Hexavalent chromium toxicity induced biochemical perturbation in Tilapia nilotica: role of Phoenix

A B Jebur 1 F M El-Demerdash 2

1 Ministry of Education, Baghdad, Iraq.
2 Department of Environmental Studies, Institute of Graduate Studies and Research University of Alexandria, Alexandria, Egypt.
Email: blas.ali1966@gmail.com

Abstract. The current study was designed to investigate the protective role of Phoenix dactylifera (date palm) water extract (DPE) against oxidative injury induced by different concentrations of hexavalent chromium (CrVI) in liver and muscles of Tilapia nilotica (Oreochromis niloticus) fish in vitro. Results demonstrated that CrVI caused a significant concentration-dependent inhibition in glutathione S-transferase, superoxide dismutase and catalase activities as well as glutathione content. In addition, inhibition in transaminases and alkaline phosphatase activities were observed. While, thiobarbituric acid reactive substances levels in liver and muscles homogenate were increased. On the other hand, homogenates treated with DPE alone improve the antioxidant status and liver function biomarkers. Moreover, homogenate pretreated with DPE then exposed to CrVI showed marked modulation in lipid peroxidation, enzyme activities and protein content as compared to their respective CrVI treated ones. Conclusively, Phoenix dactylifera might have a potential protective role against CrVI toxicity.

1. Introduction:
Aquatic ecosystems have become continually polluted with toxic effluents derived from different sources. Industrial and agricultural discharges are the main sources of heavy metals in water bodies that are easily taken into the food chain. One of these heavy metals is hexavalent chromium, which is widely used in painting, electroplating, dyes and various other things. The discharge of chromium-containing solutions may lead to water and soil pollution [1]. Also, chromium enters the food chain and presents a potential threat to human's health through oxidative stress. Oxidative injury primarily occurs through production of oxygen and nitrogen radicals and can damage cellular components leading to loss of enzyme activities and various diseases [2]. Excess concentrations of chromium hexavalent compounds induced carcinogenic, cytotoxic, immunotoxic, neurotoxic and genotoxic effects as well as general environmental toxicity [2]. Moreover, Cr compounds cause DNA single-strand breaks and DNA–protein crosslinks as
well as oxidative damage in male reproductive system [3, 4,5]. Tilapia nilotica, Oreochromis niloticus (L.) is popular freshwater fish in Egypt and worldwide due to its high growth rate, easily adaptation, and high tolerance against diseases and environmental stressors [6].

Considering the adverse effects of heavy metals, most of the world’s population is looking for natural remedies, which are safe and effective. Phoenix dactylifera or date palm is a member of Arecaceae family that have been suggested to have several benefits in protecting against several diseases such as cancer, diabetes, blood pressure, ulcer, diarrhea as well as acting as antioxidant, anti-inflammatory, antiproliferative and antimutagenic. Also, it can be used to cure several pathogens [7]. The antioxidant effects of date fruits are attributed to their components such as coumaric and ferulic acids [8]. Moreover, date fruits are rich in flavonoids, sterols, procyanidins, carotenoids, anthocyanins as well as vitamins and minerals [9]. So, this study was aimed at evaluating the toxic effects of chromium and the possible protective role of Phoenix dactylifera on oxidative stress, antioxidant defense system, liver function biomarkers and protein content in Tilapia nilotica fish in vitro.

2. Materials and methods

Potassium dichromate (K2Cr2O7) was obtained from Sigma-Aldrich Chemical Co., St. Louis, U.S.A. All other reagents used were of analytical grade. Fresh dates were collected from the local market. Fruit flesh was extracted two times with distilled water (1/10 w/v) by grinding with a mortar and pestle then centrifuged at 4000 g for 20 min at 4 °C and the supernatant was taken. Aqueous extract of date was chosen according to the research of [9] because most of their antioxidant components are extracted in water.

