Functional analysis of NTF-1, a developmentally regulated Drosophila transcription factor that binds neuronal cis elements

Brian David Dynlacht, Laura D. Attardi, Arie Admon, Matthew Freeman, and Robert Tjian
Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720 USA

In an effort to characterize sequence-specific transcription factors that regulate gene expression during Drosophila development, we identified and purified a novel DNA-binding activity (NTF-1). The purified protein consists of several polypeptides that bind selectively to a functionally important cis-control element of the Ultrabithorax (Ubx) promoter and to the neurogenic elements of both the dopa decarboxylase (Ddc) and fushi tarazu (ftz) promoter/enhancer regions. Purified NTF-1 activates transcription in vitro in a binding site-dependent manner through upstream sequences of the Ubx promoter. A cDNA clone encoding the open reading frame of NTF-1 was isolated, and the deduced primary amino acid sequence of NTF-1 includes a glutamine-rich region reminiscent of the transcriptional activation domains found in Spl but no recognizable DNA-binding domain. NTF-1 expression is temporally regulated during embryonic development. In addition, in situ hybridization experiments revealed that NTF-1 is transcribed in a spatially restricted pattern in the embryo, with the highest level of expression observed in the epidermis and a subset of cells in the CNS. Expression of the NTF-1 cDNA in mammalian cells yields a protein that displays DNA-binding and transcriptional activities indistinguishable from that of the collection of proteins isolated from Drosophila embryos. These findings suggest that NTF-1 is a member of a family of developmentally regulated transcription factors that may be involved in directing the expression of genes such as Ubx, Ddc, and ftz in neuronal cells.

[Key Words: Ubx; neurogenic element; transcription in vitro; cell-type specificity; developmental control]

Received July 19, 1989; revised version accepted August 24, 1989.

The intricate patterns of transcription during development and differentiation of higher eukaryotes require the concerted interplay of multiple regulatory proteins that govern initiation of mRNA synthesis in the cell nucleus. We chose Drosophila as a model system for studying temporally programmed and spatially restricted transcription during embryogenesis because genetic analysis has already identified an extensive network of control genes that determine cellular fates during development. Of the many developmentally regulated genes in Drosophila, the homeotic gene Ultrabithorax (Ubx) provides an attractive case for detailed biochemical analysis, because a number of regulatory factors that govern Ubx transcription, including other homeo domain proteins, have already been identified. In addition, several promoter-selective transcription factors, such as the GAGA and zeste proteins, which bind and selectively activate the Ubx promoter in vitro, have been isolated by direct biochemical fractionation of embryonic extracts (Biggin and Tjian 1988; Biggin and Tjian 1988; W. Soeller, pers. comm.). Instead, these proteins appear to be transcription factors that are expressed in a wide variety of cells in the fly and may act in concert with specific promoter factors to regulate many different classes of genes, including those expressed in a temporally and spatially restricted pattern in the embryo. In contrast, one of the DNA-binding activities detected originally by DNase I footprint protection of the Ubx promoter was found only in extracts derived from Drosophila embryos at certain developmental stages but not in Kc tissue culture cells (Biggin and Tjian 1988). Moreover, deletion of the cis element recognized by this embryo-specific binding activity resulted in a marked reduction in Ubx transcription when assayed in vitro with staged embryo nuclear extracts. Interestingly, the
binding site on the Ubx template for this embryonic factor showed some homology to multiple cis-control elements in both the dopa decarboxylase (Ddc) and fushi tarazu (ftz) promoter/enhancer sequences that have been reported to confer expression in neuronal cells (Bray et al. 1988; Hiromi et al. 1985). Thus, it is possible that this specific DNA-binding factor is involved in mediating the expression of Ubx in a subset of cells, such as those of the central nervous system (CNS). These findings prompted us to purify and characterize this putative cell-type-specific factor, which we designated as neurogenic element-binding transcription factor (NTF-1).

Here we report the purification of NTF-1 from Drosophila embryos by DNA affinity chromatography. The purified proteins were subsequently tested for their ability to bind Ubx, Ddc, and ftz control elements and to activate transcription in reconstituted in vitro reactions directed by wild-type and mutant Ubx templates. The purified proteins were also used to generate partial amino acid sequence, which allowed us to obtain several oligonucleotide DNA probes to screen a cDNA library for sequences encoding NTF-1. A cDNA encoding an extended open reading frame (ORF) matching the amino acid sequences of the peptides was isolated and characterized. The temporal program of NTF-1 mRNA synthesis during embryogenesis and the spatially restricted pattern of expression in the embryo were determined. Finally, large quantities of NTF-1 were obtained by overproduction in mammalian cells through the use of vaccinia virus expression vectors, and the biochemical activities of the purified protein were characterized. These studies provide us with direct evidence pertaining to both the structural and functional properties of a cell-type-specific Drosophila transcription factor. Further analysis of NTF-1 may lead to a better understanding of its potential role in modulating the expression of developmentally programmed genes.

Results

Purification, DNA-binding specificity, and transcriptional activity of NTF-1

Because the DNA-binding activity of NTF-1 on the Ubx promoter was detected in Drosophila embryos at certain stages of development, we attempted to purify this putative cell-type-specific factor from such extracts. Crude nuclear extracts were prepared from embryos and subjected to heparin–agarose and S-300 gel filtration chromatography. Fractions containing Ubx promoter-binding factors (determined by DNase I footprinting) were pooled, and the NTF-1 activity was purified by three sequential cycles over a specific DNA affinity column containing multimers of an oligonucleotide derived from the corresponding sequence in the Ubx proximal promoter (Biggin and Tjian 1988). Analysis of the affinity-purified proteins by SDS–gel electrophoresis revealed a collection of three prominent polypeptides (140, 120, and 83 kD), as well as some minor species (170, 67, and 54 kD). Typically, 10 μg of affinity-purified protein was obtained from 250 grams of embryos. We estimate that the three major polypeptides in the DNA affinity preparations have been purified at least 20,000-fold. The same yield and pattern of polypeptides are also obtained when DNA affinity chromatography is carried out with a resin containing the NTF-1-binding sites derived from the Ddc promoter element I, which is essential for neuronal expression (Bray et al. 1988). In some preparations, we used DNA affinity resins containing the Ubx- and Ddc-binding sites consecutively, and the same three major polypeptide species were always isolated (data not shown). Our results suggest that these proteins recognize and bind to cis control elements common to both Ubx and Ddc, either as a complex or as members of a family of DNA-binding proteins.

