Theory of tunneling conductance of anomalous Rashba metal / superconductor junctions

Toshiyuki Fukumoto, Katsuhisa Taguchi, Shingo Kobayashi, and Yukio Tanaka
Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan

We theoretically study the charge conductance in anomalous Rashba metal (ARM)/superconductor junctions for various types of the pairing symmetries in the superconductor. The exotic state dubbed ARM, where one of the spin resolved Fermi surface is absent, is realized when the chemical potential is tuned both in the presence of Rashba spin-orbit interaction (RSOI) and an exchange field. Although a fully polarized ferromagnet metal (FPFM) is also a system where the electron’s spin degrees of freedom is reduced to be half, the electrons in an ARM have distinct features from those in FPFM. For the ARM/spin-singlet superconductor junctions, the obtained tunneling conductance within the bulk energy gap is enhanced with the increase in the magnitude of the RSOI. In particular, in ARM/\(d_\sigma\)-wave superconductor junctions, the zero bias conductance peak is enhanced owing to the presence of the RSOI. For ARM/\(p_\sigma\)-wave superconductor junctions, the condition of the existence of the zero bias conductance peak is significantly sensitive to the direction of the \(d\)-vector of the \(p_\sigma\)-wave superconductor. Furthermore, the obtained conductance in ARM/chiral \(p\)-wave superconductor junctions shows different behaviors as compared to those in ARM/helical \(p\)-wave superconductor junctions. This feature gives a guide to determine the spin structure of the Cooper pair in spin-triplet superconductor \(\text{Sr}_2\text{RuO}_4\).

I. INTRODUCTION

Determination of the pairing symmetry of the Cooper pair has been an important issue in the field of superconductivity. In this regard, tunneling spectroscopy is known to be useful. In the unconventional superconductor junctions, a zero-bias conductance peak (ZBCP) due to the surface Andreev bound state (SABS) is observed\(^{1–4}\), where the pair potential changes its sign on the Fermi surface\(^{4,5}\). Actually, the presence of a sharp ZBCP in the tunneling conductance in N/S junctions supports \(d\)-wave symmetry in cuprate\(^{5}\). In addition, a broad ZBCP observed in \(\text{Sr}_2\text{RuO}_4\) junctions\(^{6}\) is consistent with the SABS with linear dispersion such like chiral \(p\)-wave pairing\(^{7–10}\). Moreover, the tunneling spectroscopy in ferromagnet/superconductor (FM/S) junctions has also been studied up to now. For a spin-singlet superconductor, the magnitude of the tunneling conductance with the inner gap regime is suppressed\(^{11}\). In addition, in the case of a fully polarized ferromagnet metal (FPFM), the inner gap conductance is completely suppressed\(^{12–16}\). On the other hand, for a spin-triplet \(p\)-wave case\(^{16–18}\), the resulting conductance depends on the direction of the \(d\)-vector, which is perpendicular to the direction of the spin of spin-triplet Cooper pair.

Recently, the role of the spin-orbit interactions on the tunneling spectroscopy in a superconductor has attracted much attention, potentially opening up a new direction for superconducting spintronics. Rashba spin-orbit interaction (RSOI) have a property to split the Fermi surface depending on the spin degrees of freedom, where the relative direction of the spin and momentum are locked owing to the RSOI in each Fermi surface\(^{19–21}\). This unique property in a metal or doped semiconductor has attracted much attention in superconducting junctions as well as in the field of spintronics so far, since the direction of spin can be manipulated by the control of the RSOI\(^{22–26}\). For example, the RSOI dependent charge transport has been studied in a two-dimensional electron gas (2DEG) with RSOI/\(s\)-wave superconductor junctions\(^{27–29}\).

In the 2DEG, introducing an exchange field or applying an external magnetic field, a gap opens at the crossing point of two split bands by the RSOI\(^{30}\). If we set the chemical potential in between the induced energy gap by manipulating the exchange field, the inner Fermi surface disappears. Thus, we can imagine novel quantum phenomena in the present system since only one of the Kramers doublet exists. In the following, we call this state an anomalous Rashba metal (ARM). The
The aim of this paper is to study the tunneling spectroscopy in ARM/S junctions. A unique feature of the tunneling conductance is expected in ARM/S junctions owing to the reduction in spin degrees of freedom and the unique spin configuration of the ARM. Furthermore, it would be interesting to compare the ARM with the FPFM, both of which host a half of spin degrees of freedom; however, as shown in Fig. 1 (A) and (B), the spin textures in the band basis behave differently from each other. This difference gives a distinctive signature to each superconductor junction.

Furthermore, it is known that the surface state of topological insulators (TIs) also have a half of spin degrees of freedom and a unique spin texture, which is the so-called helical metal. However, whereas TIs preserve time-reversal symmetry, ARMs break it. Thus, ARMs are fundamentally different from TIs. For superconductor junctions via a helical metal, there have been several studies on the surface of TIs and the unique feature of the charge transport in the systems has been reported. In a similar manner, for ARM/chiral p-wave superconductor junctions, the magnitude of the RSOI increases; this behavior is clearly different from that of FPFM/chiral p-wave superconductor. In section III C, we explain our model and give a formulation of the ZBCP in FPFM/chiral p-wave superconductor junctions. In section IV, we show the tunneling conductance for ARM/chiral p-wave superconductor, ARM/chiral d-wave superconductor, and ARM/helical p-wave superconductor junctions. In section V, we conclude our results.

II. FORMULATION FOR THE TUNNELING CONDUCTANCE

Let us consider a two-dimensional ballistic ARM/insulator/superconductor junction in the ballistic limit. We assume that the ARM/S interface is located at \( x = 0 \) (along the y-axis). The interface has an infinitely narrow insulating barrier described by the delta function. In this section, a formulation of the tunneling conductance in the two-dimensional ARM/S junctions is shown.

We start from the BdG Hamiltonian including both the exchange field and the RSOI as shown below,

\[
\hat{H} = \left[ \begin{array}{cc} \hat{H}(k) & \hat{\Delta}(k)\theta(x) \\ \hat{\Delta}(k)^\dagger \theta(x) & -\hat{H}(-k)^* \end{array} \right],
\]

where

\[
\hat{H}(k) = \left[ \begin{array}{cc} \xi_k + H\theta(-x) + V_0\delta(x) & i\lambda k_-\theta(-x) \\ -i\lambda k_+\theta(-x) & \xi_k - H\theta(-x) + V_0\delta(x) \end{array} \right],
\]

\[
\hat{\Delta}(k) = i\tilde{\sigma}_y (d_0(k)\sigma_0 + d(k)\tilde{\sigma}),
\]

with \( k_\pm = k_x \pm ik_y, \xi_k = \frac{k^2}{2m} - \mu_N\theta(-x) - \mu_S\theta(x) \), and \( h = 1 \). \( \hat{\Delta}(k), \mu_N (\mu_S), \lambda (> 0), H (> 0) \), and \( \theta(x) \) are the pair potential, the chemical potential in the metal (superconductor), the amplitude of RSOI, the exchange field, and the step function, respectively. In Eq. 3, \( d_0(k) \) denotes the pair potential in the spin-singlet superconductor, and \( d(k) = \left( d_x(k), d_y(k), d_z(k) \right) \) is the d-vector of spin-triplet superconductor. When the spin-singlet (spin-triplet) superconductor is considered in \( x > 0 \), we choose \( d = 0 \). Here, we assume that the exchange field is parallel to the z-axis. Besides, the \( z \)-component of the RSOI \( \lambda(\tilde{\sigma} \times k) \cdot z \) is considered, where \( \sigma_i (i = 0, x, y, z) \)

\( \begin{array}{c}
\text{FIG. 2: (Color online) The energy spectrum of the ARM.}
\text{The eigenvalues are given by } E_\pm = \xi_k \pm \sqrt{\lambda^2 + (\lambda k)^2}.
\end{array} \)
Here, $k$ is a purely imaginary number and represents an evanescent wave because of the absence of the inner Fermi surface. To specify this, we define a real number $\kappa$ as follows:

$$
\kappa = \sqrt{2m \left( \mu_N + m \lambda^2 + (-) \sqrt{(m \lambda^2)^2 + 2m \lambda^2 \mu_N + \mu_N} \right)}.
$$

(4)

Here, $k_2$ is a purely imaginary number and represents an evanescent wave because of the absence of the inner Fermi surface. To specify this, we define a real number $\kappa_2$ ($\kappa_2 = k_2$),

$$
\kappa_2 = \sqrt{2m \left( \sqrt{(m \lambda^2)^2 + 2m \lambda^2 \mu_N + \mu_N} - \mu_N - m \lambda^2 \right)}. 
$$

(5)

From Eq. 5, the $x$-component of $\kappa_2$ is given by

$$
\kappa_{2x} = \sqrt{\kappa_2^2 + k_y^2}. 
$$

(6)

In the superconductor ($x > 0$), the Fermi momentum $k_S$ can be denoted by $k_S \approx \sqrt{2m\mu_S}$ in the quasiclassical approximation. In addition, the $y$-component of all momenta satisfies

$$
k_y = k_1 \sin \theta_N = k_S \sin \theta_S,
$$

(7)

because a momentum parallel to the interface is conserved when we assume a flat interface.

