Research article

Lactobacillus plantarum fermentation to reduce anti-nutritional contents in peanut, mustard and sesame

Sandy B. K¹,., Gowthami G. A¹, Harish Nayaka M. A², Gunashree B. S.¹

¹Department of Studies and Research in Microbiology, Mangalare University, Jnana Kaveri Post Graduate Centre, Chikka Aluvara, Kodagu 571 232, Karnataka, India
²Department of Studies in Sugar Technology, Sir M. Visvesvaraya Post Graduate Centre, University of Mysore, Tubinakere, Mandya, Karnataka, India

(Received: May 2021 Revised: June 2021 Accepted: June 2021)

Corresponding author: Gunashree B. Shivanna. Email: gunashree_bs@yahoo.co.in

ABSTRACT

Introduction and Aim: Oilseeds are an important source of nutrition in developing countries, which are either consumed directly or as snacks. However, the presence of anti-nutritional factors limits their use. This study evaluated the potential application of probiotic *Lactobacillus plantarum* in reducing the anti-nutritional content in peanut, mustard and sesame.

Materials and Methods: Peanuts, sesame and mustard seeds were coarsely ground, defatted by Soxhlet extraction method using hexane and fermented by submerged fermentation method using *Lactobacillus plantarum*. After fermentation for 72hrs, the contents were centrifuged and the pellets in addition to defatted raw sample were analyzed for anti-nutrients like polyphenols, oxalates, trypsin inhibitors and lectins using standard protocols.

Results: Polyphenol content was reduced by 26.40, 46.70 and 41.50%, while oxalate content exhibited 61.50, 32.70 and 37.70% reduction in peanut, mustard and sesame respectively. Trypsin inhibitor activity was reduced by 80.00, 12.13 and 77.78%, while lectin exhibited 87.50, 62.50 and 64.87% reduction in peanut, mustard and sesame respectively.

Conclusion: Peanut showed maximum reduction in oxalates, trypsin inhibitors and lectins followed by sesame and mustard. However, highest polyphenol reduction was exhibited in sesame. Hence, from the present investigation, it is found that fermentation may be a promising tool in reducing anti-nutritional factors from oil seeds.

Keywords: *Lactobacillus plantarum*; anti-nutrients; submerged fermentation.

INTRODUCTION

Lactic acid bacteria (LAB) are a heterogeneous group of bacteria which falls under GRAS (generally regarded as safe) category of food additives. They are being used since time immemorial for fermentation of foods due to their ability to produce flavours, aroma and texture and preservation of food. LAB have variety of uses in current food systems ranging from fermented dairy products, fermented vegetables, alcoholic beverages, fermented dough, fermented meat products, probiotics, etc. *Lactobacillus plantarum* is one of the most versatile probiotics present and has properties ranging from production of flavours and aroma to reduction of anti-nutrients. Its use is safe and the method of use is also simple which makes it the organism of choice. It produces enzymes that can degrade the anti-nutrients (1-5).

Oilseeds, which form a large part of diets in developing and underdeveloped countries, are rich in proteins and fats. They are either consumed directly as snacks or added in other foods as condiments. They however contain anti-nutrients which lower their nutritional quality and hinder their bioavailability or digestion of existing nutrients. They can also produce off-flavours and off-tastes in foods and some also have toxic effects on human health. Oilseeds contain anti-nutrients such as tannins, polyphenols, trypsin inhibitors, oxalates, lectins, metal chelators and cyanogens (5). Their presence is a major factor for lesser acceptability of oilseeds within the daily diet. Their reduction is of importance as it can increase their consumption and make their use much wider.

