The Future of Misinformation Detection: New Perspectives and Trends

BIN GUO, Northwestern Polytechnical University
YASAN DING, Northwestern Polytechnical University
LINA YAO, The University of New South Wales
YUNJI LIANG, Northwestern Polytechnical University
ZHIWEN YU, Northwestern Polytechnical University

The massive spread of misinformation in social networks has become a global risk, implicitly influencing public opinion and threatening social/political development. Misinformation detection (MID) has thus become a surging research topic in recent years. As a promising and rapid developing research field, we find that many efforts have been paid to new research problems and approaches of MID. Therefore, it is necessary to give a comprehensive review of the new research trends of MID. We first give a brief review of the literature history of MID, based on which we present several new research challenges and techniques of it, including early detection, detection by multimodal data fusion, and explanatory detection. We further investigate the extraction and usage of various crowd intelligence in MID, which paves a promising way to tackle MID challenges. Finally, we give our own views on the open issues and future research directions of MID, such as model adaptivity/generality to new events, embracing of novel machine learning models, explanatory detection models, and so on.

CCS Concepts: ←Information systems → Social networks; ←Human-centered computing → Collaborative and social computing;

Additional Key Words and Phrases: misinformation detection, fake news, crowd intelligence, explanatory detection, social media

ACM Reference format:
Bin Guo, Yasan Ding, Lina Yao, Yunji Liang, and Zhiwen Yu. 2016. The Future of Misinformation Detection: New Perspectives and Trends. J. ACM 1, 1, Article 1 (January 2016), 23 pages.
DOI: 10.1145/nnnnnn.nnnnnnn

1 INTRODUCTION

Social media platforms (such as Twitter¹, Facebook², Sina Weibo³ etc.) have revolutionized the dissemination mode of information, which greatly improve the velocity, volume, and variety of information transmission. However, while the social platform accelerates the disclosure of information, it also brings the proliferation of misinformation. According to a recent survey of Knight

---

¹https://twitter.com/
²https://www.facebook.com/
³https://weibo.com/

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2016 ACM. 0004-5411/2016/1-ART1 $15.00
DOI: 10.1145/nnnnnn.nnnnnnn

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2016.
Americans estimate that 65% of the news they see on social media is misinformation. Besides, misinformation usually spreads faster, deeper, and wider in social networks [109].

The adversarial use of social media to spread deceptive or misleading information poses a political threat[4]. For example, during the 2016 US presidential election, as many as 529 different rumors were spreading on Twitter [42], and approximately 19 million malicious bot accounts published or retweeted tweets supporting Trump or Clinton\(^5\), which potentially influenced the election. In 2018, the *Science* magazine has published a theme issue about 'Fake News', where they report that fake stories can arouse people’s feelings of fear and surprise [109], which will contribute to social panic. For instance, a fake video named *Somalis 'pushed into shallow grave’ Ethiopia* caused violent clashes between two races in Ethiopia\(^6\) and a social media rumor which suggests that onward travel restrictions have been lifted in Greece resulted in the Greek police clash with migrants\(^7\). The above examples show that the wide spread of fake news poses a serious threat to the ecology of social information dissemination [53]. Since infinite information and limited attention lead to the reduction of humans’ ability to distinguish true information from misinformation [85], it is urgent to detect misinformation on social media.

The widespread misinformation not only misleads people to accept fake beliefs and changes the way they respond to the truth, but also breaks the trustworthiness of entire information ecosystem [98]. What’s worse, the future of online deception, including rumors, fake news and so on, will extend beyond text to high-quality and manipulative information materials, such as images, videos, and audios on a massive scale with the rapid development of artificial intelligence technology [4]. For example, *DeepFakes* [23, 28] utilizes deep learning algorithms to create audio and video of real people saying and doing things they never said or did, which makes misinformation ever more realistic and harder to discern. Therefore, while automatic misinformation detection is not a new phenomenon, it has been attracting much more public attention at present.

In recent years, there have been numerous efforts on misinformation detection (MID). According to the type of features used in existing MID methods, we divide them into four categories: content features, social context features, feature fusion, and deep learning-based methods. The content-based detection methods mainly utilize the textual or visual features extracted from the fake message for classification. The social context-based methods generally rely on the interaction characteristics among the majority of users, such as commenting, reposting, following etc. The feature fusion methods make comprehensive use of content features and social context features. Deep learning-based methods prevailingly learn the latent depth representation of misinformation through neural networks.

Though much effort has been made on MID in the past years, there are still numerous remaining issues to be addressed. First, existing MID methods mostly utilize content or propagation features and often work well on the entire life cycle of misinformation, which may contribute to poor performance for early detection. Since misinformation could have a severe impact in just a few minutes\(^8\), it is crucial for detecting them at the early stage. Second, with the increase of multimodal misinformation propagating on social networks, traditional text-based detection approaches are no longer practicable and it is beneficial to take advantage of images or videos for MID in more complex scenarios. Third, current detection methods only give the final result of whether the claim is false or not, but lack the reason for the decision. It is significant to give a convincing explanation for debunking misinformation and preventing its further propagation.

---

\(^4\)https://www.poynter.org/ethics-trust/2018/americans-believe-two-thirds-of-news-on-social-media-is-misinformation/
\(^5\)https://firstmonday.org/ojs/index.php/fm/article/view/7090/5653
\(^6\)https://www.bbc.com/news/world-africa-46127868
\(^7\)https://www.bbc.com/news/world-europe-47826607
\(^8\)https://www.theverge.com/2013/4/23/4257392/ap-twitter-hacked-claims-explosions-white-house-president-injured
This paper aims to give an in-depth survey of the recent development of MID methods. There have been several surveys on MID [96, 126, 129]. Zhou et al. [126] study fake news from four perspectives, including knowledge-based, style-based, propagation-based and credibility-based, and summarize relevant detection methods in psychology and social science. Zubiaga et al. [129] focus on rumor classification systems and investigate the existing approaches for identifying suspected rumors, collecting rumor-related posts, detecting stances of posts, and evaluating the credibility of target events. Shu et al. [96] divide detection models into news content-based models and social context-based models from the perspective of data mining, and summarize the evaluation measurements of fake news detection algorithms. The above surveys summarize MID studies from different perspectives, mostly aim to categorize the methods for solving the general MID problems. Differently, we intend to investigate this field from a problem-driven perspective, based on a brief review of the recent progress on solving general MID problem, we pay more attention to the new research trends of MID, characterized as the following three research problems, namely early detection, detection by multimodal data fusion, and explanatory detection. Furthermore, at the technical level, we particularly review a novel manner for MID — crowd intelligence-based MID. Different from existing studies that mostly use the content of posts, crowd intelligence-based methods aim to detect misinformation based on aggregated user opinions, conjectures and evidences, which are implicit knowledge injected during human-post interaction (e.g., publishing, commenting, and reposting of posts).

Above all, the main contributions of our work include:

• Based on a brief literature review of MID, we concentrate on the recent research trends of it, including model generality to new events, early detection, multimodal fusion-based detection, and explanatory detection.
• We make an investigation of the crowd-intelligence-based approach for MID, including the scope of crowd intelligence in MID, crowd-intelligence-based detection models, and hybrid human-machine fusion models.
• We further discuss the open issues and promising research directions of MID, such as model adaptivity/generality to new events, embracing of novel machine learning models, and hybrid human-machine systems.

The rest of this paper is organized as follows. We give a brief literature review of existing MID work in Section 2. Then we investigate several new research trends in MID in Section 3. In Section 4, we highlight the crowd intelligence-based detection followed by open issues and future directions of MID in Section 5. Finally, we conclude this article in Section 6.

2 A BRIEF LITERATURE REVIEW

Various types of false information spread on social media platforms, such as fake news, rumor, hoax etc. Moreover, the definition of them varies over existing papers. The widely-recognized definitions are summarized in Table 1.

In this work, we primarily focus on inaccurate information spreading on social networks which misleads people, so we define misinformation as follows:

**Definition 2.1. MISINFORMATION:** Information or a story propagating through social media which is ultimately verified as false or inaccurate.

This definition covers different kinds of false information classified by their intention or motivation, such as profit, political intervention, deliberate deception and unintentional misrepresentation etc. We further give a general definition of the misinformation detection problem.
Table 1. Definitions of Some Types of False Information

| Term      | Definition                                                                 |
|-----------|-----------------------------------------------------------------------------|
| Rumor     | “An item of circulating information whose veracity status is yet to be verified at the time of posting” [129]. |
| Fake News | “A news article that is intentionally and verifiable false” [96].            |
| Hoax      | “A deliberately fabricated falsehood made to masquerade as truth” [51].     |
| Click-bait| “A piece of low-quality journalism which is intended to attract traffic and monetize via advertising revenue” [106]. |
| Disinformation | “Fake or inaccurate information which is intentionally false and deliberately spread” [116]. |
| Misinformation | “Fake or inaccurate information which is unintentionally spread” [116]. |

- For a specific story \( s \), it contains a set of related \( n \) posts \( P = \{ p_1, p_2, \ldots, p_n \} \) and a set of relevant \( m \) users \( U = \{ u_1, u_2, \ldots, u_m \} \). Each \( p_i \) consists of a series of attributes representing the post, including text, images, number of comments etc. Every \( u_i \) consists of a series of attributes describing the user, including name, register time, occupation etc.
- Let \( E = \{ e_1, e_2, \ldots, e_n \} \) refers to the engagements among \( m \) users and \( n \) posts. Each \( e_i \) is defined as \( e_i = \{ p_i, u_j, a, t \} \) representing that a user \( u_j \) interacts with the post \( p_i \) through action \( a \) (posting, reposting, or commenting) at time \( t \).

