PLUS MINUS ANALOGUES FOR AFFINE TVERBERG TYPE RESULTS

PAVLE V. M. BLAGOJEVIĆ AND GÜNTER M. ZIEGLER

Dedicated to the memory of Branko Grünbaum

Abstract. The classical 1966 theorem of Tverberg with its numerous variations was and still is a motivating force behind many important developments in convex and computational geometry as well as the testing ground for methods from equivariant algebraic topology. In 2018, Bárány and Soberón presented a new variation, the “Tverberg plus minus theorem”. In this paper, we give a new proof of the Tverberg plus minus theorem, by using a projective transformation. The same tool allows us to derive plus minus analogues of all known affine Tverberg type results. In particular, we prove a plus minus analogue of the Optimal colored Tverberg theorem. This answers, in the case of primes minus one, a Bárány–Soberón question about a plus minus analogue of the classical Bárány–Larman conjecture.

1. Introduction and the statement of main result

A seminal 1966 result of Helge Tverberg [9] states that for any integers \(d \geq 1\) and \(r \geq 2\), with \(N = (r - 1)(d + 1)\), every affine map of the \(N\)-dimensional simplex \(\Delta_N\) into the Euclidean space \(\mathbb{R}^d\) identifies points from \(r\) vertex-disjoint faces of \(\Delta_N\). Over the years, along with numerous applications, Tverberg’s original theorem was extended in many different directions. For details on the history, relevance and connections to equivariant topology consult [8] [10] [1] and [4]; or for complete proofs of all relevant results see for example [7].

We now consider a recent variation of the classical Tverberg’s theorem, the “Tverberg plus minus theorem” of Bárány and Soberón [3]. In the following, for a face \(\mu\) of the simplex \(\Delta_N\) we set \(\mu’\) to be the complementary face of the face \(\mu\) in \(\Delta_N\), that is,

\[
\text{vert}(\mu) \cup \text{vert}(\mu’) = \text{vert}(\Delta_N) \quad \text{and} \quad \text{vert}(\mu) \cap \text{vert}(\mu’) = \emptyset.
\]

Here \(\text{vert}(\mu)\) denotes the set of vertices of the face \(\mu\) of the simplex \(\Delta_N\).

Theorem 1.1 (The Tverberg plus minus theorem of Bárány and Soberón [3, Thm.1.3]). Let \(d \geq 1\) and \(r \geq 2\) be integers with \(N = (r - 1)(d + 1)\), and let \(a: \Delta_N \rightarrow \mathbb{R}^d\) be an affine map. Furthermore, let \(\mu\) be a face of the simplex \(\Delta_N\) of dimension at most \(r - 2\) with \(a(\mu) \cap a(\mu’) = \emptyset\). Then there exist \(r\) pairwise disjoint proper faces \(\sigma_1, \ldots, \sigma_r\) of \(\Delta_N\) and there exists a point \(b \in \mathbb{R}^d\) from the intersection aff\((a(\sigma_1)) \cap \cdots \cap \text{aff}(a(\sigma_r))\) with a representation by \(r\) affine combinations

\[
b = \sum_{v \in \text{vert}(\sigma_1)} \alpha_v a(v) = \cdots = \sum_{v \in \text{vert}(\sigma_r)} \alpha_v a(v), \quad 1 = \sum_{v \in \text{vert}(\sigma_1)} \alpha_v = \cdots = \sum_{v \in \text{vert}(\sigma_r)} \alpha_v,
\]

such that

\[
(v \in \text{vert}(\mu) \implies \alpha_v \leq 0) \quad \text{and} \quad (v \in \text{vert}(\mu’) \implies \alpha_v \geq 0).
\]

Our statement of this theorem differs from the original version in [3, Thm.1.3] because we dropped an general position assumption on the affine map \(a: \Delta_N \rightarrow \mathbb{R}^d\), that all coordinates of the points in the set \(\{a(v) : v \in \text{vert}(\Delta_N)\}\) are algebraically independent. With this extra condition the point \(b\) becomes unique [3, Prop.1.1], and the condition on the signs of the coefficients in the representations of \(b\) becomes:

\((v \in \text{vert}(\mu) \iff \alpha_v < 0)\) and \((v \in \text{vert}(\mu’) \iff \alpha_v > 0)\).

All the results of this paper will be stated and proven without any extra assumptions on the affine map \(a: \Delta_N \rightarrow \mathbb{R}^d\), but, as in the work of Bárány and Soberón, all the results can be sharpened in the same way if the algebraic independency on the coordinates of the set \(\{a(v) : v \in \text{vert}(\Delta_N)\}\) is assumed.

