I. INTRODUCTION

After the discovery of superconductivity in twisted bilayer graphene \cite{1a} there has been a tremendous interest in moiré materials \cite{2a-4a}. Particularly notable are those derived from graphene such as twisted bilayers \cite{2b-3b}, and stretched and strained graphene bilayers \cite{4b-4c}. Much of this interest is derived from the possibility to engineer moiré patterns that lead to a rich twist angle-dependent band structure. Furthermore one finds flat bands at specific magic angles \cite{3a}. Flat bands imply small to vanishing kinetic energy, which renders the electron-electron interactions a dominant energy scale. Therefore, flat band systems can host strongly correlated phases of matter and bilayers of various twist angles offer an opportunity to tune the band flatness.

An interesting class of materials closely related to graphene is transition metal dichalcogenides (TMDs). TMDs are a family of materials with chemical formula MX$_2$, where M is a transition metal (e.g. W or Mo) and X any of the three chalcogens S, Se or Te \cite{4a-4b}. They have recently attracted attention because of their interesting electronic and optical properties \cite{4a}. Some of this interest is owed to their two-dimensional nature and some to their direct band gap with associated frequency in the optical range. TMDs lend themselves to the design of electronic components such as transistors \cite{4a, 4b}. Furthermore they display interesting optical effects such as an extraordinary large value of the refractive index in the visible frequency range \cite{4c}. Due to their dimensionality and lattice structure, the study of moiré superlattices has been extended to TMDs. Theoretical work \cite{3a, 4a} has proposed interesting effects in different twisted TMD bilayers (tTMDs) including flatbands appearing for a range of angles \cite{3a} and angle dependent topological transitions \cite{3a}. Experimentally, evidence for moiré excitons has been reported in tTMD heterobilayers \cite{4a, 4b}.

A second line of research with recent rapid development is periodically driven quantum systems or Floquet-systems, e.g., a system irradiated by monochromatic laser light. Such studies have been motivated by the prediction of phases of matter and transitions that cannot be achieved at equilibrium \cite{5a, 5b}, as well as the possibility to engineer rich topological structures \cite{6a, 6b}. This line of research is also motivated by the possibility of studying these periodically driven systems by effective time-independent Floquet Hamiltonians, which greatly simplify their treatment. Several theoretical approaches have been developed and include perturbative methods and their applications \cite{7a, 7b} and non-perturbative methods \cite{8a, 8b, 8c}. Inevitably, Floquet studies have appeared for graphene \cite{9a, 9b, 9c, 9d, 9e, 9f, 9g, 9h}. In graphene one may apply circularly polarized light to open a gap and break time-reversal symmetry. Similarly, there have been studies on TMDs under the influence of light \cite{9a, 9b, 10a-10b}; circularly polarized light can lift the valley degeneracy \cite{10a}.
More recently there has been interest in the effects of light on moiré materials. For instance, there have been multiple studies of twisted bilayer graphene subjected to circularly polarized light and transverse magnetic mode (longitudinal component) light, like the transverse magnetic mode from a waveguide. Twisted double bilayer graphene has been studied under the influence of both forms of light. However, for tTMDs these types of monochromatic drives have not been investigated yet. This is the topic of this work.

The remainder of the paper is organized as follows. In Sec. II we give a brief summary of relevant results regarding the undriven tTMD and its effective Hamiltonian. In Sec. III we discuss the limitation the undriven model faces when subjected to periodic drive and how the model has to be regularized to accurately capture the influence of a periodic drive. In Sec. IV we discuss how light of different polarizations (including longitudinal) couples in the effective model and provide a brief discussion of the numerical implementation of the time-dependent Hamiltonians. The effects of light on band topology, spin texture, and band structure we observe in driven systems and their effective time-independent description are discussed in Sec. V. Lastly we summarize our results in Sec. VI.

II. THE UNDRIVEN MODEL

The starting point of our discussion for a twisted TMD homobilayer, as shown in Fig. 1 for MoTe2, is the low-energy effective Hamiltonian introduced in Ref. [35].

$$\mathcal{H}_f(r)[f] = \left(\begin{array}{cc} f(k - \kappa_+) + \Delta_0(r) & \Delta_T(r) \\ \Delta_T(r) & f(k - \kappa_-) + \Delta_0(r) \end{array} \right),$$

where $f(k) = -k^2/(2m^*)$ is the approximate low-energy valence band dispersion of a single layer TMD near the K point. We will later introduce an alternate approximation for this term since a bounded Hamiltonian is more appropriate in a driven setting because it improves convergence properties. Alternatively, one could introduce a cut-off energy.

The Hamiltonian Eq. (1) is defined in the basis $\Psi = (\Psi_b, \Psi_t)$, where $\Psi_b (\Psi_t)$ corresponds to the bottom (top) layer creation operator with spin up. The two layers are mutually rotated with respect to each other by an angle θ, which will be assumed to be small, i.e., $\theta \lesssim 10^\circ$. A bilayer with larger twist angles becomes quasi-periodic and therefore will not be considered here. To have momenta in both layers measured with respect to a common coordinate system one needs to introduce the mutual shifts $\kappa_\pm = 2\pi\theta(-1/\sqrt{3}, \pm1/3)/a_0$, where a_0 is the intra-layer lattice constant.

Geometrically, the rotational mismatch between the layers leads to a moiré pattern that is captured by the following effective interlayer tunneling term

$$\Delta_T(r) = w(1 + e^{-iG_2(\hat{z} \times r)} + e^{-iG_3(\hat{z} \times r)}),$$

where $\mathbf{G}_n = 4\pi/\sqrt{3}a_0$ and $R_2((n-1)\pi/3)\hat{y}$ and R_3 is a rotation matrix around the z axis. Here, w determines the strength of the interlayer coupling. Furthermore, we have an effective position-dependent layer bias that is given as

$$\Delta_l = 2V\sum_{j=1}^3\cos(\theta G_{2j+1}(\hat{z} \times r) + l\psi),$$

where V sets the strength of the position-dependent in-plane bias and the index $l = \pm 1$. These position dependent terms in the Hamiltonian correspond to the moiré potential, and endow the twisted TMD with a larger unit cell than a single layer TMD. The characteristic length scale is $a_M = a_0/\theta$, and has an associated smaller moiré Brillouin zone (mBZ) as seen in Fig. 3. Through out this work and for concreteness, we fix the physical parameters to ones that correspond to MoTe2. That is we consider the model as in Ref. [35], i.e., $(V, w, \psi, m^*, a_0) = (8\text{meV}, -8.5\text{meV}, -89.6^\circ, 0.62a_0, 3.47\text{Å})$, where m^* is an effective mass, ψ a phase term and a_0 is the intra-layer distance between sites.

