One-, Two-, and Three-dimensional Simulations of Oxygen-shell Burning Just before the Core Collapse of Massive Stars

Takashi Yoshida1, Tomoya Takiwaki2, Kei Kotake3, Koh Takahashi4,5, Ko Nakamura6, and Hideyuki Umeda1

1 Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; tyoshida@astro.s.u-tokyo.ac.jp
2 Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
3 Department of Applied Physics & Research Institute of Stellar Explosive Phenomena, Fukuoka University, Fukuoka 814-0180, Japan
4 Argelander-Institute für Astronomie, Universität Bonn, D-53121 Bonn, Germany
5 Max Planck Institute for Gravitational Physics, D-14476 Potsdam, Germany
6 Department of Applied Physics, Fukuoka University, Fukuoka 814-0180, Japan

Received 2019 March 15; revised 2019 June 19; accepted 2019 June 19; published 2019 August 7

Abstract

We perform two- (2D) and three-dimensional (3D) hydrodynamics simulations of convective oxygen-shell burning that takes place deep inside a massive progenitor star of a core-collapse supernova. Using a one-dimensional (1D) stellar evolution code, we first calculate the evolution of massive stars with an initial mass of 9–40 M⊙. Four different overshoot parameters are applied, and a CO-core mass trend similar to previous works is obtained in the 1D models. Selecting eleven 1D models that have a coexisting silicon and oxygen layer, we perform 2D hydrodynamics simulations of the evolution for ~100 s until the onset of core collapse. We find that convection with large-scale eddies and the turbulent Mach number of ~0.1 is obtained in the models having a Si/O layer with a scale of 10⁸ cm, whereas most models that have an extended O/Si layer up to a few × 10⁹ cm exhibit lower turbulent velocity. Our results indicate that the supernova progenitors that possess a thick Si/O layer could provide the preferred condition for perturbation-aided explosions. We perform the 3D simulation of a 25 M⊙ model, which exhibits large-scale convection in the 2D models. The 3D model develops large-scale (ℓ = 2) convection similar to the 2D model; however, the turbulent velocity is lower. By estimating the neutrino emission properties of the 3D model, we point out that a time modulation of the event rates, if observed in KamLAND and Hyper-Kamiokande, could provide important information about structural changes in the presupernova convective layer.

Key words: convection – stars: massive – supernovae: general – hydrodynamics

Supporting material: animation

1. Introduction

From theory and observations, it is almost certain that the explosions of massive stars as core-collapse supernovae (CCSNe) are generically multidimensional (multi-D) phenomena (see Foglizzo et al. 2015; Janka et al. 2016; Patat 2017 for reviews). To facilitate the neutrino-driven mechanism of CCSNe (Bethe & Wilson 1985), multi-D hydrodynamic instabilities such as neutrino-driven convection and the standing accretion shock instability (Blondin et al. 2003) play a pivotal role in enhancing the neutrino-heating efficiency to trigger the onset of the explosion. In fact, a growing number of self-consistent models in two or three spatial dimensions (2D, 3D) now report the revival of the stalled bounce shock into explosion for a wide mass range of progenitors (see, e.g., Hanke et al. 2013; Takiwaki et al. 2014; Lentz et al. 2015; Melson et al. 2015b; Nakamura et al. 2016; Roberts et al. 2016; Summa et al. 2016; Müller et al. 2017; O’Connor & Couch 2018; Vartanyan et al. 2019 for collective references therein).

These successes, however, provide further motivation for exploring missing ingredients in the neutrino mechanism, partly because the estimated explosion energies obtained in the multi-D models generally do not reach the typically observed value (e.g., ~10⁵¹ erg; Tanaka et al. 2009). Various possible candidates to obtain more robust explosions were recently proposed, including multi-D effects during the final stage of the presupernova evolution (see Couch 2017 for a review), general relativity (GR; e.g., Kuroda et al. 2012, 2016; Müller et al. 2012; Ott et al. 2013), rapid rotation (e.g., Marek & Janka 2009; Suwa et al. 2010; Takiwaki et al. 2016; Summa et al. 2018; Harada et al. 2019) and/or magnetic fields (e.g., Obergaulinger et al. 2006; Mösta et al. 2014; Guilet & Müller 2015; Masada et al. 2015; Obergaulinger & Aloy 2017), and sophistication in the neutrino opacities (Melson et al. 2015a; Bollig et al. 2017; Burrows et al. 2018; Kotake et al. 2018) and in the neutrino transport schemes (e.g., Sumiyoshi & Yamada 2012; Richers et al. 2017; Just et al. 2018; Nagakura et al. 2018). In this work, we focus on the first item listed in the above list.

Couch & Ott (2013) were the first to demonstrate that the inhomogeneities seeded by convective shell burning foster the onset of a neutrino-driven explosion (see also Fernández et al. 2014; Couch & Ott 2015; Müller & Janka 2015; Burrows et al. 2018). This is because the infalling perturbation that could be amplified in the supersonic accretion (Nagakura et al. 2013, 2019; Takahashi & Yamada 2014) enhances the turbulence behind the postshock material, leading to the reduction of the critical neutrino luminosity for shock revival (e.g., Müller & Janka 2015; Abdikamalov et al. 2016). In these studies, the nonspherical structures in the burning shells, although physically motivated, were treated in a parametric manner, due to the paucity of the multi-D stellar evolution models covering the life span of massive stars up to the iron core collapse. Currently, one-dimensional (1D) stellar evolution calculations are the only way to accomplish this (Woosley et al. 2002; Woosley & Heger 2007; Sukhbold et al. 2018), where the errors introduced from the omission of multi-D effects are absorbed into the free parameters of the MLT, namely the mixing length theory (e.g., Kippenhahn et al. 2012).
Truly multi-D hydrodynamics stellar evolution calculations have been done over several turnover timescales of convection (limited by the affordable computational resources) in selected burning shells (e.g., Meakin & Arnett 2007; Viallet et al. 2013; Campbell et al. 2016; Cristini et al. 2017; Cristini et al. 2019 for different burning shells, and see Arnett & Meakin 2016 for a review). Pushed by the observation of SN1987A, 2D and 3D stellar evolution simulations focusing on the late burning stages have been extensively carried out since the 1990s (Arnett 1994; Bazan & Arnett 1994; Bazán & Arnett 1998; Asida & Arnett 2000; Kuhlen et al. 2003; Meakin & Arnett 2006, 2007; Arnett & Meakin 2011; Chatzopoulos et al. 2014, 2016; Jones et al. 2017).

More recently, ground-breaking attempts to evolve convective shells in 3D prior to the onset of collapse were first reported by Couch et al. (2015) for silicon-shell burning in a $15 \ M_\odot$ star and by Müller et al. (2016) for oxygen-shell burning in an $18 \ M_\odot$ star (and also in $11.8, 12$, and $12.5 \ M_\odot$ stars by Müller et al. 2019). Couch et al. (2015) obtained an earlier onset for a neutrino-driven explosion of the 3D progenitor model of the $15 \ M_\odot$ star compared to that for the corresponding 1D progenitor model. By performing 3D GR simulations with a more advanced neutrino transport scheme, Müller et al. (2017) obtained a neutrino-driven explosion with the seed perturbations. In comparison, this shock was not revived in the corresponding 1D progenitor model. These studies clearly show that convective seed perturbations could potentially have a favorable impact on neutrino-driven explosions. In order to clarify the criteria for precollapse seed perturbation growth, Collins et al. (2018) recently reported a detailed analysis of the convective oxygen- and silicon-burning shells by performing a broad range of 1D presupernova calculations. Using the prescription of the MLT theory in 1D, they pointed out that the extended oxygen-burning shells between ~ 16 and $26 \ M_\odot$ are most likely to exhibit large-scale convective overturn with high convective Mach numbers, leading to the most favorable condition for perturbation-aided explosions. In fact, the 3D progenitor model of the $18 \ M_\odot$ star (Müller et al. 2016) is in the predicted mass range.

Joining in these efforts, we investigate in this study how the asphericities could grow, in particular driven by the convective oxygen-shell burning in the O- and Si-rich layer. First, we perform a series of 1D stellar evolution calculations with zero-age main-sequence (ZAMS) masses between 9 and $40 \ M_\odot$ with the HOSHI code developed by Takahashi et al. (2016, 2018). Based on the 1D results, we select about ten 1D progenitors that have extended and enriched O and Si layers, presumably leading to vigorous convection. About 100 s before the onset of collapse, the 1D evolution models are mapped to the multi-D hydrodynamics code (a branch of 3DNSe; e.g., Nakamura et al. 2016; Takiwaki et al. 2016; Kotake et al. 2018). We perform axisymmetric (2D) simulations for the selected progenitors having an extended O- and Si-rich layer and investigate the features of their convective motion, especially the convective eddy scale and the turbulent Mach number. We then move on to perform a 3D simulation by choosing one of the progenitors that exhibits strong convective activity in 2D. We investigate how the convective features between 3D and 2D differ and discuss its possible implication for the explosion dynamics.

This paper is organized as follows. Section 2 starts with a brief description of the numerical methods employed in our 1D stellar evolution calculation as well as the 2D and 3D hydrodynamics simulations. In Section 3, we present the results of the 1D stellar evolution models in Section 3.1, which is followed in order by the 2D (Section 3.2) and 3D (Section 3.3) results. In Section 4, we summarize with a discussion of the possible implications. The Appendix addresses the comparison of our 1D stellar evolution code with other reference codes and the sensitivity of our results with respect to the different parameters.

2. Setup and Numerical Methods

In this section, we briefly summarize the numerical setups of our stellar evolution calculations in 1D (Section 3.1), 2D (Section 3.2), and 3D (Section 3.3).

2.1. 1D Stellar Evolution

We calculate the 1D evolution of massive solar-metallicity stars with ZAMS masses between 9 and $40 \ M_\odot$ up to the onset of collapse of the iron core. The calculations are performed using an up-to-date version of the 1D stellar evolution code, Hongo Stellar Hydrodynamics Investigator (HOSHI) code (e.g., Takahashi et al. 2016, 2018). In the code, a 300 species nuclear reaction network is included, the rates of which are taken from JINA REACLIB v1 (Cyburt et al. 2010) except for $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$ (see Takahashi et al. 2016 for details).

