The retrosplenial cortex and long-term spatial memory: from the cell to the network
Michal M Milczarek and Seralynne D Vann

In this review we briefly outline how lesion studies, temporary inactivation and neural activity assays have helped update functional models of the retrosplenial cortex, a region critical for episodic and spatial memory. We advocate for the continued importance of appropriately designed behavioural studies in the context of novel experimental methods, such as optogenetic and chemogenetic manipulations. At the same time, we caution against the overreliance on any given level of analysis or experimental technique. Complementary, multimodal strategies are required for understanding how the retrosplenial cortex contributes to the formation and storage of memories both at a structural and systems-level.

Address
School of Psychology, Cardiff University, Cardiff, UK

Corresponding author: Vann, Seralynne D (vannsd@cardiff.ac.uk)

RSC lesions studies: identifying the necessity of RSC for mnemonic processes

Neuropsychological studies involving patients with damage to specific brain areas have been the bedrock of memory research. There are remarkably few reports of patients with RSC lesions but, from the studies that are available, patients typically present with spatial disorientation and anterograde amnesia, which is sometimes accompanied by retrograde and semantic memory impairments [2,3]. However, it is difficult to ascribe these functions specifically to RSC given that lesions are rarely circumscribed. In contrast, targeted lesions in rodents have confirmed the role of RSC in both spatial and non-spatial memory [2,4]. Studies in animals have also shown RSC-lesion effects are often most evident when animals are required to switch between frames of reference, that is, egocentric or allocentric viewpoints, or integrate information across different sensory modalities [5,6].

Rodent studies can be particularly informative as they enable specific subregions within RSC to be targeted; for example, lesions studies have examined the contributions of granular and dysgranular subdivisions and identified a general role for granular RSC in spatial memory but a more focused role for dysgranular RSC in visuo-spatial processing [7,8] (Figure 1). Furthermore, impairments following selective lesions along the rostro-caudal axis of RSC are consistent with a distribution of function along the length of RSC [9,10]. Together, lesion studies in rodents have advanced our understanding of the RSC and highlighted the heterogeneity within the RSC, which would be missed by simply focusing on the RSC as a single structure.
Lesion studies have typically assessed the effects of RSC damage on new learning, that is, lesions are made before behavioural training. From patient studies, RSC pathology results in retrograde amnesia for autobiographical episodes and impairs the use of previously learnt spatial information [3,11], highlighting the need to assess post-training lesions in rodents. Findings from the few studies available are consistent with RSC being important for the long-term storage or retrieval of previously learnt information. Todd et al. [12] showed that retrieval of auditory fear memories was disrupted when RSC lesions were made several weeks after encoding. Likewise, post-training RSC lesions impaired rats’ ability to discriminate between previously rewarded arms of a radial-arm maze (RAM), irrespective of whether the training occurred 4-weeks or one day before surgery [13]. Importantly, these retrograde memory impairments appear consistent across species: Buckley and Mitchell showed that RSC lesions in macaques disrupted performance on an object-scene memory task that had been learnt before surgery [14].

Limitations of lesions: a move to temporary inactivation

Traditional lesion studies have provided a wealth of information regarding the role of RSC for memory but there are limitations to this approach. Compensatory mechanisms can minimise the impact of the lesions, particularly for tasks requiring slow acquisition. This is especially pertinent for the RSC as it may explain why deficits following RSC lesions are often mild and/or resolve with continued training. This may account for the apparent mismatch between the prevalence of RSC involvement in human fMRI studies and the somewhat mild effects of RSC lesions in rodents.

Temporary inactivation enables the RSC to be silenced at different stages of learning, which reduces the likelihood of animals using compensatory strategies. In rodents, only a couple of studies have used drug infusions to temporarily inactivate the RSC during spatial tasks [e.g. 15]. While impairments of T-maze alternation following RSC lesions are only observed when intra-maze and extra-maze cues are put in conflict, rats infused with muscimol into the RSC show deficits even on the standard version of the task [16]. The importance of RSC for fear memory consolidation has been shown using temporary inactivation with infusates such as muscimol as well as with compounds that interfere with post-learning protein synthesis or immediate-early gene (IEG) expression [12,17–19]. The move to chemogenetic and optogenetic approaches [4] has the potential to provide next level cell-to-network analysis by enabling the selective manipulation of subpopulations of cells and specific neuronal pathways.

