Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes

Xiuying Li (lixiuying@jlu.edu.cn)
China-Japan Union Hospital of Jilin University
https://orcid.org/0000-0001-5625-7591

Ying Wang
China-Japan Union Hospital of Jilin University

Liyan Shi
China-Japan Union Hospital of Jilin University

Binxi Li
Jilin University College of Chemistry

Jing Li
China-Japan Union Hospital of Jilin University

Zhenhong Wei
China-Japan Union Hospital of Jilin University

Huiying Lv
China-Japan Union Hospital of Jilin University

Liya Wu
China-Japan Union Hospital of Jilin University

Hao Zhang
Jilin University College of Chemistry

Bai Yang
Jilin University College of Chemistry

Xiaohua Xu
China-Japan Union Hospital of Jilin University

Jinlan Jiang
China-Japan Union Hospital of Jilin University

Research

Keywords: Exosome, iron oxide nanoparticle, mesenchymal stem cell, cutaneous wound

Posted Date: July 29th, 2020

DOI: https://doi.org/10.21203/rs.2.22929/v2
Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes

Xiuying Li†, Ying Wang†, Binxi Li, Jing Li, Zhenhong Wei, Huiying Lv, Liya Wu, Hao Zhang, Bai Yang, Xiaohua Xu*, Jinlan Jiang

† These authors contributed equally to this work and should be considered co-first authors.
Abstract
Human mesenchymal stem cell (MSC)-derived exosomes (Exos) are a promising therapeutic agent for cell-free regenerative medicine. However, their poor organ-targeting ability and therapeutic efficacy have been found to critically limit their clinical applications. In the present study, we fabricated iron oxide nanoparticle (NP)-labeled exosomes (Exo+NPs) from NP-treated MSCs and evaluated their therapeutic efficacy in a clinically relevant model of skin injury. We found that the Exos could be readily internalized by human umbilical vein endothelial cells (HUVECs), and significantly promoted their proliferation, migration, and angiogenesis both in vitro and in vivo. Moreover, the protein expression of proliferative markers (Cyclin D1 and Cyclin A2), growth factors (VEGFA), and migration chemokines (CXCL12) was significantly upregulated after Exo treatment. Unlike the Exos prepared from untreated MSCs, the Exo+NPs contained NPs that acted as a magnet-guided navigation tool. The in vivo systemic injection of Exo+NPs with magnetic guidance significantly increased the number of Exo+NPs that accumulated at the injury site. Furthermore, these accumulated Exo+NPs significantly enhanced endothelial cell proliferation, migration, and angiogenic tubule formation in vivo; moreover, they reduced scar formation, and increased CK19, PCNA, and collagen expression in vivo. Collectively, these findings confirm the development of therapeutic efficacy-potentiated extracellular nanovesicles and demonstrate their feasibility in cutaneous wound repair.

Keywords: Exosome, iron oxide nanoparticle, mesenchymal stem cell, cutaneous wound
Introduction

Skin wound healing is a complex physiological process that involves inflammation, re-epithelization, granulation, vascularization, and tissue remodeling.[1] Mesenchymal stem cell (MSC) therapy has been reported to be a promising therapeutic approach for wound healing,[2] with an increasing number of studies demonstrating that MSCs elicit therapeutic effects neither by replacing damaged cells nor by implanting and differentiating.[3-5] Although considerable advances have been achieved in animal models, the clinical application of MSC-based therapies has been problematic,[6] with the majority of the injected cells being washed away or displaying poor survival rates at the wound site. Moreover, MSC-based therapies must overcome significant regulatory barriers and require meticulous handling at all stages of harvesting, processing, and transplantation.[7] Because transplanted MSCs display limited viability in severe wound environments,[8] it is necessary to develop novel strategies that can maximize the skin injury-repairing therapeutic effects of MSCs while avoiding the risks associated with their direct use.

Recent studies have shown that the majority of the therapeutic benefits of MSCs result from the paracrine actions of various cytokines and growth factors that affect the biological functions of skin cells, such as wound healing, scar formation, and photoaging.[9-12] MSC-derived exosomes (MSC-Exos), a type of lipid membrane-bound vesicle with a diameter of 30–150 nm, are a major component of this paracrine effect and an important regulator of intercellular communication.[13, 14] Indeed, an increasing number of studies have reported that MSC-Exos are highly promising cell therapy candidates for several diseases.[15, 16] Exos play a major role in intercellular communication by mediating the horizontal transfer of coding and noncoding RNAs and proteins to target cells, thereby altering their gene and protein expression to regulate their function.[9] Importantly, Exos have been reported to display similar functional properties to the MSCs from which they are derived without their significant adverse effects, such as vascular obstructive risk, malignant transformation, and immunogenicity, while also exhibiting strong cargo-loading and cargo-protective capacities. Thus, Exo-based therapies may be safer than the direct use of cells and offer a promising alternative to tissue regenerative applications.[10-12, 17] Recent studies have shown that many MSC-derived Exos can promote wound healing and accelerate skin regeneration by enhancing the
proliferation and migration of related cells, promoting angiogenesis and re-epithelialization, and regulating immune responses.[18-20] Although Exos may be a promising cell-free alternative to MSC therapy, MSC-Exo technology must be improved for clinical application. For instance, MSCs produce only a small number of Exos (1−4 μg of Exo proteins from 10^6 cells per day);[21] therefore, a large number of MSCs must be cultured long term to produce sufficient MSC-Exos for clinical applications. However, late-passage MSCs display significantly reduced growth factor gene and protein expression,[22] which would reduce the quantity of therapeutic growth factors and their mRNAs in the secreted Exos. Furthermore, because Exos display poor accumulation in the target organ after systemic administration in vivo,[23-26] modifications are necessary.

Superparamagnetic iron oxide nanoparticles (NPs) are a type of nanomaterial characterized by easy synthesis, superparamagnetism, high saturation magnetization, good biocompatibility, and low toxicity.[27] As a result of their superparamagnetism, NPs can be magnetized up to their saturation magnetization by external magnetic guidance but display no residual magnetic interaction following its removal, conferring them with excellent dispersion and targeting capacities.[28] Moreover, when the magnetic force exceeds the linear blood flow rate, the NPs are retained in the required area. Owing to their advanced targeting capacities, biocompatibility, biodegradability, and low toxicity, NPs are considered a promising therapeutic tool.[29] Furthermore, recent studies have shown that Exos endowed with magnetic properties can be efficiently modulated by magnetic guidance, providing Exos with ideal targeting properties for tumor treatment.[30, 31] Therefore, Exos modified with targeting NPs may be a potential tool for disease treatment.

