Estrogen Stimulates Heat Shock Protein 90 Binding to Endothelial Nitric Oxide Synthase in Human Vascular Endothelial Cells

EFFECTS ON CALCIUM SENSITIVITY AND NO RELEASE*

(Received for publication, August 3, 1999, and in revised form, December 2, 1999)

Kerry Strong Russell†, M. Page Haynes‡, Teresa Caulin-Glaser‡, James Rosneck‡, William C. Sessa‡§, and Jeffrey R. Bender¶§

From the †Division of Cardiovascular Medicine and Molecular Cardiobiology, Boyer Center for Molecular Medicine and §Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06536-0812

Estradiol (E_2) causes endothelial-dependent vasodilation, mediated, in part, by enhanced nitric oxide (NO) release. We have previously shown that E_2-induced activation of endothelial nitric oxide synthase (eNOS) reduces its calcium dependence. This pathway of eNOS activation is unique to a limited number of stimuli, including shear stress, the response to which is herbinycin-inhibitable. Consistent with this, herbinycin and geldanamycin pretreatment of human umbilical vein endothelial cells (HUVEC) abrogated E_2-stimulated NO release and cGMP production, respectively. These benzoquinone ansamycins are potent inhibitors of Hsp90 function, which has recently been shown to play a role in stimulus-dependent eNOS activation. As in response to shear, E_2 induced an Hsp90-eNOS association, peaking at 30 min and completely inhibited by the conventional estrogen receptor antagonist ICI 182,780. These findings suggest that Hsp90 plays an important role in the rapid, estrogen receptor-mediated modulation of eNOS activation by estrogen.

The cardioprotective effects of estrogen are well known and appear to be mediated by both effects on lipoprotein/lipid profiles and other as yet incompletely defined direct vascular effects. Estrogen induces both rapid and delayed effects on the cardiovascular system. A number of clinical studies have shown that estrogen, administered in physiologic concentra-
tions, causes endothelium-dependent vasodilation (for a review, see Guetta and Cannon (1)). This is likely to be mediated, in part, by augmentation of nitric oxide (NO) release because estrogen has been demonstrated to produce a significant increase in the levels of bioavailable NO (2–5).

Using an in vitro model system of vascular endothelial cells (EC), we and others have demonstrated that EC secrete NO rapidly after stimulation with estrogen (6–8). Our data have also shown that the increase in NO release is due to activation of the endothelial form of NO synthase (eNOS or NOS 3). This activation appears to significantly reduce the calcium-calmodulin dependence of the enzyme, and we have further demonstrated that treatment of human umbilical vein EC (HUVEC) with estrogen, under conditions which result in NO release, does not result in a measurable increase in free intracellular calcium (6). This pathway of eNOS activation is unique to a limited number of stimuli, which include the sustained phase of shear stress-induced vasodilation (9–11).

The activity of eNOS has been shown to be regulated by multiple factors including: post-translational fatty acid modification (including palmitoylation and myristoylation (12–15)); phosphorylation (16, 17); alterations in subcellular localization, particularly partitioning into plasmalemmal caveolae (13, 18); and binding to other proteins or cofactors, including tetrahydrobiopterin (BH_4) (19), calcium-dependent calmodulin (20), caveolin-1 (21), eNOS itself (22), and most recently, heat shock protein 90 (Hsp90) (23).

Binding of eNOS to Hsp90 has been shown to occur in response to vascular endothelial growth factor (VEGF), histamine, and shear stress; and eNOS activity is increased in a dose-dependent manner in the presence of Hsp90 (23). Furthermore, geldanamycin also significantly decreases activation of eNOS by VEGF and histamine as well as acetylcholine-induced endothelium-dependent relaxation (23). The benzoquinone ansamycin antibiotics, which include herbinycin and geldanamycin, have been shown to disrupt a number of tyrosine kinase signaling pathways and reverse cellular transformation by Src (24), leading to their use as “specific” tyrosine kinase inhibitors. However, more recent evidence suggests that most of these effects may be mediated by their ability to impair Hsp90 function rather than a direct effect on the protein kinase itself (25).

The mechanism by which estrogen regulates eNOS activity is the focus of this and ongoing studies in our laboratory. In this report, we demonstrate that the ansamycins inhibit estrogen-mediated HUVEC NO release, cGMP production, and calcium-independent NOS activity. We show that 17β-estradiol (E_2) promotes a rapid Hsp90-eNOS association, an effect that is blocked by a conventional estrogen receptor (ER) antagonist. These findings demonstrate that Hsp90 plays an important role in the regulation of eNOS function by estrogen.