In addition to the Ddc gene, cis-acting regulatory sequences required for neuronal expression in the CNS have also been identified for the segmentation gene ftz (Hiromi et al. 1985). Recent analysis of this ftz ‘neurogenic’ element has identified a DNA segment that can confer high levels of expression in the CNS [Y. Hiromi and C.S. Goodman, pers. comm.]. Interestingly, this segment contains multiple stretches that show similarity to the Ubx and Ddc DNA sequences recognized by NTF-1. Therefore, we were prompted to compare the DNA-binding specificity of purified NTF-1, using end-labeled DNA probes derived from Ubx, Ddc, and ftz by DNase I footprint analysis (Fig. 1C). As expected, binding of affinity-purified NTF-1 to a DNA fragment of Ubx containing proximal promoter sequences revealed a distinct DNase I footprint in the region of the promoter (−103 to −119) that had been designated previously as FP4 (Biggin and Tjian 1988). DNase I protection analysis of the Ddc template confirmed that NTF-1 was responsible for binding specifically to a single site within the cis-control sequences, referred to as element I. In contrast, binding of NTF-1 to a DNA probe containing sequences from the previously defined neurogenic enhancer of ftz identified four DNase I-protected regions, each containing a sequence that is homologous to the Ubx- and Ddc-binding sites. These findings established that NTF-1 polypeptides can recognize and bind selectively to a number of homologous cis-control elements (Fig. 1C) necessary for expression in specific cells of the nervous system.

Reconstituted in vitro transcription reactions were performed to determine whether NTF-1 could act directly as a promoter-selective transcription factor by binding to its cognate recognition sequences. Transcriptionally active nuclear extracts were prepared from embryos and then selectively depleted of NTF-1, using DNA affinity resin bearing high-affinity NTF-1-binding sites. Extracts that lack detectable endogenous NTF-1 were first tested for transcription with Ubx templates, which either lack the NTF-1-binding site (but retain GAGA and zeste sites) (Δ-94, control) or contain most of the proximal promoter binding sites, including the NTF-1 site (Δ-132, test template) (see Fig. 6). Both the

1678 GENES & DEVELOPMENT
Figure 1. Purification and identification of NTF-1 from embryos and in vitro transcriptional activation.
(A) Analysis of protein fractions from different stages of the NTF-1 purification by 8% SDS–polyacrylamide gel electrophoresis and silver staining. [Lanes 1 and 6] Molecular weight markers; [lanes S-300] 6 μg of protein, 0.1 footprinting units [Ubx]; [1st pass] first-pass affinity eluate, 1.0 μg of protein, 2 footprinting units [Ubx]; [2nd pass] second-pass affinity eluate, 1.0 μg of protein, 50 footprinting units [Ubx]; [3rd pass] third-pass affinity fraction, 0.5 μg of protein, 150 footprinting units [Ubx]. The sizes (in kD) of the major species of NTF-1 purified are indicated.

(B) [Bottom] schematic diagram of the Ubx templates used for the in vitro transcription analyses, which represents the position of the NTF-1-binding site (shaded oval) relative to the in vivo Ubx start site (arrows). [Top] SI nuclease analysis of transcripts produced in vitro either from the Ubx S' deletion Δ'-132 [pUbx Δ'-132] containing the NTF-1-binding site [lanes 1 and 3] or the Δ'-94 template [pUbx Δ'-94] lacking the binding site [lanes 2 and 4]. In each case, reactions contained 225 ng of Ubx template and 25 ng of Adh control template. Reactions either lacked [lanes 1 and 2] or contained [lanes 3 and 4] 150 ng of exogenous NTF-1 purified from embryos [third-pass affinity fraction]. In addition, all reactions contained 120 μg of 8- to 12-hr nuclear extract that had been depleted of NTF-1 with affinity resin [see Experimental procedures]. Densitometry of these autoradiograms indicates a fourfold stimulation of transcription by NTF-1. This is most likely a minimum estimate because the level of activation depends on the extent of depletion of NTF-1, this is confirmed by the experiment in Fig. 5C, where a different depleted extract was used. [C] DNase I footprint analysis of purified NTF-1 on the Ubx, Ddc, and ftz promoters. The Ubx probe consisted of a 568-bp HindIII–EcoRI promoter fragment that was 5’-labeled at the HindIII site of pHIll Δ5'-201 [equivalent to −206]. The Ddc probe was an Ncol–EcoRI fragment 5’-labeled at the Ncol site, and the ftz probe was an Xbol–PvuII fragment 5’-labeled at the Xbol site [see Experimental procedures]. Footprint reactions either contained (+) or lacked (−) NTF-1 purified from embryos. Footprint reactions marked as + for the Ubx and Ddc promoters each contained 5 ng of affinity-purified embryo NTF-1. Footprinting reactions on the ftz probe contained either 50 ng [lane 2] or 20 ng [lane 3] of NTF-1. Densitometry of these autoradiograms indicates a twofold stimulation of transcription by NTF-1. This is most likely a minimum estimate because the level of activation depends on the extent of depletion of NTF-1, this is confirmed by the experiment in Fig. 5C, where a different depleted extract was used. [Legend continued on following page.]

GENES & DEVELOPMENT 1679
control and test templates were transcribed by the embryo extracts depleted of NTF-1 with equal but low efficiency [Fig. 1B], which is consistent with our previous observation that the zeste and GAGA proteins remaining in the extract are sufficient to confer a modest basal level of transcription. However, when purified NTF-1 is added to the depleted nuclear extract, transcription of the Δ-132 template containing a strong NTF-1-binding site is activated significantly (fourfold) relative to the control Δ-94 template, which lacks an NTF-1-binding site. Experiments carried out with the Ddc template have produced similar results [data not shown]. These experiments establish that purified NTF-1 can act as a binding site-dependent transcription factor in vitro.

