Sol–gel synthesis of nanosized $\text{-Ti}_3\text{O}_5$ crystals

To cite this article: T Nasu et al 2014 *IOP Conf. Ser.: Mater. Sci. Eng.* 54 012008

View the article online for updates and enhancements.

Related content
- Characterisation of Sol-Gel Synthesis of Phase Pure CaTiO$_3$ Nano Powders after Drying
 P K Malik, G Biswal, S C Patnaik et al.

- Ni and Zn Substituted M-type Barium Hexaferrite Processed by Sol–Gel Auto Combustion Method
 Widyastuti, Nia Sasria, A Marsha Alviani et al.

- Fabrication of Mesoporous Silica/Alumina Hybrid Membrane Film Nanocomposites using Template Sol-Gel Synthesis of Amphiphilic Triphenylene
 H O Lintang, M A Jalani, L Yuliati et al.

Recent citations
- Phase evolution and formation of phase in Ti3O5 induced by magnesium doping
 Mingzhe Wang et al.

- Novel metal–ceramic composite microstructures produced through the partial reduction of CoTiO3
 Kevin P. Anderson et al.

- Stabilization of microcrystal -Ti3O5 at room temperature by aluminium-ion doping
 Zujia Shen et al.
Sol–gel synthesis of nanosized λ-Ti$_3$O$_5$ crystals

T Nasu1, H Tokoro1,2,3,*, K Tanaka1, F Hakoe1, A Namai1 and S Ohkoshi1,4,*

1Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
2Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
3NEXT, JSPS, 8 Ichibancho, Chiyoda-ku, Tokyo 102-8472, Japan
4CREST, JST, K’s Gobancho, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan

tokoro@ims.tsukuba.ac.jp, ohkoshi@chem.s.u-tokyo.ac.jp

Abstract. In this study, we show a synthesis of λ-Ti$_3$O$_5$ nanocrystals dispersed in silica by sol–gel method. The X-ray diffraction measurements, Rietveld analyses, and transmission electron microscope images of the obtained samples showed that tuning the sintering temperature in the synthesis process can control the size of the λ-Ti$_3$O$_5$ nanocrystals, i.e., 8±2 nm (1123°C; sample 1), 9±3 nm (1133°C; 2), 9±2 nm (1143°C; 3), 10±3 nm (1153°C; 4), 11±4 nm (1163°C; 5), 13±4 nm (1173°C; 6), 25±12 nm (1200°C; 7), and 36±15 nm (1250°C; 8), whereas adjusting the hydrogen flow rate can tune the oxidation-reduction state of the sample without apparent change in the crystal size. At the lowest sintering temperature of 1123°C, the smallest λ-Ti$_3$O$_5$ nanocrystals of 8 nm in size were produced.

1. Introduction

Photo-induced phase transition materials such as chalcogenides are attractive for both fundamental and applied research [1–4]. Chalcogenides are used as the recording phase-change material in storage media, e.g., Digital versatile discs (DVDs) and Blu-ray discs. However, because chalcogenides are comprised of rare and expensive elements, numerous researchers are exploring new materials that can replace chalcogenides in next-generation optical storage media [5–19].

In our efforts to find a suitable next-generation optical storage medium, we synthesized Ti$_3$O$_5$ nanoparticles with a novel phase, λ-Ti$_3$O$_5$, in 2010 [20]. Irradiating λ-Ti$_3$O$_5$ with laser light at room temperature causes a reversible photo-induced metal-to-semiconductor phase transition between black metallic λ-Ti$_3$O$_5$ and brown semiconducting β-Ti$_3$O$_5$ (figure 1). λ-Ti$_3$O$_5$ is an environmentally friendly and sustainable material that consists of highly abundant elements [21,22]. Consequently, λ-Ti$_3$O$_5$ is a promising candidate for use in rewritable recording optical media.

