High-quality ordinary differential equation (ODE) solver libraries have a long history, going back to the 1970s. Over the past several years we have implemented, on top of the PETSc linear and nonlinear solver package, a new general-purpose, extensive, extensible library for solving ODEs and differential algebraic equations (DAEs). Package includes support for both forward and adjoint sensitivities that can be easily utilized by the TAO optimization package, which is also part of PETSc. The ODE/DAE integrator library strives to be highly scalable but also to deliver high efficiency for modest-sized problems. The library includes explicit solvers, implicit solvers, and a collection of implicit-explicit solvers, all with a common user interface and runtime selection of solver types, adaptive error control, and monitoring of solution progress. The library also offers enormous flexibility in selection of nonlinear and linear solvers, including the entire suite of PETSc iterative solvers, as well as several parallel direct solvers.

Categories and Subject Descriptors: G.1.7 [Numerical Analysis]: Ordinary Differential Equations—Boundary value problems, Convergence and stability, Differential-algebraic equations, Error analysis, Initial value problems, Multistep and multivalue methods

General Terms: Algorithm, Performance

Additional Key Words and Phrases: ODEs, DAEs

1. INTRODUCTION

Sophisticated numerical algorithms for the integration of ordinary differential equations (ODEs) and differential algebraic equations (DAEs) have existed for well over one hundred years, while general-purpose software libraries for their solution have existed for at least forty years. With changes in the applications simulated and in the computer hardware, such libraries are constantly evolving. Perhaps the best-known such libraries for both ODEs and DAEs are those originating at Lawrence Livermore National Laboratory, including VODE, CVODE, DASSL, [Petzold 1992] and SUNDIALS [Hindmarsh et al. 2005]. Other libraries with ODE/DAE support include Trilinos [Heroux et al. 2003], as well as commercial codes such as Mathwork’s MATLAB [MATLAB 2014] and the Numerical Algorithms Group [NAG 2018]. The theory of numerical algorithms for ODEs and DAEs is covered in several monographs, including [Hairer et al. 2008; Hairer and Wanner 2002; Ascher and Petzold 1998; Brenan et al. 1996; Butcher 2008].

The Portable, Extensible Toolkit for Scientific computation (Version 2.0), PETSc, was developed to provide scalable high-quality mathematical libraries for distributed-
memory parallel computing. Over the past several years we have implemented a general-purpose, extensive, extensible ODE and DAE integrator package with local and global error control, support for computing sensitivities, and handling of events (discontinuities in solutions or parameters). In this paper we describe the design, properties, and usage of the ODE/DAE integrators in PETSc. In Section 2 we introduce the organization of PETSc, followed in Section 3 by the PETSc timestepping application programming interface (API) and in Section 4 by the time integration schemes in PETSc. In Section 5 we discuss adaptive timestepping and error control and in Section 6 the computation of sensitivities. In Section 7 we explain how events are handled and the tools for monitoring and visualizing solutions and the solution process. In Section 8 we discuss how PETSc handles discontinuities and events. We conclude in Section 9 with a brief summary of two high-level interfaces for accessing the ODE/DAE integrators: one for networks (for example the power grid) and one for chemical reactions.

2. BACKGROUND: PETSC LINEAR AND NONLINEAR SOLVERS

PETSc is a scalable, MPI-based, object-oriented numerical software library written in C and fully usable from C, C++, Fortran, and Python. See [Balay et al. 1997] for details on its design and the users manual [Balay et al. 2018] for how to use PETSC effectively. PETSc has several fundamental classes from which applications are composed.

- IS – index sets used to index into vectors and matrices, an abstraction of a list of integers
- Vec – vectors, abstract elements of \(R^n \), used to contain the ODE solutions, function evaluations, and so forth
- Mat – matrices, representations of linear operations including matrix-free formulations and sparse and dense storage formats
- PC – preconditioners, single-step iterative solvers including domain decomposition and algebraic and geometric multigrid as well as direct solvers such as LU
- KSP – Krylov subspace solvers, multistep iterative solvers
- SNES – nonlinear solvers, including Newton’s method, quasi-Newton methods, and nonlinear Krylov methods

In addition PETSc has a variety of helper classes that are useful for implicit ODE solvers. These include MatColoring and MatFDColoring, which are used to efficiently compute Jacobians via finite difference; see Section 3. Moreover, PETSc has an abstract class DM that serves as an adapter between meshes, discretizations, and other problem descriptors and the algebraic and timestepper objects that are used to solve the discrete problem.

PETSc takes a minimalist approach to public APIs, attempting to keep them as small as possible and with as little overlap in functionalities as possible. In addition PETSc provides both a programmatic interface to almost all functionalities within PETSc and a simple string-based system, called the options database, that allows runtime control of almost all functionality in PETSc.

Because PETSc is written in C, which does not have native syntax to create classes and class hierarchies of object-oriented languages, the classes are managed “manually” by the use of C structs and function pointers. One feature of this approach, which can also be obtained in object-oriented languages through the use of delegates, is that any object can be changed at runtime, even multiple times during the run to different derived classes of the same base class. For example, a linear solver object that uses the GMRES method can later be changed to use Bi-CG-stab by simply resetting the solver type, without the need for factory classes. Many PETSc functions have optional arguments; since C does not support function overloading, one passes PETSC_DEFAULT (for optional scalar arguments) and NULL (for optional array arguments). In order to allow
changing basic type sizes at compile time PETSc has its own types: PetscReal, which can represent half-, single-, double-, or quad-precision floating point; PetscScalar, which represents complex values when PETSc is built with complex numbers; and PetscInt, which represents either 32- or 64-bit integers. Since PETSc is written in C, we cannot utilize templates for this purpose as would be done in C++.

The usage of PETSc objects generally proceeds in the following order.

— XXXCreate(MPI_Comm comm, XXX *xxx) creates an object of type XXX, for example, KSPCreate(MPI_comm,KSP*) creates a Krylov solver object.
— XXXSetYYY(XXX xxx,...) sets options to the object, via the functional interface.
— XXXSetType(XXX xxx,const char* typename) sets the specific subclass of the object, for example, "gmres" is a subclass of KSP.
— XXXSetFromOptions(XXX xxx) allows setting the type and options of the object from the options database.
— XXXSetYYY(XXX xxx,...) sets additional options.
— XXXSetUp(XXX xxx) fully instantiates the object so that it is ready to be used.
— Use the object.
— XXXDestroy(XXX *xxx) frees all the space being used by the solver. PETSc uses reference counting to ensure that objects referenced by multiple other objects are not prematurely destroyed.

We present full examples of this approach below for the ODE/DAE solvers.

3. PETSC TIMESTEPPING APPLICATION PROGRAMMING INTERFACE

The PETSc interface for solving time-dependent problems is organized around the following form of a DAE:

\[F(t,u,\dot{u}) = G(t,u), \quad u(t_0) = u_0. \]

If the matrix \(F_\dot{u} = \partial F / \partial \dot{u} \) is nonsingular, then the equation is an ODE and can be transformed to the standard explicit form \(\dot{u} = Q(t,u) \). This transformation may not lead to efficient algorithms, so often the transformation to explicit form should be avoided. For ODEs with nontrivial mass matrices such as those that arise in the finite element method, the implicit/DAE interface can significantly reduce the overhead to prepare the system for algebraic solvers by having the user assemble the correctly shifted matrix. This interface is also useful for ODE systems, not just DAE systems.

To solve an ODE or DAE, one uses the timestep context TS created with TSCreate(comm,&ts) and then sets options from the options database with TSSetFromOptions(ts). To define the ODE/DAE, the user needs to provide one or more functions (callbacks). The TS API for providing these functions consists of the following.

— Function \(F(t,u,\dot{u}) \) is provided, by the user, with

\[
\text{TSSetIFunction(TS ts, Vec r, (*f)(TS, PetscReal, Vec, Vec, Vec, void*), void *fP);}
\]

The vector \(r \) is an optional location to store the residual. The arguments to the function \(f() \) are the timestep context, current time, input state \(u \), input time derivative \(\dot{u} \), and the (optional) user-provided context \(*fP \) that contains data needed by the application-provided call-back routines. When only \(G(t,u) \) is provided, TS automatically assumes that \(F(t,u,\dot{u}) = \dot{u} \).

— Function \(G(t,u) \), if it is nonzero, is provided, by the user, with

\[
\text{TSSetRHSFunction(TS ts, Vec r, (*g)(TS, PetscReal, Vec, Vec, void*), void *gP);}
\]
Again the vector r is an optional location to store the residual. The arguments to the function $g()$ are the timestep context, current time, input state u, and the (optional) user-provided context $\ast gP$.

— Jacobian $(\text{shift})F_u + F_{\dot{u}}$

If using a fully implicit or semi-implicit (IMEX) method, one also must provide an appropriate (approximate) Jacobian matrix of $F()$ at the current solution u^n using

\begin{verbatim}
TSSetIJacobian(TS ts, Mat A, Mat B,
 (*j)(TS, PetscReal, Vec, Vec, PetscReal, Mat, Mat, void*), void *jP);
\end{verbatim}

The arguments for the Jacobian are the timestep context; current time; input state u; input derivative \dot{u}; shift (described below); matrix A (which defines the Jacobian); matrix B, which is optionally different from A (from which the preconditioner is constructed); and the (optional) user-provided context jP.

This form for the Jacobian arises because for all implicit and semi-implicit time integrators in PETSc the value of \dot{u}^n is approximated in the ODE/DAE solver algorithms by $(\text{shift})u^n + q(u^{n-1},...)$, where the method-specific function $q(u^{n-1},...)$ depends only on previous iterations. Hence

$$
\frac{dF}{du^n} = \frac{\partial F}{\partial \dot{u}^n} \frac{\partial \dot{u}^n}{\partial u^n} + \frac{\partial F}{\partial u^n}
$$

$$
= (\text{shift})F_{\dot{u}^n}(t^n, u^n, \dot{u}^n) + F_{u^n}(t^n, u^n, \dot{u}^n).
$$

For example, the backward Euler method has $\dot{u}^n = (u^n - u^{n-1})/\Delta t$. With $F(u^n) = M\dot{u}^n - f(t, u^n)$, one obtains the expected Jacobian

$$
\frac{dF}{du^n} = \frac{\partial (M\dot{u}^n)}{\partial u^n} \frac{\partial \dot{u}^n}{\partial u^n} - \frac{\partial f}{\partial u^n}
$$

$$
= \frac{1}{\Delta t} M - f_{u^n}(t, u^n).
$$

In this case the value of shift is $1/\Delta t$.

