The Generalized Universal Law of Generalization

Nick Chater* Paul M.B. Vitányi†
University of Warwick CWI and Universiteit van Amsterdam

February 1, 2008

Abstract

It has been argued by Shepard that there is a robust psychological law that relates the distance between a pair of items in psychological space and the probability that they will be confused with each other. Specifically, the probability of confusion is a negative exponential function of the distance between the pair of items. In experimental contexts, distance is typically defined in terms of a multidimensional Euclidean space—but this assumption seems unlikely to hold for complex stimuli. We show that, nonetheless, the Universal Law of Generalization can be derived in the more complex setting of arbitrary stimuli, using a much more universal measure of distance. This universal distance is defined as the length of the shortest program that transforms the representations of the two items of interest into one another: the algorithmic information distance. It is universal in the sense that it minorizes every computable distance: it is the smallest computable distance. We show that the universal law of generalization holds with probability going to one—provided the confusion probabilities are computable. We also give a mathematically more appealing form of the universal law.

1 Introduction

Shepard [43] has put forward a “Universal Law of Generalization” as one of the few general psychological results governing human cognition. The law states that the probability of confusing two items, \(a \) and \(b \), is a negative exponential function of the distance \(d(a, b) \) between them in an internal psychological Euclidean space. A drawback of this approach may be that the Euclidean metric is one among many possible metrics and may be appropriate in some cases but not in others. There exists, however, a universal cognitive metric that accounts for all possible similarities that can intuitively be perceived. It assigns as small a distance between two objects as any cognitive distance will do. Thus, while the positive and negative of the same picture are far away from each other in terms of Euclidean distance, they are at almost zero distance in terms of universal distance since interchanging the black and white pixels transforms one picture into the other. The universal cognitive metric, also called “information distance”, is a mathematical notion resulting from mathematical logic, computer science, information theory, and the theory of randomness. It is an “ideal” notion in the sense that it ignores the limitations on processing capacity of the cognitive system. Nonetheless, we show the following practical generalization of the universal law [of generalization]: if we randomly pick items \(a \) and \(b \), where we allow the most complex objects, then with overwhelming probability the universal law of generalization holds with the internal psychological space metric being the information metric.

1.1 The Universal Law of Generalization

Although intended to have broader application, the law is primarily associated with a specific experimental paradigm—the identification paradigm. In this paradigm, human or animal agents are repeatedly presented with stimuli concerning a (typically small) number of items. We denote the items themselves as \(a, b, \ldots \), the

*Partially supported by European Commission grant RTN-HPRN-CT-1999-00065. Address: Department of Psychology University of Warwick Coventry, CV4 7AL, UK. Email: nick.chater@warwick.ac.uk

†Partially supported by the EU through NeuroColt II Working Group and the QAIP Project. Address: Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands. Email: paulv@cwi.nl
corresponding stimuli as \(S_a, S_b, \ldots \), and the corresponding responses as \(R_a, R_b, \ldots \). The agents have to learn to associate a specific, and distinct, response with each item—a response that can be viewed as “identifying” the item concerned. The stimulus \(S_a \) is associated with item \(a \) and is supposed to evoke response \(R_a \). With some probability, stimulus \(S_a \) can evoke a response \(R_b \) with \(b \neq a \). This means that item \(b \) is confused with item \(a \). The matrix of \(\Pr(R_a|S_b) \) values is known as the confusability matrix. In these terms, the universal law can be written as

\[
\Pr(R_a|S_b) \text{ is proportional to } e^{-d(a,b)},
\]

although we shall see below that the precise formulation is somewhat more complex. The law is not straightforward to test, because psychological distance \(d(\cdot, \cdot) \) can only be inferred by indirect means. Moreover, even for the simplest sets of stimuli, such as pure tones differing in frequency, the nature and even existence of the corresponding internal psychological space, in terms of which distance can be defined, is highly controversial. Shepard has, nonetheless, provided an impressive case for the universal law.

1.2 Shepard’s Case for the Universal Law

Shepard has argued that the technique of non-metric multidimensional scaling, of which he is a pioneer, can be used to derive an underlying metric psychological space from the confusability data itself. Specifically, the confusability data are used to derive a rank ordering of the distances between items on the basis of the relations between corresponding stimuli and responses (imposing certain assumptions, for example, to ensure that the “distance” between two points is symmetrical (that for all \(a, b \), we have \(d(a, b) = d(b, a) \))). This rank ordering is fed into a non-metric multidimensional scaling procedure, which aims to find a way of embedding the items into a low dimensional Euclidean space. The goal is that the rank ordering of distances between the points should correlate as well as possible with the rank ordering of confusabilities between items. The underlying rationale for this procedure is that the embedding of the items in this low-dimensional Euclidean space can be viewed as a model of the underlying psychological space used by the experimental participants.

Given that we have a model of the putative psychological space, and hence can measure the distance \(d(a,b) \) between items in that space, we can assess whether the probability of confusion between \(a \) and \(b \) is indeed inversely related to psychological distance, as predicted by the Universal Law.

Shepard has amassed a large and diverse body of empirical data that, when analysed in this way, are consistent with the universal law. The diverse set of data that conforms to the law includes confusions between linguistic phonemes \(27 \), sizes of circles \(25 \), and spectral hues, in both people \(11 \) and pigeons \(18 \). This evidence builds an impressive case for the universal law. Shepard has, moreover, advanced a further line of argument, that aims to provide a theoretical justification for the universal law. Although sympathetic to this project of rational analysis \(1, 8, 36 \), we will note in the Discussion that such justifications are actually better understood as having a different target. Rather than focussing primarily on confusability, which is the core content of the Universal Law, they focus on the much more difficult question of generalization from past instances to future instances—a problem of inductive reasoning. We will therefore postpone consideration of theoretical arguments in favour of the Universal Law.

1.3 The Universal Law: Weighing the Evidence

How far should we be convinced by the empirical case for the Universal Law? There are a number of points at which the case might be challenged.

The first challenge concerns the ‘universality’ of the Universal Law. There appear to be large numbers of data sets \(33, 34, 35 \) from identification paradigms for which confusability appears to be a Gaussian, rather than a negative exponential, function of psychological distance:

\[
\Pr(R_a|S_b) \text{ is proportional to } e^{-d(a,b)^2}.
\]

Indeed, the Gaussian generalization function is so successful empirically that it is central to a widely-used class of exemplar models \(33, 21 \).
The empirical picture is complex, but one plausible reconciliation of the Universal Law with apparent examples of Gaussian confusability, is that the Gaussian confusability originates from problems of perceptually distinguishing the stimuli, whereas the Universal Law applies when perceptual discrimination is not the limiting factor in performance. Ennis [11] provides a useful analysis of how perceptual noise might interact with generalization in accordance with the Universal Law.

A further potential issue concerns the difficulties of curve-fitting. Comparing different classes of model for fit with a set of data is a controversial and subtle matter and fits are frequently surprisingly inconclusive, even when very large sets of data are available [30]. Moreover, Myung and Pitt [31] have recently argued that comparisons between models are frequently systematically biased because one class of models is less restrictive than the other with respect to the class of data sets that it can model. This can lead to the counterintuitive consequence that, using standard statistical methods, one may be likely to conclude that the data were generated by model class A rather than B, irrespective of whether it was generated by model class A or B. Fortunately, however, the exponential fares well from the point of view of Myung et al.'s analysis—at least in relation to the power law (which, in this context, would hold that

\[\Pr(R_a|S_b) \text{ is proportional to } d(a, b)^{-c}. \]

for some positive constant \(c \) which is a natural comparison. As far as we are aware, though, recent model comparison techniques such as those suggested by Myung and Pitt have not been applied to confusability data.

A further possible concern, which we have touched on above, is that pinning down the structure of internal psychological spaces is a notoriously difficult matter, and one that can be tackled from a range of theoretical perspectives, differing from that which Shepard adopts. Indeed, the problem of mapping magnitudes, such as sound pressure, onto a one-dimensional internal sensory scale (perceived loudness) has occupied the attention of psychophysicists for a century and a half without apparent resolution. Most famously, Fechner [14] argued for a logarithmic relationship between physical intensity and internal magnitude, whereas Stevens [47] argued for a power law relationship. Not all theorists will be confident in relying on non-metric multidimensional scaling of confusability matrices as the solution to all these difficulties (see Falmagne, [13] for a review of the complexities of this area).

