Differential calculus on a novel cross-product quantum algebra

Deepak Parashar
Department of Mathematics, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, United Kingdom
E-mail: D.Parashar@swansea.ac.uk
URL: http://www-maths.swan.ac.uk/staff/dp/

Abstract. We investigate the algebro-geometric structure of a novel two-parameter quantum deformation which exhibits the nature of a semidirect or cross-product algebra built upon \(GL(2) \otimes GL(1) \), and is related to several other known examples of quantum groups. Following the R-matrix framework, we construct the \(L^\pm \) functionals and address the problem of duality for this quantum group. This naturally leads to the construction of a bicovariant differential calculus that depends only on one deformation parameter, respects the cross-product structure and has interesting applications. The corresponding Jordanian and hybrid deformation is also explored.

1. The quantum algebra \(A_{r,s} \)

The biparametric \(q \)-deformation \(A_{r,s} \) is defined [1] to be the semidirector cross-product
\[GL_r(2) \rtimes \mathbb{C}[f,f^{-1}] \] built on the vector space \(GL_r(2) \otimes \mathbb{C}[f,f^{-1}] \) where \(GL_r(2) = \mathbb{C}[a,b,c,d] \) modulo the relations
\[
\begin{align*}
ab &= r^{-1}ba, & bd &= r^{-1}db \\
ac &= r^{-1}ca, & cd &= r^{-1}dc \\
bc &= cb, & [a,d] &= (r^{-1} - r)bc
\end{align*}
\]
and \(\mathbb{C}[f,f^{-1}] \) has the cross relations
\[
\begin{align*}
af &= fa, & cf &= sf c \\
f &\triangleright b = sb, & df &= fd
\end{align*}
\]
\(A_{r,s} \) can also be interpreted as a skew Laurent polynomial ring \(GL_r[f,f^{-1};\sigma] \) where \(\sigma \) is the automorphism given by the action of element \(f \) on \(GL_r(2) \). If we let \(A = GL_r(2) \) and \(H = \mathbb{C}[f,f^{-1}] \), then \(A \) is a left \(H \)-module algebra and the action of \(f \) is given by
\[
\begin{align*}
 f \triangleright a &= a, & f \triangleright b &= sb, & f \triangleright c &= s^{-1}c, & f \triangleright d &= d
\end{align*}
\]

2. The dual algebra \(U_{r,s} \)

Knowing properties of cross-product algebras [2, 3], we already know that the algebra dual to \(A_{r,s} \) would be the cross-coproduct coalgebra \(U_{r,s} = U_r(gl(2)) \rtimes \mathbb{C}[[\phi]] \) with \(\phi \) as an element dual to \(f \). As a vector space, the dual is \(U_{r,s} = U_r(gl(2)) \otimes U(u(1)) \). Now, the duality relation between \(\langle GL_r(2), U_r(gl(2)) \rangle \) is already well-known [4], while that between \(\langle \mathbb{C}[f,f^{-1}], U(u(1)) \rangle \) is given by \(\langle f, \phi \rangle = 1 \), i.e., \(U(u(1)) = \mathbb{C}[[\phi]] \). More precisely, we work
algebraically with \(\mathbb{C}[s^\phi, s^{-\phi}] \) where \(\langle f, s^\phi \rangle = s \). This induces duality on the vector space tensor products, the left action dualises to the left coaction, and this results in the dual algebra being a cross-coproduct \(\mathcal{U}_{r,s} = U_r(gl(2)) \times \mathbb{C}[[\phi]] \). Let us recall that \(U_r(gl(2)) \), the algebra dual to \(GL_r(2) \), is isomorphic to the tensor product \(U_r(sl(2)) \otimes \hat{U}(u(1)) \) where \(U_r(sl(2)) \) has the usual generators \(\{H, X_\pm\} \) and \(\hat{U}(u(1)) = \mathbb{C}[\xi] = \mathbb{C}[r^\xi, r^{-\xi}] \) with \(\xi \) central. Therefore, \(\mathcal{U}_{r,s} \) is nothing but \(U_r(sl(2)) \) and two central generators \(\xi \) and \(\phi \), where \(\xi \) is the generating element of \(\hat{U}(u(1)) \) and \(\phi \) is the generating element of \(U(u(1)) \). Also note that \(s^\phi \) is dually paired with the element \(f \) of \(\mathcal{A}_{r,s} \).

3. R-matrix relations

In the quantum group language, \(\mathcal{A}_{r,s} \) is understood as a novel Hopf algebra \([5, 6]\) generated by \(\{a, b, c, d, f\} \) arranged in the matrix form

\[
T = \begin{pmatrix} f & 0 & 0 \\ 0 & a & b \\ 0 & c & d \end{pmatrix}
\] (4)

with the labelling 0, 1, 2, and \(\{r, s\} \) are the two deformation parameters. The \(R \)-matrix

\[
R = \begin{pmatrix} r & 0 & 0 & 0 \\ 0 & S^{-1} & 0 & 0 \\ 0 & \Lambda & S & 0 \\ 0 & 0 & 0 & R_r \end{pmatrix}
\] (5)

is in block form, i.e., in the order \([00], [01], [02], [10], [20], [11], [12], [21], [22] \) (which is chosen in conjunction with the block form of the \(T \)-matrix) where

\[
R_r = \begin{pmatrix} r & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & 0 & r \end{pmatrix}; \quad S = \begin{pmatrix} s & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}; \quad \Lambda = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}; \quad \lambda = r - r^{-1}
\]

The \(RTT \) relations \(RT_1T_2 = T_2T_1R \) (where \(T_1 = T \otimes \mathbf{1} \) and \(T_2 = \mathbf{1} \otimes T \)) then yield the commutation relations (1) and (2) between the generators. The Hopf algebra structure underlying \(\mathcal{A}_{r,s} \) is \(\Delta(T) = T \otimes T, \varepsilon(T) = 1 \). The Casimir operator \(\delta = ad - r^{-1}bc \) is invertible and the antipode is

\[
S(f) = f^{-1}, \quad S(a) = \delta^{-1}d, \quad S(b) = -\delta^{-1}rb, \quad S(c) = -\delta^{-1}rc, \quad S(d) = \delta^{-1}a \quad (6)
\]

The quantum determinant \(\mathcal{D} = \delta f \) is group-like but not central. There are several interesting features of this deformation \([5, 6, 1]\) which cannot be mentioned here. In the \(R \)-matrix formulation of matrix quantum groups, a basic step is to construct functionals (matrices) \(L^+ \) and \(L^- \) which are dual to the matrix of generators (4) in the fundamental representation. These functions are defined by their value on the matrix of generators \(T \)

\[
\langle (L^\pm)_b, T_d \rangle = (R^\pm)_{bd}^{ac} \quad (7)
\]

where

\[
(R^+)^{ac}_{bd} = c^+(R^-)^{ca}_{db} \quad (8)
\]

\[
(R^-)^{ac}_{bd} = c^-(R^-)^{ac}_{bd} \quad (9)
\]
and c^+, c^- are free parameters. For $A_{r,s}$ we make the following ansatz for the L^\pm matrices:

\[
L^+ = \begin{pmatrix} J & 0 & 0 \\ 0 & M & P \\ 0 & 0 & N \end{pmatrix} \quad \text{and} \quad L^- = \begin{pmatrix} J' & 0 & 0 \\ 0 & M' & 0 \\ 0 & Q & N' \end{pmatrix}
\]

where

\[
J = s^{\frac{1}{2}(F-A+D-1)}r^{\frac{1}{2}(F-A-D+1)}, \quad J' = s^{\frac{1}{2}(F-A+D-1)}r^{\frac{1}{2}(F-A-D+1)}
\]

\[
M = s^{\frac{1}{2}(F-A-D+1)}r^{\frac{1}{2}(-F+A-D+1)}, \quad M' = s^{\frac{1}{2}(F-A-D+1)}r^{\frac{1}{2}(-F+A-D+1)}
\]

\[
N = s^{\frac{1}{2}(F+A+D-1)}r^{\frac{1}{2}(-F-A+D+1)}, \quad N' = s^{\frac{1}{2}(F+A+D-1)}r^{\frac{1}{2}(-F-A+D+1)}
\]

\[
P = \lambda C,
\]

and \(\{A, B, C, D, F\}\) is the set of generating elements of the dual algebra \(U_{r,s}\). This is consistent with the action on the generators of \(A_{r,s}\) and gives the correct duality pairings. The commutation algebra is given by the \(RLL\) relations \(R_{12}L^+_2 L^+_1 = L^+_1 L^+_2 R_{12}, R_{12}L^-_2 L^-_1 = R_{12}L^-_1 L^-_2 L^-_2, \) where \(L^+_1 = L^+ \otimes 1, L^+_2 = 1 \otimes L^+,\) and \(R_{12}\) is the same as (5). Finally, we obtain a single-parameter deformation of \(U(gl(2)) \otimes U(u(1))\) as an algebra. Including the coproduct, we again obtain \(U_{r,s}\) as a semidirect product \(U_r(gl(2)) \rtimes U_u(u(1))\).

4. Differential calculus on \(A_{r,s}\)

The \(R\)-matrix procedure [7] is known to provide a natural framework to construct differential calculus on matrix quantum groups. We note here that the \(A_{r,s}\) deformation is not a full matrix quantum group, but an appropriate quotient of one (of multiparameter \(g\)-deformed \(GL(3)\), to be precise). Nevertheless, it turns out that the constructive differential calculus methods [8] work equally well for such quotients. The bimodule \(\Gamma\) (space of quantum one-forms \(\omega\)) is characterised by the commutation relations between \(\omega\) and \(a \in \mathcal{A}(= A_{r,s})\)

\[
\omega a = (1 \otimes g) \Delta(a) \omega
\]

and the linear functional \(g \in \mathcal{A}'(= \text{Hom}(\mathcal{A}, \mathbb{C}))\) is defined in terms of the \(L^\pm\) matrices

\[
g = S(L^+)L^-
\]

Thus, in terms of components we have

\[
\omega_{ij}a = [(1 \otimes S(l^+_i l^-_j)) \Delta(a)] \omega_{kl}
\]

using \(L^\pm = l^\pm_{ij}\) and \(\omega = \omega_{ij}\) where \(i, j = 1..3\). From these relations, one can obtain the commutation relations of all the left-invariant one-forms with the generating elements of \(\mathcal{A}\).

The left-invariant vector fields \(\chi_{ij}\) on \(\mathcal{A}\) are given by the expression

\[
\chi_{ij} = S(l^+_i l^-_j) - \delta_{ij} \varepsilon
\]

The vector fields act on the generating elements as

\[
\chi_{ij}a = (S(l^+_i l^-_j) - \delta_{ij} \varepsilon)a
\]
Furthermore, using the formula $da = \sum_i (\chi_i \ast a)\omega^i$, we obtain the action of the exterior derivatives ($d : A \rightarrow \Gamma$):

\[
d a = (r^-2 - 1)a \omega^1 - \lambda b \omega^+ \\
d b = \lambda^2 b \omega^1 - \lambda a \omega^- + (r^-2 - 1)b \omega^2 \\
d c = (r^-2 - 1)c \omega^- - \lambda c \omega^+ \\
d d = \lambda^2 d \omega^1 - \lambda c \omega^- + (r^-2 - 1)d \omega^2 \\
d f = (r^-2 - 1)f \omega^0
\]

(16) (17) (18) (19) (20)

where $\omega^0 = \omega_{11}, \omega^1 = \omega_{22}, \omega^+ = \omega_{23}, \omega^- = \omega_{32}, \omega^2 = \omega_{33}$. dA generates Γ as a left A-module, and this defines a first-order differential calculus (Γ, d) on $A_{r,s}$. The calculus is bicovariant due to the coexistence of the left ($\Delta_L : \Gamma \rightarrow A \otimes \Gamma$) and the right ($\Delta_R : \Gamma \rightarrow \Gamma \otimes A$) actions. Curiosly, using the Leibniz rule it can be checked that

\[
d (af - fa) = 0, \quad d(cf - sf c) = 0, \quad d(bf - s^{-1} fb) = 0, \quad d(df - fd) = 0, \quad (21)
\]

which is consistent with cross relations (2), and so the differential calculus also respects the cross-product structure of $A_{r,s}$.

5. The Jordanian deformation $A_{m,k}$

$A_{r,s}$ can be contracted [6] (by means of singular limit of similarity transformations) to obtain a nonstandard or Jordanian analogue, say $A_{m,k}$, with deformation parameters $\{m, k\}$ and the associated R-matrix is triangular. In analogy with $A_{r,s}$, $A_{m,k}$ can also be considered as the semidirect or cross-product $GL_m(2) \ltimes C[f, f^{-1}]$ built upon the vector space $GL_m(2) \otimes C[f, f^{-1}]$, where $GL_m(2)$ is itself a Jordanian deformation of $GL(2)$. Thus, $A_{m,k}$ can also be interpreted as a skew Laurent polynomial ring $GL_m[f, f^{-1}; \sigma]$ where σ is the automorphism given by the action of element f on $GL_m(2)$.

6. Conclusions

The $A_{r,s}$ and $A_{m,k}$ deformations provide interesting new examples of cross-product quantum algebras, both of which have $GL(2) \otimes GL(1)$ as their classical limits. The differential calculus on $A_{r,s}$ also has an inherent cross-product structure, embeds the calculus on $GL_q(2)$ and is also related to the calculus on $GL_{p,q}(2)$. It would be interesting to investigate the calculus on the Jordanian $A_{m,k}$, and on the hybrid/intermediate [9] deformation obtained during the course of the contraction of $A_{r,s}$ to $A_{m,k}$.

References

[1] Parashar D 2001 J. Math. Phys. 42 5431-5443
[2] Majid S 1995 Foundations of Quantum Group Theory (Cambridge: CUP)
[3] Klimyk A and Schmudgen K 1997 Quantum Groups and Their Representations (Springer)
[4] Sudbery A 1990 Proc. Workshop on Quantum Groups, Argonne (edited by Curtright T, Fairlie D and Zachos C) pp. 33-51
[5] Basu-Mallick B 1994 hep-th/9402142
[6] Parashar D and McDermott R J 2000 J. Math. Phys. 41 2403-2416
[7] Faddeev L D, Reshetikhin N Y and Takhtajan L A 1990 Len. Math. J. 1 193-225
[8] Jurco B 1991 Lett. Math. Phys. 22 177-186; 1994 preprint CERN-TH 9417/94
[9] Ballesteros A, Herranz F J and Parashar P 1999 J. Phys. A: Math. Gen. 32, 2369-2385