Title
The equivariant Euler characteristic of moduli spaces of curves

Permalink
https://escholarship.org/uc/item/6997k34s

Journal
Advances in Mathematics, 250

ISSN
0001-8708

Author
Gorsky, E

Publication Date
2014-01-15

DOI
10.1016/j.aim.2013.10.003

Peer reviewed
THE EQUIVARIANT EULER CHARACTERISTIC OF MODULI SPACES OF CURVES.

EUGENE GORSKY

ABSTRACT. We derive a formula for the S_n-equivariant Euler characteristic of the moduli space $\mathcal{M}_{g,n}$ of genus g curves with n marked points.

1. INTRODUCTION

Consider the moduli space $\mathcal{M}_{g,n}$ of algebraic curves of genus g with n marked points. The symmetric group S_n acts naturally on this space. Let V_λ denote the irreducible representation of S_n corresponding to a Young diagram λ, then one can decompose the cohomology of $\mathcal{M}_{g,n}$ into isotypic components:

$$H^i(\mathcal{M}_{g,n}) = \bigoplus_\lambda a_{i,\lambda} V_\lambda.$$

The S_n-equivariant Euler characteristic of $\mathcal{M}_{g,n}$ is defined by the formula

$$\chi_{S_n}(\mathcal{M}_{g,n}) = \sum_{i,\lambda} (-1)^i a_{i,\lambda} s_\lambda,$$

where s_λ denotes the Schur polynomial labeled by the diagram λ. We calculate these equivariant Euler characteristics for all $g \geq 2$ and n.

Theorem 1.1. The generating function for the S_n-equivariant Euler characteristics of $\mathcal{M}_{g,n}$ has the form

$$\sum_{n=0}^{\infty} t^n \chi_{S_n}(\mathcal{M}_{g,n}) = \sum_k c_{k_1,\ldots,k_r} \prod_{j=1}^r (1 + p_j t^j)^{k_j},$$

where p_j are power sums and the coefficients c_{k_1,\ldots,k_r} are defined by the equation (6).

Consider the moduli space $\mathcal{M}_g(k_1,\ldots,k_r)$ of pairs (C, τ) where C is a genus g curve and τ is an automorphism of C such that for all i the Euler characteristic of the set of points in C having the orbit of length i under the action of τ equals ik_i. The coefficient c_{k_1,\ldots,k_r} can be also defined as the orbifold Euler characteristic of $\mathcal{M}_g(k_1,\ldots,k_r)$.

This moduli space can be defined for any tuple of integers (k_1,\ldots,k_r) of arbitrary size r, but we prove that (for a fixed genus g) it is non-empty only for a finite number of such tuples. In particular, r cannot exceed $4g+2$.

Corollary 1.2. The generating function $\sum_{n=0}^{\infty} t^n \chi_{S_n}(\mathcal{M}_{g,n})$ is a rational function in t. Furthermore, for any n,

$$\chi_{S_n}(\mathcal{M}_{g,n}) \in \mathbb{Z}[p_1,\ldots,p_{4g+2}].$$

Theorem 1.1 can be compared with the computations of [4], [5], [8] and [10] in genus 2 and with the computations of [1], [2], [9], [17] and [18] in genus 3. A similar generating function for the moduli spaces of hyperelliptic curves was previously obtained in [11]. The non-equivariant Euler characteristics of moduli spaces of curves were computed by Bini and Harer in [3].

The paper is organized as follows. In Section 2 we consider a complex quasi-projective variety X with an action of a finite group G. Theorem 2.5 provides a formula for the S_n-equivariant
Euler characteristic of quotients $F(X, n)/G$, where $F(X, n)$ is a configuration space of n labeled distinct points on X. This theorem was previously proved in [10] using the results of Getzler [6, 7] concerning Adams operations over the equivariant motivic rings (see also [12]). The alternative proof presented here uses only the basic properties of Euler characteristic and seems to be more geometric. It also makes the proof of the main result self-contained.

