A simple and reliable protocol for mouse serum proteome profiling studies by use of two-dimensional electrophoresis and MALDI TOF/TOF mass spectrometry

Maria Stella Ritorto¹ and Jürgen Borlak*¹,²

Address: ¹Department of Drug Research and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Nikolai-Fuchs-Str 1, 30625, Hanover, Germany and ²Centre for Pharmacology and Toxicology, Hanover Medical School, Carl-Neuberg-Str 1, 30625, Hanover, Germany

Email: Maria Stella Ritorto - ritorto@item.fraunhofer.de; Jürgen Borlak* - borlak@item.fraunhofer.de

* Corresponding author

Abstract

Background: Unravelling the serum proteome is the subject of intensified research. In this regard, two-dimensional electrophoresis coupled with MALDI MS analysis is still one of the most commonly used method. Despite some improvements, there is the need for better protocols to enable comprehensive identification of serum proteins.

Here we report a combination of two proteomic strategies, zoom in acidic and neutral part of 2-D gels and an application of two optimised matrix preparations for MALDI-MS analyses to simplify serum proteome mapping.

Results: Mouse serum proteins were separated by 2-D electrophoresis at the pH ranges 3–10 and 4–7, respectively. Then in gel tryptic digests were analysed by MALDI-MS. Notably, sample-matrix preparations consisted of either a thin-layer α-ciano-4-hydroxycinnamic acid (CHCA) matrix deposition or a matrix-layer 2,5-dihydroxybenzoic acid (DHB). This enabled an identification of 90 proteins. The herein reported method enhanced identification of proteins by 32% when compared with previously published studies of mouse serum proteins, using the same approaches. Furthermore, experimental improvements of matrix preparations enabled automatic identification of mouse proteins, even when one of the two matrices failed.

Conclusion: We report a simple and reliable protocol for serum proteome analysis that combines an optimized resolution of 2-D gels spots and improved sample-matrix preparations for MALDI-MS analysis. The protocol allowed automated data acquisition for both CHCA and DHB and simplified the MS data acquisition therefore avoiding time-consuming procedures. The simplicity and reliability of the developed protocol may be applied universally.

Background

From a disease diagnostic and drug monitoring point of view there is great interest in serum proteome mapping of humans and of laboratory animals. Indeed, various mouse strains and genetically engineered animals are considered to be good models for human diseases as they offer unprecedented opportunities for mechanistic studies with new experimental medicines. There is hope that
serum proteomics enables an identification of biomarkers of disease and drug safety and serum proteins can be used for therapeutic monitoring. In the past 2-D maps for human serum have been reported [1-4]. And very recently a map for the C57BL6 mouse serum proteome was published [5].

In general, serum proteome profiling is challenging, because of interference by high-abundance proteins such as albumin, immunoglobulins, antitrypsin and transferrin, which typically constitute greater than 90% of total protein mass [1,2,6-9]. These abundant proteins may hinder the detection of low-abundance proteins that can be of specific interest in the search of biomarkers of disease. Additionally, protein biochips have been applied to proteomic studies with antibody microarrays offering new possibilities in the simultaneous identification of analytes from complex samples [10].

So far, only a handful of plasma proteins are routinely measured for diagnostic purposes, because an effective technology that rapidly detects and quantifies specific changes of proteins including low-abundance proteins of serum is not available. As summarized elsewhere [11], the most common methods for serum proteome studies include separation of proteins by gel electrophoresis, excision of spots from the gel, enzymatic digestion and analysis by mass spectrometry. In particular, pre-fractionation techniques such as serum albumin depletion are useful procedures in proteome profiling studies, but they may introduce bias as well. There is substantial run-to-run variation after albumin depletion with IgY immunoaffinity spin columns. Likewise, pre-fractionation increases the risk of depletion of low-abundance proteins as has been shown for paraneoplastic antigen MAI, coagulation factor VII precursor, prostate-specific antigen, as a result of multiple protein-protein interactions with IgG, transferrins, and/or gelsolin [11,12].

In this regard, MALDI-MS is considered to be one of the most powerful techniques for the analysis of proteins and peptides [13-15], but the sample matrix preparation greatly influences the quality of MALDI-MS spectra of peptides and therefore protein identification. Despite considerable knowledge in the use of MALDI-MS [15-18], sample-matrix preparations are basically empirical.

Here we report a protocol for serum proteome profiling based on zoom in gels in the acidic and neutral pH that enabled detection of many serum proteins. Moreover, the developed protocol allowed for an automated data acquisition, and the sample protocol was optimised by the use of two different matrix-sample preparations in sequence [19]. We thus applied tryptic in-gel digest matrix preparation to either α-cyano-4-hydroxycinnamic acid (CHCA) or 2, 5-dihydroxybenzoic acid (DHB) as recently reported by us [19].

Materials and methods

Serum sample preparation

C57/BL6 mice (healthy mice) were obtained from Harlan Winkelmann (Borchen, Germany) and kept in an animal house with 12 hour of light and dark cycled. Food and water was given *ad libitum*. Blood serum was collected from *vena cava* and allowed to clot for 2 hours at room temperature. The clotted material was removed by centrifugation at 3000 rpm for 15 min. Hemolytic material was not observed. The sera obtained from the blood samples were frozen immediately without any further treatment in liquid nitrogen and stored at -80°C until further analysis. The protein concentration of serum was determined with the Bradford protein assay (Bio-Rad Protein Assay Dye Reagent Concentrate, Bio-Rad), using bovine gamma globulin as the standard. The protein concentration ranged from 80 to 90 μg/μl for wild type mouse serum samples.

Materials

IPG strips of pH 3 to 10 and 4 to 7 (ReadyStrip, 0.5 × 3 × 170 mm; BioRad, Germany), Bio-Lyte (pH 3 to 10), SDS, acrylamide, methylenebisacrylamide, TEMED, ammonium persulfate, DTT, urea, Tris, glycine, glycerol, and CHAPS were purchased from Bio-Rad. *Alpha-cyano-4-hydroxycinnamic acid* (CHCA) and *2,5 dihydroxybenzoic acid* (DHB) from Bruker Daltonics. Methanol, ethanol, phosphoric acid, acetic acid, and formaldehyde were purchased from Merck (Darmstadt, Germany). Sequencing grade modified trypsin was obtained from Promega (Madison, WI, USA). Coomassie Brilliant Blue G-250, TCA, iodoacetamide and other reagents were obtained from Sigma (St. Louis, MO, USA).

Two-dimensional electrophoresis

IEF was carried out using commercially available, dedicated apparatuses: IPEGhor Protean IEF Cell (Bio-Rad). IPG strips were used according to manufacturer instructions [see also [20]]. About 500 μg of serum for gel were diluted to 350 μL with re-hydration solution (5 M urea, 2 M Thiourea, 2% CHAPS, 100 mM DTT, 0.5% v/v pH 3 to 10 IPG buffer, 40 mM Tris Base, 2% SB 3–10 and trace bromophenol blue), and applied to immobilized pH 3 to 10 nonlinear and pH 4 to 7 linear gradient strips by overnight re-hydration at 50 V. With Protean IEF Cell, focusing was done initially at 250 V for 15 min, then the voltage was increased to 10 000 V within 3 h, and maintained at 10 000 V for 7 h for a total of 70 kVh. All IEF steps were carried out at 20°C. After the first-dimensional IEF, IPG gel strips were placed in an equilibration solution (6 M
urea, 2% SDS, 30% glycerol, 50 mM Tris-HCl, pH 8.8) containing 1% DTT for 10 min with shaking at 50 rpm on an orbital shaker. The gels were then transferred to the equilibration solution containing 2.5% iodoacetamide and shaken for a further 10 min before placing them on 12% polyacrylamide gel slab (185 x 200 x 1.0 mm).

