Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Background: As of November 2020, severe acute respiratory syndrome coronavirus 2 has resulted in 55 million infections worldwide and more than 1.3 million deaths from coronavirus disease 2019 (COVID-19). Outcomes following severe acute respiratory syndrome coronavirus 2 infection in individuals with primary immunodeficiency (PID) or symptomatic secondary immunodeficiency (SID) remain uncertain.

Objectives: We sought to document the outcomes of individuals with PID or symptomatic SID following COVID-19 in the United Kingdom.

Methods: At the start of the COVID-19 pandemic, the United Kingdom Primary Immunodeficiency Network established a registry of cases to collate the nationwide outcomes of COVID-19 in individuals with PID or symptomatic SID and determine risk factors associated with morbidity and mortality from COVID-19 in these patient groups.

Results: A total of 100 patients had been enrolled by July 1, 2020, 60 with PID, 7 with other inborn errors of immunity including autoinflammatory diseases and C1 inhibitor deficiency, and 33 with symptomatic SID. In individuals with PID, 53.3% (32 of 60) were hospitalized, the infection-fatality ratio was 20.0% (12 of 60), the case-fatality ratio was 31.6% (12 of 38), and the inpatient mortality was 37.5% (12 of 32). Individuals with SID had worse outcomes than those with PID; 75.8% (25 of 33) were hospitalized, the infection-fatality ratio was 33.3% (11 of 33), the case-fatality ratio was 39.2% (11 of 28), and inpatient mortality was 44.0% (11 of 25).

Conclusions: In comparison to the general population, adult patients with PID and symptomatic SID display greater morbidity and mortality from COVID-19. This increased risk must be reflected in public health guidelines to adequately protect vulnerable patients from exposure to the virus. (J Allergy Clin Immunol 2021;147:870-5.)

Key words: COVID-19, SARS-CoV-2, primary immunodeficiency, secondary immunodeficiency

INTRODUCTION

As of November 2020, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in 55 million infections worldwide and more than 1.3 million deaths from coronavirus disease 2019 (COVID-19). Risk factors associated with severe disease and mortality from COVID-19 include advancing age and comorbidities associated with direct or indirect suppression of the immune system. The consequences of SARS-CoV-2 infection in individuals with primary immunodeficiency (PID), or those with symptomatic secondary immunodeficiency (SID), remain uncertain. In the United Kingdom, individuals with immunodeficiencies were advised to follow government guidance and either shield or undertake strict social distancing because of their potentially increased risk of mortality from COVID-19. In March 2020, The United Kingdom Primary Immunodeficiency Network began to systematically document the outcomes of COVID-19 in individuals with PID and SID. We report the findings of the first 100 individuals enrolled in this case series.

RESULTS AND DISCUSSION

One hundred individuals, 60 with PID, 3 with autoinflammatory diseases, 4 with C1 inhibitor deficiency, and 33 with symptomatic SID, had been enrolled in this case series by July 1, 2020 (Table 1). Fifty-six percent (56 of 100) individuals were female, and 16.3% (15 of 92) were of Black, Asian, or Minority Ethnic backgrounds. Ethnicity data were unavailable for 8 individuals. Seventy percent (70 of 100) individuals had SARS-CoV-2 infection confirmed by PCR (69 of 100), or retrospectively inferred using serology (1 of 100; this individual was not receiving immunoglobulin therapy). The remaining individuals suffered illnesses consistent with COVID-19 that were not confirmed by PCR, due to limited availability of community testing. Fifty-nine percent (59 of 100) individuals were admitted to hospital, and 8% (8 of 100) were admitted to intensive care units.

