Phylogenetic Status of Two Undescribed Zygomycete Species from Korea: *Actinomucor elegans* and *Mucor minutus*

Thuong T. T. Nguyen¹, Hee-Young Jung², Youn Su Lee³, Kerstin Voigt⁴ and Hyang Burm Lee¹,*

¹Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
²School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
³Division of Bioresource Sciences, Kangwon National University, Chuncheon 24341, Korea
⁴JMRC at Leibniz Institute for Natural Product Research and Infection Biology e.V. HKI and Friedrich Schiller University Jena, 07745 Jena, Germany

Abstract During a survey of fungal diversity of the order Mucorales, three zygomycete isolates, CNUFC-YR113-1, CNUFC-KNU16-7, and CNUFC-BS1-1 were isolated from freshwater and soil samples in Korea. The strains were analyzed both morphologically and phylogenetically based on internal transcribed spacer and 28S rDNA gene sequences. Based on their morphology and phylogeny, the CNUFC-YR113-1 and CNUFC-KNU16-7 isolates were identified as *Actinomucor elegans*, and CNUFC-BS1-1 was identified as *Mucor minutus*. To the best of our knowledge, the species *A. elegans* and *M. minutus*, belonging to an undiscovered taxon, have not been previously described in Korea.

Keywords *Actinomucor elegans*, *Mucor minutus*, Undiscovered taxa, Zygomycete fungi

Actinomucor and *Mucor* belong to the subphylum Mucoromycotina, order Mucorales, family Mucoraceae [1]. The genus *Actinomucor* was originally described in 1898 by Schostakowitsch [2]. Although the genus is closely related to *Mucor*, it differs in having branched stolons that give rise to rhizoids and sporangiophores. It is also distinct from the other two genera *Rhizopus* and *Absidia* in its arrangement of the columellae and sporangiophores. The genus originally contained two species, *A. elegans* (Eidam) C. R. Benj. & Hesselt., and *A. taiwanensis* S. C. Jong & G. F. Yuan [3, 4]. *A. taiwanensis* was differentiated from *A. elegans* by its larger sporangiospore size and by their differing maximum growth temperatures: 37°C for *A. taiwanensis* and 32°C for *A. elegans*. Later, Zheng and Liu [5] renamed *A. taiwanensis* to *A. elegans* var. *meitauzae* based on morphological characteristics and molecular analyses. Recently, Khan et al. [6] proposed the addition of a new variety, *A. elegans* var. *kuwaitensis*. In Index Fungorum (2017; http://www.indexfungorum.org), the genus *Actinomucor* contains only one species named *Actinomucor elegans*.

Actinomucor species are found in dung, soil, food, and human sources [5-7]. Some of them are commonly used for producing popular fermented soybean foods including Sufu and Chao [8]. In addition, *A. elegans* is also considered a good source of glycine aminopeptidase and glucosamine [9, 10]. *A. elegans* var. *elegans* has been reported as a potential biocontrol agent against the chafer beetle [11].

Mucor Fresen. (Mucoraceae, Mucorales) is characterized by the formation of non-apophysate sporangia, producing simple or branched sporangiophores without basal rhizoids. Zygospores have opposed, non-appendaged suspensors [12]. *Mucor* species have frequently been detected on substrates that support the growth of a fungal host, such as in soil, dung, fruit, and plants [13-15]. Several species are able to produce enzymes with biotechnological applications [16, 17], while some species are considered the causal agent of cutaneous zygomycosis in humans [18]. Although there are more than 300 named species described in the literature, only approximately 50 are known and described [15].
Mucor

(shape of sporangia as well as the mode of reproduction based on morphological characteristics such as size and regions of several mucoralean species, Walther transcribed spacer (ITS) and large subunit (LSU) rDNA observed that some Mucor species with curved sporangiophores were grouped with Backusella Hsett. & J. J. Ellis. Therefore, these Mucor species were transferred to Backusella.

