A phenol-enriched cuticle is ancestral to lignin evolution in land plants

Hugues Renault1,2,3,4, Annette Alber1,5, Nelly A. Horst2, Alexandra Basilio Lopes6, Eric A. Fich7, Lucie Kriegshauser1, Gertrud Wiedemann2, Pascaline Ullmann1, Laurence Herrgott1, Mathieu Erhardt1, Emmanuelle Pineau1, Jürgen Ehlting5, Martine Schmitt6, Jocelyn K.C. Rose7, Ralf Reski2,3,4,8 & Danièle Werck-Reichhart1,3,4

Lignin, one of the most abundant biopolymers on Earth, derives from the plant phenolic metabolism. It appeared upon terrestrialization and is thought critical for plant colonization of land. Early diverging land plants do not form lignin, but already have elements of its biosynthetic machinery. Here we delete in a moss the P450 oxygenase that defines the entry point in angiosperm lignin metabolism, and find that its pre-lignin pathway is essential for development. This pathway does not involve biochemical regulation via shikimate coupling, but instead is coupled with ascorbate catabolism, and controls the synthesis of the moss cuticle, which prevents desiccation and organ fusion. These cuticles share common features with lignin, cutin and suberin, and may represent the extant representative of a common ancestor. Our results demonstrate a critical role for the ancestral phenolic metabolism in moss erect growth and cuticle permeability, consistent with importance in plant adaptation to terrestrial conditions.
and plants evolved from charophytean freshwater green algae around 450 Ma (refs 1,2). Key challenges associated with terrestrialization would have included increased biomechanical stresses, desiccation, rapid temperature fluctuations and higher light intensity, particularly in the ultraviolet range. Colonization of land would therefore have required major metabolic adaptations in the form of ultraviolet screens, antioxidants and precursors for structural biopolymers to resist desiccation but to allow gas exchange between the plant and the environment to ensure proper photosynthesis. Three types of complex hydrophobic extracellular biopolymers are generally described as contributing to permeability control and water transport in the vegetative tissues of vascular plants, the evolution of which was likely guided by similar selective pressures: cutin, a lipid-derived component of the cuticle on aerial plant surfaces; suberin, which results from co-polymerization of lipid and phenolic derivatives and which regulates water movement in roots; and lignin, which is synthesized from phenolic precursors via the phenylpropanoid pathway and which reinforces secondary phenolic derivatives and which regulates water movement in roots and lignin, which is synthesized from phenolic precursors via the phenylpropanoid pathway and which reinforces secondary phenolic derivatives and which regulates water movement in roots.

Results

PpCYP98 expression in developing gametophyte and sporophyte. A single-copy CYP98 gene is present in the genome of the moss *P. patens* (PpCYP98; CYP98A34; *Pp*3c22_19010V3.1). Based on a transcriptome atlas, the PpCYP98 gene is mostly expressed in above-ground haploid gametophytic and diploid sporophytic tissues (Supplementary Fig. 1). An assessment of the pattern of expression of PpCYP98 as determined after insertion of the uidA reporter gene encoding a β-glucuronidase (GUS) protein downstream of the PpCYP98 gene in transgenic moss lines (Supplementary Fig. 2) confirmed the transcriptome data, and revealed prominent expression in erect aerial organs (Fig. 2a–d; Supplementary Fig. 2). The highest PpCYP98 expression was observed in developing gametophores (Fig. 2a–c) and newly emerged and elongating phyllids (leaf-like structures; Fig. 2d), reproductive organs (gametangia: male antheridia and female archegonia), embryos and developing sporophytes including immature spores (Supplementary Fig. 2). Low levels of expression were also detected in the haploid filamentous protonema growing in direct contact with the wet substrate (Fig. 1b; Supplementary Fig. 1).

PpCYP98 prevents organ fusion. Three independent ΔPpCYP98 deletion lines were generated (Supplementary Fig. 3) and showed no evidence of altered growth of the protonema filaments (Fig. 2e,f; Supplementary Fig. 4), but consistently exhibited aborted gametophore formation, associated with evidence of organ fusion, thereby precluded from forming gametangia and from sexual reproduction (Fig. 2g–j). Similar phenotypes have been observed in mutants of seed plants that are impaired in biosynthesis of the lipid biopolymer, cutin12,23.

