A Miocene breeding ground of an extinct baleen whale (Cetacea: Mysticeti)

Cheng-Hsiu Tsai

Department of Geology and Paleontology, National Museum of Nature and Science, Tsukuba, Japan

Corresponding Author: Cheng-Hsiu Tsai
Email address: craniata@gmail.com

Locating breeding sites is definitely a key to understanding the ecological requirements and maintaining the sustainability of populations/species. Here I re-examined published specimens of an extinct baleen whale, *Parietobalaena yamaokai*, from the lower part of Itahashi Formation (16.1–15.6 Ma, Middle Miocene) in Shobara, Hiroshima, Japan. A critical and previously unnoticed feature, the open suture between the supraoccipital and exoccipital, in one specimen indicates the preservation of a very young individual—under six months old and even close to a new-born calf. Given the occurrence of a new-born whale and relatively abundant assemblage of *Parietobalaena yamaokai*, I propose a previously hidden and unknown breeding ground for the extinct baleen whale, *P. yamaokai*, in the Middle Miocene of Shobara (16.1–15.6 Ma), Hiroshima. Discovery of paleo-breeding sites of extinct populations/species should further help us to understand biological extinctions from a long-term perspective as conservation paleobiology aims to offer new insights into policy making for conserving endangered populations/species.
Abstract

Locating breeding sites is definitely a key to understanding the ecological requirements and maintaining the sustainability of populations/species. Here I re-examined published specimens of an extinct baleen whale, *Parietobalaena yamaokai*, from the lower part of Itahashi Formation (16.1–15.6 Ma, Middle Miocene) in Shobara, Hiroshima, Japan. A critical and previously unnoticed feature, the open suture between the supraoccipital and exoccipital, in one specimen indicates the preservation of a very young individual—under six months old and even close to a new-born calf. Given the occurrence of a new-born whale and relatively abundant assemblage of *Parietobalaena yamaokai*, I propose a previously hidden and unknown breeding ground for the extinct baleen whale, *P. yamaokai*, in the Middle Miocene of Shobara (16.1–15.6 Ma), Hiroshima. Discovery of paleo-breeding sites of extinct populations/species should further help us to understand biological extinctions from a long-term perspective as conservation paleobiology aims to offer new insights into policy making for conserving endangered populations/species.

Introduction

Finding out the previously unknown breeding sites definitely is crucial for acquiring critical information for the conservation purpose of extant species. However, it is equally important to locate breeding grounds of extinct populations/species in the deep past (i.e. conservation paleobiology, see Dietl et al., 2015; Barnosky et al., 2017). This will provide critical information that can be used to develop more insightful conservation policies by integrating long-term perspectives that may be relevant to rapidly changing environments. For example, the eastern North Pacific population of gray whales, *Eschrichtius robustus*, is currently large and stable, and even becomes an attraction for whale watching. In fact, this population used
to be close to the brink of extinction in the early 20th century, but the population recovered, thanks to the well-known breeding sites so that it facilitated the recovery and protection of a nearly extinct population. On the contrary, the status of the western North Pacific population is more uncertain, with their population down to 100 individuals, it could face the similar as their North Atlantic counterparts (Mead and Mitchell, 1984). As a result, discovery of a prehistoric breeding site for the western North Pacific population (Tsai et al., 2014) should then bring a new consideration of how to further maintain and even recover the population of a near-extinct population.

Here, I report a Miocene breeding site for an extinct baleen whale, *Parietobalaena yamaokai* (Cetacea: Mysticeti) from Shobara, Hiroshima, Japan (16.1–15.6 Ma, Itahashi Formation, Bihoku Group). The finding of a previously unknown breeding ground of an extinct baleen whale should give us an opportunity for a new look at extinction event and further understand the ecological and evolutionary response of species to environmental changes from a long-term perspective as the conservation paleobiology aims to offer a new aspect for policy making when concerning the conservation of endangered populations/species.

