Ocimum Sanctum- A Traditional Remedy and Ethno Medicinal Uses, A Concise Review

Vijay P. Sonar, Buddhabhushan V. Bansod, pavankumar N. Desale, Shailesh S. Chalikwar*

Department of Pharmaceutical Quality Assurance, R. C. Patel Institute of Pharmaceutical Education & Research, Shirpur - 425 405, Maharashtra, India.

ABSTRACT

Medicinal plants are major source of bioactive compounds and chemical structures that gives potential beneficial effects. Ocimum sanctum (Tulsi) belongs to the Lamiaceae family, cultivated around tropical and semitropical zone of India and other surrounding Asian countries. In the present review on O. sanctum, the traditional uses, chemical constituents and pharmacological activities are explored. Various medicinal and therapeutic characteristics of Tulsi are found in the aerial parts, roots, leaves and seeds which havea broad range of activity on human being. O. sanctum has multiple medicinal and therapeutic properties such as antibacterial, anticholinesterase, antioxidant, antifungal, antimicrobial, antiaflatoxigenic, anti-inflammatory and antinoceceptive, anticandidal, toxicological, anti-stress and anticonvulsant, anticancer, wound healing activities. Recent research has proven the anticancer and anti-HIV activity of O. sanctum. The chemical compounds of O. sanctum like alkaloids, phenolics, phenyl, coumarins, flavonoids, fatty acids, essential oils, steroidal, and tannin contents play an important role in herbal medicine. This paper examines the various traditional uses, phytochemical constituents and therapeutic potentials of Tulsi plant will be helpful in the treatment of oral diseases and many medicinal disorders and also will be useful in the expansion of new active principles.

Keywords: Ocimum sanctum, Medicinal plants, Chemical constituents, Pharmacological profile, Tulsi.

*Corresponding Author Email: pharmashailesh@rediffmail.com
Received 01 February 2018, Accepted 23 February 2019
INTRODUCTION

Plants have fulfilled all needs of mankind throughout the ages. Humans have relied on nature for food, shelter, cloths, flavors and fragrance etc. and not the least, medicines. Plants have been utilized as medicines for thousands of years. The use of natural products with therapeutic potential is as old as human civilization. These natural medicines have given the foundation to traditional medicine system which is still exists and continues to serve mankind and by providing new remedies. In the recent era of herbal revitalization, the demand of herbal medicines is increasing steadily. Medicinal plants have been used therapeutically all around the world, being an important aspect of various traditional medicine systems. Traditional medicine may contribute to the treatment of several diseases. In high-income countries, the extensive use of phytotherapy declined due to the development and production of synthetic medicines. During the past few decades, however, phytotherapy has started to be increasingly used even in industrialized countries. In low and middle income countries, phytotherapy never stopped being important, often signifying the only therapeutic system to which certain people could refer. The World Medicines Situation report of WHO estimates that 70 to 95% of the population in developing countries consumes traditional medicines and that every country in the world uses them in some capacity.

Ocimum sanctum L. (family Lamiaceae), also termed as “Tulsi” in Hindi and “holy basil” in English, is a domestic Indian plant religious to Hindus. *O. sanctum* has huge number of therapeutic application such as asthma, homeopathy, vomiting, ophthalmia, cardiopathy, ringworm and skin diseases etc. It plays multipurpose role in traditional medicine. It is an aboriginal of Afghanistan, Iran and India. *O. sanctum* generally used for headache, worm, constipation and kidney disease treatment. It is also used as an antidote for snake bite and scorpion sting. *O. sanctum* is great botanical collections which are used with the other plants for various stress-related disorders treatment in India and other Asian countries.

O. sanctum L. (Lamiaceae), a well-known herbal medicine, is extensive everywhere the globe. This plant has been venerate since Vedic times and is considered inaccessible for its medicinal properties in the Indians landmass and is well value in Ayurvedic medicine in India. Its leaves have been used to treat a diversity of ailments, including ozena, skin diseases, and gastric and hepatic disorders and are used as a diaphoretic, an antiperiodic, and an expectorant.
The medicinal use of plants is very aged. The writings specify that therapeutic use of plants is sold as 4000-5000 B.C. The Crucial oil of Ocimum withdraws via steam distribution from the frond and season. Ocimum are used to scent foods, pedodontist and oral products, in perfume and in traditional habitude and medicines. Withdrawal crucial oils have also been shown to carry biologically active voter that are lindane, nematicidal and fungi static. These properties can be constantly attributed to cardinal essential oil constitutes such as methyl chavicol, eugenol, linalol, camphor and methyl cinematoic.

O. sanctum have been recorded for antibacterial, anticholinesterase, antioxidant, antifungal, antimicrobial, antiallatoxigenic, anti-inflammatory, antinoceceptive, anticandidal, toxicological, anti-stress and anticonvulsant, anticancer, wound healing activities. The toxicity studies indicate that *O. sanctum* is a nonpoisonous or nontoxic herb and it is secure and careful to human use. In many industries such as pharmaceutical, food and cosmetics the essential oil of *O. sanctum* has commercial important as an anti-allergic and antimicrobial agent.

