Nasal localization of a Pseudoterranova decipiens larva in a Danish patient with suspected allergic rhinitis

Nordholm, A; Kurtzhals, J A L; Karami, A M; Kania, P W; Buchmann, K

Published in:
Journal of Helminthology

DOI:
10.1017/S0022149X20000681

Publication date:
2020

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Nordholm, A., Kurtzhals, J. A. L., Karami, A. M., Kania, P. W., & Buchmann, K. (2020). Nasal localization of a Pseudoterranova decipiens larva in a Danish patient with suspected allergic rhinitis. Journal of Helminthology, 94, [e187]. https://doi.org/10.1017/S0022149X20000681
Nasal localization of a *Pseudoterranova decipiens* larva in a Danish patient with suspected allergic rhinitis

A. Nordholm¹, J.A.L. Kurtzhals²,³, A.M. Karami⁴, P.W. Kania⁴ and K. Buchmann⁴

Cite this article: Nordholm A, Kurtzhals JAL, Karami AM, Kania PW, Buchmann K (2020). Nasal localization of a *Pseudoterranova decipiens* larva in a Danish patient with suspected allergic rhinitis. *Journal of Helminthology* 94, e187, 1–5. https://doi.org/10.1017/S0022149X20000681

Received: 22 June 2020
Revised: 28 July 2020
Accepted: 30 July 2020

Key words:
Zoonosis; cod worm; seal worm; *Pseudoterranova decipiens*; allergic reaction

Author for correspondence:
K. Buchmann,
E-mail: kub@sund.ku.dk

Introduction

Nematode larvae of the genera *Anisakis*, *Pseudoterranova* and *Contracaecum* within the family Anisakidae have the potential to infect humans and cause a zoonotic disease termed anisakidosis. The life cycle for the three nematode types in the marine environment comprises the adult worms in marine mammals or fish-eating birds, third-stage infective larvae in first intermediate/transport hosts (invertebrates) and second transport hosts (various fish species). When the final host ingests the fish carrying infective larvae, the worm develops to the adult stage (McClelland, 2002). Humans may obtain infection following ingestion of inadequately processed fish meat (dishes based on raw fish are sushi, sashimi, ceviche, cold smoked fish and lightly marinated fish products) containing infective larvae (Gardiner, 1990; Ishikura, 2003). Most anisakidosis cases are caused by species within the genus *Anisakis* (Ishikura, 2003), some are caused by *Pseudoterranova* (Margolis, 1977) and a few are due to *Contracaecum* (Schaum & Müller, 1967; Shamis & Butcher, 2011; Nagasawa, 2012; Strøm et al., 2015). Whereas *Anisakis* spp. use cetaceans (whales) as final host, *Contracaecum* spp. and *Pseudoterranova* spp. apply various species of pinnipeds (seals) as final hosts, carrying the adult worms in the stomach. The vernacular name ‘seal worm’ is used for *Pseudoterranova* spp. as it reflects the association with the final host. The third-stage infective larvae often occur in the flesh of Atlantic cod *Gadus morhua* (Heuch et al., 2011), and, therefore, the term ‘cod worm’ is commonly used for this parasite (Hafsteinsson & Risvi, 1987; McClelland, 2002), although several other fish species serve as hosts (McClelland & Martell, 2001; Karpiej et al., 2013; Kuhn et al., 2013; Timi et al., 2014). *Pseudoterranova* spp. nematodes are natural elements in the marine environment and clearly associated with the occurrence of the final hosts (Marcogliese et al., 1996; Olafsdottir & Hauksson, 1997, 1998; Hauksson, 2002). Recently, the seal populations in Danish waters have increased markedly, resulting in the appearance of *Pseudoterranova decipiens* in local fish products (Perdiguer-Alonso et al., 2008; Buchmann & Kania, 2012; Mehrdana et al., 2014). Anisakidosis cases have been considered rare in Denmark, with only one reported case ascribed to *Anisakis* sp. following ingestion of lightly salted herring (Andreassen & Jorring, 1970), but with the advent of more exotic dishes based on raw or semi-raw fish products and an increasing abundance of infected marine mammals, the risk of contracting anisakidosis is considered increasing. The present report describes a human case of *P. decipiens* infection in Denmark, with an unusual localization of the worm larva.

