Title	Holographic grating evolution in photopolymer materials
Authors(s)	Gleeson, M. R., Kelly, John V., Close, Ciara E., Sabol, Dušan, Sheridan, John T.
Publication date	2007-05-20
Publication information	Gleeson, M. R., John V. Kelly, Ciara E. Close, Dušan Sabol, and John T. Sheridan. “Holographic Grating Evolution in Photopolymer Materials.” Optical Society of America, 2007.
Conference details	Poster presented at Optical Data Storage (ODS) Portland, Oregon, May 20, 2007
Publisher	Optical Society of America
Item record/more information	http://hdl.handle.net/10197/3522
Publisher's statement	This paper was published in Optical Data Storage and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?uri=ODS-2007-TuE7. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! (@ucd_oa)
© Some rights reserved. For more information
Holographic Grating Evolution in Photopolymer Materials

Michael R. Gleeson, John V. Kelly, Ciara E. Close, Dusan Sabol, John T. Sheridan*
UCD School of Electrical, Electronic and Mechanical Engineering,
College of Engineering, Mathematical and Physical Sciences,
University College Dublin, Belfield, Dublin 4, Republic of Ireland.
*Corresponding Author: e-mail: john.sheridan@ucd.ie
Tel: +353-1-716-1927; Fax: +353-1-283-0921

Abstract: A generalized non-local polymerization driven diffusion (NPDD) model is presented, including the effects of absorption and inhibition. Experimentally obtained growth curves are fit using a four-harmonic numerical fitting algorithm and key material parameters are extracted.

OCIS codes: 090.0090, 090.2900, 090.2890, 090.2890 and 160.5470.

1. Introduction
To obtain the full potential of photopolymer materials for holographic data storage requires quantitative insight into the processes present during grating fabrication. Developing accurate theoretical models, which are validated using reproducible experimental data sets, will allow crucial material parameters to be identified and controlled. A study of the photochemical kinetics involved during holographic recording in our Acrylamide (PVA/AA) based photopolymer has been presented previously [1,2]. Our specific aim is to increase our understanding of what takes place inside the photopolymer material during exposure, i.e. to explain the effects of the variation of the absorbance of the photosensitive dye with time [3-5], and the suppression of monomer radical production due to the presence of inhibitors [5-7]. We thus aim to extend the validity of our Non-Local Photopolymerization Driven Diffusion (NPDD) model [8-12], based on a deeper understanding of the photochemical and mass transport effects.

