The effect of the smoothness of fractional type operators over their commutators with Lipschitz symbols on weighted spaces

Estefanía Dalmasso*1, Gladis Pradolini†2 and Wilfredo Ramos‡3

1Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FIQ, Santa Fe, Argentina.

2Facultad de Ingeniería Química, UNL, Santa Fe, Argentina. Researcher of CONICET.

3Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Corrientes, Argentina. Researcher of CONICET.

Abstract

We prove boundedness results for integral operators of fractional type and their higher order commutators between weighted spaces, including L^p-L^q, L^p-BMO and L^p-Lipschitz estimates. The kernels of such operators satisfy certain size condition and a Lipschitz type regularity, and the symbol of the commutator belongs to a Lipschitz class. We also deal with commutators of fractional type operators with less regular kernels satisfying a Hörmander’s type inequality. As far as we know, these last results are new even in the unweighted case. Moreover, we give a characterization result involving symbols of the commutators and continuity results for extreme values of p.

1 Introduction

There is a close relationship between the theory of Partial Differential Equations and Harmonic Analysis. This is evidenced, for instance, by the existence of a mechanism that provides us with regular solutions of PDE’s when we equip this machinery with continuity properties of certain related operators (see, for example, [4], [5], [8], [9], [12], [34]). Therefore, it seems appropriate to explore the boundedness properties of the mentioned operators and, particularly, we shall be concerned with commutators of integral operators of fractional type.

*edalmasso@santafe-conicet.gov.ar
†gladis.pradolini@gmail.com
‡wramos@santafe-conicet.gov.ar
It is well known that the fractional integral operator of order α, $0 < \alpha < n$, is defined by

$$I_\alpha f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-\alpha}} dy,$$

whenever this integral is finite. There is a vast amount of information about the behavior of the operator above (see for example [18], [20], [26], [30] and [36]). In [6], Chanillo introduced the first order commutator of I_α with a symbol $b \in L^1_{loc}(\mathbb{R}^n)$, formally defined by

$$[b, I_\alpha](f) = b I_\alpha f - I_\alpha(bf).$$

Particularly, if $b \in BMO$, the space of bounded mean oscillation, the author proved that, for $1 < p < n/\alpha$ and $1/q = 1/p - \alpha/n$, the operator $[b, I_\alpha]$ is bounded from $L^p(\mathbb{R}^n)$ into $L^q(\mathbb{R}^n)$. Some topics related to properties of boundedness for commutators of fractional integral operators for extreme values of p can be found in [19]. (For more information about BMO spaces see [21]).

The continuity properties of the commutator of the fractional integral operator acting on different spaces were studied by several authors contributing, in this way, to the development of PDE’s. Some related articles are given by [2], [10], [14], [17], [23], [27], [28], [29], [33], [35]. In [25] the authors consider the commutators of certain fractional type operators with Lipschitz symbols and prove the boundedness between Lebesgue spaces, including the boundedness from Lebesgue spaces into BMO and Lipschitz spaces on non-homogeneous spaces. (See also [32] in the context of variable Lebesgue spaces).

Nevertheless, there is not enough information about the behavior of the commutators acting between weighted Lebesgue spaces, even less for extreme values of p, that is, the weighted L^p-BMO or L^p-Lipschitz boundedness. Hence, one of our main aims is, precisely, to give sufficient conditions on the weights in order to obtain these continuity properties. Some previous results in this direction were given in [11] where the authors study the boundedness between Lebesgue spaces with variable exponent for commutators of fractional type operators with BMO symbols, (see also [11] in the framework of Orlicz spaces).

We shall first consider fractional type operators, and their commutators, which kernels satisfy certain size condition and a Lipschitz type regularity. For this type of operators we prove boundedness results of the type described above. Particularly we prove a characterization result involving symbols of the commutators and continuity results for extreme values of p.

Later, we study commutators of fractional type operators with less regular kernels. These type of operators include a great variety of operators and were introduced in [3]. See section 2.2 for examples and more information.
The paper is organized as follows. In section 2 we give the preliminaries definitions in order to state the main results of the article, which are also included in this section. Then, in §3 we give some auxiliary results which allow us to prove the main results in §4.

2 Preliminaries and main results

In this section we give the definitions of the operators we shall be dealing with and the functional class of the symbols in order to define the commutators.

We shall consider fractional operators of convolution type T_α, $0 < \alpha < n$, defined by

$$T_\alpha f(x) = \int_{\mathbb{R}^n} K_\alpha(x - y) f(y) dy,$$ \hspace{1cm} (2.1)

where the kernel K_α is not identically zero and verifies certain size and smoothness conditions.

Let $0 < \delta < 1$. We say that a function b belongs to the space $\Lambda(\delta)$ if there exists a positive constant C such that, for every $x, y \in \mathbb{R}^n$

$$|b(x) - b(y)| \leq C|x - y|^\delta.$$

The smallest of such constants will be denoted by $\|b\|_{\Lambda(\delta)}$. We will be dealing with commutators with symbols belonging to this class of functions.

Given a weight w, that is, a non-negative and locally integrable function, we say that a measurable function f belongs to $L^p_w(\mathbb{R}^n)$ for some $1 < p < \infty$ if $fw \in L^p(\mathbb{R}^n)$

We classify the operators defined in (2.1) into two different types, according to the conditions satisfied by K_α.

2.1 Fractional integral operators with Lipschitz regularity

We say that K_α satisfies the size condition S_α if it verifies the following inequality

$$\int_{s < |x| \leq 2s} |K_\alpha(x)| \, dx \leq Cs^\alpha,$$

for every $s > 0$ and some positive constant C.
We shall also assume that K_α satisfies the smoothness condition $H_{\alpha,\infty}^*$, that is, there exist a positive constant C and $0 < \eta \leq 1$ such that

$$\left| K_\alpha(x - y) - K_\alpha(x' - y) \right| + \left| K_\alpha(y - x) - K_\alpha(y - x') \right| \leq C \frac{|x - x'|^\eta}{|x - y|^{n-\alpha+\eta}},$$

whenever $|x - y| \geq 2|x - x'|$.

A typical example is the fractional integral operator I_α, whose kernel $K_\alpha(x) = |x|^{\alpha-n}$ satisfies conditions S_α and $H_{\alpha,\infty}^*$, as it can be easily checked.

Related with the fractional integral operators T_α, we can formally define the higher order commutators with symbol $b \in L^1_{\text{loc}}(\mathbb{R}^n)$, by

$$T^m_{\alpha,b} f(x) = \int_{\mathbb{R}^n} (b(x) - b(y))^m K_\alpha(x - y) f(y) dy,$$

where $m \in \mathbb{N}_0$ is the order of the commutator. Clearly, $T^0_{\alpha,b} = T_\alpha$.

As we have said, we are interested in studying the boundedness properties of the commutators $T^m_{\alpha,b}$, with symbol $b \in \Lambda(\delta)$, on weighted spaces. We shall first consider their continuity on weighted Lebesgue spaces of the type defined previously. We shall also analyze the boundedness of $T^m_{\alpha,b}$ from weighted Lebesgue spaces into certain weighted version of Lipschitz spaces. For $0 < \delta < 1$ and w a weight, these spaces are denoted by $L^1_w(\delta)$ and collect the functions $f \in L^1_{\text{loc}}(\mathbb{R}^n)$ that satisfy

$$\sup_B \frac{\|w\chi_B\|_{\infty}}{|B|^{1+\frac{\delta}{n}}} \int_B |f(x) - f_B| dx < \infty,$$ \hspace{1cm} (2.2)

where $\|g\|_{\infty}$ denotes the essential supremum of a measurable function g. The case $\delta = 0$ of the space above was introduced in [26] as a weighted version of the space of functions with bounded mean oscillation.

The classes of weights we will be dealing with are the well-known $A_{p,q}$ classes of Muckenhoupt and Wheeden ([26]). For $1 \leq p, q < \infty$ these classes are defined as the weights w such that

$$[w]_{A_{p,q}} := \sup_B \left(\frac{1}{|B|} \int_B w(x)^q dx \right)^{1/q} \left(\frac{1}{|B|} \int_B w(x)^{-p'} dx \right)^{1/p'} < \infty.$$

When $q = \infty$, we understand that $w \in A_{p,\infty}$ as $w^{-p'} \in A_1$.

In this subsection we shall assume that the operator T_α has a convolution kernel K_α that verifies conditions S_α and $H_{\alpha,\infty}^*$ with $0 < \eta \leq 1$. In order to simplify the hypothesis we shall suppose that $m \in \mathbb{N} \cup \{0\}$ with the convention that $\beta/0 = \infty$ if $\beta > 0$.

4
We now give the boundedness result between weighted Lebesgue spaces for the higher order commutators of T_α with Lipschitz symbols.

Theorem 2.1. Let $0 < \alpha < n$ and $0 < \delta < \min\{\eta, (n - \alpha)/m\}$. Let $1 < p < n/(m\delta + \alpha)$, $1/q = 1/p - (m\delta + \alpha)/n$ and $b \in \Lambda(\delta)$. If $w \in A_{p,q}$, then there exists a positive constant C such that

$$
\left(\int_{\mathbb{R}^n} |T_{\alpha,b}^{m} f(x)|^q w(x)^q dx \right)^{1/q} \leq C \|b\|_{\Lambda(\delta)}^m \left(\int_{\mathbb{R}^n} |f(x)|^p w(x)^p dx \right)^{1/p}
$$

for every $f \in L^p_w(\mathbb{R}^n)$.

Remark 2.2. When $m = 0$ and $T_\alpha = I_\alpha$, the result above was proved in [26]. Notice that there are no symbols or parameters δ in the hypothesis in this case.

The next result gives the continuity properties of $T_{\alpha,b}^m$ between weighted Lebesgue spaces and $L_w(\bar{\delta})$ spaces. By β^+ we understand β if $\beta > 0$ and 0 is $\beta \leq 0$.

