Review Article

Recurrent liponeurocytoma: A case report and systematic review of the literature

Darsh S. Shah1,2,3, Himanshu Sharma3, Prem Patel4, Arya Shetty5, Collin William English2,3, J. Clay Goodman5, Ashwin Viswanathan1, Akash J. Patel2,3,6

1Department of Neurosurgery, Dell Medical School, Austin, 2Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 3Department of Neurosurgery, Baylor College of Medicine, Houston, 4Department of Neurosurgery, University of Texas Southwestern, Dallas, 5Department of Pathology, Baylor College of Medicine, 6Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States.

E-mail: Darsh S. Shah - darsh.shah@utexas.edu; Himanshu Sharma - himanshu.sharma@bcm.edu; Prem Patel - prem.patel@utsouthwestern.edu; Arya Shetty -arya.shetty@bcm.edu; Collin William English - collin/english@bcm.edu; J. Clay Goodman - jgoodman@bcm.edu; Ashwin Viswanathan - ashwinv@bcm.edu; *Akash J. Patel - akash.patel@bcm.edu

ABSTRACT

Background: Liponeurocytomas are rare neurocytic neoplasms that most often arise in the posterior fossa and affect individuals in the third and fifth decades of life. Most reported cases of this unique tumor in the literature have described a favorable clinical prognosis without recurrence. However, increasing reports of recurrent cases prompted the World Health Organization, in 2016, to recategorize the tumor from Grade I to the less favorable Grade II classification. We conducted a systematic review to identify recurrent cases of this unique tumor and to summarize differences between the primary and recurrent cases of liponeurocytoma.

Methods: A systematic review exploring recurrent liponeurocytoma cases was conducted by searching the PubMed, Google Scholar, and Scopus databases for articles in English. Abstracts from articles were read and selected for full-text review according to a priori criteria. Relevant full-text articles were analyzed for symptoms, imaging, location, histological, pathological, treatment, and recurrence-free time between the primary and recurrent cases.

Results: Of 4392 articles, 15 articles accounting for 18 patients were included (level of evidence: IV) in the study. Recurrence-free time decreased from an average of 82 months between the primary tumor resection to first recurrence to 31.3 months between the first and second recurrence. Recurrent tumors demonstrated increased pleomorphic neural cells, necrosis, vascular proliferation, and MIB-1 index when compared to the primary tumor. Several cases also demonstrated decreased lipidizing components when compared to the primary tumor, further indicating increased dedifferentiation. The primary treatment for this tumor was surgical resection with occasional adjunctive radiotherapy.

Conclusion: Recurrent cases of liponeurocytoma have features of increased malignant proliferation compared to the primary cases. The standard treatment for these primary and recurrent tumors is gross total resection. The role of adjunctive radiotherapy remains a matter of debate.

Keywords: Liponeurocytoma, Neurocytic neoplasm, Recurrent, Systematic review

INTRODUCTION

Liponeurocytomas are rare and slow-growing tumors of neuroectodermal origin first described by Bechtel et al. in 1978 who, on histological examination, reported mixed mesenchymal and neuroectodermal differentiation. Given this juxtaposition of features, this tumor has...
often been mistaken for several other CNS tumors, most prominently, medulloblastoma. Prior reports have described liponeurocytomas as “lipomatous or lipidized medulloblastoma,” “medullocytoma,” and “lipomatous glioneurocytoma.”

In response to increasing reports of this unique pathology, in 2000, the World Health Organization (WHO) described liponeurocytoma as a separate mixed neuronal and glial tumor and categorized it as WHO Grade I, reflecting its favorable prognosis. However, as reports of recurrence after resection mounted, in 2016, the tumor was recategorized as the WHO Grade II.

Over 80 cases of liponeurocytomas have been reported in the literature. Of those, 18 cases demonstrate recurrence following resection of the primary tumor. Only seven cases thus far have reported a second tumor recurrence.

Here, we report a case of liponeurocytoma which recurred following two gross total resections (GTRs), along with a review of the 18 previously reported cases of recurrent liponeurocytoma with the hope of improving understanding of histopathological changes that occur with recurrence as well as guiding treatment and surgical decision-making in the treatment of this rare but intransigent entity.

