Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the group of Betacoronaviruses. The SARS-CoV-2 is closely related to SARS-CoV-1 and probably originated either from bats or pangolins. SARS-CoV-2 is an etiological agent of COVID-19, causing mild to severe respiratory disease which escalates to acute respiratory distress syndrome (ARDS) or multi-organ failure. The virus was first reported from the animal market in Hunan, Hubei province of China in the month of December, 2019, and was rapidly transmitted from animal to human and human-to-human. The human-to-human transmission can occur directly or via droplets generated during coughing and sneezing. Globally, around 53.9 million cases of COVID-19 have been registered with 1.31 million confirmed deaths. The people > 60 years, persons suffering from comorbid conditions and immunocompromised individuals are more susceptible to COVID-19 infection. The virus primarily targets the upper and the lower respiratory tract and quickly disseminates to other organs. SARS-CoV-2 dysregulates immune signaling pathways which generate cytokine storm and leads to the acute respiratory distress syndrome and other multisystemic disorders.

Keywords: Coronaviruses, COVID-19, SARS-CoV-2, Spike glycoprotein, ACE2 receptors, Acute respiratory distress syndrome (ARDS)
spleen, etc. [12, 13]. However, the pathogenicity of SARS-CoV-2 is notably less than SARS-CoV-1 and MERS-CoV, but its high transmissibility led to the pandemic, which resulted in the global lock-down and affected the global health scenario adversely [14]. The rapid development of the diagnostic tools and therapeutics in the form of antivirals and vaccines are the need of an hour to overcome the present situation.

Epidemiology

SARS-CoV-2 has been identified as a third zoonotic-human coronavirus [15]. The bats are the natural host for SARS-CoV-2 while the intermediate reservoir is still under debate [16–18]. As per the global scenario, about 53.9 million people have been reported to be positive for COVID-19 with 1.31 million confirmed deaths and 34.7 million recovered till November 14, 2020 [19]. The top five worst COVID-19 affected countries include, United States, India, Brazil, France and Russia with > 1.5 million cases till November 14, 2020 [19].

The early reports from USA, China and Italy indicated the SARS-CoV-2 infection among people > 60 years of age [20–22]. However, the recent reports (June–August, 2020) indicated the increased rate of infection (4.5% to 15%) among age groups of 15–29 years [23]. This dramatic shift in the infection cases in terms of age groups may be due to the reversion of younger population to their work place, Universities, colleges and schools etc. [23]. Therefore, the COVID-19-related mortality has a varying age distribution starting from 10 to 80 years of age with a greater number of cases reported among patients suffering from other co-morbid conditions [24].

The case fatality rate (CFR) is defined as total number of deaths to the total number of cases reported. In case of COVID-19 the CFR differs from country to country due to the differences in the medical and health infrastructure, co-morbidities and population age.

The major co-morbid conditions leading to the severity of COVID-19 include 10.5% for cardiovascular disease (CVD), 37.3% for diabetes, 8.3% for chronic obstructive pulmonary diseases (COPD), and 55.4% for hypertension, and 8.1% for cancer patients [25–27].

The sex-disaggregated COVID-19 data, collected from 26 countries indicate that males and females are almost equally susceptible to SARS-CoV-2 infection, however the mortality rate is 2.4 times higher in males compared to females [14, 28, 29]. The high mortality rates among males may be correlated to the co-morbidities like, diabetes, hypertension, cardiovascular diseases, and chronic kidney diseases etc. [30].

The higher levels of circulating ACE2 have been reported in the plasma of males suffering from COVID-than females. This condition indicates the higher levels of ACE2 receptor expression on tissues, which help in virus internalization [31]. Overall, the COVID19 related mortalities have been reported to be higher in males than females due to the differences in immunological, genetic, endocrinological, social and behavioral factors [32].

The SARS-COV-2 transmission was most probably due to cross-species jump from animal to humans, which first started from wet animal market in Wuhan province, China [33, 34]. The person-to-person transmission established from the visitors who visited Huanan animal market [35]. Therefore, the mode of transmission is either through direct human contact, or through the droplets generated during sneezing and coughing of an infected individual (Fig. 1) [36]. The presence of viral RNA in stool samples suggest another route of transmission but so far it has not established very well due to the absence of the live virus in stool samples [37]. The vertical transmission of virus was reported during SARS-CoV-1 and MERS-CoV outbreaks, while the same could not be established so far in the case of SARS-COV-2 [36, 38, 39]. The testing
of symptomatic and asymptomatic patients, containment procedures and other precautionary measures like, wearing masks in public places, maintain social distancing, regular use of handwash and hand sanitizers should be adopted to break the chain of transmission of SARS-CoV2 [40].

Taxonomic status and structure of SARS-CoV-2

Coronaviruses (CoVs) belong to *Coronaviridae* family (subfamily *Coronavirinae*), order *Nidovirales* [10]. The subfamily *Coronavirinae* has been divided into four genera: *Alphacoronavirus*, *Betacoronavirus*, *Gammacoronavirus* and *Deltacoronavirus* [10, 41]. The *Alphacoronavirus* and *Betacoronavirus* are known to infect humans [2]. Bats serve as the evolutionary hosts for the *Alphacoronavirus* and *Betacoronavirus* [42]. The whole genome sequencing and phylogenetic analysis classified SARS-CoV-2 as *Betacoronavirus* from the sub-genus *Sarbecovirus*, which also includes SARS-CoV-1 [9, 43]. The mutations, recombination and re-assortments routinely occur in the RNA viruses as a part of the evolutionary process for increasing the genetic diversity. The *Betacoronavirus* have been reported to undergo recombination within bats. The SARS-CoV-2 belongs to Sarbecovirus and shares similarity with two bat derived Coronavirus strains bat-SL-CoVZC45 and bat-SL-CoVZXC21 [43]. The SARS-CoV-2 genome shows 96% similarity to horse-shoe bat virus RaTG13 *Rhinolophus affinis* [9, 44]. The ecological separation of bats from human population makes an obvious note on the presence of an intermediate host, where SARS-CoV-2 develops adaptive changes, before transmitting to humans. This is supported by the difference in the key genomic features of SARS-CoV-2 from RaTG13 and SARS-CoV-1 [45]. Although RaTG13 is 96% similar to SARS-CoV-2, but the receptor binding domain (RBD) of SARS-CoV2 spike protein shares only 85% similarity with the RaTG13 and only one out of six critical amino acid residues of RBD is similar in RaTG13 and SARS-CoV-2 [46–48]. The five of the six amino acid residues differ between the SARS-CoV-1 and SARS-CoV-2 [48]. The SARS-CoV-2 spike proteins contain a polybasic furin cleavage site insertion (residues PRRA) at the junction of S1 and S2, which is probably enhancing the infectivity of the SARS-CoV-2 and is not present in any other Coronavirus [46–48]. The coronaviruses reported in Pangolin exhibit a strong similarity to SARS-CoV-2. The Malayan pangolins *Manis javanica* illegally imported into southern China (Guangdong and Guangxi provinces) were reported to be infected with SARS-CoV-2 related virus [44, 49]. Several SARS-CoV-2 related viruses have been reported in Malayan Pangolins. The sequencing data from these strains show them to be very closely related to SARS-CoV-2 and share 92.4–99.8% sequence identity. The Receptor Binding Motif (RBM) of Spike protein of these strains is also identical to SARS-CoV-2 and differs only in one out of five critical amino acid residues [49–51]. Therefore, SARS-CoV-2 might be a recombinant form of bat and pangolin coronaviruses, and the homologous recombination events might have occurred in spike glycoprotein genes between bat and pangolin CoVs [11, 45]. It has been reported that the cats and ferrets can also get infected with SARS-COV-2 and are susceptible to air-borne transmission.