Plant Description

O. sanctum belongs to a family Lamiaceae. It is found around the tropical and semitropical zone of India and other countries in Asia region. It is a perpendicular, branched, aromatic herb and about 30 to 60 cm height. Its leaves are simple, oval, oblong and acute and up to 5 cm long with dentate margin, i.e. entire or toothed. Flowers are small; stamen exerted having purple colour, which is present in small packed array or cylindrical spike. The fruits are small, nutlets, non-mucilaginous and smooth and these are yellow to reddish in colour. The whole plant of *O. sanctum*...
is bitter and sore. \textit{O. sanctum} plants has various medicinal value, out of them are diuretics, aromatic, expectorant, vermifuge etc.3, 24

Common names:

English: Holy basil
Hindi: Kala-Tulsi, Vishnu priya
Sanskrit: Tulsi

Detailed classifications are listed in table 1.

Kingdom	Order	Family	Genus	Species	Synonym
Plantae	Lamiales	Lamiaceae	\textit{Ocimum}	\textit{O. tenuiflorum}	\textit{Ocimum sanctum} L.

Traditional Uses of \textit{O. sanctum}

There are numerous medicinal properties have been characterized to \textit{O. sanctum} L. Different portions of Tulsi plant i.e. leaves, flowers, stem, root, seeds etc. are shows the remedial and medicinal potentials and are used as expectorant, painkiller, anticancer, antiemetic, antidiabetic, ant-fertility etc.25 Detailed ethno medicinal uses are listed in table no.2.
Sr.	Parts of Plants and its Preparation used	Traditional uses	References
1.	Leaves Aqueous decoction	Gastro-hepatic diseases	Gupta et. al., 2002
2.	Leaf Juice with Triphala	Ayurvedic eye drop preparation (glaucoma, falls, chronic conjunctivitis and other hurting eye diseases)	Gupta et. al., 2002
3.	Leaves Paste	Antidote for scorpion bite	Reddy et. al., 1988
4.	Leaves Juice	Acute and chronic inflammatory action in animals	Cohen 2014
5.	Leaf extraction with *Piper nigrum* and palmgur in water	Fever	Nazar et. al., 2008
6.	Whole plant	Headache, nausea, cold, cough, fever and exterior (skin) diseases	Rahman et. al., 2013
7.	Leaves and tops (Essential oil extract)	Flavor food, oral products as well as dental product	Wakchaure et al., 2016
8.	Leaves strike with *Tricosanthes diocia* fruits, *Leucas indica* flowers and *Aristolochia bracteata* leaves	Typhoid fever	Reddy et. al., 1989
9.	Whole plant paste	Skin diseases	Sen et. al., 2011
10.	Root (Decoction)	Malarial fever	Kumar et. al., 2011
11.	Leaves (Eugenol extract)	Vasodilator action on rabbit arterial tissue	Nishijima et al., 1999
12.	Seed oil	Chemo-preventive activity	Prakash and Gupta 2005
13.	Whole plant (Aqueous decoction)	Lowers the high level of blood sugar	Kumar et. al., 2011
14.	Leaves (paste with black pepper)	Fever and Diarrhea	Kandari et. al., 2012
15.	Dried leaves	Brushing teeth, to treat gingival	Sumit and Geetika 2012
CHEMICAL CONSTITUENTS OF *O. sanctum*

The *O. sanctum* leaf contains volatile oil (0.7%), eugenol (71%) and methyl eugenol (20%). It also contains phenolic, flavonoids, terpenoids and fatty acids derivatives. Ursolic acid has been separated from the part of *O. sanctum* i.e. leaf. It also contains fixed oil, mucilage and polysaccharides in the non-saponifiable matter. The triglycerides contain 43.8% of linolenic acid is the major and important constituents of *O. sanctum* seed oil.

Phenolic content:
About 4.07 ± 0.11 g of gallicacid has been found as a total phenolic content. There are various phenolic contents were isolated/separated from the *O. sanctum* parts such as caffeic acid, chlorogenic acid, vanillic acid and menthyl salicylic glucoside. The HPLC technology is used with precise and certified samples for the confirmation of phenolic compounds like gallic acid, gallic acid methyl and ethyl ester, vanillin. The APCI massspectrometry method were also used to figure out the ester derivatives of caffeic acid i.e. Rosmarinic acid in *O. sanctum* leaf.

Flavonoids content:
In the class of chemical constituents, the flavonoids are the major and important class containing methoxy flavonoids and its glycoside derivatives such as luteolin, isothymusin, cirsimartin, also C-glycosides flavonoids (orientin, isoorientin, isovitexin and vicenin) isolated from *O. sanctum*. Norr et al., (1992) have studied the distribution of 8-oxygenated flavones on the surface of *O. sanctum* leaf and find out apigenin, cirsimaritin, salvigenin, crisilineol, eupatorin, isothymusin and gardenin.

Phenyl content:
In the biologically active constituents, Eugenol plays a crucial role as a phenyl propanoid in the essential oil which is obtained from the *O. sanctum* leaves. Ociglycoside, citrusin C, ferulaldehyde, bieugenol and dehydro-dieugenol are the phenyl propane derivatives were separated from the tulsi leaves. Ocimarin, aeculetin and aesculin are the three coumarins derivatives of *O. sanctum* were reported.

Steroidal content:
β-sitosterol, β-sitosterol-3-O- β-D-glucopyranoside, stigmasterol and campesterol are the four phytosterols were isolated from *O. sanctum* leaf as well as stem 42,43.

Neolignans:

Tulsinol A to Tulsinol G are the seven neolignans discovered from the methanolic leaves extract of tulsi which are produced by the method of polymerization of eugenol 42.