Materials & Methods

Published specimens of *Parietobalaena yamaokai* were re-examined, including HMN-F00023, HMN-F00024 (two accession numbers belong to the same individual, which was assigned as the type specimen), HMN-F00042, HMN-F00044, HMN-F00054, HMN-F00127 (all described in one paper; Otsuka and Ota, 2008), HMN-F00004 (Kimura et al., 2010), and HMN-F00640 (Kimura et al., 2011). All specimens were recovered from the same geological horizon—lower part of the Itahashi Formation, Bihoku Group; according to the occurrence of some nannofossils, such as *Sphenolithus heteromorphus* and *Helicosphaera ampliaperta*, this horizon corresponds to the NN4 biozone in the Middle Miocene (Martini, 1971; Yamamoto, 1999) and spans roughly from 16.1 to 15.6 Ma.

Determination of ontogenetic ages follows the results of studying early juvenile specimens and calves of extant *Eschrichtius robustus* (gray whale), *Balaenoptera acutorostrata* (minke whale), *B. physalus* (fin whale), and *Megaptera novaeangliae* (humpback whale) (Walsh and Berta, 2011); here, I included a fetal specimen of the blue whale, *Balaenoptera musculus* (USNM 268001), to show the open suture between the supraoccipital and exoccipital and
facilitate the comparison with a very young individual of *Parietobalaena yamaokai* (Fig. 1). The phylogenetic placement of *Parietobalaena yamaokai* remains uncertain; for example, phylogenetically, *P. yamaokai* can be a balaenopteroid (Marx and Fordyce, 2015) or a “cetothere” *sensu lato* (Boessenecker and Fordyce, 2016). Given that the position of *P. yamaokai* is a balaenopteroid in the Marx and Fordyce or belongs to a sister lineage of balaenopteroids (a cetothere *sensu lato*) in the Boessenecker and Fordyce 2016, the sequence of ossification and the ontogenetic age inferred from the fusion of occipital joints in other extant balaenopteroids (the gray whale, minke whale, fin whale, and humpback whale are all balaenopteroids) should still be a reliable proxy for *P. yamaokai*.

In addition, the body size could be an alternative approach to estimate the ontogenetic age, although the growth curve or full-grown size of *Parietobalaena yamaokai* remains unknown. I use two equations, both of which rely on the bizygomatic width of the skull to reconstruct the body size specifically for baleen whales (Lambert et al., 2010: \(y \) (body length) = 8.209* \(x \) (bizygomatic width) + 66.69; Pyenson and Sponberg, 2011: \(\log (y) \) (body length) = 0.92*(\(\log (x) \) – 1.64) + 2.67), to assess the total length of HMN-F00127. Given the preserved condition, the exact bizygomatic width of HMN-F00127 is uncertain, but likely approximates 30 cm. In order to have a better understanding of their body size, a larger individual, HMN-F00042, whose bizygomatic width approaches but slightly less than 50 cm, was also estimated.

Institutional abbreviations. HMN, The Hiwa Museum for Natural History, Shobara, Hiroshima, Japan; USNM, National Museum of Natural History, Smithsonian Institution, USA.

Results

New observations on the published specimens of *Parietobalaena yamaokai* show that several reported fossils are juvenile specimens, although it remains problematic for clearly identifying exact ontogenetic ages of each fossil specimen. However, one specimen (HMN-F00127) appears to be a very young individual, under six months old, judging from the open suture between the supraoccipital and exoccipital (Fig. 1) as the sequence and timing of the occipital ossification in the extant balaenopteroids provide an applicable proxy (Walsh and Berta, 2011). Given the preserved morphology of the supraoccipital in HMN-F00127, it is
slightly eroded, but the overall edge remains intact, in turn, excluding the possibility of damage. Likewise, the separation between the supraoccipital and exoccipital of HMN-F00127 is unlikely to result from some unusual occipital fenestrations in some cetaceans (Gao and Gaskin, 1996; Trimble and Praderi, 2008), leading to the conclusion that the open suture is genuine, which could be comparable to a fetal/new-born blue whale, *Balaenoptera musculus* as shown in Fig. 1.