PpCYP98 controls the formation of caffeoyl-threonic acids. Comparing profiles of soluble phenolic compounds extracted from the gametophores, we observed a complete absence in the mutant of several major compounds present in the wild type (WT; Fig. 3a). Based on mass and induced fragmentation patterns, the missing compounds were identified as isomers of caffeoyl-threonic acid (Fig. 3b; Supplementary Fig. 5, Supplementary Table 1). Other major phenolic compounds with slightly altered patterns, the missing compounds were identified as isomers of caffeoyl-threonic acid (Fig. 3b; Supplementary Fig. 5, Supplementary Table 1). Other major phenolic compounds with slightly altered abundances in the mutant were subsequently assigned p-coumaroyl-threionate structures (Fig. 3b; Supplementary Fig. 6, Supplementary Table 1). This suggested that p-coumaroyl-threonic acid might undergo CYP98-dependent *meta*-hydroxylation in moss. To test this hypothesis, the enzyme was expressed in yeast (Supplementary Fig. 7) and was shown to convert chemically synthesized p-coumaroyl-2-threonic and p-coumaroyl-4-threonic acid substrates (Supplementary Note 2) into caffeoyl-2-threonic and caffeoyl-4-threonic acids, respectively (Fig. 3c).

Neither caffeic acid nor caffeoyl-shikimate/quinate was detected in moss crude extracts (Supplementary Table 1; Supplementary Fig. 8). To identify other potential caffeoyl derivatives in the extract, the latter was submitted to acid hydrolysis before liquid chromatography–mass spectrometry (LC–MS)/MS analysis, but no trace of caffeoyl residues was detected (Supplementary Note 2). *PpCYP98* deletion thus abolished the formation of free and bound caffeic acid.

PpCYP98 is required for the moss cuticle formation. The organ fusion phenotype of the ΔPpCYP98 mutant suggested impaired formation of the cuticle. This was further indicated by greatly increased surface permeability of the mutant gametophore to toluidine blue stain, compared with WT (Fig. 4a, Supplementary Fig. 9). Three independent ΔPpCYP98 deletion lines were generated (Supplementary Fig. 3). The PpCYP98 gene is predominantly expressed in erect aerial organs (gametangia: male antheridia and female archegonia), embryos and developing sporophytes including immature spores (Supplementary Fig. 2). Low levels of expression were also detected in the haploid filamentous protonema growing in direct contact with the wet substrate (Fig. 1b; Supplementary Fig. 1).

PpCYP98 controls the formation of caffeoyl-threonic acids. Comparing profiles of soluble phenolic compounds extracted from the gametophores, we observed a complete absence in the mutant of several major compounds present in the wild type (WT; Fig. 3a). Based on mass and induced fragmentation patterns, the missing compounds were identified as isomers of caffeoyl-threonic acid (Fig. 3b; Supplementary Fig. 5, Supplementary Table 1). Other major phenolic compounds with slightly altered abundances in the mutant were subsequently assigned p-coumaroyl-threionate structures (Fig. 3b; Supplementary Fig. 6, Supplementary Table 1). This suggested that p-coumaroyl-threonic acid might undergo CYP98-dependent *meta*-hydroxylation in moss. To test this hypothesis, the enzyme was expressed in yeast (Supplementary Fig. 7) and was shown to convert chemically synthesized p-coumaroyl-2-threonic and p-coumaroyl-4-threonic acid substrates (Supplementary Note 2) into caffeoyl-2-threonic and caffeoyl-4-threonic acids, respectively (Fig. 3c).

Neither caffeic acid nor caffeoyl-shikimate/quinate was detected in moss crude extracts (Supplementary Table 1; Supplementary Fig. 8). To identify other potential caffeoyl derivatives in the extract, the latter was submitted to acid hydrolysis before liquid chromatography–mass spectrometry (LC–MS)/MS analysis, but no trace of caffeoyl residues was found in the mutant (Fig. 3d; Supplementary Table 2). *PpCYP98* deletion thus abolished the formation of free and bound caffeic acid.
Physcomitrella patens

Ascorbic acid pathway

HO

HO

Threonic acid

\[\text{p-coumaroyl-CoA} \]

CYP98

\[\text{Caffeoyl-threonate} \]

Cuticle biopolymer

Angiosperms

Pentose pathway

\[\text{Shikimic acid} \]

\[\text{p-coumaroyl-shikimate} \]

\[\text{Caffeoyl-shikimate} \]

\[\text{Lignin} \]

\[\text{p-coumaroyl-threonate} \]

Figure 1 | The hydroxycinnamoyl-shikimate pathway in angiosperms and the P. patens hydroxycinnamoyl-threonate pathway established in this study.

