A recurrent $\textit{SHANK3}$ frameshift variant in Autism Spectrum Disorder

List authors: Livia O Loureiro1, Jennifer L Howe1, Miriam Reuter2, Alana Iaboni3, Kristina Calli4, Delnaz Roshandel1, Iva Pritisanac5,6, Alan Moses6, Julie D. Forman-Kay5,7, Brett Trost3, Mehdi Zarrei1, Olivia Rennie1, Lynette Lau8, Christian R Marshall8,9, Siddharth Srivastava10, Brianna Godlewski10, Elizabeth Buttermore10, Mustafa Sahin10, Dean Hartley11, Thomas Frazier12, Jacob Vorstman13,14, Stelios Georgiades15, Suzanne ME Lewis1, Peter Szatmari13,14,16, Lisa Bradley1, Richard Delorme17,18, Thomas Bourgeron18, Evdokia Anagnostou3,19, *Stephen W. Scherer1,20.

1 Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, CAN; 2 Canada's Genomics Enterprise (CGEn), The Hospital for Sick Children, Toronto, ON, CAN; 3 Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, CAN; 4 Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, CAN; 5 Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, CAN; 6 Department of Cell & Systems Biology, University of Toronto, Toronto, ON, CAN; 7 Department of Biochemistry, University of Toronto, Toronto, ON, CAN; 8 Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, CAN; 9 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, CAN; 10 Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; 11 Autism Speaks, New York, NY, USA; 12 Autism Speaks and Department of Psychology, John Carroll University, Cleveland, OH, USA; 13 Department of Psychiatry, University of Toronto, Toronto, ON, CAN; 14 Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, CAN; 15 Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, CAN; 16 Centre for Addiction and Mental Health, Toronto, ON, CAN; 17 Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France; 18 Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France; 19 Department of Paediatrics, University of Toronto, Toronto, ON, CAN; 20 Department of Molecular Genetics and the McLaughlin Centre, University of Toronto, Toronto, ON, Canada.

*Corresponding author (stephen.scherer@sickkids.ca)

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Autism Spectrum Disorder (ASD) is genetically complex, but specific copy number variants (CNVs; e.g., 1q21.1, 16p11.2) and genes (e.g., NRXN1, NLGN4) have been identified as penetrant susceptibility factors, and all of these demonstrate pleiotropy. Many ASD-associated CNVs are, in fact, genomic disorder loci where flanking segmental duplications lead to recurrent deletion and duplication events of the same region in unrelated individuals, but these lesions are large and involve multiple genes. To identify opportunities to establish a more specific genotype and phenotype correlation in ASD, we searched genomic data, and the literature, for recurrent predicted damaging sequence-level variants affecting single genes. We identified 17 individuals from 15 unrelated families carrying a heterozygous guanine duplication (rs797044936; NM_033517.1; c.3679dup; p.Ala1227Glyfs*69) occurring within a string of 8 guanines (at genomic location [hg38]g.50,721,512dup) affecting SHANK3, a prototypical ASD gene (6/7,521 or 0.08% of ASD-affected individuals studied by whole genome sequencing carried the p.Ala1227Glyfs*69 variant). This variant, which is predicted to cause a frameshift leading to a premature stop codon truncating the C-terminal region of the corresponding protein, was not reproducibly found in any of the control groups we analyzed. All probands identified carried de novo mutations with the exception of five individuals in three families who inherited it through somatic mosaicism. This same heterozygous variant in published mouse models leads to an ASD-like phenotype. We scrutinized the phenotype of p.Ala1227Glyfs*69 carriers, and while everyone (16/16) formally tested for ASD carried a diagnosis, there was variable expression of core ASD features both within families and between families, underscoring the impact of as yet unknown modifiable factors affecting expressivity in autism.
Autism Spectrum Disorder (ASD) is a heterogeneous condition, both in clinical presentation and in terms of the underlying etiology. Individuals with ASD are increasingly being seen in clinical genetics1,2. More than 100 genetic disorders that can exhibit features of ASD (e.g. Fragile X, Phelan-McDermid syndromes, Rett)3 and dozens of rare susceptibility genes (e.g. \textit{NLGN}, \textit{NRXN}, \textit{SHANK} family genes) and copy number variation (CNV) loci (e.g. 1q21.1 duplication, 15q11-q13 duplication, 16p11.2 deletion), have been identified, which combined can facilitate a molecular diagnosis in \~5–40\% of ASD cases4–7. The likelihood of a genetic finding in ASD is dependent on the complexity of the phenotype (e.g. idiopathic or syndromic, with or without intellectual disability)8,9, the genomic technology used (e.g. microarrays, exome sequencing, genome sequencing, or combinations thereof)10, as well as the annotation pipeline and 'gene lists' used for interpretation11,12.

There are examples of how understanding the genetic subtypes of ASD can assist early identification enabling earlier behavioural intervention, and informing prognosis, medical management, and assessment of familial recurrence risk13,14. Moreover, genomic data promises to facilitate pharmacologic-intervention trials through stratification based on pathway profiles15,16. To support these applications, there is a growing interest in performing robust genetic analyses, often in families and in unique populations, linked to deep phenotyping17–19.

The largest datasets available for genotype/phenotype correlations in ASD studies are based on CNV assessment since microarrays became the first-tier clinical diagnostic test20,21. The most relevant finding from this vast literature is that even for recurrent CNVs (i.e., genomic disorders) involved in ASD, which typically affect the same genes, there is variable expression of phenotypes relevant to the core features in autism, and other medical features22–25.

More recently, genotype and phenotype studies of sequence-level variation (single nucleotide variants, or SNV, and insertion/deletion, or indel, events) affecting individual genes are starting to reveal clinical correlations in ASD. For example, loss of function variants in the \textit{SCN2A} sodium channel gene...
impairs glutamatergic neuronal excitability, leading to ASD and/or intellectual disability, while gain of function variants potentiate excitability leading to infantile-onset seizure phenotypes\cite{26}. Different germline dominant-acting mutations in the phosphatase and tensin homolog (\textit{PTEN}) gene found in ASD lead to an increased average head circumference in children\cite{27}. Loss-of-function variants in the \textit{CHD8} chromodomain helicase DNA-binding protein eight gene are also found in overgrowth and intellectual disability forms of ASD\cite{28}. Despite some progress in resolving genotype-phenotype correlations, the vast genetic complexity and variable expressivity of genes involved in ASD continue to confound most predictive studies.

To minimize genetic complexity, here we searched our databases, other databases, and the literature for recurrent sequence-level damaging variants (\textit{de novo} loss of function or missense variants predicted to be damaging based on the American College of Medical Genetics guidelines\cite{29}) affecting the same site (genomic location) in the same gene in different families. In our most compelling finding, we identified a mutational 'hotspot' in a string of 8-Gs in exon 21 (p.Ala1227Glyfs*69) of the \textit{SHANK3} gene that was present in 16 individuals from 14 unrelated families with ASD, as well as one individual with several autistic features and Phelan-McDermid Syndrome (but who was not tested for ASD). We assessed the intra- and inter-familial phenotypic variation (as well as all other genetic information) within these individuals and discuss the findings in the context of genotype-phenotype comparison including variable expression of ASD core symptom and related features.

