Primer Note

Using genomic data to develop chloroplast DNA SSRs for the Neotropical liana Stizophyllum riparium (Bignoniaceae, Bignoniaceae)

Maila Beyer1,2, Alison G. Nazareno2, and Lúcia G. Lohmann2,3

1Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090 São Paulo, São Paulo, Brazil

• Premise of the study: We developed chloroplast microsatellite markers (cpSSRs) to be used to study the patterns of genetic structure and genetic diversity of populations of Stizophyllum riparium (Bignoniaceae, Bignoniaceae).

• Methods and Results: We used genomic data obtained through an Illumina HiSeq sequencing platform to develop a set of cpSSRs for S. riparium. A total of 36 primer pairs were developed, of which 28 displayed polymorphisms across 59 individuals from three populations. Two to 12 alleles were recorded, and the unbiased haploid diversity per locus ranged from 0.037 to 0.905. All 28 cpSSRs presented transferability to two closely related species, S. inaequilaterum and S. perforatum.

• Conclusions: We report a set of 28 cpSSRs for S. riparium. All markers were shown to be variable in S. riparium, indicating that these markers will be valuable for population genetic studies across S. riparium and congeneric species.

Key words: Bignoniaceae; chloroplast microsatellites; cross-amplification; Neotropical flora; Stizophyllum inaequilaterum; Stizophyllum perforatum.

Stizophyllum Miers (Bignoniaceae) is a small genus of Bignoniaceae, the largest tribe in the Bignoniaceae (Lohmann and Taylor, 2014). The genus is clearly monophyletic (Lohmann, 2006) and includes three species, i.e., S. inaequilaterum Bureau & K. Schum., S. perforatum (Cham.) Miers, and S. riparium (Kunth) Sandwith (Lohmann and Taylor, 2014). All species of Stizophyllum are lianas with trumpet-shaped flowers that are pollinated by medium-sized bees (Gentry, 1974). Their winged seeds are dispersed by wind (Gentry, 1974). Members of Stizophyllum are easily recognized by their hollow stems, pellucid-punctate leaflets, urceolate calyces, and linear fruits (Lohmann and Taylor, 2014). The genus as a whole is broadly distributed, occurring from southern Mexico to the Atlantic Forest in southern Brazil (Lohmann and Taylor, 2014). Although the generic circumscription is clear, the three species of Stizophyllum currently recognized are morphologically similar and can occur sympatrically in Amazonia.

Nuclear DNA polymorphisms based on microsatellites (simple sequence repeats [SSRs]) are powerful sources for population genetic studies (Kalia et al., 2011). These molecular markers, present also in the genomes of organelles (e.g., chloroplast), allow us to access genetic information that facilitates genotype identification, mainly due to their multiallelic nature (Masi et al., 2003). The chloroplast microsatellite and nuclear microsatellite markers (cpSSR and nSSR, respectively) have been widely used to study phylogenetic and genetic diversity in plants (Kalia et al., 2011). Unlike nSSRs, which are highly polymorphic, codominant, and biparentally inherited, cpSSRs are a nonrecombinant molecule and uniparentally inherited, allowing us to trace the history of populations through their haplotype diversity (Ebert and Peakall, 2009). Despite these differences, the two markers are complements for understanding the genetic structure in natural populations (Ebert and Peakall, 2009; Kalia et al., 2011).

Furthermore, the advent of high-throughput sequencing technologies (Metzker, 2010) has allowed the development of SSR markers for multiple taxonomic groups (Zalapa et al., 2012; Francisco et al., 2016). Here, we used chloroplast genome sequence data obtained by de novo and reference-guided assembly to develop and characterize chloroplast microsatellite markers for S. riparium. Cross-amplification of the cpSSR markers developed for S. riparium was tested in all congeneric species to evaluate the utility of those markers for population genetic studies in Stizophyllum as a whole.

Methods and Results

We first obtained the chloroplast genome sequence of S. riparium using an Illumina platform. For that, we extracted the genomic DNA from fresh leaf material dried in silica gel from a single individual of S. riparium (voucher: Nogueira...
Table 1. Characteristics of 28 intergenic chloroplast microsatellite markers developed for *Stizophyllum riparium*.