Case report

A 33-year-old man was referred to the out-patient clinic at the Department of Infectious Diseases in April 2020, due to expulsion of a worm from the nose. Four days earlier, he had woken up early due to nasal irritation. Nose blowing resulted in expulsion of an approximately 4 cm white worm with pointed ends, which he brought to the out-patient clinic in a jar. He had a history of rhinitis with nasal running and congestion. This had developed abruptly...
1.5 years earlier and did not show any seasonality. Previous investigations of his rhinitis, including skin test and direct fibre-optic laryngoscopy, had not revealed any causative aetiology. He was treated intermittently with the corticosteroid mometasone furoate (Nasonex®) nasal spray. Besides the suspected allergic rhinitis, his medical history was unremarkable, and he received no additional regular medication. At presentation, the patient complained about runny nose and nasal congestion. He had no additional respiratory symptoms, no gastrointestinal symptoms and no dermatologic manifestations at the time of the consultation and at least two years previously. The patient reported occasional intake of raw or uncooked fish (sushi, sashimi, ceviche), but not within the last six months. Exposure also comprised swimming in Danish sea waters (Øresund and Kattegat, north of Zealand) every summer, last time in July 2019. His travel history was inconspicuous, and he had no close contact to animals. His physical examination was unremarkable. No blood samples were obtained, and no laboratory test results were available from the last seven years. The four-day-old worm larva was dry, with reddish discolouration of the tips. It was placed in isotonic saline and sent to the Department of Clinical Microbiology for further analysis. A tentative diagnosis was Pseudoterranova sp., and the worm was sent for confirmatory testing, as described below. The patient received no treatment. At follow-up after one and two months, the patient had persistent symptoms of rhinitis, but no additional symptoms or signs, and no additional worms had emerged.

Materials and methods

Diagnosis

The live nematode larva recovered by the patient was placed in physiological saline, whereafter it was fixed in ethanol (70%) and subsequently subjected to morphological and molecular diagnosis. The frontal and caudal parts of the larva were excised, cleared in lactic acid and mounted on microscope slides in Aquatex® mounting medium (Merck, Darmstadt, Germany) and studied under a light microscope (Leica, Germany), noting morphological characteristics. The worm larva recovered (fig. 1) had a total length of 41 mm and a maximum width of 1 mm. Morphological characteristics (larval sheath, boring tooth, nerve ring, excretory pore anteriorly to nerve ring, intestinal caecum, absence of ventricular appendage, tail spine (mucron) at the caudal end) were noted. Molecular diagnosis was based on PCR, with subsequent sequencing and alignment performed using the recovered ITS region sequences and sequences for the mitochondrial gene cox2 with available sequences at GenBank. The ITS and cox2 sequences from the P. decipiens isolate from the patient obtained GenBank accession numbers MT624318 and MT624317, respectively. The highest similarity was found for ITS (100%) with isolates of P. decipiens, and for the cox2 sequences from the P. decipiens isolate from the Baltic and the North Sea. Highest similarity (99.83%) for the cox2 sequences were found with a P. decipiens isolate from Germany (River Elbe) (table 1).

Results

The worm larva recovered (fig. 1) had a total length of 41 mm and a maximum width of 1 mm. Morphological characteristics (larval sheath, boring tooth, nerve ring, excretory pore anteriorly to nerve ring, intestinal caecum, absence of ventricular appendage, tail spine (mucron) at the caudal end) were noted. Molecular diagnosis was based on PCR, with subsequent sequencing and alignment performed using the recovered ITS region sequences and sequences for the mitochondrial gene cox2 with available sequences at GenBank. The ITS and cox2 sequences from the P. decipiens isolate from the patient obtained GenBank accession numbers MT624318 and MT624317, respectively. The highest similarity was found for ITS (100%) with isolates of P. decipiens from the Baltic and the North Sea. Highest similarity (99.83%) for the cox2 sequences were found with a P. decipiens isolate from Germany (River Elbe) (table 1).

