Abstract

Aldehyde dehydrogenase 1A1 (ALDH1A1) is a member of the ALDH gene superfamily. Aldehyde dehydrogenases (ALDHs) are responsible for the metabolism of aldehydes (exogenous and endogenous) through NAD(P)+-dependent oxidation to their corresponding carboxylic acids or CoA esters. Different biological functions have been attributed to the different ALDH family members. The cytosolic enzyme ALDH1A1 is involved in the catalysis of retinol (vitamin A) metabolite retinaldehyde to retinoic acid (RA). RA acts as a ligand for the nuclear receptors retinoic receptor (RAR) and the retinoid X receptor (RXR) and therefore regulates the transcriptional activity of genes involved in multiple important processes including proliferation, differentiation, and apoptosis.

Keywords
ALDH1A1, retinaldehyde, retinoic acid, retinol, cancer, stem cell, alcohol

Identity

Other names: ALDC, ALDH-E1, ALDH1, ALDH11, HEL-9, HEL-S-53e, HEL12, PUMB1, RALDH1
HGNC (Hugo): ALDH1A1
Location: 9q21.13
Local order
Starts at 72900662 and ends at 72953317 (according to GRCh38) (Figure 1).

Chromosome 9 - NC_000009.12

Figure 1. Genomic location of human ALDH1A1 (Chromosome 9 - NC_000009.12, GRCh38.p12 Primary Assembly)
The ALDH gene superfamily is found in Archaea, Eubacteria and Eukarya, indicating a vital role for this family throughout evolutionary history (Jackson et al., 2011). A standardized gene nomenclature system based on divergent evolution and amino acid identity was established for the ALDH superfamily in The Ninth International Symposium on Enzymology and Molecular Biology of Carbonyl Metabolism, in 1998 (Figure 2) (Marchitti et al., 2008).

There are 19 known functional aldehyde dehydrogenase (ALDH) genes and many pseudogenes in the human genome (Tomita et al., 2016). ALDH1 family has six members including ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1, ALDH1L1, and ALDH1L2 (C. K. Yang et al., 2017). Since vertebrate ALDH1A1, ALDH1A2 and ALDH1A3 subunit sequences are highly conserved: subsequent gene duplication events are thought to generate ALDH1A1, ALDH1A2 and ALDH1A3 genes in most vertebrate genomes, except some bony fish (Holmes, 2015). ALDH1A1 homologs are present in most vertebrate species, but are absent in Zebra fish and other fishes in the teleost lineage (Table 1) (Jackson et al., 2011).

Description

The ALDH1A1 gene is a protein coding gene. The gene covers 52656 bp, from 72900662 to 72953317 (NC_000009.12). It is located on the plus strand spanning 13 exons (GRCh38, NCBI Homo sapiens Annotation Release 109).

Transcription

This gene has 7 transcripts (splice variants), 161 orthologues and 18 paralogues depending on Ensembl release 95-January 2019 (Table 2). ENST00000297785.7 (ALDH1A1-201) transcript has 13 exons, ENST00000376939.5 (ALDH1A1-202) and ENST00000419959.5 (ALDH1A1-203) transcripts have 8 exons, and ENST00000446946.1 (ALDH1A1-204) transcript has 7 exons (Figure 3).

Transcription

This gene has 7 transcripts (splice variants), 161 orthologues and 18 paralogues depending on Ensembl release 95-January 2019 (Table 2). ENST00000297785.7 (ALDH1A1-201) transcript has 13 exons, ENST00000376939.5 (ALDH1A1-202) and ENST00000419959.5 (ALDH1A1-203) transcripts have 8 exons, and ENST00000446946.1 (ALDH1A1-204) transcript has 7 exons (Figure 3).

Table 1. Pairwise alignment of ALDH1A1 gene (in distance from human) (HomoloGene, NCBI).

Gene Species	Gene Symbol	Identity (%) DNA
Human (H.sapiens)	ALDH1A1	vs. P.troglodytes ALDH1A1 99.5
Human (H.sapiens)	ALDH1A1	vs. M.mulatta ALDH1A1 97.9
Human (H.sapiens)	ALDH1A1	vs. C.lupus ALDH1A1 88.4
Human (H.sapiens)	ALDH1A1	vs. B.taurus ALDH1A1 90.2
Human (H.sapiens)	ALDH1A1	vs. M.musculus Aldh1a1 84.6
Human (H.sapiens)	ALDH1A1	vs. R.norvegicus Aldh1a1 83.9
Human (H.sapiens)	ALDH1A1	vs. G.gallus ALDH1A1 79.4
Human (H.sapiens)	ALDH1A1	vs. X.tropicalis aldh1a1 74.4
Human (H.sapiens)	ALDH1A1	vs. E.gossypii AGOS_ADR417W 54.1
Human (H.sapiens)	ALDH1A1	vs. A.thaliana ALDH2C4 57.6
Human (H.sapiens)	ALDH1A1	vs. O.sativa Os01g0591000 56
Human (H.sapiens)	ALDH1A1	vs. O.sativa Os01g0591300 55.5

Table 1. Pairwise alignment of ALDH1A1 gene (in distance from human) (HomoloGene, NCBI).

