Numerical study of the stress-strain state of reinforced plate on an elastic foundation by the Bubnov-Galerkin method

Alexey Beskopylnyi, Elena Kadomtseva and Grigory Strelnikov

1Don State Technical University, sq. Gagarin, 1, Rostov-on-Don, 344010, Russia

E-mail: besk-an@yandex.ru

Abstract. The stress-strain state of a rectangular slab resting on an elastic foundation is considered. The slab material is isotropic. The slab has stiffening ribs that directed parallel to both sides of the plate. Solving equations are obtained for determining the deflection for various mechanical and geometric characteristics of the stiffening ribs which are parallel to different sides of the plate, having different rigidity for bending and torsion. The calculation scheme assumes an orthotropic slab having different cylindrical stiffness in two mutually perpendicular directions parallel to the reinforcing ribs. An elastic foundation is adopted by Winkler model. To determine the deflection the Bubnov-Galerkin method is used. The deflection is taken in the form of an expansion in a series with unknown coefficients by special polynomials, which are a combination of Legendre polynomials.

1 Introduction

Stress-strain analysis of reinforced elements of various structures is widely used in the different stage of the reinforced concrete structures design [1-3]. Winkler's models are widely used in road and civil construction in the design of road clothes and foundation slabs under static [4] and dynamic loads [5].

Among the many technical problems associated with the assessment of the state of structures and buildings, an important place is taken by methods of quality control of material based on impact indentation. In [6] the impact conical indentation on a circular slab resting on Winkler foundation is considered. The solution of this problem takes into account the plastic flow of material from the punch. Non-linear integral equation for impact force \( P(t) \) was solved digitally.

Static analysis of functionally graded circular plates resting on Winkler elastic foundation is considered in [7]. The differential transforms method is utilized to solve the governing differential equations of bending of the thin circular plate under various boundary conditions.

The buckling analysis of composite orthotropic truncated conical shells under a combined axial compression and external pressure and resting on a Winkler foundation is discussed in [8]. The governing equations were obtained for the orthotropic truncated conical shell and solved by applying the Superposition and Bubnov-Galerkin method.

A nonlinear investigation is presented in [9] for impact response of functionally graded material doubly curved panels, which are resting on Winkler.

The relaxation constants of the material included in the nonlinear equation of Maxwell-Gurevich are considered in [10] for creep models.

In order to develop methods of digital analysis of stress-strain state of slab resting on Winkler foundation the method of Bubnov-Galerkin is considered.
2 Problem statement

We consider a rectangular plate with ribs of rigidity directed parallel to the edges of the plate, loaded with a distributed load q perpendicular to the median plane rigidly fixed at the edges (figure 1).

The plate is considered as constructively orthotropic. The differential equation of the bending of an orthotropic plate on an elastic base has the form

$$D_1 \frac{\partial^4 w(\xi, \eta)}{\partial \xi^4} + 2D_2 \frac{\partial^4 w(\xi, \eta)}{\partial \xi^2 \partial \eta^2} + D_3 \lambda^4 = \left( \frac{\alpha}{\lambda} \right)^4 \left[ q(\xi, \eta) - kw(\xi, \eta) \right]$$  \hspace{1cm} (1)

where $D_1 = D + \frac{E J_1}{b_1}$; $D_2 = D + \frac{E J_2}{a_1}$; $D_3 = D + \frac{a}{2} \left( \frac{J_1}{a_1} + \frac{J_2}{b_1} \right)$;

$D$ - cylindrical stiffness of a plate; $E J_1$, $E J_2$ - rib bending stiffness; $J_2$, $J_1$ - moments of inertia in torsion of ribs; $w(\xi, \eta)$ - plate deflection; $k$ - modulus of subgrade reactions; $a_i = a / n_i$ is the distance between the stiffeners of the parallel axe $y$; $b_i = b / n_2$ is the distance between the stiffeners of the parallel axe $x$; $n_1$, $n_2$ - the number of stiffener.