Fatty acid contents:

Four cerebrosides fatty acid secondary metabolites were separated from the leaves as well as roots of *O. sanctum* 5,44. Palmityl glucoside and sanctumoic acid are the fatty acid secondary metabolites were showed mosquitocidal property, while cerebrosides exhibited antistress activity 45.

Detailed various active compounds are listed in table no. 3.

Table 3: Various naturally active compounds found in *O. sanctum* plants

Parts of *O. sanctum* plant	Chemical constituents
Leaf	Flavonoids, tannins, alkaloids, saponins, phenols, sterols, anthocynins, terpenoids Jaggi et al., 2003 and Pattanayak et al., 2010 46, 47.
Seeds	Fatty acids, sito-sterol.
Stem	Phenols, saponins, tannins, flavonoids, triterpenoids.
Whole plant	Flavonoids, alkaloids, saponins, tannins, phenols, anthocynins, flavonoids, triterpenoids, tannins Kelm et al., 2000 and Pattanayak et al., 2010 13, 47.

PHARMACOLOGICAL PROFILE OF *O. sanctum*

Numerous scientific and technological investigation have demonstrated the pharmacological consequences of steam filtered, petroleum ether, extracts of benzene of various portions of *O. sanctum* plant and its active component i.e. eugenol on blood chemistry, gastric system, reproductive system, immune system, urinary system, central nervous system and cardiovascular system. Tulsi is generally called as a vitalizer and energizer and enhances physical abidance 4. Eugenol is the major phenolic content of essential oil. Therefore with eugenol the medicinal grades of essential oils are extracted from the leaves of *O. sanctum* (fresh leaves). When the experiment is conducted on the animal’s eugenol possess the antidiabetic action, reduction in the triglyceride cholesterol and blood serum 48. Eugenol also shows vaso-relaxation activity on arterial tissue of rabbit 35.

The chemical component of *O. sanctum* are generally studied for its medicinal and therapeutic applications like antiemetic, hepatoprotective, anti-inflammatory, anticancer, larvicidal, antibacterial, antimicrobial, anti aflatoxigenic and antistress activity. Detailed pharmacological activities are listed in table no. 4.
Table 4: Pharmacological activities of *O. sanctum*

