Social and Behavioral Determinants of Early Childhood Caries in the Aseer Region of Saudi Arabia

Abdulrahman Alshehri*

Bachelor in Dental Surgery Kingdom of Saudi Arabia, Saudi Arabia, Abha, Saudi Arabia

Abstract

Introduction: Early childhood caries is a multi-factorial disease that involves the susceptible tooth and host, fermentable carbohydrates in the diet, cariogenic micro-organisms and time. The aim of this study was to analyze the influence of socio-behavioral variables on the prevalence of dental caries among children between four and five years old.

Method: A cross-sectional survey was performed on a sample of 422 children presented to selected five Primary Health Care Centers in the Aseer region of Saudi Arabia. The investigation was conducted using the decayed, missing, and filled teeth index (World Health Organization Methodology), and detection criteria for non-cavitated lesions. A tested, self-administered questionnaire was distributed to parents to obtain information about their socio-behavioral characteristics.

Results: It was found that caries have been significantly more prevalent in children from families with employed mothers (p=0.00811). The presence of dental caries was found to be associated with the absence of oral health educators, oral health improving programs and oral health campaigns (p=0.0012). The associations between consuming soft drinks and applying oral hygiene were statistically significant (p=0.00001).

Conclusion: A high caries prevalence (77.73%) and a lack of caries treatment are revealed among Saudi pre-school children in the Aseer region in this study. The present study has identified risk factors for ECC in pre-school children within a Saudi community. ECC risk can significantly increase for children living with an occupied mother (p=0.00811), consuming more sweets and chocolates (p=0.00001), and an absence of oral health educators and oral health promotion programs (p=0.0012). These factors could be modified through public health strategies, such as effective publicity concerning general dental health, practical health advice and developing effective strategies to promote awareness amongst the Saudi community.

Keywords: Social; Behavioral; Oral; ECC; Caries; Saudi; Children

Introduction

Early childhood caries is a multi-factorial disease that involves the susceptible tooth and host, fermentable carbohydrates in the diet, cariogenic micro-organisms and time [1,2]. Early childhood caries (ECC) has been defined as the presence of one or more decayed (non-cavitated or cavitated lesions), missing tooth or teeth (due to caries), or filled tooth surfaces on any primary tooth in children up to 71 months of age. In the recent decades, there have been considerable improvements in the oral health of pre-school goers in many developed countries [3]. However, dental caries still affect a considerable number of children. Recent studies have shown that dental caries have decreased in Latin America and the Caribbean [4]. In Brazil, there was a 17% decrease in dental caries from 2003 to 2010, and the decayed, missing, and filled teeth index (dmft index) for 5-year-old children decreased from 2.80 to 2.30 [5]. Researchers have attempted to expand the basic microbiological models for ECC development to include various social, demographic and behavioral factors such as ethnicity, family income, and maternal education level, and family status, teeth brushing habits and parental knowledge and beliefs [6,7]. Although the predictive power of the variables studied so far was inconsistent, the high disease experience within selected community groups reflects the importance of factors other than the presence of Mutans streptococci alone in contributing to ECC development. Other cross-sectional models demonstrate the complex interaction between socio-economic status (SES), ethnicity, immigrant status, infant feeding, fluoride exposure, oral hygiene and ECC presence in preschool children [8-17]. However, because most studies of ECC have been conducted among specific ethnic, immigrant and lower socio-economic communities, extrapolation of current risk assessment models to the general population is still problematic.

In Saudi Arabia, recent studies have shown the high prevalence of dental caries among pre-school children and adults. Most of the studies that have been conducted in Saudi Arabia have shown significant association between the high prevalence of early childhood caries and some social and behavioral factors [18-21]. Although these factors have shown significant association, there are still other non-investigated factors that have not been reported previously in Saudi child population. The purpose of this study, therefore, was to discover and investigate the association between selected social and behavioral variables and the presence of ECC in the 4-5 years age group of Saudi child population.

Objective

The objective of this study was to analyze the influence of selected socio-behavioral variables on the prevalence of dental caries in the 4-5
years age group of pre-school children within the Aseer region of Saudi Arabia.

