Research Article

Jiangfeng Han, Pshtiwan Othman Mohammed*, and Huidan Zeng*

Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function

https://doi.org/10.1515/math-2020-0038
received December 20, 2019; accepted April 29, 2020

Abstract: The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for MT-convex functions and to explore some new Hermite-Hadamard-type inequalities in a form of Riemann-Liouville fractional integrals as well as classical integrals. It is worth mentioning that our work generalizes and extends the results appeared in the literature.

Keywords: Riemann-Liouville fractional integral, MT-convex function, integral inequalities

MSC 2010: 26D07, 26D10, 26D15, 26A33

1 Introduction

Integral inequality plays a critical role in both fields of pure and applied mathematics; see e.g. [1–14]. It is clear that mathematical methods are useless without inequalities. For this reason, there is a present-day need for accurate inequalities in proving the existence and uniqueness of the mathematical methods. Besides, convexity plays a strong role in the field of inequalities due to the behaviour of its definition.

Let \(I \subseteq \mathbb{R} \) and denote \(I^o \) by the interior of \(I \). A function \(g : I \to \mathbb{R} \) is said to be convex on \(I \), if the inequality

\[g(\zeta a + (1 - \zeta) b) \leq \zeta g(a) + (1 - \zeta) g(b) \]

holds for all \(a, b \in I \) and \(\zeta \in [0, 1] \). We say that \(g \) is concave, if \(-g\) is convex.

Recently, a great number of equalities or inequalities for convex functions have been established by many authors. The representative results include Ostrowski-type inequality [15], Hardy-type inequality [16], Olsen-type inequality [17], Gagliardo-Nirenberg-type inequality [18], and the most well-known inequality of, namely, the Hermite-Hadamard-type inequality [19]. Here, we focus on it, which is formulated for a convex function \(g : I \subseteq \mathbb{R} \to \mathbb{R} \) by:

\[g\left(\frac{a + b}{2}\right) \leq \frac{1}{b - a} \int_a^b g(\zeta) d\zeta \leq \frac{g(a) + g(b)}{2}, \]

* Corresponding author: Pshtiwan Othman Mohammed, Department of Mathematics, College of Education, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq; Key Laboratory for Ultra-fine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, e-mail: pshtiwansangawi@gmail.com

* Corresponding author: Huidan Zeng, Department of Information and Statistics, Guangxi University of Finance and Economics, Nanning, Guangxi 530003, People’s Republic of China, e-mail: huidanzeng@163.com

Jiangfeng Han: Department of Information and Statistics, Guangxi University of Finance and Economics, Nanning, Guangxi 530003, People’s Republic of China, e-mail: hanjiangfengky@163.com

Open Access. © 2020 Jiangfeng Han et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License.
with \(a < b \) and \(a, b \in \mathcal{I} \), which can be a significant tool to obtain various priori estimates. Because of its importance, a number of scholars in the field of pure and applied mathematics have dedicated their efforts to extend, generalize, counterpart, and refine the Hermite-Hadamard inequality (2) for different classes of convex functions and mappings, see \([20–28]\).

Definition 1.1. [29] A function \(g : \mathcal{I} \subseteq \mathbb{R} \rightarrow \mathbb{R} \) is said to be MT-convex on \(\mathcal{I} \), if it is nonnegative and satisfies the following inequality:

\[
g(\zeta a + (1 - \zeta) b) \leq \frac{\sqrt{\zeta}}{2\sqrt{1 - \zeta}} g(a) + \frac{\sqrt{1 - \zeta}}{2\sqrt{\zeta}} g(b)
\]

for all \(a, b \in \mathcal{I} \) and \(\zeta \in (0, 1) \).

By virtue of the concept of MT-convexity, Park in \([29]\) proved the following Hermite-Hadamard-type inequalities.

Lemma 1.1. [29, Lemma 2] Let \(g : \mathcal{I} \subset [0, \infty) \rightarrow \mathbb{R} \) be a differentiable mapping on \(\mathcal{I} \), where \(a, b \in \mathcal{I} \) is such that \(a < b \). If \(g' \in L^1[a, b] \), then for all \(h \in (0, 1) \) and \(\mu > 0 \) we have

\[
\frac{(1 - h)^\mu + h^\mu}{(b - a)^{\mu - 1}} g(w) - \frac{\Gamma(\mu + 1)}{b - a} [J_w^\mu g(a) + J_w^\mu g(b)]
= (b - a)^\mu \left\{ (1 - h)^{\mu - 1} \int_0^1 \zeta^\mu g'(\zeta w + (1 - \zeta) a) d\zeta - h^{\mu - 1} \int_0^1 \zeta^\mu g'(\zeta w + (1 - \zeta) b) d\zeta \right\},
\]

where \(w = ha + (1 - h)b \) and

\[
J_w^\mu g(a) = \frac{1}{\Gamma(\mu)} \int_a^w (t - a)^{\mu - 1} g(t) dt,
J_w^\mu g(b) = \frac{1}{\Gamma(\mu)} \int_b^w (b - t)^{\mu - 1} g(t) dt.
\]

Theorem 1.1. [29, Theorem 3.1] Let \(g : \mathcal{I} \subset [0, \infty) \rightarrow \mathbb{R} \) be a differentiable mapping on \(\mathcal{I} \) such that \(g' \in L^1[a, b] \), where \(a, b \in \mathcal{I} \) is such that \(a < b \). If \(|g'| \) is an MT-convex function on \([a, b] \) such that \(|g'(x)| \leq M \) for each \(x \in [a, b] \) with some \(M > 0 \). Then, for any \(h \in (0, 1) \) and \(\mu > 0 \), the following inequality holds

\[
\left\{ \frac{(1 - h)^\mu + h^\mu}{(b - a)^{\mu - 1}} g(w) - \frac{\Gamma(\mu + 1)}{b - a} [J_w^\mu g(a) + J_w^\mu g(b)] \right\} \leq \frac{(b - a)^\mu}{2} \beta\left(\frac{1}{2}, \mu + 1 \right) M,
\]

where \(\beta \) stands for the beta function of Euler type defined by

\[
\beta(x, y) = \int_0^1 t^{x-1}(1 - t)^{y-1} dt = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x + y)} \quad \text{for all} \quad x, y > 0.
\]

