The Effect of Eccentric Retraining on Sensation of Muscle Pain and Delay Onset Muscle Soreness Markers on Sedentary Young Men

Ali Forutan Ghojebiglo1, Marefat Siahkohian1, *Leila Fasihi2

1. Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.
2. Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Allameh Tabataba’i University, Tehran, Iran.

ABSTRACT

Background and Aims: Due to the concerns among trainers about relieving muscle pain as soon as possible, this study aimed to investigate the effect of eccentric retraining on muscle pain and Delay Onset Muscle Soreness (DOMS) markers in sedentary young men.

Method: In this study, sixteen inactive healthy young men voluntarily and after written informed consent. Subjects were randomly divided into control (n=8) and experimental (n=8) groups. Both groups performed seventy eccentric contractions in the flexor elbow muscles with 80% of maximal repetition. Muscular pain perception, serum levels of Creatine Kinase (CK), and Lactate Dehydrogenase (LDH) indices were measured before, one, 26, 48 and 72 hours after eccentric training. Independent t-test and Repeated measure analysis variance in the significant level of P≤0.05 used for data analysis.

Results: The sensation of muscle pain and creatine kinase in both groups increased significantly after exercise (P≤0.05), lactate dehydrogenase level was increased in both groups. Still, this increase was not significant (P>0.05). Also, no significant difference in the CK and LDH and pain perception in the measurement stage between the two groups was observed (P>0.05).

Conclusion: This study results showed that retraining isn’t an essential influential variable on muscle pain and DOMS markers. However, more research needs to be done in this area.

Extended Abstract

1. Introduction

Delayed Onset Muscle Soreness (DOMS) is a natural physiological response to unusual physical activity or increased exercise intensity, especially in eccentric resistance activities, which manifests itself in pain, swelling, and decreased range of motion, decreased muscle strength, and discomfort. DOMS appears during the first 24 hours after exercise and peaks between 24 and 72 hours, and takes five to seven days to disappear. Feelings of pain and discomfort associated with muscle soreness can impair athletic performance in training and competitions.

Treatment and prevention of it have become one of the biggest concerns of coaches, practitioners, and sports physiotherapists, so researchers in different ways (Massage, ice massage, vibration, and stimulation of the subcutaneous nerve using exercise) tried to relieve the pain and discomfort associated with the soreness as quickly as possible. But
because the main cause and mechanism of this phenomenon are not yet known precisely, the results of applying these methods can be different.

“Re-training” has been studied as a treatment for the effects of muscle soreness, and researchers have recently reported that re-training significantly reduces the incidence of symptoms or indicators of muscle damage, a phenomenon known as the “repetitive phase effect”, which refers to the effect of muscle adaptation to eccentric exercise. Re-training has been reported to be associated with less destruction of muscle myofibrils, decreased creatine kinase and lactate dehydrogenase enzymes in the blood, and less muscle swelling. Also, the general advice regarding re-training in the period of muscle injury is to avoid stimulating the injured muscle and activity at this time. However, most previous studies have shown the effect of less intense re-training or re-training other than the initial training (eccentric training with concentric re-training) or re-training of two types of muscle contraction simultaneously (simultaneously concentric and eccentric).

Only a few studies have examined the effect of eccentric re-training (exactly the same training and re-training). This limited number did not specify which type of muscle contraction is better for extrinsic exercise-induced muscle injury in practical situations. Still, the effect of eccentric re-training on the healing process of trained muscles is ambiguous. It needs further investigation and research, so this study aimed to investigate the impact of enzyme re-training 24 hours after initial training on muscle soreness and serum levels of Creatine Kinase (CK) and Lactate Dehydrogenase (LDH) enzymes.

2. Methods

The present study was quasi-experimental. The statistical population of this study consisted of all inactive healthy students of Mohaghegh Ardabili University with ages ranging from 19-24 years who have not participated in any regular sports activities in the last 2 years. Finally, 16 eligible individuals formed the statistical sample of this study and were randomly divided into two groups: control (eccentric training, n=8) and experimental group (eccentric training and re-training, n=8). At first, during a face-to-face meeting, they were provided with comprehensive information about the research objectives, blood sampling steps, possible risks, and pain after the training program. Then they completed the consent form to participate in the research.

