Antibodies to SARS-CoV-2 and their potential for therapeutic passive immunization

P. J. Klasse (*) and John P. Moore
Department of Microbiology and Immunology
Weill Cornell Medicine,
1300 York Avenue, Box 62
New York, NY 10065

* Address Correspondence to P. J. Klasse: pek2003@med.cornell.edu

Key words: SARS-CoV-2, COVID-19, neutralizing antibodies, immunotherapy, vaccine
Abstract
We review aspects of the antibody response to SARS-CoV-2, the causative agent of the COVID-19 pandemic. The topics we cover are relevant to immunotherapy with plasma from recovered patients and with monoclonal antibodies against the viral S-protein. The development of vaccines against SARS-CoV-2, an essential public health tool, will also be informed by an understanding of the antibody response in infected patients. Although virus-neutralizing antibodies are likely to protect, antibodies could potentially trigger immunopathogenic events in SARS-CoV-2-infected patients or enhance infection. An awareness of these possibilities may benefit clinicians and the developers of antibody-based therapies and vaccines.
Introduction

Passive immunization with plasma from patients who have seroconverted to and recovered from infection with a pathogen has a long and generally successful history. It was used on a small scale during the 1995 and 2014-2015 Ebola epidemics (1, 2). In recent years, highly specific and often broadly active neutralizing monoclonal antibodies (MAbs) have been developed against several viruses, as a more advanced substitute for patient plasma (3-8). These methods are now being considered for treating COVID-19, the disease caused by the SARS-CoV-2 coronavirus (9-12). The US Food and Drug Administration has recently approved plasma immunotherapy for this purpose (https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-or-device-exemption-ide-process-cber/recommendations-investigational-covid-19-convalescent-plasma).

Here, we review aspects of the antibody response to SARS-CoV-2, which may be relevant to immunotherapy with plasma or MAbs. A major goal of viral vaccine development is the induction of strong and broadly active neutralizing antibodies (NAbs), and that goal applies also to SARS-CoV-2 (9, 13, 14). The development of vaccines, an essential public health tool, will also be informed by an understanding of the antibody response during COVID-19.

Assays are now available for detecting IgA, IgM, and IgG specific for SARS-CoV-2 in patient serum, i.e., to demonstrate seroconversion and also for detecting NAbs (15-17). These techniques are rapidly evolving, and additional information on the antibody response to CoV-2 infection is emerging almost daily. Analyses of antibody kinetics and how long predictably protective titers are maintained have not yet been performed. They will be a priority once enough time has elapsed for long-term studies to be feasible.

The natural history of COVID-19 and some lessons from the previous SARS coronavirus (SARS-CoV-1) and the more distantly related MERS-CoV, including animal model studies, do raise some potential concerns about NAb-based therapies and vaccines, warranting careful surveillance by clinicians during human trials. Furthermore, certain approaches may minimize risks while preserving the benefits of passive immunization for curing COVID-19.

Antibody-mediated neutralization of SARS-CoV-2

The entry of SARS-CoV-2 into cells is initiated by the interaction of the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein with the angiotensin converting enzyme-2 (ACE2), which acts as a receptor for the virus on the target cell surface (18, 19). The most potent NAbs are directed to the RBD and some may act by simply competing with the receptor for binding to the S-protein. Antibodies to SARS-CoV-1 and MERS-CoV generally do not cross-neutralize SARS-CoV-2; although cross-reactive antibodies are frequently detected in S-protein ELISA (11, 17, 19-22). Recently, however, the S-protein-specific NAb S309, isolated from memory B cells of a patient who had recovered from CoV-1 infection in 2003, was shown to neutralize both SARS-CoV-1 and -2 potently by ligating the RBD. Cryo-electron microscopy and binding assays demonstrated that the conserved S309 epitope comprises glycans and that in spite of its specificity for the RBD, S309 does not interfere with ACE2 binding (23).

The neutralizing potency of antibodies against the RBD may be determined not only by their own affinity for the S-protein but also by the affinity of the latter for ACE2, at least when they act by a competitive mechanism of action (11). In this context, it is notable that the SARS-CoV-2 S-protein has a 10-20-fold higher affinity for ACE2 than its counterpart from SARS-CoV-1 (22). Although most NAbs are directed to the RBD (23-30), some antibodies that recognize the SARS-CoV-1 S2 fragment can also neutralize (31). In addition, antibodies to the ectodomain of another surface SARS-CoV-1 protein, Orf3a, are also reported to have neutralizing activity, while
antibodies to the M and E proteins can potentiate neutralization (32, 33). Whether SARS-CoV-2 is similar to CoV-1 in these respects remains to be determined. Nonetheless, passive and active immunization approaches to COVID-19 are generally focused on NAbs against the S-protein.