However, the virus replicates poorly in dogs, pigs and chicken [52–54]. Though, to ascertain the exact pattern and genomic ancestors of the recombination events, a wider sampling of the viral diversity is required to resolve the evolutionary events.

Genomic organization of SARS-CoV2

The SARS-CoV-2 is a single stranded positive RNA virus of ~29.9 kbp in size. The SARS-CoV-2 has 14 open reading frames (ORFs), which encodes for 27 different proteins [55]. It has 5′ untranslated region (UTR), replication complex (ORF1a and ORF1b), Spike (S) gene, Envelope (E) gene, Membrane (M) gene, Nucleocapsid (N) gene, 3′ UTR, several unidentified non-structural ORFs and a poly (A) tail [56, 57]. The ORF1a gene is located at the 5′UTR, encodes for polyprotein pp1a, which contains 10 nsps. The ORF1b gene, located next to ORF1a, encodes for polyprotein pp1ab which contains 16 nsps [55]. The pp1ab and pp1a protein undergoes autoproteolytic cleavage to form the viral replication complex. The 3′UTR contains the four structural genes and eight accessory genes. The accessory genes are distributed between the structural genes and their function is mostly unknown [55, 57]. The SARS-CoV-2 is a non-segmented enveloped virus with a diameter of 50–200 nm [58]. Structurally, it has a double-layered lipid envelope, including Spike glycoprotein (S), Envelope protein (E), Membrane glycoprotein (M), and Nucleocapsid protein (N) [59, 60]. The viral genome having a RBD for the interaction with host cell receptors is covered by the Spike glycoprotein [46]. The M glycoprotein is responsible for the assembly of viral particles has three domains, the cytoplasmic domain, the transmembrane domain, and the N hydrophilic domain [61]. The Envelope protein is reported to play role in pathogenesis as it interacts with the tight junction related protein PALS1 [62]. The nucleocapsid protein packs the viral genome into a ribonucleoprotein complex [63]. The nucleocapsid, a phosphoprotein plays role in viral genome replication and the cell signaling pathway (Fig. 2).
Replication of SARS-CoV-2

The positive sense RNA genome serves as a template for both replication and protein synthesis. The virus enters through membrane fusion and releases its positive sense RNA into the cytoplasm. The CoVs control the relative expression of their proteins through a conserved molecular mechanism, known as -1 programmed ribosomal frameshifting (-1 PRF) [64]. The SARS-CoV-2 -1PRF and SARS-CoV1-1PRF is nearly similar with a single nucleotide difference which does not impact the rate of -1 PRF in SARS-CoV-2 [65].

The two ORFs of the viral genome, ORF1a and ORF1b translate to non-structural proteins (nsps) in the cytoplasm. The ORF1a produces a polypeptide pp1a, which proteolytically cleaved to produce 10nsps while the -1PRF of SARS-CoV-2 allows continued translation till ORF1b [2, 65, 66] and yields a larger polypeptide (pp1ab) which gets cleaved into 16 nsps. The proteolytic cleavage of the polypeptides is carried out by the viral proteases 3CLpro and Mpro [2, 67]. The functions of different nsps are listed in Table 1.

The replication and transcription of the viral genome is mediated by the activity of RNA dependent RNA polymerase (RdRP/nsp12). The RdRP catalyzes the synthesis of viral RNA, with the assistance of nsp7 and nsp8 as cofactors [68]. The RNA viruses lack the proofreading capacity. Although, Smith et al. reported that, an exoribonuclease domain (ExoN) in non-structural protein 14 provides proofreading activity that protects the SARS-CoV1 from mutagenesis [69]. The ExoN deletion leads to reduced replicative fidelity [69]. The replication complex generates a full-length negative sense RNA intermediates from the viral genome, which serve as the template for the synthesis of positive sense genomic RNAs (gRNA) and the sub-genomic RNA (sgRNA). The nucleocapsid protein encapsulates the gRNA, the S, M and E proteins in the endoplasmic reticulum-Golgi intermediate compartment. The assembly of mature virion occurs inside the Golgi and the virion containing vesicles fuse with plasma membrane and release the virus by exocytosis (Fig. 3b) [2, 66]. The SARS-CoV-2 expresses nine sgRNAs (S, 3a, E, M, 6, 7a, 7b, 8, and N) which form the structural...
and accessory proteins. These sgRNAs are produced by the canonical Transcription Regulatory Sequence (TRS) mediated mechanism for discontinuous transcription [57, 70].

Host viral interactions during COVID-19 infection SARS-CoV-2 receptors

The CoVs enter inside cell using various cell surface receptors. The ACE2 are used by SARS-CoV-1 and HCoV-NL63, whereas MERS uses dipeptidyl peptidase-4 (DPP4) and HCoV-229E uses aminopeptidase N (APN) [71–74]. All CoVs employ S glycoprotein for their internalization. The S glycoprotein has two subunits, S1 and S2. The S1 subunit comprises of the receptor binding domain (RBD), which binds with the receptor binding motif (RBM) of cell surface receptor, while the S2 subunit, mediates the fusion of host-virus cell membrane [75–77]. The S8 domain of S1 subunit is a RBD of SARS-CoV-1, which mostly binds with the ACE2 receptor for their internalization [72, 74, 78]. The S protein is cleaved by host proteases at S2' site (located on S2 sub-unit) to make necessary conformational changes for membrane fusion [76, 79]. The type II transmembrane serine protease (TMPRSS2) is the main host protease that mediates S protein activation and initial viral entry in primary target cells [47, 80, 81]. The camostat mesylate, an inhibitor of host serine protease TMPRSS2 blocks the entry of CoVs in the cell. This indicates that the role of TMPRSS2 is important in priming the S glycoproteins for successfully coordinating the events of SARS-CoV2 [81]. The furin is another host protease, which has been suggested to play an important role in the SARS-CoV-2 pathogenesis [47]. The structural analysis of SARS-CoV-1 Spike glycoprotein and SARS-CoV-2 Spike glycoprotein reveals 76% similarity in the amino-acid sequences [47, 56]. Moreover, both SARS-CoV-1 and SARS-CoV-2 shared 8 conserved binding positions and six semi-conserved positions in their S8 domain [47, 82]. Therefore, the binding efficiency of Spike glycoproteins of both SARS-CoV-1 and SARS-CoV-2 are similar. However, the conservation and semi-substitution in SARS-CoV-2, spike glycoprotein had somehow made the SARS-CoV-2 more adaptable to