We will now review some of the interesting equilibrium properties of Hamiltonian that were discussed in Ref. [35]. It is useful to define a layer-space pseudo-spin...
FIG. 2. (Color online) Plot of $\Delta(r) = (\Delta_x, \Delta_y, \Delta_z)$, where $\Delta_{x,y}$ correspond to the red arrows and the density plot corresponds to Δ_z.

magnetic field as

$$\Delta(r) = \left(\text{Re}(\Delta_T^+(r)), \text{Im}(\Delta_T^+(r)), \frac{\Delta_1(r) - \Delta_{-1}(r)}{2} \right)^T. \tag{4}$$

As shown in Fig. 2 for this system, $\Delta(r)$ exhibits a layer space skyrmion pseudo-spin texture, which winds once around the moiré unit cell $[35, 109]$.

In Fig. 3 (a) we plot the band structure for a twist angle of 1.2°. The top three bands exhibit a narrow bandwidth. Furthermore, the different bands have non-trivial Chern numbers (as indicated in the right of the figure)

$$C_n = \frac{1}{2\pi i} \int_{\text{mBZ}} (\nabla \times \langle u_n(k) | \partial_k | u_n(k) \rangle)_z \, dk, \tag{5}$$

where $|u_n\rangle$ is the n-th eigenvector of the Bloch Hamiltonian. As the twist angle is increased, the gap between bands $n = 2$ and $n = 3$ decreases (counting from the “top”), until the gap closes at $\theta \approx 1.8^\circ$, as shown in Fig. 3 (c). This gap closing is accompanied by a change in the band Chern numbers from $(-1, 0)$ to $(1, -2)$ (Fig. 3 (d)).

It is interesting that such a topological transition may be achieved merely by changing the angle. However, in order to study the physics across the transition, one would have to prepare a new sample for each angle and match the angle very closely. It would be advantageous to be able to tune a similar transition in-situ. We will study the effect of different forms of light and will find that it is indeed possible to use longitudinal light to induce the same transition.

III. REGULARIZATION OF THE UNDRIVEN HAMILTONIAN

After reviewing the equilibrium properties, we will investigate the properties of the system under the influence of different light sources. We first determine what frequency regimes are most likely to have an accurate description using effective Floquet Hamiltonians. First one should note that in order to be consistent with the low-energy effective Hamiltonian in Eq. (1) we need to make sure that driving frequencies fulfill $\Omega < 1.1$ eV so as to avoid interband absorption to remote higher energy bands that are not captured with this Hamiltonian (see Fig. 4). We also neglect lower energy valence bands because near the K point they are spectrally isolated. This consideration does not apply to the the spin-orbit split
partner of the top valence band, which is close in energy ($\Delta_{\text{SOC}} \approx 220 \text{meV}$ [35]). Our neglect of this band is, however, justified by the absence of optical coupling between the spin-orbit split partners at the top of the valence band. In Appendix A 1 we provide some additional details. Precisely, this means that for frequencies close to 1.1 eV we assume that the effects of light are dominated by single photon processes. Other bands that were neglected, such as ones coming from different orbitals, will also be ignored under the same assumption.

Before we study the effect of light, however, it is important to devise a relevant model that makes it easy to treat using high-frequency approximations in Floquet theory. Many of the estimates for such discussions rely on operator norms. The effective Hamiltonian in Eq. (1), however, is not well-suited to such estimates because one of its constituents $f(k) = -\frac{k^2}{2m^*}$ is unbounded. That the Hamiltonian is unbounded also leads to convergence issues in our numerics [112] and therefore it is best avoided by choosing a more well-suited effective model.

To sidestep these issues we realize that we need to offer a suitable replacement for $f(k)$ that is bounded. The best choice is of course to make use of an improved approximation that captures some features on a more global scale. Such an expression is given below (the details of its derivation are given in Appendix A 2)

$$
\tilde{f}(k - \mathbf{K}) \approx C_0 + \sum_{n=1}^{5} C_n [2 \cos(nX_k) \cos(nY_k) + \cos(2nX_k)]
$$

where we introduced the shorthand notation $Y_k = (\sqrt{3}/2)ak_y$, $X_k = (1/2)ak_x$ and included a shift by $\mathbf{K} = (4\pi/3a, 0)$ to end up with a more convenient notation, where $a = 3.472\text{Å}$ is the lattice constant of the unit cell [110]. The coefficients in this expression are given in units of eV as

$$
C_0 = -0.4137; \quad C_1 = -0.1046; \quad C_2 = 0.0322
$$

$$
C_3 = -0.0221; \quad C_4 = -0.0080; \quad C_5 = -0.0012
$$

$$
C_6 = 0.0916; \quad C_7 = 0.0060; \quad C_8 = -0.0047
$$

$$
C_9 = 0.0080; \quad C_{10} = -0.0055; \quad C_{11} = 0.0046
$$

To motivate this expression we recall that $f(k)$ arises from one particular band in single layer MoTe$_2$ (see Appendix A 2). The expression $f(k) = -\frac{k^2}{2m^*}$ is a crude approximation of this band only valid near \mathbf{K}, and $\tilde{f}(k)$ captures more features and is better behaved in the sense that it is bounded, as shown in Fig. 4. Although we should still stress that it is most valid near \mathbf{K} because some behaviour due spin-orbit coupling away from the \mathbf{K} point was neglected. We refer to Appendix A 2 for a more detailed discussion on the derivation of these results. We observe that the new approximation (blue) captures the band of interest (dashed black) more accurately than the quadratic approximation (red). Intralayer couplings between the blue band and the gray bands are assumed negligible because of the large energy gap. Since interlayer couplings are usually even weaker we assume that we can neglect the upper gray bands and other bands that are not displayed.

The Hamiltonian now is the same as Eq. (1), just with the new \tilde{f} instead of f, that is

$$
\mathcal{H}_\uparrow = \left(\tilde{f}(R_{\theta/2}(k - \kappa_+)) + \Delta_T \right) \bar{\Delta}_T \left(\tilde{f}(R_{\theta/2}(k - \kappa_-)) + \Delta_{-1} \right),
$$

where all references to position dependence have been dropped to simplify the notation. A rotation matrix for momenta had to be introduced to measure momenta in both layers in the same coordinate system, which was
necessary because \(\tilde{f}(\mathbf{k}) \) is not rotationally symmetric unlike \(f(\mathbf{k}) \). One should note that \(\tilde{f}(\mathbf{k}) \) has the dominant bandwidth of the problem \(\sim 0.7 \) eV. We stress that our approximation means that only intra-valence band optical matrix elements are considered in this theory. We also stress that more realistic simulations that take other bands into account are needed but are beyond the scope of this work. Therefore, we continue by conventional estimates \cite{73, 74, 87} with our model, and find that driving frequencies \(\Omega > 0.7 \) eV can be considered to be in a high-frequency limit from this theoretical point of view. We will neglect the influence light in this frequency regime potentially has on phonons.