Theorem 1.2. [29, Theorem 3.2] Let \(g : \mathcal{I} \subset [0, \infty) \rightarrow \mathbb{R} \) be a differentiable mapping on \(\mathcal{I} \) such that \(g' \in L^1[a, b] \), where \(a, b \in \mathcal{I} \) is such that \(a < b \). If \(|g'|^q \) is an MT-convex function on \([a, b] \) with \(q > 1 \), then we have

\[
\left\{ \frac{(1 - h)^\mu + h^\mu}{(b - a)^{\mu - 1}} g(w) - \frac{\Gamma(\mu + 1)}{b - a} [J_w^\mu g(a) + J_w^\mu g(b)] \right\} \leq \left(\frac{1}{\mu p + 1} \right)^{\frac{\mu}{p}} \left(\frac{\pi}{2} \right)^{\frac{\mu}{p}} M(b - a)^\mu,
\]

where \(p > 1 \) is such that \(\frac{1}{p} + \frac{1}{q} = 1 \).
Theorem 1.3. [29, Theorem 3.3] Let $g : I \subset [0, \infty) \to \mathbb{R}$ be a differentiable mapping on I° such that $g' \in L^1[a, b]$, where $a, b \in I$ is such that $a < b$. Assume that $|g'|^q$ is an MT-convex function on $[a, b]$ with $q > 1$ such that $|g'(t)| \leq M$ for all $t \in [a, b]$ with some $M > 0$. Then, for any $h \in (0, 1)$ and $\mu > 0$, the following inequality holds:

$$\left\{ \frac{(1 - h)^\mu + h^\mu}{(b - a)^{1-\mu}} \right\} g(w) - \frac{\Gamma(\mu + 1)}{(b - a)} \left[I^\mu_a g(a) + I^\mu_b g(b) \right] \leq \left(\frac{1}{\mu + 1} \right)^{1-\frac{1}{2}} \frac{1}{\left(\frac{1}{2} \right)^{\frac{1}{2}}} M(b - a)^\mu. \tag{7}$$

For more details and interesting applications on Hermite-Hadamard-type inequalities for MT-convex functions, the reader is welcome to consult [30–32] and references therein.

Furthermore, we recall the definition of generalized fractional integral operators by Sarikaya and Ertugral [33]. Let $\rho : [0, \infty) \to [0, \infty)$ be such that

$$\int_0^1 \frac{\rho(\zeta)}{\zeta} d\zeta < \infty.$$

The left- and right-sided generalized fractional integral operators are defined as follows:

$$a^+ I_\rho g(x) = \int_a^x \frac{\rho(x - \zeta)}{x - \zeta} g(\zeta) d\zeta, \quad x > a, \tag{8}$$

$$b^- I_\rho g(x) = \int_x^b \frac{\rho(\zeta - x)}{\zeta - x} g(\zeta) d\zeta, \quad x < b, \tag{9}$$

respectively.

In order to highlight the generality of the fractional integrals under consideration, we have to mention that in the case:

(i) If $\rho(\zeta) = \zeta$, then (8) and (9) reduce to the usual Riemann integral

$$I^\mu_a g(x) = \int_a^x g(\zeta) d\zeta, \quad x > a,$$

$$I^\mu_b g(x) = \int_x^b g(\zeta) d\zeta, \quad x < b.$$

(ii) When ρ is specialized by $\rho(\zeta) = \frac{\zeta^\mu}{\Gamma(\mu)}$, then (8) and (9) convert to the Riemann-Liouville fractional integral [34,35]

$$I^\mu_a g(x) = \frac{1}{\Gamma(\mu)} \int_a^x (x - \zeta)^{\mu-1} g(\zeta) d\zeta, \quad x > a,$$

$$I^\mu_b g(x) = \frac{1}{\Gamma(\mu)} \int_x^b (\zeta - x)^{\mu-1} g(\zeta) d\zeta, \quad x < b.$$

(iii) While ρ is formulated by $\rho(\zeta) = \frac{\zeta^\mu}{k \Gamma(\mu)}$, then (8) and (9) convert to the k-Riemann-Liouville fractional integral [36]

$$I^\mu_{a,k} g(x) = \frac{1}{k \Gamma(\mu)} \int_a^x (x - \zeta)^{\mu-1} g(\zeta) d\zeta, \quad x > a,$$

$$I^\mu_{b,k} g(x) = \frac{1}{k \Gamma(\mu)} \int_x^b (\zeta - x)^{\mu-1} g(\zeta) d\zeta, \quad x < b,$$
where
\[\Gamma_i(\mu) = \int_0^\infty \zeta^{\mu - 1} e^{-\zeta} d\zeta, \quad \Re(\mu) > 0 \]
and
\[\Gamma_i(\mu) = k^{\mu - 1} \Gamma \left(\frac{\mu}{k} \right), \quad \Re(\mu) > 0; \quad k > 0. \]

For other special cases, the reader can consult [1,37–39].

More recently, Qi et al. [40] established some inequalities of Hermite-Hadamard-type for \((a, m)\)-convex functions by using generalized fractional integral operators (8) and (9). However, the main objective of this article is to explore several new and generalized fractional integral inequalities of Hermite-Hadamard-type for \(MT\)-convex functions involving generalized fractional integral operators (8) and (9).

2 Main results

At the beginning of the section, we first deliver an identity, which will play a significant role in the proof of our main results.

Lemma 2.1. Let \(g : [a, b] \to \mathbb{R} \) be a differentiable function on \((a, b)\) with \(a < b \) such that \(g \in L^1[a, b] \). Then, for each \(h \in (0, 1) \) we have

\[
\frac{(1 - h)^\mu \Omega(1) + h^\mu \nabla(1)}{b - a} g(w) - \frac{1}{b - a} \left[(1 - h)^\mu (w I_p g(a)) + h^\mu (w I_p g(b)) \right]

= (1 - h)^{\mu + 1} \int_0^1 \Omega(\zeta) g'(\zeta w + (1 - \zeta) a) d\zeta - h^{\mu + 1} \int_0^1 \nabla(\zeta) g'(\zeta w + (1 - \zeta) b) d\zeta,
\]

where \(w = ha + (1 - h)b \), and \(\Omega(\zeta) \) and \(\nabla(\zeta) \) are defined by

\[
\Omega(\zeta) = \int_0^\zeta \frac{\rho((w - a)u)}{u} du < \infty, \quad \nabla(\zeta) = \int_0^\zeta \frac{\rho((b - w)u)}{u} du < \infty. \tag{11}
\]

Proof. Integrating by parts and then using the equality \(x = \zeta w + (1 - \zeta) a \), it yields

\[
I_1 = (1 - h)^{\mu + 1} \int_0^1 \Omega(\zeta) g'(\zeta w + (1 - \zeta) a) d\zeta

