Discussion Paper: A New Mathematical Framework for Representation and Analysis of Coupled PDEs

Matthew M. Peet *,**, Sachin Shivakumar ** Amritam Das ***
Seip Weiland ***
* e-mail: mpeet@asu.edu
** Arizona State University
*** Eindhoven University of Technology

Abstract: We present a computational framework for stability analysis of systems of coupled linear Partial-Differential Equations (PDEs). The class of PDE systems considered in this paper includes parabolic, elliptic and hyperbolic systems with Dirichlet, Neumann and mixed boundary conditions. The results in this paper apply to systems with a single spatial variable. We exploit a new concept of state for PDE systems which allows us to include the boundary conditions directly in the dynamics of the PDE. The resulting algorithms are implemented in Mathab, tested on several motivating and illustrative examples, and the codes have been posted online. Numerical testing indicates the approach has little or no conservatism for a large class of systems and can analyze systems of up to 20 coupled PDEs.

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Keywords: Distributed Parameter Systems, PDE, LMI, Convex.

1. INTRODUCTION

Partial Differential Equations (PDEs) are used to model systems where the state depends continuously on both time and secondary independent variables. The most common method for stability analysis of PDEs is to project the state onto a finite-dimensional vector space using, e.g. Marion and Temam [1989], Ravindran [2000], Rowley [2005] and to use the existing extensive literature on control of ODEs to test stability and design controllers for the resulting finite-dimensional system. However, such discretization approaches are often prone to instability and numerical ill-conditioning. Attempts to ever, such discretization approaches are often prone to

Problem 1: An obvious Lyapunov functional for this system is

\[
V(x) = \int_0^L x(s)^T M(s) x(s) ds.
\]

Clearly \(V(x) > 0 \) if \(M(s) \geq \epsilon I \) for all \(s \) and some \(\epsilon > 0 \). However, now take the derivative of this functional,

\[
\dot{V}(x) = \int_0^L x(s)^T (s) \dot{D}(s) \left[\begin{array}{c} x \\ x_s \\ x_{ss} \end{array} \right] ds
\]

\[
D(s) := \begin{bmatrix}
A_0(s)M(s) + M(s)A_0(s)^T & 0 & 0 \\
A_1(s)^T M(s) & 0 & 0 \\
A_2(s)^T M(s) & 0 & 0
\end{bmatrix}
\]

The problem then, is that \(D(s) \not\equiv 0 \) for ANY choice of \(A_i \)!

However, what this example illustrates is that boundary conditions are not an afterthought to the formulation of the PDE, but have a profound impact on the distributed
dynamics of the system. This impact can be clearly seen in the following extreme example.

Problem 2:

\[u(t, s) = u(t, s), \quad u(t, 0) = w_1(t), \quad u_s(t, 0) = w_2(t) \]

The exogenous functions \(w_i \) could result from coupling to an ODE (as in a delayed system). However, for our purposes, they could also be set to zero. The point to observe is that the system is not, prima facie, a PDE or even a distributed parameter system as the dynamics are identical at every point in the domain. In the semigroup framework, we would define \(D(A) = \{ u \in H^2 : u(0) = w_1(t), \ u_s(0) = w_2(t) \} \). If we now use the identity mentioned previously, then we find

\[\hat{u}(t, s) = sw_1(t) + w_2(t) + \int_0^s (s - \eta)u_{ss}(\eta)d\eta. \]

This formulation of the same system directly incorporates the boundary conditions into the dynamics - which are now expressed using the more fundamental state \(u_{ss} \). Indeed, it is relatively easy to see that for any suitably well-defined PDE, the more primal states \(u \) and \(\hat{u} \) can be expressed in terms of \(u_{ss} \). In this paper, we develop these observations into a mathematical framework which allows us to directly express the dynamics in the fundamental state by eliminating the boundary conditions and incorporating this auxiliary information directly into the "generator" of the dynamics.

1.1 A Universal Framework

In this paper, we consider the problem of stability analysis of multiple coupled linear PDEs in a single spatial variable. We write these systems in the universal form

\[
\begin{bmatrix}
x_1(t, s) \\
x_2(t, s) \\
x_3(t, s)
\end{bmatrix}_{t} = \begin{bmatrix}
A_0(s)
\end{bmatrix} \begin{bmatrix}
x_1(t, s) \\
x_2(t, s) \\
x_3(t, s)
\end{bmatrix} + \begin{bmatrix}
A_1(s) & A_2(s)
\end{bmatrix} \begin{bmatrix}
x_2(t, s) \\
x_3(t, s)
\end{bmatrix}_{s}
\]

