Lawrence Berkeley National Laboratory
Recent Work

Title
Structural and chemical characterization of hardwood from tree species with applications as bioenergy feedstocks.

Permalink
https://escholarship.org/uc/item/7fg4d21k

Journal
PloS one, 7(12)

ISSN
1932-6203

Authors
Cetinkol, Özgül Persil
Smith-Moritz, Andreia M
Cheng, Gang
et al.

Publication Date
2012

DOI
10.1371/journal.pone.0052820

Peer reviewed
Structural and Chemical Characterization of Hardwood from Tree Species with Applications as Bioenergy Feedstocks

Özgül Persil Çetinkol1,2, Andreia M. Smith-Moritz1,2, Gang Cheng1,3, Jeemeng Lao1,2, Anthe George1,3, Kunlun Hong4, Robert Henry5, Blake A. Simmons1,3,5, Joshua L. Heazlewood1,2*, Bradley M. Holmes1,3

1 Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America, 2 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America, 3 Joint BioEnergy Institute, Sandia National Laboratory, Livermore, California, United States of America, 4 Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America, 5 Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, Australia

Abstract

Eucalypt species are a group of flowering trees widely used in pulp production for paper manufacture. For several decades, the wood pulp industry has focused research and development efforts on improving yields, growth rates and pulp quality through breeding and the genetic improvement of key tree species. Recently, this focus has shifted from the production of high quality pulps to the investigation of the use of eucalypts as feedstocks for biofuel production. Here the structure and chemical composition of the heartwood and sapwood of Eucalyptus dunnii, E. globulus, E. pilularis, E. urophylla, an E. urophylla-E. grandis cross, Corymbia citriodora spp. variegata, and Acacia mangium were compared using nuclear magnetic resonance spectroscopy (NMR), X-ray diffraction (XRD) and biochemical composition analysis. Some trends relating to these compositions were also identified by Fourier transform near infrared (FT-NIR) spectroscopy. These results will serve as a foundation for a more comprehensive database of wood properties that will help develop criteria for the selection of tree species for use as bioenergy feedstocks.

Introduction

The selection and development of a wide range of sustainable biomass feedstocks is critical for the establishment of a viable bioenergy. There are several renewable resources capable of providing sufficient quantities of lignocellulose annually for the production of biofuels and chemicals, including crops like Miscanthus giganteus and switchgrass, agricultural residues, and woody biomass derived from the forestry industry. It will be necessary to adopt a diversified regional approach to maximize yields, taking advantage of the natural pairings of climate, water resources, soil type, infrastructure, and geography.

Eucalypts are the most widely planted hardwoods, representing approximately 8% of all productive planted forests. They are grown in tropical and subtropical regions of Asia, Australia, Africa and South America, as well as in temperate regions in Europe, South and North America, Australia and Africa. Eucalypts are now placed in several genera including the widespread Corymbia and Eucalyptus genera [1]. Together with Acacia spp., eucalypts cover over 19.3×10^6 hectares and are among the fastest growing hardwood trees, with an average yield (over 10–20 year rotations) of 5–10 m^3·ha^−1·yr^−1 in drier climates, and up to 30 m^3·ha^−1·yr^−1 and greater in regions with high annual rainfall [2]. These evergreen trees can be harvested year round and, as they can be grown on upland landscapes, reduce the pressure on environmentally sensitive areas.

To date, the majority of literature on Eucalyptus and Acacia spp. has focused on its use as a source of pulps for the manufacture of high quality paper and tissue [3,4,5]. In the area of renewable energy, eucalypts have been studied as a source of charcoal for the production of “green steel” [6,7,8], and more recently, for the production of ethanol after pretreatment and enzymatic hydrolysis [9,10,11,12,13]. A number of studies employing a variety of feedstocks have demonstrated the relationship between the composition and structure of the biomass and improvements in saccharification. These have included alterations in lignin content in alfalfa, reed canarygrass and switchgrass [14]; lignin content and monomer composition in Arabidopsis [15]; lignin monomer ratios in switchgrass [16]; and cellulose crystallinity in avicel samples [17].

Given the natural and geographical diversity present in hardwoods, it is necessary to know how composition varies between species and how it is influenced by environmental factors rapidly. This understanding will aid in the selection of species most...
suited for conversion into biofuels. The heartwood and sapwood of six eucalypts and a widely planted tropical wattle, *Acacia mangium*, were analyzed to establish a baseline in the variation of their polysaccharide and lignin composition, chemical linkages, and cellulose crystallinity.

Materials and Methods

Plant Material and Processing

The heartwood and sapwood of *Eucalyptus dunnii*, *Eucalyptus globulus*, *Eucalyptus piliularis*, *Eucalyptus urophylla*, and *Eucalyptus grandis* were used from forests in Australia and globally. Heartwood (HW) and sapwood (SW) were then macerated with glass rods every 5 minutes. 84 g of DMSO was added to each tube and mixed. The cryo-milled samples (55 mg) were then placed in NMR tubes for 12 cycles in total. Each cycle consists of two minutes of grinding time and two minutes of cool down time. The cryo-milled samples were analyzed using TopspinTM (Bruker BioSpin) was used for processing and analysis of the data.

