Magnetic properties of Sm$_5$Fe$_{17}$ melt-spun ribbons and their borides

Tetsuji Saito 1,* and Daisuke Nishio-Hamane 2

1 Department of Mechanical Science and Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
2 Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan

* Correspondence: Email: tetsuji.saito@it-chiba.ac.jp; Tel: +81-47-478-0315; Fax: +81-47-478-0329.

Abstract: Sm$_5$Fe$_{17}$ melt-spun ribbons exhibited low coercivity and partly or mostly consisted of the amorphous phase. Annealing of Sm$_5$Fe$_{17}$ melt-spun ribbon resulted in the formation of the Sm$_5$Fe$_{17}$ phase. The annealed Sm$_5$Fe$_{17}$ melt-spun ribbon exhibited a high coercivity. It was found that the addition of B to the Sm$_5$Fe$_{17}$ alloy resulted in the promotion of the Sm$_2$Fe$_{14}$B phase. Annealed Sm$_5$Fe$_{17}$B$_x$ (x = 0.5) melt-spun ribbons consisted of the Sm$_5$Fe$_{17}$ phase together with the Sm$_2$Fe$_{14}$B and SmFe$_2$ phases. On the other hand, annealed Sm$_5$Fe$_{17}$B$_x$ (x = 1.0–1.5) melt-spun ribbons consisted of the Sm$_2$Fe$_{14}$B and SmFe$_2$ phases without the Sm$_5$Fe$_{17}$ phase. The resultant Sm$_5$Fe$_{17}$B$_x$ (x = 1.0–1.5) melt-spun ribbons still showed a coercivity of around 2 kOe. The annealed Sm$_5$Fe$_{17}$ melt-spun ribbon exhibited a high coercivity over 25 kOe and a remanence of 40 emu/g, whereas the annealed Sm$_5$Fe$_{17}$B$_{1.0}$ melt-spin ribbon exhibited a high remanence of 65 emu/g and a coercivity of 2.0 kOe.

Keywords: Sm-Fe alloys; rare-earth magnet; melt-spinning; coercivity; microstructures

1. Introduction

The Sm$_5$Fe$_{17}$ phase is a ferromagnetic phase in the binary Sm-Fe system [1,2]. It is a metastable phase and its formation has been reported only in sputtered films [3,4]. Through the intensive studies to produce the Sm$_5$Fe$_{17}$ phase as bulk materials, it was found that the Sm$_5$Fe$_{17}$ phase can be obtained by annealing of amorphous melt-spun ribbons [5]. Sm$_5$Fe$_{17}$ melt-spun ribbon shows a large coercivity exceeding 25 kOe and a remanence of 40 emu/g, which is significantly lower than the remanence of Nd-Fe-B magnets. For the application in the motors of electric vehicles and...
wind-turbine generators, the temperature of the magnets rises to nearly 473 K due to the evolution of eddy currents. Nd-Fe-B magnets cannot be used for the motors and instead Nd-Dy-Fe-B magnets, which the Dy was added to increase the coercivity, are applied. At such a high temperature, the magnetic properties of the Sm₅Fe₁₇ melt-spun ribbon were almost comparable to those of the Nd-Fe-B melt-spun ribbon (The results are discussed later in the results and discussion section). Thus, the high coercivity magnets are required for the high temperature applications. Since the Sm₅Fe₁₇ melt-spun ribbon possesses the high coercivity, it can be suitable for a hard magnet component in the nanocomposite magnets, which is the most promising candidate for the new types of the permanent magnets. In any case, the increase of the remanence of the Sm₅Fe₁₇ melt-spun ribbon is almost always beneficial. There have been several efforts to increase the remanence of Sm₅Fe₁₇-type melt-spun ribbons, but the reported values are not yet satisfactory [6,7,8]. It is known that the magnetic properties of Sm-Co-based magnets can be improved by the addition of B to the Sm-Co-based alloy [9,10,11]. In this study, small amounts of B were added to Sm₅Fe₁₇ melt-spun ribbon in order to increase the remanence. The structures and magnetic properties of the Sm-Fe and Sm-Fe-B melt-spun ribbons were then examined.

