Phenylthiocarbamate or N-Carbothiophenyl Group Chemistry in Peptide Synthesis and Bioconjugation

Oleg Melnyk,*†‡§ Nathalie Ollivier,†‡§ Soizic Besret,†‡§ and Patricia Melnyk§∥

†UMR CNRS 8161, F-59021 Lille, France
‡Pasteur Institute of Lille, F-59021 Lille, France
§Univ Lille Nord de France, F-59000 Lille, France
∥UDSL, EA 4481, UFR Pharmacie, F-59000 Lille, France

ABSTRACT: The design of novel chemoselective and site-specific ligation methods provides new tools for obtaining complex scaffolds, peptidomimetics, and peptide conjugates. The chemistry of the N-phenylthiocarbonyl group has led to several developments in peptide ligation chemistry and peptide bioconjugation during the last 10 years. The aim of this review is to provide an overview of this emerging field.

INTRODUCTION

The design of novel chemoselective and site-specific ligation methods provides new tools for obtaining complex scaffolds, peptidomimetics, and peptide conjugates. The entry of the N-phenylthiocarbonyl group (Figure 1) into the peptide field began in the late 1940s, but its potential as a thioester surrogate for the design of chemoselective ligation methods has been realized only recently. The aim of this short review is to highlight the main features of phenylthiocarbonyl peptide chemistry and its potential for obtaining novel peptide scaffolds and peptide conjugates.

Apart from the introduction, the review is composed of six main sections. The first section gives a historical overview of the field and presents some important chemical properties of the N-phenylthiocarbonyl group. The second section describes the synthesis of phenylthiocarbonyl peptides using Fmoc solid-phase peptide synthesis (SPPS) and commercially available phenylthiochloroformate. The third section presents the interest of the N-phenylthiocarbonyl group for the preparation of peptide polymers. The fourth section is focused on thiocarbamate chemoselective ligation, whereas the fifth section describes the potential of azaGly ligation for accessing azaGly peptides or conjugates. Lastly, the final section is devoted to the synthesis of cyclic peptide scaffolds.

HISTORY AND CHEMICAL PROPERTIES OF PHENYLTHIOCARBAMATES

Phenylthiochloroformate was first described by Rivier in 1907.1 Rivier also reported the reaction of phenylthiochloroformate with aniline, which led to the isolation of S-phenyl phenylcarbamothioate product. In the same paper, the author noticed that S-phenyl phenylcarbamothioate decomposed into phenylisocyanate and thiophenol upon heating or at room temperature in aqueous alkali. In contrast, compound proved to be stable in aqueous alkali. Note that the hydrolysis of S-phenyl dialkylcarbamothioates has been used to obtain thiophenols.2

The entry of the phenylthiocarbonyl group into the peptide field began with the report of in 1947, who suggested that the phenylthiocarbonyl group might overcome some limitations of the benzyloxycarbonyl (Cbz) group when used as an amine protecting group during peptide synthesis. In particular, the work of Rivier suggested that phenylthiocarbonyl derivatives of α-amino acids or peptides might be selectively deprotected in aqueous alkali, whereas hydrogenolysis of the Cbz group was complicated by the simultaneous hydrogenation of some peptide functional groups.

Received: February 6, 2014
Revised: March 15, 2014
Published: March 18, 2014
The phenylthiocarbonyl group could be introduced on the α-amino group of glycine ethyl ester 4 to produce derivative 5 (Scheme 1). The acid-catalyzed hydrolysis of the ester functionality successfully yielded N-phenylthiocarbonyl glycine 6. Activation of the carboxylic acid function with phosphorus pentachloride yielded acid chloride 7, which was reacted with glycine ethyl ester 4 to produce N-phenylthiocarbonyl diglycine ethyl ester 8. Ehrensvärd claimed that the deprotection of N-phenylthiocarbonyl amino acids or dipeptides could be performed by heating the compounds in 70% ethanol in the presence of lead diacetate. However, 5 years later, Lindenmann and co-workers established that treatment of N-phenylthiocarbonyl diglycine ethyl ester 8 with lead diacetate in 70% ethanol at 80–85 °C yielded essentially ethyl hydantoin-3-acetate 9 instead of expected dipeptide 10. Hydantoin formation was confirmed with other dipeptides. The authors concluded that the phenylthiocarbonyl protecting group had “little practical significance as a tool in peptide chemistry”.

Following the work of Lindenmann and co-workers, Kollonitsch and co-workers showed that the phenylthiocarbonyl group can be split off from various N-phenylthiocarbonyl dipeptides using perbenzoic acid at −5 °C (Scheme 2). The reaction presumably proceeds through the formation of a thiocarbamate sulfoxide intermediate 12, which is further oxidized by the peracid into thiocarbamate sulfone 13. The latter decomposes spontaneously in the presence of water, with production of carbon dioxide and benzenesulfonic acid 14. This deprotection procedure has not been used very much, probably because of the poor compatibility of perbenzoic acid with many functional groups present in peptides. In support of the mechanism proposed in Scheme 2, the S oxidation of S-alkylthiocarbamates by peracids is known to yield thiocarbamate sulfone products similar to 13. This point will be discussed later in the section devoted to thiocarbamate ligation.