Locus	Primer sequences (5′–3′)	Repeat motif	Allele size range (bp)	T_a (°C)	Fluorescent dye^a	Position	GenBank accession no.
Stiz2	F: CTTTGAGGTTGTTGTTGATTCC	(A)₉(G)₁₀	211–216	49.9	JOE	trnK-UUU/rps16	KP863512
Stiz2	R: GGGTGAGGCTTGTGTTGATTCC	(T)₁₀	170–176	54.0	JOE	rps16/rps16	KP863513
Stiz4	F: ATCTGATAGTTGAGGAGG	(A)₁₀	160–169	55.8	6-FAM	psbH/psbA	KP863514
Stiz5	R: T CTCCCTCCCGGTCTGAGCTT	(A)₁₁	176–181	57.4	JOE	atpF/atpF	KP863515
Stiz6	R: AGAACATCATCATGTGGGGC	(A)₁₂	143–150	57.4	JOE	atpH/atpF	KP863516
Stiz7	F: C TCTTGTATGTTGCTGCCAACAA	(A)₁₀	164–171	57.4	JOE	rps2/rpsC2	KP863517
Stiz10	R: AGAAGAGAAGGTCTCATGCGCA	(T)₁₀	165–173	57.4	6-FAM	petN/petM	KP863519
Stiz11	R: CTGTCATGCTTGGGTGAC	(A)₁₀	190–199	54.0	JOE	psbMs/rpsD-GUC	KP863520
Stiz12	F: GATTTGTACGAGGAGCCTCC	(A)₁₁	167–180	56.9	6-FAM	psbMs/rpsD-GUC	KP863521
Stiz13	F: CTGTCATGCTTGGGTGAC	(T)₁₀	201–210	54.0	JOE	psbChmS-UGA	KP863522
Stiz14	F: GCAACATCATCATGTGGGGC	(A)₁₃	136–149	54.0	JOE	psaB/ycf3	KP863523
Stiz15	F: C TCTTGTATGTTGCTGCCAACAA	(A)₁₀	90–96	51.7	6-FAM	trnT-UGU/trnL-UAA	KP863525
Stiz16	F: TCTCTTGTATGTTGCTGCCAACAA	(T)₁₀	179–184	54.7	JOE	ycf4/ycfA	KP863527
Stiz20	F: TTTGAGGAGTTGCTTGTCC	(T)₁₂	183–191	56.9	6-FAM	petA/petB	KP863528
Stiz21	F: TCTGTACATCTACATCTATGCT	(T)₁₀	186–197	48.6	6-FAM	petL/petG	KP863529
Stiz22	F: ACCACCTATACATTAGAACGTT	(T)₁₀	161–169	56.9	JOE	rpl20/rpl15	KP863531
Stiz23	F: GATCAGATCACAGATGCGAGG	(A)₁₀	153–162	56.9	6-FAM	ClpP/psi_psbT	KP863532
Stiz24	F: AGTGGAGATCACAGATGCGAGG	(A)₁₁	179–183	61.4	6-FAM	psbH/psbB	KP863534
Stiz25	R: AGAACATCATCATGTGGGGC	(T)₁₁	168–175	61.4	JOE	infA/rps8	KP863535
Stiz26	F: TCTCTGACTGTCGAATTGGA	(T)₁₀	168–170	61.4	6-FAM	rps8/rpl14	KP863536
Stiz27	F: TCTCTGACTGTCGAATTGGA	(T)₁₀	243–248	53.2	JOE	rpl16/rps3	KP863537
Stiz28	F: TCTTTGCTTACATTACAGG	(A)₁₀	168–169	55.8	JOE	rpl16/rps3	KP863538
Stiz33	F: GCTGATCTCATCTGATTAGAAC	(T)₁₃	230–238	49.9	6-FAM	ycf1/ycf1	KP863539
Stiz34	F: AGACTGAGGAGATCACAGATGCGAGG	(A)₁₁	179–183	61.4	6-FAM	psbH/psbB	KP863534
Stiz36	R: C TCTTGTATGTTGCTGCCAACAA	(T)₁₀	182–206	56.9	JOE	ycf1/ycf1	KP863540
Stiz39	F: C TCTTGTATGTTGCTGCCAACAA	(T)₁₀	168–170	56.9	6-FAM	trnP-UGG/psaI	KP863530
Stiz40	F: GATCAGATCACAGATGCGAGG	(A)₁₀	130–132	53.2	JOE	trnL-UAATrnl-GAA	KP863526
Stiz45	F: GAAATCCATATTAGGCCAACCA	(TCTCCTT)₁₀	156–171	53.2	JOE	ClpP/psi_psbT	KP863533

^aFluorescent label used for the forward primer sequence.

