Background
The Sox gene family is a group of related transcriptional regulators that have essential roles during development and have been extensively studied in vertebrates. The mouse, human and fugu genomes contain at least 20 Sox genes, which are subdivided into groups based on sequence similarity of the highly conserved HMG domain. In the well-studied insect Drosophila melanogaster, eight Sox genes have been identified and are involved in processes such as neurogenesis, dorsal-ventral patterning and segmentation.

Results: We examined the available genome sequences of Apis mellifera, Nasonia vitripennis, Tribolium castaneum, Anopheles gambiae and identified Sox family members which were classified by phylogenetics using the HMG domains. Using in situ hybridisation we determined the expression patterns of eight honeybee Sox genes in honeybee embryo, adult brain and queen ovary. AmSoxB group genes were expressed in the nervous system, brain and Malphigian tubules. The restricted localization of AmSox21b and AmSoxB1 mRNAs within the oocyte, suggested a role in, or that they are regulated by, dorsal-ventral patterning. AmSoxC, D and F were expressed ubiquitously in late embryos and in the follicle cells of the queen ovary. Expression of AmSoxF and two AmSoxE genes was detected in the drone testis.

Conclusion: Insect genomes contain between eight and nine Sox genes, with at least four members belonging to Sox group B and other Sox subgroups each being represented by a single Sox gene. Hymenopteran insects have an additional SoxE gene, which may have arisen by gene duplication. Expression analyses of honeybee SoxB genes implies that this group of genes may be able to rapidly evolve new functions and expression domains, while the combined expression pattern of all the SoxB genes is maintained.

Background
The SOX gene family is a group of related transcription factors that play critical roles in embryonic development. This family was originally identified in mammals based on sequence similarity to SRY, the sex-determining region Y chromosome [1]. SOX proteins regulate gene expression by binding to DNA via a conserved DNA binding domain, the HMG (high mobility group) box (reviewed in [2]). Phylogenetic studies have determined that SOX family members segregate into ten groups (named A-J) on the basis of sequence similarities within the HMG box [3-5], with many groups containing multiple members from the same organism with related gene function. Human and mouse genomes each encode 20 Sox genes [3,6] and anal-

Abstract
Background: The Sox gene family of transcriptional regulators have essential roles during development and have been extensively studied in vertebrates. The mouse, human and fugu genomes contain at least 20 Sox genes, which are subdivided into groups based on sequence similarity of the highly conserved HMG domain. In the well-studied insect Drosophila melanogaster, eight Sox genes have been identified and are involved in processes such as neurogenesis, dorsal-ventral patterning and segmentation.

Results: We examined the available genome sequences of Apis mellifera, Nasonia vitripennis, Tribolium castaneum, Anopheles gambiae and identified Sox family members which were classified by phylogenetics using the HMG domains. Using in situ hybridisation we determined the expression patterns of eight honeybee Sox genes in honeybee embryo, adult brain and queen ovary. AmSoxB group genes were expressed in the nervous system, brain and Malphigian tubules. The restricted localization of AmSox21b and AmSoxB1 mRNAs within the oocyte, suggested a role in, or that they are regulated by, dorsal-ventral patterning. AmSoxC, D and F were expressed ubiquitously in late embryos and in the follicle cells of the queen ovary. Expression of AmSoxF and two AmSoxE genes was detected in the drone testis.

Conclusion: Insect genomes contain between eight and nine Sox genes, with at least four members belonging to Sox group B and other Sox subgroups each being represented by a single Sox gene. Hymenopteran insects have an additional SoxE gene, which may have arisen by gene duplication. Expression analyses of honeybee SoxB genes implies that this group of genes may be able to rapidly evolve new functions and expression domains, while the combined expression pattern of all the SoxB genes is maintained.
ysis of the genomes of many model organisms including chicken, Drosophila, Xenopus and Zebrafish reveal that the Sox gene family is conserved between animal phyla. Recently Sox genes have been identified in the genomes of the cnidarian Nematostella vectensis, ctenophores, and the sponge species Reniera indicating these are ancestral animal genes [7-9]. In vertebrates, SOX proteins have been shown to have essential roles in the formation of many body systems including the central nervous system, eye and heart development, bone cartilage, vasculature, sex determination and testis development [10-14]. Molecular and biochemical studies have shown that SOX proteins regulate cell fate and differentiation during development. Mutations in Sox genes have been shown to be the underlying cause of a number of human disorders and Sox genes are expressed during cancer progression [12,15-18].

