Tumour necrosis as assessed with 18F-FDG PET is a potential prognostic marker in diffuse large B cell lymphoma independent of MYC rearrangements

Xaver U. Kahle, Menno Hovingh, Walter Noordzij, Annika Seitz, Arjan Diepstra, Lydia Visser, Anke van den Berg, Tom van Meerten, Gerwin Huls, Ronald Boellaard, Thomas C. Kwee, Marcel Nijland

Abstract

Objectives MYC gene rearrangements in diffuse large B cell lymphomas (DLBCLs) result in high proliferation rates and are associated with a poor prognosis. Strong proliferation is associated with high metabolic demand and tumour necrosis. The aim of this study was to investigate differences in the presence of necrosis and semiquantitative 18F-FDG PET metrics between DLBCL cases with or without a MYC rearrangement. The prognostic impact of necrosis and semiquantitative 18F-FDG PET parameters was investigated in an explorative survival analysis.

Methods Fluorescence in situ hybridisation analysis for MYC rearrangements, visual assessment, semiquantitative analysis of 18F-FDG PET scans and patient survival analysis were performed in 61 DLBCL patients, treated at a single referral hospital between 2008 and 2015.

Results Of 61 tumours, 21 (34%) had a MYC rearrangement (MYC+). MYC status was neither associated with the presence of necrosis on 18F-FDG PET scans (necrosis$^{\text{PET}}$; $p = 1.0$) nor associated with the investigated semiquantitative parameters maximum standard uptake value (SUV$_{\text{max}}$; $p = 0.43$), single highest SUV$_{\text{max}}$ ($p = 0.49$), metabolic active tumour volume (MATV; $p = 0.68$) or total lesion glycolysis (TLG; $p = 0.62$). A multivariate patient survival analysis of the entire cohort showed necrosis$^{\text{PET}}$ as an independent prognostic marker for disease-specific survival (DSS) (HR = 13.9; 95% CI 3.0–65; $p = 0.001$).

Conclusions MYC rearrangements in DLBCL have no influence on the visual parameter necrosis$^{\text{PET}}$ or the semi-quantitative parameters SUV$_{\text{max}}$, MATV and TLG. Irrespective of MYC rearrangements, necrosis$^{\text{PET}}$ is an independent, adverse prognostic factor for DSS.

Key Points

- Retrospective analysis indicates that MYC rearrangement is not associated with necrosis on 18F-FDG PET (necrosis$^{\text{PET}}$) scans or semiquantitative 18F-FDG PET parameters.
- Necrosis$^{\text{PET}}$ is a potential independent adverse prognostic factor for disease-specific survival in patients with DLBCL and is not influenced by the presence of MYC rearrangements.

Keywords Diffuse, large B cell, lymphoma • MYC oncogene • Necrosis • Fluorodeoxyglucose F18 • Positron emission tomography

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00330-019-06178-9) contains supplementary material, which is available to authorized users.
Abbreviations and acronyms

\(^{18}\text{F}-\text{FDG}\) 18F-fluorodeoxyglucose

B-NHL B cell non-Hodgkin lymphoma

CT Computed tomography

DLBCL Diffuse large B cell lymphoma

DSS Disease-specific survival

FISH Fluorescence in situ hybridisation

LDH Lactate dehydrogenase

MATV Metabolically active tumour volume (sum of all lesions within an individual patient)

NCCN-IPI National Comprehensive Cancer Network international prognostic index

necrosis\(^{\text{Hist}}\) Necrosis as assessed by histological scoring

necrosis\(^{\text{PET}}\) Necrosis as assessed by \(^{18}\text{F}-\text{FDG}\) PET

OS Overall survival

PET Positron emission tomography

PFS Progression-free survival

SUV Standard uptake value

SUV\(^{\text{max}}\) Highest SUV per voxel within 1 lymphoma lesion (reported here as the mean of SUV\(^{\text{max}}\) of all lesions within an individual patient)

SUV\(^{\text{max}}\) single highest Highest SUV\(^{\text{max}}\) of all lesions within an individual patient

TLG Total lesion glycolysis (sum of all lesions within an individual patient)

WHO World Health Organization.

