Graph Neural Networks: Architectures, Stability and Transferability

Luana Ruiz, Fernando Gama, and Alejandro Ribeiro

Abstract—Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs. They are presented here as generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters instead of banks of classical convolutional filters. Otherwise, GNNs operate as CNNs. Filters are composed with pointwise nonlinearities and stacked in layers. It is shown that GNN architectures exhibit equivariance to permutation and stability to graph deformations. These properties provide a measure of explanation respecting the good performance of GNNs that can be observed empirically. It is also shown that if graphs converge to a limit object, a graphon, GNNs converge to a corresponding limit object, a graphon neural network. This convergence justifies the transferability of GNNs across networks with different number of nodes.

Index Terms—Graph Neural Networks. Equivariance. Stability. Transferability. Graph Signal Processing. Graph Filters. Graphon Neural Networks.

I. INTRODUCTION

Graphs can represent lexical relationships in text analysis [1]–[3], product or customer similarities in recommendation systems [4]–[6], or agent interactions in multiagent robotics [7]–[9]. Although otherwise disparate, these application domains share the presence of signals associated with nodes – words, ratings or perception – out of which we want to extract some information – text categories, ratings of other products, or control actions. If data is available, we can formulate empirical risk minimization (ERM) problems to learn these data-to-information maps. However, it is a form of ERM in which a graph plays a central role in describing relationships between signal components. Therefore, one in which the graph should be leveraged. Graph Neural Networks (GNNs) are parametrizations of learning problems in general and ERM problems in particular that achieve this goal.

In any ERM problem we are given input-output pairs in a training set and we want to find a function that best approximates the input-output map according to a given risk (Sec. III). This function is later used to estimate the outputs associated with inputs that were not part of the training set. We say that the function has been trained and that we have learned to estimate outputs. This simple statement hides the well known fact that ERM problems are nonsensical unless we make assumptions on how the function generalizes from the training set to unobserved samples (Sec. III). We can, for instance, assume that the map is linear, or, to be in tune with the times, that the map is a neural network [10].

A characteristic shared by arbitrary linear and fully connected neural network parametrizations is that they do not scale well with the dimensionality of the input signals. This is best known in the case of signals in Euclidean space – time and images – where scalable linear processing is based on convolutional filters and scalable nonlinear processing is based on convolutional neural networks (CNNs). In this paper we describe graph filters [11], [12] and graph neural networks [3], [13]–[16] as analogous of convolutional filters and CNNs, but adapted to the processing of signals supported on graphs (Sec. III). Both of these concepts are simple. A graph filter is a polynomial on a matrix representation of the graph. Out of this definition we build a graph perceptron with the addition of a pointwise nonlinear function to process the output of a graph filter (Sec. III-A). Graph perceptrons are composed – or layered – to build a multilayer GNN (Sec. III-B). And individual layers are augmented from single filters to filter banks to build multiple feature GNNs (Sec. III-C).

The relevant question at this juncture is whether graph filters and GNNs do for signals supported on graphs what convolutional filters and CNNs do for Euclidean data. To wit, do they enable scalable processing of signals supported on graphs? A growing body of empirical work shows that this is true to some extent – although results are not as impressive as is the case of voice and image processing. As an example that we can use to illustrate the advantages of graph filters and GNNs, consider a recommendation system (Sec. III-B) in which we want to use past ratings that customers have given to products to predict future ratings [17]. Collaborative filtering solutions build a graph of product similarities and interpret the ratings of separate customers as signals supported on the product similarity graph [4]. We then use past ratings to construct a training set and learn to fill in the ratings that a given customer would give to products not yet rated. Empirical results do show that graph filters and GNNs work in recommendation systems with large number of products in which linear maps and fully connected neural networks fail [4]–[6]. In fact, it is easy enough to arrive at three empirical observations that motivate this paper (Sec. III-D):

(O1) Graph filters produce better rating estimates than arbitrary linear parametrizations and GNNs produce better estimates than arbitrary (fully connected) neural networks.

(O2) GNNs predict ratings better than graph filters.

(O3) A GNN that is trained on a graph with a certain number of nodes can be executed in a graph with a larger number of nodes and still produce good rating estimates.
Observations (O1)-(O3) support advocacy for the use of GNNs, at least in recommendation systems. But they also spark three interesting questions: (Q1) Why do graph filters and GNNs outperform linear transformations and fully connected neural networks? (Q2) Why do GNNs outperform graph filters? (Q3) Why do GNNs transfer to networks with different number of nodes? In this paper we present three theoretical analyses that help to answer these questions:

Equivariance. Graph filters and GNNs are equivariant to permutations of the graph (Sec. III). **Stability.** GNNs provide a better tradeoff between discriminability and stability to graph perturbations (Sec. IV). **Transferability.** As graphs converge to a limit object, a graphon, GNN outputs converge to outputs of a corresponding limit object, a graphon neural network (Sec. V).

These properties show that GNNs have strong generalization potential. Equivariance to permutations implies that nodes with analogous neighbor sets making analogous observations perform the same operations. Thus, we can learn to, say, fill in the ratings of a product from the ratings of another product in another part of the network if the local structures of the graph are the same (Fig. 2). This helps explain why graph filters outperform linear transforms and GNNs outperform fully connected neural networks [cf. observation (O1)]. Stability to graph deformations affords a much stronger version of this statement. We can learn to generalize across different products if the local neighborhood structures are similar, not necessarily identical (Fig. 3). Since GNNs possess better stability than graph filters for the same level of discriminability, this helps explain why GNNs outperform graph filters [cf. observation (O2)]. The convergence of GNNs towards graphon neural networks delineated under the transferability heading explains why GNNs can be trained and executed in graphs of different sizes [cf. observation (O3)]. It is germane to note that analogous to these properties hold for CNNs. They are equivariant to translations and stable to deformations of Euclidean space (13) and have well defined continuous time limits.

We focus on a tutorial introduction to GNNs and on describing some of their fundamental properties. This focus renders several relevant questions out of scope. Most notably, we do not discuss training (19), (20). The role of proper optimization techniques, the selection of proper optimization objectives, and the realization of graph filters is critical in ensuring that the potential for generalization implied by equivariance, stability, and transferability is actually realized. References for the interested reader are provided in Sec. [1–A].

A. Context and Further Reading

The field of graph signal processing (GSP) has developed over the last decade (11), (21), (22). Central to developments in GSP is the notion of graph convolutional filters (11), (12), (21), (23), (24). GNNs arose as nonlinear extensions of graph filters, obtained by the addition of pointwise nonlinearities to the processing pipeline (13), (14), (15), (25). Several implementations of GNNs have been proposed. These include graph convolutional filters implemented in the spectral domain (13), implementations of graph filters with Chebyshev polynomials (3) and ordinary polynomials (14), (25). One can also encounter GNNs described in terms of local aggregation functions (15), (20). These can be seen as particular cases of GNNs that use graph filters of order 1, resulting in a parametrization with lower representation power than those in (3), (13), (14).

It is important to point out that the GNN implementations in (3), (13), (14) are equivalent in the sense that they span the exact same set of possible maps. Thus, although we use the polynomial description of (14), the results we present apply irrespectively of implementation. The architectures in (15), (26), being restricted to filters of order 1, span a subset of the maps that can be represented by the more generic GNNs in (3), (13), (14). Thus results also apply to (15), (26), except for discriminability discussions which require the use of higher order graph filters. Equivalence notwithstanding, different architectures may differ in their ease of training and, consequently, may lead to different performance in practice.

GNNs using linear transforms other than graph filters have also been proposed (10), (27), (29). Extension of nonlinearities to encompass neighborhood information is proposed in (28). Edge-varying filters (30) can be used to design edge-varying GNNs (16) and graph attention networks (27), (31). Architectures that leverage time dependencies are available in the form of graph recurrent neural networks (29), (32), (33). Results on permutation equivariance and stability that we present here are drawn from (34) and results on transferability are drawn from (35). Other important works on stability of GNNs appear in the context of graph scattering transforms (56), (57). Permutation equivariance is elementary to prove, but has nevertheless drawn considerable attention because of its practical importance (26), (56), (59). Our transferability analysis builds upon the concept of graphons and convergent graph sequences (40), (41) which have proven insightful when processing graph data (42), (44). In particular, GSP in the limit has given rise to the topic of graphon signal processing (35), (45), (46). An alternative transferability analysis relying on sampling generic topological spaces is also possible (47).

We do not discuss applications here except for recommendation systems (4), (5), which we use to illustrate ideas, but applications of GNNs abound. Some other problems where GNNs have been applied successfully are text categorization (3), (14) and clustering of citation networks (15), (27), (48). Of particular interest to the Electrical Engineering community are applications to cyberphysical systems such as power grids (49), decentralized collaborative control of multiagent robotic systems (7), (9) and wireless communication networks (50).

II. Machine Learning on Graphs

Consider a graph G composed of vertices $V = \{1, \ldots, n\}$, edges E defined as ordered pairs (i, j) and weights w_{ij} associated with edges. Our interest in this paper is on machine learning problems defined over this graph. Namely, we are given pairs (x, y) composed of an input graph signal $x \in \mathbb{R}^n$ and a target output graph signal $y \in \mathbb{R}^n$. That x and y are graph signals means that the components x_i and y_i are
associated with the ith node of the graph. The pair (x, y) is jointly drawn from a probability distribution $p(x, y)$ and our goal is to find a function $\Phi: \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that $\Phi(x)$ approximates y over the probability distribution $p(x, y)$. To do so we introduce the nonnegative loss function $\ell(\Phi(x), y) \geq 0$ such that $\ell(\Phi(x), y) = 0$ when $\Phi(x) = y$ in order to measure the dissimilarity between the output $\Phi(x)$ and the target output y. We can now define the function Φ^* that best approximates y as the one that minimizes the loss $\ell(\Phi(x), y)$ averaged over the probability distribution $p(x, y)$,

$$\Phi^* = \arg\min_{\Phi} \mathbb{E}[\ell(\Phi(x), y)] = \arg\min_{\Phi} \int \ell(\Phi(x), y) \, dp(x, y).$$

(1)

The expectation $\mathbb{E}[\ell(\Phi(x), y)]$ is said to be a statistical loss and (1) is termed a statistical loss minimization problem.

A critical condition to solve (1) is availability of the probability distribution $p(x, y)$. If this is known, the solution to (1) is to compute a posterior distribution that depends on the form of the loss function $\ell(\Phi(x), y)$. The whole idea of machine learning, though, is that $p(x, y)$ is not known. Instead, we have access to a collection of Q data samples (x_q, y_q) drawn from the distribution $p(x, y)$ which we group in the training set $\mathcal{T} := \{(x_q, y_q)\}_{q=1}^Q$. Assuming these samples are acquired independently and that the number of samples Q is large, a good approximation to the statistical loss in (1) is the empirical average $\hat{\ell}(\Phi) := (1/Q) \sum_{q=1}^Q \ell(\Phi(x_q), y_q)$.

Therefore, it is sensible to change our objective to search for a function Φ^* that minimizes the empirical average $\hat{\ell}(\Phi)$,

$$\Phi^* = \arg\min_{\Phi} \frac{1}{Q} \sum_{q=1}^Q \ell(\Phi(x_q), y_q).$$

(2)

We say that (2) is an empirical risk minimization (ERM) problem. The function Φ^* is the optimal empirical function associated with the training set \mathcal{T}.

A. Learning Parametrizations

Observe that the solution to (2) is elementary. Since $\ell(\Phi(x), y) = 0$ when $\Phi(x) = y$ and nonnegative otherwise, it suffices to make $\Phi(x_q) = y_q$ for all the observed samples x_q and some sort of average if the same input x_q is observed several times. This is as elementary as it is nonsensical. In fact, (2) only makes sense as a problem formulation if we have access to all possible samples x_q. But the interest in practice is to infer, or, to use the more common parlance, to learn, the value of y for samples x that have not been observed before.

This motivates the introduction of a learning parametrization \mathcal{H} that restricts the family of functions Φ that are admissible in (2). Thus, instead of searching over all $\Phi(x)$ we search over functions $\Phi(x; \mathcal{H})$ so that the ERM problem in (2) is replaced by the alternative ERM formulation,

$$\mathcal{H}^* = \arg\min_{\mathcal{H}} \frac{1}{Q} \sum_{q=1}^Q \ell(\Phi(x_q; \mathcal{H}), y_q).$$

(3)

A particular choice of parametrization is the set of linear functions of the form $\Phi(x; \mathcal{H}) = \mathbf{H}x$ in which case (2) becomes

$$\mathcal{H}^* = \arg\min_{\mathcal{H}} \frac{1}{Q} \sum_{q=1}^Q \ell(\mathbf{H}x_q, y_q).$$

(4)

Alternatively, one could choose $\Phi(x; \mathcal{H})$ to be a neural network, or, as we will advocate in Sec. III a graph filter or a GNN. The important point to highlight here is that the design of a machine learning system is tantamount to the selection of the proper learning parametrization. This is because in (3) the only choice left for a system designer is the class of functions $\Phi(x; \mathcal{H})$ spanned by different choices of \mathcal{H}. But, more importantly, this is also because the choice of parametrization determines how the function $\Phi(x; \mathcal{H})$ generalizes from (observed) samples in the training set $(x_q, y_q) \in \mathcal{T}$ to unobserved signals x.

