Systematic Review of Methods for Assessing Leptomeningeal Collateral Flow

BACKGROUND AND PURPOSE: The importance of LMF in the outcome after acute ischemic stroke is increasingly recognized, but imaging presents a wide range of options for identification of collaterals and there is no single system for grading collateral flow. The aim of this study was to systematically review the literature on the available methods for measuring LMF adequacy.

MATERIALS AND METHODS: We performed a systematic review of Ovid, MEDLINE, and Embase databases for studies in which flow in the leptomeningeal collateral vessels was evaluated. Imaging technique, grading scale, and reliability assessment for collateral flow measurement were recorded.

RESULTS: We found 81 publications describing 63 methods for grading collateral flow on the basis of conventional angiography (n = 41), CT (n = 7), MR imaging (n = 9), and transcranial Doppler (n = 6). Inter- and/or intraobserver agreement was assessed in only 8 publications.

CONCLUSIONS: There is inconsistency in how LMF is graded, with a variety of grading scales and imaging modalities being used. Consistency in evaluating collateral flow at baseline is required for the impact of collateral flow to be fully appreciated.

ABBREVIATIONS: ACA = anterior cerebral artery; ASL = arterial spin-labeling; IA = intra-arterial; LMF = leptomeningeal collateral flow; PCA = posterior cerebral artery; TCD = transcranial Doppler; TIMI = Thrombolysis in Myocardial Infarction

Leptomeningeal collaterals are anastomotic vessels providing alternative routes for blood flow in stroke. In chronic hypoperfusion due to severe carotid stenosis or occlusion, flow via leptomeningeal vessels can maintain cerebral blood flow when primary collateral flow (via the arterial segments of the circle of Willis) is insufficient. Better LMF is associated with less infarct growth and better outcome following acute stroke, while poor collateralization is associated with hemorrhage after IA thrombolysis. Numerous studies, using several imaging modalities and grading methods, suggest that leptomeningeal collaterals confer a benefit in stroke. Because the influential role of collaterals has been repeatedly reported, we conducted a systematic literature review to investigate the available LMF assessment methods.

Materials and Methods

MEDLINE and Embase were searched from inception to week 32, 2009, by using the Ovid on-line portal for LMF assessments. The search strategy is shown in Appendix 1. The search was supplemented by review of journal electronic tables of contents and by searching the bibliographies of relevant articles; when full text was unavailable, authors were contacted. Studies that graded LMF, published in English and performed on humans, were considered, with assessments on imaging modalities and grading methods, including both acute and nonacute patient groups with collateral assessments in anterior and posterior circulation, were recorded (Table 2). Reliability assessments were available for 2 of these methods, demonstrating good and very good inter-/intraobserver agreement (n = 172). Arterial injection sites, when described, included unilateral carotid/MCA (n = 3), bilateral carotid (n = 3), a minimum of ipsilateral carotid and vertebral (n = 10), and other combinations (n = 5). Seven grading scales by using CTA were identified, with LMF assessments performed on 593 patients with suspected acute stroke (Table 3). Interobserver agreement was assessed for 5 CTA methods, ranging from moderate to excellent (n = 247). One grading scale used a combination of CTP in addition to CTA to confirm the retrograde direction of true LMF. MR imaging (n = 358 patients) and TCD (n = 268 patients) were used according to 9 and 6 grading methods respectively, with no assessments of interobserver agreement.
being reported (Tables 4 and 5). A total of 8 publications compared noninvasive LMF assessments with MR imaging \((n = 5)\), CT \((n = 2)\), or TCD \((n = 1)\) with a reference standard by using DSA; in each, a different grading scale for the criterion standard was used.13,19,27,31,34–36,51

Discussion

The quality of LMF is reported to be an independent predictor of outcome after acute ischemic stroke, after adjustment for other known prognostic factors such as age, clinical stroke severity, baseline imaging characteristics, occlusion site, treatment, and recanalization/reperfusion.5,6,14,40 and suggests that, as a minimum, there is a need to account for its influence on outcomes after stroke. Good collateral flow is assumed to be associated with favorable outcome as a consequence of maintaining the ischemic penumbra for longer until reperfusion occurs, though the extent of collaterals appears to be independent of conventional indices of penumbra such as arterial recanalization/reperfusion.5,6

It is unclear whether the collateral grade represents an inherent characteristic of individual subjects or a potential therapeutic target. Collateral flow grades on CTA are reportedly better in patients who undergo imaging later after symptom onset, while better collateral flow grades on conventional angiography have been reported in patients treated with statins before stroke, suggesting that collateral flow is dynamic and could potentially be modified.