— Jacobian G_u

If using a fully implicit method and the function $G()$ is provided, one must also provide an appropriate (approximate) Jacobian matrix of $G()$ using

\begin{verbatim}
TSSetRHSJacobian(TS ts, Mat A, Mat B,
 (*gj)(TS, PetscReal, Vec, Mat, Mat, void*), void *gjP);
\end{verbatim}

The arguments for the function $gj()$ are the timestep context, current time, input state u, matrix A, optional matrix B from which the preconditioning is constructed, and the (optional) user-provided context gjP.

Providing appropriate $F()$ and $G()$ and their derivatives for the problem allows for easy runtime switching between explicit, semi-implicit, and fully implicit methods.

Providing correctly coded Jacobians is often a major stumbling block for users of ODE/DAE integration packages. PETSc provides three useful tools to help users in this process:

— application of Jacobians via matrix-free differencing approaches,
— explicit computation of Jacobians via matrix coloring and differencing, and
— automatic testing of user-provided Jacobian computations.

Finite-difference-based matrix-free application of Jacobians is handled with a special PETSc matrix class that never forms the matrix entries explicitly but merely provides matrix-vector products. For most situations the user simply provides the option $-snes_mf$, which uses the PETSc provided matrix-free matrix class, and either no preconditioner or a user-provided preconditioner or $-snes_mf$ operator, where a standard
The preconditioner is constructed from some user-provided approximation to the Jacobian. Users who desire more control over the process can utilize

\begin{verbatim}
MatCreateMFFD(MPI_Comm, PetscInt m, PetscInt n, PetscInt M, PetscInt N, Mat *J)
MatMFFDSetFunction(Mat J,(*f)(void*,Vec,Vec),void* ctx)
\end{verbatim}

The arguments of MatCreateMFFD() are the local and global dimensions of the operator, while the arguments of MatMFFDSetFunction() include the nonlinear function and optional user-provided context data. A simpler alternative uses the nonlinear function already provided to the nonlinear solver with

\begin{verbatim}
TSGetSNES(TS ts,SNES*snes)
MatCreateSNESMF(SNESsnes,Mat*J)
\end{verbatim}

An explicit matrix representation of the Jacobian via matrix coloring may be constructed by using the option -snes_fd_color. The coloring can be provided in complementary ways, either by providing the nonzero structure of the Jacobian (but not its numerical values) and applying a variety of matrix coloring routines to compute the coloring (this is done by creating a coloring object with MatColoringCreate() and from this performing the coloring) or by providing the coloring based on the mesh structure and specific numerical discretization approach used (this is done by calling DMCreateColoring()). Once the coloring is provided, the actual computation of the Jacobian entries involves the use of MatFDColoringCreate() and MatFDColoringSetFunction(), which plays a role similar to MatMFFDSetFunction(). Both the matrix-free differencing and the explicit computation of the Jacobian entries support various options for selecting the differencing parameters. The explicit computation of Jacobian entries via differencing can be used to find the locations of Jacobian entries incorrectly provided by the user. In the simplest case this is handled via the option -snes_compare_coloring -snes_compare_coloring_display. Other options include -snes_compare_coloring, -snes_compare_coloring, -snes_compare_coloring. Display. Other options include

We now present a simple, but complete, example code demonstrating the use of TS to solve a small set of ODEs: \(\dot{u}_0 = -\kappa u_0 u_1, \dot{u}_1 = -\kappa u_0 u_1, \dot{u}_2 = \kappa u_0 u_1, u^0 = [1.0, 0.7, 0.0]^T \).

\begin{verbatim}
/* Defines the ODE passed to the ODE solver */
IFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec F,AppCtx*ctx){
 PetscScalar*f;
 const PetscScalar*u,*udot;
 VecGetArrayRead(U,&u); VecGetArrayRead(Udot,&udot); VecGetArray(F,&f);
 f[0] = udot[0] + ctx->k*u[0]*u[1];
 f[1] = udot[1] + ctx->k*u[0]*u[1];
 f[2] = udot[2] - ctx->k*u[0]*u[1];
 VecRestoreArrayRead(U,&u); VecRestoreArrayRead(Udot,&udot);
 VecRestoreArray(F,&f);
}

/* Defines the Jacobian of the ODE passed to the ODE solver. */
IJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal a,Mat A,Mat B,AppCtx*ctx){
 PetscScalar J[3][3];
 PetscScalar u[3];
 VecGetArrayRead(U,&u); VecGetArrayRead(Udot,&udot);
 J[0][0] = a + ctx->k*u[1];
 J[1][0] = ctx->k*u[0];
 J[0][2] = 0.0;
 J[1][1] = a + ctx->k*u[0];
 J[1][2] = 0.0;
 J[2][0] = -ctx->k*u[1];
 J[2][1] = -ctx->k*u[0];
 J[2][2] = a;
 MatSetValues(B,3,rowcol,3,rowcol,&J[0][0],INSERT_VALUES);
 VecRestoreArrayRead(U,&u); VecRestoreArrayRead(Udot,&udot);
 MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
}
\end{verbatim}
/* Defines the initial conditions (and the analytic solution) */
Solution(TS ts,PetscReal t,Vec U,AppCtx *ctx){
 const PetscScalar * uinit;
 PetscScalar *u,d0,q;
 VecGetArrayRead(ctx->initialsolution,& uinit); VecGetArray(U,&u);
 d0 = uinit[0] - uinit[1];
 if (d0 == 0.0) q = ctx->k*t;
 else q = (1.0 - PetscExpScalar(-ctx->k*t*d0))/d0;
 u[0] = uinit[0]/(1.0 + uinit[1]*q);
 u[1] = u[0] - d0;
 u[2] = uinit[1] + uinit[2] - u[1];
 VecRestoreArrayRead(ctx->initialsolution,& uinit); VecRestoreArray(U,&u);
}

/* Creates the TS object, sets functions, options, then solves the ODE */
int main(int argc,char **argv){
 TS ts; /* ODE integrator */
 Vec U; /* solution will be stored here */
 Mat A; /* Jacobian matrix */
 PetscInt n = 3;
 AppCtx ctx;
 PetscInitialize(& argc,& argv,(char*)0,help);
 /* Create necessary matrix and vectors */
 MatCreate(PETSC_COMM_WORLD,&A);
 MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);
 MatSetFromOptions(A); MatSetUp(A);
 MatCreateVecs(A,&U,& ctx. initialsolution);
 /* Set runtime option */
 ctx.K = .9;
 PetscOptionsGetScalar(NULL,NULL, "-k",&ctx.K,NULL);
 /* Create timestepping solver context */
 TSCreate(PETSC_COMM_WORLD,&ts);
 TSSetProblemType(ts,TS_NONLINEAR);
 TSSetType(ts,TSROSW);
 TSSetIFunction(ts,NULL,(TSIFunction) IFunction,& ctx);
 TSSetIJacobian(ts,A,A,(TSIJacobian) IJacobian ,& ctx);
 /* Set initial conditions */
 Solution(ts,0,U,&ctx);
 /* Set solver options */
 TSSetTimeStep(ts,.001);
 TSSetMaxSteps(ts,1000);
 TSSetMaxTime(ts,20.0);
 TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);
 TSSetFfromOptions(ts);
 TSMonitorLGSetVariableNames(ts,names);
 TSSolve(ts,U);
 VecDestroy(& ctx. initialsolution); MatDestroy(& A); VecDestroy(&U);
 TSDestroy(& ts);
 PetscFinalize();
}

We next present a simple example code demonstrating the use of TS to solve a small set of stiff ODEs (a 3-variable oscillatory ODE system from chemical reactions, problem OREGO in [Hairer and Wanner 2002]) written in Python and using the petsc4py
A:7

[Dalcin et al. 2011] binding:

\[
\dot{u}_0 = -77.27(u_1 + u_0(1 - 8.375 \times 10^{-6}u_0 - u_1)),
\]

\[
\dot{u}_1 = \frac{1}{77.27}(u_2 - (1 + u_0)u_1),
\]

\[
\dot{u}_2 = 0.161(u_0 - u_2),
\]

\[u(t = 0) = [1.0, 2.0, 3.0]^T.\]

```python
import sys, petsc4py
from matplotlib import pylab
from matplotlib import rc
import numpy as np
petsc4py.init(sys.argv)

from petsc4py import PETSc

class Orego(object):
    n = 3
    comm = PETSc.COMM_SELF
    def evalSolution(self, t, x):
        x.setArray([1, 2, 3])
    def evalFunction(self, ts, t, x, xdot, f):
        f.setArray([xdot[0] - 77.27*(x[1] + x[0]*(1 - 8.375e-6*x[0] - x[1])),
                    xdot[1] - 1/77.27*(x[2] - (1 + x[0])*x[1]),
                    xdot[2] - 0.161*(x[0] - x[2])])
    def evalJacobian(self, ts, t, x, xdot, a, A, B):
        B[:,:] = [[a - 77.27*((1 - 8.375e-6*x[0] - x[1]) -8.375e-6*x[0]),
                    -77.27*(1 - x[0]), 0],
                    [1/77.27*x[1], a + 1/77.27*(1 + x[0]), -1/77.27],
                    [-0.161, 0, a + 0.161]]
        B.assemble()
        if A != B: A.assemble()
        return True  # same nonzero pattern

OptDB = PETSc.Options()
ode = Orego()

J = PETSc.Mat().createDense([ode.n, ode.n], comm=ode.comm)
J.setUp()
x = PETSc.Vec().createSeq(ode.n, comm=ode.comm); f = x.duplicate()

ts = PETSc.TS().create(comm=ode.comm)
ts.setType(ts.Type.ROSW)  # use Rosenbrock-W method

ts.setIFunction(ode.evalFunction, f)

history = []
def monitor(ts, i, t, x):
    xx = x[:].tolist()
    history.append((i, t, xx))
t.setMonitor(monitor)

ts.setTime(0.0)
ts.setTimeStep(0.1)
ts.setMaxTime(360)
ts.setMaxSteps(2000)
ts.setExactFinalTime(PETSc.TS.ExactFinalTime.INTERPOLATE)
ts.setMaxSNESFailures(-1)  # allow unlimited failures (step will be retried)

# Set a different tolerance on each variable.
```