Using an appropriate projective transformation, we show that the Tverberg plus minus theorem is a corollary of the classical Tverberg theorem. The new proof of Theorem 1.1, given in Section 2, allows us to directly derive plus minus analogues of literally all known affine Tverberg type results immediately.

This research was supported by the DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics".
In a brief sketch, in our approach we begin with fixing parameters and assumptions depending on the Tverberg type result for which we want to get a plus minus analogue, and then

— consider the given affine map \(a: \Delta_N \to \mathbb{R}^d \) from a simplex \(\Delta_N \) of appropriate dimension into a Euclidean space \(\mathbb{R}^d \), and

— transform it, via a projective transformation, into an affine map \(\hat{a}: \Delta_N \to E' \) from the same simplex into a different Euclidean space of the same dimension,

— on which we apply our, affine or topological, Tverberg type theorem obtaining, as a result, the corresponding, always affine, plus minus analogue.

In summary, we get plus minus analogues of the optimal colored Tverberg theorem, the weak colored Tverberg theorem, the generalized Van Kampen–Flores theorem, the equal barycentric coordinates Tverberg theorem, the Bárány–Larman colored Tverberg conjecture [2] for the case when \(r + 1 \) is a prime. In particular, the following theorem answers affirmatively a question of Bárány and Soberón [3, Open Problem 4.2] in the case when \(r + 1 \) is a prime.

Theorem 1.2 (Plus minus optimal colored Tverberg theorem). Let \(d \geq 1 \) be an integer, \(r \geq 2 \) be a prime with \(N = (r - 1)(d + 1) \), and let \(a: \Delta_N \to \mathbb{R}^d \) be an affine map. Furthermore, let \(\mu \) be a face of the simplex \(\Delta_N \) of dimension at most \(r - 2 \) with \(a(\mu) \cap a(\mu') = \emptyset \), and let the vertex set of the simplex \(\Delta_N \) be partitioned into \(m + 1 \) parts, called “color classes”,

\[
\text{vert}(\Delta_N) = C_0 \uplus \cdots \uplus C_m
\]

such that cardinality of each color class does not exceed \(r - 1 \), that is \(\text{card}(C_i) \leq r - 1 \) for all \(0 \leq i \leq m \).

Then there exist \(r \) pairwise disjoint proper faces \(\sigma_1, \ldots, \sigma_r \) of \(\Delta_N \), and there exists a point \(b \in \mathbb{R}^d \) from the intersection \(\text{aff}(a(\sigma_1)) \cap \cdots \cap \text{aff}(a(\sigma_r)) \) with a representation by \(r \) affine combinations

\[
b = \sum_{v \in \text{vert}(\sigma_1)} \alpha_v a(v) = \cdots = \sum_{v \in \text{vert}(\sigma_r)} \alpha_v a(v), \quad 1 = \sum_{v \in \text{vert}(\sigma_1)} \alpha_v = \cdots = \sum_{v \in \text{vert}(\sigma_r)} \alpha_v,
\]

such that

\[
(v \in \text{vert}(\mu) \implies \alpha_v \leq 0) \quad \text{and} \quad (v \in \text{vert}(\mu') \implies \alpha_v \geq 0),
\]

and in addition

\[
\text{card}(C_i \cap \text{vert}(\sigma_j)) \leq 1,
\]

for every \(0 \leq i \leq m \) and every \(1 \leq j \leq r \). That is, all the faces \(\sigma_1, \ldots, \sigma_r \) are “rainbow faces” – no two vertices are colored with the same color.

![Figure 1](image.png)

Figure 1. An illustration of Theorem 1.2 for the collection of colored points in the plane where \(d = 2 \), \(r = 3 \), \(N = 6 \), \(C_0 = \{v_1, v_5\}, C_1 = \{v_2, v_7\}, C_2 = \{v_3, v_6\}, C_3 = \{v_4\} \) and \(\text{vert}(\mu) = \{v_1, v_2\} \).