IV. MATHEMATICAL ASPECTS OF LIGHT-DRIVEN SYSTEM

In this section we will discuss how different forms of light affect the Hamiltonian in Eq. (8). A periodic time-dependent Hamiltonian \(H(t + T) = H(t) \) commutes with the generator of time translations, \(e^{i(\mathbf{q}\cdot \mathbf{v})} \). Therefore, similar to Bloch’s theorem the wavefunction factorizes in the form \(\Psi(t) = e^{i\mathbf{q}\cdot \mathbf{r}} u(t) \), where \(u(t) \) is periodic in time and \(\mathbf{r} \) is a constant called the quasi-energy \cite{73, 88}. Inserting this ansatz in the Schrödinger equation, one finds the Floquet-Schrödinger equation

\[
\varepsilon u(t) = [H(t) - i\partial_t] u(t),
\]

which now treats time on the same level as position—as an operator. If we expand Eq. (9) in terms of plane waves \(e^{i\mathbf{q}\cdot \mathbf{r}} \), we find that the equation can be put in the form

\[
\begin{pmatrix}
\vdots & \vdots & \vdots & \vdots & \vdots \\
H_0 & H_1 & H_0 & H_1 & H_2 \\
H_2 & H_3 & H_0 & H_1 & H_2 \\
H_3 & H_2 & H_0 & H_1 & H_2 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\end{pmatrix}
\begin{pmatrix}
u_1 \\
H_0 - \omega
\end{pmatrix}
\begin{pmatrix}
x_1 \\
H_1
\end{pmatrix}
\begin{pmatrix}
x_2 \\
H_0 + \omega
\end{pmatrix}
\begin{pmatrix}
x_3 \\
H_1
\end{pmatrix}
\begin{pmatrix}
x_4 \\
H_2
\end{pmatrix}
\begin{pmatrix}
x_5 \\
H_0 - \omega
\end{pmatrix}
\begin{pmatrix}
x_6 \\
H_1
\end{pmatrix}
\begin{pmatrix}
x_7 \\
H_2
\end{pmatrix}
\begin{pmatrix}
x_8 \\
H_0 + \omega
\end{pmatrix}
\begin{pmatrix}
x_9 \\
H_1
\end{pmatrix}
\begin{pmatrix}
x_{10} \\
H_2
\end{pmatrix}
\begin{pmatrix}
x_{11} \\
\vdots
\end{pmatrix}
\]

where

\[
\varepsilon = \begin{pmatrix}
u_1 \\
H_0
\end{pmatrix}
\begin{pmatrix}
x_1 \\
H_1
\end{pmatrix}
\begin{pmatrix}
x_2 \\
H_0 + \omega
\end{pmatrix}
\begin{pmatrix}
x_3 \\
H_1
\end{pmatrix}
\begin{pmatrix}
x_4 \\
H_2
\end{pmatrix}
\begin{pmatrix}
x_5 \\
H_0 - \omega
\end{pmatrix}
\begin{pmatrix}
x_6 \\
H_1
\end{pmatrix}
\begin{pmatrix}
x_7 \\
H_2
\end{pmatrix}
\begin{pmatrix}
x_8 \\
H_0 + \omega
\end{pmatrix}
\begin{pmatrix}
x_9 \\
H_1
\end{pmatrix}
\begin{pmatrix}
x_{10} \\
H_2
\end{pmatrix}
\begin{pmatrix}
x_{11} \\
\vdots
\end{pmatrix}
\]

This representation is exact, and suitable for numerical implementations upon truncation to finite \(|n| \leq n_{\text{max}} \). Physical considerations must be made to choose a reasonable \(n_{\text{max}} \) and convergence can be checked by changing this value and seeing that the results around \(n = 0 \) are numerically unchanged. In the next sections, we use this representation to obtain our results.

FIG. 5. (Color online) Cartoon of a twisted TMD subjected to circularly polarized light from a distant source.

A. Circularly polarized light

We first consider the twisted TMD when subjected to circularly polarized light as shown in Fig. 5. Circularly polarized light is described by a vector potential that has components only in the plane and can be introduced very simply via the usual minimal substitution \(\mathbf{k} \rightarrow \mathbf{k} - \mathbf{A} \) and \(\mathbf{A} = (A_x \cos(\Omega t), A_y \sin(\Omega t)) \). Here we neglect the effect light has on interlayer hopping elements because these are i) dominated by the components that are perpendicular to the sheet hoppings and ii) interlayer hoppings are initially so small that the effect described in i) is the dominant mechanism.

One may now want to compute the components \(H_n \) that are needed for a numerical implementation. The result is given below

\[
H_{n,3}^{\text{circ}}(\mathbf{r}) = \tilde{H}_{n,3} + \Delta V(\mathbf{r}) \delta_{0n},
\]

where

\[
\Delta V(\mathbf{r}) = \begin{pmatrix}
\Delta_1(\mathbf{r}) & \Delta_T(\mathbf{r}) \\
\Delta_T(\mathbf{r}) & \Delta_{-1}(\mathbf{r})
\end{pmatrix}
\]

with \(\Delta_T(\mathbf{r}) \) given by Eq. (2), \(\Delta_{\pm 1}(\mathbf{r}) \) given by Eq. (3), and

\[
\tilde{H}_{n}^{\text{circ}} = \begin{pmatrix}
\tilde{f}_n(R_{\theta/2}(\mathbf{k} - \kappa_+)) & 0 \\
0 & \tilde{f}_n(R_{\theta/2}(\mathbf{k} - \kappa_-))
\end{pmatrix},
\]

where the functions \(\tilde{f}_n(\mathbf{k}) \) can be found by first decomposing \(\tilde{f} \) into a sum of \(f_{n_1,n_2}^k = \cos(n_1X_k + n_2Y_k) \). Afterwards one may apply minimal coupling to the vector potential \(k \rightarrow k - A(t) \) and finds that the time dependence in the resulting Hamiltonian only enters
through $q_{n_1,n_2}^{k-A(t)}$. One may therefore compute the integrals $q_{n_1,n_2}^{k-A(t)} = \frac{1}{T} \int_0^T dt q_{n_1,n_2}^{k-A(t)} e^{-im\omega t}$. The result of this analysis allows us to find \tilde{f}_n. One merely has to replace every term q_{n_1,n_2} in \tilde{f} by

$$q_{n_1,n_2} = e^{im(\tau(n_1,n_2)+\frac{\pi}{2})} J_m \left(\frac{A a_0}{2} \sqrt{n_1^2 + 3n_2^2} \right) \times$$

$$\times \cos \left(X_k n_1 + Y_k n_2 + \pi \left(\frac{m}{2} + \frac{2n_1}{3} \right) \right), \quad (15)$$

$$- \cos \left(\frac{2\pi n_1}{3} \right) \delta_{0,m}$$

where J_m is the m-th Bessel function of the first kind. Additionally we have

$$\tau_{n_1,n_2} = \begin{cases} \theta + \frac{\pi}{2}; & n_2 = 0 \\ \tan^{-1} \left(\frac{n_1}{\sqrt{n_2}} \right) + \frac{\pi}{2} (1 - \text{sgn}(n_2)); & \text{else} \end{cases} \quad (16)$$

We have now derived the mathematical formulation in the extended space picture for circularly polarized light. Before we discuss the physical consequences of the light, let us first turn to the mathematical formulation for light from a waveguide.