Yet another concern is the assumption of symmetry which is inherent in the use of the mathematical notion of metric to talk about the distance between two items \(a \) and \(b \): \(d(a, b) = d(b, a) \). In psychological data there seem to be genuine asymmetries across many ways of measuring confusability. For example, complex things tend to be confused with simple things; but simple things are less often confused with complex things. Thus, people misremember complex shapes as simple, wobbly street plans in terms of right angles, peculiar and unusual colors in terms of “focal” colours (e.g. “mauve” becomes “bright red”). This problem, however, seems to be more related to rapidly blurring of complex details in memory, which erases complexity, rather than an essential feature of the cognitive system. Here we simply assume symmetry of distance between two items in psychological space.

A final concern, and the one which the present paper seeks to address, is that the view of psychological distance as Euclidean distance in an internal multidimensional space may be too restrictive to be applicable to many aspects of cognition. It is typically assumed that the cognitive representation formed of a visually presented object, a sentence or a story, will involve structured representations (e.g., [3, 15, 16, 23, 28, 41, 51]. Structured representations can describe an object not just as a set of features, or as a set of numerical values along various dimensions, but in terms of parts and their interrelations, and properties that attach to those parts. Thus, in describing a bird, it is important to specify not just the presence of a beak, eyes, claws, and feathers, but the way in which they are spatially and functionally related to each other. Equally, it is important to be able to specify that the beak is yellow, the claws orange and the features white—to tie attributes to specific parts of an object. Thus, describing a bird, a line of Shakespeare, or the plot of Hamlet as a point in a Euclidean multidimensional space appears to require using too weak a system of representation.

This line of argument raises the possibility that the Universal Law may be restricted in scope to stimuli which are sufficiently simple to have a simple multidimensional representation—perhaps those that have no psychologically salient part-whole structure. We shall argue, however, that the Universal Law may nonetheless be applicable quite generally, since all these aspects are taken into account by the algorithmic...
information theory approach. This leads to a more generalized form of the Universal Law, as well as to a
mathematically more appealing and less arbitrary form.

2 Mathematical Preliminaries

Shepard’s article raises the question whether psychological science has hope of formulating a law that is
comparable in scope and possibly accuracy to Newton’s universal law of gravitation. The universal law of
generalization for psychological science is an tentative candidate. In the *Principia* \[32\], Newton gives a few
rules governing scientific activity. The first rule is “We are to admit no more causes of natural things than
such as are both true and sufficient to explain the appearances. To this purpose the philosophers say that
Nature does nothing in vain, and more is in vain when less will serve; for Nature is pleased with simplicity,
and affects not the pomp of superfluous causes.” Here, we generalize the “universal law of generalization”
by essentially using Newton’s maxim.

We have noted that the empirical analysis of internal psychological spaces from experimental data has
proved extremely contentious. Here, we take a complementary approach and derive the universal law from
first principles using the novel notion of information contents of individual objects. That is, we motivate a
measure of distance between representations of objects on a priori grounds, drawing on recent advances in the
mathematical theory of Kolmogorov complexity \[22\]. It turns out that there is a very natural, and general,
measure of the “distance” between representations, of whatever form: the information distance. Using this
very general measure, the Universal Law of generalization still holds, subject to quite minimal restrictions on
the process by which the experimental participant maps stimuli onto responses in the identification paradigm.

The presentation of this section has three parts. First, we provide some general background and also
describe some basic results in Kolmogorov complexity theory. Second, we introduce and motivate the notion
of “information distance,” which we shall use as a fundamental measure of psychological distance. Third,
we consider the nature of the probabilistic process by which the participant maps stimuli to responses,
which generates the confusion matrix in the identification paradigm—we shall need to make only very weak
assumptions about this probabilistic process. In the next section, we show that, given these notions, the
Universal Law holds: confusability is a negative exponential function of distance between representations.

2.1 Algorithmic Information Theory

We take the viewpoint that the set of objects we are interested is finite or infinite but countable, just like
the natural numbers. Each object can be described by using, for example English. That means we can
describe every object by a finite string in some fixed finite alphabet. By encoding the different letters of that
alphabet in bits (0’s and 1’s) we reduce every description or representation of the object to a finite binary
string. A similar argument presumably holds for the physical manner an object is represented in an agent’s
cognitive system. This way we reduce the representation of all objects that are relevant in this discussion to
finite binary strings. In the unlikely case that there are relevant objects that cannot be so represented we
simply agree that they are not subject of this discussion.

In the psychology and cognitive literature there have been a great number of proposals for encodings of
patterned sequences and defining the complexities of the resulting encodings. See for example the survey
in Simon \[44\]. All such encodings are special types of computable codes, which means that all of them can
be decoded by appropriate machines or programs. Mathematically one says that every such code can be
decoded by an appropriate *Turing machine*: a convenient model introduced in \[49\] to formally capture the
intuitive notion of “computation” in its greatest generality. It has turned out that all different mathematical
proposals to formulate a more general notion of computability after all turned out to be equivalent to the
Turing machine. Since then, the so-called *Church-Turing thesis* states that the Turing machine captures the
most universal and general notion of effective computability, and is the formal equivalent of our intuitive
notion of the same. It is universally used in formal arguments. There is no need to go into details here,
they can be found in any textbook on computable functions and effective processes, for example, \[37\] or a
section 1.7 in \[22\]. What is important here is that there is a general code that subsumes all computable
codes mentioned above. This is the code decodable by a so-called “universal” Turing machine. In effect,
such a machine works with a code book that enumerates all computable codes. By prefixing an encoded item
with the index in the enumeration of the particular code that has been used, the universal Turing machine can decode. Clearly, this universal encoding need not be longer than the shortest two-part code consisting of the index of a particular code used plus the length of the resulting encoding. Stating that the universal code can be decoded by a universal Turing machine is equivalent to that it is a program in a universal programming language like C++ or Java. This leads to a notion of information content of an individual object pioneered by the Russian mathematician A.N. Kolmogorov [21]. This notion should be contrasted to Shannon’s statistical notion of information [12] which deals with the average number of bits required to communicate a message from a probabilistic ensemble between a sender and a receiver. In this paper we keep the discussion informal; an introduction, epistemology and rigorous treatment of the theory is given in [22].

The Kolmogorov complexity $K(x)$ of a finite object x, is defined as the length of the shortest binary computer program that produces x as an output. Thus, objects such as a string of one billion ‘1’ s or, a binary code for a digitized picture of an untextured rectangle, or the first million digits of $\pi = 3.1415 \ldots$ are reasonably simple, because there are short programs that can generate these objects. On the other hand, a typical binary sequence generated by tossing a coin is complex—the sequence is its own shortest program, because there is no hidden structure that can be used to find a shorter code. Kolmogorov complexity theory, also known as algorithmic information theory, is a modern notion of randomness dealing with the quantity of information in individual objects. The Kolmogorov complexity of an object is a form of absolute information of the individual object, in contrast to standard (probabilistic) information theory [1] which is only concerned with the average information of a random source.

The definition of Kolmogorov complexity may appear to be rather specific. But this appearance is misleading. For example, the restriction to a binary coding alphabet can easily be dispensed with—switching to an alphabet with n letters amounts merely to rescaling all Kolmogorov complexities by a multiplicative constant but has no other impact. The binary alphabet is used by convention, to provide a fixed measuring standard. More interestingly, it might appear that the length of the shortest program that generates a specific code must inevitably be relative to the choice of programming language. But a central result of Kolmogorov complexity theory, the Invariance Theorem [22], states that the shortest description of any object is invariant (up to a constant) between different universal languages. Therefore, it does not matter whether the universal language chosen is C++, Java or Prolog—the length of the shortest description for each object will be approximately the same. Let us introduce the notation $K_{C++}(x)$ to denote the length of the shortest C++ program which generates object x; and $K_{Java}(x)$ to denote the length of the shortest Java program. The Invariance Theorem implies that $K_{C++}(x)$ and $K_{Java}(x)$ will only differ by some constant, c, (which may be positive or negative) for all objects x, including, of course, all possible perceptual stimuli. Formally, there exists a constant c such that for all objects x:

$$|K_{C++}(x) - K_{Java}(x)| \leq c.$$

Thus, in specifying the complexity of an object, it is therefore possible to abstract away from the particular language under consideration. Thus the complexity of an object, x, can be denoted simply as $K(x)$—referring to the Kolmogorov complexity of that object.

