Chem. C 122 38113–22

[123] Peng C et al 2018 A hydrothermal etching route to synthesis of 2D MXene (Ti$_3$C$_2$N$_x$B$_y$C$_z$): enhanced exfoliation and improved adsorption performance Ceram. Int. 44 18886–93

[124] Chang H et al 2021 Towards high-performance electrocatalysts and photocatalyst: design and construction of MXenes-based nanocomposites for water splitting Chem. Eng. J. 421 129943

[125] Shuck C E et al 2021 Safe synthesis of MAX and MXene: guidelines to reduce risk during synthesis ACS Chem. Health Saf. 28 326–38

[126] Li T et al 2018 Fluorine-free synthesis of high-purity Ti$_3$C$_2$Tx (T= OH, O) via alkali treatment Angew. Chem., Int. Ed. Engl. 57 6115–9

[127] Liu H-J and Dong B 2021 Recent advances and prospects of MXene-based materials for electrocatalysis and energy storage Mater. Today Phys. 20 100469

[128] Sun W et al 2017 Electrochemical etching of Ti$_3$C$_2$T$_x$ (MXene) in low-concentration hydrochloric acid solution J. Mater. Chem. A 5 21663–8

[129] Wang Z 2021 A review on MXene: synthesis, properties and applications on alkali metal ion batteries IOP Conf. Ser.: Earth Environ. Sci. 714 042030

[130] Li M et al 2019 Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes J. Am. Chem. Soc. 141 4730–7

[131] Li Y et al 2020 A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte Nat. Mater. 19 894–9

[132] Dhamodharan D, Dhinakaran V and Byun H-S 2022 MXenes: an emerging 2D material Carbon 192 366–83

[133] Li Y et al 2021 Author correction: a general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte Nat. Mater. 20 571

[134] Wei Y et al 2021 Advances in the synthesis of 2D MXenes Adv. Mater. 33 2033148

[135] Shi H, Zhang P, Liu Z, Park S, Lohe M R, Wu Y, Shaygan Nia A, Yang S and Feng X 2021 Ambient-stable two-dimensional titanium carbide (MXene) Enabled by iodine etching Angew. Chem., Int. Ed. Engl. 60 8689–93

[136] Jawaid A, Hassan A, Neher G, Nepal D, Pachter R, Kennedy W J, Ramakrishnan S and Vaia R A 2021 Halogen etch of Ti$_3$C$_2$ MAX phase for MXene fabrication ACS Nano 15 2771–7

[137] Panda S et al 2022 MXene based emerging materials for supercapacitor applications: recent advances, challenges, and future perspectives Coord. Chem. Rev. 462 214518

[138] Hadler-Jacobsen J et al 2021 Stacking sequence, interlayer bonding, termination group stability and Li/Na/Mg diffusion in MXenes ACS Appl. Mater. Lett. 3 1369–76

[139] Hu T, Hu M, Li Z, Zhang H, Zhang C, Wang J and Wang X 2016 Interlayer coupling in two-dimensional titanium carbide MXenes Phys. Chem. Chem. Phys. 18 20256–60

[140] Wu Y et al 2021 Recent advances in transition metal carbides and nitrides (MXenes): characteristics, environmental remediation and challenges Chem. Eng. J. 418 129296

[141] Lai S, Leon J, Jang S K, Xu J, Choi Y J, Park J-H, Hwang E and Lee S 2015 Surface group modification and carrier transport properties of layered transition metal carbides (Ti$_3$C$_2$T$_x$; T= –OH, –F and –O) Nanoscale 7 19390–6

[142] Naguib M, Unocic R R, Armstrong B L and Nanda J 2015 Large-scale delamination of multi-layers transition metal carbides and carbonnitrides “MXenes” Dalton Trans. 44 9353–5

[143] Tao Q et al 2017 Two-dimensional Mo 1.33 C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering Nat. Commun. 8 1–7

[144] Xu J et al 2021 Recent advances in 2D MXenes: preparation, intercalation and applications in flexible devices J. Mater. Chem. A 9 14147–71

[145] Han F et al 2019 Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation ACS Appl. Mater. Interfaces 11 8443–52

[146] Wu W et al 2018 Two-dimensional nanosheets by rapid and efficient microwave exfoliation of layered materials Chem. Mater. 30 5932–40