Figure 3. Display of human ALDH1A1 gene transcript exons (Ensembl release 95 - January 2019)
ALDH1A1 (Aldehyde Dehydrogenase 1 family member A1)

Tunçer S et al.

Atlas Genet Cytogenet Oncol Haematol. 2020; 24(3) 104

Table 2. Transcripts of human ALDH1A1 gene (Ensembl release 95-January 2019)

Name	Transcript ID	bp	CCDS	RefSeq
ALDH1A1-201	ENST0000029777-85.7	2107	7	CCDS6644 NM_000689
ALDH1A1-202	ENST0000037693-39.5	822	-	-
ALDH1A1-203	ENST0000041999-59.5	806	-	-
ALDH1A1-204	ENST0000044699-46.1	805	-	-
ALDH1A1-205	ENST000004822-10.5	879	-	-
ALDH1A1-206	ENST000004931-13.1	604	-	-
ALDH1A1-207	ENST000004933-11.1	209	-	-

Table 3. Protein products of human ALDH1A1 gene (Ensembl release 95-January 2019)

Name	Transcript ID	bp	Protein	Charge	Isoelectric Point	Molecular Weight	CCDS	UniProt	RefSeq
ALDH1A1-201	ENST00000297785.7	2107	501aa	1.0	6.6811	54,861.84 g/mol	CCDS6644	P00352	V9HW83
ALDH1A1-202	ENST00000376939.5	822	230aa	-0.5	6.2427	25,314.22 g/mol	-	Q5SYQ9	-
ALDH1A1-203	ENST00000419959.5	806	238aa	-1.0	6.1061	26,097.05 g/mol	-	Q5SYQ8	-
ALDH1A1-204	ENST00000446946.1	805	203aa	-1.0	5,8174	22,654.11 g/mol	-	Q5SYQ7	-

Table 4. Pairwise alignment of ALDH1A1 protein sequences (in distance from human) (HomoloGene, NCBI)

Gene Species	Gene Symbol	Identity (%)	Protein
H.sapiens	ALDH1A1		100
vs. P.troglodytes	ALDH1A1		98.8
vs. M.mulatta	ALDH1A1		91.2
vs. C.lupus	ALDH1A1		87
vs. B.taurus	ALDH1A1		86.4
vs. M.musculus	Aldh1a1		84.2
vs. X.tropicalis	Aldh1a1		78.2
vs. E.gossypii	AGOS_ADR417W		50.7
vs. A.thaliana	ALDH2C4		52
vs. O.sativa	Os01g0591000		53.8
vs. O.sativa	Os01g0591300		51.8

Protein

Aldehyde dehydrogenase 1 family, member A1, also known as ALDH1A1 or retinaldehyde dehydrogenase 1 (RALDH1), is an heterotetramer enzyme that is encoded by the human ALDH1A1 gene.

Human ALDH1A1 is 501 amino acids in length (Table 3). ALDH1A1 protein similarity across species are given in Table 4.

Description

The human ALDH1 family shares over 60% protein sequence identity and has six subfamily members (C. K. Yang et al., 2017).

Crystal structures of mammalian ALDH enzymes have shown that each subunit contains three domains: (1) an NAD(P)⁺ cofactorbinding domain, (2) a catalytic domain, and (3) a bridging domain. A funnel passage leading to the catalytic pocket is found at the interface of these domains.

In mouse hepatoma cells, RARA transactivates the Aldh1a1 promoter by binding to the RARE region, located between -91 and -75 bp. Moreover, CEBPB has been demonstrated to transactivate the ALDH1A1 promoter by interacting with the CCAAT box that resides at -75 to -71 bp adjacent to the RARE (Alam et al., 2013).

Pseudogene

Not identified.
Expression

ALDH1A1 is a highly conserved homotetramer somatic cell plasma protein, expressed in numerous tissues, including liver, kidney, red blood cells, skeletal muscle, lung, breast, lens, stomach, brain, pancreas, testis, prostate, ovary (Jackson et al., 2011; Mamat et al., 2011). The detailed RNA and protein expression information can be found in: Human Protein Atlas (https://www.proteinatlas.org/ENSG00000165092-ALDH1A1/tissue).

Localisation

ALDH1A1 is present in the cytosol. Interestingly, Kahlert et al. observed nuclear expression of ALDH1A1 in a small subgroup of patients with colon cancer and rectal cancer, and found that in colon cancer patients, nuclear expression of ALDH1A1 was significantly associated with shortened overall survival (Kahlert et al., 2012).

Function

In retinol metabolism (Figure 4), retinol is oxidized by retinol dehydrogenases (RD) to retinal. Later on, retinal is oxidized to retinoic acid (RA) in a reaction catalyzed by the human ALDH isoenzymes ALDH1A1, ALDH1A2, ALDH1A3, and ALDH8A1. The metabolized product RA includes all-trans RA (ATRA), 9-cis RA, and 13-cis RA. The ALDH isoforms, especially ALDH1A1, have an affinity for ATRA and 9-cis RA. RA diffuses into the nucleus and acts as a ligand for the retinoic acid receptors (RARA, RARB, RARG) and retinoic X receptors (RXRA, RXRB, RXRG). Then, the ligand-receptor complex binds to the retinoic acid response element (RARE) in the promoter of target genes and therefore regulates differentiation, apoptosis and/or cell cycle arrest in a context-dependent manner (Marcato et al., 2011b; Tomita et al., 2016). RXRA/c mice were shown to have decreased liver ALDH1A1 levels, suggesting that RA binding is an activating factor in ALDH1A1 gene expression (Gyamfi, 2006). RA is required for testicular development and ALDH1A1 is absent in genital tissues of humans with androgen receptor-negative testicular feminization. Being an androgen binding protein, ALDH1A1 expression is thought to be regulated also by the androgen receptor (Li et al., 2010; Marchitti et al., 2008).