![Figure 1. Slab resting on Winkler foundation scheme](image)

We assume that the plate is rigidly constrained along the contour, then the deflection $w(\xi, \eta)$ satisfies the following boundary conditions

$$w(0, \eta) = \frac{\partial w(0, \eta)}{\partial x} = 0; \quad w(a, \eta) = \frac{\partial w(a, \eta)}{\partial x} = 0; \quad w(x, 0) = \frac{\partial w(x, 0)}{\partial y} = 0;$$

$$w(x, b) = \frac{\partial w(x, b)}{\partial y} = 0. \hspace{1cm} (2)$$

The dimensionless variables $\xi$, $\eta$ are related to the coordinates $x$, $y$ by the relations

$$x = \frac{a}{2} (\xi + 1); \quad y = \frac{b}{2} \left( \eta + \frac{1}{2} \right) \frac{y}{b}; \quad -1 \leq \xi \leq 1; \quad -1 \leq \eta \leq 1; \quad \lambda = \frac{a}{b} \hspace{1cm} (3)$$

The solution of equation (1) is made in the form of a double row

$$w(\xi, \eta) = \sum_{m=1}^{M} \sum_{n=1}^{N} A_{mn} Q_{m+3}(\xi) Q_{n+3}(\eta). \hspace{1cm} (4)$$

where $A_{mn}$ are unknown coefficients, $Q_i(\xi)$ are special orthonormal polynomials of degree $i$, which can be represented as a combination of three classical Legendre polynomials [8], satisfy the boundary conditions

$$Q_i(\pm 1) = \frac{\partial Q_i(\pm 1)}{\partial \beta} = 0, \quad \beta = \xi, \eta \text{ and the normalization conditions}$$

$$\int_{-1}^{1} \frac{\partial^4 Q_i(\xi)}{\partial \xi^4} Q_j(\xi) d\xi = \delta_{ij}, \quad \delta_{ij} - \text{Kronecker symbol}.$$  

Using the Bubnov-Galerkin method [11,12,13], we obtain a system of linear algebraic equations with respect to the unknown $A_{mn}$:

$$\sum_{m=1}^{M} \sum_{n=1}^{N} B_{kt}^{mn} A_{mn} = q_{kt},$$

$$t = 1, \ldots, 4; \quad k = 1, \ldots, M; \quad m = 1, \ldots, N.$$

2 Problem statement

We consider a rectangular plate with ribs of rigidity directed parallel to the edges of the plate, loaded with a distributed load q perpendicular to the median plane rigidly fixed at the edges (figure 1).

The plate is considered as constructively orthotropic. The differential equation of the bending of an orthotropic plate on an elastic base has the form

$$D_1 \frac{\partial^4 w(\xi, \eta)}{\partial \xi^4} + 2D_2 \frac{\partial^4 w(\xi, \eta)}{\partial \xi^2 \partial \eta^2} + D_3 \lambda^4 = \left( \frac{\alpha}{\lambda} \right)^4 \left[ q(\xi, \eta) - kw(\xi, \eta) \right]$$  \hspace{1cm} (1)

where $D_1 = D + \frac{E J_1}{b_1}$; $D_2 = D + \frac{E J_2}{a_1}$; $D_3 = D + \frac{a}{2} \left( \frac{J_1}{a_1} + \frac{J_2}{b_1} \right)$;

$D$ - cylindrical stiffness of a plate; $E J_1$, $E J_2$ - rib bending stiffness; $J_2$, $J_1$ - moments of inertia in torsion of ribs; $w(\xi, \eta)$ - plate deflection; $k$ - modulus of subgrade reactions; $a_i = a / n_i$ is the distance between the stiffeners of the parallel axe $y$; $b_i = b / n_2$ is the distance between the stiffeners of the parallel axe $x$; $n_1$, $n_2$ - the number of stiffener.