Table 1 The functions of non-structural proteins of SARS-CoV-2

S. no	Proteins	Functions	Refs
1. nsp1	Interferes with the mRNA binding and suppresses hosts’ immune functions	[132, 133]	
	Anchors the replication complex to cellular membranes		
	Degrades host’s mRNA by interacting with the human 40S ribosomal subunit		
2. nsp2	Harbours mutations that make it more contagious	[132, 134]	
	Might play a role in modulation of host cell survival; also known as p65 homolog		
3. nsp3	Papain-like protease 2 (PL2pro) involved in proteolytic cleavage	[135]	
4. nsp4	Responsible for the formation of the double membrane vesicle during replication	[136, 137]	
	Anchors the viral replication-transcription complex to the membranes of endoplasmic reticulum		
5. nsp5	Proteases (3CLpro, Mpro) involved in polypeptide cleaving	[138]	
6. nsp6	Prevents the expansion of autophagosome, Help in formation of double membrane vesicle; suppresses IFN-I signaling	[139, 140]	
7. nsp7	Forms a heptadecamer with nsp8 and acts as a primase in viral replication	[141]	
8. nsp8	Acts as a primase with nsp7	[142, 143]	
9. nsp9	Acts as ssRNA binding protein	[143, 144]	
10. nsp10	Plays role in the methylation of viral mRNA cap. Stimulates the nsp14 3'-5' exoribonuclease and 2'-O-methyltransferase (NSP16) activities	[144]	
11 nsp11	Unknown		
12 nsp12	Catalytic subunit of the RNA-dependent RNA polymerase; Catalyses the synthesis of viral RNA, using nsp7 and nsp8 as cofactors	[142, 145, 146]	
13. nsp13	Helicase and NTPase activity: hydrolyze the NTPs and unwind the duplex RNA and DNA with a 5'→3' single-stranded tail in a 5' to 3' direction	[147–149]	
	A potent interferon antagonist		
14. nsp14	Guanine-N7 methyltransferase, a multienzyme complex	[132, 148, 150]	
	Acts on both sides ssRNA and dsRNA in a 3'→5' direction		
	It plays role in genome replication, sub-genomic RNA synthesis and recombination		
15. nsp15	It is a nidoviral RNA uridylate-specific endoribonuclease (NendoU); plays role in viral replication and transcription	[148, 151, 152]	
	A potent interferon antagonist		
16. nsp16	Acts as 2'-O-methyltransferase that mediates mRNA cap 2'-O-ribose methylation to the 5'-cap structure of viral mRNAs	[148, 153]	
ACE2 receptor, thereby increasing the transmissibility in humans [47].

Immune response during SARS-CoV-2 infection

The SARS-CoV-2 disseminates to various organs after infecting the upper and lower respiratory tract. The ACE2 receptor are highly expressed on the type II alveolar epithelial cells, airway epithelium, lung parenchyma, esophagus epithelial cells, enterocytes from ilium and colon, myocardial cells, cholangiocytes in liver and the proximal tubule cells in kidney [12, 13]. The SARS-CoV-2 RNA is recognized by endosomal TLR7, TLR8 or by RNA sensors like, MDA5 and RIG-1. Upon activation, the signaling cascade including, NF-kB transcription, AP-1 induces the gene responsible for the production of pro-inflammatory cytokines like, TNF-α, TGF-β, IL-1β, IL-6, IL-8, IL-12, IL-18 and chemokines like, CCL2, CCL3, CCL5, CXCL8, CXCL9, CXCL10. Therefore, a cytokine storm is generated which either directly, indirectly or synergistically damages the organs or may lead to acute respiratory distress syndrome (ARDS) or multiple organ failure in COVID-19 patients [28, 58, 83, 84]. Li et al. 2020, reported that nsp9 and nsp10 of SARS-CoV-2 interacts with NKRF to mediate the IL-6/IL-8 signaling leading to the uncontrolled activation and infiltration of neutrophils from the periphery [85]. The COVID-19 patients have been reported with decrease in the numbers of CD4+ and CD8+ cells in peripheral blood, which may lead to secondary bacterial infection and increases the disease severity. MERS-CoV can directly infect the T-lymphocytes, promote their apoptosis and causes lymphopenia [86]. Wang et al., 2020 reported, SARS-CoV-2 can directly infect T-lymphocytes by S glycoprotein through membrane fusion [87]. In addition, lack of T-cells may not activate the antibody-producing B-lymphocytes, which affects the production of immunoglobulins in COVID-19 patients [58, 88]. Moreover, the ADE towards similar epitopes against S or N glycoproteins of SARS-CoV-1 may lead to ARDS or multiple organ failure [89].
The heterogeneous roles of CD4+ T and CD8+ T have been reported in both, SARS-CoV-2 and other respiratory-related viral infections [90, 91]. There are reports which have highlighted the importance of CD8+ T cells in COVID-19 patients. The patients with mild COVID-19 symptoms or COVID-19 recovered patients have SARS-CoV-2 specific CD8+ T cells response in 70% of the cases. It has also been shown that CD8+ T cells were specific to viral internal proteins and can be considered for vaccine development [92, 93]. The antiviral response mediated by IRF3 and IRF7 release the IFN-α/β and IFN-γ which have a protective role in suppressing the virus at the later stages of infection, as seen in SARS-CoV-1 and MERS. The virus circumvents the host immune response by suppressing the type I interferon as shown in mouse model of SARS-CoV-1 and MERS [94, 95]. Lokugamage et al. 2020 reported that SARS-CoV-2 is more sensitive to type-I IFN treatment than the SARS and MERS-CoVs. In addition, they reported that the mutation in ORF3b and truncation of ORF6 have rendered SARS-CoV-2 more susceptible to type-I IFN treatment (Fig. 3) [85, 94, 96].

Clinical presentation, pathophysiology and diagnosis of COVID-19 patients

The COVID-19 clinical presentations are similar to that of SARS-CoV1 and MERS, which are mild and self-limiting in 80% of the cases. Only 20% of the cases aggragate to secondary complications of ARDS or multiple organ failure [97, 98]. The virus affects people differently depending upon the genetic pre-disposition, immune status and diseases associated with respiratory system [99, 100]. The people > 60 years of age are at higher risk of exacerbating the disease [58, 83, 101].

The incubation period for SARS-COV-2 has been estimated up to 14 days, which is longer than SARS-CoV-1 and MERS [102, 103]. The longer incubation period supports the asymptomatic and subclinical infection rate [14]. The common symptoms include fever, dry cough, fatigue, myalgia, dyspnea, runny nose, nausea, sweat, joint pain and gastrointestinal symptom [104]. In addition, patients with co-morbidities like, diabetes, hypertension [28, 83, 84], acute kidney disease, cardiac problem, cerebrovascular disease or liver dysfunction may be more susceptible to infection [97, 105].