2. Materials and Method

Sm₅Fe₁₇ and Sm₅Fe₁₇Bₓ (x = 0.5–1.5) alloy ingots were induction melted in an argon atmosphere in a quartz crucible having an orifice of 0.6 mm in diameter at the bottom. The molten metal was ejected through the orifice with argon onto a chromium-plated copper wheel rotating at a surface velocity of 40 m s⁻¹. The resultant melt-spun ribbons were annealed under an argon atmosphere at temperatures between 773 K and 1073 K for 1 h. The phases in the specimens were examined by X-ray diffraction (XRD) using Cu Kα radiation. The microstructures of the specimens were examined using a transmission electron microscope (TEM) after ion beam thinning. The thermomagnetic properties of the specimens were examined in a vacuum using a vibrating sample magnetometer (VSM) with an applied field of 500 Oe. The magnetic properties of the specimens were measured by the VSM with a maximum applied field of 25 kOe after premagnetization in a pulsed field of 70kOe. Some of the specimens were further examined by VSM using a superconducting magnet with a maximum applied field of 100 kOe.

3. Results and Discussion

3.1. Sm-Fe melt-spun ribbon

The Sm₅Fe₁₇ melt-spun ribbons were amorphous and exhibited a low coercivity value, less than 1 kOe. It is known that crystalline phases can be produced by rapid solidification processing and subsequent heat treatment [6]. In the previous studies [7,8], the annealed samples consisted of the Sm₅Fe₁₇ phase but also contained some other phase such as the SmFe₁₂ phase and the SmFe₃ phase. As the result of the extensive study of the annealing conditions, the optimal annealing condition to obtain the Sm₅Fe₁₇ phase was established in this paper. Figure 1 shows the XRD patterns of the annealed Sm-Fe melt-spun ribbons. The amorphous melt-spun ribbon should be annealed at relatively high heating rates of 0.5–1.0 K/s to 873–973 K and then kept for 1 h. As shown in Figure 1, the optimal annealed specimens consisted of the Sm₅Fe₁₇ (hexagonal) phase. However, the Sm-Fe
ribbon annealed at 1073 K consisted of the SmFe₃ (rhombohedral) phase together with the Sm₅Fe₁₇ phase.

Figure 2 shows the dependence of the coercivity of the Sm₅Fe₁₇ melt-spun ribbons on the annealing temperature. The specimens annealed at 873 K and 973 K showed high coercivity values. According to the results of the XRD studies, those annealed melt-spun ribbon consists of the Sm₅Fe₁₇ phase. This indicates that the observed high coercivity in the annealed melt-spun ribbon is due to the existence of the Sm₅Fe₁₇ phase.

![Figure 1. XRD patterns of (a) the Sm-Fe melt-spun ribbon and the specimens annealed at (b) 773 K, (c) 873 K, (d) 973 K, and (e) 1073 K.](image)

![Figure 2. Dependence of the coercivity of the Sm-Fe melt-spun ribbons on the annealing temperature.](image)

The hysteresis loops of the Sm₅Fe₁₇ melt-spun ribbon and the specimen annealed at 973 K are shown in Figure 3. Since the applied field of 25 kOe is far lower than the field required to fully saturate the Sm₅Fe₁₇ melt-spun ribbon, the hysteresis curve is not closed (i.e., it is a minor loop), and
it is not symmetrical with respect to either coordinate. The actual coercivity of the annealed specimen was measured as 40 kOe using a superconducting magnet with a maximum applied field of 100 kOe.

![Graph](image1)

Figure 3. Hysteresis loops of (a) the Sm-Fe melt-spun ribbon and (b) the specimen annealed at 973 K. The demagnetization curve of the annealed specimen measured using a superconducting magnet with a maximum applied field of 100 kOe is also shown in the insert.

Figure 4 shows the hysteresis loops of the Sm$_2$Fe$_{17}$ melt-spun ribbon and the Nd$_{15}$Fe$_{77}$B$_8$ melt-spun ribbon measured at 473 K under the applied magnetic field of 20 kOe. Although the Sm$_2$Fe$_{17}$ melt-spun ribbon ribbons showed a much smaller remanence than the Nd$_{15}$Fe$_{77}$B$_8$ melt-spun ribbon at room temperature, it exhibits a much smaller difference in remanence at 473 K. Therefore, the magnetic properties of the Sm$_2$Fe$_{17}$ melt-spun ribbon are comparable to those of Nd$_{15}$Fe$_{77}$B$_8$ melt-spun ribbon at 473 K.

