Investigating the effects of \textit{Lactobacillus casei} on some biochemical parameters in diabetic mice

Feizollah Asgharzadeh, Asghar Tanomand, Mohammad Reza Ashoori, Ali Asgharzadeh and Nosratollah Zarghami*

*Faculty of Medicine, Department of Clinical Biochemistry and Laboratory Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
*Department of Microbiology, Maragheh University of Medical Sciences, Maragheh, Iran
*Tehran Institute of Psychiatry, Iran University of Medical Sciences, Tehran, Iran

*Corresponding author, email: zarghami@tbzmed.ac.ir

\textbf{Aims:} Diabetes mellitus is a metabolic disorder characterised by inadequate pancreatic insulin secretion or the insulin present being unable to perform its function properly. Consistent with the beneficial effects of probiotics and their ability to lower glucose levels, an impact on diabetes treatment is also expected. The aim of this study was to evaluate the effect of \textit{Lactobacillus casei} on various either biochemical parameters in a diabetic mice model.

\textbf{Methods:} In the present study, 24 mice were divided into diabetic and control groups. Further, each group was categorised into two subgroups. The diabetic and control subgroups were fed carrot juice or \textit{Lactobacillus casei} in carrot juice. Diabetes was induced by streptozotocin (STZ). For 30 days, the mice were fed 2 ml carrot juice, and \textit{Lactobacillus casei} in carrot juice (with lactobacillus 10^9 cfu/ml) by gavage. Then, blood samples were collected to assay biochemical parameters.

\textbf{Results:} The results of this study showed that \textit{Lactobacillus casei} (ATCC39392) significantly reduced blood glucose (BG) levels in diabetic mice receiving the probiotic, but did not cause a significant change in BG levels in control mice receiving the probiotic. When comparing insulin, insulin-like growth factor I (IGF-I) and C-peptide in the four groups, it was found that insulin and C-peptide were significantly different in all groups except for the control group treated with a mixture of probiotic \textit{Lactobacillus casei} and carrot juice.

\textbf{Conclusion:} Our results showed that probiotic \textit{Lactobacillus casei} effectively reduces BG levels in diabetic mice treated with this bacterium.

\textbf{Keywords:} diabetes, \textit{Lactobacillus casei}, probiotic

\textbf{Introduction}

Diabetes mellitus (DM) is one of the most common metabolic diseases in the world.1,2 According to a WHO report, nearly 171 million people are afflicted with this disease. It is predicted that by 2030 the figure will hit 366 million. Any disorder in the digestive system whereby if the immune system interferes in the appearance of \(\beta\)-cells will lead to hyperglycaemia and diabetes,3 which is characterised by inadequate pancreatic insulin secretion or the insulin present being unable to perform its function properly. Consistent with the beneficial effects of probiotics and their ability to lower glucose levels, an impact on diabetes treatment is also expected. The aim of this study was to evaluate the effect of \textit{Lactobacillus casei} on various either biochemical parameters in a diabetic mice model.

\textbf{Materials and methods}

In this study, 24 female mice whose weight ranged from 28 to 32 grams were obtained from the research centre of Tabriz University of Medical Sciences. Prior to the experiment, in order to make the mice under study compatible, they were kept at 25 ± 2°C under equal conditions of light and darkness, as well as in separate cages where they had access to sufficient water and typical food. The mice were then categorised into two groups and a further two subgroups. The diabetic and control subgroups received carrot juice and \textit{Lactobacillus casei} in carrot juice (Figure 1). The animal care methods and experimental procedures employed were approved by the Animal Ethics Committee of the Tabriz University of Medical Sciences.

In order to induce DM in the mice, streptozotocin (STZ) with the trade name ZanosarR, purchased from Sigma Aldrich (St Louis, MO, USA) and dissolved in a citrate buffer, was injected intraperitoneally at a dose of 60 mg/kg of body weight. Ten days after injection, some signs like overeating, over-drinking and frequent urination were observed. To ensure that the mice were diabetic, blood glucose (BG) levels were measured with a glucometer and mice with a blood glucose level exceeding 200 mg/dl were considered diabetic.

