INTRODUCTION

The evaluation of the scientific efficacy of Ayurvedic and Siddha drugs has become an urgent necessity for their acceptance and promotion. Although these systems are in vogue since ages, the scientific validation with modern parameters will prove their efficacy and help in resurrecting these age-old systems of medicine. This is all the more required due to the development of multidrug-resistant pathogens and increase in the incidence of dread diseases such as cancer, malaria, and AIDS, with which the modern medicine is unable to cope up with. It will be wise to develop a safe, cost-effective medicine which could have less or no side effects. For the past two decades, increasing focus is being given by government and private players in this direction [1-30]. Ministry of AYUSH, Government of India, and other such organizations should come forth to develop techniques, protocols, and methods to establish the Ayurvedic and Siddha medicines at the global level.

The present study is one step in this direction. The study deals with the antioxidant study of Aswagandharmshatam or Aswagandharishtam, which is a liquid Ayurvedic medicine used in psychiatric conditions, dullness, loss of memory, sluggishness, epilepsy, low digestion power, piles, and diseases caused by Vata imbalance. It is also used as a nerve tonic for sexual disorders and for depression. Being an Arishta, it contains about 5–10% of self-generated natural alcohol which helps in the delivery of the drug in the body. The dosage of this medicine is 12–24 ml twice daily after food or as advised by the physician.

The present work undertakes the antioxidant assay study of this medicine to understand its possible mechanism of action. The manufacturers of this medicine are Baidyanath, Dabur, AVN, AVP, Vaidik Herbs, and Kottakkal Arya Vaidyasala. Since this medicine helps in rejuvenation of mind and body, its role as an antioxidant should be understood. The present study encompasses three antioxidant assays, namely reducing power assay, 2,2-diphenyl-1-picrylhydrazyl (DPPH) as say, and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay.

METHODS

This Arishtam is made of the following ingredients which are divided into two sections: Kwatha dravyas (Main components) and Prakshepa dravyas (additive components).

The coarse powder of Kwatha dravyas (Main components) is added with water, boiled and reduced to 12.288 L, and filtered. It is added with honey, and Prakshepa Dravya (additive components) powders are added and kept in an airtight container for 1 month for fermentation. After a month time, it is filtered and preserved.

Aswagandharmshatam ingredients:
- Kwatha dravyas (main components)
 - Ashwagandha (Withania somnifera) - Root - 2.4 kg
 - Mushali (Chlorophyllum tuberosum) - Root - 960 g
 - Manjishtha (Rubia cordifolia) - Root - 480 g
 - Haritaki (Terminalia chebula) - Fruit - 480 g
 - Nisha (Curcuma longa) - rhizome - 480 g
 - Daruharidra (Berberis aristata) - Stem - 480 g
 - Yashtimadhu (Glycyrrhiza glabra) - Root - 480 g
 - Rasna (Plachea lanceolata) - Root, leaf - 480 g
 - Vidari (Pueraria tuberosa) - Root - 480 g
 - Mustaka (Cyperus rotundus) - Rhizome - 480 g
 - Triticum (Poonoo Daru) - Root - 480 g
 - Sariva (Indian sarsaparilla - Hemidesmus indicus) - Root - 384 g
 - Krishna Sariva (Cryptolepis buchanani) - Root - 384 g
 - Shweta Candana (Santalum album) - heartwood - 384 g
 - Rakta Candana (Pterocarpus santalinus) - heartwood - 384 g
 - Vacha (Acorus calamus) - Rhizome - 384 g
 - Chitraka (Plumbago zeylanica) - Root - 384 g
 - Water for decoction - 98.304 L
 - Boiled and reduced to 12.288 L

- Prakshepa dravyas (additive components)
 - Dhantaka - Woodfordia fruticosa - Flower - 768 g

Aswagandharishtam ingredients:
- Prakshepa dravyas (additive components)
 - Dhantaka - Woodfordia fruticosa - Flower - 768 g
 - Ashwagandha - Withania somnifera - Root - 2.4 kg
 - Mustaka - Cyperus rotundus - Rhizome - 480 g
 - Rasna - Plachea lanceolata - Root, leaf - 480 g
 - Vidari - Pueraria tuberosa - Root - 480 g
 - Triticum - Poonoo Daru - Root - 480 g
 - Sariva - Indian sarsaparilla - Hemidesmus indicus - Root - 384 g
 - Krishna Sariva - Cryptolepis buchanani - Root - 384 g
 - Shweta Candana - Santalum album - heartwood - 384 g
 - Rakta Candana - Pterocarpus santalinus - heartwood - 384 g
 - Vacha - Acorus calamus - Rhizome - 384 g
 - Chitraka - Plumbago zeylanica - Root - 384 g
 - Water for decoction - 98.304 L
 - Boiled and reduced to 12.288 L
The drug was subjected to antioxidant assays, namely reducing power, DPPH, and ABTS assays.