The kinetics of NAb and other antibody responses in SARS-CoV infection

Little information on the antibody responses elicited in COVID-19 patients is available, and none from prolonged studies. Data on SARS-CoV-1 infection may, however, be informative. Surprisingly, the NAb response in patients who later succumbed to the infection was faster than in those who recovered; in the patients who later died, the titers had peaked on day 15 after the onset of symptoms, whereas similar titers and extents of neutralization were reached only after day 20 in the patients who recovered. The NAb titers in the moribund patients declined or disappeared after the early rise, as their conditions deteriorated towards death (34). It is unknown whether this titer loss reflects an inability to produce antibodies due to lymphocyte losses or antibody elimination by immune complexing as the viral load rises. In plasma collected from 175 patients who had recovered from mild COVID-19, NAb and S-binding-antibody titers correlated positively with age and CRP (C-reactive protein) levels, but negatively with lymphocyte counts; and the NAbs did not cross-neutralize SARS-CoV-1 (35). Since no severe cases were included and viral loads were not monitored, it is unclear what promoted the NAb responses within the patient cohort in which antibody titers, age, lymphopenia, and inflammation were associated. Other studies have shown higher binding-antibody titers to the nucleocapsid protein N among patients who recovered than those who did not (34, 36). Such antibodies to the intra-virion N-protein completely lack neutralizing capacity but their production might reflect the strength of T-helper cell responses (37).

NAb immunotherapy against SARS-CoV-1 and SARS-CoV-2

Will passive immunization with plasma from convalescent patients be beneficial for treating COVID-19? Anti-S antibodies are known to protect against lethal CoV challenge and clear the virus in mice and ferrets (38-41). In a small experiment, SARS-CoV-2 infection reportedly protected against a second challenge of macaques, which was attributed to the development of protective antibodies (42). The outcome of human clinical trials will, of course, outweigh animal-model experiments. No significant adverse reactions were noted when plasmas with high NAb titers were given to SARS-CoV-1 patients; clinical benefits such as lower viral loads and earlier release from hospital were noted in retrospective analyses (43, 44). Recently, five critically ill COVID-19 patients were transfused at 10-22 days post-admission with a pool of plasma derived from 5 convalescent patients; the RBD-binding antibody endpoint titers in ELISA were >1000, and the neutralization endpoint titers were >40 (45). All the patients (36-65 years; 3 male, 2 female) were receiving mechanical ventilation. After plasma transfusion, body temperatures normalized while organ-failure and respiratory-function scores improved to different extents. Nasopharyngeal viral load decreased and became undetectable within 12 days in all five patients, while SARS-CoV-2 ELISA and NAb titers increased, reflecting the antibody-content of the transfused plasma. Thus, in this preliminary and necessarily uncontrolled case series of five critically ill COVID-19 patients with acute respiratory distress syndrome (ARDS), the transfusion of NAb-containing convalescent plasma was associated with improved clinical status (45). A subsequent larger study yielded similar results: ten patients with severe COVID-19 received 200 mL of convalescent plasma obtained from recently recovered donors with NAb inhibitory-dilution factors > 640. Three days later, clinical, pulmonary-radiological, and laboratory parameters were improved, the latter including oxyhemoglobin saturation, lymphocyte counts, and C-reactive protein levels; viral loads
in serum became undetectable in seven patients (46). Overall, both studies showed plasma transfusion to be well tolerated. Although beneficial effects were reported, they could not be proven because neither study was controlled and both involved other antiviral interventions.

Can antibodies contribute to SARS pathogenesis?

Strategies for passive and active immunization to combat and prevent SARS-CoV-2 infection should take into account the pathogenesis of COVID-19, which can lead to death. The inflammatory response to SARS-CoV-2 is thought to drive or at least exacerbate the disease process, particularly during the second week after infection becomes symptomatic. Daily transcriptomic profiling of three COVID-19 cases showed a highly dynamic early immune response to SARS-CoV-2. The expression of many inflammatory genes peaked after respiratory function reached its nadir. Pro-inflammatory responses may be intertwined with T-cell activation that could exacerbate the disease; IL-1 secretion and related pro-inflammatory pathways may be prognostic and could serve as therapeutic targets in COVID-19 (47). How may these immune responses that modulate pathogenesis be affected by NAbs?