In individuals with PID, the infection-fatality ratio (IFR) was 20.0% (12 of 60), the case-fatality ratio (CFR) was 31.6% (12 of 38), and the inpatient mortality was 37.5% (12 of 32) in a
population of median age 42.0 years. Univariate analysis demonstrated that increasing age, chronic lung disease, cardiovascular disease, and diabetes mellitus were associated with hospitalization with COVID-19 (Table II). Individuals taking prophylactic antibiotics were also at a higher risk of hospitalization, potentially reflecting chronic infection uncontrolled by immunoglobulin replacement or a more severe immune deficiency. Increasing age, lower baseline lymphocyte count, diabetes mellitus, and chronic renal disease were associated with mortality (Table II). Analysis including only those individuals in whom COVID-19 was proven by PCR, confirmed increasing age (median age, 37.0 vs 64.0 years; \(P = .01 \)), and lower baseline lymphocyte counts (median lymphocyte count, 1.60 vs 1.00 \(\times 10^9 \) cells/L; \(P = .03 \)) were associated with mortality. Multiple logistic regression, to consider whether mortality was independently influenced by the prevalence of comorbidities, was partially prohibited by multicollinearity between chronic renal impairment and other variables within this small cohort. A model incorporating all variables except chronic renal impairment found that increasing age was the only variable significantly associated with mortality in patients with PID (odds ratio for mortality, 1.10 per year; CI, 1.02-1.24; \(P = .0491 \)).

Common variable immunodeficiency (CVID) was the most common PID in this cohort (\(n = 23 \)); an IFR of 34.8% and a CFR of 50.0% were observed in this subgroup, and chronic lung disease was significantly associated with mortality (prevalence in survivors vs nonsurvivors, 46.7% vs 100.0%; \(P = .02 \)). It has been postulated that immune dysregulation associated with CVID confers an increased risk of severe manifestations of COVID-19.3 In this study, inpatient mortality was greater among individuals with CVID than among those with undefined primary

TABLE I. Description of cohort

Diagnosis	n	Age (y)	Sex, \(n (\% \text{ female}) \)	Ethnicity, \(n (\% \text{ BAME})^* \)	PCR- proven infection,† \(n (\% \)	Hospitalized, \(n (\% \)	Deaths \(n (\% \)	Inpatient mortality \(\% \)	CFR \(\% \)	IFR \(\% \)
Inborn errors of immunity (all)	67	42.0 (28.0-57.0)	38 (56.7)	10 (14.9)	42 (62.7)	34 (50.7)	12	35.3	28.5	17.9
PID (all)	60	42.0 (28.0-58.2)	34 (56.6)	7 (11.7)	38 (63.3)	32 (53.3)	12	37.5	31.6	20.0
SID (all)	33	64.5 (56.0-79.8)	18 (54.5)	5 (15.2)	28 (84.8)	25 (75.8)	11	44.0	39.2	33.3

PIDS

Diagnosis	n	Age (y)	Sex, \(n (\% \text{ female}) \)	Ethnicity, \(n (\% \text{ BAME})^* \)	PCR- proven infection,† \(n (\% \)	Hospitalized, \(n (\% \)	Deaths \(n (\% \)	Inpatient mortality \(\% \)	CFR \(\% \)	IFR \(\% \)
CVID	23	54.0 (31.7-70.8)	14 (60.9)	2 (8.7)	16 (69.6)	13 (56.5)	8	61.5	50.0	34.8
Undefined primary antibody deficiency	12	43.5 (26.5-71.8)	10 (83.3)	0 (0.0)	6 (50.0)	6 (50.0)	1	16.7	16.7	8.3
Undefined combined immunodeficiency	4	43.0 (30.0-53.75)	2 (50.0)	1 (25.0)	1 (25.0)	1 (25.0)	1	100.0	100.0	25.0
XLA	4	30.5 (28.5-31.0)	0 (0.0)	1 (25.0)	2 (50.0)	3 (75.0)	0	0.0	0.0	0.0
Specific polysaccharide antibody deficiency	3	56.0 (50.0-69.0)	2 (66.7)	0 (0.0)	2 (66.7)	2 (66.7)	1	50.0	50.0	33.3
Chronic granulomatous disease	3	23.0 (3.0-47.0)	2 (67.7)	1 (33.3)	3 (100.0)	1 (100.0)	0	0.0	0.0	0.0
NF-kB haploinsufficiency	2	30.5 (27.0-34.0)	0 (0.0)	0 (0.0)	1 (50.0)	1 (50.0)	0	0.0	0.0	0.0
CTLA-4 haploinsufficiency	1	Adult	1 (100.0)	1 (100.0)	1 (100.0)	1 (100.0)	1	100.0	100.0	100.0
ICOS deficiency	1	Adult	1 (100.0)	0 (0.0)	1 (100.0)	0 (0.0)	0	0.0	0.0	0.0
GATA2 deficiency	1	Adult	1 (100.0)	0 (0.0)	1 (100.0)	1 (100.0)	0	0.0	0.0	0.0
Kabu’s syndrome	1	Adult	0 (0.0)	0 (0.0)	0 (0.0)	1 (100.0)	0	0.0	0.0	0.0
X-linked lymphoproliferative disease	1	Adult	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0	0.0	0.0	0.0
Wiskott-Aldrich syndrome	1	Adult	0 (0.0)	1 (100.0)	1 (100.0)	0 (0.0)	0	0.0	0.0	0.0
Autoimmune lymphoproliferative syndrome	1	Child	1 (100.0)	0 (0.0)	1 (100.0)	0 (0.0)	0	0.0	0.0	0.0
2q4 microdeletion syndrome	1	Adult	0 (0.0)	NA	1 (100.0)	1 (100.0)	0	0.0	0.0	0.0
MBL deficiency	1	Adult	1 (100.0)	0 (0.0)	1 (100.0)	1 (100.0)	0	0.0	0.0	0.0
Autoinflammatory diseases										
Hyper-IgD syndrome	1	Adult	1 (100.0)	1 (100.0)	0 (0.0)	0 (0.0)	0	0.0	0.0	0.0
Aicardi-Goutieres syndrome	1	Child	1 (100.0)	1 (100.0)	1 (100.0)	0 (0.0)	0	0.0	0.0	0.0
A20 haploinsufficiency	1	Child	1 (100.0)	0 (0.0)	1 (100.0)	1 (100.0)	0	0.0	0.0	0.0
Other inborn errors of immunity										
C1 inhibitor deficiency	4	46.5 (33.3-53.8)	1 (25.0)	2 (50.0)	1 (25.0)	0	0.0	0.0	0.0	

