Cell Biology in Rheumatoid Arthritis

Lukeshwari Sahu¹, S. Prakash Rao², Mahendra Verma¹*, Akhilesh Kumar¹, Rajendra Sahu¹, Dhanesh Kumar¹, Chandrakant Yadav³

¹Department of Pharmacology, Columbia Institute of Pharmacy, Tekari, Raipur, (CG), Pin 493111 (Affiliated to Chhattisgarh Swami Vivekananda Technology University (CSVTU))
²Department of Pharmacognosy, Columbia Institute of Pharmacy, Tekari, Raipur, (CG), Pin 493111 (Affiliated to Chhattisgarh Swami Vivekananda Technology University (CSVTU))
³Department of Pharmaceutics, Columbia Institute of Pharmacy, Tekari, Raipur, (CG), Pin 493111 (Affiliated to Chhattisgarh Swami Vivekananda Technology University (CSVTU))

ABSTRACT

Rheumatoid arthritis (RA) is a systemic autoimmune disease, which affects about 0.33 to 2.65% of the population. In RA, Synovium contain various type of immune cell, in which only one cell population cannot cause rheumatoid arthritis that requires more than one cell population. In normal condition, they act as a switch (active or inactive the cell signaling). It controls cell growth, proliferation or metastasis. In an autoimmune disorder such as rheumatoid arthritis, the immune system mistakenly attacks and destroys the body's cells and tissues. Mostly cells are present in limited numbers in normal human synovium, but in rheumatoid arthritis and other inflammatory joint diseases, this population can expand to constitute 5-20% or more of all synovial cells. Recent investigations in a murine model have demonstrated that cells can have a critical role in the generation of inflammation within the joint.

Keyword: Cell Biology in rheumatic arthritis; Dendrite cell; T-cell; Mast cell; Fibroblastic cell; Macrophages cell.

Introduction:

Rheumatoid arthritis (RA) is incurable aggressive autoimmune disorder symptoms generally included joint pain, swelling, stiffness, angiogenesis, and hyperplasia in affected joints [1]. It developed when their own immune system mistakenly attacks and destroys the body's cells and tissues [2]. The continuously progression of the disease may lead to lose functionality, decrease living standard and increase mortality and morbidity [3]. RA pathogenesis including immune complex interaction between genetic and environmental factors, inducing the aberrant activation of innate and adaptive immune system which cause the immune deregulation, auto antigen presentation with increasing the concentration and range of cytokines and chemokines lead to T and B cells activation [4]. The most known function of the innate immune system is the initial detection of microbial pathogens, primarily pathogens attacked with the surface or intracellular patterns recognition receptors of macrophages and dendritic cells. Thus they become activated, leading to the production of cytokines and chemokines. The deregulation of these events leads to synovitis, proliferation of synovial, cartilage and subchondral bone destruction appear in the affected joint. Effectors cells and molecules of the innate system are stored locally if pathogen cannot overcome alone than macrophages and DCs travel from local lymphoid tissue where processed antigens are recognized by histocompatibility complex molecule to the naive T cell. Thus the beginning of an adaptive response complete with lasting immunological memory. The anti-inflammatory mediator helps to clearance and destruction of the pathogen. In RA, It's proving that the innate immune system is continuously activated, as evidenced by the continual expression of macrophage-derived mediators [5]. Some of the common comorbidities associated with extra-articular organs, including skin, eye, lung, gastrointestinal system and cardiovascular system [6]. In the first stages of RA, the cellular components of the synovial membrane begin to invade the cartilage. But in the second stage, the synovial membrane converted into inflammatory tissue and due to this conversion of the synovial membrane becomes ruptured.

*Address for Correspondence:
Mahendra Kuamr Verma, Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabba, Raipur, Chhattisgarh, India

Cite this article as:
Sahu L, Rao SP, Verma M, Kumar A, Sahu R, Kumar D, Yadav C, Cell Biology in Rheumatoid Arthritis, Journal of Drug Delivery and Therapeutics. 2020; 10(3-s):348-357 http://dx.doi.org/10.22270/jddt.v10i3.s.4113

Available online 15 June 2020 at http://jddtonline.info
adjacent bone and cartilage. The site between pannus and cartilage is occurred due to various cells such as activated dendrite cell, T-cell, B-cells, macrophages and synovial fibroblasts that manifested matrix metalloproteinase’s [7].

**Epidemiology:**

Rheumatoid arthritis (RA) affects approximately 0.33 to 2.65% of the population, exhibit differences between countries and studies [8, 9]. As compared to other autoimmune diseases, RA is mostly found in women than men, this is due to hormonal differences [10]. RA is also largely occurred in the elderly patient with an immune system aging plays an important role in this disease [11, 12]. In case of RA, the patient mostly suffers from at least one or more comorbid conditions [13] and other commonly associated symptoms and diseases when you have arthritis. Some of the common comorbidities associated with RD are osteoporosis, anemia, bacterial infection, heart failure lymphoma, myocardial infarction, stroke, hypothyroidism, depression, gastrointestinal ulceration, fracture, and skin cancer [14].