where \(x_i \) are vector-valued functions \(x_i : [a, b] \times \mathbb{R}^n \to \mathbb{R}^n \), and with boundary constraints of the form

\[BC1 : [x_2(t, a) x_3(t, a) x_2(t, b) x_3(t, b) x_{3x}(t, a) x_{3x}(t, b)] = 0 \]

where \(B \) is of row rank \(n_2 + 2n_3 \). We refer to \(\mathbf{x}_p : [a, b] \times \mathbb{R}^{n_1} \to \mathbb{R}^{n_1+n_2+n_3} \) as the *primordial state*. These types of systems arise when there are multiple interacting spatially-distributed states and include wave equations, beam equations, etc.

The main technical contribution is to show that if \(\mathbf{x}_p \) satisfies the boundary conditions and is suitably differentiable, then both the state and the dynamics may be expressed in terms of the *fundamental state*,

\[x_f(t, s) = \begin{bmatrix}
x_1(t, s) \\
x_2(t, s) \\
x_{3ss}(t, s)
\end{bmatrix}, \]

as

\[\dot{x}_p = \mathcal{P}_{(a,b)} x_f, \quad x_p = \mathcal{P}_{(G,a,G,2)} x_f \]

where \(\mathcal{P}_{(a,b)} \) and \(\mathcal{P}_{(G,a,G,2)} \) are multiplier/integral operators which have the form

\[\mathcal{P}_{(M,N_1,N_2)}(x)(s) = M(s)x(s)ds + \int_a^b N_1(s, \theta)x(\theta)d\theta + \int_a^b N_2(s, \theta)x(\theta)d\theta, \]

where the matrix-valued functions \(G_i \) and \(H_i \) are uniquely determined by the matrix \(B \) and where \(x_f \in L^2[a, b] \) need not satisfy any boundary constraints in order to define a solution. This identity implies that for any \(x_f \), the initial value problem is well-defined - implying that this is a boundary-condition independent representation of the state of the system.

We then use these identities to propose a Lyapunov function of the form

\[V(x_p) = \langle x_p, \mathcal{P}_{(M,N_1,N_2)} x_p \rangle \]

whose derivative is then

\[\dot{V}(x_p) = \langle x_f, \mathcal{P}_{(G_1,G_2)} \mathcal{P}_{(M,N_1,N_2)} \mathcal{P}_{(H_0,H_1,H_2)} x_f \rangle + \langle x_f, \mathcal{P}_{(H_0,H_1,H_2)} \mathcal{P}_{(G_1,G_2)} x_f \rangle - \langle x_f, \mathcal{P}_{(D_0,D_1,D_2)} x_f \rangle. \]

for some \(D_i \) where the transformation from the variables \(M, N_1 \) to \(D_i \) is linear. We note that the structure of these quadratic Lyapunov functions are implied by the closed-loop stability conditions established via the backstepping transformation, as shown in Gahalawat and Peet [2017].

We then proceed to parameterize the variables \(M, N_1 \) using polynomials and show that positivity and negativity of operators of the form \(\mathcal{P}_{(M,N_1,N_2)} \) may be enforced using an LMI on the coefficients of the polynomials \(M, N_1 \). Finally, we present a software tool which constructs and tests the resulting LMI and show that almost any stability result on coupled PDEs may be verified using this tool.

2. NOTATION

Empty brackets (i.e. []) denote matrices of dimension 0. We use \(W^{k,p}[X] \) to denote the Sobolev subspace of \(L_p[X] \) of order \(k \) defined as \(\{ u \in L_p[X] : \frac{\partial^k u}{\partial x^k} \in L_p \text{ for all } k \leq k \} \).

H\(^k\) := \(W^{k,2} \).

3. THE M, N1, N2 PARAMETRIZATION OF OPERATORS

In this section, we propose a new parameterization of multiplier and integral operators with kernels of the semi-separable class. This notation will allow us to efficiently represent both our state transformation and the stability conditions proposed in the following sections. First, we define the parameterizations.

For given bounded functions \(M : [a, b] \to \mathbb{R}^{n \times n}, N_1 : [a, b]^2 \to \mathbb{R}^{n \times n}, \) and \(N_2 : [a, b]^2 \to \mathbb{R}^{n \times n} \), we use \(\mathcal{P}_{(M,N_1,N_2)} : L^2[a,b] \to L^2[a,b] \) to denote the multiplier and integral operator defined in Eqn. (2) where \(M \) is the multiplier and the kernel of the corresponding integral operator is given by

\[N(s, \theta) = \begin{cases}
N_1(s, \theta) & \theta < s \\
N_2(s, \theta) & \theta \geq s.
\end{cases} \]

In this paper, the functions \(M, N_1, \) and \(N_2 \) will always be polynomial and hence bounded on a bounded domain.