Nuclear Magnetic Resonance (NMR) Spectroscopy

Extracted biomass was cryo-milled in a SpexSamplePrep 6770 Freezer/Mill (SPEX CertiPrep, Metuchen, NJ) for 12 cycles in total. Each cycle consisted of two minutes of grinding time and two minutes of cool down time. The cryo-milled samples were then placed in NMR tubes with 600 μL of 99.9% dimethyl sulfoxide-d6 (DMSO-d6, Cambridge Isotope Laboratories, Inc. Andover, MA). The samples were mixed and sonicated, until homogenous, in a Branson 2510 tabletop cleaner (Branson Ultrasonic Corporation, Danbury, CT). The temperature of the bath was maintained below 45°C. 1H and HSQC (lspvsqtsgr2, td = 1 s, ns = 300, ds = 16, number of increments = 256, d1 = 1 s) spectra were acquired at 298 K using a Bruker (Billerica, MA) Avance–600 MHz equipped with a cryo-probe. The central DMSO peak was used as an internal reference; δH 2.49 and δC 39.5 ppm. The software program TopspinTM (Bruker BioSpin) was used for processing and analysis of the data.

X-ray Diffraction (XRD)

X-ray diffraction measurements were performed with the PANalytical Powder Diffractometer with a Cu-Kα source (λ = 1.54 Å), operated at 45 kV and 40 mA. The scans were collected between 2Θ = 5° to 40°, with a step size of 0.017°. The crystallinity of a sample, expressed as the percentage of crystalline cellulose in the whole biomass sample, can be estimated by using the empirical equation: CrI = \(\frac{I_{\text{total}} - I_{\text{amorphous}}}{I_{\text{total}}}\) where \(I_{\text{total}}\) and \(I_{\text{amorphous}}\) correspond to the scattering intensity of the whole sample and the amorphous materials in the sample respectively. Two measures of \(I_{\text{total}}\) and \(I_{\text{amorphous}}\) were used to estimate the crystallinity of the samples: 1) the Segal method, with \(I_{\text{total}}\) and \(I_{\text{amorphous}}\) being equal to the intensity of diffraction at the main peak and the minimum intensity between the main and secondary peaks, respectively and 2) the Ruland-Vonk method where \(I_{\text{total}}\) being derived from the sample, and \(I_{\text{amorphous}}\) from an amorphous standard, in this case pine derived Kraft lignin (Mead West Vaco, Richmond, VA). Overall, this equates \(I_{\text{cor}}\) and \(I_{\text{amorphous}}\) to the area under the scattering profile of the samples and lignin standard respectively, where the scattering profile from lignin was adjusted such that the background scattering matches that of the samples [18].

Two Stage Acid Hydrolysis

Total carbohydrate and lignin content of each extracted biomass sample was measured in triplicate using the National Renewable Energy Laboratory procedure (TP-510-42618 [19]). In summary, a HB43-S Halogen Moisture Analyzer (Mettler-Toledo) was used to determine the moisture content (Table S1) of wood samples. Around 300 mg of extracted biomass was placed in 140 ml pressure tubes (Ace Glass Inc, # 8649-30 Vineland, NJ) and mixed with 3 ml of 72% sulfuric acid (H₂SO₄; Fisher Scientific). Samples were incubated at 30°C for one hour and macerated with glass rods every 5 minutes after which 84 g of H₂O was added to each tube. The pressure tubes were then sealed, mixed well by inversion and autoclaved for one hour at 121°C using a liquid cycle. The samples were then cooled to room temperature and filtered through pre-weighed glass fiber filters (Whatman GA) and dried at 105°C. A sample of the filtrate was taken from each digestion for total carbohydrate analysis by HPAEC and acid soluble lignin analysis. The retentate was further washed with 3×80 ml of water to remove any residual acid. The acid insoluble lignin content was measured as the oven dried weight of the retentate. The ash content of the biomass could not be measureable due to relative low reported content of less than 0.3% [9,20,21,22,23]. Acid soluble lignin content was calculated by using UV absorbance of the filtrate at 205 nm (Shimadzu UV-2401, Columbia, MD). An extinction coefficient of 110 l/g⁻¹·cm⁻¹ was used to determine the lignin concentration [24].

Monosaccharide Composition Analysis

The matrix polysaccharide content was measured in triplicate using extracted biomass samples [25]. Briefly, a total of approximately 5 mg of extracted biomass was incubated in 1 ml of 2M (15% v/v) trifluoroacetic acid (TFA, Sigma-Aldrich) at 120°C for an hour in 2 ml screw cap tubes. The tubes cooled down to room temperature and the samples dried in a vacuum concentrator and weighed. The acid insoluble residue was collected between 2H and HSQC spectra were acquired at 288 K using a Bruker (Billerica, MA) Avance–600 MHz equipped with a cryo-probe. The central DMSO peak was used as an internal reference; δH 2.49 and δC 39.5 ppm. The software program TopspinTM (Bruker BioSpin) was used for processing and analysis of the data.