B. Recommendation Systems

An example of ERM problem involving graph signals is a collaborative filtering approach to recommendation systems \[4\]. In a recommendation system, we want to predict the ratings that customers would give to a certain product using past ratings and consider the ratings of individual customers as graph signals supported on the nodes of the product graph.
Product similarity graph. Denote by x_{ci} the rating that customer c gives to product i. Typically, product i has been rated by a subset of customers which we denote C_i. We consider the sets of users $\mathcal{C}_{ij} = C_i \cap C_j$ that have rated products i and j and compute correlations

$$\sigma_{ij} = \frac{1}{|\mathcal{C}_{ij}|} \sum_{c \in \mathcal{C}_{ij}} (x_{ci} - \mu_{ij})(x_{cj} - \mu_{ji}), \quad (5)$$

where we use the average ratings $\mu_{ij} = (1/|\mathcal{C}_{ij}|) \sum_{c \in \mathcal{C}_{ij}} x_{ci}$ and $\mu_{ji} = (1/|\mathcal{C}_{ij}|) \sum_{c \in C_j} x_{cj}$. The product graph used in collaborative filtering is the one with normalized weights

$$w_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii} \sigma_{jj}}}. \quad (6)$$

A cartoon illustration of the product graph is shown in Fig. 2a. Nodes represent different products, edges stand in for product similarity, and signal components are the product ratings of a given customer. As is typical in practice, a small number of products have been rated.

Training set. To build a training set for this problem define the vector $x = [x_{c1} \ldots x_{cn}]$ where x_{ci} is the rating that user c gave to product i, if available, or $x_{ci} = 0$ otherwise. Further denote as \mathcal{I}_c the set of items rated by customer c. Let $i \in \mathcal{I}_c$ be a product rated by customer c and define the sparse vector y_{ci} whose unique nonzero entry is $[y_{ci}]_i = x_{ci}$. With these definitions we construct the training set

$$\mathcal{T} = \bigcup_{c, i \in \mathcal{I}_c} \{(x_{ci}, y_{ci}) : x_{ci} = x_c - y_{ci}\}. \quad (7)$$

The process of building an input-output pair of the training set is illustrated in Fig. 2b. In this particular example we isolate the rating that this customer gave to product $i = 3$. This rating is recorded into a graph signal with a single nonzero entry $[y_{c3}]_3 = x_{c3}$. The remaining nonzero entries define the rating input $x_{c3} = x_c - y_{c3}$. This process is repeated for all the products in the set $i \in \mathcal{I}_c$ of rated items of customer c and for all customers c.

Loss function. Our goal is to learn a map that will produce outputs y_{ci} when presented with inputs x_{ci}. E.g., in the case of Fig. 2 we want to present Fig. 2b as an input and fill in a rating of product $i = 3$ equal to the rating of product $i = 3$ in Fig. 2a. To do that we define the loss function

$$\ell(\Phi(x_{ci}; \mathcal{H}), y_{ci}) = \frac{1}{2} \left(e_i^T \Phi(x_{ci}; \mathcal{H}) - e_i^T y_{ci} \right)^2, \quad (8)$$

where the vector e_i is the ith entry of the canonical basis of \mathbb{R}^n. Since multiplying with e_i^T extracts the ith component of a vector, the loss in (8) compares the predicted rating $e_i^T \Phi(x_{ci}; \mathcal{H}) = [\Phi(x_{ci}; \mathcal{H})]_i$ with the observed rating $e_i^T y_{ci} = [y_{ci}]_i = x_{ci}$. At execution time, this map can be used to predict ratings of unrated products from the ratings of rated products.

If we encounter the signal in Fig. 2c during execution time we know the prediction will be accurate because we encountered this signal during training. If we are given the signals in Fig. 2c or Fig. 2d successful rating predictions depend on the choice of parametrization.

III. GRAPH NEURAL NETWORKS

As we explained in Sec. II-A the choice of parametrization determines the manner in which the function $\Phi(x; \mathcal{H})$ generalizes from elements of the training set to unobserved samples. A parametrization that is convenient for processing graph signals is a graph convolutional filter [11], [12], [21], [23].

To define this operation let \mathbf{S} denote a matrix representation of the graph and introduce a filter order K along with filter coefficients h_k that we group in the vector $\mathbf{h} = [h_1; \ldots; h_K]$. A graph convolutional filter applied to the graph signal x is a polynomial on this matrix representation,

$$u = \sum_{k=0}^K h_k \mathbf{S}^k x = \Phi(x; \mathbf{h}, \mathbf{S}), \quad (9)$$

where we have defined $\Phi(x; \mathbf{h}, \mathbf{S})$ in the second equality to represent the output of a graph filter with coefficients \mathbf{h} run on the matrix representation \mathbf{S} and applied to the graph signal x. The output $u = \Phi(x; \mathbf{h}, \mathbf{S})$ is also a graph signal. In the context of (9), the representation \mathbf{S} is termed a graph shift operator. If we need to fix ideas we will interpret \mathbf{S} as the adjacency matrix of the graph with entries $S_{ij} = w_{ij}$, but nothing really changes if instead we work with the Laplacian or normalized versions of the adjacency or Laplacian [22].

One advantage of graph filters is their locality. Indeed, we can define the diffusion sequence as the collection of graph signals $u_k = \mathbf{S}^k x$ to rewrite the filter in (9) as $u = \sum_{k=0}^K h_k u_k$. It is ready to see that the diffusion sequence is given by the recursion $u_k = \mathbf{S} u_{k-1}$ with $u_0 = x$. Further observing that $S_{ij} \neq 0$ only when the pair (i, j) is an edge of the graph, we see that the entries of the diffusion sequence satisfy

$$u_{k,i} = \sum_{j:(i,j)\in \mathcal{E}} S_{ij} u_{k-1,j}. \quad (10)$$

We can therefore interpret the graph filter in (9) as an operation that propagates information through adjacent nodes as we illustrate in Fig. 1. This is a property that graph convolutional filters share with regular convolutional filters in time and offers motivation for their use in the processing of graph signals.

In the context of machine learning on graphs, a more important property of graph filters is their equivariance to permutation. Use \mathbf{P} to denote a permutation matrix – entries P_{ij} are binary with exactly one nonzero entry in each row and column. The vector $\hat{x} = \mathbf{P} x$ is just a reordering of the entries of x which we can interpret as a graph signal supported on the graph $\hat{\mathbf{S}} = \mathbf{P} \mathbf{S} \mathbf{P}^T$ which is just a reordering of the graph \mathbf{S}. If we now consider the processing of \hat{x} on the graph $\hat{\mathbf{S}}$ with the graph filter \mathbf{h} the following proposition from [24] holds.

Proposition 1. Graph filters are permutation equivariant,

$$\Phi(\hat{x}; \mathbf{h}, \hat{\mathbf{S}}) = \Phi(\mathbf{P} x; \mathbf{h}, \mathbf{P} \mathbf{S} \mathbf{P}^T) = \mathbf{P} \Phi(x; \mathbf{h}, \mathbf{S}), \quad (11)$$

Proof. Use the definitions of the graph filter in (9) and of the permutations $\hat{x} = \mathbf{P} x$ and $\hat{\mathbf{S}} = \mathbf{P} \mathbf{S} \mathbf{P}^T$ to write

$$\Phi(\hat{x}; \mathbf{h}, \hat{\mathbf{S}}) = \sum_{k=0}^K h_k \hat{\mathbf{S}}^k \hat{x} = \sum_{k=0}^K h_k \left(\mathbf{P} \mathbf{S} \mathbf{P}^T \right)^k \mathbf{P} x \quad (12)$$
Since $P^T P = I$ for any permutation matrix, (11) follows.

We include the proof of Proposition 1 to highlight that this is an elementary result. Its immediate relevance is that it shows that processing a graph signal with a graph filter is independent of node labeling. This is something we know must hold in several applications – it certainly must hold for the recommendation problem described in Sec. II-B – but that is not true of, say, the linear parametrization in (4). There is, however, further value in permutation equivariance. To explain this, return to the ERM problem in (3) and utilize the graph filter in (9) as a learning parametrization. This yields the learning problem

$$h^* = \arg\min_h \frac{1}{Q} \sum_{q=1}^{Q} \ell \left(\sum_{k=0}^{K} h_k S^k x_q, y_q \right). \quad (13)$$

An important observation is that we know that (4) must yield a function $\Phi(x; H^*)$ whose average loss is smaller than the average loss attained by the function $\Phi(x; h^*, S)$ obtained from solving (13). This is because both are linear transformations and while $\Phi(x; H) = Hx$ is generic, the graph filter $\Phi(x; h, S) = \sum_{k=0}^{K} h_k S^k x$ belongs to a particular linear class. This is certainly true on the training set \mathcal{T}, but when operating on unobserved samples x the graph filter can and will do better (see results in Sec. III-D) because its permutation equivariance induces better generalization.

An illustration of this phenomenon is shown in Fig. 2. The graph represents a user similarity network in a recommendation system for which the ratings in 2a are available at training time. Out of this ratings we can create the graph signal in 2b to add to the training set and we assume that both parametrizations, the arbitrary linear transformation $\Phi(x; H^*)$ in 2d and the graph filter $\Phi(x; h^*, S)$ in (13), learn to estimate the rating of user 3 successfully. If this happens, the functions $\Phi(x; H^*)$ and $\Phi(x; h^*, S)$ also learn to estimate the rating of user 3 when given the signal in 2d – where we interpret colors as proportional to signal values. Notice that this happens even if signals of this form are not observed during training. We say that $\Phi(x; H^*)$ and $\Phi(x; h^*, S)$ generalize to this example.

If we now consider the signal in 2d the linear parametrization $\Phi(x; H^*)$ may or may not generalize to this example, but in principle it would not. The graph filter $\Phi(x; h^*, S)$, however, does generalize. This can be seen intuitively from the definition of the diffusion sequence in (10). Whatever operations are done to estimate the rating of user 3 from its adjacent nodes 2, 4 and 9 are the same operations that are done to estimate the rating of user 6 from its adjacent nodes 1, 5 and 12. More formally, the graph can be permuted onto itself to map the signal in 2a into the signal in 2d and Proposition 1 says that this is an equivariant operation so that the rating prediction is consistent with this relabeling. The graph filter generalizes from the example in 2a to fill the rating in 2d.

This illustration is designed to highlight the generalization properties of graph filters vis-à-vis those of linear transforms. In reality, we are unlikely to encounter the perfect permutation symmetry of Fig. 2. Near permutation symmetry as in Fig. 3 is more expected. In this case the ability to generalize from 3a to 3b is not as much as the ability to generalize from 2a to 2d but the continuity of 9 dictates that some amount of predictive power extends from observing samples 3a towards the estimation of the rating of user 6 when given the signal in 3b.

Figure 2. The graph represents product similarity in a recommendation system. If we are given samples [a] for training, any reasonable parametrization learns to complete the rating of node 3 when observing the signal in [b]. The linear parametrization in [4] also learns to fill the rating of node 3 when observing [c] – node saturation is proportional to signal value. The graph filter parametrization in [11] generalizes to [c] but it also generalizes to predicting the rating of node 6 in [d]. This is true because of the permutation equivariance result in Proposition 1. Graph neural networks [cf. (27)-(26)] inherit this generalization property (Proposition 2).

Figure 3. The perfect symmetry of Figure 2 is unlikely in practice, but near permutation symmetries can and do appear. We still expect some level of generalization from graph filters [cf. (13)] and graph neural networks [cf. (27)-(26)].
Figure 4. A graph perceptron composes a graph convolutional filter with a pointwise nonlinearity. It is a minor variation of a graph filter which, among other shared properties, retains permutation equivariance.

A. Graph Perceptrons

Graph neural networks (GNNs) extend graph filters by using pointwise nonlinearities which are nonlinear functions that are applied independently to each component of a vector. For a formal definition, begin by introducing a single variable function \(\sigma : \mathbb{R} \to \mathbb{R} \) which we extend to the vector function \(\sigma : \mathbb{R}^n \to \mathbb{R}^n \) by independent application to each component. Thus, if we have \(u = [u_1; \ldots; u_n] \in \mathbb{R}^n \) the output vector \(\sigma(u) \) is such that

\[
\sigma(u) : \sigma(u)_i = \sigma(u_i).
\]

(14)

I.e., the output vector is of the form \(\sigma(u) = [\sigma(u_1); \ldots; \sigma(u_n)] \). Observe that we are abusing notation and using \(\sigma \) to denote both the scalar function and the pointwise vector function.

In a single layer GNN, the graph signal \(u \) is passed through a pointwise nonlinear function satisfying (14) to produce the output.

\[
z = \sigma(u) = \sigma\left(\sum_{k=0}^{K} h_k S^k x \right).
\]

(15)

We say the transform in (15) is a graph perceptron; see Fig. 4. Different from the graph filter in (9), the graph perceptron is a nonlinear function of the input. It is, however, a very simple form of nonlinear processing because the nonlinearity does not mix signal components. Signal components are mixed by the graph filter but are then processed element-wise through \(\sigma \). In particular, (15) retains the locality properties of graph convolutional filters (cf. Fig. 1) as well as their permutation equivariance (cf. Fig. 2 and Proposition 1).

