Translating the Game: Ribosomes as Active Players

Piera Calamita¹²*, Guido Gatti¹², Annarita Miluzio¹, Alessandra Scagliola¹² and Stefano Biffo¹²*

¹ INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy, ² Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy

Ribosomes have been long considered as executors of the translational program. The fact that ribosomes can control the translation of specific mRNAs or entire cellular programs is often neglected. Ribosomopathies, inherited diseases with mutations in ribosomal factors, show tissue specific defects and cancer predisposition. Studies of ribosomopathies have paved the way to the concept that ribosomes may control translation of specific mRNAs. Studies in Drosophila and mice support the existence of heterogeneous ribosomes that differentially translate mRNAs to coordinate cellular programs. Recent studies have now shown that ribosomal activity is not only a critical regulator of growth but also of metabolism. For instance, glycolysis and mitochondrial function have been found to be affected by ribosomal availability. Also, ATP levels drop in models of ribosomopathies. We discuss findings highlighting the relevance of ribosome heterogeneity in physiological and pathological conditions, as well as the possibility that in rate-limiting situations, ribosomes may favor some translational programs. We discuss the effects of ribosome heterogeneity on cellular metabolism, tumorigenesis and aging. We speculate a scenario in which ribosomes are not only executors of a metabolic program but act as modulators.

Keywords: ribosomal proteins, ribosomopathies, ribosome heterogeneity, metabolism, Shwachman-Diamond syndrome, eIF6, RACK1

INTRODUCTION

Translation the process by which mRNAs are translated into proteins by ribosomes. Eukaryotic ribosomes are evolutionarily conserved ribozymes constituted by ribosomal proteins (RPs) and rRNAs, whose structure has been spectacularly resolved (Ben-Shem et al., 2011; Klinge et al., 2011; Khatter et al., 2015). Ribosome biogenesis is a massive process occurring in the nucleolus of all cells. Recent progress, combining biochemical techniques, with structural and genetic evidence, has shown that ribosome synthesis is catalyzed and coordinated by more than 200 biogenesis factors. Ribosome biogenesis therefore, proceeds through precise assembly steps that include several quality checkpoints, both in the nucleus and in the cytoplasm (Kressler et al., 2017; Pena et al., 2017). Furthermore, impairment of these checkpoints leads to defects in maturation that are associated with disease (Narla and Ebert, 2010; Ruggero and Shimamura, 2014).

In the cytoplasm, ribosomes are thought to constitute the hardware of the protein synthesis machinery, which fulfills its activity through four main phases: initiation, elongation, termination, and recycling. The initiation step is one of the most important steps of translation regulation, involving initiation factors, mRNAs, tRNAs, and ribosomes. Briefly, 40S subunits directly bind
Ribosome Heterogeneity in Physiological Conditions May Account for Differential Translation

This topic has been recently discussed (Genuth and Barna, 2018a,b) and we will give a simple summary of some perspectives. Ribosomes are constituted by approximately 80 RPs. For many years now, it is known that the relative abundance of different RPs, in different tissues, or in different growth conditions, may vary (Milne et al., 1975; Bortoluzzi et al., 2001; Volarevic and Thomas, 2001). This is a **sine qua non**-condition for ribosomal heterogeneity. An obvious alternative explanation for an imbalance of the stoichiometry of RPs within a cell is that RPs perform ribosome-independent functions. An experimental complexity is, therefore, to define whether a differential translation is due to the direct action of heterogeneous ribosomes or to regulatory pathways affected by free RPs. This is the case for RACK1 that was originally isolated as a PKC receptor (Ron et al., 1994; Gallo and Manfrini, 2015). RACK1 is a structural protein of 40S subunits (Gerbasi et al., 2004), involved in several extraribosomal functions (Mamidipudi et al., 2004; Robles et al., 2010; Wehner et al., 2011; Gandin et al., 2013; Fei et al., 2017). RACK1 may affect the efficiency of ribosomes directly (Ceci et al., 2003; Shor et al., 2003; Guo J. et al., 2011; Dobrikov et al., 2018a,b) or indirectly through signaling pathways (Gandin et al., 2013; Volta et al., 2013). In conclusion, data demonstrate that in physiological conditions, ribosomal networks may be more complex than expected and perform choices in translational regulation.

Ribosomal heterogeneity exists in physiological conditions. Accurate proteomics studies have identified sub-stoichiometric relationships within translating polysomes (Shi et al., 2017), showing that ribosomes may preferentially translate specific mRNAs. An experimental validation shows that ribosomes devoid of either RPS25 (eS25) or RpL10A (uL1), in vivo, translate specific mRNAs. Mechanistically, this study shows that the 60S subunits may affect mRNA recruitment through the binding of RpL10A (uL1) to IRES (Internal Ribosome Entry Site) sequences in the 5′UTR (Shi et al., 2017). In monocytes, interferon gamma driven phosphorylation results in RPL13A (uL13) detachment, but here it is still unknown whether ribosomes devoid of RPL13A (uL13) are able to translate selectively (Jia et al., 2012). Furthermore, RPL10 (uL16) R98S mutant leukemia cells are able to survive high oxidative stress levels by increasing IRES-dependent BCL-2 translation (Kampen et al., 2018).

