Update to „Using Free/Libre and Open Source Software in the Geological Sciences“

This is an updated list of FLOSS that might be useful in the geological sciences. The original list was published in our article in the *Austrian Journal of Earth Sciences*:

Mader, D., Schenk, B. (2017) Using Free/Libre and Open Source Software in the Geological Sciences. Communication of the Society. Austrian Journal of Earth Sciences 110/1, 133-152. http://dx.doi.org/10.17738/ajes.2017.0010

That article has no active hyperlinks, and as the tables are images the presented links can also not copied and pasted out of the online pdf-version. Thus, this addendum lists again all the links of the article for easier access. In addition to the existing categories we list here also FLOSS and scripts which depends on proprietery software (e.g., Excel, Matlab). Currently, we do not collect information about apps for mobile devices. We still focus on the usage of desktop applications in offices.

This addendum will be updated from time to time as always new interesting software is created. The selection is, however, a subjective one and should never be regarded as a complete compilation of all available software. We just intend to show the variety of available interesting Free/Libre and Open Source Software for the Geological Sciences. Contrary to the article in AJES we do not indicate on which platforms the listed software will work – this information is given on the individual websites or articles about the programs.

Table of contents

Alternative software of usually mostly used software programs...2
R packages useful for geological sciences...6
FLOSS for particular geoscientific tasks...9
FLOSS or scripts depending on proprietery software..13
Useful weblinks to alternative software..15
References to the listed FLOSS..17
A selection of alternative software of usually mostly used software programs

This is a list of generally used software such as an office suite, graphic editors etc. Also free proprietary closed software is included; some of that freeware might only be used for non-commercial or academic purposes.

Office Suite: alternatives to MS Office ...
Calligra
LibreOffice
OnlyOffice
OpenOffice
Softmaker FreeOffice
WPS Office

Email; Project management: alternatives to MS Outlook; MS Project ...
Claws Mail
EssentialPIM
Evolution
GanttProject
Lightning Calendar
Opera Mail
ProjectLibre
SeaMonkey
Thunderbird

Portable Document Format: alternatives to Adobe Acrobat ...
Adobe Reader
Foxit Reader
Master PDF Editor
PDFCreator
PDFsam
PDF Shaper
PDF-Xchange Editor
Sumatra
Tabula

Raster graphics: alternatives to Adobe Photoshop, Corel Photopaint ...
Artweaver
Darktable
Fiji
GIMP
ImageJ
ImageMagick
IrfanView
Krita
Paint.NET
Vector graphics: alternatives to Adobe Illustrator, Corel Draw ...

Dia
(Open/LibreOffice) Draw
Gravit Designer
Inkscape
(Calligra) Karbon
sK1
Sozi
yEd Graph Editor
Vectr

Computer Aided Design: alternatives to AutoCAD ...
BRL-CAD
FreeCAD
LibreCAD
OpenSCAD
QCAD
Salome
SolveSpace
Teigha File Converter

Database systems: alternatives to Oracle Database, MSSQL Server, MS Access ...
Apache Derby
Firebird
(Open/LibreOffice) Base
MariaDB
MS SQL Server Express
MySQL Community Edition
PostgreSQL
SQLite

Reference manager: alternatives to EndNote, ProCite ...
Bibus
Colwiz
Docear
KbibTeX
JabRef
MayLib

Mendeley
Qigga
ReadCube
Zotero

GIS and Remote Sensing: alternatives to ArcGIS, IDRISI, ENVI, ERDAS Imagine ...

DIVA-GIS	http://www.diva-gis.org/
efoto	http://www.efoto.eng.uerj.br/en
GRASS	http://grass.osgeo.org/
gvSIG	http://www.gvSIG.com/en
ILWIS	http://www.ilwis.org/
KOSMO	http://www.opengis.es/
Map Window	http://www.mapwindow.org/
OpenEV	http://openev.sourceforge.net/
OpenJump	http://jump-pilot.sourceforge.net/
Opticks	https://www.opticks.org/
OSSIM	http://trac.osgeo.org/ossim/
PolSARpro	https://earth.esa.int/web/polsarpro
QGIS	http://qgis.org/
SAGA	http://www.saga-gis.org/
uDig	http://udig.refractions.net/

Numeric/symbolic computations, statistics, data analysis, data visualization: alternatives to Mathematica, Matlab, SigmaPlot, Origin, SPSS ...

Anaconda	https://www.continuum.io/why-anaconda	
DataExplore	http://dmnfarrell.github.io/pandatable/	
DataMelt	http://jwork.org/dmelt/	
Enthought Canopy Express	https://www.enthought.com/products/epd/free	
Fityk	http://fityk.nieto.pl/	
FreeMat	http://freemat.sourceforge.net/	
GNU Data language (GDL)	http://gnudatalanguage.sourceforge.net/	
Gnumeric	http://www.gnumeric.org/	
GnuPlot	http://www.gnuplot.info/	
GGobi	http://www.ggobi.org	
JASP	https://jasp-stats.org/	
Julia	http://julialang.org/	
JupyterLab	https://jupyterlab.readthedocs.io/	
KNIME	https://www.knime.com/	
LabPlot	http://labplot.sourceforge.net/	
Mathics	http://www.mathics.org/	
Maxima	http://maxima.sourceforge.net/	
Software	Website	
------------	--	
Mondrian	http://www.theusrus.de/Mondrian/	
Octave	https://www.gnu.org/software/octave	http://octave-online.net/
Orange	http://orange.biolab.si/	
PSPP	https://www.gnu.org/software/pspp	
PySpread	https://manns.github.io/pyspread/	
Python(x,y)	http://python-xy.github.io/	
Qtiplot (free only version < 0.9.8.9)	http://www.qtiplot.com/ (Ubuntu Software Center etc)	
R	http://cran.r-project.org/	
RLPlot	http://rlplot.sourceforge.net/	
RStudio	https://rstudio.com/	
SageMath	http://www.sagemath.org/	
SciDAVis	http://scidavis.sourceforge.net/	
Scilab	http://www.scilab.org/	
Spyder	https://github.com/spyder-ide/spyder	
Veusz	https://veusz.github.io/	
WinPython	https://winpython.github.io/	

Word processing: alternatives to MS Word; Writer ...

Software	Website		
Abiword	http://www.abiword.org/		
LyX	http://www.lyx.org/		
TeXMacs	http://www.texmacs.org/		
Package	Description	Website	
-----------------	--	--	
aqp	Algorithms for Quantitative Pedology	https://CRAN.R-project.org/package=aqp (Beaudette et al., 2013)	
analogue	Analogue and Weighted Averaging Methods for Palaeoecology	http://CRAN.R-project.org/package=analogue (Simpson, 2007)	
ArArRedux	Rigorous Data Reduction and Error Propagation of Ar40 / Ar39 Data	http://CRAN.R-project.org/package=ArArRedux (Vermeech, 2015)	
astrochron	A Computational Tool for Astrochronology	http://CRAN.R-project.org/package=astrochron	
ClamR	Time Series Modeling for Climate Change Proxies	http://CRAN.R-project.org/package=ClamR (Wang et al., 2015)	
CoinCalc	Event Coincidence Analysis	https://github.com/JonatanSiegmund/CoinCalc (Siegmund et al., 2017)	
compositions	Compositional Data Analysis	https://CRAN.R-project.org/package=compositions	
detzrcr	Compare Detrital Zircon Suites	https://CRAN.R-project.org/package=detzrcr	
diffractometry	Baseline identification and peak decomposition for x-ray diffractograms	https://CRAN.R-project.org/package=diffractometry (Davies et al., 2008)	
ElementR	A Set of R6 Classes & a Shiny Application for Reducing Elemental LA-ICPMS Data from Solid Structures	https://CRAN.R-project.org/package=elementR (Sirot et al., 2017)	
EMMAgeo	End-Member Modelling of Grain-Size Data	http://CRAN.R-project.org/package=EMMAgeo	
eseis	Environmental Seismology Toolbox	https://CRAN.R-project.org/package=eseis (Dietze, 2018)	
FactoMineR	Multivariate Exploratory Data Analysis and Data Mining	https://CRAN.R-project.org/package=FactoMineR (Lê et al., 2008)	
forams	Foraminifera and Community Ecology Analyses	http://CRAN.R-project.org/package=forams	
fossil	Palaeoecological and Palaeogeographical Analysis Tools	http://CRAN.R-project.org/package=fossil (Vavrek, 2011)	
G2Sd	Grain-Size Statistics and Description of Sediment	https://CRAN.R-project.org/package=G2Sd (Fournier et al., 2014)	
GcClust	Clustering of regional geochemical data	https://pubs.er.usgs.gov/publication/tm7C13 (Ellefson and Smith, 2016)	
geoknife	Web-Processing of Large Gridded Datasets	https://CRAN.R-project.org/package=geoknife (Read et al., 2016)	
geologyGeometry		http://www.joshuadavis.us/software/index.html	
geomorph	Geometric Morphometric Analyses of 2D/3D Landmark Data	https://CRAN.R-project.org/package=geomorph (Adams and Otárola-Castillo, 2013)	
geoscale	Geological Time Scale Plotting	http://CRAN.R-project.org/package=geoscale	
geotech	Geotechnical Engineering	https://CRAN.R-project.org/package=geotech	
ggfortify	Data Visualization Tools for Statistical Analysis Results	https://CRAN.R-project.org/package=ggfortify (Yuan et al., 2016)	
ggmap	Spatial Visualization with ggplot2	https://CRAN.R-project.org/package=ggmap (Kahle and Wickham, 2013)	
ggtern	An Extension to 'ggplot2', for the Creation of Ternary Diagrams	http://CRAN.R-project.org/package=ggtern	
Package	Description	Website	Reference
----------------------	---	--	--
GrapheR	A Multi-Platform GUI for Drawing Customizable Graphs in R	https://CRAN.R-project.org/package=GrapheR (Hervé, 2011)	
hydrogeo	Groundwater data presentation and interpretation	http://CRAN.R-project.org/package=hydrogeo	
IsoplotR	Statistical Toolbox for Radiometric Geochronology	http://CRAN.R-project.org/package=IsoplotR (Vermeesch, 2018)	
Isoread	R interface to IRMS file formats typically used in stable isotope geochemistry	https://github.com/sebkopf/isoread	
KarsTS	An Interface for Microclimate Time Series Analysis	https://CRAN.R-project.org/package=KarsTS (Sáez et al., 2019)	
LAND-SE	LANDslide Susceptibility Evaluation	https://github.com/maurorossi/LAND-SE (Rossi and Reichenbach, 2016)	
Luminescence	Comprehensive Luminescence Dating Data Analysis	http://CRAN.R-project.org/package=Luminescence (Kreutzer et al., 2012; Fuchs et al., 2015)	
MALDquant	Quantitative Analysis of Mass Spectrometry Data	http://strimmerlab/software/maldiquant/ (Gibb and Strimmer, 2012)	
matlab	MATLAB emulation package	http://CRAN.R-project.org/package=matlab	
marmap	Import, Plot and Analyze Bathymetric and Topographic Data	https://CRAN.R-project.org/package=marmap (Pante and Simon-Bouhet, 2013)	
measuRing	Detection and Control of Tree-Ring Widths on Scanned Image Sections	https://CRAN.R-project.org/package=measuRing (Lara et al. 2015)	
NORRRM	Geochemical Toolkit for R	http://CRAN.R-project.org/package=NORRRM (González-Guzmán, 2016)	
paleobiDB	Download and Process Data from the Paleobiology Database	https://CRAN.R-project.org/package=paleobiDB (Varela et al., 2015)	
paleofire	Analysis of Charcoal Records from the Global Charcoal Database	https://CRAN.R-project.org/package=paleofire (Blarquez et al. 2014)	
paleoMAS	Paleoecological Analysis	https://CRAN.R-project.org/package=paleoMAS	
paleotree	Paleontological and Phylogenetic Analyses of Evolution	http://CRAN.R-project.org/package=paleotree (Bapst, 2012)	
paleoTS	Analyze Paleontological Time-Series	https://CRAN.R-project.org/package=paleoTS	
palinsol	Insolation for palaeclimatic studies	http://CRAN.R-project.org/package=palinsol	
phylogram	Dendrograms for Evolutionary Analysis	https://CRAN.R-project.org/package=phylogram (Wilkinson and Davy, 2018)	
provenance	Statistical Toolbox for Sedimentary Provenience Analysis	http://CRAN.R-project.org/package=provenance (Vermeesch et al., 2016)	
rioja	Analysis of Quaternary Science Data	https://CRAN.R-project.org/package=rioja	
R.matlab	Read and Write MAT Files and Call MATLAB from within R	https://CRAN.R-project.org/package=R.matlab	
RNetCDF	Interface to NetCDF Datasets	https://CRAN.R-project.org/package=RNetCDF (Michna and Woods, 2013)	
robCompositions	Robust Estimation for Compositional Data	https://CRAN.R-project.org/package=robCompositions (Templ et al., 2011)	
RockFab	Rock fabric and strain analysis tools	http://CRAN.R-project.org/package=RockFab	
shapeR	Collection and Analysis of Otolith Shape Data	http://CRAN.R-project.org/package=shapeR (Libungan and Pálsson, 2015)	
Package	Description	CRAN URL	Reference
-----------------	---	--	---
shapes	Statistical shape analysis	https://CRAN.R-project.org/package=shapes	(Dryden and Mardia, 2016)
sclero	Measure Growth Patterns and Align Sampling Spots in Photographs	https://CRAN.R-project.org/package=sclero	
smwrGraphs	Graphical USGS water science R functions	https://github.com/USGS-R/smwrGraphs	(Lorenz and Diekoff, 2017)
soilphysics	Soil Physical Analysis	https://CRAN.R-project.org/package=soilphysics	(da Silva and de Lima, 2015)
soilprofile	A package to consistently represent soil properties along a soil profile	https://CRAN.R-project.org/package=soilprofile	
spMC	Continuous-Lag Spatial Markov Chains	http://CRAN.R-project.org/package=spMC	(Sartore et al., 2016)
strap	Stratigraphic Tree Analysis for Palaeontology	http://CRAN.R-project.org/package=strap	(Bell and Lloyd, 2015)
stratigraph	Toolkit for the plotting and analysis of stratigraphic and palaeontological data	http://CRAN.R-project.org/package=stratigraph	
TERMITE	Fast reduction of LA-ICPMS data and its application to trace element measurements	https://github.com/SimonMischel/TERMITE/	(Mischel et al., 2017)
tgcd	Thermoluminescence Glow Curve Deconvolution	http://CRAN.R-project.org/package=tgcd	(Peng et al., 2016)
TLdating	Tools for Thermoluminescences Dating	https://CRAN.R-project.org/package=TLdating	(Strebler et al., 2017)
treeclim	Numerical Calibration of Proxy-Climate Relationships	http://CRAN.R-project.org/package=treeclim	(Zang and Biondi, 2015)
XLConnect	Excel Connector for R	http://CRAN.R-project.org/package=XLConnect	
zCompositions	Treatment of Zeros and Nondetects in Compositional Data Sets	https://CRAN.R-project.org/package=zCompositions	(Palarea-Albaladejo and Martín-Fernández, 2015)