High Performance Anion Exchange Chromatography

Monosaccharide composition was used to calculate the total carbohydrate content from H₂SO₄ derived filtrate and TFA derived matrix polysaccharide digestion of extracted. All samples
were measured in triplicate using High Performance Anion Exchange Chromatography with Pulsed-Amperometric Detection (HPAEC-PAD) on a Dionex DX600. Separation was achieved with a CarboPac PA-20 analytical column (3×150 mm) and a CarboPac PA-20 guard column (3×30 mm) (Dionex, Sunnyvale, CA), at a temperature of 30 ºC with an eluent flow rate of 0.4 mL/min. The following method was employed; 12 min elution with 14 mM NaOH; 5 min ramp to 450 mM NaOH; 10 min elution with 450 mM NaOH; 10 min equilibration with 14 mM NaOH. In order to determine the mannose and xylose content for each sample the following modified method was applied. A CarboPac SA-10 analytical column (3×150 mm) at a temperature of 30 ºC with an eluent flow rate of 0.4 mL/min employing the following gradient: 25 min elution with 1 mM NaOH followed by a 15 min ramp to 10 mM NaOH. Externally standards of fucose, rhamnose, arabinose, mannose, galactose, glucose, xylose, galacturonic acid and glucuronic acid were used to determine the concentration.

Fourier Transform Near Infrared Spectroscopy (FT-NIR)

A MPA FT-NIR Spectrometer (Bruker Optics) was used to obtain spectra from each biomass sample. Spectral absorbance for 6–8 sample replicates of each species for all of heartwood and sapwood samples, covering a range from 12,000 to 3,800 cm⁻¹, was taken at a spectral resolution of 8 cm⁻¹. Spectra were collected in diffuse reflectance mode. A total of 32 scans were taken for each sample and co-added to give the final spectra. Preprocessing of the absorption spectra was done using Opus software (Bruker Optics). Absorption spectra were cropped from 1, smoothed using a Savitzky–Golay filter with 25 points, and baseline corrected. Statistical analysis was carried using Matlab (Mathworks). After pre-processing of the spectra, the data set was area-normalized then mean centered. Principal component analysis (PCA) was then performed on the PC scores that accounted for 95% of the variation across all samples (heartwood = 6 pc scores, sapwood = 11 pc scores) [30].

Results and Discussion

An important aspect to the development of feedstocks is knowledge regarding what specific structural and biochemical components in hardwoods play significant roles in biofuels production. Consequently, detailed studies on a wide variety of feedstocks employing various analytical techniques are required to establish a framework for the burgeoning industry. Several important steps must initially be optimized including the structural loosening of cell wall by pretreatment for enhanced enzymes accessibility and digestibility, followed by hydrolysis of cell wall to fermentable sugars then finally fermentation of sugars into fuels [28,29]. Each step is predicated on the previous process therefore to properly begin this avenue of research a complete compositional analysis is required prior to the assessment of biomass saccharification. To the best of our knowledge, these basic issues have not been explored in these hardwood species and consequently initial analyses of structure and composition are required.

Analysis by 2D Nuclear Magnetic Resonance Spectroscopy

2D-NMR of gels formed from the swelling of cryo-milled biomass samples in DMSO-d6 have been shown to enable the analysis of the cell wall without significantly altering its structure [30,31,32,33,34,35]. This technique has made possible the relatively fast and detailed identification of certain lignin and polysaccharide monomers in the plant cell wall and their linkages in a comprehensive manner. The HSQC (1-bond ¹³C–¹H correlation) spectra of *E. globulus* shows a representative spectrum of the plant-cell walls investigated in this study, with the common structures corresponding to the color-coded structures (Figure 1).

The high-resolution spectra allow us to identify the majority of the peaks using published literature [18,30,31,32,33,35,36,37]. Different lignin side chain and lignin unit correlations are readily distinguished in the aliphatic-oxidized and aromatic regions of the HSQC spectra (Figure 1, aliphatic and aromatic). The 2D-NMR HSQC spectra of all other species can be found in Figure S1.

Aliphatic chemical-shift correlations for polysaccharides in the HSQC spectrum were strong and easily identified (Figure 1, anomic); xylan (Xyl2: H2/C2, 3.01/72.6 ppm; Xyl3: H3/C3, 3.20/73.8 ppm; Xyl4: H4/C4, 3.52/75.4 ppm and Xyl5: H5/C5, 3.18–3.88/62.9 ppm), 2-acetylated xylan (2-O-Ac-D-Xylp: H2/C2, 4.49/73.2 ppm), 3-acetylated xylan (3-O-Ac-D-Xylp: H3/C3, 4.77/74.7 ppm), 2-acetylated mannann (2-O-Ac-D-Manp: H2/C2, 5.27/70.5 ppm), and glucan (Glc6: H6/C6, 3.55–59.9 ppm). Anomeric correlations for polysaccharides are found in the 3.8–5.8/90–110 ppm region and were identified using provisional assignments from published literature [30], with the peaks in this region being less well defined (Figure 1, anomic).

