Research Article

Observe Athlete’s Ankle Pain and Ankle Joint Muscle Characteristics Based on Microscope Images

Mingzhi Li and Lina Sun

Sports Department, North China Institute of Science and Technology, Langfang 065201 Hebei, China

Correspondence should be addressed to Mingzhi Li; limz@ncist.edu.cn

Received 22 July 2021; Revised 29 September 2021; Accepted 12 October 2021; Published 29 October 2021

Academic Editor: Haibin Lv

Copyright © 2021 Mingzhi Li and Lina Sun. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. To observe the characteristics of ankle pain and ankle joint muscle by microscope. Methods. In a sports university, 15 athletes above grade 2 were randomly selected as the experimental group, and 15 nonathletes were randomly selected as the control group. The experiment mainly included foot shape test, standard scaphoid height test, ankle range of motion test, ankle muscle emg test, and other experimental procedures. Medical microscopic image processing is a new technology developed in the past thirty years, which has brought great progress for mankind to understand and transform nature. Among them, the image processing and recognition of tumor cell microscopic images are one of the research focuses on the use of computers to process and recognize medical images.

Results. In the test of ankle range of motion, when the angular velocity was the same as 60°/s, compared with the control group, the difference value of bilateral flexor peak moment in the experimental group was large, and the difference between the two groups was significant (P < 0.05), with statistical significance. As the angular velocity dropped from 240°/s to 60°/s, 30 members of the experimental group and control group also experienced a decrease in the bilateral ankle isokyclic muscles, reflecting their lack of ankle strength. On the other hand, the muscle strength of the ankle joint in the experimental group was relatively small, and the difference between the two groups was significant (P < 0.05).

During the exercise, some members of the experimental group suffered from ankle pain, which resulted in insufficient strength of the muscles of the ankle joint, resulting in the interruption of the experiment. In the emg test of ankle muscles, the effective discharge values of preexcitation current of tibial anterior muscle before and after exercise were 104.6 ± 26.5 and 129.2 ± 38.1, respectively, with significant difference and statistical significance. In the foot morphology test and the standard scaphoid height test, the difference between the two groups was not significant (P > 0.05), and there was no statistical significance.

Conclusion. Microscope based on athlete’s foot and ankle pain and ankle muscle characteristics to improve the accuracy of the observation, with the help of a microscope, you can see the details of a doctor are invisible to the naked eye and can record the relevant data in time in order to observe the late, for athlete’s foot and ankle pain relief and enhanced ankle muscles provide data support.

1. Introduction

Gradually, people’s resistance drops and other problems, and they enter into subhealth states such as insomnia, emotional anxiety, and memory loss. Therefore, physical health gradually comes into people’s field of vision and attracts people’s attention. Computer digital image processing technology is a comprehensive edge subject integrating optics, microelectronics, computer science, applied mathematics, and other subjects. Medical microscope images are the product of mutual promotion of theories and technologies such as computer, image processing, pattern recognition, and artificial intelligence. For athletes, health is more important, to double attention. A person can stand, walk, run, and jump, which is closely related to the ankle joint. The ankle joint is the most easily injured by people, especially athletes, so special attention should be paid to prevent pain. The muscles of the ankle joint are mainly distributed in the front, back, and side of the calf. Ankle pain is more common in athletes, and the degree of ankle pain and the impact on athletes are also different. Humans are an amazing species, with a unique body structure and infinite charm. Through the
relevant technical equipment and professional guidance, athletes can relieve ankle pain and strengthen the ankle joint muscles, so as to maintain a good state of competition. The ankle joint is a weight-bearing joint of the human body. The compressive stress it bears during weight-bearing is about two to five times that of the body weight. Therefore, it is very prone to injury during exercise and is one of the most frequent sports injuries. Among them, ankle sprains account for emergency 10% of the amount of film taken, and 40% of patients with ankle sprains will eventually develop chronic joint diseases such as joint instability, chronic swelling and pain, and difficulty jumping.

Under the tide of rapid development of science and technology, traditional medical equipment has ushered in new life, and new equipment has been slowly introduced into it. Medical equipment has been constantly updated and developed to develop in the direction of digitization and diversification [1]. Clinically, it is extremely important to make accurate judgments on ankle joint injuries and to give symptomatic treatment in time. The current clinical diagnosis of ankle joint injury is mainly based on injury symptoms, CT examination, or X-ray. Due to the complex anatomical structures such as the ligaments and bones around the ankle joint, it is often difficult for general imaging methods to visually and accurately display the injury status of the ankle joint ligaments and tendons. The development of microscope technology has promoted its application in the medical field, it can play a role in ophthalmology, ophthalmology, and surgery, and the scope of treatment has been greatly broadened [2]. Microscope has gradually become a routine and common medical equipment. It has many accessories and can be reasonably combined according to its own needs to be used by various departments [3]. At the same time, microscopes include moving and fixing, which are easy to move and less limited by space [4]. For example, X-ray examination has obvious limitations on the performance of these soft tissue injuries such as ligaments and tendons; CT examination is difficult to identify soft tissue structures such as ankle ligaments due to the limitations of its own resolution, so it is difficult to be directly diagnosed in clinical practice. In accordance with, microscope images can be used for diagnosis. Microscope observation was applied to the field of sports, especially in the aspect of athletes’ feet and ankles, to observe the common ankle pain and ankle joint muscle characteristics of athletes [5]. This is conducive to improving the accuracy of observation. With the help of a microscope, doctors can see the details invisible to the naked eye and record relevant data in time for later observation [6], providing data support for athletes to alleviate ankle pain and strengthen ankle joint muscles [7].