The severity of COVID19 directly co-relates to lymphopenia, eosinopenia and hypercycotinemia, similar to SARS-CoV-1 and MERS [83, 84, 97, 106]. The serological reports of COVID-19 patients show a sharp increase in their C reactive proteins, lactate dehydrogenase (LDH), erythrocyte sedimentation rate (ESR), creatinine kinase, alanine aminotransferase (ALT), aspartate transaminase (AST), D-dimer and low serum albumin [13, 105, 107] indicating sepsis which may lead to multiorgan failure during the later stages of infection. The higher levels of pro-inflammatory cytokines like, IL2, IL7, IL10, granulocyte-colony stimulating factor (GCSF), interferon-gamma protein-10 (IP10), monocyte chemoattractant protein-1 (MCP1), macrophage inflammatory protein-1α (MIP1α), and TNFα may contribute to “cytokine storm” similar to SARS-CoV1 and MERS [83, 107–110]. The CT-scans and X-Ray reports of COVID-19 patients revealed the opacities and bilateral diffuse alveolar damage followed by cellular exudates, pleurisy, pericarditis, lung consolidation and pulmonary edema [13, 109]. The autopsy reports revealed the atypical enlarged pneumocytes, interstitial mononuclear infiltration with significant cytopathic effects and the presence of lymphocytes in the affected area and thick alveolar wall [83]. The other deformities include degeneration of neurons, atrophy of spleen, inflammation of immune cells in liver, hylaline thrombus in blood vessels leads to cardiac arrest and hemorrhage in kidney are observed in severely affected COVID-19 patients [13, 109–111]. The nasopharyngeal swab/oropharyngeal swab (upper respiratory tract), sputum, lavage or aspirate (lower respiratory tract) is used for diagnosis. In addition, blood, stool and urine sample are also used for need based diagnosis [112]. The diagnosis is carried by RT-qPCR or by high throughput sequencing of viral genome. The primers and probes against ORF1b and N genes are used for the detection of SARS-COV-2 from respiratory fluid [113]. The asymptomatic patients are identified by the presence of viral nucleic acid, and are responsible for human-to human transmission of SARS-COV-2 infection [101, 114–116]. Many molecular based diagnostics and immunoassays are used for the detection of SARS-COV-2 (Table 2).

Vaccines and therapeutics

Scientists across the world are aiming to instigate therapeutics and vaccine against SARS CoV-2. The vaccine should be useful for all age groups and people with various co-morbidities. According to WHO report; there are 48 vaccine candidates under the advance stages of the clinical trials (Table 3). Among them 11 are currently in clinical trial Phase-III. The vaccine produced by BioNTech/Pfizer BNT162b2, is in the late stage of clinical trial. The BNT162b2is an mRNA-based vaccine; which exploits for RBD of SARS CoV-2 spike protein for eliciting immune response. This mRNA vaccine is lipid encapsulated for its effective delivery into the cells [117]. Another RNA based vaccine mRNA1273 is in clinical phase-III trial. This vaccine has been developed by Moderna Incorporation. The mRNA1273 vaccines lipid-nanoparticle encapsulated mRNA encoding for the SARS-CoV-2 spike glycoprotein [118]. The other potential vaccine is of University of Oxford with AstraZeneca (AZD1222 vaccine)
The AZD1222 vaccine has been developed by using the Chimpanzee adenovirus vector, ChAdOxo-1s, which encodes for SARS-CoV-2 spike protein [119]. Another viral vector-based vaccine Sputnik V has been developed by Gamaleya Research Institute in Russia. The vaccine contains 2 viral vectors recombinant adenovirus type 26 (rAd26) and recombinant adenovirus type 5 (rAd5) encoding the full length S glycoprotein of SARS-CoV-2 [120].

The different classes of therapeutics that can be used for the treatment of COVID-19 patients include, protease inhibitors, nucleoside analogue, neutralizing-monoclonal antibody, immune modulator, RNA polymerase inhibitor, interferon alpha, endonuclease Inhibitor, fusion inhibitor, convalescence plasma therapy and Immunosuppressant [121].

The antimalarial drug, Ivermectin has been tried in combination with Remdesivir for the COVID-19 treatment. Ivermectin has been tried in combination with Remdesivir for the COVID-19 treatment. It is a recombinant human monoclonal neutralizing antibody IgG1 produced against SARS-CoV-2 spike protein [127]. The Hydroxychloroquine (HCQ) a well-known antimalarial drug has been under trial for COVID 19 treatment but it was not found to have any beneficial effect for the COVID19 patients. HCQ was reported to inhibit the viral infection by glycosylating the ACE2 receptor of SARS-CoV-1 and increases the endosomal pH, rendering the membrane fusion [124, 128]. Favipiravir has also been under trial for the treatment of COVID 19 patients as it was previously tested against Ebola and Influenza virus. Favipiravir inhibits the RNA polymerases and halts the viral replication [129]. The convalescent plasma therapy has been used for treating the critical COVID-19 patients during the early phases of this outbreak. Previously it was used against SARS-CoV-1, Ebola and H1N1 but the use of convalescent plasma therapy against SARS-CoV2 has been quite debatable issue [130]. Another type of therapeutic, tocilizumab has also been used against SARS-CoV2. Tocilizumab, an immunosuppressant binds to the IL-6 receptor and hinders the inflammatory responses [131]. In addition, there are many other therapeutic trials for COVID-19 ongoing and some of them with positive responses have been listed in Table 4.

Table 2 Diagnostic kits for COVID-19
Molecular assays for COVID-19 diagnosis
1. ANDiS® SARS-CoV-2 RT-qPCR Detection Kit
2. Abbott RealTime SARS-CoV-2 EUA test
3. TrueNAT™ Beta CoV (lab-based or near-POC)
4. QIAGEN Dx Respiratory Panel 2019-nCoV
5. cobas® SARS-CoV-2 (for use on the cobas® 6800/8800 Systems)
Immunoassays for COVID-19 diagnosis
6. Senteligo Covid-19 qRT PCR Detection Kit
7. VereCoV™ Detection Kit
8. VISION COVID19 EasyPrep Test Kit
9. ePlex® SARS-CoV-2 Test
S. No
10.
11.
12.
13.
14.
15.
Table 3 List of candidate vaccines against COVID-19. This table has been taken with permission from the WHO website (Draft landscape of COVID19 candidate vaccine) with slight modifications [169]