First, we introduce a wave function in the ARM. As shown in Fig. 3, the wave function $\psi(x, y)$ in the ARM is represented by using eigenfunctions of the Hamiltonian.

$$
\psi(x > 0, y) = e^{ik_y y} \left( \begin{array}{c} e^{ik_1 \cos \theta_N x} \\ 1 \\ 0 \end{array} \right)
$$

$$
+ r_1 e^{-ik_1 \cos \theta_N x} \left( \begin{array}{c} s^* \\ 1 \\ 0 \end{array} \right) + a_1 e^{ik_1 \cos \theta_N x} \left( \begin{array}{c} 0 \\ 0 \\ -s^* \end{array} \right),
$$

(8)

$$
s = \frac{i\lambda k_1 e^{-i\theta_N}}{\xi_{k_1} + H},
$$

(9)

$$
t_e = \frac{\lambda(k_{2x} + k_y)}{\xi_{k_2} + H},
$$

(10)

$$
t_h = \frac{\lambda(-k_{2x} + k_y)}{\xi_{k_2} + H},
$$

(11)

where $r_1$ and $r_2$ ($a_1$ and $a_2$) are normal (Andreev) reflection coefficients and $\theta_N$ is an injection angle of $k_1$ measured from the normal to the interface (see Fig. 3). In addition, we assume $\mu_S \pm \Delta_0 \approx \mu_S$ in the quasiclassical approximation. An injected electron can not transmit into the superconductor for $\theta_N > \arcsin(k_S/k_0) (\equiv \theta_C)$. Next, we calculate a wave function in the superconductors. With the magnitude of the pair potential $\Delta_0$, the pair potential matrices for spin-singlet and spin-triplet superconductors are given by

$$
\hat{\Delta}(k) = \left\{ \begin{array}{ccc}
0 & d_0(k) \\
-d_0(k) & 0 \\
-d_e(k) + id_y(k) & d_z(k) \\
d_z(k) & d_e(k) + id_y(k)
\end{array} \right\}
$$

(12)

(spin-singlet pair)

$$
\hat{\Delta}(k) = \left\{ \begin{array}{ccc}
0 & d_0(k) \\
-d_0(k) & 0 \\
-d_e(k) + id_y(k) & d_z(k) \\
d_z(k) & d_e(k) + id_y(k)
\end{array} \right\}
$$

(12)

(spin-triplet pair)
In Eq. (12), \( d_0(k) \) is defined as \( d_0(k) = \Delta_0 f_{\theta_S} \), where \( f_{\theta_S} \) denotes the momentum dependance of the pair potential on the Fermi surface in spin-singlet superconductor. The direction of the \( \mathbf{d} \)-vector is denoted by the polar angle \( \theta_d \) and the azimuthal angle \( \phi_d \) in Fig. 4. The \( \mathbf{d} \)-vector for the \( p_x \)-wave, \( p_y \)-wave, or chiral \( p \)-wave superconductor is given by

\[
\mathbf{d} = (d_x, d_y, d_z) = \Delta_0 g_{\theta_S} (\sin \theta_d \cos \phi_d, \sin \theta_d \sin \phi_d, \cos \theta_d).
\]  

(13)

In addition, we assume that the \( \mathbf{d} \)-vector for the helical \( p \)-wave superconductor is given by

\[
\mathbf{d} = \Delta_0 (w_1 \theta_S, w_2 \theta_S, 0).
\]  

(14)

Similar to \( f_{\theta_S}, g_{\theta_S} \) and \( w_i \theta_S \) \( (i = 1, 2) \) represent the momentum dependance of the pair potential on the Fermi surface in the spin-triplet superconductors. The explicit form of \( f_{\theta_S}, g_{\theta_S}, w_i \theta_S \) \( (i = 1, 2) \) are given in sections [III] and [IV]. The wave functions in the spin-singlet and spin-triplet superconductors are given as follows:

(i) spin-singlet superconductor

\[
\psi(x, y) = e^{ik_y y} \left( s_1 e^{ik_F S \cos \theta_S x} \begin{bmatrix} 1 & \Gamma_+ \\ 0 & 0 \end{bmatrix} + s_2 e^{ik_F S \cos \theta_S x} \begin{bmatrix} 0 & 1 \\ \Gamma_+ & 0 \end{bmatrix} + s_3 e^{-ik_F S \cos \theta_S x} \begin{bmatrix} 0 & \Gamma_+ \\ 1 & 0 \end{bmatrix} + s_4 e^{-ik_F S \cos \theta_S x} \begin{bmatrix} \Gamma_+ & 0 \\ 0 & 1 \end{bmatrix} \right),
\]  

(15)

\[
\Gamma_+ = \frac{-\Gamma_+}{E + \sqrt{E^2 - \Delta_0^2 |w_j \theta_S|^2}}.
\]  

(16)

(ii) \( p_x \)-wave, \( p_y \)-wave, and chiral \( p \)-wave superconductors

\[
\psi(x, y) = e^{ik_y y} \left( s_1 e^{ik_F S \cos \theta_S x} \begin{bmatrix} 1 \\ 0 \\ \Gamma_+ \end{bmatrix} + s_2 e^{ik_F S \cos \theta_S x} \begin{bmatrix} 0 & \Gamma_+ \\ 1 & 0 \end{bmatrix} + s_3 e^{-ik_F S \cos \theta_S x} \begin{bmatrix} 0 & \Gamma_+ \\ 1 & 0 \end{bmatrix} + s_4 e^{-ik_F S \cos \theta_S x} \begin{bmatrix} \Gamma_+ & 0 \\ 0 & 1 \end{bmatrix} \right).
\]  

(22)

\[
\Gamma_+ = \frac{-\Gamma_+}{E + \sqrt{E^2 - \Delta_0^2 |w_j \theta_S|^2}}.
\]  

(23)

(iii) helical \( p \)-wave superconductor

\[
\psi(x, y) = e^{ik_y y} \left( s_1 e^{ik_F S \cos \theta_S x} \begin{bmatrix} 1 \\ 0 \\ -\Gamma_+ + i\Gamma_{2+} \end{bmatrix} + s_2 e^{ik_F S \cos \theta_S x} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} + s_3 e^{-ik_F S \cos \theta_S x} \begin{bmatrix} 0 & 1 \\ -\Gamma_+ - i\Gamma_{2+} \end{bmatrix} + s_4 e^{-ik_F S \cos \theta_S x} \begin{bmatrix} \Gamma_+ & 0 \\ 0 & 1 \end{bmatrix} \right).
\]  

(24)

In the above, \( s_l \) \( (l = 1, 2, 3, 4) \) is the transmission coefficients and \( j = 1, 2 \). \( \theta_S \) is the angle of the momentum \( k_S \) with respect to the interface normal (see Fig. 3). Since we assume that the wave function in the junction is continuous at the interface, the boundary conditions is given...
as follows:

\[ \psi(+0,y) - \psi(-0,y) = 0, \quad (25) \]

\[ \bar{v}_x(\psi(+0,y) - \psi(-0,y)) = \frac{1}{m_i} 2mV_0 \sigma_z \psi(0,y), \quad (26) \]

where \( \hat{\sigma}_i \) (\( i = 0, x, y, z \)) are the identity matrix and the Pauli matrices in the spin (Nambu) space. In Eq. (26), the velocity operator in the \( x \)-direction \( \bar{v}_x \) is defined by:

\[ \bar{v}_x = \frac{\partial \hat{H}}{\partial k_x} = \begin{bmatrix} \frac{1}{m_i} \frac{\partial}{\partial x} & i\lambda \theta(-x) & 0 & 0 \\ -i\lambda \theta(-x) & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{m_i} \frac{\partial}{\partial x} & -i\lambda \theta(-x) \\ i\lambda \theta(-x) & 0 & -\frac{1}{m_i} \frac{\partial}{\partial x} & 0 \end{bmatrix}. \quad (27) \]

By solving Eq. (26), we determine \( a_1 \) and \( b_1 \) and obtain the normalized tunneling conductance\(^{21}\)

\[ \sigma(eV) = \frac{\int_{-\theta_G}^{\theta_G} \sigma_S(eV, \theta_S) d\theta_S}{\int_{-\theta_G}^{\theta_G} \sigma_N(eV, \theta_S) d\theta_S} \quad (28) \]

\[ \sigma_S(eV, \theta_S) = 4e(1 + |a_1|^2 - |r_1|^2) \times \left( \frac{k_1 \cos \theta_N}{m} (|s|^2 + 1) - i\lambda (s - s^*) \right) \quad (29) \]

\( \sigma_S \) (\( \sigma_N \)) represents the tunneling conductance in the ARM/S junction (the ARM/normal metal (\( \Delta_0 = 0 \)) junction). In section III we also show the tunneling conductance of one-dimensional limit by choosing \( k_y = 0 \).

