Nanostructure lipid carriers enhance alpha-mangostin neuroprotective efficacy in mice with rotenone-induced neurodegeneration

Romgase Sakamula1 · Teerapong Yata2 · Wachiryah Thong-asa1

Received: 27 May 2021 / Accepted: 21 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Neurodegenerative disease, for instance, Parkinson’s disease (PD), is associated with substantia nigra dopaminergic neuronal loss with subsequent striatal dopamine reduction, leading to motor deficits. Currently, there is no available effective therapy for PD; thus, novel therapeutic agents such as natural antioxidants with neuroprotective effects are emerging. Alpha-mangostin (αM) is a xanthone derivative compound from mangosteen peel with a cytoprotective effect depicted in neurodegenerative disease models. However, αM has low aqueous solubility and low biodistribution in the brain. Nanostructured lipid carriers (NLC) have been used to encapsulate bioactive compounds delivered to target organs to improve the oral bioavailability and effectiveness. This study aimed to investigate the effect of αM and αM encapsulated in NLC (αM-NLC) in mice with rotenone-induced PD-like neurodegeneration. Forty male ICR mice were divided into normal, PD, PD + αM, and PD + αM-NLC groups. Vehicle, αM (25 mg/kg/48 h), and αM-NLC (25 mg/kg/48 h) were orally administered, along with PD induction by intraperitoneal injection of rotenone (2.5 mg/kg/48 h) for 4 consecutive weeks. Motor abilities were assessed once a week using rotarod and hanging wire tests. Biochemical analysis of brain oxidative status was conducted, and neuronal populations in substantia nigra par compacta (SNc), striatum, and motor cortex were evaluated using Nissl staining. Tyrosine hydroxylase (TH) immunostaining of SNc and striatum was also evaluated. Results showed that rotenone significantly induced motor deficits concurrent with significant SNc, striatum, and motor cortex neuronal reduction and significantly decreased TH intensity in SNc ($p < 0.05$). The significant reduction of brain superoxide dismutase activity ($p < 0.05$) was also detected. Administrations of αM and αM-NLC significantly reduced motor deficits, prevented the reduction of TH intensity in SNc and striatum, and prevented the reduction of neurons in SNc ($p < 0.05$). Only αM-NLC significantly prevented the reduction of neurons in both striatum and motor cortex ($p < 0.05$). These were found concurrent with significantly reduced malondialdehyde level and increased catalase and superoxide dismutase activities ($p < 0.05$). Therefore, this study depicted the neuroprotective effect of αM and αM-NLC against rotenone-induced PD-like neurodegeneration in mice. We indicated an involvement of NLC, emphasizing the protective effect of αM against oxidative stress. Moreover, αM-NLC exhibited broad protection against rotenone-induced neurodegeneration that was not limited to nigrostriatal structures and emphasized the benefit of NLC in enhancing αM neuroprotective effects.

Keywords Alpha-mangostin · Motor deficits · Nanoencapsulated lipid carriers · Parkinson’s disease · Substantia nigra

Introduction
Parkinson’s disease (PD) is the second most common age-related neurodegenerative disease that constitutes much of the health burden. Not only are genetic factors involved in PD, but exposure to environmental toxins such as pesticides, herbicides, and heavy metals has contributed to the disease development (Ball et al. 2019). The pathology of PD seems to affect mainly the nigrostriatal pathway by the loss of dopaminergic neurons in substantia nigra pars compacta...
(SNc) and subsequent imbalance of dopamine content in striatum. This leads to motor and non-motor symptoms appearance characterized by tremors, rigidity, bradykinesia, anxiety, and depression (Dauer and Przedborski 2003). The pathomechanisms of PD include excessive production of reactive oxygen species (ROS), oxidative stress, mitochondrial dysfunction, inflammation, and alpha-synuclein aggregation (DeMaagd and Philip 2015; Parkhe et al. 2019).

At present, an effective PD treatment is not available; several treatments help delay the disease’s progression or relieve symptoms. Moreover, some drugs have side effects and do not exhibit neuroprotection in patients (Maiti et al. 2017; Mythri and Bharath 2012). As oxidative stress plays a major role in PD progression, novel therapeutic agents with a natural antioxidant base are in focus.

Alpha-mangostin (αM), a xanthone derivative compound isolated from mangosteen pericarp, has a variety of pharmacological benefits, including antioxidant, anticancer, anti-inflammatory, antimicrobial, and chemopreventive activities (Ibrahim et al. 2016). According to the pharmacological activities, αM has been used in various neurodegenerative disease models (Do and Cho 2020). In in vitro studies, it exhibits a cytoprotective effect in mitochondrial membrane potential (MMP) + induced apoptotic cell death and rotenone-induced PD in SH-SY5Y cells, which involve the decrease of ROS formation and MMP, modulation and balance of pro- and anti-apoptotic genes, and caspase-3 suppression (Hao et al. 2017; Janhom and Dharmasaroja 2015). In in vivo studies, oral administration of αM could reduce brain proinflammatory cytokines in mice with peripheral lipopolysaccharide-induced neuroinflammation (Nava Catorce et al. 2016). Intraperitoneal injection of αM exhibited a protective effect against rotenone-induced toxicity in rats by protection against neuronal death concurrent with improvement of locomotor activity and memory deficits (Parkhe et al. 2019). Some inconveniences of in vivo use of αM were also presented. This is due to its cytotoxicity when accumulated in organs, poor aqueous solubility, low stability, and low biodistribution (Yao et al. 2016).