B. Multiple Layer Networks

Graph perceptrons can be stacked in layers to create multilayer GNNs – see Fig. 5. This stacking is mathematically written as a function composition where the outputs of a layer become inputs to the next layer. For a formal definition, let \(l = 1, \ldots, L \) be a layer index and \(h_l = \{h_{l_k}\}_{k=0}^K \) be collections of \(K + 1 \) graph filter coefficients associated with each layer. Each of these sets of coefficients define a respective graph filter \(\Phi(x; h_l, S) = \sum_{k=0}^{K} h_{l_k} S^k x \). At layer \(l \) we take as input the output \(x_{l-1} \) of layer \(l-1 \) which we process with the filter \(\Phi(x; h_l, S) \) to produce the intermediate feature

\[
u_l = H_l(S) x_{l-1} = \sum_{k=0}^{K} h_{l_k} S^k x_{l-1},
\]

(16)

Figure 5. Graph Neural Networks are compositions of layers each of which composes graph filters \(\Phi(x; h_l, S) = \sum_{k=0}^{K} h_{l_k} S^k x \) with pointwise nonlinearities \(\sigma \) [cf. (15) and (17)]. The output \(\Phi(x; H, S) = x_L \) follows at the end of a cascade of \(L \) layers recursively applied to the input \(x \). Layers are defined by sets of coefficients grouped in the tensor \(H := \{h_1, h_2, h_3\} \) which is chosen to minimize a training loss for a given shift \(S \) [cf. (3) and (23)].

where, by convention, we say that \(x_0 = x \) so that the given graph signal \(x \) is the GNN input. As in the case of the graph perceptron, this feature is passed through a pointwise nonlinear function to produce the \(l \)th layer output

\[
x_l = \sigma(u_l) = \sigma\left(\sum_{k=0}^{K} h_{l_k} S^k x_{l-1} \right).
\]

(17)

After recursive repetition of (16)-(17) for \(l = 1, \ldots, L \) we reach the \(L \)th layer whose output \(x_L \) is not further processed and is declared the GNN output \(z = x_L \). To represent the output of the GNN we define the filter tensor \(H := \{h_1\}_{l=1}^L \); grouping the \(L \) sets of filter coefficients at each layer, and define the operator \(\Phi(\cdot; H, S) \) as the map

\[
\Phi(x; H, S) = x_L.
\]

(18)

We repeat that in (18) the GNN output \(\Phi(x; H, S) = x_L \) follows from recursive application of (16)-(17) for \(l = 1, \ldots, L \) with \(x_0 = x \). Observe that this operator notation emphasizes that the output of a GNN depends on the filter tensor \(H \) and the graph shift operator \(S \).

A block diagram for a GNN with \(L = 3 \) layers is shown in Fig. 5. The input \(x \) is fed to the first layer where it is processed by the filter \(\sum_{k=0}^{K} h_{l_k} S^k \) and passed through the pointwise nonlinearity \(\sigma \) to produce the first layer output

\[
x_1 = \sigma\left(\sum_{k=0}^{K} h_{l_k} S^k x \right).
\]

(19)

This is according to (16)-(17) with \(l = 1 \) and \(x_0 = x \). The output of Layer 1 is sent to Layer 2 where it is processed...
by the filter \(\sum_{k=0}^{K} h_{2k} S^k \) and passed through the pointwise nonlinearity \(\sigma \) to produce the Layer 2 output

\[
x_2 = \sigma \left(\sum_{k=0}^{K} h_{2k} S^k x_1 \right),
\]

as per (16)-(17) with \(l = 2 \). This output becomes an input to Layer 3 where it is processed to produce the Layer 3 output

\[
x_3 = \sigma \left(\sum_{k=0}^{K} h_{3k} S^k x_2 \right),
\]

again, as dictated by (16)-(17). Since this is a GNN with \(L = 3 \) layers, this becomes the output of the GNN \(\Phi(x; H, S) = x_L = x_3 \). Observe that each layer is defined by a set of filter coefficients that are grouped in the tensor \(H := \{ h_1, h_2, h_3 \} \).

The sets of filter coefficients \(H \) that define the GNN operator in (18) are chosen to minimize a training loss as in (4),

\[
H^* = \text{argmin}_H \frac{1}{Q} \sum_{q=1}^{Q} \ell \left(\Phi(x_q; H, S), y_q \right).
\]

We emphasize that, similar to the case of the graph filters in (13), the optimization is over the filter tensor \(H \) with the shift operator \(S \) given. We also note that since each perceptron is permutation equivariant, the whole GNN also inherits the permutation equivariance of graph filters.

C. Multiple Feature Networks

To further increase the representation power of GNNs we incorporate multiple features per layer that are the result of processing multiple input features with a bank of graph filters; see Fig. 6. For a formal definition let \(F_l \) be the number of features at Layer \(l \) and define the corresponding feature matrix as

\[
X_l = \begin{bmatrix} x_{l1}^1, x_{l2}^2, \ldots, x_{lF_l}^F_l \end{bmatrix}.
\]

We have that \(X_l \in \mathbb{R}^{n \times F_l} \) and interpret each column of \(X_l \) as a graph signal. The outputs of Layer \(l-1 \) are inputs to Layer \(l \) where the set of \(F_{l-1} \) features in \(X_{l-1} \) are processed by a filterbank made up of \(F_{l-1} \times F_l \) filters. For a compact representation of this bank consider coefficient matrices \(H_{lk} \in \mathbb{R}^{F_{l-1} \times F_l} \) to build the intermediate feature matrix

\[
U_l = \sum_{k=0}^{K} S^k X_{l-1} H_{lk}.
\]

Each of the \(F_l \) columns of the matrix \(U_l \in \mathbb{R}^{n \times F_l} \) is a separate graph signal. We say that (24) represents a multiple-input-multiple-output graph filter since it takes \(F_{l-1} \) graph signals as inputs and yields \(F_l \) graph signals at its output. As in the case of the single feature GNN of Sec. III-B – and the graph perceptron in (15) – the intermediate feature \(U_l \) is passed through a pointwise nonlinearity to produce the \(l \)th layer output

\[
X_l = \sigma(U_l) = \sigma \left(\sum_{k=0}^{K} S^k X_{l-1} H_{lk} \right).
\]

When \(l = 0 \) we convene that \(X_0 = X \) is the input to the GNN which is made of \(F_0 \) graph signals. The output \(X_L \) of layer \(L \) is also the output of the GNN which is made up of \(F_L \) graph signals. To define a GNN operator we group filter coefficients \(H_{lk} \) in the tensor \(H = \{ H_{lk} \}_{l,k} \) and define the GNN operator

\[
\Phi(X; H, S) = X_L.
\]

If the input is a single graph signal as in (15) and (18), we have \(F_0 = 1 \) and \(X_0 = x \in \mathbb{R}^n \). If the output is also a single graph signal – as is also the case in (15) and (18) – we have \(F_L = 1 \) and \(X_L = x_L \in \mathbb{R}^n \).

To better understand the GNN defined by recursive application of (24) and (25) it is instructive to separate the matrix of filter coefficients \(H_{lk} \) into its individual entries. Denote then as \(h_{fg} = (H_{lk})_{f,g} \) the \((f,g)\) entry of \(H_{lk} \) and consider the application of filter coefficients \(h_{fg}^l \) to the input feature \(x_{l-1}^f = \{ x_{l-1}^1 \}_{f} \) stored in the \(f \)th column of \(x_{l-1} \). This results in graph signals

\[
v_{l}^{fg} = \sum_{k=0}^{K} h_{fg}^l S^k x_{l-1}^f.
\]

Each of the \(v_{l}^{fg} \in \mathbb{R}^n \) is a graph signal produced from input feature \(x_{l-1}^f \) through application of the filter defined by the set of coefficients \(h_{fg}^l = (h_{fg}^l)_{k=0}^{K} \). Since there are \(F_l \) filters associated to each fixed \(f \), each of the input features \(x_{l-1}^f \) generates \(F_l \) features \(v_{l}^{fg} \). This yields a total of \(F_{l-1} \times F_l \) features which we reduce to \(F_l \) features with a simple addition of all the features \(v_{l}^{fg} \) for a fixed \(f \),

\[
u_l^f = \sum_{f=0}^{F_{l-1}} v_{l}^{fg}.
\]
Each of the features u_i^g is a graph signal. There are F_i of them and it is ready to see that they corresponds to the columns of $U_i = [u_i^1, \ldots, u_i^{F_i}]$. These features can now be processed with a pointwise nonlinearity to yield the lth layer output feature g as

$$x_i^l = \sigma(u_i^l).$$

(29)

Since the nonlinearity is pointwise and we have already established that $U_i = [u_i^1, \ldots, u_i^{F_i}]$, it follows that $X_i = [x_i^1, \ldots, x_i^{F_i}]$, i.e., the output feature x_i^l is the gth column of the feature matrix X_i.

The explicit expansion of (24)-(25) into (27)-(29) provides a clearer view of the processing that goes on into each layer of the GNN. Input features x_i^l are processed by separate filter banks made up of the F_i filters $\Phi(x_{i-1}^l; h_i^g, S) = \sum_{k=0}^{K} h_i^{lg} S^k x_{i-1}^l$ with matching index f. The effect of applying these parallel filterbanks is a set of $F_i\times F_i$ features v_i^f. If these were directly processed with a pointwise nonlinearity to yield the lth layer output features x_i^l with $g = 1, \ldots, F_i$. The expressions in (24)-(25) are just a more compact notation for the same set of operations.

The sets of filter coefficients H that define the multiple feature GNN operator in (26) are chosen to minimize a training loss

$$H^* = \arg\min_h \frac{1}{Q} \sum_{q=1}^{Q} \ell(\Phi(X_q; H, S), Y_q),$$

(30)

which differs from (22) in that inputs, outputs, and intermediate layers may be composed of multiple features. Each layer of the GNN is made up of filter banks which are permutation equivariant. Since pointwise nonlinearities do not mix signal components, each individual layer is permutation equivariant. It follows that the GNN, being a composition of permutation equivariant operators, is also permutation equivariant. This is a sufficiently important fact that deserves to be highlighted as a Proposition that we take from [34].

Proposition 2. Graph Neural Networks are permutation equivariant.

$$\Phi(x; H, S) = \Phi(Px; H, P^T S^T) = P\Phi(x; H, S).$$

(31)

That Proposition 2 holds entails that the same comments that follow Proposition 1 hold for GNNs. In particular, GNNs are expected to generalize from observing the signal in Fig. 23 to successfully fill in ratings when presented with the signal in Fig. 24 even if this signal is never observed during training. This is an attribute that is not expected of fully connected neural networks – and that we verify experimentally in Sec. III-D. Likewise, we expect generalization to also hold in the case of Fig. 3 as we will see in Sec. IV the fundamental difference between GNNs and graph filters is the ability of the former to provide better generalization when signals are close to permutation equivariant but not exactly so.

Parametrization	L	Hyperparameters	σ
Linear param.	$n \times 1$ matrix	-	-
Graph filter	$F = 64, K = 5$	ReLU	-
FCNN	$N_1 = 64, N_2 = 32$	ReLU	-
G. perceptron	$K = 5$	ReLU	-
G. perceptron	$K = 5$	ReLU	-
GNN	$F = 64, K = 5$	ReLU	-
GNN	$F_1 = 64, F_2 = 32, K = 5$	ReLU	-

Table 1: Hyperparameters of seven different parametrizations of Φ in (3). The number of features, filter taps and hidden units are denoted F, K and N respectively. For multi-layer architectures, F_l/N_l indicate the value of these hyperparameters at layer l.

Remark 1. Just adding the signals v_i^f in (28) seems arbitrary. Having general linear combinations of features and having some output features x_i^l being dependent on only a subset of input features x_{i-1}^l seems more general. There is no difference, however. Since the filter coefficients in the tensor H are trained [cf. (30)], it is equivalent to search for optimal filter coefficients if they are added up or if they are linearly combined. The latter is just a scaling of filter coefficients. In particular, this includes cases in which some input features x_{i-1}^l do not influence some output features x_i^l. This could be accomplished by excluding index f from the summation in (28) but this is equivalent to having a filter h_i^g with all-zero coefficients.

D. Recommendation System Experiments

To illustrate the problem of recommendation systems with a specific numerical example, we consider movie recommendation using the MovieLens-100k dataset [17], which consists of 100,000 ratings given by 943 users to 1,682 movies. The movie ratings are integers between 1 and 5, and non-existing ratings are set to 0. The movie similarity network is built by computing similarity scores between pairs of movies as described in Sec. II-B. On this network, each user’s rating vector x_u can be represented as a graph signal.

Different parametrizations. In the first experiment the goal is to predict the ratings to the movie “Star Wars” by solving the ERM problem in (3) with different parametrizations of Φ. In order to do this, we follow the methodology in Sec. II-B to obtain 583 input-output pairs corresponding to users who have rated “Star Wars”. This data is then split between 90% for training (of which 10% are used for validation) and 10% for testing.

