Daniela Šurčanská - Ferdinand Hesek *

MATHEMATICKÉ MODELOVANIE VPLYVU DIAĽNICE NA ZNEČIŠTENIE OVDUŠIA

MATHEMATICAL MODELLING OF THE HIGHWAY INFLUENCE TO AIR POLLUTION

The paper deals with the procedure of the highway project evaluation from the standpoint of highway influence to the environment. The official calculation methodology of air pollution is used for that purpose. The methodology was adjusted so that the differences of highways from the common roads were taken into consideration by the calculation of pollutant distribution in the surroundings of the highway, mainly from the high speed of the traffic stream point of view.

1. Introduction

The negative effect of traffic to air pollution is generally well known. The traffic in cities contributes to more than 50 percent of air pollution and in the central part of cities more than 70 percent [5]. The solution of the increasing traffic density problem demands construction of new roads, mainly highways. It is also necessary to answer the question if highways solve the problem of negative influence of traffic to air pollution. Building highways does not bring down the number of cars that pass through a given place. It sooner raises this number because highways attract more drivers that would otherwise use another route. Highways increase the average speed of the traffic stream. Therefore, fuel consumption increases and results is increasing emission of the main harmful substances produced by traffic: \(\text{NO}_x \) – the sum of nitrogen oxides; \(\text{CO} \) – carbon monoxide and \(\text{VOC} \) – volatile organic compounds.

By the projecting of highways it is necessary to take into consideration that the negative influence of highways affects the smallest number of people. Construction of highways out of city living parts is not possible. It is important that the highway could run in such a way, that in the zone, where the concentrations of \(\text{NO}_x \) and \(\text{CO} \) exceed the short-term imission standards, the number of the permanent living inhabitants was minimalized. The emission of carbon monoxide by highway traffic is approximately four times higher than the emission of nitrogen oxides but the imission standard is 50 times higher, e.g. \(\text{CO} \) is 50 times less toxic then \(\text{NO}_x \). Therefore, it is comprehensible that the negative influence of the highway should be judged according to the \(\text{NO}_x \) concentration, and the width of the protective zone round the highway should be determined by the isoline 200 \(\mu \text{g.m}^{-3} \) \(\text{NO}_x \) concentration. The distribution of \(\text{NO}_x \), \(\text{CO} \) and \(\text{VOC} \) concentration is calculated on

*Assistant Prof., PhD, Eng. Daniela Durcanska, **Assoc. Prof., PhD, Dr. Ferdinand Hesek
1. University of Žilina, Faculty of Civil Engineering, Department of Highway Engineering, Slovak Republic
2. Geophysical Institute of SAS Bratislava, Slovak Republic
Prezentácia metodiky výpočtu automobilového znečistenia ovzdušia a jej modifikácie pre výpočet distribucie koncentrácie hlavných zložiek spaľovania paliva okolo diaľnice je jeden z cieľov tohto článku.

2. Metodika výpočtu znečistenia ovzdušia z automobilovej dopravy

V prvom priblížení sa môže ulica uvažovať ako liniový zdroj znečisťujúcich látok. Disperzia znečisťujúcich látok z lineárného zdroja je popísaná stacionárnou dvojrozmerovou rovnicou turbulentnej difúzie:

\[U \frac{\partial C}{\partial x} = K_x \frac{\partial^2 C}{\partial x^2} + \frac{\partial}{\partial z} K_z \frac{\partial C}{\partial z}. \]

(1)