[147] Natu V et al 2020 2D Ti$_3$C$_2$T$_x$ MXene synthesized by water-free etching of Ti$_3$C$_2$AC: in polar organic solvents Chem 6 616–30

[148] Xuan J et al 2016 Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance Angew. Chem. 128 14789–94

[149] Fujishima A and Honda K 1972 Electrochemical photolysis of water at a semiconductor electrode Nature 238 37–40

[150] Xiong J et al 2022 Principle and surface science of photocatalysis Interface Sci. Technol. 31 1–38

[151] Liu B, Wu H and Parkin P J 2020 New insights into the fundamental principle of semiconductor photocatalysis ACS Omega 5 14847–56

[152] Li K et al 2021 MXenes as noble-metal-alternative co-catalysts in photocatalysis Chem. J. Catal. 42 3–14

[153] Zhuang Y, Liu Y and Meng X 2019 Fabrication of TiO$_2$ nanofibers and MXenes J. Mater. Chem. A 141 4730–7

[154] Ye M, Wang X, Liu E, Ye J and Wang D 2018 Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst ChemSusChem 11 1606–11
Zhong Q, Li Y and Zhang G 2020 Two-dimensional MXene-based and MXene-derived photocatalyst: recent developments and perspectives Chem. Eng. J. 409 120899

Liu Z, Zhou Y, Yang L and Yang R 2021 Green preparation of in-situ oxidized TiO$_2$/Ti$_3$C$_2$ heterostructure for photocatalytic hydrogen production Adv. Powder Technol. 32 4857–61

Meili C, Jungbluth N and Annaheim J, 2018 Life cycle inventories of crude oil extraction ESU-services Ltd.commissioned by BAUF, BFE & Erdöl-Vereinigung Schaff-Hausen

Bai S et al 2021 Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction npj 2D Mater. Appl. 5 1–15

Wang M, Han K, Zhang S and Sun L 2015 Integration of organometallic complexes with semiconductors and other nanomaterials for photocatalytic H$_2$ production Coord. Chem. Rev. 287 1–14

Sherryana A and Tahir M 2021 Role of Ti$_3$C$_2$/MXene as prominent schottky barriers in driving hydrogen production through photoinduced water splitting: a comprehensive review ACS Appl. Energy Mater. 4 1198–2006

Ran J, Gao G, Li F-T, Ma T-Y, Du A and Qiao S-Z 2017 Ti$_3$C$_2$/MXene co-catalyst on Ge@metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production Nat. Commun. 8 1–10

Nerskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S and Stimming U 2005 Trends in the exchange current for hydrogen evolution J. Electrochem. Soc. 152 J3

Liu J, Zhang H-B, Sun R, Liu Y, Liu Z, Zhou A and Yu Z-Z 2017 Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding Adv. Mater. 29 1702367

Sreedhar A and Noh J-S 2021 Recent advances in partially and completely derived 2D Ti$_3$C$_2$/MXene based TiO$_2$ nanocomposites towards photocatalytic applications: a review Sol. Energy 222 48–73

Im J K, Sohn E J, Kim S, Jiang M, Son A, Zoh K-D and Yoon Y 2020 Review of MXene-based nanocomposites for photocatalysis Chemosphere 270 129478

Qin X et al 2022 Hydrothermal growth of ZnCdS/TiO$_2$ nanoparticles on the surface of the Ti$_3$C$_2$ MXene sheet to enhance photocatalytic performance under visible light J. Solid State Chem. 306 122750

Nguyen V-H et al 2020 Novel architecture titanium carbide (Ti$_5$C$_7$/Ti$_3$) MXene cocatalysts toward photocatalytic hydrogen production: a mini-review Nanomaterials 10 602

Xiao R, Zhao C, Zou Z, Chen Z, Tian L, Xu H, Tang H, Liu Q, Lin Z and Yang X 2020 In situ fabrication of 1D GdS nanorod/Ti$_3$C$_2$/MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution Appl. Catal. B 268 118382

