ON REGULARIZABLE BIRATIONAL MAPS

JULIE DÉSERTI

ABSTRACT. Bedford asked if there exists a birational self map f of the complex projective plane such that for any automorphism A of the complex projective plane $A \circ f$ is not conjugate to an automorphism. In this article we give such a f of degree 5.

1. INTRODUCTION

Denote by $\text{Bir}(\mathbb{P}^k_{\mathbb{C}})$ the group of all birational self maps of $\mathbb{P}^k_{\mathbb{C}}$, also called the k-dimensional Cremona group. Let $\text{Bir}_d(\mathbb{P}^k_{\mathbb{C}})$ be the algebraic variety of all birational self maps of $\mathbb{P}^k_{\mathbb{C}}$ of degree d. When $k = 2$ and $d \geq 2$ these varieties have many distinct components, of various dimensions ([6, 2]). The group $\text{Aut}(\mathbb{P}^k_{\mathbb{C}}) = \text{PGL}(k + 1, \mathbb{C})$ acts by left translations, by right translations, and by conjugacy on $\text{Bir}_d(\mathbb{P}^k_{\mathbb{C}})$. Since this group is connected, these actions preserve each connected component.

A birational map $f: \mathbb{P}^k_{\mathbb{C}} \dashrightarrow \mathbb{P}^k_{\mathbb{C}}$ is regularizable if there exist a smooth projective variety V and a birational map $g: V \dashrightarrow \mathbb{P}^k_{\mathbb{C}}$ such that $g^{-1} \circ f \circ g$ is an automorphism of V. To any element f of $\text{Bir}(\mathbb{P}^k_{\mathbb{C}})$ we associate the set $\text{Reg}(f)$ defined by

$$\text{Reg}(f) := \{A \in \text{Aut}(\mathbb{P}^k_{\mathbb{C}}) \mid A \circ f \text{ is regularizable}\}.$$

On the one hand Dolgachev asked whether there exists a birational self map of $\mathbb{P}^k_{\mathbb{C}}$ of degree > 1 such that $\text{Reg}(f) = \text{Aut}(\mathbb{P}^k_{\mathbb{C}})$. In [5] we give a negative answer to this question. More precisely we prove

Theorem 1.1 ([5]). Let f be a birational self map of $\mathbb{P}^k_{\mathbb{C}}$ of degree ≥ 2.

The set of automorphisms A of $\mathbb{P}^k_{\mathbb{C}}$ such that $\deg ((A \circ f)^n) \neq (\deg (A \circ f))^n$ for some $n > 0$ is a countable union of proper Zariski closed subsets of $\text{PGL}(k + 1, \mathbb{C})$.

In particular there exists an automorphism A of $\mathbb{P}^k_{\mathbb{C}}$ such that $A \circ f$ is not regularizable.

On the other hand Bedford asked: does there exist a birational map f of $\mathbb{P}^k_{\mathbb{C}}$ such that $\text{Reg}(f) = \emptyset$? We will focus on the case $k = 2$. According to [1] if $\deg f = 2$, then...

2010 Mathematics Subject Classification. 14J50, 14E07.

Key words and phrases. Cremona group, birational map, automorphisms of surfaces, regularization.

The author was partially supported by the ANR grant Fatou ANR-17-CE40- 0002-01 and the ANR grant Foliage ANR-16-CE40-0008-01.
Reg(f) \neq \emptyset$. What about birational maps of degree 3? Blanc proves that the set
\[\{ f \in \text{Bir}_3(\mathbb{P}^2_C) \mid \text{Reg}(f) \neq \emptyset, \lim_{n \to +\infty} (\deg(f^n))^{1/n} > 1 \} \]
is dense in Bir$_3(\mathbb{P}^2_C)$ and that its complement has codimension 1 (see [3]). Blanc also gives a positive answer to Bedford question in dimension 2: if $\chi: \mathbb{P}^2_C \dashrightarrow \mathbb{P}^2_C$ is the birational map given by
\[\chi: (x : y : z) \mapsto (xz^5 + (yz^2 + x^3)^2 : yz^5 + x^3z^3 : z^6) \]
then Reg(\chi) = \emptyset.

