Gastric cancer: An epigenetic view

Si-Yuan Tang, Pei-Jun Zhou, Yu Meng, Fu-Rong Zeng, Guang-Tong Deng

ORCID number: Si-Yuan Tang 0000-0003-0368-5108; Pei-Jun Zhou 0000-0001-6897-8812; Yu Meng 0000-0002-2713-4098; Fu-Rong Zeng 0000-0001-6621-8131; Guang-Tong Deng 0000-0002-4424-9727.

Author contributions: Deng GT, Zeng FR, and Tang SY designed the study; Tang SY and Zeng FR wrote the manuscript; Zhou PJ and Meng Y revised the manuscript; All the authors supported the study.

Conflict-of-interest statement: All authors have no any conflicts of interest.

Supported by The fellowship of the China Postdoctoral Science Foundation, No. 2020M682594.

Country/Territory of origin: China

Specialty type: Gastroenterology and hepatology

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): 0
Grade C (Good): C
Grade D (Fair): 0
Grade E (Poor): 0

Open-Access: This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Abstract

Gastric cancer (GC) poses a serious threat worldwide with unfavorable prognosis mainly due to late diagnosis and limited therapies. Therefore, precise molecular classification and search for potential targets are required for diagnosis and treatment, as GC is complicated and heterogeneous in nature. Accumulating evidence indicates that epigenetics plays a vital role in gastric carcinogenesis and progression, including histone modifications, DNA methylation and non-coding RNAs. Epigenetic biomarkers and drugs are currently under intensive evaluations to ensure efficient clinical utility in GC. In this review, key epigenetic alterations and related functions and mechanisms are summarized in GC. We focus on integration of existing epigenetic findings in GC for the bench-to-bedside translation of some pivotal epigenetic alterations into clinical practice and also describe the vacant field waiting for investigation.

Key Words: Gastric cancer; Epigenetics; Histone modifications; DNA methylation; Non-coding RNAs

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Epigenetics plays a vital role in gastric carcinogenesis and progression. In this review, key epigenetic alterations and related functions and mechanisms are summarized in gastric cancer.

Citation: Tang SY, Zhou PJ, Meng Y, Zeng FR, Deng GT. Gastric cancer: An epigenetic view.
INTRODUCTION

Gastric cancer (GC) is one of the most common malignant tumors of the digestive tract and ranks as the fifth leading cause of morbidity and second leading cause of mortality worldwide, posing a serious threat to all human beings[1]. Residents in South and East of Asia including China, Japan and Korea are reported to have a higher risk of GC[2]. Due to the unusual symptoms in the early stage of GC, many patients are first diagnosed as advanced GC accompanied by tumor infiltration and metastasis. Despite of combined treatment of surgery, chemotherapy, radiotherapy, and sometimes targeted therapy and immunotherapy, GC still shows a poor prognosis with the 5-year overall survival less than 30%[3,4]. Currently routine screening for GC is endoscopy and histological examination, which is costly, invasive and often painful to patients. Therefore, development of new or alternative methods for screening, diagnosis and treatment to GC is of great clinical significance.

Epigenetics has been illustrated to be associated with the diagnosis and treatment of GC patients. GC is highly complicated and heterogeneous in nature and often genetically divided into familial and sporadic disease. Familial GC, constituting about 10% of GC patients, has a close connection to genetic alterations[5]. Sporadic GC (90% of GC) is largely related to Helicobacter pylori (H. pylori) infection and evolves in a canonical model of chronic inflammation, atrophy, intestinal metaplasia, dysplasia and finally adenocarcinoma, which is characterized by typically epigenetic alterations but scarce genetic changes across over the stages[6]. With rapid progress in epigenomics, precise molecular classification towards GC seems admirable in research and clinical medicine. In 2014, The Cancer Genome Atlas identified GC into four molecular subtypes including Epstein–Barr virus (EBV) associated, microsatellite instable (MSI), chromosomal instability (CIN), and genomically stable (GS)[7]. Apparently, GS means the genome is stable in this type of GC[8]. Among the four classes, MSI patients have the best overall prognosis and the lowest frequency of recurrence with high incidence of gene mutations and DNA methylation. Patients in EBV subtype are associated with Epstein-Barr virus infection and have extremely high DNA methylation status. In the patients with CIN subtype, the largest proportion of GC, is more prone to chromosomal diseases such as chromosome rearrangement and aberration. Radically distinct clinical outcomes are presented in different subtypes.

In this review, we mainly explore GC from an epigenetic view and summarize key epigenetic alterations and related functions and mechanisms, with special attention to histone modifications and the translational findings which guide us towards better clinical utility.

HISTONE MODIFICATIONS

Nucleosome, as a major unit of chromatin, consists of wrapped DNA and a histone octamer formed by two copies of H2A, H2B, H3 and H4 proteins[9]. Each histone contains an accessible amino terminal tail rich in lysine, arginine, serine and threonine residues, which is often modified post-translationally and the process is called posttranslational modifications (PTMs). Studies have shown that histone PTMs in GC mainly including acetylation, methylation, phosphorylation and ubiquitination are involved in various pathophysiological cellular functions such as carcinogenesis, inflammation and epithelial-mesenchymal transition (Figure 1)[10]. In recent years, some new modifications, such as succinylation, sumoylation, butyrylation and crotonylation, have been discovered in the occurrence and progression of other gastrointestinal tumors, such as esophageal, colorectal, and hepatocarcinoma liver cancer[11-14], which provide new insights in functions and mechanisms and even therapeutic potential for cancer diagnosis and treatments. Notably, those new types of histone modifications remain a vacant field in GC and thereby it may be an innovative and interesting field to explore in the near future.
Histone acetylation
As the most common form of PTMs in GC, acetylation always occurs in N-terminal lysine residues of histone H3 and H4 and is associated with chromatin remodeling, regulation of transcription, translation and DNA repair. The acetylation of histones catalyzed by histone acetylase (HATs) transfers acetyl moieties from coenzyme A to lysine residues, opens the chromatin structure and makes it accessible to transcriptional factors, thus activating gene transcription. Instead, the histone deacetylase (HDACs) removes the acetyl groups from histone and results in repression of transcription. HATs consist of three families including GCN5, MYST and p300/CBP, while HDACs contain four classes including type I (HDAC 1,2,3,8), type II (HDAC 4,7,9,10), type III (SIRT 1-7) and type IV (HDAC 11) [15,16]. The reversible acetylation and deacetylation processes mainly facilitate GC progression by activating oncogene expression and silencing tumor suppressor gene expression.

Studies revealed that high H3K9Ac positive cells were associated with undifferentiated GC, suggesting poor prognosis of GC [17]. Further, BMP8B was highly expressed in GC tissues other than adjacent normal tissues, and reduced acetylation level of BMP8B loci on H3K9 and H4K16 influenced the development of poorly differentiated gastric tumors [18]. Many genes encoding HATs, such as KAT2B and EP300, are often genetically depleted or mutated in GC, and are significantly correlated with TNM staging [19,20]. IFN-γ-induced upregulation of histone H3 Lysine 9 acetylation (H3K9) level in gene promoter accelerates the expression of B7-H1, which contributes to tumor immune evasion in HGC-27 cells [21]. Wisnieski et al [22] demonstrated hypoacetylation of histone H3 in the initiator domain of CDKN1A decreased its mRNA level and reduced antitumor effect in GC. Besides, H. pylori-infection inhibited recruitment of HAT p300 to the p27 promoter which caused the hypoacetylation status in histone H4, then induced the downregulated p27 mRNA expression, and finally led to gastric carcinogenesis [23].

Histone methylation
Histone methylation usually takes place on H3 and H4 Lysine or arginine residues, catalyzed by histone methyltransferases (HMTs) and reversely controlled by histone demethylases (HDMs). The methylation could be single or multiple methylations to form mono-methylation (me1), di-methylation (me2) and tri-methylation (me3), participating in the formation and maintenance of chromatin structure, DNA repair, gene inactivation and transcription [24]. Methylation on different sites have different
functions in regulation of gene expression. In general, methylation of arginine residues, methylation of lysine H3K4 and H3K36, and monomethylation of H3K27 are associated with gene activation, while methylation of H3K9, H3K79 and H4K20, and dimethylation and trimethylation of H3K27 might cause gene silencing[25,26].

Specifcally, repression of HDMs KDM5A and DPY300 subunits upregulated H3K4me level, inhibiting GC cell proliferation[27]. However, overexpression of HDMs LSD1 declined methylation of H3K4 in p21 promoter and repressed the transcription of p21, resulting in progression of GC[28]. An assay of familial GC patients identified INS5, FBX024 and DOT1L as new susceptibility genes in diffuse gastric carcinoma, in which DOT1L was a histone methyltransferase involved in the mono, di and tri-methylation of H3K79, suggesting the contributing role of H3K79 in gastric carcinogenesis[29]. Methylation of H3K27 is well-investigated in GC. A paired-study of 117 GC patients showed that the level of H3K27me3 in GC and normal tissue was 56.4% and 7.25%, respectively, which negatively correlated with GC overall survival[30]. Besides, knockdown of demethylases SETDB2 was found to accelerate the expression of tumor suppressor genes WWOX and CADM1, and significantly reduced cell growth, migration and invasion in GC cells[31].

Histone phosphorylation

Histone phosphorylation is a dynamical process mediated by histone kinases and phosphatases, in which the phosphate group is transferred from ATP to the histone serine and threonine residues. There are several accessible sites in histone phosphorylation including H1.4 Ser27, H2AX Ser139 (also called γ-H2AX), H3 Ser10, H3 Thr3 and H4 Ser1[32,33]. Particularly, histone H3 is phosphorylated at Ser10 during mitosis in all eukaryotes and induction of phosphorylation in interphase has been shown to correlate with chromosome condensation prior to mitosis[34]. Histone phosphorylation functions as a switch on chromosomal folding, compression, segregation, transcriptional regulation, cell signal transduction, cell apoptosis, and DNA damage repair[35,36].

Histone phosphorylation frequently happens in H3 and H4 with a dual role in cancer progression[32,33]. For instance, phosphorylated histone H3 at position of serine10 (H3S10) by MSK1 promoted cell proliferation during gastric tumorigenesis via the activation of downstream transcriptional factor NFATc2-related-inflammatory pathway[37]. H3S10 phosphorylation also played a vital prognostic role in defining negative resection margins in GC due to its lower expression in the surgical resection margins[38]. A cohort of 122 GC patients further indicated phosphorylated histone H3 overexpression could be an independent prognostic factor[39]. Moreover, repression of Aurora B-mediated H1.4 phosphorylation at Ser27, caused by Ras-ERK1/2 signaling, evidently participated in the progression of GC[40].

Histone ubiquitination

Unlike the three types of histone modifications described above, histone ubiquitination always works in the crosstalk with other modifications. Histone ubiquitination often acts subsequently after histone acetylation and methylation or modifies the stability and the activity of enzymes in these acetylation and methylation processes, which endures a synergic effect on cell division, cell cycle, DNA damage and cell apoptosis in GC[41]. When the histone, usually H2A and H2B, binds to one or several ubiquitins on lysine residues, it is called mono- or poly- ubiquitination and tends to work in the following three ways: Alterations of chromosome structure, recruitment and activation of downstream proteins, and degradation in proteasome pathway[42]. Ubiquitination is a reversible process in which ubiquitin is removed from polypeptides by deubiquitinas (DUBs), a superfAMILY of cysteine proteases and metalloproteases that cleave ubiquitin-protein bonds[43,44].

Hahn et al[45] identified that ring finger proteins RNF20 and RNF40 constituted a heterodimeric complex that functions as the E3 ubiquitin ligase for monoubiquitination of histone H2B at lysine 120 (H2B-K120) and the tumor suppressor CDC73 exerted antitumor effect in GC through the maintenance of H2B-K120 monoubiquitination. Besides, histone ubiquitination presents a therapeutic potential in GC as the expression of ubiquitinated-H2B was significantly lower in the malignant tissues and different differentiated tumors had variant levels of H2B ubiquitination[46].