= (1 - h)^{\mu + 1} \left[\Omega(\zeta) g(\zeta w + (1 - \zeta) a) \right]^1_0 - \int_0^1 \frac{\rho((w - a)\zeta)}{\zeta} g(\zeta w + (1 - \zeta) a) d\zeta

= (1 - h)^{\mu + 1} \left[\Omega(1) g(w) - \int_a^w \frac{\rho(x - a)}{x - a} g(x) dx \right]

= \frac{(1 - h)^\mu}{b - a} \left[\Omega(1) g(w) - w I_p g(a) \right].
\]
Similarly, we have

\[I_2 = - h^{\mu+1} \int_0^1 \nabla(\zeta)g'(\zeta w + (1 - \zeta) b) d\zeta \]
\[= - h^{\mu+1} \int_0^1 \nabla(\zeta)g(\zeta w + (1 - \zeta) b) - \frac{1}{b-a} \int_0^1 \frac{\rho((w-b)\zeta)}{\zeta} g(\zeta w + (1 - \zeta) b) d\zeta \]
\[= h^{\mu+1} \int_0^1 \nabla(1)(g(w) - \int_0^b \frac{\rho(b-x)}{b-x} g(x) dx) \]
\[= \frac{h^\mu}{b-a} \nabla(1)(g(w) - w' I_\rho g(b)). \]

Adding \(I_1\) and \(I_2\), it easily implies identity (10).

Remark 2.1. Indeed, it is not difficult to see that (10) can be rewritten equivalently to the equality

\[\frac{(1 - h)\Omega(1) + h^\mu \nabla(1)}{b-a} g(w) - \frac{1}{b-a} \int \frac{\rho((w-b)\zeta)}{\zeta} g(\zeta w + (1 - \zeta) b) d\zeta \]
\[= (1 - h) h^{\mu+1} \int_0^1 \nabla(\zeta)g'(\zeta w + (1 - \zeta) a) d\zeta + h^{\mu+1} \int_0^1 \nabla(1 - \zeta)g'(\zeta w + (1 - \zeta) b) d\zeta. \]

In particular, if \(\rho(\zeta) = \zeta\), then we have the following corollary, which has been proved by Park [29].

Corollary 2.1. Under the assumptions of Lemma 2.1, the identity holds

\[g(w) - \frac{1}{b-a} \int_a^b g(u) du = (b-a) \left[(1 - h)^2 \int_0^1 \zeta g'(\zeta w + (1 - \zeta) a) d\zeta + h^2 \int_0^1 (1 - \zeta) g'(\zeta w + (1 - \zeta) b) d\zeta \right]. \]

Proof. The desired conclusion is a direct consequence of Remark 2.1 by taking \(\rho(\zeta) = \zeta\).

Remark 2.2. Under the assumptions of Lemma 2.1, we could observe that identity (4) is valid, when \(\rho(\zeta) = \frac{\zeta^\mu}{\Gamma(\mu)}\).

Additionally, if \(\rho(\zeta) = \frac{\zeta^\mu}{\Gamma(\mu)}\), then we have the following result for \(k\)-fractional integral.

Corollary 2.2. Under the assumptions of Lemma 2.1, if \(\rho(\zeta) = \frac{\zeta^\mu}{\Gamma(\mu)}\), then the identity is available

\[\int_0^1 \zeta^\mu g'(\zeta w + (1 - \zeta) a) d\zeta - \frac{h^\mu}{b-a} \int_0^1 \zeta^\mu g'(\zeta w + (1 - \zeta) b) d\zeta \]
\[= b-a \int_0^1 \zeta^\mu g'(\zeta w + (1 - \zeta) a) d\zeta - h^\mu \int_0^1 \zeta^\mu g'(\zeta w + (1 - \zeta) b) d\zeta. \]

Theorem 2.1. Let \(g : [a, b] \to \mathbb{R}\) be a differentiable function on \((a, b)\) and \(g' \in L^1[a, b]\) with \(0 < a < b\) and \(\mu > 0\). If \(|g'|\) is MT-convex on \([a, b]\), then for every \(h \in (0, 1)\) we have

\[\left| \frac{(1 - h)\Omega(1) + h^\mu \nabla(1)}{b-a} g(w) - \frac{1}{b-a} \int \frac{\rho((w-b)\zeta)}{\zeta} g(\zeta w + (1 - \zeta) b) d\zeta \right| \]
\[\leq \frac{(1 - h) h^{\mu+1}}{2} [A_1 |g'(w)| + B_1 |g'(a)|] + \frac{h^{\mu+1}}{2} [A_1 |g'(w)| + B_1 |g'(b)|], \]

where

\(A_1 = \int_a^b \rho(u)^{\mu} du \) and \(B_1 = \int_a^b \rho(u) du \).
where the constants A_1, A_2, B_1, and B_2 are given by

\[
A_1 = \int_0^1 \sqrt{1 - \zeta} |\Omega(\zeta)| d\zeta, \quad A_2 = \int_0^1 \sqrt{1 - \zeta} |\nabla(\zeta)| d\zeta,
\]
\[
B_1 = \int_0^1 \frac{1 - \zeta}{\zeta} |\Omega(\zeta)| d\zeta, \quad B_2 = \int_0^1 \frac{1 - \zeta}{\zeta} |\nabla(\zeta)| d\zeta.
\]

Proof. It follows from Lemma 2.1 and MT-convexity of $|g'|$ that

\[
\left| \frac{(1 - h)\mu \Omega(1) + h^\mu \nabla(1)}{b - a} g(w) - \frac{1}{b - a} \{(1 - h)\mu I_\rho g(a) + h^\mu I_\rho g(b)\} \right|
\]
\[
\leq (1 - h)^{\mu + 1} \int_0^1 |\Omega(\zeta)| |g'(\zeta w + (1 - \zeta) a)| d\zeta + h^{\mu + 1} \int_0^1 |\nabla(\zeta)| |g'(\zeta w + (1 - \zeta) b)| d\zeta
\]
\[
\leq (1 - h)^{\mu + 1} \int_0^1 |\Omega(\zeta)| \left[\frac{\sqrt{1 - \zeta}}{2\sqrt{1 - \frac{\zeta}{2}}} |g'(w)| + \frac{\sqrt{1 - \frac{\zeta}{2}}}{\sqrt{1 - \zeta}} |g'(a)| \right] d\zeta
\]
\[
+ h^{\mu + 1} \int_0^1 |\nabla(\zeta)| \left[\frac{\sqrt{1 - \zeta}}{2\sqrt{1 - \frac{\zeta}{2}}} |g'(w)| + \frac{\sqrt{1 - \frac{\zeta}{2}}}{\sqrt{1 - \zeta}} |g'(b)| \right] d\zeta
\]
\[
= \frac{(1 - h)^{\mu + 1}}{2} A_1 |g'(w)| + \frac{h^{\mu + 1}}{2} A_2 |g'(w)| + \frac{(1 - h)^{\mu + 1}}{2} B_1 |g'(a)| + \frac{h^{\mu + 1}}{2} B_2 |g'(b)|,
\]
which completes the proof of the theorem.

