Angiotensin-converting enzyme polymorphisms AND Alzheimer’s disease susceptibility: An updated meta-analysis

Xiao-Yu Xin, Ze-Hua Lai, Kai-Qi Ding, Li-Li Zeng*, Jian-Fang Ma*

Department of Neurology and Institute of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China

* llzeng@126.com (LLZ); mjf10924@rjh.com.cn (JFM)

Abstract

Background

Many studies among different ethnic populations suggested that angiotensin converting enzyme (ACE) gene polymorphisms were associated with susceptibility to Alzheimer’s disease (AD). However, the results remained inconclusive. In the present meta-analysis, we aimed to clarify the effect of ACE polymorphisms on AD risk using all available relevant data.

Methods

Systematic literature searches were performed using PubMed, Embase, Alzgene and China National Knowledge Infrastructure (CNKI). Relevant data were abstracted according to predefined criteria.

Results

Totally, 82 independent cohorts from 65 studies were included, focusing on five candidate polymorphisms. For rs1799752 polymorphism, in overall analyses, the insertion (I) allele conferred increased risk to AD compared to the deletion (D) allele (I vs. D: OR = 1.091, 95% CI = 1.007–1.181, p = 0.032); while the I carriers showed increased AD susceptibility compared with the D homozygotes (II + ID vs. DD: OR = 1.131, 95% CI = 1.008–1.270, p = 0.036). However, none of the positive results passed FDR adjustment. In subgroup analysis restricted to late-onset individuals, the associations between rs1799752 polymorphism and AD risk were identified using allelic comparison (OR = 1.154, 95% CI = 1.028–1.295, p = 0.015, FDR = 0.020), homozygotes comparison, dominant model and recessive model (II vs. ID + DD: OR = 1.272, 95% CI = 1.120–1.444, p < 0.001, FDR < 0.001). Nevertheless, no significant association could be revealed after excluding studies not in accordance with Hardy-Weinberg equilibrium (HWE). In North Europeans, but not in East Asians, the I allele demonstrated increased AD susceptibility compared to the D allele (OR = 1.096, 95% CI = 1.021–1.178, p = 0.012, FDR = 0.039). After excluding HWE-deviated cohorts, significant associations were also revealed under homozygotes comparison, additive model (ID vs.
DD: OR = 1.266, 95% CI = 1.045–1.534, p = 0.016, FDR = 0.024) and dominant model (II + ID vs. DD: OR = 1.197, 95% CI = 1.062–1.350, p = 0.003, FDR = 0.018) in North Europeans. With regard to rs1800764 polymorphism, significant associations were identified particularly in subgroup of European descent under allelic comparison (T vs. C: OR = 1.063, 95% CI = 1.008–1.120, p = 0.023, FDR = 0.046), additive model and dominant model (TT + TC vs. CC: OR = 1.116, 95% CI = 1.018–1.222, p = 0.019, FDR = 0.046). But after excluding studies not satisfying HWE, all these associations disappeared. No significant associations were detected for rs4343, rs4291 and rs4309 polymorphisms in any genetic model.

Conclusions

Our results suggested the significant but modest associations between rs1799752 polymorphism and risk to AD in North Europeans. While rs4343, rs4291 and rs4309 polymorphisms are unlikely to be major factors in AD development in our research.

Introduction

Alzheimer’s disease (AD) is an insidious neurodegenerative disorder characterized by progressive cognitive decline, especially irreversible memory impairment. As the most common form of dementia worldwide, AD accounts for about 50–70% of all dementia cases. In China, it was estimated that 9.83 million people aged 60 years or older suffer from AD [1]. Although the precise mechanisms of pathogenesis have not yet been fully defined, with epidemiological and molecular evidence, AD is considered as a multifactorial disease attributed to a complex interaction of both genetic and environment factors. While heritable factors account for 60–80% of AD risk [2].

Despite a number of rare mutations on the Aβ precursor protein (APP), Presenilin-1 (PS1) and Presenilin-2 (PS2) relating to familial AD, which account for less than 2% of all AD cases, the apolipoprotein E (APOE) ε4 allele remains the strongest genetic risk factor for sporadic AD. Previous studies linked APOE with Aβ aggregation and clearance, tau neurofibrillary degeneration, microglia and astrocyte responses, and blood-brain barrier (BBB) disruption [3]. Presence of APOE ε4 allele increases risk of AD with a dose-dependent manner, and might lead to an earlier age of disease onset. The frequency of APOE ε4 in AD patients varied among different ethnic groups, ranging from around 40% to 60%, compared to 20%–25% in controls. Therefore, the presence of ε4 is neither necessary nor sufficient to cause the disease, indicating the participation of other heritable risk factors underlying the development of AD [4, 5].

Recently, many evidences supported that ACE participated in the pathogenesis of AD. As a membrane-bound zinc metalloprotease, ACE played an important role in Aβ degradation. Angiotensin converting enzyme (ACE) is an important component of the renin-angiotensin system (RAS), which mainly acts on promoting the formation of Angiotensin II (Ang II) from Angiotensin I (Ang I) [6]. In an 8-year longitudinal study, the mean intelligence quotient of male hypertensive patients taking ACE inhibitors declined more rapidly than that of others taking no ACE inhibitors. In human APP/ACE +/- mice, a decrease in ACE levels promoted Aβ42 deposition and increased the number of apoptotic neurons [7]. Peripherally derived ACE-enhanced macrophage reduced cerebral soluble Aβ42 level and alleviated vascular and parenchymal Aβ deposits [8]. All these results confirmed the role of ACE in AD development.

The ACE gene is located on chromosome 17q23. The most common polymorphism of ACE gene is the insertion/deletion (I/D) variant of 287-bp in intron 16 (rs1799752). The I/D
genotype is regarded as a determinant of ACE expression levels in plasma, cells and tissues. Approximately 50% variability in plasma levels of ACE depends on the rs1799752 polymorphism [9, 10]. Individuals carrying the D allele have higher plasma ACE levels compared to I homozygotes [11]. Moreover, rs1799752 I/D polymorphism has been reported to link with coronary heart disease and cognitive impairment, for example, AD and vascular dementia (VD). Besides rs1799752 I/D polymorphism, several other polymorphisms of the ACE gene were also investigated in AD cohorts of different ethnicities, such as rs1800764 T/C, rs4343 A/G, rs4291 A/T polymorphisms, et al. rs1800764 and rs4291 located in the regulatory region of ACE gene, while rs4343 in the exonic region. Though some studies have demonstrated the associations, inconsistency was still presented among different study populations. These discrepancies may be related to the small sample size of individual studies, the difference in ethnic background and the different methodologies used for analysis. While meta-analysis is a well-established means to quantitatively synthesize all association data across studies to reduce heterogeneity and identify minor genetic effects, which largely addressing the issue of sample size.

Thus, in the present study, we performed an updated meta-analysis combining all available case-control studies to derive a more precise estimation of the associations between ACE gene polymorphisms and AD susceptibility. We also stratified the study cohorts, when possible, according to the age of onset and ethnic background. Since some recent evidence suggested that the presence of APOE ε4 influence the behavioural effects of ACE I/D polymorphism in AD, and the protective effects of ACE inhibitors or angiotensin receptor blockers on cognitive decline correlated with APOE ε4 carrier status, we also performed subgroup analyses according to APOE ε4 carrier status if sufficient data could be obtained [12, 13].

Materials and methods

Literature search

We performed computerized searches of PubMed, Embase, Alzgene and China National Knowledge Infrastructure (CNKI) up to January 31st, 2021. The following keywords were used: (angiotensin-converting enzyme or ACE or DCP1) AND (Alzheimer or dementia) AND (polymorphism or variant or allele or genotype), with no language restriction. In addition, references of retrieved articles, reviews and meta-analyses were checked manually for potential studies.

Study selection

Studies included in the meta-analysis should meet the following criteria: (1) case-control design; (2) the evaluation of the relationship between the ACE polymorphisms and AD; (3) AD was diagnosed according to generally accepted criteria, such as criteria of the National Institute of Neurological and Communicative Disorders and Stroke–Alzheimer’s Disease and Related Disorders Association (NINCDS–ADRDA) or of the Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV), et al.; (4) genotype or allele frequencies were available in both cases and controls. Studies that performed in more than 1 population were considered as separate investigations. When the articles contained duplicated data, the most recent or complete data set was selected. Since all the included studies were gene polymorphism investigations in patients and controls, which were not suitable for randomized controlled design, no randomized controlled trial (RCT) could be identified and involved in our research.

Data extraction

Data were extracted from the eligible articles by two investigators independently and agreements were achieved on all items. The following information was collected using a predefined
reporting form: name of the first author, publication year, sample size, country, racial descent, diagnosis criteria of AD, genotyping method, source of controls, distribution of allele and genotypes in both AD and control groups, and Hardy-Weinberg equilibrium (HWE) in controls. The Newcastle-Ottawa Scale (NOS) was performed to assess the methodological quality of the included studies. The total NOS score ranges from 0 to 9. If the score was 6 or more, the study was assumed to be high quality [14].

