Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Investigation and analysis of cognitive function and psychological status in stroke patients with COVID-19

Kong Fanji MD, Yao Xiaolong MD, Li Jun PhD

PII: S1052-3057(22)00351-2
DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106657
Reference: YJSCD 106657

To appear in: Journal of Stroke Cerebrovascular Diseases

Received date: 13 April 2022
Revised date: 25 June 2022
Accepted date: 11 July 2022

Please cite this article as: Kong Fanji MD, Yao Xiaolong MD, Li Jun PhD, Investigation and analysis of cognitive function and psychological status in stroke patients with COVID-19, Journal of Stroke Cerebrovascular Diseases (2022), doi: https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106657

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Inc.
Investigation and analysis of cognitive function and psychological status in stroke patients with COVID-19

Kong Fanji MD1 | Yao Xiaolong MD1 | Li Jun PhD1\textasteriskcentered

1Medical School of Jianghan University, Wuhan430000, Hubei, China; The Third People’s Hospital of Hubei Province, No. 26 Zhongshan Avenue, Qiaokou District, Wuhan 430000, Hubei, China.

Kong Fanji and Yao Xiaolong contributed equally to this manuscript.

* Correspondence

Jun Li, Department of Neurology,
The Third People’s Hospital of Hubei Province, No. 26 Zhongshan Avenue, Qiaokou District, Wuhan 430000, Hubei, China.
Email: lijun_lj3722@163.com

Abstract Objective To investigate the clinical characteristics of COVID-19 patients with stroke and the changes of cognitive function and mental state within 6 months after discharge.

Methods Retrospective analysis of 32 patients with COVID-19 complicated with stroke in the Third people’s Hospital of Hubei Province from January 21 to June 1, 2020, and 32 patients with COVID-19 patients without stroke and 32 common pneumonia patients complicated with stroke treated in the same period as the control group. The clinical data and experimental parameters in the hospital were counted. They were followed up within 6 months after discharge, and the cognitive function of the patients was evaluated by Montreal cognitive function evaluation form, GAD-7 extensive anxiety scale and PHQ-9 depression scale, to test the psychological state of patients. The significant differences under three scores of the groups were analyzed, and the related risk factors of anxiety and depression were analyzed by binary logistic regression. Results Kruskal-wallisH test showed that there was a significant difference in cognitive score, anxiety score, depression score among groups(P<0.05). Binary logistic regression analysis showed that female gender (P = 0.004) and COVID-19 infection(P < 0.001) were independent risk factors for anxiety and depression in stroke population. Conclusion COVID-19 was indeed associated with prognosis anxiety and depression, but not with cognitive impairment. Women and patients with COVID-19 infection were independent factors of anxiety and depression in stroke population.
There are serious negative emotions such as anxiety and depression within 6 months after discharge, and there are still many psychological problems. After discharge, taking corresponding psychological intervention for patients can maintain their mental health and promote disease rehabilitation.

Key words: COVID-19; stroke; cognitive function; psychological status; clinical characteristics

1. Introduction

In January 7, 2020, New Coronavirus pneumonia was identified as New Coronavirus by virus typing [1]. In February 11, 2020, the WHO was named COVID-19. COVID-19 mainly acts on the respiratory system, but it can also invade the nervous system. This invasion of the nerve shows neurophilia [2]. Studies have shown that the incidence of acute cerebrovascular disease has increased the risk of death by 3 times in COVID-19 patients [3]. We can see that COVID-19 and stroke have an interaction with each other, and COVID-19 increases the incidence rate of stroke, meanwhile stroke also makes COVID-19 more risk of death.

The post-stroke cognitive impairment (PSCI) is considered as the most common complication after stroke. At present, the pathogenesis of PSCI has not been fully elucidated, and most studies believe that the mechanisms of cerebrovascular injury, brain neurodegeneration, inflammation, and oxygen free radical damage are related to the pathogenesis of PSCI[4-5]. Considering the COVID-19 also damages the neural function, and this impairment of the neural function may have some influence on the cognitive function. We hypothesis that COVID-19 patients combined with stroke may have more severe PSCI.