The fact that LMF is not accounted for in occlusion classifications may be important in defining arterial occlusions at the entry to a clinical trial and adoption of scoring systems from coronary artery disease; notably, the TIMI system or minor modifications of such systems (eg, thrombolysis in cerebral ischemia) ignore fundamental differences in the acquisition of images and the anatomy of the different vascular beds. For example, when applied to the cerebral circulation, a “good” TIMI score on CTA (eg, TIMI 2) could actually represent a complete arterial occlusion (no anterograde flow) with extensive retrograde flow via collaterals. A consistent method for assessment and grading is required to investigate collaterals in acute stroke. Our review revealed wide variation in the methods for grading LMF, few of which are supported even by measurement of observer agreement.

Conventional angiography, considered the criterion standard for assessing cerebrovascular anatomy, can reveal retrograde collateral perfusion in a dynamic fashion and has been used for LMF assessments in the largest number of patients. The most frequently used scale was proposed by the American Society of Interventional and Therapeutic Neuroradiology in an effort to homogenize grading with angiography6,7 but an assessment of interobserver agreement has not yet been reported. Good intraobserver agreement has been demonstrated with angiography when LMF was graded according to the anatomic extent of retrograde flow \((k = 0.81)\).6,14 The Qureshi scale also demonstrates good interobserver agreement but does not focus on LMF independently. One collateral grading scale quantified collateral flow according to the time taken for contrast to travel from the ICA to the M2 segment of the MCA via collaterals but described flow through primary collaterals of the circle of Willis rather than through cortical anastomoses.89 Although not truly grading LMF, it provides a quantitative time-based measurement that could potentially be used for collateral assessments. Because LMF is derived from neighboring arterial territories, its quality may only be fully evaluated when the contribution of all potential inflow sources is assessed. Descriptions of arterial injection sites are infrequently provided, and even when available, the contribution of the whole cerebral circulation is seldom evaluated. Conventional angiography is invasive and is usually performed when a patient is being considered for IA therapy which, in general, is reserved for those with contraindications to intravenous treatment (eg, presentation beyond 4.5 hours with favorable appearances on CT), meaning that angiographic LMF assessments are predominantly restricted to this group. Because multimodal CT and MR imaging are increasingly used in clinical practice and before entry to clinical trials, they offer a larger potential population in which LMF can be assessed noninvasively.

Although lacking dynamic information, CTA permits visualization of the extent of LMF. The independent predictive value of collaterals has been confirmed with different CTA methods, and interobserver agreement within different grading scales has been assessed.6,69,71,72 Retrograde flow relative to a proximal arterial occlusion provides a measurement of LMF adequacy, but grading LMF this way for more distal occlusions may be more difficult. A collateral scoring system based on contrast enhancement in defined regions of interest provides a scale not dependant on a specific occlusion, which could potentially be applied in a larger patient population.64 The addition of CT perfusion to CTA adds important dynamic information to confirm that collateral flow is truly retrograde and demonstrates excellent interobserver agreement.71 New multidetector scanners that enable simultaneous acquisition of both CTA and CTP allow dynamic collateral flow assessment with CT.59

LMF assessments with MR imaging use different imaging characteristics to infer the presence of collaterals. FLAIR vascular hyperintensities due to retrograde flow in leptomeningeal vessels have been associated with larger mismatch volumes and smaller subacute infarct volumes, while abnormal vessels on T2* imaging may be due to deoxygenated blood in collaterals and are associated with smaller infarct volumes.80,81 ASL, by using different criteria, has also been used to grade collateral flow with MR imaging.13,51,78 These and other LMF assessments with MR imaging have not been replicated nor has interobserver reliability been graded, and it remains to be seen if they represent robust means of assessing collateral flow.

Relative blood flow velocity and vessel pulsatility have been used as surrogate markers for leptomeningeal collateral flow by using TCD in a small number of studies, but the criteria for defining LMF varied among publications (Table 5). The lack of an agreed definition for LMF on TCD, absence of direct

Table 1: Number of LMF assessments per imaging modality

Modality	Different Assessment Methods	No. of Publications	Studies with Inter-/Intraobserver Agreement Assessed
Angiography	41	58	25,41,42
CT	7	12	5,6,40,43,65,69,72
MR imaging	9	13	0
TCD	6	7	0