Statistical analysis

The STATA Software (version 14.0, Stata Corp) was used for analytical procedures. Hardy-Weinberg equilibrium (HWE) was assessed in the controls using the exact test. For each gene polymorphism, meta-analysis was performed only if data were available from at least 4 independent studies. We did not assume a genetic model in advance. Firstly, odds ratio was produced by allelic comparison. Secondly, we compared each genotype with one other in turn. Thirdly, we compared each genotype in turn with the other two combined. All these three methods have been widely used for pooling data in genetic association studies [15].

The strength of association was determined by pooled odds ratio (OR) along with the corresponding 95% confidence interval (CI). The Dersimonian and Laird’s Q test was performed for heterogeneity evaluation. If the p value was less than 0.10, the heterogeneity was considered statistically significant. Quantification of the heterogeneity was assessed using the I² metric, which represents the percentage of the observed between study variabilities due to heterogeneity rather than due to chance. I² ranges from 0% to 100%, with higher values indicating a greater degree of heterogeneity. Where there was significant heterogeneity among studies (I²≥50%), the pooled OR was calculated by a random-effect model (Dersimonian and Laird); Otherwise, a fixed-effect model was used (Mantel-Haenszel).

Stratified analysis was performed, when feasible, by geographic location, age of onset, or APOE ε4 status. In addition, pooled odds ratios were calculated particularly in large sample size cohorts (≥300 participants). Cumulative meta-analysis was conducted to investigate the trend and the stability of risk effects as evidence accumulated over time. To adjust for multiple comparisons, we applied the Benjamini-Hochberg (BH) method to control false discovery rate (FDR) [16]. Publication bias was examined using both the Begg-Mazumdar test and the Egger’s regression asymmetry test.

Results

Eligible studies and candidate polymorphisms

77 articles covered 35 polymorphisms were identified as potential candidates after primary electronic searches and manual screening. Among these, 9 articles were excluded for duplicated data. 2 articles were excluded since there was no sufficient number of studies for a meta-analysis (more than four separate studies were required for a meta-analysis in the present investigation) [17, 18]. For 1 instance, because exact allele or genotype counts could not be obtained despite attempts to contact the authors, it was also not involved [19]. Therefore, 65 articles with 82 samples were finally included in our study, focusing on 5 polymorphisms as following: rs1799752 I/D, rs1800764 T/C, rs4343 A/G, rs4291 A/T, rs4309 C/T (Table 1). The mean number of samples per candidate polymorphism was 24.80 ± 19.49 (Table 2). Main diagnostic criteria for AD included NINCDS-ADRDA, DSM-IV, ICD-10, CREAD. All the included studies used standard genotyping method in laboratory. Fig 1. shows the detailed screening process for the involved literature.
Table 1. General characteristics of included studies in the present meta-analysis.

Author	Year	Country	Ethnicity	Diagnostic criteria	Sample size (cases/controls)	Polymorphisms	NOS 1
Chapman [20]	1998	Israel	European descent	NINCDS-ADRDA, probable; DSM-III-R	49/40	1799752	8
Scacchi [21]	1998	Italy	European descent	NINCDS-ADRDA, probable	80/155	1799752	7
Alveraz [22]	1999	Spain	European descent	NINCDS-ADRDA, probable	350/517	1799752	8
Hu [23]	1999	Japan	Japanese	NINCDS-ADRDA, probable	132/257	1799752	7
Kehoe (3 cohorts)	[24]	Ireland	European descent	NINCDS-ADRDA	542/386	1799752	7
Palumbo [25]	1999	Italy	European descent	NINCDS-ADRDA, probable, possible	140/40	1799752	8
Crawford [26]	2000	USA	Mixed	NINCDS-ADRDA, probable, possible	171/175	1799752	9
Farrer (2 cohorts)	[27]	USA; Canada; Italy; Russia	European descent	NINCDS-ADRDA	386/375	1799752	8
Mattila [28]	2000	Finland	European descent	NINCDS-ADRDA, probable, CREAD	80/67	1799752	8
Myllykangas [29]	2000	Finland	European descent	CERAD4, probable, definite	121/75	1799752	8
Narain [30]	2000	UK	European descent	CERAD	239/342	1799752	7
Yang [31]	2000	China	Chinese	NINCDS-ADRDA, probable; DSM-IV5	188/227	1799752	8
Isbir [32]	2001	Turkey	European descent	NINCDS-ADRDA, probable	35/29	1799752	7
Perry [33]	2001	USA	African American	NINCDS-ADRDA, probable, definite; CERAD	111/78	1799752	8
Prince [34]	2001	Sweden	European descent	NINCDS-ADRDA, probable, definite; CERAD	204/186	4343	8
Richard (2 cohorts)	[35]	France	European descent	NINCDS-ADRDA, probable; DSM-III-R	56/221	1799752	9
Zuilliani [36]	2001	Italy	European descent	NINCDS-ADRDA, probable	40/54	1799752	8
Buss [37]	2002	Germany; Switzerland; Italy	European descent	NINCDS-ADRDA	261/306	1799752	8
Cheng [38]	2002	China	Chinese	NINCDS-ADRDA, probable	173/285	1799752	7
Lendon [39]	2002	UK	European descent	NINCDS-ADRDA, probable; DSM-III-R	214/99	1799752	7
Monastero [40]	2002	Italy	European descent	NINCDS-ADRDA, probable	149/149	1799752	9
Panza [41]	2002	Italy	European descent	NINCDS-ADRDA, probable	141/268	1799752	9
Wu [42]	2002	China	Chinese	DSM-IV	96/96	1799752	7
Carbonon [43]	2003	UK	European descent	NINCDS-ADRDA possible, probable	80/65	1799752	7
Kehoe (4 cohorts)	[44]	Sweden; UK	European descent	NINCDS-ADRDA, possible, probable, definite; CERAD	846/773	1799752,4343	9
Seripa (2 cohorts)	[45]	Italy; USA	European descent	NINCDS-ADRDA, probable	250/203	1799752	9
Camelo [46]	2004	Colombia	European descent	NINCDS-ADRDA, probable	83/69	1799752	8
Feng [47]	2004	China	Chinese	NINCDS-ADRDA	26/68	1799752	7
Koelsch [48]	2005	Germany	European descent	DSM-IV	351/348	1799752	9

(Continued)
Author	Year	Country	Ethnicity	Diagnostic criteria	Sample size (cases/controls)	Polymorphisms	NOS¹
Lehmann [49]	2005	UK	European descent	NINCDS-ADRDA; DSM-IV	203/248	1799752	8
Sleeegers [50]	2005	Netherlands	European descent	NINCDS-ADRDA, probable; DSM-III-R	250/6403	1799752	9
Zhang [51]	2005	China	Chinese	NINCDS-ADRDA;	192/195	1799752	8
Blomsqvist [52]	2006	UK; Sweden	European descent	NINCDS-ADRDA, probable, definite; CERAD	940/405	4309	
Keikhaee [53]	2006	Iran	European descent	NINCDS-ADRDA, probable	117/125	1799752	9
Meng [54]	2006	Israel	European descent	DSM-IV	92/166	1800764,4291,4343	7
Wang [55]	2006	China	Chinese	NINCDS-ADRDA; DSM-III-R	104/128	1799752	8
Wang [56]	2006	China	Chinese	DSM-III-R, NINCDS-ADRDA, probable	151/161	1799752	7
Wehr [57]	2006	Poland	European descent	NINCDS-ADRDA	100/144	1799752	7
Liu [58]	2007	China	Chinese	NINCDS-ADRDA, probable; DSM-IV	39/50	1799752	8
Nacmias [59]	2007	Italy	European descent	DSM-IV	388/303	1799752	9
Bruandet [60]	2008	France	European descent	NINCDS-ADRDA; DSM-IV	141/6467	4291,4343	8
Han [61]	2008	China	Chinese	NINCDS-ADRDA, probable	55/59	1799752	9
Trebunova [62]	2008	Slovakia	European descent	NINCDS-ADRDA	70/126	1799752	8
Giedraitis [63]	2009	Sweden	European descent	DSM-IV, NINCDS-ADRDA	86/404	4343	9
Helbecque [64]	2009	France, UK, Spain, Netherlands, Italy	European descent	NINCDS-ADRDA; DSM-III-R	376/444	4291,4343	7
Vardy [65]	2009	UK	European descent	NINCDS-ADRDA	94/188	1799752	8
Corneveaux [66]	2010	UK, USA, Netherland	European descent	CERAD	1019/591	1800764	9
Feulner [67]	2010	Germany	European descent	NINCDS-ADRDA	491/479	4309	8
Ning [68]	2010	China	Chinese	NINCDS-ADRDA; DSM-IV	144/476	1799752,4343,1800764	8
Sarajavi [69]	2010	Finland	European descent	NINCDS-ADRDA, probable	642/682	4343	7
shulman [70]	2010	USA	European descent	CERAD	173/131	1800764	9
Belbin (10 cohorts) [71]	2011	UK	European descent	NINCDS-ADRDA; CERAD	3930/4282	4291,4343,1800764	7
Cousin [72]	2011	France	European descent	NINCDS-ADRDA, probable	428/475	1799752,4291	8
Ghebraniou s [73]	2011	USA	European descent	NINCDS-ADRDA	153/302	4343,4291,1800764	7
Lucatelli [74]	2011	Brazil	Mixed	DSM-IV, NINCDS-ADRDA	35/85	1799752	8
Nirmal [75]	2011	India	Indian	DSM-IV	95/130	1799752	7
Yang [76]	2011	China	Chinese	NINCDS-ADRDA, probable	257/137	1799752	9
Zhang [77]	2014	China	Chinese	NINCDS-ADRDA	96/102	1799752	7
Deng [78]	2015	China	Chinese	NINCDS-ADRDA	201/257	4291,4309,4343	7