DNA METHYLATION

In contrast to histone methylation, DNA methylation is a more frequent and compre-
hensive epigenetic modification (Figure 2), mediated by DNA methyltransferase (DNMTs) and demethylases. It refers to the transfer of the methyl group (CH3) from S-adenosylmethionine to C5 and forms 5-methylcytosine[47,48]. DNA methylation occurs in the dinucleotide CpG sequence, which may form CpG islands and dispersed sequences. CpG islands exist in around 60%-70% of gene promoters in human and consist of CpG core and shore area[49]. CpG core has a specific inhibitory effect on methylation, while the shore area, also known as transitional CpG region, is variable sites for dynamical alterations between hypomethylated and hypermethylated groups. In normal cells, CpG islands are non-methylated and other CpG sequence are methylated. Once stimulated by intrinsic or extrinsic factors, the methylation status changed and caused alterations in gene transcription, and consequently lead to tumorigenesis[48].

Aberrant DNA hypermethylation usually happens in the promoter of tumor suppressor genes in GC like p16, RASSF1A and hMLH1. Hypermethylation inhibits gene transcription by reducing binding to transcription factors, thereby impeding DNA readability and resulting in gene silencing[50]. Specifically, alteration of methylation in p16 promoter inhibited the cell cycle in G1 phase and induced 5-fluorouracil chemo-resistance in GC[51]. Abnormal methylation of RASSF1A gene promoter reduced RASSF1A expression, decreased cyclin D1 accumulation, and arrested cell cycle. Consistently, GC patients presented evidently higher frequency of aberrant methylation in RASSF1A promoter than control group, indicating the potential of methylated RASSF1A promoter as a molecular marker for the diagnosis of GC[52]. In addition to methylation alterations in promoter, hypomethylation at gene body regions has a distinct association with transcription and gene hypomethylation also exerts profound effects on cancer progression[53]. For instance, hypomethylation of SAT-ε and L1 was associated with shortened survival in advanced GC patients[54]. And Lineage-specific RUNX3 hypomethylation constituted the immune component in GC and was associated with the early inflammatory, preneoplastic and tumor stages[55]. Genome-wide methylation sequencing studies in GC identified both hypo- and hyper-methylation events across the genome, suggesting a dual role of global genomic methylation in the stages of gastric carcinogenesis[56].

H. pylori-induced DNA Methylation is a hot research area in the development of GC. Numerous researches revealed that H. pylori, classified as Class I carcinogen by WHO, induced and accumulated aberrant DNA methylation through continuous chronic inflammation in gastric mucosae, and such high level of epigenetic field defects increased the risk of gastric carcinogenesis[57]. For example, H. pylori infection upregulated inflammatory response genes like IL-1β, Nos2, and Tnf, and promoted the infiltration of monocytes/macrophages with residual neutrophils in noncancerous mucosae, which induced a large number of aberrant DNA methylation in tumor suppressor genes and led to malignant transformation[58]. Eradication of H. pylori had subtle influence on the decrease of DNA methylation in gerbils, while application of immunosuppressive agent (e.g., cyclosporin A) and demethylation agent (e.g., 5-Aza-2-deoxycytidine) could evidently reduce level of DNA methylation and prevent development of GC[59,60]. Moreover, high levels of DNA methylation were found in gastric biopsies of inflammatory and precancerous lesions, comparing to adjacent normal tissue, and were also correlated with a greater risk of GC incidence[61]. H. pylori-induced DNA methylation takes place in various genes involved in cell adhesion, cell cycle, DNA damage repair, inflammation, and autophagy, which allows intensive interfered targets of such epigenetic defects in diagnostic biomarker and cancer prevention[58,62].

NON-CODING RNAs

Non-coding RNAs consist of microRNAs (miRNAs), long non coding RNAs (lncRNAs), circular RNAs (circRNAs), small nucleolar RNAs (snoRNAs), small interfering RNAs (siRNAs), etc[63]. Since the first two non-coding RNA lineage defective 4 (lin-4)[64] and lethal 7 (let-7)[65] were identified in 1993 and 2000, researchers realized that in addition to protein, some RNAs lacking of protein-coding regions, which are called non-coding RNAs, were still conserved functional molecules and required for many biological processes. Among non-coding RNAs, miRNAs, lncRNAs and circRNAs were found to have plenty of functions in GC (Figure 3), including cell proliferation, cell cycle arrest, apoptosis, migration, invasion and chemo- or radio-sensitivity[66,67].
Figure 2 DNA methylation in gastric cancer. Aberrant methylation in promoter, shore area and gene body altered gene expression and involves in gastric carcinogenesis.

Figure 3 Non coding RNA in gastric cancer. The major mechanism and biological function of lncRNA, miRNA and circRNA in gastric cancer.

miRNAs

MicroRNAs are a class of small RNAs with 18-24 nucleotides and they repress translation process and silence target gene through complementary binding with 3’ untranslated terminal region (UTR) of mRNA[68]. A shaped understanding towards miRNAs has been established in the past two decades due to numerous miRNAs
Table 1 Important miRNAs and their targets and biological functions in gastric cancer

miRNAs	Expression	Targets	Functions	Ref.
miR-21	Up	EMT	Tumor growth, metastasis	[89]
miR-183	Up	UVRAG	Cell proliferation, autophagy, apoptosis	[90]
miR-765	Up	BATF2	Chemosensitivity	[91]
miR-155	Up	TP53INP1	Cell cycle, proliferation, migration	[92]
miR-130b	Up	NFκB, p65	Cell proliferation, tumorigenesis	[93]
miR-92a-1-5p	Up	FOXD1	Metaplasia	[94]
miR-135b	Up	FOXN3/RECK	Cell invasion, CSC-like properties	[95]
miR-181a-5p	Up	AKT3	Cell proliferation, apoptosis, tumor growth	[96]
miR-224	Up	PAK4	Cell proliferation, migration	[97]
let-7i	Down	COL1A1	Cell invasion, metastasis	[98]
miR-146a	Down	-	Cell migration	[99]
MiR-12129	Down	SHRT1	Cell cycle, proliferation	[100]
miR-27b	Down	NR2F2	cell proliferation, tumor growth	[101]
miR-140-5p	Down	NOTCH1	Cell proliferation, migration, apoptosis	[102]
miR-34a	Down	Snail	Cell proliferation, invasion	[103]
miR-9	Down	TNFAIP8L3	Cell proliferation, migration	[104]
miR-195	Down	HMGB1	Chemosensitivity	[105]

arrays conducted in GC. Taking the largest scale of GC miRNAs array cohort for example, a general miRNAs signature profiling was developed, in which 22 oncogenic miRNAs and 13 tumor suppressor miRNAs were identified in 353 primary Japanese gastric tumor samples. In this study, authors also revealed that different histological subtypes had different miRNA signatures[69] as diffuse-type showed 2 folds of proportion in upregulated miRNAs to intestinal-type GC. Specifically, low expression of let-7g and miR-433 and high expression of miR-214 were associated with unfavorable outcomes in GC patients[69]. MiRNAs have an edge on GC diagnosis potential over other epigenetic factors because they alter quickly and are easy to be detected in the early stage of GC. Yu et al[70] performed a miRNAs microarray in early GC mouse model and the result showed that miR200-family promoted the initiation of GC and the integration of miR200-family’s 15 target gene would provide superior predictive sensitivity and specificity for overall survival compared with each early GC indicator alone. Here we summarized the up- or down-regulated miRNAs in GC (Table 1).

LncRNAs

LncRNAs are longer than 200 nucleotides and exert profound influences on multiple biological functions through regulating transcription, chromatin remodeling and post-transcriptional process[71]. They work mainly in three ways: (1) Interact with mRNA, control transcription and regulate cellular signaling pathways; (2) Act as regulators of splicing and mRNA decay; (3) work as molecular decoys for miRNAs; and (4) interact with chromatin-modifying complexes or being a scaffold to maintain the structure of nuclear speckles[72-74]. Numerous lncRNAs have been uncovered the role and related mechanisms in GC. HOTAIR is a well-studied lncRNA and it is frequently overexpressed in GC, which may play a part in metastasis through following pathways: (1) Being a sponge of miR-330[75] and miR-331-3p[76] to upregulate the downstream targets; (2) Directly silencing HOXD[76] or miR34a expression[77]; (3) Regulating Wnt/β-catenin and PI3K/Akt pathways[77]; and (4) Inducing ubiquitination of Runx3[78]. Therefore, HOTAIR was considered to be a potential diagnostic and prognostic biomarker in GC. Most of lncRNAs in GC were found to be oncogenic, like H19, MNI1-AS1, MALAT1, HULC, UCA1, etc. However, some lncRNAs like CRNDE were identified to inhibit GC progression. Here we summarized the up- or down-regulated lncRNAs and the related targets and functions in GC (Table 2).
Table 2 Important lncRNAs and their targets and biological functions in gastric cancer

lncRNAs	Expression	Targets	Functions	Ref.
MIAT	Up	miR-29a-3p/HDAC4	Cell proliferation, migration and invasion	[106]
PANDAR	Up	CDKN1A	Tumor growth	[107]
FOXD2-AS1	Up	EphB3	Tumorigenesis	[108]
SMARCC2	Up	miR-551b-3p/TMPRSS4	Cell proliferation, migration	[109]
H19	Up	miR-519d-p/LDHA	Aerobic glycolysis, proliferation, and immune escape	[110]
TINCR	Up	STAU1/CDKN2B	Cell proliferation, cell cycle	[111]
CCAT2	Up	E-cadherin, LATS2	Cell proliferation, invasion	[112]
AOC4P	Up	Vimentin, MMP9	Cell proliferation, migration, invasion	[113]
CTC-497E21.4	Up	miR-22-3p/NET1	Cell cycle, proliferation, invasion	[114]
BANCR	Up	ERK1/2, NF-xB1	Cell proliferation, apoptosis, chemosensitivity	[115, 116]
HOTTIP	Up	miR-216a-5p, miR-615-3p	Chemosensitivity, cell proliferation, apoptosis	[117, 118]
AC100530.4, CTC-501O10.1, RP11-210K20.5	Up	-	Differentially expressed in GC and normal tissue	[119]
INHBA-AS1, CEBPA-AS1, AK001058	Up	-	Differentially expressed in GC and normal tissue	[120]
CYTOP	Up	miR-103/RAB10	Cell proliferation, migration, apoptosis	[121]
NKK2-1-AS1	Up	SERPINE1/VEGFR-2	Cell proliferation, angiogenesis	[122]
NEAT1	Up	miR-17-5p/TGFβR2	Angiogenesis	[123]
ZFAS1	Up	EPAS1	Recurrence, metastasis	[124]
TSPEAR-AS2	Up	EZH2/GA1, miR-1207-5p/CLDN4	Tumor progression	[125]
TMEM92-AS1	Up	YBX1/CCL5	Tumor progression	[126]
CRNDE	Down	NEDD4-1/Pten	Chemosensitivity	[127]
MEG3	Down	miR-181a-5p/ATP4B	Cell proliferation, migration, apoptosis	[128]
PCSK2-2:1	Down	-	Differentially expressed in GC and normal tissue	[129]
GNAQ-6:1	Down	-	Differentially expressed in GC and normal tissue	[130]
CTSLP4	Down	Hsp90α/1HNRNPAB	Cell migration, invasion, EMT	[131]