In Korea, two new Mucor species have been currently reported by authors: Mucor koreanus from tangerine fruit [14] and Mucor stercorearius from rat feces [22]. Only seven species have been recorded: M. circinelloides, M. hiemalis, M. mucedo, M. piriformis, M. racemosus, M. fragilis, and M. irregularis [15, 23]. To our knowledge, there are no specific published literature records of these species in Korea.

The objective of the present study was to perform morphological and molecular analyses to characterize two unrecorded zygomycete species in Korea: Actinomucor elegans and Mucor minutus.

MATERIALS AND METHODS

Fungal strain isolation from freshwater and soil samples. Freshwater samples were collected from the Yeongsan River located in Gwangju, Korea. Soil samples were collected from the garden of the Chonnam National University located in Gwangju and a field in Gyeongnam, Korea. These samples were transported in sterile 50-mL Falcon tubes, and stored at 4°C. Freshwater samples were collected from the garden of the Chonnam National University located in Gwangju and a field in Gyeongnam, Korea. Soil samples were collected from the garden of the Chonnam National University located in Gwangju and a field in Gyeongnam, Korea.

Fungal strain isolation from freshwater and soil samples. Freshwater samples were collected from the Yeongsan River located in Gwangju, Korea. Soil samples were collected from the garden of the Chonnam National University located in Gwangju and a field in Gyeongnam, Korea. These samples were transported in sterile 50-mL Falcon tubes, and stored at 4°C. Freshwater samples were collected from the garden of the Chonnam National University located in Gwangju and a field in Gyeongnam, Korea. Soil samples were collected from the garden of the Chonnam National University located in Gwangju and a field in Gyeongnam, Korea.

Two New Records of Zygomycete Species in Korea

In Korea, two new Mucor species have been currently reported by authors: Mucor koreanus from tangerine fruit [14] and Mucor stercorearius from rat feces [22]. Only seven species have been recorded: M. circinelloides, M. hiemalis, M. mucedo, M. piriformis, M. racemosus, M. fragilis, and M. irregularis [15, 23]. To our knowledge, there are no specific published literature records of these species in Korea.

The objective of the present study was to perform morphological and molecular analyses to characterize two unrecorded zygomycete species in Korea: Actinomucor elegans and Mucor minutus.

DNA extraction, PCR, and sequencing. Genomic DNA was extracted directly from the mycelia of fungal isolates, using the Solgent Genomic DNA prep Kit (Solgent Co. Ltd., Daejeon, Korea). The ITS region and large subunit of 28S rDNA were amplified with the primer pairs ITS4 and ITS5 [24], and LROR and LR5F [25], respectively. The PCR amplification mixture (total volume, 20 µL) contained fungal DNA template, 5 pmol/µL of each primer, and Accupower PCR Premix (Taq DNA polymerase, dNTPs, buffer, and a tracking dye; Bioneer Corp., Daejeon, Korea). PCR products were purified using the Accuprep PCR Purification Kit (Bioneer Corp.) according to the manufacturer’s instructions. DNA sequencing was performed on an ABI 3700 Automated DNA sequencer (Applied Biosystems Inc., Foster City, CA, USA).

Phylogenetic analysis. The fungal sequences obtained from the GenBank database (Table 1) were aligned using Clustal_X v.1.83 [26] and edited with Bioedit v.5.0.9.1 [27].

Table 1. Taxa, collection numbers, sequences, and GenBank accession numbers used in this study

Taxon name	Collection No. (isolate No.)	GenBank accession No.
Actinomucor elegans	ATCC 46123	AM745430
A. elegans	CBS 338.72	JN205824
A. elegans	CBS111562	AB113009
A. elegans	CBS 100.09	-
A. elegans	CBS154.86	-
A. elegans	CNUFC-YR113-1	MG206066
A. elegans	CNUFC-YR113-2	MG206067
A. elegans	CNUFC-KNU16-7	MG206068
A. elegans var. elegans	ATCC22814’	MG206073

Two New Records of Zygomycete Species in Korea

Traditional taxonomy of Mucor species has been determined based on morphological characteristics such as size and shape of sporangia as well as the mode of reproduction (sexual or asexual).