MATERIALS AND METHODS

Case description

A 55-year-old man with a history of a left cerebellar liponeurocytoma resected at an outside facility 9 years prior was subsequently lost to follow-up. He presented to our institution's emergency center with 2 months of severe bifrontal and occipital headaches as well as loss of balance with a predilection to falling toward his left. The patient's physical examination was notable for mild dysmetria on finger-to-nose test (L>R) as well as mild ataxia with heel to shin (L>R).

Magnetic resonance imaging (MRI) revealed a mixed solid and cystic mass in the left cerebellum measuring 4.4 × 2.6 × 3.2 cm with surrounding vasogenic edema and associated mass effect with partial effacement of the fourth ventricle. The mass was T1 iso-to-hypointense and heterogeneously hyperintense on T2. Given the patient's neurologic decline, severe headaches, and radiographic findings of partial effacement of the fourth ventricle, the patient was offered surgical resection. A left retrosigmoid craniotomy was performed and extended to the sigmoid and transverse sinuses. The tumor was identified at the pial surface of the cerebellum and subsequently debulked internally. GTR was

Figure 1: Magnetic resonance imaging demonstrates (a-d) presumptive recurrent liponeurocytoma (white arrow) as a heterogeneous solid and cystic mass in the left cerebellum abutting the left sigmoid sinus. (a-c) On axial, coronal, and sagittal T1-weighted imaging the lesion was isointense to the cortex with areas of hypointensity (not shown) with heterogeneous enhancement. The tumor was well marginated with minimal edema and without obstructive hydrocephalus. (d) Axial T2-weighted imaging shows heterogeneous hyperintensity of the tumor. Postoperative T1 axial, coronal, and sagittal (e-g); and T2 axial (h) images show complete resection of the mass.
achieved. The patient tolerated the procedure well and had an unremarkable postoperative course. At a 2-week follow-up, the patient had recovered well with normalization of finger-to-nose and heel-to-shin tests, though he did have a Romberg test notable for mild left-sided sway.

Pathologic analysis revealed monotonous neurocyte-like cell proliferation, vague rosetting, and focal vascular proliferation. Multifocal fat droplets with adipocyte formation were also seen. No necrosis or mitotic activity was identified [Figure 2]. The tumor stained positive for S100, CD56, and synaptophysin. Immunoperoxidase stains for p53, EMA, GFAP, and IDH-1, on the other hand, were negative in the tumor. MIB-1 proliferation index was 2.8%.

Three years postoperatively, routine surveillance MRI revealed a recurrent tumor measuring 2.1 × 2.0 × 2.9 cm in the left cerebellar hemisphere accompanied with mass effect on the left inferior sigmoid sinus, with associated loss of flow void in the distal left transverse sinus, proximal sigmoid sinus, and left jugular bulb. The mass was hyperintense on T1 and isointense on T2 [Figure 3]. On further questioning, the patient reported severe headaches, intermittent diplopia, neck pain, and difficulty maintaining balance. Physical examination revealed no focal neurologic deficits, however.

Given that the patient was symptomatic, the patient was once again offered surgical resection. He underwent a redo left retrosigmoid craniotomy for resection of his tumor. At surgery, we found a largely well-encapsulated tumor. The tumor was initially internally debulked and then removed in piecemeal fashion. The patient had an unremarkable postoperative period. Postoperative MRI showed no evidence of residual tumor.

Pathologic analysis of the recurrent tumor demonstrated reduced lipomatous components compared to the prior pathology. Moreover, focal necrosis of the tumor, increased vascular proliferation, and increased cellularity were all noted on these tissue specimens, and the MIB-1 proliferation index had increased to 7.4%. Immunohistochemical marker phenotype remained unchanged [Figure 4]. On a 2-week

Figure 2: Histopathologic slides of the first recurrent liponeurocytoma. (a) Low magnification of the specimen shows large multifocal fat droplets intermixed with neurocytic cells and focal vascular proliferation. (b) High magnification shows detail of the monotonous nature of the neurocytic cells.