The work of Lindenmann and co-workers shows that the removal of the N-phenylthiocarbonyl group is problematic when the intermediate isocyanate can react intramolecularly with a nucleophile in a 1,5 relationship relative to the carbonyl. This is typically the case in Scheme 1, where the activated carbonyl reacts with an amide nitrogen through a five-membered ring intermediate to yield a hydantoin product. The same authors showed that treatment of N-phenylthiocarbonylglycine carbobenzyloxyhydrazide PhSCO-Gly-NHNHCOOBn with lead acetate yielded a 2-carbobenzyloxy-3,6-dioxohexahydro-1,2,4-triazine product, which was formed in this case through a six-membered ring intermediate. Similarly, Degani and co-workers showed that S-phenylthiocarbonyl derivatives of cysteinyl peptides undergo a cyclization reaction by nucleophilic attack of the cysteine amide nitrogen on the S-phenylthiocarbonyl group (Scheme 3). The resulting 2-keto-3-acylthiazolidine intermediate 17 is then cleaved by hydroxide ion to yield peptide acid 18 and 2-ketothiazolidine product 19. Interestingly, the authors screened a series of carbonic acid derivatives as S-acylating agents, among which, phenylthiochloroformate 2 proved to be the most efficient for peptide cleavage. In essence, this cyclization reaction is homologous to the cleavage of cystine peptides by cyanide, a process that involves the intermediary of an S-cyanocysteinyl residue, which yields a 2-imino-3-acylthiazolidine after cyclization.

The phenylthiocarbonyl group can be used advantageously as an amine protecting group when such an intramolecular cyclization process cannot occur. In this case, treatment of the N-phenylthiocarbonyl derivative with base yields the intermediate isocyanate, which can be trapped by an external nucleophile. For example, treatment of N-phenylthiocarbonyl-
protected nucleosides with sodium benzyl alkoxide yielded the corresponding N-Cbz-protected nucleosides. In another application, exposure of N-phenylthiocarbonyl derivatives of gem-diaminoalkanes with aqueous base yielded the amine products in good yield (Scheme 4). This deprotection procedure was exploited by Gazerro and co-workers for the synthesis of peptidomimetics starting from O-tert-butyl threonine and protected by a 2-Methyl-2-(2′-nitrophenox)propionyl Group (MNP). The instability of the α-nitrophenoxy)propionyl Group (MNP) was noticed by Leuchs himself, but the potential of this protecting group for the stepwise or block synthesis of peptidomimetics starting from α-phenylthiocarbonyl derivatives of gem-diaminoalkanes in aqueous solution was described in Scheme 5. Triethylamine can be used as base when hydantoin formation is not favored. This is typically the case when the second amino acid residue, isoleucine in peptide 25, is bulky. When hydantoin formation can be a potential issue, as in the case of lysine dendrimers 27 and 28, triethylamine must be replaced by a weaker base such as N-methylmorpholine and the reaction time must be kept as short as possible.

The phenylthiocarbonyl group can also be introduced exclusively on the side chain of a lysine residue, as shown in Scheme 6. For this, the side-chain amino group of the lysine residue must be orthogonally protected to enable the selective unmasking of the ε-amino group on the solid phase after the peptide elongation step. The example provided in Scheme 6 makes use of methyltrityl protection, which can be selectively removed by washing with 1% TFA in dichloromethane. Contrary to what has been observed during the synthesis of N-terminal phenylthiocarbonyl peptides, hydantoin formation cannot occur during the reaction of phenylthiochloroformate with internal lysine residues, so isolation of peptides such as 30 shows no particular difficulties. The thiol group of the N-terminal cysteine residue is protected with a tert-butylsulfenyl group to avoid any intramolecular or intermolecular thiol–thiol ester exchange during workup, purification, or storage.

SYNTHESIS OF POLYMERS

The synthesis of polymers made of amino acids has various potential applications such as the preparation of biomimetic biomaterials derived from natural proteins. One well-known method for producing peptide polymers is the polymerization of N-carboxy ε-amino acid anhydrides, which was introduced by Leuchs at the beginning of the 20th century. The tendency of N-carboxy ε-amino acid anhydrides to oligomerize was noticed by Leuchs himself, but the potential of N-carboxy ε-amino acid anhydrides for giving access to large peptide polymers was established in 1947 with the work of Woodward and Schramm. The field has been reviewed.

Soon after the work of Woodward and Schramm, Noguchi introduced a novel method for producing peptide polymers based on the chemistry of the N-phenylthiocarbonyl group (Schemes 7 and 8). The polymerization of N-carboxyphenylthio-derivatized amino acids or peptides occurs by melting (Scheme 7, method 1) or by heating in an organic solvent in the presence of pyridine (Scheme 8, method 2). In the absence of solvent, N-carbothioephilic amino acids start to decompose at 120–130 °C. Decomposition is a fast process at 150 °C. Under these conditions, the N-phenylthiocarbamate group yields isocyanate derivatives such as urea, which react with the C-terminal carboxylic acid group of another peptide molecule to produce mixed anhydride intermediate. The latter was believed to yield amide product after elimination of carbon dioxide. This is indeed a mode of decomposition of mixed anhydrides of type 34. However, it has been known since the work of Naegli and co-workers that another mode of decomposition can occur, leading to the formation of symmetrical anhydride and urea, which, on heating to
high temperatures (>135 °C), can react with each other, again yielding amide 35 with the loss of carbon dioxide.