In the arthropod model organism, Drosophila melanogaster, eight Sox genes have been identified and their expression patterns determined [19,20]. Drosophila Sox genes are expressed in the brain, developing eye, hindgut, nervous system and testes. Group B Sox proteins are present in the developing Drosophila central nervous system (CNS), and also in the CNS of vertebrates, implying that some Sox genes maintain a conserved role throughout evolution [19,21]. The phenotypes of Drosophila Sox gene mutants indicate that Sox genes are involved in dorsal-ventral patterning, segmentation and neurogenesis [22-28]. Collectively, these studies demonstrate that the SOX family is an evolutionally conserved group of proteins essential for development. In insects, however, only the Sox genes from Drosophila have been characterised.

Recent whole-genome sequencing projects for Apis mellifera (the honeybee), Nasonia vitripennis (a parasitic wasp), Tribolium castaneum (the red flour beetle) and Anopheles gambiae (the malaria mosquito) have been completed or are near completion [8,9,29-32] allowing the identification and classification of the complete complement of a gene family from several holometabolous insects. Here we identify Sox gene family members in the genomes of these insects and examine their relationship through phylogenetics. Additionally, we study the expression of the honeybee Sox genes by in situ hybridisation and RT-PCR.

An advanced social insect, the honeybee is fast becoming an important model organism for the study of behaviour, longevity, learning and memory, immunity, polyphenisms, evolution and development. Recently the honeybee genome has been sequenced [29] and analysis of developmental genes has revealed that some early acting developmental genes are absent [33]. Furthermore, the development of molecular techniques including in situ hybridisation and RNA interference (RNAi) [34-37] allow us to examine gene expression and the biological role of genes during honeybee embryogenesis and development, about which little is known despite the importance of the honeybee both scientifically and economically. Given the wide range of organ systems in which Sox genes are expressed, we aimed to identify and examine the expression of honeybee Sox genes. We identified nine Sox genes and used in situ hybridisation and RT-PCR to determine their expression patterns in the honeybee embryo, ovary and adult brain.

Results

Identification and relationships of insect Sox genes

BLAST searches [38] of the honeybee genome sequence with the SOX HMG box consensus sequence identified nine regions that encode homology to SOX proteins. We designated the genes encoding this homology AmSox. Each predicted AmSox gene was examined for the presence of a single HMG box and the sequence motif, RPM-NAFMVW, conserved in all known SOX genes [3], to confirm that they were members of the SOX family of HMG transcription factors. The SOX family is subdivided into groups (A-J) based on phylogenetic comparisons [3]. Phylogenetic analysis of HMG domains from each predicted AmSOX protein placed them into groups B through F (Fig. 1). This allowed us to name AmSox genes based on their placement within each SOX group. The honeybee genome has four group B Sox genes, two group E genes and one Sox gene for each of groups C, D and F. This data supports the notion that the major groups of Sox genes predate the separation of the lineages leading to Arthropods and vertebrates, as these groups exist in both lineages. Included in the tree as Sox gene sequences from a non-vertebrate deuterostome, the sea urchin Strongylocentrus purpuratus, and a lophotrochozoan, the annelid Capitella sp I. Examination of these genomes indicates that the different Sox gene classes are all present, in one copy, in these genomes. The only exception is that the sea urchin genome does not appear to contain a SoxF gene. As this class of Sox genes is found in diploblasts and all other metazoans, this must represent loss of this gene from the lineage leading to Strongylocentrus. SOX groups B-F are also found in the Nematostella, ctenophore and sponge genomes [7,8], indicating that the major groups of Sox genes predate the emergence of triploblastic animals.

To extend our analysis of insect Sox genes, we searched the publicly available insect genome projects for predicted SOX protein sequences. Eight Sox genes were identified in Anopheles gambiae and nine in both Tribolium castaneum and Nasonia vitripennis (Fig. 2A). In Drosophila, three SoxB genes are clustered within an 80 kb region, while SoxB1 (SoxNeuro) is located on a separate chromosome [20]. Similar arrangements are found in honeybees, Anopheles [20], Nasonia and Tribolium (Fig. 2B). Tribolium has five SoxB genes, four of which are clustered within a 90 kb
Figure 1