Remark 2.3. From Theorem 2.1, we can see that if $|g'(x)| < M$ for each $x \in [a, b]$, and ρ is specialized by (i) $\rho(\zeta) = \zeta$, then the following inequality is true

\[
|g(w) - \frac{1}{b - a} \int_a^b g(u) du| \leq \frac{\pi}{4} M(b - a),
\]

which is obtained by Park [29];

(ii) $\rho(\zeta) = \frac{\zeta^p}{\Gamma(p)}$, then inequality (12) reduces to (5);

(iii) $\rho(\zeta) = \frac{\zeta^{\mu/2}}{\Gamma(\mu/2)}$, then it holds

\[
\left| \frac{(1 - h)^\mu \Omega(1) + h^\mu \nabla(1)}{(b - a)^{\frac{\mu}{\nu}}} g(w) - \frac{1}{b - a} \{(1 - h)^\mu I_{\rho \nu} g(a) + h^\mu I_{\rho \nu} g(b)\} \right|
\]
\[
\leq \left(\frac{\pi}{4} \right)^\nu \left[(1 - h)^\mu \int_0^1 |\Omega(\zeta)|^{\nu} d\zeta \right] \left[(|g'(w)|^\nu + |g'(a)|^\nu)^{\frac{1}{\nu}} + h^{\mu} \int_0^1 |\nabla(\zeta)|^{\nu} d\zeta \right] \left[(|g'(w)|^\nu + |g'(b)|^\nu)^{\frac{1}{\nu}} \right].
\]

Theorem 2.2. Let $g : [a, b] \to \mathbb{R}$ be a differentiable function on (a, b) and $g' \in L^1[a, b]$ with $0 \leq a < b$ and $\mu > 0$. If $|g'|^q$ is MT-convex on with $q > 1$, then for each $h \in (0, 1)$ the inequality holds

\[
\left| \frac{(1 - h)^\mu \Omega(1) + h^\mu \nabla(1)}{b - a} g(w) - \frac{1}{b - a} \{(1 - h)^\mu I_{\rho \nu} g(a) + h^\mu I_{\rho \nu} g(b)\} \right|
\]
\[
\leq \left(\frac{\pi}{4} \right)^\nu \left[(1 - h)^\mu \int_0^1 |\Omega(\zeta)|^{\nu} d\zeta \right] \left[(|g'(w)|^q + |g'(a)|^q)^{\frac{1}{q}} + h^{\mu} \int_0^1 |\nabla(\zeta)|^{\nu} d\zeta \right] \left[(|g'(w)|^q + |g'(b)|^q)^{\frac{1}{q}} \right].
\]
Proof. Employing Lemma 2.1, Hölder’s inequality and the MT-convexity of \(g'|^q\) implies
\[
\left| \frac{(1 - h)\mu\Omega(1) + h\mu\nabla(1)}{b - a} g(w) - \frac{1}{b - a} [(1 - h)\mu(w - L_p g(a)) + h\mu(w - L_p g(b))] \right|
\leq (1 - h)^{\mu+1} \left[\int_0^1 |\Omega(\zeta)|^p d\zeta \right]^{\frac{1}{p}} \left[\int_0^1 |g'(\zeta w + (1 - \zeta) a)|^q d\zeta \right]^{\frac{1}{q}}
\leq (1 - h)^{\mu+1} \left[\int_0^1 |\Omega(\zeta)|^p d\zeta \right]^{\frac{1}{p}} \left[\int_0^1 \left| \frac{\sqrt{1 - \zeta}}{2\sqrt{1 - \zeta}} |g'(w)|^q + \frac{1 - \zeta}{2\sqrt{1 - \zeta}} |g'(a)|^q \right| d\zeta \right]^{\frac{1}{q}}
\leq (1 - h)^{\mu+1} \left[\int_0^1 |\Omega(\zeta)|^p d\zeta \right]^{\frac{1}{p}} \left(\frac{\pi}{4} \right)^{\frac{1}{q}} |g'(w)|^q + |g'(a)|^q\frac{1}{q},
\]
where we have used the following identity
\[
\int_0^1 \frac{\sqrt{1 - \zeta}}{2\sqrt{1 - \zeta}} d\zeta = \int_0^1 \frac{1 - \zeta}{2\sqrt{1 - \zeta}} d\zeta = \frac{\pi}{4}.
\]
This completes the proof of the theorem. \(\square\)

Remark 2.4. Let \(M > 0\) be such that \(|g'(x)| < M\) for each \(x \in [a, b]\). Invoking Theorem 2.2, we conclude that
(i) if \(\rho(\zeta) = \zeta\), then the following inequality holds
\[
\left| g(w) - \frac{1}{b - a} \int_a^b g(u) du \right| \leq \left(\frac{\beta^{\frac{1}{2}}}{2} \right) M(b - a),
\]
which has been discussed by Park [29];
(ii) if \(\rho(\zeta) = \frac{\zeta}{\mu\Omega(\zeta)}\), then (13) converts to (6);
(iii) if \(\rho(\zeta) = \frac{k}{\mu\Omega(\zeta)}\), then we have
\[
\left| \frac{\{ (1 - h)^{\mu} + h^\mu \} (w - L_p g(a)) [L_{w}^\mu, k g(a) + L_{w}^\mu, k g(b)] }{b - a} \right| \leq \left(\frac{k}{\mu p + k} \right) \left(\frac{\pi}{2} \right) M(b - a)^{\frac{1}{2}}.
\]