Seven different parametrizations were considered: a simple linear parametrization; a graph filter [9]; a fully connected neural network; a single-layer [15] and a multi-layer graph perceptron [17]; and a single-layer and a multi-layer GNN [25]. Their hyperparameters are presented in Table 1. All architectures were trained simultaneously by optimizing the L1 loss on the training set, using ADAM with learning rate 5×10^{-3} and decay factors 0.9 and 0.999. The number of epochs and batch size were 40 and 5 respectively.

In Table 1 we report the average RMSE achieved by each parametrization for 10 random data splits. We observe that the linear graph filter obtains a much smaller error than the
Table II: Average RMSE achieved by each parametrization in 10 random data splits for the movie “Star Wars”.

Parametrization	RMSE
Linear parametrization	1.8239
Graph filter	0.8770
FCNN	1.0681
Graph perceptron, L = 1	0.8846
Graph perceptron, L = 2	0.8863
GNN, L = 1	0.8684
GNN, L = 2	0.8206

Table III: Average RMSE achieved on the graph where the GNN is trained (n nodes) and on the 1,000-node graph for the movie “Star Wars”. Average relative RMSE difference.

RMSE	n = 250	n = 500	n = 750	Difference
n nodes	0.9633	1.0376	1.0026	8.94%
1000 nodes	1.0274	1.0521	1.0254	6.82%

GNN transferability. In the second experiment, we aim to analyze whether a GNN trained on a small network generalizes well to a large network. We consider the same parametrization of the 1-layer GNN in Table I and use the same training parameters of the first experiment. The GNN is trained to predict the ratings of the movie “Star Wars” on similarity networks with n = 250, 500 and 750 nodes, where one of the nodes is always “Star Wars” and the others are picked at random. After training, each GNN is then tested on the 1000-node network.

Table III displays the average RMSEs obtained on both the graph where the GNN was trained and the 1000-node graph for 10 random data splits. It also shows the average difference between the RMSE on the graphs where the GNN was trained and on the 1000-node graph, relative to the former. Looking at the relative RMSE difference, we observe that the prediction error on the 1000-node network approaches the error realized on the trained network as n increases. Even for n = 250, this difference is relatively low (under 10%). These results suggest that GNNs are transferable, a property that we discuss in more detail in Sec. V.

IV. STABILITY PROPERTIES OF GNNs

Permutation equivariance is a fundamental property of graph filters (Prop. I) and GNNs (Prop. 2), since it allows them to exploit the graph structure and thus generalize better to unseen samples coming from the same graph [34], [36]. However, graphs rarely exhibit perfect symmetries as illustrated in Fig. 2, rather but show near permutation symmetries, as seen in Fig. 3.

Stability to graph support perturbations quantifies how much the output of the graph filter changes in relation to the size of the perturbation. That is, if the graph support has changed slightly (with respect to a perturbation of itself), then the output of a trained graph filter or GNN will also change slightly [34]. This property is particularly important in graph data where the structure of the graph, described by S, is generally given in the problem and might not be known precisely [51]. For example, in the problem of movie recommendation (Sec. IV-B), the edges of the graph are built based on the rating similarity between the items [cf. (6)]. Estimating this value depends on the training set and thus there is an error incurred in obtaining it. Therefore, we usually train over an inferred graph that is not exactly the true graph over which the data is actually defined. The stability property guarantees that the trained parametrization (either a graph filter or a GNN) will yield the expected performance as long as the estimation of the support is good enough [34].

In this section, we present the stability property of graph filters and GNNs for two perturbation models. Namely, absolute perturbations (Sec. IV-A) and relative perturbations (Sec. IV-B). Stability is thus another fundamental property that complements permutation equivariance, establishing the mechanisms by which graph filters and GNNs adequately exploit the graph structure to offer better generalization capabilities.

Both permutation equivariance and stability are properties shared by graph filters and GNNs, and thus they explain their superior performance with respect to arbitrary linear transforms or fully connected neural networks, as observed in the movie recommendation problem (Sec. III-D). However, we further observed, in that example, that GNNs perform better than graph filters. We leverage the stability theorems and the effect of nonlinearities to explain why GNNs perform better than graph filters. We show that nonlinearities have a demodulating effect on the frequency domain that allows GNNs to be simultaneously stable and discriminative, a feat that cannot be achieved by linear graph filters (Sec. IV-C).

In what follows, we focus on parametrizations given either by graph convolutional filters with F input features and G output features [cf. (24)] or by GNNs [cf. (26)]. In particular, we consider GNNs that satisfy the following assumptions.

Assumption 1 (GNN architecture). Let \(\Phi \) be a GNN parametrization \((26)\) with the following architecture.

(i) Consists of \(L > 0 \) layers.
(ii) Obtains \(F_i \) features at the output of each layer.
(iii) The graph filters [cf. (24)] are described by the tensor of coefficients \(\mathbf{H} = (\mathbf{H}_{lk})_{l,k} \), with \(\mathbf{H}_{lk} \in \mathbb{R}^{F_i \times F_i} \).
(iv) The output of the filtering stage of each layer \(l \) satisfies \(\| \mathbf{U}_l \| \leq B \| \mathbf{X}_{l-1} \| \) [cf. (24)] for some \(B > 0 \).
(v) The chosen nonlinearity \(\sigma \) is normalized Lipschitz continuous, \(|\sigma(a) - \sigma(b)| \leq |a - b| \) for \(a, b \in \mathbb{R} \).

We note that assumption \((1)\) is made on the resulting trained GNN. Assumptions (i)-(iii) are determined by the hyper-
parameters of the architecture and, as such, are a design choice. Assumption (iv) needs to be satisfied only on some finite interval \([\lambda_{\min}, \lambda_{\max}]\) and is always the case for graph convolutional filters \((24)\) with finite coefficients. Assumption (v) is satisfied by most of the commonly chosen nonlinearities (tanh, ReLU, sigmoid).

A. Absolute perturbations

Permutations are a very particular case of a modification or perturbation to which the graph support \(S\) can be subjected (see Fig. 2). We are interested, however, in more general perturbations \(S\) (see Fig. 3), and in analyzing how the parametrization \(\Phi\) changes under these perturbations of the graph support. To measure the change in the parametrization, and in light of the permutation equivariance property of Propositions 1 and 2, we define the operator distance modulo permutations.

Definition 1 (Operator distance modulo permutations). Let \(S\) be the support matrix of a graph \(G\), and let \(\hat{S}\) be the support matrix of a perturbed graph \(\hat{G}\). Let \(H\) be the tensor of filter coefficients that describe the parametrization \(\Phi\) [cf. (24) or (26)]. Then, the operator distance modulo permutation is defined as

\[
\|\Phi(\cdot; H, S) - \Phi(\cdot; H, \hat{S})\|_P = \min_{P \in \mathcal{P}} \max_{X \in \mathbb{R}^n} \|\Phi(X; H, S) - \Phi(X; H, P^T \hat{S} P)\|.
\]

where, for any \(U \in \mathbb{R}^{n \times G}\), we define \(\|U\| = \sum_{g=1}^{G} \|u^g\|_2\).

We note that \(\mathcal{P}\) denotes the set of all possible permutations

\[
\mathcal{P} = \{P \in \{0, 1\}^{n \times n} : P1 = 1, \ P^T 1 = 1\}.
\]

The operator distance modulo permutations measures how much the output of the parametrization \(\Phi\) changes for a unit-norm signal \(X\) that makes the difference maximum, and for a permutation that makes the difference minimum. Note that, in terms of the operator distance in Def. 1, the permutation equivariance property (Propositions 1 and 2) implies that

\[
\|\Phi(\cdot; H, S) - \Phi(\cdot; H, P^T \hat{S} P)\|_P = 0
\]

for both graph filters and GNN parametrizations of \(\Phi\).

To better analyze how the output of the parametrization \(\Phi\) changes when the underlying graph is perturbed, we proceed in the graph frequency domain, as is customary in signal processing. To do this, we consider the eigendecomposition of the support matrix \(S = V \Lambda V^T\) to be given by an orthonormal set of eigenvectors collected in the columns of \(V\). We define the graph Fourier transform (GFT) of a graph signal \(X\) as a projection of the signal onto the eigenvectors of the support matrix \(S\) \((52), (53)\)

\[
\tilde{X} = V^T X.
\]

Note that, since \(V\) is an orthonormal matrix, then the inverse GFT is immediately defined as \(X = V \tilde{X}\).

With the definition of GFT \((35)\) in place, we can compute the GFT of the output \(U\) of a graph filter \(U = \sum_{k=0}^{\infty} S^k X H_k\) [cf. (23)] as \(12\)

\[
\tilde{U} = V^T U = \sum_{k=0}^{\infty} \Lambda^k \tilde{X} H_k
\]

where, due to the diagonal nature of \(\Lambda\), we can obtain the GFT as a pointwise multiplication in the graph frequency domain, akin to the convolution theorem \([53]\). Sec. 2.9.6], \((22), (52)\). To see this more clearly, consider the \(i\)th frequency component of \(U\) for the \(g\)th feature, that is, the element \((i, g)\) of \(U\) which we denote as \(\tilde{U}_{ig} = \tilde{u}_i^g\). Then, we note that

\[
\tilde{u}_i^g = \sum_{f=1}^{F} h^{fg}(\lambda_i) \tilde{x}_i^f
\]

for \(\tilde{x}_i^f\) the \(i\)th frequency component of the \(f\)th feature of the input, and where \(h^{fg}(\lambda_i)\) is the frequency response of the \((f, g)\) graph convolutional filter in \((24)\), evaluated at \(\lambda_i\). We formally define the frequency response of a graph filter [cf. (24)].

Definition 2 (Graph filter frequency response). Given a graph filter [cf. (24)] with a tensor of filter coefficients \(H_\lambda = \{H_k\}_{k \in \mathbb{R}^F \times G}\), the frequency response of the graph filter is the set of \(F \times G\) polynomial functions \(h^{fg}(\lambda)\), with

\[
h^{fg}(\lambda) = \sum_{k=0}^{K} h^{fg}_k \lambda^k
\]

for a continuous variable \(\lambda\), and where \(h^{fg}_k = |H_k|_{fg}\) is the \((f, g)\)th element of \(H_k\), corresponding to the \(k\)th filter coefficient of the \((f, g)\) graph convolutional filter in the corresponding filterbank [cf. (24) SingleFilter].

As per Def. 2 the frequency response of a filter is a collection of polynomial functions characterized solely by the filter coefficients and, as such, is independent of the graph. The effect of the specific support matrix \(S\) on a graph filter is observed by instantiating the frequency response on the specific eigenvalues [cf. (37)]. But the shape of the frequency response is actually independent of the graph and determined by the filter coefficients.

It is evident from (37) that the GFT of the output of a graph filter is a pointwise multiplication of the GFT of the input, and the frequency response of the filter. An important distinction with traditional signal processing, is that the GFT of a signal depends on the eigenvectors of the support matrix \(S\), while the GFT of a filter depends on the eigenvalues of \(S\) \((52)\).

In this section, we are particularly interested in Lipschitz graph filters, which are defined in terms of the frequency response [Def. 2] as follows.

Definition 3 (Lipschitz graph filters). Given a filter [cf. (24)] with a tensor of filter coefficients \(H_\lambda = \{H_k\}_{k \in \mathbb{R}^F \times G}\), we say it is a Lipschitz graph filter if its frequency response [cf. Def. 2] satisfies

\[
|h^{fg}(\lambda_1) - h^{fg}(\lambda_2)| \leq C|\lambda_1 - \lambda_2|
\]
for some $C > 0$, and for all $\lambda_1, \lambda_2 \in \mathbb{R}$ and all $f = 1, \ldots, F$ and $g = 1, \ldots, G$.

Lipschitz graph filters (Def. 3) are graph filters where each polynomial functions in the frequency response (Def. 2) is Lipschitz continuous on $\lambda \in \mathbb{R}$, see Fig. 7a.

As it happens, Lipschitz graph filters are stable to absolute perturbations of the graph support.

Definition 4 (Absolute perturbations). Given a support matrix S and a perturbed support \hat{S}, define the absolute error set as

$$\mathcal{E}(S, \hat{S}) = \{E \in \mathbb{R}^{n \times n} : P^TSP = S + E, \, P \in \mathcal{P}, \, E = E^T\}.$$

The size of the absolute perturbation is

$$d(S, \hat{S}) = \min_{E \in \mathcal{E}(S, \hat{S})} \|E\|.$$

The absolute error set (40) is defined as the set of all symmetric matrices such that, adding them to the graph support S, yield a permutation of the perturbed matrix \hat{S}. The absolute perturbation size (41) is then given by the minimum norm of all error matrices in the absolute error set.

With the definition of absolute perturbations (Def. 3) in place, we can finally state the stability of Lipschitz graph filters to these perturbations as follows [34, Thm. 1].

