Electronic Supplementary Information (ESI)

Optimisation of 1H PMLG homonuclear decoupling at 60 kHz MAS to enable 15N-1H through-bond heteronuclear correlation solid-state NMR spectroscopy

Jacqueline Tognetti, W. Trent Franks, Józef R. Lewandowski, Steven P. Brown

S1. Product operator formalism - INEPT

We review here a product operator analysis of the refocused INEPT pulse sequence element. At the beginning of the refocused INEPT element, the in-phase magnetization \hat{S}_x is along the transverse plane for 15N. During the first echo period (τ_1), the in-phase magnetization is converted into anti-phase \hat{S}_y \hat{I}_z:

$$\hat{S}_x \xrightarrow{\frac{\pi}{2}-\pi} \cos(2\pi J_{IS} \tau_1) \hat{S}_x + \sin(2\pi J_{IS} \tau_1) \hat{S}_y \hat{I}_z, \quad (1)$$

where \hat{I} represents the 1H spins. The anti-phase coherence is transferred from S to I with the 90° pulses applied on both channels, which separates the two spin-echo evolution periods:

$$\sin(2\pi J_{IS} \tau_1) \hat{S}_y \hat{I}_z \xrightarrow{\frac{\pi}{2}J_{IS}} \xrightarrow{\frac{\pi}{2}J_{IS}} \sin(2\pi J_{IS} \tau_1) \hat{S}_z \hat{I}_x. \quad (2)$$

Following τ_1, in the second echo period (τ_2), the antiphase 1H coherence is converted into in-phase \hat{I}_x that is then detected during acquisition (t_2):

$$\sin(2\pi J_{IS} \tau_1) \hat{S}_z \hat{I}_y \xrightarrow{\frac{\pi}{2}-\pi} \sin(2\pi J_{IS} \tau_2) \sin(2\pi J_{IS} \tau_1) \hat{I}_x. \quad (3)$$
S2. Optimisation of PMLG 1H homonuclear decoupling on 15N-glycine

Figure S1. A stacked representation of a two-variable optimization (see Fig. 3a) of both $\tau_{LG,\text{expt}}$ (in steps of 0.25 μs) and ν_1 in a 1D 1H-CRAMPS ($\nu_0 = 500$ MHz) MAS ($\nu_1 = 60$ kHz) NMR experiment of 15N-glycine, in which windowed PMLG$^{\text{new}}$ was applied with $\tau_{\text{tilt}} = 0.54$ μs and a 1H transmitter offset of -0.6 kHz, corresponding to the data shown in Figure 3a of the main text. 8 co-added transients were collected for each optimization point. On the right, slices from the optimization are shown with the associated $\tau_{LG,\text{expt}}$ and ν_1. The relative intensity of the NH$_3^+$ peak with respect to the best 1H homonuclear decoupling performance at $2 \tau_{LG,\text{expt}} = 6.25$ μs and $\nu_1 = 110$ kHz is stated.
Figure S2. Zoom of the region between $\tau_{LG_{\text{expt}}} = 5.5 \, \mu s - 7.5 \, \mu s$ for the two-variable optimization of $\tau_{LG_{\text{expt}}}$ (in steps of 0.25 μs) and τ_l in a 1D 1H-CRAMPS ($\nu_0 = 500$ MHz) MAS ($\nu_r = 60$ kHz) NMR spectrum of the 15N-glycine a) CH$_2$ and b) NH$_3^+$ peak intensity, corresponding to the data shown in Figure 3a of the main text. Windowed $PMLG^n_{5\tau_{\text{wm}}}$ was applied with $\tau_w = 7.20 \, \mu s$, $\tau_c = 0.54 \, \mu s$ and a 1H transmitter offset of -0.6 kHz. 8 co-added transients were collected for each optimization point for a recycle delay of 3 s.

S3. Optimisation of tilt pulses via the NH$_3^+$ signal intensity in a 1D CRAMPS experiment of 15N-glycine