In the present study, we extracted Exos from NP-loaded MSCs (MSC-Exo+NPs) to increase the in vivo targeting efficiency of hMSC-Exos and verified their therapeutic cutaneous wound healing effect in vivo (Fig. 1). Moreover, we showed for the first time that external magnetic guidance enhances the targeted migration of Exo+NPs and increases the number that home to the injured site, thereby facilitating skin wound healing by promoting collagen synthesis and angiogenesis.
Results

Fe$_3$O$_4$ NP characterization and cellular uptake

The morphology of the synthesized Fe$_3$O$_4$ NPs was analyzed by TEM. Figures 2A and 2B show TEM images displaying the morphology of magnetite NPs and the size distributions of Fe$_3$O$_4$ nanoparticles of < 60 nm, respectively. NPs (50 µg/mL) efficiently internalized into MSCs. After Prussian blue staining, NPs were detected in MSCs as blue-stained material (Fig. 2C). Moreover, the TEM images of MSCs revealed that NPs aggregated in the cytoplasm, with close examination revealing that the aggregates were surrounded by membrane fragments in some images, indicating they may have been in an endosomal compartment (Fig. 2D).

Exo isolation and characterization

Exos were isolated and purified from the supernatant of NP-loaded MSCs (Exo+NPs) and MSCs (Exos). TEM revealed that the Exo extracts contained round, cup-shaped vesicles of 50–150 nm (most ~ 90 nm) with clear membrane structures and a homogeneous size distribution (Fig. 3A). In addition, the TEM of Exo+NPs showed that the NPs were covered with a membrane structure and that the NPs could be seen inside the Exos (Fig. 3B). Western blot analyses indicated that the Exos and Exo+NPs expressed exosomal markers, such as the Alix and CD9 proteins (Fig. 3C). Moreover, NTA showed that the size distribution peak of the Exos was 98.5 ± 1.4 nm (Fig. 3D), whereas that of the Exo+NPs was 116.7 ± 1.3 nm (Fig. 3E); this slight change in diameter may be related to the cargo inside the Exos. Collectively, these results demonstrated that Exo+NPs maintained the integrity and properties of Exos. Notably, the iron content of the Exo+NPs was markedly higher than that of the Exos (Fig. 3F), at approximately 12 ng of iron in 1 μg of Exo protein when normalized to the amount of protein.

Exo uptake by HUVECs

Next, we investigated whether Exos or Exo+NPs could enter HUVECs by performing an in vitro tracking experiment in which Exos or Exo+NPs were labeled with the red fluorescent lipophilic dye DiD and incubated with HUVECs for 18 h. Fluorescence confocal microscopy revealed that the DiD-labeled Exos were transferred into HUVECs (Figs. 4A and 4B), with Fe$_3$O$_4$ NPs visualized as black particles in the bright field (Fig. 4B). The predominant localization of these Exos in the perinuclear region suggested that the Exos could enter
HUVECs and thereby regulate their biological behavior.

Exos promoted HUVEC proliferation, migration, and tube formation in vitro

To assess endothelial cell proliferation, migration, and tube formation capabilities, which are crucial during angiogenesis, we performed CCK8, scratch wound, and tube-formation assays. MSC-Exos significantly enhanced the migration of HUVECs (Figs. 5A and 5B), whereas treatment with both Exos and Exo+NPs (50 μg/mL) markedly enhanced their proliferation at all time points (Fig. 5C). Moreover, improved tube formation was observed in the Exo and Exo+NP groups, as characterized by an increased number of tubes and complete tubular structures compared to the control group (Fig. 6A). *In vitro* tube formation assays were performed to evaluate the effect of Exos on HUVEC angiogenesis. As expected, the number of closed tubular structures increased by almost two-fold in the Exo and Exo+NP groups after 6 and 8 h of incubation, respectively, suggesting that Exos and Exo+NPs continuously promoted angiogenesis (Figs. 6B and 6C).

Exos increased the SPF and PIndex of HUVECs

Cell cycle analysis revealed that Exos and Exos+NPs increased the percentage of S-phase HUVECs compared to the controls (Fig. 7A). Moreover, Exo treatment significantly increased the SPF and PIndex of HUVECs compared to the controls (Fig. 7B), with no significant difference between the Exo and EXO+NP-treated groups. The results suggested that Exos and Exos+NPs could improve the proliferation capability of HUVECs through increasing the SPF and PIndex.

Exos upregulated HUVEC proliferation, migration, and angiogenesis proteins

Next, we examined whether Exos could regulate protein expression associated with regenerative phenotypes. Western blot analyses revealed that Cyclin D1, Cyclin A2, VEGFA, and CXCL12 were all upregulated after Exo or Exo+NP treatment (Fig 8A and 8B). These results showed that Exo and Exo+NPs increased HUVEC proliferation, migration, and angiogenesis capability through upregulating proliferation-, migration-, and angiogenesis-related proteins.

Retention of Exos in skin tissues
Next, we assessed the dynamic trafficking and homing of Exos and Exo+NPs in response to severe burn wounds in vivo by transplanting Exos into rats with severe burns that were then subjected to live animal imaging for 4 days. We found that fluorescent signals from the burn injury lesions were stronger in the group treated with Exo+NPs and external magnetic guidance than in the Exo group (Fig. 9A). These findings suggested that external magnetic guidance promotes the homing of Exo+NPs to burn injury sites in vivo.

Exo transplantation promoted cutaneous wound healing in rats

We evaluated wound healing in three groups of rats injected with PBS (untreated group), Exos (Exo group), or Exo+NPs+MAG (Exo+NPs with magnetic guidance group) via their tail vein. Wound closure was greater in the rats treated with Exos than in the untreated groups at weeks 3 and 5 post-wounding; the animals in the Exo+NPs+MAG group showed the greatest wound closure (Figs. 9B and 9C), with their original wound area significantly smaller than that of the animals in the Exo-treated group weeks 3 and 5 post-wounding.

Reduced scar width and increased collagen maturity are indicators used to assess the degree of wound healing and regeneration. As shown in Figs. 10A, 10B, and 10C, wound re-epithelialization was markedly enhanced and wound edges were significantly narrower in the Exo+NPs+MAG group compared to the Exo and control groups at week 5 post-wounding. Moreover, greater and better organized collagen deposition was observed in the wounds of rats in the Exo+NPs+MAG group compared to those in the Exo and control groups (Figs. 10D and 10E). To confirm the role of Exos in re-epithelialization, we detected the expression of CK19, an epithelial marker, using immunofluorescent staining. CK19 expression was markedly higher in the Exo and Exo+NPs+MAG groups than in the control group 5 weeks post-wounding (Fig. 10F). Furthermore, the CK19-positive areas of the wounds in the Exos and Exo+NPs+MAG groups had formed complete epidermal structures, unlike those of the control group. Collectively, these data indicated that Exo+NPs+MAG treatments significantly accelerated wound re-epithelialization and collagen deposition, and thus promoted wound healing. Moreover, increased Exo retention at injury sites was associated with better wound healing.