Theorem 2.3. Let \(g : [a, b] \to \mathbb{R}\) be a differentiable function on \((a, b)\) and \(g' \in L^1[a, b]\) with \(0 \leq a < b\) and \(\mu > 0\). If the mapping \(|g'|^q\) is MT-convex on \([a, b]\) for \(q > 1\), then for each \(h \in (0, 1)\), we have
\[
\left| \frac{(1 - h)\mu\Omega(1) + h\mu\nabla(1)}{b - a} g(w) - \frac{1}{b - a} [(1 - h)\mu(w - L_p g(a)) + h\mu(w - L_p g(b))] \right|
\leq \frac{(1 - h)^{\mu+1}}{2} \left(\int_0^1 |\Omega(\zeta)| d\zeta \right)^{\frac{1}{p}} \left(A_1 |g'(w)|^q + B_1 |g'(a)|^q \right)^{\frac{1}{q}}
+ \frac{h^{\mu+1}}{2} \left(\int_0^1 |\nabla(\zeta)| d\zeta \right)^{\frac{1}{p}} \left(A_2 |g'(w)|^q + B_2 |g'(b)|^q \right)^{\frac{1}{q}}.
\]
Proof. From Lemma 2.1, power-mean integral inequality and the MT-convexity of $g'[\theta]$ on $[a, b]$, we conclude

$$
\left| \frac{(1 - h)\mu(1) + h\nu(1)}{b - a} g(w) - \frac{1}{b - a} [(1 - h)\mu(a) + h\nu(b)] \right|
\leq (1 - h)^{\mu+1} \left(\int_0^1 |\Omega(\zeta)| d\zeta \right)^{1 - \frac{1}{2}} \left(\int_0^1 |\Omega(\zeta)||g'((1 - \zeta)a)|^\theta d\zeta \right)^{\frac{1}{2}}
+ h^{\mu+1} \left(\int_0^1 |\Omega(\zeta)| d\zeta \right)^{1 - \frac{1}{2}} \left(\int_0^1 |\Omega(\zeta)||g'((1 - \zeta)b)|^\theta d\zeta \right)^{\frac{1}{2}}
\leq (1 - h)^{\mu+1} \left(\int_0^1 |\Omega(\zeta)| d\zeta \right)^{1 - \frac{1}{2}} \left(\int_0^1 |\Omega(\zeta)| \left[\frac{\sqrt{\zeta}}{2\sqrt{1 - \zeta}} |g'(w)|^\theta + \frac{\sqrt{1 - \zeta}}{2\sqrt{\zeta}} |g'(a)|^\theta \right] d\zeta \right)^{\frac{1}{2}}
+ h^{\mu+1} \left(\int_0^1 |\Omega(\zeta)| d\zeta \right)^{1 - \frac{1}{2}} \left(\int_0^1 |\Omega(\zeta)| \left[\frac{\sqrt{\zeta}}{2\sqrt{1 - \zeta}} |g'(w)|^\theta + \frac{\sqrt{1 - \zeta}}{2\sqrt{\zeta}} |g'(b)|^\theta \right] d\zeta \right)^{\frac{1}{2}}
= \frac{1}{\Omega(1)} \left[(1 - h)^{\mu+1} \left(\int_0^1 |\Omega(\zeta)| d\zeta \right)^{1 - \frac{1}{2}} (A_1|g'(w)|^\theta + B_1|g'(a)|^\theta)^{\frac{1}{2}}
+ h^{\mu+1} \left(\int_0^1 |\Omega(\zeta)| d\zeta \right)^{1 - \frac{1}{2}} (A_2|g'(w)|^\theta + B_2|g'(b)|^\theta)^{\frac{1}{2}} \right],
$$

which completes the proof of the theorem. □

Remark 2.5. Let $M > 0$ be such that $|g'(x)| < M$ for each $x \in [a, b]$. Applying Theorem 2.3, it concludes that

(i) if $\rho(\zeta) = \zeta$, the following inequality is true

$$
g(w) - \frac{1}{b - a} \int_a^b g(u) du \leq \left(\frac{1}{2} \right)^{1/\theta} b^{1 - \theta} \frac{\beta(1, \frac{2\theta + k}{2})}{\theta} M(b - a)^{\theta},
$$

which has been obtained by Park [29];

(ii) if $\rho(\zeta) = \frac{\zeta^\theta}{\kappa(|\zeta|)}$, then (14) converts to (7);

(iii) if $\rho(\zeta) = \frac{\zeta^\theta}{\kappa(\zeta)}$, then we have

$$
\left\{ \left(\frac{(1 - h)^{\mu+1} + h^{\mu+1}}{b - a} \right)^{\frac{1}{\theta}} g(w) - \frac{1}{b - a} \left[\left(\frac{k}{\mu + k} \right) I_{\mu,k}^\theta g(a) + I_{\mu,k}^\theta g(b) \right] \right\} \leq \left(k \left(\frac{\beta(1, \frac{2\theta + k}{2})}{\theta} \right) M(b - a)^{\theta}. \right.
$$

3 Applications

3.1 Moment of random variables

Distribution functions and density functions provide complete descriptions of the distribution of probability for a given random variable. However, they do not allow us to easily make comparisons
between two different distributions. The set of moments that uniquely characterize the distribution under reasonable conditions are useful in making comparisons. Knowing the probability function, we can determine moments if they exist. Applying the mathematical inequalities, some estimations for the moments of random variables were recently studied by many authors, for more details see [41–44].

Let \(\chi \) be a random variable whose probability function is \(g : \mathbb{I} \subset \mathbb{R} \rightarrow \mathbb{R}_+ \), where \(g \) is a convex function on the interval of real numbers \(\mathbb{I} \) such that \(a, b \in \mathbb{I} \) with \(a < b \). Denote by \(M_r(x) \) the \(r \)-th moment about any arbitrary point \(x \) of the random variable \(\chi \), \(r \geq 0 \), defined as

\[
M_r(x) = \int_a^b (z - x)^r g(z) \, dz, \quad r = 0, 1, 2, \ldots
\]

In view of (19), we obtain the following propositions.

Proposition 3.1. Let \(\chi \) be a random variable whose probability function is \(g : \mathbb{I} \subset \mathbb{R} \rightarrow \mathbb{R}_+ \), where \(g \) is a convex function on the interval of real numbers \(\mathbb{I} \) such that \(a, b \in \mathbb{I} \) with \(a < b \). Then, for any \(r \geq 1 \), we have

\[
\frac{(1 - h)^r \Omega(1) + h^r \nabla(1)}{b - a} M_r(w) - \frac{1}{b - a} \left[(1 - h)^r (w, I_p M_r(a)) + h^r (w, I_p M_r(b)) \right] \\
= - r (1 - h)^{r+1} \int_0^1 \Omega(\zeta) M_{r-1}(\zeta w + (1 - \zeta) a) d\zeta + r h^{r+1} \int_0^1 \nabla(\zeta) M_{r-1}(\zeta w + (1 - \zeta) b) d\zeta \\
= - r (1 - h)^{r+1} \int_0^1 \Omega(\zeta) \left(\int_a^b (z - (\zeta w + (1 - \zeta) a))^{r-1} g(z) \, dz \right) d\zeta \\
+ r h^{r+1} \int_0^1 \nabla(\zeta) \left(\int_a^b (z - (\zeta w + (1 - \zeta) b))^{r-1} g(z) \, dz \right) d\zeta,
\]

where \(w = ha + (1 - h)b \).