Phylogeny of metazoan Sox proteins based on alignment of their HMG domains. Phylogram drawn from Bayesian phylogenetic analysis of HMG domains. The tree was rooted with an established outgroup for SOX phylogenetics, Fu-MATA1 [3, 60]. The SOX proteins are subdivided into established subgroups (B-F). Abbreviations are fungi (Fu), Drosophila melanogaster (Dm), Apis mellifera (Am) and Mus musculus (Mm) Nasonia vitripennis (Nv), Anopheles gambiae (Ag) and Tribolium castaneum (Tc) Capitella sp I (Csp), Stronglylocentrotus purpuratus (Sp).
region of the genome. In the honeybee and *Nasonia* there are large intergenic regions between each neighbouring *SoxB* gene and there are several predicted ORFs between *NvSox21b* and *NvSoxB2* (Fig. 2B), suggesting they are unlikely to be co-regulated. In all cases, the *SoxB1/Neuro* orthologue is located in a different region of the genome.
This confirms, as shown by [20], that there is an evolutionary conserved organisation of SoxB group genes between holometabolous insects, where at least three SoxB genes are located together in insect genomes (Fig. 2B).

In insects much of the diversity in Sox genes is found within the SoxB clade. Our phylogenetic analyses indicate that this clade is split into four groups (Fig. 2A), but that the details of the groupings are not well-resolved, due in part to the high sequence similarity of the HMG domains, and sequence divergence between SOX proteins outside of this domain. The SOX21/Dichaete clade is unresolved, but separate from the rest of the SOXB proteins. SOX21b proteins form a separate clade, as do the SOX21/Neuro orthologues. The SOXB2/21a clade is less well defined, with Drosophila SOX21a proteins being significantly different from SOXB2, perhaps indicating rapid evolution of these proteins in the lineage leading to Diptera.

Phylogenetic analyses revealed that honeybee and Naso
nia both have one additional Sox group E gene compared to Drosophila, which has only one, DmSox100b (Fig. 2A). This additional SOX protein protein seems likely to have arisen by gene duplication as both pairs of genes share a similar exon structure and appear to share a common promoter region (Fig 3A). This duplication must have occurred in an ancestor of hymenopteran insects before the split of Naso
nia and Apis. Sequence analyses using full-length protein sequences revealed that invertebrate SOXE proteins form a clade separate to vertebrate SOXE proteins, and they are most closely related to the vertebrate SOXE protein, SOX8 (Fig 3B).

The phylogenetic analysis demonstrates the evolutionary stability of the Sox gene complement in insect evolution. The major amount of diversification in sequence appears in the SoxB group and in the duplication of the SoxE genes, that is seen only in hymenoptera. Given the stability in sequence we examined the expression of these genes in honeybees to determine if sequence stability is matched with constancy of predicted function.

The expression patterns of SoxB group genes in the honeybee
Phylogenetic analysis reveals that the honeybee genome contains four group B Sox genes. These were also identified by McKimmie et al., [20], who investigated the genomic organisation of group SoxB genes in insects. We examined the expression patterns of these Sox genes in the queen ovariole, honeybee worker embryos and adult brains.

AmSoxB1 is strongly expressed by the nurse cells closest to the oocyte in the queen ovariole. In the oocyte, AmSoxB1 mRNA becomes localised to the dorsal surface (Fig. 4A and 4B). This expression pattern continues throughout oogenesis and AmSoxB1 mRNA is also detected on the dorsal surface of early (newly laid) embryos (data not shown).

During embryo development, AmSoxB1 is expressed along ventral gastrulation folds of stage 6 embryos (Fig. 4C), and in the procephalic neurogenic region. After gastrulation, AmSoxB1 expression continues in neuroblasts that arise from neuroectoderm along the ventral midline (Fig. 4E). At later stages these AmSoxB1-positive cells migrate to lateral positions along the ventral axis to differentiate and take up positions within the CNS. Strong expression of AmSoxB1 is also found in neurons of embryonic brain cephalic lobes. This expression continues in the brain of the adult worker honeybee, where AmSoxB1 continues to be expressed in Kenyon cells in each calyx of the mushroom bodies (data not shown), the key region of the honeybee brain required for sensory processing and memory formation.

AmSoxB2 expression is first detected in a group of cells at stage 8 in posterior region of the embryo, where the Malpighian tubules begin to form (Fig. 5A). This expression pattern is maintained in these tubules at later stages (Fig. 5B). AmSOXB2 is likely to have a role in the development of Malpighian tubules in the honeybee, which are essential for the removal of waste products and osmoregulation.