Noguchi noticed that polymerization of N-carbothiophenyl α-amino acids at high temperatures (>130 °C) yielded polypeptides with a low degree of polymerization because of the occurrence of side reactions. For example, polymerization of N-carbothiophenyl-L-nitroarginine in dimethyl sulfoxide at 120 °C for 14 h resulted in a degree of polymerization of only 5−10.40 Thus, an alternative procedure for inducing the polymerization of N-carbothiophenyl α-amino acids was developed (Scheme 8, method 2).26,35 In method 2, the N-phenylthiocarbamate group of 32 reacts directly with the carboxylate function of 31 to again produce mixed anhydride intermediate 34. The transient formation of an isocyanate intermediate of type 33 (Scheme 7) could be ruled out in this case because, in a control experiment, N-carbothiophenyl-D,L-alanine ethylester was found to be stable in ethanol at reflux.35,41,42 Interestingly, method 2 enabled the synthesis of polypeptides with a high degree of polymerization by minimizing the occurrence of side reactions (135,000 g/mol for polyglycine26 and 22,400 g/mol for poly-D,L-alanine). The use of a mixture of N-carbothiophenyl α-amino acids yielded copolymers such as copoly-(glycine, D,L-alanine) with a degree of polymerization of 89 (11,500 g/mol).26,43

Interestingly, this method also enabled the polymerization of N-carbothiophenyl dipeptides (dioxane or benzene, pyridine, 80 °C), thereby giving better control of the copolymer structure and periodicity.26,35,44,45 In particular, polymerization of N-carbothiophenyl-ε-aminocaproyl-D,L-alanine yielded poly-ε-aminocaproyl-D,L-alanine endowed with reversible heat coagulation properties.45 The fate of the N-terminal phenylthiocarbonyl group was not discussed by Noguchi and co-workers. It presumably evolves into a hydantoin product when the kinetics of the amide bond forming reaction are slowed because of the decrease of the reactant concentration and because of the decrease of the diffusion rate as a result of the viscosity of the polymer mixture.

SYNTHESIS OF BIOCONJUGATES USING THIOCARbamate CHEMoselective LIGATION

Chemoselective ligation methods are important tools for obtaining various peptide conjugates or scaffolds. In particular, thiol-based ligation methods enable the formation of a thioether, disulfide, or thiazolidine bond between unprotected peptides or biomolecules. The efficiency, ease of introducing a thiol group in peptides using cysteine residue, and the possibility of combining some of these techniques with other chemoselective ligation methods.56−61 Thio carbamate ligation belongs to the family of thiol-based chemoselective ligation methods and is the subject of this section. Interestingly, the thio carbamate bond is considered to be a peptide bond biosioester.62,63 This, combined with the specific features of the S-CO-NH group chemistry or biochemistry, makes thio carbamate ligation of
potential interest for building molecules and modulating their physicochemical or biological properties.

The development of thiocarbamate ligation was stimulated by pioneering studies on thioester ligation by Kent and co-workers (Scheme 9).64,65 Thioester ligation is based on the reaction of peptide thiocarboxylate 38 with bromoacetyl peptide 39 to yield a thioester-linked peptide, 40.

One significant limitation of the method is the sensitivity of the thioester bond toward hydrolysis at neutral pH or in the presence of nucleophiles. For example, Kent and co-workers noticed that a thioester bond of the type \(-\text{NHCH}_2\text{COSCH}_2\text{CO}\)- displayed a half-life of 2 h at pH 7.5.64 However, the thioester analogue of HIV-1 protease reported in their seminal paper was stable in the pH range 4 to 6. Similar results were reported by Tam and co-workers using model thioester peptide Gly-SCH\(_2\)-CO-Ala-Lys-Ala.46 Thus, thioester ligation is best carried out at mildly acidic pH (pH ~ 4.3) to avoid the hydrolysis of the target product during the ligation reaction. At this pH, the thioacid is mainly in the thiocarboxylate form because of the low pK\(_a\) of thioacids and is a better nucleophile than the thiol group of cysteine so that the thiocarboxylate group can be selectively alkylated at pH 4 in the presence of cysteine residues.66 In contrast, an alkylthiocarbamate bond is stable in a wide pH range (2–7.5). The ligation can be performed in pH 7.4 phosphate buffer or in an organic solvent such as N\(_2\),N\(_2\)-dimethylformamide (DMF) in the presence of triethylamine, whereas HPLC monitoring and purification can be done as usual using acidic water–acetonitrile gradients.

Another significant limitation of thioester ligation is the limited access to the thioacid component because of the sensitivity of the thioacid functionality to various nucleophiles, oxidants, and electrophilic reagents. In particular, the Fmoc-SPPS of peptide thioacids is highly challenging, although significant advances have been realized during the past few years.67,68 In contrast, N-phenylthiocarbonyl peptides are easily prepared using Fmoc-SPPS as discussed before.

The principle of the thiocarbamate ligation is presented in Scheme 10. The process is based on the reaction of a thiol such as a peptide featuring a cysteine residue with a phenyl-thiocarbamate component. Basically, it is a thiol–thioester exchange that proceeds efficiently in water at neutral pH. The
reaction has been performed in the presence of an excess of thiophenol to minimize the oxidation of the cysteine residue by molecular oxygen. However, recent studies have shown that this is not mandatory because of the high kinetic rates for the ligation in most cases.

N,N'-Dialkyl-S'-thiocarbamate compounds have been intensively developed as pesticides. Consequently, examination of this literature gives a lot of information on the stability of this bond toward various chemicals, in the environment, and in living organisms. S'-Phenylthiocarbamates of type 42 are highly reactive toward alkylthiols. In contrast, S'-ethyl dipropylcarboxymothioate (nPr)$_2$NCOSEt is resistant to hydrolysis and does not participate significantly in transthio carbamoylation in the presence of thiophenol or glutathione. N,N'-Diethyl-S'-p-chlorobenzylthiocarbamate, also called thiobencarb (p-ClPhCH$_2$SCONEt$_2$), is oxidized by aqueous chlorine into thiobencarb sulfoxide, p-ClPhCH$_2$S(O)CONEt$_2$. Moreover, various N,N'-dialkyl-S'-thiocarbamates are oxidized by peracids into sulfoxide or sulfone thiocarbamate derivatives, as discussed earlier (Scheme 2). These derivatives are also the main metabolites formed in living organisms. Unlike the starting N,N'-dialkyl-S'-thiocarbamates, the sulfoxide or sulfone derivatives formed by chemical or metabolic S'-oxidation are potent carbamoylation agents that react efficiently with cysteine or glutathione. Thus, the formation of thiocarbamate-linked conjugates might find use in the design of prodrug systems.

