The influence of calcination temperature on the PTCR effect in (Ba$_{x-0.002}$Sm$_{0.002}$) TiO$_3$ ceramics prepared by the reduction sintering-reoxidation method

Meiying Yang1,3, Xuxin Cheng2, * and Haishen Chen1,*

1School of Physical Science and Technology, Guangxi Normal University, Yucai Road 15, Guilin 541004, Guangxi, PR China
2School of Electronic and Electrical Engineering, Zhaqing University, Zhaqing Road, Duanzhou District, Zhaqing 526061, Guangdong, PR China
3Chengnan Primary School, Xincheng District, Chongzuo 532200, Guangxi, PR China

*Corresponding author e-mail: cxx101@126.com, *hnchs503@163.com

Abstract. We investigate the effect of calcination temperature on the positive temperature coefficient of resistivity (PTCR) characteristics in (Ba$_{x-0.002}$Sm$_{0.002}$)TiO$_3$ ceramics that were fired at 1250 °C for 30 min in a reducing atmosphere and reoxidized at 800 °C for 1 h in air. The results indicate that the room-temperature resistivity first decreased and then increased as calcination temperature increased from 1000 °C to 1200 °C. Moreover, the critical calcination temperature of 1150 °C is experimentally determined. The samples have a low room-temperature resistivity of 38.4 Ω·cm and exhibit a significant PTCR effect with a resistance jump of 2.1 orders of magnitude. Furthermore, the room-temperature resistivity of the S7 samples doped with a small amount of Mn(NO$_3$)$_2$ is much higher than that of the S3 specimens not doped with Mn(NO$_3$)$_2$ in our work.

1. Introduction

Barium titanate (BaTiO$_3$) is a ferroelectric material that becomes a semiconducting material and exhibits an anomalous increase in resistance at the Curie temperature when ions at the A or B site are replaced by small quantities of a trivalent donor (such as Y$^{3+}$, Sm$^{3+}$, etc.) or pentavalent impurities [1, 2]. The phenomenon is generally known as the positive temperature coefficient of resistivity (PTCR) effect, and has been explained by Heywang [3] and Jonker [4]. Nowadays, lowering resistance for PTCR ceramics has become a hot topic. However, it is difficult to obtain significantly lower room-temperature resistivity for BaTiO$_3$-based samples prepared using traditional methods. To further reduce the room-temperature resistance, samples with a laminated structure can be prepared using a reduction–reoxidation method [5–8]. Recently the influence of the sintering temperature on room-temperature resistivity was investigated by Chung [9]. Moreover, Zhou et al. [10] drew the conclusion that and the room-temperature was affected by the cooling rate too. Niimi et al. [11] found that PTCR characteristics were affected by the ion radius of a donor ion.

However, little attention has been paid to the effect of the calcination temperature on the electrical properties and the PTCR effect of (Ba$_{x-0.002}$Sm$_{0.002}$) TiO$_3$ ceramics, which are prepared through a reduction–reoxidation sintering process. As this is essential, we study the effect of the calcination temperature in the present paper. In addition, the influence of Mn(NO$_3$)$_2$ on the PTCR effect of the samples has been also analyzed.
2. Experimental Procedures
The starting materials were high-purity BaCO₃, TiO₂, Sm₂O₃, SiO₂, and Mn(NO₃)₂, and they were weighed according to the following formula: (Baₓ-Sm₀.₀₀₂)TiO₃ + 6 mol% SiO₂ (BST), where \(x = 1.018 \). In the experiment, the mixtures were mixed by wet ball milling for 4h (350 r/min) in deionized water using an agate ball in a polyurethane jar, and they were dried at 115 °C in a drying oven, then the powders were calcined at 1000, 1050, 1125, 1150, 1175, and 1200 °C for 2h in air, they is denoted by S₁, S₂, S₃, S₄, S₅, and S₆, respectively. The mixture which was doped small amount of Mn(NO₃)₂ was ground again through ball-milling for 4h. After drying and sieving, the calcined powder was ground again by wet ball milling for 4h in a polyurethane jar. Next, the dried powder was blended with dispersant, solvent, binder, and defoamer by ball milling for 18h in a nylon pot and cast into green sheets of 55-μm thickness by the doctor-blade method. These sheets were stacked with 15 MPa pressure at 50 °C to form a ceramic block. Then they were cut into rectangular blocks (4.7 mm × 3.2 mm × 0.8 mm). Subsequently, the binder was removed by heating at 330 °C in air. The blocks were subsequent fired in an aluminum tube at 1250 °C for 30 min in a reducing atmosphere (3 vol% H₂/N₂), with the heating and cooling rates being 200 °C/h, at a flow rate of 200 ml/min. The fired BST ceramics were reoxidized at 800 °C for 1h in air, and the surfaces were coated with In–Ga alloy (60:40) to form electrode. Resistance was measured by a digital multimeter, and the temperature dependence of resistance was measured in a temperature-programmable furnace (ZWX-B, Huazhong University of Science and Technology, China) at a heating rate of 1.6 °C/min in the range of 25–250 °C.