Ulicu si môžeme predstaviť ako kaňon, ohraničený z oboch strán budovami. Pre takúto ulicu hranieč môžeme podmenky budú:

\[K_x \frac{\partial C}{\partial x} \bigg|_{x=a} = vC \quad \text{pre} \quad 0 \leq z \leq h, \]
\[K_x \frac{\partial C}{\partial z} \bigg|_{z=0} = Q \quad \text{nad cestou}, \]
\[K_x \frac{\partial C}{\partial z} \bigg|_{z=H} = 0, \]

kde \(C \) - je koncentrácia znečisťujúcej látky v mg.m\(^{-3}\),
\(K_x, K_z \) - sú zložky koeficientu difúzie v príslušných smeroch v m\(^2\).s\(^{-1}\),
\(U \) - rýchlosť vetra v m.s\(^{-1}\),
\(h \) - výška budov, m,
\(H \) - výška vrstvy premiešavania v m,
\(S \) - šírka kaňonu ulice v m,
\(Q \) - emisia komunikácie v mg.m\(^{-2}\).s\(^{-1}\),
\(v \) - paramter, charakterizujúci pohltenie znečisťujúcej látky stenami zástavby v m.s\(^{-1}\).

Prvá hranieč podmenka simuluje odraz popr. prechod polutanta medzi budovami. Koeificient \(v \) môžeme vyjadriť vzťahom

\[v = (1 - PR) \cdot \frac{K_x}{\Delta_x}, \]

(2)

kde \(\Delta_x \) - je šírka chodníkov na oboch stranách cesty. Ak je zástavba spojitá \(PR = 1 \), ak je cesta bez zástavby \(PR = 0 \).

Druhá a tretia hranieč podmenka vyjadrujú produkcii znečisťujúcich látok nad cestou a úplný odraz polutanta na povrchu zeme a na hornjej hladine vrstvy premiešavania.

Šírka cesty SIC je daná počtom jazdžných pruhov. Pre jeden jazdný pruh sa určuje standardná šírka 3 m. Predpokladá sa, že chodníky na oboch stranách cesty majú rovnakú šírku.

The basis of official air pollution calculating methodology from traffic [6].

One of the purposes of this paper is to present air pollution calculation methodology from car traffic and its modification for calculation of concentration distribution of the fuel combustion main products around the highways.

2. Methodology of air pollution calculation from car traffic

In the first approximation a street may be taken as a line source of pollutants. The dispersion of pollutants from a line source is described by the stationary, two-dimensional equation of turbulent diffusion:

\[U \frac{\partial C}{\partial x} = K_x \frac{\partial^2 C}{\partial x^2} + \frac{\partial}{\partial z} K_z \frac{\partial C}{\partial z}. \]

(1)

Street may be imagined as a canyon enclosed from either one or both sides by the buildings. For this type of street the limiting conditions will be

\[K_x \frac{\partial C}{\partial x} \bigg|_{x=a} = vC \quad \text{for} \quad 0 \leq z \leq h, \]
\[K_x \frac{\partial C}{\partial z} \bigg|_{z=0} = Q \quad \text{over the communication}, \]
\[K_x \frac{\partial C}{\partial z} \bigg|_{z=H} = 0, \]

where \(C \) - is the pollutant concentration in mg.m\(^{-3}\),
\(K_x, K_z \) - components of diffusion coefficient in the corresponding direction in m\(^2\).s\(^{-1}\),
\(U \) - the wind speed in m.s\(^{-1}\),
\(h \) - the height of the built-up area in m,
\(H \) - the altitude of the mixed layer in m,
\(S \) - the width of the street canyon in m,
\(Q \) - the specific emission of the road in mg.m\(^{-2}\).s\(^{-1}\),
\(v \) - the coefficient of the pollutant passage through the walls of the built-up area in m.s\(^{-1}\).

The first limiting condition simulates the reflection and passage of pollutants through the walls of built-up area. We can express the coefficient \(v \) by the relation

\[v = (1 - PR) \cdot \frac{K_x}{\Delta_x}, \]

(2)

where \(\Delta_x \) is the width of the footway on the both sides of the road.

\(PR = 1 \) for continual built-up area

\(PR = 0 \) for the road out from built-up area.

The second and third limiting condition express the pollutant production over the road as well as the perfect reflection of the pollutant on the ground surface and on the upper level of the mixed layer.