Aldehyde dehydrogenase (ALDH) enzyme family plays an important role in cellular signal transmission and protection by catalyzing the oxidation of aldehydes (Alam et al., 2013). ALDH1A1 mainly contributes to the biosynthesis of retinoic acid (RA) from vitamin A (Van Der Waals et al., 2018). Inside the cell, Retinol (vitamin A) is oxidized to retinal by retinal dehydrogenases. The retinal is then oxidized to RA in a reaction catalyzed with ALDH1A1, ALDH1A2, ALDH1A3, and ALDH8A1 (Tomita et al., 2016). The RA enters the cell nucleus and binds and activates RA receptors (RARs) or retinoid X receptors (RXRs) to regulate gene expression (Zhao et al., 2014).

ALDH1A1 also plays a role in acetaldehyde metabolism. Acetaldehyde is the first product of ethanol metabolism. Alcohol, taken with alcohol consumption, is converted to acetaldehyde by alcohol dehydrogenase (ADH), catalase and cytochrome P450 2E1. Then, acetaldehyde is metabolized to acetates by ALDH2 and ALDH1A1. Indeed, low ALDH1A1 activity is suggested to be related to alcohol sensitivity in some Caucasian populations ("Identification And Characterisation Of Alcohol-Induced Flushing In Caucasian Subjects", 2017). Moreover, decreased levels of ALDH1A1 were shown in RXRA/c mice, which were more susceptible to alcoholic liver injury (Gyamfi, 2006), while increased ALDH1A1 expression found in brains of alcohol-avoiding DBA/2 mice (Bhave et al., 2006).

ALDH1A1 is predominantly expressed by a subgroup of dopaminergic (DA) neurons in the midbrain (Maring et al., 1985). In DA neurons, ALDH1A1 mediates the oxidation of the cytotoxic dopamine intermediate, 3,4-dihydroxyphenylacetaldehyde (DOPAL), to the less reactive 3,4-dihydroxyphenylacetic acid (DOPAC), and thereby protects the DA neurons from toxicity (Pan et al., 2019). Very recently, ALDH1A1 was reported to mediate the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) (Kim et al., 2015) in DA neurons, where co-release of dopamine and GABA regulates alcohol consumption and preference (Pan et al., 2019). In addition, as a metabolic product of ALDH1A1, RA is known to play a crucial role in neuronal patterning, differentiation, and survival (Pan et al., 2019).

In addition to its role in aldehyde metabolism, ALDH1A1 possesses esterase activity. Collard et al. proposed ALDH1A1 being the major if not the only enzyme responsible for the oxidation of 3-deoxyglucosone to 2-keto-3-deoxygluconate (Collard et al., 2007).

ALDHs are generally categorized as detoxification enzymes. ALDH1A1 was found to offer cellular protection against cytotoxic dopamine intermediate, 3,4-dihydroxyphenylacetaldehyde (DOPAL), to the less reactive 3,4-dihydroxyphenylacetic acid (DOPAC), and thereby protects the DA neurons from toxicity (Pan et al., 2019). In addition, as a metabolic product of ALDH1A1, RA is known to play a crucial role in neuronal patterning, differentiation, and survival (Pan et al., 2019).

In addition to its role in aldehyde metabolism, ALDH1A1 possesses esterase activity. Collard et al. proposed ALDH1A1 being the major if not the only enzyme responsible for the oxidation of 3-deoxyglucosone to 2-keto-3-deoxygluconate (Collard et al., 2007).
ALDH1 activity and ALDH1A1 overexpression are associated with poor cancer prognosis, high ALDH1 and ALDH1A1 levels are not always correlated with highly malignant phenotypes and poor clinical outcome in a range of cancers (Tomita et al., 2016). It is suggested that ALDH1A1 can be a useful marker for cancer stem cells derived from tumors that normally do not express high levels of ALDH1A1, including breast, lung, esophagus, colon, and stomach (Tomita et al., 2016; Xing et al., 2014).

ALDH1A1 also plays a key role in the cellular defense against oxidative stress: ALDH activity is required to maintain sufficiently low Reactive Oxygen Species (ROS) level. Human ALDH1A1 was shown to efficiently oxidize lipid peroxidation-derived aldehydes, like 4-Hydroxynonenal (4-HNE), hexanal, and Malondialdehyde (MDA) (MANZER et al., 2003), and Aldh1a1 knock-out mouse models demonstrated that ALDH1A1 plays a crucial role in protecting the mouse eye lens and cornea by detoxifying lipid peroxidation-derived aldehydes and preventing cataract formation induced by oxidative stresses (Mice et al., 2008).