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.
A.8

vatol = x.duplicate(array=[1e-2, 1e-1, 1e-4])
ts.setTolerances(atol=vatol, rtol=1e-3) # adaptive controller attempts to match this tolerance

snes = ts.getSNES() # Nonlinear solver
snes.setTolerances(max_it=10) # Stop nonlinear solve after 10 iterations
(TS will retry with shorter step)

ksp = snes.getKSP() # Linear solver
ksp.setType(ksp.Type.PREONLY) # No Krylov method
pc = ksp.getPC() # Preconditioner
pc.setType(pc.Type.LU) # Use a direct solve

if OptDB.getBool('plot_history', True):
 ii = np.asarray([v[0] for v in history])
 tt = np.asarray([v[1] for v in history])
 xx = np.asarray([v[2] for v in history])

 rc('text', usetex=True)
 pylab.suptitle('Oregonator: TS \texttt{%s}' % ts.getType())
 pylab.subplot(2, 2, 1)
 pylab.subplots_adjust(wspace=0.3)
 pylab.semilogy(ii[: -1], np.diff(tt),)
 pylab.xlabel('step number')
 pylab.ylabel('timestep')

 for i in range(0, 3):
 pylab.subplot(2, 2, i + 2)
 pylab.semilogy(tt, xx[:, i], 'rgb'[i])
 pylab.xlabel('time')
 pylab.ylabel('$x_%d$' % i)

 pylab.show()

Figure 1 shows the output of the OREGO Python code. We have also developed a work-precision diagram illustrating the effect of choosing different tolerances in the TSAdapt (see §4.3) on the amount of effort and precision.

4. TIMESTEPPING SCHEMES

This section describes the interfaces for setting the timestepping schemes and their options. The classes of methods currently implemented in PETSc are described in Table I. They cover multistage, multistep, and general linear methods with different stability properties. To address different problem requirements, PETSc provides explicit methods that are fast and accurate, implicit methods that have robust stability properties, and partitioned methods that combine both implicit and explicit integrators. Many of the methods implemented in PETSc allow users to register new schemes by supplying a new set of method coefficients. Most methods offer local error control. Global error estimation is also supported for several integrators. When implicit and semi-implicit methods are used, any of the PETSc linear and nonlinear solvers can be selected either by calling functions within the program or via the PETSc options database. These are fully described in the PETSc users manual [Balay et al. 2018]. The following list details some of the methods and their properties.

— **euler** Explicit Euler method. This is a basic implementation of the simplest time integrator.
Fig. 1. Output and work-precision diagram for the OREGO problem with three Rosenbrock-W methods (§4.2) under different TSAdapt tolerances

- **ssp** Class of strong-stability-preserving multistage explicit methods suitable for hyperbolic partial differential equations (PDEs).
- **beuler, cn, theta** low-order implicit methods suitable for DAEs and when stability is a concern.
- **alpha(2)** Timestepping developed for Navier-Stokes problems [Jansen et al. 2000].
- **gllc** Implementation of implicit general linear methods for stiff problems.
- **rk** Implementation of explicit Runge-Kutta methods.
- **eimex** Implementation of extrapolated partitioned Runge-Kutta methods. These methods can have arbitrarily high orders [Constantinescu and Sandu 2010].
- **arkimex** Implementation of additive partitioned Runge-Kutta methods. These are suitable for problems with stiff and nonstiff components.
- **rosw** Implementation of Rosenbrock and W-methods, linearly implicit multistage methods with full or approximated Jacobian matrices. These methods are suitable for stiff, mildly nonlinear problems.
- **glee** Explicit and implicit general linear methods; typically self-starting, with global error estimation [Constantinescu 2018]. With suitable coefficients, these methods include euler, beuler, cn, theta, ssp, and rk.
- **bdf** Standard backward differentiation methods. These are relatively low-order implicit multistep methods suitable for stiff problems and DAEs.

Explicit methods are conditionally stable. Implicit methods can be conditionally or unconditionally stable. Unconditional stability can be stronger or weaker. In this study we distinguish two types of stability: *A-Stable* methods, which have a stability region that covers the entire real-negative complex half plane, and *L-Stable or stiffly accurate* (SA) methods, which are A-Stable methods for which the amplification factor goes to zero as stiffness goes to infinity, thus giving them better stability properties for stiff problems and DAEs.

4.1. Partitioned Runge-Kutta

Partitioned methods are aimed at relaxing ODE integrator classification into strictly stiff and nonstiff problems that may have both types of characteristics. Partitioned methods employ two types of integrators: an explicit integrator for the nonstiff problem components and an implicit integrator suitable for the stiff ones [Ascher et al.
Table I. List of time integration schemes available in PETSc.

TS Name	Reference	Class	Type	Order	
euler		forward Euler	one-step	explicit	1
ssp	multistage SSP [Ketcheson 2008]	Runge-Kutta	explicit	≤ 4	
beuler	backward Euler	one-step	implicit	1	
cn	Crank-Nicolson	one-step	implicit	2	
theta	theta-method	one-step	implicit	≤ 2	
alpha(2)	alpha-method [Jansen et al. 2000]	one-step	implicit	2	
glee	general linear [Butcher et al. 2007]	general linear	implicit	≤ 3	
eimex	extrapolated IMEX [Constantinescu and Sandu 2010]	one-step	≥ 1, adaptive		
arkimex	§4.1	IMEX Runge-Kutta	IMEX	1 − 5	
rosw	§4.2	Rosenbrock-W	linearly implicit	1 − 4	
glee	method with global error estimation [Constantinescu 2018]	general linear	explicit/implicit	1 − 4	
bdf	standard BDF methods [Brenan et al. 1996]	multistep	implicit	1 − 6	

Partitioned Runge-Kutta methods are typically strongly coupled; that is, both integrators participate in each stage calculation. In the literature these methods are known as implicit-explicit or semi-implicit [Giraldo et al. 2013; Zhong 1996].

A typical additive partitioning of an ODE problem results in the following:

\[
\dot{u} = \frac{G(t, u) + H(t, u)}{\dot{U}_E},
\]

where \(\dot{U}_E\) denotes the nonstiff right hand side function and \(F(t, u, \dot{u}) = \dot{u} - \dot{U}_I\) the stiff implicit function in PETSc. Integrating this problem explicitly in \(G\) and implicitly in \(F\) from \(u_n\) to \(u_{n+1}\) by an additive Runge-Kutta (ARK) method defined by coefficients \((A = \{a_{ij}\}, b, c)\) for the explicit part and \((\tilde{A}, \tilde{b}, \tilde{c})\) for the implicit part, we have

\[
U^{(i)} = u_n + \Delta t \sum_{j=1}^{i-1} a_{ij} \dot{U}^{(j)}_E + \Delta t \sum_{j=1}^{i} \tilde{a}_{ij} \dot{U}^{(j)}_I, \quad i = 1, \ldots, s
\]

\[
u_{n+1} = u_n + \Delta t \sum_{j=1}^{s} \tilde{b}_j \dot{U}^{(j)}_E + \Delta t \sum_{j=1}^{s} \tilde{b}_j \dot{U}^{(j)}_I,
\]

where \(A = \{a_{ij}\}\) is strictly lower triangular, \(\tilde{A} = \{\tilde{a}_{ij}\}\) is lower triangular and can have zeros on the diagonal (these correspond to explicit stages), and \(c^{(i)}\) is stage index \(i\).
The implementation of the standard IMEX scheme is as follows. Solve for $U^{(i)}$:

$$F \left(t_n + c_i \Delta t, U^{(i)}, \frac{1}{\Delta t a_{ii}} \left(U^{(i)} - Z \right) \right) = 0, \quad (3a)$$

$$Z = u_n + \Delta t \sum_{j=1}^{i-1} \tilde{a}_{ij} \dot{U}_j^{(i)} + \Delta t \sum_{j=1}^{i-1} a_{ij} \dot{U}^{(j)}_E$$

$$\dot{U}_i^{(i)} = \frac{1}{\Delta t a_{ii}} \left(U^{(i)} - Z \right), \quad \dot{U}_E^{(i)} = G \left(t_n + c_i \Delta t, U^{(i)} \right), \quad i = 1, \ldots, s \quad (3c)$$

$$u_{n+1} = u_n + \Delta t \sum_{j=1}^{s} b_{ij} \dot{U}_E^{(j)} + \Delta t \sum_{j=1}^{s} \tilde{b}_{ij} \dot{U}_i^{(j)}. \quad (3d)$$

If $\tilde{a}_{ii} = 0$, then (3a) is skipped, and (3c) is modified. This approach allows direct use of these schemes for different types of problems as expressed in Table II.

Lower-order approximations are computed in the same way as for RK and ARK methods by evaluating (2b) with different b and \tilde{b} coefficients.

If one calls TSARKIMEXSetFullyImplicit() or uses the option -ts_imex_fully_implicit, then (3a) solves $F(t,u,\dot{u}) = G(t,u)$ by using only the implicit integrator, thus turning the timestepping procedure into a diagonally implicit integrator. This facilitates solving DAEs and implicit ODEs. A summary of casting these schemes for different types of problems as expressed in Table II.

An IMEX formulation for problems such as $M \dot{u} = g(t,u) + h(t,u)$ requires the user to provide $M^{-1} g(t,u)$. General cases such as $F(t,u,\dot{u}) = G(t,u)$ are not amenable to IMEX Runge-Kutta but can be solved by using fully implicit methods, that is, by using the -ts_imex_fully_implicit option.