The mass of the helium (He), carbon–oxygen (CO), and iron (Fe) cores as well as the advanced stage evolution depend on the treatment of convection. We use the Ledoux criterion for convective instability. Inside the convective region, we treat the chemical mixing by means of the MLT using the diffusion coefficients as described in Takahashi et al. (2018).

In order to take into account the chemical mixing by convective overshoot, an exponentially decaying coefficient,

$$D_{cv}^{ov} = D_{cv,0} \exp \left(-\frac{2\Delta r}{r_{ov} H_P} \right),$$

is included, where $D_{cv,0}$, Δr, r_{ov}, and H_P are the diffusion coefficients at the convective boundary, the distance from the convective boundary, the overshoot parameter, and the pressure scale height at the convective boundary, respectively (e.g., Takahashi et al. 2016). We consider the following four models to see the impacts of different overshoot parameters (r_{ov}) on the 1D stellar evolution. First, we consider two cases during the H- and He-core burning phases ($r_{ov} = 0.03$ or 0.01; see Table 1). The former and the latter values are determined based on the calibrations to early B-type stars in the Large Magellanic Cloud (LMC; Brott et al. 2011) and the main-sequence width observed for AB stars in open clusters of the Milky Way Galaxy (Maeder & Meynet 1989; Ekström et al. 2012), respectively. We name the former as model “L” after the LMC and the latter as model “M” after the Milky Way Galaxy. Similarly, in order to investigate the impact in more advanced stages, we test two different overshooting parameters of

7 "HOSHI" is a noun in Japanese meaning star.

8 The employed nuclear species are as follows: ^{1}H, ^{2}H, ^{3}He, ^{6}Li, ^{7}Be, ^{8}B, ^{11}B, ^{12}C, ^{13}C, ^{14}C, ^{15}N, ^{16}O, ^{17}O, ^{18}O, ^{19}F, ^{20}F, ^{21}Na, ^{22}Na, ^{23}Na, ^{24}Mg, ^{25}Mg, ^{26}Mg, ^{27}Mg, ^{28}Si, ^{29}Si, ^{30}Si, ^{31}P, ^{32}S, ^{33}S, ^{34}S, ^{35}S, ^{36}S, ^{37}Cl, ^{38}Cl, ^{39}Ar, ^{40}Ar, ^{41}K, ^{42}K, ^{43}Ca, ^{44}Ti, ^{44}V, ^{45}Cr, ^{46}Ni, ^{47}Fe, ^{48}Ni, ^{49}Mn, ^{50}Fe, ^{51}Co, ^{52}Ni, ^{53}Ni, ^{54}Ni, ^{55}Co, ^{56}Ni, ^{57}Ni, ^{58}Cu, ^{59}Zn, ^{60}Zn, ^{61}Ga, ^{62}Ga, ^{63}Ge, ^{64}As, ^{65}Se, and ^{66}Br. The isomeric state of ^{26}Al is also included.
overshoot during the advanced stages is considered for model sets with the subscript \(\gamma \).

\[f_{ov,A} = 0 \text{ or } 0.002 \] (see Table 1) for the advanced stages including the core carbon-burning phase. The convective overshoot during advanced stages is considered for both core and shell convective regions. The subscript “A” is added to the models with \(f_{ov,A} = 0.002 \). When a star model has a ZAMS mass of \(x M_\odot \) and belongs to model L(\(\lambda \)) or M(\(\lambda \)), we set the model name to be \(xL(\lambda) \text{ or } xM(\lambda) \). We also name the set of models contained within models \(xL(\lambda) \text{ or } xM(\lambda) \) as Set L(\(\lambda \)) or Set M(\(\lambda \)).

We note that the stellar evolution and the final structure also depend on the metallicity and rotation. However, the main purpose of this study is to investigate precollapse inhomogeneities for canonical CCSNe with solar metallicity. We leave the investigation of the metallicity and rotation dependence to a future study.

The mass-loss rate at different evolution stages is important for determining the final mass and the He- and CO-core masses for high-mass stars. We adopt the Vink et al. (2001) mass-loss rate of a main-sequence star when the effective temperature is higher than \(\log T_{eff} = 4.05 \), and the surface hydrogen mass fraction \(X_H \) is higher than or equal to 0.3. The mass-loss rate of Nugis & Lamers (2000) is adopted for Wolf–Rayet (WR) stars where the effective temperature is higher than \(\log T_{eff} = 4.05 \) and the surface hydrogen mass fraction \(X_H \) is lower than 0.3. When the effective temperature is lower than \(\log T_{eff} = 3.90 \), we adopt de Jager et al. (1988) mass-loss rate.

2.2. Multi-D Stellar Hydrodynamics Simulations

We compute 2D and 3D models with our hydrodynamics code, the 3 Dimensional nuclear hydrodynamic simulation code for Stellar EVolution (3DnSEV), which is a branch of the 3DnSNe code (see Nakamura et al. 2016; Takikawa et al. 2016; Sasaki et al. 2017; Kotake et al. 2018 for recent code development). Similar to the base code, 3DnSEV solves Newtonian hydrodynamics equations using spherical polar coordinates as follows:

\[
\rho \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0, \tag{2}
\]

\[
\rho \frac{\partial \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) = -\rho \nabla \Phi, \tag{3}
\]

\[
\rho \frac{\partial e}{\partial t} + \nabla \cdot [(e + p)v] = -\rho \mathbf{v} \cdot \nabla \Phi + \rho \epsilon_{\text{burn}} + C, \tag{4}
\]

\[
\rho \frac{\partial X_i}{\partial t} + \nabla \cdot (X_i \rho \mathbf{v}) = \gamma_{\text{burn}}, \tag{5}
\]

where \(\rho, \mathbf{v}, p, e \) are the density, velocity, pressure, total energy density (sum of the internal energy and kinetic energy), and gravitational potential, respectively. \(X \) denotes the mass fraction of the \(i \)th isotopes and \(\epsilon_{\text{burn}} \) is the energy generated by the change in composition, \(\gamma_{\text{burn}} \) due to nuclear burning. \(C \) is the energy loss by neutrino emission. The subgrid-scale physics is handled by implicit numerical diffusion instead of solving filtered hydrodynamic equations and by creating a subgrid model for the dissipation of kinetic energy as a large-eddy simulation. A piecewise linear method with the geometric correction of the spherical coordinates is used to reconstruct variables at the cell edge, where a modified van Leer limiter is employed to satisfy the condition of total variation diminishing (TVD; Mignone 2014). The numerical flux is basically calculated by an HLLE solver (Toro et al. 1994). For the numerical flux of isotopes, the consistent multifluid advection method of Plewa & Müller (1999) is used. The models are computed on a spherical polar coordinate grid with a resolution of \(n_r \times n_\theta \times n_\phi = 512 \times 64 \times 128 \) (3D) and \(n_r \times n_\theta = 512 \times 128 \) (2D) zones. The radial grid is logarithmically spaced and covers the center up to the outer boundary of \(10^{10} \text{ cm} \). For the polar and azimuthal angles, the grid covers all \(4\pi \text{ sr} \). To focus on the convective activity mainly in the oxygen shell, the inner \(10^8 \text{ cm} \) is solved in spherical symmetry. We include self-gravity assuming a spherically symmetric (monopole) gravitational potential. Such a treatment is indispensable for reducing the computational time; the nonlinear coupling between the core and the surrounding shells (e.g., Fuller et al. 2015) is beyond the scope of this study.

We use the “Helmholtz” equation of state (EOS; Timmes & Swesty 2000). Neutrino cooling is taken into account (Itoh et al. 1996) as a sink term in the energy equation. A nuclear reaction network of 21 isotopes\(^9\) (approx21; Paxton et al. 2011) is implemented, where the inclusion of \(^{56}\text{Fe}, ^{56}\text{Fe}\), and \(^{56}\text{Cr}\) is crucial for treating low-electron fractions \(Y_e \geq 0.43 \) in the presupernova stage. The network is as large as that of Couch et al. (2015) and a little larger than the 19 isotopes of Müller et al. (2016). When the temperature is higher than \(5 \times 10^9 \text{ K} \), the chemical composition is assumed to be in nuclear statistical equilibrium (NSE). To avoid the temperature variations caused by numerical instability, we set an artificial upper bound in our multi-D runs, in such a way that the (absolute) sum of the local energy generation rates by thermonuclear reactions and weak interactions does not exceed 100 times the local neutrino cooling rate. To correctly treat the neutronization of heavy elements from Si to the iron group and the gradual shift of the nuclear abundances, one needs to use a sufficient number of isotopes (~100; Arnett & Meakin 2011), which is currently computationally and technically very challenging. Because the NSE region appears mainly in the Fe core may not significantly affect the convection in the O layer on which we focus.

About 100 s before the onset of collapse, the 1D evolution models are mapped to our multi-D hydrodynamics code, and we follow the 2D and 3D evolution for ~100 s until the onset of collapse. When we start the multi-D runs, seed perturbations to trigger nonspherical motions are imposed on the 1D data by introducing random perturbations of 1% in density on the whole computational grid. We terminate the 2D/3D runs when the central temperature exceeds \(9 \times 10^9 \text{ K} \), because the core is dynamically collapsing at this time.

\(^9\) http://cocosubed.asu.edu/code_pages/burn_helium.shtml
Fe-core mass of Sets LA and MA, and the Fe-core mass of models L and M, respectively.

The He-core mass is determined as the largest enclosed mass with He mass fraction less than 0.1, and the Fe-core mass is defined as the largest enclosed mass with the sum of the mass fractions of Z > 21 elements larger than 0.5.

The total mass at the collapse is determined by the mass-loss history. Because the mass loss is relatively weak, the total mass monotonically increases with the ZAMS mass for models below $M_{\text{ZAMS}} \lesssim 20-25 M_\odot$ in both Sets L and M. The mass-loss rate increases with increasing luminosity, and thus with increasing ZAMS mass. The increasing mass-loss rate explains the flat and even decreasing trends seen in the 20–30 M_\odot models in Set L. At the same time, models in the same mass range show a stochastic trend for Set M. This is caused by the bistability jump of the mass-loss rate, which results from the discontinuous rate increase along the decreasing effective temperature (e.g., Vink et al. 2000). For more massive models above $M_{\text{ZAMS}} \gtrsim 30 M_\odot$, the mass-loss rate becomes so efficient that most of the H envelope during the He-burning phase. Therefore, the total masses of these models coincide with their He-core masses. This is why the total mass again shows a monotonic increase in this massive end of the ZAMS mass range. The most massive models (the 32, 35, and 38 M_\odot models of Set L and the 35, 38, and 40 M_\odot models of Set M) finally retain only a small amount of hydrogen of 0.26–0.29 M_\odot in their envelopes, which will correspond to these being observed as late-type WN stars (Crowther 2007).