Why is Kolmogorov complexity language invariant? To see this intuitively, note that any universal language can be used to encode any other universal programming language. This follows from the preceding discussion because a programming language is just a particular kind of computable mapping, and any universal programming language can encode any computable mapping. For example, consider two universal computer languages which we call “C++” and “Java.” Starting with C++, we can write a program, known in computer science as a compiler, which translates any program written in Java into C++. Suppose that this program has length has length c_1. Suppose that we know $K_{Java}(x)$, the length of the shortest program which generates an object x in Java. What is $K_{C++}(x)$, the shortest program in C++ which encodes x? Notice that one way of encoding x in C++ works as follows—the first part of the program translates

1Strictly, it is important that the program is a prefix program—that is, that no initial segment of the binary string comprising the program itself defines a valid program; and, equally, that no non-trivial continuation of the binary string comprising the program defines a valid program. The restriction to prefixes ensures that, for example, given a binary string that corresponds to a concatenation of programs, there is no ambiguity concerning how the string should be divided into discrete programs. Although tangential to the discussion here, the use of prefix complexity is of considerable technical importance [24, 12].

2Specifically, this constant is log n. All logarithms in this paper are binary logarithms unless otherwise noted.
Kolmogorov complexity, K, is defined for a single object, x. The length of this program is the sum of the lengths of its two components: $K_{Java}(x) + c_1$. This is a C++ program which generates x, if by a rather roundabout means. Therefore $K_{C++}(x)$, the shortest possible C++ program must be no longer than this: $K_{C++}(x) \leq K_{Java}(x) + c_1$. An exactly symmetric argument based on translating in the opposite direction establishes that: $K_{Java}(x) \leq K_{C++}(x) + c_2$. Putting these results together, we see that $K_{Java}(x)$ and $K_{C++}(x)$ are the same up to a constant, for all possible objects x. This is the Invariance Theorem that Kolmogorov complexity is language invariant.

The implication of the Invariance Theorem is that the functions $K(\cdot)$ (and $K(\cdot|\cdot)$, that we introduce below) though defined in terms of a particular programming language, are language-independent up to an additive constant and acquire an asymptotically universal and absolute character through the Church-Turing thesis, from the ability of universal machines to simulate one another and execute any effective process. The Kolmogorov complexity of a string can be viewed as an absolute and objective quantification of the amount of information in it, giving a rigorous formal and most general notion corresponding to our intuitive notion of shortest effective description length. This may be called Kolmogorov's thesis. This leads to a theory of absolute information contents of individual objects in contrast to classical information theory which deals with average information to communicate objects produced by a random source. Since the former theory is much more precise, it is perhaps surprising that analogs of many central theorems in classical information theory nonetheless hold for Kolmogorov complexity, although in a somewhat weaker form.

We have mentioned that shortest code length is invariant for universal programming languages. How restrictive is this? The constraint that a system of computation is universal turns out to be surprisingly weak—all manner of computation systems, from a simple automaton with under 100 states supplied with unlimited binary tape from which it can read and write, to numerous word processing packages, spreadsheet and statistical packages, turn out to define universal programming languages. It seems that universality is likely to be obeyed by a computational system as elaborate as that used involved in cognition.

The basic notion of Kolmogorov complexity has been elaborated into a rich mathematical theory, with a wide range of applications in mathematics and computer science. It has also been applied in a range of contexts in psychology, from perceptual organization (see [4] [20] for different uses of the theory), to psychological judgements of randomness [12], to providing the basis for a theory of similarity [7]. Indeed, the idea that cognition seeks the simplest explanation for the available data, inspired by results in Kolmogorov complexity, has even been suggested as a fundamental principle of human cognition [5] [6].

2.2 Information distance

Kolmogorov complexity is defined for a single object, x. But an immediate generalization, conditional Kolmogorov complexity, $K(y|x)$ provides a measure of the degree to which an object y differs from another object x. $K(y|x)$ is defined as the length of the shortest program (in a universal programming language, as before) that takes x as input, and produces y as output. The intuitive idea is that if items are distant from each other, then it should require a complex program to turn one into the other. At this point it is useful to recall the mathematical formulations of the notions of “distance” and “metric”:

A distance function D with nonnegative real values, defined on the Cartesian product $X \times X$ of a set X is called a metric on X if for every $x, y, z \in X$:

- $D(x, y) = 0$ iff $x = y$ (the identity axiom);
- $D(x, y) + D(y, z) \geq D(x, z)$ (the triangle inequality);
- $D(x, y) = D(y, x)$ (the symmetry axiom).

A set X provided with a metric is called a metric space. For example, every set X has the trivial discrete metric $D(x, y) = 0$ if $x = y$ and $D(x, y) = 1$ otherwise. All information distances in this paper are defined on the set $X = \{0, 1\}^*$ (that is, the set of all finite strings composed of 0s and 1s) and satisfy the metric conditions up to an additive constant or logarithmic term while the identity axiom can be obtained by normalizing.
The conditional complexity function $K(y|x)$ trivially obeys identity, because no program at all is required to transform an item into itself.\footnote{Note that, throughout, due to language invariance, Kolmogorov complexities are only specified up to an additive constant. So, in a particular language, $K(x|x)$ could be non-zero—if, for example, some instructions are required to implement the 'null' operation (this is typically true of real programming languages, in which the null string is not treated as a valid program. But the length of this program will, by language invariance, be bounded by a constant, for all possible x.)} Conditional complexity also obeys the triangle inequality: $K(x|z) \leq K(x|y) + K(y|z)$. This follows immediately from the observation that the concatenation of a program mapping z into y (with minimum length $K(y|z)$), and a program mapping y into x is (with minimum length $K(x|y)$). Using this concatenation, it is clearly possible to map x to z using a program of length no more than the sum of these individual programs: $K(x|y) + K(y|z)$. This sum must therefore be at least as great as the length shortest program mapping from z to x, that is $K(x|z)$, where $K(x|z)$ is typically smaller by there being shorter programs which perform this mapping without going through the intermediate stage of generating y. Thus, the triangle inequality holds for $K(\cdot\cdot\cdot)$.

But, as it stands, $K(y|x)$ is not appropriate as a distance measure, because it is asymmetric. Consider the null string ϵ. $K(\epsilon|x)$ is small, for every x, because to map the input x onto the null string simply involves deleting x, which is a simple operation. Conversely, $K(x|\epsilon) = K(x)$, which can have any value whatever, depending on the complexity of x. Symmetry can be restored by, for example, taking the sum of the complexities in both directions: $K(x|y) + K(y|x)$, or alternatively, the maximum of both complexities $\max\{K(x|y), K(y|x)\}$. It is easy to verify that the resulting measures, known as sum distance and max distance, respectively, qualify as distance metrics \cite{2,22}. For example, the sum distance and the max-distance between x and the null string ϵ are given by $K(x|\epsilon) + K(\epsilon|x) = K(x) = \max\{K(x|\epsilon), K(\epsilon|x)\}$.

