Free Algebra with Countable Basis

Aleks Kleyn

E-mail address: Aleks_Kleyn@MailAPS.org
URL: http://sites.google.com/site/alekskleyn/
URL: http://arxiv.org/a/kleyn_a_1
URL: http://AleksKleyn.blogspot.com/
In this book I treat the structure of D-module which has countable basis. If we do not care for topology of D-module, then we consider Hamel basis. If norm is defined in D-module, then we consider Schauder basis. In case of Schauder basis, we consider vectors whose expansion in the basis converges normally.
Contents

Chapter 1. Preface ... 5
 1.1. Preface .. 5
 1.2. Conventions ... 5

Chapter 2. Hamel Basis .. 7
 2.1. Module ... 7
 2.2. Algebra over Ring ... 11
 2.3. D-algebra with Hamel Basis 13

Chapter 3. Schauder Basis ... 19
 3.1. Topological Ring ... 19
 3.2. Normed D-Algebra ... 22
 3.3. Normed D-Module $\mathcal{L}(D; A_1; A_2)$ 23
 3.4. Normed D-Module $\mathcal{L}(D; A_1, ..., A_n; A)$ 29
 3.5. D-algebra with Schauder basis 36

Chapter 4. References .. 45

Chapter 5. Index ... 46

Chapter 6. Special Symbols and Notations 47
CHAPTER 1

Preface

1.1. Preface

Let D be commutative ring of characteristic 0. In this book, I consider free D-module which has countable basis. The difference between a countable basis and a finite one is that not any linear composition of vectors makes sense.

To explain this statement we assume that D-module A with countable basis \mathbb{E} is normed D-module. If we drop requirement that expansion

$$a = a_i e_i$$

of vector a relative to the basis \mathbb{E} is convergent series, then we break out topology generated by the norm. If a norm in D-module is not defined, then we do not have a tool which allows us to identify vector and its expansion relative to the basis when all coefficients are different from 0.

So, if D-module has countable basis, then we consider two possibilities. If we do not care for topology of D-module, then we consider Hamel basis (definition 2.3.1). If norm is defined in D-module, then we consider Schauder basis (definition 3.5.1).

However in case of Schauder basis, the request of convergence of the expansion of vector relative to basis is not always sufficient. When we study a linear map, we consider vectors whose expansion in the basis converges normally.

1.2. Conventions

CONVENTION 1.2.1. *I assume sum over index s in expression like*

$$a_{s<0} x a_{s>1}$$

□

CONVENTION 1.2.2. *Let A be free finite dimensional algebra. Considering expansion of element of algebra A relative basis \mathbb{E} we use the same root letter to denote this element and its coordinates. However we do not use vector notation in algebra. In expression a^2, it is not clear whether this is component of expansion of element a relative basis, or this is operation $a^2 = aa$. To make text clearer we use separate color for index of element of algebra. For instance,*

$$a = a^i _{\mathbb{E}}$$

□

Without a doubt, the reader may have questions, comments, objections. I will appreciate any response.
CHAPTER 2

Hamel Basis

2.1. Module

Theorem 2.1.1. Let ring D has unit e. Representation $f : D \rightarrow A$

(2.1.1)

of the ring D in an Abelian group A is effective iff $a = 0$ follows from equation $f(a) = 0$.

Proof. We define the sum of transformations f and g of an Abelian group according to rule

$$(f + g) \circ a = f \circ a + g \circ a$$

Therefore, considering the representation of the ring D in the Abelian group A, we assume

$$f(a + b) \circ x = f(a) \circ x + f(b) \circ x$$

We define the product of transformation of representation according to rule

$$f(ab) = f(a) \circ f(b)$$

Suppose $a, b \in R$ cause the same transformation. Then

(2.1.2)

$$f(a) \circ m = f(b) \circ m$$

for any $m \in A$. From the equation (2.1.2) it follows that $a - b$ generates zero transformation

$$f(a - b) \circ m = 0$$

Element $e + a - b$ generates an identity transformation. Therefore, the representation f is effective iff $a = b$. \qed

Definition 2.1.2. Let D be commutative ring. Effective representation of ring D in an Abelian group A is called Abelian group A is called either module over ring D or D-module. \qed

Theorem 2.1.3. Following conditions hold for D-module A:

- **associative law**

(2.1.3)

$$(ab) \circ m = a \circ (b \circ m)$$

- **distributive law**

(2.1.4)

$$a \circ (m + n) = a \circ m + a \circ n$$

(2.1.5)

$$(a + b) \circ m = am + bm$$

2This subsection is written on the base of the section [7]-2.1.
• unitarity law

\[(2.1.6) \quad 1m = m\]

for any \(a, b \in D, m, n \in A.\)

Proof. Since transformation \(a \) is endomorphism of the Abelian group, we obtain the equation \((2.1.4)\). Since representation is homomorphism of the additive group of the ring \(D \), we obtain the equation \((2.1.5)\). Since the representation of the ring \(D \) is representation of the multiplicative group of the ring \(D \), we obtain the equations \((2.1.3)\) and \((2.1.6)\). \(\square \)

Vectors \(a_i, i \in I, \) of \(D \)-module \(A \) are \(D \)-linearly independent\(^2\) if \(c = 0 \) follows from the equation \(c'a_i = 0 \)

Otherwise vectors \(a_i, i \in I, \) are \(D \)-linearly dependent.

Definition 2.1.4. We call set of vectors \(\mathcal{F} = (e_i, i \in I) \) a \(D \)-basis for module if vectors \(e_i \) are \(D \)-linearly independent and adding to this system any other vector we get a new system which is \(D \)-linearly dependent. \(A \) is free module over ring \(D \), if \(A \) has basis over ring \(D \).\(^3\)

Following definition is consequence of definitions 2.1.2 and 8-2.2.2.

Definition 2.1.5. Let \(A_1 \) and \(A_2 \) be modules over the ring \(R \). Morphism

\[f : A_1 \rightarrow A_2 \]

of representation of the ring \(D \) in the Abelian group \(A_1 \) into representation of the ring \(D \) in the Abelian group \(A_2 \) is called linear map of \(D \)-module \(A_1 \) into \(D \)-module \(A_2 \). \(\square \)

Theorem 2.1.6. Linear map

\[f : A_1 \rightarrow A_2 \]

of \(D \)-module \(A_1 \) into \(D \)-module \(A_2 \) satisfies to equations\(^4\)

\[(2.1.7) \quad f \circ (a + b) = f \circ a + f \circ b\]

\[(2.1.8) \quad f \circ (pa) = p(f \circ a)\]

\(a, b \in A_1 \quad p \in D \)

Proof. From definition 2.1.5 and theorem [8]-2.2.18 it follows that the map \(g \) is a homomorphism of the Abelian group \(A_1 \) into the Abelian group \(A_2 \) (the equation \((2.1.7)\)). The equation \((2.1.8)\) follows from the equation [8]-2.2.45. \(\square \)

Theorem 2.1.7. Let \(A_1 \) and \(A_2 \) be modules over ring \(D \). The set \(\mathcal{L}(D; A_1; A_2) \) is an Abelian group relative composition law

\[(2.1.9) \quad (f + g) \circ x = f \circ x + g \circ x\]

which is called sum of linear maps.

\(^2\)I follow to the definition in [2], p. 130.

\(^3\)I follow to the definition in [2], p. 135.

\(^4\)In some books (for instance, [2], p. 119) the theorem 2.1.6 is considered as a definition.
2.1. Module

Proof. According to the definition 2.1.5

\[(f + g) \circ (a + b) = f \circ (a + b) + g \circ (a + b)\]
\[= f \circ a + f \circ b + g \circ a + g \circ b\]
\[= (f + g) \circ a + (f + g) \circ b\]
\[(f + g) \circ (da) = f \circ (da) + g \circ (da)\]
\[= df \circ a + dg \circ a\]
\[= d(f + g) \circ a\]

Therefore, the map defined by equation (2.1.9) is linear map of \(D\)-module \(A_1\) into \(D\)-module \(A_2\). Commutativity and associativity of sum follow from equations

\[(f + g) \circ a = f \circ a + g \circ a = g \circ a + f \circ a\]

\[((f + g) + h) \circ a = (f + g) \circ a + h \circ a = (f \circ a + g \circ a) + h \circ a\]

Let us define map \(0 \circ x = 0\). It is evident that \(0 \in \mathcal{L}(D; A_1; A_2)\). From the equation

\[(0 + f) \circ x = 0 \circ x + f \circ x = 0 + f \circ x = f \circ x\]

it follows that

\[0 + f = f\]

Let us define map

\[(-f) \circ x = -(f \circ x)\]

It is evident that \(-f \in \mathcal{L}(D; A_1; A_2)\). From the equation

\[((-f) + f) \circ x = (-f) \circ x + f \circ x = (-f \circ x) + f \circ x = 0 = 0 \circ x\]

it follows that

\[(-f) + f = 0\]

Therefore, the set \(\mathcal{L}(D; A_1; A_2)\) is an Abelian group.

\[\square\]

Theorem 2.1.8. Let \(A_1\) and \(A_2\) be modules over ring \(D\). The representation of the ring \(D\) in the Abelian group \(\mathcal{L}(D; A_1; A_2)\) which is defined by the equation

\[(df) \circ x = d(f \circ x)\]

is called product of map over scalar. This representation generates the structure of \(D\)-module in the Abelian group \(\mathcal{L}(D; A_1; A_2)\).

Proof. From equations

\[(df) \circ (d_1 a) = d(f \circ (d_1 a)) = d_1 (d(f \circ a)) = d_1 ((df) \circ a)\]

\[(df) \circ (a_1 + a_2) = d(f \circ (a_1 + a_2)) = d(f \circ a_1 + f \circ a_2)\]

\[= d(f \circ a_1) + d(f \circ a_2) = (df) \circ a_1 + (df) \circ a_2\]

it follows that map

\[(2.1.11)\]

\[f \rightarrow df\]
is a transformation of the set $\mathcal{L}(D; A_1; A_2)$. From equation
\[
(d(f + g)) \circ a = d((f + g) \circ a) = d(f \circ a + g \circ a) \\
= d(f \circ a) + d(g \circ a) = (df) \circ a + (dg) \circ a
\]
it follows that map (2.1.11) is a homomorphism of the Abelian group $\mathcal{L}(D; A_1; A_2)$. According to the definition [7]-2.1.2, the Abelian group $\mathcal{L}(D; A_1; A_2)$ is D-modules. □

Definition 2.1.9. Let A be D-module. D-module $A' = \mathcal{L}(D; A; D)$ is called **conjugated D-module**. □

According to the definition 2.1.9, elements of conjugated D-module are D-linear maps
\[(2.1.12) \quad f : A \to D\]

D-linear map (2.1.12) is called **linear functional on D-module A** or just **D-linear functional**.

Theorem 2.1.10. Let $\overline{e} = (e_i \in A, i \in I)$ be basis of D-module A. Let A' be D-module, conjugated to D-module A. The set of vectors $\overline{e} = (e^i \in A', i \in I)$ such that
\[(2.1.13) \quad e^i \circ e_j = \delta^i_j\]
is basis of D-module A'.

Proof. From the equation (2.1.13) it follows that
\[(2.1.14) \quad e^i \circ a = e^i \circ a^j e_j = a^j (e^i \circ e_j) = a^j \delta^i_j = a^i\]
Let
\[f : A \to D\]
be linear map. Then
\[(2.1.15) \quad f \circ a = f \circ (a^j e_j) = a^j (f \circ e_j) = a^j f_i\]
where $f_i = f \circ e_i$. From equations (2.1.14), (2.1.15) it follows that
\[(2.1.16) \quad f \circ a = f_i (e^i \circ a)\]
According to definitions (2.1.9), (2.1.10)
\[f = f_i e^i\]
Therefore, the set $\overline{e} = (e^i \in A', i \in I)$ is basis of D-module A'. □

Corollary 2.1.11. Let $\overline{e} = (e_i \in A, i \in I)$ be basis of D-module A. Then
\[a^i = e^i \circ a\]

Basis $\overline{e} = (e^i \in A', i \in I)$ is called **basis dual to basis** $\overline{e} = (e_i \in A, i \in I)$.

Theorem 2.1.12. Let $\overline{e}_1 = (e_{1,i} \in A_1, i \in I)$ be basis of D-module A_1. Let $\overline{e}_2 = (e_{2,j} \in A_2, j \in J)$ be basis of D-module A_2. The set of vectors (e^1_1, e^1_2), $i \in I$, $j \in J$, defined by equation
\[(2.1.17) \quad (e^1_1, e^1_2) \circ a = (e^1_1 \circ a) e_{2,j}\]
is basis of D-module $\mathcal{L}(D; A_1; A_2)$.
2.2. Algebra over Ring

Proof. Let

\[f: A_1 \to A_2 \]

be map of \(D\)-module \(A_1\) with basis \(\overline{e}_1\) into \(D\)-module \(A_2\) with basis \(\overline{e}_2\). Let \(a \in A_1, a = a^i e_{1,i}\). According to the corollary 2.1.11

\[f \circ a = f \circ (a^i e_{1,i}) = a^i (f \circ e_{1,i}) = (e^i_1 \circ a) (f \circ e_{1,i}) \]

Since \(f \circ e_{1,i} \in A_2\), then from the equation (2.1.18) it follows that

\[f \circ a = (e^i_1 \circ a) f^j e_{2,j} \]

From equations (2.1.17), (2.1.19) it follows that

\[f \circ a = f^j (e^i_1, e_{2,j}) \circ a \]

Therefore

\[f = f^j (e^i_1, e_{2,j}) \]

Since maps (2.1.17) are linearly independent, then the set of these maps is basis. □

Definition 2.1.13. Let \(D\) be the commutative ring. Let \(A_1, ..., A_n, S\) be \(D\)-modules. We call map

\[f: A_1 \times ... \times A_n \to S \]

polylinear map of modules \(A_1, ..., A_n\) into module \(S\), if

\[f \circ (a_1, ..., a_i + b_i, ..., a_n) = f \circ (a_1, ..., a_i, ..., a_n) + f \circ (a_1, ..., b_i, ..., a_n) \]

\[f \circ (a_1, ..., p a_i, ..., a_n) = p f \circ (a_1, ..., a_i, ..., a_n) \]

\[1 \leq i \leq n \quad a_i, b_i \in A_i \quad p \in D \]

□

2.2. Algebra over Ring

Definition 2.2.1. Let \(D\) be commutative ring.\(^{2.5}\) \(A\) is an algebra over ring \(D\) or \(D\)-algebra, if \(A\) is \(D\)-module and we defined product\(^{2.6}\) in \(A\)

\[ab = f \circ (a, b) \]

where \(f\) is bilinear map

\[f: A \times A \to A \]

If \(A\) is free \(D\)-module, then \(A\) is called free algebra over ring \(D\). □

According to construction that was done in subsections \([8]-4.4.2, [8]-4.4.3\), a diagram of representations of \(D\)-algebra has form

\[D \xrightarrow{f_{1,2}} A \xrightarrow{f_{2,3}} A \]

\[f_{1,2}(d): v \to d v \]

\[f_{2,3}(v): w \to C(v, w) \]

\[C \in L(A^2; A) \]

On the diagram of representations (2.2.2), \(D\) is ring, \(A\) is Abelian group. We initially consider the vertical representation, and then we consider the horizontal representation.

\(^{2.5}\)This section is written on the base of the section \([7]-2.2.\)

\(^{2.6}\)I follow the definition given in \([15]\), p. 1, \([11]\), p. 4. The statement which is true for any \(D\)-module, is true also for \(D\)-algebra.
THEOREM 2.2.2. The multiplication in the algebra A is distributive over addition.

PROOF. The statement of the theorem follows from the chain of equations
\[(a + b)c = f \circ (a + b, c) = f \circ (a, c) + f \circ (b, c) = ac + bc\]
\[a(b + c) = f \circ (a, b + c) = f \circ (a, b) + f \circ (a, c) = ab + ac\]
\[\square\]

DEFINITION 2.2.3. Let A_1 and A_2 be algebras over ring D. The linear map
\[f : A_1 \to A_2\]
of the D-module A_1 into the D-module A_2 is called linear map of D-algebra A_1 into D-algebra A_2. Let us denote the set of linear maps of algebra A_1 into algebra A_2.

THEOREM 2.2.4. If we define product
\[(2.2.3) \quad (f \circ g) \circ a = f \circ (g \circ a)\]
on D-module $L(D; A; A)$, then $L(D; A; A)$ is D-algebra.

PROOF. From equations
\[((f_1 + f_2) \circ g) \circ a = (f_1 + f_2) \circ (g \circ a) = f_1 \circ (g \circ a) + f_2 \circ (g \circ a)\]
\[= (f_1 \circ g) \circ a + (f_2 \circ g) \circ a = (f_1 \circ g + f_2 \circ g) \circ a\]
\[((df) \circ g) \circ a = (df) \circ (g \circ a) = d(f \circ (g \circ a))\]
\[= d((f \circ g) \circ a) = (d(f \circ g)) \circ a\]
\[(f \circ (g_1 + g_2)) \circ a = f \circ ((g_1 + g_2) \circ a) = f \circ (g_1 \circ a + g_2 \circ a)\]
\[= f \circ (g_1 \circ a) + f \circ (g_2 \circ a)\]
\[= (f \circ g_1) \circ a + (f \circ g_2) \circ a = (f \circ g_1 + f \circ g_2) \circ a\]
\[(f \circ (dg)) \circ a = f \circ ((dg) \circ a) = f \circ (d(g \circ a)) = d(f \circ (g \circ a))\]
\[= d((f \circ g) \circ a) = (d(f \circ g)) \circ a\]
it follows that map $f \circ g$ is bilinear map. According to the definition 2.2.1, D-module $L(D; A; A)$ is D-algebra.

The multiplication in algebra can be neither commutative nor associative. Following definitions are based on definitions given in [15], p. 13.

DEFINITION 2.2.5. The commutator
\[[a, b] = ab - ba\]
measures commutativity in D-algebra A. D-algebra A is called commutative, if
\[[a, b] = 0\]
\[\square\]

DEFINITION 2.2.6. The associator
\[(2.2.4) \quad (a, b, c) = (ab)c - a(bc)\]
measures associativity in D-algebra A. D-algebra A is called associative, if
\[(a, b, c) = 0\]
2.3. \textit{D}-algebra with Hamel Basis

Definition 2.2.7. The set2.7
\[N(A) = \{ a \in A : \forall b, c \in A, (a, b, c) = (b, a, c) = (b, c, a) = 0 \} \]
is called the \textbf{nucleus of \textit{D}-algebra} \textit{A}. \hfill \Box

Definition 2.2.8. The set2.8
\[Z(A) = \{ a \in A : a \in N(A), \forall b \in A, ab = ba \} \]
is called the \textbf{center of \textit{D}-algebra} \textit{A}. \hfill \Box

Theorem 2.2.9. Let \(e \) be the basis of free finite dimensional algebra \textit{A} over ring \textit{D}. Let
\[a = a^i e_i \quad b = b^i e_i \quad a, b \in A \]
We can get the product of \(a, b \) according to rule
\begin{equation} \label{2.2.5} \end{equation}
\[(ab)^k = C^k_{ij} a^i b^j \]
where \(C^k_{ij} \) are \textbf{structural constants} of algebra \textit{A} over ring \textit{D}. The product of basis vectors in the algebra \textit{A} is defined according to rule
\begin{equation} \label{2.2.6} \end{equation}
\[e_i e_j = C^k_{ij} e_k \]

Proof. The equation (2.2.6) is corollary of the statement that \(e \) is the basis of the algebra \textit{A}. Since the product in the algebra is a bilinear map, then we can write the product of \(a, b \) as
\begin{equation} \label{2.2.7} \end{equation}
\[ab = a^i b^j e_i e_j \]
From equations (2.2.6), (2.2.7), it follows that
\begin{equation} \label{2.2.8} \end{equation}
\[ab = a^i b^j C^k_{ij} e_k \]
Since \(e \) is a basis of the algebra \textit{A}, then the equation (2.2.5) follows from the equation (2.2.8). \hfill \Box

2.3. \textit{D}-algebra with Hamel Basis

If \textit{D}-module \textit{A} has countable basis \(\overline{e} \), then, in general, infinite sum in \textit{D}-module \textit{A} is not defined. If continuity is not defined in \textit{D}-module \textit{A}, then we use next definition (10, p. 223).

Definition 2.3.1. Let \textit{D}-module \textit{A} have countable basis \(\overline{e} = \{ e_i \}_{i=1}^{\infty} \). If any element of \textit{D}-module \textit{A} has finite expansion relative to basis \(\overline{e} \), namely, in the equation
\[a = a^i e_i \]
the set of values \(a^i \in D \), which are different from 0, is finite, then basis \(\overline{e} \) is called \textbf{Hamel basis}. The sequence of scalars \(\{ a^i \}_{i=1}^{\infty} \) is called \textbf{coordinates of vector}
\[a = a^i e_i \]
relative to Hamel basis \(\overline{e} \). \hfill \Box

2.7The definition is based on the similar definition in 15, p. 13
2.8The definition is based on the similar definition in 15, p. 14
Theorem 2.3.2. Let
\[f : A_1 \to A_2 \]
be map of \(D \)-module \(A_1 \) with Hamel basis \(\mathcal{e}_1 \) into \(D \)-module \(A_2 \) with Hamel basis \(\mathcal{e}_2 \). Let \(f_j^i \) be coordinates of the map \(f \) relative to bases \(\mathcal{e}_1 \) and \(\mathcal{e}_2 \). Then for any \(j \), the set of values \(f_j^i \), which are different from 0, is finite.

Proof. The theorem follows from the equation
\[f \circ e_1.j = f_j^i e_2.i \]
□

Theorem 2.3.3. Let
\[f : A_1 \to A_2 \]
be linear map of \(D \)-module \(A_1 \) with basis \(\mathcal{e}_1 \) into \(D \)-module \(A_2 \) with Hamel basis \(\mathcal{e}_2 \). Then for any \(a_1 \in A_1 \), the image
\[a_2 = f \circ a_1 \quad a_2^i = a_1^j f_j^i \quad a_2 = a_2^i e_2.i \]
is defined properly.

Proof. Let
\[a_1 \in A_1 \quad a_1 = a_1^i e_1.i \]
According to the definition 2.3.1, the set of values \(a_j \), which are different from 0, is finite. Let \(f_j^i \) be coordinates of the map \(f \) relative to bases \(\mathcal{e}_1 \) and \(\mathcal{e}_2 \). According to the theorem 2.3.2, for any \(j \), the set of values \(f_j^i \), which are different from 0, is finite. The union of finite set of finite sets is finite set. Therefore, the set of values \(a_1^j f_j^i \), which are different from 0, is finite. According to the definition 2.3.1, expression (2.3.1) is expansion of the element \(a_2 \) relative to Hamel basis \(\mathcal{e}_2 \). □

Convention 2.3.4. Let \(\mathcal{e} \) be Hamel basis of free \(D \)-algebra \(A \). The product of basis vectors in \(D \)-algebra \(A \) is defined according to rule
\[e_i.e_j = C_{ij}^k e_k \]
where \(C_{ij}^k \) are structural constants of \(\mathcal{e} \)-algebra \(A \). Since the product of vectors of the basis \(\mathcal{e} \) of \(D \)-algebra \(A \) is a vector of \(D \)-algebra \(A \), then we require that for any \(i, j \), the set of values \(C_{ij}^k \), which are different from 0, is finite. □

Theorem 2.3.5. Let \(\mathcal{e} \) be Hamel basis of free \(D \)-algebra \(A \). Then for any \(a = a^i e_i, b = b^i e_i, a, b \in A \)
product defined according to rule
\[(ab)^k = C_{ij}^k a^i b^j \]
is defined properly.

Proof. Since the product in the algebra is a bilinear map, then we can write the product of \(a \) and \(b \) as
\[ab = a^i b^j e_i.e_j \]
From equations (2.3.3), (2.3.5), it follows that
\[ab = a^i b^i C_{ij}^k e_k \]
Since \mathcal{B} is a basis of the algebra A, then the equation (2.3.4) follows from the equation (2.3.6).

Since the basis \mathcal{B} is Hamel basis, then
- the set of values a^i, which are different from 0, is finite;
- the set of values b^j, which are different from 0, is finite.

Therefore, the set of products a^ib^j, which are different from 0, is finite. For any i, j, the set of values C^k_{ij}, which are different from 0, is finite. Therefore, the product is properly defined by the equation (2.3.4).

\[\square \]

Theorem 2.3.6. Let A_1, \ldots, A_n be free algebras over commutative ring D. Let e_i be Hamel basis of D-algebra A_i. Then the set of vectors e_1, \ldots, e_n is Hamel basis of tensor product $A_1 \otimes \ldots \otimes A_n$.

Proof. To prove the theorem, we need to consider the diagram (2.5.4) which we used to prove the theorem [7]-2.5.3.

\[(2.3.7) \]

\[\begin{array}{c}
\begin{array}{c}
A_1 \times \ldots \times A_n \quad \quad f \\
\downarrow i \\
M \\
\end{array}
\end{array} \quad \quad \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
M/N \\
\downarrow j \\
\end{array}
\end{array}
\end{array} \]

Let M_1 be module over ring D generated by product $A_1 \times \ldots \times A_n$ of D-algebras A_1, \ldots, A_n.

- Let vector $b \in M_1$ have finite expansion relative to the basis $A_1 \times \ldots \times A_n$
 \[b = b^i(a_1, i, \ldots, a_n, i) \quad i \in I_1 \]
 where I_1 is finite set. Let vector $c \in M_1$ have finite expansion relative to the basis $A_1 \times \ldots \times A_n$
 \[c = c^i(a_1, i, \ldots, a_n, i) \quad i \in I_2 \]
 where I_2 is finite set. The set $I = I_1 \cup I_2$ is finite set. Let
 \[b_i = 0 \quad i \in I \setminus I_1 \]
 \[c_i = 0 \quad i \in I \setminus I_2 \]

Then
 \[b + c = (b^i + c^i)(a_1, i, \ldots, a_n, i) \quad i \in I \]
where I is finite set. Similarly, for $d \in D$
 \[db = db^i(a_1, i, \ldots, a_n, i) \quad i \in I_1 \]
where I_1 is finite set. Therefore, we proved the following statement.\(^{2,9}\)

Lemma 2.3.7. The set M of vectors of module M_1, which have finite expansion relative to the basis $A_1 \times \ldots \times A_n$, is submodule of module M_1.

\[^{2,9}\] The set $A_1 \times \ldots \times A_n$ cannot be Hamel basis because this set is not countable.
Injection

\[i : A_1 \times \ldots \times A_n \rightarrow M \]

is defined according to rule

\[i \circ (d_1, \ldots, d_n) = (d_1, \ldots, d_n) \]

Let \(N \subset M \) be submodule generated by elements of the following type

\[(d_1, \ldots, d_i + c_i, \ldots, d_n) - (d_1, \ldots, d_i, \ldots, d_n) \]

\[(d_1, \ldots, a d_i, \ldots, d_n) - a(d_1, \ldots, d_i, \ldots, d_n) \]

where \(d_i \in A_i, c_i \in A_i, a \in D \). Let

\[j : M \rightarrow M/N \]

be canonical map on factor module. Since elements \((2.3.9)\) and \((2.3.10)\) belong to kernel of linear map \(j \), then, from equation \((2.3.8)\), it follows

\[f \circ (d_1, \ldots, d_i + c_i, \ldots, d_n) = f \circ (d_1, \ldots, d_i, \ldots, d_n) \]

\[f \circ (d_1, \ldots, a d_i, \ldots, d_n) = a f \circ (d_1, \ldots, d_i, \ldots, d_n) \]

From equations \((2.3.11)\) and \((2.3.12)\) it follows that map \(f \) is polylinear over ring \(D \).

