TP53 p.Arg72Pro polymorphism and Breast Cancer Risk: A meta-analysis of case-control studies

CURRENT STATUS: UNDER REVIEW

Brehima Diakite
Universite des Sciences des Techniques et des Technologies de Bamako

br.diakite@yahoo.fr Corresponding Author
ORCiD: https://orcid.org/0000-0001-8296-5292

Yaya Kassogue
University des Sciences, techniques et Technologies de Bamako

Guimogo Dolo
Faculty of Medicine and Odontostomatology/ Universite des Sciences, Techniques et Technologies de Bamako

Jun Wang
Northwestern University

Erin Neuschler
University of Illinois Chicago

Oumar Kassogue
Universite des Sciences, Techniques et Technologies de Bamako

Mamadou Keita
CHU du Point G

Cheick Bougari Traore
Faculty of Medicine and Odontostomatology/Universite des Sciences, Techniques et Technologies de Bamako

Bakarou Kamate
Universite des Sciences, Techniques et Technologies de Bamako

Etienne Dembele
Northwestern University Department of Biomedical Engineering

Nadifi Sellama
Universite Hassan II Casablanca

Robert Murphy
Northwestern University Department of Biomedical Engineering

Seydou Doumbia
Universite des Sciences, techniques et Technologies de Bamako

Lifang Hou
Northwestern University Department of Biomedical Engineering

Mamoudou Maiga
Northwestern University Department of Biomedical Engineering

DOI:
10.21203/rs.2.18400/v2

SUBJECT AREAS
Medical Genetics

KEYWORDS
P53 gene, Arg/Pro polymorphism, Breast cancer, Meta-analysis
Abstract
Background: The effect of the p.Arg72Pro variant of the P53 gene on the risk of development of breast cancer remains variable in populations. However, the use of strategies such as pooling age-matched controls with disease cases may provide a solid meta-analysis. Our goal was to perform a meta-analysis in order to assess the association of p.Arg72Pro variant of P53 gene with breast cancer risk.

Methods: Databases such as PubMed, Genetics Medical Literature, Harvard University Library, Web of Science and Genesis Library were used to search articles. Age-matched case-control studies on breast cancer that have evaluated the genotype frequencies of the p.Arg72Pro of P53 gene were selected. The fixed and random effects (Mantel-Haenszel) were calculated using pooled odds ratio of 95% CI to determine the risk of disease. Inconsistency was calculated to determine heterogeneity among the studies. The publication bias was estimated using the funnel plot.

Results: Twenty-one publications with cases age-matched controls including 7841 disease cases and 8876 controls were evaluated in this meta-analysis. Overall, our results suggested that p.Arg72ProP53 was associated with a risk for breast cancer for the dominant model (OR = 1.09, 95% CI = 1.02-1.16; P = 0.01) and the additive model (OR = 1.09, 95% CI = 1.01-1.17; P = 0.03), but not in the recessive model (OR = 1.07, 95% CI = 0.97-1.16; P = 0.19). According to the ethnic group, allele Pro has been associated with breast cancer risk in Europeans for the dominant and additive models.

Conclusions: This meta-analysis found a significant association between p.Arg72Pro in the P53 gene and the risk of breast cancer. Individuals carrying at least one Pro allele of the P53 gene are more likely to have breast cancer with dominant and additive models than individuals harboring the Arg allele.

Background
Breast cancer, is a multifactorial disease with a strong genetic component; it is the leading cause of death among women around the world, representing a major public health problem [1]. According to the International Agency for Research on Cancer/World Health Organization, 2.09 million new cases of breast cancer were detected worldwide in 2018 [2] against 1.38 million cases in 2008[3]. The
incidence of breast cancer differs among different populations in the world [2]. In recent decades, spectacular progress has been made in understanding the molecular genetics of breast cancer pathology. In addition to the direct involvement of genetic predisposition genes, other genes participating in cell division regulation are also implicated in the occurrence of breast cancer [4-5], such as P53 gene, a tumor suppressor gene. While the role of P53 gene is not fully elucidated yet, it is recognized that P53 plays a key role in the regulation of cell proliferation and apoptosis. The P53 protein is essential to maintain the integrity of the cell and its components. In human cancers, mutated P53 produces abnormal proteins that alter or inhibit transcriptional regulation [6]. Consequently, a cell cannot respond to stress, and the cell cycle as well as apoptosis are inhibited. Genomically, inactivation or mutation of P53 gene would be responsible for a linkage disequilibrium in the DNA sequence leading to genomic instability [7]. These abnormalities of P53 gene protein associated with chromosomal aberrations could induce the development of breast and ovarian cancer [8]. This gene is known to be the most frequently mutated in human cancers [9]. The gene is located on chromosome 17p13 and contains 11 exons. Several polymorphisms have been identified, but the most widely studied variant is the substitution of Arginine by Proline at position 72. p.Arg72Pro variant is located in exon 4, and has been shown to be associated with many pathologies including cancer [10-11]. Although many association studies on candidate genes have investigated the relationship between the p.Arg72Pro of the P53 gene and the risk of breast cancer, the reports from these studies remain contradictory. Some studies have shown that p.Arg72Pro is associated with the risk of breast cancer, while others found no associations. The studies carried out by Menzel et al. 2004 [12] and Akkiprik et al. 2009 [13] have shown a link between p.Arg72Pro and breast cancer risk. However, another age-unmatched case-control study in the similar population concluded that p.Arg72Pro was not associated with the risk of breast cancer [14]. This inconsistency in the relationship between p.Arg72Pro of the P53 gene and breast cancer risk may be explained by a very high heterogeneity in the frequency of mutations. This heterogeneity is likely related to the geographical origin of patients, the ethnicity [15-17] and the age-unmatched controls with patients’ group of the same population. In view of all these observations, the present meta-analysis will include
only age-matched case-control studies, to qualitatively assess the effect of p.Arg72Pro on the risk of breast cancer.

