Large Isotropic Volume Change due to Thermal-induced First-order Transition in La$_{1-z}$Pr$_z$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$

S. Fujieda, A. Fujita and K. Fukamichi

1 Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577, Japan
2 Department of Materials Science, Graduate School of Engineering, Tohoku University, Aoba-yama 6-6-02, Sendai 980-8579, Japan

E-mail: fujieda@tagen.tohoku.ac.jp

Abstract NaZn$_{13}$-type La$_{0.5}$Pr$_{0.5}$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ exhibits an isotropic volume change associated with the thermal-induced first-order transition at the Curie temperature T_C = 186 K. The magnitude of the isotropic volume change at T_C of La$_{0.5}$Pr$_{0.5}$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ is about 1.3 %, larger than that of La(Fe$_{0.88}$Si$_{0.12}$)$_{13}$. As a result, the enhancement in the local magnetic moment of Fe at T_C is caused by the partial substitution of Pr. The volume change around T_C of La$_{1-z}$Pr$_z$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ is comparable in magnitude to that of La$_{1-z}$Ce$_z$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ having the same T_C. Accordingly, the enhancement in the local magnetic moment of Fe at T_C for La$_{1-z}$Pr$_z$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ is closely related with the decrease of T_C without the marked decrease of thermal stability of Fe moment.

1. Introduction
NaZn$_{13}$-type La(Fe$_x$Si$_{1-x}$)$_{13}$ compounds with $0.86 \leq x \leq 0.90$ exhibit the thermal-induced first-order transition between the ferromagnetic (F) to the paramagnetic (P) states at the Curie temperature T_C [1]. The thermal-induced first-order transition at T_C is accompanied by a marked volume change [2, 3]. Since the cubic NaZn$_{13}$-type structure of the Fm3c space group is kept after the thermal-induced first-order transition, the volume change at T_C is isotropic [2, 3]. Furthermore, T_C is sensibly decreased with decreasing the unit cell volume by applying the hydrostatic pressure, though the decrease of saturation magnetization M_s is not so significant [2]. Such magnetovolume effects in La(Fe$_x$Si$_{1-x}$)$_{13}$ are discussed in terms of Landau-type expansion of magnetic free energy by taking the effects of spin fluctuations and the magnetoelastic energy into account [2, 4-6]. Recently, it has been reported that La in La(Fe$_x$Si$_{1-x}$)$_{13}$ is replaced by other rare earth elements such as Ce [7], Pr [8] and Nd [9, 10]. The NaZn$_{13}$-type single phase is obtained in La$_{1-z}$Pr$_z$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ with $z \leq 0.5$ [8]. Since the unit cell volume decreases with increasing z because of the lanthanide contraction, T_C is decreased from 195 K to 186 K by a partial substitution of $z = 0.5$ with keeping the thermal-induced first-order transition. In addition, M_s increases with increasing z, and hence the magnetic moment per Pr atom is estimated to be about 3.3 μ_B, very close to that of a free Pr$^{3+}$ ion, indicating that the magnetic moment of Pr is regarded as the parallel to that of Fe. As a result, the magnetization change at T_C in the thermomagnetization curve becomes larger with increasing z. The amplitude of local magnetic moment is closely related with the volume change [11, 12]. In the present study, therefore, the volume change associated with the thermal-induced first-order transition at T_C of
$La_{0.5}Pr_{0.5}(Fe_{0.88}Si_{0.12})_{13}$ has been evaluated in order to investigate the influence of the partial substitution of Pr on the local magnetic moment change of Fe.

2. Experimental

NaZn$_{13}$-type $La_{0.5}Pr_{0.5}(Fe_{0.88}Si_{0.12})_{13}$ and $La(Fe_{0.88}Si_{0.12})_{13}$ compounds were prepared by arc-melted in an argon gas atmosphere and the heat-treatments for homogenization were carried out in a vacuum quartz tube. The annealing temperature and duration were 1173 K and 10 days for $La_{0.5}Pr_{0.5}(Fe_{0.88}Si_{0.12})_{13}$ and 1323 K for 10 days for $La(Fe_{0.88}Si_{0.12})_{13}$. The powder x-ray diffraction measurements were made by using CuKα radiation. The magnetization was measured with a SQUID magnetometer.