Abbreviations used

- CFR: Case-fatality ratio
- COVID-19: Coronavirus disease 2019
- CVID: Common variable immunodeficiency
- IFR: Infection-fatality ratio
- PID: Primary immunodeficiency
- SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2
- BAME, Black, Asian, Minority Ethnic
- CGD, chronic granulomatous disease
- CTLA4, cytotoxic T-lymphocyte associated protein 4
- GATA2, GATA-binding factor 2
- ICOS, inducible T-cell co-stimulator
- NA, not available
- NF-kB, nuclear factor kappa B
- XLA, X-linked; XLA, X-linked agammaglobulinemia

AR, Autosomal recessive

*Ethnicity data not provided for 8 individuals.

†Includes 1 individual proven by serology.

*Includes 1 X-linked CGD carrier under Immunology care.
antibody deficiencies or X-linked agammaglobulinemia. However, individuals with CVID were, on average, older and a greater percentage were receiving immunoglobulin replacement (86.9% vs 50.0%), suggesting more severe immunodeficiency.1

Individuals with SID had worse outcomes than those with PID. The IFR was 33.3% (11 of 33), the CFR was 39.2% (11 of 28), and inpatient mortality was 44.0% (11 of 25) in a population of median age 64.5 years. The most common causes of SID in this cohort were chronic lymphocytic leukemia (8 of 33) and non-Hodgkin’s lymphoma (8 of 33). The only significant risk factor associated with hospitalization in this group was age; however, age did not confer a significantly increased risk of mortality (Table III). Hematological malignancy is an independent risk factor for morbidity and mortality from COVID-19, even 5 years beyond the index diagnosis,1 and our findings are consistent with other studies that describe an overall mortality of 40.0% to 54.4% in hemato-oncology patients.4,5 Heterogeneity within the SID cohort should be more thoroughly investigated to determine whether biomarkers can prospectively stratify the risk of poor outcome from COVID-19.

A prospective case-control study is necessary to comprehensively understand the risk of morbidity and mortality from COVID-19 in individuals with PID and SID. Nevertheless, comparisons can be made between these data and existing estimates of IFR, CFR, and inpatient mortality for the UK general population (Table IV). In May 2020, the UK CFR in the general population was estimated to be 14.3%; a revised estimate of 1.5% was made on August 4, 2020.10,11 In this cohort, the CFR of individuals with PID (31.6%) and SID (39.2%) exceed both the original and the revised estimate.

