Approximation numbers of composition operators on the Hardy space of the infinite polydisk

Daniel Li, Hervé Queffélec, L. Rodríguez-Piazza

March 14, 2017

Abstract. We study the composition operators of the Hardy space on \(D^\infty \cap \ell_1 \), the \(\ell_1 \) part of the infinite polydisk, and the behavior of their approximation numbers.

1 Introduction

Recently, in [2], we investigated approximation numbers \(a_n(C_\varphi), n \geq 1 \), of composition operators \(C_\varphi \), \(C_\varphi(f) = f \circ \varphi \), on the Hardy or Bergman spaces \(H^2(\Omega), B^2(\Omega) \) over a bounded symmetric domain \(\Omega \subseteq \mathbb{C}^d \). Assuming that \(\varphi(\Omega) \) has non-empty interior, one of the main results of this study was the following theorem.

Theorem 1.1 ([2]). Let \(C_\varphi : H^2(\Omega) \to H^2(\Omega) \) be compact. Then:

1) we always have \(a_n(C_\varphi) \geq ce^{-C n^{1/d}} \) where \(c, C \) are positive constants;
2) if \(\Omega \) is a product of balls and if \(\varphi(\Omega) \subseteq r \Omega \) for some \(r < 1 \), then:

\[
a_n(C_\varphi) \leq Ce^{-c n^{1/d}}.
\]

As a result, the minimal decay of approximation numbers is slower and slower as the dimension \(d \) increases, which might lead one to think that, in infinite-dimension, no compact composition operators can exist, since their approximation numbers will not tend to 0. After all, this is the case for the Hardy space of a half-plane, which supports no compact composition operator ([12], Theorem 3.1; in [9], it is moreover proved that \(\|C_\varphi\|_e = \|C_\varphi\| \) as soon as \(C_\varphi \) is bounded; see also [15] for a necessary and sufficient condition for \(H^2(\Omega) \) has compact composition operators, where \(\Omega \) is a domain of \(\mathbb{C} \)). We will see that this is not quite the case here, even though the decay will be severely limited. In particular, we will never have a decay of the form \(Ce^{-c n^{\delta}} \) for some \(c, C, \delta > 0 \).
2 Framework and reminders

2.1 Hardy spaces on \mathbb{D}^∞

Let $\mathbb{T} = \partial \mathbb{D}$ be the unit circle of the set of complex numbers. We consider \mathbb{T}^∞ and equip it with its Haar measure m. This is a compact Abelian group with dual $\mathbb{Z}^{(\infty)}$, the set of eventually zero sequences $\alpha = (\alpha_j)_{j \geq 1}$ of integers. We denote $L^2_{\mathbb{N}^{(\infty)}}(\mathbb{T}^\infty)$ the Hilbert subspace of $L^2(\mathbb{T}^\infty)$ formed by the functions f whose Fourier spectrum is contained in $\mathbb{N}^{(\infty)}$:

$$\hat{f}(\alpha) := \int_{\mathbb{T}^\infty} f(z) z^\alpha \, dm(z) = 0 \quad \text{if} \ \alpha \notin \mathbb{N}^{(\infty)}.$$

The set $E := \mathbb{N}^{(\infty)}$ is called the narrow cone of Helson, and we also denote $L^2_{\mathbb{N}^{(\infty)}}(\mathbb{T}^\infty) = L^2_{E}(\mathbb{T}^\infty)$. Any element of that subspace can be formally written as:

$$f = \sum_{\alpha \geq 0} c_\alpha e_\alpha \quad \text{with} \quad c_\alpha = \hat{f}(\alpha) \quad \text{and} \quad \sum_{\alpha \geq 0} |c_\alpha|^2 < \infty.$$

Here, $(e_\alpha)_{\alpha \in \mathbb{N}^{(\infty)}}$ is the canonical basis of $L^2(\mathbb{T}^\infty)$ formed by characters, and accordingly $(e_\alpha)_{\alpha \in \mathbb{N}^{(\infty)}}$ is the canonical basis of $L^2_{E}(\mathbb{T}^\infty)$.

Now we consider $\Omega_2 = \mathbb{D}^\infty \cap \ell_2$.

Any $f \sim \sum_{\alpha \geq 0} c_\alpha e_\alpha \in L^2_{E}(\mathbb{T}^\infty)$ defines an analytic function on the infinite-dimensional Reinhardt domain Ω_2 by the formula:

$$(2.1) \quad f(z) = \sum_{\alpha \geq 0} c_\alpha z^\alpha$$

where the series is absolutely convergent for each $z = (z_j)_{j \geq 1} \in \Omega_2$, as the pointwise product of two square-summable sequences. Indeed, using an Euler type formula, we get for $z \in \Omega_2$:

$$\sum_{\alpha \geq 0} |z^\alpha|^2 = \prod_{j=1}^{\infty} (1 - |z_j|^2)^{-1} < \infty ,$$

and hence, by the Cauchy-Schwarz inequality:

$$\sum_{\alpha \geq 0} |c_\alpha z^\alpha| \leq \left(\sum_{\alpha \geq 0} |c_\alpha|^2 \right)^{1/2} \left(\sum_{\alpha \geq 0} |z^\alpha|^2 \right)^{1/2} < \infty .$$

If $\alpha \in E$ and $z \in \Omega_2$, we have set, as usual, $z^\alpha = \prod_{j \geq 1} z_j^{\alpha_j}$.

