Towards precision determination of uPDFs

Magnus Hansson\(^1\) and Hannes Jung\(^2\)

1- Lund University
2- DESY, FRG

The unintegrated Parton Density Function of the gluon is obtained from a fit to dijet production in DIS as measured at HERA. Reasonable descriptions of the measurements are obtained, and a first attempt to constrain the intrinsic transverse momentum distribution at small \(k_\perp\) is presented [1].

1 Introduction

Unintegrated parton density functions (uPDFs) are best suited to study details of the hadronic final state in high energy \(ep\) and also in \(pp\) collisions (for a review see [2–8]). In general, the production cross section for jets, heavy quarks or gauge bosons can be written as a convolution of the uPDF \(A(x, k^2_\perp, \bar{q})\) with the partonic off-shell cross section \(\hat{\sigma}(x_i, k^2_\perp)\), with \(x_i, k_\perp\) being the longitudinal momentum fraction and the transverse momentum of the interacting parton \(i\) and \(\bar{q}\) being the factorization scale. For example the cross section for \(ep \rightarrow \text{jets} + X\) can be written as:

\[
\frac{d\sigma^{\text{jets}}}{dE_T^j d\eta} = \sum_i \int \int \int dx_i dQ^2 d \ldots \cdot [dk^2_\perp x_i A(x_i, k^2_\perp, \bar{q})] \hat{\sigma}(x_i, k^2_\perp)
\]

At high energies, the gluon density is dominating for many processes, therefore here only the gluon uPDF is considered. It has already been shown in [9], that the predictions of the total cross section as well as differential distributions for heavy quark production at HERA and the LHC agree well in general with those coming from fixed NLO calculations. However, the details depend crucially on a precise knowledge of the uPDF. Therefore precision fits to inclusive and exclusive measurements have to be performed to determine precisely the free parameters of the uPDF: the starting distribution function at a low scale \(Q_0 \sim 1\ \text{GeV}\) as well as parameters connected with \(\alpha_s\) and details of the splitting functions for the perturbative evolution.

An overview and discussion of uPDFs is given in [4–6]. In a previous paper [10] the uPDF was determined from a pQCD fit using the CCFM evolution equation [11–14] to the

\[\text{DIS 2007}\]
structure function F_2 and F_2^c with acceptable χ^2/ndf. However, the small x behavior of the uPDF obtained from F_2^c was very different compared to the one obtained from F_2.

Here also measurements of high p_T-dijet production in DIS at HERA [15–17] are investigated.

2 The method

The unintegrated gluon density is determined by a convolution of the non-perturbative starting distribution $A_0(x)$ and the CCFM evolution denoted by $\hat{A}(x, k_{\perp}, \bar{q})$:

$$x A(x, k_{\perp}) = \int dx' A_0(x', k_{\perp}) \cdot \frac{x}{x'} \hat{A} \left(\frac{x}{x'}, k_{\perp}, \bar{q} \right)$$

In the perturbative evolution the gluon splitting function P_{gg} including non-singular terms (as described in detail in [18, 19]) is applied.

The distribution A_0 is parameterized at the starting scale Q_0 by:

$$x A_0(x, k_{\perp}) = N x^{-B_g} \cdot (1 - x)^{C_g} (1 - D_g x) \cdot \exp \left[-\frac{(\mu - k_{\perp})^2}{\sigma^2} \right]$$

(1)

The parameters N_g, B_g, C_g, D_g as well as μ, σ of A_0 are free parameters which have to be constrained by measurements. It turns out, that C_g, D_g are not sensitive to the data considered here, and are therefore fixed to $C_g = 4$ and $D_g = 0$. The other parameters are determined by a fit [20] to measurements such to minimize the χ^2 defined by:

$$\chi^2 = \sum_i \left(\frac{(T_i - D_i)^2}{\sigma_i^{stat} + \sigma_i^{sys}} \right)^2$$

with T being the theory value and D the measurement with the corresponding statistical and systematic uncertainty.

3 The intrinsic k_{\perp} distribution

The Gaussian form with $\mu = 0$ and a width of $\sigma \sim 1.0$ GeV of the intrinsic k_{\perp} distribution in eq. (1) is an assumption to parameterize our ignorance about the small k_{\perp} behavior. In the saturation model of GBW [21] the uPDF vanishes for small k_{\perp}. Such a behavior can be mimicked by a Gaussian distribution with $\mu \sim Q_0$. The effect of choosing different μ is illustrated in Fig. 1.

Figure 2: A scan in the parameter space of B_g for $\frac{d^3 \sigma}{dE d\Delta t}$ and $\frac{d^3 \sigma}{dE d\Delta \Delta t}$ as measured in [15].

DIS 2007
4 Dijets in DIS

The sensitivity of the shape in x and the intrinsic k_\perp was studied for dijets in DIS [15] in the kinematic range of $5 < Q^2 < 100 \text{GeV}^2$, $10^{-4} < x < 10^{-2}$, $0.1 < y < 0.7$ and two jets with at least $E_t > 5 \text{GeV}$ in the range $-1 < \eta < 2.5$. The differential cross sections $\frac{d\sigma}{dx}$, $\frac{d\sigma}{d\Delta \eta}$, with $\Delta \eta$ being the rapidity difference between the highest E_t jets are mainly sensitive to the x dependence of the uPDF. The same is observed for the cross section $\frac{d\sigma}{dx}$ with $E_t > E_{t\text{min}} + \Delta$ and $E_{t\text{min}} = 5 \text{GeV}$. A scan over the parameter space of Bg is shown in Fig 2. With this choice of parameters the cross sections are well described, giving a reasonable χ^2/ndf. In Tab. 1 the χ^2/ndf are given for different values of Bg and the mean μ of the intrinsic k_\perp distribution.