Introduction

Diffuse large B cell lymphoma (DLBCL) accounts for 35% of all B cell non-Hodgkin lymphomas (B-NHL) [1]. Approximately 10–15% of DLBCL cases harbour a \(\text{MYC}\) gene rearrangement \((\text{MYC}^+\)\), as assessed by fluorescence in situ hybridisation (FISH) [2]. These lymphomas are characterised by a very high proliferation rate. Patients bearing a \(\text{MYC}^+\) lymphoma experience an aggressive clinical course and have a poor prognosis when treated with the standard regimen of rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone (R-CHOP) [3]. In 2017, the World Health Organization (WHO) established a new entity for \(\text{MYC}\) rearranged DLBCL, called ‘high-grade B-cell lymphoma with \(\text{MYC}\) and \(\text{BCL2}\) and/or \(\text{BCL6}\) rearrangements’ [1, 4].

\(\text{MYC}\) is an oncogenic transcription factor regulating a vast array of cellular processes and pathways [5, 6]. Tumour cells overexpressing \(\text{MYC}\) meet their high energy demands by increased glucose uptake, glycolysis, lactate production and amino acid consumption [7, 8]. However, unlike physiological tissues, cancer cells frequently have acquired resistance to apoptosis and cannot regulate their energy expenditure during metabolic stress, resulting in cell death via necrosis when nutrient supply is compromised [9–11].

In B-NHL patients, \(^{18}\text{F}-\text{FDG}\) PET/CT scan. Tumour responses were classified

Materials and methods

Study design and case selection

For this retrospective single-centre study, consecutive patients with newly diagnosed, histologically confirmed DLBCL between 2008 and 2015 were identified in the electronic healthcare database of the University Medical Center Groningen (UMCG), a reference centre for aggressive B cell lymphomas. Cases of primary cutaneous DLBCL, primary central nervous system lymphoma, primary mediastinal B cell lymphoma and immunodeficiency-associated lymphomas were excluded. The selection of cases for this study is summarised in Fig. 1. Patients were stratified according to the National Comprehensive Cancer Network international prognostic index (NCCN-IPI) [22]. End of treatment response was assessed by \(^{18}\text{F}-\text{FDG}\) PET/CT scan. Tumour responses were classified
according to Lugano criteria [12]. Follow-up was registered until early October 2017. According to Dutch regulations, no medical ethical committee approval was required for this retrospective, non-interventional study. A waiver was obtained from the medical ethics committee of the UMCG on November 13, 2018. The study utilised rest material from patients, the use of which is regulated under the code for good clinical practice in the Netherlands and does not require informed consent in accordance with Dutch regulations.

Pathology review

Pathology review was done using the 2008 WHO classification of haematopoietic and lymphoid tissues (AD) [23]. Histological scoring for necrosis (necrosisHist) was done by microscopic assessment of haematoxylin and eosin–stained slides. Only microscopic areas with definite histopathological signs of necrosis (i.e. karyolysis) were scored as positive for necrosisHist.

MYC fluorescence in situ hybridisation

For evaluation of a MYC rearrangement, formalin-fixed paraffin-embedded tissue blocks of primary tumour samples were used. Interphase fluorescence in situ hybridisation (FISH) was performed on 4-μm-thick whole tissue sections, using Vysis break apart probes (Abbot Technologies) and standard FISH protocols as previously described [24]. Researchers performing MYC FISH analyses were blinded for results from visual scoring, microscopic assessment of necrosis (necrosisHist) and clinical outcome.