Theorem 1 (Graph filter stability to absolute perturbations). Let S and \hat{S} be the support matrices of a graph G and its perturbation \hat{G}, respectively. Let Φ be a graph filter [cf. (24)] with a tensor of filter coefficients $H = \{H_k\}_k$, $H_k \in \mathbb{R}^{t \times t}$. If $\tilde{\Phi}$ is a Lipschitz filter (Def. 3) with $C > 0$ and if the absolute perturbation size satisfies $d(S, \hat{S}) \leq \varepsilon$ (Def. 2), then

$$\|\tilde{\Phi}(:, H, S) - \tilde{\Phi}(:, H, \hat{S})\|_F \leq \varepsilon (1 + \delta \sqrt{n}) CG + \mathcal{O}(\varepsilon^2)$$

where $\delta = (\|U - V\|_2 + 1)^2 - 1$ is the eigenvector misalignment constant for U the eigenvector basis of the absolute error matrix E that solves (41).

Thm. 1 states that the change in the output of a graph filter due to an absolute perturbation of the graph support is proportional to the size of the perturbation (41). This stability property carries over to graph neural networks, albeit with a different proportionality constant [34, Thm. 4].

Theorem 2 (GNN stability to absolute perturbations). Let S and \hat{S} be the support matrices of a graph G and its perturbation \hat{G}, respectively. Let Φ be a GNN [cf. (26)] that satisfies assumption 1. If the filters used in Φ are Lipschitz (Def. 3) with $C > 0$ and if the absolute perturbation size satisfies $d(S, \hat{S}) \leq \varepsilon$ (Def. 2), then

$$\|\Phi(:, H, S) - \Phi(:, H, \hat{S})\|_F \leq \varepsilon (1 + \delta \sqrt{n}) CB^{L-1} \prod_{l=1}^{L} F_l + \mathcal{O}(\varepsilon^2)$$

where $\delta = (\|U - V\|_2 + 1)^2 - 1$ is the eigenvector misalignment constant for U the eigenvector basis of the absolute error matrix E that solves (41).

Thm. 2 complements Thm. 1 and shows that the change in the output of a GNN caused by an absolute perturbation of the underlying graph support is proportional to the size of the perturbation.

Note that the stability bound using either graph filters or GNNs share the same main conclusion, in that the bound is linear on the size of the perturbation, and thus both parametrizations are stable to absolute perturbations of the graph support. Further note that the stability bound holds for all graphs with the same number of nodes n. We emphasize that this bound establishes Lipschitz continuity of graph filters and GNNs with respect to changes in the underlying support, not with respect to the input. We further remark that these results hold for parametrizations using the same tensor filter coefficients H, which are typically obtained by solving the ERM problem (4). We note that the Lipschitz requirement on the graph filters is trivial to satisfy in bounded supports $[\lambda_{\text{min}}, \lambda_{\text{max}}]$ when using graph convolutional filters (24). The value of the Lipschitz constant C can be adjusted during training by adding a penalty on the derivative of the frequency response to the objective function in (3).

The stability bound of Thms. 1 and 2 is proportional to the size of the perturbation. The proportionality constant is given by two terms. The first term is $(1 + \delta \sqrt{n})$ and includes the eigenvector misalignment constant δ, which measures the change in the graph frequency basis caused by the perturbation. This term is given by the admissible perturbations of the specific problem under consideration. We note that while δ provided here applies for any graph and any absolute perturbation (Def. 3), it is a coarse bound which can be improved if we know that the space of possible perturbations is restricted by extraneous information, as is the case of Euclidean data (13).

The second term is CG for graph filters or $CB^{L-1} \prod_{l=1}^{L} F_l$ for GNNs, and is a direct consequence of the design choices that result in the specific graph filters used in the parametrization. The values of C or $\prod_{l=1}^{L} F_l$ are design choices, while the values of C and B result from the training phase. As discussed earlier, both of these values can be impacted by an appropriate choice of penalty function during training, if stability is to be increased. We note that the resulting filters can thus compensate for the specific perturbation characteristics.

The absolute perturbation model discussed in this section is useful to encode any arbitrary change on the graph support. However, it can sometimes be misleading in that the graph structure can be altered completely without this being reflected in the value of ε. To see this, consider a stochastic block model with two disconnected communities. An absolute perturbation given by the identity matrix would result in a perturbed graph that still respects this two-block structure. However, an absolute perturbation given by the anti-diagonal identity matrix would disrupt this two-block structure by forcing connections between the blocks. Yet, both perturbations have the same absolute size (41). As we can see, absolute perturbations do not capture the specifics of the graph support it is affecting. To take this into consideration, we introduce relative perturbations next.

1 GNNs and graph filters are also Lipschitz continuous with respect to the input, and this is trivial to show by using operator norms.
Figure 7. Frequency response (Def. 2) of graph filters [cf. (24)]. (a) Lipschitz filter (Def. 3) with $F = 1$ input feature and $G = 5$ output features. The frequency response of a Lipschitz filter has 5 functions of the form (38) and all satisfy (39). In this plot, this condition (39) is not met exactly. The minimum width of the functions (38) is determined by C since this value limits the maximum value of the derivative. The minimum width is the same throughout the spectrum. (b) Integral Lipschitz filter (Def. 6) with $F = 1$ input feature and $G = 5$ output features. The frequency response of an integral Lipschitz filter has 5 functions of the form (38) and all satisfy (40). In this plot, this condition is met exactly. The minimum width of the functions (38) depends on their location in the spectrum, since the maximum value of the derivative is bounded by $2C/|\lambda_1 + \lambda_2|$. Therefore, filters located in smaller eigenvalues (i.e. λ_1) can be narrower than filters located in larger eigenvalues (i.e. λ_5).

B. Relative perturbations

The relative perturbation model ties the changes of the graph support to the underlying structure.

Definition 5 (Relative perturbations). Given a support matrix S and a perturbed support \hat{S}, define the relative error set as

$$E(S, \hat{S}) = \left\{ E \in \mathbb{R}^{n \times n} : P^T \hat{S}P = S + \frac{1}{2}(SE + ES), P \in \mathcal{P}, E = E^T \right\}. \quad (44)$$

The size of the relative perturbation is

$$d(S, \hat{S}) = \min_{E \in E(S, \hat{S})} \|E\|. \quad (45)$$

The relative error set (44) is defined as the set of all symmetric error matrices E such that, when multiplied by the shift operator and added back to it, yield a permutation of the perturbed support S. The relative perturbation size (45) is given by the minimum norm of all such relative error matrices, and thus measures how close S and \hat{S} are to being permutations of each other, as determined by the multiplicative factor E.

The relative perturbation model takes into consideration the structure of the graph when measuring the change in the support by tying the changes in the edge weights of the graph to its local structure. To see this, note that the difference between the edge weight $|S|_{ij}$ of the original graph S and the corresponding edge $|P^T_0 \hat{S}P_0|_{ij}$ of the perturbed graph \hat{S} is given by the corresponding entry $|ES + SE|_{ij}$ of the perturbation factor $ES + SE$. It is ready to see that this quantity is proportional to the sum of the degrees of nodes i and j scaled by the entries of E. As the norm of E grows, the entries of the graphs S and $P^T_0 \hat{S}P_0$ become more dissimilar. But parts of the graph that are characterized by weaker connectivity change by amounts that are proportionally smaller to the changes that are observed in parts of the graph characterized by stronger links. This is in contrast to absolute perturbations where edge weights change by the same amount irrespective of the local topology of the graph.

We note that, in the problem of movie recommendation (Sec. I-B), perturbations arising from imperfect estimation of the rating similarities 5 fall under the relative perturbation model. And this is because the variance of the covariance estimator is proportional to the true value of the covariance.

For a graph filter to be stable to relative perturbations, it has to be an integral Lipschitz filter.

Definition 6 (Integral Lipschitz graph filters). Given a filter [cf. (24)] with a tensor of filter coefficients $H = \{H_k\}_k$ with $H_k \in \mathbb{R}^{F \times G}$, we say it is an integral Lipschitz graph filter if its frequency response [cf. Def. 2] satisfies

$$|h^{fg}(\lambda_1) - h^{fg}(\lambda_2)| \leq \frac{C}{|\lambda_1 + \lambda_2|^2} |\lambda_1 - \lambda_2| \quad (46)$$

for some $C > 0$, and for all $\lambda_1, \lambda_2 \in \mathbb{R}$ and all $f = 1, \ldots, F$ and $g = 1, \ldots, G$.

Integral Lipschitz filters (Def. 6) are those filters whose frequency response (Def. 2) is Lipschitz continuous on continuous variable λ with a Lipschitz constant that is inversely proportional to the midpoint of the interval. For example, if λ_1 or λ_2 are large, the resulting Lipschitz constant $2C/(\lambda_1 + \lambda_2)$ is small. This implies that these filters need to be flat for large values of λ (i.e. they do not change), but can be arbitrarily thin for values of λ near zero (i.e. they can change arbitrarily). See Fig. 7(a) for an example of an illustration of the frequency response of a graph filter that satisfies the integral Lipschitz condition. Note that (46) implies $|\lambda| |h^{fg}(\lambda)| \leq C$ for $(h^{fg}(\lambda))'$ being the derivative of $h^{fg}(\lambda)$. This condition is reminiscent of the scale invariance of wavelet filter banks [55] and there are several graph wavelet banks that satisfy it, see [56, 57].

Integral Lipschitz filters are stable to relative perturbations [4, Thm. 2].

Theorem 3 (Graph filter stability to relative perturbations). Let S and \hat{S} be the support matrices of a graph G and its perturbation \hat{G}, respectively. Let Φ be a graph filter [cf. (24)] with a tensor of filter coefficients $H = \{H_k\}_k$, $H_k \in \mathbb{R}^{F \times G}$. If Φ is an integral Lipschitz filter (Def. 6) with $C > 0$ and if the relative perturbation size satisfies $d(S, \hat{S}) \leq \varepsilon$ (Def. 5), then

$$\|\Phi(\cdot; H, S) - \Phi(\cdot; H, \hat{S})\|_p \leq \varepsilon(1 + \delta \sqrt{n})CG + O(\varepsilon^2) \quad (47)$$
where $\delta = (\|U-V\|_2+1)^2-1$ is the eigenvector misalignment constant for U the eigenvector basis of the absolute error matrix E that solves (45).

Thm. 3 asserts that a change in the output of a graph filter caused by a relative perturbation of the graph support is upper bounded in proportion to the size of the perturbation (45). This property of stability to relative perturbations is inherited by GNNs as is shown next [34 Thm. 4].

Theorem 4 (GNN stability to relative perturbations). Let S and \hat{S} be the support matrices of a graph G and its perturbation \tilde{G}, respectively. Let Φ be a GNN [cf. (26)] that satisfies Assumption 1. If the filters used in Φ are integral Lipschitz (Def. 6) with $C > 0$ and if the relative perturbation size satisfies $d(S, \hat{S}) \leq \varepsilon$ (Def. 5), then

$$
\|\Phi(\cdot; H, S) - \Phi(\cdot; H, \hat{S})\|_F \leq \varepsilon (1 + \delta \sqrt{n}) C B^{L-1} \prod_{l=1}^{L} F_l + O(\varepsilon^2)
$$

(48)

where $\delta = (\|U-V\|_2+1)^2-1$ is the eigenvector misalignment constant for U the eigenvector basis of the relative error matrix E that solves (45).

Thm. 4 states that the change in the output of the GNN caused by a relative perturbation of the graph support is upper bounded in a proportional manner to the size of the perturbation (45). Thm. 4 thus acts as a complement to Thm. 3 that quantifies how the stability property of graph filters gets inherited by GNNs.

The main conclusion of Thms. 3 and 4 is that the stability bound of both graph filters and GNNs is linear on the size of the perturbation, making both parametrizations stable to relative perturbations of the graph support. This bound also holds for all graphs with the same size n. We emphasize that stability implies Lipschitz continuity of the function Φ with respect to the underlying graph support S, and not with respect to the input X. We further emphasize that the results in Thm. 3 and 4 hold for parametrizations using the same tensor filter coefficients H. More specifically, stability to relative perturbations requires that the graph filters obtained after training be integral Lipschitz (Def. 6). This condition is trivial on a bounded support $[\lambda_{\min}, \lambda_{\max}]$ for filters given by an analytic frequency response (24). The actual value of C can be impacted during training by adding the integral Lipschitz condition (46) as a penalty on the loss function of the corresponding ERM problem (3).

We note that the form of the bounds in Thms. 3 and 4 coincides with those of Thms. 1 and 2 holding for absolute perturbations. Thus, the same analysis follows. The constant of proportionality with the size of the relative perturbation in Thms. 3 and 4 depends on two terms. The first one, given by $(1 + \delta \sqrt{n})$ depends on the specific perturbations that the graph is subject to and thus, are given by the problem. The second one, given by either CG or $CB^{L-1} \prod_{l=1}^{L} F_l$ can be affected by the choice of hyperparameters, as well as by the filters learned. Therefore, we can use the filters to affect the stability of the resulting parametrization.

That the form of stability bounds under absolute and relative perturbations is the same is a mere coincidence. Note, however, that their meaning is quite different, since the quantities involved are quite different. In absolute perturbations, the constant C refers to filters that are Lipschitz (Def. 3), whereas in relative perturbations, the constant C refers to filters that are integral Lipschitz (Def. 6). These classes of filters are different, and thus the meaning of the constant C is different. Likewise, the value of ε in an absolute perturbation scenario corresponds to (41), whereas the value of ε in the relative perturbation scenario corresponds to (45). These two perturbation models are quite different and represent different modifications to the graph support, namely, absolute perturbations represent arbitrary changes, while relative perturbations tie the modifications to the structure of the graph.

