Clinicopathological changes associated with Campylobacter jejuni infection in broilers

Hamada H. El Azzy1, El Sayed Mansour1, Nseeren A. Shawky2, Mona Salh El Deen3
1Bacteriology Department, Animal Health Research Institute (Zagazig branches), Agriculture research center
2Biochemistry Department, Animal Health Research Institute (Zagazig branches), Agriculture research center
3Clinical Pathology Department, Animal Health Research Institute (Zagazig branches) Agriculture research center

1. INTRODUCTION

Poultry has become an important source of meat in developing countries. Enteric disease in broilers is a common and important illness beside a risk for poultry industry in world (Kaakoush, et al. 2015). Campylobacter caused gastroenteritis is carried by two closely related species (Campylobacter jejuni and Campylobacter coli) but Campylobacter jejuni is the more predominant (Leonard, et al. 2020). Campylobacter can appear in broilers as early as 14-day age at rearing with low percentage and increase to a high percentage at the end of grows out period (Evans, 2012). Most common routes of transmission are fecal-oral ingestion of contaminated food, water and eating of raw meat. Foods implicated in campylobacteriosis (Skarp, et al. 2016). Campylobacter infection is a wide range of avian spp. and rarely transmits vertically from parents to chicks (Huang, et al. 2017). Campylobacter cause diarrhea and health problem contributing substantially to childhood morbidity and mortality (Zhang, et al. 2018). Campylobacters are small and slender gram -ve spiral shaped rods beside its food and water-borne zoonotic diseases (Aneesa and Mohamed, 2019).

Antibiotics are used for bacterial infections (Thornrongsuwannakij, et al. 2018). Campylobacteriosis is treated by antibiotics such as aminoglycosides which act by irreversible inhibition bacterial ribosomes and impairs protein synthesis of bacteria (Fernandes and Marten, 2017). Neomycin is a member of aminoglycoside antibiotic against G +ve and G -ve organisms (Gupta and Plazomicin, 2017). The aim of the present study was isolate, identify Campylobacter and its prevalence in broilers in Sharkia province beside its effect on body performance, hematocrit and hematochemical parameters with trial of treatment was studied.

2. MATERIAL AND METHODS

2.1. Isolation and identification of Campylobacter spp

About 50 diarrheic broilers' cloacal swabs were taken from different cities of Sharkia Province. Swabs were collected aseptically and inoculated into charcoal cefoperazone deoxycholate agar medium (selective medium for isolation of Campylobacter). Plates were incubated at 37°C for 72 hrs under special microaerophilic condition (85 % nitrogen 5% oxygen, 10% carbon dioxide) (Murray, et a. 2003). Suspected colonies were identified and Bio-typing by Gram staining, oxidase test, catalase test and standard biochemical methods (Atabay and Corry, 1997).

2.2. Antibiotic sensitivity test (In vitro)

Susceptibility of isolated Campylobacter species against different chemotherapeutic agents was tested by disc diffusion method (Quinn, et al. 1994).
2.3. Antibacterial drugs
2.3.1. Pefloxacin (Peflodad10 %) solution was obtained from Dar Al Dawa Vet and Agri Industrial Co. Ltd Jordan. Each ml contains 100 mg of pefloxacin base.
2.3.2. Neomycin sulphate 20% produced from sento care Pharma comp Egypt

2.4. Experimental broilers and experimental design
About 45 apparently healthy one day-old Hubbard broilers nearly equal in live body weight (44.27-46.83gm) and received 5 mg pefloxacin/ kg bw in drinking water for 5 successive days for proving that broilers are free from any bacterial infections. Broilers were fed starter ration from Kahar Company and clean drinking water ad-libium. At 14 day of age broilers were divided into three equal groups (15/each). Gp (1) healthy chicks (control), Broilers in Gp (2) were orally infected with 0.1ml saline containing(2.5x10⁸ CFU) of isolated C. jejuni. Gp (2) infected broilers non treated and Gp (3) infected broilers, treated with 15 mg neomycin/kg Bw. in drinking water for 5 consecutive days.

2.5. Body weight:
Chicks were individually weighed at 1st day of age and at 1st day post treatment for estimation body weight gain and feed conversion rate

2.6. Re-isolation of Campylobacter spp.:
At 1st, 7th and 14th day posttreatment cloacal swabs were collected for Re-isolation Campylobacter jejuni

2.7. Blood samples:
At 1st,7th and 14th day post treatment 2 blood samples were taken.
First sample was taken in a tube contain EDTA for estimation of blood picture Jain (1986).