The figure shows p-coumaroyl-2-threonate as PpCYP98 substrate, but p-coumaroyl-4-threonate is also converted by the enzyme. The p-coumaroyl-shikimate molecule is drawn according to the structure experimentally determined by Levsh et al.39.

Discussion

Taken together, the free phenolic and polymer analyses indicate that caffeic acid derivatives are the major products of the phenolic metabolism in the moss P. patens. Our data also demonstrate that this moss ‘pre-lignin’ pathway is crucial for the formation of a cuticular biopolymer and that caffeic acid production is a limiting factor in its biosynthesis. Unexpectedly, the substrate for the meta-hydroxylation reaction to form caffeic acid does not appear as free p-coumaric acid or p-coumaroyl-shikimate, but rather as p-coumaroyl-threonate. Threonic acid is a product of ascorbate catabolism25,26 and so we conclude that the formation of caffeic acid in moss is coupled to the hexose-derived ascorbate pathway, rather than the plastidial pentose phosphate-derived shikimate pathway, as is reported for vascular plants (Fig. 1). The importance of ascorbate has been revealed by the conservation of three different biosynthesis pathways in P. patens27. Stresses, including light and desiccation, are likely to regulate the formation of this biopolymer, and possibly the cuticle caffeic acid content, thereby increasing its antioxidant and ultraviolet-screening properties. The composition of the moss cuticle, namely its associating oxygenated phenolics and fatty acids, is more reminiscent of the polyester suberin than of cutin from seed plants3. It clearly confers surface protection and impermeability, and is also likely to contribute to the erect growth and rigidity of the moss gametophore. It may in particular contribute to the rigidity of the gametophore phyllid sheets, which are formed from a single-cell layer24. It has been hypothesized that cutin and suberin might share a common evolutionary origin4. Our data...
suggest that the lipid–phenolic matrix present in \textit{P. patens} may constitute an extant representative of the common ancestor of the suberin, cutin and lignin polymers that have been described associated with highly differentiated vegetative tissues in more recently diverged plant lineages. This ancestral structure was associated with highly differentiated vegetative tissues in more recently diverged plant lineages. This ancestral structure was presumably critical for the plant transition from water to land, and suggest new strategies for engineering biopolymers to enhance stress tolerance in vascular plants.

Methods

Plant material and growth conditions. \textit{P. patens} (Hedw.) Bruch & Schimp. strain Grandsen6 was cultured in liquid or on solid Knop medium28 supplemented with 50 \(\mu\)molL\(^{-1}\) H\(_3\)BO\(_3\), 50 \(\mu\)molL\(^{-1}\) MnSO\(_4\), 15 \(\mu\)molL\(^{-1}\) ZnSO\(_4\), 2.5 \(\mu\)molL\(^{-1}\) KI, 0.5 \(\mu\)molL\(^{-1}\) Na\(_2\)MoO\(_4\), 0.05 \(\mu\)molL\(^{-1}\) CuSO\(_4\), and 0.05 \(\mu\)molL\(^{-1}\) CoCl\(_2\). Medium was solidified with 12 g l\(^{-1}\) agar (OXOID, Thermo Scientific). Plants were kept at 23°C under 16/8 h day/night cycle, light intensity set to 70 \(\mu\)mol m\(^{-2}\) s\(^{-1}\), and liquid cultures were upheld under constant agitation for proper aeration.

Protonema material was grown in liquid cultures and maintained by weekly tissue disruption and subculturing. Gametophores were propagated on agar plates. In some cases, gametophores liquid cultures were established by soft tissue disruption before29. Some cases, gametophores liquid cultures were established by soft tissue disruption and subculturing. Gametophores were propagated on agar plates. In some cases, gametophores liquid cultures were established by soft tissue disruption. Sporophyte formation was induced in agar plate-grown gametophores by reducing day length and temperature as reported in some cases, gametophores liquid cultures were established by soft tissue disruption and subculturing. Gametophores were propagated on agar plates. In some cases, gametophores liquid cultures were established by soft tissue disruption. Sporophyte formation was induced in agar plate-grown gametophores by reducing day length and temperature as reported before29.