### III. RESULTS AND DISCUSSIONS

In this and the next sections, we show and discuss the obtained tunneling conductance of ARM/S junctions for various types of a pairing symmetry, where dimensionless parameters, \( \alpha = \frac{\hbar k_F}{\Delta s}, \gamma = \frac{\hbar k_F}{\Delta s}, \rho = \frac{\hbar}{m s}, \) and \( Z = \frac{\hbar \Delta s}{\rho s} \) are used. For simplicity, we use abbreviations for superconducting junctions, e.g., ARM/s-waves and ARM/spin-singlets in the following sections.

#### A. ARM/s-wave superconductor junction

In this subsection, we discuss two-dimensional ARM/s-wave superconductor junctions with

\[ f_{\theta_G} = 1. \quad (30) \]

We calculate the normalized tunneling conductance \( \sigma(eV) \) in Eq. (28) using the formulation in section II. First, we show the obtained conductance without an insulating barrier, i.e., \( Z = 0 \), as a function of bias voltage. Figure 5 shows the \( \sigma(eV) \) of an \( N/s \)-wave (a), FM/s-waves (b), and ARM/s-waves (c) for \( \gamma = 1 \). In Fig. 5 (a), we find \( \sigma(|eV| < \Delta_0) = 2 \) by the perfect Andreev reflection at the interface.\(^{14,40}\) As shown in Fig. 5 (b), in FM/S junctions, the \( \sigma(eV) \) are shown for various magnitude of the exchange field, namely \( h \). The magnitude of the inner gap conductance \( \sigma(|eV| < \Delta_0) \) is suppressed with the increase in \( h \). Especially, the \( \sigma(|eV| < \Delta_0) \) becomes zero for \( h > 1 \), where the ferromagnet is fully polarized (see Fig. 5 (b) (iii)). As shown in Fig. 5 (c), the \( \sigma(eV) \) for \( h > 1 \) is enhanced with the increase in the magnitude of the RSOI \( \alpha \). Qualitative features of the \( \sigma(eV) \) in Fig. 5 (c) can be interpreted by the spin configuration of the ARM.

To see this, we calculate the spin configuration in the ARM. Using the eigenfunction of the ARM \( \psi(k_1) \) = \( \begin{pmatrix} s_{k_1} \\ 1 \sqrt{|s_{k_1}|^2 + 1} \end{pmatrix} \), the spin direction of electron and hole states is defined by \( \langle S_x(k_1) \rangle \equiv \langle \psi(k_1)|\hat{\sigma}_x|\psi(k_1)\rangle \) and \( \langle S_h(k_1) \rangle \equiv \langle \psi(-k_1)|\hat{\sigma}_x|\psi(-k_1)\rangle \), respectively. In the above, \( s_{k_1} \) is given by \( s_{k_1} = -\frac{\lambda (k_{1x} + k_{1y})}{\Delta s} \), where \( k_{1x(y)} \) is a \( x(y) \)-component of \( k_1 \). The explicit forms of \( \langle S_x(k_1) \rangle \) and \( \langle S_h(k_1) \rangle \) become

\[ \langle S_x(k_1) \rangle = \langle S_{xy}(k_1) \rangle, \langle S_{ye}(k_1) \rangle, \langle S_{se}(k_1) \rangle \]

\[ = \begin{pmatrix} -2\lambda k_{1x} \epsilon_{k_1} & 2k_{1x} \epsilon_{k_1} \\ (\lambda k_1)^2 + \epsilon_{k_1} \end{pmatrix}, \begin{pmatrix} (\lambda k_1)^2 - \epsilon_{-k_1} \end{pmatrix} \]

\[ \langle S_h(k_1) \rangle = \langle S_{zh}(k_1) \rangle, \langle S_{yh}(k_1) \rangle, \langle S_{zh}(k_1) \rangle \]

\[ = \begin{pmatrix} 2k_{1y} \epsilon_{-k_1} \\ (\lambda k_1)^2 + \epsilon_{-k_1} \end{pmatrix}, \begin{pmatrix} (\lambda k_1)^2 - \epsilon_{k_1} \end{pmatrix} \]
with
\[ \epsilon_{k_1} = \xi_{k_1} + H. \] (33)

If we choose \( \lambda = 0 \), we can reproduce the FPFM case. From Eqs. (31), (32), and (33), while the sign of the in-plane components of each spin expectation value are opposite, the \( z \)-component of those is the same:
\[ \langle S_{xe}(k_1) \rangle = \langle S_{zh}(k_1) \rangle \]
\[ = - \frac{\alpha(1-h^2) + 2a(1-h^2)}{h^2 + a + \alpha^2 + 2a + h^2}. \] (34)

For Eq. (34), we can find that, if \( \alpha \gg h \), \( \langle S_{xe}(k_1) \rangle \) and \( \langle S_{zh}(k_1) \rangle \) approach zero (see Fig. 6(A)). On the other hand, the magnitudes of \( \langle S_{x(y)e}(k_1) \rangle \) and \( \langle S_{x(y)h}(k_1) \rangle \) become larger as the magnitude of the RSOI increases. These indicate that the spin in the ARM is not fully polarized along \( z \)-axis and its direction has an \( xy \)-plane component unlike the FPFM. We show later that \( x \) and \( y \)-components of the spin polarization induced by the RSOI do not suppress the magnitude of the \( \sigma(|eV| < \Delta_0) \) in the ARM/spin-singlet. As a preparation for showing it, we explain why the tunneling conductance in FPFM/spin-singlets is reduced by the exchange field. Figure 7 shows the scattering process where an electron with down-spin is injected from the left side. In this case, the spin of an incident electron is flipped through the Andreev reflection because we assume the spin-singlet superconductor for \( x > 0 \). However, the Andreev reflection for \( |eV| < \Delta_0 \) does not occur in the FPFM/spin-singlets since there is no corresponding Fermi surface for the hole state with up-spin. Equations (31) and (32) confirm this since \( \langle S_{xe}(k_1) \rangle = \langle S_{zh}(k_1) \rangle = -1 \) is satisfied in the FPFM. This is because the Andreev reflection is suppressed in FPFM/spin-singlets. In addition, the suppression of the Andreev reflection reduces the inner gap conductance as we can see from
\[ \sigma(eV) \propto 1 - |r|^2 + |a|^2, \] (35)
where \( r(a) \) is a normal(Andreev) reflection coefficient. Therefore, the tunneling conductance decreases because of the exchange field in FPFM/spin-singlets. On the other hand, for \( \lambda \neq 0 \), \( \langle S_{x(y)e}(k_1) \rangle \) and \( \langle S_{x(y)h}(k_1) \rangle \) become nonzero and satisfy
\[ \langle S_{xe}(k_1) \rangle = -\langle S_{zh}(k_1) \rangle, \] (36)
\[ \langle S_{ye}(k_1) \rangle = -\langle S_{yh}(k_1) \rangle. \] (37)
in the ARM as shown in Fig. 6(B). This means that the coefficient of the Andreev reflection recovers owing to the RSOI in the ARM/spin-singlets by the comparison with the FPFM/spin-singlets. Accordingly, the presence of the RSOI enhances the magnitude of the inner gap conductance in ARM/spin-singlets. The above explanation is consistent with the results in Fig. 6(c).

Also, we calculate the \( \sigma(eV) \) of ARM/s-waves with \( \gamma = 0.1 \) because \( \gamma < 1 \) should be satisfied in realistic cases. The results are shown in Fig. 8. Since the \( \sigma(|eV| < \Delta_0) \) in Fig. 8 is enhanced with the increase in \( \alpha \), it is found that the change of \( \gamma \) does not qualitatively influence the feature of the \( \sigma(eV) \) in ARM/s-waves. In addition, even for junctions with the anisotropic superconductor, the qualitative features of \( \sigma(eV) \) are insensitive to the change of \( \gamma \). So, we mainly study for \( \gamma = 1 \) below.

Next, tunneling conductance in the one-dimensional limit which corresponds to the angle resolved conductance with perpendicular injection \( (k_y = 0) \) is studied. Figure 9 shows \( \sigma(eV) \) of the one-dimensional system for \( Z = 0 \). The indices of Figs. (a), (b), and (c) correspond with those of Fig. 5. As we can see from Figs. (a) and (b), for an N/s-wave and FM/s-waves, the qualitative behaviors of the \( \sigma(eV) \) in one-dimensional limit are similar to those in two-dimensional cases.\(^{45-46}\) Figure 9(c) also indicates that the \( \sigma(|eV| < \Delta_0) \) increases owing to the RSOI (see Fig. 9(b)iii). However, note that zero bias conductance (ZBC), i.e., \( \sigma(eV = 0) \), is zero regardless of the change of \( \alpha \). This is because, in the one-dimensional cases, \( |a|^2 = 0 \) and \( |r|^2 = 1 \) are satisfied for \( eV = 0 \) in Eq. (29). This profile of the \( \sigma(eV = 0) \) does not correspond with that in the corre-
sponding two-dimensional cases, but the result is consistent with the previous works\textsuperscript{47,49}. According to one of the previous works\textsuperscript{48}, where the conductance is calculated by the scattering matrix theory, the ZBC should be quantized to be 0 or 2 if the half of spin degrees of freedom and one-channel system are realized in the normal metallic region. Moreover, if the superconductor in the junction is topologically trivial, ZBC should be zero\textsuperscript{48}. In our model, the one-dimensional ARM is just a one-channel system, and we consider the topologically trivial s-wave superconductor in $x > 0$. Hence, the ZBC should be zero in the one-dimensional ARM/s-waves.