C. Discussion and insights

Graph signals X can be completely characterized by their frequency content \tilde{X} given the one-to-one correspondence between the GFT and the inverse GFT [cf. (35)]. Therefore, to analyze, understand, and learn from signals, we need to use functions Φ that adequately capture the difference and similarities of signals throughout the frequency spectrum (52). This concept is known in signal processing as filter discriminability, and is concerned with how well a function Φ can tell apart different sections of the frequency spectrum.
In graphs, the spectrum is discrete and given by the eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ of the graph support S. Perturbations to the graph structure S alter the eigenvalues and, therefore, alter the location of the different frequency coefficients of the signal within the given spectrum. It is evident, then, that the concept of discriminability is related to the concept of stability, since relevant parts of the spectrum that need to be told apart (discriminability) change under perturbations of the graph support (stability). Thus, to analyze both the discriminability and stability of a graph filter, we need to analyze the shape of its frequency response (Def. 3).

Thms. 1 and 2 determine the stability of both graph filters (23) and GNNs (26) to absolute perturbations of the graph support (Def. 4). Stability to absolute perturbations requires Lipschitz filters (Def. 3). The maximum discriminability of this filters (i.e. how narrow they can be) is determined by the Lipschitz constant C, which bounds how large the derivative of the frequency response can be. Thus, to obtain more discriminative filters (more narrow filters) we need a larger value of C. However, a larger value of C leads to degrading stability, as per Thms. 1 and 2. Therefore, there is a trade-off between discriminability and stability to absolute perturbations. This trade-off is exhibited by both graph filters and GNNs, and is observed throughout the spectrum, since the constant C is independent of the values of λ considered.

Stability to relative perturbations (Def. 5) requires integral Lipschitz filters (Def. 6) as per Thms. 3 and 4. The maximum discriminability of integral Lipschitz filters, however, is not only determined by the integral Lipschitz constant C, but also by the position in the spectrum. Recall that integral Lipschitz filters are Lipschitz with a constant $2C/(\lambda_1 + \lambda_2)$ that depends on the spectrum. Thus, if we are in a portion of the spectrum where λ is large, then the discriminability is very poor since the maximum derivative has to be almost zero, irrespective of C. On the contrary, if we are on the low-eigenvalue part of the spectrum, the discriminability can be arbitrarily high, since the derivative of the frequency response can be arbitrarily big. In a way, the value of C helps to determine the eigenvalue at which the integral Lipschitz filters enter the flat zone (larger C implies that larger eigenvalues can be discriminated before the filter becomes flat), but do not affect the overall discriminability for small eigenvalues. The value of C, however, does affect the stability of both graph filters and GNNs, where lower values of C means more stable representations (Thms. 3 and 4).

Unlike absolute perturbations, when considering the relative perturbation model, the discriminability of the filters is independent of their stability, meaning that around low eigenvalues they can be arbitrarily discriminative, while at high eigenvalues, they cannot discriminate any frequency coefficient. All of this, irrespective of the value of C. This suggests, that integral Lipschitz graph filters are well equipped to successfully learn from signals, as long as the relevant information is located in low-eigenvalue content. This limits their use to this specific class of signals. GNNs, however, can successfully capture information from high-eigenvalues by leveraging the nonlinearity and the subsequent graph filters. This can be better understood by looking at a specific example as we do next.

Consider the particular case of a perturbation that is given by an edge dilation, that is $\hat{S} = (1 + \varepsilon)S$, where $\varepsilon \approx 0$ is small. This is a particular instance of a relative perturbation model [cf. Def. 5]. In the case of the movie recommendation problem, this can happen if we use a biased estimator to compute the rating similarities, and thus \hat{S}, the graph on which we operate, is an edge dilation of the actual graph S. Note that \hat{S} and S share the same eigenvectors, so that the eigenvector misalignment constant of Thms. 3 and 4 is $\delta = 0$. The eigenvalues get perturbed as $\lambda_i = (1 + \varepsilon)\lambda_i$. This implies that larger eigenvalues get perturbed more than smaller eigenvalues.

In the context of this very simple edge dilation perturbation, we see in Fig. 8 that Lipschitz filters are not stable. This is because for large eigenvalues, the change in the output of a filter is very large, even if the perturbation ε is small. To see this, notice that $|h(\lambda_i) - h(\lambda_j)| \leq C|\lambda_i - \lambda_j| = C\varepsilon\lambda_i$, so that if λ_i is large, the difference in the filter output $|h(\lambda_i) - h(\lambda_j)|$ can be very large, even if ε is small.

On the contrary, integral Lipschitz filters are stable, see Fig. 8b for low eigenvalues the integral Lipschitz filter can have arbitrary variations, but since small ε does not cause...
integral Lipschitz filters are unable to discriminate information (Thm. 4). While, as discussed above, on low eigenvalues.

processing graph signals whose relevant information is located

need to increase the C the trade-off between discriminability and stability (where we

consider that we want to tell apart two single-feature signals, x = v _n and y = v _n _1, where v _i is the eigenvector associated to _i (or _i in the perturbed graph).

As we can see in Fig. 9a this is not doable by means of

integral Lipschitz filters. On the contrary, we could easily discriminate between these two signals by using Lipschitz filters, as illustrated in Fig. 9a. However, this leads to an unstable filter, as discussed before. Therefore, when using linear graph filters as parametrizations Φ, we are faced with the trade-off between discriminability and stability (where we need to increase the C of integral Lipschitz filters to achieve discriminability at high eigenvalues) or, alternatively, stick to processing graph signals whose relevant information is located on low eigenvalues.

GNNs are stable under relative perturbations by employing integral Lipschitz filters (Thm. 4). While, as discussed above, integral Lipschitz filters are unable to discriminate information located in high eigenvalues, GNNs can do so by leveraging the pointwise nonlinearity. Essentially, applying a nonlinearity to a signal spreads its information content throughout the spectrum, creating frequency content in locations where it was not before. As we can see in Fig. 10a the frequency content of x = v _n after applying the nonlinearity is located throughout the frequency spectrum. The same happens when applying σ to y = v _n _1, as shown in Fig. 10b. Even more so, the resulting frequency content is different in both resulting signals. Once the frequency content has been spread throughout the spectrum, the integral Lipschitz graph filters can, indeed, discriminate between these two signals by processing only the low-eigenvalue frequency content. In essence, the nonlinearity in GNNs act as frequency demodulators, spreading the information content throughout the spectrum. This allows for subsequent filters to process this information in a stable manner. Thus, GNNs improve on graph filters, by processing information in a way that is simultaneously discriminative and stable.

Remark 2 (Perturbation models). The absolute and relative perturbation models have been described separately for ease of exposition. However, both models are complementary and can be jointly analyzed as a single perturbation model. If this is the case, stability of graph filters and GNNs follows immediately from the proofs of Thms. 1 through 4 and determines that the filters involved have to be simultaneously Lipschitz (Def. 3) and integral Lipschitz (Def. 6). This means that the filters are flat for large eigenvalues, but how narrow they can be (even around the zero eigenvalue) is also restricted. Thus, the need to be able to process mid-range eigenvalues becomes of greater importance. In this sense, the use of nonlinearities and layers of bank filters help GNNs outperform linear graph filters as well. By spreading the information throughout the spectrum and using various filters, creates several instances where the information can be collected and successfully discriminated.

V. TRANSFERABILITY OF GNNs

In different instances of the same network problem, it is not uncommon for different graphs, even of different sizes, to “look similar” in the sense that they share certain defining structural characteristics. This motivates studying groups of graphs—or graph families—and investigating whether graph filters and GNNs are transferable within them. Transferability of information processing architectures is key because it allows re-using systems without the need to re-train or re-design. This is especially useful in applications where the network size is dynamic, e.g. recommendation systems for a growing product portfolio [cf. Secs. III-B and III-D].

From the architecture perspective, transferability is akin to replacing the graph by another graph in the same family, which, in itself, is a kind of perturbation. Therefore, transferability can be seen as another type of stability. In this section, we thus analyze the transferability of graph filters and GNNs...
in a similar fashion to Sec. [IV] with particular focus on graph families identified by objects called graphons.

We start by reviewing graphons in Sec. [V-A], where their limit object interpretation and their role as a generating models for deterministic graphs are also discussed. The graphon signal processing framework is then introduced in Sec. [V-B] where we define graphon filters and study both how they can be used to generate graph filters and how graph filters may be used to approximate graphon filters arbitrarily well. These analyses culminate in the transferability analysis of graph filters, which is presented in Sec. [V-C]. Graphon neural networks are then discussed in Sec. [V-D]. The concept of graphon neural networks is important because they too can be interpreted as generating models for GNNs, which allows showing that, on very large graphs, GNNs provide a good approximation of network is important because they too can be interpreted as deterministic graphs. This sequence of deterministic graphs satisfies the condition in [49], and therefore converges to the graphon \(W \) [40, Chapter 11]. Note, however, that the convergence mode in equation [49] also allows for other, more general graph sequences than those consisting of deterministic graphs.

B. Graphon filters

Even if abstract (in the sense that they do not exist in reality), graphons are well-defined mathematical objects that allow studying graph families. Therefore, to understand the behavior of data that may be supported on the graphs belonging to a graphon family, it is also natural to consider the abstractions of graphon data and graphon information processing architectures.

Graphon data, or graphon signals, are defined as functions \(X : [0, 1] \to \mathbb{R} \) of \(L^2 \). These signals can be modified through graphon operations parametrized by the integral operator

\[
(T_w X)(v) := \int_0^1 W(u, v)X(u)du
\]

which is called graphon shift operator (WSO) in analogy with the GSO [45]. Because \(W \) is bounded and symmetric, the WSO is a self-adjoint Hilbert-Schmidt operator, allowing to express \(W \) in the operator’s spectral basis—the graphon spectra—as

\[
W(u, v) = \sum_{i \in \mathbb{Z}(0)} \lambda_i \varphi_i(u) \varphi_i(v).
\]

The operator \(T_W \) can thus be rewritten as

\[
(T_w X)(v) = \sum_{i \in \mathbb{Z}(0)} \lambda_i \varphi_i(v) \int_0^1 \varphi_i(u)X(u)du
\]

where \(\lambda_i \) are the graphon eigenvalues, \(\varphi_i \) are the graphon eigenfunctions and \(i \in \mathbb{Z} \setminus \{0\} \). The eigenvalues are ordered according to their sign and in decreasing order of absolute value, i.e. \(1 \geq \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_{-2} \geq \lambda_{-1} \geq -1 \). An important characteristic of graphons is that their eigenvalues accumulate around 0 as \(|i| \to \infty \), as depicted in Fig. [III] [58, Thm. 3, Chapter 28].

Similarly to graph convolutions, graphon convolutions are defined as weighted sums of multiple applications of the graphon shift operator. Explicitly, a graphon convolutional filter is given by

\[
\Phi(X; h, W) = \sum_{k=0}^{K-1} h_k(T_w^{(k)} X)(v) = (T_h X)(v)
\]

with

\[
(T_w^{(k)} X)(v) = \int_0^1 W(u, v)(T_w^{(k-1)} X)(u)du
\]

where \(T_W^{(1)} = T_W \) and \(T_W^{(0)} = I \) is the identity operator [45]. The vector \(h = [h_0, \ldots, h_{K-1}] \) collects the filter coefficients.

A. Graphons and graph families

Graphons are bounded, symmetric and measurable functions \(W : [0, 1]^2 \to [0, 1] \) which can be thought of as representations of undirected graphs with nodes. This association is made by assigning nodes \(i \) and \(j \) to points \(u_i \) and \(u_j \) of the unit interval, and edge weights \(W(u_i, u_j) \) to edges \((i, j) \). As suggested by their infinite-dimensional structure, graphons are also the limit objects of convergent sequences of graphs.

A convergent sequence of graphs, denoted \(\{G_n\} \), is characterized by the convergence of the density of certain structures, or motifs, in the graphs \(G_n \). We define these motifs as graphs \(F = (V', E') \) that are unweighted and undirected, or simple for short. Homomorphisms of \(F \) into \(G = (V, E, S) \) are adjacency preserving maps \(\beta : V' \to V \) in which \((i, j) \in E' \) implies \((\beta(i), \beta(j)) \in E \). There are \(|V'| |V'| = n^{2n} \) maps from \(V' \) to \(V \), but only some of them are homomorphisms. Hence, we can define a density of homomorphisms \(t(F, G) \), which represents the relative frequency with which the motif \(F \) appears in \(G \).