To achieve the most comprehensive genomic representation (difficult to sequence exons, splice site boundaries) for variant detection, we initially examined the Autism Speaks MSSNG whole-genome sequencing (WGS) cohort (\url{https://research.mss.ng/}), with 11,359 samples, including 5,102 affected individuals and 3,567 with family data, typically belonging to trios, or quads (two parents and two affected children) for recurrent mutations. Secondly, we tested the Simon Simplex Collection (SSC) WGS collection (\url{https://www.sfari.org/resource/simons-simplex-collection/}), which comprises 9,205 samples,
including 2,419 affected individuals and 2,393 with family data (typically two parents, one affected child, one unaffected child). Previous studies have extensively reported on the MSSNG6,17,30,31 and SSC32,33. Variant information and alignment files were downloaded from both databases. Probands from both cohorts met the criteria for ASD based on scores from standardized diagnostic criteria tools, typically the Autism Diagnostic Observation Schedule (ADOS)34 and the Autism Diagnostic Interview–Revised (ADI-R)35 and/or was supported by clinical criteria. Many individuals were also assessed with standardized measures of intelligence (I.Q.), including verbal and non-verbal ability, language, social behavior, adaptive functioning, and physical measurements6,32,33. Ethical review of these cohort studies was approved by institutional review boards.

From the genome sequences analyzed, our most interesting finding identified five probands in MSSNG (four males and one female) from four families and one proband in SSC (male) carrying a heterozygous guanine duplication in \textit{SHANK3} (NCBI: NM_033517.1; ENSEMBL: ENST00000262795.5; c.3679 or c.3676 depending on the transcript) (Table 1; the reference sequence NM_033517.1 was selected as the appropriate transcript for this study as this was the reference sequence used in the original publication of this variant in Durand et al37). We also found other recurrent sequence-level \textit{de novo} heterozygous damaging missense variants in the \textit{PTEN}, \textit{CAMK2A}, \textit{SPTAN1}, \textit{MECP2}, and \textit{CSNK1E} genes, but in each of these instances, no more than two unrelated individuals were found in the combined MSSNG and SSC data (Supplementary Material; Table S1). The discovery of this recurrent guanine duplication variant in \textit{SHANK3} was confirmed using Sanger sequencing (Figure 1). We then scanned the literature, including using Varicarta36 and found that this same guanine duplication was reported in 11 probands affected by ASD4,37–42, and one proband within the ASD borderline range, Phelan-McDermid syndrome, significantly delayed language, and speech and visual-motor deficits38. We carefully examined all genotypes and found that the proband reported by O’Roak et al.40 was the same individual in the SSC cohort (14470.p1); therefore, we removed
this duplicate individual. Considering the new cases reported here and the cases reported in the
literature, the p.Ala1227Glyf*69 variant has been observed in a total of 17 cases from 15 families,
identified using different genome-testing approaches (Table 2). Nearly all of these probands (16/17)
were ascertained for ASD, although the general phenotype, as discussed below, varies somewhat among
individuals (Table 3; Figure 2).

Given the high GC-density content of SHANK3, which can influence exon capture and
sequencing\(^4^3\), we thought it was critical when assessing mutational frequency to confirm that there were
no biases in read-coverage of the site of the target variant within exon 21 (Supplemental Material;
Fig.1). Using whole exome sequences from 298 patients and 462 controls from our internal dataset, we
ran the Agilent Sureselect Clinical research exome V1 for exome sequence analysis and show that the
coverage around the G duplication region is at the anticipated 120x coverage (Supplemental Material;
Fig. 1). This analysis also indicates that diagnostic exome sequencing will more than adequately capture
and accurately genotype this position. WGS analysis of probands from MSSNG and SSC also confirm that
exon 21 in SHANK3 is uniformly covered.

All the probands identified in this study carried de novo variants with the exception of five
individuals. One family with two brothers first reported in the initial SHANK3 ASD-discovery paper\(^3^7\)
inherited the variant from their mother, who was found to be mosaic. Two siblings within the MSSNG
cohort (Family1-003 and Family1-004) inherited the variant from their father, who was also shown to be
a mosaic (Table 2). In this latter case, the variant was only present in 8 of 50 reads in the father's WGS
data and was verified using a T.A. clone Kit (Invitrogen cat number 45-0046). Proband Family2-003 also
seems to have inherited the variant from his mother by somatic mosaicism, in whom the variant was
present in 1 of 32 reads of the WGS data. Exome sequencing analysis was also performed in this mother,
with the variant being observed in 2 of 110 reads. To search for additional potential relevant somatic
mutations\(^4^4\), we tested the original alignment files in both cohorts using DeNovoGear's dng-call
method for the SHANK3 locus45 using 0.8 as a posterior probability of a \textit{de novo} mutation (ppDNM), but we did not find any other candidates. Considering the families studied in MSSNG and SSC (our most trusted dataset) 6/7,521 (0.08\%) ASD-affected individuals carried the p.Ala1227Glyfs*69 variant in 5/6,681 (0.07\%) of families. The Fisher’s exact test of the association between the frequency in heterozygous individuals in ASD cases and control population databases has a P-value of 0.029.

The SHANK3 guanine duplication is located within a segment of 8-G’s on chromosome 22q13 at genomic location [hg38]g.50,721,505dup or g.50,721,512dup, depending on the position that this variant is annotated in the guanines (Table 1; Figure 2). Some tools annotate the first G as the duplication, and others annotate it as the final G (Supplementary Material; Fig. 3). The sequencing technology might also affect the variant annotation, with Sanger sequencing conventionally adding the G duplication at the 3’ end of the gene, as the first point of amino acid change, and Next Generation Sequencing usually left aligning the variant. Independent of the position of the base insertion in the 8-Gs, the frameshift starting in exon 21 results in the new reading frame ending with a stop codon at position 69, causing a truncation lacking the C-terminal region (Figure 3).

Non-sense mutations and frameshifts in SHANK3 can lead to reduced expression, and SHANK3-deficient neurons were found to have an altered phospho-proteome that may explain their decreased dendritic spine density46. However, SHANK3 mRNA is still expressed in truncation mutant-containing induced pluripotent stem cells (iPSCs)47 and truncated SHANK3 proteins may have a dominant negative effects in neurons48,49. We therefore explored the consequences of p.Ala1227Glyfs*69 on the SHANK3 protein. We annotated the positions of amino acids to which the variant is mapped according to ENSEMBL and the UCSC genome browser. Using the DISOPRED3 predictor50 and the consensus of eight predictors from MobiDB-lite51, we identified where the mutation falls with respect to intrinsically disordered regions (IDRs) of the protein, which may influence protein folding and binding52. In both predictors, the position of interest was found to be embedded within a large IDR, which map to multiple
isoforms (Figure 3B). Mutations that create frameshifts and stop codons in this region of SHANK3\(^{37,43}\) truncate two proline-rich binding sites for Homer and Cortactin (Figure 3A) and affect function, including altering neuronal morphology in cell-based experiments\(^{47,48}\). The SHANK3 protein serves as a scaffold to connect membrane receptors to the actin-cytoskeleton in the post-synaptic density (PSD), a protein-rich sub-compartment considered to be a biomolecular condensate formed by phase separation\(^{53,54}\) due to multivalent interactions\(^{47}\). In each of the isoforms, these truncations are expected to impair canonical PSD formation and stability.

The variant isoforms were also analyzed using Feature Analysis of Intrinsically Disordered Regions, a tool that identifies the presence of consensus protein recognition motifs in IDRs\(^{55,56}\) and using PScore\(^{57}\), predicts phase separation propensity via IDR planar pi-contacts (Figure 3C; Supplementary Material; Figure S2). A number of specific short linear interaction motifs were found to be altered. Of particular interest is the increase in SH3 domain class i-binding motifs, given that SHANK3 is known to interact with numerous SH3 domains. The variants significantly increase the number of arginine-glycine and arginine-arginine dipeptide instances, which are associated with mRNA binding and phase separation, and increase the cysteine content of the sequence. A reduction in SHANK3 protein due to the frameshift (e.g., through non-sense mediated decay; discussed below) could also affect the phase separation of the PSD, which is known to be concentration dependent\(^{58}\).