B. Light from a waveguide

Let us next consider the transverse magnetic mode, which has an electric field component in the interlayer direction. Light subjected to a waveguide may have such a mode as displayed in Fig. 6. In a finite region of space it may accurately be approximated by the vector potential $A = A \cos(\Omega t)$, which has only a longitudinal component A_T. This form of light can be included in the Hamiltonian via the replacement $w \rightarrow e^{-iA_T \cos(\Omega t)} w$ because it only affects interlayer couplings through a Peierls substitution. This up to a gauge transformation is equivalent to an electric potential between layers. More details can be found in Appendix A.1. We assumed that the thickness of the twisted TMD bilayer $a_L \approx 7.1 \AA$ is much smaller than the wavelength λ of light $a_L \ll \lambda$.

The relevant quantities H_n for an extended space numerical implementation are found very conveniently as,

$$H_{n,T}^{\text{circ}}(r) = \tilde{H} \delta_{n,0} + \tilde{\Delta}_{V,n}(r), \quad (17)$$

where (with position dependence dropped to simplify the notation)

$$\tilde{H} = \begin{pmatrix} f\left(R_{\theta/2}(k - \kappa^+)_V \right) + \Delta_1 & 0 \\ 0 & f\left(R_{\theta/2}(k - \kappa^-)_V \right) + \Delta_1 \end{pmatrix}$$

and

$$\tilde{\Delta}_{V,n}(r) = \begin{pmatrix} 0 & \Delta_{T,n}(r) \\ \Delta_{T,n}^*(r) & 0 \end{pmatrix}, \quad (19)$$

where

$$\Delta_{T,n}(r) = i^n J_n(a_L A) \Delta_T(r). \quad (20)$$

Here J_n is the n-th Bessel function of the first kind.

V. PHYSICAL ASPECTS OF LIGHT-DRIVEN TWISTED TMD BILAYERS

Now that we have collected all the necessary parts for a numerical implementation of the light-matter coupling, we discuss the impact that different forms of light have on the TMD.

A. Effect of circularly polarized light

We consider the high-frequency regime and use a van Vleck expansion to first order,

$$H_{n,V} \approx H_0 + \sum_n \frac{[H_{-n},H_n]}{2n\Omega}. \quad (21)$$

We recognize immediately from Eq. (14) that $[H_{-n},H_n] = 0$ for $n \neq 0$. Therefore, the first order corrections, those that goes as Ω^{-1}, vanish. For the zeroth order contribution we will focus on the low-energy results that for small angles correspond to small momentum displacements from the K point (not quasi-momenta) and we consider relatively weak drives A. Thus, we are allowed to do a Taylor expansion around small momenta and A.

The result one finds is quite lucid. It is only a constant quasi-energy shift $-\frac{A^2}{2m\omega}$. This is also confirmed numerically: for small angles, low energies and in the high-frequency regime the only relevant change appears to be this shift. This is in stark contrast to twisted bilayer graphene where circularly polarized light has a profound effect on the spectrum. For graphene the lowest order effect is the opening of a gap; for the twisted TMD there already is a significant gap and therefore the effect is small. The results presented for far are only valid in the extreme high-frequency regime. As the frequency decreases and the Floquet zones overlap, other effects can be expected. Instead of pursuing this route, we consider different forms of light, namely longitudinal light, which can have a profound effect on the system at leading order.
B. Effect of light from a waveguide

We will consider only the high-frequency regime for simplicity and make use of a van Vleck expansion to first order. Similar to circularly polarized light, the first order contribution vanishes because \([H_{\perp n}, H_n]=0\) for \(n \neq 0\) as one can see from Eq. (17). The effect of the zeroth order contribution is just a renormalization of the interlayer coupling strengths. If we look at this in terms of a skyrmion pseudospin lattice derived from \(\Delta(x)\), then we find that the texture essentially remains the same, aside from the length of vectors in the \(x-y\) plane are shortened by a factor of \(J_0(a_L A)\), the \(z\)-direction remains unchanged. Such textures are a notable indicator of possible topological properties, which must be tested by evaluating candidate topological invariants.

1. Effect on band topology and spectrum

In the regime of interest, the effective Floquet Hamiltonian to zeroth order in the van Vleck expansion is given by (first order corrections vanish)

\[
\mathcal{H}_\uparrow = \left(\begin{array}{cc}
\tilde{f}(R_{\theta/2}(k - \kappa_+)) + \Delta_1 & J_0(a_L A) \Delta_T \\
J_0(a_L A) \Delta_T & \tilde{f}(R_{\theta/2}(k - \kappa_-)) + \Delta_{-1}
\end{array} \right),
\]

where the position dependence of \(\Delta_1\) was dropped for a shorter notation. It is important to stress that this Hamiltonian is exact in the infinite-frequency regime. From the structure of the effective Hamiltonian, we find that light from a waveguide decreases the strength of the interlayer coupling, leading to an effective change in the twist angle. Particularly, by tuning the properties of the laser, we can induce quasienergy band closings and a subsequent band opening when one is close to but above the critical angle \(\theta^* \approx 1.85^\circ\), as shown in Fig. 2. This leads to a change in the band Chern numbers. In Fig. 8a we plot the Floquet Berry curvature for \(a_M A = 0.1\) (a-c) and \(a_M A = 0.5\) (b-d).

However, in a periodically driven system the bulk-edge correspondence is determined by the winding \(W[U]\) number, where \(\varepsilon\) is a quasienergy inside the gap of interest,

\[
W[U] = \frac{1}{8\pi^2} \int dtdk \text{ Tr} (U^{-1} \partial_t U (U^{-1} \partial_k U) U^{-1} \partial_{k^*} U) ,
\]

and \(U_t\) is a modified time evolution operator [70].

We also find that the winding number that is associated with the gap between the second and third quasienergy band changes. This indicates a change in number of edge states in a sample with open boundary conditions (corresponding to a finite material with physical boundaries).

2. Effect on the spin texture

In addition to the band topology we also find that light has an impact on the pseudo-spin texture. Specifically, we find that the terms

\[
\Delta_{x,y} \rightarrow J_0(a_L A) \Delta_{x,y}
\]

are renormalized. This of course at first does not impact the structure seen in Fig. 2 since only their magnitude changes unless \(J_0\) changes sign. In the latter case the arrows in the \(x-y\) plane change direction. This is shown in Fig. 9. Notice that the green arrows in Fig. 9 point in the opposite direction compared to the red arrows in Fig. 2. In our case this directional change occurs at \(a_L = j_{n,1} \approx 2.405\), where \(j_{n,1}\) is the first zero of the nth Bessel function of the first kind.

Interestingly, this observation is not an artifact of the approximation, which is expected to work for \(a_L < \)
FIG. 8. (Color online) Floquet Berry curvature for the four top Floquet quasienergies in the first Floquet zone before (a-c) and after the gap closing (b-d) for the same band. The corresponding band Chern numbers are (a) \(C_2 = 1 \) (\(a_M A = 0.1 \)), (b) \(C_2 = -1 \) (\(a_M A = 0.5 \)), (c) \(C_3 = -2 \) (\(a_M A = 0.1 \)), and (d) \(C_3 = 0 \) (\(a_M A = 0.5 \)). Here \(\theta = 1.95^\circ \) and the driving frequency \(\Omega = 0.7 \text{eV} \).

