Higher homotopy commutativity and cohomology of finite H–spaces

YUTAKA HEMMI
YUSUKE KAWAMOTO

We study connected mod p finite A_p–spaces admitting AC_n–space structures with $n < p$ for an odd prime p. Our result shows that if $n > (p - 1)/2$, then the mod p Steenrod algebra acts on the mod p cohomology of such a space in a systematic way. Moreover, we consider A_p–spaces which are mod p homotopy equivalent to product spaces of odd dimensional spheres. Then we determine the largest integer n for which such a space admits an AC_n–space structure compatible with the A_p–space structure.

55P45, 57T25; 55P48, 55S05

1 Introduction

In this paper, we assume that p is a fixed odd prime and that all spaces are localized at p in the sense of Bousfield–Kan [2].

In the paper [10], we introduced the concept of AC_n–space which is an A_n–space whose multiplication satisfies the higher homotopy commutativity of the n–th order. Then we showed that a mod p finite AC_n–space with $n \geq p$ has the homotopy type of a torus. Here by being mod p finite, we mean that the mod p cohomology of the space is finite dimensional. To prove it, we first studied the action of the Steenrod operations on the mod p cohomology of such a space. Then we showed that the possible cohomology generators are concentrated in dimension 1.

In the above argument, the condition $n \geq p$ is essential. In fact, any odd dimensional sphere admits an $AC_{p−1}$–space structure by [10, Proposition 3.8]. This implies that for any given exterior algebra, we can construct a mod p finite $AC_{p−1}$–space such that the mod p cohomology of it is isomorphic to the algebra.

On the other hand, if the $A_{p−1}$–space structure of the $AC_{p−1}$–space is extendable to an A_p–space structure, then the situation is different. For example, it is known that an
odd dimensional sphere with an A_p–space structure does not admit an AC_{p-1}–space structure except for S^1. In fact, an odd dimensional sphere S^{2m-1} admits an A_p–space structure if and only if $m|(p-1)$, and then it admits an AC_n–space structure compatible with the A_p–space structure if and only if $nm \leq p$ by [6, Theorem 2.4]. In particular, if $p = 3$, then mod 3 finite A_3–space with AC_2–space structure means mod 3 finite homotopy associative and homotopy commutative H–space. Then by Lin [21], such a space has the homotopy type of a product space of S^1s and $Sp(2)$s.

In this paper, we study mod p finite A_p–spaces with AC_n–space structures for $n < p$. First we consider the case of $n > (p-1)/2$. In this case, we show the following fact on the action of the Steenrod operations:

Theorem A Let p be an odd prime. If X is a connected mod p finite A_p–space admitting an AC_n–space structure with $n > (p-1)/2$, then we have the following:

1. If $a \geq 0$, $b > 0$ and $0 < c < p$, then
 \[QH^{2p^a(pb+c)-1}(X; \mathbb{Z}/p) = \mathcal{P}^{p^a}QH^{2p^a(p(b-t)+c+t)-1}(X; \mathbb{Z}/p) \]
 for $1 \leq t \leq \min\{b, p-c\}$ and
 \[\mathcal{P}^{p^a}QH^{2p^a(pb+c)-1}(X; \mathbb{Z}/p) = 0 \]
 for $c \leq t < p$.

2. If $a \geq 0$ and $0 < c < p$, then
 \[\mathcal{P}^{p^a} : QH^{2p^ac-1}(X; \mathbb{Z}/p) \to QH^{2p^a(p+c-t)-1}(X; \mathbb{Z}/p) \]
 is an isomorphism for $1 \leq t < c$.

In the above theorem, the assumption $n > (p-1)/2$ is necessary. In fact, (2) is not satisfied for the Lie group S^3 although S^3 admits an $AC_{(p-1)/2}$–space structure for any odd prime p as is proved in [6, Theorem 2.4].

Theorem A (1) has been already proved for a special case or under additional hypotheses: for $p = 3$ by Hemmi [7, Theorem 1.1] and for $p \geq 5$ by Lin [19, Theorem B] under the hypotheses that the space admits an AC_{p-1}–space structure and the mod p cohomology is A_p–primitively generated (see Hemmi [8] and Lin [19]).

In the above theorem, we assume that the prime p is odd. However, if we consider the case $p = 2$, then the condition $p > n > (p-1)/2$ is equivalent to $n = 1$, which means that the space is just an H–space. Thus Theorem A can be considered as the...
odd prime version of Thomas [26, Theorem 1.1] or Lin [18, Theorem 1]. (Note that in their theorems they assumed that the mod 2 cohomology of the space is primitively generated, while we do not need such an assumption.)

By using Theorem A, we show the following result:

Theorem B Let p be an odd prime. If X is a connected mod p finite A_p–space admitting an AC_n–space structure with $n > (p - 1)/2$ and the Steenrod operations P^j act on $QH^\ast(X; \mathbb{Z}/p)$ trivially for $j \geq 1$, then X is mod p homotopy equivalent to a torus.

Next we consider the case of $n \leq (p - 1)/2$. This includes the case $n = 1$, which means that the space is just a mod p finite A_p–space. For the cohomology of mod p finite A_p–spaces, we can show similar facts to Theorem A. For example, the results by Thomas [26, Theorem 1.1] and Lin [18, Theorem 1] mentioned above is for $p = 2$, and for odd prime p, many results are known (cf. [1], [5], [20]).

However, for odd primes in particular, those results have some ambiguities. In fact, there are many A_p–spaces with AC_n–space structures for some $n \leq (p - 1)/2$ such that the Steenrod operations act on the cohomology trivially. In the next theorem, we determine n for which a product space of odd dimensional spheres to be an A_p–space with an AC_n–space structure.

Theorem C Let X be a connected A_p–space mod p homotopy equivalent to a product space of odd dimensional spheres $S^{2m_1-1} \times \cdots \times S^{2m_l-1}$ with $1 \leq m_1 \leq \cdots \leq m_l$, where p is an odd prime. Then X admits an AC_n–space structure if and only if $nm_l \leq p$.

By the results of Clark–Ewing [4] and Kumpel [17], there are many spaces satisfying the assumption of Theorem C. Moreover, we note that the above result generalizes [6, Theorem 2.4].

This paper is organized as follows: In Section 2, we first recall the modified projective space $M(X)$ of a finite A_p–space constructed by Hemmi [8]. Based on the mod p cohomology of $M(X)$, we construct an algebra $A^\ast(X)$ over the mod p Steenrod algebra which is a truncated polynomial algebra at height $p + 1$ (Theorem 2.1). Next we introduce the concept of D_n–algebra and show that if X is an A_p–space with an AC_n–space structure, then $A^\ast(X)$ is a D_n–algebra (Theorem 2.6). Finally we prove the theorems in Section 3 by studying the action of the Steenrod algebra on D_n–algebras algebraically (Proposition 3.1 and Proposition 3.2).
This paper is dedicated to Professor Goro Nishida on his 60th birthday. The authors appreciate the referee for many useful comments.