The lethal coronaviruses cause fatal acute lung injury (ALI) by driving hypercytokinemia and aggressive inflammation through incompletely understood mechanisms. In macaque models of SARS-CoV-1 infection that involve both passive and active immunization, IgG specific for the S-protein was reported to exacerbate ALI by counteracting inflammation-resolving responses, abrogating wound-healing, promoting MCP1 and IL-8 production, and increasing proinflammatory monocyte and macrophage recruitment (48). Likewise, in human patients who died of SARS-CoV-1 infection, pulmonary proinflammatory macrophages accumulated in the lungs while wound-healing macrophages were absent (48). Moreover, two observations noted above raise questions about the causal relationship between antibodies and severity of infection: NAb responses were faster in the patients who later died than in those who recovered (34, 48), and older patients who had recovered from mild COVID-19, had significantly stronger NAb and S-protein-binding antibody responses than younger ones, while higher age is a major risk factor for lethal COVID-19 (17).

In vitro, sera from subsequently deceased patients enhanced SARS-CoV-1 induced MCP1 and IL-8 production by human monocyte–derived wound-healing macrophages, whereas blockade of the FcγR receptor reduced these effects (48). One must be prudent when extrapolating from a macaque model of SARS-CoV-1 infection to human COVID-19 patients, but the antibody response to these lethal coronaviruses might play a role in disease progression, perhaps by formation of immune complexes, and by promoting macrophage infiltration and sustained inflammation. We hypothesize that there may be a causal link between seroconversion and the rapid deterioration that can take place in the second week after the first symptoms, but this remains to be established.

There are some other reports that anti-S and other CoV-specific antibodies may have pathogenic effects in animal models. Thus, multiple CoV vaccines were associated with an increase in eosinophilic proinflammatory pulmonary responses upon challenge of the immunized animals (49-51). Previous SARS-CoV-1 infection limited virus replication in African green monkeys but not lung inflammation, when the animals were re-challenged with the same virus (52). It has not been determined which factors, such as viral dose and the extent of the innate and adaptive immune responses, yield these problematic effects. A particularly important knowledge gap is whether certain specificities and other properties of antibodies are responsible.
Preexisting serum antibodies against influenza antigens were consistently associated with severe illness in patients during the 2009 influenza A H1N1 pandemic (53, 54). Of note is that those antibodies did not neutralize influenza virus (53) and that immune complex formation was suggested to be a pathogenic trigger (54). Whether these observations are linked to the findings reported by Liu et al. remains to be seen (48).

Antibody-dependent enhancement of infection (ADE)

Antibodies can also exacerbate viral infection by different mechanisms that have long been described (55). In the vaccine context, infection by alpha- and flaviviruses (such as Dengue and Zika viruses) is enhanced when the antibody occupancy on the virion-surface epitopes falls below a critical threshold (56). This is the stoichiometric condition of an Fc-receptor-dependent form of ADE: the same antibodies that mediate ADE can be neutralizing and protective at higher occupancies on virions (56, 57). The *in vitro* observations of ADE seem to account for the unfortunate outcome of recent Dengue vaccine trials, where examples of worsened disease post-infection occurred (58). ADE has been reported in the CoV literature, although there is no strong evidence that it will be as problematic as for alpha- and flaviviruses (59-64). One recent report described an unusual mechanism of MERS-CoV infection enhancement *in vitro*, whereby the antibody binding to the S protein RBD promoted endocytic uptake by engaging with an Fc-receptor and triggered fusion by inducing a conformational change (62). It augurs well for vaccine development, however, that a SARS-CoV-2 RBD used as an immunogen elicited strong NAb responses in rats, without any ADE (21). These topics will, no doubt, be investigated thoroughly as various designs of the much-needed SARS-CoV-2 vaccine undergo pre-clinical and clinical testing.

Possible improvements to immunotherapy

How could therapeutic interventions be improved so as to preserve the capacity of the infused NAbs to reduce virus replication while preventing the possible induction of fatal ALI through promotion of IL-8 and MCP-1 production and inflammatory macrophage accumulation? One precaution would be to administer NAbs with Fc deletions. In principle, this could be accomplished by enzymatic treatment of polyclonal IgGs purified from plasma to generate bivalent F(ab’)2 fragments. But in practice this would probably be too onerous. More feasible is the genetic engineering of neutralizing MAbs to eliminate the ability of the Fc-domains to bind FcR. Although such mutations would also eliminate potentially beneficial Fc-mediated effects such as ADCC, there is no evidence that these effector functions play a role in reducing viral load. Here, virus neutralization may be necessary and sufficient, at least during the COVID-19 acute phase.