Recently, molecular data have been used to evaluate mucoralean species [19, 20]. These studies indicated that Mucor is polyphyletic. Based on the phylogeny of internal transcribed spacer (ITS) and large subunit (LSU) rDNA regions of several mucoralean species, Walther et al. [21] observed that some Mucor species with curved sporangiophores were grouped with Backusella Hsett. & J. J. Ellis. Therefore, these Mucor species were transferred to Backusella.

In Korea, two new Mucor species have been currently reported by authors: Mucor koreanus from tangerine fruit [14] and Mucor stercorearius from rat feces [22]. Only seven species have been recorded: M. circinelloides, M. hiemalis, M. mucedo, M. piriformis, M. racemosus, M. fragilis, and M. irregularis [15, 23]. To our knowledge, there are no specific published literature records of these species in Korea.

The objective of the present study was to perform morphological and molecular analyses to characterize two unrecorded zygomycete species in Korea: Actinomucor elegans and Mucor minutus.
Table 1. Continued

Taxon name	Collection No. (isolate No.)	GenBank accession No.
		ITS 28S
A. elegans var. kuwaitiensis	CBS117697	JN205823
A. elegans var. meitauzae	ATCC52370	AM745432
A. elegans var. meitauzae	CBS 111558	-
Backasella circina	CBS 128.70	-
B. grandis	CBS 186.87	-
B. lamprosora	CBS 118.08	-
Benjaminiella multispora	CBS 421.70	-
Blakelea sinensis	CBS 564.91	-
Choanephora infundibulifera	CBS 153.51	-
Cokeromyces recurvatus	CBS 168.59	-
C. recurvatus	CBS 158.50	-
Mucor aligarensis	CBS 993.70	-
M. circinelloides	B5-2	KT876701
M. circinelloides	CBS 108.16	JN205954
M. fragilis	CBS 236.35	JN205979
M. fragilis	EML-PUK106-1	KY047147
M. fragilis	EML-PUK106-2	KY047150
M. flavus	CBS 230.35	JN206061
M. flavus	CBS 681.73	JN206070
M. flavus	CBS 893.73	-
M. flavus	CBS 182.90	-
M. fuscus	CBS 132.22	JF723619
M. fuscus	CBS 230.29	JN206204
M. genevensis	CBS 114.08	HM623318
M. genevensis	CBS 404.71	JN206042
M. heterogamus	CBS 338.74	JN206169
M. heterogamus	CBS 252.85	JN206490
M. heterogamus	CBS 405.58	JN206167
M. hiemalis	CBS 242.35	JN206134
M. hiemalis	CBS 115.18	JN206127
M. irregularis	CBS 977.68	JX976259
M. irregularis	EML-PUK112-1	KY047151
M. irregularis	EML-PUK112-2	KY047146
M. koreanus	EML-QT1	KT936259
M. koreanus	EML-QT2	KT936260
M. luteus	CBS 243.35	JX976254
M. minutus	CBS 586.67	JN206048
M. minutus	CNUFC-BS1-1	MG206069
M. minutus	CNUFC-BS1-2	MG206070
M. mucedo	CBS 542.66	JN206086
M. mucido	CBS 987.68	JN206089
M. nidicola	EML-SBD1	KY047148
M. nidicola	EML-SBD2	KY047149
M. plasmaticus	CBS 275.49	-
M. saturninus	CBS 974.68	-
M. stercorea	CNUFC-UK2-1	KX839689
M. stercorea	CNUFC-UK2-2	KX839680
M. strictus	CBS 100.66	-
M. racemosus	CBS 260.68	JF723556
M. velutinosus	UTHSC 04-1961	JF299208
M. velutinosus	UTHSC 04-1981	JF299212
U. nana	NRRL 22420	KM017731

Bold letters indicate isolates and accession numbers determined in our study.