2 Modified projective spaces

Stasheff [25] introduced the concept of A_n-space which is an H-space with multiplication satisfying higher homotopy associativity of the n-th order. Let X be a space and $n \geq 2$. An A_n-form on X is a family of maps $\{M_i: K_i \times X^i \to X\}_{2 \leq i \leq n}$ with the conditions of [25, I, Theorem 5], where $\{K_i\}_{i \geq 2}$ are polytopes called the associahedra. A space X having an A_n-form is called an A_n-space. From the definition, an A_2-space and an A_3-space are the same as an H-space and a homotopy associative H-space, respectively. Moreover, it is known that an A_∞-space has the homotopy type of a loop space.

Let X be an A_n-space. Then by Stasheff [25, I, Theorem 5], there is a family of spaces $\{P_i(X)\}_{1 \leq i \leq n}$ called the projective spaces associated to the A_n-form on X. From the construction of $P_i(X)$, we have the inclusion $\iota_i: P_{i-1}(X) \to P_i(X)$ for $2 \leq i \leq n$ and the projection $\rho_i: P_i(X) \to P_i(X)/P_{i-1}(X) \simeq (\Sigma X)^{(i)}$ for $1 \leq i \leq n$, where $Z^{(i)}$ denotes the i-fold smash product of a space Z for $i \geq 1$.

For the rest of this section, we assume that X is a connected A_p-space whose mod p cohomology $H^*(X; \mathbb{Z}/p)$ is an exterior algebra

$$(2-1) \quad H^*(X; \mathbb{Z}/p) \cong \Lambda(x_1, \ldots, x_l) \quad \text{with } \deg x_i = 2m_i - 1$$

for $1 \leq i \leq l$, where $1 \leq m_1 \leq \cdots \leq m_l$.

Iwase [12] studied the mod p cohomology of the projective space $P_n(X)$ for $1 \leq n \leq p$. If $1 \leq n \leq p-1$, then there is an ideal $S_n \subset H^*(P_n(X); \mathbb{Z}/p)$ closed under the action of the mod p Steenrod algebra A_p^* such that

$$(2-2) \quad H^*(P_n(X); \mathbb{Z}/p) \cong T_n \oplus S_n \quad \text{with } T_n = T^{[n+1]}[y_1, \ldots, y_l],$$

where $T^{[n+1]}[y_1, \ldots, y_l]$ denotes the truncated polynomial algebra at height $n+1$ generated by $y_i \in H^{2m_i}(P_n(X); \mathbb{Z}/p)$ with $y_1^* \cdots t_{n-1}^*(y_l) = \sigma(x_i)$ for $1 \leq i \leq l$. He also proved a similar result for the mod p cohomology of $P_p(X)$ under an additional assumption that the generators $\{x_i\}_{1 \leq i \leq l}$ are A_p-primitive (see Hemmi [8] and Iwase [12]).
Hemmi [8] modified the construction of the projective space \(P_p(X) \) to get the algebra \(T[y_{p+1}, \ldots, y_l] \) also for \(n = p \) without the assumption of the \(A_p \)-primitivity of the generators. Then he proved the following result:

Theorem 2.1 (Hemmi [8, Theorem 1.1]) Let \(X \) be a simply connected \(A_p \)-space whose mod \(p \) cohomology \(H^*(X; \mathbb{Z}/p) \) is an exterior algebra in \((2-1)\), where \(p \) is an odd prime. Then we have a space \(M(X) \) and a map \(\epsilon : \Sigma X \to M(X) \) with the following properties:

1. There is a subalgebra \(R^*(X) \) of \(H^*(M(X); \mathbb{Z}/p) \) with \(R^*(X) \cong T[y_{p+1}, \ldots, y_l] \oplus M \), where \(y_i \in H^{2m_i}(M(X); \mathbb{Z}/p) \) are classes with \(\epsilon^*(y_i) = \sigma(x_i) \) for \(1 \leq i \leq l \) and \(M \subset H^*(M(X); \mathbb{Z}/p) \) is an ideal with \(\epsilon^*(M) = 0 \) and \(M \cdot H^*(M(X); \mathbb{Z}/p) = 0 \).

2. \(R^*(X) \) and \(M \) are closed under the action of \(A_p^* \), and so

\[
A^*(X) = \frac{R^*(X)}{M} \cong T[y_{p+1}, \ldots, y_l]
\]

is an unstable \(A_p^* \)-algebra.

3. \(\epsilon^* \) induces an \(A_p^* \)-module isomorphism:

\[
QA^*(X) \longrightarrow QH^{*-1}(X; \mathbb{Z}/p).
\]

Next we recall the higher homotopy commutativity of \(H \)-spaces.

Kapranov [16] and Reiner–Ziegler [23] constructed special polytopes \(\{ \Gamma_n \}_{n \geq 1} \) called the permuto–associahedra. Let \(n \geq 1 \). A partition of the sequence \(n = (1, \ldots, n) \) of type \((t_1, \ldots, t_m)\) is an ordered sequence \((\alpha_1, \ldots, \alpha_m)\) consisting of disjoint subsequences \(\alpha_i \) of \(n \) of length \(t_i \) with \(\alpha_1 \cup \ldots \cup \alpha_m = n \) (see Hemmi–Kawamoto [10] and Ziegler [28] for the full details of the partitions). By Ziegler [28, Definition 9.13, Example 9.14], the permuto–associahedron \(\Gamma_n \) is an \((n-1)\)-dimensional polytope whose facets (codimension one faces) are represented by the partitions of \(n \) into at least two parts. Let \(\Gamma(\alpha_1, \ldots, \alpha_m) \) denote the facet of \(\Gamma_n \) corresponding to a partition \((\alpha_1, \ldots, \alpha_m)\). Then the boundary of \(\Gamma_n \) is given by

\[
\partial \Gamma_n = \bigcup_{(\alpha_1, \ldots, \alpha_m)} \Gamma(\alpha_1, \ldots, \alpha_m)
\]

for all partitions \((\alpha_1, \ldots, \alpha_m)\) of \(n \) with \(m \geq 2 \). If \((\alpha_1, \ldots, \alpha_m)\) is of type \((t_1, \ldots, t_m)\), then the facet \(\Gamma(\alpha_1, \ldots, \alpha_m) \) is homeomorphic to the product \(K_{t_1} \times \ldots \times K_{t_m} \).
Yutaka Hemmi and Yusuke Kawamoto

Figure 1: Permuto–associahedra Γ_2 and Γ_3

by the face operator $\epsilon^{(\alpha_1, \ldots, \alpha_m)}: K_m \times \Gamma_{t_1} \times \cdots \times \Gamma_{t_m} \to \Gamma(\alpha_1, \ldots, \alpha_m)$ with the relations of [10, Proposition 2.1]. Moreover, there is a family of degeneracy operators $\{\delta_j: \Gamma_i \to \Gamma_{i-1}\}_{1 \leq j \leq i}$ with the conditions of [10, Proposition 2.3].

By using the permuto–associahedra, Hemmi and Kawamoto [10] introduced the concept of AC_n–form on A_n–spaces.

Let X be an A_n–space whose A_n–form is given by $\{M_i\}_{2 \leq i \leq n}$. An AC_n–form on X is a family of maps $\{Q_i: \Gamma_i \times X^i \to X\}_{1 \leq i \leq n}$ with the following conditions:

(2–5) $Q_1(*, x) = x$.