Sr. no.	Tissue	Compound/ Extract	Activity	References
1.	Leaves	Methanol extract and aqueous suspension	Immuno regulatory activity	Godhwani et al., 1988 ²
2.	Leaves	Chloroform extract	Antibacterial activity	Mishra and Mishra 2011 ⁴
3.	Aerial parts	Essential oil extract (Eugenol)	Antagonistic effect (Antioxidant and Antifungal)	Kalagatur et al., 2015 ⁴⁹
4.	Leaves	Chloroform and oil extract (Eugenol and Phenolic compound)	Antibacterial activity	Rehman et al., 2013 ²⁹
5.	Whole plant	Crude ethanol extract	Antibacterial activity	Joshi et al., 2009 ¹⁰
6.	Leaf	Ethanol leaf extract	Acetylcholinesterase activity	Kandhan et al., 2018 ¹²
7.	Leaves and stems	Methanol and Ethyl acetate extract (Eugenol, Circinoleol, Cirsimaritin, Isothymusin, Apigenin, Isothymunin and rosmarinic acid)	Antioxidant and cyclooxygenase inhibitory activity	Kelm et al., 2000 ¹³
8.	Leaves	Fixed oil extract (α-linolenic acid)	Anti-diabetic and antioxidative activity	Suanarunsawat et al., 2016 ²¹
9.	Leaves	Aqueous and alcohol leaf extract	Antifungal activity	Balakumar et al., 2011 ⁸
10.	Leaves	Eugenol and essential oil extract	Antifungal and antiaflatoxin activity	Kumar et al., 2010 ¹⁵
11.	-	Essential oil (methyl eugenol)	Antifungal activity	Khan et al., 2010 ¹⁴
12.	Leaves	Aqueous extract (Orientin and Vicenin)	Antimicrobial activity	Ali and Dixit 2012 ⁷
13.	Leaf	Chloroform, hexane and pure oil leaf extract	Antimicrobial activity	Mittal et al., 2018 ¹⁶
14.	Aerial part	Essential oil (Eugenol)	Antimicrobial activity and food-borne infection preventing activity	Saharkhiz et al., 2015 ¹⁸
15.	Seed	Fixed oil extract	Anti-inflammatory activity	Singh et al., 1996 ⁵⁰
No.	Type	Extract/Preparation	Activity Description	Reference
-----	------------	---	---	----------------------------------
16	Leaf	Alcoholic leaf extract	Antinociceptive (analgesic) activity	Khanna and Bhatia 2003
17	Leaves	Ethanol leaves extract	Toxicological study	Gautam and Goel 2014
18	Leaves	Methanol extract	Anticandidal synergistic activity	Zaidi et al., 2018
19	Whole plant	Methanol extract	Anti-stress activity	Richard et al., 2016
20	Leaves	Alcohol and aqueous extract	Wound healing effect and antioxidant effect	Shetty et al., 2008
21	Leaves	Cold aqueous extract	Wound healing property and cytokine induction	Goel et al., 2010
22	Leaf and flower	Chloroform and methanol extract (Gluanol)	Larvicidal activity	Anees 2008
23	Leaves	Ethanolic extract	Anti-arthritic activity	Prasad et al., 2018
24	Leaves	Ethanolic extract	Anti-ulcerogenic and ulcer healing activity	Dharmani et al., 2004
25	Seed	Petroleum ether extract	Immunomodulatory activity	Mediratta et al., 2002
26	Leaves	Methanol extract and aqueous suspension	Anti-inflammatory, analgesic and antipyretic activity	Godhwani et al., 1987
27	Whole plant	Ethanolic extract	Hair growth activity	Rath et al., 2017
28	Leaves	Aqueous extract	Hypoglycemic, hypolipidemic, antioxidant activity	Hussain et al., 2001
29	Leaf	Aqueous extract	Immunostimulatory effect	Logambal et al., 2000
30	Leaf	Petroleum ether and ethanol extract	Anti-HIV activity	Rege et al., 2010
31	Leaves and Stems	Hexane extract (triglyceride, 1,3-dilinoleoyl-2-palmitin)	Mosquitocidal activity	Kelm and Nair 1998
32	-	Vicenin-2, orientin, luteolin	Anticancer activity	Nagaprashantha et al., 2011
33	Leaves	Dichloromethane extract (Betulinic acid, Oleanolic acid, Ursolic acid, Pomolic acid, Stigmasterol)	Anti-HIV 1 activity	Sonar et al., 2017
34	Aerial plant	n-hexane, ethyl acetate and Ethanolic extract	Skin anti-ageing activity	Chaiyanaa et al.,
No.	Part(s)	Extract/Extractant(s)	Activity	Reference
-----	-------------	--	---	--
35	Leaves	Ethanol extract	Central nervous system psychotic activity	Sakina et al., 1990
36	Leaves	Hot-water extract	Antimicrobial activity	Shokeen et al., 2005
37	Leaves	Methanol and ethyl acetate extract	Leishmanicidal activity	Suzuki et al., 2009
38	Leaves	Aqueous extract	Antibacterial activity	Ramteke et al., 2013
39	Leaf	Aqueous leaf extract	Antimicrobial activity	Singhal et al., 2011
40	Leaves	Aqueous extract (Eugenol)	Antifungal activity	Khan et al., 2010
41	Leaf	Ethanol extract and fractions	Stimulatory effect and anti-diabetic activity	Hannan et al., 2006
42	Leaves	Hexane extract	Anti-hyperlipidemic and cardioprotective effect	Suanarunsawat et al., 2010
43	Leaves	Aqueous and alcohol extract	Anti-cataleptic activity	Aswar and Joshi, 2010
44	Leaves	Alcohol extract	Anti-asthmatic activity	Singh and Agrawal, 1991
		Coconut oil extract	Anti-inflammatory activity	Singh and Agrawal, 1991
45	Root, Stem, Leave and Flower	Ethanol extract	Antiplasmodial effect	Inbaneson et al., 2012
46	Leaves	Alcohol extract	Hepatoprotective activity	Lahon and Das, 2011
47	Whole plant	Aqueous extract	Memory enhancer activity	Joshi and Parle, 2006
48	Leaves	Alcohol extract	Anti-carcinogenic property	Banerjee et al., 1996
49	Leaf	Aqueous extract	Anti-thyroid activity	Panda and Kar, 1998
	Plant Part	Extract Type & Constituents	Activity	Reference
---	------------	----------------------------	----------	-----------
50	Leaves	Ethanol extract	Antianxiety and antidepressant activity	Chatterjee et al., 2011
51	Leaves	Aqueous extract (Orientin and Vicenin)	Radiation protective activity	Umadevi et al., 2000
52	Leaves	Aqueous extract	Radioprotective, anti-carcinogenic and antioxidant property	Umadevi et al., 2000
53	Aerial part	Hydro alcoholic extract (tetracyclic triterpenoid)	Antidiabetic activity	Patil et al., 2011
Immuno regulatory activity

Recent reports on *O. sanctum* by Godhwani et al., 1998, have suggested that the humoral reaction or response is stimulated by the *O. sanctum* methanolic extract and aqueous suspension as a proof by an increase antibody titre in rats. The conclusion of the study indicates that the test of erythrocyte agglutination increases the antibody titer in the Widal and Sheep and formation ofE-rosette and lymphocytosis represents a cellular immunologic response. Mediratta et al., 2002, have reported the immunomodulatory effect of *O. sanctum* seed oil (OSSO) examinated on the immunological parameters in stressed animals as well as non-stressed animals and estimated that these immunomodulatory effects of OSSO may be applying by regulating GABAnergic pathway.

Anticancer activity

Joseph and Nair (2013) have reported the anti-cancer influence of *O. sanctum* in skin, oral, gastric, lung, breast, cervical and prostate. From the research work of Khanna and Bhatia (2003), the biological and clinical models were studied for the evaluation of the efficiency of *O. sanctum* in treatment of cancer and its effects on radiation induced changes. Bhattacharyya et al., 2013, studied the current information on the chemo-preventive and therapeutic applications of *O. sanctum*. They also investigate the molecular and biochemical mechanisms included in the antitumor effects of *O. sanctum* and discuss the current limitations, role of synergy, and forthcoming directions of research over the efficacious use of *O. sanctum* plant to cure and prevent cancer.

Antibacterial activity

Rathnayaka (2013) reported that the various leaves extracts of *O. sanctum* like chloroform extract, aqueous extract, oil extract and alcohol extract showed antibacterial activity against four infectious food-borne microorganisms i.e. *Salmonella enteritica*, *Escherichia coli*, *Vibrio parahaemolyticus* and *Listeria monocytogenes*. Extracts acquired by all extraction methods produced antimicrobial activity with all tested microorganisms. A research report on antibacterial activity of *O. sanctum* suggests that the antibacterial activity of ethanolic extracts of *O. sanctum* plant were foundless active against Gram-negative bacteria as compare to that of Gram-positive bacteria.