Cellulose, although the most abundant polysaccharide, is under-represented in this region and in solution state-NMR in general, due to its highly crystalline structure and subsequent poor swelling characteristics [30,31,32]. Chemical shifts assigned in this region are as follows: cellulose (β-D-Glcp: 4.19/103.0 ppm), xylen (β-D-Xylp: 4.27/102.8 ppm), acetylated xylosyl residues (2-O-Ac-β-D-Xylp: 4.50/99.3 ppm and 3-O-Ac-β-D-Xylp: 4.27/101.7 ppm), mannann (β-D-Manp: 5.41/100.4 ppm), acetylated mannosyl residue (2-O-Ac-β-D-Manp: 4.68/98.7 ppm), arabinan (β-D-Araf: 5.14/102.5 ppm), 4-O-methyl-α-D-glucuronic acid (4-O-MeGlcA: 5.15/97.1), reducing end of α-D-Glcp (α-D-Glcp: 3.02/92.5 ppm), reducing end of α-D-Xylp (α-D-Xylp: 4.86/92.1 ppm) and reducing end of β-D-Xylp (β-D-Xylp: 4.25/97.1 ppm).

The presence of strong acetylated-xylose crosspeaks in the hemi cellulose is in agreement with previously published results [32,38,39,40]. Strong acetate methyl peaks were observed at 2.00/20.7 ppm [31,32]. These cross peaks are attributed to acetylated hemicelluloses as no cross peaks belonging to acetylated lignins were observed in the spectra of any species [31,32]. There were also several cross peaks specific to individual species and tissue type. A strong cross peak at 5.08/100.0 ppm, assigned to α-L-fucopyranosyl [41] was found only in *A. mangium* heartwood and sapwood, *E. duurii* sapwood and *E. officinalis* sapwood (Figure S1). The heartwood and sapwood of *E. pilulians* and *CCF* displayed notably strong correlations for 2-acetylated mannann residues (5.27/70.5 ppm and 4.65/98.7 ppm for the aliphatic and anomic regions respectively). Only *A. magnium* heartwood lacked these cross peaks, and only a very weak signal was observed in its sapwood (Figure S1).

Lignin structures are present in both the aliphatic and aromatic region of the HSQC spectra. In the aliphatic region, the main lignin structures present are β-aryl ether units - A (Aα, 4.82/71.9 ppm; Aβ, 4.09/85.9 ppm), phenylcoumaran units - B (Bα, 5.43/86.9 ppm; Bβ, 3.45/53.1 ppm) and resinol units - C (Cα, 4.63/84.9 ppm; Cβ, 3.03/53.5 ppm; Cγ, 4.17/71.0 ppm) (Figure 1 anomic). The relative presence of these units is calculated by using the integrated volume of Aα, Bα and Cα cross peaks. Among the species studied, *E. globulus* had the highest ratio.
of β-aryl ether units at 97%, while *E. pillularis* sapwood had the lowest at 91% (Table 1). *A. mangium* sapwood showed significantly higher amounts of phenylcoumaran linkages (Table 1). No phenylcoumaran units were observed in the heartwood of *E. globulus*, *E. dunnii*, and CCV or the sapwood of CCV. This is most likely due to lower ratios of guaiacyl units, derived from coniferyl alcohol, observed in these samples (Table 1). The absence of any dibenzodioxocin in all the species is also attributed to the lower
levels of guaiacyl units [42]. Cinnamyl alcohol end-groups (X1, 4.07/61.4 ppm) were also observed in the aliphatic region of the HSQC spectra of all species studied (Figure 1 and Figure S1).

The cross peaks observed in the aromatic region of the HSQC spectra belong to the aromatic rings of lignin monomers (Figure 1, aromatic). Strong S2/6 correlations for syringyl (S) and oxidized syringyl (S') units are observed at 6.66/103.3 ppm and 7.19/106.3 ppm respectively. For guaiacyl (G) units, G2 correlations are observed at 6.90/110.7 ppm and correlations for G5/6 are observed at 6.70/114.6 ppm and 6.76/119.0 ppm. No correlations for p-hydroxyphenyl (H) were detected in the HSQC spectra of all species studied (Figure 1 and Figure S1).

The relative abundance of different inter-lignin linkages was determined by the integration of corresponding cross peaks in the HSQC spectra. Crystallinity index (CrI) of all samples was calculated using both the height of the XRD patterns or the area underneath. A (β-aryl ether); B (phenylcoumaran); C (resinol); S (syringyl); S' (oxidized syringyl); G (guaiacyl).

Biochemical Composition of Extracted Biomass Samples

To provide a more detailed characterization of the biomass samples, total carbohydrate, lignin, cellulose and matrix polysaccharide contents were measured. Total carbohydrate and lignin content of all samples was obtained using two-step H2SO4 hydrolysis (Table 2). CCV and A. magnium were found to have the highest total-carbohydrate content in the heartwood at approximately 58%, with the heartwood content of E. globulus also being within experimental error. The other four-eucalypt species, E. dunnii, E. pilularis, E. urophylla and E. urophylla X grandis had similar carbohydrate contents at approximately 50%. Sapwood showed a smaller variation in total carbohydrates, but also displayed similar groupings, at 55% for A. magnium, CCV and E. globulus, and 52% for the other eucalypt species. These values are lower than those found in the literature, with the total carbohydrate composition of E. globulus typically being around 67% [9,12,13,21,22,43,47]. Approximately 20% of each sample was unaccounted for in the total mass closure. This is most likely due to sugars degrading under acidic conditions, not measured due to incomplete hydrolysis, and lignin estimations from the two-step H2SO4 protocol. Acetate, which typically comprises 3.5% \(\%_w\) of E. globulus [38,39,40], and some pectin-derived sugars were also not measured.

