Recent Progress in the Development of High-performance Bonded Magnets Using Rare Earth–Fe Compounds

Takashi HORIKAWA1,2, Masao YAMAZAKI1,2, Masashi MATSUURA2 and Satoshi SUGIMOTO2*

1Frontier Research and Development Div., Aichi Steel Corporation, 1 Wano-wari, Arao-machi, Tokai 476-8666, Japan.
2Dept. Materials Science, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan.

Received August 25, 2021; Revised September 29, 2021; Accepted October 1, 2021

ABSTRACT

Permanent magnets, and particularly rare earth magnets such as Nd-Fe-B, have attracted much attention because of their magnetic properties. There are two well-established techniques for obtaining sintered magnets and bonded Nd-Fe-B magnets. Powder metallurgy is used to obtain high-performance anisotropic sintered magnets. To produce bonded magnets, either melt-spinning or the hydrogenation disproportionation, desorption, and recombination process is used to produce magnet powders, which are then mixed with binders. Since the development of Nd-Fe-B magnets, several kinds of intermetallic compounds have been reported, such as Sm2Fe17Nₓ and Sm(Fe,M)12 (M: Ti, V, etc.). However, it is difficult to apply a liquid-phase sintering process similar to the one used for Nd-Fe-B sintered magnets in order to produce high-performance Sm-Fe–based sintered magnets because of the low decomposition temperature of the compound and the lack of a liquid grain boundary phase like that in the Nd-Fe-B system. Therefore, bonded magnets are useful in the production of bulk magnets using these Sm-Fe-based compounds. This article reviews recent progress in our work on the development of high-performance bonded magnets using Nd2Fe14B and Sm2Fe17Nₓ compounds.

KEY WORDS

hydrogenation disproportionation desorption recombination (HDDR), coercivity, anisotropy, oxygen, nanoparticle

Ⅰ 論文

永久磁石は様々な電子機器に用いられており、現代社会で不可欠な材料である。Nd-Fe-B系磁石は正方晶構造を有するNd2Fe14B相を主相としており、Croatら1,2)によりメルトスピニング法で、Sagawaら3)により粉末冶金法を用いて開発された。このNd2Fe14B相は、飽和磁化J_s=1.61 Tで、異方性磁界μ0H_c=7.2 Tおよびキュリー温度T_C=312℃なる高い磁気特性を有している。Nd-Fe-B系磁石はその優れた磁気特性と低コストにより、開発以後、Sm-Co系磁石から速やかに置き換わっていった。Nd-Fe-B系磁石はその合金組成やインゴット・粉末作製、磁場中プレスならびに表面コーティング技術

1) Corresponding author, E-mail: sugimots@material.tohoku.ac.jp

本論文のタイトルは、"Science and Technology of Advanced Materials (STAM)"、Vol. 22, No. 1, pp. 729-747に掲載済みである。

なる一連の製造プロセスの改善により、400 kJm⁻³を超える(BH)maxを有する磁石が市販されており、さらにHarimoto and Matsuura3)によって474 kJm⁻³なる高い(BH)maxが報告されている。

今日、Nd-Fe-B系磁石には焼結磁石とボンド磁石の2種類が製造されている。その一つは、粉末冶金法を用いた高密度かつ高(BH)maxな異方性焼結磁石である。一方、(BH)maxは焼結磁石に劣るもの、ニッケルシェイプが可能、また電気抵抗率が高く、渦電流が抑制されるという大きな利点を有するボンド磁石がある。ボンド磁石は、メルトスピニング法または水素化-不均化-脱水素-再結合法(HDDR)法を用いて作製されるNd-Fe-B系磁石粉末と、熟可塑性樹脂などバインダーを混合することで製造される、メルトスピニング法によって得られるNd-Fe-B系磁石粉末は等方性であるため、同
粉末を用いたボンド磁石も等方性となる。一方、水素および真空発熱下での一連の熱処理からなるHDDR法(26)を用いることで異方性のNd-Fe-B系磁石粉末を作製することが可能であり、このHDDR法によって作製された異方性Nd-Fe-B系磁石粉末は、現在、異方性ボンド磁石に用いられている。異方性ボンド磁石の最大エネルギー積をさらに高めるために、HDDR法にて得られるNd-Fe-B系磁石粉末の異方化度をさらに高めることが重要である。

Nd-Fe-B系磁石の開発以来、希土類系の新規磁体化合物の探索が加速し、ThMn_{12}系化合物(18)や、回帰等の格子間元素を加えたSmFe_{12}系(19)、NdMn_{12}系(20)、Nd(Fe,Co)_13系(14)などが見いだされ、これらの化合物の中でSmFe_{12}N_S化合物はNdFe_{12}B化合物に匹敵する高強度磁化体、高いキュリー温度(T_C ≈ 476°C)を有しており、特に特殊材料である(16,17)。今日、SmFe_{12}N_Nを相とするSmFe_{12}N系が希土類系の新たな研究分野になると考えられる。

Nd-Fe-B系磁石は、Sm-Fe系同様の磁化特性をもつ材料で、希土類系磁石の開発に重要な役割を果たしている。Sm-Fe系磁石の開発に際して、HDDR法により作製されたNd-Fe-B系磁石粉末について、HDDRプレス法における異方化メカニズムの研究ならびに異方性Nd-Fe-B系磁石の高性能化に関する最近の研究を報告する。さらに、低融点金属であるZnを使用した高性能SmFe_{12}N系メテールボンド磁石の開発の現状についても報告する。

2 HDDR法による高性能Nd-Fe-B系ボンド磁石

2.1 はじめに

HDDR処理は、良好な磁気異方性と高い保磁力を有するNd-Fe-B系磁石粉末を得るためによく用いられていることから、自動車や電子機器の高性能化用途の異方性ボンド磁石の製造にも用いられてきた(20,21)。一般的なHDDR処理では、水素解離処理によって作製したNdFe_{12}B粉末を出発原料として、水素中での熱処理によりNdFe_{12}BがNdH_{12}, Fe, Fe_{12}Bに分離される。引き続き真空中で熱処理を行うことによりNdH_{12}から水素が抜け、不均一化し生成した微細なNd, Fe, Fe_{12}Bが再結合法してNdFe_{12}Bの微結晶となる。メタルスパン法と異なり、HDDR法は、粉末を添加しHDDR処理中の水素压力や温度の制御により、NdFe_{12}B結晶のラップを一方向に捕えた異方性粉末を製造できるという利点がある。