AJNR Am J Neuroradiol 33:576–82 | Mar 2012 | www.ajnr.org
Description	Grading	Author (No.)	Acute (<24 hr from Symptom Onset/Non-Acute)	Reliability Assessed?	Prognostic Significance of Good Collateral Flow in Acute Stroke
Extent of anterograde and retrograde vessel filling	0–3	Brandt et al (20)	Acute	No	Beneficial
No. and rapidity of collateral vessel filling	0–2	Arnold et al (40)	Acute	No	Beneficial
No. and rapidity of collateral vessel filling	N/A	Bozza et al (36)	Acute	No	Beneficial
Reconstitution of vessel relative to occlusion	D–3	Wu et al (51)	Nonacute	Yes, χ² = 0.6114	N/A
Filling extent of main and distal vessels via collaterals	0–3	Christoforidis et al (104)	Nonacute	No	Beneficial
Retrograde MCA flow to insula	Present, absent, indeterminate	Derdeyn et al (117)	Nonacute	No	N/A
Rapidity and extent of retrograde collateral flow	0–4	Bang et al (44)	Acute	No	Beneficial
Flow extent across cortical surface	N/A	Powers et al (19)	Nonacute	No	N/A
Visual inspection	N/A	Klijn et al (76)	Nonacute	No	N/A
Delayed contrast washout	N/A	Essig et al (30)	Nonacute	No	N/A
Visualization of slow flow	N/A	Kamran et al (8)	Acute	No	NS
Visualization of flow pattern	Grade 4 = leptomeningeal flow	Ozgur et al (27)	Nonacute	No	N/A
Cortical branches from contralateral ACA/PCA	N/A	Rutgers et al (112)	Nonacute	No	N/A
Visualization of pial vessels	N/A	Zappe et al (86)	Unclear	No	NS
Visualization of anastomoses from adjacent vascular territories	N/A	Noguchi et al (53)	Acute	No	NS
Visualization of arteriogram	N/A	Grubb et al (81)	Nonacute	No	N/A
No. and rapidity of vessel filling	0–2	Lee et al (8)	Acute	No	NS
Distal MCA branches filling through ACA or PCA	N/A	Kim et al (51)	Acute	No	NS
Retrograde vessel filling	N/A	Kinoshita et al (10)	Unclear	No	NS
Cortical branches from PCA to MCA	N/A	van Laar et al (23)	Nonacute	No	N/A
Retrograde filling of MCA branches	N/A	Yamazu et al (42)	Nonacute	No	N/A
Extent and no. of vessels filling via collateral flow	Absent, mild, or prominent	Uemura et al (25)	Combination	No	NS
Combination of occlusion site and extent of collateral flow	0–5	Qureshi et al (15)	Acute	Yes, χ² = 0.730	Beneficial
Extent of retrograde flow in MCA	Good, poor	Mohammad et al (57)	Acute	No	Beneficial
Capillary blush in MCA	Grade 4 = leptomeningeal flow	Russell et al (14)	Nonacute	No	N/A
MCA/PCA filling from posterior circulation	N/A	Bischopps et al (68)	Nonacute	No	N/A
Opacification of basilar artery by collaterials	Distal vs distal and proximal	Cross et al (24)	Acute	No	Beneficial
Cortical branches filling MCA/ACA from PCA	N/A	Bokkers et al (17)	Nonacute	No	N/A
Collateral flow assessment based on ASPECTS (13 areas)	Good or scarce	von Kummer et al (77)	Acute	No	No effect
MCA branch filling in early venous phase	0–3	Kim et al (44)	Acute	No	Beneficial
Collateral flow assessment based on ASPECTS (15 areas)	0–3	von Kummer et al (32)	Acute	No	Beneficial
MCA branch filling in early venous phase	1–3	Roberts et al (180)	Acute	No	Beneficial
Presence of superficial PCA/ACA cortical branches	0–3	Ringelstein et al (34)	Acute	No	N/A
Presence of superficial PCA/ACA cortical branches	N/A	Weinert et al (5)	Unclear	No	NS
Extent of leptomeningeal anastomoses in occluded territory	Poor, good	Hoffman et al (70)	Nonacute	No	N/A
Presence of collaterals in affected territory	None/minimal, moderate/max	Meier et al (31)	Acute	No	No effect
Note: NS indicates not stated; N/A, not applicable; ASPECTS, Alberta Stroke Program Early CT Score; max., maximal; PCA, posterior cerebral artery.					
* Proposal on working group on collateral grading.					

578 McVerry | AJNR 33 | Mar 2012 | www.ajnr.org
collateral visualization, and difficulty in finding acoustic windows are limitations of TCD, though these are offset by the lack of radiation and contrast requirements. Flow diversion on TCD, defined as increased flow velocity in ipsilateral ACA/