Fish Tilapia nilotica (Orechromis niloticus), used in this study were captured from the Nozha Hydrodrome farm (fish farm), Alexandria, Egypt. Ten fish samples (130- 150 mm length and 120-140 g weight) were obtained monthly between May-July 2017. The fish samples were placed on ice and transported to the laboratory within an hour. Fish were anesthetized with 0.02% benzocaine solution, dissected and liver and muscles were removed and washed using chilled saline solution and homogenized in 0.1 M phosphate buffer, pH 8 in homogenizer (10% w/v). Homogenates were centrifuged at 10000 g for 30 min at 4°C to remove cell debris. The supernatants were used for estimation of enzymatic and non-enzymatic antioxidant, liver function enzymes and protein contents. Also, hexavalent chromium was measured in different environmental compartments using inductively coupled plasma optical emission spectrometry (ICP-OES) with LOD=3 ppb and CRM N/A, according to the method described in [10] and [11].

The in vitro inhibitory effects of different concentrations of chromium (VI) was tested alone and in combination with Phoenix dactylifera water extract (date palm extract; DPE) as antioxidant on fish liver and muscles homogenates. Chromium was prepared in deionized water and preincubated with the homogenates for 4 hours at 37oC. The experiment was designed as follows: fish liver and muscles homogenate used as control which is left without any treatment, homogenate incubated with 400µg/ml of Phoenix dactylifera extract (DPE) alone at 37oC for 30 min, homogenates were treated with different concentrations (30, 60, 90, and 120 µM) of hexavalent chromium at 37oC for 4hr and finally, homogenates were pretreated with 400µg/ml of DPE at 37oC for 30 min then exposed to the same different concentrations (30, 60, 90, and 120 µM) of hexavalent chromium at 37oC for 4hr [12; 13].

Thiobarbituric acid-reactive substances (TBARS) were determined in fish liver and muscles homogenates using the method of [14]. Reduced glutathione (GSH) content was measured according to [15]. Superoxide dismutase activity (SOD; EC 1.15.1.1) was examined by [16]. Catalase (CAT; EC 1.11.1.6) activity was distinguished by the technique of. [17]. Glutathione S-transferase (GST; EC 2.5.1.18) activity was estimated utilizing para-nitrobenzyl chloride as a substrate [18]. Aspartate transaminase (AST; EC 2.6.1.1) and alanine transaminase (ALT; EC 2.6.1.2) activities were determined
with kits from SENTINEL CH. (MILAN ITALY). Alkaline phosphatase (ALP; EC 3.1.3.1) activity was determined following the method of [19] and finally, protein content was tested by Lowry et al. (1951). Calibrated UV/VIS spectrophotometer and ICP were used.

Data were analyzed according to [20]. Statistical significance of the difference in values of control and treated samples was calculated by (F) test at 5% significance level. Data of the present study were statistically analyzed by using Duncan’s Multiple Range Test [21].

3. Results and discussion:
Chromium has diverse applications in different industrial processes and inadequate treatment of the industrial effluents leads to water contamination. Concentrations of Cr(VI) in Nozha Hydrodrome farm were 0.049, 0.004, 0.105 and 0.072 ppm in water, fish, plants and sediment, respectively. These values represent the means of 5 samples. It is known that chromium induced its toxicity through oxidative stress in fish [22] because of its capability to enter the oxidation reduction reaction [23, 24]. Lipid peroxidation (LPO) directly decompose double bond of unsaturated fatty acids leading to destruction of membrane structure [25], and loss of membrane functionality or react with the cellular components leading to inactivation of protein and formation of DNA adducts [26]. A significant concentration dependent induction in TBARS levels in the liver and muscles of Tilapia nilotica fish (Table 1 and 2) is in accordance with several previous studies [22, 27, 28]. Reduced glutathione is a powerful antioxidant that acts as enzymes cofactor [29]. Therefore, it is an active player in the metabolism of reactive oxygen species (ROS) and have been previously used to characterize redox processes in fish under treatment with chromium ions [24]. Glutathione is converted into oxidized glutathione which is considered as a marker of oxidation by xenobiotics [30]. The observed decline in GSH concentration fish liver and muscles exposed to different concentrations of CrVI in vitro as compared to control (Table 1 and 2) is in agreement with other studies [31]. The effect of metals on glutathione may be related to the high affinity of metals for this molecule where a sulfhydryl, an amino and two carboxylic acid groups, as well as two peptide linkages, represent reactive sites for metals.
Table 1. In vitro effect of date palm extract (DPE) and different concentrations of hexavalent chromium (Cr) alone and in combination on TBARS, GSH and some antioxidant enzymes in liver of Tilapia nilotica fish.