Takeshita and Nakayama(25)やMunozLow(26)によるHDDR処理を用いたNdFe_{12}B系粉末の開発から30年が経過した。この間、HDDR処理で得られるNdFe_{12}B系粉末の磁気特性は改善されてきた。我々は過去に、HDDR処理の劣化現象の影響を考慮するため、異方性NdFe_{12}B系磁石粉末の作製に関する11)、類似の原理に基づくHDDR処理、例えばd-HDDR処理を報告している(27)。d-HDDR処理における典型的な処理条件では、水素化不均一化(HDDR)処理で失磁エネルギーを用いる。このことは、異方性の度合いが、用いる水素圧力に敏感なためであり22)。HD時水素圧力(P_HD)が30kPa以上の異方性が得られ、P_HDの増加とともに減少する(27)。このことは、水素圧力と温度条件が、圧力-温度状態図におけるHD反応の条件を形成する(28)。電流密度の条件に近くなるほど、異方性を得るのに適した電流速度となることを示している(27)。

d-HDDR処理を用いて磁気特性をさらに向上させることが難しいのは、上記の結晶学的配向性が形成されるためである。多くの研究者の努力にかかわらず、未だに解明されていないためである(29,30)。これまでの研究では、どの相によってNdFe_{12}B相のα軸が記憶されているかという問題の様々な議論がなされており、そのような成果は“メモリーサイド”と呼ばれている。

Ueharaら28)やTomidaら29,30)による初期の研究では、透過型電子顕微鏡(TEM)を用いたHDDR処理後の試料の観察が行われ、その結果、不均化後の結晶の一部であるFeは、Bマトリックス中に、微細なNdFe_{12}(Co, Ga)粒子(10～300nm)が存在していることが見出された。これらの微細なNdFe_{12}B粒子は、NdFe_{12}B系に近い結晶方位を示していたことから、メモリーサイドとして機能し、再結合法での核成長変化を示すことなく、配向したNdFe_{12}B結晶体を形成することはなかったと推測された。Ueharaらは、これらの微結晶体が未分解の元のNdFe_{12}Bであるとし、Tomidaらは再析出の可能性を示した。しかしながら、微細なNdFe_{12}B粒子を含む微細クラックは、長時間のHD処理後に形成されると考えられ、またHD処理後のFeとNdH_{12}の化学的変化は観察されなかった。したがって、希土類系の研究者たちは、メモリーサイドとして機能することを期待していた。
相）は観察されるのに至っておらず、HDDR処理全般で有効な異方性発現モデルとは考えにくいと判断される。

Fe₂Bをメモリサイドとする異方性発現モデルは、Gutfleischらによって最初に提案された23)。彼らは、不均化後の生成物（Fe, NdH₃, Fe₂B）のうち、Fe₂B相だけが元のNd₅Fe₁₄Bと同じ正方晶系の対称性を持つことから、Fe₂B相をメモリサイドの候補として考えた。また、TEM観察によりFe₂B結晶粒が配向していることを見出したが、メモリサイド（Fe₂B）と元のNd₅Fe₁₄Bとの間の結晶方位関係は示されていなかった。Honkuraら25)も、a-HDDR処理による異方性の発現を説明するために、Fe₂B相を基にしたモデルを提案した。彼らは、a-HDDR処理における異方性の発現がHD処理中の水素圧力を依存して変化することから、この変化は不均化の反応速度に依存したFe₂Bの配向の挙動によるものであると考えた。Sepehri-Aminら26)はTEM観察を行い、HDおよびDR反応の初期段階で、Fe₂Bと元のNd₅Fe₁₄Bとの間に配向関係があることを示している。

一方、Ikuraら27)は、粉末粒子全体にわたる異方性の発現を利用する（FeCo）₅Bの結晶粒の数が増加しており、また（FeCo）₅BはFeやNdH₃よりも後で形成されることを指摘している。Takizawaら28)は、HD後のFe₂Bの電子線後方散乱回折（EBSD）測定結果から、陽極出し結晶粒の40°以上の大なミスオリエンテーション分布があり、またFe₂B結晶粒には優先的な配向が見られないことを示している。さらに、HD処理した試料ではFe₂B結晶粒が不均一に分布しており、DR初期段階におけるNd₅Fe₁₄BとFe₂B結晶粒の界面には再結晶相が存在しないことも報告している。これらの結果、Fe₂Bがメモリサイドになる可能性が低いことを示している。

HDDR反応過程の研究が始まった当初から、FeとNdH₃のHD処理後に形成されるラメラ状組織において結晶学的に配向することが知られていた29)~34)。しかしながら、TEMで得られた電子線回折パターンを用いた多くの研究にもかかわらず、これら2つの相の結晶粒の間の結晶学的方位関係は明らかにされていなかった。近年、Takizawaら35)は、FeとNdH₃の<113>方向の1つ、即ちNd₅Fe₁₄Bの<001>方向と配向する傾向があることを報告している。これは、多くの結晶粒を含む領域でEBSD測定を行うことで初めて示されたものである。報告された測定結果では、FeとNdH₃の平均的な優先配向方向は<113>で、各結晶粒はこの方向からわずかに傾いている。したがって、試料の多くが含まれた一部のTEM観察では、Feと元のNd₅Fe₁₄B結晶粒の結晶学的方位関係を見出すのが困難であったのに対して、Takizawaら35)は、FeまたはFe/NdH₃の界面でメモリサイドの可能性があると推察している。

我々のグループでは、結晶学的に配向したFeとNdH₃の存在、およびこれら2つの相の結晶粒の結晶学的方位関係が異方性発現に重要であることを、このメカニズムの研究の初期段階で示していた35,36)。Sugimotoら37)は、HD処理後の試料の微細組織をラメラ状であり、FeとNdH₃の結晶学的配向関係が維持されている場合、より高い残留磁化が得られるが、球状のNdH₃粒子が形成されるとFeとNdH₃との結晶学的な関係が失われ残留磁化が低くなることから、不均化後の試料の微細組織が異方性発現の鍵であることを指摘した。異方性の発現におけるラメラ状組織の役割、Hanらによっても報告されている38)。彼らは、HD時間の増加に伴い、異方向の発現が低下し、試料の微細組織形態がラメラ状から球状に変化することを示した。

以上のように、異方性の発現機構とメモリサイドの候補には多くのモデルがある。我々は、その中でも、a-HDDR処理時にFe, NdH₃, Nd₅Fe₁₄Bの結晶学的関係を保持すること、より高い異方性を実現するための最も重要な要因であると考えており、近年、この仮説を裏付ける実験結果を得ている39,40)。さらに、その結果に基づいて、異方性を向上させるa-HDDR用の原料粉末を作製する新規手法を開発した41)。

