Tillage and No-preplant Tillage Compared for Grain Sorghum and Soybean Production in North-central Kansas

Robert J. Raney
Oliver G. Russ
D. Michael Powell

Follow this and additional works at: https://newprairiepress.org/kaesrr

Recommended Citation
Raney, Robert J.; Russ, Oliver G.; and Powell, D. Michael (1982) "Tillage and No-preplant Tillage Compared for Grain Sorghum and Soybean Production in North-central Kansas," Kansas Agricultural Experiment Station Research Reports: Vol. 0: Iss. 12. https://doi.org/10.4148/2378-5977.7368

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 1982 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Tillage and No-preplant Tillage Compared for Grain Sorghum and Soybean Production in North-central Kansas

Keywords
Keeping up with research; 55 (April 1982); Kansas Agricultural Experiment Station contribution; no. 82-281-s; Tillage; No-preplant; Grain sorghum; Soybean; Preplant tillage; Kansas

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.
Tillage and No-preplant Tillage Compared for Grain Sorghum and Soybean Production in North-central Kansas

Robert J. Raney, Agronomist in Charge
Oliver G. Russ, Research Agronomist
D. Michael Powell, Agricultural Engineer

Two main functions of preplant tillage are to control early-season weed growth and to prepare a seedbed. Both functions, however, can be accomplished without tillage operations if herbicides are applied to control early-season weeds and a no-till planter is available to plant directly into crop residue.

We evaluated grain yields and weed control for three preplant-tillage systems: (1) disk as needed to control weeds and prepare a seedbed; (2) apply a herbicide in April to control weeds and grasses until planting time, disk just before planting; and (3) use a herbicide, with no-preplant tillage, to control weeds and grass before planting, then plant with a no-till planter. This study was established on the K.S.U. North-central Experiment Field near Belleville in 1975. (See Table 1.)

Contribution no. 82-281-s, Departments of Agronomy and Agricultural Engineering, Kansas Agricultural Experiment Station, Manhattan 66506.
The cropping sequences were: (1) continuous grain sorghum, (2) continuous soybeans, (3) grain sorghum after soybeans, and (4) soybeans after grain sorghum. In all plots, crops were planted with a no-till planter in rows 30 inches wide. Grain sorghum was seeded at 52,000 seeds/acre (seeds 4 inches apart in the row); soybeans at 105,000 seeds/acre (seeds spaced 2 inches apart). Grain sorghum was fertilized by broadcasting nitrogen fertilizer to apply 60 pounds of nitrogen/acre in early spring and by banding at planting with 10-20-0 at 100 pounds/acre. Furadan was banded at planting at 13 pounds/acre to control insects. Also, in grain sorghum plots Ramrod/Atrazine was broadcast at 6 pounds of product/acre at planting to provide weed and grass control.

Soybeans were not fertilized, but the seed was inoculated. When the seeds were planted, Lasso + Sencor was broadcast at 2 qt and at .75 lb of product/acre to control weeds and grass.

Table 1. Preplant operations on tillage test plots for grain sorghum and soybeans, North-central Experiment Field, Belleville, 1975-81.

Preplant treatment	Operation and timing
Preplant treatment	
Mechanical only	Disk
Disk as needed	
Mechanical + chemical	3 lb Bladex/a¹ Disk
Chemical only	3 lb Bladex/a¹ None

¹80 W wettable powder

Table 2. Average grain sorghum yields, broadleaf weed control, and grass control for tillage systems, Belleville, 1975-81.

Tillage treatment	Grain yield (bu/a)	Weed control	
		Broadleaf (%)	Grass (%)
Mechanical only	64	72	91
Mechanical + chemical	66	85	93
Chemical only	65	87	75
LSD (.05)	N.S.	N.S.	13

*Grain yields corrected to 12.5% moisture.
Results for grain sorghum yields and weed control for 1975-81 are given in Table 2; those for soybeans in Table 3.

Tillage treatment	Grain yield (bu/a)	Weed control
Mechanical only	24	69
Mechanical + chemical	24	78
Chemical only	25	75
LSD (.05)	N.S.	8

Grain yields corrected to 12.5% moisture.

Table 4 shows average crop yields and weed-and grass-control percentages for the cropping systems.