The module \(M/N \) is tensor product \(A_1 \otimes \ldots \otimes A_n \); the map \(j \) has form

\[j(a_1, \ldots, a_n) = a_1 \otimes \ldots \otimes a_n \]

and the set of tensors like \(e_{1,i_1} \otimes \ldots \otimes e_{n,i_n} \) is countable basis of the module \(M/N \). According to the lemma \(2.3.7\), arbitrary vector \(b \in M \) has representation

\[b = b^i(a_{1,i}, \ldots, a_{n,i}) \]

where \(I \) is finite set. According to the definition \((2.3.13)\) of the map \(j \)

\[j \circ b = b^i(a_{1,i} \otimes \ldots \otimes a_{n,i}) \]

where \(I \) is finite set. Since \(\mathfrak{e}_k \) is Hamel basis of \(D \)-algebra \(A_k \), then for any set of indexes \(k \cdot i \), in equation

\[a_{k,i} = a_{k,i}^p e_{k,p} \]

the set of values \(a_{k,i}^p \), which are different from 0, is finite. Therefore, the equation \((2.3.14)\) has form

\[j \circ b = b^i a_{1,i}^{p_1} \ldots a_{n,i}^{p_n} (e_{1,p_1} \otimes \ldots \otimes e_{n,p_n}) \]

where the set of values

\[b^i a_{1,i}^{p_1} \ldots a_{n,i}^{p_n} \]

which are different from 0, is finite.

\[\square \]

Corollary 2.3.8. Let \(A_1, \ldots, A_n \) be free algebras over commutative ring \(D \). Let \(\mathfrak{e}_i \) be Hamel basis of \(D \)-algebra \(A_i \). Then any tensor \(a \in A_1 \otimes \ldots \otimes A_n \) has finite set of standard components different from 0.
Theorem 2.3.9. Let A_1 be algebra over the ring D. Let A_2 be free associative algebra over the ring D with Hamel basis \mathfrak{e}. The map

$$g = a \circ f$$

(2.3.16)

generated by the map $f \in \mathcal{L}(D; A_1; A_2)$ through the tensor $a \in A_2 \otimes A_2$, has the standard representation

$$(2.3.17) \quad g = a^{ij}(e_i \otimes e_j) \circ f = a^{ij}e_i fe_j$$

Proof. According to theorem 2.3.6, the standard representation of the tensor a has form

$$a = a^{ij}e_i \otimes e_j$$

(2.3.18)

The equation (2.3.17) follows from equations (2.3.16), (2.3.18). \qed
CHAPTER 3

Schauder Basis

3.1. Topological Ring

Definition 3.1.1. Let D be a ring. The set $Z(D)$ of elements $a \in D$ such that
\begin{equation}
ax = xa
\end{equation}
for all $x \in D$, is called the center of ring D. \hfill \Box

Theorem 3.1.2. The center $Z(D)$ of ring D is subring of ring D.

Proof. The statement follows immediately from definition 3.1.1. \hfill \Box

Definition 3.1.3. Let D be a ring with unit element e. The map
\[l : Z \rightarrow D \]
such that $l(n) = ne$ is a homomorphism of rings, and its kernel is an ideal (n), generated by integer $n \geq 0$. We have canonical injective homomorphism
\[Z/nZ \rightarrow D \]
which is an isomorphism between Z/nZ and subring of D. If nZ is prime ideal, then we have two cases.

- $n = 0$. D contains as subring a ring which isomorphic to Z, and which is often identified with Z. In that case, we say that D has characteristic 0.
- $n = p$ for some prime number p. D has characteristic p, and D contains an isomorphic image of $F_p = Z/pZ$. \hfill \Box

Theorem 3.1.4. Let D be ring of characteristic 0 and let $d \in D$. Then every integer $n \in Z$ commutes with d.

Proof. We prove statement by induction. The statement is evident for $n = 0$ and $n = 1$. Let statement be true for $n = k$. From chain of equation
\[(k + 1)d = kd + d = dk + d = d(k + 1)\]
Evidence of statement for $n = k + 1$ follows. \hfill \Box

Theorem 3.1.5. Let D be ring of characteristic 0. Then ring of integers Z is subring of center $Z(D)$ of ring D.

Proof. Corollary of theorem 3.1.4. \hfill \Box

3.1 [2], page 89.
3.2 I made definition according to definition from [2], pages 89, 90.
3. Schauder Basis

Definition 3.1.6. Ring D is called topological ring3.3 if D is topological space and the algebraic operations defined in D are continuous in the topological space D. □

According to definition, for arbitrary elements $a, b \in D$ and for arbitrary neighborhoods W_{a-b} of the element $a - b$, W_{ab} of the element ab there exists neighborhoods W_a of the element a and W_b of the element b such that $W_a - W_b \subset W_{a-b}$, $W_aW_b \subset W_{ab}$.

Definition 3.1.7. Norm on ring D3.4 is a map

$$d \in D \rightarrow |d| \in R$$

which satisfies the following axioms

- $|a| \geq 0$
- $|a| = 0$ if, and only if, $a = 0$
- $|ab| = |a||b|
- $|a + b| \leq |a| + |b|

The ring D, endowed with the structure defined by a given norm on D, is called normed ring. □

Invariant distance on additive group of ring D

$$d(a, b) = |a - b|$$

defines topology of metric space, compatible with ring structure of D.

Definition 3.1.8. Let D be normed ring. Element $a \in D$ is called limit of a sequence $\{a_n\}$

$$a = \lim_{n \to \infty} a_n$$

if for every $\epsilon \in R, \epsilon > 0$ there exists positive integer n_0 depending on ϵ and such, that $|a_n - a| < \epsilon$ for every $n > n_0$. □

Definition 3.1.9. Let D be normed ring. The sequence $\{a_n\}, a_n \in D$ is called fundamental or Cauchy sequence, if for every $\epsilon \in R, \epsilon > 0$, there exists positive integer n_0 depending on ϵ and such, that $|a_p - a_q| < \epsilon$ for every $p, q > n_0$. □

Definition 3.1.10. Normed ring D is called complete if any fundamental sequence of elements of ring D converges, i.e. has limit in ring D. □

Let D be complete ring of characteristic 0. Since division in the ring, in general, is not defined, we cannot state that the ring D contains rational field. We will assume that considered ring D contains rational field. Under this assumption, it is evident that the ring has characteristic 0.

Theorem 3.1.11. Let D be ring containing rational field and let $d \in D$. Then for any integer $n \in \mathbb{Z}$

$$n^{-1}d = dn^{-1}$$

3.3I made definition according to definition from [13], chapter 4.

3.4I made definition according to definition from [12], IX, §3.2 and definition [17]-1.1.12, p. 23.
PROOF. According to theorem 3.1.4 following chain of equation is true
\[(3.1.3) \quad n^{-1}dn = nn^{-1}d = d \]
Let us multiply right and left sides of equation \((3.1.3)\) by \(n^{-1}\). We get
\[(3.1.4) \quad n^{-1}d = n^{-1}dnn^{-1} = dn^{-1} \]
\((3.1.2)\) follows from \((3.1.4)\).

Theorem 3.1.12. Let \(D\) be ring containing rational field and let \(d \in D\). Then every rational number \(p \in \mathbb{Q}\) commutes with \(d\).

Proof. Let us represent rational number \(p \in \mathbb{Q}\) as \(p = \frac{m}{n}\), \(m, n \in \mathbb{Z}\). Statement of theorem follows from chain of equations
\[pd = mn^{-1}d = n^{-1}dm = dmn^{-1} = dp \]
based on the statement of theorem 3.1.4 and equation \((3.1.2)\).

Theorem 3.1.13. Let \(D\) be ring containing rational field. Then field of rational numbers \(\mathbb{Q}\) is subfield of center \(Z(D)\) of ring \(D\).

Proof. Corollary of theorem 3.1.12.

Later on, speaking about normed ring of characteristic 0, we will assume that homeomorphism of field of rational numbers \(\mathbb{Q}\) into ring \(D\) is defined.

Theorem 3.1.14. Let \(D\) be normed ring of characteristic 0 and let \(d \in D\). Let \(a \in D\) be limit of a sequence \(\{a_n\}\). Then
\[\lim_{n \to \infty} (a_n d) = ad \]
\[\lim_{n \to \infty} (da_n) = da \]

Proof. Statement of the theorem is trivial, however I give this proof for completeness sake. Since \(a \in D\) is limit of the sequence \(\{a_n\}\), then according to definition 3.1.8 for given \(\epsilon \in \mathbb{R}\), \(\epsilon > 0\), there exists positive integer \(n_0\) such that
\[|a_n - a| < \frac{\epsilon}{|d|} \]
for every \(n > n_0\). According to definition 3.1.7 the statement of theorem follows from inequalities
\[|a_n d - ad| = |(a_n - a)d| = |a_n - a||d| < \frac{\epsilon}{|d|}|d| = \epsilon \]
\[|da_n - da| = |d(a_n - a)| = |d||a_n - a| < |d|\frac{\epsilon}{|d|} = \epsilon \]
for any \(n > n_0\).

Theorem 3.1.15. Complete ring \(D\) of characteristic 0 contains as subfield an isomorphic image of the field \(\mathbb{R}\) of real numbers. It is customary to identify it with \(\mathbb{R}\).

Proof. Consider fundamental sequence of rational numbers \(\{p_n\}\). Let \(p'\) be limit of this sequence in ring \(D\). Let \(p\) be limit of this sequence in field \(\mathbb{R}\). Since immersion of field \(\mathbb{Q}\) into division ring \(D\) is homeomorphism, then we may identify \(p' \in D\) and \(p \in \mathbb{R}\).
THEOREM 3.1.16. Let D be complete ring of characteristic 0 and let $d \in D$. Then any real number $p \in R$ commute with d.

PROOF. Let us represent real number $p \in R$ as fundamental sequence of rational numbers $\{p_n\}$. Statement of theorem follows from chain of equations

$$pd = \lim_{n \to \infty} (p_n d) = \lim_{n \to \infty} (dp_n) = dp$$

based on statement of theorem 3.1.14. \hfill \Box

3.2. Normed D-Algebra

DEFINITION 3.2.1. Let D be valued commutative ring.3.5 Norm on D-module A is a map

$$a \in A \to \|a\| \in R$$

which satisfies the following axioms

3.2.1.1: $\|a\| \geq 0$
3.2.1.2: $\|a\| = 0$ if, and only if, $a = 0$
3.2.1.3: $\|a + b\| \leq \|a\| + \|b\|$
3.2.1.4: $\|da\| = |d|\|a\|$, $d \in D$, $a \in A$

D-module A, endowed with the structure defined by a given norm on A, is called normed D-module. \hfill \Box

THEOREM 3.2.2. Norm in D-module A satisfies to equation

\begin{equation}
\|a - b\| \geq \|a\| - \|b\|
\end{equation}

PROOF. From the equation $a = (a - b) + b$ and statement 3.2.1.3, it follows that

\begin{equation}
\|a\| \leq \|a - b\| + \|b\|
\end{equation}

The equation (3.2.1) follows from the equation (3.2.2). \hfill \Box

DEFINITION 3.2.3. The basis \vec{e} is called normal basis, if $\|e_i\| = 1$ for any vector e_i of the basis \vec{e}. \hfill \Box

DEFINITION 3.2.4. Let A be normed D-module. Element $a \in A$ is called limit of a sequence $\{a_n\}$

$$a = \lim_{n \to \infty} a_n$$

if for every $\epsilon \in R$, $\epsilon > 0$ there exists positive integer n_0 depending on ϵ and such, that $\|a_n - a\| < \epsilon$ for every $n > n_0$. \hfill \Box

DEFINITION 3.2.5. Let A be normed D-module. The sequence $\{a_n\}$, $a_n \in A$, is called fundamental or Cauchy sequence, if for every $\epsilon \in R$, $\epsilon > 0$, there exists positive integer n_0 depending on ϵ and such, that $\|a_p - a_q\| < \epsilon$ for every $p, q > n_0$. \hfill \Box

DEFINITION 3.2.6. Normed D-module A is called Banach D-module if any fundamental sequence of elements of module A converges, i.e. has limit in module A. \hfill \Box

3.5I made definition according to definition from [12], IX, §3.3. We use notation either $|a|$ or $\|a\|$ for norm.
DEFINITION 3.2.7. Let D be valued commutative ring. Let A be D-algebra. The norm $\|a\|$ on D-module A such that

(3.2.3) $\|ab\| \leq \|a\| \|b\|$ is called norm on D-algebra A. D-algebra A, endowed with the structure defined by a given norm on A, is called normed D-algebra.

DEFINITION 3.2.8. Normed D-algebra A is called Banach D-algebra if any fundamental sequence of elements of algebra A converges, i.e. has limit in algebra A.

DEFINITION 3.2.9. Let A be Banach D-algebra. Set of elements $a \in A$, $\|a\| = 1$, is called unit sphere in algebra A.

3.3. Normed D-Module $L(D; A_1; A_2)$

DEFINITION 3.3.1. Map $f : A_1 \rightarrow A_2$ of D-module A_1 with norm $\|x\|_1$ into D-module A_2 with norm $\|y\|_2$ is called continuous, if for every as small as we please $\epsilon > 0$ there exist such $\delta > 0$, that

(3.3.1) $\|x' - x\|_1 < \delta$ implies $\|f(x') - f(x)\|_2 < \epsilon$

THEOREM 3.3.2. Let $f : A_1 \rightarrow A_2$ linear map of D-module A_1 with norm $\|x\|_1$ into D-module A_2 with norm $\|y\|_2$. Since the linear map f is continuous at $x \in A_1$, then the linear map f is continuous everywhere in D-module A_1.

PROOF. Let $\epsilon > 0$. According to the definition 3.3.1, there exist such $\delta > 0$, that

(3.3.1) $\|x' - x\|_1 < \delta$ implies

(3.3.2) $\|f \circ x' - f \circ x\|_2 < \epsilon$ Let $b \in A_1$. From the equation (3.3.1), it follows that

(3.3.3) $\|(x' + b) - (x + b)\|_1 = \|x' - x\|_1 < \delta$ From the equation (3.3.2), it follows that

(3.3.4) $\|f \circ (x' + b) - f \circ (x + b)\|_2 = \|(f \circ x' + f \circ b) - (f \circ x + f \circ b)\|_2 = \|f \circ x' - f \circ x\|_2 < \epsilon$ Therefore, the linear map f is continuous at point $x + b$. □

$^\text{3.6}$This theorem is based on the theorem [4]-1, page 77.
Corollary 3.3.3. Linear map

\[f : A_1 \to A_2 \]

of normed D-module \(A_1 \) into normed D-module \(A_2 \) is continuous iff it is continuous at point \(0 \in A_1 \). □

Theorem 3.3.4. The sum of continuous linear maps of D-module \(A_1 \) with norm \(\|x\|_1 \) into D-module \(A_2 \) with norm \(\|y\|_2 \) is continuous linear map.

Proof. Let \(f : A_1 \to A_2 \) be continuous linear map. According to the corollary 3.3.3 and the definition 3.3.1, for given \(\epsilon > 0 \) there exist such \(\delta_1 > 0 \), that \(\|x\|_1 < \delta_1 \) implies

\[\|f \circ x\|_2 < \frac{\epsilon}{2} \]

(3.3.5)

Let \(g : A_1 \to A_2 \) be continuous linear map. According to the corollary 3.3.3 and the definition 3.3.1, for given \(\epsilon > 0 \) there exist such \(\delta_2 > 0 \), that \(\|x\|_1 < \delta_2 \) implies

\[\|g \circ x\|_2 < \frac{\epsilon}{2} \]

(3.3.6)

Let \(\delta = \min(\delta_1, \delta_2) \)

From inequalities (3.3.5), (3.3.6) and the statement 3.2.1.3, it follows that \(\|x\|_1 < \delta \) implies

\[\|(f + g) \circ x\|_2 = \|f \circ x + g \circ x\|_2 \leq \|f \circ x\|_2 + \|g \circ x\|_2 \leq \epsilon \]

Therefore, according to the corollary 3.3.3 and the definition 3.3.1, linear map \(f + g \) is continuous. □

Theorem 3.3.5. Let \(f : A_1 \to A_2 \) be continuous linear map of D-module \(A_1 \) with norm \(\|x\|_1 \) into D-module \(A_2 \) with norm \(\|y\|_2 \). Product of the map \(f \) over scalar \(d \in D \) is continuous linear map.

Proof. According to the corollary 3.3.3 and the definition 3.3.1, for given \(\epsilon > 0 \) there exist such \(\delta > 0 \), that \(\|x\|_1 < \delta \) implies

\[\|f \circ x\|_2 < \frac{\epsilon}{d} \]

(3.3.7)

From inequality (3.3.7) and the statement 3.2.1.4, it follows that \(\|x\|_1 < \delta \) implies

\[\|(d f) \circ x\|_2 = \|d(f \circ x)\|_2 = |d| \|f \circ x\|_2 \leq \epsilon \]

Therefore, according to the corollary 3.3.3 and the definition 3.3.1, linear map \(d f \) is continuous. □

Theorem 3.3.6. The set \(\mathcal{LC}(D; A_1; A_2) \) of continuous linear maps of normed D-module \(A_1 \) into normed D-module \(A_2 \) is D-module.

Proof. The theorem follows from theorems 3.3.4, 3.3.5. □
Theorem 3.3.7. Let A_1 be D-module with norm $\|x\|_1$. Let A_2 be D-module with norm $\|y\|_2$. The map $L(D; A_1; A_2) \to R$ determined by the equation
\[
\|f\| = \sup \frac{\|f \circ x\|_2}{\|x\|_1}
\]
is norm of D-module $L(D; A_1; A_2)$ and is called norm of map f.

Proof. The statement 3.2.1.1 is evident.
Let $\|f\| = 0$. According to the definition (3.3.8) $\|f \circ x\|_2 = 0$ for any $x \in A_1$. Therefore, the statement 3.2.1.2 is true for $\|f\|$.
According to the definition (2.1.9) and the statement 3.2.1.3,
\[
\sup \frac{\|(f_1 + f_2) \circ x\|_2}{\|x\|_1} = \sup \frac{\|f_1 \circ x + f_2 \circ x\|_2}{\|x\|_1} \\
\leq \sup \frac{\|f_1 \circ x\|_2 + \|f_2 \circ x\|_2}{\|x\|_1}
\]
Therefore, the statement 3.2.1.4 is true for $\|f\|$.
According to the definition (2.1.10) and the statement 3.2.1.4,
\[
\sup \frac{\|d f\circ x\|_2}{\|x\|_1} = \sup \frac{\|d(f \circ x)\|_2}{\|x\|_1} \\
\leq |d| \sup \frac{\|f \circ x\|_2}{\|x\|_1} = |d| \|f\|
\]
Therefore, the statement 3.2.1.4 is true for $\|f\|$.

Theorem 3.3.8. Let D be ring with norm $|d|$. Let A be D-module with norm $\|x\|_0$. The map
\[
A' \to R
\]
determined by the equation
\[
\|f\| = \sup \frac{\|f \circ x\|_2}{\|x\|_0}
\]
is norm of D-module A' and is called norm of functional f.

Proof. The theorem follows from the theorem 3.3.7.

Theorem 3.3.9. Let D be ring with norm $|d|$. Let e be basis of D-module A with norm $\|x\|_1$. Let A' be conjugated D-module with norm $\|x\|_2$. Then
\[
\|e^i\|_2 = \frac{1}{\|e^i\|_1}
\]
PROOF. Let index i have given value. Let $a \in A$. Since

$$a = (a - a^i e_i) + a^i e_i$$

then according to the statement 3.2.1.3

$$\|a\|_1 \leq \|a - a^i e_i\|_1 + \|a^i e_i\|_1$$

If $a = a^i e_i$, then according to the statements 3.2.1.2, 3.2.1.4

$$\|a\|_1 = \|a^i e_i\|_1 = |a^i| \|e_i\|_1$$

Therefore,

(3.3.12) $$\|e_i\|_2 = \sup \frac{|e_i \circ a|}{\|a\|_1} = \frac{|a^i|}{|a^i| \|e_i\|_1}$$

The equation (3.3.11) follows from the equation (3.3.12).

COROLLARY 3.3.10. Let e be normal basis of normed D-module A. The basis dual to basis e also is normal basis of normed D-module A'.

THEOREM 3.3.11. Let e_1 be basis of D-module A_1 with norm $\|x\|_1$. Let e_2 be basis of D-module A_2 with norm $\|x\|_2$. Then

(3.3.13) $$\|(e_1^i, e_2^j)\| = \frac{\|e_2^j\|_2}{\|e_1^i\|_1}$$

PROOF. Let indices i, j have given values. Let $a \in A_1$. Since

$$a = (a - a^i e_{1,i}) + a^i e_{1,i}$$

then according to the statement 3.2.1.3

$$\|a\|_1 \leq \|a - a^i e_{1,i}\|_1 + \|a^i e_{1,i}\|_1$$

If $a = a^i e_{1,i}$, then according to the statements 3.2.1.2, 3.2.1.4

(3.3.14) $$\|a\|_1 = \|a^i e_{1,i}\|_1 = |a^i| \|e_{1,i}\|_1$$

Since

$$(e_1^i, e_2^j) \circ a = a^i e_2^j$$

then according to the statement 3.2.1.4

(3.3.15) $$\|(e_1^i, e_2^j) \circ a\|_2 = \|a^i e_2^j\|_2 = |a^i| \|e_2^j\|_2$$

From equations (3.3.14), (3.3.15) it follows that

(3.3.16) $$\|(e_1^i, e_2^j)\| = \sup \frac{\|(e_1^i, e_2^j) \circ a\|_2}{\|a\|_1} = \frac{|a^i| \|e_2^j\|_2}{|a^i| \|e_{1,i}\|_1}$$

The equation (3.3.13) follows from the equation (3.3.16).

COROLLARY 3.3.12. Let e_1 be normal basis of D-module A_1 with norm $\|x\|_1$. Let e_2 be normal basis of D-module A_2 with norm $\|x\|_2$. Then

$$\|(e_1^i, e_2^j)\| = 1$$
Theorem 3.3.13. Let
\[f : A_1 \rightarrow A_2 \]
be linear map of D-module \(A_1 \) with norm \(\|x\|_1 \) into D-module \(A_2 \) with norm \(\|y\|_2 \).

Then
\[\|f\| = \sup\{\|f \circ x\|_2 : \|x\|_1 = 1\} \]

Proof. From the definition 2.1.5 and the theorems 3.1.15, 3.1.16, it follows that
\[f(rx) = rf(x) \quad r \in R \]
From the equation (3.3.18) and the statement 3.2.1.4, it follows that
\[\|f(rx)\|_2 = \|rf(x)\|_2 = \frac{\|f(x)\|_2}{\|x\|_1} \]
Assuming \(r = \frac{1}{\|x\|_1} \), we get
\[\|f(x)\|_2 = \|f\left(\frac{x}{\|x\|_1}\right)\|_2 \]
Equation (3.3.17) follows from equations (3.3.19) and (3.3.8).

Theorem 3.3.14. Let
\[f : A_1 \rightarrow A_2 \]
be linear map of D-module \(A_1 \) with norm \(\|x\|_1 \) into D-module \(A_2 \) with norm \(\|y\|_2 \).

Then
\[\|f \circ x\|_2 \leq \|f\| \|x\|_1 \]

Proof. According to the statement 3.2.1.4
\[\left\| \frac{1}{\|x\|_1} x \right\|_1 = \frac{1}{\|x\|_1} \|x\|_1 = 1 \]
From the theorem 3.3.13 and the equation (3.3.21), it follows that
\[\left\| \frac{1}{\|x\|_1} f \circ x \right\|_2 = \left\| f \circ \left(\frac{1}{\|x\|_1} x \right) \right\|_2 \leq \|f\| \]
From the statement 3.2.1.4 and the equation (3.3.22), it follows that
\[\frac{1}{\|x\|_1} \|f \circ x\|_2 \leq \|f\| \]
The inequality (3.3.20) follows from the inequality (3.3.23).

Theorem 3.3.15. Let \(^{3.7}\)
\[f : A_1 \rightarrow A_2 \]
linear map of D-module \(A_1 \) with norm \(\|x\|_1 \) into D-module \(A_2 \) with norm \(\|y\|_2 \).
The map \(f \) is continuous iff \(\|f\| < \infty \).

\(^{3.7}\)This theorem is based on the theorem [4]-2, pages 77 - 78.
Proof. Let $\|f\| < \infty$. Since map f is linear, then according to the theorem 3.3.7

$$\|f \circ x - f \circ y\|_2 = \|f \circ (x - y)\|_2 \leq \|f\| \|x - y\|_1$$

Let us assume arbitrary $\epsilon > 0$. Assume $\delta = \frac{\epsilon}{\|f\|}$. Then

$$\|f \circ x - f \circ y\|_2 \leq \|f\| \delta = \epsilon$$

follows from inequality $\|x - y\|_1 < \delta$

According to definition 3.3.1, the map f is continuous.

Let $\|f\| = \infty$. According to the theorem 3.3.7, for any n, there exists x_n such that

$$(3.3.24) \quad \|f \circ x_n\|_2 > n \|x_n\|_1$$

Let

$$(3.3.25) \quad y_n = \frac{1}{n \|x_n\|_1} x_n$$

According to the definition 2.2.3, the statement 3.2.1.4, equation (3.3.25), inequality (3.3.24)

$$\|f \circ y_n\|_2 = \left\|f \circ \left(\frac{1}{n \|x_n\|_1} x_n\right)\right\|_2 = \frac{1}{n \|x_n\|_1} \|f \circ x_n\|_2 > 1$$

Therefore, the map f is not continuous at the point $0 \in A_1$. \qed

D-module $\mathcal{LC}(D; A_1; A_2)$ is submodule of D-module $\mathcal{L}(D; A_1; A_2)$. According to the theorem 3.3.15, since $f \in \mathcal{L}(D; A_1; A_2) \setminus \mathcal{LC}(D; A_1; A_2)$ then $\|f\| = \infty$.