Generation of transgenic lines. To generate the \(\text{\text{\text{\Delta}}}\)\textit{PpCYP98} knockout mutants, two 750 bp genomic regions were PCR-amplified from \textit{P. patens} genomic DNA and assembled with the \textit{uidA} selection cassette into a PCR-linearized pGEM-T vector via GIBSON cloning30 (Supplementary Fig. 3, Supplementary Table 3 for primers). Twenty-five micrograms of linearized construct were used for PEG-mediated transfection of \textit{P. patens} protoplast31. Transformants were selected on Knop plates supplemented with 25 mg l\(^{-1}\) geneticin (G418).

For \(\text{\text{\text{\Delta}}}\)\textit{PpCYP98:uidA} reporter lines, two 800 bp genomic regions framing the \textit{PpCYP98} STOP codon were PCR-amplified from \textit{P. patens} genomic DNA and assembled with the \textit{uidA} reporter gene into a PCR-linearized pGEM-T vector via GIBSON cloning30 (Supplementary Fig. 2, Supplementary Table 3). A linker DNA sequence was introduced during PCR to limit GUS protein hindrance on \textit{PpCYP98} activity (Supplementary Fig. 2). The \(\text{\text{\text{\Delta}}}\)\textit{PpCYP98:uidA} construct was excised from the vector backbone by EcoRI digestion, using restriction sites introduced during PCR. Twenty-five micrograms of linearized construct were used for transfection of \textit{P. patens} protoplast31. The \(\text{\text{\text{\Delta}}}\)\textit{PpCYP98:uidA} construct does not harbour a selection cassette and was therefore co-transfected with the \textit{pRT101} plasmid32 containing the \textit{nptII} selection cassette. Transformants were selected on Knop plates supplemented with 25 mg l\(^{-1}\) geneticin (G418).

Molecular characterization of transgenic lines. Following the selection process, a previously established direct-PCR protocol33 was implemented to identify transformants with proper genomic integration of the DNA construct. Briefly, one gametophore or 2–3 protonema filaments were incubated for 15 min at 45°C in a DNA extraction buffer (9.1 g l\(^{-1}\) Tris-HCl pH 8.8, 2.6 g l\(^{-1}\) (NH\(_4\))\(_2\)SO\(_4\), 0.1 ml l\(^{-1}\) Tween 20). PCR reactions were performed with the Phire II polymerase (Thermo Scientific) and 2.5 \(\mu\)l of the DNA extract in 15 \(\mu\)l reaction. Both \(S^\prime\) and \(3^\prime\) integrations were verified using appropriate PCR strategy and primers (Supplementary Figs 2 and 3, Supplementary Table 3).

\(\text{\text{\text{\Delta}}}\)\textit{PpCYP98} lines identified by direct-PCR were further validated at the molecular level by conventional PCR with reverse transcription (Supplementary Fig. 3C). To this end, total RNA was isolated from \(\sim\) 8 mg of lyophilized 3-day-old
Figure 3 | PpCYP98 is a phenolic ring meta-hydroxylase and uses esters of threonic acid as substrates. (a) Ultraviolet chromatogram showing the absence of major peaks in the ΔPpCYP98 mutant gametophore crude extract. IS, internal standard (morin). (b) Names and structures of molecules at the indicated retention times (RT). (c) PpCYP98-dependent conversion of p-coumaroyl-2-threonate (pC2T) and p-coumaroyl-4-threonate (pC4T) esters into corresponding caffeoyl threonate esters (C2T and C4T). Control reactions without NADPH were concurrently analysed. Molecules were detected using dedicated multiple reaction monitoring (MRM) methods. Note that two caffeoyl-2-threonate isomers are produced from the two p-coumaroyl-2-threonate isomers present in the synthetic substrate, shown in Supplementary Fig. 6. (d) Acid hydrolysis of crude extracts demonstrates the total absence of caffeate in gametophores of the ΔPpCYP98 mutants. Results are the mean ± standard error from three independent biological samples for WT and three independent mutant lines. Asterisk indicates a significant difference between mutants and WT (P-value = 0.037; two-tailed Student’s t-test for samples of unequal variance).