Many drugs and bioactive substances have some inconveniences in use; therefore, nanoparticle delivery systems were developed to improve the bioavailability and effectiveness of these substances (Wathoni et al. 2020). Nanostructured lipid carriers (NLC) are lipid nanoparticles composed of a solid lipid matrix incorporated with liquid lipid or oil (E Eleraky et al. 2020). The NLC were developed in a millennium and prepared by using hot and high-pressure homogenization techniques for combining drugs that dissolve in lipid solution and surfactant solution (Khosa et al. 2018). Indeed, NLC have advantages over other lipid-based nanoparticles including high drug loading, encapsulation efficiency, and stability (Fang et al. 2012; Yostawankul et al. 2017). Recently, NLC-encapsulated bioactive compounds are used in neurodegenerative disease animal models because they are greatly promising in the delivery of therapeutics to the brain than pure compounds by opening the tight junctions of the brain endothelial cells that enhance NLC uptake to the brain. (Joseph and Saha, 2013). Moreover, NLC indicated the prolonging of the drug in the target organ and improved pharmacological profile of bioactive compounds without any adverse effects (Hassanzadeh et al. 2017; Hernando et al. 2020). It is very interesting to use NLC for drug delivery, especially in neurodegenerative diseases. Whether the lowest effective dose of αM and αM-NLC can protect or delay neurodegeneration in correlation with behavioral deficits induced by rotenone intoxication. Therefore, the present study aimed to investigate the effect of αM and αM encapsulated in NLC (αM-NLC) in mice with rotenone-induced PD-like neurodegeneration.

Materials and Methods

Chemicals and reagents

Rotenone, dimethyl sulfoxide (DMSO), tween80, hydrogen peroxide (H2O2), methanol, phosphate buffered saline (PBS), paraformaldehyde, sucrose, Nissl dye, normal goat serum (NGS), TritonX-100, anti-tyrosine hydroxylase antibody, anti-rabbit IgG (Goat) biotin conjugate, streptavidin, alkaline phosphatase conjugate, 3-3’-diaminobenzidine, sodium dodecyl sulphate (SDS), trichloroacetic acid (TCA), thiobarbituric acid (TBA), ethylenedinitrilto tetraacetic acid (EDTA), Carbonate buffer, Epinephrine, 5, 5’-dithios (2-nitro benzoic acid: DTNB), Bovine serum albumin (BSA) and sodium potassium tartrate were purchased from Chemical Express Co., Ltd., Merck, Millipore, Germany and Agilent, USA. αM and αM-NLC were provided from the National Nanotechnology Centre (NANOTEC) (Pathum Thani, Thailand).

Animals

Forty male ICR mice (Mus musculus) eight weeks old, weighing 40 ± 2 g, were obtained from the National Laboratory Center, Mahidol University (Nakhon Pathom, Thailand). Mice were housed one per cage at a constant room temperature of 25°C with a 12-h light/dark cycle. They were fed a standard diet (Mouse diet food NO. 082G) and reverse osmosis (RO) water. The experimental protocol was approved by the Animal Ethics Committee, Faculty of Science, Kasetsart University (ID#ACKU61-Sci-011).
Experimental protocol

Mice were divided into 4 groups as follows: Normal (oral administration of 10% tween80 [vehicle], intraperitoneal injection of 10% DMSO in sunflower oil [SO]), PD (oral administration of 10% tween80, intraperitoneal injection of rotenone 2.5 mg/kg dissolved in 10% DMSO-SO), PD + αM (oral administration αM 25 mg/kg, intraperitoneal injection of rotenone 2.5 mg/kg dissolved in 10% DMSO-SO), and PD + αM-NLC (oral administration αM-NLC 25 mg/kg, intraperitoneal injection of rotenone 2.5 mg/kg dissolved in 10% DMSO-SO). All administrations were given every 48 h and continuously for 4 weeks. The dose of αM was selected due to being the lowest effective dose provided from a previous study (Kumar et al. 2016). αM-NLC dose of 25 mg/kg was prepared from the stock of αM-NLC concentration 5,000 ppm (αM concentration that was loaded in NLC). αM-NLC preparation and characterization were already conducted and previously described in our previous publication (Yostawonkul et al. 2017). The dose of rotenone with exposure time followed the previous protocol that claimed not to have an unspecific effect on body weight and mortality, with benefits for induced PD-like neurodegeneration within 3 weeks (Rahimmi et al. 2015).

Hanging wire test

Muscle strength was assessed by a hanging wire test using a standard wire cage lid. All mice were trained for baseline hanging on the cage lid with the maximum time reached of 120 s or each mouse have equal hanging ability confirmed by statistical insignificance before the start of the experiment. For testing, the mouse was placed on the top of the lid and allowed to grab the lid with all 4 paws and then turned upside down to start the time of the hanging test. The hanging wire test was performed once a week and consisted of 3 trials with 120 s, and latency to fall was recorded for muscle strength indication (Yeung et al. 2017).