(2–6) $Q_i(\epsilon^{(\alpha_1, \ldots, \alpha_m)}(\sigma, \tau_1, \ldots, \tau_m), x_1, \ldots, x_i) = M_m(\sigma, Q_{t_1}(\tau_1, x_{\alpha_1(1)}, \ldots, x_{\alpha_1(t_1)}), \ldots, Q_{t_m}(\tau_m, x_{\alpha_m(1)}, \ldots, x_{\alpha_m(t_m)}))$

for a partition $(\alpha_1, \ldots, \alpha_m)$ of i of type (t_1, \ldots, t_m).

(2–7) $Q_i(\tau, x_1, \ldots, x_{j-1}, *, x_{j+1}, \ldots, x_i) = Q_{i-1}(\delta_j(\tau), x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_i)$

for $1 \leq j \leq i$.

By [10, Example 3.2 (1)], an AC_2–form on an A_2–space is the same as a homotopy commutative H–space structure since $Q_2: \Gamma_2 \times X^2 \to X$ gives a commuting homotopy between xy and yx for $x, y \in X$ (see Figure 2). Let us explain an AC_3–form on an A_3–space. Assume that X is an A_3–space admitting an AC_2–form. Then by using the associating homotopy $M_3: K_3 \times X^3 \to X$ and the commuting homotopy $Q_2: \Gamma_2 \times X^2 \to X$, we can define a map $\tilde{Q}_3: \partial \Gamma_3 \times X^3 \to X$ which is illustrated.
by the right dodecagon in Figure 2. For example, the uppermost edge represents the commuting homotopy between xy and yx, and thus it is given by $Q_2(t, x, y)z$. On the other hand, the next right edge is the associating homotopy between $(xy)z$ and $x(yz)$ which is given by $M_3(t, x, y, z)$. Then X admits an AC_3–form if and only if \tilde{Q}_3 is extended to a map $Q_3 : \Gamma_3 \times X^3 \to X$. Moreover, if X is an H–space, then by [10, Example 3.2 (3)], the multiplication of the loop space ΩX on X admits an AC_∞–form. Hemmi [6] considered another concept of higher homotopy commutativity of H–spaces. Let X be an A_n–space with the projective spaces $\{P_i(X)\}_{1 \leq i \leq n}$. Let $J_i(\Sigma X)$ be the i-th stage of the James reduced product space of ΣX and $\pi_i : J_i(\Sigma X) \to (\Sigma X)^{(i)}$ be the obvious projection for $1 \leq i \leq n$. A quasi C_n–form on X is a family of maps $\{\psi : J_i(\Sigma X) \to P_i(X)\}_{1 \leq i \leq n}$ with the following conditions:

1. $\psi_1 = 1_{\Sigma X} : \Sigma X \to \Sigma X$.
2. $\psi_i|_{J_{i-1}(\Sigma X)} = \iota_{i-1}\psi_{i-1}$ for $2 \leq i \leq n$.
3. $\rho_i\psi_i \simeq \left(\sum_{\sigma \in \Sigma_i} \sigma\right)^{\pi_i}$ for $1 \leq i \leq n$.

where the symmetric group Σ_i acts on $(\Sigma X)^{(i)}$ by the permutation of the coordinates and the summation on the right hand side is given by using the obvious co–H–structure on $(\Sigma X)^{(i)}$ for $1 \leq i \leq n$.

Hemmi and Kawamoto [10] proved the following result:

Theorem 2.2 (Hemmi–Kawamoto [10, Theorem A]) Let X be an A_n–space for $n \geq 2$. Then we have the following:
(1) If \(X \) admits an \(AC_n \)-form, then \(X \) admits a quasi \(C_n \)-form.

(2) If \(X \) is an \(A_{n+1} \)-space admitting a quasi \(C_n \)-form, then \(X \) admits an \(AC_n \)-form.

Remark 2.3 In the proof of Theorem 2.2 (2), we do not need the condition (2–10). In fact, the proof of Theorem 2.2 (2) shows that if \(X \) is an \(A_{n+1} \)-space and there is a family of maps \(\{ \psi_i \}_{1 \leq i \leq n} \) with the conditions (2–8)–(2–9), then there is a family of maps \(\{ Q_i \}_{1 \leq i \leq n} \) with the conditions (2–5)–(2–7).

Now we give the definition of \(D_n \)-algebra:

Definition 2.4 Assume that \(A^* \) is an unstable \(A_p^* \)-algebra for a prime \(p \). Let \(n \geq 1 \). Then \(A^* \) is called a \(D_n \)-algebra if for any \(\alpha_i \in A^* \) and \(\theta_i \in A_p^* \) for \(1 \leq i \leq q \) with

\[
\sum_{i=1}^{q} \theta_i(\alpha_i) \in DA^*,
\]

there are decomposable classes \(\nu_i \in DA^* \) for \(1 \leq i \leq q \) with

\[
\sum_{i=1}^{q} \theta_i(\alpha_i - \nu_i) \in D^{n+1}A^*,
\]

where \(DA^* \) and \(D^tA^* \) denote the decomposable module and the \(t \)-fold decomposable module of \(A^* \) for \(t > 1 \), respectively.

Remark 2.5 It is clear from Definition 2.4 that any unstable \(A_p^* \)-algebra is a \(D_1 \)-algebra. On the other hand, for an \(A_p \)-space \(X \) which satisfies the assumption of Theorem 2.1 with \(l \geq 1 \), the unstable \(A_p^* \)-algebra \(A^*(X) \) given in (2–3) cannot be a \(D_p \)-algebra since \(P^m(\alpha) = \alpha^p \neq 0 \) for \(\alpha \in QA^{2m}(X) \) from the unstable condition of \(A_p^* \) and \(D^{p+1}A^*(X) = 0 \) in (2–12).

To prove Theorem A and Theorem B, we need the following theorem:

Theorem 2.6 Let \(p \) be an odd prime and \(1 \leq n \leq p - 1 \). Assume that \(X \) is a simply connected \(A_p \)-space whose mod \(p \) cohomology \(H^*(X; \mathbb{Z}/p) \) is an exterior algebra in (2–1). If the multiplication of \(X \) admits a quasi \(C_n \)-form, then \(A^*(X) \) is a \(D_n \)-algebra.

We need the following result which is a generalization of Hemmi [6]:

"Geometry & Topology Monographs 10 (2007)"
Lemma 2.7 Assume that \(X \) satisfies the same assumptions as Theorem 2.6. If \(\alpha_i \in H^*(P_\alpha(X); \mathbb{Z}/p) \) and \(\theta_i \in A^p_\alpha \) for \(1 \leq i \leq q \) satisfy
\[
\sum_{i=1}^{q} \theta_i(\alpha_i) = a + b \quad \text{with} \quad a \in DH^*(P_\alpha(X); \mathbb{Z}/p) \quad \text{and} \quad b \in S_n,
\]
then there are decomposable classes \(\nu_i \in DH^*(P_\alpha(X); \mathbb{Z}/p) \) for \(1 \leq i \leq q \) with
\[
\sum_{i=1}^{q} \theta_i(\alpha_i - \nu_i) = b.
\]

Proof We give an outline of the proof since the argument is similar to Hemmi [6, Lemma 4.8]. It is clear for \(n = 1 \). If the result is proved for \(n - 1 \), then by the same reason as [6, Lemma 4.8], we can assume \(a \in D^pH^*(P_\alpha(X); \mathbb{Z}/p) \).

