Acaricidal Abilities and Chemical Composition of *Forsythia suspense* Fruit Oil against Storage and Pyroglyphid Mites

Hwa-won Lee · Hoi-Seon Lee*

Received: 4 January 2015 / Accepted: 11 January 2015 / Published Online: 30 June 2015
© The Korean Society for Applied Biological Chemistry 2015

Abstract This research is aimed at evaluating the potential abilities of the natural acaricide of *F. suspense* oil against *Tyrophagus putrescentiae* and *Dermatophagoides* spp. Based on the LD₅₀ values, in contact bioassay, *F. suspense* oil (8.19, 3.28, and 4.35 µg/cm²) showed acaricidal effects against *T. putrescentiae*, *D. farinae*, and *D. pteronyssinus*, respectively. Fumigant toxicities of *F. suspense* oil showed similar patterns as those observed with contact toxicities. GC/MS analysis showed the major components of *F. suspense* oil to be β-pinene (45.88%), myrtenol (13.86%), (+)-α-pinene (13.09%), (−)-trans-pinocarveol (7.34%), sabine (6.64%) and pinocarvone (4.13%). These findings indicate that *F. suspense* oil has potential as a natural acaricide.

Keywords acaricidal effect · *Dermatophagoides farinae* · *Dermatophagoides pteronyssinus* · *Forsythia suspense* · *Tyrophagus putrescentiae*

Storage and pyroglyphid mites are major allergens worldwide causing bronchial asthma, rhinitis and atopic dermatitis (Kim et al., 2003; Lee, 2004; Saad et al., 2006; Song et al., 2011). Pyroglyphid mites found in indoor apartments belong to the genus *Dermatophagoides* (Lim et al., 2008). In particular, *D. farinae* and *D. pteronyssimus* are the major factors causing sudden infant death syndrome (Rim and Jee, 2006). The typical storage mite, *Tyrophagus putrescentiae*, lives in preserved eggs, cheese and grain (Gulati and Mathur, 1995). Moreover, storage mites have been recognized as an etiological factor in allergic diseases affecting food workers and farmers (Song et al., 2011). Controlling mite populations has been done mainly through the use of pirimiphos-methyl and benzene hexachloride (Wu et al., 2012). Although effective, these resulted in resistance and mammal toxicity (Kang et al., 2006). In more recent studies, natural substances of plant oils are reported to be good alternatives (Pasay et al., 2010).

Forsythia suspense (Thunb.), a member of the Oleaceae family, is widely distributed in Asia (China, Korea and Japan) and many European nations. (Qu et al., 2008). It contains isolariresinol, succinic acid, erythritol and wogonin-7-O-glucoside (Liu et al., 2003). Furthermore, it is reported to have biological effects including antibacterial (Bae et al., 2005; Qu et al., 2008), antioxidant (Qu et al., 2008; Wang et al., 2008) and antihypertensive (Nishibe et al., 1982). However, the acaricidal activities of *F. suspense* fruits against *T. putrescentiae*, *D. farinae* and *D. pteronyssimus* have not been reported. In this study, we aimed to look into the potent ability of *F. suspense* oil against storage and pyroglyphid mites.

F. suspense fruits were ground into powder and extracted by the simultaneous steam distillation-extraction method (Boutekeджет et al., 2003). The analysis of *F. suspense* fruit oil was performed using GC-Mass (6890; Agilent Technologies) (5973; Agilent) with a DB-5 (0.25 mm) fused capillary column (30 m×0.25 mm i.d.). The GC injector temperature was 210°C. The initial temperature of the column was 50°C and it was programmed to rise to 201°C at a ramp rate of 1.9°C/min and stay at this temperature for 16 min. The ion source temperature was 231°C and helium gas flow was set at 0.81 mL/min. The GC effluent entered the mass spectra electron ionization (70 eV) chamber. The mass analyzer was set to scan from 49 to 602 amu for 2 s. Volatile constituents were identified by comparison to retention indices, retention times and mass spectra in the Wiley Registry of Mass Spectral Data.

Storage and pyroglyphid mites were sustained on yeast (1:1 by
weight) and fry forage no. 1 (Korea Special Feed Meal Co. Ltd., Korea) in a completely dark area. They were reared in a cage (15×12×6 cm) containing the diet and kept at 74% relative humidity and 25°C. Acaricidal effect against three storage and pyroglyphid mites was evaluated using both fumigant and contact bioassays. Fumigant bioassay was modified and performed following the method described by Yang et al. (2014). Different quantities (40–1 µg/cm²) of F. suspense oil were applied to paper disks (0.8 cm diameter and 0.1 cm thick). Each treated disk was dried in a fume hood for 14 min and then placed in the top of a microtube, which was then sealed using the cap containing the treated disk. The acaricidal effects of F. suspense oil were measured using contact bioassay modified as indicated by Yang et al. (2014). Contact bioassay results showed that the mode of acaricidal action of F. suspense oil was suggested by insect’s skin. Our study is the first to report the acaricidal effects of F. suspense oil against three acaridae and pyroglyphid mites.