Theorem 2.3. Let $0 < \alpha < n$, and $0 < \delta < \min\{\eta, (n - \alpha)/m\}$. Let $n/(m\delta + \alpha) \leq r < n/(\alpha + (m - 1)\delta)$, if $m \geq 1$ or $n/\alpha \leq r < n/(\alpha - \eta)^+$, if $m = 0$. Let $\bar{\delta} = m\delta + \alpha - \frac{n}{p}$ and $b \in \Lambda(\delta)$. If $w \in A_{r,\infty}$, then there exists a positive constant C such that

$$
\|T_{\alpha,b}^{m} f\|_{L_w(\bar{\delta})} \leq C \|b\|_{\Lambda(\delta)}^m \|f w\|_{L^r}
$$

for every $f \in L^r_w(\mathbb{R}^n)$.

Remark 2.4. When $m = 1$, $w = 1$ and $T_\alpha = I_\alpha$, the result above was proved in [25] in the general context of non-doubling measures.

Remark 2.5. If $r = n/(m\delta + \alpha)$, then $\bar{\delta} = 0$ and the space $L_w(\bar{\delta})$ is the weighted version of the BMO spaces introduced in [26]. By taking into account the range of p in Theorem 2.1 it is clear that this is the endpoint value from which the Lebesgue spaces change into BMO and Lipschitz spaces when the commutator acts. Particularly, if $m = 0$ and $T_\alpha = I_\alpha$, this is the well-known result proved in [26]. Notice again that there are no parameters δ or symbols in this case.

On the other hand, if $m = 0$, $T_\alpha = I_\alpha$ and $n/\alpha \leq r < n/(\alpha - 1)^+$, that is, $\eta = 1$ in the definition of the class $H^*_{\alpha,\infty}$, the result above was proved in [31].

For the extreme value $r = n/((m - 1)\delta + \alpha)$, $m \in \mathbb{N}$ and $0 < \delta < \eta \leq 1$, we obtain the following endpoint result in order to characterize the symbol b in $\Lambda(\delta)$ in terms of the boundedness of $T_{\alpha,b}^m$ in the sense of Theorem 2.3. In order to give this result we introduce some previous notation. For $k = 0, 1, \ldots, m$ we denote $c_k = m!/(k!(m - k)!)$.

If also $x, u \in \mathbb{R}^n$, we denote $S(x,u,k) = (b(x) - b_B)^{m-k}T_{\alpha,(b - b_B)^k f_2}(u)$, where $f_2 = f_{\chi_{\mathbb{R}^n \setminus B}}$ for a given ball B and a locally integrable function f.
Theorem 2.6. Let $m \in \mathbb{N}$, $0 < \delta < \min\{\eta, (n - \alpha)/m\}$ and $r = n/((m - 1)\delta + \alpha)$. If $w \in A_{n/(m\delta + \alpha), \infty}$ and $b \in \Lambda(\delta)$, the following statements are equivalent.

(i) $T_{a,b}^m : L^\infty_w(\mathbb{R}^n)(\mathbb{R}^n) \to \mathbb{L}_w(\delta)$;

(ii) There exists a positive constant C such that

$$
\frac{\|w_X\|_\infty}{|B|^{1 + \frac{\alpha}{n}}} \int_B \left| \sum_{k=0}^m c_k [S(x, u, k) - (S(\cdot, u, k))_B] \right| dx \leq C \|fw\|_r,
$$

(2.3)

for every ball $B \subset \mathbb{R}^n$, $x, u \in B$ and $f \in L^1_{\text{loc}}(\mathbb{R}^n)$.

Remark 2.7. When $m = 1$, $w = 1$ and $T_\alpha = I_\alpha$ the result above was proved in [25] in a more general context of non-homogeneous spaces. Certainly, their result was inspired in the article of [19], where the same result is proved for $m = 1$, $w = 1$, $T_\alpha = I_\alpha$ and $b \in \text{BMO}$.

Remark 2.8. In [19] the authors also have obtained that, in the case of $T_\alpha = I_\alpha$, $b \in \text{BMO}$, $m = 1$ and $w = 1$, the boundedness of the commutator $I_{\alpha,b}$ from $L^{n/\alpha}$ into BMO can only occur if b is constant. In our case, if $b \in \Lambda(\delta)$, when $T_\alpha = I_\alpha$, $m = 1$ and $w = 1$, we can deduce, by (2.3), that, if $I_{\alpha,b}$ is bounded from $L^{n/\alpha}$ into $\mathbb{L}(\delta)$, then

$$
\frac{1}{|B|^{1 + \frac{\alpha}{n}}} \int_B \left| \sum_{k=0}^m c_k [S(x, u, k) - (S(\cdot, u, k))_B] \right| dx \leq C \|f\|_{n/\alpha}.
$$

Since it is easy to see that

$$
\frac{1}{|B|^{1 + \frac{\alpha}{n}}} \int_B \left| \sum_{k=0}^m c_k [S(x, u, k) - (S(\cdot, u, k))_B] \right| dx = \frac{1}{|B|^{1 + \frac{\alpha}{n}}} \int_B |b(x) - b_B| dx \int_{(2B)^c} \frac{f(y)}{|u - y|^{n-\alpha}} dy,
$$

we have that

$$
\frac{1}{|B|^{1 + \frac{\alpha}{n}}} \int_B |b(x) - b_B| dx \int_{(2B)^c} \frac{f(y)}{|u - y|^{n-\alpha}} dy \leq C \|f\|_{n/\alpha}.
$$

Following the same guidelines as in [19] with $f_N(y) = |u - y|^{-\alpha} \chi_{B(0,N)}(u - y)\chi_{(2B)^c}(y)$ for $N \in \mathbb{N}$, we obtain that

$$
\frac{1}{|B|^{1 + \frac{\alpha}{n}}} \int_B |b(x) - b_B| dx \int_{(2B)^c \cup \{|u - y| < N\}} \frac{dy}{|u - y|^{\alpha/n}} \leq C.
$$

Due to the fact that $\left| \int_{(2B)^c \cup \{|u - y| < N\}} \frac{dy}{|u - y|^{\alpha/n}} \right|^{1-\alpha/n} \to \infty$ when $N \to \infty$, we have $b(x) = b_B$ almost everywhere, for every ball B, which yields that b is essentially constant.
2.2 Fractional integral operators with Hörmander type regularity

We now introduce the conditions on the kernel that will be considered in this section. First, we must give some notation.

It is well-known that the commutators of fractional integral operators can be controlled, in some sense, by maximal type operators associated to Young functions. By a Young function we mean a function $\Phi : [0, \infty) \to [0, \infty)$ that is increasing, convex and verifies $\Phi(0) = 0$ and $\Phi(t) \to \infty$ when $t \to \infty$. The Φ-Luxemburg average over a ball B is defined, for a locally integrable function f, by

$$\|f\|_{\Phi,B} = \inf \left\{ \lambda > 0 : \frac{1}{|B|} \int_B \Phi \left(\frac{|f(x)|}{\lambda} \right) \, dx \leq 1 \right\}.$$

The maximal type operators that control the commutators involve these averages. More precisely, if $f \in L^1_{\text{loc}}(\mathbb{R}^n)$ and $0 < \alpha < n$, we define the fractional type maximal operator associated to a Young function Φ, by

$$M_{\alpha,\Phi} f(x) = \sup_{B \ni x} |B|^{\alpha/n} \|f\|_{\Phi,B},$$

where the supremum is taken over every ball B that contains $x \in \mathbb{R}^n$.

Given a Young function Φ, the following Hölder’s type inequality holds for every pair of measurable functions f, g

$$\frac{1}{|B|} \int_B |f(x)g(x)| \, dx \leq 2 \|f\|_{\Phi,B} \|g\|_{\Phi,\Phi},$$

where Φ is the complementary Young function of Φ, defined by

$$\Phi(t) = \sup_{s > 0} \{st - \phi(s)\}.$$

It is easy to see that $t \leq \Phi^{-1}(t)\Phi^{-1}(t) \leq 2t$ for every $t > 0$.

Moreover, given Φ, Ψ and Θ Young functions verifying that $\Phi^{-1}(t)\Psi^{-1}(t) \lesssim \Theta^{-1}(t)$ for every $t > 0$, the following generalization holds

$$\|fg\|_{\Theta,B} \lesssim \|f\|_{\Phi,B} \|g\|_{\Psi,B}.$$

We are now in position to define the smoothness condition on K_α.

We say that $K_\alpha \in H_{\alpha,\Phi}$ if there exist $c \geq 1$ and $C > 0$ such that for every $y \in \mathbb{R}^n$ and $R > c|y|$}

$$\sum_{j=1}^\infty (2^j R)^{n-\alpha} \| (K_\alpha(\cdot-y) - K_\alpha(\cdot)) \chi_{|\cdot|\sim 2^j R} \|_{\Phi,B(0,2^{j+1}R)} \leq C,$$
where \(| \cdot | \sim s\) means the set \(\{ x \in \mathbb{R}^n : s < |x| \leq 2s \}\).

When \(\Phi(t) = t^q, 1 \leq q < \infty\), we denote this class by \(H_{\alpha,q}\) and it can be written as

\[
\sum_{j=1}^{\infty} (2^j R)^{n-\alpha} \left(\frac{1}{(2^j R)^n} \int_{|x| \sim 2^j R} |K_\alpha(x - y) - K_\alpha(x)|^q dx \right)^{1/q} \leq C.
\]

The kernels given above are, a priori, less regular than the kernel of the fractional integral operator \(I_\alpha\) and they have been studied by several authors. For example, in [22], the author studied fractional integrals given by a multiplier. If \(m : \mathbb{R}^n \to \mathbb{R}\) is a function, the multiplier operator \(T_m\) is defined, through the Fourier transform, as \(T_m f(\zeta) = m(\zeta) \hat{f}(\zeta)\) for \(f\) in the Schwartz class. Under certain conditions on the derivatives of \(m\), the multiplier operator \(T_m\) can be seen as the limit of convolution operators \(T_N^m\), having a simpler form. Their corresponding kernels \(K_N^\alpha\) belong to the class \(S_\alpha \cap H_{\alpha,r}\) with constant independent of \(N\), for certain values of \(r > 1\) given by the regularity of the function \(m\) (see [22]).