3.1 Composition of M, N1, N2 operators

We now derive expressions for the composition and adjoint of \(\mathcal{P}_{(M,N_1,N_2)} \) operators. Both composition and adjoint of \(\mathcal{P}_{(M,N_1,N_2)} \) operators are of the \(\mathcal{P}_{(M,N_1,N_2)} \) class and can be efficiently expressed in terms of matrix operators on the functions \(M, N_1, \) and \(N_2 \). First, we address composition.

Theorem 1. For any bounded functions \(B_0, N_0 : [a,b] \to \mathbb{R}^{n \times n}, B_1, B_2, N_1 : [a,b]^2 \to \mathbb{R}^{n \times n}, \) we have

\[\mathcal{P}_{(B_0,B_1,B_2)} = \mathcal{P}_{(B_0,B_1,B_2)} \mathcal{P}_{(N_0,N_1,N_2)} \]
where
\[
R_0(s) = B_0(s)N_0(s)
\]
(3)
\[
R_1(s, \theta) = B_0(s)N_1(s, \theta) + B_1(s, \theta)N_0(\theta) + \int_0^a B_1(s, \xi)N_2(\xi, \theta) d\xi
+ \int_0^a B_2(s, \xi)N_1(\xi, \theta) d\xi + \int_0^a B_2(s, \xi)N_1(\xi, \theta) d\xi
\]
\[
R_2(s, \theta) = B_0(s)N_2(s, \theta) + B_2(s, \theta)N_0(\theta) + \int_0^a B_1(s, \xi)N_2(\xi, \theta) d\xi
+ \int_0^a B_2(s, \xi)N_2(\xi, \theta) d\xi + \int_0^a B_2(s, \xi)N_1(\xi, \theta) d\xi
\]

An interesting corollary of this theorem is that if either
\(B_0 = 0 \) or \(N_0 = 0 \), then \(R_0 = 0 \).

Notation To avoid writing out cumbersome integrals, we will use the notation
\[
\{ R_0, R_1, R_2 \} = \{ B_0, B_1, B_2 \} \times \{ N_0, N_1, N_2 \}
\]
to mean that the functions \(\{ R_0, R_1, R_2 \} \) satisfy Eqs. (3).

3.2 The Adjoint of \(M, N_1, N_2 \) operators

Lemma 1. For any bounded functions \(N_0 : [a, b] \to \mathbb{R}^{n \times n} \), \(N_1, N_2 : [a, b]^2 \to \mathbb{R}^{n \times n} \) and any \(x, y \in L_2^2[a, b] \), we have
\[
\langle \mathcal{P}(N_0, N_1, N_2)x, y \rangle_{L_2} = \langle x, \mathcal{P}(N_0, N_1, N_2)y \rangle_{L_2}
\]
where
\[
\mathcal{N}_0(s) = N_0(s)^T, \quad \mathcal{N}_1(s, \eta) = N_2(\eta, s)^T
\]
and
\[
\mathcal{N}_2(s, \eta) = N_1(\eta, s)^T.
\]

Notation We will use the notation
\[
\{ \mathcal{N}_0, \mathcal{N}_1, \mathcal{N}_2 \} = \{ N_0, N_1, N_2 \}^\star
\]
to mean that the functions \(\{ \mathcal{N}_0, \mathcal{N}_1, \mathcal{N}_2 \} \) satisfy Eqn. (4).

4. FUNDAMENTAL IDENTITIES

In this section, we show that
\[
x_p = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad x_h = \begin{bmatrix} x_2 s \\ x_3 s \end{bmatrix}, \quad x_f = \begin{bmatrix} x_1 \\ x_2 s \\ x_3 s \end{bmatrix}
\]
and
\[
Bcol[x_2(a) x_2(b) x_3(a) x_3(b) x_3s(a) x_3s(b)] = 0
\]
where \(B \) is of row rank \(n_1 + 2n_2 \), then the following identities hold
\[
x_p = \mathcal{P}((G_0, G_1, G_2)x_f), \quad x_h = \mathcal{P}((G_1, G_4, G_5)x_f),
\]
where the \(G_i \) are uniquely determined by the matrix \(B \).

The proof of the following theorem is based on the observation that any boundary value can be expressed using any two other boundary identities.

