Fibre bundle framework for unitary quantum fault tolerance

Lucy Liuxuan Zhang

University of Toronto

December 18, 2014

Joint work with Daniel Gottesman, arXiv:1309.7062
Motivations

 Fault tolerance \rightarrow robust computer (major obstacle):
 - Classical fault tolerance – e.g. repetition code
 - Quantum fault tolerance – e.g. transversal gates with ancilla constructions, topological fault tolerance

 We know of various protocols of fault tolerance, we want to understand them in some unified framework.

 Achieved:
 - Developed conjecture of a global and geometric picture of unitary quantum fault tolerance.
 - Proof of conjecture for transversal gates
 - Proof of conjecture for a family of topological codes, including the toric code

 Hope: new insights, new fault tolerant protocols . . .
Conjecture

Correspondence for appropriate fibre bundles F, with base space M:

- **Unitary fault tolerance**
- **Fault-tolerant logical gates**
- **Fibre bundle F with flat proj. connection**
- **Monodromy rep. of $\pi_1(M)$**

The conjecture (\rightarrow) is proven for the cases of:

- transversal gates and
- generalized string operators for a family of topological codes.
Ingredients of a fault-tolerant protocol

Here, we focus on only the QECCs and the FT operations.
Example 1: Transversal gates definition

- Code blocks (of equal size): qudits represented by same colour
- Transversal gates: Interact the i^{th} qudit of each block

A transversal gate on multiple blocks of a QECC can be considered as a transversal gate on a single block of a QECC with larger physical qudits. We group together qudits in the same column to make the larger qudits.
Example 2: Modified toric codes and String operators

- Original toric code by Kitaev in arXiv:quant-ph/9707021
- Modified toric code Hamiltonian (primal defects at S_v, dual at S_f):

$$H(S_v, S_f) = - \sum_{v \in V \setminus S_v} A_v - \sum_{f \in F \setminus S_f} B_f + \sum_{v \in S_v} A_v + \sum_{f \in S_f} B_f.$$

String operators transport defects.
Fibre bundle – The Möbius band

- Constituents: total space, base space, fibre, structure group
- An example:

A nontrivial fibre bundle over the base space S^1 (in red) with fiber \mathbb{R} (fiber at one point shown in blue). Structure group is \mathbb{Z}_2 in this case.
Base space: Codes as the Grassmannian manifold

Over the next couple of slides, we build up the “big vector bundle” for our picture, from mathematical objects natural for QEC. First,

- Base space is the Grassmannian (a set of codes):
 - An \(((n, K))\) qudit code is a \(K\)-dimensional subspace in \(\mathbb{C}^N\) where \(N = d^n\) (\(n\)-qudit Hilbert space).
 - \(\text{Gr}(K, N) = \{\text{The set of } K\text{-dimensional subspaces in } \mathbb{C}^N\}\)
 - Example: \(\mathbb{C}P^1 = \text{Gr}(1, 2)\)
 - Known as the Grassmannian.
 - Clearly, for \(N = d^n\),
 \[
 \text{Gr}(K, N) = \{\text{The set of } ((n, K)) \text{ qudit codes}\}.
 \]
Vector bundle: Codewords as the tautological vector bundle $\xi(K, N)$

- Total space is the tautological vector bundle (a set of codewords):
 - A codeword in an $((n, K))$ qudit code is a pair (C, w) where C is an $((n, K))$ qudit code and $w \in C$ is a vector.
 - $\xi(K, N)$ is a vector bundle with:
 - Base space is $\text{Gr}(K, N)$, consisting of subspaces W
 - Fibre over W is W itself, i.e. the elements are vectors $w \in W$
 - Known as the tautological vector bundle

- Similarly, for $N = d^n$, we have the natural mathematical-QEC correspondence:

$$\xi(K, N) = \{\text{Codewords in some } ((n, K)) \text{ qudit code}\}. \quad (1)$$
Some correspondences between the theory of QECCs and that of fibre bundles