After stroke, it is easy to lead to post-stroke depression (PSD), and PSD will also aggravate the cognitive dysfunction of stroke patients, and then delay the rehabilitation process of patients after stroke[7]. PSCI not only has a serious impact on patients’ ability of daily life, what’s more, it can place a heavy burden on families and society; and PSCI may even develop into dementia with increasing age [8]. During the COVID-19 epidemic, COVID-19 patients also have a series of psychological stress reactions, among which depression and anxiety are the main psychological symptoms, leading to sympathetic and parasympathetic nervous system activation, producing somatic symptoms, and further aggravating or deteriorating the condition.

This study will focused on the clinical characteristics of COVID-19 patients with stroke, especially on the Montreal cognitive assessment scale (MoCA), PHQ-9 depression scale and GAD-7 extensive anxiety scale. Further more, we explore the cognitive function and psychological status changes of COVID-19 patients with stroke within 6 months after discharge.

2. Data and Methods

2.1 Case collection Refer to the diagnosis criteria of Novel Coronavirus Pneumonia Diagnosis and Treatment Plan (Trial Version 5, Revised Edition)[9]. From January 1 to June 1, 2020, the paper and electronic medical records of inpatients were reviewed continuously in the Department of Neurology and surgery of the third people’s Hospital of Hubei Province. After detailed evaluation of inclusion and exclusion criteria, 32 patients with COVID-19 complicated with stroke were included in this study. Inclusion criteria: (1) ischemic and hemorrhagic stroke was diagnosed according to the international classification of diseases (ICD-10), and the location of infarction and hemorrhage was confirmed by cerebral CT or MRI. (2) The infected patients were confirmed by RT-PCR detection of SARS COV-2 RNA. (3) The patient was admitted within 1
week after the onset of stroke. (4) Age ≥ 40 years old. The exclusion criteria: (1) previous diagnosis of anxiety, depression and other mental disorders. (2) Severe aphasia, confused thinking or unable to complete the relevant scale test. (3) There are other diseases that can cause mood disorders, including severe heart failure, thyroid disease and severe liver and kidney dysfunction.

2.2 Data collection The clinical symptoms and laboratory test results of all patients were collected and summarized through the standard case information form, and followed up to November 20, 2020. The follow-up time was within 6 months after discharge, and the follow-up was conducted by telephone [10]. The follow-up content was the scores of Montreal cognitive function evaluation form (MoCA), GAD-7 extensive anxiety scale and PHQ-9 depression scale.

2.3 Methods and Groups They were divided into non-stroke with COVID-19 group, COVID-19 combined with stroke group and stroke combined with common pneumonia group, with 32 cases in each group. The symptoms, laboratory results, CT findings of lung and head at admission were recorded, and follow-up questionnaires were conducted for patients in each group. The follow-up date was November 20, 2020. The contents of the questionnaire were psychological function assessment (GAD-7 extensive anxiety scale and PHQ-9 Depression Scale) and cognitive function assessment (Montreal Cognitive Assessment scale).

2.4 Statistical Methods Spss23.0 was used for all statistical analysis. T-test or chi square test was used for the comparison between normal distribution measurement data groups, Kruskal wallish test was used for the comparison of multiple independent samples for nonparametric test, and binary logistic regression analysis was used for binary variables. The difference was statistically significant (P < 0.05).