The width of the road (SIC) is given by the number of lanes. For one lane the standard width 3 m is taken. The pavements on both sides of the street are assumed to have equal width.
Hraníčný problém (1), (1a) bol riešený numericky, metódou konečných diferencií. Je to implicitná metóda a teda bezpodmieňne stabilná. Zakladá sa na to, že namiesto funkcií spojových argumentov uzávažuje funkcie diskrétnych argumentov, zadaných v uzlových bodoch. Výpočtová oblasť je konštruovaná tak, že celý kačon je delený v horizontálnom smere na tri stĺpce boxov. Vypočítaná koncentrácia polutanta v uzlovom bode predstavuje priemernú koncentráciu v príslušnom boxe, v centre ktorého sa uzlový bod nachádza.

Priemerná koncentrácia polutanta v danom boxe bude závisieť od rozmerného boxu. Preto šírku diaľnice nie je možno počítať z počtu jazdnych pruhov. Z tohto dôvodu sa šírka počítaného úseku diaľnice zadáva interaktívne cez obrazovku.

Vzdialenosť vybranej izočiary koncentrácie polutanta od diaľnice závisí od smeru vetra. Táto vzdialenosť je maximálna, keď smer vetra je kolmý na os diaľnice. Z tohto dôvodu šírka ochranného boxu sa zmení závisle od koncentrácie polutantu na os diaľnice.

Špecifická emisia cesty \(Q \) sa počíta z počtu osobných POS a nákladných áut PNAK, ktoré prechádzajú diaľnicou za čas šmeru vetra. Z tohto dôvodu šírka ochranného boxu sa zmení závisle od koncentrácie polutantu na os diaľnice.

Špecifická emisia cesty \(Q \) sa počíta z počtu osobných POS a nákladných áut PNAK, ktoré prechádzajú diaľnicou za čas šmeru vetra. Z tohto dôvodu šírka ochranného boxu sa zmení závisle od koncentrácie polutantu na os diaľnice.

\[
Q = \frac{P_{\text{OS}} \cdot E_{\text{OS}} + P_{\text{N}} \cdot E_{\text{N}}}{3600 \cdot T \cdot SIC}.
\]

\(Q \) = \text{specific emission of road} (3)

Špecifické emisie aut (emisné faktory) EOS a ENAK závisia od technickej úrovne aut. V súčasnej dobe vo výpočtoch sa používajú špecifické emisie uvedené v tab. 2.

3. Aplikácia modelu v procese posudzovania vplyvov komunikácií na životné prostredie

3.1 Doprava

Sektor dopravy je jeden z hlavných činitelov problémov energetických a problémov životného prostredia, pretože patri k najvážším spotrebitelom fosílnych energií a k zodpovednosti za podstatné ovplyvňovanie a zaťažovanie životného prostredia. Táto myšlienka vyplynula zo správy „Doprava v rychle sa meniacej Európe“, ktorej spracovala skupina „Doprava 2000 plus“ Európskeho spoločenstva [1].

Další vývoj dopravy je neoddeliteľne spojený s otázkami hodnot životného štýlu, spôsobu života a hospodárstva. Treba si uvedomiť, že doprava ovplyvňuje životné prostredie kladným aj záporným spôsobom:

- pozitívne tým, že účelným premiestňovaním osôb a tovaru zabezpečuje potreby spoločnosti a výkon niektorých služieb i výrazne prispeva k rastu turizmu,

The limiting problem (1), (1a) was solved numerically by the method of finite differences. This is an implicit method and thus unconditionally stable. It consists of fact that instead of functions of continuous arguments, the functions of discrete arguments are considered, and their values are given in the grid points. The calculation domain is constructed so, that the whole canyon is divided in horizontal direction into the three columns of the boxes. The calculated pollutant concentration in a grid point presents the mean pollutant concentration in this box, in the centre of which the grid point is situated.

The mean pollutant concentration in a given box will depend on the dimension of the box. The width of the highway is not always possible to calculate from the number of the lanes. For that reason the width of the calculated section of highway is given interactively through the screen.