S. no	Vaccine developer	Platform	Type of candidate vaccine	Current status
1.	Sinovac	Inactivated	Inactivated	Phase-3
2.	Wuhan Institute of Biological Products/SinoPharm	Inactivated	Inactivated	Phase-3
3.	Beijing Institute of Biological Products/SinoPharm	Inactivated	Inactivated	Phase-3
4.	Bharat Biotech	Inactivated	Whole virion inactivated	Phase-3
5.	University of Oxford/AstraZeneca	Non-replicating viral vector	ChAdOx1-S	Phase-3
6.	CanSino Biological Incorporation/Beijing Institute of Biotechnology	Non-replicating viral vector	Adenovirus Type 5 Vector	Phase-3
7.	Gamaleya Research Institute	Non-replicating viral vector	Adeno-based (rAd26-S + Ad5-S)	Phase-3
8.	Janssen Pharmaceutical Companies	Non-replicating viral vector	Ad26COV51	Phase-3
9.	Novavax	Protein subunit	Full length recombinant SARS COV-2 glyco-protein nanoparticle Vaccine adjuvanted with Matrix M	Phase-3
10.	Moderna/NIAID	RNA	LNP-encapsulated mRNA	Phase-3
11.	BioNTech/Forest Group/Pfizer	RNA	3 LNPs mRNA	Phase-3
12.	Beijing Wantai Biological Pharmacy/Xiamen University	Replicating viral vector	Intransal flu based RBD	Phase-2
13.	Anhui ZhifeiLongcom Biopharmaceutical/Institute of Microbiology, Chinese Academy of Sciences	Protein subunit	Adjuvanted recombinant protein (RBD-dimer)	Phase-2
14.	Curevac	RNA	mRNA	Phase-2
15.	Institute of Medical Biology/Chinese Academy of Medical Sciences	Inactivated	Inactivated	Phase-1/2
16.	Research Institute for Biological Safety Program, Rep of Kazakhstan	Inactivated	Inactivated	Phase-1/2
17.	Beijing Minhai Biotechnology Co., Ltd	Inactivated	Inactivated	Phase-1/2
18.	Inovio Pharmaceuticals/International Vaccine Institute	DNA	DNA plasmid vaccine with electroporation	Phase-1/2
19.	Osaka University/ AnGes/ Takara Bio	DNA	DNA plasmid vaccine with adjuvant	Phase-1/2
20.	Cadila Healthcare Limited	DNA	DNA plasmid vaccine	Phase-1/2
21.	Genexine Consortium	DNA	DNA Vaccine (GX-19)	Phase-1/2
22.	Kentucky Bioprocessing Inc	Protein subunit	RBD-based	Phase-1/2
23.	Sanofi Pasteur/ GSK	Protein subunit	S-protein Baculovirus production	Phase-1/2
24.	Biological E Ltd	Protein subunit	Adjuvanted Protein subunit (RBD)	Phase-1/2
25.	Israel Institute for Biological Research	Replicating viral vector	VSV-S	Phase-1/2
26.	Arcturus/ Duke-NUS	RNA	mRNA	Phase-1/2
27.	Spy Biotech/Serum Institute of India	VLP	RBD-HBSAg VLPs	Phase-1/2
28.	Symvivo	DNA	bacTRL-spike	Phase-1
29.	Immunity Bio, Inc. &Nanktwest Inc	Non replicating viral vector	hAdS 5 + N 2nd Generation Human Adenovirus Type 5 Vector (hAdS) Spike (S) + Nucleocapsid (N)	Phase-1
30.	Reithera/LEUKOCARE/Univercells	Non replicating viral vector	Replication defective Simian Adenovirus encoding S protein	Phase-1
31.	Cansino Biological Inc	Non replicating viral vector	Ad5-nCoV	Phase-1
32.	Vaxart	Non replicating viral vector	Ad5 Adjuvant oral vaccine platform	Phase-1
33.	Ludwig-Maximilians-University of Munich	Non replicating viral vector	MVA SARS-2-S	Phase-1
34.	Clover Biopharmaceuticals Inc./GSK/ Dynavax	Protein subunit	Native like trimeric subunit spike protein vaccine	Phase-1
35.	Vaxine Pty Ltd/ Medytox	Protein subunit	Recombinant spike protein with Advax adjuvant	Phase-1
Table 3 (continued)

S. no	Vaccine developer	Platform	Type of candidate vaccine	Current status
36.	University of Queensland/CSL/Seqirus	Protein subunit	Molecular clamp stabilized spike protein with MFS9 adjuvant	Phase-1
37.	Medigen Vaccine Biologics Corporation/NIAID/Dynavax	Protein subunit	S-2p protein and CpG 1018	Phase-1
38.	Instituto Finlay de Vacunas, Cuba	Protein subunit	rRBD produced in CHO cell chemically conjugate to tetanus toxoid	Phase-1
39.	Instituto Finlay de Vacunas, Cuba	Protein subunit	RBD + Adjuvant	Phase-1
40.	FBRI SRC VB VECTOR, Rospotrebnadzor, Koltsovo	Protein subunit	Peptide	Phase-1
41.	West China Hospital, Sichuan University	Protein subunit	RBD Baculovirus production expressed in Sf9 cells	Phase-1
42.	University Tuebingen	Protein subunit	SARS-CoV-2 HLA-DR peptides	Phase-1
43.	COVAXX/United Biomedical Inc. Asia	Protein subunit	Multitope peptide based S1 RBD protein vaccine	Phase-1
44.	Merck Sharp & Dohme/IAVI	Replicating viral vector	Replication competent VSV delivering SARS-CoV-2 spike	Phase-1
45.	Institute Pasteur/Themis/Univ. of Pittsburg CVR/Merck Sharp & Dhome	Replicating viral vector	Measles vector based	Phase-1
46.	Imperial College London	RNA	LNP nCoVsaRNA	Phase-1
47.	People's Liberation Army, Academy of Military Sciences/Walvax Biotech	RNA	mRNA	Phase-1
48.	Medicago Inc	VLP	Plant derived VLP adjuvanted with GSK or Dynavax adjs	Phase-1

Table 4 List of therapeutic candidates against COVID-19

S. no	Drug name	Clinical trial	Trial	Treatment	References
1.	Pacritinib	Phase 3	NCT04404361	Kinase inhibitor	[170]
2.	Enoxaparin	Phase 3	NCT04401293	Antithrombotic	[171]
3.	Remdesivir + Baricitinib	Phase 3	NCT04401579	Antiviral	[172]
4.	Remdesivir	Phase 3	NCT04401579	Antiviral	[172]
5.	Hydroxychloroquine	Phase 3	NCT04441562	Antimalarial	[173]
6.	Favipiravir + Hydroxychloroquine	Phase 3	NCT04411433	Antiviral	[174, 175]
7.	ASC09 + Oseltamivir	Phase 3	NCT04261270	Antiviral	[176]
8.	ASC09 + Ritonavir	NA	NCT04261907	Antiviral	[176]
9.	Tocilizumab (IL-6)	Phase 3	NCT04412772	Monoclonal antibodies	[177]
10.	Anakinra	Phase 3	NCT04412291	Anti-inflammatory	[178]
11.	Ivermectin	Completed	NCT04422561	Antiparasitic	[179]
12.	Budesonide dry powder inhaler	Phase 2	NCT04416399	Corticosteroid	[180]
13.	LY3819253	Phase 3	NCT04427501	Corticosteroid	[181]
14.	Atazanavir and dexamethasone	Phase 3	NCT04452565	Corticosteroid and antiviral	[182]
15.	Colchicine	Phase 2	NCT04326790	Anti-inflammatory	[183]
16.	Corticosteroid	Phase 3	NCT04381936	Corticosteroid	[184]
17.	Azithromycin	Phase 3	NCT04381936	Antibacterial	[184]
18.	Convalescent plasma	Phase 3	NCT04425915	Convalescent plasma	[130]
19.	NA-B31 and dexamethasone	Phase 3	NCT04452565	Corticosteroid	[182]
20.	Camostat Mesilate	Phase 2	NCT04470544	Protease inhibitor	[81]
Abbreviations
CoVs: Coronavirus; SARS-CoV-1: Severe acute respiratory syndrome coronavirus 1; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; MERS-CoV: Middle East respiratory syndrome coronavirus; ICTV: International Committee on Taxonomy of Viruses; PHEIC: Public Health Emergency of International Concern; ACE2: Angiotensin converting enzyme-2; DPP4: Dipeptidyl peptidase-4; APN: Aminopeptidase N; hCoV-229E: Human Coronavirus-229E; COPD: Chronic obstructive pulmonary diseases; CVD: Cardiovascular disease; RD: Receptor Binding Domain; RBM: Receptor Binding Motif; nsps: Non-structural proteins; 1 PRF: 1-Programmed ribosomal frameshifting; ExoN: Exoribonuclease domain; gRNA: Genomic RNA; sgRNA: Sub-genomic RNA; TRS: Transcription Regulatory Sequence; TMPRSS2: Type II transmembrane serine protease; MDA-S: Melanoma Differentiation-Associated gene S; RIG-1: Retinoinducible Gene-1; ARDS: Acute respiratory distress syndrome; ADIE: Antibody-dependent-enhancement; IRF3 and 7: Interferon response factor 3 and 7; LDH: Lactate dehydrogenase; ESR: Erythrocyte sedimentation rate; ACE2: Angiotensin converting enzyme-2; DPP4: Dipeptidyl peptidase-4; APN: Aminopeptidase N; HCoV-229E: Human Coronavirus-229E; COPD: Chronic obstructive pulmonary disease; CVD: Cardiovascular disease; -1 PRF: -1 Programmed ribosomal frameshifting; ExoN: Exoribonuclease domain; gRNA: Genomic RNA; sgRNA: Sub-genomic RNA; TRS: Transcription Regulatory Sequence; TMPRSS2: Type II transmembrane serine protease; MDA-S: Melanoma Differentiation-Associated gene S; RIG-1: Retinoinducible Gene-1; ARDS: Acute respiratory distress syndrome; ADIE: Antibody-dependent-enhancement; IRF3 and 7: Interferon response factor 3 and 7; LDH: Lactate dehydrogenase; ESR: Erythrocyte sedimentation rate; ALT: Alanine aminotransferase; AST: Aspartate transaminase; GCSF: Granulocyte colony-stimulating factor; IP-10: Interferon-gamma protein-10; MCP-1: Monocyte chemoattractant protein-1; MIP-1A: Macrophage inflammatory protein-1α; qRT-PCR: Quantitative real time polymerase chain reaction; POCT: Point-of-care-testing; RdRp: RNA dependent RNA polymerase; HCO: Hydroxychloroquine sulphate.

