Identification of two putative reference genes from grapevine suitable for gene expression analysis in berry and related tissues derived from RNA-Seq data

Mauricio González-Agüero1, Miguel García-Rojas1, Alex Di Genova2, José Correa1, Alejandro Maass3, Ariel Orellana4 and Patricio Hinrichsen1*

Abstract

Background: Data normalization is a key step in gene expression analysis by qPCR. Endogenous control genes are used to estimate variations and experimental errors occurring during sample preparation and expression measurements. However, the transcription level of the most commonly used reference genes can vary considerably in samples obtained from different individuals, tissues, developmental stages and under variable physiological conditions, resulting in a misinterpretation of the performance of the target gene(s). This issue has been scarcely approached in woody species such as grapevine.

Results: A statistical criterion was applied to select a sub-set of 19 candidate reference genes from a total of 242 non-differentially expressed (NDE) genes derived from a RNA-Seq experiment comprising ca. 500 million reads obtained from 14 table-grape genotypes sampled at four phenological stages. From the 19 candidate reference genes, *VvAIG1* (AvrRpt2-induced gene) and *VvTCPB* (T-complex 1 beta-like protein) were found to be the most stable ones after comparing the complete set of genotypes and phenological stages studied. This result was further validated by qPCR and geNorm analyses.

Conclusions: Based on the evidence presented in this work, we propose to use the grapevine genes *VvAIG1* or *VvTCPB* or both as a reference tool to normalize RNA expression in qPCR assays or other quantitative method intended to measure gene expression in berries and other tissues of this fruit crop, sampled at different developmental stages and physiological conditions.

Background

Quantitative real-time PCR (qPCR) is generally used for measuring transcripts abundance due to its high sensitivity, specificity and broad quantification range for high throughput and accurate expression profiling of selected genes [1]. Also, qPCR analysis has become the most common method for verification of microarrays and RNA-Seq results [2-4]. Besides being a powerful technique, qPCR has certain disadvantages such as the difficulties associated to the inappropriate data normalization, one of the most important aspects to solve [5] in order to fit this technique for the study of a new organism, organ or tissue. The data normalization is a key stage to control the artifacts and experimental error occurring during sample preparation and the following experimental steps, ending with the data analysis. It has been shown that qPCR results are highly dependent on the reference genes chosen [6], which explain the considerable effort applied into the validation of the gene(s) selected for the normalization stage, prior to extensive experimentation [7]. These housekeeping genes should not vary in their expression level considering the different tissues or cells under investigation, nor in response to any experimental treatment [8].

Regardless of the experimental technique employed, appropriate normalization is essential for obtaining accurate and reliable quantifications of gene expression levels,
especially when measuring small expression differences or when working with tissues of different histological origin [9]. The purpose of normalization is to correct variability associated with the various steps of the experimental procedure, such as differences in initial sample amount, RNA extraction recovery and integrity, efficiency on cDNA synthesis and differences in the overall transcriptional activity of the tissues or cells analyzed [10]. Among the numerous normalization approaches that have been proposed [11,12] the use of internal controls or reference genes has become the method of preference [13,14], because they potentially account for all of the sources of variability mentioned above. However, numerous studies have reported that the transcript quantity of the most commonly used reference genes can vary considerably under different developmental, physiological and experimental conditions [11,15-23]. Several reference genes are commonly used, such as elongation factor [24,25], actin [26,27], ubiquitin [28,29], and ribosomal units (18S or 28S rRNA) [30-32]. However, several reports have demonstrated that transcript levels of these genes also vary considerably under different experimental conditions and consequently their suitability for gene expression studies must be evaluated case by case [22,33,34]. This implies that a reference gene with stable expression in one organism may not be suitable for normalization of gene expression in another organism [35,36], or even in different experiments for the same species.

Many works have been carried out on animal models and in relation to human health [37,38], fields in which multiple reference genes for normalization of qPCR data have been described. However, similar reports are less abundant in plants [10,35,39]. Czechowski et al. [22] employed a new strategy for the identification of reference genes in *Arabidopsis thaliana*, based on the microarray data of Affymetrix (ATH1), and several new reference genes were revealed [40]. This list of *Arabidopsis* reference genes was successfully employed to search for reference genes by sequence homology in unrelated species such as *Vitis vinifera* [7]. This approach resulted in a strategy that is based on the parallel use of a series of control genes and calculation of normalization factors using statistical algorithms [8,11,41]. It is necessary to validate the expression stability of a candidate control gene in each experimental system prior to its use for normalization. In this regard, several free software applications such as geNorm [8], NormFinder [42] or qBase [43] are used in order to identify the best internal controls from a group of candidate normalization genes in a given set of biological samples.

To our knowledge, no investigations have been yet carried out for the identification of reference genes in table grape, one of the most important template fruit crops. In this work we used a data set obtained from a large RNA-Seq experiment of table grape segregants phenotypically and genetically diverse, belonging to a ‘Ruby Seedless’ x ‘Sultanina’ crossing, sampled at three phenotypic stages, anthesis, fruit-setting and berries of 6–8 mm diameter (the last one from plants treated or not with gibberellic acid). We focused the search of control genes evaluating the variability (or stability) in the expression of 19 genes selected from an initial set of 242 genes that showed a threshold stability level, comparing the four different developmental and physiological conditions. Two new reference genes, *VvAIG1* (AvrRpt2-induced gene) and *VvTCPB* (T-complex 1 beta-like protein) were validated by qPCR and geNorm techniques and are presented as new housekeeping genes for table grape.