Note: T_a = annealing temperature.

170: Appendix 1) collected in Manaus (Amazonas State, Brazil) using the Invisorb Spin Plant Mini Kit (Invitek, Berlin, Germany) and following the manufacturer’s instructions. Approximately 5 μg of total DNA was fragmented using a Covaris S-Series Focused-ultrasonicator (Covaris, Woburn, Massachusetts, USA) and a short-insert (300 bp) library was constructed with NEBNext DNA Library Prep Master Mix Set and NEBNext Multiplex oligos for Illumina (New England Bio-Labs, Ipswich, Massachusetts, USA), following the manufacturer’s protocol. The library concentration was diluted to 10 mM and sequenced (single end) on an Illumina HiSeq 2000 system (Illumina, San Diego, California, USA) at the University of São Paulo (Escola Superior de Agricultura Luiz de Queiroz da Universidade de São Paulo ESALQ) in Piracicaba, Brazil. A Perl script was used to filter for quality using a Phred score of 20 or more for the cleaned reads, with the exclusion of reads with more than three uncalled bases, or shorter than 40 bp. We used a combination of reference-guided and de novo assembly to construct the chloroplast genome of *S. riparium* following Nazareno et al. (2015). The chloroplast genome for *S. riparium* was annotated using DOGMA (Dual Organellar
SAM (the number of alleles \(A \)) was used to detect perfect microsatellites, with a threshold of 10 repeat units for mononucleotide and six repeats for dinucleotide, trinucleotide, tetranucleotide, penta-, and hexanucleotides. The annotated chloroplast genome was used to select 36 primer pairs designed. The PCR amplifications were performed in a final volume of 10 \(\mu \)L containing 15 ng of genomic DNA, 0.5 \(\mu \)L (10 mM) of each primer with forward primers labeled with 6-FAM or JOE fluorophore (Promega Corporation, Madison, Wisconsin, USA), and 5 \(\mu \)L 1x of KAPA2G Fast ReadyMix (Kapa Biosystems, Wilmington, Massachusetts, USA). The cycling conditions were as follows: an initial denaturation step of 3 min at 94°C; followed by 30 cycles of 30 s at 94°C for denaturation, 30 s at the specific annealing temperature for each primer pair (Table 1), and 72°C for 40 s; and a final extension of 5 min at 72°C. To test the utility of the individual primers, PCR products were detected using a 1.0% agarose gel electrophoresis with a 100-bp range DNA ladder (Promega Corporation).

Locus	CAM (n = 19)	SAM (n = 22)	EAM (n = 18)	All (n = 59)				
Stiz2	3	0.368	4	0.614	4	0.654	6	0.660
Stiz3	4	0.551	2	0.524	4	0.575	6	0.671
Stiz4	5	0.719	3	0.626	3	0.451	9	0.773
Stiz5	3	0.550	2	0.095	2	0.125	4	0.533
Stiz6	3	0.433	4	0.726	2	0.209	6	0.668
Stiz7	4	0.618	3	0.511	2	0.529	6	0.719
Stiz10	5	0.693	2	0.505	2	0.118	6	0.633
Stiz11	2	0.529	3	0.426	4	0.802	5	0.653
Stiz12	5	0.683	4	0.671	2	0.712	6	0.760
Stiz13	7	0.419	6	0.766	3	0.365	7	0.584
Stiz14	7	0.850	8	0.884	4	0.600	10	0.893
Stiz15	4	0.575	2	0.467	4	0.582	6	0.627
Stiz18	3	0.608	4	0.633	3	0.228	6	0.588
Stiz20	3	0.342	8	0.833	2	0.294	9	0.780
Stiz21	5	0.156	5	0.743	0.601	0.317		
Stiz22	1	0.000	2	0.416	4	0.467	5	0.703
Stiz23	4	0.642	4	0.676	3	0.582	6	0.698
Stiz24	2	0.441	3	0.706	2	0.111	4	0.665
Stiz25	2	0.525	3	0.552	2	0.523	4	0.732
Stiz26	3	0.632	2	0.395	1	0.000	3	0.420
Stiz27	4	0.662	3	0.386	3	0.600	4	0.625
Stiz28	2	0.125	2	0.233	1	0.000	2	0.458
Stiz33	4	0.419	5	0.737	2	0.309	9	0.796
Stiz34	2	0.485	3	0.338	2	0.476	5	0.725
Stiz36	2	0.264	3	0.451	2	0.111	3	0.516
Stiz39	3	0.542	2	0.521	1	0.000	3	0.493
Stiz40	1	0.000	2	0.100	1	0.000	2	0.037
Stiz45	5	0.788	9	0.900	3	0.621	12	0.905
Mean	3.4	0.500	3.6	0.551	2.6	0.381	5.7	0.644