Separation in the second dimension was carried out using Protean II electrophoresis equipment and Tris-glycine buffer (25 mM Tris, 192 mM glycine) containing 0.1% SDS, at a current setting of 5 mA/gel for the initial 1 h and 10 mA/gel thereafter. The second-dimensional SDS-PAGE was developed until the bromophenol blue dye marker had reached the bottom of the gel.

Protein visualization and image analysis

Following second-dimensional SDS-PAGE, analytical gels were fixed three times in 30% ethanol containing 2% phosphoric acid for 20 min and rinsed three times in 2% phosphoric acid. Gels were then equilibrated in a solution containing 18% ethanol, 2% phosphoric acid, and 15% ammonium sulfate for 30 min and Coomassie Brilliant Blue G-250 was added to a final concentration of 1%. Staining was carried out overnight. Protein patterns in the gels were recorded as digitalized images using a high-resolution scanner (Pharox FX, Bio-Rad). Gel image matching was done with PDQuest software (Version 8.01.40; Bio-Rad). Scanned gel images were processed to remove backgrounds, staining on the gel borders and to automatically detect spots. For all spot intensity calculations, normalized values were used. Normalization of spot intensity was done with Loess Regression Method and normalized spot intensities were expressed in ppm.

In-gel digestion

In-gel digestion of protein spots on Coomassie gels was carried out with 160 ng of Porcine Modified Trypsin (Sigma) in 10% ACN and 25 mM NH₄HCO₃ and performed essentially as described below.

Briefly, after the completion of staining, the gel were washed twice with water for 15 min, and then twice with water/ACN (1:1 v/v) for 15 min. The solvent volumes were about twice the gel volume. Liquid was removed, ACN was added to the gel pieces and the mixture was left for 5 min. Liquid was removed and the gel pieces were rehydrated in 0.1 M NH₄HCO₃ for 5 min. ACN was added to give a 1:1 v/v mixture of 0.1 M NH₄HCO₃/ACN and the mixture was incubated for 15 min. All liquid was removed the digestion buffer containing 25 mM NH₄HCO₃ and 10 ng/µL of trypsin was added and all was incubated for 4 hours at 37°C. The supernatant was recovered and the extraction was carried out with 1% TFA/ACN (1:1 v/v).

MALDI-TOF-MS, MS/MS and database search

Tryptic peptides were spotted directly onto a 600 µm/384 well AnchorChip™ sample target (Bruker Daltonics). The matrix CHCA was saturated in 97% Acetone/0.1% TFA solution; DHB matrix was solved in 30% ACN/0.1% TFA solution (5 mg/ml). The matrix-analyte preparations were loaded onto the MALDI plate (AnchorChip™ 600 mm 384 well, Bruker Diagnostic) by the thin layer and the matrix layer (ML) method for CHCA and DHB respectively. A further re-crystallization approach was tested on peptide calibration standard preparation (Bruker Daltonics) and applied for the samples on the AnchorChip™ [19]. An external peptide calibration standard containing the following fragments was used to calibrate the instrument: angiotensin II ([M+H]+ 1046.54); angiotensin I ([M+H]+ 1296.680); substance P ([M+H]+ 1347.740); bombesin ([M+H]+ 1619.820); ACTH clip 1–17 ([M+H]+ 2093.090); ACTH clip 18–39 ([M+H]+ 2465.200); somatostatin 28 ([M+H]+ 1347.470) (Bruker Daltonics). Furthermore, the spectra were calibrated using trypsin autolysis products (m/z, 1045.564, 2211.108 and 2225.119) for three points internal calibration resulting in a mass accuracy of <50 ppm.

The MALDI mass spectra were obtained using an Ultraflex TOF/TOF mass spectrometer equipped with a 384-sample scout source (Bruker Daltonics) and AutoXecute software for automatic spectra acquisition (Bruker Daltonics) was used. Peptide masses were searched against SwissProt database employing Mascot (in-house MASCOT-server) for protein identification. Database searches were performed taking into account carbamidomethyl modification of cysteines and possible oxidation of methionine and allowing one missed cleavage. The mass accuracy required for PMF and MS/MS was basically chosen according to peptide mass-tolerance defined by Root Mean Square (RMS) error, since it defines the limit of peptide mass tolerance (Peptide Tol + -) for respectively Mascot Peptide Mass Fingerprint and Mascot MS/MS Ion Search to obtain a significant score (p < 0.05) of matched peptides to select protein entry [21].

Peptides were identified using ProteinScape database (Protagen, Bruker, Germany) and Mascot search engine to cross-validate or consolidate the identification results through the complementary use of several software packages. We use ProteinScape ScoreBooster feature to improve database search results by automatic iterative recalibrations and background eliminations. Identified proteins were checked individually for further considerations.

The criteria used to accept identifications included the extent of sequence coverage, the number of matched peptides, the Mascot score, i.e. the Top Score obtained after Mascot has incorporated the Mowse score into a probabi-
nostic framework. It is defined as \(-10 \cdot \log_{10}(P)\), where \(P\) is the absolute probability that the observed match is a random event [21]. In case of SwissProt as selected protein sequence database, protein scores greater than 53 were significant (\(P < 0.05\)). In addition we requested mouse protein as the top candidates in the first pass search when no restriction was applied to the species of origin. Moreover, when the identification was not possible to reach from PMF, MS/MS data were collected and used as result, if Significant hits were obtained by Probability Based Mowse Score (individual ion scores >25 that indicate identity or extensive homology- \(P < 0.05\)) [21]. In general, false positive evaluation was done by software with randomized searches to remove redundant peptide and protein identification.

The new identifications were furthermore searched in PeptideMap free software (ProWL free software programs, National Resource for the Mass Spectrometric Analysis of Biological Macromolecules, the Rockefeller University) [22] and compared with Mascot results (for details, please refer to Additional files 1, 2).

Results and discussion

Two-dimensional electrophoresis of serum proteins

We found narrow 2-D gels to improve detection of low abundant proteins in sera, thereby avoiding any pre-fractionation. The 2-DE proteomics carries the advantage of visualizing changes in Mw and pl of a protein, which we find helpful in highlighting biologically significant processes. This electrophoresis technique has been applied successfully to identify oncoproteins in human serum and tissues [11,13,20,23]. Notably, mouse serum proteins were separated by 2-D electrophoresis (2-DE) and resolved in the first dimension in a broad pH range with IPEGphor strips (pH 3 to 10 NL), and subsequently in a 12% gradient polyacrylamide SDS gel in the second dimension. On average, 350 spots could be detected and 77 unique mouse proteins were identified, of which more than 30% were in the basic region of the gel (Figure 1). Among them, we identified some proteins already known or evaluated as potential biomarkers for human malignancies. For instance, previous studies have shown the benefit of studying complement factors in human cancer, i.e. elevated CO3 levels identified in pancreatic cancer patients. Consequently, monitoring activity of CO3/CO4 is clinically relevant [24-26]. Moreover, heme in tissues and circulation may be come toxic due to oxygen radical formation. Hemopexin, a plasma protein binds heme with high affinity, and therefore limits its reactivity thereby facilitating its catabolism via receptor-mediated endocytosis. Furthermore, the heme-hemopexin complex is glycosilated at specific Hys residues. Obviously, monitoring the precursor at basic pH and its glycosilated form at acidic pH can be informative as biomarker of disease [27,28]. Likewise, we identified tryptophan 5-hydroxylase 1 (TPH1_MOUSE) in the serum proteome. This protein promotes the synthesis of 5-HT (serotonin). Intriguingly, a recent investigation has found its involvement in the regulation of the immunosystem and aberrant activity in cancers [29,30].