Discussion

Several species within the genus Pseudoterranova (P. decipiens, P. krabbei, P. azarasi, P. bulbosa, P. cattani) have been documented (Mattucci & Nascetti, 2008; Timi et al., 2014), but the larva
isolated from a patient in the present study was diagnosed as *P. decipiens*, as judged from mitochondrial DNA cox2 sequences. The species was originally described by Krabbe (1878) based on adult specimens from Icelandic seals (Buchmann, 2001). Human infections by third-stage larvae of *P. decipiens* are generally considered less severe than infections by species within the genus *Anisakis* eliciting anisakiasis associated with severe clinical signs due to intestinal or gastrointestinal penetration (Caramello et al., 2003; Ishikura, 2003; Nascetti, 2011). *Pseudoterranova* spp. larvae also perform gastrointestinal invasion (Sawada et al., 1983; Mercado et al., 2001; Na et al., 2013; Cavallero et al., 2016), but they have mainly been reported from the stomach (Margolis, 1977; Pinel et al., 1996; Koh et al., 1999), oesophagus (Torres et al., 2007) or throat (Little & Most, 1973; Chitwood, 1975; Juels et al., 1975; Lichtenfels & Brancato, 1976; Skirnissón, 2006). Penetration into and through the host stomach wall (Little & MacPhail, 1972; Yu et al., 2001) or even further (Amin et al., 2000) are described, but several cases also show that the worm larva may leave the patient per os (Kliks, 1983; Arizono et al., 2011; Dupuy-Camet et al., 2014). A single nasal infection of a French female patient was reported by Brunet et al. (2017).

During the latest decades, the seal populations in Danish waters have increased considerably (Haarder et al., 2014; Zuo et al., 2018), and with the expanding final host occurrence the infection of cod with *P. decipiens* has increased markedly from a low level in the 1990s (Myjak et al., 1995; Skrzypczak et al., 2014; Lunneryd et al., 2015; Zuo et al., 2018). In addition, the salinities in Danish waters – although decreasing from 33 to 7 ppt from the North Sea to the southern Baltic – allow *P. decipiens* egg development and hatching and subsequent survival of larvae for several weeks to months (Measures, 1996). Interestingly, none of these suggested exposure routes were immediately preceding the nasal expulsion of the worm larva. To the best of the patient’s recall, the exposure had taken place at least six (raw fish consumption) and nine (swimming/bathing) months prior to the emergence of the worm. A prolonged survival time in a patient was previously reported by Brunet et al. (2017), but the present case suggests that it is possible for a *P. decipiens* third-stage larva to reside in a patient for more than half a year. The association with symptoms of allergic rhinitis is noteworthy and not reported previously. The symptoms had developed quite abruptly in this previously healthy man without prior history of allergy during childhood and youth. The symptom-provoking agent remains unknown, but it should be mentioned that the association between *Anisakis* infection and allergy is well documented (Daschner & Pascual, 2005; Arcos et al., 2014; Carballeda-Sangiao et al., 2014; Feste et al., 2014). Recent comparative proteomic studies have even shown that similar allergens are present in *P. decipiens* (Kochanowski et al., 2019), with a potential to induce allergy in mice (Ludovisi et al., 2017). Future cases should, therefore, apply serological (IgE and IgG) and specificity tests for further elucidation of the aetiology. The reported case frames the risk of human infections with anisakid nematode larvae and the need for preventive measures before consumption of wild captured marine fish products (EFSA, 2010). Sufficient heat treatment or prior freezing are measures recommended for inactivation of larvae in the products before consumption.

Financial support. This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

Conflicts of interest. None.

Ethical standards. Consent for publishing the case was obtained from the patient.