3. Results and Discussion
3.1. XRD analysis

Figure 1. XRD patterns of the BST powder calcined at various temperatures for two hours.

Figure 1 shows the XRD patterns for the BST powder calcined by firing at 1000 °C–1200 °C for two hours in air. Note that the BST powder has a two-level structure. The BST powder for the ceramic at 1000 °C has a pseudocubic structure. In addition, a small quantity of BaCO₃ can be observed. At temperatures above 1125 °C, a tetragonal structure is formed along with a structure with reflections (002) and (200), as shown in Fig. 1. However, the structure of the samples calcined at 1000 °C is not split into two reflections. Therefore, it does not have a tetragonal structure.

3.2. Influence of the calcination temperature on the electrical properties
The room-temperature resistivity of the BST ceramics as a function of the calcination temperature (1000 °C–1200 °C) is shown in Fig. 2; note that the ceramics were reoxidized at 800 °C for 1h in air
after sintering at 1250 °C for 30 min in a reducing atmosphere. The room-temperature resistivity of the different specimens first decreases and then increases with the calcination temperature. The results show that the corresponding calcination temperature of the minimum resistivity is approximately 1150 °C, and its room-temperature resistivity is 38.4 Ω·cm. The decrease in resistivity is generally attributed to the inadequacy of the solid-state reaction. Thus, it is difficult to completely form a principal crystalline phase. This can be confirmed by the data from Fig. 1. Therefore, the electron density of the ceramics increases as the calcination temperature increases from 1000 °C to 1150 °C. The increase in resistivity may be due to the crystallite sizes of the calcinated samples; the mean crystallite sizes (d_{BT}) of the BST ceramics increases with increasing calcination temperature [12, 13]. Moreover, it is difficult to obtain a low room-temperature resistivity for the samples that were calcinated at high temperatures. Therefore, the room-temperature resistivity of the S6 ceramics is higher than that of the S4 samples.

![Figure 2](image)

Figure 2. Dependence of the room-temperature resistivity of the BST ceramics reoxidated at 800 °C after sintering at 1250 °C for 30 min on the different calcinated temperature.

3.3. *Effect of the calcinated temperature on PTCR effect*

![Figure 3](image)

Figure 3. The temperature dependence of resistivity of the BST ceramics with different calcinated temperatures reoxidized at 800 °C for 1 h after firing at 1250 °C for 30 min.

Figure 3 shows the temperature dependence of resistivity for the BST samples shown in Fig. 2; note that these samples were reoxidized at 800 °C for 1 h in air after firing at 1250 °C for 30 min in a
reducing atmosphere. From the figure, the S1 ceramics calcined at 1000 °C exhibit significant PTCR characteristics, with a resistivity jump of 3.2 orders of magnitude and a high room-temperature resistivity of $1.8 \times 10^3 \, \Omega \cdot \text{cm}$. Although the resistivity jump of the above samples is the highest, their room-temperature resistivity is also very high. However, the S4 samples calcined at 1150 °C have a low room-temperature resistivity of 38.4 $\Omega \cdot \text{cm}$, along with a weak PTCR effect, with a resistivity jump ($Lg(R_{max}/R_{min})$) of 2.1 orders of magnitude. This may be due to the lower height of the Schottky barrier.

3.4. Influence of PTCR effect on the acceptor dopant

![Figure 4. The temperature dependence of resistivity of the S3 and S7 samples with different Mn$^{2+}$ content.](image)

Figure 4 shows the temperature dependence of resistivity in the S3 and S7 samples for different Mn$^{2+}$ content reoxidized at 800 °C for 1 h in air after sintering at 1250 °C for 30 min in a reducing atmosphere. Note that the S7 ceramics were doped with a small quantity of Mn(NO$_3$)$_2$ (0.05 mol%), but the S3 samples were not doped with Mn(NO$_3$)$_2$. From Fig. 4, we can obviously see that the room-temperature resistivity of the S7 specimens is much higher than that of the S3 ceramics. Moreover, the former has a higher resistivity jump—2.8 orders of magnitude—than that of the latter. Mn(NO$_3$)$_2$ acts as an acceptor, so it can not only raise the sample resistivity, but also improve their PTCR effect.