Homomorphisms of graphs into graphons are defined analogously and denoted \(t(F, W) \) for a graph motif \(F \) and a graphon \(W \). The graph sequence \(\{G_n\} \) is then said to converge to the graphon \(W \) if, for all finite simple graphs \(F \),

\[
\lim_{n \to \infty} t(F, G_n) = t(F, W).
\]

All graphons are limit objects of convergent graph sequences, and every convergent graph sequence converges to a graphon [40, Chapter 11]. This allows associating graphons with families of graphs of different sizes that share structural similarities. The simplest instances of a family identified by the graphon \(W \) are those obtained by evaluating \(W \) on the unit line. In particular, our transferability results will hold for deterministic graphs \(G_n \) constructed by associating the regular partition \(u_i = (i-1)/n \) to nodes \(1 \leq i \leq n \), and the weights \(W(u_i, u_j) \) to edges \((i, j) \). Explicitly,

\[
|S_n|_{ij} = s_{ij} = W(u_i, u_j)
\]
or taps. Using the spectral decomposition in (53), \(\Phi(X; h, W) \) can also be written as

\[
\Phi(X; h, W) = \sum_{i \in \mathbb{Z}(0)} \sum_{k=0}^{K-1} h_k \lambda_i^k \varphi_i(v) \int_0^1 \varphi_i(u) X(u) du = \sum_{i \in \mathbb{Z}(0)} h(\lambda_i) \varphi_i(v) \int_0^1 \varphi_i(u) X(u) du.
\]

(55)

Note that the spectral representation of \(\Phi(X; h, W) \) is given by \(h(\lambda) = \sum_{k=0}^{K-1} h_k \lambda_i^k \), which only depends on the graphon eigenvalues and on the coefficients \(h_k \).

1) Generating graph filters from graphon filters: Like the spectral representation of the graph filter, the spectral representation of the graph filter as shown in Definition 2 depends uniquely on the graph eigenvalues and on the filter coefficients. This suggests the possibility of making approximation \(\Phi(x_n; h, S_n) \) by setting

\[
[S_n]_{ij} = W(u_i, u_j) \quad \text{and} \quad [x_n]_i = X(u_i)
\]

(56)

where \(S_n \) is the GSO of \(G_n \), the deterministic graph obtained from \(W \) as in equation (50), and \(x_n \) is the corresponding deterministic graph signal obtained by evaluating \(X \) at \(u_i \).

Generating graph filters from graphon filters is helpful because it allows designing filters on graphs and applying them to graphs. In other words, it decouples the filter design from a specific graph realization. Conversely, it is also possible to define graphon filters induced by graph filters. The graphon filter induced by the graph filter \(\Phi(x_n; h, S_n) = \sum_{k=0}^{K-1} h_k S_n^k x_n \) is given by

\[
\Phi(x_n; h, W_n) = \sum_{k=0}^{K-1} h_k (T_{W_n}^{(k)} X_n)(v) = \sum_{k=0}^{K-1} h_k (T_{W_n}^{(k)} X_n)(v) \text{ with (57)}
\]

where the graphon \(W_n \) is the graphon induced by \(G_n \) and \(X_n \) is the graphon signal induced by the graph signal \(x_n \), i.e.

\[
W_n(u, v) = [S_n]_{ij} \times I(u \in I_i) I(v \in I_j) \quad \text{and} \quad X_n(u) = [x_n]_i \times I(u \in I_i)
\]

(58)

This definition will allow comparing graph and graphon filters directly, and analyzing the transferability of graph filters to graphs of different sizes.

2) Approximating graph filters with graphon filters: Consider graph filters obtained from a graph filter as in (50). For increasing \(n \), \(G_n \) converges to \(W \), which means that these graph filters become increasingly similar to the graph filter itself. Thus, the graph filter \(\Phi(x_n; h, S_n) \) can be used to approximate \(\Phi(X; h, W) \). In Thm. 5 we quantify how good this approximation is for different values of \(n \). Because the continuous output \(Y = \Phi(X; h, W) \) cannot be compared with the discrete output \(y_n = \Phi(x_n; h, S_n) \) directly, we consider the output of the graphon filter induced by \(\Phi(x_n; h, S_n) \), which is given by \(Y_n = \Phi(X_n; h, W_n) \) [1]. Given Assumptions 2 through 4 below, the following theorem from [55] holds.

Assumption 2. The graphon \(W \) is \(A_1 \)-Lipschitz, i.e. \(|W(u_2, v_2) - W(u_1, v_1)| \leq A_1 |u_2 - u_1| + |v_2 - v_1|\).

Assumption 3. The spectral response of the convolutional filter, \(h \), is \(A_2 \)-Lipschitz and non-amplifying, i.e. \(|h(\lambda)| < 1\).

Assumption 4. The graphon signal \(X \) is \(A_3 \)-Lipschitz.

Theorem 5 (Graphon filter approximation by graph filter). Consider the graphon filter given by \(Y = \Phi(X; h, W) \) as in (55), where \(h(\lambda) \) is constant for \(|\lambda| < c\) [cf. Fig. 13]. For the graphon filter instantiated from \(\Phi(X; h, W) \) as \(y_n = \Phi(x_n; h, S_n) \) [cf. (56)], under Assumptions 2 through 4 it holds

\[
\|Y - Y_n\|_{L_2} \leq \sqrt{A_1} \left(A_2 + \frac{\pi n_c}{\delta_c}\right) n^{-\frac{1}{2}} \|X\|_{L_2} + \frac{2A_3}{\sqrt{3}} n^{-\frac{1}{2}}
\]

where \(Y_n = \Phi(X_n; h, W_n) \) is the graph induced by \(\Phi(x_n; h, S_n) \) [cf. (58)]. \(n_c \) is the cardinality of the set \(C = \{i \in |\lambda_i^m| \geq c\} \), and \(\delta_c = \min_{c \in \mathbb{C}}(|\lambda_i - \lambda_{i+sgn(i)}^m| - L^2_{\lambda^m} - L_{\lambda^m} - L_{\lambda^m} - 1) \), with \(\lambda_i \) and \(\lambda_i^m \) denoting the eigenvalues of \(W \) and \(W_n \) respectively [cf. Fig. 13].

Thm. 5 gives an asymptotic upper bound to the error incurred when approximating graphon filters with graph filters. This bound depends on the filter transferability constant \(\sqrt{A_1} (A_2 + \pi n_c/\delta_c) n^{-0.5} \), which multiplies \(\|X\| \), and on a fixed error term corresponding to the difference between \(X \) and the graphon signal \(x_n \), which is induced by \(x_n \). For large \(n \), the first term dominates the second. Hence, the quality of the approximation is closely related to the transferability constant.

Aside from decreasing asymptotically with \(n \), the transferability constant depends on the graphon and on the filter parameters. The dependence on the graphon is due to \(A_1 \), which is proportional to the graphon variability. The dependence on the filter parameters happens through the constants \(A_2, n_c, \) and \(\delta_c \). The first two determine the variability of the filter’s spectral response, which is controlled by both the Lipschitz constant \(A_2 \) and the length of the band \([c, 1] \), as depicted in Fig. 13. In particular, the number of eigenvalues within this band, given by \(n_c \), should satisfy \(n_c \ll n \) (i.e. \(n_c < \sqrt{n} \)). This restriction on the length of the passing band, which is necessary for asymptotic convergence, is a consequence of two facts. The first is that the eigenvalues of the graphon converge to those of the graphon [40, Chapter 11.6] as illustrated in Fig. 12. The second is that the eigenvalues of the graphon, when ordered in decreasing order of absolute value, accumulate near zero. Combined, these facts imply that, for small eigenvalues, the graph eigenvalues are hard to match to the corresponding graphon eigenvalues, making consecutive eigenvalues difficult to discriminate. As a consequence, filters
h with large variation near zero (i.e., small c) may modify matching graphon and graph eigenvalues differently, leading to large approximation error. Lastly, note that when the \(n_c < \sqrt{n} \) requirement is satisfied, asymptotic convergence is guaranteed by convergence of the eigenvalues of \(W_n \) to those of \(W \) because \(\delta_c \to \min_{c \in \mathbb{C}} |\lambda_i - \lambda_{i+\text{sgn}(c)}| \neq 0 \), i.e., \(\delta_c \) converges to the minimum eigengap of the graphon for \(i \in \mathbb{C} \).

C. Graph filter transferability

By application of the triangle inequality, transferability of graph filters follows directly from Thm. 5

Theorem 6 (Graph filter transferability). Let \(G_{n_1} \) and \(G_{n_2} \), and \(x_{n_1} \) and \(x_{n_2} \), be graphs and graph signals obtained from the graphon \(W \) and the graphon signal \(X \) as in (50), with \(n_1 \neq n_2 \). Consider the graph filters given by \(y_{n_1} = \Phi(x_{n_1}; h, S_{n_1}) \) and \(y_{n_2} = \Phi(x_{n_2}; h, S_{n_2}) \), and let their shared spectral response \(\rho(\lambda) \) [cf. (38)] be constant for \(|\lambda| < c \) [cf. Fig. 13]. Then, under Assumptions 2 through 4 it holds

\[
\|Y_{n_1} - Y_{n_2}\|_{L_2} \leq \sqrt{A_1} \left(A_2 + \frac{\pi n'}{\delta'} \right) \left(n_1^{-\frac{1}{2}} + n_2^{-\frac{1}{2}} \right) \|X\|_{L_2} + 2A_3 \sqrt{\frac{n}{\delta'_c} n_1^{-\frac{1}{2}} n_2^{-\frac{1}{2}}}
\]

where \(Y_{n_j} = \Phi(x_{n_j}; h, W_{n_j}) \) is the graphon filter induced by \(y_{n_j} = \Phi(x_{n_j}; h, S_{n_j}) \) [cf. (58)], \(n'_c = \max_{i \in \{1, 2\}} |\mathcal{C}_j| \) is the maximum cardinality of the sets \(\mathcal{C}_j = \{ i \mid |\lambda_i| \geq c \} \), and \(\delta'_c = \min_{i \in \mathcal{C}_j, j \in \{1, 2\}} (|\lambda_i - \lambda^{n'_c}_{j+\text{sgn}(i)}|, |\lambda_i - \lambda^{n'_c}_{j-\text{sgn}(i)}|, |\lambda_{j+1} - \lambda^{n_j}_{j-1}|, |\lambda_{j+1} - \lambda^{n_j}_{j-1}|) \), with \(\lambda_i \) and \(\lambda^{n_j}_i \) denoting the eigenvalues of \(W \) and \(W_{n_j} \) respectively.

Relying on the graphon filters induced by \(\Phi(x_{n_1}; h, S_{n_1}) \) and \(\Phi(x_{n_2}; h, S_{n_2}) \), Thm. 6 gives an upper bound to the difference between the outputs of two identical graph filters on different graphs belonging to the same graph family. Because this bound decreases asymptotically with \(n_1 \) and \(n_2 \), a filter designed for one of these graphs can be transferred to the other with good performance guarantees for large \(n_1 \) and \(n_2 \). Therefore, beyond values of \(n_1 \) and \(n_2 \) satisfying a specific error requirement of, say, \(\epsilon \), graph filters are scalable in the sense that they can be applied to any other graph with size \(n > \max(n_1, n_2) \) and achieve less than \(\epsilon \) error. This is important in problems where the graph size is dynamic, as is the case of recommendation systems for companies with a graph on \(n \), to the other with good performance guarantees for large \(n \).

D. Graphon neural networks

Analogously to the definitions of a graphon signal and of the graphon convolution, the graphon neural network (WNN) can be thought of as the limit architecture of a GNN defined on the graphs of a convergent graph sequence. While the WNN processes data supported on graphons, it retains the structure of a GNN by stacking layers of graphon convolutions and nonlinear activation functions.

Denoting the nonlinear activation function \(\sigma \), the \(\ell \)-th layer of a multi-layer WNN with \(F_\ell = 1 \) feature per layer (like the GNNs in Sec. III-B) is given by

\[X_\ell = \sigma(\Phi(X_{\ell-1}; h_\ell, W)) \]

for \(1 \leq \ell \leq L \). Note that the input signal at the first layer, \(X_0 \), is the input data \(X \), and the WNN output is given by \(Y = X_L \).

Similarly to the GNN, this WNN can also be written as a map \(Y = \Phi(X; H, W) \), where the tensor \(H = \{h_\ell\}_\ell \) groups the filter coefficients of all layers. Note that the parameters in \(H \) are completely independent of the graphon, which is another characteristic WNNs have in common with GNNs.

1) **Generating GNNs from WNNs:** An important consequence of the GNN and WNN parametrizations is that, in the maps \(\Phi(x; H, S) \) and \(\Phi(x; H, W) \), the parameters \(H \) can be the same. This allows sampling or evaluating GNNs from a WNN, i.e., the WNN acts as a generating model for GNNs. To see this, consider the WNN \(\Phi(x; H, W) \) and define a partition \(u = (i-1)/n, 1 \leq i \leq n \), of \([0, 1] \). A GNN \(\Phi(x_0; H, S_n) \) can be obtained by evaluating the deterministic graph \(G_n \), and the deterministic graph signal \(x_0, \) as in equation (58).

The interpretation of GNNs as instantiations of a WNN is important because it explicitly disconnects the GNN architecture from the graph. In this interpretation, the graph is not a fixed hyperparameter of the GNN, but a parameter that can be changed according to the underlying graphon and the value of \(n \). This has two important consequences. First, it reveals the ability of GNNs to scale. Second, it allows GNNs to be adapted both by optimizing the weights in \(H \) and by changing the graph \(G_n \), which adds degrees of freedom to the architecture at no additional computational cost.