In Section 3 we apply this theorem to the universal family over \mathcal{M}_g, the moduli space of genus g curves. This allows us to prove in Theorem 3.3 that the coefficient c_{k_1, \ldots, k_r} is equal to the orbifold Euler characteristic of $\mathcal{M}_g(k_1, \ldots, k_r)$. These Euler characteristics are then computed in Theorem 3.8 using the results of Harer and Zagier.

ACKNOWLEDGEMENTS

The author is grateful to J. Bergström, S. Gusein-Zade, M. Kazaryan and S. Lando for useful discussions. This work was partially supported by the grants RFBR-007-00593, RFBR-08-01-00110-a, NSh-709.2008.1 and the Möbius Contest fellowship for young scientists.

2. **EQUIVARIANT EULER CHARACTERISTICS**

Let X be a complex quasi-projective variety with an action of a finite group G. Let us denote by $F(X, n)$ the configuration space of ordered n-tuples of distinct points on X. For each n, the action of the group G on X can be naturally extended to the action of G on $F(X, n)$, commuting with the natural action of S_n.

In the computations below we will use the additivity and multiplicativity of the Euler characteristic, as well as the Fubini formula for the integration with respect to the Euler characteristic ([15, 19], see also [16]).

Lemma 2.1. The following equation holds: $\sum_{n=0}^{\infty} \frac{t^n}{n!} \chi(F(X, n)) = (1 + t)^{\chi(X)}$.

Proof. The map $\pi_n : F(X, n) \to F(X, n - 1)$, which forgets the last point in the n-tuple, has fibers isomorphic to X without $n - 1$ points. Therefore $\chi(F(X, n)) = (\chi(X) - n + 1) \cdot \chi(F(X, n - 1))$, and $\chi(F(X, n)) = \chi(X) \cdot (\chi(X) - 1) \cdot \cdots \cdot (\chi(X) - n + 1)$. □

Let p_k denote the kth power sum and let V_λ denote the irreducible representation of S_n labelled by the Young diagram λ. We define the S_n-equivariant Euler characteristic of $F(X, n)/G$ by the equation

$$\chi^{S_n}(F(X, n)/G) = \sum_{\lambda} (-1)^{\ell(\lambda)} a_{i, \lambda} s_\lambda,$$

where $H^i(F(X, n)/G) = \bigoplus_\lambda a_{i, \lambda} V_\lambda$ and s_λ is the Schur polynomial.

Lemma 2.2. The following equation holds:

$$\chi^{S_n}(F(X, n)/G) = \frac{1}{n!} \sum_{\sigma \in S_n} p_1^{k_1(\sigma)} \cdots p_n^{k_n(\sigma)} \cdot \chi([F(X, n)/G]^\sigma),$$

where $k_i(\sigma)$ is the number of cycles of length i in a permutation σ.

Proof. It is well known that for every i

$$\sum_\lambda a_{i, \lambda} s_\lambda = \frac{1}{n!} \sum_{\sigma \in S_n} p_1^{k_1(\sigma)} \cdots p_n^{k_n(\sigma)} \cdot \text{Tr}(\sigma)|_{H^i(F(X, n)/G)},$$

hence

$$\chi^{S_n}(F(X, n)/G) = \frac{1}{n!} \sum_i (-1)^i \sum_{\sigma \in S_n} p_1^{k_1(\sigma)} \cdots p_n^{k_n(\sigma)} \cdot \text{Tr}(\sigma)|_{H^i(F(X, n)/G)}$$

Now the statement follows from the Lefschetz fixed point theorem. □
Lemma 2.3. Let \(\sigma \in S_n \). Then
\[
\chi \left([F(X, n)/G]^\sigma \right) = \frac{1}{|G|} \sum_{g \in G} \chi \left(F(X, n)^{g^{-1}\sigma} \right).
\]

