Effect of Some Quince Rootstocks on Inflorescence Properties, Flowering and Fruit Set in Loquat (Eriobotrya japonica Lindl.)

Sibel AKKUS1, Atila Aytekin POLAT2

Hatay Mustafa Kemal Üniversitesi, Ziraat Fakültesi, Bahçe Bitkileri Bölümü 31034, Antakya/HATAY

1https://orcid.org/0000-0003-4783-6940, 2https://orcid.org/0000-0002-5701-4767

a: aapolat@mku.edu.tr

ABSTRACT

The present investigation was conducted to determine the effect of different quince clone rootstocks on phenological characteristics, flowering and fruit set ratios of Hafif Çukurgöbek (HCG) loquat variety. ‘HCG’ variety budded on Quince-A, Quince-C and BA-29 rootstocks were planted at 1.0 m × 0.5 m inter and intra-row spacing, respectively, was used for the study. The experiment was arranged as a completely randomized design with 5 replications and 6 plants were used in each replicate. The effects of the quince rootstocks on phenological observations such as the flowering periods and the inflorescence characteristics were recorded. The HCG cultivar which are grafted on all three rootstocks completed the flowering between 11 December and 31 January. The first flowering and fruit set were recorded at the earliest in BA-29, and the latest in Quince-C. Fruit ripening was occurred at the earliest in BA-29 rootstock (May 11), followed by Quince-C (May 18) and Quince-A (May 19). The effect of rootstocks on the number of flower buds and flowers in the cluster, and the number of final fruit set were found significant. In terms of all three features, higher values were obtained in Quince-C rootstock. Quince-A rootstock yielded the lowest value in the ratio of fruit harvested in both years, Quince-C and BA-29 gave close values to each other. As a result, BA-29 and Quince C rootstocks performed better than Quince-A rootstock.

Keywords

Vegetative growth
Phenological properties

Research Article

Article History

Received : 07.04.2021
Accepted : 11.06.2021

Keywords

Vegetative growth
Phenological properties

ÖZET

Bu araştırma, farklı ayva klon anaçlarının Hafif Çukurgöbek (HCG) yenidünya çeşidinin fenolojik özellikleri, çiçeklenme ve meyve tutumu oranları üzerindeki etkisini incelemek amacıyla yapılmıştır. Denemede: Quince-A, Quince-C ve BA-29 ayva anaçları üzerine aşılı, 1.0 m x 0.5 m sıra arası ve sıra üzeri aralıklarla dikilmiş HÇG yenidünya çeşidi kullanılmıştır. Deneme tesadüf parselleri deneme desenine göre 5 tekrərli kuruluş ve her tekrərli altı bitki yer almıştır. Ayva anaçlarının, çiçeklenme dönemleri ve çiçek säkilm özellikleri gibi fenolojik gözlemle etkileri kaydedildiştir. Her üç anaç üzerine aşılı HÇG çiçeklenmesini 11 Aralık-31 Ocak arasında tamamlamıştır. İlk çiçeklenme ve meyve tutumu en erken BA-29’da, en geç Quince-C’de gerçekleşmiştir. Meyve olgunlaşması, en erken BA-29 anaçında(11 Mayıs) olurken, bunu Quince-C(18 Mayıs) ve Quince-A (19 Mayıs) izlemiştır. Anaçların, säkılm addAction doğru çiçek tomurcuk sayısı, säkilmada açan çiçek sayısı ve derimi yapılan meyve sayısı üzerine etkisi önemli bulunmuştur. Her üç özellik bakımdan Quince-C anaçında daha yüksek değerler elde edilmiştir. Her iki yilda da derimi yapılan meyve oranında en düşük değeri, Quince-A anaç vermiş olup, Quince-C ve BA-29 birbirlerine yakın değerler vermişlerdir. Sonuç olarak, BA-29 ve Quince-C anaçları, Quince-A anaçından daha iyi performans göstermiştir.
INTRODUCTION

Loquat has specific climatic requirements for bud initiation and flowering compared with other subtropical fruit species. Loquat usually flowers in autumn and early winter and the fruits ripen in spring when most other subtropical fruits are just in flowering or setting fruits. Loquat trees that flowers in winter are harvested 152-189 days after full bloom (Lupescu et al., 1980).

Loquat (Eriobotrya japonica Lindl.) is propagated mainly by budding method, and when it is budded mostly loquat seedling is used as rootstock. Loquat trees on the seedling rootstocks are very tall (5-10 meter) and large crowned. There are several difficulties of established an orchard with such large trees. First of all, the number of trees that can be planted per unit area is limited and also, operations such as pruning, spraying and fruit picking are difficult and its cost is high (Polat, 1995: Crane and Caldeira, 2019). It is necessary to control the vegetative growth to reduce the cost of management. High density planting with small crowned trees makes easy to prune, spraying, thinning and especially for fruit picking. In addition, these trees produce quality fruits with high and marketable value.