Other examples of this type of operators are fractional integrals with rough kernels, that is, with kernel \(K_\alpha(x) = \Omega(x)|x|^{\alpha-n}\) where \(\Omega\) is a function defined on the unit sphere \(S^{n-1}\) of \(\mathbb{R}^n\), extended to \(\mathbb{R}^n \setminus \{0\}\) radially. The function \(\Omega\) is an homogeneous function of degree 0. In [3, Proposition 4.2], the authors showed that \(K_\alpha \in S_\alpha \cap H_{\alpha,\Phi}\), for certain Young function \(\Phi\), provided that \(\Omega \in L^\Phi(S^{n-1})\) with

\[
\int_0^1 \omega_\Phi(t) \frac{dt}{t} < \infty,
\]

where \(\omega_\Phi\) is the \(L^\Phi\)-modulus of continuity given by

\[
\omega_\Phi(t) = \sup_{|y| \leq t} ||\Omega(\cdot + y) - \Omega(\cdot)||_{\Phi,S^{n-1}} < \infty,
\]

for every \(t \geq 0\). This type of operators where also studied in [7] and [13].

As we said previously, we are interested in studying the higher order commutators of \(T_\alpha\). Since we are dealing with symbols of Lipschitz type, the smoothness condition associated to these commutators is defined as follows.

Definition 2.9. Let \(m \in \mathbb{N}_0, 0 < \alpha < n, 0 \leq \delta < \min\{1, (n - \alpha)/m\}\) and let \(\Phi\) be a Young function. We say that \(K_\alpha \in H_{\alpha,\Phi,m}(\delta)\) if

\[
\sum_{j=1}^{\infty} (2^j R)^m \delta (2^j R)^{n-\alpha} ||(K_\alpha(\cdot - y) - K_\alpha(\cdot)) \chi_{|\cdot| \sim 2^j R}||_{\Phi,B(0,2^{j+1}R)} \leq C.
\]

for some constants \(c \geq 1\) and \(C > 0\) and for every \(y \in \mathbb{R}^n\) with \(R > c|y|\).
Clearly, when $\delta = 0$ or $m = 0$, $H_{\alpha,\Phi,m}(\delta) = H_{\alpha,\Phi}$.

Remark 2.10. It is easy to see that $H_{\alpha,\Phi,m}(\delta_2) \subset H_{\alpha,\Phi,m}(\delta_1) \subset H_{\alpha,\Phi}$ whenever $0 \leq \delta_1 < \delta_2 < \min\{1, (n - \alpha)/m\}$.

Recall that Fourier multipliers and fractional integrals with rough kernels are examples of fractional integral operators with $K_\alpha \in H_{\alpha,\Phi}$ for certain Young function. By assuming adequate conditions depending on δ on the multiplier m, or on the L^Φ-modulus of continuity ω_Φ, one can obtain kernels $K_\alpha \in H_{\alpha,\Phi,m}(\delta)$. This fact can be proved by adapting Proposition 4.2 and Corollary 4.3 given in [3] (see also [24]).

We shall also deal with a class of Young functions that arises in connection with the boundedness of the fractional maximal operator $M_{\alpha,\Psi}$ on weighted Lebesgue spaces (see [3]). Given $0 < \alpha < n$, $1 \leq \beta < p < n/\alpha$ and a Young function Ψ, we shall say that Ψ is a Young function Φ such that its complementary function $\tilde{\Phi} \in B_\rho$ for every $\rho > n\beta/(n - \alpha\beta)$, that is, there exists a positive constant c such that

$$\int_c^\infty \frac{\Psi^{1 + \alpha/\beta}}{t^\rho} \, dt < \infty$$

for each of those values of ρ.

We now state the following generalizations of Theorems 2.1 and 2.3. We shall consider again $m \in \mathbb{N}_0$.

Theorem 2.11. Let $0 < \alpha < n$ and $0 < \delta < \min\{1, (n - \alpha)/m\}$. Let $1 < p < n/(m\delta + \alpha)$, $1/q = 1/p - (m\delta + \alpha)/n$ and $b \in \Lambda(\delta)$. Assume that T_α has a kernel $K_\alpha \in S_{\alpha} \cap H_{\alpha,\Phi}$ for a Young function Φ such that its complementary function $\tilde{\Phi} \in B_{m\delta + \alpha, \beta}$ for some $1 \leq \beta < p$. Then, if w is a weight verifying $w^\beta \in A_{p,q}$, there exists a positive constant C such that

$$\left(\int_{\mathbb{R}^n} |T_{\alpha,\rho}^m f(x)|^q w(x)^q \, dx \right)^{1/q} \leq C \|b\|_{\Lambda(\delta)}^m \left(\int_{\mathbb{R}^n} |f(x)|^p w(x)^p \, dx \right)^{1/p}$$

for every $f \in L_w^p(\mathbb{R}^n)$.

Remark 2.12. If we consider, for example, $\Phi(t) = e^{t^\gamma} - e$ with $\gamma > 0$, then $\tilde{\Phi}(t) \approx t(1 + \log^+ t)^\gamma$ and this function verifies condition $B_{m\delta + \alpha,1}$. Thus, Φ satisfies the hypothesis of the theorem above and, in this case, we can take $w \in A_{p,q}$. As we have mentioned before, this condition $B_{m\delta + \alpha, \beta}$ is related with the boundedness of the corresponding fractional maximal operator $M_{m\delta + \alpha, \tilde{\Phi}}$ between L_w^p and L_w^q when $w^\beta \in A_{p,q}$ (see Theorem 3.6 below). When $\beta > 1$, a typical example is $\tilde{\Phi}(t) = t^\beta(1 + \log^+ t)^\gamma$ for $\gamma \geq 0$. In this case, the Young function Φ related with the smoothness condition on the kernel K_α given in the theorem above is $\Phi(t) = t^{\beta'}(1 + \log^+ t)^{-\gamma/(\beta - 1)}$, where $\beta' = \beta/(\beta - 1)$.

9
Theorem 2.13. Let $0 < \alpha < n$, $0 < \delta < \min\{1, (n - \alpha)/m\}$ and $n/(m\delta + \alpha) \leq r < n/((m-1)\delta + \alpha)$ such that $\tilde{\delta} = m\delta + \alpha - \frac{n}{r}$. Let w be a weight such that $w^\beta \in A_{r/\beta,\infty}$ for some $1 < \beta < r$. Assume that T_α has a kernel $K_\alpha \in S_\alpha \cap H_\alpha,\Phi,\delta_{m}(\delta)$ for a Young function Φ such that $\Phi^{-1}(t) \lesssim t^{\frac{\beta - 1}{r}}$ for every $t > 0$. If $b \in \Lambda(\delta)$, then there exists a positive constant C such that

$$
\|T_{\alpha,b}^m f\|_{L^w(\tilde{\delta})} \leq C \|b\|_{\Lambda(\delta)}^m \|f w\|_{L^r}
$$

for every $f \in L^w_\infty(\mathbb{R}^n)$.

Theorem 2.14. Let $m \in \mathbb{N}$, $0 < \delta < \min\{1, (n - \alpha)/m\}$ and $r = n/((m-1)\delta + \alpha)$. Let w be a weight such that $w^\beta \in A_{r/\beta,\infty}$ for some $1 < \beta < r$. Let T_α be a fractional integral operator with kernel $K_\alpha \in S_\alpha \cap H_\alpha,\Phi,\delta_{m}(\delta)$ where Φ is a Young function verifying $\Phi^{-1}(t) \lesssim t^{\frac{\beta - 1}{r}}$ for every $t > 0$, and $\Phi \in B_{m\delta + \alpha,\beta}$. If $b \in \Lambda(\delta)$, the following statements are equivalent,

(i) $T_{\alpha,b}^m : L^r_\infty(\mathbb{R}^n) \rightarrow L^w(\tilde{\delta})$;

(ii) There exists a positive constant C such that

$$
\left\| w \chi_B \right\|_{L^\infty} \int_B \left| \sum_{k=0}^m c_k [S(x,u,k) - (S(\cdot,u,k))_B] \right| dx \leq C \|f w\|_{L^r},
$$

(2.5)

for every ball $B \subset \mathbb{R}^n$, $x, u \in B$ and $f \in L^1_{\text{loc}}(\mathbb{R}^n)$.

3 Auxiliary results

In this section we give some previous results. We begin with some inequalities involving functions in $\Lambda(\delta)$.

Lemma 3.1. Let $0 < \delta < 1$ and $B \subset \mathbb{R}^n$ a ball. If $b \in \Lambda(\delta)$, then

(i) for every $y \in \lambda B$, $\lambda \geq 1$,

$$
|b(y) - b_B| \leq C \|b\|_{\Lambda(\delta)} |\lambda B|^{\frac{\alpha}{n}}.
$$

(ii) for every $j \in \mathbb{N}$

$$
|b_{2^{j+1}B} - b_{2^jB}| \leq 2^n j |2^{j+1}B| \|b\|_{\Lambda(\delta)}.
$$

The following lemma is an easy consequence of condition S_α.