Table 3: CT-based collateral scoring methods

Modality	Description	Grading	Author (No.)	Acute (<24 hr from Symptom Onset)/ Non-Acute	Reliability Assessed?	Prognostic Significance of Good Collateral Flow Grade in Acute Stroke
Axial CTA-SI	Extent of perilesional vessel filling with contralateral hemisphere	None, moderate, good, excellent	Liebeskind64 (36)	Acute	Yes, ICC = 0.81	NS
CTA-SI	Comparison of Sylvian collaterals	Absent, less, equal to, greater than contralateral hemisphere, exuberant	Rosenthal et al65 (44)	Acute	No	Beneficial[66,67]
CTA-SI and MPR	Extent of perilesional enhancement	Good, poor	Maas et al69 (135)	Acute	Yes, $\kappa = 0.494$	Beneficial[68,69]
CTA-SI and reconstructions	MCA filling in Sylvian fissure	Good, moderate, absent	Tan et al69 (113)	Acute	Yes	Beneficial[69,70]
CTA MIP	Extent of filling in territory of occluded vessel	0–3	Tan et al69 (113)	Acute	Yes	Beneficial[69,72,73]
CTA, MIP, CTP	Retrograde filling of MCA	Good, moderate, poor	Soanes et al73 (22)	Acute	Yes	Beneficial
TCTP	Extent of perfusion deficit on TCT	Severe, moderate	Lee et al74 (34)	Acute	No	NS

Note:—NS indicates not stated; ICC, intraclass correlation coefficient; CTA-SI, CT angiography source images; MPR, multiplanar reconstruction; MIP, maximum intensity projection; TCTP, triphasic CTP.

Table 4: MR imaging-based grading methods

Modality	Description	Author (No.)	Acute (<24 hr from Symptom Onset)/ Non-Acute	Reliability Assessed?	Prognostic Significance of Good Collateral Flow Grade in Acute Stroke
FADS	Late FADS implies collateral flow	Martel et al84 (22)	Acute	No	NS
QMRA	Increased flow ipsilateral to steno-occlusive disease	Ruland et al85 (16)	Nonacute	No	N/A
Phase-contrast MRA	Flow from posterior to anterior circulation FLAIR hyperintensities as a marker of collateral flow	Schomer et al82 (29)	Nonacute	No	N/A[85,19,27,31,81]
FLAIR		Liebeskind86 (91)	Acute	No	N/A
T2* -weighted MRI	Abnormal visualization of leptomeningeal vessels	Hermier et al88 (48)	Acute	No	NS
PWI	Delayed perfusion sign visualized on PWI	Hermier et al79 (29)	Acute	No	NS
ASL	Quantitative distal collateral flow measurement	Wu et al83 (51)	Nonacute	No	N/A
TASL	Collateral flow assessment based on ASPECTS	Chng et al85 (18)	Nonacute	No	N/A
CASL	Collateral flow inferred from delayed arterial flow	Chalela et al78 (15)	Acute	No	NS

Note:—NS indicates not stated; N/A, not applicable; FADS, factor analysis of dynamic structures; QMRA, quantitative MRA; TASL, territorial arterial spin labelling; ASL, continuous arterial spin-labeled/labeling; ASPECTS, Alberta Stroke Program Early CT Score.
PCA, did correlate with angiographic collateral grade when methods were compared, suggesting a possible role for TCD to measure LMF.35

When collaterals were measured by using DSA, CTA, and MR imaging, CTA compared favorably, but the methods used for grading LMF on CTA were not clearly stated, so this finding must be interpreted with caution.36

Conclusions
The presence of flow in leptomeningeal collaterals is linked with positive outcomes after stroke, but there is little consistency in the methods used to grade the efficacy of collateral flow. Although the importance of leptomeningeal collaterals is consistently reported, the inconsistency in imaging methods and grading currently limits the emphasis that can be placed on collaterals. For targeting collateral vessels in stroke therapeutic strategies, consistency in examining their extent at baseline is required to permit further expansion of this area. At present, conventional angiography remains the method that can best measure collateral extent and number, but CT-based techniques, which have demonstrated good interobserver reliability and correlation with clinical outcome, may provide an accessible and reliable assessment method for grading collateral flow in a larger patient population, particularly with the development of dynamic CTA combined with perfusion imaging. MR imaging and TCD have been used less frequently than angiography or CT but can also provide noninvasive measurements of LMF.

Appendix
Search Strategy MEDLINE (1950 to July Week 1 2009) and Embase before 1980 to 2009 Week 32.

Table 5: TCD-based grading methods

Description	Author (No.)	Acute (<24 hr from Symptom Onset/Nonacute)	Reliability Assessed?	Prognostic Significance of Good Collateral Flow Grade in Acute Stroke
Asymmetry of flow in ipsilateral ACA and PCA	Zanette et al77 (56)	Acute	No	NS
Asymmetric P2 flow and reduced pulsatility	Reinhard et al75 (39)	Nonacute	No	N/A
Asymmetric mean blood velocity in proximal ACA or P2 segment of ACA	Muller and Schimrigk2 (48)	Nonacute	No	N/A
Accelerated flow in A1 segment of ACA	Kaps et al74 (23)	Acute	No	NS
Flow direction relative to Doppler probe	Hennenrici et al86,84	Unclear	No	NS
Asymmetric flow velocity and pulsatility index	Kim et al75 (51)	Acute	No	NS

Note:—NS indicates not stated; N/A, not applicable.