An alternative neutralizing intervention, which eliminates some risks associated with polyclonal and monoclonal antibodies, is the use of a soluble, recombinant form of the ACE2 receptor, which is potent (nM range) and effective (depending on target cells) at blocking SARS-CoV-1 infection *in vitro* (34). Since SARS-CoV-2 has a 10-20-fold higher affinity than CoV-1 for ACE2, it may be more sensitive to this particular intervention, at least under some infection conditions (22). The entry of both SARS-CoV-1 and SARS-CoV-2 is blocked by recombinant IgG Fc-fusion proteins of both the S-protein RBD (RBD-Fc), binding to the host cells, and soluble ACE2 (ACE2-Fc), binding to the virus; an even more potent variant of the latter has also been described (65). The advantages of these constructs are their potency and potential breadth of action against new viral variants. Furthermore, if Fc-receptor ligation is pathogenic (cf. 48), methods of increasing avidity other than fusing the soluble receptor to the Fc portion of IgG could be explored.
The effects on angiotensin activation and its pharmacological inhibition may also need to be evaluated (18, 67).

Conclusions
Plasma infusion as therapy for COVID-19 is a stop-gap measure that is now being used in a medical emergency. Within the next year, effective drugs are likely to emerge, and they may well include highly potent and specific MAbs to the SARS-CoV-2 S-protein. Animal experiments, particularly in macaques, will be valuable for comparing the capacity of different monoclonal and polyclonal antibodies, including combinations, or of recombinant receptor mimics, to clear CoV-2 infection. Ideally, the intervention should permit or even promote the emergence of favorable innate responses and the resolution of inflammation (66). However, given the urgency of the COVID-19 pandemic it may be impossible to perform such studies before human trials. In these circumstances, an awareness of what has occurred in other viral infections, particularly with SARS-CoV-1, and what is now being published on SARS-CoV-2 may guide both treatment strategies and the development of antibody-based vaccines (61, 68, 69). Prospective or retrospective analyses of how the binding-antibody and NAb titers of transfused plasmas are associated with clinical improvements should also guide both MAb-based therapies and vaccine evaluation. If apparently antibody-mediated adverse events do occur, they too should help to improve these important public health measures against the COVID-19 pandemic.

ACKNOWLEDGEMENTS
This work was supported by National Institutes of Health grant P01 AI110657 and Bill and Melinda Gates Foundation grants OPP1132237 and INV-002022. The Authors have no conflicts of interest to disclose.
References

1. Brown JF, Dye JM, Tozay S, Jeh-Mulbah G, Wohl DA, Fischer WA 2nd, Cunningham CK, Rowe K, Zacharias P, van Hasselt J, Norwood DA, Thielman NM, Zak SE, Hoover DL. Anti-Ebola Virus Antibody Levels in Convalescent Plasma and Viral Load After Plasma Infusion in Patients With Ebola Virus Disease. J Infect Dis. 2018 Jul 13;218(4):555-562.

2. Mupapa K, Massamba M, Kibadi K, Kuvula K, Bwaka A, Kipasa M, Colebunders R, Muyembe-Tamfum JJ. Treatment of Ebola hemorrhagic fever with blood transfusions from convalescent patients. International Scientific and Technical Committee. J Infect Dis. 1999 Feb;179 Suppl 1:S18-23.

3. Caskey M, Klein F, Nussenzweig MC. Broadly neutralizing anti-HIV-1 monoclonal antibodies in the clinic. Nat Med. 2019 Apr;25(4):547-553. doi: 10.1038/s41591-019-0412-8.

4. Corti D, Passini N, Lanzavecchia A, Zambon M. Rapid generation of a human monoclonal antibody to combat Middle East respiratory syndrome. J Infect Public Health. 2016 May-Jun;9(3):231-5. doi: 10.1016/j.jiph.2016.04.003.

5. Corti D, Cameroni E, Guarino B, Kallewaard NL, Zhu Q, Lanzavecchia A. Tackling influenza with broadly neutralizing antibodies. Curr Opin Virol. 2017 Jun;24:60-69. doi: 10.1016/j.coiviro.2017.03.002.

6. Walker LM, Burton DR. Passive immunotherapy of viral infections: 'super-antibodies' enter the fray. Nat Rev Immunol. 2018 May;18(5):297-308.

7. Wec AZ, Bornholdt ZA, He S, Herbert AS, Goodwin E, Wirchnianski AS, Gunn BM, Zhang Z, Zhu W, Liu G, Abelson DM, Moyer CL, Jangra RK, James RM, Bakken RR, Bohorova N, Bohorov O, Kim DH, Pauly MH, Velasco J, Bortz RH 3rd, Whaley KJ, Goldstein T, Anthony SJ, Alter G, Walker LM, Dye JM, Zeitlin L1, Qiu X, Chandran K. Development of a Human Antibody Cocktail that Deploys Multiple Functions to Confer Pan-Ebolavirus Protection. Cell Host Microbe. 2019 Jan 9;25(1):39-48.e5.

