Effects of Parathyroid Hormone (PTH) and PTH-Related Peptide on Expressions of Matrix Metalloproteinase-2, -3, and -9 in Growth Plate Chondrocyte Cultures*

YOSHIE KAWASHIMA-OHYA†‡, HISASHI SATAKEDA‡, YOSHIHIRO KURUTA, TAKESHI KAWAMOTO, WEIQUON YAN, YASUMASA AKAGAWA, TARO HAYAKAWA, MITSUHIDE NOSHIRO, YASUNORI OKADA, SHIGEO NAKAMURA, AND YUKIO KATO

Departments of Biochemistry (Y.K.-O., T.K., M.N., Y.Ka.), Renoviable Prosthodontics (H.S., Y.A.), and Endodontology and Periodontology (S.N.), Hiroshima University School of Dentistry, Hiroshima 734; the Department of Orthopedic Surgery, Faculty of Medicine, the University of Tokyo (Y.Ka.), Tokyo 113; the Department of Biochemistry, Aichi-Gakukin University School of Dentistry (T.H.), Nagoya 464; and the Department of Molecular Immunology and Pathology, Cancer Research Institute, Kanazawa University (Y.O.), Kanazawa 920, Japan; and the Department of Biochemistry, Institute of Endemic Disease, Norman Bethune University of Medical Sciences (W.Y.), Changchun 1300–21, China

ABSTRACT

The roles of PTH and PTH-related peptide (PTH-rp) in the expression of matrix metalloproteinases (MMPs) during endochondral bone formation were investigated, using various cartilages obtained from young rabbits and rabbit chondrocyte cultures. Immunohistochemical, immunoblotting, zymographical, and/or Northern blot analyses showed that MMP-2 and -9 levels were much higher in the growth plate than in permanent cartilage in vivo. In growth plate chondrocyte cultures, PTH, PTH-rp, and (Bu)2cAMP increased the amount of MMP-2 present in the culture medium, as revealed by zymograms and immunoblots, whereas the other tested growth factors or cytokines, including bone morphogenetic protein-2 and interleukin-1, did not increase the MMP-2 level. PTH also increased the MMP-2 messenger RNA level within 24 h. In addition, PTH increased MMP-3 and -9 levels in the growth plate chondrocyte cultures. However, in articular chondrocyte cultures, PTH had little effect on the levels of MMP-2, -3, and -9. In contrast to PTH, interleukin-1 induced MMP-3 and -9, but not MMP-2, in growth plate and articular chondrocytes. These findings suggest that in ossifying cartilage, PTH/PTH-rp plays a pivotal role in the induction of various MMPs, including MMP-2 (which is considered to be a constitutive enzyme), and that PTH/PTH-rp is involved in the control of cartilage-matrix degradation during endochondral bone formation. (Endocrinology 139: 2120–2127, 1998)

IN GROWTH plates and bone fracture callus, chondrocytes undergo a sequence of changes, including proliferation, matrix synthesis, and hypertrophy. The pericellular matrix is gradually degraded as the cells become hypertrophic. Eventually the intercellular matrix is degraded and replaced by new bone. This programed matrix degradation is essential for elongation and repair of the skeleton. In growth plates, the rate of cartilage matrix degradation is equal to the rates of proliferation, matrix formation, and hypertrophy. This coordination is required for the maintenance of the growth plate width and continuous bone elongation until puberty.

Many hormones and growth factors have been shown to modulate the proliferation, matrix synthesis, and expression of the hypertrophy-related phenotypes (alkaline phosphatase, 1,25-dihydroxyvitamin D3 receptor, and type X collagen) (1–12). The hormones and growth factors that regulate cartilage matrix degradation before ossification, in contrast, are unknown.

Matrix metalloproteinase (MMP) is thought to be crucial for cartilage matrix degradation, because MMP inhibitors prevent cartilage resorption and proteoglycan loss in arthritic joints in vivo (13, 14). MMP-1 (collagenase) degrades native collagen; MMP-2 (gelatinase A) and -9 (gelatinase B) degrade gelatin, elastin, and fibronectin; and MMP-3 (stromelysin-1) degrades proteoglycan, link protein, laminin, and fibronectin at neutral pH (15).

We are interested in the actions of PTH and PTH-related peptide (PTH-rp) on MMP, because PTH/PTH-rp plays an important role in endochondral bone formation. PTH/PTH-rp enhances DNA and aggrecan synthesis in growth plate chondrocytes (3, 16, 17) and suppresses their hypertrophy and apoptosis in vitro and in vivo (9, 11, 17–23). PTH-rp is synthesized in various tissues, including cartilage and perichondrium (17, 20), and binds to the PTH/PTH-rp receptor (24). The PTH/PTH-rp receptor level is much higher in the growth plate than in permanent cartilage (9, 25). Furthermore, a null mutation of the PTH-rp gene causes dwarfism and growth plate dysplasia without appreciable histological changes in articular cartilage and nonskeletal tissues (11, 17). The crucial role of PTH/PTH-rp in endochondral bone formation is supported by our observations. In a previous study, we showed that PTH and PTH-rp increased the amount of MMP-2 in the growth plates of young rabbits (26). In this study, we examined the role of PTH and PTH-rp in the expression of MMP-2, -3, and -9 in growth plate chondrocyte cultures.