The morphology of λ-Ti$_3$O$_5$ depends on its synthesis [20]. A combination of reverse–micelle and sol–gel techniques provides λ-Ti$_3$O$_5$ nanocrystals dispersed in a SiO$_2$ matrix, where the nanocrystal size is 21±11 nm. In contrast, a sintering method, such as sintering titanium dioxide (TiO$_2$) nanoparticles, provides the flake form λ-Ti$_3$O$_5$, where the λ-Ti$_3$O$_5$ size is several micrometers assembled from 25±15 nm nanocrystals. The possibility to reducing the size of λ-Ti$_3$O$_5$ is important from the viewpoints of basic and applied science. In this work, we demonstrate that tuning the sintering temperature can control...
2. Experimental
2.1. Synthesis
The sol–gel method is employed to synthesize λ-Ti$_3$O$_5$ nanocrystals (figure 2). While stirring, 9.6 ml of aqueous ammonia (6.8×10^{-2} mol dm$^{-3}$) was added to 420 ml of a TiCl$_4$ aqueous solution (2.8×10^{-2} mol dm$^{-3}$). Next, 24 ml of tetraethoxysilane (TEOS) was added, and the solution was stirred for 20 hours. Then the obtained gel was collected by centrifugation, washed with methanol and chloroform, and dried at 60°C for one day. The resulting dry powder was sintered in hydrogen at a flow rate of 0.7 L min$^{-1}$ for five hours at various temperatures, i.e., 1123°C (sample 1), 1133°C (sample 2), 1143°C (sample 3), 1153°C (sample 4), 1163°C (sample 5), 1173°C (sample 6), 1200°C (sample 7), and 1250°C (sample 8). Additional samples were prepared at a fixed sintering temperature of 1163°C for five hours, but with various hydrogen flow rates, i.e., 0.05 L min$^{-1}$ (sample 9), 0.3 L min$^{-1}$ (sample 10), 1.5 L min$^{-1}$ (sample 11), and 3.0 L min$^{-1}$ (sample 12).

2.2. Characterization
Transmission electron microscope (TEM) measurements were acquired with JEOL JEM-2000EXII. The X-ray diffraction (XRD) measurements were performed using Rigaku Ultima IV with Cu Kα radiation (λ =1.5418 Å). Rietveld analyses were performed using the Rigaku PDXL program.

Figure 1. Schematic illustration of the reversible photo-induced metal-to-semiconductor phase transition between λ-Ti$_3$O$_5$ and β-Ti$_3$O$_5$. Light blue (gray in black and white print), purple (light gray), and dark blue (dark gray) balls represent Ti(1), Ti(2), and Ti(3) atoms of λ-Ti$_3$O$_5$, while red (gray), light red (light gray), and dark red (dark gray) balls represent Ti(1), Ti(2), and Ti(3) atoms of β-Ti$_3$O$_5$, respectively. Small gray balls represent O atoms.

Figure 2. Sol–gel synthesis of λ-Ti$_3$O$_5$. (i) Aqueous ammonia is added to an aqueous solution containing titanium chloride, yielding the sol of titanium hydroxide, Ti(OH)$_4$. (ii) TEOS, Si(OC$_2$H$_5$)$_4$, is added to the reaction solution to yield a metal hydroxide coated with a sol of silica via hydrolysis, Ti(OH)$_4$/SiO$_2$. (iii) Centrifuging and sintering the obtained gel under a hydrogen atmosphere yields λ-Ti$_3$O$_5$ nanocrystals in a SiO$_2$ matrix.
3. Results and discussion

3.1. Effect of sintering temperature

Figures 3 show the XRD patterns for samples 1–8 at room temperature. The insets show the TEM

![Figure 3](image_url)

Figure 3. Powder X-ray diffraction patterns and Rietveld analyses for samples sintered at (a) 1123°C (sample 1), (b) 1133°C (2), (c) 1143°C (3), (d) 1153°C (4), (e) 1163°C (5), (f) 1173°C (6), (g) 1200°C (7), and (h) 1250°C (8). Broad baseline caused by amorphous SiO₂ is eliminated. Red (gray in black and white print) dots and black lines are the observed plots and calculated patterns, respectively. Black and gray bars represent the calculated positions of the Bragg reflections of Ti₃O₅ and Ti₂O₃, respectively. Huge peaks of SiO₂ cristobalite are excluded from the Rietveld analyses for samples 6–8 (blank ranges). Insets show the TEM images and crystal size distribution.
images and crystal size distribution. Rietveld analyses indicate that the crystal structures of the main phases of samples 1–8 are monoclinic (space group C2/m). The obtained lattice constants as shown in table 1 are consistent with the previously reported crystal structure parameters for \(\lambda \)-Ti_3O_5 [20]. For samples 1–3, the XRD patterns indicate that the \(\lambda \)-Ti_3O_5 fraction is 100%, whereas those for samples 4–8 contain minor peaks, which are assigned to a few percent of Ti_2O_3 impurity.