Evidence for retrosplenic involvement in the storage of long-term memory traces also comes from conditioning experiments where inactivation or re-activation of retrosplenic ensembles can abolish or reinstate retrieval, respectively [20,21*,22].

Longitudinal imaging of rodent retrosplenic cortex

Inactivating RSC at different stages of task performance enables us to determine those processes for which RSC is critical. However, this approach is not without drawbacks; for example, a restricted number of inactivations can typically be assessed, there can be carry-over effects on subsequent learning and alterations to normal cell functioning over longer time periods. Critically, temporally altering cell firing in RSC may simply be telling us about the effects of interference across networks rather than how these networks function normally. Furthermore, this approach still potentially undervalues RSC involvement in tasks where RSC engagement is typical but not necessary. Measuring microstructural changes at different stages of learning can address some of these issues.

Our group recently employed diffusion tensor imaging (DTI) to investigate changes in the microstructure of grey matter areas involved during spatial learning [23] (Figure 2). DTI measures tissue inhomogeneity resulting from the asymmetric movement of water molecules and changes to some of its metrics can capture plastic events
in both humans and rodents [24–26]. In our study, animals were trained on a working memory version of the RAM task and we observed differential temporal engagement of the hippocampus and the RSC, with the former showing peak DTI changes during the initial stages of task acquisition. This contrasted with the RSC where the greatest changes were observed at the end of training when the animals were proficient at the task and the spatial environment had become familiar. This complementary engagement of the hippocampus and RSC is consistent with systems consolidation models where the hippocampus is engaged in rapid, early encoding and the cortex is involved in slower, long-term learning requiring the maturation of its representations [27,28]. Likewise, these findings highlight the preferential engagement of RSC in familiar rather than novel spatial environments, which is in line with human fMRI findings [29**].

Increasing the resolution: from structure to cells

This longitudinal MR imaging approach is beneficial as it allows for brain-wide assessments and also provides more direct comparisons with human studies. An added benefit of rodent studies is that behaviour can be more closely controlled over longer time periods, enabling behaviour and neural changes to be more closely linked. However, MR imaging studies in rodents typically require animals to be anaesthetised which has a number of drawbacks, including limiting the overall number and frequency of scans that can be carried out. Furthermore, the spatial resolution of these scans makes it difficult to dissociate small subregions and be confident that changes are anatomically constrained.

An alternative is to use higher resolution methodology where individual cells can be assessed. IEGs, such as c-fos, zif268 and Arc, are rapidly expressed in response to physiological or pharmacological stimulation and the proteins are subsequently involved in long-lasting adaptive changes [30]. As such, IEG imaging has been extensively used to probe the involvement of brain circuits in learning and memory and has increased our knowledge of RSC function. Initial experiments assessed IEG expression in post-mortem tissue. These studies revealed RSC engagement during the expression [31] and the consolidation of spatial memory task [32]; however, RSC is not differentially involved when performing the same task in a novel room or with a novel configuration of spatial cues, unlike hippocampus [31,33]. Again, this fits with the concept that RSC is not engaged in the processing of novel spatial cues [23,29**]. The resolution of IEG imaging enables analysis of subregions within RSC and this has provided additional evidence for functional dissociations within RSC: granular RSC is engaged in spatial working memory in both the light and the dark while dysgranular RSC is selectively involved in the light, that is, when visual cues are available [34]. These findings correspond with the dense connectivity between dysgranular RSC and visual cortex and the impaired use and integration of visual stimuli following selective dysgranular RSC lesions [5,6,35]. This IEG imaging approach has also been repeatedly used to demonstrate the sensitivity of RSC to diachisis. There is a striking reduction in RSC activity, as measured by IEG imaging, following lesions of the hippocampus, anterior thalamic nuclei and the mammillothalamic tract [36–40], which likely contributes to the memory impairments associated with these lesions.