4. Conclusion

The influence of the calcinated temperature on the PTCR effect of (Ba$_{x}$-0.002Sm$_{0.002}$) TiO$_3$ ceramics reoxidized at 800 °C for 1 h in air after sintering at 1250 °C for 30 min in a reducing atmosphere was investigated in this work. The results indicated that the room temperature resistivity first reduces and then increases as the calcination temperature increases from 1000 °C to 1200 °C. Moreover, the critical calcination temperature (i.e., 1150 °C) was determined in our experiment. The room-temperature resistivity and the resistance jump of the S3 samples are 38.4 $\Omega \cdot \text{cm}$ and 2.1 orders of magnitude, respectively. Furthermore, the experimental results signify that a small amount of Mn(NO$_3$)$_2$ can improve the PTCR effect in the S7 samples.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51402258), the Natural Science Foundation of Guangdong Province (No. 2015A030313706), the Science and Technology Planning Project of Guangdong Province (No. 2014A010105056), the Characteristic Creative Project of Department of Education of Guangdong Province (No. 2016KTSCX152), the Science and Technology Planning Project of Zhaoqing City (No.
2015B010402003), the Improving of the Basic Ability for the Younger Teachers in Higher Education of Guangxi (No. 2017KY0047), the Project of Undergraduate Teaching Reform in Higher Education of Guangxi (No. 2016JGZ113).

References
[1] M.W. Mancini and P.I. Paulin Filho, Direct observation of potential barriers in semiconducting barium titanate by electric force microscopy, J. Appl. Phys. 100 (2006) 104501.
[2] Z.C. Li, H. Zhang, X.D. Zou and B. Bergman, Synthesis of Sm-doped BaTiO3 ceramics and characterization of a secondary phase, Mater. Sci. Eng., B 116 (2005) 35.
[3] W. Heywang, Resistance anomaly in doped barium titanate, J. Am. Ceram. Soc. 47 (1964) 484.
[4] G.H. Jonker, Some aspects of semiconducting barium titanate, Solid-State Electron. 7 (1964) 895–903.
[5] X.X. Cheng, D.X. Zhou, Q.Y. Fu, S.P. Gong, D.C. Zhao, Influence of sintering conditions on the electrical properties and the PTCR effect of the multilayer Ba1.005(Ti1-xNbx)O3 ceramics with Ni internal electrode, J. Mater. Sci.: Mater. Electron. 23(12) (2012) 2202–2209.
[6] P.H. Xiang, H. Harinaka, H. Takeda, T. Nishida, K. Uchiyama and T. Shiosaki, Annealing effects on the characteristics of high Tc lead-free barium titanate-based positive temperature coefficient of resistance ceramics, J. Appl. Phys. (2008) 104 094108.
[7] X.X. Cheng, D.X. Zhou, Q.Y. Fu, S.P. Gong, Y.X. Qin, Effect of reoxidation annealing on the PTCR behavior of multilayer Nb5+-doped BaTiO3 ceramics with Ni internal electrode, J. Phys. D: Appl. Phys. 45(38) (2012) 385306 (7pp).
[8] H. Niimi, K. Mihara, Y. Sakabe and M. Kuwabara, Preparation of multilayer semiconducting BaTiO3 ceramics Co-fired with Ni inner electrodes, Jpn. J. Appl. Phys. 46 (10A) (2007), 6715–6718.
[9] Y.K. Chung and S.C. Choi, Effects of the re-oxidation temperature and time on the PTC properties of Sm-doped BaTiO3, J. Korean Chem. Soc. 46 (2009) 330–335.
[10] D.X. Zhou, X.X. Cheng, Q.Y. Fu, S.P. Gong, D.C. Zhao, Influence of cooling mode on the electrical properties and microstructure of Ba1.022-xSmxTiO3 ceramics sintered in a reducing atmosphere, Ceram. Int. 38(8) (2012) 6389–6397.
[11] H. Niimi, T. Ishikawa, K. Mihara, Y. Sakabe and M. Kuwabara, Effects of Ba/Ti ratio on positive temperature coefficient of resistivity characteristics of donor-doped BaTiO3 fired in reducing atmosphere, Jpn. J. Appl. Phys. 46 (2) (2007) 675–680.
[12] V.N. Shut, S.V. Kostomarov and A.V. Gavrilov, PTCR ceramics produced from oxalate-derived barium titanate, Neorg. Mater. 44(8) (2008) 1019–1024.
[13] K. Nozaki, M. Kawaguchi, K. Sato, M. Kuwabara, BaTiO3-based positive temperature coefficient of resistivity ceramics with low resistivities prepared by the oxalate method, J. Mater. Sci. 30 (1995) 3395–3400.