Dwarfing rootstocks are used in different fruits, especially for apples and pears for many years (Faust, 1976; Hartmann and Kester, 1983). Use of dwarfing rootstock is considered of great importance in intensive loquat cultivation. Loquat trees on dwarf rootstock provide the opportunity to plant more trees per unit area that also produced higher yield in a unit area (Polat et al., 2003).

Some researchers suggest that loquat seedling, quince and pyracantha can be used as rootstocks for loquat (Ochse et al., 1961; Hızal et al., 1982); when quince is used as rootstock. They observed that the trees were fruiting early and ripening earlier, the fruits were larger and of higher quality (Demir, 1987: Polat and Kaışka, 1992a; Polat, 1995). Studies conducted by Polat and Kaışka (1992a, 1992b) and Polat (1996), showed that quince rootstock reduce loquat tree size by 20-25% compared to loquat seedling rootstock. Polat et al. (2004) reported 3 to 4 times higher yield from high density planting compared with using standard planting distances. They also stated that it would be appropriate to evaluate the effect of quince rootstocks, especially BA-29 rootstock, in high density planting trials.

In the literature, there are no study on effects of quince rootstocks on the flower phenology and fruit set in the loquat were examined detailed. The present investigation was taken up to study, the effect of Quince-A, Quince-C and BA 29 quince clone rootstocks on phenological properties, flowering and fruit set for the first time. This forms the original aspect of the research and shows its importance.

MATERIAL and METHOD

Material

This study was carried out in the loquat orchard in Hatay (36°12'E and 36°52'N, 80 elevation), located on the coast of the Mediterranean region of Turkey during 2018 and 2019. Two-year-old plants of ‘HCG’ variety budded on BA-29, Quince-A and Quince-C quince rootstocks were used for the study. These plants were planted at high density with planting spaces of 1.0 m x 0.5 m in January 2017. For each plant 60 g pure N (300 g ammonium sulphate) from February to July was given 4 times (75 g with each irrigation) with irrigation, and regular technical and cultural maintenance processes and shaped with the pruned to an open-center system.

Method

Thirty plants were selected from each rootstock to study the flowering periods and the fruit set rate of the cultivar on different rootstocks. Then, a branch was selected randomly from the four sides of the canopy of these plants and they were tagged accordingly. All observation regarding flowering and fruit set were made from these branches.

Observations on flowering periods

Observations about flowering were made at 3 days' intervals since the first bud swelling began to appear. In this context, the beginning of flowering, first flowering, full bloom, end of flowering and fruit set dates were recorded. These observations were made according to Durgac et al. (2006) and Polat (2018).

Observations on inflorescences

Observations were made at an intervals of 3 days on average after the clusters of the branches were seen. Inflorescence characteristics such as peduncle numbers in cluster, number of flower buds in cluster, number of flowers in cluster, the number of fruits set in cluster, and the number of harvested fruits. These observations were made according to Polat (2007).

Observations on flowering and fruit set ratios

Percent blossom ratios, initial fruit set (%), and final fruit set (%) were recorded under each of the rootstocks during the experimental period. These
observations were made the methods suggested by Westwood (1995) and Polat (2007 and 2015).

Evaluation of the data

The experiment was laid out following a completely randomized designed (CRD). In the study, 30 plants were used each in rootstock and each 6 plants were considered as one replicate. The percent values were transformed (\(\sqrt{x+0.5}\)) to increase normality. Variance analysis was performed with MSTAT-C statistical software and means were compared by Tukey test at the 0.01 or 0.05 level (Steel and Torrie, 1980).

RESULTS

Flowering Periods

The findings of 2018-2019 regarding the effect of quince rootstocks on the flowering properties of the HCG variety are presented in Table 1.

The HÇG variety which are grafted on all three rootstocks completed the flowering between 11 December and 31 January. The first flowering and fruit set were recorded on the plants with BA-29 rootstock (11 December and 13 February, respectively), and the latest in plants with Quince-C rootstock (15 December and 17 February, respectively). Fruit ripening was occurred the earliest on plants with BA-29 rootstock (May 11), followed by Quince-C (May 18) and Quince-A (May 19) (Table 1).

Inflorescences Properties

According to the two-year average, the highest values in terms of the number of peduncle, flower buds, flowers and final fruits were obtained from the plants raised on Quince-C rootstock (Table 2).

While the Quince-A rootstock showed the higher values in terms of the initial fruit set and small fruit set, it gave the lowest value in terms of the number of final fruits set. However, these differences between rootstocks were found to be statistically significant only in terms of the number of flower buds in the cluster (P < 0.05), the number of flowers in the cluster (P < 0.01), and the number of final fruit set (P < 0.05). The differences between the rootstocks in terms of other characteristics were not significant.