Molecular cloning and characterization of an NTF-1 cDNA

The ability of NTF-1 to bind several cis-control elements associated with cell-type-specific expression in Drosophila, coupled with its activity as a transcription factor in vitro, suggested that NTF-1 may also be an important regulatory protein in vivo, functioning in a temporally controlled and spatially restricted manner during development. A valuable clue in understanding the potential role of NTF-1 during embryogenesis would be to determine whether its expression is developmentally staged and cell-type specific. In addition, a more complete understanding of the structure and function of NTF-1 and the molecular basis for its transcriptional activity would require a thorough genetic and biochemical investigation. Therefore, we set out to isolate cDNA clones that encode NTF-1 as a direct approach to address some of these issues. Thus, we generated various cyanogen bromide (CNBr)-cleaved peptides from the most highly purified (third-pass DNA affinity) NTF-1 preparations and determined partial amino acid sequence after separating the peptides by reverse-phase high-performance liquid chromatography (HPLC). A 45-nucleotide synthetic oligomer corresponding to the deduced coding region (Fig. 2) reveals an extended ORF of 2.5 kb; a 835-amino-acid-coding region of NTF-1 contains the PEP2 sequences, as well as another shorter ORF (see Experimental procedures) was selected as a specific probe for screening a Drosophila embryonic cDNA library. Two independent cDNA clones were isolated from 500,000 Xgtll phage plaques. The DNA sequence of the longest NTF-1 cDNA clone (3.2 kb) was determined, and the predicted amino acid sequence (Fig. 2) reveals an extended ORF of 2.5 kb, a search through various data bases [NBRF, EMBL] has revealed no striking homology to proteins catalogued in search through various data bases (NBRF, EMBL) has revealed no striking homology to proteins catalogued in various data bases (NBRF, EMBL) has revealed no striking homology to proteins catalogued in various data bases (NBRF, EMBL) has revealed no striking homology to proteins catalogued in various data bases (NBRF, EMBL) has revealed no striking homology to proteins catalogued in various data bases (NBRF, EMBL) has revealed no striking homology to proteins catalogued in various data bases (NBRF, EMBL) has revealed no striking homology to proteins catalogued in various data bases (NBRF, EMBL) has revealed no striking homology to proteins catalogued in v

Figure 2. Amino acid sequence of a Drosophila NTF-1 partial cDNA. The two CNBr peptides that were sequenced are enclosed in shaded boxes. Polyglutamine stretches in NTF-1 are indicated by a broken line.
Drosophila tissue-specific transcription factor

Figure 3. Temporally and spatially regulated expression of NTF-1 mRNA. (A) Northern blot of total RNA from various stages of Drosophila embryogenesis. The age of the embryos [hours postfertilization] from which the RNA was obtained is indicated above each lane. The blot was first probed with a 3.4-kb Notl-Sall fragment of pBS-NTF-1-12 and subsequently with an actin probe [see Experimental procedures]. Molecular mass markers [data not shown] ranged in size from 0.24 to 9.5 kb. (B) In situ hybridizations with 35S-labeled probe to sectioned embryos at several stages of development. The NTF-1 message is visualized as silver grains. All stages are described according to Campos-Ortega and Hartenstein [1985]. Embryos are oriented with anterior left, dorsal up. Control embryos hybridized with the opposite-sense strand did not show a detectable signal above background [data not shown]. (a) Parasagittal section from stage-10/11 [4--7 hr] embryo, showing uniform NTF-1 expression in cells of the epidermis. (b) Parasagittal section from stage-12 [7--9 hr] embryo showing NTF-1 expression in dorsal and posterior regions of the cortex of the developing supraesophageal ganglion [arrows]. (c) Late stage-14/15 [11--13 hr] embryo, parasagittal section, showing diminished expression in cells of the epidermis and expression in the ventral side of the ventral nerve cord [vnc, arrow]. (d) Horizontal section through a stage-13 [9--10 hr] embryo, focusing on expression in the supraesophageal ganglion [arrows]. (C) In situ hybridizations with digoxigenin-containing NTF-1 probe to whole-mount embryos. Embryos are oriented as in (B). NTF-1 is expressed at various stages of development in large cells that we believe to be neuroblasts. (a) Stage-13 embryo, which focuses on the middle of the ventral nerve cord and shows what are probably abdominal median neuroblasts [indicated by arrow]. Also shown is a segmentally repeated pattern in the epidermis [discussed in the text]. (b) Detail of (a), focusing on median neuroblasts. (c) The same embryo as in (b) but through a different focal plane. A complex pattern of large, bilaterally symmetric cells [arrow] is indicated. (d) Slightly earlier embryo than in (a), showing expression in large cells [arrows] on either side of the ventral nerve cord. (e) Expression in the spiracles [arrow].

A key issue is whether NTF-1 is also expressed in a cell-type-specific fashion in the embryo. To address this question, we performed in situ hybridization experiments with probes derived from the cDNA clone [Fig. 3B,C]. Because we have not yet defined probes specific to the two RNA species seen in the Northern blots, the in situ localization represents the sum of the regions of expression of both transcripts. In agreement with our Northern blot analysis, no expression of NTF-1 was detected in 0- to 4-hr-old embryos by in situ hybridization. However, by 5--5.5-hr, expression of NTF-1 was detected throughout the ectoderm by hybridization with a radioactively labeled probe [Fig. 3B, a]. Later embryos [9--to 12-hr] show expression of NTF-1 in the ventral nerve cord and in the brain [Fig. 3B, b--d]. It is not possible to determine the exact stage at which ventral nerve cord expression commences, because this technique does not permit resolution between the epidermis and the abutting nerve cord before ~9 hr. After 12 hr, the embryos

length of these messages suggests that the mRNA species possess long stretches of noncoding sequence; moreover, we do not know the relationships between the mRNA species detected here and the purified NTF-1 polypeptides. Inspection of the abundance of NTF-1 mRNAs in total RNA preparations isolated from Drosophila embryos at different stages during development reveals that NTF-1 is indeed expressed in a temporally regulated fashion. There is no detectable mRNA in 0- to 4-hr embryos, which is consistent with the absence of NTF-1-binding activity in 0- to 4-hr embryo extracts [Biggin and Tjian 1988]. Low levels of NTF-1 are first detected in 4- to 8-hr embryos, maximal expression occurs in 8- to 12-hr embryos, and somewhat reduced levels are visible in 12- to 16-hr embryos. These results suggest that there may be at least two distinct species of mRNA, perhaps generated by alternative splicing, corresponding to NTF-1, and that both are expressed in a developmental stage-specific manner.
display lower levels of NTF-1 in the epidermis (data not shown).

We have also attempted to localize NTF-1 expression to specific cell types by in situ hybridization with a digoxigenin-labeled probe. This method has allowed us to verify NTF-1 expression in the epidermis, and it reveals a segmentally repeated pattern (Fig. 3C, a). Here, anterior segments express NTF-1 in both anterior and posterior regions of the segment, whereas posterior segments only express NTF-1 in posterior regions of the segment; the significance of this pattern of expression is currently unknown. In addition, large cells, possibly neuroblasts [Fig. 3C, b–d], and spiracles [Fig. 3C, e] express NTF-1. These results indicate that NTF-1 is indeed expressed in a limited set of cells during mid-embryogenesis.

Finally, we localized the gene encoding NTF-1 to position 54F1-2 of polytene chromosomes (data not shown); there are no characterized developmental mutations that are known to map to this region.