ITS, internal transcribed spacer; ATCC, American Type Culture Collection, Manassas, VA, USA; CBS, Centraalbureau voor Schimmelmculures, Utrecht, The Netherlands; CNUFC, Chonnan National University Fungal Collection, Gwangju, South Korea; EML, Environmental Microbiology Laboratory Fungarium, Chonnam National University, Gwangju, South Korea; NRRL (ARS Culture Collection, Peoria, Illinois); T, ex-type strain.
Phylogenetic analyses were performed using MEGA 6 software [28], and maximum likelihood was constructed by Kimura’s two-parameter correction method. The fungus *Umbelopsis nana* was used as an outgroup. The reliability of internal branches was assessed using the p-distance substitution model with 1,000 bootstrap replications.

RESULTS

Phylogenetic analysis. Phylogenetic analyses of the two sequence datasets (ITS and 28S rDNA) showed that the strains CNUFC-YR113-1, CNUFC-YR113-2, CNUFC-KNU16-7, CNUFC-BS1-1, and CNUFC-BS1-2 were placed within the same clade with species of *Actinomucor* and *Mucor* (Figs. 1 and 2).

In the BLASTn analysis of the ITS sequence, CNUFC-YR113-1 and CNUFC-BS1-1 represented 99.8% (535/536 bp) and 99.4% (613/617 bp) sequence identity values with *A. elegans* (GenBank accession No. JN205824) and *M. minutus* (GenBank accession No. JN206048), respectively.

In the BLASTn analysis of the 28S sequence, CNUFC-YR113-1 and CNUFC-BS1-1 strains showed 98.1% (634/636 bp) sequence identity values with *M. minutus* (GenBank accession No. JN206048), respectively.
348 Nguyen et al.

644 bp) and 100% (682/682 bp) identity values with *A. elegans* (GenBank accession No. JN205827) and *M. minutus* (GenBank accession No. JN206463), respectively.

Taxonomy of CNUFC-YR113-1.

Actinomucor elegans (Eidam) C. R. Benj. & Hesselt., Mycologia 49: 241 (1957) (Table 2, Fig. 3).

Table 2. Morphological characteristics of CNUFC-YR113-1 and the reference *Actinomucor elegans* grown on synthetic mucor agar medium at 25°C.

Character	CNUFC-YR113-1	*Actinomucor elegans*
Colony color	Rapid-growing, first white then deep olive-buff, reverse white	Rapid-growing, first white then deep olive-buff, reverse white to pale olive-buff
Sporangiohores	12.2–20.5 µm in width, variable in length	Up to 30 µm in width, variable in length
Primary sporangia	Globose to subglobose, multispored, 42.3–83.5 × 39.9–82.1 µm	Less than 80 µm, multispored
Secondary sporangia	Globose to subglobose, multispored, 29.9–46.2 × 27.5–44.3 µm	Mostly 20–50 µm in diameter, multispored
Columellae inside	Diverse in shape, oval, pyriform, oblong, 23.3–44.8 × 22.6–42.9 µm	Elongate-oval to pyriform, 50–60 × 30–40 µm
Primary sporangia	Globose, 14.5–26.5 × 17.8–30.4 µm	Globose, 12–30 µm
Secondary sporangia	Globose to subglobose, 6.1–8.5 × 5.8–8.1 µm	Globose, mostly 6–8 µm in diameter
Chlamydospores	Present	Present
Zygosporites	Absent	Unknown

From the description by Benjamin and Hesseltine [3].
Two New Records of Zygomycete Species in Korea