Theorem 2. Suppose \(x_p \in L_2 \times H^1 \times H^2 \) and
\[
Bcol[x_2(a) x_2(b) x_3(a) x_3(b) x_3s(a) x_3s(b)] = 0
\]
where \(B \) is of row rank \(n_1 + 2n_2 \), then the following identities hold
\[
x_h = \mathcal{P}((G_1, G_4, G_5)x_f), \quad x_p = \mathcal{P}((G_0, G_1, G_2)x_f)
\]
where
\[
x_p = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad x_h = \begin{bmatrix} x_2 s \\ x_3 s \end{bmatrix}, \quad x_f = \begin{bmatrix} x_1 \\ x_2 s \\ x_3 s \end{bmatrix}
\]
\[
G_0(s) = L_0, \quad G_1(s, \theta) = L_1(s, \theta) + G_2(s, \theta)
\]
\[
G_2(s, \theta) = -K(s)(BT)^{-1}BQ(s, \theta)
\]
\[
G_4(s, \theta) = G_4(s, \theta) = F_1 + L_1(s, \theta) + G_5(s, \theta)
\]
\[
G_5(s, \theta) = -V(BT)^{-1}BQ(s, \theta)
\]

We refer to \(x_{bc} \) as the “core” boundary conditions. Given these, \(x_p \) and \(x_h \) are the combination of a uniquely determined semi-separable operator acting on the “fundamental” state \(x_f \) and a separable operator, determined by the true boundary conditions, also acting on the fundamental state.

These relationships imply that if we can solve for \(x_f \), then we can reconstruct the full solution \(x_p \). Furthermore, stability with respect to \(x_f \) implies stability with respect to the integrated value \(x_p \). Note that the transformation is invertible, where obviously, we may differentiate \(x_p \) to obtain \(x_f \). This implies there is a one-to-one relationship between the subspace \(L_2 \times H^1 \times H^2 \) which satisfy the boundary conditions and the entire space \(L_2 \).

With this in mind, let us re-examine the dynamics of the original PDE to see whether these can be expressed using online the fundamental state, \(x_f \).

4.1 Expression for the Fundamental Dynamics

Lemma 2. If
\[
\begin{bmatrix}
 x_1(t, s) \\
 x_2(t, s) \\
 x_3(t, s)
\end{bmatrix}_t = A_0(s) \begin{bmatrix}
 x_1(t, s) \\
 x_2(t, s) \\
 x_3(t, s)
\end{bmatrix} + A_1(s) \begin{bmatrix}
 x_2(t, s) \\
 x_3(t, s)
\end{bmatrix}_s + A_2(s) \begin{bmatrix}
 x_3(t, s)
\end{bmatrix}_s
\]
where \(x_1 : [a, b] \times \mathbb{R}^+ \to \mathbb{R}^{n_1} \) such that
\[
Bcol[x_2(t, a) x_2(t, b) x_3(t, a) x_3(t, b) x_3s(t, a) x_3s(t, b)] = 0.
\]
Then
\[
x_p = \mathcal{P}((H_0, H_1, H_2)x_f)
\]
\[
H_0(s) = A_0(s)G_0(s) + A_1(s)G_2(s) + A_2(s)
\]
\[
H_1(s, \theta) = A_0(s)G_1(s, \theta) + A_1(s)G_4(s, \theta),
\]
\[
H_2(s, \theta) = A_0(s)G_2(s, \theta) + A_1(s)G_5(s, \theta),
\]
\[
A_2(s) = [0 \ 0 \ A_2(s)]
\]
where the \(G_i \) are as defined in Theorem 2.

This representation of the dynamics is useful in that we no longer need to account for the boundary conditions. This begs the question of whether the dynamics may be written solely in terms of \(x_f \). Clearly, we have
\[
\mathcal{P}((G_0, G_1, G_2)x_{f, t}) = \mathcal{P}((H_0, H_1, H_2)x_f).
\]
However, this is an integro-differential equation and hence somewhat difficult to study. Furthermore, in this case, we cannot simply invert \(\mathcal{P}((G_0, G_1, G_2)) \), as this would lead to a differential operator and \(x_f \) is not necessarily differentiable. For this reason, we take a hybrid approach and express our stability conditions using a Lyapunov function defined on \(x_p \). Having defined our Lyapunov function, we proceed to take the derivative of the function and reformulate this derivative solely in terms of \(x_f \).
before we express these stability conditions, we propose an LMI for ensuring positivity of operators of the $P_{(M,N_1,N_2)}$ class when the functions M, N_1, N_2 are polynomial.

5. POSITIVITY OF OPERATORS

In the following section, we will show how to represent our Lyapunov stability conditions as positivity of operators of the form $P_{(M,N_1,N_2)}$. First, however, we show how to use LMIs to enforce positivity of these operators when M, N_1 and N_2 are polynomials. This is a slight generalization of the result in Peet [2014].

