Chemogenetic modulation of sensory neurons reveals their regulating role in melanoma progression

Pedro A. C. Costa¹, Walison N. Silva¹, Pedro H. D. M. Prazeres¹, Caroline C. Picoli¹, Gabriela D. A. Guardia², Aline C. Costa¹, Mariana A. Oliveira³, Pedro P. G. Guimarães⁴, Ricardo Gonçalves¹, Mauro C. X. Pinto⁵, Jaime H. Amorim⁶, Vasco A. C. Azevedo⁷, Rodrigo R. Resende³⁸, Remo C. Russo⁹, Thiago M. Cunha⁸, Pedro A. F. Galante², Akiva Mintz⁹ and Alexander Birbrair¹,⁹*

Abstract
Sensory neurons have recently emerged as components of the tumor microenvironment. Nevertheless, whether sensory neuronal activity is important for tumor progression remains unknown. Here we used Designer Receptors Exclusively Activated by a Designer Drug (DREADD) technology to inhibit or activate sensory neurons’ firing within the melanoma tumor. Melanoma growth and angiogenesis were accelerated following inhibition of sensory neurons’ activity and were reduced following overstimulation of these neurons. Sensory neuron-specific overactivation also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of melanoma biopsies revealed that increased expression of sensory neurons-related genes within melanoma was associated with improved survival. These findings suggest that sensory innervations regulate melanoma progression, indicating that manipulation of sensory neurons’ activity may provide a valuable tool to improve melanoma patients’ outcomes.

Keywords: Sensory neurons, Tumor microenvironment, Melanoma, Neuronal activity, Chemogenetics

Introduction
Melanoma represents one of the leading causes of cancer-related deaths, being the most aggressive skin cancer type worldwide [124]. It emerges from molecularly altered melanocytes, which are the producers of melanin in the skin [48]. These cancer cells are embedded within the cutaneous microenvironment where they reside and interact dynamically with its constituents during disease progression [15, 54]. Understanding the interplay between the different components within the tumor microenvironment is crucial for the success of therapeutic applications, since each component can be influenced by the others, resulting in impacts on the cancer cells [9, 10, 45, 52, 88, 106]. The presence of individual nerve fibers within the tumor microenvironment was ignored for many years as they are difficult to detect in classical histology. For a long time, only large nerve trunks were detected within tumors, and they were always associated with perineural invasion of cancer cells, a process in which these cells grow and migrate along native passive tissue nerves [84]. Recently, a different phenomenon was described, by which the tumor itself is infiltrated pro-actively by newly developed peripheral nerve projections [32, 36, 71, 89, 108, 115, 116, 121, 154, 158].

To understand how peripheral innervations behave within the tumors, functional studies, in which...
intra-tumoral nerves were eliminated, have relied on the surgical or pharmacological manipulation of nerves. Each such strategy, however, has its disadvantages. Peripheral nerves contain mixtures of different nerve fiber types [41, 82], and therefore, surgical denervation of a peripheral nerve leads to the disruption of all the nerve fibers present within that specific nerve [101]. Consequently, the role of particular nerve projections in the tumor cannot be isolated, as other nerve fibers are also affected. On the other hand, pharmacological drugs cause systemic reactions in several organs and indirect effects on unexpected targets. Thus, achieving the neuronal type-specificity that is needed to understand the role that specific nerve fibers perform in the tumor microenvironment is difficult with these methods, and the observed outcomes could be due to the unwanted effects on other innervations in addition to the targeted neurons. Wherefore, conclusions drawn from studies based on surgical or pharmacological denervation may be imprecise. These are some of the reasons, in addition to tumor tissue specificity, for some of the ambiguity about the roles of specific nerve fibers in cancer behavior. Accordingly, contradictory reports have been published: while some studies have claimed that certain neuronal types promote cancer progression [57, 158], others concluded that they suppress tumorigenesis [32, 116].

Therefore, to study the role of specific innervations, these should be directly manipulated in a nerve-fiber-type-specific manner. Recently, this approach became possible with the advent of powerful genetically-based tools, that precisely allow the targeting and elimination of specific peripheral nerve fibers for studying their functions in vivo [13]. Our group showed that specific genetic depletion of sensory neurons promotes melanoma growth [108]. Nevertheless, genetic ablation of these innervations may result in the generation of a pro-inflammatory microenvironment, secondary to cell death in the site where the neurons were ablated (Männ et al. 2016; Christiaansen, Boggiatto, and Varga 2014; Bennett et al. 2005), which itself is strongly tumor growth promoting [49, 67], and can affect cancer cells’ behavior [50]. Thus, it remains unclear which facets of the sensory neuron-ablated tumor phenotype are due to the loss of sensory innervations, rather than indirect effects due to the local inflammation caused by the death of these neurons. To circumvent this issue, in the present study, we used chemogenetics, an experimental strategy that has empowered neuroscience studies [131, 147], to determine the precise role of sensory neurons in the regulation of melanoma progression. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) enable the silencing or overactivation of genetically defined neuronal populations upon binding to small-molecule designer drugs [119]. This approach allowed for highly selective and non-invasive modulation of sensory neurons’ activity in the tumor. Here, we revealed that silencing of sensory neurons’ activity, without ablating them, is sufficient to trigger increase in melanoma growth and in intra-tumoral new blood vessel formation. In contrast, chemogenetic stimulation of sensory neurons counteracted melanoma progression, by regulating tumoral growth, angiogenesis and immunosurveillance. Our results provide unequivocal evidence of the influence of sensory neurons in cancer progression.

Materials and methods

Animals

Generation of Nav1.8-Cre mice, in which Nav1.8 + sensory neurons express Cre recombinase, have been previously described. These animals were obtained from Infrafrontier (EMMA ID: 04 582). R26-LSL-hM4Di-DREADD (hM4Di) and CAG-LSL-hM3Dq-DREADD (hM3Dq) mice were purchased from the Jackson Laboratory (jax) (Bar Harbor, ME).

To silence neuronal activity in sensory innervations in vivo, Nav1.8-Cre mice were crossed with R26-LSL-hM4Di-DREADD (hM4Di), a mouse line conditionally expressing a Gi-coupled engineered human muscarinic 4 receptor (hM4Di) [159]. hM4Di is a mutant G protein-coupled receptor which induces the canonical Gi pathway following binding to the pharmacologically inert drug clozapine-N-oxide (CNO). In Nav1.8-Cre+/hM4Di + mice, upon removal of the loxP-stop-loxP cassette by Cre recombination, the Gi-coupled hM4Di is expressed only in Nav1.8 + sensory neurons. Thus, sensory neuronal activity can be silenced by the administration of CNO. Nav1.8-Cre-/hM4Di + mice were used as controls.

To promote sensory neuron overactivation in vivo, Nav1.8-Cre mice were crossed with CAG-LSL-hM3Dq-DREADD (hM3Dq) animals, a mouse line conditionally expressing an evolved Gq protein-coupled receptor (hM3Dq), to generate Nav1.8-Cre+/hM3Dq + mice. In Nav1.8-Cre+/hM3Dq + animals, upon removal of loxP-stop-loxP cassette by Cre recombination, the Gq-coupled hM3Dq is expressed specifically in Nav1.8-sensory neurons. hM3Dq is a mutant G protein-coupled receptor which induces the canonical Gq pathway following the binding to CNO. Thus, sensory neuron firing can be chemically induced by administration of CNO. Nav1.8-Cre-/hM3Dq + animals were used as controls.

All animal care and experimental procedures were approved by the Ethics Animal Care and Use Committee (CEUA), in accordance with the Guide for the Care and Use of Laboratory Animals from the Federal University of Minas Gerais. All colonies were housed in
a pathogen-free animal facility of the Department of Pathology, UFMG, under controlled light cycle (12:12-h light/dark cycle) and fed ad libitum. Age-matched 8- to 12-week-old mice were used for all experiments. All experiments used mice heterozygous for both NaV1.8-Cre and DREADD receptors.

Cell culture

Murine B16-F10 melanoma is a common cell line that naturally originated in melanin-producing epithelia of C57BL6 mice. These cells were originally obtained from ATCC (USA), and were used to study melanoma development in vivo. The cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% (v/v) fetal calf serum/2 mM L-glutamine/100 U/ml penicillin/100 μg/ml streptomycin. The cells have been tested and found negative for mycoplasma. Cells were cultured in a humidified atmosphere of 95% air and 5% (v/v) CO2 at 37°C.

Melanoma tumor implantation

B16-F10 cells were suspended in PBS and examined for viability using trypan blue staining. B16-F10 cells were used for transplantation only when more than 90% of cells were viable. For subcutaneous injection, the skin of all mice at an age of 8-12 weeks was shaved at the place of application. 10^5 cells in 100 μL were injected subcutaneously into the right flank of each mouse and the growth of the tumors was monitored until sacrifice. Growth of the tumors was assessed over time with a caliper as previously reported [12]. For determination of tumor volume, tumor-bearing animals were anesthetized with isoflurane in O2 by manually restraining the mice and placing their heads in in-house-built nose cones. Tumors were removed 16 days after transplantation and weighted. Length (L) and width (W) were calculated to measure tumor volume (V) using the formula V = 0.5 × (L × W)2 [40]. Tumor area was determined using calibrated photographs of each tumor using Fiji software®, version 1.53 (National Institute of Health, Bethesda, MD).

CNO treatment

The DREADD ligand clozapine-N-oxide (CNO) (1 mg/kg in saline) (Sigma-Aldrich, St Louis, MO, USA) [7] was administered intra-peritoneally using a 25-gauge needle daily to test the effect of neuronal inhibition or activation on melanoma progression in Nav1.8-Cre+/hM4Di+ and Nav1.8-Cre+/hM3Dq+ animals, respectively. Control Nav1.8-Cre-/hM4Di+ and Nav1.8-Cre-/hM3Dq+ mice were similarly injected with CNO.

Capsaicin-induced spontaneous behavior

To confirm sensory neurons inhibition efficiency, following acclimation, Nav1.8-Cre-/hM4Di+ and Nav1.8-Cre+/hM4Di+ mice were injected with an intra-plantar subcutaneous dose of 10 μl of capsaicin (1 μg/10 μl; Sigma-Aldrich). A video recording was taken for 5 min post-capsaicin injection. The time that the animals spent performing spontaneous behaviors of licking, lifting, and flicking the paw were measured for 5 min after injection of capsaicin from these videos.

Immunohistochemistry and microscopy

Adult mice were deeply anesthetized with isoflurane and transcardially perfused with saline followed by 4% buffered paraformaldehyde (PFA, pH = 7.4). After dissection, B16F10 tumors were fixed overnight at 4°C in 4% buffered paraformaldehyde, incubated overnight at 4°C with 30% sucrose diluted in PBS, embedded and frozen in optimal cutting temperature compound (OCT; Tissue-Tek). Embedded tumors were stored at −80°C. 20 μm cryosections were cut and blocked for 2 h in 3% BSA in PBS + 0.5% Triton and immunostained with the following antibodies: CD31-PE (dilution 1:100) (BioLegend), Ki67 (dilution 1:100) (BD Biosciences), and anti-Guinea pig-AlexaFluor-647 (1:1000) (Life Technologies) [10, 23]. After this, the sections were washed with PBS containing 4'/6-diamidino-2-phenylindole (DAPI, 5 μg/ml, Invitrogen) and mounted using Dako fluorescence mounting medium (Dako, Santa Clara, CA). Stained tumor sections were imaged and analyzed by confocal microscopy using an inverted Zeiss LSM 880 confocal microscope (Oberkochen, Germany). CD31 area and the number of Ki67+ cells were quantified using Fiji software®, version 1.53 (National Institute of Health). Multiple random fields of each section were used for quantification.

Tumor-infiltrating leukocytes immunophenotyping and intracellular cytokine measurement

Tumors, their draining lymph nodes and non-tumor draining lymph nodes were harvested. Tissues were macerated and filtrated trough cell strainers of 40 μm (Falcon) to isolate the cells used for immunophenotyping. Cells were washed in phosphate-buffered saline (PBS), incubated with Live/Dead solution (Invitrogen), for dead cell exclusion, and with monoclonal antibodies, washed, fixed, and permeabilized (FoxP3 staining buffer set, eBioscience) according to manufacturer’s instructions. Antibodies are listed in Table 1. Acquisition was realized on a LSR-FORTESSA. For analyses, to exclude debris, combinations of fluorochromes was done, to remove doublets a forward scatter area (FSC-A) versus forward scatter height (FSC-H) gate was used, and then cells were gated in function of time versus FSC-A to
Table 1 Antibodies used in flow cytometry

Antigen	Fluorochrome	Clone	Company
CD3	eFluor450	145-2C11	Thermofisher
CD8a	eFluor 450	S3–6.7	Thermofisher
CD11c	eFluor 450	N418	Thermofisher
LIVE/DEAD	Acqua		Thermofisher
Streptavidin	Pacific Orange		Thermofisher
CD45	Super Bright 600	30-F11	Thermofisher
TCR gamma/delta	Super Bright 645	eBioGL3	Thermofisher
CD4	Alexa Fluor 488	GK1.5	Thermofisher
F4/80	FITC	BM8	Hyclut
NK1.1	PE-eFluor 610	PK136	Thermofisher
CD8a	PerCP-Cyanine5.5	S3–6.7	Thermofisher
Ly-6G	PerCP-eFluor 710	1A8-Ly6g	Thermofisher
IL-17A	PerCP-Cyanine5.5	eBio17B7	Thermofisher
CTLA-4	PE-Cyanine7	UC10-4B9	Thermofisher
FoxP3	Alexa Fluor 647	3G3	Thermofisher
CD3e	Cyanine5	500A2	Thermofisher
Ki67	AlexaFluor 700	SolA15	Thermofisher
PD-1	APC-eFluor 780	J43	Thermofisher
Ly-6C	APC-eFluor 780	HK1.4	Thermofisher
IFN-γ	APC-eFluor 780	XMG1.2	Thermofisher
CD11b	Biotin	M1/70	Biolegend

avoid a possible interference of flux interruptions. Only live leukocytes were used using a Live/Dead gate versus CD45. We assessed different immune cell subpopulations based on molecular markers of each cell subset: CD4 + T cells (CD4+/CD3+), CD8 + T cells (CD8+/CD3+), γδ T cells (CD3+/CD4−/CD8−/TCRγδ+), NK cells (CD3−/NK+), regulatory T cells (Foxp3+/CD4+/CD3+), NK cells (CD3−/NK+), neutrophils (CD11b+/CD11c−/Ly6C−/Ly6G+), PMN/MDSCs (CD11b+Ly6C−/Ly6G+) and dendritic cells (CD11b−/CD11c+/Ly6C+/Ly6G−). In each T-cell subset, frequencies of cells expressing checkpoint inhibitors CTLA-4 and PD1 were evaluated. Cytokine analyses in lymphocytes from the tumor microenvironment and lymph nodes were done using intracellular staining. Briefly, cells were isolated from tumor samples and lymph nodes and cultivated for 4 h at 37 °C in 10% FBS RPMI supplemented with 2 mM L-glutamine, 50 units/mL penicillin, and 50 μg/mL streptomycin, in the presence of Brefeldin A (ThermoFisher) and Monensin (ThermoFisher). Following this, cells were washed in FACS buffer and stained for cell surface markers. Cells were then fixed for 35 min at 4 °C with eBiosciences Cytofix/Cytoperm buffer and, subsequently, washed once in eBioscience Perm/Wash buffer. Then, cells were stained for 45 min at 4 °C with anti-IFN-γ and anti-IL-17 (Table 1) antibodies diluted in eBioscience Perm/Wash [78]. Cells were washed twice and the data was acquired. Ki67 is a nuclear factor transcript in the late G1, S, G2, and M of cell cycle, therefore marks proliferating cells [44, 128]. Thus, we evaluated proliferation in viable CD45 negative cells, suggesting tumoral proliferation. GraphPad Prism V7.0 (GraphPad software) and FlowJo V10.4.11 (TreeStar) were used for data analysis and graphic presentation.

Quantification of CGRP within tumors

Tumor samples from Nav1.8-Cre+/hM4Di+ and Nav1.8-Cre+/hM3Dq+ animals, as well as from their respective controls (Nav1.8-Cre-/hM4Di+ and Nav1.8-Cre-/hM3Dq+) were analyzed to measure the amount of CGRP using commercially available Sandwich-CGRP ELISA kit purchased from Elabscience (Catalog # E-EL-M2744). Briefly, tumor pieces were weighed and then homogenized in PBS (0.01 M, pH = 7.4) with a glass homogenizer on ice. The homogenates were centrifuged for 5 min at 5000 × g at 4 °C to get the supernatant. ELISA of CGRP were performed according to manufacturer’s instructions. After ELISA, Optical Density (OD) was measured using Varioskan Flash (Thermo) set at 450 nm.

In silico analysis

RNA sequencing count data of 103 Skin Cutaneous Melanoma (SKCM) patients was downloaded from The Cancer Genome Atlas (TCGA) repository (https://portal.gdc.cancer.gov/). Differential gene expression analyses were performed between samples of alive and dead patients (considering a 5-year interval) using DESeq2 [83]. We stratified patients in these two groups, alive or dead, based on their vital status in a 5-year interval of their tumor diagnosis (clinical data available at TCGA and curated by Liu et al. (2018) [85]. Genes with absolute log2(Fold-change) ≥ 1 and False Discovery Rate (FDR) adjusted P-value < 0.05 were considered differentially expressed. To identify biological processes associated with genes differentially expressed, we performed a Gene Ontology (GO) enrichment analysis using ShinyGO [42]. We used the STRING database [132] (parameters: full STRING network, considering only text-mining, databases and experiments interactions with score > 0.400, and only genes with 3 or more interactions) and Cytoscape (https://cytoscape.org/) to construct protein–protein interactions (PPIs) among our manually curated list of 34 gene related to sensory neurons selected based on the literature [29, 37, 51, 114, 141, 144]. The set of 18 genes showing at least two PPI interactions are shown. For the remaining analyses, RNA sequencing counts were first Transcripts Per Million (TPM)-normalized using a local R script. To identify a gene signature associated with SKCM cancer patient survival we used Reboot [31] with parameters “-B 100 -G 5 -P 0.3 -V 0.01.”
Briefly, Reboot finds genes associated with cancer patient prognosis using multivariate penalized Cox regression combined with a bootstrap approach. In the first step of Reboot, it produces regression coefficients (numerical values) that determine the contribution of each submitted gene to patients’ survival. These coefficients may be positive or negative values indicating that high expression of a particular gene potentially contributes to worse or better prognosis, respectively. Once these coefficients are produced, Reboot then calculates the score of each patient (sample) as the sum of each gene coefficient multiplied by the corresponding gene expression level in that patient. Finally, when all patients’ scores are calculated, we then stratify them into groups with high/low scores based on the median score of all patients to create the survival curve (Kaplan–Meier). For further information, see [31]. SCN10A box plots and survival curves were created using R (https://www.r-project.org/) scripts.

Statistical analysis

Graphs were plotted using GraphPad Prism 7 (San Diego, CA). Shapiro-Wilk normality test was performed, and unpaired t test was used to determine statistical significance.

Results

Chemogenetic inhibition of Nav1.8 + neurons accelerates melanoma progression

We have previously demonstrated that melanomas are infiltrated by Nav1.8 + sensory innervations, and that those tumors grow slower when these neurons are pharmacologically or genetically ablated [108]. However, these investigations were performed using Nav1.8-Cre+/DTA + mice, in which a diphtheria toxin fragment A is constitutively activated in Nav1.8 + sensory neurons, resulting in the toxin induced-death of these cells. Therefore, this technique lacks temporal control of neuronal ablation, and enables compensatory effects during the development of these animals. Importantly, the approach by which specific neurons are ablated from the tissue microenvironment is also limited because of the secondary consequences, such as inflammation, caused in the tissue where sensory neurons are eliminated. Thus, it remains unclear whether these damage-induced changes in the tissue may influence the observed cancer outcomes. Here, we applied a chemogenetic approach to specifically inhibit the activity of Nav1.8-expressing sensory neurons without killing these cells. We used DREADDs to specifically control sensory neuron activity. DREADDs are derived from different types of mutated muscarinic receptors that have been engineered to lose affinity to their endogenous ligand acetylcholine [5], but to gain responsiveness to a synthetic ligand, clozapine-N-oxide (CNO). Inhibitory DREADDs (hM4Di) elicit an intracellular cascade that results in the silencing of neuronal activity [113], without changing the number of innervations as previously reported [68]. This method allows for the selective silencing of specific types of neurons in vivo without physical manipulation or destruction in the tissue. DREADDs were expressed specifically in sensory neurons, using a transgenic murine approach: mice carrying the construct encoding for Cre-dependent expression of hM4Di were crossed to Nav1.8-Cre animals. In the resulting mice, Nav1.8-Cre+/hM4Di +, only Nav1.8 + sensory neurons expressed inhibitory DREADDs. As controls in this study, we used littermate mice carrying Cre-dependent hM4Di, but lacking the Cre gene (Nav1.8-Cre-/hM4Di +) (Fig. 1A). This allowed us to control for any potential side effects from CNO administration.