A summary:

Quantum information objects	Mathematical objects
Space of ((n, K)) qudit codes	Grassmannian Gr(K, N) where $N = d^n$
Space of the *codewords* (C, w)	tautological vector bundle $\xi(K, N)$
Space of the *encodings* or orthonormal K-frames β in \mathbb{C}^N	tautological principle $\mathcal{U}(K)$-bundle $P(K, N)$
Dynamics in unitary fault tolerance (or unitary QM)

Definition

A *unitary evolution* is a one-parameter family $U(t)$ of unitary operators such that, at time 0, $U(0) = I$, and as time passes, $U(t)$ evolves smoothly (or piecewise smoothly) with time, until at time 1, it accomplishes some target unitary $U(1) = U$.

- Modelling unitary evolutions in our geometric picture
 - Task 1: Unitary evolutions of the codewords (states)
 - Task 2: Unitary evolutions of the QECC (subspaces)
“Dynamics” in the “big vector bundle”

- Given a unitary evolution $U(t)$ and a code C, we obtain:
 - a path in the bundle (evolution of codewords)
 - a path in the base space (evolution of codes)

- Resembles a parallel transport/connection (*pre-connection*)
 - Problem: The lift $\tilde{\gamma}(t)$ of $\gamma(t)$ might not be unique.

\[U(N) \quad \xi(K, N) \]

\[U(t) \quad \gamma(t) \quad \Gr(K, N) \]

\[\tilde{\gamma}(t) \]

Lucy Liuxuan Zhang

Fibre bundle framework for unitary quantum fault tolerance
Restricting bundle to \(\mathcal{M} \subset \text{Gr}(K, N) \) and \(\mathcal{F} \subset \mathcal{U}(N) \)

Schematic illustration of the restrictions:

Conjecture (fault tolerance magic)

For appropriate restrictions (depending on FT protocol), \(\text{FT} \Rightarrow \) the natural (proj.) pre-connection becomes an flat (proj.) connection.
Examples: \mathcal{F} and \mathcal{M}

- **Example 1:** Distance ≥ 2 code with transversal gates
 - \mathcal{C} any code with distance ≥ 2.
 - $\mathcal{F} = \{\text{Transversal gates}\} \subset \mathcal{U}(N)$
 - $\mathcal{M} = \mathcal{F}(\mathcal{C}) \subset \text{Gr}(K, N)$
 - Flatness results follow from arXiv:0811.4262 (Eastin and Knill)

- **Example 2:** Toric code with string operators
 - $\mathcal{F}_{\text{discr}}$, $\mathcal{F}_{\text{graph}}$, \mathcal{F}_{ext}
 - $\mathcal{C}_K^{HC,(n_v,n_f)} \subset \mathcal{M} \subset \mathcal{M} \subset \text{Gr}(K, N)$

 - $\mathcal{M} \cong \text{defect configuration space (fixed number of defects, hardcore condition)}$; **There is freedom in the choice of \mathcal{M}**.
 - Flatness results in arXiv:1309.7062 (Gottesman and Zhang)
Corollary: Monodromy action

Fault-tolerant logical gates \[\Rightarrow\] monodromies

A cartoon of \mathcal{M} for single-block transversal gates for the 5-qubit code.
Imperfection of the current conjecture:
- Multiple valid choices of M for the same protocol
- Lacks concrete instructions to construct M

Improve conjecture: incorporate error model, propose *canonical* construction of M for each fault-tolerant protocol.
- Stricter correspondence between FT protocols (with error models etc.) and fibre bundles with flat (proj.) connection
- Will enable us to read off new FT protocols from a “nice” bundle construction with flat (proj.) connection
- Proof of improved conjecture

Extend to *full* fault tolerance: e.g. ancilla constructions (appending extra degrees of freedom), measurements

Other applications of the this geometric picture, e.g. TQFTs and topological phases

Thank you!