Thus, the concept of a monolithic ribosome (Moore et al., 1968; Yusupova and Yusupov, 2017) may be accompanied by the existence of a more flexible ribosomal platform that performs further tuning on gene expression (Shi and Barna, 2015).

Ribosome Heterogeneity in Pathological Conditions Affects Translation and Gene Expression

Ribosomopathies are inherited diseases caused by the loss of ribosomal component functionality. Some examples of ribosomopathies include Diamond-Blackfan Anemia syndrome (DBA), Shwachman-Diamond syndrome (SDS), Treacher Collins syndrome, 5q-myelodysplastic syndrome, and Dyskeratosis Congenita (DKC). Notably, all of these syndromes are characterized by variably penetrant phenotypes in which specific tissue deficits are found (Narla and Ebert, 2010). Early on, it was shown that DKC1 mutations reduce pseudouridylation and impair IRES mediated translation (Yoon et al., 2006).

As a case for study, we will focus our discussion on SDS. Signs of SDS include a peculiar exocrine pancreatic insufficiency, along with neutropenia and variable abnormalities in the skeleton and other organs. In addition, SDS is characterized by a reduction in growth, accompanied by an increased incidence of Acute Myeloid Leukemia, (AML; Dror, 2008). At the ribosomal level, SDS is characterized by the partial loss of free 60S ribosomal subunits due to, in most cases, mutations in the SBDS gene that is necessary for 60S maturation (Boocock et al., 2003; Wong et al., 2011). In a minority of cases, mutations of EFL1p, which acts in synergy with SBDS, have been found (Stepensky et al., 2017; Tan et al., 2018). Overall, the reduced functionality of 60S ribosomes is a common theme for SDS (Warren, 2018). All together these findings generate three questions: (a) how the loss of functionality of ubiquitous 60S ribosomes can generate tissue-specific defects, (b) how specific translational programs can be affected by the lack of 60S subunits, (c) how can we reconcile increased tumor with reduced growth.

Addressing this last question helps to put in the right context the other two. We have recently demonstrated in our lab that...
cells with mutant Sbds have reduced colony formation ability and are transformed less efficiently by oncogenes (Calamita et al., 2017). In this context, we demonstrated that Sbds deficiency directly acts by reducing the maximal oncogenic and translational capability of cells (Calamita et al., 2017). The paradox of reduced growth associated with tumor predisposition may not necessarily be associated with specific translation in tumor cells, but with a general impairment of tissue homeostasis that favors the appearance of mutant clones. For instance, increased tumor formation is observed in immunocompromised individuals (Verhoeven et al., 2018). To support this interpretation, the relationship between neutropenia and AML was described by different groups (Freedman et al., 2000; Link et al., 2007; Touw and Beekman, 2013). In conclusion, different cell types can be differentially affected by the reduction of RPs, i.e., thresholds can be different depending on the specific cellular demand of ribosomes for translation.

The question of the mechanism by which defects in 60S ribosomes lead to differential translation is more challenging since to our knowledge mRNA selection is driven by 40S subunits, prior to 60S engagement. However, the effects of 60S levels on specific translation are pervasive, and, as described before, IRES mRNA binding can be affected by RPL10 (uL16). In the case of Sbds depletion, characterized by reduced free 60S, two studies have addressed the question of preferential translation performing either microarray (Nihrane et al., 2009), or RNA-Seq on polysomes (Calamita et al., 2017). In addition, a reporter-based study has addressed the effect of SBDS depletion on reinitiation (In et al., 2016). Together, these studies support a model in which the SBDS deficiency reduces free 60S levels diminishing the maximal translational capability, and simultaneously changing translational selectivity. In this context, mRNAs that are intrinsically poorly translated because of uORFs (upstream Open Reading Frames) that require reinitiation are particularly disfavored. Similarly, mouse models have underscored that the reduction of 60S RPs affects the translational program of IRES containing mRNAs (Nihran et al., 2009), or RNA-Seq on polysomes (Calamita et al., 2017). In addition, a reporter-based study has addressed the effect of SBDS depletion on reinitiation (In et al., 2016). Together, these studies support a model in which the SBDS deficiency reduces free 60S levels diminishing the maximal translational capability, and simultaneously changing translational selectivity. In this context, mRNAs that are intrinsically poorly translated because of uORFs (upstream Open Reading Frames) that require reinitiation are particularly disfavored. Similarly, mouse models have underscored that the reduction of 60S RPs affects the translational program of IRES containing mRNAs (Barna et al., 2018). The next question is whether ribosomes also control metabolic pathways.

In Zebrafish, rpl11 mutation decreased the glycolytic rate and the lower activity of glycolytic enzymes is rescued by p53 inhibition (Danilova et al., 2011). Moreover, defects, mutations or imbalance of RPs stabilized p53 and changed metabolic flux, specifically by decreasing glycolysis and enhancing aerobic respiration (Deisenroth and Zhang, 2011). Albeit these data

A Common Theme for the Regulatory Function of Ribosomes?