As an exception, model 40L ($M_{\text{ZAMS}} = 40 M_\odot$ model in Set L) has lost not only the entire H envelope but also most of the He layer. This is due to the even stronger WR wind mass loss during the helium- and carbon-burning phases. The He mass remaining on the surface is 0.24 M_\odot. We apply the mass-loss rate of Nugis & Lamers (2000) for the H-deficient stars. However, there is a large uncertainty in the estimation of the WR wind mass-loss rate. Among H-deficient stars especially, the mass-loss rate of He-deficient WC stars can be larger than the rate in Nugis & Lamers (2000) by a factor of ~10 (Yoon 2017). The remaining He mass can be even less if we consider more efficient WR wind mass loss. Therefore, we expect that the star will most probably be observed as a He-deficient WC star, and moreover, it will be observed as a Type Ic supernova when this star explodes.

The features of the distributions of the final stellar mass and the He- and CO-core masses as a function of ZAMS mass are also seen in the results obtained in previous works using KEPLER code (Woosley & Heger 2007; e.g., Figure 4 of Ebinger et al. 2019 for a concise summary).

The He- and CO-core masses monotonically increase with ZAMS mass except for model 40LA, which is affected by the strong WR wind during the He-burning phase. The mass of the helium layer, which is shown as the difference between the He-core and the CO-core masses, also increases with the ZAMS mass. As mentioned earlier, the He- and CO-core masses are insensitive to the overshoot parameter after the He burning, $f_{\text{ov, A}}$. Thus, the difference in the CO-core mass between Sets L and L (and similarly between Sets M and M) is less than 0.7%. Furthermore, the difference in the He-core mass is less than 0.1%. Note that model 18MA exceptionally forms a CO-core mass about 3% larger than model 18M. This results from the emergence of a narrow convection in the outer layer of the CO core, in which a small amount of He is contained. Because this narrow convection is activated only after the oxygen-core

3. Results

3.1. 1D Stellar Evolution Models

In total, 100 stellar evolution models are calculated in 1D. Four sets of models are constructed, to which different overshoot parameters are applied (Table 1). Each set consists of 25 models to cover the initial mass range of 9–40 M_\odot. These 1D models are evolved from the ZAMS stage up to the onset of collapse, which is determined using the threshold central temperature of $T_C \sim 10^{10}$ K. Details of our 1D evolution models (e.g., comparison with reference stellar evolution codes) are given in the Appendix.

Figure 1 shows the total mass (red) and masses of the He (blue), CO (green), and Fe (magenta and cyan) cores at the onset of collapse as a function of the ZAMS mass (M_{ZAMS}). The top panel shows results for Sets L and L, while results for Sets M and M are shown in the bottom panel. We note that Sets L and L result in very similar total, He-core, and CO-core masses, and differ only in the Fe-core mass. This is because the He- and CO-core masses are mostly determined by the size of the core convection during the H- and He-burning phases, respectively, and are largely independent of the overshoot during more advanced stages. The same is true for Sets M and M. The He-core mass is defined as the largest enclosed mass with hydrogen mass fraction less than 10$^{-3}$. Similarly, the CO-core mass is defined as the largest enclosed mass with He mass fraction less than 0.1, and the Fe-core mass is defined as the largest enclosed mass with the sum of the mass fractions of Z > 21 elements larger than 0.5.

![Figure 1](image_url)
depletion, the structure outside the He layer of model 18M is mostly the same as that of model 18M, like other models.

We will compare Set L with Set M. Below $M_{ZAMS} \lesssim 25 M_{\odot}$, the final mass is not that sensitive to the overshoot parameter for the H- and He-core convection. On the other hand, models above $25 M_{\odot}$ show a scatter within a factor of ~ 0.3. Set L tends to show larger He- and CO-core masses than Set M. This is simply due to the larger overshoot parameter applied during the H- and He-burning phases. For most of the models, the ratio of the He-core masses is about a factor of 1.2–1.3, and the CO-core mass ratio is somewhat larger than the He-core mass ratio. As an exception, the He-core mass ratio reaches 2.16 for the 9 M_{\odot} models. This is due to the merging of He layer to the H envelope by the second dredge-up. A larger overshoot for Set L brings about more effective convective mixing to make more massive He and CO cores. Small core-mass ratios for 40 M_{\odot} models are due to the strong mass loss occurring in model 40L.

To select models that will show strong convective activities in the SiO-rich layer, we utilize two measures, the SiO-coexistence parameters of $f_{M,\text{SiO}}$ and $f_{V,\text{SiO}}$. Both of them are defined based on mass fraction distributions of ^{16}O and/or ^{28}Si. The $f_{M,\text{SiO}}$ is a product of the mass fractions of ^{16}O and ^{28}Si weighted by the enclosed mass between 10^8 cm and 10^9 cm:

$$f_{M,\text{SiO}} = c_M \int_1^{10} X(^{16}\text{O})X(^{28}\text{Si}) \times \Theta(X(^{16}\text{O}) - 0.1) \Theta(X(^{28}\text{Si}) - 0.1) \rho r^2 d(r),$$

(6)

where c_M is a scaling coefficient, $X(^{A}\text{Z})$ is the mass fraction of isotope ^{A}Z, and $\Theta(x)$ is the step function, which satisfies $\Theta(x) = 1$ for $x \geq 0$ and 0 for $x < 0$. ρ is the density, and r is the radius in units of 10^8 cm. Therefore, the value becomes large in a model that has a layer mainly composed of both oxygen and silicon. Such a layer would be the most preferable site to host strong turbulence powered by oxygen-shell burning. This definition of $f_{M,\text{SiO}}$ has an uncertainty on how the local density strength of the turbulence depends. Hence, we also test another indicator, $f_{V,\text{SiO}}$, in which the product of the mass fraction is weighted not by the enclosed mass but by the enclosed volume instead:

$$f_{V,\text{SiO}} = c_V \int_1^{10} X(^{16}\text{O})X(^{28}\text{Si}) \times \Theta(X(^{16}\text{O}) - 0.1) \Theta(X(^{28}\text{Si}) - 0.1) \rho r^2 d(r),$$

(7)

where c_V is a scaling coefficient. The scaling coefficients are arbitrarily chosen. We will calculate these two measures at every time step from 120 to 80 s before the last step of the calculations to see the characteristics at times close to the onset of the multidimensional simulations.

The result is shown in Figure 2, wherein $c_M = 3.2 \times 10^{-10}$ and $c_V = 0.025$ are applied. We do not see clear dependencies among different treatments of the overshoot. Some models in the ZAMS mass range $\geq 22 M_{\odot}$ show large (≥ 0.6) $f_{M,\text{SiO}}$ values. In the volume-weighted case, the ZAMS mass range showing the models having large (≥ 0.9) $f_{V,\text{SiO}}$ values is 13–28 M_{\odot}. From this result, we select 11 models, in which either $f_{M,\text{SiO}}$ or $f_{V,\text{SiO}}$ or possibly both of them, shows a large value. Models showing the seven highest $f_{M,\text{SiO}}$ values are models 28M, 23LA, 25M, 28LA, 27LA, 27M, and 22L. Models showing the six highest $f_{V,\text{SiO}}$ values are models 13LA, 28M, 21M, 25M, 16M, and 18M. Among them, models 25M and 28M show large values for both $f_{M,\text{SiO}}$ and $f_{V,\text{SiO}}$. The actual values of the parameters are shown in the second and third columns of Table 2.

For later convenience, we separate the SiO-rich layer into the “Si/O” layer and the “O/Si” layer. The “Si/O” layer has a larger Si mass fraction than O mass fraction in the layer, i.e., $X(^{28}\text{Si}) \geq X(^{16}\text{O})$ and $X(^{16}\text{O}) \geq 0.1$, whereas the “O/Si” layer has the relation $0.1 \leq X(^{28}\text{Si}) < X(^{16}\text{O})$. Then, we can classify these 11 models into two groups having different structures of the SiO-rich layer. One group has an extended O/Si layer instead of the O/Ne layer above the Si/Fe layer. The other group has a Si/O layer between the inner Si/Fe layer and the outer O/Ne layer. The former consists of models 13LA, 16M, 18M, 21LA, 23LA, 27L, and 28M. The top panel of Figure 3 shows the mass fraction distribution of model 13L shown as a function of radius. The radius of the outer boundary of the O/Si layer is $\sim 3 \times 10^8$ cm. This layer was originally formed as an O/Ne layer. Neon burning has started after the core silicon-burning phase, transforming neon into oxygen and silicon. In the case of models 18M, 21LA, and 23LA, a thin Si layer exists between the Si/Fe layer and the O/Si layer with a width of less than 3×10^8 cm.

Models in the latter group have a layered structure, in which the innermost Fe core is surrounded by the Si/Fe, Si/O, and O/Ne layers. Models 22L, 25M, 27M, and 28LA comprise this
Table 2
2D Model Properties and SiO-coexistence Parameters

Model	\(f_{\text{MSIO}} \)	\(f_{\text{VISO}} \)	\(\langle \text{Ma}^2 \rangle_{\text{max}}^{1/2} \)	\(r(\text{Ma}^2)^{1/2}_{\text{max}} \)	Layer	\(\ell_{\text{max}} \)	\(d_c/H_P \)
13LA	0.27–0.28	0.95–0.96	0.018	11.6	O/Si	12	6.22
16M_A	0.24–0.24	0.90–0.91	0.015	3.9	O/Si	4	3.20
18M_A	0.57–0.58	0.91–0.91	0.131	3.1	Si/O	14	1.06
21M_A	0.47–0.47	0.91–0.95	0.134	3.0	Si/O	8	4.42
23L_A	0.75–0.80	0.78–0.80	0.069	11.5	O/Si	4	5.20

For High \(\text{Ma} \) models:

Model	\(f_{\text{MSIO}} \)	\(f_{\text{VISO}} \)	\(\langle \text{Ma}^2 \rangle_{\text{max}}^{1/2} \)	\(r(\text{Ma}^2)^{1/2}_{\text{max}} \)	Layer	\(\ell_{\text{max}} \)	\(d_c/H_P \)
22L	0.57–0.61	0.77–0.82	0.108	9.4	Si/O	2	2.50
25M	0.75–0.79	0.91–0.94	0.160	5.8	Si/O	3	3.65
27L_A	0.59–0.66	0.76–0.76	0.179	45.0	O/Si	2	4.56
27M	0.58–0.65	0.37–0.40	0.134	4.7	Si/O	10	2.44
28L_A	0.60–0.68	0.37–0.42	0.117	5.3	Si/O	8	1.81
28M	0.83–0.90	0.90–0.95	0.369	14.6	O/Si	2	4.08

Note. SiO-coexistence parameters \(f_{\text{MSIO}} \) and \(f_{\text{VISO}} \) are obtained from the result of the 1D evolution simulations. \(\langle \text{Ma}^2 \rangle_{\text{max}}^{1/2} \) represents the maximum turbulent Mach number obtained at a radius of \(r(\text{Ma}^2)^{1/2}_{\text{max}} \) at the end of the 2D simulations. “Layer” represents the composition of the convective region. \(\ell_{\text{max}} \) represents the \(\ell \) value where \(c_s^2 \) has a peak (see Equation (9)). \(d_c/H_P \) represents the width of the convective region normalized by the local scale height. These quantities are all estimated at the last step of the simulations. See the text for a more detailed definition.

