This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: https://orca.cardiff.ac.uk/id/eprint/119084/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Madrid-Gambín, Francisco, Föcking, Melanie, Sabherwal, Sophie, Heurich, Meike ORCID: https://orcid.org/0000-0003-0105-2702, English, Jane A., O’Gorman, Aoife, Suvi-Talvala, Tommi, Ahonen, Linda, Cannon, Mary, Lewis, Glynn, Mattila, Ismo, Scaife, Caitríona, Madden, Sean, Hyötyläinen, Tuulia, Orešić Matej, Zammit, Stanley ORCID: https://orcid.org/0000-0002-2647-9211, Cagney, Gerard, Cotter, David R. and Brennan, Lorraine 2019. Integrated lipidomics and proteomics point to early blood-based changes in childhood preceding later development of psychotic experiences: evidence from the Avon Longitudinal Study of Parents and Children. Biological Psychiatry 86 (1), pp. 25-34. 10.1016/j.biopsych.2019.01.018

Publishers page: http://dx.doi.org/10.1016/j.biopsych.2019.01.018
<http://dx.doi.org/10.1016/j.biopsych.2019.01.018>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
Archival Report

Integrated Lipidomics and Proteomics Point to Early Blood-Based Changes in Childhood Preceding Later Development of Psychotic Experiences: Evidence From the Avon Longitudinal Study of Parents and Children

Francisco Madrid-Gambin, Melanie Föcking, Sophie Sabherwal, Meike Heurich, Jane A. English, Aoife O’Gorman, Tommi Suvitaival, Linda Ahonen, Mary Cannon, Glyn Lewis, Ismo Mattila, Caitriona Scaife, Sean Madden, Tuulia Hyötyläinen, Matej Oresić, Stanley Zammit, Gerard Cagney, David R. Cotter, and Lorraine Brennan

ABSTRACT

BACKGROUND: The identification of early biomarkers of psychotic experiences (PEs) is of interest because early diagnosis and treatment of those at risk of future disorder is associated with improved outcomes. The current study investigated early lipidomic and coagulation pathway protein signatures of later PEs in subjects from the Avon Longitudinal Study of Parents and Children cohort.

METHODS: Plasma of 115 children (12 years of age) who were first identified as experiencing PEs at 18 years of age (48 cases and 67 controls) were assessed through integrated and targeted lipidomics and semitargeted proteomics approaches. We assessed the lipids, lysophosphatidylcholines (n = 11) and phosphatidylcholines (n = 61), and the protein members of the coagulation pathway (n = 22) and integrated these data with complement pathway protein data already available on these subjects.

RESULTS: Twelve phosphatidylcholines, four lysophosphatidylcholines, and the coagulation protein plasminogen were altered between the control and PEs groups after correction for multiple comparisons. Lipidomic and proteomic datasets were integrated into a multivariate network displaying a strong relationship between most lipids that were significantly associated with PEs and plasminogen. Finally, an unsupervised clustering approach identified four different clusters, with one of the clusters presenting the highest case-control ratio (p < .01) and associated with a higher concentration of smaller low-density lipoprotein cholesterol particles.

CONCLUSIONS: Our findings indicate that the lipidome and proteome of subjects who report PEs at 18 years of age are already altered at 12 years of age, indicating that metabolic dysregulation may contribute to an early vulnerability to PEs and suggesting crosstalk between these lysophosphatidylcholines, phosphatidylcholines, and coagulation and complement proteins.

Keywords: ALSPAC, Early life, Integration, Lipidomics, Proteomics, Psychotic episode

https://doi.org/10.1016/j.biopsych.2019.01.018

The early identification and treatment of subjects with psychiatric disorders, both psychotic and affective, significantly improves their clinical outcome (1). Consequently, over the last decade, there has been a shift in research focus to a high-risk paradigm for individuals at increased risk for later psychotic disorder (PD) (2–4). Research over the past 15 years has revealed that 8% to 17% of children and adolescents (5) and 7% of adults (6) in the general population report psychotic experiences (PEs). It is known that these individuals who report subclinical symptoms in early life are at increased risk of PD (7,8) as well as other disorders (9,10).

The identification of a biological signature of psychotic illnesses can provide insights into pathophysiological basis of the disorders (11,12) and also has the potential to be used as a part of biomarker signature for early detection and diagnosis (13). Recent research on schizophrenia and related psychoses has highlighted a number of metabolic perturbations such as glucoregulatory processes (14,15), lipid metabolism (16–18), mitochondrial function (19), proline (13), and tryptophan metabolism (20), with the most consistent findings involving pathways common to fatty acids and the pro-oxidant/antioxidant balance (21–23). A recent systematic review of
metabolite biomarkers for schizophrenia by Davison et al. (24) revealed that although definite consistencies have been described in the literature, none of the potential biomarkers have been validated reproducibly in large cohorts. Essential polyunsaturated fatty acids, lipid-peroxidation metabolites, phosphatidylcholines (PCs) and lysophosphatidylcholines (LPCs), glutamate, 3-methoxy-4-hydroxyphenylglycol, and vitamin E emerged from this review as potential biomarkers (24), emphasizing the hypotheses of oxidative stress and inflammation (25) and membrane phospholipid alterations (26). While these studies have contributed to our understanding of the disease mechanisms, they generally focus on the adult population that has already transitioned to psychosis, with a majority being medicated. These studies are therefore limited in terms of identifying early molecular signatures of the disease.