Metabolic pathways are necessary for converting essential nutrients into energy and macromolecules that sustain cell growth and proliferation. Nutrients and metabolic pathways control all facets of cellular functions. Nutrient and growth factors converge on the translational machinery through signaling pathways that, in turn, regulate the synthesis of ribosomes and the activity of translation factors (Roux and Topisirovic, 2018). Then, translation factors cross-talk to metabolic choices (Biffo et al., 2018). Some well-established observations are the following. mTORC1 controls mitochondrial activity and biogenesis by selectively promoting translation of nucleus-encoded mitochondria-related mRNAs, via inhibition of the eukaryotic translation initiation factor 4E (eIF4E)-binding proteins (4E-BPs; Morita et al., 2013). ROS generation is also controlled partly at the translational level through eIF4E (Truitt et al., 2015). Glutamine metabolism is controlled by eIF4B-mediated translation downstream of mTORC1 pathway (Csibi et al., 2014). eIF3 complex mediates energy metabolism (Shah et al., 2016). Rate-limiting initiation factors that link 60S ribosome biogenesis to translation as eIF6 hierarchically control lipid synthesis and metabolism, through uORF and G/C rich 5′UTR sequences (Brina et al., 2015). eIF5A2 accelerates lipogenesis in hepatocellular carcinoma (Cao et al., 2017). In general, translation and metabolism are dysregulated in a coordinated fashion (Leibovitch and Topisirovic, 2018), and initiation factors may act upstream of metabolic reprogramming (Biffo et al., 2018).

Heat map representing relative gene expression levels in a cellular model for Shwachman Diamond Syndrome. We re-infected cells bearing the mutation R126T/R126T (corresponding to one of the most common mutations associated with Shwachman Diamond Syndrome) in the Sbds gene (Sbds^{R126T/R126T} MEFs) with either wild type Sbds (Sbds^{RESCUE}), or mock control (Sbds^{ΔΔΔΔ}). Heat map represents relative gene expression levels of genes associated with mitochondrial electron transport chain complex IV, showing an overall reduction in mutant Sbds^{ΔΔΔΔ} cells, indicating an impairment in ATP production. Heatmap is based on RNASeq raw data available at www.ebi.ac.uk/arrayexpress with accession number ID E-MTAB-5089, and analyzed in our previous work (Calamita et al., 2017).

FIGURE 1 | Heat map representing relative gene expression levels in a cellular model for Shwachman Diamond Syndrome. We re-infected cells bearing the mutation R126T/R126T (corresponding to one of the most common mutations associated with Shwachman Diamond Syndrome) in the Sbds gene (Sbds^{R126T/R126T} MEFs) with either wild type Sbds (Sbds^{RESCUE}), or mock control (Sbds^{ΔΔΔΔ}). Heat map represents relative gene expression levels of genes associated with mitochondrial electron transport chain complex IV, showing an overall reduction in mutant Sbds^{ΔΔΔΔ} cells, indicating an impairment in ATP production. Heatmap is based on RNASeq raw data available at www.ebi.ac.uk/arrayexpress with accession number ID E-MTAB-5089, and analyzed in our previous work (Calamita et al., 2017).
do not support a direct crosstalk between ribosome activity and metabolism, they suggest overall that when the translation machinery is perturbed, coordinated pathways involved in cell homeostasis and metabolism are also altered.

Recently, it has been shown that SDS cells display an impairment in Complex IV activity, which causes an oxidative phosphorylation metabolic defect, with a consequent decrease in ATP production (Ravera et al., 2016). The authors suggest an indirect effect of SBDS mutation on energy production levels, indicating a possible role of calcium homeostasis in altering complex IV activity. In our lab we performed a characterization of a cellular model for SDS by immortalizing Mouse Embryonic Fibroblasts (MEFs; Calamita et al., 2017) derived from an SDS mouse model carrying the R126T mutation in homozygosity (Sbds^{R126T/R126T} MEFs) (Tourlakis et al., 2012). Briefly, we established a model for studying SBDS function by retrasducing Sbds^{R126T/R126T} MEFs with either wild-type Sbds (Sbds^{RESCUE}), or mock control (Sbds^{MOCK}) vectors. In this way, we can separate direct events due to a lack of SBDS from indirect effects. We confirmed a decrease in ATP levels associated with Sbds mutation. In addition, our RNA-Seq analysis revealed that genes belonging to complex IV were less expressed when Sbds was mutated (Figure 1). This downregulation could explain an impairment in cytochrome C oxidase activity and a consequent defect in ATP production. Moreover, there is a defect in oxygen consumption rate in SDS cells (Ravera et al., 2016; Calamita et al., 2017), as well as a reduction in the lactate/pyruvate ratio (Calamita et al., 2017). The mechanistic connection between ribosome function and the metabolic effects of its impairment is still to be clarified. Overall, a reduction in ribosomal efficiency seems to associate with a reduction in energy levels and lipid biosynthesis. We suggest that ribosomal capability has coevolved with other cellular functions and, specifically, ribosomes are intimately linked to nutrient levels and cellular growth.