CircRNAs

CircRNAs are a novel class of conserved single-stranded RNA molecules derived from exonic or intronic sequences by precursor mRNA back-splicing[79]. Compared to linear RNAs, the circular structure of circRNAs confers enhanced stability to exonuclease digestion[80]. Partially similar to lncRNAs, circRNAs could also act as miRNAs sponge, regulators of alternative splicing and tools of sequestering functional proteins in gene expression and posttranscriptional modification[81]. However, some circRNAs were identified to encode functional proteins[82]. CircRNAs were reported to exert influences on tumor growth, therapeutic resistance, recurrence and metastasis[83]. GC-related sequencing data revealed a variety of circRNAs with pro- or anti-tumor roles, including CircPVT1, CircRNA_001569, CircHIPK3, etc. CiRS-7, one of the mostly investigated circRNAs, is a sponge of miR-7. MiR-7 was known as a tumor suppressor miRNA, while ciRS-7 was found to act in an oncogenic role by antagonizing miR-7-mediated PTEN/PI3K/AKT pathway in GC. Overexpression of ciRS-7 accelerated the progression of GC[84]. Undoubtedly, circRNAs are of great value in research and are emerging as a rising star in the field of cancer biology and therapy. We listed some important circRNAs, as well as their targets and functions in Table 3.
Table 3 Important circRNAs and their targets and biological functions in gastric cancer

circRNA	Expression	Targets	Functions	Ref.
circFAM73A	Up	miR-490-3p/ HMGA2	Cell proliferation, migration, CSC-like properties, chemosensitivity	[132]
circAFF2	Up	miR-6894-5p/ ANTXR1	Cell proliferation, migration, invasion	[133]
circHIPK3	Up	miR-637/ AKT1	Tumorigenesis	[134]
circVAPA	Up	miR-1258-3p/ STAT3	Chemosensitivity	[135]
circMAPI7D1	Up	HER2	Cell proliferation, apoptosis	[136]
circ_0006282	Up	miR-144-5p/ YWHAB	Cell proliferation, metastasis	[137]
circ_0081146	Up	miR-144/ HMG1B	Cell growth, migration, invasion	[138]
circ_SMAD4	Up	miR-1276 / CTNNB1	Tumorigenesis	[139]
circNEK9	Up	miR-409-3p/ MAP7	Cell proliferation, migration, invasion	[140]
circ_0004104	Up	miR-539-3p/ RNF2	Cell proliferation, metastasis, glutaminolysis	[141]
circPVT1	Up	miR-152-3p	Chemosensitivity	[142]
hsa_circ_0023409	Up	miR-542-3p/ IRS4	Cell proliferation, metastasis	[143]
circ_0044516	Up	miR-149-5p/ HuR	Cell proliferation, migration, tumor growth	[144]
circLMO7	Up	miR-30a-3p/ WNT2	Cell growth, metastasis	[145]
hsa_circ_0001829	Up	miR-155-5p/ SMAD2	Cell growth, metastasis	[146]
circCUL3	Up	miR-515-5p/STAT3/HK2	Cell proliferation, glucose consumption, lactate production, ATP quantity	[147]
circTMEM87A	Up	miR-142-5p/ULK1	Cell proliferation, metastasis	[148]
circPTPN22	Down	EMT	Cell proliferation, migration, EMT, invasion	[149]
hsa_circ_0004872	Down	miR-224/Smad4/ADAR1	Cell proliferation, migration, tumor growth, metastasis	[150]
hsa_circRNA_0009172	Down	miR-485-3p/NTRK3	Cell proliferation, migration, invasion, tumor growth	[151]
circ_002059	Down	miR-182/MT851	Cell proliferation, migration	[152]
circ-ITCH	Down	miR-199a-5p/ Klotho	Metastasis	[153]
circCUL2	Down	miR-142-3p/ ROCK2	Cell transformation, chemosensitivity, tumorigenesis	[154]

TRANSLATIONAL APPLICATION OF EPIGENETICS

Researches on epigenetics not only revealed the underlying mechanism of cancer initiation and progression, but also provided novel diagnostic and prognostic candidate biomarkers and therapeutic targets. To the best of our knowledge, biomarkers in GC ranges from pivotal proteins, non-coding RNAs to plenty of modifications with various specificity and sensitivity, as well as epigenetic liquid biopsy, some of which have already shown favorable clinical utility (Table 4). Liquid biopsy is a simple, fast and non-invasive alternative to surgical biopsies, as blood or body fluid sample is always easy to collect. A sum of circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs) including DNA, mRNA and microRNAs could be detected in patient blood or body fluid[85]. Available information obtained from liquid biopsy could help doctors with cancer diagnosis and evaluation of clinical outcomes. Up to now, most of epigenetic liquid biopsies in GC were aberrant DNA methylations such as 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), CD40 and GHSR hypermethylation and they even could be used to identify specific cancer types[86-88]. Moreover, CTCs were often detected based on miRNA or mRNA PCR assay due to its low concentration in blood.

From the therapeutic perspective, targets involved in epigenetic modifications are potential drug targets and they are mainly divided into two groups including enzymes in histone acetylation (HAT or HDAC) and methylation (DNMT or DMT), and non-coding RNAs (miRNA or lncRNA). Some epigenetic drugs have been approved by FDA such as HDAC inhibitors (SAHA) in treatment of cutaneous T-cell lymphoma and DNMT inhibitors (vidaza, decitabine) in treatment of myelodysplastic syndromes [2]. However, most of epigenetic drugs are undergoing clinical or preclinical tests and none of them were currently ready for clinical utility in GC. As the rapid development...
Table 4: Examples of biomarkers in gastric cancer

Genes	Purpose	Findings	Ref.
RUNX3	Diagnosis/prognosis	Methylation status correlates with liver metastasis	[155]
MLH1	Diagnosis/prognosis	Methylation status correlates with tumor stage	[156]
RASSF1A	Diagnosis/prognosis	Methylation status correlates with advanced stage, and lymph node positivity	[157]
MGMT	Diagnosis/prognosis	Methylation status correlates with distant metastasis	[158]
ANOS1	Diagnosis	Expression correlates with tumor progression	[158]
RPRM	Prognosis	Expression correlates with survival	[159]
CTD-2510F5.4	Diagnosis/prognosis	Expression correlates with clinicopathological classification and survival	[160]
lncRNA-GC1	Diagnosis	Circulating exosomal level correlates with early detection and disease progression	[161]
mesothelin	Diagnosis	Expression correlates with Peritoneal Recurrence	[162]
MiR-379-5p+MiR-410-3p	Prognosis	Expression correlates with metastasis	[163]
S100A9	Diagnosis /Prognosis	Expression correlates with tumor aggressiveness	[164]
Notch1/2/3/4	Prognosis	Expression correlates with immune infiltration	[165]
KAT2A	Diagnosis	Expression correlates with depth of tumor invasion and tumor stage	[166]

Table 5: Examples of epigenetic drugs in gastric cancer

Drugs	Targets	Status	Ref.
Clinical			
Vorinostat + capecitabine + cisplatin	HDAC	Completed phase II test	[167]
Vorinostat + folinic acid+ 5-flourouracil+ irinotecan	HDAC	Completed phase I test	[168]
Azacytidine + epirubicin/oxaliplatin/capecitabine	DNMT	Completed phase I test	[169]
Cholecalciferol + HDACi	HDAC	Induce apoptosis in GC cells; Prevent bone loss in preliminary trials;	[170, 171]
Preclinical			
SAHA	HDAC	Suppress proliferation, induce apoptosis, chemosensitivity in GC cells	[172, 173]
LBH589	HDAC	Suppress proliferation, induce chemosensitivity	[174, 175]
Resveratrol	HAT, HDAC	Suppress proliferation, invasion, tumorigenesis in GC cells	[176, 177]
Curcumin	HAT, HDAC	Suppress viability, proliferation, migration, induce autophagy, apoptosis in GC cells	[178, 179]
Quercetin	HAT, HDAC	Induce apoptosis, cell cycle arrest in GC cells	[180, 181]
Garcinol	HAT, HDAC, SIRTUIN	Suppress oxidation, inflammation, tumorigenesis in GC cells	[182, 183]
Sodium butyrate	HAT, HDAC	Induce apoptosis in GC cells	[184]
Tenovin 6	SIRTUIN	Induce apoptosis, autophagy in GC cells	[185]
DZNEP	HMT	Suppress proliferation, apoptosis, invasion, induce apoptosis in GC cells	[186, 187]
GSK126	HMT	Suppress proliferation, cell cycle angiogenesis EMT, tumorigenesis in GC cells	[188, 189]
Compound 26	Lysine demethylase	Suppress growth, migration, invasion in GC cells	[190]
of GC epigenetics research in recent decades, it is of great significance to integrate existing findings to ensure efficient translation applications (Table 5).

CONCLUSION

Accumulating evidence revealed the critical role of epigenetic alterations in cancer initiation and progression. Herein, we comprehensively discussed the functions and mechanisms of epigenetic factors in GC. Drugs targeted HAT, HDAC, DNMT are undergoing preclinical and clinical trials, which is promising for improving the efficacy and survival to GC. However, epigenetic studies in GC are still challenged by lack of innovative findings in new types of histone modifications. Succinylation and sumoylation, for instance, have already been reported to participate in tumorigenesis in the future. Multiple protein omics sequencing will further broaden epigenetic investigation in other gastrointestinal cancers including esophageal, colorectal and liver cancer. We believe combined technologies like single cell sequencing and multiple protein omics sequencing will further broaden epigenetic investigation in gastric malignancy and GC patients will benefit from numerous epigenetic drugs in the future.

REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* 2018; 68: 394-424 [PMID: 30207593 DOI: 10.3322/cac2.12192]
2. Theuer CP, Kuroasaki T, Ziegas A, Butler J, Anton-Culver H. Asian patients with gastric carcinoma in the United States exhibit unique clinical features and superior overall and cancer specific survival rates. *Cancer* 2000; 89: 1883-1892 [PMID: 11064344 DOI: 10.1002/1097-0142(20001101)89:9<1883::aid-cncr3>3.3.co;2-8]
3. Jin H, Pinheiro PS, Callahan KE, Altekruse SF. Examining the gastric cancer survival gap between Asians and whites in the United States. *Gastric Cancer* 2017; 20: 573-582 [PMID: 27862287 DOI: 10.1007/s10120-016-0667-4]
4. Cheong JH, Yang HK, Kim H, Kim WH, Kim YW, Kook MC, Park YK, Kim HH, Lee HS, Lee KH, Gu MJ, Kim HY, Lee J, Choi SH, Hong S, Kim JW, Choi YY, Hyung WJ, Jang E, Huh YM, Noh SH. Predictive test for chemotherapy response in resectable gastric cancer: a multi-cohort, retrospective analysis. *Lancet Oncol* 2018; 19: 629-638 [PMID: 29567071 DOI: 10.1016/S1470-2045(18)30108-6]
5. Vogelaar IP, van der Post RS, Bisseling TM, van Krieken JH, Ligtengberg MJ, Hoogerbrugge N. Familial gastric cancer: detection of a hereditary cause helps to understand its etiology. *Hered Cancer Clin Pract* 2012; 10: 18 [PMID: 23231819 DOI: 10.1186/1897-4287-10-18]
6. Tan P, Yeoh KG. Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma. *Gastroenterology* 2015; 149: 1153-1162.e3 [PMID: 26073375 DOI: 10.1053/j.gastro.2015.05.059]
7. Cristescu R, Lee J, Nebzhon M, Kim KM, Ting JC, Wong SS, Liu J, Yue YG, Wang J, Yu K, Ye XS, Do IG, Liu S, Gong L, Fu J, Jin JG, Choi MG, Sohn TS, Lee JH, Bae JM, Kim ST, Park SH, Sohn I, Jung SH, Tan P, Chen R, Hardwick J, Kang WK, Ayers M, Hongyue D, Reinhard C, Loboda XS, Do IG, Liu S, Gong L, Fu J, Jin JG, Choi MG, Sohn TS, Lee JH, Bae JM, Kim ST, Park SH, Sohn I, Jung SH, Tan P, Chen R, Hardwick J, Kang WK, Ayers M, Hongyue D, Reinhard C, Loboda XS, Kim S, Aggarwal A. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. *Nat Med* 2015; 21: 449-456 [PMID: 25894828 DOI: 10.1038/nm.3850]
8. Cancer Genome Atlas Research. Network. Comprehensive molecular characterization of gastric adenocarcinoma. *Nature* 2014; 513: 202-209 [PMID: 25079317 DOI: 10.1038/nature13480]
9. Kornberg RD. Chromatin structure: a repeating unit of histones and DNA. *Science* 1974; 184: 868-871 [PMID: 4825889 DOI: 10.1126/science.184.4139.868]
10. Calcagno DQ, Wisnieski F, Mota ERDS, Maia de Sousa SB, Costa da Silva JM, Leal MF, Gigek CO, Santos LC, Rasmussen LT, Assumpção PP, Burbano RR, Smith MA. Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives. *Epigenomics* 2019; 11: 349-362 [PMID: 30672330 DOI: 10.2126/epi-2018-0081]
11. Yang G, Yuan Y, Yuan H, Wang J, Yun H, Geng Y, Zhao M, Li L, Weng Y, Liu Z, Feng J, Bu Y, Liu L, Wang B, Zhang X. Histone acetyltransferase 1 is a succinyltransferase for histones and non-histones and promotes tumorigenesis. *EMBO Rep* 2021; 22: e50967 [PMID: 33372411 DOI: 10.15252/embr.202050967]
12. Du L, Fakhir MG, Rosen ST, Chen Y. SUMOylation of E2F1 Regulates Expression of EZH2. *Cancer Res* 2020; 80: 4212-4223 [PMID: 32816857 DOI: 10.1158/0008-5472.CAN-20-1259]
13. Kishore C. Epigenetic regulation and promising therapies in colorectal cancer. *Curr Mol Pharmacol* 2021 [PMID: 33573584 DOI: 10.2174/1874467214666210126105345]
14. Wan J, Liu H, Ming L. Lyssine covalent modification in hepatocellular carcinoma progression. *Biomed Pharmacother* 2019; 111: 976-982 [PMID: 30841477 DOI: 10.1016/j.biopha.2018.12.148]
15. Jenke R, Reiling N, Hansen FK, Aigner A, Büch T. Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives. *Cancers (Basel)* 2021; 13
Saha S. Histone Modifications and Other Facets of Epigenetic Regulation in Trypanosomatids: Leaving Their Mark. mBio 2020; 11 [PMID: 32873574 DOI: 10.1128/mBio.01079-20]