As shown in Figure 2 the sample complexity was further reduced by the use of IPEG strips in the pH range of 4 to 7. The number of spots was increased by 2-fold. Approximately 660 spots were detected and 59 proteins were identified in this pH range. When compared with gels of the 3 to 10 pH-range, multiple isoforms of proteins can now be visualised and may have arisen from a combination of post-translational modifications as well as chemical modifications that occur during sample preparation (Figure 2) [20,31]. Apart from high abundant proteins, on average three spots for each protein at pH of 4 to 7 could be detected, when compared to one spot for each entry or smears observed with gels at pH of 3 to 10 (Figure 2). Altogether, the spot detection was improved and a total of 16 of these proteins were novel gene products resolved at pH 4 to 7 (Table 1, italic font). Notably, 4 of them had not been reported so far in mouse serum [5-9,32,33].

Improved MALDI TOF-MS analysis of serum proteins

To increase the number of ionized tryptic-digested peptides, we took advantage of the properties of two commonly used matrices, CHCA and DHB [15,19]. To the best of our knowledge sample-matrix preparations with both matrices in sequence for serum proteome profiling has not been reported so far. These matrices differ considerably upon MALDI ionization. We combined a thin layer and the Ml deposition on the AnchorChip™ to identify 2-D spots from mouse serum samples using a protocol recently described by us [19]. Briefly, we used a Bruker MALDI target plate, equipped with hydrophilic patches (“anchors”) in hydrophobic surroundings (AnchorChip™, Bruker Daltonics), and achieved signal uniformity, high sensitivity and an improved signal-to-noise ratio which gave rise to less complex MS spectra of which an example is given in Figure 2. Moreover, the re-crystallization of the sample-matrix mixtures loaded on the target increased considerably the number of identifiable peptide ions in an automated MS and MS/MS spectra acquisition mode (see also Table 1). Striking differences in the MALDI MS spectra of peptides were observed when the two matrices were compared (Figure 3). We observed better ionization of peptides from the tryptic-digested proteins with DHB as compared with CHCA. Indeed with CHCA, we frequently observed peaks at m/z 1044, 1060, 1066, 1082, 1249 and 1271 (Figure 3, azure cycles). We used matrix ion suppression in deflection mode of m/z 800. These abundant matrix clusters display high s/n ratio and resulted in poor acquired PMF spectra [11,34]. Previous
reports had already highlighted differences in PMF because of different behaviour of the two matrices [15,16,18]. In particular, Zhu and Papayannopoulos tested several matrices and reported that DHB gave the best results without interferences from matrix ion peaks. Furthermore, common interferences from matrix-adducts of CHCA were observed, in particular in the range of m/z 800–1100 of the MALDI spectra [35]. Nonetheless, there are obvious benefits in the use of the CHCA matrix in the MALDI MS analysis. This included a high uniform layer, which it forms, especially on the AnchorChip™ (data not shown). Its ability to induce desorption of ions at lower laser energies demonstrates transfer of sufficient energy for the pre-formation of ions. In some cases, metastable ions of matrix ion fragments were less formed when compared with DHB [36]. This enabled acquisition of less ambiguous spectra for the identification of proteins. The different behaviours of both matrices are the subject of several published studies. In particular, Luo et al. [37] reported loss of internal energy of ions generated by MALDI and the role of the two matrices in desorption and ionisation processes.

Indeed, in a complex mixture such as serum, it is not really clear why in some cases diagnostic PMFs are obtained with DHB rather than CHCA and vice versa. Some examples, depicted in Figure 3, clearly demonstrate that it is difficult to predict which matrix would deliver best PMFs. For that reason, we exploited both matrices in order to redress any drawbacks of one matrix by the use of the other one especially in automatic data acquisition procedures.

Figure 1

Protein entries at basic region of 3–10 pH range. An amount of 23 proteins were identified at basic region of gels at pH range 3–10. As discussed in the text, most of those proteins could be relevant in biomarker discovery research because of their involvement in inflammation or in mechanisms that could bring toward the development of cancer.
Table 1: Mouse serum protein map