Remark 1.2. Note that $\chi = (x + y^2, y) \circ (x, y + x^3)$ in the affine chart $z = 1$. Indeed Blanc example can be generalized as follows: the birational map given in the affine chart $z = 1$ by
\[\chi_{n,p} = (x + y^n, y) \circ (x, y + x^p) = (x + (y + x^p)^n, y + x^p) \]
satisfies Reg($\chi_{n,p}$) = \emptyset.

In this article we prove that there exists a birational self map ψ of \mathbb{P}^2_C such that $\deg(\psi) < 6$ and Reg(\psi) = \emptyset:

Theorem A. If $\psi: \mathbb{P}^2_C \dashrightarrow \mathbb{P}^2_C$ is the birational map given by
\[\psi: (x : y : z) \mapsto (x^2yz^2 - z^5 + x^5 : x^2(y^2z - z^3) : xz(x^2y - z^3)) \],
then Reg(\psi) = \emptyset.

Acknowledgements. I would like to thank Serge Cantat for many interesting discussions. I am also grateful to the referee who has led me to considerably improve the drafting of the article.

2. PROOF OF THEOREM A

Let S be a smooth projective surface. Let $\phi: S \dashrightarrow S$ be a birational map. This map admits a resolution
\[\begin{array}{ccc}
Z \ar@{^{(}->}[r]^-{\pi_2} & S \ar@{-->}@/_1pc/[l]^-{\pi_1}
\end{array} \]
where $\pi_1: Z \to S$ and $\pi_2: Z \to S$ are finite sequences of blow-ups. The resolution is minimal if and only if no (-1)-curve of Z is contracted by both π_1 and π_2. The base-points Base(ϕ) of ϕ are the points blown-up by π_1, which can be points of S or infinitely near points. The proper base-points of ϕ are called indeterminacy points of ϕ and form a set denoted Ind(ϕ). Finally we denote by Exc(ϕ) the set of curves contracted by ϕ.
Denote by \(b(\phi) \) the number of base-points of \(\phi \); note that \(b(\phi) \) is equal to the difference of the ranks of \(\text{Pic}(Z) \) and \(\text{Pic}(S) \) and thus equal to \(b(\phi^{-1}) \). Let us introduce the **dynamical number of the base-points of** \(\phi \)

\[
\mu(\phi) = \lim_{k \to +\infty} \frac{b(\phi^k)}{k}.
\]

Since \(b(\phi \circ \varphi) \leq b(\phi) + b(\varphi) \) for any birational self map \(\varphi \) of \(S \), \(\mu(\phi) \) is a non-negative real number. As \(b(\phi) = b(\phi^{-1}) \) one gets \(\mu(\phi^k) = |k \mu(\phi)| \) for any \(k \in \mathbb{Z} \). Furthermore if \(Z \) is a smooth projective surface and \(\varphi : S \to Z \) a birational map, then for all \(n \in \mathbb{Z} \)

\[-2b(\varphi) + b(\varphi^n) \leq b(\varphi \circ \varphi^n \circ \varphi^{-1}) \leq 2b(\varphi) + b(\varphi^n) ;
\]

hence \(\mu(\varphi) = \mu(\varphi \circ \varphi \circ \varphi^{-1}) \). One can thus state the following result:

Lemma 2.1 (4). *The dynamical number of base-points is an invariant of conjugation. In particular if \(\phi \) is a regularizable birational self map of a smooth projective surface, then \(\mu(\phi) = 0 \).*

A base-point \(p \) of \(\phi \) is a **persistent base-point** if there exists an integer \(N \) such that for any \(k \geq N \)

\[
\begin{align*}
\diamond & \ p \in \text{Base}(\phi^k) \\
\diamond & \ p \not\in \text{Base}(\phi^{-k}).
\end{align*}
\]

Let \(p \) be a point of \(S \) or a point infinitely near \(S \) such that \(p \not\in \text{Base}(\phi) \). Consider a minimal resolution of \(\phi \)

\[
\begin{array}{c}
\pi_1 \bigg/ \ \ \pi_2 \\
S \quad \xrightarrow{\phi} \quad \xrightarrow{\phi} \quad S
\end{array}
\]