In addition to its catalytic functions, ALDH1A1 has also non-catalytic roles. Similar with other ALDHs, ALDH1A1 acts as corneal and lens crystallins in mammalian eye tissue and contributes to the transparent and refractive properties of the eye (Vasiiliou et al., 2013), as well as protects the eye from tissue damage as mentioned earlier.

Finally, since ALDH1A1 can bind thyroid hormone and its expression is induced by estrogens, it is suggested that the enzyme may be regulated by or involved in hormone signaling (Marchitti et al., 2008).

Figure 4. Retinoic acid signaling pathway: Retinoic acid (RA), generated by ALDHs, can function in the paracrine or endocrine manner by diffusing into neighboring cells or the nucleus. In the nucleus, RA binds to heterodimers of the retinoic acid receptor (RAR) and retinoid X receptor (RXR). Activated receptor complexes induce transcription of target genes by binding to retinoic acid response elements (RAREs).

Figure 5. ALDH1A1 regulation and function: Once inside the cytoplasm, retinol is oxidized to retinal, then retinal is oxidized to RA by several isoforms of ALDH. RA binds to dimers of RARA and RXRs to induce the expression of its downstream target genes. RA can bind to dimers of RXRs and ESR1 (ERα) as well as induce the expression of MYC and CCND1 (cyclin D1) in ERα-expressing cells. In addition to RA binding to the RAR, CEBPB and OCT1 binding to the ALDH1A1 promoter enhances the ALDH1A1 transcription. NFYA was also shown to activate ALDH1A1 transcription while DDB2 was shown to suppress ALDH1A1 expression by preventing CEBPB binding to the promoter. The details can be found in the text. The figure is modified from Tomita et al. (Tomita et al., 2016).
ALDH1A1 (Aldehyde Dehydrogenase 1 family member A1) Tunçer S et al.

Figure 6. Structure of human ALDH1A1: Structure of human ALDH1A1 determined using X-ray diffraction (PDB ID: 4WJ9) (Morgan and Hurley, 2015; Rose et al., 2018).

Mutations

A list of ALDH1A1 mutations in cancer can be found in: COSMIC, the Catalogue of Somatic Mutations in Cancer, https://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=ALDH1A1.

Implicated in

ALDH1A1 encodes the enzyme ALDH1A1 (also known as retinaldehyde dehydrogenase 1-RALDH1) which is involved in several metabolic processes and therefore implicated in various diseases and conditions.

Parkinson’s disease

Deficiency in ALDH activity, specifically in ALDH1A1 activity in the substantia nigra, is suggested to lead accumulation of neurotoxic aldehydes and subsequent cell death seen in Parkinson’s disease, and possibly in other neurodegenerative disorders. ALDH1 mRNA expression was reported to be decreased in surviving neurons of Parkinson’s disease patients (Basso et al., 2004). Wey et al. showed that deletion of two isoforms of aldehyde dehydrogenase, Aldh1a1 and Aldh2, which are known to be involved in dopamine metabolism in the brain, resulted in elevated levels of the neurotoxic aldehydes DOPAL and 4-HNE and loss of dopaminergic neurons in the substantia nigra, and caused a Parkinsonian phenotype characterized by age-dependent deficits in motor performance (Wey et al., 2012).

Obesity

Adipogenesis is a process regulated by retinoids. Being an ALDH1A1 substrate, retinaldehyde was shown to down-regulate the expression of adipogenesis genes in vitro. In vivo, retinaldehyde decreased fat levels and increased insulin sensitivity in an obese mouse model. Therefore, both in vivo and in vitro results suggest that retinaldehyde may act as an adipogenesis inhibiting signaling metabolite (Ziouzenkova et al., 2007).

As an ALDH1A1 metabolite, RA has also an effect on adipogenesis. RA treatment of obese mice resulted in weight loss and increased insulin sensitivity in addition to increased expression of RAR and other genes (Berry and Noy, 2009). In comparison with other vitamin A metabolizing enzymes responsible in the production of RA, the major enzyme expressed during adipogenesis is ALDH1A1, and ALDH1A1 deficiency was shown to result in impaired adipogenesis (Harrison et al., 2011). Retinal, the substrate of ALDH1A1, is suggested to inhibit PPARG (peroxisome proliferator-activated receptor-gamma) a transcription factor known as the master regulator of adipogenesis. Ziouzenkova et al. showed that retinal is present in rodent fat, binds retinol-binding proteins (CRBP1, RBP4), inhibits adipogenesis and suppresses PPARG and RXR responses. In vivo, mice lacking the Aldh1a1 resisted diet-induced obesity and insulin resistance and showed increased energy dissipation. In ob/ob mice, administrating retinal or an Aldh1a1 inhibitor reduced fat and increased insulin sensitivity (Ziouzenkova et al., 2007).

