Radiological biomarkers for diagnosis in PSP: Where are we and where do we need to be?

https://escholarship.org/uc/item/0q15k9f8

Movement disorders : official journal of the Movement Disorder Society, 32(7)

0885-3185

Whitwell, Jennifer L
Höglinger, Günter U
Antonini, Angelo
et al.

2017-07-01

10.1002/mds.27038

Peer reviewed
ABSTRACT: PSP is a pathologically defined neurodegenerative tauopathy with a variety of clinical presentations including typical Richardson’s syndrome and other variant PSP syndromes. A large body of neuroimaging research has been conducted over the past two decades, with many studies proposing different structural MRI and molecular PET/SPECT biomarkers for PSP. These include measures of brainstem, cortical and striatal atrophy, diffusion weighted and diffusion tensor imaging abnormalities, [18F] fluorodeoxyglucose PET hypometabolism, reductions in striatal dopamine imaging and, most recently, PET imaging with ligands that bind to tau. Our aim was to critically evaluate the degree to which structural and molecular neuroimaging metrics fulfill criteria for diagnostic biomarkers of PSP. We queried the PubMed, Cochrane, Medline, and PSY-CINFO databases for original research articles published in English over the past 20 years using postmortem diagnosis or the NINDS-SPSP criteria as the diagnostic standard from 1996 to 2016. We define a five-level theoretical construct for the utility of neuroimaging biomarkers in PSP, with level 1 representing group-level findings, level 2 representing biomarkers with demonstrable individual-level diagnostic utility, level 3 repre-
Progressive supranuclear palsy (PSP) is a pathologic diagnosis with neurodegeneration characterized by abnormal tau pathology in the form of globular neurofibrillary tangles, tufted astrocytes, coiled bodies, and threads, with a predominance of 4-repeat (4R) tau isoforms. Tau pathology is typically observed in the brain stem, basal ganglia, diencephalon, and temporal, motor, and premotor cortices, although distribution can vary. The most commonly recognized clinical presentation of PSP is Richardson’s syndrome (PSP-RS), in which patients have early and notable gait and postural instability, frequent falls, and abnormal vertical eye movements (supranuclear gaze palsy). However, a number of other clinical presentations of PSP have been increasingly recognized, including but not limited to PSP with predominant parkinsonism (PSP-P), PSP with progressive gait freezing (PSP-PGF), PSP with predominant frontal presentation (PSP-F), PSP with a predominant speech/language disorder (PSP-SL), and PSP with predominant corticobasal syndrome (PSP-CBS). We have recently developed the Movement Disorder Society-endorsed PSP clinical diagnostic criteria that recognize this heterogeneity and provide criteria for the different clinical variants of PSP. A major challenge faced during the revision of the diagnostic criteria was to determine whether there was enough evidence to support the inclusion of neuroimaging biomarkers in the diagnosis of PSP-RS, the other variant syndromes of PSP (vPSP), or in the diagnosis of pathological PSP, and what role they should play in the diagnostic criteria.

Table 1 provides a theoretical construct to judge the utility of diagnostic neuroimaging biomarkers in PSP. The first step is to demonstrate abnormalities in the group of interest compared with matched healthy controls and other clinically overlapping disease groups (level 1). In the context of PSP, this typically means demonstrating abnormalities in PSP-RS compared with other parkinsonian disorders, such as Parkinson’s disease (PD), multiple system atrophy with predominant parkinsonism (MSA-P), and CBS. However, if one wishes to ultimately develop a diagnostic biomarker for PSP pathology, it is also important not to ignore vPSP, for which neuroimaging signatures may differ from PSP-RS. A biomarker differentiating PSP-F, PSP-SL, and PSP-CBS from other frontotemporal lobar degeneration spectrum disorders may also be valuable. For these group-level findings to translate into useful biomarkers, the next step is to demonstrate useful sensitivity and specificity (>80%) for the clinical diagnosis at the individual patient level (level 2). Biomarkers that perform well at this level could be valuable to support the clinical diagnosis. However, because these analyses are based on comparison with clinical diagnosis rather than the gold standard of neuropathology, there is still no evidence at this point that the biomarker adds anything to clinical diagnosis, other than to increase confidence. A biomarker could surpass clinical diagnosis if one can demonstrate utility for early clinical diagnosis, when patients have mild or nonspecific symptoms and signs before they meet clinical criteria for the disease (level 3), or if one can demonstrate that a biomarker has a strong relationship with the presence of PSP pathology regardless of clinical phenotype (level 4). The latter will ideally require the demonstration that a biomarker is highly associated with PSP pathology, not only in patients diagnosed with PSP-RS but also in vPSP, thus representing utility for the entire clinical spectrum of PSP. However, neuroimaging biomarkers that satisfy level 4 may still be considered only a surrogate marker of pathology, meaning that they correlate well with pathology but do not directly measure pathology. Thus, the holy grail in neuroimaging is to identify a biomarker that directly measures underlying pathology and hence could be considered a definitive pathological biomarker (level 5). We are getting closer to this goal with the development of PET ligands that can bind to abnormal tau in the brain, and current knowledge of these biomarkers will be discussed. At levels 4 and 5, the ideal biomarker would be one that is specific to PSP pathology, although biomarkers that could identify a 4R tauopathy could also be diagnostically useful. Another issue to consider when assessing the value of neuroimaging biomarkers is how well the proposed measures would translate into clinical practice; ideally they should be relatively inexpensive, convenient, safe, widely available, and comparable across different centers.

This review will utilize the theoretical construct outlined in Table 1 to evaluate the degree to which
different proposed structural and functional neuroimaging metrics fulfill criteria as diagnostic biomarkers in PSP. As part of our efforts to develop the new diagnostic criteria, a detailed literature search and content evaluation was performed that formed the basis of this review (Supplemental Data).

Structural MRI

Brain Stem Measures

Striking midbrain atrophy is typically observed in PSP-RS, and a number of midbrain metrics have been proposed as potential biomarkers. These metrics include visual assessment of midbrain atrophy, midbrain profile or the presence of specific morphological markers such as the “hummingbird” sign (atrophy of dorsal midbrain resembles hummingbird’s head and bill in midsagittal plane),[12] “Mickey Mouse” sign (rounded rather than rectangular midbrain peduncles in axial planes),[13] and “morning glory” sign (concavity of the lateral margin of the midbrain tegmentum in axial planes);[14] see Figure 1. Quantitative measures of midbrain anterior-posterior diameter and midsagittal area or volume have also been assessed. Studies are in general agreement that midbrain measurements are smaller in PSP-RS compared with MSA-P, PD, and vascular parkinsonism have been equivalent to the midbrain-pons ratio in differentiating PSP-RS from MSA-P and PD.[15-17,19,32,37-40] Although sensitivity has been lower in other studies[15,18-20,22,23,32] (Table 2). The superior cerebellar peduncles (SCP) are also atrophic in PSP,[32] which contrasts with a relative sparing of the middle cerebellar peduncles (MCPs). This has led to the development of the MR Parkinsonism Index (MRPI), which takes into account both the midbrain-pons area ratio and the ratio of the MCP to SCP width ([P/M] × [MCP/SCP]) [18]; see Figure 1. The MRPI is typically increased in PSP-RS compared with controls, MSA-P, and PD, and sensitivity and specificity values for differentiating PSP-RS from MSA-P, PD, and vascular parkinsonism have been excellent[17,22,37-39,41,43,44] (typically >80% and up to 100% sensitive in a few studies that represent different continents[37-40,43,44]); see Table 2. A number of studies have found that the MRPI was superior or equivalent to the midbrain-pons ratio in differentiating PSP-RS from MSA-P and PD[17,37,38,40,41] (Table 2). Fewer data are available to assess how well midbrain measures could differentiate PSP-RS from CBS.[13,43]

Therefore, there is plenty of evidence to support brain stem measurements as level 2 diagnostic biomarkers in PSP-RS (Table 3). However, proposing one specific measure for the purposes of diagnostic criteria is challenging because centers differ in how they perform these measurements, and specific cut points vary and will likely be cohort- and acquisition-specific. The MRPI appears to be less affected by aging compared with the midbrain-pons ratio[46] but requires detailed measurement of a number of structures that may be difficult to standardize. Indeed, 1 multicenter study found that the MRPI did not perform as well as the midbrain-to-pons ratio in differentiating PSP-RS from PD and MSA-P.[32] However, another multicenter study showed high sensitivity/specificity for the MRPI in differentiating PSP-RS and PD and showed that an automated MRPI measurement that does not rely on rater reliability performs as well as a manual MRPI measurement.[43] Automated methods for measuring midbrain volume are also now available[47] and may improve standardization.