10
Lemma 3.2. Let \(K \) be a kernel verifying condition \(S_\alpha \) with \(0 < \alpha < n \). Then, for any ball \(B = B(x_B, r_B) \), we have
\[
\int_B |K_\alpha(x - x_B)|dx \lesssim r_B^\alpha.
\]

Proof. By changing variables first, we then split the integral into dyadic sets and use \(S_\alpha \) condition in each set as it follows
\[
\int_B |K_\alpha(x - x_B)|dx = \int_{B(0, r_B)} |K_\alpha(z)|dz = \sum_{j=1}^\infty \int_{2^{-j}r_B \leq |z| < 2^{-(j+1)}r_B} |K_\alpha(z)|dz
\]
\[
\lesssim \sum_{j=1}^\infty (2^{-j}r_B)^\alpha = r_B^\alpha \sum_{j=1}^\infty 2^{-j\alpha} \approx r_B^\alpha,
\]
since \(\alpha > 0 \).

In order to obtain the boundedness result between Lebesgue spaces, we prove the following key estimate, which shows how can we control the higher order commutators of \(T_\alpha \) by a fractional maximal function via the sharp maximal operator \(M_{0, \gamma}^\sharp \), \(0 < \gamma < 1 \), given by
\[
M_{0, \gamma}^\sharp f(x) = \sup_{B \ni x, a \in \mathbb{R}} \frac{1}{|B|} \int_B |f(y) - a|dy,
\]
where \(M_{0, \gamma}^\sharp f := M_{0, \gamma}^\sharp(|f|^\gamma)^{1/\gamma} \).

Lemma 3.3. Let \(m \in \mathbb{N} \), \(0 < \gamma < 1/m \), \(0 < \alpha < n \) and \(0 < \delta < \min\{1, (n - \alpha)/m\} \). Let \(b \in \Lambda(\delta) \) and \(T_\alpha \) a fractional integral operator with kernel \(K_\alpha \in S_\alpha \). Then, there exists a positive constant \(C \) such that

(i) if \(K_\alpha \in H_{\alpha, \infty}^* \),
\[
M_{0, \gamma}^\sharp (T_{a,b}^m f)(x) \lesssim \|b\|_{\Lambda(\delta)}^m \left(\sum_{j=0}^{m-1} M_{\theta_j, \gamma}(|T_{a,b}^j f|)(x) + M_{\theta_0 + \alpha} f(x) \right),
\]
where \(\theta_j = \delta(m - j), \ j = 0, \ldots, m \).

(ii) if \(K_\alpha \in H_{\alpha, \Phi} \) for some Young function \(\Phi \),
\[
M_{0, \gamma}^\sharp (T_{a,b}^m f)(x) \lesssim \|b\|_{\Lambda(\delta)}^m \left(\sum_{j=0}^{m-1} M_{\theta_j, \gamma}(|T_{a,b}^j f|)(x) + M_{\theta_0 + \alpha, \tilde{\Phi}} f(x) \right),
\]
where \(\theta_j = \delta(m - j), \ j = 0, \ldots, m \), and \(\tilde{\Phi} \) is the complementary function of \(\Phi \).

Remark 3.4. For \(0 < \delta < 1 \), \(m = 1 \) and \(K_\alpha \in H_{\alpha, \infty}^* \) and homogeneous of degree \(\alpha - n \), the proof of \((i) \) can be found in [32] for a larger class of Lipschitz spaces with variable parameter.
Proof of Lemma 3.3: Fix B a ball containing x, and decompose the commutator in the following way (see, for instance, [16] or [27])

$$T_{α,b}^m f(x) = \sum_{j=0}^{m-1} C_{j,m}(b(x) - b_{2B})^{m-j} T_{α,b}^j f(x) + T_{α}((b - b_{2B})^m f)(x).$$

(3.1)

If we split $f = f_1 + f_2$ where $f_2 = f \chi_{2B}$, it is sufficient to estimate, for $0 < \gamma < 1/m$, the average

$$\left(\frac{1}{|B|} \int_B \left| T_{α,b}^m f(y) - T_{α}((b - b_{2B})^m f_2)(x_B) \right|^{\gamma} dy \right)^{1/\gamma} \leq I + II + III,$$

(3.2)

where x_B denotes the center of B, and

$$I = \sum_{j=0}^{m-1} \left(\frac{1}{|B|} \int_B (b(y) - b_{2B})^{(m-j)\gamma} |T_{α,b}^j f(y)|^{\gamma} dy \right)^{1/\gamma},$$

$$II = \left(\frac{1}{|B|} \int_B T_{α}((b - b_{2B})^m f_1)(y) |dy \right)^{1/\gamma},$$

$$III = \left(\frac{1}{|B|} \int_B T_{α}((b - b_{2B})^m f_2)(y) - T_{α}((b - b_{2B})^m f_2)(x_B) |dy \right)^{1/\gamma}.$$

For simplicity, we will assume $\|b\|_{α} = 1$. We shall first estimate I. From Lemma 3.1(i) we have

$$I \lesssim \sum_{j=0}^{m-1} \|b\|_{α}^{m-j} |B|^{3(m-j)\delta} \left(\frac{1}{|B|} \int_B |T_{α,b}^j f(y)|^{\gamma} dy \right)^{1/\gamma}$$

$$= C \sum_{j=0}^{m-1} \left(\frac{1}{|B|} \int_B |T_{α,b}^j f(y)|^{\gamma} dy \right)^{1/\gamma}$$

$$\lesssim \sum_{j=0}^{m-1} \mathcal{M}_{θ_j,γ}(|T_{α,b}^j f|)(x)$$

where $θ_j = (m - j)\delta$. Note that the last maximal operator is of fractional-type since $0 < θ_j < (m - j)(n - α)/m \leq n$ for every $0 ≤ j ≤ m - 1$.

We will now estimate II. If $y \in B$ and $z \in 2B$, then $|y - z| < 3R$ and we have, by Lemma 3.2 that

$$II \leq \frac{1}{|B|} \int_B \left(\int_{2B} |K_α(y - z)(b(z) - b_{2B})^m f(z)| dz \right) dy$$

$$\leq \frac{1}{|B|} \int_{2B} |b(z) - b_{2B}|^m |f(z)| \left(\int_{B(z,3R)} |K_α(y - z)| dy \right) dz$$

$$\lesssim \frac{|3B|^{m/2}}{|B|} \int_{2B} |b(z) - b_{2B}|^m |f(z)| dy \lesssim \frac{|B|^{m/2}}{|B|} \int_{2B} |b(z) - b_{2B}|^m |f(z)| dy$$

12
From Lemma 3.1(iii) we can estimate $|b(z) - b_{2B}|^m$ by $\|b\|_{\Lambda(\delta)}^m 2B^{\frac{m\delta}{\alpha}} = \|b\|_{\Lambda(\delta)}^m |2B|^{\frac{m\delta}{\alpha}}$ to obtain

$$II \lesssim \|b\|_{\Lambda(\delta)}^m \frac{1}{|2B|^{1 - \frac{\eta\alpha + \theta}{m}}} \int_{2B} |f(z)|dz \leq \|b\|_{\Lambda(\delta)}^m M_{\theta_0 + \alpha} f(x).$$

Since $0 < \delta < (n - \alpha)/m$, it is clear that $0 < \theta_0 + \alpha < n$, so $M_{\theta_0 + \alpha}$ is a fractional-type maximal operator.

In order to estimate III, we first observe that, by Jensen’s inequality

$$III \leq \frac{1}{|B|} \int_B |T_{\alpha,b}^m ((b - b_{2B})^m f_2)(y) - T_{\alpha}((b - b_{2B})^m f_2)(x_B)|dy,$$

and, setting $B_j = 2^j B$, the integrand can be estimated, using Lemma 3.1(i) as follows

$$|T_{\alpha,b}^m ((b - b_{2B})^m f_2)(y) - T_{\alpha}((b - b_{2B})^m f_2)(x_B)| \leq \sum_{j=1}^{\infty} \int_{B_{j+1}\setminus B_j} |K_\alpha(y - z) - K_\alpha(x_B - z)||b(z) - b_{2B}|^m |f(z)|dz$$

$$\lesssim \|b\|_{\Lambda(\delta)}^m \sum_{j=1}^{\infty} |B_{j+1}| \frac{m\delta}{\alpha} \int_{B_{j+1}\setminus B_j} |K_\alpha(y - z) - K_\alpha(x_B - z)||f(z)|dz.$$

Here, we must distinguish the cases $K_\alpha \in H^*_{\alpha,\infty}$ and $K_\alpha \in H_{\alpha,\Phi}$.

If $K_\alpha \in H^*_{\alpha,\infty}$,

$$|T_{\alpha,b}^m ((b - b_{2B})^m f_2)(y) - T_{\alpha}((b - b_{2B})^m f_2)(x_B)| \lesssim \|b\|_{\Lambda(\delta)}^m \sum_{j=1}^{\infty} |B_{j+1}| \frac{m\delta}{\alpha} \int_{B_{j+1}\setminus B_j} \frac{|y - x_B|^\eta}{|y - z|^{n - \alpha + \eta}} |f(z)|dz$$

$$\lesssim \|b\|_{\Lambda(\delta)}^m \sum_{j=1}^{\infty} |B_{j+1}| \frac{m\delta + \alpha}{\alpha} 2^{-j\eta} \frac{1}{|B_{j+1}|} \int_{B_{j+1}} |f(z)|dz$$

$$\approx \|b\|_{\Lambda(\delta)}^m \sum_{j=1}^{\infty} 2^{-j\eta} \frac{1}{|B_{j+1}|} \frac{1}{|B_{j+1}|^{1 - \frac{\theta_0 + \alpha}{n}}} \int_{B_{j+1}} |f(y)|dy$$

$$\leq \|b\|_{\Lambda(\delta)}^m M_{\theta_0 + \alpha} f(x) \sum_{j=1}^{\infty} 2^{-j\eta} \approx \|b\|_{\Lambda(\delta)}^m M_{\theta_0 + \alpha} f(x),$$

since $\eta > 0$. Therefore

$$III \lesssim \|b\|_{\Lambda(\delta)}^m M_{\theta_0 + \alpha} f(x).$$

Let us now consider the case $K_\alpha \in H_{\alpha,\Phi}$. Applying Hölder’s inequality with Φ and $\bar{\Phi}$ in (3.3), we obtain