No.	SwissProt entry	SwissProt accession	Mw (KDa)	pI	Mascot score	sequence coverage (%)	msms (m/z)	matrix	Our Map 1 (matched peptides)	Ref Map 2 (matched peptides)	Ref Map 3 (matched peptides)	Ref Map 4 (matched peptides)	Ref Map 5 (matched peptides)	Ref Map 6 (matched peptides)			
1	A1AG1 MOUSE	Q60590	24	5.6	124	32	1703.91	CHCA	10	not present	4	12	5 (up regulated)	present			
2	AMBP MOUSE	Q07456	40	6	38	4	1669.85	CHCA	1	3*	not present	not present	not present	not present			
3	APOM MOUSE	Q921R3	21.6	6	105	36	938.42	CHCA	not present	not present	not present	not present	not present	present			
4	MUP1 MOUSE	P11588	20.9	5	115	55	DHB	12	0	10	not present	not present	not present	not present			
5	MUP2 MOUSE	P11589	20.9	5	146	68	DHB	14	0	11	19	not present	not present	not present			
6	MUP6 MOUSE	P02762	20.9	5	136	62	DHB	12	0	10	not present	not present	not present	not present			
7	MUP8 MOUSE	P04938	17.7	5	141	74	DHB	12	0	10	not present	not present	not present	not present			
8	A1AT1 MOUSE	P07758	46.1	5.4	145	41	981.56	CHCA	15	10*	2'	13	12	20 (up regulated)	not present		
9	A1AT2 MOUSE	P22599	46.1	5.3	104	36	2405.17	CHCA	12	9'	not present	7	3 (up regulated)	present			
10	A1AT3 MOUSE	Q00896	46	5.3	146	44	981.56	CHCA	15	not present	16	15	not present	not present			
11	A1AT4 MOUSE	Q00897	46.1	5.2	162	51	1232.74	CHCA	17	not present	not present	not present	not present	present			
12	A1AT5 MOUSE	Q00898	46	5.4	105	35	1232.71	CHCA	12	not present	not present	not present	not present	present			
13	A1AT6 MOUSE	P81105	46	5.2	161	47	981.56	CHCA	16	2	not present	8	not present	present			
14	ANT3 MOUSE	P32261	52.5	6.1	298	56	1198.70	CHCA	29	6	not present	not present	not present	present			
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---		
7	A2AP	MOUSE	Q61247	55.8	0.8	169	36	1591.80	1680.81	CHCA	DHB	15	3	not present	not present	not present	present
8	CBG	MOUSE	Q65770	4.4	4	148	32	1680.81	DHB	10	3	not present	not present	not present	present		
9	SPA3K	MOUSE	P07759	47	5	113	29	2068.21	CHCA	DHB	12	12	not present	21	7 (up regulated)	present	
10	A2MG	MOUSE	Q61838	167	6.3	153	19	1031.50	1111.58	CHCA	DHB	18	25	16 (immuno depletion)	not present	not present	present
10a	A2MG C-term	MOUSE	Q61839	28	7	62	6	1455.83	1479.70	CHCA	DHB	40	26*	17	48	12 (up regulated)	present
11	ADIPO	MOUSE	Q60994	26.9	5.3	63	19	1504.72	DHB	5	not present	present					
12	AFAM	MOUSE	Q06770	71.5	5.5	155	31	1455.83	1479.70	CHCA	DHB	15	1	9	not present	not present	present
13	ALBU	MOUSE	P07724	70.7	5.7	426	68	1237.67	1318.61	CHCA	DHB	17	5*	13	18	22 present	
14	ALS MOUSE	P07039	67.7	6.1	97	28	1237.67	1318.61	CHCA	DHB	13	5*	18	17	16 (up regulated)	present	
15	CPN2	MOUSE	Q9DB89	61.3	5.5	131	25	1237.67	1318.61	CHCA	DHB	10	15	not present	not present	not present	present
16	ANGL5	MOUSE	Q8R0Z6	51.4	9.2	56	16	1031.50	1111.58	CHCA	DHB	4	not present	not present	not present	not present	
17	ANXA2	MOUSE	P07356	38.8	7.5	82	18	1455.83	1479.70	CHCA	DHB	5	not present	not present	not present	not present	
18	APOA1	MOUSE	Q06233	30.5	5.6	207	49	1237.67	1318.61	CHCA	DHB	17	5*	13	18	22 present	
19	APOA2	MOUSE	P09813	11.3	6.6	85	14	1193.62	1318.61	CHCA	DHB	2	4*	7	3	3 (up regulated)	present
20	APOA4	MOUSE	P06728	45	5.4	223	60	1193.62	1318.61	CHCA	DHB	21	2*	15	29	6 (up regulated)	present
21	APOE	MOUSE	P08226	35.9	5.6	166	51	968.32	1075.60	CHCA	DHB	21	5*	7	17	16 (up regulated)	present
22	APOC3	MOUSE	P33622	10.9	4.6	140	19	1062.46	1078.45	CHCA	DHB	3	not present	3	3	not present	present
23	APOH	MOUSE	P01339	39.9	8.6	276	62	1325.68	1444.85	CHCA	DHB	22	7	not present	17	22 (up regulated)	present
24	CLUS	MOUSE	Q66890	55.2	5.5	103	19	1325.68	1444.85	CHCA	DHB	11	2*	9	12	not present	present
25	CIR	MOUSE	Q8CG16	81.5	5.4	78	17	1455.83	1479.70	CHCA	DHB	8	not present	not present	not present	not present	present
26	CFAB	MOUSE	P04186	86.3	7.2	269	37	1455.83	1479.70	CHCA	DHB	23	3	not present	not present	not present	present
27	CFAI	MOUSE	Q61129	69.5	7.4	103	21	1726.85	DHB	11	3	not present	not present	not present	not present	present	
	HGFA MOUSE				DHB		not present	not present	not present	not present	present						
---	------------	---	---	---	-----	---	-------------	-------------	-------------	-------------	--------						
28		72.9	6.6	58	13												
29	HPT MOUSE	Q61646	39.2	5.9	146	49	980.49 1320.74 1373.61	DHB 21	not present	11	5	14-3 (up and down regulated)	present				
29a	HPT MOUSE	Q61646	81	11	1320.74	6	not present	11	5	14-3 (up and down regulated)	present						
30	PLMN MOUSE	P29018	93.4	6.2	387	53	1138.46	CHCA DHB 35	8	not present	32	6	present				
31	CFAM MOUSE	P06909	144	6.6	269	31	6		ChCA DHB 29	6	not present	18	not present	present			
32	CS1A MOUSE	Q8CG14	78.3	5	66	15	1886.93	CHCA DHB 40	23 1	not present	17 (up regulated)	present					
33	FI3B MOUSE	Q07968	78.3	5.6	148	26	1886.93	CHCA DHB 15	1	not present	present						
34	C03 MOUSE	P01027	188	6.4	312	29	1886.93	CHCA DHB 14	1	not present	present						
35	CO4 MOUSE	P01029	194	7.5	123	9	1886.93	CHCA DHB 14	1	not present	present						
36	CO9 MOUSE	P06683	63.2	5.6	80	29	1886.93	CHCA DHB 14	1	not present	present						
37	C1QB MOUSE	P14106	27	8.6	69	20	1886.93	CHCA DHB 5	1	not present	present						
38	EGFR MOUSE	Q01279	138	6.5	171	16	1886.93	CHCA DHB 15	1	not present	present						
39	F13B MOUSE	Q8K0E8	55.4	6	112	39	1886.93	CHCA DHB 20	1	not present	present						
40	F13B MOUSE	Q01279	138	6.5	171	16	1886.93	CHCA DHB 15	1	not present	present						
41	F13B MOUSE	Q10287	188	6.4	312	29	1886.93	CHCA DHB 14	1	not present	present						
42	F13B MOUSE	Q91X72	52	7.9	188	43	1886.93	CHCA DHB 21	14	8	25	3 (up regulated)	present				
43	F13B MOUSE	Q10287	188	6.4	312	29	1886.93	CHCA DHB 14	1	not present	present						
44	F13B MOUSE	Q91X72	52	7.9	188	43	1886.93	CHCA DHB 21	14	8	25	3 (up regulated)	present				
45	F13B MOUSE	Q10287	188	6.4	312	29	1886.93	CHCA DHB 14	1	not present	present						
46	F13B MOUSE	Q91X72	52	7.9	188	43	1886.93	CHCA DHB 21	14	8	25	3 (up regulated)	present				
47	F13B MOUSE	Q10287	188	6.4	312	29	1886.93	CHCA DHB 14	1	not present	present						
48	F13B MOUSE	Q91X72	52	7.9	188	43	1886.93	CHCA DHB 21	14	8	25	3 (up regulated)	present				

Table 1: Mouse serum protein map (Continued)
Table 1: Mouse serum protein map (Continued)