(Continued)
rs1799752 I/D and AD risk

Totally, 57 samples were found dealing with rs1799752 polymorphism and AD risk, comprising 8619 cases and 15718 controls. Since 1 sample just provided allele counts, it was only analyzed in the allelic comparison \[74\]. In overall analyses, the associations between rs1799752 polymorphism and AD susceptibility were identified under allelic comparison (I vs. D: \(OR = 1.091, 95\% CI = 1.007–1.181, p = 0.032\)) and dominant model (II + ID vs. DD: \(OR = 1.131, 95\% CI = 1.008–1.270, p = 0.036\)). However, the FDR values were both higher than 0.05, suggesting that the associations were not reliable. Sensitivity analysis by excluding studies not in accordance with HWE obtained similar results (Table 3). When analyses were performed particularly in investigations published in English, no reliable associations were identified either.

In subgroup analysis restricted to late-onset individuals, our investigation indicated significant associations between rs1799752 polymorphism and risk to AD using allelic comparison, additive model (II vs. ID, II vs. DD), dominant model and recessive model (II vs. ID + DD). In brief, rs1799752 I conferred increased risk to AD compared to the D allele with an odds ratio of 1.154 (95\% CI = 1.028–1.295, \(p = 0.015\), FDR = 0.020). In genotype analysis, the I homozygotes showed higher susceptibility for developing AD compared to the D homozygotes (OR = 1.308, 95\% CI = 1.120–1.528, \(p = 0.001\), FDR = 0.003). Moreover, the risk for AD was significantly higher in the I homozygotes than in the D carriers (OR = 1.272, 95\% CI = 1.120–1.444, \(p < 0.001\), FDR < 0.001, Fig 2). In cumulative meta-analysis for the I homozygotes versus the D homozygotes, after only 3 of the 18 cohorts had been studied, the fixed-effect odds

Author Year Country Ethnicity Diagnostic criteria Sample size (cases/ controls) Polymorphisms	NOS		
Achouri-Rassa [79] 2016 Tunis European descent DSM-IV	85/90	1799752	9
Fekih-Mrissa [80] 2017 Tunis European descent DSM-IV, NINCDS-ADRDA	60/120	1799752	9
Wang [81] 2017 China Chinese NINCDS-ADRDA	113/142	4343,1800764	7
Li [82] 2018 China Chinese Chinese Medical Association Criteria	52/52	1799752	7
Durmaz [83] 2019 Turkey European descent DSM-IV	100/100	1799752	8
Shu [84] 2019 China Chinese NINCDS-ADRDA	149/113	1799752	7

1. Newcastle-Ottawa Scale (NOS) score for each study.
2. National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association criteria.
3. Revised Diagnostic and Statistical Manual of Mental Disorders-III criteria.
4. Consortium to Establish a Registry for Alzheimer’s Disease criteria.
5. Diagnostic and Statistical Manual of Mental Disorders-IV criteria.
ratio became larger than 1 and remained so thereafter (Fig 3). However, after excluding 3 cohorts deviated from HWE [30, 31, 55], no positive results could be identified in any genetic model. Subgroup analyses of large sample size cohorts and small sample size cohorts obtained similar results.

We also compared ethnic difference among East Asians (Chinese and Japanese), North Europeans and populations of South European descent (Mediterranean and Middle Eastern). Respectively, 15 studies carried out among East Asians, 16 among North Europeans and 18 in cohorts of South European descent. East Asians had higher I allele frequency compared to those of European descent (p < 0.001). In East Asians, the significant associations between rs1799752 and AD susceptibility were revealed using allelic comparison, additive model (II vs. ID, II vs. DD), and recessive model. Nevertheless, none of them was robust enough to withstand the FDR adjustment, suggesting the positive results were weak evidence of true associations. In North Europeans, the I allele conferred increased risk to AD compared to the D allele (OR = 1.096, 95% CI = 1.021–1.178, p = 0.012, FDR = 0.039). Meanwhile, the I homozygotes
showed higher susceptibility to AD compared with the D homozygotes (OR = 1.202, 95% CI = 1.040–1.390, p = 0.013, FDR = 0.039). After excluding those cohorts not in accordance with HWE, the positive associations in North Europeans were more obvious, not only under allelic comparison and homozygotes comparison, but also using additive model (ID vs. DD: OR = 1.266, 95% CI = 1.045–1.534, p = 0.016, FDR = 0.024) and dominant model (II + ID vs. DD: OR = 1.197, 95% CI = 1.062–1.350, p = 0.003, FDR = 0.018, Fig 4). With regard to populations of South European descent, no significant association was found under all comparisons (Table 4).

Seven studies provided data about rs1799752 polymorphism and ε2/ε3/ε4 genotypes. With regard to AD susceptibility, no significant association was identified in both APOE ε4 positive and negative subgroups. However, after exclusion of HWE-deviated samples [27, 51], in the I homozygotes and the D homozygotes, the presence of APOE ε4 increased the risk of AD 2.84-fold (95% CI = 1.825–4.418, p < 0.001) and 7.06-fold (95% CI = 3.963–12.571, p < 0.001), respectively.

rs1800764 T/C and AD risk

Analysis for rs1800764 T/C polymorphism was available on 20 samples, including 6371 cases and 6768 controls. All the above investigations were published in English. In total, the T

Table 3. Pooled odds ratios for rs1799752 polymorphism and AD susceptibility.

Comparisons	Data	No. of cohorts	Cases/controls	OR	95% CI	z	p	FDR	I² (%)	p(Q)	Effect model
I/D overall	57	8619/1571	1.091	1.007–1.181	2.14	0.032	0.092	67.8	<0.001	random	
I/D in HWE	47	7219/1410	1.075	0.984–1.174	1.60	0.109	0.194	68.5	<0.001	random	
late onset	18	2664/3322	1.154	1.028–1.295	2.42	0.015	0.020	51.4	0.006	random	
late onset in HWE	15	2133/2625	1.122	0.982–1.281	1.69	0.091	0.137	52.6	0.009	random	
II/ID overall	56	8584/15633	1.067	0.989–1.150	1.68	0.093	0.112	49.9	<0.001	fixed	
II/ID in HWE	47	7219/1410	1.054	0.969–1.145	1.23	0.219	0.263	45.8	<0.001	fixed	
late onset	18	2664/3322	1.214	1.060–1.390	2.80	0.005	0.010	46.5	0.016	fixed	
late onset in HWE	15	2133/2625	1.192	1.018–1.396	2.19	0.029	0.087	48.3	0.019	fixed	
ID/DD overall	56	8619/1571	1.117	0.999–1.250	1.93	0.053	0.092	52.8	<0.001	random	
ID/DD in HWE	47	7219/1410	1.138	0.963–1.344	1.52	0.129	0.194	60.9	<0.001	random	
late onset	18	2664/3322	1.308	1.120–1.528	3.39	0.001	0.003	39.5	0.044	fixed	
late onset in HWE	15	2133/2625	1.218	1.021–1.453	2.19	0.029	0.087	33.5	0.101	fixed	
II+ID/DD overall	56	8619/1571	1.131	1.008–1.270	2.10	0.036	0.092	60.5	<0.001	random	
II+ID/DD in HWE	47	7219/1410	1.138	0.963–1.344	1.52	0.129	0.194	60.9	<0.001	random	
late onset	18	2664/3322	1.156	1.026–1.304	2.38	0.017	0.020	47.5	0.013	fixed	
late onset in HWE	15	2133/2625	1.138	0.996–1.299	1.90	0.057	0.114	20.7	0.222	fixed	
II/DD overall	56	8619/1571	1.083	0.963–1.218	1.33	0.183	0.183	57.8	<0.001	random	
II/DD in HWE	47	7219/1410	1.067	0.937–1.214	0.97	0.330	0.330	57.3	<0.001	random	
late onset	18	2664/3322	1.272	1.120–1.444	3.71	<0.001	<0.001	43.8	0.024	fixed	
late onset in HWE	15	2133/2625	1.162	0.924–1.462	1.28	0.200	0.200	51.7	0.011	fixed	