$$|T_{\alpha,b}^m ((b - b_{2B})^m f_2)(y) - T_{\alpha}((b - b_{2B})^m f_2)(x_B)|$$
\[
\lesssim \|b\|_{\Lambda(\delta)}^m \sum_{j=1}^{\infty} |B_{j+1}|^{\frac{m\delta}{n}+1} \| (K_\alpha (\cdot - (y - xB)) - K_\alpha (\cdot)) \chi_{|\cdot|\sim 2^j R} \|_{\Phi, B_{j+1}} \|f\|_{\tilde{\Phi}, B_{j+1}} \\
\lesssim \|b\|_{\Lambda(\delta)}^m \sum_{j=1}^{\infty} |B_{j+1}|^{1-\frac{\beta}{p}} \| (K_\alpha (\cdot - (y - xB)) - K_\alpha (\cdot)) \chi_{|\cdot|\sim 2^j R} \|_{\Phi, B_{j+1}} |B_{j+1}|^{\frac{m\delta}{n}+\alpha} \|f\|_{\tilde{\Phi}, B_{j+1}} \\
\lesssim \|b\|_{\Lambda(\delta)}^m M_{\gamma_0 + \alpha, \tilde{\Psi}} f(x) \sum_{j=1}^{\infty} (2^j R)^{n-\alpha} \| (K_\alpha (\cdot - (y - xB)) - K_\alpha (\cdot)) \chi_{|\cdot|\sim 2^j R} \|_{\Phi, B_{j+1}} \\
\lesssim \|b\|_{\Lambda(\delta)}^m M_{\gamma_0 + \alpha, \tilde{\Psi}} f(x).
\]

Therefore,
\[
III \lesssim \|b\|_{\Lambda(\delta)}^m M_{\gamma_0 + \alpha, \tilde{\Psi}} f(x).
\]

Combining all these estimates, we obtain the desired pointwise inequalities. \[\square\]

The following result is a variant of the well-known Fefferman-Stein’s inequality (see [15]) and it will be a key estimate to prove Theorem 2.1.

Lemma 3.5 ([28]). Let \(0 < p < \infty\) and \(0 < \gamma < 1\). Let \(w\) be a weight in the \(A_\infty\) class. Then, there exists a positive constant \(C\) such that
\[
\int_{\mathbb{R}^n} M_\gamma f(x)^p w(x) dx \leq C [w]_{A_\infty} \int_{\mathbb{R}^n} |M_{0, \gamma} f(x)|^p w(x) dx
\]
for every measurable function \(f\).

We shall also need two results involving the boundedness of fractional maximal operators associated with Young functions, that can be found in [1].

Theorem 3.6 ([1]). Let \(0 < \alpha < n\), \(1 \leq \beta < n/\alpha\) and \(1/q = 1/p - \alpha/n\). Let \(w\) be a weight such that \(w^\beta \in A_{p/\beta, q/\beta}\). Let \(\Psi\) be a Young function that satisfies \(\Psi \in \mathcal{B}_{\alpha, \beta}\). Then, \(M_{\alpha, \Psi}\) is bounded from \(L^p(w^p, \mathbb{R}^n)\) into \(L^q(w^q, \mathbb{R}^n)\).

Note that if \(\Psi = t^\beta (1 + \log^+ t)^\gamma\) for any \(\gamma \geq 0\), then \(\Psi \in \mathcal{B}_{\alpha, \beta}\) and the following result holds.

Theorem 3.7 ([1]). Let \(0 < \alpha < n\), \(1 < p < n/\alpha\) and \(1/q = 1/p - \alpha/n\). Let \(w\) be a weight and \(\Psi(t) = t^\beta (1 + \log^+ t)^\gamma\) where \(1 \leq \beta < p\) and \(\gamma \geq 0\). Then, \(M_{\alpha, \Psi}\) is bounded from \(L^p(w^p, \mathbb{R}^n)\) into \(L^q(w^q, \mathbb{R}^n)\) if and only if \(w^\beta \in A_{p/\beta, q/\beta}\).

In order to prove Theorem 2.6, we shall need the following estimate.
Lemma 3.8. Let \(0 < \delta < \min\{\eta, (n-\alpha)/(m-1)\} \), for \(0 < \eta \leq 1 \). Let \(r = n/((m-1)\delta + \alpha) \), \(w \in A_{r,\infty} \), \(b \in \Lambda(\delta) \) and \(f \in L^r_w(\mathbb{R}^n) \). Let \(B \subset \mathbb{R}^n \) be a ball and \(f_2 = f\chi_{\mathbb{R}^n \setminus 2B} \). If \(T_\alpha \) is a fractional integral operator with kernel \(K_\alpha \in S_\alpha \cap H^*_{a,\infty} \), then, for every \(x, u \in B \),

\[
|T_\alpha((b-b_B)^k f_2)(x) - T_\alpha((b-b_B)^k f_2)(u)| \lesssim \frac{\|b\|_{\Lambda(\delta)}^k \|fw\|_r |B|^\frac{(k-m+1)}{n}}{wXB\|_\infty}
\]

for each \(k = 0, \ldots, m \).

Proof of Lemma 3.8. If \(K_\alpha \in S_\alpha \cap H^*_{a,\infty} \), by taking \(x, u \in B \), and \(0 \leq k \leq m \), and setting \(B_j = 2^j B \), we have from Lemma 3.1 [1] that

\[
|T_\alpha((b-b_B)^k f_2)(x) - T_\alpha((b-b_B)^k f_2)(u)| \leq \int_{(2B)^c} |K_\alpha(x-y) - K_\alpha(u-y)| |b(y) - b_B|^k |f(y)| dy \lesssim \|b\|_{\Lambda(\delta)}^k \sum_{j=1}^{\infty} |B_{j+1}|^\frac{\delta k}{n} \int_{B_{j+1}\setminus B_j} \frac{|x-u|^{\eta}}{|y-u|^{n+\eta - \alpha}} |f(y)| dy \lesssim \|b\|_{\Lambda(\delta)}^k \sum_{j=1}^{\infty} \frac{|B_{j+1}|^{\frac{\delta k}{n}} |B|^\frac{\eta}{n}}{|B_{j+1}|^{\frac{n+\eta - \alpha}{n}}} \int_{B_{j+1}\setminus B_j} |f(y)| dy.
\]

Now by Hölder’s inequality and the fact that \(w \in A_{r,\infty} \) with \(r = n/(\alpha + (m-1)\delta) \), we get

\[
|T_\alpha((b-b_B)^k f_2)(x) - T_\alpha((b-b_B)^k f_2)(u)| \lesssim \|b\|_{\Lambda(\delta)}^k \|fw\|_r \sum_{j=1}^{\infty} \frac{|B_{j+1}|^{\frac{\delta k}{n} - 1 + \frac{\alpha + (m-1)\delta}{n}}} {2^{j\eta}} \|w^{-1}\chi_{B_{j+1}}\|_r \cdot \|wXB\|_\infty^{-1} \sum_{j=1}^{\infty} \frac{|B_{j+1}|^{\frac{\delta k}{n} - 1 + \frac{\alpha + (m-1)\delta}{n}}} {2^{j\eta}} \cdot |B|^\frac{\delta (k-m+1)}{n} \sum_{j=1}^{\infty} 2^{j(\delta(k-m+1)-\eta)} \lesssim \|b\|_{\Lambda(\delta)}^k \|fw\|_r \cdot \|wXB\|_\infty^{-1} |B|^\frac{\delta (k-m+1)}{n} \]

where the series is summable since \(0 \leq k \leq m \) and \(\delta < \eta \). \(\square \)

Lemma 3.9. Let \(m \in \mathbb{N} \), \(0 < \alpha < n \), \(0 < \delta < \min\{1, (n-\alpha)/(m-1)\} \), \(b \in \Lambda(\delta) \) and \(f \in L^r_w(\mathbb{R}^n) \) where \(w \) is a weight such that \(w^\beta \in A_{r/\beta,\infty} \) for some \(1 < \beta < r \). Let \(B \subset \mathbb{R}^n \) be a ball and \(f_2 = f\chi_{\mathbb{R}^n \setminus 2B} \). If \(T_\alpha \) is a fractional integral operator with kernel \(K_\alpha \in H_{\alpha,\Phi,m}(\delta) \), where \(\Phi \) is a Young function verifying \(\Phi^{-1}(t) \lesssim t^{\frac{\beta}{\gamma}} \) for every \(t > 0 \), then, for every \(x, u \in B \),

\[
|T_\alpha((b-b_B)^k f_2)(x) - T_\alpha((b-b_B)^k f_2)(u)| \lesssim \frac{\|fw\|_r \|b\|_{\Lambda(\delta)}^k |B|^\frac{\delta (k-m+1)}{n}}{wXB\|_\infty}.
\]
for each \(k = 0, \ldots, m \).

