Evaluation of four scoring systems in prognostication of acute pancreatitis for elderly patients

Short title: Evaluation of scoring systems for elderly patients

Yajie Li¹, Jun Zhang¹, Jihong Zou¹

¹Geriatrics Department, Zhongda Hospital Southeast University, No.87, Dingjiaqiao, Nanjing, China

Corresponding author

Yajie Li.

Geriatrics Department, Zhongda Hospital Southeast University, No.87, Dingjiaqiao, Nanjing, China

Tel: 86-18551670050

Email: withlove1982@163.com
Abstract

Objectives: To evaluate the four scoring systems, including Ranson, BISAP, Glasgow, and APACHE II in the prognostic assessment of acute pancreatitis (AP) for elderly patients.

Methods: A retrospective study of 918 patients presenting with AP was done at Zhongda Hospital Southeast University, from January 2015 to December 2018. The patients were divided into two groups: 368 patients who were ≥60 years old, and 550 patients who were <60 years old. Four scoring systems were used to analyze all patients.

Results: The severity of the disease, and mortality are significantly different between the two groups (p-value <0.05), while the difference between the two groups about pancreatic necrosis is statistically insignificant (p-value =0.399). The differences of the AUCs (Area under curves) in prognostication of SAP (severe acute pancreatitis) between the two groups are statistically significant (p-value <0.05) for Ranson and APACHE II, while for BISAP and Glasgow, the differences are statistically insignificant. All the four scoring systems are effective and similar in prediction of pancreatic necrosis and death for both groups.

Conclusions: Prediction of severity, pancreatic necrosis and death in AP for elderly patients can be performed very well by using BISAP. APACHE II is more suitable for
younger patients when dealing with severity. Ranson and Glasgow can be used to evaluate all AP patients in most cases, however, Ranson is more effective for younger patients when used to assess severity.

Keywords: Acute pancreatitis; elderly patients; prediction; scoring system; ROC (receiver operating characteristic) curve
Introduction

Acute pancreatitis (AP) is now one of the most common gastrointestinal conditions which causes hospitalization and becomes a significant burden for patients, their family and the health-care system[1,2]. Over the past decade, admissions show a large growth trend worldwide[3-5]. Meanwhile, many countries like the United States, Japan, and China are now facing an accelerating population aging [6]. Take China for example, according to the National Health Commission of the People’s Republic of China, by 2030 the elderly population (older than 60 years) will exceed 30% of the total population. Therefore, the total number and the proportion of elderly patients among acute pancreatitis patients will increase significantly in the future.

About 80% of the acute pancreatitis cases are mild and self-limited with no sequelae. But the rest of the cases deteriorate, and necrosis arises in parts of pancreas and the ambient tissues. Although mortality associated with acute pancreatitis has continuously reduced[7], and the overall mortality of AP is now around 2%, however, when the cases become severe, it can reach to about 20–30% [8]. On the other hand, elderly patients have been taken as a subgroup of higher risk when considering the mortality related to AP[9]. Hospital acquired infections development is also considered as a reason for higher mortality. Unfortunately, elderly patients are more susceptible to nosocomial infection [10], which in turn makes the mortality even higher. Because of the higher mortality of severe acute pancreatitis (SAP) and the causes of death related to elderly patients, careful ongoing clinical evaluations, the results of routine laboratory and radiographic
testing together with multi-factorial scoring systems are necessary for the prediction of the SAP [11], especially for the elderly patients.

Several scoring systems are available, such as the Ranson criteria [12], which was the first AP scoring system and can be used in the evaluation of biliary and non-biliary pancreatitis. The Glasgow scoring system[13] is similar to Ranson criteria, which is also based on objective clinical indicators, and the assessment needs to be completed within 48 hours after admission. Acute Physiology and Chronic Health Evaluation (APACHE) II [14] was originally developed for critical patients in ICU (intensive care unit), and was used for evaluation of AP in 1989. A simple evaluation method named the bedside index of severity in acute pancreatitis (BISAP), was proposed in 2008 [15], and can be used to estimate the severity of AP in the early phase. All these scoring systems can be applied together with the ongoing evaluation by clinician and provide more accurate and rapid diagnosis.