Definition 2.2. MISINFORMATION DETECTION: Given a story \( s \) with its posts set \( P \), users set \( U \) and engagements set \( E \), the misinformation detection task is to learn a prediction function \( F(s) \rightarrow \{0, 1\} \), satisfying:

\[
F(s) = \begin{cases} 
1, & \text{if } s \text{ is a piece of misinformation} \\
0, & \text{otherwise}
\end{cases}
\]

In the following, we give a brief literature review of existing MID techniques, categorized into four major types, namely content-based, social context-based, feature fusion-based, and deep learning-based methods, as summarized in Table 2 (for the prior three types) and Table 3 (for the last type).

2.1 Content-based Methods

For a specific event, its microblog is generally composed of a piece of text to describe it, often associated with several pictures or videos. Content-based methods are mainly based on specific writing styles or sensational headlines in fake messages, such as lexical features, syntactic features and topic features [87]. Compared with true information, the misinformation is fabricated to mislead the public and attract people’s attention, so its content usually has disparate patterns. For example, Castillo et al. [8, 9] find that highly credible tweets have more URLs and that the text length is usually longer than tweets with lower credibility.

Many studies utilize the lexical and syntactic features to identify misinformation. For instance, Qazvinian et al. [82] find that the part of speech (POS) is a distinguishable feature for rumor detection. Kwon et al. [52] find that some types of sentiments are apparent features for rumor detection, including positive sentiments words (e.g., love, nice, sweet), negating words (e.g., no, not, never), cognitive action words (e.g., cause, know) and inferring action words (e.g., maybe, perhaps), and then they propose a periodic time series model to identify key linguistic differences between rumors and non-rumors.
Lexical features sometimes cannot fully reflect characteristics of misinformation because of its locality, and therefore many studies introduce novel features of topic, sentiment, and writing style for MID. For example, Potthast et al. [81] propose a meta-learning approach that utilizes different writing styles to detect fake news. Wu et al. [113] leverage LDA model to extract topic-level features from contents of Weibo for rumor detection. Hu et al. [37] propose a framework for social spammer detection with sentiment information. In [36], Horne et al. propose a fake news

| Work | Feature Type | Social Content |
|------|--------------|----------------|
| Castillo et al. [8] | Containing question marks, sentiment, URL links, etc. | Propagation initial tweets, max subtree, average degree, etc. |
| Gazvinian et al. [82] | Unigram, bigram, trigram, POS, hashtag etc. | Propagation structure |
| Hu et al. [37] | Topic distribution, sentiment information | |
| Horne et al. [36] | Language complexity, stylistic features | |
| Gupta et al. [32] | First—second—third pronoun, exclamation marks, etc. | Follower-friend ratio, number of friends |
| Shu et al. [98] | | Number of likes, number of followers, etc. |
| Tacchini et al. [101] | | Number of likes |
| Yang et al. [118] | | User opinions, viewpoints, user credibility |
| Ma et al. [65] | Topic distribution, question marks, exclamation marks, etc. | Average number of retweets and comments etc. |
| Liu et al. [62] | | User credibility, friendship |
| Ma et al. [66] | | Syntactic parse tree and subtrees |
| Jin et al. [43] | Hashtag topic, URL links, etc. | Number of forwards and comments, propagation structure |
| Della et al. [19] | TF-IDF, stemmer | Number of likes |
| Shu et al. [97] | Content embedding | News-user social engagement embedding |
| Kwon et al. [52] | Positive words, negating words, cognitive action words, inferring action words etc. | Clustering of friendship network, fraction of isolated nodes etc. |
| Wu et al. [113] | | Number of followers, number of comments and reposts, propagation tree |
| Volkova et al. [105] | Language complexity and readability, moral foundations, psycholinguistic cues, etc. | User opinions |
detection model based on the observation that fake news is substantially different from real news in their title style.

2.2 Social Context-based Methods

Traditional content-based methods analyze the credibility of the single microblog or a piece of news in isolation, ignoring the high correlation of different tweets and events. However, lots of interactions among users or contents (adding friends, following, posting, commenting, reposting and tagging etc.) provide abundant reference information for the identification of misinformation. Concretely, these approaches are mainly divided into post-based and propagation-based methods.

(1) Post-based features

Post-based methods mainly rely on users’ posts which express their emotions or opinions related to the given event. Many studies detect misinformation by analyzing users’ credibility [72] or stances [34, 71]. For instance, Shu et al. [98] explore the truly useful features of user profiles for MID, so as to reduce the burden of feature extraction in the process of detection. Tacchini et al. [101] find that the social posts on Facebook can be detected as hoaxes according to the users’ like behaviors. Yang et al. [118] propose the fake news detection method called UFD, which treats the authenticity of news and users’ reputation as latent variables and exploits users’ social engagements to extract their viewpoints on news credibility.

(2) Propagation-based features

Propagation-based methods evaluate the credibility of messages and events as a whole [7], whose core is credibility network construction and credibility propagation.

Several existing studies detect misinformation by analyzing information propagation modes. For instance, Jin et al. [40] utilize the epidemiological models to describe the dissemination process of rumors on Twitter, and propose an enhanced epidemic model for MID. Ma et al. [65] characterize the temporal patterns of social context features for fake news detection. Liu et al. [62] propose the information dissemination networks based on heterogeneous users’ specific attributes for rumor detection. Kim et al. [46] propose a Bayesian nonparametric model to characterize the process of fake news transmission, jointly utilizing topics of news stories and user interests for MID.

There are also several studies that detect misinformation by constructing specific tree or network structures. For example, Ma et al. [66] model the propagation of rumor-related microblogs as propagation trees, and they propose a kernel-based method to capture the patterns among those propagation trees for MID. In addition, Gupta et al. [33] construct a credibility propagation network containing users, messages and events for MID. In [43], Jin et al. propose a three-layer credibility propagation network that connects microblogs, sub-events and events for news credibility validation.

2.3 Feature Fusion-based Methods

Content-based methods mainly classify the difference between true and false messages in terms of writing style, lexical and syntactic features, while social context-based methods mainly leverage the features extracted from information propagation for MID. Due to their complementary nature [89], recently there have been studies that try to combine them using feature fusion-based methods. For example, Vedova et al. [19] jointly leverage the ID of the users interacting with news and the textual information of the news item for the detection of fake news. In addition to utilizing traditional content features (e.g., lexical or syntactic features), Volkova et al. [105] leverage psycholinguistic signals from the content of fake news and authors’ perspectives from social context
Table 3. A Summary of Deep Learning-Based Methods

| Work              | Model       | Data Inputs |
|-------------------|-------------|-------------|
|                   |             | Text | Visual data | User response | User or website profiles |
| Ma et al. [64]    | RNN         | ✓    |             | ✓             | ✓                         |
| Yu et al. [121]   | CNN         | ✓    |             |               | ✓                         |
| Jin et al. [41]   | RNN         | ✓    | ✓           | ✓             |                           |
| Li et al. [54]    | GRU         | ✓    |             |               | ✓                         |
| Liu et al. [59]   | Attention   | ✓    |             |               | ✓                         |
| Runchansky et al. [88] | RNN | ✓    |             | ✓             | ✓                         |
| Chen et al. [11]  | LSTM + Attention | ✓ |               | ✓             |                           |
| Nguyen et al. [75] | CNN + LSTM | ✓    |             |               |                           |
| Guo et al. [31]   | LSTM + Attention | ✓ |             | ✓             | ✓                         |
| Popat et al. [80] | LSTM + Attention | ✓ |             | ✓             | ✓                         |
| Liu et al. [61]   | CNN + GRU   | ✓    |             |               |                           |

as input data for different classifiers in MID. Shu et al. [97] propose a semi-supervised multi-feature fusion-based model, which combines media bias, news attitude, and relevant user social engagements concurrently for fake news detection.

2.4 Deep Learning-based Methods

Deep learning-based methods aim to abstract deep representation of misinformation data automatically. At present, most work mainly utilize Recurrent Neural Networks (RNN) [64] and Convolutional Neural Networks (CNN) [121] for MID.

Many existing studies utilize deep neural networks to learn latent textual representation of misinformation by modeling related posts as time-series. For example, Ma et al. [64] propose a rumor detection model based on RNN which captures the temporal-linguistic features of a continuous stream of user comments related to each specific event. Li et al. [54] consider that both the forward and backward sequences of post flow provide abundant interactive information, so they propose the Bidirectional Gated Recurrent Unit (GRU) method for rumor detection. Liu et al. [61] find that there are differences between the propagation patterns of fake news and true news, and they utilize CNN and GRU to classify the propagation paths for fake news detection.

