Study The Spectral and Thermal Properties of The Molecule Tetracene (C\textsubscript{18}H\textsubscript{12}) by Using Semi Empirical Quantum programs

Zeno M. Abdulla *1,2 and Abdul Hakim Sh. Mohammed
zeno@uokirkuk.edu.iq

1Department of Physics, College of Science, University of Kirkuk, Iraq

2Department of Physics, College of Education, University of Al-Qadisiyah, Iraq.

ABSTRACT. The aim of this study is to determine the spectral properties of the Tetracene molecule (C\textsubscript{18}H\textsubscript{12}) using the Semi-empirical quantum programs (HyperChem8.0, WinMopac7.21) by (MNDO-PM3) method (Modified Neglect of Differential Overlap-Parameterization Model3) The study envelope computation of the space geometry of the Tetracene molecule was calculated using the initial and final matrices, including the length, the angle between the bonds, the angle of the dipole, and the charge of each atom in the Tetracene molecule, The total energy, binding energy, electronic energy, core-core repulsion, ionization potential, molecular weight, moment of inertia, and dipole moment of the molecule were also calculated The curved potential energy of each molecule has been plotted as it is adopted to vary the length of the bonds, (C\textsubscript{1}-H\textsubscript{19}) and (C\textsubscript{1}-H\textsubscript{15}) in the Tetracene molecule compared to the result of the total energy values of Tetracene in equilibrium. In addition to the potential energy curve, the dissociation energy of spectroscopy was calculated for molecule and the molecular orbit including ELUMO equal to (-1.353), EHOMO equal to (-7.87eV), Egap equal to (6.517 eV) of Tetracene. Likewise, the vibration frequencies of the Tetracene molecule were obtained in the infrared region and electron transmission in the UV region. Some thermal properties (thermodynamics) of Tetracene were also calculated, including heat of formation, entropy, heat capacity, enthalpy and, gibbs free energy, at a temperature (298K), the value of the Tetracene molecule was equal to (84.445)kcal.mol-1, (114.6487)Cal.mol-1.K-1, (54.8085)Cal.mol-1.K-1, (8484.7728)Cal.mol-1 (-25716.70)Cal.mol-1 respectively. The results of the theoretical study agreed with the experimental results and almost with the previous research.

Keywords : Tetracene (C\textsubscript{18}H\textsubscript{12}) , MNDO-PM3 , potential Energy , UV , ELUMO , EHOMO , Egap , Semi-empirical

1. Introduction

The tetracene molecule consists of four linked rings of benzene and its molecular formula is C\textsubscript{18}H\textsubscript{12} and has the appearance of a pale orange powder, which is a polycyclic aromatic hydrocarbon. Tetracene is an organic semiconductor that refers to substances that are composed mostly of carbon and hydrogen atoms, and tetracene is ethylnylacene which is a conductive
polymer used as a donor material. It has a high photoluminescence and quantum yield that makes it a promising candidate in the development of single crystal electronic material \[1\][2]. In May 2007, researchers from two Japanese Universities, Tohoku University in Sendai and Osaka University, reported an ambipolar light-emitting transistor made of a single tetracene crystal \[3\]. Ambipolar means that the electric charge is transported by both positively charged holes and negatively charged electrons. Tetracene can be also used as a gain medium in dye lasers as a sensitizer in chemoluminescence Jan Hendrik Schon during his time at Bell Labs (1997-2002) claimed to have developed an electrically pumped laser based on tetracene. However, his results could not be reproduced, and this is considered to be a scientific farad [4]. Tetracene used in wide of organic electronic based devices, which include organic light emitting diodes (OLED),[5] solar cells, organic photovoltaics (OPVs), thin films transistors (TFTs), and other single crystal based organic semiconductors. [6,7] One of the most important molecular modeling software (WinMopac 7.21 and HyperChem8.0) to define MOPAC: MOPAC are semi-experimental, generally targeted, molecular orbital programs that have facilities for studying chemical reaction related to molecules. Linear polymers and ions applied to the quasi-experimental MNDO, AM1, MNDO/PM3 and MNDO / 3 Hamiltonians. This program provides the computation of vibrational spectra, isotopic substitution effects, thermodynamic quantities, and force constants in an integrated program. [8,9]. HyperChem8.0 is a multifaceted molecular modeling program that provides a set of powerful and large computations and many types of molecular calculations based on quantum mechanics calculations. As the program contains graphical axes and shapes, we can obtain the correct structure of the molecule by drawing and studying its properties as it supports building and mapping for the implementation of the molecule easily and the programs represent the functions of orbitals by means of quasi-experimental calculations [10]. Quasi-experimental methodologies are based on the electronic Schrödinger equation obtained after separating the nuclear and electronic motion, (Born - Oppenheimer – approximation)

$$\hat{H}(r,R)\Psi(r,R) = E(r,R)\Psi(r,R)$$(1)

Here \(r\) and \(R\) refer to the coordinates of the electrons and the nucleus respectively [11].