![Graph](image2)

Figure 4. Hysteresis loops of (a) the Nd$_{15}$Fe$_{77}$B$_8$ melt-spun ribbon and (b) the Sm$_5$Fe$_{17}$ melt-spun ribbon measured at 473 K. The high-temperature measurements were made by VSM under a maximum applied magnetic field of 20 kOe.
3.2. Sm-Fe borides

The Sm$_5$Fe$_{17}$B$_x$ (x = 0.5–1.5) melt-spun ribbon showed a low coercivity, as was the case for the Sm$_5$Fe$_{17}$ melt-spun ribbon. Figure 5 shows the dependence of the coercivity of the Sm$_5$Fe$_{17}$B$_x$ (x = 0.5–1.5) melt-spun ribbons on the annealing temperature. The coercivity of the Sm$_5$Fe$_{17}$B$_x$ (x = 0.5–1.5) alloys shows a similar temperature dependence, but their maximum coercivity, achieved by annealing at 973 K, decreases with increasing B content of the alloy. This indicates that the addition of B to the Sm$_5$Fe$_{17}$ alloy results in a decrease in coercivity.

![Figure 5. Dependence of the coercivity of the Sm$_5$Fe$_{17}$B$_x$ (x = 0.5–1.5) melt-spun ribbons on the annealing temperature.](image)

Figure 6 shows the hysteresis loops of the Sm$_5$Fe$_{17}$B$_x$ (x = 0.5–1.5) melt-spun ribbons annealed at 973 K. For comparison, the hysteresis loop of the Sm$_5$Fe$_{17}$ melt-spun ribbon annealed at 973 K is also shown in the each figure.

![Figure 6. Hysteresis loops of the Sm$_5$Fe$_{17}$B$_x$ (x = 0.5–1.5) melt-spun ribbons annealed at 973 K. For comparison, the hysteresis loop of the Sm$_5$Fe$_{17}$ melt-spun ribbon annealed at 973 K is also shown in the each figure.](image)
alloys is much smaller than that of the Sm$_5$Fe$_{17}$ alloy. The remanence increases with increasing B content from 40 emu/g for the Sm$_5$Fe$_{17}$ alloy to 65 emu/g for the Sm$_5$Fe$_{17}$B$_{1.0}$ alloy and then decreases to 60 emu/g for the Sm$_5$Fe$_{17}$B$_{1.5}$ alloy. The remanence of 65 emu/g exhibited by the annealed Sm$_5$Fe$_{17}$B$_{1.0}$ alloy is much higher than that of the annealed Sm$_5$Fe$_{17}$ melt-spun ribbon.

The Sm$_5$Fe$_{17}$ and Sm$_5$Fe$_{17}$B$_x$ ($x = 0.5$–1.5) melt-spun ribbons annealed at 973 K were examined by XRD and thermomagnetic studies to evaluate the differences in the coercivity value. Figure 7 shows the XRD patterns of the annealed Sm-Fe-B melt-spun ribbons. The diffraction peaks of the Sm$_5$Fe$_{17}$ alloy were determined to be the Sm$_5$Fe$_{17}$ phase. Virtually the same XRD patterns were obtained from the Sm$_5$Fe$_{17}$B$_{0.5}$ alloy. This indicates that the small addition of B to the Sm$_5$Fe$_{17}$ alloy did not alter the XRD pattern. On the other hand, the XRD pattern of the Sm$_5$Fe$_{17}$B$_{1.0}$ alloy is quite different from that of the Sm$_5$Fe$_{17}$ alloy. The diffraction peaks of the Sm$_5$Fe$_{17}$ alloy were determined to be the Sm$_2$Fe$_{14}$B and SmFe$_2$ phases. The XRD pattern of the Sm$_5$Fe$_{17}$B$_{1.5}$ alloy is similar to that of the Sm$_5$Fe$_{17}$B$_{1.0}$ alloy, indicating that the Sm$_5$Fe$_{17}$B$_{1.5}$ alloy also consisted of the Sm$_2$Fe$_{14}$B (tetragonal) and SmFe$_2$ (cubic) phases. These results reveal that the large addition of B to the Sm$_5$Fe$_{17}$ alloy resulted in the formation of the Sm$_2$Fe$_{14}$B and SmFe$_2$ phases instead of the Sm$_5$Fe$_{17}$ phase, and hence the decrease in coercivity.

Figure 7. XRD patterns of the annealed melt-spun ribbons: (a) Sm$_5$Fe$_{17}$, (b) Sm$_5$Fe$_{17}$B$_{0.5}$, (c) Sm$_5$Fe$_{17}$B$_{1.0}$, and (d) Sm$_5$Fe$_{17}$B$_{1.5}$ alloys.