Then, we show tunneling conductance with high-barrier case ($Z = 10$) for the two-dimensional junctions. $\sigma(eV)$ of an N/s-wave, FM/s-waves and ARM/s-waves are plotted in Figs. 9(a), 9(b) and 9(c), respectively. In these cases, all of the line shapes of the $\sigma(eV)$ show conventional U-shaped structures regardless of the change of $\alpha$ and $h$ (see Fig. 9), since the $\sigma(eV) < \Delta_0$ is strongly reduced by the insulating barrier due to the absence of the SABS. Namely, the coexistence of the exchange field and the RSOI does not qualitatively affect the $\sigma(eV)$ for the high-barrier case.

### B. ARM/d-wave superconductor junction

In order to understand the effect of an SABS\textsuperscript{25} on the charge transport of ARM/S junctions, we calculate the tunneling conductance in two-dimensional ARM/d-wave superconductor junctions in this subsection. As a typical example of d-wave superconductor, we choose the $d_{x^2-y^2}$-wave and $d_{xy}$-wave pair potentials. In these cases, $f_{\theta_S}$ is given by

$$f_{\theta_S} = \begin{cases} 
\cos(2\theta_S) & (d_{x^2-y^2} \text{-wave}) \\
\sin(2\theta_S) & (d_{xy} \text{-wave}) 
\end{cases} \quad (38)$$

First, using $f_{\theta_S}$, tunneling conductance for $Z = 0$ is studied. It is known that, in FM/d-waves, the inner gap conductance is suppressed by the exchange field, and the ZBC becomes zero when the ferromagnet is fully polarized. As we have discussed in section II A in ARM/spin-singlets, the inner gap conductance recovers with increasing the magnitude of the RSOI. ARM/d-waves also show the enhancement of the inner gap conductance due to the RSOI. In addition, the qualitative features of the tunneling conductance does not depend on whether the pairing symmetry is $d_{x^2-y^2}$-wave or $d_{xy}$-wave.

Next, we focus on the tunneling conductance for the high-barrier case ($Z = 10$). The line shape of the $\sigma(eV)$ becomes the conventional V-shaped structure for $d_{x^2-y^2}$-wave superconductor junctions regardless of the change of $\alpha$ and $h$. This is because the $\sigma(eV)$ is strongly reduced by the insulating barrier.

![FIG. 8](image8.png)

FIG. 8: (Color online) Normalized tunneling conductance $\sigma(eV)$ of two-dimensional ARM/S junctions without insulating barrier ($Z = 0$), where S is chosen as the s-wave superconductor. We use $\gamma = 0.1$ in all cases.

![FIG. 9](image9.png)

FIG. 9: (Color online) Normalized $\sigma(eV)$ of (a)N/S, (b)FM/S, and (c)ARM/S junctions without insulating barrier ($Z = 0$) in one-dimensional limit, where S is chosen as the s-wave superconductor. We use $\gamma = 1.0$ in all cases.

![FIG. 10](image10.png)

FIG. 10: (Color online) Normalized $\sigma(eV)$ of two-dimensional (a)N/S, (b)FM/S, and (c)ARM/S junctions with high tunneling barrier ($Z = 10$), where S is chosen as s-wave superconductor. We use $\gamma = 1.0$ in all cases.
In contrast, $\sigma(eV)$ shows a drastic feature due to the presence of an SABS in ARM/$d_{xy}$-waves. It is known that the $\sigma(eV)$ in $N/d_{xy}$-waves have a ZBCP, which is enhanced with increasing $Z$ (see Fig. 11(a)). On the other hand, when we consider FM/$d_{xy}$-waves, the height of the ZBCP becomes lowered with the increase in $h$ as shown in Fig. 11(b). In particular, when the ferromagnet is fully polarized, the ZBCP completely disappears (see Fig. 11(b) iii). We find that, in ARM/$d_{xy}$-waves, the ZBCP appears again due to the presence of $\alpha$ (see Fig. 11(c)). Moreover, the height of the ZBCP becomes larger as $\alpha$ increases. This $\alpha$ dependence of the $\sigma(eV = 0)$ can be understood by the spin configuration of the ARM, which is discussed in the $s$-wave superconductor junction (see section III A). As the magnitude of the RSOI increases, the $z$-component of spin polarization by the exchange field decreases. Additionally, the spin polarization by the RSOI does not suppress the tunneling conductance of ARM/spin-singlets as mentioned in section III A. This implies that the ZBCP can be remained in ARM/$d_{xy}$-waves by the RSOI as compared to FPFM/$d_{xy}$-waves (see Fig. 11(b) and (c)).

Based on the results in Fig. 11(c), we discuss the physical origin of the presence of ZBCP in an FM/$d_{xy}$-wave with the insulating barrier from the aspect of an experiment on $La_{0.67}Sr_{0.33}MnO_3$ (LSMO)/$YBa_2Cu_3O_7-\delta$ (YBCO) with (110) oriented thin film junction $\lambda$ . In the experiment, the dependence of the $\sigma(eV)$ on the magnitude of the magnetic field applied along in-plane direction has been shown. Surprisingly, the ZBCP remains despite of the strongly applied magnetic field, where LSMO is known as a half metallic material where spin is fully polarized. Specifically, the experimental setup $\lambda$ does not exactly correspond with our model. In the experiment, the exchange field points the $xy$-plane direction while that is parallel to $z$-axis in our model. However, also in the junction of the experiment, RSOI $\lambda(\sigma \times k) \cdot i$ can exist near the interface due to the breakdown of the inversion symmetry. Here, $i$ is a unit vector perpendicular to the interface, i.e., $i||x$. Since this RSOI $\lambda(\sigma \times k) \cdot i$ induces the $z$-component of the spin-polarization and decreases the $xy$-plane component of the spin polarization induced by the magnetic field and the magnetization, LSMO near the interface can behave like the ARM. Accordingly, in the light of our theory, the ZBCP in the FPFM/$d_{xy}$-wave is allowed in the presence of the RSOI. Therefore, the conductance of the Kashiwaya’s experiment $\lambda$ may be interpreted from the view point of ARM/$d_{xy}$-waves. To compare the experiment and theoretical prediction in detail, it is necessary to take into account surface roughness effect.

C. ARM/spin-triplet $p$-wave superconductor junction

In this subsection, we study ARM/spin-triplet $p$-wave superconductor junctions. We mainly focus on the tunneling conductance for ARM/$p_x$-waves and ARM/$p_y$-waves for several directions of the $d$-vector. To understand the influence of the RSOI on the tunneling conductance, we compare the results of ARM/$p_x$-waves with ARM/$p_y$-waves. $\theta_S$ in Eq. 13 is given as follows: for the $p_x$-wave and $p_y$-wave symmetries,

$$g_{\theta_S} = \begin{cases} \cos(\theta_S) & (p_x\text{-wave}) \\ \sin(\theta_S) & (p_y\text{-wave}) \end{cases}.$$  (39)

First, Fig. 12 shows the tunneling conductance of two-dimensional junctions with $p_x$-wave superconductor for $Z = 0$. Figs. (A), (B), and (C) correspond to the cases with $d||x$, $d||y$, and $d||z$, respectively. The indices (a), (b), and (c) denote $N/p_x$-waves, FM/$p_x$-waves and ARM/$p_x$-waves, respectively. For the $N/p_x$-waves, we have $\sigma(eV = 0) = 2$ independent of the direction of the $d$-vector due to the perfect Andreev reflection in $Z = 0$ (see Figs. (A)(a), (B)(a), and (C)(a)). On the other hand, the ZBC changes from $\sigma(eV = 0) = 2$ in FM/$p_x$-waves. The change of the $\sigma(eV = 0)$ drastically depends on the direction of the $d$-vector as well as the magnitude of the exchange field $h$. When the $d$-vector is perpendicular to the exchange field, the $\sigma(eV = 0)$ changes slightly (see Figs. (A)(b) and (B)(b)). However, when the $d$-vector is parallel to the exchange field, the $\sigma(eV = 0)$ is significantly reduced with the magnitude of $h$ (see Fig. (C)(b)). Now, let us show $\sigma(eV)$ in ARM/$p_x$-waves. We find that $\sigma(eV = 0)$ is zero for $d||x$ and $d||z$, but the $\sigma(eV = 0)$ is nonzero only for $d||y$. As we can see from Figs. (A)(c) and (C)(c), the inner gap conductance for $d||x$ is insensitive to the magnitude of the RSOI, while that for $d||x$ changes with...
we will show later, the dependence of $\sigma$ in ARM/$p_x$-winding the presence of a zero energy SABS. The winding number, which is a topological invariant ensuring the presence of a zero energy SABS, $\sigma$ not strongly depend on the magnitude of the RSOI, and $\sigma = 1$ in all cases. 