EXPERIMENTAL PROCEDURES

Materials—17β-Estradiol and water-soluble 17β-estradiol (estradiol in cyclodextrin) were purchased from Sigma. Estradiol stocks were prepared in ethanol and stored at −20 °C. The final concentration of ethanol in all cell cultures was <0.01%. All controls were treated with identical concentrations of ethanol (vehicle) simultaneously with the addition of estradiol. Water-soluble estradiol stocks were made fresh for each experiment in sterile phosphate-buffered saline. ICI 182,780 was...
purchased from Zeneca Pharmaceuticals. Herbimycin was purchased from Life Technologies, Inc., and geldanamycin was from Calbiochem. Heribimycin and geldanamycin were dissolved in Me₈SO and stored at ~20 °C. The final concentration of Me₈SO in all cultures and controls (in all experiments where heribimycin was used) was ≤0.1%. Antibodies were purchased from the following sources: anti-eNOS (N30020), Transduction Laboratories; anti-Hsp90 (SPA-845), StressGen; and anti-calmodulin, Upstate Biotechnology. All other reagents were purchased from Sigma unless otherwise indicated.

Cell Isolations and Culture—HUVEC were isolated from single female donors as described previously (26). Cells were routinely passaged on gelatin-coated plates in M199 with 15% fetal bovine serum, bovine endothelial cell growth supplement/heparin for 24–48 h.

NOX Analysis—NOX (including NOₓ, NO, and nitrosothiols) was measured in aqueous media after a 1-h equilibration time using a chemiluminescent assay and a commercial NO analyzer (Siemens) as described previously (14).

Subsequently, cell monolayers were trypsinized, and single-cell suspensions were counted to determine the number of cells present in each experimental sample. NOX levels are expressed in terms of total NOX liberated (picomoles/total cell number).

Nitric Oxide Activity Assays—eNOS activity was assayed in total cell lysates as described previously (6). Briefly, cell lysates were made in the presence of EDTA (0.1 mM) and EGTA (0.1 mM) to chelate free calcium released with cell disruption. To determine the maximal NOX activity in each sample, exogenous calcium (2.5 mM), calmodulin (100 nM), BH₄ (30 μM), and NADPH (1 mM) were added. The amount of NOX activity in each sample determined in the presence of all these cofactors was set as 100%, and NOX activity in each sample under other conditions (e.g. without added calcium and calmodulin) was calculated as a percentage of this activity. Subsequently, conversion of L-[3H]arginine to [3H]citrulline was measured by column chromatographic separation of these two molecules and liquid scintillation counting.

Coimmunoprecipitations of eNOS, Calmodulin, and Hsp90—HUVEC monolayers were stimulated as described in the figure legends. Total cell lysates were made on ice in buffer containing: 20 mM Tris-HCl (pH 7.4), 2.5 mM EDTA, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 100 mM NaCl, 10 mM NaF, 1 mM Na₃VO₄, and 20 mM NaMoO₄. Immunoprecipitations were carried out in the presence of primary antibody (anti-eNOS N30020, 1–2 μg/mg of total cell protein) for 2 h at 4 °C, followed by overnight incubation with a 1:1 protein A-protein G-Sepharose slurry. Following washes, immunoprecipitates were boiled in sample buffer, separated by SDS-PAGE, transferred, and immunoblotted. The primary antibodies used for immunoblotting were anti-eNOS (1:2500), anti-calmodulin (1:1000), or anti-Hsp90 (1:500). Blots were then probed with secondary antibodies coupled to horseradish peroxidase and visualized by autoradiography using a chemiluminescent substrate (ECL, Amersham Pharmacia Biotech).

cGMP Assays—cGMP was acid-extracted from intact cell monolayers as described previously (27). Samples were pH-neutralized, and cGMP levels were measured using a radioimmunoassay kit (Biomedical Technologies Inc.).

RESULTS

Estrogen Does Not Alter the Binding of Calmodulin to eNOS—Our previous data demonstrate that E₂ stimulation of HUVEC alters the calcium dependence of the enzyme toward a more calcium-independent state (6). The inducible form of NOS (iNOS) also shows a relative state of calcium independence. Active enzyme complexes of iNOS have been demonstrated to contain calmodulin, even in the presence of only trace levels of calcium (28). Calmodulin binding appears to impart a crucial conformational change in the complex, which allows NOS activity without increased inositol phosphate production in the cell. Using this model, we asked whether E₂ stimulation would induce increased binding of calmodulin to NOS under conditions in which E₂ does not appear to increase free intracellular calcium levels (6). As shown in Fig. 1, E₂ does not affect the total amount of calmodulin bound to eNOS in HUVEC. This suggests that the mechanism by which E₂ activates eNOS does not involve significant changes in calmodulin binding to the enzyme complex in the absence of increased cytosolic calcium.