Acknowledgements
Not applicable.

Authors’ contributions
MR, NP, AS wrote the manuscript. SKS supervised, corrected and proof-read the manuscript. All authors read and approved the final manuscript.

Funding
This research did not receive and specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 26 June 2020 Accepted: 22 November 2020
Published online: 01 December 2020

References
1. Kendall EJ, Bynoe ML, Tyrrell DA. Virus isolations from common colds occurring in a residential school. BMJ. 1962;2:82–6.
2. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol. 2009;7:439–50.
3. Zhong NS, Zheng BJ, Li YM, Poon LS, Xie ZH, Chan KH, Li PH, Tan SY, Chang Q, Xie JP, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet. 2003;362:1353–8.
4. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367:1814–20.
5. Hu B, Zeng LP, Yang XL, Ge KY, Zhang W, Li B, Xie JZ, Shen XR, Zhang YZ, Wang N, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 2017;13:e1006698.
6. Lau SK, Li KS, Tsang AK, Lam CS, Ahmed S, Chen H, Chan KH, Woo PC, Yuen KY. Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKUS in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus. J Virol. 2013;87:8638–50.
7. WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020.
8. Statement on the Second Meeting of the International Health Regulations. Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). 2005. https://www.who.int/news-room/detail/13-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov).
9. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–9.
10. Wu PC, Huang Y, Lau SK, Yuen KY. Coronavirus genomics and bioinformatics analysis. Viruses. 2010;2:1184–20.
11. Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol. 2020;30:1346–1351.e1342.
12. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14:185–92.
13. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420–2.
14. Li Q, Guan X, Wu P, Wang X, Zhou T, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382:1199–207.
15. Gralinski LE, Menachery VD. Return of the coronavirus: 2019-nCoV. Viruses. 2020;12:135.
16. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li B, Huang C-L, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–3.
17. Yuan S, Jiang SC, Li ZL. Analysis of possible intermediate hosts of the new coronavirus SARS-CoV-2. Front Vet Sci. 2020;7:379.
18. Ren L, Wu C, Guo L, Yao J, Wang C, Xiao Y, Pisco AO, Wu Z, Lei X, Liu Y, et al. Single-cell transcriptional atlas of the Chinese horseshoe bat (Rhinolophus sinicus) provides insight into the cellular mechanisms which enable bats to be viral reservoirs. 2020;2020.2006.2030.175778.
19. Coronavirus Pandemic COVID-19 Statistics and Research. https://ourworldindata.org/coronavirus#acknowledgements.
20. Dowd JB, Andriano L, Brazel DM, Rotondi V, Block P, Ding X, Liu Y, Mills MC. Demographic science aids in understanding the spread and fatality rates of COVID-19. Proc Natl Acad Sci USA. 2020;117:9966–8.
21. Wu JT, Leung K, Bushman M, Kishore N, Niehus R, de Salazar PM, Cowling BJ, Lipsitch M, Leung GM. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat Med. 2020;26:506–10.
22. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020;323:1775–6.
23. Venkatesan P. The changing demographics of COVID-19. Lancet Respir Med. 2020.
24. Mortality Risk of COVID-19 Statistics and Research [https://ourworldindata.org/mortality-risk-covid].
25. Sanyaolu A, Okorie C, Marinkovic A, Patidar R, Younis K, Desai P, Hosein MC. Demographic science aids in understanding the spread and fatality rates of COVID-19. Proc Natl Acad Sci USA. 2020;117:9966–8.
26. Wu JT, Leung K, Bushman M, Kishore N, Niehus R, de Salazar PM, Cowling BJ, Lipsitch M, Leung GM. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat Med. 2020;26:506–10.
27. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020;323:1775–6.
28. Venkatesan P. The changing demographics of COVID-19. Lancet Respir Med. 2020.
29. Mortality Risk of COVID-19 Statistics and Research [https://ourworldindata.org/mortality-risk-covid].
28. Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, Akdis CA, Gao YD. et al. Respir Res (2020) 21:318
29. Jin JM, Bai P, He W, Wu F, Liu XF, Han DM, Liu S, Yang JK. Gender differences in patients with COVID-19: focus on severity and mortality. Front Public Health. 2020;8:152.
30. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, the Northwell C-RC, Barnaby DP, Becker LB, Chelico JD, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323:2052–9.
31. Sama IE, Ravera A, Santema BT, van Goor H, Ter Maaten JM, Cleland JGF, Rienstra M, Friedrich AW, Samani NJ, Ng LL, et al. Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin-angiotensin-aldosterone inhibitors. Eur Heart J. 2020;41:1810–7.
32. Griffith DM, Sharma G, Holliday CS, Enyiia OK, Valliere M, Semlow AR, Stewart EC, Blumenthal RS. Men and COVID-19: a biopsychosocial approach to understanding sex differences in mortality and recommendations for practice and policy interventions. Prev Chronic Dis. 2020;17:E63.
33. Bogoch II, Watts A, Thomas-Bachil A, Huber C, Kraemer MUG, Khan K. Pneumonia of unknown aetiology in Wuhan, China: potential for international spread via commercial air travel. J Travel Med. 2020;27:taa008.
34. Khan S, Siddique R, Shereen MA, Ali A, Khan KS, Tong Y, et al. First case of 2019 novel coronavirus (2019-nCoV) infection of Malayan pangolins (Manis javanica). Viruses. 2020;12:438.
35. Kim YI, Kim SG, Kim SM, Kim EH, Park SJ, Yu KM, Chang JH, Kim EJ, Lee S, Casel MBA, et al. Infection and rapid transmission of SARS-CoV-2 in Ferrets. Cell Host Microbe. 2020;27:704–709.e702.