This type of IEG imaging provides a method to look in-depth at multiple brain regions from the same animals. More recently, entire brains have been imaged [41], but with the limitation that only a single time-point can be assessed. A further development is using two-photon imaging to image cells longitudinally. The RSC is in many ways an ideal region for this approach given its location on the surface of the brain, simply requiring a window to be inserted in the overlying skull when imaging dysgranular RSC. Active neurons in the RSC, expressing an IEG, can be tagged with reporter genes, such as the green fluorescent protein, and repeatedly visualised under a cranial window [42]. We were able to use this approach to image the same cells over a number of days to examine the engagement of these cells during a spatial memory task [43] (Figure 3). Mice in the study were
trained over a number of sessions on a reference memory task in the RAM. Over the course of training, a stable pattern of cell activity emerged, corresponding with the learning of the task. The pattern of neural activity was also re-instated upon retrieval of the task after a 24-day delay. Importantly, the fidelity of the re-instatement correlated with the animals’ performance levels, highlighting a role for the RSC in the encoding and storage of memory traces (engram formation). Furthermore, the time-scale of the developing engram is consistent with the findings from our DTI study, where RSC appears particularly important for the slow, long-term learning of spatial information. It also mirrors recent findings from Miller et al. [44] who, using electrophysiological recordings, demonstrated the gradual involvement of the RSC throughout the acquisition of continuous spatial alternation in T-maze.

From structure to networks
IEG analyses have enabled us to assess the impact of both distal lesions on RSC function and of RSC lesions on wider networks [40,45]. While these studies highlight the importance of looking at the RSC in the context of wider networks, they fail to capture the dynamic nature of interactions across regions. A few studies have carried out simultaneous electrophysiological recordings of RSC and the hippocampus to examine the interplay between these structures. We and others have identified state-dependent effects on cross-frequency modulation within RSC and coherence between RSC and hippocampus [23,46]. The interactions between RSC and hippocampus during REM sleep may be particularly relevant for the RSC’s role in consolidation. Likewise, RSC-hippocampal coherence also varies with contextual fear learning such that the degree of RSC-hippocampal theta peak coherence can predict retrieval of remote fear memory [47]. Recent developments in probes and recording capacities will undoubtedly advance our understanding of RSC participation in large-scale memory networks.

Novel techniques for exploring the temporal dynamics of memory
The use of direct functional imaging techniques as well as electrophysiological recordings offers a window into the temporal progression of mechanisms underlying memory formation, consolidation and retrieval. Imaging of genetically encoded calcium indicators expressed in select neuronal subpopulations yields critical information about both the identity and the activity patterns of mnemonic circuits. Consistent with the placement of the human RSC among scene selective areas, the rodent RSC shows sensitivity to both basic [48] and more complex visual stimuli providing contextual information. Calcium signals in RSC provide evidence for place-field like activity when traversing simple environments [49]. Such ‘place fields’ appear critically dependent on their hippocampal inputs and show gradual stabilisation over the course of learning [50]. RSC also modulates visual cortex responses in mice that have learnt a visual avoidance task, showing RSC can exert top-down control over sensory responses and that control increases over training [51]. While very informative, calcium-imaging studies are still limited in their ability to replicate natural animal behaviours (e.g. due to head-fixation) and may be confounded by ectopic activity patterns [52]. Nevertheless, the use of microendocopes in freely moving animals, including mesoscale level analyses (capturing large areas of the cortex simultaneously) [e.g., 53] may soon help overcome these shortcomings.

Conclusions
No individual experimental approach can capture the complex nature of memory. While novel technological advancements have afforded unprecedented levels of analysis, thus allowing more mechanistic models of memory processes to emerge, it remains crucial not to overlook more traditional approaches (see Box 1). This is very much true for behavioural studies where appropriate designs and use of controls remain essential. After all,
understanding memory requires the ability to link behaviour with internal processes while resisting the temptation to reduce it to a very limited set of laboratory tasks. For example, the increased focus on fear conditioning experiments in rodents may be difficult to reconcile with the RSC’s role in human memory processes [27]. Likewise, the focus on isolated processes or brain areas can prove misleading. The application of new-generation in vivo electrophysiological probes or imaging of genetically encoded calcium indicators have already shown huge promise in disentangling the contributions of neural networks to memory while genetic manipulations now allow the selective alteration of memory traces. These techniques may perhaps one day enable the reinstatement of normal RSC function following diachisis resulting from both lesions and dementia. This is clearly an important goal given the repeated findings, from numerous experimental approaches, and across species, of the importance of the RSC for spatial memory and for the long-term representation of spatial associations.

Conflict of interest statement
Nothing declared.

CRediT authorship contribution statement
Michal M Milcarka: Conceptualization, Writing - original draft. Seralyne D Vann: Conceptualization, Funding acquisition, Writing - original draft, Writing - review & editing.

Acknowledgement
The authors are supported by a Wellcome Trust Senior Research Fellowship awarded to SDV (212273/Z/18/Z).