本章では、我々の異方性発現モデル42,43)を紹介し、水素解吸温度（Tᵣₘ）が磁気特性に及ぼす影響についての最新の研究結果を述べる44)。

2.2 HDDR処理における磁気異方性の発現

2.2.1 Nd₅Fe₁₄Bと水素との反応

以上のように、異方性の発現は、特にPᵣₘおよびそれにによる水素とNd₅Fe₁₄B粉末粒子との反応速度に依存して変化する。HDやDR反応の駆動力は自由エネルギーの変化であり、処理条件がHDやDR反応の平衡曲線に近い場合に自由エネルギーの変化は小さくなる23)。典型的なa-HDDRの処理温度である820°Cでは、Pᵣₘが30 kPaの方が100 kPaの場合よりも平衡曲線に近く24,25)。HD反応による自由エネルギーの変化は小さくなるため、その30 kPaでは反応速度が小さくなることが予想され、これはHD処理中的水素流量を調べることで確認された。Fig. 1に示すように、Pᵣₘが30 kPaの場合には緩やかに水素の吸収が始まり、反応が完了するまでに約50分を要した。一方、Pᵣₘが100 kPaでは水素の吸収は急激に起こり、わずか10分でその反応は完了した。

Fig. 1 Changes in hydrogen absorption rate during HD treatment at 30 and 100 kPa. Time 0 corresponds to the start of absorption at 820°C.
Fig. 2 Changes in in situ XRD patterns observed at (a) 30 and (b) 100 kPa hydrogen pressure. (i)-(vii) show patterns acquired during heating at (i) 23°C, (ii) 700°C, (iii) 800°C, and (iv) 820°C, and patterns measured (v) 15 min, (vi) 30 min, and (vii) 180 min after reaching 820°C. Solid squares, open circles, and open triangles represent peaks attributable to Fe, NdH2, and Fe2B, respectively.

2-3目は、粗大なラメラ状組織である（Fig. 3 (b)）。この組織もロッド状のNdH2がFeマトリックス中に存在しているが、ロッド状NdH2の直径や間隔が大きく、微細なラメラ状組織のように直線的な形状ではない。粗大なラメラ状組織は、HD処理中に微細なラメラ状組織が成長してきたものと考えられ、この2つの組織を明確に区別することは難しい。今回、ハソ、NdH2の間隔が50 nmより大きい場合は微細なラメラ状組織、50 nmより小さい場合は粗大なラメラ状組織としている。3つ目は球状組織であり、球状のNdH2粒子がFeマトリックスとともに観察される（Fig. 3 (c)）。この組織は、通常、長時間のHD処理や、水素とNd2Fe14B相との直接から急変する状態に変化を示す。

多くの研究者が報告しているように29,31,38-41,45,46）微細なラメラ状組織では、Feマトリックスとその中のロッド状のNdH2の結晶学的方位は同じであることが知られているが、粗大なラメラ状組織においても、NdH2粒子の結晶学的方位が周囲のFeマトリックスと同方向であることが確認されている。これ2つを組み合わせて観察された制限視野回折パターン（SAD）（Fig. 3 (d), (e)）は、いずれもFeとNdH2の[110]方向からの回折パターンの重ね合わせである。その関係は[110]NdH2//[110]Fe（-220）NdH2//（-110）Feのように表される。これらの結果から、微細なラメラ状組織が成長して粗大化しても、FeとNdH2間の結晶学的な配向関係は維持されていることがわかる。しかしながら、球状組織では、Fig. 3 (f) の示すように、FeとNdH2の結晶学的方位関係は異なっている。bccとNdH2の方位関係は球状領域の場所によって様々であるため、特定の決めまった方位関係は見られるなかった。

我々は初期の研究47）以来、HD処理後の試料の状態、特に構成相と結晶学的配向関係が、再結晶後も異方性を発現するための重要な要因であると考えていた。そこで、HD処理後の微細組織の形態や結晶学的配向状態、d-HDDR処理中の不均一反応は、SPRin-8の放射光ビームラインBL02B2を用いた時間分解のX線回折（XRD）測定によって直接観察された。なお、装置の詳細は参考文献12）に記載されており、X線の波長は0.0495786 nmであった。Fig. 2は、P压を30および100 kPaに設定して昇温およびHD処理を行った際のその場観察XRDパターンである。昇温中および820°Cに保持した状態で、それぞれ2.5分および5分の積算時間でXRDパターンを得た。Fig. 2 (a) に示す700°Cまでの温度で観測された回折ピークは、Nd2Fe14Bのものであると同定された。800°Cでは、Fe、NdH2、Nd2Fe14B相の回折ピークが明瞭となり、820°Cで30分保持するとNd2Fe14B相のピークは消失した。100 kPa (Fig. 2 (b)) では、同じ温度（800°C）でFe、NdH2、Nd2Fe14B相のピークが現れたものの、820°Cに到達した時点でNd2Fe14B相のピークはほとんど消えてしまった。これらは、Fig. 1に示した水素吸収の傾向とよく一致している。

もう一つ注目すべき点は、FeやNdH2の結晶構造が高温でも立方晶のままであることである。我々は、水素の侵入やその他の原因により、FeやNdH2の結晶構造が高温で異方向の構造に変化し、それが分野性のメモリーサイトとなる可能性も考えられ、820°Cで得られたXRDパターンは、FeおよびNdH2相の結晶構造モデルとして等方的な立方晶を用いたリーテルセット解析で精度よく再現された（Rwp < 10%）ため、この仮説は否定された。

2-2-2 水素化不均一化処理中の試料の微細組織

HD処理に伴う微細組織の形態変化は、多くの研究者によって報告されている31,38,48）本論文では、HD処理中に観察された微細組織を3つのタイプに分類しており、それらの典型的な走査電子顕微鏡での後方散乱電子像（SEM-BSE）をFig. 3 (a-c) に示す。1つ目は微細なラメラ状組織で、ロッド状のNdH2がFeマトリックス中に存在している（Fig. 3 (a)）。
Fig. 3 SEM-BSE images of (a) fine lamellar, (b) coarse lamellar, and (c) spherical structures. (d)–(f) show the corresponding SAD patterns.