We have found the same result by exact numerical calculations. It should also noted that this value for \(A_{aL} \), while large, is just within experimental reach: for \(\Omega = 0.7 \text{eV} \) and an electric field strength \(E = 25 \text{MV/cm} \), we find that \(A_{aL} \approx 2.5 \).

Now one can imagine that if something drastic happens for the spin texture, there may also be something drastic in the quasienergy band structure. Indeed, we find that in the infinite-frequency limit of Hamiltonian \(H_{\text{eff}} \) multiple band gaps close at this point and reopen afterwards. For the finite but large frequency limit seen in Fig. 10 we find that this corresponds to band gaps that almost close with gaps as small as \(10^{-6} \text{eV} \) for a driving frequency of \(\Omega = 0.7 \text{eV} \).

In Fig. 11 we show the Floquet Berry curvature \(F \) for the top four quasienergy bands in the first Floquet zone for \(\theta = 2^\circ \) and \(A_{aL} = 0.9 J_{0,1} \). Interestingly, even in the infinite-frequency regime the band gap closings are not associated with a change in Chern and winding numbers so there is no topological transition. The kinks in the plot at around \(A_{aL} \approx 0.4 \), \(A_{aL} \approx 1.96 \) and \(A_{aL} \approx 2.95 \) are associated with a band gap closing between band two and three near angle \(\theta^* \). The other two kinks at \(A_{aL} \approx 1.96 \) and \(A_{aL} \approx 2.95 \) are associated with a band gap that closes between the fourth and fifth band.

VI. CONCLUSIONS

In conclusion, we have investigated the effect of circularly and longitudinally polarized light on twisted transition metal dichalcogenides (tTMD) and found that the effect of circularly polarized light in the high-frequency regime leads to a trivial shift in quasi-energy spectrum, in stark contrast to the result for twisted bilayer graphene. However, longitudinal light emanating from a waveguide can directly renormalize the interlayer tunneling amplitude and lead to topological transitions. We have also computed the Floquet Berry curvature for these systems to better understand the connection to the winding number, \(W \), changes indicating the topological transitions. In addition, inter-layer pseudospin skyrmion texture manipulation in experimentally accessible regimes is possible.

Similar effects could be expected in systems with similarly weak interlayer tunneling. Our results show dramatically that tTMDs bring new physics to the table in the non-equilibrium regime beyond that of twisted bilayer graphene. An exciting frontier to consider in future work is the role of phonons (that may be selectively excited by light) on the electronic and magnetic properties of tTMDs. We hope this work will help motivate further non-equilibrium studies of tTMDs to further explore the rich scope of possible behavior in this material class.

VII. ACKNOWLEDGEMENTS

This research was primarily supported by the National Science Foundation through the Center for Dynamics and Control of Materials: an NSF MRSEC under Cooperative Agreement No. DMR-1720595 and partial support from grant DMR-1949701. A. H. MacDonald acknowledges support from Welch grant Welch TBF1473.
FIG. 10. (Color online) The figure illustrates that for strong drives at an angle of $\theta = 2^\circ$ gaps for many bands the gap at the γ point closes and reopens. In subfigure a) we show a plot of the quasi energy band structure along a high symmetry path for $A_{\alpha L} = 0.9 j_{0,1}$, in subfigure c) for $A_{\alpha L} = 1.1 j_{0,1}$. In subfigure b) we plot several band gaps at the γ point as a function of $A_{\alpha L}$. The results were computed numerically using 3 Floquet copies and a driving frequency $\Omega = 0.7 \text{eV}$.

[1] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556, 43 (2018).
[2] F. Wu, A. MacDonald, and I. Martin, Theory of phonon-mediated superconductivity in twisted bilayer graphene, Physical Review Letters 121, 10.1103/physrevlett.121.257001 (2018).
[3] R. Bistritzer and A. H. MacDonald, Moiré bands in twisted double-layer graphene, Proceedings of the National Academy of Sciences 108, 12233 (2011), https://www.pnas.org/content/108/30/12233.full.pdf.
[4] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556, 43 (2018).
[5] E. Codecido, Q. Wang, R. Koester, S. Che, H. Tian, R. Lv, S. Tran, K. Watanabe, T. Taniguchi, F. Zhang, M. Bockrath, and C. N. Lau, Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle, Science Advances 5, 10.1126/sciadv.aaw9770 (2019), https://advances.sciencemag.org/content/5/9/eaaw9770.full.pdf.
[6] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Tuning superconductivity in twisted bilayer graphene, Science 363, 1059 (2019), https://science.sciencemag.org/content/363/6431/1059.full.pdf.
[7] D. V. Chichinadze, L. Classen, and A. V. Chubukov, Nematic superconductivity in twisted bilayer graphene, arXiv e-prints , arXiv:1910.07379 (2019), arXiv:1910.07379 [cond-mat.supr-con]
[8] Y.-Z. Chou, Y.-P. Lin, S. Das Sarma, and R. M. Nandkishore, Superconductor versus insulator in twisted bilayer graphene, Physical Review B 100, 10.1103/physrevb.100.115128 (2019).
[9] F. Guinea and N. R. Walet, Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers, Proceedings of the National Academy of Sciences 115, 13174 (2018).
The corresponding band Chern numbers are (a) $C_1 = 1$, (b) $C_2 = -1$, (c) $C_3 = 0$, and (d) $C_4 = 2$. The parameters are $\theta = 2^\circ$, $AA_L = 0.9j_{0,1}$, and driving frequency $\Omega = 0.7 eV$.

FIG. 11. (Color online) Floquet Berry curvature for the four top Floquet quasienergies in the first Floquet zone.

[10] B. Lian, Z. Wang, and B. A. Bernevig, Twisted bilayer graphene: A phonon-driven superconductor, Phys. Rev. Lett. 122, 257002 (2019).

[11] S. Ray, J. Jung, and T. Das, Wannier pairs in superconducting twisted bilayer graphene and related systems, Phys. Rev. B 99, 134515 (2019).

[12] M. J. Calderón and E. Bascones, Correlated states in magic angle twisted bilayer graphene under the optical conductivity scrutiny, arXiv e-prints, arXiv:1912.09935 (2019), arXiv:1912.09935 [cond-mat.str-el].

[13] Y. Saito, J. Ge, K. Watanabe, T. Taniguchi, and A. F. Young, Decoupling superconductivity and correlated insulators in twisted bilayer graphene, arXiv e-prints, arXiv:1911.13302 (2019), arXiv:1911.13302 [cond-mat.mes-hall].

[14] P. Stepanov, I. Das, X. Lu, A. Fahrenkempe, K. Watanabe, T. Taniguchi, F. H. L. Koppens, J. Lischner, L. Levitov, and D. K. Efetov, The interplay of insulating and superconducting orders in magic-angle bilayer graphene, arXiv e-prints, arXiv:1911.09198 (2019), arXiv:1911.09198 [cond-mat.supr-con].

[15] J. Kang and O. Vafek, Strong coupling phases of partially filled twisted bilayer graphene narrow bands, Physical Review Letters 122, 10.1103/physrevlett.122.246401 (2019).

[16] G. E. Volovik, Graphite, graphene, and the flat band superconductivity, JETP Letters 107, 516 (2018).

