IL-34 Induces the Differentiation of Human Monocytes into Immunosuppressive Macrophages. Antagonistic Effects of GM-CSF and IFNγ

Etienne D. Foucher1,2,3, Simon Blanchard1,2,3,4, Laurence Preisser1,2,3, Erwan Garo1,2,3,4, Norbert Ifrah1,2,3,5, Philippe Guardiola1,2,3,6, Yves Delneste1,2,3,4,9, Pascale Jeannin1,2,3,4,9

1 LUNAM Université, Université d’Angers, Angers, France, 2 Inserm, unit 892, Angers, France, 3 CNRS, unit 6299, Angers, France, 4 Université d’Angers, Centre Hospitalier Universitaire, Laboratoire d’Immunologie et d’Allergologie, Angers, France, 5 Université d’Angers, Centre Hospitalier Universitaire, Service des Maladies du Sang, Angers, France, 6 Plateforme SNP, Transcriptome & Epigénomique, Centre Hospitalier Universitaire, Angers, France

Abstract
IL-34 is a recently identified cytokine that signals via the M-CSF receptor and promotes monocyte survival. Depending on the environment, monocytes can differentiate into macrophages (Mφ) or dendritic cells (DC). A wide spectrum of Mφ and DC subsets, with distinct phenotypes and functions, has been described. To date, the phenotype of monocytes exposed to IL-34 remains unexplored. We report here that IL-34 induces the differentiation of monocytes into CD14high CD163high CD1a– Mφ (IL-34-Mφ). Upon LPS stimulation, IL-34-Mφ exhibit an IL-10high IL-12low M2 profile and express low levels of the costimulatory molecules CD80 and CD86. IL-34-Mφ exhibit poor T cell costimulatory properties, and have potent immunosuppressive properties (decrease of TCR-stimulated T cell proliferation). For all the parameters analyzed, IL-34-Mφ are phenotypically and functionally similar to M-CSF-Mφ. IL-34 appears as efficient as M-CSF in inducing the generation of immunosuppressive Mφ. Moreover, the generation of IL-34-Mφ is mediated through the M-CSF receptor, is independent of endogenous M-CSF consumption and is potentiated by IL-6. In an attempt to identify strategies to prevent a deleterious M2 cell accumulation in some pathological situations, we observed that IFNγ and GM-CSF prevent the generation of immunosuppressive Mφ induced by IL-34. IFNγ also switches established IL-34-Mφ into immunostimulatory Mφ. In conclusion, we demonstrate that IL-34 drives the differentiation of monocytes into immunosuppressive M2, in a manner similar to M-CSF, and that IFNγ and GM-CSF prevent this effect.

Citation: Foucher ED, Blanchard S, Preisser L, Garo E, Ifrah N, et al. (2013) IL-34 Induces the Differentiation of Human Monocytes into Immunosuppressive Macrophages. Antagonistic Effects of GM-CSF and IFNγ. PLoS ONE 8(2): e56045. doi:10.1371/journal.pone.0056045

Introduction
Circulating monocytes are precursors that exhibit some effector functions [1,2]. They can differentiate into a variety of tissue-resident macrophages (Mφ), dendritic cells (DC), and osteoclasts [3]. Macrophages play a central role in tissue homeostasis, host defense, inflammation, and tissue repair. They also participate to tissue remodeling in ontogenesis and to the control of metabolic functions [4]. Macrophages, characterized by their plasticity and heterogeneity [4,5,6], are highly sensitive to their environment and, according to the signals encountered (microorganisms, damaged self, cytokines), may acquire distinct functional phenotypes and exhibit opposite activities (i.e. pro- versus anti-inflammatory, immunosuppressive versus immunostimulatory) [4]. Pathophysiological situations are usually associated with changes in Mφ phenotypes and functions and, in some of them, Mφ with different phenotypes coexist [4].

Reflecting the Th1/Th2 dichotomy, two states of Mφ polarization, called M1 and M2, which represent extremes of a spectrum of activation states, have been described [6]. The M1 phenotype results from the stimulation of Mφ with interferon-γ (IFNγ), alone or with microbial products (mainly Toll-like receptor [TLR] agonists) or cytokines (such as tumor necrosis factor-α [TNFα]). M1 cells produce high levels of IL-12 (IL-12p70) and low levels of IL-10 (IL-10low), proinflammatory cytokines, nitrogen and oxygen intermediates, and have potent microbicidal and tumoricidal activities [4,7,8]. M2 cells, also called “alternatively activated macrophages”, were initially described as cells generated in the presence of IL-4 or IL-13, characterized by an IL-12low IL-10high phenotype, have potent phagocytic properties and are involved in tissue remodeling, tumor progression, and immune suppression. Other subsets of IL-10high IL-12low M2 cells (called M2-like), that differ phenotypically from IL-4-Mφ, have also been characterized [6,7,9,10]. However, this classification does not reflect the extreme plasticity of Mφ and the continuum of Mφ subsets (from M1 to M2) that can exhibit characteristics shared by more than one Mφ population. Another classification has thus been proposed, based on three different homeostatic activities:
IL-34 Induces the Generation of M2d Macrophages

Cytokines

IL-4 and GM-CSF were purchased from CellGenix (Freiburg, Germany), IL-3, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-21, and IFNγ were from Immunotools (Friesoythe, Germany), IL-1β, IL-2, and OSM were from Miltenyi Biotec (Bergisch Gladbach, Germany). IL-2, IL-17A, IL-17E, IL-19, IL-20, IL-22, IL-23, IL-24, IL-26, IL-29, IL-34 and TNFα were from R&D Systems (Abingdon, United Kingdom). M-CSF was from ORF Genetics (Kopavogur, Iceland).

