NSV 11749: Symbiotic Nova, Not a Born-Again Red Giant

HOWARD E. BOND1,2 AND MANSI M. KASLIWAL3,4

Received 2012 October 16; accepted 2012 October 24; published 2012 November 12

ABSTRACT. NSV 11749 is a little-studied variable star, discovered by W. J. Luyten, which had a long-duration outburst around the year 1903, reaching blue magnitude 12.5 at maximum. Following the outburst, it has apparently been quiescent at about blue magnitude 17 for the past century. It was recently suggested that NSV 11749 may have been a low- or intermediate-mass star that underwent a final helium shell flash, making it temporarily a “born-again” red giant. If so, it would be only the fourth known member of this class, along with V605 Aql, FG Sge, and V4334 Sgr. However, our newly obtained optical and near-IR spectra of the object show that it is instead a symbiotic binary, with strong Balmer and He I-II emission lines, combined with a cool red-giant companion of spectral type M1-2 III. The 1903 outburst was most likely a symbiotic nova event, of which less than a dozen are known at present.

Online material: color figures

1. INTRODUCTION: BORN-AGAIN RED GIANTS

Near the end of its life, a low- or intermediate-mass star leaves the asymptotic giant branch (AGB) and evolves rapidly across the HR diagram to the top of the white-dwarf (WD) cooling track. As the star ascends toward the tip of the AGB, it begins undergoing periodic helium-shell thermal pulses. Depending on the relative timing of the pulses and the departure from the AGB, the star may experience a helium final flash after it has already approached or reached the top of the WD sequence. In this case, the star quickly retraces its evolution and temporarily becomes a red giant once more, a so-called “born-again” red giant. The final-flash scenario was first described theoretically by Iben et al. (1983). There are three known objects—all of them central stars of extremely faint planetary nebulae—that appear to have undergone born-again final-flash events during modern astronomical history: V605 Aquilae and V4334 Sagittarii (Sakurai’s Object), which evolved very rapidly and are generally considered to represent very late thermal pulses (VLTPs), and FG Sagittae, which evolved more slowly and represents a late thermal pulse. There is an extensive literature on these objects and the underlying theory (e.g., Clayton & De Marco 1997; Lawlor & MacDonald 2003; Herwig 2005; Schönberner 2008; Bond et al. 2013, in preparation; and references therein).

2. NSV 11749

NSV 11749 is a little-studied variable star that was discovered by Luyten (1937) in the course of his Bruce Proper Motion Survey, and was originally designated AN 799.1936 Aquilae. As recounted by Williams (2005), Luyten found NSV 11749 to have had blue magnitudes of 13.5 and 17 on plates taken in 1903 and 1934, respectively. Unfortunately, Luyten never published a finding chart, and the coordinates that he provided were only approximate. Williams (2005), however, was able to recover NSV 11749 on plates in the Harvard collection, including the Bruce plate pair on which Luyten had marked the variable. Williams gave improved coordinates, as well as a light curve based on 175 Harvard plates obtained between 1888 and 1988. The star was first detected at blue magnitude 14 in 1899, and reached a maximum of 12.5 mag in 1903. It remained bright for 4 years, declined back to 14.5 mag in mid-1911, and then fell below the plate limit apart from four detections on deep plates at about 17 mag between 1934 and 1949. Williams suggested that NSV 11749 might have been a slow nova or an FU Orionis-type young stellar object.

However, Miller Bertolami et al. (2011) recently made the novel suggestion that the outburst of NSV 11749 was a VLTP event similar to those undergone by V605 Aql and V4334 Sgr, on the basis of similarities of the outburst light curves of the three objects. At the request of these authors, the DASCH team at Harvard (Grindlay et al. 2009) determined an accurate position for NSV 11749 from plates taken during the 1903 outburst. There is a stellar-appearing source at the DASCH position in various modern sky surveys, including the USNO-NOMAD catalog (Zacharias et al. 2004; J2000 position 19:07:42.36, +00:02:51.0; B = 16.6, R = 14.1), IPHAS (González-Solares et al. 2008; r′ = 14.5, i′ = 13.1, Hα = 13.0), 2MASS (Cutri et al. 2003; J = 10.8, H = 9.7, Ks = 9.4), and WISE (Wright et al. 2010;
The data were downloaded from http://ulisse.pd.astro.it/symbio_atlas.

Wehmeyer 1999). The large value of Schmidt telescope in the years 1964–1970 (Kohoutek & Wehmeyer 1999). The large value of r′ − Hα in the IPHAS survey is consistent with strong Hα emission.

There is no known planetary nebula surrounding NSV 11749. The SIMBAD database identifies NSV 11749 with the bright IRAS source 19050+0001; however, inspection of the IRAS images shows that the infrared source is actually a pair of bright stars about 3′ north of NSV 11749.

