Sodium bicarbonate supplementation and the female athlete: A brief commentary with small scale systematic review and meta-analysis

Bryan Saunders, Luana Farias de Oliveira, Eimear Dolan, Krzysztof Durkalec-Michalski, Lars McNaughton, Guilherme Giannini Artioli and Paul Alan Swinton

Abstract
Sodium bicarbonate (SB) is considered an effective ergogenic supplement for improving high-intensity exercise capacity and performance, although recent data suggests that women may be less amenable to its ergogenic effects than men. Currently, an apparent paucity of data on women means no consensus exists on whether women benefit from SB supplementation. The aim of the current study was to quantify the proportion of the published literature on SB supplementation that includes women, and to synthesise the evidence regarding its effects on blood bicarbonate and exercise performance in women by performing a systematic review and meta-analysis. Electronic searches of the literature were undertaken using three databases (MEDLINE, Embase, SPORTDiscus) to identify relevant articles. All meta-analyses were performed within a Bayesian framework. A total of 149 SB articles were identified, 11 of which contained individual group data for women. Results indicated a pooled blood bicarbonate increase of 7.4 [95%CrI: 4.2–10.4 mmol·L\(^{-1}\)] following supplementation and a pooled standardised exercise effect size of 0.37 [95%CrI: -0.06–0.92]. The SB literature is skewed, with only 20% (30 studies) of studies employing female participants, of which only 11 studies (7.4%) provided group analyses exclusively in women. Despite the small amount of available data, results are consistent in showing that SB supplementation in women leads to large changes in blood bicarbonate and that there is strong evidence for a positive ergogenic effect on exercise performance that is likely small to medium in magnitude.

Highlights
- This study aimed to quantify the proportion of the published literature on sodium bicarbonate supplementation that includes women and to synthesise the evidence regarding its ergogenic effect on women, using a systematic review and meta-analytic approach.
- The sodium bicarbonate literature is skewed, with only 30 studies (20%) employing female participants, of which only 11 studies (7.4%) provided group analyses exclusively in women.
- Despite the small amount of available data, results are consistent in showing that sodium bicarbonate supplementation in women leads to large changes in blood bicarbonate and that there is strong evidence for a positive ergogenic effect on exercise performance that is likely small to medium in magnitude.
- Based on these findings, we do not believe there is any evidence to support sex-specific sodium bicarbonate dosing recommendations and that current recommendations of 0.2–0.3 g·kg\(^{-1}\)BM of SB taken 60–180 min prior to high-intensity exercise appear appropriate for the female athlete.

Introduction
Sodium bicarbonate is considered an effective ergogenic supplement (Maughan et al., 2018), with repeated meta-analytical data supporting its use for improving high-intensity exercise capacity and performance (Carr, Hopkins, & Gore, 2011; Christensen, Shirai, Ritz, & Nordsborg, 2017; Matson & Tran, 1993; Peart, Siegler, & Vince, 2012). This is due to an increase in blood pH and circulating bicarbonate concentration (i.e. alkalosis) following...
ingestion, augmenting the buffering potential of the body. This increased buffering capacity can improve control of exercise-induced metabolic acidosis, characterized by hydrogen ion (H+) accumulation that is detrimental to exercise performance due to its interference with several metabolic and contractile processes (Allen, Lamb, & Westerblad, 2008; Fitts, 1994; Jarvis, Woodward, Debold, & Walcott, 2018; Sundberg, Hunter, Trappe, Smith, & Fitts, 2018).

A number of factors may moderate the effect of SB supplementation on exercise outcomes, including supplement dose, timing and training status (Heibel, Perim, Oliveira, McNaughton, & Saunders, 2018). However, little is currently known about whether sex influences the response to SB supplementation, although this seems plausible given evidence that women have a lower tolerance for high-intensity exercise performance than men (Russ, Lanza, Rothman, & Kent-Braun, 2005) likely due in part to less overall muscle mass (Hegge et al., 2016; Janssen, Heymsfield, Wang, & Ross, 2000) and lower type II muscle fibre distribution (Porter, Stuart, Boij, & Lexell, 2002; Simoneau & Bouchard, 1989). Findings demonstrate women also have a lower overall capacity for glycolysis due to lower glycolytic enzyme activity (Green, Fraser, & Ranney, 1984), leading to less acidosis (Russ et al., 2005). Theoretically, this could mean that women may have a smaller response to a buffering agent intended to improve high-intensity exercise performance. A recent study supports this theory showing an improvement in Wingate and wrestling specific performance following SB supplementation in men, but not women (Durkalec-Michalski, Zawieja, Zawieja, Michalowska, & Podgorski, 2020). These results imply a potential sex dysmorphism that the authors attributed to the aforementioned differences in anaerobic capacities. Carr et al. (2011) previously showed unclear evidence of a modifying effect of sex with SB while conflicting evidence regarding the efficacy of SB to improve exercise outcomes in women exists, with both positive (Delextrat et al., 2018; McNaughton, Ford, & Newbold, 1997) and null (Macutkiewicz & Sunderland, 2018; Voskamp, van den Bos, Foster, de Koning, & Noordhof, 2020) results reported. These inconsistent findings appear to contrast with the strong evidence of a positive effect previously reported in studies with predominantly male participants (Carr et al., 2011; Christensen et al., 2017; Matson & Tran, 1993; Peart et al., 2012). Disparity in the quantity of data available for women compared to men might contribute to the current uncertainty and it is important to quantify and summarise current evidence for SB in women. Therefore, the aim of the current study was to quantify the proportion of the published literature on SB supplementation that includes women and to synthesise the evidence regarding its ergogenic effect on women, using a systematic review and meta-analytic approach.