Exo transplantation promoted angiogenesis and cellular proliferation in the wound
The vascularization of newly formed tissues is an essential step in the wound healing process. In the present study, we identified newly formed and mature vessels at wound sites by CD31 staining or co-staining against CD31 and α-SMA (Fig. 11A), respectively, and then quantified average vessel density and the number of mature vessels (Figs. 11B and 11C). We found that the number of newly formed and mature vessels increased during the healing process in all groups, with the Exo+NPs+MAG group displaying the greatest vessel density and number of mature vessels at week 5 and the Exo-treated group having a higher vessel density and number of mature vessels than the control group. Furthermore, cellular proliferation was markedly enhanced in the groups treated with Exo and Exo+NP+MAG, as confirmed by the increased rate of PCNA+ (Fig. 11D). Collectively, these results indicated that Exos and Exo+NPs+MAG promoted cellular proliferation and angiogenesis in vivo, which are the two primary wound healing processes.

Discussion

A significant number of clinical trials have demonstrated that MSCs can have beneficial therapeutic effects when used to treat various diseases, such as myocardial infarction, bone defects, autoimmune diseases like Crohn’s disease, and cutaneous wound healing.[32-35] MSCs act via paracrine/endocrine mechanisms to trigger these regenerative processes, with these mechanisms also playing an important role in MSC-mediated repair.[36] Recent studies have demonstrated that Exos are very important for the paracrine activity of MSCs,[37] and it has been shown that the local injection of human MSC-derived Exos can accelerate cutaneous wound healing in vivo.[19, 20] However, it has been reported that intravenous injection is superior to local injection for wound healing, with the loss of Exos during local injection speculated to contribute to this difference. In addition, when Exos are injected directly into the wound, it is inevitably disturbed further, thus disrupting the wound healing process.[32] Therefore, in the present study, we used intravenous injection to study the effect of Exos on skin wound repair.

Previously, Pascucci et al. showed that MSCs treated with Paclitaxel incorporate the drug into Exos.[38] However, Exos have a limited ability to target injured tissues; therefore, it is
necessary to enhance their targeting. In the present study, we isolated NP-loaded Exos from NP-loaded MSCs and used the Exo+NPs to repair skin burn wounds. Because it has already been shown that the transplantation of NP-loaded MSCs promotes burn wound repair,[39] the therapeutic effects of NP-loaded MSC-derived Exos for cutaneous wound repair should display good clinical translation. As expected, the MSCs incorporated Fe$_3$O$_4$ NPs into Exos without affecting their characteristics

\textit{in vitro}. An increasing number of studies have reported that external magnetic fields can effectively control the localization of injected NPs in animals,[40, 41] for instance, magnetic guidance was shown to induce the accumulation of injected anti-cancer drug-attached NPs in the tumors of cancer patients.[42, 43] In the present study, external magnetic guidance promoted the homing of NP-loaded Exos to burn injury sites and improved wound repair \textit{in vivo}.

Because angiogenesis involves the proliferation, migration, and angiogenic tubule formation of endothelial cells,[44] we initially investigated the effects that Exos and Exo+NPs have on the behavior of endothelial cells \textit{in vitro}. Both Exos and Exo+NPs were able to integrate into endothelial cells (HUVEC) and significantly enhance their proliferation, migration, and angiogenic activity, thus confirming the pro-angiogenic properties of Exos. Additionally, Exo and Exo+NPs increased HUVEC proliferation, migration, and angiogenesis capability through upregulating proliferation-, migration-, and angiogenesis-related proteins, such as Cyclin D1, Cyclin A2, VEGFA, and CXCL12. Our \textit{in vitro} results confirmed that both Exos and Exo+NPs could increase the proliferation, migration, and tube formation of HUVECs without statistical difference while simultaneously upregulating the expression of related proteins. Consequently, to minimize the number of experimental animals used, no experimental rat group was injected with Exo+NPs alone \textit{in vivo}.

We further tested the targeting efficiency of Exo+NPs in a rat skin wound model. We observed a relatively significant accumulation of Exo+NPs at the injured skin site. Importantly, injected and magnet-guided Exo+NPs showed significantly enhanced accumulation at the site of injured skin, possibly due to the increased blood-circulation time of Exo+NPs and the external magnetic guidance. We further investigated whether the increased amount of Exo+NPs accumulated in injured skin exert therapeutic effects. Encouragingly, our results also showed that Exo+NPs induced significant regenerative effects at the wound sites of a rat skin burn.
model, as defined by increased re-epithelialization and collagen deposition, more rapid wound closure, and reduced scar formation. Furthermore, we showed that Exo+NPs treatment markedley enhanced the number of total and mature blood vessels at the wound sites, with the beneficial effects on blood vessel formation and cutaneous wound repair. The post-natal formation of new blood vessels occurs mainly through angiogenesis,[45] which is essential for the survival, repair, and remodeling of injured tissues. Our results proved that Exo+NPs might improve angiogenesis at the wound site, increasing the blood vessel density and thereby accelerating the process of burn wound healing. Immunohistochemical staining for PCNA revealed that Exo+NPs could promote HUVEC proliferation in vivo. We clearly observed that Exo+NPs treatment markedly increased re-epithelialization and collagen deposition at the wound site, whereas the new collagen fibrils did not exhibit periodic loss. Previous studies have demonstrated that higher concentrations of Exos are injected locally around the skin lesions and present a better therapeutic effect.[18] Our results also showed that magnetic targeting increases the number of Exos that accumulate in the injured area, and its therapeutic effect is better than that of the Exos without targeting. Encouragingly, our results also indicated that Exo+NPs have similar tissue repair characteristics to MSCs; thus, Exo+NPs with magnet-guided targeting may be a good candidate for treating skin wound healing and may overcome the barriers and risks associated with stem cell transplantation therapy.

Poor wound healing is often associated with abnormal blood supply to the wound bed, whereas studies have shown that Exos isolated from various cell types can promote angiogenesis and neovascularization.[18, 19, 46] In the present study, we found that magnetic targeting enhanced the cutaneous wound healing effects of Exo+NPs through significantly increasing the number of closed tubular structures in vitro and increasing the number of newly formed and mature blood vessels in vivo. These results indicate that Exo+NPs can improve the blood supply in wound beds, with the number of blood vessels formed increasing with the number of Exo+NPs that accumulate in the wound. Thus, the rats in Exo+NPs+MAG group displayed the best wound healing effects.

Conclusion

In the present study, we demonstrated the effective in vivo targeting ability of Exo+NPs and
their feasibility for repairing cutaneous wounds. Similar to Exos, Exo+NPs can significantly promote the proliferation, migration, and angiogenesis of HUVECs in vitro and upregulate the expression of proteins (Cyclin A2, Cyclin D1, VEGFA, and CXCL12) involved in the repair of injured skin. In vivo magnetic guidance markedly enhanced the targeting efficacy of intravenously injected Exo+NPs toward the injured skin site and alleviated skin damage in a rat model. Thus, our findings suggest that the application of Exo+NPs with magnetic guidance may be a promising therapeutic strategy for improving cutaneous wound healing and other tissue damage in patients.