Expression and biochemical characterization of NTF-1

Because NTF-1 purified from embryos consists of at least three polypeptides of different molecular weights, it was important to ascertain whether the cDNA clone we isolated encodes a functionally active product endowed with the same biochemical properties as the collection of proteins isolated from *Drosophila*. In particular, it was of interest to test whether the polypeptide species, which is encoded by the cDNA, could function as a sequence-specific transcription factor. Therefore, we used vaccinia virus as a vector to express a portion of the NTF-1 cDNA in mammalian cells. NTF-1 made after infection of HeLa cells with the recombinant virus was subsequently isolated by DNA affinity chromatography, and purified proteins were analyzed by SDS–gel electrophoresis. A polypeptide of ~80 kD was the only product detectable in these affinity-purified preparations (Fig. 4). In contrast, no protein was purified on the NTF-1-specific DNA affinity column from cells infected with a nonrecombinant (control) virus.

Next, we tested the ability of the vaccinia virus-expressed NTF-1 proteins to bind cis-control elements in the proximal promoters of *Ubx* and *Ddc*. DNase I protection assays reveal that the vaccinia virus-expressed 80-kD protein recognizes the same binding sites in the promoters of *Ubx* and *Ddc* [element 1] as native *Drosophila* embryo NTF-1 (Fig. 5A,B). Side-by-side comparison of the DNase I footprint protection patterns indicates that the binding specificity and affinity of the 80-kD protein alone is indistinguishable from the collection of three proteins isolated from *Drosophila*. These DNA-binding studies confirm that the NTF-1 cDNA we isolated encodes at least one of the components that corresponds to *Drosophila* NTF-1.

Vaccinia virus-expressed NTF-1 activates Ubx transcription in vitro

We have shown that the native *Drosophila* NTF-1 protein not only functions as a DNA-binding protein but also as a binding site-dependent transcriptional activator. Therefore, we were particularly interested in characterizing the activation properties of the 80-kD NTF-1 species expressed in HeLa cells. As before, the transcriptional properties of NTF-1 were tested using an embryonic extract that had been depleted of endogenous NTF-1 (Fig. 5C). The addition of purified vaccinia virus-expressed NTF-1 to this depleted embryonic extract strongly activates *Ubx* transcription in vitro from a template containing the NTF-1-binding site (~132) but not from a control template lacking the NTF-1 recognition sequence (~94). The level of activation by the 80-kD species was comparable to the stimulation of

1682 GENES & DEVELOPMENT
transcription observed for native NTF-1 purified from Drosophila embryos. These results establish conclusively that the isolated cDNA encodes part of a promoter-selective transcription factor with the DNA-binding specificity of NTF-1.

Discussion

Several different approaches have been taken in an effort to understand how DNA-binding regulatory proteins interact with one another to generate complex and diverse patterns of gene expression during Drosophila development. For example, many components of this developmental regulation have been identified genetically (for review, see Ingham 1988), whereas others have been defined by promoter deletion analysis (Hiromi et al. 1985; Bienz et al. 1988). Yet another way to study this question has been to fractionate embryonic nuclear extracts with the hope of biochemically identifying the activators of transcription in vitro (Biggin and Tjian 1988; Biggin et al. 1988; Perkins et al. 1988; Soeller et al. 1988), and this approach may uncover regulators not identified in a genetic screen. We have taken the latter approach and have continued to characterize transcriptional activators of Ubx, a gene whose temporal and spatial patterns of expression vary greatly during embryogenesis. To this end, we have identified and begun to analyze a novel, sequence-specific DNA-binding transcription factor, NTF-1, able to stimulate transcription from the Ubx promoter in vitro. Although earlier reports had provided evidence for an activity present in crude embryo extracts, but not in Kc tissue culture cells, capable of binding sequences upstream of the Ubx and Ddc start sites (Biggin and Tjian 1988; Bray et al. 1988), this DNA-binding protein had not been identified in genetic screens for regulators of Ubx. It was shown, however, that the cis element (element I) of the Ddc promoter, to which NTF-1 binds, was essential for neuronal expression of Ddc (Scholnick et al. 1986).

We have purified NTF-1 and find that multiple polypeptides copurify with this activity. This suggests either that the purified proteins are able to bind to sequence-specific DNA affinity columns as a multimeric complex or that the polypeptides are related by an ability to bind similar DNA sequences. The polypeptides could, for example, be related by alternative splicing or by differential post-translational modification; alternatively, they could be products of multiple genes. Indeed, there is a precedent for families of transcription factors, such as the CTF/NF-1 family of DNA-binding proteins, which are related, in part, by alternative splicing (Santoro et al. 1988), and the AP-1 family of factors, which are encoded by different, but related, genes (Bohmann et al. 1988). Polyclonal antibodies generated against purified NTF-1 and additional cDNA clones should permit a more thorough characterization of the multiple forms of this protein. If multiple species of NTF-1 do exist, it raises the interesting possibility that they could be localized to different embryonic tissues.

We cloned a cDNA corresponding to NTF-1 from a Drosophila embryo library. NTF-1 does not appear to contain a homeo box or zinc-finger DNA-binding motif (McGinnis et al. 1984; Scott and Weiner 1984; Berg 1986; Kadonaga et al. 1987), although there is some detectable homology to the helix–loop–helix structure in the proteins MyoD and myogenin. In addition, in the sequence thus far obtained, we failed to detect any highly acidic regions characteristic of the transcriptional activation domains of the yeast activators GCN4 and GAL4 or of the viral VP16 protein (Hope and Struhl 1986; Gill and Ptashne 1987; Ma and Ptashne 1987; Trezenberg et