Based on the principle of data segmentation, this paper mainly adopts test method and mathematical statistics method, supplemented by grey correlation analysis and literature method, and discusses the characteristics of athletes’ foot and ankle pain and ankle joint muscles through microscope [8]. The ankle joint is an important weight-bearing joint of the human body. It has abundant ligaments and is prone to injury. In the past, clinical diagnosis of ankle injuries was mainly based on clinical signs and X-rays, but X-ray examinations showed certain limitations for ligament and tendon injuries, which often caused errors or inaccuracy in judgment, which affected the treatment and functional recovery. On the one hand, this study comprehensively reviewed the domestic and foreign research results on “microscopic observation,” “foot and ankle pain,” and “ankle joint muscle characteristics” and made a summary to lay a theoretical foundation for this study [9]. High-resolution microscopic scan images are an important tool for diagnosing ankle injuries. The ability of microscope image processing to recognize various tissues is based on three factors: one spatial resolution, two signal-to-noise ratio, and the contrast of M signal intensity between three tissues. The resolution of the microscope is the display of the microscopic anatomical structure of the tissue by the imaging system, which is related to the layer thickness, the field of view (FOV), and the pixels (Matrix). On the other hand, 15 athletes above grade 2 were randomly selected in a sports university as the experimental group, and 15 nonathletes were randomly selected as the control group for the control experiment. The experiment mainly included foot morphology test, standard scaphoid height test [10], ankle range of motion test, ankle muscle eng test, and other experimental links. Data analysis and grey correlation analysis were adopted to investigate the characteristics of ankle pain and ankle muscle based on microscopic observation [11].

2. Method

2.1. The Key Points of Microscopic Observation. Microscope is a kind of complex and precise optical instrument, and people can be used to observe small objects. As soon as the microscope appeared, it attracted the attention of experts in various fields because of its advantages of precision and convenience and was applied in many scientific fields [12]. The application of microscope in medicine has been rapidly infiltrated into every corner [13], among which microscopic diagnosis is a new application of technology [14]. Due to the late development of microscope observation in China and the immaturity of some key technologies, some important points in diagnosis seem simple and basic but are very important.

After determining the pixel and layer thickness of an image, a small FOV can be selected to obtain a higher spatial resolution. Contrast is the difference in signal intensity between two adjacent areas, which is not only determined by the inherent properties of the tissue (proton density, etc.) but also by various selected parameters, such as sequence, time, and magnetic field. The high-field-strength microscope displays high-resolution image.

As shown in Figure 1, the principle is mainly by attaching reflective ball markers to the test part of the experimental object, and according to the three-dimensional coordinates of different cameras in the scanning space at the same sampling time, the kinematics and dynamics analysis of these coordinates can be used to obtain the research object, the change law of displacement, velocity, and momentum and kinetic energy, and other physical quantities [15].
Since there are so many kinds of microscopes, it is impossible to enumerate them here. Firstly, precheck and adjustment should be carried out before normal use or even when idle, including but not limited to: (1) carefully check whether the optical path focusing and field of view aperture setting of the fluorescence microscope device are normal before each observation and use [16]. (2) Check whether the transmitter filter components in the converter have been installed and whether the objective lens is properly configured. If it is not appropriate, it should be adjusted in time to avoid affecting the later observation. At the same time, attention should be paid to the hygiene of the front lens of the objective lens, to ensure that there is no grease, dust, and other stolen goods. (3) If the transmission light difference observation is conducted at the same time, it is necessary to check the conjugate of the concentrator to the center and the phase difference ring opposite to the objective lens. (4) Microscope observation is generally in a place with good light; in most cases, the lighting source will contain more or less ultraviolet light, in order to the health of doctors or workers, to avoid their retina from ultraviolet damage, can be placed in front of the microscope in the observation of a brown screen. (5) The microscope is sophisticated and expensive, so it is necessary to extend the service life of high-pressure mercury lamps. On the one hand, it is necessary to configure voltage regulator for the source power to avoid voltage instability and reduce the service life of high-pressure mercury lamp. On the other hand, it is best to turn off the high-pressure mercury lamp 15 minutes after it is turned on and let it rest for about 10 minutes, giving enough time for the mercury vapor to cool back to its original state. The second is the observation of fluorescent mirror: (1) after turning on the fluorescent lamp source, wait for 5 to 10 minutes, so that the intensity of the excitation light slowly becomes stable, which is conducive to observation. At the same time, in order to prevent fluorescence quenching caused by excessive excitation of light in the observation process, the intensity should be well controlled and adjusted to the appropriate degree according to the demand, which is also conducive to the later shooting records. (2) If the effect is not good in the process of observation, measures such as carefully adjusting the correction ring of objective lens coverage difference and rechecking whether the fluorescence excitation or emission components correspond to the labeled fluorescent pigment can be taken. (3) After temporary observation or the end of observation, the excitation light path should be blocked in time to extend its service life. Whether in the usual maintenance or use, we should pay attention to this point. Finally, fluorescence photography and digital CCD camera image acquisition, the quality of this step will affect the later diagnostic effect to a certain extent, to be strictly implemented. On the one hand, the use of fluorescence photography, it seems that the visual effect is not bad, but in fact, the use of fluorescence microscope can increase the exposure time several times or even dozens of times. In the process of exposure, compensation should be added as much as possible to obtain a bright and colorful image for later observation and use. At the same time, avoid any vibration during the exposure process so that the anti-vibration effect can be observed under conditions. On the other hand is the collection of digital CCD camera image, this collection should take appropriate shooting mode according to the shooting environment, according to the mirror set the corresponding parameters, if the mirror is too bright, can add ND filter lens.