CRAN Task View: Analysis of Spatial Data: https://CRAN.R-project.org/view=Spatial

CRAN Task View: Graphic Displays & Dynamic Graphics & Graphic Devices & Visualization: https://CRAN.R-project.org/web/views/Graphics.html

CRAN Task View: Handling and Analyzing Spatio-Temporal Data: https://CRAN.R-project.org/view=SpatioTemporal
Selection of Free and Open Source Software for particular geoscientific tasks (also some freeware included; standalone desktop applications and script codes)

Software	Website	Authors/Year
ArAR	http://group18software.asu.edu/	(Mercer and Hodges, 2016)
Atomsk	http://cpc.cs.qub.ac.uk/summaries/AEXM_v1_0.html	(Hirel, 2015)
AvoPlot	http://code.google.com/p/avoplot/	(Peters, 2014)
CaveCalc	https://github.com/Rob-Owen/cavelcalc	(Owen et al., 2018)
CoDaPack	http://www.compositionaldata.com/	(Comas-Cufí and Thio-Henestrosa, 2011)
CSciBox	https://github.com/lizbradley/cscibox	
DensityPlotter	http://www.ucl.ac.uk/~ucfbpve/densityplotter/	(Vermeesch, 2012)
detritalPy	https://github.com/gesharman/detritalPy	(Sharman et al., 2018)
DisChart	http://80.251.40.59/eng.ankara.edu.tr/akiska/dischart/	(Aktska, 2015)
ET Redux	http://cirdles.org/projects/et_redux/	(McLean et al., 2016)
EverVIEW	https://www.jem.gov/Modeling/EverView	(Romañach et al., 2015)
GCEx	https://www.gfz-potsdam.de/en/section/geoinformatics/projects/gcex/	(De Lucia et al., 2015)
GeoStats.jl	https://github.com/juliohm/GeoStats.jl	(Hoffmann, 2018)
HelioPlot	http://www.ucl.ac.uk/~ucfbpve/helioplot/	(Vermeesch, 2010)
Hf-INATOR	http://link.springer.com/article/10.1007/s12145-017-0303-9	(Giovanardi and Lugli, 2017)
IgRoCS	http://taloj.iier.unam.mx/igrocs	(Verma and Rivera-Gómez, 2013)
IsoFishR	https://github.com/MalteWillmes/IsoFishR	(Willmes et al., 2018)
MorphoJ	http://www.flywings.org.uk/MorphoJ_page.htm	(Klingenberg, 2011)
OpenChrom	https://www.openchrom.net/	(Wenig and Odermatt, 2010)
OpenGeoSys	http://www.opengeosys.org/home	(Kolditz et al., 2012)
OpenMS	http://www.openms.de/	(Röst et al., 2016)
OutlierFlag	https://bitbucket.org/yaqiang/outlierflag	(Huang et al., 2016)
PAST	http://folk.uio.no/ohammer/past/	(Hammer et al., 2001)
Petrograph	http://accounts.unipg.it/~maurip/SOFTWARE.htm	(Petrelli et al., 2005)
PHREEQC	https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/	(Parkhurst and Appelo, 2013)
PmagPy	https://github.com/PmagPy/PmagPy	(Tauxe et al., 2016)
PuffinPlot	http://puffinplot.bitbucket.org/	(Lurcock and Wilson, 2012)
pyBadlands	https://github.com/badlands-model	(Salles et al., 2018)
pycalphad	https://pycalphad.org/	(Otis and Liu, 2017)
PyXRD	https://github.com/mathijs-dumon/PyXRD	(Dumon & Van Ranst, 2016)
RadialPlotter	http://pvermees.andropov.org/radialplotter/	(Vermeesch, 2009)
Rcrust	http://www.sun.ac.za/english/faculty/science/earthsciences/rcrust	(Mayne et al., 2016)
RGeostats	http://cg.ensmp.fr/rgeostats	
SGeMS http://sgems.sourceforge.net/ (Remy et al., 2009)
SINCLAS https://iamg.org/documents/oldftp/VOL28/v28-05-12.zip (Verma et al., 2002)
SpectraFox http://www.spectrafox.com/ (Ruby, 2016)
Spekwin32 http://www.effemm2.de/spekwin
StronTer freely available from the authors (Hercman and Pawlak, 2016)
TecDIA http://tlaloc.ier.unam.mx/tecdia (Verma et al., 2015)
Theriak/Domino http://titan.minpet.unibas.ch/minpet/theriak/theruser.html (de Capitani and Petrakakis, 2010)
THERIAK_D add-on http://www.min.uni-kiel.de/~ed/theriakd/ (Dueusterhoeft and de Capitani, 2013)
t-Igpet https://sites.google.com/site/tsigpetteaching/ (Carr and Gazel, 2016)
TriAngle http://geo-consulting.warnsloh.com/triangle/ (Warnsloh, 2015)
uFREASI http://www.ipgp.fr/~tharaud/uFREASI (Tharaud et al., 2015)
UPbplot.py https://github.com/anoda/UPbplot.py (Noda, 2017)

Stereographic projections, structural geological data

APSG https://github.com/ondrolexa/apsg
GarcmB http://www.kueps.kyoto-u.ac.jp/~web-bs/tsg/software/GArcmB/ (Yamaji, 2016)
hypercontour_m https://github.com/cageo/Vollmer-2018 (Vollmer, 2018)
InnStereo http://innstereo.github.io/
MARD http://dx.doi.org/10.1016/j.cageo.2012.07.012 (Munro and Blenkinsop, 2012)
mplstereonet https://github.com/joferkington/mplstereonet
Open Plot Pj. http://www.openplot.altervista.org/ (Tavani et al., 2011)
OpenStereo http://www.isc.usp.br/index.php?id=openstereo (Grohmann and Campanha, 2012)
Orient http://www.frederickvollmer.com/orient/
OrientXplot http://www.rossangel.com/text_orientxplot.htm (Angel et al., 2015)
SG2PS http://www.sg2ps.eu/ (Sasvári and Baharev, 2014)
Slicken http://www.geociencias.unam.mx/~afns/Slicken_1.0.jar (Xu et al., 2017)
Stereonet3D http://www.ux.uis.no/~nestor/work/programs.html (Cardozo and Allmendinger, 2013)
y-gRaph https://dl.dropboxusercontent.com/u/41688281/yR_toPaper/yRdiagram.zip (Calvin et al. 2014)

