INTRODUCTION

Leishmaniases are tropical and sub-tropical diseases caused by the parasite protist belonging to the genus *Leishmania*. Two basic forms of leishmaniases occurs: i) visceral leishmaniasis (VL) or “Kala-azar” is caused by *Leishmania donovani* and *Leishmania infantum* (also known *L. chagasi* in South America), and ii) cutaneous leishmaniasis (CL) is caused by about 15 species of *Leishmania*, *L. tropica* (recidivan leishmaniasis) in the old world, and two possible forms in Latin America, diffuse CL (*L. guyanensis, L. amazonensis*) and mucocutaneous form with destruction of mouth mucosa, pharynx and facial tissue (*L. braziliensis*) (WHO, 2010). VL, the most severe form, is fatal without treatment. The leishmaniases are prevalent in about 88 countries: 350 million (M) people living in endemic aeras. The morbidity of about 12-14 M people and roughly 1.5-2 M new cases per year from whom 0.4-0.5 M for VL mainly in India, Nepal, Bangladesh, Brazil and Sudan (WHO, 2010). The global mortality is about 60,000 people (Desjeux, 2004). Conventional treatments include antimonial drugs (Glucantime® and Pentostam®), amphotericin B and its liposomal formulation (AmBisome®) which are used by parenteral route. A phosphorylcholine ester of hexadecanol, designated as miltefosine, originally developed as an anticancer drug (Muschiol et al., 1987) was shown to be the first oral drug against visceral (Jha et al, 1999, Sundar et al., 2002) and cutaneous (Soto et al., 2004; Sinderman & Engel, 2006, Soto & Toledo, 2007). However, it can be noticed that miltefosine (Impavido®) possesses a long half-life able to generate resistant *Leishmania* isolates and exhibits contra-indication in pregnancy because of adverse effects (Jha et al., 1999, Soto & Berman, 2006). Despite these limitations, miltefosine is now success-fully proposed in combination with AmBisome® in order to prevent drug resistance to both the drugs (Sundar et al., 2008).

Anyway, new compounds active by oral route should be developed in case of failure of this AmBisome®-miltefosine bitherapy in the future. Sitamaquine (WR-6026) is a 8-aminoquinoline analog (Fig. 1) discovered...
by the Walter Reed Army Institute of Research (WRAIR, USA) and in development with GlaxoSmithKline (UK) for the oral treatment of VL. Sitamaquine was first synthesized as part of the collaborative antimalarial program in the US (1944-1950) that led to primaquine (Elderfield et al., 1955). Sitamaquine is an orally active drug and appears as promising agent for treatment of VL both in India (Jha et al., 2005) and Africa (Wasunna et al., 2005).

IN VITRO AND IN VIVO SITAMAQUINE ACTIVITIES ON LEISHMANIASIS MODELS

Recent in vitro parasite evaluation confirmed the antileishmanial properties of sitamaquine dihydrochloride against a range of *Leishmania* species responsible for either cutaneous or visceral leishmaniasis, with ED50 values against amastigotes in a range from 2.9 to 19.0 microM (Garnier et al., 2006). In fact, the antileishmanial activity of 8-aminoquinoline was revealed more than fifty years ago when a series of 6-methoxy-8-alkylpiperazinoalkylaminoquinoline derivatives were shown to exhibit both a higher activity than pentavalent antimonials and oral availability against *L. donovani* in the hamster model (Beveridge et al., 1958). Later, a series of 4-methyl-6-methoxy-8-aminoquinolines called lepidines was shown to be several hundred times more active than pentavalent antimonials in a rodent model (Kinnamon et al., 1978). Structure-activity relationships of methoxy- and hydroxy-substituted compounds were further investigated in a *L. tropica*-macrophage model in vitro (Berman & Lee, 1983). Among them, primaquine exhibited a notable high activity and 8-[[6-(diethylamino)hexyl]amino]-6-methoxy-4-methylquinoline or WR6026, now called sitamaquine was 708 times more active than meglumine antimoniate (Glucantime®) against *L. donovani* in hamsters (Kinnamon et al., 1978).