Theorem 3.3.16. Let A_1 be D-module with norm $\|x\|_1$. Let A_2 be D-module with norm $\|x\|_2$. Let A_3 be D-module with norm $\|x\|_3$. Let

$$g : A_1 \to A_2$$
$$f : A_2 \to A_3$$

be continuous linear maps. The map $f \circ g$ is continuous linear map

$$(3.3.26) \quad \|f \circ g\| \leq \|f\| \|g\|$$

Proof. According to the definitions (2.2.3), (3.3.8)

$$\sup \frac{\|f \circ g\| \circ x\|_3}{\|x\|_1} = \sup \frac{\|f \circ (g \circ x)\|_3}{\|x\|_1} = \sup \left(\frac{\|f \circ (g \circ x)\|_3}{\|g \circ x\|_2} \frac{\|g \circ x\|_2}{\|x\|_1} \right)$$

$$(3.3.27) \leq \sup \frac{\|f \circ (g \circ x)\|_3}{\|g \circ x\|_2} \sup \frac{\|g \circ x\|_2}{\|x\|_1}$$

\let3.8 Let $f_1 : A_1 \to R$ $f_2 : A_1 \to R$

In general, maps f_1, f_2 have maximum in different points of the set A_1. Therefore,

$$\sup(f_1(x)f_2(x)) \leq \sup f_1(x)\sup f_2(x)$$
Since, in general, \(g \circ A_1 \neq A_2 \), then
\[
(3.3.28) \quad \sup_{\|x\|_2} \| f \circ (g \circ x) \|_3 \leq \sup_{\|y\|_2} \| f \circ y \|_3.
\]
From the inequalities (3.3.27), (3.3.28), it follows that
\[
(3.3.29) \quad \sup_{\|x\|_1} \| (f \circ g) \circ x \|_3 \leq \sup_{\|y\|_2} \| f \circ y \|_3 \sup_{\|x\|_1} \| g \circ x \|_2.
\]
The inequality (3.3.26) follows from the inequality (3.3.29) and the definition (3.3.8). \(\square \)

Theorem 3.3.17. Normed \(D \)-module \(LC(D; A; A) \) is normed \(D \)-algebra, where product is defined according to rule \((f, g) \rightarrow f \circ g \).

Proof. The proof of statement that \(D \)-module \(LC(D; A; A) \) is \(D \)-algebra is similar to the proof of the theorem [7]-2.4.5. According to the definition 3.3.8 and the theorem 3.3.16, the norm (3.3.8) is norm on \(D \)-algebra \(LC(D; A; A) \). \(\square \)

3.4. Normed D-Module \(\mathcal{L}(D; A_1, ..., A_n; A) \)

Definition 3.4.1. Let \(A_i, i = 1, ..., n \) be Banach \(D \)-algebra with norm \(\|x\|_i \). Let \(A \) be Banach \(D \)-algebra with norm \(\|x\| \). Multivariable map \(f : A_1 \times ... \times A_n \rightarrow A \)
is called **continuous**, if for every as small as we please \(\epsilon > 0 \) there exist such \(\delta > 0 \), that
\[
\|x'_i - x_i\|_1 < \delta \quad \ldots \quad \|x'_n - x_n\|_n < \delta
\]
implies
\[
\|f(x'_1, ..., x'_n) - f(x_1, ..., x_n)\| < \epsilon
\]
\(\square \)

Theorem 3.4.2. The sum of continuous multivariable maps is continuous multivariable map.

Proof. Let \(f : A_1 \times ... \times A_n \rightarrow A \)
be continuous multivariable map. According to the definition 3.4.1, for given \(\epsilon > 0 \) there exist such \(\delta_1 > 0 \), that \(\|x'_1 - x_1\|_1 < \delta_1, ..., \|x'_n - x_n\|_n < \delta_1 \) implies
\[
(3.4.1) \quad \|f(x'_1, ..., x'_n) - f(x_1, ..., x_n)\| < \frac{\epsilon}{2}
\]
Let \(g : A_1 \times ... \times A_n \rightarrow A \)
be continuous multivariable map. According to the definition 3.4.1, for given \(\epsilon > 0 \) there exist such \(\delta_2 > 0 \), that \(\|x'_1 - x_1\|_1 < \delta_2, ..., \|x'_n - x_n\|_n < \delta_2 \) implies
\[
(3.4.2) \quad \|g(x'_1, ..., x'_n) - g(x_1, ..., x_n)\| < \frac{\epsilon}{2}
\]
Let
\[
\delta = \min(\delta_1, \delta_2)
\]
From inequalities (3.4.1), (3.4.2) and the statement 3.2.1.3, it follows that \(\|x'_1 - x_1\|_1 < \delta, \ldots, \|x'_n - x_n\|_n < \delta \) implies
\[
\|(f + g)(x'_1, \ldots, x'_n) - (f + g)(x_1, \ldots, x_n)\| = \|f(x'_1, \ldots, x'_n) + g(x'_1, \ldots, x'_n) - f(x_1, \ldots, x_n) - g(x_1, \ldots, x_n)\| \\
\leq \|f(x'_1, \ldots, x'_n) - f(x_1, \ldots, x_n)\| + \|g(x'_1, \ldots, x'_n) - g(x_1, \ldots, x_n)\| \leq \epsilon
\]
Therefore, according to the definition 3.4.1, multivariable map \(f + g \) is continuous.

Theorem 3.4.3. The sum of continuous polylinear maps is continuous polylinear map.

Proof. The theorem follows from theorems 3.4.2, 3.4.1.

Theorem 3.4.4. Product of the continuous multivariable map \(f \) over scalar \(d \in D \) is continuous multivariable map.

Proof. Let \(f : A_1 \times \ldots \times A_n \to A \) be continuous multivariable map. According to the definition 3.4.1, for given \(\epsilon > 0 \) there exist such \(\delta > 0 \), that \(\|x'_1 - x_1\|_1 < \delta, \ldots, \|x'_n - x_n\|_n < \delta \) implies
\[
\|f(x'_1, \ldots, x'_n) - f(x_1, \ldots, x_n)\| < \frac{\epsilon}{\delta}
\]
From inequality (3.4.3) and the statement 3.2.1.4, it follows that \(\|x'_1 - x_1\|_1 < \delta, \ldots, \|x'_n - x_n\|_n < \delta \) implies
\[
\|(d f)(x'_1, \ldots, x'_n) - (d f)(x_1, \ldots, x_n)\| = \|d f(x'_1, \ldots, x'_n) - d f(x_1, \ldots, x_n)\| = |d| \|f(x'_1, \ldots, x'_n) - f(x_1, \ldots, x_n)\| \leq \epsilon
\]
Therefore, according to the definition 3.4.1, multivariable map \(d f \) is continuous.

Theorem 3.4.5. Product of the continuous polylinear map \(f \) over scalar \(d \in D \) is continuous polylinear map.

Proof. The theorem follows from theorems 3.4.2, 3.4.4.

Theorem 3.4.6. The set \(\mathcal{C}(D; A_1, \ldots, A_n; A) \) of continuous multivariable maps is \(D \)-module.

Proof. The theorem follows from theorems 3.4.2, 3.4.4.

Theorem 3.4.7. The set \(\mathcal{L}C(D; A_1, \ldots, A_n; A) \) of continuous polylinear maps is \(D \)-module.

Proof. The theorem follows from theorems 3.4.3, 3.4.5.

Let \(A_1 \) be \(D \)-module with norm \(\|x\|_1 \). Let \(A_2 \) be \(D \)-module with norm \(\|x\|_2 \). Let \(A_3 \) be \(D \)-module with norm \(\|x\|_3 \). Since \(\mathcal{L}(D; A_2; A_3) \) is \(D \)-module with norm \(\|f\|_{2,3} \), then we can consider continuous map
\[
(3.4.4) \quad h : A_1 \to \mathcal{L}(D; A_2; A_3)
\]
Since \(a_1 \in A_1 \), then
\[
h \circ a_1 : A_2 \to A_3
\]
3.4. Normed D-Module \(\mathcal{L}(D; A_1, \ldots, A_n; A) \)

is continuous map. According to the theorem 3.3.14

\[
\|a_3\|_3 \leq \|h \circ a_1\|_{2,3}\|a_2\|_2
\]

Since \(\mathcal{L}(D; A_1; \mathcal{L}(D; A_2; A_3)) \) is normed D-module, then according to the theorem 3.3.14

\[
\|h \circ a_1\|_{2,3} \leq \|h\|\|a_1\|_1
\]

From inequalities (3.4.5), (3.4.6), it follows that

\[
\|a_3\|_3 \leq \|h\|\|a_1\|_1\|a_2\|_2
\]

We can consider the map (3.4.7) as bilinear map

\[
f : A_1 \times A_2 \to A_3
\]

defined by rule

\[
f(a_1, a_2) = (h \circ a_1) \circ a_2
\]

Based on theorems 3.3.7, 3.3.14 and inequality (3.4.7), we define the norm of the bilinear map \(f \) by the equation

\[
\|f\| = \sup \frac{\|f(a_1, a_2)\|_3}{\|a_1\|_1\|a_2\|_2}
\]

If we proceed by induction over number of variables, we can generalize the definition of norm of bilinear map.

Definition 3.4.8. Let \(A_i, i = 1, \ldots, n \), be Banach D-algebra with norm \(\|x\|_i \). Let \(A \) be Banach D-algebra with norm \(\|x\| \). Let

\[
f : A_1 \times \ldots \times A_n \to A
\]

be polylinear map. Value

\[
\|f\| = \sup \frac{|f(x)|}{\|x\|_1 \ldots \|x\|_n}
\]

is called **norm of polylinear map** \(f \).

Theorem 3.4.9. Let \(A_i, i = 1, \ldots, n \), be Banach D-module with norm \(\|x\|_i \). Let \(A \) be Banach D-module with norm \(\|x\| \). Let

\[
f : A_1 \times \ldots \times A_n \to A
\]

be polylinear map. Then

\[
\|f\| = \sup \{ |f(x_1, \ldots, x_n)| : \|x_i\|_i = 1, 1 \leq i \leq n \}
\]

Proof. From the definition 2.1.13 and the theorems 3.1.15, 3.1.16, it follows that

\[
f(r_1 x_1, \ldots, r_n x_n) = r_1 \ldots r_n f(x_1, \ldots, x_n) \quad r_1, \ldots, r_n \in R
\]

From the equation (3.4.12) and the statement 3.2.1.4, it follows that

\[
\frac{\|f(r_1 x_1, \ldots, r_n x_n)\|}{\|r_1 x_1\|_1 \ldots \|r_n x_n\|_n} = \frac{\|r_1 \ldots r_n f(x_1, \ldots, x_n)\|}{\|r_1\| \|x_1\|_1 \ldots \|r_n\| \|x_n\|_n} = \frac{\|f(x_1, \ldots, x_n)\|}{\|x_1\|_1 \ldots \|x_n\|_n}
\]

Assuming \(r = \frac{1}{\|x\|_1} \), we get

\[
\frac{\|f(x_1, \ldots, x_n)\|}{\|x\|_1 \ldots \|x\|_n} = \left\| f \left(\frac{x_1}{\|x\|_1}, \ldots, \frac{x_n}{\|x\|_n} \right) \right\|
\]
Equation (3.4.11) follows from equations (3.4.13) and (3.4.10).

Theorem 3.4.10. Let \(A_i, i = 1, \ldots, n, \) be Banach \(D \)-module with norm \(\|x\|_i \). Let \(A \) be Banach \(D \)-module with norm \(\|x\| \). Let

\[
f : A_1 \times \cdots \times A_n \to A
\]

be polylinear map. Then

(3.4.14)

\[
\|f \circ (x_1, \ldots, x_n)\| \leq \|f\| \|x_1\| \cdots \|x_n\|
\]

Proof. According to the statement 3.2.1.4

(3.4.15)

\[
\frac{1}{\|x_1\|_1} = \frac{1}{\|x_1\|_1} = 1 \quad \cdots \quad \frac{1}{\|x_n\|_n} = \frac{1}{\|x_n\|_n} = 1
\]

From the theorem 3.4.9 and the equation (3.4.15), it follows that

(3.4.16)

\[
\frac{1}{\|x_1\|_1 \cdots \|x_n\|_n} \|f \circ (x_1, \ldots, x_n)\| = \|f \circ (x_1, \ldots, x_n)\| \leq \|f\|
\]

From the statement 3.2.1.4 and the equation (3.4.16), it follows that

(3.4.17)

\[
\frac{1}{\|x_1\|_1 \cdots \|x_n\|_n} \|f \circ (x_1, \ldots, x_n)\| \leq \|f\|
\]

The inequality (3.4.14) follows from the inequality (3.4.17).

Let \(A_i, i = 1, \ldots, n, \) be Banach \(D \)-module with norm \(\|x\|_i \). Let \(A \) be Banach \(D \)-module with norm \(\|x\| \). We can represent polylinear map

\[
f : A_1 \times \cdots \times A_n \to A
\]

in the following form

(3.4.18)

\[
f \circ (x_1, \ldots, x_n) = (h \circ (x_1, \ldots, x_{n-1})) \circ x_n
\]

where

\[
h : A_1 \times \cdots \times A_{n-1} \to \mathcal{L}(D; A_n; A)
\]

is polylinear map.

Theorem 3.4.11. Since the map \(f \) is continuous, then the map \(h \circ (a_1, \ldots, a_{n-1}) \) is also continuous.

Proof. According to the definition 3.4.1, for every as small as we please \(\epsilon > 0 \) there exist such \(\delta > 0, \) that

\[
\|x'_1 - x_1\|_1 < \delta \quad \cdots \quad \|x'_n - x_n\|_n < \delta
\]

implies

\[
\|f \circ (x'_1, \ldots, x'_n) - f \circ (x_1, \ldots, x_n)\| < \epsilon
\]

Therefore, for every as small as we please \(\epsilon > 0 \) there exist such \(\delta > 0, \) that \(\|x'_n - x_n\|_n < \delta \) implies

(3.4.19)

\[
\|f \circ (x_1, \ldots, x_{n-1}, x'_n) - f \circ (x_1, \ldots, x_{n-1}, x_n)\| < \epsilon
\]

From the equation (3.4.18) and inequality (3.4.19) it follows that for every as small as we please \(\epsilon > 0 \) there exist such \(\delta > 0, \) that \(\|x'_n - x_n\|_n < \delta \) implies

\[
\|(h \circ (x_1, \ldots, x_{n-1})) \circ x'_n - (h \circ (x_1, \ldots, x_{n-1})) \circ x_n\| < \epsilon
\]

According to the definition 3.3.1, the map \(h \circ (x_1, \ldots, x_{n-1}) \) is continuous. \qed
Theorem 3.4.12. Since the map f is continuous, then the map h is also continuous.

Proof. According to the definition 3.4.1, for every as small as we please $\epsilon > 0$ there exist such $\delta > 0$, that

$$\|x'_1 - x_1\|_1 < \delta \quad \ldots \quad \|x'_n - x_n\|_n < \delta$$

implies

$$\|f \circ (x'_1, \ldots, x'_n) - f \circ (x_1, \ldots, x_n)\| < \epsilon$$

Therefore, for every as small as we please $\epsilon > 0$ there exist such $\delta > 0$, that

$$\|x'_1 - x_1\|_1 < \delta \quad \ldots \quad \|x'_{n-1} - x_{n-1}\|_{n-1} < \delta$$

implies

$$(3.4.20) \quad \|f \circ (x'_1, \ldots, x'_{n-1}, x_n) - f \circ (x_1, \ldots, x_{n-1}, x_n)\| < \epsilon \|x_n\|_n$$

From the equation (3.4.18) and inequality (3.4.20) it follows that for every as small as we please $\epsilon > 0$ there exist such $\delta > 0$, that

$$\|x'_1 - x_1\|_1 < \delta \quad \ldots \quad \|x'_{n-1} - x_{n-1}\|_{n-1} < \delta$$

implies

$$(3.4.21) \quad \|h \circ (x'_1, \ldots, x'_{n-1}) \circ x_n - (h \circ (x_1, \ldots, x_{n-1})) \circ x_n\| < \epsilon \|x_n\|_n$$

From the inequality (3.4.21) it follows that for every as small as we please $\epsilon > 0$ there exist such $\delta > 0$, that

$$\|x'_1 - x_1\|_1 < \delta \quad \ldots \quad \|x'_{n-1} - x_{n-1}\|_{n-1} < \delta$$

implies

$$(3.4.22) \quad \|h \circ (x'_1, \ldots, x'_{n-1}) - h \circ (x_1, \ldots, x_{n-1})\| \circ x_n\|_n < \epsilon \|x_n\|_n$$

According to the definition (3.3.8)

$$(3.4.23) \quad \|h \circ (x'_1, \ldots, x'_{n-1}) - h \circ (x_1, \ldots, x_{n-1})\| \leq \|h \circ (x'_1, \ldots, x'_{n-1}) - h \circ (x_1, \ldots, x_{n-1})\| \circ x_n\|_n$$

From inequalities (3.4.22), (3.4.23), it follows that for every as small as we please $\epsilon > 0$ there exist such $\delta > 0$, that

$$\|x'_1 - x_1\|_1 < \delta \quad \ldots \quad \|x'_{n-1} - x_{n-1}\|_{n-1} < \delta$$

implies

$$(3.4.24) \quad \|h \circ (x'_1, \ldots, x'_{n-1}) - h \circ (x_1, \ldots, x_{n-1})\| < \epsilon$$

According to the definition 3.3.1, the map h is continuous. □
THEOREM 3.4.13.

\[f \in \mathcal{L}C(D; A_1, ..., A_n; A) \]

iff

\[h \in \mathcal{L}C(D; A_1, ..., A_{n-1}; \mathcal{L}C(D; A_n; A)) \]

REMARK 3.4.14. In other words, the polylinear map \(f \) is continuous iff the map \(h \) is continuous and for any \(a_1 \in A_1, ..., a_{n-1} \in A_{n-1} \) the map \(h \circ (a_1, ..., a_{n-1}) \) is continuous.

PROOF. From theorems 3.4.11, 3.4.12, it follows that continuity of maps \(h \) and \(h \circ (a_1, ..., a_{n-1}) \) follows from continuity of the map \(f \).

Let maps \(h \) and \(h \circ (a_1, ..., a_{n-1}) \) be continuous. According to the definition 3.4.1, to prove continuity of the map \(f \), we need to estimate the difference

\[\|f \circ (x'_1, ..., x'_n) - f \circ (x_1, ..., x_n)\| \]

provided that

\[\|x'_1 - x_1\|_1 < \delta \quad \|x'_n - x_n\|_n < \delta \]

According to the equation (3.4.18),

\[f \circ (x'_1, ..., x'_n) - f \circ (x_1, ..., x_n) \]

\[= (h \circ (x'_1, ..., x'_{n-1})) \circ x'_n - (h \circ (x_1, ..., x_{n-1})) \circ x_n \]

\[= (h \circ (x'_1, ..., x'_{n-1})) \circ x'_n - (h \circ (x'_1, ..., x'_{n-1})) \circ x_n \]

\[+ (h \circ (x'_1, ..., x'_{n-1})) \circ x_n - (h \circ (x_1, ..., x_{n-1})) \circ x_n \]

(3.4.27)

According to the equation (3.4.27) and statement 3.2.1.4,

\[\|f \circ (x'_1, ..., x'_n) - f \circ (x_1, ..., x_n)\| \]

\[\leq \|((h \circ (x'_1, ..., x'_{n-1})) \circ x'_n - (h \circ (x'_1, ..., x'_{n-1})) \circ x_n)\| \]

\[+ \|((h \circ (x'_1, ..., x'_{n-1})) \circ x_n - (h \circ (x_1, ..., x_{n-1})) \circ x_n)\| \]

(3.4.28)

According to the definition 3.3.1, for every as small as we please \(\epsilon > 0 \) there exist such \(\delta_1 > 0 \), that \(\|x'_n - x_n\|_n < \delta_1 \) implies

\[\|(h \circ (x'_1, ..., x'_{n-1})) \circ x'_n - (h \circ (x'_1, ..., x'_{n-1})) \circ x_n\| < \frac{\epsilon}{2} \]

(3.4.29)

Consider second term in right part of the inequality (3.4.28).

3.4.13.1: Since \(x_n = 0 \), then

\[\|(h \circ (x'_1, ..., x'_{n-1})) \circ x_n - (h \circ (x_1, ..., x_{n-1})) \circ x_n\| = 0 < \frac{\epsilon}{2} \]

(3.4.30)

3.4.13.2: So we assume \(x_n \neq 0 \). According to the definition 3.4.1, for every as small as we please \(\epsilon > 0 \) there exist such \(\delta_2 > 0 \), that \(\|x'_i - x_i\|_i < \delta_2, 1 \leq i < n \) implies

\[\|h \circ (x'_1, ..., x'_{n-1}) - h \circ (x_1, ..., x_{n-1})\| < \frac{\epsilon}{2\|x_n\|_n} \]
From inequalities (3.4.30), (3.3.20), it follows that
\[
\frac{\epsilon}{2}\|x_n\|_n = \frac{\epsilon}{2}
\]
\[
(3.4.31)
\]
Therefore, in both cases 3.4.13.1, 3.4.13.2, for every as small as we please \(\epsilon > 0 \) there exist such \(\delta_2 > 0 \), that \(\|x'_i - x_i\|_1 < \delta, 1 \leq i < n \) implies
\[
\|h \circ (x'_1, ..., x'_{n-1}) \circ x_n - (h \circ (x_1, ..., x_{n-1}) \circ x_n)\| < \frac{\epsilon}{2}.
\]
Let
\[
\delta = \min(\delta_1, \delta_2)
\]
From inequalities (3.4.28), (3.4.29), (3.4.32), it follows that for every as small as we please \(\epsilon > 0 \) there exist such \(\delta_2 > 0 \), that
\[
\|x'_1 - x_1\|_1 < \delta \quad \text{...} \quad \|x'_n - x_n\|_n < \delta
\]
implies
\[
\|f \circ (x'_1, ..., x'_n) - f \circ (x_1, ..., x_n)\| < \epsilon.
\]
According to the definition 3.4.1, the map \(f \) is continues. \(\Box \)

Theorem 3.4.15. Let \(A_i, i = 1, ..., n \), be Banach \(D \)-module with norm \(\|x\|_i \).
Let \(A \) be Banach \(D \)-module with norm \(\|x\| \).
Let
\[
f : A_1 \times ... \times A_n \to A
\]
be polylinear map. Let
\[
h : A_1 \times ... \times A_{n-1} \to L(D; A_n; A)
\]
be polylinear map such that
\[
(3.4.33) \quad f \circ (x_1, ..., x_n) = (h \circ (x_1, ..., x_{n-1}) \circ x_n
\]
Then
\[
(3.4.34) \quad \|f\| = \|h\|
\]
Proof. According to the definition 3.4.8
\[
(3.4.35) \quad \|h \circ (x_1, ..., x_{n-1})\| \leq \|h\| \|x_1\|_1 ... \|x_{n-1}\|_n
\]
According to the theorem 3.3.14
\[
(3.4.36) \quad \|f \circ (x_1, ..., x_n)\| = \|(h \circ (x_1, ..., x_{n-1}) \circ x_n\| \leq \|h \circ (x_1, ..., x_{n-1})\| \|x_n\|_n
\]
From inequalities (3.4.35), (3.4.36), it follows that
\[
(3.4.37) \quad \|f \circ (x_1, ..., x_n)\| \leq \|h\| \|x_1\|_1 ... \|x_n\|_n
\]
According to the theorem 3.4.10
\[
(3.4.38) \quad \|f \circ (x_1, ..., x_n)\| \leq \|f\| \|x_1\|_1 ... \|x_n\|_n
\]
Based on theorem 3.4.10 and inequalities (3.4.37), (3.4.38), we get inequality
\[
(3.4.39) \quad \|f\| \leq \|h\|
\]
From the equation (3.4.33) and inequality (3.4.38), it follows that
\[
\| (h \circ (x_1, \ldots, x_{n-1}) \circ x_n) \| \leq \|f\| \|x_1\| \cdots \|x_{n-1}\|_{n-1}
\]
From the definition 3.4.8 and inequality (3.4.40), it follows that
\[
\| h \circ (x_1, \ldots, x_{n-1}) \| \leq \|f\| \|x_1\| \cdots \|x_{n-1}\|_{n-1}
\]
Based on theorem 3.4.10 and inequalities (3.4.35), (3.4.41), we get inequality
\[
\|h\| \leq \|f\|
\]
The equation (3.4.34) follows from inequalities (3.4.39), (3.4.42). □

Theorem 3.4.16. The polylinear map \(f \) is continuous iff \(\|f\| < \infty \).

Proof. We prove the theorem by induction over number \(n \) of arguments of the map \(f \). For \(n = 1 \), the theorem follows from the theorem 3.3.15.

Let the theorem be true for \(n = k - 1 \). Let \(A_i, i = 1, \ldots, k \), be Banach \(D \)-module with norm \(\|x\|_i \). Let \(A \) be Banach \(D \)-module with norm \(\|x\| \). We can represent polylinear map
\[
f : A_1 \times \cdots \times A_k \to A
\]
in the following form
\[
f \circ (a_1, \ldots, a_k) = (h \circ (a_1, \ldots, a_{k-1})) \circ a_k
\]
where
\[
h : A_1 \times \cdots \times A_{k-1} \to \mathcal{L}(D; A_k; A)
\]
is polylinear map. According to the theorem 3.4.12, the map \(h \) is continuous polylinear map of \(k - 1 \) variables. According to the induction assumption, \(\|h\| < \infty \).
According to the theorem 3.4.15, \(\|f\| = \|h\| < \infty \). □

3.5. \(D \)-algebra with Schauder basis

Definition 3.5.1. Let \(A \) be Banach \(D \)-module. A sequence of vectors \(\mathcal{E} = \{e_i\}_{i=1}^\infty \) is called Schauder basis if
- The set of vectors \(e_i \) is linear independent.
- For each vector \(a \in A \), there exists unique sequence \(\{a^i\}_{i=1}^\infty, a^i \in D \), such that
\[
a = a^i e_i = \lim_{n \to \infty} \sum_{i=1}^n a^i e_i
\]
The sequence \(\{a^i\}_{i=1}^\infty, a^i \in D \), is called coordinates of vector
\[
a = a^i e_i
\]
relative to Schauder basis \(\mathcal{E} \). □

Let \(\mathcal{E} \) be Schauder basis of Banach \(D \)-module \(A \). We say that the expansion
\[
a = a^i e_i
\]
of vector \(a \in A \) relative to the basis \(\mathcal{E} \) converges.

Theorem 3.5.2. Let \(\mathcal{E} \) be Schauder basis of Banach \(D \)-module \(A \). Then \(\|a\| < \infty \) for any vector \(a \in A \).

\(^{\text{3.9}}\)The definition 3.5.1 is based on the definition [1]-4.6, p. 182, and lemma [1]-4.7, p. 183.
Proof. From the theorem 3.2.2, it follows that we cannot define \(\|a - b\| \) if \(\|a\| = \infty \). Therefore, we cannot expand \(a \) relative to Schauder basis. \(\square \)

Theorem 3.5.3. Let \(\mathcal{E} \) be Schauder basis of Banach \(D \)-module \(A \). Let \(a_i \) be coordinates of vector \(a \) relative to the basis \(\mathcal{E} \). Then for every \(\epsilon \in \mathbb{R}, \epsilon > 0 \), there exists positive integer \(n_0 \) depending on \(\epsilon \) and such, that

\[
\left\| \sum_{i=p}^{\infty} a^i e_i \right\| < \epsilon \tag{3.5.1}
\]

\[
\left\| \sum_{i=p}^{q} a^i e_i \right\| < \epsilon \tag{3.5.2}
\]

for every \(p, q > n_0 \).