To address this issue, we recently applied broad metabolomics, lipidomics, and shotgun and semitargeted proteomics approaches to plasma samples from children at 12 years of age who were reported to develop PD at 18 years of age, from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort (27). We observed increased PCs and LPCs, and complement and coagulation proteins among these subjects during childhood (22,23). These findings provided intriguing support for the view that psychosis is associated with a broad range of inflammatory (23,28), glucoregulatory (29), and lipid (22) dysregulation from early childhood. The interrelationship between these early lipid and protein changes has not yet been investigated. In the current investigation, we have extended our previous work by testing the hypothesis that altered LPCs and PCs and the family of coagulation proteins are associated with not only outcomes of PD, but also the milder phenotype of PEs. Specifically, lipidomic and semitargeted proteomic approaches were employed to semitarget PCs and LPCs and coagulation proteins at 12 years of age among apparently well subjects who go on to develop PEs at 18 years of age in the ALSPAC cohort. These data were then integrated with other complement protein data available of the study cohort and chose to assess all available plasma samples from 12-year-old children with outcomes of definite PEs at 18 years of age but who did not have PD (27). Available plasma samples from controls of age-matched individuals were then randomly selected. The present study consisted of a hypothesis-driven lipidomic and proteomic analysis of samples from 48 children without suspected or definite PEs at 12 years of age but with definite PEs at 18 years of age (n = 48). Control samples (n = 67) without suspected or definite PEs at 12 and 18 years of age were selected (see Table 1). Socioeconomic status and presence of depression according to Clinical Interview Schedule—Revised scores were also tested.

Plasma Sampling

Nonfasting blood samples were collected from the participants into heparin S-Monovette tubes (Sarstedt, Nümbrecht, Germany). Once collected, samples were stored on ice for a maximum of 90 minutes until processed. Postcentrifugation, the samples were stored at −80°C until further analyses.

Lipidomic Analysis and Data Preprocessing

Sample processing, data acquisition, and quantification of lipids were performed as previously described (22). Lipidomic analysis was performed using an ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry system (Agilent Technologies, Santa Clara, CA).

Lipidomic data were first processed using MZmine 2 (33), then normalized by lipid-class specific internal standards, and finally quantified using the inverse-weighted linear model (see Supplement). Analysis of lipidomics data was focused on detected PCs (n = 61) and LPCs (n = 11) based on our previous findings (22).

Table 1. Descriptive Data of the ALSPAC Individuals Included in the Study

	Cases	Controls	p
Participants, n	48	67	
Male/Female, n	22/26	39/28	.19
BMI, kg/m², Mean ± SD	18.16 ± 2.85	17.73 ± 2.53	.40

Descriptive information was compared between cases and controls. Statistical comparisons are from Pearson chi-square or Student’s t test as appropriate.

ALSPAC, Avon Longitudinal Study of Parents and Children; BMI, body mass index.
Lipidomics and Proteomics Changes Preceding Psychosis

Proteomic Analysis and Data Preprocessing
Sample analysis and data acquisition proteins were performed in the same individuals as examined in the current lipidomic analysis and using methods as previously described (23). To improve the dynamic range for proteomic analysis, 40 μL of plasma from each case in all samples was immunodepleted of the 14 most abundant proteins (34) (see Supplement).

Protein digestion and peptide purification was performed as previously described (35) and is further detailed in the Supplement. We used the semitargeted approach of data independent acquisition (DIA) to specifically target 22 members of the coagulation pathway (see Supplemental Table S1). For DIA analysis, 5 μL of each sample was injected into the Thermo Scientific Q-Exactive, connected to a Dionex Ultimate 3000 (RSLCnano; Thermo Fisher Scientific, Bremen, Germany) chromatography system, and data were acquired in DIA mode (see Supplement).

Statistical Analysis
To assess differences of demographic data among groups, Pearson chi-square test and independent Student’s t test were used on categorical and continuous variables, respectively.

Early PEs Signatures at 12 Years of Age. Principal component analysis was used on the log-transformed, mean-centered, and scaled-to-unit-variance lipidomics dataset to acquire an overview of the data. For supervised data analysis, uni- and multivariate approaches were performed.

For univariate analysis, the Mann-Whitney U test was applied to the untransformed dataset to examine changes of lipids and proteins as related to PEs. Benjamini-Hochberg false discovery rate was applied to account for multiple comparisons.

Multivariate modeling of PEs was performed on the log-transformed data using a partial least squares discriminant analysis of lipidomic profiles with the KODAMA R package v 1.4 (36). Modeling was performed in a repeated double cross-validation framework (37). The goodness of fit and prediction parameters were defined using a standard description reported elsewhere (38). The features were ranked in ascending order based on the absolute loading scores (termed as loading rank) (39). Model performance was further assessed through permutation testing (R^2), considering a statistical significance at p < .05.

Lipidomics and Proteomics Integration. Regularized canonical correlation analysis was performed on all individuals as an integrative multivariate approach to assess correlations between both lipidomics and proteomics data using the mixOmics R package v 5.2.0 (40).

The method allows the study of the relationship of two multivariate datasets, for instance, the relationship between specific lipids and proteins within the same individuals (41). Quantitative data, derived from DIA analysis, on the broad family of complement pathway proteins were also available on these same subjects (42), and these data were available for integrative analysis. Regularization parameters were estimated by means of a leave-one-out cross-validation. Once the regularized canonical correlation analysis was acquired, the corresponding clustered heat maps, termed clustered image maps, and the integrative network were acquired (43).

