INTRODUCTION

Coronavirus disease 2019 (COVID-19) is the third viral infection after severe acute respiratory syndrome, (SARS) and Middle East respiratory syndrome originally reported from Asia [1,2]. The first case of COVID-19 was identified in Wuhan, China in December 2019 and now pandemic worldwide. It is caused by a virus known as SARS corona virus-2 and was initially named as novel coronavirus or 2019-N-COV [3]. India has currently the largest number of confirmed cases in Asia [4] and has the second highest number of confirmed cases in world after the United States of America. There have been 111,102,016 confirmed cases worldwide and 2,462,911 deaths all over world till February 22, 2021. India has also recorded 11,005,850 confirmed cases and 156,385 deaths in India up to 22 February 2021 [5]. However, the death rate in our country is far less than developed world [6].

Infection occurs when virus-containing particles exhaled by an infected person, either as respiratory droplets or aerosols, get entry into the mouth, nose, or eyes of other person who is in close contact [7].

Symptoms of coronavirus disease often vary, but mostly people have fever, cough, breathing difficulties, fatigue, and loss of smell and taste. In severe cases kidney failure, high fever, multi organ failure, dyspnea, hypoxia is observed [8].

Although specific treatment eludes, but preventing measures play pivotal role in combating disease including physical or social distancing, frequent hand washing, quarantine, and ventilation of indoor spaces, face masking, avoiding public gathering, touching of eyes, nose, face by hands, healthy diet and lifestyle, and surface cleaning. Several vaccines have been developed and various countries have initiated mass vaccination campaign [9].

Symptomatic treatment is given in COVID-19 patients as there is no definitive therapy. It includes treatment of symptoms, supportive care, isolation, and experimental measures.

Drug controller of India on January 1, 2021, has approved the emergency or conditional use of Astra Zeneca’s COVID-19 vaccine, AZD 1222 marketed as Covishield is developed by the University of Oxford in association with serum Institute Pune [10]. On January 2, 2021, vaccine BBV152 marketed as Covaxin developed by Bharat Biotech in association with Indian council of medical research and national institute of virology received approval from drug controller general of India for is emergency usage [11].

METHODS

A hospital-based observational study conducted in isolation ward and intensive care unit of Govt. Medical College Kathua in collaboration with the department of pharmacology.

Study population

A total of 56 patients were enrolled during span of 40 days of study, from ending of November 2020 to January 2021. Data were obtained by examining their case records sheets for treatment prescribed and demographic profile after obtaining consent.

Inclusion criteria

The following criteria were included in the study:

- PCR positive confirmed Covid-19 patients
- Patients More than 18 years of age
- Both genders.
Exclusion criteria
The following criteria were excluded from the study:

- Multi organ failure
- Age <18 years
- Mentally retarded person.

Study approval
Approval of this study was obtained from institutional ethics committee before the start of this study (IEC/GMCK/64/pharmadt-27/8/2020).

Consent
Informed consent was taken from patients who were included in study.

RESULTS
A total of 56 patients were enrolled in study. Socio-demographic profile, medical histories were recorded from case files.

Demographic profile of patients revealed that most of them were males (60.71%). Majority of the patients were in the age group of 18–60 years (69.6%) in which 18–40 year age group contributed 32.1% while 40–60 years age group contributed 37.5%. Most of the patient was under matric while 39.28% were undergraduate (Table 1).

Majority of the patients reported with sore throat (71.42%), dry cough (51%) and breathlessness (44.64%), and fever (28.57%) followed by generalized weakness, gastric upset, and malaise (Table 2).

Maximum number of the patients was having chronic obstructive lung disease (COPD) as comorbidity (28.5%), followed by severe anemia (21.42%), diabetes mellitus, and hypertension (19.64% each) (Table 3).

Pattern of antibiotics and antiviral revealed that azithromycin was frequently prescribed (87.5%), followed by hydroxychloroquine (44.64%), linezolid (21.42%), ceftriaxone (19.64%), and remdesivir (14.28%) (Table 4).

Steroids were frequently prescribed in these patients. Parenteral hydrocortisone was commonly prescribed (57.14%), followed by inhaler budicart 50% and dualin 46.2%. All patients were given multivitamin and Vitamin C. Majority of the patients also received pantoprazole (proton pump inhibitor 91.07%) antiemetic ondansetron was also given (Tables 5 and 6).