Antioxidant activity

Research reports on antioxidant activity of *O. sanctum* suggests that the various antioxidant effect of different extracts acquire from different parts of plant have been noted in several investigations. Aqueous extract of *O. sanctum* leaf have been originate to show antioxidant activity. Similarly, Suanarunsawat et al., 2016 and Kalagatur et al., 2015 have been found out that the essential oil and
fixed oil extracts of aerial part and leaves have also shown the antioxidative effects of *O. sanctum* plant on *F. graminearum* and inhibitory effect of the anti-oxidative enzymes in the cardiac tissues and rat liver respectively. Kelm et al., 2000, reported the antioxidant inhibitory activity of phenolic compounds (Eugenol, Cirsilineol, Cirsimaritin, Isothymusin, Apigenin, Isothymunin and rosmarinic acid) obtained from the ethyl acetate and methanolic extracts of *O. sanctum* leaves and stems.

Antidiabetic activity

From the research work of Patil et al., 2011 and group, the isolation and characterization of antidiabetic compound from the aerial part of *O. sanctum* hydro alcoholic extract found to have great antidiabetic effect. Suanarunsawat et al., 2016, found out that the extract of fixed oil obtained from the leaves of *O. sanctum* plant have antidiabetic activity in diabetic rats. Ahmad et al., 2012, have reported the effect of methanolic extract of *O. sanctum* roots in streptozotocin induced antidiabetic rat with the help of nuclear magnetic resonance spectroscopy.

Antiemetic activity

Khedekar et al., 2016 have reported that the leaves of *O. sanctum* used in vomiting and exhibit antiemetic action.

Hepatoprotective activity

Lahon and Das (2011) found out the hepatoprotective activity of alcoholic extract of *O. sanctum* leaf against paracetamol-induced liver damage in Albino rats due to the synergistic activity with silymarin. They concluded that alcoholic extract of *O. sanctum* leaf showed particular hepatoprotective activity and interaction with silymarin.

Anti-stress activity

Jothie et al., 2016, reported the anti-stress activity of methanolic extract of *O. sanctum*, whole plant in chronic variable stress (CVS) model. It has been reported that due to the blocking of CRHR1 receptor and cortisol release inhibition, the *O. sanctum* was found to be more effective in the controlling of stress effects and anti-stress activity. Chattergee et al, 2011 have reported that the ethanolic extract of *O. sanctum* leaves lowers the anxiety and depression properties at the constant dose and can be a potential medicinal agent against miscellaneous anxiety and depressive syndrome. Gupta et al., 2007 have reported the new constituents of Tulsi (Ocimumosides A and B and Ocimarin) were obtained from the *O. sanctum* leaves extract which showed the potential anti-stress activity.

Anti-inflammatory activity
Research reports on anti-inflammatory activity of *O. sanctum* suggests that the evaluation of useful anti-inflammatory compound obtained from fixed oil extract of *O. sanctum* seed which blocks the cyclooxygenase and lipoxygenase pathway for metabolism of arachidonic acid against the carrageenan and other intermediator-induced paw edema in the rats 50.

CONCLUSION

The detailed data summarized in this article suggest that many compounds derived from various parts of *O. sanctum* plant exert different potential pharmacological properties. Various literatures have reported the different pharmacological activities like anti-inflammatory, anti arthmatic, antibacterial, hypotensive etc. are due to the fixed oil content of the plant. The synergistic actions of many active compounds may be responsible for the nutritional and pharmacological properties of whole plant. Recent studies on the compounds isolated from *O. sanctum* suggest its potential use against complex diseases such as cancer and HIV. Research in the recent year suggests that the compounds isolated from the plant would be a “lead” to synthesize new pharmacologically active compounds. Although the potential activities of *O. sanctum* extract, obtained from different extraction processes, have been proved in various researches; it will still open new venues for therapeutic interventions.

AUTHORS CONTRIBUTION STATEMENTS

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

REFERENCES

1. Awang DVC. Tyler's herbs of choice: the therapeutic use of phytomedicinals. CRC Press; 2009.
2. Godhwani S, Godhwani JL, Was DS. Ocimum sanctum—a preliminary study evaluating its immunoregulatory profile in albino rats. Journal of ethnopharmacology. 1988;24(2-3):193-8.
3. Gupta S, Prakash J, Srivastava S. Validation of traditional claim of Tulsi, Ocimum sanctum Linn. as a medicinal plant. 2002.
4. Mishra P, Mishra S. Study of antibacterial activity of Ocimum sanctum extract against gram positive and gram negative bacteria. Am J Food Technol. 2011;6(4):336-41.
5. Gupta P, Yadav DK, Siripurapu KB, Palit G, Maurya R. Constituents of Ocimum sanctum with antistress activity. Journal of natural products. 2007;70(9):1410-6.
6. Kayastha BL. Queen of herbs tulsi (Ocimum sanctum) removes impurities from water and plays disinfectant role. J Med Plants Stud. 2014;2(2).

7. Ali H, Dixit S. In vitro antimicrobial activity of flavanoids of Ocimum sanctum with synergistic effect of their combined form. Asian Pacific Journal of Tropical Disease. 2012;2:S396-S8.

8. Balakumar S, Rajan S, Thirunelasundari T, Jeeva S. Antifungal activity of Ocimum sanctum Linn.(Lamiaceae) on clinically isolated dermatophytic fungi. Asian Pacific journal of tropical medicine. 2011;4(8):654-7.