Rotarod test

Motor coordination was evaluated using a rotarod test (rotary rod diameter 5 cm, length 15 cm, raised 15 cm above the bottom of the rotarod enclosure). The rotarod test was performed once a week. Before the actual test, all mice were trained for 5 consecutive days using a rotation speed starting from 10 rounds per minute (rpm) on the first day and reaching 15 rpm at the end of the training, with 300 s of maximum time. The rotarod test consisted of 3 trials with a 30-min intertrial time for resting. During the actual test, the animal was placed on a rotating rod, and the speed was gradually increased until it reached 20 rpm. At a fixed speed of 20 rpm, a maximum time of 300 s was allowed, and the latency to fall was recorded (Zhang et al. 2017).

Biochemical analysis of brain oxidative status

Mice were euthanized with an intraperitoneal injection of sodium pentothal (> 60 mg/kg), and quick decapitation was performed. The fresh brains were collected and washed in cold normal saline. They were homogenized in 10% w/v PBS. The homogenates were separated into 2 parts. The 1st part was kept at -20 °C for further evaluation of malondialdehyde (MDA) and reduced glutathione (GSH). The 2nd part was centrifuged at 10,000 g, 4 °C, for 10 min and kept supernatant for further evaluation of total protein, catalase (CAT), and superoxide dismutase (SOD) activities.

Measurement of total protein level

Total protein level in brain tissue was accessed by Lowry protein assays (Lowry et al. 1951), supernatant 0.2 ml added 2 ml of solution D (Na₂CO₃: CuSO₄: sodium potassium tartrate 48:1:1), after incubated for 10 min added 0.2 ml 1 N Folin- Ciocateu Reagent (1:1) and incubated in room temperature for 30 min. The supernatant was read at 600 nm and using BSA as standard protein ($y = 2.6338x + 0.2666, R^2 = 0.801$).

Measurement of MDA

Brain homogenate 0.2 ml added with 0.2 ml of 4% SDS, 1.5 ml of 20% acetic acid and 1.5 ml of 0.5% TBA and heat at 95 °C for 1 h. After centrifuged at 3500 rpm for 10 min, the supernatant was read at 532 nm. MDA level was calculated as µM/mg of protein by using standard curve ($y = 0.1301x—0.0015, R^2 = 0.9865$) (Badmus et al. 2011).

Measurement of GSH

Brain homogenate added with 1 ml of 10% TCA. After centrifuged the supernatant volume 0.5 ml was mixed with DTNB and read at 412 nm. GSH level was calculated as µM/mg of protein by using standard curve ($y = 0.5817x—0.0227, R^2 = 0.9893$) (Ellman, 1959).

Measurement of CAT

Supernatant 50 µl make total volume to 3 ml with PBS (50 mM, pH 7) containing H₂O₂ (10 mM) and read at 240 nm for 3 min (15 s interval). Catalase activity was calculated in term of U/mg of protein using extinction co-efficient of H₂O₂ 0.041/µmoles/cm² (Hadwan &Abed 2016).
Measurement of SOD

Supernatant 0.1 ml added with 0.1 EDTA (0.0001 M), 0.5 ml of carbonate buffer (pH 9.7) and 1 ml of epinephrine (0.003 M). The supernatant was read at 480 nm for 3 min (30 s interval). Enzyme activity was express as U/mg of protein ($y = 0.0036x + 0.0011$, $R^2 = 0.9049$). (Misra and Fridovich, 1972).

Nissl staining

Mice were euthanized via intraperitoneal injection of sodium pentothal (> 60 mg/kg). Cardiac perfusion with PBS followed by 4% paraformaldehyde was done. Brains were collected and stored in 4% paraformaldehyde at 4 °C for 24 h. After that, brains were processed and embedded in paraffin and sectioned to 5 µm thick with a rotary microtome. Brain sections were cleaned and rehydrated via a serial change of xylene and ethanol 100%, 95%, and 70%, respectively. After 5 min sunk in distilled water, they were stained with Nissl dye (0.1% Cresyl violet) for 30 s and washed in distilled water, followed by a dehydrating process and finished with cover glass mounted. The images were captured with a light microscope at 200× magnification. The neuronal populations with Nissl staining in SNc, striatum, and motor cortex were evaluated and represented as the percent area of Nissl positive by using NIH Image J (Zhang et al. 2019). The data were presented as the percentage of Nissl positive relative to percentage of control (normal group).

Tyrosine hydroxylase (TH) immunohistochemistry

After being stored at 4 °C in 4% paraformaldehyde for 24 h, brains were moved into 20% sucrose for 48 h at 4 °C. Serial coronal Sects. (25 µm thick) of striatum (bregma + 1.42 mm to + 0.02 mm) and SNc (bregma − 2.8 mm to − 3.8 mm) were cut with cryostat (Churchill et al., 2019). Brain sections were washed in PBS and incubated with 3% H2O2 in 10% methanol followed by incubation with 5% NGS in 0.1% TritonX-100 in PBS. The sections were incubated in 1:200 anti-tyrosine hydroxylase antibody in 2% NGS at 4 °C. After 24 h of incubation, the sections were washed with 0.1% TritonX-100 in PBS and incubated with 1:200 anti-rabbit IgG (Goat) biotin conjugate in 2% NGS for 2 h at room temperature. The sections were washed with 0.1% TritonX-100 in PBS and PBS, respectively, followed by incubation with streptavidin, alkaline phosphatase conjugate in PBS for 2 h, and washing with PBS; then, 3–3’-diaminobenzidine was added for 10–15 min. After washing with PBS, brain sections were mounted with cover glass. The images were captured with a light microscope at 100× magnification, and the percentage of TH intensity was analyzed by using NIH Image J and presented as the percentage of TH intensity relative to percentage of control (normal group).