Polyphenols have the ability to bind to iron in the food and make it unavailable for absorption. They can also inhibit absorption of non-haem dietary iron (6). Oxalate, salt of oxalic acid binds with minerals like magnesium or calcium to form their respective insoluble salts. These salts precipitate in the kidneys and can lead to formation of kidney stones (7). Trypsin inhibitors are protease inhibitors that inhibit trypsin activity in the gut and prevent protein digestion. They form indigestible complexes with dietary proteins making them unavailable for digestion (8). Lectins are glycoproteins with non-catalytic binding domain that can bind reversibly to specific oligosaccharides or monosaccharides which hinder their digestion and make them unavailable in the gut. They can also bind to carbohydrate binding receptors and reduce carbohydrate absorption (9).
Fermentation is an ingenious method to reduce the anti-nutritional content of oilseeds. Along with reducing the concentration of anti-nutrients, it also improves flavour, texture and taste of the fermented food and increase the bioavailability and digestibility of the food (10-11). Fermentation with LAB, especially L. plantarum, will also make the food being consumed of probiotic nature and the enzymes produced by it can aid in digestion (10). Fermentation with LAB species has been shown to reduce the anti-nutrients content in foods and also improves their sensory quality (11). It is shown in the earlier investigation that L. plantarum reduced the anti-nutrients content in food mixture, soybean, sorghum flour, grass pea flour, lebbeck seeds and cocoyam tuber (12-14). Fermentation also improves digestibility of proteins, starch, increase bioavailability of minerals, increase fibre content and improve the overall acceptability of the food product (13-16).

The aim of this investigation was to evaluate the scope of Lactobacillus plantarum in reducing the anti-nutrient concentration of oilseeds. The oilseeds selected namely, peanut, mustard and sesame are the ones that are most commonly used by the general public in daily life. Probiotic fermentation reduced their anti-nutritional content thereby making them safe for consumption and daily use and also adds to their nutritional value and sensory profile and makes the fermented food a source of probiotics.

MATERIALS AND METHODS

The oilseeds such as peanuts, sesame and mustard were procured from local market at Kushalnagar, Kodagu (India). The culture of Lactobacillus plantarum was obtained from Department of Food Microbiology, CSIR-CFTRI, Mysore, Karnataka, INDIA.

Fermentation of seeds

The oilseeds were washed with tap water to remove any dirt and extraneous matter. They were then dried and coarsely ground using a mixer-grinder. The ground oilseeds were defatted using Soxhlet extraction method using petroleum ether and were suspended in Man Rogosa and Sharpe broth at 15% concentration. The broth suspension was inoculated with Lactobacillus plantarum culture and incubated at 37°C for 72hrs. in a shaker incubator. The culture broth was centrifuged at 5000 rpm and the pellet containing the oilseeds grits was dried in hot air oven at 50°C to remove moisture and cease fermentation. The dried fermented seeds grits and the supernatant were both used to measure the amount of anti-nutrients.

Estimation of total polyphenols

1g of powdered, defatted and fermented seed sample was extracted by refluxing with 1% hydrochloric acid-methanol at 60°C for 40 minutes and the extracts were pooled and concentrated under vacuum in a rotary flash evaporator (17). 2.5 ml of Folin-Ciocalteu reagent and 7.5 ml of 15% sodium carbonate were added to 0.1 ml acidified methanolic extract and mixed thoroughly. The volume was made up to 50 ml and the mixture was incubated at room temperature for 30 minutes. The absorbance was recorded at 760 nm and the concentration of polyphenols was estimated by extrapolating the values of sample on a pre-prepared standard curve using Gallic acid. The results were expressed as mg Gallic acid equivalents [GAE/ 100g of dry sample] (18).

Estimation of oxalates

Soluble and insoluble oxalates were extracted with 15 ml distilled water and 2N hydrochloric acid respectively. The sample suspensions were heated in a boiling water bath for 15-20 minutes and cooled down to room temperature. It was filtered through Whatman No. 1 filter paper, washed with distilled water and the volume was made up to 50 ml (19). 0.25 ml bromphenol blue, 0.4 ml potassium dichromate and 1 ml sulphuric acid were added to 1 ml sample and incubated in a boiling water bath for 10 minutes. Reaction was terminated by adding 1 ml sodium hydroxide and absorbance was read at 600 nm. The oxalate concentration was estimated using a standard curve prepared using oxalic acid.

Estimation of trypsin inhibitors

Trypsin inhibitors were extracted using 10 ml 0.025 N hydrochloric acid at 26±5°C with constant stirring. The solution was filtered through Whatman No. 1 filter paper (20). 1 ml sample was mixed with 2 ml trypsin solution and incubated at 37°C for 10 minutes. 5 ml of pre-warmed N-α-benzoyl-D,L-Arginine-p-Nitroanilide (BAPNA) solution was added to it and the contents were stirred in a vortex mixer for 10 min. Reaction was terminated by addition of 1 ml 30% acetic acid and the absorbance was read at 410nm (21). The trypsin inhibitor activity was estimated by using a standard curve prepared for trypsin. One Trypsin Unit (TU) is arbitrarily defined as an increase of 0.01 absorbance at 280 nm in 20 mins per 10 ml of the reaction mixture under set conditions. Trypsin inhibitors activity is defined as the number of trypsin units inhibited (TUI).