Proof. The proof of this proposition follows by applying Lemma 2.1 with \(g(x) = M_r(x) \). \(\square \)

Proposition 3.2. Let \(\chi \) be a random variable whose probability function is \(g : \mathbb{I} \subset \mathbb{R} \rightarrow \mathbb{R}_+ \), where \(g \) is a convex function on the interval of real numbers \(\mathbb{I} \) such that \(a, b \in \mathbb{I} \) with \(a < b \). If the function \(|g| \) is bounded, then for any \(r \geq 1 \), we have

\[
\left| \frac{(1 - h)^r \Omega(1) + h^r \nabla(1)}{b - a} M_r(w) - \frac{1}{b - a} \left[(1 - h)^r (w, I_p M_r(a)) + h^r (w, I_p M_r(b)) \right] \right| \\
\leq \frac{\kappa}{r + 1} (b - a)^r \left[(1 - h)^{r+1} (1 - h)^{r+1} + (-1)^r (1 - h)^{r+1} \right] \Omega(1) \\
+ [h^{r+1} + (-1)^r (1 - h)^{r+1}] \nabla(1).
\]

In particular, for \(h = \frac{1}{2} \) and any odd number \(r \), we have

\[
\left| \frac{2 \nabla(1)}{b - a} M_r \left(\frac{a + b}{2} \right) - \frac{1}{b - a} \left[\left(\frac{a + b}{2} \right), I_p M_r(a) \right] + \left(\frac{a + b}{2} \right), I_p M_r(b) \right| \leq \frac{2 \nabla(1) \kappa (b - a)^r}{r + 1},
\]

where \(\kappa = \sup_{z \in [a, b]} |g(z)| \).

Proof. Let \(r \geq 1 \). By using proposition 3.1, \(\Omega(\zeta) \leq \Omega(1) \), \(\nabla(\zeta) \leq \nabla(1) \) for each \(\zeta \in [0, 1] \), and boundedness of \(|g| \), we have

\[
\left| \frac{(1 - h)^r \Omega(1) + h^r \nabla(1)}{b - a} M_r(w) - \frac{1}{b - a} \left[(1 - h)^r (w, I_p M_r(a)) + h^r (w, I_p M_r(b)) \right] \right|
\]
Then, by using very simple integrations, we get
\[
\begin{aligned}
\leq & \int_0^1 |\Omega(\zeta)| \left(\int_a^b (z - (\zeta w + (1 - \zeta) a)^{r-1}) g(z) \, dz \right) \, d\zeta \\
& + \int_0^1 |\nabla(\zeta)| \left(\int_a^b (z - (\zeta w + (1 - \zeta) b)^{r-1}) g(z) \, dz \right) \, d\zeta \\
& \leq (1 - h)^{r+1} \Omega(1) \int_0^1 \left\{ \left(\int_a^b (z - (\zeta w + (1 - \zeta) a)^{r-1}) \, dz \right) \, d\zeta \right\} + h^{r+1} \nabla(1) \int_0^1 \left\{ \left(\int_a^b (z - (\zeta w + (1 - \zeta) b)^{r-1}) \, dz \right) \, d\zeta \right\}.
\end{aligned}
\]

This rearranges to the desired inequality (17).

On the other hand, for \(h = \frac{1}{2} \), we see that \(w = \frac{a+b}{2} \) and \(\Omega(1) = \nabla(1) \). Since \((-1)^{r+1}\) either equals to \(-1\) or \(1\) for an even value \(r \) and an odd value \(r \), respectively, we need to split into two cases according to the parity of \(r \). It is easy to see that for an even \(r \), the result vanishes. Thus, for any odd number \(r \), we have
\[
\begin{aligned}
\left| \frac{(1 - h)^{r+1}(b - a)^{r}\Omega(1)}{b - a} - \frac{1}{b - a} \left[(\frac{a+b}{2}) \, I_r M_r(a) \right] + \left[(\frac{a+b}{2}) \, I_r M_r(b) \right] \right| & \leq \frac{2k}{r + 1} (b - a)^{r} \nabla(1).
\end{aligned}
\]

This rearranges to the desired inequality (18). Thus, our proof is done. \(\square \)

Corollary 3.1. With the similar assumptions of Proposition 3.2, if \(h = \frac{1}{2} \) and \(\rho(\zeta) = \frac{\zeta^r}{\Gamma(r+1)} \), we have
\[
\begin{aligned}
\left| M_r \left(\frac{a+b}{2} \right) - \frac{\Gamma(r + 1)}{b - a} \left[I_{r+1}(\frac{a+b}{2}) \, M_r(a) + I_{r+1}(\frac{a+b}{2}) \, M_r(b) \right] \right| & \leq \frac{2^{r+1}}{(r + 1) \Gamma(r + 1)} \left(\frac{b - a}{2} \right)^{r+1}.
\end{aligned}
\]

3.2 Volterra integral equation

Consider the Volterra integral equation of the first kind [45]:
\[
g(x) = \int_a^b K(x, z) g(z) \, dz,
\]
where
\[
K(x, z) = \begin{cases}
(x - z)^r & a \leq z \leq w, \\
(z - x)^r & w \leq z \leq b,
\end{cases}
\]
for \(r = 0, 1, 2, \ldots \).
In view of (19), we obtain the following propositions.

Proposition 3.3. Let \(g : \mathbb{I} \subset \mathbb{R} \to \mathbb{R} \) be an MT-convex function on the interval of real numbers \(\mathbb{I} \) such that \(a, b \in \mathbb{I} \) with \(a < b \). Then, for any \(r \geq 1 \), we have

\[
\int \left(- h^r \varOmega(1) + h^r \nabla(1) \right) g(w) = - \frac{1}{b - a} \left[(1 - h)^{r+1}(w, I_p g(a)) + h^r(w, I_p g(b)) \right]
\]

\[
= (1 - h)^{r+1} \int_0^1 \varOmega(\zeta) g(\zeta w + (1 - \zeta) a) \, d\zeta - \frac{1}{b - a} \int_0^1 \nabla(\zeta) g(\zeta w + (1 - \zeta) b) \, d\zeta
\]

\[
= r(1 - h)^{r+1} \int_0^1 \varOmega(\zeta) \left(\int_a^w ((\zeta w + (1 - \zeta) a) - z)^{r-1} g(z) \, dz \right) \, d\zeta
\]

\[
+ r h^{r+1} \int_0^1 \nabla(\zeta) \left(\int_a^b (z - (\zeta w + (1 - \zeta) b))^{r-1} g(z) \, dz \right) \, d\zeta.
\]

Proof. The proof of this proposition follows by applying Lemma 2.1 with \(g(x) \) defined in (19).

