Anthropomorphic manipulator master-slave teleoperation using 3D depth sensor and color camera

V I Petrenko, F B Tebueva, M M Gurchinskiy, N Yu Svistunov, A K Nestulya
North-Caucasus Federal University, Stavropol, Russia
E-mail svistunovn4@gmail.com

Abstract. The article proposes a method for anthropomorphic manipulator teleoperation based on data processing using depth and color cameras of the Kinect controller. Processing data with Kinect allows to determine the coordinates of the nodal points of the operator’s body, which, after recalculation, can be used to generate control signals for the manipulator. The article describes the algorithm and the mathematical apparatus for determining the angles of the operator’s arm joints in real time. The proposed method can be used to control the joints of the manipulator of an anthropomorphic robot, and can also be adapted to control manipulators with a kinematic structure different from the structure of human arm, or to implement other control methods such as gesture control.

Keywords: Anthropomorphic manipulator, master-slave teleoperation, Kinect, depth sensor, joint angles.

1. Introduction
Recently, there has been a great interest in the topic of replacing a person when carrying out work in dangerous environments, emergency situations, and heavy routine work in industry. According to International Federation of Robotics, one of the directions in this field is the teleoperation of an anthropomorphic robot (AR) [1]. The teleoperation is based on the simultaneous motion trajectories formation for all degrees of freedom of AR manipulators using some kind of motion capturing device, e.g. an exoskeleton [2]. The use of AR teleoperation in undetermined and extreme environments is relevant because the human natural intelligence as a system for analyzing working conditions and decision-making still cannot be replaced with the artificial intelligence.

In addition to the growing demand for industrial robots in general [3], one of the trends in the development of robotics is the use of the motion tracking systems based on the depth sensors to capture operator’s movements. The aim of the work is to increase the convenience of the AR teleoperation through using motion capturing techniques. We develop an anthropomorphic manipulator teleoperation method using the Kinect controller to determine the coordinates of the operator’s body nodal points. The calculations of the kinematics are based on the methods described in [4], [5].

The study [6] examined the use of sensory information for automation systems. The capabilities and applications of motion capture technologies in robotics are described in the review [7], including control systems based on depth and color cameras, which are used in agriculture for harvesting [8], in medicine [9] for rehabilitation, and in interactive control systems based on gestures [10], [11].

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
In [12], the Microsoft Kinect depth sensor is used to capture human movements: walking and turning. Unlike bulky motion capture suits, the sensor makes the system more convenient for the operator. Data on the position of the skeleton joints is extracted from Kinect and then processed to determine the joints angles of the robot.

2. Materials and methods

The Kinect controller (Figure 1), originally developed by Microsoft for the Xbox 360 game consoles family, is equipped with an RGB video camera, as well as an infrared emitter and receiver, which allow building a depth map and tracking object coordinates in three-dimensional space with a frequency of 30 Hz.

![Figure 1. Sensors and coordinate system of the Kinect controller](image)

Kinect software development kit allows to obtain the coordinates of the main nodal points of human body in real time (Figure 2). The coordinates of the right shoulder (8), left shoulder (4), as well as the elbow (5) and the wrist (6) of the operator’s left arm are used to organize the teleoperation of the anthropomorphic manipulator.

Anthropomorphic manipulator teleoperation with Kinect involves the following steps:
1. Acquiring the coordinates of the shoulder, elbow and wrist of the operator.
2. Transition to the coordinate system associated with the shoulder of the left arm.
3. Operator’s arm joints angles calculation.
4. Command formation for the manipulator.

The kinematic scheme of the operator’s arm and the anthropomorphic manipulator is shown in Figure 3, where $B_1 - B_3$ are the humeral, ulnar, and wrist points; A_i is the wrist center point; $A_1 - A_7$ – rotational kinematic pairs. The coordinate system $A_1x_0y_0z_0$ is considered as global. The location of the coordinate systems associated with the links is selected in accordance with the Denavit-Hartenberg (DH) representation, the DH parameters are listed in Table 1. L_1 and L_2 are lengths of B_1B_2 and B_2B_3 links respectively.