Methods

Study eligibility

The protocol for this study was designed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Moher, Liberati, Tetzlaff, Altman, & Group, 2009) and the research question determined with reference to PICOS (Population, Intervention, Comparator, Outcomes and Study Design). The study was not pre-registered. Initially, the literature was screened to identify all SB supplementation studies with both male and female populations. This broader screening strategy was used to identify the proportion of the total evidence base that employed female participants. The data extraction and meta-analysis was subsequently based only on those studies that included a group consisting of women only. The intervention must have employed an acute (<1 day) or chronic (>1 day) supplementation protocol with SB prior to performing an exercise test. The comparator for the meta-analysis determined that only single or double-blinded, placebo-controlled studies were included. Studies that reported on outcomes based on exercise performance and capacity tests were considered for inclusion (Saunders et al., 2017) and study design allowed both crossover and parallel group designs. Only peer-reviewed, English language, original human studies were included.

Search strategy

An electronic search of the literature was undertaken using three databases (MEDLINE, Embase, SPORTDiscus) to identify relevant articles. The search was originally conducted to inform a systematic review and meta-analysis on the use of extracellular buffers on exercise outcomes. The search terms “sodium bicarbonate”, “sodium citrate”, “calcium lactate”, “sodium lactate” and “alkalosis” were individually concatenated with “supplementation”, “exercise”, “training”, “athlete” and “performance”. Following duplicate removal, a 2-phase search strategy (title/abstract; full text) was employed by two independent reviewers (LFO and ED) using freely available software – Rayyan QCR (Ouzzani, Hammady, Fedorowicz, & Elmagarmid, 2016). A final search was completed in February 2020.
Certainty in cumulative outcomes

Certainty in blood and exercise outcomes was determined according to the framework provided by the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) working group (Guyatt et al., 2008). This approach considers eight factors to determine the level of certainty in outcomes, five of which can be used to downgrade certainty in outcomes (risk of bias, imprecision, inconsistency, indirectness and publication bias), while potential upgrading factors can include large effects; evidence of dose–response or the presence of plausible residual confounding factors. All studies in the current review were initially defined as “high” because they were all randomized, blinded, placebo-controlled trials. This α-priori rating was either maintained, or downgraded following application of the strategy, allowing certainty in outcomes to be graded as “high”, “moderate”, “low” or “very low”. Risk of bias was assessed using the most recent Cochrane tool for assessing risk of bias in randomized trials (RoB 2) (Sterne et al., 2019). Evaluation of risk of bias was performed in a blinded fashion by a single reviewer (LFO) and verified by a second reviewer (BS).

Data extraction

Data extraction was completed by a single reviewer (LFO) using a standardised and pre-piloted data extraction form with Microsoft Excel, and the extraction was verified by a second reviewer (BS). The following information was extracted: (i) author and publication year, (ii) study design; (iii) sample population; (iv) intervention protocol; (v) exercise protocol (vi) blood and exercise outcome data. Where numerical data were not directly available, blood (Bishop & Claudius, 2005; Bishop, Edge, Davis, & Goodman, 2004a; Kozak-Collins, Burke, & Schoene, 1994; Tan et al., 2010) data were extracted from figures using digitizing software (DigitizeIt; Rakap, Rakap, Evran, & Cig, 2016). To avoid duplication bias, when an exercise protocol resulted in multiples outcome measures of the same exercise test, a solitary outcome measure was extracted based upon the following hierarchy: (i) total work done; (ii) mean output throughout the test (i.e. mean power output; mean velocity; mean height); time-to-completion (performance test)/time to exhaustion (capacity test).

Statistical analysis

All meta-analyses (performed by PAS) were conducted within a Bayesian framework to provide a more flexible modelling approach and enable results to be interpreted intuitively through reporting of subjective probabilities (Kruschke & Liddell, 2018). The first meta-analysis pooled group pre- and post-supplement blood bicarbonate data, with placebo-controlled mean change effect sizes used to summarise findings reported in the actual units of measurement. The second meta-analysis pooled group exercise performance data, with effect sizes calculated by standardising the mean difference in the supplementation and placebo conditions by the placebo standard deviation. Sampling variances of effect sizes required an estimate of the correlation between paired data that are generally not provided in studies. To account for this, an initial estimate was made assuming a correlation of 0.7 and an informative Gaussian prior approximating a correlation between 0.5 and 1 were included. A correction for small sample sizes was applied for both the effect size and its within study variance (Morris & DeShon, 2002). To investigate the potential for a moderating effect of exercise duration, binary exercise test categories were created (<30 s, ≥30 s; Saunders et al., 2017). Three-level meta-analytic models were used to account for the inclusion of multiple outcomes within a single study (Van den Noortgate, Lopez-Lopez, Marin-Martinez, & Sanchez-Meca, 2013). Inferences were performed on posterior samples generated using the Hamiltonian Markov Chain Monte Carlo method, reporting median values and 95% credible intervals (CrIIs). Heterogeneity in the data was quantified by the between study variance parameter which in Bayesian meta-analysis includes uncertainty described by the CrI. Additionally, probabilities were calculated for pooled effect sizes exceeding the threshold of 5 mmol·L⁻¹ [P (Increase > 5)] for blood bicarbonate (Jones et al., 2016); and exceeding effect sizes (ES) of 0, 0.2 and 0.5 (zero, small and medium) [P(Increment > ES)] for exercise outcomes. Probabilities were calculated using the posterior samples of the parameters and the proportion of values exceeding the specified threshold. Due to the small number of data points and potential for small-study effects, sensitivity analyses were completed using robust meta-analyses with random effect fitted with a t-distribution. Funnel plots were not explored due to limited data and consistency across study sample sizes. Analyses were performed using the R wrapper package brms interfaced with Stan to perform sampling (Bürkner, 2017).