Received October 27, 1997.
Address all correspondence and requests for reprints to: Dr. Yukio Kato, Department of Biochemistry, Hiroshima University School of Dentistry, 1–2–3 Kasumi, Minami-ku, Hiroshima 734, Japan. E-mail: ykato@ipc.hiroshima-u.ac.jp.
* This work was supported in part by funds from Chugai Pharmaceutical Co., Sumitomo Pharmaceutical Co., the Ciba-Geigy Foundation (Japan), and the Growth-Science Foundation (Japan).
† These authors contributed equally to this work.
‡ Present address: Structural Biology Center, AIST-National Institute of Bioscience and Human Technology, Tsukuba.

2120
bone formation is also indicated by a link between a constitutively active mutation of the PTH/PTHrP receptor gene and Jansen-type metaphyseal chondrodysplasia (26).

We report here that PTH/PTHrP induces MMP-2, -3, and -9 in growth plate chondrocyte cultures, whereas it has little effect on MMP levels in articular chondrocyte cultures. The enhancement of these major MMPs by PTH/PTHrP may be involved in the programmed cartilage matrix degradation during endochondral bone formation.

Materials and Methods

Materials

Human recombinant PTH-(1–84), PTH-(1–84), and PTH-(1–141); human PTH-(15–34); and 1,25-dihydroxyvitamin D₃ were supplied by Dr. K. Sato (Chugai Pharmaceutical Co., Tokyo, Japan). Human transforming growth factor-β1 (TGFβ1) was obtained from R&D Systems (Minneapolis, MN). Human insulin-like growth factor I (IGF-I; recombinant), insulin, and epidermal growth factor (EGF) were purchased from Wako Pure Chemical Industry (Osaka, Japan). Human basic fibroblast growth factor (bFGF) was purchased from Cosmo Bio (Tokyo, Japan). Human recombinant interleukin-1β (IL-1β) was supplied by Dr. Y. Hirai (Ohtsuka Pharmaceutical Co., Tokushima, Japan). Human bone morphogenetic protein-2 (BMP-2; recombinant) was a gift from Dr. J. M. Wozney (Genetics Institute, Cambridge, MA) and Dr. K. Takahashi (Yamanouchi Pharmaceutical Co., Tokyo, Japan). T₃ and (Bu)₂cAMP were purchased from Sigma Chemical Co. (St. Louis, MO). Eagle’s medium, α-modification (αMEM), and FBS were obtained from Sanko Jyueyaku (Tokyo, Japan) and Mitsubishi Kagaku (Tokyo, Japan), respectively.

Immunohistochemistry studies

Paraffin sections (4 μm thick) of rib cartilage obtained from 4-week-old male Japanese White rabbits were incubated at room temperature with 1 U/ml chondroitinase from avian-biotin-peroxidase complex (Seikagaku Kogyo, Tokyo, Japan) in 50 mM Tris-HCl, pH 7.4, containing 0.15 M NaCl for 3 h. These sections were incubated with a mouse monoclonal antibody (mAb; IgG) to human MMP-2 (42-5D11), MMP-9 (56-2A4), or type II collagen (II-4C11; 10 μg/ml) overnight at 4°C. The sections were washed with PBS, incubated for 1 h after blocking of endogenous peroxidase with 0.3% H₂O₂ and 0.1% NaN₃ in methanol and blocking of nonspecific IgG binding with 5% normal horse serum. The sections were washed with PBS, incubated with a biotinylated horse IgG to mouse IgG (diluted 1:200; Vector Laboratories, Burlingame, CA) for 30 min, then stained with an avidin-biotin-peroxidase complex (Vector Laboratories). Color was developed with 0.03% 3,3′-diaminobenzidine tetrahydrochloride in 50 mM Tris-HCl, pH 7.6, containing 0.006% H₂O₂, and the sections were counterstained with hematoxylin.

Chondrocyte cultures

Chondrocytes were isolated from the rib growth plate and the surface (0.2 mm) of articular cartilage of the femur at knee joints of 4-week-old male Japanese White rabbits, as previously described (27, 28). The cells were seeded at 2 × 10⁶, 3 × 10⁶, or 10⁷ cells/35-, 16-, or 6-mm plastic culture dishes, respectively, and maintained in 2, 0.5, or 0.1 ml αMEM supplemented with 10% FBS, 50 μg/ml ascorbic acid, 32 U/ml penicillin, and 40 μg/ml streptomycin (medium A) at 37°C under 5% CO₂ in air. The cultures were fed fresh medium A 3 days after seeding, and thereafter the medium was changed every other day.

Determination of alkaline phosphatase activity

Chondrocytes grown in 16-mm wells were homogenized in a glass homogenizer in 1 ml 0.9% NaCl-0.2% Triton X-100 at 4°C and centrifuged for 15 min at 12,000 × g. Alkaline phosphatase activity in the supernatant was measured by a modification of the method of Bessey et al., using p-nitrophenyl phosphate as the substrate, as described previously (2, 29). One unit was defined as the activity catalyzing hydrolysis of 1 μmol p-nitrophenol phosphate/μg DNA/30 min.