3 Results

3.1 Clinical Data and Features A total of 32 COVID-19 patients complicated with stroke were diagnosed. The age range was 49-82 years old. There were 28 cases of ischemic stroke (88.24%) and 4 cases of hemorrhagic stroke (11.76%). Eighteen patients were male, accounting for 56.7% (18/32). The initial and main clinical symptoms of the patients were headache (37.50%, 12/32), fever (43.75%, 14/32), limb weakness (31.25%, 10/32), cough (37.50%, 12/32), as shown in Table 1. The proportion of lymphocytes in COVID-19 patients complicated with stroke (75.00%, 24/32) was lower than that of non-stroke COVID-19 patients (84.38%, 27/32), but higher than that of common pneumonia patients complicated with stroke (50.00%, 16/32, P < 0.05). Non-stroke COVID-19 patients (84.38%, 27/32) had a highest proportion of neutrophils in groups, while stroke patients with common pneumonia was the lowest (37.50%, 12/32), and the difference was statistically significant (P < 0.05). Although there were differences in leukocyte, hemoglobin concentration, platelet, blood creatinine, C-reactive protein, blood potassium, blood sodium and procalcitonin among the groups, the difference was not statistically significant (P > 0.05, Table 2).

Clinical characteristics	Non-stroke COVID-19	COVID-19 with stroke	Common pneumonia combined with stroke (COVID-19 negative)	P
Stroke type				
Ischemic	28	30		>.99

Metric	Non-stroke COVID-19	COVID-19 with stroke	Common pneumonia with stroke (COVID-19 negative)	P
Leukocyte cells (10^9 / L)	7.95 (3.50-17.12)	7.87 (3.47-16.47)	8.39 (3.29-16.48)	
<3.5	3 (9.38)	2 (6.25)	2 (6.25)	.85
3.5-9.5	22 (68.75)	22 (68.75)	22 (68.75)	
Lymphocyte %	12.96 (2.50-35.00)	13.89 (3.40-22.40)	21.69 (8.30-46.30)	
<20	27 (84.38)	24 (75.00)	16 (50.00)	<0.0
Neutrophils (%)	85.63 (58-90.50)	79.46 (65.90-89.80)	70.01 (47.20-88.30)	
>75	27 (84.38)	22 (68.75)	12 (37.50)	<0.0
Haemoglobin g / l	321 (310.00-350.50)	336.00 (300.00-374.00)	333.19 (305.00-357.00)	
<316	3 (9.38)	2 (6.25)	4 (12.50)	.73
Platelet g / l	225.38 (110.00-310.00)	211.75 (102.00-325.00)	243.27 (0.26-470.00)	
3.2 The analysis of cognitive, anxiety and depression scores among the three groups To evaluated the differences in MOCA cognitive score, GAD-7 anxiety score and PHQ-9 depression score among non stroke COVID-19 patients, COVID-19 patients with stroke and common

	Non Stroke COVID-19	Stroke COVID-19	Common	P-value
ALT (U/L)	5 (15.63)	6 (18.75)	4 (12.50)	.45
AST (U/L)	25.98	26.14	28.29	
Urea	7.93	7.76	8.78	
Creatinine	118.32	151.44	78.50	
Globulin	30.56	29.58	30.80	
A/G	1.31	1.28	1.24	
CRP (mg/L)	50.85	62.21	38.69	
**Na⁺ (mmol/L)	134.21	139.21	136.99	
K⁺ (mmol/L)	3.85	3.71	4.12	
PCT (ng/ml)	2.76	2.66	0.21	
Urea nitrogen (mmol/L)	3.12—10.59	2.66—22.90	2.32—52.01	
<9.2	6 (18.75)	6 (18.75)	6 (18.75)	.82
<20	2 (6.25)	2 (6.25)	2 (6.25)	.52
<1.2	15 (46.86)	14 (43.75)	16 (50.00)	.68
>5	20 (62.50)	22 (68.75)	26 (81.25)	.52
<3.5	11 (34.38)	14 (43.75)	4 (12.50)	.86
<0.25	12 (37.50)	10 (31.25)	10 (31.25)	.54
pneumonia patients with stroke. The results of H-Test analysis showed that there were significant differences in three scores among three groups (P < 0.05), as shown in Table 3. Comparative analysis showed that there was a significant difference in cognitive score among non stroke COVID-19 patients, COVID-19 patients with stroke and common pneumonia patients with stroke. (P<0.05). In terms of anxiety score and depression score, there also were a significant difference among the three groups (P<0.05). As shown in Table 3, there was a significant difference in anxiety score and depression score between pneumonia combined with stroke and COVID-19 infection with stroke (P<0.05). These results indicated that COVID-19 infection may aggravate the anxiety and depression of stroke patients.