TABLE 1. Levels of evidence for neuroimaging biomarkers in PSP

Level	Utility	PSP-RS	vPSP
1	Research tool	Group-level evidence that a biomarker is abnormal in PSP-RS	Group-level evidence that a biomarker is abnormal in vPSP
2	Supportive of clinical diagnosis	Individual-level data showing diagnostic value (high sensitivity + specificity) for PSP-RS	Individual-level data showing diagnostic value (high sensitivity + specificity) for vPSP
3	Supportive of early clinical diagnosis	Evidence for abnormalities before patients meet clinical criteria for PSP-RS	Evidence for abnormalities before patients meet clinical criteria for vPSP
4	Supportive of pathological diagnosis	Individual-level data showing diagnostic value for PSP pathology, regardless of syndrome	Biomarker of actual pathology
5	Definitive		

Movement Disorders, Vol. 32, No. 7, 2017
There is evidence that these biomarkers could reach level 3 and show diagnostic value in early PSP-RS (Table 3). Abnormal MRPI and midbrain-pons ratios have been shown to predate and predict the development of PSP-RS in patients with clinically unclassifiable parkinsonism at baseline in a retrospective\(^{23}\) and prospective study,\(^{48}\) with abnormalities detected 15 months before patients fulfill criteria for PSP-RS in the retrospective study.\(^{23}\)

Given that the clinical diagnosis of PSP-RS has high sensitivity and specificity for pathological PSP,\(^{13,49,50}\) the midbrain-based measures discussed above also tend to perform well in autopsy-confirmed studies.\(^{19,29}\) However, it is less clear whether these measures add anything to the clinical diagnosis of PSP-RS in predicting pathology and hence could be level 4 biomarkers.\(^{13}\) Group-level studies have failed to find midbrain atrophy in patients with PSP pathology who presented with clinical syndromes other than PSP-RS,\(^{51}\) including patients presenting with CBS.\(^{52}\) Conversely, reduced midbrain areas were identified in PSP-RS that had underlying corticobasal degeneration pathology.\(^{51}\) It therefore appears that in many instances midbrain atrophy is related to the PSP-RS clinical
presentation, rather than to the presence of PSP pathology, limiting its value as a level 4 diagnostic biomarker. In fact, midbrain area measures had a 93% sensitivity and 89% specificity in differentiating PSP-RS from other syndromes across a range of pathologies in the same study, once again supporting midbrain measurements as level 2 biomarkers of PSP-RS. Similarly, another autopsy study found that midbrain atrophy was present in only 86.4% of pathologically confirmed PSP, and the hummingbird sign

TABLE 2. Studies that report sensitivity and specificity of brain stem measurements for the diagnosis of PSP-RS compared with other parkinsonian disorders

First author	Year	Comparison	Measure	Sensitivity	Specificity
Schrag²⁰	2000	35 PSP-RS vs 54 MSA	MB visual (MB atrophy)	77	37
Adachi¹⁴	2004	5 PSP-RS vs 23 PD 14 MSA	MB visual (morning glory sign)	80	97
Righini²⁵	2004	25 PSP-RS vs 27 PD	MB visual (superior profile)	68	88.8
Righini²⁵	2004	25 PSP-RS vs 27 PD	MB visual (MB atrophy)	68	77.7
Price³³	2004	12 PSP-RS vs (12 PD, 12CN)	MB visual (MB atrophy)	83	79
Massey,¹³a	2012	22 PSP vs 13 MSA	MB visual (MB atrophy)	86.4	66.7
Massey,¹³a	2012	22 PSP vs 13 MSA	MB visual (hummingbird sign)	68.4	100
Oba¹⁶	2005	21 PSP-RS vs (23 PD, 25 MSA-P, 31 HC)	MB area	100	91.3
Cosottini¹⁵	2007	15 PSP-RS vs (7 MSA-P, 14 CN)	MB area	100	90.5
Zanigni¹⁷	2016	23 PSP-RS vs 42 PD	MB area	96	98
Moller³²	2017	106 PSP-RS vs 204 PD	MB area	84.0	83.8
Moller³²	2017	106 PSP-RS vs 60 MSA-P	MB area	78.3	81.7
Asato¹⁸	2000	8 PSP-RS vs 9 MSA-P	MB diameter	100	100
Asato¹⁸	2000	8 PSP-RS vs 21 MSA-C	MB diameter	100	91
Schrag²⁰	2000	36 PSP-RS vs 54 MSA	MB diameter	23	96
Cosottini¹⁵	2007	17 PSP-RS vs (7 MSA-P, 4 CN)	MB diameter	60	95.2
Massey	2013	12 PSP-RS vs 7 MSA	MB diameter	83	100
Kim²²	2015	29 PSP-RS vs 82 PD	MB diameter	50	85.3
Owens²³	2016	25 PSP-RS vs (25 MSA, 25 PD)	MB diameter	44	100
Paviour²⁴	2006	18 PSP-RS vs (9 MSA-P, 9 PD, 18 HC)	MB volume	72.2	91.9
Paviour²⁴	2006	18 PSP-RS vs 9 MSA-P	MB volume	83	33
Cosottini¹⁵	2007	18 PSP-RS vs (7 MSA-P, 14 CN)	MB volume	86.7	76.2
Oba¹⁶	2005	22 PSP-RS vs (23 PD, 25 MSA-P, 31 HC)	MB-pons ratio	100	100
Cosottini¹⁵	2007	16 PSP-RS vs (7 MSA-P, 14 CN)	MB-pons ratio	86.7	100
Quattrone²⁸	2008	33 PSP-RS vs 108 PD	MB-pons ratio	90.9	93.5
Quattrone²⁸	2008	33 PSP-RS vs 19 MSA-P	MB-pons ratio	97	94.7
Huss¹¹	2010	22 PSP-RS vs 75 PD	MB-pons ratio	63.6	94.7
Huss¹¹	2010	22 PSP-RS vs 26 MSA-P	MB-pons ratio	63.6	84.6
Morelli³⁷	2011	42 PSP-RS vs 170 PD	MB-pons ratio	92.9	85.3
Longoni³⁹	2011	10 PSP-RS vs 25 PD	MB-pons ratio	90	96
Massey,¹⁸a	2013	13 PSP-RS vs 7 MSA	MB-pons ratio	67	100
Kim²²	2015	30 PSP-RS vs 82 PD	MB-pons ratio	46.2	89.7
Zanigni¹⁷	2016	24 PSP-RS vs 42 PD	MB-pons ratio	96	90
Owens²³	2016	25 PSP-RS vs (25 MSA, 25 PD)	MB-pons ratio	68	100
Borroni⁴⁵	2010	18 PSP-RS vs (16 CBS, 28 FTD)	MB-pons ratio + CSF bio	94.2	84
Sankhla⁴⁰	2016	20 PSP-RS vs 13 PD	MB-pons ratio	100	92.86
Moller³²	2017	106 PSP-RS vs 204 PD	MB-pons ratio	77.4	80.4
Moller³²	2017	106 PSP-RS vs 60 MSA-P	MB-pons ratio	77.8	89.4
Quattrone²⁸	2008	33 PSP-RS vs 108 PD	MRPI	100	100
Quattrone²⁸	2008	33 PSP-RS vs 19 MSA-P	MRPI	100	100
Huss¹¹	2010	23 PSP-RS vs 75 PD	MRPI	81.8	76
Huss¹¹	2010	23 PSP-RS vs 26 MSA-P	MRPI	81.8	92.3
Morelli³⁷	2011	42 PSP-RS vs 170 PD	MRPI	100	99.4
Longoni³⁹	2011	10 PSP-RS vs 25 PD	MRPI	100	92
Kim²²	2015	31 PSP-RS vs 82 PD	MRPI	92.3	39.7
Zanigni¹⁷	2016	25 PSP-RS vs 42 PD	MRPI	87	93
Nigro⁴³	2016	88 PSP-RS vs 234 PD	MRPI	100	100
Nigro⁴³	2016	88 PSP-RS vs 234 PD	MRPI (automated)	97.3	97.4
Sankhla⁴⁰	2016	20 PSP-RS vs 13 PD	MRPI	100	100
Mostile⁴⁴	2016	12 PSP-RS vs 17 vascular parkinsonism	MRPI	100	100
Moller³²	2017	106 PSP-RS vs 204 PD	MRPI	68.9	67.7
Moller³²	2017	106 PSP-RS vs 60 MSA-P	MRPI	79.0	64.1

PD, Parkinson's disease; MSA-P, parkinsonian variant of multiple system atrophy; MSA-C, cerebellar variant of multiple system atrophy; CBS, corticobasal syndrome; FTD, frontotemporal dementia; CN, cognitively normal controls; MB, midbrain; MRPI, MR Parkinsonism Index; CSF bio, cerebrospinal fluid biomarkers.