9. Bhattacharyya P, Bishayee A. Ocimum sanctum Linn.(Tulsi): an ethnomedicinal plant for the prevention and treatment of cancer. Anti-cancer drugs. 2013;24(7):659-66.

10. Joshi B, Lekhak S, Sharma A. Antibacterial property of different medicinal plants: Ocimum sanctum, Cinnamomum zeylanicum, Xanthoxylum armatum and Origanum majorana. Kathmandu university journal of science, engineering and technology. 2009;5(1):143-50.

11. Jothie Richard E, Illuri R, Bethapudi B, Anandhakumar S, Bhaskar A, Chinampudur Velusami C, et al. Anti-stress Activity of Ocimum sanctum: Possible Effects on Hypothalamic–Pituitary–Adrenal Axis. Phytotherapy Research. 2016;30(5):805-14.

12. Kandhan TS, Thangavelu L, Roy A. Acetylcholinesterase activity of Ocimum Sanctum leaf extract. Journal of Advanced Pharmacy Education & Research| Jan-Mar. 2018;8(1).

13. Kelm M, Nair M, Strasburg G, DeWitt D. Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine. 2000;7(1):7-13.

14. Khan A, Ahmad A, Manzoor N, Khan LA. Antifungal activities of Ocimum sanctum essential oil and its lead molecules. Natural product communications. 2010;5(2):345-9.

15. Kumar A, Shukla R, Singh P, Dubey NK. Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum L. essential oil and its safety assessment as plant based antimicrobial. Food and Chemical Toxicology. 2010;48(2):539-43.

16. Mittal R, Kumar R, Chahal H. Antimicrobial activity of Ocimum sanctum leaves extracts and oil. Journal of Drug Delivery and Therapeutics. 2018;8(6):201-4.

17. Rathnayaka R. Antibacterial Activity of Ocimum sanctum extracts against four food-borne microbial pathogens. Scholars Journal of Applied Medical Sciences. 2013;1(6):774-7.

18. Saharkhiz MJ, Kamyab AA, Kazerani NK, Zomorodian K, Pakshir K, Rahimi MJ. Chemical compositions and antimicrobial activities of Ocimum sanctum L. essential oils at different harvest stages. Jundishapur journal of microbiology. 2015;8(1).
19. Shetty S, Udupa S, Udupa L. Evaluation of antioxidant and wound healing effects of alcoholic and aqueous extract of Ocimum sanctum Linn in rats. Evidence-Based Complementary and Alternative Medicine. 2008;5(1):95-101.
20. Singh S, Majumdar D, Rehan H. Evaluation of anti-inflammatory potential of fixed oil of Ocimum sanctum (Holybasil) and its possible mechanism of action. Journal of Ethnopharmacology. 1996;54(1):19-26.
21. Suanarunsawat T, Anantasomboon G, Piewbang C. Anti-diabetic and anti-oxidative activity of fixed oil extracted from Ocimum sanctum L. leaves in diabetic rats. Experimental and therapeutic medicine. 2016;11(3):832-40.
22. Gautam M, Goel R. Toxicological study of Ocimum sanctum Linn leaves: hematological, biochemical, and histopathological studies. Journal of toxicology. 2014;2014.
23. Kumar A, Rahal A, Chakraborty S, Tiwari R, Latheef SK, Dhama K. Ocimum sanctum (Tulsi): a miracle herb and boon to medical science-A Review. Int J Agron Plant Prod. 2013;4(7):1580-9.
24. Godhwani S, Godhwani J, Was D. Ocimum sanctum—a preliminary study evaluating its immunoregulatory profile in albino rats. Journal of ethnopharmacology. 1988;24(2-3):193-8.
25. Prakash P, Gupta N. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Indian journal of physiology and pharmacology. 2005;49(2):125.
26. Reddy MB, Reddy KR, Reddy MN. A survey of medicinal plants of Chenchu tribes of Andhra Pradesh, India. International journal of crude drug research. 1988;26(4):189-96.
27. Cohen MM. Tulsi-Ocimum sanctum: A herb for all reasons. Journal of Ayurveda and integrative medicine. 2014;5(4):251.
28. Nazar S, Ravikumar S, Prakash Williams G. Ethnopharmacological survey of medicinal plants along the southwest coast of India. Journal of herbs, spices & medicinal plants. 2008;14(3-4):219-39.
29. Rahman MM, Masum GZH, Sharkar P, Sima SN. Medicinal plant usage by traditional medical practitioners of rural villages in Chuadanga district, Bangladesh. International Journal of Biodiversity Science, Ecosystem Services & Management. 2013;9(4):330-8.
30. Wakchure R GS, Kumar P. Ocimum sanctum (Tulsi), the Queen of Herbs : A Review. 2017 ed: Biochemistry and Therapeutic Uses of Medicinal Plants; 2016. p. 166-73.
31. Reddy MB, Reddy KR, Reddy MN. A survey of plant crude drugs of Anantapur district, Andhra Pradesh, India. International journal of crude drug research. 1989;27(3):145-55.

32. Sen S, Chakraborty R, De B, Devanna N. An ethnomedical survey of medicinal plants used by ethnic people in West and South district of Tripura, India. Journal of forestry research. 2011;22(3):417.

33. Kumar V, Andola HC, Lohani H, Chauhan N. Pharmacological review on Ocimum sanctum Linnaeus: a queen of herbs. J of Pharm Res. 2011;4:366-8.