This project aims to study the spectral properties of the tetracene molecule (C\(_{18}\)H\(_{12}\)) in the infrared (IR) region and electron transport in the ultraviolet region, using quasi-experimental calculations via (MNDO-PM3) methods. This study also aimed to punish the low energy steady state of the molecule via potential energy curves.

2. THEOREY

The quantitative number of energy levels for any molecule is very large. Thus, the energy is divided into different energies according to the following equation:

$$E_{total} = E_T + E_N + E_R + E_V + E_e \cdots \cdots \cdots$$(2)

Where \(E_T\): represents transition energy, \(E_N\): nuclear energy, \(E_R\): rotational energy, \(E_V\): vibrational energy and \(E_e\): electronic energy. In this paper, the focus is on the vibrational energy, which represents the energy and kinetic energy that particles possess as a result of their vibrational movement. Here this energy is measured. The vibration of the molecule is subject to the effect of the beam in terms of expansion and contraction, which is very similar to the behavior of the spring subject to the law of hooks, hence it is called the simple harmonic oscillation model. The harmonic oscillator model is an approximate model in which
the relationship between the potential energy of vibration and the interlayer distance can be plotted as follows [12].

\[V(r) = \frac{1}{2} k(r - r_e)^2 \] (3)

Where \(V(r) \) represents the potential energy, \(k \): the force constant, \(r \): the displacement, \(r_e \): the equilibrium distance between the two atoms. Both groups can move together as one effective block denoted by (\(\mu \)).

\[I. \quad \mu = (m_1 + m_2)/(m_2 + m_2) \] (4)

Or it is constantly vibrating with respect to its center of mass at a frequency given by the equation [13]:

\[\nu = 1/2\pi \sqrt{k/\mu} \](5)

Where (\(\nu_{\text{vb}} \)) is the vibration frequencies.

According to quantum mechanics, the Schrödinger equation can be representing as follows [14]:

\[\left[-\frac{\hbar^2}{2\mu} \nabla^2 + \frac{1}{2} k(r - r_e)^2 \right] \Psi = E\Psi \] (6)

\[E_v = \hbar \nu_{\text{vb}} \left(\nu + \frac{1}{2} \right) \](7)

\(V=0,1,2,\ldots\)

Where \(\nu_{\text{vb}} \) is the total vibration frequency and \((V) \) is the vibration quantum number, \((1/2 h\nu_{\text{vb}})\) when \(\nu = 0 \), it is called the zero point energy. This value represents the difference between classical mechanics and the amount of molecular vibration. The energy in classical mechanics can be zero, which means that a molecule has no vibrational energy under normal conditions, while quantum mechanics asserts that the molecule must suffer a certain vibration. From the Schrödinger equation, we find that the energy of the vibrational plane is in terms of the wave form, as is customary in the study of spectra as in the equation.

\[G(\nu) = \omega(\nu + \frac{1}{2}) \](8)

Several potential Morse function functions have been proposed with respect to the proposed scientist, as in the following equation [15]

\[V_m = D_e [1 - e^{-\beta(r-r_e)}]^2 \] (9)

Where is a constant for the electronic energy levels of the molecule, \(V_m \) represents the potential energy of the current, it is clear from the equation that the value of \(V_m \) approaches De when the value of \(r \) approaches infinity and this corresponds to the true behavior of the
diatomic particles. When compensating for the potential energy of the potential Morse code function in the Schrödinger equation, the levels of vibrational energy are equal:

\[G(v) = \left(v + \frac{1}{2} \right) \omega_v - (v + \frac{1}{2})^2 x_v \omega_v \quad \ldots \ldots (10) \]

Where \(\omega_v \) is the vibrational frequency in the asymmetric \(x_v \) non-harmonic motion of the Constant. The zero point energy becomes zero point \((\text{when } v=0) \) \[14\]

\[G(0) = \frac{1}{2} \omega_v \left(1 - \frac{1}{2} x_v \right) cm^{-1} \quad \ldots \ldots (11) \]

\[\sum L_i (F_{ij} - \lambda M_{ij}) = 0 \quad \ldots \ldots (12) \]

Calculations of vibration frequency and normal coordinates can also be made from the molecular force constant, which is the most popular method, since we can solve the abstract Wilson equation:

Where \(L_i \): values of Eigen vector modulus values, \(F_{ij} \) is a matrix component of the force constant, \(\lambda \): Eigen \(M_{ij} \) value: the mass Matrix of atoms. From solving the abstraction equation, we will obtain the fundamental vibration frequencies of the molecule \((3N-6)\) Substitute the values of into the equation

\[\lambda = 4\pi\nu^2 c^2 \quad \ldots \ldots (13) \]

The dipolar moment is the electrostatic force that acts between two equal and different charges by indicating the amount of charge \(q \) and the distance between them. The equation can be written as follows:

\[\mu = q.d \quad \ldots \ldots (14) \]

3. Results & Discussion

3.1 Molecular Structure

Tetracene \(C_{18}H_{12} \) is represented as shown in Fig1, which was plotted by Hyperchem8.0 software. The calculation of the program is based on the internal coordinates \((r, \Theta, \Phi)\) and the geometric figure in equilibrium.