This shows that $L^2_{E}(\mathbb{T}^\infty)$ can be identified with $H^2(\Omega_2)$, the Hardy-Hilbert space of analytic functions $f(z) = \sum_{\alpha \geq 0} c_\alpha z^\alpha$ on Ω_2 with

$$\|f\|^2 := \sum_{\alpha \geq 0} |c_\alpha|^2 < \infty.$$
This setting is customary in connection with Dirichlet series (see [7]).

In this paper, for a technical reason appearing below in the proof of Proposition 2.5, we will consider, instead of \(\Omega_2 = D_\infty \cap \ell_2 \), the sub-domain:

\[
\Omega = D_\infty \cap \ell_1,
\]
i.e. the open subset of \(\ell_1 \) formed by the sequences:

\[
z = (z_n)_{n \geq 1} \quad \text{such that} \quad |z_n| < 1, \forall n \geq 1,
\]
and the restrictions to \(\Omega \) of the functions \(f \in H^2(\Omega_2) \). We denote \(H^2(\Omega) \) the space of such restrictions.

Hence \(f \in H^2(\Omega) \) if and only if:

\[
f(z) = \sum_{\alpha \geq 0} c_\alpha z^\alpha \quad \text{with} \ z \in \Omega,
\]
and \(\|f\|^2 := \sum_{\alpha \geq 0} |c_\alpha|^2 < \infty \).

We now identify the space \(L^2_\mathbb{E}(T^\infty) \) with the space \(H^2(\Omega) \).

We more generally define Hardy spaces \(H^p(\Omega) \), for \(1 \leq p < \infty \), in the usual way:

\[
H^p = H^p(\Omega) = \{ f : \Omega \to \mathbb{C} ; \|f\|_p < \infty \},
\]
where \(f \) is analytic in \(\Omega \) and \(\|f\|_p = \sup_{0 < r < 1} M_p(r,f) = \lim_{r \to 1} M_p(r,f) \) with:

\[
M_p(r,f) = \left(\int_{T^\infty} |f(rz)|^p \, dm(z) \right)^{1/p}, \quad 0 < r < 1.
\]

We have \(\|f\| = \|f\|_2 \). Moreover, \(H^q \) contractively embeds into \(H^p \) for \(p < q \).

2.2 Singular numbers

We begin with a reminder of operator-theoretic facts. We recall that the approximation numbers \(a_n(T) = a_n \) of an operator \(T : H \to H \) (with \(H \) a Hilbert space) are defined by:

\[
a_n = \inf_{\text{rank } R \leq n} \|T - R\|.
\]

According to a 1957’s result of Allahverdiev (see [3], page 155), we have \(a_n = s_n \), the \(n \)-th singular number of \(T \). We also recall a basic result due to H. Weyl and one obvious consequence:

Theorem 2.1. Let \(T : H \to H \) be a compact operator with eigenvalues \((\lambda_n) \) rearranged in decreasing order and singular numbers \((a_n) \). Then:

\[
\prod_{j=1}^n |\lambda_j| \leq \prod_{j=1}^n a_j \quad \text{for all } n \geq 1.
\]

As a consequence:

\[
|\lambda_{2n}|^2 \leq a_1 a_{2n}.
\]
2.3 Spectra of projective tensor products

The following operator-theoretic result will play a basic role in the sequel. Let \(E_1, \ldots, E_n \) be Banach spaces and let \(E = \bigotimes_{i=1}^n E_i \) their projective tensor product (the only tensor product we shall use). If \(T_i \in \mathcal{L}(E_i) \), we define as usual their projective tensor product \(T = \bigotimes_{i=1}^n T_i \in \mathcal{L}(E) \) by its action on the atoms of \(E \), namely:

\[
T(\bigotimes_{i=1}^n x_i) = \bigotimes_{i=1}^n T_i(x_i).
\]

Denote in general \(\sigma(x) \) the spectrum of \(x \in A \) where \(A \) is a unital Banach algebra. We recall ([13], chap.11, Theorem 11.23) the following result.

Lemma 2.2. Let \(A \) be a unital Banach algebra, and \(x_1, \ldots, x_n \) be pairwise commuting elements of \(A \). Then:

\[
\sigma(x_1 \cdots x_n) \subseteq \prod_{i=1}^n \sigma(x_i).
\]

Here, \(\prod_{i=1}^n \sigma(x_i) \) is the product in the Minkowski sense, namely:

\[
\prod_{i=1}^n \sigma(x_i) = \left\{ \prod_{i=1}^n \lambda_i : \lambda_i \in \sigma(x_i) \right\}.
\]

As a consequence, we then have the following lemma due to Schechter, which we prove under a weakened form, sufficient here, and which is indeed already in [1] (we just add a few details because this is a central point in our estimates).