18F-FDG PET imaging

All 18F-FDG PET scans were performed prior to therapy. Patients were allowed to continue all medication and fasted for at least 6 h before whole-body (from the skull vertex to mid-thigh level) three-dimensional PET images were acquired. This was done 60 min after intravenous administration of a standard dose of 3 MBq/kg (0.081 mCi/kg) bodyweight 18F-FDG on a Biograph mCT (Siemens Healthineers), according to the European Association of Nuclear Medicine (EANM) procedure guidelines for tumour imaging with FDG PET/CT (version 2.0) [25]. Acquisition was performed in seven bed positions of 2-min emission scans for patients 60–90 kg. Patients with body weight less than 60 kg and more than 90 kg body weight were scanned with 1 min and 3 min per bed position, respectively. Low-dose transmission CT was used for attenuation correction. Low-dose CT and 18F-FDG PET scans were automatically fused by the use of three-dimensional fusion software (Siemens Healthineers) with manual fine adjustments. Raw data were reconstructed through ultra-high definition (Siemens Healthineers).

Computed tomography

Diagnostic CTs were acquired via integrated 18F-FDG PET/CT scans according to the European Association of Nuclear Medicine (EANM) procedure guidelines for tumour imaging with FDG PET/CT (version 2.0) [25]. Bulky disease was defined as any nodal lymphoma lesion > 10 cm in coronal, axial or sagittal planes.

18F-FDG PET analysis

All 18F-FDG PET scans were visually assessed for the presence of tumour necrosis (necrosisPET) by an experienced reader (TCK), who was blinded to clinical, laboratory, biopsy and follow-up findings, as previously described [15]. Areas within any nodal or extranodal 18F-FDG PET–avid lymphomatous lesions that showed no 18F-FDG uptake were registered as having necrosisPET (Fig. 2); no specific visual scale was used. Semiquantitative analysis was performed using an in-house tool for quantitative 18F-FDG PET/CT analysis, as previously described [26–28]. This programme automatically preselects lesions using a SUVmax threshold of 4 and a metabolic volume threshold of 2.5 ml. Unwanted preselected FDG-avid regions, such as the bladder and brain, are removed by user interaction. Finally, remaining FDG-avid segmentations are processed.
using a background-corrected 50% of SUV peak region growing method, as described by Frings et al [26], to obtain the final tumour segmentations. In case obvious lymphoma lesions were not selected (n = 3), they were manually added after automatic tumour segmentation. From the final segmentation, the metabolic active tumour volume (MATV, in ml),

Table 1 Demographics and baseline disease characteristics of patients with diffuse large B cell lymphoma according to MYC status

	Total (n = 61)	MYC− (n = 40)	MYC+ (n = 21)	p value
Gender				
Male	36	24	12	1.0a
Female	25	16	9	
Age				
Median (range)	63 (26–91)	64 (26–91)	61 (30–79)	0.64b
Age ≤ 60 years	24	14	10	0.5a
Age > 60 years	37	26	11	
Stage				
I–II	22	15	7	0.97a
III–IV	39	25	14	
NCCN-IPI score				
0–3	30	22	8	0.32a
4–8	31	18	13	
Serum LDH				
Median (range)	282 (126–3037)	237 (126–1292)	381 (140–3037)	0.04b
Normal	29	22	7	0.18a
Elevated	32	18	14	
Treatment				
R-CHOP	56	37	19	0.36c
Intensive chemotherapy	3	1	2	
Palliative	2	2	0	

* Pearson’s chi-square test with Yates’ continuity correction
* Wilcoxon rank-sum test with continuity correction
* Fisher’s exact test for count data
total lesion glycolysis (TLG = MATV × SUV\text{mean}) and SUVs are derived for each lesion independently as well as summed over all lesions. Lesion selection and semiquantitative analysis was performed by MH under direct supervision of an experienced nuclear medicine physician (WN) and a nuclear physicist (RB). SUV\text{max} was defined as the highest SUV per voxel within one lymphomatous lesion. In this paper, SUV\text{max} is reported as the mean of SUV\text{max} across all lesions of an individual patient. SUV\text{max single highest} was defined as the highest SUV\text{max} of all lesions within an individual patient.