Image processing, data visualisation

AERYN http://www.tcd.ie/Geology/staff/crowleyq/AERYN/ (Mouchi et al., 2016)
AutoMorph https://github.com/HullLab/AutoMorph (Hsiang et al., 2018)
Avogadro http://avogadro.cc/ (Hanwell et al., 2012)
Binary Traverser http://www.geo.umass.edu/climate/lewis/analysis/ (Lewis et al., 2010)
BiolImageXD http://www.bioimagexd.net/ (Kankaanpää et al., 2008, 2012)
BoneJ http://bonej.org/ (Doube et al., 2010)
DiameterJ https://imagej.net/DiameterJ (Hotaling et al., 2015)
EBSD-Image http://www.ebsd-image.org/ (Pinard et al., 2011)
Endrov http://www.endrov.net/ (Henriksson et al., 2013)
FAME http://peternell.org/archive.html (Hammes and Peternell, 2016)
Fiji + ICY	https://imagej.net/Fiji (Schindelin et al., 2012), http://icy.bioimageanalysis.org/ (de Chaumont et al., 2011) (see in: Miguez-Salas et al., 2019)
GPlates	http://www.gplates.org (Boyd et al., 2011, Müller et al., 2018b)
Gwyddion	http://gwyddion.net/ (Nečas and Klapetek, 2011)
ImageSURF	http://sites.imagej.net/ImageSURF/ (O’Mara et al., 2017)
Jansen-MIDAS	https://github.com/alexandrejaguar/publications/tree/master/2017/jansen_midas (de Siqueira et al., 2018)
JM MicroVision	http://www.jmicrovision.com (Roduit, 2015)
JMorph	https://github.com/cageo/Lelievre-2017 (Lelièvre and Grey, 2017)
Jpor (ImageJ plug-in)	http://www.geoanalysis.org/jPOR.html (Grove and Jerram, 2011)
LA-ICP-MS Image Tool	https://www.reid-it.co.uk/downloads/down_la_icp_ms_it.htm (Managh and Reid, 2019)
LA-iMageS	http://www.la-images.net/ (López-Fernández et al., 2016)
Micro-Manager	https://micro-manager.org/ (Edelstein et al., 2010, 2014)
MIST	http://ischuller.ucsd.edu/MIST/ (Valmianski et al., 2014)
MorphoTester	https://github.com/juliawinchester/morphotester (Winchester, 2016)
OpenCFU	http://openctu.sourceforge.net/ (Geissmann, 2013)
ParaViewGeo	http://paraviewgeo.objectivity.ca/
PhaseQuant	http://www.cosmoprograms.com/ (Elangovan et al., 2012)
rasdaman	http://www.rasdaman.org/
surfit	http://surfit.sourceforge.net/
ScatterJn	http://dx.doi.org/10.5281/zenodo.22167 (Zeitvogel and Obst, 2016)
scikit-image	http://scikit-image.org/ (van der Walt et al., 2014)
Takin	https://github.com/ElsevierSoftwareX/SOFTX-D-16-00031 (Weber et al., 2016)
Vespucci	https://github.com/dpfoose/Vespucci (Foose and Sizemore, 2016)
VESTA	http://jp-minerals.org/VESTA/en/ (Momma and Izumi, 2011)
Visualization Toolkit (VTK)	https://www.vtk.org (Hanwell et al., 2015)
XCrySDen	http://www.xcrysden.org/ (Kokalj, 2003)
xyscan	http://rhig.physics.yale.edu/~ullrich/software/xyscan/
YaDiV	http://www.welfenlab.de/en/yadiv (Friese et al., 2013)

Stratigraphic plots

CoreWall	http://www.corewall.org/ (e.g., Conze et al., 2010)
MatStrat	http://matstrat.princeton.edu/ (Lewis et al., 2011)
Polito	http://sourceforge.net/projects/polito (Stremtan and Tudor, 2010)
PSICAT	http://portal.chronos.org/psicat-site/ (Reed et al., 2006)
SedLog	http://www.sedlog.com/ (Zervas et al., 2009)
StratFit	https://www.annalsofgeophysics.eu/index.php/annals/article/view/7619 (Sagnotti and Caricchi, 2018)
TimeScale Creator	https://engineering.purdue.edu/Stratigraphy/tscreator/index/index.php

Spatial data / Remote sensing

| DigiFract | https://sites.google.com/site/digifract/ (Hardebol and Bertotti, 2013) |
Category	Tools	
Geophysical/Seismic data	GMT [GMT](http://gmt.soest.hawaii.edu/) (Wessel et al., 2019)	
	Geoblock [Geoblock](http://geoblock.sourceforge.net/)	
	GeoCube [GeoCube](http://www.mediafire.com/file/7dn243zkv7d3oy6/GeoCube.rar) (Li et al., 2016)	
	GeoDA [GeoDA](http://geodacenter.github.io/) (Anselin et al., 2006)	
	GeoPAT [GeoPAT](http://sil.uc.edu/) (Jasiewicz et al., 2015)	
	Nansat [Nansat](https://github.com/nansencenter/nansat) (Korosov et al., 2016)	
	Processing [Processing](https://github.com/anitagraser/QGIS-Processing-tools) (Graser and Olaya, 2015)	
	PySESA [PySESA](http://dbuscombe-usgs.github.io/pysesa/) (Buscombe, 2016)	
	PyTrx [PyTrx](https://github.com/PennyHow/PyTrx) (How et al., 2020)	
	Whitebox GAT [Whitebox GAT](http://www.uoguelph.ca/~hydrogeo/Whitebox/) (Lindsay, 2016)	
	Geophysics/Seismic data	
	APASVO [APASVO](https://github.com/jemromerol/apasvo) (Romero et al., 2016)	
	Gsolve [Gsolve](https://github.com/ElsevierSoftwareX/SOFTX-D-16-00075) (McCubbine et al., 2018)	
	JUDI [JUDI](https://github.com/slimgroup/JUDI.jl) (Witte et al., 2019)	
	LTide [LTide](https://doi.org/10.1007/s12145-019-00379-y) (Electronic supplementary material) (Bjelotomić Oršulić et al., 2019)	
	Madagascar [Madagascar](http://www.abay.org/) (Fomel et al., 2013)	
	ObsPy [ObsPy](http://www.obspy.org/) (Beyreuther et al., 2010)	
	OpendTect [OpendTect](http://www.opendtect.org/)	
	pyGrav [pyGrav](http://basileh.github.io/pyGrav/) (Hector and Hinderer, 2016)	
	pynodddy [pynodddy](https://github.com/flohorovicic/pynodddy) (Wellmann et al., 2016)	
	Pytheas [Pytheas](https://github.com/ispingos/pytheas-splitting) (Spingos et al., 2020)	
	ResiPy [ResiPy](https://gitlab.com/hkex/pyr2) (Blanchy et al., 2020)	
	Seismic Toolkit [Seismic Toolkit](http://seismic-toolkit.sourceforge.net/)	
	SHTOols [SHTOols](https://github.com/SHTOOLS/SHTOOLS) (Wieczorek and Meschede, 2018)	
	SimPEG [SimPEG](http://simpeg.xyz/) (Cockett et al., 2015)	
	Uncategorized	
	ADFNE [ADFNE](http://alghalandis.net/products/adfne) (Fadakar, 2017)	
	AMORPH [AMORPH](https://bitbucket.org/eggplantbren/amorph) (Rowe and Brewer, 2018)	
	CIPWFULL [CIPWFULL](http://www.ims.demokritos.gr/download/DRcalculator.exe) (Tsakalos et al., 2016)	
	Dose rate calculator (DRc) [Dose rate calculator (DRc)](http://www.ims.demokritos.gr/download/DRcalculator.exe) (Tsakalos et al., 2016)	
	GemPy [GemPy](https://github.com/cgre-aachen/gempy) (de la Varga et al., 2019)	
	GeoPyTool [GeoPyTool](https://github.com/GeoPyTool/GeoPyTool) (Yu et al., 2019)	
	GrainsizeAnalysis [GrainsizeAnalysis](https://doi.org/10.1007/s12145-019-00440-w) (Electronic supplementary material) (Xu et al., 2020)	
	GrainSizeTools [GrainSizeTools](http://marcoalopez.github.io/GrainSizeTools/) (Lopez-Sanchez and Llana-Fúnez, 2015)	
	MetClass [MetClass](http://www.paleotax.de/) (Löser, 2004)	
	OXDPMM [OXDPMM](http://www.ims.demokritos.gr/download/DRcalculator.exe) (Tsakalos et al., 2016)	
	PaleoTax [PaleoTax](http://www.paleotax.de/) (Löser, 2004)	
Tool	URL	Notes
------	-----	-------
PyBacktrack	https://github.com/EarthByte/pyBacktrack	(Müller et al., 2018a)
PyFLOWGO	https://github.com/pyflowgo/pyflowgo	(Chevrel et al., 2018)
PyMca XRF Toolkit	http://pymca.sourceforge.net/	(Solé et al., 2007)
RDSS	http://rdss.sourceforge.net/	(Apopei et al., 2015)
SedInConnect	https://github.com/HydrogeomorphologyTools/SedInConnect_2.3	(Crema and Cavalli, 2018)
Survex	http://survex.com/	
TerraFERMA	http://terraferma.github.io/	(Wilson et al., 2017)
THERIA_G	https://doi.org/10.1007/s00410-007-0263-z	(Electronic supplementary material) (Gaidies et al., 2008)
Therion	https://therion.speleo.sk/	
Virtual Petrographic Microscope	http://eps.mq.edu.au/vpm/	(Tetley and Daczko, 2014)

Selection of FLOSS or scripts depending on proprietary software (e.g., Excel, Matlab, …)