Volatile compounds of F. suspense oil were recognized by GC-MS and matched the retention indices and mass spectra of compounds in the literature (Wenlu and Benlian, 2008). As shown in Table 2 and Fig. 1, the composition (%) of the volatile constituents of F. suspense oil was found to be: β-pinene (45.88%), myrtenol (13.86%), (+)-α-pinene (13.09%), (−)-trans-pinocarveol (7.34%), sabine (6.64%), pinocarvone (4.13%), (−)-terpinen-4-ol (2.69%), dipentene (1.02%), (S)-cis-verbenol (0.74%), γ-terpinene (0.60%), (1S)-(−)-verbenone (0.55%), cyrene (0.53%), myrcene (0.45%), α-terpinol (0.44%), α-phellandrene (0.42%), camphene (0.40%), 2,5-cyclooctadien-1-ol (0.36%), α-terpinene (0.31%), eucalyptol (0.30%) and campholene aldehyde (0.27%). The volatile constituents were grouped as alcohols (2,5-cyclooctadien-1-ol, eucalyptol, myrtenol, (−)-trans-pinocarveol, (−)-terpinen-4-ol, α-terpinol and (S)-cis-verbenol), aldehydes (campholene aldehyde), monoterpenes hydrocarbons (camphene, α-cyrene, dipentene, myrcene, (−)-α-pinene, β-pinene, α-phellandrene, sabine, α-terpinene and γ-terpinene) and monoterpenes ketones (pinocarvone and (1S)-(−)-verbenone). Compared with the previous study (Wenlu and Benlian, 2008), the major compounds of F. suspense oil were geraniol, linalool, myrtenol, α-terpinol and α-phellandrene. Some constituents derived from plants are affected by geographic location, harvest time, extraction procedures and extracted parts of herbs (Yang and Lee, 2013).

Current results indicate that F. suspense oil could be useful in the development of plant acaricide against three acaridae and pyroglyphid mites. Further study should be conducted on human health safety of F. suspense oil to increase acaricidal potency and stability.

Table 1 Acaricidal activities of F. suspense oil and a synthetic acaricide against D. farinae, D. pteronyssinus, and T. putrescentiae

Samples	Bioassay	Mite species	LD₅₀	95% CL	RT⁺
F. suspense oil					
Fumigant (µg/cm²)	D. farinae	6.80	6.21-7.39	1.79	
	D. pteronyssinus	9.21	8.60-9.82	1.28	
	T. putrescentiae	10.63	13.41-13.85	0.82	
Contact (µg/cm²)	D. farinae	3.28	2.68-3.88	2.59	
	D. pteronyssinus	4.35	3.84-4.86	1.77	
	T. putrescentiae	8.19	8.64-9.94	0.89	
Benzyl benzoate					
Fumigant (µg/cm²)	D. farinae	12.18	11.15-13.21	1.00	
	D. pteronyssinus	11.75	11.06-12.44	1.00	
	T. putrescentiae	11.13	10.45-11.81	1.00	
Contact (µg/cm²)	D. farinae	8.48	7.99-8.97	1.00	
	D. pteronyssinus	7.72	7.02-8.42	1.00	
	T. putrescentiae	8.31	7.78-8.84	1.00	

*Exposed for 24 h.

+RT, Relative toxicity=LD₅₀ value of benzyl benzoate/LD₅₀ value of each compound.
Table 2: Analysis of various constituents from *F. suspensa* oil identified by GCMS

Peak number	Retention time (min)	Compound	Relative area (%)
1	4.818	α-Phellandrene	0.42
2	4.973	(−)-α-Pinene	13.09
3	5.256	Camphene	0.40
4	5.692	Sabine	6.64
5	5.803	β-Pinene	45.88
6	5.959	Myrcene	0.45
7	6.483	α-Terpine	0.31
8	6.626	α-Cymene	0.53
9	6.715	Dippentene	1.02
10	6.774	Eucalyptol (1,8-cineole)	0.30
11	7.268	γ-Terpine	0.60
12	8.514	Campholenic aldehyde	0.27
13	8.795	(−)-trans-Pino-carveol	7.34
14	8.857	(S)-cis-Verbenol	0.74
15	9.040	2,6-Cyclooctadien-1-ol	0.36
16	9.201	Pinocarveol	4.13
17	9.437	(−)-Terpinen-4-ol	2.69
18	9.650	α-Terpineol	0.44
19	9.781	Myrtenol	13.86
20	9.991	(1S)-(−)-Verbenone	0.55

Acknowledgments
This research was carried out with the support of Cooperative Research Program for Agriculture Science & Technology Development (Project title: Development of integrated pest management techniques using natural products in the grain storage, Project No: PJ01004502), Rural Development Administration, Republic of Korea.