36. Richard M, Kok A, de Meulder B, Bestebroer TM, Lamers MM, Okba NMA, Fentener van Vlissingen M, Rockx B, Haagmans BL, Koopmans M, et al. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat Commun. 2020;11:3946.
37. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, Meng J, Zhu Z, Zhang Z, Wang J, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020;27:325–8.
38. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–33.
39. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:565–74.
40. Zhang YZ, Holmes EC. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell. 2020;181:227.
41. Rehman SU, Shaqique L, Ihsan A, Liu Q. Evolutionary trajectory for the emergence of novel coronavirus SARS-CoV-2. Pathogens. 2020;9:240.
42. Wen Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020;94.
43. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–292.e286.
44. Andersen KG, Rambaut A, Lipkin W, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26:450–2.
45. Lam TT, Shum MH, Zhu HC, Tong YG, Ni KB, Liao YS, Wei W, Cheung WY, Li WJ, Li LF, et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature. 2020;583:282–5.
46. Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou J, Li N, Guo Y, Li X, Shen X, et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature. 2020;583:286–9.
47. Liu P, Chen W, Chen JP. Viral metagenomics revealed sendai virus and coronavirus infection of malayan pangolins (Manis javanica). Viruses. 2019;11:979.
48. Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, Liu R, He X, Shuai L, Sun Z, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus-2. Science. 2020;368:1016–20.
49. Kim YI, Kim SG, Kim SM, Kim EH, Park SJ, Yu KM, Chang JH, Kim EJ, Lee S, Casel MBA, et al. Infection and rapid transmission of SARS-CoV-2 in Ferrets. Cell Host Microbe. 2020;27:704–709.e702.
50. Chen N, Zhou M, Duan X, Yu Y, Qiu R, Song J, Zhao X, Huang B, Wang X, Cao Y, et al. Multi-province cohort study of 72 314 coronavirus disease 2019 (COVID-19) cases from 391 hospitals in China. Lancet. 2020;395:507–13.
51. Bärnena M, Oostergetel GT, Bartelink W, Faas FG, Verkleij A, Rottier PJ, van der Meijden AM, Fentener van Vlissingen M, Rockx B, Haagmans BL, Koopmans M, et al. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat Commun. 2020;11:3946.
52. Ashour HM, Elkhatib WB, Rahman MM, Elishabrawy HA. Insights into the Recent, Novel coronavirus (SARS-CoV-2) in light of past human coronaviruses outbreaks. Pathogens. 2019;2020;8:26.
53. Hoeh concrete, weaknesses, and implications. Clin Microbiol. 2020;8:26.
54. Chen YW, Yiu C-PB, Wong K-Y. Prediction of the SARS-CoV-2 (2019-nCoV) spike protein using deep learning and multifunctional protein. Viruses. 2014;6:2991–3018.
55. Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: from genetic stegnography and cryptography to antidepressive use. Nucleic Acids Res. 2016;44:7007–78.
56. Kelly JA, Dinman JD. Structural and functional conservation of the programmed -1 ribosomal frameshift signal of SARS-CoV-2. bioRxiv. 2020;2020.2003.2013.910883.
57. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1–23.
58. Chen YY, Yu C-PB, Wong K-Y. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: virtual screening reveals velpatavir, ledipasvir, and other drug repurposing candidates. 10.1000Research. 2020;9:129.
59. Gao Y, Yan L, Huang Y, Liu F, Zhao C, Cao L, Wang T, Sun Q, Ming Z, Zhang L, et al. Structure of RNA-dependent RNA polymerase from 2019-nCoV, a major antiviral target. bioRxiv. 2020;2020.2003.2016.993386.
60. Smith EC, Blanc H, Surdel MC, Vignuzzi M, Denison MR. Coronaviruses as the gene source of alphacoronavirus and betacoronavirus. J Virol. 2012;86:3995–4008.
61. Kelly JA, Dinman JD. Structural and functional conservation of the programmed -1 ribosomal frameshift signal of SARS-CoV-2. bioRxiv. 2020;2020.2003.2013.910883.
71. Yeager CL, Ashmun RA, Williams RK, Cardellachio CB, Shapiro LH, Look AT, Holmes KV. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 1992;357:420–2.

72. Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, Dijkstra R, Muth D, Demmers JA, Zaki A, Fouchier RA, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495:251–4.

73. Li W, Moore MI, Vasilevna N, Sue J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–4.

74. Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005;309:1864–8.

75. Burkard C, Verheije MH, Wicht O, van Kasteren SI, van Kuppeveld FJ, Millet JK, Whittaker GR. Host cell proteases: critical determinants of novel coronavirus infection. Microbes Infect. 2020;22:1336–45.

76. Mathew D, Giles JR, Baxter AE, Greenplate AR, Wu JE, Alanio C, Oldridge DA, Kuri-Cervantes L, Pampena MB, D'Arendra K, et al. Deep immune profiling of COVID-19 patients reveals patient heterogeneity and distinct immunotypes with implications for therapeutic interventions. bioRxiv. 2020.

77. Grifoni A, Weiskopf D, Ramirez SJ, Mateus J, Dan JM, Moderbacher CR, Rawlings SA, Sutherland A, Premkumar L, Jardi R, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020;181:1489–1501.e1415.

78. Dumonde DC, Woltcraeft RA, Panayi GS, Matthew M, Morley J, Howson WT. ‘Lymphokines’: non-antibody mediators of cellular immunity generated by lymphocyte activation. Nature. 1969;224:38–42.

79. Kopecky-Bromberg SA, Martinez-Sobrino L, Frieman M, Bank RA,Palese P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol. 2007;81:548–57.

80. Cheng Z, Zhou J, Wong BH-Y, Li C, Chan JF-W, Cheng Z-S, Yang D, Wang D, Wang X, Xu W, Hu G, Xia S, Liu Z, Xie Y, Zhang R, Jiang S, Lu L. Humoral and intrinsic apoptosis pathways. J Infect Dis. 2015;213:904–14.

81. Lessler J, Reich NG, Brookmeyer R, Perl TM, Nelson KE, Cummings DAT. Incubation periods of acute respiratory viral infections: a systematic review. Lancet Infect Dis. 2009;9:291–300.