Max and sum-distances are close but not necessarily equal. Denoting sum and max distance respectively by D_{sum} and D_{max}, it is easy to verify that, for every x, y:

$$D_{\text{max}}(x, y) \leq D_{\text{sum}}(x, y) \leq 2D_{\text{max}}(x, y). \quad (1)$$

For the present purpose of putting the Universal Law on a formal mathematical footing, it is important to consider the epistemological motivation of these distances. The information distance is defined in \cite{3} as the length of a shortest binary program that computes x from y as well as computing y from x. Being shortest, such a program should take advantage of any redundancy between the information required to go from x to y and the information required to go from y to x. The program functions in a catalytic capacity in the sense that it is required to transform the input into the output, but itself remains present and unchanged throughout the computation. Note that while a program of length $K(x|y) + K(y|x)$ by definition can compute from y to x (a subprogram of length $K(x|y)$) and from x to y (a subprogram of length $K(y|x)$), it is by no means clear (and happens to be false) that such a program is necessarily the shortest that performs both the mapping from x to y and the mapping from y to x. A $(K(x|y) + K(y|x))$-length program is not minimal if the information required to compute y from x can be made to overlap with that required to compute x from y.

In some simple cases, complete overlap can be achieved, so that the same minimal program suffices to compute x from y as to compute y from x. We first need an additional notion. A binary string x of n bits is called incompressible if $K(x) \geq n$. A simple argument suffices to show that the overwhelming majority of strings is incompressible, \cite{22}. We continue the main argument. For example if x and y are independent incompressible binary strings of the same length n (up to additive constants we have $K(x|y), K(y|x) \geq n$), then their bitwise exclusive-or $x \oplus y$ serves as a minimal program for both computations. (If $x = 01011$ and $y = 10001$, then $z = x \oplus y = 11010$. Since $z \oplus y = x$ and $z \oplus x = y$ we can use z as a program both to compute from y to x and to compute from x to y.)

Similarly, if $x = uv$ and $y = vw$ where $u, v,$ and w are independent incompressible strings of the same length, then $u \oplus w$ along with a way to distinguish x from y is a minimal program to compute either string from the other. Now suppose that more information is required for one of these computations than for the other, say,

$$K(y|x) > K(x|y).$$

Then the minimal programs cannot be made identical because they must be of different sizes. In some cases it is easy to see that the overlap can still be made complete, in the sense that the larger program (for y given
x) can be made to contain all the information in the shorter program, as well as some additional information. This is so when x and y are independent incompressible strings of unequal length, for example u and vw above. Then u ⊕ v serves as a minimal program for u from vw, and (u ⊕ v)w serves as one for vw from u.

A principal result of [2] shows that, up to an additive logarithmic error term, the information required to translate between two strings can be represented in this maximally overlapping way in every case. That is, the minimal program to translate back and forth between x, y has length not larger than \(\max\{K(x|y), K(y|x)\} \). It is straightforward that the minimum length program to do this back and forth translation cannot be shorter, since by definition of Kolmogorov complexity the translation in direction x to y requires a program of length at least \(K(y|x) \) and the translation in the direction of y to x requires a program of length at least \(K(x|y) \). Therefore, the length of the shortest binary program that translates back and forth between two items is called the information distance between the two items, and it is equal to \(D_{\max}(x, y) \)—to be precise, up to an additive logarithmic term which we ignore in this discussion.

Max-distance has a particularly attractive universal quality: it is, in a sense, the minimal distance measure, in a broad class of distance measures that might be termed “computable,” as we now see.

We say that a function from a discrete domain to the reals (for example a distance metric) is semicomputable from above if it can be approximated from above by some computable process. This is a very weak condition. For example, it is weaker than the assumption that a function is computable. It requires merely that there is some computable process that outputs a sequence of successive approximations to the function value, that are successively decreasing, and which converge to be as close as desired to the distance metric, given sufficient computation\(^4\). If we assume the Church-Turing thesis, that human cognition can encompass only computable processes, then it seems that this assumption follows automatically.

To make sense of the notion of a “minimal” distance measure, we need some normalization condition, to fix the “scale” of the distances. Without such a condition, we could simply divide the values given by a distance metric by an arbitrarily large constant \(c \) to get a more “minimal” distance metric.

For a cognitive similarity metric the metric requirements do not suffice: a distance measure like \(D(x, y) = 1 \) for all \(x \neq y \) must be excluded. For each \(x \) and \(d \), we want only finitely many elements \(y \) at a distance \(d \) from \(x \). Exactly how fast we want the distances of the strings \(y \) from \(x \) to go to \(\infty \) is not important: it is only a matter of scaling. In analogy with Hamming distance in the space of binary sequences, it seems natural to require that there should not be more than \(2^d \) strings \(y \) at a distance \(d \) from \(x \). This would be a different requirement for each \(d \). With prefix complexity, it turns out to be more convenient to replace this double series of requirements (a different one for each \(x \) and \(d \)) with a single requirement for each \(x \):

\[
\sum_{y:y \neq x} 2^{-D(x,y)} < 1.
\]

We call this the normalization property since a certain sum is required to be bounded by 1.

We consider only distances that are computable in some broad sense. This condition will not be seen as unduly restrictive. As a matter of fact, only upper-semicomputability of \(D(x,y) \) will be required. This is reasonable: as we have more and more time to process \(x \) and \(y \) we may discover more and more similarities among them, and thus may revise our upper bound on their distance. The upper-semicomputability means exactly that \(D(x,y) \) is the limit of a computable sequence of such upper bounds.

Definition 1 An admissible distance \(D(x,y) \) is a total nonnegative function on the pairs \(x,y \) of binary strings that is 0 if and only if \(x = y \), is symmetric, satisfies the triangle inequality, is upper-semicomputable and normalized, that is, it is an upper-semicomputable, normalized, metric. An admissible distance \(D(x,y) \) is universal if for every admissible distance \(D'(x,y) \) we have \(D(x,y) \leq D'(x,y) + c_D \) where \(c_D \) may depend on \(D \) but not on \(x \) or \(y \).

In [3] a remarkable theorem shows that \(D_{\max} \) is a universal (that is, optimal) admissible distance. Formally, every admissible distance metric \(D \) has an associated constant \(c \) such that

\[
D_{\max}(x, y) \leq D(x, y) + c,
\]

\(^4\)It does not require, for example, that it is possible to actually output the “correct” distance values—or, indeed, to announce the degree of approximation that has been achieved after a given amount of computation.
for every x and y.

As already discussed above, the universal distance D_{max} happens to also have a “physical” interpretation as the approximate length of the the smallest binary program that transforms x into y and vice versa. That is, for all the infinitely many x, y, and hence the infinite number of distances between them, the D_{max} distance is never more than a finite additive constant term greater than the corresponding D-distance with respect to any admissible distance metric D, where the additive constant may depend on D but is independent of x and y.

Intuitively, the significance of this is that the universal admissible distance minorizes all admissible distances: if two pictures are d-close under some admissible distance, then they are d-close up to a fixed additive constant under this universal admissible distance. That is, the latter discovers all effective feature similarities or cognitive similarities between two objects: it is the universal cognitive similarity metric. The remarkable thing about information distance measures such as D_{max} is that, with respect to the class of computable distance measures (subject to the normalization condition described above), they are minimal. That is, if any computable measure treats two items as near, then information distance measures will also treat the items as ‘reasonably’ near.

The typical distance measures considered in psychology, artificial intelligence or mathematics are not universal. This is because they favor some regularities among the items that consider, but entirely ignore other regularities—and some of these regularities may be the basis of computable (and hence allowable) distance measures. Let us look at some examples. Identify digitized black-and-white pictures with binary strings. There are many distances defined for binary strings. For example, the Hamming distance and the Euclidean distance. The Hamming distance between two n-bit vectors is the number of positions containing different bits; the Euclidean distance between two n-bit vectors is the square root of the Hamming distance. Such distances are sometimes appropriate. For instance, if we take a binary picture, and change a few bits on that picture, then the changed and unchanged pictures have small Hamming or Euclidean distance, and they do look similar. However, this is not always the case. The positive and negative prints of a photo have the largest possible Hamming and binary Euclidean distance, yet they look similar to us. Also, if we shift a picture one bit to the right, again the Hamming distance may increase by a lot, but the two pictures remain similar. As another example, a metric of similarity based on comparing overlap of features will treat items that have precisely opposite patterns of features as very distant. But, of course, with respect to the D_{max} measure such items are very close since the program saying “take the opposite of every feature” suffices to change one item into the other. Hence, such a feature-based metric is not a minimal distance. Similarly, if items are represented as real-valued vectors, and the Euclidean distance metric is used, then items corresponding to vectors v and $2v$ will have distance equal to the Euclidean length of v, while D_{max} is small.