Yang W, Ma G, Fu Y, Peng K, Yang H, Zhan X, Yang W, Wang L and Hou H 2022 Rationally designed Ti$_5$C$_7$/MXene@TiO$_2$/CuInS$_2$ Schottky/S–scheme integrated heterojunction for enhanced photocatalytic hydrogen evolution Chem. Eng. J. 429 133818

Xie G, Zhu Y, Yu C, Xie X and Zhang N 2023 Engineered charge transfer and reactive site over hierarchical Ti$_3$C$_2$/MXene@In$_2$S$_3$/NiS$_2$ toward enhanced photocatalytic H$_2$ evolution 2D Mater. 10 014004

Huang K, Li C, Zhang X, Wang L, Wang W and Meng X 2021 Self-assembly synthesis of phosphorus-doped tubular g-C$_3$N$_4$/Ti$_3$C$_2$ MXene Schottky junction for boosting photocatalytic hydrogen evolution Green Energy Environ. accepted (https://doi.org/10.1016/j.gee.2021.03.011)

Cao B, Wan S, Wang Y, Guo H, Ou M and Zhong Q 2022 Highly-efficient visible-light-driven photocatalytic H$_2$ evolution integrated with microplastic degradation over MXene/ZnxCd$_x$:xS photocatalyst J. Colloid Interface Sci. 605 311–9

Li X, Bai Y, Shi X, Huang J, Zhang K, Wang B and Ye L 2021 Mesoporous g-C$_3$N$_4$/MXene (Ti$_3$C$_2$T$_x$) heterojunction as a 2D electronic charge transfer for efficient photocatalytic CO$_2$ reduction Appl. Surf. Sci. 546 149111

Zeng G, Cao Y, Wu Y, Yuan H, Zhang B, Wang Y, Zeng H and Huang S 2021 Cds. 52SrO. 55Ti$_3$C$_2$/MXene as a Schottky catalyst for highly efficient photocatalytic hydrogen evolution in seawater Appl. Mater. Today 22 100296

Huang K, Li C and Meng X 2020 In-situ construction of ternary Ti$_3$C$_2$/MXene@TiO$_2$/ZnIn$_2$S$_4$ composites for highly efficient photocatalytic hydrogen evolution J. Colloid Interface Sci. 580 669–80

Yang J-X et al 2021 PT0 nanodots promoting Ti$_3$C$_2$/MXene in-situ converted Ti$_3$C$_2$/TiO$_2$ composites for photocatalytic hydrogen production J. Chem. Eng. 420 129695

Huang J et al 2022 In situ construction of 1D Cds/2D Nb$_2$CTx MXene Schottky heterojunction for enhanced photocatalytic hydrogen production activity Appl. Surf. Sci. 573 151491

Ou M et al 2021 Formation of noble-metal-free 2D/2D ZnIn$_2$S$_3$–Sm$_3$ (m = 1, 2, 3)/MXene Schottky heterojunction as an efficient photocatalyst for hydrogen evolution Chem. Eng. J. 424 130170

Li J, Li J, Wu C, Li Z, Cai L, Tang H and Wang S 2021 Crystaline carbon nitride anchored on MXene as an ordered Schottky heterojunction photocatalyst for enhanced visible-light hydrogen evolution Carbon 179 387–99

Wang H et al 2021 Ti$_3$C$_2$/MXene modified SnNb$_2$O$_6$ nanosheets Schottky photocatalysts with directed internal electric field for tetracycline hydrochloride removal and hydrogen evolution Sep. Purif. Technol. 265 118516

Zheng S et al 2021 Schottky-structured 0D/2D composites via electrostatic self-assembly for efficient photocatalytic hydrogen evolution Cenrrn. Int. 47 28304–11

Song T, Hou L, Long B, Ali A and Deng G-J 2021 Ultrathin MXene “bridge” to accelerate charge transfer in ultrathin metal-free 0D/2D black phosphorus/g-C$_3$N$_4$ heterojunction toward photocatalytic hydrogen production J. Colloid Interface Sci. 584 474–83

Kang J et al 2020 Design of three-dimensional hollow-sphere architecture of Ti$_3$C$_2$T$_x$/MXene with graphitic carbon nitride nanoshells for efficient photocatalytic hydrogen evolution ACS Appl. Energy Mater. 3 9226–33