8. Zheng Z, Monteil VM, Maurer-Stroh S, Yew CW, Leong C, Mohd-Ismail NK, Arularasu SC, Chow VTK, Pin RLT, Mirazimi A, Hong W, Tan Y-J. Monoclonal antibodies for the S2 subunit of spike of SARS-CoV cross-react with the newly-emerged SARS-CoV-2. bioRxiv preprint doi: https://doi.org/10.1101/2020.03.06.980037.

9. Dhama K, Sharun K, Tiwari R, Dadar M, Malik YS, Singh KP, Chaicumpa W. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum Vaccin Immunother. 2020 Mar 18:1-7.
10. Jawhara S. Could Intravenous Immunoglobulin Collected from Recovered Coronavirus Patients Protect against COVID-19 and Strengthen the Immune System of New Patients? Int J Mol Sci. 2020 Mar 25;21(7). pii: E2272. doi: 10.3390/ijms21072272.

11. Ju B, Zhang Q, Ge X, Wang R, Yu J, Shan S, Zhou B, Song S, Tang X, Yu J, Ge J, Lan J, Yuan J, Wang H, Zhao J, Zhang S, Wang Y, Shi X, Liu L, Wang X, Zhang Z, Zhang L. Potent human neutralizing antibodies elicited by SARS-CoV-2 infection. bioRxiv preprint doi: https://doi.org/10.1101/2020.03.21.990770.

12. Zhou G, Zhao Q. Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. Int J Biol Sci. 2020 Mar 15;16(10):1718-1723.

13. Amanat F, Krammer F. SARS-CoV-2 Vaccines: Status Report. Immunity. 2020 Apr 3. pii: S1074-7613(20)30120-5. doi: 10.1016/j.immuni.2020.03.007.

14. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020 Mar 6. pii: S0092-8674(20)30262-2. doi: 10.1016/j.cell.2020.02.058.

15. Amanat F, Nguyen T, Chromikova V, Strohmeier S, Stadlbauer D, Javier A, Jiang K, Astzagiri-Arunkumar G, Polanco J, Bermudez-Gonzalez M, Caplivski D, Cheng A, Kedzerska K, Vapalahti O, Hepojoki J, Simon V, Krammer F. A serological assay to detect SARS-CoV-2 seroconversion in humans. medRxiv preprint doi: https://doi.org/10.1101/2020.03.17.20037713.

16. Okba NMA, Müller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, Lamers MM, Sikkema RS, de Bruin E, Chandler FD, Yazdanpanah Y, Hingrat QL, Diane Descamps D, Houhou-Fidouh N, Reusken CBEM, Bosch BJ, Christian Drosten C, Koopmans MPG, Haagmans BL. SARS-CoV-2 specific antibody responses in COVID-19 patients medRxiv preprint doi: https://doi.org/10.1101/2020.03.18.20038059.

17. Wu F, Wang A, Liu M, Wang Q, Chen J, Xia, Ling SY, Zhang Y, Xun J, Lu L, Jiang S, Lu H, Wen Y, Huang J. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. medRxiv preprint doi: https://doi.org/10.1101/2020.03.30.20047365.

18. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Mar 4. pii: S0092-8674(20)30229-4.

19. Ou X, Liu Y, Lei X, Li M, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z, Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020 Mar 27;11(1):1620. doi: 10.1038/s41467-020-15562-9.
20. Chen Z, Zhang L, Qin C, Ba L, Yi CE, Zhang F, Wei Q, He T, Yu W, Yu J, Gao H, Tu X, Gettie A, Farzan M, Yuen KY, Ho DD. Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J Virol. 2005;79(5):2678–2688.

21. Quinlan BD, Mou H, Zhang L, Guo Y, He W, Ojha A, Parcells MS, Luo G, Li W, Zhong, G Choe H, Farzan M. The SARS-CoV-2 receptor-binding domain elicits a potent neutralizing response without antibody-dependent enhancement bioRxiv preprint doi: https://doi.org/10.1101/2020.04.10.036418.

22. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020 Mar 13;367(6483):1260-1263. doi: 10.1126/science.abb2507.

23. Pinto D, Park Y-J, Beltramello M, Walls AC, Tortorici MA, Bianchi S, Jaconi S, Culap K, Zatta F, De Marco A, Peter A, Guarino B, Spreafico R, Cameroni E, Case JB, Chen RE, Havenar-Daughton C, Snell G, Telenti A, Virgin HW, Lanzavecchia A, Diamond MS, Fink K, Veesler D, Corti D. Structural and functional analysis of a potent sarbecovirus neutralizing antibody 2. bioRxiv preprint doi: https://doi.org/10.1101/2020.04.07.023903.