\textit{Lactobacillus casei} (ATCC39392) was obtained from collection and industrial bacteria of Iran regional centre as lyophilised ampoules. With a sterile Pasteur pipette, 0.3–0.4 ml sterile solution (growth medium for liquid or normal saline) was added to the dried material in the ampoule and was mixed to ultimately a uniform suspension. Then, the bacterium was cultivated in MRS medium for 48 hours and then centrifuged at 2000 rpm. To obtain a uniform suspension, the supernatant was discarded and 5% sucrose was added to the remaining content. With a sterile Pasteur pipette, all the suspension was collected in a sterile bottle and diluted to the desired concentration. Then, the bacterium was stored at 4°C for future use.
cullivation broth. Finally, through gram staining and catalase and oxidase tests, it was ascertained that the mentioned bacterium was a gram-positive bacillus of lactobacillus. In order to gavage-feed the mice, 5 ml bacterium was cultivated in MRS cultivation broth. After 48 hours’ incubation in an incubator containing 10% carbon dioxide, the bacteria were separated in a centrifuge at a speed of 6000 rpm for 15 minutes. After washing with normal saline and centrifuging again, the pipes containing sterile distilled water were filled with bacteria until an opacity equalling 0.5 using McFarland’s standard was reached. Meanwhile, light absorption of the microbial suspension at a wavelength of 600 nanometers was determined and recorded. The pour plate method was used to determine the number of bacteria in microbial suspension and in fact to attain colony forming units/ml (CFU/ml). Ultimately, a bacterial suspension of 10^9 cfu/ml density was attained. Then, 1 ml of bacterial suspension was blended with 4 ml carrot juice (Daucus carota). Thereafter, 2 ml of this mixture was fed to the second healthy group and the fourth diabetic group in the form of gavage every day for 30 days. The healthy and the diabetic groups were fed carrot juice only for 30 days.

At the end of the treatment period, after 12 hours’ fasting, mice were anaesthetised and a blood specimen collected (the mice were weighed before and after treatment).

The collected blood was centrifuged at 3000 rpm to separate blood serum. Measurement of blood glucose level was carried out by the Enzymatic-Colorimetric GOD-PAP method. Insulin, insulin-like growth factor I (IGF-I) and C-peptide were measured using the ELISA technique (kit from Monobind Inc, Lake Forest, CA, USA).

All of the statistical methods were done using SPSS16® software (SPSS Inc, Chicago, IL, USA). The graphs were drawn using GraphPad Prism® (version 6) software (San Diego, CA, USA); variables were expressed as mean ± SD.

Results

To compare data in various groups the one-way ANOVA test was used. The distribution of all data in this study was normal. In order to find out the various group changes, a Tukey post hoc test was performed to make a pairwise comparison. Results showed that all the groups had significant differences in comparison one another (p-value = 0.001), except that the healthy control group receiving carrot juice and the healthy control group receiving probiotic *Lactobacillus casei* were not significantly different (p-value = 0.99) (Figure 2).

All the data from insulin, IGF-1 and C-peptide in serum were statistically analysed and these variables had a normal distribution. The results of the ANOVA test on insulin showed a significant discrepancy between the diabetic group who received carrot juice and the diabetic group treated with a mixture of probiotic *Lactobacillus casei* (p-value = 0.03), and the control group treated with a mixture of probiotic *Lactobacillus casei* and carrot juice too (p-value = 0.01); in the other groups no significant differences were seen (Figure 3).

The ANOVA test was used to consider the discrepancy among IGF-1 values in the four groups and the results showed that IGF-1 value in all four groups showed no significant difference. Thus among all groups IGF-1 is not changed (Figure 4), which means that carrot juice and probiotic *Lactobacillus casei* have no effect on diabetic and control groups.

When considering the different values of C-peptide, the ANOVA test showed significant results in three groups (p-value = 0.02 and 0.03). The results showed that except for the control group treated with a mixture of probiotic *Lactobacillus casei* and carrot juice, pairwise consideration and comparisons of the other groups showed a significant discrepancy (Figure 5). The mean ± SD of glucose, insulin, IGF-1 and C-peptide of four groups is given in Table 1.