References

Bae JH, Kim HY, and Jang JY (2005) Antimicrobial effect of *Forsythiae fructus* extracts on several food-borne pathogens. *Kor J Food Cookery Sci* 21, 319–25.

Bouteckedjiret C, Bentahar F, Belabbes R, and Bessiere JM (2003) Extraction of rosemary 358 essential oil by steam distillation and hydrodistillation.

Gulati R and Mathar S (1995) Effect of *Eucalyptus* and *Mentha* leaves and *Curcuma* thionones on *Tyrphagus putrescentiae* (Schrank) (Acarina: Acaridae) in wheat. *Exp Appl Acarol* 19, 511–8.

Kang SW, Kim HK, Lee WJ, and Ahn YJ (2006) Toxicity of bisabolangelone from *Ostercicum koreanum* Roots to *Dermatophagoides farinae* and *Dermatophagoides pteronyssinus* (Acaria: Pyroglyphidae). *J Agric Food Chem* 54, 3547–50.

Kim EH, Kim HK, and Ahn YJ (2003) Acaricidal activity of clove bud oil compounds against *Dermatophagoides farinae* and *Dermatophagoides pteronyssinus* (Acaria: Pyroglyphidae). *J Agric Food Chem* 51, 885–9.

Lee HS (2004) Acaricidal activity of constituents identified in *Foeniculum vulgare* fruit oil against *Dermatophagoides spp* (Acaria: Pyroglyphidae). *J Agric Food Chem* 52, 2887–9.

Lim JH, Kim HW, Jeon JH, and Lee HS (2008) Acaricidal constituents isolated from *Sinapis alba* L. seeds and structure-activity relationships. *J Agric Food Chem* 56, 9962–6.

Liu Y, Song S, Xu S, and Fu X (2003) Study on the chemical constituents of the fruits of *Forsythia suspensa* (Thunb.) Vahl. *J Shenyang Pharm Univ* 20, 101–3.

Nishibe S, Okabe K, Tsukamoto H, Baku-shima A, and Hisada S (1982) The structure and antibacterial activity of suspensaside isolated from *Forsythia suspensa*. *Chem Pharm Bull* 30, 4548–53.

Pasay C, Mounsey K, Stevenson G, Davis R, Arlian L, Morgan M et al. (2010) Acaricidal activity of eugenol based compounds against scabies mites. *PLoS ONE* 5, e12079.

Qu H, Zhang Y, Wang Y, Li B, and Sun W (2008) Antioxidant and antibacterial activity of two compounds (forsythiaside and forsythin) isolated from *Forsythia suspensa*. *J Pharm Pharmacol* 60, 261–6.

Rim IS and Jee CH (2006) Acaricidal effects of herb essential oils against *Dermatophagoides farinae* and *D. pteronyssinus* (Acaria: Pyroglyphidae) and qualitative analysis of a herb Mentha pulegium (perrenyrial). *Korean J Parasitol* 44, 133–8.

Saad EZ, Hussien R, Saher F, and Ahmed Z (2006) Acaricidal activities of some essential oils and their monoterpoidenial constituents against house dust mite (*Acaria: Pyroglyphidae*). *J Zhejiang Univ-Sci B* 7, 957–62.

SAS (2004) SAS/STAT User’s Guide version 9; SAS Institute: USA.

Song HY, Yang JY, Suh JW, and Lee HS (2011) Acaricidal activities of apiole and its derivatives from *Petroselinum sativum* seeds against *Dermatophagoides pteronyssinus*, *Dermatophagoides farinae*, and *Tyrphagus putrescentiae*. *J Agric Food Chem* 59, 7759–64.

Wang L, Piao XL, Kim SW, Piao XS, Shen YB, and Lee HS (2008) Effects of *Forsythia suspensa* extract on growth performance, nutrient digestibility, and antioxidiant activities in broiler chickens under high ambient temperature. *Poultry Sci* 87, 1287–94.

Wenlu D and Berlian LV (2008) Research on chemical constituents of

Fig. 1 Analysis of various constituents from *F. suspensa* oil by GCMS.
volatile oil from *Forsythia suspensa* (Thunb) originated in Henan. *J Anhui Agric Sci* **19**, 6.

Wu H, Li J, Zhang F, Li L, Liu Z, and He Z (2012) Essential oil components from *Asarum sieboldii* Miquel are toxic to the house dust mite *Dermatophagoides farinae*. *Parasitol Res* **111**, 1895–9.

Yang JY and Lee HS (2013) Verbenone structural analogues isolated from *Artemisia aucheri* as natural acaricides against *Dermatophagoides* spp. and *Tyrophagus putrescentiae*. *J Agric Food Chem* **61**, 12292–6.

Yang JY, Kim MG, Park JH, Hong ST, and Lee HS (2014) Evaluation of benzaldehyde derivatives from *Morinda officinalis* as anti-mite agents with dual function as acaricide and mite indicator. *Sci Rep* **4**, doi: 10.1038/srep07149.