Zymography

Chondrocytes in 16-mm wells were exposed to 0.5 ml serum-free αMEM supplemented with various hormones, growth factors, or cytokines for 48 h. The media (1 or 4 μg protein/lane) conditioned by chondrocytes were mixed with concentrated Laemmli buffer (30) without reducing agent. Protein samples were resolved in 10% polyacrylamide gels containing 0.5 mg/ml gelatin (Wako Pure Chemical Industry, Osaka, Japan) or 0.5 mg/ml casein (Wako Pure Chemical Industry) by SDS-PAGE. After the gels were washed in 2.5% Triton X-100 for 30 min to remove SDS and in 50 mM Tris-HCl (pH 8.0) for 10 min, they were incubated for 8–24 h in 50 mM Tris-HCl (pH 8.0) containing 5 mM CaCl₂, 0.2 mM NaCl, and 0.02% NaN₃ at 37°C. The gels were then stained with Coomasie brilliant blue. The enzymatic activity was seen as negatively stained bands.

Sequential slices (the width of a slice, ~0.3 mm; slice 1, the hypertrophic zone; slice 2, the matrix-forming zone; slice 3, the proliferating zone) of the rib growth plate were obtained from three 4-week-old male Japanese White rabbits, as described previously (9, 28). Resting cartilage of the rib and articular cartilage of the femur at knee joints was also obtained from three 4-week-old male Japanese White rabbits (9, 28). The tissue was minced and homogenized in 10 vol Laemmli buffer (30). Protein in the samples (2 μg protein/lane) was resolved in the gels containing gelatin by SDS-PAGE, as described above.

Immunoblotting

Chondrocytes in 6-mm wells were exposed to 0.1 ml serum-free αMEM supplemented with various hormones, growth factors, or cytokines for 48 h. The media conditioned by chondrocytes were mixed with concentrated Laemmli buffer (30) without reducing agent.

The sequential growth plate slice and resting cartilage of the rib and articular cartilage of the femur at knee joints obtained from three 4-week-old male Japanese White rabbits were minced and homogenized in 10 vol sodium acetate buffer, pH 5.8, containing 4 μg guanidine HCl, 1 mM phenylmethylsulfonylfluoride, 10 μM amidoprophylsulfonylfluoride, 10 mM N-ethylmaleimide, 1 mM EDTA, and 0.1 mM pepstatin A in a Polytron homogenizer (Kinematica, Littau, Switzerland) at 4°C. The homogenate was incubated at 4°C for 18 h, then centrifuged at 5,000 × g for 10 min at 4°C. The supernatant was dialyzed against a solution containing protease inhibitors (10 μM amidoprophylsulfonylfluoride, 10 mM N-ethylmaleimide, 10 μM pepstatin A, and 1 mM EDTA) at 4°C, freeze-dried, and then mixed with Laemmli buffer (30) without reducing agent.

Proteins (2 μg/lane) in the samples (the conditioned media or cartilage extracts) were resolved in a 4–20% polyacrylamide gradient gel by SDS-PAGE under nonreducing conditions, then electrophoretically transferred to a nitrocellulose membrane (31). Nonspecific binding was blocked in a milk solution (5% nonfat dry milk in PBS) at room temperature for 1 h. The blots were exposed to a primary mouse mAb against human MMP-2 (42-5D11, Fuji Chemical Industries) at 4°C for 12 h (32) and then exposed to 125I-labeled sheep antimouse IgG-F(ab')₂ fragment (Amersham, Aylesbury, UK) in PBS for 3 h at room temperature. (Antibodies that cross-react with rabbit MMP-3 or -9 in immunoblots are not available.)

Northern analysis

Total RNA was extracted by the guanidine HCl method (33). Samples of total RNA (5–15 μg) were denatured in the presence of 2.2 M formaldehyde, electrophoresed on a 1% agarose gel containing formaldehyde, and transferred to a Nitran membrane filter (Schleicher and Schuell, Keene, NH) (34). The RNA bound to the Nitran filter was prehybridized at 68°C with buffer containing 6 × SSC, 0.5% SDS, 5 × Denhardt’s solution, 0.1 mg/ml sonicated salmon DNA, and 10 mM EDTA for 1 h. The hybridization was carried out at 68°C for 15 h in the same buffer with a 32P-labeled 1.5-kilobase (kb) human MMP-2 complementary DNA (cDNA) probe (35) or a 32P-labeled 0.6-kb rabbit glyceraldehyde-3-phosphate dehydrogenase (GAPDH) cDNA probe, which was labeled with an oligolabeling kit (Pharmacia, Japan, Tokyo). The

Downloaded from https://academic.oup.com/endo/article-abstract/139/4/2120/2988391 on 30 July 2018 by guest
membrane was washed with 0.2 × SSC containing 0.1% SDS and exposed to x-ray film.

RT-PCR/Southern blot analysis

MMP-3 cDNA (336 bp) and GAPDH cDNA (613 bp) were obtained by RT-PCR from total RNA of rabbit cartilage using pairs of oligonucleotides: 5′-CTGGAGGTTCATGAGAAGA-3′ and 5′-CAGTCTCAT-GCTGGAGATTCC-3′ for MMP-3, and 5′-GTCACGGTGAAGAAGG-3′ and 5′-GCTTTACCCACCTCTCTTGAT-3′ for GAPDH. These were synthesized based on the nucleotide sequences of rabbit MMP-3 (36) and rabbit and human GAPDH cDNAs (37), respectively. The PCR products were subcloned into pCRII vector (Stratagene, La Jolla, CA) and identified by sequencing by means of dideoxy chain termination (38).

The MMP-3 and GAPDH messenger RNA (mRNA) levels were estimated by RT-PCR/Southern blotting using the pairs of primers. The PCR products (25 and 28 cycles for MMP-3 and GAPDH, respectively) were separated on a 1% agarose gel, then transferred to Nytran. The MMP-3 and GAPDH cDNAs were labeled with an oligolabeling kit (Pharmacia Japan, Tokyo, Japan). Hybridization proceeded under the same conditions as those described above.