The duration of the tilt pulses, τ_t, was optimised in a two-variable optimization with $\tau_{LG_{\text{expt}}}$, for the intensity of the NH$_3^+$ resonance in a 1D CRAMPS spectrum of 15N-glycine at 60 kHz MAS as presented in Fig. S3a with windowed $PMLG^n_{5\tau_{\text{wm}}}$. It is evident from Fig. S3 that the optimum values for the two parameters, $\tau_{LG_{\text{expt}}}$ and τ_t, are linked, i.e., when one becomes longer the other shortens, maintaining the same combined length of $\sim 7.1 \, \mu s$ (considering two sandwich pulses per $PMLG^n_{\phi_R}$ block – see Fig. 2b) to maintain the same cycle time, τ_c (see eq. 11), and hence ensure a constant optimum ψ (see eq. 12). The couples with best NH$_3^+$ signal intensity were 6.75 & 0.15 μs, 6.5 & 0.30 μs and 6.25 & 0.45 μs for 2 $\tau_{LG_{\text{expt}}}$ and τ_t, respectively, with a preference for a longer $\tau_{LG_{\text{expt}}}$ and shorter τ_t (see Fig. S3b). A fine optimisation with 16 co-added transients was employed to identify the optimum parameters as used in Fig. 3c (and repeated in Fig. S3c, left-hand spectrum).
Figure S3. a) Two-variable optimization of $2 \tau_\text{LG,expt}$ (0.25 μs step) and τ_tilt (0.05 μs step) for the NH$_3^+$ peak intensity in a 1D 1H-CRAMPS (f_0 = 500 MHz) MAS (f_1 = 60 kHz) spectrum of 15N-labelled glycine. Windowed PMLG$_{\text{win}}^5$ was applied with $f_1 = 106$ kHz and a 1H transmitter offset of -0.6 kHz. 4 co-added transients were collected for each optimization point. b) Slices extracted from the contour plot show the best spectrum intensities obtained with the indicated $2 \tau_\text{LG,expt}$ and τ_tilt. c) 1D 1H CRAMPS 15N-labelled glycine spectra acquired with windowed PMLG$_{\text{win}}^5$ using $2 \tau_\text{LG,expt} = 6.20$ μs and $\tau_\text{tilt} = 0.54$ μs (left) and windowed PMLG$_{\text{win}}^5$ without τ_tilt (right). 32 co-added transients were added. For all experiments with windowed 1H homonuclear decoupling, $\tau_\omega = 7.20$ μs.

The 1H CRAMPS spectrum on the right in Figure S3c was acquired with the same nutation frequency and offset, but with no tilt pulses and $2 \tau_\text{LG,expt}$ was chosen to be 7 μs such that the cycle time and hence ψ are the same. The intensity of the NH$_3^+$ peak obtained with windowed PMLG$_{\text{win}}^5$, at $\tau_\text{LG,expt} = 6.20$ μs and $\tau_\text{tilt} = 0.54$ μs is within 5% of that obtained without tilt pulses. Note, however, that the peak widths for PMLG$_{\text{win}}^5$ without tilt pulses are 235 Hz for the NH$_3^+$ peak, and 224 Hz and 231 Hz for the CH$_2$ peaks. After scaling ($\lambda_\text{CS} = 0.80$), the FWHM become 294 Hz, 280 Hz and 289 Hz, respectively, which is ~15 Hz larger than those stated in Table 3 for windowed PMLG$_{\text{win}}^5$ with $\tau_\text{LG,expt} = 6.20$ μs and $\tau_\text{tilt} = 0.54$ μs.
S4. 2D \(^1\)H-\(^1\)H correlation and optimisation of the \(^{15}\)N-glycine NH\(^+\) signal intensity in a 1D-filtered CP-refocused INEPT NMR spectrum for PMLG \(^1\)H decoupling

Each \(^1\)H-detected FID was acquired for 30 ms with a spectral width of 57 ppm. The \(^1\)H indirect dimension was acquired with 96 \(t_1\) FIDs with a dwell time of 29.16 µs (57 ppm spectral width - no \(^1\)H homonuclear decoupling), 12.40 µs (134 ppm spectral width - windowless PMLG\(^{5}_{\text{mm}}\)) and 11.68 µs (143 ppm – windowless PMLG\(^{9}_{\text{mm}}\)). The maximum \(t_1\) were 1.40 ms, 0.59 ms and 0.56 ms using no \(^1\)H homonuclear decoupling, windowless PMLG\(^{5}_{\text{mm}}\) and windowless PMLG\(^{9}_{\text{mm}}\), respectively. The States-TPPI method was employed to achieve sign discrimination in the indirect dimension.

