On the Application of Generalized Beta-G Family of Distributions to Prices of Cereals

Rasaki Olawale Olanrewaju
Pan African University Institute for Basic Sciences, Technology, and Innovation (PAUSTI), Nairobi, Juja, Kenya
Email: rasakiolawale@gmail.com; olanrewaju_rasaq@yahoo.com

Abstract
Generalized Beta-G family of distributions proposed has alternative distributions to unbounded distributions for modeling price returns. In contrast to Gaussian and other unbounded distributions that take values from $(-\infty, \infty)$, Generalized Beta-G family of distributions takes values from $[0, \infty)$ so as to properly contain only positive valued observations like that of price returns. In line with this, Nine (9) befitting candidates of the Generalized Beta-G family of distributions were proposed and subjected to monthly prices of cereals. Chen distributional random noise outstripped other candidates of the Generalized Beta-G family of distributions to produce minimum monthly standard deviations of 0.2686 (26.86%), 0.2572 (25.72%), 0.2404 (24.40%), 0.2267 (22.67%), 0.2257 (22.57%), 0.2544 (25.44%), 0.2343 (23.43%), 0.2391 (23.91%), 0.2273 (22.73%) and 0.2465 (24.65%) for prices of Rice, Maize, Sorghum, Millet, G-corn, Cowpea, Groundnut, Beans, Wheat and Cassava respectively. Chen and Loglogistic distributional random noises are the leading candidates among the Generalized Beta-G family of distributions in modelling price returns of the cereals, followed by Fréchet, Weibull and Birnbaum-Saunders random noises in order of significant. Lomax and Linear Failure Rate (LFR) are the ineffective random noises in modeling the price returns.

Keywords
Chen, Generalized Beta-G Family of Distributions, Loglogistic, Price, Cereals

1. Introduction
Over the past few years, generalization of statistical distribution has attracted much attention. The attention can be classified based on range of values the distribution(s) and subjected matter(s) is/are defined for. When the range of val-
ues defined for a distribution and the dataset are positively continuous, that is, values taken within \(\mathcal{N} \), distributions like Life Failure Rate (LFR), Lognormal etc. could be employed so as not to fall the victim of over-parameterization (problem of parsimony). However, when the range of values defined for the distribution and dataset takes range of values from \([0,1]\) or \((0,1)\), distributions like Beta distribution might be the ideal candidate of generalization. In a similar vein, when the range of values for both distribution and dataset takes values on the real number line, that is, \(-\infty, \infty\), distributions like Gaussian, Gumbel, Student-t, and skew-normal etc. [1].

These distributional generalizations do not only provide robust families of distributions that integrate pliable Probability Density Functions (PDFs) or Probability Mass Functions (PMFs), but also provide ductile functions like, survival & lifetime analysis functions (both for hazard rate function), reshaping functions (like shape, rate, location, scale, skewness) and quantile function. Each function’s candidates have their usefulness, for instance, the location parameter of the reshaping function usually influences the acceptance of a model (that is, the notion of location parameter brings about a better fit), while its absence usually makes a model quite appropriate [2].

Based on studies, generalizations of distributions via some of their mentioned ductile functions do provide bathtub, bathtub-shaped, upside-down bathtub [3]. Among the recently introduced generalized distributions with different appealingness for datasets and users are the new families of distributions. These distributions are Beta exponential-G family introduced by [4], Beta-G family introduced by [5], Generalized Beta-G family by [6], Exponentiated exponential Poisson-G family introduced by [7], Exponentiated-G family introduced by [8], Exponentiated Kumaraswamy-G introduced by [9], Gamma1-G family introduced by [10], Generalized transmuted-G introduced by [11], odd log-logistic-G introduced by [12] among others. Each member of the family of distributions has its own candidates of statistical distributions for statistical modeling or applications to different real life datasets, reliability studies, and importance. Most of these families of distributions are known for modeling lifetime issues, failure rate, time-varying series, price of a commodity, climate change data etc., though simulation studies can also be carried-out so as to estimate probability density function, cumulative distribution function, quantile function, generate random numbers and measures of inference (like Maximum likelihood estimates, Alkaike information criterion, Cramer-von Misses statistic, Anderson-Darling statistic) for each candidate of the distribution that belong to each families of distributions. Each member of the family of the distributions has their own peculiar attributes to applications to datasets. In this research, we shall be narrowing down our scope to Generalized Beta-G family of distributions because of its ability to model failure time events, time remission of bladder cancer patients, climate change agents, flood data, uniform and non-uniform time-varying series like price, stock returns among others. Among the Generalized Beta-G family of distribu-
tions is Birnbaum-Saunders, Chen, Weibull, Fréchet, F, Life Failure Rate (LFR), Log-logistic, lognormal and Lomax [13].

Among the few applications of the members of the Generalized Beta-G family of distributions to real life events was the application of the extended Birnbaum-Saunders distribution (Otherwise known as Marshall-Olkin extended Birnbaum-Saunders distribution) to reliability studies and fatigue failure times by [14]. Reference [15] also introduced a modified Burr III distribution called Beta-Burr III distribution and highlighted its importance in modeling problems related to actuarial science and survival analysis. They did not only derive the distribution’s docile attributes like the moments (including its moment generating function), reliability, entropies and quantile functions, but also applied it to a survival data of acute myelogeneous Leukaemia of thirty-three (33) patients suffering from the disease.

