Cobalt(II)-Catalyzed Benzylic Oxidations with Potassium persulfate in TFA/TFAA

Tianlei LIa, Jishun LIa, b, c\textdagger, Zihao ZHUa, Weidong PANb*, Song WUa*

a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
b State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
c Guizhou University of Traditional Chinese Medicine, Huaxi University town, Guiyang, Guizhou, 550025, China

* Correspondence: wdpan@163.com (Weidong PAN); ws@imm.ac.cn (Song WU)
\textdagger These authors contributed equally to this work

Content

1. Reagent
2. Instrument
3. General procedure for the synthesis of the desired compounds (2a – 2t)
4. The analytic data
5. Copies of NMR spectra
1. **Reagent:** Unless otherwise indicated, all solvents and organic reagents were obtained from commercially available sources and were used without further purification. Silica gel was used for column chromatography and was performed with 60 Å mesh standard grade silica gel.

2. **Instrument:** The reaction process was monitored using thin layer chromatography (TLC) with silica gel plates (thickness = 0.20 mm, GF254) under UV light and LC-MS (Waters Acquity UPLC/ SQD). Mass spectra was obtained using a Waters Acquity UPLC-SQD mass spectrometer. High resolution mass spectra (HRMS) were recorded on an Agilent Technologies LC/MSD TOF spectrometer. 1H NMR spectra was recorded on a Varian Mercury-400 or 500 MHz instrument, and 13C NMR spectra was recorded at 400 or 500 MHz on a Varian Mercury using CDCl$_3$ as a solvent and tetramethysilane (TMS) as an internal standard. Chemical shifts are reported in parts per million relative to CDCl$_3$ (d 7.26), CD$_3$OD (d 3.31) and DMSO-d$_6$ (d 2.50) for 1H NMR and relative to CDCl$_3$ (d 77.23), CD3OD (d 49.51) and DMSO-d$_6$ (d 39.51) for 13C NMR with TMS as an internal standard. Abbreviations used for 1H NMR splitting are as follows: s = singlet, brs = broad singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet, br m = broad multiplet.

3. **General procedure for the synthesis of the desired compounds (2a – 2t)**

![Chemical reaction diagram]

Substituted ketone, ester, and nitrotoluene (1.0 equiv.), Co(OAc)$_2$·4H$_2$O (20 %) and K$_2$S$_2$O$_8$ (1.5 equiv.) was dissolved in commercial TFA/TFAA (0.9 ml:0.1 ml) in a 15 mL sealed tube. Then the reaction mixture was stirred at 80°C-110°C for 7-16 h. The reaction was monitored by TLC and LC-MS. After completion of the reaction, the mixture was cooled down to room temperature, and the reaction was quenched by the addition of saturated NaHCO$_3$. The reaction mixture was diluted with 20 mL CH$_2$Cl$_2$, the organic phase was washed with sat. NaHCO$_3$ and brine (20 mL), dried...
over Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 10:1) to give the corresponding products.

4. The analytic data

4-Benzoylbenzaldehyde (2a)

![Structural formula of 4-Benzoylbenzaldehyde](image)

Isolated Yield: 32.8 mg, 78%;¹H NMR (500 MHz, Chloroform-d) δ 10.13 (s, 1H), 8.00 (d, J = 7.8 Hz, 2H), 7.93 (d, J = 8.0 Hz, 2H), 7.81 (d, J = 7.6 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.7 Hz, 2H).¹³C NMR (126 MHz, Chloroform-d) δ 196.0, 191.8, 138.6, 136.9, 133.3, 130.5, 130.3, 130.0, 129.7, 129.4, 128.7, 128.7. LRMS (ESI) calcd. for C₁₄H₁₀O₂ [M+H]: 211.25, found: 211.29.