Lemma 2.3. Let \(F \) be a Banach space, \(T_1, \ldots, T_n \in \mathcal{L}(F) \) and \(T = \bigotimes_{i=1}^n T_i \). Then \(\sigma(T) \subseteq \prod_{i=1}^n \sigma(T_i) \).

Proof. To save notation, we assume \(n = 2 \). Let \(x_1 = T_1 \otimes I_2 \) and \(x_2 = I_1 \otimes T_2 \) where \(I_i \) is the identity of \(E_i \). Clearly,

\[
x_1 x_2 = x_2 x_1 = T_1 \otimes T_2 = T \quad \text{and} \quad \sigma(x_i) = \sigma(T_i)
\]

where the spectrum of \(x_i \) is in the Banach algebra \(\mathcal{L}(E) \) and that of \(T_i \) in \(\mathcal{L}(E_i) \). Lemma 2.2 now gives:

\[
\sigma(T) = \sigma(x_1 x_2) \subseteq \sigma(x_1) \sigma(x_2) = \sigma(T_1) \sigma(T_2),
\]

hence the result. \(\square \)

2.4 Schur maps and composition operators

We now pass to some general facts on composition operators \(C_\varphi \), defined by \(C_\varphi(f) = f \circ \varphi \), associated with a Schur map, namely a non-constant analytic self-map \(\varphi \) of \(\Omega \). We say that \(\varphi \) is a symbol for \(H^2(\Omega) \) if \(C_\varphi \) is a bounded linear operator from \(H^2(\Omega) \) into itself.

The differential \(\varphi'(a) \) of \(\varphi \) at some point \(a \in \Omega \) is a bounded linear map \(\varphi'(a) : \ell^1 \to \ell^1 \).
Definition 2.4. The symbol φ is said to be truly infinite-dimensional if the differential $\varphi'(a)$ is an injective linear map from ℓ^1 into itself for at least one point $a \in \Omega$.

In finite dimension, this amounts to saying that $\varphi(\Omega)$ has non-void interior.

We have the following general result.

Proposition 2.5. Let $(\varphi_j)_{j \geq 1}$ be a sequence of analytic self-maps of \mathbb{D} such that $\sum_{j \geq 1} |\varphi_j(0)| < \infty$. Then, the mapping $\varphi: \Omega \to \mathbb{C}^\infty$ defined by the formula $\varphi(z) = (\varphi_j(z_j))_{j \geq 1}$ maps Ω to itself and is a symbol for $H^2(\Omega)$.

Proof. First, the Schwarz inequality:

$$|\varphi_j(z_j) - \varphi_j(0)| \leq 2|z_j|$$

shows that $\varphi(z) \in \Omega$ when $z \in \Omega$. To see that φ is moreover a symbol for $H^2(\Omega)$, we use the fact ([8]) that:

(2.2) $\|C_{\varphi_j}\| \leq \sqrt{\frac{1+|\varphi_j(0)|}{1-|\varphi_j(0)|}}$.

Now, by the separation of variables and Fubini’s theorem, we easily get:

(2.3) $\|C_{\varphi}\| \leq \prod_{j \geq 1} \|C_{\varphi_j}\| < \infty$.

As $\sum_{j \geq 1} |\varphi_j(0)| < \infty$, by hypothesis, the infinite product

$$\prod_{j \geq 1} \sqrt{\frac{1+|\varphi_j(0)|}{1-|\varphi_j(0)|}}$$

converges and, in view of (2.2) and (2.3), C_{φ} is bounded.

We also have the following useful fact.

Lemma 2.6. The automorphisms of Ω act transitively on Ω and define bounded composition operators on $H^2(\Omega)$.

Proof. Let $a = (a_j)_{j \in \mathbb{N}} \in \Omega$ and let $\Psi_a: \Omega \to \mathbb{C}^\infty$ be defined by:

$$\Psi_a(z) = (\Phi_{a_j}(z_j))_{j \geq 1}$$

where in general $\Phi_a: \mathbb{D} \to \mathbb{D}$ is defined by $\Phi_a(z) = (z - a)/(1 - az)$. The Schwarz lemma gives $|\Phi_{a_j}(z_j) + a_j| \leq 2|z_j|$, and shows that Ψ_a maps Ω to itself. Clearly, Ψ_a is an automorphism of Ω with inverse Ψ_{-a} and $\Psi_a(a) = 0$. The fact that the composition operator C_{Ψ_a} is bounded on $H^2(\Omega)$ is a consequence of Proposition 2.5.
3 Spectrum of compact composition operators

We begin with the following definition, following [10].

Definition 3.1. Let $\varphi : \Omega \to \Omega$ be a truly infinite-dimensional symbol. We say that φ is compact if $\varphi(\Omega)$ is a compact subset of Ω.

We then have the following result.

Lemma 3.2. If $\varphi : \Omega \to \Omega$ is a compact mapping, then:

1) $C_\varphi : H^2(\Omega) \to H^2(\Omega)$ is bounded and moreover compact.