The p.Ala1227Glyfs*69 variant is classified in ClinVar as "Pathogenic for ASD, NDD and others" and is exceptionally rare or absent in control populations (ClinVar; https://www.ncbi.nlm.nih.gov/clinvar/variation/208759/). In the gnomAD v2.1.1 dataset\(^{59}\), which uses the hg37 as reference genome, it has an allele frequency of 16/160,994 alleles = 0.00009938 (0.0099%). In ALFA\(^{60}\), this variant is also reported in 0.02% of control Europeans samples. However, in gnomAD v3, 1000 Genomes Project (that uses hg38 as a reference genome), TOPMed\(^{61}\), two unpublished paediatric controls from our group (INOVA and CHILD), the Personal Genome Project Canada\(^{62}\) and Medical
Genome Reference Bank63 this variant is not present. In combination, this suggests that the presence of
the variant in gnomAD v2.1.1 and ALFA might be due to low quality sequencing with the preliminary
description being corrected in gnomAD v3. It is also noteworthy that ~1/100 people will have ASD, so it
would be expected to find p.Ala1227Glyfs*69 variant carriers in control populations. Based on our
findings described here they would likely have ASD, but additional studies will be required to further
assess this.

We have analyzed the genomic conservation of this variant with GERP64, UCSC PhyloP, and
phastCons for primates, placental mammals, and 100 vertebrates65. GERP identifies constrained
elements in multiple alignments by quantifying substitution deficits. These deficits represent
substitutions that would have occurred if the element were neutral DNA but did not occur because the
element has been under functional constraint. The p.Ala1227Glyfs*69 variant has a GERP score of 5.2 (p
= 0), suggestive of having a large deleterious effect66. The PhyloP score was 0.6 for primates, 1.35 for
mammals, and 2.13 considering 100 vertebrates, suggesting high evolutionary conservation. The
PhastCon scores were also higher than 0.98 for primates, mammals, and vertebrates, which indicates a
strong negative selection on this variant.

In all 16 p.Ala1227Glyfs*69 carriers evaluated for ASD, ASD was confirmed, and the majority of
patients described are reported to have intellectual disability defined as an IQ score below 70 and
impairments in adaptive functioning, although the spectrum of severity is wide (Table 3; Figure 2). Four
individuals were ascertained for Phelan-McDermid Syndrome, with three of these being of the 16
receiving a formal ASD diagnosis and one never being assessed for autism. Language deficits are also
prevalent and often severe. We were cautious about making claims on other associated conditions as
they have not been universally and systematically ascertained. However, hypotonia and gait
abnormalities are common, also consistent with animal model data67. Seizures were reported in 3/17
participants. Other neurodevelopmental concerns include ADHD, anxiety, and mood.
disorders. Gastrointestinal distress and sleep dysfunction were also reported. Lastly, both dysmorphia and other organ anomalies were reported (conductive hearing loss- and coronary artery fistula). Within pairs of siblings sharing a variant, there is a similarity of phenotype, with some variability in the severity of the intellectual disability.

Different de novo mutations in SHANK3 have also been associated with other developmental/neuropsychiatric disorders and genetic syndromes such as schizophrenia and Phelan-McDermid Syndrome (PMS). The majority of children diagnosed with PMS also have ASD, and both conditions are often associated with intellectual and language delay, hypotonia, seizures, and sleep disorders, although children with PMS also often have other organ involvement. We also assessed other potential clinically relevant variants found in the p.Ala1227Glyfs*69 carriers to determine if they may contribute to varying phenotypic presentation either from the MSSNG and SSC probands or from those patients described in the literature, but none were identified.

To evaluate if common genetic variants may be contributing to the ASD phenotype in the p.Ala1227Glyfs*69 SHANK3 variant carriers, we calculated their ASD polygenic risk score (PRS). PRS was calculated for all individuals from European ancestry in MSSNG (db6) and SSC merged with 1000 Genomes European population using GWAS summary statistics derived from the iPSYCH Autism project including 13,076 cases and 22,664 controls from Denmark. This included probands Family1-003, Family1-004, Family2-003, Family3-003, and 14470.p1. A total of 25,837 SNPs were included in PRS calculation. Since, the proband Family4-003 was part of a later version of the MSSNG cohort (db7), he was not included in the initial PRS calculation. This individual’s PRS was calculated separately with his parents (Family4-001 and Family4-002) using the same 25,837 SNPs included in PRS calculations for the others and centered by the mean in whole MSSNG/SSC/1000 Genomes European population. However, of 25,837 SNPs, 1,496 were missing due to sample quality in this family, and caution is needed in comparison with the other subjects. PRS in the probands analyzed in this study varied between -1.167 to...
15.606 (Table 2), showing no clear pattern between the presence of the clinically significant SHANK3 variant and the polygenetic risk of common variants. PRS in all subjects with autism in MSSNG and SSC ranges between -18.580 and 20.626.

Two independently-created murine models with an insertion of a guanine nucleotid into the analogous mouse base pair position, which we refer to here as Shank3 InsG3680, have also demonstrated changes in cellular, circuit and behavioural phenotypes67,73,74 (Supplementary Material; Table S2). Specifically, these Shank3InsG3680 mouse models demonstrated changes to baseline neurotransmission and/or impairments in long-term depression (LTD) and long-term potentiation (LTP), the synaptic basis of learning and memory. Overall homozygous Shank3InsG3680 +/+ mice exhibited more significant changes than heterozygous Shank3InsG3680 mice, suggesting that functioning of one normal Shank3 copy maybe sufficient to support some of its function.

Regional differences in synaptic deficits and synaptic composition were observed, and the extent of the impact may have been modulated by other Shank family genes. In the adult hippocampus, expression of the reversible Shank3InsG3680 variant cassette67 produced a truncated Shank3 protein and loss of the major high molecular weight isoforms at the synapse. This was associated with impaired hippocampal mGluR dependent LTD, intact LTP and changes to baseline NMDA receptor (NMDAR) mediated synaptic function. In the striatum, Zhou et al.73 showed a significant decrease of levels of Shank3 mRNA in the Shank3InsG3680 strain compared with the wild type, suggesting a reduced level of mRNA through non-sense-mediated decay. This finding suggests that the InsG3680 variant results in a near complete loss of SHANK3 protein, concomitant with synaptic transmission deficits in juvenile and adult homozygous mutant Shank3InsG3680 (+/+) mice. Post translational modifications, modulated by nitric oxide, were also found in both young and adult Shank3InsG3680 +/+ mice74.

In assessments of general cognitive function, Shank3InsG3680 +/+ mice showed mild spatial learning impairments in the Morris Water Maze task and motor learning deficits in the accelerating
rotarod task, while heterozygous mice did not. ASD associated behaviors in these two models also showed mixed outcomes in both social interaction impairments and repetitive behaviors that, similar to human assessments, may be dependent on age and gender. Speed et al. reported statistically different effects in some of their assessments comparing between male and female adult mice. This group did not observe social interaction deficits in the three-chamber task with mixed sex adult mutant mice, nor did they observe repetitive behaviors, but instead suggested aversion to novel objects. However, in large all male cohorts, Zhou et al. showed deficits in social behaviors in both juvenile and adult mice. In addition, in adults there was increased anxiety, repetitive grooming behaviors and sensory processing differences. On balance, the mouse data seems to generally recapitulate the learning impairments and behavioural differences seen in patients with the p.Ala1227Glyfs*69 SHANK3 variant.