(a) 30 kPa
(b) 100 kPa

Fig. 4 Schematic illustrations of the microstructures of HD- and DR-treated samples and t_{HD} dependence of area fraction of the fine lamellar structure of HD-treated samples, and DOA and coercivity of α-HDDR-treated samples. Orange, yellow, and white in the top illustrations represent fine lamellar, coarse lamellar, and spherical structures, respectively. Blue and pink regions after DR indicate highly and lowly aligned recombined Nd$_2$Fe$_{14}$B grains, respectively. The difference in pink color represents the deviation in crystallographic orientation. (Reproduced from Ref. 44, 46 with the permission of AIP Publishing, and Ref. 45.)
P_{in}が30 kPaの場合、主にHD反応の初期段階で微細なラメラ状組織が観察された（Fig. 4 (a)）。t_{in}が長くなると、微細なラメラ状組織が成長して粗大なラメラ状組織が形成されることでS_Oが減少した。10時間後には、粗大なプラズマ状組織が主成分となり、EBSD測定で得られた結晶学的に配向しているFeとNdH$_2$の面積率を用いて、粗大なラメラ状組織の面積率は0.70と見積もられた38. P_{in}が100 kPaの場合は、反応速度が大きいため、HD反応のごく初期段階での微細なラメラ状組織が観察された（Fig. 4 (b)）。10時間後の粉末粒子は主に球状組織からとなっており、少量の粗大ラメラが見られるものの、その面積率はわずか0.25であった38. これらの結果は、t_{in}が長くなるに伴って微細なラメラ状組織が消失しても、P_{in}が30 kPaの場合には、大部分のFeとNdH$_2$は結晶学的に配向したまま粗大なラメラ状組織として残っていることを示している。

P_{in}を30 kPaとしてHD処理した全ての試料において、t_{in}に関わらず、粉末粒子の表面やクラック近傍に球状組織が観察された。これは、これらの領域は水素雰囲気に露出していることにより、試料粉末と水素との反応速度が大きくなるためである。一方100 kPaでは、不均化反応が粉末粒子全体にわたってランダムに生じたため、内部と表面で明らかに微細組織の違いは見られなかった。

以上のことから、HD処理後の微細組織の形態は、水素と粉末粒子のNd$_2$Fe$_{14}$B相との反応速度に依存し、その速度はP_{in}を変化させることで制御できることがわかった。P_{in}が低く適切である場合（30 kPa）、反応速度も最適となるため、表面やクラック付近の球状組織は球状になるもの。粉末粒子の内部には高配向のFeとNdH$_2$からなる微細または粗大なラメラ状組織が多く形成され、残存することになる。しかしながら、P_{in}が高い場合には（100 kPa）、急激な反応が起こることで粉末粒子のほとんどの領域で微細組織が球状化し、FeとNdH$_2$間の結晶学的な配向関係は失われてしまう。2.2.3 異方度と磁化率の変化

DOAのt_{in}依存性は、30 kPaおよび100 kPaでの処理のいずれにおいても、S_Oのt_{in}依存性と非常によく似た傾向を示した（Fig. 4)。同様の減少傾向はHanら38によっても報告されており、原因としてHD処理時の長時間によりラメラ状組織が消失したことを挙げている。この考えは、微細なラメラ状組織が高配向のNd$_2$Fe$_{14}$Bを形成するという、我々の異方性発現モデル39と一致している。Fig. 4の結果は、このモデルを強く裏付けるものであり、t_{in}が3時間になるまでのDOAの減少は、微細なラメラ状組織の減少によるものであると考えられる40。

3時間以上的処理をした試料では、微細なラメラ状組織が消失しても、P_{in}によってDOAに大きな差が見られが、これら微細組織の違いによるものである。前述のように、30 kPaで10時間の処理後の試料では、FeとNdH$_2$の領域の大部分（面積率0.70）に粗大なラメラ状組織が残っており、この結晶学的に配向したFeとNdH$_2$が存在していることが高い異方性に寄与している。しかしながら、100 kPaではほとんどの微細組織が球状となり、FeとNdH$_2$間の結晶学的配向関係がなくなかったため、異方性が低くなくなったと考えられる44。

不均化後の組織と、d-HDDR処理過程で再結合したNd$_2$Fe$_{14}$Bの結晶粒径との間に相関関係が見られた45。参考文献46に示されているように、粗大なNd$_2$Fe$_{14}$B結晶粒（600～1200 nm）の面積率t_{in}依存性は、Fig. 4のSとDOAのそれとは同様であった。さらに、Nd$_2$Fe$_{14}$Bの[001]ラクラインによるミスオリエンテーション角は、粗大なNd$_2$Fe$_{14}$B結晶粒の領域では小さく（<20°）、微細なNd$_2$Fe$_{14}$B粒の領域では大きく（<36°）なることが見出された。また、微細ラメラのコロニー（740～920 nm）と粗大Nd$_2$Fe$_{14}$B結晶粒（600～1200 nm）との大きさが同程度であった。これらの結果は、微細なラメラ状組織が再結合後に粗大なNd$_2$Fe$_{14}$B結晶粒を形成することを示唆しており、したがって微細に再結合したNd$_2$Fe$_{14}$B（200～600 nm）は、粗大なラメラ状組織や球状組織に由来するものと考えられる。一般に、磁化率は結晶粒径に強く依存し、結晶粒径が小さくなるほど大きくなることがよく知られている。この関係は、Fig. 4に示した磁化率のt_{in}依存性と一致しており、不均化組織より粗大なラメラ状組織や球状組織からなり、微細な再結合Nd$_2$Fe$_{14}$B結晶粒が形成される場合に高い磁化率が得られる。

これらの結果は、微細なラメラ状組織は再結合後に粗大Nd$_2$Fe$_{14}$B結晶粒を形成し、高いDOAに寄与しているが、粒径が大きくなることで磁化力が低下してしまうことを示している。一方、球状組織は微細なNd$_2$Fe$_{14}$B結晶粒を形成し高い磁化力も得られるが、DOAは低い。我々は、これらの観察結果を基にして、異方性および磁化率の両方において、粗大なラメラ状組織が最も望ましい不均化状態であるとした。

我々の用いた合金組成では、Fig. 4に示すように、P_{in}が30 kPa、t_{in}が3時間の場合、巨大なラメラ状組織の体積分率が高くDOAと磁化率とのバランスが取れた磁性特性が得られる。

2.3 Nd-Fe-B系ポンド磁石の磁気特性を向上させる高異方性磁石粉末の開発

2.3.1 異方性改良の手法

2.3.1.1 異方性発現のモデルから、球状組織の割合を減らすことで、より高い異方性が得られることが予想される。先に示したように、球状組織は、通常、水素との反応速度が大きい粒子やクラックの近傍領域に形成される。また、これらのクラックは、d-HDDR処理に用いる出発原料粉末を加熱するための水素解離処理過程38で生じていると考えられる。従来の処理温度である23℃で冷を水素雰囲気にさらすと、Nd$_2$Fe$_{14}$B結晶粒およびNdリッチ相の両方が水素を吸収して各々の水素化合物を形成する。この反応によるNd$_2$Fe$_{14}$BH$_x$およびNdリッチ水素化合物の形成はそれぞれ3%および約20%の急激な体積変化を伴うため、Nd$_2$Fe$_{14}$BH$_x$結晶粒内にクラックが生じる。

Nd$_2$Fe$_{14}$BH$_x$の水素吸収量の上限は、温度の上昇とともに低下することが知られている49ことから、結晶粒内のクラックの発生を抑制するために、水素解離処理の温度を最適化を行った。
2.3.2 クラック量の T_{rec} 依存性