Statistical analysis

Statistical analyses were carried out using the Statistical Package for Social Sciences version 16.0 (SPSS Inc., Chicago, IL). Data were analyzed by one-way analysis of variance (ANOVA) with Fisher’s PLSD post hoc test. The data were expressed as mean ± standard error of mean (SEM). A value of $p < 0.05$ was considered statistically significant.

Results

Effect of rotenone, aM and aM-NLC on body weights

The body weights of all groups were not significantly difference at baseline, the 1st week, the 2nd week, the 3rd week, and the 4th week of the experiment ($p > 0.05$, Fig. 2a). This indicated no unspecific effects of rotenone that could reduce body weight when given every 48 h and continued for 4 weeks.

Fig. 1 Animal groups and experimental protocol

Springer
Effect of rotenone, αM and αM-NLC on motor coordination

At baseline, all mice had equal running ability on the rotarod; after running the experiment, we found that the latency time of the PD group was significantly decreased at the 1st and 4th weeks of the experiment ($p=0.0024$ and 0.0065, respectively), but at the 2nd and 3rd weeks, there was no significant difference compared with the normal group. This indicated the reverse of motor deficit in the early weeks of rotenone exposure. Although there was no significant difference between the normal and PD groups at the 2nd and 3rd weeks, the latency time of the PD-αM group was significantly longer than that of the PD group ($p=0.0136$, 0.0002, 0.0339, and <0.0001, respectively), and also significantly longer than that of the normal group at the 2nd week ($p=0.0364$), it might be unexpected effect in normal group that represented the reduction of rotarod performance. This was similar to the latency time of the PD-αM-NLC group, which was significantly longer than that of the PD group from the 1st to the 4th week ($p=0.0065$, 0.0016, and 0.0087, respectively), except the 3rd week. Moreover, the effect of αM and αM-NLC showed no significant difference when compared with each other (Fig. 2b). This indicated a preventive effect of αM and αM-NLC on motor coordination deficits in the rotarod test both in early and long-term rotenone exposure.

Effect of rotenone, αM and αM-NLC on muscle strength

Only during the 4th week did we find that the hanging time of the PD group was significantly decreased compared with the normal group ($p=0.0044$), and the hanging times of the PD-αM and PD-αM-NLC groups were also significantly longer than that of PD group ($p=0.0290$ and 0.0108, respectively). There was no significant difference between the PD-αM and PD-αM-NLC groups compared with each
other and with the normal group (Fig. 2c). This indicated that rotenone exposure every 48 h for 4 weeks significantly induced muscle weakness, and both αM and αM-NLC help prevent this weakness.

Brain oxidative status

Biochemical analysis of brain oxidative status is presented in Table 1. Only SOD showed a significant reduction by rotenone exposure compared with the normal group ($p = 0.0078$). Although MDA did not significantly increase in the PD group, in the PD-αM-NLC group, a significant reduction of MDA level was found when compared with the PD and PD-αM groups ($p = 0.0055$ and 0.0029, respectively). This indicates a superior benefit of αM-NLC superior than αM in lipid peroxidation mitigation. Moreover, αM-NLC showed a significant effect on antioxidant enzymatic activity boosting, indicated by significantly increased CAT and SOD activities compared with the PD group ($p = 0.0254$ and 0.0158, respectively).

Effect of rotenone, αM and αM-NLC on Nissl-positive cells in SNc, striatum and motor cortex

The Nissl-stained neuronal population in SNc (Fig. 3a) revealed that the percentage of Nissl-positive cells relative to the percentage of control in the PD group was significantly less than in the normal, PD-αM, and PD-αM-NLC groups ($p = 0.0138$, < 0.0001, and < 0.0001, respectively), and the percentage of Nissl-positive cells in the PD-αM and PD-αM-NLC groups was significantly higher than in the normal group ($p = 0.0373$ and 0.0022, respectively). There was no significant difference between the PD-αM and PD-αM-NLC groups. These results indicated that both αM and αM-NLC significantly prevented the reduction of the SNc neuronal population.

The Nissl-stained neuronal population in striatum (Fig. 3b) showed that the percentage of Nissl-positive cells in the PD and PD-αM groups was significantly lower than in the normal group ($p = 0.0007$ and 0.0098, respectively). In the PD-αM-NLC group, the percentage of Nissl-positive cells was significantly higher than in the PD and PD-αM groups ($p = 0.0023$ and 0.0277, respectively). These results indicated only αM-NLC exhibited a protective effect against striatal neuronal population reduction.