= Rhizopus elegans Eidam, Jahresber. Schles. Ges. Vaterl. Kultu. 61: 232 (1884).
= Mucor elegans (Eidam) J. Schröt., Kryptogamen-Flora von Schlesien 3-1: 207 (1886).
= Mucor corymbosus Harz, Bull. Soc. Imp. Nat. Moscou 44: 143 (1871).
= Actinomucor repens Schostak., Ber. Dtsch. Bot. Ges. 16: 155 (1898).
= Glomerula repens Bainier, Bull. Soc. Mycol. Fr. 19: 154 (1903).
= Mucor botryoides Lendn., Bull. Soc. Bot. Genève 2: 79 (1910).
= Mucor botryoides var. minor C.N. Jensen, Bull. Cornell Univ. Agric. Exp. Stn. 315: 457 (1912).
= Mucor cunninghamelloides Pispek, Acta Bot. Inst. Bot. Univ. Zagreb. 4: 91 (1929).
= Actinomucor corymbosus Naumov, Opredelitel Mukorovykh (Mucorales): 56 (1935).
= Actinomucor corymbosus f. palaestinus Rayss, Palestine J. Bot. 3: 162 (1945).

Description: Colonies grew rapidly at 25°C on SMA, filling the Petri dish after 5 days of incubation. The colony color was initially white, later deep olive-buff. Sporangiophores were 12.2–20.5 µm wide, erect, branched, irregular, and verticillate. Primary sporangia were globose to subglobose, and measured 42.3–83.5 × 39.9–82.1 µm. Secondary sporangia were formed with the same shape as the primary sporangia, and measured 29.9–46.2 × 27.5–44.3 µm. Columellae inside the primary sporangia were diverse in shape, oval, pyriform, oblong, and measured 23.3–44.8 × 22.6–42.9 µm. Columellae inside the secondary sporangia were globose, and measured 14.5–26.5 × 17.8–30.4 µm. Sporangiospores were globose to subglobose, and measured 6.1–8.5 × 5.8–8.1 µm. Chlamydospore formations were well-defined on the medium. Zygospores were not observed.

Taxonomy of CNUFC-BS1-1.
Mucor minutus (Baijal & B. S. Mehrotra) Schipper, Stud. Mycol. 10: 24 (1975) (Table 3, Fig. 4).
= Mucor griseo ochraceus var. minutus Baijal & B. S. Mehrotra, Sydowia 19: 206 (1966).
= Mucor saturninus var. minutus (Baijal & B. S. Mehrotra) Milko, Opredelitel mukoral’nykh gribov. 129 (1974).

Description: Colonies grew rapidly on SMA, attaining a diameter of 70–72 mm after 5 days at 25°C. The colony reverse was white. Sporangiophores were 12.2–20.5 µm wide, erect, branched, irregular, and verticillate. Primary sporangia were globose to subglobose, and measured 42.3–83.5 × 39.9–82.1 µm. Secondary sporangia were formed with the same shape as the primary sporangia, and measured 29.9–46.2 × 27.5–44.3 µm. Columellae inside the primary sporangia were diverse in shape, oval, pyriform, oblong, and measured 23.3–44.8 × 22.6–42.9 µm. Columellae inside the secondary sporangia were globose, and measured 14.5–26.5 × 17.8–30.4 µm. Sporangiospores were globose to subglobose, and measured 6.1–8.5 × 5.8–8.1 µm. Chlamydospore formations were well-defined on the medium. Zygospores were not observed.

Table 3. Morphological characteristics of CNUFC-BS1-1 and the reference species Mucor minutus grown on synthetic mucor agar medium at 25°C

Character	CNUFC-BS1-1	Mucor minutus*
Colony color	First white and later smoke gray	Smoke gray, up to 19 mm in height
Sporangiosphere	9–24.5 µm wide, variable in length	Up to 20 µm, variable in length
Sporangia	Globose, 37.1–109.8 µm × 36.4–103.4 µm	Up to 175 µm
Columella	Globose to ellipsoidal, 27.9–95.2 µm × 24.8–84.5 µm	Cylindrical to ellipsoidal, 110–135 µm in width
Sporangiospores	Globose, 4.3–5.6 µm × 4.1–5.0 µm	Subspherical, 4–5 µm in diameter
Zygospore	Absent	Unknown

*From the description by Schipper [29].
color was initially white, later turning to smoke gray. Sporangiophores were 9–24.5 µm wide, erect, mostly branched, and irregular. Sporangia were globose, and measured 37.1–109.8 µm × 36.5–103.4 µm. Columellae were globose to ellipsoidal, and measured 27.9–95.2 µm × 24.8–84.5 µm. Sporangiospores were globose, and measured 4.3–5.6 µm × 4.1–5.0 µm. Zygospores were not observed on artificial media.