Total lignin content measured varied between 25% for E. globulus sapwood and 31%, for E. urophylla heartwood among all the samples analyzed (Table 2). The acid insoluble and the total lignin content of CCV heartwood and E. globulus sapwood were lower compared to other species, and A. magnium had the lowest levels of the acid soluble lignin. Overall, the variations in lignin content were similar between heartwoods and the sapwoods.

The cellulose content of hardwoods is a key attribute for potential utilization for biofuels production. As a proportion of total measured carbohydrate, glucose derived from cellulose in both heartwood and sapwood ranged from 68% (E. globulus, HW) to 78% (E. urophylla X grandis SW). Generally, the cellulose content of sapwoods was higher than that of heartwoods in all species analyzed, an observation that has previously described for a number of hardwood species [47].

Analysis of the matrix polysaccharides in each extracted biomass sample consistently showed the presence of rhamnose, fucose, arabinose xylene, mannose, galactose, glucose and

Table 1. The ratio of lignin substructures and crystallinity index of heartwood (HW) and sapwood (SW) samples.

Species	A:C:B	S:S'	S:G	CrI (height)	CrI(area)
Acacia mangium HW	64:2:1	9:1	54:49	49	49
CCV HW	65:2:1	9:1	54:49	49	49
E. dunnii HW	64:2:1	9:1	54:49	49	49
E. globulus HW	64:2:1	9:1	54:49	49	49
E. urophylla HW	64:2:1	9:1	54:49	49	49
E. urophylla X grandis HW	64:2:1	9:1	54:49	49	49
E. pilularis HW	64:2:1	9:1	54:49	49	49
Acacia mangium SW	93:6:1	91:9	52:47	47	47
CCV SW	93:6:1	91:9	52:47	47	47
E. dunnii SW	93:6:1	91:9	52:47	47	47
E. globulus SW	93:6:1	91:9	52:47	47	47
E. urophylla SW	93:6:1	91:9	52:47	47	47
E. urophylla X grandis SW	93:6:1	91:9	52:47	47	47
E. pilularis SW	93:6:1	91:9	52:47	47	47

The crystallinity index (CrI) is the area fraction that can be readily determined using X-ray diffraction (Figure 2A). XRD patterns for all the biomass samples were given in Figure 2B and 2C. There are three peaks at 15.7°, 22.0° and 34.4°, which are consistent with cellulose I lattice. The broad peak at 16.3° is a composite from several peaks and the peak at 22.0° corresponds to the distance between hydrogen-bonded sheets [18,44]. The small peak at 34.4° corresponds to 5% of the length of one cellulose (1.036 nm) [45]. The calculated crystallinity based on the Segal method (peak height) of samples varied from 44 to 56% while that obtained applying the Ruland-Vonk method (peak area) was between 29 and 49 (Table 1). Both techniques require the baseline subtraction of an amorphous reference. The results obtained from the latter method are in closer agreement with the cellulose contents between 33 and 43% observed in the samples studied. Heartwood samples of A. magnium and CCV possessed the highest crystallinity while the sapwoods of E. dunnii, E. pilularis, and E. urophylla appear to have the lowest. The lack of a systematic trend within the two methods of calculating crystallinity points the need to confirm these findings using alternative methods such as solid state 13C NMR, FTIR and Raman. This will enable the development of more robust XRD correlations for these types of samples [46].
Analysis of Samples by Fourier Transform Near Infrared Spectroscopy

FT-NIR spectroscopy has been used for the rapid characterization and classification of plant material [48,49,50,51]. In contrast to mid infrared, the NIR region (12,000 to 4,000 cm⁻¹) does not reveal discrete signature peaks, but it excites several harmonic overtones of methyl, aromatic CH-OH, with minor features in methoxy and carbonyl CH bonds, generating spectra that have no easily distinguishing chemical features [52]. However, by using multivariate analysis, it is possible to identify samples whose spectra differ from the average population [53,54,55]. Here, Canonical Variant Analysis (CVA) was employed to compare inter-group (species) variability relative to intra-group (biological and technical) variability [27]. CVA showed that the heartwoods of *A. mangium*, *CCV* and *E. globulus* appear to be separate from the other species (Figure 3A). For sapwood, the clustering was more distinct, with points from each species grouping discretely together, and *A. mangium*, *E. dunnii*, *E. globulus* and *CCV* appearing as outlier populations (Figure 3B). Comparison to compositional data show that for heartwoods, formation of outlier groups could be attributed to high carbohydrate and low lignin contents (Table 1). Sapwood outliers corresponded also to high carbohydrate content and cellulose crystallinity calculated via Ruland-Vonk method (peak area). Though FT-NIR does not generate detailed chemical or structural information, it can be used in a screening manner without any additional biochemical information. Further sampling and correlation with other physical and chemical properties should help to identify and confirm the factors causing the out-grouping of these species, and enable the use of FT-NIR for the rapid identification of eucalypts that are better candidates for biofuels production.

