Effect of AlN addition on spatial uniform distribution of Er$^{3+}$-doped CaF$_2$ nanocrystals in oxyfluoride glass-ceramics

Kenji SHINOZAKI, Tsuyoshi HONMA and Takayuki KOMATSU1

Department of Materials Science and Technology, Nagaoka University of Technology, 1605-1 Kamitomioka-cho, Nagaoka, Niigata 940-2188, Japan

The morphology and spatial distribution state of CaF$_2$ nanocrystals in oxyfluoride glass-ceramics based on the Er$_3$F$_7$–CaF$_2$–Al$_2$O$_3$–SiO$_2$ system with different Er$_3$F$_7$ contents of 1–3 mol % and the addition of AlN were examined from transmission electron microscope (TEM) observations. The content of 3 mol % Er$_3$F$_7$ induced the growth of CaF$_2$ nanocrystals with star-like morphologies and their assemblies with the size of ~70 nm. The addition of a small amount (2 mol %) of AlN has a remarkable effect on the spatial uniform distribution (i.e., disappearance of assembly) of CaF$_2$ nanocrystals. The present study proposes a new method for the design of composition in rare-earth doped oxyfluoride glass-ceramics.

©2013 The Ceramic Society of Japan. All rights reserved.

Key-words : Oxyfluoride glass, Glass-ceramics, CaF$_2$ nanocrystals, Morphology, TEM observation

[Received December 22, 2012; Accepted January 28, 2013]

1. Introduction

Optically transparent oxyfluoride glass-ceramics containing rare-earth (RE$^{3+}$)-doped fluoride nanocrystals such as Er$^{3+}$-doped CaF$_2$ have received much attention for use of optical devices such as laser and phosphor.1,11 In such materials, RE$^{3+}$ ions are incorporated into fluoride nanocrystals having low phonon energies and consequently excellent photoluminescence (PL) properties of RE$^{3+}$ ions are obtained. Furthermore, host oxide glassy matrices such as Al$_2$O$_3$–SiO$_2$ having strong glass network structures guarantee mechanical and chemical stability in oxyfluoride glass-ceramics.4,5 Usually, oxyfluoride glass-ceramics are fabricated through well-controlled heat treatments in an electric furnace and desired fluoride nanocrystals are formed in the interior of glasses.

Besides heat treatment condition, the design of glass system and chemical composition is also important for controlling the size and morphology of fluoride nanocrystals in oxyfluoride glass-ceramics. The most well-known and familiar system in oxyfluoride glass-ceramics is CaF$_2$–Al$_2$O$_3$–SiO$_2$ system with CaF$_2$ and Al$_2$O$_3$ as major components. The content of CaF$_2$ is around 15–30 mol %. The doping amount of RE$^{3+}$ ions in oxyfluoride glass-ceramics showing strong PL intensities is usually limited to around 1–2 mol %, because more large RE$^{3+}$ contents induce the so-called concentration quenching. From the point of view of practical device applications, however, a large amount doping of RE$^{3+}$ into fluoride nanocrystals would be desirable, especially for luminescence of Er$^{3+}$ in the infrared region or upconversion laser.6,7 Furthermore, a deep understanding of the morphology and spatial distribution state of fluoride nanocrystals in oxyfluoride glass-ceramics with a large amount of RE$^{3+}$ ions would be also important.8,9 Although it has been reported that the formation behavior of fluoride nanocrystals in oxyfluoride glasses is largely affected by the addition of RE$^{3+}$ ions,8,10 the morphology of fluoride nanocrystals has not been well understood.

1 Corresponding author: T. Komatsu; E-mail: komatsu@must.nagaokaut.ac.jp

The purpose of this study is to clarify the morphology and spatial distribution state of CaF$_2$ nanocrystals in oxyfluoride glass-ceramics based on the Er$_3$F$_7$–CaF$_2$–Al$_2$O$_3$–SiO$_2$ system with different Er$_3$F$_7$ contents of 1–3 mol % from transmission electron microscope (TEM) observations. We found that the addition of a small amount (2 mol %) of AlN has a remarkable effect on the spatial uniform distribution (i.e., disappearance of assembly) of CaF$_2$ nanocrystals. The present study proposes a new method for the design of composition in rare-earth doped oxyfluoride glass-ceramics.