Figure 4 plots the crystal size versus sintering temperature. Crystals of samples 1–8 have average sizes between 8 and 36 nm, i.e., 8±2 nm, 9±3 nm, 9±2 nm, 10±3 nm, 11±4 nm, 13±4 nm, 25±12 nm, and 36±15 nm for samples 1, 2, 3, 4, 5, 6, 7, and 8, respectively. A low sintering temperature suppresses crystal growth and the lowest sintering temperature in this study, 1123°C, produced the smallest \(\lambda \)-Ti_3O_5 nanocrystals of 8 nm in size.

Table 1. Crystallographic data of samples 1–8, including lattice parameters of \(\lambda \)-Ti_3O_5 obtained by Rietveld refinement of the powder XRD patterns.

Sample	1	2	3	4
Sintering temperature (°C)	1123	1133	1143	1153
H_2 flow rate (L min\(^{-1}\))	0.7	0.7	0.7	0.7
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	C2/m	C2/m	C2/m	C2/m
\(a \) (Å)	9.832(4)	9.799(3)	9.832(3)	9.806(3)
\(b \) (Å)	3.7962(8)	3.7869(5)	3.7954(6)	3.7931(5)
\(c \) (Å)	9.962(4)	9.973(3)	9.984(3)	9.997(2)
\(\beta \) (°)	91.06(3)	91.09(2)	91.02(2)	91.04(2)
\(V \) (Å\(^3\))	371.8(2)	370.01(17)	372.51(16)	371.78(14)
\(Z \)	4	4	4	4
\(R_w p \) (%)	1.90	1.92	1.88	1.85
\(S \)	1.0432	1.0589	1.0458	1.0363
\(\lambda \)-Ti_3O_5 (%)	100	100	100	95.6(4)
Impurity (Ti_2O_3) (%)	0	0	0	4.4(4)

Sample	5	6	7	8
Sintering temperature (°C)	1163	1173	1200	1250
H_2 flow rate (L min\(^{-1}\))	0.7	0.7	0.7	0.7
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	C2/m	C2/m	C2/m	C2/m
\(a \) (Å)	9.8327(18)	9.8158(16)	9.8244(12)	9.8202(10)
\(b \) (Å)	3.7952(3)	3.7898(3)	3.7829(2)	3.7818(3)
\(c \) (Å)	9.9794(15)	9.9725(13)	9.9545(11)	9.9567(8)
\(\beta \) (°)	91.008(11)	91.038(9)	91.041(8)	91.081(5)
\(V \) (Å\(^3\))	372.34(9)	370.92(8)	369.90(6)	369.71(4)
\(Z \)	4	4	4	4
\(R_w p \) (%)	2.09	2.58	3.69	3.58
\(S \)	1.1845	1.327	1.8241	1.7675
\(\lambda \)-Ti_3O_5 (%)	95.2(4)	91.4(4)	94.4(5)	97.0(6)
Impurity (Ti_2O_3) (%)	4.8(4)	8.6(3)	5.6(3)	3.0(3)
3.2. **Effect of hydrogen flow rate**

Samples 9–12 were sintered at a fixed temperature of 1163°C, but the hydrogen flow rate was changed between 0.05–3.0 L min\(^{-1}\). Figures 5 show the XRD patterns of samples 9–12. The insets are

![Figure 4](image-url)

Figure 4. Crystal size versus sintering temperature under a hydrogen flow rate of 0.7 L min\(^{-1}\).

![Figure 5](image-url)