Method and Design

A cross-sectional study involving the young pre-school Saudi child population, aged between 4 and 5 years in the Aseer region—a region located in the Southern part of Saudi Arabia, was conducted. For this purpose, information was obtained using prevalence data—percentage with caries. In the present study, the participants were children aged between 4 and 5 years who were treated at dental clinics in five selected Primary Health Care Centers in the Aseer region, Saudi Arabia with their parents or at least one of them throughout the period between March to May 2015. For this, a self-administered questionnaire to obtain information regarding selected social and behavioral variables was prepared. The questionnaire consisted of 24 items varying between Multiple Choices Questions (MCQs), Likert scale and short essay questions. Moreover, the questionnaire was pretested on 30 randomly selected individuals who came to the Alkhoush Primary Health Care Center, one of the previously selected centers. The investigators were the dentists working at the selected dental clinics after we assured that they were aware of the WHO criteria for detecting caries by means of interviews. The investigation was conducted using the decayed, missing, and filled teeth index (World Health Organization Methodology) and detection criteria for non-cavitated lesions. A tested, self-administered questionnaire was administered to one of the parents among all the participants to obtain information about their socio-behavioral characteristics. Then, the data were modelled using chi square test at the 5 per cent level of significance using SPSS software.

Results

Of the 422 children examined, the prevalence of caries was seen in N=328 (77.73%). The prevalence of caries in female children was higher i.e., 96% compared to those among male children, which was 68%. The difference in the prevalence of caries was statistically significant i.e., $X^2=43.13$, df=1, $Pvalue=0.00001$ (Table 1 and Figure 1).

Children aged between 24-36 months showed a higher caries prevalence of 89% (N=124) and there was a statistically significant relation between age of children and the prevalence of dental caries viz. $X^2=15.32$, df=2, $Pvalue=0.000471$ (Table 2_1). With regard to occupation of mothers, more than 70% (N=299) of children had employed mothers and 29.14% with mothers who were housewives, out of which 80.27% of the children with employed mothers had caries. There was a statistically significant relation between occupation of mothers and the prevalence of dental caries i.e., $X^2=7.009$, df=1, $Pvalue=0.00811$ (Table 2_2).

Of the sample, 69.2% (N=292) favored sweets in meals and during day over salts, while 30.8% (N=130) and 53.79% had eaten chocolates every day at least once. In addition, 92.12% of children, who favored sweets, had caries. There was a statistically significant correlation of dental caries prevalence with type of favored meals viz. $X^2=113.50$, df=1, $Pvalue=0.00001$ and with eating sweets and chocolates $X^2=125.11$, df=2, $Pvalue=0.00001$ (Table 2_3 and 2_4).

According to data, only 25.36% of children (N=107) brushed their teeth, 63.55% of them had no caries; whereas, of the 78 out of 422 children who used Siwak to brush their teeth, 82.1% of them had caries. The majority of children in this study (N=191) recorded in the “Mixed group”, used both toothbrush and Siwak to brush their teeth. It is found that 94.76% of children in the "Mixed group" had caries. There was a statistically significant correlation between caries prevalence and the method to apply oral hygiene i.e., $X^2=144.17$, df=3, $Pvalue=0.00001$ (Table 2_5). The majority of sample (N=291) 68.96% chose soft drinks, out of which 94.16% had caries. There was a statistically significant relation between presence of dental caries and type of drinks i.e., $X^2=159.76$, df=2, $Pvalue=0.00001$ (Table 2_6-2_8).

A total of 97.87% (N=413) of the final sample recorded that they had not attended or were not invited to any lecture or campaigns related to oral health care; in this group, 78.7% (N=325) had caries. A statistically significant correlation was found between caries prevalence and attending oral health care programs and participating in oral health care campaigns i.e., $X^2=10.46$, df=1, $Pvalue=0.0012$ (Table 2_9). Although most of the final sample (N=420) had no dentist at school or did not know about dental health, there was no statistical significant correlation between dental caries prevalence and presence of a dentist at school; $X^2=4.76$, df=2, $Pvalue=0.0926$ (Table 2_8).

Discussion

This study is very important since it is the first epidemiological study for ECC presence conducted within the Aseer region. The new findings in the present study can be utilized in the development of more effective strategies for oral health promotion and prevention of ECC within this community. As compared with the previous studies in Saudi Arabia, prevalence of ECC among the children aged between 4-5 years in the Aseer region was found to be lesser than some studies conducted at Riyadh, Tabuk and Alahsa [21-26] and higher than some other studies conducted at Jeddah and Tabuk [22,27,28].