Figure 3: Magnetic resonance imaging (MRI) demonstrates (a-d) recurrence of the liponeurocytoma (white arrow) occupying the left cerebellum. (a-c) On axial, coronal, and sagittal T1-weighted imaging, the lesion was hyperintense compared with the cortex. The tumor was well marginated without edema or obstructive hydrocephalus. (d) Axial T2-weighted imaging of the tumor is isointense to the cortex (not shown), with increased heterogeneous enhancement as compared to the initial recurrence. Postoperative T1 axial, coronal, and sagittal (e-g); and T2 axial (h) MRI images demonstrate no radiographic evidence of residual disease.
follow-up, the patient has continued to do well with no focal deficits noted on the physical examination.

Literature search

We performed a systematic review of recurrent liponeurocytoma following the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines [Figure 5]. On November 3, 2021, the PubMed MEDLINE (National Library of Medicine), Scopus (Elsevier), and Google Scholar (Google) databases were queried for relevant articles by key words “liponeurocytoma,” “neurolipocytoma,” “lipomatous medulloblastoma,” “lipidized medulloblastoma,” “medullocytoma,” and “lipomatous glioneurocytoma.” These key words were combined with “recurrent,” “cerebellar,” and “central” using the “AND” operator. We did not restrict our search based on date of publication, article type, or language.

Duplicated records were excluded once the search was completed. Studies were subsequently screened based on title and abstract. The remaining articles were screened by a full-text review for final inclusion. Studies were selected for final review based on the following inclusion criteria: case report or peer-reviewed original research detailing a cohort of patients who underwent treatment for liponeurocytoma more than once (demonstrating recurrence), English language, and full-text availability. Studies other than full-length articles such as abstracts, posters, and editorials were excluded from the study. Two reviewers (D.S. and P.P) independently screened all articles and disagreements were reconciled by discussion.

RESULTS

Our literature search identified 18 previously reported cases of recurrent liponeurocytoma [Table 1]. There was a slight male predominance (55.5%). Age at which the primary tumor was diagnosed ranged from 4 to 74 years with an average age of 46 years. The most common location for the primary tumor was the cerebellum (13 cases or 72.2%) followed by the lateral and fourth ventricles (two cases or 11.1% each). One case was reported in the frontal lobe. Given the predominance of the cerebellum as the site for tumor localization, the most reported presenting symptoms of the primary and recurrent tumors included headaches, gait disturbance, vertigo, and difficulty with ambulation. GTR of the primary tumor was performed in 15 cases (83.3%) and STR was performed in 3 cases (16.7%). Two patients with the primary tumors underwent postoperative radiation therapy.

The time between the primary tumor removal and detection of recurrence ranged from 8 months to 15 years with an average time for recurrence of 82 months. GTR of the recurrent tumor was performed in 13 cases (72.2%) and STR was performed in 5 cases (27.8%). Radiotherapy was employed in three cases for the treatment of the recurrent tumor. Seven of the previously reported patients, like our patient, experienced a second recurrence of their liponeurocytoma. Four of these patients had undergone complete resection of the first recurrence; three had undergone STR of the first recurrence. A second recurrence was not seen in patients who had been treated with radiotherapy.

The time between the first and second recurrence ranged from 3 months to 5 years with an average time for recurrence of 31.3 months. Five patients (71.4%) with a second recurrence were treated with a GTR of the tumor, 1 patient (14.3%) was treated with a STR supplemented with a standard medulloblastoma chemotherapy regimen, and 1 (14.3%) patient was treated with Gamma-Knife surgery. No more than 2 recurrences of the tumor have been reported in the literature.