Cell purification and culture

Peripheral blood mononuclear cells (PBMC) were isolated with Lymphocyte Separation Medium (PAA Laboratories, Pasing, Austria). CD14+ monocytes and CD4+ T cells were sorted from PBMC by positive magnetic sorting (Miltenyi Biotec). CD4+ memory T cells were sorted from PBMC by negative depletion followed by a positive magnetic sorting of CD45RO+ T cells (both from Miltenyi Biotec). Myeloid cells were cultured in medium consisting of RPMI 1640 medium (Lonza, Verviers, Belgium) supplemented with 10% fetal calf serum (PAA Laboratories), 2 mM l-glutamine, 1 mM sodium pyruvate, 0.1 mM non essential amino acids, 10 mM Hepes, 100 U/ml penicillin and 100 μg/ml streptomycin (all from Lonza). CD4+ T cells were cultured in serum-free X-VIVO-20 medium (Lonza).

Macrophage subset generation

Macrophage subtypes are referred to as the cytokines used for their generation. IL-34-Mφ, M-CSF-Mφ, and GM-CSF-Mφ were generated by exposing monocytes [1 x 10^6 cells/ml] for 5 days to 50 ng/ml IL-34, 50 ng/ml M-CSF or 20 ng/ml GM-CSF, respectively. In some experiments, monocytes were cultured with 50 ng/ml IL-34 plus 30 ng/ml IL-6. To generate the IL-4-Mφ, IL-1β-Mφ or IL-10-Mφ subsets, monocytes were first exposed for 5 days to 20 ng/ml GM-CSF and then for 2 days to 50 ng/ml IL-4, IL-1β or IL-10 [6]. M-CSF+IL-6-Mφ were generated by exposing monocytes to 50 ng/ml M-CSF plus 50 ng/ml IL-6 [10]. In some experiments, day-5 Mφ were activated for 48 h with 200 ng/ml lipopolysaccharide (LPS) (from E. coli serotype O111:B4; Sigma-Aldrich, St Louis, MO).

Cytokine quantification

IL-10 and IL-12 were quantified using commercial ELISA from Diacloon (Dijon, France) and IL-34 using a commercial ELISA from R&D Systems.

Flow cytometry analysis

Cells were incubated with FITC-labeled anti-CD80, PE-labeled anti-CD86, APC-labeled anti-CD4 (all from BD Pharmingen, San Diego, CA), PE-labeled anti-CD14 (Dako, Glostrup, Denmark), PC3-labeled anti-ILT3 (Beckman Coulter, Marseille, France), APC-labeled anti-CD163 or PE-labeled anti-CD206 (R&D Systems) mAbs. Data were acquired using a FACSscalibur flow cytometer (BD Biosciences, San Jose, CA) and analyzed with the FlowJo software (Tree Star, Ashland, OR). Results are expressed as mean fluorescence intensities (MFI) after subtraction of the value obtained with the isotype control mAb or as a percentage of inhibition determined as follows: (A–B)/A, where A and B are the MFI values in the absence or presence of the inhibitor, respectively.

Cell viability analysis

The viability of cells was evaluated by annexin V labeling. Data were acquired using a FACSscalibur and analyzed with the FlowJo.
software. Results are expressed as a percentage of annexin V− viable cells.

Analysis of chemokine and chemokine receptor mRNA expression

IL-34-Mφ, M-CSF-Mφ and GM-CSF-Mφ were stimulated or not for 6 h with 200 ng/ml LPS. After cell lysis using the Trizol reagent (Life technologies, Saint Aubin, France), total RNA were extracted using the RNeasy Mini Kit according to the manufacturer recommendation (Qiagen, Hilden, Germany) and reverse transcribed using the Superscript II reverse transcriptase (Life technologies). The expression of CCL1, CCL2, CCL5, CCL18, CCL22, CCL24, CXCL9, CXCL10, CXCL11, CXCL16, CX3CL1, CCR1, CCR2, CCR8, CX3CR1, CXCR1, and CXCR2 mRNA was analyzed by qPCR using the iQ SYBR Green Supermix (Biorad, Marnes-la-Coquette, France); primer sequences are available upon request. Specific gene expression was calculated using the 2^−ΔΔCT method using GAPDH as calibrator. The transcripitonal profiles were evaluated in four donors. Omics Explorer 2.3 software was used for hierarchical clustering and principal-component analysis (PCA) (Quorex, Lund, Sweden). Hierarchical clustering of both samples and transcripts was performed using average linkage method and the Euclidean metric, with each variable being normalized to mean 0 and variance 1.

Inhibition of T cell proliferation and mixed lymphocyte reaction

In T cell proliferation assays, 10^5 allogeneic CD4^+ CD15RO^+ memory T cells, previously incubated with 3 μM CFDA-SE (Molecular Probes, Carlsbad, CA), were cultured in X-VIVO-20 medium supplemented with 20 μM IL-2, in 96-well flat-bottomed plates, previously coated with 1 μg/ml anti-CD3 mAb (clone OKT3; ATCC, Manassas, VA), without or with 2 x 10^4 allogeneic LPS-activated Mφ subsets. In MLR experiments, 10^5 CFDA-SE− stained CD4^+ T cells were cultured, as described above, in non-coated plates without or with 2 x 10^4 allogeneic LPS-activated Mφ subsets, in the presence of 20 μM IL-2. At day 7, cells were stained with APC-labeled anti-CD4 mAb for gating on T cells and the proliferation of CD4^+ T cells was measured by analyzing CFDA-SE dilution. Data were subsequently analyzed using the FlowJo Proliferation Platform software v7.6.5 (Tree Star, Ashland, OR).