Figure 3. Mass fraction distributions of models 13LA (top panel) and 25M (bottom panel) as a function of radius at the last step. The red, black, cyan, blue, magenta, green, and orange lines correspond to the mass fractions of p, He, C, O, Ne, Si, and iron-peak elements with \(Z \geq 21 \) denoted as “Fe,” respectively.

In order to investigate the convective activities in a multidimensional space, we perform 2D hydrodynamics simulations of oxygen-shell burning. In the previous subsection, we picked up 11 models that show large SiO-coexistence criteria of high \(\text{Ma} \). Based on the Mach number, we divide our 2D models into two groups, either showing “low \(\text{Ma} \)” or “high \(\text{Ma} \).” The criterion of high \(\text{Ma} \) is set as \(\langle \text{Ma}^2 \rangle_{\text{max}}^{1/2} \geq 0.1 \), because the turbulence with such a high Mach number potentially fosters
the perturbation-aided explosion (Müller & Janka 2015; Müller et al. 2016). It is noted that models 18M and 21M are exceptionally classified into low Ma despite their “large” Mach numbers. We discuss this later in this section. The column “Layer” in Table 2 represents the dominant chemical composition in the convective layer, i.e., the Si/O layer or the O/Si layer. We also show the mass fraction distribution of models 13L_A and 25M in Figure 3. For other models, the mass fraction distributions are shown in Figure 17 in the Appendix. See the last part of the previous subsection for the definition of the layer.

Time evolution of convective motion—In Figure 4, we show the time evolution of the turbulent Mach number and the Si mass fraction for representative models from low Ma (13L_A, top) and high Ma (25M, middle, and 27L_A, bottom). The color visualizes the angle-averaged turbulent Mach number $\langle M_a^2 \rangle^{1/2}$ (left) and the 28Si mass fraction $X(Si)$ (right). Note that the outer radial frame of the panels for model 27L_A is set to 8×10^8 cm in order to show how the outer edge of the convective region keeps moving outward and reaches this radius at the end.

The model 13L_A has no Si/O layer. This star has an Fe core at the central region of $R \lesssim 2 \times 10^8$ cm, which is surrounded by the convective Si/Fe layer ($R \sim 2–4 \times 10^8$ cm) and the convective O/Si layer ($R \gtrsim 4 \times 10^8$ cm). The Si mass fraction at the Si/Fe layer is ~ 0.5 (see the top panel of Figure 3). As shown in the top-right panel of Figure 4, the Si mass fraction is small compared to that of the 25M model that is shown in the middle right panel of Figure 4. Reflecting this structure, the turbulent Mach number is lower than 0.1 in the inner Si/Fe layer and in the outer O/Si layer throughout the simulation (see the top-left panel of Figure 4). However, oxygen burning slightly enhances the 28Si mass fraction in the base region of the O/Si layer of $\sim 4–8 \times 10^8$ cm. Note that $\langle M_a^2 \rangle_{\text{max}}$ in Table 2 is estimated at the end of the simulations, and it does not refer to the peak seen at $\sim 4 \times 10^8$ cm at ~ 30 s.
Readers may be confused by the models 18M$_{\alpha}$ and 21M$_{\alpha}$ because they have the Si/O layer in Table 2 but they are classified into the low-Ma group. Actually, models 18M$_{\alpha}$ and 21M$_{\alpha}$ have a thin Si/O layer and $(Ma^2)^{1/2} \sim 0.13$ in the Si/O layer, but only after the last ~ 10 s of the simulations. This is because the turbulence is triggered by gravitational contraction, which amplifies the temperature at the bottom of the Si/O layer, enhancing the oxygen-burning rate. The turbulence powered by gravitational contraction has too short a time to form an extended convective region, which is in contrast to the shell convection powered by hydrostatic burning. This is why we selected these models as members of low Ma.

Models 22L, 25M, 27L$_{\alpha}$, 27M, 28L$_{\alpha}$, and 28M are categorized into models with high Ma. Convective motion with such a strong turbulence develops by oxygen burning in the Si/O layer in these models. We pick out two models in which it is easy to explain the typical dynamics of the convection.

Model 25M consists of the central Fe core ($R \lesssim 2 \times 10^8$ cm), the Si/Fe layer ($R \sim 2-3 \times 10^8$ cm), the Si/O layer ($R \sim 3-10 \times 10^8$ cm), and the O/Ne layer ($R \gtrsim 10 \times 10^8$ cm). It is noteworthy that, despite the Si/Fe layer seeming to have a homogeneous chemical composition (see the lower panel of Figure 3), the outer part of $R \sim 2.5-3 \times 10^8$ cm is actually composed of a small amount of oxygen with $X(\text{O}) < 0.01$. The oxygen-free region of $R \sim 2-2.5 \times 10^8$ cm becomes convective within a short timescale of ~ 10 s from the start of the simulation, though the shell convection is not extended further. At the bottom of the outer Si/O layer, hydrostatic oxygen-shell burning takes place. In this case, nuclear burning drives high turbulent velocity with $(Ma^2)^{1/2} > 0.1$, which is sustained for 20–110 s (see the middle-left panel of Figure 4). Accordingly, turbulent mixing homogenizes the ^{28}Si mass fraction in the region of $R = 3-10 \times 10^8$ cm. Furthermore, oxygen burning also takes place in the oxygen-containing outer region of the Si/Fe layer. Despite the large mean molecular weight, the heating due to oxygen burning is strong enough to lift the silicon-rich material up into the surrounding Si/O layer. As a result, the silicon mass fraction in the Si/O layer is significantly enhanced. This silicon enhancement repetitively takes place at ~ 50 and 80 s, which accompanies the enhancement of the convective Mach number as well. It seems that repetitive mixing follows the oscillation of the outer edge of the Si/Fe convection. This will be because, with the small oxygen mass fraction, the temperature fluctuation originally caused by the oscillation is enhanced by the O burning, resulting in a large density fluctuation that triggers convection in the Si/O layer. Indeed, the temperature rise at the bottom of the Si/O layer where the O mass fraction is ~ 0.08–0.1 reaches 8% at maximum, which is much higher than the temperature change solely due to the oscillation, which is less than $\sim 1\%$, measured in the outer region of the Si/F and Si/O layers.

In model 27L$_{\alpha}$, the turbulent activity in the O/Si layer starts to increase at ~ 45 s (see the bottom-left panel of Figure 4). During the simulation time of $\gtrsim 200$ s, the high Mach number region extends outward, finally reaching $\sim 6 \times 10^8$ cm, which roughly corresponds to the composition jump between the CO-rich and the He-rich layers. At the same time, the turbulent Mach number grows with time in almost the entire region in the convective layer. As a consequence, the turbulent Mach number exceeds ~ 0.15 in the wide outer region of $R \sim 30-50 \times 10^8$ cm at the end of the simulation. Initially, the ^{28}Si mass fraction decreases with radius in the O/Si layer (see the mass fraction distribution of model 27L$_{\alpha}$ in Figure 17). The convection powered by the oxygen burning mixes material in the slightly silicon-enriched region, which is initially located below $\sim 8 \times 10^8$ cm, into the outer, slightly silicon-poor region after ~ 70 s. However, the convective mixing in the 2D simulation is still not efficient enough to achieve the homogeneous chemical distribution. This is due to the limitation of the calculation time, because the total time of this simulation covers only about one convection-turnover time. Model 28M shows similar convective properties to model 27L$_{\alpha}$.

High/lower Mach number and the chemical distribution—Models 13L$_{\alpha}$, 16M$_{\alpha}$, 18M$_{\alpha}$, 21M$_{\alpha}$, and 23L$_{\alpha}$ belong to low Ma, i.e., they do not show strong turbulence in their convective regions during the simulations. These low-Ma models have characteristic chemical composition profiles. A main characteristic is no or thin Si/O layer. Models 13L$_{\alpha}$ and 16M$_{\alpha}$ do not have a Si/O layer and have an extended O/Si layer on the Si layer (see the top panel of Figure 3 and top-left panel of Figure 17, respectively). Model 23L$_{\alpha}$ does not have a Si/O layer at the beginning of the 2D simulation. The turbulent Mach number of these models in the O/Si layer is low. Models 18M$_{\alpha}$ and 21M$_{\alpha}$ have a Si/O layer at the beginning of the 2D calculations but the width is less than $\sim 1 \times 10^8$ cm. Although the turbulent Mach number exceeds 0.1 at the bottom of the Si/O layer for a few seconds before the termination of the simulations, the turbulence in this layer does not develop before this time.

Models 22L, 25M, 27L$_{\alpha}$, 27M, 28L$_{\alpha}$, and 28M belong to high Ma. The main characteristic of the chemical profiles is an extended Si/O layer. Models 22L, 25M, and 28M have a Si/O layer with the width of $\sim 8 \times 10^8$ cm. Note that the Si/O layer of model 28M has merged to the O/Ne layer before the end of the simulation. Models 27M and 28L$_{\alpha}$ also have a Si/O layer, although their width is thinner than that of the three models.

