Point-of-care testing for measuring haemolymph glucose in invertebrates is not a valid method

Silas C. Principe,1,2, *, Alessandra Augusto,2,3 and Tânia M. Costa1,2

1 São Paulo State University (UNESP), Biosciences Institute, Botucatu Campus, R. Prof. Dr. Antônio Celso, 250, 18618-000, Botucatu, São Paulo, Brazil.
2 São Paulo State University (UNESP), Biosciences Institute, Coastal Campus, Praça Infante Dom Henrique, s/n, P.O. Box: 73601, 11380-972, São Vicente, São Paulo, Brazil.
3 São Paulo State University (UNESP), CAUNESP, Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil.

*Corresponding author: São Paulo State University (UNESP), Brazil. Tel: +55 15 32295945. Email: silasprincipe@yahoo.com.br

Blood glucose is widely used as a physiological parameter for vertebrates and invertebrates. However, its measurement in the field is often difficult due to the need for expensive and non-portable equipment. Point-of-care (POC) devices, originally intended for human use, are increasingly being used for measuring blood parameters of animals in the field. In this regard, POC glucose meters are becoming valuable tools for conservation physiologists, as glucose can be a useful indicator of stress response. In invertebrates, the use of POC glucose meters is still scarce, and no study yet has evaluated their usability in crustaceans and molluscs. We tested if a POC device can be used to measure haemolymph glucose in two widely used models, Leptuca thayeri and Perna perna, compared with a standard laboratory method. The device was unable to measure glucose in P. perna haemolymph due to equipment inaccuracy and low glucose concentration in this species (10.13 ± 6.25 mg/dL). Additionally, despite the device being capable of measuring glucose in L. thayeri haemolymph, Bland–Altman plots showed a strong bias and wide limits of agreement, and Lin's concordance correlation coefficient showed a weak concordance between methods. When simulating experimental conditions, POC results differed from those found using the standard method. We conclude that POC glucose meters are unsuitable for assessing glucose in mussels and should not be used in crabs as results are inaccurate.

Key words: fiddler crab, glucose, Leptuca thayeri, molluscs, Perna perna, portable meter

Editor: Heath MacMillan

Received 11 June 2019; Revised 27 August 2019; Editorial Decision 1 September 2019; Accepted 1 September 2019

Cite as: Principe SC, Augusto A, Costa, TM (2019) Point-of-care testing for measuring haemolymph glucose in invertebrates is not a valid method. Conserv Physiol 7(1): coz079; doi:10.1093/conphys/coz079.

Introduction

Glucose is a valuable blood parameter in physiology studies, being widely used to evaluate response to stressors in both vertebrates (e.g. fishes, Jentoft et al., 2005; birds, Remage-Healey and Romero, 2000; reptiles, Valverde et al., 1999) and invertebrates (e.g. crabs, Lu et al., 2015; Rajendiran et al., 2016; mussels, Hannan et al., 2016). Factors that cause stress lead to alteration or loss of homeostasis in animals, affecting their fitness and reproductive capacity (e.g. Petes et al., 2007). In these cases, mechanisms involved in the control of homeostasis use energy stored in different tissues to reestablish equilibrium (Bayne, 1973; Webster, 1996; Lu et al., 2015).
Glucose (derived mainly from the conversion of glycogen) is the main energy provider in crustaceans (Full and Herreid II, 1984) and molluscs (de Zwaan and Zandee, 1972), and physiological mechanisms that spend Adenosine Triphosphate (ATP) are dependent upon this type of carbohydrate. Thus, an increase in glucose concentration is common during stressful situations. Because of that, glucose has long been used as a physiological parameter in studies with crustaceans (e.g. Briffa and Elwood, 2001, 2002; Matsumasa and Murai, 2005). Also, aquaculture researchers are including glucose as a parameter in studies dealing with the quality of farmed crustaceans (Hall and van Ham, 1998; Lu et al., 2015, 2016). In crabs (Decapoda), changes in glucose concentration are related to circadian rhythm (Matsumasa and Murai, 2005), exposure to air (Santos and Keller, 1993a; Webster, 1996; Lu et al., 2016), pollutants (Reddy et al., 1996), aggression (Briffa and Elwood, 2001, 2002; Aquiloni et al., 2012) and salinity or temperature increase (Chang et al., 1998; Lu et al., 2015). In molluscs, glucose has been used as a stress parameter in studies with bivalves (Wells et al., 1998; Martínez-Pita et al., 2012), limpets (Shore et al., 1975) and sea hares (Carefoot, 1991).

During stressful conditions, hormones and other substances may be secreted to stimulate release of glucose stored in the tissues. In crustaceans, levels of glucose in the haemolymph are controlled by the crustacean hyperglycemic hormone (CHH) (Webster, 1996; Chung et al., 2010), which can induce hyperglycemia during stress (Hall and van Ham, 1998). CHH is a neuropeptide produced mainly by the X-organ/sinus gland complex of the eyestalks that promotes the mobilization of glycogen stored in the haepatopancreas (Santos and Keller, 1993b; Fanjul-Moles, 2006). This occurs through activation of phosphorylases and inhibition of glycogen synthase (Sedlmeier, 1985; Webster, 1996). Other substances may be involved in the increase in circulating glucose, such as epinephrine (Model et al., 2019) and melatonin (Yang et al., 2018) in crustaceans and epinephrine (Massarsky et al., 2011) and insulin-like peptides (Pertseva et al., 2013) in molluscs.

The most common method for glucose measurement is the colorimetric assay based on the enzymatic oxidation of glucose (Trinder, 1969). It is widely used by physiologists dealing with both vertebrates (e.g. Kavadias et al., 2003) and invertebrates (e.g. Vinagre et al., 2007). Although a well-established method, its use in the field is impractical as it demands several equipment and materials that are heavy, delicate and expensive (Stoot et al., 2014). Recently, there has been an increase in the use of point-of-care (POC) devices, primarily designed for human health, on animal physiology (Brown et al., 2008; Awruch et al., 2011; Andrewartha et al., 2016; Bennett et al., 2017). POC devices are portable, easy to use and generally cheaper than well-established lab techniques. Also, they provide a fast and reliable way to assess blood parameters in the field (Stoot et al., 2014; Lindholm and Altimiras, 2016). Among POC devices, glucose meters are one of the most used in animal physiology studies (Stoot et al., 2014). The ability of these devices to assess glucose relies on the oxidation of glucose by glucose oxidase or the conversion of glucose into gluconolactone by glucose 1-dehydrogenase (Rebel et al., 2012).