The training session for the experimental group was as follows: first, they warmed-up 10 minutes (including five minutes of walking and jogging and five minutes of soft stretching movements of the hand and shoulder girdle). Then, to perform eccentric contractions, the subjects of both groups placed their non-superior hand on the table, respectively, and performed 70 eccentric contractions in seven periods of 10 repetitions. Each contraction was 80% of the maximum repetition of each subject. The subjects of the eccentric re-training group performed the same protocol after 24 hours. It should be noted that the control group did not participate in any sports activities during the study. Blood samples were taken to measure CK and LDH enzymes at baseline and then at intervals of one, 26, 48, and 72 hours after the protocol. The Visual Analog Scale (VAS) was used to measure the sensation of muscle pain.

On this scale, a 10 cm graduated horizontal line was drawn on a piece of paper with no pain at the beginning (zero cm) and the most severe pain at the end (10 cm). The subject was then asked with the help of a muscle researcher. Gently stretch the target, indicating the amount of muscle pain felt by a number that best describes it. Shapiro-Wilk statistic test was used to check the normality of data distribution. After confirming the normality of the data, the statistical test of analysis of variance in repeated measures was used to examine the differences between different sampling stages. If significant, the Bonferroni post hoc test was used to determine the differences between different sampling stages. An independent t-test was also used to compare the results of the two groups at each time stage. All calculations were performed using SPSS v. 21 software, at a significance level of P<0.05.

3. Results

The independent t-test showed no significant difference between the control and experimental groups regarding changes in muscle pain and CK at intervals of one, 26, 48, and 72 hours after activity (P>0.05). Also, the results of intragroup effects using the Bonferroni post hoc test in the experimental group showed no significant differences in changes in muscle pain sensation, serum CK and LDH levels between the two groups at different post-workout measurements (P>0.05).

4. Discussion and Conclusion

The results of this study showed that performing extroverted retraining did not have a significant effect on the perception of muscle pain and levels of biochemical markers of creatine kinase and lactate dehydrogenase and did not lead to adaptation, so it can be suggested that an eccentric re-training phase 24 hours after Initial exercise can’t be an essential variable affecting the amount of pain and indicators of DOMS. However, more research needs to be done.
Ethical Considerations

Compliance with ethical guidelines

All ethical principles are considered in this article.

Funding

This study was extracted from the MSc. thesis of the first author at the Department of Exercise Physiology of Mohaghegh Ardabili University.

Authors’ contributions

Authors contributed equally in preparing this article.

Conflict of interest

The authors declared no conflict of interest.

Acknowledgments

The authors thank Mohaghegh Ardabili University and the subjects who volunteered to participate in the study.
مقاله پژوهشی

تأثیر تمرین مجدد برون گرا بر احساس درد و شاخص‌های کوفتگی عضلانی تأخیری در مردان جوان غیر فعال

به یک یا چند ساعت از تمرین اولیه بر اساس درد و شاخص‌های کوفتگی عضلانی تأخیری در مردان جوان غیر فعال سالم به صورت داوطلبانه در این مطالعه شرکت کردند. آزمودنی‌ها به صورت تصادفی به دو گروه 16 نفری تقسیم گردیدند. هر دو گروه 8 نفری کنترل و آزمایش بودند. میزان احساس درد عضلانی و کراتین کیناز در هر دو گروه، بعد از فعالیت افزایش معنی‌داری یافت. در بررسی تغییرات احساس درد عضلانی، کراتین کیناز و لاکتات دهیدروژناز نیز در هر دو گروه افزایش یافت، اما معنی‌دار نبود.

کلیدواژه‌های: ورزش، تمارین، کوفتگی عضلانی، تمرین، تمرین درمانی

لیلا فصیحی*

*نویسنده مسئول: لیلا فصیحی

نتیجه‌گیری

لیلا فصیحی

مقدمه

انواع مختلف تمرین با توجه به بار، فرکانس، شدت و هماهنگی، تغییرات مختلفی در عضله ایجاد می‌کنند که در برنامه ریزی درمان فیزیکی نیز فیزیک شناسی‌ها و عملکرد مربی‌ها در تمرین‌های فیزیکی، اهمیت بیشتری گرفت. همچنین در برنامه‌های تمرینی که به خصوص در مراحل پایانی انجام می‌شوند برای تحمل نیروهای همکاری و ضربه به خصوص در توانبخشی ورزشی، تمرین درمانی عضله آسیب دیده ضروری است. به علاوه، در سایر موارد که افراد غیرورزشکار و غیرفعال نیازمند افزایش توان و کارایی عضلات خود هستند از اهمیت وافری برخوردار هستند. اما در کنار کسب قدرت و بازتوانی عضله با مواردی همچون عدم توانایی آهسته در ایجاد حداکثر لیوری اتاق و افزایش درد عضلانی مواجه می‌شوند. [1]

