Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short communication

Circulation of Alphacoronavirus, Betacoronavirus and Paramyxovirus in Hipposideros bat species in Zimbabwe

Mathieu Bourgarela,b,1, Davies M. Pfukenyic, Vanina Bouéd, Loïc Talignanid, Ngoni Chiweshea,1, Fodé Diopd, Alexandre Carona,e,f,2, Gift Matopec, Dorothée Misséd, Florian Liégeoisd,☆

a CIRAD, UMR ASTRE, RP-PCP, Harare, Zimbabwe
b CIRAD, UMR ASTRE, INRA, Montpellier, France
c Faculty of Veterinary Science, University of Zimbabwe, P.O. Box MP167, Mt. Pleasant Harare, Zimbabwe
d MIVEGEC,IRD, CNRS, Univ. Montpellier, Montpellier, France
e CIRAD, UMR ASTRE, RP-PCP, Maputo, Mozambique
f Faculdade de Veterinária, Universidade Eduardo Mondlane, Maputo, Moçambique

☆ Corresponding author at: IRD/UMR 224, MIVEGEC, 911 avenue Agropolis, 34394 Montpellier, France.

Bats carry a great diversity of zoonotic viruses with a high-impact on human health and livestock. Since the emergence of new coronaviruses and paramyxoviruses in humans (e.g. Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Nipah virus), numerous studies clearly established that bats can maintain some of these viruses. Improving our understanding on the role of bats in the epidemiology of the pathogens they harbour is necessary to prevent cross-species spill over along the wild/domestic/human gradient. In this study, we screened bat faecal samples for the presence of Coronavirus and Paramyxovirus in two caves frequently visited by local people to collect manure and/or to hunt bats in Zimbabwe. We amplified partial RNA-dependent RNA polymerase genes of Alpha and Betacoronavirus together with the partial polymerase gene of Paramyxovirus. Identified coronaviruses were related to pathogenic human strains and the paramyxovirus belonged to the recently described Jeilongvirus genus. Our results highlighted the importance of monitoring virus circulation in wildlife, especially bats, in the context of intense human-wildlife interfaces in order to strengthen prevention measures among local populations and to implement sentinel surveillance in sites with high zoonotic diseases transmission potential.

Keywords:
Bat
Coronavirus
Paramyxovirus
Phylogeny
Emerging infectious diseases
Zimbabwe

ABSTRACT

Bats carry a great diversity of zoonotic viruses with a high-impact on human health and livestock. Since the emergence of new coronaviruses and paramyxoviruses in humans (e.g. Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Nipah virus), numerous studies clearly established that bats can maintain some of these viruses. Improving our understanding on the role of bats in the epidemiology of the pathogens they harbour is necessary to prevent cross-species spill over along the wild/domestic/human gradient. In this study, we screened bat faecal samples for the presence of Coronavirus and Paramyxovirus in two caves frequently visited by local people to collect manure and/or to hunt bats in Zimbabwe. We amplified partial RNA-dependent RNA polymerase genes of Alpha and Betacoronavirus together with the partial polymerase gene of Paramyxovirus. Identified coronaviruses were related to pathogenic human strains and the paramyxovirus belonged to the recently described Jeilongvirus genus. Our results highlighted the importance of monitoring virus circulation in wildlife, especially bats, in the context of intense human-wildlife interfaces in order to strengthen prevention measures among local populations and to implement sentinel surveillance in sites with high zoonotic diseases transmission potential.
little disease research until now. The Republic of Zimbabwe is situated southern Africa in the subtropical zone and has an exceptional great diversity of wildlife. To date more than 60 bat species have been recorded in Zimbabwe (Monadjem et al., 2010). Accordingly, Zimbabwe represents a potential hot spot for future emergence of microorganisms corded in Zimbabwe (Monadjem et al., 2010). To date more than 60 bat species have been recorded in Zimbabwe; Hipposideros vittatus (Monadjem et al., 2010). Our samples were closer to Hip. caffer than any other Hipposideros spp. (supplementary material, Fig. 1S.).

RNA extraction was carried out from all faecal samples collected. Briefly, two sample tubes from the same plastic sheet were pooled and transferred in a 50 ml tube with 20 ml of PBS 1× then vigorously mixed. All together we made 73 (51 in June 2016 and 22 in February 2017) pools from Mabura cave and 50 (35 in June 2016 and 15 in February 2017) pools from Magweto cave respectively. Tubes were centrifuged at 4500 rpm for 10 min. Supernatant was filtered using gauze in order to eliminate faecal matter and transferred in fresh tubes then re-centrifuged at 4500 rpm for 10 min. Supernatant was filtered through a 0.2 μm filter to remove eukaryotic and bacterial sized particles. Seven millilitres of filtered samples were centrifuged at 250,000 g for 2.5 h at 4 °C. The pellets were re-suspended in 600 μl H2O molecular grade and 150 μl were used to extract RNA using NucleoSpin® RNA Kit (Macherey-Nagel, France) according to the manufacturer’s protocol. The 123 RNA samples extracted from the pools were then reverse transcribed using random hexamers and screened for Coronavirus (CoV) and Paramyxovirus (ParV) as previously described employing a pan-coronavirus and pan-paramyxovirus nested RT-PCR directed against partial polymerase RNA-dependent RNA polymerase (RdPd) and polymerase gene sequences, respectively (Chu et al., 2011; Tong et al., 2008). PCR products (415 bp for CoV and 531 bp for ParV) were agarose gel purified (GeneClean Turbo Kit, MP Biomedicals, France) and directly sequenced in both 5’ and 3’ directions using cycle sequencing and dye terminator methodologies (Eurofins, Germany). Overlapping sequences were assembled into contiguous sequences using SEQMAN DNASTAR software (lasergene, DNASTAR, Inc., Madison, WI, USA). Partial non-concatenated nucleic acid sequences of the new Coronavirus and Paramyxovirus as well as from Cytochrome B were aligned using...
MEGA 7 (Kumar et al., 2016), with minor manual adjustments. Sites that could not be unambiguously aligned were excluded and divergent regions were excluded from subsequent analyses. Phylogenies were inferred using both Bayesian methods and Maximum Likelihood (ML) method implemented in MrBayes v3.2.6 and in PhyML respectively (Guindon et al., 2010; Ronquist et al., 2012). Mr. Bayes ran for four million generations for Coronavirus RdRp and Paramyxovirus polymerase genes respectively, with a 10% burn-in. Bayesian parameters were examined with the Tracer program (Tracer, 2003). Convergence diagnostic for the Estimated sample Size (ESS) values and Potential Scale Reduction Factor (PSRF) were > 500 and equal to 1 respectively. Bayesian identities analyses were done using ClustalX (Larkin et al., 2007).

We characterised Alphacoronavirus in Mabura cave as well as Betacoronavirus and Paramyxovirus in Magweto cave from roundleaf bats, which was the only bat genus observed in the two visited caves at the time of our samplings. Our new Alphacoronavirus formed a well sustained specific sub-clade close to the human Coronavirus 229E strain (HCoV-229E) (Fig. 2) that circulates in human population worldwide and mostly causes mild respiratory disease (Masters and Perlman, 2013). This close relationship is confirmed by a high percentage (95%) of amino acid identities (Supplementary Material, Table S1). Interestingly, our Betacoronavirus related strains are distinct to those identified in Hip. caffer from Ghana (Pfefferle et al., 2009). Nonetheless it is unclear whether bats directly transmitted this virus to human or if an intermediate host was involved in the transmission chain such as demonstrated for SARS-CoV and MERS-CoV (Smith and Wang, 2013).

In Mabura cave, during our first visit during the cold dry season in June 2016 we collected faeces from three plastic sheets and Betacoronavirus related virus was amplified from samples issued from each plastic sheet suggesting an important circulation of this virus in the bat colony. Interestingly, no viruses were amplified from the second sampling in this cave during the rainy season in February 2017. Nonetheless, during the second visit we observed a consequent diminution of bats present in
the cave and our sampling was lower than expected. This could be due to *Hipposideros* spp. seasonal movement. Besides, the absence of *Alphacoronavirus* could also be due to temporal variation in virus shedding in bats (Plowright et al., 2015).

In Magweto cave we amplified *Betacoronavirus* from only one pooled sample (Fig. 2). It could be due to a low circulation of this virus in the bat colony. Phylogenetic analyses showed that this new virus formed a specific clade with betacoronaviruses isolated in Asia and Africa (Gouilh et al., 2011; Pfefferle et al., 2009; Quan et al., 2010) with 90% to 87% of amino acid identities (Supplementary material, Table S1) and together they formed a sister clade with the described SARS-CoV strains with 77% of amino acid identities (Fig. 2, Supplementary material, Table S1). The SARS-CoV related (SARS-CoVr) sister clade is well sustained and our new Bt SARS-CoVr strain is positioned at the root of this clade. This finding could strengthen the African origin hypothesis of SARS-like group (Pfefferle et al., 2009; Quan et al., 2010). Nonetheless, this hypothesis is controversial and, in order to disentangle the Bt SARS-CoVr origin, future studies should focus on Hipposideridae as well as on Rhinolophidae and Rhinonycteridae since these three bat families diverged from a common ancestor, which potentially hosted the ancestor of SARS-related COVs (Foley et al., 2015; Gouilh et al., 2011).

Additionally, SARS-CoVr have been characterised from these three bat families (Pfefferle et al., 2009; Smith et al., 2016; Wu et al., 2016). SARS-CoV emerged at the beginning of 21st century following a human transmission by an intermediary host, a palm civet, in China. More than 8000 human infections were reported around the world with a case fatality rate of up to 10% (Smith and Wang, 2013). To date several studies evidenced different bat species as potential SARS and SARS-like CoV reservoirs worldwide (Li et al., 2005).

In addition, in the same cave we amplified a *Paramyxovirus* closer to bat *Paramyxovirus* (77 to 87% of amino acid identities) related to the putative Jeilongvirus genus (Fig. 3, Supplementary material Table S1) than other *Paramyxovirus* lineages. To date, the pathogenic potential of the viruses from this genus is currently unknown. However, the *Beilong* virus was discovered on human kidney cell lines and neutralising antibodies against *J* virus have been detected in rodents, pigs and humans (Audsley et al., 2016). In addition, bat viruses belonging to the related- *Jeilongvirus* genus were widely detected in China and more recently in Luxembourg in Europe (Pauly et al., 2017). Altogether, these data highlight the need for further studies on the zoonotic potential of these viruses.

![Fig. 3. Phylogenetic analysis of partial polymerase gene of the newly identified *Paramyxovirus* (ParV) sequence from Zimbabwe. New partial pol (531 bp) ParV sequences are represented in bold and were compared to previously identified *Paramyxovirus* available in the GenBank. Accession numbers are showed before the strain name. Only Bayesian posterior probabilities are showed. Asterisks at nodes represent posterior probability ≥ 90%. Scale bars indicate the number of base substitutions per site](image-url)
described in bats around the world (Anthony et al., 2017; Drexler et al., 2012), our results pointed out the need to widen viral screening in under-investigated countries particularly when the country has considerable potential as a hot spot for emerging infectious diseases (Morse et al., 2012). Our study focused on two caves in Zimbabwe with an important bat-human interface throughout guano harvesting and/or bats poisoning. Non-invasive sampling provides a rapid approach to target site of interest for in-depth studies on virus prevalence in bats and temporal variation in virus shedding in bats (viral ecology) and provides a first risk assessment of the transmission of bat-borne pathogens to humans. Finally, our study will enable, in agreement with the local health authorities, to carry out a specific communication within the local populations on the risk of contamination and how to prevent it.

Supplementary data to this article can be found at https://doi.org/10.1016/j.meegid.2018.01.007.

Acknowledgements

We thank Billy Butete and Cavin Mandina for their field assistance. We thank Estelle Méná for her technical assistance. This work was conducted within the framework of the Research Platform “Production and Conservation in Partnership” (RP–PCP).

Declaration of interest

We declare that we have no conflicts of interest.

References

Anthony, S.J., Johnson, C.K., Greig, D.J., Kramer, S., Che, Y., Wells, H., Hicks, A.L., Joly, D.O., Wolfe, N.D., Dazzak, P., Kares, W., Lipkin, W.I., Morse, S.S., Consortium, P., Mazet, J.A.K., Goldstein, T., 2017. Global patterns in coronavirus diversity. Virol. Evol. 3 (ve012).

Audley, M.D., Marsh, G.A., Liu, K.G., Tschepikov, M., Dzumbura, A., Wang, L.F., Jans, D.A., Moseley, G.W., 2016. The immune evasion function of J and Beloing virus proteins is distinct from that of other paramyxoviruses, consistent with their inclusion in the proposed genus Jeilongvirus. J. Gen. Virol. 97, 581–592.

Bingham, J., JavanWege, S., Sabeta, C.T., Wandelzer, A.I., Nel, L.H., 2001. Bats as reservoirs of unusual lyssaviruses (rabies and Mokola virus) identified retrospectively in the proposed genus Jeilongvirus. J. Gen. Virol. 97, 592.

Chu, D.K., Leung, C.Y., Gilbert, M., Joyner, P.H., Ng, E.M., Tse, T.M., Guan, Y., Peiris, J.S., 2003. v1.6. Available online:http://tree.bio.ed.ac.uk/software/tracer/.

Foggin, C.M., 1982. Atypical rabies virus in cats and a dog in Zimbabwe. Vet. Rec. 110, 338.

Foley, N.M., Thong, V.D., Soisook, P., Goodman, S.M., Armstrong, K.N., Jacobs, D.S., Puchmair, S.J., Teeling, E.C., 2015. How and why overcome the impediments to resolution: lessons from rhinopoulus and hantipusid bats. Mol. Biol. Evol. 32, 313–333.

Gouinlon, S., Dufayard, J.F., Lefort, V., Anismova, M., Hordijk, W., Gouilh, M.A., Puechmaille, S.J., Gonzalez, J.P., Teeling, E., Kittayapong, P., Manuguerra, J.C., 2011. SARS-Coronavirus ancestor's footprints in South-East Asian bat colonies and the refuge. Infect. Genes. Evol. 11, 1690–1702.

Guindon, S., Dufayard, J.F., Lefort, V., Anismova, M., Hordijk, W., Gouilh, M.A., Puechmaille, S.J., Gonzalez, J.P., Teeling, E., Kittayapong, P., Manuguerra, J.C., 2011. SARS-Coronavirus ancestor's footprints in South-East Asian bat colonies and the refuge. Infect. Genes. Evol. 11, 1690–1702.

Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1807–1817.

Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valiente, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G., 2007. Chalst W and Chalst X version 2.0. Bioinformatics 23, 2947–2948.

Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Cranmer, G., Hu, Z., Zhang, H., Zhang, J., McElrath, J., Field, H., Dzau, P., Eaton, B.T., Zhang, S., Wang, L.F., 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679.

Milne, I., Lindner, D., Bayer, M., Huismeier, D., McGuire, G., Marshall, D.F., Wright, F., 2009. TOPaLi v2: a rich graphical interface for evolutionary analyses of multiple alignments and multi-core desktops on HP clusters and multi-core desktops. Bioinformatics 25, 126–127.

Monadjem, A., Taylor, P.J., Cotterill, D.F.P., Schoeman, M.C., 2010. Bats of Southern and Central Africa: A Biogeographic and Taxonomic Synthesis. Book, Wits University Press.

Morse, S.S., Mazet, J.A.W., Woolse, M., Parish, C.R., Carroll, D., Kares, W.B., Zambrana-Torrello, C., Lipkin, W.I., Dzau, P., 2012. Prediction and prevention of the next pandemic zoonosis. Lancet 380, 1956–1965.

Pauley, M., Fitz, J.B., Loech, S., Saussy, A., Sneoke, C.J., Huben, J., Muller, C.P., 2017. Novel alaphacoronaviruses and parainfluenoviruses cocirculate with type 1 and severe acute respiratory system (SARS)-related Betacoronoviruses in Synchrony bats of Luxembourg. Appl. Environ. Microbiol. 83.

Masters, S.P., Perlman, S., 2013. Coronaviridae. In: Fields Virology, Sixth Ed. Lippincott Williams & Wilkins, Philadelphia, pp. 825–858.

Peterson, A.T., Lash, R.R., Carroll, D.S., Johnson, K.M., 2006. Geographic potential for outbreaks of Marburg hemorrhagic fever. Am. J. Trop. Med. Hyg. 75, 9–15.

Pfeiffer, S., Oppong, S., Drexler, J.F., Grau-Rausch, F., Ipsen, A., Seebens, A., Maurer, M.A., Anan, A., Vallo, P., Adu-Sarkodie, Y., Kruppa, T.F., Drosten, C., 2009. Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats. Ghana. Emerg. Infect. Dis. 15, 1377–1384.

Plowright, R.K., Eby, P., Hudson, P.J., Smith, I.L., Westcott, D., Bryden, W.L., Middleton, D., Reid, P.A., McFarlane, R.A., Martin, G., Tabor, G.M., Skerratt, L.F., Anderson, D.I., Cranmer, G., Quammen, D., Jordan, D., Freeman, P., Wang, L.F., Epstein, J.H., Marsh, G.A., Kung, N.Y., McCallum, H., 2015. Ecological dynamics of emerging bat spillover. Proc. Biol. Sci. 282, 20142124.

Pol Scientific, 1999. http://www.protocol-online.org/gwt/Protocols/RNAlater-3999.html.

Quan, P.L., Firth, C., Street, C., Henriques, J.A., Petrossoa, A., Tashkhumadenova, A., Huang, Q., Khoo, S.K., Egholm, M., Oshin, N., O'Quéynova, A.B., Brieze, A., Ruppertce, C.E., Lipkin, W.I., 2010. Identification of a severe acute respiratory syndrome-coronavirus-like virus in a leaf-nosed bat in Nigeria. MBio 1.

Ronquist, F., Huelsenbeck, J.P., 2003. v1.6. Available online:http://tree.bio.ed.ac.uk/software/tracer/.

Simpson, N.B., 2005. Evolution. An Eocene big bang for bats. Science 310, 528.

Smith, J.F., Wang, L.F., 2013. Bats and their virome: an important source of emerging viruses capable of infecting humans. Curr. Opin. Virol. 3, 84–91.

Smith, C.S., de Jong, C.E., Meers, J., Henning, J., Wang, L., Field, H.E., 2016. Coronavirus infection and diversity in bats in the Australasian region. Ecolethol 13, 72–82.

Tong, S., Chau, S.W., Li, Y., Pallansch, M.A., Anderson, L.J., 2008. Sensitive and broadly reactive reverse transcription-PCR assays to detect novel paramyxoviruses. J. Clin. Microbiol. 46, 2652–2658.

Tracey, 2003. v1.6. Available online: http://tree.bio.ed.ac.uk/software/trace/.

Wu, Z., Yang, L., Ren, X., Zhang, J., Yang, Z., Zhang, S., Jin, Q., 2016. ORF8-related genetic evidence for Chinese horseshoe bats as the source of human severe acute respiratory syndrome coronavirus. J. Clin. Microbiol. 46, 257-257.