3. OBSERVATIONS

If the suggestion of Miller Bertolami et al. (2011) were correct, NSV 11749 would be only the fourth known born-again event, and would be of particular interest as a post-final-flash object that has evolved more than a full century since its outburst. In order to investigate its nature, we requested spectroscopic observations with the SMARTS service observers on 2012 May 28 (UT) with grating setup 26/Ia (covering 3660–5440 Å at a resolution of 4.3 Å), and on 2012 September 9 with grating setup 47/Ib (5650–6970 Å, resolution 3.1 Å). Exposure times were 3 × 300 s and 3 × 400 s, respectively. A spectrophotometric standard star was also observed on both nights (LTT 4364 and Feige 110, respectively), allowing flux calibration of the NSV 11749 spectra. Since the second night was reported to be non-photometric, we have scaled the spectrum from that night to match the extrapolated flux level of the earlier blue spectrum.

The optical spectra are plotted in Figure 2. The top panel shows the spectrum scaled to show the emission lines, and the bottom panel expands the same data to show the continuum. If NSV 11749 had been a born-again event like V605 Aql or V4334 Sgr, we would expect to see an extremely hydrogen-deficient object; for example, at the present time V605 Aql shows strong emission lines of [O III], a complete absence of Balmer emission, and weak emission features of C IV arising from a dust-obscured hot Wolf-Rayet planetary-nebula nucleus (e.g., Clayton et al. 2006).

Instead, NSV 11749 shows very strong emission lines of the Balmer series, along with He I and He II. There are no forbidden lines detected. The spectrum also shows a broad emission feature at about 6825 Å. Emission at λ6825 is a feature seen only in symbiotic binaries (e.g., Webster & Allen 1975; Allen 1980), and has been identified with emission from the strong O IV 1032 Å resonance line that has been Raman-scattered by neutral hydrogen (Schmid 1989, 2001; Lee & Kang 2007). There is thus little doubt that NSV 11749 is a symbiotic star, in which a hot compact star, usually a WD, accretes from the wind of a late-type red giant. The overall pattern of emission lines in NSV 11749 is fairly similar to that seen (in quiescence) in the symbiotic nova V1329 Cyg (Kenyon & Fernandez-Castro 1987, Fig. 1b; Munari & Zwitter 2002, Figs. 192 and 193).

The bottom panel in Figure 2 zooms in on the continuum, which, although noisy, clearly shows molecular bands of TiO, indicative of an early M spectral type. To confirm this classification, we superpose a scaled spectrum of the M1 III standard star σ Virginis (HIP 115521), obtained from the Munari & Zwitter (2002) atlas, which provides a reasonable match. We estimate a reddening of NSV 11749 of E(B − V) ≃ 0.75 (based on Schlegel et al. 1998 as well as the discussion in the next paragraph), and we applied this amount to the σ Vir spectrum, using the formulae of Cardelli et al. (1989).

On 2012 September 20, we obtained a near-infrared (NIR) spectrum of NSV 11749 with the Folded-port InfraRed Echellette spectrograph (FIRE; Simcoe et al. 2008, 2010) on the 6.5-m Magellan Baade Telescope. We used the low-dispersion, high-throughput prism mode, and completed an ABBA dither sequence. Each integration was in “Sample Up the Ramp” mode (10.6 s). The spectra span 0.8–2.5 μm at a resolution ranging from 300 to 500. Immediately afterwards, we obtained a spectrum of the nearby A0 V star HD 177880B (HIP 93835) for the purposes of flux calibration and removal of telluric absorption features, as described by Vacca et al. (2003). Data were reduced using the FIREHOSE pipeline developed by R. Simcoe.

FIG. 1.—Finding chart for NSV 11749, from the Digitized Sky Survey red image. The field is 3′ × 3′ and north is at the top and east on the left. The Digitized Sky Surveys were produced at the Space Telescope Science Institute under U.S. Government grant NAG W-2166. See the electronic edition of the PASP for a color version of this figure.

5 The data were downloaded from http://ulisse.pd.astro.it/symbio_atlas.
J. Bochanski, and M. Matejek. The resulting spectrum is shown as a black line in Figure 3.

The NIR spectrum of NSV 11749 shows emission lines of the Paschen series and He I 1.0830 Å, superposed on a late-type absorption spectrum. We compared the absorption-line spectrum to a library of standard stellar spectra obtained with the IRTF (Cushing et al. 2005; Rayner et al. 2009). We find a reasonable match of NSV 11749 with the M2 III standard star 87 Virginis (HD 120052), with an extinction of $E(B-V) = 0.75$ applied to 87 Vir, as plotted in red in Figure 3. There is an apparent broad emission line at 1.999 μm, which we have been unable to identify; it may be an artifact due to incomplete telluric feature removal.