Histological examination of the tumor was, for the most part, consistent between the primary tumor and the recurrent tumors. In six recurrent tumors (three from the first recurrence and three from the second recurrence),

![Figure 4: Histopathologic slides of the second recurrent liponeurocytoma (a) show small, microscopic collections of fat with increased vascularity and cellularity compared to the first recurrent tumor. (b) Small tumor cells with mixed lipomatous differentiated neoplastic cells express synaptophysin. (c) Axons of the surrounding central nervous system tissue express neurofilament. (d) The Ki-67 proliferation index (as determined by MIB-1 staining) is 7.4%.]
histological examination showed increased pleomorphic neural cells and decreased lipidized areas when compared to the primary tumor. In three recurrent tumors (one from the first recurrence and two from the second recurrence), histological examination showed increased lipidized areas when compared to the primary tumor. No necrosis or vascular proliferation was seen in the primary tumor. Necrosis and vascular proliferation were increased in six recurrent tumors (five from the first recurrence and one from the second recurrence). Increased mitosis from the primary tumor was described in five recurrent tumors (three from the first recurrence and two from the second recurrence). The Ki-67/MIB-1 proliferation index was described in 12 primary tumor cases with a mean of 5.08%. The Ki-67/MIB-1 proliferation index was reported after the first tumor recurrence in 10 cases with a mean of 9.08%. The Ki-67/MIB-1 proliferation index was reported after the second tumor recurrence in four cases with a mean of 8.25%.

DISCUSSION

Liponeurocytomas are rare neurocytic neoplasms that most frequently arise in the posterior fossa and affect individuals in the third and fifth decades of life, and mostly demonstrate favorable clinical prognosis. However, due to increased evidence of recurrent cases, the WHO, in 2016, updated the tumor from a Grade I classification to a Grade II classification. In 2018, Gembruch et al. completed a systematic review of all liponeurocytomas, including recurrent cases, reported in the literature. We report an additional case and provide a more focused look at the radiological and histological differences between the primary and recurrent tumors. We also seek to highlight key differences between singly and multiply recurrent cases to provide guidance in the identification of and treatment approach for more aggressive variants of liponeurocytoma.
Authors	Year	Patients	Sex	Age (years)	Location	Sx	Rx	Surgery	Imaging	Size	Histology	Pathology	IHC	Tx	Reference		
Shah et al	1999	1	M	37	Left CPA	Headache and gait disturbance, left-sided hearing loss, nystagmus, dysarthria, and Romberg's sign	GTR	NA	NA	Hyperintense lesion on T1 MRI	6 cm	Small, poorly differentiated cells with hyperchromatic nuclei, numerous oligodendrocyte-like perinuclear halo, lipid-filled cells scattered in clusters throughout the tumor, mitosis present (3 per 10 HPF), increased lipomatous proliferation, and necrosis. MIB-1 = 15%	Synaptophysin+, MAP2C+, S100+, GFAP+	GTR	STR	11	
Giangaspero et al	2001	1	M	36	Left frontal lobe	Headaches, vertex, gait disturbance, and left-sided hearing loss	STR	GTR	NA	Hyperintense lesion on T1 MRI	3 cm	Small poorly differentiated closely packed cells with hyperchromatic nuclei, numerous oligodendrocyte-like perinuclear halo, lipid-filled cells intermingled with tumor cells, occasional mitosis, absent vascular proliferation and necrosis. MIB-1 < 1%	Synaptophysin+, MAP−2+, GFAP+, vimentin+, S-100+	GTR	STR	1	
Soylemezoglu et al	2001	1	F	51	Right cerebellar	Headaches, vomiting, difficulty walking, decreased memory, and cold sensation in the right arm and leg	GTR	NA	NA	Enhancing lesion on CT scan	12 cm	Enhancing lesion on CT scan	Similar histological examination increased	MIB-1 < 3%	Same IHC	46	
Scheithauer et al	2003	1	M	53	Left-sided hearing loss, nystagmus, and vertigo, left-sided hearing loss, nystagmus, and Romberg's sign	GTR	NA	NA	Enhancing lesion on CT scan	12 cm	Enhancing lesion on CT scan	Increased lipomatous proliferation and necrosis. MIB-1 < 3% Same IHC	NSE+, GFAP+, S-100−, S-100+, GFAP−	GTR	STR+Radiation	54	
Jenkinson et al	2005	1	M	61	Right cerebellar	Headaches, vertigo, gait disturbance, left-sided hearing loss and facial paralysis, and+	GTR	NA	NA	Hyperintense lesion on T1 MRI	2 cm	Same proportion of small poorly differentiated closely packed cells with hyperchromatic nuclei, occasional mitosis, and intermixed lipid-filled cells, perinuclear halo, diffuse homer-wright rosettes and scattered pseudo rosettes, rare necrosis and microhemorrhage, moderate vascular hyperplasia, focal areas of high mitosis MIB-1=20% NSE+, NF+, GFAP+, SY+, S100−	MIB-1=15%	Same proportion of small poorly differentiated closely packed cells with hyperchromatic nuclei, occasional mitosis, and intermixed lipid-filled cells, perinuclear halo, diffuse homer-wright rosettes and scattered pseudo rosettes, rare necrosis and microhemorrhage, moderate vascular hyperplasia, focal areas of high mitosis MIB-1=20% NSE+, NF+, GFAP+, SY+, S100−	GTR	STR+Chemotherapy	15.4