We believe that, in the present context, the minimality of information distance is a substantial virtue, because minimal distance measures make the least commitment to the specific similarity metric used by the cognitive system—because they approximate all possible (computable) metrics. Thus, minimal distance measures seem the ideal candidate “null hypotheses” about the structure of psychological similarity.

We have considered some technical reasons why measures based on information distance are attractive general distance measures. These measures gain some additional psychological interest because of its relation to the recently proposed Representational Distortion theory of psychological similarity. According to Representation Distortion, the psychological similarity of two items depends on the complexity of the transformation required to “distort” the representation of one of the items into a representation of the other item. The notion of complexity is then assumed to be related to the notion of conditional Kolmogorov complexity, as described here. According to this viewpoint, the flexibility of measures like information distance is appropriate because it reflects the flexibility of the cognitive system—to choose arbitrary ways of interrelating, aligning and connecting representations, rather than being constrained to use a fixed similarity measure. This account of similarity, although early in its development, has received some empirical support.

5 By $D_{\text{sum}}(x, y) \leq 2D(x, y) + 2c$, because the two measures D_{max} and D_{sum} are within a constant factor 2 of each other.
2.3 How Items are Confused

We assume a very general, and weak, model of similarity—based on information distance. We next need a general model of the how items are confused with each other. Fortunately, only a very weak assumption is required. First, we assume that there is a discrete set of items a, stimuli S_a, and responses R_a. Moreover, these are associated with one another in the sense that there is a fixed program that on input x computes y where x and y are chosen from among of a, S_a, R_a. Secondly, for each stimulus a, the probability distribution $\Pr(R_b|S_a)$ over the different responses, b, is itself semicomputable from below. That is, it can be approximated from below by a computable process that produces a monotonically increasing series of approximations to $\Pr(R_b|S_a)$ which approach arbitrarily closely, given sufficient computing time. This is a weaker condition, of course, than the condition that the probability distribution can be actually be computed exactly by some computable process—which is equivalent to the distribution being both semicomputable from above and from below. Recall that the celebrated Church-Turing Thesis, see for example [37], states that everything which is intuitively computable can be computed formally by a Turing machine, or, equivalently, a standard computer supplied with a large enough memory. Assuming the Church-Turing thesis implies that processes executed by the cognitive system are computable functions. In particular, therefore, this condition will include any computational account of the process by which stimuli S_a are mapped onto responses R_b.

3 The General Universal Law of Generalization

Having outlined the notion of information distance, and provided a weak condition on the cognitive processes by which confusability between items occurs, we are now in a position to show how the generalized “algorithmic” version of the Universal Law can be derived from first principles.

The idea behind the proof is to place bounds on the confusability probabilities, $\Pr(R_b|S_a)$, simply in virtue of its semicomputability, using basic results of Kolmogorov complexity theory. These bounds can be interpreted as providing a direct connection between confusability and the measure of information distance. We use standard results from Kolmogorov complexity theory, which provide the bounds on $\Pr(R_b|S_a)$ that we require.

3.1 Optimal Codes and Entropy

For technical reasons we recall some notions from information theory [9]. Suppose we have a random source emitting letters from the alphabet with certain frequencies. Our task is to encode messages consisting of many letters in binary in such a way that on average the encoded message is as short as possible. It is evident that by assigning the few shortest binary sequences to the most common letters and the longer sequences to the rare ones, the expected length of a message is less than if we assigned equal length codes to all letters. Thus, the Morse code in telegraphy is adapted to the frequency of letter occurrences in English. It assigns short sequences of dots and dashes to more frequently occurring letters: “a” is encoded as “.-” and “t” is encoded as “-”. Long sequences of dots and dashes are assigned to less frequently occurring letters such as “z” which is encoded as “.- .”. A prefix code has the property that no code word starts with another code word as proper initial segment (prefix). This property makes it possible to parse an encoded message into the sequence of code words from which it is composed in only one way: We can unambiguously retrieve the encoded message. Note that the Morse code is not a prefix-code. A prefix code for the letters $a,b, \ldots z$ is, for example, to encode “a” by “-”, the letter “b” by “.-”, and so on. This example is not very efficient; it is essentially a tally code. It is easy to design more efficient prefix-codes. Nonetheless, since prefixes are excluded, it is clear that prefix-codes cannot be as concise as general codes. But prefix-codes have a very general and central property that makes them more practical than other codes: for every code that is uniquely decodable there is a prefix-code that has precisely the same lengths of code words. Thus, when we want unambiguous codes then we can as well restrict ourselves to prefix-codes: they are uniquely decodable and have the additional advantage that we can parse them in one pass going left-to-right. Moreover, it is well-known that there is a tight connection between prefix codes, probabilities, and notions of optimal codes: Call the letters to be encoded by the name “source words”. Consider an ensemble of source letters with source word x having probability $P(x)$. Assign code words with code word length $l_P(x)$ to source word
x. The so-called Noiseless Coding Theorem of C. Shannon states that among all prefix codes the minimal average code word length, the average taken with respect to the distribution \(P \), satisfies

\[
H(P) \leq \sum_x P(x) \log P(x) \leq H(P) + 1
\]

where \(H(P) = -\sum_x P(x) \log P(x) \) is called the entropy of \(P \). This minimum is reached by the so-called Shannon-Fano code (the details of which do not matter here) where we assign a code word of length \(-\lceil \log P(x) \rceil \) to source word \(x \). Intuitively, this code is optimally “adapted” to the probability distribution \(P \) of the source words.

3.2 The Kolmogorov Code

A trivial application of this result, generalized to conditional probability, is that using a code that is well-adapted to probability distribution \(\Pr(\cdot|S_a) \), the Shannon-Fano code length of \(R_b \), given \(S_a \), is \(-\log \Pr(R_b|S_a)\). This allows us to quantify the code length of a particular way of mapping \(S_a \) onto \(R_b \). First, specify the probability distribution \(\Pr \)—this can be done using a computer program of length \(K(\Pr) \) (the existence of such a computer program is guaranteed by the condition that \(\Pr \) is computable). Then specify \(R_b \), given \(S_a \) using the probability distribution \(\Pr \), which takes length \(-\log \Pr(R_b|S_a)\) using the Shannon-Fano code. Thus, the total length of this way of mapping from \(S_a \) to \(R_b \) is: \(K(\Pr) - \log \Pr(R_b|S_a) \). Obviously, every computable code that maps \(S_a \) to \(R_b \) must be at least as long as the shortest computable code which does this, which length is, by definition, \(K(R_b|S_a) \). Thus, we can infer that:

\[
K(R_b|S_a) \leq K(\Pr) - \log \Pr(R_b|S_a),
\]

which, when rearranged, provides an upper bound on \(\Pr(R_b|S_a) \):

\[
\Pr(R_b|S_a) \leq 2^{K(\Pr) - K(R_b|S_a)}.
\]

In the following it is convenient to use a special notation for (in)equality up to an additive constant. From now on, we will denote by \(\lessdot \) an inequality to within an additive constant, and by \(\lesssim \) the situation when both \(\lessdot \) and \(\gtrsim \) hold.