Table 3 Analysis of cognitive, anxiety and depression scores among the three groups [Median (25%Q, 75%Q)]

	Moca Cognitive score	GAD-7 Anxiety Score	The PHQ-9 Depression Score
Non-stroke COVID-19	22 (22, 23)	12 (9, 14)	11 (7, 16)
COVID-19 with stroke	15 (11, 18) *	12 (11, 14) #	11 (8, 16) #
Common pneumonia with stroke (COVID-19 negative)	13 (8, 17) &	2 (1, 5) &	5 (2, 8) &
P	<0.05	<0.05	<0.05

* means compared with the non stroke group (P < 0.05), & indicates compared with the non stroke group (P < 0.05), # indicating compared with the group of common pneumonia complicated with stroke (P < 0.05)

3.3 Independent risk factors for anxiety, depression and cognitive function in COVID-19 patients combined with stroke. Considering that there are significant differences in MOCA cognitive score, GAD-7 anxiety score and PHQ-9 depression score among non stroke COVID-19 patients, COVID-19 patients with stroke and common pneumonia patients with stroke, this part aim to explore risk factors for anxiety, depression and cognitive function in COVID-19 patients combined with stroke. The gender, stroke type, whether suffering from COVID-19 infection and age and so on were bringing into binary logistic regression as predictors. Multivariate analysis showed that female (P = 0.004), suffering from COVID-19 infection (P < 0.001) were independent risk factor for anxiety and depression in stroke population, as shown in table 4-5. There were not any risk factors for cognitive function in COVID-19 patients combined with stroke, as shown in table 6.

Table 4 Multivariate logistic regression analysis of anxiety-related factors in stroke patients

	B	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Gender (1)	3.458	1.185	8.516	1	.004	31.767	3.113	324.152
Stroke type (1)	-.009	1.062	.000	1	.993	.991	.124	7.945
Table 5 Multivariate logistic regression analysis of depression-related factors in stroke patients

	B	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Gender (1)	2.315	.924	6.276	1	.012	10.124	1.655	61.929
Stroke type (1)	-.717	1.006	.508	1	.476	.488	.068	3.508
Whether COVID-19 (1)	2.811	1.175	5.720	1	.017	16.627	1.661	166.428
Age (1)	.769	.884	.757	1	.384	2.157	.382	12.198
Constant	-4.794	1.542	9.664	1	.002	.008		

Table 6 Multivariate logistic regression analysis of factors related with cognitive function in stroke patients

	B	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Gender (1)	.190	.732	.067	1	.795	1.209	.288	5.081
Stroke type (1)	.429	.792	.294	1	.588	1.536	.325	7.256
Whether COVID-19 (1)	.223	.785	.081	1	.776	1.250	.268	5.821
age	-.707	.747	.896	1	.344	.493	.114	2.132
Constant	1.597	.708	5.089	1	.024	4.936		

4 Discussion

In this study, COVID-19 patients with stroke had early symptoms of fever, cough, headache and limb weakness. The type of stroke was mainly ischemic type (88.24%). In the laboratory test indicators, the lymphocyte count of most COVID-19 patients combined with stroke is reduced, suggesting that SARS-CoV-2 may act on lymphocytes, especially T lymphocytes. Like SARS-CoV, inhibiting the cellular immune function of the body, SARS-CoV-2 also may also could aggravate ischemic brain injury through triggering cytokine cascade reaction [11-12]. Critically ill patients with severe SARS-CoV-2 infection usually show elevated D-dimer levels and severe thrombocytopenia, making patients more prone to acute cerebrovascular events [13]. In this study, most patients have normal platelet values, and only 6 patients have mild platelet values, which may be related to the fact that the cases collected in this study are not severe, most of them were with mild SARS-CoV-2 infection.