Discussion

In 2007, Yadav et al. studied the effects of an anti-diabetes-containing lactobacillus Dahi produced by probiotic *casei* and acidophilus on rats induced with diabetes by fructose and showed that the probiotic caused a decrease in blood sugar level and glucose intolerance. Further, in another study on rats with STZ-induced diabetes they showed that the blood sugar level drops significantly as a result of this probiotic. They attributed it to reinforcement of the antioxidant system with probiotics and a decrease in the destruction of beta-cells of the islets of the pancreas.
Langerhans. In 2007, Lali et al. proved that a Nano product containing lactobacillus causes a decrease in blood sugar of mice with diabetes through alloxone. In 2009, Harissa et al. showed that Lactobacillus acidophilus causes a decrease in free radicals and reactive oxygen species (ROS). These reactive compounds cause a disorder in the nitric oxide strain of diabetic rats. Nitric oxide is an important medium in the secretion of hormones and stimulation of the immune system. In other words, Lactobacillus acidophilus leads to a decrease in blood sugar and adjustment of nitric oxide in rats with alloxone-induced diabetes.

In 1997, Matzvky et al. demonstrated that Lactobacillus casei in KK-Ay mice with genetically induced diabetes type 2 caused a decrease in blood sugar. In this study the effect of probiotic Lactobacillus casei strain TD2 on blood sugar was investigated. The results indicated that the blood sugar in diabetic rats showed a significant decrease in comparison with a diabetic control group after consuming the probiotic for 21 days. It was also shown that the probiotic strain does not comprise a complete treatment of diabetes; however, it can be used as a controlling treatment.

Various mechanisms have been suggested for decreasing cholesterol by means of probiotics. It is likely that when the amount of lactobacillus increases in the intestine, the demand for glucose goes up and as a result leads to a decrease in released glucose in serum. Further, because probiotics have an antioxidant trait, they prevent destruction of β-Langerhans cells.
and as a result cause serum glucose to decrease. The structure of intestinal microflora is effective in determining inflammation, which plays a role in diabetes. This is done when the equilibrium in the intestinal microflora is violated and gram-positive bacteria in the intestine decrease compared to gram-negative bacteria.

As a result, the absorption of lipopolysaccharide and other pre-inflammation molecules and the rate of their transition to blood circulation increase. Hence, this leads to an increase in cytokine secretion, activity of macrophages, and outbreaks of inflammation. Inflammatory cytokines cause a disorder in the function of insulin receptors and as a result a resistance to insulin. Moreover, through induction of apoptosis, β-pancreases cells function of insulin receptors and as a result a resistance to insulin.

In general, probiotics have been the centre of attention because of their bold effects on treating acute gastrointestinal inflammation, diarrhoea, constipation, irritable bowel syndrome, colorectal cancer, etc. Probiotics are used as food supplements but in the medical industry they can be used as auxiliary medicine with few side effects to decrease blood sugar. Researchers attribute the decrease in blood sugar to an increase in the number of lactobacilli in the intestine which consume glucose and thereby limit glucose absorption and distribution to other organs in the host.

Nevertheless, more studies are required to define the exact mechanism of this process and it is likely that other lactobacilli possess this characteristic. Through more research, it may be possible to discover a simpler way to prevent and treat diabetes. The results of this study also show the efficacy of Lactobacillus casei in controlling blood sugar in diabetic mice. Further, the results show that probiotics in healthy mice do not cause blood sugar to decrease, which is of great importance. Therefore, it seems that the products of this probiotic can be considered an appropriate supplementary medicine for controlling blood sugar. However, it should be mentioned that various clinical studies are required to determine the accurate mechanism of this probiotic and its daily consumption.

Compliance with ethical standards
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. What about animal ethics approval?

ORCID
Mohammad Reza Ashoori http://orcid.org/0000-0003-2355-464X

References
1. Allpour FG, Ashoori MR, Pilehvar-Soltanahmadi Y, et al. An overview on biological functions and emerging therapeutic roles of apelin in diabetes mellitus. Diabetes Meta Syndr Clin Res Rev. 2017. July 4.

2. Majdi MA, Mohammadzadeh NA Loth H, et al. Correlation of resistin serum level with fat mass and obesity-associated gene (FTO) rs9939609 polymorphism in obese women with type 2 diabetes. Diabetes Meta Syndr Clin Res Rev. 2017 May 13. pii: s1871-4021(17)30138-8. doi:10.1016/j.dSCR.2017.05.004.