ID	Species	Accession	MW (kDa)	PI	dbP	Charge	CHCA	DHB	Commercial form	Western blot	Notes
52	KV3A1/2/4	P01654	12 5 116 16	1616.89	1855.04	2	not present	not present	not present	not present	present
	MOUSE										
53	KV3B1/5	P01644	12 7.9 88 17	1028.56	1926.92	4	not present	not present	not present	not present	present
	MOUSE										
54	KV3D1	P01665	12 4.5 58 53	1330.78	1603.91	4	not present	not present	not present	not present	present
	MOUSE										
55	MUC1	P01872	12 4.9 54 44	1616.89	1855.04	4	not present	not present	not present	not present	present
	MOUSE										
56	MUG1	P28665	12 7.9 88 17	1028.56	1926.92	4	not present	not present	not present	not present	present
	MOUSE										
57	PHLD	Q70362	12 4.5 58 53	1745.16	2028.39	4	not present	not present	not present	not present	present
	MOUSE										
58	KV5AB	P11680	12 4.5 58 53	1745.16	2028.39	4	not present	not present	not present	not present	present
	MOUSE										
59	MUG1	Q00724	12 4.5 58 53	1745.16	2028.39	4	not present	not present	not present	not present	present
	MOUSE										
60	RETBP	Q22452	12 4.5 58 53	1745.16	2028.39	4	not present	not present	not present	not present	present
	MOUSE										
61	SAMP	P11680	12 4.5 58 53	1745.16	2028.39	4	not present	not present	not present	not present	present
	MOUSE										
62	TRF1	Q92111	12 4.5 58 53	1745.16	2028.39	4	not present	not present	not present	not present	present
	MOUSE										
63	KAC	P1837	12 4.5 58 53	1745.16	2028.39	4	not present	not present	not present	not present	present
	MOUSE										
64	VITD	Q46726	12 4.5 58 53	1745.16	2028.39	4	not present	not present	not present	not present	present
	MOUSE										
65	VITD	P21614	12 4.5 58 53	1745.16	2028.39	4	not present	not present	not present	not present	present
	MOUSE										
66	VITD	P21614	12 4.5 58 53	1745.16	2028.39	4	not present	not present	not present	not present	present
	MOUSE										
67	VITD	P21614	12 4.5 58 53	1745.16	2028.39	4	not present	not present	not present	not present	present
	MOUSE										
68	GELS	P13020	12 4.5 58 53	1745.16	2028.39	4	not present	not present	not present	not present	present
	MOUSE										
69	GELS	P29788	12 4.5 58 53	1745.16	2028.39	4	not present	not present	not present	not present	present
	MOUSE										
70	GELS	P10864	12 4.5 58 53	1745.16	2028.39	4	not present	not present	not present	not present	present
	MOUSE										
Table 1: Mouse serum protein map (Continued)

No	Protein	Accession	MW (kDa)	pI	Intensity	Precip. Method	1	2	3	4	5	6	7	8
71	GCB	P01866	37.3	7.2	79	1778.87	CHCA	DHB	not present					
72	LAC1	P01843	11.7	5.9	70	61	DHB	4	not present					
73	LAC2	P01844	11.4	5.9	70	89	DHB	5	not present					
74	ACTG	P63260	42.1	5.3	188	53	CHCA	DHB	not present					
75	TCP	P60710	42	5.3	171	49	CHCA	DHB	15	not present	not present	not present	not present	present
76	ACTB	P63260	42	5.3	171	49	CHCA	DHB	15	not present	not present	not present	not present	present
77	APC	Q61315	313	7.4	53	6	CHCA	15	not present	not present	not present	not present	present	
78	CT160	Q8VCC6	22	9.3	56	20	CHCA	5	not present					
79	CUL1	Q9WTX6	90.3	8.2	62	15	CHCA	7	12	not present	not present	not present	not present	present
80	INI4	P23953	61.4	5.1	168	37	CHCA	21	14	not present	not present	not present	not present	present
81	ITIH2	Q61703	106	6.8	150	24	CHCA	17	12	not present	not present	18	not present	not present
82	K2C5	Q922U2	62	7.6	60	16	CHCA	11	11	not present				
83	CT160	P42703	123.8	5.7	151	19	DHB	15	not present	not present	22	not present	present	
84	MBL1	P39039	25.8	7.5	100	27	CHCA	9	15	not present	not present	8 (up regulated)	not present	present
85	MBL2	P41317	26.3	5.7	70	29	CHCA	6	2	not present	8	not present	not present	not present
86	MBG	Q8BSL4	40.7	9.7	70	23	CHCA	6	2	not present				
87	SYT2	P46097	47.7	8.2	61	19	CHCA	6	2	not present	not present	not present	not present	present
88	TP1	P17TS2	51.9	6.9	59	17	CHCA	7	8	not present				
89	KPYM	P52480	58	7.6	53	30	DHB	12	8	not present				
90	GAB2	P92Z158	73.6	8.5	33	2	CHCA	9	9	not present	not present	not present	not present	present

Mouse serum proteins identified by us in serum from C57BL6 mice (Our Mapping 1), in comparison with previous mouse serum maps (Ref Map 2: [9], Ref Map 3: [8], Ref Map 4: [7,32], Ref Map 5: ref [33] and Ref Map 6: [6]). Exactly, 16 of them (italic font) were identified only by narrow IPGs of pH 4–7. In bold, we highlighted the proteins identified only with LIFT-MS/MS measurements. In case of TCA/methanol precipitation method (Ref Map 2: [9]) we specified where the proteins were identified. (n*: precipitated fraction; n’: supernatant fraction-). In the case of MUPs, we marked with 0 the entries, because there are evidences that those proteins are present just in C57BL6 mice and not in BALA/cj inbred strain [32].
Figure 2

Improved resolution with zoom-in 2-D gels. Details of the 2-D gel zoomed areas. We showed the improved separation and visualization of the mouse serum proteome. In fact, multiple isoforms for most identified proteins were found and other identified spots were detected only in 4–7 pH-range and not in 3–10 pH-range. Panel 1: 3–10 pH range (1 spot 1 id: mouse ceruloplasmin; 4 spots 1 id: mouse gelsolin) 4–7 pH range (1 spot 1 id: mouse ceruloplasmin, mouse alpha-macroglobulin, mouse albumin; 1 spot 1 id: mouse hemopexin; 1 spot 1 id: mouse kininogen; 1 spot 1 id: mouse alpha-2-macroglobulin, mouse hemopexin). Panel 2: 3–10 pH range (1 smear 2 ids: mouse amin; mouse hemopexin; 1 smear 1 id: mouse hemopexin, mouse alpha-2-macroglobulin; 1 smear 1 id: mouse hemopexin). Panel 3: 3–10 pH range (3 spots 1 id: mouse hemopexin; 3 spots 1 id: mouse hemopexin; 6 spots 1 id: mouse kininogen; 5 spots 1 id: mouse hemopexin; 3 spots 1 id: mouse hemopexin; 3 spots 1 id: mouse hemopexin). Panel 4: 3–10 pH range (3 spots 1 id: mouse hemopexin; 3 spots 1 id: mouse hemopexin; 3 spots 1 id: mouse hemopexin; 3 spots 1 id: mouse hemopexin). The spots 1 (alpha-2-macroglobulin); 2 (complement C1r-subcomponent); 3 and 3a (Apolipoprotein A4 and Zinc-alpha-glycoprotein 2 respectively) and 4 (glutathione peroxidase 3) are examples discussed respectively in the text and in Figure 5.
Mapping of the mouse serum

As shown in Table 1, we were able to identify 90 unique proteins, some of which were reported to be identifiable only after sample pre-treatment or sophisticated and time-consuming procedures. For instance, several members of complement factor family [CFAB_MOUSE, CFAI_MOUSE, CO3_MOUSE, CO4_MOUSE, CO9_MOUSE and C1QB_MOUSE], properdin [PROP_MOUSE] and mannose binding protein A [MBL1_MOUSE] were identified at the basic pH region of the 2-D gels. None of them were reported in previous mouse serum proteome profiling studies using 2-DE and MS analysis [7,8,32]. Indeed, when the serum was albumin-depleted, other high abundance proteins were lost as well. Furthermore, complement factor 3 and transthyretin were found in both fractions, albumin-rich and depleted (Table 1) [9]. This necessitated repetitive analyses. Indeed, complement factor 3 was shown to be up-regulated in human lung adenocarcinomas [33], as were increased serum levels of transthyretin and down-regulation of transferrin in human type-2 diabetes [38].