Figure 4 | PpCYP98 produces cutin caffeoyl units and is critical for cutin formation in P. patens. (a) Toluidine blue permeability staining indicates a cuticle defect in the ΔPpCYP98 mutant gametophore. Scale bars, 0.5 mm. (b) Transmission electron micrographs of the phyllid outer cell surface showing alteration of the ΔPpCYP98 mutant cuticle layer. cut, cuticle; cw, cell wall; pm, plasma membrane. Scale bars, 0.5 μm. (c) Comparative analysis of WT and mutant cutin gametophore composition. Results are the mean ± standard error from three independent biological samples for WT and three independent lines for the mutant. n.d., not detected. (d) Exogenous caffeate supply (20 μM) restores growth of the ΔPpCYP98 mutant gametophore. Scale bars, 0.2 mm. (e) Exogenous caffeate (20 μM) supply restores cuticle impermeability to toluidine blue of the mutant phyllids. Scale bar, 0.5 mm.
protonema material using TriReagent (Sigma-Aldrich). Twenty micrograms of RNA were treated with 5U of RNase (Promega) and subsequently purified with the Nucleospin RNA clean-up XS kit (Macherey-Nagel). One microgram of RNA were treated with 5U of RQ1 DNaseI (Promega) and subsequently purified protonema material using TriReagent (Sigma-Aldrich). Genomic DNA was isolated using a protocol adapted from Edwards and Sandel 1993. Briefly, nucleic acids were extracted from 5 mm 0.5-day-old lyophilized protonema material with 500 ml of lysis buffer (200 mM Tris-HCl pH 8.0, 250 mM NaCl, 25 mM EDTA, 0.5% SDS) and thorough agitation. Nucleic acids were purified by addition of a 500 ml of a phenolchloroform (1:1) solution (pH 8.0) followed by a precipitation with sodium acetate and isopropanol. DNA pellets were washed with 70% ethanol, dissolved in 50 mM Tris pH 8.0 and resuspended in 10 ml sterile water. DNA samples were treated with RNase A/T1 (Thermo Scientific) to remove RNA. DNA was re-purified with a phenolchloroform step as described above. Typical yields were ~0.5 mg DNA per mg of dry plant material.

Quantitative PCR reactions were run on a LightCycler 480 II device (Roche). Reactions were performed in triplicate and crossing points were determined using the manufacturer software. Both the 5’- and 3’-homologous regions were targeted using specific primers (Supplementary Fig. 3, Supplementary Table 3). The single-copy gene PpCPL (Pp1s107_181V6.1) was amplified using two primer pairs and served an internal standard for input amount normalization. Transgene copy number was determined by comparing relative values of the tested genomic segment in transgenic lines with the NADPH, incubated at 28°C for 10 min. Beads were washed twice with 30 ml of buffer A. Cell debris and remaining proteins were removed from the pooled lysates by a 20 min centrifugation step at 100,000 g at 4°C. Pelleted microsomes were resuspended in TEG buffer (50 mM Tris-HCl pH 7.5, 0.5 mM EDTA, 30% glycerol by volume) with a Potter-Elvehjem (1 ml) anagen. Microsomes were centrifuged containing PpCP998 recombiant proteins were stored at ~20°C until processing.

Enzyme assays were performed in 50 mM potassium phosphate buffer (pH 7.4) containing 100 mM NaCl, 10 pmol of PpCP998 recombinant enzyme and 300 nM NADPH in a final volume of 200 ml. Reactions were initiated by addition of the NADPH, incubated at 28°C in the dark for 30 min and terminated with 100 ml 50% acetic acid and 4/10 acetonitrile. Microsomal membranes were spun down by centrifugation (13,000g, 10 min, 4°C). Reaction products were analysed from supernatants by Ultra Performance Liquid Chromatography (UPLC)–MS/MS as described below.

Metabolic profiling of Physcomitrella patens. Protonema material was harvested 3 days after tissue disruption. Gametophores grown in liquid medium were harvested 1 month after the last disruption and 1 week after medium change. P. patens tissue were collected for pouring the culture onto a sieve (100 mm pore size) and were thoroughly rinsed with distilled water, quickly blotted on paper towel and then frozen in liquid nitrogen. Tissues were lyophilized overnight before grinding with 5 mm steel balls and a Tissuelyser II (Qagen) operated at 30 Hz for 2 min.

Metabolites were extracted with a previously described methanol:chloroform: water protocol 25. Briefly, 400 ml of methanol containing 10 mM methanol as an internal standard were added to each of lyophilized ground plant material. The samples were homogenized by sonication for 15,000g, 4°C, 15 min. Supernatants were transferred to clean microtubes and constituted the crude extracts. To hydrolyse ester bonds of hydroxycinnamonic acid conjugates, 250 ml of crude extract were dried under reduced pressure. Dry residues were resuspended in a 50% methanol solution containing 2N HCl and 2.5 mg ml −1 ascorbic acid as an antioxidant. Acid hydrolysis was performed at 80°C for 2 h.