The majority of studies employing POC testing have so far focused on vertebrates, especially fishes (e.g. Beecham et al., 2006; Braz-Mota et al., 2015; Ball and Weber, 2017; for a complete and recent review, see Stoot et al., 2014). In crustaceans, Butcher et al. (2012) were capable of measuring haemolymph glucose in the giant mud crab *Scylla serrata* using the Accutrend Plus (Roche Diagnostics, Australia) meter, while Aliko et al. (2015) measured glucose levels in the green crab *Carcinus aestuarii* using the OneTouch Ultra (Lifescan, Johnson & Johnson) meter. To the best of our knowledge, only two other studies employed POC testing in crustaceans: Lorenzon et al. (2008) measured haemolymph glucose to evaluate stress in *Cancer pagurus* subjected to different transport systems, and Lorenzon et al. (2004) evaluated the effect of dopamine, serotonin and L-enkephalin on haemolymph glucose in the stomatopod *Squilla mantis* and the decapod *Astacus leptodactylus*. In both cases, authors used the OneTouch II (Lifescan, Johnson & Johnson) meter. However, none of those studies intended to validate the use of glucose meters with the studied animal, and none compared results with a standard lab technique. Two studies (Matsumasa and Murai, 2005; Matsumasa et al., 2013) successfully used glucose meters to evaluate haemolymph glucose in fiddler crabs, but those particular devices are not considered portable as they demand additional batteries, and they are originally intended for laboratory use. In molluscs, the only study that used a POC device evaluated the glycogen content of mussel seeds, but not the levels of free haemolymph glucose (Sim-Smith and Jeffs, 2011). As for other invertebrates, POC testing has also been used in the horseshoe crab *Limulus polyphemus* (Xiphosura) (Allender et al., 2010).

When using a novel method in substitution to a well-established one, it is important to first evaluate how well the new method performs against the standard one and also validate its use, assessing the need for previous calibration (Lindholm and Altimiras, 2016). Although many studies tested the applicability of POC testing in vertebrates (e.g. Lieske et al., 2002; Beecham et al., 2006; Ball and Weber, 2017; Bennett et al., 2017), none have so far assessed its relevance to invertebrates. Nevertheless, studies are being conducted in invertebrates using POC glucose meters without previous tests (e.g. Lorenzon et al., 2004; Lorenzon et al., 2008; Allender et al., 2010; Butcher et al., 2012). Thus, the aim of this study was to evaluate the applicability of a personal glucose meter to assess glucose levels in the haemolymph of one crustacean species and one mollusc species. This was done using a widely available and inexpensive device that can be easily bought and that has already been used in other studies with vertebrates. We compared the results of the glucose meter with a well-established lab technique and advise that it should
not be used in substitution to the standard method for either of the tested animals.

Materials and methods

Animal models

To evaluate whether POC glucose meters can be used in crustaceans and molluscs, we selected two species widely used as models: *Leptuca thayeri*, a fiddler crab, and *Perna perna*, a Mytilidae mussel. *Leptuca thayeri* are common and abundant in mangroves on the east Atlantic coast, inhabiting muddy and shaded areas (Gusmão-Junior et al., 2012; Thurman et al., 2013). As other fiddler crabs, they play a crucial role in the cycling of nutrients in the mangrove, acting as ecosystem engineers (Kristensen and Alongi, 2006; Kristensen et al., 2008). Because of their importance, they have been used in studies in ecology (Cuellar-Gempeler and Munguia, 2013; De Grande et al., 2018b; De Grande et al., 2018c), animal behaviour (Gusmão-Junior et al., 2012; De Grande et al., 2018a) and physiology (Thurman et al., 2010; Principe et al., 2018). *Perna perna* are a common mussel on east Atlantic rocky shores, forming large patches in the intertidal region (Marques et al., 1991; Hicks et al., 2001; Henriques and Casarini, 2009). In addition to their ecological importance, they are also part of human diet (Marques et al., 1991). Studies with *P. perna* include those in ecotoxicology (Santana et al., 2018), physiology (Nogueira et al., 2017; Rola et al., 2017) and ecology (McQuaid and Lawrie, 2005; Lathlean and McQuaid, 2017).

Animal collection and sampling

Leptuca thayeri were collected in the Portinho mangrove, Praia Grande, São Paulo, Brazil (23°59’ S; 46°24’ W), during low tide in January and July 2018. Crabs were sampled by burrow excavation, and *L. thayeri* intermolt adult males with carapace width (CW) between 16 and 24 mm (Farias et al., 2014), measured with a calliper, were used for the assessment of glucose levels. We used 31 crabs for the methods comparison (mean, CW 18.3 ± 1.37 mm) and 30 crabs for the validation experiment (mean, CW 19.5 ± 1.5 mm).

For the methods comparison, immediately after collection, crabs were cleaned with distilled water and dried with absorbent paper. Individuals were anaesthetized on ice for 10 minutes. A haemolymph sample was withdrawn from the base of the abductor muscle using a 1-ml tuberculin syringe. Samples were put into 0.5-ml microtubes and stored on ice until fieldwork was finished. After that, samples were frozen at −16°C prior to use.

Perna perna were collected with scrapers from a rocky shore in Praia dos Sonhos, Itanhaém, São Paulo, Brazil (24°11’ S, 46°48’ W), during low tide in July 2018. After collection, organisms were measured using a calliper. Only adult individuals with shell length between 31 and 45 mm were used (McQuaid et al., 2000). We used 30 individuals for the methods comparison (mean, shell length 36.9 ± 3.7 mm). Once measured, organisms were anaesthetized on ice, and a haemolymph sample was withdrawn from the base of the abductor muscle using a 1-ml tuberculin syringe. Samples were put into 0.5-ml microtubes, stored on ice until fieldwork was finished, and then frozen at −16°C prior to use.