The application of our protocol enabled an identification of properdin [PROP_MOUSE] and adenomatous polyposis coli protein [APC_MOUSE]. Once again, in previous mouse serum maps these proteins were not identified [7-9,32,33] (Table 1). We were able to identify most of the proteins but some new proteins were identified as well (Table 1). Notably, with our optimized MALDI- matrix protocols, we were able to characterize the protein C1R complement [C1R_MOUSE] by the sequential use of DHB and CHCA (spot 2 in Figure 2, Figure 3). This is a serine protease that combines with C1q and C1s (which we had identified in our sample as well) to form C1, the first component of the classical pathway of the complement system. The spot corresponding to C1R is positional primarily cytoskeletal and/or intracellular but was not reported so far for the mouse serum proteome. Three peaks belonging to ACTG_MOUSE were identified at m/z 1669.85 and a peptide sequence of TIAACNLPIVQGPCR. We thus obtained the significant hit at ion score of 38 with 5 ppm as peptide mass tolerance; according to RMS error, and 0.5 Da as fragment mass tolerance [21].

Furthermore, we identified a number of proteins such as gamma actin [ACTG_MOUSE] which was believed to be primarily cytoskeletal and/or intracellular but was not reported so far for the mouse serum proteome. Three peaks belonging to ACTG_MOUSE were identified at m/z 1198.75 -peptide sequence AVFPSIGRPR- 1790.93 -peptide sequence SYELPDGVQTIGNER- and 1954.14 -peptide sequence VAPEEHPVLLTEPLNPK- , with an ion scores higher than 23. Further examples are listed in Table 1 (from number 74 to 90).

Taken collectively, our protocol enabled automated data acquisition and improved significantly the identification of proteins based on higher sequence coverage and the number of matched peptides. For instance, CFAH_MOUSE was identified with a Mascot score of 269, a 31% sequence coverage and 29 matched peptides, instead of 23% sequence coverage and 6 and 18 matched peptides as reported previously (Table 1). Similarly, the sequence coverage of apolipoprotein H (APOH_MOUSE) was increased by 17% with 5 additional peptides that could be mapped to this protein [7,9] (for sequence coverages, please refer to Additional file 3).
Spectra comparisons between CHCA and DHB. (A, B) CHCA matrix vs DHB matrix. Considerably, in the case of DHB the peptide ions signals are less resolved than other signals in the spectrum, maybe connected to metastable decay of ions in the drift tube or "chemical noises" from matrix ions. On the other hand, CHCA was enabled to identify complement C1r-subcomponent (C1r_MOUSE) and alpha-2-antiplasmin (A2AP_MOUSE). Crosses represent matched peptides to the identification. (C, D) DHB matrix vs CHCA matrix. The spectra from DHB are notably rich of peptides ions fragments (crosses) which belong to the identification, i.e. glutathione peroxidase-secreted form (GPX3_MOUSE) and gelsolin (GELS_MOUSE). The blue circles on CHCA spectra, instead, represent matrix fragments which hide the peaks could be matched to the identifications. The pie chart represents our mouse proteome mapping, where both matrices have the almost same input in the identifications.
Newly identified proteins
Thirteen new mouse serum proteins were identified with our approach. Among them, some were recently confirmed by another group [5].

In their approach [5], however, matched peptides were less on average when compared to our data. Apart from this difference, a total of 6 new proteins are reported by us (italic font in Table 2).

For instance, we identified members of complement cascade activation, a positive mediator for angiogenesis (ANGL6_MOUSE), proteins specifically regulated in several tumor cells such as [KPYM_MOUSE] and proteins playing an important role in protein degradation and protein ubiquitinylation, whose altered activity could allow for abnormal cell proliferation (CUL-1_MOUSE). Notably, some of these newly identified proteins may serve as cancer biomarkers [5,41-43].

In this regard, we identified heparan sulfate glucosamine 3-O-sulfotransferase 5 (OST-5_MOUSE), a sulfotransferase that catalyzes the transfer of a sulfo group from the sulfo donor, 3’-phosphoadenosine-5’-phosphosulfate (PAPS), to the 3-OH position of a glucosamine unit of the HS. It displays anticoagulant activity by interacting with antithrombin (AT) protein through sulfonation at the 3-OH position of HS-saccharide [44-46]. From recent studies, new biological functions of activated HS have emerged, for instance in regulation of cancer growth and inflammatory responses [44,47].

Likewise, our identification of dynamin-2 (DYN2_MOUSE) in serum may be suggestive for extracellular matrix degradation, in case of invasive tumor cells (metastasis). Extensive studies are already published on the "invasive feet" enrichments in dynamin and actin and their involvement in extracellular matrix degradation in hepatocellular carcinoma [48-50].

Conclusion
The combination of zoom in gels and the use of two different sample-matrix preparations in sequence improved protein identification of mouse serum proteins considerably and allowed for automated data acquisition as compared to previous methods using 2-DE and MALDI-MS...
Moreover, we obtained a higher number of matched peptides, as compared to sample pre-fractionation methods coupled with LC-MS/MS or other proteomic approaches (Table 1) [9,32,33]. Finally, we report an improved mouse serum proteome map and an identification of 13 proteins that were not reported in previous 2-DE studies. Even with the comprehensive study reported in [5], six of them are still novel (Table 2) [5-9,32,33]. We validated the newly identified proteins by repeating the searches against different databases (NCBInr and MSDB), as described above (Table 2) [51]. Moreover, the same spectra were further analysed with PeptideMap free software [22]. Altogether, identical results were obtained.

There is a need for a reliable characterization of serum proteomes to enable biomarker discovery. In our opinion, the strength of this work lies in the right combination of protocols and its simplification. We report a simple and reliable identification of mouse serum protein (for instance, see Figure 5) and as shown in Table 1, our work evidences an improved identification when compared with previous studies based on pre-treatments of serum or other sophisticated methods.

Table 2: New proteins, spectra interpretation and validation

No	No	Swiss Prot entry	Swiss Prot accession	putative PTMs	Subcellular location	Mw (KDa)	pI	RMS error (ppm)	matrix	Swiss Prot	NCBInr	MSDB	Nr of matched peptides (Mascot)	Nr of matched peptides (Peptide Map)
1	16	ANGL6 MOUSE	Q8R0Z6	G	Secreted; highly expressed in the liver	51.4	9	38	DHB	56	58	55	4	3
2	17	ANXA2 MOUSE	P07356	P	Secreted, extracellular space, extracellular matrix, basement membrane. Melanosome	38.8	8	45	CHCA	82	81	82	5	3
3	25	C1R MOUSE	Q8CG16	G	Secreted	81.5	5	15	DHB	78	78	78	8	5
4	32	CS1A MOUSE	Q8CG14	G	Predominantly expressed in liver	78.3	5	11	DHB	66	66	66	6	5
5	72	LAC1 MOUSE	P01843	P	Secreted	11.7	6	4	DHB	70	70	70	4	3
6	74	ACTG MOUSE	P63260	P	Cytoplasm, cytoskeleton	42.1	5	28	CHCA	188	188	188	16	15
7	76	CT160 MOUSE	Q8VCC6	P	Secreted	22	10	35	CHCA	55	56	56	5	4
8	77	CULI MOUSE	Q9WTX6	G	Embryo fibroblasts and embryo preadipocytes	90.3	8	49	CHCA	62	62	62	7	6
9	81	K2CS MOUSE	Q922U2	P	Expressed in epidermis	62	8	34	DHB	60	60	60	11	11
10	85	OSTS MOUSE	Q8B5L4	G	Golgi apparatus membrane; Single-pass type II membrane protein	40.7	10	35	CHCA	70	70	70	6	5
11	87	TPH1 MOUSE	P17532	P	Cytoplasmatic enzyme, pineal gland	51.9	6	30	CHCA	57	57	57	7	5
12	88	KPYM MOUSE	P52480	P	Liver, red cells, muscles, brain	58	7	39	DHB	53	53	53	11	10
13	89	DYN2 MOUSE	P39054	P	Cytoplasm	98	7	51	DHB	68	68	68	9	9