$u = g(t,u)$	non-stiff ODE	$F(t,u,\dot{u}) := u, G(t,u) := g(t,u)$
$u = h(t,u)$	stiff ODE	$F(t,u,\dot{u}) := u - h(t,u), G(t,u) := \text{NULL}$
$M \dot{u} = g(t,u)$	stiff ODE with mass matrix	$F(t,u,\dot{u}) := M \dot{u} - h(t,u), G(t,u) := \text{NULL}$
$M \dot{u} = g(t,u) + h(t,u)$	non-stiff ODE with mass matrix	$F(t,u,\dot{u}) := u - h(t,u), G(t,u) := g(t,u)$
$h(t,y,\dot{y}) := 0$	implicit ODE/DAE	$F(t,u,\dot{u}) := h(t,u), G(t,u) := \text{NULL}$; TSSetEquationType() set to TS_EQ_IMPLICIT or higher

The dense output or continuous approximation of the solution within one timestep is also supported [Horn 1983; Kennedy and Carpenter 2003]. This is used to obtain a high-order interpolation on the one hand and a hot-start initial guess for the Newton iterations on the other hand. The $s^* \geq s$ dense output formula for IMEX Runge-Kutta schemes of order p^* is given by

$$u^*(t_n + \theta \Delta t) := u_n + \Delta t \sum_{i=1}^{s^*} B_i^*(\theta) g(t_n + c_i \Delta t, U^{(i)}) + \tilde{B}^*_i(\theta) f(t_n + c_i \Delta t, U^{(i)}), \quad (4)$$

where $\theta \in [0,1], B_i^*(\theta) = \sum_{j=1}^{p^*} b_{ij}^* \theta^j$, and $\tilde{B}^*_i(\theta) = \sum_{j=1}^{p^*} \tilde{b}_{ij}^* \theta^j$. We typically take $b_{ij}^* = \tilde{b}_{ij}^*$. When $\theta > 1$, the dense output is used for extrapolation. This option is set.
by -ts_arkimex_initial_guess_extrapolate and has the effect of setting the initial
guess for all stages based on the dense output extrapolated solution from the previous
step. In nonlinear problems this was shown to accelerate the code by up to three times;
however, the gains are highly problem dependent.

Table III. List of the IMEX RK schemes available in PETSc.

TS Name	Reference	Stages (IM)	Order (stage)	Implicit stability	Stiff accuracy
1bee	B Euler + Extrap	3(3)	1(1)	L	yes
a2	RK2a + Trap	2(1)	2(2)	A	yes
12	SSP2(2,2,2) [Pareschi and Russo 2005]	2(2)	2(1)	L	yes
ars122	ARS122, [Ascher et al. 1997]	2(1)	3(1)	A	yes
2c	[Giraldo et al. 2013]	3(2)	2(2)	L	yes
2d	[Giraldo et al. 2013]	3(2)	2(2)	L	yes
2e	[Giraldo et al. 2013]	3(2)	2(2)	L	yes
prssp2	PRS(3,3,3) [Pareschi and Russo 2005]	3(3)	3(1)	L	
3	[Kennedy and Carpenter 2003]	4(3)	3(2)	L	yes
bpr3	[Boscarino et al. 2011]	5(4)	3(2)	L	
ars443	[Ascher et al. 1997]	5(4)	3(1)	L	yes
4	[Kennedy and Carpenter 2003]	6(5)	4(2)	L	yes
5	[Kennedy and Carpenter 2003]	8(7)	5(2)	L	yes

TS Name	Embedded	Dense Output	Remarks
1bee	yes(1)	no	extrapolated BEuler
a2	yes(1)	yes(2)	
12	es(1)	yes(2)	SSP, SDIRK
ars122	yes(1)	yes(2)	
2c	yes(1)	yes(2)	SDIRK, SSP
2d	yes(1)	yes(2)	SDIRK
2e	yes(1)	yes(2)	SDIRK
prssp2	no	no	SSP, nonSDIRK
3	yes(2)	yes(2)	SDIRK
bpr3	no	no	SDIRK, DAE-1
ars443	no	no	SDIRK
4	yes(3)	yes(2,3)	SDIRK
5	yes(4)	yes(3)	SDIRK

4.2. Rosenbrock

Rosenbrock methods are linearly implicit versions of implicit Runge-Kutta methods. They use explicit function evaluations and implicit linear solves, and therefore they
tend to be faster than the implicit Runge-Kutta methods because at each stage only
a linear system needs to be solved, as opposed to the implicit Runge-Kutta methods
that require solving a nonlinear system at each stage. An s-stage Rosenbrock method
is defined by coefficient matrices \(A = a_{ij} \), \(j < i \) and \(\Gamma = \gamma_{i,j} \), \(j \leq i \) and vector \(b_i \), \(i = 1, \ldots, s \). The Rosenbrock scheme applied to \(\dot{u} = f(t, u) \) computes the solution at
step \(n + 1 \) by

\[
\begin{align}
 k_i &= \Delta t f(t_n + c_i \Delta t, u_n + \sum_{j=1}^{i-1} a_{ij} k_j) + \Delta t J \sum_{j=1}^{i} \gamma_{ij} k_j \quad i = 1, \ldots, s \\
 u_{n+1} &= u_n + \sum_{i=1}^{s} b_i k_i,
\end{align}
\]

where \(J \) is the Jacobian matrix of \(f(t, u) \) at \(t = t_n \) and \(c_i = \sum_{j=1}^{i-1} a_{ij} \). Extensions
to DAEs and PDAEs are readily available [Rang and Angermann 2005]. The linear
Table IV. List of the Rosenbrock W-schemes available in PETSc.

TS Name	Reference	Stages (IM)	Order (stage)	Implicit stability	Stiff accuracy
theta1	classical	1(1)	1(1)	L	-
theta2	classical	1(1)	2(2)	A	-
2m	Zoltan	2(2)	2(1)	L	No
2p	Zoltan	2(2)	2(1)	L	No
ra3pw	[Rang and Angermann 2005]	3(3)	3(1)	A	No
ra34pw2	[Rang and Angermann 2005]	4(4)	3(1)	L	Yes
rodas3	[Sandu et al. 1997]	4(4)	3(1)	L	Yes
sandu3	[Sandu et al. 1997]	3(3)	3(1)	L	Yes
assp3p4s1c	unpublished	3(2)	3(1)	A	No
lassp3p4s2c	unpublished	4(3)	3(1)	L	No
lassp3p4s2c	unpublished	4(3)	3(1)	L	No
ark3	unpublished	4(3)	3(1)	L	No

TS Name	Embedded	Dense Output	Inexact Jacobians	PDAE	Remarks
theta1	-	-	-	-	-
theta2	-	-	-	-	-
2m	Yes(1)	Yes(2)	Yes	No	SSP
2p	Yes(1)	Yes(2)	Yes	No	SSP
ra3pw	Yes	Yes(2)	No	Yes(3)	-
ra34pw2	Yes	Yes(3)	Yes	Yes(3)	-
rodas3	-	No	No	Yes	-
sandu3	Yes	Yes(2)	No	No	-
assp3p4s1c	Yes	Yes(2)	Yes	No	SSP
lassp3p4s2c	Yes	Yes(3)	Yes	No	SSP
lassp3p4s2c	Yes	Yes(3)	Yes	No	SSP
ark3	Yes	Yes(3)	Yes	No	IMEX-RK

The system is defined in terms of the Jacobian matrix, which can be exact or approximated. The latter case leads to W-methods.

We follow the implementation suggested by [Rang and Angermann 2005] and [Kaps et al. 1985], where the coefficient matrix Γ is inverted and a change of variable is used:

$$v_i = \sum_{j=1}^{i} \gamma_{ij} k_j, \ i = 1, \ldots, s,$$

leading to the following expressions:

$$\left(\frac{1}{\gamma_{ii} \Delta t} M - J \right) v_i = f \left(t_n + c_i \Delta t, v_n + \sum_{j=1}^{i-1} \omega_{ij} v_j \right) + \frac{1}{\Delta t} M \sum_{j=1}^{i-1} d_{ij} v_j, \ i = 1, \ldots, s \quad (6a)$$

$$u_{n+1} = u_n + \sum_{j=1}^{s} m_j v_j, \quad (6b)$$

where $\{d\}_{ij} = \text{diag}(\gamma_{ii}^{-1}, \ldots, \gamma_{ss}^{-1}) - \Gamma^{-1}$; $\{\omega\}_{ij} = A\Gamma^{-1}$; $\{m\}_i = b \Gamma^{-1}$; $\gamma_i = \sum_{j=1}^{i-1} \gamma_{ij}$; and M is a mass matrix that can be singular, resulting in a DAE. In our implementation we also allow for a noninvertible Γ coefficient matrix by applying a correction to (6). This allows us to use methods that have explicit stages. Lower-order approximations are computed in the same way as for RK and ARK methods by evaluating (5b) with different b coefficients. A work-precision diagram with three of these methods is presented in Fig. 1.

For PDEs, much of the source code is responsible for managing the mesh and spatial discretization, while only a small amount handles the time integration. In PETSc
the bridge between the mass of code that handles the mesh and discretization and the solver and time integrator is the DM object. This object provides the information needed by the solvers and integrators while concealing all the details of the mesh and discretization management. PETSc provides several DM classes including DMDA for structured grids with finite difference discretizations and DMPLEX for unstructured meshes with finite element or finite volume discretizations. We present an example of a PDE discretized by using finite differences on a two-dimensional structured grid using the DM abstraction introduced earlier. This example demonstrates an interesting nontrivial pattern formation with a reaction-diffusion equation.

```c
#include <petscdm.h>
#include <petscdmda.h>
#include <petscts.h>

typedef struct {
  PetscScalar u,v;
} Field;

typedef struct {
  PetscReal D1,D2,gamma,kappa;
} AppCtx;

int main(int argc, char **argv){
  TS ts; /* ODE integrator */
  Vec x; /* solution */
  DM da;
  AppCtx appctx;

  PetscInitialize(&argc,&argv,(char*)0,help);
  appctx.D1 = 8.0e-5;
  appctx.D2 = 4.0e-5;
  appctx.gamma = .024;
  appctx.kappa = .06;
  /* Create distributed array (DMDA) to manage parallel grid and vectors */
  DMDACreate2d(PETSC_COMM_WORLD, DM_BOUNDARY_PERIODIC, DM_BOUNDARY_PERIODIC,
               DMDA_STENCIL_STAR,65,65, PETSC_DECIDE, PETSC_DECIDE,2,1,NULL,NULL,&da);
  DMSetFromOptions(da); DMSetUp(da);
  DMDASetFieldName(da,0,"u"); DMDASetFieldName(da,1,"v");
  DMCreateGlobalVector(da,&x);
  /* Create timestepping solver context */
  TSCreate(PETSC_COMM_WORLD,&ts);
  TSSetType(ts,TSARKIMEX);
  TSARKIMEXSetFullyImplicit(ts,PETSC_TRUE);
  TSSetDM(ts,da);
  TSSetProblemType(ts,TS_NONLINEAR);
  TSSetRHSFunction(ts,NULL,RHSFunction,&appctx);
  TSSetRHSJacobian(ts,NULL,NULL,RHSJacobian,&appctx);
  /* Set initial conditions */
  InitialConditions(da,x);
  TSSetSolution(ts,x);
  /* Set solver options */
  TSSetMaxTime(ts,2000.0);
  TSSetTimeStep(ts,.0001);
  TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);
  TSSetFromOptions(ts);
  /* Solve ODE system */
  TSSolve(ts,x);
  VecDestroy(&x); TSDestroy(&ts); DMDestroy(&da);
  PetscFinalize();
}

/* RHSFunction - Evaluates nonlinear function, F(x). */
RHSFunction(TS ts,PetscReal ftime,Vec U,Vec F,void *ptr) {
  AppCtx *appctx = (AppCtx*)ptr;
  /* Implementation of RHS function */
```