In order to ascertain that the expression of DREADD receptors was driven to intra-tumoral Nav1.8-expressing neurons in Nav1.8-Cre+/hM3Di + mice, we used the solid tumor model B16F10. We assessed tumor sections from melanoma grown in Nav1.8-Cre+/TdTomato + mice and detected Nav1.8 + neurons expressing TdTomato present within the tumor microenvironment (Fig. 1B). To validate sensory neuronal inhibition following daily CNO injection, we used a behavioral test to evaluate the sensitivity to capsaicin, confirming the silencing of sensory neurons, as previously described [2]. Indeed, Nav1.8-Cre+/hM4Di + animals spent less time (25.53 ± 2.27 s) licking their paws after intra-plantar injection of capsaicin, compared to control animals (56.53 ± 3.92 s) (Fig. 1C). To analyze the effect of sensory neurons silencing on tumor growth, we subcutaneously transplanted B16F10 cells to the lower right flank of both inhibitory DREADD-expressing mice (Nav1.8-Cre+/hM4Di +) and their controls (Nav1.8-Cre-/hM4Di +). Following cancer cell injection, we treated the animals daily with CNO to induce sensory neuronal activity inhibition (controls were also treated with CNO) (Fig. 1D). After 14 days of continuous sensory inhibition, tumor volume was significantly enhanced in the sensory neuron-silenced mice when compared to the controls (tumor volume was increased from 82.1 ± 29.6 to 319.6 ± 72.8 mm³; Fig. 1E). After 16 days of repeated sensory inhibition, tumor weight was also significantly enhanced in the sensory neuron-silenced mice when compared to the controls (tumor weight was increased from 0.50 ± 0.04 to 0.98 ± 0.23 g; Fig. 1F, G). Animal weights were not affected by sensory inhibition (data not shown).

Increase in neoangiogenesis within melanoma tumors is correlated with worse outcomes in these patients [111]. We detected, in melanoma-bearing animals with silenced sensory neurons, an enhancement in the
Chemogenetic inhibition of neuronal activity in sensory Nav1.8 + nerve fibers triggers melanoma growth. A Schematic diagram of the Nav1.8-Cre+/hM4Di+ experimental mouse model. Cre recombinase directs the expression of hM4Di specifically to sensory neurons in those mice. After the administration of CNO to those mice, neuronal activity in sensory neurons is inhibited. B Tumor-infiltrating sensory neurons are targeted in Nav1.8-Cre mice. 1 x 10^5 B16F10 melanoma cells were subcutaneously injected into Nav1.8-Cre/TdTomato mice, and tumor tissues were surgically removed 16 days later. Representative image of a Nav1.8-Cre/TdTomato mouse tumoral section with sensory nerve fibers infiltrating the tumor labelled with TdTomato fluorescence (red) and nuclei with DAPI (blue). C Capsaicin-induced spontaneous behavior test corroborates chemogenetic inhibition of sensory Nav1.8 + nerve fibers in Nav1.8-Cre+/hM4Di+ mice after CNO treatment. Column charts show the licking time after capsaicin application of Nav1.8-Cre−/hM4Di+ (n=5) and Nav1.8-Cre+/hM4Di+ (n=5) animals. D Representation of the protocol for subcutaneous allograft melanoma growth. 1 x 10^5 B16F10 melanoma cells were subcutaneously injected into Nav1.8-Cre−/hM4Di+ (n=5) and Nav1.8-Cre+/hM4Di+ (n=5) mice, followed by tumors removal for analysis after 16 days. CNO was daily intra-peritoneal injected at 1 mg/kg. E Development curve of tumor growth from Nav1.8-Cre−/hM3Dq+ and Nav1.8-Cre+/hM3Dq+. Tumor volumes were assessed over time with a caliper. F Representative macroscopic image of B16F10 melanoma after dissection, left panel (Nav1.8-Cre−/hM4Di+) and right panel (Nav1.8-Cre+/hM4Di+). G Tumor weight. (Nav1.8-Cre−/hM4Di+: 0.50 ± 0.04 g; Nav1.8-Cre+/hM4Di+: 0.98 ± 0.23 g). Data are shown as mean ± SEM. Unpaired t test (ns P > 0.05; *P < 0.05; **P < 0.01)
intra-tumoral blood vessels’ area (from 0.02±0.00 to 0.03±0.01 µm²) (Fig. 2A, B). Expression of Ki67 is used to determine the proliferation rate of malignant cancer cells [139], which is also associated with melanoma aggressiveness [76]. We found that genetic silencing of sensory innervations led to an increase in the proliferation rate within the melanoma (from 2074±55.32 to 2454±168.4 Ki67+ cells per µm²) (Fig. 2C, D). We also observed after inhibition of sensory neurons firing a decrease in tumor-infiltrating CD4+ T cells (from 4.47×10⁷ ± 1.15×10⁷ to 1.73×10⁷ ± 7.92×10⁶ cells per mg of tumor) (Fig. 2E), in special, in IL-17-producing CD4+ T cells (from 1.63×10⁷ ± 1.30×10⁶ to 3.77×10⁶ ± 3.27×10⁶ cells per mg of tumor) (Fig. 2F),

Fig. 2 Chemogenetic inhibition of neuronal activity in sensory Nav1.8+ innervations increases intra-tumoral proliferation and angiogenesis, and blocks anti-tumoral immune response. 1×10⁵ B16F10 melanoma cells were subcutaneously injected into Nav1.8-Cre−/hM4Di+ (n=5) and Nav1.8-Cre+/hM4Di+ (n=5) mice, followed by tumors removal for analysis after 16 days. A Representative immunofluorescence images of tumors labelled for endothelial cells (CD31; red) to identify blood vessels and nuclei (DAPI; blue). B Quantification of angiogenesis in melanomas by blood vessel area. C Representative immunofluorescence images of tumors labelled for Ki67 (Ki67; green) to identify cell proliferation and nuclei (DAPI; blue). D Quantification of proliferation in melanomas by the counting of Ki67+ cells per µm². Absolute number of CD4+ E and CD8+ G T cells from the melanomas of B16F10–inoculated mice. F Graph shows absolute numbers of CD4+ T cells producers of IL-17. IL-17 levels were measured in cells isolated from tumors of B16F10–inoculated Nav1.8-Cre+/hM4Di+ and Nav1.8-Cre−/hM4Di+ animals. Data are shown as mean ± SEM. Unpaired t test (ns P>0.05; *P<0.05)
and a decrease in melanoma-infiltrating CD8+ T cells (from $3.27 \times 10^6 \pm 5.22 \times 10^5$ to $7.62 \times 10^5 \pm 6.78 \times 10^5$ cells per mg of tumor) (Fig. 2G). Our results indicate that inhibition of neuronal activity in sensory neurons promotes melanoma tumor advancement.

Chemogenetic activation of hM3Dq excitatory DREADD receptors in Nav1.8-+ neurons promotes melanoma regression

As we found that inhibition of sensory neuron activity promotes melanoma advancement, we hypothesized that increasing sensory excitability would result in the reverse: blockage of melanoma progression. To test this hypothesis, we used again chemogenetics, by which we induced the expression of excitatory hM3Dq DREADDs [127] only in Nav1.8+ sensory neurons. We crossed Nav1.8-Cre mice to a mouse line with a Cre-dependent evolved Gq protein-coupled receptor (hM3Dq) expression. In the resulting Nav1.8-Cre+/hM3Dq+ mice, upon removal of loxP-stop-loxP cassette by Cre recombination, the Gq-coupled hM3Dq is expressed specifically in Nav1.8-sensory nerve fibers. Sensory neurons in those mice can thus be overactivated by the administration of CNO. It has been shown previously that Gq-DREADD activation by CNO increases neuronal activity in the targeted neurons, including sensory neurons [68, 90], without changing the number of neurons [110].

To evaluate the role of sensory stimulation on tumor growth, we transplanted subcutaneously B16F10 melanoma cells to the lower right flank of both stimulatory DREADD-expressing mice (Nav1.8-Cre+/hM3Dq+) and their controls (Nav1.8-Cre-/hM3Dq+). Following the cancer cell implantation, we treated mice daily with CNO to induce Nav1.8+ sensory neuron activation (controls were also treated with CNO) (Fig. 3A, B). After repeated sensory neuron activation, melanoma development was decreased in the sensory neuron-over-activated mice when compared to the controls (at day 14, tumor volume per body weight was reduced from 3.51 ± 0.89 to $0.71 \pm 0.20 \text{ mm}^3$; at day 16, tumor weight was reduced from 0.38 ± 0.07 to $0.17 \pm 0.03 \text{ g}$; Fig. 3C–F). Animal weights were not affected by genetic stimulation of sensory neurons in melanoma-bearing mice (data not shown). Moreover, genetic overactivation of sensory neurons led to a decrease in proliferating cells within the tumor (from 3050 ± 203 to 1292 ± 367 Ki67+ cells per μm^2, analyzed by immunohistochemistry) (Fig. 3G, H), corroborated by flow cytometry analysis of CD45- cells for Ki67 expression (the was a decrease from 8.13 ± 1.00 to $5.07 \pm 0.70\%$ of CD45-/Ki67+ cells within the population of CD45- cells) (Fig. 3I). Additionally, there was a decrease in the intra-tumor blood vessels' area (from 0.010 ± 0.001 to $0.006 \pm 0.001 \mu\text{m}^2$ of CD31+area / μm^2 of tumor area) (Fig. 3J, K). Our data suggest that increase in neuronal activity in sensory neurons counteracts melanoma development.

Increase in sensory neuron activity affects melanoma immunosurveillance

Functional studies in combination with histological analysis have demonstrated that tumor-infiltrating immune cells modulate melanoma cells' behavior, altering cancer outcomes [38, 72, 79, 83, 112, 130, 133, 134, 152, 153]. Given that sensory neurons may influence immune responses in non-cancer contexts, we sought to probe whether sensory neurons stimulation alters immune surveillance within the tumor.

Accumulating evidence has demonstrated that tumor-infiltrating neutrophils and PMN-MDSCs promote tumor development and progression [21, 39, 65, 107, 136, 138, 140, 150]. Thus, we evaluated whether these cells are affected by sensory neurons' overactivation. We found that the number of melanoma-infiltrating neutrophils and PMN-MDSCs was significantly decreased in the sensory neuron-overactivated mice (Nav1.8-Cre+/hM3Dq+) when compared to the controls (Nav1.8-Cre-/hM3Dq+) (from $12.02 \times 10^6 \pm 3.45 \times 10^6$ to $4.69 \times 10^7 \pm 7.10 \times 10^6$ PMN-MDSCs per mg of tumor; and from $10.45 \times 10^7 \pm 3.70 \times 10^7$ to $2.78 \times 10^7 \pm 5.65 \times 10^6$ neutrophils per mg of tumor).
(Fig. 4A, B). On the other hand, we found that the number of tumor-infiltrating dendritic cells, which counteract the proliferation of melanoma cells [137], was significantly increased (from $5.53 \times 10^7 \pm 8.80 \times 10^6$ to $1.07 \times 10^8 \pm 2.27 \times 10^7$ dendritic cells per mg of tumor) (Fig. 4C).

Recent breakthroughs in cancer immunotherapy have revealed the remarkable ability of the immune system...
to fight different types of cancers, including melanoma. The phenotypes and numbers of prevalent tumor-infiltrating lymphocytes are predictive of response to immunotherapy and key modulators of disease progression. Thus, we examined how tumor-infiltrating lymphocytes are affected by sensory neurons’ overstimulation. We detected an increase in tumor-infiltrating CD4+ T cells (from $2.91 \times 10^6 \pm 1.04 \times 10^6$ to $1.09 \times 10^7 \pm 2.92 \times 10^6$ cells per mg of tumor), CD8+ T cells (from $8.94 \times 10^6 \pm 1.60 \times 10^6$ to $1.96 \times 10^7 \pm 5.20 \times 10^6$ cells per mg of tumor), γδ T cells (from $31.76 \times 10^7 \pm 7.32 \times 10^7$ to $74.14 \times 10^7 \pm 20.40 \times 10^7$ cells per mg of tumor), NKT cells (from $16.34 \times 10^7 \pm 4.6 \times 10^7$ to $34.92 \times 10^7 \pm 10.42 \times 10^7$ cells per mg of tumor) and NK cells (from $1.72 \times 10^7 \pm 2.90 \times 10^6$ to $3.47 \times 10^7 \pm 4.40 \times 10^6$ cells per mg of tumor) (Fig. 4D–H), while regulatory T cells, which mediate immunosuppression in the tumor microenvironment [66], were not altered (Fig. 4I). Immune checkpoint molecules, such as cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed cell death 1 (PD-1), act fine-tuning the intense immune responses that might kill healthy cells [27, 55, 122]. Their expression in cytotoxic T cells may lead to dysfunction of these cells, affecting their effector function [11, 146]. We found that increase in the firing of sensory neurons prevented the increase of immune checkpoint markers of tumor infiltrating CD8+ T cells and CD4+ T cells (Fig. 5 and Additional file 1: Figure 1). The percentage of CTLA-4-expressing CD4+ tumor-infiltrating lymphocytes decreased from 29.43±4.04% in Nav1.8-Cre−/hM3Dq+ (n = 14) to 19.08±2.80% in Nav1.8-Cre+/hM3Dq+ (n = 13) animals (Fig. 5A); similarly, the percentage of PD-1-expressing CD4+ tumor-infiltrating lymphocytes decreased from 15.02±2.62% in Nav1.8-Cre−/hM3Dq+ to 7.85±1.43% in Nav1.8-Cre+/hM3Dq+ mice (Fig. 5B, C). The percentage of PD-1-expressing CD4+ tumor-infiltrating cytotoxic lymphocytes also decreased from 22.03±2.66% in Nav1.8-Cre−/hM3Dq+ to 12.99±3.85% in Nav1.8-Cre+/hM3Dq+ animals (Fig. 5E), while the expression of CTLA-4 did not vary in these cells (Fig. 5D, F). In addition, no differences were found in CTLA-4 and PD-1 expression on γδ T cells (Fig. 5G, H and I), NKT...
cells (Fig. 5, K and L), NK cells (Fig. 5M, N and O) and Treg cells (Fig. 5P, Q and R). Overall, our data suggest that sensory neurons overactivation induces improvement of T cells effector functions within the tumor microenvironment.

It has been reported that CD4+ and CD8+ lymphocytes secreting IL-17 promote melanoma regression [91, 99]. Here, we detected in response to sensory neuron firing an increase in melanoma-infiltrating IL-17-producing CD4+ T cells (from $2.45 \times 10^7 \pm 6.05 \times 10^6$ to
30.78 × 10^7 ± 9.20 × 10^7 cells per mg of tumor) as well as in melanoma-infiltrating IL-17-producing CD8+ T cells (from 5.02 × 10^7 ± 0.90 × 10^7 to 20.08 × 10^7 ± 5.92 × 10^7 cells per mg of tumor) (Fig. 6A). In parallel, we did not detect significant changes in the number of other tumor-infiltrating lymphocytes producing IL-17 or in IFN-γ-producing lymphocytes after sensory neuron overactivation (Fig. 6B). Altogether, our results suggest that sensory neurons induce a Th17-immune response in the melanoma microenvironment.

Lymph nodes are an integral part of the adaptive immune system in our organism and are essential for the effective immune responses. Melanoma draining lymph nodes are influenced by the primary tumor, but may also prime the immune suppressive microenvironment, playing critical roles in promoting cancer immune escape [33, 86, 87, 97]. It is completely unknown whether sensory neuron overactivation may affect the immune cells also within the tumor draining lymph nodes. Herein, we analyzed immune cells from tumor draining and non-tumor-draining lymph nodes from CNO-treated stimulatory DREADD-expressing animals (Nav1.8-Cre+/hM3Dq+) and their controls (Nav1.8-Cre-/hM3Dq+). Tumor draining and non-tumor-draining lymph nodes were isolated from the ipsilateral and contralateral side, respectively, of the implanted melanoma (Fig. 7A, B). We found that the effect of sensory neurons stimulation in tumor draining lymph nodes mimics the immune response within the primary tumor, but not in non-tumor-draining lymph nodes. In the tumor-draining lymph nodes, we found an increase in the number of CD8+ cytotoxic T cells after sensory neurons’ overstimulation (from 13.68 × 10^7 ± 3.50 × 10^7 to 22.41 × 10^7 ± 2.17 × 10^7 cells per mg of tumor) (Fig. 7C); while we did not detect any differences in the numbers of T cells in the tumor non-draining lymph nodes (Fig. 7D). These data indicate a possible priming effect of tumor on the adjacent draining lymph nodes.

We also observed, in the tumor-draining lymph nodes, increases in IFN-γ-producing CD4+ T cells (from 8.31 × 10^6 ± 2.65 × 10^6 to 1.94 × 10^7 ± 3.36 × 10^6 cells per lymph node), in IFN-γ-producing NK cells (from 4.72 × 10^4 ± 2.46 × 10^4 to 8.44 × 10^5 ± 2.22 × 10^5 cells per lymph node), and in IFN-γ-producing NKT cells (from 2.38 × 10^6 ± 4.27 × 10^5 to 1.28 × 10^7 ± 1.64 × 10^6 cells per lymph node), and in IL-17-producing CD8+ T cells (from 1.36 × 10^5 ± 5.57 × 10^4 to 4.77 × 10^5 ± 1.19 × 10^6 cells per lymph node), in IFN-γ-producing γδ T cells (from 2.27 × 10^6 ± 8.55 × 10^5 to 1.03 × 10^7 ± 3.22 × 10^6 cells per lymph node), and in IFN-γ-producing NK cells (from 1.80 × 10^5 ± 4.70 × 10^4 to 6.82 × 10^5 ± 1.53 × 10^5 cells per lymph node) (Fig. 7E). In tumor non-draining lymph nodes, we detected increases in IFN-γ-producing CD4+ T cells (from 5.73 × 10^6 ± 2.17 × 10^6 to 1.92 × 10^7 ± 4.23 × 10^6 cells per lymph node), in IFN-γ-producing CD8+ T cells (from 1.36 × 10^5 ± 5.57 × 10^4 to 4.77 × 10^6 ± 4.23 × 10^5 cells per lymph node), in IFN-γ-producing γδ T cells (from 2.27 × 10^6 ± 8.55 × 10^5 to 1.03 × 10^7 ± 3.22 × 10^6 cells per lymph node), and in IFN-γ-producing NK cells (from 1.80 × 10^5 ± 4.70 × 10^4 to 6.82 × 10^5 ± 1.53 × 10^5 cells per lymph node) (Fig. 7F). Our data suggest that lymphocytes at the lymph nodes may be contributing to the response against the melanoma observed within the tumor microenvironment after sensory neurons’ overactivation as both, IFN-γ and IL-17, may contribute to enhance the anti-tumoral response in the context of melanoma [92, 109, 151]. Altogether, our data suggest that
High expression of genes related to sensory neurons correlates with best prognosis in human melanoma patients

In order to investigate our findings also in human tumors, we analyzed The Cancer Genome Atlas (TCGA) samples

sensory neurons stimulation alters immune surveillance that impacts melanoma development.
from 103 Skin Cutaneous Melanoma (SKCM) patients. First, we stratified SKCM patients in two groups, alive or dead based on a 5-year interval. Next, we searched for differentially expressed genes between these groups. We found 112 up-regulated and 195 down-regulated genes (|log2(Fold change)| ≥ 1 and adjusted P-value < 0.05; Table 2). Next, we performed a Gene Ontology (GO) analysis of Biological Processes (BP) in which these genes are involved. The up-regulated genes set are enriched for three biological processes, while the down-regulated genes are enriched to a wide variety of processes (Fig. 8A; Table 3). Curiously, for the former (up-regulated genes), two out of three Biological Processes represent nervous system development (Fig. 8A), indicating the importance of neuronal networks in melanoma outcomes. Next, we investigated the interactions (and putative regulation) of 34 sensory neurons-related genes which were selected from the literature [29, 37, 51, 114, 141, 144] (Table 4).