3-Benzoylbenzaldehyde (2b)

![Structural formula of 3-Benzoylbenzaldehyde](image)

Isolated Yield: 36.2 mg, 86%;¹H NMR (500 MHz, Chloroform-d) δ 10.09 (s, 1H), 8.28 (s, 1H), 8.12 (d, J = 7.6 Hz, 1H), 8.08 (d, J = 7.7 Hz, 1H), 7.81 (d, J = 7.5 Hz, 2H), 7.68 (t, J = 7.7 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H), 7.52 (t, J = 7.7 Hz, 2H).¹³C NMR (126 MHz, Chloroform-d) δ 195.6, 191.6, 138.7, 137.0, 136.5, 135.6, 133.1, 132.8, 131.5, 130.2, 129.4, 128.7. LRMS (ESI) calcd. for C₁₄H₁₀O₂ [M+H]: 211.25, found: 211.32.

4-(4-Fluorobenzoyl) benzaldehyde (2c)

![Structural formula of 4-(4-Fluorobenzoyl) benzaldehyde](image)

Isolated Yield: 36.9 mg, 81%;¹H NMR (500 MHz, Chloroform-d) δ 10.13 (s, 1H), 8.01 (d, J = 7.9 Hz, 2H), 7.90 (d, J = 7.6 Hz, 2H), 7.86 (dd, J = 8.3, 5.3 Hz, 2H), 7.19
(t, J = 8.3 Hz, 2H). \[^{13}\text{C NMR}\] (126 MHz, Chloroform-\text{d}) \[\delta\] 194.4, 191.7, 166.9, 164.9, 142.6, 138.6, 133.1, 132.9, 132.9, 130.3, 129.7, 116.0, 115.8. LRMS (ESI) calcd. for C\textsubscript{13}H\textsubscript{12}O\textsubscript{2} [M+H]: 229.25, found: 229.27.

4-(4-Methylbenzoyl) benzaldehyde (2d)

\[\text{H} \quad \text{O} \quad \begin{array}{c} \text{O} \\ \end{array} \quad \begin{array}{c} \text{C} \\ \end{array} \quad \begin{array}{c} \text{H} \\ \end{array} \]

Isolated Yield: 37.6 mg, 84%; \[^{1}\text{H NMR}\] (500 MHz, Chloroform-\text{d}) \[\delta\] 10.13 (s, 1H), 7.99 (d, J = 7.8 Hz, 2H), 7.90 (d, J = 7.9 Hz, 2H), 7.72 (d, J = 7.8 Hz, 2H), 7.30 (d, J = 7.8 Hz, 2H), 2.45 (s, 3H). \[^{13}\text{C NMR}\] (126 MHz, Chloroform-\text{d}) \[\delta\] 195.7, 191.8, 144.3, 143.1, 138.5, 134.5, 130.5, 130.3, 129.6, 129.4, 21.9. LRMS (ESI) calcd. for C\textsubscript{13}H\textsubscript{12}O\textsubscript{2} [M+H]: 225.25, found: 225.27.

Methyl 4-formylbenzoate (2e)

\[\text{H} \quad \text{O} \quad \begin{array}{c} \text{O} \\ \end{array} \quad \begin{array}{c} \text{C} \\ \end{array} \quad \begin{array}{c} \text{H} \\ \end{array} \]

Isolated Yield: 20.6 mg, 63%; \[^{1}\text{H NMR}\] (500 MHz, Chloroform-\text{d}) \[\delta\] 10.09 (s, 1H), 8.18 (d, J = 7.9 Hz, 2H), 7.94 (d, J = 7.9 Hz, 2H), 3.95 (s, 3H). \[^{13}\text{C NMR}\] (126 MHz, Chloroform-\text{d}) \[\delta\] 197.3, 191.7, 170.8, 137.6, 134.6, 133.3, 129.2, 128.4, 65.9, 26.8. LRMS (ESI) calcd. for C\textsubscript{9}H\textsubscript{8}O\textsubscript{3} [M+H]: 165.16, found: 165.20.