There are also studies that combine textual information and social context information (such as user response, user or website profiles etc.) as data inputs of deep neural networks. For instance, Guo et al. [31] propose a hierarchical neural network that have information of users, posts, and
the propagation network as data inputs, and attention mechanisms are leveraged to estimate the distinct contribution of them in MID. In [88], Ruchansky et al. propose a MID model based on RNN, which incorporates features of the news content, the user response, and the source users to promote the performance on fake news detection.

3 NEW TRENDS IN MISINFORMATION DETECTION

Having reviewed the traditional studies on MID, this section investigates several new research trends of this field, including early detection, detection by multimodal data fusion, and explanatory detection.

3.1 Early Detection

Misinformation can be readily spread by massive users on social networks, resulting in serious effects in a very short period [7, 24]. Therefore, early detection of misinformation becomes an important research topic. However, most existing studies debunk misinformation by assuming that they have all lifecycle content. They rely on the aggregation features, such as content characteristics and propagation patterns etc., which tend to emerge slowly and require a certain number of posts for classification. Therefore, the resource on the beginning of a piece of misinformation is so limited that it is challenging to detect it at the early stage. Recently, there have been some efforts for early detection of misinformation.

Many MID models leverage the deep learning techniques for early detection of misinformation. For example, Liu et al. [59] observe that only a small number of posts contribute a lot to MID. In order to select these crucial contents, they propose an attention-based misinformation identification model, which evaluates the importance of posts by their attention values. Besides, the experiment results indicate that the usage of attention mechanism facilitates the early detection of misinformation. Similarly, Chen et al. [11] find that users tend to comment differently (e.g., from surprising to questioning) in different stages of the misinformation diffusion process. Based on this observation, a deep attention model based on RNN is proposed to learn selectively temporal hidden representations of sequential posts for early detection of rumors. Yu et al. [121] utilize the CNN-based model to extract key features from the sequence of posts and learn high-level interactions among them, which is helpful for early detection of misinformation. Nguyen et al. [75] also leverage CNNs for learning the latent representations of each tweet, obtaining the credibility of individual tweets accordingly. They then evaluate whether the target event is a rumor by aggregating the predictions of related tweets at the very beginning of the event.

As for the lacking of data for early detection of misinformation, it will be a helpful method to borrow some knowledge from the related events. In [92], Sampson et al. propose a method for emergent rumor detection by leveraging implicit linkages (e.g., hashtag linkages, web linkages) for employing additional information from related events. The experimental results show that such implicit links notably contribute to identifying emergent rumors correctly when a handful of textual or interactive data is available.

3.2 Detection by Multimodal Data Fusion

Traditional MID methods focus on textual content and propagation network. However, social media posts also contain rich media data such as images and videos, while such multimodal data are often ignored. Images and videos are more appealing to users compared to pure textual information because they can vividly describe target events. Analyzing the relationships among multimodal data and developing fusion-based models can be a promising way to MID [7]. Beyond
images and videos, it is also suggested to incorporate other auxiliary information to improve detection effect, such as user profiles, social contexts, etc. There have been recent studies about MID using multimodal data fusion.

Visual features have been used in different learning models for misinformation detection. For instance, Gupta et al. [32] analyze 10,350 tweets with fake images circulated during Hurricane Sandy in 2012, and find that the temporal characteristics, influence patterns and user responses in the process of image dissemination conduce to MID. Wang et al. [111] and Jin et al. [41] both propose the Recurrent Neural Network based detection models with an attention mechanism (att-RNN), which fuse the multimodal data (images, texts, and social contexts) and their interactions for rumor detection. In [45], Jin et al. observe that there are obvious differences in the image distribution patterns between real and fake news, and thus propose several visual and statistical features to characterize the differences for fake news detection. Sabir et al. [90] present a deep multimodal model for fake images detection, which simultaneously utilizes the convolutional neural network, word2vec, and globe positioning system to extract unique features of fake pictures.

Social context-based detection methods comprehensively utilize the characteristics from user profiles, post contents and social interactions for MID. For example, Shu et al. [98] delve into the relationship between user profiles and online fake news. The findings are useful for designing multimodal fusion MID systems. Then, Shu et al. [99] further explore the social relations among publishers, news pieces, and users, and propose a fake news detection framework called TriFN, which models the inherent relationship among news content, social interactions, and news publishers by nonnegative matrix factorization (NMF) algorithms for MID.

The great advances in image processing techniques have proved that images can be easily edited and modified, making fake images generation more readily. For instance, the face of one person in videos can be automatically replaced with that of another without obvious sense of violation by using the pre-trained Variational Auto-Encoder (VAE) or Generative Adversarial Network (GAN). In [48], Korshunov et al. investigate that existing Facenet-based face recognition algorithms [93] are vulnerable to fake images and videos generated by GAN. Huh et al. [38] propose a fake image detection model based on image self-consistency features, which trains CNN using image exchangeable image file format (EXIF) metadata to determine whether the content of the target image can be generated by an imaging pipeline. Besides, Li et al. [56] propose a deep fake face videos detection model based on LSTM and CNN, which utilizes the eye blinking signals of the target person in videos to determine whether the video is fabricated.

### 3.3 Explanatory Misinformation Detection

Exiting MID detection methods only give a final decision of whether a claim is false or not [7]. Little information is revealed on why the decision is made. Finding evidences that support the decision would be beneficial in debunking the misinformation and preventing its further spreading. To this end, explanatory detection has become another trending research topic of MID.

In [78], Popat et al. put forward a probabilistic model to unite the content-aware and trend-aware evaluating algorithms for MID. Specifically, they model the mutual interactions among the event-related news articles for generating appropriate user-interpretable explanations, including linguistic features, stances and evidences, and the reliability of sources. Gad-Elrab et al. [25] propose the ExFaKT with the aim of providing human understandable explanations for candidate facts, which combines the semantic evidence from text and knowledge graphs. ExFaKT uses Horn rules to rewrite the given fact as multiple easy-to-explain facts for further MID. ClaimVerif [125] is an explanatory claim credibility evaluation system, which takes the stance, viewpoint, source credibility and other factors of the given claim into account for providing evidences. Similarly,
CredEye [79] is also an interpretable MID model which determines whether a given claim is fake by analyzing online articles related to it. The explanation is based on the language style, stance of these articles, and the credibility of their publishers.

4 CROWD INTELLIGENCE-BASED DETECTION

Existing MID studies mainly focus on the content of posts. However, as the posts are generated, interacted, and consumed by users, it will intake various human intelligence (e.g., opinion, stance, questioning, evidence provision) in the creation, commenting, and reposting of posts, and the so-called crowd intelligence [29, 55, 112] is also aggregated at a collective manner during the dissemination process of a claim. As stated by [8], a promising hypothesis is that there are some intrinsic signals in the social media environment which contribute to assessing the credibility of information. Ma et al. [68] also find that Twitter supports “self-detect” of misinformation based on aggregated user opinions, conjectures and evidences. Though, how to leverage crowd intelligence in MID is still an open problem. In section 4, we attempt to address this problem by distilling and presenting several different forms of usage of crowd intelligence in MID systems.

4.1 Crowd Intelligence in Misinformation

In MID, crowd intelligence refers to aggregated cues or social signals from the wisdom of the social media users during the information generation and dissemination process. It can be characterized from the individual level and crowd level.

(1) **Individual level.** It refers to the knowledge that can be leveraged from an individual.

- **User profile.** User preferences, interests, cognition bias, demography, the number of followers.
- **User opinion and stance.** It involves opinions conveyed by users discussing the topic, for/against of the claim, enquires, questions, etc.
- **Source reliability.** It denotes the level of certainty of users who generate and propagate the information.

(2) **Crowd level.** It refers to the knowledge that can be leveraged from a collective of social media users.

- **Social contexts.** The social relations and interactions among source users and disseminators are helpful to understand the certainty of information.
- **Collective knowledge.** The collected evidences provided by the crowd are useful to infer the credibility of information.
- **Collective behaviors.** In many cases, though individual behaviors cannot well characterize the information credibility, the aggregated behaviors from a group of users often reveal more information. This may refer to crowd interaction patterns, behavior or opinion deviation from the majority [50], conflicting viewpoints, and so on.

Having investigated existing MID studies, we distill four different manners of usage of crowd intelligence, as presented below.

- **Crowd learning models.** It mainly uses feature engineering and representative learning to incorporate crowd intelligence in MID models.
- **Crowd behavior modeling.** It uses graph or probabilistic models to model crowd behaviors and interactions to infer the credibility of information.
- **Crowd knowledge transferring.** The learned MID models usually do not work well on new events. This manner tackles how to transfer crowd knowledge from existing events to new events.
• **Hybrid human-machine models.** Considering the complementary nature of human intelligence and machine intelligence, this manner concentrates on developing hybrid human-machine models for MID.

One common character of the prior three manners is that crowd intelligence is used in an implicit manner, without explicit human inputs. Specifically, crowd intelligence is represented as statistical human behavior patterns, used as features or parameters in the learning model. The last manner, however, is based on explicit human inputs, such as using crowdsourcing for data labeling. Thereafter, we describe related work about the prior three forms in Section 4.2, and the last form in Section 4.3.

### 4.2 Implicit Crowd Intelligence Models

In this section, we present the pioneering studies on the usage of implicit crowd intelligence for MID, particularly focusing on the first three manners depicted in Section 4.1, as summarized in Table 4.