Theorem 3. For any square-integrable functions $Z_1(s)$ and $Z_2(s, \theta)$, if $g(s) \geq 0$ for all $s \in [a, b]$ and

$$M(s) = g(s)Z_1(s)^T P_{11}Z_1(s) + g(s)Z_2(s, \theta)^T P_{12}Z_2(s, \theta) + g(\theta)Z_3(\theta)^T P_{13}Z_3(\theta)$$

$$+ \int_a^b g(\nu)Z_2(\nu, s)^T P_{21}Z_2(\nu, s) d\nu + \int_a^b g(\nu)Z_2(\nu, s)^T P_{22}Z_2(\nu, s) d\nu$$

$$+ \int_a^b g(\nu)Z_2(\nu, s)^T P_{23}Z_2(\nu, s) d\nu + \int_a^b g(\nu)Z_2(\nu, s)^T P_{22}Z_2(\nu, s) d\nu$$

$$+ \int_a^b g(\nu)Z_2(\nu, s)^T P_{22}Z_2(\nu, s) d\nu,$$

where

$$P = \begin{bmatrix} P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \\ P_{31} & P_{32} & P_{33} \end{bmatrix} \geq 0,$$

then $P^{*}_{(M,N_1,N_2)} = P_{(M,N_1,N_2)}$ and \(\langle x, P_{(M,N_1,N_2)} x \rangle_{L_2} \geq 0 \) for all $x \in L_2[a, b]$. A typical choice for Z_1 is a vector of monomials. For $g(s) = 1$, the operators are positive on any domain. However, for $g(s) = (s-a)(b-s)$ the operator is only positive on $[a, b]$. In practice, and motivated by Positivstellensatz-type results, we combine both choices for g. For convenience, we now explicitly define the set of functions which satisfy Theorem 3 in this way. Specifically, we denote $Z_d(x)$ as the vector of monomials of degree d or less and define the cone of positive operators with polynomial multipliers and kernels associated with degree d as

$$\Phi_d := \{(M, N_1, N_2) \in \mathbb{R}^{n \times n} : (M, N_1, N_2) = (M_a, N_{1a}, N_{2a}) + (M_b, N_{1b}, N_{2b})$$

where (M_a, N_{1a}, N_{2a}) and (M_b, N_{1b}, N_{2b}) satisfy the conditions of Thm. 3 with $Z = Z_d$ and

where $g(s) = 1$ and $g(s) = (s-a)(b-s)$, resp.\}

where the dimension of the matrices M, N_1 and N_2 should be clear from context. The constraint $(M, N_1, N_2) \in \Phi_d$ may thus be considered an LMI constraint. A Matlab toolbox for enforcing this LMI constraint is discussed in Section 8.

6. LYAPUNOV STABILITY CONDITIONS

Using the $P_{(M,N_1,N_2)}$ parameterization of operators, we may now succinctly represent our Lyapunov Stability conditions. The procedure is relatively straightforward. We propose a Lyapunov function of the form

$$V(x_p) = \langle x_p, P_{(M,N_1,N_2)} x_p \rangle_{L_2}$$

such that $P^{*}_{(M,N_1,N_2)} = P_{(M,N_1,N_2)}$. The derivative of the Lyapunov function is

$$\dot{V}(x_p) = \langle x_p, P_{(M,N_1,N_2)} x_p \rangle + \langle x_p, P_{(M,N_1,N_2)} x_p \rangle_{L_2}$$

$$= \langle x_p, P_{(H_0,H_1,H_2)} x_f \rangle + \langle x_p, P_{(M,N_1,N_2)} x_p \rangle_{L_2}$$

$$= \langle x_f, P_{(M,N_1,N_2)} x_f \rangle + \langle x_f, P_{(M,N_1,N_2)} x_f \rangle_{L_2}$$

$$= \langle x_f, P_{(G_0,G_1,G_2)} x_f \rangle + \langle x_f, P_{(M,N_1,N_2)} x_f \rangle_{L_2}$$

$$= \langle x_f, P_{(H_0,H_1,H_2)} x_f \rangle + \langle x_f, P_{(M,N_1,N_2)} x_f \rangle_{L_2}$$

$$= \langle x_f, P_{(K_0,K_1,K_2)} x_f \rangle + \langle x_f, P_{(M,N_1,N_2)} x_f \rangle_{L_2}.$$

If we then constrain $P_{(M,N_1,N_2)} > 0$ and $P_{(K_0,K_1,K_2)} < 0$, then by standard Lyapunov arguments we have stability.