2. Experimental procedures

Glasses with the nominal compositions of xErF$_3$–(30–x)–CaF$_2$–20Al$_2$O$_3$–50SiO$_2$ (x = 0, 1, 3) and 2AlN–3ErF$_3$–27CaF$_2$–19Al$_2$O$_3$–50SiO$_2$ (mol %) were prepared using a conventional melt-quenching method. Commercial powders of reagent grade Er$_3$F$_7$, CaF$_2$, AlN, Al$_2$O$_3$, and SiO$_2$ were used. The batch of 20 g was mixed and melted in a platinum crucible or an aluminum crucible with a cover at 1350°C for 1 h in an electric furnace. The melts were poured onto an iron plate and pressed by another iron plate. The glass transition (T_g) and crystallization peak (T_p) temperatures were determined using differential thermal analyses (DTA) at a heating rate of 10 K/min in air. The glasses were annealed at the temperature of T_g–30°C for 3 h to release internal stresses. The glasses were heat-treated at 700°C for 3 h in an electric furnace in air. The crystalline phase present in the heat-treated samples was examined by X-ray diffraction (XRD) analyses at room temperature using Cu Kα radiation. TEM and scanning transmission electron microscope (STEM) observations in the high angle annular dark-field (HAADF) imaging mode (STEM-HAADF) with an energy dispersive spectrometry (EDS) were conducted for pulverized particles on molybdenum mesh using JEOL JEM-2100F microscope (JEOL, Tokyo, Japan).

3. Results and discussion

All of the samples obtained by a melt-quenching were optically transparent and their amorphous state was confirmed from XRD analyses. The glass with the addition of 2 mol % AlN and...
3 mol% of ErF₃ keeps a good optical transparency, but some bubbles are present in the inside of the glass. The formation of bubbles suggests that the following reaction is taking place during melting at 1350°C in air:

\[
4\text{AlN} + 3\text{O}_2 \text{(in air)} \rightarrow 2\text{Al}_2\text{O}_3 + 2\text{N}_2
\]

All the melt-quenched samples showed similar DTA patterns with endothermic peaks due to the glass transition and exothermic peaks due to the crystallization. The glass with no ErF₃ has the values of \(T_g = 576°C\) and \(T_p = 647°C\). Other glasses showed the following values: \(T_g = 603°C\) and \(T_p = 701°C\) for the glass with 1 mol% ErF₃, \(T_g = 601°C\) and \(T_p = 647°C\) for 2 mol% ErF₃, and \(T_g = 601°C\) and \(T_p = 647°C\) for 3 mol% AlN. It is found that the crystallization temperature increases slightly with the addition of ErF₃.

The XRD patterns for the samples obtained by heat-treatments at 700°C for 3 h are shown in Fig. 1. All peaks are assigned to the fluorite-type CaF₂ crystalline phase (ICDD: 035-0816).

The TEM images for the crystallized (700°C, 3 h) samples containing CaF₂ crystals are shown in Fig. 2. The samples with no ErF₃ and 1 mol% ErF₃ show the formation of sphere particles with the size of \(\leq 30\) nm for no ErF₃ and \(\leq 40\) nm for 3 mol% ErF₃ and the particles are distributed homogeneously. In the sample with 3 mol% ErF₃, however, star-like particles with a size of \(\leq 50\) nm or assembly of particles are formed. The HAADF image for the crystallized (700°C, 3 h) sample in 3ErF₃-27CaF₂-20Al₂O₃-50SiO₂ glass is shown in Fig. 3. Many particles with a size of \(\leq 50\) nm and with a square morphology are observed, and some of them are assembled. The HAADF image shown in Fig. 3 means that the white color particles contain heavy elements such as Ca and Er.

The EDS spectra for a white color particle and a grey color region are shown in Fig. 4. It is seen that elements of Ca, Er, and F are enriched in the white color particle compared with the grey color
region enriching Al, Si, and O. These results indicate that the white color particle is a CaF₂ crystal containing Er³⁺ ions.

The present study indicates the following three features in the crystallization of CaF₂ nanocrystals in a ErF₃ added alumino-silicate-based oxyfluoride glass: 1) the addition of an amount (∼3 mol %) of ErF₃ induces the increase in the size of CaF₂ crystals and also their assembly, 2) Er elements are incorporated into CaF₂ nanocrystals, 3) the addition of an amount (2 mol %) of AlN depresses the increase in the size of CaF₂ crystals and also their assembly.

Barros et al.⁶ studied the effect of ErF₃ addition on the crystallization behavior of BaF₂ nanocrystals in alumino-silicate-based oxyfluoride glasses and reported that small amount of ErF₃ addition promotes droplet-type phase separations. It has also been suggested that Er³⁺ ions act as nucleating agents in the formation of fluoride nanocrystals in oxyfluoride glasses.⁷⁻⁹ Hu et al.⁹ studied the effect of ErF₃ content on the crystallization behavior of 41.2SiO₂–29.4Al₂O₃–17.6Na₂O–11.8LaF₃–xErF₃ glasses (x = 0–6) (mol %) and reported that the size of LaF₃ nanocrystals increases with increasing ErF₃ content. These studies⁸⁻¹⁰ suggest that the increase in Er³⁺ content in oxyfluoride glasses induces the increase in the size and the assembly of fluoride nanocrystals, and thus the maximum concentration of ErF₃ in oxyfluoride glasses is generally limited to ∼2 mol % in order to keep a good optical transparency and also to avoid the concentration quenching.