Materials and Methods

Synthesis of Fe₃O₄ NPs
Fe₃O₄ NPs were synthetized as described previously.[47] Briefly, FeCl₂·4H₂O and FeCl₃·6H₂O were dissolved in 100 mL sterile deionized water at a 1:1.5 ratio and NH₄OH solution was added at a rate of 5.0 mL/min to adjust the solution to a final pH of 11. The solution was stirred at 600 rpm and 80 °C for 1.5 h to promote an oxidation reaction, with the resulting black precipitate separated by magnetic decantation. Next, Fe₃O₄ NPs were collected, washed three times with sterile deionized water by centrifugation, and refrigerated until further use. Dynamic light scattering (DLS) measurements were obtained using a Malvern Zetasizer Nano-ZS (Malvern Instruments, Worcestershire, UK).

MSC preparation
MSCs were isolated from human umbilical cord tissue using our previously described method approved by the Ethics Committee of the China-Japan Union Hospital at Jilin University.[39] MSCs were cultured and expanded in α-Minimum Essential Medium (MEM) supplemented with 10 % fetal bovine serum (FBS; Gibco, Clontech, Mountain View, CA, USA) at 37 °C and 5 % CO₂. MSCs from passages 3–6 were used in all experiments.

Labeling of MSCs with Fe₃O₄ NPs
MSCs grown to 80 % confluence were incubated with Fe₃O₄ NPs (50 µg/mL) for 16 h as described previously,[47] washed three times with phosphate-buffered saline (PBS), and stained with a Prussian blue iron staining kit (Solarbio, Beijing, China), according to the
manufacturer’s instructions.

MSC-derived Exo isolation and identification

MSCs (2 x 10^5 cells / dish) were seeded in a 100-mm dish, cultured for 48 h, and washed twice with PBS. The culture medium was changed to α-MEM medium supplemented with 10 % Exo-depleted FBS (SBI, Mountain View, CA, USA) and the cells were incubated for 48 h. The conditioned MSC medium (MSC-CM) was collected, centrifuged at 1500 rpm for 15 min to remove cells and cell debris, and filtered using a 0.22-μm syringe filter. The supernatant was passed through a 100-kDa molecular weight Amicon Ultra-15 Centrifugal Filter Device (Merck Millipore, Darmstadt, Germany) and concentrated. Exos were isolated from the MSC-CM using an exoEasy Maxi kit (Qiagen, Frankfurt, Germany) according to the manufacturer’s instructions. Briefly, the filtered MSC-CM was mixed at a 1:1 ratio with 2x binding buffer (XBP) and added to an exoEasy membrane affinity column to allow the Exos to bind to the membrane. After centrifugation, the flow-through was discarded and wash buffer (XWP) was added to the column to wash away nonspecifically retained material. After further centrifugation the flow-through was discarded and Exos were eluted by adding elution buffer to the spin column, with the eluate collected by centrifugation.

Exo morphologies were observed by 100 kV transmission electron microscopy (TEM), with size, concentration, and particle size distribution identified using NanoSight LM10 (Malvern, Worcestershire, UK) and Nanoparticle Tracking Analysis (NTA) software version 3.0 (NanoSight, Malvern, Worcestershire, UK).

Exo iron determination

Exos or Exo+NPs were lysed in 0.5 mL concentrated hydrochloric acid and their iron content quantified using an inductively coupled plasma optical emission spectrometer (ICP-OES) with a Perkin-Elmer Optima 3300DV (Perkin-Elmer, Norwalk, CT, USA).

Exo labeling and internalization assay

Exos were incubated with a 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine (DiD) tracer (5 µM; Sigma Aldrich, St. Louis, Missouri, USA) for 4 min, treated with 0.5 % BSA/PBS to neutralize redundant dye, and labeled Exos obtained by centrifugation to remove
contaminating dye. For the internalization assay, human umbilical vein endothelial cells (HUVECs) were seeded in a 35-mm confocal dish at 2×10^5 cells/dish and treated with 50 μg/mL labeled Exos. After incubation for 18 h, the cells were washed twice with PBS, fixed in 4 % paraformaldehyde for 10 min, and their nuclei stained with 4,6-diamino-2-phenyl indole (DAPI, Solarbio, Beijing, China) according to the manufacturer’s instructions. Cellular Exo uptake was observed using laser scanning confocal microscopy.

Cell proliferation assay

Cell growth was determined using Cell Counting Kit-8 (CCK-8; Sigma, St. Louis, MO, USA) assays. Briefly, HUVECs were seeded in 96-well plates (2000 cells/well) and co-cultured with MSC-Exos, MSC-Exo+NPs (50 μg/mL), or an equal volume of PBS. Cell growth was analyzed 1, 3, and 5 days after Exo treatment by measuring the optical density (OD) at 450 nm using a microplate reader (Bio-Rad Laboratories Inc., Hercules, CA, USA). Data are representative of three independent experiments.

Cell migration assay

The effects of Exos on HUVEC migration were evaluated using a scratch assay. Briefly, cells were seeded in the cell culture system using an ibidi culture insert (ibidi GmbH, Munich, Germany). To measure cell migration, the silicon inserts were removed after 24 h, the gaps created were washed, and each well was filled with fresh serum-free culture medium containing MSC-Exos or MSC-Exo+NPs (50 μg/mL). Images of the closing area were obtained after 0, 6, 12, and 24 h, and the migration area was measured using Image-Pro Plus 6.0 software (Media Cybernetics, Inc., Rockville, MD, USA) as follows:

$$\text{Migration area (\%)} = \frac{(A_0 - A_n)}{A_0} \times 100,$$

where A_0 represents the initial wound area ($t = 0$ h) and A_n represents the residual wound area at the time of measuring ($t = n$ h).

Tube formation assay

In vitro capillary-like structure formation was evaluated using a Matrigel Basement Membrane Matrix (BD Biosciences, San Jose, CA, USA). Briefly, HUVECs (4×10^4 cells/well) were seeded with 50 μg/mL MSC-Exo or MSC-Exo+NPs in 48-well culture plates coated with 150 μL
Matrigel and cultured at 37 °C with 5 % CO₂. Tube formation was quantified after 6 and 8 h using an inverted microscope. The number of total branch points and tubule lengths in five randomly chosen fields were examined using an inverted microscope. Results represent the mean ± SEM of three independent experiments.

Cell cycle

After incubation with 50 μg/mL MSC-Exos or MSC-Exo+NPs for 24 h, HUVECs were collected, washed twice with PBS, and fixed with 70 % alcohol at 4 °C for more than 24 h. The cells were then stained with 50 μg/mL propidium iodide (PI) and 50 μg/mL RNase A (Beyotime Institute of Biotechnology, Jiangsu, China) at 23–25 °C in the dark for 30 min, filtered, and measured using a flow cytometer ((FC500; Beckman Coulter Inc., Fullerton, CA, USA). All data were collected and analyzed using flow cytometer software (Beckman Coulter Inc.). The S-phase fraction (SPF) was calculated as follows: SPF = S / (G0/G1 + S + G2/M) × 100 %.