Because \(p \) is not a base-point of \(\phi \) it corresponds via \(\pi_1 \) to a point of \(Z \) or infinitely near; using \(\pi_2 \) we view this point on \(S \) again maybe infinitely near and denote it \(\phi^\ast(p) \). For instance if \(S = \mathbb{P}_C^2, p = (1 : 0 : 0) \) and \(f \) is the birational self map of \(\mathbb{P}_C^2 \) given by

\[
(z_0 : z_1 : z_2) \mapsto (z_1 z_2 + z_0^2 : z_0 z_2 : z_2^2)
\]

the point \(f^\ast(p) \) is not equal to \(p = f(p) \) but is infinitely near to it. Note that if \(\varphi \) is a birational self map of \(S \) and \(p \) is a point of \(S \) such that \(p \not\in \text{Base}(\phi), \phi(p) \not\in \text{Base}(\phi) \), then \((\varphi \circ \phi)^\ast(p) = \varphi^\ast(\phi^\ast(p)) \). One can put an equivalence relation on the set of points of \(S \) or infinitely near \(S \): the point \(p \) is **equivalent** to the point \(q \) if there exists an integer \(k \) such that \((\phi^k)^\ast(p) = q \); in particular \(p \not\in \text{Base}(\phi^k) \) and \(q \not\in \text{Base}(\phi^{-k}) \). Remark that the equivalence class is the generalization of set of orbits for birational maps.

Let us give the relationship between the dynamical number of base-points and the equivalence classes of persistent base-points:
Proposition 2.2 \([4]\). Let \(S\) be a smooth projective surface. Let \(\phi\) be a birational self map of \(S\).

Then \(\mu(\phi)\) coincides with the number of equivalence classes of persistent base-points of \(\phi\). In particular \(\mu(\phi)\) is an integer.

This interpretation of the dynamical number of base-points allows to prove the following result that gives a characterization of regularizable birational maps:

Theorem 2.3 \([4]\). Let \(\phi\) be a birational self map of a smooth projective surface. Then \(\phi\) is regularizable if and only if \(\mu(\phi) = 0\).

2.1. Base-points of \(\psi\). The birational map

\[
\psi: (x : y : z) \to (x^2yz^2 - z^5 + x^5 : x^2y - z^3 : xz(x^2y - z^3))
\]

has only one proper base-point, namely \(p_1 = (0 : 1 : 0)\), and all its base-points are in tower that is: the nine base-points of \(\psi\) that we denote \(p_1, p_2, \ldots, p_9\) are such that \(p_i\) is infinitely near to \(p_{i-1}\) for \(2 \leq i \leq 9\). We denote by \(\pi: S \to \mathbb{P}^2_C\) the blow-up of the 9 base-points, and still write \(L_x\) (resp. \(C\)) the strict transform of the line \(L_x \subset \mathbb{P}^2_C\) of equation \(x = 0\) (resp. the curve of equation \(x^2y - z^3 = 0\)) which is contracted by \(\psi\). We denote by \(E_i \subset S\) the strict transform of the curve obtained by blowing up \(p_i\). The configuration of the curves \(E_1, E_2, \ldots, E_9, L_x\) and \(C\) is

\[\text{FIGURE 1.}\]

Two curves are connected by an edge if their intersection is positive. Let us write \(\psi_A = A \circ \psi\) where \(A\) is an automorphism of \(\mathbb{P}^2_C\). Because \(\pi\) is the blow-up of the base-points of \(\psi\), which are also the base-points of \(\psi_A\), the map \(\eta = \psi_A \circ \pi\) is a birational morphism \(S \to \mathbb{P}^2_C\) which is the blow-up of the base-points of \(\psi_A^{-1}\). In fact

\[
\begin{array}{ccc}
S & \xrightarrow{\pi} & \mathbb{P}^2_C \\
\downarrow{\psi_A} & & \downarrow{\eta} \\
\mathbb{P}^2_C & \xrightarrow{\psi_A} & \mathbb{P}^2_C
\end{array}
\]
is the minimal resolution of ψ_A.

The morphism η contracts L_x and C as well as the union of eight other irreducible curves which are among the curves E_1, E_2, \ldots, E_9. The configuration of Figure 1 shows that η contracts the curves $L_x, E_2, E_3, E_4, E_5, E_6, E_7, E_8, C$ following this order.

