NON-FIBERED L-SPACE KNOTS

TYE LIDMAN AND LIAM WATSON

Abstract. We construct an infinite family of knots in rational homology spheres with irreducible, non-fibered complements, for which every non-longitudinal filling is an L-space.

1. Introduction

The Heegaard Floer homology of a three-manifold Y is an abelian group $\widehat{HF}(Y)$ satisfying $\text{rk} \widehat{HF}(Y) \geq |H_1(Y;\mathbb{Z})|$. When equality is realized in this bound, Y is called an L-space, and any knot in Y admitting a non-trivial L-space surgery is called an L-space knot. A result of Ghiggini [6] and Ni [9] shows that L-space knots in the three-sphere must be fibered. Since manifolds with finite fundamental group provide examples of L-spaces, this result implies that a knot K in S^3 admitting a finite filling must be fibered. This observation should be compared with other restrictions related to finite fillings such as the Cyclic Surgery Theorem [5] and its extensions [4].

The restriction to knots in S^3 is not necessary: it is shown in [1] that a primitive knot in an irreducible L-space admitting a non-trivial L-space surgery must be fibered. Irreducibility is required, as removing an unknotted torus from an embedded three-ball in any L-space produces a non-fibered manifold with non-trivial L-space fillings. However, in the general setting of knots in rational homology spheres with irreducible complements fibered is not a necessary condition:

Theorem 1. There exist infinitely many irreducible, non-fibered knot complements such that all non-longitudinal Dehn fillings are L-spaces. Moreover, these examples arise as knots in manifolds with finite fundamental group.

2. Preliminaries

We begin by fixing terminology. Fibrations will always be locally trivial surface bundles over a circle and we say the total space fibers. To avoid confusion, we will refer to Seifert fibrations as Seifert structures; these are foliations of a manifold by circles. The base orbifold is the leaf space of such a foliation, where the (possibly empty) collection of cone points records the multiplicities of the exceptional fibers in the Seifert structure. A circle bundle is a Seifert structure for which there are no exceptional fibers.

Given a slope α on a manifold M with torus boundary, we use $M(\alpha)$ to denote Dehn filling along α. If $\partial M = T_1 \cup T_2$, for tori T_i, then we denote α-filling on T_1 (respectively T_2) by $M(\alpha, -)$ (respectively $M(-, \alpha)$). When M admits a Seifert structure, the slope given by a regular fiber in the boundary is called the fiber slope. For background on Seifert structures and Dehn filling we refer the reader to Boyer [2]. A key fact is that Dehn filling a Seifert manifold with torus boundary along any slope α other than the fiber slope results in a Seifert manifold with an additional singular fiber. The multiplicity of this new fiber is $\Delta(\alpha, \phi)$, the distance between the slopes α and ϕ [7].

In general, we will consider oriented manifolds M with torus boundary for which $H_1(M; \mathbb{Q}) \cong \mathbb{Q}$. These arise as the complements of knots in rational homology spheres. As such, there is always a

The first author was supported by a UCLA Dissertation Year Fellowship.

The second author was partially supported by an NSERC Postdoctoral Fellowship.

Ozsváth and Szabó show that manifolds admitting elliptic geometry are L-spaces [10]; the Geometrization Theorem [8] implies that three-manifolds with finite fundamental group admit elliptic geometry.
preferred slope given by the rational longitude, characterized by the property that some number of like-oriented parallel copies bounds a properly embedded surface in M. We will refer to this slope as the longitude.

Let N denote the twisted I-bundle over the Klein bottle; a Heegaard diagram for this manifold with torus boundary is given in Figure 1. As there is a unique line bundle over the Klein bottle with oriented total space, the manifold N is unique. This manifold can be given two different Seifert structures. The first is by treating N as a circle bundle over the Möbius band. We denote the fiber slope in this Seifert structure by ϕ_0. This slope coincides with the longitude of N, and this circle bundle gives N the structure of an annulus fibration over the circle. The other Seifert structure has base orbifold $\mathbb{R}P^2(2, 2)$ (a disk with two cone points each of order 2); the fiber slope here is denoted ϕ_1. These conventions are consistent with [3, Section 3]. It can be shown that $\Delta(\phi_0, \phi_1) = 1$ and any filling $N(\alpha)$ for which $\alpha \neq \phi_0, \phi_1$ admits a pair of Seifert structures with base orbifolds $\mathbb{R}P^2(\Delta(\alpha, \phi_0))$ and $S^2(2, 2, \Delta(\alpha, \phi_1))$. We point out that these manifolds always admit elliptic geometry [11].

Since N is homotopy equivalent to a Klein bottle, we have $\pi_1(N) = \langle a, b | a^2 b^2 \rangle$. Note that this presentation may be easily deduced from the Heegaard diagram in Figure 1. The longitude of N is homotopic to the element ab (this element has order two in the abelianization of $\pi_1(N)$).

