Automated and Intelligent Data Migration Strategy in High Energy Physical Storage Systems

Zhenjing CHENG
(IHEP Computing Center)
Motivation

- **High Energy Physics Computing → data intensive**
 - Experiments like JUNO, LHAASO and BESIII store and produce near 100 PB data (*increasing*)
 - need better data access performance (or I/O bandwidth)

- **Future Storage → Huge and distributed clustered storage**
 - Hundreds of servers and tens of thousands clients
 - SATA HDDs can’t provide higher IOPS! → import flash disks
 - Limited fundings → all-flash storage is too expensive!
 - **Build hierarchical and tiered storage (tapes, disks, SSD)**
Motivation

• Tiered storage need data migration strategy
 • less active data be moved to lower cost storage devices regularly

• Local site storage: Data access requests are not completely random
 • Data access locality → a small set of data keep active for a certain period of time
 • e.g. certain physics channel events datasets
 • multiple users might analyze the same datasets within a specific period of time

• Can we predict future file access?
 • identify hot/warm/cold data or different data use cases based on file access
 • optimize data migration strategy based on file heat changes
Related studies

- Huge gap of data access times between memory and disk
 - To alleviate the problem: caching and prefetching
 - prefetching: bring data in memory before they are needed
 - similarly, bring hot file in SSD tiers to improve I/O performance and move cold file out
 - Make as many correct predictions as possible and as few false predictions as feasible

- Widely applicable file access predictors
 - Stable Successor:
 - Recent Popularity:
 - Disadvantages:
 - Short-term prediction
 - stand-alone prediction, not suitable for mass parallel storage system like EOS
 - rely on file access order heavily
Challenges:

- **EOS cluster operators don’t understand users’ data meanings**
 - We only know users’ file history access statistics - by analysing eos fst logs

- **Prediction model**
 - should be suitable for massive files and data parallel access
 - shouldn’t rely too much on file access order

- **regression analysis**
 - load predictions for continuous time:
 - High-energy physics storage: billions of files
 - impossible to build a regression model for each file
Prediction Model

- **Deep Learning Algorithm : LSTM (Long short-term memory)**
 - improved RNN capable of learning the long-term dependencies
 - recognize patterns in sequences of data, like text, handwriting, or numerical times series data from sensors, stock markets. E.g.

- **Application**

![Diagram of Prediction Model]

Automated and Intelligent Data Migration Strategy - Zhenjing Cheng - ACAT 2019, Saas-Fee, Switzerland
• Define data heat

 (1) “hot data”,
 - substantial reuse of small amount of high-energy datasets by users for a long time.
 - migrate to faster storage like SSD and SAS

 (2)" cold data”,
 - mass high-energy datasets used by a single user for limited processing times.
 - migrate to lower but high-capacity storage like HDD

• So we divided files into different categories for different data heat
 — based on number of file access
• Distribution of file access number within 7 days
Model Input (File Access Feature)

- **EOS**: FST logs keep **data access records** in file units, as follows
- Provide file history read/write ratio, Re-read, Re-write, Random read, Random write and so on

```
log=a048f57a-6034-11e8-8f98-288023415e08&path=/#curl#/eos/user/b/biby/yinlaq/rootdata/QGSJET-FLUKA
/Helium/1.e14_1.e15/wcda003363.root&ruid=10408&rgid=1000&td=*
[0x0]CioA-gA.1639102:551@vm088029&host=eo
s07.ihep.ac.cn&lid=1048578&fid=123971808&fsid=25&ots=1527263977&otms=887&cts=1527263998&ctms=734&
rb=0&rb_min=0&rb_max=0&rb_sigma=0.00&w=8830528&wb_min=63&wb_max=32768&wb_sigma=2225.83&sfwdb=881
4629&sbwdb=8814592&sbwdb=8781824&sbwdb=8814592&nrc=0&nwc=271&nfwds=3&nbwds=1&nxlfwds=1&nxlbwds
s=1&rt=0.00&wt=24.91&o size=0&csize=8830565&sec.prot=unix&sec.name=root&sec.host=vm088029.ihep.ac.
cn&sec.vorg=&sec.grps=root&sec.role=&sec.info=&sec.app=fuse
```

- **Make file access vectors**

 `<timestamp, filename, filesize, read/write ratio, read/write bytes sequence/random read>`
Model Input (*File Access Feature*)

- **Compact multiple vectors into a sequence of time series by hour**

 \[T: \text{timestamp} \quad F_1: \text{filename} \quad F_2: \text{file size} \quad R_1: \text{read/write ratio} \quad S: \text{sequential/random ratio} \quad R_2: \text{file read/write bytes} \]

- **Use access features in the past to predict future file heat**
 - *dynamical* training time window
 - the same model complexity, but more historical information used!

System design

• **Set a goal**: predict *file heat* in next 7 days

• **LSTM model**:
 — *4-layer* fully connected RNN with *64* LSTM cells per layer
 — learning rate decades (*0.001, 0.0001*)
 — *256* samples per batch, training at the same time

• **Data set**
 — source: EOS for LHAASO cooperation group user
 — *5,842,207* files access records (2018.4.1-2018.5.1)
 — divided into three groups, *training data set*(80%), *verification data set*(10%), *test data set*(10%)
Results

• Accuracy
 • Hot file prediction accuracy: 87.52%
 • Cold file prediction accuracy: 92.89%
 • Overall classification accuracy: 91.78%

• Other metrics
 - TPR/Recall: 0.9532 FPR: 0.1028
Conclusion and next step

- **Hierarchical storage** is the trend for IHEP storage. Deep learning helps make file heat prediction.
- Now binary classification, multiple decisions in future for *multiple storage layers*

- Didn’t consider impact brought by data migration to the storage performance
- Introduce the concept of migration cost, consider impact on storage performance
- Adaptive and Automated file migration strategy, more adaptive to storage load changes
Thanks