Table 1 Prevalence and type of isolated campylobacters

Number of cloacal Swabs	-ve sample	+ve sample	Type of isolated campylobacters					
	No	%	No	%	Campylobacter jejuni	Campylobacter coli		
					No	%	No	%
30	38	76	12	24	8	66.67	4	33.33

Table 2 biochemical identification of Campylobacter spp in broiler chickens

Positive cloacal swabs	Gram stain	C. coli (4)	C. jejuni (8)	Hippurate hydrolysis	Growth on 1% glycine	Catalase	Oxidase	Hippurate hydrolysis	Growth on 1% glycine	Catalase	Oxidase
		+	+	-	+	+	+	+	+	+	+

= GS. Catalase= Ox. Oxidase= Growth on 1% glycine = HH

Table 3 Antibiotics sensitivity of Campylobacter isolated from broilers to (n=5)

Antibiotic	Sample number	Sensitive	Moderate	Resistant			
		No	%	No	%	No	%
Gentamycin	10	8	80	2	20	0	00
Neomycin	10	6	60	4	40	0	00
Ciprofloxacin	10	7	76	3	30	0	00
Erythromycin	10	7	76	3	30	0	00
Tetra cyclic	10	4	40	6	60	0	00
Ampicillin	10	0	00	2	20	8	80

Table 4 Mortality of healthy and diseased broilers and reisolated campylobacter

Parameters groups	Total No	Mortality rate	Resolated of Campylobacter spp post treatment (day)			
	No	%	7	1	7	14
Gp (1)	10	00	0	00	0	00
Gp (2)	10	4	40	10/10	10/10	10/10
Gp (3)	10	2	20	00/10	00/10	00/10
4. DISCUSSION

Infected bird with *Campylobacter* carries very high bacterial concentration in their gastrointestinal tract and the main sites of colonization of *Campylobacter* in poultry are the caeca, colon and cloaca (Facciola, et al. 2017). *Campylobacter* infection is characterized by inflammatory, sometimes bloody diarrhea or dysentery syndrome (cramps, fever, and pain) (Liz, et al. 2020).

In the current study, the prevalence of campylobacter was 24%. Our results are in agreement with Khalifa, et. al. (2011) who observed that the prevalence of Campylobacter in broilers in Kalobiya was 26%. Campylobacter prevalence in broilers from Sharkia Province was 29.3% (Ashraf, et al. 2018). The prevalence of Campylobacterin Assuit Province was 21.5% (Mostafa, et al. 2018) in broilers. Variation in Campylobacter prevalence may be due to difference in sanitation (Leonard, et al. 2020).

In the present study, Campylobacterisolates were identified as *Campylobacter jejuni* 8 (66.67%) and *Campylobacter coli* 4 (33.33%). Same results were reported by Saad (2014) who identified *Campylobacterjejuni* in rate of 60.9% in Sharkia Province. Comparable percentages of *Campylobacter jejuni*56% were reported by Abd El-Tawab et al. (2015) in Sharkia Province. Identified *Campylobacter jejuni* in rate of 66% in Egypt (Ashraf, et al. 2018).

Disc diffusion test revealed isolated Campylobacter was sensitive to neomycin and gentamycin. (Sayed 2000). This result was consistent with Liz, et al. (2020) who stated that broilers infected with *Campylobacter jejuni* showed clinical signs (ruffled feather, depression, loss of appetite, diarrhea, reduction in body weights and mortality rate was 40%). Diseased broilers treated with neomycin showed disappearance of clinical signs and reduction in mortality rate to 20% and not reisolate *Campylobacter jejuni*. Some clinical signs were observed by Khalil (2002)in broilers infected with *Campylobacter jejuni*. This result was consistent with Liz, et al. (2020) who stated that broilers infected with *Campylobacter jejuni* showed loss of appetite, depression, diarrhea, and reduction in body weights. Neomycin is a very effective drug against *Campylobacter jejuni* as it caused
disappearance of clinical signs and decreased mortality rate in chickens (Krishna, et al. 2018).

Our results revealed that, broilers infected with *Campylobacter jejuni* showed non-significant change in RBCs, Hb, PCV % and significant increase in WBCs. Leukocytosis in infected broiler may be due to inflammatory response in intestinal tract (Radostitis, et.al. 2002). Similar result in blood picture was observed by Thrall (2004) stated that broilers infected with *Campylobacter* showed non-significant elevation in RBCs, Hb, PCV % and significant leukocytosis. *Campylobacter* induce significant elevation in leukocytic count in broilers (Lavini, et al. 2016).