Estimates of the UK IFR have been modeled on data from other countries.8,9 The overall IFR is estimated to be less than 1%. The highest estimated IFR in any subgroup of the UK general population is 7.8%, in those 80 years and older.7 In comparison, the overall IFR in the PID cohort was 20.0% and that in the SID cohort was 33.3%, with consistently higher IFR in those 40 years and older (Table IV). Regular, longitudinal PCR sampling and symptom reporting in large PID and SID cohorts will be necessary to accurately determine the spectrum of disease and the IFR and the CFR within these populations.

Comparison of inpatient mortality between the immunodeficiency cohort and the general population provides further evidence that PID or SID is a risk factor for mortality from COVID-19: the International Severe Acute Respiratory and Emerging Infections Consortium study documented the outcomes of 20,133 UK patients hospitalized with COVID-19. In this cohort, representative of the general population unwell enough to require hospital admission, inpatient mortality was 26% in a cohort of median age 73 years.10 The inpatient mortality among individuals with PID (37.5%) or SID (44.0%) exceeded that in this reference population, in cohorts of lower median age (PID, 56.0 years; SID, 67.5 years). Furthermore, inpatient mortality in individuals with PID exceeded that of the general population in all groups older than 40 years (Table IV).

The contribution of comorbidities to this increased risk was considered; compared with the general hospitalized population, preexisting chronic lung disease (62.5% vs 16.7%; P < .0001) was more prevalent in the hospitalized PID cohort overall, and in the 18 to 49, 50 to 59, and 70 to 79 age groups (Fig 1). Chronic liver disease was also more prevalent compared with the general population (12.5% vs 3.1%; P = .02), but other chronic comorbidities demonstrated similar overall and age-associated prevalence (Fig 1). The prevalence of immunodeficiency-associated comorbidities was not reported by the International Severe Acute Respiratory and Emerging Infections Consortium;
however, bronchiectasis (12 of 33) and granulomatous lymphocytic interstitial lung disease (4 of 33) were common in the PID cohort. The relationship between comorbidities, their severity, and outcomes from COVID-19 in patients with immunodeficiency appears complex. In keeping with the general population,

TABLE III. Univariate analysis of risk of hospitalization and mortality from COVID-19 in 33 patients with SID

Variable	Not hospitalized	Hospitalized	OR for hospitalization (95% CI)	P value	Survived	Died	OR for mortality (95% CI)	P value
n	8	25	—	—	22	11	—	—
Age (y)	57.5 (47.6-66.0)	67.5 (57.3-80.8)	—	0.03	65.0 (56.5-76.5)	60.0 (50.0-81.0)	—	0.97
Baseline lymphocyte count (×10³/µL)	1.47 (0.82-1.75)	1.15 (0.65-2.02)	—	0.70	1.32 (0.70-1.97)	0.95 (0.60-3.01)	—	0.94
Body mass index (kg/m²)	28.6 (25.7-29.4)	25.2 (20.3-30.0)	—	0.25	26.6 (22.8-28.6)	25.8 (20.4-37.3)	—	>0.99
Sex (% female)	37.5	60.0	0.40 (0.09-2.24)	0.42	55.6	44.4	0.31 (0.08-1.35)	0.27
Ethnicity (% BAME)	12.5	16.8	0.71 (0.05-6.24)	0.78	14.3	18.2	0.75 (0.13-4.86)	>0.99
IgRT (%)	75.0	56.0	0.42 (0.08-2.45)	0.43	61.5	54.6	0.69 (0.16-3.12)	0.71
Prophylactic antibiotics (%)	62.5	80.0	2.40 (0.49-11.04)	0.37	27.3	18.2	1.69 (0.28-9.44)	>0.99
Current immunosuppression (%)	25.0	48.0	1.41 (0.22-8.00)	>0.99	27.3	36.4	1.52 (0.38-7.27)	<0.01
Chronic lung disease (%)	0.0	20.0	0.07 (0.01-6.28)	>0.99	9.1	—	—	—
Chronic liver disease (%)	0.0	20.0	0.29 (0.01-6.28)	>0.99	0.0	—	—	—
Diabetes mellitus (%)	0.0	20.0	0.29 (0.01-6.28)	>0.99	0.0	—	—	—
Chronic renal disease (%)	0.0	20.0	0.29 (0.01-6.28)	>0.99	0.0	—	—	—
Organ-specific autoimmunity (%)	0.0	20.0	0.29 (0.01-6.28)	>0.99	0.0	—	—	—
Chronic gastrointestinal disease (%)	0.0	20.0	0.29 (0.01-6.28)	>0.99	0.0	—	—	—

BAME, Black, Asian and minority ethnic; IgRT, immunoglobulin replacement therapy; OR, odds ratio.