3. Results and discussion

Figure 1 presents the temperature dependence of x-ray diffraction patterns in the 2θ region between 99 and 105° with a step interval of 0.02° for $La_{0.5}Pr_{0.5}(Fe_{0.88}Si_{0.12})_{13}$ with $T_C = 186$ K. Since the diffraction patterns below T_C is almost the same as that at 220 K, the cubic NaZn$_{13}$-type structure is kept after the thermal-induced first-order transition. A significant shift of the pattern toward a lower angle side is observed with increasing temperature form 180 to 185 K. Accordingly, $La_{0.5}Pr_{0.5}(Fe_{0.88}Si_{0.12})_{13}$ exhibits an isotropic volume change associated with the thermal-induced first-order transition at T_C in analogy with $La(Fe_{0.88}Si_{0.12})_{13}$[2].

Figure 2 shows the temperature dependence of the relative volume change $\Delta V/V$ evaluated from x-ray diffraction data of $La_{0.5}Pr_{0.5}(Fe_{0.88}Si_{0.12})_{13}$ and $La(Fe_{0.88}Si_{0.12})_{13}$. The value of T_C is indicated by the arrow. A marked change of $\Delta V/V$ in the vicinity of T_C is observed in $La_{0.5}Pr_{0.5}(Fe_{0.88}Si_{0.12})_{13}$. By using the local magnetic moment M and the mean-squared amplitude of thermal spin fluctuations ξ_2, the contribution of the magnetism to the volume as a function of the temperature $\omega(T)$ is given as [12]

$$\omega(T) = \kappa C_{mv}\{M^2(T) + \xi_2^2(T)\}, \quad (1)$$

where κ and C_{mv} are the compressibility and the magnetovolume coupling constant, respectively. The value of ξ_2 increases with increasing temperature [12]. In contrast, M decreases with increasing temperature and becomes zero in the P state. Therefore, the volume change associated with the thermal-induced first-order transition at T_C, $\Delta \omega(T_C)$, is expressed as [12];

$$\Delta \omega(T_C) = \kappa C_{mv}\{M^2(T)_{F} + \xi_2^2(T)_{P}\}, \quad (2)$$

![Fig.1 Temperature dependence of X-ray diffraction patterns in the 2θ region between 99 and 105° with a step interval of 0.02° for $La_{0.5}Pr_{0.5}(Fe_{0.88}Si_{0.12})_{13}$ with $T_C = 185$ K.](image)
Recently, we have investigated the temperature dependence of the enhancement of isotropic volume change associated with the thermal-induced first-order transition of Fe results in the large volume change at T_C where $z' = 0.3$. The volume dependence of V/T for La$_{1-z}$Pr$_z$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ is mainly attributed to the increase in M of Fe. Accordingly, the enhancement of isotropic volume change associated with the thermal-induced first-order transition of La$_{1-z}$Pr$_z$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ is increased by the partial substitution of Ce, although the saturation magnetization at 5 K is hardly changed [14]. In other words, the partial substitution of Ce brings about the increase in M of Fe because of the decrease of the unit cell volume [14]. The magnitude of the volume change in the vicinity of T_C is similar to that of La$_{1-z}$Pr$_z$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ under hydrostatic pressure. However, the value of the spin-wave dispersion coefficient is slightly increased by the partial substitution of Ce, although the value of La$_{1-z}$Pr$_z$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ under hydrostatic pressure decreases with decreasing T_C [13]. Therefore, T_C of La$_{1-z}$Pr$_z$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ is decreased without the marked decrease of thermal stability of Fe moment. As a result, the magnetization change at T_C is enhanced by the partial substitution of Ce, although the saturation magnetization at 5 K is hardly changed [14]. In other words, the partial substitution of Ce brings about the increase in M of Fe at T_C, resulting in the enhancement of volume change associated with the thermal-induced first-order transition. It should be noted that the relation between $\Delta V/V(T_C)$ and T_C of La$_{1-z}$Pr$_z$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ is similar to that of La$_{1-z}$Ce$_z$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$, indicating that M of Fe in the former is almost the same as that in the latter having the same T_C. Therefore, it is concluded that the increase in M of Fe due to the partial substitution of Pr is caused by.