AmSox21b mRNA was detected in late embryos, in the CNS in paired/segmented ganglia on either side of the ventral nerve cord. Expression was also detected in the embryonic brain, intercalary head region and mandibles (Fig. 5C and 5D) and in the mushroom bodies of the adult worker brain (Fig. 5F). Strong AmSox21b expression is detected at the ventral tip of the developing mandible, implying that it may play a role in dorsal-ventral patterning of this appendage. In queen ovarioles, AmSox21b is strongly expressed by the nurse cells and its mRNA present in the oocyte, localized to both dorsal and ventral surfaces of the egg (Fig. 5E).

During late honeybee embryogenesis, the expression patterns of AmSoxB1 and AmSox21b group B genes do not overlap in the CNS (Figs 4F and 5C). These genes appear to be expressed in different neuronal cells along the ventral midline, implying that they play separate roles in the developing CNS. In the embryonic and adult brain, however, AmSoxB1 and AmSox21b are both expressed by the Kenyon cells of the mushroom bodies.

No expression was detected for AmSox21 by in situ hybridisation in honeybee embryos, queen ovaries or adult
Figure 3
SOXE group gene duplication in hymenoptera. A. Illustration of the SoxE gene genomic region from A. mellifera and N. vitripennis genomes. Both genomes encode two copies of SoxE group gene that share a common promoter region. B. Insect SOXE group proteins form a separate clade to the vertebrate SOXE proteins, that are split into three separate groupings, SOX8, SOX9 and SOX10. Insect SOXE proteins are most closely related to vertebrate SOX8 proteins. The unrooted tree was constructed using Phylip, bootstrap values are shown at internal branches.
worker brains. \textit{AmSox21} is encoded by a single exon, making RT-PCR analysis of expression challenging, as RT-PCR analysis detects amplification from embryo cDNA but this is also seen in the control reaction in the absence of reverse transcriptase, indicating this band is most likely to be the result of genomic DNA contamination (Fig. 7). While previous studies [20] have identified \textit{AmSox21} in a brain EST library, an overlapping probe used in this study did not detect any expression. As \textit{AmSox21} expression is undetectable by RT-PCR and in \textit{situ} hybridisation under our experimental conditions, we suggest that \textit{AmSox21} could be an inactive pseudogene. This implies the previously identified EST may be the result of genomic contamination.

\textbf{Expression of SoxF, D and C group orthologues in the honeybee}

\textit{AmSoxC}, \textit{AmSoxD} and \textit{AmSoxF} were all expressed by nurse cells of the queen ovariole and the follicle cells that surround the oocyte (Fig 6A). All three were also expressed ubiquitously throughout late stage embryos (Fig. 6B), although \textit{AmSoxC} expression was slightly higher in the embryonic brain (Fig. 6C). \textit{AmSoxC} and \textit{AmSoxD} were also expressed by the Kenyon cells in the calyces of the mushroom bodies (MB) (Fig. 6D).
SoxE group honeybee orthologues are upregulated in the drone testis

As SOX proteins play key roles in gonad differentiation, we used RT-PCR to determine if the honeybee Sox genes were also expressed in the testis of the drone (Fig. 7). RNA was isolated from the testis of drone pupa, as the adult drone testis degenerates shortly after emergence [39]. Strong expression of AmSoxE1, AmSoxE2 and AmSoxF was detected in testis and weak expression of AmSoxB1b (Fig. 7). AmSoxF was also expressed in queen ovaries (Fig. 6A) but only AmSoxE group gene expression appears to be testis-specific. No expression was detected in queen ovaries and only weak ubiquitous expression was found in late stage worker embryos.

Discussion

We identified nine Sox genes in the honeybee genome, eight in Tribolium, seven in Nasonia and eight in Anopheles. Vertebrate genomes contain a much larger number of Sox genes; humans and mice have 20 Sox genes and fugu has 24 [6,40], with multiple Sox genes represented in each grouping, exhibiting overlapping expression patterns and functions. By contrast invertebrate deuterostome, ecdyszoan and lophotrochozoan genomes contain fewer Sox genes (8–9) and, apart from group B, only a single Sox gene represents most Sox groups. This is consistent with the hypothesis that the ancestral vertebrate genome underwent genome duplication(s) [41]. Non- bilaterian metazoa contain considerably more Sox genes [7,8] indicating Sox gene loss has been important in the evolution of the bilateria. While the HMG domain sequences of Sox group genes suggests that these genes are conserved, their expression when compared between Drosophila and honeybee indicates that these genes are evolving novel expression patterns and thus functions. Sox gene expression in Drosophila, Apis and vertebrates is summarised in Table 1.
Expression and evolution of SoxB genes

The general features of group B gene expression are conserved for the honeybee, as their expression patterns suggest roles in neurogenesis and dorsal-ventral patterning. However, orthology based on phylogenetic evidence does not predict the expression pattern of an individual gene. Despite conservation in genomic organisation and sequence in insects [20], expression of the individual SoxB genes has changed considerably through the evolution of insects.