B_g	μ [GeV]	χ^2/ndf
0.025	1.5	68/37=1.8
0.25	1.5	95/37=2.5
0.025	0	63/37=1.7
0.25	0	99/37=2.7

Table 1: Quality of the description of the different differential cross sections using $B_g = 0.025$ and $B_g = 0.25$ together with $\sigma = 1.5 \text{GeV}$.

From Tab. 1 it is seen, that a value of $B_g = 0.025$ is preferred, and that the sensitivity of these measurements to the intrinsic k_\perp distribution is very small. However, the cross section as a function of $\Delta \phi$, where $\Delta \phi$ is the difference in azimuthal angle between the two leading jets in the hadronic center-of-mass frame, is directly sensitive to the transverse momentum of the incoming parton, and thus a crucial test of the uPDF.

In Fig. 3 we show a comparison of the measurement of [17] with the prediction of CASCADE using the uPDF determined before. A reasonable description of the measurement is achieved. Table 2 shows the χ^2/ndf obtained for these data and also to the azimuthal correlations from [16].

B_g	μ [GeV]	χ^2/ndf
0.025	1.5	163/29=5.6
0.25	1.5	128/29=4.4
0.025	0	200/29=6.9
0.25	0	237/29=8.2

Table 2: Quality of the description of $\frac{d\sigma}{dx}$ using $B_g = 0.025$ and $B_g = 0.25$ together with $\sigma = 1.5 \text{GeV}$.

It is interesting to observe, that $\frac{d\sigma}{dx\Delta \phi}$ gives also access to B_g, now with a preference to a much steeper initial gluon distribution. The measurement prefers a distribution which decreases for very small transverse momenta k_\perp. However it should be noted, that the form of the intrinsic k_\perp distribution is not constrained.

5 Conclusion

DIS2007
The shape of the starting gluon distribution in x and k_T has been investigated with dijet events in DIS. Whereas the cross sections as a function of E_t prefer a soft gluon distribution ($B_g \sim 0.025$) and show little sensitivity to the intrinsic k_T distribution, the cross sections as a function of $\Delta \phi$ prefer a much steeper gluon ($B_g \sim 0.25$) and show a clear preference to an intrinsic k_T distribution which decreases for small k_T. The different x-slope of the initial gluon distribution, as already observed in fits to F_2 and F_L, is also observed in di-jet cross section measurement. Further investigations are obviously needed.

Acknowledgments

Many thanks go to the organizers of this very interesting workshop.

References

[1] Slides:
 http://indico.cern.ch/contributionDisplay.py?contribId=54&sessionId=6&confId=9499

[2] H. Jung, Phys. Rev. D 65, 034015 (2002). [hep-ph/0110034]

[3] H. Jung, Mod. Phys. Lett. A19, 1 (2004). [hep-ph/0311249]

[4] Small X Collaboration; B. Andersson et al., Eur. Phys. J. C 25, 77 (2002). [hep-ph/0204115]

[5] Small X Collaboration, J. R. Andersen et al., Eur. Phys. J. C35, 67 (2004). [hep-ph/0312333]

[6] Small X Collaboration, J. R. Andersen et al. (2006). [hep-ph/0604189]

[7] H. Jung. DIS 2004, Strbské Pleso, Slovakia. [hep-ph/0411287]

[8] J. Collins and H. Jung, Need for fully unintegrated parton densities, 2005. [hep-ph/0508280]

[9] S. Alekhin et al., Hera and the LHC - a workshop on the implications of HERA for LHC physics: Proceedings Part A and B, 2005. [hep-ph/0601012,hep-ph/0601013]

[10] H. Jung, A. V. Kotikov, A. V. Lipatov and N. P. Zotov, [hep-ph/0611093]

[11] M. Ciafaloni, Nucl. Phys. B 296, 49 (1988)

[12] S. Catani, F. Fiorani, and G. Marchesini, Phys. Lett. B 234, 339 (1990)

[13] S. Catani, F. Fiorani, and G. Marchesini, Nucl. Phys. B 336, 18 (1990)

[14] G. Marchesini, Nucl. Phys. B 445, 49 (1995)

[15] A. Aktas et al. [H1 Collaboration], Eur. Phys. J. C 33 (2004) 477 [hep-ex/0310019]

[16] M. Hansson [H1 Collaboration], “Decorrelation Of Dijets At Low X And Q**2,” Prepared for 14th International Workshop on Deep Inelastic Scattering (DIS 2006), Tsukuba, Japan, 20-24 Apr 2006

[17] S. Chekanov et al. [ZEUS Collaboration], [hep-ex/0705.1931]

[18] H. Jung, Acta Phys. Polon. B33, 2995 (2002). [hep-ph/0207230]

[19] M. Hansson and H. Jung. DIS 2003, St. Petersburg, Russia, [hep-ph/0309009]

[20] F. James and M. Roos, Comput. Phys. Commun. 10, 343 (1975)

[21] K. Golec-Biernat and M. Wusthoff, Phys. Rev. D 60 (1999) 114023 [hep-ph/9903358].

DIS 2007