Highly penetrant alleles such as p.Ala1227Glyfs*69 in neurodevelopmental disorders are under severe negative selection and are constantly being removed from the population. However, recurrent mutations are always being added to the gene pool and while typically occurring randomly, the intrinsic and extrinsic characteristics may also have an influence. Experimental investigations have shown that guanine bases can be targets for oxidative damage in DNA, while mutability in other bases is more variable. Moreover, the locus under study is within 8 guanines, which constitutes a homopolymer run (HR). HRs are sequences with six or more identical nucleotides and are associated with >10-fold enrichment of mutation compared to the genomic average. It is noteworthy that there are three other G homopolymer runs in SHANK3, but no recurrent variants were found at these sites.

The CpG content of DNA has also been shown to influence the mutation rate in non-CpG-containing sequences, suggesting that intrinsic properties of DNA sequences may be more important than the chromosomal environment in determining mutation rates and genome integrity. Evidence indicates that because of the propensity for methyl-CpGs to deaminate and produce mismatches, it is plausible that error-prone repair mechanisms may have a role in hypermutability. CpG methylation
might also have epigenetic effects by promoting chromatin states that make DNA more susceptible to
mutations.81

In summary, our data indicate that 16/16 carriers (from 14 independent families) of the p.Ala1227Glyfs*69 variant affecting SHANK3 who have been formally tested carry a diagnosis of ASD. Our analysis did not find any other obvious rare or common genetic variants, or combinations thereof, in the genomes of these families that seem to contribute to core ASD phenotype in these individuals. Given the nature of neurobehavioral complexity, perhaps not surprisingly, there is phenotypic heterogeneity exhibited amongst p.Ala1227Glyfs*69 carriers, which is a hallmark of autism, as well as other related brain disorders that may share overlapping clinical features and contributory susceptibility genes. Although exceedingly rare (0.075% frequency in the ASD families studied by WGS), the finding that this p.Ala1227Glyfs*69 variant in SHANK3 is, so far, concordant with an ASD, and that it will surely continue to sporadically re-occur in the population, has important implications for genetic counselling. It will also be important to continue to search for the p.Ala1227Glyfs*69 variant in SHANK3 to see if it confers risk in other disorders. Defining a specific mutational mechanism underlying an ASD outcome, may also focus strategies for the development of therapeutic interventions.

Data Availability

Access to the MSSNG and SSC data can be obtained by completing data access agreements (https://research.mss.ng and https://www.sfari.org/resource/sfari-base, respectively), as was done for this study. These two well-established and stable whole genome sequence and phenotype resources are utilized by approved investigators worldwide. The 1000G genome-sequencing data are publicly available via Amazon Web Services (https://docs.opendata.aws/1000genomes/readme.html). Access to other data through other publications or resources is described in the main text.
Acknowledgements

We thank the families for participation, The Centre for Applied Genomics and Verily Life Sciences for their analytical and technical support, as well as staff at Autism Speaks for organizational and fundraising support. We thank Jonathon Ditlev for insightful discussion. This work was funded by Autism Speaks, Autism Speaks Canada, the University of Toronto McLaughlin Centre, the Canada Foundation for Innovation, the Canadian Institutes of Health Research (CIHR), Genome Canada/Ontario Genomics Institute, the Government of Ontario, Brain Canada, Ontario Brain Institute Province of Ontario Neurodevelopmental Disorders (POND), and The Hospital for Sick Children Foundation. L.O.L holds Lap-Chee Tsui Postdoctoral Fellowship from The Hospital for Sick Children. S.W.S holds the Endowed Chair in Genome Sciences at the Hospital for Sick Children and University of Toronto.

Disclosures

S.W.S. is on the Scientific Advisory Committees of Deep Genomics, Population Bio and an Academic Consultant for the King Abdulaziz University.
References

1. Tammimies, K., Marshall, C.R., Walker, S., Kaur, G., Thiruvahindrapuram, B., Lionel, A.C., Yuen, R.K.C., Uddin, M., Roberts, W., Weksberg, R., et al. (2015). Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with autism spectrum disorder. JAMA - J. Am. Med. Assoc. 314, 595–903.

2. Fernandez, B.A., and Scherer, S.W. (2019). Syndromic autism spectrum disorders: moving from a clinically defined to a molecularly defined approach. Syndr. Autism Spectr. Disord. - Fernandez Scherer Dialogues Clin. Neurosci. 19, 353–372.

3. Betancur, C. (2011). Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting. Brain Res. 1380, 42–77.

4. Satterstrom, F.K., Kosmicki, J.A., Wang, J., Breen, M.S., De Rubeis, S., An, J.Y., Peng, M., Collins, R., Grove, J., Klei, L., et al. (2020). Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 180, 568-584.e23.

5. Bourgeron, T. (2015). From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat. Rev. Neurosci. 16, 551–563.

6. Ryan KC Yuen, Daniele Merico, Matt Bookman, Jennifer L Howe, Bhooma Thiruvahindrapuram, Rohan V Patel, Joe Whitney, Nicole Deflaux, Jonathan Bingham, Zhuozhi Wang, Giovanna Pellecchia, et al. (2017). Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat. Neurosci. 20, 602–611.

7. Sanders, S.J., He, X., Willsey, A.J., Ercan-Sencicek, A.G., Samocha, K.E., Cicek, A.E., Murtha, M.T., Bal, V.H., Bishop, S.L., Dong, S., et al. (2015). Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron 87, 1215–1233.

8. Woodbury-Smith, M., and Scherer, S.W. (2018). Progress in the genetics of autism spectrum disorder. Dev. Med. Child Neurol. 60, 445–451.

9. Vorstman, J.A.S., Parr, J.R., Moreno-De-Luca, D., Anney, R.J.L., Nurnberger, J.I., and Hallmayer, J.F. (2017). Autism genetics: Opportunities and challenges for clinical translation. Nat. Rev. Genet. 18, 362–376.

10. Srivastava, S., Love-Nichols, J.A., Dies, K.A., Ledbetter, D.H., Martin, C.L., Chung, W.K., Firth, H.V., Frazier, T., Hansen, R.L., Prock, L., et al. (2019). Meta-analysis and multidisciplinary consensus
statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet. Med. 21, 2413–2421.

11. Schaaf, C.P., Betancur, C., Yuen, R.K.C., Parr, J.R., Skuse, D.H., Gallagher, L., Bernier, R.A., Buchanan, J.A., Buxbaum, J.D., Chen, C.A., et al. (2020). A framework for an evidence-based gene list relevant to autism spectrum disorder. Nat. Rev. Genet. 21, 367–376.

12. Hoang, N., Buchanan, J.A., and Scherer, S.W. (2018). Heterogeneity in clinical sequencing tests marketed for autism spectrum disorders. Npj Genomic Med. 3, 1–4.

13. Yehia, L., Seyfi, M., Niestroj, L.M., Padmanabhan, R., Ni, Y., Frazier, T.W., Lal, D., and Eng, C. (2020). Copy Number Variation and Clinical Outcomes in Patients With Germline PTEN Mutations. JAMA Netw. Open 3, e1920415.

14. Scherer, S.W., and Dawson, G. (2011). Risk factors for autism: Translating genomic discoveries into diagnostics. Hum. Genet. 130, 123–148.

15. Anagnostou, E. (2018). Clinical trials in autism spectrum disorder: Evidence, challenges and future directions. Curr. Opin. Neurol. 31, 119–125.

16. Sahin, M., and Sur, M. (2015). Genes, Circuits, and Precision Therapies for Autism and Related Neurodevelopmental Disorders. Science (80-.). 350, 1–19.

17. Yuen, R.K.C., Thiruvahindrapuram, B., Merico, D., Walker, S., Tammimies, K., Hoang, N., Chrysler, C., Nalpathamkalam, T., Pellecchia, G., Liu, Y., et al. (2015). Whole-genome sequencing of quartet families with autism spectrum disorder. Nat. Med. 21, 185–191.