Statistical analysis

Comparison between continuous, non-normally distributed variables was estimated by Wilcoxon rank-sum test. Differences between two nominal variables were evaluated using Pearson’s chi-square or Fisher’s exact test (for expected groups sizes ≤ 5). For exploratory survival analysis, the primary endpoints were overall survival (OS), progression-free survival (PFS) and disease-specific survival (DSS). OS was defined as the time from diagnosis until death (from any cause). PFS was defined as the time from diagnosis until death or relapse or progression [12]. DSS was defined as the time from diagnosis until death from DLBCL. Surviving patients were censored at the last date of follow-up. Survival curves were estimated according to the Kaplan-Meier method. Cox regression was used for univariate and multivariate survival analyses and results were reported as hazard ratio (HR), 95% confidence interval (CI) and p value based on statistical Wald test. A two-tailed p value of less than 0.05 indicated statistical significance. All analyses were performed using R version 3.4.1 and R-studio version 1.0.153 software.

Results

Patient characteristics

Characteristics of the entire cohort (61 patients) are summarised in Table 1. A total of 21 patients (34%) had a DLBCL harbouring a MYC rearrangement. MYC rearrangement was observed in 11 patients (21.6%) primarily seen in the UMCG (n = 51) and 10 patients (100%) referred from affiliated hospitals (n = 10). MYC groups did not differ with regard to baseline characteristics (Table 1) except for serum LDH levels, which were higher in the MYC-positive group (p = 0.036) than in cases without MYC rearrangement.

MYC status, necrosis and semiquantitative 18F-FDG PET parameters

necrosisPET was observed in 15 patients (25%). The relationships between MYC status and necrosisPET, necrosisHist and semiquantitative 18F-FDG PET parameters are summarised in Table 2. MYC+ cases did not differ from cases without

Table 2	Necrosis and semiquantitative 18F-FDG PET parameters according to MYC status						
	MYC status						
	Total (n = 61)	MYC− (n = 40)	MYC+ (n = 21)	p value			
	No.	%	No.	%	No.	%	
necrosisPET Absent	46	75.4	30	75.0	16	76.2	1.0c
	Present	15	24.6	10	25.0	5	23.8
necrosisHist Absent	42	68.9	28	70.0	14	66.7	0.52c
	Present	16	26.2	11	27.5	5	23.8
	Not available	3	4.9	1	2.5	2	9.5
SUV\text{max} Median (range)	13.0 (3.0–38.4)	13.1 (3.0–33.9)	10.4 (5.8–38.4)	0.43b			
SUV\text{max single highest} Median (range)	18.8 (3.8–45.8)	19.7 (3.8–39.0)	14.2 (5.8–45.8)	0.49b			
MATV Median (range)	154.7 (1–3774)	156.0 (1–2800)	154.7 (7–3774)	0.68b			
TLG Median (range)	1387.4 (3–29,462)	1632.8 (3–29,462)	1147.1 (47–20,065)	0.62b			

b Wilcoxon rank-sum test
c Fisher’s exact test for count data
MYC rearrangement with regard to necrosisPET \((p = 1.0)\) or necrosisHist \((p = 0.52)\).

When the semiquantitative parameters SUV\textsubscript{max}, SUV\textsubscript{max} single highest, MATV and TLG were studied, no difference between MYC groups was observed. There was no relation between the presence of necrosisPET and necrosisHist \((p = 0.1)\); Supplementary Figure 1).

NecrosisPET and tumour volume

In 14 of 15 necrosisPET cases, necrosis was observed in the largest lesion. In comparison, the largest individual lesion of cases without necrosisPET had a significantly lower MATV \((p = 0.0006)\) and SUV\textsubscript{max} \((p = 0.02)\), irrespective of MYC status (Supplementary Figure 2). Bulky disease was observed in 24 patients (39%). Bulky disease was significantly correlated with necrosisPET \((p = 0.005)\), but not with MYC status \((p = 0.9)\) or necrosisHist \((p = 0.8)\). Extranodal growth of lesions was not significantly correlated with the presence of necrosisPET \((p = 0.26)\).

Survival analysis

The median follow-up was 34 months. At 5 years, OS was 67\% (95\% CI 54–83\%), PFS was 65\% (95\% CI 53–81\%) and DSS was 81\% (95\% CI 70–93\%) for the entire cohort. Of the seven deaths unrelated to lymphoma, two were caused by metastatic adenocarcinoma, two were due to cardiac failure, one was due to acute on chronic renal failure and there were two cases of sudden deaths in patients in complete remission of DLBCL.