In SNc (Fig. 4), the percentage of TH intensity relative to the percentage of control in the PD group was significantly lower than in the normal group ($p = 0.0009$), and the percentage of TH intensity of the PD-αM and PD-αM-NLC groups was significantly higher than in the PD group ($p = 0.0005$ and 0.0081, respectively) and showed no significant difference compared with the normal group. As TH intensity indicated the dopaminergic neuronal population in SNc, the result indicated that 4 weeks of rotenone exposure significantly reduced dopaminergic neurons in SNc, and αM and αM-NLC significantly prevented rotenone-induced dopaminergic neuronal loss in SNc. In striatum (Fig. 5), although the PD group did not show a significant difference from the normal group, the percentage of TH intensity of the PD-αM and PD-αM-NLC groups was significantly higher than in the PD group ($p = 0.0057$ and 0.0335, respectively). This result indicated that αM and αM-NLC maintain dopaminergic innervation to striatum.

Table 1: Biochemical analysis of brain oxidative status

Group	Brain’s oxidative status (mean ± S.E)				
	Total protein (mg/ml)	MDA (µM/mg of protein)	GSH (µM/mg of protein)	Catalase (U/mg of protein)	SOD (U/mg of protein)
Normal	0.472±0.150	4.326±0.246	0.988±0.149	25.649±8.574	18.150±0.558
PD	0.497±0.004	4.845±0.113	0.766±0.035	11.837±1.497	10.193±1.253*
PD+αM	0.498±0.009	4.942±0.346	0.835±0.033	18.095±2.548	15.106±3.465
PD+αM-NLC	0.494±0.010	3.886±0.065*	0.859±0.059	28.471±3.661*	16.854±0.081*

The results are expressed as mean ± SEM. * indicates $p < 0.05$ compared with the normal group, ‡ indicates $p < 0.05$ compared with the PD group, and ‡ indicates $p < 0.05$ compared with the PD+αM group.

© Springer
Discussion

We evaluated the neuroprotective effect of αM and αM-NLC against rotenone-induced PD-like neurodegeneration in mice and indicated the emphasized effect of NLC on αM capacity. The present study used a rotenone-induced neurodegeneration protocol by using a rotenone injection with a dose of 2.5 mg/kg/48 h, which has been claimed to reduce the unspecific effect on body weight, mortality rate, and induced motor deficits within 3 weeks (Rahimmi et al. 2015). Due to the potential neurotoxicity of rotenone, it can cross the BBB, enter the glia cell into the dopaminergic neuron through the dopamine transporter, induce neuronal damage via inhibiting of mitochondrial complex I, and interfere with the mitochondrial electron transport chain, resulting in mitochondria dysfunction. This is followed by excessive ROS production, oxidative stress, and apoptotic cell death (Soderstrom et al. 2010). Previous studies reported that chronic administration of rotenone at low doses in rodents can induce dopaminergic neuronal degeneration, and this was found along with motor deficits (Cannon et al. 2009; Ferris et al. 2013; Sonia Angeline et al. 2012).

In animal models, there were reports that rotenone exposure had variable effects on motor deficits. This is because the sensitivity to rotenone is different in each strain, and differences in the reverse effect were also reported (Fleming et al. 2004; Johnson et al. 2015). Intravenous injection of rotenone (2.5 mg/kg/day) in Lewis rats showed a rearing behavior deficit in the 1st week and a reverse effect a week later (Fleming et al. 2004). Intraperitoneal injection with rotenone (2.5 mg/kg/day) in SD rats significantly decreased motor coordination and muscle strength within 1 day after injection and did not reverse (von Wrangel et al. 2015), and C57BL/6 mice with systemic rotenone exposure (2.5 mg/kg/day) showed significantly decreased motor coordination in the 1st week of the experiment, which reversed in the
Fig. 4 Representative binary photomicrograph of SNc after manual adjusting of threshold in NIH Image J (a). Histogram of the percentage of TH intensity in SNc is presented as area percentage relative to percentage of control, and data are presented as mean ± SEM (b). * indicates \(p < 0.05 \) compared with the normal group, and # indicates \(p < 0.05 \) compared with the PD group.

Fig. 5 Representative binary photomicrograph of striatum after manual adjusting of threshold in NIH Image J (a). Histogram of the percentage of TH intensity in striatum is presented as area percentage relative to percentage of control, and data are presented as mean ± SEM (b). * indicates \(p < 0.05 \) compared with the PD group.
The present study found benefits of αM and αM-NLC administration in ICR mice with rotenone-induced PD-like neurodegeneration. Both αM and αM-NLC could prevent the reduction of Nissl-stained neurons in SNc by rotenone. Regarding αM and αM-NLC increasing TH intensity, this is related to a previous study indicating that αM upregulated TH protein expression in rotenone-treated SH-SY5Y cells (Hao et al. 2017). We found that both αM and αM-NLC improved motor deficits and correlated with the increase of TH intensity in both SNc and striatum, even though the neuronal population in striatum of αM was not different from that of PD. Our results indicated some amount left of neuronal populations was enough for some functions, and maintenance of TH level had therapeutic importance in PD (Rangasamy et al. 2019).

