BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open’s open peer review process please email info.bmjopen@bmj.com
Protection or risk: individual and environmental factors associated with early childhood development in a cross-sectional study

Journal:	BMJ Open
Manuscript ID:	bmjopen-2022-065936
Article Type:	Original research
Date Submitted by the Author:	23-Jun-2022
Complete List of Authors:	Schild, Clara; Leipzig University, LIFE Leipzig Research Center for Civilization Diseases
Meigen, Christof; Leipzig University, LIFE Leipzig Research Center for Civilization Diseases	
Kappelt, Jonas; Leipzig University, LIFE Leipzig Research Center for Civilization Diseases	
Kiess, Wieland; Leipzig University, LIFE Leipzig Research Center for Civilization Diseases; Leipzig University, Department of Women and Child Health, Hospital for Children and Adolescents and Center for Paediatric Research (CPL)	
Poulain, Tanja; Leipzig University, LIFE Leipzig Research Center for Civilization Diseases; Leipzig University, Department of Women and Child Health, Hospital for Children and Adolescents and Center for Paediatric Research (CPL)	
Keywords:	PAEDIATRICS, Developmental neurology & neurodisability <
PAEDIATRICS, Community child health < PAEDIATRICS, SOCIAL MEDICINE, PUBLIC HEALTH |
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
Protection or risk: individual and environmental factors associated with early childhood development in a cross-sectional study

Clara Schild¹, Christof Meigen¹, Jonas Kappelt¹, Wieland Kiess¹,², Tanja Poulain¹,²

¹LIFE Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
²Department of Women and Child Health, Hospital for Children and Adolescents and Center for Paediatric Research (CPL), Leipzig University, Leipzig, Germany

Corresponding author: Clara Schild, LIFE Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany, (clara-schild@t-online.de)

Word count: 3880

Keywords: child development, socioeconomic status, gestational age, cognitive development, language development
ABSTRACT

Objectives To explore environmental and individual factors that are associated with children's neurodevelopment and to investigate whether the strength of these associations differs according to the age of the children.

Design Cross-sectional study

Setting This study was part of the LIFE Child study, a large cohort study conducted in Leipzig, Germany.

Participants 778 children between 0.5 and 6 years of age (48.6% female, mean age = 2.67 years).

Primary and Secondary outcome measures The outcomes were cognitive development, language development, body motor skills, hand motor skills, social-emotional development, and tracing skills, measured with a standardized development test. We applied linear mixed effect models to analyze the associations between development in each domain and gestational age, socioeconomic status (SES), child sex, behavioral difficulties, siblings, sleep duration, breastfeeding duration, and overweight/obesity. We also tested for interactions between these variables and child age or sex.

Results Higher gestational age and higher SES were associated with better outcomes in almost all developmental domains. Children with older siblings had improved body and hand motor skills compared to children without older siblings. Boys had poorer scores than girls in body and hand motor skills and tracing. Children with behavioral difficulties had significantly poorer outcomes in most developmental domains. Some of the associations with SES and sex were stronger in older than in younger children. Associations between gestational age and motor development were weaker in older than in younger children. We did not find associations between child development and sleep duration, breastfeeding duration, or overweight/obesity.

Conclusion We identified factors that had a protective effect and factors that posed a risk to the development of children under 6 years of age. The effect of SES and sex increased with age. The effect of gestational age decreased as children got older.
INTRODUCTION

Early child development is the basis for later academic, professional, and personal success.[1,2] As a complex and variable process, it is influenced by numerous individual (psychosocial or biological) and environmental factors. These factors might be protective or pose a risk to child development. Knowledge of both unchangeable and variable factors helps clinicians, teachers, and policy makers to target children who are at risk and to correctly evaluate their developmental status.

Low gestational age at birth is a major developmental risk for children. Children born prematurely (<37th week of gestation) are at increased risk for developmental delays in cognition, language, motor skills, and social-emotional development.[3–5] In general, the earlier children are born, the greater their developmental disadvantages.[6] This phenomenon is stronger in boys than in girls.[7–9] Some studies have shown that even children born mature but before 39 weeks of gestation show a slightly increased risk of developmental deficits.[4,6] While some longitudinal studies show that developmental deficits decrease or disappear as children grow older (at least in children born after the 34th week of gestation),[4,10] other studies show that differences between preterm and term-born infants persist even at school age.[11,12]

The relationship between a family's socioeconomic status (SES) and their children's development has been examined for decades.[13] Children from poorer social backgrounds were found to show developmental delays[14,15] from as early as 7 months of age.[16] Several studies have shown that these disadvantages increase over childhood.[16,17] In line with this assumption, several studies showed an increased risk for achievement gaps in school between children from low- and high-SES families.[13,16,18] Nevertheless, the trajectory of the association between SES and development or academic success as children grow older is a recurring subject of debate.[18,19]

In some studies, it was noticed that girls performed better in development tests than boys.[14,20–22] In Krogh and Væver's study, girls already achieved better results in some developmental domains at 7 months of age.[23] Behavior during testing did not differ between boys and girls, so that is probably not the reason for the differing results.[23] Many studies observed sex differences regarding language development,[20,24,25] however, differences in
the cognitive domain in favor of girls have also been frequently observed.[14,21,23] Regarding motor skills, the results of previous studies have been ambiguous.[21–23,26]

There is already a large body of research on the relationship between poor language development and behavioral difficulties, such as internalizing or externalizing problems, inattention, or hyperactivity.[27–29] The data on other developmental domains is much more limited, although negative associations were also found in the motor and cognitive domains.[30,31]

As children usually spend a lot of time with their siblings and as interactions with older or younger children might affect their own development, several scientists assumed an association between the presence of siblings and children's development. However, previous study results showed a mixed picture. In some studies, the presence of siblings was negatively associated with development in several domains.[22,26] Other studies observed positive associations, especially regarding (fine) motor skills.[32,33]

Poor sleep quantity and quality might also be associated with developmental delays. In experimental studies in which children were exposed to sleep restriction, weaker performance was observed in demanding cognitive tasks, reaction time measures, and working memory.[34] Studies examining the effects of different sleep patterns on children's cognitive, language, and academic performance revealed mixed results.[34,35] In some studies, children who slept less or later showed weaker performance.[36–38] However, other studies found no significant association between sleep duration[39,40] or sleep disruptions[40,41] and development.

Breastfeeding has many positive effects on infant health,[42] but there is controversy about the relationship between breastfeeding and cognitive development. While many studies showed a positive effect of breastfeeding, there is also some evidence that this effect is largely caused by confounders.[43] Two studies examined sibling cohorts to exclude as many confounders as possible. One found no significant developmental differences between the breastfed children and their non-breastfed siblings.[44] In the other study, the developmental advantages of breastfed infants remained significant even among discordant sibling pairs.[45]

As overweight and obesity have a high prevalence among children and adolescents in Germany (15.4 % of 3- to 17-year-olds),[46] it is important to investigate possible effects on health and development. However, so far there is little evidence for a direct effect of being overweight/obese on cognitive development or academic performance. In one study, boys with
overweight had weaker math and literacy skills compared to normal-weight peers, while no significant differences were found in girls.[47] Several studies found no significant effect of overweight/obesity on cognition or academic achievement at all.[48,49] Interestingly, a study on this topic in very young children aged 6 to 24 months found significantly lower scores among children with overweight/obesity in the cognitive and motor domains compared to normal-weight children.[50]

The aim of the present study is to investigate the associations of gestational age, SES, child sex, behavioral difficulties, siblings, sleep duration, breastfeeding, and overweight/obesity with the neurodevelopment of German children. Many of the previous studies on early childhood development examined only one of the influencing variables and its effect on a single developmental domain at a given age point. Our relatively large sample of 778 children includes children of all ages between 6 months and 6 years and consists of recently collected data (September 2016 to October 2020). This allows us to take a look at child development over the entire preschool period. We take into account multiple influencing factors and their effects on the different developmental domains of cognition, language, body and hand motor skills, and social-emotional development. Based on the results of previous studies, we expected higher gestational age, higher SES, longer average sleep duration, and longer breastfeeding duration to be positively associated with child development. We suspected poorer development for boys compared to girls, for children with older siblings, and for children showing more behavioral difficulties. We expected no differences in development if children were overweight/obese.

A specific focus was put on possible changes in the strengths of associations depending on child age. We hypothesized the association between SES or sex and development to be more pronounced in older children. In contrast, we expected the association between gestational age and development to be stronger in younger children. We further expected the association between development and gestational age to be more pronounced in boys than girls.

METHODS

Participants and Design

Data collection was conducted as part of the LIFE Child study. The LIFE Child study is a large population-based cohort study conducted at the Research Center for Civilization Diseases, Leipzig University. The study focuses on the physical and psychological development of healthy children from the prenatal phase to the age of 20.[51,52] Study participants are recruited since 2011 at public health centers, hospitals, and by word of mouth. In our analysis, we
included all children between 0 and 6 years of age who performed the development test as part of the study program and whose parents provided information on their SES and the gestational age of their children. If children participated more than once, only the last visit was taken into account. Data was collected between September 2016 and October 2020. The final sample consisted of 778 0.35 - to 5.63-year-old children (48.6 % female, mean age = 2.67 years, see Figure 1). However, due to assessment-specific missings, the sample size was smaller for some analyses (min = 259 children aged 0.88 to 5.9 years).