Methods

Literature search
The Pubmed Genetics Medical Literature Database, the Harvard University Library, and the Web of Science and Genesis Library were used to identify available articles published in English. The keywords "P53", "p.Arg72Pro" and "polymorphism" or "mutation" or "gene" and "breast cancer" cited in the genetic association studies were used to detect and select scientific manuscripts in these databases. We also reviewed references cited in these studies to identify additional articles that were not identified by our research in the databases.

Inclusion criteria
The inclusion criteria were: (1) published case-control studies as an original article to evaluate the association between p.Arg72Pro of the P53 gene and risk of breast cancer, (2) full manuscript available, (3) case-control study with age-matched, (4) distribution of genotype respecting Hardy-Weinberg equilibrium (HWE) in controls, (5) availability of the three genotypic frequencies (Arg/Arg, Arg/Pro and Pro/Pro) in the case and control groups. (6) Three investigators independently evaluated each study to determine eligibility.

Data extraction
The data were collected by an investigator and verified by a second investigator to reach consensus on all points. First author, year of publication, country, ethnicity of study population, sample size, age-matched, distribution of genotype and alleles, as well as the recalculation of HWE in controls were extracted from the eligible studies. A third reviewer made a contradictory assessment to reconcile the assumptions. The data of controls evaluated with p.Arg72Pro variant were included in this meta-analysis.

Statistical analysis
Chi² analysis with a significance level of P < 0.05 was used to evaluate whether p.Arg72Pro polymorphism distribution of the P53 gene in controls fits Hardy-Weinberg equilibrium (HWE). The
association between the p.Arg72Pro and the risk of breast cancer was evaluated by the Odd ratio (OR) of 95% CI. We evaluated the association strength of Arg72Pro polymorphism of P53 gene was made with the genetic models: dominant (Pro/Pro + Arg/Pro vs. Arg/Arg), recessive (Pro/Pro vs. Arg/Arg + Arg/Pro) and additive (Pro vs. Arg). The hypothesis of heterogeneity among the studies was assessed by I^2 statistical test [18-19]. If $I^2 > 50\%$ (presence of heterogeneity), the random effects model was used to calculate the overall OR, otherwise (lack of heterogeneity), the fixed effects method has been used. We also have examined the funnel plot to determine publication bias [20]. All statistical analyses were performed with Review Manager Software version 5.1.

Results
In the light of our results, 81 case-control studies from the literature search (Fig. 1) that investigated the association of p.Arg72Pro of P53 gene in the context of breast cancer were included, of which only 55 studies had a genotype distribution of control population that met Hardy-Weinberg equilibrium, and 21 out of the 55 studies have cases age-matched controls (Table 1). Among these studies, the participants of 9 studies were Europeans [12-14, 21-26], 9 studies were Asians [27-35], 2 were Americans [36, 37]. Genotype distribution of the control population that met Hardy-Weinberg equilibrium was a minimum requirement for studies to be included.

Figure 1. Flow diagram of the studies evaluated for meta-analysis

Table 1. Genotype distribution of TP53 p.Arg72Pro polymorphism in breast cancer cases and age-matched controls in studies included.

The results of combined analyses for p.Arg72Pro TP53 gene were showed in Table 2.