We derive a lower bound: Suppose we sample from a distribution \(\Pr \), and encode the outcomes using an optimally adapted code, as described above. We can then write down the expected code length as

\[
E_{\Pr}(-\log \Pr(x)) \lessdot \sum_x \Pr(x)(-\log \Pr(x)) = \gtrsim -\sum_x \Pr(x) \log \Pr(x).
\]

Here \(E_{\Pr}f(x) = -\sum_x \Pr(x)f(x) \) is called the expectation of \(f(x) \) with respect to \(\Pr \). With \(f(x) = -\log \Pr(x) \) this is the above expression for the entropy of \(\Pr \). Now suppose that we consider, instead, the expected value of the Kolmogorov complexity of \(x \)—the shortest code length for \(x \), in a universal programming language. In general, of course, this will be at least as great as the entropy—because the entropy reflects the shortest expected code length for \(x \), using a code which is optimally adapted to \(\Pr \). So this means that

\[
E_{\Pr}(-\log \Pr(x)) \leq E_{\Pr}K(x).
\]

Nonetheless, though, there will typically be individual values of \(x \) for which Kolmogorov complexity is significantly less than the code length \(\approx -\log \Pr(x) \) optimized to \(\Pr \). For example, suppose that \(\Pr \) is an extremely simple distribution over binary strings, such that 0 and 1 values both have a probability of 0.5, and are independent—as if, for example, the string were generated by a series of fair coin flips. Consider the string that consists of a million consecutive 1s. According to \(\Pr \), the probability of this string is \(2^{-1,000,000} \),
and the code length according to the code optimally adapted to \(\Pr \) is \(- \log 2^{1,000,000} = 1,000,000\). Indeed, this same code length will be assigned for every binary string of 1,000,000 characters generated by \(\Pr \), because according to \(\Pr \) all such strings have the same probability of occurring. However, the Kolmogorov complexity of this particular string will, of course, be considerably less than 1,000,000 bits—because a short computer program can print a million 1s and then halt.

The reason that this particular string generated by \(\Pr \) has a smaller Kolmogorov complexity that is associated with the optimal code for \(\Pr \), is that the string has some additional structure, that is unexplained by \(\Pr \). The existence of this additional structure (such as being a sequence of repeated items, or alternating items, or encoding \(\pi = 3.14 \ldots \) in binary, or whatever it may be) can therefore be used to provide an unexpectedly short code for the string. Intuitively, though, it seems that strings generated by \(\Pr \) with such additional useful structure must be rare—it would seem likely that the overwhelming majority of strings generated by \(\Pr \) will merely be typical of the distribution, and hence will not contain any useful “unexpected” structure. The Kolmogorov complexity of these items will, therefore, be at least as great as the code length according to the code optimally adapted to \(\Pr \). This intuition is indeed correct. It can be shown that the probability that an item, \(x \), drawn from \(\Pr \), is such that

\[- \log \Pr(x) \leq K(x)\]

goes to 1 for length of \(x \) grows unboundedly. That is, almost all probability is concentrated on items \(x \) satisfying this inequality—and if the probability is not dramatically skewed this implies that the overwhelming majority of \(x \)’s do so. Items for which this inequality holds are known as \(\Pr(\cdot) \)-random, indicating that they do not have sufficient “unexpected” structure to support an shorter coding than would be expected from \(\Pr \).

A straightforward generalization of this result to conditional probability, and its application in the present context yields the result that, for the \(R_b \) that are \(\Pr(\cdot|S_a) \)-random (and the probability of sampling such an item from \(\Pr(\cdot|S_a) \) will be almost 1), then

\[- \log \Pr(R_b|S_a) \leq K(R_b|S_a).\]

This equation can be rearranged to give a lower bound on \(\Pr(R_b|S_a) \):

\[2^{-K(R_b|S_a)} \leq \Pr(R_b|S_a).\]

Putting the upper and lower bounds together, we can conclude that, for \(\Pr(\cdot|S_a) \)-random items:

\[2^{-K(R_b|S_a)} \leq \Pr(R_b|S_a) \leq 2^{K(\Pr)-K(R_b|S_a)}.\]

This result implies that, for all almost all items (the \(\Pr(\cdot|S_a) \)-random items), \(\Pr(R_b|S_a) \) is close to \(2^{-K(R_b|S_a)} \), to within a multiplicative factor, \(2^{K(\Pr)} \). Since \(K(\Pr) \) is constant, independent of the items \(a \) and \(b \) we can simplify the formulas, using the earlier introduced notation “\(\pm \)”, to

\[\log \Pr(R_b|S_a) \pm -K(R_b|S_a),\]

for all almost all items \(b \) (the \(\Pr(\cdot|S_a) \)-random items) with respect to every item \(a \). That is, for almost all pairs of items \(a, b \) with \(\Pr(\cdot|a) \)-probability going to 1 for \(b \) increasing with every fixed \(a \).

\(^{6}\)Here, we touch on the more general idea that the randomness of a string may be assessed by considering its Kolmogorov complexity. This idea has been developed into a deep mathematical theory of ‘algorithmic’ randomness. The common meaning of a “random object” is an outcome of a random source. Such outcomes have expected properties but particular outcomes may or may not possess these expected properties. In contrast, we use the notion of randomness of individual objects. This elusive notion’s long history goes back to the initial attempts by von Mises, \(\footnote{4} \), to formulate the principles of application of the calculus of probabilities to real-world phenomena. Classical probability theory cannot even express the notion of “randomness of individual objects.” Following almost half a century of unsuccessful attempts, the theory of Kolmogorov complexity, \(\footnote{4} \), and Martin-Löf tests for randomness, \(\footnote{4} \), finally succeeded in formally expressing the novel notion of individual randomness in a correct manner, see \(\footnote{4} \). Every individually random object possesses individually all effectively testable properties that are only expected for outcomes of the random source concerned. It will satisfy all effective tests for randomness—known and unknown alike. Details are beyond the scope of this treatment, but see the discussions in \(\footnote{4} \).
3.3 Formal Derivation of the Law

Now we are in a position to directly relate Shepard’s Universal Law to information distance. Shepard uses a specific measure, \(G(a, b) \), as a measure of what he terms the ‘generalization’ between items \(a \) and \(b \). Here \(S_a \) is the stimulus related to item \(a \) with the correct corresponding response \(R_a \). Possibly, the stimulus \(S_a \) elicits another response \(R_b \ (b \neq a) \). The probability of this happening is \(\Pr(R_b|S_a) \).

\[
G(a, b) = \frac{\Pr(R_a|S_a)\Pr(R_b|S_a)}{\Pr(R_a|S_a)\Pr(R_b|S_b)}
\]

(3)

To express \(G(a, b) \) in terms of Kolmogorov complexity observe the following. We have assumed at the outset that there is a simple fixed program, of length say \(C \) bits, that maps \(S_x \) to \(R_x \) for all \(x \)’s. This means that \(K(R_a|S_a) \) and \(K(R_b|S_b) \) are upper bounded by a fixed constant \(C \) independent of variable items \(a \) and \(b \). Moreover, \(K(R_a|S_a) \) and \(K(R_b|S_b) \) are strictly positive as a consequence of the definition of Kolmogorov complexity (the Universal Turing Machine must have some program to do the transformation). Therefore, the denominator in (3) can be replaced by a positive constant independent of \(a \) and \(b \). Taking this into account, and substituting (2) into (3) we obtain that, for almost all \(a, b \) (the almost all \(\Pr(\cdot|S_a) \)-random items \(b \) with respect to every item \(a \) in the above sense of concentration of Pr-probability),

\[
\log G(a, b) = \frac{1}{2} [\max_{a, b} \{K(R_a|S_a) - K(R_b|S_b)\}].
\]

(4)

We have also assumed at the outset that there are fixed length programs that computes \(S_a \) from \(a, R_a \) from \(a, S_a \) from \(R_a \), and so on, for every item \(a \). Therefore, \(K(R_b|S_a) \equiv K(b|a) \) and \(K(R_a|S_b) \equiv K(a|b) \). Earlier, we defined the “sum”-information distance \(D_{\text{sum}}(a, b) \) between \(a \) and \(b \) as the sum \(K(b|a) + K(a|b) \) of the conditional complexities between the two items. Therefore, \(D_{\text{sum}}(a, b) = K(b|a) + K(a|b) \equiv K(R_b|S_a) + K(R_a|S_b) \), which can be substituted into (3) to give:

\[
\log G(a, b) = -\frac{1}{2} D_{\text{sum}}(a, b)
\]

or equivalently, shifting to base \(e \),

\[
\ln G(a, b) = -\frac{\ln 2}{2} D_{\text{sum}}(a, b),
\]

(5)

for almost all \(a \) and \(b \) (in the above sense of concentration of Pr-probability).