24. Coughlin M, Lou G, Martinez O, Masterman SK, Olsen OA, Moksa AA, Farzan M, Babcook JS, Prabhakar BS. Generation and characterization of human monoclonal neutralizing antibodies with distinct binding and sequence features against SARS-CoV-2 Coronavirus using XenoMouse. Virology. 2007; 361: 93-102.

25. Duan J, Yan X, Guo X, Cao W, Han W, Qi C, Feng J, Yang D, Gao G, Jin G. A human SARS-CoV neutralizing antibody against epitope on S2 protein. Biochem Biophys Res Commun. 2005; 333: 186-93.

26. Greenough TC, Babcock GJ, Roberts A, Hernandez HJ, Thomas WD, Jr., Coccia JA, Graziano RF, Srinivasan M, Lowy I, Finberg RW, Subbarao K, Vogel L, Somasundaran M, Luzuriaga K, Sullivan JL, Ambrosino DM. Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice. J Infect Dis. 2005; 191: 507-14.

27. Sui J, Li W, Murakami A, Tamin A, Matthews LJ, Wong SK, Moore MJ, Tallarico AS, Olurinde M, Choe H, Anderson LJ, Bellini WJ, Farzan M, Marasco WA. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci U S A. 2004; 101: 2536-41.

28. ter Meulen J, van den Brink EN, Poon LL, Marissen WE, Leung CS, Cox F, et al Human monoclonal antibody combination against SARS-CoV-2 Coronavirus: synergy and coverage of escape mutants. PLoS Med. 2006; 3: e237.
29. van den Brink EN, Ter Meulen J, Cox F, Jongeneelen MA, Thijssse A, Throsby M, Marissen WE, Rood PM, Bakker AB, Gelderblom HR, Martina BE, Osterhaus AD, Preiser W, Doerr HW, de Kruijf J, Goudsmit J. Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus. J Virol. 2005; 79: 1635-44.

30. Zhu Z, Chakraborti S, He Y, Roberts A, Sheahan T, Xiao X, Hensley LE, Prabakaran P, Rockx B, Sidorov IA, Corti D, Vogel L, Feng Y, Kim JO, Wang LF, Baric R, Lanzavecchia A, Curtis KM, Nabel GJ, Subbarao K, Jiang S, Dimitrov DS. Potent cross-reactive neutralization of SARS-CoV isolates by human monoclonal antibodies. Proc Natl Acad Sci U S A. 2007; 104: 12123-8.

31. Elshabrawy HA, Coughlin MM, Baker SC, Prabhakar BS. Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing. PLoS One. 2012; 7: e50366.

32. Akerstrom, S., Y. J. Tan, and A. Mirazimi. 2006. Amino acids 15–28 in the ectodomain of SARS-CoV 3a protein induces neutralizing antibodies. FEBS Lett. 580:3799–3803.

33. Buchholz, U. J., A. Bukreyev, L. Yang, E. W. Lamirande, B. R. Murphy, K. Subbarao, and P. L. Collins. 2004. Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc. Natl. Acad. Sci. USA 101:9804–9809.

34. Zhang L, Zhang F, Yu W, He T, Yu J, Yi CE, Ba L, Li W, Farzan M, Chen Z, Yuen KY, Ho D. Antibody responses against SARS-CoV are correlated with disease outcome of infected individuals. J Med Virol. 2006;78(1):1–8.

35. Wu F, Wang A, Liu M, Wang Q, Jun Chen, Shuai Xia, Yun Ling, Yuling Zhang, Jingna Xun, Lu Lu, Shibo Jiang, Hongzhou Lu, Yumei Wen, Jinghe Huang. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. medRxiv preprint doi: https://doi.org/10.1101/2020.03.30.20047365.

36. Leung DT, Tam FC, Ma CH, Chan PK, Cheung JL, Niu H, Tam JS, Lim PL. Antibody response of patients with severe acute respiratory syndrome (SARS) targets the viral nucleocapsid. J Infect Dis. 2004 Jul 15;190(2):379-86.

37. Klasse PJ, Sanders RW, Cerutti A, Moore JP. How can HIV-type-1-Env immunogenicity be improved to facilitate antibody-based vaccine development? AIDS Res Hum Retroviruses. 2012 Jan;28(1):1-15.