The results obtained in this study, i.e., the addition of an amount (2 mol %) of AlN depresses the increase in the size of CaF₂ crystals and also their assembly. This is a new finding in rare-earth doped oxyfluoride glass-ceramics. At this moment, the amount of nitrogen remained in the oxyfluoride glass prepared in this study is unclear. If all AlN added are converted to Al₂O₃ and N₂ gas followed by the reaction (1), the composition of 2AlN–3ErF₃–27CaF₂–19Al₂O₃–50SiO₂ (mol %) corresponds to 3ErF₃–27CaF₂–20Al₂O₃–50SiO₂. That is, the content of Al₂O₃ in both glasses, i.e., the ratio of Al₂O₃/SiO₂, is the same. It is, however, noted that the glass with 3 mol % ErF₃ has the values of Tᵢₓ = 600°C and Tᵢₒ = 717°C and the glass with 2 mol % AlN shows the values of Tᵢₓ = 601°C and Tᵢₒ = 647°C. The results, therefore, suggest that the addition of AlN as a source of Al₂O₃ has a significant effect on the phase separation (e.g., more small size), crystal nucleation (e.g., promotion), or crystals growth (e.g., suppression).

It is recognized that the rigid network structure constructed by Al₂O₃ and SiO₂ has a key role for the formation of fluoride nanocrystals in alumino-silicate-based oxyfluoride glasses. Recently, Raghuvanshi et al.¹¹ studied that the crystallization of the oxyfluoride glass-ceramics having narrow crystallite size distribution with the composition of 69.6SiO₂–7.5Al₂O₃–15.0K₂O–1.9Na₂O–6BaF₂. They proposed that the BaF₂ nanocrystals having narrow size distribution are formed due to the SiO₂-enriched high viscosity barrier formed around the BaF₂ nanocrystals and it prevents crystal growth and Ostwald ripening. It indicates that the viscosity around the nanocrystals affects largely for the crystal size. It is required to clarify the coordination state of Al in oxyfluoride glasses prepared by using AlN.

4. Conclusion

The morphology and spatial distribution state of CaF₂ nanocrystals in oxyfluoride glass-ceramics in the system of xErF₃–(30 – x)CaF₂–20Al₂O₃–50SiO₂ (x = 0–3) and 2AlN–3ErF₃–27CaF₂–19Al₂O₃–50SiO₂ (mol %) with different ErF₃ contents of 1–3 mol % and the addition of AlN were examined from TEM and STEM-HAADF observations. The content of 3 mol % ErF₃ induced the growth of CaF₂ nanocrystals with star-like morphologies and their assemblies with the size of ∼70 nm. The addition of a small amount (2 mol %) of AlN has a remarkable effect on the spatial uniform distribution (i.e., disappearance of assembly) of CaF₂ nanocrystals. The present study proposes a new method for the design of rare-earth doped oxyfluoride glass-ceramics.

Acknowledgements

This work was supported from the Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture and Technology, Japan (No. 23246114) and by Program for High Reliable Materials Design and Manufacturing in Nagaoka University of Technology.

References

1) Y. Wang and J. Ohwaki, Appl. Phys. Lett., 63, 3268–3270 (1993).
2) D. Chen, Y. Wang, Y. Yu, E. Ma, F. Bao, Z. Hu and Y. Cheng, Mater. Chem. Phys., 95, 264–269 (2006).
3) R. Ye, Z. Cui, Y. Hua, D. Deng, S. Zhao, C. Li and S. Xu, J. Non-Cryst. Solids, 357, 2282–2285 (2011).
4) K. Shinozaki, T. Homma, K. Oh-ishi and T. Komatsu, J. Phys. Chem. Solids, 73, 683–687 (2012).
5) K. Shinozaki, T. Homna, K. Oh-ishi and T. Komatsu, Opt. Mater., 33, 1350–1356 (2011).
6) L. Laversenne, G. Goutaudier, Y. Guyot, M. Th. Cohen-Addad and G. Boulon, J. Alloys Compd., 341, 214–219 (2002).
7) S. A. Pollack and D. B. Chang, J. Appl. Phys., 64, 2885–2893 (1988).
8) J. R. Barros, C. Bocker and C. Rüssel, Solid State Sci., 12, 2086–2090 (2010).
9) G. Dantelle, M. Mortier, D. Vivien and G. Patriarche, J. Mater. Res., 20, 472–481 (2005).
10) Z. Hu, Y. Wang, F. Bao and W. Luo, J. Non-Cryst. Solids, 351, 722–728 (2005).
11) V. S. Raghuvanshi, A. Hoell, C. Bocker and C. Rüssel, CrystEngComm, 14, 5215–5223 (2012).