Results

Study search

A total of 149 SB articles were identified following the search and filter (Figure 1), of which 113 (76%) recruited
Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines flow chart for literature search and study selection.

Table 1. Sodium bicarbonate studies with female participants analysed separately.

Authors (year)	Population	Supplementation	Study design	Exercise test	Familiarisation?
Bishop et al. (2004a)	Recreational team-sport playing females (N = 10)	0.3 g·kg\(^{-1}\)BM 90 min prior to exercise in gelatine capsules. Placebo: NaCl (0.207 g·kg\(^{-1}\)BM)	Double-blind, Crossover	5 × 6 s repeated sprint cycling test	Yes
Bishop and Claudius (2005)	Team-sport athletes (N = 7)	0.2 g·kg\(^{-1}\)BM 110-90 min and 0.2 g·kg\(^{-1}\)BM 50–20 min prior to exercise in gelatine capsules. Placebo: NaCl (2 × 0.138 g·kg\(^{-1}\)BM)	Double-blind, Crossover	Intermittent cycling sprint test 2 × 36 min of 4-s sprints, 100 s active recovery + 20 s recovery passive	Yes
Delextrat et al. (2018)	University basketball players (N = 15)	0.4 g·kg\(^{-1}\)BM per day for 3 days in gelatine capsules. Final ingestion the day before the test. Placebo: CaCO\(_3\) (0.4 g·kg\(^{-1}\)BM)	Double-blind, Crossover	Basketball simulation test	Yes
Edge et al. (2006)	Moderately trained students involved in club level sports (N = 16)	0.2 g·kg\(^{-1}\)BM 90 min and 0.2 g·kg\(^{-1}\)BM 30 min prior to training throughout 8 weeks of training (3 x/week). Placebo: NaCl (2 × 0.1 mg·kg\(^{-1}\)BM)	Single-blind, Parallel groups	Cycling test at 100% of VO\(_{2}\)\(_{peak}\) until exhaustion	Yes
Kozak-Collins et al. (1994)	Competitive cyclists (N = 7)	0.3 g·kg\(^{-1}\)BM 120 min prior to exercise in gelatine capsules Placebo: NaCl (0.207 g·kg\(^{-1}\)BM)	Double-blind, Crossover	1 min cycling at 95% VO\(_{2}\)\(_{peak}\); 1 min recovery at 60 W (repeated until exhaustion)	No
Macutkiewicz and Sunderland (2018)	Elite hockey players (N = 8)	0.2 g·kg\(^{-1}\)BM 180 min and 0.1 g·kg\(^{-1}\)BM 90 min prior to exercise in gelatine capsules. Placebo: Maltdextrin (0.2 g·kg\(^{-1}\)BM)	Single-blind, Crossover	Field Hockey Skill Tests	Yes
Tan et al. (2010)	Elite water polo players (N = 12)	0.3 g·kg\(^{-1}\)BM 90 min prior to exercise in gelatine capsules. Placebo: Corn flour (undefined dose)	Double-blind, Crossover	Loughborough Intermittent Shuttle Test (4 sets)	Yes
McNaughton et al. (1997)	Physically active females (N = 10)	0.3 g·kg\(^{-1}\)BM 90 min prior to exercise in solution. Placebo: NaCl (0.207 g·kg\(^{-1}\)BM)	Double-blind, Crossover	Water polo match simulation test (59 min protocol with 56 × 10-m maximal-sprint swims)	No
Tiryaki and Atterbom (1995)	Track athletes (N = 11) and trained non-athletes (N = 4)	0.3 g·kg\(^{-1}\)BM 150 min prior to exercise in solution. Placebo: Sugarless Kool-Aid (undefined dose)	Double-blind, Crossover	600 m running test	Yes
Durkalec-Michalski et al. (2020)	High-level Polish freestyle wrestlers (N = 18)	1–2 days: 25 mg·kg\(^{-1}\)BM; 3–5 days: 50 mg·kg\(^{-1}\)BM; 6–7 days: 75 mg·kg\(^{-1}\)BM; 8–10 days: 100 mg·kg\(^{-1}\)BM, tablets. Placebo: NaCl + maltdextrin (undefined dose)	Double-blind, Parallel groups	2 × Wingate bouts and Dummy Throw Test	Yes
Voskamp et al. (2020)	Competitive cyclists (N = 16)	0.3 g·kg\(^{-1}\)BM 150 min prior to exercise in gelatine capsules Placebo: sunflower, magnesium, as Amyloid (undefined dose)	Double-blind, Crossover	2000 m cycling time-trial	Yes