A superior benefit of αM-NLC beyond that of αM was also indicated, and it was a preventive effect on neuronal reduction in striatum and motor cortex. A precise difference was in the brain oxidative status in that rotenone induced a change only in SOD activity but not MDA, GSH, or CAT activities, and αM-NLC significantly reduced MDA level with significantly increased CAT and SOD activities, whereas αM exhibited no change in these brain oxidative parameters, compared with either the normal or the PD group. SOD plays an important role for the protection of neurons against oxidative stress in PD models (Romuk et al. 2017), it converts superoxide ion to hydrogen peroxide, together with CAT, which further converts hydrogen peroxide into water and oxygen that protect against oxidative damage. Excessive ROS production can lead to a variety of deteriorative cascades, one of which lipid peroxidation, resulting in MDA products. According to previous studies, αM has an antioxidative effect in MDA reduction and increased SOD, and CAT because it could scavenge free radicals and increase the expression of nuclear translocation of NF-E2 related factor 2 (Nrf2) for regulating the expression of endogenous antioxidant enzymes. (Sampath and Vijayaraghavan 2007; Perez-Rojas et al. 2009; Buelna-Chontal et al. 2011; Fang et al. 2016; Kumar et al. 2016). However, comparing the efficacy of the lowest effective dose that we used, it is likely that NLC emphasize αM efficacy in some aspect. Enhancing effect of NLC on αM found only on lipid peroxidation indicated by the reduction of MDA level but not on GSH, CAT and SOD. NLC also showed enhancing effect on neuroprotection in striatum and motor cortex when compared to αM alone. As the lowest effective dose of αM used in the present study, we interpreted that this αM dose still effective on neuroprotection with behavioral correlation. Considering this lowest effective dose of αM and αM-NLC, they were benefit against rotenone-induced dopaminergic neurodegeneration in SNc. However, for other neuronal types that found in striatum and motor cortex (e.g. glutamatergic types), the enhancing effect of αM-NLC were
clearly depicted. Rotenone induced mitochondrial dysfunction and lead to cellular energy deplete, therefore deteriorate effect also include excitotoxicity (Wu and Johnson 2009). Benefit of NLC to enhance the delivery of therapeutics to the brain and increase the efficiency of the compounds were also reported (Belouqui et al. 2016; Khosa et al. 2018). These may increase αM efficacy to prevent excitotoxicity or other deteriorate mechanisms that can be induced by rotenone in these neuronal types as well. Our recent results have limitation for this aspect and not to over claim, therefore, the further studies are needed.

Conclusion

This study depicted the neuroprotective effect of αM and αM-NLC against rotenone-induced PD-like neurodegeneration in ICR mice. We confirmed the efficacy of αM in neuroprotection against rotenone-induced neurodegeneration additional with enhancing effect of NLC on αM against lipid peroxidation and neurodegeneration in striatum and motor cortex.

Acknowledgements We thank the Department of Zoology and the Faculty of Science, Kasetsart University and Science Achievement Scholarship of Thailand.

Author Contributions Wachirayah Thong-asap and Romgase Sakamula are equally conceived and designed research, analyzed data and wrote the manuscript. All authors read and approved the manuscript for publication.

Funding This study was funded by Department of Zoology and the Faculty of Science (Student Research Project), Kasetsart University, and Science Achievement Scholarship of Thailand.

Data availability Available upon request.

Declarations

Ethics approval All applicable international and national guidelines for the care and use of animals were followed.

Consent to participate All authors agree to participate.

Consent for publication All authors agree to publish.

Conflict of interest The authors declare that they have no conflict of interest.

References

Abdel-Salam OOE, Youness E, Khadrawy Y, Mohammed N, Sleem A (2014) Rotenone-induced nigrostriatal toxicity is reduced by methylene blue. J Neurorestoratol 2014:65–80

Badmus JA, Adedosu TO, Fatoki JO, Adegbite VA, Adaramoye OA, Odunola OA (2011) Lipid peroxidation inhibition and antiradical activities of some leaf fractions of Mangifera indica. Acta Pol Pharm 68(1):23–29

Balakrishnan R, Vijayrajra D, Mohankumar T, Manimaran D, Ganesan P, Choi DK, Elangovan N (2021) Isolongifololite mitigates rotenone-induced dopamine depletion and motor deficits through anti-oxidative and anti-apoptotic effects in a rat model of Parkinson’s disease. J Chem Neuroanat 112:101890. https://doi.org/10.1016/j.jchemneu.2020.101890

Ball N, Teo W-P, Chandra S, Chapman J (2019) Parkinson’s Disease and the Environment. Frontiers in neurology 10:218–218. https://doi.org/10.3389/fneur.2019.00218

Belouqui A, Solinis M, Rodriguez-Gascón A, Almeida AJ, Prétat V (2016) Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine 12(1):143–161. https://doi.org/10.1016/j.nano.2015.09.004

Buenal-Chontal M, Correa F, Hernández-Reséndiz S, Zazueta C, Pedraza-Chaverri J (2011) Protective effect of α-mangostin on cardiac reperfusion damage by attenuation of oxidative stress. J Med Food 14(11):1370–1374. https://doi.org/10.1089/jmf.2010.0238

Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT (2009) A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34:279–290. https://doi.org/10.1016/j.nbd.2009.01.016

Dauer W, Przedborski S (2003) Parkinson’s Disease: mechanisms and models. Neuron 39:889–909. https://doi.org/10.1016/s0896-6273(03)00568-3

De Maagd G, Philip A (2015) Parkinsons Disease and Its Management Part I Disease Entity Risk Factors Pathophysiology. Clin Present Diagnos P T a Peer Rev J Formula manage 40:504–532

Do HTT, Cho J (2020) Mangosteen Pericarp and Its Bioactive Xanthone: Potential Therapeutic Value in Alzheimer’s Disease, Parkinson’s Disease, and Depression with Pharmacokinetic and Safety Profiles. Int J Mol Sci 21. https://doi.org/10.3390/ijms21176211

