Role of the ApxIB/ApxID exporter in secretion of the ApxII and ApxIII toxins in *Actinobacillus pleuropneumoniae*

Hye-Jin Yoo, Seungwoo Lee, Doug-Young Ryu*

Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea

Abstract: Apx toxins are a virulent factor of *Actinobacillus pleuropneumoniae* (App). At least four genes, *apxC*, *apxA*, *apxB*, and *apxD*, are involved in the release of Apx toxins from App. *apxA* encodes Apx toxins, whereas *apxB* and *apxD* encode exporters. Some serotypes of App such as serotype 2 retain *apxIBD*, *apxIICA*, and *apxIIICABD*. Although the specificity of the ApxIB/ApxID exporter to ApxII has been established in those serotypes, that to ApxIII is under-studied. We constructed an *apxIB*- and *apxID*-lacking mutant strain of the App serotype 2 to study whether the ApxIB/ApxID exporter is capable of secreting both ApxII and ApxIII toxins.

Keywords: *Actinobacillus pleuropneumoniae*, toxin, export, recombination

Porcine pleuropneumonia is a contagious disease caused by *Actinobacillus pleuropneumoniae* (App) [1-3]. App is a Gram-negative bacterium that can be differentiated into 18 serotypes [4]. Several virulence factors are involved in the pathogenesis of App, including capsule polysaccharide, lipopolysaccharide, proteases, transferrin-binding proteins, outer membrane proteins, and Apx toxins [5]. All serotypes of App can variously produce four different Apx toxins, namely ApxI, ApxII, ApxIII, and ApxIV, which have potential value for use in vaccines and diagnostic tests. At least four genes, *apxC*, *apxA*, *apxB*, and *apxD*, are required for activated Apx toxins to be released from the bacterial cells [1,2]. The *apxC* gene encodes a protein that activates the pre-Apx toxins by post-translational acylation. The *apxA* gene encodes the toxin structure. The *apxB* and *apxD* genes encode exporters that are capable of secreting Apx toxins by post-translational acylation. The *apxA* gene encodes the toxin structure. The *apxB* and *apxD* genes encode exporters that are capable of secreting Apx toxins [1,2].

Strains of App serotype 2 retain the *apxIBD*, *apxIICA*, and *apxIIICABD* genes [1,6]. Many ApxII-producing App serotypes such as serotype 2 can release this toxin via the ApxIB/ApxID exporter [1,7]. With the exception of serotype 3, all serotypes that do not produce ApxI possess a truncated *apxI* operon consisting of *apxIB* and *apxID* and are capable of producing the ApxIB/ApxID exporter that functions in ApxII secretion. However, the function of the ApxIB/ApxID exporter in the secretion of ApxIII is relatively under-studied in those serotypes. In this study, we constructed a mutant strain of App serotype 2 (1536; American Type Culture Collection, USA) by inactivation of *apxIB* and *apxID* to analyze the specificity of the ApxIB/ApxID exporter to the ApxIIA and ApxIIIA toxins.

A pBKS-App-Kan' recombination vector was designed to contain a fragment of consecutively arranged *apxIB* and *apxID* genes (GenBank accession number X68595.1) that were inactivated by the introduction of a Kan' gene (Fig. 1A). For the plasmid preparation, a 4.0 kb-long fragment of the *apxIB* and *apxID* genes was amplified from 1536 genomic DNA by polymerase chain reaction (PCR) using the primers apxIBD-F and apxIBD-R (Table 1). The PCR product was cloned into pTOP TA V2 (Enzymomics, Korea) to produce pTOP-App. pTOP-App was digested with SpeI and XhoI, and the 4.1 kb insert was ligated into pBluescript II KS(+) (Stratagene, USA) to obtain pBKS-App. *Escherichia coli* DH5α was used for plasmid DNA amplification. pBKS-App was digested with BamHI and MfeI to delete a 748 bp fragment of the *apxIB* and *apxID* genes. A fragment encoding Kan' was amplified...
from pECFP-C1 (BD Biosciences, USA) using the primers KanR-F and KanR-R. The PCR product was inserted into the BamHI and MfeI digested pBKS-App to form pBKS-App-Kan.