Groups	Parameters	Parameters	Parameters	Parameters	Parameters	
		TBARS (nmol/g ww)	GSH (µg/g tissue)	SOD (U/mg protein)	CAT (nmol/min/mg protein)	GST (µmol/min/mg protein)
Cont.	68.52±2.94f	91.27±4.31b	10±0.42b	69.08±3.40b	16.75±0.74b	
DPE	52.86±2.19g	103±2.91a	11.29±0.41a	82.84±2.16a	18.90±0.60a	
Cr1 (30 µM)	85.34±3.31cd	78.56±3.52cde	8.30±0.23de	57.74±2.94de	14.03±0.62cde	
Cr2 (60 µM)	90.70±3.70bc	71.39±3.17e	7.68±0.26e	51.07±2.44e	12.94±0.52ef	
Cr3 (90 µM)	98.60±4.36ab	60.97±2.51f	6.68±0.25f	42.94±2.09f	11.73±0.46f	
Cr4 (120 µM)	106±3.78a	52.19±2.33f	6.00±0.17f	38.07±2.06f	9.60±0.25g	
DPE+Cr1	71.27±2.97ef	87.82±2.82bc	9.49±0.32bc	67.02±3.18bc	15.73±0.72bc	
DPE+Cr2	77.45±2.87def	82.54±3.53bcd	9.02±0.29cd	60.07±2.39cd	14.91±0.44cd	
DPE+Cr3	81.13±3.53cde	76.07±3.28de	8.52±0.30de	56.09±2.53de	14.01±0.56cde	
DPE+Cr4	88.20±3.91c	70.76±3.17e	7.92±0.25e	54.55±2.71de	13.27±0.15def	

*Values are expressed as means±SE; n=5 for each treatment group; means in each column with different superscript letters are significantly different (p<0.05). DPE, Cr1, Cr2, Cr3 and Cr4 groups are compared to control group while DPE+Cr1, DPE+Cr2, DPE+Cr3 and DPE+Cr4 groups are compared to their respective groups (Cr1, Cr2, Cr3 and Cr4) respectively. TBARS; thiobarbituric acid reactive substances, GSH; reduced glutathione, SOD; superoxide dismutase, CAT; catalase and GST, glutathione S-transferase.
Table 2. In vitro effect of date palm extract (DPE) and different concentrations of hexavalent chromium (Cr) alone and in combination on TBARS, GSH and some antioxidant enzymes in muscles of Tilapia nilotica fish

Groups	Parameters	TBARS (nmol/g ww)	GSH (µg/g tissue)	SOD (U/mg protein)	CAT (µmol/min/ mg protein)	GST (µmol/min/mg protein)
Cont.		12.92±0.57e	96.79±4.06b	10.43±0.46b	169±7.43b	16.04±0.60b
DPE		9.08±0.24f	118.83±4.88a	12.72±0.30a	200±8.55a	20.63±0.53a
Cr1(30 µM)		15.22±0.61bcd	76.73±1.18de	9.21±0.40cde	141±6.07cde	13.36±0.42cde
Cr2 (60 µM)		16.42±0.52b	67.17±2.66f	8.25±0.34ef	135±5.98de	12.06±0.50ef
Cr3 (90 µM)		17.96±0.32a	58.30±1.88g	7.33±0.29fg	117±5.09fg	10.50±0.46g
Cr4 (120 µM)		18.87±0.78a	47.50±1.62h	6.47±0.25g	103±0.86g	8.25±0.36h
DPE+Cr1		13.81±0.25de	86.00±2.05c	9.85±0.20bc	157±5.10bc	14.62±0.47c
DPE+Cr2		14.51±0.52cde	81.21±1.29cd	9.45±0.35bcd	149±5.28cd	14.02±0.44cd
DPE+Cr3		15.33±0.51bcd	75.65±1.37de	8.63±0.38de	136±4.09de	12.64±0.42de
DPE+Cr4		16.16±0.72bc	69.67±1.80ef	8.32±0.24ef	128±3.43ef	11.66±0.50fg

