Imprinted X-chromosome inactivation impacts primitive endoderm differentiation in mouse blastocysts

Atsushi Fukuda1,2, Nami Motosugi1, Mikiko Ando1, Minoru Kimura3, Akihiro Umezawa2 and Hidenori Akutsu2

1 Medical Division, Institute of Innovative Science and Technology, Tokai University, Isehara, Japan
2 Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
3 Institute of Medical Sciences, Tokai University, Isehara, Japan

Correspondence
A. Fukuda, Institute of Innovative Science and Technology, Medical Division, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
Tel: +81-463-93-1121
E-mail: fa972942@tsc.u-tokai.ac.jp
or
H. Akutsu, Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
Tel: +81-3-5494-7047
E-mail: akutsu-h@ncchd.go.jp

(REceived 19 July 2019, revised 29 October 2019, accepted 3 November 2019, available online 25 November 2019)

doi:10.1002/1873-3468.13676

Edited by Didier Stainier

Epigenetic and transcriptome alterations are essential for lineage specification, represented by imprinted X-chromosome inactivation (iXCI) in female mouse preimplantation embryos. However, how various factors affect transcriptome states and lineage commitment remains unclear. We found that in vitro culture duration strongly influences transcriptional variation compared to iXCI loss. Single-cell analysis of the inner cell mass (ICM) for major transcription and epigenomic factors revealed that sex-specific differences in expression are diminished by loss of iXCI in the primitive endoderm (PrE) but not in the epiblast. Females had a higher proportion of ICM compared to that in males, and PrE development was affected by iXCI states in female embryos. Our findings provide insight into sex differences and iXCI function in lineage specification.

Keywords: imprinted X-chromosome inactivation; lineage specification; sex difference

Epigenetic dynamics and transcriptome alterations are observed after fertilization in mammals [1]. One representative epigenetic event is the establishment of X-chromosome inactivation (XCI) in female mouse embryos [2]. Generally, one of two X-chromosomes in female cells is inactivated to compensate for X-linked gene expression dosage [2]. In mice, prior to establishing XCI, the long noncoding RNA Xist is transcribed from the paternal X-chromosome at approximately the 4-cell stage. Parental origin-specific Xist expression in females leads to imprinted X-chromosome inactivation (iXCI) [3,4]. Establishment of iXCI occurs at approximately the late blastocyst stage, and hallmarks of heterochromatin such as H3K27me3 foci overlapped with Xist transcripts emerge [5]. Once iXCI is established, states are stably maintained during embryonic development in the primitive endoderm (PrE) and trophoblast lineages. In contrast, iXCI is reprogrammed in the epiblast [6,7]. Consequently, both female X-chromosomes are transiently present in an active state, and then, one of two X-chromosomes is randomly inactivated as differentiation proceeds.

A recent study using RNA-seq revealed that Xist-dependent iXCI already occurs without the H3K27me3

Abbreviations
DEGs, differentially expressed genes; ICM, inner cell mass; iXCI, imprinted X-chromosome inactivation; MAPK, mitogen-activated protein kinase; PrE, primitive endoderm; RPKM, reads per kilobase per million mapped reads; SEGs, significantly expressed genes; XCI, X-chromosome inactivation.
hallmark in early preimplantation phases in female mice [8]. Interestingly, the iXCI state is affected by the culture situation, and embryos produced by in vitro culture show an imbalanced sex ratio in birth rates [9]. During preimplantation development in mice, sex differences are observed in terms of the developmental speed by the blastocyst stage [10]. This phenotype is attributed to the presence of the Y-chromosome [10]. Moreover, the developmental competency of embryos derived from in vitro culture is superior to that obtained in vitro in mice after implantation [11]. These studies indicate that culture environment, sex differences, and iXCI impact the transcriptome and developmental propensity.

In the present study, we investigated the effects of transcriptome states by RNA-seq analysis of mouse blastocysts derived from different in vitro culture durations as well as following the loss of iXCI. Clustering analysis revealed that the largest clusters were formed based on culture conditions. We identified differentially expressed genes (DEGs) in sex-specific-, in vitro culture period-, and iXCI-dependent manner. Interestingly, up-regulated genes in the female embryo derived from a short-term in vitro culture (in vitro generated embryos) compared to in the male embryo were associated with a pluripotency network. Moreover, a high-fidelity quantitative gene expression assay targeting representative transcription and epigenetic modifiers at single-cell resolution in the inner cell mass (ICM) revealed that DEGs between males and females depend on iXCI in the PrE lineage. Finally, we found that the proportion of PrE development differed between males and females, and loss of iXCI diminished the PrE differentiation potential. These findings provide insight into the relationship of iXCI with lineage specification and developmental differences based on sex.