2.2. Preliminary Study on Ankle Pain and Ankle Joint Muscle Characteristics of Athletes

2.2.1. Ankle Pain. Ankle is a complex and unified whole made up of muscles, ligaments, and nerves. According to the American foot and ankle surgery association, 70 percent of people experience ankle pain, which can be caused by improper arch stress, degenerative deformation, and excessive exercise. In sports, especially running, the strength of
2.2.2. Ankle Joint Muscle Characteristics. The muscle in question is actually a unit of motion. It is made up of neurons and muscle fibers, and the neurons come from the brainstem or spinal cord. A motor unit of muscle consists of a single branching neuron and 25 to 2,000 muscle fibers. The same ankle muscle is made up of neurons and muscle fibers, which are connected by muscle cells that allow neurons to transmit action potentials to each other to contract. On one side of the lower leg are the tibia and fibula, which together form a groove that opens before and after, and the talus of the foot, which is filled in, forms the ankle and is surrounded by capsule and ligament. Ankle joint muscle mainly includes the anterior group, the posterior group, and the lateral group three parts, like we are familiar with the gastrocnemius, tibial posterior muscle, and flexor digitorum longus belong to the posterior group part.

2.3. Feature Algorithm. For the statistics of the degree of damage to the ankle joint, we use the binomial logistic regression model to calculate, which is a functional model when logistic regression is used for binary classification problems. It is a probability distribution model, and its probability distribution is as follows:

\[
F(x) = \frac{1}{a(z)} \sum_{j=1}^{r} \beta_j(z)u(kT + t_{j-1}) + v(kT + t_1).
\]

(1)

Can be transformed into:

\[
F(x) = \int |Du|dxdy + \frac{1}{2} \lambda \|u - u_0\|^2.
\]

(2)

The corresponding equation is

\[-\text{div} \left(\frac{\nabla u}{|\nabla u|} \right) - \lambda (u_0 - u) = 0. \]

(3)

An optimization problem that can be transformed into a function, let the error function be:

\[E(x, y) = \text{div} \left(\frac{\nabla u}{|\nabla u|} \right) - \lambda (u - u_0).\]

(4)

Assuming that the final output is an ideal model, we can get

\[u(x, y) = N(u_0(x, y), w),\]

(5)

\[
\frac{dI}{ds} = T(s)^*p(s)^*A = T(s)^*\kappa(s).
\]

(6)

The output is

\[T = f \left(\sum_{i=1}^{n} w_i x_i - \delta \right). \]

(7)

The definition error is

\[d(x_i, x_j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \cdots + |x_{in} - x_{jn}|^2)}.
\]

(8)

Can be converted to

\[W = N_1 r_1^2 + N_2 r_2^2 + N_3 d_2^2 + \left(\frac{N_1 r_1^2}{2} + N_3 d_2^2 \right) * 0.1 + \frac{2}{3} N,
\]

(9)

where the weighting matrix Q is

\[Q = \frac{1}{2a^2r^2} \left(\frac{2b^2}{2a^2r^2} p - 1 \right)^{-1} [a^2r^{-1} + 2(1 - b^2)r], \]

(10)

\[I_r = \sigma(t)^2 = w_1(t) * w_2(t) * (u_1(t) - u_1(t))^2.
\]

(11)

For two time series \(Xt\) and \(Yt\) \((t = 0, 1, \ldots, N)\), the joint regression model is defined as follows:

\[
\left\{ \begin{array}{l}
X_1 = \sum_{p=1}^{j} a_{ij}X_{i-p} + \sum_{p=1}^{j} a_{pj}X + \epsilon_{1t}, \\
Y_1 = \sum_{p=1}^{j} a_{ij}X_{i-p} + \sum_{p=1}^{j} a_{pj}X + \epsilon_{2t}.
\end{array} \right.
\]

(12)

When \(Xt\) and \(Yt\) are independent of each other, then

\[F_{X,Y} = \ln \frac{\Sigma 1y1}{\Sigma}.
\]

(13)

The first term in the formula represents the inherent power, and the second term represents the causal power of \(Xt\) acting on \(Yt\). Therefore, the frequency domain Granger causality from \(Yt\) to \(Xt\) is defined as

\[f_{y-x}(w) \ln \frac{S_{y}w}{H_{xx}(w)\Sigma X_{x}H_{xx}(w)}.
\]

(14)

The frequency domain Granger causality from \(Xt\) to \(Yt\) is

\[f_{y-x}(w) \ln \frac{S_{y}w}{H_{yy}(w)\Sigma Y_{y}H_{yy}(w)}.
\]

(15)

Then

\[\frac{\delta_j}{y - y_i} \tan \theta_j \]

\[\sum_{i=1}^{n} [k_i(y - y_i) \tan \theta_j] = 0.
\]