Inhibition and reversion of macrophage polarization

In order to evaluate the role of CD15 and/or M-CSF in the generation of IL-34-Mφ, M-CSF-Mφ and GM-CSF-Mφ were generated in the presence or absence of 4 μg/ml anti-M-CSF or isotype control mAbs (both from R&D Systems), or 1 μM GW2580 (LC Laboratories, Woburn, MA), a CD115 tyrosine kinase inhibitor. In order to evaluate the capacity of some cytokines to prevent the generation of IL-34-Mφ, 50 ng/ml IL-1β, IL-2, OSM, IL-4, GM-CSF, IL-3, IL-7, IL-8, IL-9, IL-12, IL-15, IL-21, IFNγ, IL-5, IL-17A, IL-17E, IL-19, IL-20, IL-22, IL-23, IL-24, IL-26, IL-29, or TNFα were added to monocytes at day 0 together with IL-34. In reversion experiments, established day-5 IL-34-Mφ were incubated with 50 ng/ml GM-CSF or IFNγ for 3 days. In all experiments, Mφ were stimulated for 48 h with 200 ng/ml LPS before quantification of IL-12 and IL-10 by ELISA and analysis of CD80 and CD86 expression by flow cytometry.

Statistical analysis

Data are shown as mean ± SD and were analyzed by the Mann-Whitney test, with p<0.05 being considered significant.

Results

IL-34 induces the differentiation of human monocytes into macrophages

In order to investigate the role of IL-34 on human monocyte differentiation, highly purified peripheral blood monocytes were cultured with IL-34 for 5 days. Preliminary experiments showed, as previously reported [12,13], that IL-34 promotes monocyte survival; in our experimental conditions, the maximal survival was obtained with a concentration of 50 ng/ml IL-34 (data not shown). The phenotype of cells cultured with IL-34 was analyzed by flow cytometry and their ability to produce IL-10 and IL-12 was assessed by ELISA. IL-34 induced monocyte differentiation into cells exhibiting Mφ characteristics, as evidenced by the expression of CD14 and CD163 (Fig. 1A, but not dendritic cell features (absence of CD1a and no induction of CD83 upon LPS stimulation; data not shown). These differentiated cells were called IL-34-Mφ. As controls, the macrophage differentiation factors GM-CSF (GM-CSF-Mφ) and M-CSF (M-CSF-Mφ) also gave rise to CD14^+ CD163^+ cells (Fig. 1A and data not shown) [7,10,26]. IL-34-Mφ and, as previously reported [10], M-CSF-Mφ, expressed higher levels of CD14 (2-5-fold increase) and CD163 (25-fold increase) than GM-CSF-Mφ (Fig. 1A). IL-34 and M-CSF were equivalent in maintaining the level of CD14 (Fig. 1B, left panel) and in increasing the expression of CD163 (Fig. 1B, right panel) during the 5-days differentiation process. Interestingly, the induction of CD163 and the expression of CD14 were homogenous on the whole cell population (Fig. 1B), suggesting that IL-34 and M-CSF induce the differentiation of monocytes into a Mφ subset. In contrast, GM-CSF decreased the expression of CD14 and did not induce the expression of CD163 (Fig. 1B, right panels). Finally, the expression of MHC-I, MHC-II, CD54, CD80, CD86, B7-H1, ILT3 and CD206 was similar on IL-34-Mφ and M-CSF-Mφ and was different to the one exhibited by GM-CSF-Mφ (Table 1).

These results show that IL-34 supports the differentiation of human peripheral blood monocytes into Mφ.

IL-34-Mφ exhibit a M2 phenotype

We then analyzed the phenotype of activated IL-34-Mφ. Upon LPS stimulation, IL-34-Mφ and, as expected [7], M-CSF-Mφ, produced weak or undetectable levels of IL-12 (Fig. 1C). In contrast, GM-CSF-Mφ produced higher levels of IL-12 and lower levels of IL-10 than IL-34-Mφ and M-CSF-Mφ (Fig. 1C). This IL-10_{high} IL-12_{low} phenotype of IL-34-Mφ is typical of a M2 polarization [4,6,7,9]. The expression of CD80, CD86 (Fig. 1A) and CD206 (Table 1) was upregulated on LPS-stimulated GM-CSF-Mφ, compared to LPS-stimulated IL-34-Mφ and M-CSF-Mφ. In contrast, the expression of MHC-I, MHC-II, CD54, B7-H1 and ILT3 was similar on LPS-stimulated IL-34-Mφ, M-CSF-Mφ and GM-CSF-Mφ (Table 1).

Four M2 cell subsets elicited by exposing GM-CSF-Mφ to IL-4 (IL-4-Mφ), IL-1β (IL-1β-Mφ), IL-10 (IL-10-Mφ) [4,5,6,27] or by exposing monocytes to M-CSF plus IL-6 (M-CSF+IL-6-Mφ) [10], have been described. These subsets are: The CD14^{high} CD163^{high} CD80^{low} CD86^{low} phenotype of IL-34-Mφ is similar to the one of M-CSF-Mφ and differs from IL-4-, IL-1β- and IL-10-Mφ (Fig. 2A–D).