The connection between ribosomes and growth is indeed strong and well-known. In Drosophila melanogaster the haploinsufficiency of RPs results in the minute phenotype, which includes short and thin bristles and smaller flies (Lambertsson, 1998; Marygold et al., 2007). Moreover, as shown by a myriad of papers, depletion of RPs causes a delay/arrest in cell cycle progression. In several cases, the regulation of growth is associated with ribosome independent function of RPs (Dai and Lu, 2004; Mamidipudi et al., 2004, Dutt et al., 2011; Yao et al., 2016). In other cases, the inhibition of growth has been directly...
linked to translational control driven by ribosomes (Barna et al., 2008). Depletion of different RPs may result in different types of inhibition of cell cycle progression, in line with the concept of heterogeneity in ribosomes (Badhai et al., 2009). Conversely, nucleolar enlargement grossly equals an increased production of ribosomes and is observed in many cancers (Montanaro et al., 2008). In many models, some heterozygous deletions of RPs reduce tumor growth (Barna et al., 2008; Chen et al., 2014; Wilson-Edell et al., 2014), while some others are associated with cancer development as demonstrated for the first time in zebrafish mutants for RPs in 2004 (Amsterdam et al., 2004). In the last years, several somatic mutations have been linked to tumor progression and belong to both 60S subunits such as RPL5 (uL18) and RPL10 (uL16) (De Keersmaecker et al., 2013), RPL 11 (uL5) (Tzonneva et al., 2013; Fancello et al., 2017), RPL22 (eL22) (Rao et al., 2012) and RPL 23 (uL23) (Fancello et al., 2017) and to 40S subunits such as RPS15 (uS19) (Landau et al., 2015; Ljungstrom et al., 2016), RPS27 (eS27) (Dutton-Regester et al., 2014) and RPSA (uS2) (Fancello et al., 2017). On the contrary, RPs overexpression has also been identified in cancer progression (Artero-Castro et al., 2011; Guo X. et al., 2011; Yang et al., 2016). Several recent reviews provide a comprehensive discussion on how, in some cases, loss of RPs contributes to cancer (Sulima et al., 2017; Gennuth and Barna, 2018a; Pelletier et al., 2018).

The ribosomal apparatus also appears to affect longevity. Alterations in ribosomal protein expression result in an extension of eukaryotic lifespan (Hansen et al., 2007; Steffen et al., 2008).

In short, the persistent link between ribosomal function in growth and metabolism makes us speculate that there may be a yet-to-be-unveiled mechanistic connection. We favor a model in which mRNAs important for cell cycle progression or for key metabolic pathways contain UTRs that have coevolved with the translational machinery in order to be preferentially translated in conditions of optimal ribosomal capability. In this context, ribosomal heterogeneity may further tune the cell’s translational capabilities.

Mitochondrial Ribosomes

Several mitochondrial ribosome proteins are also involved in different cellular processes, such as cell cycle, apoptosis and mitochondrial homeostasis regulation. Mutations in mt-RPs genes are associated with mitochondrial dysfunctions and disorders (Saada et al., 2007; Smits et al., 2011; Serre et al., 2013; Menezes et al., 2015; Richman et al., 2015). For instance, mutant MRPS16 (bS16m) causes mitochondrial respiratory chain disorders (Miller et al., 2004) and loss of MRPL10 (uL10m) diminished mitochondrial respiration and intracellular ATP levels (Li et al., 2016). In addition, a recent study claims the regulation of cytoplasmic protein homeostasis by mitochondrial translation (Suhr et al., 2018). These studies elucidate the fact that a crosstalk between the cytoplasmic and the mitochondrial ribosomal machinery may be present.

CONCLUSION

Ribosomes have been long considered as monolithic structures ensuring mRNAs translation in a passive way. Nowadays, it has been well established that ribosomes can affect not only mRNA selection but also other fundamental processes such as cell growth and lately, cell homeostasis and metabolism (Figure 2). There is an increasing number of studies evidencing that the inter-correlation between ribosomes and metabolic pathways leads to a common cellular phenotype. Since ribosomes are a rate-limiting component of the translational program, further studies are needed to elucidate specific molecular mechanisms by which ribosome heterogeneity, supported by the translational apparatus, sustain cell growth and metabolic homeostasis.

AUTHOR CONTRIBUTIONS

SB and PC reviewed and edited the manuscript. SB, PC, GG, and AS reviewed the literature. SB, PC, and AM wrote the manuscript. GG conceived and prepared figures, and edited the manuscript. All authors contributed, read, and approved the manuscript.

FUNDING

This work was supported by Grant ERC TRANSLATE 338999 and IG 2014 A IRC to SB. PC was supported by Fondazione Umberto Veronesi.

ACKNOWLEDGMENTS

We apologize for the excellent works that could not be cited due to space constraints.