Alcohol-related phenotypes

Because of its involvement in ethanol metabolism, ALDH1A1 is a candidate for alcohol research. ALDH1A1 has been implicated in several alcohol-related phenotypes, including alcoholism, alcohol-induced flushing, and alcohol sensitivity. Studies suggest that low ALDH1A1 activity may contribute to alcohol sensitivity and alcohol-induced flushing reaction in Caucasians and some Asians. Polymorphisms located on both coding and promoter regions of ALDH1A1 were found to influence alcoholic predisposition (Spence et al., 2003). Kim et al. showed that an evolutionarily conserved GABA synthesis pathway involves Aldh1a1. They found that repeated ethanol exposure reduces GABA co-release from the ventral tegmental area (VTA) dopamine neurons and downregulation of Aldh1a through gene targeting or RNA interference increases alcohol consumption in mice. These findings highlight the importance of Aldh1a1 and VTA GABA co-release in moderating alcohol consumption (Kim et al., 2015).

Cancer

ALDH1A1 has been shown to be related to the stemness of both cancer stem cells and normal tissue stem cells. Recent reports reveal that ALDH1 and specifically ALDH1A1 is a useful cancer stem cell marker that can be used to enrich tumor-initiating
subpopulations from various cell lines and primary tumors (Tomita et al., 2016).

Breast cancer

ALDH1A1 is a breast cancer biomarker for prediction of tumor progression and its expression is correlated with poor survival (Liu et al., 2014). High ALDH activity and CD44 expression (ALDHiCD44+) were found to contribute to metastatic behavior and therapy resistance to breast cancer (Croker et al., 2017).

Colorectal cancer

ALDH1A1 protein expression was found to be increased significantly in colorectal cancer (CRC) tissues compared with matched non-tumor adjacent tissues using immunohistochemistry (IHC). Therefore, the protein is suggested to be a potential prognostic marker in patients with CRC. Moreover, in patients with CRC, increased expression of the ALDH1A1 protein was shown to be associated with the lymph node metastasis (W. et al., 2018). ALDH1A1 expression was found to be associated also with features of poor prognosis, including a poorly differentiated histology and “right-sidedness” of the primary tumor, and with shorter overall survival (Van Der Waals et al., 2018).

Esophageal cancer (squamous cell carcinoma)

Depending on Yang et al., ALDH1A1 (high) cancer stem-like cells contribute to the invasion, metastasis and poor outcome of human esophageal squamous cell carcinoma. ALDH1A1 high esophageal squamous cell carcinoma cells were found to have increased levels of mRNA for VIM (vimentin), matrix metalloproteinase 2, 7, and 9 (MMP2, MMP7 and MMP9), but decreased the level of CDH1 (E-cadherin) mRNA, suggesting that epithelial-mesenchymal transition and MMPs may be associated with the high invasive and metastatic capabilities of ALDH1A1 high cells (L. Yang et al., 2014).

Gastric cancer

The positive rate of ALDH1A1 expression was shown to be 60% in gastric cancer patients (L. Yang et al., 2017), but there was no significant difference between survival rates of ALDH1A1-positive and ALDH1A1-negative patients (Li et al., 2016; L. Yang et al., 2017).

Liver cancer

Tanaka et al. found there was no significant difference in the ALDH1A1-mRNA level between tumorous and non-tumorous tissues of hepatocellular carcinoma patients. In addition, there was no correlation between tumorous ALDH1A1-mRNA level and the clinic-pathological features. They found that in human hepatocellular carcinoma, ALDH1A1-overexpressing cells are differentiated cells rather than cancer stem or progenitor cells (Tanaka et al., 2015).

Lung cancer

The expression of LGR5 and ALDH1A1 were found to be closely associated with the tumorigenicity, metastasis and poor prognosis of non-small cell lung cancer, and LGR5 + cells in non-small cell lung cancer are proposed to be the cancer cells with stem cell-like properties due to the significant correlation between LGR5 and ALDH1A1 (Gao et al., 2015).

Multiple myeloma

Yang et al. reported that increased expression of ALDH1 in multiple myeloma (MM) is a marker of tumor-initiating cells (TICs) that is further associated with chromosomal instability (CIN). They found, between the ALDH1 members, ALDH1A1 is most abundantly expressed member in myeloma and enforced expression of ALDH1A1 in myeloma cells results in increased clonogenicity, tumor formation in mice, and resistance to myeloma drugs in vitro and in vivo (Y. Yang et al., 2014).

Ovarian cancer

Lenden Jr et al. showed that in ovarian cancer, ALDH1A1-positive population has properties of cancer stem cells, and this population is associated with taxane and platinum resistance. Additionally, this population was found to be resensitized to chemotherapy both in vitro and in vivo by down-regulation of ALDH1A1 expression (Laden et al., 2010). More recently, Cui et al. showed that in ovarian cancer, DNA damage-binding protein 2 (DDB2) suppresses non-cancer stem cell to cancer stem cell conversion by repressing ALDH1A1 transcription. Mechanistically, DDB2 binds to the ALDH1A1 gene promoter, enhances the enrichment of histone H3K27me3, and thereby competes with the transcription factor CEBPB for binding to this region, and eventually inhibits the promoter activity of the ALDH1A1 gene (Cui et al., 2018) (Figure 5).