Gelatinolytic and stromelysin activities in conditioned media

Chondrocytes in 16-mm wells were incubated with 0.5 ml αMEM supplemented with various concentrations of hormones or cytokines for 48 h. The assay for gelatinase was carried out using conditioned media in the presence of 1 mM 4-aminophenylmercuric acetate (an activator of latent MMPs) against heat-denatured 14C-acetylated collagen (type I) as a substrate, as previously described (39). For the determination of stromelysin activity, the media were preincubated with 1.5 mM 4-aminophenylmercuric acetate at 37 °C. The stromelysin activity was then measured using reduced and carboxymethylated [3H]transferrin as a substrate, as previously described (40). MMP-3, but not the other MMPs tested, degraded transferrin (40). These assays were performed in the presence of 2 mM phenylmethylsulfonylfluoride and 5 mM N-ethylmaleimide to inhibit serine and cystein proteinases. One unit of these enzymes degrades 1 μg substrate/min at 37 °C.

Results

Localization of MMP-2 and -9 in the growth plate

As the rate of matrix degradation is much higher in the growth plate than in the resting cartilage or articular cartilage, we compared MMP levels in these cartilages. Our immunohistochemical studies detected MMP-2 in the proliferating, matrix-forming, and hypertrophic zones of the growth plate and MMP-9 in the hypertrophic zone. MMP-2 or -9 was not detected in the resting zone (Fig. 1, a and b). The growth plate and resting cartilage equally reacted with antitype II collagen mAb (data not shown). No staining was evident in the cartilage samples incubated with control IgG (Fig. 1c).

We next examined the distribution of MMP-2 and -9 in various cartilage regions by biochemical means (Fig. 2). The protein in the hypertrophic zone (slice 1), the matrix-forming zone (slice 2), and the proliferating zone (slice 3) of the growth plate as well as the resting zone and articular cartilage was extracted with 4 M guanidine or Laemmli’s buffer. Immunoblotting analyses of the guanidine extracts showed that although the level of pro-MMP-2 (66 kDa) was almost constant among the growth plate slices, it was much higher in the growth plate than in the resting zone or articular cartilage (Fig. 2a). The zymographical analyses of the SDS extracts also showed that the level of pro-MMP-2 was much higher in the growth plate than in the resting zone or articular cartilage.
cartilage (Fig. 2b). In addition, Fig. 2b shows that pro-MMP-9 (92 kDa) was expressed in the hypertrophic zone. Rabbit MMP-2 has two species of mRNA (about 3.7 and 2.9 kb) that are expressed constitutively in several tissues (41). Northern analyses showed that the level of the MMP-2 transcripts (3.7 and 2.9 kb) was much higher in the growth plate than that in the resting zone or articular cartilage (Fig. 2c).

Effects of PTH on MMP-2 expression by chondrocytes

The zymographical and immunoblotting analyses showed that in triplicate cultures of rabbit growth plate chondrocytes, PTH increased the secreted levels of 66-kDa pro-MMP-2 and 62-kDa MMP-2 (an active form that is produced by partial proteolysis of pro-MMP-2) in the absence of serum (Fig. 3, a and b). The zymographical analyses did not provide quantitative data, but detected both 66- and 62-kDa MMP-2. On the other hand, the immunoblotting analyses did not detect 62-kDa MMP-2 at low levels. The lack of the 62-kDa band in some samples seems to be due to a low sensitivity of the antibody (Fig. 3, b and c).

The zymographical analysis showed that scarcely any gelatinolytic activity was detected in the cell matrix layers, indicating that the majority of the MMP was secreted into the medium (data not shown).

Figure 3c shows that the effect of PTH on MMP-2 levels could be observed at 10^{-8} M and reached a maximum at 10^{-8} M.

Figure 4a shows that PTH increased the level of MMP-2 transcripts in the growth plate chondrocytes at 24 and 48 h. As cAMP is partly involved in mediating the action of PTH on chondrocytes (3, 42), (Bu)_2cAMP (a membrane-permeable analog of cAMP) increased the level of MMP-2 transcripts at 24 and 48 h (Fig. 4b). (Bu)_2cAMP also increased the protein level of pro-MMP-2 (Fig. 5). However, TGFβ, BMP-2, bFGF, EGF, T3, 1,25-dihydroxyvitamin D3, IL-1, IGF-I, and insulin did not increase the pro-MMP-2 level (Fig. 5).