4. CONCLUSION: SYMBIOTIC NOVA, NOT BORN-AGAIN RED GIANT

Our observations verify that NSV 11749 is a symbiotic binary, containing a compact hot object and a companion red giant with a spectral type of about M1-2 III. Its location in the IPHAS $r' - H_{\alpha}$ vs. $r' - i'$ diagram (Corradi et al. 2008) is consistent with a “stellar (S)”-type symbiotic, rather than a “dusty (D)” type, as is its lack of a strong mid-IR excess in the WISE photometry.

The eruption of NSV 11749 around 1903 may have been a classical symbiotic outburst, but both its large amplitude and long duration are more suggestive of a symbiotic nova (due to a thermonuclear runaway on the WD component). Less than a dozen symbiotic novae have been observed to date (e.g., Mikolajewska 2010; Tang et al. 2012). It would be of interest to determine the orbital period and other properties of this apparent new member of this rare class.

This work was partially supported by the STScI Director’s Discretionary Research Fund. We thank Marcelo Miller Bertolami, Ulisse Munari, and David Williams for useful comments, Fred Walter for scheduling the SMARTS 1.5 m observations, and Manuel Hernández and Rodrigo Hernández for making the observations. MMK acknowledges generous support from the Hubble Fellowship and Carnegie-Princeton Fellowship programs. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of UCLA, and JPL/Caltech, funded by NASA.

6 Available at http://irtfweb.ifa.hawaii.edu/~spex/IRTF_Spectral_Library/.
REFERENCES

Allen, D. A. 1980, MNRAS, 190, 75
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Clayton, G. C., & De Marco, O. 1997, AJ, 114, 2679
Clayton, G. C., Kerber, F., Pirzkal, N., et al. 2006, ApJ, 646, L69
Corradi, R. L. M., Rodriguez-Flores, E. R., Mampaso, A., et al. 2008, A&A, 480, 409
Cushing, M. C., Rayner, J. T., & Vacca, W. D. 2005, ApJ, 623, 1115
Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, The IRSA 2MASS All-Sky Point Source Catalog, NASA/IPAC Infrared Science Archive, http://irsa.ipac.caltech.edu/applications/Gator/
González-Solares, E. A., Walton, N. A., Greimel, R., et al. 2008, MNRAS, 388, 89
Grindlay, J., Tang, S., Simcoe, R., et al. 2009, in ASP Conf. Ser. 410, Preserving Astronomy’s Photographic Legacy: Current State and the Future of North American Astronomical Plates, ed. W. Osborn & L. Robbins (San Francisco: ASP), 101
Herwig, F. 2005, ARA&A, 43, 435
Iben, I., et al. 1983, ApJ, 264, 605
Kenyon, S. J., & Fernandez-Castro, T. 1987, AJ, 93, 938
Kohoutek, L., & Wehmeyer, R. 1999, A&AS, 134, 255
Lawlor, T. M., & MacDonald, J. 2003, ApJ, 583, 913
Lee, H.-W., & Kang, S. 2007, ApJ, 669, 1156
Luyten, W. J. 1937, Astron. Nachr., 261, 451
Mikołajewska, J. 2010, arXiv:1011.5657
Miller Bertolami, M. M., Rohrmann, R. D., Granada, A., & Althaus, L. G. 2011, ApJ, 743, L33
Munari, U., & Zwitter, T. 2002, A&A, 383, 188
Rayner, J. T., Cushing, M. C., & Vacca, W. D. 2009, ApJS, 185, 289
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Schmid, H. 2001, in ASP Conf. Ser. 242, Eta Carinae and Other Mysterious Stars: The Hidden Opportunities of Emission Spectroscopy, ed. T. Gull, S. Johannson, & K. Davidson (San Francisco: ASP), 347
Schmid, H. M. 1989, A&A, 211, L31
Schönberner, D. 2008, in Hydrogen-Deficient Stars ASP Conference Series, 391, ed. K. Werner & T. Rauch (San Francisco: ASP), 139
Simcoe, R. A., Burgasser, A. J., Bernstein, R. A., et al. 2008, Proc. SPIE, 7014, 70140U
Simcoe, R. A., Burgasser, A. J., Bochanski, J. J., et al. 2010, Proc. SPIE, 7735, 773514
Tang, S., Grindlay, J. E., Moe, M., et al. 2012, ApJ, 751, 99
Vacca, W. D., Cushing, M. C., & Rayner, J. T. 2003, PASP, 115, 389
Webster, B. L., & Allen, D. A. 1975, MNRAS, 171, 171
Williams, D. B. 2005, JAAVS0, 34, 43
Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868
Zacharias, N., Monet, D. G., Levine, S. E., Urban, S. E., Gaume, R., & Wycoff, G. L. 2004, BAAS, 205, 48.15