Reducing power assay [31]

Various concentrations of the Aswagandharishtam in 1 ml of 10% DMSO solution was mixed with phosphate buffer (2.5 ml) and potassium ferricyanide (2.5 ml) and incubated at 50°C for 20 min. Aliquots of trichloroacetic acid (2.5 ml) were added to the mixture, which was then centrifuged at 3000 rpm for 10 min. The upper layer of solution (2.5 ml) was mixed with distilled water (2.5 ml) and a freshly prepared ferric chloride solution (0.5 ml). The absorbance was measured at 700 nm. A blank was prepared without adding sample or standard. Ascorbic acid at various concentrations was used as reference standard. Increased absorbance of the reaction mixture indicates an increase in reducing power.

\[
\% \text{ inhibition } = \left(\frac{\text{OD of Control} - \text{OD of Aswagandharishtam}}{\text{OD of Control}} \right) \times 100
\]

DPPH radical scavenging assay [32]

The method described by Oyedemi and Afolayan et al. (2011) was used to determine the DPPH scavenging activity of the Aswagandharishtam. The solution of 0.135 mM DPPH was prepared in methanol. Different concentrations of the medicine (0.1 ml) were mixed with 1.9 ml of DPPH solution. The reaction mixture was vortexed thoroughly and left in the dark at room temperature for 30 min. The absorbance of the mixture was measured at 517 nm. Ascorbic acid was used as the reference drug. The ability of the medicine to scavenge DPPH radical was calculated from the following formula:

\[
\% \text{ DPPH inhibition} = \left(\frac{\text{OD of Control} - \text{OD of Aswagandharishtam}}{\text{OD of Control}} \right) \times 100
\]

ABTS radical scavenging assay [33]

A stock solution of ABTS radical cation was prepared by dissolving ABTS (7 mM, 25 ml in deionized water) with potassium persulfate (K₂S₂O₈) (140 mM, 440 µL). The mixture was left to stand in the dark at room temperature for 15-16 h (the time required for the formation of the radical) before use. For the evaluation of ABTS radical scavenging activity, the working solution was prepared by the previous solution and diluting it in ethanol to obtain the absorbency of 0.700±0.02 at 734 nm. The solvent extracts and Aswagandharishtam (0.1 ml) at different concentrations were mixed with the ABTS working solution (1.9 ml), and the reaction mixture was allowed to stand at room temperature for 20 min; then, the absorbance was measured using a ultraviolet-visible spectrophotometer at 734 nm. The radical scavenging activity is given as ABTS radical scavenging effect that is calculated by the following equation:

\[
\text{ABTS radical scavenging effect (\%)} = \left(\frac{\text{OD of Control} - \text{OD of Aswagandharishtam}}{\text{OD of Control}} \right) \times 100
\]

RESULTS

Table 1 shows the reducing power assay results. Table 2 shows the DPPH assay results and Table 3 shows the ABTS assay results. Ascorbic acid was used as a standard to compare the antioxidant activities of different assays as shown in Table 4. The comparative percentage inhibition of the three assays as compared to ascorbic acid is summarized in Fig. 1. The comparative IC₅₀ values (Fig. 2) indicate that Aswagandharishtam exhibits excellent antioxidant capacity for all the three assays conducted and this could be a very important factor for the medicinal role of Aswagandharishtam.

Reducing power assay

The reducing power assay of Aswagandharishtam indicated good antioxidant properties as seen by its IC₅₀ value as compared with that of ascorbic acid being shown in Fig. 1.

DPPH assay

The DPPH assay of Aswagandharishtam also indicated good antioxidant properties as seen by its IC₅₀ value as compared with that of ascorbic acid being shown in Fig. 1.

ABTS assay

The ABTS assay of Aswagandharishtam also indicated good antioxidant properties as seen by its IC₅₀ value as compared with that of ascorbic acid being shown in Fig. 1.

Ascorbic acid

Ascorbic acid was used as a standard to compare the antioxidant activities of different assays as shown in Table 4.