کوفتگی عضلانی تأخیری یک پاسخ فیزیولوژیک طبیعی به

1. Delay onset muscle soreness

فوتودسترس

لیلا فصیحی

کارشناسی

دکتر حسن معلم، دکتر سید علی سعیدی، دکتر سیدرجی، دکتر ضربانی و دکتر سیدرجی وزارت، دکتر سیدرجی وزارت.
به فضای میان بافتی و خون شود. هرگونه داروی تأثیر گذار بر نتیجه تحقیق خودداری کنند. سپس شد در طول دوره پژوهش از انجام فعالیت های شدید و مصرف انجام برنامه تمرینی در اختیار آن ها قرار گرفت و به آن ها توصیه مراحل خون‌گیری، خطرات احتمالی و نیز احساس درد بعد از یک جلسه حضوری، اطلاعات جامع و کاملی از اهداف تحقیق، شکستگی استخوان و بیماری های تنفسی نداشتند. در ابتدا طی نارسایی کبد، کلیه، دیابت، آسیب های حاد و مزمن عضلانی، هیچ یک از آزمودنی ها سابقه ابتلا به بیماری های قلبی عروقی نداشتند. بر پایه پرسش نامه های اطلاعات فردي و تاریخچه پزشکی، نفر (نفر) یکم از دانشجویان جهت شرکت در این پژوهش را کلیه دانشجویان غیرفعال دانشگاه محقق اردبیلی موظف کرد. جامعه آماری این پژوهش را تشکیل دادند که به طور منظم در هیچ فعالیت ورزشی شرکت نکرده بودند. پس سال تشکیل دادند که در دو سال گذشته بیماری های عروقی و قلبی، خون‌گیری، گرتوغیل و عروقی، سلام و پایداری تمرین ورزشی را تا حدی نمی‌تواند تمرین مشابه در دو سال گذشته به پایان نرساند که در کلیه دانشجویان غیرفعال دانشگاه محقق اردبیلی بیماری های قلبی و عروقی وجود نداشت. در این مطالعه تأثیر تمرین مجدد بر روی عضلات تمرین‌کرده نشان داد که تمرین مجدد باعث کاهش شکستگی استخوان و بیماری های تنفسی شد. احتمالاً این دانشجویان به عنوان یک ابزار جدی برای بهبود توانایی ورزشی بهبود می‌یافتند. این پدیده به عنوان اثر مرحله تکرارشده (Repeated bout effect) شناخته می‌شود که به اثر سازگاری این روش تمرین شناخته می‌شود. این اثر بر بیماری های قلبی عروقی و عروقی نشان داد که آسیب عروقی به دلیل تمرین مجدد ممکن است اثرات کاملاً منفی کوهتگی عضلانی موجب شود. برای ارزیابی این اثر، اثر تمرین مجدد درون گرا مورد مطالعه قرار گرفت و نتایج نشان داد که این اثر نسبت به اثر تمرین دو باره نسبت به اثر تمرین اولیه بهبودی بیشتری داشت. این پدیده به عنوان تأثیر مرحله تکرارشده دوم (Repeated bout effect) شناخته شد. این اثر به عنوان یک روش برای بهبود توانایی ورزشی و بهبود کاهش آن در بیماری های قلبی عروقی نیز شناخته می‌شود. این اثر به عنوان یک روش برای بهبود توانایی ورزشی و بهبود کاهش آن در بیماری های قلبی عروقی نیز شناخته می‌شود. این اثر به عنوان یک روش برای بهبود توانایی ورزشی و بهبود کاهش آن در بیماری های قلبی عروقی نیز شناخته می‌شود. این اثر به عنوان یک روش برای بهبود توانایی ورزشی و بهبود کاهش آن در بیماری های قلبی عروقی نیز شناخته می‌شود.
از گذشته 24 ساعت، مجدد همین پروتکل را اجرا کردند. لازم به ذکر است گروه کنترل در مدت زمان انجام پژوهش در هیچ فعالیت ورزشی شرکت نکردند.

نتایج تجزیه و تحلیل

پروتکل ایجادکننده کوفتگی عضلانی تأخیری (تمرین)

جلسه تمرین برای گروه آزمایشی بین 1 و 2 میلادی، در یک سه‌گروهی دو گروه تعمیر و تمرین صورت گرفت. 1) گروه تحلیلی که در این بازیکنان می‌تواند با سطح تمرین آزمودنی‌ها افزایش یافته باشد.