On *L. major* cutaneous lesions in BALB/c mice, different topical sitamaquine dihydrochloride formulations using topically acceptable excipients were evaluated in vivo without success since no reduction of the parasite burden and lesion progression was observed (Garnier et al., 2006).

MECHANISM OF ACTION

Although the sitamaquine effects on the parasite have been visualized via alterations in their morphology (Langreth et al., 1983), the molecular targets of sitamaquine are still unknown. However, the sequential steps of interactions of sitamaquine with parasites are now well documented. Sitamaquine entry into *Leishmania* does not involve a transporter (López-Martín et al., 2008). As a lipophilic weak base, the sitamaquine accumulation into *Leishmania* promastigotes occurs along an electrical gradient involving two steps: first, the positively charged sitamaquine interacts with the anionic polar head groups of membrane phospholipids, and second, the sitamaquine insertion into the parasite plasma membranes results of a subsequent hydrophobic interaction between acyl chains of phospholipids and the hydrophobic quinoline ring leading to a deeper insertion of the drug into the lipid monolayer (Dueñas-Romero et al., 2007). This process is energy- and sterol-independent (Goïmbra et al., 2010). However, this affinity of sitamaquine for membranes is transitory since the main sitamaquine location was found into the cytosol (Goïmbra et al., 2010). In contrast, an energy-dependent efflux has been evidenced but the nature of the protein involved in this efflux remains to be elucidated (Goïmbra et al., 2010). NMR study of motile lipids showed that sitamaquine does not affect lipid trafficking in *Leishmania* (Goïmbra et al., 2010). Once internalized, sitamaquine rapidly accumulates into acidic compartments, mainly acidocalcisomes [acid vacuoles containing most of the cellular calcium] (López-Martín et al., 2008). This accumulation in acidocalcisomes allows to their alkalization (Vercesi et al., 2000). A rapid collapse of the mitochondrial inner-membrane potential was also observed (Vercesi et al., 1992). However, the antileishmanial action of sitamaquine is not related to its level of accumulation in acidocalcisomes (López-Martín et al., 2008). Proteomic analysis are running now to identify the sitamaquine targets.

BIOAVAILABILITY

Pharmacokinetics data in humans showed that sitamaquine has a short elimination half-life (about 26 hr) in contrast to miltefosine half-life (150-200 hr) (Theoharides et al., 1987). The metabolism of sitamaquine was studied in a rat hepatic microsomal system (Theoharides et al., 1985). Two metabolites were found: 8(6-diethylaminohexylamino)-6-methoxy-lepidine and 8(6-diethylaminohexylamino)-6-methoxy-4-hydroxy-methyl-quinoline (Yeates, 2002). The formation of both metabolites was NADPH-dependent. The formation of both metabolites seems to be
catalyzed by different cytochrome P450 isozymes. No more data are so far available to understand the importance of metabolites in the sitamaquine action.

CLINICAL TRIALS ON VISCERAL LEISHMANIASIS

First phase II assays performed in Kenya on 16 patients were encouraging enough to be continued further (Sherwood et al., 1994). In phase II assays in India with 120 VL patients (Jha et al., 2005), and in Kenya with 95 VL patients (Wasunna et al., 2005), sitamaquine was well tolerated with the doses ranging from 1.5 to 3 mg/mg/day, with vomiting and abdominal pains (about 10 %), headache (also about 10 %). Cyanosis (3 %) in India was reported to be due to methemoglobinemia, a recognized side effect of 8-aminoquinolines for individuals with glucose-6-phosphate deshydrogenase (G6PD) deficiency (Jha et al., 2005). Methemoglobinemia was not reported in the Kenyan study (Wasunna et al., 2005). Renal adverse effects (nephritic syndrome 3 % and glomerulonephritis 2 % in India) were observed only for