Methods

Mouse embryo collection

Xist KO males harboring a repeat A deletion (B6.Cg-Xist<tm5Sado>−/+) were a kind gift from Sado (Kindai University). Xist KO males (>9 weeks) were mated with 8- to 10-week-old B6D2F1 females purchased from CLEA and Sankyo Labo Service (Tokyo, Japan) in vivo or in vitro according to standard methods [3]. All animals were maintained and used in accordance with the Guidelines for the Care and Use of Laboratory Animals of the Japanese Association for Laboratory Animal Science and National Research Institute for Child Health and Development (NRICHD) and Tokai University of Japan. All animal experiments were performed according to protocols approved by the Institutional Animal Care and Use Committee of the NRICHD (Permit Number: 05–006) and Tokai University (Permit Number: 192028).

Both in vivo and in vitro fertilized embryos were cultured in KSOM (EMD Millipore, Burlington, MA, USA) until the late blastocyst stage in an atmosphere of 37 °C 5% CO2. For in vivo samples, at embryonic day 2.5 (E2.5) after fertilization, embryos were flushed from the uterus using M2 medium and cultured for 2.5 days in KSOM medium until E5.0 and used for analysis. For WT embryos collection, the embryos from the littermate are used. In contrast, TYH medium [3] was used as the fertilized medium and the embryos were cultured as described above. At E5, the embryos derived from in vitro were used for analysis.

Single-cell isolation from ICM

Blastocysts at E5 were subjected to immune surgery to isolate the ICM using a conventional method [12]. In total, seven male, seven Xist KO female, and eight WT female embryos were used for single-cell collection. The isolated ICM was placed in 0.05% trypsin (Thermo Fisher Scientific, Waltham, MA, USA) containing 0.1% polyvinyl alcohol (PVA; Sigma, St. Louis, MO, USA) in PBS (−) and incubated for 5 min at room temperature. The trypsin-treated ICM was separated into single cells using a micromanipulator and washed with PBS (−) containing 0.1% PVA for use in the single-cell qPCR assay.

Transcriptome analysis

Total RNA was extracted using an RNAeasy micro kit with DNase treatment (Qiagen, Hilden, Germany) following the manufacturer’s instructions. Total RNA obtained from each sample was subjected to sequencing library construction using an Ovation Solo RNA-Seq System (NuGEN Technologies, San Carlos, CA, USA) according to the manufacturer’s protocol. The Ovation SoLo RNA-Seq System integrates AnyDeplete technology for rRNA depletion and a molecular barcode system. Library quality was assessed with an Agilent 2100 Bioanalyzer High Sensitivity DNA Kit (Agilent Technologies, Santa Clara, CA, USA). The pooled libraries of the samples were sequenced using the Illumina Hiseq 1500 system (Illumina, San Diego, CA, USA) in 101-base-pair paired-end reads.

Sequencing adaptors, low-quality reads, and bases were trimmed with the Trimomatic-0.32 tool. The sequence reads were aligned to the Mouse reference genome (mm10) using tophat 2.1.1 (bowtie2-2.2.3, https://ccb.jhu.edu/software/tophat/index.shtml) with the option ‘--g 1 --no-mixed --no-discordant’. Sequence libraries of the Ovation SoLo RNA-Seq System included 8 bp molecular barcodes to detect unique RNA molecules for accurate gene expression
analysis. NUDUP tool ver.2.2 (NuGEN Technologies, San Carlos, CA, USA) was used to analyze redundancy of the molecular barcodes to identify unique molecules. Files of gene model annotations and known transcripts were downloaded from the Illumina’s iGenomes website (http://support.illumina.com/sequencing/sequencing_software/igenome.html), which were necessary for whole transcriptome alignment with tophat.

The aligned reads were subjected to downstream analyses using strandRings 3.2 software (Agilent Technologies). The read counts allocated for each gene and transcript (RefSeq Genes 2013.04.01) were quantified using a reads per kilobase per million mapped reads (RPKM) method [13]. Genes showing a very low normalized signal value (RPKM < 1) in at least 1 sample in any group were filtered. A karyotype plot of differentially expressed genes (DEGs) was created in R 3.4 package karyoplate R version 1.4.2 [14].

Embryo sex was determined based on the expression of Eif2s3y mapped to the Y-chromosome. Xist KO females were confirmed by the absence of both Xist and Eif2s3y expression. The original data are available in GEO (GSE133845).