Herbimycin Blocks Estrogen-induced NO Release and Calcium Independence of eNOS—The rapid augmentation in NO release induced by E₂ suggests a post-translational event. Because calcium-independent, flow-mediated vasodilation is abrogated by herbimycin (10, 11), experiments were performed to evaluate whether the effect of E₂ on eNOS is also herbimycin-inhibitable. As shown in Fig. 2, pretreatment of HUVEC with herbimycin completely abolishes the increase in NO production seen after E₂ treatment. Furthermore, this herbimycin effect is also seen at the level of eNOS activity. That is, in cell-free assays, eNOS activity is undetectable in calcium/calmodulin-free conditions, as expected (6). Elevated NOX levels were measured by column chromatographic separation of these two molecules and liquid scintillation counting.

Geldanamycin Decreases HUVEC cGMP Production Induced by Estrogen—To test whether the effects of herbimycin on E₂-stimulated NO release are also seen with other ansamycin benzoquinones, HUVEC intracellular cGMP levels (reflective of biofunctional NO production) were measured in E₂-stimulated cells pretreated with geldanamycin (GA). As opposed to herbimycin, GA does not require prolonged pretreatment of the cells.
thereby allowing evaluation of ansamycin effects over a much shorter time span (20 min). As we have previously shown, the rapid E2-stimulated increase in cGMP production is inhibited by the ER antagonist ICI 182,780. GA completely abrogates this E2-stimulated increase in cGMP production (Fig. 6). These results support the concept that ansamycins, as a class, prevent E2-mediated modulation of eNOS activity by disrupting critical Hsp90-dependent signaling events.

DISCUSSION

Both estrogen and NO play critical roles in blood vessel development, function, and remodeling. Understanding the interplay between these two powerful, interdependent vascular modulators may be a first step in designing strategies for treating conditions such as ischemic, diabetic, and postmenopausal vascular dysfunction. Our data provide answers to some important initial questions regarding regulation of eNOS activity by estrogen.

Investigations into the similarities and differences between the three known isoforms of NOS have led to insights into how cellular secretion of NO can be a critical step in processes as
diverse as immune responses and neuronal signaling. The finding that estrogen-activated eNOS displays a decrease in calcium dependence led us to hypothesize that estrogen causes eNOS to function similarly to its “calcium-independent” counterpart, iNOS, by allowing a shift in the ability of eNOS to interact with calmodulin under conditions of very low free intracellular calcium. This hypothesis was supported by our previous data showing that addition of histamine to estradiol-stimulated HUVEC does not result in a further increase in NOS activity over that seen with estradiol alone (6). However, our current data demonstrate that easily detectable levels of calmodulin are eNOS-bound in unstimulated HUVEC and that E2 does not increase these levels. The conformation of calmodulin, when bound to its target proteins, determines its ability to promote enzyme activation (29). It is possible that estrogen alters the conformation and/or function of calmodulin already associated with eNOS, thereby modulating its interaction with the recently described eNOS autoinhibitory domain (30).

There are several similarities in the pathway by which estrogen and shear stress augment eNOS activity. Both stimuli elicit a relative calcium independence of the enzyme (9). Both shear and estrogen effects are inhibited by “protein tyrosine kinase inhibitors.” Either genistein or herbimycin has been used in a majority of these studies. Although the effect of genistein on E2 responses can be difficult to interpret, based on its phytoestrogenic properties, it has been used extensively as a protein tyrosine kinase inhibitor. Genistein has been shown to reduce shear stress-induced NO release, with a proposed modulatory effect on shear-induced eNOS phosphorylation (11). Isometric contraction of rabbit aortic rings is another dynamic model of induced NO release in which eNOS becomes relatively calcium/calmodulin-independent. However, eNOS activation by isometric contraction is unaffected by genistein (31). In contrast, herbimycin effectively inhibits isometric contraction-mediated NO release. In those studies, attempts were made to correlate modulation of NO release with alteration in patterns of protein tyrosine phosphorylation. Several proteins, but not eNOS itself, were shown to be tyrosine-phosphorylated in response to isometric contraction. As with NO analyses, herbimycin, but not genistein, dramatically decreased aortic EC phosphorytrosine content in response to isometric contraction. These findings support the concept that herbimycin effects on stimulated eNOS may occur through mechanisms other than direct inhibition of eNOS phosphorylation. Indeed, our data indicate that ansamycins on E2-stimulated eNOS activation involve their ability to disrupt Hsp90 function. However, we cannot exclude the possibility that some of these effects are due to alteration in tyrosine phosphorylation of proteins, which may be involved in eNOS regulation.