*Studies with autopsy-confirmed PSP.
was only present in 68.4%, even after a disease duration of 4.8 years.13 However, midbrain atrophy has been observed in speech and language disorders that are confirmed or suspected of having PSP pathology,53-56 as well as in PSP-F8 and PSP-P.39,57-59 Midbrain atrophy in vPSP is typically less severe than in PSP-RS,39,56-58 although there is some suggestion that abnormalities on the MRPI could be an early feature in PSP-P59 and have some value as a level 3 biomarker.

Cortical Measures

A number of group-level studies have demonstrated cortical atrophy in PSP-RS, typically involving the frontal lobes.33,60-74 The focus of atrophy appears to be the premotor cortex, but atrophy also spreads into the prefrontal cortex. Studies have demonstrated that whole-brain and frontal atrophy are greater in PSP-RS than in PD,24,64,67,72,75 and MSA-P,72 although visual assessment of frontal atrophy had poor sensitivity (17% and 57%) and moderate specificity (75% and 83%) in differentiating PSP-RS from MSA13,20 in 2 studies, reflecting the fact that discernible frontal atrophy is only present in approximately 60% of PSP-RS patients.13 Frontal atrophy may be more useful if considered in addition to brain stem regions. One study found that adding frontal, third ventricle, and whole-brain volumes to midbrain and SCP volumes improved the differentiation of PSP-RS from PD and MSA (sensitivity, 88.9%; specificity, 97.3%).24 Another showed that combining frontal, ventricular, and whole-brain volumes could differentiate PSP-RS from PD and controls with 95.2% sensitivity and 90.9% specificity.64

One caveat to consider, however, is that frontal atrophy is unlikely to differentiate PSP-RS from CBS, given that CBS shows striking frontal atrophy.60,62,68,76 Quantitative methods for assessing frontal volume or thickness also vary widely across studies and may influence diagnostic utility.

Frontal atrophy also occurs in vPSP, particularly in PSP-F8 and PSP-PGF79 and can be greater than in PSP-RS,62 likely reflecting a shift in PSP pathological burden from brain stem to cortex.78 The degree of frontal atrophy is similar in both PSP-PGF79 and PSP-P57 compared with PSP-RS. Although no diagnostic data are available on the value of frontal atrophy in vPSP, the presence of frontal atrophy would be consistent with these diagnoses. Data are needed to determine whether cortical measures could help to differentiate vPSP from other frontotemporal lobar degeneration disorders that are primarily characterized by frontal atrophy.

Other Subcortical Measures

Atrophy of subcortical structures, including the caudate nucleus, putamen, globus pallidus, subthalamus,
and thalamus, has also been observed in group-level studies of PSP-RS either using visual assessment or volumetric measurements.13,26,62,63,74,80-82 There is evidence that volumes of putamen, thalamus, and globus pallidus are smaller in PSP-RS than in PD,82 with thalamus volumes also being smaller than in MSA-P.28 However, studies have found that visual assessments of putamen and globus pallidus atrophy are not diagnostically useful in differentiating PSP-RS from MSA or PD.13,20 The caudate nucleus, putamen, and thalamus have also been reported to be atrophic in CBS13,62,83 and are unlikely to be diagnostically useful in differentiating PSP-RS and CBS. Basal ganglia structures have been reported to be atrophic in patients with PSP-P,57 PSP-CBS,52,77 and PSP-SL,9 with thalamic atrophy reported in PSP-PGF.79 However, the diagnostic value of these findings is unclear and limited to level 1 (Table 3). Abnormalities suggesting the presence of iron deposition have been observed in the putamen, globus pallidus, and thalamus in PSP-RS,84-87 with some evidence for differences from PD and MSA,84,85,87 although diagnostic performance was suboptimal.85,86 Results regarding signal increase or decrease of these structures on T2-weighted MRI in PSP-RS have been variable, with signal changes observed in fewer than 50% of patients.13,20,88-90 Signal alterations in the SCP have also been observed in PSP-RS, but not in MSA-P or PD.91,92

Pattern Approaches to Diagnosis

A number of studies have proposed that the assessment of multiple regions of the brain will optimize sensitivity and specificity for PSP-RS. These studies typically develop optimal prediction models93 or use automated machine-learning techniques to identify diagnostic patterns.94-100 A number of these studies have found that assessment of multiple regions including the midbrain, basal ganglia,95,97,98,100 cerebellum,98,100 or thalamus99 provided excellent sensitivity and specificity to differentiate PSP-RS from PD and MSA-P. One study found that a prediction model using midbrain, putamen, and cerebellar gray-matter volumes could differentiate PSP-RS from MSA and PD with 90% sensitivity and 100% specificity in an early stage of the disease when not all patients had yet fulfilled clinical diagnostic criteria for these diseases.100 It has also been suggested that volumetric white-matter measurements may show greater diagnostic utility than gray-matter measures.94,96 There is also some evidence that a pattern-based approach using brain stem and cortical gray- and white-matter measures could be used in the differential diagnosis of autopsy-confirmed PSP and CBD.93 Generally, assessing the pattern of atrophy, rather than focusing on specific regions, appears to be a sensible and sensitive and specific approach to differential diagnosis, although there is currently a lack of agreement across studies on which specific regions should be used, and further validation of these results in independent cohorts is necessary. In addition, no data are yet available on how well these approaches perform in vPSP. Further work is needed before these approaches can be incorporated into clinical criteria.

Diffusion Imaging

Measurements of microstructural damage using diffusion-weighted imaging (DWI) show some promise as biomarkers of PSP-RS. Apparent diffusion coefficient (ADC) measurements from DWI have been assessed in gray- and white-matter structures in PSP-RS, showing elevated ADC values in putamen, caudate, globus pallidus, midbrain, SCP, and prefrontal and precentral white matter.101-107 PSP-RS patients typically show higher ADC values in the putamen, caudate nucleus, globus pallidus, SCP, and midbrain compared with PD,102,106-108 with 1 study obtaining high sensitivity (90%) and specificity (100%) to differentiate PSP-RS from PD using values from the putamen107 and another obtaining 100% sensitivity and specificity using the SCP.103 Compared with MSA-P, PSP-RS has higher ADC values in the caudate nucleus106 and SCP103,106 but lower values in the MCP,105,109 cerebellum,110 and putamen.101 Sensitivity and specificity values for differentiating PSP-RS from MSA-P are high using DWI of the SCP (sensitivity, 96.4%; specificity, 93.3%103). Therefore, the diagnostic performance of DWI measurements is excellent, supporting these measurements as level 2 biomarkers (Table 3). There is no consensus regarding the best structure to assess, although the SCP appears promising.

Diffusion tensor imaging (DTI) allows for the assessment of directional water diffusion and the interrogation of specific white-matter tracts. White-matter tract degeneration has been demonstrated to be a striking feature of PSP-RS, with abnormalities observed predominantly in the SCP, cerebellum, body of the corpus callosum, cingulum, white-matter laminar of the thalamus, and premotor aspects of the superior longitudinal fasciculus.63,111-124 The majority of these white-matter tracts show greater degeneration in PSP-RS compared with PD112,118,122,125-127 and MSA-P.72,118,126 Little data are currently available on the diagnostic utility of DTI measures, although the corpus callosum113 and SCP125 show high sensitivity and specificity in differentiating PSP-RS and PD. There is also evidence that adding DTI measures to the MRPI may help in the differentiation of PSP-RS from controls.128 The diagnostic value of DTI measures to differentiate PSP-RS and MSA-P is unclear. It is also unclear whether DTI measures could differentiate PSP-RS and CBS,
particularly given that patterns of DTI abnormalities overlap to a large degree between these 2 syndromes.112,129-131 A few studies have assessed DTI measures in PSP-P, which appears to show similar although slightly less severe patterns of tract abnormalities compared with PSP-RS.128 Some studies have found regions with greater abnormalities in PSP-P compared with PSP-RS, although the results have not been consistent across studies.117,120,128 In summary, DTI abnormalities are striking in PSP-RS and have the potential to be useful diagnostic biomarkers (Table 3). However, data are needed on the utility of both DWI and DTI measures in vPSP and autopsy-confirmed PSP. The issue of whether DWI and DTI measurements can be translated into clinical practice is also unclear, because there is little standardization of methods across studies and no established diagnostic cut points for these measurements.