Results of the univariate Cox regression analysis (HR, 95\% CI and \(p\) value) are shown in Table 3. The univariate analysis for OS identified MYC, NCCN-IPI and SUV\textsubscript{max} single highest as associated factors. In univariate analysis for PFS, only NCCN-IPI was associated with outcome. In the univariate analysis for DSS MYC, NCCN-IPI, SUV\textsubscript{max} single highest and necrosisPET were associated. Both SUV\textsubscript{max} and SUV\textsubscript{max} single highest showed negative beta-coefficients throughout the univariate survival analysis.

For multivariate analysis, the parameters MYC, NCCN-IPI, necrosisPET and SUV\textsubscript{max} single highest were used due to their
prognostic impact on lymphoma-related deaths in univariate analysis (Table 4). NecrosisPET did not contribute to the prognostic model for OS and PFS. However, for DSS, necrosisPET had a large adverse prognostic impact and proved to be independent (HR = 13.9; 95% CI 3.0–65; \(p = 0.001\)). The Kaplan-Meier analysis for DSS showed no events during the 5-year follow-up period for patients who neither had MYC rearrangements nor had necrosisPET (\(n = 30\)) (Fig. 3).
Discussion

Based on the current investigation, there is no association of MYC rearrangements with the presence of tumour necrosis assessed by \(^{18}\)F-FDG PET or the semiquantitative \(^{18}\)F-FDG PET parameters SUV\(_{\text{max}}\), SUV\(_{\text{max single highest}}\), MATV and TLG. We therefore rejected the hypothesis that metabolic changes induced by MYC rearrangements might increase the incidence of necrosis\(_{\text{PET}}\) or alter the profile of semiquantitative parameters in DLBCL. Necrosis\(_{\text{PET}}\) was significantly associated with the MATV of the single largest tumour lesion. The SUV\(_{\text{max}}\) of the single largest necrosis\(_{\text{PET}}\) lesion was significantly higher compared with the lesions without necrosis\(_{\text{PET}}\). Both of these observations support the notion of larger, more metabolically active tumours being more susceptible to necrosis, irrespective of MYC status.

Our analyses demonstrate that necrosis\(_{\text{PET}}\) had a significant impact on DSS, thereby substantiating previous findings about the prognostic value of this visual marker [15]. The presented data show that the presence of MYC rearrangement, in itself a powerful predictive factor, is not related to necrosis\(_{\text{PET}}\). This allows for integration of MYC status and necrosis\(_{\text{PET}}\) into a prognostic model for DLBCL. When combined with MYC, NCCN-IPI and SUV\(_{\text{max single highest}}\) in the multivariate analysis, necrosis\(_{\text{PET}}\) had the highest significance in predicting death due to lymphoma and a higher prognostic impact than NCCN-IPI, the currently most accurate prognostic index for DLBCL [22]. Thus, our results support the potential additive value of necrosis\(_{\text{PET}}\) as an important biomarker for risk stratification in the clinical setting [14, 15].

The lack of a relationship between MYC rearrangements and semiquantitative \(^{18}\)F-FDG PET metrics might have several causes. First, proliferation in DLBCL could be independent of MYC rearrangement. This would only partially explain the lack of relationship, since the median proliferation index
(Ki-67 staining) of MYC+ DLBCL is universally high (>90%) in contrast to the much broader range observed in MYC− DLBCL [29]. Second, overexpression of MYC via other mechanisms such as epigenetic pathways might explain increased glucose uptake in MYC FISH-negative DLBCL. This is supported by studies showing high MYC protein expression in 19–40% of DLBCL cases [30–32]. Cottereau et al previously reported a lack of relation between MYC protein expression and 18F-FDG PET parameters in DLBCL [19]. However, FISH analysis, which is considered the gold standard examination for MYC rearrangements [33–35], was not performed. Third, high metabolic activity might be induced by alternative changes in metabolic drivers, such as mutations in PTEN (observed in approximately 15% of DLBCL) that lead to activation of the PI3K/AKT/mTOR pathway [29, 36–38].