Proposition 3.4. Let \(g : \mathbb{I} \subset \mathbb{R} \to \mathbb{R} \) be an MT-convex function on the interval of real numbers \(\mathbb{I} \) such that \(a, b \in \mathbb{I} \) with \(a < b \). If the function \(|g| \) is bounded, then, for any odd number \(r \), we have

\[
\int \left(- h^r \varOmega(1) + h^r \nabla(1) \right) g(w) = - \frac{1}{b - a} \left[(1 - h)^{r+1}(w, I_p g(a)) + h^r(w, I_p g(b)) \right]
\]

\[
\leq 2 \left(\frac{b - a}{r + 1} \right) \left[(1 - h)^{r+1} \varOmega(1) + h^{r+1} \nabla(1) \right].
\]

Proof. By using Proposition 3.3 and boundedness of \(|g|\), we have

\[
\int \left(- h^r \varOmega(1) + h^r \nabla(1) \right) g(w) = - \frac{1}{b - a} \left[(1 - h)^{r+1}(w, I_p g(a)) + h^r(w, I_p g(b)) \right]
\]

\[
\leq r(1 - h)^{r+1} \int_0^1 \varOmega(\zeta) \left(\int_a^w ((\zeta w + (1 - \zeta) a) - z)^{r-1} g(z) \, dz \right) \, d\zeta + r h^{r+1} \int_0^1 \nabla(\zeta) \left(\int_a^b (z - (\zeta w + (1 - \zeta) b))^{r-1} g(z) \, dz \right) \, d\zeta
\]

\[
\leq r(1 - h)^{r+1} \varOmega(1) \kappa \int_0^1 \left(\int_a^w ((\zeta + (1 - \zeta) a) - z)^{r-1} \, dz \right) \, d\zeta + r h^{r+1} \nabla(1) \kappa \int_0^1 \left(\int_a^b (z - (\zeta + (1 - \zeta) b))^{r-1} \, dz \right) \, d\zeta.
\]

Then, by calculating the two simple integrations, we have for any odd value \(r \):

\[
\int \left(- h^r \varOmega(1) + h^r \nabla(1) \right) g(w) = - \frac{1}{b - a} \left[(1 - h)^{r+1}(w, I_p g(a)) + h^r(w, I_p g(b)) \right]
\]

\[
\leq r(1 - h)^{r+1} \varOmega(1) \kappa \int_0^1 \left(\frac{(b - a)(1 - h)(\zeta + (1 - \zeta) a)}{r} \right) \, d\zeta + r h^{r+1} \nabla(1) \kappa \int_0^1 \left(\frac{(b - a)(1 - h)(\zeta + (1 - \zeta) b)}{r} \right) \, d\zeta
\]

\[
= \frac{2(b - a)}{r + 1} \left[(1 - h)^{r+1} \varOmega(1) + h^{r+1} \nabla(1) \right],
\]

which completes the proof.
Corollary 3.2. With the similar assumptions of Proposition 3.4,
1. if \(h = \frac{1}{2} \), we have
\[
\left| \frac{2\Omega(1)}{b-a} g \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \left[I_+ g(a) + I_- g(b) \right] \right| \leq \frac{\Omega(1) \kappa}{r+1} \left(\frac{b-a}{2} \right)^{r+\mu};
\]
2. if \(h = \frac{1}{2} \) and \(\rho(\zeta) = \frac{\zeta^r}{\Gamma(\mu)} \), we have
\[
\left| g \left(a + b \right) - \frac{\Gamma(\mu+1)}{b-a} \left[\left(\frac{a+b}{2} \right)^\mu g(a) + I_+ g(b) \right] \right| \leq \frac{\kappa}{(r+1)\Gamma(\mu+1)} \left(\frac{b-a}{2} \right)^{r+\mu}.
\]

4 Conclusion

In this work, we establish new generalized fractional integral inequalities of Hermite-Hadamard-type for \(MT \)-convex functions. In view of this, we obtained some new inequalities of Hermite-Hadamard-type which are related to Riemann-Liouville fractional integrals and classical integrals. The results presented in this article would provide generalizations and extension of those given in earlier works.

Acknowledgments: This work was supported by Hundred Talent Program for “Introducing the Overseas High-Level Talents of Guangxi Colleges and Universities”, NSF of Guangxi Grant No. 2017GXNSFBA198152, and PhD Research Startup Foundation of Guangxi University of Finance and Economics.

References

[1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

[2] Z. Lin and Z. Bai, Probability Inequalities of Random Variables, in: Z. Lin and Z. Bai (eds), Probability Inequalities, Springer, Berlin, Heidelberg, 2010, pp. 37–50.

[3] Y. R. Bai, L. Gasiński, P. Winkert, and S. D. Zeng, \(W^{1,\rho} \) versus \(C^1 \): the nonsmooth case involving critical growth, Bull. Math. Sci. 10 (2020), 2050009.

[4] Y. R. Bai, S. Migórski, and S. D. Zeng, A class of generalized mixed variational-hemivariational inequalities I: Existence and uniqueness result, Comput. Math. Appl. 79 (2020), 2897–2911.

[5] H. J. Brascamp, E. H. Lieb, and J. M. Luttinger, A general rearrangement inequality for multiple integrals, J. Funct. Anal. 17 (1974), 227–237.

[6] J. F. Han, L. Lu, and S. D. Zeng, Evolutionary variational-hemivariational inequalities with applications to dynamic viscoelastic contact mechanics, Z. Angew. Math. Phys. 71 (2020), 32, DOI: 10.1007/s00033-020-1260-6.

[7] M. Rumin, Spectral density and Sobolev inequalities for pure and mixed states, Geom. Funct. Anal. 20 (2010), 817–844.

[8] S. M. Rasheed, F. K. Hamasalh, and P. O. Mohammed, Composition fractional integral inequality for the Reimann-Liouville type with applications, IJS-A 18 (2016), no. 1, 227–230.