We have previously demonstrated that IL-6 favors M-CSF consumption by monocytes and, in the presence of M-CSF, gives...
rise to cells with a more pronounced M2 phenotype [10,28]. Similarly, cells cultured with IL-34 and IL-6 (called IL-34-Mφ) express higher levels of CD163 (Fig. 2B) and ILT3 (Fig. 2E) than IL-34-Mφ. Interestingly, the concentrations of IL-34 were reduced in the supernatants of cells cultured with IL-34 plus IL-6 compared to cells cultured with IL-34 alone (Fig. 2F). This result, added to the fact that no IL-34 mRNA was detected during the 5-days culture with IL-34, in the absence or presence of IL-6 (data not shown), suggests that IL-6 enhances the consumption of IL-34 during the differentiation process.

Previous studies suggested that M1 and M2 exhibit different chemokine and chemokine receptor patterns [6,29,30,31]. PCA of the transcriptional profiles evidenced a relationship between samples, according to the polarization, and revealed the absence of segregation between IL-34-Mφ, M-CSF-Mφ, and GM-CSF-Mφ (Fig. 3A). Moreover, IL-34-Mφ and M-CSF-Mφ have lower levels of the

Figure 1. IL-34 induces monocyte differentiation into M2 cells. A, IL-34-Mφ exhibit a CD14^{high} CD163^{high} CD80^{low} CD86^{low} phenotype. The expression of CD14 and CD163 (before LPS stimulation) and of CD80 and CD86 (after LPS stimulation) was analyzed by flow cytometry on IL-34-Mφ, M-CSF-Mφ, and GM-CSF-Mφ. For each marker, the grey histogram corresponds to isotype control mAb and is similar in the 3 experimental conditions. Results are representative of 1 of 5 experiments. B, IL-34-Mφ polarization results in the maintenance of CD14 and in the acquisition of CD163. The expression of CD14 and CD163 was analyzed by flow cytometry during the 5-day polarization of IL-34-Mφ, M-CSF-Mφ, and GM-CSF-Mφ (left panels). Right panels, flow cytometry histograms of CD14 and CD163 expression by monocytes cultured with IL-34 and analyzed at day 1, day 3, and day5. C, IL-34-Mφ display an IL-10^{high} IL-12^{low} phenotype. IL-10 and IL-12 were quantified in the supernatants of IL-34-Mφ, M-CSF-Mφ, and GM-CSF-Mφ after LPS stimulation. Results are expressed in pg/ml (IL-12) or ng/ml (IL-10) (mean ± SD, n = 5). * p<0.05, compared to GM-CSF.

doi:10.1371/journal.pone.0056045.g001
mRNA encoding CCL1, CCL17, CCL22, CCL24 and CX3CL1 than GM-CSF-Mφ (Fig. 3B). We also observed that the transcripts encoding the chemokine receptors CCR2 and CXCR1 were lower in IL-34-Mφ and M-CSF-Mφ than in GM-CSF-Mφ (Fig. 3B).

Stimulation of the Mφ with LPS did not modify this dual expression (Fig. 3). The expression of the mRNA encoding the other chemokines and chemokine receptors were equivalent in the three Mφ subsets (Fig. 3B).

Together, these results show that IL-34-Mφ exhibit a CD14^{high} CD163^{high} CD80^{low} CD86^{low} M2 phenotype and that IL-6 pushes them into cells with a more pronounced phenotype.

Table 1. Analysis of cell surface markers on macrophage subsets.

Markers	Without LPS	With LPS				
	IL-34-Mφ	M-CSF-Mφ	GM-CSF-Mφ	IL-34-Mφ	M-CSF-Mφ	GM-CSF-Mφ
CD14	+++	+++	+++	+++	+++	+++
CD163	+++	+++	++	+++	+++	+++
CD80	–	–	+	–	–	+
CD86	+	+	+	+	+	+
ILT3	+++	+++	+++	+++	+++	+++
CD54	+	+	++	++	++	++
MHC 1	+++	+++	+++	+++	+++	+++
MHC 2	+++	+++	+++	+++	+++	+++
CD206	–	–	+++	+	+	+

The expression of the indicated markers was analyzed by FACS on IL-34-Mφ, M-CSF-Mφ and GM-CSF-Mφ, stimulated or not for 48 h with 200 ng/ml LPS. Results are expressed as mean fluorescence intensity values (after subtraction of the MFI obtained with the isotype control mAb) and are representative of 4 separate experiments. +++ indicates MFI greater than 1000; ++++, MFI greater than 400 and less than 1000; ++++, MFI greater than 200 and less than 400; ++, MFI greater than 100 and less than 200; +, MFI greater than 20 and less than 100 and, – indicates MFI less than 20.

doi:10.1371/journal.pone.0056045.t001

Figure 2. IL-34 induces M2 cell generation. A–E, IL-34 induces monocyte differentiation into M2. Macrophage subsets were generated as described in the Material & Methods section. The expression of CD14 (A) and CD163 (B) was analyzed by flow cytometry on non stimulated cells. The expression of CD80 (C), CD86 (D) and ILT3 (E) was analyzed by flow cytometry after LPS stimulation. Results are expressed in MFI values (mean ± SD, n = 5). * p<0.05, compared to IL-34; # p<0.05, compared to IL-34+IL-6. F, IL-6 favors IL-34 consumption. IL-34 was quantified at different time-points in the supernatants of monocytes exposed to 50 ng/ml IL-34, without or with 50 ng/ml IL-6. Results are expressed in ng/ml (mean ± SD, n = 4). * p<0.05.

doi:10.1371/journal.pone.0056045.g002

PLOS ONE | www.plosone.org 5 February 2013 | Volume 8 | Issue 2 | e56045
IL-34-Mφ are immunosuppressive

Macrophages participate to the control of T cell responses [4,6,10]. We have thus evaluated the ability of IL-34-Mφ to affect T cell proliferation. In agreement with studies showing that IL-10^{high} IL-12^{low} M2 are immunosuppressive [4], we observed, in mixed lymphocyte reaction (MLR) assays, that IL-34-Mφ exhibited lower T cell costimulatory properties than GM-CSF-Mφ (Fig. 4A). Moreover, IL-34-Mφ suppressed TCR-dependent T cell proliferation more efficiently than GM-CSF-Mφ (Fig. 4B), showing that they present potent immunosuppressive properties.