We use the following notation: $^{i}T_{j}$ is homogeneous transformation matrix from the j-th to the i-th coordinate system, $i < j$, compiled in accordance with the DH representation;

$$^{i}T_{j} = \prod_{k=i+1}^{j-1}A_k, i < j$$

$$^{i-1}A_i = T_{z,\theta}(\theta_i)T_{x,a}(a_i)T_{x,a}(a_i),$$

$$T_{x,\theta}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
\[T_{zd}(d) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \]

\[T_{xa}(\alpha) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} , \]

\[T_{xa}(\alpha) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} , \]

where A_l is the homogeneous matrix of the complex transformation for adjacent coordinate systems; $T_{z\theta}(\theta)$ is homogeneous matrix of elementary rotation about the z axis by the angle θ; $T_{zd}(d)$ is homogeneous matrix of elementary shift along the z axis by the distance d; $T_{xa}(\alpha)$ is homogeneous matrix of elementary shift along the x axis by the distance a; $T_{xa}(\alpha)$ is homogeneous matrix of elementary rotation about the x axis by the angle α.

T_l is the matrix of transformation from the l-th coordinate system into the global coordinate system. This matrix can be found by the following formula:

\[T_l = A_l T_{i-1}, i > 0. \]

In the text the first, the second and the third components of a certain vector V are denoted as V_x, V_y, V_z, respectively.

Table 1. DH parameters of the manipulator and operator’s arm

Link	θ_i, degrees	d_i, cm	a_i, cm	α_i, degrees	Range of θ_i, degrees
1	0	0	0	-90	-180…90
2	-90	0	0	90	-90…90
3	90	L_1	0	90	0…180
4	90	0	0	90	20…180
5	90	L_2	0	90	0…180

Figure 2. Skeleton joint points captured by the Kinect controller.
3. Operator’s arm joint angles calculation

The radius vectors of points B_1, B_2, and B_3 in the coordinate system of the Kinect controller are denoted as B_1'', B_2'', B_3'' respectively, and the radius vector of the right shoulder is denoted as B_0''. It is assumed that the operator is facing the Kinect. In this case, the vector connecting the right and left shoulders may not be parallel to the x axis of the Kinect coordinate system (but it should be parallel to the xz plane). Therefore, to go to the global coordinate system $A_1x_0y_0z_0$, it is necessary to subtract the vector B_1'' from B_2'' and B_3'', and rotate the resulting vectors around the y axis by the angle opposite to the angle ϕ between the projection of the vector B_1'' to the xz plane and the positive direction of the x axis:

$$\phi = -\text{atan2}(B_0''_x - B_1''_x, B_0''_z - B_1''_z),$$

(8)

where $\text{atan2}(a,b)$ is the function that returns the angle between the radius vector of a point (a,b) and the positive direction of the abscissa axis, while the angle is counted in the direction from the abscissa axis to the ordinate axis and has a value in range from -180° to 180°.

The rotation matrix about the y axis by the angle α is

$$M_y(\alpha) = \begin{pmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{pmatrix}. $$

(9)

The transformed radius vectors B_1' and B_2' are denoted by $B_1^'$ and $B_2^'$, respectively:

$$B_1' = M_y(-\phi)(B_1'' - B_1''),$$

(10)

$$B_2' = M_y(-\phi)(B_2'' - B_1'').$$

(11)

The relative orientation of the Kinect coordinate system and the global coordinate system $A_1x_0y_0z_0$ after performing the offset and rotation transformations is shown in Figure 4. Thus, the homogeneous coordinates B_1^0, B_2^0, B_3^0 of the radius vectors of points B_1, B_2 and B_3 in the global (zero) coordinate system are

$$B_1^0 = (0 \ 0 \ 0 \ 1)^T,$$

(12)

$$B_2^0 = (B_2''_y \ -B_2''_x \ -B_2''_z \ 1)^T,$$

(13)

$$B_3^0 = (B_3''_y \ -B_3''_x \ -B_3''_z \ 1)^T.$$

(14)
The angle θ_1 is calculated by the formula

$$\theta_1 = \arctan \left(\frac{B_{2y}^0}{B_{2x}^0} \right) - 180^\circ. \quad (15)$$

With known angle θ_1, the transition to the coordinate system associated with the first joint can be performed:

$$B_2^1 = (T_1)^{-1}B_2. \quad (16)$$

The angle θ_2 is the angle between the positive directions of the axes x_1 and x_2 and can be found from the coordinates of the radius vector B_2^1:

$$\theta_2 = \arctan \left(\frac{B_{2y}^1}{B_{2x}^1} \right) + 90^\circ. \quad (17)$$