Data were then exported to Gephi 0.9.2 (44), and the layout algorithm Yifan Hu was used to allow the biological interpretation (45). The network graph describes connections between lipids and proteins based on a similarity score >.3 (45). To evaluate obtained multivariate correlations, a further Spearman correlation analysis was implemented for each variable individually, considering the significant correlation at a p value of <.05.

Identification of Metabolic Phenotypes. The unsupervised algorithm based on knowledge discovery by accuracy maximization (KODAMA) (46) was used to identify the underlying patterns representative of different metabolic phenotypes across all individuals. This learning algorithm allows an unsupervised clustering of individuals from noisy high-dimensional datasets (36). The partition around medoids method (47) along with a silhouette algorithm (48) were carried out on KODAMA scores to identify the optimal distribution of clusters (49). Further descriptions of this method are shown elsewhere (36,49). The demographic data and cholesterol profile were then tested among the identified clusters using the K-test. This method predicts an independent variable using the variance in the KODAMA scores by means of permutation testing (49,50). Thus, causality of phenotyping was explored by other variables (49) such as the cholesterol profile and demographics. Data on cholesterol profile including cholesterol esters and lipoprotein particle data of selected individuals at 7 years of age were measured and reported elsewhere (30,51). Statistical significance was considered at a false discovery rate-corrected p value of <.05.

All statistical analyses were performed in the statistical programming environment R version 3.3.1 (R Foundation for Statistical Computing, Vienna, Austria). Data used for this article will be made available on request to the ALSPAC Executive Committee (alspac-exec@bristol.ac.uk).

RESULTS
The lipidomic dataset that was used to investigate potential biomarkers of PEs in children 12 years of age who reported PEs at 18 years of age included 61 PCs and 11 LPCs. PCs and LPCs were the focus because of previous results showing a potential lipidomic signature of PD with elevated levels of PCs and LPCs (22). The proteomic dataset that we assessed contained 22 members of the coagulation pathway (Supplemental Table S1) as defined by KEGG pathway analysis (http://www.genome.jp/kegg/pathway.html).

There were no significant differences between the control group and the PEs group in terms of gender, body mass index (BMI), or social class (data not shown). As expected, there was an excess of depression cases among those with PEs compared with controls, with 9 subjects in the PEs group reaching criteria for depression and no cases in the normal control group. Variance in the lipid profiles of individuals was first explored using principal component analysis. No grouping could be observed through principal component analysis when examining factors such as PEs, gender, and BMI.
Early PEs Signatures at 12 Years of Age

Univariate analysis revealed that a total of 34 molecular lipids and 3 coagulation proteins (plasminogen [PLG], coagulation factor XI, alpha2-antiplasmin) were different between PEs and healthy controls at the nominal p < .05 level (Table 2). After false discovery rate correction, 16 lipids and one protein (PLG) remained significantly increased. For multivariate analysis, partial least squares discriminant analysis entailed a resulting model (R²Y = .3) with a permutation test p < .05. Interestingly, there is a strong agreement between uni- and multivariate analyses performed individually, in which the lowest p values matched the highest loading scores and, thus, lowest loading rank. Significant changes of PCs and LPCs with p value and loading rank corresponding to uni- and multivariate analyses, respectively, are also presented in Table 2.

Lipidomics and Proteomics Integration

The coagulation and complement pathway proteins are closely functionally related. For this reason, we included in our integrative analysis of lipids and proteins the levels of complement proteins in the total dataset for which there were data available (42). The regularized canonical correlation analysis revealed that 17 lipids have a positive correlation with six proteins (PLG, heparin cofactor 2, complement C2, complement factor H, clusterin, and vitronectin), which exceeded a similarity score higher than 0.3. A strong positive relationship with the 16 lipids was observed for coagulation proteins PLG, heparin cofactor 2, and the complement pathway protein vitronectin (Figure 1). A relevance network graph illustrates other minor connections observed for complement proteins clusterin, complement C2, and complement factor H (Figure 2). Interestingly, PLG had the highest number of connections, followed by vitronectin and heparin cofactor 2. Table 3 shows specific lipid connections with PLG, with 10 lipids showing a correlation exceeding a similarity score higher than 0.3.

Underlying Clustering in the Data

To detect potential underlying metabolic phenotypes present in the study population, the KODAMA algorithm was applied to all individuals with available clinical data (n = 90). Following this, partition around medoids clustering was performed on KODAMA scores to identify underlying similar phenotypes in this study population. According to the highest silhouette median value (Supplemental Figure S1), four different clusters were identified (Figure 3), named A, B, C, and D. Interestingly, PEs occurrence was significantly different among clusters (p = .007). Furthermore, neither BMI nor gender was statistically significant across the clusters (Table 4). Likewise, depression status and social class were not significantly different across the clusters (p > .05 in both variables, data not shown). Further examination of the clusters revealed that cluster D exhibited a high probability of developing PEs. This cluster exhibited a PEs occurrence of 71%, while clusters A, B, and C showed a PEs occurrence of 42%, 29%, and 19%, respectively.