These results show that IL-34 drives the differentiation of monocytes into immunosuppressive Mφ.

IL-34 induces M2 via CD115 and independently of M-CSF

M-CSF is produced by monocytes and induces their differentiation into M-CSF-Mφ by acting via CD115 [10,32]. We therefore evaluated whether the ability of IL-34 to induce monocyte differentiation into M2 may also occur through autocrine secretion of M-CSF. A neutralizing anti-M-CSF mAb did not affect the ability of IL-34 to induce the generation of IL-34-Mφ, as evidenced by the maintenance of CD14 expression (Fig. 4C, left panel), the increase of CD163 expression (Fig. 4C, right panel) and the acquisition of an IL-10^{high}/IL-12^{low} phenotype (Fig. 4D). The expression of CD80 and CD86 by IL-34-Mφ was not modulated by an anti-M-CSF mAb (data not shown). In parallel, we analyzed the expression of M-CSF during the course of monocyte differentiation into IL-34-Mφ. No M-CSF was detected in the culture supernatants collected from D1 to D5 and the expression of the transcript encoding M-CSF was not modulated by IL-34 during the 5-days culture (data not shown).

In contrast, monocytes exposed to M-CSF plus an anti-M-CSF mAb rapidly died in culture (Fig. 4C&D), a result in agreement with the fact that M-CSF is a survival factor for monocytes/macrophages.

In agreement with the fact that IL-34 and M-CSF signal via CD115, the c-fms tyrosine kinase inhibitor GW2580 [12] impaired the survival of monocytes cultured with IL-34 or M-CSF (Fig. 4C–D). Finally, we observed that the viability of cells cultured with IL-34 and M-CSF was similar from D1 to D5 (Fig. 4E and data not shown).

Collectively, these results demonstrate that IL-34 switches monocytes into M2 by acting through CD115, in an M-CSF-independent manner.

GM-CSF and IFNγ prevent IL-34-Mφ generation

While immunosuppressive M2 play a central role in immune homeostasis, their local accumulation is detrimental in some pathological situations, such as in cancer [4,5,33]. We thereby screened a panel of cytokines (IL-1β, IL-2, IL-3, IL-4, IL-5, IL-7, IL-8, IL-9, IL-10, IL-12, IL-15, IL-17A, IL-17E, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-26, IL-29, TNFα, GM-CSF, OSM, or IFNγ) for their ability to prevent the generation of IL-34-Mφ. Monocytes were incubated with the cytokines tested, in the presence of IL-34, and the phenotype of the cells was analyzed after 5 days, with a focus on the production of IL-10 and IL-12 and on the expression of CD80 and CD86. Among all the cytokines tested, GM-CSF and IFNγ were the most potent in preventing IL-34-Mφ generation (Fig. S1). More precisely, compared to IL-34-Mφ, monocytes cultured with IL-34 plus GM-CSF or IFNγ retained the capacity to produce IL-12 (Fig. 5A) and to express high levels of CD80 and CD86 in response to LPS (Fig. 5B), while producing undetectable levels of IL-10 (Fig. 5A).

Moreover, monocytes cultured with IL-34 plus GM-CSF or IFNγ expressed lower levels of CD14 and CD163 than IL-34-Mφ (Fig. 5C). The ability of GM-CSF and IFNγ to prevent the generation of IL-34-Mφ was dose-dependent, significant at 2 or 20 ng/ml, depending on the parameters analyzed, and maximal at the highest concentration tested (50 ng/ml) (Fig. S2).

These results show that GM-CSF and IFNγ counteract the ability of IL-34 to generate immunosuppressive Mφ.
IFNγ skews established IL-34-Mϕ cells from an immunosuppressive to an immunostimulatory IL-12^high IL-10^low phenotype

Macrophages are characterized by their plasticity, and dynamic changes in Mϕ polarization may occur in some pathologies [4]. We previously showed that cytokines that prevent the generation of M-CSF-Mϕ may also induce their reversion into immunostimulatory M1 [34]. We thus evaluated whether GM-CSF and IFNγ may also revert the phenotype of established IL-34-Mϕ. Upon IFNγ exposure, IL-34-Mϕ recovered the capacity to produce high levels of IL-12 (Fig. 5D), and to express CD80 and CD86 in response to LPS (Fig. 5E), while they expressed lower levels of IL-10 (Fig. 5D), CD14 and CD163 (Fig. 5F) than IL-34-Mϕ. IL-34-Mϕ, exposed to GM-CSF for 3 days, recovered the ability to express CD80 and CD86 in response to LPS (Fig. 5E) but remained unable to produce IL-12 (Fig. 5D). The ability of GM-CSF and IFNγ to modulate the expression of these markers was dose-dependent, significant at 2 or 20 ng/ml, depending on the parameters analyzed, and maximal at the highest concentration tested (50 ng/ml) (Fig. S3).

In addition to confirming the plasticity of Mϕ [6,34], these results show that IFNγ switches established IL-34-Mϕ cells into Mϕ with an immunostimulatory phenotype.