Figure 8B shows a strong connection among 18 of these genes, suggesting that they work on the same cellular pathways or cell types. Next, using the expression levels of these 34 gene markers for sensory neurons we investigated their potential to be “a signature” associated with SKCM cancer patient survival. Figure 8C shows that high expression of these genes (lower patient scores) are associated with a better overall survival of SKCM patients. Next, we investigated the expression of these genes in the two sample sets (alive and dead patients). We found that SCN10A, which codifies Nav1.8, a key gene based on which our mouse models target sensory neurons, is more expressed in alive than in dead patients (Fig. 8D). Finally, we investigated the impact of SCN10A expression on SKCM patients’ survival. Figure 8E shows that high expression of SCN10A trends to be associated with a better overall survival of SKCM patients, even without statistical support (P-value = 0.26). Taken together, these results confirm that genes related to nervous system development are enriched in samples from live Skin Cutaneous Melanoma patients. Focusing on gene markers for sensory neurons, we confirmed that these genes are strongly connected, suggesting a synergistic activity, and that the higher expression of some of these genes are associated with a higher overall survival. Strikingly, the high expression of SCN10A is potentially associated with better SKCM patient survival, indicating that the presence of sensory neurons within melanoma counteracts cancer progression. We also found that TCGA samples from tumors with a worst prognosis (dead patients) have an enrichment of genes promoting angiogenesis (Tables 3 and 5; 15 genes related to angiogenesis). We focused on this set of 15 genes related to angiogenesis and we confirmed that they are strongly connected (Additional file 2: Fig. 2), indicating a synergistic function in promoting angiogenesis. Our results indicate that there is an increase in genes related with angiogenesis in tumors with worst prognosis (from dead patients) and a decrease in their expression in tumors from alive patients which show an increased expression of SCN10a, a sensory neuron marker used in this study (Fig. 8C, D, E). By using the CIBERSORT tool [102], we investigated immune infiltrated cells in the same TCGA cohort of alive vs. dead patients (Additional file 3: Fig. 3). CIBERSORT uses gene expression (RNA sequencing data) and support vector regression combined with prior knowledge of expression profiles from purified leukocyte subsets (gene signatures) to produce an estimation of the abundances of immune infiltrated cells subpopulations in a sample. In line with our data presented in this manuscript, we have checked the enrichment of immune infiltrated cells in the tumors of patients alive vs. dead (Additional file 4: Fig. 4). We found an increase of CD4+ T cells, CD8+ T cells, NK cells and dendritic cells in patients with better prognosis (alive). Thus, tumors showing a better prognosis (alive) have an increased infiltration of some key immune cells. Additionally, microarray data evidenced a down-regulation of genes related to the Th17 immune response in melanoma patients (Additional file 5: Fig. 5). These analyses are consistent with the data generated in our mouse models: that the overactivation of sensory innervations in the tumor microenvironment was associated with suppressed melanoma progression. Albeit gene expression in tumor biopsies from human cancer patients is used as a tool to define novel biomarkers and to contribute to prognosis, the obtained data should be also validated by the quantification of sensory neuron-related proteins in human melanoma biopsies and correlation with clinical outcomes in future research.

Discussion

In the present study, we examined how melanoma progression is affected by sensory neurons activity. Our chemogenetic approach revealed that inhibition of sensory activity promotes tumor growth and intra-tumoral angiogenesis. In contrast, excitation of sensory neurons induces melanoma regression with decrease in tumor growth and in new blood vessel formation, as well as a boost in the anti-tumor immune surveillance (Fig. 9). This work indicates that induction of hyperactivation in Nav1.8-expressing sensory neurons represents a potential new therapeutic path in the battle against melanoma.

Just as the role of particular genes in a specific biological process can be examined by evaluating examining the assessable consequences that result from their removal (e.g. using knockout animals), the role of neurons in the tumor microenvironment was previously assessed by eliminating them [32, 36, 71, 89, 108, 115,
Table 2
Analyzes of genes from The Cancer Genome Atlas (TCGA) samples from 103 Skin Cutaneous Melanoma (SKCM) patients

Gene symbol	log2FC	FDR
SLCSA4	4.35910	1.29E-09
VGF	3.26059	1.06E-05
NPPC	3.24826	2.60E-05
LINCO0698	3.76414	3.90E-05
SPACA3	2.67598	1.97E-04
VFOX3A	4.95714	2.21E-04
PRSS16	4.13411	4.15E-04
ARHGAP8	2.75929	4.15E-04
VCX	3.63292	4.28E-04
LINC01287	3.48781	7.19E-04
NGFR	1.99998	1.16E-03
NAT16	2.23940	1.16E-03
RP13-143G15.4	2.26728	1.34E-03
HLA-J	1.67323	1.38E-03
LHPL4	2.80159	2.04E-03
RP11-376N17.4	2.27953	2.10E-03
ZNF689	1.08305	2.33E-03
DCD	6.91950	2.44E-03
SLITRK5	2.38821	2.59E-03
ARPP21	3.84108	2.67E-03
TFAP2B	2.73943	2.68E-03
VIT	2.42509	3.21E-03
HPCAL4	1.70772	3.30E-03
LINN0645	3.54408	4.05E-03
KLHL32	1.29974	4.09E-03
TRIML2	2.32595	4.80E-03
GFAP	2.04141	5.21E-03
MYOZ2	2.33172	6.94E-03
PPY	2.13167	7.88E-03
ARX	2.02055	8.39E-03
LRRTM2	1.75474	8.39E-03
C20o0203	1.95612	8.43E-03
LSMEM2	1.36377	8.43E-03
RNTN	1.74226	8.58E-03
RP11-800C18.3	1.54681	8.89E-03
FOSB	1.08702	9.10E-03
PASD1	4.57206	9.14E-03
UNCO3B8	1.84987	9.14E-03
RP11-469H8.6	2.35144	9.14E-03
BCO1	2.17260	9.08E-03
XKR7	1.93913	1.00E-02
RDH5	1.36688	1.04E-02
PAG1	1.36926	1.10E-02
RPS-907D15.4	1.73346	1.10E-02
AC003092.1	2.31155	1.20E-02
IGH-V-58	3.09550	1.20E-02
FOXG1	3.56195	1.36E-02
GBA3	2.67229	1.39E-02
FOSB	1.08702	9.10E-03

Table 2 (continued)

Gene symbol	log2FC	FDR
FX5G51	1.89383	1.39E-02
BTN1L8	1.87248	1.46E-02
ACH1	1.18749	1.52E-02
KCNJ11	1.81031	1.52E-02
ENPP3P2	1.45231	1.64E-02
CCKBR	2.06353	1.73E-02
PCSK1N	1.87853	1.76E-02
RP1-114G11.5	3.04186	1.76E-02
EFTUD1P1	2.13819	1.77E-02
OR2N1P	5.08848	1.83E-02
CA10	2.21148	1.85E-02
SLCSO5A1	1.55420	1.88E-02
IBSP	1.81676	1.91E-02
RP1-18821.1	3.56590	1.94E-02
MAGEA9	5.10603	1.96E-02
SYP	1.03514	2.15E-02
NBEAP1	1.55393	2.17E-02
RPS-965G21.4	1.14894	2.18E-02
MPZ	1.95997	2.22E-02
RP1-299H22.3	2.95030	2.22E-02
FBXO2	1.34819	2.31E-02
LGSN	2.41190	2.31E-02
RDH8	2.14341	2.32E-02
AC073325.2	1.90901	2.38E-02
GAGE1	3.92238	2.44E-02
MYB	1.16344	2.55E-02
AATK	1.23997	2.63E-02
DOK7	1.48390	2.72E-02
AC068580.7	2.45533	2.72E-02
RP1-360D19.9	1.99056	2.72E-02
HAPLN2	1.51979	2.73E-02
TDRD12	2.24362	3.09E-02
RP1-159H10.3	1.83751	3.18E-02
CHGB	1.62908	3.32E-02
RCN3	1.25033	3.32E-02
RPS-1171110.5	1.33948	3.32E-02
NMRK2	2.15724	3.33E-02
TNN13	1.50305	3.33E-02
DPEP3	1.81124	3.33E-02
DYSL5	2.12990	3.33E-02
ZNF365	1.53513	3.39E-02
KCNQ2	1.98246	3.51E-02
PMP2	2.27248	3.53E-02
HAVCR1	2.17185	3.56E-02
RP1-140K8.5	1.72113	3.72E-02
ROR1-A51	2.03339	3.75E-02
C1QTNF1-A51	1.82857	3.75E-02
WFDCC1	1.74139	3.99E-02
DEFBI126	2.40171	3.99E-02
LBP	1.71514	3.99E-02
Table 2 (continued)

Up-regulated genes in alive x dead

Gene symbol	log2FC	FDR
CDH12	2.39970	3.99E-02
FABP7	2.11963	3.99E-02
MAGEB17	1.73309	3.99E-02
MYBPC1	1.99301	3.99E-02
RP4-764D2.1	1.03824	4.07E-02
CDSL	1.77129	4.21E-02
CPN2	1.81842	4.21E-02
ZNF727	2.20430	4.21E-02
CST1	2.16587	4.35E-02
RP11-9G1.3	2.55148	4.48E-02
LL22NC03-22D1.1	2.49624	4.50E-02
NPFRR1	1.60868	4.54E-02
MYRIP	1.45769	4.54E-02
RP11-369C8.1	2.61906	4.95E-02

Down-regulated genes in alive x dead

Gene symbol	log2FC	FDR
AVPR1A	-2.06066	8.65E-08
KRT16P2	-5.08308	1.00E-07
CHST8	-3.38063	7.38E-07
ST6GAL2	-2.68516	1.74E-06
PRSS35	-3.33395	4.71E-06
SLC8A3	-3.18840	9.15E-06
CRABP1	-3.07142	9.15E-06
HSPB3	-3.24770	2.15E-05
TREGX2	-2.43750	2.15E-05
B3GNT4	-1.77784	2.26E-05
NPTX1	-2.61603	1.97E-04
PI3	-3.60121	2.70E-04
HEYL	-1.67534	2.99E-04
ID3	-1.32736	3.67E-04
ADRB2	-1.81924	3.91E-04
C6orf223	-2.13191	4.15E-04
AJAP1	-1.92423	4.56E-04
CHRNA4	-2.95110	4.69E-04
RHCG	-2.92093	5.10E-04
PART1	-2.14901	5.50E-04
ALOX12	-1.23574	5.50E-04
RSPD3	-1.48997	6.13E-04
GDPD3	-1.74062	7.38E-04
CNFN	-2.84236	8.27E-04
ANO2	-1.70534	9.14E-04
OVOL1	-2.75293	9.14E-04
CLDN4	-2.52180	9.56E-04
GREB1L	-2.33513	1.12E-03
IGLV9-40	-3.84182	1.20E-03
TGM1	-2.85878	1.28E-03
CYSTR1	-2.10472	1.34E-03
LYPD5	-2.27815	1.34E-03

Table 2 (continued)

Down-regulated genes in alive x dead

Gene symbol	log2FC	FDR
CYP19A1	-1.84923	1.41E-03
ACTG2	-1.63424	1.41E-03
ABCC4	-2.12582	1.41E-03
FAM3D	-2.12972	1.41E-03
PAPPS2	-1.50601	1.41E-03
AC124789.1	-2.07689	1.41E-03
RASL11B	-1.54784	1.43E-03
MAFB	-1.28214	1.43E-03
NGF	-1.73693	2.01E-03
COO06116.20	-1.47472	2.01E-03
S100A12	-2.64402	2.10E-03
KLK14	-2.29647	2.39E-03
IL1RN	-2.09008	2.39E-03
B3GNT8	-1.78028	2.39E-03
GPX3	-1.88978	2.39E-03
CDA	-2.22423	2.68E-03
CHN1	-1.30585	2.68E-03
PRSS27	-1.71351	2.68E-03
TMEM79	-1.43089	3.52E-03
NOTCH3	-1.22297	3.57E-03
FGF18	-1.35348	3.80E-03
HGF	-1.19158	4.28E-03
SH3RF3	-1.23159	4.49E-03
KRT37	-4.22818	4.57E-03
SH3RF3-AS1	-1.31293	4.57E-03
ZC3H12A	-1.35742	4.67E-03
TDX4	-1.84817	5.39E-03
CLIC3	-2.31078	5.58E-03
LRRCA4	-1.34142	5.69E-03
NRARP	-1.42862	5.97E-03
B3GNT3	-1.97566	6.61E-03
ELF3	-2.07351	6.73E-03
LRRN2	-1.90993	6.80E-03
NFE4	-2.76901	6.80E-03
KLK10	-2.72909	6.94E-03
LINCO1121	-1.68460	7.15E-03
SDCBP2	-1.48707	7.88E-03
FAM83G	-1.50253	7.88E-03
ZNF469	-1.06394	7.88E-03
ROR2	-1.15831	7.92E-03
LYNX1	-1.75074	7.92E-03
VSIG10L	-1.54237	7.92E-03
PITX1	-2.50531	8.39E-03
PNMA5	-2.07397	8.43E-03
LTB4R2	-1.38009	8.43E-03
GTSF1	-1.95576	8.89E-03
RP3-449H6.1	-2.80745	8.89E-03
PKDCC	-1.47224	9.03E-03
Gene symbol	log2FC	FDR
-------------	-------	-----
C11orf87	-1.86276	9.10E-03
C9orf47	-1.63063	9.10E-03
KLK12	-3.43996	9.10E-03
SPNS2	-1.33949	9.43E-03
TCHH	-1.56077	1.00E-02
ADRA1D	-1.45232	1.01E-02
LINC00675	-2.28274	1.01E-02
GLP1R	-1.93142	1.04E-02
DLX5	-1.61403	1.05E-02
JUP	-1.81687	1.10E-02
GREM1	-1.36182	1.10E-02
FUT2	-1.65558	1.10E-02
FLJ43879	-1.73000	1.10E-02
RP4-530I15.9	-1.37950	1.10E-02
ADAMTS14	-1.15965	1.10E-02
LGALS9C	-1.74166	1.11E-02
RP11-145A3.1	-1.28593	1.20E-02
LINC00689	-2.44100	1.20E-02
RP11-57C13.6	-2.13756	1.20E-02
WNT11	-1.67218	1.23E-02
Sox11	-1.31510	1.27E-02
SMCO2	-1.86262	1.29E-02
ACO10465.4	-1.54674	1.34E-02
RP11-715H19.2	-2.54830	1.45E-02
MALL	-1.65870	1.50E-02
SLP1	-2.56276	1.50E-02
ZNF385B	-1.82165	1.52E-02
AC079305.10	-1.07337	1.52E-02
RARRE1	-1.09119	1.56E-02
C1orf177	-1.80915	1.64E-02
MIR4635	-1.81095	1.68E-02
KCNK12	-1.74033	1.70E-02
CTC-252D6.2	-3.65998	1.75E-02
FGF7	-1.14265	1.76E-02
KRT82	-2.71344	1.76E-02
CTD-2554C21.3	-2.09957	1.76E-02
VNN3	-1.87348	1.94E-02
KRT17P6	-2.54509	1.94E-02
CD36	-1.47332	1.98E-02
ALDH1J1	-1.84277	1.99E-02
KRT25	-3.64328	2.04E-02
GLI5	-1.24797	2.06E-02
SPRR2D	-2.65861	2.06E-02
CEACAM19	-1.48405	2.11E-02
ZNF154	-1.19730	2.12E-02
FBLM1	-1.00682	2.15E-02
OR7E11P	-3.14060	2.15E-02
ZNF185	-1.43741	2.27E-02

Gene symbol	log2FC	FDR
MYOC	-3.14651	2.30E-02
SULT2B1	-2.16618	2.31E-02
PLA2G4E-AS1	-1.49669	2.32E-02
IL36G	-2.54342	2.39E-02
IGKV2-29	-3.58127	2.43E-02
PAD3	-1.60173	2.45E-02
WDR87	-2.67496	2.45E-02
CTD-2555C10.3	-1.62741	2.45E-02
SMPD3	-1.51129	2.63E-02
LYPD3	-2.15151	2.63E-02
SPINK9	-2.18753	2.63E-02
RF3-4OSJ10.2	-1.89008	2.63E-02
KRT17	-2.51044	2.65E-02
RP11-845M18.6	-2.34005	2.70E-02
CPXM2	-1.33321	2.72E-02
GDP2D	-1.69177	2.79E-02
LIN01482	-1.58713	2.84E-02
KRT8B13	-2.24864	3.07E-02
ANGPT2	-1.42767	3.23E-02
TMEM45B	-1.81149	3.23E-02
KLF13	-2.41601	3.23E-02
IGHE	-2.55145	3.23E-02
SPPR2A	-2.94281	3.23E-02
RP11-91J3.3	-1.87453	3.23E-02
CTC-490G23.2	-2.34066	3.32E-02
ADAMTS15	-1.20759	3.33E-02
RHOD	-1.51767	3.33E-02
COL28A1	-1.56903	3.33E-02
RP11-752L20.3	-1.07531	3.33E-02
AC133785.1	-2.02852	3.47E-02
GNA15	-1.37100	3.49E-02
FAM468	-1.22702	3.53E-02
KRT80	-2.07094	3.53E-02
TWIST2	-1.11079	3.53E-02
KRT42P	-2.45179	3.53E-2
PRSS50	-1.86776	3.64E-02
TBPX1	-1.26122	3.69E-2
KRT81	-1.69382	3.75E-02
ALOX12B	-2.41352	3.75E-02
KCNMA1-AS1	-1.82562	3.79E-02
HS3ST3A1	-1.28721	3.84E-02
USP2	-1.07928	3.99E-02
BMP4	-1.23615	3.99E-02
G6PC2	-2.36196	3.99E-02
RP11-169K16.4	-1.98903	3.99E-02
COLBA1	-1.22669	4.09E-02
SIX2	-1.02697	4.09E-02
KRT17P2	-2.21877	4.21E-02
Our findings suggest that sensory neurons’ overactivation affects the immune response to melanoma. Melanoma progression is influenced by the complex interplay between cancer cells and different components of the immune system [8]. Melanoma cells may cause disruption of the organism’s immunity to overrun and escape the immune system control [96, 104]. The role of sensory innervations in these interactions remains completely unknown. Lymphocytes are the dominant immune elements found infiltrating the melanoma microenvironment. Their composition correlates with patients’ survival [38]. While regulatory T cells play pro-tumorigenic roles; CD8+ T cells, CD4+ T cells, γδ T cells, and NK cells have been shown to act against the transformed cells, [38, 43, 46, 47, 58, 64, 73, 118]. Conversely neutrophils and myeloid-derived suppressor cells have been associated with poor prognosis and are largely pro-tumorigenic [22, 28, 69, 126, 129, 145, 155]. Our data shows that sensory overactivation induce an increase in the number of tumor-infiltrating anti-cancer lymphocytes (CD8+ T cells, CD4+ T cells, γδ T cells, and NK cells), while we did not detect changes in the number of tumor-infiltrating regulatory T cells. We also found that there is a decrease in the number of neutrophils and myeloid-derived suppressor cells within the tumor. We found that these changes were tumor-specific, as we did not detect any alterations in the number of lymphocytes in the non-draining lymph nodes. Tumor-draining lymph nodes presented an increase in some of the anti-tumor lymphocytes probably because of the tumor-priming effect previously reported [135]. Signals transmitted to T cells via PD-1 or CTLA-4 (considered markers for T cells “exhaustion”) promote T cell dysfunction, thereby turning off the immune response [59, 98, 149]. We found that the tumor-infiltrating lymphocytes decrease their expression of PD1 and CTLA-4, possibly indicating that these cells are “less exhausted” within the melanoma microenvironment after sensory hyperactivation. The more active phenotypes of lymphocytes have been associated to the increase in the production of cytokines. A variety of lymphocytes are capable of producing IL-17 [14, 20, 24, 53, 56, 77, 94, 103] which has presented anti-tumorigenic effects in melanoma [3, 63, 74, 75, 91, 99, 100]. We found an increase in tumor-infiltrating lymphocytes producing IL-17 after sensory stimulation. Thus, in light of our overall findings, we suggest that induced increase in firing of sensory innervations contributes to boosting

Table 2 (continued)

Gene symbol	log2FC	FDR
BDKRB1	-1.22248	4.35E-02
LINC00857	-1.30729	4.35E-02
CREBL1	-1.04632	4.44E-02
CCB1	-1.04094	4.44E-02
PRR15L	-1.31182	4.48E-02
STB5I2A	-1.70296	4.50E-02
SI00A9	-2.02615	4.55E-02
SIK1	-1.83293	4.60E-02
EPN3	-1.93269	4.65E-02
ZBTB16	-1.22227	4.67E-02
ATP8B5P	-1.00252	4.76E-02
DUOX1	-1.72011	4.78E-02
TRIMS3CP	-2.79481	4.80E-02
C6orf132	-1.81165	4.87E-02
MDFI	-1.36942	4.91E-02
CATSPERB	-1.85527	4.94E-02
HSP1P5	-1.47888	4.94E-02
DEF8A4	-3.10613	4.95E-02
SDC1	-1.36628	4.96E-02

Nevertheless, although biomed-ical research has gained some insights into the function of intra-tumoral neurons using loss-of-function studies with surgical or pharmacologic denervation, these strategies are mostly not specific to a given neuronal type. Importantly, a disadvantage of all these studies is that neuronal killing may generate secondary undesirable indirect side effects caused by the inflammatory tis-sular response which may influence the observed phenotypes (Männ et al. 2016; Christiaansen, Boggiatto, and Varga 2014; Bennett et al. 2005). To circumvent these limitations, novel powerful technologies have been created in the field of modern neuroscience which allow to manipulate the firing of specific neurons without killing them: optogenetics and chemogenetics. These methods use genetic strategies to deliver the expression of light-sensitive proteins or designer receptors exclusively activated by designer drugs, respectively, to the membrane of defined neuronal populations. Therefore, by using these techniques, manipulation of neurons by exposure to light or to designer drugs, without killing them, became feasible. As melanoma is a chronic disease, the use of optogenetics for longer periods, may not be the best approach, as the unavoidable surgical preparation with the chronic implantation of hardware for stimulation and prolonged exposure to highly energetic laser light will eventually culminate in confounding regional inflammation and tissue degradation. Therefore, we chose to use chemogenetics to examine the participation of sensory neurons in melanoma development, as it is more suitable to evaluate the long-term effects of sensory stimulations with less side-effects. Future studies may use similar approaches to explore the role of sensory neurons and other innervations in other cancers.
of the immune response against melanoma. Future studies will need to explore the exact molecular mechanisms involved in the interactions of sensory neurons and immune cells in the melanoma microenvironment. A variety of cellular and molecular mechanisms may be involved in the effect of sensory neurons’ modulation on melanoma behavior. For instance, it has been documented that the same drug that is used to denervate sensory neurons, resiniferatoxin (RTX), an analogue of capsaicin, also induces stress by causing hyperactivation of the sympathetic nervous system [16, 62, 157]. These studies also revealed that sensory nerves may tune down sympathetic nerve activity [16, 62, 105]. Sympathetic neurons release norepinephrine [70, 123], which has been shown to strongly induce tumorigenesis [1, 60, 154]. It remains open the important question whether the effect of sensory innervations in the tumor microenvironment depend also on the modulation of the sympathetic tone.