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Vann SD, Nelson AJ: The mammillary bodies and memory: more than a hippocampal relay. Prog Brain Res 2015, 219:163-185.
2. Vann SD, Aggleton JP, Maguire EA: What does the retrosplenial cortex do? Nat Rev Neurosci 2009, 10:792-802.
3. Maguire EA: The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand J Psychol 2001, 42:225-238.
4. Todd TP, Fournier DI, Bucco DJ: Retrosplenial cortex and its role in cue-specific learning and memory. Neurosci Biobehav Rev 2019, 107:713-728.
5. Hindley EL, Nelson AJ, Aggleton JP, Vann SD: Dysgranular retrosplenic cortex lesions in rats disrupt cross-modal object recognition. Learn Mem 2014, 21:171-179.
6. Hindley EL, Nelson AJ, Aggleton JP, Vann SD: The rat retrosplenial cortex is required when visual cues are used flexibly to determine location. Behav Brain Res 2014, 263:98-107.
7. van Groen T, Kadish I, Wyss JM: Retrosplenic cortex lesions of area Rgb (but not of area Rga) impair spatial learning and memory in the rat. Behav Brain Res 2004, 154:483-491.
8. Pothuizen HH, Davies M, Aggleton JP, Vann SD: Effects of selective granular retrosplenic cortex lesions on spatial working memory in rats. Behav Brain Res 2010, 208:566-575.
9. Vann SD, Aggleton JP: Testing the importance of the retrosplenic guidance system: effects of different sized retrosplenic cortex lesions on heading direction and spatial working memory. Behav Brain Res 2004, 155:97-108.
10. Vann SD, Kristina Wilton LA, Muir JL, Aggleton JP: Testing the importance of the caudal retrosplenic cortex for spatial memory in rats. Behav Brain Res 2003, 140:107-118.
11. Gainotti G, Almonti S, Di Betta AM, Silveri MC: Retrograde amnesia in a patient with retrosplenic tumour. Neurocase 1998, 4:519-526.
12. Todd TP, Mehlman ML, Keene CS, DeAngelii NE, Bucco DJ: Retrosplenic cortex is required for the retrieval of remote memory for auditory cues. Learn Mem 2016, 23:278-288.
13. Hajiima A, Ichitani Y: Anterograde and retrograde amnesia of place discrimination in retrosplenic cortex and hippocampal lesioned rats. Learn Mem 2008, 15:477-482.
14. Buckley MJ, Mitchell AS: Retrosplenic cortical contributions to anterograde and retrograde memory in the monkey. Cereb Cortex 2016, 26:2905-2918.
15. Cooper BG, Mizumori SJ: Retrosplenic cortex inactivation selectively impairs navigation in darkness. Neuroreport 1999, 10:625-630.
16. Nelson AJ, Powell AL, Holmes JD, Vann SD, Aggleton JP: What does spatial alternation tell us about retrosplenic cortex function? Front Behav Neurosci 2015, 9:126.
17. Kwapis JL, Jardo TJ, Lee JL, Helmstetter FJ: The retrosplenic cortex is involved in the formation of memory for context and trace fear conditioning. Neurobiol Learn Mem 2015, 123:110-116.
18. Katche C, Dorman G, Gonzalez C, Kramar CP, Slipczuk L, Rossato JI, Cammarota M, Medina JH: On the role of retrosplenic cortex in long-lasting memory storage. Hippocampus 2013, 23:295-302.
19. Katche C, Dorman G, Slipczuk L, Cammarota M, Medina JH: Functional integrity of the retrosplenic cortex is essential for rapid consolidation and recall of fear memory. Learn Mem 2013, 20:170-173.
20. Wang G, Xie H, Wang L, Luo W, Wang Y, Jiang J, Xiao C, Xing F, Guan JS: Switching from fear to no fear by different neural ensembles in mouse retrosplenial cortex. Cereb Cortex 2019, 29:5085-5097.

21. de Sousa AF, Cowansage KK, Zutshi I, Cardozo LM, Yoo EJ, Leutgeb S, Mayford M: Optogenetic reactivation of memory ensembles in the retrosplenic cortex induces systems consolidation. Proc Natl Acad Sci U S A 2019, 116:8576-8581.

22. Cowansage KK, Shuman T, Dillingham BC, Chang A, Golshani P, Mayford M: Direct reactivation of a coherent neocortical memory context. Neuron 2014, 84:432-441.

23. Dillingham CM, Milczeak MM, Perry JC, Frost BE, Parker GD, Assaf Y, Sengpiel F, O’Mara SM, Vann SD: Mammillothalamic disconnection alters hippocampocortical oscillatory activity and microstructure: implications for diencephalic amnesia. J Neurosci 2019, 39:6095-6113.