The efficiency of thiocarbamate ligation is illustrated in Scheme 11 with the synthesis of model multiple antigenic peptides (MAPs) built on a divalent or tetravalent lysine dendrimer core, the preparation of which was presented in the section devoted to the synthesis of N-phenylthiocarbonyl peptides using SPPS. Divalent dendrimer 45 was assembled in phosphate buffer at neutral pH, whereas the synthesis of tetravalent dendrimer 46 required the use of DMF to solubilize the starting phenylthiocarbonyl lysinyl core. Note that the thiocarbamate ligation product does not rearrange by S,N'-acyl shift, as is observed for thioesters during the native chemical ligation (NCL) reaction even under forcing conditions. Thus, peptide dendrimer 46 features four amino groups in addition to those displayed by the peptide chains. This certainly improves the solubility of the ligation product in aqueous buffer.

Given the ease of introducing the N-phenylthiocarbonyl functionality on peptides and the thiol group on various biomolecules or modifiers, thiocarbamate ligation constitutes an
interesting chemoselective reaction for obtaining well-defined conjugates.

AzaGLY LIGATION: SYNTHESIS OF azaGLY PEPTIDES AND azaGLY-LINKED LIPOPEPTIDES

In an azA-amino acid, the α-carbon is replaced by a nitrogen atom. Azapeptides are peptide analogues in which at least one α-amino acid residue is substituted by an azA-amino acid residue. Azapeptides exhibit propensity to adopt a β-turn geometry. AzA-amino acid scan has been used to study the relationship between β-turn secondary structure and biological activity. Moreover, azapeptides were shown to be more stable in biological medium compared to native peptides, and for this reason, they have been used to improve the stability and bioavailability of peptide drugs.

Glycine is a frequent amino acid in peptides and proteins (7.4% in vertebrates) and is the most flexible among the coded amino acids. The replacement of Gly by azA (Agl) induces significant conformational constraints in the peptide chain, a property that has been used for improving the stability and/or potency of bioactive peptides. Thus, methods enabling the synthesis of Agly peptides are of great interest because bioactive peptides very often feature one or several glycine residues. Moreover, the bioactivity and properties of bioconjugates are often dependent on the flexibility and/or stability of the linker regions. Here again, incorporation of an Agly residue can be used to achieve the desired properties.

Agl can be incorporated into peptides using well-developed SPPS methods. Alternatively, the preparation of large Agly peptides or conjugates is best carried out in solution using chemoselective ligation methods. Agly ligation between a hydrazide and an N-terminal phenylthiocarbonyl peptide offers a potential solution to this problem (Scheme 12).

![Scheme 12. Agly Ligation](image)

Agl ligation is reminiscent of the so-called thioester method developed by Aimoto and co-workers for protein total synthesis. This method relies on the activation of peptide thioesters by silver ions for the coupling of fully or minimally protected peptide segments. Besides silver ions, other metal ions such as Hg or Tl were shown to promote the activation and hydrolysis of phenylthiocarbamates in dilute aqueous solution.

Two critical parameters for Agly chemoselective ligation are the use of a high proportion of tert-butanol as cosolvent (80%) and the control of the apparent pH, which must be around 4. The role of the cosolvent is to minimize hydrolysis of the N-phenylthiocarbonyl group by lowering the concentration of water in the reaction mixture. Another advantage of using a tert-butanol/water mixture for the reaction is the possibility to solubilize hydrophobic compounds such as lipids. The apparent pH must be kept around 4 to ensure a good in situ protection of ε-amino groups by protonation, which is essential for the chemoselectivity, whereas the hydrazide component remains nucleophilic because of its low pKa (3.24 for acetyldrazine). The different examples presented in Scheme 13 illustrate the potential of the method for the synthesis of AzA peptides or lipopeptides with an azA linker between the lipid moiety and the peptide. The mildness of the experimental conditions enabled the incorporation of unsaturated lipidic or cholesterol moieties.

SYNTHESIS OF CYCLIC PEPTIDE SCAFFOLDS

The importance of peptide cyclization for studying peptide conformation, for creating new structures, or for developing peptide therapeutics is well-established. Cyclization enables one to rigidify the structure and to improve the interaction with the molecular target, the biological activity, or the stability. The synthesis of cyclic peptides can be challenging, and various methods have been designed to affect peptide macrocyclization. For a given peptide sequence, it is also of interest to vary the bond formed in the cyclization reaction because its chemical and conformational properties are expected to affect the properties of the target cyclic scaffold. One important method for producing cyclic peptides is the NCL reaction between a β-amino thiol group such as a cysteiny1 residue and a thioester group or thioester surrogate. The N-phenylthiocarbonyl group chemistry has been used for the synthesis of tail-to-side chain cyclic peptides using thioester bond formation, as shown in Scheme 14. For this, an internal lysine residue was modified by an N-phenylthiocarbonyl group while a cysteine residue was placed N-terminally. The tert-butylsulfenyl group protecting the N-terminus was removed in situ during the cyclization process because of the mild reducing properties of thiophenol present in the reaction mixture. Corresponding cyclic scaffold was isolated successfully after HPLC purification. As mentioned earlier, the thiocarbamate ligation product does not rearrange by SN-acyl shift as observed for thioesters during the NCL reaction, even under forcing conditions. Consequently, this method easily enables one to vary the size of the cyclic part of the molecule and its position within the peptide by modifying the position of the lysine residue bearing the N-phenylthiocarbonyl group and of the cysteine residue. In contrast, cyclization using NCL has so far been restricted to the preparation of tail-to-head or side chain-to-head cyclized peptides by varying the position of the cysteine residue (N-terminal cysteine, whereas the thioester functionality was on the C-terminus).