Park YS, Jin MY, Kim YJ, Youk JH, Kim BS, Jang SJ. The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol 2008; 15: 1968-1976 [PMID: 18470569 DOI: 10.1245/s10434-008-9927-9]

Wisnieski F, Leal MF, Calcagno DQ, Santos LC, Gigek CO, Chen ES, Artigiani R, Demachki S, Assumpção PP, Lourenço LG, Burbano RR, Smith MC. BMP5β Is a Tumor Suppressor Gene Regulated by Histone Acetylation in Gastric Cancer. J Cell Biochem 2017; 118: 869-877 [PMID: 27748538 DOI: 10.1002/jcb.25766]

Wisnieski F, Calcagno DQ, Leal MF, Chen ES, Gigek CO, Santos LC, Pontes TB, Rasmussen LT, Payão SL, Assumpção PP, Lourenço LG, Demachki S, Artigiani R, Burbano RR, Smith MC. Differential expression of histone deacetylase and acetyltransferase genes in gastric cancer and their modulation by trichostatin A. Tumour Biol 2014; 35: 6373-6381 [PMID: 24668547 DOI: 10.1007/s13277-014-1841-0]

Kim MS, Lee SH, Yoo NJ. Frameshift mutations of tumor suppressor gene EP300 in gastric and colorectal cancers with high microsatellite instability. Hum Pathol 2013; 44: 2064-2070 [PMID: 23759652 DOI: 10.1016/j.humpath.2012.11.027]

Deng R, Zhang P, Liu W, Zeng X, Ma X, Shi L, Wang T, Yin Y, Chang W, Wang G, Tao K. HDAC is indispensable for IFN-γ-induced B7-H1 expression in gastric cancer. Clin Epigenetics 2018; 10: 153 [PMID: 30557988 DOI: 10.1186/s13148-018-0589-6]

Wisnieski F, Calcagno DQ, Leal MF, Santos LC, Gigek CO, Chen ES, Demachki S, Artigiani R, Assumpção PP, Lourenço LG, Burbano RR, Smith MC. CDKN1A histone acetylation and gene expression relationship in gastric adenocarcinomas. Clin Exp Med 2017; 17: 121-129 [PMID: 28587008 DOI: 10.1007/s10328-015-0400-3]

Byun SW, Chang YJ, Chung IS, Moss SF, Kim SS. Helicobacter pylori decreases p27 expression through the delta opioid receptor-mediated inhibition of histone acetylation within the p27 promoter. Cancer Lett 2012; 326: 96-104 [PMID: 22867947 DOI: 10.1016/j.canlet.2012.07.032]

Michalak EM, Burr ML, Bannister AJ, Dawson MA. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol 2019; 20: 573-589 [PMID: 31270442 DOI: 10.1186/s13054-019-0143-1]

Song Y, Wu F, Wu J. Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. J Hematol Oncol 2016; 9: 49 [PMID: 27316347 DOI: 10.1186/s13045-016-0279-9]

Jarrold J, Davies CC. PRMTs and Arginine Methylation: Cancer's Best-Kept Secret? Trends Mol Med 2019; 25: 993-1009 [PMID: 31259099 DOI: 10.1016/j.molmed.2019.05.007]

Torres IO, Jarrold J, Davies CC. PRMTs and Arginine Methylation: Cancer’s Best-Kept Secret? Trends Mol Med 2019; 25: 993-1009 [PMID: 31259099 DOI: 10.1016/j.molmed.2019.05.007]

Wong J, Heo M, Park J. Histone acetylation and gene expression in cancer. J Biochem 2016; 159: 13197-13201 [PMID: 27572307 DOI: 10.18632/jbiochem.11625]

Elmaci İ, Altinoz MA, Sari R, Bolukbasi FH. Phosphorylated Histone H3 (PHH3) as a Novel Cell Proliferation Marker and Prognosticator for Meningeal Tumors: A Short Review. Immunohistochem Mol Morphol 2018; 627-631 [PMID: 28777144 DOI: 10.1097/PAL.0000000000000499]

Besant PG, Attwood PV. Histone H4 histidine phosphorylation: kinases, phosphatases, liver regeneration and cancer. Biochem Soc Trans 2012; 40: 290-293 [PMID: 22267080 DOI: 10.1042/BST20110605]

Ajiro K, Yoda K, Utsumi K, Nishikawa Y. Alteration of cell cycle-dependent histone phosphorylations by okadaic acid. Induction of mitosis-specific H3 phosphorylation and chromatin condensation in mammalian interphase cells. J Biol Chem 1996; 271: 13197-13201 [PMID: 8662672 DOI: 10.1074/jbc.271.22.13197]

Humphrey SJ, James DE, Mann M. Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation. Trends Endocrinol Metab 2015; 26: 676-687 [PMID: 26498855 DOI: 10.1016/j.tem.2015.09.013]

Murakami Y. Phosphorylation of repressive histone code readers by casein kinase 2 plays diverse roles in heterochromatin regulation. J Biochem 2019; 166: 3-6 [PMID: 31198932 DOI: 10.1093/jb/mvz045]

Qi H, Yang Z, Dai C, Wang R, Ke X, Zhang S, Xiang X, Chen K, Li C, Luo J, Shao J, Shen J.
STAT3 activates MSK1-mediated histone H3 phosphorylation to promote NFAT signaling in gastric carcinogenesis. *Onecogene* 2020; 9: [PMID: 32041943 DOI: 10.1038/s41389-020-0195-2]

Khan SA, Annekar R, Khade B, Barreto SG, Ramadwar M, Shrikhande SV, Gupta S. p38- MAPK/MSK1-mediated overexpression of histone H3 serine 10 phosphorylation defines distance-dependent prognostic value of negative resection margin in gastric cancer. *Clin Epigenetics* 2016; 8: 88 [PMID: 27588146 DOI: 10.1186/s13148-016-0255-9]

Takahashi H, Murai Y, Tsuneyama K, Nomoto K, Okada E, Fujita H, Takano Y. Overexpression of phosphorylated histone H3 is an indicator of poor prognosis in gastric adenocarcinoma patients. *Appl Immunohistochem Mol Morphol* 2006; 14: 296-302 [PMID: 16932020 DOI: 10.1097/01029309-200609000-00007]

Xu J, Tian F, Chen X, Liu Z, Wu C, Zhao Z. Ras-ERK1/2 signaling participates in the progression of gastric cancer through repressing Aurora B-mediated H1.4 phosphorylation at Ser27. *J Cell Physiol* 2020 [PMID: 31907925 DOI: 10.1002/jcp.29432]

Wang J, Qiu Z, Wu Y. Ubiquitin Regulation: The Histone Modifying Enzyme's Story. *Cells* 2018; 7 [PMID: 30150556 DOI: 10.3390/cells7090118]

Swatek KN, Komander D. Ubiquitin modifications. *Cell Res* 2016; 26: 399-422 [PMID: 27012465 DOI: 10.1038/cr.2016.39]

Wilkinson KD. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. *FASEB J* 1997; 11: 1245-1256 [PMID: 9409543 DOI: 10.1096/fasebj.11.14.9409543]

Eletr ZM, Wilkinson KD. Regulation of proteolysis by human deubiquitinating enzymes. *Biochim Biophys Acta* 2014; 1843: 114-128 [PMID: 23845989 DOI: 10.1016/j.bbamcr.2013.06.027]

Hahn MA, Dickson KA, Jackson S, Clarkson A, Gill AJ, Marsh DJ. The tumor suppressor CDC7 interacts with the ring finger proteins RNF20 and RNF40 and is required for the maintenance of histone H2b monoubiquitination. *Hum Mol Genet* 2012; 21: 559-568 [PMID: 22021426 DOI: 10.1093/hmg/ddr490]

Wang ZJ, Yang JL, Wang YP, Lou JY, Chen J, Liu C, Guo LD. Decreased histone H2b monoubiquitination in malignant gastric carcinoma. *World J Gastroenterol* 2013; 19: 8099-8107 [PMID: 24307806 DOI: 10.3748/wjg.v19.i44.8099]

Zhang Q, Wu Y, Xu Q, Ma F, Zhang CY. Recent advances in biosensors for in vitro detection and in vivo imaging of DNA methylation. *Biosens Bioelectron* 2021; 171: 112712 [PMID: 33045657 DOI: 10.1016/j.bios.2020.112712]

Ortiz-Barahona V, Joshi RS, Esteller M. Use of DNA methylation profiling in translational oncology. *Semin Cancer Biol* 2020 [PMID: 33352265 DOI: 10.1016/j.semcancer.2020.12.011]

Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. *J Mol Biol* 1987; 196: 261-282 [PMID: 3654647 DOI: 10.1016/0022-2836(87)90689-9]

Héberlé É, Bardet AF. Sensitivity of transcription factors to DNA methylation. *Essays Biochem* 2019; 55: 637-741 [PMID: 31755929 DOI: 10.1042/EBC20190033]

Wang M, Li Y, Gao J, Zhou J, Gu L, Shen L, Deng D. p16 Methylation is associated with chemosensitivity to fluorouracil in patients with advanced gastric cancer. *Med Oncol* 2014; 31: 98 [PMID: 24816738 DOI: 10.1186/s12332-014-0988-2]

Balgkouranidou I, Matthais D, Karayianakis A, Bolanaki H, Michailidis P, Xenidis N, Amarnatidis K, Chelis L, Trypsianis G, Chatzaki E, Lianidou ES, Kakolyris S. Prognostic role of APC and RASSF1A promoter methylation status in cell free circulating DNA of operable gastric cancer patients. *Mutat Res* 2015; 778: 46-51 [PMID: 26073472 DOI: 10.1016/j.mrfmmm.2015.05.002]

Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. *Cancer Cell* 2014; 26: 577-590 [PMID: 25263941 DOI: 10.1016/j.ccr.2014.07.028]

Kim Y, Wen X, Jeong S, Cho NY, Kim WH, Kang GH. Combinatory low methylation statuses of SAT-α and L1 are associated with shortened survival time in patients with advanced gastric cancer. *Gastric Cancer* 2019; 22: 37-47 [PMID: 29926315 DOI: 10.1007/s12027-018-0852-8]