DISCUSSION

Despite the wide intraspecific variation found among some taxa, the rDNA ITS and D1/D2 regions have been used as critical barcode markers for identifying mucoralean fungi at the species level, including taxa of *Actinomucor* and *Mucor* [21].

In the ITS and LSU phylogenetic trees, our strains CNUFC-BS1-1, CNUFC-BS1-2, and CNUFC-KNU16-7 were clustered within the elegans clade including *A. elegans*, *A. elegans* var. *meiatazae*, and var. *kuwaitiensis* in a well-supported clade. However, our strain CNUFC-YR113-1 differed from *A. elegans* var. *meiatazae* and *A. elegans* var. *kuwaitiensis* in sporangiospore size; CNUFC-YR113-1 strain exhibited smaller sporangiospores (6.1–8.5 × 5.8–8.1 µm) than *A. elegans* var. *meiatazae* (7–19.5 × 6–15 µm) and *A. elegans* var. *kuwaitiensis* (5–12 µm). The maximum growth temperature of our strain was 35°C, while *A. elegans* var. *meiatazae* and *A. elegans* var. *kuwaitiensis* were able to grow under higher temperatures up to 40°C.

Jong and Yuan [4] reported that growth temperature is a criterion for distinguishing between *A. elegans* and *A. taiwanensis*. These authors showed that *A. taiwanensis* has a maximum growth temperature of 37°C, while *A. elegans* does not grow at this temperature. Contrary to reports by Jong and Yuan [4], maximum growth temperature is less useful for distinguishing between the varieties [5, 6].

The morphological features of our isolates were in line with the description of *A. elegans* by Benjamin and Hesseltine [3], as the properties including shape, size of the sporangiospores (6–8 µm), and maximum temperature for growth were compared. Under these criteria, our isolate was identified as *A. elegans*.

In the tree based on D1/D2 sequence analyses, the strains CNUFC-BS1-1 and CNUFC-BS1-2 were placed into the minutus clade within the *M. flavus* group as presented by Walther et al. [21] including: *M. flavus*, *M. saturninus*, *M. aligarensis*, and *M. minutus* (Fig. 2), and formed a monophyletic group with *M. minutus* (type species). The CNUFC-BS1-1 isolate was morphologically most similar to *M. minutus* as described by Schipper [29], although there were differences in the shape and size of columellae. The size of columellae described by Schipper [29] was larger (110–135 µm) than those (27.9–95.2 × 24.8–84.5 µm) observed in our isolate. According to Schipper [29], the *M. minutus* species is similar in morphology and closely related to *M. flavus* because they produce columellae with the same size.

However, sporangiospores with different sizes and shapes have been observed. *M. minutus* has smaller sporangiospores (4–5 µm) than *M. flavus* (7–12 × 4–6.5 µm). Comparing the colony morphology and culture characteristics of the isolate with previous descriptions [29], the present isolate was similar to *M. minutus*, with some exceptions. Our *M. minutus* isolate presented one to three septa below the columella, which were not described by Schipper [29].

Recently, several studies have focused on the increased incidence of mucormycosis in both immunocompromised and immunocompetent patients [30]. Some species belonging to the order Mucorales (subphylum Mucoromycotina) are considered opportunistic pathogens. Particularly, four families, including Cunninghamellaceae, Lichtheimiaceae, Mucoraceae,
and Syncophalastraceae, have been described to be responsible for human infections [31].