![Figure 1. Slab resting on Winkler foundation scheme](image)

We assume that the plate is rigidly constrained along the contour, then the deflection $w(\xi, \eta)$ satisfies the following boundary conditions

$$w(0, \eta) = \frac{\partial w(0, \eta)}{\partial x} = 0; \quad w(a, \eta) = \frac{\partial w(a, \eta)}{\partial x} = 0; \quad w(x, 0) = \frac{\partial w(x, 0)}{\partial y} = 0;$$

$$w(x, b) = \frac{\partial w(x, b)}{\partial y} = 0. \hspace{1cm} (2)$$

The dimensionless variables $\xi$, $\eta$ are related to the coordinates $x$, $y$ by the relations

$$x = \frac{a}{2} (\xi + 1); \quad y = \frac{b}{2} \left( \eta + \frac{1}{2} \right) \frac{y}{b}; \quad -1 \leq \xi \leq 1; \quad -1 \leq \eta \leq 1; \quad \lambda = \frac{a}{b} \hspace{1cm} (3)$$

The solution of equation (1) is made in the form of a double row

$$w(\xi, \eta) = \sum_{m=1}^{M} \sum_{n=1}^{N} A_{mn} Q_{m+3}(\xi) Q_{n+3}(\eta). \hspace{1cm} (4)$$

where $A_{mn}$ are unknown coefficients, $Q_i(\xi)$ are special orthonormal polynomials of degree $i$, which can be represented as a combination of three classical Legendre polynomials [8], satisfy the boundary conditions

$$Q_i(\pm 1) = \frac{\partial Q_i(\pm 1)}{\partial \beta} = 0, \quad \beta = \xi, \eta \text{ and the normalization conditions}$$

$$\int_{-1}^{1} \frac{\partial^4 Q_i(\xi)}{\partial \xi^4} Q_j(\xi) d\xi = \delta_{ij}, \quad \delta_{ij} - \text{Kronecker symbol}.$$  

Using the Bubnov-Galerkin method [11,12,13], we obtain a system of linear algebraic equations with respect to the unknown $A_{mn}$:

$$\sum_{m=1}^{M} \sum_{n=1}^{N} B_{kt}^{mn} A_{mn} = q_{kt},$$

$$t = 1, \ldots, 4; \quad k = 1, \ldots, M; \quad m = 1, \ldots, N.$$
\[ B_{kl}^{mn} = D_1 \int_{-1}^{1} \frac{\partial^4 Q_{m+3}(\xi)}{\partial \xi^4} Q_{k+3}(\xi) d\xi \int_{-1}^{1} Q_{n+3}(\eta) Q_{l+3}(\eta) d\eta \\
+ 2D_3 \lambda^2 \int_{-1}^{1} \frac{\partial^2 Q_{m+3}(\xi)}{\partial \xi^2} Q_{k+3}(\xi) d\xi \int_{-1}^{1} \frac{\partial^2 Q_{n+3}(\eta)}{\partial \eta^2} Q_{l+3}(\eta) d\eta \\
+ D_2 \lambda^4 \int_{-1}^{1} Q_m(\xi) Q_k(\xi) d\xi \int_{-1}^{1} \frac{\partial^4 Q_{n+3}(\eta)}{\partial \eta^4} Q_{l+3}(\eta) d\eta \\
+ k \left( \frac{a}{2} \right)^4 \int_{-1}^{1} Q_{m+3}(\xi) Q_{k+3}(\xi) d\xi \int_{-1}^{1} Q_{n+3}(\eta) Q_{l+3}(\eta) d\eta \\
+ Q_{kl} = \left( \frac{a}{2} \right)^4 \int_{-1}^{1} Q_{k+3}(\xi) d\xi \int_{-1}^{1} Q_{l+3}(\eta) d\eta ; k, l = 1, 2, 3 
\]

The bending moments arising in the plate are determined by the equations

\[ M_x(\xi, \eta) = -4D_1 \frac{a^2}{\xi^2} \left( \frac{\partial^2 w(\xi, \eta)}{\partial \xi^2} + \nu \lambda^2 \frac{\partial^2 w(\xi, \eta)}{\partial \eta^2} \right) ; \\
M_y(\xi, \eta) = -4D_2 \frac{a^2}{\eta^2} \left( \lambda^2 \frac{\partial^2 w(\xi, \eta)}{\partial \eta^2} + \nu \frac{\partial^2 w(\xi, \eta)}{\partial \xi^2} \right) \]

3 Results and discussion

Calculation of the concrete plate was carried out with the following initial data: \( a=3 \) m; \( b=2 \) m; \( h=5 \) cm; \( E_c=0.2 \cdot 10^5 \) MPa; \( \nu=0.2 \). Stiffeners: width \( b=1 \) cm; height \( h=2.5 \) cm; Material-steel: \( E_s=2 \cdot 10^5 \) MPa; \( G_s=8 \cdot 10^4 \) MPa. The plate is loaded with a uniformly distributed load \( q=100 \) kN/m\(^2\).