For pathway analysis, we used DAVID bioinformatics (https://david.ncifcrf.gov/). To identify the significantly enriched pathway based on KEGG in DAVID, Fisher’s exact test ($P < 0.05$) is used to identify significant pathways.

Single-cell qPCR analysis

The isolated single cells were moved to lysis buffer using a mouth pipette under a microscope. A Single Cell-to-CT™ qRT-PCR Kit (Thermo Fisher Scientific) was used for the assay with slight modifications as described previously [15]. Briefly, half volumes of all reagents were used in the TaqMan probe assay. Cdx2 with $< 30 \, \Delta t$ values were considered as trophoderm cells and removed from the analysis. C1 values > 35 were considered as no detection. Following a previous report [16] with slight modifications, we obtained single-cell expression data using qPCR. To calculate the expression levels per cell based on the C_i values, a C_1 value of 30 was used as background baseline and subtracted from each C_i value. In this analysis, C_i values of no detection samples were calculated as a C_i value of 35. The resulting values were used as the normalized value for gene expression analysis.

For embryo sexing, cells in which Eif2s3y was detected were used as male cells, whereas other cells were used as females in WT embryos. Because we used sperm with Xist deletion to generate Xist KO embryos, cells with no Eif2s3y expression were regarded as Xist KO females. The normalized values (Log2) were used for clustering analysis with EZR (http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/statmedEN.html). To divide the cells into the epiblast or PrE lineage, the cells were classified based on the expression states of Nanog, Sox2, Gata4, Gata6, and Sox17, which were identified as each lineage marker. Based on the clustering results, the cells were subjected to statistical analysis (one-way analysis of variance, ANOVA, with post hoc test for multiple comparisons among embryo types). All TaqMan probes used in this study are shown in Table S4.

Immunofluorescence combined with DNA FISH

The zona pellucida was removed with acid Tyrode’s solution (Sigma), and embryos were fixed with 2% paraformaldehyde in PBS containing 0.1% PVA (Sigma) for 20 min at room temperature and then permeabilized with 0.25% Triton X in PBS-PVA for 15 min at room temperature. After blocking with 1.5% bovine serum albumin (Sigma), the samples were incubated with primary antibodies for NANOG (1:200; ReproCell, Beltsville, MD, USA) and GATA4 (1:200; Abcam, Cambridge, UK). Alexa Fluor 488- or 546-conjugated anti-mouse or anti-rabbit IgG secondary antibodies (Thermo Fisher Scientific) were diluted with PBS-PVA and incubated with the samples for 1 h at room temperature. DNA was stained with DAPI (Vector Laboratories, Burlingame, CA, USA). Before capturing the images, the samples were attached to slide glass and covered with a cover slip. The images were observed using a LSM510 laser scanning confocal microscope (Carl Zeiss, Oberkothen, Germany), and the quantification assay was carried out using IMAGEJ software (NIH, Bethesda, MD, USA).

DNA FISH experiments were performed as described previously [17]. Briefly, after washing with PBS, the samples were incubated with PBS (−) containing RNase A for 1 h at 37 °C. The samples were treated with pepsin (Sigma) for 8–10 min, washed with PBS (−), and incubated with sexing probe (Chromosome Science Labo., Hokkaido, Japan) at 85 °C for 10 min and then incubated with 37 °C overnight. After incubation, the samples were washed as described previously [17] and images were captured.

Results

Effect of transcriptome states on culture conditions, sex, and loss of Xist

Mammalian embryos can develop to the late blastocyst stage in vitro, and blastocyst transfer into the uterus is widely used as a reproductive technique [18]. Thus, we considered that the late blastocyst is suitable for examining the effects of culture conditions, sex differences, and iXCI on transcriptome states in mice. We conducted strand-specific RNA-seq using individual late blastocysts derived from in vivo or in vitro fertilization mated with wild-type (WT) and Xist knockout (KO) male mice [19] and cultured in vitro for different durations, referred to as in vivo and in vitro samples,
Imprinted XCI controls lineage specification

A. Fukuda et al.

A

vivo

Culture in vitro

in vitro fertilization: in vitro embryo

Late blastocyst (E5.0)

RNA-seq in single blastocysts
- WT female
- Xist KO female

vivo

Culture in vitro

in vivo fertilization: in vivo embryo

B

Xist KO

	Female (vivo)	WT female (vivo)	WT male (vivo)	Xist KO female (vivo)	WT male (vivo)	WT female (vivo)
Female						
vivo vs. vitro	Down in vivo	Up in vivo		Down in vivo	Up in vivo	
Male						
vivo vs. vitro	Down in vivo	Up in vivo		Down in vivo	Up in vivo	
Vitro						
Female vs. Male	Up in female	Down in female		Up in female	Down in female	
Vivo						
Female vs. Male	Up in female	Down in female		Up in female	Down in female	