Future perspectives

The present study reveals the short-term impact of chemogenetic modulation of sensory neurons on melanoma behavior. It remains to be examined what are the long-term effects of this manipulations. In the current study, the sensory neurons’ activity is being continuously inhibited or overactivated. Are changes in sensory neurons’ activity at specific time points sufficient to influence cancer outcomes? Also, it remains to be determined what are the changes within the tumor microenvironment at different stages of cancer progression. Are some stages more sensible to changes in the activity of sensory neurons? Moreover, this study focuses on melanoma tumors. Future studies should explore what is the role of sensory neurons in the development of other solid tumors. A variety of factors secreted from sensory neurons may be implicated in the regulation of the melanoma microenvironment described here [18]. The overactivation of sensory nerve fibers may induce the release of neuropeptides, such as substance P, CGRP, VIP, GRP, neurokinin A, neurokinin B, neuropeptide Y (NPY) and adrenomedullin, which have been shown to interact
Table 3 Gene Ontology (GO) and analysis of Biological Processes (BP) in which specific genes are involved

Functional category	Genes in list	Total genes	FDR	Genes
Up-regulated genes in alive × dead				
Nervous system development	22	2474	0.004805005	ARX HAPLN2 SLITRKS VCX3A VCX ZNF365 NRTN TFAFP28 NGFR MYB GFAP LRRTM2
				LHPFL4 DFPYSL5 FABP7 FOX1 VIT MPZ CA10 KCNQ2 ACHE HPICAL4
Central nervous system development	12	1054	0.029644095	HAPLN2 VCX3A VCX ARX GFAP ZNF365 FABP7 SLITRKS FOX1 VIT CA10 HPICAL4
Regulation of hormone levels	9	583	0.029644095	ACHE PCSX1N MYB VGF RDHS BCO1 TFAFP2 BCN1J11 MYRIP
Down-regulated genes in alive × dead				
Cornification	17	125	8.55E−15	TME79 TGM1 KRT37 P13 KRT12 TCHH KRT82 SPRR2D KLK13 KRT80 JUP KKL12 KRT82
				KRT25 SPINK9 KRT81 SPRR2A
Epithelium development	42	1386	9.40E−15	KLK14 SPRR2D OVOL1 NARP R SPRR2A HGF TGM1 BMIP4 FGF7 AJAP1 WNT11 CNFN DLX5 ALOX12 SDC1 ID3 TBX4 KRT17 GRE81 ADAMTS14 RSP03 TCHH ELF3 TME79 HEYL GREM1 ROR2 SOKX11 KRT25 SULT2B1 TX1 RHCG KRT37 P13 KRT82 KKL13 KRT80 JUP KKL12 SPINK9 KRT81
Tissue development	51	2168	2.40E−14	KLK14 SPRR2D OVOL1 NARP R SPRR2A HGF TGM1 BMIP4 FGF7 AJAP1 PFX1 WNT11 SMPO3 CNFN DLX5 ALOX12 SDC1 ID3 TBX4 KRT17 GRE81 ADAMTS14 RSP03 TCHH PKDCC ELF3 TME79 HEYL GREM1 ROR2 ADRB2 S2OX12 S11 KRT25 COL8A1 SULT2B1 TX1 RHCG KRT37 P13 KRL82 KKL13 KRT80 JUP KKL12 SPINK9 KRT81
Skin development	23	464	1.11E−11	SPRR2D SPRR2A TGM1 CNFN ALOX12 KRT12 TCHH FGF7 TCHH TME79 OVO1 JUP ALOX12 B2 TME82 CLDN4 KRT37 P13 KRL82 KKL13 KRT80 JUP KKL12 SPINK9 KRT81
Keratinization	18	268	4.20E−11	TGM1 CNFN KRT17 TCHH SPRR2D TME799 SPRR2A KRT37 P13 KRL82 KKL13 KRT80 JUP KKL12 SPINK9 KRT81
Animal organ development	62	3779	4.72E−11	SPRR2D HEYL S2OX12 BMIP4 FGF7 GRE81 AJAP1 MAFB MYOC USP2 PFX1 NOTCH3 WNT11 ANGPT2 SLCA83 SMPO3 CNFN DLX5 ALOX12 MDF1 SDC1 ID3 TBX4 KRT17 CYP19A1 COL8A1 RSP03 FGF18 TCHH PKDCC ELF3 TME79 HEYL GREM1 ROR2 ADRB2 S2OX12 S11 KRT25 COL8A1 SULT2B1 TX1 RHCG KRT37 P13 KRL82 KKL13 KRT80 JUP KKL12 SPINK9 KRT81
Epidermal cell differentiation	21	410	5.29E−11	SPRR2D OVOL1 SPRR2A TGM1 BMIP4 CNFN KRT17 TCHH TME799 SULT2B1 TX1 RHCG KRT37 P13 KRL82 KKL13 KRT80 JUP KKL12 SPINK9 KRT81
Epidermis development	23	521	6.96E−11	KLK14 SPRR2D OVOL1 SPRR2A TGM1 BMIP4 CNFN KRT17 TCHH TME799 SULT2B1 TX1 RHCG KRT37 P13 KRL82 KKL13 KRT80 JUP KKL12 SPINK9 KRT81
Keratinocyte differentiation	18	346	1.87E−09	SPRR2D SPRR2A TGM1 CNFN KRT17 TCHH TME799 KRT37 P13 KRL14 KRT82 KKL13 KRT80 JUP KKL12 SPINK9 KRT81
Ossification	18	396	1.56E−08	MYOC ZBT16 BMIP4 TWIST2 WNT11 SMPO3 DLX5 ID3 GPD2D2 FGF18 PKDCC ROR2 ADRB2 S2OX12 S11 GREM1 CREB3L1 HGF
Cellular developmental process	64	6471	3.21E−08	WNT11 DLX5 ID3 BMIP4 NGF SPRR2D ELF3 HEYL OVOL1 RHOD SOX11 SPRR2A MYOC TGM1 ZC3H12A GREM1 AJAP1 MABF TWIST2 HGF PFX1 NOTCH3 ANGPT2 SLCA83 SMPO3 CNFN ZBT16 MDF1 SDC1 KRT17 CHN1 GPD2 CATSPE8 CD36 SIK1 ADAMTS4 LGF TCHH FBLUM1 PKDCC TME799 AVPR1A ROR2 ADRB2 S2OX12 GTSF1 NARP COL8A1 SULT2B1 CREB3L1 S100A9 TX1 RHCG KRT37 P13 KRL14 KRT82 KKL13 KRT80 JUP KKL12 KRT25 SPINK9 KRT81
Cell differentiation	62	4459	3.79E−08	WNT11 DLX5 ID3 BMIP4 NGF SPRR2D HEYL OVOL1 SOX11 SPRR2A MYOC TGM1 ZC3H12A AJAP1 MABF TWIST2 HGF PFX1 NOTCH3 ANGPT2 SLCA83 SMPO3 CNFN ZBT16 MDF1 SDC1 KRT17 CHN1 GPD2 CATSPE8 CD36 SIK1 ADAMTS4 LGF TCHH PKDCC TME799 AVPR1A GREM1 ROR2 ADRB2 S2OX12 GTSF1 NARP COL8A1 SULT2B1 CREB3L1 S100A9 TX1 RHCG KRT37 P13 KRL14 KRT82 KKL13 KRT80 JUP KKL12 KRT25 SPINK9 KRT81
Table 3 (continued)

Down-regulated genes in alive x dead

Functional category	Genes in list	Total genes	FDR	Genes
Anatomical structure morphogenesis	46	2785	1.00E−07	PITX1 DLX5 KLK14 NGF HEYL RHOD NRARP HGF MYOC BMP4 IL1RN FGF7 ZC3H12A BMP4 SMAD3 ALOX12 ZBTB16 MDFI SDC1 ID3 Tbx4 Krt17 Chn1 CD36 GREB1L COLA1 RSPD3 FGF18 FBPLM1 PKDCC ELF3 TME79 ROR2 SIX2 SOX11 CCB1 MABF KRT25 CREB3L1 JUP TXB1 ACTG2
Tissue morphogenesis	21	719	8.87E−07	KLK14 NRARP HGF BMP4 A1AP1 Wnt11 ALOX12 Tbx4 Krt17 Fgf7 GREB1L RSPD3 TME79 HEYL GREM1 ROR2 SIX2 SOX11 KRT25 ACTG2 TXB1
Regulation of cartilage development	8	68	1.39E−06	ZBTB16 BMP4 SMAD3 FGF18 PKDCC SIX2 GREM1 Wnt11
Tube development	25	1062	1.93E−06	NRARP BMP4 FGF7 ZC3H12A HGF NOTCH3 Wnt11 ANGPT2 SMAD3 ALOX12 SDC1 Tbx4 GREB1L COLA1 RSPD3 FGF18 PKDCC HEYL GREM1 SIX2 SOX11 CCB1 CREB3L1 JUP TXB1
Morphogenesis of an epithelium	18	581	3.91E−06	KLK14 NRARP HGF BMP4 A1AP1 Wnt11 ALOX12 Tbx4 Krt17 Fgf7 GREB1L RSPD3 TME79 GREM1 ROR2 SIX2 SOX11 KRT25
Regulation of anatomical structure morphogenesis	25	1125	4.57E−06	NGF RHOD HGF MYOC BMP4 IL1RN FGF7 ZC3H12A BMP4 A1AP1 Wnt11 ANGPT2 SMAD3 ALOX12 SDC1 Tbx4 GREB1L COLA1 RSPD3 FGF18 PKDCC HEYL GREM1 SIX2 SOX11 CCB1 CREB3L1 JUP TXB1
Regulation of ossification	11	193	4.57E−06	ZBTB16 BMP4 TWIST2 SDC3 GDPPD2 PKDCC ADRB2 SIX2 SOX11 GREM1 HEYL
Skeletal system development	17	541	6.10E−06	ZBTB16 BMP4 MYOC PITX1 SMD3 DLX5 MDFI FGF18 PKDCC ROR2 SIX2 SOX11 PAPSS2 Wnt11 Tbx4 GREM1 TXB1
Renal system development	13	307	7.35E−06	SIX2 BMP4 S AGE1L NOTCH3 Wnt11 ANGPT2 ZBTB16 SDC1 ID3 HEYL GREM1 OVO1 SSOX1
Animal organ morphogenesis	24	1099	1.06E−05	HEYL BMP4 FGF7 A1AP1 Wnt11 SMD3 DLX5 MDFI SDC1 HEYL BMP4 COLA1 FGF18 ELF3 GREM1 ROR2 SIX2 SOX11 MABF TBBX4 TXB1 ACTG2 RSPD3
Osteoblast differentiation	11	218	1.18E−05	MYOC BMP4 TWIST2 WNT11 DLX5 ID3 GDPPD2 GREM1 SDC1 CREB3L1 HEYL
Regulation of developmental process	41	2763	1.21E−05	ID3 NGF HEYL RHOD HGF MYOC ZBTB16 BMP4 IL1RN FGF7 ZC3H12A A1AP1 MABF TWIST2 NOTCH3 Wnt11 ANGPT2 SMAD3 ALOX12 SDC1 Tbx4 GREM1 SDC3 GDPPD2 CD36 FGF18 FBPLM1 PKDCC TME79 GREM1 ROR2 ADRB2 SIX2 SOX11 CCB1 CREB3L1 JUP ULT2B1 SSK1 S100A9 TXB1 RSPD3
Anatomical structure formation involved in morphogenesis	24	1164	2.67E−05	DLX5 NRARP BMP4 ZC3H12A HGF NOTCH3 Wnt11 ANGPT2 SMAD3 Tbx4 CD36 COLA1 RSPD3 FGF18 HEYL GREM1 ROR2 SIX2 SOX11 CCB1 CREB3L1 JUP TXB1
Skeletal system morphogenesis	11	245	3.39E−05	SMD3 DLX5 MDFI BMP4 FGF18 ROR2 SIX2 SOX11 Tbx4 GREM1 TXB1
Regulation of chondrocyte differentiation	6	49	3.91E−05	BMP4 FGF18 PKDCC SIX2 ZBTB16 GREM1
Appendage morphogenesis	9	155	3.91E−05	PITX1 DLX5 ZBTB16 Tbx4 BMP4 PKDCC GREM1 ROR2 SOX11
Limb morphogenesis	9	155	3.91E−05	PITX1 DLX5 ZBTB16 Tbx4 BMP4 PKDCC GREM1 ROR2 SOX11
Tube morphogenesis	20	860	3.91E−05	NRARP BMP4 ZC3H12A HGF NOTCH3 Wnt11 ANGPT2 ALOX12 Tbx4 GREM1 COLA1 RSPD3 FGF18 HEYL GREM1 SDOX11 CCB1 CREB3L1 JUP TXB1
Regulation of morphogenesis of an epithelium	10	204	4.32E−05	HGF BMP4 A1AP1 Wnt11 ALOX12 FGF18 GREM1 ROR2 SIX2 RSPD3
Epidermis morphogenesis	5	29	5.24E−05	KLK14 KRT17 FGF7 TME79 KRT25
Angiogenesis	15	511	5.42E−05	NRARP BMP4 ZC3H12A HGF NOTCH3 ANGPT2 Tbx4 COLA1 RSPD3 FGF18 GREM1 CCB1 CREB3L1 JUP TXB1
Cell migration	27	1506	5.42E−05	HGF SDC1 ILL6G ILRN DFB4A RHOD MYOC ANGPT2 BMP4 FGF7 FGF18 S100A9 ZC3H12A ROR2 SIX2 Wnt11 BDBR1 SMD3 ALOX12 CYPI9A1 GREM1 CCB1 CREB3L1 JUP TWST2 Tbx1 S100A12
Cell death	36	2415	5.45E−05	HGF BMP4 NGF ADAM5L4 ZNF385B S100A9 ZC3H12A Wnt11 ALOX12 ZBTB16 ID3 CREB3L1 TME79 GREM1 SDOX11 TWST2 CD36 SSK1 TXB1 PINAS TG41 KRT37 R3 KRT7 KLK14 TCHH KRT25 SPARO KLK13 KRT10 JUP KLK12 KRT25 SPIN9 KRT81 SPARO
Respiratory system development	10	215	6.07E−05	BMP4 FGF SMAD3 DLX5 Tbx4 FGF18 PKDCC SOX1 CCB1 Wnt11
Cartilage development	10	216	6.17E−05	ZBTB16 BMP4 PITX1 SMD3 FGF18 PKDCC ROR2 SIX2 GREM1 Wnt11
Table 3 (continued)

Functional category	Genes in list	Total genes	FDR	Genes
Positive regulation of ossification	7	88	6.78E-05	ZBTB16 BMP4 GDPD2 PKDCC ADRB2 SOX11 HGF
Regulation of multicellular organismal development	33	2138	7.25E-05	ID3 NGF HEYL HGF ZBTB16 BMP4 IL1RN FGF7 ZC3H12A AIPAP1 MAPB NOTCH3 WNT11 ANGPT2 SMPD3 ALOX12 KRT17 CHN1 FGF18 PKDCC GREM1 ROR2 ADRB2 SX2 SOX11 CEB1 NRARP CREB3L1 JUP SULT2B1 S100A9 TBX1 RSP03
Blood vessel morphogenesis	16	603	7.46E-05	NRARP BMP4 ZC3H12A HGF NOTCH3 WNT11 ANGPT2 TX4 COLA1 RSP03 FGF18 GREM1 CEB1 CREB3L1 JUP TBX1
Programmed cell death	34	2257	8.00E-05	HGF BMP4 NGF ADAMTS4 ZNF358B S100A9 WNT11 ALOX12 ZBTB16 ID3 CREB3L1 TME79 ZC3H12A GREM1 TWIST2 SX11 TNAP TGM1 KRT37 P13 KRT17 KLK14 TCHN KRT82 SPRR2D KLK13 KRT80 JUP KLK12 KRT25 SPINK9 KRT81 SPRR2A
Blood vessel development	17	687	8.58E-05	HEYL NRARP BMP4 ZC3H12A HGF NOTCH3 WNT11 ANGPT2 TX4 COLA1 RSP03 FGF18 GREM1 CEB1 CREB3L1 JUP TBX1
Embryonic morphogenesis	16	615	8.98E-05	BMP4 IL1RN PITX1 WNT11 Dlx5 ZBTB16 MDFI TX4 RSP03 GREM1 ROR2 SX2 SOX11 MAFB COLA1 TX1
Cell motility	28	1670	9.30E-05	HGF SDC1 IL36G IL1RN DEFB4A RHOD MYOC ANGPT2 BMP4 FGF7 FGF18 S100A9 ZC3H12A ROR2 SX2 WNT11 BOKR1 SMPD3 ALOX12 CYP19A1 GREM1 CEB1 LTB4R2 DUOX1 JUP TWIST2 TX1 S100A12
Localization of cell	28	1670	9.30E-05	HGF SDC1 IL36G IL1RN DEFB4A RHOD MYOC ANGPT2 BMP4 FGF7 FGF18 S100A9 ZC3H12A ROR2 SX2 WNT11 BOKR1 SMPD3 ALOX12 CYP19A1 GREM1 CEB1 LTB4R2 DUOX1 JUP TWIST2 TX1 S100A12
Cellular response to growth factor stimulus	17	694	9.30E-05	HGF BMP4 NGF FGF18 CREB3L1 GREM1 CEB1 FAM83G ANGPT2 SMPD3 DLX5 RAS1L1B FGF7 HEYL ROR2 SOX11 TX1
Cell–cell signaling	29	1774	9.65E-05	WNT11 CHRNA4 NGF RSP03 NRARP JUP HGF CYP19A1 GREM1 FM3D SLC8A3 SMPD3 Dlx5 Dcl1 BMP4 IL1RN FGF7 ROR2 ADRB2 SOX11 LYNX1 MYOC G6PC2 MDFI GLR1 IL36G FGF18 S100A9 ADR31D
Tissue migration	11	293	1.10E-04	ANGPT2 BMP4 FGF7 FGF18 ZC3H12A ALOX12 GREM1 CEB1 LTBR4 JUP ACTG2
Appendage development	9	186	1.10E-04	PITX1 DLX5 ZBTB16 TX4 BMP4 PKDCC GREM1 ROR2 SOX11
Limb development	9	186	1.10E-04	PITX1 DLX5 ZBTB16 TX4 BMP4 PKDCC GREM1 ROR2 SOX11
Lung development	9	188	1.18E-04	BMP4 FGF7 SMPD3 TX4 FGF18 PKDCC SOX11 CEB1 WNT11
Vasculature development	17	715	1.20E-04	HEYL NRARP BMP4 ZC3H12A HGF NOTCH3 WNT11 ANGPT2 TX4 COLA1 RSP03 FGF18 GREM1 CEB1 CREB3L1 JUP TBX1
Respiratory tube development	9	192	1.34E-04	BMP4 FGF7 SMPD3 TX4 FGF18 PKDCC SOX11 CEB1 WNT11
Response to growth factor	17	723	1.34E-04	HGF BMP4 NGF FGF18 CREB3L1 GREM1 CEB1 FAM83G ANGPT2 SMPD3 DLX5 RAS1L1B FGF7 HEYL ROR2 SOX11 TX1
Cardiovascular system development	17	724	1.34E-04	HEYL NRARP BMP4 ZC3H12A HGF NOTCH3 WNT11 ANGPT2 TX4 COLA1 RSP03 FGF18 GREM1 CEB1 CREB3L1 JUP TBX1
Locomotion	30	1921	1.34E-04	HGF SDC1 IL36G IL1RN DEFB4A RHOD MYOC ANGPT2 BMP4 FGF7 FGF18 S100A9 ZC3H12A ROR2 SX2 WNT11 BOKR1 SMPD3 DLX5 ALOX12 C1H7 CYP19A1 GREM1 CEB1 LTB4R2 DUOX1 JUP TWIST2 TX1 S100A12
Mesonephros development	7	104	1.40E-04	BMP4 ZBTB16 SDC1 CREB1 GREM1 SX2 WNT11
Positive regulation of developmental process	25	1433	1.40E-04	BMP4 ZBTB16 BMP4 FGF7 ZC3H12A HGF ANGPT2 ALOX12 KRT17 GDPD2 CD36 FGF18 PKDCC ADRB2 SOX11 HEYL GREM1 ROR2 ADRB2 SOX11 CEB1 JUP SULT2B1 S100A9 TX1
Nephron development	8	147	1.41E-04	BMP4 NOTCH3 ANGPT2 GREL1 HEYL GREM1 SX2 WNT11
Positive regulation of cell communication	30	1937	1.48E-04	BMP4 IL36G IL1RN RSP03 NRARP JUP HGF MYOC KL14 CYP19A1 FGF18 S100A9 S100A12 ZC3H12A ADRB2 ALOX12 CEB1 SLC8A3 DLX5 CHN1 CD36 GREM1 ROR2 SOX11 WNT11 SHRP3 NGF TBX1 FGF7 ELF3
Positive regulation of signaling	30	1945	1.56E-04	BMP4 IL36G IL1RN RSP03 NRARP JUP HGF MYOC KL14 CYP19A1 FGF18 S100A9 S100A12 ZC3H12A ADRB2 ALOX12 CEB1 SLC8A3 DLX5 CHN1 CD36 GREM1 ROR2 SOX11 WNT11 SHRP3 NGF TBX1 FGF7 ELF3
Circulatory system development	21	1077	1.56E-04	HEYL NRARP BMP4 ZC3H12A HGF NOTCH3 WNT11 ANGPT2 ID3 TX4 GREL1 COLA1 RSP03 FGF18 GREM1 SOX11 CEB1 CREB3L1 JUP TBX1 SKT1
Positive regulation of signal transduction	28	1762	1.91E-04	BMP4 IL36G IL1RN RSP03 NRARP JUP HGF MYOC KL14 FGF18 S100A9 S100A12 ZC3H12A ADRB2 ALOX12 CEB1 DLX5 CHN1 CD36 GREM1 ROR2 SOX11 WNT11 SHRP3 NGF TBX1 FGF7 ELF3
Table 3 (continued)