Proof. For a point \(y \in F(X, n) \) whose projection on \(F(X, n)/G \) is \(\sigma \)-invariant there exists an element \(g \in G \) such that \(\sigma y = g y \). Consider the set of pairs
\[
S = \{(g, y) | g \in G, y \in F(X, n) | \sigma y = g y \}
\]
and its two-step projection \(S \to F(X, n) \to F(X, n)/G \). The fiber of the first projection over a point \(y \) is isomorphic to \(G \)-stabiliser of \(y \) or empty, the fiber of the second projection containing \(y \) is exactly the orbit of \(y \). Therefore the cardinality of every fiber of the composition is equal to \(|G| \). \(\square \)

Definition 2.4. For any \(g \in G \) we denote by \(X_k(g) \) the subset of \(X \) consisting of points with \(g \)-orbits of length \(k \). For example, \(X_1(g) \) is a set of \(g \)-fixed points. Let \(\tilde{X}_k(g) = X_k(g)/g \), where \((g) \) is a cyclic subgroup in \(G \) generated by \(g \).

The following theorem was deduced in [10] from the results of Getzler [6, 7], here we would like to present a more geometric and straightforward proof.

Theorem 2.5. The generating function for the \(S_n \)-equivariant Euler characteristics of the quotients \(F(X, n)/G \) is given by the following equation:

\[
\sum_{n=0}^{\infty} t^n \chi_{S_n}(F(X, n)/G) = \frac{1}{|G|} \sum_{g \in G} \prod_{k=1}^{\infty} (1 + p_k t^k)^{\chi(X_k(g))}.
\]

Proof. Since all points in \(X_k(g) \) have \(g \)-orbit of length \(k \), we have \(\chi(\tilde{X}_k(g)) = \chi(X_k(g))/k \). From Lemma 2.1 one gets:
\[
(1 + p_j t^j) \chi(\tilde{X}_j(g)) = \sum_{k_j=0}^{p_j} \frac{p_j^{k_j} t^{k_j j}}{(k_j)!} \chi \left(F \left(\tilde{X}_j(g), k_j \right) \right).
\]
Therefore the coefficient at \(t^n \) in the right hand side of (1) equals to:
\[
\frac{1}{|G|} \sum_{g \in G} \sum_{j k_j = n} \prod_{j} \frac{p_j^{k_j}}{k_j!} \chi \left(F \left(\tilde{X}_j(g), k_j \right) \right).
\]
On the other hand, by Lemma 2.2 and Lemma 2.3, the left hand side of (1) can be rewritten as following:
\[
\frac{1}{|G|} \sum_{g \in G} \frac{1}{n!} \sum_{\sigma \in S_n} \prod_{j=1}^{n} p_j^{k_j(\sigma)} \cdot \chi([F(X, n)]^{g^{-1}\sigma}).
\]
If for a tuple \(y \in F(X, n) \) we have \(\sigma(y) = g(y) \), the action of \((g) \) at this tuple has \(k_j(\sigma) \) cycles of length \(j \). Every cycle of length \(j \) corresponds to a point in \(\tilde{X}_j(g) \), hence for every \(g \) we can define a map
\[
\alpha_g : \sqcup_{\sigma \in S_n} [F(X, n)]^{g^{-1}\sigma} \to \prod_j F(\tilde{X}_j(g), k_j)/S_{k_j}.
\]
Given a \(g \)-invariant \(n \)-tuple of distinct points in \(X \), there are \(n! \) ways to label them and make an ordered tuple \(y \). Every such ordering defines a unique permutation \(\sigma \) such that \(\sigma(y) = g(y) \), therefore all fibers of \(\alpha_g \) have cardinality \(n! \) and
\[
\frac{1}{n!} \sum_{\sigma \in S_n} \chi([F(X, n)]^{g^{-1}\sigma}) = \prod_j \chi \left(F(\tilde{X}_j(g), k_j)/S_{k_j} \right) = \prod_j \frac{\chi \left(F(\tilde{X}_j(g), k_j) \right)}{k_j!}.
\]
3. Moduli spaces of curves