1. **Crowd learning models.** In this model, crowd intelligence is represented as features to train classifiers for debunk misinformation. This has been proved useful for early detection of misinformation. For instance, Liu *et al.* [60] try to solve the problem of real-time rumor debunking using only crowd cues from Twitter data, including people’s opinion, statistics of witness accounts, aggregated belief to the rumor, network propagation, and so on. Zhao *et al.* [124] observe that some people are willing to question or inquire the veracity of claims in Twitter before deciding whether to believe this message. Particularly, they find that the usage of enquiring minds facilitates early detection of low accuracy information.

2. **Social relations and interactions.** Social relations and interactions are also widely-used crowd intelligence in MID feature learning. For instance, Wu *et al.* [115] assume that similar messages often conduce to similar information propagation traces. They propose a social media user embedding method to capture the features of social proximity and social network structures, atop which an LSTM model is utilized to classify the information propagation path and identify its veracity. In [86], Rayana *et al.* apply collective opinion clues and relational data to detect misinformation.

   It is also helpful to identify misinformation by leveraging the crowd intelligence that user behaviors of publishing misinformation diverges from those of posting genuine facts. Chen *et al.* [13] propose an unsupervised learning model which combines RNNs and Autoencoders to distinguish rumors from other authentic claims. In [117], Xie *et al.* observe that the review spam attacks tend to be bursty and are strongly correlated with their rating patterns, which are distinct from the normal reviewers’ behavior patterns. Therefore, they propose a review spam detection method based on their temporal behavior patterns.

2. **Crowd behavior modeling.** In this model, collective crowd behaviors, one type of crowd intelligence, are modeled as graphs or probabilistic models to infer information credibility. Hooi *et al.* [35] discover that fraudulent accounts which contribute to misinformation in rating systems often occur in short bursts of time, and have skewed distributions rating. The crowd wisdom is characterized by a Bayesian inference model, which can estimate how much a user’s behaviors deviates from those of the related community and use it to infer information credibility. Similarly, Kumar *et al.* [50] propose a Bayesian model that incorporate the aggregated crowd wisdom, such as the behavior properties of users, reliability of ratings, and goodness of products. By penalizing unusual behaviors, it can infer misinformation in rating platforms.

   There are also studies that leverage aggregated crowd behavior modeling to facilitate early detection of misinformation. For example, Jin *et al.* [44] improve early detection of misinformation by mining conflicting viewpoints in microblogs. The supporting or opposing viewpoints are built
Table 4. The Usage of Crowd Intelligence in MID

| Usage manner | Work | Problem tackled | Usage of crowd intelligence |
|--------------|------|-----------------|-----------------------------|
| Crowd learning models | Liu et al. [60] | Early detection | Features by collected opinion, belief, etc. |
| | Zhao et al. [124] | Early detection | Features by crowd questions or enquires about the veracity. |
| | Wu et al. [115] | General | Features by social relations and propagation network. |
| | Rayana et al. [86] | General | Features by collective opinion clues and relational data. |
| Crowd behavior modeling | Hooi et al. [35] | General | Bayesian modeling, behavior deviation. |
| | Kumar et al. [50] | General | Bayesian modeling, behavior deviation. |
| | Jin et al. [44] | Early detection | A credibility propagation network model that incorporates conflicting social viewpoints. |
| | Ma et al. [68] | Early detection | Modeling reply structures and opinions by tree-structured recursive neural networks. |
| Crowd knowledge transfer | Wang et al. [111] | Early detection & Multimodal data fusion | The Event Adversarial Neural Network model to derive event-invariant features. |
| | Qian et al. [83] | Early detection | A generative Conditional Variational Autoencoder to transfer user response knowledge. |
| | Wu et al. [114] | Early detection | A sparse representation model for shared feature learning. |

into a credibility propagation network model for fake news detection. Ma et al. [68] assume that the repliers are inclined to enquiry who supports or denies the given rumor and express their desire for more evidence. They thus propose two tree-structured recursive neural networks (RvNN) for effective rumor representation learning and early detection, which can model the reply structures and learn to capture the aggregated rumor indicative signals.

(3) Crowd knowledge transfer. Existing MID models still do not perform well on emerging and time-critical events. In other words, existing MID models usually capture abundant event-dependent features which are not common to other events. Therefore, it becomes a necessary to learn and transfer the shared knowledge learned from the existing crowdsourced data to new
Table 5. The Usage of Hybrid Human-Machine Models

| Work                | Problem tackled          | Usage of crowd intelligence                                                                 |
|---------------------|--------------------------|---------------------------------------------------------------------------------------------|
| Nguyen et al. [73]  | Explanatory detection    | The mixed-initiative approach to blend human and machine intelligence.                      |
| Nguyen et al. [74]  | Explanatory detection    | Incorporate explicit crowd intelligence in the probabilistic graphical model.               |
| Vo et al. [104]     | Early detection          | The machine recommends evidence URLs to human guardians to facilitate fact checking.        |
| Kim et al. [47]     | Early detection          | Using the marked temporal point processes to model crowd flagging procedure.                |
| Tachiatschek et al. [103] | Early detection | Using the Bayesian inference mode to incorporate crowd flagging behavior.                  |
| Lim et al. [57]     | Explanatory detection & Early detection | An interactive framework where machines collect evidences from Web search and human can give feedback to the evidences. |
| Bhattacharjee et al. [6] | Early detection | An active learning model that introduces human-machine interaction to update the detection model. |

Crowd knowledge transfer models also facilitate early detection of misinformation. For example, Qian et al. [83] propose a generative Conditional Variational Autoencoder to capture user response patterns from the semantic information of historical users’ comments on true and false news articles. In other words, crowd intelligence is leveraged to generate responses towards new articles to improve the detection capability of the model when user interaction data with articles are not available at the early stage of fake news propagation. Wu et al. [114] also explore whether the detection of emerging rumors could be benefited by the knowledge acquired from historical crowdsourced data. They observe that similar rumors often lead to similar behavior patterns (e.g., curiosity, inquiry). A sparse representation model is built to select shared features and train event-independent classifiers.

4.3 Hybrid Human-Machine Models

MID is a challenging problem and merely automatic models cannot well adapt to various contexts and events. Human intelligence, however, can remedy this by leveraging their knowledge and experience. Hybrid human-machine models are thus developed to harness the complementary nature of human intelligence and machine intelligence for MID detection. Different from the implicit crowd intelligence-based models, the human intelligence used in such models are often layered on explicit human inputs. Such models often present sufficient explainability to facilitate human-computer collaboration, and with the aid of human-machine collaboration, the proposed models generally speed up the detection of misinformation.

There have been several human-machine models built for fact checking in MID, as summarized in Table 5. For instance, Nguyen et al. [73] consider that a system must be transparent in how it
arrives at its prediction for users to trust the model. They propose a mixed-initiative approach that blends human knowledge and experience with AI for fact checking. In [74], Nguyen et al. present a hybrid human-machine approach based on the probabilistic graphical model, which integrates explicit human intelligence (by crowdsourcing) with the computing power to jointly model stance, veracity and crowdsourced labels. The approach is capable of generating interpretations to fact checking. Vo et al. [104] present a fact-checking URL recommendation model with the purpose of stopping people from sharing misinformation. This model motivates guardians (users who tend to correct misinformation) to actively participate in fact-checking activities and spread the verified information to social networks.

Explicit human intelligence is also characterized and used in probabilistic models for fake news detection. In [47], Kim et al. propose CURB, which leverages the marked temporal point processes to model crowd-powered flagging procedure for fake news. To significantly mitigate the propagation of misinformation with provable guarantees, CURB can decide which claims to choose for fact checking and when to check misinformation. Tschiatschek et al. [103] also present a Bayesian inference model that incorporates crowd flagging for detecting fake news. Lim et al. [57] present an interactive framework called iFACT for assessing the credibility of new claims from tweets. It collects independent evidence from web search results and identifies the dependencies between historical claims and new claims. Users are allowed to provide explicit feedback on whether the web search results are relevant, support or against a claim. In [6], Bhattacharjee et al. propose a human-machine collaborative learning system for fast identification of fake news. An active learning approach is proposed, where an initial classifier is learnt on a limited amount of labelled data followed by an interactive approach to gradually update the model.

5 OPEN ISSUES AND FUTURE DIRECTIONS

Though there have been increasingly considerable efforts to address the challenges in MID systems, there are still open issues to be studied in the future, as discussed below.

(1) **Model adaptivity/generality to new events.** MID methods need to be capable of identifying unseen, newly coming events, since the existing data of the system may differ from that of emerging events. However, most existing approaches tend to extract event-specific features that hardly could be shared to newly-presented events [129]. As stated by Tolosi et al. [102], feature engineering-based methods can be hard to detect misinformation across different events as features change dramatically across events. Therefore, model generality or adaptivity is quite important for MID models to be applied to different events. Zubiga et al. [130] state that the domain-dependent distribution of features could limit the generalization ability of the models. As the distribution of most characteristics direct to the event, the performance of the detection models will be affected. Though there have been some crowd knowledge transfer models [83, 111, 114] discussed in Section 4.2, there are much more to be investigated. Transfer learning models [30, 77], as successfully used in other domains, can be leveraged to design domain-adaptative MID models. The usage of GAN-based discriminators [111] is another promising way to generate generalized MID models with shared features.