Measures

Development Test

In order to assess the development of the children, we applied the revised version of the Entwicklungstest 6 Monate – 6 Jahre (“Development Test for Children between 6 Months and 6 Years – Revision”, ET 6-6-R).[53] This standardized test for children between 6 months and 6 years of age assesses the developmental stage regarding cognition, language, body and hand motor skills as well as social-emotional skills. Children older than 42 months also complete a tracing subtest. Information on social-emotional development is collected through a questionnaire completed by parents. The other domains are assessed using age-specific standardized test items. The number of successfully completed items is converted into a developmental quotient (M = 10, SD = 3), based on age-specific references.[53] The ET 6-6-R is administered on an additional study day by trained study assistants. For the cognition and language scales of the ET 6-6-R, significant correlations with the children's intelligence quotient could be demonstrated.[54] For the more comprehensive validated precursor of the ET 6-6-R, significant correlations of individual scales with the corresponding Bayley Scales of Infant Development II and another specific language development test were shown.[55]

Socioeconomic status (SES)

A family’s SES was determined on the basis of a parental questionnaire originally developed for the “Studie zur Gesundheit von Kindern und Jugendlichen in Deutschland” (Study on the health of children and adolescents in Germany, KiGGS).[56] The questionnaire collects data on parental education, occupational status, and equivalent household income.[56] Information on these three parameters is combined to an SES index ranging between 3 (indicating low SES) and 21 (indicating high SES). Based on cut-off values created in a large representative German
sample, the SES index can be categorized as reflecting either low, middle, or high family SES. In a representative sample, the distribution of low-middle-high would be expected to be 20%-60%-20%.[56]

Behavioral strengths and difficulties

The parent version of the Strengths and Difficulties Questionnaire (SDQ) was used to assess behavioral strengths and difficulties in children aged 3 years and older. This screening questionnaire comprises five scales, namely emotional problems, hyperactivity/inattention, peer relationship problems, conduct problems, and prosocial behavior. The results of the four different problem scales (all scales but prosocial behavior) can be combined into a total difficulties score, which ranges from 0 to 40, with higher scores indicating more behavioral difficulties.[57] This score was used for further analysis.

Overweight/Obesity

Height and weight of all participants were measured by trained study assistants. BMI was calculated and converted to standard-deviation scores (BMI-SDS) using age- and gender-specific percentiles for German children.[58] For data analysis, BMI-SDS was categorized as either normal weight (≤ 90th percentile) or overweight/obesity (>90th percentile).[58]

Sleep duration

Information on sleep habits was collected using parent questionnaires. For children up to 2 years of age, the Brief Infant Sleep Questionnaire (BISQ) was used. For older children, we applied the Children’s Sleep Habits Questionnaire (CSHQ).[59,60] From both questionnaires, only the information on sleep duration was considered. The hours of sleep per day and night were summed to obtain the total sleep time.

Breastfeeding, gestational age at birth, and siblings

Information on breastfeeding was collected using a parent questionnaire. Parents were asked to indicate how many months the child was breastfed, regardless of whether it was exclusively breastfed or not. In another questionnaire, parents provided information on the number of older
siblings of the child. From this information, we created a binary variable that indicates whether a child has at least one older sibling or not. Information on gestational age at birth was taken from medical records. In order to obtain accurate data, the fully completed weeks of pregnancy and the additional days were added.

Analysis

Data analysis was performed using R. We applied linear mixed-effect models to explore associations between the influencing variables and the developmental outcomes in the different domains. The developmental quotients in the domains of cognition, language, body motor, hand motor, social-emotional development, and tracing were included as dependent variables. Gestational age, sex, SES, the presence of older siblings, overweight/obesity, sleep duration, breastfeeding duration, and total difficulties score were included as independent variables. Separate models were calculated for each independent variable. All associations were adjusted for age and sex and controlled for possible family relationships within the study sample (package lmer).

Following our hypotheses, associations between developmental outcomes and gestational age, sex, and SES were checked for interactions with child age at examination. Furthermore, associations between developmental outcomes and gestational age were checked for interaction with sex.

For all associations, the level of significance was set at $\alpha = 0.05$.

Patient and public involvement

Study participants or members of the public were not involved in the design of this study. At regular public events organized by the LIFE Child study, such as open days, study participants and members of the public are invited to learn about our latest research findings.

RESULTS

Description of the study sample

For each variable, sample size and distribution within the sample are shown in Error! Reference source not found.. The majority of the families (51.9%) had high SES, 46.4 % had medium SES, and 1.7 % had low SES. 50 of 767 children (6.52 %) were overweight or obese. Information on siblings was available for 494 children, of whom 269 (54.5%) had no older
siblings. The average developmental quotients of the ET 6-6-R ranged from 9.4 (SD = 2.88) to 10.61 (SD = 2.68, see Figure 2), depending on the developmental domain, and thus correspond approximately to the average for German children.[53]
Table 1 - Characteristics of the sample.

	n	Distribution
Sex	778	
Female	378	(48.6 %)
Male	400	(51.4%)
Older siblings	494	
No	269	(54.5 %)
Yes	225	(45.5 %)
Overweight/Obesity	767	
No	717	(93.48 %)
Yes	50	(6.52 %)
SES status	778	
high	404	(51.9 %)
middle	361	(46.4 %)
low	13	(1.7 %)

	n	Range	Mean (SD)
Age (years)	778	0.35 – 5.98	2.67 (1.78)
SES index	778	6.9 – 21	15.52 (2.95)
Gestational age (weeks)	778	24.29 – 42.14	39.48 (2.16)
SDQ score	391	0 – 26	8.52 (4.32)
Sleep time (hours/day)	365	6 – 16.6	12.18 (1.7)
Breastfeeding duration (months)	259	1 – 36	11.05 (5.4)
Developmental quotient	778		
Cognition		1 – 17	10.03 (2.97)
Language		1 – 15	10.06 (2.65)
Body motor		1 – 17	9.4 (2.88)
Hand motor		1 – 16	10.14 (2.76)
Social-emotional		1 – 17	10.61 (2.68)
Tracing	307	1 – 18	10.21 (2.99)
Associations between social and individual factors and developmental outcomes

As expected, higher gestational age was associated with better development in the domains of cognition, language, body motor skills, hand motor skills, and social-emotional development (b ranging between .12 and .24, all p < .008, see Error! Reference source not found.). Only tracing was not significantly associated with gestational age (b = .05, p = .589).

Also in line with the hypotheses, a higher SES was significantly associated with the developmental outcomes in the domains of cognition, language, body motor skills, social-emotional development, and tracing (b ranging from .08 to .21, all p < .019) Only developmental scores in the domain of hand motor skills showed no significant association with SES (b = .06, p = .09).

As expected, boys scored lower than girls in all developmental domains. However, the differences only reached significance in the domains of body and hand motor skills (b = -.45 and -.68, p = .019 and <.001, respectively) and tracing (b = -1.5, p = <.001, see Error! Reference source not found.).

Compared to gestational age, SES, and sex, the other independent variables showed fewer significant associations with the developmental outcomes. Regarding behavioral difficulties, a higher total difficulties score was significantly associated with poorer performance in the areas of cognition, hand motor skills, social-emotional development, and tracing (b ranging between -.08 and -.13, all p < .018).

The presence of older siblings was significantly associated with better motor skills (both b = .55, both p < .029), but not with development in other domains (see Error! Reference source not found.).

The associations between developmental outcomes and sleep duration, breastfeeding duration, and overweight/obesity were not significant (see Error! Reference source not found.).
Table 2 - Associations of social and individual variables with developmental outcomes.

N	Cognition	Language	Body motor	Hand motor	Social-emotional	Tracing a
	b (95% CI)	p	b (95% CI)	p	b (95% CI)	p
-------	-------------------	------------------	------------------	------------------	------------------	-----------
Gestational age	778					
	0.24 (0.15 – 0.33) *** <0.001					
	0.19 (0.11 – 0.28) *** <0.001					
	0.21 (0.12 – 0.30) *** <0.001					
	0.26 (0.17 – 0.34) *** <0.001					
	0.12 (0.03 – 0.21) ** 0.008					
	0.05 (-0.12 – 0.21) 0.589					
SES Score	778					
	0.12 (0.05 – 0.18)b ** 0.001					
	0.12 (0.06 – 0.18)b *** <0.001					
	0.08 (0.02 – 0.15) * 0.013					
	0.06 (-0.01 – 0.12) 0.09					
	0.08 (0.01 – 0.15) * 0.019					
	0.21 (0.11 – 0.32) *** <0.001					
Sex (ref = female)	778					
	-0.40 (-0.80 – 0.00) 0.050					
	-0.31 (-0.65 – 0.04) 0.079					
	-0.45 (-0.83 – -0.07)b * 0.019					
	-0.68 (-1.05 – -0.31)b *** <0.001					
	-0.26 (-0.63 – 0.10) 0.157					
	-1.50 (-2.14 – -0.86) *** <0.001					
SDQ total-score	391					
	-0.08 (-0.15 – -0.01) * 0.018					
	-0.03 (-0.09 – -0.03) 0.372					
	-0.06 (-0.12 – -0.00) 0.067					
	-0.09 (-0.15 – -0.07) ** 0.001					
	-0.13 (-0.19 – -0.07) *** <0.001					
	-0.12 (-0.19 – -0.04) 0.002					
Older siblings (ref = no)	494					
	-0.07 (-0.59 – -0.45) 0.794					
	-0.01 (-0.45 – -0.43) 0.958					
	0.55 (0.06 – 1.04) * 0.029					
	0.55 (0.08 – 1.03) * 0.024					
	-0.33 (-0.79 – -0.14) 0.173					
	-0.25 (-1.37 – 1.13) 0.518					
Sleep duration	365					
	0.09 (-0.12 – 0.3) 0.411					
	-0.11 (-0.28 – 0.06) 0.217					
	0.01 (-0.18 – -0.2) 0.932					
	0.1 (-0.09 – 0.29) 0.317					
	0.07 (-0.12 – -0.26) 0.451					
	0.35 (-0.11 – -0.80) 0.138					
Breastfeeding duration	259					
	0.06 (-0.01 – -0.13) 0.101					
	0.03 (-0.02 – -0.09) 0.244					
	-0.01 (-0.07 – -0.06) 0.877					
	0.02 (-0.04 – -0.07) 0.601					
	0.01 (-0.05 – -0.07) 0.645					
	-0.04 (-0.12 – -0.05) 0.427					
Overweight (ref = no)	767					
	0.04 (-0.79 – -0.86) 0.927					
	-0.37 (-1.08 – -0.34) 0.309					
	-0.10 (-0.87 – -0.69) 0.812					
	0.20 (-0.56 – -0.96) 0.608					
	0.42 (-0.34 – -1.19) 0.279					
	-1.39 (-3.12 – -0.34) 0.117					

*p < .05, **p < .01, ***p < .001

a The tracing subtest is only conducted with children aged 42 months and older, resulting in smaller samples.

b Significant interaction with child age, c Significant interaction with child sex.