Put \(U_n = \tilde{H}^*(\Sigma X)^n; \mathbb{Z}/p \), \(V_n = QH^*(X; \mathbb{Z}/p)^\otimes n \) and
\[
W_n = \bigoplus_{i=1}^{n} \tilde{H}^*(X; \mathbb{Z}/p)^\otimes i - 1 \otimes DH^*(X; \mathbb{Z}/p) \otimes \tilde{H}^*(X; \mathbb{Z}/p)^\otimes n - i,
\]
where \(Z[n] \) denotes the \(n \)-fold fat wedge of a space \(Z \) given by
\[
Z[n] = \{(z_1, \ldots, z_n) \in Z^n \mid z_j = * \text{ for some } 1 \leq j \leq n \}.
\]

Then we have a splitting as an \(A^p_\alpha \)-module
\[
(2-13) \quad \tilde{H}^*(\Sigma X)^n; \mathbb{Z}/p) \cong U_n \oplus V_n \oplus W_n.
\]

Let \(\tilde{K}_n : \tilde{H}^*(X; \mathbb{Z}/p)^\otimes n \to H^*(P_\alpha(X); \mathbb{Z}/p) \) denote the following composite:
\[
\tilde{H}^*(X; \mathbb{Z}/p)^\otimes n \xrightarrow{\sigma^n} H^*(\Sigma X; \mathbb{Z}/p)^\otimes n \cong H^*((\Sigma X)^n; \mathbb{Z}/p) \xrightarrow{\psi_n} H^*(P_\alpha(X); \mathbb{Z}/p).
\]

Then by [6, Theorem 3.5], there are \(\tilde{a} \in V_n \) and \(\tilde{b} \in W_n \) with \(a = \tilde{K}_n(\tilde{a}) \) and \(b = \tilde{K}_n(\tilde{b}) \).

Now we set \(\lambda^*_n(\alpha_i) = c_i + d_i + e_i \) with respect to the splitting (2–13) for \(1 \leq i \leq q \), where \(\lambda_n : (\Sigma X)^n \to P_\alpha(X) \) denotes the composite of \(\psi_n \) with the obvious projection \(\omega_n : (\Sigma X)^n \to J_n(\Sigma X) \). From the same reason as Hemmi [6, Lemma 4.8], we have
\[
\sum_{i=1}^{q} \theta_i(d_i) = \sum_{\tau \in \Sigma_n} \tau(\tilde{a}) = \lambda^*_n(a),
\]
and so
\[
\lambda^*_n \left(\sum_{i=1}^{q} \theta_i(\tilde{K}_n(d_i)) \right) = \sum_{\tau \in \Sigma_n} \tau \left(\sum_{i=1}^{q} \theta_i(d_i) \right) = n! \sum_{\tau \in \Sigma_n} \tau(\tilde{a}) = n!(\lambda^*_n(a)),
\]
which implies

\[
(2–14) \quad a = \frac{1}{n!} \sum_{i=1}^{q} \theta_i(K_n(d_i))
\]

by [6, Lemma 4.7]. If we put

\[
\nu_i = \frac{1}{n!}K_n(d_i) \in D^nH^*(P_n(X); \mathbb{Z}/p)
\]

for \(1 \leq i \leq q\), then by (2–14),

\[
\sum_{i=1}^{q} \theta_i(\alpha_i - \nu_i) = b,
\]

which completes the proof. \(\square\)

Proof of Theorem 2.6 From the construction of the space \(\mathcal{M}(X)\) in Hemmi [8, Section 2], we have a space \(\mathcal{N}(X)\) and the following homotopy commutative diagram:

\[
\begin{array}{ccccccc}
P_{p-2}(X) & \xrightarrow{\xi} & \mathcal{N}(X) & \xrightarrow{\eta} & \mathcal{M}(X) \\
| & | & \downarrow{\zeta} & & \downarrow{\iota} \\
P_n(X) & \xrightarrow{\iota_n} & \cdots & \xrightarrow{\iota_{p-2}} & P_{p-2}(X) & \xrightarrow{\iota_{p-2}} & P_{p-1}(X) & \xrightarrow{\iota_{p-1}} & P_p(X).
\end{array}
\]

By Theorem 2.1 (2) and [8, page 593], we have that \(M \subset R^*(X)\) is closed under the action of \(A_p^*\) with \(\eta^*(M) = 0\), which implies that \(\eta^*|_{R^*(X)}: R^*(X) \to H^*(\mathcal{N}(X); \mathbb{Z}/p)\) induces an \(A_p^*-\)homomorphism \(F: A^*(X) = R^*(X)/M \to H^*(\mathcal{N}(X); \mathbb{Z}/p)\). Then by applying the mod \(p\) cohomology to the diagram (2–15), we have the following commutative diagram of unstable \(A_p^*\)-algebras and \(A_p^*\)-homomorphisms:

\[
\begin{array}{ccccccc}
A^*(X) & \xrightarrow{\mathcal{F}} & H^*(\mathcal{N}(X); \mathbb{Z}/p) & \xleftarrow{\zeta^*} & H^*(P_{p-1}(X); \mathbb{Z}/p) \\
| & \eta_* & & \downarrow{\iota_{p-2}^*} & \\
H^*(P_{p-2}(X); \mathbb{Z}/p) & \xrightarrow{\iota_{p-3}^*} & H^*(P_{p-2}(X); \mathbb{Z}/p) & & \cdots & \downarrow{\iota_{p-2}^*} & \\
& & & & & & H^*(P_n(X); \mathbb{Z}/p).
\end{array}
\]
First we assume $1 \leq n \leq p - 2$. Put $G_n(\alpha_i) = \beta_i$ for $1 \leq i \leq q$, where $G_n: A^*(X) \rightarrow H^*(P_n(X); \mathbb{Z}/p)$ is the composite given by $G_n = \iota_n^* \cdots \iota_{p-3}^* \xi^* \mathcal{F}$. Then by applying G_n to (2–11), we have

$$
\sum_{i=1}^{q} \theta_i(\beta_i) \in DH^*(P_n(X); \mathbb{Z}/p),
$$

and so by Lemma 2.7, there are decomposable classes $\tilde{\nu}_i \in DH^*(P_n(X); \mathbb{Z}/p)$ for $1 \leq i \leq q$ with

$$
(2–16) \quad \sum_{i=1}^{q} \theta_i(\tilde{\alpha}_i - \tilde{\nu}_i) = 0.
$$

If we choose decomposable classes $\nu_i \in DA^*(X)$ to satisfy $G_n(\nu_i) = \tilde{\nu}_i$ for $1 \leq i \leq q$, then by (2–16),

$$
\sum_{i=1}^{q} \theta_i(\alpha_i - \nu_i) \in D^{a+1}A^*(X),
$$

which completes the proof in the case of $1 \leq n \leq p - 2$.

