Research Note

Rapid Bone Induction of Cortical Bone Treated with Ultrasonic Demineralization in Acidic Electrolyzed Water

Mamata Shakya¹, Kenji Yokozeki¹, Toshiyuki Akazawa² and Masaru Murata¹

¹Division of Oral Regenerative Medicine, Health Sciences University of Hokkaido, Japan
²Department of Industrial Technology Research, Hokkaido Research Organization, Japan

(Accepted for publication, April 19, 2018)

Abstract: Healthy bone has many physiological microcracks, which may be involved in the release of growth factors and act to accelerate bone remodeling process. In this study, the cortical bone fragments (5 x 5 x 1 mm³) from rat skull were ultrasonically demineralized with acidic electrolyzed water (AEW: pH 2.7) in ultrasonic bath (120 W, 38 kHz, 20 min) designated as ultrasonic bone. Fresh bone and ultrasonic bone were grafted into subcutaneous tissue of 4 week-old male rats, and explanted at 2 and 4 weeks. Fresh bone had physiological micro-cracks, while ultrasonic bone showed clear enlargement and union of cracks on SEM. Ultrasonic bone revealed bone induction locally at 2 weeks, while fresh bone didn’t induce bone and cartilage until 4 weeks. The new combination technique of ultrasonic irradiation and AEW will contribute to improve the surface area and the 3D-structure of the dense bone and should promote bone induction in the initial stage.

Key words: Bone induction, Cortical bone, Demineralization, Electrolyzed water, Ultrasound

Introduction

The ultrasonic technique has been widely applied in the medical and dental field, such as cleaning of instruments, echo examination, and so on. The ultrasonic scalar tip has been most familiar in the dental field. We have previously applied ultrasonic technique for the improvement of commercially available biomaterials. Recently, newly developed ultrasonic instrumentation delivers high-energy ultrasound to wound surface via fluid medium, causing bubble cavitation, to facilitate wound debridement. We focused on bubble cavitation power via acidic electrolyzed water (AEW) by ultrasonic wave. We assume that the physiological and artificial cracks should be involved in the release of bone morphogenetic protein (BMP) molecules as trigger sites of bone induction. The ultrasonic and acid combination technique will contribute to modify cortical bone surface for rapid bone induction. The aim of this study is to investigate the bone-inductive potency of rat cortical skull bone treated with or without ultrasonic irradiation via AEW in adult rat subcutaneous tissues.

Materials and Methods

Production of acidic electrolyzed water (AEW)

AEW (pH 2.5 to 6.5) can be generated from the anode region of a 3 chambered electrolytic apparatus (Redox technology Co., Japan) through effective electrolysis of saturated sodium chloride solution (26.5% NaCl). AEW of pH 2.7 was used in this study. The apparatus has a 3 chamber double in electrolytic system.

Preparation of graft bone fragments

Eight adult Wistar rats (female, 11 month-old) were sacrificed as donors, and parietal bone were harvested, and cut into fragments (5 x 5 x 1 mm³). The bone fragments were demineralized in AEW (pH 2.7, 1.0 liter) by ultrasonic irradiation (120 W, 38 kHz, 20 min) using ultrasonic bath machine (Powersonic 603, Hwashin Technology Co., Seoul, Korea) and designated as ultrasonic bone. Fresh bone fragments were taken as control. Ultrasonic bone and fresh bone were observed by scanning electron microscope (SEM) before the graft. The animal experiments were approved by Animal Research Center of Health Sciences University of Hokkaido, Japan (Authorized No 109). Wistar rats were purchased from Hokudo Co., Sapporo, Japan. All surgical procedures were performed in sterile conditions.

Subcutaneous grafts

Both ultrasonic bone and fresh bone were grafted into subcutaneous tissues of 14 Wistar rats (4 week-old, male), and explanted at 2 and 4 weeks. The tissues were fixed, demineralized, embedded in paraffin, sectioned and stained with hematoxylin and eosin (HE). The specimens were observed by optical microscope.

Results

SEM

Fresh bone exhibited dense surface with physiological cracks (about 5 μm in length) (Fig. 1A). Ultrasonic bone showed clear enlargement and union of cracks (about 50-100 μm in length), and damaged fibers on the surface (Fig. 1D).