We can see $\eta: S \to \mathbb{P}^2_C$ as a sequence of nine blow-ups in the same way as we did for π. We denote by q_1, q_2, \ldots, q_9 the base-points of ψ_A^{-1} (or equivalently the points blown up by η) so that $q_1 \in \mathbb{P}^2_C$ and q_i is infinitely near to q_{i-1} for $2 \leq i \leq 9$. We denote by $D \subset \mathbb{P}^2_C$ (resp. $C' \subset \mathbb{P}^2_C$) the line contracted by ψ_A^{-1} which is the image by A of the line $y = 0$ (resp. of the conic $z^2 - xy = 0$). We denote by $F_i \subset S$ the strict transform of the curve obtained by blowing up q_i. Because of the order of the curves contracted by η we get equalities between $L_x, C, E_1, E_2, \ldots, E_9$ and $D, C', F_1, F_2, \ldots, F_9$ as follows

\[
\begin{align*}
C &= F_1 \\
E_8 &= F_2 \\
E_6 &= F_4 \\
E_4 &= F_6 \\
E_2 &= F_8 \\
E_9 &= L_x \\
E_7 &= F_3 \\
E_5 &= F_5 \\
E_3 &= F_7 \\
L_x &= F_9
\end{align*}
\]

Figure 2.

In particular we see that the configuration of the points q_1, q_2, \ldots, q_9 is not the same as that of the points p_1, p_2, \ldots, p_9. Saying that a point m is proximate to a point m' if m is infinitely near to m' and that it belongs to the strict transform of the curve obtained by blowing up m' the configurations of the points p_i and q_i are

\[
\begin{align*}
p_1 &\rightarrow p_2 \rightarrow p_3 \leftarrow p_4 \rightarrow p_5 \leftarrow p_6 \rightarrow p_7 \leftarrow p_8 \rightarrow p_9 \\
q_1 &\leftarrow q_2 \leftarrow q_3 \leftarrow q_4 \leftarrow q_5 \leftarrow q_6 \leftarrow q_7 \leftarrow q_8 \leftarrow q_9
\end{align*}
\]

Figure 3

We will prove that for any integer $i > 0$ the point p_3 belongs to $\text{Base}(\psi_A^i)$ and does not belong to $\text{Base}(\psi_A^{-i})$. It implies that $\mu(\psi_A) > 0$ and that ψ_A is not regularizable.

Denote by k the lowest positive integer such that p_1 belongs to $\text{Base}(\psi_A^{-k})$. If no such integer exists we write $k = \infty$. For any $1 \leq i < k$ the point p_1 does not belong to $\text{Base}(\psi_A^{-i})$
so ψ_A and ψ_A^{-1} have no common base-point. As a consequence the set of base-points of the
map $\psi_A^{i+1} = \psi_A \circ \psi_A^i$ is the union of the base-points of ψ_A^i and of the points $(\psi_A^j)^* (p_j)$ for
$1 \leq j \leq 9$. Since the map ψ_A^{i+1} is defined at p_1 the point $(\psi_A^i)^* (p_j)$ is proximate to the point
$(\psi_A^{-i})^* (p_k)$ if and only if p_j is proximate to p_k. Proceeding by induction on i we get the
following assertions:

- for any $1 \leq i \leq k$ integer $\text{Base}(\psi_A^i) = \{(\psi_A^{-m})^* (p_j) | 1 \leq j \leq 9, 0 \leq m \leq i - 1\}$;
- for any $0 \leq -\ell \leq k$ the configuration of the points \{(\psi_A^{\ell})^* (p_j) | 1 \leq j \leq 9\} is given by