Next let us consider the case of $n = p - 1$. Put $\mathcal{F}(\alpha_i) = \bar{\alpha}_i \in H^*(\mathcal{N}(X); \mathbb{Z}/p)$ for $1 \leq i \leq q$. Then we have

$$
\sum_{i=1}^{q} \theta_i(\bar{\alpha}_i) \in DH^*(\mathcal{N}(X); \mathbb{Z}/p).
$$

By [8, Proposition 5.2], we see that $\mathcal{F}(A^*(X))$ is contained in $\zeta^*(H^*(P_{p-1}(X); \mathbb{Z}/p))$, and so we can choose $\beta_i \in H^*(P_{p-1}(X); \mathbb{Z}/p)$ and $a \in DH^*(P_{p-1}(X); \mathbb{Z}/p)$ with $\zeta^*(\beta_i) = \bar{\alpha}_i$ and

$$
\zeta^*(a) = \sum_{i=1}^{q} \theta_i(\bar{\alpha}_i)
$$

for $1 \leq i \leq q$. Then we can set

$$
\sum_{i=1}^{q} \theta_i(\beta_i) = a + b
$$

with $\zeta^*(b) = 0$, and by [8, Lemma 5.1], we have $b \in S_{p-1}$. By Lemma 2.7, there are decomposable classes $\mu_i \in DH^*(P_{p-1}(X); \mathbb{Z}/p)$ for $1 \leq i \leq q$ with

$$
\sum_{i=1}^{q} \theta_i(\beta_i - \mu_i) = b.
$$
Let \(\nu_i \in DA^*(X) \) with \(F(\nu_i) = \zeta^*(\mu_i) \) for \(1 \leq i \leq q \). Then we have
\[
\sum_{i=1}^{q} \theta_i(\alpha_i - \nu_i) \in DA^*(X),
\]
which implies the required conclusion. This completes the proof of Theorem 2.6. \(\square \)

3 Proofs of Theorem A and Theorem B

In this section, we assume that \(A^* \) is an unstable \(A^*_p \)-algebra which is the truncated polynomial algebra at height \(p + 1 \) given by
\[
A^* = T^{[p+1]}[y_1, \ldots, y_l] \quad \text{with \(\deg y_i = 2m_i \)}
\]
for \(1 \leq i \leq l \), where \(1 \leq m_1 \leq \cdots \leq m_l \). Moreover, we choose the generators \(\{y_i\} \) to satisfy
\[
P^1(y_i) \in DA^* \text{ or } P^1(y_i) = y_j \quad \text{for some } 1 \leq j \leq l.
\]
The above is possible by the same argument as Hemmi [5, Section 4].

First we prove the following result:

Proposition 3.1 Suppose that \(A^* \) is a \(D_n \)-algebra and \(1 \leq i \leq l \). If \(P^1(y_i) \) contains the term \(y^t_j \) for some \(1 \leq j \leq l \) and \(1 \leq t \leq n \), then \(y_j = P^1(y_k) \) for some \(1 \leq k \leq l \).

Proof If \(t = 1 \), then by (3–2), the result is clear. Let \(t \) be the smallest integer with \(1 < t \leq n \) such that the term \(y^t_j \) is contained in \(P^1(y_{i'}) \) for some \(1 \leq i' \leq l \). Then by (3–2), we have \(P^1(y_{i'}) \in DA^* \). Since \(A^* \) is a \(D_n \)-algebra, there is a decomposable class \(\nu \in DA^* \) with \(P^1(y_{i''} - \nu) \in D^{n+1}A^* \). This implies that \(P^1(\nu) \) contains the term \(y^t_j \), and so there is one of the generators \(y^t_{i''} \) of (3–1) for \(1 \leq i'' \leq l \) such that \(P^1(y^t_{i''}) \) contains the term \(y^s_j \) for some \(1 \leq s < t \). Then we have a contradiction, and so \(t = 1 \). This completes the proof. \(\square \)

In the proof of Theorem A, we need the following result:

Proposition 3.2 Let \(p \) be an odd prime. If \(A^* \) is a \(D_n \)-algebra with \(n > (p - 1)/2 \), then the indecomposable module \(QA^* \) of \(A^* \) satisfies the following:

Geometry & Topology Monographs 10 (2007)
1. If \(a \geq 0 \), \(b > 0 \) and \(0 < c < p \), then
\[
QA^{2^{p^{(pb+c)}}} = \mathcal{P}^{p^t} QA^{2^{p^{(p(b-t)+c+t)}}}
\]
for \(1 \leq t \leq \min \{b, p-c\} \) and
\[
\mathcal{P}^{p^t} QA^{2^{p^{(pb+c)}}} = 0 \quad \text{in} \quad QA^{2^{p^{(p(b+t)+c-t)}}}
\]
for \(c \leq t < p \).

2. If \(a \geq 0 \) and \(0 < c < p \), then
\[
\mathcal{P}^{p^t} : \ QA^{2^{p^{pc}}} \longrightarrow QA^{2^{p^{(p+c-t)}}}
\]
is an isomorphism for \(1 \leq t < c \).

Proof First we consider the case of \(a = 0 \). Let us prove (1) by downward induction on \(b \). If \(b \) is large enough, then the result is clear since \(QA^{2^{p^{(pb+c)}}} = 0 \). Assume that \(y_j \) is one of the generators of (3–1) for \(1 \leq j \leq l \) and \(\deg y_j = 2(pb + c) \) with \(b > 0 \) and \(0 < c < p \). By inductive hypothesis, we can assume that if \(f > b \) and \(0 < g < p \), then
\[
QA^{2^{p^{(pf+g)}}} = \mathcal{P}^{p^t} QA^{2^{p^{(p(f-1)+g+1)}}}
\]
for \(1 \leq t \leq \min \{f, p-g\} \). If we put
\[
\beta = \frac{1}{pb+c} \mathcal{P}^{p^{pb+c-1} y_j} \in A^{2^{p^{(pb+c-1)+1}}},
\]
then by (3–6), we have
\[
\beta - \mathcal{P}^{p-1}(\gamma) \in DA^*
\]
for some \(\gamma \in QA^{2^{p^{(b-1)+1}}} \). Since \(A^* \) is a \(D_n \)-algebra,
\[
\beta - \frac{1}{pb+c} \mathcal{P}^{p^{pb+c-1}(\mu)} - \mathcal{P}^{p-1}(\gamma - \nu) \in D^{n+1} A^*
\]
for some decomposable classes \(\mu \in DA^{2^{p^{(b+c)}}} \) and \(\nu \in DA^{2^{p^{(b-1)+1}}} \). If we apply \(\mathcal{P}^1 \) to (3–7), then \(y_j^\beta = \mathcal{P}^1(\xi) \) for some \(\xi \in D^{n+1} A^* \) since \(\mathcal{P}^{p^{pb+c}}(\mu) = \mu^p = 0 \) in \(A^* \) and \(\mathcal{P}^{p-1} p^{p-1} = p \mathcal{P}^p = 0 \). Then for some generator \(y_i \), \(\mathcal{P}^1(y_i) \) must contain some \(y'_j \) with \(1 \leq t \leq p \) and \(t + n = p \). By the assumption of \(n > (p-1)/2 \), we have \(1 \leq t \leq n \), which implies that \(y_j = \mathcal{P}^1(y_k) \) for some \(1 \leq k \leq l \) by Proposition 3.1. By iterating this argument, we have (3–3).