A total of 29 cases (N=7841) and age-matched control (N=8876) studies in 81 manuscript published were included in this meta-analysis. The sample sizes (cases/controls) of the Europeans, Asians, Americans and African population studies were 2342/2318, 2244/2354, 3130/4078 and 125/126 respectively. Overall, a significant association between p.Arg72Pro of P53 gene and the risk for breast cancer was observed in the dominant model [OR (FE) = 1.09, 95% CI = 1.02-1.16; P = 0.01] and additive model [OR (RE) = 1.09, 95% CI = 1.01-1.17; P = 0.03], but not in the recessive model [OR (FE) = 1.07, 95% CI = 0.97-1.16; P = 0.19]. When subgroup analyses were conducted according to
participant ethnicities and countries, except the recessive model [OR (FE)= 1.18, 95% CI = 0.96-1.44; P= 0.12], p. Arg72Pro was associated with breast cancer risk with the dominant and additive models in Europeans. No positive association was observed with the different models in Asian and American populations. The only eligible African study has shown an increased risk of breast cancer in recessive (OR = 2.14, 95% CI = 1.08-4.23; P= 0.03) and additive (OR = 1.49, 95% CI = 1.03-2.16; P= 0.03) models (Table2).

Tableau 2. Distribution of p.Arg72Pro TP53 gene according to the genetic models

Overall, after elimination of studies deviating from Hardy-Weinberg equilibrium in controls and no evidence of heterogeneity (I^2> 50%) was found with the dataset analyzed in the recessive and dominant models. However, a modest heterogeneity was observed between the p.Arg72Pro variant and the risk of breast cancer in the combined analyses and Asians for the additive model (Table 2). In addition, we compared the pooled OR of the fixed and random effects, and found no statistically significant difference between the two effects, which supports strongly the consistency of the present study’s data. To maintain the stability of the meta-analysis after the non-inclusion of deviant studies of HWE and sensitivity analysis, we evaluated the influence of each study on pooled OR. After the exclusion of studies [39-42], no study has shown a significant influence of the pooled OR effect in each of the different genetic models (Table 2).

The publication bias has been evaluated using the funnel plot. After excluding studies that deviated from the Hardy-Weinberg equilibrium in controls and the studies influencing the Odd ratio values, no significant publication bias was found in dominant, recessive and additive models (Figure2).

Figure 2. Funnel plots of dominant (a), recessive (b) and additive (c) models precision by OR

Discussion

Breast cancer is a multifactorial disease and its occurrence depends on the synergistic action of clinical, biological and environment factors and mechanisms [43-44]. In addition to these risk factors, the role of specific genes in the pathology of breast cancer is increasingly evident.

The protein and the TP53 gene have been widely studied for their associations with cancers, especially breast cancer, because they play a key role in DNA repair, cell cycle control and apoptosis.
The P53 gene encodes a transcription factor that binds to DNA and promotes the expression of genes that would repair cellular damage. Therefore, P53 is a tumor suppressor that sounds the alarm when DNA damage prevents the cell from turning into a cancer cell, or even inducing cell death. In the presence of a mutation, P53 gene can no longer repair the damaged DNA, which will lead to appearance of the malignant cells responsible for tumorigenesis [46-47]. Several functional genetic variants p.Arg72Pro, p.Pro47Ser, 16-bp-Insertion allele) have been described and speculated to be associated with the risk of breast cancer incidence [13, 46-49]. Although numerous epidemiological studies have been conducted to assess the role of SNP TP53 in the risk of breast cancer in different populations. However, these results are controversial. The meta-analysis can be an adequate tool to detect the effect of a gene in diseases with a great power of confidence. Our meta-analysis evaluated the association between the variant p.Arg72Pro of the tumor suppressor P53 gene and breast cancer with eligibility criteria of case-control studies that had age-matched controls in HWE. In this meta-analysis, we found that the Pro allele of p53 gene was associated with risk of breast cancer risk for Europeans and Africans when compared to Arg allele. This finding is consistent in part with a previous meta-analysis which investigated breast cancer risk in 41 cases unmatched control studies [50], but discordant with the finding reported by Hou et al 2013 [51], Zhuo et al [52] and Hao et al [53]. The difference between these results can be explained by the presence of heterogeneity between studies, and the mixture studies with age-matched and/or unmatched controls in their analysis. This heterogeneity may be due to the difference in ethnicity. The effects of ethnicity can be explained by several factors including allelic heterogeneity between populations, ie the same locus, but different causal variants can influence the risk of cancer from one population to another or gene-gene and gene-environment interaction and the variation of linkage disequilibrium among population [54, 55, 56]. However, in the previous meta-analyzes, the inclusion criteria of studies were not robust enough, the case with age-matched control studies and the non-deviation in HWE of the distribution of p.Arg72Pro in controls were not taken into account in the analyzes. Several studies (cases and controls, and case with age-matched controls) between p.Arg72Pro of P53 gene and the risk of breast cancer have been reported, which improved the power of the meta-analysis of this genetic variant.
The analysis of subtypes studies based on the case and age matched controls and ethnicity being possible now. So, to have a more precise estimate of genetic associations, we have updated this meta-analysis. In addition, the meta-analyzes of Goncalves et al. 2013 [50], He et al. 2011 [57] and Ma et al. 2011 [58] showed that the Arg allele of the P53 gene was not associated with the risk of breast cancer, which is consistent with our findings. The literature is composed of contradictory conclusions regarding the association of Arg72Pro P53 gene with breast cancer risk, but most of the previous meta-analyses focused on the presence or absence of the wild-type (Arg) allele in these genetic models: dominant (Arg/Arg+Pro/Arg vs. Pro/Pro), recessive (Arg/Arg vs. Arg/Pro+Pro/Pro) and additive (Arg vs. Pro) [57-58]. However, we have found some bias in certain studies regarding the criteria for inclusion of scientific articles, which may have influenced the interpretation of these meta-analyzes. This bias existed in mostly studies whose distribution of Arg/Arg, Arg/Pro and Pro/Pro genotypes in controls was not in HWE [59-72]. We also performed an in-depth sensitivity analysis by removing each single study from the pooled data and the results showed that there was no influence of the individual data on the overall results. In addition, we also calculated the overall combined OR on the additive model (Pro vs Arg) with and without the four studies which influenced the values of the Odds ratio [39-42], and in both cases, we found that the Pro allele was associated with a high risk of developing breast cancer. The major advantage of this meta-analysis was the inclusion of a large number of samples including very selective criteria, in order to identify a statistically significant association in one of the genetic models. However, several limitations need to be highlighted. Case age-matched control studies were rare in some ethnic groups, only one African study met the inclusion criteria and two studies in Americans.