2) If $a \in \Omega$ a fixed point of φ, $\varphi'(a) \in \mathcal{L}(\ell^1)$ is a compact operator.

Proof. 1) follows from a H. Schwarz type criterion via an Ascoli-Montel type theorem: every sequence (f_n) of $H^2(\Omega)$ bounded in norm contains a subsequence which converges uniformly on compact subsets of Ω. Indeed, we have the following ([4], chap. 17, p. 274): if A is a locally bounded set of holomorphic functions on Ω, then A is locally equi-Lipschitz, namely every point $a \in \Omega$ has a neighbourhood $U \subset \Omega$ such that:

$$z, w \in U \quad \text{and} \quad f \in A \implies |f(z) - f(w)| \leq C_{A,U} \|z - w\|. $$

The Ascoli-Montel theorem easily follows from this. Then, if $f_n \in H^2(\Omega)$ converges weakly to 0, it converges uniformly to 0 on compact subsets of Ω; in particular on $\varphi(\Omega)$. This means that $\|C_\varphi(f_n)\|_\infty = \|f_n \circ \varphi\|_\infty \to 0$, implying $\|f_n \circ \varphi\|_2 \to 0$ and the compactness of C_φ.

Actually, C_φ is compact on every Hardy space $H^p(\Omega)$, $1 \leq p \leq \infty$. This observation will be useful later on.

For 2), we may indeed dispense ourselves with the invariance of a, and force $a = 0$ to be a fixed point of φ. Indeed, we can replace φ by $\psi = \Psi_b \circ \varphi \circ \Psi_a$ where $b = \varphi(a)$ is arbitrary, and use Lemma 2.6 as well as the ideal property of compact linear operators. We set $A = \varphi'(0)$. Expanding each coordinate φ_j of φ in a series of homogeneous polynomials, we may write (since $\varphi(0) = 0$):

$$\varphi(z) = \sum_{|\alpha| = 1} c_\alpha z^\alpha + \sum_{s=2}^{\infty} \left(\sum_{|\alpha| = s} c_\alpha z^\alpha \right) = A(z) + \sum_{s=2}^{\infty} \left(\sum_{|\alpha| = s} c_\alpha z^\alpha \right),$$

where $c_\alpha = (c_{\alpha,j})_{j \geq 1} \in \mathbb{C}^\infty$. We clearly have (looking at the Fourier series of $\varphi(z e^{i\theta})$):

$$\|z\|_1 < 1 \implies z \in \Omega \implies A(z) = \frac{1}{2\pi} \int_0^{2\pi} \varphi(z e^{i\theta}) e^{-i\theta} d\theta.$$

Since φ is compact, this clearly implies, with B the open unit ball of ℓ^1, that $A(B)$ is totally bounded, proving the compactness of A. \square

The following extension of results of [11], then [1] and [6], which themselves extend a theorem of G. Königs ([14], p. 93) will play an essential role for lower bounds of approximation numbers.
Theorem 3.3. Let \(\varphi : \Omega \to \Omega \) be a compact symbol. Assume there is an \(a \in \Omega \) such that \(\varphi(a) = a \) and that \(\varphi'(a) \in \mathcal{L}(\ell^1) \) is injective. Then, the spectrum of \(C_{\varphi} : H^2(\Omega) \to H^2(\Omega) \) is exactly formed by the numbers \(\lambda^\alpha, \alpha \in \mathbb{N}^{(\infty)}, \) and 0, 1, where \((\lambda_j)_{j \geq 1} \) denote the eigenvalues of \(A := \varphi'(a) \) and:

\[
\lambda^\alpha = \prod_{j \geq 1} \lambda_j^{\alpha_j} \quad \text{if} \quad \alpha = (\alpha_j)_{j \geq 1} \in \mathbb{N}^{(\infty)}.
\]

Proof. This is proved in [1] for the unit ball \(B_E \) of an arbitrary Banach space \(E \) and for the space \(H^{\infty}(B_E) \), in four steps which are the following:

1. If \(\varphi(B_E) \) lies strictly inside \(B_E \) (namely if \(\varphi(B_E) \subseteq r B_E \) for some \(r < 1 \)), in particular when \(\varphi \) is compact, \(\varphi \) has a unique fixed point \(a \in B_E \), according to a theorem of Earle and Hamilton.

2. The spectrum of \(C_{\varphi} \) contains the numbers \(\lambda \) where \(\lambda \) is an eigenvalue of \(\varphi'(a) \) or \(\lambda = 0, 1 \).

3. It is then proved that the spectrum of \(C_{\varphi} \) contains the numbers \(\lambda^\alpha \) and 0, 1.

4. It is finally proved that spectrum of \(C_{\varphi} \) is contained in the numbers \(\lambda^\alpha \) and 0, 1.

Here, handling with the domain \(\Omega \), we see that:

1. True or not for \(\Omega \), the Earle-Hamilton theorem is not needed since we will force, by a change of the compact symbol \(\varphi \) in another compact symbol \(\psi = \Psi_b \circ \varphi \circ \Psi_a \), the point 0 to be a fixed point. Moreover \(A = \psi'(0) \) is injective if \(\varphi'(a) \) is, since \(\Psi_b \) and \(\Psi'_a \) are invertible.