Now (3–4) follows from (3–3). In fact, if \(y_j \) is a generator in (3–1) with \(\deg y_j = 2(pb+c) \) for some \(b > 0 \) and \(0 < c < p \), then we show that \(\mathcal{P}^{c}(y_j) = 0 \). If \(b + c < p \), then by (3–3), we have \(y_j = \mathcal{P}^{b}(\kappa) \) for \(\kappa \in QA^{2^{(b+c)}} \), which implies that
\[
\mathcal{P}^{c}(y_j) = \mathcal{P}^{c} \mathcal{P}^{b}(\kappa) = \left(\begin{array}{c} b+c \\ b \end{array} \right) \kappa^p = 0
\]
in $QA^{2p(b+c)}$. On the other hand, if $p \leq b + c$, then by (3–3), we have $y_j = P^p(y_j)$ for $j \in QA^{2p(b+c-p+1)}$, and so

$$(3-9) \quad P^p(y_j) = P^pP^{p-c}(\zeta) = \left(\begin{array}{c} p \\ c \end{array}\right) P^p(\zeta) = 0.$$

Next we show (2) with $a = 0$. We only have to show that P^{c-1} is a monomorphism on QA^{2c}. Let y_j be a generator in (3–1) such that $\deg y_j = 2c$ with $0 < c < p$. Suppose contrarily that $P^{c-1}(y_j) = 0$ in $QA^{2(c-1)p+1}$. Since A^* is a D_n–algebra, we have that

$$P^{c-1}(y_j - \mu) \in D^{p+1}A^{2(c-1)p+1}$$

for some decomposable class $\mu \in DA^{2c}$. Then by a similar argument to the proof of (1), we have that $y_j = P^1(y_k)$ for some $1 \leq k \leq l$ with $\deg y_k = 2(c - p + 1)$, which is impossible for dimensional reasons. This completes the proof of Proposition 3.2 in the case of $a = 0$.

Let I denote the ideal of A^* generated by y_i with $m_i \not\equiv 0 \mod p$. Then for dimensional reasons and by (3–8) and (3–9), we see that I is closed under the action of \mathcal{A}^*_p, which implies that A^*/I is an unstable \mathcal{A}^*_p–algebra given by

$$A^*/I = T^{[p+1]}[y_{i_1}, \ldots, y_{i_k}] \quad \text{with} \quad m_{i_d} \equiv 0 \mod p$$

for $1 \leq d \leq q$. Set $m_{i_d} = ph_d$ with $h_d \geq 1$ for $1 \leq d \leq q$. Let B^* denote the truncated polynomial algebra at height $p + 1$ given by

$$B^* = T^{[p+1]}[z_1, \ldots, z_q] \quad \text{with} \quad \deg z_d = h_d$$

for $1 \leq d \leq q$. If we define a map $\tilde{\mathcal{L}}: \{y_{i_1}, \ldots, y_{i_k}\} \to B^*$ by $\tilde{\mathcal{L}}(y_{i_d}) = z_d$ for $1 \leq d \leq q$, then $\tilde{\mathcal{L}}$ is extended to an isomorphism $\mathcal{L}: A^*/I \to B^*$. Moreover, B^* admits an unstable \mathcal{A}^*_p–algebra structure by the action $P^r(z_d) = \mathcal{L}(P^{pr}(y_{i_d}))$ for $r \geq 1$. Then we can show that B^* is a D_n–algebra concerning this structure since so is A^*.

From the above arguments, we have the required results for B^* in the case of $a = 0$, which implies that A^* satisfies the required results for $a = 1$. By repeating these arguments, we can show that A^* satisfies the desired conclusions of Proposition 3.2 for any $a \geq 0$. This completes the proof.

Now we prove Theorem A as follows:

Proof of Theorem A By Browder [3, Theorem 8.6], $H^*(X; \mathbb{Z}/p)$, the mod p cohomology, is an exterior algebra in (2–1). Let \tilde{X} be the universal cover of X. From the

Geometry & Topology Monographs 10 (2007)
By Kane [14, page 24]. By Theorem 2.2 and Theorem 2.6, we have that the composite

where QH has

To show Theorem C, we need the following definition:

By using Theorem A, we prove Theorem B as follows:

Proof of Theorem B We proceed by using a similar way to the proof of [6, Theorem 1.1]. Since $X \simeq \widetilde{X} \times T$ for a torus T as in the proof of Theorem A, the Steenrod operations \mathcal{P}^i act trivially on $QH^*(\widetilde{X}; \mathbb{Z}/p)$ for $j \geq 1$. By Theorem A, if $QH^{2m-1}(\widetilde{X}; \mathbb{Z}/p) \neq 0$, then $m = p^a$ for some $a \geq 1$, and so the mod p cohomology of \widetilde{X} is an exterior algebra in (2–1), where $m_i = p^{a_i}$ with $a_i \geq 1$ for $1 \leq i \leq l$.

Let $P_{p-1}(\widetilde{X})$ be the $(p-1)$-th projective space of \widetilde{X}. Then by (2–2), there is an ideal $S_{p-1} \subset H^*(P_{p-1}(\widetilde{X}); \mathbb{Z}/p)$ closed under the action of \mathcal{A}_p^* with

$$H^*(P_{p-1}(\widetilde{X}); \mathbb{Z}/p)/S_{p-1} \cong T[p][y_1, \ldots, y_l],$$

where $T[p][y_1, \ldots, y_l]$ is the truncated polynomial algebra at height p generated by $y_i \in H^{2p^{a_i}}(P_{p-1}(\widetilde{X}); \mathbb{Z}/p)$ with $\iota^*_{p-1} \cdot \iota^*_{p-2}(y_i) = \sigma(x_i) \in H^{2p^{a_i}}(\Sigma \widetilde{X}; \mathbb{Z}/p)$. Moreover, we have that the composite

(3–10) \[H^*(P_{p-1}(\widetilde{X}); \mathbb{Z}/p) \xrightarrow{\iota^*_{p-1}} H^*(P_{p-1}(\widetilde{X}); \mathbb{Z}/p) \xrightarrow{\iota^*_{p-2}} T[p][y_1, \ldots, y_l] \]

is an isomorphism for $t < 2p^{a_1+1}$ and an epimorphism for $t < 2(p^{a_1+1} + p^{a_1} - 1)$ by [6, page 106, (4.11)]. As in [6, page 106, (4.11)], we can show

(3–11) \[\text{Im } \mathcal{P}^t \cap H^*(P_{p}(\widetilde{X}); \mathbb{Z}/p) = 0 \]

for $t \leq 2p^{a_1+1}$. In fact, by (3–10) and for dimensional reasons, we have

$$\text{Im } \beta \cap H^*(P_{p}(\widetilde{X}); \mathbb{Z}/p) = 0$$

$$\text{Im } \mathcal{P}^t \cap H^*(P_{p}(\widetilde{X}); \mathbb{Z}/p) = 0$$

for $t \leq 2p^{a_1+1}$, which implies (3–11) by Liulevicius [22] or Shimada–Yamanoshiba [24].