Let us apply Theorem 2.5 to the study of moduli spaces of curves. Let \(\mathcal{M}_g \) denote the moduli space of genus \(g \) algebraic curves and let \(\mathcal{M}_{g,n} \) denote the moduli space of genus \(g \) algebraic curves with \(n \) parked points (we will always assume \(g \geq 2 \)). Let \(\mathcal{M}_g(k_1, \ldots, k_r) \) be the moduli space of pairs \((C, \tau)\) where \(C \) is a genus \(g \) curve and \(\tau \) is an automorphism of \(C \) such that \(\chi(C(\tau)) = ik_i \) for all \(i \). Since \(g \geq 2 \), every automorphism of \(C \) has finite order, hence one can choose \(r \) such that \(k_r \neq 0 \) and \(k_i = 0 \) for \(i > r \).

There is a natural forgetful map \(\pi_{g,k} : \mathcal{M}_g(k_1, \ldots, k_r) \to \mathcal{M}_g \) sending \((C, \tau)\) to \(C \). For a curve \(C \) we define \(\operatorname{Aut}_g(C) = \pi_{g,k}^{-1}(C) \subset \operatorname{Aut}(C) \).

Proposition 3.1. Suppose that \(\mathcal{M}_g(k_1, \ldots, k_r) \) is not empty. Then \(k_r < 0, k_i = 0 \) for \(i \mid r \) and \(k_i \geq 0 \) for \(i < r \). Moreover, we have the following bounds on \(r \) and \(k_i \):

\[
r \leq 4g + 2, \quad |k_r| \leq 2g, \quad \sum_{i=1}^{r-1} k_i \leq 2g + 2.
\]

Proof. Let \(\tau \) be an automorphism of a genus \(g \) curve \(C \) such that \(\chi(C(\tau)) = ik_i \) for all \(i \). Note that \(C_i(\tau) \) are finite sets for \(i < r \) and

\[
\chi(C) = 2 - 2g = \sum_{i=1}^{r-1} ik_i - r|k_r|.
\]

The quotient \(C_1 = C/\tau \) is a smooth curve of some genus \(h \), and the Riemann-Hurwitz formula yields its Euler characteristic:

\[
\chi(C_1) = 2 - 2h = \sum_{i=1}^{r-1} k_i - |k_r|.
\]

The projection of \(C \) to \(C_1 \) is a ramified covering of order \(r \) with \(s = \sum_{j=1}^{r-1} k_j \) ramification points. The automorphism \(\tau \) has order \(r \), so \(i \mid r \), if \(k_i \neq 0 \). By a theorem of Wiman ([20], see also [14]), the maximal order for an automorphism of a genus \(g \) curve equals \(4g + 2 \), hence \(r \leq 4g + 2 \).

Since proper divisors of \(r \) cannot exceed \(r/2 \), equation (3) implies:

\[
\sum_{i=1}^{r-1} ik_i \leq \frac{r}{2} \sum_{i=1}^{r-1} k_i = \frac{r}{2}(2 - 2h + |k_r|),
\]

hence by (2):

\[
2g - 2 = r|k_r| - \sum_{i=1}^{r-1} ik_i \geq \frac{r}{2}(2h + |k_r| - 2).
\]

Therefore \(|k_r| - 2 \leq 2g - 2 \) and \(|k_i| \leq 2g \). Finally, \(\sum_{i=1}^{r-1} k_i = |k_r| + 2 - 2h \leq 2g + 2 \).

Remark 3.2. The bounds on \(r \) and on \(k_i \) are sharp. Indeed, consider a hyperelliptic curve \(P \) covering \(\mathbb{CP}^1 \) with ramifications at the vertices of a regular \((2g + 1)\)-gon and at its center. The covering can be chosen such that the automorphism of \(P \) induced by the rotation of this polygon acts nontrivially in the fibers and hence has order \(r = 2(2g + 1) = 4g + 2 \).