Theorem 4. Suppose there exist $\epsilon, \epsilon_2 > 0, d \in \mathbb{Z}, M : [a, b] \rightarrow \mathbb{R}^{n \times n}, N_1, N_2 : [a, b]^2 \rightarrow \mathbb{R}^{n \times n}$ such that

$$(M - \epsilon I, N_1, N_2) \in \Phi_d$$

and

$$\{K_0, K_1, K_2\} - \{K_0, K_1, K_2\}^* - \epsilon_2(T_0, T_1, T_2) \in \Phi_d$$

where

$$\{K_0, K_1, K_2\} = \{H_0, H_1, H_2\}^* \times \{J_0, J_1, J_2\}$$

$$\{J_0, J_1, J_2\} = \{M_0, N_1, N_2\}^* \times \{G_0, G_1, G_2\}$$

$$\{T_0, T_1, T_2\} = \{G_0, G_1, G_2\}^* \times \{G_0, G_1, G_2\}$$

where G_i are as defined in Thm. 2 and H_i are as defined in Lem. 2. Then any solution of Eqns. (1) and (5) is exponentially stable.

7. SOFTWARE IMPLEMENTATION

In this section, we examine the accuracy and computational complexity of the proposed stability algorithm by applying the results to several well-studied and relatively trivial test cases. The algorithms are implemented using a Matlab toolbox which is an adaptation of SOS-TOOLS Prajna et al. [2002] and which can be found online at http://control.asu.edu and on Code Ocean.

8. ILLUSTRATION BY EXAMPLE

In this section, we use several well-known examples to illustrate the process by which these problems are posed in the universal framework proposed in this paper. There are several significant questions to keep in mind when constructing the universal formulation.

- What are the states? e.g. Is the correct state u or u_s?
- What are the boundary conditions?

Choice of State: The choice of states determines not only the complexity of the computation, but feasibility of the stability. This is because many PDEs are exponentially stable with respect to some states, but not others. Ideally, we would use the fundamental state, x_f, as stability in this state implies stability in the primal state, x_p. However, as mentioned earlier, it is not generally possible to express the dynamics of x_f in the form of Equation (1). As a rule of thumb, it is generally better to use states such as u_s instead of u, as stability in u_s implies stability in u. Moreover, as we will see, the choice of state is limited by the boundary conditions imposed.

Boundary Conditions: Identification of boundary conditions in the universal framework is particularly important, as the B matrix must have sufficient rank. Boundary conditions represent redundant information and hence
These equations are now in the universal form
\[x_t = \begin{bmatrix} 0 & -c \\ 1 & 0 \end{bmatrix} x_{ss} \]
where \(A_0 = A_1 = 0 \), \(n_3 = 2 \), and \(n_1 = n_2 = 0 \). We now examine the boundary conditions using these states:
\[u_{ss}(L) = u_2(L) = 0 \quad \text{and} \quad u_{ssss}(L) = u_{2ss}(L) = 0. \]
These boundary conditions are insufficient, as the resulting rank is 2. Fortunately, we may differentiate boundary conditions in time to obtain
\[u_1(0) = u_1(0) = 0 \quad \text{and} \quad u_{ss}(0) = u_{1ss}(0) = 0. \]
We now have 4 boundary conditions, which we use to construct the matrix as
\[B = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \]
Entering this data into the software tool, we find the E-B beam is stable for any \(c > 0 \). Not that this implies the E-B is exponentially stable with respect to \(u_1 \) and \(u_{ss} \).