The distance of a chosen isoline of pollutant concentration from the highway depends on the wind direction. This distance is maximal when the wind direction is perpendicular to the axis of the highway. For this reason the distance from the highway is calculated, in which NOx concentration achieves the value of 200 \(\mu g.m^{-3} \) (short-term imussion standard for NOx). The whole amount of pollutants NOx, CO and VOC emitted by the existing road traffic during some time interval, usually during one year, is also calculated.

The relation calculates specific emission of the road \(Q \) from the number of the passenger cars and duty vehicles \((P_{\text{OS}} \) and \(P_{\text{N}}) \), which passed the highway in the averaging time of the pollutant concentration \(T \) (0.5 h, 24 h).

\[
Q = \frac{P_{\text{OS}} \cdot E_{\text{OS}} + P_{\text{N}} \cdot E_{\text{N}}}{3600 \cdot T \cdot SIC}.
\]

Specific emissions \(EOS \) and \(ENAK \) depend on the technical level of the cars. In present time the specific emission given in the Table 2 are used in calculations.

3. Application of model in appraisal process of communications effects to the environment

3.1 Transport

The transport sector is one of the main energy and environmental problems, because it is part of the biggest consumption of petrolium energy sources and is responsible for essential affect to environment. This opinion results from the “Transport in quickly changing variable Europe” report, processing by “Transport 2000 plus” of European community [1].

Future evolution of traffic is inseparably connected with environment values questions, manner of life (modus vivendi) and economy. It is necessary to sense that the traffic is influencing the environment positively and negatively, too:

- Positive effect of traffic is providing for society needs and performance of some services by effective transportation of persons, goods, and traffic also goes towards the rise of tourism.
Negative effect of traffic has long-term impact of nonrevivable natural source consumption part, by the instrumentally of short-term impact to surroundings and humans.

The most significant effects of car traffic to environment with the impact to the population’s health are noise and imissions. Therefore, they take a substantial place in Environmental Impact Assessment methodology – EIA.

Air pollution, one of the immediate impacts of traffic on its surroundings, is mainly a result of moving cars, motors operation, but also by whirling of sedimentary dust elements on the road and in its surroundings, and by individual car part abrasions, for example, brake lining, tires, etc. Therefore, the imission study should be part of road design documentation up to the mark of variant decision by the appropriate location choice. In order to fulfil its aim, it ought to include the modelling of gaseous emissions production from car traffic in such a proportion that it will be possible to compare different variants of the route.

3.2 Imisná štúdia

V štruktúre emisnej štúdie by nemalo chýbať posúdenie tvorby imisií od dopravy:

- súčasnej na jestvujúcej cestnej sieti v sledovanom územi,
- vyhládovej na jestvujúcej cestnej sieti v sledovanom územi za predpokladu, že sa novonavrhovaná komunikácia nebude realizovať, tzv. nulový variant,
- vyhládovej na novonavrhovanej komunikácii v sledovanom územi, za predpokladu, že sa novonavrhovaná komunikácia nebude realizovať,
- zostatkovej na jestvujúcej cestnej sieti v sledovanom územi za predpokladu, že sa novonavrhovaná komunikácia nebude realizovať,
- návrh opatrení na zníženie znečistenia ovzdušia,
- návrh monitoringu ovzdušia.

Takto koncipovaná imisná štúdia môže byť podkladom pre proces posudzovania vplyvov na životné prostredie podľa zákona NR SR č. 127/94 Z. z. [2].

Využitím popísaného výpočtového programu, v ktorom sú zohľadnené všetky rozhodujúce faktory ovplyvňujúce produkciu plynných emisií, je možné modelovať znečistenie ovzdušia v okolí komunikácie.

Input information for modelling:

- emission factors for actual and future vehicle stock,
- traffic volume and its composition by the type of vehicles,
- longitudinal gradient of road,
- urban and eventually suburban treatment of traffic,
- speed of vehicle drive,
- atmospheric conditions.