Methods comparison

For this comparison, measurements of both methods were carried out in the laboratory concurrently. Despite our aim of testing a device that could be easily used in the field, this procedure was done to ensure that samples were subjected to the same handling conditions. The same method was used for both *L. thayeri* and *P. perna*. Samples were thawed out and then used for assessment of glucose by the two different methods. First, a commercial kit (Gluco Liquirom Ref. 133, LabTest Diagnóstica, Brazil) was used to measure haemolymph glucose concentration using the colorimetric method (Trinder, 1969). This method is a standard procedure for the assessment of glucose concentration (Briffa and Elwood, 2001, 2002; Kavadias et al., 2003; Vinagre et al., 2007) and was set as the laboratory control method. Following this procedure, 10 μl of haemolymph were put into a 1.5-ml tube. After that, each tube received 1 ml of the commercial reagent and was incubated for 10 minutes at 37°C. Samples were read in a spectrophotometer in the 505-nm band. Another 1 μl of haemolymph was used to read glucose via the glucose meter Accu-Chek Performa (F. Hoffmann–La Roche AG). In the review by Stoot et al. (2014), Accu-Chek was considered the most used glucose meter (different models considered), capable of reading glucose levels ranging from 10 to 600 mg/dL. The device’s ability to assess blood glucose relies on the electrochemical method: test strips contain a mutant variant of quinoprotein glucose dehydrogenase (Mut. Q-GDH), which converts glucose into gluconolactone, producing a measurable electrical current (Accu-Chek Performa User Guide, F. Hoffmann–La Roche AG). Accuracy of the device depends on glucose concentration, but for concentrations lower than 100 mg/dL, 81.5% of samples are within ±5 mg/dL of error, according to the manufacturer. Samples were put directly onto a disposable test strip (from the same manufacturer) and were inserted into the glucometer, following manufacturer instructions. Each reading lasted <5 seconds.

Validation of experimental conditions

This experiment was only performed with *L. thayeri* as comparison tests showed that the POC device was unable to read *P. perna* haemolymph glucose. To test if the glucose meter could be used in experimental conditions, we performed an experiment with two treatments, (i) control (25°C) and (ii) high temperature (35°C). Crustacean glucose levels can increase due to thermal stress (Lu et al., 2016), so we expected that animals exposed to high temperatures would show higher...
levels of haemolymph glucose. We used 30 animals for this experiment, 15 for each treatment. Prior to experimentation, animals were acclimated for 48 hours in aquariums with brackish water (salinity of 25, corresponding to high tide salinity in the area) with constant aeration and ambient temperature (∼25°C). Individuals were not covered by water so they still had access to the air. No more than 10 individuals were kept in each aquarium.

After acclimation, animals were individually put in plastic flasks (500 ml) with brackish water (salinity of 25). Individuals were not covered by water and had access to the air. The control group was exposed to a temperature of 25°C, and crabs in the high temperature treatment were exposed to 35°C. This temperature can be easily reached in the areas where _L. thayeri_ occur and was used in a previous study with this species (Principe _et al._, 2018). Flasks were placed into a water bath with the corresponding temperature for each treatment, and organisms were exposed for 24 hours to the experimental conditions. At the end of the experiment, animals were dried with absorbent paper, and a sample of haemolymph was collected following the same procedures described previously. Haemolymph glucose level was assessed in the lab using the laboratory method and POC device, following the comparison experiment. Where the POC glucose meter was unable to read the sample due to it being below the minimum detected value (10 mg/dL), the measurement was replaced by half of the lowest value as done by _Butcher _et al._ (2012).

Statistical analyses

For the methods comparison, a linear regression was used to assess the relationship between values of glucose concentration obtained with POC testing and the laboratory method. However, as stated by Lindholm and Altimiras (2016), linear regressions alone are not enough to elucidate the reliability of a new method against an established one. Thus, we used the Bland–Altman method (Altman and Bland, 1983) to evaluate the discrepancy between methods. This same approach was used in other works that assessed agreement between methods, including POC devices (e.g. Awruch _et al._, 2011; Burdick _et al._, 2012). Here, a plot is constructed with the differences between measurements (i.e. standard method and POC device) against measurement averages. The analysis also returns the bias of the new method (mean difference between measurements) and the limits of agreement, calculated as the mean ± 1.96 × SD, which includes 95% of the differences between measurements. Following the original work of Altman and Bland (1983), mean difference between measurements (and the resulting bias) is shown as the laboratory method (standard) minus POC device (new method). Thus, a negative bias would mean an overestimation of the new method compared with the standard one. To assess whether the difference between methods was sensitive to differences in the concentration of haemolymph glucose (i.e. showing data heteroscedasticity), we applied a Pearson correlation between the absolute difference and the average of values obtained through the different methods (Atkinson and Nevill, 1998; Lindholm and Altimiras, 2016). Also, we used Lin’s concordance correlation coefficient (CCC) (Lin, 1989) to evaluate agreement between methods (Lindholm and Altimiras, 2016).

To validate results for the experimental condition, we used an estimation approach and constructed a Cumming estimation plot. Estimation methods offer advantages over the common null-hypothesis approach by enabling researchers to estimate effects sizes and their associated uncertainty (Ho _et al._, 2019). In the Cumming estimation plot, the raw data are plotted on the upper left axes, and a bar associated with each group shows the mean and standard deviation of the data. Below the raw data, mean differences between groups (which is the effect size) and their 95% confidence interval (CI) are plotted. The 95% CI is derived through a non-parametric bootstrap resampling, bias corrected and accelerated. The plot was produced using the DABEST package for R (Ho _et al._, 2019). As we understand that the null hypothesis is still the most used approach, we also performed a Student’s t-test (independent samples) comparing glucose values. This was done for the results obtained with the two methods (i.e. one test for each method), so we could assess if both methods were capable of showing the same results (presence or absence of statistical difference). Except when indicated, data are shown as mean ± SD. All statistical analyses were performed using R 3.5.3 (R Core Team, 2019).

Results

Methods comparison

Glucose levels in fiddler crabs were successfully measured using a POC device in 29 out of 31 crabs. In two cases, glucose concentration was below the limit of measurement (i.e. 10 mg/dL), and these were discarded in the subsequent analysis. Levels of haemolymph glucose measured by the laboratory method ranged from 11.11 mg/dL to 135.71 mg/dL (mean, 62.23 ± 38.70 mg/dL). Levels of glucose measured by the glucose meter ranged from 11 to 292 mg/dL (mean, 93.10 ± 77.33 mg/dL). Linear regression results (Fig. 1a) showed a positive relation between glucose meter results and the laboratory method ($r^2 = 0.85$, $F_{1,27} = 152.3$, $P < 0.0001$).

However, Bland–Altman results showed that POC measurements have a marked deviation from the colorimetric method, depicted by a large bias (-30.88 ± 44.29 mg/dL) with wide limits of agreement (-117.7 and 55.94; Fig. 1b). The glucose meter generally estimated higher values of haemolymph glucose, at ~30.88 mg/dL, compared with the laboratory method. Limits of agreement indicate that glucose concentrations obtained through the device are expected to be placed between 55.94 mg/dL below and 117.7 mg/dL above the values obtained via the laboratory method in 95% of measurements. Also, Pearson correlation between absolute differences and the average of glucose levels obtained through
Figure 1: Comparison between methods of glucose measurement (a) Linear regression of fiddler crab haemolymph glucose measured using a POC device and via the laboratory method. The grey dotted line is the expected line of perfect agreement, and the solid line is the estimated slope. (b) Bland–Altman plot of glucose measurements via a POC device and the laboratory method. Solid grey line represents bias, and dotted lines represent limits of agreement (95%).