Figure 4. Purification of NTF-1 expressed in HeLa cells. (Bottom) Schematic representation of the vaccinia vector, vv-NTF-1, used to express the NTF-1 cDNA in HeLa cells. The hatched area indicates the vaccinia promoter, the arrow indicates the direction of transcription, and the stippled area indicates the NTF-1 ORF. The unshaded area represents the 3' untranslated region of the NTF-1 cDNA. (Top) Silver-stained 8% SDS–polyacrylamide gel, demonstrating the purification of NTF-1 from crude nuclear extracts. (Lane M) Molecular weight markers whose sizes are listed (left). (Lane 1v-vv-NTF-1 input) The crude nuclear extract from HeLa cells infected with recombinant vaccinia virus containing the partial NTF-1 ORF (see bottom); (Lane vv input) a crude nuclear extract from HeLa cells infected with the New York City Board of Health (NYCBH) strain of vaccinia virus lacking the NTF-1 insert. (Lanes vv-NTF-1 FT and vv FT) Fractions flowing through first-pass affinity columns loaded with nuclear extracts from vv-NTF-1 input and vv input, respectively. (Lanes 1st pass eluate) Proteins purified from first-pass affinity columns and eluting at the KCl concentration listed above each lane; proteins eluted from the column loaded with vv-NTF-1 input are in the middle, and proteins eluted from the vv input control column are shown (right). For comparison, Drosophila embryo NTF-1 (third-pass affinity-purified; see Fig. 1) is also shown. The mobility of NTF-1 purified from HeLa cells is indicated (right).
Figure 5. Biochemical analysis of NTF-1 expressed in, and purified from, HeLa cells. (-) Control pattern of digestion in the absence of added NTF-1 protein. (+) Footprint patterns obtained when either Drosophila embryo or HeLa cell-expressed NTF-1 is included in the reaction. [A] DNase I footprint analysis of purified NTF-1 on the Ubx promoter using the probe described in Fig. 1. (Lane 2) Five nanograms of embryo protein; (lane 3) 2.5 ng of HeLa cell-expressed protein. [B] DNase I footprint analysis of purified NTF-1 on the Ddc promoter using the probe described in Fig. 1. (Lane 6) Five nanograms of embryo protein; (lane 7) 2.5 ng of HeLa cell-expressed protein; (lane 8) 12.5 ng of HeLa cell-expressed protein. [C] S1 nuclease analysis of in vitro transcription reactions directed by the Ubx deletion and Adh control templates described in Fig. 1. All reactions included 125 ng of Ubx template, 125 ng of Adh template, and 120 μg of NTF-1-depleted 8- to 12-hr nuclear extract. In addition, reactions contained either no exogenous NTF-1 (lanes 1, 2, 5, and 6), HeLa cell-expressed, affinity-purified NTF-1 (160 ng, lanes 3 and 4), or third-pass affinity-purified embryo NTF-1 (150 ng, lanes 7 and 8). Densitometry of these autoradiograms reveals that the level of NTF-1 transcriptional stimulation is approximately sixfold.

We have also expressed NTF-1 in HeLa cells using a vaccinia virus expression vector, and we find that NTF-1 purified from such cells possesses the same DNA-binding and transcriptional activation properties in the assays used in this study as the collection of polypeptides purified from Drosophila embryos, although it remains to be determined whether all of the proteins that copurify with the NTF-1 activity, or only a subset, are transcription factors capable of binding to NTF-1 sites.

In contrast to two previously characterized in vitro activators of Ubx, the zeste and GAGA proteins, which seem to be expressed in most cells of the embryo [Pirrotta et al. 1988; W. Soeller, pers. comm.], we have shown that expression of NTF-1 is temporally and spatially restricted. NTF-1 expression is first detected about 5 hr after fertilization during the germ-band-extended stage of development, and expression of the NTF-1 message appears to be limited to the epidermis and a subset of cells of the CNS. Our data indicate that NTF-1 is expressed in a segmentally repeated pattern in the epidermis, in large cells that appear to be neuroblasts, and in the cortex of the developing embryonic brain. Determination of the exact identity of these cells will require double-labeling experiments with antibodies to a known, cell-type-specific protein; a collection of neuron-specific marker proteins has been documented [Patel et al. 1989].

In addition to previously reported data showing that this protein binds element I of the Ddc promoter [Bray et al. 1988], the Ubx proximal promoter, and the engrailed promoter [W. Soeller, pers. comm.], we have provided evidence that NTF-1 binds to multiple sites within the

al. 1988]. We noted, however, that NTF-1 contains several glutamine-rich regions found in a number of homeo-box-containing genes, such as Antennapedia [Schneuwly et al. 1986] and cut [Blochlinger et al. 1988]. Although the function of this repeat motif remains unclear, it is interesting to note that the mammalian transcriptional activator Sp1 contains glutamine-rich stretches that map to transcriptional activation domains of this protein [Courey and Tjian 1988]; moreover, a glutamine-rich region of the Antennapedia gene product can also function as an activation domain [A.J. Courey et al., in press].
ftz neurogenic element. However, at present, the role of NTF-1 in Drosophila development remains unknown. Interestingly, the temporal profile of NTF-1 expression overlaps significantly with that of Ubx in the CNS. Therefore it is tempting to speculate that NTF-1 is involved in specifying expression of genes like Ubx, Ddc, and ftz in the CNS. However, it seems evident that NTF-1 cannot be the primary determinant of temporal or cell-type specificity for all of these genes because Ddc and ftz expression are not coincident with each other or with the peak of NTF-1 expression. Instead, it seems more likely that NTF-1 may serve as one of several sequence-specific transcription factors that can influence expression of these developmentally programmed genes. Given the precedent observed in other transcription systems in which a single DNA recognition site can interact with multiple distinct factors, it is reasonable to anticipate that additional regulatory proteins may be involved in specifying the patterns of Ubx, Ddc, and ftz expression. We hypothesize that the exact pattern of expression of each of these genes is specified by interactions between unique combinations of transcriptional regulators. For example, Ddc, but not Ubx, may be expressed in the embryonic brain as a consequence of the interactions between NTF-1 and other, more distal factors that bind to the Ddc promoter but not to Ubx upstream elements. The evidence for such a combinatorial model is most suggestive for the regulation of Ddc expression. For example, it has been demonstrated that deletion of Ddc element 1, to which NTF-1 binds, results in loss of CNS expression but only slight decreases in hypodermal expression (Scholnick et al. 1986). Moreover, element 1 alone is not sufficient to confer wild-type expression of Ddc in the CNS (Beall and Hirsh 1987; Bray et al. 1988). This suggested that at least two upstream regions of Ddc were essential for expression of this gene in the CNS and provides support for the requirement of interactions between distal and more proximal factors (such as NTF-1) in the regulation of Ddc expression. Similarly, Ubx expression may, in part, result from specific interactions between zeste, GAGA, NTF-1, homeo domain proteins, and other genetically defined regulators of Ubx (see Fig. 6).

Availability of the NTF-1 cDNA will allow us to study, on a biochemical level, the interactions between NTF-1 and other regulators of Ubx expression in vitro, and knowledge of the chromosomal location of NTF-1 will allow us to undertake a genetic analysis to uncover mutants in the NTF-1 locus and to study the developmental effects of such mutations. Moreover, a mutational analysis of NTF-1 sites in the Ubx promoter and ftz enhancer will be important in determining whether these sites are functionally important for directing wild-type levels and correct spatial patterns of expression of these genes in vivo. Furthermore, double-labeling experiments using antibodies against NTF-1 and Ubx and ftz gene products will determine the extent to which the patterns of expression of these genes overlap.