10. Visual Analog Scale (VAS)

9. Concentric exercise
تجزیه و تحلیل آماری

این مطالعه با استفاده از آزمون شاپیرو-ویلک جهت بررسی نرمال بودن توزیع داده‌ها اجرا شد. پس از اطمینان از نرمال بودن داده‌ها، برای 11 آزمون آماری تحلیل واریانس در اندازه‌گیری‌های مختلف برای بررسی تفاوت میان مراحل مختلف نمونه‌گیری (پیش آزمون با پس آزمون‌ها و پس آزمون‌ها با یکدیگر) و در صورت ملایمی بودن از آزمون تحلیل واریانس در اندازه‌گیری‌های مختلف بررسی تفاوت میان مراحل مختلف نمونه‌گیری استفاده شد. همچنین آزمون تحلیل واریانس در اندازه‌گیری‌های مختلف بررسی تفاوت میان مراحل مختلف نمونه‌گیری استفاده شد. همچنین آزمون تحلیل واریانس در اندازه‌گیری‌های مختلف بررسی تفاوت میان مراحل مختلف نمونه‌گیری استفاده شد. همچنین آزمون تحلیل واریانس در اندازه‌گیری‌های مختلف بررسی تفاوت میان مراحل مختلف نمونه‌گیری استفاده شد.
غلامرضا موسوی بهبهانی و همکاران. تأثیر تمرین مجدد برون گرای بر احساس درد و شاخص‌های کوفتگی عضلانی تأخیری در مردان جوان غیر فعال

جدول ۱. مقایسه میانگین و احتمال‌شهر منفی با استحکام در میزان خشک شدن، بال از تمرین، با ازدیاد می‌مستقیل و تی زوجی

مرحله فعالیت بدنی	میزان کراتین کیناز بر حسب واحد طول پوست (کیلوگرمی استخوان)	میزان کراتین کیناز بر حسب واحد طول پوست (کیلوگرمی استخوان)
گروه کنترل	طبق آزمون	طبق آزمون
پیش آزمون	0.050 ± 0.080	0.047 ± 0.075
یک ساعت بعد	0.075 ± 0.105	0.067 ± 0.098
سه ساعت بعد	0.067 ± 0.100	0.060 ± 0.096
چهار ساعت بعد	0.058 ± 0.095	0.053 ± 0.088
پنج ساعت بعد	0.049 ± 0.085	0.044 ± 0.078
سه ساعت بعد	0.044 ± 0.078	0.037 ± 0.071
چهار ساعت بعد	0.039 ± 0.074	0.033 ± 0.069
پنج ساعت بعد	0.034 ± 0.069	0.028 ± 0.064
سه ساعت بعد	0.029 ± 0.064	0.023 ± 0.059
چهار ساعت بعد	0.024 ± 0.059	0.018 ± 0.055
پنج ساعت بعد	0.019 ± 0.054	0.013 ± 0.050
سه ساعت بعد	0.014 ± 0.047	0.008 ± 0.043
چهار ساعت بعد	0.009 ± 0.042	0.003 ± 0.038
پنج ساعت بعد	0.004 ± 0.036	0.000 ± 0.031

اطلاعات مناسب، برای اینکه رابطه میانگین و استحکام خشک شدن، با استحکام درد و شاخص‌های کوفتگی عضلانی تأخیری در مردان جوان غیر فعال
یک تکرار بیشینه نسبت به گروه آزمایش اجرا گردیده است. بررسی نتایج تحقیق حاضر حاکی از آن است که در مقایسه درون گروهی، در هریک از مراحل مختلف زمانی اندازه‌گیری، از نظر آماری اختلاف معنی‌داری در پیش‌نشانه‌های لازم و نیاز برای کمک‌های خانوادگی، داشت. لازم بررسی شد که این اختلافات بین گروه‌های آزمایشی داشته و سپس روکش تولید نشان داد. این نتایج با نتایج مطالعه محمدی، همکاران و همکاران، هم‌وقت بود، ولی با نتایج پژوهش‌های ارازی، همکاران و همکاران، هم‌وقت نبود که ممکن است ناشی از این واقعیت باشد که لاکتات دهیدروژناز تحت تأثیر مدت زمان تمرین، تغذیه و مکمل‌های کمرنگ، تعداد حرکات و گروه عضلات دریافت.