*Values are expressed as means±SE; n=5 for each treatment group; means in each column with different superscript letters are significantly different (p<0.05)

Antioxidant enzyme activities measured in fish liver and muscles homogenates exposed to different concentrations of CrVI showed a significant reduction in concentration dependent manner (Table 1 and 2). SOD is a metalloenzyme, has essential role in the defense mechanism against free radicals by converting superoxide anions into hydrogen peroxide, which is consequently detoxified by both GPx and CAT enzymes so, when CAT activity is inhibited, more H2O2 is available for production of hydroxide radical leading to lipid peroxidation enhancement [29]. The reduction of antioxidant enzyme activities could explained the increased level of hydroperoxide in addition to the binding of metal to the enzyme active sites [32]. In accordance, fish antioxidant enzymes are influenced by heavy metals [33, 34]. A variety of electrophilic compounds were detoxified by GST producing more hydrophilic and less toxic molecules through the action of GSH resulting in reduction of lipid peroxidation [35, 36]. In consistence, GST inhibition could be attributed to enzyme denaturation or penetration of xenobiotic to the cell membrane causing lipid peroxidation [27].

The observed perturbations in AST, ALT and ALP activities (Table 3) are in congruence with our previous study [37] so, the leakage of enzymes outside the cell indicates cellular damage and membrane instability. Additionally, reduction in protein content is confirmed by the observed inhibition of ALT and AST and indicates excessive protein damage due to general stress response [38].
Table 3. In vitro effect of date palm extract (DPE) and different concentrations of hexavalent chromium alone and in combination on liver and muscles enzyme activities and protein content.

Groups	Parameters	Liver	Muscles			
	AST (nmol/g ww)	ALT (nmol/g ww)	ALP (U/mg protein)	Protein (mg/g ww)	ALP (nmol/min/mg protein)	Protein (mg/g ww)
Cont.	59.22±1.67b	44.61±1.73b	13.04±0.62b	32.84±1.46b	18.92±0.82b	37.80±1.68b
DPE	67.59±2.19a	49.57±2.02a	14.78±0.44a	38.47±0.64a	23.86±1.00a	44.53±2.00a
Cr1 (30 µM)	49.09±1.85def	36.60±1.34cd	10.33±0.34cd	26.22±0.43cd	14.08±0.61de	31.25±1.27cd
Cr2 (60 µM)	44.70±1.02f	33.76±1.05de	8.94±0.39ef	22.30±0.86e	12.57±0.53ef	28.15±1.25cd
Cr3 (90 µM)	40.00±1.38g	29.0±1.25f	8.13±0.26fg	17.06±0.70f	10.67±0.47fg	21.24±0.90e
Cr4 (120 µM)	36.59±0.93g	22.24±0.39g	7.05±0.24g	14.5±0.56f	9.83±0.44g	17.52±0.77f
DPE+Cr1	55.22±1.14bc	45.65±1.37ab	11.42±0.38c	31.02±0.83c	17.11±0.74bc	35.17±1.03b
DPE+Cr2	52.88±1.01cd	40.12±1.71c	10.82±0.47cd	29.99±1.36c	15.74±0.43cd	31.66±1.17c
DPE+Cr3	50.59±1.59de	34.72±1.21de	10.28±0.35cd	26.39±1.07de	14.11±0.64de	27.60±0.83d
DPE+Cr4	47.55±1.82ef	31.95±1.16ef	9.74±0.31de	24.00±0.83e	11.64±0.54fg	23.28±0.72e