The proliferation index (PIndex) was calculated as follows:[48]

\[
PIndex = \frac{(S + G2/M)}{(G0/G1 + S + G2/M)} \times 100\%.
\]

Western blotting

Cells or purified Exos samples were diluted 1:5 with protein loading buffer (6 ×) (Transgen Biotech, Beijing, China) and heated at 99°C for 10 min. Protein extracts were separated on a 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel and transferred onto polyvinylidene difluoride membranes (Sigma Aldrich Chemie Gmbh, Munich, Germany) at 100 V for 30–60 min. The membranes were blocked with 5 % nonfat milk at 23–25 °C for 1 h, washed three times in TBST buffer for 10 min, and incubated with the following primary antibodies at 4 °C overnight: CD9 (1:1000; BioLegend, San Diego, CA, USA), Alix (1:500; Santa Cruz Biotechnology, Santa Cruz, CA, USA), Cyclin A2 (1:1000; Proteintech Group, Rosemont, IL, USA), Cyclin D1 (1:5000; Proteintech), VEGFA (1:1000; Proteintech), CXCL12 (1:500; Proteintech), and GAPDH (1:5000; Proteintech). GAPDH was used as a loading control. Western blots were probed with IRDye 800-conjugated goat anti-rabbit or anti-mouse secondary antibodies and blotted proteins detected using an Odyssey infrared imaging system (LI-COR Biosciences, Lincoln, NE, USA).
Rat skin wound model and treatment

Rats were handled in strict accordance with the Guidelines for the Care and Use of Laboratory Animals of Jilin University. All animal experiments were approved by the Ethics Committee of Animal Experiments of Jilin University and were carried out according to internationally accepted animal care guidelines (EEC Directive of 1986; 86/609/EEC). Six-week-old male Wistar rats were randomly divided into three groups ($n = 9$ per group): PBS group (100 μL PBS), MSC-Exos group (100 μg Exos dispersed in 100 μL PBS), and MSC-Exos+NPs group (100 μg Exo+NPs dispersed in 100 μL PBS). A 1.2-T magnet was placed under the injury site in the MSC-Exos+NPs group for 30 min. As described previously,[39] a full skin thickness burn was induced on the back of the rat (3 W cm$^{-2}$ for 5 min) using an 808-nm diode laser (LEO Photonics, Beijing, China). DiD-labeled Exos were administered intravenously to the animals in the burn injury group and visualized by live animal imaging (Caliper Life Sciences, CA, USA). All rats were anesthetized using 5 % chloral hydrate in ethyl ether during imaging. Photographs were acquired at weeks 0, 1, 3, and 5, and the wound area measured using Image J software. Wound-size reduction was calculated as follows:

$$\text{Wound-size reduction (\%) } = \left(\frac{A_0 - A_t}{A_0} \right) \times 100,$$

where A_0 is the initial wound area and A_t is the wound area 1, 3, or 5 weeks post-wounding.

Histological analysis

Skin tissues excised from the wound sites were fixed with 4 % paraformaldehyde, dehydrated using a graded alcohol series, embedded in paraffin, and cut into 4-μm-thick longitudinal sections. The sections were stained with hematoxylin and eosin (H&E) for the histological analysis of wound repair and Masson staining to evaluate collagen accumulation.

Immunofluorescence analysis

Alpha smooth muscle actin (α-SMA) and CD31 were detected by immunofluorescence staining to study Exo-induced angiogenesis during wound healing. Briefly, skin tissue excised from the wound sites was fixed in 4 % paraformaldehyde, dehydrated in 30 % sucrose solution, embedded in OCT, and cut into 4-μm-thick sections perpendicular to the wound surface. The sections were blocked in 1 % BSA for 30 min at 23–25 °C, incubated with rabbit anti-CD31 (1:100; Abcam, Cambridge, UK) and mouse anti-α-SMA (1:50; Abcam) antibodies overnight at
4 °C, and then stained with secondary Alexa-Fluor 594-conjugated goat anti-rabbit and Alexa-Fluor 488-conjugated goat anti-mouse secondary antibodies (Abcam, 1:200) and counterstained with DAPI. Images were acquired using an Olympus IX81 microscope. Newly formed vessels were indicated by CD31-positive staining, whereas mature vessels were detected as CD31 and α-SMA double-positive vascular structures. The numbers of newly formed and mature vessels were counted in five random fields per section between wound edges using Image-Pro Plus 6.

Statistical analysis

All data are expressed as the mean ± standard deviation (SD). Between-group differences were assessed by one-way analysis of variance (ANOVA) using SPSS software. P values of < 0.05 were considered significant.

Authors’ contributions

Hao Zhang, Bai Yang, Xiaohua Xu and Jinlan Jiang guided the design, ideas, and feasibility of the topic; Xiuying Li and Ying Wang were responsible for all the experiments in vitro and in vivo; Zhenhong Wei, and Huiying Lv were responsible for the animal model and testing of animal experimental samples; Jing Li and Liya Wu were responsible for all statistical analyses of the data; Binxi Li was responsible for the synthesis of nanomaterials, Liya Wu was responsible for cell culture.

Acknowledgements

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Data Availability Statement

The datasets used to support the findings of this study are included within the article.

Consent for publication

Not applicable.

Funding Statement

This work was supported by the Science and Technology Project of Jilin Provincial Education Department (Grant Nos. 20160101112JC, 20190901007JC, 20190304030YY, 20190304030YY, 20190304030YY, 20190304030YY).
20190908002TC, and JJKH20190063KJ), the Capital Construction Funds Planned Projects in the Provincial Budget of 2019 (Grant No. 2019C016), the Changchun Science and Technology Development Plan Project (Grant No. 18YJ011), the Health Service Capacity Improvement Project in Jilin Province (Grant No. 2017F014), and the Health Special Project of Jilin Provincial Finance Department (Grant Nos. sczsy201716 and 2018scz034).

Ethics declarations

All animal experiments were approved by the Ethics Committee of Animal Experiments of Jilin University and were carried out according to internationally accepted animal care guidelines (EEC Directive of 1986; 86/609/EEC). All procedures related to the use of human MSCs were approved by the Institutional Review Board at China-Japan Union Hospital of Jilin University, and written informed consent was obtained from each volunteer.

References

[1] Castilho RM, Squarize CH, Gutkind JS. Exploiting PI3K/mTOR signaling to accelerate epithelial wound healing. Oral diseases 2013;19:551-8.

[2] Khosrotehrani K. Mesenchymal stem cell therapy in skin: why and what for? Experimental dermatology 2013;22:307-10.