Another interesting direction to be explored is that we should borrow knowledge from similar domains. For example, we can refer to web security, virus/spam detection methods [12, 94, 128], which also suffer from similar issues such as early detection and model generalization.

(2) **Embracing of novel machine learning models.** The misinformation detection process is by nature the learning of a classifier to identify the credibility of information. Recent years have witnessed the rapid and swift development of AI techniques. We have also found that many studies have built deep learning models [11, 41, 61, 64, 75, 88, 121] to improve the performance
of misinformation detection. Though, there are still more that can be explored. In the following we review several representative examples that leverage advanced machine learning techniques to MID.

- **Multi-task learning.** Multi-task learning [67] is intended for improving the generalization performance of the model by using domain knowledge contained in related tasks. Existing multi-task learning methods seek to find commonalities among multiple tasks by modeling the task relevance, such as feature sharing, sub-space sharing, and parameter sharing, as a supplement to knowledge for promoting the learning effect of each task. For instance, Ma et al. [67] consider that rumor detection is highly correlated with the stance classification task, and thus propose a neural multi-task learning framework for better detection. Under the mechanism of weight sharing, they present two RNN-based multi-task structures to jointly train these two tasks, which could extract ordinary as well as task-specific features for rumor representation. Inspired by this work, we can investigate the connection and collaboration between MID and other tasks and design multi-task learning based algorithms to improve MID performance.

- **Semi-supervised models.** Most existing MID works concentrate on supervised classification taking advantage of a great quantity of labeled data (e.g., fake or not) on the basis of manual feature extraction. However, in many cases we can only have a small number of labels. Semi-supervised models are often leveraged for dealing with the label sparsity issue. For example, Guacho et al. [27] propose a semi-supervised content-based MID method, which leverages the text embeddings based on tensor decomposition to capture the global and local information of the news article. After constructing the K-Nearest Neighbor (K-NN) graph of all the articles, they use a belief propagation algorithm to spread known article labels into the graph for obtaining the final credibility of the news.

- **Hybrid learning models.** The develop of hybrid learning models that integrate linear models with deep learning models have become a new research trend in AI, i.e., the combined usage of explicit features and latent features. It is to leverage the complementary natures of both types of learning models. For example, *Wide & Deep* [15] is a well-performed framework for recommender systems, where the *Wide* part is used to integrate explicit features and the *Deep* part is to learn the non-linear, latent features. There are also preliminary hybrid learning models in MID. Yang et al. [119] propose the *TT-CNN* model for fake news detection, which can be trained with textual and visual information corporately based on the fusion of explicit and implicit feature spaces. Though, hybrid learning models are still at its early stage, there are still much more to be studied towards this direction, such as the fusion of probabilistic graph models and deep learning models.

(3) **Explanatory detection models.** Providing evidence or explanations to the learning results can increase user trust to the learning model. Though there have been few works on explanatory MID models, the introduction of explanations has been investigated in other related domains, such as recommender systems.

Explainable recommendation, which provides explanations about why an item is recommended, has attracted increasing attention in recent years [123]. It can help to improve users’ acceptability, credibility, and satisfaction with recommender systems and enhance the systems’ persuasiveness. For example, Chen et al. [14] present a visually explainable recommendation method based on attentive neural networks to model user attention on images. Users can be informed of why an item is recommended by providing personalized and intuitive visual highlights. Catherine et al. [10] study how to generate explainable recommendations with the support of external knowledge graphs, where a personalized PageRank procedure is proposed to rank items and knowledge graph
entities together. In [110], Wang et al. propose a model-agnostic explanatory recommendation system based on reinforcement learning (RL), which can flexibly control the presentation quality of the explanations. Above all, the methods used in such explainable recommendation systems can inspire us to design better explainable MID systems.

From a higher perspective, machine learning models have powered breakthroughs in diverse application areas (beyond recommender systems and MID). Despite the big success, we still lack understanding of their intrinsic behaviors, such as how a classifier arrives at a particular decision. This has result in the surging research direction of Interpretable Machine Learning (IML). IML gives machine learning models the ability to explain or to present in understandable terms to a human [1, 20]. Du et al. [21] define two types of interpretability: model-level interpretation and prediction-level explanation. Model-level interpretation can illuminate the inner working mechanisms of machine learning models and increase their transparency. Prediction-level explanation helps uncover the relations between a specific input and the model output. For MID, it is more focus on prediction-level explanation, which can illustrate how a decision can be arrived (using the elements such as source reliability, evidences, stances). A representative scheme of constructing prediction-level explainable models is employing the attention mechanism, which is widely utilized to explain predictions made by sequential models (e.g., RNNs). We should also study other approaches rooting from IML to enhance the explainability of MID systems.

(4) Hybrid human-machine systems. As discussed in Section 4.3, the introduction of human intelligence in the detection of fake news has been proven a promising research direction. Broadly speaking, it belongs to the “human computation” paradigm, which aims to develop human-machine systems that interweave crowd and machine capabilities seamlessly to accomplish tasks that neither can do alone [69, 107]. There have been several representative examples of human-machine systems. For example, reCAPTCHA [108] is a Captcha-like system to protect computer security, while at the same time it harnesses the combined efforts of individuals to the digitalization of books. Pandora [76] is a hybrid human-machine approach that can explain failures in component-based machine learning systems.

MID has close relationship with another hot research topic in knowledge discovery, namely truth discovery. Due to the ability to extract reliable information from conflicting multi-sourced information using human intelligence, truth discovery has become an increasingly significant research topic. For MID, we also have multiple posts about the same claim of an event, and the target is to identify the truth of the claim. Thereby, there are similarity between the two research problems and we can borrow knowledge from truth discovery systems to facilitate the MID. For example, to deduce the correct labels as much as possible from the noisy crowdsourced labels, Liu et al. [58] propose an expert validation-assisted image label truth discovery method. In particular, it utilizes a semi-supervised learning algorithm which is able to maximize the influence of expert labels to lower expert efforts in human-computer collaboration. Zhang et al. [122] propose a probabilistic graph-based truth discovery model named “TextTruth”, which selects highly trustworthy answers to a given question by comprehensively learning the trustworthiness of key factors (a group of keywords) in each answer. The TextTruth infers the credibility of the answer providers and the trustworthiness of every answer factor together in an unsupervised manner.

How to aggregate crowd wisdom is also important in MID systems. We can also learn from truth discovery systems. For example, Yin et al. [120] present a model of crowd wisdoms aggregation in an unsupervised manner called Label-Aware Autoencoders (LAA), which extracts the underlying features and patterns of multi-sourced labels and infers the trustworthy labels by a classifier and a reconstructor. To tackle the challenge that the same information source has different credibility on various topics, Ma et al. [63] propose a crowdsourced data aggregation method named
FaitCrowd. The FaitCrowd jointly learns the topic distribution of a given question, the specific topic-based knowledge of answer providers, and true answers by modeling the question content and the sources’ response behaviors together on a probabilistic Bayesian model.

(5) Propagation by social bots. Existing MID studies concentrate on the content and propagation patterns of posts. The characters of the “accounts” that publish and disseminate the posts, however, are not well investigated. Recently, there are several efforts paid to study the essential causes of misinformation spreading as rapidly as viruses. For example, Zhao et al. [95] perform a detailed analysis of 14 million tweets posted on Twitter during the 2016 U.S. presidential election, 400 thousand of which contain misinformation. They observe that the “social bots” apparently facilitate the rapid diffusion of fake news. The social bot usually refers to a computer algorithm or software program that imitates human interaction behaviors (e.g., producing contents, following other accounts, reposting posts etc.) with purpose on social networks [22]. In addition, these malicious bot accounts are abnormally active in the very early stage of fake news propagation.

The above findings suggest that the suppression of social bots can be a promising way to mitigate the dissemination of misinformation. In the last few years, social bots have been active on social media platforms, such as Facebook, Twitter etc. There have also been studies on social bot behavior analysis and automatic detection. In [22], Ferrara et al. classify the existing detection approaches for social bots into four categories, including graph-based models, crowdsourcing, feature-based models, and hybrid models. Almaatoug et al. [3] conduct an authoritative analysis of the behaviors of the spam accounts in social networks. They design a detection method that incorporate the features such as content attributes, social interactions, and profile properties. Similarly, Minnich et al. [70] propose the BotWalk bot detection method, where they characterize accounts with various behavioral features, such as metadata, content, temporal information, and network interaction. Cresci et al. [17] conduct a penetrating analysis of the collective behaviors of social bots and present the Social Fingerprinting technique for spambot detection. In particular, they exploit the digital DNA technique for characterizing the collective behaviors of all the accounts, and a DNA-inspired method is then proposed to characterize genuine accounts and spambots. Cresci et al. [16] also leverage the characteristics of group accounts to detect spambots.