In this study, significant association was found between the gender

Caries free to population	Caries affected to population	Total number of participants according to gender						
Gender	Frequency	% to same gender	% to final sample	Frequency	% to same gender	% to final sample	Frequency	%
Male	88	32	20.85	187	68	44.31	275	65.17
Female	6	4	1.4	141	96	33.41	147	34.83
Total	94	22.27	328	328	77.73	90	422	100

$X^2=43.13$, df=1, $P_{value}=0.00001$

Table 1: Distribution of children according to gender and caries experience.
of the child and ECC. The prevalence of ECC among female children (95.5%) was more than that in male children (68%), which is contrary to many studies conducted in Saudi Arabia and other parts of the world [29-36]. Significant association was also found between the age of the child and ECC. This finding counteracts with the findings by Alkarimi HA, Khristine Marie G. in Philippines, Seval Olmez in Turkey and Wendt L.K. in Sweden. It was shown that the lower age is associated with higher prevalence of ECC, whereas they found that higher age is associated with higher prevalence of ECC among the children (51-54).

Influence of family variables on the presence of ECC reported to be high in previous studies conducted in this regard [29,37-42]. In this study, children of employed mothers have shown higher prevalence of ECC than those living with housewife mothers. Hence, there is a significant association between the occupation of the mother and the prevalence of ECC. The highly significant role of sweets, chocolates, and soft drinks in higher prevalence of ECC is evident from the findings of this study, which are supportive to the findings by Ghanim, Jose B. in Kerala, Rosenblatt, Bankel and others [43-54].

The notable issues like poor oral health services, absence of oral health educators at schools and villages, and loss of oral health campaigns have been shown to be major determinants of ECC in the present study. Findings such as the method of cleaning teeth and frequency of eating sweets and chocolates have shown significant relationship in the current study.

Conclusion

A high caries prevalence (77.73%) and a lack of caries treatment are revealed among Saudi pre-school children in the Aseer region in this study.
The current study has identified risk factors for presence of ECC in pre-school children within a Saudi community. ECC risk can significantly increase by the child living with an occupied mother (p=0.00811), consuming more sweets and chocolates (p=0.00001), absence of oral health educators and oral health promotion programs (p=0.0012).

These factors can be modified through public health strategies, such as effective publicity concerning general dental health and practical health advice. The oral health promotion and education programs should address these risk factors to fight ECC and develop effective strategies to promote awareness amongst the Saudi community.