Functional category	Genes in list	Total genes	FDR	Genes
Ameboidal-type cell migration	12	392	2.39E−04	ANGPT2 BMP4 FGFr7 FGFr8 ZC3H12A WNT11 ALOX12 GREM1 CCB1 LTBR2 JUP TBX1
Regulation of osteoblast differentiation	7	115	2.44E−04	BMP4 TWIST2 ID3 GDF20 GREM1 SOX11 HGF
Bone mineralization	7	116	2.55E−04	BMP4 WNT11 SMPD3 PKDCC ROR2 ADRB2 GREM1
Establishment of skin barrier	4	22	2.65E−04	ALOX12 TMEM79 ALOX12 CLDN4
Regulation of cell motility	19	946	2.69E−04	HGF RHOD MYOC ANGPT2 BMP4 FGFr7 FGFr8 ZC3H12A ROR2 BDKRB1 SMPD3 ALOX12 CYP19A1 GREM1 CCB1 DUOX1 JUP TWIST2 WNT11
Mesenchymal cell proliferation	5	46	2.69E−04	BMP4 FGFr7 WNT11 SOX1 TBX1
Positive regulation of cell motility	14	544	2.73E−04	HGF MYOC BMP4 FGFr7 FGFr8 ZC3H12A ROR2 BDKRB1 ALOX12 CCB1 DUOX1 TWIST2 WNT11 RHOD
Response to BMP	8	165	2.73E−04	BMP4 GREM1 FABM3 SMPD3 DLX5 HEYL ROR2 SOX11
Cellular response to BMP stimulus	8	165	2.73E−04	BMP4 GREM1 FABM3 SMPD3 DLX5 HEYL ROR2 SOX11
Biomineral tissue development	8	167	2.93E−04	BMP4 WNT11 SMPD3 PKDCC ROR2 ADRB2 GREM1 TBX1
Connective tissue development	10	280	3.18E−04	ZBTB16 BMP4 PITX1 SMPD3 FGFr8 PKDCC ROR2 SOX2 GREM1 WNT11
Regulation of animal organ morphogenesis	10	281	3.22E−04	HGF BMP4 FGFr7 ADRB2 BMP4 WNT11 ROR2 SOX2 TBX1 RSPD3 PKDCC ELF3 GREM1 ROR2 SOX11 NRARP MAFB COLB1 TBX1
Embryo development	20	1054	3.22E−04	BMP4 IL1RN PITX1 WNT11 DLX5 ZBTB16 MDF1 DT3 TBX4 RSPD3 PKDCC ELF3 GREM1 ROR2 SOX11 NRARP MAFB COLB1 TBX1
Chondrocyte differentiation	7	123	3.22E−04	SMPD3 BMP4 FGFr8 PKDCC SOX1 ZBTB16 GREM1
Epithelial cell migration	10	284	3.33E−04	SMPD3 BMP4 FGFr8 PKDCC SMPD3 ZBTB16 GREM1 LTBR2 JUP
Regulation of cell migration	18	883	3.33E−04	HGF RHOD MYOC ANGPT2 BMP4 FGFr7 FGFr8 ZC3H12A ROR2 BDKRB1 SMPD3 ALOX12 CYP19A1 GREM1 CCB1 DUOX1 TWIST2 WNT11
Positive regulation of cellular component movement	14	558	3.33E−04	HGF MYOC BMP4 FGFr7 FGFr8 ZC3H12A ROR2 BDKRB1 ALOX12 CCB1 DUOX1 TWIST2 WNT11 RHOD
Epithelium migration	10	287	3.60E−04	ANGPT2 BMP4 FGFr7 FGFr8 ZC3H12A ALOX12 GREM1 CCB1 LTBR2 JUP
Hair follicle morphogenesis	4	25	3.68E−04	KRT17 FGFr7 TMEM79 KRT25
Regulation of water loss via skin	4	25	3.68E−04	ALOX12 TMEM79 ALOX12 CLDN4
Embryonic limb morphogenesis	7	130	4.20E−04	PITX1 DLX5 ZBTB16 TBX4 BMP4 GREM1 ROR2
Embryonic appendage morphogenesis	7	130	4.20E−04	PITX1 DLX5 ZBTB16 TBX4 BMP4 GREM1 ROR2
Positive regulation of locomotion	14	576	4.34E−04	HGF MYOC BMP4 FGFr7 FGFr8 ZC3H12A ROR2 BDKRB1 ALOX12 CCB1 DUOX1 TWIST2 WNT11 RHOD
Endochondral ossification	4	27	4.78E−04	SMPD3 DLX5 BMP4 FGFr8
Replacement ossification	4	27	4.78E−04	SMPD3 DLX5 BMP4 FGFr8
Positive regulation of MAPK cascade	14	583	4.79E−04	IL36G IL1RN BMP4 FGFr8 ZC3H12A ADRB2 ALOX12 CBF CD36 ROR2 SHFR3 TBX1 GREM1 S100A12
Poly-N-acetyllactosamine biosynthetic process	3	10	5.48E−04	B3GNT4 B3GNT8 B3GNT3
Regulation of multacellular organismal process	41	3382	5.95E−04	ID3 NGF IL36G IL1RN HEYL AVPR1 ADRB2 HGF ANGPT2 ZBTB16 BMP4 FGFr7 FGFr8 ZC3H12A CCB1 ADRB2 BMP4 WNT11 SMPD3 ALOX12 CYP19A1 GREM1 CCB1 DUOX1 TWIST2 WNT11
Response to endogenous stimulus	26	1704	5.97E−04	BMP4 NGF AVPR1 IL1RN FGFr8 CREB1L1 HEYL GREM1 JUP FABM3 SLCA8 B3GNT4 SLC8A3 CHRNA4 SMPD3 DLX5 GLP1R SD1 RASL11B CD36 FGFr7 ROR2 ADRB2 SOX21 CLDN4 TBX1 GNA15 CATS8R8
Positive regulation of cell migration	13	521	6.09E−04	HGF MYOC BMP4 FGFr7 FGFr8 ZC3H12A ROR2 BDKRB1 ALOX12 CCB1 DUOX1 TWIST2 WNT11 RHOD
Chemotaxis	15	680	6.18E−04	IL36G IL1RN DEFB4A HGF ANGPT2 FGFr7 FGFr8 S100A9 DLX5 BMP4 CHN1 CYP19A1 GREM1 S100A12 LTBR2 JUP
Regulation of cellular component movement	19	1028	6.21E−04	HGF RHOD MYOC ANGPT2 BMP4 FGFr7 FGFr8 ZC3H12A ROR2 BDKRB1 SMPD3 ALOX12 CYP19A1 GREM1 CCB1 DUOX1 JUP TWIST2 WNT11 RHOD
Movement of cell or subcellular component	30	2139	6.25E−04	HGF RHOD MYOC ANGPT2 BMP4 FGFr7 FGFr8 S100A9 ZC3H12A ROR2 SOX2 WNT11 BDKRB1 SMPD3 DLX5 ALOX12 CHN1 CYP19A1 GREM1 CCB1 LTBR2 DUOX1 JUP TWIST2 TBX1 S100A12
Taxis	15	683	6.25E−04	IL36G IL1RN DEFB4A HGF ANGPT2 FGFr7 FGFr8 S100A9 DLX5 BMP4 CHN1 CYP19A1 GREM1 S100A12 LTBR2 JUP
Table 3 (continued)

Down-regulated genes in alive x dead	Functional category	Genes in list	Total genes	FDR	Genes
Nephron tubule development	6	96	6.25E−04	BMP4 GREB1L HEYL GREM1 SIX2 WNT11	
Embryonic organ development	12	452	6.34E−04	WNT11 DLX5 MDF1 I3D BMP4 RPSO3 PKDCC ROR2 SIK2 SOX11 MAFB TBX1	
Morphogenesis of a branching epithelium	8	194	6.34E−04	NRARP HGF BMP4 FGF7 GREB1L RSP03 GREM1 SIX2	
Kidney epithelium development	7	143	6.55E−04	BMP4 SDC1 GREB1L HEYL GREM1 SIX2 WNT11	
Poly-N-acetyllactosamine metabolic process	3	11	6.64E−04	B3GNT4 B3GNT8 B3GNT3	
Positive regulation of intracellular signal transduction	20	1133	6.72E−04	IL36G IL1RN HGF MYOC BMP4 FGF18 S100A9 S100A12 ZC3H12A ADRB2 ALOX12B CD36 GREM1 ROR2 SIK2 WNT11 SH3RF3 NGF TGFB1 FGF7	
Regulation of locomotion	19	1041	6.74E−04	HGF RHOD MYOC ANGPT2 BMP4 FGF7 FGF18 ZC3H12A ROR2 BDKRB1	
Ureteric bud development	6	99	6.85E−04	BMP4 SDC1 GREB1L GREM1 SIX2 WNT11	
Renal tubule development	6	99	6.85E−04	BMP4 GREB1L HEYL GREM1 SIX2 WNT11	
Positive regulation of cell differentiation	4	31	6.94E−04	ZBTB16 BMP4 FGF7 PKDCC	
Mesonephric epithelium development	6	100	6.94E−04	BMP4 SDC1 GREB1L GREM1 SIX2 WNT11	
Mesonephric tubule development	6	100	6.94E−04	BMP4 SDC1 GREB1L GREM1 SIX2 WNT11	
Positive regulation of gene expression	29	2060	7.22E−04	DLX5 ZBTB16 HEYL JUP SIK11 BMP4 ELF3 ZC3H12A CCBE1 P1CP1 BMP4 FGF7 CREB1L GREM1 ROR2 ADRB2 SIX2 OXC1 MAFF WNT11 NGF ALOX12B GL35 ACTC2 TBX1 HGF	
Regulation of morphogenesis of a branching structure	5	63	7.98E−04	HGF BMP4 FGF7 GREM1 SIX2	
BMP signaling pathway	7	152	8.66E−04	BMP4 GREM1 FAM83G SMPD3 DLX5 ROR2 SIK11	
Endothelial cell migration	8	206	8.66E−04	ANGPT2 BMP4 FGF18 ZC3H12A ALOX12 GREM1 CCBE1 JUP	
Morphogenesis of a branching structure	8	208	9.13E−04	NRARP HGF BMP4 FGF7 GREB1L RSP03 GREM1 SIX2	
Mesenchymal to epithelial transition involved in metanephros morphogenesis	3	13	1.01E−03	BMP4 GREM1 SIX2	
Mesenchymal cell differentiation	8	212	1.01E−03	WNT11 BMP4 HEYL SIK2 SOX11 GREM1 TBX1 HGF	
Mesenchyme development	9	273	1.01E−03	WNT11 BMP4 HEYL SIK2 SOX11 GREM1 ACTG2 TBX1 HGF	
Ureteric bud morphogenesis	5	67	1.01E−03	BMP4 GREB1L GREM1 SIX2 WNT11	
Mesonephric tubule morphogenesis	5	68	1.08E−03	BMP4 GREB1L GREM1 SIX2 WNT11	
Regulation of cell-substrate adhesion	8	216	1.13E−03	MYOC CD36 AJAP1 ANGPT2 COLBA1 GREM1 RHOD JUP	
Regulation of endothelial cell migration	7	161	1.16E−03	ANGPT2 BMP4 FGF18 ZC3H12A ALOX12 GREM1 CCBE1 JUP	
Positive regulation of multicellular organismal process	27	1911	1.17E−03	NGF IL36G IL1RN AIPRT1A ZBTB16 BMP4 FGF7 FGF18 ZC3H12A CCBE1	
Nephron epithelium development	6	112	1.18E−03	BMP4 GREB1L HEYL GREM1 SIX2 WNT11	
Regulation of epithelial cell migration	8	223	1.36E−03	ANGPT2 BMP4 FGF7 FGF18 ZC3H12A ALOX12 GREM1 CCBE1 JUP	
Positive regulation of epithelium development	4	38	1.36E−03	BMP4 KRT17 TMEM379 SULT2B1	
Aminoglycan biosynthetic process	6	116	1.39E−03	B3GNT4 B3GNT8 B3GNT3 SMPD3 SDC1 HS3ST3A1	
Positive regulation of angiogenesis	7	167	1.39E−03	ZC3H12A HGF ANGPT2 GREM1 CCBE1 FGF18 JUP	
Sprouting angiogenesis	6	117	1.45E−03	NRARP BMP4 RPS03 GREM1 CREB3L1 CCBE1	
Cell-substrate adhesion	10	358	1.46E−03	LYPD3 LYPD5 MYOC CD36 AJAP1 ANGPT2 COLBA1 GREM1 RHOD JUP	
Sulfate assimilation	2	3	1.52E−03	PAPS2 SULT2B1	
Cuticle development	2	3	1.52E−03	TMEM379 DLX31	
Cloacal septation	2	3	1.52E−03	BMP4 WNT11	
Aminoglycan metabolic process	7	171	1.53E−03	B3GNT4 B3GNT8 B3GNT3 HGF SMPD3 SDC1 HS3ST3A1	
Cardiac septum morphogenesis	5	75	1.53E−03	HEYL WNT11 BMP4 SIK2 WNT11	
Cellular response to endogenous stimulus	22	1432	1.61E−03	BMP4 NGF AIPRT1A FGF18 CREB3L1 HEYL GREM1 JUP FAM83G SLC8A3 CHRNA4 SMPD3 DLX5 GLP1 RASL11B FGF7 ROR2 ADRB2 SIK2 CD36 TBX1 GNA15	
Nephron tubule morphogenesis	5	76	1.61E−03	BMP4 GREB1L GREM1 SIX2 WNT11	
Metanephric renal vesicle morphogenesis	3	16	1.65E−03	BMP4 GREM1 SIX2	
Regulation of cell–matrix adhesion	6	122	1.68E−03	MYOC CD36 AJAP1 GREM1 RHOD JUP	
Outflow tract morphogenesis	5	77	1.68E−03	WNT11 BMP4 HEYL SIK2 WNT11	
Nephron epithelium morphogenesis	5	78	1.77E−03	BMP4 GREB1L GREM1 SIX2 WNT11	
Table 3 (continued)

Down-regulated genes in alive x dead

Functional category	Genes in list	Total genes	FDR	Genes
Ventricular septum morphogenesis	4 42	1.79E−03	HEYL WNT11 BMP4 SOX11	
Cell–matrix adhesion	8 239	1.91E−03	LYPD3 LYPD5 MYOC CD36 AIAPI GREM1 RHOD JUP	
Embryonic organ morphogenesis	9 305	1.91E−03	WNT11 DLX5 MDFI BMP4 ROR2 SOX2 SOX11 MAFB TBX1	
Renal tubule morphogenesis	5 80	1.91E−03	BMP4 GREB1L GREM1 SX2 WNT11	
Neprhen morphogenesis	5 80	1.91E−03	BMP4 GREB1L GREM1 SX2 WNT11	
Nephric duct development	3 17	1.91E−03	BMP4 GREB1L WNT11	
Regulation of cell communication	43 3903	2.15E−03	BMP4 NGF IL36G IL1RN SK1 RSP03 NRRAP JUP HGF MYOC KLK14 CYP19A1 FGF18 CREB3L1 S100A9 S100A12 ZC3H12A HEYL GREM1 ADRB2 ALOX12B LYNX1 CCBE1 FAM83D WNT11 SLC8A3 CHRNA4 DLX5 RASL11B CHN1 CD36 FGF7 AVPR1A ROR2 SOX11 G6PC2 SH3RF3 MDFI TBX1 NOTCH3 GLP1R ELF3 RHOD	
Enzyme linked receptor protein signaling pathway	18 1072	2.17E−03	HGF BMP4 NGF ROR2 ANGPT2 CREB3L1 GREM1 CBE1 FAM83G MYOC SMAD3 DLX5 RASL11B FGF7 FGF18 SX11 CHN1 ADRB2	
Regulation of MAPK cascade	15 793	2.17E−03	BMP4 IL36G IL1RN MYOC FGF18 ZC3H12A ADRB2 ALOX12B HGF CD36 ROR2 SH3RF3 TBX1 NGF S100A12	
Embryonic skeletal system development	6 130	2.21E−03	MDFI BMP4 SX2 SX11 WNT11 TBX1	
Positive regulation of vasculature development	7 186	2.29E−03	ZC3H12A HGF ANGPT2 GREM1 SX2 FGF18 JUP	
Response to organic substance	40 3547	2.30E−03	BMP4 NGF IL36G IL1RN AVPR1A CD36 DLX5 FGF18 CREB3L1 ZC3H12A HEYL GREM1 JUP CBE1 FAM83G ANGPT2 SLC8A3 CHRNA4 DLX5 RASL11B CHN1 CD36 FGF7 AVPR1A ROR2 SOX11 G6PC2 SH3RF3 MDFI TBX1 NOTCH3 GLP1R ELF3 RHOD	
Positive chemotaxis	5 84	2.30E−03	ANGPT2 FGF7 HGF BMP4 DEFB4A	
Response to psychosocial stress	2 4	2.56E−03	GLP1R ADRB2	
Cloaca development	2 4	2.56E−03	BMP4 WNT11	
Positive regulation of epithelial cell proliferation	7 190	2.56E−03	NRRAP BMP4 FGF7 DLX5 SX11 TGM1 TBX1	
Regulation of branching involved in salivary gland morphogenesis by mesenchymal-epithelial signaling	2 4	2.56E−03	HGF FGF7	
Myoblast differentiation	5 87	2.62E−03	BMP4 PITX1 SDC1 ID3 GREM1	
Regulation of signaling	43 3952	2.64E−03	BMP4 Ngf IL36G IL1RN SK1 RSP03 NRRAP JUP HGF MYOC KLK14 CYP19A1 FGF18 CREB3L1 S100A9 S100A12 ZC3H12A HEYL GREM1 ADRB2 ALOX12B LYNX1 CCBE1 FAM83D WNT11 SLC8A3 CHRNA4 DLX5 RASL11B CHN1 CD36 FGF7 AVPR1A ROR2 SOX11 G6PC2 SH3RF3 MDFI TBX1 NOTCH3 GLP1R ELF3 RHOD	
Negative regulation of transcription, DNA-templated	20 1298	2.73E−03	ZBTB16 BMP4 SX2 OVOL1 SX11 CNIP1 ID3 CREB3L1 ELF3 HEYL PITX1 NOTCH3 CD36 GREM1 NRRAP USP2 WNT11 G6PC2 MDFI TWIST2	
Positive regulation of chondrocyte differentiation	3 20	2.78E−03	FGF18 PKDCC ZBTB16	
Mesenchymal to epithelial transition	3 20	2.78E−03	BMP4 GREM1 SX2	
Renal vesicle morphogenesis	3 20	2.78E−03	BMP4 GREM1 SX2	
Response to oxygen-containing compound	24 1725	2.88E−03	IL36G IL1RN HGF DUX5 ZC3H12A JUP ANGPT2 SLC8A3 BDKR1 CHRNA4 SMAD3 GLP1R SDC1 ID3 SLPI CD36 AVPR1A ROR2 CD36 FGF7 AVPR1A ROR2 SOX11 G6PC2 SH3RF3 MDFI TBX1 NOTCH3 GLP1R ELF3 RHOD	
Regulation of vasculature development	9 328	2.89E−03	BMP4 ZC3H12A HGF ANGPT2 GREM1 CBE1 FGF18 CREB3L1 JUP	
Digestive tract morphogenesis	4 50	3.01E−03	BMP4 SX2 SX11 WNT11	
Metanephros development	5 91	3.04E−03	BMP4 ID3 GREG1L GREM1 SX2	
Positive regulation of epithelial cell migration	6 141	3.04E−03	BMP4 FGF7 FGF18 ZC3H12A ALOX12 CCEB1	
Regulation of cell differentiation	26 1954	3.04E−03	ID3 NGF HEYL MYOC BMP4 ZC3H12A ADRB2 CD36 FGF18 CREB3L1 JUP	
Copulation	3 21	3.06E−03	KLK14 P13 AVPR1A	
Positive regulation of cell differentiation	17 1018	3.06E−03	NGF MYOC BMP4 ZC3H12A HGF ZBTTB16 GDPP2 CD36 FGF18 PKDCC HEYL GREM1 ROR2 SX11 SULT2B1 S100A9 TBX1	
Renal vesicle development	3 21	3.06E−03	BMP4 GREM1 SX2	
Cell surface receptor signaling pathway involved in cell–cell signaling	13 654	3.16E−03	WNT11 RSP03 NRRAP JUP GREM1 CHRNA4 DLX5 SDC1 ROR2 ADRB2 MYOC BMP4 MDFI	
Table 3 (continued)