Proof. The inequality (3.5.1) follows from definitions 3.2.4, 3.5.1. The inequality (3.5.2) follows from definitions 3.2.5, 3.5.1. \(\square \)

Theorem 3.5.4. Let \(a_i \in A, i \in I \), finite set of vectors of Banach \(D \)-module \(A \) with Schauder basis \(\mathcal{E} \). Then

\[
\text{span}(a_i, i \in I) \subset A \tag{3.5.3}
\]

Proof. To prove the statement (3.5.3), it suffices to prove the following statements.

- If \(a_1, a_2 \in A \), then \(a_1 + a_2 \in A \).
 Since \(a_1, a_2 \in A \), then, according to the theorem 3.5.3, there exists positive integer \(n_0 \) depending on \(\epsilon \) and such, that

\[
\left\| \sum_{i=p}^{q} a_1^i e_i \right\| < \frac{\epsilon}{2} \tag{3.5.4}
\]

for every \(p, q > n_0 \). From inequalities (3.5.4) it follows that

\[
\left\| \sum_{i=p}^{q} (a_1^i + a_2^i) e_i \right\| = \left\| \sum_{i=p}^{q} a_1^i e_i + a_2^i e_i \right\| < \left\| \sum_{i=p}^{q} a_1^i e_i \right\| + \left\| \sum_{i=p}^{q} a_2^i e_i \right\| < \epsilon \tag{3.5.5}
\]

From inequality (3.5.5) it follows that sequence

\[
\sum_{i=p}^{q} (a_1^i + a_2^i) e_i
\]

is fundamental sequence.

- If \(a \in A, d \in D \), then \(da \in A \).
 Since \(a \in A, d \in D \), then, according to the theorem 3.5.3, there exists positive integer \(n_0 \) depending on \(\epsilon \) and such, that

\[
\left\| \sum_{i=p}^{q} a^i e_i \right\| < \frac{\epsilon}{|d|} \tag{3.5.7}
\]

\[3.10\]See the definition [5]-4.5.1 of linear span in vector space.
for every $p, q > n_0$. From inequality (3.5.7) it follows that
\begin{equation}
\left\| \sum_{i=p}^{q} d^i e_i \right\| < |d| \left\| \sum_{i=p}^{q} a^i e_i \right\| < \epsilon
\end{equation}

From inequality (3.5.8) it follows that sequence
\begin{equation}
\sum_{i=p}^{q} d^i e_i
\end{equation}
is fundamental sequence.

\[\square\]

Theorem 3.5.5. Let \mathcal{F} be Schauder basis of Banach D-module A. Then
\[\|e_i\| < \infty\]
for any vector e_i.

Proof. Let for $i = j$, $\|e_j\| = \infty$. For any $n > j$
\[\left\| \sum_{i=1}^{n} a^i e_i \right\| < \sum_{i=1}^{n} \|a^i e_i\| = \sum_{i=1}^{n} |a^i| \|e_i\| = \infty\]
if for sequence $\{a^i\}_{i=1}^{\infty}, a^i \in D$, it is true that $a^i \neq 0$. Therefore, we cannot say whether the vector $a = a^i e_i$ is defined.

Without loss of generality, we can assume that the basis \mathcal{F} is normal basis. If we assume that the norm of the vector e_i is different from 1, then we can replace this vector by the vector
\[e'_i = \frac{1}{\|e_i\|} e_i\]
According to the corollary 3.3.10, dual basis also is normal basis.

Theorem 3.5.6. Let \mathcal{F} be normal Schauder basis of Banach D-module A. Let $\{a^i\}_{i=1}^{\infty}, a^i \in D$, be such sequence that
\[\sum_{i=1}^{\infty} |a^i| < \infty\]
Then there exists limit\footnote{See similar theorems [3], page 60, [14], pages 264, 295, [9], pages 319, 329.}
\begin{equation}
(3.5.10) \quad a = a^i e_i = \lim_{n \to \infty} \sum_{i=1}^{n} a^i e_i
\end{equation}

Proof. Existence of the limit (3.5.10) follows from the inequality
\begin{equation}
(3.5.11) \quad \left\| \sum_{i=1}^{n} a^i e_i \right\| < \sum_{i=1}^{n} |a^i| \|e_i\| = \sum_{i=1}^{n} |a^i|
\end{equation}
since the inequality (3.5.11) is preserved in passing to the limit $n \to \infty$. \[\square\]
Let \(\mathcal{F} \) be normal Schauder basis of Banach \(D \)-module \(A \). If
\[
\sum_{i=1}^{\infty} |a^i| < \infty
\]
then we say that the expansion
\[
a = a^i e_i
\]
of vector \(a \in A \) relative to the basis \(\mathcal{F} \) converges normally.\(^{3.12}\) We denote
\[
A^+(\mathcal{F}) = \{a \in A : a = a^i e_i, \sum_{i=1}^{\infty} |a^i| < \infty\}
\]
the set of vectors whose expansion relative to the basis \(\mathcal{F} \) converges normally.

Theorem 3.5.7. Let \(\mathcal{F} \) be normal Schauder basis of Banach \(D \)-module \(A \). If expansion of vector \(a \in A \) relative to the basis \(\mathcal{F} \) converges normally, then
\[
\|a\| < \sum_{i=1}^{\infty} |a^i|
\]

Proof. From the statement 3.2.1.3, it follows that
\[
\|a\| < \sum_{i=1}^{\infty} |a^i| \|e_i\|
\]
The inequation (3.5.12) follows from the inequation (3.5.13) and the statement that Schauder basis \(\mathcal{F} \) is a normal basis. \(\square \)

Theorem 3.5.8. Let
\[
f : A_1 \to A_2
\]
be map of \(D \)-module \(A_1 \) with basis \(\mathcal{F}_1 \) into \(D \)-module \(A_2 \) with Schauder basis \(\mathcal{F}_2 \). Let \(f_j^i \) be coordinates of the map \(f \) relative to bases \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \). Then sequence
\[
\sum_{i=1}^{n} f_j^i e_{2,i}
\]
has limit for any \(j \).

Proof. The theorem follows from the equation
\[
f \circ e_{1,j} = f_j^i e_{2,i}
\]
\(\square \)

Theorem 3.5.9. Let
\[
f : A_1 \to A_2
\]
be map of \(D \)-module \(A_1 \) with norm \(\|x\|_1 \) and normal basis \(\mathcal{F}_1 \) into \(D \)-module \(A_2 \) with norm \(\|y\|_2 \) and Schauder basis \(\mathcal{F}_2 \). Then
\[
\|f \circ e_{1,i}\|_2 \leq \|f\|
\]
for any \(i \).

\(^{3.12}\)The definition of normal convergence of the expansion of vector relative to basis is similar to the definition of normal convergence of the series. See \([16]\), page 12.
Proof. According to the theorem 3.3.7 and the definition 3.2.3, the inequality (3.5.15) follows from the inequality
\[\| f \circ e_{1,i} \|_2 \leq \| f \| \| e_{1,i} \|_1 \]
\[\square \]

Remark 3.5.10. The theorem 3.5.8 determines constraint on coordinates of map of D-module with Schauder basis. However, we can make this constraint more stronger. Let A_1 be D-module with normal Schauder basis \mathbb{F}_1. Let A_2 be D-module with normal Schauder basis \mathbb{F}_2. According to the theorem 2.1.12, D-module $L(D; A_1; A_2)$ has basis $(e_{1,i}, e_{2,j})$. Since the basis of D-module $L(D; A_1; A_2)$ is countable basis and D-module $L(D; A_1; A_2)$ has norm, then we require considered basis to be Schauder basis. According to the definition 3.5.1, there exists limit
\[\lim_{m \to \infty} \lim_{n \to \infty} \sum_{j=1}^{m} \sum_{i=1}^{n} f^j_i (e_{1,i}, e_{2,j}) \]

The existence of the limit (3.5.16) implies existence of limit of sequence (3.5.14). However, the existence of the limit (3.5.16) also implies that
\[\lim_{j \to \infty} \left\| \sum_{i=1}^{n} f^j_i e_{2,i} \right\|_2 = 0 \]
\[\square \]

Theorem 3.5.11. Let
\[f : A_1 \to A_2 \]
be linear map of D-module A_1 with norm $\| x \|_1$ and normal Schauder basis \mathbb{F}_1 into D-module A_2 with norm $\| y \|_2$ and normal Schauder basis \mathbb{F}_2. For any $\epsilon \in \mathbb{R}, \epsilon > 0$, there exist N, M such that
\[|f^j_i| < \epsilon \quad i > N \quad j > M \]

Proof. According to the remark 3.5.10, the set of maps $(e_{1,i}, e_{2,j})$ is Schauder basis of D-module $L(D; A_1; A_2)$. Therefore, expansion
\[f = f^j_i (e_{1,i}, e_{2,j}) \]
of map f convergies. According to the theorem 3.5.3, for any $\epsilon \in \mathbb{R}, \epsilon > 0$, there exist N, M such that
\[\| f^j_i (e_{1,i}, e_{2,j}) \| < \epsilon \quad i > N \quad j > M \]
According to the corollary 3.3.12, inequation (3.5.17) follows from the inequation (3.5.18).
\[\square \]

Theorem 3.5.12. Let
\[f : A_1 \to A_2 \]
be linear map of D-module A_1 with norm $\| x \|_1$ and normal Schauder basis \mathbb{F}_1 into D-module A_2 with norm $\| y \|_2$ and normal Schauder basis \mathbb{F}_2. There exists $F < \infty$ such that
\[|f^j_i| \leq F \]
Proof. According to the theorem 3.5.11, for given $\epsilon \in R$, $\epsilon > 0$, there exist N, M such that

$$|f_j^i| < \epsilon \quad i > N \quad j > M$$

Since N, M are finite, then there exists

$$F_1 = \max\{|f_j^i|, 1 \leq i \leq N, 1 \leq j \leq M\}$$

We get the inequation (3.5.19), if assume

$$F = \max(F_1, \epsilon)$$

\[\square \]

Theorem 3.5.13. Let

$$f : A_1 \rightarrow A_2$$

be linear map of D-module A_1 with norm $\|x\|_1$ and normal Schauder basis \overline{e}_1 into

D-module A_2 with norm $\|y\|_2$ and Schauder basis \overline{e}_2. Let $\|f\| < \infty$. Then for any

(3.5.20) $$a_1 \in A_1^+(\overline{e}_1) \quad a_1 = a_1^i e_1^i$$

the image

(3.5.21) $$a_2 = f \circ a_1 \quad a_2 = a_2^i e_2^i$$

is defined properly, $a_2 \in A_2^+(\overline{e}_2)$.

Proof. From the equation (3.5.20) and the theorem 3.5.9, it follows that

(3.5.22) $$\sum_{i=1}^{\infty} |a_2^i| = \sum_{i=1}^{\infty} |a_1^i| \cdot \|f \circ e_1^i\|_2 < \|f\| \sum_{i=1}^{\infty} |a_1^i| < \infty$$

From inequality (3.5.22) it follows that

(3.5.23) $$\sum_{i=1}^{\infty} |a_2^i| = \sum_{i=1}^{\infty} |a_1^i f_j^i| \cdot \|e_1^i\|_2 = \sum_{i=1}^{\infty} |a_1^i f_j^i| < \infty$$

According to the theorem 3.5.6, image of $a_1 \in A_1$ under the map f is defined properly. \[\square \]

Remark 3.5.14. From the proof of the theorem 3.5.13, we see that the requirement of normal convergence of expansion of vector relative to normal basis is essential. According to the remark 3.5.10, if A_i, $i = 1, 2$, is D-module with normal Schauder basis \overline{e}_i, then the set $L(D; A_1; A_2)$ is D-module with normal Schauder basis $(\overline{e}_1, \overline{e}_2)$. We denote $L^+(D; A_1(\overline{e}_1); A_2(\overline{e}_2))$ the set of linear maps whose expansion relative to the basis $(\overline{e}_1, \overline{e}_2)$ converges normally. \[\square \]

Theorem 3.5.15. Let A_1 be D-module with norm $\|x\|_1$ and normal Schauder basis \overline{e}_1. Let A_2 be D-module with norm $\|x\|_2$ and normal Schauder basis \overline{e}_2. Let a map

$$f \in L^+(D; A_1(\overline{e}_1); A_2(\overline{e}_2))$$

Then

$$\|f\| < \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |f_j^i|$$
Proof. According to the corollary 3.3.12, the basis \((\overline{e}_1, \overline{e}_2)\) is normal Schauder basis. The theorem follows from the theorem 3.5.7. □

Corollary 3.5.16. Let \(A_1\) be \(D\)-module with norm \(\|x\|_1\) and normal Schauder basis \(\overline{e}_1\). Let \(A_2\) be \(D\)-module with norm \(\|x\|_2\) and normal Schauder basis \(\overline{e}_2\). Let a map

\[f \in L^+(D; A_1(\overline{e}_1); A_2(\overline{e}_2)) \]

Then \(\|f\| < \infty\). □

Theorem 3.5.17. Let \(a_i \geq 0, b_i \geq 0, i = 1, \ldots, n\). Then

\[
\sum_{i=1}^{n} a_i b_i < \sum_{i=1}^{n} a_i \sum_{i=1}^{n} b_i
\]

Proof. We prove the theorem by induction over \(n\).

The inequality (3.5.24) for \(n = 2\) follows from the inequality

\[
a_1 b_1 + a_2 b_2 \leq (a_1 + a_2)(b_1 + b_2) = a_1 b_1 + a_2 b_2 + a_1 b_2 + a_2 b_1
\]

Let the inequality (3.5.24) is true for \(n = k - 1\). The inequality

\[
\sum_{i=1}^{k-1} a_i b_i + a_k b_k \leq \left(\sum_{i=1}^{k-1} a_i + a_k\right) \left(\sum_{i=1}^{k-1} b_i + b_k\right)
\]

follows from the inequality (3.5.25). From the inequality (3.5.26) it follows that the inequality (3.5.24) is true for \(n = k\). □

Theorem 3.5.18. Let \(a_i \geq 0, b_i \geq 0, i = 1, \ldots, \infty\). Then

\[
\sum_{i=1}^{\infty} a_i b_i < \sum_{i=1}^{\infty} a_i \sum_{i=1}^{\infty} b_i
\]

Proof. The theorem follows from the theorem reftheorem: s—ab—¡s—a—s— b— when \(n \to \infty\). □

Theorem 3.5.19. Let \(A_i, i = 1, 2, 3, \) be \(D\)-module with norm \(\|x\|_i\) and normal Schauder basis \(\overline{e}_i\). Let a map

\[f \in L^+(D; A_1(\overline{e}_1); A_2(\overline{e}_2)) \]

Let a map

\[g \in L^+(D; A_2(\overline{e}_2); A_3(\overline{e}_3)) \]

Then a map

\[g \circ f \in L^+(D; A_1(\overline{e}_1); A_3(\overline{e}_3)) \]

Proof. According to the statement 3.2.1.3,

\[
|(g \circ f)^i_j| = \left| \sum_{k=1}^{\infty} g_k^i f_j^k \right| \leq \sum_{k=1}^{\infty} |g_k^i f_j^k|
\]

From the theorem 3.5.18 and the inequality (3.5.28), it follows that

\[
|(g \circ f)^i_j| \leq \sum_{k=1}^{\infty} |g_k^i| \sum_{k=1}^{\infty} |f_j^k|
\]
From the inequation (3.5.29), it follows that

\[
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |(g \circ f)_{ij}| \leq \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \left(\sum_{k=1}^{\infty} |g_{ik}| \sum_{k=1}^{\infty} |f_{jk}| \right) = \left(\sum_{i=1}^{\infty} \sum_{k=1}^{\infty} |g_{ik}| \right) \left(\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |f_{jk}| \right) < \infty
\]

Theorem 3.5.20. Let \(A_i, i = 1, \ldots, n \), be \(D \)-module with norm \(\|x\|_i \) and normal Schauder basis \(\mathcal{F}_i \). Let \(A \) be \(D \)-module with norm \(\|x\| \) and normal Schauder basis \(\mathcal{F} \). Let

\[
f : A_1 \times \ldots \times A_n \rightarrow A
\]

be polylinear map, \(\|f\| < \infty \). Let \(a_i \in A_1^+(\mathcal{F}_i) \). Then

\[
a = f \circ (a_1, \ldots, a_n) \quad a \in A^+(\mathcal{F})
\]

Proof. We will prove the theorem by induction on \(n \).

For \(n = 1 \), the statement of the theorem follows from the theorem 3.5.13.

Let the statement of the theorem is true for \(n = k - 1 \). Let

\[
f : A_1 \times \ldots \times A_{k-1} \rightarrow A
\]

be polylinear map, \(\|f\| < \infty \). We can represent the map \(f \) as composition of maps

\[
f \circ (a_1, \ldots, a_k) = (h \circ (a_1, \ldots, a_{k-1})) \circ a_k
\]

According to the theorem 3.4.15, \(\|h\| < \infty \). According to the induction assumption

\[
h \circ (x_1, \ldots, x_{k-1}) \in \mathcal{L}^+(D; A_k; A)
\]

According to the theorem 3.4.10,

\[
\|h \circ (x_1, \ldots, x_{k-1})\| < \infty
\]

According to the theorem 3.5.13

\[
(h \circ (x_1, \ldots, x_{k-1})) \circ x_k \in A^+(e)
\]

According to the definition [7]-2.2.1, algebra is a module in which the product is defined as bilinear map

\[
xy = C(x, y)
\]

We require

\[
\|C\| < \infty
\]

Convention 3.5.21. Let \(\mathcal{F} \) be Schauder basis of free \(D \)-algebra \(A \). The product of basis vectors in \(D \)-algebra \(A \) is defined according to rule

\[
e_i e_j = C_{ij}^k e_k
\]
where C_{ij}^k are structural constants of D-algebra A. Since the product of vectors of the basis \overline{e} of D-algebra A is a vector of D-algebra A, then we require that the sequence

$$\sum_{k=1}^{\infty} C_{ij}^k e_k$$

has limit for any i, j. □

Theorem 3.5.22. Let \overline{e} be Schauder basis of free D-algebra. Then for any

$$a = a^i e_i \quad b = b^j e_j \quad a, b \in A^+(\overline{e})$$

product defined according to rule

(3.5.32) \[(ab)^k = C_{ij}^k a^i b^j\]

is defined properly. Under this condition

$$a, b \in A^+(\overline{e}) \Rightarrow ab \in A^+(\overline{e})$$

Proof. Since the product in the algebra is a bilinear map, then we can write the product of a and b as

(3.5.33) \[ab = a^i b^j e_i e_j\]

From equations (3.5.31), (3.5.33), it follows that

(3.5.34) \[ab = a^i b^j C_{ij}^k e_k\]

Since \overline{e} is a basis of the algebra A, then the equation (3.5.32) follows from the equation (3.5.34).

From the theorem 3.5.20, it follows that

$$a, b \in A^+(\overline{e}) \Rightarrow ab \in A^+(\overline{e})$$

□
CHAPTER 4

References

[1] Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos, Václav Zizler. Banach Space Theory: The Basis for Linear and Nonlinear Analysis. Springer; New York, 2010; ISBN-13: 978-1441975140
[2] Serge Lang, Algebra, Springer, 2002
[3] G. E. Shilov, Calculus, Single Variable Functions, Part 3, Moscow, Nauka, 1970
[4] A. N. Kolmogorov and S. V. Fomin. Elements of the Theory of Functions and Functional Analysis. Courier Dover Publication, 1999
[5] Aleks Kleyn, Lectures on Linear Algebra over Division Ring, eprint arXiv:math.GM/0701238 (2010)
[6] Aleks Kleyn, Polylinear Map of Free Algebra, eprint arXiv:1011.3102 (2010)
[7] Aleks Kleyn, Linear Maps of Free Algebra: First Steps in Noncommutative Linear Algebra, Lambert Academic Publishing, 2010
[8] Aleks Kleyn, Representation Theory: Representation of Universal Algebra, Lambert Academic Publishing, 2011
[9] V. I. Smirnov, A Course of Higher Mathematics, volume I. Translated by D. E. Brown. Translation, edited and additions made by I. N. Sneddon. Pergamon Press, Addison-Wesley Publishing Company, 1964
[10] Cyrus D. Cantrell, Modern mathematical methods for physicists and engineers. Cambridge University Press, 2000
[11] John C. Baez, The Octonions, eprint arXiv:math.RA/0105155 (2002)
[12] N. Bourbaki, General Topology, Chapters 5 - 10, Springer, 1989
[13] L. S. Pontryagin, Selected Works, Volume Two, Topological Groups, Gordon and Breach Science Publishers, 1986
[14] Fihtengolts G. M., Differential and Integral Calculus Course, volume 2, Moscow, Nauka, 1969
[15] Richard D. Schafer, An Introduction to Nonassociative Algebras, Dover Publications, Inc., New York, 1995
[16] Henri Cartan. Differential calculus. Differential forms. Moscow. Mir, 1971
[17] V. I. Arnautov, S. T. Glavatsky, A. V. Mikhalev, Introduction to the theory of topological rings and modules, Volume 1995, Marcel Dekker, Inc, 1996
Index

algebra over ring 11
associative D-algebra 12
associative law for D-module 7
associator of D-algebra 12
Banach D-algebra 23
Banach D-module 22
basis dual to basis 10
Cauchy sequence 20, 22
center of D-algebra A 13
center of ring D 19
commutative D-algebra 12
commutator of D-algebra 12
complete ring 20
conjugated D-module 10
continuous map 23
continuous multivariable map 29
coordinates of vector relative to Hamel basis 13
coordinates of vector relative to Schauder basis 36
D-linear functional 10
D-linearly dependent vectors of D-module 8
D-linearly independent vectors of D-module 8
D-algebra 11
D-basis for module 8
D-module 7
distributive law for D-module 7
effective representation of ring 7
expansion of vector relative to basis converges 36
expansion of vector relative to basis converges normally 39
free algebra over ring 11
free module over ring 8
fundamental sequence 20, 22
Hamel basis 13
limit of sequence 20, 22
linear functional on D-module 10
linear map 8, 12
module over ring 7
norm of functional 25
norm of map 25
norm of polylinear map 31
norm on D-algebra 23
norm on D-module 22
norm on ring 20
normal basis 22
normed D-algebra 23
normed D-module 22
normed ring 20
nucleus of D-algebra A 13
polylinear map 11
product of map over scalar 9
ring has characteristic 0 19
ring has characteristic p 19
Schauder basis 36
structural constants 13, 14, 44
sum of linear maps 8
topological ring 20
unit sphere in D-algebra 23
unitarity law for D-module 8
CHAPTER 6

Special Symbols and Notations

\[A^+(\mathcal{F}) \] set of vectors whose expansion relative to the basis \(\mathcal{F} \) converges normally 39

\((a, b, c) \) associator of \(D \)-algebra 12

\([a, b] \) commutator of \(D \)-algebra 12

\(A' \) conjugated \(D \)-module 10

\(\{a^i\}_{i=1}^{\infty} \) coordinates of vector \(a \) relative to Hamel basis 13

\(\|a\| \) norm on \(D \)-module 22

\(\{a^i\}_{i=1}^{\infty} \) coordinates of vector \(a \) relative to Schauder basis 36

\(\mathcal{C}(D; A_1, \ldots, A_n; A) \) set of continuous multivariable maps 30

\(C_{ij}^k \) structural constants 13, 14, 44

\(df \) product of map over scalar 9

\((e^i_1, e^j_2) \) basis of \(D \)-module \(\mathcal{L}(D; A_1; A_2) \) 10

\(\{e_i\}_{i=1}^{\infty} \) Hamel basis 13

\(\{e_i\}_{i=1}^{\infty} \) Schauder basis 36

\(\|f\| \) norm of functional 25

\(\|f\| \) norm of map 25

\(\|f\| \) norm of polylinear map 31

\(f + g \) sum of linear maps 8

\(\lim_{n \to \infty} a_n \) limit of sequence 20, 22

\(\mathcal{LC}(D; A_1; A_2) \) set of continuous linear maps 24

\(\mathcal{LC}(D; A_1, \ldots, A_n; A) \) set of continuous polylinear maps 30

\(N(A) \) nucleus of \(D \)-algebra \(A \) 13

\(Z(A) \) center of \(D \)-algebra \(A \) 13

\(Z(D) \) center of ring \(D \) 19
Свободная алгебра со счётным базисом

Александр Клейн

E-mail address: Aleks_Kleyn@MailAPS.org
URL: http://sites.google.com/site/alekskleyn/
URL: http://arxiv.org/a/kleyn_a_1
URL: http://AleksKleyn.blogspot.com/
Аннотация. В книге рассматривается структура D-модуля, который имеет счётный базис. Если нас не интересует топология D-модуля, то мы рассматриваем базис Гамеля. Если норма определена в D-модуле, то мы рассматриваем базис Шаудера. В случае базиса Шаудера, мы рассматриваем векторы, разложение которых относительно базиса сходится нормально.
Оглавление

Глава 1. Предисловие 5
 1.1. Предисловие 5
 1.2. Соглашения 5

Глава 2. Базис Гамеля 7
 2.1. Модуль ... 7
 2.2. Алгебра над кольцом 11
 2.3. D-алгебра с базисом Гамеля 14

Глава 3. Базис Шаудера 19
 3.1. Топологическое кольцо 19
 3.2. Нормированная D-алгебра 22
 3.3. Нормированный D-модуль $L(D; A_1; A_2)$ 23
 3.4. Нормированный D-модуль $L(D; A_1; ..., A_n; A)$ 29
 3.5. D-алгебра с базисом Шаудера 37

Глава 4. Список литературы 47

Глава 5. Предметный указатель 48

Глава 6. Специальные символы и обозначения 49
Глава 1

Предисловие

1.1. Предисловие

Пусть D - коммутативное кольцо характеристики 0. В этой книге я рассма-триваю свободный D-модуль, который имеет счётный базис. Отличие счёт-ного бazaisa от конечно-го состоит в том, что не любая линейная композиция векторов имеет смысл.

Чтобы пояснить это утверждение, предположим, что D-модуль A со счётным базисом \mathbb{F} является нормированным D-модулем. Если отказаться от треб-ования, что разложение $a = a^i e_i$ вектора a относительно базиса \mathbb{F} является сходящимся рядом, то мы разрушаем топологию, порождённую нормой. Если норма в D-модуле не определена, то у нас нет инструмента, позволяющего отождествить вектор и его разложение относительно базиса, если все коэффициенты отличны от 0.

Поэтому, если D-модуль имеет счётный базис, то мы рассматриваем две воз-можности. Если нас не интересует топология D-модуля, то мы рассматри-ваем базис Гамеля (определение 2.3.1). Если норма определена в D-модуле, то мы рассматриваем базис Шаудера (определение 3.5.1).

Однако в случае базиса Шаудера, требование сходимости разложения вектора относительно базиса не всегда достаточно. При изучении линейного отображения мы рассматриваем векторы, разложение которых относительно базиса сходится нормально.