C

Female Vivo (Xist KO vs. WT)

Up in KO: 37%

Down in KO: 2%

Female Vitro (Xist KO vs. WT)

Up in KO: 26%

Down in KO: 1%

D

Vivo

100% of DEGs

- Autosomes + Y-chr
- X-chr

Common

83% of DEGs

- Autosomes + Y-chr
- X-chr

Vitro

429% of DEGs

- Autosomes + Y-chr
- X-chr

E

chrX

Up-regulated in Xist KO (vs. WT)

vivo

AU022751

Gm5634

Gm14511

Gm14458

Xk

Tspan7

Miao

Fundc1

Slc6a14

Dock11

Pygmnc1

Ndufa1

Gm9

Rho6

Rho5

Rho6

Zbx33

Ctgalt1c1

Aflm1

Rap2c

C430049B03Rik

Fam122b

Mospat1

Xr

3930403N18Rik

Ldk26b

Gm364

493050L24Rik

Khh15

Gsp12

Eda

Dg3

Fso4

Brwd3

Bex4

Toea18

Morc4

Jox13

Pamtd10

Nxf2

Amncr1

Amot

Magea6

Magea3

Magea8

Magea2

Magea5

Saf1

Gemin8

vivo

Female (vivo vs. male)

Up-regulated in vivo (n = 232)

% of DEGs

- Autosomes + Y-chr
- X-chr

Common

Vitro (n = 429)

% of DEGs

- Autosomes + Y-chr
- X-chr

Vivo

(n = 83)

% of DEGs

- Autosomes + Y-chr
- X-chr
respectively (Fig. 1A). The cell numbers in blastocysts from both origins were not significantly different (Fig. S1a), indicating that the developmental stage is similar in both in vivo and in vitro embryos. The correlation coefficient among the samples was more than 0.93, exhibiting a high reproducibility (Fig. S1b). Using the genes with >1 RPKM in at least one group, we performed hierarchical clustering analysis (Table S1). Clusters were clearly formed based on culture duration, genotype, and sex (Fig. 1B). Interestingly, the largest cluster was formed based on the in vitro culture duration, indicating that transcriptome states are greatly affected by the developmental environment.

To determine the gene expression states under each condition, we performed pairwise comparison and screened DEGs showing more than twofold changes (Fig. 1C and Table S2). We identified numerous DEGs in the comparison of in vivo and in vitro conditions in both male and female blastocysts, supporting the clustering results (total >929 genes; Fig. 1C). In contrast, comparison of males and females under each condition revealed a relatively small number of DEGs (<493 genes; Fig. 1C). However, among the up-regulated genes in females compared to males, 26% (in vivo) and 40% (in vitro) were enriched in X-chromosomes (Fig. 1C). We also confirmed that X-linked genes were not dominantly expressed in this stage (Fig. S1b).

As expected, a large population of X-linked genes was up-regulated in Xist KO females (in vivo: 37% and in vitro: 26%; Fig. 1C), confirming the effect of Xist-dependent iXCI [8]. Moreover, Xist deletion resulted in a large number of DEGs irrespective of the in vitro culture duration (in vivo: 982 genes and in vitro: 1172 genes; Fig. 1C).

Next, to evaluate the features of the DEGs identified in each pairwise comparison, we constructed a Venn diagram and performed KEGG pathway analysis. Several known pathways were detected in the DEGs by the comparison of in vivo with in vitro in males and females (Fig. S2a). For instance, ‘Protein digestion and absorption’ and ‘Metabolic pathways’ were commonly down- and up-regulated pathways, respectively (Fig. S2a). Interestingly, when we examined the DEGs in males and females in each culture condition, the pathway linked to ‘signaling pathway regulating pluripotency of stem cell’ was identified as significant (Fig. S2b). The pathway is based on the DEGs specifically up-regulated in vivo in females compared to in vivo in males (Fig. S2b). The finding that 26% (in vivo) and 40% (in vitro) of up-regulated genes in females compared to males were enriched in the X-chromosome (Fig. 1C) suggests that X-linked gene overdosage affects pluripotency networks.

In terms of the effect of Xist deletion, up-regulated DEGs in Xist KO females compared to in WT females under both culture conditions were commonly linked to ‘mRNA surveillance pathway’ and ‘Metabolic pathway’ (Fig. S2c). Although a significant pathway was not found in the up-regulated DEGs specifically in in vivo Xist KO females, ‘p53 signaling pathway’ was identified as a significant pathway in the up-regulated DEGs, specifically in in vitro Xist KO female embryos (Fig. S1c).