Transformation of the 1536 strain was performed with pBKS-App-Kan' plasmid DNA linearized by SpeI. The App strains were cultured with PPLO-based media as described previously [8]. A transformant (ΔIBD) was selected by PCR screening with three primer pairs, SP1/apxID-B, SP1/apxID-A, and apxIB-A/SP2 (Fig. 1B, 1C, and 1D). In order to confirm the recombination, the PCR amplicons for primer pairs SP1/apxID-B and apxIB-A/SP2 were sequenced with primers SP2 and SP1, respectively (data not shown).

To obtain the growth curves of ΔIBD, overnight cultures were diluted at 1:1,000 and grown for 12 h. The OD_{600} of the culture was determined at intervals of 2 h with the Ultrospec 2000 UV/visible spectrophotometer (Pharmacia, Stockholm, Sweden). An obvious difference in the growth rate was observed between the ΔIBD and 1536 strains (Fig. 2A). ΔIBD showed a delayed growth rate compared to 1536, suggesting that the inactivation of the apxIB and apxID genes has a negative influence on the viability of App. The decreased growth rate might be due to cellular stress induced by unreleased Apx toxins. Despite the reduced growth rate, ΔIBD was found to be genetically stable during 12 successive passages in culture (Fig. 2B).

![Fig. 1.](image)

Table 1. Sequences of oligonucleotide primers used for polymerase chain reaction

Primer	Sequence (5' to 3')	Restriction site
apxIB-A	GTA GGC TCA GGC GGA CCG TTA G	BamHI underlined
apxIBD-F	TCT TTA GCA CCA GCA GCT TAA GAT AG	
apxIBD-R	AGC CGA TGG TTA GCT TTA AAT ACA GTA	
apxID-A	CAT TAA ATT ACT TAG CAC GGC GGT AGC ATC AT	
apxID-B	CGC CTT AAA TAA TTT CAT AGA AGG CGG CGG	MfeI underlined
KanR-F	AAG GAT CC G AGG ATG GTT TCG CAT GAT TGA	
KanR-R	CGC AAT TGA ACC TTT CAT AGA AGG CGG CGG	
SP1	GAT TCA GCA AGG TGA AGT GAT	
SP2	GAT AAC GTG CCA ATT TAG TCA G	

To express a fusion recombinant protein named Apx132, a 1,345 bp gene fragment was synthesized containing parts of ApxI (amino acids 460-578; GenBank accession number WP_005598583.1), ApxIII (amino acids 643-798; AAK 50053.1), and ApxII (amino acids 834-956; AAU84700.1). Fifteen-residue linkers coding for (GGGGS)3 were added between the ApxI and ApxIII parts and between the ApxIII and ApxII parts. The gene fragment was inserted into the linearized pET28a(+) (Novagen, UK), and the recombinant plasmid was then transformed into *E. coli* BL21 (DE3). Selected colonies were cultured at 37°C in LB media supplemented with 100 μg/mL kanamycin. Overnight cultures (diluted 1:100) were grown until mid-log phase at which point protein expression was induced for 4 h by the addition of isopropyl-β-D-thiogalactopyranoside to a final concentration of 1 mM. The cells were washed twice with ice-cold PBS (pH 7.4) and then lysed for 30 min in Buffer A (100
Role of the ApxIB/ApxID exporter

mM sodium phosphate, 10 mM Tris–HCl, 100 μg/mL lysozyme and 5 mM phenylmethanesulfonylfluoride (PMSF), pH 8.0). The lysate was centrifuged at 10,000×g for 20 min, and the resulting pellet was resuspended by incubation for 1 h at room temperature in Buffer B (8 M urea, 10 mM Tris–HCl, 100 mM sodium phosphate and 5 mM PMSF; pH 8.0). The solubilized extracts were then loaded onto a Ni-nitrilotriacetic acid column (Qiagen, USA). The column was washed with Buffer C (8 M urea, 10 mM Tris–HCl, 100 mM sodium phosphate and 5 mM PMSF; pH 6.3) and eluted with Buffers D and E (8 M urea, 10 mM Tris–HCl, 100 mM sodium phosphate and 5 mM PMSF; pH 5.9 and 4.5, respectively).