*Note: GTR = Gross Total Resection; STR = Subtotal Resection; STR+ = Subtotal Resection with adjuvant therapy; CT = Computed Tomography; MRI = Magnetic Resonance Imaging; S100+ = Positive for S100 protein; GFAP+ = Positive for glial fibrillary acidic protein; MIB-1 = Mitotic index; NSE+ = Positive for neuron specific enolase; NF+ = Positive for neurofilament; SY+ = Positive for synaptophysin; EMA− = Negative for epithelial membrane antigen; Lu-5− = Negative for Lu-5; MAP−2+ = Positive for microtubule-associated protein-2; desmin− = Negative for desmin; p53− = Negative for p53; NA = Not available; Contd... (continued)
Reference	Sex	Age	Location	Image	Symptom(s)	Treatment	Time (months)	Lesion Size	Pathology	IHC	Treatment	IHC	References
Jantet et al., 2007 (1)	4/F	24	Fourth ventricle	Headache, postural imbalance, nystagmus	Hypodense lesion on T1 and hyperintense on T2	GTR	14	Headache	Hypodense lesion on T1 MRI, hyperintense on T2	GTR	4/F	Jantet et al., 2007 (1)	
Limatou et al., 2009 (2)	42/M	112	Fourth ventricle	Headache and ataxia	Hypodense lesion with discrete hyperintensity on T1, hyperintense on T2	GTR	NA	NA	NA	NA	GTR	Limatou et al., 2009 (2)	
Chalidou et al., 2011 (3)	56/M	96	Fourth ventricle	Headache and blurred vision	Mixed density on CT scan	NA	96	Headache, ataxia	NA	NA	NA	Chalidou et al., 2011 (3)	
Chalidou et al., 2019 (4)	74/M	24	Fourth ventricle	Headache, postural imbalance	Hypointense and hyperintense components on T1 MRI, hyperintense on T2	GTR	24	Headache, postural imbalance	Hypodense lesion with internal hyperintense	GTR	74/M	Chalidou et al., 2019 (4)	
Reis et al., 2019 (5)	49/M	40	Vermis and right paravermian region	Headache and back pain	Hypodense on CT	NA	40	Headache, back pain, neck pain, and walking impairment	Hypodense on CT	NA	NA	Reis et al., 2019 (5)	
Reis et al., 2019 (6)	59/F	24	Fourth ventricle	Headache and neck pain	Hypodense on CT	NA	24	Headache	Hypodense lesion with internal hyperintense	GTR	59/F	Reis et al., 2019 (6)	
Reis et al., 2019 (7)	59/F	108	Fourth ventricle	Headache, postural imbalance, nystagmus	Hypodense lesion on T1 and hyperintense on T2	GTR	108	Headache	Hypodense lesion on T1 and hyperintense on T2	GTR	59/F	Reis et al., 2019 (7)	
Khansari et al., 2019 (8)	40/F	8	Fourth ventricle	Headache and postural imbalance	Hypodense lesion with internal hyperintense	GTR	8	Headache	Hypodense lesion on T1 MRI	GTR	40/F	Khansari et al., 2019 (8)	
Shen et al., 2022 (9)	29/F	12	Fourth ventricle	Headache and blurred vision	Hypodense lesion with internal hyperintense	GTR	12	Headache	Hypodense lesion on T1 MRI	GTR	29/F	Shen et al., 2022 (9)	