Table 1: Various co-morbidities and total Percentage [14, 15]

| Co morbidities            | Total percentage |
|---------------------------|------------------|
| Total co morbidities      | 45               |
| Hypertension              | 24.3             |
| Hypothyroidism            | 16.9             |
| Diabetes mellitus         | 15.4             |
| Interstitial lung disease | 1.4              |
| CAD                       | 0.8              |
| TB                        | 0.6              |
| Asthma                    | 0.8              |
| CKD                       | 0.6              |
| Nephritis                 | 0.5              |
| CNS involvement           | 0.3              |
| Dyslipidemia              | 0.2              |
| APD                       | 0.1              |
| Thalassemia               | 0.1              |
| Nodular sclerosis of eye  | 0.1              |

**Cell Biology of arthritis:**

In RA Synovium contain various type of immune cell which are listed in table 1. In which only one cell population cannot cause rheumatoid arthritis that requires more than one cell population. Interaction between cell population in rheumatoid arthritis synovium can be divided into two classes: In the first class, interaction are mediated by secreted molecule such as cytokines and in the second type, cell-cell interaction requires direct contact between two different types of cell, which are listed into table 2 [16-17].

Table 2: Cellular components of synovial joint

| Highly Abundant cell populations                          |
|-----------------------------------------------------------|
| Fibroblastic (type B) synoviocytes                        |
| Macrophage-like (type A) synoviocytes                     |
| T lymphocytes                                            |

| Other cell populations                                     |
|-----------------------------------------------------------|
| Mast cells                                                |
| Dendritic cells                                           |
| B lymphocytes                                            |
| Plasma cells                                             |
| Osteoclasts                                               |

The immune system and defense cell originate from the myeloid and lymphoid progenitor, this myeloid progenitor [Granulocytes, Monocytes (dendrites, macrophages, and mast cell)] and lymphoid progenitor [NK, T-cell and plasma cell] are the cell that crust up themselves and developed the cell-mediated immunity and also antibodies mediated of our body. In normal conditions, they activate or inactivate cell signaling as a switch. It controls the cellular pathway such as their growth, proliferation or metastasis [18]. In an autoimmune disorder such as rheumatoid arthritis, our immune system mistakenly attack and destroy the joint cells and tissues. These early auto antibodies are thought to first develop outside of the joints, environmental factor or other factors can modify our self-proteins making them targets for immune system one particular modification is called citral ination when the immune system recognizes these modified self-proteins it lead to a breach of self-tolerance and the production of autoactive cells and autoantibodies [6, 19].

**Individual role of immune cell for development of arthritis:**

A) Dendrite cell:

**Basic Biology:** Dendrite cell is a granulocytic type of antigen-presenting immune cell that appears as a star. Their name is dendritic cell because of their long branches which are very similar to that of the dendrite of a neuron that’s why their name is a dendritic cell. It is originated either from lymphoid progenitor or from the myeloid progenitor. Most of the dendritic cells occur in the tissues of the external site, such as skin, nose, lung and digestive tract [20, 21].

**Function:**

Dendritic cells play a very important role in the initiation of the immune response. They also create a bridge between innate and adaptive immunity [22]. Dendritic cells (DCs) are the most important antigen-presenting cells and they also maintain the immune homeostasis in the body. DCs (mDCs) mature cell are immunogenic. They can detect the antigen and bind them on their surface, and initiate the immune-related responses [23]. It is also able to present to T cell antigenic peptides in the concern of the MHC-II [24]. While in immature DCs (iDCs) have weak antigen-presenting then mature DCs and T cell activating abilities, hence they may induce T cell tolerance [25, 26]. It is thought that the tolerance potential of the dendritic cell is to release the immunosuppressive Cytokines such as TGF-β and IL-10 and also they having surface programmed death legends like PD-L1 and PD-L2 [27].

**Dendrite cell in RA**

CD4 T cell activation by DCs: Dendritic cells (DCs) are a major regulator of adaptive immune responses. Initially, CD4 T cells bind with synovial DCs as a result, T cell activates. After activation of CD4 T cells, antigen-MHC-II complexes are formed on the surface of the APC and initiate co-stimulatory signals [28]. During continuously binding with APCs surface, CTLA-4 will fight with CD28 for CD80/CD86, and after competition of CTLA-4 inhibition of T cell activation. T-Cell interact with other cell and involve in bone erosion, CTLA-4
is the major site for drug therapy in case of rheumatoid arthritis [29].