Following pollutants are appreciated:

- CO carbon oxide,
- NOx nitrogen oxides,
- VOC volatile organic compounds.
Výstupy:
- rozptyl vo voľnej atmosfére
 - CO, NOx, VOC,
- celková produkcia za rok,
- max. koncentrácia v ovozduší od špičkovej dopravy,
- hranica prekročenia limitu 200 µg.m⁻³ NOx – vzdušnosť od osi komunikácie.

Imisné limity v SR [3]:

Znečistujúca látka	Imisné limity v µg.m⁻³		
	Priemerná koncentrácia znečistujúcej látky		
	ročná IHr, denná IHd, polhod. IHk		
Oxid uhoľnatý CO	-	5 000	10 000
Oxidy dusíka NOx	80	100	200
Polietavý prach	60	150	500

3.2.1 Principy hodnotenia znečistenia ovzdušia

Oxidy dusíka – NOx – patria ku škodlivám, ktoré pri súčasnom zložení benzínov predstavujú jednu z najzávažnejších zložiek výfukových plynov, pretože dosahujú najväčšie koncentrácie škodlivých látok, sú dobre zistiteľné monitorovaním resp. výpočtom a zároveň majú najprísnejší imisný limit. Preto sa spravidla používa za indikátor znečistenia ovzdušia výfukovými plynmi.

V imisných študiiach sa znečistenie ovzdušia posudzuje podľa celkového množstva vyprodukovaných emisií od automobilovej dopravy v 1 t.rok⁻¹, dôležitie sa sleduje max. koncentrácia NOx v ovozduší v dýchacej zóne (1,5 m nad povrchom vozovky) od 1/2 – hodinovej špičkovej dopravy a vychádza sa z množstva obyvateľov zasiahnutých znečistením ovzdušia nad prípustný hygienický limit.

Emisné faktory Tab. 2

Režim jazdy	Vozidlá	Emisie mg.m⁻¹		
		CO	NOx	HCl
V zastavanom území	osobné nákladné	17.0	1.5	2.5
V nezastavanom území	osobné nákladné	8.0	1.8	1.4
Diaľničný	osobné nákladné	8.0	8.0	1.1

Imisné limity v SR [3]:

Znečistujúca látka	Imisné limity v µg.m⁻³		
	Priemerná koncentrácia znečistujúcej látky		
	ročná IHr, denná IHd, polhod. IHk		
Oxid uhoľnatý CO	-	5 000	10 000
Oxidy dusíka NOx	80	100	200
Polietavý prach	60	150	500

Outputs:
- diffusion in open atmosphere
 - CO, NOx, VOC concentrations,
- total year production,
- max. concentration in atmosphere from highest traffic,
- frontier of the limit excess 200 µg.m⁻³ NOx distance from the road axis.

Imission limits in Slovakia [3]

Emission	Imission limits [µg.m⁻³]		
	average concentration of pollution		
	annual IHr, daily IHd, short-term IHk		
Carbon Oxide CO	-	5 000	10 000
Nitrogen Oxides NOx	80	100	200
Particulate	60	150	500

3.2.1 Principles of the air pollution evaluating

Nitrogen oxides – NOx – belong to deleterious substances, which is representative one of the most momentous element of exhaust gas by contemporary petrol structure. Because they reach the highest harmful pollutant concentrations, they are identifiable by monitoring or calculation and have the strictest limits. Hence, they use a similar indicator of air pollution by exhaust gas.

In imission studies air pollution is appreciated according to the total production emissions quantity from the car traffic in t.year⁻¹, moreover the max. NOx concentration in air in breathing zone (1.5 m over the pavement surface) is pursuing from 1/2 hour peak value of the traffic and the input is the quantum of inhabitants stricken by air pollution over the allowable imission standard.