Metabolites separation and detection were carried out on an Acquity UPLC (Waters corp.) coupled to a photodiode array detector (Waters corp.) and a Quattro Premier XE tandem-mass spectrometer (Waters corp.) equipped with an electrospray ionization source. Ten microliters of extract were injected onto a UPLC BEH C18 column (100 × 2.1 mm, 1.7 µm; Waters) outfitted with a pre-column and operated at 35°C. Metabolites chromatography was performed at a 0.35 ml min −1 flow rate with a mixture of 0.1% formic acid in water (solvent A) and 0.1% formic acid in acetonitrile in solvent B according to the following program: initial: 98% A; 11.25 min, 0% A, curve B; 12.75 min, 0% A, curve B; 13.50 min, 98% A, curve B; 15 min, 98% A. Nitrogen was used as the drying and nebulizing gas-source gas. The nebulizer gas flow was set to 50 ml h −1, and the desolvation gas flow was set to 900 ml h −1. The interface temperature was kept at 400°C, and the source temperature at 135°C. Capillary voltage was set to 3.4 kV. Data acquisition and analysis were performed with the MassLynx v4.1 software (Waters corp.). Metabolites were ionized in positive mode and detected using dedicated multiple reaction monitoring methods (Supplementary Table 4). The Quantitative module of MassLynx was executed to integrate peaks and to report corresponding areas. Peak areas were normalized to plant dry weight and internal standard level (morin), leading to relative levels. External calibration curves of authentic standards were employed for the absolute quanitification of hydroxycinnamonic acid after acid hydrolysis.

In vitro assay for palmitic acid conversion. The radiolabelled substrate was dissolved in ethanol that was evaporated before the addition of microsomal fraction into the glass tube. Resolubilization of the substrates was confirmed by measuring the radioactivity of the incubation media. The standard assay (0.1 ml) contained 20 mM sodium phosphate (pH 7.4), 1 mM NADPH, radiolabelled substrate (100 µM) and 35 µl of microsomal fraction. The reaction was initiated by the addition of NADPH and was done in a bathwater 20°C under agitation. Incubation media were directly spotted on thin layer chromatography (TLC) plates. For separation of metabolites from residual substrate, TLC plates were developed with a mixture of diethyl ether/light petroleum (boiling point, 40–60°C)/formic acid (50:50:1, v/v/v). The plates were scanned with a radioactivity detector (Raytest Rita Star).

Transmission electron microscopy. Samples were fixed overnight in 2% glutaraldehyde and were then treated for 2 h with 2% uranyl acetate 2% (v/v) and then stained with osmium tetroxide 0.1% (v/v) in 150 mM phosphate buffer, pH 7.2. Samples were dehydrated through an ethanol series and infiltrated with Epon8122 medium grade resin (Polysciences). Polymerization was allowed for 48 h at 60°C. Ultrathin sections (70 microns) were cut using an ultracut E microtome (Reichert) and mounted on grids coated with Formvar (electron microscopy sciences (EMS)). Samples were visualized with a Hitachi H-7600 electron microscope operating at 80 kV.

Permeability test. Tissue permeability was assessed by immersing plants into a 0.05% toluidine blue solution for 2 min. Samples were subsequently thoroughly washed with distilled water until the washing solution was clear.

Cultin monomers analysis. Cultin monomers analysis was performed on the same plant material as used for metabolic analysis (that is, lyophilized gametophores grown in liquid medium). For each sample, ~200 mg of ground, lyophilized moss tissue was added to a pre-weighed 40 ml glass vial for processing. The tissue was delipitated by extensive washing with a series of solvents, each containing 0.01% butylated hydroxytoluene, as follows.
A total of 40 ml of isopropanol pre-heated to 85 °C was added to each sample and incubated at 85 °C for 15 min, then after cooling to room temperature, the samples were shaken at 250 r.p.m. for 1 h and centrifugated at 1,500 g for 5 min to pellet most of the tissue. The supernatant was removed with a glass Pasteur pipette and filtered through a paper filter (Whatman #1) to collect the suspended tissue. Three more washes (agitation, centrifugation and filtering) were performed and the supernatant was removed with a glass Pasteur pipette adding 30 ml of room temperature isopropanol each time. The tissue was then washed with the following series of solvents: 2:1 chloroform: methanol (repeated once), 1:2 chloroform: methanol, 1:1 chloroform: methanol, 1:2 chloroform: methanol, pure methanol. The samples were agitated with each of these solvents at 250 r.p.m. for at least 2 h and up to overnight, with centrifugation and filtration (as described above) after each wash. The tissue was then dried under a stream of nitrogen for 20 min and freeze dried overnight. The vial was weighed to determine the dry, delipidated tissue weight.