Functional category	Genes in list	Total genes	FDR	Genes
Roof of mouth development	5	93	3.25E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Leukocyte migration	11	491	3.36E−03	IL36G IL1RN S100A9 BXBD8 SMPD3 CYP19A1 GREM1 ROR2 ANGPT2 SDC1 S100A12
Cell chemotaxis	9	339	3.45E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Sensory organ morphogenesis	8	270	3.53E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Negative regulation of cellular biosynthetic process	23	1658	3.67E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Hepoxilin metabolic process	2	5	3.67E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Glomerulus vasculature morphogenesis	2	5	3.67E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Negative regulation of RNA metabolic process	21	1446	3.68E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Embryonic skeletal system morphogenesis	5	97	3.70E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Kidney morphogenesis	5	97	3.70E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Cellular response to chemical stimulus	39	3536	3.70E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Positive regulation of endothelial cell migration	5	98	3.86E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Regulation of cell adhesion	14	765	3.94E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Negative regulation of nucleic acid-templated transcription	20	1353	3.96E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Cellular response to organic substance	34	2938	3.99E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Negative regulation of RNA biosynthetic process	20	1355	3.99E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Regulation of branching involved in ureteric bud morphogenesis	3	24	4.06E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Intermediate filament organization	3	24	4.06E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Positive regulation of transcription by RNA polymerase II	19	1255	4.06E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Glomerulus vasculature development	3	24	4.06E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Negative regulation of biosynthetic process	23	1681	4.10E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Carbohydrate biosynthetic process	7	214	4.10E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Positive regulation of protein phosphorylation	17	1057	4.10E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Negative regulation of nucleobase-containing compound metabolic process	22	1575	4.15E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Regionalization	9	355	4.24E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Regulation of protein import into nucleus	4	58	4.41E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Negative regulation of macromolecule biosynthetic process	22	1597	4.86E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Positive regulation of osteoblast differentiation	4	60	4.86E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Positive regulation of transcription, DNA-templated	4	60	4.86E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Renal system vasculature development	3	26	4.86E−03	WNT11 DLX5 PKDCC SOX11 TXB1
Functional category	Genes in list	Total genes	FDR	Genes
---	---------------	-------------	-----------	---
Kidney vasculature development	3	26	4.86E−03	BMP4 NOTCH3 ANGPT2
Cell differentiation involved in metanephros development	3	26	4.86E−03	BMP4 GREM1 SIX2
Metanephric nephron morphogenesis	3	26	4.86E−03	BMP4 GREM1 SIX2
Glycosaminoglycan metabolic process	6	161	4.99E−03	HGF S1P3 DCD1 HS3ST3A1 B3GNT4 B3GNT3
Regulation of protein import	4	61	5.07E−03	BMP4 ZC3H12A JUP CD36
Branching involved in ureteric bud morphogenesis	4	61	5.07E−03	BMP4 GREB1 L GREM1 SIX2
Glomerulus development	4	61	5.07E−03	BMP4 NOTCH3 ANGPT2 HEYL
Negative regulation of cartilage development	3	27	5.28E−03	BMP4 GREM1 WNT11
Regulation of mesonephros development	3	27	5.28E−03	BMP4 GREM1 SIX2
Bone development	7	228	4.99E−03	MYOC SM3D DLX5 BMP4 FGF18 PAPPS2 GREM1
Negative regulation of cellular macromolecule biosynthetic process	21	1511	5.53E−03	ZBTB16 BMP4 SIX2 OVQ1 SOX11 ZNF154 D3 CREB3L1 ELF3 ZC3H12A HEYL PITX1 NOTCH3 CD36 GREM1 NARPUS2 WNT11 GLIS3 MDFI TWIST2
Regulation of angiogenesis	8	298	5.53E−03	ZC3H12A G HF ANGPT2 GREM1 CCB1 F G18 C CB3L1 JUP
Peptide cross-linking	4	63	5.57E−03	SPRR2D SPRR2A TGM1 P3
Embryonic hindlimb morphogenesis	3	28	5.73E−03	PTX1 ZBTB16 BMP4
Secondary palate development	3	28	5.73E−03	SOX11 WNT11 TBX1
Glycosaminoglycan biosynthetic process	5	111	5.78E−03	SMP3 DCD1 HS3ST3A1 B3GNT4 B3GNT3
Artery morphogenesis	4	64	5.81E−03	BMP4 NOTCH3 WNT11 TBX1
Regulation of localization	33	2905	5.84E−03	HGF RHOD MYOC ANGPT2 BMP4 CYP19A1 FGF7 FGF18 ZC3H12A ROR2 JUP FAM3D BDKB1 CHRNA4 SM3D ALX12 CD36 PKDCC AVPR1A GREM1 ADRB2 CLIC3 SOX11 CCB1 KKN2 DCX11 TWIST2 WNT11 SDC1 G6PC2 ALX12B SK1 GLP1R
Cardiac septum development	5	112	5.93E−03	HEYL WNT11 BMP4 SOX11 TBX1
Response to lipid	16	2082	5.95E−03	DLX5 ZBTB16 HEYL JUP SOX11 HGF BMP4 ELF3 ZC3H12A GREM1 PITX1 NOTCH3 KRT17 CD36 FGF CREB3L1 AVPR1A ROR2 ADRB2 SIX2 OVO1 MAF8 WNT11 GLIS3 MDFI SPK3D
MAPK cascade	16	1007	5.97E−03	BMP4 IL36G IL1RN MYOC FGF18 ZC3H12A ADRB2 ALOX12 HGF CD36 ROR2 SH3RF3 TBX1 NSG FGF 7 5100A12
MAPK cascade	16	1007	5.97E−03	BMP4 IL36G IL1RN MYOC FGF18 ZC3H12A ADRB2 ALOX12 HGF CD36 ROR2 SH3RF3 TBX1 NSG FGF 7 5100A12
Regulation of cell adhesion	8	304	5.99E−03	MYOC IL1RN AJP1 ANGPT2 ALX12 ZC3H12A NARP USP4 BMP4
Renal system vasculature morphogenesis	2	7	6.07E−03	NOTCH3 BMP4
Kidney vasculature morphogenesis	2	7	6.07E−03	NOTCH3 BMP4
Positive regulation of phosphorylation	17	1111	6.10E−03	BMP4 BMP4 IL36G IL1RN FGF7 FGF7 FGF18 ZC3H12A ADRB2 ALOX12 WNT11 CD36 GREM1 ROR2 SH3RF3 TBX1 NSG FGF 7 5100A12
Cardiac chamber development	6	172	6.32E−03	HEYL WNT11 BMP4 GREB1L SOX11 TBX1
Regulation of cell proliferation	23	1756	6.32E−03	NARP BMP USP BMP4 FGF7 GREM1 NOTCH3 WNT11 SMP3 DCD1 DLX5 ALOX12 ZBTB16 RARRES1 FGF18 AVPR1A SIX2 OVO1 SIX1 NULTB1 ADRB2 GREM1 BMP4 GREB1L SIX2 OVO1 CD36
Negative regulation of nitrogen compound metabolic process	30	2564	6.32E−03	ZBTB16 BMP4 SIX2 OVO1 SIX1 ZNF154 HGF D3 CREB3L1 CD4 ELF3 ZC3H12A HEYL GREM1 PITX1 NOTCH3 BDKB1 SM3D P3 SLPI NSG CD36 NARP SPINK9 COL28A1 NSP WNT11 GLIS3 MDFI TWIST2
Cardiac chamber development	6	172	6.32E−03	HEYL WNT11 BMP4 GREB1L SIX11 TBX1
Negative regulation of developmental process	16	1017	6.40E−03	ID3 BMP4 MAFB TWIST2 NOTCH3 ANGPT2 ZBTB16 ZC3H12A ADRB2 SIX2 NOTCH3 NARP CREB3L1 GREM1 WNT11 TBX1
Signal transduction by protein phosphorylation	16	1018	6.44E−03	BMP4 IL36G IL1RN MYOC FGF18 ZC3H12A ADRB2 ALOX12 HGF CD36 ROR2 SH3RF3 TBX1 NSG FGF 7 5100A12
Transmembrane receptor protein tyrosine kinase signaling pathway	13	730	6.45E−03	HGF NSG ROR2 ANGPT2 CREB3L1 CCB1 MYOC SM3D FGF7 FGF18 GREM1 CHN1 ADRB2
Cell adhesion	21	1541	6.46E−03	LYPD3 LYPD5 MYOC CD36 L1RN S100A9 JUP AJP1 ANGPT2 ALX12 ZBTB16 COLB1A FBUM1 ZC3H12A GREM1 RHOD NARP COL28A1 BMP4 CLDN4 LIRN2
Epithelial cell proliferation	9	387	6.56E−03	NARP BMP4 FGF7 HGF DLX5 COLB1A SOX11 TGM1 TBX1
Table 3 (continued)

Functional category	Genes in list	Total genes	FDR	Genes
Biological adhesion	21	1548	6.78E−03	LYPD3 LYPD5 MYOC CD36 IL1RN S100A9 JUP AJP1 ANGPT2 ALOX12 ZBTB16 COL8A1 FBDM1 ZC3H12A GREM1 RHOD NRARP COL28A1 BMP4 CLDN4 LRRN2
Myeloid leukocyte migration	7	241	6.79E−03	IL36G IL1RN S100A9 CYP19A1 GREM1 ROR2 S100A12
Positive regulation of biosynthetic process	26	2113	6.91E−03	DLXS ZBTB16 HEYL JUP SOX11 HGF BMP4 CREB3L1 ELF3 ZC3H12A GREM1 PITX1 NOTCH3 KRT17 CD36 FG7 AVPR1A ROR2 ADRB2 SIX2 OVOL1 MAFB WNT11 GLI53 TBX1 SMPD3
Blood vessel endothelial cell migration	5	119	7.19E−03	ANGPT2 ALOX12 GREM1 FG18 JUP
Mesenchymal cell differentiation involved in renal system development	2	8	7.48E−03	BMP4 SIX2
Mesenchymal-epithelial cell signaling	2	8	7.48E−03	NOTCH3 BMP4
Mesenchymal cell differentiation involved in kidney development	2	8	7.48E−03	BMP4 SIX2
Negative regulation of mesenchymal cell proliferation	2	8	7.48E−03	BMP4 WNT11
Negative regulation of cellular metabolic process	31	2724	7.95E−03	ZBTB16 BMP4 SIX2 OVOL1 SOX11 ZNF154 HGF ID3 CREB3L1 CDA ELF3 ZC3H12A HEYL GREM1 PITX1 NOTCH3 EDNB1 SMAPD3 P3 SLPI NGF BMP4 BMP4 BMP4 BMP4 BMP4
Multicellular organismal water homeostasis	4	71	7.63E−03	ALOX12 TMEM79 ALOX12 CLDN4
Endochondral bone morphogenesis	4	72	8.01E−03	SMPD3 DLXS BMP4 FG18
Metanephros morphogenesis	3	33	8.15E−03	BMP4 GREM1 SIX2
Positive regulation of nucleic acid-templated transcription	22	1694	8.52E−03	DLXS ZBTB16 HEYL JUP SOX11 BMP4 ELF3 ZC3H12A PITX1 NOTCH3 FG7 CREB3L1 GREM1 ROR2 ADRB2 SIX2 OVOL1 MAFB WNT11 GLI53 TBX1 BMP4
Positive regulation of RNA biosynthetic process	22	1695	8.52E−03	DLXS ZBTB16 HEYL JUP SOX11 BMP4 ELF3 ZC3H12A PITX1 NOTCH3 FG7 CREB3L1 GREM1 ROR2 ADRB2 SIX2 OVOL1 MAFB WNT11 GLI53 TBX1 BMP4
Positive regulation of morphogenesis of an epithelium	3	34	8.72E−03	ALOX12 BMP4 GREM1
Regulation of mesenchymal cell proliferation	3	34	8.72E−03	BMP4 WNT11 TBX1
Ventricular septum development	4	74	8.72E−03	HEYL WNT11 BMP4 SOX11
Ear morphogenesis	5	127	9.06E−03	DLXS ROR2 SIX2 MAFB TBX1
Cell proliferation	26	2165	9.07E−03	NRARP DLXS BMP4 BMP4 FG7 GREM1 SIX2 JUP HGF NOTCH3 WNT11 SMPD3 BMP4 BMP4 BMP4
Soft palate development	2	9	9.07E−03	SOX11 TXB1
Regulation of branching involved in salivary gland morphogenesis	2	9	9.07E−03	HGF FGF7
Mesonephric duct development	2	9	9.07E−03	GREB1L WNT11
Regulation of DNA-binding transcription factor activity	10	495	9.09E−03	ID3 ZC3H12A HEYL JUP GREM1 CD36 SIK1 MDF1 S100A9 S100A12
Regulation of hormone levels	11	583	9.12E−03	CYP19A1 FAM3D SMPD3 IL1RN DUOX1 CRABP1 SOX11 CHST8 G6PC2 GLP1R NGF
Water homeostasis	4	76	9.28E−03	ALOX12 TMEM79 ALOX12 CLDN4
Cellular response to toxic substance	7	259	9.32E−03	HGF SMPD3 CD36 DUOX1 S100A9 ZC3H12A GPX3
Cardiac chamber morphogenesis	5	129	9.38E−03	HEYL WNT11 BMP4 SOX11 TXB1
Cardiac ventricle development	5	130	9.67E−03	HEYL WNT11 BMP4 GREB1L SOX11
Regulation of signal transduction	37	3529	9.74E−03	BMP4
Hindlimb morphogenesis	3	36	9.82E−03	PITX1 ZBTB16 BMP4
Odontogenesis	5	131	9.89E−03	SMPD3 SDC1 ID3 BMP4 TXB1
Regulation of bone mineralization	4	78	9.90E−03	BMP4 PDKCC ADRB2 GREM1
Polysaccharide biosynthetic process	4	78	9.90E−03	B3GNT4 B3GNT8 B3GNT3 SMPD3
Table 3 (continued)

Functional category	Genes in list	Total genes	FDR	Genes
Negative regulation of multicellular organismal process	18	1286	9.90E−03	ID3 ADRB2 ANGPT2 BMP4 ZC3H12A MAFB TWIST2 HGF NOTCH3 WNT11 ALOX12 BTRB16 AVPR1A SOX11 NRARP CREB3L1 JUP GREM1
Regulation of protein phosphorylation	20	1503	9.92E−03	HGF BMP4 IL36G IL1RN MYOC FGF7 FGF18 ZC3H12A GREM1 ADRB2 ALOX12B WNT11 BDKRB1 SMPD3 CD36 ROR2 SH3RF3 TBX1 NGF S100A12
Cell surface receptor signaling pathway	35	3287	1.00E−02	HGF WNT11 BMP4 NGF IL36G IL1RN RSPO3 HEYL ROR2 NRARP JUP ANGPT2 DUX1 CREB3L1 GREM1 CCB1 FAM83G MYOC NOTCH3 CHRNA4 SMPD3 DLX5 GLP1R SDC1 RASL11B CD36 FGF7 FGF18 ZC3H12A ADRB2 SOX11 MDFI CHN1 CDA ELF3
Positive regulation of phosphorus metabolic process	17	1183	1.00E−02	HGF BMP4 IL36G IL1RN FGF7 FGF18 ZC3H12A ADRB2 ALOX12B WNT11 CD36 GREM1 ROR2 SH3RF3 TBX1 NGF S100A12
Positive regulation of phosphate metabolic process	17	1183	1.00E−02	HGF BMP4 IL36G IL1RN FGF7 FGF18 ZC3H12A ADRB2 ALOX12B WNT11 CD36 GREM1 ROR2 SH3RF3 TBX1 NGF S100A12
Cellular response to oxidised low-density lipoprotein particle stimulus	2	10	1.05E−02	SMPD3 CD36
Positive regulation of keratinocyte proliferation	2	10	1.05E−02	FGF7 TG1M
Positive regulation of mitochondrial depolarization	2	10	1.05E−02	MYOC ALOX12
Epithelial cell proliferation involved in lung morphogenesis	2	10	1.05E−02	BMP4 FGF7
Epithelial tube morphogenesis	8	344	1.06E−02	NRARP BMP4 ALOX12B GREB1L GREM1 SIX2 SOX11 WNT11
Epithelial to mesenchymal transition	5	135	1.08E−02	WNT11 BMP4 HEYL GREM1 HGF
Negative regulation of growth	7	269	1.08E−02	BMP4 CDA BDKRB1 CD36 GREM1 ADRB2 WNT11
Mesoderm development	5	136	1.11E−02	BMP4 WNT11 SIX2 SOX11 OVO1 TBX1
Canonical Wnt signaling pathway	8	350	1.16E−02	RSPO3 NRARP JUP GREM1 WNT11 DLXS SDC1 ROR2
Digestive tract development	5	139	1.21E−02	BMP4 PKDCC SIX2 SOX11 WNT11
Mesenchymal cell development	4	84	1.23E−02	BMP4 HEYL SOX11 TBX1
Positive regulation of bone mineralization	3	40	1.24E−02	BMP4 PKDCC ADRB2
Embryonic digestive tract development	3	40	1.24E−02	PKDCC SIX2 SOX11
Regulation of cellular response to growth factor stimulus	7	277	1.24E−02	BMP4 WNT11 SIX2 SOX11 OVO1
Cell fate commitment	7	277	1.24E−02	BMP4 WNT11 SIX2 SOX11 OVO1
Glycoprotein biosynthetic process	8	357	1.28E−02	HS3ST3A1 B3GNT4 FUT2 B3GNT8 B3GNT3 CHST8 STASSA2 ST6GA2
Transmembrane receptor protein serine/threonine kinase signaling pathway	8	358	1.30E−02	BMP4 GREM1 FAM83G SMPD3 DLX5 SDC1 ROR2
Axis specification	4	86	1.30E−02	BMP4 SIX2 NRARP MDF1
Negative regulation of T cell differentiation	3	41	1.30E−02	ZC3H12A NRARP BMP4
Positive regulation of nitrogen compound metabolic process	35	3351	1.30E−02	HGF DLX5 ZBTR16 BMP4 IL36G IL1RN HEYL JUP SOX11 FGF7 FGF18 S100A9 ELF3 ZC3H12A GREM1 ADRB2 ALOX12B CCB1 PITX1 NOTCH3 WNT11 ALOX12 KRT17 CD36 CREB3L1 ROR2 SIX2 OVO1 MAFB SH3RF3 GLIS3 TBX1 SMPD3 NGF S100A12
Metanephric nephron development	3	41	1.30E−02	BMP4 GREM1 SIX2
Negative regulation of cell communication	19	1440	1.31E−02	SK1 NRARP HGF MYOC BMP4 KLK14 IL1RN CREB3L1 HEYL GREM1 ADRB2 FAM3D WNT11 RASL11B ZC3H12A AVPR1A ROR2 MDFI NOTCH3
Positive regulation of cellular metabolic process	36	3482	1.31E−02	HGF DLX5 ZBTR16 BMP4 IL36G IL1RN HEYL JUP SOX11 FGF7 FGF18 S100A9 ELF3 ZC3H12A GREM1 ADRB2 ALOX12B CCB1 PITX1 NOTCH3 WNT11 ALOX12 KRT17 CD36 CREB3L1 AVPR1A ROR2 SIX2 OVO1 MAFB SH3RF3 GLIS3 TBX1 SMPD3 NGF S100A12
Antimicrobial humoral response	19	1444	1.35E−02	SK1 NRARP HGF MYOC BMP4 KLK14 IL1RN CREB3L1 HEYL GREM1 ADRB2 FAM3D WNT11 RASL11B ZC3H12A AVPR1A ROR2 MDFI NOTCH3
Hair follicle development	5	145	1.38E−02	SLP1 S100A9 S100A12 DEF8A4 PI3
Regulation of epidermis development	4	88	1.38E−02	KRT17 FGF7 TEM79 KRT25
Artery development	4	88	1.38E−02	BMP4 KRT17 TEM79 SULT2B1
Positive regulation of cell proliferation	15	1022	1.39E−02	NRARP BMP4 FGF7 GREM1 NOTCH3 SMPD3 DLX5 ALOX12 FGF18 AVPR1A SIX2 SOX11 TM1 TBX1 ADR1A
Functional category	Genes in list	Total genes	FDR	Genes
---	---------------	-------------	---------	--
Positive regulation of response to stimulus	29	2621	1.39E−02	BMP4, IL36G, IL1RN, RSPC3, NRARP, JUP, HGF, MYOC, KLLK14, FGF18, S100A9, S100A12, ZC3H12A, ADRB2, ALOX12B, CCBE1, DLK5, CHN1, CD36, GREM1, ROR2, SOX11, DLOX1, WNT11, SH3RF3, NGF, TBX1, FGF7, ELF3
Positive regulation of RNA metabolic process	22	1789	1.39E−02	DLK5, ZBTB16, HEYL, JUP, SOX11, BMP4, ELF3, ZC3H12A, PITX1, NOTCH3, FG7, CREB3L1, GREM1, ROR2, ADRB2, S102, Ovol1, MAFA, WNT11, GLI53, TBX1, HGF
Positive regulation of membrane depolarization	2	12	1.39E−02	MYOC, ALOX12
Regulation of intracellular signal transduction	24	2027	1.42E−02	BMP4, IL36G, IL1RN, SIK1, HGF, MYOC, FGF18, S100A9, S100A12, ZC3H12A, ADRB2, ALOX12, CHN1, CD36, CREB3L1, GREM1, ROR2, SOX11, WNT11, SH3RF3, NGF, TBX1, FGF7, RHO
Positive regulation of cellular protein metabolic process	21	1680	1.42E−02	HGF, BMP4, IL36G, IL1RN, FGF7, FGF18, S100A9, ZC3H12A, ADRB2, ALOX12, CCBE1, WNT11, ALOX12, KRT17, CD36, GREM1, ROR2, SH3RF3, TBX1, NGF, S100A12
Lung alveolus development	3	43	1.42E−02	BMP4, SMDP3, PKDCC
Pattern specification process	9	451	1.42E−02	BMP4, ZBTB16, GREM1, ROR2, S102, NRARP, MAFA, MDFI, TBX1
Growth	15	1028	1.4E−02	NGF, BMP4, FGF7, CDA, WNT11, BDKRB1, SMDP3, KRT17, CD36, CYP19A1, PKDCC, AVPR1A, GREM1, ADRB2, S100A9
Molting cycle process	4	90	1.4E−02	KRT17, FGF7, TMEM79, KRT25
Hair cycle process	4	90	1.4E−02	KRT17, FGF7, TMEM79, KRT25
Wnt signaling pathway	10	543	1.48E−02	WNT11, RSPC3, NRARP, JUP, GREM1, DLK5, SDC1, ROR2, MYOC, MDFI
Negative regulation of osteoblast differentiation	3	44	1.49E−02	TWIST2, ID3, GREM1
Skin epidermis development	4	91	1.49E−02	KRT17, FGF7, TMEM79, KRT25
Regulation of Wnt signaling pathway	8	371	1.49E−02	RSPC3, NRARP, JUP, GREM1, WNT11, DLK5, ROR2, MDFI
Cell–cell signaling by wnt	10	545	1.5E−02	WNT11, RSPC3, NRARP, JUP, GREM1, DLK5, SDC1, ROR2, MYOC, MDFI
Digestive system development	5	151	1.54E−02	BMP4, PKDCC, S102, S101, WNT11
Insemination	2	13	1.57E−02	KLF14, AVPR1A
Extracellular structure organization	9	460	1.57E−02	COL8A1, COL28A1, SMDP3, CD36, ADAMTSL4, ELF3, SDC1, GREM1, CREB3L1
Protein import into nucleus	5	152	1.57E−02	BMP4, ZC3H12A, JUP, CD36, S10X
Positive regulation of cell death	12	741	1.61E−02	BMP4, ADAMTS4, S100A9, ZC3H12A, WNT11, ALOX12, ZBTB16, ID3, CD36, SIK1, PNMA5, NGF
Muscle structure development	11	645	1.61E−02	BMP4, USP2, PITA1, SCD1, ID3, HEYL, AVPR1A, GREM1, S101, SIK1, TBX1
Anterior/posterior pattern specification	6	222	1.63E−02	BMP4, ZBTB16, ROR2, S102, NRARP, TBX1
Epithelial cell differentiation involved in kidney development	3	46	1.63E−02	BMP4, GREM1, S10X
Regulation of canonical Wnt signaling pathway	7	298	1.65E−02	RSPC3, NRARP, JUP, GREM1, WNT11, DLK5, ROR2
Regulation of blood vessel endothelial cell migration	4	95	1.68E−02	ANGPT2, ALOX12, FGF18, JUP
Secretion by cell	21	1715	1.70E−02	CYP19A1, FGF7, FAM3D, CHRNA4, SMDP3, CD36, IL1RN, TMEM79, ZC3H12A, AVPR1A, S10X, SDC1, GP6C2, CREB3L1, HGF, GLP1R, SLPI, CD36, S100A9, S100A12, JUP
Gland development	9	468	1.71E−02	HGF, PITA1, BMP4, CYP19A1, FGF7, ELF3, MAFB, WNT11, TBX1
Embryonic cranial skeleton morphogenesis	3	47	1.71E−02	BMP4, S102, TBX1
Regulation of biomineral tissue development	4	97	1.78E−02	BMP4, PKDCC, ADRB2, GREM1
Mating	3	48	1.80E−02	KLF14, PI, AVPR1A
Response to external stimulus	28	2561	1.80E−02	IL36G, IL1RN, SIK1, DEF8B4A, HGF, ANGPT2, SLPI, CD36, FGF7, FGF18, S100A9, S100A12, ZC3H12A, JUP, A1AP1, USP2, WNT11, BDKRB1, DLK5, ALOX12, BMP4, CHN1, CYP19A1, AVPR1A, GREM1, ADRB2, PI3, LTBP2
Positive regulation of canonical Wnt signaling pathway	5	159	1.83E−02	RSPC3, NRARP, JUP, DLK5, ROR2
Positive regulation of protein modification process	17	1279	1.83E−02	BMP4, IL36G, IL1RN, FGF7, FGF18, ZC3H12A, ADRB2, ALOX12B, WNT11, CD36, GREM1, ROR2, SH3RF3, TBX1, NGF, S100A12
Somite development	4	98	1.83E−02	WNT11, ROR2, S10X, NRARP
Regulation of binding	8	388	1.83E−02	ID3, SLPI, BMP4, ADRB2, S10X, CD36, MDFI, NGF
Genitalia development	3	49	1.87E−02	CYP19A1, GREB3L1, ROR2
Positive regulation of biomineral tissue develop-	3	49	1.87E−02	BMP4, PKDCC, ADRB2
Table 3 (continued)