Experimental procedures

Purification of NTF-1 and peptide sequencing

Nuclear extracts from 0- to 12-hr embryos (250 grams) were fractionated by heparin-agarose and Sephacyrl S-300 column chromatography essentially as described (Perkins et al. 1988). S-300 column fractions containing NTF-1 footpointing activity were pooled (~300 ml, 1.2 mg/ml of protein), supplemented with lauryldimethylamine oxide (LDAO) [0.1%] and poly[d(I-C)] (3.9 mg), incubated on ice for 10 min, and centrifuged at 9000 rpm for 10 min in a Sorvall SS-34 rotor. Then the supernatant protein was applied to a 1 ml DNA affinity column, in which case the complementary oligonucleotides used were 5'-GTACTA ACGCTCAA ACCAG ATGTG TT-3' and 5'-GATCA AACAATCTGG TTTTG AGCGT TA-3'. The column was equilibrated first with 0.1 M HEMG (25 mM HEPES/KOH [pH 7.6], 0.1 mM EDTA, 12.5 mM MgCl2, 10% glycerol, 1 mM DTT, and 0.1 M KCl) containing 0.1% LDAO. The column was washed with 8 volumes of 0.1 M HEMG and 3 volumes of 0.2 M HEMG. Then the protein was eluted from the column with steps of HEMG containing 0.3 [pmol] 2 ml] and 1.0 M KCl (4 ml). The 1.0 M step fractions, containing the bulk of NTF-1 footpointing activity, were pooled (NTF-1 typically eluted between 0.3 and 0.5 M KCl), diluted to 0.1 M HEMG, mixed with poly[d(I-C)] to a final concentration of 1.6 μg/ml, as described above, and loaded onto a second-pass affinity column. The column was washed and eluted as above, active fractions were pooled again and diluted to 0.1 M HEMG, and poly[d(I-C)] was added to a final concentration of 0.8 μg/ml, as described above. This protein was loaded onto a third-pass affinity column, which was washed and eluted as described above. Aliquots of protein fractions were TCA-precipitated, washed with acetone, and resuspended in sample buffer prior to SDS--polyacrylamide electrophoresis. Final yields of purified protein were estimated by silver staining.

CNBr peptides were generated, resolved, and sequenced as described (Williams et al. 1988), except that 15 μg of protein was proteolyzed without prior modification.

In vitro transcription and DNase I footprinting

Adh control and Ubx deletion templates for in vitro transcription have been described previously (Biggin and Tjian 1988). 5'-

Figure 6. A summary of transcriptional regulatory proteins that bind to cis elements of the Ubx proximal promoter region. (Z) zeste, (G) GAGA protein, [HB] homeo domain proteins; the binding of these proteins to this promoter has been described (Beachy et al. 1988; Biggin and Tjian 1988). [Top] Numbers represent distances (in bp) relative to the transcription start site (denoted by arrow).
Dynlacht et al.

Labeled single-stranded DNA probes used for S1 nuclease analysis of Ubx transcripts included a strand-separated DNA probe from a 306-bp Mial–HindIII fragment of pUbx HIII Δ5'-201 (as described in Biggin and Tjian 1988; [Fig. 1]) or an oligonucleotide hybridizing to Ubx sequences +42 to −22 [Fig. 5]. Trascription reactions were carried out as described by Biggin et al. (1988), except that the reactions contained 8- to 12-hr nuclear extracts that had been depleted of NTF-1 as follows. Four hundred microliters of this nuclear extract was mixed for 30 min at 4°C with Ddc affinity resin (200 μl packed volume), which had been pre-equilibrated with 0.1 M HEMG. The suspension was centrifuged at 15,000 g, and the resulting supernatant was subjected to a second round of depletion. The depleted extract was used directly or stored at −70°C.

DNase I footprint reactions (50 μl) were carried out essentially as described [Heberlein et al. 1985, Jones et al. 1985]. No competitor was added to the reactions, which contained ~3 fmole of DNA probe. Plasmid pUbx HIII Δ5'-201, used for foot-printing the Ubx promoter, has been described previously [Biggin and Tjian 1988]. The plasmid (termed p83b) containing the Ddc promoter was constructed by subcloning an EcoRI fragment from pl224 [a kind gift of J. Hirsh] into EcoRI-cut pUC119. p83b was cleaved with the Ddc promoter was constructed by subcloning an EcoRI fragment from p1224 [a kind gift of J. Hirsh] into EcoRI-cut pUC119. p83b was cleaved with NcoI, 5'-end-labeled, and digested with EcoRI. The plasmid containing the ftz neurogenic element (pFBR SK+) was a kind gift from Yasushi Hiromi. The probe was constructed by cleaving this plasmid with XbaI and 5'-end-labeling it, followed by a PolyII digestion.

Isolation of recombinant clone encoding NTF-1

The oligonucleotide 5'-ATGCT TTACG TICCG CAGGA GACCG AGGAG GTTIA CACCC CCTT-3' [where I represents inosine] was deduced from CNBr peptide 2, according to Lathe (1985). This oligonucleotide was 5'-end-labeled with [γ-32P]ATP and polynucleotide kinase and used to screen an amplified Dro sophila 9- to 12-hr embryo cDNA library in λgt11, which was kindly provided by Kai Zinn. λ Plaques were transferred to nitrocellulose and screened as described by Kadonaga et al. (1987), except that final washes were done with 2 × SST, 0.5% SDS at 59°C. Two clones were isolated, and the cDNA insert of the longer one was subcloned into the Smal site of pBluescript SK+ [Stratagene] (plasmid termed pBS-NTF-1-12). The entire NTF-1 cDNA was sequenced on both strands using subclones generated by exonuclease III/S1 digestion. Sequencing was performed by the dideoxy method using Sequenase reagents (U.S. Biochemical). Northern blot analysis

Northern blot analysis was performed essentially as described [Hauser et al. 1985], except that the NTF-1 probe was prepared by random hexamer priming (Amersham). Each lane contained 20 μg of total RNA [kindly provided by Yasushi Hiromi]. The actin probe was prepared by random hexamer priming of a HindIII-cut subclone of actin described previously [Fyrberg et al. 1980].

In situ hybridizations to RNA

For visualization with 35S-containing probes, Canton-S embryos were fixed, embedded in paraform, sectioned, and prepared for hybridization essentially as described by Ingham et al. (1985). Plasmids pBS-NTF-1-12 and pBS-NTF-1-12’ (containing the NTF-1 insert in either orientation) were used to synthesize RNA probes from the T7 promoter [Stratagene RNA Transcription Kit] to make single-stranded probes complementary and noncomplementary to the NTF-1 transcript. These probes were hydrolyzed to an average length of ~100 nucleotides by incubation for 120 min at pH 10.4 at 60°C [Cox et al. 1984]. Hybridization, washes, and autoradiography were carried out according to the method of Ingham et al. [1985]. The autoradiographs were exposed for 5 days. Two-week exposures of control slides, which were hybridized with the noncomplementary RNA probes, showed no signal above background.