(17)
Due to \(\tan \theta \neq 0\)
\[
\sum_{i=1}^{n}[k_i(y - y_i)] = 0.
\]

According to the balance of bending moment
\[
\sum_{i=1}^{n} M_i = \sum_{i=1}^{n}[k_i(y - y_i)] = \sum_{i=1}^{n}[k_i(y - y_i)^2 \tan \theta_i] = M.
\]

Therefore
\[
\theta_j = \frac{M}{\sum_{i=1}^{n}[k_i(y - y_i)^2]}.
\]

Can be transformed into
\[
K_{0j} = \frac{\sum_{i=1}^{n}[k_i(y - y_i)^2]}{\tan \theta_j}.
\]

According to the balance relationship:
\[
\sum_{i=1}^{n}[k_i(y - y_i)] = 0.
\]

Can be transformed into
\[
y \sum_{i=1}^{n} k_i - d \sum_{i=1}^{n} \left(\frac{i - 1}{m - 1}\right) k_i = 0.
\]

3. Experiment

3.1. Experiment Preparation. Connect the network system to the connection of the camera, connect the Vicon database to the PC, check the network settings and connections, and whether the connection between the camera and the PC is accurate. The network system connection is shown in Figure 2.

There is a direct relationship between the size of the voxel and the SNR. If other parameters remain unchanged, the SNR will decrease. In clinical applications, the SNR decreases because other meals and lodging remain unchanged, so the relationship between the two should be balanced to show the best effect. However, the flexible surface coil with SENCE technology can improve the SNR of the image and shorten the scanning time, greatly improving the image quality.

System calibration can define the capture space and relative position, determine the relationship between the position of the three-dimensional geometry of the space point and the corresponding point in the image, and position the camera. The system calibration information is combined with the data captured by the camera for reconstruction of three-dimensional motion.

3.2. Research Object. In a sports university, 15 athletes above grade 2 were randomly selected as the experimental group, and 15 nonathletes were randomly selected as the control group. The 30 subjects were between the ages of 20 and 25 and weighed between 45 and 75 kilograms. Among them, 15 members of the control group are in good physical condition and have no sports injury in the current state. It is ensured that they have not done any strenuous exercise recently, have a good rest, and have no muscle fatigue. The test subjects should be randomly selected to reduce the interference of human factors and improve the scientific nature, objectivity, and accuracy of the survey. The problem that needs attention is that while increasing the image resolution, it will extend the scanning time. The prolonged scanning time will affect the patient’s tolerance and increase the number of examinations, which will affect the image quality and SNR. Therefore, the acquisition time needs to be considered when designing the optimal scanning conditions. This study shows that the time of each plane multisequence of the two scanning results is only about ten minutes apart, and both T1W and PDW clearly display the ligament structure, so it can be used during operation. Reduce the time by one less sequence to less than one hour. The measurement of the basic parameters of the subject is shown in Figure 3.

3.3. Experimental Instruments. The instruments in this experiment mainly include microscope, infrared high-speed motion capture instrument, emg tester of human ankle joint muscle, and laser speed measurement system, in addition to the scale, height meter, sports shoes, bandage, heart rate meter, scissors, computer, and other necessary equipment.

(1) Microscope. The hardware part of the microscope mainly includes CCD camera, image acquisition card, high-speed PC, and storage equipment such as hard disk and printer. CCD camera is the most basic and basic part of the microscope. The higher the accuracy of CCD camera, the better the quality of the collected image, which greatly affects the diagnostic effect. The microscope camera interface model is RS485, which is convenient for the computer to connect, so as to adjust the camera parameters on the computer. After collecting relevant data through CCD camera, the information should be transmitted to the image phone card, which is crucial in the experiment. Therefore, what we have prepared is a high-resolution high-definition image acquisition card of model mv-800, which supports multiple input methods, with a resolution of 768 * 576, high resolution, fast sampling rate, and up to 9 collection formats such as RGB32 and Y8. Excellent image quality can superimpose text and image on external video, real-time display on the computer screen. In addition, the computer system hard disk capacity to larger, the printer can be color printing, and the report in the picture is basically color based. On the other hand, the software part, mainly to VC+ +6.0 as the foreground development tool, in the experiment VC++ selected in the MFC class library.
can directly call some Win32 function system. The system can make full use of the previous code, reduce the experiment cost and experiment time, reduce the experiment process in disguise, and reduce the difficulty of the experiment. At the same time, SQL Server2000 as the database development of the C/S structure, it has a powerful search function, can quickly query the data users need, and support centralized management and distributed transaction management, convenient, and efficient, but also support image management, data replication, and other functions, cost-effective.

The use of flexible surface coils to reduce FOV and layer thickness scanning can obtain high-resolution microscope images; different imaging planes and sequences of the microscope display different ankle joint tissues and injuries. Therefore, optimizing the microscope scanning conditions can obtain high resolution, high accuracy, and clearer images to provide more intuitive information for clinical diagnosis.

(2) Electromyogram Tester for Ankle Muscles. Produced in the United States, this tester is more flexible and convenient than the ordinary test instrument. It breaks free from the shackles of many and miscellaneous wires to minimize the impact on the test. The emg tester for ankle muscles mainly includes a Trigno detector and 32 sensors, with an excellent capture system. The shooting speed reaches 120 frames per second, the exposure time reaches one thousandth of a second, and the acquisition frequency is 2000 Hz. All these advantages are beneficial to the statistics of emg data. The gait analysis equipment is shown in Figure 4.