On the other hand, consider a hyperelliptic curve \(C \) with involution \(\tau \). We have

\[
\chi(C_1(\tau)) = 2g + 2, \quad \chi(C_2(\tau)) = 2 - 2g - (2g + 2) = -4g,
\]

hence a pair \((C, \tau)\) belongs to the moduli space \(\mathcal{M}_g(2g + 2, -2g) \).
Theorem 3.3

The following equation holds:

\[
\sum_{n=0}^{\infty} t^n \chi_{S_n}(\mathcal{M}_{g,n}) = \sum_{k} \chi_{\text{orb}}(\mathcal{M}_g(k_1, \ldots, k_r)) \cdot \prod_{j=1}^{r} (1 + p_j t^j)^{k_j}.
\]

Proof. Consider the forgetful map \(\pi_{g,n} : \mathcal{M}_{g,n} \to \mathcal{M}_g \). Its fiber over a point representing a curve \(C \) is isomorphic to \(F(C, n) / \text{Aut}(C) \), hence one can apply Theorem 2.5 to compute its equivariant Euler characteristic:

\[
\frac{1}{|\text{Aut}(C)|} \sum_{\tau \in \text{Aut}(C)} \prod_{i} (1 + p_i t^i)^{\chi_{\tau}(C)} = \sum_{k} \frac{1}{|\text{Aut}(C)|} \sum_{\tau \in \text{Aut}(C)} \prod_{i} (1 + p_i t^i)^{k_i}.
\]

Therefore:

\[
\sum_{n=0}^{\infty} t^n \chi_{S_n}(\mathcal{M}_{g,n}) = \int_{\mathcal{M}_g} \sum_{n=0}^{\infty} t^n \chi_{S_n}(\pi_{g,n}^{-1}(C)) d\chi = \sum_{k} \prod_{i} (1 + p_i t^i)^{k_i} \int_{\mathcal{M}_g} \frac{|\text{Aut}_{k}(C)|}{|\text{Aut}(C)|} d\chi.
\]

On the other hand,

\[
\chi_{\text{orb}}(\mathcal{M}_g(k_1, \ldots, k_r)) = \int_{\mathcal{M}_g} \frac{|\pi_{g,k}^{-1}(C)|}{|\text{Aut}(C)|} d\chi = \int_{\mathcal{M}_g} \frac{|\text{Aut}_{k}(C)|}{|\text{Aut}(C)|} d\chi \quad \square
\]

Using the Proposition 3.1, we conclude that the sum in the right hand side of (5) is finite.

Corollary 3.4

The generating function \(\sum_{n=0}^{\infty} t^n \chi_{S_n}(\mathcal{M}_{g,n}) \) is a rational function in \(t \). Furthermore, for any \(n \),

\[
\chi_{S_n}(\mathcal{M}_{g,n}) \in \mathbb{Z}[p_1, \ldots, p_{4g+2}].
\]

The orbifold Euler characteristic of \(\mathcal{M}_g(k_1, \ldots, k_r) \) can be computed using the combinatorial results of Harer and Zagier [13]. We will denote the greatest common divisor of integers \(a \) and \(b \) by \((a, b) \). Let \(\varphi(n) \) and \(\mu(n) \) denote the Euler function and the Möbius function respectively. Define

\[
c(k, l, d) := \mu \left(\frac{d}{(d, l)} \right) \frac{\varphi(k/l)}{\varphi(d/(d, l))}.
\]

Definition 3.5

Let \(\lambda = (\lambda_1, \ldots, \lambda_s) \) be a partition. We define a number

\[
N(r; \lambda) = |\{(x_1, \ldots, x_s) \in (\mathbb{Z}/r\mathbb{Z})^s : x_1 + \ldots + x_s \equiv 0 \pmod{r}, (x_i, k) = \lambda_i\}|.
\]

