A Note on Terence Tao’s Paper “On the Number of Solutions to \(\frac{4}{p} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} \)”

Chaohua Jia

Abstract. For the positive integer \(n \), let \(f(n) \) denote the number of positive integer solutions \((n_1, n_2, n_3) \) of the Diophantine equation

\[
\frac{4}{n} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}.
\]

For the prime number \(p \), \(f(p) \) can be split into \(f_1(p) + f_2(p) \), where \(f_i(p)(i = 1, 2) \) counts those solutions with exactly \(i \) of denominators \(n_1, n_2, n_3 \) divisible by \(p \).

Recently Terence Tao proved that

\[
\sum_{p < x} f_2(p) \ll x \log^2 x \log \log x.
\]

with other results. But actually only the upper bound \(x \log^2 x \log \log^2 x \) can be obtained in his discussion. In this note we shall use an elementary method to save a factor \(\log \log x \) and recover the above estimate.

1. Introduction

For the positive integer \(n \), let \(f(n) \) denote the number of positive integer solutions \((n_1, n_2, n_3) \) of the Diophantine equation

\[
\frac{4}{n} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}.
\]

Erdös and Straus conjectured that for all \(n \geq 2 \), \(f(n) > 0 \). It is still an open problem now although there are some partial results.

In 1970, R. C. Vaughan[2] showed that the number of \(n < x \) for which \(f(n) = 0 \) is at most \(x \exp(-c \log^{3/2} x) \), where \(x \) is sufficiently large and \(c \) is a positive constant.

Recently Terence Tao[1] studied the situation in which \(n \) is the prime number \(p \). He gave lower bound and upper bound for the mean value of \(f(p) \). Precisely, he split \(f(p) \) into \(f_1(p) + f_2(p) \), where \(f_i(p)(i = 1, 2) \) counts
those solutions with exactly i of denominators n_1, n_2, n_3 divisible by p. He proved that

$$x \log^2 x \ll \sum_{p < x} f_2(p) \ll x \log^2 x \log \log x$$

(1)

and

$$x \log^2 x \ll \sum_{p < x} f_1(p) \ll x \exp\left(\frac{c \log x}{\log \log x}\right),$$

where p denotes the prime number, x is sufficiently large and c is a positive constant. Then he conjectured that for $i = 1, 2$,

$$\sum_{p < x} f_i(p) \ll x \log^2 x.$$

(2)

But actually Terence Tao[1] only proved

$$\sum_{p < x} f_2(p) \ll x \log^2 x \log \log^2 x,$$

(3)

since there was an error in his discussion. In this note we shall use an elementary method to save a factor $\log \log x$ and recover the upper bound in the right side of (1).

Theorem. Let p denote the prime number. Then for sufficiently large x, we have

$$\sum_{p < x} f_2(p) \ll x \log^2 x \log \log x.$$

2. The proof of Theorem

Lemma 1. If $\varphi(n)$ is the Euler totient function, then

$$\varphi(n) \gg \frac{n}{g(n)}.$$

Here

$$g(n) = \prod_{p|n} (1 + \frac{1}{p}) = \sum_{d|n} \frac{\mu^2(d)}{d},$$

where $\mu(d)$ is the Möbius functions.

Proof. We know that

$$\varphi(n) = n \prod_{p|n} (1 - \frac{1}{p}).$$
Then

\[\varphi(n) = n \prod_{p|n(1 - \frac{1}{p^2})} \geq \frac{n}{g(n)} \prod_p (1 - \frac{1}{p^2}) \gg \frac{n}{g(n)}. \]

It is easy to see

\[g(n) = \sum_{d|n} \frac{\mu^2(d)}{d}. \]

Lemma 2. If \(x \geq 1 \), then

\[\sum_{x<n\leq 2x} \frac{1}{\varphi(n)} \ll 1. \]