[9] P. O. Mohammed, New integral inequalities for preinvex functions via generalized beta function, J. Interdiscip. Math. 22 (2019), no. 4, 539–549.

[10] P. O. Mohammed, Inequalities of type Hermite-Hadamard for fractional integrals via differentiable convex functions, TJANT 4 (2016), no. 5, 135–139.

[11] P. O. Mohammed, Some integral inequalities of fractional quantum type, Malaya J. Mat. 4 (2016), no. 1, 93–99.

[12] F. M. Atici and H. Yaldız, Convex functions on discrete time domains, Canad. Math. Bull. 59 (2016), no. 2, 225–233.

[13] S. Migórski, A. A. Khan, and S. D. Zeng, Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems, Inverse Problems 36 (2020), no. 2, 024006, DOI: 10.1088/1361-6420/ab44d7.

[14] S. D. Zeng, L. Gasiński, P. Winkert, and Y. R. Bai, Existence of solutions for double phase obstacle problems with multivalued convection term, J. Math. Anal. Appl. (2020), 123997, DOI: 10.1016/j.jmaa.2020.123997.

[15] B. Gavrea and I. Gavrea, On some Ostrowski type inequalities, Gen. Math. 18 (2010), 33–44.
[16] P. Ciatti, M. G. Cowling, and F. Ricci, *Hardy and uncertainty inequalities on stratified Lie groups*, Adv. Math. **277** (2015), 365–387.

[17] H. Gunawan and Eridani, *Fractional integrals and generalized Olsen inequalities*, Kyungpook Math. J. **49** (2009), 31–39.

[18] Y. Sawano and H. Wadade, *On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Orrey space*, J. Fourier Anal. Appl. **19** (2013), 20–67.

[19] J. Hadamard, *Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann*, J. Math. Pure Appl. **58** (1893), 171–215.

[20] A. Fernandez and P. Mohammed, *Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels*, Math. Meth. Appl. Sci. (2020), DOI: 10.1002/mma.6188.

[21] P. O. Mohammed, *Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function*, Math. Meth. Appl. Sci. (2019), DOI: 10.1002/mma.5784.

[22] P. O. Mohammed, *On new trapezoid type inequalities for h-convex functions via generalized fractional integral*, TJANT **6** (2018), no. 4, 125–128.

[23] P. O. Mohammed and T. Abdeljawad, *Modification of certain fractional integral inequalities for convex functions*, Adv. Differ. Equ. **2020** (2020), 69, DOI: 10.1186/s13662-020-2541-2.

[24] P. O. Mohammed and M. Z. Sarikaya, *On generalized fractional integral inequalities for twice differentiable convex functions*, J. Comput. Appl. Math. **372** (2020), 112740, DOI: 10.1016/j.cam.2020.112740.

[25] P. O. Mohammed and I. Brevik, *A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals*, Symmetry **12** (2020), 610, DOI: 10.3390/sym12040610.

[26] P. O. Mohammed, M. Z. Sarikaya, and D. Baleanu, *On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals*, Symmetry **12** (2020), 595, DOI: 10.3390/sym12040595.

[27] P. O. Mohammed and F. K. Hamasalh, *New conformable fractional integral inequalities of Hermite-Hadamard type for convex functions*, Symmetry **11** (2019), 263, DOI: 10.3390/sym11020263.

[28] P. O. Mohammed and M. Z. Sarikaya, *Hermite-Hadamard type inequalities for F-convex function involving fractional integrals*, J. Inequal. Appl. **2018** (2018), 359, DOI: 10.1186/s13660-018-1950-1.

[29] J. Park, *Some Hermite-Hadamard type inequalities for MT-convex functions via classical and Riemann-Liouville fractional integrals*, Appl. Math. Sci. **9** (2015), no. 101, 5011–5026.

[30] B. Meftah and K. Boukerrioua, *On some Cebyshev type inequalities for functions whose second derivatives are (h_{*},h_{*})-convex on the co-ordinates*, Konuralp J. Math. **3** (2015), no. 2, 77–88.

[31] P. O. Mohammed, *Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates*, J. King Saud Univ. Sci. **30** (2018), no. 2, 258–262.

[32] W. Liua, W. Wena, and J. Park, *Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals*, J. Nonlinear Sci. Appl. **9** (2016), 766–777.

[33] M. Z. Sarikaya and F. Ertugral, *On the generalized Hermite-Hadamard inequalities*, (2017), https://www.researchgate.net/publication/321760443.

[34] I. Podlubny, *Fractional Differential Equations*, Academic Press, San Diego, 1999.

[35] S. G. Samko, A. A. Kilbas, and O. I. Marichev, *Fractional Integrals and Derivatives, Theory and Applications*, Gordon and Breach, Yverdon, Switzerland, 1993.

[36] P. O. Mohammed, *A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals*, Appl. Math. E-Notes **17** (2017), 199–206.

[37] S. Mubeen and G. M. Habibullah, *k-fractional integrals and application*, Int. J. Contemp. Math. Sci. **7** (2012), no. 2, 89–94.

[38] U. N. Katugampola, *New approach to a generalized fractional integral*, Appl. Math. Comput. **218** (2011), no. 3, 860–865.

[39] U. N. Katugampola, *Mellin transforms of generalized fractional integrals and derivatives*, Appl. Math. Comput. **257** (2015), 566–580.

[40] F. Qi, P. O. Mohammed, J.-C. Yao, and Y.-H. Yao, *Generalized fractional integral inequalities of Hermite-Hadamard type for (α,α)-convex functions*, J. Inequal. Appl. **2019** (2019), 135, DOI: 10.1186/s13660-019-2079-6.

[41] N. S. Barnett, P. Cerone, S. S. Dragomir, and J. Roumeliotis, *Some inequalities for the dispersion of a random variable whose pdf is defined on a finite interval*, J. Ineq. Pure Appl. Math. **2** (2001), no. 1, 1–18.

[42] P. Cerone and S. S. Dragomir, *On some inequalities for the expectation and variance*, Korean J. Comp. Appl. Math. **8** (2000), no. 2, 357–380.

[43] P. Kumar, *Moments inequalities of a random variable defined over a finite interval*, J. Inequal. Pure Appl. Math. **3** (2002), no. 3, 41.

[44] P. Kumar, *Inequalities involving moments of a continuous random variable defined over a finite interval*, Comput. Math. Appl. **48** (2004), 257–273.

[45] A. M. Wazwaz, *A First Course in Integral Equations*, 2nd ed., World Scientific Publishing, Singapore, 2015.