PET/SPECT

Studies of [18F]-fluorodeoxyglucose PET (FDG-PET) have shown hypometabolism in the midbrain, basal ganglia, thalamus, and frontal lobes in PSP-RS,132-145 with frontal involvement particularly targeting premotor, precentral, and prefrontal regions134 and anterior cingulate146 (Fig. 2A). In an autopsy cohort including 7 PSP patients (all PSP-RS), the most common FDG-PET findings were hypometabolism of the thalamus (100%), caudate (86%), midbrain (86%), and frontal lobes (71%).145 PSP-RS tends to show greater frontal hypometabolism than PD and MSA,146 with visual assessments of frontal hypometabolism producing good sensitivity (76%) and specificity (98%) for PSP-RS in 1 study.147 Visual assessments of midbrain hypometabolism have performed modestly, with 1 study finding 79% sensitivity and 69% specificity in differentiating PSP-RS from MSA and CBS.144 Consideration of the pattern of hypometabolism may hold more diagnostic promise. Visual assessment of the pattern of hypometabolism associated with PSP-RS (eg, anterior cingulate, midbrain, basal ganglia) gave 93% sensitivity and 90% specificity to differentiate PSP-RS from PD, MSA, and CBS in 1 study.147 Automated pattern detection techniques have given mixed results.148-152 Differentiating PSP-RS from CBS can be challenging, given that patterns of hypometabolism overlap between these 2 syndromes to a large degree138,145,152 although there is some suggestion that PSP-RS may have greater hypometabolism in midbrain and thalamus,136,153 and CBS patients have greater hypometabolism in parietal lobes.135,138,153 The presence of hemispheric asymmetry in CBS may further help to differentiate it from PSP-RS.145,152 Therefore, current evidence provides some support for frontal and midbrain hypometabolism or the combination of both as potential level 2 biomarkers of PSP-RS (Table 3). There is some evidence that hypometabolism in the striatum and cortex can be present before the development of clinical PSP-RS (level 3 biomarker), although this has only been observed in familial PSP.154

Some FDG-PET findings have been reported in vPSP. One study found that PSP-P was associated with slightly greater hypometabolism of the putamen than PSP-RS, with less severe involvement of the thalamus, and that a putamen-to-thalamus ratio differentiated PSP-RS from PSP-P and PD with 100% sensitivity and 75% specificity.155 The PSP-P patients in that study did not show much frontal hypometabolism.155 Frontal hypometabolism has also not been observed in PSP-PGF, with midbrain hypometabolism only observed in 25% of patients.156 Patients with PSP-SL have shown frontal, basal ganglia, and midbrain hypometabolism,157,158 although these studies did not have autopsy confirmation. Taken together, these studies show that neither frontal nor midbrain hypometabolism is present consistently across the vPSP syndromes. Therefore, the presence of these features could be supportive of PSP, but the absence does not preclude underlying PSP.

However, there is a lack of standardization in the quantitative methods used across FDG-PET studies, particularly in regard to the choice of reference regions used to standardize regional uptake values, which vary across studies, including cerebellum,pons, cortical regions, or global mean values, each of which may have different limitations in PSP.

Dopamine Imaging

Striatal presynaptic dopamine binding, measured using dopamine active transporter (DAT) imaging using [123I]-FP-CIT SPECT or [18F]FP-CIT-PET, is consistently decreased in PSP-RS compared with controls159 (Fig. 2B). However, decreased DAT binding has also been observed in PD, MSA-P, and CBS,160-164 without differences in the degree of general striatal binding observed across groups.160,162,165 However, studies have found that the caudate nucleus is affected to a greater degree in PSP-RS than in PD161,163,166,167 and that regional patterns of binding, such as ratio of caudate to ventral striatum (sensitivity, 94%; specificity, 92%),163 ratio of caudate to putamen,166 or ratio of anterior-posterior putamen,167 could help to differentiate PSP-RS from other parkinsonian disorders; however, diagnostic performance has not always been consistent with these measures.164,167 It has also been shown that PSP-RS shows more symmetric striatal binding than PD,168 although the diagnostic value of this finding is unclear. Overall the finding of reduced striatal DAT binding is highly supportive and sensitive.
for a diagnosis of PSP-RS, but heterogeneity across studies and lack of diagnostic data limit its value in differentiating across parkinsonian disorders (Table 3). Midbrain DAT binding is also decreased in PSP-RS, with lower binding than in PD but a degree of binding similar to in MSA. Brain stem DAT levels could differentiate PSP-RS and MSA from PD with 89.7% sensitivity and 94.1% specificity in 1 study. Little is currently known about the diagnostic utility of DAT findings in vPSP, although there is evidence from a few studies that both PSP-PGF and PSP-P are associated with striatal DAT reductions similar to those in PSP-RS, with similar putamen-to-caudate ratios.
Imaging using D2 receptor ligands, most commonly [123I]-IZBM SPECT, to assess postsynaptic dopaminergic function also appears to be sensitive in PSP-RS, with the majority of patients showing striatal reductions. However, the value of D2 receptor ligand imaging in the differential diagnosis from other parkinsonian disorders is unclear. In addition, there is some evidence that striatal uptake may not be reduced in PSP-P.

Tau-PET Imaging

The development of PET ligands that can bind to aggregated tau inclusions in the brain has been an exciting recent advance in the field with the potential of becoming a biomarker of tau pathology. A number of tau-PET ligands have been developed, but the [18F]AV-1451 (previously known as T807) ligand has been the most widely used to date. Studies have demonstrated relatively consistent patterns of increased [18F]AV-1451 uptake in PSP-RS compared with controls in the globus pallidus, putamen, caudate nucleus, thalamus, subthalamic nucleus, midbrain, and dentate nucleus of the cerebellum (Fig. 2C and E). The cortex has typically shown less striking uptake in PSP-RS, with measures from subcortical structures showing the most promise as potential diagnostic biomarkers. Quantification of globus pallidus retention provided sensitivity and specificity of 93% in differentiating PSP-RS from controls in another study. There is also evidence that the pattern of uptake in PSP-RS differs from that in Alzheimer’s disease (AD), with many of the PSP-RS-related regions showing greater uptake in PSP-RS than in AD despite AD showing greater cortical [18F]AV-1451 uptake. Therefore, there is some evidence to support [18F]AV-1451 as a level 2 biomarker of PSP-RS. A caveat is that overlap in the [18F]AV-1451 signal is observed between PSP-RS and controls, with 1 study failing to observe differences between PSP-RS and controls. Standardization of methods will also be required, including optimizing scan time and quantitative outcomes. Current studies have analyzed standard uptake value ratio (SUVR) values referenced to cerebellar gray-matter or binding potentials.

Although early studies are certainly encouraging, several limitations of [18F]AV-1451 need to be considered. One caveat is that regions that show [18F]AV-1451 uptake in PSP, including the basal ganglia, thalamus, midbrain, and dorsal cerebellum, also show some degree of “off-target” binding in normal subjects, which increases with age. The nature of this binding is unclear. Although age correction in quantitative studies may go some ways to correct for this off-target binding, it will likely limit the value of [18F]AV-1451 in the differential diagnosis of individual patients. Furthermore, it is unknown whether the off-target signal may also be altered by the disease in PSP, confounding any potential true signal of tau. Another caveat comes from an apparent disconnect between in-vivo and ex vivo studies. Although regions that show elevated binding typically show tau deposition at autopsy, autoradiographic studies have found little or no binding of [18F]AV-1451 to tau in autopsied brains of PSP patients, casting doubt on whether the signal identified by [18F]AV-1451 reflects tau pathology and whether it could be considered a level 5 biomarker of tau. This kind of disconnect is not uncommon for PET tracers, and the utility of such in vitro studies has been questioned. However, a recent article found that tau pathology discovered postmortem in a patient with PSP correlated with antemortem FDG-PET but not with [18F]AV-1451 signal. Another caveat is that elevated [18F]AV-1451 uptake has also been observed in nontau diseases, which again questions the specificity of the ligand to 4R tau. Another chemically distinct tau PET ligand, THK-5351, was found to have high affinity for PSP tau lesions in an autoradiographic study, and has shown uptake in the globus pallidus and midbrain in patients with PSP-RS (Fig. 2D and F). However, the degree of off-target THK-5351 binding in PSP-related regions is at least as high, if not higher, than that observed with [18F]AV-1451. Overall, much more work needs to be done to evaluate these PET tracers. It is likely that different tau-PET ligands may bind to tau conformers with differing sensitivity and specificity and show different off-target binding, and hence head-to-head and indirect comparisons of the currently available tau imaging agents are needed.