REFERENCES

Alawi, F., and Lin, P. (2013). Dyskerin localizes to the mitotic apparatus and is required for orderly mitosis in human cells. *PLoS One* 8:e80805. doi: 10.1371/journal.pone.0080805

Amsterdam, A., Sadler, K. C., Lai, K., Farrington, S., Bronson, R. T., Lees, J. A., et al. (2004). Many ribosomal protein genes are cancer genes in zebrafish. *PLoS Biol.* 2:E139. doi: 10.1371/journal.pbio.0020139

Angrisani, A., Matrone, N., Belli, V., Vicidomini, R., Di Maio, N., Turano, M., et al. (2018). A functional connection between dyskerin and energy metabolism. *Redox Biol.* 14, 557–565. doi: 10.1016/j.redox.2017.11.003

Artero-Castro, A., Castellvi, J., García, A., Hernández, J., Ramón y Cajal, S., and Lleonart, M. E. (2011). Expression of the ribosomal proteins Rplp0, Rplp1, and Rplp2 in gynecologic tumors. *Hum. Pathol.* 42, 194–203. doi: 10.1016/j.humpath.2010.04.020

Badhai, J., Frojmark, A. S., Davey, E. J., Schuster, J., and Dahl, N. (2009). Ribosomal protein S19 and S24 insufficiency cause distinct cell cycle defects in Diamond-Blackfan anemia. *Biochim. Biophys. Acta* 1792, 1036–1042. doi: 10.1016/j.bbadiab.2009.08.002

Barna, M., Pusic, A., Zollo, O., Costa, M., Kondrashov, N., Rego, E., et al. (2008). Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. *Nature* 456, 971–975. doi: 10.1038/nature07449
Ben-Shem, A., Garreau de Loubresse, N., Melnikov, S., Jenner, L., Yusupova, G., and Yusupov, M. (2011). The structure of the eukaryotic ribosome at 3.0 A resolution. Science 334, 1524–1529. doi: 10.1126/science.1212642

Biffo, S., Manfrini, N., and Riccardi, S. (2018). Crosstalks between translation and metabolism in cancer. Curr. Opin. Genet. Dev. 48, 75–81. doi: 10.1016/j.gde.2017.12.011

Boocock, G. R., Morrison, J. A., Popovic, M., Richards, N., Ellis, L., Durie, P. R., et al. (2003). Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat. Genet. 33, 97–101. doi: 10.1038/ng1062

Bortoluzi, S., d’Alessi, F., Romualdi, C., and Danieli, G. A. (2001). Differential expression of genes coding for ribosomal proteins in different human tissues. Bioinformatics 17, 1152–1157. doi: 10.1093/bioinformatics/17.12.1152

Brina, D., Miluzio, A., Ricciardi, S., Clarke, K., Davidsen, P. K., Viero, G., et al. (2015). elf6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription. Nat. Commun. 6:8261. doi: 10.1038/ncomms9261

Calamita, P., Miluzio, A., Russo, A., Pesce, E., Ricciardi, S., Khanim, F., et al. (2017). SBDS-deficient cells have an altered homeostatic equilibrium due to translational inefficiency which explains their reduced fitness and provides a logical framework for intervention. PLoS Genet. 13:e1006552. doi: 10.1371/journal.pgen.1006552

Cao, T. T., Lin, S. H., Fu, L., Tang, Z., Che, C. M., Zhang, L. Y., et al. (2003). Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat. Genet. 33, 97–101. doi: 10.1038/ng1062

Deisenroth, C., and Zhang, Y. (2011). The ribosomal protein-Mdm2-p53 pathway reprogramming in hepatocellular carcinoma cells. Carcinogenesis 32, 1041–1047. doi: 10.1093/carcin/bgr044

De Keersmaecker, K., Atak, Z. K., Li, N., Vicente, C., Patchett, S., Girardi, T., Ceci, M., Welshhans, K., Ciotti, M. T., Brandi, R., Parisi, C., Paoletti, F., et al. (2012). RACK1 is a ribosome scaffold protein for beta-actin mRNA/ZBP1 complex. PLoS One 7:e35034. doi: 10.1371/journal.pone.0035034

Chen, B., Zhang, W., Gao, J., Chen, H., Jiang, L., Liu, D., et al. (2014). Downregulation of ribosomal protein S6 inhibits the growth of non-small cell lung cancer by inducing cell cycle arrest, rather than apoptosis. Cancer Lett. 354, 378–389. doi: 10.1016/j.canlet.2014.08.049

Chu, J., Cargnello, M., Topisirovic, I., and Pelletier, J. (2016). Translation initiation factors: reprogramming protein synthesis in cancer. Trends Cell Biol. 26, 918–933. doi: 10.1016/j.tcb.2016.06.005

Cabi, A., Lee, G., Yoon, S. O., Tong, H., Ilder, D., Elia, I., et al. (2014). The mTORC1/S6K1 pathway regulates glutamine metabolism through the elf4B-dependent control of c-myc translation. Curr. Biol. 24, 2274–2280. doi: 10.1016/j.cub.2014.07.007