Clusters were then examined for associations between the cholesterol data with the resulting KODAMA scores. In total, nine cholesterol parameters (different parameters related to low-density lipoprotein [LDL], very low-density lipoprotein, and intermediate-density lipoprotein with specific particle sizes) were significantly associated with the clustering (Supplemental Table S3). Similarly, KODAMA score plots were performed (Supplemental Figure S3), colored by the resulted clusters, PEs occurrence, gender, and BMI. Score plots color coded by the concentration of small LDL particles and the phospholipids to total lipids ratio in small LDL particles were also performed for visualization and interpretation purposes. There was a significant difference in distribution of PEs cases across the clusters (Supplemental Figure S3B). Interestingly, the levels of certain lipoproteins across the clusters were also statistically different (Supplemental Table S3). Of particular note were differences in the small LDL particles and phospholipid to total lipid ratio in small LDL particles were also performed for visualization and interpretation purposes. There was a significant difference in distribution of PEs cases across the clusters (Supplemental Figure S3B). Interestingly, the levels of certain lipoproteins across the clusters were also statistically different (Supplemental Table S3). Of particular note were differences in the small LDL particles and phospholipid to total lipid ratio in small LDL particles, with a similar distribution to PEs cases. Additional cholesterol-related parameters are shown in Supplemental Figure S4. In summary, cluster D represented a metabolic phenotype with a high probability of developing PE.

DISCUSSION

The present findings point to early dysregulation of both the lipidome and proteome several years before the development of PEs. Our findings are relevant to PD, anxiety disorder, and...
depression, as approximately 20% to 30% of subjects who experience PEs go on to develop PD (52), with approximately 50% to 60% going on to develop other psychiatric comorbid disorders (2). The present findings support the literature that phospholipid metabolism and the proteins of the coagulation cascade are abnormal in schizophrenia and depression (26,53–55) and extend this literature by providing evidence for such alterations in early childhood before the development of PEs. Furthermore, the present findings are broadly in line with our findings from the previous discovery metabolomics, lipidomic, and proteomic study in the ALSPAC cohort, in which we demonstrated similar changes at 12 years of age for...
Lipidomics and Proteomics Changes Preceding Psychosis

Table 3. Significant Lipids Correlated With Plasminogen From Multi- and Univariate Approaches on the PEs Dataset

Lipid	rCCA	Spearman Correlation	p
PC(30:0)*	.38	.27	.005
PC(32:0)*	.26	.19	.043
PC(34:1)*	.24	.26	.006
PC(40:6)	.29	.19	.047
PC(32:1)*	.33	.28	.003
PC(38:2)*	.31	.20	.039
PC(38:3)*	.35	.22	.019
PC(36:1)*	.32	.22	.022
PC(35:1)	.39	.25	.007
PC(36:4)*	.28	.23	.014
LPC(16:1)*	.31	.24	.010
PC(40:5)	.35	.27	.004
PC(40:4)	.35	.26	.006
PC(33:1)	.40	.34	.001
PC(37:4)	.24	.20	.032
PC(38:3)*	.22	.19	.043
PC(O-36:3)	.31	.24	.013
PC(31:0)	.28	.21	.029

The p values of Spearman correlation analysis are shown. Results are listed for the 18 significant compounds using a p value < .05.

LPC: lysophosphatidylcholine; **PC**: phosphatidylcholine; **PEs**: psychotic experiences; **rCCA**: regularized canonical correlation analysis.

*Significant lipids associated with PEs development in the present study.

...subjects who later went on to develop PD (22). The findings have the potential to contribute to risk calculators for future psychotic illness and mental disorders (4,56,57) as well as to an increased understanding of psychosis and psychiatric illness as a multisystem disorder involving lipids and proteins (22,23,29). Critically, a novelty of our study lies in the integration of proteomic and lipidomic data, specifically of the PCs and LPCs and the protein members of the complement and coagulation cascades from the same subjects. In so doing, we have identified a robust yet unexpected interdependence of these biological processes that underpin psychotic disease. A tangible advance derived is that our findings highlight early lipid and protein changes associated with vulnerability to a broad range of PD and, in so doing, identify potential novel therapeutic targets.

There is no simple interpretation of the findings of early LPC and PC changes in relation to later psychiatric diseases. However, it is noteworthy that several lines of evidence implicate altered LPC and PC levels in early life and medical morbidities in later life (58). First, Hellmuth et al. (59) observed a positive correlation between LPCs in cord blood during pregnancy and early weight gain and later-life high BMI. Second, Rzehak et al. (60) showed that LPC(14:0) and PC(38:3) measured at 6 months of age positively correlated with overweight/obesity at 6 years of age. Similar to our findings, these observations suggest an early metabolic alteration that can trigger later disorder (60). Third, a cross-sectional study of
Lipidomics and Proteomics Changes Preceding Psychosis

Psychosis have identified elevated plasma levels of LPC(16:0), LPC(18:0), LPC(18:1), and LPC(18:2) in first-episode neuroleptic drug-naïve schizophrenia patients as compared with healthy control subjects (72). However, there are inconsistencies in the reported literature, with one study reporting diminished levels of LPCs in the serum of schizophrenia patients compared with their co-twins as well as healthy control subjects (16).