B) T-CELL:

Basic Biology: T-cells are also known as lymphocytic cells generated from bone marrow and mature in the thymus gland and play a major role in immune response in our body. They are mostly divided into T-helper cell and T-NK cells. T cell is showed the dynamic shape and also having about 8-10 micron in diameter. T cell possesses a large nucleus and contains few mitochondria, ribosomes, and lysosomes. The cytoplasmic component is larger when antigens are attached to the cell [30, 31].

Function: The main function of T-cell is to produce cell-mediated immune response various type of cell-cell interaction occurs between the t-cells and another cell, for example, the interaction between a macrophage and a T cell for a phagocytic response, the interaction between T cell and B cell for humoral response and interaction between a T cell and another T cell which release IL2, IL4, IL5, interferon-gamma, macrophages inhibitor factor, and macrophage activation factors this are very important cytokines and they play a very important role within the immune system. Hence T cell can arise two types of functions one in which is effector function and another one is regulating function. They expressed CD4, CD8, CD44, CD25 receptor. The T cell receptor consists of the protein complex and actually, they are comprised of two separate peptide chains [32, 33]. CD4 T-Cell could play an important role in the development of the chronic inflammation occurring in RA. These cells are a major regulator of the immune response producing pro-inflammatory cytokine and operating with B-Cells for secreting antibodies CACPA or rheumatoid factor, while not in the other patient [34].

CD4 T cell in rheumatoid arthritis:

CD4 T cell activation and function in synovitis: CD4 T-Cell is expending in overall synovium, where they establish communication between cell to cell and play a vital role in the pathological immune response to joint damage [35].

Regulation of FLSs by CD4 T cells:

FLSs play a critical role in joint architecture. In a normal joint, this is the component that forms synovial lining and secretes synovial fluid. FLSs are an aggressive phenotype in RA, which causes hyperplasia in synovitis. This hyperplasia in synovitis creates a hypoxic environment where angiogenesis and elevation of inflammation is developed. Also, Rheumatic arthritis FLSs secreted large amounts of collagen proteases in synovial fluid, as a result of bone erosion, cartilage destruction, and trigger pro-inflammatory cytokines. The regulation of FLSs is altered by CD4 T cells by the help of pro-inflammatory cytokines TNF-α, IL-15, and IL-18 [36]. FLSs Collagen synthesis also altered by CD4 T cells, this process is carried out by TNF-α, IFN-γ, and IL-1α [37].

Regulation of macrophages/monocytes by CD4 T cells:

Macrophages cells are the most abundant monocyte in the synovial joint. Where they directly interact with synovial cells and secrete pro-inflammatory mediators like TNF-α cytokine. CD4 T-Cells also regulate macrophage-like synoviocytes. T-Cell having homologous behavior in RA patients [38]. Where TNF-α is also produced by IL15 stimulated NK Cell [39]. Neutralizing therapy used for minimizing the TNF-α in the progression of RA [40]. Macrophages are progenitors of osteoclasts that degraded bone in the case of RA. In normal conditions, osteoclast and osteoclast maintain the homeostasis and skeletal integrity [41, 42].
C) Mast Cell

Basic Biology: Mast cells are present in mucosae and connective tissue, normally aggregated at blood vessels, around nerves and epithelial surfaces. They are originated from bone marrow and known as CD34+ progenitor cells after entered inside the tissue they are known as mature mast cells. Which are intensely heterogeneous, and largely variable in cytokine production, granule contents, and receptor expression. The major role of mast cell has antigen presentation, intracellular killing, and phagocytosis. They are found in blood vessels, synovial cavity, peritoneum, and pleural space. This existence indicates as a guard for detecting antigens and inflammatory response. Thereafter, mast cells clustered in chronically inflamed cartilage tissue.

Function of Mast cell:

IgE Activation: Mast cells are having high-affinity toward IgE receptor FcεR1. The receptor is tetrameric structure made up of α, β and 2γ subunit. When the FcεR1 receptor bind with antigen, the immunoreceptor tyrosine-based activation motifs (ITAMs) are phosphorylated on the β and γ chain subunit and this turn activates a signaling cascade, as a result, three distinct pathways are initiated de novo synthesis of cytokines, eicosanoids pathway, and chemokines pathway. Within second to minute the granules present in the cytoplasm of the mast cell are ruptured to each other and release from intracellular to extracellular spaces due to the IgE cross-linking. The granules are released on the basis of matured mast cell, the chemical mediator of mast cell such as histamine, neutral proteases, and heparin, broadly divided into three group carboxypeptidases, chymases, and tryptases. Histamine enhances vascular permeability; proteoglycans provide a stage where granules of proteases are packaging and the neutral proteases are rupture proteins from complex and plasma therewith to activating propeptides interleukin-1β and angiotensin II. Tumor necrosis factor (TNF) is also stored in the granules which are used for the development of airway hyperreactivity (AHR). The activation of the IgE receptor which turns initiates the arachidonic acid pathway and produces eicosanoids.