Identifying one color class with the set of vertices of the distinguished face \(\mu \) of the simplex \(\Delta_N \) yields the following strengthening of the original Tverberg plus minus theorem.
Corollary 1.3. Let \(d \geq 1 \) be an integer, \(r \geq 2 \) be a prime with \(N = (r-1)(d+1) \), and let \(a: \Delta_N \rightarrow \mathbb{R}^d \) be an affine map. Furthermore, let \(\mu \) be a face of the simplex \(\Delta_N \) of dimension at most \(r-2 \) with \(a(\mu) \cap a(\mu') = \emptyset \). Then there exist \(r \) pairwise disjoint proper faces \(\sigma_1, \ldots, \sigma_r \) of \(\Delta_N \), and there exists a point \(b \in \mathbb{R}^d \) from the intersection \(\text{aff}(a(\sigma_1)) \cap \cdots \cap \text{aff}(a(\sigma_r)) \) with a representation by \(r \) affine combinations

\[
b = \sum_{v \in \text{vert}(\sigma_1)} \alpha_v a(v) = \cdots = \sum_{v \in \text{vert}(\sigma_r)} \alpha_v a(v), \quad 1 = \sum_{v \in \text{vert}(\sigma_1)} \alpha_v = \cdots = \sum_{v \in \text{vert}(\sigma_r)} \alpha_v,
\]

such that

\[
(v \in \text{vert}(\mu) \implies \alpha_v \leq 0) \quad \text{and} \quad (v \in \text{vert}(\mu') \implies \alpha_v \geq 0),
\]

and in addition

\[
\text{card}(\text{vert}(\mu) \cap \text{vert}(\sigma_j)) \leq 1
\]

for every \(1 \leq j \leq r \). That is, in each of the affine presentation \(\sum_{v \in \text{vert}(\sigma_1)} \alpha_v a(v) \) of \(b \) there exists at most one vertex \(v \in \text{vert}(\sigma_i) \) with the corresponding coefficient \(\alpha_v \) being non-positive.

In the next section we give in parallel proofs of Theorem 1.1 and Theorem 1.2. The plus minus analogues of the weak colored Tverberg theorem, the generalized Van Kampen–Flores theorem, the equal barycentric coordinates Tverberg theorem of Soberón, and the admissible-prescribable balanced Tverberg theorem, can be proved in the identical way.

Acknowledgement. We are grateful to Imre Bárány, Florian Frick, and Pablo Soberón for useful suggestions.

2. Proof of Theorem 1.1 and Theorem 1.2

In this section we simultaneously prove Theorem 1.1 and Theorem 1.2. All the remaining analogues can be obtained in exactly the same way by modifying initial parameters and assumptions accordingly.

Let \(d \geq 1 \) be an integer, \(r \geq 2 \) be either an arbitrary integer or just a prime, and set \(N = (r-1)(d+1) \). Let \(a: \Delta_N \rightarrow \mathbb{R}^d \) be an affine map. Denote by \(V := \text{vert}(\Delta_N) = \{v_0, \ldots, v_N\} \) the set of vertices of the simplex \(\Delta_N \), and by \(I := \{0, \ldots, N\} \) the corresponding index set. In addition, when considering Theorem 1.2, we assume that the vertex set \(V \) of the simplex \(\Delta_N \) is partitioned into \(m + 1 \) color classes \(V = C_0 \uplus \cdots \uplus C_m \) such that the cardinality of each color class does not exceed \(r-1 \).

Let \(\mu \) be a face of \(\Delta_N \) with the property that \(\dim(\mu) \leq r-2 \) and \(a(\mu) \cap a(\mu') = \emptyset \). Consequently, there exists an affine hyperplane \(H \in \mathbb{R}^d \) that strictly separates \(a(\mu) \) and \(a(\mu') \). Let \(H \) be given by

\[
H := \{x \in \mathbb{R}^d : \langle x, w \rangle = \alpha\}
\]

where the vector \(w \in \mathbb{R}^d \setminus \{0\} \) and the scalar \(\alpha \in \mathbb{R} \) are chosen in such a way that

\[
a(\mu) \subseteq \text{int}(H^-) = \{x \in \mathbb{R}^d : \langle x, w \rangle < \alpha\} \quad \text{and} \quad a(\mu') \subseteq \text{int}(H^+) = \{x \in \mathbb{R}^d : \langle x, w \rangle > \alpha\}.
\]