Median and interquartile ranges are provided for continuous variables. Differences between the distributions evaluated using 2-tailed Mann-Whitney U test. Differences between categorical variables, evaluated using 2-tailed Fisher exact test with ORs calculated using the Baptista-Pike method.

TABLE IV. Age-stratified risk of mortality from COVID-19 in patients with PID and SID in comparison to UK national data

Age group (y)	PID (n = 60)	SID (n = 33)				
	Inpatient mortality (%)	UK IFR (general population)	UK inpatient mortality (general population)	Inpatient mortality (%)	UK IFR (general population)	UK inpatient mortality (general population)
0-9	0.0	0.001	0.7			
10-19	1.7	0.007	1.9			
20-29	20.0	0.03	4.3			
30-39	20.0	0.08	4.2			
40-49	15.0	0.16	6.3			
50-59	18.3	0.60	10.8			
60-69	5.0	1.93	20.2			
70-79	10.0	4.28	34.1			
>80	6.7	7.8	41.7			

Age group (y)	PID (n = 60)	SID (n = 33)				
	Inpatient mortality (%)	UK IFR (general population)	UK inpatient mortality (general population)	Inpatient mortality (%)	UK IFR (general population)	UK inpatient mortality (general population)
0-9	0.0	0.001	0.7			
10-19	0.0	0.007	1.9			
20-29	3.0	0.03	4.3			
30-39	3.0	0.08	4.2			
40-49	9.1	0.16	6.3			
50-59	24.2	10.8	20.2			
60-69	24.2	34.1	41.7			
70-79	24.2	41.7	41.7			
>80	24.2	41.7	41.7			

NA, Not available.

Estimates of age-stratified IFR in the UK general population are based on modeling studies, and UK inpatient mortality data for the UK general population are based on data derived from the International Severe Acute Respiratory and emerging Infections Consortium study.

J ALLERGY CLIN IMMUNOL VOLUME 147, NUMBER 3 SHIELDS ET AL 873
underrepresentation of pediatric cases herein may represent individuals younger than 18 years, all of whom survived. National are underrepresented: only 5% of recorded cases occurred in children with immunodeficiencies. All SARS-CoV-2 infections in immunodeficient patients have been captured by this study. Children with immunodeficiencies and risk factors associated with susceptibility to COVID-19 in immunodeficient patients are better understood. However, from a public health perspective, it is difficult to justify risk stratification until the immunologic deficiency. However, from a public health perspective, it is difficult to justify risk stratification until the immunologic mechanisms and risk factors associated with susceptibility to COVID-19 in immunodeficient patients are better understood.

As a clinician-reported registry, we are unable to guarantee that all SARS-CoV-2 infections in immunodeficient patients have been captured by this study. Children with immunodeficiencies are underrepresented: only 5% of recorded cases occurred in individuals younger than 18 years, all of whom survived. National data suggest very low mortality in healthy children and the underrepresentation of pediatric cases herein may represent highly effective shielding or unrecognized mild or asymptomatic disease. The International Union of Immunological Societies’ COVID-19 case series reported a lower overall COVID-19 mortality of 10.0% (10 of 100) in individuals with inborn errors of immunity; that cohort contained 32.0% (32 of 100) children, providing further evidence that age is a significant risk factor for COVID-19 morbidity and mortality.

Because of national shortages in PCR testing, only 34.1% (14 of 41) of nonhospitalized cases of COVID-19 were molecularly confirmed in this study. It is possible that these individuals may have suffered a clinically indistinguishable, non–SARS-CoV-2 infection. However, the overall inpatient mortality of 39.0% (23 of 59), 94.9% of whom had PCR-proven disease, appears to be a valid reflection of the increased risk faced by adults with immunodeficiency compared with the general population.

The comparatively high morbidity and mortality in PID and SID should inform public health policy and be communicated to patients so they can take appropriate actions to reduce their exposure to the virus.