Figure 2: Glucose levels of *L. thayeri* exposed to control and high temperature conditions. Samples were read using two different methods (laboratory method (LAB) and POC device), and comparisons between treatments for each method are shown in the above Cumming estimation plot. Glucose values are plotted on the upper axes with vertical lines indicating mean (as a gap) ± SD. Each mean difference is plotted on the lower axes as a bootstrap sampling distribution. Mean differences are depicted as dots; 95% CIs are indicated by the ends of the vertical error bars. Significant difference was found just for glucose levels obtained via the laboratory method (*P* < 0.05).
the methods show that there is heteroscedasticity in the data ($r = 0.92; P < 0.001$). That means concentration of glucose in the haemolymph affects the degree of deviation from the standard method, with deviation increasing in higher concentrations of glucose in the haemolymph. Additionally, Lin’s CCC showed a poor concordance between methods (PC = 0.65; 95% CI = 0.51, 0.75). This indicates results obtained with the POC device deviate from the standard method, and this device is not appropriate for obtaining accurate levels of fiddler crab haemolymph glucose.

Perna perna glucose levels obtained via the laboratory method ranged between 1.94 and 20.39 mg/dL (mean glucose concentration, 10.13 ± 6.25 mg/dL). All measurements performed using the glucose meter were below the device’s limit of measurement (LO error, corresponding to low values). Even in cases in which values obtained using the standard laboratory method were higher than the lower limit of measurement (LO error), corresponding to low values. In that way, the glucose meter was unusable to assess glucose in *P. perna*.

Validation of experimental conditions

We successfully measured glucose levels using the POC device in 9 out of 15 animals in the control group and in 11 out of 15 animals in the high temperature treatment. One outlier in each treatment was excluded from the subsequent analysis following Wilkinson (1996). Mean glucose levels were 19.24 ± 5.42 mg/dL (control) and 25 ± 8.51 mg/dL (high temperature). Estimation plots revealed distinct patterns for data obtained using the two methods (Fig. 2). The mean difference (i.e. the effect size) of glucose levels between treatments obtained through the laboratory method was 5.75 mg/dL (95% CI = 0.83–11.1), while for the results obtained through the POC device, the mean difference was 8.07 mg/dL (95% CI = 0.07–17.4). Despite the effect size for temperature increase obtained using the laboratory method being lower than the one obtained via the POC device, CIs of the effect size were wider for the POC method, as the standard deviations of the data in this method.

We also performed a Student’s t-test between treatments for each method. There was a significant difference between glucose levels using the laboratory method in animals exposed to control conditions and the high temperature treatment [$t(26) = -2.13, P < 0.05$]. However, difference between treatments was not found when comparing glucose levels assessed via the POC device [$t(26) = -1.79, P > 0.05$]. Mean glucose levels obtained using the glucose meter were 14.43 ± 8.82 mg/dL (control) and 22.50 ± 14.33 mg/dL (high temperature).

Discussion

POC devices have been used to assess glucose levels in a variety of animals, especially vertebrates (Stoot et al., 2014). Validation assays have been done in many groups (e.g. fish, Beecham et al., 2006; Ball and Weber, 2017; mammals, Bennett et al., 2017; birds, Lieske et al., 2002), but none have evaluated the real applicability of such technology in invertebrates. From the works that have used glucose meters in crustaceans (Lorenzon et al., 2004, 2008; Butcher et al., 2012; Aliko et al., 2015), none have tested their usability or validated the method prior to use. Here we showed that although the POC device was capable of measuring glucose levels in the haemolymph of a fiddler crab, results differed from those obtained with the laboratory method, with poor concordance between methods. Also, we found that for mussels, the glucose meter was incapable of reading haemolymph glucose, probably due to the low levels of glucose in *P. perna* haemolymph. These results demand caution when using POC devices in invertebrates.

Primarily designed for patients in home care, POC testing provides an accurate and fast way to obtain diagnostics that can drive clinical decisions (Price, 2001). The most widespread POC application is to monitor blood glucose, helping diabetic patients control their insulin levels (Klonoff, 2005; Rebel et al., 2012). Having been designed for human care, the use of these devices in other taxa demands validation procedures (Stoot et al., 2014; Lindholm and Altimiras, 2016). For a variety of wild animals, POC devices are indeed capable of producing accurate results: an example is found in a Salmonidae fish by Iwama et al. (1995), where the POC device produced accurate results comparable with the lab method (for other cases, see Stoot et al., 2014). However, their functionality in some taxa may be limited because physiological differences from humans, especially on blood composition, may produce inaccurate results. For example, POC glucose meters provided inaccurate results for the white-tailed deer (*Odocoileus virginianus*), possibly from low concentration of blood glucose or high haematocrit concentration (Burdick et al., 2012). For the bonefish *Albula vulpes*, results deviated in a way that they should be used as reference values only (Cooke et al., 2008). Given the difference between invertebrate and vertebrate blood and physiology, measurements taken via POC testing should differ from the standard method as found in our study.

When measurements from a new method deviate from the standard one, results may still be applicable to comparative studies, when the exact values are unimportant but variation between treatments or collection sites is still relevant. For example, in Beecham et al. (2006), authors evaluated the usability of a POC glucose meter for assessing glucose in catfish. In that case, values of glucose measured by the meter were lower than those obtained in the lab. However, these were able to show statistical differences between animals subjected to different stress treatments. Cooke et al. (2008) were capable of using a glucose meter to assess the effects of different capture techniques on the physiological conditions of the bonefish *A. vulpes*, despite concluding that POC device values should be used just as relative values. In our study, glucose values of *L. thyzeri* found via POC testing were not enough to show the same statistical results found with the
laboratory method. Thus, the applicability of the POC glucose meter for comparative studies is not possible.

Our results, however, do not seek to entirely exclude usage of glucose meters in crustaceans or molluscs. For example, vertebrates from the same group may show different results in validation assays (e.g. Salmonidae, Iwama et al., 1995; Wells and Pankhurst, 1999; for examples in other taxa, see the review by Stoot et al., 2014). However, our results do highlight the need for validation before using POC devices in invertebrates. Several reasons may lead to the failure of POC glucose meters in providing accurate results when used with invertebrates. Glucose meters are calibrated for human blood, and thus differences in blood composition of other taxa lead to different values of glucose (for example, with birds; Lieske et al., 2002). Assessing the difference between crab and mussel haemolymph and human blood is beyond the scope of this work, but investigating it may provide a starting point to develop suitable meters for those groups.