BM, body mass.
men only and 9 (6%) women only. A total of 21 studies (14%) recruited both male and female participants, 2 of which separated according to sex for analyses, and 19 of which did not, grouping data for both men and women. Six (4%) studies did not specify the sex of their participants. This resulted in a total of 1175 men and 134 women analysed separately. Studies that analysed men and women together comprised 273 individuals, of which 195 were men and 78 were women. Of the 30 studies including women, only one reported information relating to the menstrual cycle or contraceptive use of the participants (Macutkiewicz & Sunderland, 2018), with the same study the only to control for menstrual cycle phase during the testing period. Only 11 studies with standalone female groups were taken forward to the meta-analysis.

Meta-analysis

Data from 10 studies that contained separate data for women were included in the meta-analysis (Table 1). One parallel group study was not included in the analysis since it involved chronic SB or placebo supplementation in female students prior to interval training performed three times per week for 8 weeks, but did not involve supplementation prior to the exercise outcome test (Edge, Bishop, & Goodman, 2006).

Blood bicarbonate

Blood bicarbonate data were available from 4 studies (Bishop & Claudius, 2005; Bishop, Edge, & Goodman, 2004b; McNaughton et al., 1997; Tan et al., 2010) totalling 39 participants. Results indicated a pooled blood bicarbonate increase of 7.4 [95% CrI: 4.2–10.4 mmol·L⁻¹; \(P(\text{Increase} > 5) = 0.937 \)] following supplementation. The between study variance was 3.7 [95% CrI: 2.2–7.8 mmol·L⁻¹]. Median values and probabilities remained unchanged in the sensitivity analysis conducted with all data points and robust variance estimation.

Exercise data

Twelve exercise outcomes were obtained from 10 studies (Bishop et al., 2004a; Bishop & Claudius, 2005; Delextrat et al., 2018; Durkalec-Michalski et al., 2020; Kozak-Collins et al., 1994; Macutkiewicz & Sunderland, 2018; McNaughton et al., 1997; Tan et al., 2010; Tiryaki & Atterbom, 1995; Voskamp et al., 2020) totalling 118 participants. Results indicated a pooled standardised effect size of 0.37 [95% CrI: -0.06 to 0.92; \(P(\text{Increase} > 0) = 0.962; P(\text{Increase} > 0.2) = 0.784; P(\text{Increase} > 0.5) = 0.263 \) and a between study variance of 0.38 [95% CrI: 0.02–1.2]. Sensitivity analysis with the robust t-distribution to account for the small number of data points and existence of some large individual effects sizes estimated a slightly smaller pooled effect size 0.29 [95% CrI: -0.07 to 0.84; \(P(\text{Increase} > 0) = 0.949; P(\text{Increase} > 0.2) = 0.689; P(\text{Increase} > 0.5) = 0.191 \].

Meta-regression provided no substantive evidence of a moderating effect of exercise duration, with the estimated difference between short (<30 s; 5 studies, \(n = 54 \)) and longer duration (≥30 s; 6 studies, \(n = 71 \)) exercise tests estimated to be 0.02 [95% CrI: -0.52 to 0.55; \(P(\text{Difference} > 0) = 0.526 \)].

Certainty in cumulative outcomes

Blood and exercise outcomes were assigned an *a-priori* certainty rating of “high” because they were all based on data from blinded, randomized, placebo-controlled trials (as defined by the eligibility criteria). All studies included in the meta-analysis were classified as having “some concerns” according to ROB2 (Figure 3). Three studies had some concerns in Domain 4 (Measurement of the outcome) due to a lack of familiarisation to the protocol (Kozak-Collins et al., 1994; McNaughton et al., 1997) or a non-double-blind study design (Macutkiewicz & Sunderland, 2018). All studies were classified as having some concerns due to a lack of a pre-specified analysis plan (as outlined in Domain 5). This was not deemed to pose an undue risk to either outcome measure, thus no outcome was downgraded based on risk of bias (see Supplementary Table 1).

Both blood and exercise outcomes were downgraded for imprecision due to low numbers of outcome measures (4 for blood, 12 for exercise). Consistent blood and exercise effects meant no measure was downgraded for inconsistency. Almost all studies were performed in young, trained women with commonly employed dosing strategies and, thus, deemed to have direct, real-life applicability for the female athlete and were not downgraded for indirectness. Nonetheless, downgrading of certainty based on indirectness may be advisable for those interested in other populations (e.g. middle-aged, or elderly populations) or exercise outcomes (e.g. resistance/strength exercise). Publication bias was not explored due to limited data and consistency across study sample sizes, meaning no outcome was downgraded for this domain but future meta-analyses with a larger number of studies will allow this to be ascertained. Blood outcomes were upgraded according to GRADE recommendations because they were consistent with previous meta-analytic results based on the blood bicarbonate response to SB supplementation.
(Carr et al., 2011) and align with evidence-based and plausible physiological mechanisms. Certainty in exercise outcomes were not upgraded. Thus certainty in blood outcomes was considered high and certainty in exercise outcomes considered moderate (Supplementary Table 1).