Proof. By Lemma 1, we have

\[
\sum_{x<n\leq 2x} \frac{1}{\varphi(n)} \ll \sum_{x<n\leq 2x} \frac{g(n)}{n} = \sum_{x<n\leq 2x} \frac{1}{n} \sum_{d|n} \frac{\mu^2(d)}{d} = \sum_{d\leq 2x} \frac{\mu^2(d)}{d^2} \sum_{x<n\leq 2x} \frac{1}{n} = \sum_{d\leq 2x} \frac{\mu^2(d)}{d^2} \ll 1. \]

Lemma 3. Let \(p \) denote the prime number. Then the functions \(f_2(p) \) is equal to three times the number of triples \((a, b, c)\) of positive integers such that

\[(a, b) = 1, \quad c|a+b, \quad 4ab|p+c.\]

One can see Proposition 1.2 of [1].

By some transformation, Terence Tao[1] got

\[
\sum_{p<x} f_2(p) \ll \sum_{i=1}^x \sum_{j=\log_2 x}^{i \leq j \leq \log_2 x - i} \frac{1}{1 + \log_2 x - i - j} \cdot \sum_{2^i < a \leq 2^{i+1}} \sum_{2^j < b \leq 2^{j+1}} \frac{d(a+b)}{\varphi(a)\varphi(b)}.
\]
Here $d(n)$ is the divisor function. It is necessary to keep the condition $(a, b) = 1$.

Now we consider the estimate for the sum
\[
\sum_{V < a \leq 2V} \frac{1}{\varphi(a)} \sum_{W < b \leq 2W \atop (a, b) = 1} d(a + b),
\]

where $1 \leq V \leq W \leq x$.

Let
\[
S(a, W) = \sum_{W < b \leq 2W \atop (a, b) = 1} \frac{d(a + b)}{\varphi(b)},
\]

Then Lemma 1 yields that
\[
S(a, W) \ll \sum_{W < b \leq 2W \atop (a, b) = 1} d(a + b) \cdot \frac{g(b)}{b}
\]
\[
\ll \frac{1}{W} \sum_{W < b \leq 2W \atop (a, b) = 1} d(a + b)g(b)
\]
\[
= \frac{1}{W} \sum_{W + a < k \leq 2W + a \atop (k, a) = 1} d(k)g(k - a)
\]
\[
= \frac{1}{W} \sum_{W + a < r \leq 2W + a \atop (r, a) = 1} g(rl - a)
\]
\[
\leq \frac{2}{W} \sum_{r \leq \sqrt{2W + a} \atop (r, a) = 1} \sum_{W < n \leq 2W \atop n \equiv -a \pmod{r} \atop (n, a) = 1} g(n)
\]
\[
\ll \frac{1}{W} \sum_{r \leq \sqrt{2W + a} \atop (r, a) = 1} \sum_{W < n \leq 2W \atop n \equiv -a \pmod{r}} g(n)
\]
\[
\leq \frac{1}{W} \sum_{r \leq \sqrt{2W + a} \atop (r, a) = 1} \sum_{W < n \leq 2W \atop n \equiv -a \pmod{r}} g(n).
\]
Since \((r, a) = 1\), \(n \equiv -a \pmod{r} \implies (n, r) = 1\). Then

\[
\sum_{\substack{W < n \leq 2W \\ n \equiv -a \pmod{r} \\ (n, r) = 1}} g(n) = \sum_{\substack{W < n \leq 2W \\ n \equiv -a \pmod{r} \\ (n, r) = 1}} g(n)
\]

\[
= \sum_{\substack{W < n \leq 2W \\ n \equiv -a \pmod{r} \\ (n, r) = 1}} \sum_{d \mid n} \frac{\mu^2(d)}{d}
\]

\[
= \sum_{\substack{d \leq 2W \\ (d, r) = 1}} \frac{\mu^2(d)}{d} \sum_{\substack{W < n \leq 2W \\ n \equiv -a \pmod{r} \\ (n, r) = 1 \\ d \mid n}} 1
\]

\[
= \sum_{\substack{d \leq 2W \\ (d, r) = 1}} \frac{\mu^2(d)}{d} \sum_{\substack{W < k \leq \frac{2W}{d} \\ (k, r) = 1 \\ dk \equiv -a \pmod{r}}}} 1
\]

\[
\leq \sum_{\substack{d \leq 2W \\ (d, r) = 1}} \frac{\mu^2(d)}{d} \sum_{\substack{W < k \leq \frac{2W}{d} \\ k \equiv da \pmod{r}}}} 1
\]

where \(\tilde{d}\) is an integer such that \(\tilde{d}d \equiv 1 \pmod{r}\).