Other Biomarkers

There are a number of other neuroimaging biomarkers that have been assessed in PSP-RS with fewer data available to assess diagnostic value. MR modalities that demonstrate abnormalities in PSP-RS include magnetic resonance spectroscopy and magnetization transfer imaging, although the ability of these modalities to differentiate PSP-RS from other parkinsonian disorders is unclear. Resting-state (task-free) functional MRI has also been used to demonstrate abnormalities in functional connectivity in PSP-RS across the network of PSP-RS-associated regions, but the loss of cortical connectivity is not specific to PSP-RS versus PD. Longitudinal MR studies have shown increased rates of whole-brain, cortical, and midbrain atrophy and SCP diffusivity...
in PSP-RS compared with controls, with some evidence for greater rates than in PD, but similar rates of whole-brain and midbrain atrophy as in MSA-P. However, cortical and whole-brain rates of atrophy are greater in CBS than in PSP-RS. Cerebral blood flow single-photon emission computed tomography studies have demonstrated frontal and, less commonly, thalamic and striatal hypoperfusion in PSP-RS. Findings concerning differentiating PSP-RS from other parkinsonian disorders are lacking here, although PSP-RS may show greater frontal hypoperfusion than PD. Abnormalities in other neurotransmitter systems, such as the cholinergic and serotonergic systems, have also been demonstrated in PSP-RS.

Conclusions

Neuroimaging research over the last several decades has improved our understanding of the neurobiology of PSP but has not yielded many confirmed diagnostic biomarkers (Table 3). The most mature research area is the assessment of midbrain measurements, which has yielded a number of measures that have good sensitivity and specificity for PSP-RS versus other parkinsonian disorders, such as midbrain-pons area and the MRPI, which appear to be the most reliable biomarkers for the diagnosis of PSP-RS. The presence of frontal atrophy and hypometabolism are also prominent features of PSP-RS and may improve diagnosis when considered together with midbrain atrophy. It is clear that PSP-RS is associated with striking damage to the white matter, with DWI measures of the SCP providing good sensitivity and specificity for PSP-RS diagnosis, although data supporting this measure come from only a couple of studies. DTI measures could prove to be very valuable, although more work is needed to provide and validate standardized measures of the kind that could be used in diagnostic criteria. Measures of dopamine function are highly sensitive to PSP-RS and many of the vPSP syndromes, but specificity is low, and thus they are less useful in ruling out other parkinsonian syndromes. Data so far only support neuroimaging biomarkers as level 2 biomarkers for PSP-RS. Only a handful of studies have assessed patients early in the disease course to suggest level 3 biomarkers. More work is needed to assess the value of these measures in vPSP and in autopsy-confirmed cases to determine whether they could be useful level 4 biomarkers. Capturing the disease in its earliest phase will also be critical for developing well-validated level 3 biomarkers. Last, tau-PET imaging techniques are exciting, but more work is needed to truly understand the biological underpinnings of the tau-PET signal in PSP. However, these are early days in tau-PET imaging, and we expect our understanding of these biomarkers to increase exponentially over the coming years.

Acknowledgments: We thank Ina B. Kopp for guidance in the methods of evidence-based medicine and Judith Dams for conducting the database inquiry.

Appendix

MDS-endorsed PSP study group: Adam L. Boxer, Alex Rajput, Alexander Pantelyat, Angelo Antonini, Anthony E. Lang, Armin Giese, Brit Mollenhauer, Carlo Colosimo, Caroline Kurz, Christer Nilsson, Claire Troakes, David J. Irwin, Dennis W. Dickson, Ellen Gelpi, Florian Krismer, Gerard D. Schellenberg, Gesine Respondek, Gil Rabinovici, Gregor K. Wenning, Günter U. Höglinger, Huw R. Morris, Irene Litvan, James B Rowe, Jan Kassubeck, Jean-Christophe Corvol, Jennifer L. Whitwell, Johannes Levin, John van Swieten, Kailash I Golbe, Maria Stamelou, Murray Grossman, Peter Nestor, Richard Dodel, Stefan Lorenzl, Thilo van Eimeren, Thomas Arzberger, Ulrich Müller, Wassili G Meissner, Werner Poewe, Wolfgang H Oertel, Yaroslau Compta, Yvette Bordelon.

References

1. Hauw JJ, Daniel SE, Dickson D, et al. Preliminary NINDS neuropathologic criteria for Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology 1994;44(11):2015-2019.

2. Dickson DW, Hauw JJ, Agid Y, Litvan I. Progressive supranuclear palsy and corticobasal degeneration. In: Dickson D, Weller RO, eds. Neuropathology of Dementia and Movement Disorders. 2nd ed. Chichester, UK: Wiley-Blackwell; 2011.

3. Dickson DW, Ahmed Z, Algom AA, Tsuibo Y, Josephs KA. Neuropathology of variants of progressive supranuclear palsy. Curr Opin Neurol 2010;23(4):394-400.

4. Schofield EC, Hodges JR, Macdonald V, Cordato NJ, Knl JJ, Halliday GM. Cortical atrophy differentiates Richardson’s syndrome from the parkinsonian form of progressive supranuclear palsy. Mov Disord 2011;26(2):256-263.

5. Litvan I, Agid Y, Calne D, et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 1996;47(1):1-9.

6. Williams DR, de Silva R, Paviour DC, et al. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson’s syndrome and PSP-parkinsonism. Brain 2005;128(Pt 6):1247-1258.

7. Williams DR, Holton JL, Strand K, Revesz T, Lees AJ. Pure akinesia with gait freezing: a third clinical phenotype of progressive supranuclear palsy. Mov Disord 2007;22(15):2335-2341.

8. Hassan A, Parisi JE, Josephs KA. Autopsy-proven progressive supranuclear palsy presenting as behavioral variant frontotemporal dementia. Neurocase 2012;18(6):478-488.

9. Josephs KA, Duffy JR, Strand EA, et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 2006;129(Pt 6):1385-1398.

10. Tsuibo Y, Josephs KA, Boeve BF, et al. Increased tau burden in the cortices of progressive supranuclear palsy presenting with corticobasal syndrome. Mov Disord 2005;20(8):982-988.