Let \(E \) be the \(d \)-dimensional affine subspace of \(\mathbb{R}^{d+1} \) defined by \(E := \{(x, 1) \in \mathbb{R}^{d+1} : x \in \mathbb{R}^d\} \). Denote by \(e: \mathbb{R}^d \rightarrow \mathbb{R}^{d+1} \) the embedding of \(\mathbb{R}^d \) into \(\mathbb{R}^{d+1} \) given by \(x \mapsto (x, 1) \) for \(x \in \mathbb{R}^d \). Now the affine map \(a: \Delta_N \rightarrow \mathbb{R}^d \) can be considered as an affine map \(e \circ a: \Delta_N \rightarrow E \). The \(e \circ a \) images of the vertices of \(\Delta_N \) induce 1-dimensional linear subspaces \(L_{v_i} := \text{span}\{a(v_i), 1\} \) in \(\mathbb{R}^{d+1} \) that pierce \(E \) at the points \((e \circ a)(v_i) = \langle a(v_i), 1 \rangle \), that is \(L_{v_i} \cap E = \{(a(v_i), 1)\} \), where \(0 \leq i \leq N \).

Consider the \(d \)-dimensional affine subspace \(E' \) of \(\mathbb{R}^{d+1} \) defined by \(E' := \{y \in \mathbb{R}^{d+1} : \langle y, w' \rangle = 1\} \) where \(w' := (w, -\alpha) \in \mathbb{R}^{d+1} \). Then the lines \(L_{v_i} \) pierce \(E' \) at the points

\[
\hat{a}(v_i) := \frac{1}{\langle a(v_i), w \rangle - \alpha} (e \circ a)(v_i) = \frac{1}{\langle a(v_i), w \rangle - \alpha} (a(v_i), 1).
\]

Hence, we define a new affine map \(\hat{a}: \Delta_N \rightarrow E' \) by its values on the vertices on \(\Delta_N \). The choice we made in (1) implies that the scaling factor \(\frac{1}{\langle a(v_i), w \rangle - \alpha} \) in the definition of \(\hat{a}(v_i) \) is negative if and only if \(v_i \in \text{vert}(\mu) \), and positive if and only if \(v_i \in \text{vert}(\mu') \).

Now apply either the classical Tverberg theorem [9, Thm. 1] or, with appropriate coloring and the assumption that \(r \) is a prime, the Optimal colored Tverberg theorem [6, Thm. 2.1] [5, Thm. 2.1], to the affine map \(\hat{a}: \Delta_N \rightarrow E' \). We obtain \(r \) pairwise disjoint non-empty faces, or rainbow faces depending on the theorem we have used, \(\sigma_1, \ldots, \sigma_r \) of the simplex \(\Delta_N \) such that \(\hat{a}(\sigma_1) \cap \cdots \cap \hat{a}(\sigma_r) \neq \emptyset \). More precisely, there exist
— pairwise disjoint non-empty subsets I_1, \ldots, I_r of the index set I such that $\sigma_j := \text{conv}\{v_i : i \in I_j\}$ for all $1 \leq j \leq r$, and
— non-negative scalars $\alpha_1, \ldots, \alpha_r$ such that $\sum_{i \in I_1} \alpha_i = \cdots = \sum_{i \in I_r} \alpha_i = 1$,

with the property that

$$\sum_{i \in I_1} \alpha_i \hat{a}(v_i) = \cdots = \sum_{i \in I_r} \alpha_i \hat{a}(v_i) \in \hat{a}(\sigma_1) \cap \cdots \cap \hat{a}(\sigma_r).$$

Thus, using the definition of \hat{a} given in (2), we have that

$$\sum_{i \in I_1} \frac{\alpha_i}{(a(v_i), w) - \alpha} a(v_i) = \cdots = \sum_{i \in I_r} \frac{\alpha_i}{(a(v_i), w) - \alpha} a(v_i) =: u \in \mathbb{R}^d,$$

and

$$\sum_{i \in I_1} \frac{\alpha_i}{(a(v_i), w) - \alpha} = \cdots = \sum_{i \in I_r} \frac{\alpha_i}{(a(v_i), w) - \alpha} =: \beta \in \mathbb{R}. \quad (3)$$

The assumption that $\dim(\mu) \leq r - 2$ yields the existence at least one index set I_ℓ with the property

$$\text{vert}(\mu) \cap \{v_i : i \in I_\ell\} = \emptyset.$$

Therefore, the choice made in (1) implies that $\beta = \sum_{i \in I_\ell} (a(v_i), w) - \alpha > 0$.