Flowering and Fruit set rates

The results of statistical analysis on the effects of quince rootstocks on the flowering and fruit set rates of the HCG variety are given in Figure 1 and 2. The highest blossoming rate (92.65%) was recorded in plants grafted on BA-29 rootstock and the lowest rate (80.07%) was in the plants grafted to the Quince-C rootstock (Figure 1). In terms of the initial fruit set ratio in the cluster, the Quince-A rootstock showed

Rootstock	Beginning of blossoming (Date)	Date of first flowering (Date)	Full flowering (Date)	End of flowering (Date)	Fruit set (Date)	Date of fruit ripening (Date)
Quince-A	23 Nov.	14 Dec.	18 Jan.	31 Jan	17 Feb	19 May
Quince-C	21 Nov.	15 Dec.	10 Jan.	23 Jan	17 Feb	18 May
BA-29	22 Nov.	11 Dec.	11 Jan.	25 Jan	13 Feb	11 May

Rootstock	No. of peduncle per cluster (adet)	No. of flower buds per cluster (adet)	No. of flowers per cluster (adet)	No. of small fruits meyve tutumu (adet)	No. of Final fruits Derimi Yapılan meyve (adet)	
Quince-A	17.67±0.93	128.02±0.11c	102.51±0.94c	17.60±1.24	9.89±0.53	2.71±0.28b
Quince-C	19.44±0.61	156.52±4.45a	143.82±2.34а	16.55±1.37	9.26±0.44	7.51±0.24a
BA-29	16.68±0.25	143.17±0.40b	132.63±0.85b	15.80±1.10	8.62±0.50	6.54±0.32a

(0) Different letters within columns are indicate significant difference by Tukey’s test at P < 0.05 or P < 0.01.
*%: Significant at P < 0.01; ** Significant at P < 0.05; NS: Not significance

Table 1. The effects of quince rootstocks on the flowering properties of the HCG variety (2018-2019 average).

Table 2. The effects of quince rootstocks on the flowering and inflorescences properties of the HCG variety (2018-2019 average).
higher value than the other two rootstocks (Figure 2). These differences between rootstocks were found to be statistically significant at P < 0.05 level. In term of the small fruit set and fruit harvested, although there were differences between rootstocks, these differences were not statistically significant.

Figure 1. The effects of quince rootstocks on the flowering rates of the HCG variety.
*: Different letters on the bars indicate significant differences by Tukey’s test at P < 0.05.
Şekil 1. Ayva anaçlarının HCG çeşidinin çiçeklenme oranları üzerine etkileri
*: Klonlardaki farklı harfler Tukey testine göre % 5 düzeyinde önemli farklığı göstermektedir.

Figure 2. The effects of quince rootstocks on the fruit set rates of the HCG variety.
*: Different letters on the bars indicate significant differences by Tukey’s test at P < 0.05.
Şekil 2. Ayva anaçlarının HCG çeşidinin meyve tutumu oranları üzerine etkileri
*: Klonlardaki farklı harfler Tukey testine göre % 5 düzeyinde önemli farklığı göstermektedir.

CONCLUSION
Reducing of vegetative growth is very important in loquat cultivation because of its very high tree size. The most effective method for this is the use of dwarfing rootstocks such as quince (*Cydonia oblonga*). In this study, the effect of Quince-A, Quince-C and BA 29 quince clone rootstocks on phenological properties, flowering and fruit set rates of the HCG variety was studied in detail for the first time. Results obtained
from this research revealed that dwarf quince rootstocks such as Quince-A, Quince-C and BA-29 can be used in intensive loquat cultivation. However, it is of great benefit to continue the further work to make a definitive judgment about the possibilities of using BA-29, Quince-A and Quince-C rootstocks as new dwarfing rootstocks. Therefore, researches need to be continued, especially to determine all the characteristics regarding yield and fruit quality.

ACKNOWLEDGEMENTS

This research was supported by the Hatay Mustafa Kemal University, Scientific Research Foundation (18-YL-027).

Contribution of the Authors as Summary

Authors declares the contribution of the authors is equal.

Statement of Conflict of Interest

Authors have declared no conflict of interest.

REFERENCES

Ateyyeh AF, Qrunfleh MM 1998. Studies on the Loquat Eriobotrya japonica Lindl. cv. Tanaka. I. Vegetative and Reproductive Growth in the Jordon Valley. Dirasat Agricultural Sciences 25: 55-63.

Crane JH, Caldeira ML 2019. Loquat Growing in the Florida Home Landscape, EDIS Web Site, Available online: http://edis.ifas.ufl.edu.