Han X et al 2020 Ti$_3$C$_2$/MXene-derived carbon-doped TiO$_2$ coupled with g-C$_3$N$_4$ as the visible-light photocatalysts for photocatalytic H$_2$ generation Appl. Catal. B 265 118539

Wang K et al 2021 In situ construction of protonated g-C$_3$N$_4$/Ti$_3$C$_2$ MXene Schottky heterojunctions for efficient photocatalytic hydrogen production Chin. J. Catal. 42 107–14

Su T, Hood Z D, Naguib M, Bai L, Luo S, Rouleau C M, Ivanov I N, Ji H, Qin Z and Wu Z 2019 2D/2D heterojunction of Ti$_3$C$_2$/gC$_3$N$_4$ nanosheets for enhanced photocatalytic hydrogen evolution Nanoscale 11 8138–49

Wang K et al 2021 In situ grown monolayer N-doped graphene and ZnO on ZnFe$_2$O$_4$ hollow spheres for efficient photocatalytic tetracycline degradation Colloids Surf. A 618 126362

Bie C et al 2019 In situ grown monolayer N-doped graphene on Cds hollow spheres with seamless contact for photocatalytic CO$_2$ reduction Adv. Mater. 31 1902868

Song X et al 2020 Fabricating C and O co-doped carbon nitride with intramolecular donor-acceptor systems for efficient photoreduction of CO$_2$ to CO Appl. Catal. B 268 118736

Li J et al 2021 Van der Waals heterojunction for selective visible-light-driven photocatalytic CO$_2$ reduction Appl. Catal. B 284 119733

Ghorieishan S M et al 2021 Full-spectrum-responsive Bi$_2$S$_3$/CdS S–scheme heterostructure with intimated
ultrathin RGO toward photocatalytic Cr (VI) reduction and H₂O₂ production: experimental and DFT studies

Chem. Eng. J. 419 129530

[192] Hu J, Ding J and Zhong Q 2021 Ultrathin 2D Ti₃C₂ MXene Co-catalyst anchored on porous g- C₃N₄ for enhanced photocatalytic CO₂ reduction under visible-light irradiation J. Colloid Interface Sci. 582 647–57

[193] Sreedhar A, Reddy I N and Noh J S 2021 Photocatalytic and electrocatalytic reduction of CO₂ and N₂ by Ti₃C₂ MXene supported composites for a cleaner environment: a review J. Clean. Prod. 328 129647

[194] Shen J et al 2021 Emerging applications of MXene materials in CO₂ photocatalysis Flatachem 28 100252

[195] Fu J et al 2020 Product selectivity of photocatalytic CO₂ reduction reactions Mater. Today 32 222–43

[196] Li K, Peng B and Peng T 2016 Recent advances in heterogeneous photocatalytic CO₂ conversion to solar fuels ACS Catal. 6 7485–527

[197] White J L et al 2015 Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes Chem. Res. 115 12888–935

[198] Li J, Wang Z, Chen H, Zhang Q, Hu H, Liu L, Ye J and Wang D 2021 A surface-aluminized Ti₃C₂ MXene as an efficient cocatalyst for enhanced photocatalytic CO₂ reduction under ZnO Catal. Sci. Technol. 11 4953–61

[199] Tahir M and Tahir B 2021 In-situ growth of TiO₂ imbedded Ti₃C₂TA nanosheets to construct PCN/Ti₃C₂TA MXenes 2D/3D heterojunction for efficient solar driven photocatalytic CO₂ reduction towards CO and CH₄ production J. Colloid Interface Sci. 591 20–37

[200] Low J, Suzuki R, Krüger T, Frey E and Bausch A R 2018 TiO₂/MXene Ti₃C₂ composite with excellent photocatalytic CO₂ reduction activity J. Catal. 361 255–66

[201] Saeed A et al 2021 Enhancement of photocatalytic CO₂ reduction for novel Cd₀.2Zn₀.8TiC₂ (MXenes) nanocomposites J. CO2 Util. 47 101501

[202] Khan A A, Tahir M and Zakaria Z Y 2021 Synergistic effect of anatase/rutile TiO₂ with exfoliated Ti₃C₂TR MXene multilayers composite for enhanced CO₂ photoreduction via dry and bi-reforming of methane under UV-visible light J. Environ. Chem. Eng. 9 105244