Table 4: Selected mediators of mast cell and their roles in arthritis:

| Mediator | Some relevant functions |
|----------|-------------------------|
| Histamine | Leukocyte recruitment, Vascular permeability, fibroblast activation |
| Heparin | Angiogenesis and osteoclast activation |
| Neutral proteases | Matrix degradation, leukocyte recruitment, fibroblast activation |
| TNF | Leukocyte recruitment, fibroblast activation |
| PGD2 | Vascular permeability, Neutrophils recruitment |
| LTB4 | Vascular permeability, leukocyte activation |
| Cysteinyl leukotrienes | Vascular permeability, immunomodulatory (LTC4) |
| IL-1 | Leukocyte recruitment, fibroblast, angiogenesis differentiation and activation |
| IL-2 | Lymphocyte stimulation |
| IL-3 | Leukocyte growth factor |
| IL-4 | Immunomodulatory, profibrotic |
| IL-6 | leukocytes and fibroblasts activation |
| IL-8 | Neutrophil recruitment |
| IL-10 | Immunomodulatory |
| IL-13 | Immunomodulatory, B cell stimulation |
| IL-18 | Angiogenesis, lymphocyte stimulation |
| TNF | Leukocyte recruitment, fibroblast/chondrocyte activation, angiogenesis |
| IFN-γ | Activation of synovial macrophages |
| TGF-β | Immunomodulatory, fibroblast mitogen, angiogenesis |
| PDGF | Fibroblast mitogen |
| VEGF | Fibroblast mitogen, angiogenesis |
| Bfgf | Fibroblast mitogen |
| NGF | Fibroblast mitogen |
| MCP-1 | Leukocyte recruitment |
| MIP-1α, MIP-1β | Leukocyte recruitment, osteoclast differentiation |
| RANTES | Leukocyte recruitment |
Mast cells in inflammatory arthritis:

Rheumatic arthritis (RA) is a synovial inflamed tissue in which the amount of mast cells is increased in the synovial joint (Fig. 2). In the normal condition, the synovium joint made up of a thin layer of macrophages ('Type A' cells) and fibroblasts ('Type B' cells) which are enclosed in the sub-lining of highly vascular matrix connective tissue and adipose tissue. In the normal condition, mast cell is found around the vessels and nerve as a clustered form and covering up to 3% of all cells inside the synovium [53]. In normal condition; mast cell remains a defense system against bacterial peritonitis infection. In the case of RA patient, the synovial lining is expanded from 1–4 cells to 10 cells and the T cells, B cells, macrophages, and neutrophils are infiltrated with sub lining. The number of clustered mast cells depends upon the patient [54, 55, 56]. Mast cells are present around the synovial sub-lining, where they have formed a cluster in an abnormal layer of pannus which is present near joint cartilage and begins bone erosion [57]. The phagocytosis nature of mast cells may also play critical roles for the stimulation of inflammatory mediators due to the profibrotic effects of IL-4 and T and B lymphocytes stimulation by IL-6 [58].

Fig 2: - Cell mediator and Cell-Cell interaction of mast cell in rheumatoid arthritis of synovitis including Synovial Osteoclast, Synovial fibroblast, and macrophages recruitment and activation causes cartilage and bone destruction. Once mast cell is enhancing in synovitis they lead to increase vascular permeability, molecular interaction, and angiogenesis. Mast cells may cause cartilage and bone destruction by matrix metalloproteinases (MMPs) through fibroblasts and chondrocytes in the pannus site and lead to direct and indirect differentiation and activation of osteoclast.
D) Synovial Fibroblast:

**Basic Biology:** Fibroblast cells are mostly found in the connective tissue which connects, binds and supports other tissues and organs. These cells derived from mesenchymal stem cells, stem cells that are adequate for differentiation as they are needed. Fibroblast is usually 10-15 micron in size. The lifetime of fibroblast is about 57 days measured in chick embryos. Fibroblast cells use endocytosis as their transport mechanism. They play a major role in the propagation of inflammation and bone erosion [59]. In normal condition, synovial tissue comprises two layers the first one is the intima layer or synovial lining and the second one is an underlying layer or subintima layer. The first one is directly attached to the intra-articular cavity which is present inside the joint capsule and this synovial cavity is filled with synovial fluid. The main job of the intima is to secret the components of the synovial fluid are within this intima and this layer is about 20-40 Am thick, one to three cells deep, loosely organized, avascular, and not supported by a basement membrane. The lower layer is known as the subintima of the synovial cavity [60]. In the normal intima and subintima, two types of cells face into the synovial fluid, first one is known as macrophage-like (type A) synoviocytes (MLS) [61,62], and the second one is FLS (type B synoviocytes). FLS membrane is bipolar, spindle-shaped cells with prominent secretory hyaluronic acid machinery, including endoplasmic reticulum, higher ribosomal arrays, and well-developed Golgi apparatus. Their nuclei are pale. In contrast to FLS, MLS and lack HLA class II antigens, having endocytosis ability, and are CD68 negative [63].