Discussion

The SB literature is skewed regarding investigations in women, with only 20% (30 studies) of studies employing female participants, of which only 11 studies (7.4%) provided group analyses exclusively in women. Despite the small amount of available data, results are consistent in showing that SB supplementation in women leads to large changes in blood bicarbonate and that there is strong evidence for a positive ergogenic effect on exercise performance [P(\text{Increase} > 0) = 0.962]. Due to the small amount of data available and the substantive heterogeneity, it was not possible to obtain a precise estimate of the pooled effect size for exercise performance. However, the analyses suggest the effect is most likely to be between small and moderate.

Research on exercise physiology and nutritional supplements in women is notoriously scarce (Burke, 2017; O’Halloran, 2020), and the SB literature is no different with only 11 of 149 studies including a standalone female group. Across the whole research base comprising men and women, strong evidence exists to support the use of SB to improve exercise outcomes as demonstrated by multiple meta-analyses (Carr et al., 2011; Christensen et al., 2017; Matson & Tran, 1993; Peart et al., 2012). The current meta-analytical data restricted to female participants and based on nine crossover studies and one parallel group design comprising 118 participants is consistent with previous evidence. Whilst uncertainty in the pooled effect size was high due to the limited number of data points and substantive heterogeneity across studies, the probability that the pooled effect size was small or above was estimated to be around 78%, and the median standardised estimate of 0.37 is consistent with previous research conducted with predominantly male participants (0.36–0.44) (Christensen et al., 2017; Matson & Tran, 1993; Peart et al., 2012).

The recent data of Durkalec-Michalski et al. (2020) showed that SB supplementation improved wrestling specific performance in men, but not women. The authors speculated that physiological factors that might explain these divergent responses include differences in muscle fibre type and anaerobic capacity. Women typically have less overall muscle mass (Hegge et al., 2016; Janssen et al., 2000), type II muscle fibres (Porter et al., 2002; Simoneau & Bouchardeau, 1989) and lower glycolytic capacity (Green et al., 1984; Russ et al., 2005; Tarnopolsky, 2000), meaning they might be less susceptible to performance affecting decreases in muscle pH and, thus, also less susceptible to performance improvements with increased buffering capacity. The results of this study contrast with this hypothesis and the results of Durkalec-Michalski et al. (2020) and suggest that women do benefit from SB supplementation. This discrepancy might be due to a low sample size in Durkalec-Michalski et al. (2020) which was potentially unable to detect small differences in performance of these exercise tests. The number of women in their study was almost half that of men (18 vs. 33), and although women showed no improvements while men did, performance changes for women appear similar to those of men (Figure 3 of the original article).

Figure 2. Bayesian Forest Plot of effect sizes for sodium bicarbonate (SB) supplementation on exercise performance. Distributions represent “shrunken estimates” based on all effects size obtained from the study, the random effects model fitted and borrowed information across studies to reduce uncertainty. Black circles and connected intervals represent the median value and 95% credible intervals for the shrunken estimates. White circles and intervals represent the raw estimates and sampling variance calculated directly from study data.
Some evidence indicates that menstrual cycle phase may impact anaerobic exercise capacity, with reduced performance previously observed in the early follicular phase of the menstrual cycle (Masterson, 1999), although other studies failed to replicate this finding (Bushman, Masterson, & Nelsen, 2006; Sunderland & Nevill, 2003; Sunderland, Tunaley, Horner, Harmer, & Stokes, 2011). Greater evidence for no effect of menstrual cycle is consistent with recent meta-analytic data that indicated that exercise test performance may be only trivially reduced during the early follicular phase of the menstrual cycle (McNulty et al., 2020), although it is important to highlight that the observed effect was very small, and varied widely across studies. Nonetheless, these data indicating a potential difference in exercise performance across the menstrual cycle could also be taken to imply that the efficacy of ergogenic aids intended to enhance exercise test performance may also be impacted by menstrual cycle phase, particularly at the individual level. Despite this, only one of the 11 studies included within this review reported information relative to menstrual cycle/contraceptive use and to standardisation of tests (or not) according to menstrual cycle phase. Macutkiewicz and Sunderland (2018) reported that seven of their eight participants had normal menstrual cycles while one had been taking an oral contraceptive for over a year. The two experimental trials in this study were conducted during days 4–14 of the follicular phase or during days 5–20 of resuming the oral contraceptive pill. This was verified by measuring plasma progesterone concentrations, which were not different between trials, although it is important to highlight that progesterone levels remain relatively stable during the follicular phase of the menstrual cycle, whereas oestrogen increases rapidly meaning that different oestrogen concentrations between trials cannot be ruled out. Currently, no information exists as to whether menstrual cycle phase would alter the physiological and exercise responses to SB supplementation. However, considering the effects of ergogenic supplements are generally small, even very small changes in exercise capacity during different phases of the menstrual cycle (McNulty et al., 2020) may potentially modify these effects and this warrants investigation.