DISCUSSION

The present work was in continuation of our studies on the gas chromatography-mass spectrometry (GC-MS) and antioxidant profiles of various Ayurvedic medicines. Two more Aristaas, studied by us, namely Ashokarishtam and Partharishtam, also indicated strong antioxidant properties as was understood by the biomolecules present as shown in the GC-MS analysis [34-36].

The GC-MS analysis study of a similar medicine, Ajaswagandhadi lehyam, in which the major component is Aswagandha (Winter cherry/Indian Ginseng (root) - Withania somnifera). Withania is reported to medicinal values such as immunomodulator, aphrodisiac, antitumor, anti-inflammatory, anti-stress, antioxidant, sleep-inducing, effective in memory-related conditions, insomnia, hemopoietic effect on CNS, and cardiopulmonary systems [37]. The phytoconstituents present in this plant such as Withanoside IV or VI produced dendritic outgrowth in normal cortical neurons of isolated rat cells, whereas axonal outgrowth was observed in the treatment with withanolide A in normal cortical neurons of isolated rat cells.
neurons [38]. The crude extract of the plant containing the steroidal substances sitoindosides VII-X and withaferin A augmented learning acquisition and memory in both young and old rats [39].

The present medicine in study, i.e. Aswagandharishtam also contains Aswagandha as a major component. Among the constituents of Aswagandharishtam, some have been reported to have strong antioxidant potentials such as C. tuberosum (Baker), R. cordifolia, T. chebula, B. aistata, G. glabra, P. tuberose, Operculina turpethum, H. indicus, P. santalinus, Z. officinalis, P. longum, P. nigrum, C. tamala, and M. ferrea L [40-56]. Thus, the antioxidant properties as shown in this present work augur well with similar activities of the majority of its constituents.

CONCLUSION

From the above discussion, it is clear that aristaas, in general, have antioxidant properties and Aswgandharishtam shows very good antioxidant activities with respect to all the three assays, namely reducing assay, DPPH assay, and ABTS assay, proving its efficacy as a potent medicine.

ACKNOWLEDGMENTS

The authors wish to acknowledge with gratitude to all those who have directly or indirectly helped in the present study.

AUTHORS’ CONTRIBUTIONS

The planning and guidance for this work was done by M.R.K. Rao and K. Prabhu. The experiment was conducted by M. Kotteswari and Siva

Table 2: The DPPH assay results of Aswagandharishtam

S. No	Concentration (µg/ml)	% Absorbance	Inhibition	IC\textsubscript{50}
1	5	0.737	17.65	
2	10	0.681	23.91	
3	20	0.638	28.72	
4	50	0.533	40.45	
5	100	0.482	46.14	
n	Control	0.895	5	
Mean±SD		31.37±11.74214333	103.607	

DPPH: 2,2-Diphenyl-1-picrylhydrazyl, SD: Standard deviation

Table 3: The ABTS assay results of Aswagandharishtam

S. No	Concentration (µg/ml)	% Absorbance	Inhibition	IC\textsubscript{50}
1	5	0.579	12.27	
2	10	0.498	24.55	
3	20	0.485	26.52	
4	50	0.461	30.15	
5	100	0.443	32.88	
n	Control	0.666	5	
Mean±SD		25.27±7.949957862	197.79	

ABTS: 2,2’-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid. SD: Standard deviation

Table 4: The ascorbic acid antioxidant profile

S. No	Concentration (µg/ml)	% Absorbance	Inhibition	IC\textsubscript{50}
1	5	0.676	24.47	
2	10	0.474	47.04	
3	20	0.33	63.13	
4	50	0.212	76.31	
5	100	0.179	80	
n	Control	0.895	5	
Mean±SD		58.19±22.85702846	19.59	

SD: Standard deviation

Fig. 1: The comparative inhibition percentages of all the three assays as compared to ascorbic acid (standard)

Fig. 2: The IC\textsubscript{50} value comparison of all the three assays as compared to ascorbic acid (standard)
Kumar. Sampad Shil was involved in preparing the graphs and analysis of results. All the authors have approved the article.

CONFLICTS OF INTEREST

The authors declare that no conflict of interest exists among them.

REFERENCES

1. Shankari C, Venkatesan V, Rao MR, Saravanan K, Prabhu K, Prakash S. The GC MS analysis study of one ayurvedic medicine “Ajaswagandhaxi lehyam”. Int J Pharm Sci Res 2016;4:33-7.

2. Queen KE, Rao MR, Anthony J, Prabhu K, Johnson WM, Balasubramanian BS, et al. The GC-MS study of one ayurvedic preparation Amrithamchelli Churnam. Int J Pharm Sci Res 2016;5:169-72.