The digoxigenin-labeled [Boehringer–Mannheim] single-stranded DNA probe of NTF-1 was made using polymerase chain reaction (PCR), according to the procedure of N. Patel (pers. comm.). In situ localization with the digoxigenin-containing probe was performed, based on the protocol of C. Pfeifle and D. Tautz (pers. comm.). Four- to twelve-hour embryos were fixed as described previously [Ingham et al. 1985] and treated with proteinase K prior to hybridization. Hybridization of the digoxigenin-labeled probe to embryos was based on the protocol of Mahoney and Lengyel [1987], whereas incubation of embryos with an anti-digoxigenin antibody conjugated to alkaline phosphatase and signal development were performed based on protocols of Boehringer–Mannheim.

Expression of NTF-1 in HeLa cells

The NTF-1 mammalian cell vector, termed vN-NTF-1, was constructed by cleaving pBS-NTF-1-12 with Asp718 and XbaI [in Bluescript polylinker], filling-in ends with Klenow fragment, and subcloning the fragment into a Smal-cut vaccinia expression vector [pABT4537, kindly provided by Applied bioTechnology, Inc.]. Recombinant virus was generated essentially as described [Chakrabarti et al. 1985]. HeLa cells at a density of 6.4 × 10⁶ cells per liter were infected at a multiplicity of infection of 1.0 with the recombinant virus, and infection was allowed to proceed for 48 hr; an infection was conducted in parallel with a New York City Board of Health strain of vaccinia [kindly provided by Applied bioTechnology]. HeLa nuclear extracts were prepared essentially as described for the preparation of Kc nuclear extracts [Parker and Topol 1984], except that buffers A and B contained 1 mm sodium metabsulphite and 0.2 mm phenylmethylsulfonyl fluoride [PMSF], and buffer C contained these reagents at half of this concentration. DNA affinity chromatography on crude extracts [5 mg/ml] was performed as described above.

Acknowledgments

We thank Todd Laverty for help with in situ hybridizations to polytene chromosomes, Nipam Patel for assistance with the digoxigenin-based in situ hybridizations, and Yash Hiromi and Steve Jackson for gifts of plasmids containing the ftz neurogenic element and for plasmid p83b, respectively. We thank Yash Hiromi for suggesting the ftz DNA-binding studies. We also thank all of the members of the Tjian lab and Irma Sanchez for helpful comments on the manuscript and encouragement; it was substantially improved by comments from Timothy Hoey, Richard Turner, Trevor Williams, Mark Biggin, and Al Courey. We also thank Gina Dailey and Karen Perkins for the gift of embryo extracts and Bruce England for help with cloning. We thank Karen Ronan for typing the manuscript and for help with figure design. B.D.D. is a recipient of an H.H.M.I. graduate student fellowship. M.F. was supported by a SERC [UK]/NATO postdoctoral fellowship. This work was partly funded by a grant from the National Institutes of Health [CA25417] to R.T.

Note added in proof

During the preparation of this manuscript, we received data from J. Hirsh documenting the cloning of a cDNA (elf-1) whose
sequence closely matches that of NTF-1. The cDNA was isolated independently by screening a *Drosophila* expression library with monoclonal antibodies. It is of interest to note that NTF-1 lacks 31 amino acids at the carboxy-terminal end of the protein, which elf-1 appears to possess, suggesting that the two forms were generated by alternative splicing. We thank J. Hirsh for sharing his data with us before publication. These findings were published recently (Bray et al. 1989).

The DNA sequence of NTF-1 will be submitted to the EMBL/GenBank data libraries.

References

Beachy, P.A., M.A. Krasnow, E.R. Gavis, and D.S. Hogness. 1988. *An Ultrabithorax* protein binds sequences near its own and the *Antennapedia* P1 promoters. *Cell* 55: 1069–1081.

Beall, C.J. and J. Hirsh. 1987. Regulation of the *Drosophila* dopa decarboxylase gene in neuronal and glial cells. *Genes Dev.* 1: 510–520.

Berg, J. 1986. Potential metal-binding domains in nucleic acid binding proteins. *Science* 232: 485–487.

Bienz, M., G. Saari, G. Tremml, J. Muller, B. Zust, and P. Lawrence. 1988. Differential regulation of *Ultrabithorax* in two germ layers of *Drosophila*. *Cell* 53: 567–576.

Biggin, M.D. and R. Tjian. 1988. Transcription factors that activate the *Ultrabithorax* promoter in developmentally staged extracts. *Cell* 53: 699–711.

Biggin, M.D., S. Bickel, M. Benson, V. Pirrotta, and R. Tjian. 1988. *Zeste* encodes a sequence-specific transcription factor that activates the *Ultrabithorax* promoter in vitro. *Cell* 53: 713–722.

Blochinger, K., R. Bodmer, J. Jack, J.Y. Jan, and Y.N. Jan. 1988. Primary structure and expression of a product from *cut*, a locus involved in specifying sensory organ identity in *Drosophila*. *Nature* 333: 629–635.

Bohmann, D., A. Admon, D.R. Turner, and R. Tjian. 1988. Transcriptional regulation by the AP-1 family of enhancer-binding proteins: A nuclear target for signal transduction. *Cold Spring Harbor Symp. Quant. Biol.* 53: 695–700.

Bray, S.J., W.A. Johnson, J. Hirsh, U. Heberlein, and R. Tjian. 1988. A cis-acting element and associated binding factor required for CNS expression of the *Drosophila melanogaster* dopa decarboxylase gene. *EMBO J.* 7: 177–188.

Bray, S.J., B. Burke, N.H. Brown, and J. Hirsh. 1989. Embryonic expression pattern of a family of *Drosophila* proteins that interact with a central nervous system regulatory element. *Genes Dev.* 3: 1130–1145.

Campos-Ortega, J.A. and V. Hartenstein. 1985. The embryonic development of *Drosophila melanogaster*. Springer-Verlag, Berlin.

Caudy, M., H. Vassin, M. Brand, R. Tuma, L.Y. Jan, and Y.N. Jan. 1988. *daughterless*, A *Drosophila* gene essential for both neurogenesis and sex determination, has sequence similarities to myc and the *achaete-scute* complex. *Cell* 55: 1061–1067.

Chakrabarti, S., K. Brechling, and B. Moss. 1985. Vaccinia virus expression vector: Coexpression of β-galactosidase provides visual screening of recombinant virus plaques. *Mol. Cell. Biol.* 5: 3403–3409.