Ethyl 4-formylbenzoate (2f)

\[\text{H} \quad \text{O} \quad \begin{array}{c} \text{O} \\ \end{array} \quad \begin{array}{c} \text{C} \\ \end{array} \quad \begin{array}{c} \text{H} \\ \end{array} \]

Isolated Yield: 23.4 mg, 66%; \[^{1}\text{H NMR}\] (400 MHz, Chloroform-\text{d}) \[\delta\] 10.09 (s, 1H), 8.18 (d, J = 8.0 Hz, 2H), 7.94 (d, J = 8.1 Hz, 2H), 4.41 (q, J = 7.1Hz, 2H), 1.41 (t, J = 7.1Hz, 3H). \[^{13}\text{C NMR}\] (100 MHz, Chloroform-\text{d}) \[\delta\] 191.8, 165.7, 139.2, 135.6, 130.3, 129.6, 61.7, 14.4. LRMS (ESI) calcd. for C\textsubscript{9}H\textsubscript{8}O\textsubscript{3} [M+H]: 179.18, found: 179.21.
Methyl 3-formylbenzoate (2g)

\[
\text{H} \quad \text{O} \quad \text{O} \\
\text{C} \quad \text{C} \quad \text{C}
\]

Isolated Yield: 20.9 mg, 64%; 1H NMR (500 MHz, Chloroform-\text{d}) \(\delta\) 10.07 (s, 1H), 8.52 (s, 1H), 8.29 (d, \(J = 7.7\) Hz, 1H), 8.08 (d, \(J = 8.1\) Hz, 1H), 7.62 (t, \(J = 7.9\) Hz, 1H), 3.96 (s, 3H). 13C NMR (126 MHz, Chloroform-\text{d}) \(\delta\) 191.5, 136.7, 135.3, 133.2, 131.4, 129.4, 52.6. LRMS (ESI) calcd. for C\(_{10}\)H\(_{10}\)O\(_3\) [M+H]: 165.16, found: 165.19.

Ethyl 2-formylbenzoate (2h)

\[
\text{O} \quad \text{O} \\
\text{H} \quad \text{O}
\]

Isolated Yield: 23.4 mg, 66%; 1H NMR (500 MHz, Chloroform-\text{d}) \(\delta\) 10.63 (s, 1H), 7.96 (dt, \(J = 20.2, 4.8\) Hz, 2H), 7.68 – 7.61 (m, 2H), 4.45 (q, \(J = 7.2\) Hz, 2H), 1.43 (t, \(J = 7.2\) Hz, 3H). 13C NMR (126 MHz, Chloroform-\text{d}) \(\delta\) 192.3, 165.5, 137.2, 133.1, 132.6, 132.4, 130.5, 128.5, 62.1, 14.4. LRMS (ESI) calcd. for C\(_{10}\)H\(_{10}\)O\(_3\) [M+H]: 179.23, found: 179.22.

Methyl 5-bromo-2-formylbenzoate (2i)

\[
\text{Br} \quad \text{H} \quad \text{O} \quad \text{O} \\
\text{C} \quad \text{C} \quad \text{C}
\]

Isolated Yield: 36.4 mg, 75%; 1H NMR (500 MHz, Chloroform-\text{d}) \(\delta\) 10.58 (s, 1H), 8.13 (s, 1H), 7.81 (q, \(J = 8.2\) Hz, 2H), 3.99 (s, 3H). 13C NMR (126 MHz, Chloroform-\text{d}) \(\delta\) 191.1, 165.5, 135.7, 133.6, 130.1, 128.2, 53.2. LRMS (ESI) calcd. for C\(_9\)H\(_7\)BrO\(_3\) [M+H]: 244.09, found: 244.12.