Lectin content estimation

1 g sample was mixed with 50 ml 0.15 M NaCl and incubated at room temperature for 6 hours and filtered through Whatman No. 1 filter paper (22). 5 ml alkaline solution and 0.5 ml Folin-Ciocalteu reagents were added to 1 ml sample and incubated at room temperature for 30 minutes. Absorbance was recorded at 670 nm. The lectin concentration was estimated by extrapolating the values of sample on a pre-prepared standard curve for dextran.
RESULTS

Polyphenol content

The results obtained in the present study showed a reduction in polyphenol content of oilseeds during Lactobacillus plantarum fermentation. The results are shown in Table 1. Raw peanuts, mustard and sesame contained 910±1.32, 881±1.37 and 889±1.31 µg/g of polyphenol content. It was reduced to 670±1.48, 470±1.31 and 520±1.05 µg/g after fermentation. Lactic acid bacteria have been known to produce β-glucosidase enzyme that degrade polyphenols into bioactive phenolics responsible for antioxidant activity.

Table 1: Polyphenol content in raw and fermented oilseeds (µg/g)

Oilseeds	Raw	Fermented	% Reduction
Peanut	910 ±1.32	670 ±1.48	26.4
Mustard	881 ±1.37	470 ±1.31	46.7
Sesame	889 ±1.31	520 ±1.05	41.5

Oxalate content

A reduction in oxalate content of oilseeds was obtained during L. plantarum fermentation. Raw peanuts, mustard and sesame showed 780 ±1.35, 490 ±1.21 and 450 ±1.11 µg/g of oxalate content respectively. It was reduced to 300 ±1.06, 330 ±1.39 and 280 ±1.25 µg/g after fermentation (Table 2). Peanut (61.6%) exhibited maximum reduction in oxalate content followed by sesame (32.7%) and mustard (37.8%).

Table 2: Oxalate content in raw and fermented oilseeds (µg/g)

Oilseeds	Raw	Fermented	Supernatant	% Reduction
Peanut	780 ±1.35	300 ±1.06	425 ±1.08	61.6
Mustard	490 ±1.21	330 ±1.39	203 ±1.15	32.7
Sesame	450 ±1.11	280 ±1.25	214 ±1.15	37.8

Trypsin inhibitor activity

In the present investigation there was a reduction in trypsin inhibitor activity of tested oilseeds during L. plantarum fermentation. Raw peanuts, mustard and sesame contained 400±1.44, 330±1.15 and 450±1.49 µg/g of trypsin inhibitor activity (Table 3). It was reduced to 80±1.42, 290±1.20, and 100±1.23 µg/g after fermentation. Peanut exhibited maximum reduction of 80% in trypsin inhibitor activity followed by sesame (77.8%) and mustard (12.2%). Trypsin inhibitors are low molecular weight proteins responsible for inhibiting the activity of trypsin, a digestive enzyme. L. plantarum produce protease during fermentation that degrades the trypsin inhibitors into smaller subunits or free amino acids and deactivates them.

Table 3: Trypsin inhibitor content in raw and fermented oilseeds (µg/g)

Oilseeds	Raw	Fermented	Supernatant	% Reduction
Peanut	400±1.44	80±1.42	112±1.31	80.0
Mustard	330±1.15	290±1.20	110±1.31	12.2
Sesame	450±1.49	100±1.23	198±1.25	77.8

Lectin content

L. plantarum fermentation showed the reduction in lectin content of oilseeds. Raw peanuts, mustard and sesame showed 80±1.35, 40±1.28, and 37±1.08 µg/g of lectin content. It was reduced to 10±0.72, 15±0.70 and 13±0.96 µg/g after fermentation. Peanut exhibited maximum reduction in lectin content (87.5%) followed by sesame (64.9%) and mustard (62.5%).