In the past few years, many researches have been conducted to evaluate the accuracy of these scoring systems in estimating the severity of acute pancreatitis [16,17], but few researches have been done to validate these systems in the assessment of elderly AP patients. The aim of this paper was to evaluate the effectiveness of the four aforementioned scoring systems in the prediction of severity, pancreatic necrosis and death in acute pancreatitis for elderly patients.

Methods
Study design

A retrospective analysis was carried out. The patients were selected and complied with the following requirements:

Inclusion criteria: Primary diagnosis compliant with acute pancreatitis.

Exclusion criteria: (1) Information is incomplete; (2) Diagnosis is suspicious; (3) Complicated with other serious diseases (include chronic pancreatitis, chronic cardiac failure: New York Heart Association level IV, chronic obstructive pulmonary, chronic renal insufficiency requires long-term maintenance hemodialysis, cirrhosis, and tumor); (4) Died within 48 hours after admission.

Finally, 918 adult patients with a diagnosis of acute pancreatitis treated at Zhongda Hospital Southeast University (Nanjing, China), from January 2015 to December 2018 were retrospectively identified.

The patients were further divided into two groups: Elderly group (≥ 60 years old), and younger group (<60 years). For both groups, four kinds of scoring systems including Ranson criteria, Glasgow, APACHE-II, and BISAP were used. The BISAP, APACHE II scores were assessed according to the data of the patient’s admission within 24 hours, and the Ranson and Glasgow scores were scored at the admission and within 48 hours. All scores were calculated for the most severe laboratory tests and vital signs during the evaluation period (time required by the scoring system to observe). The AUCs of the different scoring systems for predicting severity, pancreatic necrosis, and mortality were
obtained from their ROC curves. For each scoring system, the statistical differences of AUCs between the two groups were analyzed.

Diagnosis Criteria

The diagnosis criteria for acute pancreatitis is determined in accordance with the 2012 Atlanta classification [18]. The patient should have at least two of the following three diagnostic features:

1. Consistent abdominal pain with acute pancreatitis.
2. Serum amylase and/or lipase levels that are at least 3 times higher than the upper limit of the normal range.
3. Findings of acute pancreatitis on computed tomography (CT) or magnetic resonance imaging (MRI).

According to [18], the absence of organ failure and local or systemic complications is characterized as mild acute pancreatitis (MAP). The presence of local or systemic complications or transient (less than 48 h) organ failure is characterized as moderately severe acute pancreatitis (MSAP). Persistent (longer than 48 h) organ failure (may be single or multiple organ failure) is characterized as severe acute pancreatitis (SAP).

Organ failure included one or more of the following:

1. Shock/cardiovascular failure: Systolic blood pressure less than 90 mmHg or basal systolic arterial pressure reduced more than 40 mmHg, accompanied with signs of tissue
hypoperfusion (lactate larger than 3 mmol/L); saturation of central venous oxygen (S\textsubscript{v}O\textsubscript{2}) less than 70%.

(2) Pulmonary insufficiency: Arterial PO\textsubscript{2} less than 60 mmHg in room air or mechanical ventilation required.

(3) Acute renal failure: Serum creatinine level >2 mg/dl after hemodialysis or rehydration indicating a score no less than 2 according to modified Marshall scoring system.

After the first week of the disease, CECT showing non-enhancement of pancreatic parenchyma was defined as pancreatic necrosis.

Treatment

The following treatments were taken for the patients diagnosed as AP:

Abrosia, early fluid resuscitation (In the first 24 hours, the fluid resuscitation dose should be 5-10 ml·kg-1·h-1), nutritional support (on the premise of hemodynamic stability, as far as possible enteral nutrition started within 24-48 hours), pain control, application of proton pump inhibitor, antibiotic, somatostatin and its analogues. Organ function support in patients with organ dysfunction (such as mechanical ventilation, continuous renal replacement therapy or application of vasoactive drugs).