Lemma 3.6

([13]) The following equation holds:

\[
N(r; \lambda) = \frac{1}{r} \sum_{d|r} \varphi(d) \prod_{i=1}^{s} c(k, \lambda_i, d).
\]

Theorem 3.7

([13]) The orbifold Euler characteristic of the moduli space \(\mathcal{M}_{h,s} \) of genus \(h \) curves with \(s \) marked points is given by the formula:

\[
\chi_{\text{orb}}(\mathcal{M}_{h,s}) = (-1)^s \frac{(2h-1)B_{2h}}{(2h)!} (2h + s - 3)!
\]

where \(B_k \) denote Bernoulli numbers.
Theorem 3.8. The generating function for the S_n-equivariant Euler characteristics of $\mathcal{M}_{g,n}$ has the form
\[
\sum_{n=0}^{\infty} t^n \chi^S_{n}(\mathcal{M}_{g,n}) = \sum_{k} c_{k_1,\ldots,k_r} \prod_{j=1}^{r} (1 + p_j t_j)^{k_j},
\]
where p_j are power sums and the coefficients c_{k_1,\ldots,k_r} are defined by the equation:
\[
(6) \quad c_{k_1,\ldots,k_r} = \chi^{orb}(\mathcal{M}_{h,s}) \prod_{p|\gamma} (1 - p^{-2h}) \cdot \frac{N(r;\lambda)}{r \prod_{i=1}^{k_i} 1!}.
\]

Here $h = \frac{1}{2}(1 - \sum_{j=1}^{r} k_j)$, $s = \sum_{j=1}^{r-1} k_j$, $\gamma = \text{GCD}(i : k_i > 0)$, $\lambda = (k_1^2 k_2 \ldots (r - 1) k_{r-1})$.

Proof. By Theorem 3.3 one has $c_{k_1,\ldots,k_r} = \chi^{orb}(\mathcal{M}_{g}(k_1,\ldots,k_r))$. Consider the moduli space $\mathcal{M}_{g}(k_1,\ldots,k_r)$ of pairs (C,τ). As in Proposition 3.1 to such a pair one can associate a genus h curve $C_1 = C/\tau$. The projection from C to C_1 is ramified in s points subdivided into groups of size k_1,\ldots,k_{n-1}. The orbifold Euler characteristic of the moduli space of genus h curves with such markings equals $\chi^{orb}(\mathcal{M}_{h,s}) / \prod_{i=1}^{r} 1!$.

The non-equivariant Euler characteristic $\chi(\mathcal{M}_{g,n})$ of pairs (C,τ) associated to a curve C_1 with fixed marked points was computed in [13] pages 478–479 and equals
\[
\frac{1}{r} r^{2h} \prod_{p|\gamma} (1 - p^{-2h}) \cdot N(r;\lambda).
\]

This completes the proof. \qed

The non-equivariant Euler characteristic of $\mathcal{M}_{g,n}$ has been computed in [13, Theorem 4.3]. It can be compared with Theorem 3.8 since
\[
\chi(\mathcal{M}_{g,n}) = n! \cdot \chi^{S_n}(\mathcal{M}_{g,n})|_{p_1 = 1, p_k = 0 \text{ for } k > 1}.
\]

Example 3.9. The generating function for the S_n-equivariant Euler characteristics of the moduli spaces of genus 2 curves with marked points has a form [10]:
\[
\sum_{n=0}^{\infty} t^n \chi^S_{n}(\mathcal{M}_{2,n}) = \frac{1}{240} (1 + p_1 t)^{-2} - \frac{1}{240} (1 + p_1 t)^6 (1 + p_2 t^2)^{-4} + \frac{2}{5} (1 + p_1 t)^3 (1 + p_5 t^5)^{-1} + \frac{2}{5} (1 + p_1 t)(1 + p_2 t^2)(1 + p_5 t^5)(1 + p_1 t)^{-1} + \frac{1}{6} (1 + p_1 t)^2 (1 + p_2 t^2)(1 + p_6 t^6)^{-1} - \frac{1}{12} (1 + p_1 t)^4 (1 + p_3 t^3)^{-2} - \frac{1}{12} (1 + p_2 t^2)^2 (1 + p_3 t^3)^2 (1 + p_6 t^6)^{-2} + \frac{1}{12} (1 + p_1 t)^2 (1 + p_2 t^2)^2 (1 + p_4 t^4)^{-2}.
\]

These coefficients can be matched with the ones defined in Theorem 3.8.