Nd$_2$Fe$_{14}$B の結晶格子の体積膨張率を、その場観察 XRD 測定で観察したところ、Table 1 に示すように、温度の上昇とともに減少することがわかった。23°C では結晶格子の体積膨張率は 2.8% であったが、500°C では 0.7% に減少し、したがって、より高い温度で水素解釈処理を行うことにより、クラックが減少することが予想される。これを確認するために、水素解釈温度 T_{rec}（23～600℃）とクラック密度 D_c との関係を調べた。ここで、D_c は SEM 観察像におけるクラックの長さを画像の粉末断面積で割って求めた。

Fig. 5 に、23～600℃の T_{rec} で水素解釈処理した母合金の粉末面の SEM-BSE 像を示す。灰色および明るいコントラストの領域は、それぞれNd$_2$Fe$_{14}$B 結晶粒および Nd リッチ粒界相である。Nd$_2$Fe$_{14}$B 結晶粒に生じたクラックは T_{rec} の増加とともに減少し、600℃ではほとんど見られなかった。この温度では、Nd リッチ粒界相も破壊されることなく残っている。また、Nd$_2$Fe$_{14}$B 結晶粒の表面付近では不均質化反応による生成物（FeおよびNdH）も観察された。これらを含む複数のSEM-BSE 像を用いてクラック密度 D_c を見積もり、結果をFig. 6 に示す。予想していた通り、D_c は T_{rec} の増加とともに単調に減少する傾向を示した。

Table 1 lattice constants of Nd$_2$Fe$_{14}$B.

Temperature (°C)	Hydrogen pressure (kPa)	Phase	Lattice constant (nm)	Lattice volume expansion*
23 vacuum	Nd$_2$Fe$_{14}$B	0.8864 1.2215	-	
23 100 vacuum	Nd$_2$Fe$_{14}$B$_{BH}$	0.8877 1.2323	2.8	
500 vacuum	Nd$_2$Fe$_{14}$B	0.8805 1.2248	-	
500 100 vacuum	Nd$_2$Fe$_{14}$B$_{BH}$	0.8829 1.2262	0.7	

*The value indicates the degree of expansion of lattice volume at 100 kPa compared to that under vacuum at the same temperature.

2.3.3 磁気特性と組織の T_{rec} 依存性

d-HDDR 処理用の出発原料粉末に生じるクラックは、高温での水素解釈処理を適用することで効果的に減少した。そこで、これらの出発原料粉末を用いて、T_{rec} と d-HDDR 処理後の試料粉末の磁気特性との関係を調べたところ、Fig. 7 に示す結果が得られた。D_c の減少（Fig. 6）から予想されるように、500°C まで T_{rec} の増加に伴い、残留磁気分極（J_c）、DOA、(BH)$_{max}$ の増加が見られ、これらの結果から、500°C が最適な T_{rec} であると想定した。

T_{rec} が 23°C で水素解釈処理した出発原料粉末では Nd$_2$Fe$_{14}$B 結晶粒にクラックが多く生じており、HD処理を行ってもそれらクラックは残留している（Fig. 8 (a)）。クラックから離れた領域では主に粗大なラメラ状組織が見られた（Fig. 8 (b)）。クラックに近い領域では球状組織がほとんどであった（Fig. 8 (c)）。一方、T_{rec} が 500°C の場合には、粉末粒子にクラックはほぼ見られず、粗大なラメラ状組織が多く観察された（Fig. 8 (d)）。このことから、T_{rec} を 500°C にすることで、

Fig. 5 SEM-BSE images of as-crushed alloys after hydrogen decrepitation at various T_{rec} (a) 23°C, (b) 300°C, (c) 500°C, and (d) 600°C.

Fig. 6 T_{rec} dependence of crack density in mother alloys after hydrogen decrepitation.
球状組織の割合が効果的に減少することがわかった。
さらに、出発原料粉末におけるクラックの低減が、再結
合後のNd,Fe,Bの[001]方向の結晶学的配向に及ぼす影響
を、EBSD測定により確認した。Fig. 9に示すように、T_{ac}が
23℃の場合には、d-HDDR処理後にライン状およびスポッ
ト状の明るいNdリッチ相の偏析が観察された（Fig. 9 (a)）。そ
れらの領域の近くでは、Fig. 9 (b) で緑または黄色で示されて
いるように、[001]方向に大きな偏差が見られた。しかしな
がら、500℃の場合にはD_{ac}が小さいため、d-HDDR処理後に
Ndリッチ相の偏析や角度偏差の大きい領域は、はっきりと
は見られなかった（Fig. 9 (c, d)）。

Fig. 10は、T_{ac}を従来の23℃および最適である500℃とし
た際の、d-HDDR処理後の粉末の減磁曲線（黒線）と、それ
ぞれのd-HDDR処理後の粉末を用いて作製した樹脂ボンド
磁石の減磁曲線（赤線）であり、得られた磁気特性をTable 2
に示す。これらのボンド磁石は、磁石粉末に約3 wt%のエ
ボキシ樹脂をバインダーとして混合した後，圧縮成形し真空下で硬化させることで作製した。**T_{ac}**が500℃になった。

\(d\)-HDDR処理後の粉末およびポンド磁石の両方で，磁気特性が向上することが明確に示されている。Fig.8および9に示した組織の違いから，この磁気特性の向上は，再結晶後に高配向のNd\(_2\)Fe\(_{14}\)Bを形成する粗大なラメラ状組織の割合が増加したことによるものと考えられる。ポンド磁石の磁気特性は，磁性粉末の粒径，樹脂との混合比，成形時の印加圧力など，ポンド磁石の作製条件をより最適化することで，向上が期待できる。

以上の結果から，500℃での水素解離処理により，出発原料粉末中のNd\(_2\)Fe\(_{14}\)B結晶粒におけるクラックの発生が減少することが示された。この出発原料粉末を用いることで，HD処理後のクラック組織の割合を効果的に減少させることができ，その結果，再結晶後のNd\(_2\)Fe\(_{14}\)Bの[001]方向の角度ずれを小さくすることが可能となる。

2.4 まとめ

高配向的HDDR処理粉末を得るためには，HD処理中に微細なラメラ状組織および粗大なラメラ状組織の両方において形成されるFeとNd\(_2\)H\(_x\)間の結晶学的配向関係を保持しつつ，球状のNd\(_2\)H\(_x\)からなる組織の形成を抑制することが重要である。本論文で示した実験データは，この結論を裏付けるものである。また，不均化処理時の後場観察XRD測定では，異方的に変形したFeやNd\(_2\)H\(_x\)が形成される可能性は低いことが示された。高濃度の水素解離処理によりクラックの発生を抑制すること，および配向した組織を維持するために水素圧力を制御することは，高性能なHDDR処理粉末やポンド磁石の作製に有効な方法である。