In the present study, *campylobacter* infection induced significant decrease in total proteins, albumin and non-significant decrease in globulin. Reduction in total protein and albumin in broiler infected with campylobacter may be due to liver damage by *campylobacter* toxins in which liver is the sole site of albumin synthesis (Latimer, et al. 2003). Hypoalbuninemia in infected broilers may be due to inappetance and male absorption of nutrients from inflamed intestine (Thrall,2004). *Campylobacter* induce decrease in in total protein and albumin in chickens (Lavini, et al. 2016).

Our results showed that, broilers suffering from campylobacteriosis showed significant increase in AST, ALT, ALP, uric acid and creatinine. Elevation of liver enzyme, uric acid and creatinine comes from Radostitis, et.al. (2002) stated that *campylobacter*toxins induced degenerative changes and necrotic processes in liver and kidneys leading to increase in liver enzymes, uric acid and creatinine. These results were confirmed by result recorded by Lavini, et al. (2016) who stated that with *campylobacter*increased show increase in liver enzymes, uric acid and creatinine in broilers.

Our study revealed that, treatment *campylobacter* in broilers using neomycin resulted in disappearance of clinical signs, reduction in mortality rate up to (10%), improved in body weight and not re-isolate *campylobacter* beside improved in hemato-biochemical parameters to normal level at 14th day post treatment. Same result were reported previously by Hassanain, (2011) in broilers infected with *campylobacter* and treated with neomycin. Our results were reinforced by Agnes, et al. (2012) who observed an improvement in broilers infected with *campylobacter* and treated with neomycin.

5. CONCLUSIONS

It could be concluded that *Campylobacter jejuni* induce many changes in haemato-biochemical parameters in broilers but neomycin in therapeutic dose was effective in medication of *campylobacter* infection in broiler chickens.