3.4. Experimental Process

3.4.1. Experimental Procedure. First, contact the site in advance and complete the arrangement and debugging of related equipment. Second, patiently explain the experimental content and detailed process to the test subjects, answer the questions of the test subjects thoroughly, and make them fully understand and actively match and test, so as to ensure the efficiency and integrity of the subsequent experimental process. Meanwhile, the basic information of the test subjects, including name, gender, height, and weight, was recorded to lay a foundation for later data analysis. Third, for the test object in the key parts of the paste electrode plate and connect the relevant data line, fix the sensor. Fourth, each test subject runs according to the test requirements to prepare for the final experiment. Fifth, in the formal experiment to control the standardization of the test procedures and the integrity of data collection, finally three times the
data of the success of the effective results, if not up to standard, will be conducted again, in order to ensure the scientificity and accuracy of the experiment. Sixth, collect all the complete data of all testers and save it for later observation and analysis with a microscope.

3.4.2. Specific Details. First, the foot shape test. Before and after the experiment, the members of the two groups were tested for foot morphology. The test after the experiment should be completed immediately after the end of the experiment and should not exceed five minutes.

Second, the standard scaphoid height test. Before and after the experiment, the members of the two groups were tested on the standard scaphoid height, and the test after the experiment should be completed immediately after the end of the experiment, no more than five minutes. It is important to note that in the measurement record, the numerical units are accurate to millimeters, and the NNHT is calculated by $\text{NNHT} = h/1$, the standard scaphoid height index is normal between 0.21 and 0.30, and the standard scaphoid height index is proportional to the lateral longitudinal arch of the measuring foot.

Third, the range of motion of the ankle joint. Ankle range of motion test is mainly to use the joint angle ruler to accurately measure the four directions of the ankle joint, namely, dorsiflexion, plantarsus flexion, varus, and valgus. The test of each direction includes active and passive, each test is twice, the average value is recorded as the result, and the unit is degree.

![Gait analysis equipment](Image)

Figure 4: Gait analysis equipment.

Muscle	Posture	Sensor location
Tibialis anterior muscle	Standing position	Fibular head and medial malleolus proximal 1/3
Peroneus longus	Standing position	Fibular head and lateral malleolus line 1/4 proximal
Gastrocnemius medial head	Standing, with feet raised	The most prominent bulging muscle belly on the inner side of the lower leg
Gastrocnemius lateral head	Standing, with feet raised	The most prominent bulging muscle belly on the outside of the lower leg

Table 1: Location of joint adhesion.

![Fan-shaped statistical chart](Image)

Figure 5: Fan-shaped statistical chart of ankle pain in 15 members of the experimental group.
Fourth, the ankle joint muscle myoelectric test. In this stage, emg and muscle vibration information of ankle muscles before and after exercise were collected by ankle muscle emg tester in the experimental group and the control group. The main purpose of this test is to attach the wireless sensor to the ankle muscle surface of the test subject, to minimize the impact of the test instrument on the test subject, and to obtain complete and accurate data as far as possible. The adhesive positions of the main joints are shown in Table 1.

4. Experimental Results

4.1. Summary of Ankle Pain of 15 Subjects in the Experimental Group. Before the formal test, 15 members of the experimental group were tested for ankle pain. Ankle pain is mainly divided into level 3, level I namely mild pain may with mild external ankle swelling, and pain can interfere with sleep but rarely joint instability. Moderate to severe pain belong to II level, this level of pain associated with swelling, stiffness, and walking difficult, partly visible bruises foot. Levels of the most serious is III, III pain swelling is more apparent, joint instability that affects normal activities. As shown in Figure 5, among the 15 members in the experimental group, 6 had no ankle pain, 2 had anterior ankle pain, 3 had Achilles tendon pain, and 6 had sole and heel pain. Due to the impact of its shooting environment, resolution, and environmental noise, it increases the difficulty of microscopic image segmentation. In the image recognition stage, how to select effective features to describe the object is a key part. It not only directly affects the accuracy of recognition but also relates to the feasibility of subsequent recognition algorithms. At present, the commonly used features are geometric shape features and texture features. These are a quantitative description of the image, highlight the information people need, and help researchers quickly understand the characteristics of the image.

We inspected the members’ ankle joint sagittal angle features, as shown in Table 2.

In the sagittal plane of the mode 1 action, the ankle joint of the take-off leg gradually transitions from positive to negative during the take-off phase. This shows that the take-off in the emergency stop takes off gradually transitions from the heel landing to the full foot landing, and the take-off foot takes off. The dorsiflexion angle of the back ankle joint on the ground gradually increased and approached the maximum dorsiflexion angle at the moment of take-off and kick-off. The comparison between the boys and girls group is shown in Figure 6.

It can be seen that after landing, the forefoot first touches the ground and then gradually transitions to a full-foot touchdown to reach a stable state. The swinging leg is in a state where the swinging leg is close to the jumping leg at the moment when the take-off foot hits the ground and the maximum kick-off time.

Table 2: Action sagittal ankle angle.