Chemical formula	C₂₁H₃₃N₃O.2HCl (dihydrochloride)
Physical properties	Octanol/water partition coefficient: LogP = 5.84
	Molecular weight: 342.51 g
	415.43 g (dihydrochloride)
Solubility	Dihydrochloride: water soluble (> 100 mg/ml at 25 °C)
	Ethanol soluble
Chemical characteristics	Weak base pKa ∼ 4.2 (quinoline nitrogen)
	10.4 (amine side chain)
Behaviour in biological fluids	Affinity for proteins (Duenas et al., 2007)
Interaction with host cell / parasite	Affinity for negative phospholipids (Duenas et al., 2007)
	Morphology alteration of *Leishmania* (Langreth et al., 1983)
Uptake and accumulation in Leishmania donovani promastigotes	Electrical gradient diffusion (Duenas et al., 2007)
	No affinity for sterols (Soares et al., 2010)
	No transporter suspected (López-Martín et al., 2008)
	Energy dependent efflux (Soares et al., 2010)
Intracellular targets	Accumulation in acidocalcisomes (Vercesi et al., 2000)
	Rapid collapse of the mitochondrial inner-membrane potential (Vercesi et al., 2002)
	Sitamaquine susceptibility not related to accumulation into acidocalcisomes (López-Martín et al., 2008)
Bioavailability	Plasma half-life: 26.1 hr
	4-CH₂OH as major urinary metabolite (Theoharides et al., 1987)
Clinical trials Phase II	High efficacy rate at doses 1.5-3 mg/kg/day × 28 by oral route
	Trials in India (Jha et al., 2005)
	Trials in Kenya (Wasunna et al., 2005)
Toxicity / adverse effects (%)	Vomiting
	Abdominal pains
	Headache (10 %)
	Methemoglobinemia (3 %)
	Cyanosis (3 %)
	Renal adverse effects: if doses > 2.5 mg/kg
	Nephritic syndrome (3 %)
	Glomerulonephritis (2 %)
	No methemoglobinemia in Kenya (Wasunna et al., 2005)
Resistance	At risk: obtained *in vitro* (Bories et al., 2008)

Table I. – Physico-chemical and biological properties of sitamaquine, an antileishmanial agent active against visceral leishmaniasis.
doses ≥ 2.5mg /mg/day (Jha et al., 2005), but effects on kidney need further investigation.

Another phase II clinical trial including dose-escalating safety and efficacy study was carried out in L. chagasi infected patients in Brazil (Dietze et al., 2001). Cure rates were not successful since a lack of increased efficacy was observed with increased dosing above 2 mg/kg/day × 28. Nephrotoxicity was observed at 2.5 mg/kg/day in two patients and in the single patient administered 3.25 mg/kg/day (Dietze et al., 2001).

On cutaneous leishmaniasis, because of the lack of activity on the in vivo models, no clinical development was performed with sitamaquine (Garnier et al., 2006).

RISK OF DRUG RESISTANCE

The short elimination half-life of sitamaquine in mammals is in favour of a low probability of resistance emergence. However, in order to evaluate the risk of sitamaquine resistance in the field, a L. donovani promastigote line resistant to 160 µM sitamaquine was selected by in vitro drug pressure and some characterististics of this resistant line were studied (Bories et al., 2008). The resistant line was infective for murine peritoneal macrophages in vitro as its parent wild-type line but less infective for Balb/C mice, suggesting that a low transmission of resistant parasites could occur in the field. The sitamaquine IC_{50} on the resistant line was about five and three times higher than those of the wild-type line on promastigote and intramacrophage amastigote forms, respectively. No cross-resistance with other antileishmanial agents was observed, allowing to use another antileishmanial drug in case of sitamaquine resistance. However, this resistance was stable when parasites were subcultured in drug-free medium for a long time or after in vivo passage, suggesting that a maintenance at a constant level in the parasite populations. These considerations, apparently speculative, could be indicative from an epidemiological point of view.

CONCLUSION

Few chemical series reach the clinical development in the field of leishmaniasis because the antileishmanial screening and toxicity bottlenecks are selective. Sitamaquine is the second orally active antileishmanial drug after miltefosine. The development of sitamaquine is slow because time is needed to ensure the safety of the drug, mainly at the level of methemoglobinemia and nephrotoxicity. Recent data show that resistance is at risk. However, the level of resistance obtained by in vitro drug pressure corresponds to a loss of susceptibility of 5-fold, that would be compatible with higher dosages if sitamaquine was not toxic. The major advantages of sitamaquine are its administration route and pharmacokinetics characteristics. Thus, its bioavailability is better than those of miltefosine. From all these data gathered in Table I, it is now probable that GSK company, the developer, will take a decision concerning the marketing of sitamaquine in the next future.