OR: odds ratio; 95% CI: 95% confidence interval; z: test for overall effect; I²: I² value for heterogeneity test. FDR: adjusted p value using Benjamini-Hochberg (BH) method. p(Q): p value of the Dersimonian and Laird’s Q test for heterogeneity evaluation.

https://doi.org/10.1371/journal.pone.0260498.t003
carriers demonstrated increased risk for developing AD compared with the C homozygotes, but the FDR value is insignificant (OR = 1.099, 95% CI = 1.005–1.201, p = 0.038, FDR = 0.114). Similar results were found in large sample size studies and after excluding studies not in accordance with HWE (Table 5). Since there was insufficient information to allow subgroup analysis in East Asians or in populations of South European descent, meta-analysis was only performed in all cohorts of European descent. Significant associations were revealed in populations of European descent under allelic comparison (T vs. C: OR = 1.063, 95% CI = 1.008–1.120, p = 0.023, FDR = 0.046) and additive model (TT vs. CC: OR = 1.136, 95% CI = 1.022–1.262, p = 0.018, FDR = 0.046). Furthermore, the T carriers conferred increased risk to develop AD compared with the C homozygotes (OR = 1.116, 95% CI = 1.018–1.222, p = 0.019, FDR = 0.046, Fig 5). No significant association was revealed in all comparisons in late-onset subgroup analysis. Nevertheless, after excluding 2 cohorts not satisfying HWE [71], all the associations became insignificant.

Other polymorphisms and AD risk

23 studies containing 9783 cases and 16890 controls studied the association between rs4343 A/G polymorphism and AD risk. 20 studies including 5973 cases and 13044 controls evaluated the correlation of rs4291 A/T polymorphism and AD susceptibility. For rs4309 C/T, 4 studies involving 1187 cases and 1056 controls were included. All of those investigations were
published in English. No significant associations were identified in terms of allelic comparison for all these three polymorphisms (rs4343 A vs. G: OR = 1.002, 95% CI = 0.926–1.084, p = 0.962, FDR = 0.962; rs4291 A vs. T: OR = 1.025, 95% CI = 0.973–1.080, p = 0.360, FDR = 0.540; rs4309 C vs. T: OR = 1.072, 95% CI = 0.758–1.517, p = 0.694, FDR = 0.790). In further genotype comparison, we still did not reveal any significant association for the three polymorphisms, no matter using additive model, dominant model or recessive model. Subgroup analysis restricted to late-onset individuals, populations of European descent, or large sample size studies for rs4343 A/G and rs4291 A/T polymorphisms obtained similar results.

Publication bias
Both the Begg-Mazumdar test and the Egger’s regression asymmetry test were conducted to evaluate potential publication bias. For all the above polymorphisms, the p values of Begg-Mazumdar tests and Egger’s tests were greater than 0.05, suggesting no evidence was found for the presence of publication bias.

Discussion
In this comprehensive meta-analysis about ACE polymorphisms and AD susceptibility on the basis of all available updated studies published in both Chinese and English, 82 cohorts were involved, comprising more than 47000 genotyped cases and controls. Our results demonstrated the significant associations between rs1799752 polymorphism and AD susceptibility in
North Europeans, but not in East Asians and populations of South European descent, suggesting the ethnic difference of the role that rs1799752 polymorphism played on AD risk. However, our results did not support the associations between rs4343, rs4291 and rs4309 polymorphisms and susceptibility to AD.

Meta-analysis has been considered as a useful tool to achieve more precise estimation of the effect of candidate polymorphism in multifactorial diseases, such as AD. Small sample size, in combination with modest effect, might lead to low statistical power of individual study, which is the most likely explanation for the controversial results of previous investigations. Meta-analysis is one strategy to increase sample size in an attempt to reduce random error which might produce false-positive or false-negative associations. Since deviation from HWE usually means mistyping or selection bias [85], we also excluded those samples not satisfying HWE in controls in sensitivity analysis to increase the accuracy of our results.

For rs1799752 polymorphism, compared to previous meta-analyses performed in 2004 and 2005 [49, 86], we included more than 20 new studies and covered all articles published in Chinese. In overall analyses, before multiple comparison adjustment, our study indicated that the I allele conferred increased risk to AD compared with the D allele and the D homozygotes were at reduced risk of AD compared to the I carriers, which were in accordance with results from the two previous meta-analyses. To avoid false positive in multiple comparisons, we applied the widely accepted FDR adjustment in our study [87]. Since no significant association passed the FDR adjustment, we believed that the associations were not robust enough. In
In subgroup analysis, significant associations between rs1799752 polymorphism and late-onset AD risk were revealed using allelic comparison, additive model, dominant model and recessive model. However, as well as those identified for rs1800764 in populations of European descent, after excluding studies not satisfying HWE, no positive results could be obtained, indicating the instability of the associations. Thus, in the future, well-designed large sample size studies to provide more forceful evidence for the possible associations are required.

When cohorts were stratified by ethnic background, significant difference was identified among East Asians, North Europeans and populations of South European descent with regard to rs1799752 polymorphism. East Asians had higher I allele frequencies compared to populations of European descent in controls. Furthermore, the most robust and consistent associations between rs1799752 polymorphism and risk to AD were identified particularly in North Europeans. We attributed the difference of results among Europeans and Asians mainly to the difference of genetic background. However, no comparable investigations have been carried out with regard to mechanisms underlying rs1799752 polymorphism and AD development between different ethnicities, which still need further research to clarify. Before FDR adjustment, our results of East Asians were in accordance with those of previous meta-analysis performed in Chinese samples [89]. The ethnic difference of the associations between rs1799752 polymorphism and AD susceptibility should be considered in the design of future studies.

Another investigation adopted false-positive report probability (FPRP) to control false-positive findings, the authors obtained similar results as those from our study [88].

Table 4. Pooled odds ratios of rs1799752 I/D polymorphism and AD risk by ethnic group.

A

	East Asians (1848/2400, 58.2±11.3%)	North Europeans (3019/8896, 46.1±3.5%)	South European descent (all in HWE) (2932/3542, 41.0±5.7%)									
	OR 95% CI	p	I²	FDR	OR 95% CI	p	I²	FDR	OR 95% CI	p	I²	FDR
I/D	1.308 1.021–1.675 0.034 84.8% 0.068	1.096 1.021–1.178 0.012 22.1% 0.039	0.956 0.888–1.029 0.232 45.7% 0.363									
II/ID	1.330 1.001–1.767 0.049 73.2% 0.074	1.072 0.943–1.219 0.289 41.0% 0.289	0.916 0.791–1.061 0.242 0.0% 0.363									
ID/DD	1.250 0.874–1.786 0.221 67.4% 0.221	1.209 0.989–1.478 0.064 60.2% 0.096	0.984 0.879–1.101 0.775 24.9% 0.775									
ID/II	1.676 1.040–2.701 0.034 81.2% 0.068	1.202 1.040–1.390 0.013 23.0% 0.039	0.910 0.781–1.061 0.228 29.0% 0.363									
II+ID/DD	1.407 0.951–2.082 0.087 76.7% 0.104	1.209 1.013–1.444 0.035 54.0% 0.070	0.963 0.866–1.071 0.486 39.8% 0.583									
II/ID+DD	1.419 1.044–1.928 0.025 80.3% 0.068	1.114 0.987–1.258 0.081 25.0% 0.097	0.910 0.793–1.045 0.183 13.5% 0.363									

B

	East Asians in HWE (1189/1669, 57.7±13.5%)	North Europeans in HWE (2780/8644, 46.0±3.7%)	South European descent in HWE (2932/3542, 41.0±5.7%)									
	OR 95% CI	p	I²	FDR	OR 95% CI	p	I²	FDR	OR 95% CI	p	I²	FDR
I/D	1.467 1.043–2.062 0.028 87.3% 0.056	1.102 1.022–1.188 0.012 26.7% 0.024	0.956 0.888–1.029 0.232 45.7% 0.363									
II/ID	1.518 1.053–2.189 0.025 75.7% 0.056	1.016 0.888–1.163 0.014 25.4% 0.014	0.916 0.791–1.061 0.242 0.0% 0.363									
ID/DD	1.257 0.776–2.037 0.352 69.9% 0.352	1.266 1.045–1.534 0.016 51.6% 0.024	0.984 0.879–1.101 0.775 24.9% 0.775									
II/DD	2.002 1.035–3.872 0.039 83.5% 0.059	1.207 1.036–1.405 0.016 28.1% 0.024	0.910 0.781–1.061 0.228 29.0% 0.363									
II+ID/DD	1.554 0.906–2.664 0.109 79.0% 0.131	1.197 1.062–1.350 0.003 48.9% 0.018	0.963 0.866–1.071 0.486 39.8% 0.583									
II/ID+DD	1.644 1.089–2.482 0.018 83.4% 0.056	1.077 0.948–1.223 0.257 17.1% 0.308	0.910 0.793–1.045 0.183 13.5% 0.363									

*a cases/controls
b I frequencies in controls.