Note: A = number of alleles; h = unbiased haploid diversity.

Successful amplification (+) evidenced by the occurrence of a distinct single band on the sequencing gel.}

CONCLUSIONS

We developed and characterized 28 chloroplast microsatellite markers for *S. riparium*. Due to the high rate of cross-amplification (100%), these chloroplast microsatellite markers will be useful for genetic studies involving *Stizophyllum* as a whole.

LITERATURE CITED

Beyer, A., and E. P. S. R. P. A. 2009. Chloroplast simple sequence repeats (cpSSRs): Technical resources and recommendations for expanding cpSSR discovery and applications to a wide array of plant species. *Molecular Ecology Resources* 9: 673–690.

Francisco, J. N., C. A. G. N. A. R. Z. and L. G. L. O. H. M. 2016. A genomic approach for isolating chloroplast microsatellite markers for *Pachyptera kerere* (Bignoniaceae). *Applications in Plant Sciences* 4: 1600055.
APPENDIX 1. Voucher and locality information for all individuals of Stizophyllum sampled.

Species	Population code	Locality	Geographic coordinates	Voucher no.
Stizophyllum riparium (Kunth) Sandwich	CAZ	Brazil, Amazonas, Manaus	3°00′14″N, 59°55′07″W	A. Nogueira 170°
	CAM	Mexico, Campeche, Calakmul	18°48′39″N, 89°18′28″W	D. Álvarez 5027°
	CAM	Mexico, Quintana Roo, Playa del Carmen	20°36′58″N, 87°03′58″W	E. Cabrera 6450°
	CAM	Mexico, Yucatan, Buctozot	21°12′60″N, 88°45′60″W	E. Cabrera 13716°
	CAM	Mexico, Quintana Roo, Adolfo de la Huerta	19°34′45″N, 89°03′31″W	D. Álvarez 9469°
	CAM	Mexico, Campache, Adolfo de la Huerta	18°32′27″N, 89°54′53″W	D. Álvarez 5168°
	CAM	Belize, Toledo, Maya Mts.	16°24′25″N, 89°06′07″W	B. K. Holtz 4319°
	CAM	Belize, Coyo	17°21′05″N, 88°55′12″W	D. E. Ata 1040°
	CAM	Mexico, Chias, Ocosingo	16°54′18″N, 92°02′17″W	E. Martinez 12499°
	CAM	Mexico, Chias, Ocosingo	17°01′39″N, 91°16′31″W	J. P. Abascal 79°
	CAM	Mexico, Chias, Ocosingo	17°01′30″N, 91°18′22″W	G. Aguilera 1688°
	CAM	Mexico, Veracruz, Los Tuxtla	18°34′60″N, 95°05′60″W	C. S. Sinaca 1561°
	CAM	Mexico, Veracruz, San Andres Tuxtla	18°26′60″N, 95°12′58″W	C. S. Sinaca 339°
	CAM	Guatemala, Peten, San Lorenzo	17°01′39″N, 89°52′60″W	B. Wallhofer 5907°