3 高特性Sm-Fe-N系Znボンド磁石の開発

3.1 はじめに

Th\(_2\)Zn\(_3\)を基に有するSm\(_2\)Fe\(_3\)N\(_3\)化合物は，1.54 Tとなる高強度磁化（\(J\)），20.6 MAm\(^{-1}\)なる大きな異方性磁場（\(H_{K}\）および476℃なる高いキュリー温度を有している\(^{12,44}\)。Sm\(_2\)Fe\(_3\)N\(_3\)
相はSm2Fe17相の約450℃で窒素またはアノミアガスを用いた熱処理後で得られ、一般にSm2Fe17相粉末は還元拡散（RD）法[46,47]または、溶解・粉碎[46,48,49]によって得られる。一般的なRDプロセスではFe粉末またはFe-O粉末、Sm2O3粉末およびCaを混合し、混合した粉末をCaの溶融鉱物温度以上で熱処理する。すなわち、熱処理中に液相となったCaによりSm2O3とFe-Oが還元され、そのSmがFe粉末内に拡散してSm2Fe17相を形成する。熱処理後、Sm2Fe17粉末を炭化し、洗浄してCaを除去することでSm2Fe17N3粉末を得る。他方のプロセスでは、溶解・構造したSm-Fe系合金を均質化熱処理し、Sm2Fe17相からなるSm-Fe系合金を調製後、粉末および還元することでSm2Fe17N3粉末を得ることができる。

上述のようにSm2Fe17N3化合物は優れた磁気特性を持つが、Sm2Fe17N3相は500〜600℃以上でFeとSm相を形成してしまい、Nd-Fe-B系のような高温での液相焼結プロセスを適用することができない。そのため、Sm2Fe17N3相の分解を抑える方法でバルク磁石を作製するプロセスを開発することが必要である。Sm2Fe17N3系バルク磁石を形成するアプローチの一つとして、高圧力処理[50,51]や衝撃圧縮[52]などによって高圧を加える方法が報告されている。Saito and Kitazima[53]は、圧縮せん断法を使用することにより228 kJ/m³の高い(BH)ₘₚₚ₂₉を報告した。また、産業総合技術研究所のグループ[54,55,56,57]では、高い圧力を印加しながら焼結することでバイナリープロセスのSm-Fe系磁石作製、Takagiら[58]は196 kJ/m³（=24.5 MGoe）なる良好な(BH)ₘₚₚ₂₉を示すSm-Fe-N系バルク磁石を報告している。

Sm-Fe-N系系バルク磁石を得るための他のアプローチとして、ポンド磁石が挙げられる。樹脂ポンド磁石には、フレキシビリティ、ニーメットシェイプ形成、高抵抗率を持つ高精度の磁石の必要など多くの利点がある。現在、Sm2Fe17N3粉末と樹脂バインダーを混合して得られたSm-Fe-N系樹脂ポンド磁石が小型モーターなどに用いられている。近年、我々のグループでは、高耐熱性の樹脂ポンド磁石への適用が期待される。MnまたはCoを含むScFe17N3コアシュール粉末およびリッチシェルSm2Fe17N3粉末の開発を報告した[70,71]。このような樹脂バインダーを用いたポンド磁石以外に、低融点金属バインダーを使用したメタルポンド磁石がSm-Fe-N系系系バルク磁石を得る方法として注目されている。Otaniら[59]は、低融点金属（Zn, Bi, SnおよびAl）を用いてSm2Fe17N3系メタルポンド磁石を作製し、バインダーとしてZnを使用することで磁石の磁力が向上したことを報告した。このような磁力の向上は、金属バインダーを用いる磁石の1つと考えられる。さらに、我々は、Fe-Zn二元合金状態図でFe-Zn相と表記されているZnFe3相がSm-Fe-N系Znポンド磁石で形成したことを見た。この文脈を後、多くの研究者によってSm-Fe-N系Znポンド磁石の磁気特性と相変化の関係が報告されており[72,73], Fe-Zn相の影響は次のように説明できる。まず、原料となるSm2Fe17N3粉末の表面には酸化層が存在するが[54,58,59,71,72], それは熱処理中にSm2Fe17N3相内に拡散する。この結果、Sm2Fe17N3相の表面に磁性のα-Fe相が現れる。ところがこのα-Fe相は積磁性であるため、磁化状の核生成サイトとして働くことで磁力が低下させてしまう。一方、Znポンド磁石においては、我々のグループでSm-Fe-N系Znポンド磁石の詳細な微細組織変化を調べた結果[74-76]、高磁力Zn-Fe磁石ではSm2Fe17N3相の表面にT-FeZn相およびSm-Oの微結晶からなるZnリッチ領域が観察された。これにより熱処理中にZnがα-Fe相と反応して非磁性のT-FeZn相を形成し、そのT-FeZn相が微細磁性のα-FeZn相とSm2Fe17N3相とを磁気的に分離することによって高磁力が得られることを示唆している。このようにSm-Fe-N系Znポンド磁石において、その磁気特性を改善するためにはFig. 11 (i-iii)に示すように3つの方法がある。1つ目の方法は、酸素含有量の低減である。Sm-Fe-N系およびZn粉末は酸化されやすいため、粉末表面酸化層が存在する。Sm-Fe-N系およびZn粉末表面の酸素は熱処理中にSm2Fe17N3相と反応するため、このときSm-Oの生成エネルギーが非常に低いため、Zn相とα-Fe相に分解してしまう。その結果、Sm2Fe17N3相の分解とα-Fe相の形成によりZnポンド磁石の磁力が低下してしまう。そこで、原料粉末の酸素含有量を低減することで、上述の分解反応を抑えることができと考えられ、換言すると磁石の低磁を抑えることができた。したがって、Fig. 11 (i)に示すようにSm2Fe17N3およびZn粉末の酸素含有量を減らすことにより磁石の弱磁を高めるのに効果的と考えられる。実際に、これまでSm-Fe-N系磁石、Sm2Fe17N3系磁石の酸素含有量の低減が磁気特性の改善に寄与することが報告されている[70,71,72,73]。

2つの方法の区別は、Fig. 11 (iii)に示すように、均一な微細組織の形成である。粒界相であるZnが不均一に存在すると、熱処理後にZnclusterを形成してしまう。Znclusterが形成するとは、Sm2Fe17N3相の表面でα-Fe相と反応しないZnが多く存在することを意味し、Zn添加量に対して磁力の増加は小さいと予想される。一方、Znが粒界に均一に分散していると、Znがα-Fe相と効率よく反応するため、Zn添加量を小さく抑えられると考えられる。しかし、このとき粉末サイズの減少に伴う比表面積の増大により、粉末がよりすぐに酸化されてしまうことがあり、酸素含有量を抑えるため微細化することが必要である。したがって、低融点金属ならびにZn粉末が必要となる。