OR: odds ratio; 95% CI: 95% confidence interval; z: test for overall effect; I²: I² value for heterogeneity test.
FDR: adjusted p value using Benjamini-Hochberg (BH) method.

https://doi.org/10.1371/journal.pone.0260498.t004
7.06-fold, much higher than that identified in the I homozygotes. However, only 5 studies satisfying HWE provided data about rs1799752 polymorphism and APOE ε4 status, we still need more information to draw safe conclusions about the possible interaction between APOE ε4 and rs1799752 polymorphism.

In overall analyses for rs1799752 polymorphism, high heterogeneity was identified in different comparisons. After ethnic stratification, high heterogeneity was removed in both North Europeans and cohorts of South European descent, but not in East Asians, suggesting the existence of other confounding factors responsible for heterogeneity. Besides ethnic background, other sources accounting for heterogeneity include differences in sample selection (e.g., age of onset, diagnosis criteria), or in methods (e.g., genotyping methods), or it may be due to interaction with other risk factors (e.g., APOE ε4 status). When we restricted the study populations to late-onset individuals, heterogeneity among studies reduced. While stratification by APOE ε4 status nearly removed all the heterogeneity. Our results suggested that age of onset and interaction with APOE ε4 status also contributed to the high heterogeneity in the analyses of rs1799752 polymorphism.

There are several limitations of our investigation. Firstly, publication bias against reporting negative associations might affect our results. Secondly, no other language article regarding ACE polymorphisms and risk to AD was found besides those in English and Chinese.

Table 5. Pooled odds ratios for rs1800764 polymorphism and AD susceptibility.

Comparisons	Data	No. of cohorts	Cases/controls	OR	95% CI	z	p	FDR	I² (%)	p(Q)	Effect model
T/C overall		20	6371/6768	1.047	0.995–1.102	1.75	0.080	0.120	20.1	0.205	fixed
T/C overall in HWE		18	5978/6476	1.050	0.996–1.107	1.83	0.068	0.160	17.2	0.138	fixed
European descent		18	6148/6173	1.063	1.008–1.120	2.27	**0.023**	**0.046**	0.0	0.494	fixed
European descent in HWE		16	5755/5881	1.067	1.011–1.126	2.36	**0.018**	**0.060**	5.1	0.395	fixed
TT/TC overall		20	6371/6768	1.007	0.928–1.094	0.18	0.861	0.861	2.4	0.427	fixed
TT/TC overall in HWE		18	5978/6476	1.032	0.948–1.124	0.73	0.464	0.464	0.0	0.759	fixed
European descent		18	6148/6173	1.028	0.944–1.119	0.64	0.522	0.522	0.0	0.574	fixed
European descent in HWE		16	5755/5881	1.056	0.968–1.153	1.23	0.219	0.219	0.0	0.928	fixed
TC/CC overall		20	6371/6768	1.097	0.998–1.206	1.92	0.055	0.114	12.3	0.301	fixed
TC/CC overall in HWE		18	5978/6476	1.073	0.974–1.183	1.43	0.153	0.230	0.0	0.572	fixed
European descent		18	6148/6173	1.105	1.003–1.217	2.02	**0.044**	**0.066**	16.5	0.256	fixed
European descent in HWE		16	5755/5881	1.080	0.978–1.193	1.52	0.128	0.154	0.0	0.514	fixed
TT/CC overall		20	6371/6768	1.105	0.997–1.224	1.91	0.057	0.114	15.0	0.267	fixed
TT/CC overall in HWE		18	5978/6476	1.105	0.994–1.228	1.85	0.065	0.160	23.0	0.182	fixed
European descent		18	6148/6173	1.136	1.022–1.262	2.37	**0.018**	**0.046**	0.0	0.512	fixed
European descent in HWE		16	5755/5881	1.137	1.120–1.267	2.32	**0.020**	**0.060**	5.5	0.390	fixed
TT+TC/CC overall		20	6371/6768	1.099	1.005–1.201	1.08	**0.038**	**0.114**	16.8	0.244	fixed
TT+TC/CC overall in HWE		18	5978/6476	1.085	0.990–1.189	1.75	0.080	0.160	14.3	0.283	fixed
European descent		18	6148/6173	1.116	1.018–1.222	2.35	**0.019**	**0.046**	12.5	0.305	fixed
European descent in HWE		16	5755/5881	1.102	1.003–1.210	2.02	**0.043**	**0.086**	9.6	0.344	fixed
TT/TC+CC overall		20	6371/6768	1.034	0.957–1.117	0.84	0.398	0.478	7.4	0.364	fixed
TT/TC+CC overall in HWE		18	5978/6476	1.052	0.971–1.140	1.25	0.212	0.254	0.2	0.452	fixed
European descent		18	6148/6173	1.058	0.977–1.146	1.39	0.164	0.197	0.0	0.647	fixed
European descent in HWE		16	5755/5881	1.080	0.994–1.172	1.83	0.068	0.102	0.0	0.804	fixed

OR: odds ratio; 95% CI: 95% confidence interval; z: test for overall effect; I²: I² value for heterogeneity test.

FDR: adjusted p value using Benjamini-Hochberg (BH) method.

p(Q): p value of the Desimoni and Laird’s Q test for heterogeneity evaluation.

https://doi.org/10.1371/journal.pone.0260498.t005
However, some articles could be published in journals not on the international journal catalogs, leading to potential language bias. Thirdly, owing to lack of original data, further adjustments by other covariables, such as gender or cardiovascular complications, could not be performed.

Conclusions

In summary, ACE rs1799752 polymorphism is associated with risk to AD in North Europeans. The relationships between rs1799752 and late-onset AD susceptibility, as well as rs1800764 and AD risk in populations of European descent, still need further studies to illustrate. While rs4343, rs4291 and rs4309 polymorphisms are unlikely to be major factors in AD development in our research.

Supporting information

S1 Checklist. PRISMA 2020 checklist.

(DOCX)

Author Contributions

Data curation: Xiao-Yu Xin, Ze-Hua Lai.
Methodology: Kai-Qi Ding.

Supervision: Li-Li Zeng.

Writing – original draft: Xiao-Yu Xin.

Writing – review & editing: Jian-Fang Ma.

References

1. Jia L, Du Y, Chu L, Zhang Z, Li F, Lyu D, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. Lancet Public Health. 2020; 5(12):e661–e671. https://doi.org/10.1016/S2468-2667(20)30185-7 PMID: 33271079

2. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer’s disease. Lancet. 2021; 397(10284):1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4 PMID: 33667416

3. Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021; 20(1):68–80. https://doi.org/10.1016/S1474-4422(20)30412-9 PMID: 33940485.

4. Ward Alex, Crean Sheila, Mercaldi Catherine J, Collins Jenna M, Dylan Boyd, Cook Michael N, et al. Prevalence of apolipoprotein E4 genotype and homozygotes (APOE e4/4) among patients diagnosed with Alzheimer’s disease: a systematic review and meta-analysis. Neuroepidemiology. 2012; 38(1):1–17. https://doi.org/10.1159/000334607 PMID: 22179327.

5. Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol. 2011; 10(3):241–52. https://doi.org/10.1016/S1474-4422(10)70325-2 PMID: 21349439.

6. Nalivaeva NN, Turner AJ. Targeting amyloid clearance in Alzheimer’s disease as a therapeutic strategy. Br J Pharmacol. 2019; 176(18):3447–3463. https://doi.org/10.1111/bph.14593 PMID: 30710367

7. Liu S, Ando F, Fujita Y, Liu J, Maeda T, Shen X, et al. A clinical dose of angiotensin-converting enzyme (ACE) inhibitor and heterozygous ACE deletion exacerbate Alzheimer’s disease pathology in mice. J Biol Chem. 2019; 294(29):9760–9770. https://doi.org/10.1074/jbc.RA118.006420 PMID: 31072831

8. Koronyo-Hamaoui M, Sheyn J, Hayden EY, Li S, Fuchs, DT, Regis GC, et al. Peripherally derived angiotensin converting enzyme-enhanced macrophages alleviate Alzheimer-related disease. Brain. 2020; 143(1):336–358. https://doi.org/10.1093/brain/awz364 PMID: 31794021

9. Cafiero C, Rosapepe F, Palmirotta R, Re A, Ottaiano MP, Benincasa G, et al. Angiotensin System Polymorphisms’ in SARS-CoV-2 Positive Patients: Assessment Between Symptomatic and Asymptomatic Patients: A Pilot Study. Pharmgenomics Pers Med. 2021; 14:621–629. https://doi.org/10.2147/PGPM.S303666 PMID: 34079337.