8.1.0.2. Timoshenko Beam We now consider a Timoshenko beam model where, for simplicity, we set \(\rho = E = I = k = G = 1 \):
\[\ddot{w} = \partial_x(w_s - \phi) \]
\[\dot{\phi} = \dot{w}_s + (w_s - \phi) \]
with boundary conditions of the form
\[\phi(0) = 0, \quad w(0) = 0, \quad \phi(L) = 0, \quad w_s(L) = \phi(L) = 0. \]
As before, our first step is to eliminate the second-order time-derivative, and hence we choose \(u_1 = w_t \) and \(u_3 = \dot{\phi}_t \). The next step is more problematic. The typical approach would be to use the boundary conditions as a guide and choose the remaining states as \(u_2 = w_s - \phi \) and \(u_4 = \phi_s \). This gives us 4 first order boundary conditions
\[u_1(0) = 0, \quad u_3(0) = 0, \quad u_4(L) = 0, \quad u_2(L) = 0 \]
Reconstructing the dynamics, we now have
\[u_1 = u_2 + u_3, \quad u_2 = u_{1ss} - u_3 \]
\[u_3 = u_{4ss} + u_2, \quad u_4 = u_{3ss}. \]
Expressing this in our standard form we have the purely hyperbolic construction
\[\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}_t = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_0 \\ L \end{bmatrix}. \]
where \(A_0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \) and \(n_1 = n_3 = 0 \) and \(n_2 = 4 \). The matrix is then
\[\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} u(0) \\ u(L) \end{bmatrix} = 0 \]
where \(B \) has row rank \(n_2 = 4 \). The code indicates this system is stable (using \(\varepsilon_2 = 0 \)). However, when \(\varepsilon_2 > 0 \), the code is unable to find a Lyapunov function, indicating this formulation is probably not be exponentially stable in all the given states. This question of exponential stability in some states but not others is common in wave-type equations of this form. To further illustrate, we now consider a slight modification - we choose \(u_2 = w_s \) and \(u_4 = \phi \). This leads to a mixed hyperbolic-diffusive formulation where
\[\begin{bmatrix} u_2 \\ u_3 \\ u_1 \\ u_4 \end{bmatrix}_t = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_0 \\ L \end{bmatrix}. \]
where \(n_1 = 0, n_2 = 3, \) and \(n_3 = 1 \) and with 5 boundary conditions
\[\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_{1ss} \\ u_{2ss} \\ u_{1ss} \\ u_{2ss} \\ u_{1ss} \\ u_{2ss} \end{bmatrix} = 0. \]
This formulation, however, does not appear to be stable in the given states. Since the only new state is \(\phi \), we may test this hypothesis by adding a damping term \(-cu_{2ss} = -cu_3 \) to the dynamics of \(\ddot{u}_1 \). In this case, the only change is that now
\[A_0 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & -c & -1 \\ 0 & 0 & 1 \end{bmatrix}. \]
The code indicates that this formulation is now stable for any \(c > 0 \). These examples indicates the sensitivity of PDE models to the definition of stability - something that seems especially critical in wave-type PDEs.

8.2 Wave Equation with Boundary Feedback Examples
In this subsection, we consider wave equations attached at one end and free at the other with damping at the free
end. This is a well-studied problem for which numerous stability results are available in the literature [Chen, 1979], Datko et al. [1986]. The simplest formulation is

\[u_{tt}(t, s) = u_{ss}(t, s) \]

\[u(t, 0) = 0 \quad u_{s}(t, L) = -ku_{t}(t, L). \]

As with the beam examples, this has a purely hyperbolic formulation. Guided by the boundary conditions, we choose

\[u_{1}(t, s) = u_{ss}(t, s), \quad u_{2}(t, s) = u_{t}(t, s) \]

This yields

\[
\begin{bmatrix}
 u_{1} \\
 u_{2}
\end{bmatrix}
\begin{bmatrix}
 0 & 1 \\
 1 & 0
\end{bmatrix}
\begin{bmatrix}
 u_{1} \\
 u_{2}
\end{bmatrix}
\begin{bmatrix}
 A_1 \\
 A_2
\end{bmatrix}
\]

where \(A_0 = 0 \), \(A_2 = \] \(n_1 = n_3 = 0 \) and \(n_2 = 2 \). The boundary conditions are now

\[
\begin{bmatrix}
 0 & 1 & 0 & 0 \\
 0 & 0 & k & 1
\end{bmatrix}
\begin{bmatrix}
 u(0) \\
 u(L)
\end{bmatrix}
= 0.
\]

This formulation is computed to be exponentially stable in the given state \(u_{k} \) for \(k > 0 \). We now consider variations on this formulation.

Diffusive Formulation As a first variation, we consider a non-diffusive formulation from Chen [1979] which was shown to be asymptotically stable in the state \(u \) for \(a^2 + k^2 > 0 \).

\[u_{tt}(t, s) = u_{ss}(t, s) - 2au_{t}(t, s) - a^2u_{t}(t, s) \quad s \in [0, 1] \]

\[u(t, 0) = 0, \quad u_{s}(t, 1) = -ku_{t}(t, 1) \]