Table 4: Lectin content in raw and fermented oilseeds (µg/g)

Oilseeds	Raw	Fermented	Supernatant	% Reduction
Peanut	80±1.35	10±0.72	50±1.35	87.5
Mustard	40±1.28	15±0.70	32±1.42	62.5
Sesame	37±1.08	13±0.96	25±1.15	64.9

DISCUSSION

Rodríguez et al., (1) have reported activity of phenolic acid decarboxylases in Lactobacillus plantarum which can decarboxylate polyphenols into their vinyl derivatives and reduce their content in food. L. plantarum also produces extracellular tannase which can depolymerize high molecular weight tannins into low molecular weight tannins, thereby reducing the polyphenol content. Rodríguez et al., (2) also indicated the molecular pathway involved in the process where, tannic acid is hydrolysed to gallic acid and glucose, and gallic acid is further decarboxylated to pyrogallol. It is shown in the earlier report that there was 20 and 19% reduction in polyphenol content of food mixture when fermented with Lactobacillus plantarum and
Lactobacillus casei (10). A 93% reduction in tannins in soybean after 5 days of fermentation with *L. plantarum* was also reported earlier (13). The reduction was higher with fermentation than cooking or roasting. The enzymatic activity of *L. plantarum* was proved to be responsible for reduction of antinutritional content. A comparative study was made to find out the efficiency of starter cultures in removing anti-nutrients from ogwo (fermented sorghum- potato gruel). *L. plantarum* was found most efficient out of all the starter cultures used with 56% reduction in polyphenol content. *L. plantarum* proved to be better than *L. fermentum*, *L. acidophilus*, *Saccharomyces cerevisiae*, and *Geosporum candidum* (13). *L. plantarum* was shown to reduce tannin content by 83% in *Phaseolus vulgaris* after 48 hours of fermentation (18). The reduction was more with *L. plantarum* fermentation than with natural fermentation. Similar results were reported (13) in sorghum flour where *L. plantarum* fermentation (96.7%) was more effective than germination (16.12%) in reducing tannin content. However, the present investigation showed 46.7, 41.5 and 26.4% reduction of polyphenols in mustard, sesame and peanuts respectively.

L. plantarum has been proved to produce oxalate decarboxylase, an oxalate degrading enzyme (3). Oxalate is dicarboxylic acid dianion and has two carbon backbone held together by a single covalent bond. The enzyme is involved in catalytic conversion of oxalate into carbon dioxide and formate by cleaving the inert C-C bond (4). Manganese (II) and dioxygen are needed for the catalysis. Pumpkin and sorghum flours when fermented with *L. plantarum* had a 6 times lower oxalate content than their raw forms (12). Olagunju, and Ifesan (11) reported a time dependent decrease in oxalate content of sesame seeds. Oxalate content decreased from 1.05 ± 0.10 to 0.48 ± 0.052 after 96 hours of fermentation with their natural microflora. Adetebi et al., (15) compared the efficacy of starter cultures, viz., *L. fermentum*, *L. acidophilus*, *L. plantarum*, *G. candidum*, *S. cerevisiae*, in removing anti-nutrients from ogwo (fermented sorghum-potato gruel). Maximum reduction in oxalate content was exhibited by *S. cerevisiae* (76%) followed by *L. acidophilus* (73%). *L. plantarum* degraded 67% oxalate content from ogwo (fermented sorghum-potato gruel) after 48 hours of fermentation. Ojha et al. (23) compared efficiency of malting and *L. plantarum* fermentation in reducing the oxalate content. Fermentation with *L. plantarum* for 48 hours reduced the oxalate content by 67.85%, which is 18.75% more than germination. Adebisi et al., (16) reported a 68% decrease in the oxalate content of African Breadfruit seeds after it was subjected to mixed fermentation consisting of *B. subtilis*, *B. pumulis*, *S. aureus*, *L. plantarum*, *L. bulgaricus*, *Leuconostoc mesenteroides*, *A. niger*, *A. flavus* and *S. cerevisiae*. Hassan et al., (14) used mixed fermentation and pure culture fermentation with *A. niger*, *A. fumigatus*, *Rhizopus stolonifer*, *Penicillium chrysogenum*, *Candida albicans*, *Geotricum albidum*, *Bacillus pumilus*, *L. plantarum*, *L. mesenteroides*, *Pediococcus cerevisiae* and *L. brevis* to reduce the antinutrient content of cocoyam tuber (*Colocasia esculenta* L). *L. plantarum* reduced 52% of phytate content whereas maximum reduction was observed after *B. pumilis* fermentation (62%).