Figure 5. Powder X-ray diffraction patterns and Rietveld analyses for samples sintered at a fixed temperature of 1163°C under hydrogen flow rate of (a) 0.05 L min\(^{-1}\) (sample 9), (b) 0.3 L min\(^{-1}\) (10), (c) 1.5 L min\(^{-1}\) (11), and (d) 3.0 L min\(^{-1}\) (12). Broad baseline caused by amorphous SiO\(_2\) is eliminated. Blue (gray in black and white print) dots and black lines are the observed plots and calculated patterns, respectively. Black and gray bars represent the calculated positions of the Bragg reflections of \(\lambda\)-Ti\(_3\)O\(_5\) and TiO\(_2\) or Ti\(_2\)O\(_3\), respectively. Huge peaks of SiO\(_2\) cristobalite are excluded from the Rietveld analyses for samples 11 and 12 (blank ranges). Insets show the TEM images and crystal size distribution.
TEM images and size distribution. Rietveld analyses indicate that the main phase of sample 9 is anatase TiO$_2$, while samples 10–12 are mainly comprised of λ-Ti$_3$O$_5$ (table 2). Samples 11 and 12 contain a minor impurity phase of Ti$_2$O$_3$, and the Ti$_2$O$_3$ fraction increases as the hydrogen flow rate increases. Samples 9–12 have an average size of ten or more nanometers, i.e., varying the hydrogen flow rate has less effect on the nanocrystal size, compared to varying the sintering temperature.

Table 2. Crystallographic data of samples 9–12, including lattice parameters of λ-Ti$_3$O$_5$ obtained by Rietveld refinement of the powder XRD patterns.

Sample	9	10	11	12
Sintering temperature (°C)	1163	1163	1163	1163
H_2 flow rate (L min$^{-1}$)	0.05	0.3	1.5	3.0
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	$C2/m$	$C2/m$	$C2/m$	$C2/m$
a (Å)	9.883(17)	9.820(2)	9.791(3)	9.794(5)
b (Å)	3.791(5)	3.7912(5)	3.7874(5)	3.7767(9)
c (Å)	9.924(16)	9.980(2)	9.962(2)	9.949(4)
β (°)	90.72(12)	91.068(18)	90.895(18)	90.67(4)
V (Å3)	369.4(10)	371.49(12)	369.37(14)	368.0(3)
Z	4	4	4	4
R_{wp} (%)	2.22	2.16	2.49	3.47
S	1.2584	1.1775	1.2775	1.7190
λ-Ti$_3$O$_5$ (%)	10.4(5)	100	79.5(5)	62.9(11)
Anatase TiO$_2$ (%)	89.6(6)	0	0	0
Impurity (Ti$_2$O$_3$) (%)	0	0	20.5(3)	37.1(9)

3.3. Temperature dependence of crystal structure

Variable-temperature XRD measurements were conducted for the λ-Ti$_3$O$_5$ nanocrystals. Figure 6 plots the peak position versus temperature for the XRD patterns of sample 10 measured in the range of 31.4–33.5°.

Figure 6. Peak position versus temperature of the XRD patterns in the angle range of 31.4–33.5° for sample 10. Diffraction peaks of λ-Ti$_3$O$_5$ (2 0 -3) and (2 0 3) (filled circles) change into the α-Ti$_3$O$_5$ (0 2 3) peak (open circles) as the temperature increases.
33.5°. Upon heating, the diffraction peaks of λ-Ti$_3$O$_5$ transform into the α-Ti$_3$O$_5$ peak with an orthorhombic crystal structure ($Cmcm$), e.g., (2 0 -3) and (2 0 3) λ-Ti$_3$O$_5$ peaks transform into the (0 2 3) α-Ti$_3$O$_5$ peak around 500 K. Cooling to 300 K restores λ-Ti$_3$O$_5$. The observed phase transition temperature of 500 K is consistent with the reported second-order phase transition temperature between λ-Ti$_3$O$_5$ and α-Ti$_3$O$_5$ for nanocrystals obtained by a combination of reverse–micelle and sol–gel techniques [20].

3.4. Mechanism

Next, we considered the reason why λ-Ti$_3$O$_5$ forms as nanocrystals by this sol–gel synthesis. In this method, the precursor Ti(OH)$_4$ particles are uniformly dispersed in the aqueous solution. The hydrolysis of TEOS into SiO$_2$ occurs slowly and homogeneously in the sol–gel process, resulting in a homogeneous SiO$_2$ shell over the precursor particle surfaces. Due to the SiO$_2$ matrix, the sintering process suppresses crystalline growth. Consequently, a combination of the sol–gel method and sintering process is suitable to form λ-Ti$_3$O$_5$ in the size of ca. ten nanometers. Furthermore, the dependence of the crystal size on temperature is due to the viscosity of the SiO$_2$ matrix; the viscosity of SiO$_2$ increases as the temperature decreases, which results in smaller nanocrystals at lower temperature.