6. REFERENCES

1. Abd El-Tawab, A.; Ammar, A.; Ahmed, H.; and Hefny, A. (2015) Bacteriological and Molecular Identification of Campylobacter spp in Chickens and Humans at Zagazig City, Egypt. Benha Vet. Med. J.28, 17-26
2. Anees, N. and Mohamed K (2019) Prevalence and antimicrobial Susceptibility of Campylobacter spp in Poultry. The Open Microbiology J. 13:124-132
3. Agnes, A.; Dave, L. and Carolee, C. (2012) Review of antimicrobial therapy of selected bacterial diseases in broilers in Canada. Can Vet J. 53(12):289-300
4. Artiss J (1980) determination of uric acid. Clin. Chem. Acta (116) 30-39
5. Asfah A.; Ahmed A.; Heba A; Fatma I and Ahmed A (2018) Bacteriologicial and Molecular Identification of some Campylobacter Species in Broilers and their Macrolide Resistance Profile. Benha Vet. Med. J. 34(1) 374 - 391
6. Atabay, H and Corry, J (1997) the isolation and prevalence of *Campylobacter* from the dairy using a variety of methods. J. App. Microbro., 84: 33-40.
7. Doumas B, Carter R, Peers T and Schaffier R (1981) A candidate reference method for determination T. protein in serum Clin Chem. 27, 1642
8. Drupt F (1974): determination of albumin. Pharm. Bio.9
9. Duncan, D. (1955): Multiple ranges and multiple “F” test. Biometrics, 11:10.
10. Evans, S. (2012) Introduction and spread of thermophilic *campylobacters* in broiler flocks, The Veterinary record, 2012, 151, 574-576
11. Facciola, A., Riso, R.; Visalli, G. and Lagana, P. (2017) *Campylobacter* from microbiology to prevention. J. Prev. Med. Hyg 58: 79-92
12. Fernando, P. and Martinez, E. (2017) Antibiotics in late clinical development. Biochemical Pharmacology; 133:152-163
13. Gupta,A and Plazmocin,A (2017) step toward next generation aminoglycosides. Review. Asian J. of Res. in Pharmaceutical Sci.; 7(3):1-8
14. Hassanain. N. (2011) Antimicrobial Resistant *Campylobacter jejuni* isolated from humans and animals in Egypt. Global Veterinary 6(2)195-200
15. Henry R (1974) Colorimetric determination of creatinine. Clinical chemistry, principles and technics, 2nd Ed., Harper and Row, P. 525.
16. Huang, J; Lei, T and Jiao, X(2017) Quantitative analysis of Campylobacter spp contamination in chicken slaughtering line in China. Food Cont 80:67-73
17. Jain N (1986) Schalm’s Vet Haematology, 4th Ed Fibiger, Philadelphia, USA
18. Joan, F. and Pannal, P. (1981): Clinical chemistry in diagnosis and treatment-3rd Ed. Liayed-Luke, London.
19. John D (1982) laboratory mofied for determination ALP 9th Ed. 580-81
20. Kaakoush N: Castano, N; Mitchell, H and Man, S (2015) Global epidemiology of *Campylobacter* infection. Clin Microbiol Rev. 28: 678–720.
21. Khalil, M. (2002): Studies on campylobacster in ducks. M.V.Sc. D. Thesis, Fac of Vet. Med. Mostohtor, Zag. Uni, Benha Branch.
22. Khalifa, N.; Radwan, E and Sobhy, M (2011) molecular study of *campylobacter jejuni* isolated from chicken, dairy cattle and human to determine their zoonotic importance Amer J of Res 2: 576-580.
23. Krishna, P.; Charlotte, L.; Ricarda, M.; Marta, K.; André, C. and Ewa, S. (2018) Influence of silver nanoparticles on growth and health of broiler chickens after infection with Campylobacter jejuni.BMC Vet. Res. 14 (1) 231-242
24. Latimer K, Mahaley E and Prasse K (2003): Duncan and Prasse's Laboratory Vet Med and Clinical Pathology. 4th Ed, Iowa state Uni. press. Ames. Iowa USA.
25. Lavini, S.; Calin, J. and Nicolae, C. (2016) Evaluation of administration effects of probiotics against campylobacter jejuni on the immune system of broiler chickens. Animal Sci. and Biotechnologies, 49 (1) 213-225
26. Leonard, E.; Mecky, I.; Dieudonné, M. and Erick, V. (2020) Prevalence and antimicrobial resistance profiles of *Campylobacter spp* in humans and animals in Sub-Saharan Africa: Systematic Review. Int J. of Micro. 123-146
27. Liz,J; Rhannon,I.; Martyl,K and Kather,Y(2002) Prevalence of *Campylobacter* coli and *Campylobacter jejuni* in Retail chicken, Beef, Lamb, and Pork Products in Three Australian States. J Food Prot 82 (12) 26–34.
28. Mostafa, F.; Awad, A. and Hanan, A. (2018) Prevalence of *Campylobacter* in Chicken and Humans in Assiut province. Approx Poult and Vet Sci 3(4)11-9
29. Murray, P, Baron, E and Nahmakin, J (2003) *Campylobacter* in Manual of Clinical Microbiology. Washington, D: American Soc for Micro. Press:50-91
30. Quinn P., Carte M., Markeryo B and Carter G (1994) Clinical Veterinary. Microbiology Year book-wolf publishing-Europe Limited.
31. Radostitis, O.; Blood, D. and Gay, C. (2002): Veterinary Medicine, 10th Ed, PP.1343, Bailliere Tindall, London, Tokyo and Philadelphia
32. Reitman S and Frankel S (1957) Calorimetric determination of transaminases activity Am. J. Clin. Path. 28:56
33. Saad, A (2014) Zoonotic Importance of campylobacteriosis at Sharkia Province. Master thesis Zoonoses Department, Faculty of Vet. Med Zag Univ Egypt
34. Sayed, M. (2000) Campylobacter Infection in Broiler Chickens in Assuit. Assuit Vet. Med. J. 42 (84) 55-64
35. Shih, D. (2000) Isolation and identification of enteropathogenic Campylobacter spp. from chicken samples in Taipei. J. of food protection 63, 304-308.
36. Skarp, C.; Hanninen, M. and Rautelin, H. (2016) Campylobacteriosis: the role of poultry meat. Clin Microbiol Infect. 22:103–9.
37. SPSS (2004):“Statistical and package for social sci., SPSS for windows release.” Standard version, copyright SPSS Inc1989-2004.
38. Thomprongsuwannakij, T.; Blackall, P. and Chansiripornchai, N. (2018) A Study on Campylobacter jejuni and Campylobactercoli through commercial broiler production chains in thailand: Avian Dis.; 62(2)86-99.
39. Thrall, M. (2004) Veterinary Hematology and Clinical Chemistry. Lippincott Williams and Wilins, Maryland, USA.
40. Zhang, X.; Tang, M. and Gao, Y. (2018) characteristics of Campylobacter during slaughter process of different broiler batches. Front Micro.9:292-299