The N-phenylthiocarbonyl group also enabled the synthesis of tail-to-head cyclic peptides such as peptide using a carbamate bond forming process catalyzed by a nonribosomal peptide cyclase (Scheme 15). Cyclase-catalyzed hydrolysis of the N-phenylthiocarbonyl group of peptide was mentioned as a significant side reaction (cyclization/hydrolysis ratio of 0.78), which could be minimized by using o-methyl (cyclization/hydrolysis ratio of 0.73) or, even better, p-methoxyphenylthiocarbonyl derivatives (cyclization/hydrolysis ratio of 0.64). In the control experiment in the absence of cyclase, peptide evolved into a different cyclic peptide by reaction of the N-phenylthiocarbonyl group with diamino propionic acid residue at position three to give a urea bond. In this case, the use of tert-butanol/water mixture for the reaction is the possibility to solubilize hydrophobic compounds such as lipids. The apparent pH must be kept around 4 to ensure a good in situ protection of ε-amino groups by protonation, which is essential for the chemoselectivity, whereas the hydrazide component remains nucleophilic because of its low pKa (3.24 for acetyldrazine). The different examples presented in Scheme 13 illustrate the potential of the method for the synthesis of AzA peptides or lipopeptides with an azA linker between the lipid moiety and the peptide. The mildness of the experimental conditions enabled the incorporation of unsaturated lipidic or cholesterol moieties.

The importance of peptide cyclization for studying peptide conformation, for creating new structures, or for developing peptide therapeutics is well-established. Cyclization enables one to rigidify the structure and to improve the interaction with the molecular target, the biological activity, or the stability. The synthesis of cyclic peptides can be challenging, and various methods have been designed to affect peptide macrocyclization. For a given peptide sequence, it is also of interest to vary the bond formed in the cyclization reaction because its chemical and conformational properties are expected to affect the properties of the target cyclic scaffold. One important method for producing cyclic peptides is the NCL reaction between a β-amino thiol group such as a cysteiny1 residue and a thioester group or thioester surrogate. The N-phenylthiocarbonyl group chemistry has been used for the synthesis of tail-to-side chain cyclic peptides using thioester bond formation, as shown in Scheme 14. For this, an internal lysine residue was modified by an N-phenylthiocarbonyl group while a cysteine residue was placed N-terminally. The tert-butylsulfenyl group protecting the N-terminus was removed in situ during the cyclization process because of the mild reducing properties of thiophenol present in the reaction mixture. Corresponding cyclic scaffold was isolated successfully after HPLC purification. As mentioned earlier, the thiocarbamate ligation product does not rearrange by SN-acyl shift as observed for thioesters during the NCL reaction, even under forcing conditions. Consequently, this method easily enables one to vary the size of the cyclic part of the molecule and its position within the peptide by modifying the position of the lysine residue bearing the N-phenylthiocarbonyl group and of the cysteine residue. In contrast, cyclization using NCL has so far been restricted to the preparation of tail-to-head or side chain-to-head cyclized peptides by varying the position of the cysteine residue (N-terminal cysteine, whereas the thioester functionality was on the C-terminus).

The N-phenylthiocarbonyl group also enabled the synthesis of tail-to-head cyclic peptides such as peptide using a carbamate bond forming process catalyzed by a nonribosomal peptide cyclase (Scheme 15). Cyclase-catalyzed hydrolysis of the N-phenylthiocarbonyl group of peptide was mentioned as a significant side reaction (cyclization/hydrolysis ratio of 0.78), which could be minimized by using o-methyl (cyclization/hydrolysis ratio of 0.73) or, even better, p-methoxyphenylthiocarbonyl derivatives (cyclization/hydrolysis ratio of 0.64). In the control experiment in the absence of cyclase, peptide evolved into a different cyclic peptide by reaction of the N-phenylthiocarbonyl group with diamino propionic acid residue at position three to give a urea bond. In this case, the use of tert-butanol/water mixture for the reaction is the possibility to solubilize hydrophobic compounds such as lipids. The apparent pH must be kept around 4 to ensure a good in situ protection of ε-amino groups by protonation, which is essential for the chemoselectivity, whereas the hydrazide component remains nucleophilic because of its low pKa (3.24 for acetyldrazine). The different examples presented in Scheme 13 illustrate the potential of the method for the synthesis of AzA peptides or lipopeptides with an azA linker between the lipid moiety and the peptide. The mildness of the experimental conditions enabled the incorporation of unsaturated lipidic or cholesterol moieties.
case, hydrolysis of the N-phenylthiocarbonyl group was not significant. This spontaneous intramolecular urea bond forming reaction has not been studied so far and might represent an interesting entry to novel cyclic peptide scaffolds.

■ CONCLUSIONS

The phenylthiocarbonyl group can be easily incorporated into peptides on α- or ε-amino groups using commercially available phenylthiocloroformate and standard Fmoc-SPPS protocols. N-Phenylthiocarbonyl peptides can be purified using standard HPLC procedures and are stable upon storage. Nevertheless, the N-phenylthiocarbonyl group is an active thiol ester that can participate in a variety of useful chemical transformations, enabling the synthesis of dendrimers, cyclic peptides, or peptide conjugates. Recent synthetic applications have exploited its thioester surrogate properties. In particular, the N-phenylthiocarbonyl group participates efficiently in a thiol–thioester exchange reaction with alkylthiols to yield S-alkylthiocarbamate-linked scaffolds. Alternately, it can react chemoselectively...
with hydrazide nucleophiles upon activation with silver ions to form an azaGly bond. Another interesting application examined the activation of the N-phenylthiocarbonyl group by non-ribosomal peptide cyclases to produce peptides cyclized through the formation of a carbamate bond. We believe that the ease of synthesis of N-phenylthiocarbonyl peptides will certainly stimulate novel synthetic developments and biological applications.