Discussion

IL-34 signals via M-CSF-R and promotes human monocyte survival [12,13,17]. Different observations suggest that IL-34 and M-CSF might have non-redundant and complementary roles [13,17,18,19,20]. As Mϕ participate to the control of inflammation, tissue homeostasis and metabolism, to identify the role of IL-34 on monocyte differentiation may have potential therapeutic applications, especially when the relative expression of IL-34 and M-CSF in pathological situations will be established. To date, the phenotype of the human myeloid cells exposed to IL-34 remains

Figure 4. IL-34 induces the generation of immunosuppressive M2 independently of M-CSF. A&B, IL-34-Mϕ are immunosuppressive. LPS-stimulated IL-34-Mϕ, M-CSF-Mϕ and GM-CSF-Mϕ were cultured with CFDA-SE labeled CD4^+T cells in MLR experiments (A) or with CFDA-SE labeled memory CD45RO^+ T cells in T cell proliferation assays (B); results are expressed as a percentage of cells depending on the number of cycle division (mean ± SD, n = 4), * p < 0.05, compared to GM-CSF-Mϕ. Right panels, representative histograms of CFDA-SE labeling from one donor. C&D, IL-34 switches monocytes into M2 in an M-CSF-independent manner. Analysis of the expression of CD14 and CD163 (C), and of the production of IL-10 and IL-12 (quantified after a 24 h stimulation with LPS) (D) by IL-34-Mϕ, M-CSF-Mϕ and GM-CSF-Mϕ generated in the absence or presence of a neutralizing anti-M-CSF mAb, an isotype control mAb, the kinase inhibitor GW2580, or the drug diluent. Results are expressed in MFI values or in ng/ml (mean ± SD, n = 4). E, Analysis of cell viability. The viability of monocytes cultured with IL-34, M-CSF or GM-CSF, in the absence of presence of a neutralizing anti-M-CSF mAb, an isotype control mAb, the kinase inhibitor GW2580, or the drug diluent, was determined at day 3 by annexinV labeling. Results are expressed as a percentage of living cells (mean ± SD, n = 4). † means >90% of died cells.

doi:10.1371/journal.pone.0056045.g004

Figure 5. GM-CSF and IFNγ prevent the generation of IL-34-Mϕ. A–C, GM-CSF and IFNγ prevent the differentiation of monocytes into immunosuppressive IL-34-Mϕ. IL-34-Mϕ and GM-CSF-Mϕ were generated in the absence or presence of GM-CSF or IFNγ before phenotype analysis. D–F, IFNγ skews monocyte differentiation from IL-34-Mϕ into immunostimulatory Mϕ. IL-34-Mϕ and GM-CSF-Mϕ were cultured for 3 days in the absence or presence of GM-CSF or IFNγ before phenotype analysis. The expression of CD14 and CD163 (C&F) was analyzed on non-stimulated cells. The production of IL-10 and IL-12 (A&D) and the expression of CD80 and CD86 (B&E) was analyzed after LPS stimulation. Results are expressed in MFI values, in pg/ml (IL-12) or ng/ml (IL-10), or as a percentage of inhibition (mean ± SD, n = 7), (A,B,D&E), * p < 0.05, compared to IL-34-Mϕ.

doi:10.1371/journal.pone.0056045.g005
unexplored. We show here that (i) IL-34 gives rise to immuno-
suppressive Mφ with a phenotype similar to the one induced by
M-CSF, (ii) that GM-CSF and IFNγ prevent their generation and,
(iii) that IFNγ skew established IL-34-Mφ into immunostimulat-
tory IL-12b p70, IL-10pp. Previous studies have reported that
M1 and M2 exhibit different profiles of chemokines and
chemokine receptors [29,30,31]. We observed that IL-34-Mφ and
M-CSF-Mφ are indistinguishable, based on selected chemok-
ines and chemokine receptors. Interestingly, GM-CSF-Mφ
express higher levels of the chemokines CCL1, CCL17, CCL22,
CCL24 and CX3CL1, and of the chemokine receptors CCR2 and
CXCR1, than IL-34-Mφ and M-CSF-Mφ. These molecules may
constitute, in addition to the reliable markers IL-10 and IL-12, a
molecular signature allowing discriminating M1 and M2.

Although it has been suggested that M-CSF and IL-34 may
differentially modulate the production of some cytokines by
monocytes [15], our results show that the effects of IL-34 and M-
CSF on monocyte differentiation (in term of phenotypes and
functions) are superimposable, a result consistent with data from
others showing that human IL-34 and M-CSF are equivalent in
inducing the proliferation of a mouse macrophage cell line
transfected with the human M-CSF-R [17]. Our results also
support a previous study showing that IL-34 was as effective as M-
CSF in inducing the survival/proliferation of human monocytes
and the formation of CFU-M [12]. Although our results do not
allow excluding the existence of another receptor for IL-34,
distinct from M-CSF-R, as previously suspected [17,18], we
demonstrate, in agreement with others [12,13], that IL-34 acts on
human monocytes via the M-CSF-R. Moreover, we also report
that IL-34 acts on monocytes independently of endogenous M-
CSF. Reciprocally, although human monocytes express IL-34
mRNA, we failed in detecting IL-34 secretion by monocytes in
response to M-CSF, suggesting that M-CSF may also act
independently of endogenous IL-34. Finally, in support of our
results showing that IL-34 mimics the activity of M-CSF on the
differentiation of human monocytes, it has been reported by others
that IL-34 can replace M-CSF for osteoclast generation [21,22].