18. Leblond, C.S., Cliquet, F., Carton, C., Huguet, G., Mathieu, A., Kergrohen, T., Buratti, J., Lemière, N., Cuisset, L., Bienvenu, T., et al. (2019). Both rare and common genetic variants contribute to autism in the Faroe Islands. Npj Genomic Med. 4,.

19. The Simons VIP Consortium (2012). Simons Variation in Individuals Project (Simons VIP): A Genetics-First Approach to Studying Autism Spectrum and Related Neurodevelopmental Disorders. Neuron 73, 1063–1067.

20. Miller, D.T., Adam, M.P., Aradhya, S., Biesecker, L.G., Brothman, A.R., Carter, N.P., Church, D.M., Crolla, J.A., Eichler, E.E., Epstein, C.J., et al. (2010). Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies. Am. J. Hum. Genet. 86, 749–764.
21. Riggs, E.R., Andersen, E.F., Cherry, A.M., Kantarci, S., Kearney, H., Patel, A., Raca, G., Ritter, D.I., South, S.T., Thorland, E.C., et al. (2020). Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 22, 245–257.

22. Pinto, D., Delaby, E., Merico, D., Barbosa, M., Merikangas, A., Klei, L., Thiruvahindrapuram, B., Xu, X., Ziman, R., Wang, Z., et al. (2014). Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am. J. Hum. Genet. 94, 677–694.

23. Merikangas, A.K., Segurado, R., Heron, E.A., Anney, R.J.L., Paterson, A.D., Cook, E.H., Pinto, D., Scherer, S.W., Szatmari, P., Gill, M., et al. (2015). The phenotypic manifestations of rare genic CNVs in autism spectrum disorder. Mol. Psychiatry 20, 1366–1372.

24. Malhotra, D., and Sebat, J. (2012). CNVs: Harbingers of a rare variant revolution in psychiatric genetics. Cell 148, 1223–1241.

25. Marshall, C.R., Noor, A., Vincent, J.B., Lionel, A.C., Feuk, L., Skaug, J., Shago, M., Moessner, R., Pinto, D., Ren, Y., et al. (2008). Structural Variation of Chromosomes in Autism Spectrum Disorder. Am. J. Hum. Genet. 82, 477–488.

26. Sanders, S.J., Campbell, A.J., Cottrell, J.R., Moller, R.S., Wagner, F.F., Auldridge, A.L., Bernier, R.A., Catterall, W.A., Chung, W.K., Empfield, J.R., et al. (2018). Progress in Understanding and Treating SCN2A-Mediated Disorders. Trends Neurosci. 41, 442–456.

27. Frazier, T.W. (2019). Autism spectrum disorder associated with germline heterozygous PTEN mutations. Cold Spring Harb. Perspect. Med. 9.

28. Bernier, R., Golzio, C., Xiong, B., Stessman, H.A., Coe, B.P., Penn, O., Witherspoon, K., Gerdts, J., Baker, C., Vulto-Van Silfhout, A.T., et al. (2014). Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158, 263–276.

29. Richards, S., Aziz, N., Bale, S., Bick, D., and Das, S. (2015). ACMG Standards and Guidelines Standards and guidelines for the interpretation of sequence variants : a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. 17, 405–424.

30. Jiang, Y.H., Yuen, R.K.C., Jin, X., Wang, M., Chen, N., Wu, X., Ju, J., Mei, J., Shi, Y., He, M., et al. (2013).
Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am. J. Hum. Genet. 93, 249–263.

31. Trost, B., Engchuan, W., Nguyen, C.M., Thiruvahindrapuram, B., Dolzhenko, E., Backstrom, I., Mirceta, M., Mojarad, B.A., Yin, Y., Dov, A., et al. (2020). Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature 586, 80–86.

32. Fischbach, G.D., and Lord, C. (2010). The simons simplex collection: A resource for identification of autism genetic risk factors. Neuron 68, 192–195.

33. Werling, D.M., Brand, H., An, J.Y., Stone, M.R., Zhu, L., Glessner, J.T., Collins, R.L., Dong, S., Layer, R.M., Markenscoff-Papadimitriou, E., et al. (2018). An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat. Genet. 50, 727–736.

34. Lord, C., Cook, E.H., Leventhal, B.L., and Amara, D.G. (2000). A review of autism spectrum disorders. Neuron 28, 355–363.

35. Rutter, M., LeCouteur, A., and Lord, C. (2003). Autism Diagnostic Interview-Revised. Los Angeles, CA WPS.

36. Belmadani, M., Jacobson, M., Holmes, N., Phan, M., Nguyen, T., Pavlidis, P., and Rogic, S. (2019). VariCarta: A Comprehensive Database of Harmonized Genomic Variants Found in Autism Spectrum Disorder Sequencing Studies. Autism Res. 12, 1728–1736.

37. Durand, C.M., Betancur, C., Boeckers, T.M., Bockmann, J., Chaste, P., Fauchereau, F., Nygren, G., Rastam, M., Gillberg, I.C., Anckarsäter, H., et al. (2007). Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat. Genet. 39, 25–27.

38. De Rubeis, S., Siper, P.M., Durkin, A., Weissman, J., Muratet, F., Halpern, D., Trelles, M.D.P., Frank, Y., Lozano, R., Wang, A.T., et al. (2018). Delineation of the genetic and clinical spectrum of Phelan-McDermid syndrome caused by SHANK3 point mutations. Mol. Autism 9, 1–20.

39. Zhou, W.Z., Zhang, J., Li, Z., Lin, X., Li, J., Wang, S., Yang, C., Wu, Q., Ye, A.Y., Wang, M., et al. (2019). Targeted resequencing of 358 candidate genes for autism spectrum disorder in a Chinese cohort reveals diagnostic potential and genotype–phenotype correlations. Hum. Mutat. 40, 801–815.

40. O’Roak, B.J., Stessman, H.A., Boyle, E.A., Witherspoon, K.T., Martin, B., Lee, C., Vives, L., Baker, C., Hiatt, J.B., Nickerson, D.A., et al. (2014). Recurrent de novo mutations implicate novel genes underlying simplex autism risk. Nat. Commun. 5, 1–6.
41. Feliciano, P., Zhou, X., Astrovskaia, I., Turner, T.N., Wang, T., Brueggeman, L., Barnard, R., Hsieh, A., Snyder, L.A.G., Muzny, D.M., et al. (2019). Exome sequencing of 457 autism families recruited online provides evidence for autism risk genes. Npj Genomic Med. 4.

42. Farwell, K.D., Shahmirzadi, L., El-Khechen, D., Powis, Z., Chao, E.C., Tippin Davis, B., Baxter, R.M., Zeng, W., Mroske, C., Parra, M.C., et al. (2015). Enhanced utility of family-centered diagnostic exome sequencing with inheritance model-based analysis: Results from 500 unselected families with undiagnosed genetic conditions. Genet. Med. 17, 578–586.

43. Moessner, R., Marshall, C.R., Sutcliffe, J.S., Skaug, J., Pinto, D., Vincent, J., Zwaigenbaum, L., Fernandez, B., Roberts, W., Szatmari, P., et al. (2007). Contribution of SHANK3 mutations to autism spectrum disorder. Am. J. Hum. Genet. 81, 1289–1297.

44. Lim, E.T., Uddin, M., De Rubeis, S., Chan, Y., Kamumbu, A.S., Zhang, X., D’Gama, A.M., Kim, S.N., Hill, R.S., Goldberg, A.P., et al. (2017). Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder. Nat. Neurosci. 20, 1217–1224.