Additionally, given the estimated bizygomatic width (30 cm), the body size for HMN-F00127 was approximately 313 and 479 cm from Lambert et al. 2010 equation and Pyenson and Sponberg 2011 equation, respectively. Similarly, a larger specimen of *P. yamaokai*, HMN-F00042, whose bizygomatic width is slightly worn down, but approaches 50 cm, shows a physically immature feature – unfused vertebral discs. The unfused vertebral discs can be a referable feature to estimate the ontogenetic age (Moran et al., 2014), but can only be a rough proxy. With 50 cm, the body size of HMN-F00042 ranges from 477 cm (Lambert et al. 2010 equation) to 766 cm (Pyenson and Sponberg 2011 equation).

Discussion

HMN-F00127 represents a rare baleen whale fossil whose ontogenetic age was previously unrecognized and actually can be genuinely determined the ontogenetic age to some extent—under six months old, given the open suture between the supraoccipital and exoccipital. Furthermore, the supraoccipital is virtually floating, lacking a firm contact with surrounding bones (e.g. exoccipital and parietal) and in turn suggesting a much younger developmental stage (likely to be close to a new-born calf?), comparable to a fetal specimen of blue whale, *Balaenoptera musculus* (Fig. 1). In addition, a relatively abundant assemblage of *Parietobalaena yamaokai* (Otsuka and Ota, 2008; Kimura et al., 2010, 2011) from the same geological horizon (Itahashi Formation, Bihoku Group) and geographical area (Shobara, Hiroshima) invites a sensible interpretation: the presence of a previously unknown Miocene breeding/calving site for baleen whales in Shobara, Hiroshima. Likewise, the reconstruction of paleogeography and paleoclimatology of the area where HMN-F00127 and other specimens of *P. yamaokai* were found (Fig. 2; also see Noda and Goto, 2004) suggests a relatively protected and possibly an ideal locality for breeding purposes as extant baleen whales seek for calving sites (Hindell, 2009; Rayment et al., 2015).
However, some doubt may come from the species identification as juvenile morphology likely differs from adults substantially in extant baleen whales. The underlying heterochronic process that affects the evolutionary history and developmental pattern of *Parietobalaena yamaokai* remains unidentified: clades showing paedomorphic neoteny have similar morphology, which allows reliable identification based on juvenile specimens (e.g. the pygmy right whale, *Caperea marginata*; Tsai and Fordyce 2014a, 2014b). By contrast, peramorphic acceleration clades show disparate morphologies between juveniles and adults, hence likely resulting in misleading interpretations (e.g. the humpback whale, *Megaptera novaeangliae*; Tsai and Fordyce, 2014a, 2014b; or, an extinct eomysticetid, *Waharoa ruwhenua*; Boessenecker and Fordyce, 2015), making the conspecific confirmation of fossil specimens between juveniles and adults problematic. In addition, several baleen whale species apart from *P. yamaokai* were found from the same locality, such as *Diorocetus shobarensis* and *Hibacetus hirosei*, complicating the scenario of species identification of juvenile specimens. As juvenile identification of *Parietobalaena yamaokai* and/or other contemporaneous baleen whales in Shobara, Hiroshima is beyond the scope of this study, here I follow the interpretations of previous studies on HMN-F00127 as a *P. yamaokai* (Otsuka and Ota, 2008; Kimura et al., 2010, 2011).