All associations were adjusted for age and sex.

All significant associations, except the association between hand motor skills and older siblings, stayed significant after adjusting for SES and gestational age.
Interaction effects of child age and sex

In accordance with our hypotheses, we assessed whether or not associations between developmental outcomes and gestational age, SES, and sex differed depending on child age. In the case of SES, significant interactions with age indicated that the positive associations with cognition and language skills were stronger in older children vs. younger children (b = .05 and .06, p = .008 and <.001, respectively). Other significant interactions showed that the associations between gestational age and body and hand motor skills became weaker as child age increased (b = -.07 and -.11, p = .018 and <.001, respectively). Finally, the negative associations between male sex and body or hand motor skills were stronger in older children compared to younger children (both b = -.23, p = .034 and .033, respectively).

We also assessed whether the association between developmental outcomes and gestational age differed between boys and girls. A significant interaction indicated that the association between higher gestational age and better hand motor skills was stronger in boys than in girls (b = .18, p = .036, see Figure 3).

DISCUSSION

The aim of our study was to explore risk and protective factors for early childhood development in a sample of healthy German children under 6 years of age. As expected for a sample of healthy children, mean development test scores were fairly close to the average for German children. It turned out that our sample contained an above-average number of children from families with high SES.

Factors associated with child development

We found positive significant associations between children's development and higher gestational age, higher SES, and the presence of older siblings. Negative significant associations were found between the performance in some of the developmental domains and male sex and behavioral difficulties. There was no evidence of an association between child development and duration of breastfeeding, average sleep duration, or overweight/obesity.

The results regarding gestational age are in line with our expectations. As in other studies, higher gestational age was associated with better development in cognition, language, hand and body motor skills, and social-emotional development.[3,5,8] These differences might be due to
structural brain alterations in preterm infants associated with the disruption of brain growth and maturation in the womb.[61] Regarding hand motor skills, the association with gestational age was stronger in boys than girls. This confirms the results of previous studies[7–9] and indicates that boys born prematurely are at particularly high risk for developmental delays. A generally higher vulnerability to adverse outcomes has been observed in preterm boys, which has yet to be explained.[62] In line with our hypotheses, the association between gestational age and development became weaker with increasing age. This result indicates that the development of children at age 6 is not as affected by gestational age as at earlier age (e.g. 0.5 years). This finding is similar to the result of Zambrana et al. who, however, only investigated language development.[4] In our study, the interaction effect with child age was significant only in the motor domains. Even if the same trend could be observed in the other developmental domains, this might imply that developmental delays in prematurely born children are more difficult to catch up in the areas of cognition, language and social-emotional skills than in the area of motor skills. When interpreting the results regarding gestational age, it must be noted that our sample contains mainly children born at term and few children with very low gestational age.

As expected, we observed significant positive associations between SES and development in all areas except hand motor skills. This is in line with the results of other studies.[14–17] A possible explanation is that a higher SES is associated with more child enrichment, i.e. with home and social activities conducive to development, e.g. regular reading of books or outdoor activities, which, in turn, might improve child development.[15] As hypothesized, our analysis suggests that the association between SES and development becomes stronger as children grow older, especially regarding cognitive and language development. This result is also consistent with the findings of other studies.[16–18] It seems plausible to consider SES as a social factor that has a greater impact the longer one is exposed to it. A study conducted in Germany suggests that this impact then remains fairly stable over the school years.[16] It is possible, thus, that schools can at least partially compensate for SES differences.[16,63]

In line with the results of other studies, girls performed better than boys in all developmental areas.[22,23,26] The differences were significant only in the areas of hand motor skills, tracing, and, more surprisingly, body motor skills. In other studies, girls tended to have greater advantages in all developmental domains except body motor skills.[22,23,26] The strongest evidence from other studies is on better language skills in girls than in boys.[24,64] The
mechanisms underlying the differences are probably multiple, and two reviews about cognitive or linguistic sex differences, respectively, conclude that biological and environmental factors combine to account for these outcomes, interacting and conditioning each other.[25,65] Interestingly, our analyses revealed that the observed sex differences became stronger with increasing age. This result is consistent with the tendencies reported in Krogh and Vaever's study,[23] but contradicts other studies that found that differences between males and females were smaller or non-existent in older as compared to younger (preschool) children.[24,66] We had expected widening developmental differences between boys and girls with increasing age due to the effects of gender socialization. This trend can also be observed in the differing emotional expression of boys and girls.[67] However, it is questionable whether this explanation can be applied to our rather surprising results in the area of motor development.

We found significant associations between cognitive development, hand motor skills, social-emotional development, and tracing with behavioral difficulties. Other studies also showed these associations.[30,31,68] These findings are highly relevant as children who have both behavioral and developmental problems are at particular risk of poor school performance.[31] Our results showed a positive association between having an older sibling and motor development (hand and body motor skills). This result supports the thesis of Barr and Hayne that children learn by imitating their older siblings,[69] at least with regard to motor development. We did not find significant associations in the other developmental domains. However, we did not consider the age gap between siblings or how much time they spent together. Large age gaps and little time together might limit the possibility to learn from each other.

None of the developmental domains were associated with average sleep duration. These results are consistent with the findings of some previous studies,[37,39–41] but contradict other studies that showed associations between sleep and child development.[36,38] Importantly, while several studies have found a negative association between sleep deprivation and executive functioning or reaction time,[70,71] only a few studies found an association between sleep and more general development. Therefore, one might cautiously conclude that sleep deprivation has a short-term effect on performance in cognitively demanding tasks, but no medium- or long-term effect on child development.

Similar to sleep, we observed no significant association between development and breastfeeding duration. In the ongoing debate on this topic, our results thus support the assumption that a potential positive association between development and breastfeeding is not
causally related to breastfeeding but rather caused by the fact that well-educated and socioeconomically advantaged women breastfeed longer than less-educated women.[43,44] In line with this assumption, an association could not be seen in our sample of middle-to-high SES families.

In addition to sleep and breastfeeding and as expected, overweight/obesity was not related to child development. This contradicts the results of a study with children below 4 years of age.[50] However, it is in line with the results of studies on older children, which also found no significant association between overweight/obesity and cognitive development or school performance.[48,49]

Strengths and limitations

Our study has some weaknesses. We studied a sample with above-average SES, which is thus relatively homogeneous and not representative of the whole population. This could lead to an underestimation of low SES as a risk factor for child development. Our sample sizes vary by factor studied (min = 259 children), so the strength of our large sample does not apply to each of the analyses.

Conclusion

Low gestational age, low SES, being a boy, and behavioral difficulties are risk factors for healthy and age-appropriate development, and their importance changes during child development. Having older siblings may improve motor development in children, while sleep duration, breastfeeding duration, and overweight/obesity do not seem to affect the development of children below school age. The development of children growing up under risk conditions should be monitored, bearing in mind that children may be affected by several risks at the same time. The best strategies to address the developmental risks must be well reflected in order to avoid possible discrimination or stereotyping through interventions themselves.
Acknowledgments

We would like to thank all LIFE Child research assistants for their efforts and the children and parents for their participation in the LIFE Child study.

Competing interests

The authors declare that they have no conflict of interest.

Funding statement

This publication is supported by LIFE – Leipzig Research Center for Civilization Diseases, University of Leipzig. LIFE is funded by means of the European Union, by means of the European Social Fund (ESF), by the European Regional Development Fund (ERDF), and by means of the Free State of Saxony within the framework of the excellence initiative.

Funded by the Open Access Publishing Fund of Leipzig University supported by the German Research Foundation within the program Open Access Publication Funding.

Author’s contributions

CS, WK, and TP contributed to conception and design of this study and to interpretation of data. CS, CM and TP contributed to acquisition of data and analysis. CS and TP wrote the original draft and CM, JK and WK revised it critically. All authors gave their final approval for this version to be published.

Data sharing statement

The datasets generated and/or analyzed during the current study are not publicly available due to ethical restrictions. The LIFE Child study is a study collecting potentially sensitive information. Publishing data sets is not covered by the informed consent provided by the study participants.

Furthermore, the data protection concept of LIFE requests that all (external as well as internal) researchers interested in accessing data sign a project agreement. Researchers that are interested in accessing and analyzing data collected in the LIFE Child study may contact the data use and access committee (forschungsdaten@medizin.uni-leipzig.de).