Sagittal plane	Boys group	Girls group
Moment of landing		
Take-off leg	4.34 ± 3.37	
Swing leg	18.44 ± 4.76	3.15 ± 2.48
Maximum kick-off time	8.47 ± 4.45	
Take-off and kick-off time	3.03 ± 2.57	
The moment your feet touch the ground	−32.75 ± 5.57	−43.15 ± 6.21
Maximum buffer time when landing	−9.64 ± 3.12	−13.15 ± 6.47
	21.15 ± 3.37	
	18.46 ± 5.16	17.48 ± 4.55

Figure 6: Sagittal face-to-face ratio between boys and girls. T1: moment of landing; T2: maximum kick-off time; T3: take-off and kick-off time; T4: the moment your feet touch the ground; T5: maximum buffer time when landing.

Figure 7: Statistical comparison of isokinetic muscle strength of bilateral ankle joints in the experimental group and the control group.
4.2. Experimental Results and Analysis on the Comparison of Isokinetic Muscle Forces of Bilateral Ankle Joints between the Two Groups. As shown in Figure 7, at the same 240°/s, the peak moment ratios of flexion and extension of bilateral ankle joints in the experimental group were 8.4 and 6.8, respectively, while those in the control group were 7.8 and 6.6, with no significant difference between the two groups \((P > 0.05) \). When both values were 60°/s, the difference value of bilateral flexor peak moment in the experimental group was larger than that in the control group, and the difference between the two groups was significant \((P < 0.05) \), which was statistically significant. As the angular velocity dropped from 240°/s to 60°/s, 30 members of the experimental group and control group also experienced a decrease in the bilateral ankle isokyclic muscles, reflecting their lack of ankle strength.

We made statistics on the angle characteristics of the ankle joint frontal plane of the two groups of exercise sources, as shown in Table 3.

It can be seen that in the frontal plane of the Figure 8, there is no significant difference in the angle of the ankle joint between the male group and the female group at the five moments.

The movement trend of the frontal plane swinging leg of the male group and the female group is roughly the same, but the male group is inversion overall, and the female group is eversion, but the degree is not obvious, and there is no difference.

4.3. The Influence of Ankle Pain on Arch Shape of the Two Groups of Subjects and Its Analysis. FPI is the foot shape index. Through this method, our testers can quickly and conveniently observe and measure the static posture of the experimental subjects’ feet from multiple dimensions and levels by combining their rich knowledge and experience. The higher the FPI index, the more forward the foot. As shown in Figure 9, the foot shape index of the 15 athletes in the experimental group was 5.3, while that of the 15 members in the control group was 4.8. The difference between the two was only 0.5, which was very small. According to the calculation, the \(P \) value was 0.932, and the difference of foot shape index between the two groups was not significant \((P > 0.05) \).

Because after the exercise, the foot shape index is easily affected by the objective influence of local edema and soft tissue and the subjective influence of the observation of the tester, and the index cannot accurately reflect the height of the foot arch. Therefore, NNHT was used as data supplement in this study. NNHT is the standard scaphoid height index method. The standard scaphoid height index is obtained by dividing the scaphoid height by the foot intercept length. The lower the index is, the lower the arch. The scaphoid height indexes of the two groups were 0.252 and 0.247, which were in the range of normal values. There was no significant difference between the two groups \((P > 0.05) \).

Action mode 1: in the one-leg take-off, the change characteristics of the ankle joint peak torque and time during the landing action with both feet are shown in Table 4.
The second peak moment of the take-off leg of the male group swinging leg was 1.74 ± 0.08 N·m, and the female group 1.21 ± 0.41 N·m showed a difference (P = 0.012), and the second peak moment appeared in the male group 1.21 ± 0.04. There was a difference between 1.12 ± 0.04 s and the female group (P = 0.024).

As shown in Table 5, in the frontal plane of running emergency stop, one-leg take-off, and two-foot landing action, the first wave moment of the male group of the take-off leg was 0.76 ± 0.12 N·m greater than 0.42 ± 0.15 N·m of the female group, showing a difference (P = 0.042), there is no difference in the appearance time of the first peak moment between the boys group and the girls group.

The degree of concentration of ankle joints, coefficient of variation, etc. have been statistic, as shown in Table 6.

As shown in Table 6, the coefficients of variation of the three items are 0.084, 0.084, 0.070, all <0.100, and the recognition level is good.

4.4. Experimental Results and Analysis on the Effect of Ankle Pain on Perimalleolus Force in Two Groups. As shown in Figure 10, before exercise, compared with the control group, the muscle strength of the relevant parts of the ankle joint in the experimental group was smaller, and the difference between the two groups was significant (P < 0.05). During the exercise, some members of the experimental group suffered from ankle pain, which resulted in insufficient strength of the muscles of the ankle joint, resulting in the interruption of the experiment.

We use imaging to compare the changes in human brain waves before and after the ankle joint pain, as shown in Figure 11.

At present, the effective means of treatment is also unclear, mainly because of the lack of a clear pathogenesis. We have made statistics on the change characteristics of the ankle joint peak force value and time in the emergency stop one-foot take-off and two-foot landing action, as shown in Table 7.