References

Amin OM, Eidelman WS, Domke W, Bailey J and Pfeifer G (2000) An unusual case of anisakiasis in California, USA. Comparative Parasitology 67, 71–75.

Andreassen J and Jorring K (1970) Anisakiasis in Denmark. Infection with nematode larvae from marine fish. Nordisk Medicin 84, 1492–1495 (in Danish).

Table 1. Comparison (similarity percentages) of sequences encoding rDNA (ITS) GenBank accession number MT624318 and mtDNA (cox2) GenBank accession number MT624317 in *Pseudoterranova decipiens* (larva recovered from the nose of a Danish patient) with available GenBank sequences. Sequence lengths, excluding prime binding sites of cox2 and ITS region, are 582 bp and 905 bp, respectively.

Parasite	Geographic origin	GenBank accession no.	Gene	% similarity
Pseudoterranova decipiens	Germany, Elbe	KU558723	Cox2	99.83
Pseudoterranova decipiens	Canada	HM147278	Cox2	99.61
Pseudoterranova decipiens	Unknown	AF179920	Cox2	99.31
Pseudoterranova azarasi	Brazil	KJ853036	Cox2	98.24
Pseudoterranova decipiens	Denmark, Baltic Sea	KM273087	ITS region	100
Pseudoterranova decipiens	Germany, North Sea	JX138283	ITS region	100
Pseudoterranova decipiens	Poland	KU884886	ITS region	99.88
Pseudoterranova decipiens	Poland	KP645362	ITS region	99.88
Arcos SC, Ciordia S, Roberston I, et al. (2014) Proteomic profiling and characterization of differential allergens in the nematodes Anisakis simplex sensu stricto and A. pegreffi. Proteomics 14, 1547–1568.

Arizono N, Miura T, Yamada M, Tegoshi T and Onishi K (2011) Human infection with Pseudoterranova azarasi roundworm. Emerging Infectious Diseases 17, 555–556.

Aspholm PE, Uglund KI, Jostedal KA and Berland B (1995) Seal worm (Pseudoterranova decipiens) infection in common seals (Phoca vitulina) and potential intermediate fish hosts from the outer Oslo Fjord. International Journal for Parasitology 25, 367–373.

Brunet J, Pesson B, Royant M, et al. (2017) Molecular diagnosis of Pseudoterranova decipiens s.s. in human in France. BMC Infectious Diseases 17, 397–401.

Buchmann K (2001) Profile: Harald Krabbe (1831-1917). Systematic Parasitology 49, 233–234.

Buchmann K and Kania P (2012) Emerging Pseudoterranova decipiens (Krabbe, 1878) problems in Baltic cod, Gadus morhua L., associated with grey seal colonization of spawning grounds. Journal of Fish Diseases 35, 861–866.

Caramello P, Vitali A, Canta F, Caldana A, Santi F, Caputo A, Lipani F and Balbiani R (2003) Intestinal localization of anisakiasis manifested as acute abdomen. Clinical Microbiology and Infection 9, 734–737.

Carballeda-Sangiao N, Oliartes F, Rodriguez-Mahillo AI, Careche M, Tejeda M, Monco I and Gonzalez-Munoz M (2014) Identification of autolabile resistant Anisakis simplex allergens. Journal of Food Protection 65, 604–609.

Cavallero S, Scribano D and D’Amelio S (2015) First case of invasive pseudoterranovaiosis in Italy. Parasitology International 65, 488–490.

Chitwood M (1975) Phocanema-type larval nematode coughed up by a boy in California. The American Journal of Tropical Medicine and Hygiene 24, 710–711.

Daschner A and Pascual CY (2005) Anisakis simplex: sensitization and clinical allergy. Current Opinion in Allergy and Clinical Immunology 5, 281–285.

Dupouy-Camet J, Gay M, Bourgou O, Nouchi A, Leger E and De-cas E (2014) Oesophageal localization: a rare complication of anisakiasis due to Pseudoterranova. Presse Medecale 43, 81–92.