[203] Chen Y-H et al 2021 Activating two-dimensional Ti₃C₂Tx/MXene with single-atom cobalt for efficient CO₂ photoreduction Cell Rep. Phys. Sci. 2 100371

[204] He F et al 2020 2D/2D/0D TiO₂/C₃N₄/Ti₃C₂ MXene composite S-scheme photocatalyst with enhanced CO₂ reduction activity Appl. Catal. B 272 119006

[205] Yang C et al 2020 2D/2D Ti₃C₂ MXene/g-C₃N₄ nanosheets heterojunction for high efficient CO₂ reduction photocatalytic dual effects of urea Appl. Catal. B 268 118738

[206] Tang Q, Sun Z, Deng S, Wang H and Wu Z 2020 Decorating g-C₃N₄ with alkalinized Ti₃C₂ MXene for promoted photocatalytic CO₂ reduction performance J. Colloid Interface Sci. 564 406–17

[207] Chen W et al 2020 Ultrathin Co-Coord MXenes nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO₂ reduction Chem. Eng. J. 391 123519

[208] Zhang J et al 2021 Cu₄O/Ti₃C₂MXene heterojunction photocatalysts for improved CO₂ photocatalytic reduction performance Appl. Surf. Sci. 542 148685

[209] Fang Y, Cao Y, Tan B and Chen Q 2021 Oxygen and titanium vacancies in a BiOBr/MXene-Ti₃C₂ composite for boosting photocatalytic N₂ fixation ACS Appl. Mater. Interfaces 13 42624–34

[210] Chang B, Guo Y, Wu D, Li L, Yang B and Wang J 2021 Plasmon-enabled N₂ photofixation on partially reduced Ti₃C₂ MXene Chem. Sci. 12 11213–23

[211] Hao C et al 2020 RuO₂-loaded TiO₂/MXene as a high performance photocatalyst for nitrogen fixation J. Phys. Chem. Solids 136 109141

[212] Chen X, Li Y, Wu Z, Xu X, Zhu W and Gao X 2021 Bi₂O₃Br₂ anchored on Ti₃C₂ MXene with ionic heterojunction in photocatalytic NH₃ production: insights from combined experimental and theoretical calculations J. Colloid Interface Sci. 602 553–62

[213] Jiang H et al 2020 2D MXene-derived Nb₂O₅/CNb₅C₃N₄ heterojunctions for efficient nitrogen photofixation Catal. Sci. Technol. 10 5964–72

[214] Gao W, Li X, Luo S, Luo Z, Zhang X, Huang R and Luo M 2021 In situ modification of cobalt on MXene/TiO₂ as complementary cocatalyst for efficient nitrogen fixation J. Colloid Interface Sci. 585 20–29

[215] Sun B et al 2021 The fabrication of 1D/2D CdS nanorods/Ti₃C₂ MXene composites for good photocatalytic activity of hydrogen generation and ammonia synthesis Chem. Eng. J. 406 121777

[216] Hou T et al 2020 Near-infrared light-driven photofixation of nitrogen over Ti₃C₂Tx/TiO₂ hybrid structures with superior activity and stability Appl. Catal. B 273 119072

[217] Liu Q, Ai L and Jiang J 2018 MXene-derived TiO₂@C₃N₄ heterojunctions for highly efficient nitrogen photofixation J. Mater. Chem. A 6 4102–10

[218] Qin X et al 2021 Hydrothermal growth of ZnCdS/TiO₂ nanoparticles on the surface of the Ti₃C₂ MXene sheet to enhance photocatalytic performance under visible light J. Solid State Chem. 122730

[219] Sou X, Zhao J, Li W, Qi W, Liu J and Zhang Z 2021 Photocatalytic degradation of ranitidine and reduction of nitrosamine dimethylamine formation potential over MXene–Ti₃C₂/ MoS₂ under visible light irradiation J. Hazard. Mater. 413 125424

[220] Fang Y, Cao Y and Chen Q 2019 Synthesis of an Mg/WO₃/TiC₂ Schottky composite by electrostatic traction and its photocatalytic activity Ceram. Int. 45 22299–307

[221] Jiang X et al 2020 Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications Phys. Rep. 848 1–58