More recently, A. elegans and A. elegans var. kuwaitiensis have been reported as the agent of mucormycosis in humans in several cases [6, 7, 32]. Morphological keys are available for identifying Actinomucor. However, it is still difficult to identify taxa to intraspecific rank in Actinomucor. Thus, taxonomic revision and phylogenetic analysis are needed in future studies.

Interestingly, A. elegans has been reported as protease enzyme for generation of small peptides with ACE-inhibitory activity from razor clam Sinonovacula constricta meat [33]. So this finding suggests that the strain CNUFC-YR113-1 may be a useful source for biotechnological applications.

ACKNOWLEDGEMENTS

This work was in part supported by the Graduate Program for the Undiscovered Taxa of Korea, and in part by the Project on Survey and Discovery of Indigenous Fungal Species of Korea funded by NIBR and Project on Discovery of Fungi from Freshwater and Collection of Fungarium funded by NNNBR of the Ministry of Environment (MOE), and in part carried out with the support of Cooperative Research Program for Agriculture Science and Technology Development (PJ012957), Rural Development Administration, Republic of Korea.

REFERENCES

1. Voigt K. Chytridiomycota. In: Frey W, editor. Syllabus of plant families—A. Engler’s syllabus der pflanzenfamilien. Part 1/1: Blue-green algae, Myxomycetes and Myxomycete-like organisms, phytoparasitc Protists, heterotrophic Heterokontobionta and Fungi. Stuttgart: Borntraeger Verlag; 2012. p. 106-29.
2. Schostakowitsch W. 1898. Actinomucor repens n. gen. n. sp. Ber Deut Bot Ges 1898;16:5-8.
3. Benjamin CR, Hesedtine CW. The genus Actinomucor. Mycologia 1957;49:240-9.
4. Jong SC, Yuan GF. Actinomucor taiwanensis sp. nov., for manufacture of fermented soybean food. Mycotoxicon 1985;23:261-4.
5. Zheng RY, Liu XY. Actinomucor elegans var. meitaucae, the correct name for A. taiwanensis and Mucor meitaueae (Mucorales, Zygomyycota). Nova Hedwigia 2005;80:419-31.
6. Khan ZU, Ahmad S, Mokaddas E, Chandy R, Cano J, Guerrero J. Actinomucor elegans var. kuwaitiensis isolated from the wound of a diabetic patient. Antonie Van Leeuwenhoek 2008;94:343-52.
7. Tully CC, Romanelli AM, Sutton DA, Wickes BL, Hopsenthal DR. Fatal Actinomucor elegans var. kuwaitiensis infection following combat trauma. J Clin Microbiol 2009;47:3394-9.
8. Hesedtine CW. A millennium of fungi, food and fermentation. Mycologia 1965;57:149-97.
9. Ma X, Zhou X, Yoshimoto T. Purification and properties of a novel glycine amino peptidase from Actinomucor elegans and its potential application. J Appl Microbiol 2004;97:985-91.
10. Wang S, Li P, Su J, Liang R, Wu XK. Enhanced glucosamine production with Actinomucor elegans based on stimulating factor of methanol. Indian J Microbiol 2014;54:459-65.
11. Karimi K, Arzanlou M, Ahari AB, Ghazi MM. Phenotypic and molecular characterization of the causal agent of chafer beetle mortality in the wheat fields of the Kurdestan province, Iran. J Plant Prot Res 2015;55:227-34.
12. Benny GL, Humble RA, Voigt K. Zygomyecous fungi: phylum Entomophthoromycota and subphyla Kickxellomycotina, Mortierellomycotina, Mucoromycotina, and Zoopagomycotina. In: McLaughlin DJ, Spatafora JW, editors. The Mycota. Vol. VII, part A. Systematics and evolution. New York: Springer-Verlag; 2014. p. 209-50.
13. Benny GL. Methods used by Dr. R. K. Benjamin, and other mycologists, to isolate Zygomyecetes. Aliso 2008;26:37-61.
14. Li GJ, Hyde KD, Zhao RL, Hongsanan S, Abdel-Aziz FA, Abdel-Wahab MA, Alvarado P, Alves-Silva G, Ammirati JF, Arikawansha HA, et al. Fungal diversity notes 253-366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 2016;78:1-237.
15. Nguyen TT, Duong TT, Lee HB. Characterization of two new records of mucoralean species isolated from gut of soldier fly larva in Korea. Mycobiology 2016;44:310-3.
16. Alves MH, Campos-Takaki GM, Porto AL, Milanez AI. Screening of Mucor spp. for the production of amylase, lipase, polygalacturonase and protease. Braz J Microbiol 2002;33:325-30.
17. Thompson DP, Eribo BE. Extracellular enzyme production by Rhizopus and Mucor species on solid media. Can J Microbiol 1984;30:126-8.
18. Alvarez E, Stchigel AM, Cano J, Sutton DA, Fothergill AW, Chander J, Salas V, Rinaldi MG, Guerrero J. Molecular phylogenetic diversity of the emerging mucoralean fungus Apophysomyces: proposal of three new species. Rev Iberoam Micol 2010;27:80-9.
19. Jacobs K, Botha A. Mucor renisporus sp. nov., a new coprophilous species from Southern Africa. Fungal Divers 2008;29:27-35.
20. O’Donnell K, Lutzoni FM, Ward TJ, Benny GL. Evolutionary relationships among mucoralean fungi (Zygomyccota): evidence for family polyphylly on a large scale. Mycologia 2001;93:286-97.
21. Walther G, Pawlowska J, Alastruey-Izquierdo A, Wrzeszek M, Rodriguez-Tudela JL, Dolatabadi S, Chakrabarti A, de Hoog GS. DNA barcoding in Mucorales: an inventory of biodiversity. Persoonia 2013;30:11-47.
22. Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SS, Liu JK, Bhat DJ, Jones EB, McKenzie EH, Camporesi E, Bulgakov TS, et al. Fungal diversity notes 491-602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 2017;83:1-261.
23. Lee YS, Jung HY, Lee HB, Kim SH, Shin KS, Eom AH, Kim C, Lee SY. Korean Society of Mycology. National list of species of Korea. Ascomycota, Glomeromycota, Zygomyccota, Myxomycota, Oomycota. Incheon: National Institute of Biological Resources; 2015.
24. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct
sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego (CA): Academic Press; 1990. p. 315-22.