Results and discussion

Identification of putative reference genes

Usually the search for reference genes in any plant species is based on the identification of orthologs of genes stably expressed in model plants, mainly from *Arabidopsis thaliana* [44,45]. In this case, we used our own information obtained from a massive sequencing assay done with 47 samples of the same species of interest, i.e., table grape (*Vitis vinifera* L.). This set of samples corresponds to 14 genotypes from which RNA was collected, combining different flower and berry developmental stages and treatments (see Methods section). Even when the main outcome of an RNA-Seq exercise is the identification of differentially expressed genes, in this case the same data set was used to search for putative reference genes, considered as that any gene that has a minimal expression level variation in every sample analyzed. Based on these criteria, a total of 242 candidate housekeeping genes were identified, using the bioinformatics workflow presented in Figure 1. These genes are involved in different biological processes (data not shown), such as synthesis, degradation, folding, defense, stress and catabolism of proteins and metabolites. As this number of genes is too large to evaluate each one respect of their transcriptional stability, we selected a subset according to statistical criteria described in the next section. With this purpose in mind, we ranked the list of 242 genes according to their coefficient of variation (CV), even when it was not observed a direct relation between CV and total reads (Additional file 1: Table S1).

Selection of a sub-set of 19 candidate reference genes

Different approaches, such as Poisson distribution, quasi-Poisson distribution and negative binomial distribution, have been used to represent the statistical distribution of sequence data [46-48]. Under these three kinds of distribution, the mean of count reads is highly related to variance [47,48]. A summary of the three statistical parameters used in this work to characterize the NDE genes is shown in Table 1. The mean and the variance were high and
positively related, while the average was not related to the CV (Table 2). Therefore, this last parameter, together with the mean, was used to select those NDE genes that behaved as housekeeping and had both a low variation coefficient and a high abundance along the 47 samples analyzed. The data (Table 1) showed a high estimated coefficient of variation (CV > 40%, with a range of ~25%). This variation probably could be given by an intrinsic variation within the biological sample (phenotype, phenological stages and gibberellic acid treatment) or by sampling error, because the sources of variation are considered during the selection of genes as differentially expressed by edgeR package [46]. Only a few genes (~8% of total NDE genes) had mean and CV values large enough to rule out sampling errors. This among-samples variation could be explained because the genotypic effect was not taken into account for the selection of NDE genes. In this study, each one of the 14 genotypes used could be differentially interacting with the other factors or conditions (phenotype, phenological stages and gibberellic acid treatment).

Because of the difficulties to find genes that possess simultaneously both a high expression level (number of reads) and a low CV, we used the coefficient of variation, which is not related to the mean and it is easier to interpret (Table 2).

This parameter has been previously used in other experiments [49,50]. The threshold estimated by the simulation for CV and μ are listed in Table 3. According to this, as the threshold became more stringent, fewer genes were found that satisfied both criteria of selection: CV < percentile threshold and μ > percentile threshold (Table 3). Only 19 of the 242 NDE genes satisfied both criteria at 97.5% and 2.5% for μ and CV, respectively (Table 4).

Primers design and analysis of the variability from threshold cycles value
Primer pairs for qPCR were designed and subsequently evaluated on table grape cDNA. For 17 out of the 19 primer pairs designed, a single amplicon was observed by electrophoretic separation; each amplicon was sequenced to confirm the primer specificity. The primers for VvADH7 and VvSLP had to be excluded from the study as they produced two amplicons under the tested PCR conditions. All primers were designed with the following criteria: 20 – 24 bp length, GC content between 50% and 65%, product size in the range of 91 – 268 bp and melting temperature between 60 – 64°C (Table 5). Melting curve analyses of the 17 genes showed a single peak in each case, confirming that the primers amplified a single product (data not shown). Except for VvUNP3 (129%) and VvADF2 (114%), all PCRs

![Figure 1](http://www.biomedcentral.com/1471-2164/14/878) Bioinformatics pipeline used for the identification of the putative reference genes obtained through a high-throughput sequencing of cDNA (RNA-Seq).

Table 1 Descriptive statistics of mean (μ), variance (σ²) and coefficient of variation (CV) of the 242 non-differentially expressed genes

	Min.	q₁	Median	q₃	Max.
μ	331.7	680.2	820.7	1129	3682
σ²	41300	120000	189400	326900	3636000
CV	0.444	0.492	0.515	0.544	0.648

Min.: minimum value; q₁: first quartile; q₃: third quartile; Max.: maximum value.

Table 2 Relationship among statistical parameters of read counts of non-differentially expressed genes (Pearson’s correlation coefficient)

	μ	σ²	CV
μ	0.951***		
σ²	0.029 n.s.	0.126***	

Significance codes: p value <0.001 **** 0.001-0.01 *** 0.01-0.05 ** > 0.05 n.s. (non-significant); μ mean; σ² variance; CV coefficient of variation.
displayed amplification efficiencies between 83% and 110%
(Additional file 2: Table S2).