REFERENCES
[1] J. Bergström. Cohomologies of moduli spaces of curves of genus three via point counts. J. Reine Angew. Math. 622 (2008), 155–187.
[2] J. Bergström, O. Tommasi. The rational cohomology of \overline{M}_4. Math. Ann. 338 (2007), no. 1, 207–239.
[3] G. Bini, J. Harer. Euler Characteristics of Moduli Spaces of Curves. J. Eur. Math. Soc. (JEMS) 13 (2011), no. 2, 487–512.
[4] G. Bini, G. Gaiffi, M. Polito. A formula for the Euler characteristic of $\overline{M}_{2,n}$. Math. Z. 236 (2001) 491–523.
[5] C. Faber, G. van der Geer. Sur la cohomologie des systèmes locaux sur les espaces de modules des courbes de genre 2 et des surfaces abéliennes. I, II. C. R. Math. Acad. Sci. Paris 338 (2004), no. 5, 381–384; no. 6, 467–470.
[6] E. Getzler. Mixed Hodge structures of configuration spaces. [arXiv:math.AG/9510018]
[7] E. Getzler. Resolving mixed Hodge modules on configuration spaces. Duke Math. J. 96 (1999), no. 1, 175–203.
[8] E. Getzler. Euler characteristics of local systems on \mathcal{M}_2. Compositio Math. 132 (2002), 121–135.
[9] E. Getzler, E. Looijenga. The Hodge polynomial of $\mathcal{M}_{1,1}$. [arXiv:math.AG/9910174]
[10] E. Gorsky. On the S_n-equivariant Euler characteristic of $\mathcal{M}_{2,n}$. [arXiv:0707.2662]
[11] E. Gorsky. On the S_n-equivariant Euler characteristic of moduli spaces of hyperelliptic curves. Math. Res. Lett. 16 (2009), no. 4, 591–603.
[12] E. Gorsky. Adams operations and power structures. Mosc. Math. J. 9 (2009), no. 2, 305–323.
[13] J. Harer, D. Zagier. The Euler characteristic of the moduli space of curves. Invent. Math. 85 (1986), 457–485.
[14] W. J. Harvey. Cyclic groups of automorphisms of a compact Riemann surface. Quart. J. Math. Oxford Ser. (2) 17 (1966), 86–97.
[15] A. Khovanskii, A. Pukhlikov. Integral transforms based on Euler characteristic and their applications. Integral Transform. Spec. Funct. 1 (1993), no. 1, 19–26.
[16] R. MacPherson. Chern classes for singular algebraic varieties. Ann. of Math. (2) 100 (1974), 423–432.
[17] O. Tommasi. Rational cohomology of the moduli space of genus 4 curves. Compos. Math. 141 (2005), no. 2, 359–384.
[18] O. Tommasi. Rational cohomology of $\mathcal{M}_{3,2}$. Compos. Math. 143 (2007), no. 4, 986–1002.
[19] O. Viro. Some integral calculus based on Euler characteristic. Topology and geometry – Rohlin Seminar, 127–138, Lecture Notes in Math., 1346. Springer, Berlin, 1988.
[20] A. Wiman. Ueber die hyperelliptischen Curven und diejenigen vom Geschlechte $\rho = 3$ welche eindeutigen Transformationen in sich zulassen. Bihang Till. Kongl. Svenska Vetenskaps-Akademiens Hadlingar 21 (1895-6) 1–23.