*Number not stated.

Table 5: TCD-based grading methods

Description	Author (No.)	Acute (<24 hr from Symptom Onset/Nonacute)	Reliability Assessed?	Prognostic Significance of Good Collateral Flow Grade in Acute Stroke
Asymmetry of flow in ipsilateral ACA and PCA	Zanette et al77 (56)	Acute	No	NS
Asymmetric P2 flow and reduced pulsatility	Reinhard et al75 (39)	Nonacute	No	N/A
Asymmetric mean blood velocity in proximal ACA or P2 segment of ACA	Muller and Schimrigk2 (48)	Nonacute	No	N/A
Accelerated flow in A1 segment of ACA	Kaps et al74 (23)	Acute	No	NS
Flow direction relative to Doppler probe	Hennenrici et al86,84	Unclear	No	NS
Asymmetric flow velocity and pulsatility index	Kim et al75 (51)	Acute	No	NS

Note:—NS indicates not stated; N/A, not applicable.

*Number not stated.
36) 6 or 11 or 3 or 7 or 9 or 2 or 8 or 1 or 4 or 30 or 10 or 5 (460879)
37) 27 or 25 or 28 or 30 or 24 or 26 or 23 (17675)
38) 35, or 29 (196193)
39) 38, and 36 and 37 (9774)
40) limit 39 to humans (8311)
41) limit 40 to English language (6887)
42) from 41 keep 84,96,99,126,143,161,181,241,247,262–
263,290,304,311–312,314,400,439,489,492,507,532,613,
616,623,694,891,949 (29).