This means that \(G(a, b) \) is a negative exponential function of information distance \(D_{\text{sum}} \), which is Shepard’s Universal Law. This is a surprising result. It indicates that \(G(a, b) \), a measure of the confusability between the items \(a \) and \(b \), has a specific functional relationship with a general measure of distance, subject only to the mild assumption that the probability distribution determining confusability is computable.

Two points concerning this result are worth noting. The first is that it might appear that the result is somewhat too precise. Shepard’s Universal Law allows two free parameters, \(A \) and \(B \):

\[
G(a, b) = Ae^{-B\cdot D(a, b)}
\]

whereas (4) has no apparent free parameters. But this disparity is deceptive: The \(\equiv \)-symbol hides the parameter \(A \), because it gives equality—but only up to an additive constant term (which translates into an multiplicative constant factor since (4) gives the logarithmic version of the relation). Moreover, the units for \(D_{\text{sum}} \) are arbitrary, because they depend on the choice of a binary alphabet for measuring Kolmogorov complexity. Shifting to an alphabet with a different number of elements (which can be viewed as having any real value), values of \(D_{\text{sum}} \) will change by a multiplicative constant, which can be interpreted as parameter \(B \).

Moreover, of course, our generalization of the universal law of generalization doesn’t hold for all items \(a \) and \(b \) but for almost all items \(a \) and \(b \) (in the sense of concentration of Pr-probability).

The second point is that it might appear that the outcome of this result provides some reason to prefer \(D_{\text{sum}} \) over \(D_{\text{max}} \) as a preferred measure of information distance in psychological contexts. But note that they give the same values up to a multiplicative factor 2, since we have noted above (3) that \(D_{\text{max}} \leq D_{\text{sum}} \leq 2D_{\text{max}} \). But even so, this apparent preference between the two measures is merely a consequence of the specific way in which Shepard defined \(G \).
3.4 Improved Universal Law of Generalization

It turns out that there are mathematical reasons to choose a slightly different measure of the confusability between items \(a, b\) than initially chosen by Shepard. Define a new measure of confusability as

\[
G'(a, b) = \frac{\min\{\Pr(R_b | S_a), \Pr(R_a | S_b)\}}{\max\{\Pr(R_a | S_b), \Pr(R_b | S_a)\}},
\]

where we consider the ratio of (i) to (ii), such that (i) is the minimum of the two probabilities that the stimulus for \(a\) elicits the response for \(b\) or the stimulus for \(b\) elicits the response for \(a\), and (ii) is the maximum of the two probabilities that the stimulus for \(a\) elicits the response for \(a\) and the stimulus for \(b\) elicits the response for \(b\). Then analogous analysis to that above leads to a similar result. Viz., from the earlier analysis argument we have \(-\log \Pr(R_b | S_a) \leq K(b | a)\) (by noting \(K(Pr) \leq 0\)). And moreover \(K(b | a) \leq 0\) for \(b = a\) so that the precise form of the denominator—whether min, max, square root of product—doesn’t matter since it will be a constant independent of \(a\) and \(b\). The important part of the formula is the nominator: note that the minimum for the conditional probabilities in the formula translates into the maximum for the related conditional Kolmogorov complexities. Thus, for almost all \(a, b\), in the sense of concentration of Pr-probability, we obtain \(\log G'(a, b) \leq -D_{\text{max}}(a, b)\) and therefore

\[
\ln G'(a, b) \leq -(\ln 2)D_{\text{max}}(a, b)
\]

Straightforward substitution of the log-expressions of \(G\) and \(G'\) in the relation (7) yields \(-\log G'(a, b) \leq -2\log G(a, b) < -2\log G'(a, b).\) That is, there are positive constants \(C_1, C_2\) independent of \(a, b\) such that

\[
G'(a, b) \leq C_1 G(a, b) \leq C_2 \sqrt{G'(a, b)}.
\]

for almost all \(a, b\), in the sense of concentration of Pr-probability. It seems likely that the two measures \(G'(a, b)\) and \(G(a, b)\) will be so strongly positively correlated, in the empirical data, that the empirical fits derived by Shepard for the Universal law using “\(G\)" would be roughly equally strong using “\(G'\)”, although we do not assess this directly.

There is a formal reason to prefer the \(G'(a, b)\)-version as the proper measure of confusability over the \(G(a, b)\) version, since it appeared above that the negative logarithm of the \(G'(a, b)\) is precisely (up to the \(\pm\) relation) the information distance \(D_{\text{max}}(a, b)\). As we observed above, the latter has been shown in [2] to be the universal (that is optimal) cognitive distance. Viewing a cognitive distance \(D\) as defined in [2] as a code-length this means the following: If we fix \(b\) and let \(a\) run over the possible items then define the probability \(P(a | b)\) of \(a\) given \(b\) by \(P(a | b) = 2^{-D(a, b)}\).

It was shown in the cited reference that \(\sum_{a: a \neq b} 2^{-D(a, b)} \leq 1\) so that \(P(a | b)\) is a proper probability. In fact, the cognitive distance code of length \(D(a, b)\), the shortest binary program that serves to compute \(a\) from \(b\) and also to compute \(b\) from \(a\), is length-equivalent to the Shannon-Fano code associated with \(P(a | b)\) and hence achieves the optimal (minimal) expected code word length (the entropy of \(P\) by Shannon’s Noiseless Coding Theorem, [2]) among all prefix-codes.

Now lets go to the punch line: Since \(D_{\text{max}}(a, b)\) is the minimal cognitive distance, minorizing all other cognitive distances, up to a constant additive term, its associated probability distribution \(P_{G'}(a | b) := G'(a, b) = 2^{-D_{\text{max}}(a, b)}\), with \(b\) fixed, majorizes, up to a constant multiplicative factor, every probability distribution \(P_D(a | b) = 2^{-D(a, b)}\) with \(D(a, b)\) a cognitive distance.

That is, if we fix \(b\) and consider the probability of confusing any item \(a\) with item \(b\), according to some semi-computable cognitive similarity criterion, as the negative exponent of the cognitive distance according to that similarity criterion, then the confusion measure \(G'(a, b)\) is the largest such probability incorporating confusability according to all semi-computable (including all computable) cognitive similarity criteria.

\footnote{Note that \(\sqrt{G'(a, b)} > G'(a, b)\) since \(0 < G'(a, b) < 1\).}
4 Discussion

We have shown that Shepard’s Univeral Law of generalization follows, if we assume that psychological distance is modelled as information distance. We have also indicated that information distance is a highly general notion of distance, which may be of broader psychological interest.

How does the derivation presented here relate to other formal work which are described as providing derivations for the Universal Law of generalisation, by Shepard [43] and Tenenbaum & Griffiths [48]? These other derivation are, in fact, not directly related, because these other derivations are concerned with a different and much harder question: Why do items that are close in psychological distance tend to have similar properties? This issue concerns the question of generalization proper—whereas the evidence that Shepard gathers concerns the confusability between items.

Thus, we have here addressed the specific relationship evident in the data that [43] encapsulates as the Universal Law. But an interesting open question is whether the notion of information distance can be used to address the question of generalization, as tackled by Shepard’s and Tenenbaum & Griffith’s results. Given the rich mathematical connections between the theory of Kolmogorov complexity and inductive inference and statistics (e.g., Rissanen, [38, 39, 40]; Solomonoff, [45, 46]; Wallace [53, 54]), it may be hoped some relationship between information distance and generalization might be established.

Finally, we note that the generalization of the Universal Law that we have outlined in this paper is attractive, because it applies in such a general setting. Specifically, it does not presuppose that items correspond to points in an internal multidimensional psychological space. This result suggests a further line of empirical research, to determine whether the Universal law does indeed hold in these more general circumstances. Such research might investigate whether the Universal Law still holds, as we would predict, even for stimuli, such as complex visual or linguistic material, that seems unlikely to embed naturally into a multidimensional psychological space. We hope that the present paper will serve as a stimulus to empirical research of this kind.