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.
PetscInt i,j,Mx,My,xs,ys,xm,ym;
PetscReal hx,hy,sx,sy;
PetscScalar uc,uxx,uyy,vx,vxy,vyy;
Vec localU;

TSGetDM(ts,&da);
DMGetLocalVector(da,&localU);
DMGetInfo(da,PETSC_IGNORE,&Mx,&My,PETSC_IGNORE,...)
hx = 2.50/(PetscReal)(Mx); sx = 1.0/(hx*hx);
hy = 2.50/(PetscReal)(My); sy = 1.0/(hy*hy);

for (j=ys; j<ys+ym; j++) {
 for (i=xs; i<xs+xm; i++) {
 uc = u[j][i].u;
 uxx = (-2.0*uc + u[j][i-1].u + u[j][i+1].u)*sx;
 uyy = (-2.0*uc + u[j-1][i].u + u[j+1][i].u)*sy;
 vc = u[j][i].v;
 vx = vxx = (-2.0*vc + u[j][i-1].v + u[j][i+1].v)*sx;
 vxy = (-2.0*vc + u[j][i-1].v + u[j][i+1].v)*sy;
 f[j][i].u = appctx->D1*(uxx + uyy) - uc*vc*vc + appctx->gamma*(1.0-uc);
 f[j][i].v = appctx->D2*(vxx + vxy) + uc*vc*vc - (appctx->gamma + appctx->kappa)*vc;
 }
}

DMDAVecRestoreArrayRead(da,localU,&u);
DMDAVecRestoreArray(da,F,&f);
DMDALocalVector(da,BU,-&localU);
}

RHSJacobian(TS ts,PetscReal t,Vec U,Mat A,Mat BB, void *ctx) {
 AppCtx *appctx = (AppCtx*)ctx; /* application context */
 DM da;
 PetscInt i,j,Mx,My,xs,ys,xm,ym;
 PetscReal hx,hy,sx,sy;
 PetscScalar uc,vc;
 Vec localU;
 MatStencil stencil[6],rowstencil;
 PetscScalar entries[6];

 TSGetDM(ts,&da);
 DMGetLocalVector(da,&localU);
 DMGetInfo(da,PETSC_IGNORE,&Mx,&My,PETSC_IGNORE,...)
hx = 2.50/(PetscReal)(Mx); sx = 1.0/(hx*hx);
hy = 2.50/(PetscReal)(My); sy = 1.0/(hy*hy);

 for (j=ys; j<ys+ym; j++) {
 stencil[0].k = 0; stencil[1].k = 0; stencil[2].k = 0;
 stencil[3].k = 0; stencil[4].k = 0; stencil[5].k = 0;
 rowstencil.k = 0;
 for (i=xs; i<xs+xm; i++) {
 stencil[0].j = ij-1;
 }
 }
}
114 stencil[1].j = j+1;
stencil[2].j = j;
stencil[3].j = j;
stencil[4].j = j;
stencil[5].j = j;
rowstencil.k = 0; rowstencil.j = j;
for (i=xs; i<xs+xm; i++) {
 uc = u[j][i].u;
 vc = u[j][i].v;
 uyy = (-2.0*uc + u[j-1][i].u + u[j+1][i].u)*sy;
 vxx = (-2.0*vc + u[j][i-1].v + u[j][i+1].v)*sx;
 vyy = (-2.0*vc + u[j-1][i].v + u[j+1][i].v)*sy;
 f[j][i].u = appctx->D1*(uxx + uyy) - uc*vc*vc + appctx->gamma*(1.0 - uc);
 stencil[0].i = i; stencil[0].c = 0; entries[0] = appctx->D1*sy;
 stencil[1].i = i; stencil[1].c = 0; entries[1] = appctx->D1*sy;
 stencil[2].i = i-1; stencil[2].c = 0; entries[2] = appctx->D1*sx;
 stencil[3].i = i+1; stencil[3].c = 0; entries[3] = appctx->D1*sx;
 stencil[4].i = i; stencil[4].c = 0; entries[4] = -2.0*appctx->D1*(sx + sy) - vc*vc - appctx->gamma;
 stencil[5].i = i; stencil[5].c = 1; entries[5] = -2.0*uc*vc;
 rowstencil.i = i; rowstencil.c = 0;
 MatSetValuesStencil(A,1,&rowstencil,6,stencil,entries,INSERT_VALUES);
 stencil[0].c = 1; entries[0] = appctx->D2*sy;
 stencil[1].c = 1; entries[1] = appctx->D2*sy;
 stencil[2].c = 1; entries[2] = appctx->D2*sx;
 stencil[3].c = 1; entries[3] = appctx->D2*sx;
 stencil[4].c = 1; entries[4] = -2.0*appctx->D2*(sx + sy) + 2.0*uc*vc - appctx->gamma - appctx->kappa;
 stencil[5].c = 0; entries[5] = vc*vc;
 rowstencil.c = 1;
 MatSetValuesStencil(A,1,&rowstencil,6,stencil,entries,INSERT_VALUES);
}
DMDAVecRestoreArrayRead(da,localU,&u);
DMDestroyLocalVector(da,&localU);
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
MatSetOption(A,MAT_NEW_NONZERO_LOCATION_ERR,PETSC_TRUE);

4.3. Adaptive Timestepping and Error Control
PETSc provides several options for automatic timestep control in order to attain a user-specified goal via a TSAdapt context. Typically, the goals are related to accuracy. In this case the user provides an absolute (ATOL) and a relative (RTOL) error tolerance. The adaptor controls the timestep in order to meet the specified error tolerance. Most timestepping methods with adaptivity evaluate a lower-order approximation at each timestep by using a different set of coefficients. Denote this solution as \(\tilde{u} \). The following weighted error quantity is used for timestep control:

\[
werr(t_n) = \frac{\|u(t_n) - \tilde{u}(t_n)\|_{1,2,\ldots,\infty}}{\text{ATOL} + \text{RTOL}\max(\|u(t_n)\|, |\tilde{u}(t_n)|)}.
\]

(7)

If \(werr(t_n) \) is larger than one, then the estimated local truncation error at step \(n \) exceeds ATOL or RTOL. Otherwise, the estimated error is less than that prescribed by the user, in which case the step is accepted and the next step adjusted so that it tracks whether \(werr(t_n) \) will approach the value one. If the error exceeds the tolerances specified by the user, then the step is rejected, and a smaller timestep is taken. This
logic is implemented in the “basic” adaptor. A more advanced adaptivity logic based on linear digital control theory and aimed at producing smoother step size sequences is implemented in the “dsp” adapter [Söderlind 2003; Söderlind and Wang 2006].

In many fluid dynamics applications the timestep is restricted by stability considerations as given by the Courant-Friedrichs-Lewy (CFL) condition. TS provides an adapter that controls the timestep so that the CFL stability is not exceeded. Additionally, a special adapter for controlling the global error for the TS glee method [Constantinescu 2018] is available. This adapter can be used wherever the standard (basic) one is used. Similar to the basic adaptor, the glee adapter can be used for tracking the absolute and relative errors separately.

A list of timestep adapters is presented in Table V. Custom adapters can be easily registered via the PETSc API.

TS Adapt Name	Remarks	Used by
none	No adaptivity	all
basic	Standard timestep adaptivity [Gear 1971]	all with lower-order error approximation
dsp	Adapter using control theory [Söderlind 2003]	same as basic
cfl	Controls the timestep to match error provided CFL limit	typically TS spp, rk
glee	Time step adaptivity with global error estimation [Constantinescu 2018]	typically for TS glee methods, extends TSAdapt basic

5. COMPUTING SENSITIVITIES (DERIVATIVES)

The timestepping library provides a framework based on discrete forward (tangent linear) and adjoint models for sensitivity analysis for ODEs and DAEs. The ODE/DAE solution process (henceforth called the forward run) can be obtained by using either explicit or implicit solvers in TS, depending on the problem properties. Currently supported method types are TSRK (Runge-Kutta) explicit methods and TSTHETA (Theta) implicit methods.

5.1. Discrete adjoint sensitivity

The TSAdjoint routines of PETSc provide the capability to calculate partial derivatives of a given objective function

\[
\Psi_i(u_0, p) = \Phi_i(u_F, p) + \int_{t_0}^{t_F} r_i(u(t), p, t) dt \quad i = 1, ..., n_{\text{obj}},
\]

subject to initial conditions \(u_0\) and parameters \(p\).

Without loss of generality, we assume that the system is integrated with a one-step method,

\[
u_{n+1} = \mathcal{N}_n(u_n), \quad n = 0, \ldots, N - 1, \quad u_0 = I,
\]

where \(I\) are the initial values and the solution at the end of the simulation is given by \(u_N\).

To illustrate the approach, we consider a simple case in which we compute the sensitivities of the terminal function \(\psi(u_N)\) to initial values only. We use the Lagrange multipliers \(\lambda_0, \ldots, \lambda_N\) to account for the constraint from each timestep, and we define
the Lagrangian as
\[L(I, u_0, \ldots, u_N, \lambda_0, \ldots, \lambda_N) = \psi(u_N) - \lambda_0^T (u_0 - I) - \sum_{n=0}^{N-1} \lambda_{n+1}^T (u_{n+1} - \mathcal{N}(u_n)). \] (10)

Differentiating Equation (10) w.r.t. \(I \) and applying the chain rule, we obtain
\[\frac{dL}{dI} = \lambda_0^T - \left(\frac{d\psi}{du}(u_N) - \lambda_N^T \right) \frac{\partial u_N}{\partial I} - \sum_{n=0}^{N-1} \left(\lambda_n^T - \lambda_{n+1}^T \right) \frac{d\mathcal{N}}{dy}(u_n) \frac{\partial u_n}{\partial I}. \] (11)

By defining \(\lambda \) to be the solution of the discrete adjoint model,
\[\lambda_N = \left(\frac{d\psi}{du}(u_n) \right)^T, \quad \lambda_n = \left(\frac{d\mathcal{N}}{du}(u_n) \right)^T \lambda_{n+1}, \quad n = N - 1, \ldots, 0, \] (12)
we obtain the gradient \(\nabla_I L = \nabla_I \psi(u_n) = \lambda_0 \).