3. Jessica A, Rao MR, Anthony J, Prabhu K, Johnson WM, Balasubramanian BS, et al. The GC-MS study of one ayurvedic preparation Katakakhadiadi Kashayam. Int J Pharm Sci Res 2016;5:216-24.

4. Rao MR, Mohamed H, Narayanan S, Prabhu K, Kalaiselvi VS, Ravi A, et al. Antioxidant assay and GC-MS analysis of one Siddha medicine Swasa Kudrit tablets. Int J Pharm Sci Res 2016;3:19-25.

5. Sivakumaran G, Rao MR, Prabhu K, Kalaiselvi VS, Dinakar S, Johnson WM, et al. Preliminary study of one ayurvedic medicine “Manasar Mitra Vatakam”. Int J Pharm Sci Res 2016;3:190-9.

6. Lenin S, Rao MR, Prabhu K, Bindu R, Elizabeth AA, Dinakar S. The study of antioxidant activities of an Ayurvedic medicine Acalypha fruticosa. Pharm Lett 2016;8:203-11.

7. Sharada NS, Rao MR, Priya M, Prabhu K, Kalaivani KV, Kumaran D, et al. The study of antioxidant activities of an Ayurvedic medicine Kuthadithi Kashayam. Int J Pharm Sci Res 2015;5:248-54.

8. Rao MR, Ravi A, Narayanan S, Prabhu SK, Kalaiselvi VS, Dinakar S, et al. Antioxidant Study and GC MS analysis of an ayurvedic medicine “talisapadtri choornam”. Int J Pharm Sci Res 2016;5:136-58.

9. Rao MR, Phillip S, Kumar MH, Saranya Y, Divya D, Prabhu K. GC-MS analysis, antimicrobial, antioxidant activity of an ayurvedic medicine, nimabpatadi choornam. Int J Pharm Sci Res 2015;5:124-36.

10. Phillips S, Rao MR, Prabhu K, Priya M, Kalaiyani S, Ravi A, et al. Preliminary GC-MS analysis of an ayurvedic medicine “kuthadithi kashayam.” J Chem Pharm Res 2015;7:393-401.

11. Chandrasekar T, Rao MR, Kruna RV, Prabhu K, Kumar SN, Divya D. GC-MS analysis, antimicrobial, antioxidant activity of an ayurvedic medicine, nimabpatadi choornam. Int J Pharm Sci Res 2015;5:124-36.

12. Phillips S, Rao MR, Prabhu K, Priya M, Kalaivani S, Ravi A, et al. Preliminary GC-MS analysis of an ayurvedic medicine “kuthadithi kashayam.” J Chem Pharm Res 2015;7:393-401.

13. Ravi A, Mohammad H, Rao MR, Prabhu K, Babu H, Shridhar. Antibacterial, antioxidant activity and GC MS analysis of a sidha medicine “neerkovai tablets”. Int Joun Pharm Tech 2015;7:1009-112.

14. Rao MR, Kumar MH, Amutha A, Prabhu K, Chatterjee B, Kumar SS. Phytochemical analysis and antioxidant efficacy of the resin of Bombax ceiba (Salmali). Int J Pharm Sci Res 2015;30:335-9.

15. Rao MR, Ganesan A, Rengasundari G, Kumar MS, Jha NK. Treatment of peptic ulcer in animal model by Sirucinni Uppu (Herbal salt of ceiba Forssk.). Int J Pharm Sci Rev Res 2015;30:335-9.

16. Rao MR, Ganesan A, Rengasundari G, Kumar MS, Jha NK. The clinical efficacy of ‘Kodasuri veeravaippu’ (a sidha formulation) in patients affected by the disease “Keelvayu” (Arthritis). Pharm Lett 2014;6:71-7.

17. Rao MR, Ganesan A, Rengasundari G, Kumar MS, Jha NK. Treatment of peptic ulcer in animal model by Sirucinni Uppu (Herbal salt of ceiba Forssk.). Pharm Lett 2014;3:248-54.

18. Velpandian V, Anbhu SP, Rao MR, Prabhu K, Kalaiselvi VS, Saranya Y. Identification of Active Biomolecules in saraswatarishtam (an ayurvedic preparation) by GC-MS analysis. Int J Pharm Sci Res 2015;33:58-62.