References:
1. Brozic M, van der Zwan A, Hillen B. Anatomy and functionality of leptomeningeal anastomoses: a review. Stroke 2003;34:2750–62
2. Muller M, Schimrigk K. Vasomotor reactivity and pattern of collateral blood flow in severe occlusive carotid artery disease. Stroke 1996;27:296–99
3. Liebeskind DS. Collateral circulation. Stroke 2003;34:2757–83
4. Bang OY, Saver JL, Buck BH, et al. Impact of collateral flow on tissue fate in acute ischaemic stroke. J Neurol Neurosurg Psychiatry 2008;79:625–29
5. Miteff F, Levi CR, Bateman GA, et al. The independent predictive utility of computed tomography angiographic collateral status in acute ischaemic stroke. Stroke 2009;40:2231–38
6. Christoforidis GA, Karakasis C, Mohammad Y, et al. Predictors of hemorrhage following intra-arterial thrombolysis for acute ischemic stroke: the role of pial collateral formation. AJNR Am J Neuroradiol 2009;30:165–70
7. Brandt T. Survival with basilar artery occlusion. Cerebrovasc Dis 1995;5:182–87
8. Arnold M, Nedeltchev K, Schrot G, et al. Clinical and radiological predictors of recanalisation and outcome of 40 patients with acute basilar artery occlusion treated with intra-arterial thrombolysis. J Neurol Neurosurg Psychiatry 2004;75:857–62
9. von Kummer R. Effects of recanalization and collateral blood supply on infarct extent and brain edema after middle cerebral artery occlusion. Cerebrovasc Dis 1995;3:522–55
10. Bozzao L, Fantozzi LM, Bastianello S, et al. Early collateral blood supply and late parenchymal brain damage in patients with middle cerebral artery occlusion. Stroke 1999;30:735–40
11. Bozzao L, Bastianello S, Fantozzi LM, et al. Correlation of angiographic and sequential CT findings in patients with evolving cerebral infarction. AJNR Am J Neuroradiol 1989;10:1215–22
12. Toni D, Fiorelli M, De Michele M, et al. Clinical and prognostic correlates of stroke subtype misdiagnosis within 12 hours from onset. Stroke 1995;26:1837–40
13. Wu B, Wang X, Guo J, et al. Collateral circulation imaging: MR perfusion territory arterial spin-labeling at 3T. AJNR Am J Neuroradiol 2008;29:1855–60
14. Christoforidis GA, Mohammad Y, Kehagias D, et al. Angiographic assessment of pial collaterals as a prognostic indicator following intra-arterial thrombolysis for acute ischemic stroke. AJNR Am J Neuroradiol 2005;26:1789–97
15. Derdeyn CP, Shainin A, Moran CJ, et al. Lack of correlation between pattern of collateralization and misery perfusion in patients with carotid occlusion. Stroke 1999;30:1025–32
16. Higashida RT, Fuslan AJ, Roberts H, et al. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke 2003;34:e109–37
17. Bang OY, Saver JL, Alger JR, et al. Determinants of the distribution and severity of hyperfusion in patients with ischemic stroke. Neurology 2008;71:1804–11
18. Orbiagile R, Saver JL, Starkman S, et al. Statin enhancement of collateralization in acute stroke. Neurology 2007;68:2129–31
19. Sanossian N, Saver JL, Alger JR, et al. Angiography reveals that fluid-attenuated inversion recovery vascular hyperintensities are due to slow flow, not thrombus. AJNR Am J Neuroradiol 2009;30:564–68
20. Liebeskind DS. Angiographic collaterals and outcome in mechanical thrombectomy. Stroke 2005;36:449
21. Liebeskind DS. Clinical predictors of angiographic collaterals in acute ischemic stroke. Stroke. 2005;36:450
22. Liebeskind DS. Benign oligemia reflects collateral perfusion: MRI and angiography of low perfusion hyperemia in humans. Stroke 2008;39:577
23. Liebeskind DS, Sanossian N, Alger JR, et al. Gradient echo MRI phase mismap-
ping reveals angiographic correlated in acute ischemic stroke. Stroke 2006;37:837
24. Powers WJ, Press GA, Grubb RL Jr, et al. The effect of hemodynamically sig-
nificant carotid artery disease on the hemodynamic status of the cerebral cir-
culation. Ann Intern Med 1987;106:27–34
25. Klijn CJ, Kappelle LJ, van Huffelen AC, et al. Recurrent ischemia in symptomatic carotid occlusion: prognostic value of hemodynamic factors. Neurology 2005;65:1806–12