Table 4. Average yields, broadleaf weed control, and grass control for cropping systems, Belleville, 1975-81.

Cropping system	Grain yield (bu/a)	Weed control
Sorghum after soybeans	65	81
Continuous sorghum	65	82
LSD (.05)	N.S.	N.S.
Soybeans after sorghum	22	72
LSD (.05)	N.S.	N.S.

Grain yields corrected to 12.5% moisture.

Grain sorghum and soybean annual yields for each cropping system and preplant tillage system are listed in Tables 5 and 6, respectively. The wide variation in yields probably can be attributed to the rainfall patterns and total annual rainfall.

Table 5. Annual grain sorghum yields for each cropping system and preplant tillage system, Belleville, 1975-81.

Year	Sorghum after soybeans	Continuous sorghum			
	mech. + chem.	chem.	mech. + chem.	chem.	Average
1975	14	11	31	34	24
1976	50	42	47	49	49
1977	80	81	84	89	75
1978	58	67	64	64	71
1979	95	102	84	89	84
1980**	15	15	7	6	10
1981	139	128	128	132	138
	64	66	66	65	65

*Grain yield corrected to 12.5% moisture.
**Heavy chinch bug infestation caused crop failure.

Table 6. Annual soybean yields for each cropping system and preplant tillage system, Belleville, 1975-81.

Year	Soybeans after sorghum	Continuous soybeans			
	mech. + chem.	chem.	mech. + chem.	chem.	Average
1975	29	24	12	21	32
1976	8	7	24	8	12
1977	37	41	22	26	31
1978	15	13	15	16	18
1979	29	32	27	29	27
1980**	18	20	17	15	16
1981	47	45	30	33	38
	26	26	21	21	25

*Grain yields corrected to 12.5% moisture.
**Heavy chinch bug infestation caused crop failure.

Table 7 shows the annual rainfall during the growing season, divided into two parts: rainfall from April through June, when the moisture is primarily stored in the soil profile; and rainfall from July through September, when it replenishes soil moisture used by the crop.
Table 7. Rainfall for the growing season (including spring and summer), Belleville, 1975-81.

Year	Spring* (inches)	Summer** (inches)	Growing season (total)
1975	13.24	5.57	18.81
1976	9.87	5.90	15.77
1977	13.38	15.80	29.18
1978	11.89	17.54	29.43
1979	10.69	10.53	21.22
1980	8.81	6.40	15.21
1981	9.56	14.69	24.25
Avg.	11.06	10.92	21.98

* April, May, and June
** July, August, and September

Below-average grain sorghum yields in 1975 and 1976 can be traced to below-average summer rainfall for those years. One cannot make such comparisons for 1980, when chinch bugs caused a crop failure. Near-average to above-average summer rainfall produced above-average grain yields in 1977, '78, '79, and '81.

Soybean yields were below average in 1976, '78, and '80. Rainfall was below average in 1976 and 1980 for both spring and summer. In 1978 rainfall was near average in the spring and 6.62 inches above average in the summer; however, that summer nearly 4 inches of rainfall came in one 24-hour period.

CONCLUSIONS:

Grain sorghum. Grain yields showed no significant differences that can be attributed to cropping or preplant-tillage systems. Yields did appear to be more affected by summer than by spring rains. Broadleaf weed control was not affected by cropping systems or by preplant-tillage systems (Tables 2 and 4). The “chemical only” preplant tillage system and the continuous grain sorghum cropping system provided inferior grass control.

Soybeans. Soybean yields were not affected by cropping or preplant-tillage systems, although continuous soybeans averaged 4 bu./acre less than did soybeans following grain sorghum (Table 4).

Broadleaf weed control among the preplant tillage systems showed mechanical only to be inferior to the mechanical + chemical tillage system (Table 3). Grass control was superior for the continuous soybean cropping system.

NOTE: This study was designed to compare the effects of tillage and cropping systems on grain yields and on broadleaf and grassy weed control. No attempt was made to measure soil-erosion losses attributed to the three cropping systems.

One would think that early-spring rainfall would be better conserved by the no-preplant tillage system, but that was not reflected in our 7-year yield averages.

The economical benefit from fewer trips over the field versus the additional cost for an extra herbicide application for the no-preplant tillage system was not evaluated for this report.