24. Sagi Y, Tavor I, Hofstetter S, Tzur-Moryosef S, Blumenfeld-Katzir T, Assaf Y: Learning in the fast lane: new insights into neuroplasticity. Neuron 2012, 73:1195-1203.

25. Hofstetter S, Tavor I, Tzur-Moryosef S, Assaf Y: Short-term learning induces white matter plasticity in the fornix. J Neurosci 2013, 33:12844-12850.

26. Blumenfeld-Katzir T, Pasternak O, Dagan M, Assaf Y: Diffusion MRI of structural brain plasticity induced by a learning and memory task. PLoS One 2011, 6:e20678.

27. Hardt O, Nadel L: Systems consolidation revisited, but not revised: the promise and limits of optogenetics in the study of memory. Neurosci Lett 2017, 680:54-59.

28. Kitamura T, Ogawa SK, Roy DS, Okuyama T, Morrissey MD, Smith LM, Redondo RL, Tonegawa S: Engrams and circuits crucial for systems consolidation of a memory. Science 2017, 356:73-78.

29. Patil EZ, Javadi AH, Ozubko JD, O’Callaghan A, Ji S, Robin J, Grady C, Winocur G, Rosenbaum RS, Moscovitch M et al.: Hippocampal and retrosplenic goal distance coding after long-term consolidation of a real-world environment. Cereb Cortex 2019, 29:2748-2758.

Students underwent MRI imaging while navigating virtual simulations of a familiar campus or recently learnt campus. While the hippocampus tracked the distance to the goal in both environments, the retrosplenic cortex was selectively engaged in the familiar environment.

30. Kaczmarek L: Expression of c-fos and other genes encoding transcription factors in long-term potentiation. Behav Neural Biol 1992, 57:263-266.

31. Vann SD, Brown MW, Aggleton JP: Fos expression in the rostral thalamic nuclei and associated cortical regions in response to different spatial memory tests. Neuroscience 2000, 101:993-991.

32. Maviel T, Durkin TP, Menzaghi F, Bontempi B: Sites of neocortical reorganization critical for remote spatial memory. Science 2004, 305:96-99.

33. Jenkins TA, Amin E, Pearce JM, Brown MW, Aggleton JP: Novel spatial arrangements of familiar visual stimuli promote activity in the rat hippocampal formation but not the parahippocampal cortices: a c-fos expression study. Neuroscience 2004, 124:43-52.

34. Pothuizen HH, Davies M, Albasser MM, Aggleton JP, Vann SD: Granular and dysgranular retrosplenic cortices provide qualitatively different contributions to spatial working memory: evidence from immediate-early gene imaging in rats. Eur J Neurosci 2009, 30:877-888.

35. Vann SD, Aggleton JP: Selective dysgranular retrosplenic cortex lesions in rats disrupt allocentric performance of the radial-arm maze task. Behav Neurosci 2005, 119:1682-1686.

36. Kubik S, Miyashita T, Kubik-Zahorodna A, Guzowski JF: Loss of activity-dependent Arc gene expression in the retrosplenic cortex after hippocampal inactivation: interaction in a higher-order memory circuit. Neurobiol Learn Mem 2012, 97:124-131.

37. Vann SD: Dismantling the Papez circuit for memory in rats. eLife 2013, 2:e00736.

38. Vann SD, Albasser MM: Hippocampal, retrosplenic, and prefrontal hypoactivity in a model of diencephalic amnesia: evidence towards an interdependent subcortical-cortical memory network. Hippocampus 2009, 19:1090-1102.

39. Jenkins TA, Vann SD, Amin E, Aggleton JP: Anterior thalamic lesions stop immediate early gene activation in selective laminae of the retrosplenic cortex: evidence of covert pathology in rats? Eur J Neurosci 2004, 19:3291-3304.

40. Albasser MM, Poirier GL, Warburton EC, Aggleton JP: Hippocampal lesions have immediate-early gene protein counts in retrosplenic cortex: distal dysfunctions in a spatial memory system. Eur J Neurosci 2007, 26:1254-1266.

41. Kim Y, Venkataramu KU, Pradhan K, Mende C, Taranda J, Turaga SC, Arganda-Carreras I, Ng L, Hawrylcz MJ, Rockland KS et al.: Mapping social behavior: optogenetically-induced brain activation at cellular resolution in the mouse. Cell Rep 2015, 10:292-305.