ACKNOWLEDGEMENTS

The authors have written this review under the auspices of CaP (Chemotherapy against Parasites / Consortium antiParasitaire).

REFERENCES

BERMAN J.D. & LEE L.S. Activity of 8-aminoquinolines against Leishmania tropica within human macrophages in vitro. American Journal of Tropical Medicine and Hygiene, 1983, 32, 753-759.

BEVERIDGE E., GOODWIN L.G. & WALLS L.P. A new series of leishmanicides. Nature, 1958, 182, 316-317.

BORIES C., COJEAN S., HUTEAU F. & LOISEAU P.M. Selection and phenotype characterisation of sitamaquine-resistant promastigotes of Leishmania donovani. Biomedicine and Pharmacotherapy, 2008, 62, 164-167.

COÏMBRA E.S., LIBONG D., COJEAN S., SAINT-PIERRE-CHAZALET M., SOL GADI A., LE MOYEC L., DUENAS-ROMERO A.M., CHAMINADE P. & LOISEAU P.M. Mechanism of interaction of sitamaquine with Leishmania donovani. The Journal of Antimicrobial Chemotherapy, 2010, 65, 2548-2555.

DESJEUX P. Leishmaniasis: current situation and new perspectives. Comparative Immunology, Microbiology and Infectious Diseases, 2004, 27, 305-318.

Dietze R., CARVALHO S.F.G., VALLI L.C., BERNAN J., BREWER T., MILHOU W., SANCHEZ J., SCHUSTER B. & GROGL M. Phase II trial of WR6026, an orally administrated 8-aminoquinoline, in the treatment of visceral leishmaniasis caused by Leishmania chagasi. American Journal of Tropical Medicine and Hygiene, 2001, 65, 685-689.

DUENAS-ROMERO A.M., LOISEAU P.M. & SAINT-PIERRE-CHAZALET M. Interaction of sitamaquine with membrane lipids of Leishmania donovani promastigotes. Biochimica et Biophysica Acta, 2007, 1768, 246-252.

ELDERFIELD R.C., MERTEL H.E., MITCH R.T., WEMPEN I.M. & WEBBLE E.J. Synthesis of primaquine and certain of its analogs. Journal of the American Chemical Society, 1955, 77, 4816-4819.

GARNIER T., BROWN M.B., LAWRENCE M.J & CROFT S.L. In vitro and in vivo studies on a topical formulation of sitamaquine dihydrochloride for cutaneous leishmaniasis. Journal of Pharmacy and Pharmacology, 2006, 58, 1043-1054.
SOTO J. & TOLEDO J.T, LÓPEZ-MARTÍN C., PÉREZ-VICTORIA J.M., CARVALHO L., CASTANYS, SINDERMANN H. & ENGEL J., SUNDAR S., RAJ, M., CHAKRAVARTY J., AGARWAL D., AGRAWAL N., SHERWOOD J.A., GACHHI G.S., MUGAI R.K., SKILLMAN D.R., JHA T.K., SUNDAR S., THAKUR C.P., FELTON J.M., SABIN A.J. & HORTON J. A phase II dose-ranging study of sitamaquine for treatment of visceral leishmaniasis in India. American Journal of Tropical Medicine and Hygiene, 2005, 73, 1005-1011.

KINNAMON K.E., STECK E.A., LOIZEAUX P.S., HANSON W.L., CHAPMAN W.L. Jr. & WAITS V.B. The antileishmanial activity of lepidines. American Journal of Tropical Medicine and Hygiene, 1978, 27, 751-757.

LORRETH S.G., BERMAN J.D., RIORDAN G.P. & LEE L.S. Fine-structure alterations in Leishmania tropica within macrophages exposed to antileishmanial drugs in vitro. Journal of Protozoology, 1983, 30, 555-561.

LOPEZ-MARTIN C., PEREZ-VALENCIA J.M., CARVALHO L., CASTANY S. & GAMARRO F. Sitamaquine sensitivity in Leishmania species is not mediated by drug accumulation in acidocalcisomes. Antimicrobial Agents and Chemotherapy, 2008, 52, 4030-4036.