Histological findings

Fresh bone didn’t induce bone and cartilage at 2 and 4 weeks (Fig. 1B, C), while ultrasonic bone revealed bone induction locally at 2 weeks (Fig. 1E). The original bone area of both fragments showed empty lacunae spaces of osteocytes, suggesting necrotic bone (Fig. 1B, C, E, F). Induced bone with cuboidal osteoblasts was found on acellular original bone at 4 weeks in ultrasonic bone group (Fig. 1F).

Discussion

Ultrasonically demineralized bone induced bone at 2 weeks in our...
study. Generally, fresh autogenous bone remains the gold standard of treatment for nonunion and large bone defects. However, cortical bone block inhibits the invasion of cells and blood vessels, because the calcified structure is highly dense like a castle wall. Our combination technique was based on the important reports that bone induction occurred predominantly in the cracks, rather than on the flat surfaces, and that demineralized bone matrix (DBM) showed better performance in bone induction than calcified bone. SEM showed micro-cracks could be created on the skull bone treated with ultrasonic demineralization in AEW. Partial dissolution of cortical bone in AEW might be an effective procedure for the release of BMPs and bone matrix-derived growth factors. Living bone has physiological micro-fractures. We believe that the physiological micro-cracks should be involved in the trigger sites of bone induction or remodeling.

It was concluded that the AEW-ultrasonic demineralized bone had better performance in bone induction than the fresh bone. Our micro-damage technique with the combination of the ultrasonic irradiation and AEW could contribute to improve the surface area and the 3D structure of the dense cortical bone, and accelerate bone induction.

Conflict of Interest
The authors have declared that no COI exists in this research.

References
1. Chen YL, Chang HH, Chiang YC and Lin CP. Application and development of ultrasonics in dentistry. J Formos Med Assoc 112: 659–665, 2013
2. Akazawa T, Murata M, Tazaki J, Nakamura K, Hino J, Ito K, Yamamoto M, Tabata Y, Takahata M and Ito M. Biomimetic microstructure and biocompatibility of functionally graded hydroxyapatite derived from animal bone by a supersonic dissolution - precipitation method. Bioceramics 22: 155-158, 2009
3. Akazawa T, Murata M, Minamida Y, Kabir A, Ito M, Katayama A and Nakajima T. Interface function design and bone-regenerative engineering of biomimetic biomaterials by supersonic treatment using electrolyzed water. Key Eng Mater 631: 241-246, 2015
4. Murata M, Akazawa T, Minamida Y, Kabir A, Hino J, Nagayasu H, Ito M, Sakamoto M and Nakajima T. Bone induction in porous HAp block modified by partial dissolution-precipitation technique with supersonic treatment in rat scalp. Key Eng Mater 631: 430-434, 2015
5. Akazawa T, Murata M, Minamida Y, Kabir A, Ito M, Sakamoto M and Nakajima T. Interface function and cefazolin-adsorption-release characteristics of hydroxyapatite granules modified by supersonic treatment techniques. Key Eng Mater 696: 265-270, 2016
6. Nichter LS and Williams J. Ultrasonic wound debridement. J Hand Surg 13A: 142-146, 1988
7. Shannon MK, Williams A and Bloomer M. Low-frequency ultrasound debridement (Sonoca-185) in acute wound management: A case study. Wound Practice and Research 20: 200-205, 2004
8. Lamminen MO, Walker HW and Weavers LK. Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. J Membr Sci 237: 213–223, 2004
9. Burr DB, Martin RB, Schaffler MB and Radin EL. Bone remodeling in response to in vivo fatigue microdamage. J Biomech 18: 189-200, 1985
10. Finkereier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 84: 454-464, 2002
11. Pacaccio DJ and Stern SF. Demineralized bone matrix: basic science and clinical applications. Clin Podiatr Med Surg 22: 599–606, 2005
12. Huggins C, Wiseman S and Reddi AH. Transformation of fibroblasts by allogeneic and xenogeneic transplants of demineralized tooth and bone. J Exp Med 132: 1250-1258, 1970
13. Zhang M, Powers RM and Wolfinbarger L. Effect of the demineralization process on the osteoinductivity of demineralized bone matrix. J Periodontol 68: 1085-1092, 1997
14. Turnbull TL, Baumann AP and Roeder RK. Fatigue microcracks that initiate fracture are located near elevated intracortical porosity but not elevated mineralization. J Biomech 47: 3135-3142, 2014