Reference [16] propounded Beta Gumbel distribution and highlighted its ability to model accelerated life testing problems through earthquakes, flood frequency analysis, rainfall, sea currents, and wind speeds. Reference [17] extended the work of Reference [16] and introduced Beta modified Fréchet distribution called Beta Fréchet (BF) distribution as an extrapolation of Fréchet and Exponentiated Fréchet (EF) distributions. They applied the proposed BF distribution to two sets of data: the uncensored dataset that consist of hundred (100) observations of breaking stress of carbon fibres (in Gba); and used dataset by [18], the dataset that consist of strengths of 1.5 cm glass fibres measured at the National Physical Laboratory, England. They adopted the Maximum Likelihood method of estimation, and they were able to estimate the four embedded parameters with 95% confidence level that the BF distribution is an adequate model for modelling the two set of fibres. It is to be noted that Gumbel and Fréchet are two out of the three distributions of the Extreme-Value-Distributions (EVDs). The only notable application of Beta distribution to financial returns was when [19] presented a skewed distribution known as modified Beta distributions and applied it to Standard & Poor’s/International Finance Corporation global daily price indices in United States dollars for South Africa with some inferences made. The statistical properties of the distributions were derived as well as the parameter estimation of the embedded parameters via Maximum Likelihood estimation technique. In light of this, none of the related members or real members of the Generalized Beta-G family of distributions has been applied to stock returns or price indices. The Generalized Beta-G family of distributions is a family of distributions that takes only positive values on the real number line against unbounded distributions that have been used in modeling price indices. The novelty of this work is the first ever application of the Beta-G family of distributions to financial returns of price of commodities, in contrast to its known application to survival analyzes and reliability studies. However, this piece of work will focus on the application of Generalized Beta-G family of distributions to wholesale prices of cereals in Kano state, Nigeria. The wholesale prices of the edible grains to be considered will be from 2007 to 2019. The members of the
family of the Generalized Beta-G distributions to be considered are Birnbaum-Saunders, Burrxi, Chen, Gamma, Lognormal, Log-Logistic, Lomax, Weibull and Fréchet.

2. Mathematical Pro-Forma of Price Framework

Let p_0 denote the initial price for any commodity/stock returns assuming further that the evolution or time varying for such prices is via the horizon $p = $ one year or $p = $ one month. If the price of such commodity at p is denoted by p_x, a random variable, such that,

$$p = \frac{\ln(p_x)}{\ln(p_0)} = \ln(p_x) - \ln(p_0)$$

(1)

The p in Equation (1) is also known as growth rate.

Assuming G is a well-defined function on \mathbb{R}^+ with Cumulative Distribution Function (CDF). Let F be another well-defined CDF positioned on G to be the sphere of an increasing function in an enclosed Beta function in the following form:

$$F(p) = B(G(p,\Omega))$$

(2)

Such that $B: [0,1] \rightarrow [0,1]$ and Ω being the parameter space of the well-defined G function. The CDF and Probability Density Function (PDF) of the Generalized Beta-G family of distributions can then be defined as:

$$f(p,\Theta) = \frac{c}{B(a,b)} g(p,\Omega)^{a-1} \left[1 - G^r(p,\Omega)\right]^{b-1}$$

(3)

$$F(p,\Theta) = \frac{1}{B(a,b)} \int_0^p g^r(p,\Theta) \, dp$$

(4)

$$F^{-1}(r) = G^{-r}(I_p(ab,\Theta))$$

(5)

for “r” in the range of $g(p,\Omega), \ 0 \leq r \leq 1; \ \Theta = (a,b,c,\Omega)^T$ is the universal parameter space of the Generalized Beta-G family of distributions with induced shape of $a > 0, b > 0, c > 0$. Ω is the parameter space of the $G(p,\Omega)$ distribution $\ni g(p,\Omega)$ is its pdf. $B(a,b) = \int_0^1 p^{a-1}(1-p)^{b-1} \, dp$ & $I_p(ab,\Theta) = \frac{\int_0^p I_p^{-1}(e^{-\Theta} \, dr)}{B(a,b)}$

denotes the incomplete beta function ratio. According to [5] and [20], among the few candidates of the Generalized Beta-G family of distributions, that is, the number of independent and identically distributed random variables whose PDF follows $g(p,\Omega)$ are:

Weibull:

$$g(p,\Omega) = \frac{r}{s} \left(\frac{p-\mu}{s}\right)^{r-1} \exp\left[-\left(\frac{p-\mu}{s}\right)^r\right]$$

(6)

For $p > 0, \ p > \mu, \ \Omega = \{r,s,\mu\}^T \ni \Omega \in \mathbb{R}^+ \ \forall \ \text{shape, rate, and location parameters respectively.}$
\(g(p,\Omega) = B^{-1}\left(\frac{r}{2},\frac{s}{2}\right)\left(\frac{p-\mu}{s}\right)^{-1}\left(1+r\frac{p-\mu}{s}\right)^{-\frac{r+1}{2}} \)

(7)

\(B \) is stands for the Beta function defined above, for \(p > 0, \quad p > \mu, \quad \Omega = \{r,s,\mu\}^T \ni \Omega \in \mathbb{R}^+ \forall \) shape, scale and location parameters respectively.

Linear Failure Rate (LFR):

\[g(p,\Omega) = (r + s(p - \mu)) \exp\left(-rp - \frac{(p - \mu)^2}{2}\right) \]

(8)

For \(p > 0, \quad p > \mu, \quad \Omega = \{r,s,\mu\}^T \ni \Omega \in \mathbb{R}^+ \forall \) shape, rate and location parameters respectively.

Chen:

\[g(p,\Omega) = rs(p - \mu)^{-1} \exp\left((p - \mu)^t\right) \exp\left(-s\exp\left((p - \mu)^t\right) - 1\right) \]

(9)

For \(p > 0, \quad p > \mu, \quad \Omega = \{r,s,\mu\}^T \ni \Omega \in \mathbb{R}^+ \forall \) scale, shape and location parameters respectively.

Birnbaum-Saunders:

\[g(p,\Omega) = \sqrt{\frac{s}{p - \mu} + \sqrt{\frac{p - \mu}{s}}} \phi\left(\sqrt{\frac{p - \mu}{s}} - \sqrt{\frac{s}{p - \mu}}\right) \]

(10)

For \(p > 0, \quad \phi(.) \) is the pdf of the standard Gaussian, \(p > \mu, \quad \Omega = \{s,\mu,r\}^T \ni \Omega \in \mathbb{R}^+ \forall \) scale, location and shape parameters respectively.