Tool	URL	Notes
Acycle	https://github.com/mingsongli/acycle	(Li et al., 2019)
ANIE		Supporting information of article (Huber et al., 2011)
BasinVis	http://geologist-lee.com/basinvis.html	(Lee et al., 2016)
CALCMIN	https://www.iang.org/documents/oldftp/VOL35/v35-07-19.zip	(Brandelik, 2009)
CEmin	http://www.earthobservatory.sg/resources/software/cemin-tool-extraction-plagioclase-crystals-electron-images	(Zeng et al., 2018)
CGDK	https://doi.org/10.1594/PANGAEA.786481	(Qiu et al., 2013)
Converting scanned images of seismic reflection data into SEG-Y format	Matlab script available from author (Sopher, 2017)	
CosmoCalc	http://www.ucl.ac.uk/~ucfbpve/cosmocalc/	(Vermeesch, 2007)
Demagnetization Analysis in Excel (DAIE)	http://roma2.rm.ingv.it/en/facilities/software/49/daie	(Sagnotti, 2013)
EBSDinterp	http://dx.doi.org/10.4225/08/5510090C6E620	(Pearce, 2015)
EWave	https://github.com/xinzhong0708/EWave	(Zhong and Frehner, 2018)
GCDPlot	https://sourceforge.net/projects/gcdplot/	(Wang et al., 2008)
geomIO	https://geomio.bitbucket.io/	(Bauville and Baumann, 2019)
FastGAPP	http://www.digital-geography.com/fastgapp-fast-geochemical-analysis-plotting-program/	
GAME	https://www.mathworks.com/matlabcentral/fileexchange/67398-game	(Cannavò, 2019)
GCH_gravinv	https://github.com/cageo/Oksum_2018	(Pham et al., 2018)
GeoPlot	http://www.geology.com.cn/geoplot/	(Zhou and Li, 2006)
GeoStrain	https://geostrain.sourceforge.io	(Goudarzi, 2015)
Geological Image Analysis Software (GIAS)	http://www.geoanalysis.org/	(Beggan and Hamilton, 2010)
GMT/MATLAB Toolbox	http://gmt.soest.hawaii.edu/projects/gmt-matlab-octave-api/wiki	(Wessel and Luis, 2017)
IG-Mapper		Supplement of article (Fiannacca et al., 2017)
Tool	**Website**	**Description**
---------	-------------	-----------------
iSpectra	http://www.igorexchange.com/project/iSpectra (Liebske, 2015)	
Knickpoint Finder	https://github.com/cageo/Queiroz-2014 (Queiroz et al., 2015)	
LCC tool (Large Crater Clustering tool)	https://github.com/USGS-Astrogeology/LargeCraterClusteringTool (Laura et al., 2017)	
MagB_inv	https://github.com/PhamLT/MagB (Pham et al., 2020)	
MapIT!	http://www.rsc.org/suppdata/c7/ia/c7ia00023e/c7ia00023e2.zip (Sfornea and Lugli, 2017)	
MATNORM	https://www.iagm.org/documents/oldftp/VOL35/v35-09-04.zip (Pruseth, 2009)	
MeltMigrator	https://github.com/montesi/MeltMigrator (Bai et al., 2016)	
MELTS_Excel	http://melts.ofm-research.org/ (Gualda and Ghiorso, 2014)	
MINSORTING	https://github.com/cageo/Resentini-2013 (Resentini et al., 2013)	
MTEX	http://mtex-toolbox.github.io/ (Bachmann et al., 2010)	
OATools	https://is.muni.cz/www/175417/prvnistrana.html (Kociánová and Melichar, 2016)	
PetroPlot	http://www.earthchem.org/petdbWeb/search/PetroPlot/index.html (Su et al., 2003)	
PHAPS	http://geomodeling.uni-koeln.de/Geo-Cosmochemical_Modeling/PHAPS.html (Hezel, 2010)	
Rotating 3d Globe	http://www.asu.cas.cz/~bezdek/vyzkum/rotating_3d_globe/ (Bezděk and Sebéra, 2013)	
SEDMIN	http://earthscienceeducation.net/SEDMIN/SedimentaryMineralCalculator.xlsx (Kackstaetter, 2014)	
SrDR	https://doi.org/10.1039/C9JA00424F (Supplementary files) (Lugli et al., 2020)	
SSLIPO	http://www.geociencias.unam.mx/~alaniz/main_code.txt (Alvarez del Castillo et al., 2017)	
StrainModeler	https://github.com/cageo/Bobillo-Ares-2015 (Bobillo-Ares et al., 2015)	
StratDraw	https://www.iagm.org/documents/oldftp/VOL30/v30-07-10.zip (Hoelzel, 2004)	
TerraceM-2	https://doi.org/10.3389/feart.2019.00255 (Supplementary Material) (Jara-Muñoz et al., 2019)	
TETGAR_C	http://dx.doi.org/10.3190/igeosci.284 (Supplementary Material) (Knierzinger et al., 2019)	
Tetrahedral plot diagram	http://www.minsocam.org/MSA/AmMin/TOC/2015/ND2015_data/AM-15-115371.zip (Shimura and Kemp, 2015)	
TomoFab	https://github.com/benpetri/tomofab (Petri et al., 2020)	
TReacLab	https://github.com/TReacLab/TReacLab (Jara et al., 2017)	
TURBO2	https://github.com/cageo/Trauth-2013 (Trauth, 2013)	
XMapTools	http://www.xmaptools.com/ (Lanari et al., 2014)	
An Excel-based tool for evaluating and visualizing geothermobarometry data	https://github.com/cageo/Hora-2013 (Hora et al., 2013)	
Sandstone Provenance and Classification Ternary Diagrams	http://www.sepm.org/CM_Files/81_9_zahid_da_corrected.xls (Zahid and Barbeau, 2011)	
Useful weblinks to alternative software

General (Free Software alternative collections, manuals)

- Awesomecow (http://awesomecow.com/)
- FLOSSmanuals (http://en.flossmanuals.net/)
- FossHub (https://www.fosshub.com/)
- Free Open Source Software (https://freeopensourcesoftware.org)
- Free Software Directory (https://directory.fsf.org)
- Freiheit für Computer (http://www.openos.at/)
- Linux Alternative Project (http://www.linuxalt.com/)
- Linux Equivalents to Windows Software (http://www.linuxlinks.com/article/20070701111340544/Equivalents.html)
- List of free and open-source software packages (https://en.wikipedia.org/wiki/List_of_free_and_open-source_software_packages)
- List of free statistical software (http://statistiksoftware.com/free_software.html)
- Open Source Alternative (http://www.opensourcealternative.org/)
- Opensource-DVD (http://www.opensource-dvd.de)
- Open Source Software & Freeware (https://informatik.univie.ac.at/studium/hilfe-fuer-studierende/software/opensource/)
- Open Source Software Directory (https://opensourcesoftwaredirectory.com/)
- Open Source Software List: The Ultimate List (http://www.datamation.com/open-source/open-source-software-list-ultimate-list-1.html)
- osalt - open source as alternative (http://www.osalt.com/)
- OSS Watch (http://oss-watch.ac.uk/)
- Savannah (https://savannah.gnu.org/)
- Software für das Studium (https://www.e-fellows.net/wiki/index.php/Software_f%cc%88r_das_Studium)
- SourceForge (http://sourceforge.net)
- UbuntuScience (https://help.ubuntu.com/community/UbuntuScience/AlternativesToProprietarySoftware)
- Wiki - Bildung und Wissenschaft (https://wiki.ubuntuusers.de/Bildung_und_Wissenschaft/)
- Wikipedia Portal: Free and open-source software (https://en.wikipedia.org/wiki/Portal:Free_and_open-source_software)

Software Compilations and Informations for Geoscientists

- awesome-open-geoscience (https://github.com/softwareunderground/awesome-open-geoscience)
- All the software a geoscientist needs. For free! (http://all.geo.org/volcan01010/2011/11/all-the-software-a-geoscientists-needs-for-free/)
- Computers & Geosciences (Links to Program Code) (https://github.com/CAGEO)
- EarthChem - Tools for Scientists (http://www.earthchem.org/resources/tools)
- Freie Software (https://www.teuderun.de/freie-software/)
- Geochemical Plotting Programs (http://serc.carleton.edu/NAGTWorkshops/petrology/plot_programs.html)
- Geoforge (http://www.geoforge.org/)
- Geotechnical Engineering Software Database (http://www.geoengineer.org/software/home)
- Geotechnical Freeware (http://www.yongtechnology.com/)
- List of free geology software (http://en.wikipedia.org/wiki/List_of_free_geology_software)
- OntoSoft (http://www.ontosoft.org)
- OpenScience (http://www.openscience.org)
- Open Source and Free Software and Resources for Geoscientists (https://babelflysch.wordpress.com/software/)
- Open source software for Structural Geology analyses and research (https://www.linkedin.com/pulse/open-source-software-structural-geology-analysis-debanjan-guha-roy)
- Open Source Software related to Geoscience and Remote Sensing (http://www.grss-ieee.org/open-source-software-related-to-geoscience-and-remote-sensing)
- Programme/Apps/Add-ons (Österreichische Geologische Gesellschaft) (http://www.geologie.or.at/index.php/links/apps-ad-ins)
- USGS Github Repositories (https://github.com/usgs)
Scientific/Educational Linux distributions

- ArcheOS (http://www.archeos.eu/)
- BioLinux (http://environmentalomics.org/bio-linux/)
- Fedora Scientific (https://labs.stg.fedoraproject.org/scientific/)
- Manjaro for Scientists (https://manjaro.org/features/usercases/scientists/)
- OSGeo-Live (http://live.osgeo.org/en/index.html)
- Zorin OS Educational (http://zorin-os.com/)
References to some of the listed FLOSS

Adams, D.C. and Otárola-Castillo, E., 2013. geomorph: an r package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 4, 393–399. http://dx.doi.org/10.1111/2041-210X.12035

Aksa, S., 2015. DisChart: a new application for building and drawing discrimination diagrams using digitize method. Earth Science Informatics, 8, 799–807. http://dx.doi.org/10.1007/s12145-015-0209-3

Al-Mishwat, A.T. (2015) CIPWFULL: A Software Program for Calculation of Comprehensive CIPW Norms of Igneous Rocks. Mathematical Geosciences, 47, 441–453. https://doi.org/10.1007/s11004-014-9568-4

Al-Mishwat, A.T., 2016. OXDPPM: A Software to Convert Chemical Elements Between Oxides and Native Elements. Journal of Software Engineering and Applications, 09, 561-576. http://dx.doi.org/10.4236/jsea.2016.911038

Alvarez del Castillo, A., Alaniz-Alvarez, S.A., Nieto-Samaniego, A.F., Xu, S., Ochoa-Gonzalez, G.H. and Velasquillo-Martinez, L.G., 2017. Software for determining the direction of movement, shear and normal stresses of a fault under a determined stress state. Computers & Geosciences, 104, 84–92. http://dx.doi.org/10.1016/j.cageo.2017.03.006

Angel, R., Milani, S., Alvaro, M. and Nestola, F. (2015) OrientXplot: a program to analyse and display relative crystal orientations. Journal of Applied Crystallography, 48, 1330–1334. http://dx.doi.org/10.1107/S160057671501167X

Anselin, L., Syabri, I. and Kho, Y., 2006. GeoDa: An Introduction to Spatial Data Analysis. Geographical Analysis, 38, 5–22. http://dx.doi.org/10.1111/j.0016-7363.2005.00671.x

Apopei, A. I., Buzgar, N. and Buzatu, A., 2015. Raman Data Search and Storage (RDSS): A Raman spectra library software using peak positions for fast and accurate identification of unknown inorganic compounds. http://rdss.sourceforge.net

Bachmann, F., Hielcher, R. and Schaeben, H., 2010. Texture Analysis with MTEX – Free and Open Source Software Toolbox. Solid State Phenomena, 160, 63–68. http://dx.doi.org/10.4028/www.scientific.net/SSP.160.63

Bai, H., Montési, L.G.J. and Behn, M.D., 2016. MeltMigrator: A MATLAB-based software for modeling three-dimensional melt migration and crustal thickness variations at mid-ocean ridges following a rules-based approach. Geochemistry, Geophysics, Geosystems. http://dx.doi.org/10.1002/2016GC006686