Figure 8 shows the thermomagnetic curves of the annealed Sm-Fe-B melt-spun ribbons. The thermomagnetic curve of the Sm$_5$Fe$_{17}$ alloy exhibits one magnetic transition at around 550 K, which corresponds to the Curie temperature of the Sm$_5$Fe$_{17}$ phase. Unlike in the case of the XRD studies, the thermomagnetic curve of the Sm$_5$Fe$_{17}$B$_{0.5}$ alloy is quite different from that of the Sm$_5$Fe$_{17}$ alloy. The thermomagnetic curve exhibits three magnetic transitions at around 550 K, 620 K, and 680 K. It has been reported that the Curie temperatures of the Sm$_2$Fe$_{14}$B phase and SmFe$_2$ phase are 616 K and 675 K, respectively [12,13,14]. Therefore, the Sm$_5$Fe$_{17}$B$_{0.5}$ alloy contains the Sm$_2$Fe$_{14}$B and SmFe$_2$ phases together with the Sm$_5$Fe$_{17}$ phase. The thermomagnetic curve of the Sm$_5$Fe$_{17}$B$_{1.0}$ alloy exhibits...
two magnetic transitions at around 620 K and 680 K, indicating that the Sm$_5$Fe$_{17}$B$_{1.0}$ alloy has no Sm$_3$Fe$_{17}$ phase. The Sm$_5$Fe$_{17}$B$_{1.5}$ alloy also exhibits two magnetic transitions at around 620 K and 680 K, which correspond to the Curie temperatures of the Sm$_2$Fe$_{14}$B and SmFe$_2$ phases. This is consistent with the results of the XRD studies.

Figure 8. Thermomagnetic curves of the annealed Sm-Fe-B melt-spun ribbons.

Figure 9. TEM micrographs of the (a) Sm$_5$Fe$_{17}$B$_{0.5}$ and (b) Sm$_5$Fe$_{17}$B$_{1.5}$ annealed melt-spun ribbons and corresponding X-ray mappings for iron and samarium.
Figure 9 shows TEM micrographs of the annealed Sm$_5$Fe$_{17}$B$_{0.5}$ and Sm$_5$Fe$_{17}$B$_{1.5}$ melt-spun ribbons. The grain size of the annealed Sm$_5$Fe$_{17}$B$_{0.5}$ alloy was around 50 nm in diameter, which is almost comparable to the reported grain size of annealed Sm$_5$Fe$_{17}$ alloy [8]. Samarium and iron were detected in most of the grains of the annealed Sm$_5$Fe$_{17}$B$_{0.5}$ alloy, except for the centrally located grain that were rich in samarium but poor in iron. According to the results of the thermomagnetic studies, the specimens contained some of the Sm$_2$Fe$_{14}$B (Sm11.7 at%) and SmFe$_2$ (Sm33.3 at%) phases together with the Sm$_3$Fe$_{17}$ (Sm22.7 at%) phase. Thus, the samarium-rich centrally located grain consisted of the SmFe$_2$ phase and the surrounding grains were either the Sm$_2$Fe$_{14}$B or Sm$_5$Fe$_{17}$ phase. The upper-left grain region, which was rich in iron but slightly poor in samarium, may be the Sm$_2$Fe$_{14}$B phase. In the TEM micrograph of the annealed Sm$_5$Fe$_{17}$B$_{1.5}$ alloy, an increase was seen in the amount of the SmFe$_2$ phase, where is poor in iron but rich in samarium. The grain size of the SmFe$_2$ phase was found to be larger than that in the annealed Sm$_5$Fe$_{17}$B$_{0.5}$ alloy. Since the Sm$_5$Fe$_{17}$B$_{1.5}$ alloy consisted of the Sm$_2$Fe$_{14}$B and SmFe$_2$ phases, the surrounding grains are considered to be the Sm$_2$Fe$_{14}$B phase. This confirms that the addition of B to Sm$_5$Fe$_{17}$ alloy results in the formation of the SmFe$_2$ and Sm$_2$Fe$_{14}$B phases, instead of the formation of a Sm$_5$Fe$_{17}$B$_x$ phase. Since the Sm$_2$Fe$_{14}$B phase does not possess uniaxial anisotropy [12], the observed coercivity of the annealed Sm-Fe-B melt-spun ribbons is considered to be the fine SmFe$_2$ phase.