The ansamycins specifically bind the amino-terminal portion of Hsp90 in a region that is required for ATP binding and consequently decrease this interaction (32, 33). It has recently been shown that the phosphorylation state of the adenine nucleotide that is bound to Hsp90 appears to affect the formation of Hsp90-associated multimolecular complexes. In that study, GA inhibited Hsp90 complex formation with p23 and immunophilins (34). Interference with Hsp90-pp60v-src complex formation by herbimycin or GA has also been shown to block v-src-mediated cellular transformation (24). In other systems, the effects of ansamycins on Hsp90 function appear to occur in the absence of physical disruption of complex formation between the regulated protein and Hsp90. 1) GA interferes with steroid hormone receptor function without disrupting hormone receptor/Hsp90 heterocomplex formation (35); and 2) interference with Ah receptor function by GA occurs in the absence of disruption of its physical association with Hsp90 (36). We also did not observe a quantitative decrease in E2-induced Hsp90-eNOS complex formation in the presence of herbimycin (data not shown).

In the cytosol, classical ligand-free ERs (ERs) are part of a multimolecular complex that includes several chaperones, including Hsp90. It is unlikely that the key molecular switch mediating E2/ER activation of eNOS is induction of a shift in the specific Hsp90 pool from ER- to eNOS-bound, because the heat shock proteins are among the most abundant cytoplasmic proteins. Therefore, the fraction of Hsp90 bound to ER even under E2-deprived conditions is unlikely to be a limiting factor in the amount of Hsp90 available for binding to other proteins such as eNOS. Furthermore, estrogen receptor antagonists can also cause dissociation of Hsp90 from ER (37), which would predict that these antagonists could cause increased Hsp90-eNOS binding and eNOS activation (in contrast to our findings). Although both ansamycins and ER antagonists can disrupt E2/ER signaling, our data suggest that in the case of eNOS activation by E2, these agents are not acting identically. ICI 182,780 blocks E2-induced Hsp90-eNOS association whereas GA does not. This is particularly interesting in light of other data from our laboratory suggesting that eNOS activation may be mediated by a surface receptor for estrogen, and this “surface ER” may have differential requirements for Hsp90 function as compared with traditional “nuclear” ERs.

The pathway through which E2 activates rapid signaling events is currently poorly defined. Non-genomic effects of E2/ER have been described in multiple systems and include rapid alterations in phosphorylation of intracellular proteins, levels of intracellular Ca2+, and activation of the p21ras/mitogen-activated protein kinase pathway (38–40). Estrogen has also been shown to activate the phosphatidylinositide 3-0H kinase/Akt signaling pathway in breast and uterine cells (41, 42). Akt activation has been shown to occur in a calcium-independent manner after stimulation by growth factors (e.g. epidermal growth factor (43)) and by shear stress (44). Recently, we and others have shown that eNOS is serine-phosphorylated in response to Akt activation (44, 45). This modification leads to activation of eNOS in a manner that appears to reduce its calcium dependence. Interestingly, Akt-mediated eNOS activation can be seen in response to both calcium-dependent (e.g. VEGF) and calcium-independent (e.g. shear stress) stimuli. The finding that herbimycin A does not block shear stress-induced Akt activation (46) suggests either that functional Hsp90-eNOS association is a critical downstream mediator of eNOS activation by Akt or that the pathways by which Akt and Hsp90 regulate eNOS activity are independent. The idea that these may represent independent pathways is also supported by the finding that the phosphatidylinositide 3-0H kinase inhibitors wortmannin and LY294002 only partially block VEGF- or insulin-stimulated NO release (47, 48), whereas wortmannin completely abrogates eNOS serine phosphorylation (45). Furthermore, recent studies have defined an autoinhibitory loop within the eNOS reductase domain (30). Deletion of this loop greatly reduces the calcium requirements of the enzyme. It is possible that estrogen induces a bipartite eNOS activation response, one that depends on Akt and affects the conformation of the autoinhibitory domain and the other that recruits required effectors through an induced Hsp90-eNOS association. Experiments are currently under way to determine the interplay between estrogen-induced Hsp90-eNOS association and modulation of eNOS by Akt.