Dai, M. S., Zeng, S. X., Jin, Y., Sun, X. X., David, L., and Lu, H. (2004). Dyskerin ablation in mouse liver inhibits rRNA processing and cell division. Mol. Cell. Biol. 20, 413–422. doi: 10.1128/MCB.001128-09

Genuith, N. R., and Barna, M. (2018a). Heterogeneity and specialized functions of translation machinery: from genes to organisms. Nat. Rev. Genet. 19, 431–452. doi: 10.1038/s41576-018-0008-z

Genuith, N. R., and Barna, M. (2018b). The discovery of ribosome heterogeneity and its implications for gene regulation and organismal life. Mol. Cell 71, 364–374. doi: 10.1016/j.molcel.2018.07.018

Gerbsa, V. R., Weaver, C. M., Hill, S., Friedman, D. B., and Link, A. J. (2004). Yeast Asc1p and mammalian RACK1 are functionally orthologous core 40 ribosomal proteins that repress gene expression. Mol. Cell. Biol. 24, 8276–8287. doi: 10.1128/MCB.24.18.8276-8287.2004

Guo, J., Wang, S., Valerius, O., Hall, H., Zeng, Q., Li, J. P., et al. (2011). Involvement of Arabidopsis RACK1 in protein translation and its regulation by ascorbic acid. Plant Physiol. 155, 370–383. doi: 10.1104/pp.110.16663

Guo, X., Shi, Y., Gou, Y., Li, J., Han, S., Zhang, Y., et al. (2011). Human ribosomal protein S13 promotes gastric cancer growth through down-regulating p27(Kip1). J. Cell Mol. Med. 15, 296–306. doi: 10.1111/j.1582-4934.2009.00969.x

Hansen, M., Taubert, S., Crawford, D., Libina, N., Lee, S. J., and Kenyon, C. (2007). Dyskerin ablation in mouse liver inhibits rRNA processing and cell division. Mol. Cell. Biol. 20, 413–422. doi: 10.1128/MCB.001128-09

He, X., Li, Y., Dai, M. S., and Sun, X. X. (2016). Ribosomal protein L4 is a novel regulator of the MDM2-p53 loop. Oncotarget 7, 12617–12626. doi: 10.18632/oncotarget.7479

Heinrich, R., and Rapoport, T. A. (1980). Mathematical modelling of translation of mRNA in eucaryotes; steady state, time-dependent processes and application to reticulocytes. J. Theor. Biol. 86, 279–313. doi: 10.1016/0022-5193(80)90008-9

Hernanto, U., Zong, C. S., Li, W., and Wang, L. H. (2002). RACK1, an insulin-like growth factor I (IGF-I) receptor-interacting protein, modulates IGF-I-receptor at S1093 to modulate cap-dependent and independent translation initiation. Mol. Cell. Biol. 22, 2345–2365. doi: 10.1128/MCB.22.7.2345-2365.2002

In, K., Zaini, M. A., Müller, C., Warren, A. J., von Lindern, M., and Callkoven, C. F. (2016). Shwachman-Bodian-Diamond syndrome (SBDS) protein deficiency impairs translation re-initiation from C/EVBp and C/EVBp mRNAs. Nucleic Acids Res. 44, 4134–4146. doi: 10.1093/nar/gkw905

Jia, J., Arrif, A., Willard, B., Smith, J. D., Stuehr, D. J., Hazen, S. L., et al. (2012). Protection of extrabasal RPL13a by GAPDH and dysregulation by S-nitrosylation. Mol. Cell 47, 656–663. doi: 10.1016/j.molcel.2012.06.006

Dror, Y. (2008). Shwachman-Diamond syndrome: implications for understanding the molecular basis of leukaemia. Expert Rev. Mol. Med. 10:e38. doi: 10.1017/S1462399408000938

Dutt, S., Narla, A., Lin, K., Mullally, A., Abayasekara, N., Megerdichian, C., et al. (2011). Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood 117, 2567–2576. doi: 10.1182/blood-2010-07-295238

Dutton-Regester, K., Gartner, J. J., Emmanuel, R., Qutob, N., Davies, M. A., Gershewald, J. E., et al. (2014). A highly recurrent RPS27 5’UTR mutation in melanoma. Oncotarget 5, 2912–2917. doi: 10.18632/oncotarget.2048

Fancellu, L., Kampen, K. R., Hofman, I. J., Verbeck, J., and De Keersmaeker, K. (2011). The ribosomal protein gene RPL5 is a haploinsufficient tumor suppressor in multiple cancer types. Oncotarget 8, 4462–4478. doi: 10.18632/oncotarget.14895
Kaplan, K. R., Sulima, S. O., Verbelen, B., Girardi, T., Vereecke, S., Rinaldi, G., et al. (2018). The ribosomal RPL10 R98S mutation drives IRES-dependent BCL-2 translation in T-ALL. Leukemia doi: 10.1038/s41375-018-0176-z [Epub ahead of print].