Proof. Fix \(x, u \in B \) and \(0 \leq k \leq m \). Setting \(B_u = B(u, R) \) which satisfies \(B \subset 2B_u \subset 4B \), and using Lemma 3.1 \([1]\) we have

\[
|T_\alpha((b - b_B)^k f_2)(x) - T_\alpha((b - b_B)^k f_2)(u)|
\leq \int_{\mathbb{R}^n \setminus B_u} |b(y) - b_{B_u}|^k |K_\alpha(x - y) - K_\alpha(u - y)||f(y)|dy
\leq \sum_{j=0}^{\infty} \int_{2^{j+1}B_u \setminus 2^jB_u} |b(y) - b_{B_u}|^k |K_\alpha(x - y) - K_\alpha(u - y)||f(y)|dy
\leq \|b\|_{\Lambda(\delta)} \sum_{j=0}^{\infty} 2^{j+1}B_u \frac{\delta}{n} \int_{2^{j+1}B_u \setminus 2^jB_u} |K_\alpha(x - y) - K_\alpha(u - y)||f(y)|dy.
\]

Since \(1/r + 1/(r/\beta)' = 1 - (\beta - 1)/r \), we can use Hölder’s inequality with \(\Phi^{-1}(t)t^{1/r}t^{1/(r/\beta)'} \leq t \) and the fact that \(w^\beta \in A_{r/\beta, \infty} \), to get

\[
|T_\alpha((b - b_B)^k f_2)(x) - T_\alpha((b - b_B)^k f_2)(u)|
\leq \|b\|_{\Lambda(\delta)} \|fw\|_r \sum_{j=0}^{\infty} 2^{j+1}B_u \frac{\delta}{n} \left(\frac{\|K_\alpha(\cdot - (u - x)) - K_\alpha(\cdot - x)||\chi_{|\cdot| < 2^jR} \Phi_{2^{j+1}B_u}}{2^{j+1}B_u}\right)^{1/(r/\beta)'}
\leq \|b\|_{\Lambda(\delta)} \|fw\|_r \sum_{j=1}^{\infty} (2^j R)^{n-\alpha} 2^j (\delta \alpha + \frac{n}{2}) \left(\frac{\|K_\alpha(\cdot - (u - x)) - K_\alpha(\cdot - x)||\chi_{|\cdot| < 2^jR} \Phi_{2^{j+1}B_u}}{2^{j+1}B_u}\right)^{1/(r/\beta)'}
\leq \|b\|_{\Lambda(\delta)} \|fw\|_r \sum_{j=1}^{\infty} 2^j m \delta (2^j R)^{n-\alpha} \left(\frac{\|K_\alpha(\cdot - (u - x)) - K_\alpha(\cdot - x)||\chi_{|\cdot| < 2^jR} \Phi_{2^{j+1}B_u}}{2^{j+1}B_u}\right)^{1/(r/\beta)'}
\leq \|b\|_{\Lambda(\delta)} \|fw\|_r \frac{\|b\|_{\Lambda(\delta)} \|fw\|_r}{\|w\chi_{2B_u}\|_{\infty}}.
\]

where we have used that \(\delta k + \alpha - n/r \leq m\delta \) for \(m \in \mathbb{N} \), and that \(K_\alpha \in H_{\alpha, \Phi, m(\delta)} \).

4 Proofs of main results

Proof of Theorem 2.1: The proof will be done by induction and, without loss of generality, we shall assume \(\|b\|_{\Lambda(\delta)} = 1 \). Notice that when \(m = 0 \), \(1/q = 1/p - \alpha/n \) and the boundedness result is known to be true for \(A_{p,q} \) weights (see \([1]\) in the more general setting of variable Lebesgue spaces).
Fix $m \in \mathbb{N}$ and define the following auxiliary exponents

$$\frac{1}{p_j} = \frac{1}{q} + \frac{\delta (m - j)}{n} = \frac{1}{p} - \frac{j \delta + \alpha}{n}, \quad j = 0, \ldots, m.$$

Clearly, $p_m = q$ and, if $\theta_j = (m - j) \delta$, we have that

$$\frac{1}{p_j} = \frac{1}{q} + \frac{\theta_j}{n} = \frac{1}{p} - \frac{j \delta + \alpha}{n}, \quad j = 0, \ldots, m. \quad (4.1)$$

Notice also that $p \leq p_j \leq p_l \leq q$ for every $0 \leq j \leq l \leq m$.

It is easy to see that $w \in A_{p, q}$ yields $w^\gamma \in A_{p_j, q}$ for every $0 < \gamma < 1$. Moreover, from the properties of these classes, we have that $w^\gamma \in A_{p_j, q}$ for every $0 \leq j \leq l \leq m$.

By applying Fefferman-Stein’s inequality (3.4) with $w \in A_{1+q/p'} \subset A_{\infty}$, we get

$$\| w T_{\alpha, b}^m f \|_q \leq \| w M_{\gamma} (T_{\alpha, b}^m f) \|_q \lesssim \| w M_{0, \gamma} (T_{\alpha, b}^m f) \|_q.$$

Now, since $K_{\alpha} \in S_{\alpha} \cap H_{\alpha, \infty}^*$, from Lemma 3.3 we have that

$$\| w T_{\alpha, b}^m f \|_q \lesssim \sum_{j=0}^{m-1} \| w M_{\theta_j, \gamma} (|T_{\alpha, b}^j f|) \|_q + \| w M_{\theta_0 + \alpha} f \|_q. \quad (4.2)$$

Since $w \in A_{p, q}$ and $1/q = 1/p - (\theta_0 + \alpha)/n$, we have that

$$\| w T_{\alpha, b}^m f \|_q \lesssim \sum_{j=0}^{m-1} \| w M_{\theta_j, \gamma} (|T_{\alpha, b}^j f|) \|_q + \| w f \|_p.$$

On the other hand, since $w^\gamma \in A_{p_j, q}$ for every $j = 1, \ldots, m - 1$, then the fractional maximal operator $M_{\theta_j, \gamma}$ is bounded from $L^{\gamma}_{\alpha, \gamma}(\mathbb{R}^n)$ to $L^{\delta}_{\alpha, \gamma}(\mathbb{R}^n)$. Thus, we have that

$$\| w T_{\alpha, b}^m f \|_q \gtrsim \sum_{j=0}^{m-1} \| w^{\gamma} M_{\theta_j, \gamma} (|T_{\alpha, b}^j f|) \|_q^{1/\gamma} + \| w f \|_p \lesssim \sum_{j=0}^{m-1} \| w^{\gamma} (T_{\alpha, b}^j f)^{\gamma} \|_q^{1/\gamma} + \| w f \|_p \lesssim \sum_{j=0}^{m-1} \| w T_{\alpha, b}^j f \|_{p_j} + \| w f \|_p.$$
Since $1/p_j = 1/p - (j\delta + \alpha)/n$ and $w \in A_{p,p_j}$, and recalling that $\|b\|_{\Lambda(\delta)} = 1$, we apply the inductive hypothesis to get

$$\|w T_{\alpha,b}^m f\|_q \lesssim \sum_{j=0}^{m-1} \|w f\|_p + \|w f\|_p \lesssim \|w f\|_p.$$ \[\Box\]

Proof of Theorem 2.3. Fix $f \in L^q_w(\mathbb{R}^n)$. For a ball $B \subset \mathbb{R}^n$, set $f_1 = f \chi_{2B}$, $f_2 = f - f_1$ and $a_B = \frac{1}{|B|} \int_B T_{\alpha,b}^m f_2$. Then,

$$\frac{\|w \chi_B\|_\infty}{|B|} \int_B |T_{\alpha,b}^m f(x) - a_B| \, dx \leq \frac{\|w \chi_B\|_\infty}{|B|} \int_B |T_{\alpha,b}^m f_1(x)| \, dx + \frac{\|w \chi_B\|_\infty}{|B|} \int_B |T_{\alpha,b}^m f_2(x) - a_B| \, dx$$

$$= I_1 + I_2.$$

Let us first notice that, since $w \in A_{r,\infty}$, there exists $1 < s' < r$ such that $w \in A_{s',\infty}$ and, we can choose $1 < q < \infty$ such that $\frac{1}{q} + \frac{1}{r} + \frac{1}{s} = 1$.

For I_1 we write

$$I_1 = \frac{\|w \chi_B\|_\infty}{|B|} \int_B \left| \int_{2B} (b(x) - b(y))^m K_\alpha(x - y) f(y) \, dy \right| \, dx.$$

By using Tonelli’s theorem and the fact that $b \in \Lambda(\delta)$, we obtain

$$I_1 \lesssim \|w \chi_B\|_\infty \int_{2B} |f(y)| \left(\frac{1}{(2R)^n} \int_{2B} |b(x) - b(y)|^m |K_\alpha(x - y)| \, dx \right) \, dy$$

$$\lesssim \|b\|_{\Lambda(\delta)}^m \|w \chi_B\|_\infty \int_{2B} |f(y)| \left(\int_{2B} |K_\alpha(x - y)| \, dx \right) \, dy$$

We notice that for $x, y \in 2B$, if R is the radius of B, then $x \in B(y, 4R)$ so we can use Lemma 3.2 and Hölder’s inequality to have

$$I_1 \lesssim \|b\|_{\Lambda(\delta)}^m \|w \chi_B\|_\infty \|f w\|_r \|w^{-1} \chi_{2B}\|_{r'}$$

$$\leq \|b\|_{\Lambda(\delta)}^m \|f w\|_r \|2B\|^{\frac{m+\alpha}{n}} \|w \chi_B\|_\infty \|w^{-1} \chi_{2B}\|_{r'}$$

$$\lesssim [w]_{A_{r,\infty}} \|b\|_{\Lambda(\delta)}^m \|f w\|_r |B|^\frac{2}{r}.$$

For I_2, we first estimate the difference $|T_{\alpha,b}^m f_2(x) - (T_{\alpha,b}^m f_2)_B|$ for every $x \in B$. Since

$$\left| T_{\alpha,b}^m f_2(x) - (T_{\alpha,b}^m f_2)_B \right| \leq \frac{1}{|B|} \int_B \left| T_{\alpha,b}^m f_2(x) - T_{\alpha,b}^m f_2(y) \right| \, dy,$$

we analyze $A = \left| T_{\alpha,b}^m f_2(x) - T_{\alpha,b}^m f_2(y) \right|$. If $x, y \in B$

$$A \leq \int_{(2B)^c} |(b(x) - b(z))^m K_\alpha(x - z) - (b(y) - b(z))^m K_\alpha(y - z)| \, |f(z)| \, dz$$