Sx: Symptoms; Tx: Treatment; IHC: Immunohistochemistry; RFS: Recurrence-free survival; GTR: Gross total resection; STR: Subtotal resection.
Radiologically, liponeurocytoma share features seen in other cystic and neurocytic neoplasms of the central nervous system. They are usually described, like our first recurrence, as iso-to-hypointense on T1-weighting imaging and hyperintense on T2-weighted imaging.[24] Lesions that are hyperintense on T1 and isointense on T2, like the second recurrent tumor in our patient, have been described in the literature less frequently.[14] This unique imaging finding is associated with lesions with an abundance of lipidized tissue.[12] To the best of our knowledge, this represents the first recorded case of liponeurocytoma where an inversion of T1 and T2 sequence intensity occurred between recurrent lesions. Moreover, histological evaluation of the second recurrent tumor found a decreased lipomatous component compared to the first recurrent tumor, highlighting a different mechanism for the imaging changes in the second recurrence. Possible causes of increased intensity on T1 and decreased intensity on T2 between the recurrent tumors include increased intratumor areas of hemorrhage or protein concentration.[5]

Histologically, liponeurocytommas are characterized by small and poorly differentiated neurocytic cells with focal areas of intermixed neuroepithelial cells with lipid accumulation. The tumor cells are usually described as round to oval.[13] However, spindle-shaped and more multinuclear bizarre-shaped cells have also been reported in the literature. Other common histological features of this tumor include sharp demarcation from the surrounding brain tissue, cell-free fibrillary neutrophils, vessel hyalinization, calcification, and neural rosettes and pseudorosettes.[27] While the primary tumors, for the most part, showcase these benign features, the recurrent tumors have been shown to demonstrate more atypical features. In our patient, for example, the second recurrent tumor showed necrosis, vascular proliferation, and increased mitosis and atypia, features not present in the first recurrent tumor. Similarly, in six of the 25 (including the first and second recurrence) recurrent tumors found in the literature, increased necrosis and vascular proliferation were seen when compared to the primary tumor or prior recurrent tumor. Moreover, in our patient, the MIB-1 proliferation index increased by 5.4% between the first and second recurrent lesions. As shown earlier, this trend of increasing MIB-1-positive cells between the primary and recurrent lesions and between recurrences has been well documented in the literature and seems to indicate malignant progression and different grade of neuronal differentiation between the primary lesions as compared to the recurrent lesions. The reduced lipomatous components seen with recurrence in our case and others documented in the literature can be interpreted further as a sign of progression and dedifferentiation with recurrence.

Recurrence in liponeurocytoma is rare. In a systematic review of 73 patients with liponeurocytoma, Gembruch et al. found that 14 or 28.6% had a primary tumor recurrence. Moreover, they found that six or 8.2% of patients experienced a second tumor recurrence.[9] In our patient, recurrence-free survival (RFS) time decreased with each recurrence. This pattern follows the trends seen in other cases with multiple recurrences. Our review found the RFS decreased from an average of 82 months between the primary tumor resection and first recurrence to an average of 31.3 months between the first and second recurrence. Increasing cellularity and dedifferentiation along with increased malignant progression and proliferation may also explain this phenomenon. Moreover, several studies have proposed a possible genetic cause of liponeurocytoma formation and recurrence. Particularly, transcription factors NEUROG1 and fatty acid-binding protein-4 are enhanced in liponeurocytoma. It is possible that the interactions between these genes and others explain the molecular mechanisms that decrease RFS time between recurrences.[2,26]