Pancreatic cancer

ALDH1A1 is a pancreatic stem cell marker and is highly enriched in a subpopulation of cells which are extremely resistant to chemotherapy. Furthermore, ALDH1 is highly enriched in surgical specimens from patients with pancreatic cancer who had undergone preoperative chemo-radiation therapy compared to untreated patients (Mizukami et al., 2014).
Papillary thyroid carcinoma

ALDH1A1 levels were significantly higher in papillary thyroid carcinoma samples than normal thyroid samples and ALDH1A1 overexpression was significantly associated with extrathyroid extension, pT status, pN status and TNM stage. The Kaplan-Meier survival analysis shows that high ALDH1A1 expression reflects a poorer lymph node recurrence-free survival (LN-RFS) and distant recurrence-free survival (DRFS) in papillary thyroid carcinoma patients, as compared with patients who have low ALDH1A1 expression. Multivariate analysis confirmed ALDH1A1 expression as an independent prognostic factor for LN-RFS and DRFS in papillary thyroid carcinoma patients (Xing et al., 2014).

Prostate cancer

ALDH1A1 is a cancer stem cell marker in prostate cancer (Kalantari et al., 2017). Cojoc et al. found that the expression of ALDH1A1 is regulated by the WNT signaling pathway. Inhibition of the WNT pathway led to a decrease in ALDH (+) tumor progenitor population and to radiosensitization of cancer cells (Cojoc et al., 2015).

To be noted

Aldefluor assay is widely used to detect ALDH activity by flow cytometry. This assay is based on the conversion of the ALDH substrate BODIPY-aminoacetaldehyde (BAAA) to the fluorescence product BODIPY-aminoacetate. Therefore, the level of fluorescence corresponds to the amount of ALDH activity present in the cell. N,N-diethylamino-benzaldehyde (DEAB), an inhibitor of ALDH activity, is supplied as a negative control for the assay. When the assay has been developed, DEAB was found to be a potent inhibitor of cytosolic ALDH (ALDH1) but not mitochondrial ALDH (ALDH2). Because of this, the Aldefluor Assay was thought to measure cellular ALDH1A1 activity. However, recent studies have shown that DEAB inhibits other ALDH isoenzymes and as a result, the Aldefluor assay will detect stem cells with high levels of other ALDH isoenzyme activity, including ALDH1A2, ALDH1A3, and ALDH2 (Marcato et al., 2011a; Moreb et al., 2012). Morgan et al. analyzed the mechanism underlying DEAB dependent inhibition and found that DEAB is a substrate for ALDH3A1, ALDH1A1, ALDH1A3, ALDH1B1, ALDH5A1, but the turnover rates are so slow that it acts as an inhibitor for more rapidly metabolized aldehyde substrates. Additionally, they did not find appreciable turnover of DEAB with either ALDH1A2 or ALDH2, where DEAB behaves as a covalent inhibitor for both isoenzymes (Morgan et al., 2015).

In IHC analyses, ALDH1A1 can be specifically identified with isotype-specific antibodies. However, when it is the stem cell population, Aldefluor assay has to be used to identify ALDH1A1 activity (Tomita et al., 2016). Because of the broad and varied nature of the interaction between DEAB and ALDH isoenzymes, the results of Aldefluor assay should be interpreted with caution with regard to which particular ALDH isoenzymes contribute to the observed fluorescence in the flow cytometry assay. Together with Aldefluor assay, other specific measurement methods are needed to determine ALDH1A1 expression and activity in the biological samples. In this sense, the generation of selective inhibitor(s) for ALDH1A1 appears to be particularly important.

References

Alam M, Ahmad R, Rajahi H, Kharbanda A, Kufe D. MUC1-C oncoprotein activates ERK–β -Catenin signaling and induction of aldehyde dehydrogenase 1A1 in breast cancer cells. J Biol Chem. 2013 Oct 25;288(43):30892-903

Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, Fasano M. Proteome analysis of human substantia nigra in Parkinson's disease. Proteomics. 2004 Dec;4(12):3943-52

Berry DC, Noy N. All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor beta/delta and retinoic acid receptor. Mol Cell Biol. 2009 Jun;29(12):3286-96

Bhave SV, Lassen N, Vasiliiou V, Saba L, Deitrich RA, Tabakoff B. Gene array profiles of alcohol and aldehyde metabolizing enzymes in brains of C57BL/6 and DBA/2 mice Alcohol Clin Exp Res 2006 Oct;30(10):1659-69

Cojoc M, Peitzsch C, Kurth I, Trautmann F, Kunz-Schughart LA, Telegg GD, Stakhoverk VA, Walker JR, Simin K, Lyle S, Fussel S, Erdmann K, Wirth MP, Krause M, Baumann M, Dubrovska A. Aldehyde Dehydrogenase Is Regulated by β-Catenin/TCF and Promotes Radioresistance in Prostate Cancer Progenitor Cells Cancer Res 2015 Apr 1;75(7):1482-94

Collard F, Vertommen D, Fortpijt J, Duister G, Van Schaftingen E. Identification of 3-deoxyglucosone dehydrogenase as aldehyde dehydrogenase 1A1 (retinaldehyde dehydrogenase 1) Biochimie 2007 Mar;89(3):369-73

Croker AK, Rodriguez-Torres M, Xia Y, Pardhan S, Leong HS, Lewis JD, Allan AL. Differential Functional Roles of ALDH1A1 and ALDH1A3 in Mediating Metastatic Behavior and Therapy Resistance of Human Breast Cancer Cells Int J Mol Sci 2017 Sep 22;18(10)