Consequently, from (3) the point

$$\frac{1}{\beta} u = \sum_{i \in I_1} \frac{\alpha_i}{(a(v_i), w) - \alpha} a(v_i) = \cdots = \sum_{i \in I_r} \frac{\alpha_i}{(a(v_i), w) - \alpha} a(v_i) \in \text{aff}(a(\sigma_1)) \cap \cdots \cap \text{aff}(a(\sigma_r)),$$

is the one we are looking for. Indeed, according to (1) and the fact that $\beta > 0$ holds we get that

$$v_i \in \text{vert}(\mu) \implies \frac{\alpha_i}{\beta((a(v_i), w) - \alpha)} \leq 0 \quad \text{and} \quad v_i \in \text{vert}(\mu') \implies \frac{\alpha_i}{\beta((a(v_i), w) - \alpha)} \geq 0.$$

This completes the proof of both theorems, and gives a blueprint how to prove all the remaining plus
minus analogues directly from the corresponding Tverberg type theorems.

Remark 2.1. If we would drop the assumption on the dimension on the face μ and just keep the condition

that $a(\mu) \cap a(\mu') = \emptyset$, we could not conclude that the scalar β is positive. The only thing we would have
is that $\beta \neq 0$. Nevertheless,

$$\frac{1}{\beta} u = \sum_{i \in I_1} \frac{\alpha_i}{(a(v_i), w) - \alpha} a(v_i) = \cdots = \sum_{i \in I_r} \frac{\alpha_i}{(a(v_i), w) - \alpha} a(v_i) \in \text{aff}(a(\sigma_1)) \cap \cdots \cap \text{aff}(a(\sigma_r)),$$

but now the sign condition becomes

$$v_i \in \text{vert}(\mu) \implies \frac{\alpha_i}{\beta((a(v_i), w) - \alpha)} \leq 0 \quad \text{and} \quad v_i \in \text{vert}(\mu') \implies \frac{\alpha_i}{\beta((a(v_i), w) - \alpha)} \geq 0,$$

or

$$v_i \in \text{vert}(\mu) \implies \frac{\alpha_i}{\beta((a(v_i), w) - \alpha)} \geq 0 \quad \text{and} \quad v_i \in \text{vert}(\mu') \implies \frac{\alpha_i}{\beta((a(v_i), w) - \alpha)} \leq 0.$$

In particular, we have proved [3, Thm. 3.1], and furthermore extended this result to the all plus minus analogues of Tverberg type theorems.

References

[1] Imre Bárány, Pavle V. M. Blagojević, and Günter M. Ziegler, *Tverberg’s Theorem at 50: Extensions and Counterexamples*, Notices Amer. Math. Soc. 63 (2016), no. 7, 732–739.

[2] Imre Bárány and David G. Larman, *A colored version of Tverberg’s theorem*, J. Lond. Math. Soc. 2 (1992), 314–320.

[3] Imre Bárány and Pablo Soberón, *Tverberg plus minus*, Discrete Comput. Geom. 60 (2018), no. 3, 588–598.

[4] , *Tverberg’s theorem is 50 years old: a survey*, Bull. Amer. Math. Soc. (N.S.) 55 (2018), no. 4, 459–492.

[5] Pavle V. M. Blagojević, Benjamin Matschke, and Günter M. Ziegler, *Optimal bounds for a colorful Tverberg–Vrećica type problem*, Advances in Math. 226 (2011), 5198–5215.

[6] , *Optimal bounds for the colored Tverberg problem*, J. Eur. Math. Soc. (2017), 739–754.

[7] Pavle V. M. Blagojević and Günter M. Ziegler, *Beyond the Borsuk–Ulam Theorem: The Topological Tverberg Story*, A Journey Through Discrete Mathematics: A Tribute to Jiří Matoušek (Martin Loebl, Jaroslav Nešetřil, and Robin Thomas, eds.), Springer International Publishing, Cham, 2017, pp. 273–341.

[8] Jiří Matoušek, *Using the Borsuk–Ulam Theorem. Lectures on Topological Methods in Combinatorics and Geometry*, Universitext, Springer-Verlag, Heidelberg, 2003, second corrected printing 2008.
[9] Helge Tverberg, *A generalization of Radon’s theorem*, J. Lond. Math. Soc. 41 (1966), 123–128.

[10] Günter M. Ziegler, *3N colored points in a plane*, Notices Amer. Math. Soc. 58 (2011), no. 4, 550–557.

(Pavle V. M. Blagojević) Inst. Math., FU Berlin, Arnimallee 2, 14195 Berlin, Germany

E-mail address: blagojevic@math.fu-berlin.de

(Günther M. Ziegler) Inst. Math., FU Berlin, Arnimallee 2, 14195 Berlin, Germany

E-mail address: ziegler@math.fu-berlin.de