In summary, we have found that the mechanism by which estrogen activates eNOS involves an alteration in the binding
of this enzyme to Hsp90. We hope that further elucidation of the individual steps in this pathway will allow development of novel therapeutic strategies for regulating endothelial NO production.

Acknowledgments—We gratefully acknowledge Lynn O’Donnell, Louise Benson, and Gwen Davis for their assistance with cell culture. We thank the Milford General and Yale-New Haven Hospital delivery rooms for providing umbilical cords.

REFERENCES

1. Guetta, V., and Cannon, R. (1996) Circulation 93, 1928–1937
2. Emhurn, B., Rosselli, M., Jaeger, A., Keller, P., and Dubey, R. (1997) J. Clin. Endocrinol. Metab. 82, 388–394
3. Guetta, V., Quyyumi, A., Prasad, A., Panza, J., Waclawiw, M., and Cannon, R. (1997) Circulation 96, 2795–2801
4. Best, P., Berger, P., Miller, V., and Lerman, A. (1998) Ann. Intern. Med. 128, 285–288
5. Rubanyi, G., Freay, A., Kusovik, D., Burton, G., Lubahn, D., Couse, J., Curtis, S., and Korach, K. (1997) J. Clin. Invest. 99, 2429–2437
6. Caulin-Glaser, T., García-Cardena, G., Sarrel, P., Sessa, W., and Bender, J. (1993) J. Clin. Invest. 91, 1769–1776
7. Hayashi, T., Yamada, K., Esaki, T., Kuzuya, M., Satake, S., Ishikawa, T., Hidaka, H., and Iguchi, A. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 1788–1792
8. Lantin-Hermoso, R., Rosenfeld, C., Yuhanna, I., German, Z., Chen, Z., and Frangos, J. (1996) J. Clin. Invest. 97, 2857–2868