Courey, A.J. and R. Tjian. 1988. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. *Cell* 55: 887–898.

Courey, A.J., D.A. Holtzman, S.P. Jackson, and R. Tjian. 1989. *Cell* (in press).

Cox, K.H., D.V. Deleón, L.M. Angerer, and R.C. Angerer. 1984. Detection of mRNAs in sea urchin embryos by in situ hybridization using asymmetric RNA probes. *Dev. Biol.* 101: 485–502.

Davis, R.L., H. Weintraub, and A.B. Larso. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. *Cell* 51: 987–1000.

Fyberg, E.A., K.L. Kindle, N. Davidson, and A. Sodja. 1980. The actin genes of *Drosophila*: A dispersed multigene family. *Cell* 19: 365–378.

Gill, G. and M. Ptashne. 1987. Mutants of GAL4 protein altered in an activation function. *Cell* 51: 121–126.

Hauser, C.A., A.L. Joyner, R.D. Klein, T.K. Learned, G.R. Martin, and R. Tjian. 1985. Expression of homologous homeo-box-containing genes in differentiated human teratocarcinoma cells and mouse embryos. *Cell* 43: 19–28.

Heberlein, U., B. England, and R. Tjian. 1985. Characterization of *Drosophila* transcription factors that activate the tandem promoters of the alcohol dehydrogenase gene. *Cell* 41: 965–977.

Hiromi, Y., A. Kuroiwa, and W.J. Gehring. 1985. Control elements of the *Drosophila* segmentation gene *fushi tarazu*. *Cell* 43: 603–613.

Hope, I.A. and K. Struhl. 1986. Functional dissection of a eukaryotic transcriptional activator protein, GCN4, of yeast. *Cell* 46: 885–894.

Ingham, P.W. 1988. The molecular genetics of embryonic pattern formation in *Drosophila*. *Nature* 335: 25–33.

Ingham, P.W., K.R. Howard, and D. Ish-Horowicz. 1985. Transcription pattern of the *Drosophila* segmentation gene hairy. *Nature* 318: 439–445.

Jones, K.A., K. Yamamoto, and R. Tjian. 1985. Two distinct transcription factors bind to the HSV thymidine kinase promoter in vitro. *Cell* 42: 559–572.

Kadonaga, J.T. and R. Tjian. 1986. Affinity purification of sequence-specific DNA-binding proteins. *Proc. Natl. Acad. Sci.* 83: 5889-5893.

Kadonaga, J.T., K.R. Carner, F.R. Masiarz, and R. Tjian. 1987. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. *Cell* 51: 1079–1090.

Lathe, R. 1985. Synthetic oligonucleotide probes deducted from amino acid sequence data: Theoretical and practical considerations. *J. Mol. Biol.* 183: 1–12.

Ma, J. and M. Ptashne. 1987. Deletion analysis of GAL4 defines two transcriptional activating segments. *Cell* 48: 847–853.

Mahoney, P.A. and J.A. Lengyel. 1987. The zygotic segmentation mutant *tailless* alters the blastoderm fate map of the *Drosophila* embryo. *Dev. Biol.* 121: 464–470.

McGinnis, W., R.L. Garber, J. Wirz, A. Kuroiwa, and W.J. Gehring. 1984. A homologous protein-coding sequence in *Drosophila* homeotic genes and its conservation in other metazoans. *Cell* 37: 403–408.

Muzre, C., P.S. McCaw, and D. Baltimore. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, Myo D, and myc proteins. *Cell* 56: 777–783.

Parker, C.S. and J. Topol. 1984. A *Drosophila* RNA polymerase II transcription factor contains a promoter-region-specific DNA-binding activity. *Cell* 36: 357–360.

Patel, N.H., B. Schafer, C.S. Goodman, and R. Holmgren. 1989. A dispersed multigene family. *Cell* 56: 777–793.

Perkins, K.K., G.M. Dailey, and R. Tjian. 1988. In vitro analysis of the *Antennapedia* P2 promoter: Identification of a new *Drosophila* transcription factor. *Genes Dev.* 2: 1615–1626.

Pirrotta, V., S. Bickel, and C. Mariani. 1988. Developmental expression of the *Drosophila* zeste gene and localization of zeste protein on polytene chromosomes. *Genes Dev.* 2: 1839–1850.
Santoro, C., N. Mermod, P.C. Andrews, and R. Tjian. 1988. A family of human CCAAT-box-binding proteins active in transcription and DNA replication: Cloning and expression of multiple cDNAs. Nature 334: 218–224.

Schneuwly, S., A. Kuroiwa, P. Baumgartner, and W.J. Gehring. 1986. Structural organization and sequence of the homeotic gene Antennapedia of Drosophila melanogaster. EMBO J. 5: 733–739.

Scholnick, S.B., S.J. Bray, B.A. Morgan, C.A. McCormick, and J. Hirsh. 1986. CNS and hypoderm regulatory elements of the Drosophila melanogaster dopa decarboxylase gene. Science 234: 998–1002.

Scott, M.P. and A.J. Weiner. 1984. Structural relationships among genes that control development: Sequence homology between the Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. Proc. Natl. Acad. Sci. 81: 4115–4119.

Soeller, W.C, S.J. Poole, and T. Kornberg. 1988. In vitro transcription of the Drosophila engrailed gene. Genes Dev. 2: 68–81.

Thisse, B., C. Stoetzel, C. Gorostiza-Thisse, and F. Perrin-Schmitt. 1988. Sequence of the twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. EMBO J. 7: 2175–2183.

Treizenberg, S.I., K.L. LaMarco, and S.L. McKnight. 1988. Evidence of DNA: Protein interactions that mediate HSV-1 immediate early gene activation by VP16. Genes Dev. 2: 730–742.

Villares, R. and C.V. Cabrera. 1987. The achaete-scute gene complex of D. melanogaster: Conserved domains in a subset of genes required for neurogenesis and their homology to myc. Cell 50: 415–424.

Williams, T., A. Admon, B. Luscher, and R. Tjian. 1988. Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements. Genes Dev. 2: 1557–1569.

Wright, W.E., D.A. Sassoon, and V.K. Lin. 1989. Myogenin, a factor regulating myogenesis has a domain homologous to Myo D. Cell 56: 607–617.
Functional analysis of NTF-1, a developmentally regulated Drosophila transcription factor that binds neuronal cis elements.

B D Dynlacht, L D Attardi, A Admon, et al.

Genes Dev. 1989, 3:
Access the most recent version at doi:10.1101/gad.3.11.1677

References
This article cites 45 articles, 14 of which can be accessed free at: http://genesdev.cshlp.org/content/3/11/1677.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.