Statistical analysis
SPSS version 20.0 (IBM Corp.) was used for statistical calculations: Receiver-operating curve (ROC) was used for assessing the prognostic value of each scoring system, the area under the curve (AUC) of the four scoring systems were calculated one-by-one for both groups, and the AUCs of the same system were compared between each other. A p-value <0.05 indicates statistically significant.

Results

In this study, 918 patients (aged from 21 to 89 years, mean age 58.4 ± 18.1) of AP were hospitalized. They were divided into two groups (Table 1): The elderly group (aged from 60 to 89 years, mean age 73.83 ± 7.78) and the younger group (aged from 21 to 59 years, mean age 42.10 ± 9.50). Of the 368 elderly patients, 27 (7.3%) developed severe acute pancreatitis, 28 (7.6%) pancreatic necrosis and 11 (3%) died. While for the control group, among 550 younger patients, 25 (4.5%) developed severe acute pancreatitis, 34 (6.2%) pancreatic necrosis and 5 (0.9%) died. For both groups male patients are more than the females. The male female ratio is 201:167 and 359:191, respectively. The clinical characteristics of the two groups are also listed in Table 1. For elderly group, the proportion of severity, persistent organ failure, pancreatic necrosis, and mortality are all higher than that of the younger group. Statistically significance can be observed between the two groups with regards to the differences of severity, persistent organ failure and mortality among AP patients, while the difference of transient organ failure and pancreatic necrosis between elderly and younger AP patients is insignificant.
Table 1 Comparisons of the two groups.

Variables	Elderly patients	Younger patients	χ²	P-value (p<0.05)
Male:Female	201:167	359:191	-	-
Mean age (years)	73.83 ± 7.78	42.10 ± 9.50	-	-
Etiology				
Gall Stone	276 (75.0%)	283 (51.5%)		
Alcoholic	21 (5.7%)	116 (21.1%)		
hyperlipemia	26 (7.1%)	83 (15.1%)		
others	45 (12.2%)	68 (12.3%)		
Comorbidities				
DM*	76(21.2%)	126(22.9%)	0.654	0.419
CHD**	36(9.8%)	11(2%)	27.491	<0.01
MAP	316(85.9%)	506(92%)	8.849	<0.01
Severity				
MSAP	25(6.8%)	19(3.5%)	5.386	<0.05
SAP	27(7.3%)	25(4.5%)	3.871	<0.05
Organ failure				
transient	6(1.6%)	12(7.3%)	0.349	0.555
persistent	27(7.3%)	25(4.5%)	3.871	<0.05
Pancreatic necrosis	28(7.6%)	34(6.2%)	0.713	0.399
Death	11(3%)	5(0.9%)	5.570	<0.05

*=Diabetes Mellitus, **=coronary heart disease

The AUCs of the four scoring systems for predicting severity of AP were obtained from their ROC curves and are listed in Table 2. For elderly group, BISAP had the largest AUC of 0.922 (95% CI, 0.890-0.947) in prediction of the severity, and was significantly higher than that of APACHE II 0.784(95% CI, 0.729-0.817, p-value <0.05). The AUCs for Ranson and Glasgow were 0.867 (95% CI, 0.828–0.900), and 0.913 (95% CI,
0.880-0.940) respectively. For younger group, in prediction of severity, Ranson had the largest AUC of 0.964 (95% CI, 0.945-0.978), while the AUC of BISAP was 0.942 (95% CI, 0.881-0.969), which was almost similar to that of APACHE II 0.951 (95% CI, 0.884-0.975, p-value>0.05), and was slightly higher than that of Glasgow 0.881 (95% CI, 0.851-0.907, p-value>0.05). Cutoffs were calculated based on the highest sensitivity and specificity achieved from ROC curves [17]. For elderly group, the cutoffs for the four scoring systems are Ranson≥4 (sensitivity 0.814, specificity 0.842), BISAP≥3 (sensitivity 0.889, specificity 0.865), APACHE II≥9(sensitivity 0.852, specificity 0.610), and Glasgow ≥3 (sensitivity 0.852, specificity 0.842), While for younger group, the cutoffs for the four scoring systems are Ranson≥3 (sensitivity 0.920, specificity 0.928), BISAP≥2 (sensitivity 0.960, specificity 0.880), APACHE II≥8(sensitivity 0.960, specificity 0.930), and Glasgow≥2 (sensitivity 0.800, specificity 0.882). By using these cutoffs, the sensitivity, specificity, PPV, and NPV were calculated.
Table 2 Value of four scoring systems in prediction of SAP, and comparisons of ROC curves between two groups.