Interestingly, pluripotency-related pathway, mitogen-activated protein kinase (MAPK) signaling, and transforming growth factor-β signaling were detected as down-regulated DEGs in Xist KO females, specifically in vivo (Fig. S2c). These results indicate that although loss of iXCI causes developmental disorder in each developmental condition [19,17], the pathways influenced differ between the conditions.

These analyses were conducted with all genes, including autosomes; however, Xist deletion caused mainly X-linked gene overdosage (Fig. 1B). Therefore, we focused on X-linked gene expression states. Of the up-regulated DEGs in Xist KO females, the number of X-linked genes was high under each condition, and 73% of common DEGs were mapped to X-chromosomes (Fig. 1D). Furthermore, we found that X-linked up-regulated DEGs in the Xist KO female were randomly distributed over the entire X-chromosome under both culture patterns (Fig. 1E). Interestingly, among commonly up-regulated genes in Xist KO females, large families of Rhox, Xlr, and Magea were identified (Fig. 1E), suggesting that these regions might be subjected to common epigenetic regulation.

Throughout RNA-seq analysis in embryos under various conditions, we found many DEGs. In particular, many X-linked genes were up-regulated in females compared to males under both in vivo and in vitro conditions.
Sex-specific differences in expression states of transcription and epigenetic factors depend on iXCI in the primitive endoderm but not in the epiblast

The blastocyst is the first phase of differentiation and is composed of three parts: epiblast, PrE, and trophoderm [20]. In terms of iXCI, the state is preserved in the PrE and trophoderm lineages but not in the epiblast [2]. Therefore, we examined how sex differences and iXCI loss impact transcription and epigenomic factors in the ICM at single-cell resolution. To investigate these intrinsic features, we used in vivo-derived samples for high-fidelity gene expression analysis by quantitative PCR using a TaqMan probe [3]. We confirmed that our system was highly reproducible (Fig. S3). Using this system, we collected single cells from the in vivo-derived ICM by immune surgery and evaluated gene expression for 72 genes related to transcription or epigenetic factors as well as XCI-related genes in male, female, and Xist KO female embryos (Fig. 2A). To avoid contamination and potential damage to the trophoderm during immune surgery, we excluded the trophoderm cells and screened cells with low expression levels of Cdx2, a trophoderm marker [21], for further analysis. After removing the cells with high Cdx2 expression, we selected 74 cells for further analysis (Table S3).

We divided the cells into two lineages, epiblast (EPI) and PrE, which are known makers for EPI (Nanog/Sox2) or PrE (Gata4/Gata6/Sox17) [16], to categorize the cell lineage. Hierarchical clustering analysis clearly revealed two populations based on the expression levels of these markers (Fig. 2B). Each embryo group (WT female, male, and Xist KO female) was randomly distributed in both the EPI and PrE groups (Fig. 2B).

Based on the clustering results, we compared the expression states in individual genes based on their origins. In EPI cells, six up-regulated genes in females were identified as significantly expressed genes (SEGs) in the comparison of WT females to males (Fig. 2C). In contrast, the comparison between WT and Xist KO females showed that all genes except for Eomes genes were not significantly expressed, indicating that the major transcription and epigenomic factors were not affected by two continuously active X-chromosomes (Fig. 2D). We also identified 12 SEGs in Xist KO females compared to in males, although all of them were up-regulated in Xist KO females (Fig. 2E). These results indicate that sex differences affect the expression levels of some types of transcription and epigenetic factors in EPI, and loss of iXCI did not affect the expression states of the analyzed genes in female embryos.

In PrE, all identified SEGs between WT females and males were up-regulated in females, as observed for EPI (Fig. 2C,F). Moreover, the identified SEGs were up-regulated in Xist KO females compared to in WT females, indicating that loss of iXCI leads to overexpression of the analyzed genes and X-linked genes (Fig. 2G), consistent with the results of a recent report [8]. Interestingly, comparison of Xist KO females and males revealed that no SEGs compared between WT females with males were significantly expressed (Fig. 2F,H), and only Kdm5c and Mycn were up-regulated in Xist KO females compared to males (Fig. 2H). These results indicate that female-specific genes up-regulated in PrE were affected by iXCI; however, the effect was decreased by Xist deletion, suggesting the dependency of PrE development.