Complete surgical resection has been described as the preferred treatment for patients with liponeurocytoma. Despite this, Gembruch et al. found that of the 49 patients in their cohort that received complete surgical resection of the tumor, six experienced tumor recurrence. Radiotherapy has been discussed as a viable adjunctive therapy in patients with liponeurocytoma. Gembruch et al. found no recurrence in eight patients who received adjunctive radiotherapy paired with complete resection and only found one case of recurrence in six patients who received adjunctive radiotherapy paired with incomplete resection.[9] However, given the extensive side effect profile of cranial radiation, the debate remains whether there is enough evidence for this to become the standard of care for all primary liponeurocytommas.[4] In a limited sample size, our systematic review showed effective management of recurrent tumor without a second recurrence in the three patients who received adjunctive radiotherapy for treatment of a recurrent tumor. This may indicate adjunctive radiotherapy as an appropriate treatment option for patients with recurrent disease and tumors with aggressive histological features including reduced lipomatous components, increased necrosis and vascular proliferation, and increased MIB-1 proliferation index.

Limitations

There are several limitations to this study. Although our research relied on three main databases, PubMed, Google Scholar, and Scopus, yielding over 4365 articles, there is a chance that the literature search is not entirely complete. This is especially true for this topic as liponeurocytoma was not established as a separate glioneuronal tumor until 2000. Thus, while our search accounted for other names used to describe this pathology, it is still likely that the results were not comprehensive. Moreover, only studies in English were
included in the study, potentially excluding other regions where this pathology may be more common. In addition, because of the nature of this review, any errors in diagnosis, radiological examination, or pathological examination related to the included cases would bias our conclusions. Furthermore, the quality of evidence was moderate to low, as all the studies used in the review were case reports with a level of evidence of V and no randomized trials or cohort and case–control studies were identified. Another limitation of this study is the heterogeneity of the data collected in the case reports and case series. For instance, many cases did not have specific information on tumor imaging, size, pathology, or immunohistochemistry in the primary and recurrent tumors.