**FLS Function:** The major function of Fibroblastic-like synovial cells (FLS) is to maintain the structural and functional integrity of the connective tissue by continuously releasing extracellular proteins like collagen, glycoproteins, and glycosaminoglycans. Fibroblast cells maintain homeostasis by keeping a normal pH 7.4-7.7. FLS plays a critical role in normal joint homeostasis. The Mature intimal FLS produces an increasing amount of long-chain polymeric hyaluronan into the synovial cavity, which has provided lubricating and immunomodulatory properties. Intimal FLS also secrete the glycoprotein lubricon, as well as plasminogen activator. Lubricon imparts viscosity at synovial space. Plasminogen activator may inhibit fibrous adhesions in the joint, promoting joint bone movement [64]. The major job of FLS is to control synovial fluid volume. When synovial fluid volumes are increased due to mechanical stress on intimal FLS appeared, lowering hyaluronan production leads to decreasing oncotic pressure in the joint. In contrast, destruction in arthritides represents due to disturbance of synovial fluid volume control, with friction forces provoking excess hyaluronan production, and accumulation of plasma dialysate in the synovial cavity. FLS may also involve in inflammatory responses as well as its co-receptor CD97, DAF modulates tissue responses can also alter on the cell surface [65]. FLS also involve in leukocyte trafficking, via their interaction with leukocytes. Intimal FLS act as a ligand like and VCAM-1 CD-44, ICAM-1 and integrins, this ligand bind with other cells. Thus, intimal FLS may inhibit mononuclear cells such as monocytes and lymphocytic cells in the synovium while entering neutrophil into the joint space, through which the amount of leukocyte is controlled via two compartments while the amount of leukocyte is to be reduced in the synovial cavity. Finally, we can say that FLS maintains the maintenance of joint capsules in case of the joint disorder [66].

**The FLS in RA**

**Hyperproliferation of FLS:** RA FLS are hyperproliferative [67], and several in vitro studies, it has been finding that the rheumatoid arthritis FLS makes more division than normal cell [68]. In the rheumatoid arthritis condition several growth factors which overexpress the FLS mitosis in the synovial joint [69].

**Inflammation and autoimmunity:** When FLS are activated they them self produce inflammatory mediators including IL1, IL4, IL6, IL8, IL10, IL12, IL17, IL18, IL21, TNF-α, TGF-β, and cyclooxygenase-2, prostaglandin E2 [70, 71]. IL15 is a pro-inflammatory cytokine, which also activates t-cell, neutrophils and macrophages. In the case of a rheumatoid arthritis patient, this cell is overexpressed by FLS [72]. Therefore, FLS is the most important driver in rheumatoid arthritis inflammation. RA FLS also secret several types of proangiogenic factor including FGF [73], VEGF [74], and IL-18 [75], it is also involved in blood vessels growth, require arthritis process and pannus formation. Angiopoietins are responsible for inflammation in rheumatoid arthritis with the help of angiogenesis and leukocyte [76, 77]. production, direct contact between T cells and RA FLS leading to T cell activation, enhancing the production of cytokines as well as T cell proliferation [78, 79]. Thus, Rheumatoid arthritis FLS play a major role in multiplication, inflammation, and autoimmunity. Conversely, resting FLS activated by T cells [81].

**FLS and tissue destruction:** Fibroblast-like Synoviocyte (FLS) produced an HK2 enzyme that is very important for tissue destruction in rheumatoid arthritis. They also produce matrix metalloproteases which responsible for cartilage destruction. This is commonly observed in tandem, laboratory and clinical evidence suggests that these processes are distinct [82, 83]. Radiographic joint damage evaluated in RA is joint space destruction, enlargement of synovial lining cell, pannus formation, marginal cartilage erosions, and bone erosions.
E) Synovial Macrophages:

**Basic Biology:** A macrophage is a granulocyte of white blood cell (WBC), which performs the process of phagocytosis. A macrophage is a cell generated from the monocyte progenitor and release in blood. They are found in different tissue according to their performance such as in the liver they are called kuffer cells, in lung alveolar macrophage cell and in joint it is known as synovial macrophages. The size of macrophages is about 15-18 µm in diameter [84, 85].