1.2. Соглашения

СОГЛАШЕНИЕ 1.2.1. В выражении вида

\[a_{s,0} x a_{s,1} \]

предполагается сумма по индексу s. □

СОГЛАШЕНИЕ 1.2.2. Пусть A - свободная конечно мерная алгебра. При разложении элемента алгебры A относительно базиса \mathbb{F} мы пользуемся одной и той же корневой буквой для обозначения этого элемента и его координат. Однако в алгебре не принято использовать векторные обозначения. В выражении a^2 не ясно - это компонента разложения элемента a относительно базиса или это операция возведения в степень. Для облегчения чтения текста мы будем индекс элемента алгебры выделять цветом. Например,

\[a = a^4 \]

□
Без сомнения, у читателя могут быть вопросы, замечания, возражения. Я буду признателен любому отзыву.
Глава 2

Базис Гамеля

2.1. Модуль

Теорема 2.1.1. Пусть кольцо D имеет единицу e. Представление

$$(2.1.1) \hspace{1cm} f : D \rightarrow A$$

кольца D в абелевой группе A эффективно тогда и только тогда, когда из равенства $f(a) = 0$ следует $a = 0$.

Доказательство. Сумма преобразований f и g абелевой группы определяется согласно правилу

$$(f + g) \circ a = f \circ a + g \circ a$$

Поэтому, рассматривая представление кольца D в абелевой группе A, мы полагаем

$$f(a + b) \circ x = f(a) \circ x + f(b) \circ x$$

Произведение преобразований определено согласно правилу

$$f(ab) = f(a) \circ f(b)$$

Если $a, b \in R$ порождают одно и то же преобразование, то

$$(2.1.2) \hspace{1cm} f(a) \circ m = f(b) \circ m$$

для любого $m \in A$. Из равенства (2.1.2) следует, что $a - b$ порождает нулевое преобразование

$$f(a - b) \circ m = 0$$

Элемент $e + a - b$ порождает тождественное преобразование. Следовательно, представление f эффективно тогда и только тогда, когда $a = b$. □

Определение 2.1.2. Пусть D - коммутативное кольцо. Эффективное представление кольца D в абелевой группе A называется модулем над кольцом D или D-модулем.

Теорема 2.1.3. Элементы D-модуля A удовлетворяют соотношениям:

- закону ассоциативности

$$(ab) \circ m = a \circ (b \circ m)$$

- закону дистрибутивности

$$(2.1.4) \hspace{1cm} a \circ (m + n) = a \circ m + a \circ n$$

$$(2.1.5) \hspace{1cm} (a + b) \circ m = a \circ m + b \circ m$$

Этот подраздел написан на основе раздела [7]-2.1.
2. Базис Гамиля

- закону унитарности

\[(2.1.6)\]

\[1m = m\]

dля любых \(a, b \in D, m, n \in A\).

Доказательство. Равенство (2.1.4) следует из утверждения, что преобразование \(a\) является эндоморфизмом абелевой группы. Равенство (2.1.5) следует из утверждения, что представление является гомоморфизмом аддитивной группы кольца \(D\). Равенства (2.1.3) и (2.1.6) следуют из утверждения, что представление кольца \(D\) является представлением мультипликативной группы кольца \(D\).

Векторы \(a_i, i \in I, D\)-модуля \(A\) \(D\)-линейно независимы, если \(c = 0\) следует из уравнения

\[c a_i = 0\]

В противном случае, векторы \(a_i, i \in I, D\)-линейно зависимы.

Определение 2.1.4. Множество векторов \(\mathfrak{f} = (e_i, i \in I)\) \(- D\) базис модуля, если векторы \(e_i, D\)-линейно независимы и добавление любого вектора к этой системе делает эту систему \(D\)-линейно зависимой. \(A\) \(D\)-свободный модуль над кольцом \(D\), если \(A\) имеет базис над кольцом \(D\).

Следующее определение является следствием определений 2.1.2 и [8]-2.2.2.

Определение 2.1.5. Пусть \(A_1\) и \(A_2\) - модули над кольцом \(D\). Морфизм \(f : A_1 \rightarrow A_2\) представления кольца \(D\) в абелевой группе \(A_1\) в представление кольца \(D\) в абелевой группе \(A_2\) называется линейным отображением \(D\)-модуля \(A_1\) в \(D\)-модуль \(A_2\).

Теорема 2.1.6. Линейное отображение

\[f : A_1 \rightarrow A_2\]

\(D\)-модуля \(A_1\) в \(D\)-модуль \(A_2\) удовлетворяет равенствам

\[f \circ (a + b) = f \circ a + f \circ b\]

(2.1.7)

\[f \circ (p a) = p (f \circ a)\]

(2.1.8)

\[a, b \in A_1\]

\[p \in D\]

Доказательство. Из определения 2.1.5 и теоремы [8]-2.2.18 следует, что отображение \(g\) является гомоморфизмом абелевой группы \(A_1\) в абелеву группу \(A_2\) (равенство (2.1.7)). Равенство (2.1.8) следует из равенства [8]-2.2.45.

Теорема 2.1.7. Пусть \(A_1\) и \(A_2\) - модули над кольцом \(D\). Множество \(\mathcal{L}(D; A_1; A_2)\) является абелевой группой относительно закона композиции

\[(f + g) \circ x = f \circ x + g \circ x\]

(2.1.9)

который называется суммой линейных отображений.

\[\text{2.2 Я следую определению в [2], с. 100.}\]

\[\text{2.3 Я следую определению в [2], с. 103.}\]

\[\text{2.4 В некоторых книгах (например, [2], с. 94) теорема 2.1.6 рассматривается как определение.}\]
2.1. Модуль

ДОКАЗАТЕЛЬСТВО. Согласно определению 2.1.5

\[(f + g) \circ (a + b) = f \circ (a + b) + g \circ (a + b)\]
\[= f \circ a + f \circ b + g \circ a + g \circ b\]
\[= (f + g) \circ a + (f + g) \circ b\]

\[(f + g) \circ (da) = f \circ (da) + g \circ (da)\]
\[= df \circ a + dg \circ a\]
\[= d(f + g) \circ a\]

Следовательно, отображение, определённое равенством (2.1.9), является линейным отображением \(D\)-модуля \(A_1\) в \(D\)-модуль \(A_2\). Коммутативность и ассоциативность сложения следует из равенств

\[(f + g) \circ a = f \circ a + g \circ a = g \circ a + f \circ a\]
\[= (g + f) \circ a\]

\[((f + g) + h) \circ a = (f + g) \circ a + h \circ a = (f \circ a + g \circ a) + h \circ a\]
\[= f \circ a + (g \circ a + h \circ a) = f \circ a + (g + h) \circ a\]
\[= (f + (g + h)) \circ a\]

Определим отображение \(0 \circ x = 0\). Очевидно, \(0 \in \mathcal{L}(D; A_1; A_2)\). Из равенства

\[(0 + f) \circ x = 0 \circ x + f \circ x = 0 + f \circ x = f \circ x\]

следует

\[0 + f = f\]

Определим отображение

\[(-f) \circ x = -(f \circ x)\]

Очевидно, \(-f \in \mathcal{L}(D; A_1; A_2)\). Из равенства

\[((-f) + f) \circ x = (-f) \circ x + f \circ x = (-f \circ x) + f \circ x = 0 \circ x\]

следует

\[(-f) + f = 0\]

Следовательно, множество \(\mathcal{L}(D; A_1; A_2)\) является абелевой группой. \(\square\)

ТЕОРЕМА 2.1.8. Пусть \(A_1\) и \(A_2\) - модули над кольцом \(D\). Представление кольца \(D\) в абелевой группе \(\mathcal{L}(D; A_1; A_2)\), определённое равенствами

\[(df) \circ x = d(f \circ x)\]

называется произведением отображения на скаляр. Это представление порождает структуру \(D\)-модуля в абелевой группе \(\mathcal{L}(D; A_1; A_2)\).

ДОКАЗАТЕЛЬСТВО. Из равенств

\[(df) \circ (d_1a) = d(f \circ (d_1a)) = d_1(d(f \circ a)) = d_1((df) \circ a)\]
\[(df) \circ (a_1 + a_2) = d(f \circ (a_1 + a_2)) = d(f \circ a_1 + f \circ a_2)\]
\[= d(f \circ a_1) + d(f \circ a_2) = (df) \circ a_1 + (df) \circ a_2\]

следует, что отображение

\[(2.1.11)\]

\[f \rightarrow df\]
является преобразованием множества $\mathcal{L}(D; A_1; A_2)$. Из равенства
\[
(d(f + g)) \circ a = d((f + g) \circ a) = d(f \circ a + g \circ a) = d(f \circ a) + d(g \circ a) = (df) \circ a + (dg) \circ a
\]
следует, что отображение (2.1.11) является гомоморфизмом абелевой группы $\mathcal{L}(D; A_1; A_2)$. Согласно определению [7]-2.1.2, абелевая группа $\mathcal{L}(D; A_1; A_2)$ является D-модулем.

ОПРЕДЕЛЕНИЕ 2.1.9. Пусть A - D-модуль. D-модуль $A' = \mathcal{L}(D; A; D)$ называется сопряжённым D-модулем.

Согласно определению 2.1.9, элементы сопряжённого D-модуля являются D-линейными отображениями

\[
(2.1.12) \quad f : A \to D
\]

D-линейное отображение (2.1.12) называется линейным функционалом на D-модуле A или просто D-линейным функционалом.

ТЕОРЕМА 2.1.10. Пусть $\overline{e} = (e_i \in A, i \in I)$ - базис D-модуля A. Пусть $A' = D$-модуль, сопряжённый D-модулю A. Множество векторов $\overline{e} = (e_i \in A', i \in I)$ такой, что

\[
(2.1.13) \quad e^i \circ e^j = \delta^i_j
\]

является базисом D-модуля A'.

ДОКАЗАТЕЛЬСТВО. Из равенства (2.1.13) следует, что

\[
(2.1.14) \quad e^i \circ a = e^i \circ (a^j e^j) = a^j (e^i \circ e^j) = a^j \delta^i_j = a^i
\]

Пусть
\[
f : A \to D
\]

линейное отображение. Тогда

\[
(2.1.15) \quad f \circ a = f \circ (a^j e^j) = a^j (f \circ e^j) = a^j f_i
\]

где $f_i = f \circ e^i$. Из равенств (2.1.14), (2.1.15) следует, что

\[
(2.1.16) \quad f \circ a = f_i (e^i \circ a)
\]

Согласно определениям (2.1.9), (2.1.10)

\[
f = f_i e^i
\]

Следовательно, множество $\overline{e} = (e_i \in A', i \in I)$ является базисом D-модуля A'.

СЛЕДСТВИЕ 2.1.11. Пусть $\overline{e} = (e_i \in A, i \in I)$ - базис D-модуля A. Тогда

\[
a^i = e^i \circ a
\]

Базис $\overline{e} = (e_i \in A', i \in I)$ называется базисом, двойственным базису $\overline{e} = (e_i \in A, i \in I)$.
Теорема 2.1.12. Пусть $\mathfrak{e}_1 = (e_{1,i} \in A_1, i \in I)$ - базис D-модуля A_1. Пусть $\mathfrak{e}_2 = (e_{2,j} \in A_2, j \in J)$ - базис D-модуля A_2. Множество векторов $(e_{1,i}, e_{2,j}), i \in I, j \in J$, определённых равенством

$$ (e_{1,i}, e_{2,j}) \circ a = (e_{1,i} \circ a)e_{2,j} $$

является базисом D-модуля $L(D; A_1; A_2)$.

Доказательство. Пусть $f : A_1 \to A_2$ отображение D-модуля A_1 с базисом \mathfrak{e}_1 в D-модуль A_2 с базисом \mathfrak{e}_2. Пусть $a \in A_1, a = a^i e_{1,i}$. Согласно следствию 2.1.11

$$ f \circ a = f \circ (a^i e_{1,i}) = a^i (f \circ e_{1,i}) = (e_{1,i} \circ a)(f \circ e_{1,i}) $$

Так как $f \circ e_{1,i} \in A_2$, то из равенства (2.1.18) следует

$$ f \circ a = (e_{1,i} \circ a)f^i e_{2,j} $$

Из равенств (2.1.17), (2.1.19) следует

$$ f \circ a = f^i (e_{1,i}, e_{2,j}) \circ a $$

Следовательно,

$$ f = f^i (e_{1,i}, e_{2,j}) $$

Так как отображения (2.1.17) линейно независимы, то множество этих отображений является базисом. □

Определение 2.1.13. Пусть D - коммутативное кольцо. Пусть $A_1, ..., A_n, S$ - D-модули. Мы будем называть отображение

$$ f : A_1 \times ... \times A_n \to S $$

полилинейным отображением модулей $A_1, ..., A_n$ в модуль S, если

$$ f \circ (a_1, ..., a_i + b_i, ..., a_n) = f \circ (a_1, ..., a_i, ..., a_n) + f \circ (a_1, ..., b_i, ..., a_n) $$

$$ f \circ (a_1, ..., pa_i, ..., a_n) = pf \circ (a_1, ..., a_i, ..., a_n) $$

$$ 1 \leq i \leq n, a_i, b_i \in A_i, p \in D $$

□

2.2. Алгебра над кольцом

Определение 2.2.1. Пусть D - коммутативное кольцо. A - алгебра над кольцом D или D-алгебра, если A - D-модуль и в A определена операция произведения

$$ f : A \times A \to A $$

где f билинейное отображение

$$ ab = f \circ (a, b) $$

Если A является свободным D-модулем, то A называется свободной алгеброй над кольцом D. □

2,5 Этот раздел написан на основе раздела [7]-2.2.
2,6 Я следую определению, приведенному в [15], с. 1, [11], с. 4. Утверждение, верное для произвольного D-модуля, верно также для D-алгебры.
Согласно построениям, выполненным в разделах [8]-4.4.2, [8]-4.4.3, диаграмма представлений D-алгебры имеет вид

$$D \xrightarrow{f_{1,2}} A \xrightarrow{f_{2,3}} A \quad f_{1,2}(d) : v \rightarrow dv$$

$$(2.2.2) \quad f_{2,3}(v) : w \rightarrow C(v, w)$$

$C \in \mathcal{L}(A^2; A)$

На диаграмме представлений (2.2.2), D - кольцо, A - абелевая группа. Мы сначала рассматриваем вертикальное представление, а затем горизонтальные.

Теорема 2.2.2. Произведение в алгебре A дистрибутивно по отношению к сложению.

Доказательство. Утверждение теоремы следует из цепочки равенств

$$(a+b)c = f \circ (a+b, c) = f \circ (a, c) + f \circ (b, c) = ac + bc$$

$$a(b+c) = f \circ (a, b + c) = f \circ (a, b) + f \circ (a, c) = ab + ac$$

□

Определение 2.2.3. Пусть A_1 и A_2 - алгебры над кольцом D. Линейное отображение

$$f : A_1 \to A_2$$

D-модуль A_1 в D-модуль A_2 называется **линейным отображением** D-алгебры A_1 в D-алгебру A_2. Обозначим множество линейных отображений алгебры A_1 в алгебру A_2.

Теорема 2.2.4. Если на D-модуле $\mathcal{L}(D; A)$ определить произведение

$$(f \circ g) \circ a = f \circ (g \circ a)$$

то $\mathcal{L}(D; A)$ является D-алгеброй.

Доказательство. Из равенств

$$((f_1 + f_2) \circ g) \circ a = f_1 \circ (g \circ a) + f_2 \circ (g \circ a)$$

$$= (f_1 \circ g) \circ a + (f_2 \circ g) \circ a = (f_1 \circ g + f_2 \circ g) \circ a$$

$$(df) \circ a = d(f \circ g) \circ a = (df) \circ (g \circ a)$$

$$(f \circ (g_1 + g_2)) \circ a = f \circ ((g_1 + g_2) \circ a) = f \circ (g_1 \circ a + g_2 \circ a)$$

$$= f \circ (g_1 \circ a) + f \circ (g_2 \circ a)$$

$$(f \circ (dg)) \circ a = f \circ ((dg) \circ a) = f \circ (d(g \circ a)) = d(f \circ (g \circ a))$$

$$= d(f \circ g) \circ a = (d(f \circ g)) \circ a$$

следует, что отображение $f \circ g$ билинейно. Согласно определению 2.2.1, D-модуль $\mathcal{L}(D; A)$ является D-алгеброй.

Преизведение в алгебре может быть ни коммутативным, ни ассоциативным. Следующие определения основаны на определениях, данных в [15], с. 13.
Определение 2.2.5. Коммутатор

\[[a, b] = ab - ba \]

служит мерой коммутативности в \(D \)-алгебре \(A \). \(D \)-алгебра \(A \) называется коммутативной, если

\[[a, b] = 0 \]

□

Определение 2.2.6. Ассоциатор

(2.2.4) \[(a, b, c) = (ab)c - a(bc) \]

служит мерой ассоциативности в \(D \)-алгебре \(A \). \(D \)-алгебра \(A \) называется ассоциативной, если

\[(a, b, c) = 0 \]

□

Определение 2.2.7. Ядро \(D \)-алгебры \(A \) - это множество

\[N(A) = \{ a \in A : \forall b, c \in A, (a, b, c) = (b, a, c) = (b, c, a) = 0 \} \]

□

Определение 2.2.8. Центр \(D \)-алгебры \(A \) - это множество

\[Z(A) = \{ a \in A : a \in N(A), \forall b \in A, ab = ba \} \]

□

Теорема 2.2.9. Пусть \(\mathfrak{e} \) - базис свободной конечномерной алгебры \(A \) над кольцом \(D \). Пусть

\[a = a^i e_i \quad b = b^i e_i \quad a, b \in A \]

Произведение \(a \), \(b \) можно получить согласно правилу

(2.2.5) \[(ab)^k = C^k_{ij} a^i b^j \]

где \(C^k_{ij} \) - структурные константы алгебры \(A \) над кольцом \(D \). Произведение базисных векторов в алгебре \(A \) определено согласно правилу

(2.2.6) \[e_i e_j = C^k_{ij} e_k \]

Доказательство. Равенство (2.2.6) является следствием утверждения, что \(\mathfrak{e} \) является базисом алгебры \(A \). Так как произведение в алгебре является билинейным отображением, то произведение \(a \) и \(b \) можно записать в виде

(2.2.7) \[ab = a^i b^j e_i e_j \]

Из равенств (2.2.6), (2.2.7), следует

(2.2.8) \[ab = a^i b^j C^k_{ij} e_k \]

Так как \(\mathfrak{e} \) является базисом алгебры \(A \), то равенство (2.2.5) следует из равенства (2.2.8). □

2.7 Определение дано на базе аналогичного определения в [15], с. 13
2.8 Определение дано на базе аналогичного определения в [15], с. 14
2.3. *D*-алгебра с базисом Гамеля

Если *D*-модуль *A* имеет счётный базис \(\mathfrak{e} \), то бесконечная сумма в *D*-модуле *A*, вообще говоря, не определена. Если в *D*-модуле *A* не определено понятие непрерывности, мы будем опираться на следующее определение ([10], с. 223).

Определение 2.3.1. Пусть *D*-модуль *A* имеет счётный базис \(\mathfrak{e} = \{e_i\}_{i=1}^\infty \). Если любой элемент *D*-модуля *A* имеет конечное разложение относительно базиса \(\mathfrak{e} \), а именно, в равенстве

\[a = a^i e_i \]

множество значений \(a^i \in D \), отличных от 0, конечно, то базис \(\mathfrak{e} \) называется базисом Гамеля. Последовательность скаляров \(\{a^i\}_{i=1}^\infty \) называется координатами вектора

\[a = a^i e_i \]

относительно базиса Гамеля \(\mathfrak{e} \).

Докажем теорему следующим образом.

Теорема 2.3.2. Пусть

\[f : A_1 \to A_2 \]

отображение *D*-модуля *A* с базисом Гамеля \(\mathfrak{e}_1 \) в *D*-модуль *A* с базисом Гамеля \(\mathfrak{e}_2 \). Пусть \(f^j_1 \) - координаты отображения \(f \) относительно базисов \(\mathfrak{e}_1 \) и \(\mathfrak{e}_2 \). Тогда для любого \(j \), множество значений \(f^j_1 \), отличных от 0, конечно.

Доказательство. Утверждение теоремы следует из равенства

\[f \circ e_{1,j} = f^j_1 e_{2,i} \]

Теорема 2.3.3. Пусть

\[f : A_1 \to A_2 \]

линейное отображение *D*-модуля *A* с базисом Гамеля \(\mathfrak{e}_1 \) в *D*-модуль *A* с базисом Гамеля \(\mathfrak{e}_2 \). Тогда для любого \(a_1 \in A_1 \), образ

(2.3.1)

\[a_2 = f \circ a_1 \quad a_2^i = a^i_1 f^j_1 \quad a_2 = a^i_1 e_{2,i} \]

определён корректно.

Доказательство. Пусть

(2.3.2)

\[a_1 \in A_1 \quad a_1 = a^i_1 e_{1,i} \]

Согласно определению 2.3.1, множество значений \(a^j_1 \), отличных от 0, конечно. Пусть \(f^j_1 \) - координаты отображения \(f \) относительно базисов \(\mathfrak{e}_1 \) и \(\mathfrak{e}_2 \). Согласно теореме 2.3.2, для любого \(j \), множество значений \(f^j_1 \), отличных от 0, конечно. Объединение конечного множества конечных множеств является конечным множеством. Следовательно, множество значений \(a^j_1 f^j_1 \), отличных от 0, конечно. Согласно определению 2.3.1, выражение (2.3.1) является разложением элемента \(a_2 \) относительно базиса Гамеля \(\mathfrak{e}_2 \).

Соглашение 2.3.4. Пусть \(\mathfrak{e}_1 \) - базис Гамеля свободной *D*-алгебры *A*. Произведение базисных векторов в *D*-алгебре *A* определено согласно правилу

(2.3.3)

\[e_i e_j = C^k_{ij} e_k \]
где C_{ij}^k - структурные константы D-алгебры A. Так как произведение векторов базиса \overline{D}-алгебры A является вектором D-алгебры A, то мы требуем, что для любых i, j, множество значений C_{ij}^k, отличных от 0, конечно. □

Теорема 2.3.5. Пусть \overline{D} - базис Гамеля свободной D-алгебры A. Тогда для любых:

$$a = a^i e_i \quad b = b^j e_j \quad a, b \in A$$

произведение, определённое согласно правилу

$$(ab)^k = C_{ij}^k a^i b^j$$

определено корректно.

Доказательство. Так как произведение в алгебре является билинейным отображением, то произведение a и b можно записать в виде

$$(2.3.5) \quad ab = a^i b^j e_i e_j$$

Из равенств $(2.3.3)$, $(2.3.5)$, следует

$$(2.3.6) \quad ab = a^i b^j C_{ij}^k e_k$$

Так как \overline{D} является базисом алгебры A, то равенство $(2.3.4)$ следует из равенства $(2.3.6)$.

Поскольку базис \overline{D} - базис Гамеля, то

- множество значений a^i, отличных от 0, конечно;
- множество значений b^j, отличных от 0, конечно.

Следовательно, множество произведений $a^i b^j$, отличных от 0, конечно. Для любых i, j, множество значений C_{ij}^k, отличных от 0, конечно. Следовательно, произведение определено корректно. □

Теорема 2.3.6. Пусть A_1, ..., A_n - свободные алгебры над коммутативным кольцом D. Пусть \overline{F}_1 - базис Гамеля D-алгебры A_i. Тогда множество векторов $e_1, i_1 \otimes ... \otimes e_{n_i}, i_n$ является базисом Гамеля тензорного произведения $A_1 \otimes ... \otimes A_n$.

Доказательство. Для доказательства теоремы мы должны рассмотреть диаграмму (7)-(2.5.4), которой мы пользовались для доказательства теоремы (7)-2.5.3

$$(2.3.7)$$

Пусть M_1 - модуль над кольцом D, порождённый произведением $A_1 \times ... \times A_n$ D-алгебр A_1, ..., A_n.

- Пусть вектор $b \in M_1$ имеет конечное разложение относительно базиса

$$A_1 \times ... \times A_n$$

$$b = b^i(a_{i-1}, ..., a_{i-1}) \quad i \in I_1$$
где I_1 - конечное множество. Пусть вектор $c \in M_1$ имеет конечное разложение относительно базиса $A_1 \times \ldots \times A_n$

$$c = c^i(a_{1,i}, \ldots, a_{n,i}) \quad i \in I_2$$

gде I_2 - конечное множество. Множество $I = I_1 \cup I_2$ является конечным множеством. Положим

$$b_i = 0 \quad i \in I \setminus I_1$$
$$c_i = 0 \quad i \in I \setminus I_2$$

Тогда

$$b + c = (b^i + c^i)(a_{1,i}, \ldots, a_{n,i}) \quad i \in I$$

gде I - конечное множество. Аналогично, для $d \in D$

$$db = db^i(a_{1,i}, \ldots, a_{n,i}) \quad i \in I_1$$

gде I_1 - конечное множество. Следовательно, мы доказали следующее утверждение.2.9

Лемма 2.3.7. Множество M векторов модуля M_1, имеющих конечное разложение относительно базиса $A_1 \times \ldots \times A_n$, является подмодулем модуля M_1.

Инъекция

$$i : A_1 \times \ldots \times A_n \longrightarrow M$$

определена по правилу

\begin{equation}
(2.3.8)

i \circ (d_1, \ldots, d_n) = (d_1, \ldots, d_n)
\end{equation}

Пусть $N \subset M$ - подмодуль, порождённый элементами вида

\begin{equation}
(2.3.9)

(d_1, \ldots, d_i + c_i, \ldots, d_n) - (d_1, \ldots, d_i, \ldots, d_n) - (d_1, \ldots, c_i, \ldots, d_n)
\end{equation}

\begin{equation}
(2.3.10)

(d_1, \ldots, ad_i, \ldots, d_n) - a(d_1, \ldots, d_i, \ldots, d_n)
\end{equation}

где $d_i \in A_i$, $c_i \in A_i$, $a \in D$. Пусть

$$j : M \rightarrow M/N$$

cаноническое отображение на фактормодуль. Поскольку элементы (2.3.9) и (2.3.10) принадлежат ядру линейного отображения j, то из равенства (2.3.8) следует

\begin{equation}
(2.3.11)

f \circ (d_1, \ldots, d_i + c_i, \ldots, d_n) = f \circ (d_1, \ldots, d_i, \ldots, d_n) + f \circ (d_1, \ldots, c_i, \ldots, d_n)
\end{equation}

\begin{equation}
(2.3.12)

f \circ (d_1, \ldots, ad_i, \ldots, d_n) = a f \circ (d_1, \ldots, d_i, \ldots, d_n)
\end{equation}

Из равенств (2.3.11) и (2.3.12) следует, что отображение f полилинейно над кольцом D.