4. Conclusion

The structures and magnetic properties of Sm$_5$Fe$_{17}$B$_x$ (x = 0–1.5) melt-spun ribbons annealed at 973 K were examined. The annealed Sm$_5$Fe$_{17}$ melt-spun ribbon consisted of the Sm$_5$Fe$_{17}$ phase and exhibited a high coercivity. The annealed Sm$_5$Fe$_{17}$B$_{0.5}$ melt-spun ribbon consisted of the Sm$_5$Fe$_{17}$ phase together with the Sm$_2$Fe$_{14}$B and SmFe$_2$ phases. In contrast, the annealed Sm$_5$Fe$_{17}$B$_x$ (x = 1.0–1.5) melt-spun ribbons consisted of the Sm$_2$Fe$_{14}$B and SmFe$_2$ phases. The coercivity of the annealed Sm$_5$Fe$_{17}$B$_x$ (x = 0–1.5) melt-spun ribbons decreased as the B content increased. On the other hand, the annealed Sm$_5$Fe$_{17}$B$_x$ (x = 0.5–1.5) melt-spun ribbons exhibited a higher remanence than the Sm$_5$Fe$_{17}$ melt-spun ribbon.

Acknowledgments

The use of the facilities of the Materials Design and Characterization Laboratory at the Institute for Solid State Physics, the University of Tokyo, is gratefully acknowledged. This work was performed at High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University.

Conflict of Interest

All authors declare no conflicts of interest in this paper.

References

1. Kamprath H, Liu NC, Hedge H, et al. (1990) Magnetic properties of Sm–Fe–Ti–Al sputtered films with H_c greater than 30 kOe. J Appl Phys 67: 4948–4950.
2. Stadelmaier HH, Schneider G, Henig ET, et al. (1991) Magnetic Fe_{17}R_5 in the Fe-Nd and Fe(-Ti)-Sm systems, and other phases in Fe-Nd. *Mater Lett* 10: 303–309.

3. Katter M, Wecker J, Schultz L, et al. (1990) Preparation of highly coercive Sm-Fe-Ti by rapid quenching. *Appl Phys Lett* 56: 1377–1379.

4. Cadieu FJ, Hegde H, Rani R, et al. (1991) Cell volume expansion in Sm_5(Fe, T)_{17}, T = Ti, V, magnetic phases. *Mater Lett* 11: 284–285.

5. Saito T, Ichihara M (2007) Synthesis and magnetic properties of Sm_5Fe_{17} hard magnetic phase. *Scripta Mater* 57: 457–460.

6. Saito T (2007) Synthesis and magnetic properties of (Nd_{1-x}Sm_{x})_5Fe_{17} (x = 0–1) phase. *Appl Phys Lett* 91: 072503-1–072503-3.

7. Saito T (2007) High coercivity in Sm_5Fe_{17} melt-spun ribbon. *J Alloys Compd* 440: 315–318.

8. Saito T, Miyoshi H, Hamane DN (2012) Structures and magnetic properties of Sm_5Fe_{17} melt-spun ribbon. *J Appl Phys* 111: 07E322-1–07E322-3.

9. Kim DH, Zhang Y, Hadjipanayis GC (1998) Magnetic properties of Sm–Co–B-based nanocomposite magnets. *J Magn Magn Mater* 190: 302–306.

10. You C, Zhang ZD, Sun XK, et al. (2001) Phase transformation and magnetic properties of SmCo_{7−x}B_{x} alloys prepared by mechanical alloying. *J Magn Magn Mater* 234: 395–400.

11. Gapalan R, Xiong XY, Ohkubo T, et al. (2005) Nanoscale microstructure and magnetic properties of melt-spun Sm(Co_{0.725}Fe_{0.1}Cu_{0.12}Zr_{0.04}B_{0.015})_{7.4} ribbons. *J Magn Magn Mater* 295: 7–20.

12. Herbst JF (1991) R_2Fe_{14}B materials: Intrinsic properties and technological aspects. *Rev Mod Phys* 63: 819–898.

13. Buschow KHJ (1971) The samarium-iron system. *J Less-Common Metals* 25: 131–134.

14. Kim HT, Xiao QF, Zhang ZD, et al. (1997) Phases of melt-spun Sm_{1−x}Fe_{7+2x} alloys and magnetic properties of their nitrides. *J Magn Magn Mater* 173: 295–301.