[222] Khan R and Andreasen S J S 2020 MXenes-based bioanalogical sensors: design, characterization, and applications Sensors 20 5434

[223] Dong L M et al 2020 Two-dimensional metal carbides and nitrides (MXenes): preparation, property, and applications in cancer therapy Nanophotonics 9 2125–45

[224] Iqbal M Z and Siddique S 2021 Two-dimensional transition metal carbides and nitrides (MXenes): synthesis to applications Contemporary Nanomaterials in Material Engineering Applications (Berlin: Springer) pp 179–99

[225] Shahzad A, Jang J, Lim S-R and Lee D S 2020 Unique selectivity and rapid uptake of molybdenum-disulphide-functionalized MXene nanocomposite for mercury adsorption Environ. Res. 182 109005

[226] Shahzad A et al 2019 Ti₃C₂Tx MXene core–shell spheres for ultrahigh removal of mercuric ions Chem. Eng. J. 368 400–8

[227] Berkani M, Smaali A, Almomani F and Vasseghian Y 2021 Recent advances in MXene-based nanomaterials for desalination at water interfaces Environ. Res. 203 111845

[228] Feng X et al 2021 3D MXene/Ag₂S material as Schottky junction catalyst with stable and enhanced photocatalytic activity and anticorrosion resistance Sep. Purif. Technol. 266 118606

[229] Su T et al 2019 Monolayer Ti₃C₂Tx MXene core-shell structures as effective co-catalyst for enhanced photocatalytic hydrogen production over TiO₂ ACS Appl. Energy Mater. 2 4640–51

[230] Iqbal A et al 2021 Improving oxidation stability of 2D MXenes synthesis, storage media, and conditions Nano Converg. 8 1–22

[231] Thirumal V, Yuvakkumar R, Kumar P S, Kercethan R P, Ravi G, Velauthapillai D and Saravananakumar B 2021 Efficient photocatalytic degradation of hazardous pollutants by homemade kitchen blender novel technique via 2D-material of few-layer MXene nanosheets Chemosphere 281 130984
[232] Miao Z, Wang G, Zhang X and Dong X 2020 Oxygen vacancies modified TiO$_2$/Ti$_3$C$_2$ derived from MXenes for enhanced photocatalytic degradation of organic pollutants: the crucial role of oxygen vacancy to schottky junction Appl. Surf. Sci. 528 146929

[233] Long R, Yu Z, Tan Q, Feng X, Zhu X, Li X and Wang P 2021 Ti$_3$C$_2$ MXene/NH$_3$-MIL-88B (Fe): research on the adsorption kinetics and photocatalytic performance of an efficient integrated photocatalytic adsorbent Appl. Surf. Sci. 570 151244

[234] Guo S et al 2021 Construction of hierarchical Ti$_3$C$_2$Tx MXene/ZnIn$_2$S$_4$ heterostructures for efficiently photocatalytic reduction of Cr (VI) under visible light Appl. Surf. Sci. 575 151753

[235] Khadidja M F et al 2021 Hierarchical ZnO/MXene composites and their photocatalytic performances Colloids Surf. A 628 127230

[236] Quyen V T, Ha L T T, Thanh D M, Le Q V, Viet N M, Nham N T and Thang P Q 2021 Advanced synthesis of MXene-derived nanoflower-shaped TiO$_2$@Ti$_3$C$_2$ heterojunction to enhance photocatalytic degradation of Rhodamine B Environ. Technol. Innov. 21 101286

[237] Huang K et al 2021 Layered Ti$_3$C$_2$ MXene and silver co-modified g-C$_3$N$_4$ with enhanced visible light-driven photocatalytic activity Chem. Eng. J. 425 131495

[238] Alsafari I A et al 2021 Synthesis, characterization, photocatalytic and antibacterial properties of copper Ferrite/MXene (CuFe$_2$O$_4$/Ti$_3$C$_2$) nanohybrids Ceram. Int. 47 28874–83

[239] Song H, Wang Y, Ling Z, Zhu D, Li Z, Shen Y and Li C 2020 Enhanced photocatalytic degradation of perfluorooctanoic acid by Ti$_3$C$_2$ MXene-derived heterojunction photocatalyst: application of intercalation strategy in DESs Sci. Total Environ. 746 141009