11. Höglinger GU, Respondek G, Stamelou M, et al. Clinical Diagnostic Criteria for Progressive Supranuclear Palsy of the Movement Disorder Society. Mov Disord 2017 [Epub ahead of print].
12. Kato N, Arai K, Hattori T. Study of the rostral midbrain atrophy in progressive supranuclear palsy. J Neurol Sci 2003;210(1-2):57-60.
13. Massey LA, Micallef C, Paviour DC, et al. Conventional magnetic resonance imaging in confirmed progressive supranuclear palsy and multiple system atrophy. Mov Disord 2012;27(14):1754-1762.
14. Adachi M, Kawanami T, Ohshima H, Sugai Y, Hosoya T. Morning glory sign: a particular MR finding in progressive supranuclear palsy. Magn Reson Med Sci 2004;3(3):125-132.
15. Cosottini M, Ceravolo R, Faggioni L, et al. Assessment of midbrain atrophy in patients with progressive supranuclear palsy with routine magnetic resonance imaging. Acta Neurol Scand 2007;116(1):37-42.
16. Oba H, Yagishita A, Terada H, et al. New and reliable MRI diagnosis for progressive supranuclear palsy. Neurology 2005;64(12):2050-2055.
17. Zanigni S, Calandra-Buonuara G, Manners DN, et al. Accuracy of MR markers for differentiating Progressive Supranuclear Palsy from Parkinson’s disease. Neuroimage Clin 2016;11:736-742.
18. Asato R, Akiguchi I, Masunaga S, Hashimoto N. Magnetic resonance imaging distinguishes progressive supranuclear palsy from multiple system atrophy. J Neurol Transm (Vienna) 2000;107(12):1427-1436.
19. Massey LA, Jager HR, Paviour DC, et al. The midbrain to pons ratio: a simple and specific MRI sign of progressive supranuclear palsy. Neurology 2013;80(20):1856-1861.
20. Schrag A, Good CD, Missielik K, et al. Differentiation of atypical parkinsonian syndromes with routine MRI. Neurology 2000;54(3):697-702.
21. Kim YE, Kang SY, Ma HI, Ju YS, Kim YJ. A visual rating scale for the humminbgird sign with adjustable diagnostic validity. J Parkinsons Dis 2015;5(3):605-612.
22. Kim YH, Ma HI, Kim YJ. Utility of the midbrain tegmentum diameter in the differential diagnosis of progressive supranuclear palsy from idiopathic Parkinson’s disease. J Clin Neurol 2015;11(3):268-274.
23. Owens E, Krecke K, Ahlskog JE, et al. Highly specific radiographic marker predates clinical diagnosis in progressive supranuclear palsy. Parkinsonism Relat Disord 2016;28:107-111.
24. Paviour DC, Price SL, Jahanshahi M, Lees AJ, Fox NC. Regional brain volumes distinguish PSP, MSA-P, and PD: MRI-based clinico-radiological correlations. Mov Disord 2006;21(7):989-996.
25. Righini A, Antonini A, De Notaris R, et al. MRI measurements of the superior profile of the midbrain: differential diagnosis between progressive supranuclear palsy and Parkinson disease. AJNR Am J Neuroradiol 2004;25(6):927-932.
26. Barsottini OG, Ferraz HB, Maia AC Jr, Silva CJ, Rocha AJ. Differentiation of Parkinson’s disease and progressive supranuclear palsy with magnetic resonance imaging: the first Brazilian experience. Parkinsonism Relat Disord 2007;13(7):389-393.
27. Choi SM, Kim BC, Nam TS, et al. Midbrain atrophy in vascular Parkinsonism. Eur Neurol 2011;65(5):296-301.
28. Messina D, Cerasa A, Condino F, et al. Patterns of brain atrophy in Parkinson’s disease, progressive supranuclear palsy and multiple system atrophy. Parkinsonism Relat Disord 2011;17(3):172-176.
29. Slowinski J, Imamura A, Uitti RJ, et al. MR imaging of brainstem atrophy in progressive supranuclear palsy. J Neurol 2008;255(1):37-44.
30. Warmuth-Metz M, Naumann M, Coito I, Solymosi L. Measurement of the midbrain diameter on routine magnetic resonance imaging: a simple and accurate method of differentiating between Parkinson disease and progressive supranuclear palsy. Arch Neurol 2001;58(7):1076-1079.
31. Yagishita A, Oda M. Progressive supranuclear palsy: MRI and pathological findings. Neuroradiology 1996;38(Suppl 1):S60-S66.
32. Moller L, Kasubeck J, Sudmeyer M, et al. Manual MRI morphometry in Parkinsonian syndromes. Mov Disord 2017;32(5):779-782.
33. Price S, Paviour D, Schall R, et al. Voxel-based morphometry detects patterns of atrophy that help differentiate progressive supranuclear palsy and Parkinson’s disease. Neuroimage 2004;23(2):663-669.
34. Mori H, Aoki S, Ohtomo K. Morning glory sign is not prevalent in progressive supranuclear palsy. Magn Reson Med Sci 2004;3(4):215; author reply 216-217.
35. Adachi M, Kawanami T, Ohshima F. The “morning glory sign” should be evaluated using thinly sliced axial images. Magn Reson Med Sci 2007;6(1):39-60.
36. Mori H, Aoki S, Ohtomo K. The “morning glory sign” may lead to false impression according to slice angle. Magn Reson Med Sci 2007;6(3):183-184; author reply 185.
37. Morelli M, Arabia G, Salsone M, et al. Accuracy of magnetic resonance parkinsonism index for differentiation of progressive supranuclear palsy from probable or possible Parkinson disease. Mov Disord 2011;26(3):527-533.
38. Quattrone A, Nicolietti G, Messina D, et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology 2008;246(1):214-221.
39. Longoni G, Agosta F, Kostic VS, et al. MRI measurements of brainstem structures in patients with Richardson’s syndrome, progressive supranuclear palsy-parkinsonism, and Parkinson’s disease. Mov Disord 2011;26(2):247-255.
40. Sankhla CS, Patel KB, Sawant N, Gupta S. Diagnostic accuracy of Magnetic Resonance Parkinsonism Index in differentiating progressive supranuclear palsy from Parkinson’s disease and controls in Indian patients. Neurol India 2016;64(2):239-245.
41. Hussl A, Malakhov S, Scherler C, et al. Diagnostic accuracy of the magnetic resonance Parkinsonism index and the midbrain-to-pontine area ratio to differentiate progressive supranuclear palsy from Parkinson’s disease and the Parkinson variant of multiple system atrophy. Mov Disord 2010;25(14):2444-2449.
42. Paviour DC, Price SL, Stevens JM, Lees AJ, Fox NC. Quantitative MRI measurement of superior cerebellar peduncle in progressive supranuclear palsy. Neurology 2005;64(4):675-679.
43. Nigro S, Arabia G, Antonini A, et al. Magnetic Resonance Parkinsonism Index: diagnostic accuracy of a fully automated algorithm in comparison with the manual measurement in a large Italian multicentre study in patients with progressive supranuclear palsy. Eur Radiol 2017;27(6):2665-2675.
44. Mostile G, Nicolietti A, Cicero CE, et al. Magnetic resonance parkinsonism index in progressive supranuclear palsy and vascular parkinsonism. Neurol Sci 2016;37(4):591-595.
45. Borroni B, Malinverno M, Gardoni F, et al. A combination of CSF tau ratio and midasgittal midbrain-to-pons atrophy for the early diagnosis of progressive supranuclear palsy. J Alzheimers Dis 2010;22(1):195-203.
46. Morelli M, Arabia G, Messina D, et al. Effect of aging on magnetic resonance measures differentiating progressive supranuclear palsy from Parkinson’s disease. Mov Disord 2014;29(4):488-495.
47. Iglesias JE, Van Leemput K, Bhattach P, et al. Bayesian segmentation of brainstem structures in MRI. Neuroimage 2010;153:184-195.
48. Morelli M, Arabia G, Novellino F, et al. MRI measurements predict PSP in unclassifiable parkinsonisms: a cohort study. Neurology 2011;77(11):1042-1047.
49. Josephs KA, Dickson DW. Diagnostic accuracy of progressive supranuclear palsy in the Society for Progressive Supranuclear Palsy brain bank. Mov Disord 2003;18(9):1018-1026.
50. Respondek G, Roeber S, Kretzschmar H, et al. Accuracy of the magnetic resonance Parkinsonism index and the midbrain-to-pontine area ratio to differentiate progressive supranuclear palsy. Mov Disord 2013;28(4):504-509.
51. Whitwell JL, Jack CR Jr, Parisi JE, et al. Midbrain atrophy is not a biomarker of progressive supranuclear palsy pathology. Eur J Neurolog 2015;20(10):1417-1422.
52. Whitwell JL, Jack CR Jr, Boeve BF, et al. Imaging correlates of pathology in corticobasal syndrome. Neurology 2010;75(21):1879-1887.
53. Josephs KA, Duffy JR, Strand EA, et al. Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech. Brain 2012;135(5):1522-1536.
54. Santos-Santos MA, Mandelli ML, Binney RJ, et al. Features of patients with nonfluent/agrammatic primary progressive aphasiall...
with underlying progressive supranuclear palsy pathology or cor-
ticothalamic degeneration. JAMA Neurol 2016;73(6):733-742.
55. Rohrer JD, Paviour D, Bronstein AM, O'Sullivan SS, Lees A, Warren JD. Progressive supranuclear palsy syndrome presenting as progressive nonfluent aphasia: a neuropsychological and neuro-
imaging analysis. Mov Disord 2010;25(2):179-188.
56. Whitwell JL, Duffy JF, Strand EA, et al. Neuroimaging compar-
son of primary progressive apraxia of speech and progressive supranuclear palsy. J Eur Neurol 2013;20(4):629-637.
57. Agosta F, Kostic VS, Galantucci S, et al. The in vivo distribution of brain tissue loss in Richardson's syndrome and PSP-parkinon-
sism: a VBM-DARTEL study. Eur J Neurosci 2010;32(4):640-647.
58. Pasha SA, Yadav R, Ganesan M, et al. Correlation between qualitative balance indices, dynamic posturography and structural brain imaging in patients with progressive supranuclear palsy and its subtypes. Neuril India 2016;64(4):633-639.
59. Quattrone A, Morelli M, Williams DR, et al. MR parkinsonism index predicts vertical supranuclear gaze palsy in patients with PSP-parkinosis. Neurology 2016;87(12):1266-1273.
60. Boxer AL, Geschwind MD, Belfor N, et al. Patterns of brain atro-
phy that differentiate corticothalamic degeneration syndrome from progressive supranuclear palsy. Arch Neurol 2006;63(1):81-86.
61. Brenneis C, Seppe K, Schocke M, Benke T, Wenning GK, Poewe W. Voxel based morphometry reveals a distinct pattern of frontal atrophy in progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 2004;75(2):246-249.
62. Josephs KA, Whitwell JL, Dickson DW, et al. Voxel-based mor-
phometry in autopsy proven PSP and CBD. Neurobiol Aging 2008;29(2):280-289.
63. Whitwell JL, Avula R, Master A, et al. Disrupted thalamocortical connectivity in PSP: a resting state fMRI, DTI, and VBM study. Parkinsonism Relat Disord 2011;17(8):599-605.
64. Cordato NJ, Pantelis C, Halliday GM, et al. Frontal atrophy cor-
relates with behavioural changes in progressive supranuclear palsy. Brain 2002;125(Pt 4):769-800.
65. Josephs KA, Whitwell JL, Eggers SD, Senjem ML, Jack CR Jr. Gray matter correlation of behavioral severity in progressive sup-
nuclear palsy. Mov Disord 2011;26(3):493-498.
66. Ghosh BC, Calder AJ, Peers PV, et al. Social cognitive deficits and their neural correlates in progressive supranuclear palsy. Brain 2012;135(Pt 7):2089-2102.
67. Giordano A, Tesirote A, Corbo D, et al. Clinical and cognitive correlations of regional gray matter atrophy in progressive supranuclear palsy. Parkinsonism Relat Disord 2013;19(6):590-594.
68. Taki M, Ishii K, Fukuda T, Kojima Y, Fukuda T, Wenning GK, Poewe W. Voxel based morphometry reveals a distinct pattern of frontal atrophy in progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 2004;75(2):246-249.
69. Lagarde J, Valabregue R, Corvol JC, et al. Are frontal cortical and atrophic patterns different in PSP and bvFTD? A comparative neuro-
psychological and VBM study. PLoS One 2013;8(11):e80353.
70. Padovani A, Borroni B, Brambati SM, et al. Diffusion tensor imaging and voxel based morphometry study in early progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 2006;77(4):457-463.
71. Wang G, Wang J, Zhan J, et al. Quantitative assessment of cere-
bral gray matter density change in progressive supranuclear palsy using voxel based morphometry analysis and cerebral MR T1-weighted FLAIR imaging. J Neurol Sci 2015;359(1-2):367-372.
72. Worker A, Blain C, Jarosz J, et al. Cortical thickness, surface area and volume measures in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. PLoS One 2014;9(12):e114167.
73. Sandhya M, Saini J, Pasha SA, Yadav R, Pal PK. A voxel based compari-
native analysis using magnetization transfer transfer imaging and T1-weighted magnetic resonance imaging in progressive supranuclear palsy. Ann Indian Acad Neurol 2014;17(2):193-198.
74. Cordato NJ, Duggins AJ, Halliday GM, Morris JG, Pantelis C. Clinical deficits correlate with regional cortical atrophy in pro-
gressive supranuclear palsy. Brain 2003;126(6):1239-1246.
75. Guevara C, Bulatova K, Barker GJ, Gonzalez G, Crossley NA, Kempton MJ. Whole-Brain Atrophy Differences Between Progressive Supranuclear Palsy and Idiopathic Parkinson's Disease. Front Aging Neurosci 2016;8:218.
76. Josephs KA, Eggers SD, Jack CR Jr, Whitwell JL. Neuroanatomi-
cal correlates of the progressive supranuclear palsy corticothalamic syndrome hybrid. Eur J Neurol 2012;19(11):1440-1446.
77. Lee SE, Rabinovici GD, Mayo MC, et al. Clinicopathological correla-
tions in corticothalamic degeneration. Ann Neurol 2011;70(2):327-340.
78. Josephs KA, Boeve BF, Duffy JR, et al. Atypical progressive supranuclear palsy underlying progressive apraxia of speech and nonfluent aphasia. Neurocase 2005;11(4):283-296.
79. Hong JY, Yun HJ, Sunwoo MK, et al. Comparison of regional brain atrophy and cognitive impairment between pure akinesia with gait freezing and Richardson's syndrome. Front Aging Neuro-
rosci 2015;7:180.
80. Loui JC, Macfarlane MD, Walterfang M, et al. Morphometric analysis of subcortical structures in progressive supranuclear palsy: In vivo evidence of neostriatal and mesencephalic atrophy. Psychiatry Res 2011;194(2):163-175.
81. Saini J, Bagepally BS, Sandhya M, et al. Subcortical structures in progressive supranuclear palsy: vertex-based analysis. Eur J Neu-
rol 2013;20(3):493-501.
82. Schulz JB, Skalej M, Wedekind D, et al. Magnetic resonance imaging-based volumetry differentiates idiopathic Parkinson's syn-
drome from multiple system atrophy and progressive supranuclear palsy. Ann Neurol 1999;45(1):65-74.
83. Huey ED, Pardini M, Cavanagh A, et al. Association of ideomo-
tor ataxia with frontal gray matter volume loss in corticothalamic syndrome. Arch Neurol 2009;66(10):1274-1280.
84. Han YH, Lee JH, Kang BM, et al. Topographical differences of brain iron deposition between progressive supranuclear palsy and parkinsonian variant multiple system atrophy. J Neurol Sci 2013;325(1-2):29-35.
85. Gupta D, Saini J, Kesavadas C, Sarma PS, Kishore A. Utility of susceptibility-weighted MRI in differentiating Parkinson's disease and atypical parkinsonism. Neuroradiology 2010;52(12):1087-1094.
86. Boelmans K, Holst B, Hackius M, et al. Brain iron deposition fing-
prints in Parkinson's disease and progressive supranuclear palsy. Mov Disord 2012;27(3):421-427.
87. Lee JH, Han YH, Kang BM, Mun CW, Lee SJ, Baik SK. Quantiti-
tative assessment of subcortical atrophy and iron content in pro-
gressive supranuclear palsy and parkinsonian variant of multiple system atrophy. J Neurol Sci 2013;326(1-2):2153-2161.
88. Kraft E, Schwarz J, Trenkwalder C, Vogl T, Pfluger T, Oertel WH. The combination of hypointense and hyperintense signal changes on T2-weighted magnetic resonance imaging sequences: a specific marker of multiple system atrophy? Arch Neurol 1999;56(2):225-228.
89. Jesse S, Kasubek J, Muller HP, Ludolph AC, Unrath A. Signal alterations of the basal ganglia in the differential diagnosis of Par-
kinson's disease: a retrospective case-controlled MRI data bank analysis. BMC Neuro 2012;12:163.
90. Arabia G, Morelli M, Paglioni S, et al. An magnetic resonance imaging T2-weighted sequence at short echo time to detect puta-
minal hypointensity in Parkinsonisms. Mov Disord 2010;25(16):2728-2734.
91. Kataoka H, Tonomura Y, Taoka T, Ueno S. Signal changes of superior cerebellar peduncle on fluid-attenuated inversion recov-
ery in progressive supranuclear palsy. Parkinsonism Relat Disord 2008;14(1):63-65.
92. Oka M, Katayama S, Imon Y, Ohshita T, Mimori Y, Nakamura S. Abnormal signals on proton density-weighted MRI of the supe-
rior cerebellar peduncle in progressive supranuclear palsy. Acta Neurol Scand 2001;104(1):1-5.
93. Groschel K, Hauser TK, Luft A, et al. Magnetic resonance imaging-
based volumetry differentiates progressive supranuclear palsy from corticothalamic degeneration. Neuroradiology 2004;46(2):714-724.
94. Cherubini A, Morelli M, Nistico R, et al. Magnetic resonance sup-
port vector machine discriminates between Parkinson disease and progressive supranuclear palsy. Mov Disord 2014;29(2):266-269.
95. Duchesne S, Rolland Y, Verin M. Automated computer differen-
tial classification in Parkinsonian Syndromes via pattern analysis on MRI. Acad Radiol 2009;16(1):61-70.
96. Focke NK, Helms G, Scheewe S, et al. Individual voxel-based subtype prediction can differentiate progressive supranuclear palsy from idiopathic Parkinson syndrome and healthy controls. Hum Brain Mapp 2011;32(11):1903-1915.
97. Huppertz HJ, Moller L, Sudmeyer M, et al. Differentiation of neurodegenerative parkinsonian syndromes by volumetric magnetic resonance imaging analysis and support vector machine classification. Mov Disord 2016;31(10):1506-1517.