CONCLUSION

The present case is the 19th reported case of recurrent liponeurocytoma and only the eighth case with more than 1 recurrence following treatment. This paper highlights the noted radiological and histological differences between the primary and recurrent tumors and points to a trend of increased malignant proliferation between primary and recurrent tumors. The standard treatment for these tumors is complete resection. The role of adjunctive radiotherapy remains an area of investigation, but the data thus far indicate that at least in the case of histologically aggressive appearing tumors, adjunctive radiation treatment is likely warranted.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Alkadhi H, Keller M, Brandner S, Yonekawa Y, Kollias SS. Neuroimaging of cerebellar liponeurocytoma: Case report. J Neurosurg 2001;95:324–31.
2. Anghileri E, Eoli M, Paterra R, Ferroli P, Pollo B, Cuccarini V, et al. FABP4 is a candidate marker of cerebellar liponeurocytomas. J Neurooncol 2012;108:513–9.
3. Bechtel JT, Patton JM, Takei Y. Mixed mesenchymal and neuroectodermal tumor of the cerebellum. Acta Neuropathol 1978;41:261–3.
4. Belka C, Budach W, Kortmann RD, Bamberg M. Radiation induced CNS toxicity—molecular and cellular mechanisms. Br J Cancer 2001;85:1233–9.
5. Bonneville F, Cattin F, Marsot-Dupuch K, Dormont D, Bonneville JE, Chiras J. T1 signal hyperintensity in the sellar region: Spectrum of findings. Radiographics 2006;26:93–113.
6. Buccoliero AM, Caldarella A, Bacci S, Gallina P, Taddei A, Di Lorenzo N, et al. Cerebellar liponeurocytoma: Morphological, immunohistochemical, and ultrastructural study of a relapsed case. Neuropathology 2005;25:77–83.
7. Chakraborti S, Mahadevan A, Govindan A, Yasha TC, Santosh V, Kovoor JM, et al. Supratentorial and cerebellar liponeurocytomas: Report of four cases with review of literature. J Neurooncol 2011;103:121–7.
8. Cohen-Inbar O, Vlodavsky E, Zaraor M. The natural history and treatment guidelines of cerebellar liponeurocytoma—a case report. Open J Mod Neurosurg 2011;1:10–6.
9. Gembruch O, Junker A, Mönnichhoff C, Ahmadipour Y, Oppong MD, Sure U, et al. Liponeurocytoma: Systematic review of a rare entity. World Neurosurg 2018;120:214–33.
10. George DH, Scheithauer BW. Central liponeurocytoma. Am J Surg Pathol 2001;25:1551–5.
11. Giangaspero F, Cenacchi G, Roncaroli F, Rigobello L, Manetto V, Gambacorta M, et al. Medulloblastoma (Lipidized medulloblastoma): A cerebellar neoplasm of adults with favorable prognosis. Am J Surg Pathol 1996;20:656–64.
12. Guan JT, Geng YQ, Cheng Y, Guo YL, Wu RH. Magnetic resonance imaging of cerebellar liponeurocytoma: A case report and review of the literature. Neuroradiol J 2012;25:331–6.
13. Hermann B, Woznica M, Kloc W, Borkowski P, Libionka W, Izycka-Swieszewska E. Cerebellar liponeurocytoma with atypical histological features—a rare example of a glioneuronal tumor. Folia Neuropathol 2017;55:227–34.
14. Jenkinson MD, Bosma JJ, Du Plessis D, Ohgaki H, Kleihues P, Warnke P, et al. Cerebellar liponeurocytoma with an unusually aggressive clinical course: Case report. Neurosurgery 2003;53:1425–7; discussion 1428.
15. Jouvet A, Lellouch-Tubiana A, Boddart N, Zerah M, Champier I, Fève-Montange M. Fourth ventricle neurocytoma with lipomatous and ependymal differentiation. Acta Neuropathol (Berl) 2005;109:346–51.
16. Khatri D, Bhaisora KS, Das KK, Behari S, Pal L. Cerebellar liponeurocytoma: The dilemma of multifocality. World Neurosurg 2018;120:131–7.
17. Konovalov AN, Konovalov NA, Pronin IN, Shishkina LV, Zolotova LI, Yakovlenko YG, et al. Multiple primary liponeurocytoma of the central nervous system. Zh Vopr Neurokhir Im N N Burdenko 2015;79:87–96.
18. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009;339:b2700.
19. Limaëm F, Bellil S, Chelly I, Bellil K, Mekni A, Jemel H, et al. Recurrent cerebellar liponeurocytoma with supratentorial extension. Can J Neurol Sci 2009;36:662–5.
20. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol 2016;131:803–20.
21. Pelz D, Khezri N, Mainprize T, Phan N, Keith J, Bilbao J, et al. Multifocal cerebellar liponeurocytoma. Can J Neurol Sci 2013;40:870-2.
22. Radke J, Gehlhaar C, Lenze D, Capper D, Bock A, Heppner FL, et al. The evolution of the anaplastic cerebellar liponeurocytoma: Case report and review of the literature. Clin Neuropathol 2015;34:19-25.
23. Romano N, Federici M, Castaldi A. Imaging of extraventricular neurocytoma: A systematic literature review. Radiol Med 2020;125:961-70.
24. Shen S, Tang Y, Yang R, Zhou D. Typical radiological features of a rare lateral ventricular liponeurocytoma. Ann Neurol 2021;90:851-2.
25. Soylemezoglu F, Soffer D, Onol B, Schwechheimer K, Kleihues P. Lipomatous medulloblastoma in adults. A distinct clinicopathological entity. Am J Surg Pathol 1996;20:413-8.
26. Wolf A, Alghefari H, Krivosheya D, Staudt MD, Bowden G, Macdonald DR, et al. Cerebellar liponeurocytoma: A rare intracranial tumor with possible familial predisposition. Case report. J Neurosurg 2016;125:57-61.
27. Xu L, Du J, Wang J, Fang J, Liu Z, He Y, et al. The clinicopathological features of liponeurocytoma. Brain Tumor Pathol 2017;34:28-35.

How to cite this article: Shah DS, Sharma H, Patel P, Shetty A, English CW, Goodman JC, et al. Recurrent liponeurocytoma: A case report and systematic review of the literature. Surg Neurol Int 2022;13:395.