	CAM	Costa Rica, Puntarenas, Peninsula de Osa	8°24′01″N, 83°17′30″W	R. Aguilar 1960°
	CAM	Costa Rica, Guanacaste, Nandayure	9°50′57″N, 85°20′26″W	A. Estrada 87°
	CAM	Costa Rica, Puntarenas, Palmar Norte	8°58′60″N, 83°27′60″W	A. H. Gentry 78803°
	CAM	Costa Rica, San José, Tarcoles	9°47′29″N, 84°31′37″W	J. F. Morales 4012°
	CAM	Costa Rica, Puntarenas, Golfito	8°33′03″N, 83°20′60″W	A. Azofeifa 719°
	CAM	Costa Rica, Puntarenas, Bueno Aires	9°02′04″N, 83°25′49″W	L. González 897°
	EAM	Brazil, Pará, Paraíapebas	06°10′12″S, 50°21′02″W	M. Beyer 295°
	EAM	Brazil, Pará, Paraíapebas	06°09′46″S, 50°20′52″W	M. Beyer 295°
	EAM	Brazil, Pará, Paraíapebas	06°10′13″S, 50°21′04″W	M. Beyer 295°
	EAM	Brazil, Pará, Paraíapebas	06°09′45″S, 50°20′51″W	M. Beyer 295°
	EAM	Brazil, Pará, Paraíapebas	06°09′48″S, 50°20′52″W	M. Beyer 295°
	EAM	Brazil, Pará, Paraíapebas	06°10′08″S, 50°21′01″W	M. Beyer 295°
	EAM	Brazil, Pará, Paraíapebas	06°10′04″S, 50°21′02″W	M. Beyer 295°
	EAM	Brazil, Pará, Paraíapebas	06°10′04″S, 50°21′02″W	M. Beyer 295°
	EAM	Brazil, Pará, Paraíapebas	06°10′04″S, 50°21′02″W	M. Beyer 295°
	EAM	Brazil, Pará, Paraíapebas	06°10′04″S, 50°21′02″W	M. Beyer 295°
	EAM	Brazil, Pará, Paraíapebas	06°09′46″S, 50°20′51″W	M. Beyer 295°
	EAM	Brazil, Pará, Paraíapebas	06°09′48″S, 50°20′52″W	M. Beyer 295°
	EAM	Brazil, Pará, Paraíapebas	06°09′36″S, 50°25′21″W	M. Beyer 302°
	EAM	Brazil, Pará, Paraíapebas	06°04′10″S, 50°14′46″W	M. Beyer 303°
	EAM	Brazil, Pará, Paraíapebas	06°03′55″S, 50°12′57″W	M. Beyer 303°
	EAM	Brazil, Pará, Paraíapebas	06°04′14″S, 50°14′44″W	M. Beyer 303°
	EAM	Brazil, Pará, Novo Repartimento	04°19′57″S, 49°56′57″W	M. Beyer 315°
	EAM	Brazil, Pará, Altamira	03°12′20″S, 51°14′56″W	M. Beyer 317°
	EAM	Brazil, Pará, Moju	03°50′25″S, 46°06′40″W	M. Beyer 318°
	SAM	Brazil, Mato Grosso, Paranaíta	9°35′28″S, 56°30′49″W	M. Beyer 353°
	SAM	Brazil, Mato Grosso, Paranaíta	9°35′28″S, 56°30′49″W	M. Beyer 353°
	SAM	Brazil, Mato Grosso, Paranaíta	9°35′28″S, 56°30′49″W	M. Beyer 353°
	SAM	Brazil, Mato Grosso, Paranaíta	9°35′28″S, 56°30′49″W	M. Beyer 353°
	SAM	Brazil, Mato Grosso, Paranaíta	9°35′28″S, 56°30′49″W	M. Beyer 353°
	SAM	Brazil, Mato Grosso, Paranaíta	9°35′28″S, 56°30′49″W	M. Beyer 353°
APPENDIX 1. Continued.