The vector B_2B_3 in the coordinate system associated with the second link is denoted as $B_2^3B_3^3$ and can be found according to formula

$$B_2^3B_3^3 = (T_2)^{-1}(B_3^0 - B_2^0). \quad (18)$$

The angle θ_3 can be calculated as the angle between the projection of the vector $B_2^3B_3^3$ onto the x_2y_2 plane and the positive direction of x_2 axis:

$$\theta_3 = \arctan \left(\frac{(B_2^3B_3^3)_x}{(B_2^3B_3^3)_y} \right). \quad (19)$$

The value of θ_4 is the angle between vectors B_2B_3 and B_2B_1:

$$\theta_4 = \arccos \left(\frac{(B_2^0 - B_3^0) \cdot (B_2^0 - B_1^0)}{|B_2^0 - B_3^0| |B_2^0 - B_1^0|} \right). \quad (20)$$

When calculating the angles θ_1, θ_2, θ_3 using formulas (15)–(19), the angle θ_3 can be outside the range $[0; 180^\circ]$. This is due to the fact the angles θ_1 and θ_2 may be found based on B_2 coordinates in more than one way. An invalid value of θ_3 indicates that the wrong solution was chosen. In this case, the values of θ_1, θ_2 and θ_3 should be adjusted as follows:

$$\theta_1^* = \begin{cases}
\theta_1 & \text{if } \theta_3 > 0, \\
\theta_1 + 180^\circ & \text{otherwise};
\end{cases} \quad (21)$$

$$\theta_2^* = \begin{cases}
\theta_2 & \text{if } \theta_3 > 0, \\
-\theta_2 & \text{otherwise};
\end{cases} \quad (22)$$

$$\theta_3^* = \begin{cases}
\theta_3 & \text{if } \theta_3 > 0, \\
\theta_3 + 180^\circ & \text{otherwise},
\end{cases} \quad (23)$$

where θ_1^*, θ_2^*, θ_3^* are corrected values of the angles θ_1, θ_2, θ_3.

After performing these calculations, a command for the manipulator is generated. It contains vector θ of the joints angles:

$$\theta = \{\theta_1^*, \theta_2^*, \theta_3^*, \theta_4\}. \quad (24)$$

Next, the calculation process is repeated for newly incoming input datasets from the Kinect controller.

Figure 4. Kinect coordinate system relation to the global coordinate system

[Diagram of the coordinate systems and angles.]
4. Discussion
The proposed method for determining the angles of the operator’s arm joints using the Kinect controller allows to perform real-time anthropomorphic manipulator teleoperation. However, this method does not involve control of the end effector of the manipulator due to the difficulty of achieving acceptable accuracy. This problem can be solved through the use of haptic gloves.

When the elbow angle value θ_4 is close to 180°, the accuracy of determining the angle θ_3 can be reduced significantly, since the length of the vector $\overrightarrow{B_2B_3}$ projection onto the plane x_2y_2 becomes close to zero. In this case, the angle θ_3 can be considered equal to the default value from Table 1, or fixed at a value calculated before the angle θ_4 crossed the threshold (for example, 165°). Also in this case θ_3 can be forecasted [13].

The depth and RGB cameras may be applied as an additional mean to the exoskeleton-based teleoperation systems [14] and during the human-robot cooperation in uncertain working environment [15-16].

5. Conclusion
In this paper the method for determining the joints angles of the operator’s arm in real time using the Kinect controller was proposed. The method can be used to implement anthropomorphic manipulators teleoperation. It does not require expensive wearable equipment and makes the teleoperation more convenient for the operator. Also, it can be modified to control manipulators with a kinematic structure different from the structure of human arms, and to develop other control methods based on motion capture (e.g. using gestures).