This model can be expanded to incorporate integral objective functions and calculate parametric sensitivities by augmenting the state variable into a larger system. See [Zhang et al. 2017] for more details.

To efficiently calculate the gradient with the adjoint method, one needs to first perform a forward run that solves the original equation and saves the solution trajectory with a checkpointing scheme, initialize the adjoint sensitivity variables, and then perform a backward run that propagates the adjoint sensitivity according to (12). As can be seen from equation (12), performing an adjoint step requires trajectory information including the solution vector at the current step and optional stage values if a multistage timestepping method is used. Applying checkpointing techniques that have partial recomputation of the solution provides a balance between recomputation and storage.

To use the PETSc adjoint solver, one creates two arrays of \(n_{\text{cost}} \) vectors \(\lambda \) and \(\mu \) (if there are no parameters \(p \), \(\mu \) can be set to NULL). The \(\lambda \) vectors have the same dimension and parallel layout as the solution vector for the ODE, and the \(\mu \) vectors are of dimension \(p \). The vectors \(\lambda_i \) and \(\mu_i \) should be initialized with the values \(d\Phi_i/du|_{t=t_F} \) and \(d\Phi_i/dp|_{t=t_F} \) respectively.

If \(F() \) is a function of \(p \), one needs to also provide the Jacobian \(F_p \) with
\[
\text{TSAdjSetRHSJacobian} \left(\text{TS ts, Mat Amat,} \right. \left. (*fp)(\text{TS, PetscReal, Vec, Mat, void*}), void *ctx \right) \]

The arguments for the function \(fp() \) are the timestep context, current time, \(u \), and the (optional) user-provided context. If there is an integral term in the cost function, one must also provide Jacobian terms for the integrand with
\[
\text{TSSetCostIntegrand} \left(\text{TS ts, PetscInt numcost, Vec costintegral,} \right. \left. (*rf)(\text{TS, PetscReal, Vec, Vec, void*}), (*drduf)(\text{TS, PetscReal, Vec, Vec*, void*}), \right. \left. (*drdpf)(\text{TS, PetscReal, Vec, Vec*, void*}), void *ctx \right) \]

where \(drduf = dr/du \), \(drdpf = dr/dp \). The integral term can be evaluated in either the forward run or the backward run by using the same timestepping algorithm as for the original equations.

The features of the PETSc adjoint solver are summarized as follows.
- Supports multiobjective sensitivity calculation and integral objective functions
- Handles hybrid dynamical systems with discontinuities
- Contains state-of-the-art checkpointing schemes

The adjoint solver is built on existing components in PETSc’s timestepping library TS, as shown in Fig. 2.
(1) The TSEvent object, further introduced in Sec. 6, supports detecting events and allows users to add a post-event handler to modify the right-hand side function, reinitialize the DAE system, and apply jump conditions for sensitivity analysis. It is particularly important for the simulation of hybrid dynamical systems.

(2) The TSTrajectory object provides a variety of sophisticated online and offline checkpointing schemes that are suitable for single-level storage media (for example, RAM) and multilevel storage media (RAM and external disk/tape). Trajectory information is stored as checkpoints in the forward run by repeatedly calling TSTrajectorySet at each timestep. TSTrajectoryGet is responsible for obtaining the required trajectory information before an adjoint step starts. It may extract the information from the restored checkpoint directly or recompute from the checkpoint. Recomputation typically happens when checkpoints are stored only at selective timesteps because of limited storage capacity. TSTrajectorySet and TSTrajectoryGet encapsulate the state-of-the-art checkpointing scheduler revolve [Griewank and Walther 2000] that can generate a guaranteed optimal strategy.

(3) TSAdjointStep corresponds to the adjoint version of TSStep, which fulfills the timestepping operator $N(u_n)$. Thus they have similar underlying infrastructure, and their implementations differ from one timestepping method to another. By design, the inputs for the adjoint solver are either reused or modified from the original TS solver.

All the components are compatible with one another and used together within the highly composable solver in order to tackle the difficulties of hybrid systems. Details on using the infrastructure discussed here for solving PDE-constrained optimization problems utilizing the spectral element method can be found in [Marin et al. 2017].

5.2. Discrete forward (tangent linear) sensitivity

The discrete forward (also known as tangent linear) model for a one-step time integration algorithm can be obtained by taking the derivative of (9) with respect to the parameters. The propagation equation for parameters p can be symbolically described by

$$S_0 = \frac{dI}{dp}, \quad S_{n+1} = \frac{dN}{du}(u_n)S_n, \quad n = 0, \ldots, N - 1,$$

(13)
where $S_n = dX_n/dp$ is a matrix denoting the solution sensitivities (or so-called trajectory sensitivities in the power system field). Note that each parameter results in one corresponding column of the sensitivity matrix S and one linear equation to be solved at each timestep. Consequently, the computational cost of the forward approach is linear in the number of parameters for which the sensitivities are calculated. This feature usually limits its application to cases involving few parameters.

Like the discrete adjoint models, the implementation of discrete forward models also depends on the particular time integration algorithm. In principle, these two models are analogous to the well-known forward and reverse modes of algorithmic differentiation (AD) that are applied to high-level abstractions of a computer program. Traditional AD handles a sequence of operations (either a source code line or a binary instruction) while in our case the primitive operation is a timestep.

Furthermore, the forward model requires the same ingredients as those needed in the adjoint model. Users may need to provide $\text{TSAdjointSetRHSJacobian}()$ and $\text{TSSetCostIntegrand}()$ in the same way that they are used for TSAdjoint.

Although forward sensitivities are not used as frequently with gradient-based optimization algorithms as are adjoint sensitivities, they still are convenient for calculating gradients for objective function in the general form (8). Specifically, the total derivative of the scalar function $\Phi(X_N)$ can be computed with

$$
\frac{d\Phi}{dp}(X_N) = \frac{\partial\Phi}{\partial X}(X_N)S_N + \frac{\partial\Phi}{\partial p}(X_N).
$$

The total derivative of the integral term in (8) (denoted by q for simplicity) to parameters p is given as

$$
\frac{dq}{dp} = \int_{t_0}^{t_F} \left(\frac{\partial r}{\partial X}(t,X)S + \frac{\partial r}{\partial p}(t,X) \right) dt.
$$

This integral together with q is calculated automatically by PETSc with the same timestepping algorithm and sequence of timesteps in the discrete approaches for consistency, when users provide the necessary Jacobian callbacks with $\text{TSSetCostIntegrand}$. In addition, the forward approach is useful for obtaining solution sensitivities often required by second-order adjoint sensitivity analysis [Azyurt and Barton 2005].

6. HANDLING DISCONTINUITIES AND EVENTS

One characteristic of applications, typically from the control systems world, is the discontinuous nature of equations due to the presence of various time- and state-based nonlinearities such as faults, limiters, and hysterisis. Such discontinuities give rise to the following conditionals\(^1\) introduced in the ODE or DAE equations:

$$
\begin{align*}
 x - x^+ &= 0, \quad \text{if } x \geq x^+ \\
 x - x^- &= 0, \quad \text{if } x \leq x^- \quad \text{(16)} \\
 \dot{x} &= f(x), \quad \text{otherwise.}
\end{align*}
$$

PETSc supports the handling of such discontinuities through its event-handling mechanism called TSEvent. Detecting and locating such discontinuities are done by using an event handler or root-finding method. A switching function $h(t,x) = 0$ is propagated along with the equations. The mechanism of event detection and location is illustrated in Fig. 3.

\(^1\)Equation (16) shows one form for illustrative purposes. In general, the conditionals can include functions of the state variables instead of simple box constraints.
The timestepper checks for the zero-crossing of the event function at every timestep. Specific directions of zero-crossing—positive only, negative only, or both—can be provided. The zero-crossing of an event is detected by the sign change of the event function, namely, \(\text{sign}(h(t_n)) \neq \text{sign}(h(t_{n+1})) \). If this condition is true, the event is said to be detected and the solution rolled back to \(t_n \). By using interpolation and successively shrinking the time boundaries, the zero-crossing of the event function is detected when its value is within a specified tolerance. At this time instant, \(t^*_n \) in Fig. 3, the discontinuity is applied, and an additional step is taken to synchronize with \(t_{n+1} \). TSEvent also incorporates further improvements to avoid duplicate steps (by utilizing the Illinois algorithm [Dowell and Jarratt 1971]), and it speeds the detection of event zero-crossing by using the Anderson–Björck method [Galdino 2011]. In the case of multiple events detected during the same timestep, the event detection mechanism uses the smallest interpolated timestep from the list of events.

Figure 4 presents a simple example illustrating the usage of TSEvent for a bouncing ball. The event function is the vertical position of the ball, \(u \). When the ball hits the ground, the sign change of the function is detected, and the discontinuity in the forcing function that changes the sign of the velocity is applied, resulting in the ball reversing direction.

Events can be set to TS through the application interface function \texttt{TSSetEventHandler()}, which has the following form:

\[
\text{TSSetEventHandler} (\text{TS \ ts}, \text{PetscInt \ nevents}, \text{PetscInt \ direction[]}, \text{PetscBool \ terminate[]}, (*\text{eventfun})(\text{TS \ ts}, \text{PetscReal \ t}, \text{Vec \ X}, \text{PetscScalar \ h[]} , \text{void \ *ctx}), (*\text{posteventfun})(\text{TS \ ts}, \text{PetscInt \ nevents}_\text{det} , \text{PetscInt \ event_id[]} , \text{PetscReal \ t}, \text{Vec \ X}, \text{PetscBool \ forwardsolve} \text{, void \ *ctx}) , \text{void \ *ctx});
\]

Here, \textit{nevents} is the number of local events to be located, \textit{direction[]} is an array of zero-crossing direction for each event, and \textit{terminate[]} array controls terminating TS timestepping after an event has been located. The event function \(h(t, x) \) is set through the callback function \textit{eventfun}; and, optionally, a post-event function \textit{posteventfun} can be set that is called after an event or simultaneous multiple events are located. Specific actions following an event can be performed through the post-event function.