Kurklu B, Whitehead RH, Ong EK, Minamoto T, Fox JG, Mann JR, Judd LM, Giraud AS, Menheniott TR. Lineage-specific RUNX3 hypomethylation marks the preneoplastic immune component of gastric cancer. *Oncogene* 2015; 34: 2856-2866 [PMID: 25088199 DOI: 10.1038/onc.2014.233]

Leeodolter A, Alonso S, González B, Ebert MP, Vieth M, Röcken C, Wex T, Peitz U, Malfertheiner P, Peruch M. Somatic DNA Hypomethylation in H. pylori-Associated High-Risk Gastritis and Gastric Cancer: Enhanced Somatic Hypomethylation Associates with Advanced Stage Cancer. *Clin Transl Gastroenterol* 2015; 6: e85 [PMID: 25928088 DOI: 10.1038/ctg.2015.84]

Leung WK, Man EP, Yu J, Go MY, To KF, Yamakoa Y, Cheng YV, Ng EK, Sung JY. Effects of Helicobacter pylori eradication on methylation status of E-cadherin gene in noncancerous stomach. *Clin Cancer Res* 2006; 12: 3216-3221 [PMID: 16707623 DOI: 10.1158/1078-0432.Ccr-05-2442]

Perri F, Cotugno R, Piegoli A, Merla A, Quittadamo M, Gentile A, Pilotto A, Annessi V, Andreulli A. Ablation DNA methylation in non-neoplastic gastric mucosa of H. Pylori infected patients and effect of eradication. *Am J Gastroenterol* 2007; 102: 1361-1371 [PMID: 17509026 DOI: 10.1111/j.1572-0241.2007.01284.x]

Niwa T, Toyoda T, Tsuchamoto T, Mori A, Tatematsu M, Ushijima T. Prevention of Helicobacter pylori-induced gastric cancers in gerbils by a DNA demethylating agent. *Cancer Prev Res (Phila)* 2013; 6: 263-270 [PMID: 23559452 DOI: 10.1158/1940-6207.CAPR-12-0369]
60 Nakajima T, Enomoto S, Yamashita S, Ando T, Nakanishi Y, Nakazawa K, Oda I, Gotoda T, Ushijima T. Persistence of a component of DNA methylation in gastric mucosa after Helicobacter pylori eradication. J Gastroenterol. 2010; 45: 37-44 [PMID: 19821005 DOI: 10.1007/s00535-009-0142-7]
61 Park JH, Park J, Choi JK, Lyu J, Bae MG, Lee YG, Bae JB, Park DY, Yang HK, Kim TY, Kim YJ. Identification of DNA methylation changes associated with human gastric cancer. BMC Med Genomics 2011; 4: 82 [DOI: 10.1186/1755-8794-4-82]
62 Muhammad JS, Elaldd MA, Khoder G. Helicobacter pylori-induced DNA Methylation as an Epigenetic Modulator of Gastric Cancer: Recent Outcomes and Future Direction. Pathogens 2019; 8 [PMID: 30781778 DOI: 10.3390/pathogens8010023]
63 Tekcham DS, Tiwari PK. Non-coding RNAs as emerging molecular targets of gallbladder cancer. Gene 2016; 588: 79-85 [PMID: 27131889 DOI: 10.1016/j.gene.2016.04.047]
64 Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843-854 [PMID: 8252621 DOI: 10.1016/0092-8674(93)90529-3]
65 Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403: 901-906 [PMID: 10706298 DOI: 10.1038/3502607]
66 Tsai MM, Wang CS, Tsai CY, Huang HW, Chi HC, Lin YH, Lu PH, Lin KH. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer. Int J Mol Sci 2016; 17 [PMID: 27322246 DOI: 10.3390/ijms17060945]
67 Wang J, Sun J, Wang J, Song Y, Gao P, Shi J, Chen P, Wang Z. Long noncoding RNAs in gastric cancer: functions and clinical applications. Onco Targets Ther 2019; 11: 681-697 [PMID: 29629639 DOI: 10.2147/OTT.S95412]
68 Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-233 [PMID: 19167326 DOI: 10.1016/j.cell.2009.01.002]
69 Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu CG, Oue N, Nasui W, Yoshida K, Sasaki H, Nomura S, Seto Y, Kaminishi M, Calin GA, Croce CM. Regulating gene expression through RNA nuclear retention. Nat Genet 2011; 10.1038/ng.2521
70 Yu L, Wu D, Gao H, Balic JJ, Tsykin A, Han TS, Liu YD, Kennedy CL, Li JK, Mao JQ, Tan P, Oshima M, Goodall GJ, Jenkins BJ. Clinical Utility of a STAT3-Regulated miRNA-200 Family Member in Gastric Cancer. Clin Cancer Res 2017; 23: 1459-1472 [PMID: 29330205 DOI: 10.1158/1078-0432.CCR-17-2485]
71 Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet 2009; 10: 155-159 [PMID: 19189922 DOI: 10.1038/nrg2521]
72 Marchese FP, Huarte M. Long non-coding RNAs and chromatin modifiers: their place in the epigenetic code. Epigenetics 2014; 9: 21-26 [PMID: 24335342 DOI: 10.4161/epi.27472]
73 Prasant VH, Prasanth SG, Xuan Z, Hearns S, Freier SM, Bennett CF, Zhang MQ, Spector DL. Regulating gene expression through RNA nuclear retention. Cell 2005; 123: 249-263 [PMID: 16239143 DOI: 10.1016/j.cell.2005.08.033]
74 Clemson CM, Hutchinson IN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 2009; 33: 717-726 [PMID: 19217333 DOI: 10.1016/j.molcel.2009.01.026]
75 Bie L, Luo S, Li D, Wei Y, Mu Y, Chen X, Wang S, Guo P, Gu X. HOTAIR Competitively Binds MiRNA330 as a Molecular Sponge to Increase the Resistance of Gastric Cancer to Trastuzumab. Curr Cancer Drug Targets 2020; 20: 700-709 [PMID: 32364078 DOI: 10.2174/15680096206662005041410000]
Epigenetics for gastric cancer

Shanehbandi D, Baghbani E, Mohammadi A, Baradaran B. Downregulation of miR-146a promotes invasion and metastasis by targeting COL1A1.

DOI: 10.1007/s13238-018-0550-7

Shi Y, Samuelson LC, Iliopoulos D, Merchant JL. MiR130b from human cancers.

DOI: 10.1021/acs.chembioeng.8b00014

Wu K, Yuan Z, Fan DM, Shi Y. MicroRNA-92a-1-5p increases CDX2 by targeting FOXD1 in bile acids-induced gastric intestinal metaplasia.

DOI: 10.1002/2211-5463.12838

Manoochehri M. GHSR DNA hypermethylation is a new epigenetic biomarker for gastric cancer patients: circulating tumor cells and cell-free nucleic acids.

DOI: 10.1002/jcb.26201

Pan H, Li T, Jiang Y, Pan C, Ding Y, Huang Z, Yu H, Kong D. Overexpression of Circular RNA circR7 Abrogates the Tumor Suppressive Effect of miR-7 on Gastric Cancer via PTEN/PI3K/akt Signaling Pathway.

J Cell Biochem 2018; 119: 440–446

DOI: 10.1002/jcb.26201

Tsujiru M, Ichikawa D, Konishi H, Komatsu S, Shiozaki A, Otsuji E. Liquid biopsy of gastric cancer patients: circulating tumor cells and cell-free nucleic acids. World J Gastroenterol 2014; 20: 3256-3265

DOI: 10.3748/wjg.v20.i12.3265

Li W, Zhang X, Lu X, You L, Song Y, Luo Z, Zhang J, Nie J, Zheng W, Xu D, Wang Y, Dong Y, Yu S, Hong J, Shi J, Hao H, Luo F, Hua L, Wang P, Qian X, Yuan F, Wei L, Cui M, Zhang T, Liao Q, Dai M, Liu Z, Chen G, Meckel K, Adhikari S, Jia G, Bissonnette MB, Zhao Y, Zhang W, He C, Liu J. 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers. Cell Res 2017; 27: 1243-1257

DOI: 10.1038/cr.2017.121

Amini M, Ghorban K, Mokhtarzadeh A, Dadmanesh M, Baradaran B. CD40 DNA hypermethylation in novel gastric tumors; as a novel diagnostic biomarker. Life Sci 2020; 254: 117774

DOI: 10.1016/j.lfs.2020.117774

Amini M, Foroughi K, Talebi F, Aghagolzade Haji H, Kamali F, Jandaghi P, Hoheisel JD, Manoochehri M. GHSR DNA hypermethylation is a new epigenetic biomarker for gastric adenocarcinoma and beyond. J Cell Physiol 2019 [PMID: 30677130 DOI: 10.1002/jcp.28179]

Xu G, Meng L, Yuan D, Li K, Zhang Y, Dang C, Zha K. MEG3/miR21 axis affects cell mobility by suppressing epithelialmesenchymal transition in gastric cancer. Oncol Rep 2018; 40: 39-48

DOI: 10.13792/or.2018.6424

Yuan Y, Zhang Y, Han L, Sun S, Shu Y. miR-183 inhibits autophagy and apoptosis in gastric cancer cells by targeting ultraviolet radiation resistance-associated gene. Int J Mol Med 2018; 42: 3562-3570

DOI: 10.1002/jmm.2018.3871

Lin W, Miao Y, Meng X, Huang Y, Zhao W, Ruan J. miRNA-765 mediates multidrug resistance via targeting BATF2 in gastric cancer cells. FEBS Open Bio 2020; 10: 1021-1030

DOI: 10.1002/2211-5463.12383

Shi SS, Zhang HP, Yang CQ, Li LN, Shen Y, Zhang YQ. Exosomal miR-155-5p promotes proliferation and migration of gastric cancer cells by inhibiting TP53INP1 expression. Pathol Res Pract 2020, 216: 152286

DOI: 10.1016/j.prp2020.152286

Ding L, Li Q, Chakrabarti J, Munoz A, Faure-Kumar E, Ocaz-Ruiz R, Razumilava N, Zhang G, Hayes MH, Sontz RA, Mendoza ZE, Mahurkar S, Greenenson JK, Perez-Perez G, Hanh NTH, Zavers Y, Samuelson LC, Iliopoulos D, Merchant JL. MiR130b from Schlangen’s MDSCs stimulates epithelial proliferation and correlates with preneoplastic changes prior to gastric cancer. Gut 2020; 69: 1750-1761

DOI: 31908446

DOI: 10.1053/j.gastro.2018.11.059

Lu Z, Lao T, Pang T, Du Z, Yin X, Cui H, Fang G, Xue X. MALAT1 promotes gastric adenocarcinoma through the MALAT1/miR-181a-5p/ACT3 axis. Open Biol 2019; 9: 190095

DOI: 31480991 DOI: 10.1098/rsob.190095

Li T, Guo H, Li H, Jiang Y, Zhuang K, Lei C, Wu J, Zhou H, Zhu R, Zhao X, Lu Y, Shi C, Nie Y, Wu K, Yuan Z, Fan DM, Shi Y. MicroRNA-92a-1-5p increases CDX2 by targeting FOXD1 in bile acids-induced gastric intestinal metastasis. Gut 2019; 68: 1751-1763

DOI: 30635407

DOI: 10.1136/gutjnl-2017-315181

Han TS, Voon DC, Oshima H, Nakayama M, Echizen K, Sakai E, Yong ZWE, Murakami K, Yu L, Minamoto T, Ock CY, Jenkins BJ, Kim SJ, Yang HK, Oshima M. Interleukin 1 Up-regulates MicroRNA 135b to Promote Inflammation-Associated Gastric Carcinogenesis in Mice. Gastroenterology 2019; 156: 1140-1155.e4

DOI: 10.1053/j.gastro.2018.11.059

Lu Z, Lao T, Pang T, Du Z, Yin X, Cui H, Fang G, Xue X. MALAT1 promotes gastric adenocarcinoma through the MALAT1/miR-181a-5p/ACT3 axis. Open Biol 2019; 9: 190095