38. Du L, Zhao G, Lin Y, Sui H, Chan C, Ma S, He Y, Jiang S, Wu C, Yuen KY, Jin DY, Zhou Y, Zheng BJ. Intranasal vaccination of recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARS-CoV infection. J Immunol. 2008;180(2):948–956.
39. Du L, Zhao G, He Y, Guo Y, Zheng BJ, Jiang S, Zhou Y. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. Vaccine. 2007;25(15):2832–2838.

40. Du L, Zhao G, Lin Y, Chan C, He Y, Jiang S, Wu C, Jin DY, Yuen KY, Zhou Y, Zheng BJ. Priming with rAAV encoding RBD of SARS-CoV S protein and boosting with RBD-specific peptides for T cell epitopes elevated humoral and cellular immune responses against SARS-CoV infection. Vaccine. 2008;26(13):1644–1651.

41. Fett C, DeDiego ML, Regla-Nava JA, Enjuanes L, Perlman S. Complete protection against severe acute respiratory syndrome coronavirus-mediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking E protein. J Virol. 2013;87(12):6551–6559.

42. Bao L, Wei Deng W, Gao H, Xiao C, Liu J, Xue J, Lv Q, Liu J, Yu P, Xu Y, Qi F, Qu Y, Li F, Xiang Z, Yu, H, Gong S, Liu M, Wang G, Wang, S, Song Z, Zhao W, Han Y, Zhao L, Liu X, Wei Q, Qin C. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. bioRxiv preprint doi: https://doi.org/10.1101/2020.03.13.990226.

43. Cheng, Y., R. Wong, Y. O. Soo, W. S. Wong, C. K. Lee, M. H. Ng, P. Chan, K. C. Wong, C. B. Leung, and G. Cheng. 2005. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur. J. Clin. Microbiol. Infect. Dis. 24:44–46.

44. Yeh, K. M., T. S. Chiueh, L. K. Siu, J. C. Lin, P. K. Chan, M. Y. Peng, H. L. Wan, J. H. Chen, B. S. Hu, C. L. Perng, J. J. Lu, and F. Y. Chang. 2005. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J. Antimicrob. Chemother. 56:919–922.

45. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, Wang F, Li D, Yang M, Xing L, Wei J, Xiao H, Yang Y, Qu J, Qing L, Chen L, Xu Z, Peng L, Li Y, Zheng H, Chen F, Huang K, Jiang Y, Liu D, Zhang Z, Liu Y, Liu L. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA. 2020 Mar 27. doi: 10.1001/jama.2020.4783.

46. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, Peng C, Yuan M, Huang J, Wang Z, Yu J, Gao X, Wang D, Yu X, Li L, Zhang J, Wu X, Li B, Xu Y, Chen W, Peng Y, Hu Y, Lin L, Liu X, Huang S, Zhou Z, Zhang L, Wang Y, Zhang Z, Deng K, Xia Z, Gong Q, Zhang W, Zheng X, Liu Y, Yang H, Zhou D, Yu D, Hou J, Shi Z, Chen S, Chen Z, Zhang X, Yang X. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A. 2020 Apr 6. pii: 202004168.

47. Ong EZ, Chan YFZ, Leong YW, Lee NMY, Kalimuddin S, Mohideen SMH, Chan KS, Tan AT, Bertoletti A, Ooi EE, and Low JGH. A dynamic immune response shapes COVID-19 progression. Cell Host and Microbe 2020, online.
Liu L, Wei Q, Lin Q, Fang J, Wang H, Kwok H, Tang H, Nishiura K, Peng J, Tan Z, Wu T, Cheung KW, Chan KH, Alvarez X, Qin C, Lackner A, Perlman S, Yuen KY, Chen Z. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 2019 Feb 21;4(4). pii: 123158.

Bolles M, Deming D, Long K, Agnihothram S, Whitmore A, Ferris M, Funkhouser W, Gralinski L, Totura A, Heise M, Baric RS. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J Virol. 2011;85(23):12201–12215.

Honda-Okubo Y, Barnard D, Ong CH, Peng BH, Tseng CT, Petrovsky N. Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J Virol. 2015;89(6):2995–3007.

Iwata-Yoshikawa N, Uda A, Suzuki T, Tsunetsugu-Yokota Y, Sato Y, Morikawa S, Tashiro M, Sata T, Hasegawa H, Nagata N. Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine. J Virol. 2014 Aug;88(15):8597-614.

Clay C, Donart N, Fomukong N, Knight JB, Lei W, Price L, Hahn F, Van Westrienen J, Harrod KS. Primary severe acute respiratory syndrome coronavirus infection limits replication but not lung inflammation upon homologous rechallenge. J Virol. 2012;86(8):4234–4244.