Model 27L$_{\alpha}$ is an exception. This model does not have a Si/O layer but the chemical composition profile is similar to the last step of model 28M.

We briefly discuss the relation to the SiO-coexistence parameters. All models in high Ma are selected using a large f_{MSIO} value. Although models 25M and 28M are also selected using a large f_{VSO} value, they also have a large f_{MSIO}. The models having a large f_{MSIO} rather than a large f_{VSO} are associated with high Ma.

2D distribution—Figure 5 shows the 2D distributions of the radial turbulent Mach number, $Ma_r = v_c / c_s - \langle v_c \rangle / \langle c_s \rangle$, and the ^{28}Si mass fraction taken at the last step of the simulations for models 13L$_{\alpha}$, 25M, and 27L$_{\alpha}$. The turbulent Mach number of model 13L$_{\alpha}$ (top panels in Figure 5) develops only within the level of $Ma_r \sim 0.01$. The spherical boundary is clearly observed at $r \sim 3 \times 10^8$ cm, where the turbulent Mach number becomes almost zero. Inside the boundary, convection is developed in the Si/Fe layer. A more extended but even weaker turbulent motion is also developed in the O/Si layer above the boundary. The outer boundary of the O/Si convection may be defined at $\sim 6 \times 10^8$ cm, but there is only a diffuse $Ma_r \sim 0$ region in this case. A thin and nearly spherical band with $X(\text{Si}) \sim 0.2$ surrounding the inner boundary between the Si/Fe and the O/Si layers exists. As a result of the low-velocity turbulence in the O/Si layer, this silicon-rich material is slowly mixed into the inner region of the O/Si layer at $R \lesssim 6 \times 10^8$ cm.
Figure 5. 2D distributions of the turbulent Mach number of the radial velocity Ma_r (left panels) and 28Si mass fraction (right panels). Top, middle, and bottom panels correspond to models 13L$_{\alpha}$, 25M, and 27L$_{\alpha}$, respectively.
Model 25M (middle panels in Figure 5) develops convective motion with a high turbulent Mach number in the Si/O layer ranging from $R \sim 3 \times 10^8$ cm to $R \sim 10 \times 10^8$ cm. At the end of the simulation, outflows stream in three directions: the northern pole direction, $\sim 45^\circ$ from the polar axis, and $\sim 135^\circ$ from the polar axis, and inflows are sandwiched by the outflows. These convective flows have turbulent Mach numbers larger than ~ 0.1. The 28Si mass fraction is roughly homogenized inside the convective region, having the value of 0.3--0.4, though some fluctuations are observed especially near the outer boundary.

Model 27La (bottom panels in Figure 5) has an extended O/Si layer distributed from $R \sim 5 \times 10^8$ to 50×10^8 cm. A large-scale convective motion is developed in this layer; a broad conical outflow with the opening angle of $\sim 45^\circ$ is formed in both polar regions, and between them, a thick inflow is formed around the equatorial plane. The convective Mach number reaches ~ 0.12. The large-scale outflow mixes the silicon-rich material into the O/Si layer. The silicon mass fraction in most parts of this layer is initially ~ 0.1, while the outflow has a higher fraction of ~ 0.16.

Width of the convective region—We briefly discuss the width of the convective region divided by the local scale height. We define a convective region as a region having $\langle \mathcal{M}^2 \rangle^{1/2} > 1/3 \times \langle \mathcal{M}^2 \rangle_{\max}$ including $r(\langle \mathcal{M}^2 \rangle_{\max})$. We determined the factor of $1/3$ to avoid including the neighboring convective region because we obtain a small turbulent Mach number even at the convection boundary. The width of the convective region is compared with the pressure scale height H_P at $r(\langle \mathcal{M}^2 \rangle_{\max})$. This results in 1.8--4.6 for the high-Ma models, which are listed in Table 2. We should note that the above definition does not specify the width of the convective region correctly for low-Ma models. In models 16La and 18Ma, the specified region contains the Si layer inside the O/Si and Si/O layer, respectively. In model 21Ma, the calculated region contains part of the Fe core, the Si and Si/O layer, and part of the O/Si layer. The turbulent Mach number at the boundary determined by the abundance distribution is not small enough compared with $\langle \mathcal{M}^2 \rangle_{\max}$ to specify the boundary of the convective region for these models.

Typical scale of the convection—In addition to the Mach number, the dominant angular wave number in spherical harmonics also characterizes the convection. This is related to the typical size of the convective flow. This quantity is important because a large-scale convective flow can amplify the explodability of core-collapse supernovae (Müller et al. 2016). The power spectrum of the radial turbulent velocity at $r(\langle \mathcal{M}^2 \rangle_{\max})$ is calculated as

$$c_r^2 = \left[\int (v_r - \langle v_r \rangle) Y_\ell^m(\theta) d\Omega \right]^2,$$

where $Y_\ell^m(\theta)$ is the spherical harmonics function of degree ℓ and order m. ℓ_{\max} in the table represents the ℓ value at which c_r^2 has a peak.

Figure 6 shows the power spectrum c_r^2 at three different times for models 13La (top), 25M (middle), and 27La (bottom). For model 13La, c_r^2 has a maximum at $\ell = 12$, but the spectrum is rather flat and less energetic. The radius of the highest Mach number in the O/Si layer is 1.16×10^8 cm. Although convective mixing occurs in the inner region of $R \lesssim 5 \times 10^8$ cm, the turbulent velocity is lower than that in the outer region at the last step. Large-scale convection in the O/Si layer is not developed probably because of small turbulent motion. For model 16La, ℓ_{\max} is equal to 4 and the trend of the power spectrum is similar to model 13La.

For the other low-Ma models, models 18Ma and 21Ma show large ℓ_{\max} (see Table 2), and they have a thin Si/O layer. This trend is roughly consistent with the analysis of the convective eddy scale relating to the scale of the convective layer and the typical radius of the layer (e.g., Müller et al. 2016). In these models, the SiO-rich layer is thin compared to the radius of the layer.
In models 25M and 27La, which are high-Ma models, the power spectrum peaks at $\ell_{\text{max}} = 3$ and 2, respectively, and the spectrum decreases with increasing ℓ above that. Models 22L and 28M show a similar power spectrum to model 27La. For these models, large-scale convective eddies have developed. On the other hand, models 27M and 28La indicate larger ℓ values probably owing to the thin SiO-rich layer. Indeed, the previous three models show a larger width of the convective region normalized by the scale height compared to the latter two models (see Table 2). Note that these models develop shell convection in the Si/Fe layer as well. However, the convective region is always confined inside the layer. This will be because the timescale of the silicon burning is shorter than the convective turnover time, so that the mean molecular weight of the convective blob soon increases, suppressing the convective motion.

From the results shown above, it is discerned that f_{MSIO} will be a more suitable measure than f_{VSO} to discriminate a model that develops convection with high turbulent velocity and a small ℓ_{max}. First, we have shown that high-Ma models are selected based on the high f_{MSIO} values. Moreover, models showing small $\ell_{\text{max}} \lesssim 3$ are all selected based on f_{MSIO} (models 22L, 25M, 27La, and 28M), and only one of the two models showing $\ell_{\text{max}} = 4$ (model 16Ma) is selected based on f_{VSO}.

3.3. 3D Stellar Hydrodynamics Simulation

A 3D hydrodynamics simulation is conducted using the 1D model 25M as the initial condition. The size of the convective region of model 25M would be suitable for investigating the multidimensional effects of the structure of a presupernova star on the supernova explosion. The hydrodynamical evolution is followed for ~ 100 s until the central temperature reaches 9×10^9 K, at which point the Fe core is unstable enough to collapse.

Figure 7 shows the time evolution of the ^{28}Si mass fraction distribution of model 25M. The initial distribution of the ^{28}Si mass fraction is spherically symmetric (top-left panel). After the start of the simulation, the convection in the Si/O layer develops from the inner region. We see that Si-enriched plumes go up into the Si/O layer (top-right panel). The convective motion reaches a steady flow by ~ 20 s. The inhomogeneous ^{28}Si mass fraction distribution introduced by the convection at 30 s is shown in the middle-left panel. After a while, the turbulent velocity becomes small. We will discuss the mechanism of this weakening later.

At ~ 70 s, the Si/O layer gradually contracts, triggering the strong oxygen-shell burning at the bottom of the Si/O layer. This strong burning drives high-velocity turbulence and expands the Si/O layer. We see some ^{28}Si-enriched plumes flow from the inner region of the Si/O layer at 75 s (see red region in the middle right panel). As a result, the high-velocity turbulent flow mixes with the surroundings and increases the Si mass fraction in the whole Si/O layer. The ^{28}Si mass fraction in the Si/O layer slightly increases from about 0.36 at 30 s to 0.38 at 90 s (bottom-left panel). The convective motion in the Si/O layer continues until the last step of the simulation. We see inhomogeneous ^{28}Si mass fraction distribution at the last step (bottom right panel).

In Figure 8, the time evolution of $\langle M_{\text{a}}^2 \rangle^{1/2}$ and the ^{28}Si mass fraction obtained from the 3D simulation is shown. As shown by the left yellow region in the top panel, the convective motion with $\langle M_{\text{a}}^2 \rangle^{1/2} \sim 0.1$ is obtained in the Si/O layer at ~ 20 s. The bottom panel shows that the ^{28}Si mass fraction is enhanced in this layer by that time. After a while, the Si/O layer slightly expands and the convective motion weakens. The averaged Si mass fraction in the Si/O layer does not change significantly from 20 to 70 s.

By ~ 70 s, the Fe core contracts and silicon-shell burning as well as oxygen-shell burning is enhanced. Because of this, the turbulent Mach number becomes large not only at $R \sim 3-12 \times 10^8$ cm but also at $R \sim 2 \times 10^8$ cm. In addition, the Si-rich material at the bottom of the Si/O layer is carried into the Si/O layer through this convective motion, and the ^{28}Si mass fraction in this region increases during $\sim 70-80$ s.

From ~ 90 s, the convective motion becomes weak again. The whole Si/O layer gradually contracts toward core-collapse. Meanwhile, the base temperature of the Si/O layer increases, boosting the oxygen-shell burning. This results in the enhancement of the convective motion at the bottom of the Si/O layer. The Si/O layer at the end of the simulation is distributed from 3.0×10^8 cm to 10.5×10^8 cm. The maximum radial convective Mach number is $\langle M_{\text{a}}^2 \rangle^{1/2} = 0.087$, which is obtained at $R = 3.6 \times 10^8$ cm.