45. Ramu, A., Noordam, M.J., Schwartz, R.S., Wuster, A., Hurles, M.E., Cartwright, R.A., and Conrad, D.F. (2013). DeNovoGear: De novo indel and point mutation discovery and phasing. Nat. Methods 10, 985–987.

46. Bidinosti, M., Botta, P., Krüttner, S., Proenca, C.C., Stoehr, N., Bernhard, M., Fruh, I., Mueller, M., Bonenfant, D., Voshol, H., et al. (2012). CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency. Scien 20, 7–12.

47. Gouder, L., Vitrac, A., Goubran-Botros, H., Danckaert, A., Tinevez, J.Y., André-Leroux, G., Atanasova, E., Lemière, N., Biton, A., Leblond, C.S., et al. (2019). Altered spinogenesis in iPSC-derived cortical neurons from patients with autism carrying de novo SHANK3 mutations. Sci. Rep. 9, 1–11.

48. Gauthier, J., Champagne, N., Lafrenière, R.G., Xiong, L., Spiegelman, D., Brustein, E., Lapointe, M., Peng, H., Côté, M., Noreau, A., et al. (2010). De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc. Natl. Acad. Sci. U. S. A. 107, 7863–7868.

49. Durand, C.M., Perroy, J., Loll, F., Perrais, D., Fagni, L., Bourgeron, T., Montcouquiol, M., and Sans, N. (2012). SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism. Mol. Psychiatry 17, 71–84.
50. Jones, D.T., and Cozzetto, D. (2015). DISOPRED3: Precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31, 857–863.

51. Necci, M., Piovesan, D., Dosztanyi, Z., and Tosatto, S.C.E. (2017). MobiDB-lite: Fast and highly specific consensus prediction of intrinsic disorder in proteins. Bioinformatics 33, 1402–1404.

52. Csizmok, V., Follis, A.V., Kriwacki, R.W., and Kay, J.D.F.- (2017). Dynamic protein interaction networks and new structural paradigms in signaling. Physiol. Behav. 176, 139–148.

53. Zeng, M., Shang, Y., Araki, Y., Guo, T., Huganir, R.L., and Zhang, M. (2016). Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity. Cell 166, 1163-1175.e12.

54. Chen, X., Wu, X., Wu, H., and Zhang, M. (2020). Phase separation at the synapse. Nat. Neurosci. 23, 301–310.

55. Zarin, T., Strome, B., Nguyen Ba, A.N., Alberti, S., Forman-Kay, J.D., and Moses, A.M. (2019). Proteome-wide signatures of function in highly diverged intrinsically disordered regions. Elife 8, 1–26.

56. Zarin, T., Strome, B., Peng, G., Pritišanac, I., Forman-Kay, J.D., and Moses, A.M. (2020). Identifying molecular features that are associated with biological function of intrinsically disordered protein regions. BioRxiv 1–23.

57. Vernon, R.M.C., Chong, P.A., Tsang, B., Kim, T.H., Bah, A., Farber, P., Lin, H., and Forman-Kay, J.D. (2018). Pi-Pi contacts are an overlooked protein feature relevant to phase separation. Elife 7, 1–48.

58. Tsang, B., Pritišanac, I., Scherer, S.W., Moses, A.M., and Forman-Kay, J.D. (2020). Phase Separation as a Missing Mechanism for Interpretation of Disease Mutations. Cell 183, 1742–1756.

59. Karczewski, K.J., Francioli, L.C., Tiao, G., Cummings, B.B., Alföldi, J., Wang, Q., Collins, R.L., Laricchia, K.M., Ganna, A., Birnbaum, D.P., et al. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443.

60. Phan, L., Jin, Y., Zhang, H., W. Qiang, E.S., Shao, D., D. Revoe, R.V., Ivanchenko, E., Kimura, M., Wang, Z.Y., L. Hao, N.S., et al. (2020). ALFA: Allele Frequency Aggregator.

61. Taliun, D., Harris, D.N., Kessler, M.D., Carlson, J., Szpiech, Z.A., Torres, R., Taliun, S.A.G., Corvelo, A., Gogarten, S.M., Kang, H.M., et al. (2021). Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299.
62. Reuter, M.S., Walker, S., Thiruvahindrapuram, B., Whitney, J., Rph, I.C., Sondheimer, N., Yuen, R.K.C., Trost, B., Paton, T.A., Pereira, S.L., et al. (2018). The Personal Genome Project Canada: findings. 190, 126–136.

63. Pinese, M., Lacaze, P., Rath, E.M., Stone, A., Brion, M.J., Ameur, A., Nagpal, S., Puttick, C., Husson, S., Degrave, D., et al. (2020). The Medical Genome Reference Bank contains whole genome and phenotype data of 2570 healthy elderly. Nat. Commun. 11, 1–14.

64. Davydov, E. V., Goode, D.L., Sirota, M., Cooper, G.M., Sidow, A., and Batzoglou, S. (2010). Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput. Biol. 6.

65. Kuhn, R.M., Haessler, D., and James Kent, W. (2013). The UCSC genome browser and associated tools. Brief. Bioinform. 14, 144–161.

66. Henn, B.M., Botigué, L.R., Peischl, S., Dupanloup, I., Lipatov, M., Maples, B.K., Martin, A.R., Musharoff, S., Cann, H., Snyder, M.P., et al. (2016). Distance from sub-Saharan Africa predicts mutational load in diverse human genomes. Proc. Natl. Acad. Sci. U. S. A. 113, E440–E449.

67. Speed, H.E., Kouser, M., Xuan, Z., Reimers, J.M., Ochoa, C.F., Gupta, N., Liu, S., and Powell, C.M. (2015). Autism-associated insertion mutation (InsG) of shank3 exon 21 causes impaired synaptic transmission and behavioral deficits. J. Neurosci. 35, 9648–9665.

68. De Sena Cortabitarte, A., Degenhardt, F., Strohmaier, J., Lang, M., Weiss, B., Roeth, R., Giegling, I., Heilmann-Heimbach, S., Hofmann, A., Rujescu, D., et al. (2017). Investigation of SHANK3 in schizophrenia. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 174, 390–398.

69. Leblond, C.S., Nava, C., Polge, A., Gauthier, J., Huguet, G., Lumbroso, S., Giuliano, F., Storoeur, C., Depiennne, C., Mouzat, K., et al. (2014). Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments. PLoS Genet. 10.

70. Bonaglia, M.C., Giorda, R., Borgatti, R., Felisari, G., Gagliardi, C., Selicorni, A., and Zuffardi, O. (2001). Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. Am. J. Hum. Genet. 69, 261–268.

71. Du, X., Gao, X., Liu, X., Shen, L., Wang, K., Fan, Y., Sun, Y., Luo, X., Liu, H., Wang, L., et al. (2018). Genetic Diagnostic Evaluation of Trio-Based Whole Exome Sequencing Among Children With Diagnosed or Suspected Autism Spectrum Disorder. Front. Genet. 9, 1–8.
72. Grove, J., Ripke, S., Als, T.D., Mattheisen, M., Walters, R.K., and Børglum, A.D. (2019). Identification of common genetic risk variants for autism spectrum disorder HHS Public Access Author manuscript. Nat. Genet. 51, 431–444.

73. Zhou, Y., Kaiser, T., Monteiro, P., Zhang, X., Van der Goes, M.S., Wang, D., Barak, B., Zeng, M., Li, C., Lu, C., et al. (2016). Mice with Shank3 Mutations Associated with ASD and Schizophrenia Display Both Shared and Distinct Defects. Neuron 89, 147–162.

74. Aldhebiani, A.Y. (2018). Species concept and speciation. Saudi J. Biol. Sci. 25, 437–440.

75. Uher, R. (2009). The role of genetic variation in the causation of mental illness: An evolution-informed framework. Mol. Psychiatry 14, 1072–1082.