The magnitude of the RSOI. Besides, the $\sigma(eV = 0)$ does not strongly depend on the magnitude of the RSOI, and $\sigma(eV = 0) \sim 2$ is satisfied for $d||y$ (see Fig. 13(B)(c)). As we will show later, the dependence of $\sigma(eV)$ of ARM/$p_x$-waves on the direction of $d$-vector can be explained by a winding number, which is a topological invariant ensuring the presence of a zero energy SABS.

To explain the above anomalous property of $\sigma(eV)$ in ARM/$p_x$-waves, we show the tunneling conductance in two-dimensional ARM/$p_y$-waves for $Z = 0$. Comparing the results in ARM/$p_y$-waves with those in the ARM/$p_x$-waves is important because the SABS is absent in junctions with $p_y$-wave superconductor unlike those with $p_x$-wave superconductor. Figure 13 shows $\sigma(eV)$ of the junctions with $p_y$-wave superconductor. The indices of Fig. 13(A), (B), (C), (a), (b), and (c) are the same as those of Fig. 12 respectively. As we can see from Figs. 13(A)(a), (A)(b), (B)(a), (B)(b), (C)(a), and (C)(b)(ii), the behaviors of the inner gap conductance $\sigma(eV < \Delta_0)$ in N/$p_y$-waves and FM/$p_y$-waves are qualitatively similar to those in the junctions with $p_x$-wave superconductor. However, the behaviors of $\sigma(eV = 0)$ of the ARM/$p_y$-waves are qualitatively different from those of the ARM/$p_x$-waves. In the ARM/$p_y$-waves, regardless of the direction of the $d$-vector, the $\sigma(eV)$ is not zero despite of finite $\alpha$. To be specific, the $\sigma(eV = 0)$ recovers as $\alpha$ increases for $d||z$ (see Fig. 13(C)(c)), while that for $d||x$ and $d||y$ is slightly reduced (see Figs. 13(A)(c) and 13(B)(c)). As we describe below, these behaviors of the $\sigma(eV = 0)$ of ARM/$p_y$-waves can be understood by the spin configuration of the ARM. In spin-triplet superconductor junctions for $d||z$, when an electron with up-spin injects, the Andreev reflected hole has down-spin similar to the spin-singlet superconductor junction cases. This indicates that the $\sigma(eV < \Delta_0)$ for $d||z$ is suppressed by the exchange field and is enhanced by the RSOI as shown in Figs. 13(C)(b) and 13(C)(c). On the other hand, when an electron with up-spin injects, the Andreev reflection must occur with an up-spin hole for $d||x$ and $d||y$. Hence, the $\sigma(eV)$ is not reduced in the junctions with the FPFM for $d||x$ and $d||y$ (see Figs. 13(A)(b)iii and (B)(b)iii). However, in the ARM, the RSOI reduces the $z$-component of the spin polarization as we discussed in section III A. Accordingly, the $\sigma(eV < \Delta_0)$ decreases in the ARM/$p_y$-waves with $d||x$ and $d||y$ on the contrary to those with $d||z$. Therefore, the discussion about the spin configuration supports our calculations.

Now, we discuss the results of ARM/$p_x$-waves. In ARM/$p_x$-waves, the dependence of the $\sigma(eV = 0)$ on the direction of $d$-vector is qualitatively different with that in ARM/$p_y$-waves. In addition, as we mentioned above, one of the important difference between the superconducting tunnel junctions with $p_x$-wave superconductor and those with $p_y$-wave superconductor is whether the SABS can exist or not. To understand the behavior of the $\sigma(eV = 0)$ in ARM/$p_x$-waves, we introduce a winding number $W$ for the one-dimensional limit ($k_y = 0$). Here, $W$ takes an integer and is defined by a chiral operator $\hat{\Gamma}$ and a BdG Hamiltonian $\hat{H}$,

$$W = -\frac{1}{4\pi i} \int dk_y [\hat{\Gamma} \hat{H}^{-1}(k) \partial_{k_y} \hat{H}(k)],$$

(40) where the chiral operator anti-commutes with the BdG Hamiltonian, and the line integral in Eq. (40) should be performed in the first Brillouin zone. When the winding number $W$ is nonzero, the SABS exists at the surface of the superconductor. For a spin-triplet superconductor,
a chiral operator generally depends on the direction of the $d$-vector (see Appendix A). Particularly, for the $p_x$-wave superconductor, the chiral operator leading to a nontrivial $W$ is given by

$$
\hat{\Gamma} = \begin{cases} 
\hat{\sigma}_x \hat{\tau}_y & (d \parallel x) \\
\hat{\sigma}_0 \hat{\tau}_x & (d \parallel y) \\
-\hat{\sigma}_x \hat{\tau}_y & (d \parallel z)
\end{cases},
$$

(41)

and the resulting $W$ satisfies $W = 2$. In the ARM/$p_x$-waves, the SABS is influenced by the RSOI and the exchange field through electrons and holes in the ARM. From Eq. (41), we find that the chiral operator anti-commutes with the terms of the RSOI $\lambda k_x \hat{\sigma}_x \hat{\tau}_z$ and the exchange field $H \hat{\sigma}_z \hat{\tau}_z$ only for $d \parallel y$. This indicates that the chiral symmetry protecting the SABS survives under the RSOI and the exchange field only when $d \parallel y$. Therefore, we can understand the RSOI dependance of the tunneling conductance in the ARM/$p_x$-waves from the topological point of view. The discussion about $W$ and the symmetries are given in Appendix A.

Below, with the numerical results, we check the validity of the above discussion with $W$. As written in Appendix A, the RSOI breaks the symmetry protecting the SABS for $d \parallel x$ and $d \parallel z$. This means that the resulting $W$ is nonzero only for $d \parallel y$ even if the exchange field does not exist. Accordingly, the property of the tunneling conductance in ARM/$p_x$-waves can be realized in the junctions with a non-magnetic metal where the RSOI exists, which we call a Rashba metal (RM). To check whether the property of the tunneling conductance of the ARM/$p_x$-waves and that of RM/$p_x$-waves are similar to each other, we calculate the tunneling conductance of the RM/$p_x$-waves. In Fig. 14, the normalized tunneling conductance $\sigma_1(eV)$, where an electron of the outer Fermi surface of RM injects, is shown for the several direction of the $d$-vector. The details of the formulation is written in Appendix B. It is found that the $\sigma_1(eV)$ is suppressed as the inner Fermi surface becomes smaller for $d \parallel x$ and $d \parallel z$ (see Figs. 14(a) and 14(c)). Especially, for $d \parallel x$ and $d \parallel z$, the $\sigma_1(eV = 0)$ is completely reduced for $\mu_N \rightarrow 0$, where the inner Fermi surface of the RM disappears like that of the ARM. In contrast, the $\sigma_1(eV = 0)$ is insensitive to $\gamma$ for $d \parallel y$. From these results, it is found that the RSOI dominantly contributes to the anomalous property of the tunneling conductance in the ARM/$p_x$-waves while the exchange field does not contribute so much. This is consistent with the discussion with the winding number. Next, we also calculate how the direction of $d$-vector influences on $\sigma(eV = 0)$ in ARM/$p_x$-waves as shown in Fig. 17. A sharp peak appears for $d \parallel y$ in the one-dimensional limit, although a broad peak appears in the two-dimensional system. The sharp peak in the one-dimensional limit is consistent with our discussion based on the winding number.

Finally, $\sigma(eV)$ in ARM/$p_x$-waves for high barrier case ($Z = 10$) is studied. Figure 18 shows the obtained $\sigma(eV)$ of $N/p_x$-waves(a), $FM/p_x$-waves(b), and $ARM/p_x$-waves(c) for $d \parallel y$. In the $N/p_x$-waves, a ZBCP appears (see Fig. 18(a)) due to the existence of the SABS regardless of the direction of $d$-vector. As we have mentioned already, the inner gap conductance does not decrease in FM/spin-triplets when $d$-vector is perpendicular to the exchange field. For this reason, the ZBCP exists for $d \parallel x$ and $d \parallel y$ (see Fig. 18(b)) while the height of the ZBCP is reduced by the exchange field for $d \parallel z$. In ARM/$p_x$-waves, the $\sigma(eV = 0)$ is zero for $d \parallel x$ and $d \parallel z$ similarly to the cases for $Z = 0$, and the ZBCP ap-
symmetry in $S$, respectively. Based on the obtained solutions for $\alpha = 1$ and $h = 0$.