4. Conclusion

Synthesizing small-sized nanocrystals of a photo-induced phase transition material is a promising method to develop high-density recording media. Herein we demonstrate that tuning the sintering temperature can control the size of the λ-Ti$_3$O$_5$ nanocrystals. A sintering temperature of 1123°C gives the smallest λ-Ti$_3$O$_5$ nanocrystals, 8 nm. Adjusting the hydrogen flow rate can tune the oxidation-reduction state of the sample without apparent change in the crystal size. The memory density in the recording media is estimated to be 1 terabit inch$^{-2}$ with nanocrystal size of 21 nm, which is our previously reported crystal size [20], while the density is expected to achieve 10 terabit inch$^{-2}$ with 8 nm nanocrystals. Although we prepared the smallest sized λ-Ti$_3$O$_5$ nanocrystals in this work, a study to synthesize even smaller nanocrystals is currently underway.

Acknowledgements

We are grateful to Y. Kakegawa, H. Tsunakawa, and M. Adachi for acquiring the TEM images, and M. Yoshikiyo for useful discussion. The present research was supported partly by the Core Research for Evolutional Science and Technology (CREST) program of the Japan Science and Technology Agency (JST), Next Generation World-Leading Researchers (NEXT) project from the Japan Society for the Promotion of Science (JSPS), a Grant for the Global COE Program “Chemistry Innovation through Cooperation of Science and Engineering”, Advanced Leading Graduate Course for Photon Science (ALPS) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), and the Asahi Glass Foundation. T. N. was grateful to the JSPS through Program for Leading Graduate Schools (MERIT). We also recognize the Cryogenic Research Center, The University of Tokyo, and the Center for Nano Lithography & Analysis, The University of Tokyo, which are supported by MEXT.

References

[1] Yamada N, Ohno E, Nishiuchi K, Akahira N and Takao M 1991 J. Appl. Phys. 69 2849–56
[2] Kolobov A V, Fons P, Frenkel A I, Ankudinov A L, Tominaga J and Uruga T 2004 Nature Mater. 3 703–708
[3] Wuttig M and Yamada N 2007 Nature Mater. 6 824–832
[4] Sun Z, Zhou J and Ahuja R 2006 Phys. Rev. Lett. 96 055507
[5] Nasu K 1997 Relaxations of Excited Stats and Photo-Induced Structural Phase Transition (Japan: Springer)
[6] Gültlich P, Hauser A and Spiering H 1994 Angew. Chem. Int. Ed. Engl. 33 2024–54
[7] Kahn O and Martinez C J 1998 Science 279 44–48
[8] Decurtins S, Gültlich P, Köhler C P, Spiering H and Hauser A 1984 Chem. Phys. Lett. 105 1–4
[9] Koshihara S, Tokura Y, Mitani T, Saito G and Koda T 1990 Phys. Rev. B 42 6853–56
[10] Verdaguer M 1996 Science 272 698–699
[11] Herrera J M, Marvaud V, Verdaguer M, Marrot J, Kalisz M and Mathonière C 2004 Angew. Chem. Int. Ed. 43 5468–71
[12] Dei A 2005 Angew. Chem. Int. Ed. 44 1160–63
[13] Tokoro H, Ohkoshi S and Hashimoto K 2003 Appl. Phys. Lett. 82 1245–47
[14] Ohkoshi S, Hamada Y, Matsuda T, Tsunobuchi Y and Tokoro H 2008 Chem. Mater. 20 3048–54
[15] Tokoro H and Ohkoshi S 2011 Dalton Trans. 40 6825–33
[16] Ohkoshi S and Tokoro H 2012 Acc. Chem. Res. 45 1749–58
[17] Ohkoshi S, Imoto K, Tsunobuchi Y, Takano S and Tokoro H 2011 Nature Chem. 3 564–569
[18] Miyano K, Tanaka T, Tomioka Y and Tokura Y 1997 Phys. Rev. Lett. 78 4257–60
[19] Fiebig M, Miyano K, Tomioka Y and Tokura Y 1998 Science 280 1925–28
[20] Ohkoshi S, Tsunobuchi Y, Matsuda T, Hashimoto K, Namai A, Hakoe F and Tokoro H 2010 Nature Chem. 2 539–545
[21] Prassides K 2010 Nature Chem. 2 517–519
[22] Nakamura E and Sato K 2011 Nature Mater. 10 158–161