In Figure 9 shows the power spectrum of the radial convective velocity c_{ℓ}^2 at $R = 5.8 \times 10^8$ cm taken at three different times. The radius, which is located in the middle of the convective Si/O layer, is determined from the radius where the maximum $\langle M_{\text{a}}^2 \rangle^{1/2}$ is obtained in the 2D simulation. Similar to the 2D case, the power spectrum in the 3D case is calculated as

$$c_{\ell}^2 = \sum_{m=-\ell}^{\ell} \left| \int (v_r - \langle v_r \rangle) Y_m^* (\theta, \phi) d\Omega \right|^2. \quad (10)$$

The power spectrum c_{ℓ}^2 in the 3D simulation peaks at $\ell = 2$. This is consistent with the finding in Müller et al. (2016) for the 18 M_\odot star. The small maximum mode means that the convective motion is dominated by a large-scale flow. The main difference between 2D and 3D power spectra is the weaker turbulence in the 3D simulation. Note that the stronger turbulence in 2D compared to 3D is not surprising because the turbulent energy cascade could occur artificially, as previously identified, from small to large scales along the coordinate symmetry axis. This is mainly due to the reduced degree of freedom in which the energy can dissipate.

Finally, we briefly present the result of the neutrino emission at the precollapse stage of the 3D simulation. Using the same method in Yoshida et al. (2016), we calculate the time evolution of the luminosity and the spectrum of neutrinos emitted via the pair-neutrino process for model 25M. In Figure 10, the emission rate and the average energy of neutrinos obtained from the 1D and the 3D simulations are compared.

The overall features of the neutrino spectra for the 1D and 3D simulations are in common. The neutrino emission rate and the average temperature increase with time toward the core-collapse after ~ 30 s in both simulations. The emission rates of v_ν and \bar{v}_ν are larger than those of v_μ, τ, and \bar{v}_μ, \bar{v}_τ. The average energy of \bar{v}_ν is slightly smaller than that of \bar{v}_μ, \bar{v}_τ. In the 3D simulation, however, the decrease in the emission rate and the average energy of neutrinos is observed in 70–90 s.

Furthermore, we evaluate the time evolution of the event rate of \bar{v}_ν using KamLAND (e.g., Gando et al. 2013), assuming that the initial mass of $25 M_\odot$ at the distance of 200 pc is at the
ongoing core-collapse phase, emitting neutrinos via the pair-neutrino process.

KamLAND is a one-kiloton size liquid-scintillation-type neutrino detector (see, e.g., Gando et al. 2013). We take the neutrino oscillation into account in a simple manner: the survival probability of $\bar{\nu}_e$ is set to be 0.675 and 0.024 in the normal and inverted mass ordering, respectively (Yoshida et al. 2016). The live-time-to-runtime ratio and the total detection

Figure 7. The time variation of the 28Si mass fraction distribution of model 25M at $t = 0$ s (top left), 10 s (top right), 30 s (middle left), 75 s (middle right), 90 s (bottom left), and 105 s (bottom right). An animated version of this figure is available, showing the time variation from $t = 0$ to 105 s. The animation duration is 13 s. (An animation of this figure is available.)
efficiency are set to be 0.903 and 0.64, respectively (Yoshida et al. 2016). Figure 11 shows the evolution of the neutrino event rate using KamLAND. As an overall feature, the rate increases with time independent of mass ordering. In the 3D simulation, however, the decrease in the event rate due to the oxygen-shell burning at the bottom of the Si/O layer is seen at 70–90 s. The time variation in the precollapse neutrino detection thus can be used as the indicator of the multidimensional convective activity deep inside the star, although it is practically impossible to detect such a time variation with current one-kiloton-size neutrino detectors.

Next, we examine the detectability of precollapse neutrinos by Hyper-Kamiokande. Hyper-Kamiokande is a planned water- Čerenkov-type neutrino detector, which has a huge fiducial
mass of 190 kton (Abe et al. 2018). If a supernova explodes in the vicinity of Earth, high-quality data of supernova neutrinos with well-resolved time and energy bins are expected to be obtained (e.g., Takahashi et al. 2001; Mirizzi et al. 2016). However, because the threshold energy of Hyper-Kamiokande is expected to be at the same level as Super-Kamiokande (~4.79 MeV corresponding to 3.5 MeV for recoil electrons; Sekiya 2013) and is higher than that of a liquid-scintillation-type detector, Hyper-Kamiokande is less preferable for observations of neutrinos produced through the pair-neutrino process during the precollapse stage. Yoshida et al. (2016) discussed the possibility of neutrino observations using delayed γ-rays from Gd in Gd-loaded Hyper-Kamiokande (Beacom & Vagins 2004), because the energy threshold will be reduced to 1.8 MeV, an energy similar to the case of KamLAND, in this case. Considering a moderate detection efficiency of 50%, the detection rate is about 178 times as large as the rate of KamLAND. When the enhancement factor of 178 for the detection rate is applied, the event rate is expected to be 3–14 s−1 in the normal mass ordering. So, the time variation due to the convective motion with a timescale of seconds could be observed by Hyper-Kamiokande.

We should note that we consider only the pair-neutrino process for presupernova neutrinos in this study. For a few minutes before core-collapse, the main source of νe will be β− decays rather than the pair-neutrino process (Kato et al. 2017). β− decays mainly take place in the innermost Fe core, and the νe energy is similar to pair neutrinos. We expect that the neutrino event rate by β− decays also decreases for 70–90 s because the central temperature and density decrease during this period. So, even when we take into account the neutrino event rate by β− decays, the time variation of presupernova neutrino events would give us information about the dynamics in the SiO-rich layer or a collapsing Fe core.

4. Summary and Discussions

We performed 1D, 2D, and 3D simulations of the oxygen-shell burning just before the core-collapse of massive stars. First, we calculated the 1D evolution of massive solar-metallicity stars with ZAMS mass of 9–40 M⊙. We considered four cases of convective overshoot parameters in hydrogen and helium burning and the following stages.

From these, we searched for massive stars having O- and Si-rich layers located in the range of 10⁸–10⁹ cm, because the oxygen-burning shell is expected to give rise to large asphericity in the mass accretion rates onto the protoneutron star, favoring the onset of neutrino-driven explosions. For the enclosed mass weighted SiO-coexistence parameter fMSIO, the stars with MZAMS ∼ 20–30 M⊙ have SiO-enriched environment in 10⁸–10⁹ cm. For the volume-weighted SiO-coexistence parameter fVMSIO, the mass range indicating a SiO-rich layer increases to 13–30 M⊙.

We selected 11 models showing a large SiO-rich layer from the result of the massive star evolution and performed 2D hydrodynamics simulations of the evolution for ~100 s until the central temperature reaches 9 × 10⁹ K. We investigated the time evolution of the Mach number of convective velocity and analyzed the power spectrum of the radial convective velocity. Based upon the analysis, we classified the 11 models into five models with low turbulent Mach number (low Ma) and six models with high turbulent Mach number (high Ma).

High-velocity turbulence is obtained in four models having a Si/O layer with range up to ~1 × 10⁹ cm and two models having an extended O/Si layer. These models commonly have large fMSIO values. All models with large fMSIO except for 23LΔ exhibit high-velocity turbulence in the 2D simulations. In addition, most of the small fmax models were selected based on fMSIO. Our results suggest that high density in the SiO-rich layer could be conducive to producing vigorous convection just before the core collapses (see the difference in Equations (2) and (3)) and that fMSIO could be a more suitable measure for convection with high-velocity turbulence and large-scale eddies compared to fVMSIO.

We performed a 3D hydrodynamics simulation for model 25M for ~100 s until the central temperature reaches 9 × 10⁹ K. The time evolution of the convection properties is qualitatively similar between the 2D and 3D simulations. The convection is dominated by large-scale flows with either ℓmax = 2 in the 3D case or ℓmax = 3 in the 2D case. The main difference is the smaller turbulent velocity in the 3D simulation.

Using the 3D result of the hydrodynamics, we have evaluated the time evolution of the neutrino emission through electron–positron pair annihilation. The emission rate and the average energy of neutrinos evolve similarly in 1D and 3D simulations. However, in the 3D model, the neutrino emission rate shows significant variation due to the strong oxygen-shell burning at ~70 s. The multi-D effect of the convective burning would be observed in presupernova neutrino events by present and future neutrino detectors such as KamLAND and Hyper-Kamiokande.

In this study, we were only able to compute a single 3D model of the 25 M⊙ star due to the high numerical cost. However, more systematic and long-term 3D simulations employing a variety of the progenitors are needed (e.g., Müller et al. 2019). In order to accurately deal with the neutronization of heavy elements to the iron-group nuclei, we need to not only implement a bigger nuclear network but also a complete set of neutrino opacities (Kato et al. 2017) in our multi-D models, again albeit computationally expensive. Employing the 3D progenitor models in core-collapse supernova simulations is also mandatory to see how much the precollapse inhomogeneities could foster the onset of neutrino-driven explosions (Couch et al. 2015; Müller et al. 2019). The impact of rotation (not to mention magnetic fields!) on the burning shells during the last stage of massive stars is yet to be studied in 3D (see Chatzopoulos et al. 2016 for 2D evolution models with rotation). All in all, this study is only the very first step toward the more sophisticated and systematic multi-D presupernova modeling.

We acknowledge the anonymous referee for reading our manuscript carefully and giving us many useful comments to improve this manuscript. We thank C. Nagele for proofreading. This study was supported in part by the Grants-in-Aid for the Scientific Research of Japan Society for the Promotion of Science (JSPS, Nos. JP26707013, JP26870823, JP16K17668, JP17H01130, JP17K14306, JP18H01212), the Ministry of Education, Science and Culture of Japan (MEXT, Nos. 26104007, JP15H00789, JP15H01039, JP15KK0173, JP15H06349, JP17H06357, JP17H06364, JP24103001, JP26104001, JP26104007), by the Central Research Institute of Explosive
Stellar Phenomena (REISEP) of Fukuoka University and the associated research projects (Nos.171042, 177103), and by JICFuS as a priority issue to be tackled by using the Post “K” Computer. T.T. was supported by the NINS program for cross-disciplinary study (grant numbers 01321802 and 01311904) on Turbulence, Transport, and Heating Dynamics in Laboratory and Solar/Astrophysical Plasmas: SoLaBo-X. K. T. was supported by the Japan Society for the Promotion of Science (JSPS) Overseas Research Fellowships. The numerical simulations were done using XC50 at Center for Computational Astrophysics at National Astronomical Observatory of Japan and XC40 at Yukawa Institute for Theoretical Physics in Kyoto University.