[17] H. C. Po, L. Zou, A. Vishwanath, and T. Senthil, Origin of motting behavior and superconductivity in twisted bilayer graphene, Physical Review X 8, 10.1103/physrevx.8.031089 (2018).

[18] M. Ochi, M. Koshino, and K. Kuroki, Possible correlated insulating states in magic-angle twisted bilayer graphene under strongly competing interactions, Physical Review B 98, 10.1103/physrevb.98.081102 (2018).
single two dimensional semi-conductors, arXiv e-prints, arXiv:1901.04679 (2019).

[34] J. May-Mann and T. L. Hughes, Twisted kitaev bilayers and the moiré ising model, Physical Review B 101, 10.1103/physrevb.101.245126 (2020).

[35] F. Wu, T. Lovorn, E. Tutuc, I. Martin, and A. MacDonald, Topological insulators in twisted transition metal dichalcogenide homobilayers, Physical Review Letters 122, 10.1103/physrevlett.122.086402 (2019).

[36] D. Zhai and W. Yao, Theory of tunable flux lattices in the homobilayer moiré of twisted and uniformly strained transition metal dichalcogenides (2020), arXiv:2006.02306 [cond-mat.mes-hall].

[37] Y. Zhang, Z. Zhan, F. Guinea, J. A. Silva-Guillen, and S. Yuan, Tuning band gaps in twisted bilayer mos₂ with small rotation angle (2020), arXiv:2005.13054 [cond-mat.mes-hall].

[38] Z. Zhan, Y. Zhang, G. Yu, F. G. J. A. Silva-Guillen, and S. Yuan, Multi-ultraflatbands tunability and effect of spin-orbit coupling in twisted bilayer transition metal dichalcogenides (2020), arXiv:2005.13868 [cond-mat.mes-hall].

[39] S. Venkateswarlu, A. Honecker, and G. T. de Laisserdière, Electronic localization in twisted bilayer mos₂ with small rotation angle (2020), arXiv:2005.13054 [cond-mat.mes-hall].

[40] D. A. Ruiz-Tijerina, I. Soltero, and F. Mireles, Theory of moiré localized excitons in transition-metal dichalcogenide heterobilayers (2020), arXiv:2007.03754 [cond-mat.mes-hall].

[41] M. Chen, X. Lin, T. Dinh, Z. Zheng, J. Shen, Q. Ma, H. Chen, P. Jarillo-Herrero, and S. Dai, Confugure polaritons in twisted α-mo03 (2020), arXiv:2004.14588 [cond-mat.mes-hall].

[42] P. San-Jose, J. González, and F. Guinea, Non-abelian gauge potentials in graphene bilayers, Physical Review Letters 108, 10.1103/physrevlett.108.216802 (2012).

[43] M. Vogl, O. Pankratov, and S. Shallcross, Semiclassics for matrix hamiltonians: The gutzwiller trace formula with applications to graphene-type systems, Phys. Rev. B 96, 035442 (2017).

[44] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, 2d transition metal dichalcogenides, Nature Reviews Materials 2, 17033 (2017).

[45] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature nanotechnology 7, 699 (2012).

[46] X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides, Nature Physics 10, 343 (2014).

[47] H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry, Applied Physics Letters 105, 201905 (2014).

[48] K. Tran, G. Moody, F. Wu, X. Lu, J. Choi, K. Kim, A. Rai, D. A. Sánchez, J. Quan, A. Singh, J. Embley, A. Zepeda, M. Campbell, T. Autry, T. Taniguchi, K. Watanabe, N. Lu, S. K. Banerjee, K. L. Silverman, S. Kim, E. Tutuc, L. Yang, A. H. MacDonald, and X. Li, Evidence for moiré excitons in van der waals heterostructures, Nature 567, 71 (2019).

[49] K. L. Seyler, P. Rivera, H. Yu, N. F. Wilson, E. L. Ray, D. G. Mandrus, J. Yan, W. Yao, and X. Xu, Signatures of moiré-trapped valley excitons in mose2/wse2 heterobilayers, Nature 567, 66 (2019).

[50] E. M. Alexeev, D. A. Ruiz-Tijerina, M. Danovich, M. J. Hamer, D. J. Terry, P. K. Nayak, S. Ahn, S. Pak, J. Lee, J. I. Sohn, M. R. Molas, M. Koperski, K. Watanabe, T. Taniguchi, K. S. Novoselov, R. V. Gorbachev, H. S. Shin, V. I. Fal’ko, and A. I. Tartakovskii, Resonantly hybridized excitons in moiré superlattices in van der waals heterostructures, Nature 567, 81 (2019).

[51] V. Khemani, A. Lazarides, R. Moessner, and S. L. Sondhi, Phase structure of driven quantum systems, Phys. Rev. Lett. 116, 250401 (2016).

[52] A. C. Potter, T. Morimoto, and A. Vishwanath, Classification of interacting topological Floquet phases in one dimension, Phys. Rev. X 6, 041001 (2016).

[53] N. Y. Yao, A. C. Potter, I.-D. Potirniche, and A. Vishwanath, Discrete time crystals: Rigidity, criticality, and realizations, Phys. Rev. Lett. 118, 030401 (2017).

[54] I.-D. Potirniche, A. C. Potter, M. Schleier-Smith, A. Vishwanath, and N. Y. Yao, Floquet symmetry-protected topological phases in cold-atom systems, Phys. Rev. Lett. 119, 123601 (2017).

[55] A. Lerose, J. Marino, A. Gambassi, and A. Silva, Prethermal quantum many-body kapitsa phases of periodically driven spin systems, Physical Review B 100, 10.1103/physrevb.100.104306 (2019).

[56] Y. H. Wang, H. Steinerberg, P. Jarillo-Herrero, and N. Gedik, Observation of Floquet-Bloch states on the surface of a topological insulator, Science 342, 453 (2013).

[57] L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, Majorana fermions in equilibrium and in driven cold-atom quantum wires, Phys. Rev. Lett. 106, 220402 (2011).

[58] P. Molignini, E. van Nieuwenburg, and R. Chitra, Sensing Floquet-Majorana fermions via heat transfer, Phys. Rev. B 96, 125144 (2017).

[59] K. Jiménez-García, L. J. LeBlanc, R. A. Williams, M. C. Beeler, C. Qu, M. Gong, C. Zhang, and I. B. Spielman, Tunable spin-orbit coupling via strong driving in ultracold-atom systems, Phys. Rev. Lett. 114, 125301 (2015).

[60] J. Klinovaja, P. Stano, and D. Loss, Topological Floquet phases in driven coupled rashba nanowires, Phys. Rev. Lett. 116, 176401 (2016).

[61] L. Du, X. Zhou, and G. A. Fiete, Quadratic band touching points and flat bands in two-dimensional topological Floquet systems, Phys. Rev. B 95, 035136 (2017).

[62] Q. Chen, L. Du, and G. A. Fiete, Floquet band structure of a semi-Dirac system, Phys. Rev. B 97, 035422 (2018).