Both the coagulation and the complement pathways have recently been highlighted in schizophrenia (57,73,74). Our current study used the semitargeted proteomic method of DIA to extend these findings and show that upregulation of PLG within the coagulation pathway at 12 years of age is associated with later PEs. This more complete analysis of the coagulation pathway proteins in PEs was then combined with complement pathway protein data already available to us on the same subjects (42) to allow a unique integration of lipidomic, complement, and coagulation data. Our integrative network analysis demonstrates that PLG had the strongest connections to PCs and LPCs that were increased in the PEs group. Our findings of elevated levels of PLG in subjects who later report PEs are intriguing in light of recent evidence that blood-derived PLG drives brain inflammation (78) and evidence that alpha2-antiplasmin, which is the main inhibitor of PLG-derived plasmin, is upregulated in schizophrenia (79). Interestingly, proteomics studies discovered a high number of complement and coagulation proteins as lipoprotein-associated components, such as complement 4A, complement C4B, vitronectin, clusterin, complement factor H, alpha1/2-antiplasmin, and kininogen, among others (80). There is a surprisingly strong overlap with the proteins that correlate with phospholipids in this study and those that are upregulated in schizophrenia (11). Together, the data provide a link among phospholipid binding proteins, (apo)lipoproteins, complement, and coagulation, and they support growing literature implicating these processes in neuroinflammation and neurodegeneration (77,81).

Schizophrenia may represent an etiologically heterogeneous disorder, with some subjects having a largely inflammatory basis and some an autoimmune etiology (23,82,83). Similarly, it is appreciated that there are heterogeneous outcomes among subjects who experience PEs (2). This may have relevance to the results of KODAMA (36) analysis in which we identified four main clusters, of which cluster D was associated with a high probability of subjects within that cluster experiencing PEs. Interestingly, the lipoprotein particle size parameters were also significantly different across the clusters, with cluster D having

Table 4. Descriptive Data of the ALSPAC Individuals by Cluster

	Cluster A	Cluster B	Cluster C	Cluster D	p
PEs, Cases/Controls, n	14/19	4/10	5/21	12/5	.007
Male/Female, n	17/16	8/6	13/13	11/6	.781
BMI, kg/m², Mean ± SD	17.43 ± 2.29	17.95 ± 3.51	18.88 ± 2.68	17.33 ± 2.72	.170

Descriptive information was compared between clusters. Statistical comparisons are from Pearson chi-square or Student’s t test as appropriate. ALSPAC, Avon Longitudinal Study of Parents and Children; BMI, body mass index; PEs, psychotic experiences.
increased levels of small LDL particles. Smaller LDL particles are more susceptible to oxidation than larger particles, being more frequently associated to metabolic diseases (84–86). However, in the present study, the oxidation status and lipidomic analyses on specific LDL particle size were not included at 12 years of age, and thus the results should be interpreted with caution. Future studies evaluating different LDL subtypes might clarify these observed associations.

The present study has several strengths: the longitudinal ALSPAC cohort was used and included both longitudinal clinical assessments and biosampling. The use of samples before disease onset rules out the potential confounding from medications. Furthermore, in contrast to most other studies, our study focused on children who were well at the time of biosampling, unlike other studies, in which the subjects already had experienced a first episode of psychosis. The multiomics integration has allowed a unique insight into the existence of a functional relationship between these lipids and proteins that was unknown previously in the context of psychosis. Future work may look at the broader relationship between proteome and lipoidome beyond those specific compounds that we described as discriminant for PEs prediction in this study. A number of limitations should also be acknowledged. First, the lack of validation in a similar cohort of subjects with PEs is a limitation. Second, while depletion of high-abundance proteins did not impact PLG, three of the 22 proteins had been depleted, so they were interpreted with caution. We did not covary for depression, as depression can be considered a transdiagnostic comorbidity, and thus our findings are not necessarily specific to PEs. This is reasonable, as PEs are accepted to represent a vulnerability to a broad range of psychiatric illnesses (2).

Conclusions
Our study provides evidence for protein and lipid signatures at 12 years of age in subjects who are apparently well but who report PEs at 18 years of age. These changes are not necessarily specific to PEs, as overlapping changes have been observed previously at 12 years of age in subjects who later develop PD (22) and are also observed in association with prediabetes and obesity, and before other cardiometabolic disorders (61,63,70), suggesting that these disorders share aspects of their developmental origins. Although there are inconsistencies in the literature in terms of metabolic disorders and schizophrenia (24,87), the present study strongly suggests that there is early vulnerability to the development of PEs and that this involves molecular interconnections between the lipoidome and the proteome.

ACKNOWLEDGMENTS AND DISCLOSURES
This work was supported by Health Research Board Grant Nos. HRA-POR-2013-282 and HRB CSF 2012/8 (to DRC), European Research Council Grant No. 647783 (to LB), European Research Council Grant No. 724808 (to MC), European Union FP7 collaborative project METSY Grant No. 602478 (to MO and TH), National Institute for Health Research Biomedical Research Centre at University Hospitals Bristol NHS Foundation Trust and the University of Bristol (to SZ), and an Irish Health Research Board Clinician Scientist Award (to DRC). The UK Medical Research Council and Wellcome Trust (102215/2/13/2) and the University of Bristol provide core support for ALSPAC. A comprehensive list of grants funding is available on the ALSPAC website (http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf).

We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses. This publication is our work and we serve as guarantors for the contents of this article. We thank Anette Unteremann at Steno Diabetes Center A/S for preparing all samples for the lipidomics analyses. We also thank Prof Matthias Wilm and the Mass Spectrometry Core Facility at University College Dublin Conway Institute for support in the development of our proteomic workflows. In addition, we would like to thank everyone at the MacCoss Lab of Biological Mass Spectrometry, University of Washington, and everyone at the H. Choi Lab, National University of Singapore, for support and access to Skyline and MapDIA, respectively.