[3] Nagubothu SR, Sugars RV, Tudzarovski N, Andren AT, Bottai M, Davies LC, et al. Mesenchymal stromal cells modulate tissue repair responses within the injured vocal fold. The Laryngoscope 2020;130:E21-E9.

[4] Navas A, Magana-Guerrero FS, Dominguez-Lopez A, Chavez-Garcia C, Partido G, Graue-Hernandez EO, et al. Anti-Inflammatory and Anti-Fibrotic Effects of Human Amniotic Membrane Mesenchymal Stem Cells and Their Potential in Corneal Repair. Stem cells translational medicine 2018;7:906-17.

[5] Di G, Du X, Qi X, Zhao X, Duan H, Li S, et al. Mesenchymal Stem Cells Promote Diabetic Corneal Epithelial Wound Healing Through TSG-6-Dependent Stem Cell Activation and Macrophage Switch. Investigative ophthalmology & visual science 2017;58:4344-54.

[6] Trounson A, McDonald C. Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell stem cell 2015;17:11-22.

[7] Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, et al. Stem Cells in Wound Healing: The Future of Regenerative Medicine? A Mini-Review. Gerontology 2016;62:216-25.

[8] Kim N, Cho SG. New strategies for overcoming limitations of mesenchymal stem cell-based immune modulation. International journal of stem cells 2015;8:54-68.

[9] Wu Q, Ji FK, Wang JH, Nan H, Liu DL. Stromal cell-derived factor 1 promoted migration of adipose-derived stem cells to the wounded area in traumatic rats. Biochemical and biophysical research communications 2015;467:140-5.

[10] Hocking AM, Gibran NS. Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Experimental cell research 2010;316:2213-9.

[11] Kim WS, Park BS, Sung JH. The wound-healing and antioxidant effects of adipose-derived stem cells. Expert opinion on biological therapy 2009;9:879-87.
[12] Park BS, Jang KA, Sung JH, Park JS, Kwon YH, Kim KJ, et al. Adipose-derived stem cells and their secretory factors as a promising therapy for skin aging. Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al] 2008;34:1323-6.

[13] Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. International journal of molecular sciences 2017;18.

[14] Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual review of cell and developmental biology 2014;30:255-89.

[15] Park KS, Bandeira E, Shelke GV, Lasser C, Lotvall J. Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 2019;10:288.

[16] Akyurekli C, Le Y, Richardson RB, Fergusson D, Tay J, Allan DS. A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem cell reviews and reports 2015;11:150-60.

[17] Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WQ, Xue H, Savitz SI, et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem cells and development 2009;18:683-92.

[18] Zhang J, Chen C, Hu B, Niu X, Liu X, Zhang G, et al. Exosomes Derived from Human Endothelial Progenitor Cells Accelerate Cutaneous Wound Healing by Promoting Angiogenesis Through Erk1/2 Signaling. International journal of biological sciences 2016;12:1472-87.

[19] Zhang J, Guan J, Niu X, Hu G, Guo S, Li Q, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. Journal of translational medicine 2015;13:49.

[20] Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, et al. HucMSC-Exosome Mediated-Wnt4 Signaling Is Required for Cutaneous Wound Healing. Stem cells (Dayton, Ohio) 2015;33:2158-68.

[21] Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, et al. Human adipose tissue-derived mesenchymal stem cells secrete functional nephrilysin-bound exosomes. Sci Rep 2013;3:1197.

[22] Mastri M, Lin H, Lee T. Enhancing the efficacy of mesenchymal stem cell therapy. World journal of stem cells 2014;6:82-93.

[23] Wiklander OP, Nordin JZ, O'Loughlin A, Gustafsson Y, Corso G, Mager I, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. Journal of extracellular vesicles 2015;4:26316.

[24] Hwang DW, Choi H, Jang SC, Yoo MY, Park JY, Choi NE, et al. Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using (99m)Tc-HMPAO. Sci Rep 2015;5:15636.

[25] Lai CP, Mardini O, Ericsson M, Prabhakar S, Maguire C, Chen JW, et al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS nano 2014;8:483-94.

[26] Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature biotechnology 2011;29:341-5.

[27] Hohnholt MC, Geppert M, Dringen R. Treatment with iron oxide nanoparticles induces ferritin synthesis but not oxidative stress in oligodendroglial cells. Acta biomaterialia 2011;7:3946-54.

[28] Nitin N, LaConte LE, Zurkiya O, Hu X, Bao G. Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry 2004;9:706-12.

[29] Fan CH, Cheng YH, Ting CY, Ho YI, Hsu PH, Liu HL, et al. Ultrasound/Magnetic Targeting with SPIO-DOX-Microbubble Complex for Image-Guided Drug Delivery in Brain Tumors. Theranostics
[30] Qi H, Liu C, Long L, Ren Y, Zhang S, Chang X, et al. Blood Exosomes Endowed with Magnetic and Targeting Properties for Cancer Therapy. ACS nano 2016;10:3323-33.

[31] Jia G, Han Y, An Y, Ding Y, He C, Wang X, et al. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials 2018;178:302-16.

[32] Hu L, Wang J, Zhou X, Xiong Z, Zhao J, Yu R, et al. Exosomes derived from human adipose mesenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep 2016;6:32993.

[33] Pytlik R, Rentsch C, Soukup T, Novotny L, Rentsch B, Kanderova V, et al. Efficacy and safety of human mesenchymal stromal cells in healing of critical-size bone defects in immunodeficient rats. Physiological research 2017;66:113-23.

[34] Chen Y, Zhao Y, Chen W, Xie L, Zhao ZA, Yang J, et al. MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Res Ther 2017;8:268.

[35] Barnhoorn MC, Wasser M, Roelofs H, Maljaars PWJ, Molendijk I, Bonsing BA, et al. Long-term evaluation of allogeneic bone marrow-derived mesenchymal stromal cell therapy for Crohn's disease perianal fistulas. Journal of Crohn's & colitis 2019.

[36] Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 2008;103:1204-19.

[37] Liang X, Ding Y, Zhang Y, Tse HF, Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant 2014;23:1045-59.

[38] Pascucci L, Cocce V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. Journal of controlled release : official journal of the Controlled Release Society 2014;192:262-70.

[39] Li X, Xu Z, Bai J, Yang S, Zhao S, Zhang Y, et al. Umbilical Cord Tissue-Derived Mesenchymal Stem Cells Induce T Lymphocyte Apoptosis and Cell Cycle Arrest by Expression of Indoleamine 2, 3-Dioxygenase. Stem Cells Int 2016;2016:7495135.

[40] Zhu LL, Zhang Z, Jiang HS, Chen H, Chen Y, Dai YT. Superparamagnetic iron oxide nanoparticle targeting of adipose tissue-derived stem cells in diabetes-associated erectile dysfunction. Asian journal of andrology 2017;19:425-32.

