General purpose lattice QCD code set Bridge++ 2.0 for high performance computing

Yutaro Akahoshi¹, Sinya Aoki¹, Tatsumi Aoyama², Issaku Kanamori³, Kazuyuki Kanaya⁴, Hideo Matsufuru², Yusuke Namekawa⁵, Hidekatsu Nemura¹, Yusuke Taniguchi⁴
¹ Yukawa Institute for Theoretical Physics, Kyoto University, Japan
² High Energy Accelerator Research Organization (KEK), Japan
³ RIKEN Center for Computational Science (R-CCS), Japan
⁴ University of Tsukuba, Japan
⁵ Department of Physics, Kyoto University, Japan
E-mail: kanamori-i@riken.jp

Abstract.
Bridge++ is a general-purpose code set for a numerical simulation of lattice QCD aiming at a readable, extensible, and portable code while keeping practically high performance. The previous version of Bridge++ is implemented in double precision with a fixed data layout. To exploit the high arithmetic capability of new processor architecture, we extend the Bridge++ code so that optimized code is available as a new branch, i.e., an alternative to the original code. This paper explains our strategy of implementation and displays application examples to the following architectures and systems: Intel AVX-512 on Xeon Phi Knights Landing, Arm A64FX-SVE on Fujitsu A64FX (Fugaku), NEC SX-Aurora TSUBASA, and GPU cluster with NVIDIA V100.

1. Introduction
Bridge++ is a code set for numerical simulations of lattice QCD designed on the object-oriented programming and described in the C++ language. A goal of the project is to develop a readable, extensible, and portable code set with sufficiently high performance. When the development was launched in 2009, our major target platforms were parallel scalar systems represented by IBM Blue Gene/Q. Recent supercomputers, however, adopt a variety of architecture: multi-core parallel machines with wide SIMD (A64FX and Intel processors), and clusters with accelerator devices such as GPUs, PEZY-SC, and vector processors (NEC SX-Aurora). Soon after the first public release of Bridge++ in 2012, we had started to investigate possible extensions of our code to exploit these new architectures while keeping the readability and portability, as well as to develop tuning techniques for them. Recently we have constructed a framework to incorporate the tuned codes as an alternative part to the previously developed Bridge++ code, and decided to release it as version 2.0.

¹ https://bridge.kek.jp/Lattice-code/
² Basics of lattice QCD are covered by many text textbooks, e.g., [1].
In this paper, we describe the fundamental structure of this updated code set with several examples of application to recent architectures. In the next section, after a brief introduction of the lattice QCD and its bottleneck, we describe the structure of Bridge++ ver.2.0 code set. In Sec. 2 we show the performance measured on available systems: the SIMD architectures (Intel AVX-512 and Arm A64FX), vector architecture (NEC SX-Aurora TSUBASA), and GPU devices with NVIDIA V100. The last section is our conclusion. Some details of the implementation have been reported in Ref. [8] together with that of a multi-grid solver.

2. Functionality and Code Structure

The lattice QCD is a field theory formulated on a four-dimensional Euclidean lattice. It consists of fermion (quark) fields and a gauge (gluon) field. The latter mediates the strong interaction among quarks and are represented by a link variable, \(U_\mu(x) \in SU(3) \), where \(x = (x_1, x_2, x_3, x_4) \) stands for a lattice site and \(\mu = 1\ldots4 \) is the spacetime direction. In numerical simulations the lattice size is finite: \(x_\mu = 1, 2, \ldots, L_\mu \). The fermion field is represented as a complex vector on lattice sites, which carries 3 components of ‘color’ and 4 components of ‘spinor’, thus in total 12, degrees of freedom on each site. We set the lattice spacing \(a = 1 \) throughout this paper.

The standard steps of lattice QCD simulations are as follows. One first generates gauge configurations \(\{U_\mu(x)\} \) with a Monte Carlo method. Then physical observables are measured on \(\{U_\mu(x)\} \), and their averages give the expectation values. Typical observables, such as hadronic matrix elements, are composed of fermion propagators, which are solutions of the linear equation for a fermion matrix \(D[U] \). Since such a linear equation must be solved repeatedly also during the generation of \(\{U_\mu(x)\} \), it is one of the main bottlenecks of lattice simulations. The fermion matrix, explicitly exemplified below, represents the interaction among quarks and gluons and is in general a large sparse matrix of a rank proportional to the lattice volume. The discretized fermion matrix has a variety since the requirement on \(D[U] \) is to coincide with that of QCD only in the continuum limit (the lattice spacing \(a \to 0 \)). In addition, efficient solver algorithms also have a variety depending on the system size, the condition number of the matrix, and so on.