Software: HOSHI (Takahashi et al. 2016, 2018), 3DnSNe (Nakamura et al. 2016; Takiwaki et al. 2016; Kotake et al. 2018).

Appendix

We show some evolutionary properties of the massive star models. We show the Hertzsprung–Russell (HR) diagram of 10 different ZAMS mass models for Sets LA and MA in Figure 12. Stars with $M_{ZAMS} < 30 M_\odot$ for Set LA and with $M_{ZAMS} < 35 M_\odot$ for Set MA end as red supergiants. Stars with heavier M_{ZAMS} evolve to a WR star.

As shown in Section 2, we considered four sets of models with different overshoot parameters. The overshoot parameter during the hydrogen and helium burning affects the evolution on the HR diagram. We compare the HR diagram of models 20L_A and 20M_A with that of the 20 M_\odot star models of Stern (Brott et al. 2011) and GENEC (Ekström et al. 2012), respectively (see the green lines in Figure 12). The main difference in the HR diagram between model 20L_A and model 20M_A is the main-sequence (MS) bandwidth, i.e., the difference in the effective temperature between ZAMS and the hydrogen-burning termination. The MS bandwidth of model 20L_A is almost identical to the Stern model. On the other hand, model 20M_A is almost identical to GENEC. As explained in Section 2, the overshoot parameters of Sets LA and MA are determined based on the calibrations to early B-type stars in the LMC similar to the Stern model and the MS width observed for AB stars in open clusters of the MW Galaxy similar to the GENEC model, respectively. Except for the MS width, we do not see any large differences in the HR diagram among these models. The evolution of the 20 M_\odot star models of Stern, GENEC, MESA (Paxton et al. 2011; Martins & Palacios 2013), and Starevol (Decressin et al. 2009) are compared in Martins & Palacios (2013). The HR diagram of model 20M_A is also similar to that of MESA and Starevol.

We show the evolution of the relation between the central density and the central temperature in Figure 13. All stars except for the ZAMS mass of 9 M_\odot in Sets MA and M end with the collapse of an Fe core. The 9 M_\odot star in Set MA does not bring about Ne ignition (panel (b): red line). We also confirmed no Ne ignition in the 9 M_\odot star in Set M until the central density becomes $\log \rho_C = 8.5$. These stars are expected to end as an ONe white dwarf or an electron-capture supernova. The off-center Ne ignition occurs for the 9 M_\odot star in Set L_A (panel (a)).

Figure 12. HR diagram of Sets L_A (panel (a)) and M_A (panel (b)). Green dotted lines in panels (a) and (b) are the 20 M_\odot models of Stern (Brott et al. 2011) and GENEC (Ekström et al. 2012), respectively.
(a) red line) and the 11\,M⊙ star in Set Mα (panel b) green line). The similar off-center neon burning is also seen in a 10\,M⊙ star in Sets Mα and M. The low-mass Mα and M models ignite silicon at an off-center region.

Whether the carbon-core burning occurs convectively or radiatively depends on the stellar mass. The convective carbon-core burning occurs in the stars with M\textsubscript{ZAMS} \lesssim 18\,M⊙ in Sets Lα and L and with M\textsubscript{ZAMS} \lesssim 21\,M⊙ in Sets Mα and M. We suggest that the maximum CO-core mass for convective carbon burning is between 4.6 and 4.9\,M⊙ for our models.

We calculate the massive star evolution taking account of a weak overshoot after the helium burning for models in Sets Lα and Mα. Despite the small value compared with the hydrogen and helium burning, the overshoot in the advanced stage affects the advanced evolution in a complicated way. We show the Kippenhahn diagram of models 25Mα and 25M in Figure 14 for comparison. In these models, the carbon-core burning occurs radiatively and the first carbon-shell burning (C(I)) ignites at M\textsubscript{τ} \sim 1.3\,M⊙. In model 25Mα, the convective region of the C(I) burning extends both inward and outward with the help of overshoot. The convective C layer extends in the range 1.0–2.3\,M⊙. Then, the second carbon-shell burning (C(II)) ignites at \sim 2.1\,M⊙, and the convective region again extends inward and outward. The inner convection boundary of the second carbon-shell burning reaches 1.74\,M⊙. This inner boundary restricts the region of the following carbon burning. The Si core is formed through O-core burning (O(c)) and the first (O(I)) and second (O(II)) oxygen-shell burning. The third oxygen-shell burning (O(III)) extends the Si layer up to 1.67\,M⊙, but the boundary is still below the inner boundary of the second carbon-shell burning. The Si core (Si(c)) and the following four silicon-shell burning (S(I)–(IV)) form an Fe core of \sim 1.56\,M⊙. The left panel of Figure 15 shows the mass fraction distribution of model 25Mα. There is a SiO-rich layer between the Si layer and the O/Ne layer, but it is very thin (the width is about 10\,8 cm).

Model 25M indicates an evolution different from model 25Mα from the first carbon-shell burning (C(I)). The first carbon-shell burning ignites at \sim 1.3\,M⊙, and the convective region extends outward to 2.9\,M⊙. The convection does not extend inward in this model. Then, the second carbon-shell burning (C(II)) starts at 2.9\,M⊙. Because the second carbon-shell burning starts at a large radius, the O-core burning (O(c)) and the first oxygen-shell burning (O(I)) extend more effectively outward and form a larger Si core. The Si core (Si(c)) and the following three silicon-shell burning (S(I)–(III)) form an Fe core of 1.68\,M⊙. The second oxygen-shell burning (O(II)) makes a large Si/O layer between the top of first oxygen-shell burning (1.9\,M⊙) and the bottom of the second carbon-shell burning (2.9\,M⊙). The mass fraction distribution

![Figure 13](image-url) The evolution of the central density log ρ\textsubscript{C} and the central temperature log T\textsubscript{C} of Sets Lα (panel a) and Mα (panel b).

![Figure 14](image-url) Kippenhahn diagram of models 25Mα (left panel) and 25M (right panel) from the ignition of the central carbon burning until the calculation termination.
of model 25M is shown in the right panel of Figure 15. We see a large Si/O layer in this figure.

The compactness parameter, $\xi_{2.5}$, is considered as a quantity that correlates to the dynamics during the gravitational collapse (O’Connor & Ott 2011). It is defined as the inverse of the radius, inside which the mass of $2.5\,M_\odot$ is enclosed,

$$\xi_{2.5} = \frac{2.5}{R(M_r = 2.5M_\odot)/1000\,\text{km}}$$

Several works have reported that a small compactness parameter is favorable for supernova explosions (Horiuchi et al. 2014; Nakamura et al. 2015; Pejcha & Thompson 2015; Sukhbold et al. 2016), although the criterion has not yet converged (Ugliano et al. 2012; Ertl et al. 2016; Suwa et al. 2016; Burrows et al. 2018). This parameter is also important to predict the neutrino emission (Horiuchi et al. 2017). The tight correlation of $\xi_{2.5}$ to the CO-core mass has been shown (Limongi & Chieffi 2018), and a detailed study on the compactness was performed by Sukhbold & Woosley (2014) and Sukhbold et al. (2018). Effects of convective boundary mixing in the advanced evolutionary stages on $\xi_{2.5}$ was studied by Davis et al. (2019).

Figure 15 shows the compactness parameter $\xi_{2.5}$ of our models. Although the results show a large scatter, $\xi_{2.5}$ roughly increases with ZAMS mass. The scatter is reduced when the x-axis is changed from the ZAMS mass to the He-core mass (panel (b)) as shown in Sukhbold et al. (2018). As for the correlation between $\xi_{2.5}$ and the He-core mass, the scatter is small for the models with $M_{\text{He}} \lesssim 5\,M_\odot$. Furthermore, we do not see a clear dependence of $\xi_{2.5}$ on f_A in this mass range. For more massive models, the scatter is larger, and the different overshoot parameters influence $\xi_{2.5}$ in a complicated manner.

Because of the limited number of our models, it is difficult to make a detailed comparison between our results on the compactness parameter (Figure 16) with Sukhbold et al. (2015, 2018) (see their Figure 8). We do see a diversity of $\xi_{2.5}$ in $M_{\text{He}} \gtrsim 10\,M_\odot$; however, the range of $\xi_{2.5}$ for $M_{\text{He}} \lesssim 6\,M_\odot$ is almost within the same range as in Sukhbold et al. (2018). Although a more systematic study needs to be done as in Sukhbold et al. (2016, 2018), the overall feature (i.e., the increasing trend of the compactness parameter with the ZAMS masses) is roughly in accordance with Sukhbold et al. (2018).