Most studies included here provided an acute 0.3–0.4 g·kg\(^{-1}\) BM dose of SB in the 180–90 min prior to exercise, although two provided SB chronically (Delextrat et al., 2018; Durkalec-Michalski et al., 2020). These acute supplementation protocols are most commonly applied in the literature and also appear to be the most effective (Heibel et al., 2018). Overall, the effect is likely to be between small to medium in magnitude, which is consistent with what we currently know about the influence of SB in men. Based on these findings, we do not believe there is any evidence to support sex-specific SB dosing recommendations and that current recommendations of 0.2–
$0.3 \text{ g·kg}^{-1}\text{BM}$ of SB taken 60–180 min prior to high-intensity exercise (de Oliveira, Saunders, Yamaguchi, Swinton, & Artioli, 2020) appear appropriate for the female athlete.

This meta-analysis is somewhat limited by the low number of included articles and exercise outcomes, with only four studies reporting pre- to post-supplementation blood bicarbonate changes and twelve exercise outcomes. Nonetheless, evidence for large changes in blood bicarbonate was very strong and certainty in this outcome was high. Although certainty in exercise outcomes was only moderate, there was strong evidence that effects on exercise outcomes were greater than zero. This is further supported by individual study data, all of which suggests very small to large positive effects (Figure 2). Sodium bicarbonate supplementation has been shown to improve muscular endurance, but not muscular strength (Grgic et al., 2020). However, none of the included studies here measured muscular strength or endurance and, thus, any conclusions must be limited to these predominantly aerobic and anaerobic exercise protocols. Finally, these data are highly applicable for trained young women since most studies employed trained or elite female athletes with an average age across these studies of 19–26 years. The generalisability of these conclusions to middle-aged or elderly populations is currently less certain.

In conclusion, the scientific literature regarding the efficacy of SB on exercise performance is highly biased towards male participants. The limited data in women does provide evidence of a small to medium positive effect of supplementation on exercise performance.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo: [Grant Number 2016/50438-0, 2019/05616-6, 2019/25032-9, 2019/26899-6]; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior: [Grant Number 001].

ORCID

Bryan Saunders http://orcid.org/0000-0003-0995-9077

Luana Farias de Oliveira http://orcid.org/0000-0001-8225-5784

Eimear Dolan http://orcid.org/0000-0002-1018-7601

Krzysztof Durkalec-Michalski http://orcid.org/0000-0002-5041-2981

Guilherme Giannini Artioli http://orcid.org/0000-0001-8463-2213

Paul Alan Swinton http://orcid.org/0000-0001-9663-0696

References

Allen, D. G., Lamb, G. D., & Westerblad, H. (2008). Skeletal muscle fatigue: Cellular mechanisms. *Physiological reviews, 88*(1), 287–332. doi:10.1152/physrev.00015.2007

Bishop, D., & Claudius, B. (2005). Effects of induced metabolic alkalosis on prolonged intermittent-sprint performance. *Medicine & Science in Sports & Exercise, 37*(5), 759–767.

Bishop, D., Edge, J., Davis, C., & Goodman, C. (2004a). Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. *Medicine & Science in Sports & Exercise, 36*(5), 807–813.

Bishop, D., Edge, J., & Goodman, C. (2004b). Muscle buffer capacity and aerobic fitness are associated with repeated-sprint ability in women. *European Journal of Applied Physiology, 92*(4-5), 540–547. doi:10.1007/s00421-004-1150-1

Burke, L. M. (2017). Practical issues in evidence-based use of performance supplements: Supplement interactions, repeated use and individual responses. *Sports Medicine, 47*(Suppl 1), 79–100. doi:10.1007/s40279-017-0687-1

Bürkner, P.-C. (2017). Bbrms: An R package for Bayesian multilevel models using Stan. *Journal of Statistical Software, 80*(1), 28. doi:10.18637/jss.v080.i01

Bushman, B., Masterson, G., & Nelsen, J. (2006). Anaerobic power performance and the menstrual cycle: Eumenorrheic and oral contraceptive users. *Journal of Sports Medicine and Physical Fitness, 46*(1), 132–137.

Carr, A. J., Hopkins, W. G., & Gore, C. J. (2011). Effects of acute alkalosis and acidosis on performance: A meta-analysis. *Sports Medicine, 41*(10), 801–814. doi:10.2165/11591440-000000000-00000

Christensen, P. M., Shirai, Y., Ritzi, C., & Nordsborg, N. B. (2017). Caffeine and bicarbonate for speed. A meta-analysis of legal supplements potential for improving Intense endurance exercise performance. *Frontiers in Physiology, 8*, 240. doi:10.3389/fphys.2017.00240

Delextrat, A., Mackessy, S., Arceo-Rendon, L., Scanlan, A., Ramsbottom, R., & Calleja-Gonzalez, J. (2018). Effects of three-day serial sodium bicarbonate loading on performance and physiological parameters during a simulated basketball test in female University players. *International Journal of Sport Nutrition and Exercise Metabolism, 28*(5), 547–552. doi:10.1123/ijsnem.2017-0353

de Oliveira, L. F., Saunders, B., Yamaguchi, G., Swinton, P., & Artioli, G. G. (2020). Is individualization of sodium bicarbonate ingestion based on time to peak necessary? *Medicine & Science in Sports & Exercise, 52*(8), 1801–1808. doi:10.1249/ MSS.0000000000002313