Conclusions
In the light of this meta-analysis, individuals carrying at least one Pro allele of the P53 gene are more likely to have breast cancer with dominant and additive models than individuals carrying the Arg wild-type allele. Our study further reinforced and confirmed the hypothesis that the P53 gene is usually mutated in about half of breast cancer cases. For the stability and homogeneity of results from meta-analysis, future similar studies must consider criteria for selecting articles such as the HWE.
agreement and controls age-matched cases studies. Future studies should also consider comparing different ethnic groups.

Abbreviations
Arg: Arginine; CI: Confidence interval, CIRC: International Center for Research on Cancer; Fig.: Figure; HWE: Hady-Weinberg Equilibrium; I^2: Inconsistency; N: Number; OR: Odd ratio; P: P value Pro: Proline.

Declarations
Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable.

Availability of data and materials
The dataset analyzed for this study is available from the table 1.

Competing interests
The authors declare that they have no competing interests.

Funding
In prelude to the Genetic and Epigenetic aspects of Breast cancer in Mali project, financially supported by HBNU Global Health Fellowship programs we conducted this work to justify gene selection.

Authors’ contributions
All authors read and approved the final manuscript. Study concept and design : BD, YK, GD, JW, EN, OK, MK, CBT, BK, ED, SN, SD, LH, MM. Acquisition of data : BD, YK. Analysis and interpretation of data : BD, YK, MM. Drafting of the manuscript : BD with assistance from by YK, MM. Critical revision of the manuscript for important intellectual content : JW, EN, SN, GD, SD, LH. Obtaining supervision : RM.

Acknowledgments
Research reported in this publication was supported by the Fogarty International Center and the National Institutes of Health under Award Number D43 TW010543. The content is solely

References
1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin.
2. Ferlay J, Shin H-R, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893-917.

3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424.

4. Marshall C.J. (1991). Tumor suppressor genes. Cell 1991; 64, 313-326.

5. Eeles RA, Bartkova J, Lane DP, Bartek J. The role of TP53 in breast cancer development. Cancer Surv. 1993;18:57-75.

6. el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B. Definition of a consensus binding site for p53. Nat Genet. 1992;1:45-9.

7. Lane DP. Worrying about p53. Curr Biol. 1992;2:581-3.

8. Mhawech P, Kinkel K, Vlastos G, Pelte M-F. Ovarian carcinomas in endometriosis: an immunohistochemical and comparative genomic hybridization study. Int J Gynecol Pathol. 2002;21:401-6.

9. Bennett WP, Hussain SP, Vahakangas KH, Khan MA, Shields PG, Harsis CC. Molecular epidemiology of human cancer risk: gene-environment interactions and p53 mutation spectrum in human lung cancer. J Pathol. 1999;187:8-18.

10. Zhou Y, Li N, Zhuang W, Liu G-J, Wu T-X, Yao X, et al. P53 codon 72 polymorphism and gastric cancer: a meta-analysis of the literature. Int J Cancer. 2007;121:1481-6.

11. de Cremoux P, Salomon AV, Liva S, Dendale R, Bouchind’homme B, Martin E, et al. p53 mutation as a genetic trait of typical medullary breast carcinoma. J Natl Cancer Inst. 1999;91:641-3.