42. Czajkowski R, Jayaprakash B, Witgen B, Rogerson T, Guzman-Karlsson MC, Barth AL, Trachtenberg JT, Silva AJ: Encoding and storage of spatial information in the retrosplenic cortex. Proc Natl Acad Sci U S A 2014, 111:8661-8666.

43. Milczeak MM, Vann SD, Sengpiel F: Spatial memory engram in the mouse retrosplenic cortex. Curr Biol 2018, 28:1975-1980.e6.

44. Miller AMP, Mau W, Smith DM: Retrosplenic cortical representations of space and future goal locations develop with learning. Curr Biol 2018, 29:2083-2090.e6.

RSC-encoded neural populations develop a spatial representation with learning on a T-maze task. Furthermore, late in learning, RSC activity could be used to predict future navigation decisions. This again supports the idea of RSC being important for slowly developed long-lasting representations of space and that representations can be modified by task demands and intention.

45. Powell AL, Hindley E, Nelson AJD, Davies M, Amin E, Aggleton JP, Vann SD: Lesions of retrosplenic cortex spare immediate-early gene activity in related limbic regions in the rat. Brain Neurosci Adv 2018, 2:e398212818811235.

Retrosplenic cortex lesions have minimal effect on immediate-early gene expression across spatial memory networks. In contrast retrosplenic cortex is particularly sensitive to distal pathology. This may modify the importance of combined inputs into the retrosplenic cortex for memory.

46. Koike BDV, Farias KS, Billwiller F, Almeida-Filho D, Libourel PA, Tiran-Cappello A, Parmentier R, Blanco W, Ribeiro S, Luppi PH et al.: Electrophysiological evidence that the retrosplenic cortex displays a strong and specific activation phased with hippocampal theta during paradoxical (REM) sleep. J Neurosci 2017, 37:8003-8013.

47. Corcoran KA, Frick BJ, Radulovic J, Kay LM: Analysis of coherent activity between retrosplenic cortex, hippocampus, thalamus, and anterior cingulate cortex during retrieval of recent and remote context fear memory. Neurobiol Learn Mem 2016, 127:93-101.

48. Murakami T, Yoshida T, Matsu T, Ohki K: Wide-field Ca(2+)/ imaging reveals visually evoked activity in the retrosplenic area. Front Mol Neurosci 2015, 8:20.

49. Mao D, Kandler S, McNaughton BL, Bonin V: Sparse orthogonal population representation of spatial context in the retrosplenic cortex. Nat Commun 2017, 8:243.

50. Mao D, Neumann AR, Sun J, Bonin V, Mohajerani MH, McNaughton BL: Hippocampus-dependent emergence of spatial sequence coding in retrosplenic cortex. Proc Natl Acad Sci U S A 2018, 115:8015-8018.

Longitudinal calcium-imaging was used to show the emergence and stability of spatial representations over training sessions. These representations were disrupted by bilateral but not unilateral, hippocampal lesions.
51. Makino H, Komiyama T: Learning enhances the relative impact of top-down processing in the visual cortex. Nat Neurosci 2015, 18:1116-1122.

52. Steinmetz NA, Buetfering C, Lecon J, Lee CR, Peters AJ, Jacobs EAK, Coen P, Ollierenshaw DR, Valley MT, de Vries SEJ et al.: Aberrant cortical activity in multiple GCaMP6-expressing transgenic mouse lines. eNeuro 2017, 4.

53. Scott BB, Thiberge SY, Guo C, Tervo DGR, Brody CD, Karpova AY, Tank DW: Imaging cortical dynamics in GCaMP transgenic rats with a head-mounted widefield macroscope. Neuron 2018, 100:1045-1058.e5.

54. Nelson AJD, Perry JC, Vann SD: Chapter 15 - the papez circuit and recognition memory: contributions of the medial diencephalon and retrosplenial cortex to what, where and when aspects of object recognition memory. In Handbook of Behavioral Neuroscience, vol 27. Edited by Ennaceur A, de Souza Silva MA. Elsevier; 2018:217-226.

55. Chinzorig C, Nishimaru H, Matsumoto J, Takamura Y, Berthoz A, Ono T, Nishijo H: Rat retrosplenial cortical involvement in wayfinding using visual and locomotor cues. Cereb Cortex 2019:bhz183 http://dx.doi.org/10.1093/cercor/bhz183.