Functional category	Genes in list	Total genes	FDR	Genes
Ear development	6	232	1.93E−02	DLX5 BMP4 ROR2 SIX2 MAFB TBX1
Branching morphogenesis of an epithelial tube	5	162	1.94E−02	NRARP BMP4 GREB1L GREM1 SIX2
Positive regulation of exosomal secretion	2	15	1.95E−02	SDC1 SMPD3
Regulation of transcription by RNA polymerase II	30	2830	1.95E−02	DLX5 ZBTB16 BMP4 ELF3 HEYL JUP SOX11 ZC3H12A GREM1 FAH38G PITX1 NOTCH3 SMPD3 GLIS3 ID3 TBX4 CD36 CREBL1 ROR2 ADRB2 SIX2 OVO1 2NF154 NRARP MAFB ZNF469 USP2 MDFI TBX1 HGF
Activation of transmembrane receptor protein tyrosine kinase activity	2	15	1.95E−02	GREM1 ADRB2
Positive regulation of macromolecule biosynthetic process	23	1978	1.96E−02	IL36G IL1RN ZC3H12A BMP4 ELF3 HEYL JUP ANGPT2 5LC8A3 SDC1 ID3 CD36 ZC3H12A AVPR1A 5LC8A3 BMP4 CATSPERB
Secretion	22	1861	1.96E−02	CYP19A1 FGF7 FAM3D CHRNA4 SMPD3 CD36 IL1RN TIMEM79 ZC3H12A AVPR1A SOX11 SDC1 G6PC2 ALOX12B CREBL1 HGF GLP1R SLPI CDA S100A9 S100A12 JUP
Positive regulation of smooth muscle cell proliferation	4	101	1.97E−02	BMP4 NOTCH3 SMPD3 ALOX12
Negative regulation of hemopoiesis	5	164	2.00E−02	MAFB ZBTB16 ZC3H12A NRARP BMP4
Regulation of interleukin-6 production	5	164	2.00E−02	IL36G IL1RN ZC3H12A BMP4 ELF3 HEYL JUP ANGPT2 5LC8A3 SDC1 ID3 CD36 ZC3H12A AVPR1A 5LC8A3 BMP4 CATSPERB
Response to organic cyclic compound	14	975	2.02E−02	IL1RN DUOX1 HEYL JUP ANGPT2 5LC8A3 SDC1 ID3 CD36 ZC3H12A AVPR1A 5LC8A3 BMP4 CATSPERB
Intermediate filament cytoskeleton organization	3	51	2.02E−02	TCHH KRT17 KRT25
Negative regulation of lymphocyte differentiation	3	51	2.02E−02	ZC3H12A NRARP BMP4
Negative regulation of cell differentiation	12	774	2.08E−02	ID3 BMP4 MAFA TWIST2 NOTCH3 ZBTB16 ZC3H12A SIX2 OVO1 2NF154 NRARP MAFB GREM1 BMP4
Regulation of signaling receptor activity	11	676	2.08E−02	LYNX1 HGF BMP4 NGF IL36G IL1RN FGF7 FGF7 IL1RN GREM1 FAH38G ADRB2
Negative regulation of transcription by RNA polymerase II	13	876	2.08E−02	BMP4 SOX11 ZBTB16 NOTCH3 ID3 CD36 CREBL1 HEYL OVO1 2NF154 USP2 GLIS3 MDFI
Anterior/posterior axis specification	3	52	2.10E−02	MYOC CD36 JUP
Positive regulation of cell–matrix adhesion	3	52	2.10E−02	TCHH KRT17 KRT25
Intermediate filament-based process	3	52	2.10E−02	BMP4 GREM1
Regulation of transcription from RNA polymerase II promoter involved in heart development	2	16	2.11E−02	BMP4 GREM1
Regulation of exosomal secretion	2	16	2.11E−02	BMP4 S100A9 WNT11 BMP4 BMP4 ADRB2 SIX2 OVO1 2NF154 NRARP MAFB GREM1
Cellular response to oxygen-containing compound	16	1199	2.13E−02	BMP4 S100A9 WNT11 BMP4 BMP4 ADRB2 SIX2 OVO1 2NF154 NRARP MAFB GREM1
Positive regulation of apoptotic process	11	680	2.13E−02	SMPD3 BMP4 AMAP11 ADRB2 SIX2 OVO1 2NF154 NRARP MAFB GREM1
Negative regulation of response to stimulus	21	1764	2.13E−02	BMP4 S100A9 WNT11 BMP4 BMP4 ADRB2 SIX2 OVO1 2NF154 NRARP MAFB GREM1
Negative regulation of binding	5	168	2.13E−02	BMP4 S100A9 WNT11 BMP4 BMP4 ADRB2 SIX2 OVO1 2NF154 NRARP MAFB GREM1
Positive regulation of macromolecule metabolic process	35	3498	2.13E−02	BMP4 S100A9 WNT11 BMP4 BMP4 ADRB2 SIX2 OVO1 2NF154 NRARP MAFB GREM1
Muscle organ development	8	404	2.15E−02	BMP4 S100A9 WNT11 BMP4 BMP4 ADRB2 SIX2 OVO1 2NF154 NRARP MAFB GREM1
Negative regulation of DNA binding	3	53	2.16E−02	BMP4 S100A9 WNT11 BMP4 BMP4 ADRB2 SIX2 OVO1 2NF154 NRARP MAFB GREM1
Mesenchyme morphogenesis	3	53	2.16E−02	BMP4 S100A9 WNT11 BMP4 BMP4 ADRB2 SIX2 OVO1 2NF154 NRARP MAFB GREM1
Regulation of phosphorylation	20	1653	2.17E−02	BMP4 S100A9 WNT11 BMP4 BMP4 ADRB2 SIX2 OVO1 2NF154 NRARP MAFB GREM1
Positive regulation of programmed cell death	11	686	2.23E−02	BMP4 S100A9 WNT11 BMP4 BMP4 ADRB2 SIX2 OVO1 2NF154 NRARP MAFB GREM1
Unsaturated fatty acid biosynthetic process	3	54	2.25E−02	BMP4 S100A9 WNT11 BMP4 BMP4 ADRB2 SIX2 OVO1 2NF154 NRARP MAFB GREM1
Inner ear morphogenesis	4	107	2.25E−02	BMP4 S100A9 WNT11 BMP4 BMP4 ADRB2 SIX2 OVO1 2NF154 NRARP MAFB GREM1
Regulation of striated muscle cell differentiation	4	107	2.25E−02	BMP4 S100A9 WNT11 BMP4 BMP4 ADRB2 SIX2 OVO1 2NF154 NRARP MAFB GREM1
Functional category	Genes in list	Total genes	FDR	Genes
--	---------------	-------------	--------	--
Negative regulation of signal transduction	17	1321	2.27E−02	SIK1 NRARP HGF MYOC BMP4 KLK14 IL1RN CRPB3L1 HEYL GREM1 ADRB2 WNT11 RASL11B ZC3H12A ROR2 MDF1 NOTCH3
Lipoxigenase pathway	2	17	2.27E−02	ALOX12 ALOX12B
Interleukin-6 production	5	172	2.27E−02	IL36G IL1RN ZC3H12A HGF CD36
Linoleic acid metabolic process	2	17	2.27E−02	ALOX12 ALOX12B
Pulmonary valve morphogenesis	2	17	2.27E−02	BMP4 HEYL
Negative regulation of molecular function	16	1216	2.33E−02	ID3 HGF SLPI BMP4 ZC3H12A HEYL ADRB2 P3 NGF S0X11 LYNX1 SPINK9 COL28A1 MDF1 SIK1 LTB4R2
Positive regulation of metabolic process	37	3789	2.34E−02	HGF DLX5 ZBTB16 BMP4 IL36G IL1RN HEYL JUP S0X11 FGF7 FGF18 CREB3L1 S100A9 ELF3 ZC3H12A GREM1 ADRB2 ALOX12B CCB1 E1 PITX1 NOTCH3 WNT11 ALOX12 KRT17 CD36 AVPR1A ROR2 S6X2 OVOL1 MAFB NGF SH3RF3 GLI3 ACTG2 TBX1 SMPD3 S100A12
Segmentation	4	109	2.35E−02	BMP4 ROR2 NRARP MAFB
Regulation of stress-activated MAPK cascade	6	248	2.38E−02	IL36G IL1RN ZC3H12A HGF ROR2 SH3RF3
Cell differentiation involved in kidney development	3	56	2.42E−02	BMP4 GREM1 SIK2
Regulation of epithelial cell proliferation	7	330	2.43E−02	NRARP BMP4 FGF7 DLX5 S0X11 TGM1 TBX1
Import into nucleus	5	176	2.44E−02	BMP4 ZC3H12A JUP CD36 SIK2
Regulation of stress-activated protein kinase signaling cascade	6	250	2.44E−02	IL36G IL1RN ZC3H12A HGF ROR2 SH3RF3
Positive regulation of protein metabolic process	21	1796	2.45E−02	HGF BMP4 IL36G IL1RN FGF7 FGF18 S100A9 ZC3H12A ADRB2 ALOX12B CCB1 E1 WNT11 ALOX12 KRT17 CD36 GREM1 ROR2 SH3RF3 TBX1 NGF S100A12
Carbohydrate derivative biosynthetic process	12	800	2.45E−02	HS3ST3A1 B3GNT4 FUT2 B3GNT8 B3GNT3 PAPS52 CHST8 ST8SIA2 SMPD3 ST6GAL2 SDC1 CDA
Regulation of nucleocytoplasmic transport	4	111	2.46E−02	BMP4 ZC3H12A JUP CD36
Embryonic digestive tract morphogenesis	2	18	2.47E−02	SIK2 S0X11
Regulation of kidney development	3	57	2.49E−02	BMP4 GREM1 SIK2
Negative regulation of leukocyte differentiation	4	112	2.52E−02	ZC3H12A NRARP MAFB BMP4
Lung morphogenesis	3	58	2.60E−02	BMP4 FGF7 S0X11
Leukocyte chemotaxis	6	255	2.62E−02	IL36G IL1RN S100A9 CYP19A1 GREM1 S100A12
Cell junction assembly	6	255	2.62E−02	MYOC JUP WNT11 GREM1 RHOD FBLM1
Mucopolysaccharide metabolic process	4	114	2.65E−02	HGF SMPD3 B3GNT4 B3GNT3
Regulation of growth	11	710	2.67E−02	NGF BMP4 CDA BDKRB1 KRT17 CD36 AVPR1A GREM1 ADRB2 WNT11 S100A9
Regulation of production of miRNAs involved in gene silencing by miRNA	2	19	2.68E−02	BMP4 ZC3H12A
Exosomal secretion	2	19	2.68E−02	SDC1 SMPD3
Keratinocyte migration	2	19	2.68E−02	FGF7 LTB4R2
Kidney mesenchyme development	2	19	2.68E−02	BMP4 SIK2
Negative regulation of DNA-binding transcription factor activity	5	182	2.69E−02	ID3 ZC3H12A HEYL SIK1 MDF1
Bone morphogenesis	4	115	2.69E−02	SMPD3 DLX5 BMP4 FGF18
Polysaccharide metabolic process	4	116	2.76E−02	B3GNT4 B3GNT8 B3GNT3 SMPD3
Cellular oxidant detoxification	4	117	2.83E−02	CD36 DUOX1 S100A9 GXP3
Molting cycle	4	117	2.83E−02	KRT25 KRT17 FGF7 TMEM79
Hair cycle	4	117	2.83E−02	KRT25 KRT17 FGF7 TMEM79
Extracellular exosome biogenesis	2	20	2.84E−02	SDC1 SMPD3
Positive regulation of cardiac muscle cell differentiation	2	20	2.84E−02	GREM1 BMP4
Regulation of cell growth	8	432	2.84E−02	NGF CDA BDKRB1 KRT17 AVPR1A GREM1 WNT11 S100A9
Glycoprotein metabolic process	8	432	2.84E−02	HS3ST3A1 B3GNT4 FUT2 B3GNT8 B3GNT3 CHST8 ST8SIA2 ST6GAL2
Notochond development	2	20	2.84E−02	WNT11 ID3
Blood vessel endothelial cell proliferation involved in sprouting angiogenesis	2	20	2.84E−02	NRARP BMP4
Table 3 (continued)

