Thermal conductivity of diethylene glycol based magnesium–aluminum spinel (MgAl$_2$O$_4$-DG) nanofluids

Gaweł Żyla1 · Jacek Fal1 · Magdalena Gizowska2 · Krzysztof Perkowski2

Abstract The paper presents the results of measurements of the thermal conductivity of MgAl$_2$O$_4$-DG nanofluids. The dependence of the thermal conductivity on concentration of nanoparticles in various temperatures from 293.15 to 338.15 K with 15 K step was examined. Experimental data was modeled with existing theoretical models describing the effects of the concentration of particles on the thermal conductivity of the suspension. It was presented that thermal conductivity of MgAl$_2$O$_4$-DG nanofluids increases proportional to volume concentration of nanoparticles.

1 Introduction

Nanofluids are suspensions of particles of nanometrical sizes in base liquid. Due to the huge potential for the use of these engineering materials [1–3], particularly in the field of heat exchange [4–7] studies on the basic physical properties are conducted by many scientific groups worldwide. Experiments are carried out mainly on rheological and thermal properties, with particular emphasis on thermal conductivity.

Many studies have shown that thermal conductivity of the liquid increases when the nanoparticles are dispersed therein [8–17]. This increase might be particularly interesting both for engineers planning to practical applications of nanofluids as well as for researchers trying to understand the mechanisms responsible for this phenomenon. More specifically, dependence of the thermal conductivity on concentration was examined by Albadr et al. [18] and Xuan et al. [19].

The thermal properties of nanofluids affects not only the nature of the particles in suspension. Anoop et al. [20], and Teng et al. [21] presented, that thermal conductivity increases with decreasing particle size for Al$_2$O$_3$ nanofluids, the same relation was presented by Esfe et al. [22] for Fe–water nanofluids. A similar dependence—a decrease in thermal conductivity with increasing size of the nanoparticles—was presented by Wang et al. [23] for Fe$_2$O$_3$ particles and Zhou et al. [24].

Another factor which may affect the thermal properties of nanofluids is the shape of the particles in suspension. Jeong et al. [25] conducted a research on ZnO nanofluids which resulted in the show that thermal conductivity of rectangular shape particle suspensions were higher than spheres. Dependence of thermal conductivity on the shape of the nanoparticles in nanofluids was also study by Timofeeva et al. [26].

Thermal conductivity of nanofluids mostly increase with the temperature [10, 27, 28]. But not all nanofluids present that kind of behavior. Mariano et al. [29] have shown that for ethylene glycol-based Co$_3$O$_4$ nanofluids thermal conductivity decreases with temperature. Very interesting results of dependence of thermal conductivity on temperature was presented by Li et al. [30] for diathermic oil based SiC nanofluids. They presented that for low volume concentration thermal conductivity decrease with temperature, and for high volume concentration it increase.

In view of the fact that the addition of nanoparticles to liquid relies only on the thermal conductivity increase, it is clear that the type of base liquid used to produce the
nanofluids is one of the most important factor for the values of thermal conductivity of nanofluids.

Also of interest are the rheological properties of nanofluids. It has been shown that depending on the type of nanoparticles, nanofluids may present Newtonian [17, 27, 29] or non-Newtonian [31–35] nature. In addition, some of nanofluids have interesting electrorheological [36, 37] and magnetorheological [38] properties.

The MgAl2O4-DG nanofluids present complex rheological properties [39], this materials have non-Newtonian shear-thinning nature. It has been also observed the interesting phenomenon, formation of agglomerates of nanoparticles during rotational viscosity measurements, which resulted in changes in viscosity of nanofluids [40].

2 Materials and methods

2.1 Nanoparticles characterization

The MgAl2O4 nanopowder which was used in this examinations is commercially available magnesium-aluminum spinel manufactured by Baikowski (Annecy, France), ID LOT: 101488. The average size of the crystallites measured with X-Ray Diffraction was 40 nm, and it was confirmed on scanning electron microscope pictures, which might be found in Ref. [39].

The size distribution of particles is based on measurements of the hydrodynamic diameter in suspension with use of Zetasizer Nano ZS (Malvern Instruments Ltd, Worcestershire, UK). Measurements was conducted on diluted suspensions of particles in diethylene glycol (0.2 g/l), which underwent ultrasonication (VibraCell VCX130, Sonics & Materials, Inc., Newtown, USA) prior measurements. Result of this measurement was presented in Fig. 1. The average hydrodynamic diameter of particles determined on the basis of this method is 215 nm.

To determine the thermal conductivity of MgAl2O4 nanopowder, its thermal diffusivity was measured. Thermal diffusivity of the sample was measured at room temperature by the laser flash method utilizing a Laser Flash Apparatus (LFA 427 Netzsch Geraetebau GmbH, Selb, Germany). Then, based on the method presented by Parker et al. [41] thermal conductivity of the material was calculate. Thermal conductivity of MgAl2O4 nanopowder determined in this measurement is 14.406 W/(m K) at room temperature.