Our code set Bridge++ is intended to cover a wide range of measurements, fermion matrices, and algorithms. It is parallelized with MPI and the time consuming parts are multi-threaded with OpenMP. The data structure initially adopted was in a fixed style with double precision. For further optimization to up-to-date architectures, we decided to replace the time consuming part with an alternative code leaving the other parts unchanged. The original code, called ‘core library’, provides building tools, reference results, and measurements that require less performance. On the other hand, the ‘alternative code’ offers the same functionality as that of the core library with higher flexibility to achieve better performance. It is possible to use multiple branches of the alternative code simultaneously if required.

The ‘alternative code’ is composed of the classes in two categories. One is those directly manipulate the data and thus are performance-sensitive, such as the fermion matrices. These classes are implemented and optimized in a way specific to each architecture. The other category contains the algorithms generically described by the C++ template. This structure allows incremental adoption to a new architecture. One only needs to implement the required operators and instantiate the desired algorithms.

Figure 1 shows a sample code which employs the extended Bridge++ with a branch for SIMD architecture. In line-3, \(\text{AField<double,SIMD>} \) indicates a class of field object in double precision for the ‘SIMD’ branch. The template class \(\text{FpropStandardLexAltMixedprec} \) determines a fermion propagator by a mixed precision solver algorithm. The sets of parameters for the fermion matrix and the linear equation solver are stored in the objects \(\text{params_fopr} \) and \(\text{params_solver} \), respectively, including the types of fermion and algorithm. Once the object ‘fprop’ is instantiated, the solution of the linear equation is determined and returned in the
// prepare a mixed precision solver for architecture SIMD
// details of the fermion op.: params_fopr; details of the solver: params_solver
Fprop_Standard_lex_alt_Mixedprec<
 AField<double,SIMD>, AField<float,SIMD>> fprop(
 params_fopr, params_solver);
// set the gauge field
fprop.set_config(U.get());
// source and solution are from core library
Source source("Local");
source.set_parameters(params_source);

std::vector<Field_F> sq(Nc * Nd);
// Nc=3, Nd=4 : propagator (= 12 solution vectors)
Field_F b;

for (int id = 0; id < Nd; ++id) {
 for (int ic = 0; ic < Nc; ++ic) {
 int idx = ic + Nc * id;
 sq[idx].set(0.0);
 source.set(b, idx);
 // solve the linear equation
 fprop.invert(sq[idx], b, nconv, diff);
 }
}

Figure 1. A sample code to calculate a fermion propagator with a mixed precision solver. The blue-colored codes are from the ‘alternative’ code with the red-colored template parameter, while the orange-colored objects are from the ‘core library’.

format of the core library, Field_F. One does not need to modify observables that use the solution ‘sq[idx]’ to use the ‘alternative’ codes.

3. Implementation and Performance for each Architecture
We describe our code implementation and performance results for several architectures. While the code is available in both double precision and single precision, we mainly describe the latter since it plays a main role in multi-precision solver algorithms. We quote weak scaling behavior of the performance of matrix-vector multiplication without details of the tuning and execution setup.

A fermion matrix \(D[U] \) acts on a fermion vector \(\psi(x) \). As a typical example, we examine the \(O(a) \)-improved Wilson fermion matrix, also called clover fermion matrix,

\[
D_{x,y} = [1 + F(x)]\delta_{x,y} - \kappa \sum_{\mu=1}^{4} \left[(1 - \gamma_\mu)U_\mu(x)\delta_{x+\hat{\mu},y} + (1 + \gamma_\mu)U^\dagger_\mu(x-\hat{\mu})\delta_{x-\hat{\mu},y} \right],
\]

where \(x, y \) are lattice sites, \(\hat{\mu} \) the unit vector along \(\mu \)-th axis, and the hopping parameter \(\kappa = 1/(8 + 2m_0) \) related to the quark mass \(m_0 \). The link variable \(U_\mu(x) \) is a 3 × 3 complex matrix acting on the color and \(\gamma_\mu \) is a 4 × 4 matrix acting on the spinor degrees of freedom. \(F(x) \) is a 12 × 12 Hermitian matrix made of the link variables, and helps to reduce the finite lattice spacing artifact. Thus \(D \) is a complex matrix of the rank \(4 \times 3L_xL_yL_zL_t \). The boundary condition, such as a periodic boundary, is imposed in each direction.