2. The second step (non-surjectivity) is valid for any domain and for \(H^2(\Omega) \), or \(H^p(\Omega) \), in exactly the same way.

3. The third step consists of proving \(\{ \lambda^\alpha \} \subseteq \sigma(C_{\varphi}) \).

For that purpose, assume that \(\lambda^\alpha = \prod_{i=1}^m \lambda_i \neq 0 \) with \(\lambda_i \) an eigenvalue of \(\varphi'(0) \) and with repetitions allowed. As we already mentioned, under the assumption of compactness of \(\varphi \), \(C_{\varphi} \) is compact on \(H^p(\Omega) \) as well, for any \(p \geq 1 \). We take here \(p = 2m \). Step 2 provides us with non-zero functions \(f_i \in H^p(\Omega) \) such that \(f_i \circ \varphi = \lambda_i f_i, \) \(1 \leq i \leq m \), since for the compact operator \(C_{\varphi} : H^p \to H^p, \) non-surjectivity implies non-injectivity. Let \(f = \prod_{1 \leq i \leq m} f_i \). Then, using the integral representation of the norm and the Hölder inequality, we see that \(f \in H^2(\Omega) \), \(f \neq 0 \) and \(f \circ \varphi = \lambda_f f \), proving our claim.

4. The fourth step is valid as well, with a slight simplification: we have to show that, if \(\mu \neq 1 \) is not of the form \(\lambda^\alpha \), then \(C_{\varphi} - \mu I \) is injective. Let \(f \in H^2(\Omega) \) satisfying \(f \circ \varphi = \mu f \) and let:

\[
f(z) = \sum_{m=0}^{\infty} \frac{d^m f(0)}{m!} (z^m)
\]

be the Taylor expansion of \(f \) about \(z = 0 \) (observe that \(\Omega \) is a Reinhardt domain). As usual, \(d^m f(0) := L_m \) is an \(m \)-linear symmetric form on \(F = \ell^1 \) and the notation \(L_m(z, z, \ldots, z) \) means \(L_m(z, z, \ldots, z) \).
Observe that L_m can be isometrically identified with an element (denoted L_m) of $\mathcal{L}(F^\otimes n)$ defined by the formula:

$$L_m(x_1 \otimes \cdots \otimes x_n) = L_m(x_1, \ldots, x_m).$$

We will prove by induction that $L_n = 0$ for each n. For this, we can avoid the appeal to transposes of $[1]$ as follows: if the result holds for L_m with $m < n$, one gets (comparing the terms in z^n in both members of $f \circ \varphi = \mu f$):

$$\mu A = A \circ B \quad \text{where} \quad A = L_m \quad \text{and} \quad B = \varphi'(0)\otimes^n.$$

That is $A(B - \mu I) = 0$ where I is the identity map of $F^\otimes n$. Now, $B - \mu I$ is invertible in $\mathcal{L}(F)$ by Lemma 3.3, so that $A = A(B - \mu I)(B - \mu I)^{-1} = 0$.

The proof is complete.

The following theorem summarizes and exploits the preceding theorem. Possibly, some restrictions can be removed, and we could only assume the compactness of C_φ, not of φ itself. After all, in dimension one, there are symbols φ with $\|\varphi\|_\infty = 1$ for which $C_\varphi : H^2 \to H^2$ is compact.

Theorem 3.4. Let $\varphi : \Omega \to \Omega$ be a truly infinite-dimensional compact mapping of Ω. Then:

1) $C_\varphi : H^2(\Omega) \to H^2(\Omega)$ is bounded and even compact.

2) $A = \varphi'(0)$ is compact.

3) No $\delta > 0$ can exist such that $a_n(C_\varphi) \leq Ce^{-c n^\delta}$ for all $n \geq 1$. More precisely, the numbers a_n satisfy:

$$\sum_{n \geq 1} \frac{1}{\log^p(1/a_n)} = \infty \quad \text{for all} \quad p < \infty.$$

Proof. The proof is based on the previous Theorem 3.3. Without loss of generality, we can assume that $\varphi(0) = 0$ and $\varphi'(0)$ is injective, by using a point a at which $\varphi'(a)$ is injective, and then the fact that automorphisms of Ω act transitively on Ω, act boundedly on $H^2(\Omega)$, and the ideal property of approximation numbers. More precisely, we pass to $\Psi = \Psi_b \circ \varphi \circ \Psi_a$ with $b = \varphi(a)$ and get:

$$\Psi(0) = 0 \quad \text{and} \quad \Psi'(b) = \Psi'_b(b) \varphi'(a) \Psi'_a(0)$$

injective, since $\Psi'_b(b)$ and $\Psi'_a(0)$ are, and Ψ_a and Ψ_b are automorphisms of Ω.

We now have the following simple but crucial lemma.