FIG. 15: (Color online) Normalized zero bias tunneling conductance $\sigma(eV)$ of two-dimensional RM/$p_z$-wave superconductor junctions for $Z = 0$ as functions of the polar angle $\theta$ and the azimuthal angle $\phi$ of the $d$-vector (see Fig. 4). We use $\gamma = 1.0$, $\alpha = 1.0$, and $h = 1.1$ in both (a) one-dimensional limit and (b) two-dimensional cases.

pears only when $d||y$ (see Fig. 16(c)). In contrast, the ZBCP does not appear regardless of the change of $\alpha$ and $h$ in superconducting tunnel junctions with $p_y$-wave superconductor. This is natural because the SABS does not exist at the surface of $p_y$-wave superconductor.

IV. RELEVANCE TO THE PAIRING SYMMETRY IN Sr$_2$RuO$_4$

In this section, we study the tunneling conductance $\sigma(eV)$ in ARM/S junctions where a chiral $p$-wave, helical $p$-wave, and chiral $d$-wave are chosen as the pairing symmetry in $S$, respectively. Based on the obtained results, we suggest a new direction to decide the pairing of Sr$_2$RuO$_4$. To calculate $\sigma(eV)$ in the systems corresponding to experiments of the tunneling spectroscopy, we focus on the low transparent junctions with $Z = 5$.

It is noted that chiral $p$-wave pairing is one of the promising candidates of the pairing symmetry in Sr$_2$RuO$_4$ where the $d$-vector is along the $z$-axis. $g_{\theta S}$ is given by

$$g_{\theta S} = \exp(i\theta_S),$$

with $d||z$. First, for an N/chiral $p$-wave, the resulting conductance has a broad ZBCP reflecting on the linear dispersion of the SABS parallel to the interface as shown in Fig. 17A(a). Then, in FM/chiral $p$-waves, the inner gap conductance $\sigma(|eV| < \Delta_0)$ decreases with the increase in $h$ since we consider the cases for $d||z$ (see Fig. 17A(b)). As a limiting case, the inner gap conductance is completely suppressed in an FPFM/chiral $p$-wave (see Fig. 17A(b)iii). By the comparison with the $\sigma(|eV| < \Delta_0)$ in the FPFM/chiral $p$-wave, that in ARM/chiral $p$-waves slightly recovers in the presence of the RSOI (see Fig. 17A(c)).

Next, we look at the helical $p$-wave case, where the pair potential is given by

$$w_{1\theta S} = \cos(\theta_S), \quad w_{2\theta S} = \sin(\theta_S).$$

Time reversal symmetry is not broken in this state. There has been a theoretical proposal that the helical $p$-wave pairing can be possible by tuning the direction of the $d$-vector of Sr$_2$RuO$_4$. Then, two branches of SABS are generated as a Kramers pair. Also in an N/helical $p$-wave, the $\sigma(eV)$ has a broad ZBCP reflecting the linear dispersions of SABS crossing zero energy at $k_y = 0$ similar to that in chiral $p$-wave superconductor junctions (see Fig. 17B(a)). However, for FM/helical
TABLE I: Summary of the behavior of the tunneling conductance $\sigma(eV)$ for the transparent limit and the high barrier case. The first column shows the symmetry of the pair potential in the superconductor. At the first row, X/S and X/I/S indicate the junction for the transparent limit and high barrier case, respectively. Here, X denotes an N, FM, or ARM.

| $S(d_{x^2-y^2})$-wave | $d_{xy}$-wave | $p_x$-wave (d|x) | $p_x$-wave (d|y) | $p_x$-wave (d|z) |
|------------------------|--------------|-----------------|-----------------|-----------------|
| N/S                    | $\sigma(0) = 2\delta_{p}$ | $\sigma(0) = 2\delta_{p}$ | $\sigma(0) = 2\delta_{p}$ | $\sigma(0) = 2\delta_{p}$ |
| N/I/S                  | U(V)-shape 53 | ZBCP 4,53       | ZBCP 4,53       | ZBCP 4,53       |
| FM/S                   | $\sigma(0) \to 0$ for $h \to 4.1,53$ |
| FM/I/S                 | U(V)-shape 11,15,53 | No ZBCP for $h \geq 4.5,53$ | ZBCP 4,15,53 | ZBCP 4,15,53 |
| ARM/S                  | $\sigma(0) > 0$ for $\alpha > 0$ | $\sigma(0) > 0$ for $\alpha > 0$ | $\sigma(0) = 0$ for $\alpha > 0$ | $\sigma(0) \sim 2$ |
| ARM/I/S                | U(V)-shape | ZBCP for $\alpha > 0$ | No ZBCP | ZBCP |

V. CONCLUSION

In this paper, we have theoretically studied tunneling conductance between ARM/S junctions for various types of the pairing symmetry in S. For the ARM/spin-singlet superconductor junction, the magnitude of the inner gap conductance is enhanced as compared to that in the FPFM junction. It is noted that the ZBCP recovers in the ARM/d$_{xy}$-wave superconductor junction by the RSOI while that is completely suppressed in the FPFM/d$_{xy}$-wave superconductor junction. In a previous work, the anomalous behavior of the conductance in LSMO/YBCO junctions has not been reported, and its origin has not been discovered. Our obtained results can explain the ZBCP in LSMO/YBCO junctions in the presence of large magnitude of the exchange field. Due to the absence of the inversion symmetry, RSOI is induced near the interface of LSMO. Then, it is natural to speculate that LSMO can behave like the ARM near the interface. Based on this, the robust ZBCP reported in LSMO/YBCO junctions seems to be reasonable.

We have also studied the tunneling conductance in the ARM/$p_x$-wave superconductor junctions. It has been revealed whether the ZBCP remains or not critically depends on the direction of the $d$-vector in ARM/$p_x$-wave superconductor junctions, and this can be understood by using the winding number $W$. In addition, we have calculated the tunneling conductance in the ARM/S junction, where the symmetry of S is the chiral $p$-wave, helical $p$-wave, and chiral $d$-wave pairings. We have shown that these three types of pairings show qualitatively different line shapes of tunneling conductance. Our obtained results are useful to determine the pairing symmetry of superconductor Sr$_2$RuO$_4$.

In this paper, we have focused on the quasiparticle tunneling in ARM/S junctions. It is a challenging problem to study Josephson current in S/ARM/S junctions since an SABS seriously influences on the magnitude of Josephson current at low temperatures. Although, theoretical study about N/S or S/N/S junctions in the presence of RSOI in N has been done in some work, Josephson current in S/ARM/S junction has not been revealed particularly for unconventional superconductors yet. We are planning to study this issue near future.
VI. ACKNOWLEDGEMENTS

This work was supported by the Grant-in-Aid for Scientific Research on Innovative Areas “Topological Material Science” (Grant No. 15H05853), Grant-in-Aid for Scientific Research B (Grant No. 15H03686), Grant-in-Aid for Challenging Exploratory Research (Grant No. 15K13498), and Grant-in-Aid for JSPS Fellows (Grant No. 13J06466 and No. 13J03141) (K. T and S. K).

Appendix A: Winding number in \( p_x \)-wave superconductors

We here discuss the winding number of \( p_x \)-wave superconductor of one-dimensional limit, which guarantees the existence of a Majorana edge state and complements our numerical results. We start from the BdG Hamiltonian of a one-dimensional \( p_x \)-wave superconductor

\[
\hat{H}_{\text{BdG}}(k_x) = (2t \cos(k_x) - \mu)\hat{\sigma}_0\hat{\tau}_z + \hat{\Delta}(k_x),
\]

with

\[
\hat{\Delta}(k_x) = \begin{cases} 
-\Delta_0 \sin k_x \hat{\sigma}_z \hat{\tau}_x & (d \parallel x) \\
\Delta_0 \sin k_x \hat{\sigma}_x \hat{\tau}_y & (d \parallel y) \\
\Delta_0 \sin k_x \hat{\sigma}_x \hat{\tau}_z & (d \parallel z)
\end{cases}
\]

where \( \mu \) is the chemical potential and \( \Delta_0 \) the amplitude of the gap-function. \( \hat{\sigma}_i \) (\( i = 0, x, y, z \)) are the identity matrix and the Pauli matrices in the spin (Nambu) space. This system satisfies the time-reversal symmetry \( \hat{T} \hat{H}_{\text{BdG}}(k_x) \hat{T}^{-1} = \hat{H}_{\text{BdG}}(-k_x) \) and the particle-hole symmetry \( \hat{C} \hat{H}_{\text{BdG}}(k_x) \hat{C}^{-1} = -\hat{H}_{\text{BdG}}(-k_x) \) by \( \hat{T} = i\hat{\sigma}_y \tau_0 \hat{K} \) and \( \hat{C} = \hat{\sigma}_y \tau_0 \hat{K} \), where \( \hat{K} \) is the complex conjugation.