76. Ellegren, H., Smith, N.G.C., and Webster, M.T. (2003). Mutation rate variation in the mammalian genome. Curr. Opin. Genet. Dev. 13, 562–568.

77. Crow, J.F. (2000). The origins, patterns and implications of human spontaneous mutation. Nat. Rev. Genet. 1, 40–47.

78. Michaelson, J.J., Shi, Y., Gujral, M., Zheng, H., Malhotra, D., Jin, X., Jian, M., Liu, G., Greer, D., Bhandari, A., et al. (2012). Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 151, 1431–1442.

79. Růžička, M., Kulhánek, P., Radová, L., Čechová, A., Špačková, N., Fajkusová, L., and Réblová, K. (2017). DNA mutation motifs in the genes associated with inherited diseases. PLoS One 12, 1–16.

80. Montgomery, S.B., Goode, D.L., Kvikstad, E., Albers, C.A., Zhang, Z.D., Mu, X.J., Ananda, G., Howie, B., Karczewski, K.J., Smith, K.S., et al. (2013). The origin, evolution, and functional impact of short insertion-deletion variants identified in 179 human genomes. Genome Res. 23, 749–761.

81. Swami, M. (2010). Mutation: It’s the CpG content that counts. Nat. Rev. Genet. 11, 103283.

82. Pelphrey, K. A., Shultz, S., Hudac, C. M. & Vander Wyk, B.C., and Manuscript, A. (2012). Development in Autism Spectrum Disorder. J. Child Psychol. Psychiatry 52, 631–644.

83. Castelbaum, L., Sylvester, C.M., Zhang, Y., Yu, Q., and Constantino, J.N. (2020). On the Nature of Monozygotic Twin Concordance and Discordance for Autistic Trait Severity: A Quantitative Analysis. Behav. Genet. 50, 263–272.

84. Myers, S.M., Challman, T.D., Bernier, R., Bourgeron, T., Chung, W.K., Constantino, J.N., Eichler, E.E.,
Jacquemont, S., Miller, D.T., Mitchell, K.J., et al. (2020). Insufficient Evidence for “Autism-Specific” Genes. Am. J. Hum. Genet. 106, 587–595.

State, M.W., and Levitt, P. (2011). The conundrums of understanding genetic risks for autism spectrum disorders. Nat. Neurosci. 14, 1499–1506.
Table 1 – Genome annotation of the SHANK3 guanine duplication (rs797044936) considering different reference genomes, the position of the duplication in the guanine string, and the annotation tool. The guanine duplication in each carrier in the main text of the paper is referred to as p.Ala1227Glyfs*69.

Reference Genome	Transcript Accession	Exon	Genomic Position	Coding change	Protein change	Annotation Tool
Hg38	NM_033517.1	21	Chr22:50721512-50721513	c.3679dup	p.(Ala1227Glyfs*69)	Alamut Visual v2.15.0#
	NM_001080420.1##	22	Chr22:g.50721512dup	c.3727dup	p.(Ala1243Glyfs*69)	Alamut Visual v2.15.0
	ENST00000262795.5	24	Chr22:g.50721512dup	c.3676dup	p.(Ala1226Glyfs*69)	Alamut Visual v2.15.0
	NM_001372044 (replaced NM_033517)	22	22-50721503-50721504-T-TG	c.3855dupG	p.L1285fs	MSSNG
	NM_033517	21	Chr22:51159940-51159941	c.3679dup	p.(Ala1227Glyfs*69)	Alamut Visual v2.15.0
	NM_001080420.1	22	Chr22:g.51159940dup	c.3727dup	p.(Ala1243Glyfs*69)	Alamut Visual v2.15.0
	ENST00000262795.5	24	Chr22:g.51159940dup	c.3676dup	p.(Ala1226Glyfs*69)	Alamut Visual v2.15.0
	NM_033517	21	chr22:51159932-51159932-T-TG	c.3630dup	p.L1210fs	VariCarta; GATK
			chr22:51159933-51159933-T-TG			VariCarta
		22	22-5119932-T-TG	c.3719_3720insG	p.Ala1243GlyfsTer6	O'Roak et al.40
			22-5119932-T-TG	c.3720dupG	p.L1240fs	Feliciano et al.41

#Alamut Visual version 2.15 (SOPHiA GENETICS, Lausanne, Switzerland). This tool annotates the final G as duplicated and provides the coding and protein change as well as ClinVar entries and general population frequencies (Supplementary Figure S3).

NM_001080420.1 record has been removed from NCBI. This RefSeq was permanently suppressed because currently there is insufficient support for the transcript and the protein. Exon 11 was based on ab initio prediction and is not supported by transcript data.

At the time of submission, the most recent RefSeq NM_01372044, which replaces and updates NM_033517, was not available in the Alamut software.
Table 2 – ASD probands identified in MSSNG, SSC, and other publications containing the p.Ala1227Glyfs*69 \textit{SHANK3} variant. Thicker lines box individuals from the same family. WGS – whole-genome sequencing, WES – whole-exome sequencing, PRS – polygenic risk score, N/A – not available. Note that individual S7 described in De Rubeis38 has not been formally diagnosed with ASD but has reported autism-associated phenotypes. We also searched for p.Ala1227Glyfs*69 \textit{SHANK3} variants in unpublished data from the SPARK cohort41. From 8,744 ASD-affected individuals for which sequencing data from both parents were available, the variant was detected in two male individuals, both \textit{de novo}. The variant was also detected in 3 out of 13,156 ASD-affected individuals (two males and one female) for which parental sequences were not available and thus inheritance could not be determined. We mention this data just to demonstrate that the variant is found in other collections, as would be expected, and await the presentation of more detailed phenotype data from these participants.