12. Menzel H-J, Sarmanova J, Soucek P, Berberich R, Grünwald K, Haun M, et al. Association of NQO1 polymorphism with spontaneous breast cancer in two
independent populations. Br J Cancer. 2004;90:1989-94.

13. Akkiprik M, Sonmez O, Gulluoglu BM, Caglar HB, Kaya H, Demirkalem P, et al. Analysis of p53 gene polymorphisms and protein over-expression in patients with breast cancer. Pathol Oncol Res. 2009;15:359-68.

14. Krivokuca AM, Malisic EJ, Dobricic JD, Brotto KV, Cavic MR, Jankovic RN, et al. RAD51 135G>C and TP53 Arg72Pro polymorphisms and susceptibility to breast cancer in Serbian women. Fam Cancer. 2014;13(2):173-80.

15. Sommer SS, Cunningham J, McGovern RM, Saitoh S, Schroeder JJ, Wold LE, et al. Pattern of p53 gene mutations in breast cancers of women of the midwestern United States. J Natl Cancer Inst. 1992;84(4):246-52.

16. Blaszyk H, Hartmann A, Tamura Y, Saitoh S, Cunningham JM, McGovern RM, et al. Molecular epidemiology of breast cancers in northern and southern Japan: the frequency, clustering, and patterns of p53 gene mutations differ among these two low-risk populations. Oncogene. 1996;13:2159-66.

17. Hartmann A, Blaszyk H, Kovach JS, Sommer SS. The molecular epidemiology of p53 gene mutations in human breast cancer. Trends Genet. 1997;13:27-33.

18. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177-88.

19. Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from http://handbook.cochrane.org

20. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629-34.

21. Buyru N, Tigli H, Dalay N. P53 codon 72 polymorphism in breast cancer. Oncol Rep. 2003;10:711-4.
22. Cherdyntseva NV, Denisov EV, Litviakov NV, Maksimov VN, Malinovskaya EA, Babyshkina NN, et al. Crosstalk between the FGFR2 and TP53 genes in breast cancer: data from an association study and epistatic interaction analysis. DNA Cell Biol. 2012;31:306-16.

23. Costa S, Pinto D, Pereira D, Rodrigues H, Cameselle-Teijeiro J, Medeiros R, et al. Importance of TP53 codon 72 and intron 3 duplication 16bp polymorphisms in prediction of susceptibility on breast cancer. BMC Cancer. 2008;8:32.

24. Denisov EV, Cherdyntseva NV, Litvyakov NV, Slonimskaya EM, Malinovskaya EA, Voevoda MI, et al. TP53 mutations and Arg72Pro polymorphism in breast cancers. Cancer Genet Cytogenet. 2009;192:93-5.

25. Ebner F, Schremmer-Danninger E, Rehbock J. The role of TP53 and p21 gene polymorphisms in breast cancer biology in a well specified and characterized German cohort. J Cancer Res Clin Oncol. 2010;136:1369-75.

26. Wang-Gohrke S, Becher H, Kreienberg R, Runnebaum IB, Chang-Claude J. Intron 3 16 bp duplication polymorphism of p53 is associated with an increased risk for breast cancer by the age of 50 years. Pharmacogenetics. 2002;12:269-72.

27. Alshatwi AA, Hasan TN, Shafi G, Alsaif MA, Al-Hazzani AA, Alsaif AA. A single-nucleotide polymorphism in the TP53 and MDM-2 gene modifies breast cancer risk in an ethnic Arab population. Fundam Clin Pharmacol. 2012;26:438-43.

28. Hossain A, Murshid GMdM, ZilaniMdNH, Islam F, Sultana R, Sultana T, et al. TP53 codon 72 polymorphism and breast cancer risk in Bangladeshi population. Breast Cancer. 2017;24:571-8.

29. Isakova J, Talaibekova E, Aldasheva N, Vinnikov D, Aldashev A. The association of polymorphic markers Arg399Gln of XRCC1 gene, Arg72Pro of TP53 gene and T309Gof MDM2 gene with breast cancer in Kyrgyz females. BMC Cancer. 2017;13;17(1):758.
30. Katiyar S, Thelma BK, Murthy NS, Jain N, Gopalkrishna V, Husain SA, Das BC. Polymorphism of the p53 codon 72 Arg/Pro and the risk of HPV type16/18-associated cervical and oral cancer in India. Mol Cell Biochem. 2003;252:117-24.31. Li T, Lu ZM, Guo M, Wu QJ, Chen KN, Xing HP, Mei Q, Ke Y. p53 codon 72 polymorphism (C/G) and the risk of human papillomavirus-associated carcinomas in China. Cancer. 2002;15;95(12):2571-6.