Scoring system	AUC	95%CI	Cut-offs	Sensitivity	Specificity	Youden Index	PPV	NPV	Significance level
	elderly group/younger group								
Ranson	0.867/0.96	0.828-0.900/	≥3/≥3	0.814/0.920	0.842/0.928	0.613/0.809	0.289/0.37	0.983/0.996	<0.05
	4	0.945-0.978							
BISAP	0.922/0.94	0.890-0.947/	≥3/≥2	0.888/0.960	0.865/0.880	0.754/0.764	0.343/0.27	0.990/0.998	0.383
	2	0.881-0.969							
APACHE II	0.784/0.95	0.729-0.817/	≥3/≥2	0.852/0.960	0.610/0.930	0.462/0.899	0.147/0.42	0.981/0.998	<0.01
	1	0.884-0.975							
Glasgow	0.913/0.88	0.880-0.940/	≥3/≥2	0.852/0.800	0.842/0.882	0.656/0.650	0.299/0.24	0.986/0.989	0.506
	1	0.851-0.907							

The comparisons of the four scoring systems in prediction of the severity in AP between the two groups are also listed in Table 2. For both groups, BISAP and Glasgow were with the similar effectiveness (p-value =0.383 and p-value =0.506). Whereas, the accuracy of Ranson and APACHE II in assessment of severity for the younger group is significantly higher than for the elderly group (p-value <0.05 and p-value <0.01). The ROC curves of four scoring systems for prediction of severity of AP among elderly and younger patients are shown in Fig.1(a) and (b), respectively.
Fig. 1 ROC curves for four scoring systems in evaluation of severity (a) elderly group (b) younger group.

The comparisons of the four scoring systems in prediction of pancreatic necrosis are listed in Table 3. The AUC of Ranson for elderly group is a little greater than for the younger group (p-value = 0.105), while other three systems have larger AUCs for the younger group. However, the differences in evaluation of pancreatic necrosis between the two groups according to the four systems were insignificant. All the four scoring systems are more effective in prediction of death for younger group (Table 4), but the differences between the two groups were insignificant either.

Table 3 Comparisons of ROC curves for four scoring systems in evaluation of pancreatic necrosis between the two groups.

Scoring system	Pancreatic necrosis (AUC)	Significance level	
	Elderly Group	Younger Group	
Ranson	0.931	0.866	0.105
BISAP	0.824	0.893	0.180
APACHE II	0.855	0.937	0.083
Glasgow	0.853	0.874	0.697
Table 4 Comparisons of ROC curves for four scoring systems in evaluation of death between the two groups.

Scoring system	Death (AUC)	Significance level	
	Elderly Group	Younger Group	
Ranson	0.870	0.944	0.138
BISAP	0.891	0.919	0.625
APACHE II	0.918	0.919	0.986
Glasgow	0.899	0.951	0.258

Discussion

In this study, 918 AP patients were divided into two groups: the elderly group and the younger group. As summarized in Table 1, both groups of AP patients with diabetes are statistically insignificant, which is similar to a recent research in China[19], and indicates that diabetes may be not relevant to the age factor of AP patients. Statistical difference can be observed between the two groups of AP patients with coronary heart disease, because the incidence of coronary heart disease increases with age. Significantly higher risk of severe pancreatitis (MSAP and SAP), persistent organ failure and death can also be found in the elderly patients group. This is probably because in the process of human aging, the function of various organs gradually decreases[20], so elderly patients are more likely to face organ failure. Besides of severity and older age [9], nosocomial infection can also increase the mortality of AP patients [21]. Meanwhile, elderly patients are susceptible to infection, which further increase the risk of mortality. Pancreatic necrosis is similar for both groups in our study, however, highest mortality is related with infected pancreatic necrosis [22], special attention and treatment are necessary for elderly patients.
For the four scoring systems, age contributes to the scores (Ranson: +1 point for age>55; Glasgow: +1 point for age>55; APACHEII: +1 point for age between 45-54, +2 points for age between 55-64, +3 points for age between 65-74, +4 points for age ≥75; BISAP: +1 point for age>60;). According to Table 2-4, in prediction of severity, Ranson for elderly patients is less useful than it is for younger patients. But Ranson scoring system is equally effective when applied to evaluate pancreatic necrosis and death for both groups. Among the four systems, Ranson shows the best performances in prediction of pancreatic necrosis for elderly patients. When use Ranson to predict SAP for elderly group, the score should be ≥4, and is similar to [23]. While for younger group, the score is ≥3, which is the same as the criterion [24].