Functional category	Genes in list	Total genes	FDR	Genes
Down-regulated genes in alive × dead				
Positive regulation of stress-activated MAPK	5	186	2.84E−02	IL36G IL1RN ZC3H12A ROR2 SH3RF3
cascade				
Response to hydroperoxide	2	20	2.84E−02	CD36 GPX3
Middle ear morphogenesis	2	20	2.84E−02	SOX2 TBX1
Entrainment of circadian clock by photoperiod	2	20	2.84E−02	USP2 SKI
Negative regulation of leukocyte chemotaxis	2	20	2.84E−02	CYP19A1 GREM1
Regulation of production of small RNA involved in	2	20	2.84E−02	BMP4 ZC3H12A
gene silencing by RNA				
Hormone secretion	7	346	2.86E−02	CYP19A1 FAM3D SMPD3 IL1RN SOX11 G6PC2 GLP1R
Positive regulation of stress-activated protein	5	187	2.88E−02	IL36G IL1RN ZC3H12A ROR2 SH3RF3
kinase signaling cascade				
Negative regulation of endopeptidase activity	6	264	2.89E−02	HGF P13 SLPI SPINK9 COL28A1 NGF
Neutrophil chemotaxis	4	119	2.91E−02	BMP4 BMP4 ROR2
Embryonic digit morphogenesis	2	62	2.91E−02	ZBTB16 BMP4 ROR2
Modification of morphology or physiology of other	5	188	2.91E−02	SLPI S100A9 ZC3H12A DEF84A
organism				
Positive regulation of cell-substrate adhesion	4	120	2.95E−02	MYOC CD36 COL8A1 JUP
Positive regulation of protein serine/threonine	7	349	2.95E−02	BMP4 FGF18 HGF ROR2 ADRB2 S100A12
kinase activity				
Regulation of cell-substrate junction assembly	3	63	3.00E−02	MYOC GREM1 RHOD
Sialylation	2	21	3.00E−02	ST8SIA2 S6GAL2
Regulation of protein localization to nucleus	4	121	3.00E−02	BMP4 ZC3H12A JUP CD36
Protein glycosylation	6	268	3.00E−02	B3GNT4 FUT2 B3GNT8 B3GNT3 ST8SIA2 S6GAL2
Positive regulation of Wnt signaling pathway	5	190	3.00E−02	RSP33 NRARP JUP DLX5 ROR2
Negative regulation of chondrocyte differentiation	2	21	3.00E−02	BMP4 GREM1
Macromolecule glycosylation	6	268	3.00E−02	B3GNT4 FUT2 B3GNT8 B3GNT3 ST8SIA2 S6GAL2
Regulation of focal adhesion assembly	3	63	3.00E−02	MYOC GREM1 RHOD
Regulation of mitochondrial depolarization	2	21	3.00E−02	MYOC ALOX12
Pulmonary valve development	2	21	3.00E−02	MYOC ALOX12
Chordate embryonic development	10	632	3.02E−02	MDF1 BMP4 RPSO3 ELF3 ROR2 S100A11 NRARP WNT11 TBX1
O-glycan processing	3	64	3.07E−02	B3GNT4 B3GNT8 B3GNT3
Respiratory gaseous exchange	3	65	3.18E−02	CHRNA4 CCB1 MAFB
Gland morphogenesis	4	124	3.18E−02	HGF BMP4 FGF7 ELF3
Negative regulation of chemotaxis	3	65	3.18E−02	ANGPT2 CYP19A1 GREM1
Positive regulation of striated muscle cell	3	65	3.18E−02	GREM1 BMP4 TBX1
differentiation				
Hormone transport	7	357	3.19E−02	CYP19A1 FAM3D SMPD3 IL1RN SOX11 G6PC2 GLP1R
Extracellular vesicle biogenesis	2	22	3.21E−02	SDC1 SMPD3
Positive regulation of transcription of Notch	2	22	3.21E−02	NOTCH3 HEYL
receptor target				
Gastrulation	5	195	3.21E−02	BMP4 IL1RN WNT11 S100A1 COL8A1
Negative regulation of peptidase activity	6	273	3.21E−02	HGF P13 SLPI NGF SPINK9 COL28A1
Negative regulation of response to external	7	358	3.21E−02	ANGPT2 AJAP1 HGF ALOX12 CYP19A1 ZC3H12A GREM1
stimulus				
Proteolysis	22	1988	3.24E−02	CPXM2 HGF USP2 KLK14 S100A9 ZC3H12A CCB1 KLK12 PRSS50 ALOX12 P13 SLPI KLK10 NGF ADAMTS4 PRSS5 PRSS5 ADAMTS15 KLK13 PRSS2 SPINK9 COL28A1 ADRB2
Negative regulation of cell-substrate adhesion	3	66	3.25E−02	MYOC AJAP1 ANGPT2
Transcription by RNA polymerase II	30	2992	3.25E−02	DLX5 ZBTB16 BMP4 ELF3 HEYP JUP SOX11 ZC3H12A GREM1 FAM83G PITX1 NOTCH3 SMPD3 GLS3 ID3 TBX4 CD36 GREB3L1 ROR2 ADRB2 S100A9 OXOL1 ZNF154 NRARP MAFB ZNF469 USP2 MDF1 TBX1 HGF
Regulation of phosphate metabolic process	21	1870	3.25E−02	HGF BMP4 IL36G IL1RN MYOC FGF7 FGF18 CDA ZC3H12A GREM1 ADRB2 ALOX12B WNT11 BDKR81 SMPD3 CD36 ROR2 SH3RF3 TBX1 NGF S100A12
Table 3

Down-regulated genes in alive × dead

Functional category	Genes in list	Total genes	FDR	Genes
Regulation of membrane potential	8	450	3.25E−02	CHRNA4 KCNK12 MYOC SLClB3 ALOX12 CD36 ADRB2 JUP
Positive regulation of MAP kinase activity	6	275	3.25E−02	BMP4 FGFB HGF ROR2 NGF S100A12
Cellular detoxification	4	126	3.26E−02	CD36 DUOX1 S100A9 GPX3
Carbohydrate metabolic process	10	644	3.27E−02	G6PC2 B3GNT4 B3GNT8 B3GNT3 ST6SIA2 ST6GAL2 SMPD3 CHST8 FUT2 SK1
Positive regulation of nucleobase-containing compound metabolic process	22	1993	3.27E−02	DLX5 ZBTB16 HEYL JUP SOX11 HGF BMP4 ELF3 ZC3H12A GREM1 PITX1 NOTCH3 FGFB GREB1L ROR2 ADRB2 SIK2 OVOL1 MAP2B WNT11 GLI5 TBX1
Regulation of phosphorus metabolic process	21	1872	3.27E−02	HGF BMP4 IL36G IL1 RN MYOC FGFB FGFB IL18 CDA ZC3H12A GREM1 ADRB2 ALOX12B WNT11 BDKRB1 SMPD3 CD36 ROR2 SH3RF3 TBX1 NGF S100A12
Protein localization to nucleus	6	276	3.27E−02	BMP4 ZC3H12A JUP ZBTB16 CD36 SIK2
Cofactor catabolic process	3	67	3.31E−02	GPX3 DUOX1 ALDH1L1
Male genitalia development	2	23	3.35E−02	GREB1L ROR2
Lens morphogenesis in camera-type eye	2	23	3.35E−02	BMP4 SOX11
Positive regulation of epidermal cell differentiation	2	23	3.35E−02	BMP4 SULT2B1
Negative regulation of muscle contraction	2	23	3.35E−02	ADRB2 ZC3H12A
Branching involved in salivary gland morphogenesis	2	23	3.35E−02	HGF FGFB
Endothelial tube morphogenesis	2	23	3.35E−02	BMP4 ALOX12
Morphogenesis of an endothelium	2	23	3.35E−02	BMP4 ALOX12
Cranial skeletal system development	3	68	3.39E−02	BMP4 SIK2 TBX1
Inflammatory response	12	856	3.39E−02	BDKRB1 LTBR42 S100A9 HGF SDC1 IL36G IL1 RN CYP19A1 S100A12 ELF3 ZC3H12A CD36
Negative regulation of cell–cell adhesion	5	200	3.39E−02	IL1 RN ALOX12 ZC3H12A NARAP BMP4
Glycosylation	6	280	3.41E−02	B3GNT4 FUT2 B3GNT8 B3GNT3 ST6SIA2 ST6GAL2
Embryo development ending in birth or egg hatching	10	652	3.44E−02	MDFI BMP4 RSP03 ELF3 ROR2 SIK2 SOX11 NARAP WNT11 TBX1
Regulation of adherens junction organization	3	69	3.48E−02	MYOC GREM1 RHCO
Skeletal muscle cell differentiation	3	69	3.48E−02	HEYL SOX11 TBX1
Ceramide biosynthetic process	3	69	3.48E−02	ST6SIA2 ALOX12 SMPD3
Response to toxic substance	9	555	3.49E−02	CHRNA4 HGF SMPD3 SDC1 CD36 DUOX1 S100A9 ZC3H12A GPX3
Photoperiodism	2	24	3.51E−02	USP2 SIK1
Positive regulation of lipid storage	2	24	3.51E−02	ZC3H12A CD36
Purine ribonucleoside bisphosphate metabolic process	2	24	3.51E−02	PAPS52 SULT2B1
Myelination	4	131	3.51E−02	MALL HGF MYOC SLClB3
Positive regulation of protein kinase activity	9	557	3.51E−02	BMP4 FGFB HGF WNT11 GREM1 ROR2 ADRB2 NGF S100A12
3-phosphoadenosine 5′-phosphosulfate metabolic process	2	24	3.51E−02	PAPS52 SULT2B1
Mitochondrial depolarization	2	24	3.51E−02	MYOC ALOX12
Uterus development	2	24	3.51E−02	CYP19A1 GREB1L
Regulation of cellular protein metabolic process	28	2768	3.54E−02	HGF BMP4 IL36G IL1 RN MYOC FGFB FGFB IL18 S100A9 ZC3H12A GREM1 ADRB2 ALOX12B CCB1 WNT11 BDKRB1 SMPD3 ALOX12 P3 SL8P KRT17 NGF CD36 ROR2 SPINK9 COL2B8 SMH3RF3 TBX1 S100A12
Formation of primary germ layer	4	132	3.56E−02	BMP4 WNT11 SIK2 COLBA1
Endocrine system development	4	132	3.56E−02	BMP4 PITX1 WNT11 TBX1
Regulation of DNA binding	4	132	3.56E−02	ID3 SOX11 MDFI NGF
Striated muscle cell differentiation	6	285	3.56E−02	BMP4 AVPR1A GREM1 SDC1 SIK1 TBX1
Inner ear development	5	205	3.59E−02	DLX5 BMP4 ROR2 MAF2 TBX1
Neutrophil migration	4	133	3.62E−02	IL36G IL1 RN S100A9 S100A12
directly with several components within the tumor microenvironment, including cancer cells, immune cells, endothelial cells and others [4, 6, 17, 25, 26, 30, 35, 61, 80, 81, 93, 95, 117, 120, 142, 143, 148]. We detected an increase in intra-tumoral CGRP after over-activation of sensory neurons (Fig. 10). However, it remains unknown whether the decrease in the tumor size after sensory neurons overactivation is due to this increase in the intra-tumoral concentration of CGRP. Future studies will need to genetically eliminate specific receptors for this and other neuropeptides (such as receptor activity-modifying protein 1 (RAMP1) for CGRP) from different cellular components of the

Table 4 Sensory neuron markers

Gene
CALCA
CHRNA3
DIO3
FAM19A
GRM3
GRP
KCNQ2
MDGA1
MMD2
NECAB2
NTRK1
NTRK2
NTRK3
ONECUT3
P2RX3
PCP4
POU4F3
POU6F2
PRDM12
PRDM8
RET
RUNX1
RUNX3
SCN10A
SCN11A
SCN9A
STRA6
SYT13
TAC1
TRPA1
TRPM3
TRPM8
TRPV1
VIP

Table 5 Angiogenesis-related genes down-regulated in alive x dead

Gene	symbol	log2FC	FDR
ANGPT2	−1.42767	3.23E−02	
BMP4	−1.23615	3.99E−02	
CCB1E1	−1.04094	4.44E−02	
COL8A1	−1.22669	4.09E−02	
CREB3L1	−1.04632	4.44E−02	
FGF18	−1.35348	3.80E−03	
GREM1	−1.36182	1.10E−02	
HGF	−1.19158	4.28E−03	
JUP	−1.81687	1.10E−02	
NOTCH3	−1.22979	3.57E−03	
NRARP	−1.42862	5.97E−03	
RSPO3	−1.48997	6.13E−04	
TBBX1	−1.26122	3.69E−02	
TBX4	−1.84817	5.39E−03	
ZC3H12A	−1.35742	4.67E−03	

Fig. 9 Schematic illustration summarizing the results of sensory neurons’ activity inhibition and overactivation in the melanoma microenvironment
tumor microenvironment to reveal whether those communications are relevant for melanoma outcomes.

Conclusion

In conclusion, this work identifies sensory neurons over-activation as a potential strategy for blocking melanoma progression and improving patient outcomes. We also anticipate that drugs that reduce sensory neurons hyperexcitability used for analgesic treatment may cause undesired effects in cancer patients and need to be carefully evaluated in pre-clinical models of cancer before using them in these patients [34, 125]. Moreover, the relationship between sensory hyperexcitability and cancer outcomes is likely to inform studies of other cancers that are also infiltrated by sensory neurons.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s40478-021-01273-9.

Additional file 1. Gate strategy for regulatory markers. Representative contour plots showing proportion of CTLA-4 and PD-1 (top to bottom) in CD4+ and CD8+ (right to left) T viable lymphocytes within CD45+ alive cells from tumor infiltrate.

Additional file 2. Interactions among genes related to angiogenesis which are overexpressed in SKCM patients presenting worse prognosis (dead vs. alive).

Additional file 3. Inferred proportion of immune infiltrated cells in SKCM patients from the TCGA cohort.

Additional file 4. Differences observed on inferred proportions of tumor-infiltrating CD4+ T cells, CD8+ T cells, dendritic cells and NK cells between samples of alive and dead SKCM patients from the TCGA cohort.

Additional file 5. Impact of Th17 immune response in melanoma. (A) Microarray analysis of skin samples from Melanoma (n=46) and healthy (n=16) individuals from GEO database: GSE15605 was analyzed by Phantasmus [156]. Expression of Th17 immune response markers in melanoma samples, normalized to health samples, as Log2 Fold Change. (B) Survival curve from melanoma patients. The prognostic impact of IL17A expression in melanoma patients was evaluated using the R2: Genomics Analysis and Visualization Platform (http://r2.amc.nl). We evaluated the survival probability of melanoma patients with melanoma based on their tumor transcriptome (n = 214) [19]. High expression of IL17A in melanoma is correlated with increased patient survival. Differences were considered significant at P value < 0.05.

Acknowledgements

Alexander Birbrair is supported by a research productivity fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-PQ2), a Grant from Instituto Serra-1708-15285, a Grant from Pró-reitoria de Pesquisa/Universidade Federal de Minas Gerais (PRPq/UFMG) (Edital 05/2016), a Grant from Fundação de Amparo à Pesquisa do Estado de Minas Gerais – FAPESP (Chamada N°01/2021 – Demanda Universal, APQ-01321-21), a Grant from FAPESP [Rede Mineira de Engenharia de Tecidos e Terapia Celular (REMETTEC, RED-00570-16)]; a Grant from FAPESP [Rede De Pesquisa Em Doenças Infecciosas Humanas E Animais Do Estado De Minas Gerais (RED-00313-16)]; and a Grant from MCTIC/CNPq Nº 28/2018 (Universal/Faixa A). Remo C. Russo is supported by a research productivity fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-PQ2) and a Grant from FAPESP (Chamada N°01/2021 – Demanda Universal). Akiva Mintz is supported by the National Institute of Health (1R01CA179072-01A1) and by the American Cancer Society Mentored Research Scholar Grant (124443-MRSG-13-121-01-DDO). Pedro A. C. Costa is supported by a postdoctoral fellowship (PNPD) from CAPES. Walison N. Silva is supported by master fellowships from CAPES. Caroline C. Piconi and Alinne C. Costa are supported by doctoral fellowships from CAPES. The authors also thank CAPI (UFMG) for microscopical technical support and Laboratory of Flow Cytometry at the Instituto de Ciências Biológicas/UFMG (http://labs.icb.ufmg.br/citometria/) for providing the equipment and technical support for experiments involving flow cytometry.

Availability of data and materials

Data will be made available on reasonable request.

Declarations

Competing interests

The authors have no competing interests to declare.

Author details

1Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil. 2Centro de Oncologia Molecular, Hospital Sino-Libanes, Sao Paulo, SP, Brasil. 3Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil. 4Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil. 5Departamento de Farmacologia, Universidade Federal de Goiás, Goiânia, GO, Brasil. 6Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, BA, Brasil. 7Departamento de Genetica, Ecologia e Evolucao, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil. 8Departamento de Farmacologia, Universidade de São Paulo, Ribeirão Preto, SP, Brasil. 9Department of Radiology, Columbia University Medical Center, New York, NY, USA.

Received: 27 July 2021 Accepted: 10 October 2021 Published online: 16 November 2021
gene expression phenotype in breast cancer cells. Breast Cancer Res Treat 99:351–364. https://doi.org/10.1007/s10549-006-9219-7

37. Faivre L, Wang Y, Kastriti ME, Fontanet P, Cheung KY, Petipret C, Wu H, Sun LL, Runge K, Cociu L et al (2020) Single cell RNA sequencing identifies early diversity of sensory neurons forming via bi-potential intermediates. Nat Commun 11:4175. https://doi.org/10.1038/s41467-020-17929-4

38. Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306. https://doi.org/10.1038/nrc3245

39. Gabriovich DI (2017) Myeloid-derived suppressor cells. Cancer Immunol Res 5:3–8. https://doi.org/10.1158/2326-6066.CIR-16-0297

40. Gast CE, Silk AD, Zarour L, Riegler L, Burkhardt JG, Gustafson KT, Parappilly MS, Roh-Johnson M, Goodman JR, Olson B, et al (2018) Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv. https://doi.org/10.1126/sciadv.aatv782

41. Gautron L, Sakata I, Udit S, Zigman JM, Wood JN, Elmquist JK (2011) Systematic review with meta-analysis. Br J Cancer 105:93–103. https://doi.org/10.1038/bjc.2011.189

42. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133:1710–1715

43. Gerold NA, Sanchez-Salas R, Peske JD, Vano Y, Petitprez F, Pilly MS, Roh-Johnson M, Goodman JR, Olson B, et al (2018) Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv. https://doi.org/10.1126/sciadv.aatv782

44. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133:1710–1715

45. Gerold NA, Sanchez-Salas R, Peske JD, Vano Y, Becht E, Peipert F, Validire P, Ingels A, Cathelineau X, Fridman WH et al (2019) The clinical role of the TME in solid cancer. Br J Cancer 120:45–53. https://doi.org/10.1038/s41416-018-0327-z

46. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133:1710–1715

47. Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW (2011) The autonomic nerve fiber innervation and activity and its effect on breast cancer. J Clin Oncol 29:460–609. https://doi.org/10.1126/science.1206391

48. Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW (2011) The autonomic nerve fiber innervation and activity and its effect on breast cancer. J Clin Oncol 29:460–609. https://doi.org/10.1126/science.1206391

49. Gregoire NA, Sanchez-Salas R, Peske JD, Vano Y, Becht E, Peipert F, Validire P, Ingels A, Cathelineau X, Fridman WH et al (2019) The clinical role of the TME in solid cancer. Br J Cancer 120:45–53. https://doi.org/10.1038/s41416-018-0327-z

50. Greten FR, Grivennikov SI (2019) Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51:27–41. https://doi.org/10.1016/j.immuni.2019.06.025

51. Greten FR, Grivennikov SI, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899. https://doi.org/10.1016/j.cell.2010.01.025

52. Greten FR, Grivennikov SI, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899. https://doi.org/10.1016/j.cell.2010.01.025

53. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899. https://doi.org/10.1016/j.cell.2010.01.025

54. Guimarães MZP, De Vecchi R, Vitoria G, Sochacki JK, Paulsen BS, Lima J, Rodrigues da Silva F, da Costa RFM, Castro NG, Breton L et al (2018) Generation of iPSC-derived human peripheral sensory neurons releas-
144. Vriens J, Owsiianik G, Hofmann T, Philipp SE, Stab J, Chen X, Benoit M, Xue F, Janssens A, Kerselaers S et al (2011) TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70:482–494. https://doi.org/10.1016/j.neuron.2011.02.051

145. Weber R, Fleming V, Hu X, Nagabin Y, Groth C, Altevogt P, Utikal J, Umanovsky V (2018) Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Front Immunol 9:1310. https://doi.org/10.3389/fimmu.2018.01310

146. Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15:486–499. https://doi.org/10.1038/nri3862

147. Whissell PD, Tohyama S, Martin LJ (2016) The use of DREADDs to deconstruct behavior. Front Genet 7:70. https://doi.org/10.3389/fgen.2016.00070

148. Wojciesak J, Zawiliska J8 (2014) PACAP38 and PACAP6-38 exert cytotoxic activity against human retinoblastoma Y79 cells. J Mol Neurosci 54:463–468. https://doi.org/10.1007/s12031-014-0348-0

149. Wolchok JD, Saenger Y (2008) The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation. Oncologist 13(Suppl 4):2–9. https://doi.org/10.1634/theoncologist.13-54-2

150. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC (2004) Expansion of myeloid immune suppressor Gr-CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421. https://doi.org/10.1016/j.ccr.2004.08.031

151. Yin W, Song Y, Liu Q, Wu Y, He R (2017) Topical treatment of all-trans retinoic acid inhibits murine melanoma partly by promoting CD8(+) T-cell immunity. Immunology 152:287–297. https://doi.org/10.1111/imm.12768

152. Yuan J, Adamow M, Ginsberg BA, Rasalan T, Ritter E, Gallardo HF, Xu Y, Pogoriler E, Terzulli SI, Kuk D et al (2011) Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc Natl Acad Sci U S A 108:16723–16728. https://doi.org/10.1073/pnas.110184108

153. Yuan J, Ginsberg B, Page D, Li Y, Rasalan T, Gallardo HF, Xu Y, Adams S, Bhardwaj N, Busam K et al (2011) CTLA-4 blockade increases antigen-specific CD8(+) T cells in prevaccinated patients with melanoma: three cases. Cancer Immunol Immunother 60:1137–1146. https://doi.org/10.1007/s00262-011-1011-9

154. Zahalka AH, Amin-Easte A, Maryanovich M, Nakahara E, Cruz CD, Finley LWS, Frenette PS (2017) Adenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358:321–326. https://doi.org/10.1126/science.aah5072

155. Zia AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quinodoz D, Youmans A, O’Neill A et al (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65:3044–3048. https://doi.org/10.1158/0008-5472.CAN-04-4505

156. Zenkova D, Kamenov V, Sablina R, Artyomov MAS (2020) Phantasus: visual and interactive gene expression analysis. Science. https://doi.org/10.18129/B9.bioc.phant asus

157. Zhang B, Ma S, Rachmin J, He M, Baral P, Choi S, Goncalves WA, Shwartz Y, Fast EM, Su Y et al (2020) Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature 577:676–681. https://doi.org/10.1038/s41586-020-1935-3

158. Zhao CM, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT, Flattberg A, Johannessen H, Friedman RA, Renz BW et al (2014) Denervation suppresses gastric tumorigenesis. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3009569

159. Zhu H, Aryan DK, Olsen RH, Urban DJ, Swearingen A, Forbes S, Roth BL, Hochgeschwender U (2016) Cre-dependent DREADD (Designer Receptors Exclusively Activated by Designer Drugs) mice. Genesis 54:439–446. https://doi.org/10.1002/dvg.22949

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.