DOI: 31480991 DOI: 10.1098/rsob.190095

Xia M, Wei J, Tong K. MiR-224 promotes proliferation and migration of gastric cancer cells through targeting PAK4. Pharmazie 2016; 71: 460-464

DOI: 29442033 DOI: 10.1691/ph.2016.6500

Shi Y, Duan Z, Zhang X, Wang G, Li F. Down-regulation of the let-7i facilitates gastric cancer invasion and metastasis by targeting COL1A1. Protein Cell 2019; 10: 143-148

DOI: 10.1007/s13323-018-0550-7

Shomali N, Shirafkan N, Dujif PHG, Ghasabi M, Babaloo Z, Yousef M, Mansoori B, Asadi M, Shahneshbandi D, Baghbanie E, Mohammadi A, Baradaran B. Downregulation of miR-146a promotes cell migration in Helicobacter pylori-negative gastric cancer. J Cell Biochem 2019; 120: 9495-9505

DOI: 30537266 DOI: 10.1002/jcb.28225

Zhang W, Liao K, Liu D. MiRNA-12129 Suppresses Cell Proliferation and Block Cell Cycle Progression by Targeting SIRT1 in GASTRIC Cancer. Technol Cancer Res Treat 2020; 19: 153033820928144

DOI: 32508267 DOI: 10.1177/153033820928144

Feng Q, Wu X, Li F, Ning B, Lu X, Zhang Y, Pan Y, Guan W. miR-27b inhibits gastric cancer
metastasis by targeting NR2F2. *Protein Cell* 2017; 8: 114-122 [PMID: 27844448 DOI: 10.1007/s13238-016-0340-z]

102 **Wu K**, Zou J, Lin C, Jie ZG. MicroRNA-140-5p inhibits cell proliferation, migration and promotes cell apoptosis in gastric cancer through the negative regulation of THY1-mediated Notch signaling. *Biosci Rep* 2019; 39 [PMID: 31123165 DOI: 10.1042/bsr20181434]

103 **Zhang Y**, Yuan Y, Zhang Y, Cheng L, Zhou X, Chen K. SNHG1 accelerates cell migration and invasion through regulating miR-34a-Snail-EMT axis in gastric cancer. *Cell Cycle* 2020; 19: 142-152 [PMID: 31814518 DOI: 10.1080/15384101.2019.1699753]

104 **Fan Y**, Shi Y, Lin Z, Huang X, Li J, Huang W, Shen D, Zhang G, Liu W. miR-9-5p Suppresses Malignant Biological Behaviors of Human Gastric Cancer Cells by Negative Regulation of TNAIP8L3. *Dig Dis Sci* 2019; 64: 2823-2829 [PMID: 31140050 DOI: 10.1007/s10620-019-05626-2]

105 **Wang CQ**. MiR-195 reverses 5-FU resistance through targeting HMGAl in gastric cancer cells. *Eur Rev Med Pharmacol Sci* 2019; 23: 3771-3778 [PMID: 31115003 DOI: 10.26355/eurrev_201905_17803]

106 **Li Y**, Wang K, Wei Y, Yao Q, Zhang Q, Hu Z, Zhu G. IncRNA-MIAT regulates cell biological behaviors in gastric cancer through a mechanism involving the miR-29a-3p-HDAC4 axis. *Onco Rep* 2017; 38: 3465-3472 [PMID: 29039602 DOI: 10.3892/or.2017.6020]

107 **Liu J**, Ben Q, Lu E, He X, Yang X, Ma J, Zhang W, Wang Z, Liu T, Zhang J, Wang H. Long noncoding RNA PANDAR blocks CDK1A1 gene transcription by competitive interaction with P53 protein in gastric cancer. *Cell Death Dis* 2018; 9: 168 [PMID: 2941601 DOI: 10.1038/s41419-017-0246-6]

108 **Xu TP**, Wang WY, Ma P, Shuai Y, Zhao K, Wang YF, Li W, Xia R, Chen WM, Zhang EB, Shu YQ. Upregulation of the long noncoding RNA FOXD2-AS1 promotes carcinogenesis by epigenetically silencing EphB3 through EZH2 and LSD1, and predicts poor prognosis in gastric cancer. *Oncogene* 2018; 37: 5020-5036 [PMID: 29789713 DOI: 10.1016/j.oncog.2018-03-089]

109 **Yuan H**, Chen Z, Bai S, Wei H, Wang Y, Ji R, Guo Q, Li Q, Ye Q, Wu J, Zhou Y, Qiao L. Molecular mechanisms of IncRNA SMARCC2/miR-551b-3p/TMPRSS4 axis in gastric cancer. *Cancer Lett* 2018; 418: 84-96 [PMID: 29337109 DOI: 10.1016/j.canlet.2018.01.032]

110 **Sun L**, Li J, Yan W, Yao Z, Wang R, Zhou X, Wu H, Zhang G, Shi T, Chen W. H19 promotes glycolysis, proliferation, and immune escape of gastric cancer cells through the microRNA-519d-3p/lactate dehydrogenase A axis. *Cancer Sci* 2021; 112: 2245-2259 [PMID: 33756038 DOI: 10.1111/cas.14986]

111 **Xu TP**, Wang YF, Xiong WL, Ma P, Wang WY, Chen WM, Huang MD, Xia R, Wang R, Zhang EB, Liu YW, De W, Shu YQ. EZF1 induces TINCR transcriptional activity and accelerates gastric cancer progression via activation of TINCR/STAU1/CDKN2B signaling axis. *Cell Death Dis* 2017; 8: e2837 [PMID: 28569791 DOI: 10.1038/cddis.2017.205]

112 **Wang YJ**, Liu JZ, Lv P, Deng Y, Gao JY, Wang Y. Long non-coding RNA CCAT2 promotes gastric cancer proliferation and invasion by regulating the E-cadherin and LATS2. *Mol Cancer* 2021; 20: 152 [PMID: 34103682 DOI: 10.1039/abcs/gnnab071]

113 **Zhang K**, Lu C, Huang X, Cui J, Li J, Gao Y, Liang W, Liu Y, Sun Y, Liu H, Wei B, Chen L. Long noncoding RNA AOC4P regulates tumor cell proliferation and invasion by epithelial-mesenchymal transition in gastric cancer. *Therap Adv Gastroenterol* 2019; 12: 1756284819827697 [PMID: 30815034 DOI: 10.1177/1756284819827697]

114 **Zong W**, Feng W, Jiang Y, Ju S, Cui M, Jing R. Evaluating the diagnostic and prognostic value of serum long non-coding RNA CTC-497E21.4 in gastric cancer. *Clin Chem Lab Med* 2019; 57: 1063-1072 [PMID: 30763252 DOI: 10.1515/clinmc-2018-0929]

115 **Miao X**, Liu Y, Fan Y, Wang G, Zhu H. LncRNA BANCR Attenuates the Killing Capacity of Cisplatin on Gastric Cancer Cell Through the ERK1/2 Pathway. *Cancer Manag Res* 2021; 13: 287-296 [PMID: 33469371 DOI: 10.2147/CMAJ.S269679]

116 **Zhang ZX**, Liu QZ, Jiang B, Lu XY, Ning XF, Yuan CT, Wang AL. BRAF activated non-coding RNA (BANCR) promoting gastric cancer cells proliferation via regulation of NF-kB1. *Biochem Biophys Res Commun* 2015; 465: 225-231 [PMID: 26248136 DOI: 10.1016/j.bbrc.2015.07.158]

117 **Xiao ZS**, Long H, Zhao L, Li HX, Zhang XN. LncRNA HOTTIP promotes proliferation and inhibits apoptosis of gastric carcinoma cells via adsorbing miR-615-3p. *Eur Rev Med Pharmacol Sci* 2020; 24: 6692-6698 [PMID: 32633539 DOI: 10.26355/eurrev_202006.21656]

118 **Zhao R**, Zhang X, Zhang Y, Yang Y, Sun Y, Zheng X, Qu A, Umwali Y. HOTTIP Predicts Poor Survival in Gastric Cancer Patients and Contributes to Cisplatin Resistance by Sponging miR-216a-5p. *Front Cell Dev Biol* 2020; 8: 348 [PMID: 32457911 DOI: 10.3389/fcell.2020.00348]

119 **Liu J**, Wang J, Song Y, Ma B, Luo J, Ni Z, Gao P, Sun J, Zhao J, Chen X, Wang Z. A panel consisting of three novel circulating lncRNAs is it a predictive tool for gastric cancer? *J Cell Mol Med* 2018; 22: 3605-3613 [PMID: 29700972 DOI: 10.1111/jcmm.13640]

120 **Ke D**, Li H, Zhang Y, An Y, Fu H, Fang X, Zheng X. The combination of circulating long noncoding RNAs AK010058, INHBA-AS1, MIIR4435-2HG, and CBPBA-AS1 fragments in plasma serve as diagnostic markers for gastric cancer. *Oncotarget* 2017; 8: 21516-21525 [PMID: 28423525 DOI: 10.18632/oncotarget.15628]

121 **Wei F**, Wang Y, Zhou Y, Li Y. Long noncoding RNA CYTOR triggers gastric cancer progression by targeting miR-103/RAB10. *Acta Biochim Biophys Sin (Shanghai)* 2021; 53: 1044-1054 [PMID: 34110382 DOI: 10.1093/abbs/gmaa071]
Tang SY et al. Epigenetics for gastric cancer

122 Teng F, Zhang JX, Chen Y, Shen XD, Su C, Guo YJ, Wang PH, Shi CC, Lei M, Cao YO, Liu SQ. LncRNA NKKX2-1-AS1 promotes tumor progression and angiogenesis via upregulation of SERpine1 expression and activation of the VEGFR-2 signaling pathway in gastric cancer. *Mol Oncol* 2021; 15: 1234-1235 [PMID: 33512745 DOI: 10.1007/1878-0261.12911]

123 Xu Y, Li Y, Qiu Y, Sun F, Zhu G, Sun J, Cai G, Lin W, Fu Y, Wu H, Jiang S, Wen Z, Feng F, Luo J, Yang Z, Zhang Q. LncRNA NEAT1 Promotes Gastric Cancer Progression Through miR-17-5p/TGFβR2 Axis Up-Regulated Angiogenesis. *Front Cell Dev Biol* 2021; 9: 705697 [PMID: 34552925 DOI: 10.3389/fcell.2021.705697]

124 Zhu T, Wang Z, Wang G, Hu Z, Ding H, Li R, Sun J. Long non-coding RNA ZFAS1 promotes the expression of EPAS1 in gastric cardia adenocarcinoma. *J Adv Res* 2021; 28: 7-15 [PMID: 33364040 DOI: 10.1016/j.jare.2020.06.006]

125 Ma ZH, Shuai Y, Gao XY, Yan W, Wang KM, Wen XZ, Ji JF. BTEB2-Activated LncRNA TSPEAR-AS2 Drives GC Progression through Suppression GJA1 Expression and Upregulating CLDN4 Expression. *Mol Ther Nucleic Acids* 2020; 22: 1129-1141 [PMID: 33294297 DOI: 10.1016/j.omtn.2020.10.022]

126 Song S, He X, Wang J, Song H, Wang Y, Liu Y, Zhou Z, Yu Z, Miao D, Xue Y. A novel long noncoding RNA, TMEM92-AS1, promotes gastric cancer progression by binding to YBX1 to mediate CCL5. *Mol Oncol* 2021; 15: 1256-1273 [PMID: 33247987 DOI: 10.1007/1878-0261.12863]

127 Xin L, Zhou LQ, Liu C, Zeng F, Yuan YW, Zhou Q, Li SH, Wu Y, Wang JL, Wu DZ, Lu H. Transfer of LncRNA CRNDE in TAM-derived exosomes is linked with cisplatin resistance in gastric cancer. *EMBO Rep* 2021; 22: e52124 [PMID: 34667480 DOI: 10.15252/embr.202052124]