We have

\[
\sum_{\substack{W < k < \frac{2W}{d} \\ k \equiv da \pmod{r}}}} 1 \ll \frac{W}{dr} + 1.
\]

Thus

\[
\sum_{\substack{W < n \leq 2W \\ n \equiv -a \pmod{r}}} g(n) \ll \sum_{\substack{d \leq 2W \\ (d, r) = 1}} \frac{\mu^2(d)}{d}\left(\frac{W}{dr} + 1\right)
\]

\[
\leq \frac{W}{r} \sum_{d \leq 2W} \frac{\mu^2(d)}{d^2} + \sum_{d \leq 2W} \frac{\mu^2(d)}{d}
\]

\[
\ll \frac{W}{r} + \log 2W.
\]
It follows that
\[S(a, W) \ll \frac{1}{W} \sum_{r \leq \sqrt{2W+a}} \left(\frac{W}{r} + \log 2W \right) \]
\[\leq \frac{1}{W} \sum_{r \leq 2\sqrt{W}} \left(\frac{W}{r} + \log 2W \right) \]
\[\ll \log 2W. \]

By Lemma 2, we have
\[\sum_{V < a \leq 2V} \frac{1}{\varphi(a)} \sum_{W < b \leq 2W} \frac{d(a+b)}{\varphi(b)} \]
\[\ll \sum_{V < a \leq 2V} \frac{1}{\varphi(a)} \cdot \log x \]
\[\ll \log x. \]

Therefore
\[\sum_{p < x} f_2(p) \ll x \log x \sum_{1 \leq i \leq \frac{1}{2} \log_2 x} \sum_{i \leq j \leq \log_2 x - i} \frac{1}{1 + \log_2 x - i - j}. \quad (6) \]

We have
\[\sum_{1 \leq i \leq \frac{1}{2} \log_2 x} \sum_{i \leq j \leq \log_2 x - i} \frac{1}{1 + \log_2 x - i - j} \]
\[\leq \sum_{1 \leq i \leq \frac{1}{2} \log_2 x} \sum_{1 \leq k \leq \log_2 x - 2i + 2} \frac{1}{h} \]
\[\ll \sum_{1 \leq k \leq \frac{1}{2} \log_2 x} \log(\log_2 x - 2i + 4) \]
\[\ll \sum_{1 \leq k \leq \frac{1}{2} \log_2 x + 1} \log(2k + 8) \]
\[\ll \log x \log \log x. \]

So far the proof of Theorem is finished.
Similar discussion can yield
\[\sum_{1 \leq i \leq \frac{1}{2} \log_3 x} \sum_{i \leq j \leq \log_2 x - i} \frac{1}{1 + \log_2 x - i - j} \gg \log x \log \log x. \]
In [1],
\[\sum_{1 \leq i \leq \frac{1}{x} \log x} \sum_{i \leq j \leq \log x - i} \frac{1}{1 + \log x - i - j} \ll \log x \]
is proved, where a factor \(\log \log x \) is lost. From the above discussion, it seems reasonable to conjecture
\[x \log^2 x \log \log x \ll \sum_{p < x} f_2(p). \] (7)

References

[1] Terence Tao, *On the number of solutions to* \(\frac{4}{p} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} \), available at http://arxiv.org/abs/1107.1010

[2] R. C. Vaughan, *On a problem of Erdös, Straus and Schinzel*, Mathematica, 17(1970), 193-198.

Institute of Mathematics, Academia Sinica, Beijing 100190, P. R. China
E-mail: jiach@math.ac.cn