Loss of iXCI impacts lineage specification of PrE

Next, we asked how the gene expression states affect lineage specification in the late blastocyst. We conducted immunofluorescence analysis of NANOG and GATA4 following DNA-fluorescence in situ hybridization (FISH) using in vivo-derived WT female, Xist KO female, and male late blastocysts. As previously reported [10], we observed that the number of male cells was significantly larger than that of female cells (Fig. 3A). Interestingly, fewer Xist KO cells were detected compared to WT female and male cells (Fig. 3A), indicating that loss of iXCI cannot compensate for sex differences in terms of cell numbers.

Immunofluorescence analysis revealed a significantly decreased proportion of GATA4-positive cells in males compared to in WT females (6.8% in males and 9.8% in WT females; Fig. 3B,C). Moreover, a significant decrease in the GATA4-positive cell population was detected in Xist KO females compared to in WT females (9.8% in WT females and 5.6% in Xist KO females; Fig. 3B,C). Interestingly, the percentage of GATA4-positive cells in Xist KO females was comparable to that in males (Fig. 3B,C), supporting the quantitative PCR results.
Fig. 2. Single-cell qPCR analysis in ICM. (A) Experimental scheme for single-cell analysis. The ICM was isolated from late blastocysts under the same condition of in vivo samples shown in Fig 1A (flushed from uterus at E2.5 and then cultured until E5.0). The single cells were analyzed by TaqMan qPCR. Sexing was based on Eif2s3y, which is mapped to the Y-chromosome. Cells expressing high levels of Cdx2 were considered as trophectoderm and removed from analysis. A total of 72 genes and 74 cells were analyzed. (B) Clustering analysis based on the expression levels of Nanog (EPI), Sox2 (EPI), Gata4 (PrE), Gata6 (PrE), and Sox17 (PrE). The cells were categorized into the EPI and PrE lineages based on the expression levels of these markers. Heat map showing the expression levels of each sample. (C–E) SEGs in EPI lineage. (F–H) SEGs in PrE lineage. For pairwise comparison in each group, the average expression levels in each group were used and one-way ANOVA was applied to determine significance (P < 0.05). SEGs with a P-value less than 0.05 are shown in red.
In contrast, the percentage of NANOG-positive cells was decreased only in male embryos (males: 8.2%, WT females 10.3%, and Xist KO female: 10.8%; Fig. 3A, C). Furthermore, the single blastocyst RNA-seq data in PrE and EPI markers also showed that expression levels of Nanog, Sox2, Sox17, and Gata4 in Fig. 3A, C).
females were higher than those in males (Fig. S4a). Given that the proportions of GATA4- and NANOG-positive cells of female embryos were higher than those of males and the CDX2-positive cell proportion is higher in males than in females (Fig. 3C,D and Fig. S4b), male embryos developed the trophoderm lineage well compared with females.

Taken together, these results indicate that sex differences occur in both EPI and PrE lineage development. Particularly, iXCI impacts on PrE lineage specification in females.

Discussion

Transcriptome analysis revealed that culture conditions greatly impact gene expression states and Xist deletion. Given that the developmental competency of embryos derived from in vitro fertilized and culture is inferior to in vivo embryos [11], the identified pathways may be responsible for the poor development in in vitro-derived embryos. For example, the Wnt, MAPK, and vascular endothelial growth factor pathways were identified as commonly up-regulated in in vitro-derived male and female embryos (Fig. S1a). Because these pathways have been widely studied and small molecules are used for their repression [22], transient treatment during in vitro culture may have beneficial effects on development.

Because we observed that up-regulated genes in WT females compared to in males were enriched on the X-chromosome, sex differences in transcriptome would be caused by X-chromosome reactivation in the female epiblast [2]. Interestingly, we found that pathways linked to pluripotency were induced by up-regulated genes in female embryos in vivo compared to males (Fig. S1b). Recent studies using mouse embryonic stem cells indicated that having two active X-chromosomes blocks differentiation via Dusp9-mediated MAPK pathway suppression [23,24]. Consistent with the results of stem cell studies, Dusp9 was up-regulated in female embryos compared to male embryos (Table S1). Collectively, overexpression of X-linked genes was associated with pluripotent states and responsible for the high population of NANOG-positive cells in female compared to male embryos and in Xist KO females (Fig. 3D).

In terms of the effect of Xist deletion on the transcriptome, up-regulation of the Rhox and Magea families in Xist KO female is consistent with the results described in previous studies [8]. Importantly, overexpression of Rhox5 in mouse embryonic stem cells impairs the differentiation potential [25], indicating that dysregulation of Rhox-family genes is one factor responsible for the developmental disorder in Xist deletion. In contrast, although the results for the Xlr family have not been reported in Xist dependency in preimplantation embryos, given that the Xlr, Magea, and Rhox families are under the control of H3K9me2 [26,27] and Xist RNA overlaps with H3K9me2 [28], the results showing the Xist dependency of these families are reasonable.