AUTHOR INFORMATION

E-mail: oleg.melniky@ibl.cnrs.fr.

Notes

The authors declare no competing financial interest.

REFERENCES

(1) Rivier, M. H. (1907) Sur les chlorothiolcarboxanes de phényle. Bull. Soc. Chim. Fr. 1, 733–740.

(2) Krishnamurthy, S., and Aiminio, D. (1989) Rapid and selective reduction of functionalized aromatic disulfides with lithium tri-tert-butoxyaluminohydride. A remarkable steric and electronic control. Comparison of various hydride reagents. J. Org. Chem. 54, 4448–4462.

(3) Ehrensvärd, G. C. H. (1947) Phenyl-thio-carbonyl chloride as a group-protecting agent. Nature 159, 500.

(4) A few years later, Harris and co-workers noticed that the reaction of N-phenylthiocarbonyl-valine with δ-Cbz-L-ornithine methyl ester resulted in the hydrolysis of the phenylthiocarbonyl group; in contrast, the coupling to methyl-L-aminobenzoate was successful (see ref 5).

(5) Harris, J. I., and Work, T. S. (1950) The synthesis of peptides related to gramicidin S and the significance of optical configuration in antibiotic peptides; pentapeptides. J. Org. Chem. 63, 582–589.

(6) Lindemann, A., Khan, N. H., and Hofmann, K. (1952) Studies on polypeptides. IV. Remarks regarding the use of the phenylthiocarbonyl protecting-group in peptide synthesis. J. Am. Chem. Soc. 74, 476–480.

(7) Kollonitsch, J., Gabor, V., and Hajo, A. (1956) A new method for the synthesis of peptides. Nature 177, 841–842.

(8) Casida, J. E., Gray, R. A., and Tilles, H. (1974) Thiocarbamate-linked peptides by chemoselective peptide ligation. J. Pept. Sci. 6, 229–246, InTech, Rijeka, Croatia.

(9) Noguchi, J., and Hayakawa, T. (1954) A new synthetic method of protein analogs having periodic arrangement of amino acids. J. Am. Chem. Soc. 76, 2846–2848.

(10) Besret, S., Ollivier, N., Blanpain, A., and Melnyk, O. (2008) Thio carbamate-linked peptides by chemoselective peptide ligation. J. Pept. Sci. 14, 1244–1250.

(11) Aletras, A., Barlos, K., Gatos, D., Koutsogianni, S., and Mamos, P. (1995) Preparation of the very acid-sensitive Fmoc-Lys(Mtt)-OH. Application in the synthesis of side-chain to side-chain cyclic peptides and oligolysine cores suitable for the solid-phase assembly of MAPs and TASP5. Int. J. Pept. Protein Res. 45, 488–496.

(12) Bourel, L., Carion, O., Gras-Masse, H., and Melnyk, O. (2000) Kinetics of peptide polymerization for biomaterial applications, in Polymer Science Ed. 45, 488–496.

(13) Woodward, R. B., and Schramm, C. H. (1947) Synthesis of protein analogs. J. Am. Chem. Soc. 69, 1551–1552.

(14) Kricheldorf, H. R. (2006) Polypeptides and 100 years of chemistry of alpha-amino N-carboxyhydridines. Angew. Chem., Int. Ed. 45, 5752–5784.

(15) Ozaki, S. (1972) Recent advances in isocyanate chemistry. Chem. Rev. 72, 457–496.

(16) Naegeli, C., and Tsyabji, A. (1934) Über den umsatz aromatischer isocyanésäure-ester mit organischen säuren. I. Theorie und anwendung der reaktion für die préparative darstellung von säure anhydriden. Helv. Chim. Acta 17, 931–957.
(39) Naegeli, C., and Tyabji, A. (1935) Über den umsatz aromatischer isocyanäsüre-ester mit organischen säuren II. Isolierung einiger carbaminsäure-carbonsäure-anhydride. Helv. Chim. Acta 18, 142–160.

(40) Hayakawa, T., Mizuno, T., and Noguchi, J. (1960) Studies on the synthesis of protein analogues. XX. Poly-N-likeumarginine. Nippon Kagaku Zasshi 81, 618–620.

(41) Applewhite, T., and Niemann, C. (1958) Mixed anhydrides of S-phenylthiocarboxylic acid and carboxylic acids. J. Org. Chem. 23, 143–143.

(42) The formation of isocyanate 33 in the presence of ethanol would inevitably result in the formation of N-carboxethoxy-N-lysine ethylester, which was not observed.

(43) Noguchi, J., Hayakawa, T., and Ishino, S. (1955) Studies on the synthesis of protein analogues (part VI). Polymerisation of ε-lysine, co-polymerisation of ε-lysine and DL-phenylalanine, and co-polymerisation of glycine and DL-lysine. Sci. Rep. Kanazawa Univ. 11, 79–81.

(44) Asai, M., Tsutai, M., Shimamochi, T., and Mizushima, S. (1955) Infrared spectra of polypeptides and related compounds. I. J. Phys. Chem. 59, 322–325.

(45) Noguchi, J., Hayakawa, T., and Ebata, M. (1957) Reversible heat coagulation of some water-soluble amino acid copolymers. J. Polym. Sci. 23, 843–849.