2. Theory
Using standard notation, the steady state assumption for radical concentration can be given by [2],
\[
d[M^*]/dt = R_i - 2k_i[M^*]^2 - k_z[Z][M^*] = 0.
\] (1)
where \([M^*]\) is the monomer radical concentration, \(R_i\) is the rate of production of monomer radicals, \(k_i\) is the rate of polymer chain termination, \(k_z\) is the rate constant for the inhibition process and \([Z]\) is the concentration of inhibiting species. If it is assumed that much more monomer is consumed due to polymerization than is consumed in the initiation reaction, then the rate of polymerisation \(R_p\) can be given as,
\[
R_p \equiv -d[M]/dt = k_p[M^*][M].
\] (2)
where \(k_p\) is the propagation rate constant. It is difficult to measure the concentration of monomer radicals, \([M]\) therefore we eliminate \([M]\) from Eq. (1) using Eq. (2) and rearrange giving [12]
\[
\frac{2R_i^2k_z}{k_p[M]} + \frac{R_p[Z]k_z}{k_p[M]} - R_i = 0.
\] (3)
Solving the quadratic equation in Eq (3) for \(R_p\), and choosing the root which was physically reasonable, gives
\[
R_p = \left(k_p/4k_z\right)\sqrt{8k_zR_i + k_z^2[Z]} - k_z[Z].
\] (4)
Formation of monomer radicals are dependent on the quantity of free radicals formed per photon absorbed and the intensity of the light used for recording. The inhibitor present indirectly consumes some of the absorbed photons resulting in a reduction in the number of free radicals available for the initiation of monomer radicals and thus for the formation of polymer chains. Thus the rate of initiation, \(R_i\) can be given by
\[
R_i = \Phi f - R_p^*I_a(t),
\] (5)
where \(\Phi\) is the number of radicals produced per photon absorbed, \(f\) is a constant, \(R_p^*\) is the number of radicals removed per photon absorbed due to the presence of inhibitor and \(I_a(t)\) is the intensity of light absorbed in moles of
light quanta per litre per second [5,11]. We assume cosinusoidal spatially modulated illumination,
\[I(x) = I_0 \left[1 + V \cos(Kx) \right] \], where \(\gamma \) describes the non-linear response of the material to the exposing intensity, \(V \) is the fringe visibility, \(K = 2 \pi/\Lambda \), the grating vector magnitude, and \(A \) is the grating period. The concentration of photosensitizers, is related to the absorbed intensity by \textit{de Beer’s Law}:
\[I_a(x,t) = I(x) \left[1 - \exp\left[-e P_s(t) d \right] \right] = I(x) A(t), \] (6)
where \(e \) is the molar absorptivity, \(P_s(t) \) is the time dependent concentration of the photosensitizers (initiators) and \(d \) is the photopolymer layer thickness. Since the concentration of photosensitizers is a function of time, the absorption of the layer, \(A(t) \) also depends on time. We relate the absorbance, \(A(t) \) of the material to the measurable transmittance \(T(t) \) of the material [2,5] by, \(A(t) = 1 - B T(t) \), where \(B \) is a loss fraction which accounts for non-absorptive loses, i.e. Fresnel boundary coefficients. The polymerization rate, \(R_p \), can now be written as
\[R_p = [M] \left[I(x) \right]^{1/2} \frac{k_p}{4k_t} \left\{ \sqrt{8k_t f(\Phi - R_p t)} A(t) + \frac{k^2[Z]^2}{I(x)} \right\} = \kappa[I(x)]^{1/2} H(t)[M]. \] (7)
where \(\kappa \) is the polymerization rate constant. In standard notation the general 1-D NPDD equation governing the evolution of the monomer concentration distribution becomes -8-12],
\[\frac{\partial u(x,t)}{\partial t} = \frac{\partial}{\partial x} \left[D(x,t) \frac{\partial u(x,t)}{\partial x} \right] - \left[\int_0^\infty \sum_0^x R(x',t',t) F(x',t') x u(x',t') \right] \beta \, dt \, dx. \] (8)
where \(u(x,t) \) is the free-monomer concentration, \(D(x,t) \) is the monomer diffusion constant, \(F(x,t) = F_0 [1 + V \cos(Kx)] \) is the polymerization rate, with \(F_0 = H(t) \alpha d^3 \), and \(R(x,x';t,t') \) is the non-local material response function. The non-local response function represents the effect of initiation at location \(x' \) and \(t' \) on the amount of monomer being polymerized at location \(x \) and time \(t \). Assuming rapid chain growth, compared to other temporal effects, we can neglect the time non-locality and let the non-local response function be \(R(x,t) \), in this way assuming an action-at-a-distance in our response. We assume a Gaussian spatially non-local material response function
\[R(x,x') = \left(1/\sqrt{2\pi \sigma} \right) \exp\left[-(x-x')^2/2\sigma \right], \] (9)
where \(\sigma \) is the normalised non-local response parameter. The diffusion constant is defined by the expression \(D(x,t) = D_0 \exp(-AF(x)) \) where \(D_0 \) is the initial diffusion constant and \(A \) is the diffusion coefficients decay parameter.