(6) Adversarial attack and defense in misinformation detection models. As discussed in Section 2.4, the prevalence of deep learning-based MID models contributes to effective improvement of recognition performance. However, Szegedy et al. [100] have proven that the trained neural networks may fail to respond to adversarial attacks, which means that adding some small perturbations to the input vectors could make models get wrong results [2]. Existing MID studies rarely highlight the robustness of detection models which can be deceived by adversarial attacks.

Although there have been few studies on adversarial attack and defense in MID models, the related work about other tasks [26, 49] has been investigated. For instance, Dai et al. [18] present an adversarial attack method for graph data based on reinforcement learning which learns the optimal attack policy by increasing or decreasing the amount of edges in the graph. With the purpose of generating universal adversarial perturbations for text, Behjati et al. [5] propose a gradient projection-based attack method. Jia et al. [39] attack question and answer systems by adding sentences or phrases to questions that do not cause difficulty to the human understanding.

The above attack studies can provide guidance for the research of adversarial attack defense in MID models. Zhou et al. [127] further divide adversarial attacks on MID models into fact distortion, subject-object exchange, and cause confounding, and propose a crowdsourced knowledge graph to collect timely facts about news events for resisting adversarial attacks. Qiu et al. [84] classify defensive methods into three categories, including modifying data (e.g. adversarial training, gradient hiding), modifying models (e.g. regularization, defensive distillation), and using auxiliary tools (e.g.
Defense-GAN [91]). Though some studies have already been done in this field, there are still more efforts to be conducted on adversarial attack and defense for MID.

6 CONCLUSION

We have made a systematic review of the research trends of misinformation detection. Having given a brief review of the literature of MID, we present several new research challenges and techniques of it, including early detection, detection by multimodal data fusion, and explanatory detection. We further investigate the usage of crowd intelligence in MID, including crowd intelligence-based MID models and hybrid human-machine MID models. Though there has been a big research progress in MID, it is still at the early stage and there are numerous open research issues and promising research directions to be studied, such as model adaptivity/generality to new events, embracing novel machine learning models, explanatory detection models, and so on.

ACKNOWLEDGMENTS

This work was partially supported by the National Key R&D Program of China (2017YFB1001803), and the National Natural Science Foundation of China (No. 61772428, 61725205).

REFERENCES

[1] Amina Adadi and Mohammed Berrada. 2018. Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI). IEEE Access 6 (2018), 52138–52160.
[2] Naveed Akhtar and Ajmal Mian. 2018. Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access 6 (2018), 14410–14430.
[3] Abdullah Almaatouq, Erez Shmueli, Mariam Nouh, Ahmad Alabulkareem, Vivek K Singh, Mansour Alsaleh, Abdulrahman Alarifi, Anas Alfaris, et al. 2016. If it looks like a spammer and behaves like a spammer, it must be a spammer: analysis and detection of microblogging spam accounts. International Journal of Information Security 15, 5 (2016), 475–491.
[4] Jonathan Bakdash, Char Sample, Monica Rankin, Murat Kantarcioğlu, Jennifer Holmes, Sue Kase, Erin Zaroukian, and Boleslaw Szymanski. 2018. The Future of Deception: Machine-Generated and Manipulated Images, Video, and Audio?. In 2018 International Workshop on Social Sensing (SocialSens). IEEE, 2–2.
[5] Melika Behjati, Seyed-Mohsen Moosavi-Dezfooli, Mahdieh Soleymani Baghshah, and Pascal Frossard. 2019. Universal Adversarial Attacks on Text Classifiers. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 7345–7349.
[6] Sreyasee Das Bhattacharjee, Ashit Talukder, and Bala Venkatram Balantrapu. 2017. Active learning based news veracity detection with feature weighting and deep-shallow fusion. In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 556–565.
[7] Juan Cao, Junbo Guo, Xirong Li, Zhiwei Jin, Han Guo, and Jintao Li. 2018. Automatic rumor detection on microblogs: A survey. arXiv preprint arXiv:1807.03505 (2018).
[8] Carlos Castillo, Marcelo Mendoza, and Barbara Poblete. 2011. Information credibility on twitter. In Proceedings of the 20th international conference on World wide web. ACM, 675–684.
[9] Carlos Castillo, Marcelo Mendoza, and Barbara Poblete. 2013. Predicting information credibility in time-sensitive social media. Internet Research 23, 5 (2013), 560–588.
[10] Rose Catherine, Kathryn Mazaitis, Maxine Eskenazi, and William Cohen. 2017. Explainable entity-based recommendations with knowledge graphs. arXiv preprint arXiv:1707.05254 (2017).
[11] Tong Chen, Yue Li, Hongzhi Yin, and Jun Zhang. 2018. Call attention to rumors: Deep attention based recurrent neural networks for early rumor detection. In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 40–52.
[12] Wenji Chen, Yang Liu, and Yong Guan. 2013. Cardinality change-based early detection of large-scale cyber-attacks. In 2013 Proceedings IEEE INFOCOM. IEEE, 1788–1796.
[13] Weiling Chen, Yan Zhang, Chai Kiat Yeo, Chiew Tong Lau, and Bu Sung Lee. 2018. Unsupervised rumor detection based on users’ behaviors using neural networks. Pattern Recognition Letters 105 (2018), 226–233.
[14] Xu Chen, Yongfeng Zhang, Hongteng Xu, Yixin Cao, Zheng Qin, and Hongyuan Zha. 2018. Visually explainable recommendation. arXiv preprint arXiv:1801.10288 (2018).
The Future of Misinformation Detection: New Perspectives and Trends

[15] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. 2016. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems. ACM, 7–10.

[16] Stefano Cresci, Roberto Di Pietro, Marinella Petrocchi, Angelo Spognardi, and Maurizio Tesconi. 2017. The paradigm-shift of social spambots: Evidence, theories, and tools for the arms race. In Proceedings of the 26th International Conference on World Wide Web Companion. International World Wide Web Conferences Steering Committee, 963–972.

[17] Stefano Cresci, Roberto Di Pietro, Marinella Petrocchi, Angelo Spognardi, and Maurizio Tesconi. 2017. Social fingerprinting: detection of spambot groups through DNA-inspired behavioral modeling. IEEE Transactions on Dependable and Secure Computing 15, 4 (2017), 561–576.

[18] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. 2018. Adversarial attack on graph structured data. arXiv preprint arXiv:1806.02371 (2018).

[19] Marco I. Della Vedova, Eugenio Tacchini, Stefano Moret, Gabriele Ballarin, Massimo DiPierro, and Luca de Alfaro. 2018. Automatic online fake news detection combining content and social signals. In 2018 22nd Conference of Open Innovations Association (FRUCT). IEEE, 272–279.

[20] Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608 (2017).

[21] Mengnan Du, Ninghao Liu, and Xia Hu. 2018. Techniques for interpretable machine learning. arXiv preprint arXiv:1808.00033 (2018).

[22] Emilio Ferrara, Onur Varol, Clayton Davis, Filippo Menczer, and Alessandro Flammini. 2016. The rise of social bots. Comm. ACM 59, 7 (2016), 96–104.

[23] Luciano Floridi. 2018. Artificial intelligence, deepfakes and a future of ectypes. Philosophy & Technology 31, 3 (2018), 317–321.

[24] Adrien Friggeri, Lada Adamic, Dean Eckles, and Justin Cheng. 2014. Rumor cascades. In Eighth International AAAI Conference on Weblogs and Social Media.

[25] Mohamed H Gad-Elrub, Daria Stepanova, Jacopo Urbani, and Gerhard Weikum. 2019. ExFaKT: A Framework for Explaining Facts over Knowledge Graphs and Text. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. ACM, 87–95.

[26] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[27] Gisel Bastidas Guacho, Sara Abdali, Neil Shah, and Evangelos E Papalexakis. 2018. Semi-supervised Content-based Detection of Misinformation via Tensor Embeddings. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE, 322–325.

[28] David Güera and Edward J Delp. 2018. Deepfake video detection using recurrent neural networks. In 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 1–6.

[29] Bin Guo, Chao Chen, Daqing Zhang, Zhiwen Yu, and Alvin Chin. 2016. Mobile crowd sensing and computing: when participatory sensing meets participatory social media. IEEE Communications Magazine 54, 2 (2016), 131–137.

[30] Bin Guo, Jing Li, Vincent W Zheng, Zhu Wang, and Zhiwen Yu. 2018. Citytransfer: Transferring inter-and intra-city knowledge for chain store site recommendation based on multi-source urban data. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 4 (2018), 135.

[31] Han Guo, Juan Cao, Yazi Zhang, Junbo Guo, and Jintao Li. 2018. Rumor Detection with Hierarchical Social Attention Network. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management. ACM, 943–951.

[32] Aditi Gupta, Hemank Lamba, Ponnurangam Kumaraguru, and Anupam Joshi. 2013. Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In Proceedings of the 22nd international conference on World Wide Web. ACM, 729–736.

[33] Manish Gupta, Peixiang Zhao, and Jiawei Han. 2012. Evaluating event credibility on twitter. In Proceedings of the 2012 SIAM International Conference on Data Mining. SIAM, 153–164.

[34] Andreas Hanselowski, Avinesh PVS, Benjamin Schiller, Felix Caspelherr, Debanjan Chaudhuri, Christian M Meyer, and Iryna Gurevych. 2018. A retrospective analysis of the fake news challenge stance detection task. arXiv preprint arXiv:1806.05180 (2018).