Methyl 5-chloro-2-formylbenzoate (2j)
Isolated Yield: 28.4 mg, 72%; 1H NMR (500 MHz, Chloroform-d) δ 10.58 (s, 1H), 7.96 (s, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 3.99 (s, 3H). 13C NMR (126 MHz, Chloroform-d) δ 191.2, 140.0, 135.6, 133.8, 133.0, 131.0, 130.4, 53.5. LRMS (ESI) calcd. for C$_9$H$_7$ClO$_3$ [M+H]: 199.70, found: 199.73.

Methyl 3-formyl-5-methylbenzoate (2k)

Isolated Yield: 24.7 mg, 65%; 1H NMR (500 MHz, Chloroform-d) δ 10.04 (s, 1H), 8.32 (s, 1H), 8.11 (s, 1H), 7.88 (s, 1H), 3.95 (s, 3H), 2.48 (s, 3H). 13C NMR (126 MHz, Chloroform-d) δ 192.0, 166.6, 139.9, 137.0, 136.3, 133.8, 131.5, 129.3, 52.8, 21.5. LRMS (ESI) calcd. for C$_{11}$H$_{12}$O$_3$ [M+H]: 179.23, found: 179.27.

3-Propionylbenzaldehyde (2l)

Isolated Yield: 20.4 mg, 63%; 1H NMR (500 MHz, Chloroform-d) δ 10.10 (s, 1H), 8.45 (s, 1H), 8.23 (d, J = 7.8 Hz, 1H), 8.08 (d, J = 7.6 Hz, 1H), 7.65 (t, J = 7.7 Hz, 1H), 3.07 (q, J = 7.3 Hz, 2H), 1.26 (t, J = 7.3 Hz, 3H). 13C NMR (126 MHz, Chloroform-d) δ 200.0, 191.7, 137.4, 134.4, 133.7, 133.6, 133.1, 129.9, 129.7, 129.4, 129.2, 32.2, 8.2. LRMS (ESI) calcd. for C$_{10}$H$_{10}$O$_3$ [M+H]: 163.20, found: 163.24.

4-Propionylbenzaldehyde (2m)
Isolated Yield: 21.8 mg, 67%; 1H NMR (500 MHz, Chloroform-d) δ 10.09 (s, 1H), 8.09 (d, J = 7.9 Hz, 2H), 7.96 (d, J = 7.9 Hz, 2H), 3.04 (q, J = 7.0 Hz, 2H), 1.23 (t, J = 7.3 Hz, 3H). 13C NMR (126 MHz, Chloroform-d) δ 200.3, 191.8, 141.2, 139.0, 129.9, 128.6, 32.5, 8.1. LRMS (ESI) calcd. for C$_{10}$H$_{10}$O$_2$ [M+H]: 163.21, found: 163.32.

9-Oxo-9H-fluorene-3-carbaldehyde (2n)

$$\begin{array}{c}
\text{O} \\
\text{H} \\
\text{H} \\
\end{array}$$

Isolated Yield: 28.7 mg, 69%; 1H NMR (500 MHz, Chloroform-d) δ 10.10 (s, 1H), 8.05 (s, 1H), 7.83 (s, 2H), 7.72 (d, J = 7.5 Hz, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.58 (t, J = 7.5 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H). 13C NMR (126 MHz, Chloroform-d) δ 192.9, 191.6, 145.1, 143.6, 141.1, 135.7, 134.2, 132.6, 130.1, 124.9, 124.7, 121.1, 119.7; LRMS (ESI) calcd. for C$_{15}$H$_8$O$_3$ [M+H]: 209.22, found: 209.25.

4-Nitrobenzaldehyde (2o)

$$\begin{array}{c}
\text{H} \\
\text{O} \\
\end{array}$$

Isolated Yield: 18.4 mg, 61%; 1H NMR (500 MHz, Chloroform-d) δ 10.16 (s, 1H), 8.40 (d, J = 8.1 Hz, 2H), 8.08 (d, J = 8.2 Hz, 2H). 13C NMR (126 MHz, Chloroform-d) δ 190.4, 151.3, 140.2, 130.6, 124.5. LRMS (ESI) calcd. for C$_7$H$_5$NO$_3$ [M+H]: 152.14, found: 152.17.