DISCUSSION
Since experience of mankind in management of COVID-19 disease is short, therefore the prescribing pattern in COVID-19 varied from country to country and many antiviral drugs and antimicrobials have been tried. In Indian setup also regimen varied. Therefore, it was thought of interest to evaluate the prescribing pattern in COVID-19 patients.

In the current study, demographic profile revealed that majority of patients were males (60.71%) and the most affected age group was between 18 and 60 years. The majority of patients were having education below matriculation (50%). Similar to our observations, other studies have also documented males to be predominantly of interest to evaluate the prescribing pattern in COVID-19 patients.

In the current study, demographic profile revealed that majority of patients were males (60.71%) and the most affected age group was between 18 and 60 years. The majority of patients were having education below matriculation (50%). Similar to our observations, other studies have also documented males to be predominantly of interest to evaluate the prescribing pattern in COVID-19 patients.

In the current study, demographic profile revealed that majority of patients were males (60.71%) and the most affected age group was between 18 and 60 years. The majority of patients were having education below matriculation (50%). Similar to our observations, other studies have also documented males to be predominantly of interest to evaluate the prescribing pattern in COVID-19 patients.

In the current study, demographic profile revealed that majority of patients were males (60.71%) and the most affected age group was between 18 and 60 years. The majority of patients were having education below matriculation (50%). Similar to our observations, other studies have also documented males to be predominantly of interest to evaluate the prescribing pattern in COVID-19 patients.

In the current study, demographic profile revealed that majority of patients were males (60.71%) and the most affected age group was between 18 and 60 years. The majority of patients were having education below matriculation (50%). Similar to our observations, other studies have also documented males to be predominantly of interest to evaluate the prescribing pattern in COVID-19 patients.

In the current study, demographic profile revealed that majority of patients were males (60.71%) and the most affected age group was between 18 and 60 years. The majority of patients were having education below matriculation (50%). Similar to our observations, other studies have also documented males to be predominantly of interest to evaluate the prescribing pattern in COVID-19 patients.

In the current study, demographic profile revealed that majority of patients were males (60.71%) and the most affected age group was between 18 and 60 years. The majority of patients were having education below matriculation (50%). Similar to our observations, other studies have also documented males to be predominantly of interest to evaluate the prescribing pattern in COVID-19 patients.

In the current study, demographic profile revealed that majority of patients were males (60.71%) and the most affected age group was between 18 and 60 years. The majority of patients were having education below matriculation (50%). Similar to our observations, other studies have also documented males to be predominantly of interest to evaluate the prescribing pattern in COVID-19 patients.

In the current study, demographic profile revealed that majority of patients were males (60.71%) and the most affected age group was between 18 and 60 years. The majority of patients were having education below matriculation (50%). Similar to our observations, other studies have also documented males to be predominantly of interest to evaluate the prescribing pattern in COVID-19 patients.

In the current study, demographic profile revealed that majority of patients were males (60.71%) and the most affected age group was between 18 and 60 years. The majority of patients were having education below matriculation (50%). Similar to our observations, other studies have also documented males to be predominantly of interest to evaluate the prescribing pattern in COVID-19 patients.

In the current study, demographic profile revealed that majority of patients were males (60.71%) and the most affected age group was between 18 and 60 years. The majority of patients were having education below matriculation (50%). Similar to our observations, other studies have also documented males to be predominantly of interest to evaluate the prescribing pattern in COVID-19 patients.

In the current study, demographic profile revealed that majority of patients were males (60.71%) and the most affected age group was between 18 and 60 years. The majority of patients were having education below matriculation (50%). Similar to our observations, other studies have also documented males to be predominantly of interest to evaluate the prescribing pattern in COVID-19 patients.

In the current study, demographic profile revealed that majority of patients were males (60.71%) and the most affected age group was between 18 and 60 years. The majority of patients were having education below matriculation (50%). Similar to our observations, other studies have also documented males to be predominantly of interest to evaluate the prescribing pattern in COVID-19 patients.

In the current study, demographic profile revealed that majority of patients were males (60.71%) and the most affected age group was between 18 and 60 years. The majority of patients were having education below matriculation (50%). Similar to our observations, other studies have also documented males to be predominantly of interest to evaluate the prescribing pattern in COVID-19 patients.

In the current study, demographic profile revealed that majority of patients were males (60.71%) and the most affected age group was between 18 and 60 years. The majority of patients were having education below matriculation (50%). Similar to our observations, other studies have also documented males to be predominantly of interest to evaluate the prescribing pattern in COVID-19 patients.
Steroids were also given in most of the COVID-19 patients. The steroids reduce inflammation (swelling) and mucus production in the airway of lungs. Steroids have been shown to have beneficial effect in moderate to severe COVID-19 disease in indoor admitted patients [29,30].