Specific emission of the cars in Slovakia

Regime of the Vehicle	Pollutant [mg.m⁻¹]		
Drive	CO	NOx	HCl
Urban Passenger	17.0	1.5	2.5
Country Passenger Lorries	13.0	9.0	3.3
Highway Passenger Lorries	8.0	3.3	1.1

Total amount production of deleterious substances is influenced mainly by intensity and structure of the traffic flow (rate of heavy vehicles), length of the route and the longitudinal gradient and intensity of the road. Thus, by longer distance of the road, more deleterious substances are produced in the air.

Maximal deleterious substances concentration in the air depends on the traffic flow intensity and structure, oblong gradient
cie, od polohy sledovaného úseku trasy k smeru prevládajúcich vetrov a rýchlosti prúdenia vetra. Najväčší vplyv má pozdĺžny sklon komunikácie a podiel nákladných vozidiel v dopravnom prúde. Čím menej nákladnej dopravy a čím miernejšie pozdĺžne sklony komunikácie, tým vznikajú menšie koncentrácie \(\text{NO}_x\).

3.2.2 Modelovanie znečistenia ovzdušia plánovanou výstavbou diaľnice D1

- Obr. 2 prezentuje nárast dopravy v rokoch 2005 – 2035, pričom vybudovaním diaľnice by došlo na súčasnych cestných faňoch I/61, II/507 a II/517 k značnému poklesu zostatkovéj dopravy.
- V tab. 3 je prezentovaná celková súčtová hodnota produkcie emisií do ovzdušia od sumárnej dopravy na všetkých cestách pre nultý variant a porovnanie pre súbeh diaľnice D1 a zostatkovéj dopravy na jestvujúcich cestách.

Rozdiel je batateľný od roku 2015, kde sa ako najpriaznivejší javí variant V1a a V7.

Z tab. 4 a 5 je patrné, že sa predpokladá nárast dopravy na dvojnásobok, pričom vybudovaním diaľnice stúpne celková produkcia emisií v roku 2035 len o približne 5 %. To je spôsobené tým, že modelové riešenie vychádza z uplatnenia slovenskej vyhlášky 248/91, ktorá zaviera obmedzenie výstavby diaľnic na území Považska Bystrica.

3.2.2 Modelling of air pollution from planned highway construction

- Figure 2 presents a rise of traffic between years 2005 and 2035, when by the constructing of highways it can come to considerable decline of the rest of traffic at the same time.
- Table 3 presents the total summary value of emissions production in air from the summary of traffic on all streets for zero variant and the comparison for contact of highway D1 and residual traffic on actual roads.

The difference is noticeable since year 2015, where the variants V1a and V7 appear most favourable.

From tables 4 and 5 it is evident that the growing up of traffic to double is predicted, but by constructing highways, total production of emissions in year 2035 will rise only about 5 percent. That is induced by the fact that the model solution takes the cutting edge out from the enforcement of Slovak edict 248/91, which is the...
Obr. 2. Predpokladaná intenzita dopravy na plánovanej diaľnici D1 a súčasnej ceste I/61
Fig. 2. Forecast traffic volume on the planned highway and on the contemporary Ist-class road

Sumárna tabuľka celkovej produkcie škodlivín do ovzdušia nad mestom, t/rok
Total deleterious substances production in the air above the city, t/year

	1995	2005	2015	2035
zero variant	11201	15548	19604	25688
D1+ residual traffic V1a	21082	28328	41372	161.1%
D1+ residual traffic V2	21736	29714	41730	162.4%
D1+ residual traffic V7	27602	36152	50486	196.5%
D1+ residual traffic V8	27602	36152	50486	196.5%

Sumárna tabuľka celkovej dopravy (I/61, II/507, II/517), voz/24h
Total traffic in I/61, II/507, II/517 roads, vehicles/day

	1995	2005	2015	2035
zero variant	11201	15548	19604	25688
D1+ residual traffic V1a	21082	28328	41372	161.1%
D1+ residual traffic V2	21736	29714	41730	162.4%
D1+ residual traffic V7	27602	36152	50486	196.5%
D1+ residual traffic V8	27602	36152	50486	196.5%

Porovnávací tabuľka – nárast dopravy a nárast produkcie emisií
Comparative table – traffic rise and emissions production
č. 248/91 navážujúcej na predpisy EHK, z čoho vyplýva predpoklad obmeny vozidlového parku a zníženie hodnôt exhalácií u automobilov po roku 2010 cca na 40 % u \(\text{NO}_x \), na 50 % u \(\text{CO} \), \(\text{VOC} \) a na 75 % u pevných častíc v porovnaní s rokom 1995.