*Values are expressed as means±SE; n=5 for each treatment group; means in each column with different superscript letters are significantly different (p<0.05)

Phoenix dactylifera fruits are rich in phenolic compounds, flavonoids and antioxidants [9]. Treatment with DPE alone caused a significant improvement in antioxidant status. On the other hand, the presence of DPE with Cr(VI) treated homogenates decreased TBARS and this attributed to their various polyphenolic compounds that play an important role as free radicals scavenger, metal chelator and stimulator for the enzymes involved in lipid peroxidation prevention [39, 40]. Similarly, curcumin [5], rosemary [1] and propolis [41] found to have protective role against xenobiotics toxicity. Antioxidant enzymes protect the cellular membranes against the deleterious effects of ROS and their induction is related to free radicals modulation by DPE. This is because of the antioxidant and chelating features of Phoenix dactylifera that help in scavenging radicals [43, 44] and consequently reduce Cr toxicity. Also, elevation in GSH content detoxifies ROS and protects cellular proteins against oxidation so, natural antioxidants are highly effective in alleviating the toxic effect of xenobiotics.

4. Conclusion
The hexavalent chromium had cytotoxic effects on liver and muscles of Tilapia nilotica fish. It has the capability to induce liver damage, oxidative stress and alterations in antioxidant defense system, its effect was concentration dependent. Besides, Phoenix dactylifera could be useful antioxidant in reducing chromium toxicity. Moreover, enzymatic responses could be used as sensitive biomarkers.
References

[1] El-Demerdash FM et al 2006 Biochemical Study on the Protective Role of Folic Acid in Rabbits Treated with Chromium (VI). J Environ Sci Health B41: 731–746
[2] Li ZH et al 2011 Evaluating the toxicity of environmental concentrations of waterborne chromium (VI) to a model teleost, oncorhynchus mykiss: a comparative study of in vivo and in vitro. Comp Biochem Physiol Part C 153: 402-407.
[3] De Flora S et al 1990 Genotoxicity of chromium compounds. A review. Mutat Res 2: 99–172.
[4] El-Demerdash FM et al 2019 Modulatory effect of Turnera diffusa against testicular toxicity induced by fenitrothion and/or hexavalent chromium in rats. Environ Toxicol 34: 330–339.
[5] Chandra A et al 2007 Effect of curcumin on chromium-induced oxidative damage in male reproductive system. Environ Toxicol Pharmacol. 24:160–166.
[6] El-Sayed AFM 2006 Tilapia Culture. CABI Publishing, CABI International, UK, Willingford.
[7] Guardiola FA et al 2016 Impact of date palm fruits extracts and probiotic enriched diet on antioxidant status, innate immune response and immune-related gene expression of European seabass (Dicentrarchus labrax). Fish Shellfish Immunol 52: 298–308.
[8] Al-Farsi MA and Lee CY 2008 Nutritional and functional properties of dates: a review. Crit Rev Food Sci Nutr 48: 877–87.
[9] Vayalil, P.K. 2012 Date fruits (Phoenix dactylifera Linn): an emerging medicinal food. Crit Rev Food Sci Nutr 52:249–71.
[10] APHA American Public Health Association 2005 Standard methods for the examination of water and wastewater, 21th ed. APHA, Washington, DC.
[11] Siahpoosh A et al 2016 In Vitro Evaluation of Antioxidant Activity and Total Phenol Contents of Some Extracts from Ripe Fruits of Phoenix dactylifera Var Berhi. Int J of Pharmacog Phytochem Res 8: 1855-1862.
[12] Tan F et al 2008 Comparative evaluation of the cytotoxicity sensitivity of six fish cell lines to four heavy metals in vitro. Toxicology in Vitro 22: 164–170.
[13] Ellman GL 1959 Tissue sulfhydryl groups. Arch Biochem Biophys 82: 70–77.
[14] Misra HP, Fridovich I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247: 3170–3175.
[15] Aebi H 1998 Catalase in vitro. Methods Enzymol. 1984; 105: 121–126.
[16] Habig WH et al 1974 Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249: 7130–7139.
[17] Principato GB et al 1985 Characterization of the soluble alkaline phosphatase from hepatopancreas of Squilla mantis L. Comp Biochem Physiol. B. 985:801–804.
[18] Lowry OH et al 1951 Protein measurement with the Folin Phenol Reagent. J Biol Chem 193: 269–275.
[19] Steel RGD and Torrie JH 1981 Principle and Procedure of Statistics, 2nd ed. New York: Mc Gvaus-Hill Book Company
[20] SAS. 1986 Statistical Analysis System. SAS User’s Guide: Statistics, version 5 Edition. SAS Inst., Inc., Cary, NC, USA.
[21] Velma V and Tchounwou, P.B. 2013 Oxidative Stress and DNA Damage Induced by Chromium in Liver and Kidney of Goldfish, Carassius auratus. Biomark Ins 2013:8 43–51.
[22] Vasylykiv OY et al 2010 Cytotoxicity of chromium ions may be connected with induction of oxidative stress. Chemosphere 80: 1044–9.
[23] Lushchak OV et al 2008 The effect of potassium dichromate on free radical processes in goldfish: Possible protective role of glutathione. Aqua Toxicol 87(2):108–14.