26. Essig M, von Kummer R, Engelholt T, et al. Vascular MR contrast enhancement in cerebrovascular disease. AJNR Am J Neuroradiol 1996;17:887–94
27. Kamran S, Bates V, Bakshi R, et al. Significance of hyperintense vessels on FLAIR MRI in acute stroke. Neurology 2000;55:265–69
28. Osgar HT, Kent Walsh T, Masaryk A, et al. Correlation of cerebrovascular reserve as measured by acetazolamide-challenged SPECT with angiographic flow patterns and intra- or extracranial arterial stenosis. AJNR Am J Neurora-
diol 2001;22:928–36
29. Rutgers DR, Klijn CJ, Kappelle LJ, et al. Recurrent stroke in patients with symp-
tomatic carotid artery occlusion is associated with high-volume flow to the brain and increased collateral circulation. Stroke 2004;35:1343–49
30. Rutgers DR, Klijn CJ, Kappelle LJ, et al. Recurrent stroke in patients with symp-
tomatic carotid artery occlusion is associated with high-volume flow to the brain and increased collateral circulation. Stroke 2004;35:1343–49
31. Samson M, Vinken PJ, Wijdicks EF, et al. Magnetic resonance imaging of the brain: technical factors and clinical application. Neurology 1994;44(Suppl 4):S7–S23
32. Grubb RL Jr, Derdeyn CP, Fritsch SM, et al. Relationship between flow diversion on trans-
cranial Doppler sonography and leptomeningeal collateral circulation in pa-
tients with middle cerebral artery occlusive disorder. J Neuroimaging 2009;19:23–26
33. Kinoshita T, Ogawa T, Kado H, et al. CT angiography in the evaluation of intracranial occlusive disease with collateral circulation: comparison with MR angiography. Clin Imaging 2005;29:303–06
34. van Laar PJ, Hendriks J, Klijn CJ, et al. Symptomatic carotid artery occlusion: flow territories of major brain-feeding arteries. Radiology 2007;244:526–34
35. Nakashima H, Kudoh T, Sugimoto K, et al. Patterns of collaterals, type of In-
farcts, and haemodynamic impairment in carotid artery occlusion. J Neurol Neurosurg Psychiatry 2004;75:1697–701
36. Uemura A, O’uchi T, Kikuchi Y, et al. Prominent latency of the posterior cerebral artery at three-dimensional time-of-flight MR angiography in m1-
segment middle cerebral artery occlusion. AJNR Am J Neuroradiol 2004;25:88–91
37. Qureshi AI. New grading system for angiographic evaluation of arterial occlu-
sions and recanalization response to intra-arterial thrombolysis in acute isch-
icemic stroke. Neurosurgery 2002;50:1045–14, discussion 1414–15
38. Mohammad Y, Xavier AR, Christoforidis G, et al. Qureshi grading scheme for angiographic occlusions strongly correlates with the initial severity and in-
hospital outcome of acute ischemic stroke. J Neuroimaging 2004;14:235–41
39. Mohammad YM, Christoforidis GA, Bourkas EC, et al. Qureshi grading scheme predicts subsequent volume of brain infarction following intra-arte-
rnal thrombolysis in patients with acute anterior circulation ischemic stroke. J Neuroimaging 2008;18:262–67
40. Kucinski T, Koch C, Eckert B, et al. Collateral circulation is an independent radiological predictor of outcome after thrombolysis in acute ischaemic stroke. Neuroradiology 2003;45:11–18
41. Gasparotti R, Grasso M, Mardighian D, et al. Perfusion CT in patients with acute ischemic stroke treated with intra-arterial thrombolysis: predictive value of infarct core size on clinical outcome. AJNR Am J Neuroradiol 2009;30:722–27
42. Russell SM, Woo HH, Siller K, et al. Evaluating middle cerebral artery collat-
eral blood flow reserve using acetazolamide transcranial Doppler ultrasound in patients with carotid occlusive disease. Sog Neuro 2008;70:466–70, discussion 470
43. Bischopts RH, Klijn CJ, Kappelle LJ, et al. Collateral flow and ischemic brain lesions in patients with unilateral carotid artery occlusion. Neurology 2008;70:1435–41
44. Cross DT 3rd, Moran CJ, Akins PT, et al. Collateral circulation and outcome after basilar artery thrombosis. AJNR Am J Neuroradiol 1998;19:1557–63

