Sphingolipids mediate lipotoxicity in muscular dystrophies

Muscular dystrophies are a genetically diverse group of muscular diseases that share similar clinical symptoms of progressive weakness and death of skeletal muscle cells during development. Over 30 different disorders are classified as muscular dystrophies, including Becker muscular dystrophy (BMD), Duchenne muscular dystrophy (DMD), Emery–Dreifuss muscular dystrophy (EDMD), limb–girdle muscular dystrophy, and myotonic muscular dystrophy—all of which are themselves diverse in the age of onset, the speed of pathogenesis, the degree of weakness, the exact muscle groups that are affected, and the gene mutations that are involved [1]. Nevertheless, most if not all muscular dystrophies are caused by inherited or spontaneous genetic mutations that implicate aberrant muscle protein expression, e.g. dystrophin for BMD and DMD, and dysferlin for distal muscular dystrophy.

Thus, it stands to reason to attempt to treat all muscular dystrophies with gene and cell therapies that correct the particular genetic mutation latent within the patient. Efforts in this area include viral transduction of microdystrophin, delivery of CRISPR gene editors or antisense RNAs that suppress pathogenic gene expression, or myoblast transfer therapy, i.e. autologous injections of gene-corrected myogenic stem cells to mediate normal muscle regeneration. However, these gene and cell therapeutic approaches are mired in two quandaries. Firstly, the huge diversity of mutations within each type of muscular dystrophy complicates the applicability of off-the-shelf therapies. Secondly, the small numbers of patients available for each genotype of muscular dystrophy complicates clinical trial design. While these problems are being solved, other pharmacological solutions have also been developed to ameliorate muscular dystrophies, including anabolic steroids, anticonvulsants, calcium channel blockers, and immunosuppressive corticosteroids. Such non-genetic drug treatments could greatly help patients where gene therapies are not available or suitable yet, and could still complement gene therapies in the future.

While genetically diverse, all muscular dystrophies commonly involve myofiber degeneration, aberrant calcium homeostasis, cell death, inflammation and fibrosis [2]. Interestingly, sphingolipids are lipid messengers which regulate calcium signaling, cell death, inflammation, and fibrosis as well [3]. Ceramides and sphingomyelins are products of sphingolipid metabolism, synthesized from the acylation of sphinganine, which is in turn a condensation product of serine with palmitate through the sphingolipid de novo synthesis pathway [4]. (Fig. 1). Ceramides can regulate the balance between autophagy, senescence, and apoptosis. They can also be de-acylated and phosphorylated to form sphingosine-1-phosphate, which can bind to G-protein coupled receptors (GPCRs) to regulate mitosis, calcium signaling, and development. In a set of surprising observations, Laurila et al. recently found a correlation between sphingolipid biosynthesis and muscular dystrophies [5]. Enzymes in the sphingolipid biosynthesis pathway were upregulated in the skeletal muscle biopsies of patients with different types of muscular dystrophy. Furthermore, based on liquid chromatography-mass spectrometry (LC-MS), DMD patient myoblasts showed an accumulation of sphinganine, dihydroceramides and ceramides—the intermediates and products of the sphingolipid de novo synthesis pathway. Moreover, the mdx mouse model of DMD also showed higher levels of sphinganine, dihydroceramides and long-chain ceramides in their quadriceps muscles, macrophages and plasma, compared to wild-type mice. These results suggested a conserved upregulation of sphingolipid biosynthesis across multiple cell-types implicated in muscular dystrophies (Fig. 1).

The rate-limiting enzyme of sphingolipid metabolism is serine palmitoyltransferase (SPT), where two subunits of the enzyme SPTLC1 and SPTLC2 were upregulated in mdx mouse muscles as well. Pharmacological inhibition of sphingolipid biosynthesis can be achieved via myriocin, an antibiotic inhibitor of SPT [6]. Myriocin is also known as thermozymocidin, a non-proteinogenic amino acid metabolite derived from thermophilic fungi, as well as the entomopathogenic fungi (Cordyceps genus) that has long been used in traditional Chinese medicine. Scientifically, it has been shown to possess highly potent immunosuppressant properties. It is a part of the molecular armamentarium through which entomopathogenic fungi attack living insects, presumably by suppressing their immune system as well. In the mdx mouse model of DMD, myriocin inhibition of SPT reduced the high levels of sphinganine, dihydroceramides and long-chain ceramides, thereby improving calcium homeostasis, reducing intramuscular inflammation and inflammation-induced cycles of muscle regeneration. Notably, SPT inhibition shifted the balance from pro-inflammatory M1 macrophages towards anti-inflammatory M2 macrophages, and suppressed fibrosis mediated by PDGFRα+ fibro-adipogenic precursors (FAPs) in the tibialis anterior muscles, diaphragm muscles and cardiac muscles, thereby preventing the loss of muscle strength, respiratory failure and cardiac failure in DMD. At low concentrations (which avoided the hepatotoxicity occasionally observed in rodents), myriocin still rescued these mdx mouse phenotypes more effectively than a corticosteroid drug (Fig. 1). This groundbreaking study demonstrated that inhibition of sphingolipid biosynthesis can target multiple common mechanisms in muscular