Conclusions

Samples showing differences in composition are likely to be of great importance for the development of future biofuels. For this reason, we have characterized widely utilized eucalypt species and a commonly planted tropical wattle. The data demonstrate significant diversity in composition amongst these species that will be important in selecting candidates for the development of feedstocks for biofuels. In general, the structural and biochemical composition were remarkably similar between all species. However, subtle differences were observed especially in the case of *A. mangium* heartwood where no acetylated mannann cross peaks were observed and the L-fucopyranosyl cross peaks were more prominent in the NMR spectra relative to other species and S:G ratio was the lowest. We could also demonstrate that FT-IR

Table 2. Biochemical composition of extracted biomass samples of heartwood (HW) and sapwood (SW) as determined by two stage acid hydrolysis.

	Total carbohydrate (%)	Lignin: acid insoluble (%)	Lignin: acid soluble (%)	Total lignin (%)	Total (mass closure) (%)
Acacia mangium HW	57.9±5.9	27.1±0.8	1.5±0.6	28.6±1.0	86.5±6.0
CCV HW	58.9±2.0	21.6±1.2	3.4±0.6	25.0±1.4	83.9±2.4
E. dunnii HW	48.8±1.3	25.8±0.9	3.6±0.8	29.4±1.5	78.2±1.8
E. globulus HW	55.3±1.8	23.5±1.3	3.8±0.8	27.2±1.0	82.5±2.3
E. urophylla HW	50.4±2.3	28.7±0.5	2.8±0.6	31.5±1.1	81.9±2.5
E. urophylla X grandis HW	51.0±2.1	27.5±0.7	3.0±0.8	30.5±0.9	81.5±2.3
E. pulilatris HW	49.6±3.6	27.5±0.9	2.9±0.7	30.4±1.1	80.0±3.8
Acacia mangium SW	55.5±2.8	28.7±1.3	1.1±0.2	29.8±1.3	85.3±3.0
CCV SW	55.8±2.6	26.5±1.6	2.8±0.6	29.3±1.7	85.1±3.1
E. dunnii SW	52.2±2.6	24.2±0.6	3.7±0.0	27.9±0.7	80.1±2.7
E. globulus SW	54.4±4.2	21.2±1.1	3.7±1.1	24.9±1.6	79.2±4.5
E. urophylla SW	51.5±2.0	25.8±0.8	2.5±0.1	28.3±0.6	79.8±2.1
E. urophylla X grandis SW	52.8±3.2	26.7±1.2	2.9±0.5	29.5±0.9	82.3±3.5
E. pulilatris SW	51.3±1.1	28.7±0.7	2.6±0.1	31.3±1.1	82.6±1.3

Values are presented as a percentage weight of the starting extracted biomass. Mass closure is the percentage mass total of total carbohydrates and total lignin. doi:10.1371/journal.pone.0052820.t002
Table 3. Detailed carbohydrate biochemical composition of extracted biomass samples of heartwood (HW) and sapwood (SW) as determined by HPAEC and Updegraff.

Species/Genus	Average Fucose (%)	Average Rhamnose (%)	Average Arabinose (%)	Average Galactose (%)	Average Glucose (%)	Average Xylose (%)	Average Mannose (%)	Average Galacturonic Acid (%)	Average Glucuronic Acid (%)	Average Cellulose (%)
Acacia mangium HW	0.05±0.01	0.53±0.01	0.54±0.06	1.45±0.12	1.71±0.12	19.68±0.28	0.27±0.02	2.88±0.06	NA	72.90±3.38
CCV HW	0.03±0.01	0.74±0.03	0.36±0.01	1.18±0.11	2.07±0.20	23.00±0.43	1.14±0.05	3.30±0.08	NA	68.18±0.83
E. dunnii HW	0.06±0.01	0.91±0.03	0.64±0.04	1.40±0.02	1.85±0.06	19.34±0.20	0.54±0.02	4.00±0.07	0.01±0.02	71.24±3.76
E. globulus HW	0.04±0.01	0.77±0.02	0.43±0.04	1.47±0.09	2.05±0.09	22.99±1.48	0.50±0.06	3.23±0.15	0.02±0.02	68.51±7.34
E. urophylla HW	0.04±0.01	0.57±0.04	0.30±0.05	1.97±0.09	1.73±0.15	23.75±1.11	0.36±0.01	3.59±0.18	0.01±0.02	67.67±12.77
E. urophylla X grandis HW	0.03±0.01	0.74±0.05	0.29±0.02	2.53±0.23	1.80±0.22	19.01±0.64	0.25±0.04	3.44±0.17	0.01±0.02	71.90±3.84
E. Pilularis HW	0.03±0.01	0.47±0.01	0.24±0.01	1.65±0.03	1.82±0.16	18.85±0.16	0.28±0.04	3.18±0.14	NA	73.48±2.33
Acacia mangium SW	0.04±0.01	0.54±0.03	0.44±0.03	1.05±0.02	3.04±0.24	22.20±0.74	0.37±0.10	2.85±0.14	NA	69.48±9.25
CCV SW	0.04±0.01	0.59±0.02	0.37±0.02	0.67±0.03	2.26±0.04	19.38±0.40	1.43±1.10	2.58±0.06	NA	72.69±5.42
E. dunnii SW	0.03±0.01	0.56±0.02	0.46±0.03	1.39±0.06	2.58±0.11	15.17±0.36	0.44±2.10	2.73±0.14	NA	76.65±1.90
E. globulus SW	0.02±0.01	0.58±0.03	0.32±0.03	1.03±0.03	3.00±0.23	17.27±0.84	0.29±3.10	2.59±0.07	0.01±0.01	74.89±1.14
E. urophylla SW	0.02±0.01	0.34±0.02	0.25±0.02	1.49±0.04	1.99±0.23	18.48±0.54	0.68±4.10	2.57±0.10	NA	74.17±3.70
E. urophylla X grandis SW	0.03±0.01	0.41±0.02	0.26±0.01	1.46±0.10	1.71±0.03	15.18±0.70	0.43±5.10	2.70±0.30	NA	77.83±1.92
E. Pilularis SW	0.02±0.01	0.32±0.01	0.15±0.01	1.03±0.03	2.00±0.07	17.60±0.43	0.21±6.10	2.34±0.01	NA	76.33±5.53