Ajnr Am J Neuroradiol 33:576–82 | Mar 2012 | www.ajnr.org
48. Bokkers RP, van Laar PJ, van de Ven KC, et al. Arterial spin-labeling MR imaging measurements of timing parameters in patients with a carotid artery occlusion. AJNR Am J Neuroradiol 2008;29:1698–703
49. Derdeyn CP, Powers WJ, Grubb RL Jr. Hemodynamic effects of middle cerebral artery stenosis and occlusion. AJNR Am J Neuroradiol 1998;19:1463–69
50. Smith HA, Thompson-Dobkin J, Yonas H, et al. Correlation of xenon-enhanced computed tomography-defined cerebral blood flow reactivity and collateral flow patterns. Stroke 1994;25:1784–87
51. Chng SM, Petersen ET, Zimine I, et al. Territorial arterial spin labeling in the assessment of collateral circulation: comparison with digital subtraction angiography. Stroke 2008;39:3248–54
52. von Kummer R, Holle R, Rosin L, et al. Does arterial recanalization improve outcome in carotid territory stroke? Stroke 1995;26:581–87
53. von Kummer R, Hacke W. Safety and efficacy of intravenous tissue plasminogen activator and heparin in acute middle cerebral artery stroke. Stroke 1992;23:646–52
54. Roberts HC, Dillon WP, Furlan AJ, et al. Computed tomographic findings in patients undergoing intra-arterial thrombolysis for acute ischemic stroke due to middle cerebral artery occlusion: results from the PROACT II trial. Stroke 2002;33:1577–65
55. Kim JJ, Fischbein NJ, Lu Y, et al. Regional angiographic grading system for collateral flow: correlation with cerebral infarction in patients with middle cerebral artery occlusion. Stroke 2004;35:1340–44
56. Ringstein EB, Binieki R, Weiller C, et al. Type and extent of hemorrhagic brain infarctions and clinical outcome in early and delayed middle cerebral artery recanalization. Neurology 1992;42:289–98
57. Weidner W, Hanafetewmarkham CH. Intracranial collateral circulation via leptomeningeal and rete mirabile anastomoses. Neurology 1965;15:39–48
58. Hofmeijer J, Klijn CJ, Zimine I, et al. Collateral flow patterns. Stroke 2005;36:2316–22
59. Arnold M, Schroth G, Nedeltchev K, et al. Intra-arterial thrombolysis in 100 patients with acute stroke due to middle cerebral artery occlusion. Stroke 2002;33:1828–33
60. Meier N, Nedeltchev K, Brekenfeld C, et al. Prior status use, intracranial hemorrhage, and outcome after intra-arterial thrombolysis for acute ischemic stroke. Stroke 2009;40:1729–37
61. Gommer F, Remonda L, Mattie H, et al. Local intra-arterial thrombolysis in acute ischemic stroke. Stroke 1998;29:1894–900
62. Brekenfeld C, Remonda L, Nedeltchev K, et al. Symptomatic intracranial haemorrhage after intra-arterial thrombolysis in acute ischaemic stroke: assessment of 294 patients treated with urokinase. J Neurol Neurosurg Psychiatry 2007;78:280–85
63. Toni D, Fiorelli M, Bastianello S, et al. Acute ischemic strokes improving during the first 48 hours of onset: predictability, outcome, and possible mechanisms—a comparison with early deteriorating strokes. Stroke 1997;28:10–14
64. Liebeskind D. A novel CT angiography scale for assessment of collaterals in acute stroke. Stroke 2003;34:265
65. Rosenthal ES, Schwamm LH, Roccatagliata L, et al. Role of recanalization in acute stroke outcome: rationale for a CT angiogram-based “benefit of recanalization” model. AJNR Am J Neuroradiol 2008;29:1471–75
66. Maas MB, Lev MH, Ay H, et al. Collateral vessels on CT angiography predict outcome in acute ischemic stroke. Stroke 2009;40:3001–05
67. Lima FO, Furie KL, Silva GS, et al. The pattern of leptomeningeal collaterals on CT angiography is a strong predictor of long-term functional outcome in stroke patients with large vessel intracranial occlusion. Stroke 41:2316–22
68. Schramm P, Schellinger PD, Fiebach JB, et al. Comparison of CT and CT angiography source images with diffusion-weighted imaging in patients with acute stroke within 6 hours after onset. Stroke 2002;33:2426–32
69. Tan JC, Dillon WP, Liu S, et al. Systematic comparison of perfusion-CT and CT-angiography in acute stroke patients. Ann Neurol 2007;61:533–43
70. Wildermuth ES, Jacob M, Brandt T, et al. Role of CT angiography in patient selection for thrombolytic therapy in acute hemispheric stroke. Stroke 1998;29:935–38
71. Knauth M, von Kummer R, Jansen O, et al. Potential of CT angiography in acute ischemic stroke. AJNR Am J Neuroradiol 1997;18:1001–10
72. Tan HT, Demchuk AM, Hopyan J, et al. CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. AJNR Am J Neuroradiol 2009;30:525–31
73. Soares BP, Tong E, Hom J, et al. Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization: a proof of concept using CT in acute ischemic stroke patients. Stroke 2010;41:e34–40. Epub 2009 Nov 12
74. Kaps M, Damian MS, Teschendorf U, et al. Transcranial Doppler ultrasound findings in middle cerebral artery occlusion. Stroke 1996;27:532–37
75. Reinhard M, Muller T, Guschlbauer B, et al. Dynamic cerebral autoregulation and collateral flow patterns in patients with severe carotid stenosis or occlusion. Ultraschall Med 2003;24:1105–13
76. Reinhard M, Muller T, Roth M, et al. Bilateral severe carotid artery stenosis or occlusion: cerebral autoregulation dynamics and collateral flow patterns. Acta Neurochir (Wien) 2003;145:1053–59, discussion 1059–60
77. Zanette EM, Roberti C, Mancini G, et al. Spontaneous middle cerebral artery reperfusion in ischemic stroke: a follow-up study with transcranial Doppler. Stroke 1995;26:430–33
78. Chalela JA, Aloop DC, Gonzalez-Atavales JB, et al. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 2000;31:680–87
79. Hermier M, Ibrahim AS, Wiart M, et al. The delayed perfusion sign at MRI. J Neurol Neurosurg Psychiatry 2003;70:172–79
80. Hermier M, Nighoghossian N, Derex L, et al. Hypointense leptomeningeval vessels at T2*-weighted MRI in acute ischemic stroke. Neurology 2005;65:652–53
81. Lee KY, Latour LL, Luby M, et al. Distal hyperintense vessels on flair: an MRI marker for collateral circulation in acute stroke? Neurology 2009;72:1134–39
82. Schomer DF, Marks MP, Steinberg GK, et al. The anatomy of the posterior communicating artery as a risk factor for ischemic cerebral infarction. N Engl J Med 1994;330:1560–70
83. Rolands S, Ahmed A, Thomas K, et al. Leptomeningeval collateral volume flow assessed by quantitative magnetic resonance angiography in large-vessel cerebrovascular disease. J Neuromaging 2009;19:27–30
84. Martel AL, Alderi SJ, Delay GS, et al. Perfusion MRI of infarcted and noninfarcted brain tissue in stroke: a comparison of conventional hemodynamic imaging and factor analysis of dynamic studies. Invest Radiol 2001;36:378–85
85. Liebeskind D. Intravascular deoxygenation of leptomeningeval collaterals detected with gradient-echo MRI. Stroke 2004;35:266
86. Hennerici M, Rautenberg W, Schwartz A. Transcranial Doppler ultrasound for the assessment of intracranial arterial flow velocity. Part 2. Evaluation of intracranial arterial disease. Surg Neurol 1987;27:523–32
87. The Thrombolysis in Myocardial Infarction (TIMI) trial phase I findings: TIMI study group. N Engl J Med 1985;312:932–36
88. Saito I, Segawa H, Shiokawa Y, et al. Comparison of CT and CT angiography predict outcome in carotid territory stroke? Stroke 1997;28:10–14
89. Siebert E, Bohner G, Dewey M, et al. 320-slice CT neuroimaging: initial clinical experience and image quality evaluation. Br J Radiol 2009;82:561–70. Epub 2009 Feb 16
90. Marinoni M, Ginanneschi A, Forleo P, et al. Technical limits in transcranial Doppler recording: on adequate acoustic windows. Ultrasound Med Biol 1997;23:1275–77