[41] Yanai A, Hafeli UO, Metcalfe AL, Soema P, Addo L, Gregory-Evans CY, et al. Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell Transplant 2012;21:1137-48.

[42] Wilson MW, Kerlan RK, Jr., Fidelman NA, Venook AP, LaBerge JM, Koda J, et al. Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/ conventional angiography suite--initial experience with four patients. Radiology 2004;230:287-93.

[43] Lubbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, et al. Clinical experiences with magnetic drug targeting: a phase I study with 4'-epidoxorubicin in 14 patients with advanced solid tumors. Cancer research 1996;56:4686-93.

[44] Yoo SY, Kwon SM. Angiogenesis and its therapeutic opportunities. Mediators Inflamm 2013;2013:127170.
[45] Bulgin D. Therapeutic Angiogenesis in Ischemic Tissues by Growth Factors and Bone Marrow Mononuclear Cells Administration: Biological Foundation and Clinical Prospects. Current stem cell research & therapy 2015;10:509-22.

[46] Zhang W, Bai X, Zhao B, Li Y, Zhang Y, Li Z, et al. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway. Experimental cell research 2018;370:333-42.

[47] Li X, Wei Z, Lv H, Wu L, Cui Y, Yao H, et al. Iron oxide nanoparticles promote the migration of mesenchymal stem cells to injury sites. Int J Nanomedicine 2019;14:573-89.

[48] Zhang H, Qu S, Li S, Wang Y, Li Y, Wang Y, et al. Silencing SATB1 inhibits proliferation of human osteosarcoma U2OS cells. Molecular and cellular biochemistry 2013;378:39-45.
Figure 1. Schematic illustration of the preparation of NP-incorporated exosome (Exo+NPs) from Fe$_3$O$_4$ NPs labeled MSC followed by magnet-guided *in vivo* targeting to the injured skin.

Figure 2. Fe$_3$O$_4$ nanoparticle (NP) characterization and internalization by mesenchymal stem cells (MSCs). (A) TEM images of Fe$_3$O$_4$ NPs. Scale bar = 200 nm. (B) Size distribution of Fe$_3$O$_4$ NPs. (C) MSCs were labeled with Fe$_3$O$_4$ NPs (50 μg/mL) for 16 h to determine the optimal labeling efficiency and stained using a Prussian blue iron staining.
Figure 3. Mesenchymal stem cell (MSC) exosome (Exo) and MSC-Exo+NP characterization. Morphology of MSC-Exos (A) and MSC-Exos+NPs (B) observed by TEM. The red arrow indicates the membrane. (C) Western blot analysis of MSC-Exo and MSC-Exo+NP surface marker proteins (Alix and CD9). Size distribution of MSC-Exos (D) and MSC-Exo+NPs (E) determined by NP tracking analysis. (F) Iron content of MSC-Exos.
and MSC-Exo+NPs detected by ICP-OES analysis. ***$P < 0.001$ vs. MSC-Exos.

Figure 4. Mesenchymal stem cell (MSC) exosome (Exo) and MSC-Exo+NPs internalization. Confocal microscopy images showing Exo and Exo+NP incorporation in human umbilical vein endothelial cells. Blue indicates DAPI staining of the nucleus. Red indicates DiD-labeled Exos or Exos+NPs. Red arrows show cytoplasmic NPs in bright field. Scale bar = 10 μm.
Figure 5. Effects of mesenchymal stem cell (MSC) exosomes (Exos) or MSC-Exo+NPs on human umbilical vein endothelial cell (HUVEC) proliferation and migration. Light microscopy images (A) and migration rates (B) of HUVECs into scratched monolayer areas following growth in fresh serum-free culture medium containing 50 μg/mL MSC-Exos or MSC-Exo+NPs for 6, 12, or 24 h. Scale bar = 200 μm. (C) Proliferation of HUVECs grown in medium containing 50 μg/mL MSC-Exos or MSC-Exo+NPs detected over 5 days using a cell counting kit. *P < 0.05, and ***P < 0.001.
Figure 6. Pro-angiogenic effects of mesenchymal stem cell (MSC) exosomes (Exos) or MSC-Exo+NPs on human umbilical vein endothelial cells (HUVECs). (A) HUVEC tube formation was studied by growing cells in Matrigel medium containing 50 μg/mL MSC-Exos or MSC-Exo+NPs. Scale bar = 200 μm. Quantitative analysis of the total tube length (B) and branch points (C) of HUVECs following growth in medium containing 50 μg/mL MSC-Exos or MSC-Exo+NPs for 6 or 8 h (n = 3 per group). *P < 0.05.
Figure 7. Mesenchymal stem cell (MSC) exosomes (Exos) increase human umbilical vein endothelial cell (HUVEC) SPF and PIndex. HUVECs were cultured for 24 h with 50 µg/mL of MSC-Exos or MSC-Exo+NPs. The DNA content of the HUVECs was measured by propidium iodide staining using flow cytometry. (A) FACs plots representative of one of three experiments. (B) Averaged SPF and PIndex of three independent experiments. Bar = SD. *P < 0.05 vs. HUVEC group.

Figure 8. Mesenchymal stem cell (MSC) exosome (Exo) treatment upregulated proteins associated with human umbilical vein endothelial cell (HUVEC) proliferation, migration, and angiogenesis. Expression levels of cell cycle-, migration-, and angiogenesis-regulating proteins detected by western blot (A). GAPDH was used to normalize protein
levels. (B) Quantification of Cyclin A2, Cyclin D1, VEGFA, and CXCL12 protein levels compared to the levels in the control group (mean ± SD; \(n = 3 \)). **\(P < 0.01 \), ***\(P < 0.001 \) vs. control group.

Figure 9. Macroscopic appearance of cutaneous wounds treated with PBS, Exos, or Exos+NPs+MAG. (A) Monitoring of Exos or Exos+NPs migration to burn injury lesions in a rat model. (B) Gross view of wounds treated with PBS, Exos, or Exos+NPs+MAG after 0, 1, 3, and 5 weeks. (C) Quantitative analysis of wound closure at different time points post-wounding. *\(P < 0.05 \).
Figure 10. Mesenchymal stem cell (MSC) exosome (Exo)+NPs with magnetic guidance accelerated the recovery of skin burn injury in rats. (A) H&E staining of wound sections following treatment with PBS, MSC-Exos, or MSC-Exos+NPs with magnetic guidance 5 weeks post-wounding. Double-headed arrows indicate scar edges. Scale bar = 1 mm; Ep,
Epithelium. Effects of PBS, MSC-Exos, or MSC-Exos+NPs with magnetic guidance on wound re-epithelialization (B) and scar width (C) 5 weeks post-wounding ($n = 6$; *$P < 0.05$; ***$P < 0.001$). (D) Evaluation of collagen maturity by staining wounds with Masson’s trichrome following treatment with PBS, MSC-Exos, or MSC-Exos+NPs with magnetic guidance 5 weeks post-wounding. Scale bar = 100 μm. (E) Quantitative analysis of collagen in wound tissue 5 weeks after treatment ($n = 5$, ***$P < 0.001$). (F) Representative immunofluorescence images of CK19 expression showing re-epithelialization in the wound area. Scale bar = 100 μm.