EFSA (2010) EFSA Panel on Biological Hazards (BIOHAZ); scientific opinion on risk assessment of parasites, in fish products. EFSA Journal 8, 1543.

Faaste CK, Jonshcer KR, Dooper MMWB, Egge-Jacobsen W, Moen A, Daschner A, Egaas E and Christiansen U (2014) Characterisation of novel potential allergens in the fish parasite Anisakis simplex. EuPA Open Proteomics 4, 140–155.

Gardiner MA (1990) Survival of Anisakis in cold smoked salmon. Canadian Institute of Food Science and Technology Journal 23, 143–144.

Haarder S, Kania PW, Galatius A and Buchmann K (2014) Increased Contracaecum osculatum infection in Baltic cod (Gadus morhua) livers (1982-2012) associated with increasing grey seal (Halichoerus grypus) populations. Journal of Wildlife Diseases 50, 537–543.

Hafsteinsson H and Rizvi SSH (1987) A review of the sealworm problem: biology, implications and solutions. Journal of Food Protection 50, 70–84.

Hauksson E (2002) Decreases in sealworm (Pseudoterranova sp.) abundance in short-spined sea scorpion (Myoxocephalus scorpius) following declines in numbers of seals at Hvalseyjar, western Iceland. Polar Biology 25, 531–537.

Heuch PA, Jansen PA, Hansen H, Sterud E, MacKenzie K, Haugen P and Hemmingens W (2011) Parasite faunas of farmed cod and adjacent wild cod populations in Norway: a comparison. Aquaculture Environment Interactions 2, 1–13.

Ishikura H (2003) Anisakiasis (2) Clinical pathology and epidemiology. pp. 451–473 in Otsuru M, Kamegai S, Hayashi S (Eds) Progress of medical parasitology in Japan. Vol 8. Tokyo, Japan.

Jensen T and Idas K (1992) Infection with Pseudoterranova decipiens (Krabbe, 1878) larvae in cod (Gadus morhua) relative to proximity of seal colonies. Sarsia 76, 227–230.

Jensen T, Andersen K and Desclers S (1994) Seal worm (Pseudoterranova decipiens) infections in demersal fish from two areas in Norway. Canadian Journal of Zoology 72, 598–608.

Juels CW, Butler W, Bier JW and Jackson GJ (1975) Temporary human infection with a Phocanema sp. larva. American Journal of Tropical Medicine and Hygiene 24, 942–944.

Karpie K, Dzido J, Rokicki J and Kijewska A (2013) Anisakid nematodes of Greenland halibut Reinhardtius hippoglossoides from the Barents Sea. Journal of Parasitology 99, 650–654.

Kikis MM (1983) Anisakiasis in the western United States: four new case reports from California. The American Journal of Tropical Medicine and Hygiene 32, 526–532.

Kochanowski M, Gonzales-Munoz M, Gomez-Morales MA, Gottstein B, Dabrowska J, Rozycki M, Cencik T, Muller N and Boubaker G (2019) Comparative analysis of excretory-secretory antigens of Anisakis simplex, Pseudoterranova decipiens and Contracaecum osculatum regarding their applicability for specific serodiagnosis of human anisakidosis based on IgG-ELISA. Experimental Parasitology 197, 9–15.

Koh MS, Huh S and Sohn WM (1999) A case of gastric pseudoterranovaiosis in a 43-year-old man in Korea. The Korean Journal of Parasitology 37, 47–49.

Koie M, Berland B and Hurt MB (1995) Development to third stage larvae occurs in the eggs of Anisakis simplex and Pseudoterranova decipiens (Nematoda; Ascaridoidea Anisakidae). Canadian Journal of Fisheries and Aquatic Sciences 52, 134–139.

Krabbe H (1878) Ascarid worms from seals and toothed whales. Kongelige Videnskabelige Selskabs Skrifter, 43–51.