98. Marquand AF, Filipponi M, Ashburner J, et al. Automated, high accuracy classification of Parkinsonian disorders: a pattern recognition approach. PLoS One 2013;8(7):e69237.

99. Nicoletti G, Lodi R, Condino F, et al. Apparent diffusion coefficient measurements of the middle cerebellar peduncle differentiate the Parkinson variant of MSA from Parkinson's disease and progressive supranuclear palsy. Brain 2006;129(Pt 10):2679-2687.

100. Nicoletti G, Tonon C, Lodi R, et al. Apparent diffusion coefficient of the superior cerebellar peduncle differentiates progressive supranuclear palsy from Parkinson's disease. Mov Disord 2008;23(16):2370-2376.

101. Paviour DC, Thornton JS, Lees AJ, Jager HR. Diffusion-weighted magnetic resonance imaging differentiates Parkinsonian variant of multiple-system atrophy from progressive supranuclear palsy. Neuroradiology 2000;42(9):643-647.

102. Seppi K, Schocke MF, Esterhammer R, et al. Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the parkinson variant of multiple system atrophy. Neurology 2003;60(6):922-927.

103. Whitwell JL, Master AV, Avula R, et al. Clinical correlates of progressive supranuclear palsy using diffusion tensor imaging. J Magn Reson Imaging 2015;32(1):69-75.