Trial registration

The LIFE Child study is registered on clinicaltrials.gov with the number NCT02550236.
Ethics approval

The LIFE Child study is conducted in accordance with the Declaration of Helsinki, and the study protocol has been approved by the Ethics Committee of the University of Leipzig (Reg. No. 264/10-ek).

Strengths and limitations of this study

- The large sample size (n = 778) and wide age range (0.5 – 6 years) of our sample allowed us to compare associations in different age groups.

- Development was measured directly by trained study personnel using a standardized test to establish objectivity.

- We included many different influencing factors and different aspects of development, including previously little studied areas such as motor skills or social-emotional development.

- We studied a sample with above-average SES, which is thus relatively homogeneous and not representative of the whole population.

- Our sample sizes vary by factor studied (min = 259 children), i.e. the strength of our large sample does not apply to each of the analyses.
REFERENCES

1. Fagan JF, Holland CR, Wheeler K. The prediction, from infancy, of adult IQ and achievement. *Intelligence* 2007;35:225–31. doi:10.1016/j.intell.2006.07.007

2. Bornstein MH, Hahn C-S, Wolke D. Systems and Cascades in Cognitive Development and Academic Achievement. *Child Dev* 2013;84:154–62. doi:10.1111/j.1467-8624.2012.01849.x

3. Cheong JL, Doyle LW, Burnett AC, et al. Association Between Moderate and Late Preterm Birth and Neurodevelopment and Social-Emotional Development at Age 2 Years. *JAMA Pediatr* 2017;171:e164805. doi:10.1001/jamapediatrics.2016.4805

4. Zambrana IM, Vollrath ME, Jacobsson B, et al. Preterm birth and risk for language delays before school entry: A sibling-control study. *Dev Psychopathol* 2021;33:47–52. doi:10.1017/S0954579419001536

5. Woythaler M. Neurodevelopmental outcomes of the late preterm infant. *Semin Fetal Neonatal Med* 2019;24:54–9. doi:10.1016/j.siny.2018.10.002

6. Hochstedler KA, Bell G, Park H, et al. Gestational Age at Birth and Risk of Developmental Delay: The Upstate KIDS Study. *Am J Perinatol* 2021;38:1088–95. doi:10.1055/s-0040-1702937

7. Serenius F, Ewald U, Farooqi A, et al. Neurodevelopmental Outcomes Among Extremely Preterm Infants 6.5 Years After Active Perinatal Care in Sweden. *JAMA Pediatr* 2016;170:954. doi:10.1001/jamapediatrics.2016.1210

8. Johnson S, Evans TA, Draper ES, et al. Neurodevelopmental outcomes following late and moderate prematurity: a population-based cohort study. *Arch Dis Child - Fetal Neonatal Ed* 2015;100:F301–8. doi:10.1136/archdischild-2014-307684

9. Romeo DM, Di Stefano A, Conversano M, et al. Neurodevelopmental outcome at 12 and 18 months in late preterm infants. *Eur J Paediatr Neurol* 2010;14:503–7. doi:10.1016/j.ejpn.2010.02.002

10. Gurka MJ, LoCasale-Crouch J, Blackman JA. Long-term Cognition, Achievement, Socioemotional, and Behavioral Development of Healthy Late-Preterm Infants. *Arch Pediatr Adolesc Med* 2010;164. doi:10.1001/archpediatrics.2010.83

11. Quigley MA, Poulsen G, Boyle E, et al. Early term and late preterm birth are associated with poorer school performance at age 5 years: a cohort study. *Arch Child Fetal Neonatal Ed* 2012;7.

12. Twilhaar ES, de Kievet JF, Aarnoudse-Moens CS, et al. Academic performance of children born preterm: a meta-analysis and meta-regression. *Arch Dis Child Fetal Neonatal Ed* 2018;103:F322–30. doi:10.1136/archdischild-2017-312916

13. Bradley RH, Corwyn RF. Socioeconomic Status and Child Development. *Annu Rev Psychol* 2002;53:371–99. doi:10.1146/annurev.psych.53.100901.135233

14. González L, Cortés-Sancho R, Murcia M, et al. The role of parental social class, education and unemployment on child cognitive development. *Gac Sanit* 2020;34:51–60. doi:10.1016/j.gaceta.2018.07.014

15. Christensen DL, Schieve LA, Devine O, et al. Socioeconomic status, child enrichment factors, and cognitive performance among preschool-age children: Results from the Follow-Up of Growth and Development Experiences study. *Res Dev Disabil* 2014;35:1789–801. doi:10.1016/j.ridd.2014.02.003
16 Skopek J, Passaretta G. Socioeconomic Inequality in Children’s Achievement from Infancy to Adolescence: The Case of Germany. *Soc Forces* 2021;100:86–112. doi:10.1093/sf/soaa093
17 Halle T, Forry N, Hair E, et al. Disparities in early learning and development: Lessons from the Early Childhood Longitudinal Study - Birth Cohort (ECLS-B). Washington, DC: : Child Trends 2009.
18 von Hippel P, Hamrock C. Do Test Score Gaps Grow before, during, or between the School Years? Measurement Artifacts and What We Can Know in Spite of Them. *Sociol Sci* 2019;6:43–80. doi:10.15195/v6.a3
19 Marks GN, O’Connell M. No evidence for cumulating socioeconomic advantage. Ability explains increasing SES effects with age on children’s domain test scores. *Intelligence* 2021;88:101582. doi:10.1016/j.intell.2021.101582
20 Law J, Clegg J, Rush R, et al. Association of proximal elements of social disadvantage with children’s language development at 2 years: an analysis of data from the Children in Focus (CiF) sample from the ALSPAC birth cohort. *Int J Lang Commun Disord* 2019;54:362–76. doi:10.1111/1460-6984.12442
21 Cornish AM, McMahon CA, Ungerer JA, et al. Postnatal depression and infant cognitive and motor development in the second postnatal year: The impact of depression chronicity and infant gender. *Infant Behav Dev* 2005;28:407–17. doi:10.1016/j.infbeh.2005.03.004
22 Koutra K, Chatzi L, Roumeliotaki T, et al. Socio-demographic determinants of infant neurodevelopment at 18 months of age: Mother–Child Cohort (Rhea Study) in Crete, Greece. *Infant Behav Dev* 2012;35:48–59. doi:10.1016/j.infbeh.2011.09.005
23 Krogh MT, Væver MS. Does gender affect Bayley-III scores and test-taking behavior? *Infant Behav Dev* 2019;57:101352. doi:10.1016/j.infbeh.2019.101352
24 Lange BP, Euler HA, Zaretsky E. Sex differences in language competence of 3- to 6-year-old children. *Appl Psycholinguist* 2016;37:1417–38. doi:10.1017/S0142716415000624
25 Rinaldi P, Pasqualetti P, Volterra V, et al. Gender differences in early stages of language development. Some evidence and possible explanations. *J Neurosci Res* 2021;[Preprint]. doi:10.1002/jnr.24914
26 Cruise S, O’Reilly D. The influence of parents, older siblings, and non-parental care on infant development at nine months of age. *Infant Behav Dev* 2014;37:546–55. doi:10.1016/j.infbeh.2014.06.005
27 Curtis PR, Frey JR, Watson CD, et al. Language Disorders and Problem Behaviors: A Meta-analysis. *Pediatrics* 2018;142:e20173551. doi:10.1542/peds.2017-3551
28 Helbig L, Caffier P, Sarrar L. Elterliche Wahrnehmung von Verhaltensausfällungen bei Kindern mit spezifischer Sprachentwicklungsstörung. *Z Für Kinder- Jugendpsychiatrie Psychother* 2020;48:469–77. doi:10.1024/1422-4917/a000746
29 Clegg J, Law J, Rush R, et al. The contribution of early language development to children’s emotional and behavioural functioning at 6 years: an analysis of data from the Children in Focus sample from the ALSPAC birth cohort. *J Child Psychol Psychiatry*
30 Ulrich F, Petermann F, Petermann U, et al. Verhaltensauffälligkeiten bei Kindern mit Entwicklungsdefiziten im Vorschulalter. Z Für Entwicklungspsychologie Pädagog Psychol 2016;48:80–9. doi:10.1026/0049-8637/a000146

31 Metcalfe LA, Harvey EA, Laws HB. The longitudinal relation between academic/cognitive skills and externalizing behavior problems in preschool children. J Educ Psychol 2013;105:881–94. doi:10.1037/a0032624

32 Rebelo M, Serrano J, Duarte-Mendes P, et al. Effect of Siblings and Type of Delivery on the Development of Motor Skills in the First 48 Months of Life. Int J Environ Res Public Health 2020;17:3864. doi:10.3390/ijerph17113864

33 Rodrigues LP, Luz C, Cordovil R, et al. Siblings’ Influence on the Motor Competence of Preschoolers. Children 2021;8:204. doi:10.3390/children8030204

34 Sadeh A. Consequences of Sleep Loss or Sleep Disruption in Children. Sleep Med Clin 2007;2:513–20. doi:10.1016/j.jsmc.2007.05.012

35 Chaput J-P, Gray CE, Poitras VJ, et al. Systematic review of the relationships between sleep duration and health indicators in school-aged children and youth. Appl Physiol Nutr Metab 2016;41:S266–82. doi:10.1139/apnm-2015-0627