Glasgow score is calculated based on objective clinical indicators, the evaluation were mostly used in Europe [16]. The results in our hospital suggest that good and similar predictive ability for severity, pancreatic necrosis and death can be observed for both groups of AP patients. And the prediction ability of Glasgow is similar to Ranson score [23]. In [24] Glasgow ≥3 was used to diagnose SAP. And in our research, Glasgow ≥3 and Glasgow ≥2 are the criterion for deciding SAP among the AP patients in elderly group and younger group, respectively.

Through many years of practice, APACHE II is recognized as the most widely used AP scoring system, and is recommended by a number of guidelines [25,26]. However, this scoring system is complex and cumbersome [9], and according to our research, for elderly patients, it is not as effective in prediction of severity as for younger AP patients. For
APACHE II, the cut-off ≥8 is generally accepted as the criteria for diagnosis of SAP[24]. While in [27] and [28], APACHE II ≥6 and APACHE II ≥5 were used as cut-offs, respectively. According to this study, in order to assess severe AP patients, APACHE II ≥9 is for elderly group, and APACHE II ≥8 is for younger patients group.

BISAP is a simple scoring system. The required data can easily be achieved at the time of admission. The in hospital death can be predicted in early stages of AP [29]. Also organ failure can be predict accurately by using this scoring system [8]. In our study, for prediction of severity, pancreatic necrosis and death, BISAP is useful for both elderly patients and younger patients. While for elderly patients, BISAP shows the best ability in prediction of severity. According to [28,30], when BISAP ≥2, the patient should be treated as SAP. While in [31-34], BISAP ≥3 is used to determine patients with SAP. In this research, the criterion for predict SAP is also different for the two groups: (elderly group: BISAP ≥3, younger group: BISAP ≥2).

For elderly group, even if the condition is mild, the score is still likely to be higher than the younger group. In this research, the scoring cut-offs for the elderly group are one point higher than for the younger group, these changes can increase the specificity while slightly reducing the sensitivity of the four scoring systems.

Conclusions

Elderly AP patients are more prone to develop severe disease, organ failure and die while in hospital. More attention, appropriate triage and early prevention should be taken.
For prediction of severity, BISAP is the most appropriate scoring system. Ranson and APACHE II for elderly patients are not as useful as they for younger patients. All the four scoring systems show similar performances when predict the pancreatic necrosis and mortality between elderly and younger patients. Either score of the four scoring systems used to decide whether the patients are with SAP is different between two groups. The results suggest us to distinguish between younger and the elderly patients when using these scoring systems to determine if they are SAP. However, in this research, we use sixty as a cut-off age[35] to divide the patients into two groups. Change in age selection has an impact on grouping and may affect the final outcome, so for some area with different age distribution from China (for example: where people tends to live longer), change of the cut-off age and further research are necessary.

Abbreviations

AP: Acute pancreatitis; SAP: severe acute pancreatitis; MAP: mild acute pancreatitis; MSAP: moderately severe acute pancreatitis; BISAP: bedside index of severity in acute pancreatitis; APACHE: Acute Physiology and Chronic Health Evaluation;

Acknowledgements

Not applicable.

Authors’ contributions
Yajie Li: study concept and design, data collection, data analysis, and writing of the draft manuscript; Jun Zhang: measurement of the samples and study co-design; Jihong Zou: data collection and review of the manuscript. All authors have approved the final version of the article.