As a first approach we compared the different expression
levels of the reference genes over all the 47 samples using
the absolute Ct value. Analysis of the raw expression levels
across all samples detected some variation among reference
genes. The results (Additional file 2: Table S2 and Figure 2)
revealed that all genes presented median ct values be-
tween 18.5 and 24.8 and the CV was < 7% for all the
reference genes (Additional file 2: Table S2), among which

Percentile	Threshold	n
CV 5%	0.536	34
μ 95%	1161.3	
CV 2.5%	0.513	19
μ 97.5%	1208.2	
CV 1%	0.487	4
μ 99%	1260.5	
CV 0.1%	0.43	0
μ 99.9%	1369.3	

n: Number of NDE genes that satisfied both criteria of selection: CV < percentile threshold and μ > percentile threshold.

Table 3 Threshold used as criteria of selection based on the distribution of coefficient of variation (CV) and of mean (μ) of the 10,000 simulated genes

VvAIG1 and VvTCPB presented the lowest CVs, 3.6 and 3.9 respectively.

Expression analysis of reference genes for qPCR

Using quantitative Real-Time PCR we studied the expression
of 12 out of 19 candidate reference genes in cDNA
samples of table grape genotypes from different pheno-
logical stages. Most of the genes showed a similar expres-
sion pattern considering the different samples under study,
e.g., lower expression at anthesis and fruit-setting stages
and slightly higher expression in the 6–8 mm berry size
stage (Figure 3, C-L). Other genes such as VvAIG1 and
VvTCPB did not show significant differences in their ex-
pression along the different phenological stages and in the
different samples (segregants) studied (Figure 3, A and B).

As a control, we included three genes studied by Reid et al.
[7], VvUBQ10, VvPIP2B and VvEF1-α, which presented an
expression profile similar to the set of putative reference
genes, with appreciable differences between phenological
stages (Figure 3, M-O). Interestingly, this set of three con-
trol genes, commonly used in gene expression studies in
grapevine exhibited very “unstable”, non-uniform or too-
low expression levels, and so they were not included in
the list of 242 genes initially selected, and consequently
they are not recommendable to be used as reference genes
in table grapes.

Table 4 Candidate reference gene ranking according to their CV

Genoscope ID	Total reads	Mean SD	CV μ	CHR	Product
GSVIVG01036166001*	80103	1704	791	0.46 chr6 Vacuolar protein sorting-associated protein 4	
GSVIVG01013003001*	57177	1217	571	0.47 chr2 26S proteasome non-ATPase regulatory subunit 13	
GSVIVG01027659001*	63133	1343	635	0.47 chr15 Unknown protein function	
GSVIVG01025947001*	64396	1370	657	0.48 chr18 Protein AIG1	
GSVIVG01035814001*	79018	1681	818	0.49 chr4 Unknown protein function	
GSVIVG01038268001*	162669	3461	1689	0.49 chr5 Rab GDP dissociation inhibitor alpha	
GSVIVG01008708001*	90480	1925	941	0.49 chr18 T-complex protein 1 subunit beta	
GSVIVG01028520001*	96994	2064	1009	0.49 chr7 26S protease regulatory subunit 4 homolog	
GSVIVG01012792001*	56443	1201	588	0.49 chr18 Putative peptidase	
GSVIVG01031067001*	67287	1432	705	0.49 chr14 T-complex protein 1 subunit zeta	
GSVIVG01033771001*	83853	1784	883	0.49 chr8 Splicing factor U2af small subunit A	
GSVIVG01033172001*	78058	1661	822	0.50 chr4 Serine/Arginine-rich splicing factor 7	
GSVIVG01016731001*	69545	1480	734	0.50 chr9 Proteasome subunit alpha type-6	
GSVIVG01028854001*	82587	1757	875	0.50 chr16 40S ribosomal protein 510-1	
GSVIVG01033442001*	63350	1348	673	0.50 chr8 Carbon catabolite repressor protein 4 homolog 2	
GSVIVG01037814001*	70685	1504	754	0.50 chr3 Unknown protein function	
GSVIVG01015062001*	59049	1256	637	0.51 chr11 Aldehyde dehydrogenase family 7 member A1	
GSVIVG01030215001*	155807	3315	1682	0.51 chr8 Proactivator polypeptide-like 1	
GSVIVG01016593001*	101022	2149	1091	0.51 chr13 Actin-depolymerizing factor 2	

SD standard deviation; CV coefficient of variation; CHR chromosome location for each gene.
*Genes studied in this work; †genes that showed double amplicon.
Threshold mean 1208.2 (percentile 97.5%).
Threshold coefficient of variation 0.513 (percentile 2.5%).
Validation of candidate reference genes

For the validation of *VvAIG1* and *VvTCPB* as reference genes, we studied their expression profile also in more advanced phenological stages (pre-veraision and post-veraision), using cv. Sultanina as a model table grape genotype. Some authors as Gamm et al. [34] and Artico et al. [23] among others, recommend that the ideal reference genes should be expressed at a constant level throughout the plant tissues, developmental stages or physiological conditions, and not be influenced by exogenous treatments but no one gene has such a stable expression under every experimental condition, as numerous