Intriguingly, the univariate survival analysis indicated a protective effect for cases with SUVmax and SUVmax single highest measurements above the median. Studies on the prognostic impact of these variables are conflicting [20, 39–41]. Gallicchio et al published results similar to ours, alluding to lymphomas with high metabolic activity being more responsive to chemotherapy [20]. In light of conflicting data on the prognostic value of semiquantitative 18F-FDG PET parameters [19–21, 42, 43], our results underline the need for larger, prospective studies with external validation cohorts [42].

This study has several limitations. First there is a referral bias with a high incidence of MYC+ cases (34%) in our dataset. The enrichment in our study can largely be explained by the fact that, as a reference centre, aggressive and MYC+ DLBCL cases (including suspected cases of Burkitt lymphoma which subsequently prove to be MYC+ DLBCL) are referred to our site. Second, the total number of cases with necrosisPET is small, which increases the risk of a sampling error. Nevertheless, the incidence of necrosisPET in our study is in line with previous studies [13–15]. Furthermore, patients were included irrespective of their comorbidities. Factors like differences in treatment regimen and non-cancer-related deaths might thus have a large impact on the statistical analysis. This is supported by the difference between DSS and OS. Despite its limitations, the prognostic potential of MYC status and NCCN-IPI was reproduced in this dataset, making it a representative set of DLBCL cases. Larger prospective studies are warranted to validate the prognostic value of necrosisPET.

Conclusion

In this comprehensive analysis of MYC rearranged DLBCL, we showed that a fundamental pathological change such as MYC rearrangement, which by itself has a significant impact on prognosis, has no influence on the presence of necrosisPET or semiquantitative 18F-FDG PET metrics. An explorative survival analysis suggests that the presence of necrosis determined by visual assessment of 18F-FDG PET scans is an independent predictor of disease-specific survival in patients with DLBCL, regardless of MYC status.

Funding The authors state that this work has not received any funding.

Compliance with ethical standards

Guarantor The scientific guarantor of this publication is M. Nijland.

Conflict of interest The authors declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry No complex statistical methods were necessary for this paper.

Informed consent Written informed consent was not required for this study. This study utilised rest material from patients, the use of which is regulated under the code for good clinical practice in the Netherlands and does not require informed consent in accordance with Dutch regulations.

Ethical approval According to Dutch regulations, no medical ethical committee approval was required for this retrospective, observational study. A waiver was obtained from the medical ethics committee of the UMCG on November 13, 2018.