[24] El-Beltagi HS and Mohamed HI 2013 Reactive oxygen species, lipid peroxidation and antioxidative defense mechanism. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41:44-57.

[25] Adeyemi JA et al 2013 Oxidative damage and changes in Glutathione S-transferase activity in juvenile African catfish, Clarias gariepinus exposed to cypermethrin and chlorpyrifos. Biokemistri 25: 113-117.

[26] Hamed HS and Abdel-Tawwab M 2017 Ameliorative effect of propolis supplementation on alleviating bisphenol-A toxicity: Growth performance, biochemical variables, and oxidative stress biomarkers of Nile tilapia, Oreochromis niloticus (L.) fingerlings. Comp Biochem Physiol Part C 202: 63–69.

[27] Abdelkhalek NKM et al 2017 Protective role of dietary Spirulina platensis against diazinon-induced Oxidative damage in Nile tilapia; Oreochromis niloticus. Environ Toxicol Pharmacol 54: 99–104.

[28] Halliwell B and Gutteridge JMC 2007 Free radicals in biology and medicine. 4th Edition, Oxford University Press, New York.

[29] Storey K.B. 1996 Oxidative stress: animal adaptations in nature. Braz. J Med Biol Res 29: 1715–1733.

[30] El-Demerdash FM (2007) Lambda-cyhalothrin-induced changes in oxidative stress biomarkers in rabbit erythrocytes and alleviation effect of some antioxidants. Toxicol in Vitro 21: 392–397.

[31] Hamed RR et al 2003 Glutathione related enzyme levels of freshwater fish as bioindicators of pollution. Environmentalist 23: 313–322.

[32] Mosialou E et al 1993 Evidence that rat liver microsomal glutathione transferase is responsible for glutathione-dependent protection against lipid peroxidation. Biochem Pharmacol 45: 1645–1651.

[33] Cervello I et al 1992 Enhanced glutathione S-transferases (GST) activity in pregnant rats treated with Benzo(a)pyrene. Placenta 13, 273–280.

[34] El-Demerdash FM et al 2016 Oxidative Stress Modulation by Rosmarinus officinalis in Creosote-Induced Hepatotoxicity. Environ Toxicol 31: 85-92.

[35] El-Demerdash FM and Elagamy EI 1999 Biological effects in Tilapia nilotica fish as indicators of pollution by cadmium and mercury. Int. J Environ Health Res 9, 173–186.

[36] Bilgari F et al 2008 Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem 107: 1636–1641.

[37] Mansouri A et al 2005 Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera), Food Chem 89: 411-420.

[38] Yonar M.E et al 2014 Antioxidant effect of propolis against exposure to chromium in Cyprinus carpio. Environ Toxicol 29(2), 155–164.