Fréchet:

\[g(p,\Omega) = \frac{r}{s} \left(\frac{p - \mu}{s}\right)^{r-1} \exp\left(-\left(\frac{p - \mu}{s}\right)^r\right) \]

(11)

For \(p > 0, \quad p > \mu, \quad \Omega = \{r,s,\mu\}^T \ni \Omega \in \mathbb{R}^+ \forall \) shape, scale and location parameters respectively.

Log-logistic:

\[g(p,\Omega) = \frac{r}{s^r} \left(\frac{p - \mu}{s}\right)^{r-1} \exp\left(-\left(\frac{p - \mu}{s}\right)^r\right)^2 \]

(12)

For \(p > 0, \quad p > \mu, \quad \Omega = \{r,s,\mu\}^T \ni \Omega \in \mathbb{R}^+ \forall \) shape, scale and location parameters respectively.

Lomax:

\[g(p,\Omega) = \left(\sqrt{2\pi s(p - \mu)}\right)^{-1} \exp\left[-\frac{1}{2}\left(\log\left(p - \mu\right) - \frac{r}{s}\right)^2\right] \]

(13)

For \(p > 0, \quad p > \mu, \quad \Omega = \{r,s,\mu\}^T \ni \Omega \in \mathbb{R}^+ \forall \) shape, rate and location parameters respectively.

Log-normal:
\[g(p, \Omega) = \left(\frac{2\pi s}{\sqrt{2\pi s}(p-\mu)} \right)^{-1} \exp \left[-\frac{1}{2} \left(\frac{\log(p-\mu) - r}{s} \right)^2 \right] \] (14)

For \(p > 0, \pi \approx 3.124, p > \mu, \Omega = \{r, s, \mu\} \in \mathbb{R}^3 \) shape, scale and location parameters respectively. It is to be noted that \(G(p, \Omega) \) is the CDFs of the pdfs defined above, from Equation (6) to Equation (14). The parameter estimation of the universal parameter space \(\Theta = \{a, b, c, \Omega\} \) can be estimated via Maximum Likelihood function of

\[L(\Theta/P) = \prod_{i=1}^{n} \left(\frac{c}{B(a, b)} g(p, \Omega)^{c-1} \left[1 - G^c(p, \Omega) \right]^{b-1} \right) \] (15)

3. Numerical Analysis

The monthly-harmonized wholesale prices (in naira (₦)) of cereals in Kano state, Nigeria from 2007 to 2019 would be subjected to the Generalized Beta-G family of distributions. The cereals include-rice, maize, sorghum, millet, gncorn, cowpea, groundnut, beans, wheat and cassava. The time series dataset was obtained from the Ministry of Agriculture and Natural Resources (MANR), Kano state, Nigeria. The dataset was a monthly uniform time-varying harmonized and regulated price of the edible grains by the ministry (Figure 1).

The median value (that is the black line between the whiskers) for all the cereal prices except for the one of groundnut for the edible grains are more closer to their bottom boxes, with their whiskers shorter on the lower part of their boxes, this suggested an extremely positively skewed distribution (rightly skewed) for all. However, the groundnut possessed the same traits, but not to the extreme like others because the whisker (black line) for the groundnut boxplot was not at the basement of the wall of the plot. In other words, groundnut’s

![Boxplots of the prices of the cereals.](Author's Computation (2021).)

Figure 1. Boxplots of the prices of the cereals.
whisker is in between the median (50th percentile or second quartile) and first quartile (25th percentile), in contrast to others that their whiskers leveled with the first quartile. Overall, it indicated that all the prices of the edible grains are affected by frequent modestly sized deviations that would surely affect estimates if model with Gaussian distribution or unbound distributions.

From Table 1, Chen random noise gave the minimum monthly standard deviation of 0.2686 (26.86%) for the monthly price of rice with moderate magnitude of skewness and kurtosis of 0.1589 and 2.2520 respectively. Interestingly, chen distributional random noise dominated all the other Generalized Beta-G family of distributions in absolving the noise and fluctuations characterized by the prices of cereals to give minimum monthly standard deviations of 0.2572 (25.72%), 0.2404 (24.04%), 0.2267 (22.67%), 0.2257 (22.57%), 0.2544 (25.44%), 0.2343 (23.43%), 0.2391 (23.91%), 0.2273 (22.73%), 0.2465 (24.65%), skewness of 0.2154, 0.3339, 0.1338, 0.1773, 0.1240, 0.3481, 0.1277, −0.0152, 0.0132 and kurtosis 2.3266, 2.6471, 2.4149, 2.6258, 2.3426, 2.9886, 2.1858, 2.3668, 2.3813 for prices of Maize, Sorghum, Millet, G-corn, Cowpea, Groundnut, Beans, Wheat and Cassava respectively.