If the BdG Hamiltonian has a chiral operator \( \hat{\Gamma} \); i.e., \( \{ \hat{\Gamma}, \hat{H}_{\text{BdG}}(k_x) \} = 0 \), then the winding number is defined by Eq. (A3)

\[
W \equiv -\frac{1}{4\pi i} \int_{-\pi}^{\pi} dk_x \text{Tr}[\hat{\Gamma} \hat{H}_{\text{BdG}}(k_x)^{-1} \partial_{k_x} \hat{H}_{\text{BdG}}(k_x)],
\]

which takes an integer. In time-reversal invariant superconductors, the combination of time-reversal operator \( \hat{T} \) and particle-hole operator \( \hat{C} \) becomes the chiral operator \( \hat{\Gamma}_0 = -i\hat{C}\hat{T} \). Due to the inversion symmetry, we notice that whereas Eq. (A3) with \( \hat{\Gamma}_0 \) yields a nontrivial winding number in spin-singlet superconductors, it leads to \( W = 0 \) in spin-triplet superconductors. Thus, in order to pursue a nontrivial winding number in a spin-triplet pairing, we require an aid of material dependent symmetries in addition to \( \hat{T} \) and \( \hat{C} \).

Equation (A1) possesses the spin-rotational symmetries: \( \hat{U}_x = i\hat{\sigma}_y \hat{\tau}_z, \hat{U}_y = -i\hat{\sigma}_y \hat{\tau}_0, \) and \( \hat{U}_z = i\hat{\sigma}_x \hat{\tau}_z \), which satisfy \( \{ \hat{U}_i, \hat{H}_{\text{BdG}}(k_x) \} = 0 \) when the \( d \)-vector is parallel to the \( i \) direction. Taking into account this additional symmetry, we can define a spin dependent chiral operator \( \hat{\Gamma}_i \equiv i\hat{C}T\hat{U}_i \), and Eq. (A3) with \( \hat{\Gamma}_i \) leads to, for each direction of the \( d \)-vector,

\[
W = \begin{cases} 2 & 0 < \mu < 2t \\ 0 & \text{otherwise} \end{cases},
\]

where \( W = 2 \) indicates the presence of Majorana Kramer’s pair at both ends.

On the other hand, in our numerical result, we found that the zero-bias conductance peak is suppressed when
\[ d \parallel x \text{ and } d \parallel z. \] To explain this suppression from Eq. (A4), we consider how the Rashba spin-orbit interaction (RSOI) and the exchange field affect the Majorana Kramer’s pair by adding the terms

\[ H' = \lambda k_x \hat{\sigma}_y \hat{\tau}_z + H \hat{\sigma}_z \hat{\tau}_z \] (A5)

into the BdG Hamiltonian, where the parameters \( \lambda \) and \( H \) indicate the amplitude of RSOI and the exchange field, respectively. We readily find that the first term breaks the spin-rotational symmetries \( \hat{U}_x \) and \( \hat{U}_z \), i.e., the winding number survives only when \( d \parallel y \). In addition, although a Majorana Kramer’s pair is fragile against the exchange effect, we have the effective time-reversal symmetry \( \hat{T}' = \hat{T}\hat{U}_y \) for the \( y \)-direction, which keeps the Majorana Kramer’s pair intact even when the Zeeman effect is present. As a result, the topological argument is consistent with our calculation of the tunneling conductance.

**Appendix B: Formulation for the tunneling conductance in Rashba metal with exchange field/superconductor junctions**

We here show formulations for the tunneling conductance of Rashba metal (RM)/insulator/superconductor junctions in the presence of the exchange field in the RM where the number of the Fermi surfaces is two. The BdG Hamiltonian of this system is already given by Eqs. (1), (2), and (3). In this appendix, we shift its attention from the ARM \((|\mu| < H)\) to the RM \((|\mu| > H)\) and derive the wave functions for \( x < 0 \) and the tunneling conductance. Therefore, the wave functions for \( x < 0 \) and the tunneling conductance are mainly introduced in this section. If we choose \( H = 0 \), the resulting tunneling conductance corresponds with that shown in section III.C (see Fig. 16).

The dispersion in the RM with the exchange field is shown in Fig. 18. From Fig. 18 it is found that we can define three regions \((A, B, \text{ and } C)\) depending on \( \mu \). The ARM is realized in the region \( A \) with \(|\mu| < H \). On the other hand, the RM is realized in the region \( B \) \((C)\) with \(|\mu| > H \). In the regions \( B \) and \( C \), we have two Fermi surface unlike in the region \( A \). Thus, we need to take into account the inner Fermi surface in addition to the outer Fermi surface. Interestingly, the inner and the outer Fermi surfaces have different helicity each other in the region \( B \) while they have the same spin helicity in the region \( C \). The scattering process for the regions \( B \) and \( C \) is shown in Fig. 19. \( \theta_{1N} \) \((\theta_{2N})\) is an incident angle of an electron with momentum \( k_{1N} \) \((k_{2N})\) respect to the interface normal. \( \theta_S \) denotes the direction of motions of quasiparticles in S measured from the interface normal.

\[
k_1 = \sqrt{2m(\mu_N + m\lambda^2 + \sqrt{(m\lambda^2)^2 + 2m\lambda^2\mu_N + H^2})},
\]
\[
k_2 = \sqrt{2m(\mu_N + m\lambda^2 - \sqrt{(m\lambda^2)^2 + 2m\lambda^2\mu_N + H^2})},
\]
and the \( y \)-component of all momenta is given by

\[
k_y = k_1 \sin \theta_{1N} = k_2 \sin \theta_{2N} = k_S \sin \theta_S. \] (B1)

In what follows, we discuss the formulations in the region \( B \) \((i)\) and \( C \) \((ii)\).

(i) In this paragraph, we show the formulation for the tunneling conductance of a two-dimensional RM with the exchange field \((\text{the region } B)/\text{insulator/superconductor junction}\). The wave functions are represented by using the eigenfunctions of the BdG Hamiltonian for \( \mu > H \). First, we introduce the wave function in the case where an electron of the outer Fermi surface injects,
\( \psi(x < 0, y) = \frac{1}{\sqrt{2}} e^{ik_1 y} \left( e^{ik_1 \cos \theta_1 N x} \begin{bmatrix} s \\ 1 \\ 0 \\ 0 \end{bmatrix} + r_1(2) e^{-ik_1 \cos \theta_1 N x} \begin{bmatrix} s^* \\ 1 \\ 0 \\ 0 \end{bmatrix} + a_1(2) e^{ik_1 \cos \theta_1 N x} \begin{bmatrix} 0 \\ 0 \\ -s^* \\ 1 \end{bmatrix} \right) \)

\[ + r_2(1) e^{-iK_{e B x}} \begin{bmatrix} t_{B1e} \\ 1 \\ 0 \\ 0 \end{bmatrix} + a_2(1) e^{iK_{e B x}} \begin{bmatrix} 0 \\ 0 \\ -t_{B1h} \\ 1 \end{bmatrix} \], \quad (B2)

\[ s = \frac{i\lambda_1 e^{-i\theta_1 N}}{\xi k_1 + H}, \]

\[ t_{B1e(h)} = \frac{\lambda(-iK_{e(h) B x} + k_y)}{\xi k_2 + H}, \]

\[ K_{e(h) B x} = \begin{cases} k_2 \cos \theta_{2 N} & (k_1 \sin \theta_{1 N} < k_2) \\ (+) i \sqrt{k_1^2 \sin^2 \theta_{1 N} - k_2^2} & (k_1 \sin \theta_{1 N} > k_2) \end{cases} \]

\[ \psi(x < 0, y) = \frac{1}{\sqrt{2}} e^{ik_2 y} \left( e^{ik_2 \cos \theta_{2 N} x} \begin{bmatrix} t_{B2} \\ 1 \\ 0 \\ 0 \end{bmatrix} + r_1 e^{-ik_1 \cos \theta_1 N x} \begin{bmatrix} s \\ 1 \\ 0 \\ 0 \end{bmatrix} + a_1 e^{ik_1 \cos \theta_1 N x} \begin{bmatrix} 0 \\ 0 \\ -s^* \\ 1 \end{bmatrix} \right) \]

\[ + r_2 e^{-ik_2 \cos \theta_{2 N} x} \begin{bmatrix} t_{B2}^* \\ 1 \\ 0 \\ 0 \end{bmatrix} + a_2 e^{ik_2 \cos \theta_{2 N} x} \begin{bmatrix} 0 \\ 0 \\ -t_{B2}^* \\ 1 \end{bmatrix} \], \quad (B3)

\[ s = \frac{i\lambda_2 e^{-i\theta_1 N}}{\xi k_2 + H}, \]

\[ t_{B2} = -\frac{i\lambda_2 e^{-i\theta_2 N}}{\xi k_2 + H}. \]

We assume that the wave function in the junction satisfies the boundary condition given by Eq. (20). The obtained tunneling conductance is given as follows:

\[ \sigma(E) = \frac{1}{2} \sigma_1(E) + \frac{1}{2} \sigma_2(E), \quad (B4) \]

\[ \sigma_1(E) = \frac{\int \sigma_1 S(E, \theta_s) d\theta_s}{\int \sigma_1 N(E, \theta_s) d\theta_s}, \quad (B5) \]

\[ \sigma_2(E) = \frac{\int \sigma_2 S(E, \theta_s) d\theta_s}{\int \sigma_2 N(E, \theta_s) d\theta_s}. \quad (B6) \]

For \( k_1 \sin \theta_{1 N} > k_2 \), the normal and Andreev reflections from inner Fermi surface become the evanescent waves. Next, we introduce the wave function in the case where an electron of the inner Fermi surface injects,

\[ \sigma_{1(2)}(E) \] means normalized tunneling conductance when an electron from the outer (inner) Fermi surface injects. In addition, \( \sigma_{i S}(E, \theta_s) \) represents tunneling conductance between the ARM/S (the ARM/normal metal (\( \Delta_0 = 0 \))) junction, where \( i = 1, 2 \). In Eqs. (B5) and (B6), \( \sigma_{1 S}(E, \theta_S) \) and \( \sigma_{2 S}(E, \theta_S) \) are given by
Wave functions are represented by using the eigenfunctions of the BdG Hamiltonian for \(-\frac{(m\lambda)^2 + H^2}{2(m\lambda)^2} < \mu < -H\).