Lower glucose concentrations can also affect glucose meter results (e.g. Burdick et al., 2012). Glucose levels in the haemolymph of invertebrates may be several times lower than in human blood, which is around 100 mg/dL (Danaei et al., 2011). Table 1 shows the mean levels of glucose in the haemolymph of some freshwater and marine crustaceans and molluscs. Fiddler crab glucose levels are usually around 30 mg/dL, depending on physiological status and species (Matsumasa and Murai, 2005; Matsumasa et al., 2013; Principe et al., 2018), more than three times lower than human levels. Other species of crabs have similar levels of glucose, like the ghost crab Ocypode quadrata (Vinagre et al., 2007) and the swimming crab Portunus trituberculatus (Lu et al., 2015). Glucose levels in mussels can be even lower than those found in crabs. In controlled conditions, Mytilus galloprovincialis, a mytilid mussel, display glucose levels ~5 mg/dL (Martínez-Pita et al., 2012; Faggio et al., 2016); for Mytilus edulis, levels are ~10 mg/dL (Amachree et al., 2014). For now, POC testing is unsuitable for L. thayeri and P. perna, and the same can be true for related species with similar ranges of glucose and haemolymph composition, such as other fiddler crabs and Mytilidae mussels.

Nevertheless, we do encourage researchers to test glucose meters in other species and groups of invertebrates. The potential applications of these devices in animal physiology studies are many, as field measurements of glucose are often difficult to perform. The only examples in fiddler crabs are the works from Matsumasa et al. (2013) and Matsumasa and Murai (2005), but these involved the adaptation of lab

Table 1: Haemolymph glucose levels of some marine and freshwater Crustacea and Mollusca representatives.

Species	Glucose (mg/dL)	Citation
Crustacea		
L. thayeri	19.24 ± 5.42	This work (validation experiment)
L. thayeri	28.89 ± 17.69	Principe et al., 2018
Minuca rapax	27.8 ± 15.62	Principe et al., 2018
Callinectes sapidus	7.9 ± 1.3	Chung, 2014
Chasmagnathus granulata	6.8 ± 0.9	Vinagre and Da Silva, 2002
Eriocheir sinensis	89.73 ± 4.68	Long et al., 2018
Leptuca beebei	30 ± n.a.	Matsumasa et al., 2013
O. quadrata	8.11 ± 0.72–15.31 ± 5.04^{a,b}	Vinagre et al., 2007
Portunus pelagicus	37.3 ± 0.52	Saravanan et al., 2018
Scylla paramamosain	14.5 ± n.a.	Liu et al., 2019
S. serrata	6.41 ± 0.62	Reddy and Kishori, 2001
Mollusca		
P. perna	10.13 ± 6.25^a	This work (field samples)
Elliptio crassiden	2.1 ± 0.30	Fritts et al., 2015
M. edulis	4.14 ± 0.90	Sheir and Handy, 2010
Villosa vibex	2.0 ± 0.19	Fritts et al., 2015

Values are either mean or range (a) and correspond to animals in experimental control conditions or field data (b). n.a. means that standard deviation was not available. For more details about methods, please refer to the cited work.
equipment for field use. For the majority of studies, usually, a sample is collected and then transferred to the laboratory for analysis via bench methods. However, this approach has the disadvantage of not providing immediate values, which can drive decisions in the field. Also, transport and maintenance of blood samples can be difficult and may cause sample degradation, leading to an increase in glucose levels, which can be minimized by field measurements (Clark et al., 2011). Obtaining accurate glucose levels in crustaceans or molluscs in the field can indicate organism state in a particular situation such as a stressful condition or seasonal variation (Vinagre et al., 2007; Buckup et al., 2008). These results can be aggregated to laboratory experiments and enhance the prediction of environmental change effects. As fiddler crab and mussel species are expected to be harmed by climate change (Smith et al., 2006; Levinton et al., 2015; Principe et al., 2018), such improvement in predictions can subsidize conservation efforts for those groups. Aquaculture professionals can also benefit from the use of POC devices for evaluating glucose of invertebrates during transport and in farms as these data can inform them about animal stress and welfare (e.g. Lu et al., 2016).

Glucose meters also have the advantage of being cheaper than bench methods. Accu-Chek Performa, the device used in this study, is sold in Brazil for ~US$16, and strips have the approximate price of US$0.5 per unit. Other models can be even more accessible. For comparison, the colorimetric kit used here costs US$0.08 per test but demands expensive equipment such as a spectrophotometer, which can cost >US$1500. In addition, measurement by glucose meters is simple and fast, and can substantially improve fieldwork efficiency, or the routine of aquaculture professionals.

POC devices serve as a reliable tool for field biologists working with a wide variety of animals, mainly due to their low cost and high feasibility (Stoot et al., 2014). However, our results suggest that their use in invertebrates may be impractical. For the two animal models tested here, L. thayeri and P. perna, POC testing of haemolymph glucose is not applicable, and the same can be true for related species with similar ranges of glucose levels and haemolymph characteristics. We advise that, despite correction of device values through statistical methods being possible in some cases (having been used before for some groups, e.g. fish, Iwama et al., 1995; birds, Harter et al., 2015), this should not be used in cases similar to those found here, with wide limits of agreement and poor concordance. By doing this, one may risk generating deeply inaccurate results. We highlight the importance of tests done prior to adoption of a new method, especially for devices designed for human use.

Acknowledgements

We thank Msc. Kimura, R.K., Msc. Utsonomya, H., Msc. Almeida, M.A. and Dr Urban, F. from Federal University of São Carlos (Sorocaba Campus) for their precious help with lab work. We also thank the LABECOM (Laboratory of Ecology and Animal Behavior - UNESP Coastal Campus) team for their help in fieldwork.

Funding

This work was supported by the grant #2015/50300-6, São Paulo Research Foundation (FAPESP) to T.M.C., and by the National Council for Scientific and Technological Development [CNPq grant #307679/2015-2 to T.M.C.].

References

Aliko V, Hajdaraj G, Caci A, Faggio C (2015) Copper-induced lysosomal membrane destabilisation in haemolymph cells of mediterranean green crab (Carcinus aestuarii, Nardo, 1847) from the Narta Lagoon (Albania). Braz Arch Biol Technol 58: 750–756.

Allender MC, Schumacher J, George R, Milam J, Agricola O (2010) The effects of short- and long-term hypoxia on hemolymph gas values in the American horseshoe crab (Limulus polyphemus) using a point-of-care analyzer. J Zoo Wildl Med 41: 193–200.

Altman DG, Bland JM (1983) Measurement in medicine: the analysis of method comparison studies. Statistician 32: 307–317.