For detailed methods, please see the Methods section in this article’s Online Repository at www.jacionline.org.
We are grateful to the UK Primary Immunodeficiency Network (UK PIN), its members, and the Immunodeficiency patient community within the United Kingdom for their support of this study.

The UK PIN COVID-19 consortium: Ariharan Anantharachagan, FRCPath; Gururaj Arumugakani, FRCPath; Kenneth Baker, PhD; Sameer Bahal, MRCP; William Beringham, MRCP; Malini Bhole, FRCPath; Evon Boules, MRCP; Philip Bright, FRCPath; Siobhan Burns, PhD; Betsy Cleave, MRCP; John Dempster, MSc; Lisa Devlin, FRCPath; Fatima Dhalla, PhD; Elizabeth Drew, FRCPath; Christopher Duncan, PhD; Magdalena Dziadzio, FRCPath; Shuayb Elkhalfa, FRCPath; Andrew Gennery, PhD; Sarah Goldard, FRCPath; Sofia Grigoriodou, FRCPath; Grant Hayman, FRCPath; Archana Herwadkar, FRCPath; Aarnoud Huissoon, FRCPath; Stephen Jolles, FRCPath; Sarah Johnston, FRCPath; Lucy Leeman, FRCPath; Shanti Mahabir, FRCPath; Dylan MacLochlainn, MRCP; Elizabeth McDermott, FRCPath; Siraj Misdah, FRCPath; Hadeil Morsi, MRCP; Sai Murug, FRCPath; Sadia Noorani, FRCPath; Rachael O’Brien, FRCPath; SMita Patel, FRCPath; Arthur Price, FRCPath; Alex Richter, FRCPath; Sinisa Savic, FRCPath; Suranjith Seneviratne, FRCPath; Adrian Shields, PhD; Anna Shrimpton, FRCPath; Catherine Stroud, FRCPath; Prashantha Vaitha, FRCPath; and Nisha Verma, MRCP.

From 1the Department of Immunology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, 1the Department of Clinical Immunology, The Leeds Teaching Hospital NHS Foundation Trust, Leeds, 2the Newcastle University Translation and Clinical Research Institute, Newcastle, 3the NIHR Newcastle Biomedical Research Centre at Newcastle Hospitals NHS Foundation Trust, Newcastle, 4the Department of Rheumatology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, 5West Midlands Immunodeficiency Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, 6Walsall Healthcare NHS Trust, Walsall, 7the Department of Clinical Immunology, Nottingham University Hospitals NHS Trust, Nottingham, 8North Bristol NHS Trust, Bristol, 9the Regional Immunology Service, Royal Victoria Hospital, Belfast, 10the Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, 11Developmental Immunology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, 12the Department of Infection and Tropical Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, 13the Department of Immunology, Salford Royal NHS Foundation Trust, Manchester, 14the Faculty of Biology, Medicine and Health, University of Manchester, Manchester, 15the Department of Immunology, University Hospital North Midlands, Stoke, 16the Department of Immunology, Royal London Hospital, Barts Health NHS Trust, London, 17the Department of Immunology, Epsom and St Helier NHS Trust, Epsom, 18the Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, 19the Department of Clinical Immunology, Oxford University Hospitals NHS Foundation Trust, Oxford, 20the Immunodeficiency Centre for Wales, Cardiff, 21the Eden Unit, University Hospitals Plymouth NHS Foundation Trust, Plymouth, 22the Department of Immunology, University Hospitals Leiceseter NHS Trust, Leicester, 23the Department of Immunology, Sandwell and West Birmingham NHS Trust, Birmingham, 24the Department of Immunology, Frimley Health NHS Foundation Trust, Frimley, 25NIHR Oxford Biomedical Research Centre, Oxford, 26the Clinical Immunology and Allergy Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, 27the Department of Immunology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, and 28the Department of Allergy and Clinical Immunology, University College London Hospitals NHS Foundation Trust, London, United Kingdom.

Key messages

- Individuals with PID had an overall IFR of 20.0%, a CFR of 31.6%, and inpatient mortality of 37.5%.
- Individuals with symptomatic SID had an IFR of 33.3%, a CFR of 39.2%, and an inpatient mortality of 44.0%.
- The IFR, CFR, and inpatient mortality in patients with PID or SID are far greater than estimates for the general population.