From Table 2, Chen and Weibull are the ideal generalized distributional random noises for rice. They jointly produced the same and smallest reduced error model performance of AIC = 2973.432; CAIC = 2973.996; BIC = 2991.731; HQIC = 2980.864 with \(\hat{\Theta} = (28.4031, 3.0309, 0.2916, 3.7685, 1682.6468, 7486.7712) \), where \(\hat{\Omega} = (3.7685, 1682.6468, 7486.7712) \). From the Anderson-Darling estimate of 9.5843, that is greater than the critical value of 0.7752, we fail to accept that the data came from normal distribution. Additionally, since the Kolmogorov-Smirnov statistic is 0.2701 with its p-value = 0.00011 < 0.05 there is no sufficient evidence that the rice price sample came from normal distribution. In addition, chen outmatched other candidates of Generalized Beta-G family of distributions in modelling the price of maize with reduced error performance of AIC = 2812.919; CAIC = 2813.482; BIC = 2831.218; HQIC = 2820.351 with \(\hat{\Theta} = (0.1884, 5.2514, 0.5869, 0.1698, 0.2694, 3440.8126) \), where \(\hat{\Omega} = (0.1698, 0.2694, 3440.8126) \). The Anderson-Darling of 7.1804 > 0.7752 shows that the strength of the price of the maize edible grains can be adequately described by the Generalized Beta-G family of distribution. However, since the Kolmogorov-Smirnov statistic is 0.2038 with its p-value = 0.0000 < 0.05, it is obvious that price of maize price did not emanate from Gaussian distribution. Fréchet and Loglogistic distributional random noises jointly produced ideal performance for sorghum with AIC = 2420.474; CAIC = 2421.038; BIC = 2438.773; HQIC = 2427.906, but with different parameters of \(\hat{\Theta} = (1.3025, 1.0485, 3.9379, 2.3299, 13.5964, 128.5248) \) and \(\hat{\Theta} = (0.2059, 0.1965, 0.3054, 9.0645, 243.2897, 6395.0221) \) respectively. Their induced parameters are \(\hat{\Omega} = (2.3299, 13.5964, 128.5248) \) and \(\hat{\Omega} = (9.0645, 243.2897, 6395.0221) \) with Anderson-Darlings’ statistic of 12.7501 and 8.8469 > 0.7752 and joint Kolomogorov-Smirnov’s p-value = 0.0000 < 0.05. Loglogistic and LFR distributional random noises jointly outstripped other
Table 1. Coefficients of skewness, kurtosis, and standard deviation for the prices of cereals.

Cereal	Weibull	Birnabum-Saunders	Chen	F	Fréchet	LFR	Log-normal	Log-logistic	Lomax
MonthlyStd Dev	0.9160	8.2093	0.2686	8.1980	2.3690	3.6767	182.3016	3.8321	1.2433
Skewness	0.6057	(0.1344)	4.5183	0.1589	4.5199	2.4468	2.4654	4.4902	5.3156
(10.6065)			(0.1620)	(4.6081)	(2.4946)	(3.5612)	(4.5778)	(5.4194)	(9.5775)
Kurtosis	3.0919	(0.0919)	31.9927	2.2520	25.6861	11.9789	5.6717	27.4719	41.5122
(28.9927)			(−0.7480)	(22.6861)	(8.9789)	(3.9106)	(24.4719)	(38.5122)	(100.6024)
Maize	0.9118	10.0425	0.2572	14.2570	6.7517	0.3099	182.3693	5.5786	2.3576
MonthlyStd Dev	0.2868	(0.2924)	2.8147	0.2154	6.0355	7.2594	0.9326	6.7469	6.8477
(2.8696)			(0.2197)	(6.1533)	(7.4011)	(0.9508)	(6.8786)	(6.8786)	(3.7543)
Kurtosis	2.4606	(2.4606)	12.8122	2.3266	43.4280	65.0128	3.2869	50.6347	58.9935
(9.8122)			(−0.673)	(40.4280)	(62.0128)	(0.2869)	(47.6347)	(47.6347)	(7.7256)
Sorghum	0.8827	9.0662	0.2404	7.8903	3.3496	0.2922	236.6115	2.3323	3.4185
MonthlyStd Dev	0.5483	(0.5590)	2.7273	0.3339	5.6829	2.9632	0.9184	9.0870	1.9766
(2.7806)			(0.3404)	(5.7939)	(3.0211)	(0.9364)	(9.2644)	(2.0152)	(0.7853)
Kurtosis	2.7043	(−0.2957)	11.5328	2.6471	38.1972	12.9652	2.8979	95.1809	8.1811
(8.5328)			(−0.3529)	(35.1972)	(9.9652)	(−0.1021)	(95.1809)	(5.1811)	(6.4577)
Millet	1.0001	10.9945	0.2267	10.6418	5.2178	0.3194	443.5991	3.1816	2.1778
MonthlyStd Dev	0.7705	(0.7855)	3.4827	0.1338	9.8992	3.2472	1.1351	7.3584	2.8564
(3.5507)			(0.1364)	(3.2715)	(4.2516)	(1.1573)	(7.5020)	(2.9121)	(10.7668)
Kurtosis	2.9104	(−0.0896)	17.5067	2.4149	112.6883	7.4357	4.0506	63.0945	12.1612
(14.5067)			(−0.5851)	(109.6883)	(12.5467)	(1.0506)	(60.0945)	(9.1612)	(120.6616)
G-Corn	0.8978	11.1932	0.2257	13.8708	5.3240	0.3192	140.8943	2.6797	0.8967
MonthlyStd Dev	0.2112	(0.2154)	4.6541	0.1773	5.6299	7.2356	0.9829	9.6636	3.5679
(4.7449)			(0.1807)	(5.7398)	(2.3467)	(1.0021)	(9.8523)	(3.6376)	(7.5425)
Kurtosis	2.5665	(−0.4335)	33.5766	2.6258	36.4662	23.24352	3.1701	105.0269	19.5677
(30.5766)			(−0.3742)	(33.4662)	(56.2461)	(0.1701)	(102.0269)	(16.5677)	(68.9099)
Cowpea	0.8512	8.8147	0.2544	39.7075	30.2382	0.3027	109.7695	2.6991	0.7178
MonthlyStd Dev	0.6392	(0.6517)	2.6730	0.1240	5.9637	4.2917	0.9304	4.0649	2.8982
(2.7251)			(0.1264)	(6.0801)	(3.2536)	(0.9486)	(4.1442)	(2.9548)	(5.1553)

DOI: 10.4236/jmf.2021.114036
Continued

	Groundnut	Beans	Wheat
Kurtosis	3.1955 (0.1955)	0.4185 (0.4267)	3.7025 (1.2182)
	10.9308 (7.9308)	2.7455 (2.7990)	11.0449 (6.5973)
	2.3426 (−0.6574)	0.3481 (0.3549)	2.1858 (−0.0142)
	42.1433 (39.1433)	6.1534 (6.2735)	1.2858 (−0.8125)
	5.2142 (2.1826)	3.9229 (3.9995)	6.3079 (5.1229)
	3.5416 (0.5416)	1.2217 (1.2455)	1.1465 (1.1685)
	20.3783 (17.3783)	8.8071 (8.9790)	27.1498 (24.1498)
	16.1041 (13.1041)	3.0847 (3.1449)	16.5721 (13.5721)
	35.5875 (32.5875)	10.8047 (7.8047)	24.8323 (21.8323)