Methodology This is a retrospective observational study performed at one institution.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. International Agency for Research on Cancer (2017) WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th edition 2017. WHO, Lyon
2. Aukema SM, Siebert R, Schuuring E et al (2011) Double-hit B-cell lymphomas. Blood 117:2319–2331. https://doi.org/10.1182/blood
3. Barrans S, Crouch S, Smith A et al (2010) Rearrangement of MYC in DLBCL is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab. J Clin Oncol 28: 3360–3365. https://doi.org/10.1200/JCO.2009.26.3947
4. Jiang M, Bennani NN, Feldman AL (2017) Lymphoma classification update: B-cell non-Hodgkin lymphomas. Expert Rev Hematol 10:405–415. https://doi.org/10.1080/17474086.2017.1318053
5. Zeller KI, Jegga AG, Aronow BJ et al (2003) An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol 4:R69. https://doi.org/10.1186/gb-2003-4-10-r69
6. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20. https://doi.org/10.1016/j.cmet.2007.10.002
7. Miller DM, Thomas SD, Islam A et al (2012) c-Myc and cancer metabolism. Clin Cancer Res 18:5546–5553. https://doi.org/10.1158/1078-0432.CCR-12-0977
8. Dang CV, Le A, Gao P (2009) MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 15: 6479–6483. https://doi.org/10.1158/1078-0432.CCR-09-0889
9. Jin S, DiPaola RS, Mathew R, White E (2007) Metabolic catastrophe as a means to cancer cell death. J Cell Sci 120:379–383. https://doi.org/10.1242/jcs.03349
10. Jin S, White E (2007) Role of autophagy in cancer: management of metabolic stress. Autophagy 3:28–31
11. Proskuryakov SY, Gabai VL (2010) Mechanism of tumor cell necrosis. Curr Pharm Des 16:56–68
12. Cheson BD, Fisher RI, Barrington SF et al (2014) Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 32: 3059–3068. https://doi.org/10.1200/JCO.2013.54.8800
13. Song MK, Chung JS, Shin DY et al (2017) Tumor necrosis could reflect advanced disease status in patients with diffuse large B cell lymphoma treated with R-CHOP therapy. Ann Hematol 96:17–23. https://doi.org/10.1007/s00271-016-2822-8
14. Adams HJA, de Klerk JMH, Fijnheer R et al (2015) Prognostic value of tumor necrosis at CT in diffuse large B-cell lymphoma. Eur J Radiol 84:372–377. https://doi.org/10.1016/j.ejrad.2014.12.009
15. Adams HJA, de Klerk JMH, Fijnheer R et al (2016) Tumor necrosis at FDG-PET is an independent predictor of outcome in diffuse large B-cell lymphoma. Eur J Radiol 85:304–309. https://doi.org/10.1016/j.ejrad.2015.09.016
16. Barrington SF, Kluge R (2017) FDG PET for therapy monitoring in Hodgkin and non-Hodgkin lymphomas. Eur J Nucl Med Mol Imaging 44:97–110. https://doi.org/10.1007/s00259-017-3690-8
17. Xie M, Wu K, Liu Y et al (2015) Predictive value of F-18 FDG PET/CT quantization parameters in diffuse large B cell lymphoma: a meta-analysis with 702 participants. Med Oncol 32:446. https://doi.org/10.1007/s12032-014-0446-1
18. Dührsen U, Müller S, Hertenstein B et al (2018) Positron emission tomography-guided therapy of aggressive non-Hodgkin lymphomas (PETAL): a multicenter, randomized phase III trial. J Clin Oncol 36:2024–2034. https://doi.org/10.1200/JCO
19. Cotterman A-S, Lamic H, Mareschal S et al (2016) Molecular profile and FDG-PET/CT total metabolic tumor volume improve risk classification at diagnosis for patients with diffuse large B-cell lymphoma. Clin Cancer Res 22:3801–3809. https://doi.org/10.1158/1078-0432.CCR-15-2825
20. Gallicchio R, Mansuetto G, Simeon V et al (2014) F-18 FDG PET/CT quantization parameters as predictors of outcome in patients with diffuse large B-cell lymphoma. Eur J Haematol 92:382–389. https://doi.org/10.1111/ejh.12268
21. Adams HJA, de Klerk JMH, Fijnheer R et al (2015) Prognostic superiority of the National Comprehensive Cancer Network International Prognostic Index over pretreatment whole-body volumetric-metabolic FDG-PET/CT metrics in diffuse large B-cell lymphoma. Eur J Haematol 94:532–539. https://doi.org/10.1111/ejh.12467
22. Zhou Z, Sehn LH, Rademaker AW et al (2014) An enhanced International Prognostic Index (NCCN-IP) for patients with diffuse large B-cell lymphoma treated in the rituximab era. Blood 123: 837–842. https://doi.org/10.1182/blood
23. International Agency for Research on Cancer (2008) WHO classification of tumours of haematopoietic and lymphoid tissues. 4th edition 2008 WHO, Lyon