[63] P. Titum, E. Berg, M. S. Rudner, G. Refael, and M. D. Lukin, Topological insulators in twisted transition metal dichalcogenides, Appl. Phys. Lett. 108, 171907 (2011).

[64] T. Oka and H. Aoki, Photovoltaic hall effect in graphene, Phys. Rev. Lett. 109, 046602 (2012).

[65] I. Martin, G. Refael, and B. Halperin, Topological fre-
A. Eckardt and E. Anisimovas, High-frequency approximation for periodically driven systems from a Floquet-space perspective, New Journal of Physics 17, 093039 (2015).

T. Kitagawa, T. Oka, and M. Levin, Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems, Phys. Rev. X 3, 031005 (2013).

M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Floquet spectrum and transport through an irradiated graphene ribbon, Phys. Rev. Lett. 107, 216601 (2011).

G. Usaj, P. M. Perez-Piskunow, L. E. F. Foa Torres, and C. A. Balseiro, Irradiated graphene as a tunable Floquet topological insulator, Phys. Rev. B 90, 115423 (2014).

D. A. Abanin, W. De Roeck, W. W. Ho, and F. Huheneers, Effective hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems, Physical Review B 95, 10.1103/physrevb.95.014412 (2017).

S. Blanes, F. Casas, J. Oteo, and J. Ros, The Magnus expansion and some of its applications, Phys. Rep. 470, 151 (2009).

W. Magnus, On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math. 7, 649 (1954).

S. Rahav, I. Gilary, and S. Fishman, Effective Hamiltonians for periodically driven systems, Phys. Rev. A 68, 013820 (2003).

N. Goldman and J. Dalibard, Periodically driven quantum systems: Effective hamiltonians and engineered gauge fields, Phys. Rev. X 4, 031027 (2014).

A. P. Itin and M. I. Katsnelson, Effective Hamiltonians for rapidly driven many-body lattice systems: Induced exchange interactions and density-dependent hoppings, Phys. Rev. Lett. 115, 075301 (2015).

P. Mohan, R. Saxena, A. Kundu, and S. Rao, Brillouin-Wigner theory for Floquet topological phase transitions in spin-orbit-coupled materials, Phys. Rev. B 94, 235419 (2016).

M. Bukov, M. Kolodrubetz, and A. Polkovnikov, Schrieffer-Wolff transformation for periodically driven systems: Strongly correlated systems with artificial gauge fields, Phys. Rev. Lett. 116, 125301 (2016).

M. M. Maricq, Application of average Hamiltonian theory to the NMR of solids, Phys. Rev. B 25, 6622 (1982).

H. Martikainen and N. Moiseyev, Perturbation theory for quasienergy floquet solutions in the low-frequency regime of the oscillating electric field, Phys. Rev. A 91, 023416 (2015).

M. Rodriguez-Vega, M. Lentz, and B. Seradjeh, Floquet perturbation theory: formalism and application to low-frequency limit, New Journal of Physics 20, 093022 (2018).

M. Vogl, M. Rodriguez-Vega, and G. A. Fiete, Effective floquet hamiltonian in the low-frequency regime, Physical Review B 101, 10.1103/physrevb.101.024303 (2020).
where γ_i are Pauli matrices in layer space and d_0 is a displacement between layers. However, the interaction between the layers also modifies $\Delta_i \rightarrow \Delta_i'(d_0)$ because each layer of MoTe$_2$ is not planar with Te atoms protruding - the atoms get different energy contributions from adjacent layers.

We stress that this form can be derived from a tight binding model and that the couplings in $T(d_0)$ are proportional to interlayer hoppings in a tight binding model. The twisted case can be described by replacing $d_0 \rightarrow \theta \hat{z} \times \textbf{r}$ and shifting the momenta of the momentum operator of the upper layer by κ, and the one of the lower layer by κ_+ to account for the shift of K points due to the rotation.

Since we now fully understand how this model is related to a tight binding description it is now easy to see how light of different types that is described by a vector potential A can be incorporated via a Peierls substitution $\textbf{r}' \rightarrow e^{-i\int_R^R A \text{d}\textbf{r}} \textbf{r}$. Let us first consider the case $A = (A_x, A_y, 0)$ - like in elliptically polarized light. The approach results in the replacement $k_i \rightarrow k_i - A_i$. This is sufficient if we assume that interlayer hopping is dominated by processes where two atomic sites that interact are almost on top of each other because we then have negligible displacements in the $x-y$ direction. In this case $\int_R^R A \text{d}\textbf{r}$ is small for the interlayer couplings in $T(\textbf{r})$ and the effect can be neglected. Next we consider the case $A = (0, 0, A_z)$, found in light coming from a waveguide [107]. For simplicity we will assume that the distance between the two layers is approximately a constant a_L. Then we find that the Peierls substitution results in a replacement $T(\textbf{r}) \rightarrow e^{-iA z L} T(\textbf{r})$.

Now let us relate this model to the equation [1]. We first see that the Hamiltonian is diagonal in spin space and it is therefore valid without making a further approximation to only consider one spin species since there is no couplings. Even in the driven case for effective Hamiltonians this is valid because commutators that appear in an effective Hamiltonian do not break a block-diagonal structure (e.g. in the Magnus expansion $H_{\text{eff}} \approx \frac{1}{\pi} \int_0^T H(t) + \frac{2}{\pi} \int dt \int dt_1 [H(t_1), H(t)]$). Therefore we will focus on spin \uparrow. We see that the Hamiltonian has the same form as in the appendix [35] but with the following values

$$\tilde{\Delta}_1 = \Delta_g + \Delta_1; \quad \tilde{\Delta}_- = \Delta_-,$$

where Δ_\pm is a large gap of $\sim 1 \text{eV}$ and Δ_i is given in equation [3]. Furthermore we have

$$T(d_0) = \begin{pmatrix}
 w_2 & w_3 & \varepsilon \\
 w_3 & w & \varepsilon e^{-i 2 \pi / 3} \\
 \varepsilon e^{-i 2 \pi / 3} & w & w_3 \\
\end{pmatrix} e^{-i G_2 \cdot d_0}$$

where w_2, w_3 and w are wave numbers of the single layer TMD. We stress that this form can be derived from a tight binding model and that the couplings in $T(d_0)$ are proportional to interlayer hoppings in a tight binding model. The twisted case can be described by replacing $d_0 \rightarrow \theta \hat{z} \times \textbf{r}$ and shifting the momenta of the momentum operator of the upper layer by κ, and the one of the lower layer by κ_+ to account for the shift of K points due to the rotation.

As mentioned in Ref. [35] quantities roughly have orders $w_{2,3} \sim 10 \text{meV} \ll \Delta_g$ and for values of k_i close to the K point $a_0 k_i \ll \Delta_g$. Therefore Δ_g is the dominant energy scale and the low-energy manifold is spanned by the $1/\sqrt{2}(d_{x-y} + id_{xy})$ orbitals of each layer. We can make use of any choice of downfolding procedure such as the Löwdin partitioning method [115], Schrieffer-Wolff transformation [116] or Brillouin-Wigner degenerate perturbation theory [119]. In any case one finds the Hamiltonian with the form of Eq. [1] to second order in t and to first order in w.