Additionally, it is worth noting that if the estimated body size for HMN-F00127, 313 cm from Lambert et al (2010) equation or 479 cm from Pyenson and Sponberg (2011) equation, is approximately accurate for a young individual under 6 months old, *Parietobalaena yamaokai* would have been a middle-sized baleen whale, 12–15 m when full-grown, similar to the size of extant gray whales, *Eschrichtius robustus* (see Andrews, 1914; Rice and Wolman, 1971 for references to the size of gray whales). This can be corroborated by a larger, but physically immature specimen HMN-F00042, whose estimated body length is 477 cm or 766 cm under different equations. HMN-F00042 may also be a juvenile, ontogenetically older than HMN-F000127, given the presence of several loose and unfused vertebral discs, but unable to further pin down its precise age at present. As a result, if the interpretation on the estimated size and ontogenetic age for HMN-F00127 or HMN-F00042 is correct, it then suggests the existence of large baleen whales (over 10 m) in the Middle Miocene (Itahashi Formation, 16.1–15.6 Ma), substantiating the early origin of baleen whale gigantism (Tsai and Kohno, 2016), instead of a recent origin (Slater et al., 2017), albeit the lack of ancestor-descendant relationships to illustrate
the detailed evolution of gigantism for now (see Tsai and Fordyce, 2015 for discussion of ancestor-descendant relationships).

Regardless, identifying a possible Miocene breeding site for baleen whales in the northern hemisphere also raises some interesting questions: when, where, and which species of baleen whales initiated the annual, long migration between feeding and calving grounds? If the interpretation in this paper is correct, it then represents the earliest known site (Middle Miocene, 16.1–15.6 Ma) for baleen whale breeding in the northern hemisphere (Fig. 3). However, given the presence of a young individual of an Oligocene baleen whale, *Waharoa ruwhenua* (Cetacea: Eomysticetidae), together with isotopic analyses of other eomysticetid species (for example *Tokarahia*, Clementz et al., 2014), *Waharoa* or other eomysticetids may have established a long, latitudinal migration and come to continental waters of the Oligocene of New Zealand for breeding in the southern hemisphere (27.3–25.2 Ma, Boessenecker and Fordyce, 2015). In view of extant baleen whales, annual migration between feeding and breeding sites may not result from long-term evolutionary consequences, but instead ecological factors. In other words, establishment of having regular migrations in baleen whales may occur multiple times. On the other hand, there are several hypotheses, interpreting why baleen whales have long-distance migrations annually, such as thermoregulatory purpose for calves or reducing risk of predation by killer whales, *Orcinus orca* (Corkeron and Connor, 1999). Accordingly, seeking for suitable breeding and feeding sites and then resulting in annual migrations in baleen whales may have evolved and appeared independently in different lineages, by different ecological causes, and at different geological timings. More fossils and higher resolution of paleo-geographical and paleo-climatic reconstructions should further test hypotheses presented in this paper and explore more details of behavioral evolution in baleen whales, whose behavioral evolution may shape the direction of evolution in the marine regime as baleen whales are the largest vertebrates in the history of Life.

Acknowledgements.

I thank Tomomi Kiyoshi, Hitoshi Ohzawa, Yoshio Furukawa, Takato Ueda for inviting and encouraging to study HMN specimens; James Mead, Charles Potter, John Ososky, Nicholas Pyenson, and David Bohaska for collection access and allowing photography (USNM specimens); Nobumichi Tamura for illustrating the life restoration (Fig. 3); the handling editor
John Hutchinson for helpful guidance; Brian Beatty and one anonymous reviewer for constructive comments and suggestions; Megumi Saito-Kato and Atsushi Yabe for discussing paleogeography of Japan; James Mead (Washington DC) for accommodating at the “Happiness Hotel” during various research visits.

References

Andrews RC. 1914. Monographs of the Pacific Cetacea. I. The California gray whale (Rhachianectes glaucus Cope). Memoirs of the American Museum of Natural History, Series II 1:227–287.