Amacheere D, Moody AJ, Handy RD (2014) Comparison of intermittent and continuous exposures to inorganic mercury in the mussel, Mytilus edulis: accumulation and sub-lethal physiological effects. Ecotoxicol Environ Saf 109: 133–142.

Andrewartha SJ, Munns SL, Edwards A (2016) Calibration of the HemoCue point-of-care analyser for determining haemoglobin concentration in a lizard and a fish. Conserv Physiol 4: 1–6.

Aquiloni L, Giulianiini PG, Mosco A, Guarnaccia C, Ferrero E, Gherardi F (2012) Crustacean hyperglycemic hormone (CHH) as a modulator of aggression in crustacean decapods. PLoS One 7: 1–7.

Atkinson G, Nevill AM (1998) Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 26: 217–238.

Awruch CA, Simpfendorfer C, Pankhurst NW (2011) Evaluation and use of a portable field kit for measuring whole-blood lactate in sharks. Mar Freshw Res 62: 694–699.

Ball E, Weber MJ (2017) Validating a diabetic glucose meter to assess walleye glucose concentrations. N Am J Aquac 79: 245–249.

Bayne BL (1973) Physiological changes in Mytilus edulis L. induced by temperature and nutritive stress. J Mar Biol Assoc UK 53: 39–58.

Beecham RV, Small BC, Minchew CD (2006) Using portable lactate and glucose meters for catfish research: acceptable alternatives to established laboratory methods? N Am J Aquac 68: 291–295.

Bennett KA, Turner LM, Millward SJ, Moss SEW, Hall AJ (2017) Obtaining accurate glucose measurements from wild animals under field conditions: comparing a handheld glucometer with a standard laboratory technique in grey seals. Conserv Physiol 5: 1–10.
Braz-Mota S, Sadauskas-Henrique H, Duarte RM, Val AL, Almeida-Val VMF (2015) Roundup exposure promotes gills and liver impairments, DNA damage and inhibition of brain cholinergic activity in the Amazon teleost fish Colossoma macropomum. Chemosphere 135: 53–60.

Briffa M, Elwood RW (2001) Decision rules, energy metabolism and vigour of hermit crab fights. Proc Biol Sci 268: 1841–1848.

Briffa M, Elwood RW (2002) Power of shell-rapping signals influences physiological costs and subsequent decisions during hermit crab fights. Proc Biol Sci 269: 2331–2336.

Brown JA, Watson J, Bouchill A, Wall T (2008) Evaluation and use of the Lactate Pro, a portable lactate meter, in monitoring the physiological well-being of farmed Atlantic cod (Gadus morhua). Aquaculture 285: 135–140.

Buckup L, Dutra BK, Ribarcki FP, Fernandes FA, Noro CK, Oliveira GT, Brown JA, Watson J, Bourhill A, Wall T (2008) Evaluation and use of the Lactate Pro, a portable lactate meter, in monitoring the physiological well-being of farmed Atlantic cod (Gadus morhua). Aquaculture 285: 135–140.

Burdick S, Mitchell MA, Neil J, Heggem B, Whittington JK, Acierno MJ (2012) Evaluation of two point-of-care meters and a portable chemistry analyzer for measurement of blood glucose concentrations in juvenile white-tailed deer (Odocoileus virginianus). J Am Vet Med Assoc 240: 596–599.

Butcher PA, Leland JC, Broadhurst MK, Paterson BD, Mayer DG (2012) Giant mud crab (Scylla serrata): relative efficiencies of common baited traps and impacts on discards. ICES J Mar Sci 69: 1511–1522.

Carefoot TH (1991) Blood glucose levels in the sea hare Aplysia dactylomela: interrelationships of activity, diet choice and food quality. J Exp Mar Biol Ecol 154: 231–244.

Chang ES, Keller R, Chang SA (1998) Quantification of crustacean hyperglycemic hormone by ELISA in hemolymph of the lobster, Homarus americanus, following various stresses. Gen Comp Endocrinol 111: 359–366.

Chung JS (2014) An insulin-like growth factor found in hepatopancreas implicates carbohydrate metabolism of the blue crab Callinectes sapidus. Gen Comp Endocrinol 199: 56–64.

Chung JS, Zmora N, Katayama H, Tsutsui N (2010) Crustacean hyperglycemic hormone (CHH) neuropeptides family: functions, titer, and binding to target tissues. Gen Comp Endocrinol 166: 447–454.

Clark TD, Donaldson MR, Drenner SM, Hinch SG, Patterson DA, Hills J, Ives V, Carter JJ, Cooke SJ, Farrell AP (2011) The efficacy of field techniques for obtaining and storing blood samples from fishes. J Fish Biol 79: 1322–1333.

Cooke SJ et al. (2008) Effects of different capture techniques on the physiological condition of bonefish Albula vulpes evaluated using field diagnostic tools. J Fish Biol 73: 1351–1375.

Coquel-Gempeler C, Muniguia P (2013) Fiddler crabs (Uca thayeri, Brachyura: Ocypodidae) affect bacterial assemblages in mangrove forest sediments. Community Ecol 14: 59–66.

Danai G et al. (2011) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 378: 31–40.

De Grande FR, Cannicci S, Costa TM (2018a) Can fiddler crabs detect underwater predators? A laboratory test with Leptuca thayeri. Ethol Ecol Evol 31: 86–97.

De Grande FR, Colpo KD, Queiroga H, Cannicci S, Costa TM (2018b) Contrasting activity patterns at high and low tide in two Brazilian fiddler crabs (Decapoda: Brachyura: Ocypodidae). J Crustac Biol 38: 407–412.

De Grande FR, Granado P, Sanches FHC, Costa TM (2018c) Organic matter affects fiddler crab distribution? Results from field and laboratory trials. Estuar Coast Shelf Sci 212: 138–145.

de Zwaan A, Zandee DI (1972) Body distribution and seasonal changes in the glycosgen content of the common sea mussel Mytilus edulis. Comp Biochem Physiol Part A Physiol 43: 53–58.

Faggio C, Pagano M, Alampi R, Vazanana I, Felice MR (2016) Cytotoxicity, haemolymphatic parameters, and oxidative stress following exposure to sub-lethal concentrations of quaternium-15 in Mytilus galloprovincialis. Aquat Toxicol 180: 258–265.

Fanjul-Moles ML (2006) Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans: review and update. Comp Biochem Physiol C Toxicol Pharmacol 142: 390–400.

Farias AC de A, Castiglioni D da S, Garcia JE (2014) Population structure of the fiddler crab Uca thayeri Rathbun, 1900 (Crustacea, Decapoda, Ocypodidae) in a tropical Mangrove. Thalassas 30: 21–37.