MUSCHIOL C., BERGER M.R., SCHULER B., SCHEER H.R., GARZON F.T., ZELLER W.L., UNGER C., EIBL H.J. & SCHMAHL D. Alkyl phosphocholines: toxicity and anticancer properties. Lipids, 1987, 22, 930-934.

SHERWOOD J.A., GACHHI G.S., MUGAI R.K., SKILLMAN D.R., MUO G., RASHID J.R., WASUNNA K.M., WERE J.B., KASILI S.K., MUGIA J.M. ET AL. Phase II efficacy trial of an oral 8-aminoquinoline (WR6026) for treatment of visceral leishmaniasis. Clinical Infectious Diseases, 1994, 19, 1034-1039.

SINDERMANN H. & ENGEL J. Development of miltefosine as an oral treatment for leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2006, 100 (Suppl 1), S17-S20.

SOTO J., ARANA B.A., TOLEDO J., RIZZO N., VEGA J.C., DIAZ A., LUZ M., GUTIERREZ P., ARBOLEDA M., BERN AN J.D., JUNGE K., ENGEL J. & SINDERMANN H. Miltefosine for new world cutaneous leishmaniasis. Clinical Infectious Diseases, 2004, 38, 1266-1272.

SOTO J. & BERMAN J. Treatment of New World cutaneous leishmaniasis with miltefosine. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2006, 100 (Suppl 1), S34-S40.

SOTO J. & TOLEDO J.T. Oral miltefosine to treat new world cutaneous leishmaniasis. Lancet Infectious Diseases, 2007, 7, 7.

SUNDAR S., JHA T.K., THAKUR C.P., ENGEL J., SINDERMANN H., FISCHER C., JUNGE K., BRYCESON A. & Berman J. Oral miltefosine for Indian visceral leishmaniasis. New England Journal of Medicine, 2002, 347, 1739-1746.

SUNDAR S., RAI M., CHAKRABARTY J., AGARWAL D., AGRAWAL N., VAILLANT M., OLLARO P., MURRAY H.W. New treatment approach in Indian visceral leishmaniasis: single-dose lipo-somal amphotericin B followed by short-course oral miltefosine. Clinical Infectious Diseases, 2008, 47, 1000-1006.

THEOHARIDES A.D., CHUNG H., VELAZQUEZ H. Metabolism of a potential 8-aminoquinoline antileishmanial drug in rat liver microsomes. Biochemical Pharmacology, 1985, 34, 181-188.

THEOHARIDES A.D., KIM M.M., ASHMORE R.W. & SHIPLEY L.A. Identification and quantification of human urinary metabolites of a candidate 8-aminoquinoline antileishmanial drug WR-6026. Proceedings of American Society of Experimental Biology, 1987, 46, 865.

VERCESI A. & DOCAMPO R. Ca(2+) transport by digitonin-permeabilized Leishmania donovani. Effects of Ca(2+), pentamidine and WR-6026 on mitochondrial membrane potential in situ. Biochemical Journal, 1992, 284, 463-467.

VERCESI A., RODRIGUES C., CASTITI R. & DOCAMPO R. Presence of a Na(+)/H(+) exchanger in acidocalcisomes of Leishmania donovani and their alkalization by anti-leishmanial drugs. FEBS Letters, 2000, 473, 203-206.

WASUNNA M.K., RISHID J.R., MUH J., KIRIGI G., KINOTI D., LODENYO H., FELTON J.M., SABIN A.J. & HORTON J. A phase II dose-increasing study of sitamaquine for treatment of visceral leishmaniasis in Kenya. American Journal of Tropical Medicine and Hygiene, 2005, 73, 871-876.

WORLD HEALTH ORGANIZATION. Leishmaniasis Disease Burden. Available from: http://www.who.int/leishmaniasis, 2010.

YEATES S. Sitamaquine (GlaxoSmithKline/Walter Reed Army Institute). Current Opinion in Investigational Drugs, 2002, 3, 1446-1452.

Received on November 24th, 2010
Accepted on January 9th, 2011