Eleraky NE, Omar MM, Mahmoud HA, Abou-Taleb HA (2020) Nanostructured Lipid Carriers to Mediate Brain Delivery of Temazepam: Design and In Vivo Study. Pharmaceutics 14 12(5):451. https://doi.org/10.3390/pharmaceutics12050451

Ellman GL (1959) Tissue sulphhydryl groups. Arch Biochem Biophys 82(1):70–77. https://doi.org/10.1016/0003-9861(59)90090-6

Fang C, Al-Suwayeh S, Fang J-Y (2012) Nanostructured Lipid Carriers (NLCs) for Drug Delivery and Targeting. Recent Pat Nanotechnol 7(1):41–55. https://doi.org/10.2174/18722105130105

Fang Y, Su T, Qiu X, Mao P, Xu Y, Hu Z, Liu Q (2016) Protective effect of alpha-mangostin against oxidative stress induced-retinal cell death. Sci Rep 6:21018. https://doi.org/10.1038/srep21018

Ferrante RJ, Schulz JB, Kowall NW, Beal MF (1997) Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra. Brain Res 753:157–162. https://doi.org/10.1016/s0006-8993(97)00008-5

Ferris CF, Marella M, Smerkers B, Barchet TM, Gershman B, Matsuno-Yagi A, Yagi T (2013) A phenotypic model recapitulating the neuropathology of Parkinson’s disease. Brain Behav 3:351–366. https://doi.org/10.1002/brb3.138

Fleming SM, Zhu C, Fernagut PO, Mehta A, DiCarlo CD, Seaman RL, Chesselet MF (2004) Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Exp Neurol 187:418–429. https://doi.org/10.1016/j.expneurol.2004.01.021

Hadjm MN, Abed HN (2016) Data supporting the spectrophotometric method for the estimation of catalase activity. Data Brief 6:194–199. https://doi.org/10.1016/j.dib.2015.12.012

Hao X-M, Li L-D, Duan C-L, Li Y-J (2017) Neuroprotective effect of α-mangostin on mitochondrial dysfunction and α-synuclein aggregation in rotenone-induced model of Parkinson’s disease in Metabolic Brain Disease (2022) 37:1465–1476

Copyright Springer
differentiated SH-SY5Y cells. J Asian Nat Prod Res 19:833–845. https://doi.org/10.1080/10286020.2017.1339349

Hassanzadeh P, Atabey F, Dinavand R, Dehpour A, Azhdarzadeh M, Dinavand M (2017) Application of nanostructured lipid carriers: The prolonged protective effects for sesamol in in vitro and in vivo models of ischemic stroke via activation of PI3K signalling pathway. Daru 25(1):25. https://doi.org/10.1186/s40199-017-0191-z

Hernando S, Herran E, Hernandez RM, Igartua M (2020) Nanostructured Lipid Carriers Made of Ω-3 Polyunsaturated Fatty Acids: In Vitro Evaluation of Emerging Nanocarriers to Treat Neurodegenerative Diseases. Pharmaceuticals 12:928. https://doi.org/10.3390/pharmacy12010028

Höglinger GU, Féger J, Prigent A, Michel PP, Champy P, Janhom P, Dharmasaroja P (2015) Neuroprotective Effects of Alpha-α-Mangostin Mediated Pharmacological Modulation and Motor Control Abnormalities in Parkinson’s Disease. Cold Spring Harb Perspect Med 26(6):953–959

Joseph E, Saha R (2013) Advances in brain targeted drug delivery: Nanoparticulate systems. PharmaSciTech 3:1–8

Khosa A, Reddi S, Saha RN (2018) Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother 103:598–613. https://doi.org/10.1016/j.biopha.2018.04.055

Lee CS, Sauver H, Bjorklund A (1996) Dopaminergic neuronal degeneration and motor impairments following axon terminal lesion by intranigral 6-hydroxydopamine in the rat. Neuroscience 72:641–653. https://doi.org/10.1016/0306-4522(95)00571-4

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–75. https://doi.org/10.1016/S0021-9258(19)52451-6

Maiti P, Manna J, Dunbar GL (2017) Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl Neurodegener 6:28. https://doi.org/10.1186/s40035-017-0099-z

Mazzoni P, Shabbott B, Cortes J (2012) Motor Control Abnormalities in Parkinson’s Disease. Cold Spring Harb Perspect Med 2(6):a009282. https://doi.org/10.1101/cshperspect.a009282

Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

Miyazaki I, Isooka N, Imakfuku F, Sun J, Kikuoka R, Furukawa C, Asamura M (2020) Chronic Systemic Exposure to Low-Dose Rotenone Induced Central and Peripheral Neuropathology and Motor Deficits in Mice: Reproducible Animal Model of Parkinson’s Disease. Int J Mol Sci 21. https://doi.org/10.3390/ijms2103254

Mythri R, Bharath M (2012) Curcumin: A Potential Neuroprotective Agent in Parkinson’s Disease. Curr Pharm Des 18:91–99. https://doi.org/10.2174/138161212798918995