(46) Tam, J. P., and Spetzler, J. C. (1995) Total chemical synthesis of a unique transcription factor-β building blocks for branched peptides and peptide dendrimers. Bioconjugate Chem. 13, 887–892.

(47) Grandjean, C., Gras-Masse, H., and Melnyk, O. (2001) Synthesis of clustered glycoside-antigen conjugates by two one-pot, orthogonal, chemoselective ligation reactions: Scope and limitations. Chemistry 7, 230–239.

(48) Patani, G. A., and LaVoie, E. J. (1996) Bioisosterism: A rational approach in drug design. Chem. Rev. 96, 3147–3176.

(49) Roark, W. H., Roth, B. D., Holmes, A., Trivedi, B. K., Kieft, K. A., Essenburg, A. D., Krause, B. R., and Stanfeld, R. L. (1993) Inhibitors of acyl-CoA:cholesterol acyltransferase (ACAT). 2. Modification of fatty acid anilide ACAT inhibitors: Bioisosteric replacement of the amide bond. J. Med. Chem. 36, 1662–1668.

(50) Schnolzer, M., and Kent, S. B. (1992) Constructing proteins by dovetailing unprotected synthetic peptides: Backbone-engineered HIV protease. Science 256, 221–225.

(51) Williams, M. J., Muir, T. W., Ginsberg, M. H., and Kent, S. B. (1994) Total chemical synthesis of a folded β-sandwich protein domain: An analog of the tenth fibronectin type 3 module. J. Am. Chem. Soc. 116, 10797–10798.

(52) Canne, L. E., Botti, P., Simon, R. J., Chen, Y., Dennis, E. A., and Kent, S. B. H. (1999) Chemical protein synthesis by solid phase ligation of unprotected peptide segments. J. Am. Chem. Soc. 121, 8720–8727.

(53) Raz, R., and Rademann, J. (2012) Fmoc-based synthesis of peptide thioacids for azide ligation via 2-cyanoethylthioesters. Org. Lett. 14, 5038–5041.

(54) Pira, S. L., Boll, E., and Melnyk, O. (2013) Synthesis of peptide thioacids at neutral pH using bis(2-sulfanylethyl)ethyl peptide precursors. Org. Lett. 15, 5346–5349.

(55) Cashman, J. R., Olsen, L. D., Young, G., and Bern, H. (1989) S-Oxygenation of eptam in hepatic microsomes from fresh and salt water striped bass (Morone saxatilis). J. Biol. Chem. 264, 1–11.

(56) Canne, L. E., Botti, P., Simon, R. J., Chen, Y., Dennis, E. A., and Kent, S. B. H. (1999) Chemical protein synthesis by solid phase ligation of unprotected peptide segments. J. Am. Chem. Soc. 121, 8720–8727.

(57) Raz, R., and Rademann, J. (2012) Fmoc-based synthesis of peptide thioacids for azide ligation via 2-cyanoethylthioesters. Org. Lett. 14, 5038–5041.

(58) Pira, S. L., Boll, E., and Melnyk, O. (2013) Synthesis of peptide thioacids at neutral pH using bis(2-sulfanylethyl)ethyl peptide precursors. Org. Lett. 15, 5346–5349.

(59) Cashman, J. R., Olsen, L. D., Young, G., and Bern, H. (1989) S-Oxygenation of eptam in hepatic microsomes from fresh and salt water striped bass (Morone saxatilis). J. Biol. Chem. 264, 1–11.

(60) Canne, L. E., Botti, P., Simon, R. J., Chen, Y., Dennis, E. A., and Kent, S. B. H. (1999) Chemical protein synthesis by solid phase ligation of unprotected peptide segments. J. Am. Chem. Soc. 121, 8720–8727.

(61) Raz, R., and Rademann, J. (2012) Fmoc-based synthesis of peptide thioacids for azide ligation via 2-cyanoethylthioesters. Org. Lett. 14, 5038–5041.

(62) Pira, S. L., Boll, E., and Melnyk, O. (2013) Synthesis of peptide thioacids at neutral pH using bis(2-sulfanylethyl)ethyl peptide precursors. Org. Lett. 15, 5346–5349.

(63) Cashman, J. R., Olsen, L. D., Young, G., and Bern, H. (1989) S-Oxygenation of eptam in hepatic microsomes from fresh and salt water striped bass (Morone saxatilis). J. Biol. Chem. 264, 1–11.

(64) Canne, L. E., Botti, P., Simon, R. J., Chen, Y., Dennis, E. A., and Kent, S. B. H. (1999) Chemical protein synthesis by solid phase ligation of unprotected peptide segments. J. Am. Chem. Soc. 121, 8720–8727.

(65) Raz, R., and Rademann, J. (2012) Fmoc-based synthesis of peptide thioacids for azide ligation via 2-cyanoethylthioesters. Org. Lett. 14, 5038–5041.
(80) Didierjean, C., Del Ducu, V., Benedetti, E., Aubry, A., Zoukri, M., Marraud, M., and Boussard, G. (1997) X-ray structures of aza-proline-containing peptides. J. Pept. Res. 50, 451–457.

(81) Zoukri, M., Vicherat, A., Aubry, A., Marraud, M., and Boussard, G. (1998) Azaproline as a beta-turn-inducer residue opposed to proline. J. Pept. Res. 52, 19–26.

(82) Andre, F., Boussard, G., Bayeul, D., Didierjean, C., Aubry, A., and Marraud, M. (1997) Aza-peptides. II. X-ray structures of aza-alanine and aza-asparagine-containing peptides. J. Pept. Res. 49, 556–562.