	Cassava		
Kurtosis	2.9524 (−0.0746)	4.1882 (1.1828)	3.7025 (1.2182)
	10.8047 (7.8047)	9.5973 (6.5973)	11.0449 (6.5973)
	2.9886 (−0.0114)	2.1858 (−0.8125)	2.3668 (−0.6332)
	43.7856 (40.7856)	22.2897 (19.8897)	55.7194 (52.7194)
	2.3426 (−0.6574)	3.9229 (3.9995)	38.5132 (35.5132)
	35.5875 (32.5875)	8.8071 (8.9790)	38.5132 (35.5132)

Generalized Beta-G family of distributions for price of millet with joint the same and smallest model performance of AIC = 2840.652; CAIC = 2841.216; BIC = 2858.951; HQIC = 2848.084, with the same
\(\hat{\Theta} = (0.1744, 0.1640, 0.6688, 7.5087, 1400.7276, 2779.6405) \), where
\(\hat{\Omega} = (7.5087, 1400.7276, 2779.6405) \), the same Anderson-Darling estimate of
8.7738 > 0.7752 and Kolomogorov-Smirnovs’ p-value = 0.0000 < 0.05. Fréchet distributional random noise produced the ideal performance for price of gcorn with AIC = 2760.405; CAIC = 2241.564; BIC = 2778.704; HQIC = 2767.956 with
\(\hat{\Theta} = (0.1887, 0.2012, 1.1480, 2.8519, 712.9693, 2598.7736) \), such that the induced parameter is
\(\hat{\Omega} = (2.8519, 712.9693, 2598.7736) \). Its Anderson-Darling estimate
Table 2. Model adequacy for the generalized Beta-G family of distributions with the prices of cereals.

Rice	Birthnam-Saunders	Chen	F	Fréchet	log-logistic	Log-normal	maize	Birthnam-Saunders	Chen	F	Fréchet	log-logistic	Log-normal
a	0.4519	0.4519	0.4581	0.4199	0.1693	0.1693	0.4833	0.1693	0.1693	0.1693	0.1693	0.1693	0.1693
b	2.8565	2.8565	2.8565	2.8565	2.8565	2.8565	2.8565	2.8565	2.8565	2.8565	2.8565	2.8565	2.8565
c	0.2163	0.2163	0.2163	0.2163	0.2163	0.2163	0.2163	0.2163	0.2163	0.2163	0.2163	0.2163	0.2163
i	0.0068	0.0068	0.0068	0.0068	0.0068	0.0068	0.0068	0.0068	0.0068	0.0068	0.0068	0.0068	0.0068
μ	0.2163	0.2163	0.2163	0.2163	0.2163	0.2163	0.2163	0.2163	0.2163	0.2163	0.2163	0.2163	0.2163
AIC	-1.4291	-1.4291	-1.4291	-1.4291	-1.4291	-1.4291	-1.4291	-1.4291	-1.4291	-1.4291	-1.4291	-1.4291	-1.4291
CAC	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291
BIC	-2.4291	-2.4291	-2.4291	-2.4291	-2.4291	-2.4291	-2.4291	-2.4291	-2.4291	-2.4291	-2.4291	-2.4291	-2.4291
AD	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291
CM	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291
MEAN	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291
KS	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291	1.4291
Method	Fréchet	Lfr	Lomax	log-normal	log-logistic								
------------	---------	--------	-------	------------	--------------								
	1.3025	0.2059	1.1264	2.2747	0.2059								
	1.0485	0.1965	0.9633	7.9553	0.1965								
	3.9379	0.3054	1.5957	5.5613	0.3054								
	2.3299	9.0645	0.3940	9.5948	9.0645								
	13.5963	243.2897	1.9996	5.0397	243.2897								
	128.5248	6395.0221	2466.522	6386.3258	6395.0221								
	2477.929	2420.474	2467.086	2477.773	2420.474								
	2478.493	2421.038	2484.821	2478.337	2421.038								
	2496.228	2438.773	2473.954	2496.072	2438.773								
	2485.362	2427.906	11.0850	2485.205	2427.906								
	2.6132	1.4568	11.0373	2.2954	1.4568								
	12.7501	8.8469	1108.307	8.8469	12.7501								
	1224.235	1108.307	0.2451	1108.307	1224.235								
	0.2804	0.0000	0.0000	0.0000	0.0000								

Method	Millet	Birnbaum-Saunders	Chen	Weibull	F	Fréchet	Lfr	Lomax	log-normal	log-logistic
	5.7542	2.6491	0.4923	2.6944	1497.5834	2796.3601	3132.641	3133.205	3150.94	3140.07
	0.8480	1.3493	1.0133	0.6874	0.7233	56.2382	2836.029	2836.593	2854.328	2843.462
	0.9565	0.8826	0.6269	0.9570	2046.0706	2791.5023	2844.214	2844.778	2862.514	2851.647
	1.1175	3.0549	0.5924	0.2395	4.0896	56.2395	2976.966	2977.53	2995.265	2984.399
	6.4242	10.7857	1.9035	0.1803	780.8600	2791.4761	2879.922	2880.486	2898.221	2887.354
	0.1744	0.1640	0.6688	7.5087	1400.7276	2779.6405	2840.652	2841.216	2858.951	2848.084
	3.4899	2.3803	1.8024	0.1075	0.6952	55.8822	2873.85	2874.414	2892.15	2881.283
	7.3111	0.4703	3.4760	12.1882	1.9048	2791.4286	2846.590	2847.154	2864.889	2854.023
	0.1744	0.1640	0.6688	7.5087	1400.7276	2779.6405	2840.652	2841.216	2858.951	2848.084