\[
\begin{array}{cccccccc}
(p_1)^* & \cdots & (p_9)^* & (p_1)^* & \cdots & (p_9)^* & (p_1)^* & \cdots & (p_9)^* \\
(p_2)^* & \cdots & (p_9)^* & (p_1)^* & \cdots & (p_9)^* & (p_1)^* & \cdots & (p_9)^* \\
(p_3)^* & \cdots & (p_9)^* & (p_1)^* & \cdots & (p_9)^* & (p_1)^* & \cdots & (p_9)^* \\
(p_4)^* & \cdots & (p_9)^* & (p_1)^* & \cdots & (p_9)^* & (p_1)^* & \cdots & (p_9)^* \\
(p_5)^* & \cdots & (p_9)^* & (p_1)^* & \cdots & (p_9)^* & (p_1)^* & \cdots & (p_9)^* \\
(p_6)^* & \cdots & (p_9)^* & (p_1)^* & \cdots & (p_9)^* & (p_1)^* & \cdots & (p_9)^* \\
(p_7)^* & \cdots & (p_9)^* & (p_1)^* & \cdots & (p_9)^* & (p_1)^* & \cdots & (p_9)^* \\
(p_8)^* & \cdots & (p_9)^* & (p_1)^* & \cdots & (p_9)^* & (p_1)^* & \cdots & (p_9)^* \\
(p_9)^* & \cdots & (p_9)^* & (p_1)^* & \cdots & (p_9)^* & (p_1)^* & \cdots & (p_9)^* \\
\end{array}
\]

Hence the point p_3 belongs to $\text{Base}(\psi_A^i)$ for any $1 \leq i \leq k$.

If $k = \infty$, then p_3 belongs to $\text{Base}(\psi_A^i)$ for any $i > 0$ and by definition of k the point p_1
does not belong to $\text{Base}(\psi_A^{-i})$ for any $i > 0$, and so neither p_3. We can thus assume that k
is a positive integer.

Assume that q_1 belongs to $\text{Base}(\psi_A^i)$ for some $1 \leq i \leq k - 1$. Then q_1 is equal to
$(\psi_A^{-m})^* (p_j)$ for some $0 \leq m \leq k - 2$ and $1 \leq j \leq 9$. This implies that p_j belongs to
$\text{Base}(\psi_A^{m+1})$ which is impossible because $m + 1 \leq k - 1$. Hence q_1 does not belong to
$\text{Base}(\psi_A^i)$ for any $1 \leq i \leq k - 1$.

We thus see that ψ_A^{-1} has no common base-point with ψ_A^i for $1 \leq i \leq k - 1$. In particular
if B denotes $\text{Base}(\psi_A^{-1}) \cap \text{Base}(\psi_A^k)$, then

$$B = \{(\psi_A^{-(k-1)})^* (p_j) | 1 \leq j \leq 9\} \cap \{q_j | 1 \leq j \leq 9\}.$$

Let us remark that p_1 belongs to $\text{Base}(\psi_A^k)$ and p_1 does not belong to $\text{Base}(\psi_A^{-(k-1)})$; as
a result $(\psi_A^{-k-1})^* (p_1)$, which is a base-point of ψ_A^k, is also a base-point of ψ_A^{-1}. The set B
is thus not empty.

The configurations of the two sets of points \{(\psi_A^{-k-1})^* (p_j) | 1 \leq j \leq 9\} and \{q_j | 1 \leq j \leq 9\} imply that $q_1 = (\psi_A^{-(k-1)})^* (p_1)$.

Moreover either $B = \{q_1\}$, or $B = \{q_1, q_2\}$. Indeed $(\psi_A^{-(k-1)})^* (p_3)$ is proximate to
$(\psi_A^{-(k-1)})^* (p_2)$ and $(\psi_A^{-(k-1)})^* (p_1)$ whereas q_3 is proximate to q_2 but not to q_1.