**MLS Function:** Macrophages are caused by inflammation and elevate the body temperature while pathogens entered in our body. It acts as a messenger for the hypothalamus to increase body temperature. Macrophages are phagocytic [86]. There is two pathogen killing mechanism first one is oxygen dependent and second one is oxygen-independent. In oxygen-dependent, they produce ROS and RNS, which is causing damage to the pathogen and another one is an oxygen-independent mechanism that firstly engulfs the bacteria and digests them through a lysosomal antimicrobial peptide, after digestion, they removed from the body [87].

Macrophages have secreted some molecule like cytokine, IL1, which are inflammation producing molecule this molecule alarm other macrophages around the body and other immune cells come and fight the pathogen [88].

**The MLS in RA:** The type A (the macrophage) interlocked with the type B cell (the fibroblast) in the synovial joint. In the normal condition, the type B-cell is found largely in synovium as compared to Type A-cell, while in RA condition type A-cell will be found greatly [89]. They also involved in bone resorption [90]. Rheumatoid arthritis most common caused by macrophages. When the number of macrophages is increased in synovium they cause radiological damage [91], joint pain and inflammation [92]. Synovitis degeneration with rheumatoid arthritis can be seen in almost 50% of the patient without cellular congestion. Chemical mediator which responsible for macrophages activation in rheumatoid arthritis-like growth factors and cytokines, including TNF-α, GM-CSF, IL-1, 6, 8, 10, 13, 15, 18, migration inhibitory factor (MIF) and chemokines [93, 94]. Macrophages are produced several types of proteases including leukocyte elastase, MMP-1, MMP-3 and MMP-9, and matrix metalloproteinases (MMPs) in case of articular destruction [95].
Funding: None

Conflict of interest: There is no conflict of interest associated with this publication, and there has been no significant financial support for this work that could have influenced its outcome. As corresponding author, I confirm that the manuscript has been read and approved for submission by the entire name author.

Acknowledgement: I would like to gratefully acknowledge my wonderful committee whose support and inspiration enabled me to achieve the goal of completing this project Cell Biology in Rheumatoid Arthritis. I would also like to acknowledge Dr. S. Prakash Rao who spent hours of seemingly endless typing and whose questions and direction helped to form the structure of this document.

References:

1. Bruce Kid, Richard ML, angford, Arthritis and pain.current approaches in the treatment of arthritic pain. Arthritis Res Ther. 2007; 9(3):214.10.1186/ar2147
2. Meedna N, Zhang H, Owen T, Sun W, Wang Y, Cist R, one C, Rangel-Moreno J, Xing L, Anolik JH. Immune Cells Role in Rheumatoid Arthritis-induced bone Loss Revealed. Arthritis Rheumatol. 2016; 68(4):805-16. DOI: 10.1002/art.39489.
3. E. Calabresi F, Petrelli AP, Bonifacio I, Puseudiu A, Ailmmo. One year in review 2018: pathogenesis of rheumatoid arthritis. Clinical and Experimental Rheumatology. 2018; 36:175-84.
4. Gary F, Iain B, Immunopathogenesis of rheumatoid arthritis. Immunity. 2017; 46(2):183-196. DOI: 10.1016/j.imun.2017.02.006
5. Gierut A, Perlman H, Pop RM, Inate Immunity and Rheumatoid Arthritis. Rheumatic Disease Clinics of North America. 2010; 36(2):271-296. DOI: 10.1016/j.rcc.2010.03.004
6. Manole Cojocaru, Inimioara Mihaela Cojocaru, Isabela Silosi, Camelia Doina Vrabie. Extra-articular Manifestations in Rheumatoid Arthritis. Maedica (Buchar). 2010; 5(4):286-291.
7. Pandey S, Arthritis an autoimmune disorder: Demonstration of in-vivo antiarthritic activity, International Journal of Pharmacy & Life Sciences, 2010; 1(1):38-43.
8. Jacobs P, Bissonnette R, Guenther LC, Socioeconomic burden of immune-mediated inflammatory diseases—Focus on work productivity and disability. The Journal of Rheumatology Supplement. 2011; 88:35-61. DOI: 10.3899/jrheum.110901
9. Langley PC, Mu R, Wu M, Dong P, Tang B, The impact of rheumatoid arthritis on the burden of disease in urban China. Journal of Medical Economics. 2011; 14(6):709-719. DOI: 10.3111/13696998.2011.611201
10. Capellino S, Cosentino M, Woff C, Schmidt M, Grúka J, Straub RH. Catecholamine-producing cells in the synovial tissue during arthritis: Modulation of sympathetic neurotransmitters as new therapeutic target. Annals of the Rheumatic Diseases. 2010; 69(10):1853-1860. DOI: 10.1136/ard.2009.119701
11. Li Y, Shen Y, Hohensinner P, Ju J, Wen Z, Goodman SB. Deficient Activity of the Nucleosome MRE11A Induces T Cell Aging and Promotes Arthritogenic Effector Functions in Patients with Rheumatoid Arthritis. Immunity. 2016; 45(4):903-916. DOI: 10.1016/j.immuni.2016.09.013
12. Fuji H, Shao L, Colmegna I, Goronyz JJ, Weyand CM, Telomerase insufficiency in rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106(11):4360-4365. DOI: 10.1073/pnas.0811332106
13. JAI Bishri, Comorbidity Profile Among Patients with Rheumatoid Arthritis and the Impact on Precipitations Trend. Clin Med Insights Arthritis Musculoskeletal Disord. 2013; 6:111-18. DOI: 10.4137/CMA.MS14181
14. Yadav BS, A cross sectional study of different Rheumatic Diseases and their respective co morbidities at a tertiary care hospital in India. Indian Journal of Rheumatology. 2019; 14(1):42-48. DOI: 10.4103/injr.injr.112_18
15. Tukace ktdozinski, Malgorzata wistowska, Comorbidities in rheumatic arthritis. Rheumatologia. 2018; 56(4):228-233. DOI: 10.5114/reum.2018.79774
16. David AFox, MD, Alison Gizinski, MD, Rochel Morgan BSC, Steven K Lundy, phd, Cell-cell Interactions in Rheumatoid Arthritis Synovium. Rheum Dis Clin North Am. 2010; 36(2):311-323. DOI: 10.1016/j.rcc.2010.02.004
17. Hooi-Yeen Yap, Sabrina Zi-Yee Tee, Magdelyn Mei-Theng Wong, Sook-Khuan Chow, Suat-Cheng Peh, andsin-Yeang Teow. Pathogenic Role of Immune Cells in Rheumatoid Arthritis: Implications in Clinical Treatment and Biomarker Development. Cells. 2018 Oct; 7(10):161. DOI: 10.3390/cells7100161
18. Motonari Kondo, Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. Immuno Rev. 2010 Nov; 238(1):37–46. DOI: 10.1111/j.1600-065X.2010.00963.x
19. Keith Elkon, Paolo Calafi: Nature and functions of autoantibodies. Nat Clin Pract Rheumatol. 2008 Sep; 4(9):491–498. DOI: 10.1038/ncprheum09859
20. Guangwei Liu, Yujing Bi, Lixiang Xue, Ruifu Yang, Zeyi Cao, Xin Hu, Hui Yang, Xi Chen, Yun Lu, Zenghui Zhang, Huanrong Liu, Xiao Wang, Ruoning Wang, Yiwei Chu, and Ruifu Yang. Dendritic cell SIRT1-HIF1a axis programs the differentiation of CD4+ T cells through IL-12 and TGF-B1. PNAS, 2015; 112(9):E957–E965. DOI: 10.1073/pnas.1420419112
21. Andres Castell-Herrera, Gabriela Piron Zarate, Minguel Herrera Enriquez et al. Dendritic cells: Location, Function, and Clinical Implication. Dimension. 2017; 22-50 DOI: 10.5772/intechopen.68352
Reciprocal activation of CD4+ T cells and synovial fibroblasts destruction in rheumatoid arthritis patients. Aliskiren and ACPA mediates T celldependent regulation of tumor necrosis factor associated cytokines. The Journal of Biological Chemistry.

Kotake S, Udagawa N, Hakoda M, Mogi M, Yano K, Tsuda E, et al. Activated human T cells directly induce osteoclastogenesis and ACPA antibodies. Clinical and Experimental Immunology. 1982; 50(3):129.

Rezzonico R, Burger D, Dayer JM. Direct contact between T cells and synovial fibroblasts. Arthritis and Rheumatism. 2004; 50(3):579-582.

Beaumont G, Martínez Calatrava MJ, Castañeda S. The crosstalk between natural killer and macrophages express the fas converting enzyme & Therapeutics. 2020; 10(3):80.

Eynav A, Lippert G, Moss D, Galmarini CM, Moraes e Silva, Ziegler C, et al. Dendritic cells as a tool to assess the importance of dendritic cells in peripheral T cell tolerance. J Exp Med. 1999; 182(9):1893-1899.

Jonult HE, Schmitt K, and Enk AH. Specialization and function of dendritic cells in inflammation. Inflammation research. 2011; 23(11):668-675.

Jonuleit HE, Schmitt K, and Enk AH. Dendritic cells as a tool to study cell–cell communication, antigen presentation and the basis of allergic reactions. Current Opinion in Immunology. 2009; 21:53-59.

Buckley BM, Metcalfe DA, Metcalfe. The Role of Dendritic Cells in T Cell Development. American Journal of Hematology. 1999; 60:191-200.

Amst erdam 2 NA, Toes RE, Jonkman W, Jonkman MD, FRCPI. Synovial tissue macrophages population and their microenvironment in the synovial membranes of patients with rheumatoid arthritis using monoclonal antibodies. Clinical and Experimental Immunology. 1982; 50(3):176-184.