A complete removal of trypsin inhibitors (initial concentration of 255.44 ± 4.06) from food mixture when fermented with *L. plantarum* and *L. casei* has been reported (13). Fermentation also improves in-vitro digestibility of proteins. It is also reported earlier to have a 98% reduction in trypsin inhibitor activity of soybean after *L. plantarum* fermentation for 5 days. The reduction was higher with fermentation than cooking or roasting. A 12% decrease in the activity of chymotrypsin inhibitors in common bean flour after fermentation with *L. plantarum* for 48hrs has been reported (5). *L. plantarum* was shown to reduce the trypsin inhibitor activity by 57% in *Phaseolus vulgaris* after 48 hours of fermentation (23). Similar results were reported by (24) in reduction of antinutrients of cowpeas using *L. plantarum* fermentation. Fermentation was more effective than cooking and germination, but slightly less effective than pressure cooking and *Rhizopus oligosporus* fermentation in reducing the trypsin inhibitor activity of cowpeas.

Lectin, a stored glycoprotein, is hydrolysed into simpler and available units. The reduction in lectin content can be attributed to degradation of proteins by microbial enzymes into simpler and soluble products (5). Lectin has been reported to act as nutrient substrate for the growth of *L. plantarum* (25). This could be the possible reason for lectin degradation by *L. plantarum*. In the earlier studies a comparison between natural and *L. plantarum* fermentation in reducing the antinutrients of common bean flour has been made (5). The fermentation process reduced 50% lectin content from the flour while fermentation followed by autoclaving removed lectin content completely.

CONCLUSION

Fermentation with *L. plantarum* resulted in significant reduction of anti-nutritional factors in the oilseeds. 26-46% reduction was observed in polyphenol content and 31-61% reduction in oxalate content. Trypsin inhibitors activity was reduced by 12-80% whereas lectin content decreased by 62-87%. Peanut exhibited highest reduction in anti-nutrients such as oxalates, trypsin inhibitors and lectins and least reduction in polyphenols at the end of fermentation, followed by sesame and mustard. However mustard showed highest reduction of 46.7% in polyphenols. Thus fermentation makes the oilseeds safer for human consumption and enhances their

DOI: https://doi.org/10.51248/v41i3.1201
nutritional availability. Further studies can be conducted on scope of reduction of other anti-nutrients like cyanogenic glycosides, phytates, oligosaccharides, etc. Studies can also be focused on other under-utilised oilseeds and grains to increase their use and diversify the diets. Also, other probiotic bacteria and fungi can be explored to reduce the anti-nutritional content of grains and oilseeds.

ACKNOWLEDGEMENT

The authors are thankful to Mangalore University and Department of Studies and Research in Microbiology for all the infrastructural facilities to carry out this research work.

CONFLICT OF INTEREST

Authors declare no conflict of interest.

REFERENCES

1. Rodriguez, H., Curiel, J. A., Landete, J. M., de las Rivas, B., de Felipe, F. L., Gomez-Cordoves, C., et al., Food phenolics and lactic acid bacteria. International Journal of Food Microbiology. 2009; 132(2-3): 79-90.

2. Rodriguez, H., de las Rivas, B., Gomez-Cordoves, C., Munoz, R. Degradation of tannic acid by cell-free extracts of Lactobacillus plantarum. Food Chemistry. 2008; 107(2): 664-670.

3. Paul, E., Albert, A., Ponnusamy, S., Mishra, S. R., Vignesh, A. G., Sivakumar, S. M., et al., Designer probiotic Lactobacillus plantarum expressing oxalate decarboxylase developed using group II intron degrades intestinal oxalate in hyperoxaluric rats. Microbiological Research. 2018; 215: 65-75.

4. Svedruzic, D., Jonsson, S., Toyota, C. G., Reinhardt, L. A., Ricagno, S., Lindqvist, Y., et al., The enzymes of oxalate metabolism: unexpected structures and mechanisms. Archives of Biochemistry and Biophysics. 2005; 433(1): 176-192.

5. Martin-Cabrejas, M. A., Sanfiz, B., Vidal, A., Molla, E., Esteban, R., Lopez-Andreu, F. J. Effect of fermentation and autoclaving on dietary fiber fractions and antinutritional factors of beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry. 2004; 52(2): 261-266.