Density of MgAl2O4 nanopowder was measured with use of a helium pycnometer Ultrapyc 1200e (Quantachrome Instruments, Boynton Beach, USA). Temperature inside measuring chamber was stabilized at 297.15 K by thermostat Grant TC120 (Grant Instruments, Cambridgeshire, GB). The density value was calculate as a average from two series of measurements where each included five unit measurements. Before density measurements nanopowder was dried in temperature of 403.15 K for 2 h. The density of MgAl2O4 nanopowder is 3.3626 g/(cm3) at room temperature.

2.2 Sample preparation

Samples were prepared in the various mass concentration (5, 15, 25 wt%) by using an analytical balance WAS 220/X (Radwag, Radom, Poland) with the accuracy of 0.1 mg. In order to break up the agglomerates of nanoparticles mechanical stirring in a mechanical shaker Genius 3 Vortex (IKA, Staufen, Germany) for 30 min, and the ultrasound for a period of 200 min in ultrasound wave bath Emmi 60 HC (EMAG, Moerfelden-Walldorf, Germany). All samples were prepared at room temperature not exceeding 298.15 K. Volume concentrations of nanofluids were calculated from equation:

$$\phi_v = \frac{\phi_m}{\rho_p} \left(1 - \frac{\rho_m}{\rho_0} \right),$$

where \(\phi_v\) and \(\phi_m\) are volume and mass concentration, \(\rho_p\) and \(\rho_0\) stands for density of solid particles and base fluid.
2.3 Thermal conductivity measurements

To investigate the thermal conductivity of the nanofluids, a KD2 Pro Thermal Properties Analyzer (Decagon Devices Inc., Pullman, Washington, USA) device was used. This equipment is popular, and was previously used by many research groups to study the thermal properties of nanofluids, for example in Ref. [11, 27, 42–45]. The sample was thermostated with the probe in for 30 min in a water bath MLL 547 (AJL Electronic, Cracow, Poland) before measurement. The volume of the examined sample was 30 ml. Time between successive measurements of the thermal conductivity of the sample was 15 min. Uncertainty of measurement did not exceed 2%, and a detailed description of the calibration process has been presented in Ref. [46]. The thermal conductivity of nanofluids were tested immediately after preparation of the sample.

Table 1 Experimental values of the thermal conductivity MgAl2O4-DG nanofluids

ϕ	knf [W/(m·K)]				
	293.15 K	308.15 K	323.15 K	338.15 K	
0.00	0.000	0.2013	0.2060	0.2166	0.2263
0.05	0.017	0.2136	0.2203	0.2310	0.2513
0.15	0.055	0.2400	0.2466	0.2586	0.2707
0.25	0.100	0.2723	0.2803	0.2903	0.3013

3 Results and discussion

Thermal conductivity of MgAl2O4-DG nanofluids were measured in temperature range from 293.15 to 338.15 K with 15 K step for various volume concentrations between 1.7 and 10%. The results of these measurements are summarized in Table 1. It might be noticed that the thermal conductivity increases with volume concentration of nanoparticles at each measured temperature, as presented in Fig. 2.

In the 19th century, Maxwell [47] presented a theoretical model describing the thermal conductivity of suspensions of spherical particles in the form of:

\[\frac{k_{nf}}{k_0} = \frac{k_p + 2k_0 + 2(k_p - k_0)\varphi_v}{k_p + 2k_0 - (k_p - k_0)\varphi_v}. \]

(2)

where \(k_{nf}, k_p, \) and \(k_0 \) are thermal conductivity of the nanofluid, solid particles, and base fluid respectively. Jeffrey [48] introduced model which considering a suspension of spherical particles:

\[\frac{k_{nf}}{k_0} = 1 + 3\beta\varphi_v + \left(3\beta^2 + \frac{3\beta^4}{4} + \frac{9\beta^6}{16} + \frac{\gamma + 2}{2\gamma + 3} + \frac{3\beta^4}{64} + \cdots\right)\varphi_v^2, \]

(3)

where \(\beta = \frac{\varphi - 1}{\varphi^2} \), and \(\gamma = \frac{k_0}{k_p} \).

Turian et al. [49], based on thermal conductivity data on many base fluids presented another model:
Turian et al. assumed that the Maxwell model is right for suspensions, in which $k_p/k_0 \approx 1$, while the model proposed by them had to be right for the suspensions, in which $k_p/k_0 > 4$.