IL-34 and M-CSF mRNA are expressed in different tissues and
differences in their spatiotemporal expression have been reported
[17,18,19,20]. Moreover, no compensatory IL-34 mRNA expres-
sion has been observed in M-CSF-deficient mice [17]. Both these
observations suggested that IL-34 and M-CSF have complementary
and independent roles. More precisely, IL-34 mRNA levels are
higher than M-CSF mRNA in skin, salivary glands, and in most
areas of the brain [17,35,36]. Based on our results, it is tempting to
speculate that, in these organs, IL-34, rather than M-CSF, may
contribute to the generation of immunosuppressive M2, able to tune
inflammation and to promote tissue repair. Interestingly, microglia
and bone marrow-derived Mφ are tightly down-regulated to avoid
excessive and detrimental immune responses. Our results suggest
that IL-34, expressed by neurons and meningeal cells [37], may
contribute to the generation and/or to the maintenance of the
phenotype of brain-resident myeloid cells.

We report that IL-34 induces the generation of Mφ which a
phenotype and function similar to the ones of human tumor-
associated macrophages (TAM) [10]. TAM accumulate in vari-
able sites, and, in most of them, their density is correlated with
poor prognostic [4,5,10]. In addition to immunosuppressive
properties, TAM are trophic for tumors and favor angiogenesis,
dissolution of connective tissues and metastasis [4,5,6,10]. In
additional experiments, we have also observed that IL-34-Mφ
produce similar levels of TGFβ, MMP9, and VEGF than M-CSF-
Mφ (personal data). TAM derive from circulating monocytes that
differentiate locally into M2 in response to tumor microenvi-

mental factors, such as M-CSF and IL-6 [10]. Recently, DeNardo
and coll reported that, in breast cancer, some antitumoral drugs
induce the production of both IL-34 and M-CSF by mammary
epithelial cells, suggesting that, in some circumstances, therapeutic
strategies may favor tumor immune escape [25]. Based on these
observations, it appears crucial to analyze, in various tumors, the
relative expression of M-CSF and IL-34 by tumoral and tumor-
associated stromal cells, in order to determine whether IL-34 could
participate to tumor-induced immunosuppression and to deter-
mine the relative roles of IL-34 and M-CSF in different types of
tumors. While M2 maintain tissue homeostasis and prevent excessive
immune responses, their accumulation in some pathologies, such as
tumor, is detrimental. Strategies to prevent cell generation and/or to reverse the immunosuppressive properties of M2 may
increase the efficacy of anti-tumor immunotherapies. Interestingly,
we observed that IFNγ (i) switches established IL-34-Mφ into
immunostimulatory M1 and, (ii) prevents the generation of IL-34-
Mφ. IFNγ is a potent activator of myeloid cells inducing the
generation of immunostimulatory M1 and, as previously observed,
preventing the generation of TAM-like in ovarian cancer [34]. In
addition, GM-CSF was able to prevent IL-34-Mφ generation. Recently,
by analyzing the transcriptional profiles of GM-CSF-
and M-CSF-induced Mφ, it has been observed that the expression of
the M-CSF-induced genes was counteracted by the addition of a
low dose (1 ng/ml) of GM-CSF [38]. We also observed that GM-
CSF (used at 1 to 20 ng/ml), prevented the generation of M-CSF-
Mφ (personal unpublished data). Supporting these observations,
GM-CSF suppresses, in a murine myeloid cell line, the expression
of the M-CSF-R mRNA [32] through the transcriptional
activation of a ribonuclease degradation system [27]. In contrast,
IFNγ does not modulate M-CSF-R mRNA expression by
monocytes [39]. As IL-34 signals via M-CSF-R, this result may
explain why GM-CSF prevents the effect of IL-34 on monocytes
while GM-CSF appears less potent than IFNγ in reverting the
immunosuppressive phenotype of IL-34-Mφ, although we cannot
exclude that this could be achieved after a prolonged time of
exposure.

In conclusion, our results identify IL-34 as a novel factor
involved in the control of Mφ polarization. By acting through the
M-CSF-R, IL-34 switches monocytes into immunosuppressive
Mφ. IL-34 may thereby play a central role in immune
homeostasis, especially in the brain and skin where IL-34 is
constitutively expressed. Our results also suggest that, in order to
reverse tumor-associated immunosuppression mediated by mye-
loid cells, strategies based on the inhibition of M-CSF-R should be
privileged to prevent the effects of both IL-34 and M-CSF.

Supporting Information

Text S1 Supporting materials and methods.

(DOC)

Figure S1 Analysis of the ability of cytokines to prevent
the generation of IL-34-Mφ. Monocytes were cultured for 5
days with IL-34, in the absence or presence of IL-1β, IL-2, IL-3,
IL-4, IL-5, IL-7, IL-8, IL-9, IL-10, IL-12, IL-15, IL-17A, IL-17E,
IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-26, IL-29, OSM,
GM-CSF, IFNγ, or TNFα. The expression of CD80 and CD86 (A)
and the production of IL-10 and IL-12 (B) were determined after
48 h stimulation with 200 ng/ml LPS. Results were compared to
those from GM-CSF-Mφ and M-CSF-Mφ. Results are expressed in
MFI values or in pg/ml (IL-12) or ng/ml (IL-10). Results are
representative of one of three experiments.