Bapst, D.W., 2012. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods in Ecology and Evolution, 3, 803–807. http://dx.doi.org/10.1111/j.2041-210X.2012.00223.x

Bauville, A. and Baumann, T.S., 2019. geomIO: An Open-Source MATLAB Toolbox to Create the Initial Configuration of 2-D/3-D Thermo-Mechanical Simulations From 2-D Vector Drawings. Geochemistry, Geophysics, Geosystems, 20, 1665–1675. https://doi.org/10.1029/2018GC008057

Beggs, C. and Hamilton, C.W., 2010. New image processing software for analyzing object size-frequency distributions, geometry, orientation, and spatial distribution. Computers & Geosciences, 36, 539–549. https://doi.org/10.1016/j.cageo.2009.09.003

Bell, M.A. and Lloyd, G.T., 2015. strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Palaeontology, 58, 379–389. http://dx.doi.org/10.1111/pala.12142

Beaudette, D.E., Roudier, P. and O’Geen, A.T., 2013. Algorithms for quantitative pedology: A toolkit for soil scientists. Computers & Geosciences, 52, 258–268. http://dx.doi.org/10.1016/j.cageo.2012.10.020

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y. and Wassermann, J., 2010. ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81, 530–533. https://doi.org/10.1785/gssrl.81.3.530

Bezděk, A. and Sebera, J., 2013. Matlab script for 3D visualizing geodata on a rotating globe. Computers & Geosciences, 56, 127–130. http://dx.doi.org/10.1016/j.cageo.2013.03.007

Bjelotomí Oršulić, O., Varga, M., Markovinović, D. and Bašić, T., 2019. LTide - Matlab/Octave software tool for temporal and spatial analysis of tidal gravity acceleration effects according to Longman formulas. Earth Science Informatics, 12, 405–414. https://doi.org/10.1007/s12145-019-00379-y

Blanchy, G., Saneian, S., Boyd, J., McLachlan, P. and Binley, A. (2020) ResIPy, an intuitive open source software for complex geoelectrical inversion/modeling. Computers & Geosciences, 137, 104423. https://doi.org/10.1016/j.cageo.2020.104423

Blarquez, O., Vannièère, B., Marlon, J.R., Daniau, A.-L., Power, M.J., Brewer, S. and Bartlein, P.J., 2014. paleofire: An R package to analyse sedimentary charcoal records from the Global Charcoal Database to reconstruct past biomass burning. Computers & Geosciences, 72, 255–261. http://dx.doi.org/10.1016/j.cageo.2014.07.020

Bobillo-Ares, N.C., Aller, J., Bastida, F., Menéndez, O. and Lisle, R.J. (2015) StrainModeler: A Mathematica™-based program for 3D analysis of finite and progressive strain. Computers & Geosciences, 78, 123–132. https://doi.org/10.1016/j.cageo.2015.02.015
Boyden, J.A., Müller, R.D., Gurnis, M., Torsvik, T.H., Clark, J.A., Turner, M., Ivey-Law, H., Watson, R.J. and Cannon, J.S., 2011. Next-generation plate-tectonic reconstructions using GPlates. Pp. 95–114 in: Geoinformatics (G.R. Keller and C. Baru, eds). Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511976308.008

Brandelik, A., 2009. CALCMIN – an EXCEL™ Visual Basic application for calculating mineral structural formulae from electron microprobe analyses. Computers & Geosciences, 35, 1540–1551. http://dx.doi.org/10.1016/j.cageo.2008.09.011

Buscombe, D., 2016. Spatially explicit spectral analysis of point clouds and geospatial data. Computers & Geosciences, 86, 92–108. http://dx.doi.org/10.1016/j.cageo.2015.10.004

Calvín, P., Santolaria, P., Tierz, P., Muñoz, A., Casas, A., Arlegui, L. and Zapata, M.A., 2014. y-graph: An OpenOffice application to reconstruct paleostress fields from striated faults. Computers & Geosciences, 67, 24–30. http://dx.doi.org/10.1016/j.cageo.2014.02.008

de Capitani, C. and Petrakakis, K., 2010. The computation of equilibrium assemblage diagrams with TheriaK/Domino software. American Mineralogist, 95, 1006–1016. http://dx.doi.org/10.2138/am.2010.3354

Cardozo, N. and Allmendinger, R.W., 2013. Spherical projections with OSXStereonet. Computers & Geosciences, 51, 193–205. http://dx.doi.org/10.1016/j.cageo.2012.07.021

Carr, M.J. and Gazel, E., 2017. Igpet software for modeling igneous processes: examples of application using the open educational version. Mineralogy and Petrology, 111, 283–289. http://dx.doi.org/doi:10.1007/s00710-016-0473-z

Cannavò, F., 2019. A new user-friendly tool for rapid modelling of ground deformation. Computers & Geosciences, 128, 60–69. https://doi.org/10.1016/j.cageo.2019.04.002

de Chaumont, F., Dallongeville, S. and Olivo-Marin, J.-C., 2011. ICY: A new open-source community image processing software. in: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro., pp. 234–237. https://doi.org/10.1109/ISBI.2011.5872395

Chevrel, M.O., Labroquère, J., Harris, A.J.L. and Rowland, S.K., 2018. PyFLOWGO: An open-source platform for simulation of channelized lava thermo-rheological properties. Computers & Geosciences, 111, 167–180. https://doi.org/10.1016/j.cageo.2017.11.009

Cockett, R., Kang, S., Heagy, I.J., Pidilisecy, A. and Oldenburg, D.W., 2015. SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences, 85, 142–154. https://doi.org/10.1016/j.cageo.2015.09.015

Comas-Cufí, M. and Thió-Henestrosa, S., 2011. CoDaPack 2.0: a stand-alone, multi-platform compositional software. In: Egozcue, J.J., Tolosana-Delgado, R., Ortego, M.I. (eds.), CoDaWork’11: 4th International Workshop on Compositional Data Analysis. Sant Feliu de Guixols, 10 pp.

Conze, R., Krysiak, F., Reed, J., Chen, Y.-C., Wallrabe-Adams, H.-J., Graham, C., the New Jersey Shallow Shelf Science Team, Wennrich, V. and the Lake El’gygytgyn Science Team, 2010. New Integrated Data Analyses Software Components. Scientific Drilling, 9, 30–31. http://dx.doi.org/10.2204/iodp.sd.9.08.2010

Crema, S. and Cavalli, M. (2018) SedInConnect: a stand-alone, free and open source tool for the assessment of sediment connectivity. Computers & Geosciences, 111, 39–45. https://doi.org/10.1016/j.cageo.2017.10.009

Davies, P.L., Gather, U., Meise, M., Mergel, D. and Mildenberger, T., 2008. Residual-based localization and quantification of peaks in X-ray diffractograms. The Annals of Applied Statistics, 2, 861–886. http://dx.doi.org/10.1214/08-AAOS181

Dietze, M., 2018. The R package “eesis” - a comprehensive software toolbox for environmental seismology. Earth Surface Dynamics Discussions, 6, 669-686. https://doi.org/10.5194/esurf-6-669-2018

Doube, M., Klosowski, M.M., Arganda-Carreras, I., Cordelières, F.P., Dougherty, R.P., Jackson, J.S., Schmid, B., Hutchinson, J.R. and Shefelbine, S.J., 2010. BoneJ: Free and extensible bone image analysis in ImageJ. Bone, 47, 1076–1079. http://dx.doi.org/10.1016/j.bone.2010.08.023

Dryden, I.L. and Mardia, K.V., 2016. Statistical Shape Analysis: With Applications in R. Wiley Series in Probability and Statistics, 2nd Edition edition. Wiley-Blackwell, Chichester, UK; Hoboken, NJ, 496 pp. http://dx.doi.org/10.1002/9781119072492

Duisterhoeff, E. and de Capitani, C., 2013. THERIAK_D: An add-on to implement equilibrium computations in geodynamic models: Technical Brief. Geochemistry, Geophysics, Geosystems, 14, 4962–4967. http://dx.doi.org/10.1002/ggge.20286

Dumon, M. and Van Ranst, E., 2016. PyXRD v0.6.7: a free and extensible bone image analysis in ImageJ. Bone, 47, 1076–1079. http://dx.doi.org/10.1016/j.bone.2010.08.023

Edelstein, A., Amoraj, N., Hoover, K., Vale, R. and Stuurman, N., 2010. Computer Control of Microscopes Using µManager. Current Protocols in Molecular Biology, 14.20.1-14.20.17. http://dx.doi.org/10.1002/0471142727.mb1420s92
Edelstein, A.D., Tsuchida, M.A., Amodaj, N., Pinkard, H., Vale, R.D. and Stuurman, N., 2014. Advanced methods of microscope control using μManager software. Journal of Biological Methods, 1, e10. http://dx.doi.org/10.14440/jbm.2014.36

Elangovan, P., Hezel, D.C., Howard, L., Armstrong, R. and Abel, R.L., 2012. PhaseQuant: A tool for quantifying tomographic data sets of geological specimens. Computers & Geosciences, 48, 323–329. http://dx.doi.org/10.1016/j.cageo.2012.01.014

Ellefsen, K.J. and Smith, D.B., 2016. User’s guide for GcClust — An R package for clustering of regional geochemical data. U.S. Geological Survey report Techniques and Methods 7–C13, 21 p. https://doi.org/10.3133/tm7C13

Fadakar Alghalandis, Y., 2017. ADFNE: Open source software for discrete fracture network engineering, two and three dimensional applications. Computers & Geosciences, 102, 1–11. https://dx.doi.org/10.1016/j.cageo.2017.02.002

Fiannacca, P., Ortolano, G., Pagano, M., Visalli, R., Cirrincione, R. and Zappalà, L. (2017) IG-Mapper: A new ArcGIS® toolbox for the geostatistics-based automated geochemical mapping of igneous rocks. Chemical Geology, 470, 75–92. https://doi.org/10.1016/j.chemgeo.2017.08.024

Fomel, S., Sava, P., Visalli, R., Vlad, I., Liu, Y. and Bashkardin, V., 2013. Madagascar: open-source software project for multidimensional data analysis and reproducible computational experiments. Journal of Open Research Software, 1, e8. http://doi.org/10.5334/jors.ag

Foose, D.P., and Sizemore, I.E.P., 2016. Vespucci: A Free, Cross-Platform Tool for Spectroscopic Data Analysis and Imaging. Journal of Open Research Software, 4, e4. http://doi.org/10.5334/jors.91

Fournier, J., Gallon, R.K. and Paris, R., 2014. G2Sd: a new R package for the statistical analysis of unconsolidated sediments. Géomorphologie: relief, processus, habitats. Géomorphologie: relief, processus, 30–38. https://doi.org/10.1093/bioinformatics/bts447

Gibb, S. and Strimmer, K., 2012. MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics, 28(17):2270–2271. https://doi.org/10.1093/bioinformatics/bts447

Giovannardi, T. and Lugli, F., 2017. The Hi-INATOR: A free data reduction spreadsheet for Lu/Hf isotope analysis. Earth Science Informatics, 10, 517–523. http://dx.doi.org/10.1007/s12145-017-0303-9

González-Guzmán, R., 2016. NORRRM: A Free Software to Calculate the CIPW Norm. Open Journal of Geology, 6, 30–38. http://dx.doi.org/10.4236/ojg.2016.61004

Goudarzi, M.A., Cocard, M. and Santerre, R., 2015. GeoStrain: An open source software for calculating crustal strain rates. Computers & Geosciences, 82, 1–12. http://dx.doi.org/10.1016/j.cageo.2015.05.007

Graser, A. and Olaya, V., 2015. Processing: A Python Framework for the Seamless Integration of Geoprocessing Tools in QGIS. ISPRS International Journal of Geo-Information, 4, 2219–2245. http://dx.doi.org/10.3390/ijgi4042219

Grohmann, C.H. and Campanha, G.A.C., 2010. OpenStereo: open source, cross-platform software for structural geology analysis. AGU Fall Meeting, San Francisco, CA., Abstract IN31C-06, 2 pp.