34. Nishijima H, Uchida R, Kameyama K, Kawakami N, Ohkubo T, Kitamura K. Mechanisms mediating the vasorelaxing action of eugenol, a pungent oil, on rabbit arterial tissue. The Japanese Journal of Pharmacology. 1999;79(3):327-34.

35. Surkar A, Lavana S, Pandey D, Pant M. Changes in the blood lipid profile after administration of Ocimum sanctum (Tulsi) leaves in the normal albino rabbits. Indian Journal of Physiology and Pharmacology. 1994;38:311-.

36. Kandari L, Phondani P, Payal K, Rao K, Maikhuri R. Ethnomedical study towards conservation of medicinal and aromatic plants in upper catchments of Dhauli Ganga in the central Himalaya. Journal of Mountain Science. 2012;9(2):286-96.

37. Khedekar S, Goel S, Ojha NK. www. ijrap. net.

38. Grayer ReJ, Kite GC, Veitch NC, Eckert MR, Marin PD, Senanayake P, et al. Leaf flavonoid glycosides as chemosystematic characters in Ocimum. Biochemical systematics and ecology. 2002;30(4):327-42.

39. Koroch AR, Juliani HR, Sims C, Simon JE. Antioxidant activity, total phenolics, and rosmarinic acid content in different basils (Ocimum spp.). Israel journal of plant sciences. 2010;58(3-4):191-5.

40. Nörr H, Wagner H. New constituents from Ocimum sanctum. Planta medica. 1992;58(06):574.

41. Suanarunsawat T, Boonnak T, Ayutthaya WN, Thirawarapan S. Anti-hyperlipidemic and cardioprotective effects of Ocimum sanctum L. fixed oil in rats fed a high fat diet. Journal of basic and clinical physiology and pharmacology. 2010;21(4):387-400.

42. Suzuki A, Shirota O, Mori K, Sekita S, Fuchino H, Takano A, et al. Leishmanicidal active constituents from Nepalese medicinal plant Tulsi (Ocimum sanctum L.). Chemical and Pharmaceutical Bulletin. 2009;57(3):245-51.
43. Baliga MS, Jimmy R, Thilakchand KR, Sunitha V, Bhat NR, Saldanha E, et al. Ocimum sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutrition and cancer. 2013;65(sup1):26-35.

44. Ahmad MZ, Ali M, Mir SR. Anti-diabetic activity of Ocimum sanctum L. roots and isolation of new phytoconstituents using two-dimensional nuclear magnetic resonance spectroscopy. Journal of Pharmacognosy and Phytotherapy. 2012;4(6):75-85.

45. Kelm MA, Nair MG. Mosquitocidal compounds and a triglyceride, 1,3-dilinoleoyl-2-palmitin, from Ocimum sanctum. Journal of agricultural and food chemistry. 1998;46(8):3092-4.

46. Jaggi RK, Madaan R, Singh B. Anticonvulsant potential of holy basil, Ocimum sanctum Linn., and its culture s. 2003.

47. Pattanayak P, Behera P, Das D, Panda SK. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacognosy reviews. 2010;4(7):95.

48. Kulkarni KV, Adavirao BV. A review on: Indian traditional shrub Tulsi (ocimum sanctum): The unique medicinal plant. Journal of Medicinal Plants. 2018;4(7):95.

49. Kalagatur NK, Mudili V, Siddaiah C, Gupta VK, Natarajan G, Sreepathi MH, et al. Antagonistic activity of Ocimum sanctum L. essential oil on growth and zearalenone production by Fusarium graminearum in maize grains. Frontiers in microbiology. 2015;6:892.

50. Singh S, Majumdar DK, Rehan HMS. Evaluation of anti-inflammatory potential of fixed oil of Ocimum sanctum (Holybasil) and its possible mechanism of action. Journal of ethnopharmacology. 1996;54(1):19-26.

51. Khanna N, Bhatia J. Antinociceptive action of Ocimum sanctum (Tulsi) in mice: possible mechanisms involved. Journal of ethnopharmacology. 2003;88(2-3):293-6.

52. Zaidi K, Shah F, Parmar R, Thawani V. Anticandidal synergistic activity of Ocimum sanctum and fluconazole of azole resistance strains of clinical isolates. Journal de mycologie medicale. 2018;28(2):289-93.

53. Ravindra K, Murugesh Babu K. Study of antimicrobial properties of fabrics treated with Ocimum sanctum L (tulsi) extract as a natural active agent. Journal of Natural Fibers. 2016;13(5):619-27.

54. Goel A, Kumar S, Singh DK, Bhatia AK. Wound healing potential of Ocimum sanctum Linn. with induction of tumor necrosis factor. 2010.
55. Anees AM. Larvicidal activity of Ocimum sanctum Linn.(Labiatae) against Aedes aegypti (L.) and Culex quinquefasciatus (Say). Parasitology research. 2008;103(6):1451-3.

56. Prasad K SK, Anupama D. Evaluation of anti-arthritic activity using ethanolic extract of ocimum sanctum leaves. World Journal of Pharmacy and Pharmaceutical Sciences; 2018. p. 992-1015.

57. Dharmani P, Kuchibhotla VK, Maurya R, Srivastava S, Sharma S, Palit G. Evaluation of anti-ulcerogenic and ulcer-healing properties of Ocimum sanctum Linn. Journal of ethnopharmacology. 2004;93(2-3):197-206.