Effects of PTH on the expression of MMP-9

As MMP-9 was expressed in the hypertrophic zone in vivo (Figs. 1b and 2b), we examined the effect of PTH on MMP-9 expression by cultured chondrocytes on days 14 (the matrix-forming and early hypertrophic stage) and 28 (the hypertrophic stage). We used chondrocytes derived from the entire rib growth plate. Thus, the initial cell population is heterogeneous. Nonetheless, these cells reinitiate proliferation and are capable of recapitulating all stages of differentiation in vitro (43). Previous studies have shown that rabbit chondrocytes from the entire rib growth plate undergo proliferation, matrix formation, and hypertrophy in vitro, and that the cell changes proceed in the same order as those in the growth plate in vivo (44). In these cultures, alkaline phosphatase activity increases from day 12 and reaches a maximum on day 28 (44). In the present study, the cultures became confluent on day 7, and the alkaline phosphatase activity on day 28 (2.6 U) was 3-fold higher than that (0.9 U) on day 14. PTH induced 92-kDa MMP-9 in the chondrocyte cultures on day 28 in all independent studies (Fig. 6; data not shown), but this effect of PTH on MMP-9 was not always observed on day 14 (Fig. 3a; data not shown). On the other hand, PTH induced MMP-2 expression on days 14 and 28 in all independent studies (Figs. 3a and 6; data not shown). In another series of studies, PTH induced MMP-2, but not MMP-9, on day 10 before the induction of alkaline phosphatase (data not shown). These findings suggest that PTH enhances MMP-2 synthesis throughout the matrix-forming and hypertrophic stages and stimulates MMP-9 synthesis after chondrocytes becoming hypertrophic.

On day 28, IL-1β induced MMP-9 in growth plate chondrocytes, as expected from previous studies (45), although it had little effect on the MMP-2 level (Fig. 6). In this experiment
MMP-2 mRNA expression in chondrocyte cultures. Growth plate chondrocytes were incubated in serum-free αMEM supplemented with (Bu)2cAMP (1 mM; cAMP), TGFβ (10 ng/ml), BMP-2 (50 ng/ml; BMP), bFGF (10 ng/ml; FGF), EGF (30 ng/ml), Tb (10−8 M), 2,5-dihydroxyvitamin D3 (10−8 M; D3), IL-1 (10 ng/ml), IGF-I (50 ng/ml; IGF), or insulin (10 μg/ml; Ins) on day 14 and then incubated for 48 h. Proteins in the media (1 μg/lane) were subjected to immunoblotting analysis.

Effects of PTH on the expression of MMP-3

As MMP-3 does not effectively degrade gelatin, this enzyme activity was measured by casein zymography. The casein zymograms showed that the addition of PTH induced stromelysin activity at a position corresponding to 55 kDa (55-kDa MMP, probably pro-MMP-3) dose dependently within 48 h (Fig. 8a). In this assay, PTH also increased the MMP-2 level dose dependently (Fig. 8a). Furthermore, PTH induced the expression of MMP-3 mRNA in chondrocytes within 24 h (Fig. 8b).

Comparison between effects of PTH and IL-1 on production of gelatinase-like (MMP-2 plus -9) and stromelysin-like (MMP-3) activities by chondrocytes

On days 7 (the proliferative stage), 14 (the matrix-forming and early hypertrophic stage), and 28 (the hypertrophic stage), growth plate chondrocytes were incubated for 48 h in the absence (Fig. 9a, open bars) or presence of PTH (closed bars) or IL-1β (hatched bars). The gelatinase activity (upper panel) and stromelysin activity (lower panel) released into the media were determined, using 14C-acetylated gelatin or reduced
and carboxymethylated [3H]transferrin as a substrate, respectively (39, 40).

In the absence of PTH and IL-1, gelatinase activity was undetectable on day 7, although it was present at low levels on days 14 and 28 (Fig. 9a, upper panel). In the absence of PTH and IL-1, stromelysin activity was undetectable on days 7, 14, and 28 (lower panel). The addition of PTH markedly enhanced the production of gelatinase activity on days 14 and 28 (upper panel). PTH also enhanced the production of stromelysin activity on day 28 (lower panel). The effect of PTH on gelatinase production was similar to that of IL-1β (upper panel), whereas PTH was less effective on stromelysin production than was IL-1β (lower panel).

In cultures of articular chondrocytes from the same rabbits, PTH had little effect on the production of gelatinase (Fig. 9a, upper panel) or stromelysin (Fig. 9a, lower panel), although IL-1β induced the production of both gelatinase and stromelysin by the cells. The gelatin zymograms showed that PTH had little effect on the level of MMP-2 or -9 in articular chondrocytes, whereas IL-1β induced MMP-9 in the cultures (Fig. 9b). These findings differentiated the action of PTH on MMPs from that of IL-1.

Discussion

In this study, we found that MMP-2 and -9 levels are much higher in the growth plate than in permanent cartilage. Previous studies have shown that MMP-1 and -3 levels and collagenase activity increase during the hypertrophic stage in vitro and in vivo (46, 47). The factors that up-regulate MMP synthesis during endochondral bone formation are not known. However, PTH induced MMP-2, -3, and -9 in rabbit growth plate chondrocyte cultures. PTH also induced collagenase production in some, but not all, cultures of growth plate chondrocytes (Satakeda, H., and Y. Kato, unpublished data). These findings suggest that PTH/PTH-rp is involved in the induction of various MMPs in the growth plate.

Unlike other MMPs, MMP-2 is constitutively expressed in several tissues and is not usually induced by inflammatory stimuli (41, 48). In almost all evaluated cells, many growth factors and cytokines do not enhance MMP-2 synthesis even when they induce other MMPs in vitro (48–51). Thus, MMP-2 may be involved in normal turnover of the extracellular matrix in several tissues. However, in a few cell types, TGFβ and IL-1 enhance MMP-2 synthesis. TGFβ stimulates MMP-2 synthesis in gingival fibroblasts and some tumor cells (50, 51), and IL-1 stimulates MMP-2 synthesis in glomerular mesangial cells (49). PTH induced MMP-2 in growth plate chondrocytes. These findings suggest that MMP-2 is involved in the remodeling of several tissues in some situations.