3.1. SIMD architectures: Intel AVX-512 and Fujitsu A64FX
We start with the implementation for two SIMD architectures: Intel AVX-512 and Armv8.2-A with SVE (Scalable Vector Extension). Intel AVX-512 is the latest SIMD extension of x86 instruction set architecture with the 512-bit SIMD length. It is available on recent Xeon processors as well as Xeon Phi Knights Landing. The Armv8.2-A with SVE is adopted by the Fujitsu A64FX processor for the Fugaku supercomputer. While SVE enables variable SIMD length, currently 512-bit length is available on A64FX.
Although in both architectures the SIMD length corresponds to 16 single precision floating numbers, the efficient way of packing variables into the SIMD unit depends on the structure of arithmetic operation units. In the case of AVX-512, we pack 8 complex numbers which are consecutive in the x-direction as displayed in the left panel of Fig. 2. This requires that the lattice size in x-direction must be a multiple of 8. The details of the tuning with the AVX-512 instruction set were presented in [7]. For Armv8.2-A-SVE, we adopt a different packing: as depicted in the right panel of Fig. 2, real and imaginary parts are separately stored. This packing shows better performance, found through the development of QCD Wide SIMD (QWS) library [9] as a product of the Post-K co-design project. With this layout, the field variables on 16 sites are executed in parallel. To keep flexibility in choosing the lattice size, we pack variables in the x-y plane into a SIMD vector, while a one-dimensional packing was adopted in QWS. Therefore we prepare two branches of code for the AVX-512 and A64FX architectures. Since the branch for A64FX also intends to call the QWS library, we need to convert the data layout and the physical convention that are different in Bridge++ and QWS.

We measure the performance of our code on the Oakforest-PACS system at JCAHPC, a cluster composed of the Intel Xeon Phi Knights Landing processors, and the supercomputer Fugaku at RIKEN. In Fig. 3, weak scaling behavior of the Clover matrix multiplication is displayed for these SIMD architectures. The results show good scaling on both systems, although Oakforest-PACS shows significant dependence on the lattice size per node as the smaller local volume is too small to hide the neighboring communication overlapped with the computation in bulk. The peak performance of each node is about 6 TFlops on both the systems so that the current sustained performance is around 5%. This is reasonable performance for practical simulations, though there is still room for improvement.

3.2. Vector architecture: NEC SX-Aurora TSUBASA
The latest vector architecture of NEC is adopted in the NEC SX-Aurora TSUBASA system whose vector length is 256 in units of double precision floating-point number. The best performance is obtained for the loop size with multiples of this vector length, and thus we assign this vector index to the lattice sites. The data layout suitable to this setup is so-called Structure of Array (SoA) layout. We rearrange the data so that the site degrees of freedom are consecutively stored on the memory, including the padding to avoid the bank conflict.

We measure the performance on the NEC SX-Aurora TSUBASA at KEK. Each node of the system is composed of one Vector Host (Intel Xeon processor) and eight Vector Engines (VE). Each VE has 2.42 TFlops of the peak performance and 1.2 TB/s memory bandwidth, indicating the byte-per-flop of 0.5 as an advantage of this architecture. One can execute MPI jobs in units of core in VE (8 cores/VE).