where $M(T_C)$ is M at T_C in the F state and $\xi^2(T_C)$ is ξ^2 at T_C in the P state. Thus the large value of M of Fe results in the large volume change at T_C. Note that the magnitude of the volume change around T_C of La$_{0.5}$Pr$_{0.5}$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ is about 1.3 %, clearly larger than that of La$_{1-z}$Pr$_z$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$. Accordingly, the enhancement of isotropic volume change associated with the thermal-induced first-order transition of La$_{1-z}$Pr$_z$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ is given in Fig. 3, together with the data of La$_{0.5}$Pr$_{0.5}$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$.

Note that the magnitude of the volume change around T_C of La$_{1-z}$Ce$_z$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ is decreased without the marked decrease of thermal stability of Fe.

![Fig. 2](image-url) Fig. 2. Temperature dependence of the relative volume change $\Delta V/V$ evaluated from X-ray diffraction data of La$_{1-z}$Pr$_z$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$.

![Fig. 3](image-url) Fig. 3. The value of $\Delta V/V(T_C)$ associated with the thermal-induced first-order transition as a function of T_C for La$_{1-z}$Pr$_z$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ and La$_{1-z}$Ce$_z$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$.
the decrease of T_C without the marked decrease of thermal stability of Fe moment.

4. Conclusion

The relative volume $\Delta V/V$ change associated with the thermal-induced first-order transition at the Curie temperature T_C of La$_{0.5}$Pr$_{0.5}$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ has been investigated. La$_{0.5}$Pr$_{0.5}$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ exhibits an isotropic volume change at $T_C = 186$ K in a similar way of La(Fe$_{0.88}$Si$_{0.12}$)$_{13}$. The magnitude of $\Delta V/V$ at T_C of La$_{0.5}$Pr$_{0.5}$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ is about 1.3 $\%$, which is larger than that for La(Fe$_{0.88}$Si$_{0.12}$)$_{13}$. The value of $\Delta V/V$ associated with the thermal-induced first-order transition as a function T_C of La$_{1-x}$Pr$_x$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$ is comparable with that of La$_{1-x}$Ce$_x$(Fe$_{0.88}$Si$_{0.12}$)$_{13}$. Therefore, it is concluded that the increase in the local magnetic moment of Fe at T_C is connected with the decrease of T_C caused by the partial substitution of Pr.

References

[1] Fujita A, Akamatu K and Fukamichi K 1999 J. Appl. Phys 85 4756
[2] Fujita A, Fujieda S, Fukamichi K, Mitamura H and Goto T 2002 Phys. Rev. B 65 014410
[3] Fukamichi K and Fujita A 2000 J. Mater. Sci. Technol. 16 167
[4] Fujita A, Fukamichi K, Wang JT and Kawazoe Y 2003 Phys. Rev. B 68 104431
[5] Fujita A, Fukamichi K, Yamada M and Goto T 2006 Phys. Rev. B 73 104420
[6] Fujieda S, Fujita A, Fukamichi K, Yamaguchi Y and Ohoyama K 2008 J. Phys. Soc. Jpn. 77 074722
[7] Fujieda S, Fujita A and Fukamichi K 2004 Mater. Trans. 45 3228
[8] Fujieda S, Fujita A and Fukamichi K 2007 J. Appl. Phys. 102 023907
[9] Kim Anh DT, Thuy NP, Duc NH, Nhien TT, Nong NV, 2003 J. Magn. Magn. Mater. 263 427
[10] Fujieda S, Fujita A and Fukamichi K 2007 Mater. Sci. Forum 561-565 1093
[11] Morita T and Usami K 1980 Solid State Commun. 34 95
[12] Yamada H and Terao K 1994 J. Phys.: Condens. Matter 6 10805
[13] Fujieda S, Fujita A and Fukamichi K to be submitted.
[14] Fujieda S, Fujita A, Fukamichi K, Hirano N and Nagaya S 2006 J. Alloys Compd. 408-412 1165