Genoscope ID	Gene abbreviation	GenBank accession	Primer sequence (5′-3′)	Product size (bp)	TM (°C)
GSVIVT01038268001	VvRAI	XM_002280570	F: GCAGAGGTCAGTGTGTGTTA		
R: TGGGATTTGGTTGTCATA	217	60			
GSVIVT01030215001	VvPP1	XM_002268545	F: GAGCCAGAATTCCAAAGAC		
R: AGAACCAGACAAACCCAACT	166	62			
GSVIVT01016593001	VvADF2	XM_002284004	F: GGCCTTGTTCGCTGTTTCTC		
R: AGTGGGGGTACACAACTTTT	268	60			
GSVIVT01028520001	VvPR265	XM_002263298	F: GACCAAGTGTAGCCGCGAGG		
R: CCCACCGACGACGACGAT	138	62			
GSVIVT01008708001	VvTCP8	XM_002285876	F: AGACAGTGTAGCAGCAGG		
R: ATCCCTGCTTGCTTCTTC	238	64			
GSVIVT01033771001	VvSFU2	XM_002277749	F: CCCACCTCTTCCTTCTTCAAC		
R: TGGTCAAGCAAAATTGTCACGA	192	62			
GSVIVT01028854001	VvPR40	XM_002273250	F: GATTGTGCCTGCCACCTTGA		
R: AACCTCCACCTCCTCGTCCA	257	62			
GSVIVT01036166001	VvSAP4	XM_002262726	F: AGCCTAATGTGAAGCTGAGG		
R: AACAGCCCTTGCTAGTGTATG	179	64			
GSVIVT01035814001	VvUNP2	XM_002284964	F: AGATACAGGAGCAGGAGAAGT		
R: AGATTTGGAATTCAGTGAGG	214	64			
GSVIVT01033172001	VvSF7	XM_002272621	F: GAGGAGAACTTGGAGATGA		
R: AAGAGGTGGGACAGGCGAAA	258	62			
GSVIVT01037814001	VvUNP3	FQ387200	F: AGCGTCTCTCAAGCTGTCAG		
R: AGAGCACCCCAACATTCCTC	91	60			
GSVIVT01016731001	VwPS4	XM_002271183	F: ATGGACCTGGCTCTTTCAAAT		
R: TCCTCGGTGGACACACACTG	262	64			
GSVIVT01031067001	VwTCPZ	XM_002283474	F: CTTAGAATAACATCGAGAAGCTAC		
R: TCAAGGTCTCATCCACCCATTACCA	140	62			
GSVIVT01025947001	VwAG1	XM_002281960	F: GAGAAGTTATTTGGGGCCCTTAG		
R: CTCTTGGCTCTATCCCTTGTT	108	62			
GSVIVT01033442001	VwCCR	XM_002280954	F: TTGGTTGAGTTGGAGCTCTTA		
R: AGTGAGCAGGAGAGGTTGTAAG	173	64			
GSVIVT01027659001	VwUNP	XM_002280576	F: TGGAGACCTTGAGATGAG		
R: CACTCCAGGAGGAGGACATAG	227	60			
GSVIVT01015062001	VwADH7	XM_002278057	F: TGGGCGAATCCTGGATGTTA		
R: CGTCACCCACCAATCTCTTCT	104	64			
GSVIVT01013003001	VwPRN26S	XM_003631440	F: GAAGCTCTGGCAACACACT		
R: ACGTCACCAAAATAGAGCA	158	64			
GSVIVT01012792001	VwSLP	FQ388031	F: GCCGTCCACATCATTTAATC		
R: AGCTCTTCTTGGACGCTTACTG | 108 | 62 |

F forward primer. R reverse primer. bp base pairs. TM melting temperature given in °C.
studies reported that expression of housekeeping genes can also vary considerably under particular experimental conditions as it is observed in the Figure 4. VvAIG1 and VvTCPB genes neither presented significant differences in their expression at the growing stages evaluated (Figures 5A and 5B, respectively). Similar results for these two genes were observed in cvs. Red Globe, Crimson seedless and Muscat of Alexandria, a set of genotypes representing at some extent the genetic diversity of table grapes [51]. In addition, we evaluated the performance of these two reference genes in leaves with similar results as berries (data not shown).

To complement this, we used geNorm algorithm to determine the most stable reference genes assuming that two ideal reference genes should not vary in comparison with each other in the different tested conditions. This algorithm calculates the average pair wise variation of a given candidate reference genes set with all other genes under evaluation and assigns a measure of its expression stability (M), based on which a ranking of candidate reference genes is produced [8]. The geNorm software has been cited for many authors in relation to the identification or behavior of reference genes; this is because of its easiness, robustness, reliability and convenience of use, and so it is currently included in qRT-PCR analyses in animals, yeasts, bacteria but rarely in plants [52]. Our results based on geNorm were consistent with this couple of genes being very stable regarding gene expression in the analyzed samples.

For anthesis, the two most stable genes were VvAIG1 and VvCCRP (Figure 4A); in the case of fruit-setting these were VvUNP and VvCCRP (Figure 4B); and for 6–8 mm berries, the most stable genes were VvUNP and VvAIG1 (Figure 4C). Other genes considered in this work (EF, PP2A and UBQ10) were studied in other species of plants such as soybean [53] and Gossypium hirsutum [23], showing a high variability in their expression profile depending of the physiological condition, tissues and genotypes.

In summary, the most stable reference genes for all samples studied (different genotypes evaluated at different phenological stages) were VvTCPB and VvAIG1 (Figure 4D). These results demonstrate that our approach allowed us to obtain a set of genes that could be used as reference genes in qPCR experiments; this is similar to the result obtained by Coito et al. [40], where they proved the accuracy of choosing a combination of grapevine reference genes for qPCR, but in that case through a microarray analysis.

Conclusions

This work is the first study that shows that a data set derived from a massive RNA sequencing for several individuals and phenotypic conditions can be used for the identification of housekeeping genes in a non-model plant species such as grapevine. The genes VvTCPB and VvAIG1, never cited before as possible reference genes in this or other woody species were the most stable genes in all samples studied. Then, these genes are proposed as reference genes to be used in qPCR assays in table grape berries at different developmental stages and physiological conditions.