[35] Bryan Hooi, Neil Shah, Alex Beutel, Stephan Gümennann, Leman Akoglu, Mohit Kumar, Disha Makhija, and Christos Faloutsos. 2016. Birdnest: Bayesian inference for ratings-fraud detection. In Proceedings of the 2016 SIAM International Conference on Data Mining. SIAM, 495–503.

[36] Benjamin D Horne and Sibel Adali. 2017. This just in: fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news. In Eleventh International AAAI Conference on Web and Social Media.
[37] Xia Hu, Jiliang Tang, Huiji Gao, and Huan Liu. 2014. Social spammer detection with sentiment information. In 2014 IEEE International Conference on Data Mining. IEEE, 180–189.

[38] Minyoung Huh, Andrew Liu, Andrew Owens, and Alexei A Efros. 2018. Fighting fake news: Image splice detection via learned self-consistency. In Proceedings of the European Conference on Computer Vision (ECCV). 101–117.

[39] Robin Jia and Percy Liang. 2017. Adversarial examples for evaluating reading comprehension systems. arXiv preprint arXiv:1707.07328 (2017).

[40] Fang Jin, Edward Dougherty, Parang Saraf, Yang Cao, and Naren Ramakrishnan. 2013. Epidemiological modeling of news and rumors on twitter. In Proceedings of the 7th Workshop on Social Network Mining and Analysis. ACM, 8.

[41] Zhiwei Jin, Juan Cao, Guan Huan, Yongdong Zhang, and Jiebo Luo. 2017. Multimodal fusion with recurrent neural networks for rumor detection on microblogs. In Proceedings of the 25th ACM international conference on Multimedia. ACM, 795–816.

[42] Zhiwei Jin, Juan Cao, Yongdong Zhang, Yu Wang, and Jiebo Luo. 2017. Detection and analysis of 2016 us presidential election related rumors on twitter. In International conference on social computing, behavioral-cultural modeling and behavior representation in modeling and simulation. Springer, 14–24.

[43] Zhiwei Jin, Juan Cao, Yu-Gang Jiang, and Yongdong Zhang. 2014. News credibility evaluation on microblog with a hierarchical propagation model. In 2014 IEEE International Conference on Data Mining. IEEE, 230–239.

[44] Zhiwei Jin, Juan Cao, Yongdong Zhang, and Jiebo Luo. 2016. News verification by exploiting conflicting social viewpoints in microblogs. In Thirtieth AAAI Conference on Artificial Intelligence.

[45] Zhiwei Jin, Juan Cao, Yongdong Zhang, Jianshe Zhou, and Qi Tian. 2016. Novel visual and statistical image features for microblogs news verification. IEEE transactions on multimedia 19, 3 (2016), 598–608.

[46] Jooyeon Kim, Dongkwan Kim, and Alice Oh. 2019. Homogeneity-Based Transmissive Process to Model True and False News in Social Networks. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. ACM, 348–356.

[47] Jooyeon Kim, Behzad Tabibian, Alice Oh, Bernhard Schölkopf, and Manuel Gomez-Rodriguez. 2018. Leveraging the crowd to detect and reduce the spread of fake news and misinformation. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. ACM, 324–332.

[48] Pavel Korshunov and Sebastien Marcel. 2018. DeepFakes: a New Threat to Face Recognition? Assessment and Detection. arXiv preprint arXiv:1812.08685 (2018).

[49] Velodymyr Kuleshov, Shantanu Thakoor, Tingfung Lau, and Stefano Ermon. 2018. Adversarial examples for natural language classification problems. (2018).

[50] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and VS Subrahmanian. 2018. Rev2: Fraudulent user prediction in rating platforms. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. ACM, 333–341.

[51] Srijan Kumar, Robert West, and Jure Leskovec. 2016. Disinformation on the web: Impact, characteristics, and detection of wikipedia hoaxes. In Proceedings of the 25th international conference on World Wide Web. International World Wide Web Conferences Steering Committee, 591–602.

[52] Sejeong Kwon, Meeyoung Cha, Kyomin Jung, Wei Chen, and Yajun Wang. 2013. Prominent features of rumor propagation in online social media. In 2013 IEEE 13th International Conference on Data Mining. IEEE, 1103–1108.

[53] David MJ Lazer, Matthew A Baum, Yochai Benkler, Adam J Berinsky, Kelly M Greenhill, Filippo Menczer, Miriam J Metzger, Brendan Nyhan, Gordon Pennycook, David Rothschild, et al. 2018. The science of fake news. Science 359, 6380 (2018), 1094–1096.

[54] Lizhao Li, Guoyong Cai, and Nannan Chen. 2018. A Rumor Detection Method Based on Deep Bidirectional GRU Neural Network. In 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC). IEEE, 755–759.

[55] Wei Li, Wen-jun Wu, Huai-min Wang, Xue-qi Cheng, Hua-jun Chen, Zhi-hua Zhou, and Rong Ding. 2017. Crowd intelligence in AI 2.0 era. Frontiers of Information Technology & Electronic Engineering 18, 1 (2017), 15–43.

[56] Yuezun Li, Ming-Ching Chang, Hany Farid, and Siwei Lyu. 2018. In ICT: oculus: Exposing ai generated fake face videos by detecting eye blinking. arXiv preprint arXiv:1806.02877 (2018).

[57] Wee Yong Lim, Mong Li Lee, and Wynne Hsu. 2017. iFACT: an interactive framework to assess claims from tweets. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. ACM, 787–796.

[58] Mengchen Liu, Liu Jiang, Junlin Liu, Xiting Wang, Jun Zhu, and Shixia Liu. 2017. Improving Learning-from-Crowds through Expert Validation.. In IJCAI. 2329–2336.

[59] Qiang Liu, Feng Yu, Shu Wu, and Liang Wang. 2018. Mining Significant Microblogs for Misinformation Identification: An Attention-Based Approach. ACM Transactions on Intelligent Systems and Technology (TIST) 9, 5 (2018), 50.

[60] Xiaoou Liu, Armineh Nourbakhsh, Quanzhi Li, Rui Fang, and Sameena Shah. 2015. Real-time rumor debunking on twitter. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. ACM, 1867–1870.
The Future of Misinformation Detection: New Perspectives and Trends

[61] Yang Liu and Yi-Fang Brook Wu. 2018. Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks. In Thirty-Second AAAI Conference on Artificial Intelligence.

[62] Yang Liu and Songhua Xu. 2016. Detecting rumors through modeling information propagation networks in a social media environment. *IEEE Transactions on computational social systems* 3, 2 (2016), 46–62.

[63] Fenglong Ma, Yaliang Li, Qi Li, Minghui Qiu, Jing Gao, Shi Zhi, Lu Su, Bo Zhao, Heng Ji, and Jiawei Han. 2015. Faircrowd: Fine grained truth discovery for crowdsourced data aggregation. In *Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. ACM, 745–754.

[64] Jing Ma, Wei Gao, Prasenjit Mitra, Sejong Kwon, Bernard J Jansen, Kam-Fai Wong, and Meeyoung Cha. 2016. Detecting rumors from microblogs with recurrent neural networks. In *Ijcai*. 3818–3824.

[65] Jing Ma, Wei Gao, Zhongyu Wei, Yueming Lu, and Kam-Fai Wong. 2015. Detect rumors using time series of social context information on microblogging websites. In *Proceedings of the 24th ACM International on Conference on Information and Knowledge Management*. ACM, 1751–1754.

[66] Jing Ma, Wei Gao, and Kam-Fai Wong. 2017. Detect rumors in microblog posts using propagation structure via kernel learning. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. 708–717.

[67] Jing Ma, Wei Gao, and Kam-Fai Wong. 2018. Detect rumor and stance jointly by neural multi-task learning. In *Companion of The Web Conference 2018 on The Web Conference 2018*. International World Wide Web Conferences Steering Committee, 585–593.

[68] Jing Ma, Wei Gao, and Kam-Fai Wong. 2018. Rumor detection on twitter with tree-structured recursive neural networks. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. 1980–1989.

[69] Pietro Michelucci and Janis L Dickinson. 2016. The power of crowds. *Science* 351, 6268 (2016), 32–33.

[70] Amanda Minnich, Nikan Chavoshi, Danai Koutra, and Abdullah Mueen. 2017. BotWalk: Efficient adaptive exploration of Twitter bot networks. In *Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017*. ACM, 467–474.

[71] Saif M Mohammad, Parinaz Sobhani, and Svetlana Kiritchenko. 2017. Stance and sentiment in tweets. *ACM Transactions on Internet Technology (TOIT)* 17, 3 (2017), 26.

[72] Meredith Ringel Morris, Scott Counts, Asta Roseway, Aaron Hoff, and Julia Schwarz. 2012. Tweeting is believing?: understanding microblog credibility perceptions. In *Proceedings of the ACM 2012 conference on computer supported cooperative work*. ACM, 441–450.

[73] An T Nguyen, Aditya Kharosekar, Saumyaa Krishnan, Siddhesh Krishnan, Elizabeth Tate, Byron C Wallace, and Matthew Lease. 2018. Believe it or not: Designing a human-AI partnership for mixed-initiative fact-checking. In *The 31st Annual ACM Symposium on User Interface Software and Technology*. ACM, 189–199.