Khattar, H., Myasnikov, A. G., Natchiar, S. K., and Khholov, B. P. (2015). Structure of the human 80S ribosome. Nature 520, 640–645. doi: 10.1038/nature14427

Klinge, S., Voigt-Hoffmann, F., Leibundgut, M., Arpagaus, S., and Ban, N. (2011). Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science 334, 941–948. doi: 10.1126/science.1211204

Kondrashov, N., Pusic, A., Stumpf, C. R., Shimizu, K., Hsieh, A. C., Ishijima, J., et al. (2011). Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell 145, 383–397. doi: 10.1016/j.cell.2011.03.028

Kressler, D., Hurt, E., and Bassler, J. (2017). A puzzle of life: crafting ribosomal subunits. Trends Biochem. Sci. 42, 640–654. doi: 10.1016/j.tibs.2017.05.005

Lambertsson, A. (1998). The minute genes in Drosophila and their molecular functions. Adv. Genet. 38, 69–134. doi: 10.1016/S0065-2660(08)60142-X

Landau, D. A., Tausch, E. A., Taylor-Weiner, N., Stewart, C., Reiter, J. G., Bahlo, J., Leibovitch, M., and Topisirovic, I. (2018). Dysregulation of mRNA translation and lactic acidemia. Hum. Mol. Genet. 27, 301–310. doi: 10.2353/ajpath.2008.070752

Morita, M., Gravel, S. P., Chénard, V., Sikström, K., Zheng, L., Alain, T., et al. (2013). mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 18, 698–711. doi: 10.1016/j.cmet.2013.10.001

Narla, A., and Ebert, B. L. (2010). Ribosomopathies: human disorders of ribosome dysfunction. Blood 115, 3196–3205. doi: 10.1182/blood-2009-10-178129

Nihrane, A., Sezgin, G., Dsilva, S., Dellorouso, P., Yamamoto, K., Ellis, S. R., et al. (2009). Depletion of the Shwachman-Diamond syndrome gene product, SBDS, leads to growth inhibition and increased expression of OPG and VEGF-A. Blood Cells Mol. Dis. 42, 85–91. doi: 10.1016/j.bcmd.2008.09.004

Pelletier, J., Thomas, G., and Volarevic, S. (2018). Ribosome biogenesis in cancer: new players and therapeutic avenues. Nat. Rev. Cancer 18, 51–63. doi: 10.1038/nrc.2017.104

Pena, C., Hurt, E., and Panse, V. G. (2017). Eukaryotic ribosome assembly, transport and quality control. Nat. Struct. Mol. Biol. 24, 689–699. doi: 10.1038/nsmb.3454

Rao, S., Lee, S. Y., Gutierrez, A., Perrigoue, J., Thapa, R. J., Tu, Z., et al. (2012). Inactivation of ribosomal protein L22 promotes transformation by induction of the stemness factor, Lin28B. Blood 120, 3764–3773. doi: 10.1182/blood-2012-03-413549

Rapino, F., Delaunay, S., Rambow, F., Zhou, Z., Tharun, L., De Tullio, P., et al. (2018). Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature 558, 605–609. doi: 10.1038/s41586-018-0243-7

Ravera, S., Dufour, C., Cesarò, S., Bottega, R., Faleschini, M., Cuccarolo, P., et al. (2016). Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome. Sci. Rep. 6:25441. doi: 10.1038/srep25441

Richman, T. R., Ermer, J. A., Davies, S. M., Perks, K. L., Viola, H. M., Shearwood, A. M., et al. (2015). Mutation in MRPS34 compromises protein synthesis and causes mitochondrial dysfunction. PLoS Genet. 11:e1005089. doi: 10.1371/journal.pgen.1005089

Robles, M. S., Boyault, C., Knutti, D., Budmanabhan, K., and Weitz, C. J. (2010). Identification of RACK1 and protein kinase Calpha as integral components of the mammalian circadian clock. Science 327, 463–466. doi: 10.1126/science.1180067

Ron, D., Chen, C. H., Caldwell, J., Jamieson, L., Orr, E., and Mochly-Rosen, D. (1994). Cloning of an intracellular receptor for protein kinase C α: a homolog of the beta subunit of G proteins. Proc. Natl. Acad. Sci. U.S.A. 91, 839–843. doi: 10.1073/pnas.91.3.839

Roux, P. P., and Topisirovic, I. (2018). Signaling pathways involved in the regulation of mRNA translation. Mol. Cell. Biol. 38:e00070-18. doi: 10.1128/MCB.00070-18

Ruggero, D., and Shimamura, A. (2014). Marrow failure: a window into ribosome biology. Blood 124, 2784–2792. doi: 10.1182/blood-2014-04-526301

Saada, A., Shaag, A., Arnon, S., Dolfin, T., Miller, C., Fuchs-Telem, D., et al. (2007). Antenatal mitochondrial disease caused by mitochondrial ribosomal protein (MRPS22) mutation. J. Med. Genet. 44, 746–786. doi: 10.1136/jmg.2007.053116