Methods

Plant material

Twelve table grape segregants belonging to a ‘Ruby seedless’ x ’Sultanina’ crossing of contrasting and extreme phenotypes respect of seed content and berry size plus both parents were used in the RNA-Seq experiments (Muñoz et al.,...
Figure 3 (See legend on next page.)
For RNA-Seq analyses, a number of whole berries from each condition (for a list of samples, phenological stages, etc., see Additional file 3: Table S3) was frozen in liquid nitrogen, homogenized and their RNA was sequenced after converted to cDNA, obtaining ca. 500 million reads from 47 sequenced samples. For the qPCR validation of the 19 candidate reference genes, two genotypes from the same crossing collected at three phenological stages (anthesis, fruit-setting and 6–8 mm berries, treated or not with gibberellic acid) were used. We also included samples of 'Sultanina' collected at more advanced phenological stages (pre-veraison and post-veraison). The vines, established at La Platina Experimental Station of the 'Instituto de Investigaciones Agropecuarias', located in Santiago, Chile, were maintained under a standard management program for watering, fertilization, pests and diseases control and pruning. After harvest, every sample was immediately frozen in liquid nitrogen and stored at −80°C until use.

Public data used
The reference grape genome (12X) and the gene annotation were downloaded from the GENOSCOPE database (http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/). The reference genome contains a total of 26,346 annotated transcripts with an average size of 1,137 base pairs.

Identification of candidate reference genes
To build the RNA-Seq data-base, a total of 491 million reads were generated in a Genome Analyzer II, from Illumina (IGA, Udine, Italy). After the quality trimming, 477 million reads were kept, and 91% of them were located

Figure 3 qPCR expression values for candidate reference genes in grapevine samples. Two segregants from the Ruby x Sultanina crossing (112 and 119) in three phenological stages (anthesis, fruit-setting and 6–8 mm berries) treated or not with gibberellic acid (GA3) were used. These segregants represent extreme phenotypes for berry size. For relative expression the genes were normalized with the lowest expression gene. A, AG1 (VvAG1); B, T-complex protein 1 subunit beta (VvTCPB); C, vacuolar sorting-associated protein 4 (VvSAP4); D, 26S proteasome non-ATPase regulatory subunit 13 (VvPRN26S); E, carbon catabolite repressor protein 4 homolog 2 (VvCCR2); F, unknown protein function (VvUNP2); G, unknown protein function (VvUNP3); H, Rab GDP dissociation inhibitor alpha (VvRAB10); J, proactivator polypeptide-like 1 (VvPP1); K, acting-depolymerizing factor 2 (VvADF2); L, 26S protease regulatory subunit 4 homolog (VvPR26S). Other putative housekeeping genes reported and used in many works are the following: M, polyubiquitin (VvUBQ10, GenBank acc CB977307); N, plasma membrane intrinsic protein 2B (VvPIP2B, GenBank acc EC969993); and O, elongation factor 1-alpha (VvEF1-alpha, GenBank acc CB977561). Bars in the graphs correspond to standard error (SE) from three biological samples, assayed in duplicate. Different letters represent significant differences at $P < 0.05$ by LSD test.

Figure 4 Expression stability values (M) and ranking of 14 candidate housekeeping genes as calculated by geNORM algorithm. Average expression stability value (M) of the candidate genes was measured during stepwise exclusion of the least stable candidate genes. Genes with the lowest M values have the most stable expression. Twenty-four cDNAs corresponding to different phenological stages were used: A, anthesis; B, fruit-setting; C, 6–8 mm berries; and D represents all the phenological stages.
in the reference grape genome by TOPHAT [54] program. The differential expression test on seventy comparisons was implemented in the edgeR [46] software. Then, using in-house development scripts, we searched for genes that were classified as non-differentially expressed, and presented at least 100 reads in each sample/condition and a low variation index among conditions. Finally, all these steps were executed as a bash pipeline (Figure 1).

Derivation of the statistical test for the selection of reference genes

As a first approximation to identify the reference genes, it was used as criteria the mean of read counts and the coefficient of variation (\(CV = \frac{\text{standard deviation}}{\text{mean}} \)) among the 47 different conditions for each of the 242 non-differentially expressed genes (NDE). The relationship between these two criteria was analyzed by Pearson’s correlation coefficient (\(r \)) using R 2.15.0 [55]. The \(CV \) has been previously used for this purpose in cereal crops [49,50]. In order to find those genes having both a high number of reads and a low variation coefficient among samples from different phenological stages and conditions, pseudo data sets were simulated by resampling of the original data. The purpose was that the stability (low \(CV \)) and level of expression (high mean values of read counts) were due to features of the gene and not to random or experimental error. The procedure was performed as follows: for each original gene we calculated the mean and the \(CV \) of the read counts among the different conditions. Then, a pseudo set of data was simulated representing a pseudo NDE gene under the 47 conditions. To represent this gene, 47 read counts were sampled at random from the original data matrix (247 x 47 observations) and then both the mean and \(CV \) were calculated for this pseudo NDE gene. Thus, 10,000 pseudo NDE genes were simulated. Then the 10,000 pseudo-values of the mean and \(CV \) were sorted from the lowest to the highest values. The highest 9,750-th value (percentile: 2.5%) of mean and \(CV \), respectively, were used as thresholds of selection. Finally, only those genes that had both a mean of read counts above and a \(CV \) below the corresponding thresholds were selected. This algorithm was programmed using R 2.15.0 [55].