Lemma 3.5. Whatever the choice of the numbers λ_j with $0 < |\lambda_j| < 1$, denoting by $(\delta_n)_{n \geq 1}$ the non-increasing rearrangement of the numbers λ^n, one has:

$$\sum_{n \geq 1} \frac{1}{\log^p(1/\delta_n)} = \infty \quad \text{for all} \quad p < \infty.$$
Proof of the Lemma. For any positive integer \(p \), we set:

\[q = 2p, \quad \log 1/|\lambda_j| = A_j, \]

and we use that:

\[\sum_{1 \leq j \leq q} \alpha_j A_j \leq \left(\sum_{1 \leq j \leq q} \alpha_j^2 \right)^{\frac{1}{2}} \left(\sum_{1 \leq j \leq q} A_j^2 \right)^{\frac{1}{2}} =: C_q \left(\sum_{1 \leq j \leq q} \alpha_j^2 \right) = C_q \| \alpha \|^2, \]

where \(\| . \| \) stands for the euclidean norm in \(\mathbb{R}^q \). We then get:

\[\sum_{n \geq 1} \frac{1}{\log^p (1/\delta_n)} = \sum_{n \geq 1} \frac{1}{\log^p (1/|\lambda^n|)} \]

\[\geq \sum_{\alpha_j \geq 1, 1 \leq j \leq q} \frac{1}{\log^p (1/|\lambda_1^{\alpha_1} \cdots |\lambda_q^{\alpha_q}|)} \]

\[= \sum_{\alpha_j \geq 1, 1 \leq j \leq q} \frac{1}{(\alpha_1 A_1 + \cdots + \alpha_q A_q)^p} \]

\[\geq C_q^{-p} \sum_{\alpha_j \geq 1, 1 \leq j \leq q} \frac{1}{(\alpha_1^2 + \cdots + \alpha_q^2)^p} \]

\[= C_q^{-p} \sum_{\alpha_j \geq 1, 1 \leq j \leq q} \frac{1}{\| \alpha \|^q} = \infty, \]

because:

\[\int_{x \in \mathbb{R}^q, \| x \| \geq 1} \frac{1}{\| x \|^q} \, dx = c_q \int_1^{\infty} r^{q-1} \frac{1}{r^q} \, dr = \infty. \]

This proves the lemma. \(\square \)

This can be transferred to the approximation numbers \(a_n = a_n(C_\varphi) \) to end the proof of Theorem 3.4. Indeed, we know from Lemma 3.5 that the non-increasing rearrangement \((\delta_n) \) of the eigenvalues \(\lambda^n \) of \(C_\varphi \) satisfies

\[\sum_{n \geq 1} \frac{1}{\log^p (1/\delta_n)} = \infty. \]

Since a divergent series of non-negative and non-increasing numbers \(u_n \) satisfies \(\sum u_{2n} = \infty \), we further see that:

\[\sum_{n \geq 1} \frac{1}{\log^p (1/\delta_{2n})} = \infty \quad \text{for all} \quad p < \infty. \]

Moreover, by Theorem 2.1 we have:

\[(3.4) \quad \left(2 \log 1/\delta_{2n} \right)^p \leq \left(\log 1/(a_1 a_n) \right)^p. \]
Since $1/(\log 1/a_1a_n) \sim 1/(\log 1/a_n)$, Lemma 3.5 then gives the result. This clearly prevents an inequality of the form $a_n \leq Ce^{-c n^\delta}$ for some positive numbers c, C, δ and all $n \geq 1$. Indeed, this would imply:

$$\sum_{n \geq 1} \frac{1}{\log^p(1/a_n)} < \infty \quad \text{for} \quad p > 1/\delta,$$

contradicting (3.3).

Remarks. Let us briefly comment on the assumptions in Theorem 3.4.

1) We do not need the Earle-Hamilton theorem under our assumptions. The Schauder-Tychonoff theorem gives the existence (if not the uniqueness) of a fixed point for φ in Ω (bounded and convex).

2) The Earle-Hamilton theorem is in some sense more general (for analytic maps) since it remains valid when $\varphi(\Omega)$ is only assumed to lie strictly inside Ω, i.e. when $\varphi(\Omega) \subseteq r\Omega$ for some $r < 1$. But this assumption does not ensure the compactness of C_φ as indicated by the simple example $\varphi(z) = rz$, $0 < r < 1$. The coordinate functions $z \mapsto z_n$ converge weakly to 0, while $\|C_\varphi(z_n)\|_{H^2(\Omega)} = r$.

3) The mere assumption that $\text{cl}(\varphi(\Omega))$ is compact is not sufficient either. Just take:

$$\varphi(z) = \left(\frac{1 + z_1}{2}, 0, \ldots, 0, \ldots\right).$$

Since the composition operator C_{φ_1} associated with $\varphi_1(z) = \frac{1 + z}{2}$ is notoriously non-compact on $H^2(\mathbb{D})$, neither is C_φ on $H^2(\Omega)$. Yet, $\varphi(\Omega)$ is obviously compact in l^1.