![Diagram showing 2D \(^1\)H-\(^1\)H correlation spectra](image)

Figure S4. 2D \(^1\)H-\(^1\)H (\(\nu_b = 600\) MHz) correlation spectra of \(^{15}\)N-Glycine acquired at \(\nu_r = 60\) kHz MAS with a) no \(^1\)H homonuclear decoupling, b) windowless PMLG\(^{5}_{\text{mm}}\) (\(\tau_G = 3.10\) µs, \(\nu_1 = 104\) kHz, \(\Omega = 1\) kHz) and c) windowless PMLG\(^{9}_{\text{mm}}\) (\(\tau_G = 2.92\) µs, \(\nu_1 = 104\) kHz, \(\Omega = -0.8\) kHz). In all the experiments, 4 transients were coadded for 96 \(t_1\) FIDs for a recycle delay of 3 s. The zero-offset is set with the carrier being on resonance with the NH\(^+\) peak in the indirect dimension.
Figure S5. 1H RF carrier optimization for a 1D-filtered ($\tau_1 = 0$) 15N-1H ($\nu_0 = 500$ MHz) CP (contact time = 2 ms)-Refocused INEPT MAS ($\nu = 60$ kHz) NMR experiment for 15N-labelled glycine, whereby a) windowed $PMLG^{\tau_w}$ 1H homonuclear decoupling (See Fig. 5) was applied with $\tau_{LG,expt} = 3.1$ μs, $\tau_{tilt} = 0.54$ μs and a 1H nutation frequency, ν_LT, of 106 kHz during τ_1 (1.999 ms, 66 τ_c) and 104 kHz during τ_2 (1.391 ms, 48 τ_c), b) windowless $PMLG^{\tau_w}$ 1H homonuclear decoupling was applied with $\tau_{LG,expt} = 3.1$ μs and a 1H nutation frequency, ν_LT, of 104 kHz during τ_1 (2.096 ms, 169 τ_c) and 102 kHz during τ_2 (0.496 ms, 40 τ_c), c) windowed $PMLG^{\tau_w}$ 1H homonuclear decoupling was applied with $\tau_{LG,expt} = 2.92$ μs, $\tau_R = 0.82$ μs and a 1H nutation frequency, ν_LT, of 104 kHz during τ_1 (2.085 ms, 71 τ_c) and 106 kHz during τ_2 (1.498 ms, 51 τ_c) and d) windowless $PMLG^{\tau_w}$ 1H homonuclear decoupling was applied with $\tau_{LG,expt} = 2.92$ μs and a 1H nutation frequency, ν_LT, of 104 kHz during τ_1 (2.091 ms, 179 τ_c) and 102 kHz during τ_2 (1.192 ms, 102 τ_c). 16 transients were coadded. For all experiments with windowed decoupling, τ_w was substituted with a delay of 7.20 μs. The zero-offset is set with the carrier being on resonance with the NH$_3^+$ peak.
S5. Cimetidine

Here, the normalized intensity is related to the respective maximum intensity for each peak, i.e. the maximum intensity is equal to 1 for all the resonances. However, note that the NH15 proton signal intensity is ~30% of that of NH3.

![Cimetidine structure](image)

Figure S6. Dephasing of cimetidine NH proton ($\nu_0 = 600$ MHz) resonances as a function of the spin-echo duration, τ, with windowed $PMLG^{5\nu}$ ($\tau_{LG,\text{expt}} = 3.10 \mu$s, $\tau_{\text{tilt}} = 0.54 \mu$s and $\tau_w = 7.20 \mu$s) for a nutation frequency of 106 kHz. Fits to an exponential decay function are shown, with the spin-echo dephasing times, T'_{2}, as listed in Table S1. 8 transients were co-added for a recycle delay of 5 s.

Table S1. Cimetidine 1H dephasing time, T'_{2}, for the three NH resonances and T'_{2} scaled by the experimental λ_{CS}, $\lambda_{CS} T'_{2}$, acquired on a 1H spin-echoa experiment using windowed $PMLG^{5\nu}$.

	δ (ppm)	ν_1 (kHz)	λ_{CS}	T'_{2} (ms)	$\lambda_{CS} T'_{2}$ (ms)
NH3	11.6	106	0.82	1.34	1.10
NH15	9.7				
NH10	8.2				

aImplemented at $\nu_0 = 600$ MHz and $\nu_1 = 60$ kHz (see Fig. S6). Windowed $PMLG^{5\nu}$ was implemented with $\tau_{LG} = 3.10 \mu$s, $\tau_{\text{tilt}} = 0.54 \mu$s and $\tau_w = 7.20 \mu$s

b $\Omega_a = -0.8$ kHz, where the zero-offset is set with the carrier being on resonance with the NH1 peak of 15N-glycine
S6. Simulations of eqs 1 and 2

Figure S7. Simulation of dependence of the 15N-1H CP-Refocused INEPT intensity on the spin-echo period, τ_1, according to eq. 1 and 2 (from the main text) for a NH (red) or NH$_3$ (blue) group, for a J_{NH} equal to: a) 90 Hz, b) 75 Hz and c) 60 Hz ignoring dephasing, and d) 90 Hz, e) 75 Hz and f) 60 Hz with exponential dephasing with a nominal nitrogen T_2' of 35 ms.