It can be seen from the table that there is no difference between the male group and the female group in the time when the first crest force appears.
4.5. Comparison of RMS before and after Exercise in the Experimental Group. RMS is the root mean square amplitude, also known as the effective discharge value. By observing the effective discharge values, the researchers can clearly understand the average change characteristics of the emg of the athletes’ ankle joints in a certain period of time, which reflects the amount of energy released by the muscles of the ankle joints in a certain period of time. It is important to note that the size of RMS does not represent the strength of the ankle muscles, and there is no direct proportional relationship between the two. The size of RMS was directly proportional to the number of muscle fibers involved in muscle contraction. The larger the RMS, the greater the number of muscle fibers involved in muscle contraction. In order to avoid the difference of experimental results caused by the difference of movement speed, the researchers stipulated the uniform test speed in the experiment to improve the scientific nature and accuracy of the experiment as much as possible. As shown in Table 8, there was no significant difference in the RMS of preactivated current and support period between the tibial longus, the lateral head of the gastrocnemius, and the medial head of the gastrocnemius before and after the exercise (P > 0.05). The effective discharge values of preexcitation current of tibial anterior

![Figure 11: Changes in ankle pain.](image_url)

Table 7: Sagittal kurtosis value and appearance time.

Sagittal plane	Boys group	Girls group		
	Take-off leg	Swing leg	Take-off leg	Swing leg
First wave crest moment (N-m)	26.57 ± 3.43	—	21.83 ± 1.72	—
T1 time (s)	0.20 ± 0.03	—	0.17 ± 0.08	—
Second wave crest moment (N-m)	24.75 ± 4.03	23.75 ± 5.78	18.45 ± 1.71	19.68 ± 5.06
T2 time (s)	1.21 ± 0.07	1.12 ± 0.05	1.12 ± 0.12	1.14 ± 0.16

Table 8: RMS comparison before and after exercise in the experimental group.

Project	Before exercise	After exercise	P value	
Tibia anterior muscle RMS (% MVC)	Preactivation period	104.6 ± 26.5	129.2 ± 38.1	0.018
	Support period	36.4 ± 20.0	31.3 ± 20.8	0.099
Peroneus longus RMS (% MVC)	Preactivation period	51.7 ± 37.1	52.4 ± 23.7	0.959
	Support period	102.2 ± 88.9	100.0 ± 48.0	0.94
Gastrocnemius lateral head RMS (% MVC)	Preactivation period	52.1 ± 32.8	52.9 ± 27.6	0.923
	Support period	118.6 ± 41.8	132.9 ± 51.5	0.337
Medial gastrocnemius head RMS (% MVC)	Preactivation period	40.4 ± 28.0	46.4 ± 30.8	0.41
	Support period	108.6 ± 42.6	109.7 ± 32.4	0.918
of the speed of movement, greatly restricting the range of movement. Therefore, strengthening the ankle joint muscle training is beneficial to improve the movement speed of the athletes. At the same time, it is necessary to improve the antifatigue ability of the ankle muscles to cope with high intensity and high frequency of competition. On the other hand, it was found in this study that before exercise, the muscle strength of the relevant parts of the ankle joint of the experimental group was smaller than that of the control group, and the difference between the two groups was significant \((P < 0.05)\). During the exercise, some members of the experimental group suffered from ankle pain, which resulted in insufficient strength of the muscles of the ankle joint, resulting in the interruption of the experiment. The training intensity of athletes is large, and the competition frequency is high. Especially for track athletes, the strong strength of ankle joint muscles is conducive to the prevention of long-term sports injury, and the increase of strength of ankle joint muscles is conducive to the reduction of the risk of ankle joint injury. In order to form muscle memory in training, athletes often train repeatedly for a certain action. Strong ankle strength is conducive to enhancing the adaptability of the body to repeated loads, improving the stability of the ankle, and reducing the risk of ankle injury.

According to the results of the foot morphology test, the arch height of the experimental group was lower than that of the control group. The reason is that ankle pain leads to a decrease in the angular velocity decreased from 240°/s to 60°/s, 30 members of the experimental group and control group also showed a decrease in the bilateral ankle isokaric muscles, which reflected their lack of ankle strength. Most sports require rapid foot movement, including lateral movement and lateral movement. If the ankle joint muscle strength is not enough, easy to appear fatigue, athletes in the process of pushing off the ground will lose a large amount of kinetic energy, resulting in the decline of the speed of movement, greatly restricting the range of movement.
function of the plantar muscles, which affects the posture of the athlete during the movement of the foot. In order to cope with the rapid landing during the exercise, more external tibial anterior muscles are used as a kind of compensation for the plantar muscles. This also reflects the low efficiency of the tibial anterior muscle. The same movement is completed at the cost of higher muscle activation, so athletes with ankle pain often experience fatigue after exercise.

6. Conclusion

The rapid development of the microscope has made it widely used in many fields. At present, the technique of observing athletes’ foot and ankle pain and ankle joint muscle characteristics based on the microscope is not yet mature, and there is still a certain gap between it and the top level of foreign countries, which needs to be further studied. However, the observation of foot and ankle pain and ankle muscle characteristics by microscope is another innovative application of microscope. Combined with the development of the microscope itself and the practical requirements of medical treatment, this development trend is generally favorable.