REFERENCES

1. Williamson EJ, Walker AI, Bhaskara K, Bacon S, Bates C, Morton CE, et al. OpenSAFELY: factors associated with COVID-19 death in 17 million patients. Nature 2020;584:430-6.
2. United Kingdom Primary Immunodeficiency Network. COVID-19 UK PIN Update. Available at: http://www.ukpin.org.uk/news-item/2020/03/24/covid-19-uk-pin-update/#. Accessed July 24, 2020.
3. Quinti I, Vassiliou L, Milioto C, Cneto F, Peccorano A, Mezzaroma I, et al. A possible role for B cells in COVID-19? Lesson from patients with agammaglobulinemia. J Allergy Clin Immunol 2020;146:211-3.e4.
4. Aries JA, Davies JK, Auer RL, Hallam SL, Montoto S, Smith M, et al. Clinical outcome of coronavirus disease 2019 in haemato-oncology patients. Br J Haematol 2020;200:e64-7.
5. Cook G, Ashcroft AJ, Pratt G, Popat R, Ramasamy K, Kaiser M, et al. Real-world assessment of the clinical impact of symptomatic infection with severe acute respiratory syndrome coronavirus (COVID-19) disease in patients with multiple myeloma receiving systemic anti-cancer therapy. Br J Haematol 2020;190:e83-6.
6. Oke J, Heneghan C. Global COVID-19 case fatality rates. Oxford COVID-19 Evidence Service. May 2020. Available at: https://www.cebm.net/covid-19/global-covid-19-case-fatality-rates. Accessed September 28, 2020.
7. Howden D, Henegan C. The declining case fatality ratio in England. Oxford COVID-19 Evidence Service. August 2020. Available at: https://www.cebm.net/2019/the-declining-case-fatality-ratio-in-england/. Accessed September 28, 2020.
8. Verity R, Okell LC, Dorigiatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis 2020;20:669-77.
9. Glynn JR. Protecting workers aged 60-69 years from COVID-19. Lancet Infect Dis 2020;20:1123.
10. Docherty AB, Harrison EM, Green CA, Hardwick HE, Puis R, Normal L, et al. Features of 20133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ 2020;369:m1985.
11. Myers I, Buciglo Q, Quinti I, Neven B, Fischer A, Seoane E, et al. Coronavirus disease 2019 in patients with inborn errors of immunity: an international study [published online ahead of print September 24, 2020]. J Allergy Clin Immunol. https://doi.org/10.1016/j.jaci.2020.09.010.
METHODS

In March 2020, the United Kingdom Primary Immunodeficiency Network, the professional body for clinical immunologists in the United Kingdom, established a fully anonymized case series to collate clinical information on outcomes following SARS-CoV-2 infection in patients with PID and SID across the United Kingdom. Data collection proformas were sent to all UK pediatric and adult immunologists by email. Data collected included age, sex, ethnicity, body mass index, pre–COVID-19 lymphocyte count, treatments patients were receiving before COVID-19 (eg, immunoglobulin replacement, immunosuppression, and antibiotic prophylaxis), existing chronic comorbidities, whether infection was suspected or proven by PCR or serology, whether individuals were hospitalized, and whether individuals survived or died. No patients have been previously reported.

These data were collated and analyzed by the authors using GraphPad Prism 8.4.2 (GraphPad Prism Software, San Diego, Calif). Differences between the distributions of continuous variables were evaluated using the 2-tailed Mann-Whitney U test. Differences between categorical variables were evaluated using the 2-tailed Fisher exact test. Odds ratios were calculated using the Baptista-Pike method. CFR is defined as the ratio between total deaths and total PCR-proven infections. IFR is defined as the ratio between total deaths and total suspected or proven SARS-CoV-2 infections. National data regarding COVID-19 epidemiology were sourced from UK government statistics, the International Severe Acute Respiratory and emerging Infections Consortium study, and previous modeling. When analyzing the distribution of baseline lymphocyte counts in the SID cohort, patients with chronic lymphocytic leukemia were excluded.

REFERENCES

E1. Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Normal L, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ 2020;369:m1985.
E2. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis 2020;20:669-77.
E3. Glynn JR. Protecting workers aged 60-69 years from COVID-19. Lancet Infect Dis 2020;20:1123.