We listed here the 13 proteins which are not present in the previous mouse serum maps [6-9,32,33]. The SwissProt entries in italic font are proteins not identified in mouse serum proteome so far [5-9,32,33]. RMS (Root Mean Square) error is the calculated error for set of matched mass values (in ppm) in Mascot Search (matrix science, LTD, UK). It is measured in ppm. RMS error defines the limit of peptide mass tolerance (Peptide tol = +/−) for Mascot Peptide Mass Fingerprint to obtain a significant score (p < 0.05) of matched peptides to select protein entry. The results were first searched in SwissProt database and furthermore in NCBInr and MSDB databases. The same criteria were applied (such as: mus musculus for the taxonomy, < +/- 50 ppm as peptide tolerance and one missed cleavage allowed for trypsin enzyme). In bold we highlighted the significant score (p < 0.05) according to the chosen database (SwissProt >53, NCBInr and MSDB >61) [21,51]. We also specified if one matrix or the combination of them allowed the identification. Post translation modifications (PTMs). P: phosphorylation; G: Glycosylation.
Figure 5

Fast and reliable identification of mouse serum proteins. We have depicted here an example of improvement of data acquisition by the use narrow-pH IPG strips for the IEF. The data of score and matched peptides were chosen from the best outcome in MALDI-MS analysis by both matrices (CHCA and DHB) (ProteinScape™ database).
Taken collectively, we view our protocol to be useful in biomarker discovery.

List of abbreviations

ACN: acetonitril; DTT: dithiothreitol; IPG: immobilized pH gradient; MALDI-TOF-MS: Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry; NH4HCO3: ammonium bicarbonate; SDS: Sodium Dodecyl Sulfate; TCA: trichloroacetic acid; TFA: trifluoroacetic acid; TEMED: tetramethylenediamine.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MSR designed and carried out the 2-DE and MALDI MS analysis. MSR and JB were responsible for the design of the study and were involved in writing the manuscript. All authors have read and approved the final manuscript.

Additional material

Additional file 1
Validation of the new protein entries. We analysed the same spectra with Mascot search engine in ProteinScape™) and PeptideMap (PROWL free softwares). The ionized trypsic peptides resulted matched to the same protein sequences.
Click for file: [http://www.biomedcentral.com/content/supplementary/1477-5956-6-25-S1.ppt]

Additional file 2
Mascot and PeptideMap. Single entries from both Mascot and PeptideMap for the new identifications.
Click for file: [http://www.biomedcentral.com/content/supplementary/1477-5956-6-25-S2.doc]

Additional file 3
Protein sequences. We listed all identified protein sequence, the PMF (MS analysis) and PFF (tandem-MS analysis). We chose representative tandem MS for every ion peak fitting with the protein sequence.
Click for file: [http://www.biomedcentral.com/content/supplementary/1477-5956-6-25-S3.xls]

Acknowledgements

The authors thank Dott. Ignazio Garaguso for helpful discussions and support in MALDI MS analysis.

References

1. Cho SY, Lee EY, Lee JS, Kim HY, Park JM, Kwon MS, Park YK, Lee HJ, Kang MJ, Kim YJ, Yoo JS, Park SJ, Cho JW, Kim HS, Paik YK: Efficient prefractionation of low-abundance proteins in human plasma and construction of a two-dimensional map. Proteomics 2005, 5:3386-96.
2. Molina H, Bunkenborg J, Reddy GH, Muthusamy B, Scheel PJ, Pandey A: A proteomic analysis of human hemodialysis fluid. Mol Cell Proteomics 2005, 4:637-50.
3. Anderson NL, Anderson NG: The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002, 1(1):845-867.
4. Anderson NL, Polanski M, Pieper R, Gatin T, Tirumalai RS, Conrads TP, Veenstra TD, Adkins JN: Proteomic characterization of the human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 2004, 3(4):311-326.
5. Lai KI, Kolipakam D, Berretta L: Comprehensive and quantitative proteome profiling of the mouse liver and plasma. Hepatology 2008, 3:1043-51.
6. Hood BL, Zhou M, Chan KC, Lucas DA, Kim GJ, Issaq HJ, Veenstra TD, Conrads TP: Investigation of the mouse serum proteome. J Proteome Res 2005, 4:1561-1568.
7. X, Yarmush DM, Berthiaume F, Jayaraman A, Yarmush ML: Immunodepletion of albumin for two-dimensional gel detection of new mouse acute-phase protein and other plasma proteins. Proteomics 2005, 5:3991-4000.
8. Wait R, Chiesa G, Parolini C, Miller I, Begum S, Brambilla D, Galluccio L, Del Rio R, Eberini I, Gianazza E: Reference maps of muscle serum acute-phase proteins: changes with LPS-induced inflammation and apolipoprotein A-I and A-II transgenes. Proteomics 2005, 5:4245-53.
9. Chen YY, Lin SY, Yeh YY, Hao HH, Wu CY, Chen ST, Wang AH: A modified protein precipitation procedure for efficient removal of albumin from serum. Electrophoresis 2005, 26:2117-27.
10. Kiernan UA, Nedelkov D, Nelson RW: Multiplexed mass spectrometric immunoassay in biomarker research: a novel approach to the determination of a myocardial infarct. J Proteome Res 2006, 11:2928-34.
11. Zhou M, Conrads TP, Veenstra TD: Proteomics approaches to biomarker detection. Brief Funct Genomic Proteomic 2005, 4:69-75.
12. Seam N, Gonzales DA, Kern SJ, Horton GL, Hoehn GT, Suffredini AF: Quality control of serum albumin depletion for proteomic analysis. Clin Chem 2007, 53(1):1915-20.
13. Cao QL, Chen XD, Zhao L, Ding YQ: Comparative proteomics of the serum in patients with nasopharyngeal carcinoma: a study with two-dimensional electrophoresis and MALDI-TOF-MS. Nan Fang Yi Ke Da Xue Xue Bao 2008, 28(4):54-8.
14. Muzikami M, Kanamoto T, Souchelnyitsky N, Kiuchi Y: Proteome profiling of embryo chick retina. Proteome Sci 2008, 6:3.
15. Gonnet F, Lemaire G, Waksman G, Tortajada J: MALDI/MS peptide mass fingerprinting for proteome analysis: identification of hydrophobic proteins attached to eucaryote keratinocyte cytoplasmic membrane using different matrices in concert. Proteome Sci 2003, 1:2.
16. Padliya ND, Wood TD: A strategy to improve peptide mass fingerprinting matches through the optimization of matrix-assisted laser desorption/ionization matrix selection and formulation. Proteomics 2004, 4(2):466-73.
17. Callesen AK, Mohammed S, Bunkenborg J, Kruse TA, Cold S, Mogensen O, Christensen O, Vach W, Jørgensen PE, Jensen ON: Serum protein profiling by miniaturized solid-phase extraction and matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 2005, 19:1578-86.
18. Laugesen S, Roepstorff P: Combination of two matrices results in improved performance of MALDI MS for peptide mass mapping and protein analysis. J Am Soc Mass Spectrom 2003, 14:992-1002.
19. Garaguso I, Borlak J: Matrix layer sample preparation: an improved MALDI-MS peptide analysis method for proteomic studies. Proteomics 2008, 8:2583-2595.
20. Goerg A, Weiss W, Dunn MJ: Current two-dimensional electrophoresis technology for proteomics. Proteomics 2004, 4:3665-3685.
21. Mascot Search [http://www.matrixscience.com/search_form_select.html]
22. PeptideMap [http://prowl.rockefeller.edu/prowl/peptidemap.html]
23. Wu RW, Wang FS, Ko YJ, Wang CJ, Wu SL: Comparative serum proteome expression of osteonecrosis of the femoral head in adults. Bone 2008, 43(3):561-566.
24. Hanas JS, Hoeker JR, Cheung JY, Larabee JL, Lerner MR, Lightfoot SA, Morgan DL, Denson KD, Prejeant KC, Gusev Y, Smith BJ, Hanas RJ, Postier RG, Brackett DJ: Biomarker identification in human pancreatic cancer sera. Pancreas 2008, 36(1):61-69.