36 Smithson L, Baird T, Tamana SK, et al. Shorter sleep duration is associated with reduced cognitive development at two years of age. Sleep Med 2018;48:131–9. doi:10.1016/j.sleep.2018.04.005

37 Hoyniak CP, Bates JE, McQuillan ME, et al. Sleep across early childhood: implications for internalizing and externalizing problems, socioemotional skills, and cognitive and academic abilities in preschool. J Child Psychol Psychiatry 2020;61:1080–91. doi:https://doi.org/10.1111/jcpp.13225

38 Vaughn BE, Elmore-Staton L, Shin N, et al. Sleep as a Support for Social Competence, Peer Relations, and Cognitive Functioning in Preschool Children. Behav Sleep Med 2015;13:92–106. doi:10.1080/15402002.2013.845778

39 Sun W, Li SX, Jiang Y, et al. A Community-Based Study of Sleep and Cognitive Development in Infants and Toddlers. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med 2018;14:977–84. doi:10.5664/jcsm.7164

40 Mäkelä TE, Peltola MJ, Nieminen P, et al. Night awakening in infancy: Developmental stability and longitudinal associations with psychomotor development. Dev Psychol 2018;54:1208–18. doi:10.1037/dev0000503

41 Pennestri M-H, Laganière C, Bouvette-Turcot A-A, et al. Uninterrupted Infant Sleep, Development, and Maternal Mood. Pediatrics 2018;142:e20174330. doi:10.1542/peds.2017-4330

42 Rouw E, von Gartzen A, Weißenborn A. Bedeutung des Stillens für das Kind. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 2018;61:945–51. doi:10.1007/s00103-018-2773-4

43 Walfisch A, Sermer C, Cressman A, et al. Breast milk and cognitive development—the role of confounders: a systematic review. BMJ Open 2013;3:e003259. doi:10.1136/bmjopen-2013-003259
Colen CG, Ramey DM. Is breast truly best? Estimating the effects of breastfeeding on long-term child health and wellbeing in the United States using sibling comparisons. *Soc Sci Med* 2014;109:55–65. doi:10.1016/j.socscimed.2014.01.027

Sanefuji M, Senju A, Shimono M, et al. Breast feeding and infant development in a cohort with sibling pair analysis: the Japan Environment and Children’s Study. *BMJ Open* 2021;11:e043202. doi:10.1136/bmjopen-2020-043202

Robert Koch-Institut. Übergewicht und Adipositas im Kindes- und Jugendalter in Deutschland – Querschnittsergebnisse aus KiGGS Welle 2 und Trends. Published Online First: 2018. doi:10.17886/RKI-GBE-2018-005.2

Black N, Johnston DW, Peeters A. Childhood Obesity and Cognitive Achievement. *Health Econ* 2015;24:1082–100. doi:10.1002/hec.3211

Bisset S, Fournier M, Pagani L, et al. Predicting academic and cognitive outcomes from weight status trajectories during childhood. *Int J Obes* 2013;37:154–9. doi:10.1038/ijo.2012.106

Palermo TM, Dowd JB. Childhood obesity and human capital accumulation. *Soc Sci Med* 2012;75:1989–98. doi:10.1016/j.socscimed.2012.08.004

Camargos ACR, Mendonça VA, Andrade CA de, et al. Overweight and obese infants present lower cognitive and motor development scores than normal-weight peers. *Res Dev Disabil* 2016;59:410–6. doi:10.1016/j.ridd.2016.10.001

Poulain T, Baber R, Vogel M, et al. The LIFE Child study: a population-based perinatal and pediatric cohort in Germany. *Eur J Epidemiol* 2017;32:145–58. doi:10.1007/s10654-016-0216-9

Quante M, Hesse M, Döhnert M, et al. The LIFE child study: a life course approach to disease and health. *BMC Public Health* 2012;12:1021. doi:10.1186/1471-2458-12-1021

Petermann F, Macha T. *ET 6-6-R. Entwicklungstest für Kinder von 6 Monaten bis 6 Jahren - Revision. Manual (2. korr. Aufl.).* Frankfurt: Pearson Assessment and Information 2015.

Walter F, Petermann F, Daseking M. Vorhersage von kognitiven Fähigkeiten in der WPSSI-IV durch den ET 6-6-R. *Kindh Entwickl* 2018;27:133–41. doi:10.1026/0942-5403/a000253

Lissmann I, Domsch H, Lohaus A. Zur Stabilität und Validität von Entwick lungstestergebnissen im Alter von sechs Monaten bis zwei Jahren. *Kindh Entwickl* 2006;15:35–44. doi:10.1026/0942-5403.15.1.35

Lampert T, Müters S, Stolzenberg H, et al. Messung des sozioökonomischen Status in der KiGGS-Studie. *Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz* 2014;57:762–70. doi:10.1007/s00103-014-1974-8

Goodman R. The Strengths and Difficulties Questionnaire: A Research Note. *J Child Psychol Psychiatry* 1997;38:581–6. doi:10.1111/j.1469-7610.1997.tb01545.x

Kromeyer-Hauschild K, Wabitsch M, Kunze D, et al. Perzentile für den Body-mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher
Stichproben. *Monatsschr Kinderheilkd* 2001;149:807–18. doi:10.1007/s001120170107

59 Sadeh A. A Brief Screening Questionnaire for Infant Sleep Problems: Validation and Findings for an Internet Sample. *Pediatrics* 2004;113:e570–7. doi:10.1542/peds.113.6.e570

60 Schlarb AA, Schwerdtle B, Hautzinger M. Validation and psychometric properties of the German version of the Children’s Sleep Habits Questionnaire (CSHQ-DE). *Somnologie - Schlafforschung Schlaflmed* 2010;14:260–6. doi:10.1007/s11818-010-0495-4

61 Cheong JLY, Thompson DK, Olsen JE, et al. Late preterm births: New insights from neonatal neuroimaging and neurobehaviour. *Semin Fetal Neonatal Med* 2019;24:60–5. doi:10.1016/j.siny.2018.10.003

62 Hintz SR, Kendrick DE, Vohr BR, et al. Gender differences in neurodevelopmental outcomes among extremely preterm, extremely-low-birthweight infants. *Acta Paediatr* 2006;95:1239–48. doi:10.1080/08035250600599727

63 Poulain T, Vogel M, Sobek C, et al. Associations Between Socio-Economic Status and Child Health: Findings of a Large German Cohort Study. *Int J Environ Res Public Health* 2019;16:677. doi:10.3390/ijerph16050677

64 Brandlistuen RE, Flatø M, Stoltenberg C, et al. Gender gaps in preschool age: A study of behavior, neurodevelopment and pre-academic skills. *Scand J Public Health* 2021;49:37–45. doi:10.1016/j.jicp.2013.10.011

65 Miller DI, Halpern DF. The new science of cognitive sex differences. *Trends Cogn Sci* 2014;18:37–45. doi:10.1016/j.tics.2013.10.011

66 Toivainen T, Papageorgiou KA, Tosto MG, et al. Sex differences in non-verbal and verbal abilities in childhood and adolescence. *Intelligence* 2017;64:81–8. doi:10.1016/j.intell.2017.07.007

67 Chaplin TM, Aldao A. Gender differences in emotion expression in children: A meta-analytic review. *Psychol Bull* 2013;139:735–65. doi:10.1037/a0030737

68 Korsch F, Petermann U, Schmidt S, et al. Kognitive, sprachliche, motorische und sozial-emotionale Defizite bei verhaltensauffälligen Schulanfängern. *Prax Kinderpsychol Kinderpsychiatr* 2013;62:405–19. doi:10.13109/prkk.2013.62.6.405

69 Barr R, Hayne H. It’s Not What You Know, It’s Who You Know: Older siblings facilitate imitation during infancy. *Int J Early Years Educ* 2003;11:7–21. doi:10.1080/0966976032000066055

70 Sadeh A, Gruber R, Raviv A. The effects of sleep restriction and extension on school-age children: what a difference an hour makes. *Child Dev* 2003;74:444–55. doi:10.1111/1467-8624.7402008

71 Nelson TD, Nelson JM, Kidwell KM, et al. Preschool Sleep Problems and Differential Associations With Specific Aspects of Executive Control in Early Elementary School. *Dev Neuropsychol* 2015;40:167–80. doi:10.1080/87565641.2015.1020946
Figure 1 - Flow chart of participant selection. ET-6-6-R: Entwicklungstest für Kinder von 6 Monaten bis 6 Jahren (“Development Test for Children between 6 Months and 6 Years – Revision”); SES: socioeconomic status.

Figure 2 - Distribution of scores in the different developmental domains (n = 778).