Модуль M/N является тензорным произведением $A_1 \otimes \ldots \otimes A_n$, отображение j имеет вид

\begin{equation}
(2.3.13)

j(a_1, \ldots, a_n) = a_1 \otimes \ldots \otimes a_n
\end{equation}

2.9 Множество $A_1 \times \ldots \times A_n$ не может быть базисом Гамеля, так как это множество не счётно.
и множество тензоров вида \(e_{1-i_1} \otimes ... \otimes e_{n-i_n} \) является счётным базисом модуля \(M/N \). Согласно лемме 2.3.7, произвольный вектор \(b \in M \) имеет представление

\[
b = b^i(a_{1-i}, ..., a_{n-i}) \quad i \in I
\]

где \(I \) - конечное множество. Согласно определению (2.3.13) отображения \(j \)

(2.3.14)

\[
j \circ b = b^i(a_{1-i} \otimes ... \otimes a_{n-i}) \quad i \in I
\]

где \(I \) - конечное множество. Так как \(\Psi_k \) - базис Гамеля \(D \)-алгебры \(A_k \), то для любого набора индексов \(k \cdot i \), в равенстве

\[
a_{k-i} = a_{k-p} e_{k-p}
\]

множество значений \(a_{k-p}^{p_k} \), отличных от 0, конечно. Следовательно, равенство (2.3.14) имеет вид

(2.3.15)

\[
j \circ b = b^i a_{1-i}^{p_1} \ldots a_{n-i}^{p_n} (e_{1-p_1} \otimes ... \otimes e_{n-p_n}) \quad i \in I
\]

где множество значений

\[
b^i a_{1-i}^{p_1} \ldots a_{n-i}^{p_n}
\]

отличных от 0, конечно.

\[\square\]

Следствие 2.3.8. Пусть \(A_1, ..., A_n \) - свободные алгебры над коммутативным кольцом \(D \). Пусть \(\Psi_i \) - базис Гамеля \(D \)-алгебры \(A_i \). Тогда произвольный тензор \(a \in A_1 \otimes ... \otimes A_n \) имеет конечное множество стандартных компонент, отличных от 0.

\[\square\]

Теорема 2.3.9. Пусть \(A_1 \) - алгебра над кольцом \(D \). Пусть \(A_2 \) - свободная ассоциативная алгебра над кольцом \(D \) с базисом Гамеля \(\Psi \). Отображение

(2.3.16)

\[
g = a \circ f
\]

порождённое отображением \(f \in \mathcal{L}(D; A_1; A_2) \) посредством тензора \(a \in A_2 \otimes A_2 \), имеет стандартное представление

(2.3.17)

\[
g = a^{ij} (e_i \otimes e_j) \circ f = a^{ij} e_i f e_j
\]

Доказательство. Согласно теореме 2.3.6, стандартное представление тензора \(a \) имеет вид

(2.3.18)

\[
a = a^{ij} e_i \otimes e_j
\]

Равенство (2.3.17) следует из равенств (2.3.16), (2.3.18).

\[\square\]
Глава 3

Базис Шаудера

3.1. Топологическое кольцо

ОПРЕДЕЛЕНИЕ 3.1.1. Пусть D - кольцо. Множество $Z(D)$ элементов $a \in D$ таких, что

$$ax = xa$$

для всех $x \in D$, называется центром кольца D. □

ТЕОРЕМА 3.1.2.Центр $Z(D)$ кольца D является подкольцом кольца D.

ДОКАЗАТЕЛЬСТВО. Непосредственно следует из определения 3.1.1. □

ОПРЕДЕЛЕНИЕ 3.1.3. Пусть D - кольцо с единицей e. Отображение

$l: Z \rightarrow D$

для которого $l(n) = ne$ будет гомоморфизмом колец, и его ядро является идеалом (n), порождённым целым числом $n \geq 0$. Канонический инъективный гомоморфизм

$$Z/nZ \rightarrow D$$

является изоморфизмом между Z/nZ и подкольцом в D. Если nZ - простой идеал, то у нас возникает два случая.

• $n = 0$. D содержит в качестве подкольца кольцо, изоморфное Z и часто отождествляемое с Z. В этом случае мы говорим, что D имеет характеристику 0.

• $n = p$ для некоторого простого числа p. D имеет характеристику p, и D содержит изоморфный образ $F_p = Z/pZ$. □

ТЕОРЕМА 3.1.4. Пусть D - кольцо характеристики 0 и пусть $d \in D$. Тогда любое целое число $n \in Z$ коммутирует с d.

ДОКАЗАТЕЛЬСТВО. Утверждение теоремы доказывается по индукции. При $n = 0$ и $n = 1$ утверждение очевидно. Допустим утверждение справедливо при $n = k$. Из цепочки равенств

$$(k + 1)d = kd + d = dk + d = d(k + 1)$$

следует очевидность утверждения при $n = k + 1$. □

ТЕОРЕМА 3.1.5. Пусть D - кольцо характеристики 0. Тогда кольцо целых чисел Z является подкольцом центра $Z(D)$ кольца D.

3.1 [2], стр. 84.
3.2 Определение дано согласно определению из [2], стр. 84, 85.
ДОКАЗАТЕЛЬСТВО. Следствие теоремы 3.1.4. □

ОПРЕДЕЛЕНИЕ 3.1.6. Кольцо D называется **топологическим кольцом**3.3, если D является топологическим пространством, и алгебраические операции, определённые в D, непрерывны в топологическом пространстве D. □

Согласно определению, для произвольных элементов $a, b \in D$ и для произвольных окрестностей W_{a-b} элемента $a - b$, W_{ab} элемента ab существуют такие окрестности W_a элемента a и W_b элемента b, что $W_a - W_b \subseteq W_{a-b}$, $W_a W_b \subseteq W_{ab}$.

ОПРЕДЕЛЕНИЕ 3.1.7. **Норма на кольце** $D^{3,4}$ - это отображение $d \in D \rightarrow |d| \in R$ такое, что

- $|a| \geq 0$
- $|a| = 0$ равносильно $a = 0$
- $|ab| = |a| |b|
- $|a + b| \leq |a| + |b|$

Кольцо D, наделённое структурой, определяемой заданием на D нормы, называется **нормированным кольцом**. □

Инвариантное расстояние на аддитивной группе кольца D

$$d(a, b) = |a - b|$$

определяет топологию метрического пространства, согласующуюся со структурой кольца в D.

ОПРЕДЕЛЕНИЕ 3.1.8. Пусть D - нормированное кольцо. Элемент $a \in D$ называется **пределом последовательности** $\{a_n\}$

$$a = \lim_{n \to \infty} a_n$$

если для любого $\epsilon \in R$, $\epsilon > 0$ существует, зависящее от ϵ, натуральное число n_0 такое, что $|a_n - a| < \epsilon$ для любого $n > n_0$. □

ОПРЕДЕЛЕНИЕ 3.1.9. Пусть D - нормированное кольцо. Последовательностью $\{a_n\}$, $a_n \in D$ называется **фундаментальной или последовательностью Коши**, если для любого $\epsilon \in R$, $\epsilon > 0$, существует, зависящее от ϵ, натуральное число n_0 такое, что $|a_p - a_q| < \epsilon$ для любых $p, q > n_0$. □

ОПРЕДЕЛЕНИЕ 3.1.10. Нормированное кольцо D называется **полным**, если любая фундаментальная последовательность элементов данного кольца сходится, т. е. имеет предел в этом кольце. □

Пусть D - полное кольцо характеристики 0. Так как операция деления в кольце, вообще говоря, не определена, мы не можем утверждать, что кольцо D содержит подполе рациональных чисел. Мы будем полагать, что рассматриваемое кольцо D содержит поле рациональных чисел. При этом очевидно, что кольцо имеет характеристику 0.

3.3 Определение дано согласно определению из [13], глава 4
3.4 Определение дано согласно определению из [12], гл. IX, §3, п.², а также согласно определению [17]-1.1.12, с. 23.
3.1. Топологическое кольцо

Теорема 3.1.11. Пусть D - кольцо, содержащее поле рациональных чисел, и пусть $d \in D$. Тогда для любого целого числа $n \in \mathbb{Z}$

$\quad n^{-1}d = dn^{-1}$

(3.1.2)

Доказательство. Согласно теореме 3.1.4 справедлива цепочка равенств

$\quad n^{-1}d = n^{-1}dn = d$

(3.1.3)

Умножив правую и левую части равенства (3.1.3) на n^{-1}, получим

$\quad n^{-1}d = n^{-1}dmn^{-1} = dn^{-1}$

(3.1.4)

Из (3.1.4) следует (3.1.2).

Теорема 3.1.12. Пусть D - кольцо, содержащее поле рациональных чисел, и пусть $d \in D$. Тогда любое рациональное число $p \in \mathbb{Q}$ коммутирует с d.

Доказательство. Мы можем представить рациональное число $p \in \mathbb{Q}$ в виде $p = \frac{m}{n}$, $m, n \in \mathbb{Z}$. Утверждение теоремы следует из цепочки равенств

$\quad pd = mn^{-1}d = n^{-1}dm = dmn^{-1} = dp$

основанной на утверждении теоремы 3.1.4 и равенстве (3.1.2).

Теорема 3.1.13. Пусть D - кольцо, содержащее поле рациональных чисел. Тогда поле рациональных чисел \mathbb{Q} является подполем центра $Z(D)$ кольца D.

Доказательство. Следствие теоремы 3.1.12.

В дальнейшем, говоря о нормированном кольце характеристики 0, мы будем предполагать, что определён гомеоморфизм поля рациональных чисел \mathbb{Q} в кольцо D.

Теорема 3.1.14. Пусть D - нормированное кольцо характеристики 0 и пусть $d \in D$. Пусть $a \in D$ - предел последовательности $\{a_n\}$. Тогда

$\quad \lim_{n \to \infty} (a_n d) = ad$

$\quad \lim_{n \to \infty} (da_n) = da$

Доказательство. Утверждение теоремы тривиально, однако я привожу доказательство для полноты текста. Поскольку $a \in D$ - предел последовательности $\{a_n\}$, то согласно определению 3.1.8 для заданного $\epsilon \in \mathbb{R}$, $\epsilon > 0$, существует натуральное число n_0 такое, что

$\quad |a_n - a| < \frac{\epsilon}{|d|}$

для любого $n > n_0$. Согласно определению 3.1.7 утверждение теоремы следует из неравенств

$\quad |a_n d - ad| = |(a_n - a)d| = |a_n - a||d| < |d| |a_n - a| = \epsilon$

$\quad |da_n - da| = |d(a_n - a)| = |d||a_n - a| < |d| |a_n - a| = \epsilon$

для любого $n > n_0$.

Теорема 3.1.15. Полное кольцо D характеристики 0 содержит в качестве подполя изоморфный образ поля R действительных чисел. Это поле обычно отождествляют с R.

ДОКАЗАТЕЛЬСТВО. Рассмотрим фундаментальную последовательность рациональных чисел \(\{p_n\} \). Пусть \(p' \) - предел этой последовательности в кольце \(D \). Пусть \(p \) - предел этой последовательности в поле \(R \). Так как вложение поля \(Q \) в тело \(D \) гомеоморфно, то мы можем отождествить \(p' \in D \) и \(p \in R \). □

Теорема 3.1.16. Пусть \(D \) - полное кольцо характеристики 0 и пусть \(d \in D \). Тогда любое действительное число \(p \in R \) коммутирует с \(d \).

ДОКАЗАТЕЛЬСТВО. Мы можем представить действительное число \(p \in R \) в виде фундаментальной последовательности рациональных чисел \(\{p_n\} \). Утверждение теоремы следует из цепочки равенств

\[
pd = \lim_{n \to \infty} (p_n d) = \lim_{n \to \infty} (dp_n) = dp
\]

основанной на утверждении теоремы 3.1.14. □

3.2. Нормированная \(D \)-алгебра

Определение 3.2.1. Пусть \(D \) - нормированное коммутативное кольцо. Норма в \(D \)-модуле \(A \) - это отображение

\[
a \in A \rightarrow \|a\| \in R
\]

tакое, что

3.2.1.1: \(\|a\| \geq 0 \)
3.2.1.2: \(\|a\| = 0 \) равносильно \(a = 0 \)
3.2.1.3: \(\|a + b\| \leq \|a\| + \|b\| \)
3.2.1.4: \(\|da\| = |d| \|a\|, \ d \in D, \ a \in A \)

\(D \)-модуль \(A \), наделенный структурой, определяемой заданием на \(A \) нормы, называется нормированным \(D \)-модулем.

Теорема 3.2.2. Норма в \(D \)-модуле \(A \) удовлетворяет равенству

(3.2.1)

\[
\|a - b\| \geq \|a\| - \|b\|
\]

ДОКАЗАТЕЛЬСТВО. Из равенства

\[
a = (a - b) + b
\]

и утверждения 3.2.1.3 следует

(3.2.2)

\[
\|a\| \leq \|a - b\| + \|b\|
\]

Равенство (3.2.1) следует из равенства (3.2.2). □

Определение 3.2.3. Базис \(\ell \) называется нормированным базисом, если \(\|e_i\| = 1 \) для любого вектора \(e_i \) базиса \(\ell \).

Определение 3.2.4. Пусть \(A \) - нормированный \(D \)-модуль. Элемент \(a \in A \) называется пределом последовательности \(\{a_n\} \)

\[
a = \lim_{n \to \infty} a_n
\]

если для любого \(\epsilon \in R, \ \epsilon > 0 \) существует, зависящее от \(\epsilon \), натуральное число \(n_0 \) такое, что \(\|a_n - a\| < \epsilon \) для любого \(n > n_0 \). □

3.5 Определение дано согласно определению из [12], гл. IX, §3, п.3. Для нормы мы пользуемся обозначением \(|a| \) или \(\|a\| \).
Определение 3.2.5. Пусть A - нормированный D-модуль. Последовательность $\{a_n\}$, $a_n \in A$, называется фундаментальной или последовательностью Коши, если для любого $\epsilon \in \mathbb{R}$, $\epsilon > 0$, существует, зависящее от ϵ, натуральное число n_0 такое, что $\|a_p - a_q\| < \epsilon$ для любых $p, q > n_0$. □

Определение 3.2.6. Нормированный D-модуль A называется банаховым D-модулем если любая фундаментальная последовательность элементов модуля A сходится, т. е. имеет предел в модуле A. □

Определение 3.2.7. Пусть D-нормированное коммутативное кольцо. Пусть A - D-алгебра. Норма $\|a\|$ в D-модуле A такая, что

$$\|ab\| \leq \|a\| \|b\|$$

называется нормой в D-алгебре A. D-алгебра A, наделённая структурой, определяемой заданием на A нормы, называется нормированной D-алгеброй. □

Определение 3.2.8. Нормированная D-алгебра A называется банаховой D-алгеброй если любая фундаментальная последовательность элементов алгебры A сходится, т. е. имеет предел в алгебре A. □

Определение 3.2.9. Пусть A - банаховая D-алгебра. Множество элементов $a \in A$, $\|a\| = 1$, называется единичной сферой в алгебре A. □

3.3. Нормированный D-модуль $\mathcal{L}(D; A_1; A_2)$

Определение 3.3.1. Отображение

$$f : A_1 \rightarrow A_2$$

D-модуля A_1 с нормой $\|x\|_1$ в D-модуль A_2 с нормой $\|y\|_2$ называется непрерывным, если для любого сколь угодно малого $\epsilon > 0$ существует такое $\delta > 0$, что

$$\|x' - x\|_1 < \delta$$

влечёт

$$\|f(x') - f(x)\|_2 < \epsilon$$

□

Теорема 3.3.2. Пусть

$$f : A_1 \rightarrow A_2$$

линейное отображение D-модуля A_1 с нормой $\|x\|_1$ в D-модуль A_2 с нормой $\|y\|_2$. Если линейное отображение f непрерывно в $x \in A_1$, то линейное отображение f непрерывно всюду на D-модуле A_1.

Доказательство. Пусть $\epsilon > 0$. Согласно определению 3.3.1, существует такое $\delta > 0$, что

$$\|x' - x\|_1 < \delta$$

влечёт

$$\|f \circ x' - f \circ x\|_2 < \epsilon$$

3.6 Эта теорема написана на основе подобной теоремы, [4], страница 174.
Пусть $b \in A_1$. Из равенства (3.3.1) следует

(3.3.3) \[\| (x' + b) - (x + b) \|_1 = \| x' - x \|_1 < \delta \]

Из равенства (3.3.2) следует

(3.3.4) \[\| f \circ (x' + b) - f \circ (x + b) \|_2 = \| (f \circ x' + f \circ b) - (f \circ x + f \circ b) \|_2 \]
\[= \| f \circ x' - f \circ x \|_2 < \epsilon \]

Следовательно, линейное отображение f непрерывно в точке $x + b$. □

Следствие 3.3.3. Линейное отображение $f : A_1 \to A_2$ непрерывное линейное отображение D-модуля A_1 в нормированный D-модуль A_2 непрерывно тогда и только тогда, если оно непрерывно в точке $0 \in A_1$. □

Теорема 3.3.4. Сумма непрерывных линейных отображений D-модуля A_1 с нормой $\| x \|_1$ в D-модуль A_2 с нормой $\| y \|_2$ является непрерывным линейным отображением.

Доказательство. Пусть

$\quad f : A_1 \to A_2$

непрерывное линейное отображение. Согласно следствию 3.3.3 и определению 3.3.1, для заданного $\epsilon > 0$ существует такое $\delta_1 > 0$, что $\| x \|_1 < \delta_1$ влечёт

(3.3.5) \[\| f \circ x \|_2 < \frac{\epsilon}{2} \]

Пусть

$\quad g : A_1 \to A_2$

непрерывное линейное отображение. Согласно следствию 3.3.3 и определению 3.3.1, для заданного $\epsilon > 0$ существует такое $\delta_2 > 0$, что $\| x \|_1 < \delta_2$ влечёт

(3.3.6) \[\| g \circ x \|_2 < \frac{\epsilon}{2} \]

Пусть

$\quad \delta = \min(\delta_1, \delta_2)$

Из неравенств (3.3.5), (3.3.6) и утверждения 3.2.1.3 следует, что $\| x \|_1 < \delta$ влечёт

\[\| (f + g) \circ x \|_2 = \| f \circ x + g \circ x \|_2 \leq \| f \circ x \|_2 + \| g \circ x \|_2 \leq \epsilon \]

Следовательно, согласно следствию 3.3.3 и определению 3.3.1, линейное отображение $f + g$ непрерывно. □

Теорема 3.3.5. Пусть

$\quad f : A_1 \to A_2$

непрерывное линейное отображение D-модуля A_1 с нормой $\| x \|_1$ в D-модуль A_2 с нормой $\| y \|_2$. Произведение отображения f на скаляр $d \in D$ является непрерывным линейным отображением.
Доказательство. Согласно следствию 3.3.3 и определению 3.3.1, для заданного $\varepsilon > 0$ существует такое $\delta > 0$, что $\|x\|_1 < \delta$ влечёт

$$\|f \circ x\|_2 < \frac{\varepsilon}{d}$$

(3.3.7)

Из неравенства (3.3.7) и утверждения 3.2.1.4, следует, что $\|x\|_1 < \delta$ влечёт

$$\|(d f) \circ x\|_2 = \|d(f \circ x)\|_2 = |d| \|f \circ x\|_2 \leq \varepsilon$$

Следовательно, согласно следствию 3.3.3 и определению 3.3.1, линейное отображение $d f$ непрерывно.

Теорема 3.3.6. Множество $\mathcal{L}(D; A_1; A_2)$ непрерывных линейных отображений нормированного D-модуля A_1 в нормированный D-модуль A_2 является D-модулем.

Доказательство. Теорема является следствием теорем 3.3.4, 3.3.5.

Теорема 3.3.7. Пусть A_1 - D-модуль с нормой $\|x\|_1$. Пусть A_2 - D-модуль с нормой $\|y\|_2$. Отображение

$$\mathcal{L}(D; A_1; A_2) \rightarrow R$$

определёное равенством

$$\|f\| = \sup\frac{\|f \circ x\|_2}{\|x\|_1}$$

является нормой D-модуля $\mathcal{L}(D; A_1; A_2)$ и называется нормой отображения f.

Доказательство. Утверждение 3.2.1.1 очевидно. Пусть $\|f\| = 0$. Согласно определению (3.3.8)

$$\|f \circ x\|_2 = 0$$

dля любого $x \in A_1$. Согласно утверждению 3.2.1.2, $f \circ x = 0$ для любого $x \in A_1$. Следовательно, утверждение 3.2.1.2 верно для $\|f\|$.

Согласно определению (2.1.9) и утверждению 3.2.1.3,

$$\sup\frac{\|((f_1 + f_2) \circ x\|_2}{\|x\|_1} = \sup\frac{\|f_1 \circ x + f_2 \circ x\|_2}{\|x\|_1} \leq \sup\frac{\|f_1 \circ x\|_2}{\|x\|_1} + \sup\frac{\|f_2 \circ x\|_2}{\|x\|_1}$$

(3.3.9)

Из неравенства (3.3.9) и определения (3.3.8) следует

$$\|f_1 + f_2\| \leq \|f_1\| + \|f_2\|$$

Следовательно, утверждение 3.2.1.3 верно для $\|f\|$.

Согласно определению (2.1.10) и утверждению 3.2.1.4,

$$\sup\frac{\|(d f) \circ x\|_2}{\|x\|_1} = \sup\frac{\|d(f \circ x)\|_2}{\|x\|_1} \leq \sup\frac{|d| \|f \circ x\|_2}{\|x\|_1} = |d| \sup\frac{\|f \circ x\|_2}{\|x\|_1}$$

(3.3.10)

Из неравенства (3.3.10) и определения (3.3.8) следует

$$\|d f\| = |d| \|f\|$$

Следовательно, утверждение 3.2.1.4 верно для $\|f\|$.
Теорема 3.3.8. Пусть D - кольцо с нормой $|d|$. Пусть A - D-модуль с нормой $\|x\|$. Отображение $A' \to R$ определённое равенством

$$\|f\| = \sup _{\|x\|_0} \left| \frac{f \circ x}{\|x\|_0} \right|$$

является нормой D-модуля A' и называется нормой функционала f.

Доказательство. Теорема является следствием теоремы 3.3.7. □

Теорема 3.3.9. Пусть D - кольцо с нормой $|d|$. Пусть \mathcal{B} - базис D-модуля A с нормой $\|x\|_1$. Пусть A' - сопряжённый D-модуль с нормой $\|x\|_2$. Тогда

$$(3.3.11) \quad \|e^i\|_2 = \frac{1}{\|e_i\|_1}$$

Доказательство. Пусть индекс i имеет заданное значение. Пусть $a \in A$. Так как $a = (a - a^i e_i) + a^i e_i$ то согласно утверждению 3.2.1.3

$$\|a\|_1 \leq \|a - a^i e_i\|_1 + \|a^i e_i\|_1$$

Если $a = a^i e_i$, то согласно утверждениям 3.2.1.2, 3.2.1.4

$$\|a\|_1 = \|a^i e_i\|_1 = |a^i| \|e_i\|_1$$

Следовательно,

$$(3.3.12) \quad \|e^i\|_2 = \sup _{\|a\|_1} \left| \frac{e^i \circ a}{\|a\|_1} \right| = \frac{|a^i|}{|a^i| \|e_i\|_1}$$

Равенство (3.3.11) следует из равенства (3.3.12). □

Следствие 3.3.10. Пусть \mathcal{B} - нормированный базис нормированного D-модуля A. Базис, двойственный базису \mathcal{B}, также является нормированным базисом нормированного D-модуля A'.

Теорема 3.3.11. Пусть \mathcal{B}_1 - базис D-модуля A_1 с нормой $\|x\|_1$. Пусть \mathcal{B}_2 - базис D-модуля A_2 с нормой $\|x\|_2$. Тогда

$$(3.3.13) \quad \| (e^i_1, e^2_j) \| = \frac{\|e^2_j\|_2}{\|e^1_1\|_1}$$

Доказательство. Пусть индексы i, j имеют заданные значения. Пусть $a \in A_1$. Так как $a = (a - a^i e_{1,i}) + a^i e_{1,i}$ то согласно утверждению 3.2.1.3

$$\|a\|_1 \leq \|a - a^i e_{1,i}\|_1 + \|a^i e_{1,i}\|_1$$

Если $a = a^i e_{1,i}$, то согласно утверждениям 3.2.1.2, 3.2.1.4

$$(3.3.14) \quad \|a\|_1 = \|a^i e_{1,i}\|_1 = |a^i| \|e_{1,i}\|_1$$

Так как

$$(e^i_1, e^2_j) \circ a = a^i e^2_j$$
3.3. Нормированный D-модуль $L(D; A_1; A_2)$

то согласно утверждению 3.2.1.4

(3.3.15) $\| (e^i_1, e^i_2) \circ a \|_2 = \| a^i e^i_2 \|_2 = \| a^i \| e^i_2 \|_2$

Из равенств (3.3.14), (3.3.15) следует

(3.3.16) $\| (e^i_1, e^i_2) \| = \sup \frac{\| (e^i_1, e^i_2) \circ a \|_2}{\| a \|_1} = \frac{\| a^i \| e^i_2 \|_2}{\| a^i \| e^i_1 \|_1}$

Равенство (3.3.13) следует из равенства (3.3.16).

Следствие 3.3.12. Пусть \mathbb{F}_1 - нормированный базис D-модуля A_1 с нормой $\| x \|_1$. Пусть \mathbb{F}_2 - нормированный базис D-модуля A_2 с нормой $\| x \|_2$. Тогда

$\| (e^i_1, e^i_2) \| = 1$

Теорема 3.3.13. Пусть

$f : A_1 \to A_2$

линейное отображение D-модуля A_1 с нормой $\| x \|_1$ в D-модуль A_2 с нормой $\| y \|_2$. Тогда

(3.3.17) $\| f \| = \sup \{ \| f \circ x \|_2 : \| x \|_1 = 1 \}$

Доказательство. Из определения 2.1.5 и теорем 3.1.15, 3.1.16 следует

(3.3.18) $f(rx) = r f(x) \quad r \in R$

Из равенства (3.3.18) и утверждения 3.2.1.4 следует

$\frac{\| f(rx) \|_2}{\| rx \|_1} = \left| r \right| \left| f(x) \|_2 \right| \left| \| x \|_1 \right|$

Полагая $r = \frac{1}{\| x \|_1}$, мы получим

(3.3.19) $\| f(x) \|_2 = \left| f \left(\frac{x}{\| x \|_1} \right) \right|_2$

Равенство (3.3.17) следует из равенств (3.3.19) и (3.3.8).

Теорема 3.3.14. Пусть

$f : A_1 \to A_2$

линейное отображение D-модуля A_1 с нормой $\| x \|_1$ в D-модуль A_2 с нормой $\| y \|_2$. Тогда

(3.3.20) $\| f \circ x \|_2 \leq \| f \| \| x \|_1$

Доказательство. Согласно утверждению 3.2.1.4

(3.3.21) $\left| \frac{1}{\| x \|_1} x \right|_1 = \frac{1}{\| x \|_1} \| x \|_1 = 1$

Из теоремы 3.3.13 и равенства (3.3.21) следует

(3.3.22) $\left| \frac{1}{\| x \|_1} f \circ x \right|_2 = \left| f \circ \left(\frac{1}{\| x \|_1} x \right) \right|_2 \leq \| f \|$

Из утверждения 3.2.1.4 и равенства (3.3.22) следует

(3.3.23) $\frac{1}{\| x \|_1} \| f \circ x \|_2 \leq \| f \|$
Неравенство (3.3.20) следует из неравенства (3.3.23).