Grove, C. and Jerram, D.A., 2011. jPOR: An ImageJ macro to quantify total optical porosity from blue-stained thin sections. Computers & Geosciences, 37, 1850–1859. http://dx.doi.org/10.1016/j.cageo.2011.03.002

Gualda, G.A.R. and Ghiorso, M.S., 2014. MELTS_Excel: A Microsoft Excel-based MELTS interface for research and teaching of magma properties and evolution. Geochemistry, Geophysics, Geosystems, 16, 315–324. http://dx.doi.org/10.1002/2014GC005545

Gusmao, Q., 2013. OpenCFU, a New Free and Open-Source Software to Count Cell Colonies and Other Circular Objects. PLoS ONE, 8, e54072. http://dx.doi.org/10.1371/journal.pone.0054072

Hammer, Ø., Harper, D.A.T. and Ryan, P.D., 2001. Paleontological statistics software package for education and data analysis. Palaeontology Electronica, 4, 9 pp.

Hammar, D.M. and Peternell, M., 2016. FAME: Software for analysing rock microstructures. Computers & Geosciences, 90, 24–33. http://dx.doi.org/10.1016/j.cageo.2016.02.010

Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E. and Hutchison, G.R., 2012. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4, 17. http://dx.doi.org/10.1186/1758-2946-4-17

Hanwell, M.D., Martin, K.M., Chaudhary, A. and Avila, L.S., 2015. The Visualization Toolkit (VTK): Rewriting the
rendering code for modern graphics cards. SoftwareX, 1–2, 9–12. https://doi.org/10.1016/j.softx.2015.04.001

Hardebol, N.J. and Bertotti, G., 2013. DigiFract: A software and data model implementation for flexible acquisition and processing of fracture data from outcrops. Computers & Geosciences, 54, 326–336. http://dx.doi.org/10.1016/j.cageo.2012.10.021

Hector, B. and Hinderer, J., 2016. pyGrav, a Python-based program for handling and processing relative gravity data. Computers & Geosciences, 91, 90–97. http://dx.doi.org/10.1016/j.cageo.2016.03.010

Henriksson, J., Hench, J., Tong, Y.G., Johansson, A., Johansson, D. and Bärglin, T.R., 2013. Endrov: an integrated platform for image analysis. Nature Methods, 10, 454–456. http://dx.doi.org/10.1038/nmeth.2478

Hezel, D.C., 2010. A mathematica code to produce phase maps from two element maps. Computers & Geosciences, 36, 1097–1099. http://dx.doi.org/10.1016/j.cageo.2010.02.002Free Open Source Linux Earth Sciences Software

Hervé, M., 2011. GrapheR: a Multiplatform GUI for Drawing Customizable Graphs in R. The R Journal, 3, 45–53.

Hirel, P., 2015. Atomsk: A tool for manipulating and converting atomic data files. Computer Physics Communications, 197, 212–219. http://dx.doi.org/10.1016/j.cpc.2015.07.012

Hoelzel, M., 2004. StratDraw: automatic generation of stratigraphic sections from tabulated field data. Computers & Geosciences, 30, 785–789. http://dx.doi.org/10.1016/j.cageo.2004.05.004

Hoffmann, J., 2018. GeoStats.jl – High-performance geostatistics in Julia. Journal of Open Source Software, 3, 692. http://dx.doi.org/10.21105/joss.00692

Hora, J.M., Kronz, A., Möller-McNett, S. and Wörner, G., 2013. An Excel-based tool for evaluating and visualizing geothermobarometry data. Computers & Geosciences, 56, 178–185. http://dx.doi.org/10.1016/j.cageo.2013.02.008

Hotaling, N.A., Bharti, K., Kriel, H. and Simon, C.G., 2015. Dataset for the validation and use of DiameterJ an open source nanofiber diameter measurement tool. Data in Brief, 5, 13–22. https://doi.org/10.1016%2Fj.dib.2015.07.012

How, P., Hulton, N.R.J., Buie, L. and Benn, D.I., 2020. PyTrx: A Python-Based Monoscopic Terrestrial Photogrammetry Toolset for Glaciology. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.00021

Hsiang, A.Y., Nelson, K., Elder, L.E., Sibert, E.C., Kahanamoku, S.S., Burke, J.E., Kelly, A., Liu, Y. and Hull, P.M., 2018. AutoMorph: Accelerating morphometrics with automated 2D and 3D image processing and shape extraction. Methods in Ecology and Evolution, 9, 605–612. https://doi.org/10.1111/2041-210X.12915

Huang, S., Wang, Y., Xie, Y., Zhao, P. and Lüers, J., 2016. OutlierFlag: A Tool for Scientific Data Quality Control by Outlier Data Flagging. Journal of Open Research Software, 4. http://dx.doi.org/10.5334/jors.90

Huber, M.S., Ferrière, L., Losia, A. and Koeberl, C., 2011. ANIE: A mathematical algorithm for automated indexing of planar deformation features in quartz grains. Meteoritics & Planetary Science, 46, 1418–1424. http://dx.doi.org/10.1111%2Fj.1945-5100.2011.01234.x

Janoušek, V., Farrow, C.M. and Erban, V., 2006. Interpretation of Whole-rock Geochemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47, 1255–1259. http://dx.doi.org/10.1093/petrology/egl013

Janoušek, V., Moyen, J.-F., Martin, H., Erban, V. and Farrow, C., 2016. Geochemical Modelling of Igneous Processes – Principles And Recipes in R Language. Springer Berlin Heidelberg, Berlin, Heidelberg, 346 pp. http://dx.doi.org/10.1007/978-3-662-46792-3

Jara, D., de Dreuzy, J.-R. and Cochepin, B., 2017. TReacLab: An object-oriented implementation of non-intrusive splitting methods to couple independent transport and geochemical software. Computers & Geosciences, 109, 281–294. http://dx.doi.org/10.1016/j.cageo.2017.09.005

Jara-Muñoz, J., Melnick, D., Pedoja, K. and Strecker, M.R., 2019. TerraceM-2: A Matlab® Interface for Mapping and Modeling Marine and Lacustrine Terraces. Frontiers in Earth Science, 7. https://doi.org/10.3389/feart.2019.00255

Jasiewicz, J., Netzol, P. and Stepinski, T., 2015. GeoPAT: A toolbox for pattern-based information retrieval from large geospatial databases. Computers & Geosciences, 80, 62–73. http://dx.doi.org/10.1016/j.cageo.2015.04.002

Kaabeche, H., Chabou, M.C., Bendaoud, A., Bodinier, J.-L., Lobry, O. and Retif, F., 2016. MetClass: A software for the visualization and exploitation of Dill’s (2010) “chessboard” classification of mineral deposits. Computers & Geosciences, 91, 128–135. http://dx.doi.org/10.1016/j.cageo.2016.03.014

Kackstaetter, U.R., 2014. SEDMIN - Microsoft Excel™ spreadsheet for calculating fine-grained sedimentary rock mineralogy from bulk geochemical analysis. Central European Journal of Geosciences, 6, 170–181. http://dx.doi.org/10.2478/s13533-012-0170-3

Kahle, D. and Wickham, H., 2013. ggmap: Spatial visualization with ggrepplot2. R Journal, 5, 144–161.

Kankaanpää, P., Paahjoki, K., Marjomäki, V., White, D. and Heino, J., 2008. BioImageXD - Free Microscopy Image Processing Software. Microscopy and Microanalysis, 14, 724–725. http://dx.doi.org/10.1111%2Fj.1431-9276.2008.083621

Kankaanpää, P., Paavolainen, L., Tiitta, S., Karjalainen, M., Päivärinta, J., Nieminen, J., Marjomäki, V., Heino, J. and White, D.J., 2012. BioImageXD: an open, general-
purpose and high-throughput image-processing platform. Nature Methods, 9, 683–689.
http://dx.doi.org/10.1038/nmeth.2047

Sáez, M., C. Pla, S. Cuezva, und D. Benavente. 2019. „KarsTS: An R Package for Microclimate Time Series Analysis“. Earth Science Informatics, published online 06 July 2019. https://doi.org/10.1007/s12145-019-00393-0.

Klingenberg, C.P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11, 353–357. http://dx.doi.org/10.1111/j.1755-0998.2010.02924

Knierzinger, W., Wagreich, M., Kiraly, F., Lee, E.Y. and Ntaflos, T., 2019. TETGAR_C: a novel three-dimensional (3D) provenance plot and calculation tool for detrital garnets. Journal of Geosciences, 64, 127–148. http://dx.doi.org/10.3190/jgeosci.284

Kociánová, L. and Melichar, R., 2016. OATools: An ArcMap add-in for the orientation analysis of geological structures. Computers & Geosciences, 87, 67–75. http://dx.doi.org/10.1016/j.cageo.2015.12.005

Kokalj, A., 2003. Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Computational Materials Science, 28, 155–168. http://dx.doi.org/10.1016/S0927-0256(03)00104-6

Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J.O., Fischer, T., Görke, U.J., Kalbacher, T., Kosakowski, G., McDermott, C.I., Park, C.H., Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y.Y., Singh, A.K., Taron, J., Walther, M., Wang, W., Watanabe, N., Wu, Y., Xie, M., Xu, W. and Zehner, B., 2012. OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental Earth Sciences, 67, 589–599. http://dx.doi.org/10.1007/s12665-012-1546-x

Korosov, A.A., Hansen, M.W., Dagestad, K.-F., Yamakawa, A., Vines, A. and Riechert, M., 2016. Nansat: a Scientist-Orientated Python Package for Geospatial Data Processing. Journal of Open Research Software, 4. http://dx.doi.org/10.5334/jors.120

Kreutzer, S., Schmidt, C., Fuchs, M. C., Dietze, M., Fischer, M. and Fuchs, M., 2012. Introducing an R package for luminescence dating analysis. Ancient TL, 30, 1-8. hdl:10013/epic.44194

Lanari, P., Vidal, O., De Andrade, V., Dubacq, B., Lewin, E., Grosch, E.G. and Schwartz, S., 2014. XMapTools: A MATLAB®-based program for electron microprobe X-ray image processing and geothermobarometry. Computers & Geosciences, 62, 227–240. http://dx.doi.org/10.1016/j.cageo.2013.08.010

Lara, W., Bravo, F. and Sierra, C.A., 2015. measuRing: An R package to measure tree-ring widths from scanned images. Dendrochronologia, 34, 43–50. http://dx.doi.org/10.1016/j.dendro.2015.04.002

Lara, J., Skinner, J.A. and Hunter, M.A., 2017. Large Crater Clustering tool. Computers & Geosciences, 105, 81–90. http://dx.doi.org/10.1016/j.cageo.2017.04.011

Lê, S., Josse, J. and Husson, F., 2008. FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25, 1–18.