Figure(1). molecular structure of tetracene molecule depicted by Hyperchem8.0 software.

These properties were found after initialization matrix was obtained and incorporated into the array using WinMopac7.21. These properties include formation temperature, total energy, binding energy, electronic energy, fundamental repulsion, ionization potential, electronic momentum, zero point, number of filled plane, and molecular weight. For Table
It demonstrates some of the spectral properties that give complete descriptions of the molecular properties.

Table (1) The result of the spectral properties of the tetracene molecule computed by (WinMopac7.21, HyperChem8.0).

Quantity	Calculated Value	Unit	
	WinMopac	HyperChem	
Heat of Formation	84.335653	83.9091283	Kcal/mol
Total Energy	-2315.85928	-2313.66819	eV
Electronic Energy	-15540.42858	-15436.01881	eV
Core-Core Repulsion	13134.56970	13122.35062	eV
Dipole Moment	0.000	0.000	Debyes
Zero Point Energy	151.344	151.28864	Kcal/mol
No. of Filled Level	42	42	
Molecular Weight	228.293	C	amu

3.2 Calculation of Tetracene potential energy

Several bond distances were determined for (C1–H19), (C2–H20) for the tetracene molecule. On the other hand, the total energy value of the molecule was calculated for each distance. The bond length and total power values were calculated by WinMopac 7.21. The inconsistent potential energy curve and the equilibrium distance at which we obtain the lowest total value of energy as in Fig. (2), (3), the molecule is closer to stable than, and the values of the total energy at the equilibrium position of the bonds (C1–H19), (C2–H20) were: at distance \(r_{eq} = (1.09 \text{Å}) \), \(-3617.333 \text{eV} \) on distance \(r_{eq} = (1.095 \text{Å}) \) and \(-3617.3339 \text{eV} \) respectively.

Table (2) Total Energy change by distance(C1–H19) for tetracene molecule from the Tetracene molecule
Figure (2). Total energy change by distance (C1-H19)

Table (3) Total energy change by distance (C2-H20) for tetracene molecule

R (A)	Total Energy (eV)
0.596	-3411.1306
0.695	-3502.3913
0.795	-3627.7304
0.895	-3566.6667
0.995	-3611.3011
1.095	-3617.3339
1.195	-3614.2241
1.295	-3608.7905
1.395	-3596.9811
1.495	-3587.3049
1.595	-3572.3139
1.695	-3566.2917
1.795	-3547.7614
1.895	-3529.6232
1.995	-3516.4284
2.095	-3504.1484
2.194	-3493.5627
2.295	-3487.6969
2.395	-3474.6374
2.494	-3464.1877
2.595	-3453.6494

Figure (3). Total energy change by distance (C2-H20) from the tetracene molecule.

When the atom is rounded together, a lower equilibrium is created after the equilibrium distance is very high and accompanied by a large potential energy that increases rapidly. Either when the atoms are removed from each other more than after the equilibrium, weak gravity will appear accompanying it. Weak potential energy that increases at a slower speed. Then start the effect of bond expansion (C-H) and the potential curve moves from harmonic behavior to non-harmonic behavior, so increasing the distance (C-H) will increase energy until the molecule starts to separate until the bond is broken, The energy takes the form of a half straight line called the dissociation energy, so for (C1-H19) and (C2-H20) bonds, the values of the dissociation energies were as follows: (C1-H19) (De =4.02 eV) as shown in Figure (3), (C2-H20) (De =4.019 eV) as shown in Figure (3) When comparing the values of the dissociation energies of each of the bonds in the tetracene molecule, the difference is due to the difference in the length of the bonds due to the difference in inertia determined by the difference in mass according to equation (4) and (5). The difference in the moment of inertia
(I) leads to a difference in the continuous rotation (B) of the molecule and the relationship between B and I is inverse.

3.3 Calculate the frequencies and patterns of vibrations

Table (4) shows the basic vibrational frequencies in the infrared (IR) region of the tetracene molecule with a density and symmetry where their number was (88) according to the relationship (3N-6) as it represents the number of a compound atom. The table also showed that the frequencies (wave number) of the molecule are close to the result of the programs HyperChem 8.0 and WinMopac 7.21.