The authors report no biomedical financial interests or potential conflicts of interest.

ARTICLE INFORMATION
From the Department of Psychiatry (FM-G, MF, SS, JAE, MC, CS, SM, DRC), Royal College of Surgeons in Ireland, Beaumont Hospital; Institute of Food and Health (FM-G, AO, LB), UCD School of Agriculture and Food Science; and Conway Institute (GC), UCD School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences (MH) and MRC Centre for Neuropsychiatric Genetics and Genomics (SZ), Cardiff University, Cardiff; Faculty of Brain Sciences, Division of Psychiatry (GL), University College London, London; Centre for Academic Mental Health (S2), Bristol Medical School, University of Bristol, Bristol, United Kingdom; Steno Diabetes Center Copenhagen (DS, LA, IM), Gentofte, Denmark; Department of Chemistry (TH) and School of Medical Sciences (MO), Örebro University, Örebro, Sweden; and the Turku Centre for Biotecnology (MO), University of Turku and Åbo Akademi University, Turku, Finland.

DRC and LB contributed equally to this work as joint senior authors. Address correspondence to David R. Cotter, M.B., B.C.H., B.A.O., M.R.C.Psych., Ph.D., Royal College of Surgeons in Ireland Education & Research Centre, Beaumont Hospital, Beaumont, Dublin 9, Ireland; E-mail: drcotter@rcsi.ie.

Received Aug 21, 2018; revised and accepted Jan 17, 2019.

Supplementary material cited in this article is available online at https://doi.org/10.1016/j.biopsych.2019.01.018.

REFERENCES
1. Larsen TK, Melle I, Auestad B, Haahr U, Joa I, Johannessen JO, et al. (2011): Early detection of psychosis: Positive effects on 5-year outcome. Psychol Med 41:1461–1469.
2. Rutigliano G, Valmaggia L, Landi P, Frascarelli M, Cappucciati M, Sear V, et al. (2016): Persistence or recurrence of non-psychotic comorbid mental disorders associated with 6-year poor functional outcomes in patients at ultra high risk for psychosis. J Affect Disord 203:101–110.
3. Amminger GP, Schäfer MR, Papageorgiou K, Klier CM, Cotton SM, Harrigan SM, et al. (2010): Long-chain ω-3 fatty acids for indicated prevention of psychotic disorders. Arch Gen Psychiatry 67:146–154.
4. Clark SR, Baune BT, Schubert KD, Laviole S, Smesny S, Rice SM, et al. (2016): Prediction of transition from ultra-high risk to first-episode psychosis using a probabilistic model combining history, clinical assessment and fatty-acid biomarkers. Transl Psychiatry 6:e897.
5. Kelleher I, Connor D, Clarke MC, Devlin N, Harley M, Cannon M (2012): Prevalence of psychotic symptoms in childhood and adolescence: A systematic review and meta-analysis of population-based studies. Psychol Med 42:1857–1863.
6. Lincott RJ, van Os J (2013): An updated and conserved systematic review and meta-analysis of epidemiological evidence on psychotic experiences in children and adults: On the pathway from proneness to persistence to dimensional expression across mental disorders. Psychol Med 43:1133–1149.
Lipidomics and Proteomics Changes Preceding Psychosis

7. Welham J, Scott J, Williams G, Najman J, Bor W, O’Callaghan M, McGrath J (2009): Emotional and behavioural antecedents of young adults who screen positive for non-affective psychosis: A 21-year birth cohort study. Psychol Med 39:625–634.

8. Poulton R, Caspi A, Moffitt TE, Cannon M, Murray R, Harrington H (2000): Children’s self-reported psychotic symptoms and adult schizophrenia spectrum disorder: A 15-year longitudinal study. Arch Gen Psychiatry 57:1053–1058.

9. McGrath JJ, Saha S, Al-Hamzawi A, Andrade L, Benjet C, Bomet EJ, et al. (2016): The bidirectional associations between psychotic experiences and DSM-IV mental disorders. Am J Psychiatry 173:997–1006.

10. Kelleher I, Keeley H, Corcoran P, Lynch F, Fitzpatrick C, Devlin N, et al. (2012): Clinicopathological significance of psychotic experiences in non-psychotic young people. Evidence from four population-based studies. Br J Psychiatry 210:26–32.

11. Yang J, Chen T, Sun L, Zhao Z, Qi X, Zhou K, et al. (2012): Visualising association networks. Metabolomics 8:322–326.

12. van Os J, Kapur S (2009): Schizophrenia. Lancet 374:635–645.

13. Oresic M, Tang J, Seppälä-Laakso T, Mattila I, Saami SE, Saarni SI, et al. (2011): Metabolome in schizophrenia and other psychotic disorders: A general population-based study. Genome Med 3:19.

14. Holmes E, Tsang TM, Huang JT-J, Leweke FM, Koethe D, Gerth CW, et al. (2006): Metabolic profiling of CSF: Evidence that early intervention may impact on disease progression and outcome in schizophrenia. PLoS Med 3:e327.