6. Hurrell, R. F., Reddy, M., Cook, J. D. Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. British Journal of Nutrition. 1999; 81(4): 289-295.

7. Noonan, S. C., Savage, G. P. Oxalic acid and its effects on humans. Asia Pacific Journal of Clinical Nutrition. 1999; 8(1): 64-74.

8. Fereidoon, S. Antinutrients and phytochemicals in food. Developed from a symposium sponsored by the Division of Agricultural and Food Chemistry at the 210th National Meeting of the American Chemical Society, Chicago, Illinois. In: ACS symposium series, ISSN. 2012; 0097-6156.

9. Gemede, H. F., Ratta, N. Antinutritional factors in plant foods: Potential health benefits and adverse effects. International Journal of Nutrition and Food Sciences. 2014; 3(4): 284-289.

10. Salmeron, I., Fucinos, P., Charalamopoulos, D., Pandiella, S.S. Volatile compounds produced by the probiotic strain Lactobacillus plantarum NCIMB 8826 in cereal-based substrates. Food Chemistry. 2009; 117(2): 265-271.

11. Olagunju, A. I., Ihesan, B. O. Changes in nutrient and antinutritional contents of sesame seeds during fermentation. Journal of Microbiology, Biotechnology and Food Sciences. 2021; 2407-2410.

12. Ojha, P., Adhikari, R., Karki, R., Mishra, A., Subedi, U., Karki, T. B. Malting and fermentation effects on antinutritional components and functional characteristics of sorghum flour. Food Science & Nutrition. 2018; 6(1): 47-53.

13. Sindhu, S. C., Khetarpaul, N. Fermentation with one step single and sequential cultures of yeast and lactobacilli: effect on antinutrients and digestibilities (in vitro) of starch and protein in an indigenously developed food mixture. Plant Foods for Human Nutrition. 2003; 58(3): 1-10.

14. Hassan, G. F., Yusuf, L., Adebolu, T. T., Onifade, A. K. Effect of fermentation on mineral and anti-nutritional composition of cocoyam (Colocasia esculenta linn). Sky Journal of Food Science. 2015; 4(4): 42-49.

15. Adegbehingbe, K. T. Effect of starter cultures on the anti-nutrient contents, minerals and viscosity of ogwo, a fermented sorghum-Irish potato gruel. International Food Research Journal. 2015; 22(3):1247-1252.

16. Adegbehingbe, K. T., Fakoya, S., Adeleke, B. S. Effect of fermentation on nutrient and antinutrient contents of fermented whole and ground African breadfruit (Treculia africana) seeds. Microbiology Research Journal International. 2017; 20(5): 1-11.

17. Chethan, S., Mallesh, N. G. Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability. Food Chemistry. 2007; 105(2): 862-870.

18. Singleton, V. L., Orthofer, R., Lamuela-Raventos, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology. 1999; 299: 152-178.

19. Huang, A. S., Tanudjaja, L. S. Application of anion-exchange high-performance liquid chromatography in determining oxalates in taro (Colocasia esculenta) corns. Journal of Agricultural and Food Chemistry. 1992; 40(11): 2123-2126.

20. Kakade, M. L., Simons, N., Liener, I. E. Evaluation of natural vs. synthetic substrates for measuring the antitypic activity of soybean samples. Cereal chemistry. 1969; 46: 518-526.

21. Hamerstrand, G. E., Black, L. T., Glover, J. D. Trypsin inhibitors in soy products: modification of the standard analytical procedure. Cereal Chemistry. 1981; 58(1): 42-45.

22. Akeson, W. R., Stuhlmann, M. A. A peptide pancreatin digest index of protein quality evaluation. The Journal of Nutrition. 1964; 83(3): 257-261.

23. Granito, M., Alvarez, G. Lactic acid fermentation of black beans (Phaseolus vulgaris): microbiological and chemical characterization. Journal of the Science of Food and Agriculture. 2006; 86(8): 1164-1171.

24. Ibrahim, S. S., Habiba, R. A., Shatta, A. A., Embaby, H. E. Effect of soaking, germination, cooking and fermentation on antinutritional factors in cowpeas. Food/Nahrung. 2002; 46(2): 92-95.

25. Donthidi, A. R., Tester, R. F., Aidoo, K. E. Effect of lecithin and starch on alginate-encapsulated probiotic bacteria. Journal of Microencapsulation. 2010; 27(1): 67-77.