This study explored the changes of cognitive score, anxiety score and depression score in COVID-19 patients with stroke. Through Kruskal wallish test, we found that patients with COVID-19 infection are indeed related to prognosis anxiety and depression, which will increase
the psychological burden. A study found that novel coronavirus pneumonia patients may have some type of cognitive impairment in the long term, especially in the areas of processing speed, verbal memory or executive function [14]. Our study found that novel coronavirus pneumonia is associated with stroke and cognitive impairment also in mild and non severe infection, but not only in severe infection.

Then through binary logistic regression, the data revealed that women and patients with COVID-19 infection were independent risk factors of anxiety and depression in stroke population, rather than of cognitive function. Previous study evaluating depression and anxiety symptoms also found that female patients were more likely to be anxious than male patients in stroke [15]. The results showed that even if COVID-19 patients with stroke have recovered, the disease will have a residual effect on the subsequent psychology of patients, causing anxiety and depression after discharge, which has a great negative impact on people's psychology and behavior. Specifically, the reason why patients have strong psychological changes in the follow-up may be that they do not know enough about their diseases. During hospitalization, both of the COVID-19 and stroke have brought strong psychological pressure to patients. The isolation during hospitalization makes patients have emotions such as fear, worry and confusion, and they often fell powerless and are at a loss, resulting in high anxiety and depression. This change in psychological status can even continue until a few months after the patient leaves the hospital. Fear of incomplete treatment and recurrence, or fear of increasing the burden on the family may be the reason for the persistence of anxiety and depression after recovery. Studies have shown that the physical and social functions of patients with depression are significantly reduced, and the disease recurrence rate and mortality of patients are increased, which seriously affects the neurological function and daily living ability of patients, and then increases the economic burden of families [7]. So, the public healthy system should pay attention to this part, and improve the scientific advocacy system about COVID-19.

Therefore, during the COVID-19 epidemic, under the double blow of COVID-19 infection and stroke, COVID-19 and stroke patients need more physiological and psychological treatment, and the treatment not only needs to provide patients in hospital. Attention should also be paid to the continuous state of psychological changes after discharge. Give comfort and care to discharged patients, dredge their bad emotions, implement timely psychological crisis intervention measures and help patients make scientific self-regulation, arouse patients' positive emotions and play the role of psychological defense, so as to improve and eliminate negative emotions such as depression [16], which plays a positive role in improving the prognosis of COVID-19 patients with stroke and reducing the disease recurrence rate and mortality [17].

This study has some limitations. First of all, the number of cases is not enough and there are few, which will lead to the deviation of the experimental results. Secondly, the follow-up is conducted in the form of telephone, so it is impossible to communicate with the patient face-to-face and judge the patient's look and mental state in real time, which may lead to the score being not comprehensive and accurate.

5.Conclusions

In conclusion, the follow-up of stroke patients with COVID-19 infection found they have more serious anxiety and depression, and this negative psychological state persists for a period of time after discharge, which hinders the recovery of neurological function and ability of daily living.
Female, suffering from COVID-19 infection were independent risk factor for anxiety and depression in stroke.

Author Contributions: Conceptualization, Kong Fanji and Yao Xiaolong; methodology, Kong Fanji and Yao Xiaolong; software, Kong Fanji; validation, Yao Xiaolong and Li Jun; data curation, Kong Fanji and Yao Xiaolong; writing—original draft preparation, Kong Fanji; writing—review and editing, Kong Fanji and Yao Xiaolong; visualization, Kong Fanji; supervision, Yao Xiaolong and Li Jun. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration of Helsinki, and approved by the Ethics Committee of Hubei Province.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All data generated or analysed during this study are included in this article. There are no separate or additional files.