Species	Population code	Locality	Geographic coordinates	Voucher no. *
Stizophyllum perforatum (Cham.) Miers	Brazil, Mato Grosso, Paraná	9°35′28″S, 56°30′49″W	M. Beyer 353	
—	Brazil, Mato Grosso, Paraná	9°35′28″S, 56°30′49″W	M. Beyer 353	
—	Brazil, Mato Grosso, Paraná	9°23′13″S, 56°30′07″W	M. Beyer 354	
—	Brazil, Mato Grosso, Paraná	9°23′13″S, 56°30′07″W	M. Beyer 354	
—	Brazil, Mato Grosso, Paraná	9°23′13″S, 56°30′07″W	M. Beyer 354	
—	Brazil, Mato Grosso, Paraná	9°23′13″S, 56°30′07″W	M. Beyer 354	
—	Brazil, Mato Grosso, Paraná	9°23′13″S, 56°30′07″W	M. Beyer 354	
—	Brazil, Mato Grosso, Paraná	9°23′13″S, 56°30′07″W	M. Beyer 354	
—	Brazil, Mato Grosso, Paraná	9°23′13″S, 56°30′07″W	M. Beyer 354	
—	Brazil, Mato Grosso, Paraná	9°23′13″S, 56°30′07″W	M. Beyer 354	
—	Brazil, Mato Grosso, Paraná	9°31′48″S, 9°31′48″W	M. Beyer 356	
—	Brazil, Mato Grosso, Paraná	9°31′48″S, 9°31′48″W	M. Beyer 356	
—	Brazil, Mato Grosso, Paraná	9°31′48″S, 9°31′48″W	M. Beyer 356	
—	Brazil, Mato Grosso, Paraná	9°31′48″S, 9°31′48″W	M. Beyer 356	
—	Brazil, Mato Grosso, Paraná	9°31′48″S, 9°31′48″W	M. Beyer 356	
—	Brazil, Mato Grosso, Paraná	9°31′48″S, 9°31′48″W	M. Beyer 356	
—	Brazil, Mato Grosso, Paraná	9°31′48″S, 9°31′48″W	M. Beyer 356	
—	Brazil, São Paulo, Candido Mota	22°45′27″S, 50°22′06″W	J. P. Souza 9703	

Species	Localities	Geographic coordinates	Voucher no. *
Stizophyllum inaequilaterum	Brazil, Paraná, Londrina	23°34′12″S, 50°57′42″W	L. H. M. Fonseca 105
—	Brazil, Paraná, Londrina	23°34′12″S, 50°57′42″W	L. H. M. Fonseca 105
—	Brazil, Mina Gerais, Belo Horizonte	11°54′S, 71°22″W	J. Lombardi 2431
—	Brazil, Rio de Janeiro, São Pedro de Aldeia	22°50′10″S, 42°06′13″W	J. A. Kallunki s.n.
—	Brazil, Piauí, Eliseu Martins	08°05′27″S, 43°39′42″W	P. Martins & E. Nunes s.n.
—	Brazil, Acre, Marechal Taumaturgo	08°56′29″S, 72°47′33″W	L. G. Lohmann 454
—	Equador, Amazonia, Orellana	0°40′59″S, 76°24′W	H. Romero-Saltos 2831
—	Peru, Ucayali, Pedro-Abad	0°09′02″S, 75°17′20″W	J. Schunke-Vigo 15997
—	French Guiana, Gaul	03°37′22″N, 53°12′34″W	S. A. Mori 24242
—	Peru, San Martin, Tocache	08°11′22″S, 76°30′57″W	J. Schunke-Vigo 14609
—	Brazil, Amazonas, Leticia	04°12′19″S, 69°55′58″W	A. H. Gentry 18302

Note: CAM = Central America; CAZ = Central Amazonia; EAM = east of Amazonia; SAM = south of Amazonia.

*Most specimens are deposited at the Herbarium of the University of São Paulo (SPF), São Paulo, Brazil, except for 20 samples (1) that are deposited at the Missouri Botanical Garden Herbarium (MO), St. Louis, Missouri, USA; one sample (2) that is deposited at the Herbarium of the Muséum National d’Histoire Naturelle (P), Paris, France; one sample (1) that is deposited at the New York Botanical Garden Herbarium (NY), Bronx, New York, USA; and one sample (1) that is deposited at the Herbarium of the Federal University of Ceará (EAC), Fortaleza, Ceará, Brazil.

*Sample used for DNA extraction.