Apx132 protein was purified with a Ni-nitrilotriacetic acid column (Qiagen) and used for the preparation of an anti-Apx132 antiserum in mice. Female Balb/c mice aged 6 to 8 weeks (SLC Japan, Japan) were housed in laboratory animal facilities at the College of Veterinary Medicine, Seoul National University. The mice were immunized by subcutaneous administration of 25 μg of immunogen on Days 0, 14, 28, and 42. Immunogens were administered in complete Freund’s adjuvant on Days 0, 14, 28, and 42. Serum samples were obtained by retro-orbital bleeding under anesthesia on Day 63. Western blots were performed with anti-Apx132 antisera and horseradish peroxidase-conjugated goat anti-mouse immunglobulin G secondary antibodies.

Precipitation of proteins secreted by the App strains into the culture media was performed as described previously [9]. Based upon a western blot analysis using an anti-Apx132 antisera, the amounts of ApxII and ApxIII toxins released into the culture media by ΔIBD were much lower than those by 1536 (Fig. 3A and 3B). These findings suggest that the inactivation of the apxIB and apxID genes inhibits the secretion of both ApxII and ApxIII.

ApxII is weakly hemolytic, but ApxIII is nonhemolytic [1]. To examine the hemolytic activity of ΔIBD, it was spread on the defibrinated sheep blood agar with 250 μg/mL β-NAD and incubated for 22 h at 37°C. The 1536 strain showed hemolytic activity, as demonstrated by the clear zones surrounding the colonies on the defibrinated sheep blood agar (Fig. 3C). No visible colonies were observed on the ΔIBD agar. It is possible that the growth of the ΔIBD colonies was delayed compared to that of the 1536 colonies and also that the ΔIBD colonies were not viable on the agar.

In summary, we developed a mutant strain of App serotype 2, lacking functional apxIB and apxID genes. The mutant strain exhibited a compromised capacity for the release of ApxII and ApxIII toxins, suggesting that the ApxIB/ApxID exporter is involved in the release of both of the bacterial toxins. Further studies are warranted to assess...
the relative specificities of the apxIB/apxID transporter to the two toxins.

Acknowledgements

This work was supported by the Seoul National University Research Grant in 2018.

References

1. Frey J. Detection, identification, and subtyping of Actinobacillus pleuropneumoniae. Methods Mol Biol 2003;216:87-95.
2. Frey J. Virulence in Actinobacillus pleuropneumoniae and RTX toxins. Trends Microbiol 1995;3:257-261.
3. Sassu EL, Bossé JT, Tobias TJ, Gottschalk M, Langford PR, Hennig-Pauka I. Update on Actinobacillus pleuropneumoniae - knowledge, gaps and challenges. Transbound Emerg Dis 2018;65 Suppl 1:72-90.
4. Bossé JT, Li Y, Sárközi R, Fodor I, Lacouture S, Gottschalk M, Casas Amoribeta M, Angen O, Nedbalcova K, Holden MT, Maskell DJ, Tucker AW, Wren BW, Ryeroft AN, Langford PR; BRaDP1T consortium. Proposal of serovars 17 and 18 of Actinobacillus pleuropneumoniae based on serological and genotypic analysis. Vet Microbiol 2018;217:1-6.
5. Chiers K, De Waele T, Pasmans F, Ducetelle R, Haesebrouck F. Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host. Vet Res 2010;41:65.
6. Prideaux CT, Lenghaus C, Krywult J, Hodgson AL. Vaccination and protection of pigs against pleuropneumonia with a vaccine strain of Actinobacillus pleuropneumoniae produced by site-specific mutagenesis of the ApxII operon. Infect Immun 1999;67:1962-1966.
7. Jansen R, Briaire J, Kamp EM, Gi elkens AL, Smits MA. Structural analysis of the Actinobacillus pleuropneumoniae-RTX-toxin I (ApxI) operon. Infect Immun 1993;61:3688-3695.
8. Park C, Ha Y, Kim S, Chae C, Ryu DY. Construction and characterization of an Actinobacillus pleuropneumoniae serotype 2 mutant lacking the Apx toxin secretion protein genes apxIB and apxIID. J Vet Med Sci 2009;71:1317-1323.
9. Lee SH, Lee S, Chae C, Ryu DY. A recombinant chimera comprising the R1 and R2 repeat regions of M. hyopneumoniae P97 and the N-terminal region of A. pleuropneumoniae ApxIII elicits immune responses. BMC Vet Res 2014;10:43.