از طرف دیگر، نتایج این مطالعه در مقایسه برون‌گرا نشان داد یک مرحله تمرین مجدد برون‌گرا بر میزان آنزیم لاکتات دهیدروژناز از نظر آماری تأثیر معنی‌داری ندارد. محمدی و همکاران گزارش کردند که میزان آنزیم لاکتات دهیدروژناز می‌تواند تحت تأثیر فواصل استراحتی قرار گیرد. همچنین گلدن و دودلی نشان دادند سازگاری که به دنبال تمرین مجدد به وجود می‌آید و عضله را نسبت به آسیب مجدد مقاومتر کرده است، ناشی از فراخوانی کارآمدتر واحد حرکتی است.

نتیجه‌گیری

به طور کلی، نتایج این مطالعه نشان داد اجرای تمرین مجدد بر میزان آنزیم لاکتات دهیدروژناز می‌تواند تحت تأثیر مدت زمان تمرین، تغذیه و مکمل‌های کمرنگ، تعداد حرکات و گروه عضلات دریافت. بنابراین می‌توان احتمال داد که بعد از ساعت از تمرین اولیه، سازگاری‌های عصبی در عضله به وجود آمده و عضله را نسبت به آسیب تمرین مجدد مقاومتر کرده است. بررسی تغییرات در فعالیت و فراخوانی واحد حرکتی، هنگامی که عضله توسط تمرین قبلی آسیب دیده است، به مطالعات بیشتری نیاز دارد.

نتیجه‌گیری

به طور کلی، نتایج این مطالعه نشان داد اجرای تمرین مجدد بر میزان آنزیم لاکتات دهیدروژناز می‌تواند تحت تأثیر مدت زمان تمرین، تغذیه و مکمل‌های کمرنگ، تعداد حرکات و گروه عضلات دریافت. بنابراین می‌توان احتمال داد که بعد از ساعت از تمرین اولیه، سازگاری‌های عصبی در عضله به وجود آمده و عضله را نسبت به آسیب تمرین مجدد مقاومتر کرده است. بررسی تغییرات در فعالیت و فراخوانی واحد حرکتی، هنگامی که عضله توسط تمرین قبلی آسیب دیده است، به مطالعات بیشتری نیاز دارد.

مرحله فعالیت سیطره	گروه آزمایش	گروه کنترل
پیش آزمون	379±44	360±63
یک ساعت بعد	420±35	411±90
سه ساعت بعد	439±32	413±78
۵ ساعت بعد	448±84	392±62

میزان لاکتات دهیدروژناز برحسب واحد بین‌المللی لیتر (میانگین±انحراف معیار) در گروه‌های آزمایش و کنترل.

نتیجه‌گیری

به طور کلی، نتایج این مطالعه نشان داد اجرای تمرین مجدد بر میزان آنزیم لاکتات دهیدروژناز می‌تواند تحت تأثیر مدت زمان تمرین، تغذیه و مکمل‌های کمرنگ، تعداد حرکات و گروه عضلات دریافت. بنابراین می‌توان احتمال داد که بعد از ساعت از تمرین اولیه، سازگاری‌های عصبی در عضله به وجود آمده و عضله را نسبت به آسیب تمرین مجدد مقاومتر کرده است. بررسی تغییرات در فعالیت و فراخوانی واحد حرکتی، هنگامی که عضله توسط تمرین قبلی آسیب دیده است، به مطالعات بیشتری نیاز دارد.

نتیجه‌گیری

به طور کلی، نتایج این مطالعه نشان داد اجرای تمرین مجدد بر میزان آنزیم لاکتات دهیدروژناز می‌تواند تحت تأثیر مدت زمان تمرین، تغذیه و مکمل‌های کمرنگ، تعداد حرکات و گروه عضلات دریافت. بنابراین می‌توان احتمال داد که بعد از ساعت از تمرین اولیه، سازگاری‌های عصبی در عضله به وجود آمده و عضله را نسبت به آسیب تمرین مجدد مقاومتر کرده است. بررسی تغییرات در فعالیت و فراخوانی واحد حرکتی، هنگامی که عضله توسط تمرین قبلی آسیب دیده است، به مطالعات بیشتری نیاز دارد.

نتیجه‌گیری

به طور کلی، نتایج این مطالعه نشان داد اجرای تمرین مجدد بر میزان آنزیم لاکتات دهیدروژناز می‌تواند تحت تأثیر مدت زمان تمرین، تغذیه و مکمل‌های کمرنگ، تعداد حرکات و گروه عضلات دریافت. بنابراین می‌توان احتمال داد که بعد از ساعت از تمرین اولیه، سازگاری‌های عصبی در عضله به وجود آمده و عضله را نسبت به آسیب تمرین مجدد مقاومتر کرده است. بررسی تغییرات در فعالیت و فراخوانی واحد حرکتی، هنگامی که عضله توسط تمرین قبلی آسیب دیده است، به مطالعات بیشتری نیاز دارد.