WNNs induced by GNNs can also be defined. The WNN induced by a GNN \(\Phi(x_0; H, S_n) \) is given by \(\Phi(x_0; H, W) \) where \(W_n \), the graphon induced by \(G_n \), and \(X_0 \), the graphon signal induced by \(x_0 \), are as in (58). This definition will be important to establish a direct comparison both between GNNs and WNNs and between GNNs on graphs of different sizes.

2) **Approximating WNNs with GNNs:** As \(n \) increases, we can expect the GNNs instantiated from a WNN to become closer to the WNN itself at a similar rate at which the graphs \(G_n \) converge to \(W \). As such, the outputs of the GNN and WNN maps \(\Phi(x_0; H, S_n) \) and \(\Phi(x_0; H, W) \) should also grow closer, allowing the GNN to be used as a proxy for the WNN. To evaluate the quality of this approximation for different values of \(n \), the outputs of \(\Phi(x_0; H, S_n) \) and \(\Phi(x_0; H, W) \)
must be compared. This is done by considering the WNN induced by \(\Phi(x_n; H, S_n) \) and given by \(Y_n = \Phi(x_n; H, W_n) \) \(\text{[cf. (55)]} \). Under Assumption 5 the following theorem from \(\text{(55)} \) holds.

Assumption 5. The activation functions are normalized Lipschitz, i.e. \(|\sigma(x) - \sigma(y)| \leq |x - y| \), and \(\sigma(0) = 0 \).

Theorem 7 (WNN approximation by GNN). Consider the L-layer WNN given by \(Y = \Phi(X; H, W) \), where \(F_L = 1 \) for \(1 \leq L \leq L \). Let the graphon convolutions \(h(\lambda) \) \(\text{[cf. (55)]} \) be such that \(h(\lambda) \) is constant for \(|\lambda| < c \) \(\text{[cf. Fig. 12]} \). For the GNN instantiated from this WNN as \(Y_n = \Phi(x_n; H, S_n) \) \(\text{[cf. (56)]} \), under Assumptions 2 through 5 it holds

\[
\|Y_n - Y\|_{L_2} \leq L\sqrt{A_1}\left(A_2 + \frac{\pi n_c}{\delta_c} \right) n^{-\frac{1}{2}} \|X\|_{L_2} + \frac{A_3}{\sqrt{3}} n^{-\frac{1}{2}}
\]

where \(Y_n = \Phi(x_n; H, W_n) \) is the WNN induced by \(y_n = \Phi(x_n; H, S_n) \) \(\text{[cf. (58)]} \). \(n_c \) is the cardinality of the set \(C = \{ i \mid |\lambda_i^n| \geq c \} \), and \(\delta_c = \min_{i \in C} (|\lambda_i - \lambda_{i+\text{sgn}(i)}^n|, |\lambda_{i+\text{sgn}(i)}^n - \lambda_i^n|, |\lambda_i - \lambda_i^n - |\lambda_i^n - \lambda_{i-1}^n|) \), with \(\lambda_i^n \) and \(\lambda_i^c \) denoting the eigenvalues of \(W \) and \(W_n \) respectively.

Given a graph \(G_n \) and a signal \(x_n \) obtained from \(W \) and \(X \) as in \(\text{(53)} \), the GNN \(\Phi(x_n; H, S_n) \) can therefore approximate the WNN \(\Phi(x; H, W) \) with an error that decreases asymptotically with \(n \). This error is upper bounded by a term proportional to the input, controlled by the transferability constant \(L\sqrt{A_1}\left(A_2 + (\pi n_c)/\delta_c \right) n^{-0.5} \), and by a fixed error term given by \(A_3/\sqrt{3} n \). The fixed error term is a truncation error due to "discretizing" \(X \) to obtain \(x_n \). Besides the dependence on the graphon and on the filter parameters, which is inherited from the convolutions, the transferability constant also depends on \(L \). Hence, deeper architectures have larger approximation error. With regards to the constants \(A_1, A_2, n_c \) and \(\delta_c \), the same comments as in the case of Thm. 5 apply. The approximation error is better for low \(A_1 \), i.e., smooth graphons. Additionally, one should favor convolutional filters whose variability is limited both through the value of the Lipschitz constant \(A_2 \) and through the length of the passing band \([c,1]\), ensuring that the filters can discriminate consecutive eigenvalues \(\text{[cf. Fig. 13]} \) and, thus, that the bound is asymptotic.

E. GNN transferability

As a direct consequence of Thm. 7 and the triangle inequality, the following theorem from \(\text{(55)} \) holds.

Theorem 8 (GNN transferability). Let \(G_{n_1} \) and \(G_{n_2} \), and \(x_{n_1} \) and \(x_{n_2} \), be graphs and graph signals obtained from the graphon \(W \) and the graphon signal \(X \) as in \(\text{(56)} \), with \(n_1 \neq n_2 \). Consider the L-layer GNNs given by \(\Phi(x_{n_1}; H, S_{n_1}) \) and \(\Phi(x_{n_2}; H, S_{n_2}) \), where \(F_L = 1 \) for \(1 \leq L \leq L \). Let the graph convolutions \(h(\lambda) \) \(\text{[cf. (55)]} \) be such that \(h(\lambda) \) is constant for \(|\lambda| < c \). Then, under Assumptions 2 through 5 it holds

\[
\|Y_{n_1} - Y_{n_2}\|_{L_2} \leq L\sqrt{A_1}\left(A_2 + \frac{\pi n_c'}{\delta_c'} \right) \left(n_1^{-\frac{1}{2}} + n_2^{-\frac{1}{2}} \right) \|X\|_{L_2} + \frac{A_3}{\sqrt{3}} \left(n_1^{-\frac{1}{2}} + n_2^{-\frac{1}{2}} \right)
\]

where \(Y_{n_1} = \Phi(x_{n_1}; H, W_{n_1}) \) is the WNN induced by \(y_{n_1} = \Phi(x_{n_1}; H, S_{n_1}) \) \(\text{[cf. (58)]} \). \(n_c' = \max_{i \in \{1,2\}} |C_j| \) is the maximum cardinality of the sets \(C_j = \{ i \mid |\lambda_i^n| \geq c \} \), and \(\delta_c' = \min_{i \in C_j} (|\lambda_i - \lambda_{i+\text{sgn}(i)}^n|, |\lambda_{i+\text{sgn}(i)}^n - \lambda_i^n|, |\lambda_i - \lambda_i^n - |\lambda_i^n - \lambda_{i-1}^n|, |\lambda_{i+\text{sgn}(i)}^n - \lambda_{i-1}^n|, |\lambda_i^n - \lambda_{i-1}^n|) \), with \(\lambda_i^n \) and \(\lambda_i^c \) denoting the eigenvalues of \(W \) and \(W_{n_1} \) respectively.

Thm. 8 asserts that GNNs are transferable between graphs of different sizes belonging to the same graphon family, which has two important implications. Provided that the GNN
hyperparameters are chosen carefully, this result means that a GNN trained on a graph can be transferred to another graph with an error bound that is inversely proportional to both of their sizes. In situations where a different task has to be replicated on different graphs, e.g. operating the same type of sensor network on multiple plants, this is key because it avoids retraining the GNN. This result also implies that GNNs, like graph filters, are scalable. They can be trained on smaller graphs than the graphs on which they are deployed (and vice-versa), and are robust to increases in the graph size that are common, for instance, in recommendation systems with a dynamic product base. The main advantage, in this case, is that training GNNs on small graphs is easier than training them on large graphs.

Similarly to graph filters, the approximation error incurred when transferring GNNs is given by the transferability constant $LF^{L-1}\sqrt{\lambda_1}(A_2 + \pi n_c' / \delta'_c)(n_1^{-0.5} + n_2^{-0.5})$ and the fixed error term $A_2(n_1^{-0.5} + n_2^{-0.5})/\sqrt{3}$, both of which decrease asymptotically with n_1 and n_2. The fixed error term measures how different the graph signals x_{n_1} and x_{n_2} are from the graphon signal X, therefore its contribution is small. The transferability constant, on the other hand, is determined by the graphon variability A_1, the number of layers L and the convolutional filter parameters A_2, n'_c and δ'_c, which, except for A_1, are all design parameters that can be tuned. In particular, to have an asymptotic bound for $n_2 > n_1$, the number of eigenvalues in the band $[c, 1]$ must satisfy $n'_c < \sqrt{n_1}$ [cf. Fig. 13]. This restriction on the length of the passing band is necessary to avoid mismatch of the filter response for small eigenvalues of G_{n_1} and G_{n_2}, since they accumulate around zero and are thus harder to discriminate [cf. Fig. 12]. As long as this condition is satisfied, the bound converges asymptotically because, as $n_1, n_2 \to \infty$, $\delta'_c \to \min_{\lambda \in C_0} (|\lambda - \lambda_{i+\text{sgn}(i)}|)$, i.e. δ'_c converges to a fixed eigengap of the graphon.

Because it requires a restriction on n'_c to be asymptotic, the transferability bound in Thm. 8 reflects a similar trade-off between transferability and discriminability to that observed for graph filters. However, in the case of GNNs this is partially overcome by the addition of nonlinearities, which scatter some spectral components associated with small λ around the middle range of the spectrum. This makes for an interesting parallel with the role of nonlinearities in stability, which relies on the components associated with large eigenvalues being scattered around the lower range of the spectrum instead.

VI. CONCLUSIONS

Graph neural networks (GNNs) are becoming the tool of choice for the processing of signals supported on graphs. In this paper we have shown that GNNs are minor variations of graph convolutional filters. They differ in the incorporation of pointwise nonlinear functions and the addition of multiple layers. Being minor variations of graph filters, the good empirical performance of GNNs is expected because we have ample evidence supporting the usefulness of linear graph filters. What is unexpected, is the appearance of significant gains for what is, after all, such a minor variation. In this paper we attempted to explain this phenomenon with a perturbation stability analysis showing that the incorporation of pointwise nonlinearities makes it possible to discriminate signals while retaining more robustness with respect to perturbations of the graph.

We further introduced graphon filters and graphon neural networks in an effort to understand the limit behavior of GNNs as the number of nodes in the graph grows. This analysis uncovers the ability to transfer a GNN across graphs with different numbers of nodes. As in the case of our stability analysis, we also discovered that GNNs exhibit more robust transferability than linear graph filters.

In both domains there remains much to be done. To name a couple of directions, our stability analysis has much to say about perturbation of eigenvalues of a graph shift operator but little to say about the perturbation of its eigenvectors. There are also other ways of defining graph limits that are not graphons and there are several alternative GNN architectures whose fundamental properties have not been studied. We hope that this contribution can spark interest in understanding the fundamental properties of GNNs.

REFERENCES

[1] T. Joachims, “A probabilistic analysis of the rocchio algorithm with tfidf for text categorization,” in 14th Int. Conf. Mach. Learning, Nashville, TN, 8-12 July 1997, pp. 143-151.
[2] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” in 1st Int. Conf. Learning Representations, Scottsdale, AZ, 2-4 May 2013.
[3] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral filtering,” in 30th Conf. Neural Inform. Process. Syst. Barcelona, Spain: Neural Inform. Process. Foundation, 5-10 Dec. 2016, pp. 3844–3858.
[4] W. Huang, A. G. Marques, and A. Ribeiro, “Rating prediction via graph signal processing,” IEEE Trans. Signal Process., vol. 66, no. 19, pp. 5066–5081, Oct. 2018.
[5] Y. Ying, R. He, K. Chen, P. Eksombatchai, Hamilton, W. L., and J. Leskovec, “Graph convolutional neural networks for web-scale recommender systems,” in 26th ACM SIGKDD Int. Conf. Knowledge Discovery & Data Mining, London, UK: Assoc. Comput. Mach., 19-23 Aug. 2018.
[6] F. Monti, M. M. Bronstein, and X. Bresson, “Geometric matrix completion with recurrent multi-graph neural networks,” in 31st Conf. Neural Inform. Process. Syst. Long Beach, CA: Neural Inform. Process. Foundation, 4-9 Dec. 2017, pp. 3697–3707.
[7] E. Tolstaya, F. Gama, J. Paulos, G. Pappas, V. Kumar, and A. Ribeiro, “Learning decentralized controllers for robot swarms with graph neural networks,” in Conf. Robot Learning 2019, vol. 100. Osaka, Japan: Proc. Mach. Learning Res., 30 Oct.-1 Nov. 2019, pp. 1–12.
[8] G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. K. S. Kumar, S. Koenig, and H. Choset, “PRIMAL: Pathfinding via reinforcement and imitation multi-agent learning,” IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 2378-2385, July 2019.
[9] Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks for decentralized multi-robot path planning,” in 2020 IEEE/RSJ Int. Conf. Intell. Robots and Syst. Las Vegas, NV: IEEE, 25-29 Oct. 2020.
[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, ser. The Adaptive Computation and Machine Learning Series. Cambridge, MA: The MIT Press, 2016.
[11] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656, Apr. 2013.
[12] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter design and applications to distributed linear network operators,” IEEE Trans. Signal Process., vol. 65, no. 15, pp. 4117–4131, Aug. 2017.
[13] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and deep locally connected networks on graphs,” in 2nd Int. Conf. Learning Representations, Banff, AB, 14-16 Apr. 2014, pp. 1–14.