First, we introduce the wave function in the case where an electron of the outer Fermi surface injects,

\[
\psi(x, y) = \frac{1}{\sqrt{2}} e^{ik_y y} \left( e^{ik_x \cos \theta_1 N x} \begin{bmatrix} s \ 1 \ 0 \ 0 \end{bmatrix} + r_1 e^{-ik_1 \cos \theta_1 N x} \begin{bmatrix} s^* \ 1 \ 0 \ 0 \end{bmatrix} + a_1 e^{ik_1 \cos \theta_1 N x} \begin{bmatrix} 0 \ 0 \ -s^* \ 1 \end{bmatrix} \right) \]

\[
+ r_2 e^{-iK_{2ex} x} \begin{bmatrix} t_{C1e} \ 1 \ 0 \ 0 \end{bmatrix} + a_2 e^{iK_{2nx} x} \begin{bmatrix} 0 \ 0 \ -t_{C1h} \ 1 \end{bmatrix}, \tag{B9}
\]

For \(k_1 \sin \theta_{1N} > k_2\), the normal and Andreev reflections from inner Fermi surface become the evanescent waves.

Next, we introduce the wave function in the case where an electron of the inner Fermi surface injects,

\[
\psi(x, y) = \frac{1}{\sqrt{2}} e^{ik_y y} \left( e^{ik_2 \cos \theta_{2N} x} \begin{bmatrix} t_{C2} \ 1 \ 0 \ 0 \end{bmatrix} + r_1 e^{-ik_1 \cos \theta_1 N x} \begin{bmatrix} s^* \ 1 \ 0 \ 0 \end{bmatrix} + a_1 e^{ik_1 \cos \theta_1 N x} \begin{bmatrix} 0 \ 0 \ -s^* \ 1 \end{bmatrix} \right) \]

\[
+ r_2 e^{-ik_2 \cos \theta_{2N} x} \begin{bmatrix} t_{C2} \ 1 \ 0 \ 0 \end{bmatrix} + a_2 e^{ik_2 \cos \theta_{2N} x} \begin{bmatrix} 0 \ 0 \ -t_{C2} \ 1 \end{bmatrix}, \tag{B10}
\]

We assume that the wave function satisfies the bound-
ary condition given by Eq. (20). The obtained tunneling conductance is given as follows:

\[
\sigma(E) = \frac{1}{2} \sigma_1(E) + \frac{1}{2} \sigma_2(E), \quad (B11)
\]

\[
\sigma_1(E) = \frac{\int \sigma_{1S}(E, \theta_S) d\theta_S}{\int \sigma_{1N}(E, \theta_S) d\theta_S}, \quad (B12)
\]

\[
\sigma_2(E) = \frac{\int \sigma_{2S}(E, \theta_S) d\theta_S}{\int \sigma_{2N}(E, \theta_S) d\theta_S}. \quad (B13)
\]

Here, \(\sigma_{1(2)}(E)\) means normalized tunneling conductance when an electron from the outer (inner) Fermi surface injects. In addition, \(\sigma_{1S}(\sigma_{1N})\) represents tunneling conductance between the ARM/S (the ARM/normal metal (\(\Delta_0 = 0\))) junction, where \(i = 1, 2\). In Eqs. (B12) and (B13), \(\sigma_{1S}(E, \theta_S)\) and \(\sigma_{2S}(E, \theta_S)\) are given by

\[
\sigma_{1S}(E, \theta_S) = \begin{cases} 
4e \left( (1 + |a_1|^2 - |r_1|^2) \left( \frac{k_1 \cos \theta_{1N}}{m} (|s|^2 + 1) - i\lambda(s - s^*) \right) + (|a_2|^2 - |r_2|^2) \left( \frac{k_2 \cos \theta_{2N}}{m} (|t_{C1}|^2 + 1) - i\lambda(t_{C1} - t_{C1}^*) \right) \right) & (k_1 \sin \theta_{1N} < k_2) \\
4e (1 + |a_1|^2 - |r_1|^2) \left( \frac{k_1 \cos \theta_{1N}}{m} (|s|^2 + 1) - i\lambda(s - s^*) \right) & (k_1 \sin \theta_{1N} > k_2)
\end{cases} \quad (B14)
\]

\[
\sigma_{2S}(E, \theta_S) = 4e \left( (1 + |a_2|^2 - |r_2|^2) \left( \frac{k_2 \cos \theta_{2N}}{m} (|t_{C2}|^2 + 1) - i\lambda(t_{C2} - t_{C2}^*) \right) + (|a_1|^2 - |r_1|^2) \left( \frac{k_1 \cos \theta_{1N}}{m} (|s|^2 + 1) - i\lambda(s - s^*) \right) \right). \quad (B15)
\]
35 K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett. 103, 237001 (2009).
36 Y. Tanaka, T. Yokoyama, and N. Nagaosa, Phys. Rev. Lett. 103, 107002 (2009).
37 J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbo, and N. Nagaosa, Phys. Rev. Lett. 104, 067001 (2010).
38 J. Alicea, Phys. Rev. B 81, 125318 (2010).
39 J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010).
40 M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. Lett. 103, 020401 (2009).
41 M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. B 82, 134521 (2010).
42 R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).
43 Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).
44 A. Yamakage, Y. Tanaka, and N. Nagaosa, Phys. Rev. Lett. 108, 087003 (2012).
45 A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964).
46 G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).
47 B. Béri, Phys. Rev. B 79, 245315 (2009).
48 P. A. Ioselevich and M. V. Feigel’man, New Journal of Physics 15, 055011 (2013).
49 P. San-Jose, J. Cayao, E. Prada, and R. Aguado, arXiv:1409.7306.
50 H. Kashiwaya, S. Kashiwaya, B. Prijamboedi, A. Sawa, I. Kurosawa, Y. Tanaka, and I. Iguchi, Phys. Rev. B 70, 094501 (2004).
51 M. Sato, Y. Tanaka, K. Yada, and T. Yokoyama, Phys. Rev. B 83, 224511 (2011).
52 S. Kobayashi, K. Shiozaki, Y. Tanaka, and M. Sato, Phys. Rev. B 90, 024516 (2014).
53 K. Sengupta, I. Žutić, H.-J. Kwon, V. M. Yakovenko, and S. Das Sarma, Phys. Rev. B 63, 144531 (2001).
54 Y. Tanaka, Y. Tanuma, K. Kuroki, and S. Kashiwaya, Journal of the Physical Society of Japan 71, 2102 (2002).
55 J. Bardeen, Phys. Rev. Lett. 6, 57 (1961).
56 R. Merserey and P. Tedrow, Physics Reports 238, 173 (1994).
57 Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa, and K. Ishida, Journal of the Physical Society of Japan 81, 011009 (2012).
58 Y. Tada, N. Kawakami, and S. Fujimoto, New Journal of Physics 11, 055070 (2009).
59 J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. Lett. 111, 087002 (2013).
60 The European Physical Journal B 80 (2011), ISSN 1434-6028.
61 S. Kashiwaya, H. Kashiwaya, K. Saitoh, Mawatari, and Y. Tanaka, Physica E: Low-dimensional Systems and Nanostructures 55, 25 (2014), ISSN 1386-9477, topological Objects.
62 Y. Tanaka and S. Kashiwaya, Phys. Rev. B 56, 892 (1997).
63 T. Yokoyama, M. Eto, and Y. V. Nazarov, Phys. Rev. B 89, 195407 (2014).
64 J. Cayao, E. Prada, P. San-Jose, and R. Aguado, Phys. Rev. B 91, 024514 (2015).
65 X. G. Wen and A. Zee, Phys. Rev. B 66, 235110 (2002).
66 B. Béri, Phys. Rev. B 81, 134515 (2010).
67 A. P. Schnyder and S. Ryu, Phys. Rev. B 84, 060504 (2011).
68 E. Dumitrescu and S. Tewari, Phys. Rev. B 88, 220505 (2013).
69 E. Dumitrescu, J. D. Sau, and S. Tewari, Phys. Rev. B 90, 245438 (2014).