None of the AmSox B group genes show identical expression patterns to any of their orthologous DmSox B genes. For example, the AmSox21b expression pattern in the CNS is different to that of DmSox21b, which is expressed in abdominal epidermal stripes. AmSoxB1 expression pattern overlaps with both DmSoxB1 and DmDichaete (DmSoxB2.1) expression patterns. No expression was detected for AmSox21, which had been suggested to be a orthologue of DmDichaete by McKimmie et al. [20] based on phylogenetics and genome position, and is Dichaete’s nearest neighbour in our phylogenetic analysis.

Recently, in Drosophila, examination of a DmDichaete (DmSoxB2.1) loss of function mutant found that Dichaete influenced dorsal-ventral patterning [23]. Mutant eggs had defects in Gurken-dependent formation of dorsal appendages and differentiation of dorsal/anterior follicle cells. Additionally, in zebrafish, both knock-down and ectopic expression of the SOX protein SOX21a indicates that it acts in dorsal-ventral patterning [42]. In the honeybee, two Sox genes appear to have a role in, or a regulated by, dorsal-ventral patterning. AmSoxB1 mRNA is localized to the dorsal surface of the oocyte and AmSox21b mRNA is localized to both the dorsal and ventral surface of the oocyte. As mRNA localization plays a critical part in axis specification in other insects [43,44], it is likely that these AmSox genes have roles in dorsal-ventral patterning in the oocyte and they may have overlapping functions. It is currently unknown how axes are specified in the honeybee oocyte and early embryo, as the honeybee genome is missing several key genes essential for axis organisation in Drosophila [33]. While these expression patterns suggest a conserved role for SOX group B proteins in dorsal-ventral patterning, the actual SoxB genes involved are not orthologous. The direct orthologue of DmDichaete, according to our phylogenetic analysis (and that of [20]) is AmSox21,
which has no expression in the oocyte, while the honeybee orthologues of zebrafish *Sox21a* are *AmSoxB2* and *AmSox21a*.

We have also found a novel expression pattern for a group B SOX protein, *AmSOXB2*, in the formation of the Malpighian tubules. The *Drosophila* group E SOX protein (*DmSox100b*) is also expressed in Malpighian tubules, while SOX proteins in mammals are expressed in analogous tissues, the foetal kidneys [45]. *AmSOXB2* sequence is highly divergent outside of the HMG box [20] perhaps reflecting different selective pressure on its sequence due to its co-option into a possible role in Malphigian tubule formation.

Other Sox genes

AmSoxC, AmSoxD and *AmSoxF* were expressed throughout late stage embryos. The *Drosophila* orthologue for *SoxC* is also ubiquitously expressed [19,46], although *SoxD* and *SoxF* orthologues show specific nervous system expression. Vertebrate *SoxD* orthologues are expressed broadly in embryonic tissues [47] and more specifically in bone and pancreas.

There is little conservation in expression of SOXF group members between species. Vertebrate *SoxF* family members are involved in a range of activities including endoderm specification, blood and hair follicle development. *DmSoxF* is found in the peripheral nervous system [19] whereas *C. elegans* does not have a *SoxF* group gene [3].

Drosophila DmSox100b is expressed in gonadal mesoderm and its expression becomes male-specific after stage 15 but it is also expressed in other tissues including the alimentary canal, intestinal cells and Malpighian tubules [45,48]. Upregulation of AmSOXE proteins solely in the drone testis implies that they may play a specific role in honeybee testis differentiation. Group F SOX proteins, a group closely related to SOXE proteins (Fig. 1), are also expressed in both testis and ovaries in other species including the eel [49] and human (*sox17*; [50]), indicating that SOXF proteins play a conserved evolutionary role in both male and female gonads.

Sequence analyses revealed the honeybee and *Nasonia* genomes encode two *SoxE* group members whereas there is only one in *Drosophila* (*DmSox100b*) and none in *C. elegans* [3]. Expression of both *AmSoxE* genes was upregulated in the testis of honeybee drones, suggesting they play a role in testicular development. SOXE group proteins are expressed during testis determination in many species [48,51-53]. Sequences outside of the HMG domains of SOXE1 and SOXE2 show little similarity. These sequence changes may have been necessary for interactions with other testis-related factors. Non-HMG domain sequences can play a role in protein partner selection between different SOX groups but SOX proteins within the same sub-group often interact with the same protein partners despite having sequences that are different outside of the HMG domain [54].