4 Possible upper bounds

Recall that $\Omega = \mathbb{D}^\infty \cap l^1$.

4.1 A general example

Theorem 4.1. Let $\varphi((z_j)_j) = (\lambda_j z_j)_j$ with $|\lambda_j| < 1$ for all j, so that $\varphi(\Omega) \subseteq \Omega$ and $\varphi'(0)$ is the diagonal operator with eigenvalues λ_j, $j \geq 1$, on the canonical basis of l^1. Let $p > 0$. Then:

$$(\lambda_j)_j \in l^p \implies C_\varphi \in S_p.$$

In particular, there exist truly infinite-dimensional symbols on Ω such that the composition operator $C_\varphi : H^2(\Omega) \to H^2(\Omega)$ is in all Schatten classes S_p, $p > 0$.

10
Proof. Since C_φ is diagonal on the orthonormal basis $(z_\alpha)_\alpha$ of the Hilbert space $H^2(\Omega)$, with $C_\varphi(z_\alpha) = \varphi^\alpha$, its approximation numbers are the non-increasing rearrangement of the moduli of eigenvalues λ^α, so that an Euler product-type computation gives:

$$\sum_{n=1}^{\infty} a_n^p = \sum_{\alpha \in E} |\lambda^\alpha|^p = \sum_{\alpha_j \in \mathbb{N}} |\lambda_j|^{|\alpha_j|} = \prod_{j=1}^{\infty} (1 - |\lambda_j|^p)^{-1} < \infty .$$

To obtain $C_\varphi \in \bigcap_{p>0} S_p$, just take $\lambda_n = e^{-n}$. This ends the proof. \hfill \Box

4.2 A sharper upper bound

By making a more quantitative study, we can prove the following result.

Theorem 4.2. For any $0 < \delta < 1$, there exists a compact composition operator on $H^2(\Omega)$, with a truly infinite-dimensional symbol, such that, for some positive constants c, C, b, we have:

$$a_n(C_\varphi) \leq C \exp\left(-c e^{b \log n^{\delta}}\right).$$

Proof. Take the same operator C_φ as in Theorem 4.1, with $\lambda_n = e^{-A_n}$ where the positive numbers A_n have to be adjusted. Its approximation numbers a_N are then the non-increasing rearrangement of the sequence of numbers $(\varepsilon_n)_n := (\lambda^\alpha)_\alpha$. This suggests using a generating function argument, namely considering $\sum \varepsilon_n x^n$, but the rearrangement perturbs the picture. Accordingly, we follow a slightly different route. Fix an integer $N \geq 1$ and a real number $r > 0$. Observe that, following the proof of Theorem 4.1:

$$N a_N^r \leq \sum_{n=1}^{N} a_n^r \leq \sum_{n=1}^{\infty} a_n^r = \prod_{n=1}^{\infty} (1 - e^{-r A_n})^{-1}.$$

First, consider the simple example $A_n = n$. We get:

$$N a_N^r \leq \eta\left(e^{-r}\right)$$

where η is the Dedekind eta function (see [5]) given by:

$$\eta(x) = \prod_{n=1}^{\infty} (1 - x^n)^{-1} = \sum_{n=0}^{\infty} p(n) x^n , \quad |x| < 1 ,$$

where $p(n)$ is the number of partitions of the integer n. It is well-known ([5], Ch. 7, p. 169) that $\eta(e^{-r}) \leq e^{D/r}$ with $D = \pi^2/6$, so that:

$$a_n \leq \exp\left(\frac{D}{r^2} - \frac{\log N}{r}\right).$$

Optimizing with $r = 2D/\log N$, we get:

$$a_N \leq \exp(-c \log^2 N) ,$$

11
with $c = 1/4D$. This is more precise than Theorem 4.1.

We now show that if A_n increases faster, we can achieve the decay of Theorem 4.2. As before, we get in general:

\[
a_N \leq \inf_{x > 1} \left(\exp \left[x (\log F(x^{-1}) - \log N) \right] \right),
\]

where

\[
F(r) = \prod_{n=1}^{\infty} (1 - e^{-rA_n})^{-1}.
\]

We have:

\[
\log F(r) = \sum_{n=1}^{\infty} \frac{\sum_{m=1}^{\infty} e^{-rmA_n}}{m} = \sum_{n=1}^{\infty} \frac{1}{m} \left(\sum_{n=1}^{\infty} e^{-rmA_n} \right).
\]

Now, take $A_n = e^{\alpha n}$ where $\alpha > 0$ is to be chosen. We have:

\[
\sum_{n=1}^{\infty} e^{-rm} e^{\alpha n} \leq \int_{0}^{\infty} e^{-rm e^{\alpha t}} dt =: \int_{m(r)}.
\]