The action of PTH/PTH-rp on MMP may be critical, particularly for the control of cartilage matrix degradation during endochondral bone formation, because PTH/PTH-rp had no effect on the level of MMP-2, -3, or -9 in cultures of
Fig. 9. Effects of PTH and IL-1 on gelatinase and stromelysin activities in cultures of growth plate chondrocytes and articular chondrocytes. a, On days 7, 14, and 28, chondrocytes in 16-mm wells were transferred into 0.5 ml serum-free MEM and incubated for 48 h in the absence (open bars) or presence of 10^{-8} M PTH (closed bars) or 3 ng/ml IL-1β (hatched bars). The enzyme activities in the medium were measured after treatment with 4-aminophenylmercuric acetate. Values are the average ± SD of four cultures. Similar results were obtained in three independent studies (not shown). b, On day 28, articular chondrocytes were not exposed or were exposed to 10^{-8} M PTH or 3 ng/ml IL-1β in the absence of serum and incubated for 48 h. MMP in the media was analyzed by gelatin zymography.

articular chondrocytes that did not undergo endochondral bone formation. The selective action of PTH/PTH-rp on growth plate chondrocytes is partly explained by the 10-fold increases in PTH/PTH-rp receptor (41,000 receptors/cell) (9) and its mRNA (25) levels in the growth plate relative to those in permanent cartilage.

If the PTH-rp stimulation of MMP synthesis observed in vitro is relevant to matrix degradation in vivo, then PTH-rp-depleted mice should show an abnormal accumulation of the matrix in the growth plate. This is indeed what occurs. In the PTH-rp-depleted growth plate, type II collagen is abnormally accumulated in the hypertrophic zone. A fraction (~40%) of the terminal chondrocytes (alkaline phosphatase-producing cells) are unable to increase their cell size, perhaps because of impaired degradation of the pericellular matrix. The small terminal cells, but not the large ones, are surrounded by an intact type II collagen matrix (17). In addition, the chondrocyte lacunae in the PTH-rp-depleted growth plate become more resistant to vascular invasion (17). These findings taken together with our present observations suggest that PTH-rp promotes chondrocyte-mediated matrix degradation during endochondral bone formation in vivo. IL-1 induces MMP-1, 3, and -9 in various chondrocytes (45, 52, 53), and this action of IL-1 is thought to be crucial for cartilage matrix degradation in arthritic cartilage. However, in contrast to PTH, IL-1 inhibits the proliferation (54) and differentiation (19, 53) of chondrocytes at all stages and has little effect on MMP-2 synthesis by growth plate chondrocytes. Thus, IL-1 may not be crucial for the cartilage resorption before ossification.

It is noteworthy that unlike PTH/PTH-rp, bFGF and 1,25-dihydroxyvitamin D₃ had little effect on the MMP-2 level in growth plate chondrocyte cultures, although these compounds are as potent as PTH/PTH-rp in inhibiting chondrocyte hypertrophy in vitro and in vivo (6, 12, 28, 55). These findings suggest that PTH/PTH-rp and the other inhibitors of hypertrophy have different roles in the remodeling of the extracellular matrix during endochondral bone formation.

In growth plates, PTH/PTH-rp enhances DNA synthesis at the proliferative stage (16, 17), stimulates the syntheses of aggrecan (3) and type II collagen at the matrix-forming stage (56), and induces MMP-2, -3, and -9 at the hypertrophic stage. PTH-rp stimulation of the synthesis and degradation (turnover) of the cartilage matrix in the growth plate may facilitate bone elongation.

In conclusion, the findings in the present study showed that PTH/PTH-rp markedly enhances the expressions of MMP-2, -3, and -9 in maturing chondrocytes. This action of PTH/PTH-rp may be critical in the control of programmed cartilage resorption during skeletal development and repair.

Acknowledgment

We thank the Research Center for Molecular Medicine, Hiroshima University School of Medicine, for the use of their facilities.