نتیجه‌گیری

به طور کلی، نتایج این مطالعه نشان داد اجرای تمرین مجدد بر میزان آنزیم لاکتات دهیدروژناز می‌تواند تحت تأثیر مدت زمان تمرین، تغذیه و مکمل‌های کمرنگ، تعداد حرکات و گروه عضلات دریافت. بنابراین می‌توان احتمال داد که بعد از ساعت از تمرین اولیه، سازگاری‌های عصبی در عضله به وجود آمده و عضله را نسبت به آسیب تمرین مجدد مقاومتر کرده است. بررسی تغییرات در فعالیت و فراخوانی واحد حرکتی، هنگامی که عضله توسط تمرین قبلی آسیب دیده است، به مطالعات بیشتری نیاز دارد.

نتیجه‌گیری

به طور کلی، نتایج این مطالعه نشان داد اجرای تمرین مجدد بر میزان آنزیم لاکتات دهیدروژناز می‌تواند تحت تأثیر مدت زمان تمرین، تغذیه و مکمل‌های کمرنگ، تعداد حرکات و گروه عضلات دریافت. بنابراین می‌توان احتمال داد که بعد از ساعت از تمرین اولیه، سازگاری‌های عصبی در عضله به وجود آمده و عضله را نسبت به آسیب تمرین مجدد مقاومتر کرده است. بررسی تغییرات در فعالیت و فراخوانی واحد حرکتی، هنگامی که عضله توسط تمرین قبلی آسیب دیده است، به مطالعات بیشتری نیاز دارد.

نتیجه‌گیری

به طور کلی، نتایج این مطالعه نشان داد اجرای تمرین مجدد بر میزان آنزیم لاکتات دهیدروژناز می‌تواند تحت تأثیر مدت زمان تمرین، تغذیه و مکمل‌های کمرنگ، تعداد حرکات و گروه عضلات دریافت. بنابراین می‌توان احتمال داد که بعد از ساعت از تمرین اولیه، سازگاری‌های عصبی در عضله به وجود آمده و عضله را نسبت به آسیب تمرین مجدد مقاومتر کرده است. بررسی تغییرات در فعالیت و فراخوانی واحد حرکتی، هنگامی که عضله توسط تمرین قبلی آسیب دیده است، به مطالعات بیشتری نیاز دارد.
ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش

در اجرای پژوهش ملاحظات اخلاقی مطابق با دستورالعمل کمیته اخلاق دانشگاه محقق پژوهشی در نظر گرفته شده و کد اخلاقی به شماره 301.396.1396.301 ایراندانشگاه محقق اردبیلی ارائه گردیده است.

حامی مالی

ابن مطالعه برگرفته از پایان نامه نویسنده اول در گروه فیزیولوژی ورزشی دانشگاه علوم تربیتی و روانشناسی، دانشگاه محقق اردبیلی و اردبیل است.

مشارکت ویژه‌ها

تجمع مطالعه در آماده‌سازی این مقاله مشارکت یکسان بوده است.

تعارض منافع

بنابر اظهار نویسنده این مقاله تعارض منافع ندارد.

تشکر و قدردانی

از دانشگاه محقق اردبیلی برای حمایت‌های مهم‌ال抵ه تشکر و قدردانی می‌شود.

علی فروتن قوچه بیگلو و همکاران. تأثیر تمرین تجدیدی بر احساس درد و شاخص‌های کوفتگی عضلانی تأخیری در مردان جوان غیر فعال
References

[1] Timmons JA. Variability in training-induced skeletal muscle adaptation. Journal of Applied Physiology. 2011; 110(3):846-53. [DOI:10.1152/japplphysiol.00934.2010] [PMID] [PMCID]

[2] Hagen KB, Dagfinrud H, Moe RH, Østerås N, Kjeken I, Grotte M, et al. Exercise therapy for bone and muscle health: An overview of systematic reviews. BMC Medicine. 2012; 10:167. [DOI:10.1186/1741-7015-10-167] [PMID] [PMCID]

[3] Frimpong E, Ofori EK, Kaoje YS, Ababio E, Dzudzor B. Muscle Damage and repeated bout effect from high intensity non-eccentric exercises. Journal of Exercise Physiology Online. 2019; 22(5):126-39. https://www.asep.org/asep/asep/JEPOctober2019_Frimpong.pdf