Standard estimates now give, for $r < 1$:

\[
I_m(r) = \int_{1}^{\infty} e^{-rm} \frac{1}{\alpha (\log x)^{\alpha - 1}} \frac{dx}{x} = \int_{rm}^{\infty} e^{-y} \frac{1}{\alpha} \left(\log \frac{y}{rm} \right)^{\alpha - 1} \frac{dy}{y}
\]

\[
\leq \left(\log \frac{1}{r} \right)^{\alpha - 1} \int_{rm}^{\infty} e^{-y} \frac{dy}{y} \leq \int_{rm}^{\infty} e^{-y} \left(\log \frac{1}{r} \right)^{\frac{1}{\alpha}}
\]

so that:

\[
\log F(r) \leq \left(\log \frac{1}{r} \right)^{\frac{1}{\alpha}} \sum_{m=1}^{\infty} m^{-1} e^{-rm} \leq \left(\log \frac{1}{r} \right)^{\frac{1}{\alpha} + 1}.
\]

Going back to (4.1), we get, for some constant $C > 0$, and for $x = 1/r > 1$:

\[
a_N \leq C \exp \left[C \left((\log x)^{\frac{1}{\alpha} + 1} - \log N \right) \right].
\]

Adjusting $x = x_N > 1$ so as to have $(\log x)^{\frac{1}{\alpha} + 1} = \log N - 1$, that is:

\[
x_N = \exp \left[(\log (N/e))^{\frac{\log \alpha}{\alpha + 1}} \right],
\]

we get $a_N \leq C e^{-c x_N}$, which is the claimed result with $\delta = \alpha/(\alpha + 1)$.

This δ can be taken arbitrarily in $(0, 1)$ by choosing α suitable, and we are done.

Remark. Of course, $\delta = 1$ is forbidden, because this would give $a_n \leq C e^{-c n^b}$, implying:

\[
\sum_{n=1}^{\infty} \frac{1}{(\log 1/a_n)^p} \leq \sum_{n=1}^{\infty} n^{-b p} < \infty,
\]

for large p, and contradicting Theorem 3.4.
References

[1] R. Aron, P. Galindo and M. Lindström, Compact homomorphisms between algebras of analytic functions, Studia Math. 123(3) (1997), 235–247.

[2] F. Bayart, D. Li, H. Queffélec and L. Rodríguez-Piazza, Approximation numbers of composition operators on the Hardy and Bergman spaces of the ball and of the polydisk, Math. Proc. of the Cambridge Philos. Soc., to appear.

[3] B. Carl and I. Stephani. Entropy, compactness and the approximation of operators, Cambridge Tracts in Mathematics 98, Cambridge University Press, Cambridge (1990).

[4] S. Chae, Holomorphy and Calculus in Normed Spaces, Monographs and Textbooks in Pure and Applied Mathematics 92, Marcel Dekker (1985).

[5] K. Chandrasekharan, Arithmetical Functions, Grundlehren Math. Wiss., Band 167, Berlin, Springer (1970).

[6] D. Clahane, Spectra of compact composition operators over bounded symmetric domains, Integral Equations Operator Theory 51 (2005), 41–56.

[7] B. Cole and T. Gamelin, Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. Lond. Math. Society 53 (1986), 112–142.

[8] C. Cowen, B. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, C.R.C. Press (1994).

[9] S. E. Elliott and M. T. Jury, Composition operators on Hardy spaces of a half plane, Bull. London Math. Soc. 44, no. 3 (2012), 489–495.

[10] P. Lefèvre, Generalized Essential Norm of Weighted Composition Operators on some Uniform Algebras of Analytic Functions, Integral Equations Operator Theory 63 (2009), 557–569.

[11] B. MacCluer, Spectra of compact composition operators on $H^p(B_N)$, Analysis 4 (1984), 87–103.

[12] V. Matache, Composition operators on Hardy spaces on a half-plane, Proc. Amer. Math. Soc. 127(5) (1999), 1483–1491.

[13] W. Rudin, Functional Analysis, Second edition, Internat. Ser. Pure Appl. Math., McGraw-Hill (1991).

[14] J. H. Shapiro, Composition Operators and Classical Function Theory, Universitext, Tracts in Mathematics, Springer-Verlag, New York (1993).

[15] J. H. Shapiro and W. Smith, Hardy spaces that support no compact composition operators, J. Funct. Anal. 205 no. 1 (2003), 62–89.
Daniel Li
Univ. Artois, Laboratoire de Mathématiques de Lens (LML) EA 2462, &
Fédération CNRS Nord-Pas-de-Calais FR 2956
Faculté Jean Perrin, Rue Jean Souvraz, S.P. 18
F-62 300 LENS, FRANCE
daniel.li@euler.univ-artois.fr

Hervé Queffélec
Univ. Lille Nord de France, USTL
Laboratoire Paul Painlevé U.M.R. CNRS 8524 & Fédération CNRS Nord-Pas-
de-Calais FR 2956
F-59 655 VILLENEUVE D’ASCQ Cedex, FRANCE
Herve.Queffelec@univ-lille1.fr

Luis Rodríguez-Piazza
Universidad de Sevilla, Facultad de Matemáticas, Departamento de Análisis
Matemático & IMUS
Apartado de Correos 1160
41 080 SEVILLA, SPAIN
piazza@us.es