Funding

This work was financially supported by Nanjing Science and Technology Development guidance Project, China (No.2015ZD008), The Development Fund of Geriatrics Science and Technology of Jiangsu Provincial Geriatrics Society 2019 (JGS2019ZXYY013), and Special funds for basic scientific research of Southeast University (2242019K40267).

Conflict of interests

All the authors declare that they have no conflicts of interest.

Data Availability

The [SPSS data file] data used to support the findings of this study are available from the first author (Ms. Li Yajie) upon request. Anyone need the data can contact the following address:

Ms. Li Yajie: withlove1982@163.com

Ethics approval and consent to participate
This study was approved by the Ethics Committee for Clinical Research of Zhongda Hospital, Affiliated to Southeast University. The use of the patients’ medical records were for research purposes only.

Consent for publication
Not available.

References
[1] Peery AF, Crockett SD, Barritt AS, Dellon ES, Eluri S, Gangarosa LM, et al. Burden of gastrointestinal, liver, and pancreatic diseases in the United States. Gastroenterology 2015; 149(7): 1731-41.e1.
[2] Pendharkar SA, Salt K, Plank LD, Windsor JA, Petrov MS. Quality of life after acute pancreatitis: a systematic review and meta-analysis. Pancreas 2014;43:1194e200.
[3] Hazra N, Gulliford M. Evaluating pancreatitis in primary care: a population based cohort study. Br J Gen Pract 2014; 64(622): e295-301.
[4] Spanier B, Bruno MJ, Dijkgraaf MG. Incidence and mortality of acute and chronic pancreatitis in the Netherlands: a nationwide record-linked cohort study for the years 1995-2005. World J Gastroenterol 2013; 19: 3018-26.
[5] Lindkvist B, Appelros S, Manjer J, Borgstrom A. Trends in incidence of acute pancreatitis in a Swedish population: is there really an increase? Clin Gastroenterol Hepatol 2004; 2: 831-7.
[6] Malwade, S, Cilliers, L, Zhu, X, Wong, C P, Bamidis, P, Fernandez-Luque, L, et al. Mobile and wearable technologies in healthcare for the ageing population. Computer Methods and Programs in Biomedicine 2018; S0169260717314578.

[7] Yadav D, Lowenfels AB. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology 2013; 144: 1252-61.

[8] Vikesh KS, Wu BU, Bollen TL, Repas K, Maurer R, Johannes RS, et al. A prospective evaluation of the bedside index for severity in acute pancreatitis score in assessing mortality and intermediate markers of severity in acute pancreatitis, Am. J. Gastroenterol. 2009;104(4): 966–971.

[9] Forsmark CE, Vega SS, Wilcox CM. Acute Pancreatitis, N Engl J Med. 2016; 375(20):1972–1981.

[10] Li YJ, Ren LQ, Zou JH. Risk factors and prevention strategies of nosocomial infection in geriatric patients. Canadian Journal of infectious diseases and medical microbiology 2019; Article ID6417959:1-5.

[11] Petrov MS, Shanbhag S, Chakraborty M, Phillips ARJ, Windsor JA. Organ failure and infection of pancreatic necrosis as determinants of mortality in patients with acute pancreatitis. Gastroenterology 2010;139(3): 813–820.

[12] Ranson JH, Pasternack BS. Statistical methods for quantifying the severity of clinical acute pancreatitis. J Surg Res. 1977; 22(2): 79-91. Doi:10.1016/0022-4804(77)90045-2.

[13] Blamey SL, Imrie CW, O’Neill J, Gilmour WH, Carter DC. Prognostic factors in acute pancreatitis, Gut. 1984; 25(12): 1340-1346.
[14] Larvin M, McMahon MJ. APACHE-II score for assessment and monitoring of acute pancreatitis, Lancet, 1989; 2(8656):201-205.

[15] Wu BU, Johannes RS, Sun X, Tabak Y, Conwell DL, Banks PA. The early prediction of mortality in acute pancreatitis: a large population-based study, Gut. 2008; 57.12: 1698–1703.