Kuhn T, Benninghoff T, Kowel H, Landry T and Klimped S (2013) Sealworm Pseudoterranova decipiens s.s. infection of European smelt Osmerus eperlanus in German coastal waters: ecological implications. Diseases of Aquatic Organisms 102, 217–224.

Lichtenfels JR and Brancato FP (1976) Anisakis larva from the throat of an Alaskan Eskimo. American Journal of Tropical Medicine and Hygiene 25, 691–693.

Little MD and MacPhail JC (1972) Large nematode larva from the abdominal cavity of a man in Massachusetts. The American Journal of Tropical Medicine and Hygiene 21, 948–950.

Little MD and Most H (1973) Anisakis larva from the throat of a woman in New York. The American Journal of Tropical Medicine and Hygiene 22, 609–612.

Ludovisi A, Di Felice G, Carballeda-Sangiao N, et al. (2017) Allergic activity of Pseudoterranova decipiens (Nematoda: Anisakidae) in BALB/c mice. Parasites & Vectors 10, 290.

Lunneryd SG (1991) Anisakis nematodes in the harbour seal Phoca vitulina from the Kattegat-Skagerrak and the Baltic. Ophelia 34, 105–115.

Lunneryd SG, Boström MK and Aspholm PE (2015) Sealworm (Pseudoterranova decipiens) infection in grey seals (Halichoerus grypus), cod (Gadus morhua) and shortnose sculpin (Myxocephalus scorpius) in the Baltic Sea. Parasitology Research 114, 257–264.

Marcogliese DJ, Boily F and Hammill MO (1996) Distribution and abundance of stomach nematodes (Anisakidae) among grey seals (Halichoerus grypus) harp seals (Phoca groenlandica) in the gulf of St. Lawrence. Canadian Journal of Fisheries and Aquatic Sciences 53, 2829–2836.

Margolis L (1977) Public health aspects of “codworm” infection: a review. Journal of the Fisheries Research Board of Canada 34, 887–898.

Mattucci S and Nascetti G (2008) Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary process. Advances in Parasitology 66, 47–148.

McClelland G (2002) The trouble with sealworms (Pseudoterranova decipiens) species complex, Nematoda): a review. Parasitology 124, 183–203.

McClelland G and Martell DJ (2001) Surveys of larval sealworm (Pseudoterranova decipiens) infection in various fish species sampled from Nova Scotian waters between 1988 and 1996, with an assessment of examination procedures. NAMMCO Scientific Publications 3, 57–76.

Measures LN (1996) Effect of temperature and salinity on development and survival of eggs and free-living larval of sealworm (Pseudoterranova decipiens). Canadian Journal of Fisheries and Aquatic Sciences 53, 2804–2807.