Nava Catorce M, Acero G, Pedraza-Chaverri J, Fragoso G, Govezensky T, Georgiak G (2016) Alpha-mangostin attenuates brain inflammation induced by peripheral lipopolysaccharide administration in C57BL/6J mice. J Neuroimmunol 297:20–27. https://doi.org/10.1016/j.jneuroim.2016.05.008

Parkhe A, Parekh P, Nalla L, Sharma N, Sharma M, Gadeppalli A, Khairnar A (2019) Protective effect of alpha mangostin on rotenone induced toxicity in rat model of Parkinson’s disease. Neurosc Lett 716:134652

Pérez-Rojas JM, Cruz C, García-López P, Sánchez-González DJ, Martínez-Martínez CM, Ceballos G, Espinosa M, Meléndez-Zaglia J, Pedraza-Chaverri J (2009) Renoprotection by alpha-Mangostin is related to the attenuation in renal oxidative/nitrative stress induced by cisplatin nephrotoxicity. Free Radic Res 43(11):1122–1132. https://doi.org/10.1080/10715760903214447

Rahimmi A, Khorosbakhsh F, Izadpanah E, Moloudi MR, Hassanzadeh K (2015) N-acetylcycteine prevents rotenone-induced Parkinson’s disease in rat: An investigation into the interaction of parkin and Drp1 proteins. Brain Res Bull 113:34–40. https://doi.org/10.1016/j.brainresbull.2015.02.007

Rangasamy SB, Dasarathi S, Pahan P, Jana M, Pahan K (2019) Low-Dose Aspirin Uregulates Tyrosine Hydroxylase and Increases Dopamine Production in Dopaminergic Neurons: Implications for Parkinson’s Disease. J Neuroimmune Pharmacol 14:173–187. https://doi.org/10.1007/s11481-018-9808-3

Romuk EB, Szczurek W, Oleś M, Gabrysiak A, Skowron M, Nowak P, Birkner E (2017) The evaluation of the changes in enzymatic antioxidant reserves and lipid peroxidation in chosen parts of the brain in a animal model of Parkinson disease. Adv Clin Exp Med 26(6):953–959

Salvatore MF, McInnis TR, Cantu MA, Apple DM, Prueitt BS (2019) Pyroglutamate Inhibition in Substantia Nigra Decreases Movement Frequency. Mol Neurobiol 56:2728–2740. https://doi.org/10.1007/s12035-018-1256-9

Sampaio PD, Vijayaraghavan K (2007) Cardioprotective effects of alpha-mangostin, a xanthone derivative from mangosteen on tissue defense system against isoproterenol-induced myocardial infarction in rats. J Biochem Mol Toxicol 21(6):336–339. https://doi.org/10.1002/jbt.20199

Soderstrom KE, Baum G, Kordower JH (2010) Animal Models of Parkinson’s Disease’s Handbook of the Neuroscience of Aging:551–560 https://doi.org/10.1016/B978-008045046-9.00522-2

Sonja Angelina M, Chaterjee P, Anand K, Ambasta RK, Kumar P (2012) Rotenone-induced parkinsonism elicits behavioral impairments and differential expression of parkin, heat shock proteins and caspases in the rat. Neuroscience 220:291–301. https://doi.org/10.1016/j.neuroscience.2012.06.021

Wathoni N, Rusdin A, Motoyama K, Joni IM, Lesmana R, Muchtaridi M (2020) Nanoparticle Drug Delivery Systems for α-Mangostin. Nanotechnol Sci Appl 13:23–36. https://doi.org/10.2147/ NSA.S243017

Weihe E, Depboylu C, Schütz B, Schäfer MK, Eiden LE (2006) Three types of tyrosine hydroxylase-positive CNS neurons distinguished by dopa decarboxylase and VMAT2 co-expression. Cell Mol Neurobiol 26:659–678. https://doi.org/10.1007/s10571-006-9053-9

Wu YN, Johnson SW (2009) Rotenone reduces Ms24-dependent block of NMDA currents in substantia nigra dopamine neurons. Neurotoxicology 30(2):320–5. https://doi.org/10.1016/j.neuro.2009.01.002

Yao L, Gu X, Song Q, Wang X, Huang M, Hu M, Gao X (2016) Nanoformulated alpha-mangostin ameliorates Alzheimer’s disease neuropathology by elevating LDLR expression and accelerating amyloid-beta clearance. J Control Release 226:1–14. https://doi.org/10.1016/j.jconrel.2016.01.055

Yeung PKK, Lai AKW, Son HJ, Zhang X, Hwang O, Chung SSM, Chung SK (2017) Aldose reductase deficiency leads to oxidative stress-induced dopaminergic neuronal loss and autophagic
abnormality in an animal model of Parkinson’s disease. Neurobiol Aging 50:119–133. https://doi.org/10.1016/j.neurobiolaging.2016.11.008
Yostawonkul J, Surassmo S, Namdee K, Khongkow M, Boonthum C, Pagseesing S, Yata T (2017) Nanocarrier-mediated delivery of α-mangostin for non-surgical castration of male animals. Scientific Reports 7. https://doi.org/10.1038/s41598-017-16563-3
Zhang Q-S, Heng Y, Mou Z, Huang J-Y, Yuan Y-H, Chen N-H (2017) Reassessment of subacute MPTP-treated mice as animal model of Parkinson’s disease. Acta pharmacologica Sinica 38. https://doi.org/10.1038/aps.2017.49

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.