Figure 2 shows the distribution of deflections \( w(\xi, \eta) \), Figure 3 shows the bending moments \( M_x(\xi, \eta) \).
Figure 3. The distribution of the bending moments $M_x(\xi, \eta)$

Figure 4 shows $M_y(\xi, \eta)$ over the plate.

Figure 4. The distribution of the bending moments $M_y(\xi, \eta)$

Tables 1 and 2 show the results of calculating the plate for different modulus of subgrade reactions and a different number of stiffeners.

**Table 1.** The results of calculating the plate for $k=100$ MPa/m

| $n$ | $n$ | $w$ | $M$ | $M$ | $w$ | $M$ | $M$ |
|-----|-----|-----|-----|-----|-----|-----|-----|
| 0   | 0   | 0.11156 | 4.8948 | 0.97896 | 0.10987 | 0.93268 | 4.6634 |
| 6   | 6   | 0.11163 | 4.9854 | 0.98552 | 0.11001 | 0.95551 | 4.7222 |
| 12  | 12  | 0.11168 | 5.0744 | 0.99216 | 0.11014 | 0.97801 | 4.7806 |
| 12  | 0   | 0.11163 | 5.0673 | 0.9454 | 0.11009 | 1.0008 | 4.6681 |
| 0   | 12  | 0.11161 | 4.9016 | 1.0274 | 0.10992 | 0.91141 | 4.7758 |

**Table 2.** The results of calculating the plate for $k=500$ MPa/m
As can be seen from the above calculations, the number of reinforcing bars does not affect the magnitude of the maximum deflection and give insignificant changes in the values of the maximum moments, and accordingly the stresses. The influence of the bed coefficient on deflection and bending moments is significant. An increase in the bed coefficient results in a decrease in the deflection by a factor of five and a reduction in bending moments by 50%.

The proposed method makes it possible to calculate the strength and rigidity of arbitrarily fixed, randomly loaded rectangular reinforced plates on an elastic foundation.

References

[1] Kadomtseva E E and Morgun L V 2013 Engineering Journal of Don, 2 URL: ivdon.ru/magazine/archive/n2y2013/1655/
[2] Kadomtseva E E and Beskopylny A N 2013 Engineering Journal of Don, 4 URL: ivdon.ru/magazine/archive/n4y2013/2125/
[3] Beskopylny A N, Veremeenko A A and Yazev B M 2017 MATEC Web of Conferences 106 04004
[4] Kadomtseva E E, Beskopylny A N and Berdnik Ya A 2016 Engineering Journal of Don 3 URL: ivdon.ru/magazine/archive/n3y2016/3699/
[5] Beskopylny A N, Lyapin A A and Andreev V I 2017 MATEC Web of Conferences 106 00018
[6] Beskopylny A N, Kadomtsev I G and Beskopylnaya N I 2005 Theoretical foundations of civil engineering 83-84
[7] Abbasi S and Farhatnia F 2014 Archives of Civil and Mechanical Engineering 14 3 476-488 pp
[8] Sofiyev A H 2014 Composite Structures 113 208-215 pp
[9] Najafi N, Shojaeefard M H and Saedi Goodarchin H 2017 Composite Structures 162 351-364 pp
[10] Chepurnenko A S, Andreev V I, Yazev B M and Beskopylny A N 2016 MATEC Web of Conferences 67 06059
[11] Shukla S K 2002 Shallow foundations in geo synthetics and their applications Editor Thomas Telford (London) 123-163 pp
[12] Yin J H 2000 ASCE Journal of Geotechnical and Geoenvironmental Engineering 126 3 265-271 pp
[13] Kadomtseva E E, Beskopylny A N, Beskopylnaya N I and Berdnik Ya A 2016 Scientific Review. Technical Science 6 33-35 pp