Barnosky AD, Hadly EA, Gonzalez P, Head J, Polly PD, Lawing AM, Eronen JT, Ackerly DD, Alex K, Biber E, Blois J, Brashares J, Ceballos G, Davis E, Dietl GP, Dirzo R, Doremus H, Fortelius M, Greene HW, Hellmann J, Hickler T, Jackson ST, Kemp M, Koch PL, Kremen C, Lindsey EL, Looy C, Marshall CR, Mendenhall C, Mulch A, Mychajliw AM, Nowak C, Ramakrishnan U, Schnitzler J, Shrestha KD, Solari K, Stegner L, Stegner MA, Stenseth NC, Wake MH, Zhang Z. 2017. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355:eaah4787 DOI 10.1126/science.aah4787

Boessenecker RW, Fordyce RE. 2015. Anatomy, feeding ecology, and ontogeny of a transitional baleen whale: a new genus and species of Eomysticetidae (Mammalia: Cetacea) from the Oligocene of New Zealand. PeerJ 3:e1129 DOI 10.7717/peerj.1129

Boessenecker RW, Fordyce RE. 2016. A new eomysticetid from the Oligocene Kokoamu Greensand of New Zealand and a review of the Eomysticetidae (Mammalia, Cetacea). Journal of Systematic Palaeontology DOI 10.1080/14772019.2016.1191045.

Clementz MT, Fordyce RE, Peek SL, Fox DL. 2014. Ancient marine isoscapes and isotopic evidence of bulk-feeding by Oligocene cetaceans. Palaeogeography, Palaeoclimatology, Palaeoecology 400:28–40 DOI 10.1016/j.palaeo.2012.09.009.

Corkeron PJ, Connor RC. 1999. Why do baleen whales migrate? Marine Mammal Science 15:1228–1245.

Dietl GP, Kidwell SM, Brenner M, Burney DA, Flessa KW, Jackson ST, Koch PL. 2015. Conservation paleobiology: leveraging knowledge of the past to inform conservation and
restoration. *The Annual Review of Earth and Planetary Sciences* **43**:79–103 DOI 10.1146/annurev-earth-040610-133349.

Gao A, Gaskin DE. 1996. Nonmetric morphometry of the skull of the harbour porpoise, *Phocoena phocoena*, in the western North Atlantic and eastern North Pacific. *Canadian Journal of Zoology* **74**:2199–2205.

Hindell MA. 2009. Breeding sites. In: Perrin WF, Würsig B, Thewissen JGM, eds. *Encyclopedia of Marine Mammals*. 2nd edition. Burlington, Academic Press, 156–158.

Kimura T, Hasegawa Y, Ohzawa H, Ueda T, Yamaoka, T. 2010. A fossil mysticete from the middle Miocene Bihoku Group, Hiroshima, Japan. *Bulletin of the Gunma Museum of Natural History* **14**:29–36.

Kimura T, Hasegawa Y, Ohzawa H, Yamaoka T, Ueda T, Kiyoshi T, Furukawa Y, Sugihara M. 2011. An addition fossil mysticete from the middle Miocene Bihoku Group, Hiroshima, Japan. *Bulletin of the Gunma Museum of Natural History* **15**:81–92.

Lambert O, Bianucci G, Post K, de Muizon C, Salas-Gismondi R, Urbina M, Reumer J. 2010. The giant bite of a new raptorial sperm whale from the Miocene epoch of Peru. *Nature* **466**:105–108 DOI 10.1038/nature09067.

Martini E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. *In Proceedings of the 2nd Planktonic Conference, Roma, 1970*, p.739—785.

Marx FG, Fordyce RE. 2015. Baleen boom and bust: a synthesis of mysticete phylogeny, diversity and disparity. *Royal Society Open Science* **2**:140434 DOI 10.1098/rsos.140434

Mead J, Mitchell ED. 1984. Atlantic gray whales. In: Jones ML, Swartz SL, Leatherwood S, eds. *The Gray Whale*. New York, Academic Press, 33–53.

Moran MM, Bajpai S, George JC, Suydam R, Usip S, Thewissen JGM. 2015. Intervertebral and epiphyseal fusion in the postnatal ontogeny of cetaceans and terrestrial mammals. *Journal of Mammalian Evolution* **22**:93–109.