Cui T, Srivastava AK, Han C, Wu Y, Wani N, Liu L, Gao Z, Qu M, Zou N, Zhang X, Yi P, Yu J, Bell EH, Yang SM, Maloney DJ, Zheng Y, Wani AA, Wang QE. DDB2 represses ovarian cancer cell dedifferentiation by suppressing ALDH1A1 Cell Death Dis 2018 May 1;9(5):561

Gao F, Zhou B, Xu JC, Gao X, Li SX, Zhu GC, Zhang XG, Yang C. The role of LGR5 and ALDH1A1 in non-small cell lung cancer: Cancer progression and prognosis Biochem Biophys Res Commun 2015 Jun 26;462(2):91-8

GYamf MA, Kocsis MG, Le H, Dai G, Mendy AJ, Wan VJ. The role of retinoid X receptor alpha in regulating alcohol metabolism J Pharmacol Exp Ther 2006 Oct;319(1):360-8
Hilton J. Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia Cancer Res 1984 Nov;44(11):5156-60

Holmes RS. Comparative and evolutionary studies of vertebrate ALDH1A-like genes and proteins Chem Biol Interact 2015 Jun 5;234:4-11

Jackson B, Brocker C, Thompson DC, Black W, Vasilikou K, Nebert DW, Vasilikou V. Update on the aldehyde dehydrogenase gene (ALDH) superfamily Hum Genomics 2011 May;5(4):283-303

Kahler C, Gaitzsch E, Steinert G, Mogler C, Herpel E, Hofmeister M, Jansen L, Benner A, Brenner H, Chang-Claude J, Rahbani N, Schmidt T, Klupp F, Grabe N, Lahrmann B, Koch M, Halama N, Büchler M, Weitz J. Expression analysis of aldehyde dehydrogenase 1A1 (ALDH1A1) in colon and rectal cancer in association with prognosis and response to chemotherapy Ann Surg Oncol 2012 Dec;19(13):4193-201

Kalantarli E, Saadi FH, Asgari M, Sharifi-Farzabi A, Roudi R, Madjd Z. Increased expression of ALDH1A1 in Prostate Cancer is Correlated With Tumor Aggressiveness: A Tissue Microarray Study of Iranian Patients Appl Immunohistochem Mol Morphol 2017 Sep;25(8):592-598

Kim JI, Ganesan S, Luo SX, Wu YW, Park E, Huang EJ, Chen L, Ding JB. Aldehyde dehydrogenase 1a1 mediates a GABA synthase pathway in midbrain dopaminergic neurons Science 2015 Oct 2;350(6265):102-6

Landen CN Jr, Goodman B, Katre AA, Stag AD, Nick AM, Stone RL, Miller LD, Mejia PV, Jennings NB, Gershenson DM, Bast RC Jr, Coleman RL, Lopez-Berestein G, Sood AK. Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer Mol Cancer Ther 2010 Dec;9(12):3186-99

Lassen N, Bateman JB, Estey T, Kuszak JR, Nees DW, Piatiogorsky J, Duester G, Day BJ, Huang J, Hines LM, Ostmark B, Chang LJ. The enzymatic activity of human aldehyde dehydrogenases 1A2 and 2 (ALDH1A2 and ALDH2) is detected by Aldefluor, inhibited by diethylaminobenzaldehyde and has significant effects on cell proliferation and drug resistance Chem Biol Interact 2012 Jan 5;195(1):52-60

Morgan CA, Hurley TD. Development of a high-throughput in vitro assay to identify selective inhibitors for human ALDH1A1 Chem Biol Interact 2015 Jun 5;234:29-37

Morgan CA, Parajuli B, Buchanan CD, Dria K, Hurley TD. N,N-diethylaminobenzaldehyde (DEAB) as a substrate and mechanism-based inhibitor for human ALDH isoenzymes Chem Biol Interact 2015 Jun 5;234:18-28

Pan J, Yu J, Sun L, Xie C, Chang L, Wu J, Hawes S, Saez-Alienzar S, Zheng W, Kung J, Ding J, Le W, Chen S, Cai H. ALDH1A1 regulates postsynaptic μ-opioid receptor expression in dorsal stratial projection neurons and mitigates dyskinesia through transynaptic retinoic acid signaling Sci Rep 2019 Mar 5;9(1):3602

Pappa A, Estey T, Manzer R, Brown D, Vasilikou V. Human aldehyde dehydrogenase 3A1 (ALDH3A1): biochemical characterization and immunohistochemical localization in the cornea Biochem J 2003 Dec 15;376(Pt 3):615-23

Reichert B, Yasmeen R, Jeyakumar SM, Yang F, Thomou T, Alder H, Duester G, Maisseye A, Mihai G, Harrison EH, Rajagopalan S, Kirkland JL, Zouzenkova O. Concerted action of aldehyde dehydrogenases influences depot-specific fat formation Mol Endocrinol 2011 May;25(5):799-809

Rose AS, Bradley AR, Valastava Y, Duarte JM, Prlic A, Rose PW. NGL viewer: web-based molecular graphics for large complexes Bioinformatics 2018 Nov 1;34(21):3755-3758