Mehrdana F, Bahool QZ, Skov J, et al. (2014) Occurrence of zoonotic nematodes Pseudoterranova decipiens, Contracaecum osculatum and Anisakis simplex in cod (Gadus morhua) from the Baltic Sea. Veterinary Parasitology 205, 581–587.
Nascetti G (2011) First molecular identification of the zoonotic parasite
Olafsdottir D and Hauksson E
Nadler SA and Hudspeth DS (2000) Phylogeny of the Ascaridoidea
(Nematoda: Ascaridida) based on three genes and morphology: hypotheses of structural and sequence evolution. Journal of Parasitology 86, 380–393.
Nagasawa K (2012) The biology of Contracaecum osculatum sensu lato and C. osculatum A (Nematoda: Anisakidae) in Japanese waters: a review. Biosphere Science 51, 61–69.
Nascetti G (2011) First molecular identification of the zoonotic parasite Anisakis pegreffii (Nematoda: Anisakidae) in a paraffin-embedded granuloma taken from a case of human intestinal anisakiasis in Italy. BMC Infectious Diseases 11, 82.
Olafsdottir D and Hauksson E (1997) Anisakid (Nematoda) infestations in Icelandic grey seals (Halichoerus grypus Fabr. Journal of Northwest Atlantic Fishery Science 22, 259–269.
Olafsdottir D and Hauksson E (1998) Anisakid nematodes in the common seal Phoca vitulina L. in Icelandic waters. Sarsia 83, 309–316.
Perdiguerro-Alonso D, Montero F, Raga JA and Kostadinova A (2008) Composition and structure of the parasite faunas of cod, Gadus morhua L. (Teleostei: Gadidae) in the North East Atlantic. Parasites & Vectors 1(23), 1–18.
Pinel C, Beaudevin M, Chermette R, Grillot R and Ambroise-Thomas P (1996) Gastric anisakidosis due to Pseudoterranova decipiens larva. Lancet 347, 1829.
Sawada Y, Moriyama Y, Ebina T, Sasaki H, Yoshida Y, Tanabe K and Chiba R (1983) Gastric terranovasis: report of 14 cases. Gastroenterological Endoscopy 25, 713–717.
Schaum E and Müller W (1967) Heterocheilidiasis (case report). Deutsche Medizinische Wochenschrift 92, 2230–2233.
Shamsi S and Butcher AR (2011) First report of human anisakidosis in Australia. Medical Journal of Australia 194, 199–200.
Skirnsson K (2006) Pseudoterranova decipiens (Nematoda, Anisakidae) larvae reported from humans in Iceland after consumption of insufficiently cooked fish. Icelandic Medical Journal 92, 21–25 (in Icelandic with English summary).
Skov J, Kania PW, Olsen MN, Lauridsen JH and Buchmann K (2005) Nematode infections of mariculture and wild fishes in Danish waters: a comparative study. Aquaculture 298, 24–28.
Skrzypczak M, Rokicki J, Pawlczka I, Najda K and Dzido J (2014) Anisakids of seals found on the Southern coast of Baltic Sea. Acta Parasitologica 59, 165–172.
Strom SB, Haarder S, Korbut R, Mejer H, Thamsborg SM, Kania PW and Buchmann K (2015) Third-stage nematode larvae of Contracaecum osculatum from Baltic cod (Gadus morhua) elicit eosinophilic granulomatous reactions when penetrating the stomach mucosa of pigs. Parasitology Research 114, 1217–1220.
Timi JT, Paoletti M, Ciminaruta R, et al. (2014) Molecular identification, morphological characterization and new insights into the ecology of larval Pseudoterranova cattani in fishes from the Argentine coast with its differentiation from the Antarctic species. P. decipiens sp. E (Nematoda: Anisakidae). Veterinary Parasitology 199, 59–72.
Torres P, Jeroci MI, Weitz JC, Dobrew EK and Mercado RA (2007) Human pseudoterranovasis, an emerging infection in Chile. Journal of Parasitology 93, 440–443.
Vallter ED, Popova TI and Valovaya MA (1982) Scanning electron microscopy study of four species of anisakid larvae (Nematoda: Anisakidae). Helminthologia 19, 195–209.
Yu JR, Seo M, Kim YW, Oh MH and Sohn WM (2001) A human case of gastric infection by Pseudoterranova decipiens larva. The Korean Journal of Parasitology 39, 193–196.
Zhu XQ, D’Amelio S, Palm HW, Paggi I, George-Nascimento M and Gasser RB (2002) SSCP-based identification of members within the Pseudoterranova decipiens complex (Nematoda: Ascaridoidea: Anisakidae) using genetic markers in the internal transcribed spacers of ribosomal DNA. Parasitology 124, 615–623.
Zhu XQ, Podolska M, Liu JS, Yu HQ, Chen HH, Lin Z, Luo C, Song HQ and Lin RQ (2007) Identification of anisakid nematodes with zoonotic potential from Europe and China by single-strand conformation polymorphism analysis of nuclear ribosomal DNA. Parasitology Research 101, 1703–1707.
Zuo S, Kania PW, Mehrdana F, Marana MH and Buchmann K (2018) Contracaecum osculatum and other anisakid nematodes in grey seals and cod in the Baltic Sea: molecular and ecological links. Journal of Helminthology 92, 81–89.