3. Results

Using a previously described holographic recording set-up [1], for recording 1000 lines/mm with a recording wavelength \(\lambda = 532\text{nm} \) and probe wavelength \(\lambda = 633\text{nm} \), we experimentally obtained a set of growth curves with 3 different exposure intensities. In each case the material was prepared in the manner described in [2], with Erythrosin B as the photosensitive dye. Fits to the experimental data were performed using our adjusted NPDD model applying a four harmonic numerical fitting algorithm [8-10] and are presented with the experimental data in Fig.1. The characteristic parameters extracted from the fits to the experimental data and fits to the experimental data \(\pm 5\% \) are shown in Table 1, where \(t_i \) is the period of inhibition (negligible compared to the large exposure time), \(S \) is related to the non-local variance by \(S = \exp(-K^2\sigma^2/2) \) and MSE denotes the Mean Squared Error of the fits.

Parameter	\(I_0 \) (mW)	\(t_i \) (s)	\(D \) (cm²/s) \((\times 10^{11})\)	\(C \) (cm³/mol \((\times 10^{15})\))	\(\kappa \) (cm²mWs⁻¹)	\(S \)	\(R \)	\(MSE \) (\(\times 10^{16}\))
Case 1	1.5	0.4	8.33	2.07	0.058	0.94	4.62	0.87
	± 0.4	± 0.88	± 0.004	± 0.001	± 0.48	± 3.73		
Case 2	3.9	0.2	6.02	2.67	0.057	0.95	2.10	0.79
	± 1.92	± 0.24	± 0.004	± 0.001	± 0.6	± 4.12		
Case 3	4.8	0.1	6.01	3.40	0.066	0.94	1.62	1.23
	± 0.85	± 0.1	± 0.006	± 0.001	± 0.3	± 5.01		

Table 1. Characteristic parameters extracted from fits to experimental data. Note the short initial inhibition time values \(t_i \).
From the figure it can be seen that the fits to the experimental data and the low MSE values suggest good agreement between the experiment and the theory. Also, the extracted parameter values shown in Table 1. are comparable to those presented in the literature [1-12].

4. Conclusions
Future work includes the full analysis and comparison of previous models to that of our current model. It also includes the development of a more accurate function describing the change in inhibitor concentration with time and improving the model for the time varying absorption of the material. Models, which describe performance variations with material layer thickness and depth, must also be developed. A more exact expression for the refractive index modulation calculated using the Lorentz-Lorenz equation should be included [12]. Our understanding of other effects such as the chain termination mechanisms and material shrinkage must also be improved and then included in the model to enable a more accurate physical picture to emerge. However, given the variety of photopolymer material in which dye bleaching and inhibition effects have been observed, even the incomplete results presented here are significant for a range of applications, including holographic data storage, diffractive optical element fabrication, and photoembossing.

5. References
[1] J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart, The International Journal for Light and Electron Optics) 112, No. 10, pp. 449-463, (2001).
[2] M. R. Gleeson, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Opt. (Submitted 2006).
[3] S. Gallego, M. Ortuno, C. Neipp, J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Exp. 13, pp. 3543-3557, (2005).
[4] S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebalt, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B, 77, pp. 639-662, (2003).
[5] M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B, 23, No. 10, pp. 2079-2088, (2006).
[6] A. V. Galstyan, R. S. Hakobyan, S. H. T.Galstian, “Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable materials,” http://e-lc.org/Documents/T_V_Galstian_2004_05_05_11_13_17.pdf.
[7] A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, F. Amat-Guerr, “Elimination of oxygen inhibition in photopolymer systems used as holographic recording materials,” J. Mod. Opt. 40, No. 4, pp. 699-706, (1993).
[8] J. T. Sheridan, J. R. Lawerence, “Non-local response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, pp. 1108-1114, (2000).
[9] J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Adjusted intensity non-local diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, pp. 621-624, (2002).
[10] J. V. Kelly, F. T. O’Neill, J. T. Sheridan, “Holographic photopolymer materials: non-local polymerization driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B 22, pp. 407-416, (2005).
[11] S. Wu, E. N. Glytsis, “Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis,” J. Opt. Soc. Am. B 20, pp 1177-1188, (2003).
[12] J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, C. Neipp, “Temporal analysis of grating formation in photopolymer using the non-local polymer driven diffusion model,” Opt. Exp. 13, No. 18, pp. 6990-7004, (2005).