Table (4) Tetracycline vibrational frequencies calculated by (Hyperchem8.0) and (WinMopac) Programs, and comparison with the practical values of other works

Vibrational mode	Intensity Km/mol	Wave number 1/cm Cal. by [HyperChem]	SYMMETRY Cal by [HyperChem]	Wave number 1/cm Cal. by [WinMopac]	Wave number
1	0.18668	51.71	B3	52.12	52.71
2	0	74.95	AU	75.75	
3	0	136.64	B1	136.99	
4	0	162.89	B2	163.35	
5	0.14193	175.27	B1	175.48	175.44
6	0.16514	234.13	B3	234.51	234.89
7	0	277.71	AU	277.83	
8	0	316.35	B1	316.6	
9	0	326.93	B3	327.17	327.28
10	0	332.71	AG	332.76	332.76
11	14.27131	443.72	B3	443.76	
12	0	446.84	B1	447.04	
13	0.12573	451.65	B3	451.82	
14	0	464.92	B2	465.04	465.44
15	0.00037	481.71	B1	482.08	482.03
16	0	490.83	AU	490.87	
17	0	509.5	B3	509.6	509.66
18	0.56311	561.19	B2	561.26	567.29
19	0.63643	626.06	B1	626.21	626.18
20	0	628.49	AG	628.59	628.60
21	0.10092	643.44	B2	643.61	643.61
22	0	713.48	B2	713.59	
23	0	732.15	AU	732.38	732.52
24	0	736.64	B2	736.6	736.59
25	0	760.7	B1	760.46	
26	41.16274	767.71	B3	767.5	
27	0	790.69	B3	790.81	790.84
28	0	851.47	AU	851.57	
---	---	---	---		
29	0	864.73	B2	864.88	
30	0	876.34	AG	876.47	876.61
31	0	885.25	B3	885.34	885.39
32	0.71103	886.08	B2	886.78	886.91
33	0	889.34	B1	889.27	889.49
34	0.18359	908.86	B1	908.98	908.98
35	0.00001	926.49	AU	926.46	926.67
36	22.18395	938.78	B3	938.85	938.85
37	0	972.87	B1	973.03	973.03
38	0	973.85	B2	973.93	973.93
39	17.78074	978.66	B3	978.84	978.84
40	0	1009.49	AU	1009.61	1009.61
41	0	1012.87	B2	1012.98	1012.98
42	0	1019.03	AG	1019.25	1019.25
43	0.09243	1089.95	B2	1089.84	1089.90
44	0.00842	1091.33	B2	1092.44	1092.55
45	0	1093.1	AG	1093.16	1093.16
46	0.46562	1126.93	B1	1127.04	1127.04
47	0	1127.53	B3	1127.68	1127.68
48	0	1150.18	B3	1150.34	1150.04
49	0	1157.18	AG	1157.53	1157.61
50	0.0419	1159.3	B2	1159.61	1159.71
51	0.09061	1188.5	B1	1188.62	1188.65
52	0	1228.47	B3	1228.56	1228.62
53	9.30558	1235.39	B2	1236.84	1236.84
54	0.00273	1254.08	B1	1254.14	1254.14
55	0	1255.49	AG	1225.63	1225.63
56	0	1389.93	B3	1390.16	1390.16
57	9.80918	1400.07	B1	1400.4	1400.4
58	2.52452	1411.97	B2	1412.17	1412.17
59	0.22577	1435.57	B1	1435.81	1435.81
60	0	1449.52	AG	1449.77	1449.77
61	0	1560.88	AG	1561.64	1561.81
62	0.88598	1605.5	B2	1605.71	1605.75
63	0	1612.28	AG	1612.49	1612.73
64	0	1630.84	B3	1631.14	1631.19
65	0.14693	1661.44	B2	1661.69	1661.69
66	0	1734.83	AG	1735.2	1735.2
67	0.4005	1742.24	B2	1742.58	1742.58
68	0	1784.99	AG	1749.36	1749.56
69	0.10697	1785.42	B1	1785.75	1785.97
70	0	1815.5	B3	1815.9	1815.9
71	0	1833.69	B3	1834.06	1843.10
72	1.98911	1843.45	B1	1843.82	1843.84
73	39.15844	3043.34	B1	3043.34	3043.34
74	0.00073	3044.54	AG	3045.06	3045.06
75	0	3044.97	B3	3045.47	3045.47
It was concluded from Table (4) that the frequencies of the two oscillations of the atom (C-H) were at agreement with previous studies [17]. Figure (4) shows some of the vibrational patterns of the tetracene molecule and shows the atoms and the directions of movement represented by the arrows. The shape also determines the intensity, symmetry, and frequency for each position.
Figure (4) The main tetracene vibrational modes, frequency, intensity and symmetry of TMIn for each mode drowned by HyperChem8.0 software