[4] Kang MS, Kim J, Lee J. Effect of different muscle contraction interventions using an isokinetic dynamometer on muscle recovery following muscle injury. Journal of Exercise Rehabilitation. 2018; 14(6):1080-4. [DOI:10.12965/jer.1836440.220] [PMID] [PMCID]

[5] Nieman DC, Henson DA, McAnulty SR, McAnulty L, Swick NS, Utter AC, et al. Influence of vitamin C supplementation on oxidative and immune changes after an ultramarathon. Journal of Applied Physiology. 2002; 92(5):1970-5. [DOI:10.1152/japplphysiol.00961.2001] [PMID]

[6] Barlas P, Craig JA, Robinson J, Walsh DM, Baxter GD, Allen JM. Managing delayed-onset muscle soreness: Lack of effect of selected oral systemic angesics. Archives of Physical Medicine and Rehabilitation. 2000; 81(7):966-72. [DOI:10.1053/apmr.2000.6277] [PMID]

[7] Howatson G, Van Someren KA. The assessment and treatment of exercise-induced muscle damage. Sports Medicine. 2008; 38(6):483-503. [DOI:10.2165/00007256-200838060-00004] [PMID]

[8] Cleary MA, Kimura IF, Stitzer MR, Kendrick ZV. Temporal pattern of the repeated bout effect of eccentric exercise on delayed-onset muscle soreness. Journal of Athletic Training. 2002; 37(1):32-6. [DOI:10.4320/164305.1293.7441]

[9] Hessel AL, Lindstedt SL, Nishikawa KC. Physiological mechanisms of eccentric contraction and its applications: A role for the giant titin protein. Frontiers in Physiology. 2017; 8:70. [DOI:10.3389/fphys.2017.00070] [PMID]

[10] Macaluso F, Isaacs AW, Myburgh KH. Preferential type II muscle fiber damage from plyometric exercise. Journal of Athletic Training. 2012; 47(4):414-20. [DOI:10.4085/1062-6050-47.4.13] [PMID] [PMCID]

[11] Margaritellas NV, Theodorou AA, Baltzopoulos V, Maganaris CN, Paschalis V, Kyparos A, et al. Muscle damage and inflammation after eccentric exercise: Can the repeated bout effect be removed? Physiological Reports. 2015; 3(12):e12648. [DOI:10.14814/phy2.12648] [PMID] [PMCID]

[12] Armstrong R. Mechanisms of exercise-induced delayed onset muscular soreness: A brief review. Medicine and Science in Sports and Exercise. 1984; 16(6):529-38. [DOI:10.1249/00005768-198412000-00002]

[13] Mellinger S, Neurohr GA. Evidence based treatment options for common knee injuries in runners. Annals of Translational Medicine. 2019; 7(27):S249. [DOI:10.21037/atm.2019.04.08] [PMID] [PMCID]

[14] Reimer III RC, Wikstrom EA. Functional fatigue of the hip and ankle musculature cause similar alterations in single leg stance postural control. Journal of Science and Medicine in Sport. 2010; 13(1):161-6. [DOI:10.1016/j.jsams.2009.01.001]

[15] Hyldahl RD, Chen TC, Nosaka K. Mechanisms and mediators of the skeletal muscle repeated bout effect. Exercise and Sport Sciences Reviews. 2017; 45(1):24-33. [DOI:10.1249/JES.0000000000000095] [PMID]

[16] Donnelly AE, Clarkson PM, Maughan RJ. Exercise-induced muscle damage: Effects of light exercise on damaged muscle. European Journal of Applied Physiology and Occupational Physiology. 1992; 64(4):350-3. [DOI:10.1007/BF00636223] [PMID]

[17] Sorichter S, Koller A, Haid C, Wicke K, Judmaier W, Werner P, et al. Light concentric exercise and heavy eccentric muscle loading: Effects on CK, MRI and markers of inflammation. International Journal of Sports Medicine. 1995; 16(S):288-92. [DOI:10.1055/s-2007-937007] [PMID]

[18] Lohman TG. Advances in body composition assessment. Champaign: Human Kinetics Publishers; 1992. https://books.google.com/books/about/Advances_in_Body_Composition_Assessment.html?id=euuUMQEACAAJ&source=kp_book_description

[19] Nejatmand N, Ramezani A, Barati AH. [Effect of Consumption short-term CoQ10 supplementation on markers of delayed onset muscle soreness (Persian)]. Razi Journal of Medical Sciences. 2014; 21(119):77-85. http://rjms.iums.ac.ir/article-1-3105-en.html