References

1. Hinek A, Reiner A, Poole AR 1987 The calcification of cartilage matrix in chondrocyte culture: studies of the C-propeptide of type II collagen (chondrocalcin). J Cell Biol 104:1435–1441
2. Kato Y, Ishimoto M, Koike T, Suzuki F, Takeno Y 1988 Terminal differentiation and calcification in rabbit chondrocyte cultures grown in centrifuge tubes: regulation by transforming growth factor β and serum factors. Proc Natl Acad Sci USA 85:9552–9556
3. Kato Y, Koike T, Ishimoto M, Kinoshita M, Sato K, Hiraki Y, Suzuki F 1988 Effects of limited exposure of rabbit chondrocytes to parathyroid hormone and dibutylryl adenosine 3’,5’-monophosphate on cartilage: cartilaginous proteoglycan synthesis. Endocrinology 122:1991–1997
4. Waizen JM, Rosen V, Milewich LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA 1988 Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534
5. Carrington JL, Roberts AB, Funder KC, Roche NS, Reddi AH 1988 Accumulation, localization, and compartmentation of transforming growth factor β during endochondral bone development. J Cell Biol 107:1969–1975
6. Kato Y, Ishimoto M 1990 Fibroblast growth factor is an inhibitor of chondrocyte terminal differentiation. J Biol Chem 265:8803–8809
7. Bohme K, Consenbroit-Egl G, Mochen Y, Winterhalter KH, Bruckner P 1992 Induction of proliferation or hypertrophy of chondrocytes in serum-free culture: the role of insulin-like growth factor-I, insulin, or thyroxine. J Cell Biol 116:1035–1042
8. Baker J, Liu JP, Robertson EJ, Efratiadis A 1993 Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75:73–82
9. Ishimoto M, Joko A, Murakami H, Shizuma A, Nakashima K, Ishimoto M, Takigawa M, Baba H, Suzuki F, Kato Y 1994 Changes in parathyroid hormone receptors during chondrocyte cytodifferentiation. J Biol Chem 269:17245–17251
10. Gentile C, Doliana R, Pet B, Campanile G, Colombati A, Cancedda FD, Cancedda R 1994 Ovoirtransferrin and onovostrain receptor expression during chondrogenesis and endochondral bone formation in developing chick embryo. J Cell Biol 124:579–588
11. Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz V, Kronenberg HM, Mulligan RC 1994 Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 8:277–289
12. Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P 1996 Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84:911–921
13. O’Byrne EM, Parker DT, Roberts ED, Goldberg RL, Markerson LJ, Blanchuzzi V, Wilson D, Singh HP, Ludwig R, Ganu VS 1995 Oral administration of a matrix metalloproteinase inhibitor, CGS 27023A, protects the cartilage proteoglycan matrix in a partial meniscectomy model of osteoarthritis in rabbits. Inflamm Res [Suppl 2] 44:117–118
14. Karran EH, Young TJ, Mawell RE, Harper GP 1995 In vivo model of cartilage degradation: effects of a matrix metalloproteinase inhibitor. Ann Rheum Dis 54:662–669
MMP SYNTHESIS BY CHONDROCYTES IN RESPONSE TO PTH

15. Alexander CM, Werb Z. 1991 Extracellular matrix degradation. In: Hay ED (ed) Cell Biology of Extracellular Matrix, ed 2. Plenum Press, New York, pp 255–302

16. Koike T, Iwamoto M, Shimazu A, Nakashima K, Suzuki F, Kato Y. 1990 Potent mitogenic effects of parathyroid hormone (PTH) on embryonic chick and rabbit chondrocytes. Differential effects of age on growth, proteoglycan and cyclic AMP responses of chondrocytes to PTH. J Clin Invest 85:626–631

17. Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC. 1994 Parathyroid hormone-related peptide-depleted mice show abnormal epithelial cartilage development and altered endochondral bone formation. J Cell Biol 126:1611–1623

18. Kato Y, Shimazu A, Nakashima K, Suzuki F, Jikko A, Iwamoto M. 1990 Effects of parathyroid hormone and calcitonin on alkaline phosphatase activity and matrix calcification in rabbit growth plate chondrocytes. Endocrinology 127:114–118

19. Kato Y, Nakashima K, Iwamoto M, Murakami H, Hiranuma H, Koike T, Suzuki F, Fuchihita T, Ikekara Y, Noshiro M, Jikko A. 1993 Effects of interleukin 1 on synthesis of alkaline phosphatase, type collagen, and 1,25-dihydroxyvitamin D3 receptor, and matrix calcification in rabbit chondrocyte cultures. J Clin Invest 92:2233–2300

20. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. 1996 Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273:613–622

21. Amlong M, Neff LA, Tanaka S, Inoue D, Kuida K, Weir EC, Philbrick WM, Broady AE, Baron R. 1997 Bcl-2 lies downstream of parathyroid hormone-related peptide in a signaling pathway that regulates chondrocyte maturation during skeletal development. J Cell Biol 136:205–213

22. Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, Karpenier M, Defize LHK, Ho C, Milligan AC, Abou-Samra A-B, Jikko H, Segre GV, Kronenberg HM. 1996 PTH/PTH-rp receptor in early development and Indian hedgehog-regulated bone growth. Science 273:663–665

23. Amizuka N, Henderson JE, Hoshi K, Warshawsky H, Ozawa H, Goltzman D, Karaplis AC. 1996 Programmed cell death of chondrocytes and aberrant chondrogenesis in mice homozygous for parathyroid hormone-related peptide gene deletion. Endocrinology 137:3055–3067

24. Martin, TJ. Moseley JM, Gillespie MT. 1990 Parathyroid hormone-related protein biochemistry and molecular biology. Crit Rev Biochem Mol Biol 25:377–395

25. Lee K, Deeds JD, Chiba S, Un-no M, Bond AT, Segre GV. 1993 The sequence of a functional human glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 268:98–100

26. Shimomura Y, Yoneda T, Suzuki F. 1975 Osteogenesis by chondrocytes from growth cartilage of rat rib. Calcif Tissue Res 19:179–187

27. Iwamoto M, Shimazu A, Nakashima K, Suzuki F, Kato Y. 1991 Reduction in basic fibroblast growth factor receptor is coupled with terminal differentiation of chondrocytes. J Biol Chem 266:461–467

28. Bessey OA, Lovy OH, Brock MJ, McCarthy FM. 1980 Preproparathyroid hormone in rabbit primary cultures of normal human articular cartilage by interleukin 1. J Clin Invest 92:179–185

29. Schipani E, Kruse K, Juppner H. 1995 A constitutively active mutant PTH/PTHrP receptor in Jensen-type metaphyseal chondrodysplasia. Science 268:98–100

30. Overall C, Wrana JL, Sodek J. 1989 Independent regulation of collagenase, 72-kDa progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-beta. J Biol Chem 264:1800–1806