Method	G-corn	Birnbaum-Saunders	Chen	Weibull	F	Fréchet	Lfr	Lomax	log-normal	log-logistic
	0.2746	8.5421	7.9373	2.6095	1432.9010	2596.6366	3241.001	3241.564	3259.3567	3248.433
	0.2562	2.3567	0.4053	0.1681	0.2970	2599.7574	2782.891	2783.454	2801.190	2790.323
	0.1887	0.2012	1.1480	2.8519	712.9693	2598.7736	2782.891	2783.454	2778.704	324.4482
	2.0793	2.0793	0.9569	1.3246	3.2521	52.35647	2345.467	2760.969	2801.190	3248.433
	0.1887	0.2012	1.1480	2.8519	712.9693	2598.7736	2760.405	2241.564	2778.704	324.4482
	1.0000	1.0000	1.0000	0.0472	0.0012	0.00115	2825.152	2825.716	2843.451	2832.584
	0.8635	9.0875	2.5479	0.3336	4.9938	52.5718	2782.891	2760.969	2778.704	324.4482
	0.6315	0.3963	0.2183	6.5293	0.5520	2592.1397	2760.405	2760.969	2778.704	2767.837
	0.2623	4.2858	5.9136	0.8113	0.977292	2590.7366	2760.524	2761.088	2778.823	2767.956
						1108.307	1224.235	0.2451	1224.235	0.2451
						0.2804	0.0000	0.0000	0.0000	0.0000
	Cowpea	Groundnut	Beans							
----------------	-------------	-------------	--------------							
Birnbaum-Saunders	1.6699 2.5776 1.4569 2.4955 2042.6386 13.680.9456 2912.799 2913.363 2931.098 2920.232 0.7945 5.1582 1296.013 0.1796 (0.0000)	1.8195 6.4692 5.0428 1.5900 104.8936 75.60255 Inf Inf Inf Inf 2.9334 Inf 2067.818 0.3035 (0.0000)	0.5102 1.6791 2.8410 2.2832 1366.8216 5373.9223 2777.3 2777.864 2795.6 2784.733 1.4463 8.8857 1293.756 0.2098 (0.0000)							
Chen	0.4730 2.9876 2.5731 0.6871 0.4817 74.76824 2865.021 2865.585 2883.321 2872.454 0.8528 5.2554 1296.581 0.1823 (0.0000)	2.2719 2.2839 1.4619 0.7774 0.3454 75.60255 2627.902 2628.465 2646.201 2635.334 1.7567 19.0272 1227.555 0.219 (0.0000)	1.7845 3.5330 0.2204 0.1260 0.4595 5399.7257 2814.58 2815.143 2832.879 2822.012 1.8168 10.7877 1313.402 0.2345 (0.0000)							
Weibull	6.5557 3.3789 1.3533 1.0581 53.8532 74.76824 2870.51 2871.073 2888.809 2877.942 0.8111 4.9942 1272.744 0.1726 (0.0000)	1.2419 1.8254 3.0703 105.2931 75.60255 2757.028 2757.592 2775.327 2764.461 1.8129 10.9124 1288.117 0.2668 (0.0000)	0.4965 1.4239 1.8254 3.0703 4.0050 75.60255 3138.075 3134.634 2646.201 2764.461 1.8129 10.9124 1288.117 0.4132 (0.0000)							
F	2.9310 3.60712 0.5712 0.2789 3.3069 74.76824 2878.586 2879.149 2896.885 2886.018 0.6827 4.7099 1275.361 0.1857 (0.0000)	8.5349 1.0037 3.2629 0.6260 75.60255 3143.078 3143.634 3161.369 3150.502 5.5251 27.7554 1475.312 0.4132 (0.0000)	8.4999 1.1940 4.9159 1.1469 75.60255 3146.735 3147.299 3165.034 3154.167 5.0310 26.0131 1476.675 0.3946 (0.0000)							
Fréchet	7.7675 8.7915 1.4564 0.8478 24.4311 74.76824 2899.233 2899.797 2917.532 2906.665 0.6658 4.5100 1287.975 0.1590 (0.0000)	1.0162 0.9940 1.8968 63.9483 75.60255 2757.028 2757.592 2775.327 2764.461 2.2432 10.9124 2069.387 0.2474 (0.0000)	1.1561 4.4326 9.4294 4.0050 75.60255 2784.069 2784.633 2802.368 2802.368 6.0558 32.7570 1305.329 0.4282 (0.0000)							
Lfr	1.0000 1.0000 1.0000 0.0369 0.0008 74.76824 2871.008 2871.572 2889.307 2878.44 1.5258 8.2377 1279.482 0.2070 (0.0000)	Inf	Inf							
Log-normal	3.6315 3.5596 2.1968 0.1219 0.6443 74.76824 2903.975 2904.539 2922.275 2911.408 0.5314 4.0018 1291.379 0.1424 (0.0000)	Inf	Inf							
Log-logistic	1.7726 0.4814 1.1212 9.4512 2.15089 74.76824 2834.013 2402.492 2342.492 Inf 0.7146 Inf 1298.997 0.1825 (0.0000)	Inf	Inf							