Finally, Figure 17 shows the mass fraction distributions as a function of the radius at the last step of nine models, the 2D hydrodynamics simulations for which were performed but are not shown in Figure 3.
Figure 17. First six panels: same as Figure 3 but for models 16M, (top left), 18M, (top right), 21M, (middle left), 22L (middle right), 23L, (bottom left), and 27L, (bottom right). Last three panels: same as Figure 3 but for 27M (top left), 28L, (top right), and 28M (bottom).
References

Abdikamalov, E., Zhaksylykov, A., Radice, D., & Berdibek, S. 2016, MNRAS, 461, 3864
Arnett, D. 1994, ApJ, 427, 932
Arnett, W. D., & Meakin, C. 2011, ApJL, 733, 78
Arnett, W. D., & Meakin, C. 2016, RPPh, 79, 102901
Asida, S. M., & Arnett, D. 2000, ApJ, 545, 435
Bazan, G., & Arnett, D. 1994, ApJL, 433, L41
Bazán, G., & Arnett, D. 1998, ApJ, 496, 316
Beacom, J. F., & Vagins, M. R. 2004, PRD, 71, 171101
Bethe, H. A., & Wilson, J. R. 1985, ApJL, 295, 14
Blondin, J. M., Mezzacappa, A., & DeMarino, C. 2003, ApJ, 584, 971
Bollig, R., Janka, H.-T., Lohs, A., et al. 2017, PhRvL, 119, 242702
Brott, I., de Mink, S. E., Cantiello, M., et al. 2011, A&A, 530, A115
Burrows, A., Vartanyan, D., Dolence, J. C., Skinner, M. A., & Radice, D. 2018, SSRv, 214, 33
Campbell, S. W., Constantino, T. N., D’Orazi, V., et al. 2016, AN, 337, 788
Chatzopoulos, E., Couch, S. M., Arnett, W. D., & Timmes, F. X. 2016, ApJ, 822, 61
Chatzopoulos, E., Graziani, C., & Couch, S. M. 2014, ApJ, 795, 92
Collins, C., Müller, B., & Heger, A. 2018, MNRAS, 473, 1695
Couch, S. M., Chatzopoulos, E., Arnett, W. D., & Timmes, F. X. 2015, ApJL, 808, L21
Couch, S. M., & Ott, C. D. 2013, ApJL, 778, L7
Couch, S. M., & Ott, C. D. 2015, ApJ, 799, 5
Couch, S. M. 2017, in Handbook of Supernovae, ed. A. W. Alsubti & P. M. Murdin (Cham: Springer International), 1791
Cristini, A., Hirschi, R., Meakin, C., et al. 2019, MNRAS, 484, 4645
Cristini, A., Meakin, C., Hirschi, R., et al. 2017, MNRAS, 471, 279
Crowther, P. A. 2007, A&A, 45, 177
Cyburt, R. H., Anthon, A. M., Ferguson, R., et al. 2010, ApJS, 189, 240
Davis, A., Jones, S., & Herwig, F. 2019, MNRAS, 484, 3921
de Jager, C., Nieuwenhuijzen, S., & van der Hucht, K. A. 1988, A&AS, 72, 259
Decressin, T., Mathis, S., Palacios, A., et al. 2009, A&A, 495, 271
Ehinger, R., Curtis, S., Fröhlich, C., et al. 2019, ApJ, 870, 1
Elkström, S., Eри, C., Eggenberger, P., et al. 2012, A&A, 537, A146
Ertl, T., Janka, H.-T., Woosley, S. E., Sukhbold, T., & Ugliano, M. 2016, ApJ, 818, 124
Fernández, R., Müller, B., Foglizzo, T., & Janka, H.-T. 2014, MNRAS, 440, 2763
Foglizzo, T., Kaperstom, R., Guijt, J., et al. 2015, PASA, 32, e009
Fülle, J., Cantiello, M., Lecanet, D., & Quataert, E. 2015, ApJ, 810, 101
Gando, A., Gando, Y., Hanako, H., et al. 2013, PhRvD, 88, 035001
Guijt, J., & Müller, E. 2015, MNRAS, 450, 2153
Hanke, F., Müller, B., Wangwathanarat, A., Marek, A., & Janka, H.-T. 2013, ApJ, 770, 66
Harada, A., Nagakura, H., Iwakami, W., et al. 2019, ApJ, 872, 181
Horiuchi, S., Nakamura, K., Takiwaki, T., & Kotake, K. 2017, PhRvC, 44, 114001
Horiuchi, S., Nakamura, K., Takiwaki, T., Kotake, K., & Taka, M. 2014, MNRAS, 445, L99
Abe, K., Abe, K., Aihara, H., et al. (Hyper-Kamiokande Proto-Collaboration) 2018, arXiv:1805.04163
Itoh, N., Hayashi, H., Nishikawa, A., & Kohyama, Y. 1996, ApJS, 102, 411
Janka, H.-T., Nelson, T., & Summa, A. 2016, ARNPS, 66, 341
Jones, S., Andrassy, R., Sandalski, S., et al. 2017, MNRAS, 465, 2991
Just, O., Bollig, R., Janka, H.-T., et al. 2018, MNRAS, 481, 4786
Kato, C., Nakagura, H., Furusawa, S., et al. 2017, ApJ, 848, 48
Kippenhahn, R., Weigert, A., & Weiss, A. 2012, Stellar Structure and Evolution (Berlin: Springer)
Kotake, K., Takikawa, T., Fischer, T., Nakamura, K., & Martínez-Pinedo, G. 2018, ApJ, 853, 170
Kuhlen, M., Woosley, S. E., & Glatzmaier, G. A. 2003, in ASP Conf. Ser. 293, 3D Stellar Evolution, ed. S. Turcotte, S. C. Keller, & R. M. Cavallo (San Francisco, CA: ASP), 147
Kuroda, T., Kotake, K., & Takikawa, K. 2012, ApJ, 755, 11
Kuroda, T., Takikawa, T., & Kotake, K. 2016, ApJS, 222, 20
Lentz, E. J., Bruenn, S. W., Hix, W. R., et al. 2015, ApJL, 807, L31
Limongi, M., & Chieffi, A. 2018, ApJ, 837, 13
Maezawa, S., & Iriyama, G. 1989, A&A, 210, 155
Marek, A., & Janka, H.-T. 2009, ApJ, 694, 664
Marti, F., & Palacios, A. 2013, A&A, 560, A16
Masada, Y., Takikawa, T., & Kotake, K. 2015, ApJL, 798, L22
Meakin, C. A., & Arnett, D. 2006, ApJL, 637, L53
Meakin, C. A., & Arnett, D. 2007, ApJ, 667, 448
Melson, T., Janka, H.-T., Bollig, R., et al. 2015a, ApJL, 808, L42
Melson, T., Janka, H.-T., & Marek, A. 2015b, ApJ, 801, L24
Mignone, A. 2014, ICoPh, 270, 784
Mirizzi, A., Tamborra, I., Janka, H.-T., et al. 2016, NCimR, 39, 1
Mösta, P., Richers, S., Ott, C. D., et al. 2014, ApJL, 785, L29
Müller, B., & Janka, H.-T. 2015, MNRAS, 448, 2141
Müller, B., Janka, H.-T., & Marek, A. 2012, ApJ, 756, 84
Müller, B., Nelson, T., Heger, A., & Janka, H.-T. 2017, MNRAS, 472, 491
Müller, B., Tauris, T. M., Heger, A., et al. 2019, MNRAS, 484, 3307
Nagakura, H., Iwakami, W., Furusawa, S., et al. 2018, ApJ, 854, 136
Nakamura, K., Takahashi, K., & Yamamoto, Y. 2019, ApJ, 881, 103
Nakamura, K., Horii, S., Tanaka, M., et al. 2016, MNRAS, 461, 3296
Nakamura, K., Takahashi, T., Kuroda, T., & Kotake, K. 2015, PASJ, 67, 107
Nieuwenhuizen, H., & de Jager, C. 1990, A&A, 231, 134
Nugis, T., & Lamers, H. J. G. L. M. 2000, A&A, 362, 295
O'Connor, E., & Couch, S. M. 2018, ApJ, 865, 81
Obergaulinger, M., & Aloy, M. Á. 2017, MNRAS, 469, L43
Obergaulinger, M., Aloy, M. A., Dimmelmeier, H., & Müller, E. 2006, A&A, 457, 209
Ott, C. D., Abdikamalov, E., Mösta, P., et al. 2013, ApJ, 768, 115
Patat, F. 2017, in Handbook of Supernovae, ed. A. W. Alsabti & P. Murdin (Cham: Springer International), 1017
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 35
Pejcha, O., & Thompson, T. A. 2015, ApJ, 801, 90
Plewa, T., & Müller, E. 1999, A&A, 342, 179
Richers, S., Nakagura, H., Ott, C. D., et al. 2017, ApJ, 847, 133
Roberts, L. F., Ott, C. D., Haas, R., et al. 2016, ApJ, 831, 98
Sasaki, H., Kajino, T., Takikawa, T., et al. 2017, PhRvD, 96, 043013
Sekiya, H. 2013, JPPhCS, 460, 012017
SuKhbold, T., Ertl, T., Woosley, S. E., Brown, J. M., & Janka, H.-T. 2016, ApJ, 821, 38
SuKhbold, T., & Woosley, S. E. 2014, ApJ, 783, 10
SuKhbold, T., Woosley, S. E., & Heger, A. 2018, ApJ, 860, 93
Sumiyoshi, K., & Yamada, S. 2012, ApJS, 199, 17
Summa, A., Hanke, F., Janka, H.-T., et al. 2016, ApJ, 825, 6
Summa, A., Janka, H.-T., Nelson, T., & Marek, A. 2018, ApJ, 852, 28
Suwa, Y., Kotake, K., Takikawa, T., et al. 2010, PASJ, 62, L49
Suwa, Y., Yamada, S., Takahashi, T., & Kotake, K. 2016, ApJ, 816, 43
Takahashi, K., Watanabe, M., Sato, K., & Totani, T. 2001, PhRvD, 64, 093004
Takahashi, K., & Yamada, S. 2014, ApJ, 794, 162
Takahashi, K., Yoshiida, T., & Umeda, H. 2018, ApJ, 857, 111
Takahashi, K., Yoshiida, T., Umeda, H., Sumiyoshi, K., & Yamada, S. 2016, MNRAS, 456, 1320
Takiwaki, T., Kotake, K., & Suwa, Y. 2014, ApJ, 786, 83
Takiwaki, T., Kotake, K., & Suwa, Y. 2016, MNRAS, 461, L112
Tanaka, M., Kawabata, K. S., Maeda, K., et al. 2009, ApJ, 699, 1119
Timmes, F. X., & Swesty, F. D. 2000, ApJS, 126, 501
Toro, E. F., Spruce, M., & Speares, W. 1994, ShWav, 4, 25
Ugliano, M., Janka, H.-T., Marek, A., & Arcones, A. 2012, ApJ, 757, 69
Vartanyan, D., Burrows, A., Radice, D., Skinner, M. A., & Dolence, J. 2019, MNRAS, 482, 351
Viallet, M., Meakin, C., Arnett, D., & Mocak, M. 2013, ApJ, 769, 1
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2000, A&A, 362, 295
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, A&A, 369, 579
Woosley, S. E., & Heger, A. 2007, PhR, 442, 269
Woosley, S. E., Heger, A., & Weaver, T. A. 2002, RvMP, 74, 1015
Yoon, S. C. 2017, MNRAS, 470, 3970
Yoshida, T., Okiya, S., & Umeda, H. 2014, MNRAS, 438, 3119
Yoshida, T., Takahashi, K., Umeda, H., & Ishidohsiro, K. 2016, PhRvD, 93, 123012

The Astrophysical Journal, 881:16 (2pp), 2019 August 10

Yoshida et al.