In this case, we are forced to choose the variables \(u_{1} = u_{t} \) and \(u_{2} = u \) yielding the diffusive formulation

\[
\begin{bmatrix}
 u_{1} \\
 u_{2}
\end{bmatrix}
\begin{bmatrix}
 -2a & -a^2 \\
 1 & 0
\end{bmatrix}
\begin{bmatrix}
 u_{1} \\
 u_{2}
\end{bmatrix}
\begin{bmatrix}
 A_1 \\
 A_2
\end{bmatrix}
\]

where \(A_1 = 0 \), \(n_1 = 0 \), \(n_2 = 1 \), and \(n_3 = 1 \). Note in this case that the boundary conditions on \(u_{1} \) force us to consider this a hyperbolic state! These boundary conditions are expressed as

\[
\begin{bmatrix}
 0 & 0 & 1 & 0 & 0 & 0 \\
 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & k & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 u_{1}(0) \\
 u_{1}(L) \\
 u_{2}(0) \\
 u_{2}(L) \\
 u_{2}(0) \\
 u_{2}(L)
\end{bmatrix}
= 0.
\]

Computation indicates this model is stable (feasible when \(\epsilon_2 = 0 \), but not exponentially stable in the given state - a result confirmed in Chen [1979], Datko et al. [1986].

9. CONCLUSION

In this paper, we have shown that stability of a large class of PDE systems can be represented compactly in LMI form using a variation of Sum-of-Squares optimization. To achieve this result, we proposed that the state of a PDE of the form of Equation (1) is actually \(x_f \) and that all Lyapunov stability conditions may be represented on this state. A SOS-style algorithm to test these Lyapunov conditions is proposed and numerical examples indicate no conservatism in the stability conditions to at least 5 significant figures even for low polynomial degree.

REFERENCES

O. Aamo. Disturbance rejection in 2 x 2 linear hyperbolic systems. *IEEE Transactions on Automatic Control*, 58(5):1095–1106, 2013.

M. Ahmadi, G. Valmorbida, and A. Papachristodoulou. Dissipation inequalities for the analysis of a class of PDEs. *Automatica*, 66:163–171, 2016.

A. Benussouan, G. Da Prato, M. C. Delfour, and S. K. Mittr. Representation and Control of Infinite Dimensional Systems Volume I. Birkhäuser, 1992.

G. Chen. Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain. *J. Math. Pures Appl.*, 58:249–273, 1979.

R. Curtain and H. Zwart. *An Introduction to Infinite-Dimensional Linear Systems Theory*. Springer-Verlag, 1995.

R. Datko, J. Lagnese, and M. Polis. An example on the effect of time delays in boundary feedback stabilization of wave equations. *SIAM Journal on Control and Optimization*, 24(1):152–156, 1986.

E. Fridman and M. Terukhin. New stability and exact observability conditions for semilinear wave equations. *Automatica*, 63:1–10, 2016.

A. Gahlawat and M. Peet. Output feedback control of inhomogeneous parabolic PDEs with point actuation and point measurement using SOS and semi-separable kernels. In *Proceedings of the IEEE Conference on Decision and Control*, 2015.

A. Gahlawat and M. Peet. A convex sum-of-squares approach to analysis, state feedback and output feedback control of parabolic PDEs. *IEEE Transactions on Automatic Control*, 62(4):1636–1651, 2017.

I. Lasiecka and R. Triggiani. *Control theory for partial differential equations: Volume 1, Abstract parabolic systems: Continuous and approximation theories*. Cambridge University Press, 2000.

M. Marion and R. Temam. Nonlinear Galerkin methods. *SIAM Journal on numerical analysis*, 26(5):1139–1157, 1989.

A. Papachristodoulou and M. M. Peet. On the analysis of systems described by classes of partial differential equations. In *Proceedings of the IEEE Conference on Decision and Control*, page 747, 2006.

M. Peet. LMI parameterization of Lyapunov functions for infinite-dimensional systems: A toolbox. In *Proceedings of the American Control Conference*, 2014.

S. Prajna, A. Papachristodoulou, and P. A. Parrilo. Introducing SOSTOOLS: a general purpose sum of squares programming solver. *Proceedings of the IEEE Conference on Decision and Control*, 2002.

S. Ravindran. A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. *International journal for numerical methods in fluids*, 34(5):425–448, 2000.

C. Rowley. Model reduction for fluids, using balanced proper orthogonal decomposition. *International Journal of Bifurcation and Chaos*, 15(03):997–1013, 2005.

A. Smyshlyaev and M. Krstic. Backstepping observers for a class of parabolic pdes. *Systems & Control Letters*, 54(7):613–625, 2005.

O. Solomon and E. Fridman. Stability and passivity analysis of semilinear diffusion pdes with time-delays. *International Journal of Control*, 88(1):180–192, 2015.

G Valmorbida, M Ahmadi, and A Papachristodoulou. Stability analysis for a class of partial differential equations via semidefinite programming. *IEEE Transactions on Automatic Control*, 61(6):1649–1654, 2016.