31. Ma H, Hu Z, Zhai X, Wang S, Wang X, Qin J, Chen W, Jin G, Liu J, Gao J, Wang X, Wei Q, Shen H. Joint effects of single nucleotide polymorphisms in P53BP1 and p53 on breast cancer risk in a Chinese population. Carcinogenesis. 2006;27:766-71.

32. Sharma S, Sambyal V, Guleria K, Manjari M, Sudan M, Uppal MS, et al. TP53 polymorphisms in sporadic North Indian breast cancer patients. Asian Pac J Cancer Prev. 2014;15:6871-9.

33. Song F, Zheng H, Liu B, Wei S, Dai H, Zhang L, et al. An miR-502-binding site single-nucleotide polymorphism in the 3'-untranslated region of the SET8 gene is associated with early age of breast cancer onset. Clin Cancer Res. 2009;15:6292-300.

34. Zhang W, Jin MJ and Chen K: Association of p53 polymorphisms and its haplotypes with susceptibility of breast cancer. Zhejiang Da Xue Xue Bao Yi Xue Ban. 36:561–566. 2007.(In Chinese)

35. 36. Cox DG, Deer D, Guo Q, Tworoger SS, Hankinson SE, Hunter DJ, et al. The p53 Arg72Pro and MDM2 -309 polymorphisms and risk of breast cancer in the nurses’ health studies. Cancer Causes Control. 2007;18:621–5.

36. Sprague BL, Trentham-Dietz A, Garcia-Closas M, Newcomb PA, Titus-Ernstoff L, Hampton JM, et al. Genetic variation in TP53 and risk of breast cancer in a population-based case control study. Carcinogenesis. 2007;28:1680-6.

37. Ayoubi SE, Elkarroumi M, El Khachibi M, Hassanildrissi H, Ayoubi H, Ennachit S, et al.
The 72Pro Variant of the Tumor Protein 53 Is Associated with an Increased Breast Cancer Risk in the Moroccan Population. Pathobiology. 2018;85:247-53.

38. Arfaoui A, Douik H, Kablouti G, Chaaben AB, Handiri N, Zid Z, et al. Role of p53 Codon72 SNP in Breast Cancer Risk and Anthracycline Resistance. Anticancer Res. 2015;35:1763-9.

39. Faghani M, Nikbahkt M, Salehi M, Rabbani M, Talebi A, Soleima-ni B, et al. Study of p53 polymorphism at codon 72 in patients of breast cancer in Isfahan. Journal of Isfahan Medical School. 2007;25:26-33.

40. Chabnaz S, Ahmed MU, Islam MS, Islam MR, Al-Mamun MM, Islam MS, HasnatA. Breast cancer risk in relation to TP53 codon 72 and CDH1 gene polymorphisms in the Bangladeshi women. Tumour Biol. 2016;37:7229-37.

41. Yadav P, Masroor M, Tanwer K, Mir R, Javid J, Ahmad I, et al. Clinical significance of TP53 (R72P) and MDM2 (T309G) polymorphisms in breast cancer patients. Clin Transl Oncol. 2016;18:728–34.

42. Veronesi U, Boyle P, Goldhirsch A, Orecchia R, Viale G. Breast cancer. Lancet. 2005;365:1727-41.

43. Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. N Engl J Med. 2006;354:270-82.

44. Dumont P, Leu JL, Della Pietra AC 3rd, George DL, Murphy M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. NatGenet. 2003;33:357-65.

45. Flaman JM, Waridel F, Estreicher A, Vannier A, Limacher JM, Gilbert D, et al. The human tumour suppressor gene p53 is alternatively spliced in normal cells. Oncogene. 1996;12:813-8.

46. Rohaly G, Chemnitz J, Dehde S, Nunez AM, Heukeshoven J, Deppert W, et al. A novel
human p53 isoform is an essential element of the ATR-intra-S phase checkpoint. Cell. 2005;122:21-32.

47. Murphy ME, Liu S, Yao S, Huo D, Liu Q, Dolfi SC, Hirshfield KM, Hong CC, Hu Q, Olsahan AF, Ogundiran TO, Adebamowo C, Domchek SM, Nathanson KL, Nemesure B, Ambs S, Blot WJ, Feng Y, John EM, Bernstein L, Zheng W, Hu JJ, Ziegler RG, Nyante S, Ingles SA, Press MF, Deming SL, Rodriguez-Gil JL, Haiman CA, Olopade OI, Lunetta KL, Palmer JR, Ambrosone CB. A functionally significant SNP in TP53 and breastcancer risk in African-American women. NPJ Breast Cancer. 2017;3:5.

48. Wu D, Zhang Z, Chu H, Xu M, Xue Y, Zhu H, Zhang Z. Intron 3 sixteen base pairsduplication polymorphism of p53 contributes to breast cancer susceptibility:evidence from meta-analysis. PLoS One. 2013;8:e61662.