A total of 3 ml of reaction media (12:3:5 methanol: methyl acetate: 25% sodium methoxide) and 100 µg of each of pentadecalactone and heptadecanoate (internal standards) were added to each sample, and the mixture was then heated at 60 °C overnight to depolymerize the cutin. The samples were then cooled to room temperature and 16 ml dichloromethane, 2 ml glacial acetic acid and 4 ml 0.9% NaCl in 100 mM Tris (pH 8.0) was added to each and vortexed to mix. Two phases were separated by centrifugation (2 min at 1,500 g) and the lower phase was transferred to a new vial and 14 ml of 0.9% NaCl in 100 mM Tris (pH 8.0) was added and mixed by vortexing. Two phases were again separated by centrifugation (2 min at 1,500 g) and the lower phase was transferred to a new vial, while the upper phase was discarded. Roughly 0.5 g of anhydrous sodium sulphate added to remove any residual water and the solution then filtered through a paper filter (Whatman #1) into a clean vial.

An aliquot of each cutin sample was dried by heating at 40 °C under a stream of nitrogen, and derivatized with standards and also by performing GC–mass spectrometry (MS) using an Agilent GC 6890 with a Flame Ionization Detector. Standards were added based on a comparison of retention times with standards and also by performing GC–mass spectrometry (MS) using an Agilent GC 6890 coupled to a LECO GC MATE II mass spectrometer. Cutin levels were normalized to the internal standards and the dry, delipidated tissue weights.

Chemical complementation. For the chemical complementation of the ΔPpcYP98 plants, caffeic acid (Sigma-Aldrich) and 100 µg of each of pentadecalactone and heptadecanoate (internal standards) were added to each vial, and the mixture was then heated at 60 °C overnight to depolymerize the cutin. The samples were then cooled to room temperature and 16 ml dichloromethane, 2 ml glacial acetic acid and 4 ml 0.9% NaCl in 100 mM Tris (pH 8.0) was added to each and vortexed to mix. Two phases were separated by centrifugation (2 min at 1,500 g) and the lower phase was transferred to a new vial, while the upper phase was discarded. Roughly 0.5 g of anhydrous sodium sulphate added to remove any residual water and the solution then filtered through a paper filter (Whatman #1) into a clean vial.

An aliquot of each cutin sample was dried by heating at 40 °C under a stream of nitrogen, then derivatized with 50 µl each of pyridine and BSTFA (N,O-bis(trimethylsilyl)trifluoroacetamide) for 10 min at 90 °C dried again by heating under nitrogen, and resuspended in 100 µl chloroform. The samples were analysed by gas chromatography (GC) using an Agilent GC 6890 with a Flame Ionization Detector. Compounds were identified based on comparison of retention times with standards and also by performing GC–mass spectrometry (MS) using an Agilent GC 6890 coupled to a LECO GC MATE II mass spectrometer. Cutin levels were normalized to the internal standards and the dry, delipidated tissue weights.

Chemical synthesis of p-coumaroyl-threonate esters. Detailed procedures are available in Supplementary Note 2.

Data availability. The data that support the findings of this study are available from the corresponding authors upon request. The transgenic moss lines described in this study are deposited in the International Moss Stock Center (http://www.moss-stock-center.org/) with the accession numbers IMSC-40805–40814.