25. Lee HB. Molecular phylogenetic status of Korean strain of *Podosphaera xanthii*, a causal pathogen of powdery mildew on Japanese thistle (*Cirsium japonicum*) in Korea. J Microbiol 2012;50:1075-80.

26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876-82.

27. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95-8.

28. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013;30:2725-9.

29. Schipper MA. On *Mucor mucedo*, *Mucor flavus* and related species. Stud Mycol 1975;10:1-33.

30. Kwon-Chung KJ. Taxonomy of fungi causing mucormycosis and entomophthoramycosis (zygomycosis) and nomenclature of the disease: molecular mycologic perspectives. Clin Infect Dis 2012;54(Suppl 1):S8-15.

31. Vitale RG, de Hoog GS, Schwarz P, Dannaoui E, Deng S, Machouart M, Voigt K, van de Sande WW, Dolatabadi S, Meis JF, et al. Antifungal susceptibility and phylogeny of opportunistic members of the order *Mucorales*. J Clin Microbiol 2012;50:66-75.

32. Mahmud A, Lee R, Munfus-McCray D, Kwiatkowski N, Subramanian A, Neofytos D, Carroll K, Zhang SX. *Actinomucor elegans* as an emerging cause of mucormycosis. J Clin Microbiol 2012;50:1092-5.

33. Li Y, Sadiq FA, Fu L, Zhu H, Zhong M, Sohail M. Identification of angiotensin I-converting enzyme inhibitory peptides derived from enzymatic hydrolysates of razor clam *Sinonovacula constricta*. Mar Drugs 2016;14:E110.