128 Ding L, Tian Y, Wang L, Bi M, Teng D, Hong S. Hypermethylated long noncoding RNA MEG3 promotes the progression of gastric cancer. *Aging (Albany NY)* 2019; 11: 8139-8155 [PMID: 31584879 DOI: 10.18632/aging.102309]

129 Cai C, Zhang H, Zhu Y, Zheng P, Xu Y, Sun J, Zhang M, Lan T, Gu B, Li S, Ma P. Serum Exosomal Long Noncoding RNA psck2-2:1 As A Potential Novel Diagnostic Biomarker For Gastric Cancer. *OncoTargets Ther* 2019; 12: 10035-10041 [PMID: 31819499 DOI: 10.2147/OTT.S29903]

130 Li S, Zhang M, Zhang H, Hu K, Cai W, Cang J, Shi L, Ma P, Xu Y, Zhang P. Exosomal long noncoding RNA Inc-NGAQ-6:1 may serve as a diagnostic marker for gastric cancer. *Clin Chim Acta* 2020; 501: 252-257 [PMID: 3170812 DOI: 10.1016/j.cca.2019.10.047]

131 Pan T, Yu Z, Jin Z, Wu X, Wu A, Hou J, Chang X, Fan Z, Li J, Yu B, Li F, Yan C, Yang Z, Zha Z, Liu B, Su L. Tumor suppressor Inc-CTSLP4 inhibits EMT and metastasis of gastric cancer by attenuating HNRNPAB-dependent Snail transcription. *Mol Ther Nucleic Acids* 2021; 23: 1288-1303 [PMID: 33717650 DOI: 10.1016/j.omtn.2021.02.003]

132 Xia Y, Lv J, Jiang T, Li B, Li Y, He Z, Xuan Z, Sun G, Wang S, Li Z, Wang W, Wang L, Xu Z. CircFAM73A promotes the cancer stem cell-like properties of gastric cancer through the miR-490-3p/HMGA2 positive feedback loop and HNRNPK-mediated β-catenin stabilization. *J Exp Clin Cancer Res* 2021; 40: 103 [PMID: 33731207 DOI: 10.1186/s13046-021-01896-9]

133 Bu X, Chen Z, Zhang A, Zhou X, Zhang X, Yuan H, Zhang Y, Yin C, Yan Y. Circular RNA circAFF2 accelerates gastric cancer development by activating miR-6894-5p and regulating ANTXR1 expression. *Clin Res Hepatol Gastroenterol* 2021; 45: 101671 [PMID: 33722777 DOI: 10.1016/j.clinre.2021.101671]

134 Yang D, Hu Z, Zhang Y, Zhang X, Xu J, Fu H, Zhu Z, Feng D, Cai Q. CircHIPK3 Promotes the Tumorigenesis and Development of Gastric Cancer Through miR-637/AKT1 Pathway. *Front Oncol* 2021; 11: 637761 [PMID: 33680975 DOI: 10.3389/fonc.2021.637761]

135 Deng P, Sun M, Zhao WY, Hou B, Li K, Zhang T, Gu F. Circular RNA circVAPA promotes chemotherapy drug resistance in gastric cancer progression by regulating miR-125b-5p/STAT3 axis. *World J Gastroenterol* 2021; 27: 487-500 [PMID: 33642823 DOI: 10.3748/wjg.v27.i6.487]

136 Yang H, Wu Z, Liu X, Chen M, Zhang X, Jiang Y. NFIB promotes the progression of gastric cancer by upregulating circMAP7D1 to stabilize HER2 mRNA. *Mol Med Rep* 2021; 23 [PMID: 33576439 DOI: 10.3892/mmr.2021.11908]

137 Hua Y, Wang H, Wu X, Yang L, Wang C, Li X, Jin Y, Li M, Wang L, Dong C, Yin F. Circular RNA Circ_0066282 Promotes Cell Proliferation and Metastasis in Gastric Cancer by Regulating MicroRNA-144-5p/Tyrosine 3-Monoxygenase/Tryptophan 5-Monoxygenase Activation Protein β Axis. *Cancer Manag Res* 2021; 13: 815-827 [PMID: 33536789 DOI: 10.2147/CMAJ.S283952]

138 Xu Q, Liao B, Hu S, Zhou Y, Xia W. Circular RNA 0081146 facilitates the progression of gastric cancer by sponging miR-144 and up-regulating HMGB1. *Biotechnol Lett* 2021; 43: 767-779 [PMID: 33496921 DOI: 10.1007/s10529-020-03058-x]

139 Wang L, Li B, Yi X, Xiao O, Zheng Q, Ma L. Circ SMAD4 promotes gastric carcinogenesis by activating wnt/β-catenin pathway. *Cell Prolif* 2021; 54: e12981 [PMID: 33458917 DOI: 10.1111/cpr.12981]

140 Yu L, Xie J, Liu Y, Yu Y, Wang S. Plasma Exosomal CircNEK9 Accelerates the Progression of Gastric Cancer via miR-409-3p/MAP7 Axis. *Dig Dis Sci* 2021; 66: 4274-4289 [PMID: 33449227 DOI: 10.1007/s10620-020-06816-2]

141 Yue F, Peng K, Zhang L, Zhang J. Circ_0004104 Accelerates the Progression of Gastric Cancer by Regulating the miR-539-3p/RNF2 Axis. *Dig Dis Sci* 2021; 66: 4290-4301 [PMID: 33449226 DOI: 10.1007/s10620-020-06802-5]
Wang X, Zhang Y, Li W, Liu X. Knockdown of circ RNA PVT1 Elevates Gastric Cancer Cisplatin Sensitivity via Sponging miR-152-3p. *J Surg Res* 2021; 261: 185-195 [PMID: 33444948 DOI: 10.1016/j.jss.2020.12.013]

Liu J, Yang Y, Xu D, Cao L. hsa_circ_0023409 Accelerates Gastric Cancer Cell Growth and Metastasis Through Regulating the IRSp53/PAKT Pathway. *Cell Transplant* 2021; 30: 963689720975390 [PMID: 33439739 DOI: 10.1177/0963689720975390]

Yang Y, Cai T, Shi X, Duan C, Tong T, Yu C. circ_0044516 functions in the progression of gastric cancer by modulating MicroRNA-149-5p/HuR axis. *Mol Cell Biochem* 2021 [PMID: 33417162 DOI: 10.1007/s11010-020-04026-9]

Cao J, Zhang X, Xu P, Wang H, Wang S, Zhang L, Li Z, Xie L, Sun G, Xie Y, Lv J, Yang J, Xu Z. Circular RNA circMLO7 acts as a microRNA-30a-3p sponge to promote gastric cancer progression via the WNT2/β-catenin pathway. *J Exp Clin Cancer Res* 2021; 40: 6 [PMID: 33397440 DOI: 10.1186/s10053-020-01791-9]

Niu Q, Dong Z, Liang M, Luo Y, Lin H, Lin M, Zhong X, Yao W, Weng J, Zhou X. Circular RNA hsa_circ_0001829 promotes gastric cancer progression through miR-155-5p/SMAD2 axis. *J Exp Clin Cancer Res* 2020; 39: 280 [PMID: 33308284 DOI: 10.1186/s10053-020-01790-w]

Pu Z, Xu M, Yuan X, Xie H, Zhao J. Circular RNA circCUL13 Accelerates the Warburg Effect Progression of Gastric Cancer through Regulating the STAT3/HK2 Axis. *Mol Ther Nucleic Acids* 2020; 22: 310-318 [PMID: 33230436 DOI: 10.1016/j.ymthe.2020.08.023]

Wang H, Sun G, Xu P, Lv J, Zhang X, Zhang L, Wang S, Cao J, Xu Y, Xie Q, Li Z, Li B, Huang X, Jiang T, Fang L, Xu Z. Circular RNA TME857A promotes cell proliferation and metastasis of gastric cancer by elevating ULK1 via sponging miR-142-5p. *J Gastroenterol* 2021; 56: 125-138 [PMID: 33155080 DOI: 10.1007/s00535-020-01744-1]

Ma S, Kong S, Gu X, Xu Y, Tao M, Shen L, Shen X, Ju S. As a biomarker for gastric cancer, circPTPN22 regulates the progression of gastric cancer through the EMT pathway. *Cancer Cell Int* 2021; 21: 44 [PMID: 33430866 DOI: 10.1186/s12953-020-01701-1]

Ma C, Wang X, Yang F, Zhang Y, Liu J, Xu X, Li W, Jia J, Liu Z. Circular RNA hsa_circ_0004872 inhibits gastric cancer progression via the miR-224/Smad4/ADAR1 successive regulatory circuit. *Mol Cancer* 2020; 19: 157 [PMID: 33172486 DOI: 10.1186/s12943-020-01268-5]

Wang H, Wang N, Zheng X, Wu L, Fan C, Li X, Ye K, Han S. Circular RNA hsa_circ_0009172 suppresses gastric cancer growth by regulation of microRNA-485-3p-mediated NTRK3. *Cancer Gene Ther* 2021; 28: 1312-1324 [PMID: 10.1038/s41417-020-02820-7]

Li T, Zuo X, Meng X. Circ002059 suppresses cell proliferation and migration of gastric cancer via miR-182-5p/METTL11A axis. *Acta Biochim Biophys Sin (Shanghai)* 2021; 53: 454-462 [PMID: 33686422 DOI: 10.1093/abbs/gmaa015]

Wang Y, Wang H, Zheng R, Wu P, Sun Z, Chen J, Zhang L, Zhang C, Qian H, Jiang J, Xu W. Circular RNA ITCH suppresses metastasis of gastric cancer via regulating miR-199a-5p/Klotho axis. *Cell Cycle* 2021; 20: 522-536 [PMID: 33499704 DOI: 10.1080/15384101.2021.1878327]

Peng L, Xie L, Sun X, Xu P, Li J, Sun X, Liu Y, Liu W. Circular RNA ITCH suppresses metastasis of gastric cancer via regulating miR-199a-5p/Klotho axis. *Cell Cycle* 2021; 20: 522-536 [PMID: 33499704 DOI: 10.1080/15384101.2021.1878327]

Sakakura C, Hamada T, Miyagawa K, Nishio M, Miyashita A, Nagata H, Ida H, Yazumi S, Otsuji E, Chiba T, Ito K, Ito Y. Quantitative analysis of tumor-derived methylated RUNX3 sequences in the serum of gastric cancer patients. *Anticancer Res* 2009; 29: 2619-2625 [PMID: 19596937]

Kolesnikova EV, Tamkovich SN, Bryzgunova OE, Shelestyuk PI, Perymakova VI, Lassov C, Vaskov VV, Tuzikov AS, Laktinov PP, Rykova EY. Circulating DNA in the blood of gastric cancer patients. *Ann N Y Acad Sci* 2008; 1137: 226-231 [PMID: 18837952 DOI: 10.1196/annals.1448.009]

Pimson C, Ekalaksananan T, Pientong C, Promthet S, Putthanachote N, Suwanrungruang K, Wangnong S. Abrarent methylation of PCDH10 and RASSF1A genes in blood samples for non-invasive diagnosis and prognostic assessment of gastric cancer. *PeerJ* 2016; 4: e2112 [PMID: 27330867 DOI: 10.7717/peerj.2112]

Kanda M, Shimizu D, Fujii T, Sueoka S, Tanaka Y, Ezaka K, Takami H, Tanaka H, Hashimoto R, Iida H, Yazumi S, Otsuji E, Kobayashi D, Tanaka C, Yamada S, Nakayama G, Sugimoto M, Koye M, Fujiwara M, Kodera Y. Function and diagnostic value of Anosmin-1 in gastric cancer progression. *Int J Mol Sci* 2016; 13: 721-730 [PMID: 26270236 DOI: 10.1002/ijc.29803]

Alarcón MA, Oliveros W, Córdoba-Delgado M, Muñoz-Medel M, de Mayo T, Carrasco-Aviño G, Wichmann I, Landeros N, Amigo J, Norero E, Villarroya-Espindola F, Riquelme A, Garrido M, Owen GI, Corvalán AH. The Reprimo-Like Gene Is an Epigenetic-Mediated Tumor Suppressor and a Candidate Biomarker for the Non-Invasive Detection of Gastric Cancer. *Int J Mol Sci* 2020; 21 [PMID: 33322837 DOI: 10.3390/ijms21249472]