Now we can choose $w_1 \in H^{2p^{a_1}}(P_{p}(\widetilde{X}); \mathbb{Z}/p)$ with $\iota^*_{p-1}(w_1) = y_1$ by (3–10), and we have $w_1^p = \mathcal{P}^{t_{p-1}}(w_1) = 0$ by (3–11). Then we have a contradiction by using the same argument as the proof of [6, Theorem 1.1], and so \widetilde{X} is contractible, which implies that X is a torus. This completes the proof of Theorem B. \qed

To show Theorem C, we need the following definition:
Definition 3.3 Assume that X is an A_n–space and Y is a space.

(1) An AC_n–form on a map $\phi: Y \to X$ is a family of maps $\{R_i: \Gamma_i \times Y^i \to X\}_{1 \leq i \leq n}$ with the conditions $R_i(\ast, y) = \phi(y)$ for $y \in Y$ and (2–6)–(2–7).

(2) A quasi C_n–form on a map $\kappa: \Sigma Y \to \Sigma X$ is a family of maps $\{\zeta_i: J_i(\Sigma Y) \to P_i(\Sigma X)\}_{1 \leq i \leq n}$ with the conditions $\zeta_1 = \kappa$ and (2–9).

By using the same argument as the proof of Theorem 2.2 (1), we can prove the following result:

Theorem 3.4 Assume that X is an A_n–space, Y is a space and $\phi: Y \to X$ is a map. Then any AC_n–form on ϕ induces a quasi C_n–form on $\Sigma \phi$.

Now we prove Theorem C as follows:

Proof of Theorem C First we show that if X admits an AC_n–form, then $nm_l \leq p$.

We prove by induction on n. If $n = 1$, then the result is proved by Hubbuck–Mimura [11] and Iwase [13, Proposition 0.7]. Assume that the result is true for $n - 1$. Then by inductive hypothesis, we have $(n - 1)m_l \leq p$. Now we assume that X admits an AC_n–form with

\[(3–12) \quad (n - 1)m_l \leq p < nm_l.\]

Then we show a contradiction.

Let \tilde{X} be the universal covering space of X. Then \tilde{X} is a simply connected A_p–space mod p homotopy equivalent to

\[(3–13) \quad S^{2m_{l-1}} \times \cdots \times S^{2m_{l-1}} \quad \text{with} \quad 1 < m_1 \leq \cdots \leq m_l\]

and the multiplication of \tilde{X} admits an AC_n–form by [10, Lemma 3.9]. Now we can set that

$$A^*(\tilde{X}) = T^{[p+1]}[y_1, \ldots, y_l] \quad \text{with} \deg y_i = 2m_i$$

for $1 \leq i \leq l$, where $1 < m_1 \leq \cdots \leq m_l \leq p$. By Theorem 2.2 and Theorem 2.6, $A^*(\tilde{X})$ is a D_n–algebra.

First we consider the case of $m_l < p$. Let J be the ideal of $A^*(\tilde{X})$ generated by y_i for $1 \leq i \leq l - 1$. Then we see that

\[(3–14) \quad \mathcal{P}^1(y_i) \notin J \quad \text{for some} \quad 1 \leq i \leq l.\]
In fact, if we assume that $P^1(y_i) \in J$ for any $1 \leq i \leq l$, then $P^1(y_i) \in J$ and $P^1(J) \subset J$. This implies that
\[y_i^p = P^m(y_i) = \frac{1}{m!}(P^1)^m(y_i) \in J, \]
which is a contradiction, and so we have (3–14). Then for dimensional reasons and by (3–12),
\[2(n - 1)m_l < \deg P^1(y_i) < 2(n + 1)m_l, \]
which implies that $P^1(y_i)$ contains the term ay_i^p with $a \neq 0$ in \mathbb{Z}/p by (3–14). By Proposition 3.1, we have $y_i \in P^1QA^{2(m_l - p + 1)}(X)$, which causes a contradiction since $m_l < p$.

Next let us consider the case of $m_l = p$. In this case, (3–12) is equivalent to $n = 2$, and so X is assumed to have an AC_2–form. Then from the same arguments as above, we have that $A^*(\tilde{X})$ is a D_2–algebra. By Kanemoto [15, Lemma 3], there is a generator $y_k \in QA^{2(p - 1)}(\tilde{X})$ for some $1 \leq k < l$. Let K be the ideal of $A^*(\tilde{X})$ generated by y_i with $i \neq k$. From the same reason as (3–14), we see that $P^1(y_i) \notin K$ for some $1 \leq i \leq l$. Then for dimensional reasons, we see that $P^1(y_i)$ contains the term by_k^2 with $b \neq 0$ in \mathbb{Z}/p. By Proposition 3.1, we have a contradiction, and so \tilde{X} does not admit an AC_2–form.

Next we show that if $nm_l \leq p$, then X admits an AC_n–form. Since it is clear for $n = 1$ or $m_l = 1$, we can assume that $nm_l < p$. Let Y denote the wedge sum of spheres given by
\[Y = (S^{2m_l - 1} \lor \ldots \lor S^{2m_l - 1})_p \]
with the inclusion $\phi : Y \to X$. First we construct an AC_n–form $\{R_i : \Gamma_i \times Y^i \to X\}_{1 \leq i \leq n}$ on $\phi : Y \to X$.

Suppose inductively that $\{R_i\}_{1 \leq i \leq t}$ are constructed for some $t \leq n$. Then the obstructions for the existence of R_t belong to the following cohomology groups for $j \geq 1$:
\[H^{j+1}(\Gamma_t \times Y^t, \partial \Gamma_t \times Y^t \cup \Gamma_t \times Y^t; \pi_j(X)) \cong \tilde{H}^{j+2}((\Sigma Y)^{(i)}; \pi_j(X)) \]
since $\Gamma_t \times Y^t/(\partial \Gamma_t \times Y^t \cup \Gamma_t \times Y^t) \cong \Sigma^{-1}Y^{(i)}$. This implies that (3–15) is non-trivial only if j is an even integer with $j < 2p - 2$ since
\[\Sigma Y \cong (S^{2m_1} \lor \ldots \lor S^{2m_l})_p \]
and $tm_l \leq nm_l < p$. On the other hand, according to Toda [27, Theorem 13.4], $\pi_j(X) = 0$ for any even integer j with $j < 2p - 2$ since X is given by (3–13). Thus

Geometry & Topology Monographs 10 (2007)
(3–15) is trivial for all j, and we have a map R_j. This completes the induction, and we have an AC_n–form $\{R_i\}_{1 \leq i \leq n}$ on $\phi: Y \to X$.