3つの方法の区別は、相対密度の上昇が挙げられる。相対密度(d)は次の(1-1)式で定義される。

\[d = \frac{d \cdot W_{\text{FeZn}} + d_{\text{Zn}}
\] \[\times 100 \]

ここでdはSm-Fe-N系Znポンド磁石の密度、d_{\text{FeZn}}ならびにd_{\text{Zn}}はそれぞれSm2Fe17N3相とZn相の密度、W_{\text{FeZn}}およびW_{\text{Zn}}は各相の重量率を表す。Fig. 11 (iii)に示すように、磁石の高密度化ならびにSm2Fe17N3相の体積率を高めることで、得られる(BH)ₘₚₚ₂₉を大きくできる。このような高密度
かつ高 $(BH)_{max}$ の磁石を実現するには、高い保磁力を維持しながら、つまり上述の(i)および(ii)を満たしながらも磁石の高密度化を達成する必要がある。これまでも熱間静水圧プレス、熱間圧延、スエージング、スパークプラズマ焼結 (SPS) 等、様々なプロセスが Sm-Fe-N 系 Zn ボンド磁石の密度を高めるために用いられてきた。

以上のように、高性能な Sm-Fe-N 系バルク磁石を実現するためには、(i) Sm-Fe-N 系粉末と Zn 粉末の低酸素化、(ii) Sm-Fe-N/Zn 複合粉末の作製ならびに、(iii) 低酸素雰囲気下での緻密化、という条件を満たした磁石作製プロセスの開発が必要である。近年我々のグループでは、上述の(i)-(iii)の各段に従って Sm-Fe-N 系バルク磁石の高密度化に取り組んできた。そこで本稿では、Sm-Fe-N 系バルク磁石の高密度化に関する最近の研究成果について述べる。

3.2 スパークプラズマ蒸着および放電プラズマ焼結を用いた Sm-Fe-N 系 Zn ボンド磁石の高密度化

前節で述べたように、Sm-Fe-N 系 Zn ボンド磁石の保磁力を高めるには、磁石の酸素含有量を低減する必要がある。そこで、はじめに Fig. 12 のフローチャートに従って低酸素含有量の Sm-Fe-N 系粉末の作製を試み、その結果、得られた Sm-Fe-N 系粉末の酸素含有量は約 0.2 wt.%に抑えることができた。この酸素含有量は市販粉末のそれの約 1/3 であった。また、Fig. 11 (b) に示したような均一に Zn が分散した微細組織を実現するためには、Zn コート Sm-Fe-N 系粉末が適していると考えられる。そこで我々のグループでは、スパークプラズマ蒸着（APD）を用いて Zn を Sm-Fe-N 系粉末上に蒸着し、Sm-Fe-N/Zn 複合粉末を作製した。APD とは、ターゲットと電極間のアーク放電によってターゲットが蒸発・イオン化され、粒子または基板上に微粒子が堆積する方法であり、細な Zn 粒子を蒸着させることが可能であると考えられる。そこで、この APD により低酸素 Sm-Fe-N 系粉末上に Zn を蒸着させて Sm-Fe-N/Zn 複合粉末を作製した。Fig. 13 に、APD によって Zn を蒸着した Sm-Fe-N 系粉末表面の SEM および Zn マッピング像を示した。なお、蒸着条件の詳細は著者の先行論文に記載されている。Fig. 13 (a) および (b) に示すように、APD により Zn を蒸着した後、Sm-Fe-N 系粉末に続いて、その粉末表面には微粒子の存在が確認された。
Fig. 13 SEM and Zn mapping images of APDed Sm-Fe-N/Zn composite powders. (c) and (d) show magnified images of the squares indicated in (a) and (b) (Reproduced from Ref. 83 with the permission of ELSEVIER).

Fig. 14 Magnetic properties of Zn-bonded Sm-Fe-N magnets prepared using Zn-deposited low-oxygen-content powders (Reproduced from Ref. 83 with the permission of ELSEVIER).
かしながら、一連のAPDプロセスは複雑であり、さらに
Yamaguchiら(36)はAPDプロセス中に生じる熱の影響によっ
てSm-Fe-N系粉末の磁化が減少してしまう可能性を報告し
ている。そこで本節では、水素プラズマ-金属反応（HPMR）
法を用いて、低酸素かつ微細なZn粉末を作製し、それを用
いてSm-Fe-N系Znボンド磁石の高性能化を行った。HPMR
法とは、アークプラズマで解錆した水素が溶融金属中に溶
解し金属の蒸発を促進し、冷却中に水素が脱離し金属微粉末
が得られる方法である(37,38)。この方法では水素ガス圧力や電
力を利用することにより、スパイラルサーキュレーターの
微細な金属粉末を作製することができる(37,38)。そこで、こ
のHPMR法を用いてZn粉末を作製し、得られたHPMR-Zn
粉末と低酸素Sm-Fe-N系粉末を混合しSPSで焼結する
ことで、高い(BH)maxのZnボンド磁石を作製した。なお
本プロセスはFig.12の実験フローにおいて(2)として示
している。HPMR法で作製したZn粉末の粉径と酸素量につ
いて、著者らのグループの論文(37,38)において、その平均一次
粉径と平均二次粉径はそれぞれ約0.2、0.9μmであり、さら
に酸素含有量は700ppm未満と低酸素量であったことを報告
しており、同方法によりサプライサーキュレーターで低酸
素含有量のZn粉末を作製することができた。そこで、この
HPMR-Zn粉末（10wt.%）と低酸素Sm-Fe-N系粉末をボーリ
ミルで混合することでSm-Fe-N/Zn混合粉末を得た。なお、
実験条件の詳細は著者らの先行論文(37,38)に記載されている。
得られた混合粉末の酸素含有量を調べた結果0.27wt.%であ
り、原料であるSm-Fe-N系粉末およびHPMR-Zn粉末の酸
素含有量はそれぞれ約0.2および0.07wt.%であったことか
ら、粉末混合プロセスによる酸素含有量の増加は0.05wt.%
程度に抑えられていた。続いて、この低酸素なSm-Fe-N/Zn
混合粉末をSPSにて焼結することでSm-Fe-N系Znボンド
磁石を作製した。Fig.15は、10wt.%ZnのSm-Fe-N系Znボン
ド磁石の保磁力と(BH)maxの焼結温度依存性を示している(39)
。380℃および400℃で焼結して得られた磁石の保磁力は約
1.2〜1.3mJ/m²であり、焼結温度が440℃まで増加傾向を
示した。Fig.15(b)には(BH)maxと焼結温度の関係を示し
ているが、(BH)maxは焼結温度が400℃まで増加し、それ以上に温
度を上げると減少傾向を示した。400℃で焼結して得られた
Sm-Fe-N系Znボンド磁石において最大の(BH)max=200kJ/m²
(25MGc)が確認され、同時に2.8MA/m(39)なる比較的高い
保磁力も観察していた(39)。この値は、これまでに報告されてい
れるSm-Fe-N系バルク磁石の中でも最高レベルの磁性特徴で
あり、HPMR-Zn粉末と低酸素Sm-Fe-N系粉末を用いること
で比較的高く保磁力と高(BH)maxを同時にSm-Fe-N系Zn
ボンド磁石を得ることができた。
本系磁石において、保磁力の温度係数（α(Hₜ)）も重要な
パラメータであることから、上述の最も高い(BH)maxが得ら
れたSm-Fe-N系Znボンド磁石についてα(Hₜ)を求めた。
Fig.16に、同Znボンド磁石の25〜200℃の範囲で測定した
保磁力と温度の関係を示したが(40)、その25℃から200℃ま
での保磁力の温度係数α(Hₜ)は-0.34%/℃であった。過去
の論文で報告されているSm-Fe-N系Znボンド磁石のα(Hₜ)
は-0.36%/℃から-0.37%/℃であり(39,41)。本論文で得られ
たα(Hₜ)は先行論文の報告値より良好な値であった。この
α(Hₜ)の改善は、磁石の酸素含有量の低減に由来すると考
えられる。3.1節で述べたように、磁石中に含まれる酸素は
Sm-Fe-N系粉末内に拡散し、その磁石の保磁力に要因となる。
したがって酸素含有量を低減することで酸素の拡散を抑
制し、その結果α(Hₜ)も向上したと考えられる。
Fig.17に、これまで報告されているZnボンドおよびZnフ
ミーなSm-Fe-N系バルク磁石の(BH)maxとHₜの関係をまと
めて示した。なお図中マーカーの色はZn添加量を表してお
り、さらに星印は我々のグループによって報告した値を示し
ている。Fig.17からわかるように、(BH)maxとHₜはトレード