Conclusion

We identified and classified Sox genes in the genomes of *Apis mellifera, Nasonia* and *Tribolium* and examined the expression patterns of eight honeybee Sox genes *in situ* hybridisation. The expression patterns of honeybee Sox genes confirm that members of this family are likely to

Figure 7

AmSoxE1, AmSoxE2, AmSoxF and *AmSox21b* are expressed in the testis of Drone honeybees. Gene-specific primers were used to detect the presence of AmSOG genes in total RNA isolated from whole honeybee worker embryos and Drone testis. A negative control reaction (no reverse transcriptase added to the cDNA synthesis) was performed for each set of oligonucleotide pairs to detect contamination from genomic DNA. Abbreviations: Embryo (E), testis (T) and negative control (—).
play an essential role in embryogenesis and neural specification. Further studies are required including knockdown of gene expression to confirm the predicted roles of Sox genes in the honeybee.

Methods

Phylogenetics

SOX homologues were identified in insect genome sequences using tBlastN searches [38]. Each putative AmSOX protein was analysed for the presence of a sequence motif RPMNAFMVW located within the HMG box which is conserved for all SOX sequences [3], confirming that those genes identified were members of the SOX group of HMG domain transcription factors. Multiple alignments of honeybee SOX HMG sequences with SOX domains from other species were carried out in ClustalX (see Additional files 1, 2 and 3). For Figure 1 the multiple alignment was analysed using MrBAYES 3.1.2. [55] under the WAG model [56] with default priors. The WAG model was chosen as the most appropriate model of amino-acid substitution after preliminary analysis using MrBAYES with mixed models. The Monte Carlo Markov Chain search was run with four chains over 1500000 generations with trees sampled every 1000 generations. The first 375000 trees were discarded as ‘burn-in’. The trees in figures 2 and 3 were constructed using the PHYLIP [57] package of programs from alignments bootstrapped using SEQBOOT. Maximum Likelihood trees were estimated using PROML and majority-rule consensus trees derived using CONSENSE. Dendrograms were displayed using TreeViewPPC [58] or Dendroscope [59].

Genome sequence information for insects and other species was retrieved from their genome project websites [[32,61-63] and [64]]. Exon/intron gene structure was predicted by either Genemachine [65] or was already predicted during the genome assembly using sets of reference sequences (including Drosophila) to help identify transcripts. Insect Sox genes were named based on their placement within each SOX groups (see Additional file 4 for Genebank accession numbers).

Isolation of AmSox gene probes

Total RNA was extracted from Honeybee embryos or testis dissected from drone pupa using the RNeasy Mini Kit (Qiagen) and cDNA was produced using Superscript II reverse transcriptase (Invitrogen). AmSox gene fragments were amplified by RT-PCR from embryo cDNA using oligonucleotide primers corresponding to non-HMG box encoding regions from the coding sequence of each predicted AmSox gene. Oligonucleotide primers used were:

- **SoxC** – 5’AGAAGCTGAGGAAATCGGGT3’ and 5’AATTCCATCTTCATCTTTCCGTC3’;
- **SoxB1** – 5’GCTCAAGAAGGATAAATTCCCC3’ and 5’AATCGCCGTGTGATGCTG3’;
- **soxB2** – 5’TACACGTTGATGAGCCAC3’ and 5’GACGACGACAAATTCTCCTCTC3’;
- **Sox21** – 5’-TCCAGGATCGAAGACCACC3’ and 5’CTAGAATATTACGGAGACTGGCC3’;
- **Sox21b** – 5’GAAGTATTCGATGGAAGCGG3’ and 5’GATGACAGTGAGCGGTCGT3’;
- **SoxE1** – 5’CCAGAGCAACGTGACTTTCA3’ and 5’CCACCTCGCACTCCTGAA3’;
- **SoxE2** – 5’GAACGCGTTCATGGTCTG3’ and 5’TCCCTCGTGCACCGTGTAC3’;
- **SoxF** – 5’CTGAATTCAGGAAGACCAGTGG3’ and 5’GACGGCTGTCTCTCGAAATT3’;
- **SoxD** – 5’CTCAATCGTGAAGACCAC3’ and 5’TCAATCCTCGTCGTGGTG.

Actin was amplified using 5’CTCTTTTGATGCTGGGTGC3’ and 5’TGACCAAGAAGAGTTCGTCCAC3’ oligonucleotide primers as a positive control for RT-PCR. Amplified AmSox

Table 1: Summary of honeybee Sox group expression analysis.