References
[1] I. M. Kutlubaev, I. G. Zhydenko, and A. A. Bogdanov, “Basic concepts of power anthropomorphic grippers construction and calculation,” in 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2016 - Proceedings, 2016, doi: 10.1109/ICIEAM.2016.7910963.
[2] A. A. Bogdanov, A. F. Permyakov, and I. M. Kutlubaev, “Basic Principles of an Exoskeleton Construction for an Anthropomorphic Manipulator Control,” in 2019 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2019, 2019, doi: 10.1109/FarEastCon.2019.8934739.
[3] “Executive Summary World Robotics 2019 Industrial Robots.” [Online]. Available: https://ifr.org/downloads/press2018/Executive Summary WR 2019 Industrial Robots.pdf. [Accessed: 19-Mar-2020].
[4] V. I. Petrenko, F. B. Tebueva, M. M. Gyrchinsky, V. O. Antonov, and J. A. Shutova, “The method of forming a geometric solution of the inverse kinematics problem for chains with kinematic pairs of rotational type only,” in IOP Conference Series: Materials Science and Engineering, 2018, vol. 450, no. 4, doi: 10.1088/1757-899X/450/4/042016.
[5] V. I. Petrenko, S. S. Ryabtsev, F. B. Tebyeva, V. O. Antonov, and A. S. Pavlov, “Determination of the spatial position and orientation of the links of the robot anthropomorphic grip by the solution of the direct and inverse kinematics problem,” in CEUR Workshop Proceedings, 2018, vol. 2254, pp. 94–104.
[6] M. Pongratz and K. Mironov, “Accuracy of positioning spherical objects with a stereo camera system,” in Proceedings of the IEEE International Conference on Industrial Technology, 2015, vol. 2015-June, no. June, pp. 1608–1612, doi: 10.1109/ICIT.2015.7125326.
[7] “Top 10 Robotic Kinect Hacks - IEEE Spectrum.” [Online]. Available: https://spectrum.ieee.org/automaton/robotics/diy/top-10-robotic-kinect-hacks. [Accessed: 19-Mar-2020].
[8] R. K. Megalingam, G. V. Vivek, S. Bandyopadhyay, and M. J. Rahi, “Robotic arm design, development and control for agriculture applications,” in 2017 4th International Conference on
Advanced Computing and Communication Systems, ICACCS 2017, 2017, doi: 10.1109/ICACCS.2017.8014623.

[9] Y. Bouteraa, I. Ben Abdallah, and A. M. Elmogy, “Training of Hand Rehabilitation Using Low Cost Exoskeleton and Vision-Based Game Interface,” J. Intell. Robot. Syst. Theory Appl., vol. 96, no. 1, pp. 31–47, Oct. 2019, doi: 10.1007/s10846-018-0966-6.

[10] I. Ben Abdallah, Y. Bouteraa, and C. Rekik, “Kinect-Based Sliding Mode Control for Lynxmotion Robotic Arm,” Adv. Human-Computer Interact., vol. 2016, 2016, doi: 10.1155/2016/7921295.

[11] S. Shirwalkar, A. Singh, K. Sharma, and N. Singh, “Telemanipulation of an industrial robotic arm using gesture recognition with Kinect,” in CARE 2013 - 2013 IEEE International Conference on Control, Automation, Robotics and Embedded Systems, Proceedings, 2013, doi: 10.1109/CARE.2013.6733747.

[12] A. Sripada et al., “Teleoperation of a Humanoid Robot with Motion Imitation and Legged Locomotion,” in ICARM 2018 – 2018 3rd International Conference on Advanced Robotics and Mechatronics, 2019, pp. 375–379, doi: 10.1109/ICARM.2018.8610719.

[13] V. I. Petrenko, F. B. Tebueva, M. M. Gurchinsky, V. O. Antonov, and A. S. Pavlov, “Predictive assessment of operator’s hand trajectory with the copying type of control for solution of the inverse dynamic problem,” SPIIRAS Proc., vol. 18, no. 1, pp. 123–147, 2019, doi: 10.15622/sp.18.1.123-147.

[14] A. A. Bogdanov, A. F. Permyakov and I. M. Kultubaev, "Basic Principles of an Exoskeleton Construction for an Anthropomorphic Manipulator Control," 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russia, 2019, pp. 1-4. doi: 10.1109/FarEastCon.2019.8934739

[15] Emanuele Magrini, Federica Ferraguti, Andrea Jacopo Ronga, Fabio Pini, Alessandro De Luca, Francesco Leali, Human-robot coexistence and interaction in open industrial cells, Robotics and Computer-Integrated Manufacturing, Volume 61, 2020, 101846, ISSN 0736-5845, https://doi.org/10.1016/j.rcim.2019.101846.

[16] E. Magrini and A. De Luca, "Human-robot coexistence and contact handling with redundant robots," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, 2017, pp. 4611-4617. doi: 10.1109/IROS.2017.8206331.