Spence JP, Liang T, Eriksson CJ, Taylor RE, Wall TL, Ehlers CL, Carr LG. Evaluation of aldehyde dehydrogenase 1 promoter polymorphisms identified in human populations Alcohol Clin Exp Res 2003 Sep;27(9):1389-94

Tanaka K, Tomita H, Hisamatsu K, Nakashima T, Hatano Y, Sasaki Y, Osada S, Tanaka T, Miyazaki T, Yoshida K, Hara A. ALDH1A1-overexpressing cells are differentiated cells but not cancer stem or progenitor cells in human hepatocellular carcinoma Oncotarget 2015 Sep 22;6(28):24722-32

Tomita H, Tanaka K, Tanaka T, Hara A. Aldehyde dehydrogenase 1A1 in stem cells and cancer Oncotarget 2016 Mar 8;7(10):11018-32

Vasilikou V, Thompson DC, Smith C, Fujita M, Chen Y. Aldehyde dehydrogenases: from eye crystallins to metabolic disease and cancer stem cells Chem Biol Interact 2013 Feb 25;202(1-3):2-10

Wang B, Chen X, Wang Z, Xiong W, Xu T, Zhao X, Cao Y, Guo Y, Li L, Chen S, Huang S, Wang X, Fang M, Shen Z. Aldehyde dehydrogenase 1A1 increases NADH levels and...
promotes tumor growth via glutathione/dihydrolipoic acid-dependent NAD(+) reduction Oncotarget 2017 May 8;8(40):67043-67055

Ward RJ, McPherson AJ, Chow C, Ealing J, Sherman DI, Yoshida A, Peters TJ. Identification and characterisation of alcohol-induced flushing in Caucasian subjects Alcohol Alcohol 1994 Jul;29(4):433-8

Wey MC, Fernandez E, Martinez PA, Sullivan P, Goldstein DS, Strong R. Neurodegeneration and motor dysfunction in mice lacking cytosolic and mitochondrial aldehyde dehydrogenases: implications for Parkinson's disease PLoS One 2012;7(2):e31522

Xing Y, Luo DY, Long MY, Zeng SL, Li HH. High ALDH1A1 expression correlates with poor survival in papillary thyroid carcinoma World J Surg Oncol 2014 Feb 3;12:29

Yang CK, Wang XK, Liao XW, Han CY, Yu TD, Qin W, Zhu GZ, Su H, Yu L, Liu XG, Lu SC, Chen ZW, Liu Z, Huang KT, Liu ZT, Liang Y, Huang JL, Xiao KY, Peng MH, Winkle CA, O'Brien SJ, Peng T. Aldehyde dehydrogenase 1 (ALDH1) isoform expression and potential clinical implications in hepatocellular carcinoma PLoS One 2017 Aug 8;12(8):e0182208

Yang L, Ren Y, Yu X, Qian F, Bian BS, Xiao HL, Wang WG, Xu SL, Yang J, Cui W, Liu Q, Wang Z, Guo W, Xiong G, Yang K, Qian C, Zhang X, Zhang P, Cui YH, Bian XW. ALDH1A1 defines invasive cancer stem-like cells and predicts poor prognosis in patients with esophageal squamous cell carcinoma Mod Pathol 2014 May;27(5):775-83

Yang L, Xu JF, Kang Q, Li AQ, Jin P, Wang X, He YQ, Li N, Cheng T, Sheng JQ. Predictive Value of Stemness Factor Sox2 in Gastric Cancer Is Associated with Tumor Location and Stage PLoS One 2017 Jan 3;12(1):e0169124

Yang W, Wang Y, Wang W, Chen Z, Bai G. Expression of Aldehyde Dehydrogenase 1A1 (ALDH1A1) as a Prognostic Biomarker in Colorectal Cancer Using Immunohistochemistry Med Sci Monit 2018 May 7 [revised 2018 Jan 1];24:2864-2872

Yang Y, Zhou W, Xia J, Gu Z, Wendlandt E, Zhan X, Janz S, Tricot G, Zhan F. NEK2 mediates ALDH1A1-dependent drug resistance in multiple myeloma Oncotarget 2014 Dec 15;5(23):11986-97

Zhao D, Mo Y, Li MT, Zou SW, Cheng ZL, Sun YP, Xiong Y, Guan KL, Lei QY. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells J Clin Invest 2014 Dec;124(12):5453-65

Ziouzenkova O, Orasanu G, Sharlach M, Akiyama TE, Berger JP, Viereck J, Hamilton JA, Tang G, Dolekikowski GG, Vogel S, Duester G, Plutzky J. Retinaldehyde represses adipogenesis and diet-induced obesity Nat Med 2007 Jun;13(6):695-702

van der Waals LM, Borel Rinkes IHM, Kranenburg O. ALDH1A1 expression is associated with poor differentiation, ‘right-sidedness’ and poor survival in human colorectal cancer PLoS One 2018 Oct 11;13(10):e0205536

This article should be referenced as such:

Tunçer S, Çamlca R, Yilmaz I. ALDH1A1 (Aldehyde Dehydrogenase 1 family member A1). Atlas Genet Cytogenet Oncol Haematol. 2020; 24(3):102-111.