10. Ghafouri-Fard S, Noroozi R, Omrani MD, Branicki W, Poś piech E, Sayad A, et al. Angiotensin converting enzyme: A review on expression profile and its association with human disorders with special focus on SARS-CoV-2 infection. Vascul Pharmacol. 2020; 130:106680. https://doi.org/10.1016/j.vph.2020.106680 PMID: 32423553.

11. Abouleka Y, Mohammedi K, Carpentier C, Dubois S, Gourdy P, Gautier JF, et al. ACE I/D Polymorphism, Plasma ACE Levels, and Long-term Kidney Outcomes or all-cause death in patients with type 1 diabetes. Diabetes Care. 2021; dc203036. https://doi.org/10.2337/dc20-3036 PMID: 33827803.

12. Oliveira FF, de Almeida SS, Smith MC, Bertolucci PHF. Behavioural effects of the ACE insertion/deletion polymorphism in Alzheimer’s disease depend upon stratification according to APOE ε4 carrier status. Cogn Neuropsychiatry. 2021; 26(4):293–305. https://doi.org/10.1080/13546805.2021.1931085 PMID: 34034613

13. Ouik M, Wu CY, Rabin JS, Jackson A, Edwards JD, Ramirez J. The use of angiotensin-converting enzyme inhibitors vs. angiotensin receptor blockers and cognitive decline in Alzheimer’s disease: the importance of blood-brain barrier penetration and APOE ε4 carrier status. Alzheimers Res Ther. 2021 Feb 11; 13(1):43. https://doi.org/10.1186/s13195-021-00778-8 PMID: 33573702

14. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010; 25(9):603–5. https://doi.org/10.1007/s10654-010-9491-z PMID: 20652370
15. Xin XY, Ding JQ, Chen SD. Apolipoprotein E promoter polymorphisms and risk of Alzheimer’s disease: evidence from meta-analysis. J Alzheimer’s Dis. 2010; 19(4):1283–94. https://doi.org/10.3233/JAD-2010-1329 PMID: 20061606

16. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995; 57(1):289–300.

17. Li H, Wetten S, Li L, St Jean PL, Upmanyu R, Surh L, et al. Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol. 2008; 65(1):45–53. https://doi.org/10.1001/archneur.57.2.210 PMID: 10681079

18. Webster J, Reiman EM, Zismann VL, Joshipura KD, Pearson JV, Hu-Lince D, et al. Whole genome association analysis shows that ACE is a risk factor for Alzheimer’s disease and fails to replicate most candidates from Meta-analysis. Int J Mol Epidemiol Genet. 2010; 1(1):19–30. PMID: 21537449.

19. Edwards TL, Pericak-Vance M, Gilbert JR, Haines JL, Martin ER, Ritchie MD. An association analysis of Alzheimer disease candidate genes detects an ancestral risk haplotype clade in ACE and putative multilocus association between ACE, A2M, and LRRTM3. Am J Med Genet B Neuropsychiatr Genet. 2009; 150B(5):721–35. https://doi.org/10.1002/ajmg.b.30899 PMID: 19105203

20. Chapman J, Wang N, Treves TA, Korczyn AD, Bornstein NM. ACE, MTHFR, factor V Leiden, and APOE polymorphisms in patients with vascular and Alzheimer’s dementia. Stroke. 1998; 29(7):1401–4. https://doi.org/10.1161/10813362

21. Scacchi R, De Bernardini L, Mantuano E, Vilardo T, Donini LM, Ruggeri M, et al. DNA polymorphisms of angiotensinogen B and angiotensin I-converting enzyme genes and relationships with lipid levels in Italian patients with vascular dementia or Alzheimer’s disease. Dement Geriatr Cogn Disord. 1998; 9(4):186–90. https://doi.org/10.1159/000017045 PMID: 9681639

22. Alvarez R, Alvarez V, Lahoz CH, Martinez C, Peña J, Sánchez JM, et al. Angiotensin converting enzyme and endothelial nitric oxide synthase DNA polymorphisms and late onset Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 1999; 67(6):733–6. https://doi.org/10.1136/jnnp.67.6.733 PMID: 10567488

23. Hu J, Miyatake F, Aizu Y, Nakagawa H, Nakamura S, Tamaoka A, et al. Angiotensin-converting enzyme deletion allele in different kind of dementia disorders. Neurosci Lett. 1999; 277(1):65–7. https://doi.org/10.1016/s0304-3940(99)00282-7 PMID: 10643899

24. Kehoe PG, Russ C, McLory S, Williams H, Holmans P, Holmes C, et al. Variation in DCP1, encoding dipeptidyl carboxypeptidase 1 (DCP1) and butyrylcholinesterase (BCHE) gene interactions with the apolipoprotein E epsilon4 allele as risk factors in Alzheimer’s disease and in Parkinson’s disease with coexisting Alzheimer pathology. J Med Genet. 2000; 37(10):766–70. https://doi.org/10.1136/jmg.37.10.766 PMID: 11015454

25. Mattila KM, Rinne JO, Röyttä M, Laiti M, Kallio M, et al. Dipeptidyl carboxypeptidase 1 (DCP1) and butyrylcholinesterase (BCHE) gene interactions with the apolipoprotein E epsilon4 allele as risk factors in Alzheimer’s disease and in Parkinson’s disease with coexisting Alzheimer pathology. J Med Genet. 2000; 37(10):766–70. https://doi.org/10.1136/jmg.37.10.766 PMID: 11056748

26. Mattila KM, Rinne JO, Röyttä M, Laiti M, Kallio M, et al. Dipeptidyl carboxypeptidase 1 (DCP1) and butyrylcholinesterase (BCHE) gene interactions with the apolipoprotein E epsilon4 allele as risk factors in Alzheimer’s disease and in Parkinson’s disease with coexisting Alzheimer pathology. J Med Genet. 2000; 37(10):766–70. https://doi.org/10.1136/jmg.37.10.766 PMID: 11015454

27. Matylikangas L, Polvikoski T, Sulkkava R, Verkkoniemi A, Tienari P, Niinisto L, et al. Cardiovascular risk factors and Alzheimer’s disease: a genetic association study in a population aged 65 or over. Neurosci Lett. 2000; 292(3):195–8. https://doi.org/10.1016/s0304-3940(00)01467-1 PMID: 11078362

28. Yip A, Murphy T, Brayne C, Easton D, Evans JG, et al. The ACE gene and Alzheimer’s disease susceptibility. J Med Genet. 2000; 37(9):695–7. https://doi.org/10.1136/jmg.37.9.695 PMID: 10978362

29. Yang JD, Feng G, Zhang J, Lin ZX, Shen T, Breen G, et al. Association between angiotensin-converting enzyme gene and late onset Alzheimer’s disease in Han Chinese. Neurosci Lett. 2000; 289(3):195–8. https://doi.org/10.1016/s0304-3940(00)01467-1 PMID: 11078362

30. Isbir T, Agacan B, Yilmaz H, Aydin M, Kara I, Eker D, et al. Interaction between apolipoprotein-E and angiotensin-converting enzyme genotype in Alzheimer’s disease. Am J Med Genet C DNA. 2001; 116(4):205–10. https://doi.org/10.1002/ajmg.c.31084 PMID: 11501342

31. Perry RT, Collins JS, Harrell LE, Acton RT, Go RC. Investigation of association of 13 polymorphisms in eight genes in southeastern African American Alzheimer disease patients as compared to age-matched controls. Am J Med Genet. 2001; 105(4):332–42. https://doi.org/10.1002/ajmg.1371 PMID: 11378846
34. Prince JA, Feuk L, Sawyer SL, Gottfries J, Ricksten A, Nägga K, et al. Lack of replication of association findings in complex disease: an analysis of 15 polymorphisms in prior candidate genes for sporadic Alzheimer's disease. Eur J Hum Genet. 2001; 9(6):437–44. https://doi.org/10.1038/sj.ejhg.5200651 PMID: 11436125

35. Richard F, Fromentin-David I, Ricolfi F, Ducimetière P, Di Menza C, Amouyel P, et al. The angiotensin I converting enzyme gene as a susceptibility factor for dementia. Neurology. 2001; 56(11):1593–5. https://doi.org/10.1212/wnl.56.11.1593 PMID: 11402126

36. Zuliani G, Ble A, Zanca R, Munari MR, Zurlo A, Vavalle C, et al. Genetic polymorphisms in older subjects with vascular or Alzheimer's dementia. Acta Neurol Scand. 2001; 103(5):304–8. https://doi.org/10.1034/j.1600-0404.2001.103005304.x PMID: 11328206