Serre, V., Rozanska, A., Beinat, M., Chretien, D., Boddart, N., Munnich, A., et al. (2013). Mutations in mitochondrial ribosomal protein MRPL12 leads to growth retardation, neurological deterioration and mitochondrial translation deficiency. Biochim. Biophys. Acta 1832, 1304–1312. doi: 10.1016/j.bbadis.2013.04.014

Shah, M., Su, D., Scheliga, J. S., Pluskal, T., Boronat, S., MotamediChaboki, K., et al. (2016). A transcript-specific eIF3 complex mediates global translational control of energy metabolism. Cell Rep. 16, 1891–1902. doi: 10.1016/j.celrep.2016.07.006

Shi, Z., and Barna, M. (2015). Translating the genome in time and space: specialized ribosomes, RNA regulators, and RNA-binding proteins. Annu. Rev. Cell Dev. Biol. 31, 31–54. doi: 10.1146/annurev-cellbio-100814-125346

Shi, Z., Fujii, K., Kovary, K. M., Genuith, N. R., Rost, H. L., Teruel, M. N., et al. (2017). Heterogeneous ribosomes preferentially translate distinct subpools of mRNAs genome-wide. Mol. Cell 67, 83–97. doi: 10.1016/j.molcel.2017.05.021

Shor, B., Calaycay, J., Rushbrook, J., and McLeod, M. (2003). Cpc2/RACK1 is a ribosome-associated protein that promotes efficient translation in...
Schizosaccharomyces pombe. J. Biol. Chem. 278, 49119–49128. doi: 10.1074/jbc.M303968200

Smits, P., Saada, A., Wortmann, S. B., Heister, A. J., Brink, M., Pfundt, R., et al. (2011). Mutation in mitochondrial ribosomal protein MRPS22 leads to Cornelia de Lange-like phenotype, brain abnormalities and hypertrophic cardiomyopathy. Eur. J. Hum. Genet. 19, 394–399. doi: 10.1038/ejhg.2010.214

Stadanlick, J. E., Zhang, Z., Lee, S. Y., Hemann, M., Biry, M., Carleton, M. O., et al. (2011). Developmental arrest of T cells in Rppl22-deficient mice is dependent upon multiple p53 effectors. J. Immunol. 187, 664–675. doi: 10.4049/jimmunol.1100029

Steffen, K. K., MacKay, V. L., Kerr, E. O., Tsuichiya, M., Hu, D., Fox, L. A., et al. (2008). Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gen4. Cell 133, 292–302. doi: 10.1016/j.cell.2008.02.037

Stepensky, P., Chacón-Flores, M., Kim, K. H., Abuzaïtoun, O., Bautista-Santos, A., Simanovsky, N., et al. (2017). Mutations in J. Med. Genet. 54, 558–566. doi: 10.1136/jmedgenet-2016-104366

Suhm, T., Kaimal, J. M., Dawitz, H., Peselj, C., Masser, A. E., Hanzín, S., et al. (2018). Mitochondrial translation efficiency controls cytoplasmic protein homeostasis. Cell Metab. 27, 1309–1322.e6. doi: 10.1016/j.cmet.2018.04.011

Sulic, S., Panic, L., Barkic, M., Mercep, M., Uzelac, M., and Volarevic, S. (2005). Inactivation of S6 ribosomal protein gene in T lymphocytes activates a p53-dependent checkpoint response. Genes Dev. 19, 3070–3082. doi: 10.1101/gad.359305

Sulima, S. O., Hofman, I. J. F., De Keersmaecker, K., and Dinman, J. D. (2017). How ribosomes translate cancer. Cancer Discov. 7, 1069–1087. doi: 10.1158/2159-2890.CD-15-0550

Tan, Q. K., Cope, H., Spillmann, R. C., Stong, N., Jiang, Y. H., McDonald, M. T., et al. (2018). Further evidence for the involvement of EFL1 in a shwachman–diamond-like syndrome and expansion of the phenotypic features. Cold Spring Harb. Mol. Case Stud. 4:e003046. doi: 10.1101/mcs.a003046

Teng, T., Mercer, C. A., Hexley, P., Thomas, G., and Fumagalli, S. (2013). Loss of tumor suppressor RPL5/RPL11 does not induce cell cycle arrest but impedes proliferation due to reduced ribosome content and translation capacity. Mol. Cell. Biol. 33, 4660–4671. doi: 10.1128/MCB.01174-13

Tourlakis, M. E., Zhong, J., Gandhi, R., Zhang, S., Chen, L., Durie, P. R., et al. (2012). Deficiency of Sbds in the mouse pancreas leads to proliferation due to reduced ribosome content and translation capacity. Mol. Cell. Biol. 32, 902–906. doi: 10.1128/MCB.00465-11

Tzonneva, G., Perez-Garcia, A., Carpenter, Z., Khbalian, H., Tosello, V., Allegretta, M., et al. (2013). Activating mutations in the NT5C2 nucleotidase and its complexes with inhibitors. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372:20160184. doi: 10.1098/rstb.2016.0184

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Calamita, Gatti, Milezio, Scagliola and Biffo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.