Lee, S., Suh, J. and Park, H.-D., 2015. BoreholeAR: A mobile tablet application for effective borehole database visualization using an augmented reality technology. Computers & Geosciences, 76, 41–49. http://dx.doi.org/10.1016/j.cageo.2014.12.005

Lee, E.Y., Novotny, J. and Wagereich, M., 2016. BasinVis 1.0: A MATLAB®-based program for sedimentary basin subsidence analysis and visualization. Computers & Geosciences, 91, 119–127. http://dx.doi.org/10.1016/j.cageo.2016.03.013

Lelièvre, P.G. and Grey, M., 2017. JMorph: Software for performing rapid morphometric measurements on digital images of fossil assemblages. Computers & Geosciences, 105, 120–128. http://dx.doi.org/10.1016/j.cageo.2017.05.002

Lewis, K.W., Keeler, T.L. and Maloof, A.C., 2011. New Software for Plotting and Analyzing Stratigraphic Data. Eos, Transactions American Geophysical Union, 92, 37–38. http://dx.doi.org/10.1029/2011EO050002

Lewis, T., Francis, P., Bradley, R.S. and Kanamaru, K., 2010. An automated system for the statistical analysis of sediment texture and structure at the micro scale. Computers & Geosciences, 36, 1374–1383. http://dx.doi.org/10.1016/j.cageo.2010.03.018

Li, M., Hinov, L. and Kump, L., 2019. Acycle: Time-series analysis software for paleoclimate research and education. Computers & Geosciences, 127, 12–22. https://doi.org/10.1016/j.cageo.2019.02.011

Li, R., Wang, G. and Carranza, E.J.M., 2016. GeoCube: A 3D mineral resources quantitative prediction and assessment system. Computers & Geosciences, 89, 161–173. http://dx.doi.org/10.1016/j.cageo.2016.01.012

Libungan, L.A. and Pálsson, S., 2015. ShaperR: An R Package to Study Otolith Shape Variation among Fish Populations. PLoS ONE, 10, e0121102. http://dx.doi.org/10.1371/journal.pone.0121102

Liebske, C., 2015. iSpectra: An Open Source Toolbox For The Analysis of Spectral Images Recorded on Scanning Electron Microscopes. Microscopy and Microanalysis, 21, 1006–1016. http://dx.doi.org/10.1016/S1431927615014336

Lindsay, J.B., 2016. Whitebox GAT: A case study in geomorphometric analysis. Computers & Geosciences, 95, 75–84. http://dx.doi.org/10.1016/j.cageo.2016.07.003
Löser, H., 2004. PaleoTax—a database program for palaeontological data. Computers & Geosciences, 30, 513–521. https://doi.org/10.1016/j.cageo.2004.03.009

López-Fernández, H., de S. Pessôa, G., Arruda, M.A.Z., Capelo-Martínez, J.L., Fdez-Riverola, F., Glez-Peña, D. and Reboiro-Jato, M. (2016) LA-iMageS: a software for elemental distribution bioimaging using LA–ICP–MS data. Journal of Cheminformatics, 8, 65. https://doi.org/10.1186/s13321-016-0178-7

Lopez-Sanchez, M.A. and Llana-Fúnez, S., 2014. GrainSizeTools: a Python script for estimating the dynamically recrystallized grain size from grain sectional areas. Solid Earth Discussions, 6, 3141–3196. http://dx.doi.org/10.5194/scr-6-3141-2014

Lorenz, D.L., and Diekoff, A.L., 2017, smwrGraphs—An R package for graphing hydrologic data, version 1.1.2: U.S. Geological Survey Open-File Report 2016–1188, 17 pp., https://doi.org/10.3133/ofr20161188

De Lucia, M., Jatnieks, J. and Sips, M., 2015. GCex: A Visual Analytics Approach for Interactive Exploration of Geochemical Models. Energy Procedia, 76, 616–622. http://dx.doi.org/10.1016/j.egypro.2015.07.881

Lugli, F., Weber, M., Giovanardi, T., Arrighi, S., Bortolini, E., Figus, C., Marciani, G., Oxilia, G., Romandini, M., Silvestrini, S., Jochum, K.P., Benazzi, S. and Cipriani, A. 2020. Fast offline data reduction of laser ablation ICP-MS Sr isotope measurements via the interactive Excel-based spreadsheet ‘SrDR.’ Journal of Analytical Atomic Spectrometry. The Royal Society of Chemistry. https://doi.org/10.1039/C9JA00424F

Lurcock, P.C. and Wilson, G.S., 2012. PuffinPlot: A versatile, user-friendly program for paleomagnetic analysis. Geochemistry, Geophysics, Geosystems, 13, Q06Z45. http://dx.doi.org/10.1029/2012GC004098

Managh, A.J. and Reid, P., 2019. A new freeware tool for image processing and its application to high speed LA-ICP-MS imaging. Journal of Analytical Atomic Spectrometry. https://doi.org/10.1039/C9JA00082H

Mayne, M.J., Moyen, J.-F., Stevens, G. and Kaislaniem, L., 2016. Rcrust: a tool for calculating path-dependent open system processes and application to melt loss. Journal of Metamorphic Geology, 34, 663–682. http://dx.doi.org/10.1111/jmg.12199

McCubbine, J., Tontini, F.C., Stagpoole, V., Smith, E. and O’Brien, G., 2018. Gsolve, a Python computer program with a graphical user interface to transform relative gravity survey measurements to absolute gravity values and gravity anomalies. SoftwareX, 7, 129–137. https://doi.org/10.1016/j.softx.2018.04.003

McLean, N., Bowring, J. and Gehrels, G., 2016. Algorithms and software for U-Pb geochronology by LA-ICPMS. Geochemistry, Geophysics, Geosystems, 17, 2480–2496. http://dx.doi.org/10.1002/2015GC006097

Mercer, C.M. and Hodges, K.V., 2016. ArAR — A software tool to promote the robust comparison of K–Ar and 40Ar/39Ar dates published using different decay, isotopic, and monitor-age parameters. Chemical Geology, 440, 148–163. http://dx.doi.org/10.1016/j.chemgeo.2016.06.020

Michna, P. and Woods, M., 2013. RNetCDF - A Package for Reading and Writing NetCDF Datasets. The R Journal, 5/2, 29-36.

Miguez-Salas, O., Dorador, J. and Rodriguez-Tovar, F.J., 2019. Introducing Fiji and ICY image processing techniques in ichnological research as a tool for sedimentary basin analysis. Marine Geology, 413, 1–9. https://doi.org/10.1016/j.margeo.2019.03.013

Mischel, S.A., Mertz-Kraus, R., Jochum, K.P. and Scholz, D., 2017. TERMITE: An R script for fast reduction of laser ablation inductively coupled plasma mass spectrometry data and its application to trace element measurements. Rapid Communications in Mass Spectrometry, 31, 1079–1087. http://dx.doi.org/10.1002/rcm.7895

Momma, K. and Izumi, F., 2011. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272–1276. http://dx.doi.org/10.1107/S0021889811038970

Mouchi, V., Crowley, Q.G. and Ubide, T., 2016. AERYN: A simple standalone application for visualizing and enhancing elemental maps. Applied Geochemistry, 75, 44–53. http://dx.doi.org/10.1016/j.apgeochem.2016.10.012

Müller, R.D., Cannon, J., Williams, S. and Dutkiewicz, A., 2018a. PyBacktrack 1.0: A Tool for Reconstructing Paleobathymetry on Oceanic and Continental Crust. Geochemistry, Geophysics, Geosystems, 19, 1898-1909. https://doi.org/10.1029/2017GC007313

Müller, R.D., Cannon, J., Qin, X., Watson, R.J., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S.H.J. and Zahirovic, S., 2018b. GPlates: Building a Virtual Earth Through Deep Time. Geochemistry, Geophysics, Geosystems, 19, 2243–2261. https://doi.org/10.1029/2018GC007584

Munro, M.A. and Blenkinsop, T.G., 2012. MARD—A moving average rose diagram application for the geosciences. Computers and Geosciences, 49, 112–120. http://dx.doi.org/10.1016/j.cageo.2012.07.012

Nečas, D. and Klapepet, P., 2011. Gwyddion: an open-source software for SPM data analysis. Open Physics, 10, 181–188. http://dx.doi.org/10.2478/s11534-011-0096-2

Noda, A. (2017) A new tool for calculation and visualization of U–Pb age data: UPbplot.py. Bulletin of the Geological Survey of Japan, 68(3), 131-140. http://dx.doi.org/10.1016/j.bullgsj.68.131

O’Marra, A., King, A.E., Vickers, J.C. and Kirkcaldie, M.T.K., 2017. ImageSURF: An ImageJ Plugin for Batch Pixel-
Romanič, S.S., McKelvy, M., Suir, K. and Conzelmann, C., 2015. EverVIEW: A visualization platform for hydrologic and Earth science gridded data. Computers & Geosciences, 76, 88–95. https://doi.org/10.1016/j.cageo.2014.12.004

Romero, J.E., Titos, M., Bueno, Á., Álvarez, I., García, L., Torre, Á. de la and Benítez, M.C. (2016) APASVO: A free software tool for automatic P-phase picking and event detection in seismic traces. Computers & Geosciences, 90, 213–220. http://dx.doi.org/10.1016/j.cageo.2016.02.004

Rossi, M. and Reichenbach, P., 2016. LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0. Geoscientific Model Development, 9, 3533–3543. http://dx.doi.org/10.5194/gmd-9-3533-2016

Rowe, M.C. and Brewer, B.J., 2018. AMORPH: A statistical program for characterizing amorphous materials by X-ray diffraction. Computers & Geosciences. 120, 21-31. https://doi.org/10.1016/j.cageo.2018.07.004