37. Buss S, Müller-Thomsen T, Hock C, Alberici A, Binetti G, Nitsch RM, et al. No association between 37. Zuliani G, Ble A, Zanca R, Munari MR, Zurlo A, Vavalle C, et al. Genetic polymorphisms in older sub-

38. Cheng CY, Hong CJ, Liu HC, Liu TY, Tsai SJ. Study of the association between Alzheimer's disease 38. Cheng CY, Hong CJ, Liu HC, Liu TY, Tsai SJ. Study of the association between Alzheimer's disease

39. Lendon CL, Thaker U, Harris JM, McDonagh AM, Lambert JC, Chartier-Harlin MC, et al. The angiotensin 2-converting enzyme insertion (I)/deletion (D) polymorphism does not influence the extent of amyloid or tau pathology in patients with sporadic Alzheimer's disease. Neurosci Lett. 2002; 328(3):314–8. https://doi.org/10.1016/s0304-3940(02)00553-0 PMID: 12147333

40. Monastero R, Caldarella R, Mannino M, Cefalu AB, Lopez G, Noto D, et al. Lack of association between angiotensin converting enzyme polymorphism and sporadic Alzheimer's disease. Neurosci Lett. 2002; 335(2):147–9. https://doi.org/10.1016/s0304-3940(02)01182-5 PMID: 1245919

41. Panza F, Sofrèzzu V, D'Introno A, Capurso C, Colaizzi CC, Argentieri G, et al. Lack of association between ace polymorphism and Alzheimer's disease in southern Italy. Arch Gerontol Geriatr Suppl. 2002; 8:239–45. https://doi.org/10.1016/s0167-4943(02)00140-1 PMID: 14764396

42. Wu CS, Zhou DF, Guan ZQ, Fan JH, Qiao YL. The association between angiotensin-converting enzyme gene polymorphism and Chinese late onset Alzheimer disease. Chin J Med Genet. 2002; 19(5):401–4. PMID: 1262316

43. Carbonell J, Allen R, Kaisi G, McQuillan A, Livingston G, Katona C, et al. Variation in the DCP1 gene, encoding the angiotensin converting enzyme ACE, is not associated with increased susceptibility to Alzheimer's disease. Psychiatr Genet. 2003; 13(1):47–50. https://doi.org/10.1097/00041444-200303000-00006 PMID: 12605101

44. Kehoe PG, Katzov H, Feuk L, Bennet AM, Johansson B, Wiman B, et al. Haplotypes extending across ACE are associated with Alzheimer’s disease. Hum Mol Genet. 2003; 12(8):859–67. https://doi.org/10.1093/hmg/ddg094 PMID: 12668669

45. Seripa D, Forno GD, Matera MG, Gravina C, Margaglione M, Palermo MT, et al. Methylene tetrahydrofolate reductase and angiotensin converting enzyme gene polymorphisms in two genetically and diagnostically distinct cohort of Alzheimer patients. Neurobiol Aging. 2003; 24(7):933–9. https://doi.org/10.1016/s0197-4580(03)00040-x PMID: 12928053

46. Camelo D, Arboleda G, Yunis JJ, Pardo R, Arango G, Solano E, et al. Angiotensin-converting enzyme and alpha-2-macroglobulin gene polymorphisms are not associated with Alzheimer's disease in Colombian patients. J Neurol Sci. 2004; 218(1–2):47–51. https://doi.org/10.1016/j.jns.2003.09.008 PMID: 14759632

47. Feng YQ, Wang JH, Guo X, Zhao DW, Gao JS, Liu GF, et al. Analysis of the polymorphisms of apoe gene and ACE gene in Alzheimer’s disease and vascular dementia. Chin J Geriatr Heart Brain Vessel Dis. 2004; 6(3):181–3.

48. Kölsch H, Jessen F, Freymann N, Kreis M, Hentschel F, Maier W, et al. ACE I/D polymorphism is a risk factor of Alzheimer's disease but not of vascular dementia. Neurosci Lett. 2005; 377(1):47–51. https://doi.org/10.1016/j.neulet.2004.11.062 PMID: 15722183

49. Lehmann DJ, Cortina-Borja M, Warden DR, Smith AD, Sleegers K, Prince JA, et al. Large meta-analysis establishes the ACE insertion-deletion polymorphism as a marker of Alzheimer’s disease. Am J Epidemiol. 2005; 162(4):305–17. https://doi.org/10.1093/aje/kwi202 PMID: 16033878

50. Sleegers K, den Heijer T, van Dijk EJ, Hofman A, Bertoli-Avella AM, Koudstaal PJ, et al. ACE gene is associated with Alzheimer’s disease and atrophy of hippocampus and amygdala. Neurobiol Aging. 2005; 26(8):1153–9. https://doi.org/10.1016/j.neurobiolaging.2004.09.011 PMID: 15917098

51. Zhang J, Li XQ, Zhang ZX, Chen D, Zhao HL, Wu YN, et al. Association between angiotensin-converting enzyme gene polymorphism and Alzheimer’s disease in a Chinese population. Dement Geriatr Cogn Disord. 2005; 20(1):52–6. https://doi.org/10.1159/000086507 PMID: 15832037
52. Blomqvist ME, Reynolds C, Katzov H, Feuk L, Andreasen N, Bogdanovic N, et al. Towards compendia of negative genetic association studies: an example for Alzheimer disease. Hum Genet. 2006; 119(1–2):29–37. https://doi.org/10.1007/s00439-005-0078-9 PMID: 16341549

53. Keikhaee MR, Hashemi SB, Najmabadi H, Noroozian M. C677T methylenetetrahydrofolate reductase and angiotensin converting enzyme gene polymorphisms in patients with Alzheimer’s disease in Iranian population. Neurochem Res.2006; 31(8):1079–83. https://doi.org/10.1007/s11064-006-9119-6 PMID: 16906459

54. Meng Y, Baldwin CT, Bowirrat A, Waraska K, Friedland RP, et al. Association of polymorphisms in the Angiotensin-converting enzyme gene with Alzheimer disease in an Israeli Arab community. Am J Hum Genet. 2006; 78(5):871–7. https://doi.org/10.1086/503687 PMID: 16642441

55. Wang B, Jin F, Yang Z, Lu Z, Kan R, Li S, et al. The insertion polymorphism in angiotensin-converting enzyme gene associated with the APOE epsilon 4 allele increases the risk of late-onset Alzheimer disease. J Mol Neurosci. 2006; 30(3):267–71. https://doi.org/10.1385/JMN:30:3:267 PMID: 17401152

56. Wang HK, Fung HC, Hsu WC, Wu YR, Lin JC, Ro LS, et al. Apolipoprotein E, angiotensin-converting enzyme and kallikrein gene polymorphisms and the risk of Alzheimer’s disease and vascular dementia. J Neural Transm. 2006; 113(10):1499–509. https://doi.org/10.1007/s00702-005-0424-z PMID: 16465461

57. Wehr H, Bednarska-Makaruk M, Lojkowska W, Graban A, Hoffman-Zacharska D, Kuczyńska-Zardzewińska A, et al. Differences in risk factors for dementia with neurodegenerative traits and for vascular dementia. Dement Geriatr Cogn Disord. 2006; 22(1):1–7. https://doi.org/10.1159/000092845 PMID: 16642724

58. Liu M, Zhang YD, Zhao KR, Liu Y. Association of angiotensin converting enzyme activity and angiotensin converting enzyme gene polymorphism with vascular dementia and the disease. Chin J Pract Intern Med. 2007; 27(13):1028–30.

59. Nacmias B, Bagnoli S, Tedde A, Cellini E, Bessi V, Guarnieri B, et al. Angiotensin converting enzyme insertion/deletion polymorphism in sporadic and familial Alzheimer’s disease and longevity. Arch Gerontol Geriatr. 2007; 45(2):201–6. https://doi.org/10.1016/j.archger.2006.10.011 PMID: 17182125

60. Bruandet A, Richard F, Tzourio C, Berr C, Dartigues JF, Alperovitch A, et al. Haplotypes across ACE and the risk of Alzheimer’s disease: the three-city study. J Alzheimers Dis. 2008; 13(3):333–9. https://doi.org/10.3233/JAD-2008-13318 PMID: 18431900

61. Han B, Zhang SL. Association of apoE gene, A2M gene and ACE gene polymorphism with Alzheimer’s disease. J Shanxi Med Univ. 2008; 39(8):692–6.

62. Trębunova M, Slaba E, Habalová V, Gdovinová Z. ACE I/D polymorphism in Alzheimer’s disease. Cent Eur J Biol. 2008; 3(1):49–54.