Demir S 1987. Yenidünya Yetiştiriciliği. T.C. Tarım Orman ve Kıyışleri Bakanlığı Antalya Narenciye Araştırma Enstitüsü Müdürü. Genel Yayın 12, 31 p.

Demir S 1989. Yenidünyalarda (Eriobotrya japonica lindl.) Fizyolojik, Biyolojik ve Morfolojik Araştırmalar. Doktora Tezi. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı. 231 s, Adana, Türkiye.

Durgaç C, Polat AA, Kamiloğlu Ö 2006. Determining Performances of Some Loquat (Eriobotrya japonica) Cultivars under Mediterranean Coastal Conditions in Hatay, Turkey. New Zealand Journal of Crop and Horticultural Science, 34: 225–230.

Erdogdu H 1987. Adana Ekolojik Koşullarında Yerli ve Yabanı Bazi Yenidünya Çeşitlerinin Fenolojik ve Pomolojik Özellikleri Üzerinde Çalışmalar. Yüksek Lisans Tezi. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı. 80 s, Adana, Türkiye.

Faust, M 1956. Dwarf Fruit Trees. Selection and Care. U.S Department of Agriculture, Leaflet No: 407, 8 p.

Hartmann HT, Kester E 1983. Plant Propagation. Printice-Hall International, Inc New Jersey. 722 s.

Hızal AYÖ, Paköz M, Demir Ş 1982. Akdeniz Bölgenin İçin Bazı Subtröpik Meyvelerde Yetiştirme Sorunları. Bahçe Bitkileri Yetiştiriciliğinde Sorunlar, Çözüm Yolları ve Yapılmasını Gereken Araştırmalar Simpozumu, 9-13 Nisan.1979. Alanya, Türkiye, 376-403 s.

Lupescu F, Lupescu T, Khelil A, Tnislav G 1980. Performances Agrobiologiques de Quelques Variétés d’ Eriobotrya japonica Lindl. Cultivees à la station horticole de L’ Institut National Agronomique d’Alger. Fruits 35 (4): 251-261.

Mann GS, Sagar P 1987. Activity and Abundance of Flower Visiting Insects of Loquat. Indian Journal Horticulture 44: 123-125.

Ochse JJ, Soule JrMJ, Diskman, MJ, Weihburg C 1961. Tropical and Subtropical Agriculture, Volume I. The Macmillan Company. New York. p. 721-723.

Polat AA, Kaşka N 1992a. Quince-A’nın Yenidünyalarda Anaç Olarak Kullanılması Üzerinde Bir Araştırma. Turkish Journal of Agricultural and Forestry, 16:745-755.

Polat AA, Kaşka N 1992b. Quince-C Anacına Yapılan Yenidünya Ağılara Aşılı Başarısının Saptanması. Bahçe Dergisi, 21 (1-2): 9–11.

Polat AA 1995. Quince–A Anacının Yenidünyalarda Vegetatif Büyüme Üzerine Etkileri. Derim, 12 (2): 84-88.

Polat AA 1996. Akdeniz Bölgenin İçin Önemli Meyve Türü: Yenidünya (Eriobotrya japonica Lindl.) MKÜ. Ziraat Fakültesi Dergisi, 1 (1): 39-46.

Polat AA, Durgaç C, Kamiloğlu O, Çalışkan O 2003. Sik Đikim ve Ortalıti Yetiştirme Tekniklerinin Yenidünyalarda Etkilerinin Belirlenmesi.TÜBİTAK Tarım, Orman ve Gıda Teknolojileri Araştırmaları, ARP–2336. 68 p.

Polat AA, Durgaç C, Çalışkan O 2004. Effects of Different Planting Space on the Vegetative Growth, Yield and Fruit Quality of Loquat. Acta Horticulturae, 632:189-195.

Polat AA 2007. Determination of Productivity and Fruit Set Ratios of Various Loquat (Eriobotrya japonica) Cultivars under Mediterranean Conditions. New Zealand Journal of Crop and Horticultural Science., 35: 101-105.

Polat AA 2015. Effect of Canopy Orientation on Flowering Time and Fruit Set in Loquat. Acta Horticulturae, 1092: 205-210.

Polat AA 2018. Effects of Some Quince Rootstocks on Phenological Properties and Fruit Set Rates in Hafif Çukuroğebek Loquat Cultivar. In: Proceedings of the IX International Agricultural Symposium “Agrosym 2018”, pp: 488-492.

Steel R, Torrie JH 1980. Principles and Procedures of Statistics. 2nd ed. New York, McGraw-Hill.

Westwood MN 1995. Temperate-Zone Pomology: Physiology and Culture. United States, Timber Press, Inc. 523 p.