19. Ravi A, Gupta M, Rao MR, Prabhu K, Kalaiselvi VS, Prabhu SP. GC-MS analysis and antioxidant studies of an ayurvedic drug, nimbapatradi choornam. J Pharm Sci Res 2015;7:45-52.

20. Sadhanandhan S, Narayanan G, Rao MR, Prabhu K, Jones S, Ravi A, et al. GC-MS analysis and antioxidant studies of an ayurvedic drug, partharishtham. Int J Pharm Sci Res 2015;34:273-81.

21. Uddin Q, Samiulla L, Singh VK, Jamil SS. Phytochemical and pharmacological profile of Withania somnifera Dunal. A review. J Appl Pharm Sci 2012;2:170-5.

22. Tohda C, Kuboyama T, Komatsu K. Search for natural products related to regeneration of the neuronal network. Neurosurgicals 2005;14:34-45.

23. Ghosal S, Lal J, Sridivasa R, Bhattarayya SK, Upadhyay SN, Jaiswal AK, et al. Immunomodulatory and CNS effects of sitoindolides IX and X, two new glycowithanolides from Withania somnifera. Phytotoxicol Rsh 1989;3:201-6.

24. Patil VN, Deokule SS. Pharmacognostic study of Chlorophytum tuberosum Baker. Int J Ayurveda Res 2010;1:237-42.

25. Marisvelam R, Ranjitsingh AJ, Nanthini AU. Preparation and characterization of silver nanoparticles using Rubia cordifolia plant root extract and their microbial properties. Int J Adv Res 2013;1:56-61.

26. Gorle AM, Patil SS. Evaluation of antioxidant and antiacne property of Rubia cordifolia. Pharm Sinica 2013;1:59-63.

27. Lodia S, Kansala L. Antioxidant activity of Rubia cordifolia against lead toxicity. Int J Pharm Sci Res 2012;3:2224-32.

28. Bag A, Bhattarayya SK, Chattopadhyay RR. The development of Terminalia chebula Retz. (Combretaceae) in clinical research. Asian Pac J Trop Biomed 2013;3:244-52.

29. Sharma K, Bairwa R, Chauhan N, Srivastava B, Saini NK. Berberis aristata: a review. Int J Res Ayurveda Pharma 2012;1:383-8.

30. Damle M. Glycyrrhiza glabra (Liquorice) - A potent medicinal herb. Int J Herb Med 2014;2:132-6.

31. Pandey N, Yadav D, Pandey V, Tripathi YB. Anti-inflammatory effect of Pueraria tuberosa extracts through improvement in activity of red blood cell anti-oxidant enzymes. Ayu 2013;3:297-301.

32. Kumar SV, Sujatha C, Shymala J, Nagasudha B, Mishra SH. Protective effect of root extract of Operculina terpethem Linn. against paracetamol induced hepatotoxicity in rats. Indian J Pharm Sci 2006;68:32-5.
49. Anbuselvam C, Vijayavel K, Balasubramaniy N. Protective effect of *Operculina turpethum* against 7, 12 dimethylbenz (a)anthracene induced oxidative stress with reference to breast cancer in experimental rats. Chem Biol Interact 2007;168:229-36.

50. Chatterjee S, Banerjee A, Chandra I. *Hemidesmus indicus*: A rich source of herbal medicine. Med Aromat Plants 2014;3:e155.

51. Azamthulla M, Balasubramanian R, Kavimani S. A review on *Pterocarpus santalinus* linn. World J Pharm Res 2015;4:282-92.

52. Adel PR, Prakash J. Chemical composition and antioxidant properties of ginger root (*Zingiber officinalis*). J Med Plants Res 2010;4:2674-9.

53. Kumar S, Kamboj J, Suman, Sharma S. Overview for various aspects of the health benefits of *Piper longum* linn. fruit. J Acupunct Meridian Stud 2011;4:134-40.

54. Sharma PC, Yelne MB, Dennis TJ. Database on Medicinal Plants Used in Ayurveda. Vol. 5. New Delhi: Central Council for Research in Ayurveda & Siddha; 2002.

55. Preety A, Sharma S. A brief review on *Cinnamomum tamala* (Buch.-Ham.) Nees and Eberm.: An important medicinal tree. Int J Res Biol Sci 2016;6:26-31.

56. Jayanthi G, Kamalraj S, Karthikeyan K, Muthumary J. Antimicrobial and antioxidant activity of the endophytic fungus *Phomopsis* sp. GJMM07 isolated from *Mesua ferrea*. Int J Curr Sci 2011;1:85-90.