Taku Naito, Hirokazu Tanaka, Yoshinori Naoe, Ichiro Taniuchi. Reciprocal activation of CD4+ T cells and synovial fibroblasts by stromal cell-derived factor 1 promotes RANKL expression and osteoclastogenesis in rheumatoid arthritis. Arthritis & Rheumatism. 2004; 50(3):835-842.

Dean D. Metcalfe DB, Josep A, Meloria. Mast Cell and the Basis of Allergic Reactions. J Exp Med. 1997; 182(9):1893-1899.

if: doi:10.1007/PL00012386

Booth M, Fishar W, Sessa C, Inflammation and the Blood Microvascular System. Cold Spring Harb Perspect Biol. 2015 Jan; 7(1): a016345. Doi: 10.1101/chsaperscience.a016345.

Hannah J, Gould B, Sutton J, Andrew J, Beavil, Rebecca L, Beavil, Natalie mcloskey, Heather A, Coker, David Fear, and Lyn Smythwaite. The Biology of IgE and The Basis of Allergic Disease. Ann NY Acad Sci. 2003; 1011:159-176.

An dismantling of action: Control of secretion with its clinical profile. Reumatologia Clinica. 2012; 8(2):78-85. Doi: 10.1016/j.reuma.2011.08.002.

Sahu et al. Trends in Drug Delivery & Therapeutics. 2020; 10(3):348-357

ISSN: 2250-1177  [356] CODEN (USA): JDDTAO
Mechanisms of FGF-2 in the Induction of Fibroblast Growth Factor 2 Determinants in Severity of Joint Disease in Adjuvant Arthritis

Fibroblast growth factor 2 (FGF-2) plays a crucial role in the development and progression of rheumatoid arthritis (RA). This growth factor is produced by fibroblasts in the synovial tissue and has been implicated in the pathogenesis of RA.

The normal synovium is an enhancer of interleukin-1β (IL-1β) production in synovial fibroblasts, which contributes to the inflammatory response in RA.

The role of immune cells in RA has been extensively studied. Macrophages, dendritic cells, and T cells are involved in the pathogenesis of RA. Macrophages are essential for the activation of synovial fibroblasts and for the production of pro-inflammatory cytokines.

The study by Sahu et al. (2020) highlights the importance of fibroblast growth factor 2 (FGF-2) in the induction of fibroblast growth factor 2 (FGF-2) determinants in severity of joint disease in adjuvant arthritis.

**References**

1. Sahu et al. (2020). Fibroblast growth factor 2 (FGF-2) determinants in severity of joint disease in adjuvant arthritis. Journal of Drug Delivery & Therapeutics, 2020; 10(3):348-357.

2. Scott BB, Zaremba A, Pombo A, Zaratin PF, Cormican G, Worral JJ, W. Edward. Light microscopic characterization of the synovioyte. Arthritis and rheumatism. 1992; 35(10):1179-1184.

3. Bremmer JJ, Dooi JG, Adkiman J, and Breedveld FC. Plasminogen activators in synovial fluid and plasma from patients with rheumatoid arthritis. Annals of rheumatic diseases. 1992; 51(8):965-968. Doi: 10.1136/ard.51.8.965

4. Ichikawa T, Wissapu M, van Liere AW, Tom J, Smeets M, Ferdinand C, Breedveld, and Paul P. Tak. Expression of the activation antigen cd97 and its ligand cd55 in rheumatoid synovial tissue artherosclerosis & rheumatism. 1999; 42(4):650-658. Doi: 10.1016/S0265-6506(98)00636-4

5. Thorn,N. Interleukin-2 and -3 synergize the proliferation of human synovial fibroblasts. J Immunol. 2004; 172:2270-2275. Doi: 10.4049/jimmunol.172.4.2270

6. Kirwan JR. The synovium in rheumatoid arthritis: evidence for (at least) two inappropriately activated neutrophil populations. Arthritis Rheum. 2004; 50(1):14-24. Doi: 10.1002/art.11496

7. Neidhart M, Neidhart MCA. Neidhart MCA, Neidhart MCA. The synovium in rheumatoid arthritis: evidence for (at least) two inappropriately activated neutrophil populations. Arthritis Rheum. 2004; 50(1):14-24. Doi: 10.1002/art.11496

8. Chen K, Fox DA, Effector function of resting T cells: activation of synovial fibroblasts. J Immunol. 2001; 166(4):2270-2275. Doi: 10.4049/jimmunol.166.4.2270

9. Sahu et al. (2020). Fibroblast growth factor 2 (FGF-2) determinants in severity of joint disease in adjuvant arthritis. Journal of Drug Delivery & Therapeutics, 2020; 10(3):348-357.