3. Sheehan VM, Ross P, Fitzgerald GF. Assessing the acid tolerance and the technological robustness of probiotic cultures for fortification in fruit juices. Innovative Food Sci Emerging Technol. 2007;8(2):279–84. doi:10.1016/j.ifset.2007.01.007

4. Farwanto E, Mainville I, Desjardins M-P, et al. Growth of probiotic bacteria and bifidobacteria in a soy yogurt formulation. Int J Food Microbiol. 2007;116(1):174–81. https://doi.org/10.1016/j.ijfoodmicro.2006.12.015

5. Mofarah M, Ziaei S, Pilehvar-Soltanahmadi Y, et al. Association of KALRN, ADIPQQ, and FTO gene polymorphism in type 2 diabetic patients with coronary artery disease: possible predisposing markers. Coron Artery Dis. 2016;27(6):490–96. https://doi.org/10.1097/MCA.0000000000000386

6. Missotten J, Michiels J, Goris J, et al. Screening of two probiotic products for use in fermented liquid feed. Livestock Sci. 2007;108(1):232–35. https://doi.org/10.1016/j.livsci.2007.01.078

7. Mihanfar A, Rahmati-Yamchi M, Mota A, et al. Serum levels of vasin and its correlation with nitric oxide in type 2 diabetic patients with nephropathy. Curr Diabetes Rev. 2017 May 29. doi:10.2174/1573399813666170530103216.

8. Mohammadzadeh, G, Zarghami N. Serum leptin level is reduced in non-obese subjects with type 2 diabetes. Int J Endocrinol Metabol. 2013;11(1):3–10.

9. Baharivand N, Zarghami N, Panahi F. Relationship between vitreous and serum vascular endothelial growth factor levels, control of diabetes and microalbuminuria in proliferative diabetic retinopathy. Clin Ophthalmol (Auckland, NZ) 2012;6(1):185.

10. Shafeii-Irannajad V, Samadi N, Salehi R. New insights into anti-diabetic drugs: possible applications in cancer treatment. Chem Biol Drug Des. 2017 Apr 29. doi:10.1111/cbdd.13013.

11. Laloy L, Liban A, Akinjani J. Antidiabetic effect of nana (a Nigerian fermented milk) on alloxan-induced diabetic rats. Am J Food Technol. 2008;3:394–8. https://doi.org/10.3923/ajft.2008.394.398

12. Rodriguez, H, Landete JM, de las Rivas B, et al. Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748 T. Food Chem. 2008;107(4):1393–98. https://doi.org/10.1016/j.foodchem.2007.09.067.

13. Deypuree E. In Ascites as a multifactorial syndrome of broiler chickens: considerations form a developmental and selection viewpoint, The 2nd Symposium of World's Poultry Science Association of the Iran Branch; 2002 Oct; Tehran, Iran; 2002. p. 119–36.

14. Yadav H, Jain S, Sinha P. Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition. 2007;23(1):62–8. https://doi.org/10.1016/j.nut.2006.09.002.

15. Yadav H, Jain S, Sinha P. Oral administration of dahi containing probiotic Lactobacillus acidophilus and Lactobacillus casei delayed the progression of streptozotocin-induced diabetes in rats. Dairy Res Rev. 2008;17(2):189–95.

16. Harisa G, Taha E, Khall A, et al. Oral administration of Lactobacillus acidophilus restores nitric oxide level in diabetic rats. Aust J Basic Appl Sci. 2009;3(3):2963–69.

17. Matsuzaki T, Yamazaki R, Hashimoto S, et al. Antidiabetic effects of an oral administration of Lactobacillus casei in a non-insulin-dependent diabetes mellitus (NIDDM) model using KK-Ay mice. Endocr J. 1997;44(3):357–65. https://doi.org/10.1507/endocrj.44.357.

18. Bäckhed F, Ding H, Wang T, et al. Hp-microbiota: effects on cholesterol, diabetes, renin, and hydroteostasis. J Mol Cell Sci. 2009;6(3):75–87. https://doi.org/10.1016/j.molcel.2009.03.001.

19. Cani PD, Neyrinck AM, Fava F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50(11):2374–83. https://doi.org/10.1007/s00125-007-0791-0.

20. Lye H-S, Kuan C-Y, Ewe J-A, et al. The improvement of hypertension by probiotics: effects on cholesterol, diabetes, renin, and hydroteostasis. Int J Mol Sci. 2009;10(9):3755–75. https://doi.org/10.3390/ijms10093755.

21. Tabuchi M, Ozaki M, Tamura A, et al. Antidiabetic effect of dairy products. J Dairy Sci. 2017;100(44):13938–401. https://doi.org/10.3118/jds.2017-13938.

Received: 07-01-2017 Accepted: 08-09-2017