Figure 3 - Effect plot illustrating the association (+ 95% CI) between gestational age and hand motor skills in girls and boys (n = 778).
1319 datasets of participations in the ET 6-6-R

- 499 excluded due to participation more than once

820 datasets of one visit per child

- 42 excluded due to missing data in ET-6-6-R, SES, and gestational age

778 children with complete data were included in the analyses
STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction	2	Explain the scientific background and rationale for the investigation being reported	3-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods	4	Present key elements of study design early in the paper	5
Study design	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5,6
Setting	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6
Participants	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-8
Variables	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6-8
Data sources/measurement	9	Describe any efforts to address potential sources of bias	
Bias	10	Explain how the study size was arrived at	6
Study size	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6-8
Quantitative variables	12	(a) Describe all statistical methods, including those used to control for confounding	8
Statistical methods	13	(b) Describe any methods used to examine subgroups and interactions	8
		(c) Explain how missing data were addressed	6
		(d) If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	
---	---	---	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
Outcome data	15*	Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	

Discussion

Key results	18	Summarise key results with reference to study objectives
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence
Generalisability	21	Discuss the generalisability (external validity) of the study results

Other information

| Funding | 22 | Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based |

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.
Associations between socio-demographic and behavioral parameters and child development depending on age and sex: A cross-sectional analysis

Journal:	BMJ Open
Manuscript ID:	bmjopen-2022-065936.R1
Article Type:	Original research
Date Submitted by the Author:	06-Sep-2022
Complete List of Authors:	Schild, Clara; Leipzig University, LIFE Leipzig Research Center for Civilization Diseases
Meigen, Christof; Leipzig University, LIFE Leipzig Research Center for Civilization Diseases	
Kappelt, Jonas; Leipzig University, LIFE Leipzig Research Center for Civilization Diseases	
Kiess, Wieland; Leipzig University, LIFE Leipzig Research Center for Civilization Diseases; Leipzig University, Department of Women and Child Health, Hospital for Children and Adolescents and Center for Paediatric Research (CPL)	
Poulain, Tanja; Leipzig University, LIFE Leipzig Research Center for Civilization Diseases; Leipzig University, Department of Women and Child Health, Hospital for Children and Adolescents and Center for Paediatric Research (CPL)	
Primary Subject Heading:	Paediatrics
Secondary Subject Heading:	Public health, Sociology
Keywords:	PAEDIATRICS, Developmental neurology & neurodisability < PAEDIATRICS, Community child health < PAEDIATRICS, SOCIAL MEDICINE, PUBLIC HEALTH
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Associations between socio-demographic and behavioral parameters and child development depending on age and sex: A cross-sectional analysis

Clara Schild¹, Christof Meigen¹, Jonas Kappelt¹, Wieland Kiess¹², Tanja Poulain¹²

¹LIFE Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany

²Department of Women and Child Health, Hospital for Children and Adolescents and Center for Paediatric Research (CPL), Leipzig University, Leipzig, Germany

Corresponding author: Clara Schild, LIFE Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany, (clara-schild@t-online.de)

Word count: 4280

Keywords: child development, socioeconomic status, gestational age, cognitive development, language development
ABSTRACT

Objectives To explore environmental and individual factors that are associated with child development and to investigate whether the strength of these associations differs according to the age of the children.

Design Cross-sectional study

Setting This study was part of the LIFE Child study, a large cohort study conducted in Leipzig, Germany.

Participants 778 children aged between 0.5 and 6 years (48.6% female, mean age = 2.67 years).

Outcome measures The outcomes were cognitive development, language development, body and hand motor skills, social-emotional development, and tracing skills, measured with a standardized development test. We analyzed the associations between development and gestational age, socioeconomic status (SES), sex, behavioral difficulties, siblings, sleep duration, breastfeeding duration, and overweight/obesity. We also tested for interactions between these variables and child age or sex.

Results Higher gestational age (b ranging between .12 and .26) and higher SES (b ranging between .08 and .21) were associated with better outcomes in almost all developmental domains (all p < .019). Children with older siblings had improved body and hand motor skills compared to children without older siblings (both b = .55, all p < .029). Boys had poorer scores than girls in body and hand motor skills and tracing (b = -.45, -.68, and -1.5, all p < .019). Children with behavioral difficulties had significantly poorer outcomes in most developmental domains. Some of the associations with SES and sex were stronger in older than in younger children. Associations between gestational age and motor development were weaker in older children. We did not find significant associations between child development and sleep duration, breastfeeding duration, or overweight/obesity.

Conclusion Some factors had a protective, others an adverse effect on development of children under 6 years of age. The effect of SES and sex increased, while the effect of gestational age decreased with age.
STRENGTHS AND LIMITATIONS OF THIS STUDY

- The large sample size (n = 778) and wide age range (0.5–6 years) of our sample allowed us to compare associations in different age groups.

- Development was measured directly by trained study personnel using a standardized test to establish objectivity.

- We included many different influencing factors and different aspects of development, including previously little studied areas such as motor skills or social-emotional development.

- We studied a sample with above-average SES, which is thus relatively homogeneous and not representative of the whole population.

- Our sample sizes vary by factor studied (min = 259 children), i.e. the strength of our large sample does not apply to each of the analyses.
INTRODUCTION

In the first 6 years of life, i.e., in the phases of infancy, toddlerhood, and early childhood, cognitive, language, and motor skills develop particularly quickly.[1]

In sociocultural theories of development, e.g., Vygotsky's concept of the zone of proximal development or ecological systems approaches such as Bronfenbrenner's ecological framework for human development,[1] great importance is attached to children's (social) environment. In addition to the social environment, early child development might also be shaped by complications during and before birth, the presence of siblings, and the education, income, and behavior of the parents.[1] Other theories describe the developmental process in stages, e.g., Piaget's stages of cognitive development or Erikson's stages of psycho-social development. We look at possible influencing factors and their perhaps changing effect over a period of time that includes several of these developmental stages (sensorimotor and preoperational stage according to Piaget, or trust versus mistrust, autonomy versus shame and doubt, initiative versus guilt according to Erikson).[1] Because early development is influenced by so many factors and shapes later development,[2] it is particularly relevant to developmental research.

Low gestational age at birth is a major developmental risk for children.[3] Children born prematurely (<37th week of gestation) are at increased risk for developmental delays in cognition, language, motor skills, and social-emotional development.[4–6] In general, the earlier children are born, the greater their developmental disadvantages.[7] This phenomenon is stronger in boys than in girls.[8–10] Two studies even showed a slightly increased risk of language delay,[5] or scoring below average in a developmental screening test,[7] in children born mature but before 39 weeks of gestation. While some longitudinal studies show that developmental deficits, e.g., language delay, differences in cognition or achievement decrease or disappear as children grow older (at least in children born after the 34th week of gestation),[5,11] other studies show that differences in academic performance between preterm and term-born infants exist even at school age.[12,13]

The relationship between a family's socioeconomic status (SES) and their children's development has been examined for decades.[14] Children from poorer social backgrounds were found to show developmental delays[15,16] from as early as 7 months of age.[17] Several studies have shown that these disadvantages increase over childhood.[17,18] In line with this assumption, several studies showed an increased risk for achievement gaps in school between children from low- and high-SES families.[14,17,19]
In studies on associations between child development and potential risk factors (e.g., social disadvantages, maternal depression) in under 6 year olds, it was repeatedly noticed that girls performed better than boys in developmental tests on language, cognition, motor skills and social-emotional development.[15,20–22] In Krogh and Væver's study, girls already showed better fine motor skills at 7 months of age.[23]

There is already a large body of research on the relationship between poor language development and behavioral difficulties, such as internalizing or externalizing problems, inattention, or hyperactivity.[24–26] The data on other developmental domains (cognition, motor development) is more limited, although negative associations were also found in these domains.[27,28]

As children usually spend a lot of time with their siblings and as interactions with older or younger children might affect their own development, several scientists queried an association between the presence of siblings and children's development.[29] However, previous study results showed a mixed picture. In some studies, the presence of siblings was negatively associated with the development of communicative, cognitive, gross motor, and personal-social skills.[22,30] Other studies observed positive associations, especially regarding (fine) motor skills.[31,32]

Poor sleep quantity and quality might also be associated with developmental delays.[33] In experimental studies in which children were exposed to sleep restriction, weaker performance was observed in demanding cognitive tasks, reaction time measures, and working memory.[34] Studies examining the effects of different sleep patterns on children's cognitive, language, and academic performance revealed mixed results.[34,35] In some studies, children who slept less or later showed weaker performance.[36–38] However, other studies found no significant association between sleep duration[39,40] or sleep disruptions[40,41] and development.

Breastfeeding has many positive effects on infant health,[42] but there is controversy about the relationship between breastfeeding and cognitive development. While many studies showed a positive effect of breastfeeding, there is also some evidence that this effect is largely caused by confounders, most notably maternal socioeconomic status and intelligence.[43] Few studies examined sibling cohorts to exclude as many confounders as possible. One found no significant developmental differences between the breastfed children and their non-breastfed siblings.[44] In another study, the developmental advantages of breastfed infants remained significant even among discordant sibling pairs.[45]
As overweight and obesity have a high prevalence among children and adolescents in Germany (15.4% of 3- to 17-year-olds),[46] it is important to investigate possible effects on health and development. However, so far there is little evidence for a direct effect of being overweight/obese on cognitive development or academic performance. In one study, boys with overweight had weaker math and literacy skills compared to normal-weight peers, while no significant differences were found in girls.[47] Several studies found no significant effect of overweight/obesity on cognition or academic achievement at all.[48,49] Interestingly, a study on this topic in very young children aged 6 to 24 months found significantly lower scores among children with overweight/obesity in the cognitive and motor domains compared to normal-weight children.[50]

The aim of the present study is to investigate the associations of gestational age, SES, child sex, behavioral difficulties, siblings, sleep duration, breastfeeding, and overweight/obesity with the development of German children. Many of the previous studies on early child development examined only one of the influencing variables and its effect on a single developmental domain at a given age point. Our relatively large sample of 778 children includes children of all ages between 6 months and 6 years and consists of recently collected data (September 2016 to October 2020). This allows us to take a look at child development over the entire preschool period. We take into account multiple influencing factors and their effects on the different developmental domains of cognition, language, body and hand motor skills, and social-emotional development. Based on the results of previous studies, we expected higher gestational age, higher SES, longer average sleep duration, and longer breastfeeding duration to be positively associated with child development. We suspected poorer development for boys compared to girls, for children with older siblings, and for children showing more behavioral difficulties. We expected no differences in development if children were overweight/obese.