15. Schwartz E, Prabakaran S, Whitfield P, Major H, Leweke FM, Koethe D, et al. (2008): High throughput lipidomic profiling of schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty acids, phosphatidylcholines, and ceramides. J Proteome Res 7:4266–4277.

16. Oresic M, Seppälä-Laakso T, Sun D, Tang J, Therman S, Viehman R, et al. (2012): Phospholipids and insulin resistance in psychosis: A lipidomics study of twin pairs discordant for schizophrenia. Genome Med 4:1.

17. Schneider M, Levant B, Reichel M, Gubins E, Kornhuber J, Müller CP (2011): Lipids in psychiatric disorders and preventive medicine. Neurosci Biobehav Rev 76:336–362.

18. Steen VM, Skrede S, Polushina T, López M, Andreassen OA, Femo J, Hellard S L (2017): Genetic evidence for a role of the SREBP transcription system and lipid biosynthesis in schizophrenia and antipsychotic treatment. Eur Neuropsychopharmacol 27:589–598.

19. Prabakaran S, Watton JE, Ryan MM, Hutfiker SJ, Huang J, Griffin JL, et al. (2004): Mitochondrial dysfunction in schizophrenia: Evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9:684–697.

20. Yao JK, Dougherty GG, Reddy RD, Keshavan MS, Montrose DM, Matson WR, et al. (2010): Altered interactions of tryptophan metabolism in lipids and insulin resistance in patients with schizophrenia. Mol Psychiatry 15:938–953.

21. Rice SM, Schäfer MR, Kier C, Mossaheb N, Vijayakumar N, Amminger GP (2015): Erythrocyte polyunsaturated fatty acid levels in adolescents who screen positive for non-affective psychosis: A 21-year birth cohort study. Psychol Med 39:625–634.

22. O’Gorman A, Suvitaival T, Ahonen L, Cannon M, Zammit S, Lewis G, et al. (2017): Identification of a plasma signature of psychotic disorder in children and adolescents from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Transl Psychiatry 7:e1240.

23. English JA, Fan Y, Focking M, Lopez LM, Hryniewiecka M, Wynne K, et al. (2015): Reduced protein synthesis in schizophrenia patient-derived olfactory cells. Transl Psychiatry 5:e663–e665.

24. Cacciatori S, Tenori L, Luchinat C, Bennett PR, MacIntyre DA (2017): KODAMA: An R package for knowledge discovery and data mining. Bioinformatics 33:621–623.

25. Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJ, et al. (2008): Assessment of PLSDA cross validation. Metabolomics 4:81–89.

26. Eriksson L, Jaworska J, Worth AP, Cronin MTD, McDowell RM, Gramatica P (2003): Methods for reliability and uncertainty assessment and for applicability of classification- and regression-based QSARs. Environ Health Perspect 111:1361–1375.

27. Madrid-Gambín F, Garcia-Aloy M, Vázquez-Fresno R, Vegas-Lozano E, de Villa Jubany MCR, Misawa K, et al. (2016): Impact of chlorogenic acids from coffee on urine metabolome in healthy human subjects. Food Res Int 98:68–76.

28. Rohart F, Gautier B, Singh A, Lê Cao K-A (2017): mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol 13:e1005752.

29. Moyon T, Le Marec F, Qannari EM, Vignéau S, Le Plain E, Courant F, et al. (2012): Statistical strategies for relating metabolomics and proteomics data: A real case study in nutrition research area. Metabolomics 8:1090–1091.

30. Meiyan H, Heymman S, Jacomy M (2009): Gephi: An open source software for exploring and manipulating networks. Available at: https://gephi.org/publications/gephi-bastian-feb09.pdf. Accessed June 7, 2018.

31. Wallace M, Morris C, O’Grada CM, Ryan M, Dillon ET, Coleman E, et al. (2014): Relationship between the lipidome, inflammatory markers and insulin resistance. Mol BioSyst 10:1586–1595.

32. Cacciatori S, Luchinat C, Tenori L (2014): Knowledge discovery by accuracy maximization. Proc Natl Acad Sci U S A 111:5117–5122.
Lipidomics and Proteomics Changes Preceding Psychosis

47. Reynolds AP, Richards G, de la Iglesia B, Rayward-Smith VJ (2006): Clustering rules: A comparison of partitioning and hierarchical clustering algorithms. J Math Model Algorithms 5:475–504.

48. Roussseuw PJ (1987): Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:33–54.

49. Bray R, Cacciato S, Jimenez B, Cartwright R, Digesu A, Fernando R, et al. (2017): Urinary metabolic phenotyping of women with lower urinary tract symptoms. J Proteome Res 16:4208–4216.

50. Cameron AC, Windmeijer FAG (1997): An R-squared measure of goodness of fit for some common nonlinear regression models. J Econom 77:329–342.

51. Drenos F, Davey Smith G, Ala-Korpela M, Kettunen J, Wirtz P, Soininen P, et al. (2016): Metabolic characterization of a rare genetic variation within APOC3 and its lipoprotein lipase-independent effects. Circ Cardiovasc Genet 9:231–239.

52. Fasar-Poli P, Bonoldi I, Yug AR, Borgwardt S, Kempot J, Valmaglia L, et al. (2012): Predicting psychosis. Arch Gen Psychiatry 69:220–229.