(83) Andre, F., Vicherat, A., Boussard, G., Aubry, A., and Marraud, M. (1997) Aza-peptides. III. Experimental structural analysis of aza-alanine and aza-asparagine-containing peptides. J. Pept. Res. 50, 372–381.

(84) Melendez, R. E., and Lubell, W. D. (2004) Aza-amino acid scan for rapid identification of secondary structure based on the application of N-Boc-aza-dipeptides in peptide synthesis. J. Am. Chem. Soc. 126, 6759–6764.

(85) Boeglin, D., and Lubell, W. D. (2005) Aza-amino acid scanning of secondary structure suited for solid-phase peptide synthesis with Fmoc chemistry and aza-amino acids with heteroatomic side chains. J. Comb. Chem. 7, 864–878.

(86) Dutta, A. S., Furr, B. J. A., Giles, M. B., and Morley, J. S. (2008) Synthesis and biological activity of alpha-azapeptides: Alpha-aza-analogs of luteinizing hormone releasing hormone. Clin. Endocrinol. 5, s291–s298.

(87) Wieczerzak, E., Rodziewicz-Motowidlo, S., Jankowska, E., Gieldon, A., and Clarkowski, J. (2007) An enormously active and selective azaepitide inhibitor of cathepsin B. J. Pept. Sci. 13, 536–543.

(88) Bonnet, D., Thiam, K., Loing, E., Melnyk, O., and Gras-Masse, H. (2001) Synthesis by chemoselective ligation and biological evaluation of novel cell-permeable PKC-zeta pseudosubstrate lipopeptides. J. Med. Chem. 44, 468–471.

(89) Liley, M., and Johnson, T. (2000) Solid phase synthesis of azapeptides utilising reversible amide bond protection to prevent hydantoin formation. Tetrahedron Lett. 41, 3983–3985.

(90) Bourguet, C. B., Sabatino, D., and Lubell, W. D. (2008) Benzophenone semicarbazone protection strategy for synthesis of aza-glycine containing aza-peptides. Biopolymers 90, 824–831.

(91) Mhidia, R., and Melnyk, O. (2010) Selective cleavage of an azaGly peptide bond by copper(II). Long-range effect of histidine residue. J. Pept. Sci. 16, 141–147.

(92) Ollivier, N., Besret, S., Blanpain, A., and Melnyk, O. (2009) Silver-catalyzed azaGly Ligation. Application to the synthesis of azapeptides and of lipid-peptide conjugates. Bioconjugate Chem. 20, 1397–1403.

(93) Aimoto, S. (1999) Polypeptide synthesis by the thioester method. Biopolymers 51, 247–265.

(94) Inoue, M., Shinozawa, N., Tanabe, S., Takahashi, T., Okura, K., Itoh, H., Mizoguchi, Y., Iida, M., Lee, N., and Matsuoka, S. (2010) Total synthesis of the large non-ribosomal peptide polytheonamide B. Nat. Chem. 2, 280–285.

(95) Bonnet, D., Rommens, C., Gras-Masse, H., and Melnyk, O. (2000) Chemoselective acylation of hydrazinopeptides: A novel and mild method for the derivatization of peptides with sensitive fatty acids. Tetrahedron Lett. 41, 45–48.

(96) Bonnet, D., Ollivier, N., Gras-Masse, H., and Melnyk, O. (2001) Chemoselective acylation of fully deprotected hydrazino acetyl peptides. Application to the synthesis of lipopeptides. J. Org. Chem. 66, 443–449.

(97) Camarero, J. A., and Muir, T. W. (1999) Biosynthesis of a head-to-tail cyclized protein with improved biological activity. J. Am. Chem. Soc. 121, 5597–5598.

(98) Camarero, J. A., Fushman, D., Sato, S., Giriat, I., Cowburn, D., Raleigh, D. P., and Muir, T. W. (2001) Rescuing a destabilized protein fold through backbone cyclization. J. Mol. Biol. 308, 1045–1062.

(99) Iwai, H., and Pluckthun, A. (1999) Circular beta-lactamase: Stability enhancement by cyclizing the backbone. FEBS Lett. 459, 166–172.

(100) White, C. J., and Yudin, A. K. (2011) Contemporary strategies for peptide macrocyclization. Nat. Chem. 3, 509–24.

(101) Camarero, J. A., and Muir, T. W. (1997) Chemoselective backbone cyclization of unprotected peptides. Chem. Commun., 1369–1370.

(102) Shao, Y., Lu, W., and Kent, S. B. H. (1998) A novel method to synthesize cyclic peptides. Tetrahedron Lett. 39, 3911–3914.

(103) Zheng, J.-S., Tang, S., Guo, Y., Chang, H.-N., and Liu, L. (2012) Synthesis of cyclic peptides and cyclic proteins via ligation of peptide hydrazides. ChemBioChem 13, 542–546.

(104) Boll, E., Dheur, J., Drobecq, H., and Melnyk, O. (2012) Access to cyclic or branched peptides using bis(2-sulfanylethyl)amido side-chain derivatives of Asp and Glu. Org. Lett. 14, 2222–2225.

(105) Mandal, K., Pentelute, B. L., Bang, D., Gates, Z. P., Torbee, V. Y., and Kent, S. B. H. (2012) Design, total chemical synthesis, and X-ray structure of a protein having a novel linear-loop polypeptide chain topology. Angew. Chem., Int. Ed. 51, 1481–1486.

(106) Sieber, S. A., Tao, J., Walsh, C. T., and Marahiel, M. A. (2004) Peptidyl thiophenols as substrates for nonribosomal peptide cyclases. Angew. Chem., Int. Ed. 43, 493–498.