References
1. Jose B, King M (2003) Early Childhood Caries Lesions in Preschool Children in Kerala, India. Pediatr Dent 25: 594-600.
2. Ripa LW (1988) Nursing Caries: A Comprehensive Review. Pediatr Dent 10: 268-282.
3. Marthaler TM (2004) Changes in Dental Caries 1953-2003. Caries Res 38(3): 173-282.
4. Bönecker M, Cleaton-Jones P (2003) Trends in Dental Caries in Latin American and Caribbean 5-6 and 11-13-year-old Children: A Systematic Review. Community Dent Oral Epidemiol 31(2): 152-157.
5. Brasil Ministério da Saúde Coordenação Nacional de Saúde Bucal da População Brasileira. Projeto SB Brasil 2010: resultados principais. Brasilia (DF): Ministério da Saúde; 2011
6. Resine S, Litt M, Tinanoff NA (1994) Biopsychosocial Model to Predict Caries in Preschool Children. Pediatric Dent 16: 413-418.
7. Tinanoff N, O’Sullivan DM (1997) Early Childhood Caries: Overview and Recent findings. Pediatr Dent 19: 12-16.
8. Schroder U, Granath L (1983) Dietary Habits and Oral Hygiene as Predictors of Caries in 3-year-old Children. Community Dent Oral Epidemiol 11: 308-311.
9. Holt RD, Joels D, Bulman J, Maddick IH (1988) A Third Study of Caries in Preschool Aged Children in Camden. Br Dent J 165: 87-91.
10. Silver DH (1992) A Comparison of 3-year-olds’ Caries Experience in 1973, 1981 and 1989 in a Hertfordshire Town, Related to Family Behaviour and social class. Br Dent J 172: 191-197.
11. Verrips GH, Kalsbeek H, Eijkman MA (1993) Ethnicity and Maternal Education As Risk Indicators for Dental Caries, and The Role of Dental Behaviour. Community Dent Oral Epidemiol 21: 209-214.
12. Grindley M, Dahiog L, Ekstrom G, Hojer B, Modeer T (1993) Caries Prevalence in 2.5 year Old Children. Caries Res 27: 505-510.
13. Litt MD, Resine S, Tinanoff N (1995) Multidimensional causal model of dental caries development in low-income preschool children. Public Health Rep110: 607-617.
14. Evans DJ, Rugg-Gunn AJ, Tabari ED, Butler T (1996) The Effect of Fluoridation and Social Class on Caries Experience in 5-year-old Newcastle Children in 1994 Compared with Results over The Previous 18 Years. Community Dent Health 13: 5-10.
15. Hallett KB (1998) Early Childhood Caries and Infant Feeding Practice. Brisbane: The University of Queensland. MPH thesis.
16. Ramos Gomez FJ, Tomar SL, Ellison J, Artiga N, Sintes J, Vincuna G (1999) Assessment of Early Childhood Caries and Dietary Habits in a Population of Migrant Hispanic Children in Stockton, California. ASDC J Dent Child 66: 395-403, 436.
17. Vanobbergen J, Martens L, Lesaffre E, Bogaerts K, Declerck D (2001) Assessing Risk Indicators for Dental Caries in the Primary Dentition. Community Dent Oral Epidemiol 29: 424-434.
18. Al Dosari AM, Alkapa ES, Khan N (2010) Association among Dental Caries Experience, Fluorosis and Fluoride Exposure from Drinking Water Sources in Saudi Arabia. J Public Health Dent 70: 220-226.
19. Wyne AH (2004) The Bilateral Occurrence of Dental Caries among 12-13 and 15-19 year Old School Children. J Contemp Dent Pract 1: 42-52.
20. Al-Sadhan SA (2006) Dental Caries Prevalence among 12-14 year Old School Children in Riyadh: A 14-Year Follow-up Study of the Oral Health Survey of Saudi Arabia Phase 1. Saudi Dent J 16: 27.
21. Al-Wazzan KA (2004) Dental Caries Prevalence in 6-7 year Old School Children in Riyadh Region: A Comparative Study with the 1987 Oral Health Survey of Saudi Arabia Phase I. Saudi Dent J 16: 54-60.
22. Farsi N (2010) Developmental Enamel Defects and Their Association with Dental Caries in Preschoolers in Jeddah, Saudi Arabia. Oral Health Prev Dent 8: 85-92.
23. Brown A (2009) Caries Prevalence and Treatment Needs of Healthy and Medically Compromised Children At a Tertiary Care Institution in Saudi Arabia. East Mediterr Health J 15: 379-386.
24. Stewart BL, Al Juhani TS, Al Akeel AS, Al Brikeet HA, Al Buhaieran WH, et al. (2015) Caries Prevalence in and Treatment Need Among Primary School Children at King Abdul-aziz Military City, Tabuk, Saudi Arabia. Saudi Dent J 12: 140-148.
25. Mansour M, Anwar S, Pine C (2000) Comparison of Caries in 6-7 year Old Saudi Girls Attending Public and Armed Forces Schools in Riyadh, Saudi Arabia. Saudi Dent J 12: 33-36.
26. Khan NB, Al Ghannam NA, Al Shammery AR, Wyne AH (2001) Caries in Primary School children: Prevalence, Severity and Pattern in Al-Ahsa, Saudi Arabia. Saudi Dent J 13: 71-74.
27. Sabbah WA, Stewart BL, Owusu-Agyakwa GB (2003) Prevalence and Determinants of Caries among 1-5 year-old Saudi Children in Tabuk, Saudi Arabia. Saudi Dent J 15: 131-135.
28. Al-Malik MI, Holt RD, Bedi R (2002) Erosion, Caries and Rampant Caries in Preschool Children in Jeddah, Saudi Arabia. Community Dent Oral Epidemiol 30: 16-23.
29. Abdulrahman A, Nasim VS (2015) Infant Oral Health Care Knowledge and Awareness among Parents in Alpha City of Aseer Region, Saudi Arabia. Saudi J Dent Res 6(2): 99-101.
30. Al Agil DE (2013) A Systematic Review of Population-based Dental Caries Studies among Children in Saudi Arabia. Saudi Dent J 25(1): 3-11.
31. Al Shammari AS, Bassuoni MW, Mohamed MA, Mohamed RN, Hussein YM (2015) Caries Prevalence and Treatment Need Among Primary School Children in Taf, Saudi Arabia. Indian Journal of Applied Research 5(7).
32. Talfour HTA, Abdelrhman M, Ali Omer Md A, Nasir IB, Ahmed A (2015) Assessment of Dental Caries Prevalence in Deciduous and Permanent Student Teeth in Khamis Mushait-KSA. Indian Journal of Applied Research 5(2).
33. Poornima Prabhu KT, Rajajee SS, Sudheer KA, Jesudass G (2014) Assessment of Caries Prevalence among Children Below 5 years old. J Int Soc Prev Community Dent 4(1): 40-43.
34. Santhosh Kumar T, Jyothi T, Harish T, Prabu Duraiswamy, Suhas Kulkami (2012) Dental Caries in Relation to Socio-behavioral Factors of 6-year-old School Children of Udalpur district, India. Indian Dent Res J (Ishafan) 9(6): 681-687.
35. Datta P, Datta PP (2013) Prevalence of Dental Caries among School Children in Sundarban, India. Datta and Datta, Epidemiol 3: 4.
36. Rahman SS, Rasul CH, Kashem MA, Biswas SS (2010) Prevalence of Dental Caries in the Primary Dentition among Under Five Children. Bangladesh Med J (Khulna) 43: 7-9.
37. Eissa|Al-Hosani, Andrew J (2006) Rugg-Gunn. The Relationship between Diet and Dental Caries in 2 and 4 Year Old Children in the Emirate of Abu Dhabi. Saudi Dent J pp: 348-352.
38. Mohebbi SZ, Ji Virtanen, Vahid-Golpayegani M, Vehkalahati MM (2006) Early Childhood Caries and Dental Plaque among 1-3 year-olds in Tahran, Iran. J Indian Soc Pedod Prev Dent December.
39. Inayat N, Mujeeb F, Alain Shad M, Saajib Rashid, Hoosein T (2010) Experience of Early Childhood Caries (ECC) in Children at Fatima Jinnah Dental College Hospital, Karachi and Its Relationship with Feeding Practices. J Pak Dent Assoc 19(1): 34-41.
40. Hallett KB, O’Rourke PK (2003) Social and Behavioural Determinants of Early Childhood Caries. Australian Dental Journal 48(1): 27-33.
41. Abdullah S, Maxood A, Khan NA, Khan W (2008) Risk Factors for Dental Caries in Pakistani Children. Oral Dent J 28: 257-266.
42. Prashanth Prakash, Priya Subramaniam, Durgesh BH, Sapna Konde (2012) Prevalence of Early Childhood Caries and Associated Risk Factors in Preschool Children of Urban Bangalore, India: A cross-sectional study. Eur J Dent.