Group	Honeybee expression summary	Drosophila expression summary	Vertebrate expression summary
B	Adult brain: MB* Embryo: neuroectoderm, CNS (ventral midline), brain, malphigian tubules, mandibles, intercalary. Queen ovary: oocyte and nurse cells.	Embryo: neuroectoderm, CNS, brain, hindgut, segments	Embryo: CNS, lens, brain, stem cells, pituitary.
C	Embryo: ubiquitous expression	Embryo: ubiquitous	Embryo: many tissues including CNS, heart, lung
D	Embryo: ubiquitous Adult brain: MB Queen ovary: nurse and follicle cells of the ovary	Embryo: brain	Embryo: many tissues including chondrocytes, spermatogenesis, CNS, brain, thymus, ovary
E	Embryo: ubiquitous Adult testis Embryo: no expression detected	Embryo: alimentary canal, gonadal mesoderm	Embryo: CNS, brain, limbs, heart, testes, chondrocytes, kidney, neural crest
F	Embryo: ubiquitous Queen ovary: nurse and follicle cells	Embryo: peripheral nervous system	Embryo: endoderm, blood vessel and hair follicles.

* abbreviations: mushroom bodies (MB), central nervous system (CNS)
DNA fragments were then cloned into the pGEM-T Easy vector (Promega). The sequence and orientation of each cloned gene fragment was confirmed by DNA sequencing.

In situ hybridization
Honeybee embryos were collected and fixed as described [34]. Brains were dissected from worker honeybees, fixed in 4% PFA overnight at 4°C and stored in methanol. Anti-sense or sense digoxigenin (DIG)-labeled RNA probes were produced by in vitro transcription from linearized DNA templates containing AmSox cDNA fragments. In situ hybridization on honeybee embryos, oocytes and worker DNA templates containing sense or sense digoxigenin (DIG)-labeled RNA probes were produced by in vitro transcription from linearized DNA templates containing AmSox cDNA fragments. In situ hybridization on honeybee embryos, oocytes and worker brains were performed as described [34].

Authors' contributions
MJW conceived and designed the study, performed transcription from linearized cDNA fragments.Additional material
Additional file 1
Multiple alignment of honeybee SOX and vertebrate HMG domains. Alignment of the HMG domains from honeybee SOX proteins and vertebrate SOX proteins created in ClustalX.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2148-8-120-S1.eps]

Additional file 2
Multiple alignment of insect SOX HMG box sequences. Alignment of the HMG domains from predicted insect SOX proteins created in ClustalX
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2148-8-120-S2.eps]

Additional file 3
Multiple alignment of SOXE full length protein sequences. ClustalX alignment of full-length SOXE proteins from insects and vertebrates.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2148-8-120-S3.eps]

Additional file 4
Naming of identified insect SOX genes. Renamed insect SOX genes (based on phylogenetics) and their protein Genbank accession numbers.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2148-8-120-S4.doc]

Acknowledgements
This work was supported by a Royal Society of New Zealand Marsden Grant (U000401) to PKD and a University of Otago Research Grant to PKD. We thank James Smith and Elizabeth Duncan for critical reading of this manuscript. We also thank Lucas Smith and William Dearden for their comments on the manuscript.