Obr. 4 prezentuje predpokladané hladiny krátkodobej koncentrácie \(\text{NO}_x \) od špičkovej pol hodinovej dopravy, uvažované hodnotou 6 % z celodennej intenzity dopravy.

Samotná zmena režimu jazdy z mestského prerušovaneho na diaľničný plynulý, spôsobuje pokles koncentrácie \(\text{NO}_x \). Najnižšie hodnoty sa predpokladajú pre variant V1a, najvyššie pre V2.

Maximálne krátkodobé koncentrácie sa akumulujú v miestach, kde sa trasa diaľnice približuje k trase existujúcej komunikácie na vzdialenosť do 220 m, nakoľko týká zásah územia s prekročeným hygienickým limitom stanoveným pre krátkodobú koncentráciu \(\text{NO}_x \) v ovzduší – 200 \(\mu \text{g/m}^3 \). Údaje sú uvedené na obr. 4 a 5.

Pri porovnávaní stavu pre rok 2035 najnižšie hodnoty akumulovanej koncentrácie sa predpokladajú pre variant V1a, ktoré by boli na ceste I/61 nižšie ako pri nultom variante.

Z takto zdokumentovaných výsledkov podľa modelu produkcie emisií od dopravy sa vo viacerych položkách pri hodnotení celkového výsledku koncentradoru emisii do ovzdušia ako aj pri hodnotení akumulovanej hodnoty (štúdia D1 a zostatkej dopravy na jestvujúcich cestách) krátkodobej koncentrácie \(\text{NO}_x \) prevázuje variant V1a ako priaznivejší.

4 Záver

Účinky emisií vznikajúcich od dopravy sú v konkrétnych územíach veľmi závažné a podiel dopravných prostriedkov ako ich pôvodcov je na územie nerovnomerne rozptylený. Riešenie tohto problému môže mať efekt len vtedy, ak bude mať celosvetový charakter. Medzinárodné dohody, rozsiahla a cieľavedomá spolupráca

continuation of EHK statutes and from this fact results the assumption of vehicle stock modification and the reduction of exhausters value at automobiles past year 2010 approximately to 40 percent by \(\text{NO}_x \), to 50 percent by \(\text{CO} \), \(\text{VOC} \) and to 75 percent by solid elements in comparison with year 1995.

Figure 4 presents expected layers of short-term \(\text{NO}_x \) concentration of peak half-hour traffic by value 6 percent regarding total traffic intensity.

Change of drive by itself from discontinuous city mode to smooth highway mode induces the decline of \(\text{NO}_x \) concentration. Variant V1a predicts minimal values, and variant V2 maximal values.

Maximal short-term concentrations are accumulated in places where the route of highway converge to the route of existing communication at 220 m distance, because the area of interference with the hygienic limit is overrun, specified for short-term \(\text{NO}_x \) concentration in the air – 200 \(\mu \text{g/m}^3 \). The indications are present in figures 4 and 5.

By the comparison of status considering year 2035, the lowest accumulated concentration values are predicted for variant V1a, which could have been lower on the road I/61 than by zero variant.

From the results documented in this way according to emission production model from traffic in several items by regarding total emission production as well as by regarding accumulated values (sum D1 and residual traffic on actual roads) of short-term \(\text{NO}_x \) concentration, variant V1 appears more favourable.