To KK, Zhang AJ, Hung IF, Xu T, Ip WC, Wong RT, Ng JC, Chan JF, Chan KH, Yuen KY. High titer and avidity of nonneutralizing antibodies against influenza vaccine antigen are associated with severe influenza. Clin Vaccine Immunol. 2012;19(7):1012–1018.

Monsalvo AC, Batalle JP, Lopez MF, Krause JC, Klemenc J, Hernandez JZ, Maskin B, Bugna J, Rubinstein C, Aguilar L, Dalurzo L, Libster R, Savy V, Baumeister E, Aguilar L, Cabral G, Font J, Solari L, Weller KP, Johnson J, Echavarria M, Edwards KM, Chappell JD, Crowe JE Jr, Williams JV, Melendi GA, Polack FP. Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. Nat Med. 2011;17(2):195–199.

Halstead SB. Immune enhancement of viral infection. Prog. Allergy 31, 301–364 (1982).

Pierson TC, Diamond MS. A game of numbers: the stoichiometry of antibody-mediated neutralization of flavivirus infection. Prog Mol Biol Transl Sci. 2015;129:141-66. doi: 10.1016/bs.pmbts.2014.10.005. Epub 2014 Dec 1.

Klasse PJ. Neutralization of Virus Infectivity by Antibodies: Old Problems in New Perspectives. Adv Biol. 2014;2014. pii: 157895.
58. Hurtado-Monzón AM, Cordero-Rivera CD, Farfan-Morales CN, Osuna-Ramos JF, De Jesús-González LA, Reyes-Ruiz JM, Del Ángel RM. The role of anti-flavivirus humoral immune response in protection and pathogenesis. Rev Med Virol. 2020 Feb 26:e2100.

59. Jaume M, Yip MS, Cheung CY, Leung HL, Li PH, Kien F, Dutry I, Callendret B, Escriou N, Altmeyer R, Nal B, Daeron M, Bruzzone R, Peiris JS. 2011. Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent Fc R pathway. J Virol 85:10582–10597. https://doi.org/10.1128/JVI.00671-11.

60. Kam YW, Kien F, Roberts A, Cheung YC, Lamirande EW, Vogel L, Chu SL, Tse J, Guarner J, Zaki SR, Subbarao K, Peiris M, Nal B, Altmeyer R. 2007. Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate Fc RII-dependent entry into B cells in vitro. Vaccine 25:729–740. https://doi.org/10.1016/j.vaccine.2006.08.011.

61. Peeples L. News Feature: Avoiding pitfalls in the pursuit of a COVID-19 vaccine. Proc Natl Acad Sci U S A. 2020 Mar 30. pii: 202005456. doi: 10.1073/pnas.2005456117.

62. Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, He L, Chen Y, Wu J, Shi Z, Zhou Y, Du L, Li F. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. J Virol. 2020 Feb 14;94(5). pii: e02015-19. doi: 10.1128/JVI.02015-19.

63. Wang SF, Tseng SP, Yen CH, Yang JY, Tsao CH, Shen CW, Chen KH, Liu FT, Liu WT, Chen YM, Huang JC. 2014. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun 451:208–214. https://doi.org/10.1016/j.bbrc.2014.07.090.

64. Wang Q, Zhang L, Kuwahara K, Li L, Liu Z, Li T, Zhu H, Liu J, Xu Y: Xie J, Morioka H, Sakaguchi N, Qin C, Liu G. Immunodominant SARS-Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human Primates. ACS Infect Dis. 2016;2(5):361–376.

65. Li Y, Wang H, Tang X, Ma D, Du C, Wang Y, Pan H, Zou Q, Zheng J, Xu L, Farzan M, Zhong G. Potential host range of multiple SARS-like coronaviruses and an improved ACE2-Fc variant that is potent against both SARS-CoV-2 and SARS-CoV-1. bioRxiv preprint doi: https://doi.org/10.1101/2020.04.10.032342.

66. Nathan C, Ding A. Nonresolving inflammation. Cell. 2010 Mar 19;140(6):871-82. doi: 10.1016/j.cell.2010.02.029.
67. Aronson JK, Ferner RE. Drugs and the renin-angiotensin system in covid-19. BMJ. 2020 Apr 2;369:m1313. doi: 10.1136/bmj.m1313.

68. Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL, Peters CJ, Couch RB. Immunization with SARS-Coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS ONE. 2012;7(4):e35421.

69. Agrawal AS, Tao X, Algaissi A, Garron T, Narayanan K, Peng BH, Couch RB, Tseng CT. Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum Vaccin Immunother. 2016 Sep;12(9):2351-6.