104. Wadia PM, Howard P, Ribeirro MQ, et al. The value of GRE, diffusion-weighted imaging and diffusion tensor imaging in the differential diagnosis of PSP and PD. J Neurol 2008;255(12):1948-1954.
140. Takahashi R, Ishii K, Kakigi T, Yokoyama K, Mori E, Murakami T. Brain alterations and mini‐mental state examination in patients with progressive supranuclear palsy: voxel‐based investigations using f‐fluorodeoxyglucose positron emission tomography and magnetic resonance imaging. Dement Geriatr Cogn Dis Extra 2011;1(1):381‐392.

141. Teune LK, Bartels AL, de Jong BM, et al. Typical cerebral metabolic patterns in neurodegenerative brain diseases. Mov Disord 2010;25(14):2395‐2404.

142. Yamauchi H, Fukuyama H, Nagahama Y, et al. Atrophy of the corpus callosum, cognitive impairment, and cortical hypometabolism in progressive supranuclear palsy. Ann Neurol 1997;41(5):606‐614.

143. Zwergal A, la Fougere C, Lorentz S, et al. Postural imbalance and falls in PSP correlate with functional pathology of the thalamus. Neurology 2011;77(2):101‐109.

144. Botha H, Whitwell JL, Madhaven A, Senjem ML, Lowe V, Josephs KA. The pail sign of progressive supranuclear palsy syndrome. Parkinsonism Relat Disord 2014;20(2):180‐185.

145. Zalewski NA, Botha H, Whitwell JL, Lowe V, Dickson DW, Josephs KA. FDG‐PET in pathologically confirmed spontaneous 4R‐tauopathy variants. J Neurol 2014;261(4):710‐716.

146. Klein RC, de Jong BM, de Vries JJ, Leenders KL. Direct comparison between regional cerebral metabolism in progressive supranuclear palsy and Parkinson’s disease. Mov Disord 2005;20(8):1021‐1030.

147. Tripathi M, Dhawan V, Peng S, et al. Differential diagnosis of parkinsonian syndromes using F‐18 fluorodeoxyglucose positron emission tomography. Neuroradiology 2015;58(4):483‐492.

148. Tang CC, Poston KL, Eckert T, et al. Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis. Lancet Neurol 2010;9(2):149‐158.

149. Teune LK, Renken RJ, Mudali D, et al. Validation of parkinsonian disease‐related metabolic brain patterns. Mov Disord 2013;28(4):547‐551.

150. Garraux G, Phillips C, Schrouff J, et al. Multiclassification of FDG PET scans for the distinction between Parkinson’s disease and atypical parkinsonian syndromes. Neuroimage Clin 2013;2:883‐893.

151. Mudali D, Teune LK, Renken RJ, Leenders KL, Roerdink JB. Classification of parkinsonian syndromes from FDG‐PET brain data using decision trees with SMMPCa features. Comput Math Methods Med 2015;2015:136921.

152. Niethammer M, Tang CC, Feigin A, et al. Disease‐specific metabolic patterns in neurodegenerative brain diseases. Mov Disord 2013;503‐512.

153. Garraux G, Salmon E, Peigneur P, et al. Voxel‐based distribution of metabolic impairment in corticobasal degeneration. Brain 2014;137(Pt 11):3036‐3046.

154. Garraux G, Salmon E, Peigneur P, et al. Voxel‐based distribution of metabolic impairment in corticobasal degeneration. Mov Disord 2000;15(5):394‐904.

155. Piccini P, de Yebenez J, Lees AJ, et al. Familial progressive supranuclear palsy: detection of subclinical cases using 18F‐dopa and 18fluorodeoxyglucose positron emission tomography. Arch Neurol 2001;58(11):1846‐1851.

156. Srujiljes K, Reimold M, Liscic RM, et al. Fluorodeoxyglucose positron emission tomography in Richardson’s syndrome and progressive supranuclear palsy:voxelwise
[123I]beta‐CIT SPECT analysis. Arch Neurol 2006;63(8):1154‐1160.

157. Fassano A, Baldini S, Di Giuda D, et al. Nigro‐striatal involvement in primary progressive freezing gait: insights into a heterogeneous pathogenesis. Parkinsonism Relat Disord 2012;18(5):578‐584.

158. Han S, Oh M, Oh JS, et al. Subregional pattern of striatal dopamine transporter loss on 18F‐FP‐CIT positron emission tomography in patients with pure akinesia with gait freezing. JAMA Neurol 2016;73(12):1477‐1484.

159. Lin WY, Lin KJ, Weng YH, et al. Preliminary studies of differential impairments of the dopaminergic system in subtypes of progressive supranuclear palsy. Nucl Med Commun 2010;31(11):974‐980.

160. Arnold G, Schwarz J, Tatsch K, et al. Steele‐Richardson‐Olszewski syndrome: the relation of dopamine D2 receptor binding and subcortical lesions in MRI. J Neural Transm (Vienna) 2002;109(4):503‐512.

161. Oyanagi C, Katsumi Y, Hanakawa T, et al. Comparison of striatal dopamine transporter and D2 receptor SPECT in the diagnostic evaluation of PD, MSA, and PSP. Mov Disord 2002;17(2):303‐312.

162. Kim YJ, Ichise M, Ballinger JR, et al. Combination of dopamine transporter and D2 receptor SPECT in the diagnostic evaluation of PD, MSA, and PSP. Mov Disord 2002;17(2):303‐312.

163. Oh M, Kim JS, Kim JY, et al. Subregional patterns of preferential striatal dopamine transporter loss differ in Parkinson disease, progressive supranuclear palsy, and multiple‐system atrophy. J Nucl Med 2012;53(3):399‐406.

164. Fasano A, Baldini S, Di Giuda D, et al. Nigro‐striatal involvement in primary progressive freezing gait: insights into a heterogeneous pathogenesis. Parkinsonism Relat Disord 2012;18(5):578‐584.

165. Filippi L, Manns C, Pierantozzi M, et al. 123I‐FP‐CIT in progressive supranuclear palsy and in Parkinson’s disease: a SPECT semi‐quantitative study. Nucl Med Commun 2006;27(4):381‐386.

166. Seppi K, Scherfler C, Donnemiller E, et al. Topography of dopamine transporter availability in progressive supranuclear palsy: a voxelwise [123I]beta‐CIT SPECT analysis. Arch Neurol 2006;63(8):1154‐1160.

167. Han S, Oh M, Oh JS, et al. Subregional pattern of striatal dopamine transporter loss on 18F‐FP‐CIT positron emission tomography in patients with pure akinesia with gait freezing. JAMA Neurol 2016;73(12):1477‐1484.

168. Lin WY, Lin KJ, Weng YH, et al. Preliminary studies of differential impairments of the dopaminergic system in subtypes of progressive supranuclear palsy. Nucl Med Commun 2010;31(11):974‐980.
225. Valotassiou V, Papatriantafyllou J, Sifakis N, et al. Perfusion SPECT studies with mapping of Brodmann areas in differentiating Alzheimer’s disease from frontotemporal degeneration syndromes. Nucl Med Commun 2012;33(12):1267-1276.

226. Fukui T, Lee E, Hosoda H, Okita K. Obsessive-compulsive behavior as a symptom of dementia in progressive supranuclear palsy. Dement Geriatr Cogn Disord 2010;30(2):179-188.

227. Kurata T, Kametaka S, Ohta Y, et al. PSP as distinguished from CBD, MSA-P and PD by clinical and imaging differences at an early stage. Intern Med 2011;50(22):2775-2781.

228. Hirano S, Shinotoh H, Shimada H, et al. Cholinergic imaging in corticobasal syndrome, progressive supranuclear palsy and frontotemporal dementia. Brain 2010;133(Pt 7):2058-2068.

229. Mazere J, Meissner WG, Mayo W, et al. Progressive supranuclear palsy: in vivo SPECT imaging of presynaptic vesicular acetylcholine transporter with [123I]-iodobenzovesamicol. Radiology 2012;265(2):537-543.

230. Shinotoh H, Namba H, Yamaguchi M, et al. Positron emission tomographic measurement of acetylcholinesterase activity reveals differential loss of ascending cholinergic systems in Parkinson’s disease and progressive supranuclear palsy. Ann Neurol 1999;46(1):62-69.

231. Stamelou M, Matusch A, Elmenhorst D, et al. Nigrostriatal upregulation of 5-HT2A receptors correlates with motor dysfunction in progressive supranuclear palsy. Mov Disord 2009;24(8):1170-1175.

232. Schonecker S, Brendel M, Havla J, et al. Tau-PET imaging with THK-5351 in patients with clinically diagnosed progressive supranuclear palsy (PSP). 10th International Conference on Frontotemporal Dementias; 2016; Munich, Germany: Journal of Neurochemistry.

Supporting Data

Additional Supporting Information may be found in the online version of this article at the publisher’s website.