Now consider a knot K_0 in N that is isotopic to ϕ_0. Define M by removing a neighborhood of K_0 from N; by construction M inherits a Seifert structure (the base orbifold is a punctured Möbius band). Now $\partial M = T_1 \cup T_2$ where T_2 denotes the boundary of a regular neighborhood of K_0.

The fundamental group of M is presented by

$$\pi_1(M) = \langle a, b, t | a^2 b^2, [t, ab] \rangle.$$

To see this, consult Figure 1 and notice that M may be constructed by identifying (disjoint neighborhoods of) each boundary component of the annulus with core ab in ∂N. This gives rise to the HNN extension presented above. Notice that $M(-, \mu) \cong N$ for any slope satisfying $\Delta(\mu, \phi_0) = 1$. A preferred choice for μ is given by a representative of the homotopy class of t in the above presentation. Notice that ϕ_0, as a regular fiber in M, also gives a slope on T_2. Using a self-diffeomorphism of M which exchanges T_1 and T_2, $M(\alpha, -)$ is also homeomorphic to N if $\Delta(\alpha, \phi_0) = 1$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{heegaard_diagram.png}
\caption{A Heegaard diagram for the twisted I-bundle over the Klein bottle N. With a and b generating the fundamental group of the genus two handlebody, N is obtained by attaching a handle along a curve in the boundary representing $a^2 b^2$ so that $\phi_0 \simeq ab$ and $\phi_1 \simeq b^2$. An annulus in the boundary with core representing the element $\phi_0 \simeq ab$ may be used to find the fundamental group of M, the complement of a regular fiber in the interior of N, via HNN extension.}
\end{figure}
Our interest is in the family of manifolds $M(-,\alpha)$ for any slope α with $\Delta(\alpha,\phi_0) > 1$. Notice that each of these manifolds admits a Seifert structure with base orbifold a Möbius band with a single cone point of order $\Delta(\alpha,\phi_0)$. Since $M(\phi_1,\alpha)$ admits a Seifert structure with base orbifold $S^2(2,2,n)$ it follows that $M(-,\alpha)$ is the complement of a knot in an elliptic manifold.

3. The proof of Theorem 1

Lemma 2. Fix a slope α on T_2 with $\Delta(\alpha,\phi_0) = p$. Then

$$M(\phi_0,\alpha) = \begin{cases} S^2 \times S^1 \# S^2 \times S^1 & \text{if } p = 0, \\ S^2 \times S^1 \# L(p,q) & \text{if } p > 1, \\ S^2 \times S^1 & \text{if } p = 1. \end{cases}$$

Proof. Since

$$\pi_1(M) \cong \langle a,b,t|a^2b^2,[t,ab]\rangle$$

and $\phi_0 \cong ab$, we have that

$$\pi_1(M(\phi_0,-)) \cong \langle a,b,t|a^2b^2,[t,ab]/\langle\langle ab\rangle\rangle\rangle$$

$$\cong \langle a,b,t|ab\rangle.$$

In other words, $\pi_1(M(\phi_0,-)) \cong \mathbb{Z} \ast \mathbb{Z}$. If $\alpha = p\mu + q\phi_0$, then

$$\pi_1(M(\phi_0,\alpha)) \cong \langle a,b,t|ab/\langle\langle t^p(ab)^q\rangle\rangle\rangle$$

$$\cong \mathbb{Z} \ast \mathbb{Z}/p.$$

By Whitehead’s proof of Kneser’s conjecture [12], $M(\phi_0,\alpha)$ is a connect-sum of closed manifolds Y_1 and Y_2 with $\pi_1(Y_1) \cong \mathbb{Z}$ and $\pi_1(Y_2) \cong \mathbb{Z}/p$. Geometrization now establishes the lemma.

![Figure 2. The branch set for the manifold $M = M(-,-)$ with branch sets for the fillings $N = M(\phi_1,-)$ and $M(\phi_0,-)$. Notice that the latter manifold is reducible, containing an $S^2 \times S^1$ summand.](image)

Remark 3. Alternatively, Lemma 2 follows from considering $M(\phi_0,-)$ as the double branched cover of a tangle as in Figure 2. The unknotted component gives rise to the $S^2 \times S^1$ summand. Dehn filling corresponds to attaching a rational tangle, which (ignoring the unknotted component) produces a two-bridge link and exhibits the lens space connect-summand.

Proposition 4. For any α on T_2 with $\Delta(\alpha,\phi_0) \neq 1$, the manifold $M(-,\alpha)$ does not fiber.