Single-cell analysis showed that the number of SEGs in the comparison between males and Xist KO females was greater than that between in males and WT females (Fig. 2C,E). Although the exact reason for the difference remains unclear, and given that paternal X-chromosome reactivation occurs transiently in WT females [6,7] and RNA-seq analysis identified many DEGs between WT and Xist KO female embryos (Fig. 1C), the results suggest that EPI cells in Xist KO females are not exactly the same as those in WT females. Moreover, among of the up-regulated genes in Xist KO females compared with males, Sox2 and Esrrb were identified as SEGs [29,30]. As both genes are known as pluripotency-related genes, a defect to exit to pluripotency observed in female embryonic stem cells [23] may also occur in Xist KO female epiblasts.

In contrast, analysis of the PrE lineage revealed that that most transcriptional and epigenomic factors analyzed in this study were up-regulated in Xist KO female cells compared to WT female cells. These results are consistent with the genome-wide scale of transcriptional states in Xist KO trophoblasts [31]. Although the mechanisms underlying the up-regulation of X-linked genes and autosomal genes by loss of iXCI remain unknown, many transcription and epigenetic factors are mapped to X-chromosome such as Atrx and Meep2. Indeed, Meep2 is highly up-regulated in PrE and Xist KO female embryos and plays an important role in gene silencing [32]. Therefore, multiple derepression of gene silencers mapped to the X-chromosome may cause genome-wide up-regulation of autosomal genes.

Finally, in terms of ICM development, we found that PrE development in Xist KO female embryos was similar to that in males, supported by the single-cell qPCR results. Poor development of PrE in Xist KO female embryos was previously observed when SOX17-positive cells were reduced [8]. In contrast to PrE development, we found no differences in EPI development in Xist KO females compared to WT females. Although the inactive X-chromosome is reactivated in EPI [2], Xist-dependent X-linked gene silencing occurs before X-chromosome reactivation [8,17]. Thus, these results indicate that having both X-chromosomes continuously active is dispensable for EPI specification in blastocysts.
In conclusion, sex differences exist during early embryonic development in mice, and ICM development differs between males and females. In female embryos, iXCI impacts PrE development, revealing a novel role for iXCI in lineage specification.

Acknowledgements

We would like to thank Prof T. Sado (Kindai University) for gifting Xist KO mice and helpful comment, Prof H. Kobayashi (Tokai University) for discussion, and A. Mitani and A. Nakamura for their technical assistance. We also thank Dr Kikugawa (DNA Chip Research Inc.) for bioinformatic analysis and are grateful to Dr C. Okada, the Support Center for Medical Research and Education, Tokai University. This research was supported by AMED under Grant Number JP19bm0704038 to AF and Grants-in-Aid for Scientific Research (A) (17H01588) to HA.

Author contributions

AF conceived and designed the study. AF conducted most of experiments and analyzed the data with help from NM, MA, and MK. AF, AU, and HA supervised the study. AF wrote the manuscript with input from all of co-authors.