© The Author(s) 2022. Published by Oxford University Press on behalf of Higher Education Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
dystrophies simultaneously, indicating that this metabolic pathway could represent a series of druggable targets for the development of novel treatments against muscular dystrophies. As these findings begin to spark a new wave of exciting developments in therapies against muscular dystrophies, it is worth noting that the fatty acid-derived ceramides have long been suspected as a driver of lipotoxicity in the metabolic syndrome (MetS) during human aging. Dysfunction in lipid metabolism and especially hyperlipidemia are key risk factors that lead to a variety of MetS diseases associated with insulin resistance (IR), such as myosteatosis, sarcopenic obesity, cachexia, non-alcoholic steatohepatitis, cardiomyopathy, and type 2 diabetes [7]. For instance, a high flux of fatty acids into ceramides could suppress Akt phosphorylation and cause IR [8]. Conversely, drug inhibitors for ceramide and sphingolipid biosynthesis have shown promising results in mouse models of IR in vivo [8]. In contrast, sphingosine-1-phosphate and its related metabolites can regulate cell proliferation and cell death in many tissues. How do these sphingolipids cross-talk with each other in multiple cell-types across the various tissues? Does this metabolic pathway represent a common thread that underlies stem cell senescence during both MetS and muscular dystrophies? This would be an intriguing possibility, given that there is emerging evidence that muscular dystrophy patients also exhibit IR and myosteatosis [9]. Could the Metabaging Cycle, i.e. local myoblast and myofiber inflammation leading to local IR and dyslipidemia, ultimately leading to a lipotoxic vicious cycle that gradually impairs systemic health during aging [10], occur in both MetS and muscular dystrophy patients via sphingolipid-mediated toxicity? More work will be needed to unravel these common threads weaving the complex tapestry of metabolic dysfunction in muscle disorders.

Acknowledgements
This work was supported by the National Key R&D Program of China (Grant No. 2019YFA0801701); the Strategic Priority Research Program of the CAS (Grant No. XDA16010109); the National Natural Science Foundation of China (Grant No. 91957202); the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-012). N.S.-C. is also a Howard Hughes Medical Institute International Scholar.

Author contributions
Yuefan Wang and Ng Shyh-Chang designed and wrote the manuscript.
Conflict of interest
The authors declare no competing interests.

Yuefan Wang1,2,3, Ng Shyh-Chang1,2,3,*
1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2 Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
*Correspondence: huangsq@ioz.ac.cn (N.S.-C)
Received: 30 April 2022; Accepted: 25 June 2022.
doi: 10.1093/lifemedi/lnac015

References
1. Datta N, Ghosh PS. Update on muscular dystrophies with focus on novel treatments and biomarkers. Curr Neurol Neurosci Rep 2020;20:14.
2. Deconinck N, Dan B. Pathophysiology of duchenne muscular dystrophy: current hypotheses. Pediatr Neurol 2007;36:1–7.
3. Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol 2018;19:175–91.
4. Summers SA, Chaurasia B, Holland WL. Metabolic messengers: ceramides. Nat Metab 2019;1:1051–8.
5. Laurila PP, Luan P, Wohlwend M, et al. Inhibition of sphingolipid de novo synthesis counteracts muscular dystrophy. Sci Adv 2022;8:eabh4423.
6. Miyake Y, Kozutsumi Y, Nakamura S, et al. Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem Biophys Res Commun 1995;211:396–403.
7. Li CW, Yu K, Shyh-Chang N, et al. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review. J Cachexia Sarcopenia Muscle 2022;13:781–94.
8. Chaurasia B, Summers SA. Ceramides in metabolism: key lipotoxic players. Annu Rev Physiol 2021;83:303–30.
9. Rodríguez-Cruz M, Sanchez R, Escobar RE, et al. Evidence of insulin resistance and other metabolic alterations in boys with duchenne or becker muscular dystrophy. Int J Endocrinol 2015;2015:867273.
10. Ma S, Shyh-Chang N. The metabaging cycle. Cell Prolif 2022;55:e13197.