Proof. Suppose that $M(-,\alpha)$ fibers. Since ϕ_0 is the longitude, this is the only filling that extends the fibration on $M(-,\alpha)$, as any other filling of $M(-,\alpha)$ results in a rational homology sphere. By Lemma 2 $M(\phi_0,\alpha) \cong S^2 \times S^1 \# L(p,q)$ for $p = \Delta(\phi_0,\alpha) \geq 2$, and $M(\phi_0,\phi_0) \cong S^2 \times S^1 \# S^2 \times S^1$. Because $M(\phi_0,\alpha)$ is fibered and $\pi_2(M(\phi_0,\alpha)) \neq 0$, the fiber surface F must also have $\pi_2(F) \neq 0$, and hence F must be S^2 or $\mathbb{R}P^2$. However, $\pi_1(M(\phi_0,\alpha))$ is not the fundamental group of such a fibration, since it does not admit a surjective homomorphism onto \mathbb{Z} with finite kernel.

\[\square\]
Proof of Theorem 1. Fix α with $\Delta(\alpha, \phi_0) \geq 2$. As the fiber slope of the Seifert structure on $M(-, \alpha)$ is the longitude, all non-longitudinal fillings will extend the Seifert structure, yielding a base orbifold $\mathbb{R}P^2$ with two cone points. By [3, Proposition 5], such manifolds are always L-spaces. Proposition 4 shows that $M(-, \alpha)$ is not fibered. Furthermore, $M(-, \alpha)$ is irreducible, since the only orientable, reducible Seifert manifolds are $S^2 \times S^1$ and $\mathbb{R}P^3 \# \mathbb{R}P^3$ (and in particular, are closed). Finally, $M(-, \alpha)$ is the complement of a knot in an elliptic manifold as observed in Section 2.

Remark 5. Further examples may be constructed in an analogous way by removing a regular fiber from any manifold which has a Seifert structure with base orbifold $\mathbb{R}P^2$ with any positive number of singular fibers. It is also possible to construct examples, in a similar manner, admitting Sol geometry. The main observation is that every Sol rational homology sphere is an L-space [3, Theorem 2]. Since every such L-space arises by identifying two twisted I-bundles along the boundary tori, one may consider the complement of the knot K_0 in one of the twisted I-bundles. In this setting, our construction goes through almost verbatim, having noticed that the obvious essential torus must be horizontal to the purported fibration of the exterior of K_0.

Question 6. All of our examples have non-hyperbolic exterior. Do there exist examples of hyperbolic, non-fibered knots for which every non-longitudinal surgery is an L-space?

Acknowledgments. The authors thank Yi Ni for his comments on and interest in this problem. This paper owes its existence to the Workshop on Topics in Dehn Surgery, held at UT Austin in April 2012. The authors thank the organizers for putting together a great conference.

References

[1] M. Boileau, S. Boyer, R. Cebanu, and G.S. Walsh. Knot commensurability and the Berge conjecture. *Geom. Topol.*, 16:625–664, 2012.

[2] S. Boyer. Dehn surgery on knots. In *Handbook of geometric topology*, pages 165–218. North-Holland, Amsterdam, 2002.

[3] S. Boyer, C. McA. Gordon, and L. Watson. On L-spaces and left-orderable fundamental groups, 2011. To appear in *Math. Ann.*, arXiv:1107.5016.

[4] S. Boyer and X. Zhang. A proof of the finite filling conjecture. *J. Differential Geom.*, 59(1):87–176, 2001.

[5] M. Culler, C. McA. Gordon, J. Luecke, and P.B. Shalen. Dehn surgery on knots. *Ann. of Math.*, (2), 125(2):237–300, 1987.

[6] P. Ghiggini. Knot Floer homology detects genus-one fibred knots. *Amer. J. Math.*, 130(5):1151–1169, 2008.

[7] W. Heil. Elementary surgery on Seifert fiber spaces. *Yokohama Math. J.*, 22:135–139, 1974.

[8] B. Kleiner and J. Lott. Notes on Perelman’s papers. *Geom. Topol.*, 12(5):2587–2855, 2008.

[9] Y. Ni. Knot Floer homology detects fibred knots. *Invent. Math.*, 170(3):577–608, 2007.

[10] P.S. Ozsváth and Z. Szabó. On knot Floer homology and lens space surgeries. *Topology*, 44(6):1281–1300, 2005.

[11] P. Scott. The geometries of 3-manifolds. *Bull. London Math. Soc.*, 15(5):401–487, 1983.

[12] J. H. C. Whitehead. On finite cocycles and the sphere theorem. *Colloq. Math.*, 6:271–281, 1958.

Department of Mathematics, UT Austin, 1 University Station, Austin, TX 78712
E-mail address: tlyd@math.utexas.edu

Department of Mathematics, UCLA, 520 Portola Plaza, Los Angeles, CA 90095
E-mail address: lwatson@math.ucla.edu