In the present study, vitamins were prescribed in all patients. Number of studies has also shown similar pattern. Vitamins in addition to restore deficiency have antioxidant role. Most of studies have also demonstrated similar pattern [31,32].

Studies conducted in other countries have revealed that statins, angiotensin converting enzyme inhibitor, anticoagulant mostly formed the bulk of medication in contrast to our country. Statins are known for their pleiotropic anti-inflammatory, antithrombotic, and immunomodulatory effects. They may have a potential role as adjunctive therapy to mitigate endothelial dysfunction and deregulated the inflammation in patients with COVID-19 infection [33].

Two patients in our study group died due to bilateral COVID-19 pneumonia. Both patients had ground glass appearance in lungs. Bilateral lungs involvement is highly fatal in COVID-19 disease. Various studies have recorded similar pattern [11,34].

CONCLUSIONS

Azithromycin and hydroxyquinine were more frequently given than remdesivir; steroids were almost given to all patients as inhaler, injection. Other drugs like multivitamins were prescribed in all patients. Most of patients of COVID-19 had co morbidities COPD, diabetes mellitus type 2 and severe anemia were common comorbidities.

Limitations

Our study has some limitations. Less number of patients has been taken. COVID-19 positive patients who were admitted in other centers than GMC Kathua were not included in the study.

ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions of patients and healthcare workers working at COVID-19 intensive care ward of GMC Kathua and associated hospital.

AUTHORS’ CONTRIBUTIONS

Dr. Suman Lata conducted the study at hospital site, collected, analyzed, interpreted the data, and wrote the manuscript. Dr. Vineeta Sawhney conceived the research idea of research work, while Dr. Vijay khajuria reviewed and edited the manuscript.

CONFLICTS OF INTEREST

The authors declared no conflict of interest related to study.

AUTHORS’ FUNDING

The authors did not receive any funding for the research.