Note: The above table continues from the previous page.
	Continued	Wheat	Cassava
	0.3244 0.6427 0.7842 2.2802 340.3627 5392.1540 2784.121 2784.685 2802.425 2791.553 1.1308 10.3075 1320.876 0.1663 (0.0004)	0.1776 9.0151 10.7502 3.2396 908.3830 4199.5896 3829.402 2656.045 2768.456 2498.980 5.8554 20.4562 1235.566 0.4282 (0.0000)	5.2914 6.5151 1.1389 2.9018 1320.0605 3039.6683 2786.764 2787.327 2805.063 2794.196 0.9858 5.7826 1221.623 0.1818 (0.0000)
	1.0000 1.0000 1.0000 0.0366 0.0005 108.4618 2875.091 2875.655 2893.393 2882.523 6.6949 46.2185 1349.467 0.4103 (0.0000)	0.2436 2.3629 0.7507 0.1467 0.3919 4198.7916 2680.837 2681.401 2699.136 2688.269 5.1005 27.7778 1272.618 0.3787 (0.0000)	1.3657 1.5499 0.8212 0.74937 0.5073 61.25659 2698.577 2699.143 2716.876 2706.009 1.4063 7.4522 1195.235 0.2397 (0.0000)
	7.2035 6.1655 1.8608 0.3436 1.3347 108.4618 2798.773 2799.337 2817.072 2806.206 1.4980 9.3287 1303.106 0.2056 (0.0000)	0.1919 164.0986 8.3303 0.2827 453.9482 4181.7756 4181.7755 2609.341 2627.076 2616.209 5.7028 30.2059 1236.675 0.4192 (0.0000)	1.8389 1.2673 0.4109 0.9997 1301.9308 3044.1806 2697.026 2697.596 2715.325 2704.458 1.1812 6.3309 1192.228 0.2120 (0.0000)
	0.4265 37.8110 0.3025 0.4403 10.0346 4182.3229 2597.031 2597.595 2615.33 2604.463 4.7238 25.1845 1230.813 0.3739 (0.0000)	0.2071 7.0221 7.6517 0.4476 162.7049 4191.3308 2609.822 2610.386 2628.121 2617.255 4.3612 23.3241 1238.019 0.3433 (0.0000)	3.4248 4.5067 0.5772 0.1906 9.9797 61.25659 2347.970 2649.46 2344.769 2589.095 1.1874 6.8934 1222.935 0.2028 (0.0000)
	0.2677 2.7093 1.4647 4.9299 1.4083 5391.1440 2798.468 2799.032 2816.767 2805.9 1.3635 8.6541 1304.287 0.1940 (0.0000)	0.2278 0.2715 0.3431 6.4939 500.2135 5396.8329 2795.507 2796.071 2813.806 2802.939 1.2891 8.2339 1302.81 0.1755 (0.0000)	4.1654 6.4438 6.4434 5.4767 4.6299 4195.8406 2644.185 2644.749 2662.484 2651.618 5.0688 26.9247 1254.07 0.3859 (0.0000)
	0.2278 0.2715 0.3431 6.4939 500.2135 5396.8329 2795.507 2796.071 2813.806 2802.939 1.2891 8.2339 1302.81 0.1755 (0.0000)	Log-normal	Log-logistic
	8.2770 0.2957 9.0686 11.1530 1.2148 3039.1160 2696.57 2697.134 2714.87 2704.003 1.1837 6.2859 1191.848 0.2173 (0.0000)	6.4027 3.6995 0.5092 0.8388 943.5924 3030.2381 2705.261 2705.825 2723.56 2712.693 1.03973 5.8317 1196.223 0.1827 (0.0000)	}

Keywords: inf = infinity
is $15.4291 > 0.7752$ and Kolmogorov-Smirnov's p-value $= 0.0000 < 0.05$. Log-normal possessed reduced-error model performance for cowpea with $AIC = 2834.013$; $CAIC = 2402.492$; $BIC = 2342.492$, where $\hat{\Theta} = (1.7726, 0.4814, 1.1212, 9.4512, 2.15089, 74.7648)$ and induced parameter of $\Omega = (9.4512, 2.15089, 74.7648)$ such that it's Kolmogorov-Smirnov's p-value $= 0.0000 < 0.05$. Log-logistic random noise produced the ideal performance for price of groundnut with $\hat{\Theta} = (1.5776, 2.4357, 2.3989, 1.3672, 80.3525, 75.6026)$, induced parameters $\hat{\Omega} = (1.3672, 80.3525, 75.6026)$. Its Anderson-Darling estimate is $35.3184 > 0.7752$ and Kolomogorov-Smirnov's p-value $= 0.0000 < 0.05$.

Birnbaum-Saunders possessed the ideal reduced-error model performance for price of beans with $AIC = 2777.3$; $CAIC = 2777.864$; $BIC = 2795.6$; $HQIC = 2784.733$, where $\hat{\Theta} = (0.5102, 1.6791, 2.8410, 2.2832, 1366.8216, 5373.9233)$, such that $\hat{\Omega} = (2.2832, 1366.8216, 5373.9223)$. Its Anderson-Darling estimate is $8.8857 > 0.7752$ and Kolomogorov-Smirnovs' p-value $= 0.0000 < 0.05$. Log-logistic is the paragon random noise for price of wheat with $AIC = 2466.063$; $CAIC = 2466.627$; $BIC = 2484.362$; $HQIC = 2473.495$, where, $\hat{\Theta} = (1.0081, 1.4591, 0.5771, 8.7772, 14.7966, 83.7864)$, such that $\hat{\Omega} = (8.7772, 14.7966, 83.7864)$. Its Anderson-Darling estimate is $24.2533 > 0.7752$ and Kolomogorov-Smirnovs' p-value $= 0.0000 < 0.05$. Lastly, F surmounted other Generalized Beta-G distributional random noises for price of cassava with $AIC = 2347.970$; $CAIC = 2649.446$; $BIC = 2344.769$; $HQIC = 2589.095$ $\hat{\Theta} = (3.4248, 4.5067, 0.5772, 0.1906, 9.9779, 61.2566)$ such that, $\hat{\Omega} = (0.1906, 9.9779, 61.2566)$. Its Anderson-Darling estimate is $6.9834 > 0.7752$ and Kolomogorov-Smirnovs’ p-value $= 0.0000 < 0.05$.