Experimental data for thermal conductivity of MgAl$_2$O$_4$-DG nanofluids shows that the k_{nf}/k_0 ratio enhancement is linear with volume concentration of nanoparticles. Using gnuplot software fit a linear function to the received data, was conducted. The function takes form:

$$\frac{k_{nf}}{k_0} = 1 + 3.52029 \varphi_v,$$

while asymptotic standard error of parameter was ± 0.01099 (0.3122%).

Figure 3 presents the experimental results, theoretical models fits, and a linear function (5) fit for measurements conducted at 293.15 K.

4 Conclusions

The paper presents results of investigation of the dependence of MgAl$_2$O$_4$-DG nanofluids thermal conductivity on the volume concentration of nanoparticles at various temperatures. It was presented that the thermal conductivity increase linearly with volume concentration of nanoparticles in nanofluids. It was also found that MgAl$_2$O$_4$-DG nanofluids presents, repeatedly reported for other types of nanofluids, increase in thermal conductivity with temperature.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Saidur R, Leong K, Mohammad H (2011) A review on applications and challenges of nanofluids. Renew Sustain Energy Rev 15(3):1646–1668
2. Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Rosengarten G, Prasher R, Tyagi H (2013) Small particles, big impacts: a review of the diverse applications of nanofluids. J Appl Phys 113(1):011,301
3. Abu-Nada E (2008) Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step. Int J Heat Fluid Flow 29(1):242–249
4. Kulkarni DP, Das DK, Vaijha RS (2009) Application of nanofluids in heating buildings and reducing pollution. Appl Energy 86(12):2566–2573
5. Huminic G, Huminic A (2012) Application of nanofluids in heat exchangers: a review. Renew Sustain Energy Rev 16(8):5625–5638
6. Said Z, Sajid M, Alim M, Saidur R, Rahim N (2013) Experimental investigation of the thermophysical properties of Al$_2$O$_3$-nanofluid and its effect on a flat plate solar collector. Int Commun Heat Mass Transf 48(0):99–107
7. Saidur R, Meng T, Said Z, Hasanuzzaman M, Kamyar A (2012) Evaluation of the effect of nanofluid-based absorbers on direct solar collector. Int J Heat Mass Transf 55(21–22):5899–5907
8. Pang C, Lee JW, Kang YT (2015) Review on combined heat and mass transfer characteristics in nanofluids. Int J Therm Sci 87(0):49–67
9. Yu W, Xie H, Li Y, Chen L (2011) Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid. Particuology 9(2):187–191
10. Pastoriza-Gallego MJ, Lugo L, Legido JL, Piñeiro MM (2011) Enhancement of thermal conductivity and volumetric behavior of fexoy nanofluids. J Appl Phys 110(1):014309
11. Pastoriza-Gallego M, Lugo L, Legido J, Piñeiro M (2011) Thermal conductivity and viscosity measurements of ethylene glycol-based Al₂O₃ nanofluids. Nanoscale Res Lett 6(1):221
12. Wei X, Kong T, Zhu H, Wang L (2010) Cu₃S/Cu₂S nanofluids: synthesis and thermal conductivity. Int J Heat Mass Transf 53(9/10):1841–1843
13. Xie H, Yu W, Chen W (2010) MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles. J Exp Nanosci 5(5):463–472
14. Yu W, Xie H, Chen L, Li Y (2009) Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermochim Acta 491(1-2):92–96
15. Hu P, Shan WL, Yu F, Chen ZS (2008) Thermal conductivity of AlN-ethanol nanofluids. Int J Thermophys 29(6):1968–1973
16. He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H (2007) Heat transfer and flow behaviour of aqueous suspensions of TiO₂ nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf 50(11-12):2272–2281
17. Esfe MH, Saedodin S, Asadi A, Karimpour A (2015) Thermal conductivity and viscosity of Mg(OH)₂-ethylene glycol nanofluids. J Therm Anal Calorim. doi:10.1007/s10973-015-4417-3
18. Albadr J, Tayal S, Alasadi M (2013) Heat transfer through heat exchanger using Al₂O₃ nanofluid at different concentrations. Case Stud Therm Eng 1(1):38–44
19. Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21(1):58–64
20. Anoop K, Sundararajan T, Das SK (2009) Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int J Heat Mass Transf 52(9-10):2189–2195
21. Teng TP, Hung YH, Teng TC, Mo HE, Hsu HG (2010) The effect of alumina water nanofluid particle size on thermal conductivity. Appl Therm Eng 30(14 15):2213–2218