[20] BrycKi M. Strength testing-predicting a one-rep max from reps-to-fatigue. Journal of Physical Education, Recreation & Dance. 1993; 64(1):88-90. [DOI:10.1080/073038084.1993.10606684]

[21] Latella C, Goodwill AM, Muthalib M, Hendy AM, Major B, Nozaka K, et al. Effects of eccentric versus concentric contractions of the biceps brachii on intracortical inhibition and facilitation. Scandinavian Journal of Medicine & Science in Sports. 2019; 29(3):369-79. [DOI:10.1111/sms.13334] [PMID]

[22] Ebbeling CB, Clarkson PM. Muscle adaptation prior to recovery following eccentric exercise. European Journal of Applied Physiology and Occupational Physiology. 1990; 60(1):26-31. [DOI:10.1007/BF00572161] [PMID]

[23] Miles M, Clarkson P. Exercise-induced muscle pain, soreness, and cramps. The Journal of Sports Medicine and Physical Fitness. 1994; 34(3):203-16. [DOI:10.1086/jspm.780383]

[24] Hody S, Croisier J-L, Bury T, Register B, Leprince P. Eccentric muscle contractions: Risks and benefits. Frontiers in Physiology. 2019; 10:536. [DOI:10.3389/fphys.2019.00536] [PMID] [PMCID]

[25] Smith L, Fulmer M, Holbert D, McCammon MR, Hounard JA, Frazer D, et al. The impact of a repeated bout of eccentric exercise on muscular strength, muscle soreness and creatine kinase. British Journal of Sports Medicine. 1994; 28(4):267-71. [DOI:10.1136/bjsm.28.4.267] [PMID] [PMCID]
[26] Kim HT. Effect of hydroxytyrosol supplementation on muscle damage in healthy human following an acute bout of exercise [MSc. thesis]. Texas: The University of Texas at Austin; 2013. https://repositories.lib.utexas.edu/handle/2152/22280?show=full

[27] Newham D, Mills K, Quigley B, Edwards R. Pain and fatigue after concentric and eccentric muscle contractions. Clinical Science. 1983; 64(1):55-62. [DOI:10.1042/cs0640055] [PMID]

[28] Ebbeling CB, Clarkson PM. Exercise-induced muscle damage and adaptation. Sports Medicine. 1989; 7(4):207-34. [DOI:10.2165/00007256-198907040-00001] [PMID]

[29] Mohammadi H, Afzalpour ME, levary SHA. Response of creatine kinase and lactate dehydrogenase enzymes to rest interval between sets and set-repetition configuration during bouts of eccentric exercise. Interventional Medicine and Applied Science. 2018; 10(2):83-6. [DOI:10.1556/1646.10.2018.09] [PMID] [PMCID]

[30] Arazi H, Rahimi R. The effect of different rest intervals between multiple bench press bouts. South African Journal for Research in Sport, Physical Education and Recreation. 2011; 33(1):1-8. [DOI:10.4314/sajr.v33i1.65480]

[31] Mayhew DL, Thyfault JP, Koch AJ. Rest-interval length affects leukocyte levels during heavy resistance exercise. Journal of Strength and Conditioning Research. 2005; 19(1):16-22. [DOI:10.1519/R-14113.1] [PMID]

[32] Hosseini E, Daneshjoo A, Sahebozamani M, Behm D. The effects of fatigue on knee kinematics during unanticipated change of direction in adolescent girl athletes: A comparison between dominant and non-dominant legs. Sports Biomechanics. 2021:1-10. [DOI:10.1080/14763141.2021.1925732]

[33] Golden CL, Dudley GA. Strength after bouts of eccentric or concentric actions. Medicine and Science in Sports and Exercise. 1992; 24(8):926-33. [DOI:10.1249/00005768-199208000-00015]

[34] Kim J, Lee J. The relationship of creatine kinase variability with body composition and muscle damage markers following eccentric muscle contractions. Journal of Exercise Nutrition & Biochemistry. 2015; 19(2):123-9. [DOI:10.5717/jenb.2015.15061910] [PMID] [PMCID]

[35] Saka T, Akova B, Yazici Z, Sekir U, Gür H, Ozarda Y. Difference in the magnitude of muscle damage between elbow flexors and knee extensors eccentric exercises. Journal of Sports Science & Medicine. 2009; 8(1):107-15. [DOI:10.1373/jmed.24150563]