Conflicts of Interest: This project has not received any funding, and there are no conflicts of interest to disclose.

References

[1] XU X, CHEN P, WANG JF, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission [J/OL]. Sci China Life Sci. 2020−01−21

[2] Karuppan M K M, Devadoss D, Nair M, et al. SARS-CoV-2 Infection in the Central and Peripheral Nervous System-Associated Morbidities and Their Potential Mechanism [J]. Molecular Neurobiology, 2021(5).

[3] TREJO-GABRIEL-GALAN JM. Stroke as a complication and prognostic factor of COVID-19. Ictus como complicación y como factor pronóstico de COVID-19 [J]. Neurologia, 2020, 35(5):318-322.

[4] Toljan K. Letter to the Editor Regarding the Viewpoint "Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host–Virus Interaction, and Proposed Neurotropic Mechanism" [J]. ACS Chemical Neuroscience, 2020.

[5] GU J, GONG E, ZHANG B, et al. Multiple organ infection and the pathogenesis of SARS [J]. The Journal of Experimental Medicine, 2005, 202(3): 415-424.

[6] PENDLEBURY S T, ROTHWELL P M. Prevalence, incidence, and factors associated with pre-stroke and poststroke dementia: a systematic review and meta-analysis [J]. Lancet Neurol, 2009, 8(11):1006-1018.

[7] CHARLES E, YUMIN Z, EGEDE LEONARD E. Depression and increased risk of death in adults with stroke [J]. J Psychosom Res, 2010, 68(6): 545-551

[8] Wang Ruiyun, Yu Hongli, Zhao Jiwei, Duan Shurong, Zhao Jingkun. Progress in studying the cognitive dysfunction after stroke [J]. Chinese Journal of Neurology, 2017, 16(11): 1129-1133.

[9] General Office of the National Health Commission, Office of the National Administration of Traditional
Chinese Medicine. Notice on the Issuance of the Diagnosis and Treatment Plan of Novel Coronavirus Pneumonia (Trial Fifth Edition) (Medical Letter of the State Health Office No.103,2020) [EB]. (2020-02-04)

[10] Lu Zhihong, Liu Xiaojia. Application of the Revised Cognitive Function Telephone Questionnaire in the study of cognitive function after ischemic stroke [J]. Chinese Journal of Neurology, 2016, 15 (06): 604-609.

[11] MUHAMMAD S, HAASBACH E, KOTCHOURKO M, et al. Influenza virus infection aggravates stroke outcome[J]. Stroke, 2011, 42(3): 783-791.

[12] WARREN-GASH C, BLACKURN R, WHITAKER H, et al. Laboratory-confirmed respiratory infections as triggers for acute myocardial infarction and stroke: a self-controlled case series analysis of national linked datasets from Scotland[J]. The European Respiratory Journal, 2018, 51(3): 1701794.

[13] WANG Y, WANG Y, CHEN Y, et al. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures[J]. Journal of Medical Virology, 2020, 92(6): 568-576.

[14] Ana Costas-Carrera, Marta Monica Sanchez-Rodriguez, Silvia Canizares, et al. Neuropsychological functioning in post-ICU patients after severe COVID-19 infection: The role of cognitive reserve[J]. Brain Behav Immun Health, 2022(21):100425.

[15] Tang Yanping, Song Weixi, Zhong Meiqiong. Analysis of the related factors and main syndrome of depression in 176 cases after stroke [J]. Hunan Journal of Traditional Chinese Medicine, 2020, 36 (10): 128-130.

[16] Liu Hong, Guo Chunjie. Research Progress in Post-stroke Depression [J]. Chinese Journal of Neurology, 2004 (03): 239-241.

[17] Zhu Benliang, Yuan Yong, Wang Hu, Yang Hua. Effect of early intervention treatment on the quality of life in depressed patients after stroke [J]. Chinese Journal of Neurology, 2008 (12): 1278-1280.