4. Conclusion

In conclusion, Lomax and Linear Failure Rate (LFR) out of the Generalized Beta-G family of distributions are ineffective in modelling the prices of all the cereals studied. This might be due to the fact that LFR is peculiar to survival, censored and uncensored analysis. Additionally, Lomax distribution (otherwise known as Pareto Type II distribution) might be ineffectual in living-up to expectation due to its peculiarity in statistical modelling of tailedness observations, reliability studies and life testing problems in survival studies. Chen and loglogistic distributional random noises are the leading candidates among the Generalized Beta-G family of distributions in modelling of price returns, followed by Fréchet random noise. Weibull, Birnbaum-Saunders, and F distributional random noises gave un-recommendable higher error performances. Overall, all the distributional random noises for the Generalized Beta-G family of distributions gave Kolmogorov-Smirnov’s p-values that are far lesser than 0.05 and Anderson-Darling estimates that are greater than the critical value of 0.7752 to affirm the model adequacy of the Generalized Beta-G family of distributions, in contrast to unbounded distributions. Among the limitations of Beta-G family of distributions is that it is for positive continuous values with single mode, and its 1 to many mapping car-
rier is based on either \([0,1]\) or \((0,1)\).

Acknowledgements

I personally extended gratitude to the Ministry of Agriculture and Natural Resources (MANR), Kano state, Nigeria for the provision of the prices of cereals dataset used in this project.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Okasha, H.M., El-Baz, A.H., Tarabia, A.M.K. and Basheer, A.M. (2017) Extended Inverse Weibull Distribution with Reliability Application. *Journal of the Egyptian Mathematical Society*, 25, 343-349. https://doi.org/10.1016/j.joems.2017.02.006

[2] Barreto-Souza, W., Cordeiro, G.M. and Simas, A.B. (2008) Some Results for Beta Fréchet Distribution.

[3] Teimouri, M. and Nadarajah, S. (2019) Package ”MPS”: Estimating through the Maximum Product Spacing Approach.

[4] Alzaatreh, A., Lee, C. and Famoye, F. (2013) A New Method for Generating Families of Continuous Distributions. *Metron*, 71, 63-79. https://doi.org/10.1007/s40300-013-0007-y

[5] Eugene, N., Lee, C. and Famoye, F. (2002) Beta-Normal Distribution and Its Applications. *Communications in Statistics—Theory and Methods*, 31, 497-512. https://doi.org/10.1081/STA-120003130

[6] Alexander, C., Cordeiro, G.M., Ortega, E.M.M. and Sarabia, J.M. (2012) Generalized Beta-Generated Distributions. *Computational Statistics & Data Analysis*, 56, 1880-1897. https://doi.org/10.1016/j.csda.2011.11.015

[7] Ristić, M.M. and Nadarajah, S. (2013) A New Lifetime Distribution. *Journal of Statistical Computation and Simulation*, 84, 135-150. https://doi.org/10.1080/00949655.2012.697163

[8] Mudholkar, G.S., Kollia, G.D., Lin, C.T. and Patel, K.R. (1991) A Graphical Procedure for Comparing Goodness-of-Fit Tests. *Journal of Royal Statistical Society B*, 53, 221-232. https://doi.org/10.1111/j.2517-6161.1991.tb01820.x

[9] Lemonte, A.J., Barreto-Souza, W. and Cordeiro, G.M. (2013) The Exponentiated Kumaraswamy Distribution & Its Log-Transform. *Brazilian Journal of Probability and Statistics*, 27, 31-53. https://doi.org/10.1214/11-BJPS149

[10] Ristić, M.M. and Balakrishnan, N. (2012) The Gamma Exponentiated Exponential Distribution. *Journal of Statistical Computation and Simulation*, 82, 1191-1206. https://doi.org/10.1080/00949655.2011.574633

[11] Merovci, F., Alizadeh, M., Yousof, H.M. and Hamedani, G.G. (2017) The Exponentiated Transmuted-G Family of Distributions. *Theory and Applications Communications in Statistics—Theory and Methods*, 46, 10800-10822. https://doi.org/10.1080/03610926.2016.1248782

[12] Gauss, M.C., Alizadeh, M., Ozel, G., Hosseini, B., Ortega, E.M.M. and Altunc, E. (2017) The Generalized Odd Log-Logistic Family of Distributions: Properties, Re-
gression Models and Applications. *Journal of Statistical Computation and Simulation*, **87**, 908-932. https://doi.org/10.1080/00949655.2016.1238088

[13] Nofal, Z.M., Afify, A.Z., Yousof, H.M. and Cordeiro, G.M. (2016) The Generalized Transmuted-G Family of Distributions. *Communications in Statistics—Theory and Methods*, **46**, 4119-4136. https://doi.org/10.1080/03610926.2015.1078478

[14] Lemonte, A.J. (2013) A New Extension of the Birnbaum-Saunders Distribution. *Brazilian Journal of Probability and Statistics*, **27**, 133-149. https://doi.org/10.1214/11-BJPS160

[15] Gomes, A.E., Silva, C.Q., Cordeiro, G.M. and Ortega, E.M.M. (2013) The Beta Burr III Model for Lifetime Data. *Brazilian Journal of Probability and Statistics*, **27**, 502-543. https://doi.org/10.1214/11-BJPS179

[16] Nadarajah, S. and Kotz, S. (2004) The Beta Gumbel Distribution. *Mathematical Problems in Engineering*, **10**, 323-332. https://doi.org/10.1155/S1024123X04403068

[17] Barreto-Souza, W., Cordeiro, G.M. and Simas, A.B. (2011) Some Results for Beta Fréchet Distribution. *Communications in Statistics Theory and Methods*, **40**, 798-811. https://doi.org/10.1080/03610920903366149

[18] Smith, R.L. and Naylor, J. (1987) A Comparison of Maximum Likelihood and Bayesian Estimators for the Three-Parameter Weibull Distribution. *Applied Statistics*, **36**, 358-369. https://doi.org/10.2307/2347795

[19] Nadarajah, S., Nasser, V. and Mohammadpour, A. (2014) Truncated-Exponential Skew Symmetric Distributions. *Statistics*, **48**, 872-886. https://doi.org/10.1080/02331888.2013.821474

[20] Teimouri, M. (2018) MPS: An R Package for Modelling New Families of Distributions.