RNA isolation and cDNA synthesis

Total RNA was isolated from 3–4 g of frozen tissue using the modified hot borate method [56]. The quantity and quality of the RNA were assessed by measuring the \(A_{260/280} \) ratio and by electrophoresis on a 1.2% formaldehyde-agarose gel. First strands of cDNA were obtained by reverse transcription reactions with 2 ug of total RNA as template, using MMLV-RT reverse transcriptase (Promega, Madison, WI) and oligo dT primers according to standard procedures. The concentration of cDNA was assessed by measuring the absorbance at 260 nm, finally diluting each cDNA to 50 ng/ul prior to use in qPCR. Quality and quantity of cDNA was also determined by using a Bioanalyzer (Agilent Technologies, Santa Clara, CA), with equivalent results.

Primer design

Gene-specific primers were designed using Primer Premier 5.0 software (Premier Biosoft International, Palo Alto, CA) and synthesized by Alpha DNA (Montreal, Quebec, Canada). The nucleotide sequences were obtained from a private database maintained at http://vitisdb.cmm.uchile.cl/. In addition, three genes encoding a polyubiquitin (UBQ10), plasma membrane intrinsic protein 2B (PIP2B) and elongation factor 1-alpha (EF-1\(\alpha \)) and their respective pairs of primers were selected from previously published reports [28] and evaluated as a way of comparison. Accession numbers, primer sequences, expected size of amplicons and melting temperature are provided in Table 5.

Quantitative real-time PCR assays (qPCR)

Each transcript abundance was analyzed by real-time PCR with the LightCycler Real-Time PCR System (Roche...
Diagnostics, Mannheim, Germany), using SYBR Green™ as a fluorescent dye to measure the amplified DNA products derived from RNA. Three biological samples in duplicate of quantitative PCR experiments were performed for each sample as described in García-Rojas et al. [57]. Briefly, the amplification reaction was carried out in a total volume of 20 μl containing 1 pmol of each primer, 5 mM MgCl2, 1 ml LightCycler™ DNA Master SYBR® Green I (Roche Diagnostics) and 100 ng of each cDNA analyzed. The thermal cycle conditions were: denaturation at 95°C for 10 min, followed by 35 three-step cycles of template denaturation at 95°C with a 2 s hold, primer annealing at 60–65°C for 15 s and extension at 72°C for 25 s. Fluorescence data was collected after each extension step. Melting curve analyses were performed and checked for single peaks, and the amplification product sizes were confirmed in an agarose gel to ensure the absence of non-specific PCR products. Fluorescence was analyzed using LightCycler™ Analysis Software (Roche Diagnostics). The crossing point for each reaction was determined using the Second Derivative Maximum algorithm and manual baseline adjustment.

Determination of reference gene expression stability
Expression levels of each one of the 19 candidate reference genes in all samples were determined by assessing the number of threshold cycles (Ct) needed for the amplification related fluorescence to reach a specific threshold level detection. Ct values were transformed to quantities using a standard curve which is a requirement for using geNorm. To manage the large number of calculations generated, we used a Visual Basic Application (VBA) for Microsoft Excel that automatically calculates the gene-stability value M for every control gene in a given set of samples [8].

Statistical analysis for qPCR
Data from qPCR was subjected to statistical analysis of variance, and means were separated by LSD test at 5% level of significance using Statgraphics Plus 5 (Manugistics Inc., Rockville, MD).

The RNA-Seq data used in this study is available at the NCBI’s Sequence Read Achieve (http://www.ncbi.nlm.nih.gov/sra) with the SRA Study accession number SRX366617.

Additional files

Additional file 1: Table S1. List of the 242 candidate reference genes ranked according to their CV values.

Additional file 2: Table S2. Determination of threshold values (Ct) obtained from qPCR analyses.

Additional file 3: Table S3. List of the samples and conditions used for the RNA-Seq experiments.

Authors’ contributions
MGA Selection of the criteria to retrieve the reference genes from the microarray, project Col, writing the manuscript; MGR experimental lab work, application of the softwares and statistical methods, writing the manuscript; AD statistical and bioinformatics analysis; JC experimental field work, statistical analysis; AM project Col, revision of the manuscript; AO project Col, revision of the manuscript; PH design of the study, project leader, revision of the manuscript. All authors contributed to the design of the experiments, and read and approved the final manuscript.

Acknowledgements
This work was mainly supported by FONDEF-Genoma Program, grant G07J-1002, and FONDECYT grant 1120888 to PH.

Author details
1Instituto de Investigaciones Agropecuarias (INA -Chile), La Platina Research Centre, Santiago, Chile. Av. Santa Rosa 11, 610, PO. Box 439-3, Santiago, Chile. 2Laboratory of Bioinformatics and Mathematics of the Genome, Center for Mathematical Modeling (UMI2807-CNRS) and FONDAP Center for Genome Regulation, Faculty of Mathematical and Physical Sciences, Avda. Blanco Encalada 2120, 6th Floor, University of Chile, Santiago, Chile. 3Department of Mathematical Engineering, Center for Mathematical Modeling (UMI2807-CNRS) and FONDAP Center for Genome Regulation, Faculty of Mathematical and Physical Sciences, Avda. Blanco Encalada 2120, 7th Floor, University of Chile, Santiago, Chile. Centro de Biotecnología Vegetal, Universidad Andrés Bello. Av. República 217, Santiago, Chile.