References
1. Gubbay J, Collignon J, Koopman P, Capel B, Economidou A, Munsterberg A, Vivian N, Goodfellow P, Lovell-Badge R: A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 1990, 346(6281):245-50.
2. Wegner M: From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res 1999, 27(6):409-20.
3. Bowles J, Schepers G, Koopman P: Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 2000, 227(2):239-55.
4. Wright EM, Snopek B, Koopman P: Seven new members of the SOX gene family expressed during mouse development. Nucleic Acids Research 1993, 21(3):744.
5. Cremazy F, Soulleir S, Berta P, Jay P: Further complexity of the human SOX gene family revealed by the combined use of highly degenerate primers and nested PCR. FEBS Letters 1998, 438(3):311-4.
6. Schepers GE, Teasdall RD, Koopman P: Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev Cell 2002, 3(2):167-70.
7. Magie CR, Pang K, Martindale MQ: Genomic inventory and expression of sox and Fox genes in the cnidarian Nematostella vectensis. Dev Genes Evol 2005, 215(12):618-30.
8. Jager M, Quinenc C, Houlisott E, Manuel M: Expansion of the SOX gene family predated the emergence of the Bilateria. Mol Phylogenet Evol 2006, 39(2):468-77.
9. Larroux C, Faheyy B, Liubicz D, Hinman VF, Gauthier M, Gongora M, Green K, Worheide G, Leys SP, Degnan BM: Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity. Evol Dev 2006, 8(2):150-73.
10. Koopman P: The molecular biology of SRY and its role in sex determination in mammals. Reprod Fertil Dev 1995, 7(4):713-22.
11. Young N, Hahn CN, Poh A, Dong C, Wilhelm D, Olsson J, Muscat GE, Parsons P, Gamble JR, Koopman P: Effect of disrupted SOX18 transcription factor function on tumor growth, vascularization, and endothelial development. J Natl Cancer Inst 2006, 98(15):1060-7.
12. Cameron FJ, Sinclair AH: Mutations in SRY and SOX9: tests-determining genes. Hum Mutat 1997, 9(5):388-95.
13. Graham V, Khudyakov J, Ellis P, Pevny L: SOX2 functions to maintain neural progenitor identity. Neurogen 2003, 39(5):749-65.
14. Sandberg M, Kallstrom M, Muhr J, Sox2: promotes the progression of vertebrate neurogenesis. Nat Neurosci 2005, 8(8):995-1001.
15. Williamson KA, Hever AM, Rainier J, Rogers RC, Magee A, Fiedler Z, Kang WT, Sharkey FH, McGill N, Hill C, Schneider A, Messina M, Turnpenny Fantes JA, van Heyningen V, FitzPatrick DR: Expansion of the SOX2 cause anophthalmia-esophageal-genital (AEG) syndrome. Hum Mol Genet 2006, 15(9):1413-22.
16. Dong C, Wilhelm D, Koopman P: Sox genes and cancer. Cytogenet Genome Res 2005, 105(2-4):442-7.
17. Wagner T, Wirch J, Meyer J, Zabel IB, Held M, Zimmer J, Pasantes J, Bricarelli RD, Keutel J, Huestet E, et al: Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 1994, 79(6):1111-120.
18. Inoue K, Shilo K, Boerkoel CF, Crowe C, Sawady J, Lupski JR, Agamanolis DP: Congenital hypomyelinating neuropathy, central dysmyelination, and Waardenburg-Hirschsprung disease: phenotypes linked by SOX10 mutation. Ann Neural 2002, 52(6):836-42.
19. Cremazy F, Berta P, Girard F: Genome-wide analysis of Sox genes in Drosophila melanogaster. Mech Dev 2001, 109(2):371-5.
20. McKinnie C, Woerfel G, Russell S: Conserved genomic organisation of Group B Sox genes in insects. BMC Genet 2005, 6(1):26.
21. Wegner M, Stolt CC: From stem cells to neurons and glia: a Soxist's view of neural development. Trends Neurosci 2005, 28(11):583-8.
22. Buescher M, Hing FS, Chia W: Formation of neuroblasts in the embryonic central nervous system of Drosophila melanogaster is controlled by SoxxNeuro. Development 2002, 129(18):4193-203.

23. Mukherjee A, Melnattur KV, Zhang M, Nambu JR: Maternal expression and function of the Drosophila sex gene Dichaete during oogenesis. Dev Dyn 2006, 235(10):2828-2835.

24. Nambu PA, Nambu JR: The Drosophila sex chromosome encodes a HMG domain protein essential for segmentation and CNS development. Development 1996, 122(11):3467-75.

25. Russell SR, Sanchez-Soriano N, Wright CR, Ashburner M: The Dichaete gene of Drosophila melanogaster encodes a SOX-domain protein involved in dorsoventral segmentation. Development 1996, 122(11):3659-3676.

26. Sanchez-Soriano N, Russell S: Regulatory mutations of the Drosophila Sex gene Dichaete reveal new functions in embryonic brain and hindgut development. Dev Biol 2000, 220(2):307-21.

27. Zhao G, Wheeler SR, Skeath JB: Neurotransmitter-mediated interference during CNS development in Drosophila. Nature 2002, 419(4):429-4228.

28. Overton PM, Meadows LA, Urban J, Russell S: Evidence for differential and redundant function of the Sex genes Dichaete and Sexd during CNS development in Drosophila. Development 2002, 129(18):4219-4228.

29. Honeybee Genome Sequencing Consortium: Insights into social insects from the genome of the Apis mellifera. Nature 2006, 443(7114):931-49.

30. Holt RA, Subramanian GM, Halpern A, Sutton GG, Nussk-...