Noda Y, Goto M. 2004. Paleogeographic maps of the Japanese Islands and their application to exhibition of the Fukui Prefectural Dinosaur Museum. *Memoir of the Fukui Prefectural Dinosaur Museum* **3**:47–63.

Otsuka H, Ota Y. 2008. Cetotheres from the early Middle Miocene Bihoku Group in Shobara District, Hiroshima Prefecture, West Japan. *Miscellaneous Reports of the Hiwa Museum for Natural History* **49**:1–66.
Pyenson ND, Sponberg SN. 2011. Reconstructing body size in extinct crown Cetacea (Neoceti) using allometry, phylogenetic methods and tests from the fossil record. *Journal of Mammalian Evolution* **18**:269–288 DOI 10.1007/s10914-011-9170-1.

Rayment W, Dawson S, Webster T. 2015. Breeding status affects fine-scale habitat selection of southern right whales on their wintering grounds. *Journal of Biogeography* **42**:463–474 DOI 10.1111/jbi.12443.

Rice DW, Wolman AA. 1971. The life history and ecology of the gray whale (*Eschrichtius robustus*). Special Publication No. 3, *The American Society of Mammalogists*, Olympia, Washington pp. 142.

Slater GJ, Goldbogen JA, Pyenson ND. 2017. Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics. *Proceeding of the Royal Society B* **288**:20170546 DOI 10.1098/rspb.2017.0546.

Trimble M, Praderi R. 2008. Assessment of nonmetric skull characters of the Franciscana (*Pontoporia blainvillei*) in determining population differences. *Aquatic Mammals* **34**:338–348.

Tsai C-H, Fordyce RE. 2014a. Disparate heterochronic processes in baleen whale evolution. *Evolutionary Biology* **41**:299–307 DOI 10.1007/s11692-014-9269-4.

Tsai C-H, Fordyce RE. 2014b. Juvenile morphology in baleen whale phylogeny. *Naturwissenschaften* **101**:765–769 DOI 10.1007/s00114-014-1216-9.

Tsai C-H, Fordyce RE. 2015. Ancestor-descendant relationships in evolution: origin of the extant pygmy right whale, *Caperea marginata*. *Biology Letters* **11**:20140875 DOI 10.1098/rsbl.2014.0875.

Tsai C-H, Kohno N. 2016. Multiple origins of gigantism in stem baleen whales. *The Science of Nature (Naturwissenschaften)* **103**:89 DOI 10.1007/s00114-016-1417-5.

Tsai C-H, Fordyce RE, Chang CH, Lin LK. 2014. Quaternary fossil gray whales from Taiwan. *Paleontological Research* **18**:82–93 DOI 10.2517/2014PR009.

Walsh B, Berta A. 2011. Ossification of balaenopteroid mysticetes. *The Anatomical Record* **294**:391–398 DOI 10.1002/ar.21340.

Yamamoto M. 1999. Lithofacies and calcareous nannofossils of the Miocene Bihoku Group in the Saijogawa area, Shobara, Hiroshima, Japan. *Earth Science* **53**:202—216 (in Japanese).
Figure 1. Open suture between the supraoccipital and exoccipital in (a) a fossil baleen whale, HMN-F00127 (*Parietobalaena yamaokai*) and (b) a fetal specimen of blue whale, *Balaenoptera musculus* (USNM 268001).

Figure 2. Reconstructing maps of Japan and surrounding areas during the Middle Miocene, particularly ranging from 17 to 15 Ma as this period corresponds to the geological age of HMN specimens and then indicates the change of geography over time: (a) 17 Ma; (b) 16.75 Ma; (c) 16.5 Ma; (d) 16.25 Ma; (e) 16 Ma; (f) 15 Ma. Modified from Noda and Goto, 2004.
Manuscript to be reviewed
Figure 3. Life restoration of a mother-calf pair of *Parietobalaena yamaokai* (© Nobumichi Tamura).