Values are presented as a percentage weight of the AIR mass.

doi:10.1371/journal.pone.0052820.t003
Figure 3. Canonical variate analysis of FT-NIR spectra of heartwood (A) and sapwood (B) demonstrating clustering of species into district groups. doi:10.1371/journal.pone.0052820.g003
could be a valuable/robust technique for quick characterization of such samples. Further screening of eucalypts and other potential feedstock species will be useful in developing more robust correlative relationships between rapid screening techniques such as FT-NIR and the suitability of a species for biofuel or pulp production.

Supporting Information

Figure S1 Complete 2D-NMR HSQC spectra of non derivatized cell wall material and key for all the species analyzed in this study (*Eucalyptus dunnii*, *Eucalyptus globulus*, *Eucalyptus pilaralis*, *Eucalyptus urophylla*, *Eucalyptus urophylla-Eucalyptus grandis* cross, *Corymbia citriodora* subsp. *variegata* (CCV) and *Acacia mangium*) for both heartwood and sapwood samples. (TIF)

Table S1 Moisture content of samples measured in triplicate. Values are presented as a percentage weight of the starting extracted biomass.

(OCX)

Acknowledgments

We would like to thank Michael Henson of Forests NSW (Department of Primary Industries) for collecting and providing the samples.

Author Contributions

Conceived and designed the experiments: OPC, RH BAS BMH. Performed the experiments: OPC, AMS GC JLH AG BMH. Analyzed the data: OPC, AMS GC BAS JH AG BMH. Contributed reagents/materials/analysis tools: KH RH. Wrote the paper: OPC, AMS BAS JH BMH RH GC.