3.4 Molecular Orbital Eigen Values

Tetracene therap with HyperChem8.0. Figure (6) shows 42 occupied and 42 unmanned orbits. The energy of the higher occupied molecular orbital ($E_{\text{HOMO}} = -7.87$) and the energy of the lower unoccupied molecular orbital ($E_{\text{LUMO}} = -1.353$) were calculated by measurement according to the relationship ($E_{\text{gap}} = E_{\text{LUMO}} - E_{\text{HOMO}}$), and ($E_{\text{gap}} = 6.517 \text{ eV}$), and close to the previous studies (6.519 eV) [17]. Ionizing energy (I.P) was calculated from the absolute value of the highest occupied orbit and was equal to (-7.870 eV) and close to the previous studies (-7.871 eV) [17].
3.5 UV Spectroscopy of Tetracene

The electron transition of the tetracene molecule was obtained after plotting the molecular structure in the best geometrically balanced shape by the program (HyperChem8.0), and the highest transmission was at the wavelength \(\lambda = 266.8 \text{ nm} \). This value was consistent with previous studies (\(\lambda = 266.7 \text{ nm} \)) [17], and Table (5) represents the value between (wavelength, strength of the oscillator) As shown in Figure (7).
Table (5) shows the electron transport of tetracene in UV region.

Wave Length nm	Oscillator strength
705.3	0
406.7	0.2463
399.4	0
386.3	0.0564
375.3	0
318.5	0
302.6	0
286.5	2.9642
287.8	0
287.2	0
287.1	0
286.3	0
286.3	0.3574
287.8	0
287.2	0

Figure (6) Tetracycline UV-vis spectrosc computed by HyperChem8.0 programs

3.6 The Thermal Properties of Tetracene

A number of thermal properties of the tetracene molecule were studied after obtaining the stable shape of the tetracene molecule through the HyperChem8.0 program and obtaining the final matrix as in Table (6) that contains the atom charge of the molecule through WinMopac 7.21, the reaction properties and the effect of temperature were calculated and studied. On the tetracene molecule on three stages and for different values of temperature, which include melting, boiling, and standard degree. Tetracene molecule matrix shows that can be obtained after the molecule is withdrawn upon reaching the optimization state for optimum geometry placement. The table shows the atoms of the molecule, the distance between this atom (r), the best position of this atom (Opt), the values of the angles (Θ^0), and the angles of the diagonal (Φ^0).

Table (6). The primary matrix of a tetracene molecule shows the internal coordinates (r, Θ^0, Φ^0) in the equilibrium condition computed by Hyperchem8.0

ATOM	r (Å)	OPT	Θ^0	OPT	Φ^0	OPT	charge
C	00000.0000	0	00000.0000	0	00000.0000	0	-0.0888
C	00001.3559	1	00000.0000	0	00000.0000	0	-0.0995
C	00001.4390	1	00120.6745	1	00000.0000	0	-0.0334
C	00001.4303	1	00118.6963	1	00000.0000	1	-0.0333
C	00001.4306	1	00120.6290	1	00000.0000	1	-0.0995
C	00001.3559	1	00120.6290	1	00000.0000	1	-0.0888
C	00001.3844	1	00121.3844	1	00179.9999	1	-0.0776
C	00001.4118	1	00120.6501	1	00000.0000	1	-0.0318
C	00001.4238	1	00119.4305	1	00000.0000	1	-0.0317
C	00001.3844	1	00119.9192	1	00000.0000	1	-0.0776
C	00001.4118	1	00121.1389	1	00179.9999	1	-0.0776
C	00001.3844	1	00120.6501	1	00179.9999	1	-0.0334
C	00001.4303	1	00119.9192	1	00000.0000	1	-0.0333
C	00001.3844	1	00119.9192	1	00000.0000	1	-0.0776
C	00001.4390	1	00121.3843	1	00179.9999	1	-0.0888
3.6.1 Heat of formation ΔH_f^0

For a tetracene molecule, the formation temperature calculated per unit (kcal.mol$^{-1}$) is a function of temperature in unit (K) and for different temperatures of formation values (100$^\circ$K-600$^\circ$K) as shown in Table (7). Figure (7) shows that Heat of formation depends on the temperature, which increases with increasing temperature. The formation temperature at standard temperature (298$^\circ$K) and standard pressure (1 bar) was equal to (84.445) kCal.mol$^{-1}$, and the experimental value obtained from the previous studies (84.345) kCal.mol$^{-1}$[17].
Table(7). Tetracene temperature to the formation value and the corresponding temperature.