Теорема 3.3.15. Пусть $f : A_1 \to A_2$
линейное отображение D-модуля A_1 с нормой $\|x\|_1$ в D-модуль A_2 с нормой $\|y\|_2$. Отображение f непрерывно тогда и только тогда, когда $\|f\| < \infty$.

Доказательство. Пусть $\|f\| < \infty$. Поскольку отображение f линейно, то согласно теореме 3.3.7

$$\|f \circ x - f \circ y\|_2 = \|f \circ (x - y)\|_2 \leq \|f\| \|x - y\|_1$$

Возьмём произвольное $\epsilon > 0$. Положим $\delta = \frac{\epsilon}{\|f\|}$. Тогда из неравенства

$$\|x - y\|_1 < \delta$$

следует

$$\|f \circ x - f \circ y\|_2 \leq \|f\| \delta = \epsilon$$

Согласно определению 3.3.1 отображение f непрерывно.

Пусть $\|f\| = \infty$. Согласно теореме 3.3.7, для любого n существует x_n такое, что

(3.3.24) $\|f \circ x_n\|_2 > n \|x_n\|_1$

Положим

(3.3.25) $y_n = \frac{1}{n \|x_n\|_1} x_n$

Согласно определению 2.2.3, утверждению 3.2.1.4, равенству (3.3.25), неравенству (3.3.24)

$$\|f \circ y_n\|_2 = \|f \circ \left(\frac{1}{n \|x_n\|_1} x_n\right)\|_2 = \frac{1}{n \|x_n\|_1} \|f \circ x_n\|_2 > 1$$

Следовательно, отображение f не является непрерывным в точке $0 \in A_1$. □

D-модуль $\mathcal{L}(D; A_1; A_2)$ является подмодулем D-модуля $\mathcal{L}(D; A_1; A_2)$. Согласно теореме 3.3.15, если

$$f \in \mathcal{L}(D; A_1; A_2) \setminus \mathcal{L}(D; A_1; A_2)$$

то $\|f\| = \infty$.

Теорема 3.3.16. Пусть A_1 - D-модуль с нормой $\|x\|_1$. Пусть A_2 - D-модуль с нормой $\|x\|_2$. Пусть A_3 - D-модуль с нормой $\|x\|_3$. Пусть $g : A_1 \to A_2$

$\quad f : A_2 \to A_3$

непрерывные линейные отображения. Отображение $f \circ g$ является непрерывным линейным отображением

(3.3.26) $\|f \circ g\| \leq \|f\| \|g\|$
3.4. Нормированный D-модуль $\mathcal{L}(D; A_1; \ldots, A_n; A)$

ДОКАЗАТЕЛЬСТВО. Согласно определениям (2.2.3), (3.3.8)

$$\sup \frac{\|f \circ g \circ x\|_3}{\|x\|_1} = \sup \frac{\|f \circ (g \circ x)\|_3}{\|x\|_1} = \sup \left(\frac{\|f \circ (g \circ x)\|_3}{\|g \circ x\|_2 \cdot \|x\|_1} \right)$$

(3.3.27)

$$\leq \sup \frac{\|f \circ (g \circ x)\|_3}{\|g \circ x\|_2} \sup \frac{\|g \circ x\|_2}{\|x\|_1}$$

Так как, вообще говоря, $g \circ A_1 \neq A_2$, то

$$\sup \frac{\|f \circ (g \circ x)\|_3}{\|g \circ x\|_2} \leq \sup \frac{\|f \circ y\|_3}{\|y\|_2}$$

Из неравенств (3.3.27), (3.3.28) следует

$$\sup \frac{\|f \circ (g \circ x)\|_3}{\|g \circ x\|_2} \leq \sup \frac{\|f \circ y\|_3}{\|y\|_2} \sup \frac{\|g \circ x\|_2}{\|x\|_1}$$

(3.3.29)

Неравенство (3.3.26) следует из неравенства (3.3.29) и определения (3.3.8). □

3.4. Нормированный D-модуль $\mathcal{L}(D; A_1; \ldots, A_n; A)$

ОПРЕДЕЛЕНИЕ 3.4.1. Пусть $A_i, i = 1, \ldots, n,$ - банахова D-алгебра с нормой $\|x\|_i$. Пусть A - банахова D-алгебра с нормой $\|x\|$. Отображение нескольких переменных

$$f : A_1 \times \ldots \times A_n \to A$$

называется непрерывным, если для любого сколь угодно малого $\epsilon > 0$ существует такое $\delta > 0$, что

$$\|x'_1 - x_1\|_1 < \delta \quad \ldots \quad \|x'_n - x_n\|_n < \delta$$

влечёт

$$\|f(x'_1, \ldots, x'_n) - f(x_1, \ldots, x_n)\| < \epsilon$$

□

ТЕОРЕМА 3.4.2. Сумма непрерывных отображений нескольких переменных является непрерывным отображением нескольких переменных.

3.8 Пусть

$$f_1 : A_1 \to R \quad f_2 : A_1 \to R$$

Вообще говоря, отображения f_1, f_2 имеют максимум в различных точках множества A_1. Следовательно,

$$\sup (f_1(x) f_2(x)) \leq \sup f_1(x) \sup f_2(x)$$
ДОКАЗАТЕЛЬСТВО. Пусть

\[f : A_1 \times \ldots \times A_n \to A \]

непрерывное отображение нескольких переменных. Согласно определению 3.4.1, для заданного \(\epsilon > 0 \) существует такое \(\delta_1 > 0 \), что \(\|x'_1 - x_1\| < \delta_1 \), ..., \(\|x'_n - x_n\| < \delta_1 \) влечёт

\[(3.4.1) \quad \|f(x'_1, \ldots, x'_n) - f(x_1, \ldots, x_n)\| < \frac{\epsilon}{2} \]

Пусть

\[g : A_1 \times \ldots \times A_n \to A \]

непрерывное отображение нескольких переменных. Согласно определению 3.4.1, для заданного \(\epsilon > 0 \) существует такое \(\delta_2 > 0 \), что \(\|x'_1 - x_1\| < \delta_2 \), ..., \(\|x'_n - x_n\| < \delta_2 \) влечёт

\[(3.4.2) \quad \|g(x'_1, \ldots, x'_n) - g(x_1, \ldots, x_n)\| < \frac{\epsilon}{2} \]

Пусть

\[\delta = \min(\delta_1, \delta_2) \]

Из неравенств (3.4.1), (3.4.2) и утверждения 3.2.1.3, следует, что \(\|x'_1 - x_1\| < \delta \), ..., \(\|x'_n - x_n\| < \delta \) влечёт

\[
\| (f + g)(x'_1, \ldots, x'_n) - (f + g)(x_1, \ldots, x_n) \|
\leq \|f(x'_1, \ldots, x'_n) + g(x'_1, \ldots, x'_n) - f(x_1, \ldots, x_n) - g(x_1, \ldots, x_n)\|
\leq \|f(x'_1, \ldots, x'_n) - f(x_1, \ldots, x_n)\| + \|g(x'_1, \ldots, x'_n) - g(x_1, \ldots, x_n)\| \leq \epsilon
\]

Следовательно, согласно определению 3.4.1, отображение нескольких переменных \(f + g \) непрерывно.

ТЕОРЕМА 3.4.3. Сумма непрерывных полилинейных отображений является непрерывным полилинейным отображением.

ДОКАЗАТЕЛЬСТВО. Утверждение теоремы следует из теорем 6-1.6, 3.4.2.

ТЕОРЕМА 3.4.4. Произведение непрерывного отображения \(f \) нескольких переменных на скаляр \(d \in D \) является непрерывным отображением нескольких переменных.

ДОКАЗАТЕЛЬСТВО. Пусть

\[f : A_1 \times \ldots \times A_n \to A \]

непрерывное отображение нескольких переменных. Согласно определению 3.4.1, для заданного \(\epsilon > 0 \) существует такое \(\delta > 0 \), что \(\|x'_1 - x_1\| < \delta \), ..., \(\|x'_n - x_n\| < \delta \) влечёт

\[(3.4.3) \quad \|f(x'_1, \ldots, x'_n) - f(x_1, \ldots, x_n)\| < \frac{\epsilon}{d} \]

Из неравенства (3.4.3) и утверждения 3.2.1.4, следует, что \(\|x'_1 - x_1\| < \delta \), ..., \(\|x'_n - x_n\| < \delta \) влечёт

\[
\| (df)(x'_1, \ldots, x'_n) - (df)(x_1, \ldots, x_n) \|
\leq \|df(x'_1, \ldots, x'_n) - df(x_1, \ldots, x_n)\|
\leq |d| \|f(x'_1, \ldots, x'_n) - f(x_1, \ldots, x_n)\| \leq \epsilon
\]

Следовательно, согласно определению 3.4.1, отображение \(df \) непрерывно.
Теорема 3.4.5. Произведение непрерывного полилинейного отображения \(f \) на скаляр \(d \in D \) является непрерывным полилинейным отображением.

Доказательство. Утверждение теоремы следует из теорем [6]-1.8, 3.4.4. □

Теорема 3.4.6. Множество \(\mathcal{C}(D; A_1, ..., A_n; A) \) непрерывных отображений нескольких переменных является \(D \)-модулем.

Доказательство. Теорема является следствием теорем 3.4.2, 3.4.4. □

Теорема 3.4.7. Множество \(\mathcal{L}(D; A_1, ..., A_n; A) \) непрерывных полилинейных отображений является \(D \)-модулем.

Доказательство. Теорема является следствием теорем 3.4.3, 3.4.5. □

Пусть \(A_1 \) - \(D \)-модуль с нормой \(\|x\|_1 \). Пусть \(A_2 \) - \(D \)-модуль с нормой \(\|x\|_2 \). Пусть \(A_3 \) - \(D \)-модуль с нормой \(\|x\|_3 \). Так как \(\mathcal{L}(D; A_2; A_3) \) - \(D \)-модуль с нормой \(\|f\|_{2, 3} \), то мы можем рассмотреть непрерывное отображение

\[
(3.4.4) \quad h : A_1 \rightarrow \mathcal{L}(D; A_2; A_3)
\]

Если \(a_1 \in A_1 \), то \(h \circ a_1 : A_2 \rightarrow A_3 \) непрерывное отображение. Согласно теореме 3.3.14

\[
(3.4.5) \quad \|a_3\|_3 \leq \|h \circ a_1\|_{2, 3} \|a_2\|_2
\]

Так как \(\mathcal{L}(D; A_1; \mathcal{L}(D; A_2; A_3)) \) - нормированный \(D \)-модуль, то согласно теореме 3.3.14

\[
(3.4.6) \quad \|h \circ a_1\|_{2, 3} \leq \|h\| \|a_1\|_1
\]

Из неравенств (3.4.5), (3.4.6) следует

\[
(3.4.7) \quad \|a_3\|_3 \leq \|h\| \|a_1\|_1 \|a_2\|_2
\]

Мы можем рассматривать отображение (3.4.4) как билинейное отображение

\[
(3.4.8) \quad f : A_1 \times A_2 \rightarrow A_3
\]

определённое согласно правилу

\[
 f \circ (a_1, a_2) = (h \circ a_1) \circ a_2
\]

Опираясь на теоремы 3.3.7, 3.3.14 и неравенство (3.4.7), мы определим норму билинейного отображения \(f \) равенством

\[
(3.4.9) \quad \|f\| = \sup \frac{\|f \circ (a_1, a_2)\|_3}{\|a_1\|_1 \|a_2\|_2}
\]

Применяя индукцию по числу переменных, мы можем обобщить определение нормы билинейного отображения.

Определение 3.4.8. Пусть \(A_i, i = 1, ..., n \) - банахова \(D \)-алгебра с нормой \(\|x\|_i \). Пусть \(A \) - банахова \(D \)-алгебра с нормой \(\|x\| \). Пусть

\[
f : A_1 \times ... \times A_n \rightarrow A
\]

- полилинейное отображение. Величина

\[
(3.4.10) \quad \|f\| = \sup \frac{|f(x)|}{\|x\|_1 ... \|x\|_n}
\]
называется нормой полилинейного отображения \(f \).

\[(3.4.11) \quad \|f\| = \sup\{\|f \circ (x_1, \ldots, x_n)\| : \|x_i\|_i = 1, 1 \leq i \leq n\} \]

ДОКАЗАТЕЛЬСТВО. Из определения 2.1.13 и теорем 3.1.15, 3.1.16 следует

\[(3.4.12) \quad f(r_1x_1, \ldots, r_nx_n) = r_1 \cdots r_n f(x_1, \ldots, x_n) \quad r_1, \ldots, r_n \in R \]

Из равенства (3.4.12) и утверждения 3.2.1.4 следует

\[\frac{\|f(x_1, \ldots, x_n)\|}{\|x_1\|_1 \cdots \|x_n\|_n} = \left\| f \left(\frac{x_1}{\|x_1\|_1}, \ldots, \frac{x_n}{\|x_n\|_n} \right) \right\| \]

Равенство (3.4.11) следует из равенств (3.4.13) и (3.4.10).

ТЕОРЕМА 3.4.10. Пусть \(A_i, i = 1, \ldots, n, \) - банахов \(D \)-модуль с нормой \(\|x\|_i \). Пусть \(A \) - банахов \(D \)-модуль с нормой \(\|x\| \). Пусть

\[f : A_1 \times \ldots \times A_n \rightarrow A \]

полилинейное отображение. Тогда

\[(3.4.14) \quad \|f \circ (x_1, \ldots, x_n)\| \leq \|f\| \|x_1\|_1 \cdots \|x_n\|_n \]

ДОКАЗАТЕЛЬСТВО. Согласно утверждению 3.2.1.4

\[(3.4.15) \quad \left\| \frac{x_1}{\|x_1\|_1} \right\|_1 = \left\| \frac{x_1}{\|x_1\|_1} \right\|_1 = 1 \quad \left\| \frac{x_n}{\|x_n\|_n} \right\|_n = \left\| \frac{x_n}{\|x_n\|_n} \right\|_n = 1 \]

Из теоремы 3.4.9 и равенства (3.4.15) следует

\[(3.4.16) \quad \left\| \frac{1}{\|x_1\|_1} \cdots \frac{1}{\|x_n\|_n} f \circ (x_1, \ldots, x_n) \right\| = \left\| f \left(\frac{1}{\|x_1\|_1}, \ldots, \frac{1}{\|x_n\|_n} x_1, \ldots, \frac{1}{\|x_n\|_n} x_n \right) \right\| \leq \|f\| \]

Из утверждения 3.2.1.4 и равенства (3.4.16) следует

\[(3.4.17) \quad \frac{1}{\|x_1\|_1 \cdots \|x_n\|_n} \|f \circ (x_1, \ldots, x_n)\| \leq \|f\| \]

Неравенство (3.4.14) следует из неравенства (3.4.17).

Пусть \(A_i, i = 1, \ldots, n, \) - банахов \(D \)-модуль с нормой \(\|x\|_i \). Пусть \(A \) - банахов \(D \)-модуль с нормой \(\|x\| \). Мы можем представить полилинейное отображение

\[f : A_1 \times \ldots \times A_n \rightarrow A \]

в следующем виде

\[(3.4.18) \quad f \circ (x_1, \ldots, x_n) = (h \circ (x_1, \ldots, x_{n-1})) \circ x_n \]

gде

\[h : A_1 \times \ldots \times A_{n-1} \rightarrow \mathcal{L}(D; A_n; A) \]
полилинейное отображение.

Теорема 3.4.11. Если отображение \(f \) непрерывно, то отображение \(h \circ (a_1, ..., a_n) \) также непрерывно.

Доказательство. Согласно определению 3.4.1, для любого сколь угодно малого \(\epsilon > 0 \) существует такое \(\delta > 0 \), что

\[
\|x'_1 - x_1\|_1 < \delta \quad \text{...} \quad \|x'_n - x_n\|_n < \delta
\]

влечёт

\[
\|f \circ (x'_1, ..., x'_n) - f \circ (x_1, ..., x_n)\| < \epsilon
\]

Следовательно, для любого сколь угодно малого \(\epsilon > 0 \) существует такое \(\delta > 0 \), что \(\|x'_n - x_n\|_n < \delta \) влечёт

\[
\|(h \circ (x_1, ..., x_{n-1})) \circ x'_n - (h \circ (x_1, ..., x_{n-1})) \circ x_n\| < \epsilon
\]

Из равенства (3.4.18) и неравенства (3.4.19) следует, что для любого сколь угодно малого \(\epsilon > 0 \) существует такое \(\delta > 0 \), что

\[
\|(h \circ (x_1, ..., x_{n-1})) \circ x'_n - (h \circ (x_1, ..., x_{n-1})) \circ x_n\| < \epsilon
\]

Согласно определению 3.3.1, отображение \(h \circ (x_1, ..., x_{n-1}) \) непрерывно. \(\square \)

Теорема 3.4.12. Если отображение \(f \) непрерывно, то отображение \(h \) также непрерывно.

Доказательство. Согласно определению 3.4.1, для любого сколь угодно малого \(\epsilon > 0 \) существует такое \(\delta > 0 \), что

\[
\|x'_1 - x_1\|_1 < \delta \quad \text{...} \quad \|x'_n - x_n\|_n < \delta
\]

влечёт

\[
\|f \circ (x'_1, ..., x'_n) - f \circ (x_1, ..., x_n)\| < \epsilon
\]

Следовательно, для любого сколь угодно малого \(\epsilon > 0 \) существует такое \(\delta > 0 \), что

\[
\|x'_1 - x_1\|_1 < \delta \quad \text{...} \quad \|x'_{n-1} - x_{n-1}\|_{n-1} < \delta
\]

влечёт

\[
\|f \circ (x'_1, ..., x'_{n-1}, x_n) - f \circ (x_1, ..., x_{n-1}, x_n)\| < \epsilon\|x_n\|_n
\]

Из равенства (3.4.18) и неравенства (3.4.20) следует, что для любого сколь угодно малого \(\epsilon > 0 \) существует такое \(\delta > 0 \), что

\[
\|x'_1 - x_1\|_1 < \delta \quad \text{...} \quad \|x'_{n-1} - x_{n-1}\|_{n-1} < \delta
\]

влечёт

\[
\|[h \circ (x'_1, ..., x'_{n-1})] \circ x_n - (h \circ (x_1, ..., x_{n-1})) \circ x_n\| < \epsilon\|x_n\|_n
\]

Из неравенства (3.4.21) следует, что для любого сколь угодно малого \(\epsilon > 0 \) существует такое \(\delta > 0 \), что

\[
\|x'_1 - x_1\|_1 < \delta \quad \text{...} \quad \|x'_{n-1} - x_{n-1}\|_{n-1} < \delta
\]
влечёт
\[
\| (h \circ (x'_1, ..., x'_{n-1}) - h \circ (x_1, ..., x_{n-1})) \circ x_n \| < \epsilon
\]
(3.4.22)

Согласно определению (3.3.8)

\[
\| h \circ (x'_1, ..., x'_{n-1}) - h \circ (x_1, ..., x_{n-1}) \|
\leq \| (h \circ (x'_1, ..., x'_{n-1}) - h \circ (x_1, ..., x_{n-1})) \circ x_n \|
\]
(3.4.23)

Из неравенств (3.4.22), (3.4.23) следует, что для любого сколь угодно малого \(\epsilon > 0 \) существует такое \(\delta > 0 \), что

\[
\| x'_1 - x_1 \| < \delta \quad \text{и} \quad \| x'_{n-1} - x_{n-1} \| < \delta
\]
влечёт
\[
\| h \circ (x'_1, ..., x'_{n-1}) - h \circ (x_1, ..., x_{n-1}) \| < \epsilon
\]
(3.4.24)
Согласно определению 3.3.1, отображение \(h \) непрерывно.

\[\square\]

Тёрема 3.4.13.

\[f \in \mathcal{LC}(D; A_1, ..., A_n; A) \]
точно и только тогда, когда

\[h \in \mathcal{LC}(D; A_1, ..., A_{n-1}; \mathcal{LC}(D; A_1; A)) \]

Замечание 3.4.14. Другими словами, полилинейное отображение \(f \) непрерывно тогда и только тогда, когда отображение \(h \) непрерывно и для любых \(a_1 \in A_1, ..., a_{n-1} \in A_{n-1} \) отображение \(h \circ (a_1, ..., a_{n-1}) \) непрерывно.

Доказательство. Утверждение, что из непрерывности отображения \(f \) следует непрерывность отображений \(h \) и \(h \circ (a_1, ..., a_{n-1}) \), следует из теорем 3.4.11, 3.4.12.

Пусть отображения \(h \) и \(h \circ (a_1, ..., a_{n-1}) \) непрерывны. Согласно определению 3.4.1, чтобы доказать непрерывность отображения \(f \), мы должны оценить разность

\[
\| f \circ (x'_1, ..., x'_n) - f \circ (x_1, ..., x_n) \|
\]
(3.4.25)
при условии

\[
\| x'_1 - x_1 \| < \delta \quad \text{и} \quad \| x'_n - x_n \| < \delta
\]
(3.4.26)
Согласно равенству (3.4.18),

\[
f \circ (x'_1, ..., x'_n) - f \circ (x_1, ..., x_n)
\]
(3.4.27)
Согласно равенству (3.4.27) и утверждению 3.2.1.4,

\[
\| f \circ (x'_1, ..., x'_n) - f \circ (x_1, ..., x_n) \|
\]
(3.4.28)
Согласно определению 3.3.1, для любого сколь угодно малого $\epsilon > 0$ существует такое $\delta_1 > 0$, что $\|x_n' - x_n\|_n < \delta_1$ влечёт

\[(\ref{3.4.29})\]
$\|(h \circ (x'_1, \ldots, x'_{n-1})) \circ x_n - (h \circ (x'_1, \ldots, x'_{n-1})) \circ x_n\| < \frac{\epsilon}{2}$

Рассмотрим второе слагаемое в правой части неравенства (3.4.28).

3.4.13.1: Если $x_n = 0$, то

\[(\ref{3.4.30})\]
$\|(h \circ (x'_1, \ldots, x'_{n-1})) \circ x_n - (h \circ (x'_1, \ldots, x'_{n-1})) \circ x_n\| = 0 < \frac{\epsilon}{2}$

3.4.13.2: Поэтому мы положим $x_n \neq 0$. Согласно определению 3.4.1, для любого сколь угодно малого $\epsilon > 0$ существует такое $\delta_2 > 0$, что $\|x'_i - x_i\|_i < \delta_2$, $1 \leq i < n$ влечёт

\[(\ref{3.4.31})\]
$\|h \circ (x'_1, \ldots, x'_{n-1}) - h \circ (x'_1, \ldots, x'_{n-1})\| < \frac{\epsilon}{2\|x_n\|_n}$

Из неравенств (3.4.30), (3.3.20), следует

\[(\ref{3.4.32})\]
$\|h \circ (x'_1, \ldots, x'_{n-1}) \circ x_n - (h \circ (x'_1, \ldots, x'_{n-1})) \circ x_n\| < \frac{\epsilon}{2\|x_n\|_n}$

Следовательно, в обоих случаях 3.4.13.1, 3.4.13.2, для любого сколь угодно малого $\epsilon > 0$ существует такое $\delta_2 > 0$, что $\|x'_i - x_i\|_i < \delta_2$, $1 \leq i < n$ влечёт

\[(\ref{3.4.33})\]
$\|(h \circ (x'_1, \ldots, x'_{n-1})) \circ x_n - (h \circ (x'_1, \ldots, x'_{n-1})) \circ x_n\| < \frac{\epsilon}{2}$

Пусть

$\delta = \min(\delta_1, \delta_2)$

Из неравенств (3.4.28), (3.4.29), (3.4.32) следует, что для любого сколь угодно малого $\epsilon > 0$ существует такое $\delta > 0$, что

$\|x'_1 - x_1\|_1 < \delta$... $\|x'_n - x_n\|_n < \delta$

влечёт

$\|f \circ (x'_1, \ldots, x'_i) - f \circ (x'_1, \ldots, x'_i)\| < \epsilon$

Согласно определению 3.4.1, отображение f непрерывно. \hfill \square

Теорема 3.4.15. Пусть $A_i, i = 1, \ldots, n, -$ банаых D-модуль с нормой $\|x\|_i$. Пусть $A -$ банахов D-модуль с нормой $\|x\|$. Пусть

$f : A_1 \times \ldots \times A_n \to A$

полилинейное отображение. Пусть

$h : A_1 \times \ldots \times A_{n-1} \to \mathcal{L}(D; A_n; A)$

полилинейное отображение такое, что

\[(\ref{3.4.34})\]
$\|f\| = \|h\|$
ДОКАЗАТЕЛЬСТВО. Согласно определению 3.4.8
(3.4.35) \[\|h \circ (x_1, \ldots, x_{n-1})\| \leq \|h\| \|x_1\| \cdots \|x_{n-1}\| \]
Согласно теореме 3.3.14
(3.4.36) \[\|f \circ (x_1, \ldots, x_n)\| = \|(h \circ (x_1, \ldots, x_{n-1})) \circ x_n\| \leq \|h \circ (x_1, \ldots, x_{n-1})\| \|x_n\| \]
Из неравенств (3.4.35), (3.4.36) следует
(3.4.37) \[\|f \circ (x_1, \ldots, x_n)\| \leq \|h\| \|x_1\| \cdots \|x_n\| \]
Согласно теореме 3.4.10
(3.4.38) \[\|f \circ (x_1, \ldots, x_n)\| \leq \|f\| \|x_1\| \cdots \|x_n\| \]
Опираясь на теорему 3.4.10 и неравенства (3.4.37), (3.4.38), мы имеем неравенство
(3.4.39) \[\|f\| \leq \|h\| \]
Из равенства (3.4.33) и неравенства (3.4.38) следует, что
(3.4.40) \[\frac{(h \circ (x_1, \ldots, x_{n-1})) \circ x_n\|}{\|x_n\|} \leq \|f\| \|x_1\| \cdots \|x_{n-1}\| \]
Из определения 3.4.8 и неравенства (3.4.40) следует, что
(3.4.41) \[\|h \circ (x_1, \ldots, x_{n-1})\| \leq \|f\| \|x_1\| \cdots \|x_{n-1}\| \]
Опираясь на теорему 3.4.10 и неравенства (3.4.35), (3.4.41), мы имеем неравенство
(3.4.42) \[\|h\| \leq \|f\| \]
Равенство (3.4.34) следует из неравенств (3.4.39), (3.4.42).

ТЕОРЕМА 3.4.16. Полилинейное отображение \(f\) непрерывно тогда и только тогда, когда \(\|f\| < \infty\).

ДОКАЗАТЕЛЬСТВО. Мы докажем теорему индукцией по числу \(n\) аргументов отображения \(f\). Для \(n = 1\), теорема является следствием теоремы 3.3.15.