4 Conclusions

Impacts of traffic emissions in given areas are very momentous and the ratio of vehicles and their generators is unevenly dispersed. The solution of this problem can be effective only when its character will be worldwide. International conventions, extensive and systematic co-operation and realisation of agreements give the
a realizácia dohôd dáva predpoklady k úspechu. Riešenie konkrét-
nych úloh sa potom dotýka nielen výrobcov automobilov, výstavby
ciest ale aj dopravnej prevádzky. Opatrenia majú potom charakter:
• rozvoja dopravnej techniky,
• prevádzkovo-technologický,
• územno-technický.

Už teraz sú jasné predstavy riešenia zafázenia životného
prostredia osobnými automobilmi. Postupné celosvetové zavedenie
automobilov so zdvihovým objemom motora 3000 cm³ (počítané sa
s obnovou vozidlového parku v rokoch 2000 až 2005) sa prejaví
nielen v relatívnej úspore polohových látok, ale aj v relatívnom
poklesu produkcie emisií.

Základným činiteľom, ktorý má vplyv na množstvo a zloženie
produkovaných emisií je zloženie paliva, typ a podmienky práce
motora a taktiež spôsob jazdy.

Z údajov uvedených v práci vyplýva, že umiestnenie trasy
v teréne a hlavne citlivé výškové vedenie trasy priamo vplyva na
množstvo produkovaných emisií. So zvyšujúcou sa rýchlosťou
jazdy rastie produkcia a koncentrácia emisií, ale pri porovnaní
produkcie emisií pri prerusovanej jazde vozidiel v meste a pri ply-
nulnej jazde mimo mesta je velký rozdiel. Celkovú produkciu emisií
teda ovplyvňuje aj hustota úrovňových križovatiek a rozptyl škod-
livých látok ovplyvňuje výška a hustota zástavby.

assumption to success. The solution of concrete problem is then
relating not only to producers of vehicles and construction of roads
but of traffic operation, too. The measures are then of the follow-
ing character:
• Development of traffic technique,
• Operational and technological,
• Territorial and technical.

The conceptions of solution an environmental loading with
vehicles are evident already. Consecutive worldwide applications
of the so-called three-litre automobile (make allowance for
assumption of vehicle stock - between years 2000 and 2005) will
be registered not only in relative saving of fuel, but also in relative
decline of emission production.

The basic factor influencing the amount and structure of
produced emissions is composition of fuel, type and conditions of
motor work and style of drive.

From the information presented in the study result that loca-
tion of the route and an especially sensitive vertical line directly
influence the produced emission capacity. By increasing drive-
speed the emission production and concentration rises, but when
comparing the production of emissions by discontinuous driving
in the city and by continuous driving out of the city comes to
important difference. Therefore, total emission production is influ-
enced by density level intersections, and the dispersion of pollu-
tion is affected by height and density of built-up area.
Literatúra – References:

[1] HLAVŇA, V., KUKUČA, P., STUCHLÝ, V., ZVOLENSKÝ, P.: Dopravný prostriedok a životné prostredie (Vehicle and environment), Edičné stredisko VŠDS v Žiline, 1996 (University of Žilina)

[2] Zákon č. 127/1994 Z. z., o posudzovaní vplyvov na životné prostredie

[3] Nariadenie vlády SR z 19. 3. 1996, ktorým sa vykonáva zákon č. 309/91 Zb. o ochrane ovzdušia pred znečisťujúcimi látkami

[4] ĎURČANSKÁ, D.: Diaľnica D1 Swerepec-Plevnik-Drienove, Model znečistenia ovzdušia od automobilovej dopravy, (Model of air pollution from automobile traffic) ZU Žilina, 1999 (University of Žilina)

[5] HESEK, F.: Cumulated pollution of the atmosphere in Bratislava. Contributions of the Geophysical Institute of the Slovak Academy of Sciences, Series of Meteorology, 9, 1989, p. 119-127.

[6] Metodika vypočtu automobilového znečistenia ovzdušia (The method of road traffic air pollution calculation), MZP SR, Bratislava 1993, pp. 18