References

1 Burton A and Torres-Padilla ME (2014) Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat Rev Mol Cell Biol 15, 723–734.
2 Augui S, Nora EP and Heard E (2011) Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet 12, 429–442.
3 Fukuda A, Tomikawa J, Miura T, Hata K, Nakabayashi K, Egkan K, Akutsu H and Umezawa A (2014) The role of maternal-specific H3K9me3 modification in establishing imprinted X-chromosome inactivation and embryogenesis in mice. Nat Commun 5, 5464.
4 Takagi N and Sasaki M (1975) Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256, 640–642.
5 Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringe KA, Wang H, de la Cruz CC, Otte AP, Panning B and Zhang Y (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135.
6 Okamoto I, Otte AP, Alis CD, Reinberg D and Heard E (2004) Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644–649.
7 Mak W, Nesterova TB, de Napoles M, Appanah R, Yamanaka S, Otte AP and Brockdorff N (2004) Reactivation of the paternal X chromosome in early mouse embryos. Science 303, 666–669.
8 Borensztein M, Syx L, Ancelin K, Diabangouaya P, Picard C, Liu T, Liang JB, Vassilei I, Galupa R, Servant N et al. (2017) Xist-dependent imprinted X inactivation and the early developmental consequences of its failure. Nat Struct Mol Biol 24, 226–233.
9 Tan K, An L, Miao K, Ren L, Hou Z, Tao L, Zhang Z, Wang X, Xia W, Liu J et al. (2016) Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization. Proc Natl Acad Sci USA 113, 3197–3202.
10 Burgoyne PS (1993) A Y-chromosomal effect on blastocyst cell number in mice. Development 117, 341–345.
11 Delle Piane L, Lin W, Liu X, Donjacour A, Minasi P, Revelli A, Maltepe E and Rinaudo PF (2010) Effect of the method of conception and embryo transfer procedure on mid-gestation placenta and fetal development in an IVF mouse model. Hum Reprod 25, 2039–2046.
12 Nagy A, Gertsenstein M, Vintersten K and Behringer R (2006) Immsunosurgery: isolating the inner cell mass (ICM) of blastocysts. CSH Protoc 2006.
13 Mortazavi A, Williams BA, McCue K, Schaeffer L and Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5, 621–628.
14 Gel B and Serra E (2017) karyoplotR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data. Bioinformatics 33, 3088–3090.
15 Fukuda A, Mitani A, Miyashita T, Umezawa A and Akutsu H (2015) Chromatin condensation of Xist genomic element for X-inactivation in mouse. Dev Cell 34, 136–146.
16 Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND and Robson P (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18, 675–685.
17 Fukuda A, Mitani A, Miyashita T, Sado T, Umezawa A and Akutsu H (2016) Maintenance of Xist imprinting depends on chromatin condensation state and Rnf12 dosage in mice. PLoS Genet 12, e1006375.
18 Gardner DK, Schoolcraft WB, Wagle Y, Schlenker T, Stevens J and Hesla J (1998) A prospective randomized trial of blastocyst culture and transfer in in-vitro fertilization. Hum Reprod 13, 3434–3440.
19 Hoki Y, Kimura N, Kanbayashi M, Amakawa Y, Ohhata T, Sasaki H and Sado T (2009) A proximal conserved repeat in the Xist gene is essential as a genomic element for X-inactivation in mouse. Development 136, 139–146.
20 Chazaud C and Yamanaka Y (2016) Lineage specification in the mouse preimplantation embryo. Development 143, 1063–1074.
21 Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F and Rossant J (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132, 2093–2102.
22 Weinberger L, Ayyash M, Novershtern N and Hanna JH (2016) Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol 17, 155–169.
23 Schulz EG, Meisig J, Nakamura T, Okamoto I, Sieber A, Picard C, Borensztein M, Saitou M, Bluthgen N and Heard E (2014) The two active X chromosomes in female ESCs block exit from the pluripotent state by modulating the ESC signaling network. Cell Stem Cell 14, 203–216.
24 Choi J, Clement K, Huebner AJ, Webster J, Rose CM, Brumbaugh J, Walsh RM, Lee S, Savol A, Etchegaray JP et al. (2017) DUSP9 modulates DNA hypomethylation in female mouse pluripotent stem cells. Cell Stem Cell 20, 706–719.e7.
25 Fan Y, Melhem MF and Chaillet JR (1999) Forced expression of the homeobox-containing gene Pem blocks differentiation of embryonic stem cells. Dev Biol 210, 481–496.
26 Auclair G, Borgel J, Sanz LA, Vallet J, Guibert S, Dumas M, Cavelier P, Girardot M, Forne T, Feil R et al. (2016) EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos. Genome Res 26, 192–202.
27 Wen B, Wu H, Shinkai Y, Irizarry RA and Feinberg AP (2009) Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet 41, 246–250.
28 Escamilla-Del-Arenal M, da Rocha ST, Spruijt CG, Masui O, Renaud O, Smits AH, Margueron R, Vermeulen M and Heard E (2013) Cdyl, a new partner of the inactive X chromosome and potential reader of H3K27me3 and H3K9me2. Mol Cell Biol 33, 5005–5020.
29 Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov AA et al. (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9, 625–635.
30 van den Berg DL, Zhang W, Yates A, Engelen E, Takacs K, Bezstarosti K, Demmers J, Chambers I and Poot RA (2008) Estrogen-related receptor beta interacts with Oct4 to positively regulate Nanog gene expression. Mol Cell Biol 28, 5986–5995.
31 Sakata Y, Nagao K, Hoki Y, Sasaki H, Obuse C and Sado T (2017) Defects in dosage compensation impact global gene regulation in the mouse tropheblast. Development 144, 2784–2797.
32 Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J and Wolfe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19, 187–191.

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Fig. S1. Characterization of samples for RNA-seq analysis.
Fig. S2. Venn diagram and KEGG pathway analysis.
Fig. S3. Effect of preamplification on qPCR assay.
Fig. S4. Expression states of lineage markers.
Table S1. RNA-seq data with more than 1 RPKM.
Table S2. Differentially expressed gene lists.
Table S3. Single qPCR data.
Table S4. TaqMan probe information.