From here we can directly answer the two original questions. First, light in free space described by $A = (A_x, A_y, 0)$ couples via the momenta $k_i \rightarrow k_i - A_i$ and waveguide-type light $A = (0, 0, A_z)$ couples via $w \rightarrow e^{-i A z L}$. This now is clear because of the connections to the underlying tight binding model. Second, one should consider light of frequencies $\Omega \ll \Delta_g$ to avoid couplings to higher energy states.

2. Better single layer dispersion

As we saw in the previous appendix the bands of a single layer TMD enter directly into the Hamiltonian via a downfolding procedure applied to bands that are valid near the K point. Now one may ask the question if we can do better than that in the sense that the bands are reproduced more accurately. And one way of doing so is to start from the tight binding Hamiltonian with third nearest neighbor hopping that is provided in [110].

$$H^{\text{NNN}}(k) = \begin{pmatrix}
 V_0 & V_1 & V_2 & V_3 \\
 V_1^* & V_1 & V_2 & V_3 \\
 V_2^* & V_2 & V_1 & V_3 \\
 V_3^* & V_3 & V_2 & V_1 \\
\end{pmatrix},$$

where

$$V_0 = \varepsilon_1 + 2 t_0 (2 \cos X_k \cos Y_k + \cos 2 X_k) + 2 r_0 (2 \cos 3 X_k \cos Y_k + \cos 2 Y_k) + 2 u_0 (2 \cos 2 X_k \cos 2 Y_k + \cos 4 X_k)$$

$$V_1 = -2 \sqrt{3} t_2 \sin X_k \sin Y_k + 2 (r_1 + r_2) \sin 3 X_k \sin Y_k - 2 \sqrt{3} u_2 \sin 2 X_k \sin Y_k + i \left[2 t_1 \sin X_k (2 \cos X_k + \cos Y_k) + 2 (r_1 - r_2) \sin 3 X_k \cos Y_k + 2 u_1 \sin 2 X_k (2 \cos 2 X_k + \cos 2 Y_k) \right].$$
\[V_2 = 2t_2 (\cos 2X_k - \cos X_k \cos Y_k) \]
\[- \frac{2}{\sqrt{3}} (r_1 + r_2) (\cos 3X_k \cos Y_k - \cos 2Y_k) \]
\[+ 2u_2 (\cos 4X_k - \cos 2X_k \cos 2Y_k) \]
\[+ i \left[2\sqrt{3} t_1 \cos X_k \sin Y_k \right. \]
\[+ \frac{2}{\sqrt{3}} \sin Y_k (r_1 - r_2) (\cos 3X_k + 2 \cos Y_k) \]
\[+ \left. 2\sqrt{3} u_1 \cos 2X_k \sin 2Y_k \right] \quad (A9) \]

\[V_{11} = \varepsilon_2 + (t_{11} + 3t_{22}) \cos X_k \cos Y_k + 2t_{12} \cos 2X_k \]
\[+ 4r_{12} \cos 3X_k \cos Y_k + 2(r_{11} + \sqrt{3} r_{12}) \cos 2Y_k \]
\[+ (u_{11} + 3u_{22}) \cos 2X_k \cos 2Y_k + 2u_{11} \cos 4X_k. \quad (A10) \]

With the shorthand
\[X_k = \frac{1}{2} k_x a, \quad Y_k = \frac{\sqrt{3}}{2} k_y a \quad (A12) \]

and couplings in units of eV are given as
\[\varepsilon_1 = 0.588; \quad \varepsilon_2 = 1.303; \quad t_0 = -0.226 \]
\[t_1 = -0.234; \quad t_2 = 0.036; \quad t_{11} = 0.400 \]
\[t_{12} = 0.098; \quad t_{22} = 0.017; \quad r_0 = 0.003 \]
\[r_1 = -0.025; \quad r_2 = -0.169; \quad r_{11} = 0.082. \quad (A13) \]
\[r_{12} = 0.051; \quad u_0 = 0.057; \quad u_1 = 0.103 \]
\[u_2 = 0.187; \quad u_{11} = -0.045; \quad u_{12} = -0.141 \]
\[u_{22} = 0.087 \]

The lowest energy band of this Hamiltonian is what the band that the moiré bands described in \[\square \] are based on.

The most obvious thing to do would be to blindly diagonalize the Hamiltonian and keep the expression for the lowest energy band. This expression, however, is cumbersome because it involves the solution of a cubic equation. The nested square-roots that appear in the solution would make further progress in computations difficult and is not very economical. The way we can do better is to recognize that the lattice is hexagonal and that therefore the Brillouin zone and bands have 6 fold rotational symmetry under \(\mathbf{k} \rightarrow R(n\pi/3) \cdot \mathbf{k} \) and mirror symmetries \((k_x, k_y) \rightarrow (-k_x, k_y)\) and \((k_x, k_y) \rightarrow (k_x, -k_y)\). We may now start with a Fourier series

\[E(\mathbf{k}) = \sum_{n,m} (c_{nm} \cos[(n_1 v_1 + n_2 v_2) \cdot \mathbf{k}] \]
\[+ s_{nm} \sin[(n_1 v_1 + n_2 v_2) \cdot \mathbf{k}] \]

where \(v_1 = (a, 0) \) and \(v_2 = a/2(1, \sqrt{3}) \) are lattice vectors. After imposing the symmetries and truncating such that \(n, m = -5, \ldots 5 \) we find the ansatz

\[E(\mathbf{k}) = C_0 + \sum_{n=1}^{5} C_n \left[2 \cos(nX_k) \cos(nY_k) + \cos(2nX_k) \right] \]
\[+ C_3 [2 \cos(3X_k) \cos(Y_k) + \cos(2Y_k)] \]
\[+ C_7 [2 \cos(6X_k) \cos(2Y_k) + \cos(4Y_k)] \]
\[+ 2C_8 [\cos(8X_k) \cos(2Y_k) + \cos(7X_k) \cos(3Y_k) + \cos(X_k) \cos(5Y_k)] \]
\[+ 2C_9 [\cos(9X_k) \cos(Y_k) + \cos(6X_k) \cos(4Y_k) + \cos(3X_k) \cos(5Y_k)] \]
\[+ 2C_{10} [\cos(7X_k) \cos(Y_k) + \cos(5X_k) \cos(3Y_k) + \cos(2X_k) \cos(4Y_k)] \]
\[+ 2C_{11} [\cos(5X_k) \cos(Y_k) + \cos(4X_k) \cos(2Y_k) + \cos(X_k) \cos(3Y_k)] \quad (A15) \]

Now one can fit this ansatz to the lowest energy band of \(H^{TNN} \). However, one still has to be careful to include a few constraints to ensure that the low-energy part of the spectrum is captured as accurately as possible. That is we require that

\[\frac{d^2 E(\mathbf{k})}{dk_i dk_j} \bigg|_{\mathbf{k} = \mathbf{K}} = -\frac{1}{m^*} \quad (A16) \]

and that the value at the \(\mathbf{K} \) points correctly reproduces the result from \(H^{TNN} \).