Nanishi K, Konishi H, Shoda K, Arita T, Kosuga T, Komatsu S, Shibayama K, Ikeda K, Seki N, Okumura M, Ichikawa K, Ohmae A, Iriuchijima K. Circular RNA circERBB2 as a potential prognostic biomarker for gastric cancer: An investigative study. *Cancer Sci* 2020; 111: 4177-4186 [PMID: 32899632 DOI: 10.1111/cas.14645]

Guo X, Lv X, Lu Y, Zhou F, Wang N, Xi H, Zhang K, Li J, Chang R, Xie T, Wang X, Li B, Chen Y, Yang Y, Chen L. Circulating Exosomal Gastric Cancer-Associated Long Noncoding RNA1 as a Biomarker for Early Detection and Monitoring Progression of Gastric Cancer: A Multiphase Study. *JAMA Surg* 2020; 155: 572-579 [PMID: 32520332 DOI: 10.1001/jamasurg.2020.1133]
Tang SY et al. Epigenetics for gastric cancer

162. Shin SJ, Park S, Kim MH, Nam CM, Kim H, Choi YY, Jung MK, Choi HJ, Rha SY, Chung HC. Mesothelin Expression Is a Predictive Factor for Peritoneal Recurrence in Curatively Resected Stage III Gastric Cancer. *Oncologist* 2019; 24: e1108-e1114 [PMID: 31015316 DOI: 10.1634/theoncologist.2018-0896]

163. Liu X, Chi KM. Exosomal miRNAs as circulating biomarkers for prediction of development of haematogenous metastasis after surgery for stage II/III gastric cancer. *J Cell Mol Med* 2020; 24: 6220-6232 [PMID: 32383554 DOI: 10.1111/jcmm.15253]

164. Zhao Z, Zhang C, Zhao Q. S100A9 as a novel diagnostic and prognostic biomarker in human gastric cancer. *Scand J Gastroenterol* 2020; 55: 338-346 [PMID: 32172630 DOI: 10.1080/00365521.2020.1737883]

165. Hu J, Yu J, Gan J, Song N, Shi L, Liu J, Zhang Z, Du J. Notch1/2/3/4 are prognostic biomarker and correlated with immune infiltration in gastric cancer. *Aging (Albany NY)* 2020; 12: 2595-2609 [PMID: 32028262 DOI: 10.18632/aging.102764]

166. Meng X, Zhao Y, Liu J, Wang L, Dong Z, Zhang T, Gu X, Zheng Z. Comprehensive analysis of histone modification-associated genes on differential gene expression and prognosis in gastric cancer. *Exp Ther Med* 2019; 18: 2219-2230 [PMID: 31452712 DOI: 10.3892/etm.2019.7808]

167. Yoo C, Ryu MH, Na YS, Ryoo BY, Lee CW, Kang YK. Vorinostat in combination with capcetabine plus cisplatin as a first-line chemotherapy for patients with metastatic or unresectable gastric cancer: phase II study and biomarker analysis. *Br J Cancer* 2016; 114: 1185-1190 [PMID: 27172248 DOI: 10.1038/bjc.2016.122]

168. Yoo C, Ryu MH, Na YS, Ryoo BY, Lee CW, Maeng J, Kim SY, Koo DH, Park I, Kang YK. Phase I and pharmacodynamic study of vorinostat combined with capcetabine and cisplatin as first-line chemotheraphy in advanced gastric cancer. *Invest New Drugs* 2014; 32: 271-278 [PMID: 23712440 DOI: 10.1007/s10637-013-9983-2]

169. Schneider BJ, Shah MA, Klute K, Ocean A, Popa E, Althorki N, Lieberman M, Schreiner A, Yantiss R, Christos PJ, Palmer R, You D, Viale A, Kermani P, Scandura JM. Phase I Study of Epigenetic Priming with Azacitidine Prior to Standard Neoadjuvant Chemotherapy for Patients with Resectable Gastric and Esophageal Adenocarcinoma: Evidence of Tumor Hypomethylation as an Indicator of Major Histopathologic Response. *Clin Cancer Res* 2017; 23: 2673-2680 [PMID: 27836862 DOI: 10.1158/1078-0432.CCR-16-1896]

170. Hu W, Zhang L, Li MX, Shen J, Liu XD, Xiao ZG, Wu DL, Ho IH, Wu JCY, Cheung CKY, Zhang YC, Lau AHY, Ashktorab H, Smoot DT, Fang EF, Chan MTV, Gin T, Gong W, Wu WKK, Cho VN. Vitamin D3 activates the autolysosomal degradation function against Helicobacter pylori through the PDA3 receptor in gastric epithelial cells. *Autophagy* 2019; 15: 707-725 [PMID: 30612517 DOI: 10.1007/1557835]

171. Ha J, Lee JM, Lim Y, Kim MK, Kwon HS, Song KH, Jeon HM, Kang MI, Baek KH. Effect of bisphosphonate on the prevention of bone loss in patients with gastric cancer after gastrectomy: A randomized controlled trial. *Bone* 2020; 130: 115138 [PMID: 31700652 DOI: 10.1016/j.bone.2019.115138]

172. Seash KS, Loh JY, Nguyen TTT, Tan HL, Hutchinson PE, Lim KK, Dymock BW, Long YC, Lee EJG, Shen HM, Chen ES. SAHA and cisplatin sensitize gastric cancer cells to doxorubicin by induction of DNA damage, apoptosis and perturbation of AMPK-mTOR signalling. *Exp Cell Res* 2018; 370: 283-291 [PMID: 29959912 DOI: 10.1016/j.yexcr.2018.06.029]

173. Xiong K, Zhang H, Du Y, Tian J, Ding S. Identification of HDAC9 as a viable therapeutic target for the treatment of gastric cancer. *Exp Mol Med* 2019; 51: 1-15 [PMID: 31451695 DOI: 10.1038/s12276-019-0301-8]

174. Regel I, Merkl L, Friedrich T, Burgermeister E, Zimmermann W, Einwächter H, Herrmann K, Langer R, Röcken C, Höfling R, Schmid R, Ebert MP. Pan-histone deacetylase inhibitor panobinostat sensitizes gastric cancer cells to anthracyclines via induction of CITED2. *Gastroenterology* 2012; 143: 99-109.e10 [PMID: 22465428 DOI: 10.1053/j.gastro.2012.03.035]

175. Singh A, Patel P, Jageshwar, Patel VK, Jain DK, Kamal M, Rajak H. The Safety, Efficacy and Potential Therapeutic Potential of Histone Deacetylase Inhibitors with Special Reference to Panobinostat in Gastrointestinal Tumors: A Review of Preclinical and Clinical Studies. *Curr Cancer Drug Targets* 2018; 18: 720-736 [PMID: 28660136 DOI: 10.2174/156802661766617063012463]

176. Kim S, Kim W, Kim DH, Jang JH, Kim SJ, Park SA, Hahn H, Han BW, Na HK, Chen KS, Choi BY, Suh VH. Resveratrol suppresses gastric cancer cell proliferation and survival through inhibition of PIM-1 kinase activity. *Arch Biochem Biophys* 2020; 689: 108413 [PMID: 32473133 DOI: 10.1016/j.abb.2020.108413]

177. Yang T, Zhang J, Zhou J, Zhu M, Wang L, Yan L. Resveratrol inhibits Interleukin-6 induced invasion of human gastric cancer cells. *Biomed Pharmacother* 2018; 99: 766-773 [PMID: 29710474 DOI: 10.1016/j.biopha.2018.01.153]

178. Barati N, Montazeri-Borojeni AA, Majeed M, Sahebkar A. Potential therapeutic effects of curcumin in gastric cancer. *J Cell Physiol* 2019; 234: 2317-2328 [PMID: 30191991 DOI: 10.1002/jcp.27229]

179. Li W, Zhou Y, Yang J, Li H, Zhang H, Zheng P. Curcumin induces apoptotic cell death and protective autophagy in human gastric cancer cells. *Oncof Rep* 2017; 37: 3459-3466 [PMID: 28494433 DOI: 10.3892/or.2017.5637]

180. Shang HS, Lu HF, Lee CH, Chiang HS, Chu YL, Chen A, Lin YF, Chung JQ. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells. *Environ Toxicol* 2018; 33: 1168-1181 [PMID: 30152185 DOI: 10.1002/tox.22623]
181 Hemati M, Haghiralsadat F, Jafari F, Moosavizadeh S, Moradi A. Targeting cell cycle protein in gastric cancer with CDC20siRNA and anticancer drugs (doxorubicin and quercetin) co-loaded cationic PEGylated nanoniosomes. *Int J Nanomedicine* 2019; 14: 6575-6585 [PMID: 31616144 DOI: 10.2147/IJN.S211844]

182 Liu C, Ho PC, Wong FC, Sethi G, Wang LZ, Goh BC. Garcinol: Current status of its anti-oxidative, anti-inflammatory and anti-cancer effects. *Cancer Lett* 2015; 362: 8-14 [PMID: 25796441 DOI: 10.1016/j.canlet.2015.03.019]

183 Zheng Y, Guo C, Zhang X, Wang X, Ma A. Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathway. *Oncol Lett* 2020; 20: 667-676 [PMID: 32565991 DOI: 10.3892/ol.2020.11585]

184 Shin H, Lee YS, Lee YC. Sodium butyrate-induced DAPK-mediated apoptosis in human gastric cancer cells. *Oncol Rep* 2012; 27: 1111-1115 [PMID: 22160140 DOI: 10.3892/or.2011.1585]

185 Ke X, Qin Q, Deng T, Liao Y, Gao SJ. Heterogeneous Responses of Gastric Cancer Cell Lines to Tenovin-6 and Synergistic Effect with Chloroquine. *Cancers (Basel)* 2020; 12 [PMID: 32033497 DOI: 10.3390/cancers12020365]

186 Huang R, Jin X, Gao Y, Yuan H, Wang F, Cao X. DZNep inhibits Hif-1α and Wnt signalling molecules to attenuate the proliferation and invasion of BGC-823 gastric cancer cells. *Oncol Lett* 2019; 18: 4308-4316 [PMID: 31579098 DOI: 10.3892/ol.2019.10769]

187 Clermont PL, Fornaro L, Crea F. Elevated expression of a pharmacologic Polycomb signature predicts poor prognosis in gastric and breast cancer. *Epigenomics* 2017; 9: 1329-1335 [PMID: 28875726 DOI: 10.2217/epi-2017-0074]

188 Liu S, Rong G, Li X, Geng L, Zeng Z, Jiang D, Yang J, Wei Y. Diosgenin and GSK126 Produce Synergistic Effects on Epithelial-Mesenchymal Transition in Gastric Cancer Cells by Mediating EZH2 via the Rho/ROCK Signaling Pathway. *Onco Targets Ther* 2020; 13: 5057-5067 [PMID: 32606728 DOI: 10.2147/OTT.S237474]

189 Chen YT, Zhu F, Lin WR, Ying RB, Yang YP, Zeng LH. The novel EZH2 inhibitor, GSK126, suppresses cell migration and angiogenesis via down-regulating VEGF-A. *Cancer Chemother Pharmacol* 2016; 77: 757-765 [PMID: 26898301 DOI: 10.1007/s00280-016-2990-1]

190 Zheng YC, Duan YC, Ma JL, Xu RM, Zi X, Lv WL, Wang MM, Ye XW, Zhu S, Mobley D, Zhu YY, Wang JW, Li JF, Wang ZR, Zhao W, Liu HM. Triazole-dithiocarbamate based selective lysine specific demethylase 1 (LSD1) inactivators inhibit gastric cancer cell growth, invasion, and migration. *J Med Chem* 2013; 56: 8543-8560 [PMID: 24131029 DOI: 10.1021/jm401002r]