A specific focus was put on possible changes in the strengths of associations depending on child age. We hypothesized the association between SES or sex and development to be more pronounced in older children. In contrast, we expected the association between gestational age and development to be stronger in younger children. We further expected the association between development and gestational age to be more pronounced in boys than girls.
METHODS

Participants and Design

Data collection was conducted as part of the LIFE Child study. The LIFE Child study is a large population-based cohort study conducted at the Research Center for Civilization Diseases, Leipzig University. The study focuses on the physical and psychological development of healthy children from the prenatal phase to the age of 20.[51,52] Study participants are recruited since 2011 at public health centers, hospitals, and by word of mouth. In our analysis, we included all children between 0 and 6 years of age who performed the development test as part of the study program and whose parents provided information on their SES and the gestational age of their children. Data were cross-sectional and only one data point of each child was included. The cross-sectional design was chosen in favor of a larger sample size. If children had participated more than once, only the last visit was taken into account. Data was collected between September 2016 and October 2020. The final sample consisted of 778 0.35 - to 5.63-year-old children with complete developmental tests (48.6 % female, mean age = 2.67 years, see Figure 1). Data on variables collected through questionnaires were all provided by the accompanying parents of the children (completed on a computer screen during the study day). All questions included in the analysis are listed in a supplementary file. Due to specific missings in the parent-reported questionnaires, the sample size was smaller for some analyses (min = 259 children aged 0.88 to 5.9 years, see Table 1).

Measures

Development Test

In order to assess the development of the children, we applied the revised version of the Entwicklungstest 6 Monate – 6 Jahre (“Development Test for Children between 6 Months and 6 Years – Revision”, ET 6-6-R).[53] This standardized test for children between 6 months and 6 years of age assesses the developmental stage regarding cognition, language, body and hand motor skills as well as social-emotional skills. Children older than 42 months also complete a tracing subtest. Information on social-emotional development is collected through a questionnaire completed by parents. The other domains are assessed using age-specific standardized test items. The number of successfully completed items is converted into a developmental quotient (M = 10, SD = 3), based on age-specific references.[53] The reliability of the test was assessed with internal consistencies between $\alpha = .66$ and .77 depending on the
scale studied.[53] Clinical validity was demonstrated by significant correlations of the language and cognitive scales with child IQ,[54] by good discrimination between healthy children and children with stroke, and by significant correlations with the Bayley Scales of Infant Development II.[55,56] The ET 6-6-R is administered on an additional study day by trained study assistants.

Socioeconomic status (SES)

A family’s SES was determined on the basis of a parental questionnaire originally developed for the “Studie zur Gesundheit von Kindern und Jugendlichen in Deutschland” (Study on the health of children and adolescents in Germany, KiGGS).[57] The questionnaire collects data on parental education, occupational status, and equivalent household income.[57] Information on these three parameters is combined to an SES index ranging between 3 (indicating low SES) and 21 (indicating high SES). Based on cut-off values created in a large representative German sample, the SES index can be categorized as reflecting either low, middle, or high family SES. In a representative sample, the distribution of low-middle-high would be expected to be 20%-60%-20%.[57]

Behavioral strengths and difficulties

The parent version of the Strengths and Difficulties Questionnaire (SDQ) was used to assess behavioral strengths and difficulties in children aged 3 years and older.[58,59] This screening questionnaire comprises five scales, namely emotional problems, hyperactivity/inattention, peer relationship problems, conduct problems, and prosocial behavior. The results of the four different problem scales (all scales but prosocial behavior) can be combined into a total difficulties score, which ranges from 0 to 40, with higher scores indicating more behavioral difficulties.[58] This score was used for further analysis. In the representative norming sample of the German version of the SDQ, the internal consistency was $\alpha = .82$.[59]

Overweight/Obesity

Height and weight of all participants were measured by trained study assistants. BMI was calculated and converted to standard-deviation scores (BMI-SDS) using age- and gender-
specific percentiles for German children.[60] For data analysis, BMI-SDS was categorized as either normal weight (≤ 90th percentile) or overweight/obesity (>90th percentile).[60]

Sleep duration

Information on sleep habits was collected using parent questionnaires. For children up to 2 years of age, the Brief Infant Sleep Questionnaire (BISQ) was used.[61] For older children, we applied the Children’s Sleep Habits Questionnaire (CSHQ).[62] From both questionnaires, only the information on sleep duration was considered (see supplementary file). The hours of sleep per day and night were summed to obtain the total sleep time.

Breastfeeding, gestational age at birth, and siblings

Information on breastfeeding was collected using a self-created parent questionnaire. Parents were asked to indicate how many months the child was breastfed, regardless of whether it was exclusively breastfed or not. In another questionnaire, parents provided information on the number of older siblings of the child. From this information, we created a binary variable that indicates whether a child has at least one older sibling or not. Information on gestational age at birth was taken from medical records.

Analysis

Data analysis was performed using the free statistics software R (version 4.0.4).[63] We applied linear mixed-effect models to explore associations between the influencing variables and the developmental outcomes in the different domains. Unlike simple linear models, these models allowed us to control for possible sibling relationships within the sample (package lmer). Moreover, all associations were adjusted for age and sex. The developmental quotients in the domains of cognition, language, body motor, hand motor, social-emotional development, and tracing were included as dependent variables. Gestational age, sex, SES, the presence of older siblings, overweight/obesity, sleep duration, breastfeeding duration, and total difficulties score were included as independent variables. Separate models were calculated for each independent variable.

Following our hypotheses, associations between developmental outcomes and gestational age, sex, and SES were checked for interactions with child age at examination. Furthermore,
associations between developmental outcomes and gestational age were checked for interaction with sex.

Assuming small effects (R^2 of 0.02) and a power of 0.80, regression analyses with one predictor require 390 participants for effects to reach statistical significance ($p < 0.05$).[64] For all associations, the level of significance was set at $\alpha = 0.05$.

Patient and public involvement

Study participants or members of the public were not involved in the design of this study. At regular public events organized by the LIFE Child study, such as open days, study participants and members of the public are invited to learn about our latest research findings.

RESULTS

Description of the study sample

For each variable, sample size and distribution within the sample are shown in Table 1. The majority of the families (51.9%) had high SES, 46.4% had medium SES, and 1.7% had low SES. 50 of 767 children (6.52%) were overweight or obese. Information on siblings was available for 494 children, of whom 269 (54.5%) had no older siblings. The average developmental quotients of the ET 6-6-R ranged from 9.4 (SD = 2.88) to 10.61 (SD = 2.68, see Figure 2), depending on the developmental domain, and thus correspond approximately to the average for German children.[53]
Table 1 - Characteristics of the sample.

	n	Distribution
Age (years)	778	
< 2 (Infancy & Toddlerhood)	349	(44.86 %)
2 - 6 (Early childhood)	429	(55.14 %)
Sex	778	
Female	378	(48.6 %)
Male	400	(51.4 %)
Older siblings	494	
No	269	(54.5 %)
Yes	225	(45.5 %)
Overweight/Obesity	767	
No	717	(93.48 %)
Yes	50	(6.52 %)
SES status	778	
high	404	(51.9 %)
middle	361	(46.4 %)
low	13	(1.7 %)

	Range	Mean (SD)
Age (years)	0.35 – 5.98	2.67 (1.78)
SES index	6.9 – 21	15.52 (2.95)
Gestational age (weeks)	24.29 – 42.14	39.48 (2.16)
SDQ score	0 – 26	8.52 (4.32)
Sleep time (hours/day)	6 – 16.6	12.18 (1.7)
Breastfeeding duration (months)	1 – 36	11.05 (5.4)
Developmental quotient	778	
Cognition	1 – 17	10.03 (2.97)
Language	1 – 15	10.06 (2.65)
Body motor	1 – 17	9.4 (2.88)
Hand motor	1 – 16	10.14 (2.76)
Social-emotional	1 – 17	10.61 (2.68)
Tracing	307	10.21 (2.99)
Associations between social and individual factors and developmental outcomes

As expected, higher gestational age was associated with better development in the domains of cognition, language, body motor skills, hand motor skills, and social-emotional development (b ranging between .12 and .26, all p < .008, see Table 2). Only tracing was not significantly associated with gestational age (b = .05, p = .589).

Also in line with the hypotheses, a higher SES was significantly associated with the developmental outcomes in the domains of cognition, language, body motor skills, social-emotional development, and tracing (b ranging from .08 to .21, all p < .019). Only developmental scores in the domain of hand motor skills showed no significant association with SES (b = .06, p = .09).

As expected, boys scored lower than girls in all developmental domains. However, the differences only reached significance in the domains of body and hand motor skills (b = -.45 and -.68, p = .019 and <.001, respectively) and tracing (b = -1.5, p = <.001, see Table 2).

Compared to gestational age, SES, and sex, the other independent variables showed fewer significant associations with the developmental outcomes. Regarding behavioral difficulties, a higher total difficulties score was significantly associated with poorer performance in the areas of cognition, hand motor skills, social-emotional development, and tracing (b ranging between -.08 and -.13, all p < .018).

The presence of older siblings was significantly associated with better motor skills (both b = .55, both p < .029), but not with development in other domains (see Table 2).

The associations between developmental outcomes and sleep duration, breastfeeding duration, and overweight/obesity were not significant (see Table 2).
Table 2 - Associations of social and individual variables with developmental outcomes.