Since X is an H–space, there is a map $\beta: \Omega \Sigma X \to X$ with $\beta \alpha \simeq 1_X$, where $\alpha: X \to \Omega \Sigma X$ denotes the adjoint of $1_{\Sigma X}: \Sigma X \to \Sigma X$. Moreover, ΣY is a retract of ΣX, and so we have a map $\nu: \Sigma X \to \Sigma Y$ with $\nu(\Sigma \phi) \simeq 1_{\Sigma Y}$. Put $\lambda = \beta \theta: X \to X$, where $\theta: X \to \Omega \Sigma X$ denotes the adjoint of $(\Sigma \phi)\nu$. Then we see that λ induces an isomorphism on the mod p cohomology, and so λ is a mod p homotopy equivalence.

By Theorem 3.4, there is a quasi C_n–form $\{\zeta_i: J_i(\Sigma Y) \to P_i(X)\}_{1 \leq i \leq n}$ on $\Sigma \phi: \Sigma Y \to \Sigma X$. Let $\xi_i: J_i(\Sigma X) \to P_i(X)$ be the map defined by $\xi_i = \zeta_i J_i(\nu(\Sigma \lambda^{-1}))$ for $1 \leq i \leq n$, where $\lambda^{-1}: X \to X$ denotes the homotopy inverse of λ. Then the family $\{\xi_i\}_{1 \leq i \leq n}$ satisfies $\xi_i|_{J_{i-1}(\Sigma X)} = \iota_{i-1} \xi_{i-1}$ for $2 \leq i \leq n$ and $\xi_1 = (\Sigma \phi)\nu(\Sigma \lambda^{-1}) = \chi(\Sigma \theta)(\Sigma \lambda^{-1})$, where $\chi: \Sigma \Omega \Sigma X \to \Sigma X$ is the evaluation map. Since $\iota_1(\Sigma \beta) \simeq \iota_1 \chi: \Sigma \Omega \Sigma X \to P_2(X)$ by Hemmi [9, Lemma 2.1], we have $\xi_2|_{\Sigma X} = \iota_1 \xi_1 \simeq \iota_1$. Let $\psi_i: J_i(\Sigma X) \to P_i(X)$ be the map defined by $\psi_1 = 1_{\Sigma X}$ and $\psi_i = \xi_i$ for $2 \leq i \leq n$. Then the family $\{\psi_i\}_{1 \leq i \leq n}$ satisfies (2–8)–(2–9). By Theorem 2.2 (2) and Remark 2.3, we have an AC_n–form $\{Q_i: \Gamma_i \times X^i \to X\}_{1 \leq i \leq n}$ on X with (2–5)–(2–7). This completes the proof of Theorem C. \hfill \Box

References

[1] T Akita, A_p–spaces and the reduced power operations, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 18 (1997) 111–116 MR1436594
[2] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics 304, Springer, Berlin (1972) MR0365573
[3] W Browder, Homotopy commutative H–spaces, Ann. of Math. (2) 75 (1962) 283–311 MR0150778
[4] A Clark, J Ewing, The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974) 425–434 MR0367979
[5] Y Hemmi, Homotopy associative finite H–spaces and the mod 3 reduced power operations, Publ. Res. Inst. Math. Sci. 23 (1987) 1071–1084 MR935716
[6] Y Hemmi, Higher homotopy commutativity of H–spaces and the mod p torus theorem, Pacific J. Math. 149 (1991) 95–111 MR1099785
[7] Y Hemmi, On mod 3 homotopy associative and homotopy commutative Hopf spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 12 (1991) 57–65 MR1093546

Geometry & Topology Monographs 10 (2007)
[8] Y Hemmi, On exterior A_∞–spaces and modified projective spaces, Hiroshima Math. J. 24 (1994) 583–605 MR1309142
[9] Y Hemmi, Retractions of H–spaces, Hiroshima Math. J. 35 (2005) 159–165 MR2131381
[10] Y Hemmi, Y Kawamoto, Higher homotopy commutativity of H–spaces and the permuto-associahedra, Trans. Amer. Math. Soc. 356 (2004) 3823–3839 MR2058507
[11] J R Hubbuck, M Mimura, Certain p–regular H–spaces, Arch. Math. (Basel) 49 (1987) 79–82 MR897400
[12] N Iwase, On the K–ring structure of X–projective n–space, Mem. Fac. Sci. Kyushu Univ. Ser. A 38 (1984) 285–297 MR760190
[13] N Iwase, H–spaces with generating subspaces, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 199–211 MR1007521
[14] R M Kane, The homology of Hopf spaces, North-Holland Mathematical Library 40, North-Holland Publishing Co., Amsterdam (1988) MR961257
[15] T Kanemoto, On the higher homotopy associativity of p–regular Hopf spaces, Math. J. Okayama Univ. 32 (1990) 153–158 MR1112024
[16] M M Kapranov, The permutoassociahedron, Mac Lane's coherence theorem and asymptotic zones for the KZ equation, J. Pure Appl. Algebra 85 (1993) 119–142 MR1207505
[17] P G Kumpel, Jr, On p–equivalences of mod p H–spaces, Quart. J. Math. Oxford Ser. (2) 23 (1972) 173–178 MR0300275
[18] J P Lin, Steenrod squares in the mod 2 cohomology of a finite H–space, Comment. Math. Helv. 55 (1980) 398–412 MR593055
[19] J P Lin, A_∞–liftings into Postnikov towers, Kyushu J. Math. 51 (1997) 35–55 MR1437307
[20] J P Lin, Mod 3 truncated polynomial algebras over the Steenrod algebra, from: “Stable and unstable homotopy (Toronto, ON, 1996)”, Fields Inst. Commun. 19, Amer. Math. Soc., Providence, RI (1998) 195–203 MR1622348
[21] J P Lin, Homotopy commutativity, homotopy associativity and power spaces, J. Pure Appl. Algebra 134 (1999) 133–162 MR1663789
[22] A Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc. No. 42 (1962) MR0182001
[23] V Reiner, G M Ziegler, Coxeter-associahedra, Mathematika 41 (1994) 364–393 MR1316615
[24] N Shimada, T Yamanoshita, On triviality of the mod p Hopf invariant, Japan J. Math. 31 (1961) 1–25 MR0148060

Geometry & Topology Monographs 10 (2007)
[25] **J D Stasheff**, *Homotopy associativity of H–spaces. I, II*, Trans. Amer. Math. Soc. 108 (1963) 275–292, 293–312 MR0158400

[26] **E Thomas**, *Steenrod squares and H–spaces*, Ann. of Math. (2) 77 (1963) 306–317 MR0155526

[27] **H Toda**, *Composition methods in homotopy groups of spheres*, Annals of Mathematics Studies 49, Princeton University Press, Princeton, N.J. (1962) MR0143217

[28] **G M Ziegler**, *Lectures on polytopes*, Graduate Texts in Mathematics 152, Springer, New York (1995) MR1311028

*Department of Mathematics, Faculty of Science, Kochi University
Kochi 780-8520, Japan*

*Department of Mathematics, National Defence Academy
Yokosuka 239-8686, Japan*

hemmi@math.kochi-u.ac.jp, yusuke@nda.ac.jp

Received: 14 August 2004 Revised: 19 September 2005