Received: 9 May 2013 Accepted: 2 December 2013
Published: 13 December 2013

References
1. Bustin SA: Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 2000, 25:169–193.
2. Chuaqui RF, Bonner RF, Best CJ, Gillespie JW, Flag MJ, Hewitt SM, Phillips JL, Kozman DB, Tangrea MA, Ahrman M, Linehan WM, Knezevic V, Emmert-Buck MR: Post-analysis follow-up and validation of microarray experiments. Nat Genet 2002, 32:509–514.
3. Canales RD, Luo Y, Willey JC, Austermiller B, Barbacioru CC, Boyzen C, Huntkapiller K, Jensen RV: Evaluation of DNA microarray results with quantitative expression platforms. Nat Biotech 2006, 24:1115–1122.
4. Hao QN, Zhou XA, Sha AH, Wang C, Zhou R, Chen SL: Identification of genes associated with nitrogen-use efficiency by genome-wide transcriptional analysis of two soybean genotypes. BMC Genomics 2011, 12:525.
5. de Jorge H, Fehrmann R, de Bont E, Hofstra R, Gerbers F, Kamp W, de Vries E, van der Zee A, te Meerem G, ter Elst A: Evidence based selection of housekeeping genes. PLoS One 2007, 2:e898.
6. Dheka K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, Rook GAW, Zumbal K: The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 2005, 344:141–143.
7. Reid K, Olsson N, Schlosser J, Peng F, Lund S: An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 2006, 6:27–37.
8. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3:1–11.
9. Huggett J, Dheka K, Bustin SA: Normalization. In Real-Time PCR. Edited by: Dorak MT. New York: BIOS Advanced Methods; 2006:83–91.
10. Exposito-Rodríguez M, Borges A, Borges-Perez A, Perez J: Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 2008, 8:131.
11. Thellin O, Zorzì W, Lakaye B, De Borma B, Courmans B, Hennen G, Grisar T, Igout A, Heinen E: Housekeeping genes as internal standards: use and limits. J Biotechnol 1999, 75:291–295.
12. Libus J, Storchová H: Quantification of cDNA generated by reverse transcription of total RNA provides a simple alternative tool for quantitative RT-PCR normalization. Biotechniques 2002, 41:156–164.
22. Czechowsky T, Stitt M, Altmann T, Udvardi K, Scheible WR:
33. Thellin O, El Moualij B, Heinen E, Zorzi W:
González-Agüero
24. Abbal P, Pradal M, Muniz L, Sauvage FX, Chatelet P, Ueda T, Tesniere C:
30. Bas A, Forsberg G, Hammarstrom S, Hammarstrom ML:
31. Wang X, Liu W, Chen X, Tang C, Dong Y, Ma J, Huang X, Wei G, Han Q,
Actin, a reliable marker of internal control.
27. Ruan W, Lai M:
26. Fung RW, Gonzalo M, Fekete C, Kovacs LG, He Y, Marsh E, McIntyre LM,
Animal Biotech
15: Beta-actin an unsuitable internal control for RT-PCR.
163: rRNA as a housekeeping gene in real-time quantitative PCR analysis
20. Lee PD, Sadek R, Greenwood CM, Hudson TJ: Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res 2002, 12:297–292.
21. Giare EM, Divjak M, Bailey MJ, Walters EH: β-Actin and GAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalizing mRNA levels. Thorax 2002, 57:765–770.
32. Allen-Meabon S, Altman T, Udvardi K, Scheible WR: Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 2005, 1395–17.
23. Artico S, Nardelli SM, Brilliante O, Grossi-de-Sa MF, Alves-Ferreira M: Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalisation or real-time quantiative RT-PCR data. BMC Plant Biol 2010, 10:49.
44. Demidenko NV, Logacheva MD, Penin AA: Validation of housekeeping genes as internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 2008, 9:59.
38. De Boever S, Vangestel C, De Backer P, Croubels S, Sys S: Identification and validation of housekeeping genes as internal control for gene expression in an intravenous LPS inflammation model in chickens. Vet Immunol Immunopath 2008, 122:312–317.
47. Kvam V, Liu P, Si Y: Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Meth 2000, 46:69–81.
18. Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M: Comparison of human adult and fetal expression and identification of 53S housekeeping/maintenance genes. Physiol Genom 2000, 2:143–147.
19. Selvey S, Thompson EW, Matthai K, Lea RA, Irving MC, Griffiths LR: Beta-actin an unsuitable internal control for RT-PCR. Mol Cell Probes 2001, 15:307–311.
25. Muñoz-Robredo P, Gudenschwager O, Chervin C, Campos-Vargas R, González-Agüero M, Defflippi BG: Study on differential expression of 1-aminocyclopropane-1-carboxylic acid oxidase genes in table grape cv. Thompson seedless. Postharvest Biol Technol 2013, 76:163–169.
26. Fung RW, Gonzalez M, Fekete C, Kovacs LG, He Y, Marsh E, McIntyre LM, Schachtman DP, Qi u W: Powderly mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol 2008, 146:236–249.
27. Ruan W, Lai M: Actin, a reliable marker of internal control. Cln Chim Acta 2007, 385:1–5.
28. Lund ST, Peng FY, Nayar T, Reid KE, Schlosser J: Gene expression analyses in individual grape (Vitis vinifera L) berries during ripening initiation reveal that pigment maturation is a valid indicator of developmental stage within the cluster. Plant Mol Biol 2008, 68:301–315.