Durkalec-Michalski, K., Zawieja, E. E., Zawieja, B. E., Michalowska, P., & Podgorski, T. (2020). The gender dependent influence of sodium bicarbonate supplementation on anaerobic power and specific performance in female and male wrestlers. *Scientific Reports, 10*(1), 1878. doi:10.1038/s41598-020-07590-x

Edge, J., Bishop, D., & Goodman, C. (2006). Effects of chronic NaHCO3 ingestion during interval training on changes to...
muscle buffer capacity, metabolism, and short-term endurance performance. *Journal of Applied Physiology*, 101(3), 918–925. doi:10.1152/japplphysiol.01534.2005

Fitts, R. H. (1994). Cellular mechanisms of muscle fatigue. *Physiological reviews*, 74(1), 49–94.

Green, H. J., Fraser, I. G., & Ranney, D. A. (1984). Male and female differences in enzyme activities of energy metabolism in vastus lateralis muscle. *Journal of the Neurological Sciences*, 65(3), 323–331. doi:10.1016/0022-510x(84)90095-9

Grgic, J., Rodrigue, R. F., Garofolini, A., Saunders, B., Bishop, D. J., Schoenfeld, B. J., & Pedisic, Z. (2020). Effects of sodium bicarbonate supplementation on muscular strength and endurance: A systematic review and meta-analysis. *Sports Medicine*, 50(7), 1361–1375. doi:10.1007/s40279-020-01275-y

Guyatt, G. H., Oxman, A. D., Vist, G. E., Kunz, R., Falck-Ytter, Y., Alonso-Coello, P.,...Group, G. W. (2008). GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. *BMJ*, 336(7650), 924–926. doi:10.1136/bmj.39489.470347.AD

Hegge, A. M., Bucher, E., Ettema, G., Faude, O., Holmberg, H. C., & Sandbakk, O. (2016). Gender differences in power production, energetic capacity and efficiency of elite cross-country skiers during wholebody, upperbody, and arm poling. *European Journal of Applied Physiology*, 116(2), 291–300. doi:10.1007/s00421-015-3281-y

Heibel, A. B., Perim, P. H. L., Oliveira, L. F., McNaughton, L. R., & Saunders, B. (2018). Time to optimize supplementation: Modifying factors influencing the individual responses to extracellular buffering agents. *Frontiers in Nutrition*, 5, 35. doi:10.3389/fnut.2018.00035

Janssen, I., Heymsfield, S. B., Wang, Z. M., & Ross, R. (2000). Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. *Journal of Applied Physiology*, 89(1), 81–88. doi:10.1152/jappl.2000.89.1.81

Jarvis, K., Woodward, M., Debold, E. P., & Walcott, S. (2018). Acidosis affects muscle contraction by slowing the rates myosin attaches to and detaches from actin. *Journal of Muscle Research and Cell Motility*, 39, 135–14710.1007/s10974-018-9499-7

Jones, R. L., Stellingwerff, T., Artioli, G. G., Saunders, B., Cooper, S., & Sale, C. (2016). Dose-response of sodium bicarbonate ingestion highlights individuality in time course of blood analyte responses. *International Journal of Sport Nutrition and Exercise Metabolism*, 26(5), 445–453. doi:10.1123/ijsnem.2015-0286

Kozak-Collins, K., Burke, E. R., & Schoene, R. B. (1994). Sodium bicarbonate ingestion does not improve performance in women cyclists. *Medicine & Science in Sports & Exercise*, 26(12), 1510–1515.

Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian new statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. *Psychonomic Bulletin & Review*, 25(1), 178–206. doi:10.3758/s13423-016-1221-4

Macuktiewicz, D., & Sunderland, C. (2018). Sodium bicarbonate supplementation does not improve elite women’s team sport running or field hockey skill performance. *Physiological Reports*, 6(19), e13818. doi:10.14814/phy2.13818

Masterson, G. (1999). The impact of menstrual phases on anaerobic power performance in collegiate women. *The Journal of Strength & Conditioning Research*, 13(4), 325–329.

Matson, L. G., & Tran, Z. V. (1993). Effects of sodium bicarbonate ingestion on anaerobic performance: A meta-analytic review. *International Journal of Sport Nutrition*, 3(1), 2–28.

Maughan, R. J., Burke, L. M., Dvorak, J., Larson-Meyer, D. E., Peeling, P., Phillips, S. M.,...Engbersten, L. (2018). IOC consensus statement: Dietary supplements and the high-performance athlete. *British Journal of Sports Medicine*, 52(7), 439–455. doi:10.1136/bjsports-2018-099027

McGuinness, L. A., & Higgins, J. P. T. (2021). Risk-of-bias ViSUalization (robsvis): An R package and Shiny web app for visualizing risk-of-bias assessments. *Research Synthesis Methods*, 21, 55–6110.1002/ijsm.1411.

McNaughton, L. R., Ford, S., & Newbold, C. (1997). Effect of sodium bicarbonate ingestion on high intensity exercise in moderately trained women. *The Journal of Strength & Conditioning Research*, 11(2), 98–102.