49. Gonçalves ML, Borja SM, Cordeiro JABL, Saddi VA, Ayres FM, Vilanova-Costa CAST, et al. Association of the TP53 codon 72 polymorphism and breast cancer risk: a meta-analysis. Springerplus. 2014;3:749.

50. Hou J, Jiang Y, Tang W, Jia S. p53 codon 72 polymorphism and breast cancer risk: A meta-analysis. Exp Ther Med. 2013;5:1397-1402.

51. Zhuo W, Zhang Y, Xiang Z, Cai L, Chen Z. Polymorphisms of TP53 codon 72 with breast carcinoma risk: evidence from 12226 cases and 10782 controls. J Exp Clin Cancer Res. 2009;28:115.

52. Hao W, Xu X, Shi H, Zhang C, Chen X. No association of TP53 codon 72 and intron 3 16-bp duplication polymorphisms with breast cancer risk in Chinese Hanwomen: new evidence from a population-based case-control investigation. Eur J Med Res. 2018;23:47.

53. Thomas D. Gene-environment-wide association studies: emerging approaches. Nat Rev Genet. 2010;11:259-272.
54. Wood AR, Hernandez DG, Nalls MA, Yaghootkar H, Gibbs JR, Harries LW, Chong S, Moore M, Weedon MN, Guralnik JM, Bandinelli S, Murray A, Ferrucci L, Singleton AB, Melzer D, Frayling TM. Allelic heterogeneity and more detailed analyses of known loci explain additional phenotypic variation and reveal complex patterns of association. Human Molecular Genetics. 2011;20:4082–4092.

55. Rosenberg NA, Huang L, Jewett EM, Szpiech ZA, Jankovic I, Boehnke M. Genome-wide association studies in diverse populations. Nat Rev Genet. 2010;11:356–366.

56. He X-F, Su J, Zhang Y, Huang X, Liu Y, Ding D-P, et al. Association between the p53 polymorphisms and breast cancer risk: meta-analysis based on case-control study. Breast Cancer Res Treat. 2011;130:517–29.

57. Ma Y, Yang J, Liu Z, Zhang P, Yang Z, Wang Y, et al. No significant association between the TP53 codon 72 polymorphism and breast cancer risk: a meta-analysis of 21 studies involving 24,063 subjects. Breast Cancer Res Treat. 2011;125:201-5.

58. Ohayon T, Gershoni-Baruch R, Papa MZ, Distelman Menachem T, Eisenberg Barzilai S, Friedman E. The R72P P53 mutation is associated with familial breast cancer in Jewish women. Br J Cancer. 2005;92:1144-8.

59. Henríquez-Hernández LA, Murias-Rosales A, Hernández González A, Cabrera De León A, Díaz-Chico BN, Mori De Santiago M, et al. Gene polymorphisms in TYMS, MTHFR, p53 and MDR1 as risk factors for breast cancer: a case-control study. Oncol Rep. 2009;22:1425-33.

60. Papadakis EN, Dokianakis DN, Spandidos DA. p53 codon 72 polymorphism as a risk factor in the development of breast cancer. Mol Cell Biol Res Commun. 2000;3:389-92.

61. Noma C, Miyoshi Y, Taguchi T, Tamaki Y, Noguchi S. Association of p53 genetic polymorphism (Arg72Pro) with estrogen receptor positive breast cancer risk in
Japanese women. Cancer Lett. 2004;210:197-203.

62. Damin APS, Frazzon APG, Damin DC, Roehe A, Hermes V, Zettler C, et al. Evidence for an association of TP53 codon 72 polymorphism with breast cancer risk. Cancer Detect Prev. 2006;30:523-9.

63. Mahasneh AA, Abdel-Hafiz SS. Polymorphism of p53 gene in Jordanian population and possible associations with breast cancer and lung adenocarcinoma. Saudi Med J. 2004;25:1568-73.

64. Nordgard SH, Alnaes GIG, Hihn B, Lingjaerde OC, Liestøl K, Tsalenko A, et al. Pathway based analysis of SNPs with relevance to 5-FU therapy: relation to intratumoral mRNA expression and survival. Int J Cancer. 2008;123:577-85.

65. Rajkumar T, Samson M, Rama R, Sridevi V, Mahji U, Swaminathan R, et al. TGFbeta1 (Leu10Pro), p53 (Arg72Pro) can predict for increased risk for breast cancer in south Indian women and TGFbeta1 Pro (Leu10Pro) allele predicts response to neo-adjuvant chemo-radiotherapy. Breast Cancer Res Treat. 2008 Nov;112(1):81-7.

66. Singh V, Rastogi N, Mathur N, Singh K, Singh MP. Association of polymorphism in MDM-2 and p53 genes with breast cancer risk in Indian women. Ann Epidemiol. 2008;18:48-57.