9. Kuchan, M., and Frangos, J. (1996) Am. J. Physiol. 270, L119–L126
10. Ayajiki, K., Kinderman, M., Hecker, M., Fleming, I., and Busse, R. (1996) Circ. Res. 78, 750–758
11. Carpenter, J., and Cannon, R. (1996) Circ. Res. 78, 794–799
12. Buseoni, L., and Michel, T. (1996) J. Biol. Chem. 271, 21459–21465
13. Garcia-Cardena, G., Oh, P., Liu, J., Schnitzer, J. E., and Sessa, W. C. (1996) J. Biol. Chem. 271, 12759–12767
14. Sessa, W., García-Cardena, G., Liu, J., Keh, A., Pollock, J., Bradley, J., Thiru, S., Braverman, I., and Desai, R. (1995) J. Biol. Chem. 270, 17641–17644
15. Liu, J., García-Cardena, G., and Sessa, W. C. (1996) Biochim. Biophys. Acta 130, 1277–1281
16. Michel, T., Li, G., and Buseoni, L. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 6252–6256
17. Garcia-Cardena, G., Fan, R., Stern, D. F., Liu, J., and Sessa, W. C. (1996) J. Biol. Chem. 271, 27257–27260
18. Shaul, P., Smart, E., Robinson, L., German, Z., Yuhanna, I., Ying, Y., Anderson, G., and Michel, T. (1996) J. Biol. Chem. 271, 6518–6522
19. Werner-Felmayer, G., Werner, E., Fuchs, D., Hausen, A., Reibnegger, G., Schmidt, K., Weiss, G., and Wachter, H. (1993) J. Biol. Chem. 268, 1842–1846
20. Forstermann, U., Pollack, J., Schmidt, H., Heller, M., and Murad, F. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 1768–1792
21. Garcia-Cardena, G., Martasek, P., Masters, B., Skid, P., Coet, J., Li, S., Lisanti, M., and Sessa, W. (1997) J. Biol. Chem. 272, 25437–25440
22. Lee, C., Robinson, L., and Michel, T. (1995) J. Biol. Chem. 270, 27403–27406
23. Garcia-Cardena, G., Fan, R., Shah, V., Sorrentino, R., Cirino, G., Papapetropoulos, A., and Sessa, W. (1998) Nature 392, 821–824
24. Whitesell, L., Minnaugh, E., De Costa, B., and Myers, C. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 8324–8328
25. Stancato, L., Silverstein, A., Owens-Grillo, J., Chow, Y., Jove, R., and Pratt, W. (1997) J. Biol. Chem. 272, 4013–4020
26. Pfau, S., Leitengber, D., Rinder, H., Smith, B., Pardi, R., and Bender, J. (1995) J. Cell Biol. 128, 969–978
27. Papapetropoulos, A., Marczin, N., Snead, M., Cheng, C., Milici, A., and Catravas, J. (1994) Hypertension 23, 476–484
28. Cho, H., Xie, Q., Calaycay, J., Mamford, R., Swidereck, K., Lee, T., and Nathan, C. (1992) J. Exp. Med. 176, 599–604
29. Krueger, J., Ohal, G., Rokop, S., Zhi, G., Stull, J., and Trehella, J. (1997) Biochemistry 36, 6017–6023
30. Nishida, C., and Ortiz de Montellano, P. (1999) J. Biol. Chem. 274, 14692–14698
31. Fleming, I., Bauserschs, J., Schafer, A., Schulz, D., and Aldershvile, J. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 1123–1129
32. Grenert, J., Sullivan, W., Fadden, P., Hestayest, T., Clark, D., Minnaugh, E., Kutzcz, H., Ochel, H., Schutze, T., Sauvalle, E., Necker, L., and Toft, D. (1997) J. Biol. Chem. 272, 23843–23850
33. Prodromou, C., Roe, S., O’Brien, R., Ladbury, J., Pipper, P., and Pearl, L. (1997) Cell 90, 65–75
34. Sullivan, W., Stengard, B., Catacut, G., Bartha, B., McMahon, P., Almenezi, E., Litwack, G., and Toft, D. (1997) J. Biol. Chem. 272, 8007–8012
35. Seglitz, B., and Gehring, U. (1997) J. Biol. Chem. 272, 18694–18701
36. Chen, H., Singh, S., and Perdue, G. (1997) Arch. Biochem. Biophys. 348, 190–198
37. Devin-Leclerc, J., Meng, X., Delahaye, F., Leclerc, P., Baulieu, E., and Catelli, A. (1999) Mol. Endocrinol. 12, 842–854
38. Migliaccio, A., Pagano, M., and Aurielico, F. (1993) Oncogene 8, 2183–2191
39. Migliaccio, A., Di Domenico, M., Castorina, G., de Falco, A., Bontempo, P., Nola, E., and Aurielico, F. (1996) EMBO J. 15, 1299–1306
40. Aronica, S., Kraus, W., and Katsenellenbogen, B. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 6517–6521
41. Ahmad, S., Singh, N., and Glazer, R. (1999) Biochem. Pharmacol. 58, 425–430
42. Richards, R., Walker, M., Sebastian, J., and DiAugustine, R. (1998) J. Biol. Chem. 273, 11962–11969
43. Conus, N., Hemnings, B., and Pearson, P. (1999) J. Biol. Chem. 273, 4776–4782
44. Dimmeler, S., Fiehlshalter, I., Herrmann, C., Busse, R., and Zeiher, A. (1999) Nature 399, 657–661
45. Fulton, D., Gratton, J., McCabe, T., Fontana, J., Fujo, Y., Walsh, K., Franke, T., Papapetropoulos, A., and Sessa, W. (1999) Nature 399, 657–661
46. Dimmeler, S., Assmuss, B., Herrmann, C., Haendeler, J., and Zeiher, A. (1998) Circ. Res. 83, 334–341
47. Papapetropoulos, A., Garcia-Cardena, G., Madri, J., and Sessa, W. (1997) J. Clin. Invest. 100, 3131–3139
48. Zeng, G., and Quon, M. (1998) J. Clin. Invest. 98, 894–898
Estrogen Stimulates Heat Shock Protein 90 Binding to Endothelial Nitric Oxide Synthase in Human Vascular Endothelial Cells: EFFECTS ON CALCIUM SENSITIVITY AND NO RELEASE

Kerry Strong Russell, M. Page Haynes, Teresa Caulin-Glaser, James Rosneck, William C. Sessa and Jeffrey R. Bender

J. Biol. Chem. 2000, 275:5026-5030.
doi: 10.1074/jbc.275.7.5026

Access the most updated version of this article at http://www.jbc.org/content/275/7/5026

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 48 references, 29 of which can be accessed free at http://www.jbc.org/content/275/7/5026.full.html#ref-list-1