3-Nitrobenzaldehyde (2p)

$$\begin{array}{c}
\text{H} \\
\text{O} \\
\end{array}$$

Isolated Yield: 18.4 mg, 61%; 1H NMR (500 MHz, Chloroform-d) δ 10.12 (s, 1H), 8.71 (s, 1H), 8.49 (d, J = 8.2 Hz, 1H), 8.24 (d, J = 7.5 Hz, 1H), 7.77 (t, J = 7.8 Hz, 1H). 13C NMR (126 MHz, Chloroform-d) δ 189.9, 148.9, 137.5, 134.8, 130.5, 128.7, 124.6. LRMS (ESI) calcd. for C$_7$H$_5$NO$_3$ [M+H]: 152.14, found: 152.16.

4-Acetylbenzaldehyde (2q)
Isolated Yield: 20.7 mg, 70%; 1H NMR (500 MHz, Chloroform-\textit{d}) δ 10.10 (s, 1H), 8.09 (d, $J = 7.9$ Hz, 2H), 7.97 (d, $J = 7.8$ Hz, 2H), 2.65 (s, 3H). 13C NMR (126 MHz, Chloroform-\textit{d}) δ 197.6, 191.8, 141.3, 139.2, 130.0, 129.0, 27.1. LRMS (ESI) calcd. for C$_9$H$_8$O$_2$ [M+H]: 149.17, found: 149.18.

4-chlorobenzaldehyde (2r)

Isolated Yield: 22.4 mg, 82%; 1H NMR (500 MHz, Chloroform-\textit{d}) δ 9.92 (s, 1H), 7.76 (d, $J = 8.0$ Hz, 2H), 7.44 (d, $J = 8.0$ Hz, 2H). 13C NMR (126 MHz, Chloroform-\textit{d}) δ 190.77, 140.84, 134.73, 130.86, 129.40. LRMS (ESI) calcd. for C$_7$H$_5$ClO [M+H]: 140.00, found: 140.02.

4-bromobenzaldehyde (2s)

Isolated Yield: 32.8 mg, 90%; 1H NMR (500 MHz, Chloroform-\textit{d}) δ 9.93 (s, 1H), 7.70 (d, $J = 8.0$ Hz, 2H), 7.62 (d, $J = 8.0$ Hz, 2H). 13C NMR (126 MHz, Chloroform-\textit{d}) δ 191.03, 135.11, 132.43, 130.97, 129.72. LRMS (ESI) calcd. for C$_7$H$_5$ClO [M+H]: 183.95, found: 183.92.

3-chlorobenzaldehyde (2t)

Isolated Yield: 21.2 mg, 75%; 1H NMR (500 MHz, Chloroform-\textit{d}) δ 9.97 (s, 1H), 7.85 (s, 1H), 7.76 (d, $J = 7.5$ Hz, 1H), 7.59 (d, $J = 8.0$ Hz, 1H), 7.48 (t, $J = 7.9$ Hz, 1H). 13C NMR (126 MHz, Chloroform-\textit{d}) δ 190.93, 137.96, 135.59, 134.51, 130.50, 129.42, 128.09. LRMS (ESI) calcd. for C$_7$H$_5$ClO [M+H]: 140.00, found: 140.02.
When 4,4-dimethyl-benzophenone was performed at the low temperature (40 °C), the corresponding intermediate B was observed by the LC-MS. We found that the intermediate B had the same retention time with the starting material, and the LC-MS data was presented as the following (see Figure 1 and Figure 2).

Figure 1 The liquid Chromatography of 4,4'-dimethyl-benzophenone oxidation

Figure 2 The MS data of 4,4'-dimethyl-benzophenone (6.66 min peak)