References

[1] Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, N.J.: Lawrence Erlbaum Associates.

[2] Bennett, C. H., Gács, P., Li, M., Vitányi, P.M.B. & Zurek, W. (1998) Information Distance, IEEE Transactions on Information Theory, IT-44, 1407–1423.

[3] Biedermann, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115–147.

[4] Chater, N. (1996). Reconciling simplicity and likelihood principles in perceptual organization. Psychological Review, 103, 566–581.

[5] Chater, N. (1997). Simplicity and the mind. The Psychologist, November, 495–498.

[6] Chater, N. (1999). The search for simplicity: A fundamental cognitive principle? Quarterly Journal of Experimental Psychology, 52A, 273–302.

[7] Chater, N. & Hahn, U. (1997) Representational Distortion, Similarity, and the Universal Law of Generalization. In, Proceedings of the Interdisciplinary Workshop on Similarity and Categorization, SimCat97, University of Edinburgh. Dept. of Artificial Intelligence, University of Edinburgh. PAGE NUMBERS

[8] Chater, N. & Oaksford, M. (2000). The rational analysis of mind and behavior. Synthese, VOLUME, 93–131.

[9] T.M. Cover and J.A. Thomas, (1991) Elements of Information Theory, New York: Wiley.

[10] Ekman, G. (YEAR IN SHEPARD) TITLE Journal of Psychology, 38, 467–??.

15
[11] Ennis, D. M. (1989). Toward a Universal Law of Generalization. *Science, 242*, 944.

[12] Falk, R., & Konold, C. (1997????). Making sense of randomness: Implicit encoding as a basis for judgment. *Psychological Review.* (UPDATE!)

[13] Falmagne, J. C. (1986). Psychophysical measurement and theory. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), *Handbook of perception and human performance* (pp.1:1–66), New York: John Wiley.

[14] Fechner, G. T. (1966). *Elements of psychophysics.* D. H. Howes & E. C. Boring (Eds.) (H. E. Adler, trans.), New York: Holt, Reinhart & Winston (originally published, 1860).

[15] Fodor, J. A., Bever, T. G., & Garrett, M. F. (1974). *The Psychology of Language.* York: McGraw Hill.

[16] Fodor, J. A., & Pylyshyn, Z. W. (1988) Connectionism and Cognitive Architecture: A Critical Analysis. *Cognition, 28*, 3–71.

[17] Gao, Q., Li, M. & Vitányi, P.M.B. (2000). Applying MDL to learning best model granularity, *Artificial Intelligence, 121*, 1–29.

[18] Guttmann, N. & Kalish, H. I. (1956). TITLE?? *Journal of Experimental Psychology, 51*, 79–???

[19] Hahn, U., Chater, N. & Richardson, L. B. (2000). Similarity as transformation. Manuscript.

[20] Helm, P. A. van der (in press). Simplicity versus likelihood in visual perception: From surprisals to precisals. *Psychological Bulletin.*

[21] A.N. Kolmogorov (1965). Three approaches to the definition of the concept ‘quantity of information’, *Problems in Information Transmission, 1*, 1–7.

[22] Li, M. & Vitányi, P.M.B. (1997). *An Introduction to Kolmogorov Complexity and Its Applications.* New York: Springer-Verlag, 2nd Edition.

[23] Marr, D. (1982). *Vision.* San Fransisco: W. H. Freeman & Co.

[24] P. Martin-Löf (1966). The definition of random sequences, *Information and Control, 9*, 602–619.

[25] McGuire, W. J. (1961). TITLE?? *Journal of Experimental Psychology, 62*, 335–??.

[26] Medin, D. L. & Schaffer, M. M. (1978). Context theory of classification learning. *Psychological Review, 85*, 207–238.

[27] Miller, G. A. & Nicely, P. E. (1955). An Analysis of Perceptual Confusions Among Some English Consonants. *Journal of the Acoustical Society of America, 27*, 338–352.

[28] Minsky, M. (1977). Frame system theory. In P. N. Johnson-Laird, & P. C. Wason (Eds.), *Thinking: Readings in cognitive science,* (pp. 355–376). Cambridge: Cambridge University Press. (originally published in 1975).

[29] Mises, R. von (1919). Grundlagen der Wahrscheinlichkeitsrechnung, *Mathematisches Zeitschrift, 5*, 52–99.

[30] Myung, I. J., Forster, M. R. & Browne, M. W. (Eds.) (2000). Special issue on model selection. *Journal of Mathematical Psychology, 44*, 1–231.

[31] Myung, I. J. & Pitt, M. A. (1997). Applying Occam’s razor in modeling cognition: A Bayesian approach. *Psychological Bulletin and Review, 4*, 79–95.

[32] I. Newton, *Philosophiae Naturalis Principia Mathematica* also known as the *Principia*, 1687.

[33] Nosofsky, R. M. (1985). Overall similarity and the identification of separable-dimension stimuli: A choice model analysis. *Journal of Experimental Psychology: Perception and Psychophysics, 38*, 415–432.
[34] Nosofsky, R. M. (1988a). Exemplar-based accounts of relations between classification, recognition, and typicality. *Journal of Experimental Psychology: Learning, Memory, Cognition*, 14, 700–708.

[35] Nosofsky, R. M. (1988b). Similarity, frequency, and category representation. *Journal of Experimental Psychology: Learning, Memory and Cognition*, 14, 54–65.

[36] Oaksford, M. & Chater, N. (Eds) (1998). *Rational models of cognition*. Oxford: Oxford University Press.

[37] Odifreddi, P. (1989). *Classical Recursion Theory*, North-Holland.

[38] Rissanen, J. J. (1986). Stochastic Complexity and Modelling, *The Annals of Statistics*, 14, 1080–1100.

[39] Rissanen, J. J. (1989). *Stochastic Complexity and Statistical Inquiry*, Singapore: World Scientific Publishers.

[40] Rissanen, J. J. (1996). Fisher information and stochastic complexity, *IEEE Transactions on Information Theory*, IT-42, 40–47.

[41] Schank, R. C., & Abelson, R. P. (1977). *Scripts, plans, and understanding*. Hillsdale, N.J.: Erlbaum.

[42] C.E. Shannon (1948). The mathematical theory of communication. *Bell System Technical Journal*, 27, 379–423, 623–656.

[43] R.N. Shepard (1987). Towards a universal law of generalization for psychological science, *Science*, 237, 1317–1323.

[44] Simon, H. A. (1972). Complexity and representation of patterned sequences of symbols, *Psychological Review*, 79, 369–382.

[45] R.J. Solomonoff. A formal theory of inductive inference, Part 1 and Part 2 (1964). *Information and Control*, 7, 1–22, 224–254.

[46] R.J. Solomonoff, Complexity-based induction systems: comparisons and convergence theorems (1978). *IEEE Transactions on Information Theory*, IT-24, 422–432.

[47] Stevens, S. S. (1961). To honor Fechner and repeal his law. *Science*, 133, 80–86.

[48] Tenenbaum, J. B. & Griffiths, T. L. (in press). Generalization, similarity and Bayesian inference. *Behavioral and Brain Sciences*, 24.

[49] A.M. Turing (1936). On computable numbers with an application to the Entscheidungsproblem, *Proceedings of the London Mathematical Society, Series 2*, 42, 230–265; Correction, Ibid., 43 (1937), 544–546.

[50] Tversky, A. (1977) Features of similarity. *Psychological Review*, 84, 327–352.

[51] Ullman, S. (1996) *High-level vision: object recognition and visual cognition*. Cambridge, MA: MIT Press

[52] Vitányi, P.M.B. & Li, M. (2000). Minimum Description Length Induction, Bayesianism, and Kolmogorov Complexity, *IEEE Transactions on Information Theory*, IT-46, 446–464.

[53] Wallace, C. S. & Boulton, D.M. (1968). An information measure for classification, *Computing Journal*, 11, 185–195.

[54] Wallace, C. S. & Freeman, P. R. (1987). Estimation and inference by compact coding, *Journal of the Royal Statistical Society, Series B*, 49, 240–251. Discussion: ibid.,252-265.