T (K)	H.O.F.(KCAL/MOL)
100	77.232
110	77.431
120	77.644
130	77.873
140	78.117
150	78.377
160	78.644
170	78.924
180	80.238
190	80.640
200	81.085
210	81.567
220	82.068
230	82.588
240	83.138
250	83.697
260	84.246
270	84.820
280	85.403
290	85.980
300	86.566
310	87.161
320	87.760
330	88.370
340	88.996
350	89.624
360	89.252
370	89.890
380	89.424
390	89.062
400	89.700
410	89.348
420	88.996
430	88.644
440	88.292
450	87.940
460	87.588
470	87.236
480	86.884
490	86.532
500	86.180
510	85.828
520	85.476
530	85.124
540	84.772
550	84.420
560	84.068
570	83.716
580	83.364
590	83.012
600	82.660
610	82.308
620	81.956
630	81.604
640	81.252
650	80.900
660	80.548
670	80.196
680	79.844
690	79.492
700	79.140

Figure(7): The relationship between the Heat of formation and the temperature of the tetracene.

3.6.2 Entropy

At different temperatures extending from (100 °K-630 °K) which includes the standard temperature, as shown in Table(8), the entropy values of the tetracene molecule were calculated and we observed that the entropy changes according to the temperature. Figure(7) shows the values obtained for entropy in the MNDO-PM3 method from the diagram, and it shows that the entropy increases greatly by increasing the temperature and the values of the entropy at a temperature of 298 °K is equal to (114.684) Cal.K⁻¹.mol⁻¹, and the experimental value obtained from the previous studies (114.209) Cal.K⁻¹.mol⁻¹[17].
3.6.3 Heat Capacity

Another properties that is no less important the other properties, is the heat capacity, for the tetracene molecule and for different temperature of (100 K-600 K), as shown in Table(9). The heat capacity of tetracene was calculated at room a temperature (298 K), (54.806) Cal.mol⁻¹.K⁻¹, and the experimental value obtained from the previous studies (54.398) Cal.mol⁻¹.K⁻¹[17]. The Figure (8) shows the thermal relationship between the heat capacity function of temperature and depends on a large temperature and directly proportional to it. As the temperature increases, the number of the molecule increases from different levels of a higher vibrational energy, the heat capacity increases of each vibrational level.

Table(8): Tetracene entropy and corresponding temperature.

T (K)	ENTROPY(CAL/K/MOL)
100	78.5857
110	80.477
120	82.3318
130	84.1595
140	86.8914
150	89.7713
160	92.6747
170	95.5465
180	98.435
190	101.3199
200	104.206
210	107.102
220	109.9255
230	112.708
240	115.447
250	118.145
260	120.772
270	123.352
280	125.891
290	128.391
300	130.848
310	133.258
320	135.607
330	137.903
340	139.143
350	141.329
360	143.461
370	145.544
380	147.584
390	149.584
400	151.548
410	153.469
420	155.351
430	157.203
440	159.009
450	160.772
460	162.507
470	164.212
480	165.883
490	167.537
500	169.165
510	170.767
520	172.334
530	173.868
540	175.383
550	176.868
560	178.325
570	179.769
580	181.181
590	182.565
600	183.919
610	185.244
620	186.530
630	187.792

Figure(8): The relationship between the entropy and tetracene temperature.
Table(9). Tetracene heat capacity values and corresponding temperatures.

T (K)	HEAT CAPACITY
100	18.1374
110	19.6567
120	21.2668
130	22.9510
140	24.6977
150	26.4894
160	28.3461
170	30.2390
180	32.1627
190	34.1215
200	36.1159
210	38.1445
220	40.1975
230	42.2741
240	44.3746
250	46.5004
260	48.6489
270	50.8218
280	53.0199
290	55.2311
298	54.8066
300	55.6588
310	56.7316
320	57.9245
330	59.2271
340	60.6393
350	62.1657
360	63.8052
370	65.5582
380	67.4208
390	69.3833
400	71.4437
410	73.5991
420	75.8466
430	78.1823
440	80.6064
450	83.1167
460	85.7188
470	88.3962
480	91.1449
490	93.9613
500	96.8454
510	99.7966
520	102.8143
530	105.8962
540	108.9597
550	110.9941
560	112.9097
570	114.8074
580	116.6875
590	118.5481
600	119.3939
610	120.2132
620	120.9063
630	121.5741
640	122.2155
650	122.8318
660	123.4224
670	123.9870
680	124.5260
690	125.0391
700	125.5362

Figure(9). The relationship between the heat capacity and tetracene temperature.

3.6.4 Enthalpy

The an atomical value of the molecule was calculated with different temperatures ranging from (1000K-6300K) as in Table(10), at (2980K), and (1bar) the enthalpy value was equal to (8484.7128)Cal.mol⁻¹, and the experimental value obtained close from the previous studies (8367.315) Cal.mol⁻¹[17]. Figure(9) shows the relationship between the temperature and enthalpy, where the image shows that the higher temperature, the higher the enthalpy, meaning that the enthalpy is a function of temperature.
Table(10). Tetracene enthalpy and corresponding temperature.