24. van der Wekken AJ, Pelgrim R, ‘t Hart N et al (2017) Dichotomous ALK-IHC is a better predictor for ALK inhibition outcome than traditional ALK-FISH in advanced non-small cell lung cancer. Clin Cancer Res 23:4251–4258. https://doi.org/10.1158/1078-0432.CCR-16-1631
25. Boelhaar R, Delgado-Bolton R, Oyen WJG et al (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 42:328–354. https://doi.org/10.1007/s00259-014-2961-x
26. Frings V, van Velden FHP, Velasquez LM et al (2014) Repeatability of metabolically active tumor volume measurements with FDG PET/CT in advanced gastrointestinal malignancies: a multicenter study. Radiology 273:539–548. https://doi.org/10.1148/radiol.14132807
27. Cheesbourn P, van Velden FH, Yaqub M et al (2011) Measurement of metabolic tumor volume: static versus dynamic FDG scans. EJNMMI Res 1:35. https://doi.org/10.1186/2191-219X-1-35
28. Cheesbourn P, Boelhaar R, de Ruyscher D et al (2012) Assessment of tumour size in PET/CT lung cancer studies: PET and CT-based methods compared to pathology. EJNMMI Res 2:56. https://doi.org/10.1186/2191-219X-2-56
29. Agarwal R, Lade S, Liew D et al (2016) Role of immunohistochemistry in the era of genetic testing in MYC-positive aggressive B-cell lymphomas: a study of 209 cases. J Clin Pathol 69:266–270. https://doi.org/10.11136/ejclpath-2015-203002
30. Johnson NA, Slack GW, Savage KJ et al (2012) Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol 30:3452–3459. https://doi.org/10.1200/JCO.2011.40.0985
31. Horn H, Ziepert M, Becher C et al (2013) MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood 121:2253–2263. https://doi.org/10.1182/blood-2012-06
32. Valera A, Lopez-Guillermo A, Cardesa-Salzmann T et al (2013) MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunotherapy. Haematologica 98:1554–1562. https://doi.org/10.3324/haematol.2013.066173
33. Tilly H, Gomes Da Silva M, Vitolo U et al (2015) Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 26(Suppl. 5):116–125. https://doi.org/10.1093/annonc/mdv304
34. Nguyen L, Papenhausen P, Shao H (2017) The role of c-MYC in B-cell lymphomas: diagnostic and molecular aspects. Genes (Basel) 8: E116. https://doi.org/10.3390/genes8040116
35. Sesques P, Johnson NA (2017) Approach to the diagnosis and treatment of high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements. Blood 129:280–288. https://doi.org/10.1182/blood-2016-02
36. Tsukamoto N, Kojima M, Hasegawa M et al (2007) The usefulness of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and a comparison of 18F-FDG-PET with 68gallium scintigraphy in the evaluation of lymphoma: relation to histologic subtypes based on the World Health Organization classification. Cancer 110:652–659. https://doi.org/10.1002/cncr.22807
37. Frick M, Dößken B, Lenz G (2011) The molecular biology of diffuse large B-cell lymphoma. Ther Adv Hematol 2:369–379. https://doi.org/10.1177/2040620711419901
38. Barrington SF, Mikhaeel NG, Kostakoglu L et al (2014) Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol 32:3048–3058. https://doi.org/10.1200/JCO.2013.53.5229
39. Chihara D, Oki Y, Onoda H et al (2011) High maximum standard uptake value (SUVmax) on PET scan is associated with shorter survival in patients with diffuse large B cell lymphoma. Int J Hematol 93:502–508. https://doi.org/10.1007/s12185-011-0822-y
40. Park S, Moon SH, Park LC et al (2012) The impact of baseline and interim PET/CT parameters on clinical outcome in patients with
diffuse large B cell lymphoma. Am J Hematol 87:937–940. https://doi.org/10.1002/ajh.23267

41. Miyazaki Y, Nawa Y, Miyagawa M et al (2013) Maximum standard uptake value of 18F-fluorodeoxyglucose positron emission tomography is a prognostic factor for progression-free survival of newly diagnosed patients with diffuse large B cell lymphoma. Ann Hematol 92:239–244. https://doi.org/10.1007/s00277-012-1602-3

42. Schröder H, Moskowitz C (2016) Metabolic tumor volume in lymphoma: hype or hope? J Clin Oncol 34:3591–3594

43. Schöder H, Zelenetz AD, Hamlin P et al (2016) Prospective study of 3'-deoxy-3',18F-fluorothymidine PET for early interim response assessment in advanced-stage B-cell lymphoma. J Nucl Med 57:728–734. https://doi.org/10.2967/jnumed.115.166769

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.