53. Khan MM, Evans DR, Gunna V, Scheffer RE, Parikh VV, Mahadik SP, Edelstein C, Pfaff S, Wahl S, Yu Z, Kleber M, Singmann P, Holzapfel C, He Y, Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Hellmuth C, Uhl O, Standl M, Demmelmair H, Heinrich J, Koletzko B, Rauschert S, Uhl O, Koletzko B, Kirchberg F, Mori TA, Huang R-C, Wang-Sattler R, Yu Z, Herder C, Messias AC, Floegel A, He Y, Hashimoto T, Imamura M, Etoh T, Sekiguchi N, Masakado M, Vancampfort D, Stubbs B, Johnson T, Prehn C, Rolle-Kampczyk U, et al. (2018): Serum metabolites and risk of myocardial infarction and ischemic stroke: A targeted metabolomic approach in two German prospective cohorts. Eur J Epidemiol 33:55–66.

54. Cai H-L, Sun B, Zhang Q, Yan M, Wakisaka M, Iwase M, Fujishima M (1999): Novel biomarkers for pre-diabetes identified by metabolomics. J Lipid Res 40:649–657.

55. Suvaitaival T, Bondia-Pons I, Yetukuri L, Põhõ P, Noljan JJ, Hyytäläinen T, et al. (2018): Lipidome as a predictive tool in progression to type 2 diabetes in Finnish men. Metabolism 78:1–12.

56. Borotalco GC, Berk M, Walder K (2017): First-episode schizophrenia and diabetes risk. JAMA Psychiatry 74:761.

57. Vancampfort D, Stubbis B, Mitchell AJ, De Hert M, Wampers M, Ward PB, et al. (2015): Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: A systematic review and meta-analysis. World Psychiatry 14:339–347.

58. Westman J, Eriksson SV, Gissler M, Hällgren J, Prieto ML, Bobo WV, et al. (2018): Increased cardiovascular mortality in people with schizophrenia: A 24-year national register study. Epidemiol Psychiatr Sci 27:519–527.

59. Floegel A, Kühn T, Sookhtal D, Johnson T, Prehn C, Rollé-Kampczyk U, et al. (2018): Serum metabolites and risk of myocardial infarction and ischemic stroke: A targeted metabolomic approach in two German prospective cohorts. Eur J Epidemiol 33:55–66.

60. Calbucci R, Cacciato S, Jimenez B, Cartwright R, Digesu A, Fernando R, et al. (2017): Urinary metabolic phenotyping of women with lower urinary tract symptoms. J Proteome Res 16:4208–4216.

61. Cai H-L, Sun B, Zhang Q, Yan M, Wakisaka M, Iwase M, Fujishima M (1999): Novel biomarkers for pre-diabetes identified by metabolomics. J Lipid Res 40:649–657.

62. Suvaitaival T, Bondia-Pons I, Yetukuri L, Põhõ P, Noljan JJ, Hyytäläinen T, et al. (2018): Lipidome as a predictive tool in progression to type 2 diabetes in Finnish men. Metabolism 78:1–12.

63. Borotalco GC, Berk M, Walder K (2017): First-episode schizophrenia and diabetes risk. JAMA Psychiatry 74:761.

64. Vancampfort D, Stubbis B, Mitchell AJ, De Hert M, Wampers M, Ward PB, et al. (2015): Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: A systematic review and meta-analysis. World Psychiatry 14:339–347.

65. Westman J, Eriksson SV, Gissler M, Hallgren J, Prieto ML, Bobo WV, et al. (2018): Increased cardiovascular mortality in people with schizophrenia: A 24-year national register study. Epidemiol Psychiatr Sci 27:519–527.

66. Floegel A, Kühn T, Sookhtal D, Johnson T, Prehn C, Rolle-Kampczyk U, et al. (2018): Serum metabolites and risk of myocardial infarction and ischemic stroke: A targeted metabolomic approach in two German prospective cohorts. Eur J Epidemiol 33:55–66.

67. Calbucci R, Cacciato S, Jimenez B, Cartwright R, Digesu A, Fernando R, et al. (2017): Urinary metabolic phenotyping of women with lower urinary tract symptoms. J Proteome Res 16:4208–4216.

68. Cai H-L, Sun B, Zhang Q, Yan M, Wakisaka M, Iwase M, Fujishima M (1999): Novel biomarkers for pre-diabetes identified by metabolomics. J Lipid Res 40:649–657.

69. Suvaitaival T, Bondia-Pons I, Yetukuri L, Põhõ P, Noljan JJ, Hyytäläinen T, et al. (2018): Lipidome as a predictive tool in progression to type 2 diabetes in Finnish men. Metabolism 78:1–12.

70. Borotalco GC, Berk M, Walder K (2017): First-episode schizophrenia and diabetes risk. JAMA Psychiatry 74:761.

71. Vancampfort D, Stubbis B, Mitchell AJ, De Hert M, Wampers M, Ward PB, et al. (2015): Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: A systematic review and meta-analysis. World Psychiatry 14:339–347.

72. Westman J, Eriksson SV, Gissler M, Hallgren J, Prieto ML, Bobo WV, et al. (2018): Increased cardiovascular mortality in people with schizophrenia: A 24-year national register study. Epidemiol Psychiatr Sci 27:519–527.

73. Floegel A, Kühn T, Sookhtal D, Johnson T, Prehn C, Rolle-Kampczyk U, et al. (2018): Serum metabolites and risk of myocardial infarction and ischemic stroke: A targeted metabolomic approach in two German prospective cohorts. Eur J Epidemiol 33:55–66.