58. Mediratta P, Sharma K, Singh S. Evaluation of immunomodulatory potential of Ocimum sanctum seed oil and its possible mechanism of action. Journal of Ethnopharmacology. 2002;80(1):15-20.

59. Godhwani S, Godhwani J, Vyas D. Ocimum sanctum: an experimental study evaluating its anti-inflammatory, analgesic and antipyretic activity in animals. Journal of Ethnopharmacology. 1987;21(2):153-63.

60. Rathi V, Rathi JC, Patel A, Tamizharasi S. Hair growth activity of Cicer arietinum Linn. Ocimum sanctum Linn and Cyperus rotundus Linn in Albino Rats. Journal of Pharmacognosy and Phytochemistry. 2017;6(1):157-9.

61. Hussain EHMA, Jamil K, Rao M. Hypoglycaemic, hypolipidemic and antioxidant properties of tulsi (Ocimum sanctum linn) on streptozotocin induced diabetes in rats. Indian journal of clinical biochemistry. 2001;16(2):190-4.

62. Logambal SM, Venkatalakshmi S, Michael RD. Immunostimulatory effect of leaf extract of Ocimum sanctum Linn. in Orechromis mossambicus (Peters). Hydrobiologia. 2000;430(1-3):113-20.

63. A Rege A, Y Ambaye R, A Deshmukh R. In-vitro testing of anti-HIV activity of some medicinal plants. 2010.

64. Nagaprasanthantha LD, Vatsyayan R, Singhal J, Fast S, Roby R, Awasthi S, et al. Anti-cancer effects of novel flavonoid vicenin-2 as a single agent and in synergistic combination with docetaxel in prostate cancer. Biochemical pharmacology. 2011;82(9):1100-9.

65. Sonar VP, Corona A, Distinto S, Maccioni E, Meleddu R, Fois B, et al. Natural product-inspired esters and amides of ferulic and caffeic acid as dual inhibitors of HIV-1 reverse transcriptase. European journal of medicinal chemistry. 2017;130:248-60.
66. Chaiyana W, Anuchapreeda S, Punyoyai C, Neimkhum W, Lee K-H, Lin W-C, et al. Ocimum sanctum Linn. as a natural source of skin anti-ageing compounds. Industrial Crops and Products. 2019;127:217-24.

67. Sakina MR, Dandiya PC, Hamdard ME, Hameed A. Preliminary psychopharmacological evaluation of Ocimum sanctum leaf extract. Journal of ethnopharmacology. 1990;28(2):143-50.

68. Shokeen P, Ray K, Bala M, Tandon V. Preliminary studies on activity of Ocimum sanctum, Drynaria quercifolia, and Annona squamosa against Neisseria gonorrhoeae. Sexually transmitted diseases. 2005;32(2):106-11.

69. Hannan JMA, Marenah L, Ali L, Rokeya B, Flatt PR, Abdel-Wahab YHA. Ocimum sanctum leaf extracts stimulate insulin secretion from perfused pancreas, isolated islets and clonal pancreatic ß-cells. Journal of Endocrinology. 2006;189(1):127-36.

70. Shradha B, Sisodia S. www. ijrap. net. International Journal of Research in Ayurveda & Pharmacy. 2010;1(1):33-42.

71. Singh S, Agrawal SS. Anti-asthmatic and anti-inflammatory activity of Ocimum sanctum. International Journal of pharmacognosy. 1991;29(4):306-10.

72. Inbaneson SJ, Sundaram R, Suganthi P. In vitro antimalarial effect of ethanolic extracts of traditional medicinal plant Ocimum species against Plasmodium falciparum. Asian Pacific Journal of tropical medicine. 2012;5(2):103-6.

73. Lahon K, Das S. Hepatoprotective activity of Ocimum sanctum alcoholic leaf extract against paracetamol-induced liver damage in Albino rats. Pharmacognosy research. 2011;3(1):13.

74. Joshi H, Parle M. Evaluation of nootropic potential of Ocimum sanctum Linn. in mice. 2006.

75. Banerjee S, Prashar R, Kumar A, Rao A. Modulatory influence of alcoholic extract of Ocimum leaves on carcinogen-metabolizing enzyme activities and reduced glutathione levels in mouse. 1996.

76. Panda S, Kar A. Ocimum sanctum leaf extract in the regulation of thyroid function in the male mouse. Pharmacological research. 1998;38(2):107-10.

77. Chatterjee M, Verma P, Maurya R, Palit G. Evaluation of ethanol leaf extract of Ocimum sanctum in experimental models of anxiety and depression. Pharmaceutical biology. 2011;49(5):477-83.
78. Uma Devi P, Ganasoundari A, Vrinda B, Srinivasan KK, Unnikrishnan MK. Radiation protection by the ocimum flavonoids orientin and vicenin: mechanisms of action. Radiation research. 2000;154(4):455-60.

79. Patil R, Patil R, Ahirwar B, Ahirwar D. Isolation and characterization of anti-diabetic component (bioactivity—guided fractionation) from Ocimum sanctum L.(Lamiaceae) aerial part. Asian Pacific journal of tropical medicine. 2011;4(4):278-82.

80. Joseph B, Nair VM. Ocimum sanctum linn.(Holy basil): pharmacology behind its anti-cancerous effect. Int J Pharm Bio Sci. 2013;4(2):556-75.

AJPTR is
- Peer-reviewed
- bimonthly
- Rapid publication

Submit your manuscript at: editor@ajptr.com