McNulty, K. L., Elliott-Sale, K. J., Dolan, E., Swinton, P. A., Ansell, P., Goodall, S.,...Hicks, K. M. (2020). The effects of menstrual cycle phase on exercise performance in Eumenorrheic women: A systematic review and meta-analysis. *Sports Medicine*, 50(10), 1813–1827. doi:10.1007/s40279-020-01319-3

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *Annals of Internal Medicine*, 151(4), 264–269.

Morris, S. B., & DeShon, R. P. (2002). Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. *Psychological Methods*, 7(1), 105–125. doi:10.1037/1082-989x.7.1.105

O’Halloran, K. D. (2020). Mind the gap: Widening the demographic to establish new norms in human physiology. *Journal of Physiology*, 598(15), 3045–3047.10113/jphysiol.2019.1257986.

Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan-a web and mobile app for systematic reviews. *Systematic Reviews*, 5(1), 210. doi:10.1186/s13643-016-0384-4

Peart, D. J., Siegler, J. C., & Vince, R. V. (2012). Practical recommendations for coaches and athletes: A meta-analysis of the effects of sodium bicarbonate use for athletic performance. *Journal of Strength and Conditioning Research*, 26(7), 1975–1983. doi:10.1519/JSC.0b013e3182576f3d

Porter, M. M., Stuart, S., Boij, M., & Lexell, J. (2002). Capillary supply of the tibialis anterior muscle in young, healthy, and moderately active men and women. *Journal of Applied Physiology*, 92(4), 1451–1457. doi:10.1152/japplphysiol.00744.2001

Rakap, S., Rakap, S., Evran, D., & Cig, O. (2016). Comparative evaluation of the reliability and validity of three data extraction programs: UnGraph, GraphClick, and Digitizelt. *Computers in Human Behavior*, 55, 159–166. doi:10.1016/j.chb.2015.09.008

Russ, D. W., Lanza, I. R., Rothman, D., & Kent-Braun, J. A. (2005). Sex differences in glycolysis during brief, intense isometric contractions. *Muscle & Nerve*, 32(5), 647–655. doi:10.1002/mus.20396

Saunders, B., Elliott-Sale, K., Artioli, G. G., Swinton, P. A., Dolan, E., Roschel, H.,...Gualano, B. (2017). β-alanine supplementation to improve exercise capacity and performance: A systematic review and meta-analysis. *British Journal of Sports Medicine*, 51(8), 658–669. doi:10.1136/bjsports-2016-096396
Simoneau, J. A., & Bouchard, C. (1989). Human variation in skeletal muscle fiber-type proportion and enzyme activities. *American Journal of Physiology, 257*(4 Pt 1), E567–E572. doi:10.1152/ajpendo.1989.257.4.E567

Sterne, J. A. C., Savovic, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., ... Higgins, J. P. T. (2019). Rob 2: A revised tool for assessing risk of bias in randomised trials. *BMJ, 366*, l4898. doi:10.1136/bmj.l4898

Sundberg, C. W., Hunter, S. K., Trappe, S. W., Smith, C. S., & Fitts, R. H. (2018). Effects of elevated H(+) and Pi on the contractile mechanics of skeletal muscle fibres from young and old men: Implications for muscle fatigue in humans. *Journal of Physiology, 596*(17), 3993–4015. doi:10.1113/JP276018

Sunderland, C., & Nevill, M. (2003). Effect of the menstrual cycle on performance of intermittent, high-intensity shuttle running in a hot environment. *European Journal of Applied Physiology, 88*(4–5), 345–352. doi:10.1007/s00421-002-0722-1

Sunderland, C., Tunaley, V., Horner, F., Harmer, D., & Stokes, K. A. (2011). Menstrual cycle and oral contraceptives’ effects on growth hormone response to sprinting. *Applied Physiology, Nutrition and Metabolism, 36*(4), 495–502. doi:10.1139/h11-039

Tan, F., Polglaze, T., Cox, G., Dawson, B., Mujika, I., & Clark, S. (2010). Effects of induced alkalosis on simulated match performance in elite female water polo players. *International Journal of Sport Nutrition and Exercise Metabolism, 20*(3), 198–205. doi:10.1123/ijsnem.20.3.198

Tarnopolsky, M. A. (2000). Gender differences in substrate metabolism during endurance exercise. *Canadian Journal of Applied Physiology = Revue Canadienne De Physiologie Appliquee, 25*(4), 312–327. doi:10.1139/h00-024

Tiryaki, G. R., & Atterbom, H. A. (1995). The effects of sodium bicarbonate and sodium citrate on 600 m running time of trained females. *Journal of Sports Medicine and Physical Fitness, 35*(3), 194–198.

Van den Noortgate, W., Lopez-Lopez, J. A., Marin-Martinez, F., & Sanchez-Meca, J. (2013). Three-level meta-analysis of dependent effect sizes. *Behavior Research Methods, 45*(2), 576–594. doi:10.3758/s13428-012-0261-6

Voskamp, A. E., van den Bos, S., Foster, C., de Koning, J. J., & Noordhof, D. A. (2020). The effect of sodium bicarbonate supplementation on the decline in gross efficiency during a 2000-m cycling time trial. *International Journal of Sports Physiology and Performance, 15*(5), 741–747. doi:10.1123/ijssp.2019-0177