[16] Li M, Xing XK, Guo F. Evaluation of six scoring systems and four laboratory tests in the prognostic assessment of severe acute pancreatitis, Chin J Dig. 2018; 38(10):673-677.

[17] Hagjer S, Kumar N. Evaluation of the BISAP scoring system in prognostication of acute pancreatitis- A prospective observational study, International Journal of Surgery 2018; 54:76-81.

[18] Banks PA, Bollen TL, Dervenis C, Johnson CD, Sarr MG, Tsilotos GG, et al. Classification of acute pancreatitis-2012: revision of the Atlanta classification and definitions by international consensus. Gut 2013; 62: 102-111.

[19] Sheng L, Sha WH, Bu XL and Ma J. Clinical features and outcome of acute pancreatitis in elderly patients, Chinese General Practice, 2017; 20(7):800-803.

[20] Pascual J, Orofino L, Liano F, Marcen R, Naya MT, Orte L, et al. Incidence and prognosis of acute renal failure in older patients, J Am Geriatr Soc. 1990; 38(1):25-30.

[21] Wu BU, Johannes RS, Kurtz S, Banks PA. The impact of hospital-acquired infection on outcome in acute pancreatitis. Gastroenterology 2008; 135: 816-20.
Determinant-based classification of acute pancreatitis severity: an international multidisciplinary consultation. Ann Surg 2012; 256: 875-80.

Comparison of Ranson, Glasgow, MOSS, SIRS, BISAP, APACHE-II, CTSI scores, IL-6, CRP, and procalcitonin in predicting Severity, organ failure, pancreatic necrosis, and mortality in acute pancreatitis. HPB Surg 2013; 2013:367581.

Guidelines for the management of acute pancreatitis, Journal of Gastroenterology and Hepatology, 2002:S15-39.

UK guidelines for management of acute pancreatitis: is it time to change? Gut, 2005; 54(9):1344-1345. DOI:10.1136/gut.2005.071076.

Practice guidelines in acute Pancreatitis. Am J Gastroenterol, 2006; 101(10):2379-2400. DOI:10.1111/j.1572-0241.2006.00856.x.

A comparative study on three scoring systems in elderly patients with acute pancreatitis. Chinese Journal of Gastroenterology, 2018, 23(12): 717-721.

BISAP-O y APACHE-O: utility in predicting severity in acute pancreatitis in modified Atlanta classification, Rev Gastroenterol Peru, 2015; 35(1):15-24.
[29] Cho YS, Kim HK, Jang EC, Yeom JO, Kim SY, Yu JY, et al. Usefulness of the Bedside Index for severity in acute pancreatitis in the early prediction of severity and mortality in acute pancreatitis, Pancreas 2013; 42(3): 483–487.

[30] Cho YS, Kim HK, Jang EC, et al. Usefulness of the bedside index for severity in acute pancreatitis in the early prediction of severity and mortality in acute pancreatitis, Pancreas, 2013; 42(3):483-487.

[31] Papachristou GI, Muddana V, Yadav D, et al. Comparison of BISAP, Ranson’s APACHE II, and CTSI scores in predicting organ failure, complications, and mortality in acute pancreatitis. Am J Gastroenterol, 2010, 105(2): 435-441.

[32] Bezmarevi M, Kosti Z, Jovanovi M, et al. Procalcitonin and BISAP score versus C-reactive protein and APACHE II score in early assessment of severity and outcome of acute pancreatitis. Vojnosanit Pregl, 2012, 69(5):425-431.

[33] Bollen TL, Singh VK, Maurer R, et al. A comparative evaluation of radiologic and clinical scoring systems in the early prediction of severity in acute pancreatitis. AM J Gastroenterol, 2012, 107(4):612-619.

[34] Sundararajan K, Schoeman T, Hughes L, et al. Predictors and outcomes of acute pancreatitis in critically ill patients presenting to emergency department of a tertiary referral centre in Australia. Emerg Med Australas, 2017, 29(2):184-191.

[35] Chinese Medical Association, “Chinese standard for healthy elderly”, Chin J Geriatr, 2013 Vol.32, No.8, 801