T (K)	ENTHALPY (CAL/MOL)
100	1271.9128
110	1470.4960
120	1683.7959
130	1912.2607
140	2156.3351
150	2416.4607
160	2693.0739
170	2986.6524
180	3297.4592
190	3626.0357
200	3972.6948
210	4337.7650
220	4721.5249
230	5124.2509
240	5546.1106
250	5987.2701
260	6447.6361
270	6927.9700
280	7427.9330
290	7946.3664
300	8484.7728
310	9042.4742
320	9619.3566
330	10215.2630
340	10830.0103
350	11463.9252
360	12115.1835
370	12785.1492
380	13473.9946
390	14178.9968
400	14901.3656
410	15641.2946
420	16397.9984
430	17171.1786
440	17960.5337
450	18765.7608
460	19566.5564
470	20422.6178
480	21272.9440
490	22139.5303
500	23019.3991
510	23913.5407
520	24821.4732
530	25745.9136
540	26677.5837
550	27625.2104
560	28585.5299
570	29558.2681
580	30543.1823
590	31540.0116
600	32546.5168
610	33566.4584
620	34599.0283

Figure(10): relationship between enthalpy and tetracene temperature

3.6.5 Gibbs Free Energy

After calculating the enthalpy and entropy at different temperatures ranging from (100°K-630°K) as in Table(11), a they were linked to an important function. We know whether the reaction occurs automatically or not automatically, which is a Gibbs free energy denoted by G, as calculated by relationship \(\Delta G = \Delta E - T \Delta S \), at (298°K), the Gibbs Free Energy value was equal to (-25716.70) Cal.mol\(^{-1}\), and the experimental value obtained close from the previous studies (-25667.1) Cal.mol\(^{-1}\)[17], and the relationship between the Gibbs free energy and the temperature shown in Figure(10), noting that the negative sign means that the reaction is automatic.
Table (11). Values of the Gibbs free energy values of Tetracene and the corresponding temperature

T(K)	G(Cal/mol)
100	-6529.86
110	-7330.41
120	-8157.44
130	-9008.22
140	-9744.80
150	-10634.10
160	-11547.31
170	-12484.60
180	-13443.60
190	-14234.90
200	-15228.20
210	-16243.20
220	-17279.33
230	-18336.12
240	-19174.19
250	-20063.16
260	-20921.13
270	-21778.48
280	-22716.70
290	-23653.60
300	-24580.49
310	-25517.31
320	-26454.20
330	-27401.11
340	-28348.00
350	-29294.91
360	-30240.82
370	-31186.73
380	-32132.64
390	-33078.55
400	-34024.46
410	-34970.37
420	-35916.28
430	-36862.19
440	-37807.99
450	-38753.79
460	-39699.59
470	-40645.39
480	-41591.19
490	-42536.99
500	-43482.79
510	-44428.59
520	-45374.39
530	-46320.19
540	-47265.99
550	-48211.79
560	-49157.59
570	-50103.39
580	-51049.19
590	-52004.99
600	-52960.79
610	-53916.59
620	-54872.39
630	-55828.19
640	-56783.99
650	-57739.79

Figure (11): The relationship between the Gibbs Free Energy of Tetracene and temperature

CONCLUSION

From the study of the molecular properties of the molecule, it has been concluded that:

1-The study was found that the equilibrium distance (bond length) of Tetracene was approximately of the bonds (C1-H1), (C2-H2), equal to (1.09Å), and the total energy is (-3617.3339eV) whereas the dissociation energy is ((4.02eV), (4.019eV), respectively. These results confirmed that as the bond length increases , the molecule begin to separate when the bond length reaches the point where the bond breaks.

2-Molecule (84) showed a vibrational mode in the infrared region due to the base (3N-6).
3-The UV-vis spectra of molecule using semi-empirical theory in the gas phase the wave length was (266.8nm) and a good agreement with the result experimental (266.75nm).

4-The molecule has (42) orbitals occupied by electrons and (42) orbitals unoccupied by electrons, the energy gap was (6.577eV) and the ionization energy was (7.87eV).

5- By noting the value of the formation temperature of the molecule (C_{18}H_{12}) that is under study and in the standard degree of (83.907 kcal/mol), as the formation temperature indicates that the molecule is endothermic. The relationship between the temperature of the formation and the temperature is positive, that is, the temperature of the formation increases with the increase in temperature.

6- The more complex the molecule, the greater the value of heat capacity, especially if the temperature effect is greater. Heat capacity of molecule was (54806 Cal K^{-1} mol^{-1}).

7-The Gibbs free energy of the molecule was (-25716.70 cal./mol) as the less negative molecules are more stable. The Gibbs energy is inversely proportional to the temperature.

8- Controlling the band gap of the organic semiconductors is an important issue, for application such as light emitting diode, organic photovoltaic devices and the photodynamic therapy as a photosensitizer.