References

1. Shepherd M, Bartle J, Lee DJ, Brasner J, Bush D, et al. (2011) Eucalypts as a biofuel feedstock. Biofuels 2: 639–637.
2. Del Langa A, Ball J, Carlé J (2006) Global planted forests thematic study: results and analysis Rome, Italy: Food and Agriculture Organization of the United Nations. Planted Forests and Trees Working Paper 38.
3. Almeida AC, Soares JV, Lima L, Zucco C, Rezende GD (2007) Genetic parameters and genotype-by-environment interactions for pulp-yield predicted using near infrared reflectance analysis and pulp productivity in Eucalyptus globulus. For Genet 8: 213–224.
4. Antal MJ, Crossley J, Dai X, DeAlmeida C, Mok WSL, et al. (1996) High-yield detergents for ethanol production and charcoal, Energy Fuel 10: 652–658.
5. Norrgate T, Langberg D (2009) Environmental and economic aspects of charcoal use in steelmaking. JSI International 49: 587–595.
6. Piketty M-G, Wichert M, Fallot A, Almeida L (2009) Assessing land availability to produce biomass for energy. The case of Brazilian charcoal for steel making. Biomass Bioenerg 33: 180–190.
7. Inoue H, Yano S, Endo T, Sakaki T, Sawayama S (2008) Combining hot-water pretreatment and simultaneous saccharification and fermentation. Journal Ind Microbiol 35: P116.
8. Kim H, Ralph J, Akiyama T (2008) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5. Org Biomol Chem 8: 576.
9. Rencoret J, Marques G, Gutierrez A, Li J, Santos JI, et al. (2009) HSQC-NMR analysis of lignin in woody (*Eucalyptus globulus* and *Pinus abies*) and non-woody (*Agave sisalana*) ball-milled plant materials at the gel state. Holzforschung 63: 691–698.
10. Yelle DJ, Ralph J, Fihrist CR (2008) Characterization of non-derivated plant cell walls using high-resolution solution-state NMR spectroscopy. Mag Reson Chem 46: 508–517.
11. Rencoret J, Marques G, Gutierrez A, Ibarra B, Li J, et al. (2008) Structural characterization of milled wood lignins from different eucalypt species. Holzforschung 62: 514–526.
12. Ibarra D, Chávez MI, Rencoret J, Del Rio JC, Gutierrez A, et al. (2007) Structural modification of eucalypt pulp lignin in a totally chlorine-free bleaching sequence including a laccase-mediated stage. Holzforschung 61: 634–646.
13. Ibarra D, Chávez MI, Rencoret J, Del Rio JC, Gutierrez A, et al. (2007) Structural modification of eucalypt pulp lignin in a totally chlorine-free bleaching sequence including a laccase- mediator stage. Holzforschung 61: 634–646.
14. Ibarra D, Chávez MI, Rencoret J, Del Rio JC, Gutierrez A, et al. (2007) Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: a two-dimensional nuclear magnetic resonance, Fourier transform infrared, and pyrolysis-gas chromatography/mass spectrometry study. J Agric Food Chem 55: 3477–3490.
15. Carbohydrate composition of eucalyptus, bagasse and bamboo by a combinatorial approach. Bioenergy Research 1: 56–66.
16. Kim H, Ralph J (2010) Solution-state 2D NMR of ball-milled plant cell walls in DMSO-d6. BioEnergy Research 1: 56–66.
17. Rencoret J, Marques G, Gutierrez A, Ibarra D, Santos JI, et al. (2009) HSQC-NMR analysis of lignin in woody (*Eucalyptus globulus* and *Pinus abies*) and non-woody (*Agave sisalana*) ball-milled plant materials at the gel state. Holzforschung 63: 691–698.
18. Yelle DJ, Ralph J, Fihrist CR (2008) Characterization of non-derivated plant cell walls using high-resolution solution-state NMR spectroscopy. Mag Reson Chem 46: 508–517.
19. Rencoret J, Marques G, Gutierrez A, Ibarra B, Li J, et al. (2008) Structural characterization of milled wood lignins from different eucalypt species. Holzforschung 62: 514–526.
20. Ibarra D, Chávez MI, Rencoret J, Del Rio JC, Gutierrez A, et al. (2007) Structural modification of eucalypt pulp lignin in a totally chlorine-free bleaching sequence including a laccase-mediated stage. Holzforschung 61: 634–646.
21. Ibarra D, Chávez MI, Rencoret J, Del Rio JC, Gutierrez A, et al. (2007) Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: a two-dimensional nuclear magnetic resonance, Fourier transform infrared, and pyrolysis-gas chromatography/mass spectrometry study. J Agric Food Chem 55: 3477–3490.
22. Ibarra D, Chávez MI, Rencoret J, Del Rio JC, Gutierrez A, et al. (2007) Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: a two-dimensional nuclear magnetic resonance, Fourier transform infrared, and pyrolysis-gas chromatography/mass spectrometry study. J Agric Food Chem 55: 3477–3490.
23. Ibarra D, Chávez MI, Rencoret J, Del Rio JC, Gutierrez A, et al. (2007) Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: a two-dimensional nuclear magnetic resonance, Fourier transform infrared, and pyrolysis-gas chromatography/mass spectrometry study. J Agric Food Chem 55: 3477–3490.
42. Ralph J, Lundquist K, Brunow G, Lu F, Kim H, et al. (2004) Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl propanoids. Phytochem Rev 3: 29–60.
43. Pinto PC, Evtuguin DV, Pascoal Neto C (2005) Chemical composition and structural features of the macromolecular components of plantation Acacia mangium wood. J Agric Food Chem 53: 7856–7862.
44. Wada M, Kondo T, Okano T (2003) Thermally induced crystal transformation from cellulose I-alpha to I-beta. Polym J 35: 153–159.
45. Sugiyma Y, Vuong R, Chanzy H (1993) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24: 4168–4175.
46. Cheng G, Varanasi P, Li C, Liu H, Mhienchenko YB, et al. (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and Its relation to enzymatic hydrolysis. Biomacromolecules 12: 933–941.
47. Willfor S, Sundberg A, Pranovich A, Holmbom B (2005) Polysaccharides in some industrially important hardwood species. Wood SciTechnol 39: 601–617.
48. Cao Y (2004) NIR FT-Raman study of biomass (Triticum aestivum) treated with cellulase. J Mol Struct 693: 87–93.
49. Hames B, Stevens R, Suiher A, Roth C, Templeton D (2003) Rapid biomass analysis. Appl Biochem Biotechnol 105: 14.
50. Suehara K-i, Yano T (2004) Bioprocess monitoring using near-infrared spectroscopy. Adv Biochem Eng Biotechnol 90: 173–196.
51. Smith-Moritz AM, Chern M, Lao J, Sue-To WH, Headlessoon JL, et al. (2011) Combining multivariate analysis and monosaccharide composition modeling to identify plant cell wall variations by Fourier Transform Near Infrared spectroscopy. Plant Methods 7: 26.
52. Coates JP (1996) The interpretation of infrared spectra: Published reference sources. Appl Spectrosc Rev 31: 179–192.
53. Watson C (1977) Near infrared reflectance spectrophotometric analysis of agricultural products. Anal Chem 49: 835–840.
54. Norris KH, Williams PC (1984) Optimization of mathematical treatments of raw near-infrared signal in the measurement of protein in hard red spring wheat. II: Influence of particle-size. Cereal Chem 61: 158–165.
55. Wetzel DL (1983) Near-infrared reflectance analysis - sleeper among spectroscopic techniques. Anal Chem 55: 1165–1171A.