The point $(\psi_A^{-(k-1)})^* (p_3)$ is thus a point infinitely near to q_1 in the second neighborhood
which is maybe infinitely near to q_2 but not equal to q_3. Recalling that η is the blow up of
q_1, q_2, \ldots, q_9 the point $(\eta^{-1} \circ \psi_A^{-(k-1)})^* (p_3)$ corresponds to a point that belongs, as a proper
or infinitely near point, to one of the curves $F_1, F_2 \subset S$. So $(\pi \circ \eta^{-1} \circ \psi_A^{-(k-1)})^* (p_3)$ is a point
infinitely near to p_3. For any $1 \leq i \leq k$ the point p_3 does not belong to $\text{Base}(\psi_A^{-i})$; therefore
there is no base-point of ψ_A^{-i} which is infinitely near to p_3. As a result $(\psi_A^{-(k-1)})^* (p_3)$ does not
belong to Base(ψ_A^−i) and p_3 does not belong to Base(ψ_A^{−(k+i)}). Moreover (ψ_A^{−(k+i)})(p_3) is infinitely near to (ψ_A^−i)(p_3). Choosing i = k we see that (ψ_A^{−2k})(p_3) is infinitely near to (ψ_A^{-k})(p_3) which is infinitely near to p_3. Continuing like this we get
\[\forall i \geq 1 \quad p_3 \notin \text{Base}(ψ_A^{-i}).\]
To get the result it remains to show that p_3 belongs to Base(ψ_A^i) for any i \geq 1. Reversing the order of ψ_A and ψ_A^{-1} we prove as previously that
\[\forall i \geq 1 \quad q_3 \notin \text{Base}(ψ_A^i).\]
Let us now see that
\[(\forall i \geq 1 \quad q_3 \notin \text{Base}(ψ_A^i)) \Rightarrow (\forall i \geq 1 \quad p_3 \in \text{Base}(ψ_A^i)).\]
For i = 1 it is obvious. Assume i > 1; let us decompose
\[\circ \psi_A^i \text{ into } \psi_A^{-1} \circ \psi_A.\]
\[\circ \pi : S \rightarrow \mathbb{P}_C^2 \text{ into } \pi_{12} \circ \pi_{39} \text{ where } \pi_{12} : Y \rightarrow \mathbb{P}_C^2 \text{ is the blow up of } p_1, p_2 \text{ and } \pi_{39} : S \rightarrow Y \text{ is the blow up of } p_3, p_4, \ldots, p_9,\]
\[\circ \eta : S \rightarrow \mathbb{P}_C^2 \text{ into } \eta_{12} \circ \eta_{39} \text{ where } \eta_{12} : Z \rightarrow \mathbb{P}_C^2 \text{ is the blow up of } q_1, q_2 \text{ and } \eta_{39} : S \rightarrow Z \text{ is the blow up of } q_3, q_4, \ldots, q_9.\]
Note that η_{39} contracts F_0, F_8, \ldots, F_3 onto the point Z ∋ q_3 \notin Base(ψ_A^{-1} \circ η_{12}). Consider the system of conics of \mathbb{P}_C^2 passing through p_1, p_2 and p_3. Denote by Λ its lift on Y; it is a system of smooth curves passing through q_3 with movable tangents and dimΛ = 2. The strict transform of Λ on S is a system of curves intersecting E_3 at a general movable point. The map η_{39} contracts the curves L_x, E_2, E_3, E_4, E_5, E_6, E_7. As the curve E_3 is contracted and is not the last one, the image of the system by η_{39} passes through q_3 with a fixed tangent corresponding to the point q_4. Since q_3 \notin Base(ψ_A^{-1} \circ η_{12}) the image of Λ ⊂ Y by ψ_A^{-1} \circ η \circ (π_{39})^{-1} has a fixed tangent at the point (ψ_A^{-1} \circ η_{12})(q_3). As a consequence p_3 belongs to Base(ψ_A^{-1} \circ η \circ (π_{39})^{-1}) and thus to Base(ψ_A^{-1} \circ η \circ (π_{39})^{-1} \circ (π_{12})^{-1}).

REFERENCES

[1] E. Bedford and K. Kim. Dynamics of rational surface automorphisms: linear fractional recurrences. J. Geom. Anal., 19(3):553–583, 2009.
[2] C. Bisi, A. Calabri, and M. Mella. On plane Cremona transformations of fixed degree. J. Geom. Anal., 25(2):1108–1131, 2015.
[3] J. Blanc. Dynamical degrees of (pseudo)-automorphisms fixing cubic hypersurfaces. Indiana Univ. Math. J., 62(4):1143–1164, 2013.
[4] J. Blanc and J. Déserti. Degree growth of birational maps of the plane. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 14(2):507–533, 2015.
[5] S. Cantat, J. Déserti, and J. Xie. Three chapters on Cremona groups. arXiv:2007.13841.
[6] D. Cerveau and J. Déserti. Transformations birationnelles de petit degré, volume 19 of Cours Spécialisés. Société Mathématique de France, Paris, 2013.
[7] J. Diller. Cremona transformations, surface automorphisms, and plane cubics. *Michigan Math. J.*, 60(2):409–440, 2011. With an appendix by Igor Dolgachev.

Université Côte d’Azur, Laboratoire J.-A. Dieudonné, UMR 7351, Nice, France

Email address: deserti@math.cnrs.fr