67. Aoki MN, da Silva do Amaral Herrera AC, Amarante MK, do Val Carneiro JL, Fungaro MHP, Watanabe MAE. CCR5 and p53 codon 72 gene polymorphisms: implications in breast cancer development. Int J Mol Med. 2009;23:429-35.

68. Hrstka R, Beranek M, Klocova K, Nenutil R, Vojtesek B. Intronic polymorphisms in TP53 indicate lymph node metastasis in breast cancer. Oncol Rep. 2009;22:1205-11.

69. Kazemi M, Salehi Z, Chakosari RJ. TP53 codon 72 polymorphism and breast cancer in northern Iran. Oncol Res. 2009;18:25-30.

70. Alawadi S, Ghabreau L, Alsaleh M, Abdulaziz Z, Rafeek M, Akil N, et al. P53 gene
polymorphisms and breast cancer risk in Arab women. Med Oncol. 2011;28:709-15.

71. Suresh K, Venkatesan R, Chandirasekar R, Kumar BL, Sasikala K. Association of Trp53 arg72pro polymorphic variants with breast cancer – a case control study in south Indian population. Biol Med. 2011;3:15–22.

Tables

Table 1. Genotype distribution of TP53 p.Arg72Pro polymorphism in breast cancer cases and age-matched controls in studies included.

Authors	N	Arg/Arg	Arg/Pro	Pro/Pro	N
Akkiprik et al 2009 [13]	95	25	50	20	10
Alshatwi et al 2012 [27]	100	22	52	26	10
Ayoubi et al 2018 [38]	125	55	42	28	12
Buyru et al 2003 [21]	115	64	39	12	6
Cherdyntseva et al 2012 [22]	388	184	162	42	27
Costa et al 2008 [23]	175	98	61	16	21
Cox et al 2007 [36]	1477	804	569	104	22
Denisov et al 2009 [24]	297	148	124	25	27
Ebner et al 2010 [25]	263	138	108	17	25
Hossain et al 2016 [28]	125	54	42	29	12
Isakova et al 2017 [29]	117	57	50	10	10
Katiyar et al 2003 [30]	77	20	51	6	4
Krivokuca et al 2014 [14]	155	87	58	10	11
Li et al 2002 [31]	28	11	10	7	5
Ma et al 2006 [32]	404	149	178	77	47
Menzel et al 2004 [12]	302	158	114	30	47
Sharma et al 2014 [33]	200	47	103	50	20
Song et al 2009 [34]	1110	341	547	222	10
Sprague et al 2007 [37]	1653	909	644	100	18
Wang-Gohrke et al 2002 [26]	552	282	221	49	54
Zhang et al 2007 [35]	83	21	45	17	16

N: Number, Arg/Arg: wild-type, Arg/Pro: heterozygous, Pro/Pro: mutated homozygous, HWE: Hardy-
Table 2. Distribution of p.Arg72Pro TP53 gene according to the genetic models

Group	N	Sample size	Genetic Models	Overall OR (95% CI)	P-value	H
All	21	7841/8876	Recessive	1.07 (0.97-1.16) FE	0.19	3i
			Dominant	1.09 (1.02-1.16) FE	0.01	3'
			Additive	1.09 (1.01-1.17) FE	0.03	4'
European	9	2342/2318	Recessive	1.18 (0.96-1.44) FE	0.12	0'
			Dominant	1.16 (1.04-1.31) FE	0.01	2'
			Additive	1.13 (1.03-1.24) FE	0.007	3'
Asian	9	2244/2354	Dominant	1.05 (0.82-1.36) FE	0.88	4'
			Recessive	1.09 (0.89-1.33) FE	0.33	4'
			Additive	1.03 (0.95-1.12) RE	0.46	5'
American	2	3130/4078	Recessive	1.02 (0.85-1.23) FE	0.83	6'
			Dominant	1.04 (0.95-1.15) FE	0.38	0'
			Additive	1.03 (0.96-1.11) FE	0.42	4'
African	1	125/126	Recessive	2.14 (1.08-4.23)	0.03	-
			Dominant	1.36 (0.83-2.23)	0.23	-
			Additive	1.49 (1.03-2.16)	0.23	-

*: Significant, P: p value OR, p': p value heterogeneity; I^2: Inconsistency; dominant: Pro/Pro + Arg/Pro vs. Arg/Arg; recessive: Pro/Pro vs. Arg/Arg+Arg/Pro; additive: Pro vs. Arg; Phet: P value of Heterogeneity

Figures
Figure 1
Flow diagram of the studies evaluated for meta-analysis
Figure 2

Funnel plots of dominant (a), recessive (b) and additive (c) models precision by OR

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
Additional file 1.docx