Fritts AK, Peterson JT, Hazelton PD, Brinolf RB (2015) Evaluation of methods for assessing physiological biomarkers of stress in freshwater mussels. Can J Fish Aquat Sci 72: 1450–1459.

Full RJ, Herreid CF II (1984) Fiddler crab exercise: the energetic cost of swimming. J Exp Biol 109: 141–161.

Gusmao-Junior JBL, Machado GBO, Costa TM (2012) Burrows with chimneys of the fiddler crab Uca thayeri: construction, occurrence, and function. Zool Stud 51: 598–605.

Hall MR, van Ham EH (1998) The effects of different types of stress on blood glucose in the giant tiger prawn Peneaus monodon. J World Aquacult Soc 29: 290–299.

Hannan KD, Jeffrey JD, Hasler CT, Suski CD (2016) The response of two species of unionid mussels to extended exposure to elevated carbon dioxide. Comp Biochem Physiol A Mol Integr Physiol 201: 173–181.

Harter TS, Reichert M, Brauner CJ, Millsom WK (2015) Validation of the i-STAT and HemoCue systems for the analysis of blood parameters in the bar-headed goose, Anser indicus. Conserv Physiol 3: 1–9.

Henriques MB, Casarini LM (2009) Avaliação do crescimento do mexilhão Perna perna e da espécie invasora Isognomon bicolor em banco natural da ilha das Palmas, baia de Santos, Estado de São Paulo, Brasil. Bol Inst Pesca 35: 577–586.
Hicks DW, Tunnell J, McMahon RF (2001) Population dynamics of the nonindigenous brown mussel *Perna perna* in the Gulf of Mexico compared to other world-wide populations. *Mar Ecol Prog Ser* 211: 21–37.

Ho J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A (2019) Moving beyond P values: data analysis with estimation graphics. *Nat Methods* 16: 565–566.

Iwama GK, Morgan JD, Barton BA (1995) Simple field methods for monitoring stress and general condition of fish. *Aquac Res* 26: 273–282.

Jentoft S, Aastveit AH, Torjesen PA, Andersen Ø (2005) Effects of stress on growth, cortisol and glucose levels in non-domesticated Eurasian perch (*Perca fluviatilis*) and domesticated rainbow trout (*Oncorhynchus mykiss*). *Comp Biochem Physiol A Mol Integr Physiol* 141: 353–358.

Kavadias S, Castritsis-Catharios J, Dysseyris A (2003) Annual cycles of growth rate, feeding rate, food conversion, plasma glucose and plasma lipids in a population of European sea bass (*Dicentrarchus labrax L.*) farmed in floating marine cages. *J Appl Ichthyol* 19: 29–34.

Klonoff DC (2005) Continuous glucose monitoring: roadmap for 21st century diabetes therapy. *Diabetes Care* 28: 1231–1239.

Kristensen E, Alongi DM (2006) Control by fiddler crabs (*Uca vocans*) and plant roots (*Avicennia marina*) on carbon, iron, and sulfur biogeochemistry in mangrove sediment. *Limnol Oceanogr* 51: 1557–1571.

Kristensen E, Bouillon S, Dittmar T, Marchand C (2008) Organic carbon dynamics in mangrove ecosystems: a review. *Aquat Bot* 89: 201–219.

Lathlean JA, McQuaid CD (2017) Biogeographic variability in the value of mussel beds as ecosystem engineers on South African rocky shores. *Ecosystems* 20: 568–582.

Levinton J, Lord S, Higeshide Y (2015) Are crabs stressed for water on Ucavocans? *Comp Biochem Physiol A Mol Integr Physiol* 141: 353–358.

Lorenzon S, Brezovec S, Ferrero EA (2004) Species-specific effects on hemolymph glucose control by serotonin, dopamine, and L-enkephalin and their inhibitors in *Squilla mantis* and *Astacus leptodactylus* (Crustacea). *J Exp Zool Part A Comp Exp Biol* 301: 727–736.

Lorenzon S, Giulianini PG, Libralato S, Martinis M, Ferrero EA (2008) Stress effect of two different transport systems on the physiological profiles of the crab *Cancer pagurus*. *Aquaculture* 278: 156–163.

Lu Y, Wang F, Dong S (2015) Energy response of swimming crab *Portunus trituberculatus* to thermal variation: implication for crab transport method. *Aquaculture* 441: 64–71.

Lu Y, Wang F, Li L, Dong S (2016) Responses of metabolism and haemolymph ions of swimming crab *Portunus trituberculatus* to thermal stresses: a comparative study between air and water. *Aquac Res* 47: 2989–3000.

Marques HL, Pereira RTL, Correa BN (1991) Crescimento de mexilhões *Perna Perna* (Linnaeus, 1758) em populações naturais no litoral de ubatuba (SP, Brasil). *Bols Inst Pesca* 18: 61–72.

Martinez-Pita I, Sánchez-Lazo C, Ruiz-Jarabo I, Herrera M, Mancera JM (2012) Biochemical composition, lipid classes, fatty acids and sexual hormones in the mussel *Mytilus galloprovincialis* from cultivated populations in south Spain. *Aquaculture* 358–359: 274–283.

Massarsky A, Trudeau VL, Moon TW (2011) β-blockers as endocrine disruptors: the potential effects of human β-blockers on aquatic organisms. *J Exp Zool A Ecol Genet Physiol* 315: 251–265.

Matsumasa M, Murai M (2005) Changes in blood glucose and lactate levels of male fiddler crabs: effects of aggression and claw waving. *Anim Behav* 69: 569–577.

Matsumasa M, Murai M, Christy JH (2013) A low-cost sexual ornament reliably signals male condition in the fiddler crab *Uca beebei*. *Anim Behav* 85: 1335–1341.

McQuaid C, Lindsay T (2000) Effect of wave exposure on growth and mortality rates of the mussel *Perna perna*: bottom-up regulation of intertidal populations. *Mar Ecol Prog Ser* 206: 147–154.

McQuaid CD, Lawrie SM (2005) Supply-side ecology of the brown mussel, *Perna perna*: an investigation of spatial and temporal variation in, and coupling between, gamete release and larval supply. *Mar Biol* 147: 955–963.

Model JFA, dos Santos JT, Da Silva RSM, Vinagre AS (2019) Metabolic effects of epinephrine on the crab *Neohelice granulata*. *Comp Biochem Physiol A Mol Integr Physiol* 231: 111–118.