(TIF)
IL-34 Induces the Generation of M2d Macrophages

Figure S2 Dose-dependent analysis of the inhibitory activity of IFNγ and GM-CSF on macrophage polarization. IL-34-Mq, M-CSF-Mq and GM-CSF-Mq were generated in the absence or presence of 2, 10 or 50 ng/ml GM-CSF or IFNγ. The expression of CD163 (6) was analyzed on non stimulated cells; the expression of CD80 (B) and CD86 (C) and the production of IL-12 and IL-10 (D) were analyzed after 48 h stimulation with 200 ng/ml LPS. Results are expressed in MFI values or in pg/ml (IL-12) or ng/ml (IL-10) (mean ± SD, n = 4). (TIF)

Figure S3 Dose-dependent analysis of the inhibitory activity of IFNγ and GM-CSF on macrophage reversion. IL-34-Mq, M-CSF-Mq and GM-CSF-Mq were cultured for 3 days in the absence or presence of 2, 10 or 30 ng/ml GM-CSF or IFNγ. The expression of CD80 and CD86 (6) and the production of IL-12 and IL-10 (B) were analyzed after 48 h stimulation with 200 ng/ml LPS. Results are expressed in MFI values or in pg/ml (IL-12) or ng/ml (IL-10) (mean ± SD, n = 4). (TIF)

Acknowledgments
We are very grateful to all members of the laboratory for critical readings and helpful discussions; for technical assistance and for comments on the paper.
We also thank members of the molecular biology and cytometry core facility (SCCAnn platform).

Author Contributions
Supervised the project: PG NI YD PJ. Performed the experiments: EDF SB LP EG. Wrote the paper: PG NI YD PJ.

References
1. Narni-Mancinelli E, Soudja SM, Crozat K, Dalod M, Gounon P, et al. (2011) Inflammatory monocytes and neutrophils are killed to during memory responses in vivo. PLoS Pathog 7: e1002453.
2. Soudja SM, Ruiz C, Marie JC, Lanave G (2012) Inflammatory monocytes activate memory CD11c(+) innate NK lymphocytes independent of cognate antigen during microbial pathogen invasion. Immunity 37: 549–562.
3. Gordon S, Taylor PK (2005) Monocyte and macrophage heterogeneity. Nature immunology 5: 953–961.
4. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. The journal of clinical investigation 122: 787–795.
5. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature immunology 11: 889–896.
6. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, et al. (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends in immunology 25: 677–686.
7. Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, et al. (2004) Human IL-23-producing type 1 macrophages promote IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proceedings of the National Academy of Sciences of the United States of America 101: 4560–4565.
8. Lacey DC, Achuthan A, Flewood AJ, Dinh H, Reimistos J, et al. (2012) Defining GM-CSF- and Macrophage-CSF-Dependent Macrophage Responses by In Vitro Models. Journal of immunity 180: 5752–5765.
9. Flewood AJ, Lawrence T, Hamilton JA, Cook AD (2007) Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. Journal of immunology 178: 5249–5252.
10. Duhec D, Delhaye Y, Tan F, Moles MP, Grimaud L, et al. (2007) Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation toward macrophage-like cells. Blood 110: 4319–4330.
11. Nair ER, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nature reviews Immunology 8: 958–969.
12. Lin H, Lee E, Hestir K, Leo C, Huang M, et al. (2008) Discovery of a cytokine that activate memory CD8(+) T and innate NK lymphocytes independent of cognate antigen during microbial pathogen invasion. Immunity 37: 549–562.
13. Chen Z, Buki K, Vaananen J, Gu G, Vaananen HK (2011) The critical role of IL-34 in osteoclastogenesis. PLoS one 6: e18689.
14. Baudhuin M, Renault R, Charrier C, Riet A, Moreau A, et al. (2010) Interleukin-34 is expressed by giant cell tumours of bone and plays a key role in RANKL-induced osteoclastogenesis. The journal of pathology 221: 77–86.
15. Chenel M, Le Goff B, Brion C, Cozic C, Berreur M, et al. (2012) Interleukin 34 expression is associated with synovitis severity in rheumatoid arthritis patients. Ann Rheum Dis 71: 150–154.
16. Hwang SJ, Choi B, Kang SS, Chang JH, Kim YG, et al. (2012) Interleukin-34 produced by human fibroblast-like synovial cells in rheumatoid arthritis supports osteoclastogenesis. Arthritis Res Ther 14: R14.
17. DeNardo DG, Brennan DJ, Rechepa E, Rufiel B, Shiao SL, et al. (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1: 54–67.
18. Meital D (1991) Control of granulocytes and macrophages: molecular, cellular, and clinical aspects. Science 254: 529–533.
19. Gliniak BC, Park LS, Rohrschneider LR (1992) A GM-colony-stimulating factor (CSF) activated ribonuclease system transregulates M-CSF receptor expression in the murine FDC-P1/MAC myeloid cell line. Molecular biology of the cell 3: 535–544.
20. Jeannin P, Duhec D, Delhete Y (2011) IL-6 and leukemia-inhibitory factor are involved in the generation of tumor-associated macrophage: regulation by IFN-gamma. Immunotherapy 3: 23–26.
21. Fratielli P, Soroni M, Bianchi G, D’Ambrosio D, Albanesi C, et al. (2001) Fractalkine (CX3CL1), as an amplification circuit of polarized Th3 responses. The journal of clinical investigation 107: 1131–1181.
22. Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of immunology 177: 7303–7311.
23. Beyer M, Mallmann MR, Xue J, Staratschek-Jox A, Vorholt D, et al. (2012) High-resolution transcriptome of human macrophages. PLoS one 7: e54966.
24. Gliniak BC, Rohrschneider LR (1992) Expression of the M-CSF receptor is controlled posttranscriptionally by the dominant actions of GM-CSF or multi-CSF. Cell 63: 676–687.