Fig. 15 Magnetic properties of Zn-bonded Sm-Fe-N magnets prepared using low-oxygen-content Sm-Fe-N and Zn mixed powders (Reproduced from Ref. 84 with the permission of the Magnetic Society of Japan).

Fig. 16 Coercivity versus temperature of Zn-bonded Sm-Fe-N magnets exhibiting high (BH)max (Reproduced from Ref. 84 with the permission of the Magnetic Society of Japan).
オフォの関係がある。3.2節で述べたように、酸素含有量を減らしAPDによりZnの分散性を高め、さらにSPSにより相対密度を高めることにより、比較的高いH_{c}を維持しながらも$(BH)_{\text{max}}$が増大した。その結果、Fig.17中における$(BH)_{\text{max}}$-H_{c}図において、従来の黒い破線から青い破線まで磁気特性が向上した。さらに3.3節で述べたように、HPMR法によって作製した低酸素・微細なZn粉末を用いることで、H_{c}が1.28 MAm$^{-1}$で$(BH)_{\text{max}}$が200 kJm$^{-3}$なる優れた磁気特性を得ることができた。これは、Fig.17の$(BH)_{\text{max}}$-H_{c}図において、青い破線まで磁気特性を向上することができたといえる。以上のように、本論文で報告した我々のグループの最近の研究33,44によって、Sm-Fe-N系Znボンド磁石の磁気特性が従来よりも向上できたといえる。

3.4 まとめ

本章では、(i) 原料粉末の作製から焼結までの一貫した低酸素プロセス、(ii) 組織の均一性を高めるためのAPDまたはHPMRの利用、さらに(iii) 相対密度を高めるためのSPSの活用により、Sm-Fe-N系Znボンド磁石の高性能化を試み、最大の$(BH)_{\text{max}}$ = 200 kJm$^{-3}$で、H_{c}と$(aH)_{\text{diff}}$がそれぞれ1.28 MAm$^{-1}$、-0.34%℃$^{-1}$なる磁気特性を実現した。Sm-Fe-N系Znボンド磁石の磁気特性をさらに向上するためには、(i) 酸素含有量を0.2 wt.%未満に抑える粉末作製および焼結プロセスの開発、(ii) 均質かつ薄くZnをSm-Fe-N系粉末にコーティングするプロセスの開発、ならびに(iii) 低温で焼結化する焼結プロセスのさらなる発展が必要である。

謝辞

本研究の一部は、国立研究開発法人新エネルギー・産業技術総合開発機構（NEDO）から委託されたプロジェクトJPNP20019および未来開拓プログラム「次世代自動車向け高効率モーター用磁性材料技術開発」（MagHEM. プログラム番号JPNP14015）、文部科学省による元素戦略磁性材料研究拠点（ESICMM、助成番号JPMXP0112101004）、およびトヨタ自動車株式会社の支援を受けて行われました。その場観察XRD測定は、公益財団法人高輝度光科学研究センター（JASRI）の承認のもと（課題番号2018A1645）、Spring-8のBL02B2で実施し、ご協力をいただいた中村哲也および河口彰吾、両博士に感謝いたします。また、Sm-Fe粉末をご提供いただいた住友金属鉱山株式会社に感謝いたします。

文 献

1) J. F. Herbst: Rev. Mod. Phys., 63(4) (1991) 819-898.
2) J. J. Croat, J. F. Herbst, R. W. Lee, F. E. Pinkerton: J. Appl. Phys., 55 (1984) 2078-2082.
3) J. J. Croat, J. F. Herbst, R. W. Lee, F. E. Pinkerton: Appl. Phys. Lett., 44 (1984) 148-149.
4) M. Sugawa, S. Fujimura, N. Togawa, H. Yamamoto, Y. Matsuura: J. Appl. Phys., 55 (1984) 2083-2087.
5) D. Harimoto, Y. Matsuura: Hitachi Metals Technical Review, 23 (2007) 69-72.
6) T. Takeshita, R. Nakayama: Proceedings of the 10th International. Workshop on Rare-Earth Magnets and their Applications, (1989) 551-558.
7) T. Takeshita, R. Nakayama: Proceedings of the 11th International. Workshop on Rare-Earth Magnets and their Applications, (1990) 49-71.
8) P. J. McGuiness, X. J. Zhang, X. J. Yin, I. R. Harris: J. Less Common Met., 158 (1990) 359-365.
9) I. R. Harris, P. J. McGuiness: Proceedings of the 11th International. Workshop on Rare-Earth Magnets and their Applications, (1990) 29-48.
10) K. Ohashi, T. Yokoyama, R. Osugi, Y. Tawara: IEEE Trans. Magn., MAG-23(5) (1987) 3101-3103.
11) B. D. Mooij, K. H. J. Buschow: Philips J. Res., 42 (1987) 246-