Пусть теорема верна для \(n = k - 1\). Пусть \(A_i, i = 1, \ldots, k\), - банаох \(D\)-модуль с нормой \(\|x\|\). Пусть \(A\) - банаох \(D\)-модуль с нормой \(\|x\|\). Мы можем представить полилинейное отображение
\[f : A_1 \times \ldots \times A_k \to A \]
в следующем виде
\[f \circ (a_1, \ldots, a_k) = (h \circ (a_1, \ldots, a_{k-1})) \circ a_k \]
где
\[h : A_1 \times \ldots \times A_{k-1} \to \mathcal{L}(D; A_k; A) \]
полилинейное отображение. Согласно теореме 3.4.12, отображение \(h\) является непрерывным полилинейным отображением \(k - 1\) переменной. Согласно предположению индукции \(\|h\| < \infty\). Согласно теореме 3.4.15, \(\|f\| = \|h\| < \infty\). □
3.5. D-алгебра с базисом Шаудера

Определение 3.5.1. Пусть A - банахов D-модуль. Последовательность векторов $\mathbf{e} = \{ e_i \}_{i=1}^{\infty}$ называется **базисом Шаудера**, если

- Множество векторов e_i линейно независимо.
- Для каждого вектора $a \in A$ существует единственная последовательность $\{ a^i \}_{i=1}^{\infty}$, $a^i \in D$, такая, что

$$ a = a^i e_i = \lim_{n \to \infty} \sum_{i=1}^{n} a^i e_i $$

Последовательность $\{ a^i \}_{i=1}^{\infty}$, $a^i \in D$, называется **координатами вектора** $a = a^i e_i$ относительно базиса Шаудера \mathbf{e}. □

Пусть \mathbf{e} - базис Шаудера банахова D-модуля A. Мы будем говорить, что разложение $a = a^i e_i$ вектора $a \in A$ относительно базиса Шаудера \mathbf{e} сходится.

Теорема 3.5.2. Пусть \mathbf{e} - базис Шаудера банахова D-модуля A. Тогда $\|a\| < \infty$ для любого вектора $a \in A$.

Доказательство. Из теоремы 3.2.2 следует, что если $\|a\| = \infty$, то мы не можем определить $\|a - b\|$. Следовательно, мы не можем разложить a относительно базиса Шаудера. □

Теорема 3.5.3. Пусть \mathbf{e} - базис Шаудера банахова D-модуля A. Пусть a_i - координаты вектора a относительно базиса \mathbf{e}. Тогда для любого $\epsilon \in R$, $\epsilon > 0$, существует, зависящее от ϵ, натуральное число n_0 такое, что

$$ \sum_{i=p}^{\infty} a^i e_i < \epsilon $$

(3.5.1)

$$ \sum_{i=p}^{q} a^i e_i < \epsilon $$

(3.5.2)

для любых p, $q > n_0$.

Доказательство. Неравенство (3.5.1) является следствием определений 3.2.4, 3.5.1. Неравенство (3.5.2) является следствием определений 3.2.5, 3.5.1. □

Теорема 3.5.4. Пусть $a_i \in A$, $i \in I$, конечное семейство векторов банахова D-модуля A с базисом Шаудера \mathbf{e}. Тогда $\text{span}(a_i, i \in I) \subseteq A$.

Доказательство. Для доказательства утверждения (3.5.3) нам достаточно доказать следующие утверждения.

3.9 Определение 3.5.1 дано на основе определения [1]-4.6, с. 182, и леммы [1]-4.7, с. 183.
3.10 Смотрите определение [5]-4.5.1 линейной оболочки в векторном пространстве.
• Если $a_1, a_2 \in A$, то $a_1 + a_2 \in A$.

Так как $a_1, a_2 \in A$, то, согласно теореме 3.5.3, существует, зависящее от ε, натуральное число n_0 такое, что

$$\left\| \sum_{i=p}^{q} a_i^j e_i \right\| < \frac{\varepsilon}{2}$$

для любых $p, q > n_0$. Из неравенств (3.5.4) следует

$$\left\| \sum_{i=p}^{q} (a_1^j + a_2^j) e_i \right\| < \frac{\varepsilon}{2}$$

(3.5.5)

Из неравенства (3.5.5) следует, что последовательность

$$\sum_{i=p}^{q} (a_1^j + a_2^j) e_i$$

является фундаментальной.

• Если $a \in A, d \in D$, то $da \in A$.

Так как $a \in A, d \in D$, то, согласно теореме 3.5.3, существует, зависящее от ε, натуральное число n_0 такое, что

$$\left\| \sum_{i=p}^{q} d a_i^j e_i \right\| < \frac{\varepsilon}{d}$$

для любых $p, q > n_0$. Из неравенства (3.5.7) следует

$$\left\| \sum_{i=p}^{q} d a_i^j e_i \right\| < \frac{\varepsilon}{d}$$

(3.5.8)

Из неравенства (3.5.8) следует, что последовательность

$$\sum_{i=p}^{q} d a_i^j e_i$$

является фундаментальной.

\[\square\]

Теорема 3.5.5. Пусть \mathcal{E} - базис Шаудера банахова D-модуля A. Тогда

$$\|e_i\| < \infty$$

для любого вектора e_i.

Доказательство. Пусть для $i = j, \|e_j\| = \infty$. Для любого $n > j$

$$\left\| \sum_{i=1}^{n} a_i^j e_i \right\| < \sum_{i=1}^{n} \|a_i^j e_i\| = \sum_{i=1}^{n} |a_i^j| \|e_i\| = \infty$$

если для последовательности $\{a_i^j\}_{i=1}^{\infty}, a^j \in D$, верно, что $a^j \neq 0$. Поэтому мы не можем сказать, определён ли вектор

$$a = a^j e_i$$

\[\square\]
Не нарушая общности, мы можем положить, что базис \(\mathfrak{e} \) нормирован. Если предположить, что норма вектора \(e_i \) отлична от 1, то мы можем этот вектор заменить вектором
\[
e'_i = \frac{1}{\|e_i\|} e_i
\]
Согласно следствию 3.3.10, двойственный базис также является нормированным.

Теорема 3.5.6. Пусть \(\mathfrak{e} \) - нормированный базис Шаудера банахова \(D \)-модуля \(A \). Пусть \(\{a^i\}_{i=1}^{\infty}, a^i \in D, \) - такая последовательность, что
\[
\sum_{i=1}^{\infty} |a^i| < \infty
\]
Тогда существует предел
(3.5.10)

\[
a = a^i e_i = \lim_{n \to \infty} \sum_{i=1}^{n} a^i e_i
\]

Доказательство. Существование предела (3.5.10) следует из неравенства
(3.5.11)

\[
\left\| \sum_{i=1}^{n} a^i e_i \right\| < \sum_{i=1}^{n} |a^i| \|e_i\| = \sum_{i=1}^{n} |a^i|
\]
так как неравенство (3.5.11) сохраняется при предельном переходе \(n \to \infty \).

Пусть \(\mathfrak{e} \) - нормированный базис Шаудера банахова \(D \)-модуля \(A \). Если
\[
\sum_{i=1}^{\infty} |a^i| < \infty
\]
то мы будем говорить, что разложение
\[
a = a^i e_i
\]
вектора \(a \in A \) относительно базиса \(\mathfrak{e} \) сходится нормально. Обозначим
\[
A^+(\mathfrak{e}) = \{a \in A : a = a^i e_i, \sum_{i=1}^{\infty} |a^i| < \infty\}
\]
множество векторов, разложение которых относительно базиса \(\mathfrak{e} \) сходится нормально.

Теорема 3.5.7. Пусть \(\mathfrak{e} \) - нормированный базис Шаудера банахова \(D \)-модуля \(A \). Если разложение вектора \(a \in A \) относительно базиса \(\mathfrak{e} \) сходится нормально, то
(3.5.12)

\[
\|a\| < \sum_{i=1}^{\infty} |a^i|
\]

3.11 Смотри аналогичные теоремы [3], страницы 60, [14], страницы 264, 295, [9], страницы 293, 302.
3.12 Определение нормальной сходимости разложения вектора относительно базиса похоже на определение нормальной сходимости ряда. Смотри [16], страница 12.
ДОКАЗАТЕЛЬСТВО. Из утверждения 3.2.1.3 следует, что

\[(3.5.13) \quad \|a\| < \sum_{i=1}^{\infty} |a^i| \|e_i\|\]

Неравенство (3.5.12) следует из неравенства (3.5.13) и утверждения, что базис Шаудера p является нормальным базисом.

Теорема 3.5.8. Пусть $f : A_1 \to A_2$ — отображение D-модуля A_1 с базисом e_1 в D-модуль A_2 с базисом Шаудера e_2. Пусть f^i_j - координаты отображения f относительно базисов e_1 и e_2. Тогда последовательность

\[(3.5.14) \quad \sum_{i=1}^{n} f^i_j e_2^i\]

имеет предел для любого j.

ДОКАЗАТЕЛЬСТВО. Утверждение теоремы следует из равенства

\[f \circ e_{1,j} = f^i_j e_2^i\]

Теорема 3.5.9. Пусть $f : A_1 \to A_2$ — отображение D-модуля A_1 с нормой $\|x\|_1$ и нормированным базисом Шаудера e_1 в D-модуль A_2 с нормой $\|y\|_2$ и базисом Шаудера e_2. Тогда

\[(3.5.15) \quad \|f \circ e_{1,i}\|_2 \leq \|f\|\]

для любого i.

ДОКАЗАТЕЛЬСТВО. Согласно теореме 3.3.7 и определению 3.2.3, неравенство (3.5.15) следует из неравенства

\[\|f \circ e_{1,i}\|_2 \leq \|f\| \|e_{1,i}\|_1\]

Замечание 3.5.10. Теорема 3.5.8 определяет ограничение на координаты отображения D-модуля с базисом Шаудера. Однако это ограничение можно сделать более строгим. Пусть A_1 - D-модуль с нормированным базисом Шаудера e_1. Пусть A_2 - D-модуль с нормированным базисом Шаудера e_2. Согласно теореме 2.1.12, D-модуль $\mathcal{L}(D; A_1; A_2)$ имеет базис (e^j_1, e^i_2). Поскольку базис D-модуля $\mathcal{L}(D; A_1; A_2)$ является счётным базисом и D-модуль $\mathcal{L}(D; A_1; A_2)$ имеет норму, мы требуем, чтобы рассматриваемый базис был базисом Шаудера. Согласно определению 3.5.1, существует предел

\[(3.5.16) \quad \lim_{m \to \infty} \lim_{n \to \infty} \sum_{j=1}^{m} \sum_{i=1}^{n} f^j_i(e^j_1, e^i_2)\]
Из существования предела (3.5.16) следует существование предела последовательности (3.5.14). Однако из существования предела (3.5.16) также следует, что

$$\lim_{j \to \infty} \left\| \sum_{i=1}^{n} f^j_i e_{2,i} \right\|_2 = 0$$

Теорема 3.5.11. Пусть

$$f : A_1 \to A_2$$

линейное отображение D-модуля A_1 с нормой $\|x\|_1$ и нормированным базисом Шаудера \overline{e}_1 в D-модуль A_2 с нормой $\|y\|_2$ и нормированным базисом Шаудера \overline{e}_2. Для любого $\epsilon \in \mathbb{R}, \epsilon > 0$, существуют N, M такие, что

(3.5.17) $$|f^j_i| < \epsilon \quad i > N \quad j > M$$

Доказательство. Согласно замечанию 3.5.10, множество отображений $(e^i_1, e_{2,j})$ является базисом Шаудера D-модуля $\mathcal{L}(D; A_1; A_2)$. Следовательно, разложение

$$f = f^j_i (e^i_1, e_{2,j})$$

отображения f сходится. Согласно теореме 3.5.3, для любого $\epsilon \in \mathbb{R}, \epsilon > 0$, существуют N, M такие, что

(3.5.18) $$\|f^j_i (e^i_1, e_{2,j})\| < \epsilon \quad i > N \quad j > M$$

Согласно следствию 3.3.12, неравенство (3.5.17) следует из неравенства (3.5.18).

Теорема 3.5.12. Пусть

$$f : A_1 \to A_2$$

линейное отображение D-модуля A_1 с нормой $\|x\|_1$ и нормированным базисом Шаудера \overline{e}_1 в D-модуль A_2 с нормой $\|y\|_2$ и нормированным базисом Шаудера \overline{e}_2. Существует $F < \infty$ такое, что

(3.5.19) $$|f^j_i| \leq F$$

Доказательство. Согласно теореме 3.5.11, для заданого $\epsilon \in \mathbb{R}, \epsilon > 0$, существуют N, M такие, что

$$|f^j_i| < \epsilon \quad i > N \quad j > M$$

Так как N, M конечны, то существует

$$F_1 = \max\{|f^j_i|, 1 \leq i \leq N, 1 \leq j \leq M\}$$

Мы получим неравенство (3.5.19), если положим

$$F = \max(F_1, \epsilon)$$
Теорема 3.5.13. Пусть
\[f : A_1 \to A_2 \]
линейное отображение D-модуля A_1 с нормой $\|x\|_1$ и нормированным базисом Шаудера e_1 в D-модуль A_2 с нормой $\|y\|_2$ и базисом Шаудера e_2. Пусть $\|f\| < \infty$. Тогда для любого
\[a_1 \in A_1^+(\mathfrak{F}_1) \quad a_1 = a_1^i e_{1,i} \]
образ
\[a_2 = \circ a_1 \quad a_2^i = a_1^i f_j^i \quad a_2 = a_2^i e_{2,i} \]
определён корректно, $a_2 \in A_2^+(\mathfrak{F}_2)$.

Доказательство. Из равенства (3.5.20) и теоремы 3.5.9 следует
\[\sum_{i=1}^{\infty} |a_2^i| = \sum_{i=1}^{\infty} |a_1^i| \|f \circ e_{1,i}\|_2 < \|f\| \sum_{i=1}^{\infty} |a_1^i| < \infty \]
Из неравенства (3.5.22) следует
\[\sum_{i=1}^{\infty} |a_2^i| = \sum_{i=1}^{\infty} |a_1^i f_j^i| \|e_{1,i}\|_2 = \sum_{i=1}^{\infty} |a_1^i f_j^i| < \infty \]
Согласно теореме 3.5.6, образ $a_1 \in A_1$ при отображении f определён корректно.

Замечание 3.5.14. Из доказательства теоремы 3.5.13, мы видим, что требование нормальной сходимости разложения вектора относительно нормированного базиса является существенным. Согласно замечанию 3.5.10, если $A_i, i = 1, 2, - D$-модуль с нормированным базисом Шаудера e_i, то множество $\mathcal{L}(D; A_1; A_2)$ является D-модулем с нормированным базисом Шаудера (e_1, e_2). Мы будем обозначать $\mathcal{L}^+(D; A_1(\mathfrak{F}_1); A_2(\mathfrak{F}_2))$ множество линейных отображений, разложение которых относительно базиса (e_1, e_2) сходится нормально.

Теорема 3.5.15. Пусть $A_1 - D$-модуль с нормой $\|x\|_1$ и нормированным базисом Шаудера e_1. Пусть $A_2 - D$-модуль с нормой $\|x\|_2$ и нормированным базисом Шаудера e_2. Пусть отображение
\[f \in \mathcal{L}^+(D; A_1(\mathfrak{F}_1); A_2(\mathfrak{F}_2)) \]
Тогда
\[\|f\| < \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |f_j^i| \]

Доказательство. Согласно следствию 3.3.12, базис (e_1, e_2) является нормированным базисом Шаудера. Теорема следует из теоремы 3.5.7.

Следствие 3.5.16. Пусть $A_1 - D$-модуль с нормой $\|x\|_1$ и нормированным базисом Шаудера e_1. Пусть $A_2 - D$-модуль с нормой $\|x\|_2$ и нормированным базисом Шаудера e_2. Пусть отображение
\[f \in \mathcal{L}^+(D; A_1(\mathfrak{F}_1); A_2(\mathfrak{F}_2)) \]
Тогда \[\|f\| < \infty. \]
Теорема 3.5.17. Пусть $a_i \geq 0$, $b_i \geq 0$, $i = 1, ..., n$. Тогда

\(\sum_{i=1}^{n} a_i b_i < \sum_{i=1}^{n} a_i \sum_{i=1}^{n} b_i \)

Доказательство. Докажем теорему индукцией по n.

Неравенство (3.5.24) для $n = 2$ является следствием неравенства

\(a_1 b_1 + a_2 b_2 \leq (a_1 + a_2)(b_1 + b_2) = a_1 b_1 + a_1 b_2 + a_2 b_1 + a_2 b_2 \)

Пусть неравенство (3.5.24) верно для $n = k - 1$. Неравенство

\(\sum_{i=1}^{k-1} a_i b_i + a_k b_k \leq \left(\sum_{i=1}^{k-1} a_i + a_k \right) \left(\sum_{i=1}^{k-1} b_i + b_k \right) \)

является следствием неравенства (3.5.25). Из неравенства (3.5.26) следует, что неравенство (3.5.24) верно для $n = k$.

Теорема 3.5.18. Пусть $a_i \geq 0$, $b_i \geq 0$, $i = 1, ..., \infty$. Тогда

\(\sum_{i=1}^{\infty} a_i b_i < \sum_{i=1}^{\infty} a_i \sum_{i=1}^{\infty} b_i \)

Доказательство. Теорема является следствием теоремы reftheorem: $|ab| < |a||b|$ когда $n \to \infty$.

Теорема 3.5.19. Пусть A_i, $i = 1, 2, 3$, - D-модуль с нормой $\|x\|_i$ и нормированным базисом Шаудера e_i. Пусть отображение

\(f \in \mathcal{L}^+(D; A_1(e_1); A_2(e_2)) \)

Пусть отображение

\(g \in \mathcal{L}^+(D; A_2(e_2); A_3(e_3)) \)

Тогда отображение

\(g \circ f \in \mathcal{L}^+(D; A_1(e_1); A_3(e_3)) \)

Доказательство. Согласно утверждению 3.2.1.3

\(|(g \circ f)^j| = \sum_{k=1}^{\infty} g_k^j f_k^j \leq \sum_{k=1}^{\infty} |g_k^j| f_k^j \)

Из теоремы 3.5.18 и неравенства (3.5.28) следует, что

\(|(g \circ f)^j| \leq \sum_{k=1}^{\infty} |g_k^j| \sum_{k=1}^{\infty} f_k^j \)

Из неравенства (3.5.29) следует

\(\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |(g \circ f)^j| \leq \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} |g_k^j| \sum_{k=1}^{\infty} f_k^j \)

\(= \left(\sum_{i=1}^{\infty} \sum_{k=1}^{\infty} |g_k^j| \right) \left(\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} f_k^j \right) < \infty \)

Теорема следует из неравенства (3.5.30).
Теорема 3.5.20. Пусть $A_i, i = 1, ..., n, - D$-модуль с нормой $\|x\|_i$ и нормированным базисом Шаудера \mathbb{F}_i. Пусть A - D-модуль с нормой $\|x\|$ и нормированным базисом Шаудера \mathbb{F}. Пусть

$$f : A_1 \times ... \times A_n \rightarrow A$$

полилинейное отображение, $\|f\| < \infty$. Пусть $a_i \in A_i^+(\mathbb{F}_i)$. Тогда

$$a = f \circ (a_1, ..., a_n) \quad a \in A^+(\mathbb{F})$$

Доказательство. Мы докажем утверждение теоремы индукцией по n. Для $n = 1$ утверждение теоремы следует из теоремы 3.5.13. Пусть утверждение теоремы справедливо для $n = k - 1$. Пусть

$$f : A_1 \times ... \times A_{k-1} \rightarrow A$$

полилинейное отображение, $\|f\| < \infty$. Мы можем представить отображение f в виде композиции отображений

$$f \circ (a_1, ..., a_k) = (h \circ (a_1, ..., a_{k-1})) \circ a_k$$

Согласно теореме 3.4.15, $\|h\| < \infty$. Согласно предположению индукции $h \circ (x_1, ..., x_{k-1}) \in L^+(D; A_k; A)$

Согласно теореме 3.4.10,

$$\|h \circ (x_1, ..., x_{k-1})\| < \infty$$

Согласно теореме 3.5.13

$$(h \circ (x_1, ..., x_{k-1})) \circ x_k \in A^+(\mathbb{F})$$

Согласно определению [7]-2.2.1, алгебра - это модуль, в котором произведение определено как билинейное отображение

$$xy = C(x, y)$$

Мы будем требовать

$$\|C\| < \infty$$

Соглашение 3.5.21. Пусть \mathbb{F} - базис Шаудера свободной D-алгебры A. Произведение базисных векторов в D-алгебре A определено согласно правилу (3.5.31)

$$e_i e_j = C_{ij}^k e_k$$

где C_{ij}^k - структурные константы D-алгебры A. Так как произведение векторов базиса \mathbb{F} D-алгебры A является вектором D-алгебры A, то мы требуем, что последовательность

$$\sum_{k=1}^{\infty} C_{ij}^k e_k$$

имеет предел для любых i, j. □
Теорема 3.5.22. Пусть \mathcal{E} - базис Шаудера свободной D-алгебры A. Тогда для любых $a = a^i e_i$, $b = b^i e_i$, $a, b \in A^+(\mathcal{E})$ произведение, определённое согласно правилу (3.5.32)

$$ (ab)^k = C_{ij}^k a^i b^j $$

определен корректно. При этом условии $a, b \in A^+(\mathcal{E}) \Rightarrow ab \in A^+(\mathcal{E})$

Доказательство. Так как произведение в алгебре является билинейным отображением, то произведение a и b можно записать в виде (3.5.33)

$$ ab = a^i b^j e_i e_j $$

Из равенств (3.5.31), (3.5.33), следует (3.5.34)

$$ ab = a^i b^j C_{ij}^k e_k $$

Так как \mathcal{E} является базисом алгебры A, то равенство (3.5.32) следует из равенства (3.5.34).

Из теоремы 3.5.20 следует, что $a, b \in A^+(\mathcal{E}) \Rightarrow ab \in A^+(\mathcal{E})$

\square
Глава 4

Список литературы

[1] Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos, Václav Zizler. Banach Space Theory: The Basis for Linear and Nonlinear Analysis. Springer; New York, 2010; ISBN-13: 978-1441975140
[2] Серж Ленг, Алгебра, М. Мир, 1968
[3] Г. Е. Шилов. Математический анализ, Функции одного переменного, часть 3, М., Наука, 1970
[4] А. Н. Колмогоров, С. В. Фомин. Элементы теории функций и функционального анализа. М., Наука, 1976
[5] Александр Клейн, Лекции по линейной алгебре над телом, eprint arXiv:math.GM/0701238 (2010)
[6] Александр Клейн, Полилинейное отображение свободной алгебры, eprint arXiv:1011.3102 (2010)
[7] Aleks Kleyn, Linear Maps of Free Algebra: First Steps in Noncommutative Linear Algebra, Lambert Academic Publishing, 2010
[8] Aleks Kleyn, Representation Theory: Representation of Universal Algebra, Lambert Academic Publishing, 2011
[9] В. И. Смирnov, Курс высшей математики, том первый. М., Наука, 1974
[10] Cyrus D. Cantrell, Modern mathematical methods for physicists and engineers. Cambridge University Press, 2000
[11] John C. Baez, The Octonions, eprint arXiv:math.RA/0105155 (2002)
[12] Н. Бурбаки, Общая топология. Использование вещественных чисел в общей топологии. перевод с французского С. Н. Крачковского под редакцией Д. А. Райкова, М. Наука, 1975
[13] Понтрягин Л. С., Непрерывные группы, М. Едиториал УРСС, 2004
[14] Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, том 2, М. Наука, 1969
[15] Richard D. Schafer, An Introduction to Nonassociative Algebras, Dover Publications, Inc., New York, 1995
[16] Анри Картан. Дифференциальное исчисление. Дифференциальные формы. М. Мир, 1971
[17] V. I. Arnautov, S. T. Glavatsky, A. V. Mikhalev, Introduction to the theory of topological rings and modules, Volume 1995, Marcel Dekker, Inc, 1996
Глava 5

Предметный указатель

D-алгебра 11
D-базис модуля 8
D-линейно зависимые векторы D-модуля 8
D-линейно независимые векторы D-модуля 8
D-линейный функционал 10
D-модуль 7
алгебра над кольцом 11
ассоциативная D-алгебра 13
ассоциатор D-алгебры 13
базис Гамеля 14
базис Шаудера 37
базис, двойственный базису 10
банахова D-алгебра 23
банаховый D-модуль 23
единичная сфера в D-алгебре 23
закон ассоциативности для D-модуля 7
закон дистрибутивности для D-модуля 7
закон унитарности для D-модуля 8
кольцо имеет характеристику 0 19
кольцо имеет характеристику p 19
коммутативная D-алгебра 13
коммутатор D-алгебры 13
координаты вектора относительно базиса Гамеля 14
координаты вектора относительно базиса Шаудера 37
линейное отображение 8, 12
линейный функционал на D-модуле 10
модуль над кольцом 7
непрерывное отображение 23
непрерывное отображение нескольких переменных 29
норма в D-алгебре 23
норма в D-модуле 22
норма на кольце 20
норма отображения 25
норма полилинейного отображения 32
норма функционала 26
нормированная D-алгебра 23
нормированное кольцо 20
нормированный D-модуль 22
нормированный базис 22
полилинейное отображение 11
полное кольцо 20
последовательность Коши 20, 23
предел последовательности 20, 22
произведение отображения на скаляр 9
разложение вектора относительно базиса сходится 37
разложение вектора относительно базиса сходится нормально 39
свободная алгебра над кольцом 11
свободный модуль над кольцом 8
сопряжённый D-модуль 10
структурные константы 13, 15, 44
сумма линейных отображений 8
топологическое кольцо 20
фундаментальная последовательность 20, 23
центр D-алгебры A 13
центр кольца D 19
эффективное представление кольца 7
ядро D-алгебры A 13
Глава 6
Специальные символы и обозначения

$A^+ (\mathcal{E})$ множество векторов, разложение которых относительно базиса \mathcal{E} сходится нормально 39

(a, b, c) ассоциатор D-алгебры 13

$[a, b]$ коммутатор D-алгебры 13

A' сопряжённый D-модуль 10

$\{a^i\}_{i=1}^{\infty}$ координаты вектора a относительно базиса Гамеля 14

$\|a\|$ норма в D-модуле 22

$\{a^i\}_{i=1}^{\infty}$ координаты вектора a относительно базиса Шаудера 37

$\mathcal{C}(D; A_1, ..., A_n; A)$ множество непрерывных отображений нескольких переменных 31

C_{ij}^{bc} структурные константы 13, 15, 44

df произведение отображения на скаляр 9

$(e_1, e_2, ...)$ базис D-модуля $\mathcal{L}(D; A_1; A_2)$ 11

$\{e_i\}_{i=1}^{\infty}$ базис Гамеля 14

$\{e_i\}_{i=1}^{\infty}$ базис Шаудера 37

$\|f\|$ норма функционала 26

$\|f\|$ норма отображения 25

$\|f\|$ норма полилинейного отображения 31

$f + g$ сумма линейных отображений 8

$\lim_{n \to \infty} a_n$ предел последовательности a_n 20, 22

$\mathcal{L}\mathcal{C}(D; A_1; A_2)$ множество непрерывных линейных отображений 25

$\mathcal{L}\mathcal{C}(D; A_1, ..., A_n; A)$ множество непрерывных полилинейных отображений 31

$N(A)$ ядро D-алгебры A 13

$Z(A)$ центр D-алгебры A 13

$Z(D)$ центр кольца D 19