REFERENCES

1. Phua J, Weng L, Ling L, Egi M, Lim CM, Divatia JV, et al. Intensive care management of Coronavirus disease 2019 (COVID-19): Challenges and recommendations. Lancet Respir Med 2020;5:506-17.
2. Morens DM, Daszak P, Taubenberger JK. Escaping Pandora’s box—another novel coronavirus. N Engl J Med 2020;382:1293-5.
3. Nicola M, O’Neill N, Sohrabi C, Khan M, Agha M, Agha R. Evidence based management guideline for the COVID-19 pandemic-review article. Int J Surg 2020;77:206-16.
4. India Most Infected by COVID-19 among Asian Countries Leaves Turkey Behind, Hindustan Times; 2020.
5. CDC WHO ECDC WIKIPEDIA. Available from: http://www.bing.com/search?q=statistics+about+covid+19+pandemicdata. [Last accessed on 2021 Feb 22.]
COVID-19 patients from India and western countries. Diabetes Metab Syndr 2020;14:1037-41.
7. Transmission of COVID-19: 2021. Available from: https://www.ecdc.europa.eu [Last accessed on 2021 Sep 07]
8. Bhagat RK, Linden PF. Displacement ventilation: A viable ventilation strategy for makeshift hospitals and public buildings to contain COVID-19 and other airborne diseases. R Soc Open Sci 2020;7:200680.
9. Centres for Disease Control and Prevention: 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html?cdc_aa_refval=https%3a%2f%2fwww.cdc.gov%2fcoronavirus%2f2019
10. COVID-19 Vaccine Covishield Gets Approval from DCGI ‘Sexpert Panel’, The Hindu; 2021.
11. Hindustan Times. Expert Panel Recommends Bharat Biotech’s covaxin For Restricted Emergency Use, News. India: Hindustan Times; 2021.
12. Hasan SN, Srivastava A, Bihari A, Singh PK. Management prospective of COVID-19 patients from L1 till L3 Hospital: An observational study. Natl J Physiol Pharmacol 2020;10:1002-5.
13. Lin KJ, Schneeweiss S, Helen T, D’Andrea E, Liu J, Lii J, Murphy SN, et al. Pharmacotherapy for hospitalized patients with COVID-19: Treatment patterns by disease severity. Drug 2020;80:1961-72.
14. Ghosh A, Nundy S, Malliek TK. How India is dealing with COVID-19 pandemic. Sensors Int 2020;1:100021.
15. Alqahtani JS, Oyelade T, Aldhahir AM, Alghamdi SM, Alnemhadi M, Alqahtani AS, et al. Prevalence, severity and mortality associated with COPD and smoking in patients with COVID-19: A rapid systematic review and meta-analysis. PLoS One 2020;15:e0233147.
16. Hemauser AJ, Kingeter AJ, Han X, Shotwell MS, Pandharipande PP, Weavind LM. Daily lowest hemoglobin and risk of organ dysfunctions in critically ill patients. Crit Care Med 2017;45:e479-84.
17. Longo M, Caruso P, Maiorino MI, Bellastella G, Giugliano D, Esposito K. Treating Type 2 diabetes in COVID-19 patients: The potential benefits of inhibition therapies. Cardiovasc Diabetol 2020;19:115.
18. Abdi AA, Jalilian BM, Sarbarzeh BP, Vlasisavljevic CZ. Diabetes and COVID-19: A systematic review on the current evidences. Diabetes Res Clin Pract 2020;166:108347.
19. Shang L, Shao M, Guo Q, Shi J, Zhao Y, Xiaokereji J, Tang B. Diabetes Mellitus is associated with severe infection and mortality in patients with COVID-19: A systematic review and meta-analysis. Arch Med Res 2020;51:700-9.
20. Saha S, Al-Rifiati RH, Saha S. Diabetes prevalence and mortality in COVID-19 patients: A systematic review, meta-analysis, and meta-regression. J Diabet Metab Disord 2021;31:1-12.
21. Palaiodimos L, Chamorro-Pareja N, Karamanis D, Li W, Zavras PD, Chang KM, et al. Diabetes is associated with increased risk for in-hospital mortality in patients with COVID-19: A systematic review and meta-analysis comprising 18, 506 patients. Hormones (Athens) 2021;20:305-14.
22. Rosenberg ES, Dufort EM, Udo T, Wilberscheid LA, Kumar J, Tesoriero J, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York state. JAMA 2020;323:2495-302.
23. Bull-Otterton L, Gray EB, Budzinski DS, Strossnider HM, Schieber LZ, Courtney J, et al. Hydroxychloroquine and chloroquine prescribing patterns by provider specialty following initial reports of potential Benefit for COVID-19 treatment-United States. MMWR Morb Mortal Wkly Rep 2020;69:1210-5.
24. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020;56:105949.
25. Molla MM, Yasmin M, Islam K, Sharif MM, Amin MR, Nafisa T, et al. Antibiotic prescribing patterns at COVID-19 dedicated wards in Bangladesh: Findings from a single center study. Infect Prev Pract 2021;3:100134.
26. Kawanuma K, Ichikado K, Suga M, Yoshioka M. Efficacy of azithromycin for treatment of acute exacerbation of chronic fibrosing interstitial pneumonia: A prospective, open-label study with historical controls. Respiration 2014;87:478-84.
27. Lamb YN. Remdesivir: First approval. Drugs 2020;80:1355-63.
28. Rai VK. COVID-19: Government Approves Plan to Increase Production of Remdesivir, Drug Cos to Cut Price; 2021.
29. Singh AK, Majumdar S, Singh R, Misra A. Role of corticosteroid in the management of COVID-19: A systemic review and a Clinician’s perspective. Diabetes Metab Syndr 2020;14:971-8.
30. Raju R, Prajith V, Biatris PS, Chander JS. Therapeutic role of corticosteroids in COVID-19: A systematic review of registered clinical trials. Futur J Pharm Sci 2021;7:67.
31. Michienzi SM, Badowski ME. Can vitamins and/or supplements provide hope against coronavirus? Drugs Context 2020;9:2020-5-7.
32. Iranian Registry of Clinical Trials. Impact of Vitamin B, A, D, E, C supplementation on Improvement and Mortality Rate in Patients with COVID-19 Admitted in Intensive Care Unit; 2020. Available from: https://www.en.irct.ir/trial/46838 [Last accessed on 2020 May 08].
33. Lee KC, Sewa DW, Phua GC. Potential role of statins in COVID-19. Int J Infect Dis 2020;96:615-7.
34. George PM, Barratt SL, Condiliffe R, Desai RS, Devaraj A, Forrest I, et al. Respiratory follow-up of patients with COVID-19 pneumonia. Thorax 2020;75:1009-16.