43. Al Ghanim NA, Adenubi JO, Wyne AA, Khan NB (1998) Caries Prediction Model in Preschool Children in Riyadh, Saudi Arabia. Int J Pediatr Dent 8: 115-122.

44. Jose B, King NM (2003) Early childhood caries lesions in preschool children in Kerala, India. Pediatr Dent 25(6): 594-600.

45. Bankel M (2006) Caries and Associated factors in a Group of Swedish Children 2-3 Years of Age. Swed Dent J 30: 137-146.

46. Johansson Ak, Johansson A, Birkhed D, Omar R, Baghdadi S, et al. (1996) Dental Erosion, Soft-drink Intake, and Oral Health in Young Saudi Men, and the Development of A System for Assessing Erosive Anterior Tooth Wear. Acta Odontol Scand 54(6): 369-378.

47. Leslie AE, Marshall TA, Fang Qian, Wefel JS, Warren JJ (2008) Acidic Beverages Increase the Risk of In vitro Tooth Erosion. Nutr Res 28(5): 299-303.

48. Prabhadevi M, Satish V, Prabhakar AR, Srinivas N (2015) Effect of Soft Drinks and Fresh Fruit Juice on Surface Roughness of Commonly Used Restorative Materials. Int J Clin Dent 8(1): 1-5.

49. Bowen WH, Lawrance RA (2005) Comparison of the Cariogenicity of Cola, Honey, Cow Milk, Human Milk, and Sucrose. Pediatrics 116(4): 921-926.

50. Alkarimi HA, Watt RG, Pikhart H, Sheiham A, Tsakos G (2014) Dental Caries and Growth in School-age Children. Pediatrics 133(3): e616-e623.

51. Khristine MG, Shinada K, Kawaguchi Y (2003) Early Childhood Caries in Northern Philippines. Community Dent Oral Epidemiol 31: 81-89.

52. Olmez S, Uzami M, Erdem G (2003) Association between early Childhood Caries and Clinical, Microbiological, Oral Hygiene and Dietary Variables in Rural Turkish Children. Turk J Pediatr 45: 231-236.

53. Wendt LK, Hallonsten AL, Koch G (1991) Dental Caries in One- and Two-year Old Children Living in Sweden. Swed Dent J 15: 1-6.