82. Wang J, Yang Y, Xu J, Shi H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8:475–81.

83. Wu Z, McGeoo GM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239–42.

84. Leopardi R, Bassi H, Gern JE. Virus–allergen interactions in asthma. Curr Allergy Asthma Rep. 2013;13:298–307.

85. Liu J, Guo M, Tian X, Liu C, Wang Y, Yang X, Wu P, Xiao Z, Qu Y, Yin Y, et al. Virus-host interactome and proteomic survey of PMBCs from COVID-19 patients reveal potential virulence factors influencing SARS-CoV-2 pathogenesis. bioRxiv. 2020.2020.03.03.019216.

86. Chu H, Zhou J, Wong BH-Y, Li C, Chan JW-F, Cheng Z-S, Yang D, Wang D, Lee AC-Y, Li C, et al. Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways. J Infect Dis. 2015;213:904–14.

87. Wang X, Xu W, Hu G, Xia S, Sun Z, Liu Z, Xie Y, Zhang R, Jiang S, Lu L. SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. Cell Mol Immunol. 2020.

88. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, Mcclellan JS. Cryo-EM structure of the SARS-CoV-2 spike in the prefusion conformation. Science. 2020;367:1263–60.

89. Tetro JA. Is COVID-19 receiving ADE from other coronaviruses? Microbes Infect. 2020;22:72–3.

90. Peng Y, Mentzer AJ, Liu G, Yao X, Yin Z, Dong D, Jenneartissl W, Rostron T, Supasa P, Liu C, et al. Broad and strong memory CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nature. 2020;579:213–36.

91. Cheng Z, Zhou J, Wong BH-Y, Li C, Chan JF-W, Cheng Z-S, Yang D, Wang D, Lee AC-Y, Li C, et al. Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways. J Infect Dis. 2015;213:904–14.

92. Liu J, Li S, Liu J, Liang B, Wang X, Wang H, Li W, Tong Q, Yi J, Zhao L, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2-infected patients. medRxiv. 2020.2020.02.20.20203671.

93. Osborn M. Autopsy practice relating to possible cases of COVID-19 (2019-nCoV, novel coronavirus from China 2019/2020). Pathologists TRCo ed.; 2020.

94. Hanley B, Lucas SB, Youd E, Swift B, Osborn M. Autopsy in suspected COVID-19 cases. J Clin Pathol. 2020;73:239–42.

95. Ng DL, Al Hosani F, Keating MK, Gerber SI, Jones TL, Metcalfe MG, Tong S, Tao Y, Alami NN, Haynes LM, et al. Clinicalpathologic, immunohistochemical, and ultrastructural findings of a fatal case of middle east respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014. Am J Pathol. 2016;186:652–8.

96. Nahm A, Aghazadeh H, Nazari S, Ting A, Hodges J, McFarlane A, Kanji JN, Zelayas N, Damji KE, Solarte C. Keratoconjunctivitis as the initial medical presentation of the novel coronavirus disease 2019 (COVID-19). Can J Ophthalmol. 2020;55:e1:25–9.
156. Truenat™ Beta CoV (lab-based or near-POC). http://www.molbiol diag nostics.com/product_details.php?id=54.

157. QIAtat-Dx SARS-CoV-2. https://corporate.qiagen.com/newsroom/press-releases/2020/200331_fdna_eua.

158. cobas® SARS-CoV-2 test. https://diagnostics.roche.com/global/en/products/params/cobas-sars-cov-2-test.html.

159. Senteligo Covid-19 qRT PCR Detection Kit. https://www.eryigit.com.tr/en/coronavirus-detection-kit-2/.

160. VereCoV. https://diagnostics.roche.com/global/en/products/params/cobas-sars-cov-2-test.html.

161. QIAstat-Dx SARS-CoV-2. https://corporate.qiagen.com/newsroom/press-releases/2020/200331_fdna_eua.

162. ePlex® SARS-CoV-2 Test. http://ir.genmarkdx.com/news-releases/news-release-details/genmark-receives-fda-emergency-use-authorization-its-eplex-sars.

163. Accu-Tell COVID-19 IgG/IgM Rapid Test Cassette Specimen: Whole blood/Serum/Plasma. www.accubiootech.com/product-covid-19-igg-igm-rapid-test-cassette-(whole-blood-serum-plasma).html.

164. SARS-CoV-2 IgM/IgG antibody test kit (Colloidal Gold Method). http://www.biohit.cn/.

165. COVID-19 IgG/IgM Rapid Test. https://www.biomedomics.com/products/infectious-disease/covid-19-rt/.

166. Cellex qSARS-COV-2 IgG/IgM Rapid Test Specimen: whole blood/Serum/Plasma. https://cellexus.com/sporducts/?id=1256&t=44.

167. Human Anti-SARS-CoV-2 (Covid-19) IgG/IgM Rapid Test. https://www.krishgen.com/products.php?category=coronavirus-reagents-and-kits.

168. SARS-CoV-2 IgM/IgG Ab Rapid Test Specimen: WB/S/P. www.surebiotec h.com/rapid-test/coronavirus-covid-19-rapid-test/.

169. WHO. Draft landscape of COVID-19 candidate vaccines. Geneva: WHO; 2020.

170. PRE-VENT study in hospitalized patients with severe COVID-19 with or without cancer. https://clinicaltrials.gov/ct2/show/NCT04404361.

171. Full dose heparin vs. prophylactic or intermediate dose heparin in high risk COVID-19 patients. https://clinicaltrials.gov/ct2/show/NCT04401293.

172. Adaptive COVID-19 Treatment Trial 2 (ACTT-2). https://clinicaltrials.gov/ct2/show/NCT04401579.

173. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;105:949.

174. Gao J, Tian Z, Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Bsci Trends. 2020;14:72–3.

175. Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, Liao X, Gu Y, Cai Q, Yang Y, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering. 2020.

176. A randomized, open, controlled clinical study to evaluate the efficacy of ASC09F and ritonavir for 2019-nCoV pneumonia. https://clinicaltrials.gov/ct2/show/NCT04261270.

177. Anti-IL6 treatment of serious COVID-19 disease with threatening respiratory failure (TOCIVID). https://www.clinicaltrials.gov/ct2/show/NCT04322773.

178. A Study in patients with COVID-19 and respiratory distress not requiring mechanical ventilation, to compare Standard-of-care with anakinra and tocilizumab treatment. The Immunomodulation-CoV Assessment (ImmCoVA) Study. https://clinicaltrials.gov/ct2/show/NCT04412291.

179. Prophylactic ivermectin in COVID-19 contacts. https://clinicaltrials.gov/ct2/show/NCT04422561.

180. Nicolau DV, Bafadhel M. Inhaled corticosteroids in virus pandemics: a treatment for COVID-19? Lancet Respir Med. 2020;8:464–7.

181. Chen P, Nirula A, Heller B, Gottlieb RL, Boscia J, Morris J, Huhn G, Cardona J, Mocherla B, Stosor V, et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N Engl J Med. 2020.

182. NA-831, atazanavir and dexamethasone combination therapy for the treatment of COVID-19 infection (NATADEX). https://clinicaltrials.gov/ct2/show/NCT04435265.

183. Colchicine Coronavirus SARS-CoV2 Trial (COLCORONA) (COVID-19). https://clinicaltrials.gov/ct2/show/NCT04322662.

184. Randomised evaluation of COVID-19 therapy (RECOVERY). https://clinicaltrials.gov/ct2/show/study/NCT04381936.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.