63. Giedraitis V, Kilander L, Degerman-Gunnarsson M, Sundelöf J, Axelsson T, Syvänen AC, et al. Genetic analysis of Alzheimer’s disease in the Uppsala Longitudinal Study of Adult Men. Dement Geriatr Cogn Disord. 2009; 27(1):59–68. https://doi.org/10.1159/000191203 PMID: 19141999

64. Helbecque N, Codron V, Cottel D, Amouyal P. An age effect on the association of common variants of ACE with Alzheimer’s disease. Neurosci Lett. 2009; 461(2):181–8. https://doi.org/10.1016/j.neulet.2009.06.006 PMID: 19539712

65. Vardy ER, Rice PJ, Bowie PC, Holmes JD, Catto AJ, Hooper NM. Plasma angiotensin-converting enzyme and kallikrein gene polymorphisms and the risk of Alzheimer’s disease and vascular dementia. J Neural Transm. 2006; 113(10):1499–509. https://doi.org/10.1007/s00702-005-0424-z PMID: 16465461

66. Conneally PM, Myers AJ, Allen AN, Pruzin JJ, Ramirez M, Engel A, et al. Association of CR1, CLU and PICALM with Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. Hum Mol Genet. 2010; 19(16):3295–301. https://doi.org/10.1038/hmg.2010.114 PMID: 20534741

67. Feulner TM, Laws SM, Friedrich P, Wagenpfel S, Wurst SH, Riehle C, et al. Examination of the current top candidate genes for AD in a genome-wide association study. Mol Psychiatry. 2010; 15(7):756–66. https://doi.org/10.1038/mp.2008.141 PMID: 19125169

68. Ning M, Yang Y, Zhang Z, Chen Z, Zhao T, Zhang D, et al. Amyloid-beta-related genes SORL1 and ACE are genetically associated with risk for late-onset Alzheimer disease in the Chinese population. Alzheimer Dis Assoc Disord. 2010; 24(4):390–6. https://doi.org/10.1097/WAD.0b013e3181e6a575 PMID: 20625269

69. Sarajärvi T, Heilisalmi S, Antikainen L, Mäkinen P, Koivistoinen AM, Herukka SK, et al. An association study of 21 potential Alzheimer’s disease risk genes in a Finnish population. J Alzheimers Dis. 2010; 21(3):763–7. https://doi.org/10.3233/JAD-2010-100597 PMID: 20693638

70. Shulman JM, Chabinik LB, Aubin C, Schneider JA, Bennett DA, De Jager PL. Intermediate phenotypes identify divergent pathways to Alzheimer’s disease. PLoS One. 2010; 5(6):e11244. https://doi.org/10.1371/journal.pone.0011244 PMID: 20574532
71. Belbin O, Brown K, Shi H, Medway C, Abraham R, Passmore P, et al. A multi-center study of ACE and the risk of late-onset Alzheimer's disease. J Alzheimers Dis. 2011; 24(3):587–97. https://doi.org/10.3233/JAD-2011-101914 PMID: 21297258

72. Cousin E, Macé S, Rocher C, Dib C, Muzard G, Hannequin D, et al. No replication of genetic association between candidate polymorphisms and Alzheimer's disease. Neurobiol Aging. 2011; 32(8):1443–51. https://doi.org/10.1016/j.neurobiolaging.2009.09.004 PMID: 1989475

73. Ghebranious N, Mukesh B, Giampietro PF, Glurich I, Mickel SF, Waring SC, et al. A pilot study of gene/gene and gene/environment interactions in Alzheimer disease. Clin Med Res. 2011; 9(1):17–25. https://doi.org/10.3121/cmr.2010.201 PMID: 21533863

74. Lucatelli JF, Barros AC, Silva VK, Machado Fda S, Constantino PC, Dias AA, et al. Genetic influences on Alzheimer's disease: evidence of interactions between the genes APOE, APOC1 and ACE in a sample population from the South of Brazil. Neurochem Res. 2011; 36(8):1533–9. https://doi.org/10.1007/s11064-011-0481-7 PMID: 21533863

75. Nirmal S, Tripathi M, Shastri SS, Sagar R, SV. Association of Angiotensin-converting enzyme insertion (I)/deletion (D) genotype in Alzheimer's disease patients of north Indian population. Int J Neurosci. 2011; 121(10):557–61. https://doi.org/10.3109/00207454.2011.591513 PMID: 21770707

76. Yang YH, Lai CL, Tyan YC, Chou MC, Wang LC, Yang MH, et al. Angiotensin-converting enzyme gene and plasma protein level in Alzheimer's disease in Taiwanese. Age and Ageing. 2011; 40:238–42. https://doi.org/10.1093/ageing/afq179 PMID: 21233092

77. Zhang SP, Xuan ZB, Huang ZY, Liu YQ, Liu Q, Wang XY, et al. The association between angiotensin converting enzyme gene polymorphism and Alzheimer's disease in Jiamusi region. Chin J Tiss Eng Res. 2014; 18(2):259–64.

78. Deng YY, Hou DR, Tian M, Li W, Feng XL, Yu ZL. Relationship between the gene polymorphisms of kallikrein-kinin system and Alzheimer's disease in a Hunan Han Chinese population. Int J Clin Exp Pathol. 2015; 8(12):15550–62. PMID: 26846241

79. Zhou SP, Xuan ZB, Huang ZY, Liu YQ, Liu Q, Wang XY, et al. The association between angiotensin converting enzyme gene polymorphism and Alzheimer's disease in a Hunan Han Chinese population. J Neural Transm (Vienna). 2016; 123(3):317–21. https://doi.org/10.1007/s00702-015-1488-3 PMID: 26456241

80. Fekih-Mrissa N, Bedoui I, Sayeh A, Derbali H, Mrad M, Mrissa R, et al. Association between ACE polymorphism, cognitive phenotype and APOE E4 allele in a Tunisian population with Alzheimer disease. J Neural Transm (Vienna). 2016; 123(3):317–21. https://doi.org/10.1007/s00702-015-1488-3 PMID: 26456241

81. Wang XL, Zhang FC, Cui YJ, Zheng L, Wei Y. Association between ACE gene polymorphisms and Alzheimer's disease in Han population in Hebei Peninsula. Int J Clin Exp Pathol. 2017; 10(9):10134–9. PMID: 31966905

82. Li L, Liu Y, Li W, Ji Y, Guo P, Li NJ. Association Study of angiotensin converting enzyme with Alzheimer's Disease and mild cognitive impairment. Chinese Journal of Integrative Medicine on Cardio-/Cerebrovascular Disease. 2018; 16(23): 3537–9.

83. Durmaz A, Kumral E, Durmaz B, Onay H, Aslan GI, Ozkinay F, et al. Genetic factors associated with the predisposition to late onset Alzheimer's disease. Gene. 2019; 707:212–5. https://doi.org/10.1016/j.gene.2019.05.030 PMID: 31102717

84. Shu TT, Pan XD, He YR, Liu YL, Sun XM, LV ZG, et al. Association between angiotensin-converting enzyme gene polymorphism and Alzheimer's disease in elderly patients of Nanjing. Pract Geriatr. 2019; 33(7): 630–3.

85. Royo JL. Hardy Weinberg Equilibrium Disturbances in Case-Control Studies Lead to Non-Conclusive Results. Cell J. 2021; 22(4):572–4. https://doi.org/10.22074/cellj.2021.7195 PMID: 32347052

86. Elkins JS, Douglas VC, Johnston SC. Alzheimer disease risk and genetic variation in ACE: a meta-analysis. Neurology. 2004; 62(3): 363–8. https://doi.org/10.1212/01.wnl.0000160823.72493.f PMID: 14872014

87. Steven J Staffa David Zurakowski. Strategies in adjusting for multiple comparisons: A primer for pediatric surgeons. J Pediatr Surg. 2020; 55(9):1699–1705. https://doi.org/10.1016/j.jpedsurg.2020.01.003 PMID: 32029234

88. Wang XB, Cui NH, Yang J, Qiu XP, Gao JJ, Yang N, et al. Angiotensin-converting enzyme insertion/deletion polymorphism is not a major determining factor in the development of sporadic Alzheimer disease: evidence from an updated meta-analysis. PLoS One. 2014; 9(10): e111406. https://doi.org/10.1371/journal.pone.011406 PMID: 25360860

89. Yuan Y, Piao JH, Ma K, Lu H. Angiotensin-converting enzyme gene insertion-deletion polymorphism is a risk marker for Alzheimer’s disease in a Chinese population: a meta-analysis of case-control studies. J Neural Transm (Vienna). 2015; 22(8):1105–13. https://doi.org/10.1007/s00702-015-1368-6 PMID: 25596842
90. Jia L, Xu H, Chen S, Wang X, Yang J, Gong M, et al. The APOE ε4 exerts differential effects on familial and other subtypes of Alzheimer’s disease. Alzheimer’s Dement. 2020; 16(12):1613–1623. https://doi.org/10.1002/alz.12153 PMID: 32881347