18
By the definition of \(\Lambda(\delta) \), we get that
\[
I_3 \lesssim \| b \|^m_{\Lambda(\delta)} \int_{(2B)^c} |x - z|^\delta \| K_\alpha(x - z) - K_\alpha(y - z) \| |f(z)| \, dz \\
\lesssim \| b \|^m_{\Lambda(\delta)} \sum_{j=1}^{\infty} \int_{2^{j+1}B \setminus 2^j B} |x - z|^\delta |x - y|^\eta |x - z|^{n-\alpha+\eta} |f(z)| \, dz \\
\lesssim \| b \|^m_{\Lambda(\delta)} \sum_{j=1}^{\infty} \frac{2^{j\delta m} |B|^{\frac{\delta m}{n}}}{2^{j(n-\alpha+\eta)} |B|^{\frac{1}{1+r'}}} \int_{2^{j+1}B \setminus 2^j B} |f(z)| \, dz.
\]

Then, by Hölder’s inequality, the definition of \(\tilde{\delta} \) and the fact that \(w \in A_{r,\infty} \), we deduce that
\[
I_3 \lesssim \| b \|^m_{\Lambda(\delta)} \| f w \|_p |B|^{\frac{\delta}{n}} \sum_{j=1}^{\infty} 2^{j\delta} \| w^{-1} \chi_{2^{j+1}B} \|_{L^{r'}} \lesssim [w]_{A_{r,\infty}} \| b \|^m_{\Lambda(\delta)} \| f w \|_p |B|^{\frac{\delta}{n}} \frac{\| w \chi_B \|_{L^{\infty}}}{\| w \chi_B \|_{L^{\infty}}}
\]

In order to estimate \(I_4 \), we use that \(b \in \Lambda(\delta) \) and the smoothness condition \(S_\alpha \) on the kernel to get that
\[
I_4 \lesssim \| b \|^m_{\Lambda(\delta)} |x - y|^{\delta} \| w \|^m_{\Lambda(\delta)} \sum_{j=0}^{m-1} \sum_{k=0}^{\infty} \|2^{j+1}B \setminus 2^j B\| |x - z|^{\delta(m-1-k)} |y - z|^{\delta k} |K_\alpha(x - z)| |f(z)| \, dz \\
\lesssim \| b \|^m_{\Lambda(\delta)} |B|^{\frac{\delta}{n}} \sum_{j=1}^{\infty} 2^{j+1}B \|2^{j+1}B \setminus 2^j B\| \left(\frac{2^{(m-1)}B}{|B|} \right)^{\frac{\delta}{n}} \int_{2^{j+1}B \setminus 2^j B} |K_\alpha(x - z)| |f(z)| \, dz.
\]

Then, by Tonelli’s Theorem and the smoothness condition \(S_\alpha \)
\[
|T_{\alpha,b}^m f_2(x) - (T_{\alpha,b}^m f_2)_B| \\
\lesssim \frac{1}{|B|} \int_B (I_3 + I_4) \, dy \\
\lesssim [w]_{A_{r,\infty}} \| b \|^m_{\Lambda(\delta)} \| f w \|_p |B|^{\frac{\delta}{n}} \\
+ \frac{\| b \|^m_{\Lambda(\delta)} |B|^{\frac{\delta}{n}}}{|B|} \sum_{j=1}^{\infty} 2^{j+1}B \|2^{j+1}B \setminus 2^j B\| \left(\frac{2^{(m-1)}B}{|B|} \right)^{\frac{\delta}{n}} \int_B \int_{2^{j+1}B \setminus 2^j B} |K_\alpha(x - z)| |f(z)| \, dz \, dy
\]
Proof of Theorem 2.6. Let $B \subset \mathbb{R}^n$ be a ball and $x \in B$. Let $f = f_1 + f_2$ with $f_1 = f \chi_{2B}$. Then,

$$
T_{\alpha,b}^m f(x) - (T_{\alpha,b}^m f)_B = T_{\alpha,b}^m f_1(x) - (T_{\alpha,b}^m f_1)_B
$$

$$
+ \sum_{k=0}^m c_k \left[(b(x) - b_B)^{m-k} T_\alpha ((b-b_B)^k f_2)(x) - \frac{1}{|B|} \int_B (b(z) - b_B)^{m-k} T_\alpha ((b-b_B)^k f_2)(z) dz \right].
$$

We can rewrite the above identity in the following form

$$
T_{\alpha,b}^m f(x) - (T_{\alpha,b}^m f)_B = \sigma_1(x) - (\sigma_1)_B
$$

$$
+ \sum_{k=0}^m c_k \left[\sigma_2(x,u,k) - (\sigma_2(\cdot,u,k))_B + \sigma_3(x,u,k) - (\sigma_3(\cdot,u,k))_B \right],
$$

where

$$
\sigma_1(x) = T_{\alpha,b}^m f_1(x),
$$
\[
\sigma_2(x, u, k) = (b(x) - b_B)^{m-k} \left(T_\alpha((b - b_B)^k f_2)(x) - T_\alpha((b - b_B)^k f_2)(u) \right),
\]
\[
\sigma_3(x, u, k) = (b(x) - b_B)^{m-k} T_\alpha((b - b_B)^k f_2)(u).
\]

For \(\sigma_1 \), since \(w \in A_{\frac{n}{m+\alpha}} \), there exists \(1 < p < \frac{n}{m+\alpha} \) such that \(w \in A_{p,\infty} \). We take
\[
\frac{1}{q} = \frac{1}{p} - \frac{m\delta+n}{n},
\]
so \(q > p \) and \(w \in A_{q,\infty} \) and, moreover, \(w \in A_{p,q'} \). By applying Hölder’s inequality with \(q \) and \(q' \) and the boundedness of \(T_{\alpha,b}^m \) from \(L_w^p(\mathbb{R}^n) \) to \(L_w^q(\mathbb{R}^n) \) (Theorem 2.1) we obtain that
\[
\frac{1}{|B|} \int_B |\sigma_1(x)| \, dx \leq \frac{C}{|B|} \left(\int_B |T_{\alpha,b}^m f_1(x) w(x)|^q \right)^{1/q} \| w^{-1} \chi_B \|_{q'} \lesssim \| b \|_{\Lambda(\delta)} \| f w \|_{\frac{n}{m+1-\frac{m\delta+n}{n}}} |B|^{\delta/n} \| w^{-1} \chi_B \|_{q'}.\]

Since \(\frac{1}{p} = \frac{\alpha+(m-1)\delta}{n} + \frac{1}{q} + \frac{\delta}{n} \), we can apply again Hölder’s inequality and the fact that \(w \in A_{q,\infty} \) to get
\[
\frac{1}{|B|} \int_B |\sigma_1(x)| \, dx \lesssim \| b \|_{\Lambda(\delta)} \| f w \|_{\frac{n}{m+1-\frac{m\delta+n}{n}}} |B|^{\delta/n} \| w \chi_B \|_{\frac{1}{q'}}.\]

In order to estimate \(\sigma_2 \) we use the inequality
\[
\frac{1}{|B|} \int_B |b(x) - b_B|^{m-k} \, dx \leq \| b \|_{\Lambda(\delta)} \frac{1}{n} |B| \frac{1}{\alpha+(m-1)\delta} \| w \chi_B \|_{\frac{1}{q'}.}
\]
and Lemma 3.8 to obtain
\[
\frac{1}{|B|} \int_B |\sigma_2(x, u, k)| \, dx \lesssim \| b \|_{\Lambda(\delta)} \| f w \|_{\frac{n}{m+1-\frac{m\delta+n}{n}}} \| w \chi_B \|_{\frac{1}{q'}} |B|^{\delta/n} \int_B |b(x) - b_B|^{m-k} \, dx \lesssim \| b \|_{\Lambda(\delta)} \| f w \|_{\frac{n}{m+1-\frac{m\delta+n}{n}}} \| w \chi_B \|_{\frac{1}{q'}} |B|^{\delta/n}.\]

Consequently, since
\[
\sum_{k=0}^m c_k [\sigma_3(x, u, k) - (\sigma_3(\cdot, u, k))_B] = [T_{\alpha,b}^m f(x) - (T_{\alpha,b}^m f)_B] - [\sigma_1(x) - (\sigma_1)_B] - \sum_{k=0}^m c_k [\sigma_2(x, u, k) - (\sigma_2(\cdot, u, k))_B]
\]
by first assuming that \(T_{\alpha,b}^m f : L_w^{\frac{n}{m+1-\frac{m\delta+n}{n}}} \hookrightarrow L_w(\delta) \), then
\[
\frac{1}{|B|} \int_B \sum_{k=0}^m c_k [\sigma_3(x, u, k) - (\sigma_3(\cdot, u, k))_B] \, dx
\]
\[\leq \frac{1}{|B|} \int_B |T^m_{a,b} f(x) - (T^m_{a,b} f)_B| \, dx + \frac{2}{|B|} \int_B |\sigma_1(x)| \, dx \\
+ \sum_{k=0}^{m} c_k \frac{2}{|B|} \int_B |\sigma_2(x, u, k)| \, dx \\
\lesssim \|b\|^{m}_\Lambda(\delta) \|fw\|_{(\alpha + (m-1)\delta)\infty} \|w\chi_B\|^{-1}_{\delta/n}. \]

On the other hand, if we suppose that \((2.3)\) holds, it is easy to see that \(T^m_{a,b} f : L^{\alpha + (m-1)\delta}(\mathbb{R}^n) \rightarrow L_w(\delta)\).

Proof of Theorem 2.11: We proceed by induction. We must point out that the case \(m = 0\) was already proved in \([1]\). As in the proof of Theorem 2.1 we have that

\[\|wT^m_{a,b} f\|_q \lesssim \|wM^\delta_{\alpha,\gamma}(T^m_{a,b} f)\|_q. \]

We shall now use the second part of Lemma 3.3 since we have that \(K_\alpha \in S_\alpha \cap H_{\alpha,\Phi}\). Thus, we obtain that

\[\|wT^m_{a,b} f\|_q \lesssim \sum_{j=0}^{m-1} \|wM^{\delta,\gamma}_{\alpha,j}(T^m_{a,b} f)\|_q + \|wM^\delta_{\alpha+\alpha,\Phi} f\|_q, \]

where we have assumed, without loss of generality, that \(\|b\|_\Lambda(\delta) = 1\).