For event functions having widely differing scales or range of values, finer control on locating the events can be provided through the \texttt{TSSetEventTolerances()} function:

\[
\text{TSSetEventTolerances} (\text{TS}, \text{PetscReal \ tol}, \text{PetscReal \ tols[]});
\]

A single tolerance \textit{tol} can be used for all the events, or tolerances for each event can be set via the \textit{tols} array.
Fig. 4. Bouncing ball example: The dynamics of the bouncing ball are described by the equations $\dot{u} = v$ and $\dot{v} = -9.8$. The ball velocity v is attenuated by a factor of 0.9 every time it hits the ground $u = 0$.

7. MONITORING AND VISUALIZATION

Users of ODE solver packages often do not know much about even the qualitative properties of the ODE they are solving; for example, they may not even know whether it is stiff or which parts of the ODE are stiff. To help users understand the qualitative properties of the solution, PETSc/TS provides an extensible approach that allows monitoring and visualizing the solution as well as solution properties, such as maximum values of the solution or eigenvalues of the Jacobian.

Monitoring and visualization in PETSc are organized around the PetscViewer object, which is an abstraction of ASCII and binary files, as well as graphics APIs. Objects can be “viewed” with varying levels of refinement based on the viewer used and options set for the viewer. For example, MatView(A, viewer); can display minimalistically, with ASCII text, the size of the matrix and the number of nonzeros or the entire matrix in binary format in a file or as an image of the sparsity pattern depending on the viewer used. The reduction of the object from its parallel representation is handled automatically by PETSc.

In addition to viewing the PETSc data objects Vec and Mat, one can (in fact, doing so is desirable) view the solver objects, for example, TS. With an ASCII viewer it prints information about the type of solver being used and all its options; for binary viewers it saves the state of the object that can be reloaded into memory with TSLoad(); and for graphics viewers it displays the relationship of the solver with the other solvers in process, for example, that a SNES nonlinear solver object is embedded in a TS object and that a KSP linear solver object is embedded in the nonlinear solver object if Newton’s method is being used. Here we display the output of a TSView() on a particular ODE solver in ASCII. The first part of the output summarizes the ODE integrator information including the method used and its parameters. This is followed by information about the linear solver (Rosenbrock-W methods solve only a linear system) which in this case is the direct solver LU factorization.

TS Object: 1 MPI processes
 type: rosw
 maximum steps=1000
 maximum time=20
 total number of nonlinear solver iterations=108
total number of nonlinear solve failures=0
total number of linear solver iterations=108
total number of rejected steps=0
Rosenbrock-W ra34pw2
Abscissa of A = 0.000000 0.871733 0.731580 1.000000
Abscissa of A+Gamma = 0.435867 0.871733 0.731580 1.000000
TSAdapt Object: 1 MPI processes
type: basic
number of candidates 1
 Basic: clip fastest decrease 0.1, fastest increase 10
 Basic: safety factor 0.9, extra factor after step rejection 0.5
KSP Object: 1 MPI processes
type: preonly
 maximum iterations=10000, initial guess is zero
 tolerances: relative=1e-05, absolute=1e-50, divergence=10000
 left preconditioning
using NONE norm type for convergence test
PC Object: 1 MPI processes
type: lu
 LU: out-of-place factorization
 tolerance for zero pivot 2.22045e-14
 matrix ordering: nd
 factor fill ratio given 5, needed 1
 Factored matrix follows:
 Mat Object: 1 MPI processes
type: seqaij
 rows=3, cols=3
 package used to perform factorization: petsc
 total: nonzeros=9, allocated nonzeros=9
 total number of mallocs used during MatSetValues calls =0
 using I-node routines: found 1 nodes, limit used is 5
 linear system matrix = precond matrix:
 Mat Object: 1 MPI processes
type: seqaij
 rows=3, cols=3
 total: nonzeros=9, allocated nonzeros=15
 total number of mallocs used during MatSetValues calls =0
 using I-node routines: found 1 nodes, limit used is 5

Viewing of solver objects can usually be controlled at runtime via the options database. For example, -ts_view produces ASCII output about the solver, whereas -ts_view draw produces a graphical display of the solver.

In addition to static views of PETSc data and solver objects, we provide numerous ways of dynamically viewing the solution and properties of the solution, from within the program or via the options database. This process is handled via “monitor” callback functions that can be attached to solver objects. For TS this is done with

```
TSMonitorSet(TS ts ,(*monitor)(TS ts ,PetscInt timestep,PetscReal time,Vec u
, void *mctx), void *mctx ,(*mdestroy)(void **mctx));
```

The monitor() function provided is called at the beginning and at the end of each timestep, and it can present the solution information in any way the user likes. Various monitors may be set for the same solver. PETSc provides a variety of default monitors that

— print the current timestep and time,
— save the current solution to a binary or vtk file,
— display the current solution by using a variety of graphical approaches using X windows or OpenGL, and
— display the eigenvalues of the current operator, which is useful for understanding the stability of the scheme being used.

In addition, the \texttt{monitor()} routines can compute and track information over the lifetime of the simulation, for example, maximum and minimum values of the solution or conserved quantities. The idea is that rather than requiring users to modify the actual ODE integrator code to track any property of the solution or solution process, simple monitor routines are provided. Many of these monitoring routines can be controlled from the command line; for example \texttt{-ts_monitor_lg_timestep} allows one to graphically monitor the changes in the adapted timestep as the computation proceeds as depicted in Fig. 5.

![Fig. 5. Example of monitoring the adaptive timestep selected](image)

The nonlinear and linear solvers also provide the same type of flexible monitoring of the convergence process, with many available default monitors allowing one to track how well the selected solvers are working.

PETSc provides a simple but powerful API and options for gathering performance information about the solution time, for example, time in the linear solvers and time in the computation of the Jacobian. These allow users to quickly focus in on the portions of the computation that are the most time consuming and either select alternative algorithms or further optimize the implementation. These are discussed in the PETSc users manual [Balay et al. 2018].

8. SUPPORT FOR SPECIFIC APPLICATION DOMAINS

Many application areas have their own vocabulary and methodology for describing their problem that are often distinct from the language of ODEs. Although underlying their simulation is a set of ODEs or DAEs, they never work directly with this form; rather, they express their problems at a higher level of abstraction. Users can easily take advantage of these higher levels with the PETSc ODE and DAE solvers, which allow the users to use their own natural language for defining the problem and working with it. We already provide this higher-level interface for two application areas:
power systems analysis and chemical reactions. We expect to do more in the future in collaboration with application partners.

8.1. Electrical Power Grid via DMNetwork

Applications in an electrical power grid span a large range of temporal and spatial scales that entail problems involving secure, stable, and efficient planning and operation of the grid. A list of potential applications suitable for PETSc usage is given in [Abhyankar et al. 2011]. PETSc’s timestepping library TS has been used mainly for applications assessing the impacts of large disturbances, such as short circuits and equipment outages, on the stability of the grid. In such applications, called transient stability analysis in electrical power grid parlance, the stability of the grid is determined through a time-domain simulation of the power grid differential-algebraic equations. The differential equations, \(f(t, u, v) \), describe the dynamics of electromechanical generators and motors, while the algebraic equations, \(g(t, u, v) \), are used for the electrical network comprising transmission lines, transformers, and other connecting equipment.

\[
\dot{u} = f(t, u, v) \tag{17}
\]

\[
0 = g(t, u, v) \tag{18}
\]

Different timestepping schemes, including adaptive stepping and event handling, are compared in [Abhyankar et al. 2017a] for the solution of transient stability problems. Rosenbrock schemes were found to be optimal in terms of speedup and accuracy. In [Abhyankar et al. 2017b] the authors present experiments to achieve real-time simulation speed using PETSc’s timestepping and linear solvers. Results show that real-time simulation speed was achieved on a fairly large electrical grid. Similar real-time simulation speed results have been reported in [Abhyankar and Flueck 2012]. [Jin et al. 2017] compare parallel transient stability algorithms using MPI and OpenMP. GridPACK [Palmer et al. 2018], a software library for developing parallel power grid applications that uses PETSc’s core solvers, is used in this work. Efficient calculation of sensitivities of power grid dynamics trajectories to initial conditions using a discrete adjoint scheme is described in [Zhang et al. 2017].

DMNetwork [Abhyankar et al. 2014; Maldonado et al. 2017] is a relatively new subclass of PETSc’s data management class DM that provides functionality for efficiently managing and migrating data and topology for networks and collections of networks. It handles the complex node-edge relationships typically found in unstructured network problems; and it provides simple abstractions to query the network topology and associate physics with nodes/edges, acting as a middle layer between PETSc solvers and the application physics. DMNetwork has been used for several network applications, including electrical grids [Abhyankar et al. 2013], water networks with over 1 billion unknowns [Maldonado et al. 2017], and gas networks [Jalving et al. 2017].