22. Hemmat Esfe M, Saedodin S, Wong T, Crivoi A (2012) Dynamic viscosity measurement in non-Newtonian graphite nanofluids. Nanoscale Res Lett 6(1):560
23. Zhou XF, Gao L (2008) Thermal conductivity of nanofluids: effects of graded nanolayers and mutual interaction. J Phys Papers 103(8):083503
24. Jeong J, Li C, Kwon Y, Lee J, Kim SH, Yun R (2013) Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids. Int J Refrig 36(8):2233–2241
25. Timofoeva EV, Roubort JL, Singh D (2009) Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys 106(1):014304
26. Pastoriza-Gallego M, Lugo L, Cabaleiro D, Legido J, Piñeiro M (2014) Thermophysical profile of ethylene glycol-based ZnO nanofluids. J Chem Thermodyn 73(0):23–30
27. Kleinsteuber C, Feng Y (2011) Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett 6(1):229
28. Mariano A, Pastoriza-Gallego MJ, Lugo L, Mussari L, Piñeiro MM (2015) Co₃O₄ ethylene glycol-based nanofluids: thermal conductivity, viscosity and high pressure density. Int J Heat Mass Transf 85(0):54–60
29. Li X, Zou C, Zhou L, Qi A (2016) Experimental study on the thermo-physical properties of diathermic oil based SiC nanofluids for high temperature applications. Int J Heat Mass Transf 97:631–637
30. Li X, Zou C, Wang T, Lei X (2015) Rheological behaviour of ethylene glycol-based SiC nanofluids. Int J Heat Mass Transf 84(0):925–930
31. Mariano A, Pastoriza-Gallego MJ, Lugo L, Camacho A, Canzoni S, Pineiro MM (2013) Thermal conductivity, rheological behaviour and density of non-newtonian ethylene glycol-based SnO₂ nanofluids. Fluid Phase Equilib 370(0):119–124
32. Duan F, Tong T, Crivoi A (2012) Dynamic viscosity measurement in non-Newtonian graphite nanofluids. Nanoscale Res Lett 7(1):360
33. Pastoriza-Gallego M, Lugo L, Legido J, Piñeiro M (2011) Rheological non-newtonian behaviour of ethylene glycol-based Fe₃O₄ nanofluids. Nanoscale Res Lett 6(1):560
34. Zyla G, Fal J, Gizowska M, Witek A, Cholewa M (2015) Dynamic viscosity of aluminum oxide-ethylene glycol (Al₂O₃-EG) nanofluids. Acta Phys Pol A 128(2):240
35. Raykar VS, Sahoo S, Singh AK (2010) Giant electrorheological effect in Fe₂O₃ nanofluids under low dc electric fields. J Appl Phys 108(3):034306-034306-5
36. Prekas K, Shah T, Soin N, Rangoussi M, Vassiliadis S, Stiores E (2013) Sedimentation behaviour in electrorheological fluids based on suspensions of zeolite particles in silicone oil. J Colloid Interface Sci 401(0):58–64
37. Thirupathi G, Singh R (2014) Magneto-viscosity of MnZn-ferite ferrifluid. Phys B Condens Matter 448:346–348
38. Zyla G, Cholewa M, Witek A (2013) Rheological properties of diethylen glycol-based MgAl₂O₄ nanofluids. RSC Adv 3(18):6429–6434
39. Zyla G, Cholewa M (2014) On unexpected behavior of viscosity of diethylen glycol-based MgAl₂O₄ nanofluids. RSC Adv 4:26057–26062
40. Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 32(9):1679–1684
41. Mondragon R, Segarra C, Jarque JC, Julia JE, Hernondez L, Martinez-Cuenca R (2012) Characterization of physical properties of nanofluids for heat transfer application. J Phys Conf Ser 395(1):012,017
42. Yang L, Du K, Zheng XS (2012) Influence factors on thermal conductivity of ammoniawater nanofluids. J Cent South Univ 19(6):1622–1628
43. Moustafizur R, Bhuiyan M, Saidur R, Aziz AA (2014) Thermal conductivity variation for methanol based nanofluids. Int J Heat Mass Transf 76(0):350–356
44. Li X, Zou C, Lei X, Li W (2015) Stability and enhanced thermal conductivity of ethylene glycol-based SiC nanofluids. Int J Heat Mass Transf 89:613–619
45. Zyla G (2016) Thermophysical properties of ethylene glycol based yttrium aluminum garnet (Y₃Al₅O₁₂-EG) nanofluids. Int J Heat Mass Transf 97:631–637
46. Jeffrey DJ (1973) Conduction through a random suspension of spheres. Proc R Soc Lond A Math Phys Sci 335(1602):355–367
47. Turian RM, Sung DJ, Hsu FL (1991) Thermal conductivity of ammoniawater nanofluids. J Cent South Univ 19(6):1622–1628
48. Maxwell JC (1892) A treatise on electricity and magnetism, 3rd edn. Oxford University Press, London
49. Jeffrey DJ (1973) Conduction through a random suspension of spheres. Proc R Soc Lond A Math Phys Sci 335(1602):355–367
50. Turian RM, Sung DJ, Hsu FL (1991) Thermal conductivity of granular coals, coal-water mixtures and multi-solid/liquid suspensions. Fuel 70(10):1157–1172