ID	SEX	GENOMIC (H.G.)	REFERENCE SEQUENCE	CODING	PROTEIN	INHERITANCE	PUBLICATION/COHORT	TECHNOLOGY	PRS4	
Family1-003	M	g.50721512dup (hg38)	NM_033517.1	c.3679dup	p.A1227Gfs*69	Paternal, mosaic	MSSNG – This paper	WGS	8.639	
Family1-004	F	g.50721512dup (hg38)	NM_033517.1	c.3679dup	p.A1227Gfs*69	Paternal, mosaic	MSSNG – This paper	WGS	5.336	
Family2-003	M	g.50721512dup (hg38)	NM_033517.1	c.3679dup	p.A1227Gfs*69	Maternal, mosaic	MSSNG – This paper	WGS	-1.167	
Family3-003	M	g.50721512dup (hg38)	NM_033517.1	c.3679dup	p.A1227Gfs*69	\textit{De novo}	MSSNG – This paper	WGS	7.035	
Family4-003	M	g.50721512dup (hg38)	NM_033517.1	c.3679dup	p.A1227Gfs*69	\textit{De novo}	MSSNG-D87 – This paper	WGS	15.606	
ASD-2 pt1	M		NM_033517.1	c.3679dup	Maternal, mosaic	Durand et al.37	FISH and direct sequencing	Not estimated		
ASD-2 pt2	M		NM_033517.1	c.3679dup	Maternal, mosaic	Durand et al.37	FISH and direct sequencing	Not estimated		
S7	F	g.51159940dupG (hg19)	NM_033517.1	c.3679dupG	p.A1227Gfs*69	Non-paternal	De Rubeis et al.38	WES	Not estimated	
S8	M	g.51159940dupG (hg19)	NM_033517.1	c.3679dupG	p.A1227Gfs*69	\textit{De novo}	De Rubeis et al.38	WES	Not estimated	
B1	F	g.51159940dupG(hg19)	NM_033517.1	c.3679dupG	p.A1227Gfs*69	\textit{De novo}	De Rubeis et al.38	WES	Not estimated	
AU013503	F	(hg19)	NM_033517.1	c.3679dupG	p.Ala1227fs	\textit{De novo or father}	Zhou et al.39	Target sequencing	Not estimated	
AU035703	F	(hg19)	NM_033517.1	c.3679dupG	p.Ala1227fs	\textit{De novo}	Zhou et al.39	Target sequencing	Not estimated	
14470.p1	M	22:51159932 - T:TG(hg19)	ENST000002627_95.3	c.3719_3720insG	p.Ala1243GlyfsTer6	De novo	O’Roak et al.	WES - O’Roak et al. 2014 WGS – This paper	6.718	
ASD-685	M	NM_033517.1	c.3630dupG	p.L1210fs	De novo	Du et al.	WES	Not estimated		
G01-GEA-71-HI	F	22:51159932:2:19	ENST000002627_95.3	c.3720dupG	p.L1240fs	De novo	Feliciano et al.	WES	Not estimated	
SP0051409	F	22:51159932 - T:TG(hg19)	ENST000002627_95.3	c.3720dupG	p.A1227Gfs*69	De novo	Farwell et al.	WES	Not estimated	
N/A	N/A	N/A	NM_033517.1	c.3679dupG	p.Ala1227fs	N/A	Ambry Genetics	Clinical testing	Not estimated	
ClinVar SCV000244220	Inborn genetic diseases	N/A	Chr22: g.50721512dup (hg38)	NM_033517.1	c.3679dupG	p.Ala1227fs	N/A	Ambry Genetics	Clinical testing	Not estimated
Clinic SCV0001149930	22q13.3 deletion syndrome	N/A	Chr22: g.50721512dup (hg38)	NM_033517.1	c.3679dupG	p.Ala1227fs	N/A	Institute of Human Genetics, Klinikum rechts der Isar	Clinical testing	Not estimated
Clinic SCV0001149930	22q13.3 deletion syndrome	N/A	Chr22: g.50721512dup (hg38)	NM_033517.1	c.3679dupG	p.Ala1227fs	N/A	Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn	Clinical testing	Not estimated
Clinic SCV000329516	No condition provided	N/A	Chr22: g.50721512dup (hg38)	NM_033517.1	c.3679dupG	p.Ala1227fs	N/A	GeneDx	Clinical testing	Not estimated

1 For the PRS in addition to the main text only SNPs with minor allele frequency of > 0.05 in controls and high imputation quality (INFO > 0.9) were included. SNPs within the broad MHC region (Chr6:25–35MB) were excluded as well as all ambiguous SNPs to avoid potential strand conflicts. Only variants with good sequencing quality (filter = PASS) were included. Clumping was done with r^2 threshold and radius set at 0.1 and 500 kb, respectively. Subsequently, PRS was generated with p-value threshold of 0.1 weighing by the additive scale effect (log (OR)) of each variant and summing over the variants using PLINK 1.9. The scores were centered by the mean in whole population. 2 Variants submitted and catalogued by ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/variation/208759/), Accession VC000208759.8, provided from clinical testing and interpreted as pathogenic.
Table 3 – Phenotype of ASD probands identified in MSSNG, SSC, and other publications containing the SHANK3 p.Ala1227Glyfs*69 variant. Thicker lines box individuals from the same family. ID – intellectual disability; DD – developmental delay. ADHD - Attention deficit hyperactivity disorder, N/A – not available. Note that individual S7 described in De Rubeis et al. has not been diagnosed with ASD but has some autism-associated phenotypes. Graphical representation of these phenotypes is presented in Figure 2.

ID	SEX	ASD	Dysmorphia	Intellectual disability / developmental delay	Other Medical comorbidities	Psychiatric comorbidity	Other Neurological comorbidities	Other Organ anomalies	Language/speech disorder
Family1-003	M	Yes	Macrocephaly Mandibular prognathism. Malar flattening	Severe IDD		Bipolar disorder, Social Deficits		Conductive hearing loss	yes
Family1-004	F	Yes	Macrocephaly Asymmetric facial features (r; Mandibular prognathism; Prominent supraorbital ridge. Abnormal iris pigmentation. Hirsutism. Thick skin texture	Mild ID		Depression with psychotic tendencies, Self-injurious behaviour			
Family2-003	M	Yes		Severe ID		ADHD	Epilepsy	Severe, with early language loss	
Family3-003	M	Yes		Severe ID		Anxiety	Epilepsy, Hypotonia, Hypermobility		
Family4-003	M	Yes		ID	Lactose intolerance	PICA (compulsive ingestion of inedible matter)		Severe	
ASD-2 pt1	M	Yes		Severe ID				Severe	
ASD-2 pt2	M	Yes		Severe ID				Severe	
S7	F			Mild ID				Coronary artery fistula	severe
S8	M	Yes		Severe ID		Social Deficits	Hypotonia/Dysphagia, Abnormal gait		yes
ID	Gender	Age	Conditions	1	2	3	4		
---------	--------	-----	------------------------------	---	---	---	---		
AU013503	F	Yes	Preauricular skin tags						
			Finger and toe-tapping						
			Mild ID						
			Scoliosis						
AU035703	F	Yes	Sleep disturbance						
			hyperactivity						
			Abnormal gait						
14470.p1	M	Yes	ID						
ASD-685	M	Yes	ID						
G01-GEA-71-HI	F	Yes	ID						
SP0051409	F	Yes	?						
N/A	N/A	Yes	?						
Figure 1—Pedigrees of MSSNG families reported for the first time in this study and their Sanger sequencing confirmation. A. Pedigree Family1; B. Pedigree Family2 (unaffected sibling was targeted Sanger sequenced but was not whole genome sequenced); C. Pedigree Family3 (unaffected sibling sample was not available); D. Pedigree Family4 (will be available in MSSNG DB7). Grey shapes indicate individuals with an ASD diagnosis and carry the SHANK3 variant.
Figure 2 – Phenotypic heterogeneity in individuals (X-axis) carrying the SHANK3 p.Ala1227Glyfs*69 variant reported in the MSSNG6,12, SSC32,32,33, and in published papers4,37-42,71. Those individuals in the same family are grouped within the black boxes. Grey spaces indicate absence of the phenotype. White spaces indicate that the phenotype might have not been accessed in the proband. Phenotypic categories are described in Table 3. Individual S7 was not formally reported as being formally tested for ASD. * Caution is needed in the interpretation of these frequencies, since some phenotypes were not assessed for some individuals.
Figure 3- Impact of the SHANK3 p.Ala1227Glyfs*69 variant on the protein (A) (top left) Guanine string containing 8 Gs found in non-affected individuals; (top right) Guanine string containing 9 Gs found in ASD affected individuals and parents with somatic mutations; (bottom) Location of the frequent guanine duplication in the SHANK3 gene. ANK: ankyrin repeats; SH3: SRC homology 3 domain; PDZ: postsynaptic density 95/Discs large/zona occludens; HBS: homer binding site; CBS: cortactin binding site; SAM: sterile alpha motif domain; (B) Alignment of wild type protein sequences, for each of three highly expressed splice isoforms, to the protein sequence of the variant around the position of the mutation; (note, in this figure the first transcript presented is ENST00000262795.5 and the protein change for this is p.Ala1226Glyfs*69 as shown in Table 1) (C) Normalized impact of the variant for the three isoforms using FAIDR, a tool that identifies physical features and the presence of consensus protein recognition motifs in intrinsically disordered protein regions. (*Note that SCD, sequence charge decoration, a measure of charge patterning associated with phase separation, has values significantly above 2: 5.4, 7.0, and 10.2 for the three isoforms.)