Nogueira L, Mello DF, Trevisan R, Garcia D, da Silva Acosta D, Dafre AL, Almeida EA (2017) Hypoxia effects on oxidative stress and immunocompetence biomarkers in the mussel *Perna perna* (Mytilidae, Bivalvia). *Mar Environ Res* 126: 109–115.

Pertseva MN, Kuznetsova LA, Shpakov AO (2013) New conceptual approach for search for molecular causes of diabetes mellitus, based on study of functioning of hormonal signaling systems. *J Evol Biochem Physiol* 49: 457–468.
Petes LE, Menge BA, Murphy GD (2007) Environmental stress decreases survival, growth, and reproduction in New Zealand mussels. *J Exp Mar Biol Ecol* 351: 83–91.

Price CP (2001) Point-of-care testing. *BMJ* 322: 1285–1288.

Principe SC, Augusto A, Costa TM (2018) Differential effects of water loss and temperature increase on the physiology of fiddler crabs from distinct habitats. *J Therm Biol* 73: 14–23.

R Core Team (2019) R: a language and environment for statistical computing. *R Foundation for Statistical Computing*, Vienna, Austria. https://www.R-project.org/.

Rajendiran S, Muhammad Iqbal BM, Vasudevan S (2016) Induced thermal stress on serotonin levels in the blue swimmer crab, *Portunus pelagicus*. *Biochem Biophys Reports* 5: 425–429.

Rebel A, Rice MA, Fahy BG (2012) The accuracy of point-of-care glucose measurements. *J Diabetes Sci Technol* 6: 396–411.

Reddy PS, Kishori B (2001) Methionine-enkephalin induces hyperglycemia through eyestalk hormones in the estuarine crab *Scylla serrata*. *Biol Bull* 201: 17–25.

Rella RC, Souza MM, Sandrini JZ (2017) Hypoosmotic stress in the mussel *Perna perna* (Linnaeus, 1758): is ecological history a determinant for organismal responses? *Estuar Coast Shelf Sci* 189: 216–223.

Santana MFM, Moreira FT, Pereira CDS, Abessa DMS, Turra A (2018) Continuous exposure to microplastics does not cause physiological effects in the cultivated mussel *Perna perna*. *Arch Environ Contam Toxicol* 74: 594–604.

Santos EA, Keller R (1993a) Effect of exposure to atmospheric air on blood glucose and lactate concentrations in two crustacean species: a role of the crustacean hyperglycemic hormone (CHH). *Comp Biochem Physiol A Physiol* 106: 343–347.

Santos EA, Keller R (1993b) Crustacean hyperglycemic hormone (CHH) and the regulation of carbohydrate metabolism: current perspectives. *Comp Biochem Physiol A Physiol* 106: 405–411.

Saravanan R, Sugumar V, Beema Mahin MI (2018) Heavy metal stress induced hyperglycemia in blue swimmer crab, *Portunus pelagicus*. *Acta Oceanol Sin* 37: 47–53.

Sedlmeier D (1985) Mode of action of the crustacean hyperglycemic hormone. *Integr Comp Biol* 25: 223–232.

Sheir SK, Handy RD (2010) Tissue injury and cellular immune responses to cadmium chloride exposure in the common mussel *Mytilus edulis*: modulation by lipopolysaccharide. *Arch Environ Contam Toxicol* 59: 602–613.

Shore R, Carney G, Stygall T (1975) Cadmium levels and carbohydrate metabolism in limpets. *Mar Pollut Bull* 6: 187–189.

Sim-Smith CJ, Jeffs AG (2011) A novel method for determining the nutritional condition of seed green-lipped mussels, *Perna canaliculus*. *J Shellfish Res* 30: 7–11.

Smith JR, Fong P, Ambrose RF (2006) Dramatic declines in mussel bed community diversity: response to climate change? *Ecology* 87: 1153–1161.

Stoot LJ, Cairns NA, Cull F, Taylor JJ, Jeffrey JD, Morin F, Mandelman JW, Clark TD, Cooke SJ (2014) Use of portable blood physiology point-of-care devices for basic and applied research on vertebrates: a review. *Conserv Physiol* 2: 1–21.

Thurman C, Hanna J, Bennett C (2010) Ecophenotypic physiology: osmoregulation by fiddler crabs (*Uca* spp.) from the northern Caribbean in relation to ecological distribution. *Mar Freshw Behav Physiol* 43: 339–356.

Thurman CL, Faria SC, McNamara JC (2013) The distribution of fiddler crabs (*Uca*) along the coast of Brazil: implications for biogeography of the western Atlantic Ocean. *Mar Biodivers Rec* 6: e1.

Trinder P (1969) Determination of blood glucose using an oxidase–peroxidase system with a non-carcinogenic chromogen. *J Clin Pathol* 22: 158–161.

Valverde R, Owens DW, Mackenzie DS, Amoss MS (1999) Basal and stress-induced corticosterone levels in olive ridley sea turtles in relation to their mass nesting behavior. *J Exp Zool* 284: 652–662.

Vinagre AS, Da Silva RS (2002) Effects of fasting and refueling on metabolic processes in the crab *Chasmagnathus granulata* (Dana, 1851). *Can J Zool* 80: 1413–1421.

Vinagre AS, Nunes do Amaral AP, Ribarcki FP, Fraga da Silveira E, Pé rico E (2007) Seasonal variation of energy metabolism in ghost crab *Ocyopoda quadrata* at Siriú Beach (Brazil). *Comp Biochem Physiol A Mol Integr Physiol* 146: 514–519.

Webster S (1996) Measurement of crustacean hyperglycaemic hormone levels in the edible crab *Cancer pagurus* during emersion stress. *J Exp Biol* 199: 1579–1585.

Wells RMG, McShane PE, Ling N, Wong RJ, Lee TOC, Baldwin J (1998) Effect of wave action on muscle composition, metabolites and growth indices in the New Zealand abalone, *Paua* (*Haliotis iris*), with implications for harvesting and aquaculture. *Comp Biochem Physiol B Biochem Physiol Mol Biol* 119: 129–136.

Wells RMG, Pankhurst NW (1999) Evaluation of simple instruments for the measurement of blood glucose and lactate, and plasma protein as stress indicators in fish. *J World Aquacult Soc* 30: 276–284.

Wilkinson L, Blank G, Gruber C (1996) Desktop Data Analysis SYSTAT. 1st ed. Upper Saddle River, NJ, USA.: Prentice Hall PTR.

Yang X, Xu M, Huang G, Zhang C, Pang Y, Yang Z, Cheng Y (2018) The hyperglycemic effect of melatonin in the Chinese mitten crab *Eriocheir sinensis*. *Front Physiol* 9:270. doi:10.3389/fphys.2018.00270.