References

1. Kenrick, P. & Crane, P. R. The origin and early evolution of plants on land. Nature 389, 33–39 (1997).
2. Bowman, J. L. Walkabout on the long branches of plant evolution. Nature 408, 36–41 (2000).
3. Weng, J. K. & Chapple, C. The origin and evolution of lignin biosynthesis. BioEssays 28, 355–364 (2006).
4. Fich, E. A., Segerson, N. A. & Rose, J. K. The plant polyester cutin: biosynthesis, biodegradation, and function. Trends Plant Sci. 13, 555–561 (2008).
5. Beisson, F., Li-Beisson, Y. & Pollard, M. Solving the puzzles of cutin and suberin polymer biosynthesis. Trends Plant Sci. 15, 534–538 (2010).
6. Javelle, M., Vernoud, V., Rogowsky, P. M. & Ingram, G. C. Epidermis: the formation and functions of a fundamental plant tissue. New Phytol. 189, 17–39 (2011).
7. Brunold, C. & Chappell, C. Phenolic polyamines: the origin and evolution of phenylpropanoid pathway. Trends Plant Sci. 16, 554–562 (2011).
8. Hohe, A., Rensing, S. A., Mildner, M., Lang, D. & Rieski, R. Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-box gene in the moss Physcomitrella patens. Plant Biol. 4, 595–602 (2002).
9. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).
10. Hohe, A. et al. An improved and highly standardized transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens. Curr. Genet. 50, 339–347 (2006).
11. Girke, T., Schmidt, H., Zahringer, U., Reski, R. & Heinz, E. Identification of a novel delta 6-acyl-group desaturase by targeted gene disruption in Arabidopsis thaliana. Planta 227, 9704–9709 (2008).
12. Horst, N. A. et al. A single homeobox gene triggers phase transition, embryogenesis and asexual reproduction. Nat. Plants 2, 15290 (2016).
13. Edwards, K., Johnstone, C. & Thompson, C. A simple and rapid method for the purification of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19, 1349 (1991).
14. Liu, Z. et al. Evolutionary interplay between sister cytochrome P450 genes shapes plasticity in plant metabolism. Nat. Commun. 7, 13026 (2016).
15. Urban, P., Mignotte, C., Kazmaier, M., Delorme, F. & Pompon, D. Cloning, yeast expression, and characterization of the coupling of two distantly related Arabidopsis thaliana NADPH-cytochrome P450 reductases with P450 CYP73A3. J. Biol. Chem. 272, 19176–19186 (1997).
16. Reinaud, H. et al. The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol. 10, 20 (2010).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14713 | www.nature.com/naturecommunications

ARTICLE
Acknowledgements
D.W.-R., R.R. and H.R. acknowledge the support of the Freiburg Institute for Advanced Studies (FRIAS) and the University of Strasbourg Institute for Advanced Study (USIAS) to the METABEVO project. D.W.-R. and H.R. also acknowledge support of the Agence Nationale de la Recherche to the LabCom TerpFactory. Support to J.K.C.R. was provided by grants from the US National Science Foundation’s Plant Genome Research Program (IOS-1339287) and by the Agriculture and Food Research Initiative Competitive Grants Program (2011-67013-19399) of the US Department of Agriculture’s National Institute of Food and Agriculture. E.A.F. was supported by a fellowship from NSERC (Natural Sciences and Engineering Research Council of Canada). A.A. acknowledges funding by the Natural Sciences and Engineering Research Council of Canada in the framework of the Collaborative Research and Training Experience Program ‘Working on Walls’ and from the College Doctoral European. R.R. acknowledges funding by the Excellence Initiative of the German Federal and States governments (EXC 294). N.A.H. is grateful for the support from the People Programme (Marie Curie Actions) of the European Union’s 7th Framework Programme (FP7/2007-2013) under REA Grant Agreement 289217. L.K. and E.P. acknowledge the support of the French Ministry of Education and Research for PhD funding. We thank Dr F. Pinot (IBMP, Strasbourg) for providing the CYP704B1 chromatograms. This paper reflects only the author’s views and the European Union is not liable for any use that may be made of the information contained herein.

Author contributions
H.R., D.W.-R. and R.R. conceived the study. H.R. planned the experiments. H.R. performed cloning and metabolic analyses, generated transgenic lines and characterized their phenotype. A.A. performed in vitro enzyme assays under the supervision of PU and contributed to the identification of the metabolites and reaction products. N.A.H. performed GUS assays and chemical complementation of mutant lines. A.B.L. synthesized chemicals under the supervision of M.S.; G.W. contributed to transgenic lines production. E.P. tested in vitro fatty acid metabolism. E.A.F. performed cutin analysis under the supervision of J.K.C.R.; L.K. contributed to gene expression analysis. L.H. contributed to enzyme production. M.E. performed microscopy analyses. H.R. ensured data analysis and visualization. H.R. and D.W.-R. wrote the initial draft, which was subsequently edited by R.R., J.K.C.R., M.S., J.E., A.A. and N.A.H. Funding was provided by D.W.-R., R.R., J.K.C.R. and J.E.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Renault, H. et al. A phenol-enriched cuticle is ancestral to lignin evolution in land plants. Nat. Commun. 8, 14713 doi: 10.1038/ncomms14713 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017