In this paper, the characteristics of athletes’ foot and ankle pain and ankle joint muscles were observed under the microscope. This experiment mainly adopted the test method and mathematical statistics method based on the principle of data segmentation, supplemented by grey correlation analysis and literature method to observe the characteristics of athletes’ foot and ankle pain and ankle joint muscles under the microscope. On the one hand, this study comprehensively reviewed the domestic and foreign research results of “microscope observation,” “foot and ankle pain,” and “ankle joint muscle characteristics” and summarized them to lay a theoretical foundation for this study. On the other hand, 15 athletes above grade 2 were randomly selected in a sports university as the experimental group, and 15 nonathletes were randomly selected as the control group for the control experiment. The experiment mainly included foot morphology test, standard scaphoid height test, ankle range of motion test, ankle muscle emg test, and other experimental links. Data analysis and grey correlation analysis were adopted to investigate the characteristics of ankle pain and ankle joint muscle based on microscopic observation. The study showed that when the angular velocity was the same as 240°/s, the peak moment ratios of flexion and extension of the ankle joints on both sides of the experimental group were 8.4 and 6.8, respectively, while those of the control group were 7.8 and 6.6. There was no significant difference between the two groups ($P > 0.05$). When both values were 60°/s, the difference value of bilateral flexor peak moment in the experimental group was larger than that in the control group, and the difference between the two groups was significant ($P < 0.05$), which was statistically significant. In the foot shape test, the foot shape index of the 15 athletes in the experimental group was 5.3, while that of the 15 members in the control group was 4.8. The difference was only 0.5, which was very small. According to the calculation, the P value was 0.932, and the difference of foot shape index between the two groups was not significant ($P > 0.05$). In the standard scaphoid height test, the scaphoid height index of the two groups was 0.252 and 0.247, respectively, both in the normal range. There was no significant difference between the two groups ($P > 0.05$). In the electromyogram test of ankle joint muscles, there was no significant difference in the RMS of the tibial longus muscle, the lateral head of gastrocnemius muscle, and the medial head of gastrocnemius muscle of 15 subjects in the experimental group before and after exercise, and there was no statistical significance ($P > 0.05$). The effective discharge values of preexcitation current of tibial anterior muscle before and after exercise were 104.6 ± 26.5 and 129.2 ± 38.1, respectively, with significant difference and statistical significance.

Microscope based on athlete’s foot and ankle pain and ankle muscle characteristics to improve the accuracy of the observation, with the help of a microscope, you can see the details of a doctor are invisible to the naked eye and can record the relevant data in time in order to observe the late, for athlete’s foot and ankle pain relief and enhanced ankle muscles provide data support.

Data Availability

This article does not cover data research. No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by People’s Livelihood Research Project of Hebei Province Federation of Social Science Circles, Research on Physical Education of Improving Students’ Sense of Acquisition from the Perspective of People Oriented, Project Label 201701936.
References

[1] I. Jusionyte, “Called to “ankle alley”: tactical infrastructure, migrant injuries, and emergency medical services on the US-Mexico border,” American Anthropologist, vol. 120, no. 1, pp. 89–101, 2018.

[2] M. Mallow and S. Gwin, “The trouble ankle: persistent pain after inversion ankle injury,” Current Physical Medicine and Rehabilitation Reports, vol. 6, no. 2, pp. 142–146, 2018.

[3] Y. Li, J. Zhao, Z. Lv, and J. Li, “Medical image fusion method by deep learning,” International Journal of Cognitive Computing in Engineering, vol. 2, pp. 21–29, 2021.

[4] A. Rosenberger, Å. Beijer, and B. Johannes, “Changes in muscle cross-sectional area, muscle force, and jump performance during 6 weeks of progressive whole-body vibration combined with progressive,” High Intensity Resistance Training, vol. 17, no. 2, pp. 38–49, 2017.

[5] E. Kurz, O. Faude, R. Roth, L. Zahner, and L. Donath, “Ankle muscle activity modulation during single-leg stance differs between children, young adults and seniors,” European Journal of Applied Physiology, vol. 118, no. 2, pp. 239–247, 2017.

[6] Z. Yu, S. U. Amin, M. Alhussein, and Z. Lv, “Research on disease prediction based on improved deepfm and iomt,” IEEE Access, vol. 9, pp. 39043–39054, 2021.

[7] P. R. Davis, M. J. McKay, J. N. Baldwin, J. Burns, D. Pareyson, and K. J. Rose, “Repeatability, consistency, and accuracy of hand-held dynamometry with and without fixation for measuring ankle plantarflexion strength in healthy adolescents and adults,” Muscle & Nerve, vol. 56, no. 5, pp. 896–900, 2017.

[8] D. J. Ryu, J. M. Kim, and B. S. Kim, “Concomitant contracture of the knee and ankle joint after gastrocnemius muscle rupture: a case report,” Journal of Foot & Ankle Surgery, vol. 56, no. 1, pp. 87–91, 2017.

[9] J. E. Yim, J. Petrofsky, and H. Lee, “Correlation between mechanical properties of the ankle muscles and postural sway during the menstrual cycle,” Tohoku Journal of Experimental Medicine, vol. 244, no. 3, pp. 201–207, 2018.

[10] S. Yang, J. Wang, Q. Lin et al., “Cost-efficient fpga implementation of a biologically plausible dopamine neural network and its application,” Neurocomputing, vol. 314, pp. 394–408, 2018.

[11] R. L. Wang, Z. H. Zhou, Y. C. Xi, Q. N. Wang, N. H. Wang, and Z. Huang, “Preliminary study of robot-assisted ankle rehabilitation for children with cerebral palsy,” Journal of Peking University Health Sciences, vol. 50, no. 2, pp. 207–212, 2018.