29. Olien KM, Hehn A, Juge d H, Silmested L, Larbat R, Bourgad F, Lillo C: Identification and characterization of CYP75A31, a new Flavonol 3′-hydroxylase, isolated from Solanum lycopernicum. BMC Plant Biol 2010, 10:21.
30. Bas A, Forssberg G, Hammarstrom S, Hammarstrom ML: Utility of the housekeeping genes 18S rRNA, beta-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scan J Immunol 2004, 59:566–573.
31. Wang X, Liu W, Chen X, Tang C, Dong Y, Ma J, Huang X, Wei G, Han Q, Huang L, Kang Z: Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biol 2010, 10:9.
32. Xue J, Salesh TM, Murtagh MJ, Cheng XY: Strategy of the use of 28S rRNA as a housekeeping gene in real-time quantitative PCR analysis of gene expression in insect cells infected by viruses. J Virol Methods 2010, 163:210–215.
33. Thellin O, El Moualij B, Heinen E, Zordi W: A decade of improvements in quantification of gene expression and internal standard selection. Biotechnol Adv 2009, 27:323–333.
34. Gamm M, Hlóor MC, Kelloniemi J, Poissot B, Wendehenne D, Adrian M: Identification of reference genes suitable for qRT-PCR in grapevine and application for the study of the expression of genes involved in terpene biosynthesis. Mol Genet Genomics 2011, 285:273–285.
35. Jain M, Nijhawan A, Tyagi AK, Khurana JP: Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Co 2006, 345:646–651.
36. Jain B, Liu B, Bi Y, Hou W, Wu C, Han T: Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 2008, 9:59.
37. Hong S, Yang M, Xiang F, Park C: Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biol 2008, 8:112.
38. De Boever S, Vangestel C, De Backer P, Croubels S, Sys S: Identification and validation of housekeeping genes as internal control for gene expression in an intravenous LPS inflammation model in chickens. Vet Immunol Immunopath 2008, 122:312–317.
39. Ransbyton V, Reusch T: Housekeeping gene selection for quantitative real-time PCR assays in the seagrass Zostera marina subjected to heat stress. Limnol Oceanogr-Meth 2006, 4:367–373.
40. Coito JL, Rocheta M, Canavolo L, Amnáncio S: Microarray-based uncovering reference genes for quantitative real time PCR in grapevine under abiotic stress. BMC Res Notes 2012, 5:220.
41. Bustin SA: Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 2002, 29:23–39.
42. Andersen CL, Jensen JL, Orntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004, 64:245–5250.
43. Heilemans J, Mortier G, De Paepe A, Speelman F, Vandesompele J: qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 2007, 8:R19.
44. Demidenko NV, Logacheva MD, Penin AA: Selection and validation of reference genes for quantitative real-time PCR in buckwheat (Fagopyrum esculentum) based on transcriptome sequence data. PLoS One 2011, 6:e19434.
45. Pelino M, Sharbel TF, Mao M, Amitye S, Corral JM: Selection of reference genes for quantitative real-time PCR expression studies of microdissected reproductive tissues in apomictic and sexual B.
46. Robinson M, McCarthy D, Smyth G: edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26:135–142.
47. Kwan V, Liu P, Si Y: A comparison of statistical methods for detecting differentially expressed genes from RNA-Seq data. Am J Bot 2012, 99:248–256.
48. McCarthy D, Chen Y, Smyth G: Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucl Acids Res 2012, 40:e288–e297.
49. Wang Y, Li X, Mao Y, Blaschek H: Single-nucleotide resolution analysis of the transcriptome structure of Clostridium beijerinckii NCIMB 8052 using RNA-Seq. BMC Genom 2011, 12:479.
50. Yang S, Tu Z, Chen F, Wu X, Lamb J, Jung H, Vance C, John W, Gronwald J: Using RNA-Seq for gene identification polymorphism detection and transcription profiling in two alfalfa genotypes with divergent cell wall composition in stems. BMC Genom 2011, 12:199.
51. Aradhya KM, Dangl GS, Prins BH, Boursiquot JM, Walker AM, Meredith CP, Simon CJ: Genetic structure and differentiation in cultivated grapes, Vitis vinifera L. Gen Res 2003, 81:19–72.
52. Guerin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L: Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific validation of references. J Exp Bot 2009, 60:487–493.
53. Hu R, Fan C, Li H, Zhang Q, Fu YF: Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 2009, 10:93.
54. Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25:1105–1111.
55. R Development Core Team: *R: a language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0, URL http://www.R-project.org/, 2012.

56. Gudenschwager O, González-Agüero M, Defilippi BG: A general method for high-quality RNA isolation from metabolite-rich fruits. *S Afr J Bot* 2012, 88:186–192.

57. García-Rojas M, Gudenschwager O, Defilippi BG, González-Agüero M: Identification of genes possibly related to loss of quality in late-season ‘Hass’ avocados in Chile. *Postharvest Biol Tec* 2012, 73:1–7.

doi:10.1186/1471-2164-14-878

Cite this article as: González-Agüero et al.: Identification of two putative reference genes from grapevine suitable for gene expression analysis in berry and related tissues derived from RNA-Seq data. *BMC Genomics* 2013 14:878.