25. Ali OS, Abo-Shadi MA, Hammad LN: The biological significance of serum complement C3 and C4 in HCV-related chronic liver diseases and hepatocellular carcinoma. Egypt J Immunol 2005, 12(2):91-99.

26. Goldman R, Resson HW, Abdel-Hamid M, Goldman L, Wang A, Varghese RS, An Y, Loffredo CA, Drake SK, Eissa SA, Gouda I, Ezatz S, Moiseiwitsch FS: Candidate markers for the detection of hepatocellular carcinoma in low weight fraction of serum. Cancergenomics 2007, 10:249-53.

27. Morgan WT, Muster P, Tatum F, Kao SM, Alam J, Smith A: Identification of the histidine residues of hemopexin that coordinate with heme-iron and of a receptor-binding region. J Biol Chem 1993, 268(9):6256-6262.

28. Yu YP, Yang C, Willson JK, Zhang Z, Li H, Kim JY, Zhang L, Yang LW: Roles of heme iron-coordinating histidine residues of human hemopexin expressed in baculovirus-infected insect cells. Proc Natl Acad Sci USA 1994, 91:8423-7.

29. Rybaczky LA, Bashaw MJ, Pathak DA, Huang K: An indicator of cancer and downregulation of monoamine oxidase-A in multiple organs and species. BMC Genomics 2008, 9:134.

30. Reich M: Depression and cancer: recent data on clinical issues, research challenges and treatment approaches. Curr Opin Oncol 2008, 20(4):353-359.

31. Nordgaard CL, Berg KM, Kapphahn RJ, Reilly C, Feng X, Olsen TW, Ferrington DA: Proteomics of the retinal pigment epithelium reveals altered protein expression at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci 2006, 47:815-22.

32. Duan X, Yarmush DM, Berthiaume F, Jayaraman A, Yarmush ML: A mouse serum two-dimensional gel map: application to profiling burn injury and infection. Electrophoresis 2004, 25:3055-65.

33. Kuick R, Misek DE, Monza DJ, Webb CP, Wang H, Peterson KJ, Pisano M, Ommenn GS, Hanash SM: Discovery of cancer biomarkers through the use of mouse models. Cancer Lett 2007, 249:40-8.

34. Smirnov IP, Zhu X, Taylor T, Huang Y, Ross P, Papayannopoulos IA, Martin SA, Pappin DJ: Suppression of alpha-cyano-4-hydroxycinnamic acid matrix clusters and reduction of chemical noise in MALDI-TOF mass spectrometry. Anal Chem 2004, 76:2958-65.

35. Zhu X, Papayannopoulos IA: Improvement in the detection of low concentration protein digests on a MALDI TOF/TOF workstation by reducing alpha-cyano-4-hydroxycinnamic acid 'matrix' ions. J Biosci Bioeng 2003, 96:298-307.

36. Krutchinsky AN, Chait BT: On the nature of the chemical noise in MALDI mass spectra. J Am Soc Mass Spectrom 2002, 13:129-34.

37. Luo G, Marginean I, Vertes A: Internal energy of ions generated by matrix-assisted laser desorption/ionization. Anal Chem 2002, 74:185-90.

38. Sundsten T, Eberhardson M, Goransson M, Bergsten P: The use of proteomics in identifying differentially expressed serum proteins in humans with type 2 diabetes. Proteome Scie 2006, 4(2):22.

39. ExPASy Molecular Server [http://www.expasy.org]

40. Michalopoulos G, Luo JH: Glutathione peroxidase 3, deleted or methylated in prostate cancer, suppresses prostate cancer growth and metastasis. Cancer Res 2007, 67:8043-50.

41. Ökike Y, Ito Y, Maekawa H, Morisada T, Kubota Y, Akao M, Urano T, Yamasaki K, Suda T, Anderson-related growth factor (AGF) promotes angiogenesis. Blood 2004, 103:3760-5.

42. Roigas J, Deger S, Schroder J, Walle A, Turk I, Brux B, Jung K, Schnorr D, Loening SA: Tumor marker M2 pyruvate kinase expression in metastatic renal cell carcinoma. Urol Res 2003, 31:358-62.

43. Nalepa G, Wade Harper J: Therapeutic anti-cancer targets upstream of the proteasome. Cancer Treat Rev 2003, 1:49-57.

44. Liu J, Pedersen LC: Anticoagulant heparan sulfate: structural specificity and biosynthesis. Appl Microbiol Biotechnol 2007, 263-72.

45. Duncan MB, Chen J, Krise JP, Liu J: The biosynthesis of anticoagulant heparan sulfate by the heparan sulfate-sulfotransferase-1. Biochim Biophys Acta 2004, 1671(1-3):34-43.

46. Kamimura K, Rhodes JM, Ueda R, McNeely M, Shukla D, Kimata K, Spear PG, Shworak NW, Nakato H: Regulation of Notch signaling by Drosophila heparan sulfate 3-O-sulfotransferase. J Cell Biol 2004, 164:1609-79.

47. Miyamoto K, Asada K, Fukutomi T, Okochi E, Yagi Y, Hasagawa T, Asahara T, Sugitama T, Ushijima T: Methylation-associated silencing of heparan sulfate D-glucosaminyl 3-O-sulfotransferase-2 (3-OST-2) in human breast, colon, lung and pancreatic cancers. Oncogene 2003, 22:274-80.

48. Baldassarre M, Pompeo A, Beznoussenko G, Castaldi C, Cortellino S, Mc宁ven MA, Luini A, Buccone R: Dynamin participates in focal extracellular matrix degradation by invasive cells. Mol Biol Cell 2003, 14:1074-84.

49. Yoon SY, Jeong MJ, Yoo J, Lee KI, Kwon BM, Lim DS, Lee CE, Park YM, Han MY: Grb2 dominantly associates with dynamin II in human hepatocellular carcinoma HepG2 cells. J Cell Biochem 2001, 84(1):150-155.

50. Zhu J, Zhou K, Hao JJ, Liu J, Smith N, Zhan X: Regulation of cort-actin/dynamin interaction by actin polymerization during the fission of clathrin-coated pits. J Cell Sci 2005, 118:807-17.

51. Matthesien R: Methods, algorithms and tools in computational proteomics: a practical point of view. Proteomics 2007, 7:2815-32.