In the left panel of Fig 4 we show the weak scaling behavior of the Wilson matrix.
3.3. GPU Cluster

On the clusters with accelerator devices, one needs to offload the data and tasks to the devices employing an offloading scheme. We implement such a code using OpenACC, which is a widely used directive-based framework. By calling an interface object, the data layout is rearranged to that respects so-called coalesced access, and the data are automatically transferred between the host and device. Thus one can generally compose the algorithms using these classes without worrying about the data transfer. The tasks to be offloaded are specified by OpenACC directives. We extract such kernel functions and collect them as a library so that one can replace them with more optimized functions with CUDA or OpenCL if necessary.
As an example of GPU cluster, we use the Cygnus system at the University of Tsukuba. Each node of Cygnus is composed of two Intel Xeon processors and four NVIDIA Tesla V100 GPUs. Each V100 GPU has 5120 CUDA cores which amount to 14 TFlops for FP32 arithmetics. While a GPU has high arithmetic performance, bottlenecks are the data transfer between the host and device (PCIe 3.0 with 16 lanes) and between the device global memory and device cores (900 GB/s for V100). Together with the Infiniband connection among nodes, one needs to choose the parameters considering the heterogeneous structure of the GPU cluster.

In the right panel of Fig. 4, we show the weak scaling of clover fermion matrix multiplication on the Cygnus system. The sustained performance is governed by the device memory bandwidth. Increasing the number of nodes, the overhead of inter-node communication becomes sizable.

4. Conclusions
We presented features of our forthcoming major update of Bridge++ that incorporates an optimized code for recent architectures as an alternative to the original code. We described our fundamental strategy of implementation and displayed several examples in practical application. These results demonstrate that our framework indeed works with sufficient performance for practical application. While we only showed sustained performance for the Wilson and Clover fermion matrices, other types of fermion and a variety of algorithms including multi-grid solvers and eigenvalue solvers are available. Now we are in the final stage toward the public release of the Bridge++ version 2.0.

Acknowledgments
The authors would like to thank the members in the lattice QCD working group in FS2020 project for post-K computer. Numerical simulations were performed on the Oakforest-PACS and Cygnus systems through Multidisciplinary Cooperative Research Program in CCS, University of Tsukuba (16a43, 17a41, ID14(FY2018), ID43(FY2019), ID79(FY2020)), supercomputer Fugaku at RIKEN Center for Computational Science, and SX-Aurora TSUBASA system at KEK through Particle, Nuclear, and Astro Physics Simulation Program (2019-T003, 2020-002, 2021-006). Some parts of the code development were performed on the supercomputer ‘Flow’ at Information Technology Center, Nagoya University, and Yukawa Institute Computer Facility. This work is supported by JSPS KAKENHI (JP20K03961, JP21K03553), the MEXT as ‘Program for Promoting Researches on the Supercomputer Fugaku’ (Simulation for basic science: from fundamental laws of particles to creation of nuclei) and ‘Priority Issue 9 to be Tackled by Using the Post-K Computer’ (Elucidation of the Fundamental Laws and Evolution of the Universe), and Joint Institute for Computational Fundamental Science (JICFuS).

References
[1] Knechtli F, Günther M and Peardon M 2017 Lattice Quantum Chromodynamics: Practical Essentials SpringerBriefs in Physics (Springer) ISBN 978-94-024-0997-0, 978-94-024-0999-4
[2] Ueda S, Aoki S, Aoyama T, Kanaya K, Matsufuru H, Motoki S, Namekawa Y, Nemura H, Taniguchi Y and Ukita N 2014 J. Phys. Conf. Ser. 523 012046
[3] Motoki S et al. 2014 Procedia Computer Science 29 1701–1710
[4] Matsufuru H et al. (Bridge++ Project) 2015 Procedia Computer Science 51 1313–1322
[5] Aoyama T, Ishikawa K I, Kimura Y, Matsufuru H, Sato A, Suzuki T and Torii S 2016 Procedia Computer Science 80 1418–1427
[6] Kanamori I and Matsufuru H 2017 Proceedings of the Fifth International Symposium on Computing and Networking CANDAR’17 66
[7] Kanamori I and Matsufuru H 2018 Lecture Note on Computer Science 10962 456–471
[8] Kanamori I, Ishikawa K I and Matsufuru H 2021 Lecture Note on Computer Science 12953 218–233
[9] Ishikawa K I, Kanamori I, Matsufuru H, Miyoshi I, Mukai Y, Nakamura Y, Nitadori K and Tsuji M 2021 (Preprint 2109.10687)