Ruby, M., 2016. SpectraFox: A free open-source data management and analysis tool for scanning probe microscopy and spectroscopy. SoftwareX, 5, 31–36. http://dx.doi.org/10.1016/j.softx.2016.04.001

Sagnotti, L., 2013. Demagnetization Analysis in Excel (DAIE). An open source workbook in Excel for viewing and analyzing demagnetization data from paleomagnetic discrete samples and u-channels. Annals of Geophysics, 56, 0114. https://doi.org/10.4401/ag-6282

Sagnotti, L. and Caricchi, C., 2018. StratFit: An Excel Workbook for correlation of multiple stratigraphic trends. Annals of Geophysics, 61, 341. https://doi.org/10.4401/ag-7619

Salles, T., Ding, X. and Brocard, G., 2018. pyBadlands: A framework to simulate sediment transport, landscape dynamics and basin stratigraphic evolution through space and time. PLOS ONE, 13, e0195557. https://doi.org/10.1371/journal.pone.0195557

Sartore, L., Fabbri, P. and Gaeta, C., 2016. spMC: an R-package for 3D lithological reconstructions based on spatial Markov chains. Computers & Geosciences, 94, 40–47. http://dx.doi.org/10.1016/j.cageo.2016.06.001

Sasvári, Á. and Baharev, A., 2014. SG2PS (structural geology to postscript converter) – A graphical solution for brittle structural data evaluation and paleostress calculation. Computers & Geosciences, 66, 81–93. http://dx.doi.org/10.1016/j.cageo.2013.12.010

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P. and Cardona, A., 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods, 9, 676–682. https://doi.org/10.1038/nmeth.2019

Sforna, M.C. and Lugli, F., 2017. MapIT!: a simple and user-friendly MATLAB script to elaborate elemental distribution images from LA-ICP-MS data. Journal of Analytical Atomic Spectrometry, 32, 1035–1043. https://doi.org/10.1039/C7JA00023E

Sharman, G.R., Sharman, J.P. and Sylvester, Z., 2018. detritalPy: A Python-based toolset for visualizing and analysing detrital geo-thermochronologic data. The Depositional Record, 4, 202–215. https://doi.org/10.1002/dep2.45

Shimura, T. and Kemp, A.I.S., 2015. Tetrahedral plot diagram: A geometrical solution for quaternary systems. American Mineralogist, 100, 2545–2547. http://dx.doi.org/10.2138/am-2015-5371

Siegmund, J.F., Siegmund, N. and Donner, R.V., 2017. CoinCalc—A new R package for quantifying simultaneities of event series. Computers & Geosciences, 98, 64–72. http://dx.doi.org/10.1016/j.cageo.2016.10.004

da Silva, A.R. and de Lima, R.P., 2015. soilphysics: An R package to determine soil preconsolidation pressure. Computers & Geosciences, 84, 54–60. http://dx.doi.org/10.1016/j.cageo.2015.08.006

Simpson, G.L., 2007. Analogue Methods in Palaeoecology: Using the analogue Package. Journal of Statistical Software, 22/2, 29 pp. http://dx.doi.org/10.18637/jss.v022.i02

de Siqueira A.F., Cabrera F.C., Nakasuga Wagner M., Pagamisse A. and Job A.E. 2017. Jansen-MIDAS: A multi-level photomicrograph segmentation software based on isotropic undecimated wavelets. Microscopy Research and Technique, 81, 22–32. https://doi.org/10.1002/jemt.22952

Sirot, C., Ferraton, F., Panfili, J., Childs, A.-R., Guilhaumon, F. and Darnaude, A.M., 2017. elementsr: An R package for reducing elemental data from LA-ICPMS analysis of biological calcified structures. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.12822

Solé, V.A., Papillon, E., Cotte, M., Walter, Ph. and Susini, J., 2007. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 63–68. https://doi.org/10.1016/j.sab.2006.12.002

Sopher, D., 2017. Converting scanned images of seismic reflection data into SEG-Y format. Earth Science Informatics, 15 pp. (Online First Article) https://doi.org/10.1007/s12145-017-0329-z

Spingos, I., Kaviris, G., Millas, C., Papadimitriou, P. and Voulgaris, N. (2020) Pytheas: An open-source software solution for local shear-wave splitting studies. Computers & Geosciences, 134, 104346. https://doi.org/10.1016/j.cageo.2019.104346
Willmes, M., Ransom, K.M., Lewis, L.S., Denney, C.T., Glessner, J.J.G. and Hobbs, J.A., 2018. IsoFishR: An application for reproducible data reduction and analysis of strontium isotope ratios (87Sr/86Sr) obtained via laser-ablation MC-ICP-MS. PLOS ONE, 13, e0204519. https://doi.org/10.1371/journal.pone.0204519

Wilson, C.R., Spiegelman, M. and van Keken, P.E., 2017. TerraFERMA: The Transparent Finite Element Rapid Model Assembler for multiphysics problems in Earth sciences. Geochemistry, Geophysics, Geosystems, 18, 769–810. http://dx.doi.org/10.1002/2016GC006702

Winchester, J.M., 2016. MorphoTester: An Open Source Application for Morphological Topographic Analysis. PLOS ONE, 11, e0147649. http://dx.doi.org/10.1371/journal.pone.0147649

Witte, P., Louboutin, M., Kukreja, N., Luporini, F., Lange, M., Gorman, G. and Herrmann, F., 2019. A large-scale framework for symbolic implementations of seismic inversion algorithms in Julia. GEOPHYSICS 84, 1–60. https://doi.org/10.1190/geo2018-0174.1

Yu, X., Hu, P., Chen, Z., Shu, C., Wang, X. and Tian, Y., 2020. A software tool to plot frequency and cumulative frequency curves automatically for grain size analysis of sediments. Earth Sci Inform. 7 pp. https://doi.org/10.1007/s12145-019-00440-w

Yu, X., Xu, S., Nieto-Samaniego, Á.F. and Alaniz-Álvarez, S.A., 2017. Slicken 1.0: Program for calculating the orientation of shear on reactivated faults. Computers & Geosciences, 104, 158–165. https://doi.org/10.1016/j.cageo.2016.07.015

Yamaji, A., 2016. Genetic algorithm for fitting a mixed Bingham distribution to 3D orientations: a tool for the statistical and paleostress analyses of fracture orientations: GA for mixed Bingham distribution. Island Arc, 25, 72–83. http://dx.doi.org/10.1111/iar.12135

Yuan Tang, Masaaki Horikoshi, and Wenxuan Li., 2016. ggfortify: Unified Interface to Visualize Statistical Result of Popular R Packages. The R Journal, 8/2, 474-485.

Zahid, K.M. and Barbeau, D.L., 2011. Constructing Sandstone Provenance and Classification Ternary Diagrams Using An Electronic Spreadsheet. Journal of Sedimentary Research, 81, 702–707. http://dx.doi.org/10.2110/jsr.2011.55

Zang, C. and Biondi, F., 2015. treeclim: an R package for the numerical calibration of proxy-climate relationships. Ecography, 38, 431–436. http://dx.doi.org/10.1111/ecog.01335

Vollmer, F.W., 2018. Automatic contouring of geologic fabric and finite strain data on the unit hyperboloid. Computers & Geosciences, 115, 134–142. https://doi.org/10.1016/j.cageo.2018.03.006

van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E. and Yu, T., 2014. scikit-image: image processing in Python. PeerJ, 2. http://dx.doi.org/10.7717/peerj.453

Wang, T., Surge, D. and Lees, J.M., 2015. ClamR: A statistical evaluation of isotopic and temperature records in sclerochronologic studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 437, 26–32. http://dx.doi.org/10.1016/j.palaeo.2015.07.000

Wang, X., Ma, W., Gao, S. and Ke, L., 2008. GCDPlot: An extensible microsoft excel VBA program for geochemical discrimination diagrams. Computers & Geosciences, 34, 1964–1969. http://dx.doi.org/10.1016/j.cageo.2007.10.014

Warnsloh, J.M., 2015. TriAngle: A Microsoft Excel spreadsheet template for the generation of triangular plots. Neues Jahrbuch für Mineralogie - Abhandlungen, 192, 101–105. http://dx.doi.org/10.1127/0077-7757/2014/0267

Weber, T., Georgii, R. and Böni, P., 2016. Takin: An open-source software for experiment planning, visualisation, and data analysis. SoftwareX, 5, 121–126. http://dx.doi.org/10.1016/j.softx.2016.06.002

Wellmann, J.F., Thiele, S.T., Lindsay, M.D. and Jessell, M.W., 2016. pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling. Geoscientific Model Development 9, 1019–1035. http://dx.doi.org/10.5194/gmd-9-1019-2016

Wenig, P. and Odermatt, J., 2010. OpenChrom: a cross-platform open source software for the mass spectrometric analysis of chromatographic data. BMC Bioinformatics, 11, 1–9. http://dx.doi.org/10.1186/1471-2105-11-405

Wessel, P., Smith, W.H.F., Scharroo, R., Luis, J. and Wobbe, F., 2013. Generic Mapping Tools: Improved Version Released. Eos, Transactions American Geophysical Union, 94, 409–410. http://dx.doi.org/10.1002/2013EO450001

Wessel, P., Luis, J.F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W.H.F. and Tian, D., 2019. The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20, 5556–5564. https://doi.org/10.1029/2019GC008515

Wieczorek, M.A. and Meschede, M., 2018. SHTools — Tools for working with spherical harmonics. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2018GC007529

Wilkinson, S.P. and Davy, S.K., 2018. phylogram: an R package for phylogenetic analysis with nested lists. Journal of Open Source Software, 3, 790. https://doi.org/10.21105/joss.00790
Zeitvogel, F. and Obst, M., 2016. ScatterIn: An ImageJ Plugin for Scatterplot-Matrix Analysis and Classification of Spatially Resolved Analytical Microscopy Data. Journal of Open Research Software, 4: e5, http://dx.doi.org/10.5334/jors.89

Zeng Ling, Cheng Lilu, Costa Fidel and Herrin Jason. (2018) CEmin: A MATLAB-Based Software for Computational Phenocryst Extraction and Statistical Petrology. Geochemistry, Geophysics, Geosystems, 19. http://dx.doi.org/10.1002/2017GC007346

Zervas, D., Nichols, G.J., Hall, R., Smyth, H.R., Lüthje, C. and Murtagh, F., 2009. SedLog: A shareware program for drawing graphic logs and log data manipulation.

Zhong, X. and Frehner, M. (2018) E-Wave software: EBSD-based dynamic wave propagation model for studying seismic anisotropy. Computers & Geosciences, 118, 100–108. https://doi.org/10.1016/j.cageo.2018.05.015

Zhou, J. and Li, X., 2006. GeoPlot: An Excel VBA program for geochemical data plotting. Computers & Geosciences, 32, 554–560. http://dx.doi.org/10.1016/j.cageo.2005.07.005