[74] An T Nguyen, Aditya Kharosekar, Matthew Lease, and Byron Wallace. 2018. An interpretable joint graphical model for fact-checking from crowds. In Thirty-Second AAAI Conference on Artificial Intelligence.

[75] Tu Ngoc Nguyen, Cheng Li, and Claudia Niederée. 2017. On early-stage debunking rumors on twitter: Leveraging the wisdom of weak learners. In *International Conference on Social Informatics*. Springer, 141–158.

[76] Besmira Nushi, Ece Kamar, and Eric Horvitz. 2018. Towards accountable AI: Hybrid human-machine analyses for characterizing system failure. In Sixth AAAI Conference on Human Computation and Crowdsourcing.

[77] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. *IEEE Transactions on knowledge and data engineering* 22, 10 (2009), 1345–1359.

[78] Kashyap Popat, Subhabrata Mukherjee, Jannik Strötgen, and Gerhard Weikum. 2017. Where the truth lies: Explaining the credibility of emerging claims on the web and social media. In *Proceedings of the 26th International Conference on World Wide Web Companion*. International World Wide Web Conferences Steering Committee, 1003–1012.

[79] Kashyap Popat, Subhabrata Mukherjee, Jannik Strötgen, and Gerhard Weikum. 2018. CredEye: A Credibility Lens for Analyzing and Explaining Misinformation. In *Companion of The Web Conference 2018 on The Web Conference 2018*. International World Wide Web Conferences Steering Committee, 155–158.

[80] Kashyap Popat, Subhabrata Mukherjee, Andrew Yates, and Gerhard Weikum. 2018. DeClarE: Debunking fake news and false claims using evidence-aware deep learning. arXiv preprint arXiv:1809.06416 (2018).

[81] Martin Potthast, Johannes Kiesel, Kevin Reinartz, Janek Bevendorff, and Benno Stein. 2017. A stylometric inquiry into hyperpartisan and fake news. arXiv preprint arXiv:1702.05638 (2017).

[82] Vahed Qazvinian, Emily Rosengren, Dragomir R Radev, and Qiaozhu Mei. 2011. Rumor has it: Identifying misinformation in microblogs. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing*. Association for Computational Linguistics, 1589–1599.

[83] Feng Qian, Chengyue Gong, Karishma Sharma, and Yan Liu. 2018. Neural User Response Generator: Fake News Detection with Collective User Intelligence. In *IJCAI*. 3834–3840. 
Soroush Vosoughi, Deb Roy, and Sinan Aral. 2018. The spread of true and false news online.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2015. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013).

Eugenio Tacchini, Gabriele Ballarin, Marco L Della Vedova, Stefano Moret, and Luca de Alfaro. 2017. Some like it hoax: Automated fake news detection in social networks. arXiv preprint arXiv:1704.07506 (2017).

Laura Tolosi, Andrey Tagarev, and Georgi Georgiev. 2016. An analysis of event-agnostic features for rumour classification in twitter. In Tenth International AAAI Conference on Web and Social Media.

Sebuti Rayana and Leman Akoglu. 2015. Collective opinion spam detection: Bridging review networks and meta-data. In Proceedings of the 21th acm sigkdd international conference on knowledge discovery and data mining. ACM, 985–994.

Svitlana Volkova and Jin Yea Jang. 2018. Misleading or falsification: Inferring deceptive strategies and types in online news and social media. In Companion of the Web Conference 2018 on The Web Conference 2018. International World Wide Web Conferences Steering Committee, 575–583.

Nguyen Vo and Kyumin Lee. 2018. The rise of guardians: Fact-checking url recommendation to combat fake news. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. ACM, 275–284.

Svitlana Volkova and Jin Yea Jang. 2018. Misleading or falsification: Inferring deceptive strategies and types in online news and social media. In Companion of the Web Conference 2018 on The Web Conference 2018. International World Wide Web Conferences Steering Committee, 575–583.

Svitlana Volkova, Kyle Shaffer, Jin Yea Jang, and Nathan Hodas. 2017. Separating facts from fiction: Linguistic models to classify suspicious and trusted news posts on twitter. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 647–653.

Luis Von Ahn. 2008. Human computation. In Proceedings of the 2008 IEEE 24th International Conference on Data Engineering. IEEE Computer Society, 1–2.

Luis Von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and Manuel Blum. 2008. recaptcha: Human-based character recognition via web security measures. Science 321, 5895 (2008), 1465–1468.

Soroush Vosoughi, Deb Roy, and Sinan Aral. 2018. The spread of true and false news online. Science 359, 6380 (2018), 1146–1151.
The Future of Misinformation Detection: New Perspectives and Trends

10. Xiting Wang, Yiru Chen, Jie Yang, Le Wu, Zhengtuo Wu, and Xing Xie. 2018. A Reinforcement Learning Framework for Explainable Recommendation. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 587–596.

11. Yaqiang Wang, Fenglong Ma, Zhiewei Jin, Ye Yuan, Guangxi Xu, Kishlay Jha, Lu Su, and Jing Gao. 2018. Eann: Event adversarial neural networks for multi-modal fake news detection. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 849–857.

12. Anita Williams Woolley, Christopher F Chabris, Alex Pentland, Nada Hashmi, and Thomas W Malone. 2010. Evidence for a collective intelligence factor in the performance of human groups. science 330, 6004 (2010), 686–688.

13. Ke Wu, Song Yang, and Kenny Q Zhu. 2015. False rumors detection on sina weibo by propagation structures. In 2015 IEEE 31st international conference on data engineering. IEEE, 651–662.

14. Liang Wu, Jundong Li, Xia Hu, and Huan Liu. 2017. Gleaning wisdom from the past: Early detection of emerging rumors in social media. In Proceedings of the 2017 SIAM International Conference on Data Mining. SIAM, 99–107.

15. Liang Wu and Huan Liu. 2018. Tracing fake-news footprints: Characterizing social media messages by how they propagate. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. ACM, 637–645.

16. Liang Wu, Fred Morstatter, Xia Hu, and Huan Liu. 2016. Mining misinformation in social media. Big Data in Complex and Social Networks (2016), 123–152.

17. Sihong Xie, Guan Wang, Shuyang Lin, and Philip S Yu. 2012. Review spam detection via temporal pattern discovery. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 823–831.

18. Shuo Yang, Kai Shi, Suhang Wang, Renjie Gu, Fan Wu, and Huan Liu. 2019. Unsupervised fake news detection on social media: A generative approach. In Proceedings of 33rd AAAI Conference on Artificial Intelligence.

19. Yang Yang, Lei Zheng, Jiawei Zhang, Qingcai Cui, Zhoujun Li, and Philip S Yu. 2018. TI-CNN: Convolutional neural networks for fake news detection. arXiv preprint arXiv:1806.00749 (2018).

20. Li’ang Yin, Jianhua Han, Weinan Zhang, and Yong Yu. 2017. Aggregating crowd wisdoms with label-aware autoencoders. In Proceedings of the 26th International Joint Conference on Artificial Intelligence. AAAI Press, 1325–1331.

21. Feng Yu, Qiang Liu, Shu Wu, Liang Wang, Tieniu Tan, et al. 2017. A convolutional approach for misinformation identification. (2017).

22. Hengtong Zhang, Yaliang Li, Fenglong Ma, Jing Gao, and Lu Su. 2018. TextTruth: an unsupervised approach to discover trustworthy information from multi-sourced text data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2729–2737.

23. Yongfeng Zhang and Xu Chen. 2018. Explainable recommendation: A survey and new perspectives. arXiv preprint arXiv:1804.11192 (2018).

24. Zhe Zhao, Paul Resnick, and Qiaozhu Mei. 2015. Enquiring minds: Early detection of rumors in social media from enquiry posts. In Proceedings of the 24th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 1395–1405.

25. Shi Zhi, Yicheng Sun, Jiayi Liu, Chao Zhang, and Jiawei Han. 2017. ClaimVerif: a real-time claim verification system using the web and fact databases. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. ACM, 2555–2558.

26. Xinyi Zhou and Reza Zafarani. 2018. Fake News: A Survey of Research, Detection Methods, and Opportunities. arXiv preprint arXiv:1812.00313 (2018).

27. Zhixuan Zhou, Huankang Guan, Meghana Moorhy Bhat, and Justin Hsu. 2019. Fake News Detection via NLP is Vulnerable to Adversarial Attacks. arXiv preprint arXiv:1901.09657 (2019).

28. Cliff C Zou, Weibo Gong, Don Towsley, and Lixin Gao. 2005. The monitoring and early detection of internet worms. IEEE/ACM Transactions on Networking (TON) 13, 5 (2005), 961–974.

29. Arkaitz Zubiaga, Ahmet Aker, Kalina Bontcheva, Maria Liakata, and Rob Procter. 2018. Detection and resolution of rumours in social media: A survey. ACM Computing Surveys (CSUR) 51, 2 (2018), 32.

30. Arkaitz Zubiaga, Maria Liakata, and Rob Procter. 2017. Exploiting context for rumour detection in social media. In International Conference on Social Informatics. Springer, 109–123.