REFERENCES

1. Odom, S. A., Parkin, S. R., & Anthony, J. E. (2003). Tetracene derivatives as potential red emitters for organic LEDs. *Organic letters*, 5(23), 4245-4248.
2. Schön, J. H., Kloc, C., Dodabalapur, A., & Batlogg, B. (2000). An organic solid state injection laser. *Science*, 289(5479), 599-601.
3. Takahashi, T., Takenobu, T., Takeya, J., & Iwasa, Y. (2007). Ambipolar light-emitting transistors of a tetracene single crystal. *Advanced Functional Materials*, 17(10), 1623-1628.
4. Agin, D. (2007). *Junk science: An overdue indictment of government, industry, and faith groups that twist science for their own gain*. Macmillan.
5. Takahashi, T., Takenobu, T., Takeya, J., & Iwasa, Y. (2007). Ambipolar light-emitting transistors of a tetracene single crystal. *Advanced Functional Materials*, 17(10), 1623-1628.
6. Lee, B., Chen, Y., Fu, D., Yi, H. T., Czelen, K., Najafov, H., & Podzorov, V. (2013). Trap healing and ultralow-noise Hall effect at the surface of organic semiconductors. *Nature materials*, 12(12), 1125-1129.
7. Calhoun, M. F., Sanchez, J., Olaya, D., Gershenson, M. E., & Podzorov, V. (2008). Electronic functionalization of the surface of organic semiconductors with self-assembled monolayers. *Nature materials*, 7(1), 84-89.
8. Stewart, J. J. (1990). MOPAC: a semiempirical molecular orbital program. *Journal of computer-aided molecular design*, 4(1), 1-103.
9. Cox, J. D., & Pilcher, G. (1970). Thermochemistry of organic and organometallic compounds.
10. Jumaah, S. J., Mohammed, A. H. S., & Galeb, A. M. Study the Spectral Properties of The Molecule Anthracene (C14H10) by Using Semi Empirical Quantum Programs.
11. Bultinck, P., Kuppens, T., Gironés, X., & Carbó-Dorca, R. (2003). Quantum similarity superposition algorithm (QSSA): a consistent scheme for molecular alignment and molecular similarity based on quantum chemistry. *Journal of chemical information and computer sciences*, 43(4), 1143-1150.
12. Atkins, P. W., & Friedman, R. S. (2011). *Molecular quantum mechanics*. Oxford university press.
13. Ewaid, S.H.; Abed, S.A.; Al-Ansari, N.; Salih, R.M. Development and Evaluation of a Water Quality Index for the Iraqi Rivers. Hydrology 2020, 7, 67.
14. Hollas, J. M. (2004). *Modern spectroscopy*. John Wiley & Sons.13/
15. Henderson, G., Neuville, D., & Downs, R. (Eds.). (2014). *Spectroscopic methods in mineralogy and material sciences* (Vol. 78). Walter de Gruyter GmbH & Co KG.
16. Shenai-Khatkhate, D. V., Goyette, R. J., DiCarlo Jr, R. L., & Dripps, G. (2004). Environment, health and safety issues for sources used in MOVPE growth of compound semiconductors. *Journal of Crystal Growth*, 272(1-4), 816-821.
17. Salam Hussein Ewaid et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 722 012008
18. Ahmed Alaa Kandoh et al 2021 IOP Conf. Ser. : Earth Environ. Sci. 790 012073
19. Salam Hussein Ewaid et al 2020 J. Phys.: Conf. Ser. 1664 012143.
20. Singh, S., & Sandorfy, C. (1969). Infrared spectra of photodimers of anthracene, benzo [a] anthracene, and tetracene. *Canadian Journal of Chemistry*, 47(2), 257-263.
21. Galsan, Talal. Kamal. (2017), Study of Vibrational and Thermal Properties and Potential Energy Calculation of Organic Metals Compounds Using Semiempirical Quanumy Programs, College of education for pure Science University of Tikrit in Partical Filfillment of the Requirement for the Degree of Master in Science of Physics
22. Mahdi kareem , H. (2019). Estimation oxidant and anti oxidant of patients with changeful heart discomfort and myocardiac breach of Diwaniya-Iraq .*Al-Qadisiyah Journal Of Pure Science*, 24(1), 21- 24.
23. Hameed Hamzah , S. (2019). Generalized Limit Sets.*Al-Qadisiyah Journal Of Pure Science*, 24(1), 7 - 12.
24. Hamid Awad, S. (2019). EFFECT OF DEPOSITION PARAMETERS ON MECHANICAL PROPERTIES OF TIN FILMS COATED ON 2A12 ALUMINUM ALLOYS BY ARC ION PLATING (AIP). *Al-Qadisiyah Journal Of Pure Science*, 24(1), 1 - 6.