Figure 11. Mesenchymal stem cell (MSC) exosome (Exo)+NPs with magnet-guided transplantation promotes the formation of new blood vessels in the wound sites of rats. (A) Immunofluorescence staining for CD31 and SMA in wounds after treatment with PBS, MSC-Exos, or MSC-Exos+NPs with magnetic guidance 5 weeks post-wounding. Scale bar = 100 μm. (B) Quantitative analysis of the number of total blood vessels by CD31 immunofluorescence staining. (C) Quantitative analysis of the number of mature blood vessels by CD31 and SMA double immunofluorescent staining in wounds. (D) Wounds were subjected to immunohistochemical staining for PCNA expression 5 weeks after treatment. Scale bar = 100 μm.
Schematic illustration of the preparation of NP-incorporated exosome (Exo+NPs) from Fe3O4 NPs labeled MSC followed by magnet-guided in vivo targeting to the injured skin.
Fe3O4 nanoparticle (NP) characterization and internalization by mesenchymal stem cells (MSCs). (A) TEM images of Fe3O4 NPs. Scale bar = 200 nm. (B) Size distribution of Fe3O4 NPs. (C) MSCs were labeled with Fe3O4 NPs (50 μg/mL) for 16 h to determine the optimal labeling efficiency and stained using a Prussian blue iron staining kit. Scale bar = 100 μm. (C) TEM image of NPs (50 μg/mL) internalized by an MSC. Scale bar = 5 μm. Red arrows indicate NPs observed in the MSC cytoplasm.
Mesenchymal stem cell (MSC) exosome (Exo) and MSC-Exo+NP characterization. Morphology of MSC-Exos (A) and MSC-Exos+NPs (B) observed by TEM. The red arrow indicates the membrane. (C) Western blot analysis of MSC-Exo and MSC-Exo+NP surface marker proteins (Alix and CD9). Size distribution of MSC-Exos (D) and MSC-Exo+NPs (E) determined by NP tracking analysis. (F) Iron content of MSC-Exos and MSC-Exo+NPs detected by ICP-OES analysis. ***P < 0.001 vs. MSC-Exos.
Mesenchymal stem cell (MSC) exosome (Exo) and MSC-Exo+NPs internalization. Confocal microscopy images showing Exo and Exo+NP incorporation in human umbilical vein endothelial cells. Blue indicates DAPI staining of the nucleus. Red indicates DiD-labeled Exos or Exos+NPs. Red arrows show cytoplasmic NPs in bright field. Scale bar = 10 μm.
Figure 5

Effects of mesenchymal stem cell (MSC) exosomes (Exos) or MSC-Exo+NPs on human umbilical vein endothelial cell (HUVEC) proliferation and migration. Light microscopy images (A) and migration rates (B) of HUVECs into scratched monolayer areas following growth in fresh serum-free culture medium containing 50 μg/mL MSC-Exos or MSC-Exo+NPs for 6, 12, or 24 h. Scale bar = 200 μm. (C) Proliferation of HUVECs grown in medium containing 50 μg/mL MSC-Exos or MSC-Exo+NPs detected over 5 days using a cell counting kit. *P < 0.05, and **P < 0.001.
Pro-angiogenic effects of mesenchymal stem cell (MSC) exosomes (Exos) or MSC-Exo+NPs on human umbilical vein endothelial cells (HUVECs). (A) HUVEC tube formation was studied by growing cells in Matrigel medium containing 50 μg/mL MSC-Exos or MSC-Exo+NPs. Scale bar = 200 μm. Quantitative analysis of the total tube length (B) and branch points (C) of HUVECs following growth in medium containing 50 μg/mL MSC-Exos or MSC-Exo+NPs for 6 or 8 h (n = 3 per group). *P < 0.05.
Mesenchymal stem cell (MSC) exosomes (Exos) increase human umbilical vein endothelial cell (HUVEC) SPF and PIndex. HUVECs were cultured for 24 h with 50 μg/mL of MSC-Exos or MSC-Exo+NPs. The DNA content of the HUVECs was measured by propidium iodide staining using flow cytometry. (A) FACs plots representative of one of three experiments. (B) Averaged SPF and PIndex of three independent experiments. Bar = SD. *P < 0.05 vs. HUVEC group.
Mesenchymal stem cell (MSC) exosome (Exo) treatment upregulated proteins associated with human umbilical vein endothelial cell (HUVEC) proliferation, migration, and angiogenesis. Expression levels of cell cycle-, migration-, and angiogenesis- regulating proteins detected by western blot (A). GAPDH was used to normalize protein levels. (B) Quantification of Cyclin A2, Cyclin D1, VEGF-A, and CXCL12 protein levels compared to the levels in the control group (mean ± SD; n = 3). **P < 0.01, ***P < 0.001 vs. control group.
Figure 9

Macroscopic appearance of cutaneous wounds treated with PBS, Exos, or Exos+NPs+MAG. (A) Monitoring of Exos or Exos+NPs migration to burn injury lesions in a rat model. (B) Gross view of wounds treated with PBS, Exos, or Exos+NPs+MAG after 0, 1, 3, and 5 weeks. (C) Quantitative analysis of wound closure at different time points post-wounding. *P < 0.05.
Mesenchymal stem cell (MSC) exosome (Exo)+NPs with magnetic guidance accelerated the recovery of skin burn injury in rats. (A) H&E staining of wound sections following treatment with PBS, MSC-Exos, or MSC-Exos+NPs with magnetic guidance 5 weeks post-wounding. Double-headed arrows indicate scar edges. Scale bar = 1 mm; Ep, Epithelium. Effects of PBS, MSC-Exos, or MSC-Exos+NPs with magnetic guidance on wound re-epithelialization (B) and scar width (C) 5 weeks post-wounding (n = 6; *P < 0.05; ***P < 0.001). (D) Evaluation of collagen maturity by staining wounds with Masson’s trichrome following
Mesenchymal stem cell (MSC) exosome (Exo)+NPs with magnet-guided transplantation promotes the formation of new blood vessels in the wound sites of rats. (A) Immunofluorescence staining for CD31 and SMA in wounds after treatment with PBS, MSC-Exos, or MSC-Exos+NPs with magnetic guidance 5 weeks post-wounding. Scale bar = 100 μm. (B) Quantitative analysis of the number of total blood vessels by CD31 immunofluorescence staining. (C) Quantitative analysis of the number of mature blood vessels by CD31 and SMA double immunofluorescent staining in wounds. (D) Wounds were subjected to immunohistochemical staining for PCNA expression 5 weeks after treatment. Scale bar = 100 μm.