From the hypothesis on the weight \(w\) and the Young function \(\Phi\), by Theorem 3.6 we know that \(\|wM^\delta_{\alpha+\alpha,\Phi} f\|_q \lesssim \|fw\|_p\).

The proof now follows in the same way as in the proof of Theorem 2.1.

Proof of Theorem 2.13: Take \(f, f_1, f_2\) and \(a_B\) as in the proof of Theorem 2.3 and define \(I_1\) and \(I_2\) likewise.

Since in \(I_1\) we have only used the size condition \(S_\alpha\), the estimation is the same, by taking into account that \(w^\beta \in A_{r/\beta,\infty}\) yields \(w \in A_{r,\infty}\) for any \(\beta \geq 1\).

For \(I_2\) we proceed similarly but we have to use now that \(K_\alpha \in H_{\alpha,\Phi,m}(\delta)\) with \(\Phi^{-1}(t) \lesssim t^{\frac{\beta-1}{r}}\) for some \(1 < \beta < r\) and all \(t > 0\). We split the average into \(I_3\) and \(I_4\) as in the proof of Theorem 2.3. The last one can be controlled in the same form. The difference will be in \(I_3\). Recall that

\[I_3 = \int_{(2B)^c} |b(x) - b(z)|^m |K_\alpha(x - z) - K_\alpha(y - z)| |f(z)| \, dz, \]

for \(x \in B\).
By the definition of $\Lambda(\delta)$, we get that
\[
I_3 \lesssim \|b\|_{\Lambda(\delta)}^m \int_{(2B)^c} |x - z|^{\delta m} |K_{\alpha}(x - z) - K_{\alpha}(y - z)| |f(z)| \, dz
\]
\[
\lesssim \|b\|_{\Lambda(\delta)}^m \sum_{j=1}^{\infty} |2^{j+1} B|^{\delta m} \int_{2^{j+1} B \setminus 2j B} |K_{\alpha}(x - z) - K_{\alpha}(y - z)| |f(z)| \, dz.
\]
Now, since $K_{\alpha} \in H_{\alpha,\Phi,m}(\delta)$, $w^\beta \in A_{r/\beta,\infty}$ and $\Phi^{-1}(t)t^{1/r}t^{1/(r/\beta)'} \lesssim t$, we can proceed as in [3.6] with $k = m$ to obtain
\[
I_3 \lesssim \frac{\|b\|_{\Lambda(\delta)}^m |B|^{\frac{\delta}{r}} \|fw\|_r}{\|w\chi_B\|_\infty}.
\]

Proof of Theorem 2.14: We proceed as in the proof of Theorem 2.6. We must only use the corresponding hypothesis on the kernel, that guarantees the validity of Theorem 2.11 and Lemma 2.14, which are immediate from the fact that $S_{\alpha} \cap H_{\alpha,\Phi,m}(\delta) \subset S_{\alpha} \cap H_{\alpha,\Phi}$ (see Remark 2.10).

References

[1] A. Bernardis, E. Dalmasso, and G. Pradolini. Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces. Ann. Acad. Sci. Fenn. Math., 39(1):23–50, 2014.

[2] A. Bernardis, S. Hartzstein, and G. Pradolini. Weighted inequalities for commutators of fractional integrals on spaces of homogeneous type. J. Math. Anal. Appl., 322(2):825–846, 2006.

[3] A. L. Bernardis, M. Lorente, and M. S. Riveros. Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions. Math. Inequal. Appl., 14(4):881–895, 2011.

[4] M. Bramanti and M. C. Cerutti. Commutators of singular integrals and fractional integrals on homogeneous spaces. 189:81–94, 1995.

[5] M. Bramanti, M. C. Cerutti, and M. Manfredini. L^p estimates for some ultraparabolic operators with discontinuous coefficients. J. Math. Anal. Appl., 200(2):332–354, 1996.

[6] S. Chanillo. A note on commutators. Indiana Univ. Math. J., 31(1):7–16, 1982.

[7] S. Chanillo, D. K. Watson, and R. L. Wheeden. Some integral and maximal operators related to starlike sets. Studia Math., 107(3):223–255, 1993.
[8] F. Chiarenza, M. Frasca, and P. Longo. Interior $W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients. *Ricerche Mat.*, 40(1):149–168, 1991.

[9] F. Chiarenza, M. Frasca, and P. Longo. $W^{2,p}$-solvability of the Dirichlet problem for non-divergence elliptic equations with VMO coefficients. *Trans. Amer. Math. Soc.*, 336(2):841–853, 1993.

[10] D. Cruz-Uribe and A. Fiorenza. Endpoint estimates and weighted norm inequalities for commutators of fractional integrals. *Publ. Math.*, 47(1):103–131, 2003.

[11] E. Dalmasso and G. Pradolini. Characterizations of the boundedness of generalized fractional maximal functions and related operators in Orlicz spaces. *Math. Nach.*, 290(1):19–36, 2017.

[12] L. Diening and M. Růžička. Calderón-Zygmund operators on generalized Lebesgue spaces $L^p(\cdot)$ and problems related to fluid dynamics. *J. Reine Angew. Math.*, 563:197–220, 2003.

[13] Y. Ding and S. Z. Lu. Weighted norm inequalities for fractional integral operators with rough kernel. *Canad. J. Math.*, 50(1):29–39, 1998.

[14] Y. Ding, S. Z. Lu, and P. Zhang. Weak estimates for commutators of fractional integral operators. *Sci. China Math. (Ser. A)*, 44(7):877–888, 2001.

[15] J. García-Cuerva and J. L. R. de Francia. *Weighted norm inequalities and related topics*, volume 116 of *North-Holland Mathematics Studies*. North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104.

[16] J. García-Cuerva, E. Harboure, C. Segovia, and J. L. Torrea. Weighted norm inequalities for commutators of strongly singular integrals. *Indiana Univ. Math. J.*, 40(4):1397–1420, 1991.

[17] O. Gorosito, G. Pradolini, and O. Salinas. Weighted weak-type estimates for multilinear commutators of fractional integrals on spaces of homogeneous type. *Acta Math. Sin. (Engl. Ser.)*, 23(10):1813–1826, 2007.

[18] E. Harboure, O. Salinas, and B. Viviani. Orlicz boundedness for certain classical operators. *Colloq. Math.*, 91(2):263–282, 2002.

[19] E. Harboure, C. Segovia, and J. L. Torrea. Boundedness of commutators of fractional and singular integrals for the extreme values of p. *Illinois J. Math.*, 41(4):676–700, 1997.

[20] G. H. Hardy and J. E. Littlewood. Some properties of fractional integrals. II. *Math. Z.*, 34(1):403–439, 1932.
[21] F. John and L. Nirenberg. On functions of bounded mean oscillation. *Comm. Pure Appl. Math.*, 14:415–426, 1961.

[22] D. S. Kurtz. Sharp function estimates for fractional integrals and related operators. *J. Austral. Math. Soc. A*, 49:129–137, 1990.

[23] A. Lerner and A. Karlovich. Commutators of singular integrals on generalized L^p spaces with variable exponent. *Publ. Math.*, 49(1):111–125, 2005.

[24] M. Lorente, J. M. Martell, M. S. Riveros, and A. de la Torre. Generalized Hörmander’s conditions, commutators and weights. *J. Math. Anal. Appl.*, 342(2):1399–1425, 2008.

[25] Y. Meng and D. Yang. Boundedness of commutators with Lipschitz functions in non-homogeneous spaces. *Taiwanese J. Math.*, 10(6):1443–1464, 2006.

[26] B. Muckenhoupt and R. Wheeden. Weighted norm inequalities for fractional integrals. *Trans. Amer. Math. Soc.*, 192:261–274, 1974.

[27] C. Pérez. Endpoint estimates for commutators of singular integral operators. *J. Funct. Anal.*, 128(1):163–185, 1995.

[28] C. Pérez. Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function. *J. Fourier Anal. Appl.*, 3(6):743–756, 1997.

[29] C. Pérez, G. Pradolini, R. H. Torres, and R. Trujillo-González. End-point estimates for iterated commutators of multilinear singular integrals. *Bull. Lond. Math. Soc.*, 46(1):26–42, 2014.

[30] G. Pradolini. Two-weighted norm inequalities for the fractional integral operator between L^p and Lipschitz spaces. *Comment. Math. (Prace Mat.)*, 41:147–169, 2001.

[31] G. Pradolini. Two-weighted norm inequalities for the fractional integral operator between L^p and Lipschitz spaces. *Comment. Math. (Prace Mat.)*, 41:147–169, 2001.

[32] G. Pradolini and W. Ramos. Characterization of Lipschitz functions via the commutator of singular and fractional integral operators in variable Lebesgue spaces. *Potential Anal.*, 2016.

[33] G. Pradolini and O. Salinas. The fractional integral between weighted Orlicz and $BMO_φ$ spaces on spaces of homogeneous type. *Comment. Math. Univ. Carolin.*, 44(3):469–487, 2003.

[34] C. Rios. The L^p Dirichlet problem and nondivergence harmonic measure. *Trans. Amer. Math. Soc.*, 355(2):665–687, 2003.
[35] C. Segovia and J. L. Torrea. Weighted inequalities for commutators of fractional and singular integrals. *Publ. Mat.*, 35(1):209–235, 1991. Conference on Mathematical Analysis (El Escorial, 1989).

[36] E. M. Stein and G. Weiss. Fractional integrals on n-dimensional Euclidean space. *J. Math. Mech.*, 7:503–514, 1958.