31. Collier IE, Wolffe PM, Eisen AZ, Marier BL, Grant GA, Seltzer JL, Kronberger A, He C, Bauer EA, Goldberg GI. 1988 H-ras oncogene-transformed human bronchial cells (BTE-1) secrete a single metalloproteinase capable of degrading basement membrane collagen. J Biol Chem 263:6579–6587

32. Fini ME, Karmilowicz MJ, Ruby PL, Beeman AM, Borges KA, Brinkerhoff CE. 1987 Cloning of a complementary DNA for rabbit procathepsin D: a metalloproteinase that activates synovial cell collagenase shares homology with stromelysin and trans, and is coordinately regulated with collagenase. Arthritis Rheum 30:1254–1264

33. Ercolani L, Florence B, Benaro M, Alexander M. 1988 Isolation and complete sequence of a functional human glyceroldehyde-3-phosphate dehydrogenase gene. J Biol Chem 263:15335–15341

34. Sanger F, Nicklen S, Coulson AR. 1977 DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

35. Harris JR, Karon SM. 1972 An endopeptidase from rheumatoid synovial tissue culture. Biochim Biophys Acta 258:566–576

36. Okada Y, Nagase H, Harris JR. 1986 A metalloproteinase from human rheumatoid synovial fibroblasts that digests connective tissue matrix components. Purification and characterization. J Biol Chem 261:14245–14255

37. Mahammad S, Kato M, Matsumoto S, Katoh M, Watanabe T, Masuho Y. 1996 Effects of cyclic adenosine 3′,5′-monophosphate on chondrocyte terminal differentiation and cartilage matrix calcification. Endocrinology 137:122–128

38. Chen Q, Johnson DM, Haudenschild DR, Goetinck PF. 1995 Progression and recapitulation of the chondrocyte differentiation program: cartilage matrix protein is a marker for cartilage maturation. Dev Biol 172:293–306

39. Jikko A, Aoba T, Murakami H, Takano Y, Iwamoto M, Kato Y. 1993 Characterization of the mineralization process in cultures of rabbit growth plate chondrocytes. Dev Biol 169:388–398

40. Mohtai M, Smith RI, Schurman DJ, Tsuji Y, Torti FM, Hutchinson NI, Steiner-Stevenson WG, Goldberg GI. 1993 Expression of 92-kDa type IV collagenase/gelatinase B) in osteoarthritic cartilage and its induction in normal human articular cartilage by interleukin 1. J Clin Invest 92:179–185

41. Dean DD, Muniz OE, Herman J, Pita JC, Carreno MR, Woessner JF, Howell DS. 1985 Localization of collagenase in the growth plate of rachitic rats. J Clin Invest 76:716–722

42. Ballock RT, Heydeman A, Wakefield LM, Flanders KC, Roberts AB, Sporn MB. 1985 TGFB1 prevents hypertrophy of epiphyseal chondrocytes: regulation of gene expression for cartilage matrix proteins and metalloproteinases. Dev Biol 158:414–429

43. Fabunmi RP, Baker AH, Murray EJ, Booth RF, Newby AC. 1996 Divergent regulation by growth factors of type IV, IX and 72-kDa gelatinases and tissue inhibitors of metalloproteinases-1, -2 and -3 in rabbit aortic smooth muscle cells. Biochem J 315:335–342

44. Mariant H-P, McCNeil I, Davies M, Martin J, Lovett DH. 1993 Homology cloning of rat 72 kDa type IV collagenase: cDNA and second-messenger inducibility in glomerular mesangial cells. Biochem J 291:441–446

45. Overall C, Wrana JL, Sodek J. 1989 Independent regulation of collagenase, 72-kDa progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-beta. J Biol Chem 264:1800–1806

46. Kohler EC, Jacobs W, Kim YS, Alessandro R, Stetler-Stevenson WG, Liotta LA. 1994 Calcium influx modulates expression of matrix metalloproteinase-2 (72kDa type IV collagenase, gelatinase A). J Biol Chem 269:21505–21511

47. Stephenson ML, Goldring MB, Birkhead JR, Krane SM, Rahmsdorf HJ, Angel P. 1987 Stimulation of procollagenase synthesis parallels increases in cellular procollagenase mRNA in human articular chondrocytes exposed to recombinant interleukin-1b or phorbol esters. Biochem Biophys Res Commun 144:583–590

48. Goldring MA, Birkhead JR, Suen L-F, Yamin R, Muzuno S, Glowacki J, Arbiser JL, Apperley JF. 1994 Interleukin-1b-modulated gene expression in immortalized human chondrocytes. J Clin Invest 94:2307–2316

49. Iwamoto M, Koike T, Nakashima K, Sato K, Kato Y. 1989 Interleukin 1: a regulator of chondrocyte proliferation. Immunol Lett 21:153–156

50. Kato Y, Shimazu A, Iwamoto M, Nakashima K, Koike T, Suzuki F, Nishiya Y, Sato K. 1990 Role of 1,25-dihydroxycholecalciferol in growth-plate chondrocyte terminal differentiation: inhibition of terminal differentiation of chondrocytes in vitro and in vivo. Proc Natl Acad Sci USA 87:6522–6526

51. Erdmann S, Muller W, Bahrami S, Vorneham SI, Mayer H, Bruckner P, von der Mark K, Burkhardt H. 1996 Differential effects of parathyroid hormone fragments on collagen gene expression in chondrocytes. J Cell Biol 135:1179–1191