8.2. Chemical Reactions via TCHEM

TCHEM [Safta et al. 2011] is an open source implementation of many of the reaction network chemistry capabilities of the commercial ChemKin package [chemkin 2017]. TCHEM provides the code for the ODE function evaluation and its Jacobian computation. It can read ChemKin data files and construct the appropriate needed function evaluations. PETSc provides an easy-to-use interface to TCHEM. In the code listing below we demonstrate how the TCHEM function and Jacobian routines can easily be wrapped and called from PETSc, thus merging TCHEM’s chemistry capabilities with PETSc’s ODE integrators. The following code segments demonstrate how to unwrap the PETSc data structure to call TCHEM, which takes a raw array of numerical val-
uses on which to apply the right-hand side function and compute the right-hand side Jacobian and returns the Jacobian as a dense two-dimensional array that is inserted back into the PETSc matrix.

```c
FormRHSFunction (TS ts, PetscReal t, Vec X, Vec F, void *ptr)
{
    User user = (User) ptr;
    PetscScalar *f;
    const PetscScalar *x;
    VecGetArrayRead(X,&x); VecGetArray(F,&f);
    PetscMemcpy(user->tchemwork,x,(user->Nspec+1)*sizeof(x[0]));
    user->tchemwork[0] *= user->Tini; /* Dimensionalize */
    VecRestoreArrayRead(X,&x); VecRestoreArray(F,&f);
}
```

```c
FormRHSJacobian (TS ts, PetscReal t, Vec X, Mat Amat, Mat Pmat, void *ptr)
{
    User user = (User) ptr;
    const PetscScalar *x;
    PetscInt M = user->Nspec+1,i;
    VecGetArrayRead(X,&x);
    PetscMemcpy(user->tchemwork,x,(user->Nspec+1)*sizeof(x[0]));
    VecRestoreArrayRead(X,&x);
    user->tchemwork[0] *= user->Tini; /* Dimensionalize temperature */
    TC_getJacTYN(user->tchemwork,user->Nspec,user->Jdense,1);
    for (i=0; i<M; i++) user->Jdense[i + 0*M] /= user->Tini;
    for (i=0; i<M; i++) user->Jdense[0 + i*M] /= user->Tini;
    for (i=0; i<M; i++) user->rows[i] = i;
    MatSetOption(Pmat, MAT_ROW_ORIENTED, PETSC_FALSE);
    MatSetOption(Pmat, MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE);
    MatZeroEntries(Pmat);
    MatSetValues(Pmat,M,user->rows,M,user->rows,user->Jdense,INSERT_VALUES);
    MatAssemblyBegin(Pmat,MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(Pmat,MAT_FINAL_ASSEMBLY);
}
```

9. CONCLUSION

PETSc provides a rich infrastructure for the efficient, scalable solution of ODEs and DAEs. In this paper we have introduced the time integration component of PETSc and provided examples of its usage. We have listed and described many of the integrators available and explained their basic properties and usage. In addition, we discussed the local and global error control available with the integrators. We also introduced the capabilities for computing sensitivities (gradients) of functions of the solutions to ODEs via forward and adjoint methods. We explained how events (discontinuities) in ODEs/DAEs may be handled and the tools for monitoring and visualizing solutions and the solution process. All the integrators are scalable and build on the basic mathematical libraries within PETSc.

Acknowledgment We thank the many users of the TS for invaluable feedback on its capabilities and design. We thank Shashikant Aithal for his help in validating the TCHEM interfaces. This material was based upon work supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under Contract DE-AC02-06CH11357.

REFERENCES

S. Abhyankar, J. Brown, M. Knepley, F. Meier, and B. Smith. 2014. Abstractions for expressing network problems in PETSc. In SIAM Conference on Network Science.
S. Abhyankar, E. Constantinescu, and A. Flueck. 2017a. Variable-step multi-stage integration methods for fast and accurate power system dynamics simulation. In IREP'17.

S. Abhyankar, E. Constantinescu, B. Smith, A. Flueck, and D. Maldonado. 2017b. Parallel dynamics simulation using a Krylov-Schwarz linear solution scheme. IEEE Transactions on Smart Grid 8 (2017), 1378–1386.

S. Abhyankar and A. Flueck. 2012. Real-time power system dynamics simulation using a parallel block-Jacobi preconditioned Newton-GMRES scheme. In HiPCNA-PG12.

Shrirang Abhyankar, Barry Smith, Hong Zhang, and A. Flueck. 2011. Using PETSc to Develop Scalable Applications for Next-Generation Power Grid. In Proceedings of the 1st International Workshop on High Performance Computing, Networking and Analytics for the Power Grid. ACM. http://www.mcs.anl.gov/uploads/cels/papers/P1957-0911.pdf

S. Abhyankar, B. F. Smith, and E. Constantinescu. 2013. Evaluation of overlapping restricted additive Schwarz preconditioning for parallel solution of very large power flow problems. In HiPCNA-PG13.

U.M. Ascher and L.R. Petzold. 1998. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Society for Industrial Mathematics.

U.M. Ascher, S.J. Ruuth, and R.J. Spiteri. 1997. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Applied Numerical Mathematics 25 (1997), 151–167.

Derya B. Azyurt and Paul I. Barton. 2005. Cheap Second Order Directional Derivatives of Stiff ODE Embedded Functionals. SIAM Journal on Scientific Computing 26, 5 (2005), 1725–1743. DOI: http://dx.doi.org/10.1137/030601582

Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris Buschelman, Lisandro Dalcin, Victor Eijkhout, William D. Gropp, Dinesh Kaushik, Matt Herson, Lois Curfman McInnes, Richard T. Nabors, Tom F. Staats, Eric F. Thacker, Barry W. Van Orden, Hans Walmsley, and McEnery. 2018. PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.9. Argonne National Laboratory.

Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry W. Van Orden. 1997. Efficient Management of Parallelism in Object Oriented Numerical Software Libraries. In Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen (Eds.). Birkhauser Press, 163–202.

S. Boscarino, L. Pareschi, and G. Russo. 2011. Implicit-Explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. (2011). Arxiv preprint arXiv:1110.4375.

K.E. Brenan, S.L. Campbell, S.L.V. Campbell, and L.R. Petzold. 1996. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. Society for Industrial Mathematics.

J.C. Butcher. 2008. Numerical Methods for Ordinary Differential Equations (second ed.). Wiley.

J.C. Butcher, Z. Jackiewicz, and W.M. Wright. 2007. Error propagation of general linear methods for ordinary differential equations. Journal of Complexity 23, 4-6 (2007), 560–580. DOI: http://dx.doi.org/10.1016/j.jco.2007.01.009

chemkin 2017. ANSYS Chemkin-Pro Website. http://www.ansys.com/products/fluids/ansys-chemkin-pro. (2017).

E.M. Constantinescu. 2018. Generalizing global error estimation for ordinary differential equations by using coupled time-stepping methods. J. Comput. Appl. Math. 332, Supplement C (2018), 140–158. DOI: http://dx.doi.org/10.1016/j.cam.2017.05.012

E.M. Constantinescu and A. Sandu. 2010. Extrapolated implicit-explicit time stepping. SIAM Journal on Scientific Computing 31, 6 (2010), 4452–4477. DOI: http://dx.doi.org/10.1137/080732833

Andreas Griewank and Andrea Walther. 2000. Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Trans. Math. Software 26, 1 (2000), 19–45.
E. Hairer and G. Wanner. 2002. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer.

M. Heroux, R. Bartlett, V.H.R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, and A. Williams. 2003. An Overview of Trilinos. Technical Report SAND2003-2927. Sandia National Laboratories.

A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, and C.S. Woodward. 2005. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software (TOMS) 31, 3 (2005), 363–396.

M.K. Horn. 1983. Fourth-and fifth-order, scaled Runge-Kutta algorithms for treating dense output. SIAM J. Numer. Anal. 20, 3 (1983), 558–568.

J. Jalving, S. Abhyankar, K. Kim, M. Herald, and V. Zavala. 2017. A graph-based computational framework for simulation and optimization of coupled infrastructure networks. IET Generation, Transmission, and Distribution 11 (2017), 3165–3176.

K.E. Jansen, C.H. Whiting, and G.M. Hulbert. 2000. A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Computer Methods in Applied Mechanics and Engineering 190, 3 (2000), 305–319.

S. Jin, Z. Huang, R. Diao, D. Wu, and Y. Chen. 2017. Comparative implementation of high performance computing for power system dynamic simulations. IEEE Transactions on Smart Grid 8 (2017), 1387–1395.

P. Kaps, S.W.H. Poon, and T.D. Bui. 1985. Rosenbrock methods for stiff ODEs: A comparison of Richardson extrapolation and embedding technique. Computing 34, 1 (1985), 17–40.

C.A. Kennedy and M.H. Carpenter. 2003. Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44, 1-2 (2003), 139–181.

D.I. Ketcheson. 2008. Highly Efficient Strong Stability-Preserving Runge–Kutta Methods with Low-Storage Implementations. SIAM Journal on Scientific Computing 30, 4 (2008), 2113–2136. DOI: http://dx.doi.org/10.1137/07070485X

D. Maldonado, S. Abhyankar, B. Smith, and H. Zhang. 2017. Scalable multiphysics network simulation using PETSc DMNetwork. http://www.mcs.anl.gov/papers/P7065-0617.pdf. (2017).

Oana Marin, Emil Constantinescu, and Barry Smith. 2017. PDE constrained optimization, error estimation and control with spectral elements using PETSc and TAO. Preprint ANL/MCS-P9031-1117. ANL.

MATLAB. 2014. version 8.1.0 (R2013a). The MathWorks Inc., Natick, Massachusetts.

NAG. 2018. The NAG Library, The Numerical Algorithms Group (NAG). Oxford, United Kingdom. (2018). www.nag.com

B. Palmer et al. 2018. GridPACK Web page. https://www.gridpack.org/wiki/index.php/Main_Page. (2018).

L. Pareschi and G. Russo. 2005. Implicit-Explicit Runge-Kutta Schemes and Applications to Hyperbolic Systems with Relaxation. Journal of Scientific Computing 25, 1 (2005), 129–155.

L.R. Petzold. 1992. DASSL, Solution of Differential Algebraic Equation. (1992).

J. Rang and L. Angermann. 2005. New Rosenbrock W-methods of order 3 for partial differential algebraic equations of index 1. BIT Numerical Mathematics 45, 4 (2005), 761–787.

Cosmin Safta, Habib N Najm, and Omar Knio. 2011. TChem—a software toolkit for the analysis of complex kinetic models. Sandia Report, SAND2011-3282 (2011).

A. Sandu, J.G. Verwer, J.G. Blom, E.J. Spee, G.R. Carmichael, and F.A. Potra. 1997. Benchmarking stiff ode solvers for atmospheric chemistry problems II: Rosenbrock solvers. Atmospheric Environment 31, 20 (1997), 3459–3472.

G. Söderlind. 2003. Digital filters in adaptive time-stepping. ACM Transactions on Mathematical Software (TOMS) 29, 1 (2003), 1–26.

G. Söderlind and L. Wang. 2006. Adaptive time-stepping and computational stability. J. Comput. Appl. Math. 185, 2 (2006), 225–243.

H. Zhang, S.S. Abhyankar, E.M. Constantinescu, and Mihai Anitescu. 2017. Discrete adjoint sensitivity analysis of hybrid dynamical systems with switching. IEEE Transactions on Circuits and Systems I: Regular Papers 64, 5 (2017), 1247–1259. DOI: http://dx.doi.org/10.1109/TCSI.2017.2651683

X. Zhong. 1996. Additive semi-implicit Runge-Kutta methods for computing high speed nonequilibrium reactive flows. J. Comput. Phys. 128 (1996), 19–31.
Disclaimer. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan.