PARABOLIC NILRADICALS OF HEISENBERG TYPE, II

AROLDO KAPLAN AND MAURO SUBILS

This is a sequel to [11], where we proved that every real simple non-compact Lie algebra different from \(\mathfrak{so}(1, n)\) has an essentially unique parabolic subalgebra whose nilradical is a Heisenberg algebra of a division algebra, and deduced some consequences regarding their Tanaka prolongations.

Here we discuss their symmetries, the associated parabolic geometries, and the riemannian geometry of the harmonic spaces \(\mathbb{R}_+ N\), having the former as conformal infinities.

It is somewhat remarkable that such basic result had not been noticed before. Since [11] was written we found that it can also be deduced from [10][13][5] by identifying the building blocks of Howe’s H-tower groups\(^1\).

Still, our construction is independent of type H and representation theory, and explains part of the “high degree of symmetry” observed in [10].

We thank E. Hullet, A. Tiraboschi and J. Vargas for fruitful conversations.

1. Algebras of type \(\text{divH}\) and associated parabolics

Recall that a normed real division algebra \(A\) determines two series of graded nilpotent algebras

\[
\mathfrak{h}_n(A) = (A^n \oplus A^n) \oplus A, \quad \mathfrak{h}'_{p,q}(A) = (A^p \oplus A^q) \oplus \Im(A)
\]

with respective brackets

\[
[x + y + t, \hat{x} + \hat{y} + \hat{t}] = \sum x_i\hat{y}_i - \hat{x}_i y_i, \\
[x + y + t, \hat{x} + \hat{y} + \hat{t}] = -\Im(\sum x_j\hat{x}_j + \sum \hat{y}_ky_k).
\]

Excluding the \(\mathfrak{h}'_{p,q}(\mathbb{R})\)'s, which are abelian, and the \(\mathfrak{h}_n(\mathbb{O})\), \(\mathfrak{h}'_{p,q}(\mathbb{O})\) for \(n > 1\) or \(p + q > 1\), which are non-prolongable (see 3.2 below), and taking the isomorphism \(\mathfrak{h}'_{p,q}(\mathbb{C}) \cong \mathfrak{h}_{p+q}(\mathbb{R})\) into account, the remaining ones are

\[
\mathfrak{h}_n(\mathbb{R}) \quad \mathfrak{h}_n(\mathbb{C}) \quad \mathfrak{h}_n(\mathbb{H}) \quad \mathfrak{h}_{p,q}(\mathbb{H}) \quad \mathfrak{h}_1(\mathbb{O}) \quad \mathfrak{h}_{1,0}(\mathbb{O}).
\]

We call these algebras and associated objects of type \(\text{divH}\), or when convenient, \(\mathfrak{h}(A)\).

Let now \(g\) be a simple Lie algebra, \(p \subset g\) a parabolic subalgebra, and \(n \subset p\) the nilradical of \(p\). If \(g\) is compact, then \(p\) is either 0 or \(g\). If \(p\) is proper and \(g\) is isomorphic to \(\mathfrak{so}(1, n)\), then \(p\) is unique up to conjugacy and \(n\) is abelian. Moreover, the \(\mathfrak{so}(1, n)\) are the only simple algebras with these
properties. Here we will be interested in the remaining ones, those which contain parabolic subalgebras with non-abelian nilradical, the set of which we which often denote by \mathcal{S}.

For a graded nilpotent Lie algebra $n = \mathfrak{g}^{-1} \oplus \mathfrak{g}^{-2} \oplus \ldots$ to be the nilradical of a parabolic subalgebra of a semisimple algebra is equivalent to asking that it can be “prolonged” to a finite dimensional graded semisimple algebra

$$g(n, g_0) = g^k \oplus \ldots \oplus g^1 \oplus g^0 \oplus g^{-1} \oplus \ldots \oplus g^{-k}$$

where $g^i = \theta g^{-i}$ for some Cartan involution. This already implies that $\text{Aut}(n)$ must be large enough, so as to contain such g^0. The associated parabolic subalgebra is $g^0 \oplus n$.

The main results of [11] can be resumed as follows.

Theorem 1. [11]

(a) Every simple non-compact Lie algebra not isomorphic to $\mathfrak{so}(1, n)$ has a parabolic subalgebra with non-singular nilradical.

(b) Any two are conjugate by the adjoint group.

(c) The nilradicals that appear are exactly the algebras of type $\text{div}H$.

(d) An algebra of type H is of type $\text{div}H$ if and only its Tanaka prolongation is not trivial.

One consequence is that divH algebras are the most symmetric among 2-step non-singular nilpotents, in the following sense. Let $n = v \oplus z$ be a 2-graded nilpotent Lie algebra with center z and let $m = \dim z$ and $n = \dim v$. Since $\text{Der}(n) = \text{Der}_{gr}(n) \oplus \text{Hom}(v, z)$,

$$\dim \text{Der}(n) = \dim \text{Der}_{gr}(n) + mn.$$

Generically, $\dim \text{Der}_{gr}(n) = 1$. If n is of type H,

$$\dim \text{Der}_{gr}(n) \geq \frac{1}{2} m(m + 1).$$

Now let N be the csc Lie group with Lie algebra n, \mathcal{V} the left-invariant distribution on N determined by v, and $\text{Inf}(n)$ the algebra of infinitesimal automorphisms of \mathcal{V} at e, that is, germs of vector fields X on N near e such that $L_X(\mathcal{V}) \subset \mathcal{V}$. Clearly, $\text{Inf}(n) \supset \text{Der}_{gr}(n)$. Then, generically, even among type H,

$$\dim \text{Inf}(n)/\text{Der}_{gr}(n) = \dim n.$$

For type $\text{div}H$ instead,

$$\dim \text{Inf}(n)/\text{Der}_{gr}(n) \geq 2 \dim n.$$

2. Langlands decompositions

Let n be of type $\text{div}H$, p a standard parabolic subalgebra of some simple Lie algebra \mathfrak{g} having n as nilradical, and

$$p = m \oplus a \oplus n$$

its Langlands decomposition. Then
Proposition 1.

\[m = m_o \oplus \text{spin}(n), \quad a = a_o \oplus a_\delta, \quad g_0 = m_o \oplus \text{spin}(n) \oplus a \]

where

- \(m_o \) is the centralizer of \(z \) in \(m \);
- \(\text{spin}(n) \cong \text{so}(3) \) acts on \(z \) by the standard representation and on \(v \) as a sum of spin representations;
- \(a_o = a \cap \text{Der}_o(n) \), which is 0 if \(p \) is maximal and 1-dimensional otherwise; and \(a_\delta = \mathbb{R} \delta \).

The individual factors of the resulting decomposition

\[p = (m_o \oplus a_o) \oplus \text{spin}(n) \oplus (a_\delta \oplus n) \]

are listed in Table 1.

Proof. All the assertions follow from Table 1, which is obtained applying the construction in the proof of Theorem 1 case by case. \(\square \)

Given a simple \(g \in \mathcal{S} \), denote by \(p(g) \) the parabolic subalgebra with nilradical \(n(g) \) of type \(\text{divH} \), and \(m(g) \) its Levi factor.

Corollary 1. \(g \in \mathcal{S} \) has a complex or quaternionic structure if and only if \(n(g) \in h_o(\mathbb{C}) \) or \(h_o(\mathbb{H}) \), respectively.

Proposition 2. \(p(g) \) is maximal parabolic except for \(g \cong su(1,n), su(1,n), su^*(2n), su^*(6), FII, sl(3,\mathbb{R}), sl(3,\mathbb{C}), \) or \(EIV \). It is minimal iff \(g \cong su(1,n), sp(1,n), su^*(6), FII, sl(3,\mathbb{R}), sl(3,\mathbb{C}), \) or \(EIV \).

Even if \(p(g) \) is not minimal, it contains the following distinguished minimal one. First note that any reductive Lie algebra can be uniquely decomposed as \(r = r' \oplus r'' \) where \(r' \) is semisimple with simple factors in \(\mathcal{S} \), and \(r'' \) is reductive with simple factors not in \(\mathcal{S} \).

Proposition 3.
(a) If \(g \in \mathcal{S} \), then \(m(g)' \in \mathcal{S} \).
(b) If \(g \in \mathcal{S} \) is classical, then \(m(g)' \) is classical and of the same type as \(g \).
(c) If \(n \) is \(\text{divH} \), then \(\text{Der}_o(n)' \in \mathcal{S} \).

Proof. By inspection of Table 1 \(\square \)

One obtains a filtration

\[g = g^0 \supset g^{-1} \supset \ldots \supset g^{-k} \]

of Lie subalgebras all of class \(\mathcal{S} \), with corresponding \(\text{divH} \)-nilradicals \(n(g^{-i}) \), such that \(g^{-i-1} = m(g^{-i})' \).

Proposition 4. \(p(g^{-k}) \) is a minimal parabolic subalgebra of \(g \), and \(\bigoplus_{i=0}^{k} n(g^{-i}) \) is a maximal nilpotent one.

It follows that every classical \(g \in \mathcal{S} \) fits into a strictly increasing filtration of algebras

\[0 \subset g^{-k} \subset \ldots \subset g^{-1} \subset g \subset g^1 \subset \ldots \]

of simple algebras of the same simple type and satisfying \(g^{-1} = (g^1)' \).

Remark 1. The \(\bigoplus_{i=0}^{j} n(g^{-i}) \) are essentially Howe’s H-tower algebras.
3. Parabolic Geometries

Among the distributions with symbol of type H, those with symbol of type divH have compact Klein models. More precisely, let \mathcal{V} be the canonical distribution on a group N of type divH, and choose a simple G and a parabolic P with N as nilradical. The tangent space to G/P at the origin can be identified with $\bar{\mathfrak{n}} = \bar{\mathfrak{v}} \oplus \bar{\mathfrak{z}}$, and P respects this grading. Let \mathcal{V} be the G-invariant distribution on G/P determined by $\bar{\mathfrak{v}}$. Therefore

Proposition 5. G/P carries a G-invariant distribution locally equivalent to \mathcal{V}.

Consider now a parabolic geometry of type divH on a manifold M, i.e., a Cartan geometry of type (G, P) where $\mathfrak{g} = \text{Lie}(G) \in \mathfrak{S}$ and $P \subset G$ is a parabolic subgroup with unipotent radical of type divH. Let ω be its Cartan connection and κ its curvature. Together with the gradings

$$\mathfrak{g} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2$$
$$\mathfrak{p} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2 \quad \mathfrak{n} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1},$$

ω determines a distribution \mathcal{D} on M and a principal G_0-bundle, where G_0 is the subgroup of P that preserves the grading of \mathfrak{g}. G_0 is isomorphic to a subgroup of $\text{Aut}_{gr}(\mathfrak{n})$ and $\text{Lie}(G_0) = \mathfrak{g}_0$.

ω is called *regular* when \mathcal{D} has constant symbol isomorphic to \mathfrak{n} and the principal G_0-bundle is a reduction of the canonical $\text{Aut}_{gr}(\mathfrak{n})$-bundle. When $G_0 = \text{Aut}_{gr}(\mathfrak{n})$, we have just a distribution of constant symbol. ω is called *normal* if it satisfies $\partial^* \kappa = 0$ where ∂^* is the Kostant codifferential. This condition assures the uniqueness of the Cartan connection.

Since a distribution is fat if and only if its symbol is non-singular, Theorem 1 (a) implies

Theorem 2. The regular normal parabolic geometries supported on fat distributions are exactly those of divH type.

In fact,

(a) Distributions with symbol $\mathfrak{h}_n(\mathbb{R})$ are associated to contact parabolic geometries: Lagrangean, partially integrable almost CR, Lie contact, contact projective, and exotic contact structures \[7\].

(b) Distributions with symbol $\mathfrak{h}_n(\mathbb{C})$ are associated to the complex contact structures of Boothby \[3\] and, more generally, to partially integrable almost CR-structures of CR-codimension 2 with additional structure. These have not received much attention except for special cases \[6\].

(c) For the cases $\mathfrak{g} = \mathfrak{sp}(n, \mathbb{R})$, $\mathfrak{sp}(n, \mathbb{C})$, \mathfrak{g} is not the prolongation of $(\mathfrak{n}, \mathfrak{g}_0)$, so the underlying structure they determine on the manifold is just a real or complex contact structure with the canonical $\text{Aut}_{gr}(\mathfrak{n})$-bundle. To characterize this parabolic geometries we have to consider finer underlying structures, in this case are a contact projective structure, i.e. a contact projective equivalence class of partial contact connections \[7\].

(d) For all the other divH algebras the parabolic geometry is determined by the distribution alone, with no additional structure (Proposition 4.3.1 in
Quaternionic and octonionic contact structures associated to $h'_{p,q}(\mathbb{H})$ and $h'_{1,0}(\mathfrak{O})$ have been the subject of interest \[7\].

(c) Distributions whose symbol is $h_1(\mathfrak{O})$ or $h'_{1,0}(\mathfrak{O})$ are locally isomorphic to the flat model. This is a consequence of the fact that the second generalized Spencer cohomology groups vanish in these cases \[15\].

1. Conformal infinity of harmonic spaces

Let N be a group of type H, $A = \exp(\mathbb{R}\delta)$ the group of dilations and $S = AN$ their semidirect product. Endowing n with a compatible metric induces a left-invariant Riemannian metric g on S, called a Damek-Ricci metric \[12\]. S is harmonic - hence Einstein, and any homogeneous noncompact harmonic space is isometric to S for some N of type H \[9\]. One is interested in the asymptotic behavior of the metric g.

If S is hyperbolic, the metric in polar form satisfies
\[
g = dt^2 + e^{t\gamma} + e^{2t\delta} + o(t) \quad (2)
\]
for $t \to \infty$, where (γ, D^δ) is a generalized G-conformal structure in the sense of Biquard-Mazzeo \[2\] on the geodesic boundary of S, which for the hyperbolic space is a sphere.

For the general S no such formula seems to exist (cf. for example \[4\]) - unless n is of type $div H$. For the first statement, consider the Poincaré-like realization of S in Euclidean unit ball B of the same dimension, as well as the Siegel-like one on
\[
U = \{(X, Z, t) \in \mathfrak{v} \times \mathfrak{z} \times \mathbb{R} : \ t > \frac{1}{4}|X|^2\}.
\]
The Cayley transform $C : U \rightarrow \mathbb{B}$
\[
C(X, Z, t) = \frac{1}{(1 + t)^2 + |Z|^2} ((1 + t - JZ)X, 2Z, -1 + t^2 - |Z|^2)
\]
is a diffeomorphism. It extends to the boundary of U in $\mathfrak{v} \times \mathfrak{z} \times \mathbb{R}$, $\partial U = \{(X, Z, \frac{1}{4}|X|^2) : X \in \mathfrak{v}, Z \in \mathfrak{z}\}$ giving a diffeomorphism
\[
C_0 : \partial U \rightarrow S^*
\]
onto the punctured sphere. N acts simply transitively on ∂U, hence on S^*, and its canonical distribution induces invariant distributions on these boundaries. Writing
\[
T_{(X, Z, \frac{1}{4}|X|^2)}(\partial U) = \{(2W, Y, <X, Y>) : Y \in \mathfrak{v}, W \in \mathfrak{z}\},
\]
the distribution is given by
\[
D_{(X, Z, \frac{1}{4}|X|^2)}^{\partial U} = \{(Y, \frac{1}{2}[X, Y], \frac{1}{2} < X, Y >) : Y \in \mathfrak{v}\}.
\]
Let now $D^S = dC_0(D^{\partial U})$ and let ∞ denote the puncture of S^*.

Proposition 6. D^S extends smoothly over ∞ if and only if S is a hyperbolic space.

Proof. If S is a hyperbolic space G/K, K is transitive on S and leaves invariant the distribution, it can have no singularities.
Otherwise, N does not satisfy the J^2 condition of $[8]$. This implies that there is a unitary triple $X \in \mathfrak{v}, Z, W \in \mathfrak{z}$ such that $[X, J_Z J_W X] = 0$. The vector fields on $\partial U \cong \mathfrak{v} \times \mathfrak{z}$

$$(v_1)_{(X,Z)} = (X, 0, \frac{1}{2}|X|), \quad (v_2)_{(X,Z)} = (J_Z X, \frac{1}{2}|X| Z, 0)$$

correspond to the copy of $\mathfrak{h}_1(\mathbb{R})$ spanned by the triple $X, J_Z J_W X, J_W X$. On S^* and along the orbit $\exp(\mathfrak{h}_1(\mathbb{R})) \cdot (-\infty)$, the plane spanned by $d\mathbb{C}(v_1)$, $d\mathbb{C}(v_2)$, is horizontal and has a limit as $|X|, |Z| \to \infty$, namely the plane $(\mathbb{R}X \oplus \mathbb{R}J_Z X, 0, 0)$. Doing the same with the copy of $\mathfrak{h}_1(\mathbb{R})$ spanned by $J_Z J_W X, J_W X, Z$, the corresponding limiting plane is $(\mathbb{R}J_W X \oplus \mathbb{R}J_Z J_W X, 0, 0)$. Therefore, if the distribution extends, its value at ∞ must be $(\mathfrak{v}, 0, 0)$. On the other hand, the vector

$$((1 + |Z|^2 - \frac{1}{10} |X|^4) J_W X, (1 + \frac{1}{4} |X|^2)|X|^2 W, 0)$$

is horizontal along the curve $1 + |Z|^2 = \frac{1}{10}|X|^4$, where it spans line $(0, \mathbb{R}W, 0)$, which is a contradiction. □

If N is of type divH however, the S-orbit of any point gives an isometric embedding into the associated symmetric space $S \hookrightarrow G/K$.

Denoting by ∂S the boundary of S in an appropriate compactification of G/K, the natural projection

$$\pi : \partial S \to S$$

onto the geodesic spherical boundary resolves the singularities of D^{S^*}.

As a consequence, $[2]$ holds in this case. Indeed such formula seems to characterize the divH among harmonic spaces. The non-hyperbolic ones are those obtained for $\mathfrak{n} = \mathfrak{h}_n(\mathbb{C}), \mathfrak{h}'_{p,q}(\mathbb{H}) (pq \neq 0), \mathfrak{h}_n(\mathbb{H}), \mathfrak{h}_1(\mathbb{O})$, are all anisotropic, and the last three admit non-regular deformations, suited to extend the arguments of $[2]$ to obtain new Einstein metrics. Details are left for a sequel, where the boundary structures (γ, δ) will be described for each divH type.

References

[1] Biquard, O., Quaternionic contact structures, Quaternionic Structures in Mathematics and Physics (Rome, 1999) (electronic), Univ. Studi Roma “La Sapienza” (1999), 23–30.

[2] Biquard, O., and R. Mazzeo, Parabolic geometries as conformal infinities of Einstein metrics, Archivum Mathematicum 42 (5) (2006), 85–104.

[3] Boothby, W., Homogeneous complex contact manifolds, Proceedings of the symposia in Pure Mathematics 3 (1961), 144–154.

[4] Camporesi, R., Geodesic spheres and non radial eigenfunctions on Damek-Ricci spaces, Indagationes mathematicae, 24 (2) (2013), 313–345.

[5] J-H. Cheng, Graded Lie algebras of the second kind, Trans. Amer. Math. Soc. 302 (1987), 467–488.

[6] Čap, A., and G. Schmalz, Partially integrable almost CR manifolds of CR dimension and codimension two, in “Lie Groups Geometric Structures and Differential Equations - One Hundred Years after Sophus Lie”, Adv. Stud. Pure Math. 37, Math. Soc. of Japan, Tokio, (2002) 45–79.
Table 1. Langlands factors of divH parabolics

g	m	dima	n	Σ
sl(n, R)	sl(n - 2, R)	2	h_{n-2}(R)	\{α_1, α_{n-1}\}
sl(n, C)	sl(n - 2, C) ⊕ \mathbb{R}^2	2	h_{n-2}(\mathbb{C})	\{α_1, α_{n-1}\}
su*(2n)	su(2)^2 ⊕ su*(2n - 4)	2	h_{n-2}(\mathbb{H})	\{α_2, α_{n-2}\}
su(p, q)	su(p - 1, q - 1) ⊕ \mathbb{R}	1	h_{p+q-2}(\mathbb{R})	\{α_1, α_{p+q-1}\}
sp(n, R)	sp(n - 1, R)	1	h_{n-1}(\mathbb{R})	\{α_1\}
sp(p, q)	su(2) ⊕ sp(p - 1, q - 1)	1	h'_{p-1,q-1}(\mathbb{H})	\{α_2\}
sp(n, C)	sp(n - 1, C) ⊕ \mathbb{R}	1	h_{n-1}(\mathbb{C})	\{α_1\}
so(p, q)	sl(2, \mathbb{R}) ⊕ so(p - 2, q - 2)	1	h_{p+q-4}(\mathbb{R})	\{α_2\}
so*(2n)	su(2) ⊕ so*(2n - 4)	1	h_{2n-4}(\mathbb{R})	\{α_2\}
so(n, C)	sl(2, \mathbb{C}) ⊕ so(n - 4, \mathbb{C}) ⊕ \mathbb{R}	1	h_{n-4}(\mathbb{C})	\{α_2\}

- **E1**: sl(6, \mathbb{R})
- **EII**: su(3, 3)
- **EIII**: su(1, 5)
- **EIV**: so(8)
- **E_6**: sl(6, \mathbb{C}) ⊕ \mathbb{R}
- **EV**: so(6, 6)
- **EV1**: so*(12)
- **EVII**: so(2, 10)
- **E_7**: so(12, \mathbb{C}) ⊕ \mathbb{R}
- **EVIII**: EV
- **EIX**: EVII
- **EIIX**: E_7 ⊕ \mathbb{R}
- **FI**: sp(3, \mathbb{R})
- **FI**I**: so(7)
- **F_4**: sp(3, \mathbb{C}) ⊕ \mathbb{R}
- **G**: sl(2, \mathbb{R})
- **G_2**: sl(2, \mathbb{C}) ⊕ \mathbb{R}

[7] Čap, A., and J. Slovák, “Parabolic geometries. I. Background and general theory”, Mathematical Survey and Monographs, 154. AMS, Providence, RI, 2009. x+629 pp.
[8] Cowling, M., A.H. Dooley, A. Koranyi, and F. Ricci, *An approach to symmetric space of rank one via groups of Heisenberg type*, J. Geom. Anal., 8 (1998), 199–237.
[9] Heber, J., *Noncompact homogeneous Einstein spaces*, Inventiones Math., 133 (1998), 279–352.
[10] Howe, R., *Some Recent Applications of Induced Representations*, in “Group representations, ergodic theory, and mathematical physics: a tribute to George W. Mackey”, volume 449 of Contemp. Math., Amer. Math. Soc., Providence, RI, (2008), 173–191.
[11] Kaplan, A., and M. Subils *Parabolic nilradicals of Heisenberg type*, arXiv:1608.02663 [math.DG], 2016.
[12] Rouvière, R., *Espaces de Damek-Ricci, Géométrie et Analyse*, Analyse sur les groupes de Lie et thorie des representations, Sémin. Cong., Soc. Math. France, 7 (2003), 45–100.
[13] Salmassian, H., *A notion of rank for unitary representations of reductive groups based on Kirillov’s orbit method*, Duke Math. J. 136 (2007), 1–49.
[14] Wolf, J., “Classification and Fourier inversion for parabolic subgroups with square integrable nilradical”, Memoirs of the American Mathematical Society, Number 225, 1979.
[15] Yamaguchi, K., *Differential systems associated with simple graded Lie algebras*, Advanced Studies in Pure Math. 22 (1993), 413–494.

A. Kaplan: CIEM-CONICET, FAMAF, U.N.C., Cordoba 5000, Argentina, and Department of Mathematics, U. of Massachusetts, Amherst, MA 01002, USA
E-mail address: kaplan@math.umass.edu

M. Subils: CONICET-FCEIA, U.N.R., Pellegrini 250, 2000 Rosario, Argentina.
E-mail address: msubils@gmail.com