N	Cognition	Language	Body motor	Hand motor	Social-emotional	Tracing a							
	b (95% CI)	p	b (95% CI)	p	b (95% CI)	p							
Gestational age	778	0.24 (0.15 – 0.33) ***	<0.001	0.19 (0.11 – 0.28) ***	<0.001	0.21 (0.12 – 0.30) b ***	<0.001	0.26 (0.17 – 0.34) b ***	<0.001	0.12 (0.03 – 0.21) **	0.008	0.05 (-0.12 – 0.21)	0.589
SES Score	778	0.12 (0.05 – 0.18) b **	0.001	0.12 (0.06 – 0.18) ***	<0.001	0.08 (0.02 – 0.15) *	0.013	0.06 (-0.01 – 0.12)	0.09	0.08 (0.01 – 0.15) *	0.019	0.21 (0.11 – 0.32) ***	<0.001
Sex (ref = female)	778	-0.40 (-0.80 – 0.00)	0.050	-0.31 (-0.65 – 0.04)	0.079	-0.45 (-0.83 – 0.07) b *	0.019	-0.68 (-1.05 – 0.31) b ***	<0.001	-0.26 (-0.63 – 0.10)	0.157	-1.50 (-2.14 – 0.86) ***	<0.001
SDQ total-score	391	-0.08 (-0.15 – 0.01) *	0.018	-0.03 (-0.09 – 0.03)	0.372	-0.06 (-0.12 – 0.00)	0.067	-0.09 (-0.15 – 0.04) **	0.001	-0.13 (-0.19 – 0.07) ***	<0.001	-0.12 (-0.19 – 0.04)	0.002
Older siblings (ref = no)	494	-0.07 (-0.59 – 0.45)	0.794	-0.01 (-0.45 – 0.43)	0.958	0.55 (0.06 – 1.04) *	0.029	0.55 (0.08 – 1.03) *	0.024	-0.33 (-0.79 – 0.14)	0.173	-0.25 (-1.37 – 1.13)	0.518
Sleep duration	365	0.09 (-0.121 – 0.3)	0.411	-0.11 (-0.28 – 0.06)	0.217	0.01 (-0.18 – 0.2)	0.932	0.1 (-0.09 – 0.29)	0.317	0.07 (-0.12 – 0.26)	0.451	0.35 (-0.11 – 0.80)	0.138
Breastfeeding duration	259	0.06 (-0.01 – 0.13)	0.101	0.03 (-0.02 – 0.09)	0.244	-0.01 (-0.07 – 0.06)	0.877	0.02 (-0.04 – 0.08)	0.601	0.01 (-0.05 – 0.07)	0.645	-0.04 (-0.12 – 0.05)	0.427
Overweight (ref = no)	767	0.04 (-0.79 – 0.86)	0.927	-0.37 (-1.08 – 0.34)	0.309	-0.10 (-0.87 – 0.69)	0.812	0.20 (-0.56 – 0.96)	0.608	0.42 (-0.34 – 1.19)	0.279	-1.39 (-3.12 – 0.34)	0.117

*p < .05, **p < .01, ***p < .001

a The tracing subtest is only conducted with children aged 42 months and older, resulting in smaller samples.

b Significant interaction with child age, c Significant interaction with child sex.

All associations were adjusted for age and sex.

All significant associations, except the association between hand motor skills and older siblings, stayed significant after adjusting for SES and gestational age.
Interaction effects of child age and sex

In accordance with our hypotheses, we assessed whether or not associations between developmental outcomes and gestational age, SES, and sex differed depending on child age. In the case of SES, significant interactions with age indicated that the positive associations with cognition and language skills were stronger in older children vs. younger children ($b = .05$ and .06, $p = .008$ and <.001, respectively). Other significant interactions showed that the associations between gestational age and body and hand motor skills became weaker as child age increased ($b = -.07$ and -.11, $p = .018$ and <.001, respectively). Finally, the negative associations between male sex and body or hand motor skills were stronger in older children compared to younger children (both $b = -.23$, $p = .034$ and .033, respectively).

We also assessed whether the association between developmental outcomes and gestational age differed between boys and girls. A significant interaction indicated that the association between higher gestational age and better hand motor skills was stronger in boys than in girls ($b = .18$, $p = .036$, see Figure 3).

DISCUSSION

The aim of our study was to explore risk and protective factors for early child development in a sample of healthy German children under 6 years of age, i.e., in the phases of infancy, toddlerhood and early childhood.[1] As expected for a sample of healthy children, mean development test scores were fairly close to the average for German children. It turned out that our sample contained an above-average number of children from families with high SES.

Factors associated with child development

We found positive significant associations between children's development and higher gestational age, higher SES, and the presence of older siblings. Negative significant associations were found between the performance in some of the developmental domains and male sex and behavioral difficulties. There was no evidence of an association between child development and duration of breastfeeding, average sleep duration, or overweight/obesity.

The results regarding gestational age are in line with our expectations. As in other studies, higher gestational age was associated with better development in cognition, language, hand and body motor skills, and social-emotional development.[4,6,9] These differences might be due to
structural brain alterations in preterm infants associated with the disruption of brain growth and maturation in the womb.[65] Regarding hand motor skills, the association with gestational age was stronger in boys than girls. This confirms the results of previous studies[8–10] and indicates that boys born prematurely are at particularly high risk for developmental delays. A generally higher vulnerability to adverse outcomes has been observed in preterm boys, the etiology of which is still insufficiently explained.[66] Multiple mechanisms likely contribute to this. For example, in animal studies, males were more vulnerable to cell damage from oxidative stress.[67] Hormonal and immunological sex differences might also play a role.[68,69] In line with our hypotheses, the association between gestational age and development became weaker with increasing age. This result indicates that the development of children at age 6 is not as affected by gestational age as at earlier age (e.g. 0.5 years). This finding is similar to the result of Zambrana et al. who, however, only investigated language development.[5] In our study, the interaction effect with child age was significant only in the motor domains. Even if the same trend could be observed in the other developmental domains, this might imply that developmental delays in prematurely born children are more difficult to catch up in the areas of cognition, language and social-emotional skills than in the area of motor skills. When interpreting the results regarding gestational age, it must be noted that our sample contains mainly children born at term and few children with very low gestational age.

As expected, we observed significant positive associations between SES and development in all areas except hand motor skills. This is in line with the results of other studies.[15–18] A possible explanation is that a higher SES is associated with more child enrichment, i.e. with home and social activities conducive to development, e.g. regular reading of books or outdoor activities, which, in turn, might improve child development.[16] As hypothesized, our analysis suggests that during infancy, toddlerhood and early childhood, the association between SES and development becomes stronger as children grow older, especially regarding cognitive and language development. This result is also consistent with the findings of other studies.[17–19] It seems plausible to consider SES as a social factor that has a greater impact the longer one is exposed to it. A study of representative cohorts (sample sizes ranging from 1813 to 6191) of German children aged between 0 and 15 years examined the trajectories of SES-dependent achievement gaps and showed that these gaps emerge in the preschool years but remain fairly stable thereafter.[17] It is possible, thus, that schools can at least partially compensate for SES differences.[17,70]
In line with the results of other studies, girls performed better than boys in all developmental areas.[22,23,30] The differences were significant only in the areas of hand motor skills, tracing, and, more surprisingly, body motor skills. In other studies, girls tended to have greater advantages in all developmental domains except body motor skills.[22,23,30] The strongest evidence from other studies is on better language skills in girls than in boys.[71,72] The mechanisms underlying the differences are probably multiple, and two reviews about cognitive or linguistic sex differences, respectively, conclude that biological and environmental factors combine to account for these outcomes, interacting and conditioning each other.[73,74] Interestingly, our analyses revealed that the observed sex differences became stronger with increasing age. This result is consistent with the tendencies reported in Krogh and Vaever's study,[23] but contradicts other studies that found that differences between males and females were smaller or non-existent in older as compared to younger (preschool) children.[72,75] We had expected widening developmental differences between boys and girls with increasing age due to the effects of gender socialization. This trend can also be observed in the differing emotional expression of boys and girls.[76] However, it is questionable whether this explanation can be applied to our rather surprising results in the area of motor development.

We found significant associations between cognitive development, hand motor skills, social-emotional development, and tracing with behavioral difficulties. Other studies also showed these associations.[27,28,77] These findings are highly relevant as children who have both behavioral and developmental problems are at particular risk of poor school performance.[28] Our results showed a positive association between having an older sibling and motor development (hand and body motor skills). This result supports the thesis of Barr and Hayne that children learn by imitating their older siblings.[78] at least with regard to motor development. We did not find significant associations in the other developmental domains. However, we did not consider the age gap between siblings or how much time they spent together. Large age gaps and little time together might limit the possibility to learn from each other.

None of the developmental domains were associated with average sleep duration. These results are consistent with the findings of some previous studies,[37,39–41] but contradict other studies that showed associations between sleep and child development.[36,38] Importantly, while several studies have found a negative association between sleep deprivation and executive functioning or reaction time,[79,80] only a few studies found an association between sleep and more general development. Therefore, one might cautiously conclude that sleep deprivation has
a short-term effect on performance in cognitively demanding tasks, but no medium- or long-term effect on child development.

Similar to sleep, we observed no significant association between development and breastfeeding duration. In the ongoing debate on this topic, our results thus support the assumption that a potential positive association between development and breastfeeding is not causally related to breastfeeding but may be influenced by a woman's SES and educational level, suggesting that socioeconomically advantaged women may breastfeed longer than less educated women.[43,44] In line with this assumption, an association could not be seen in our sample of middle-to-high SES families.

In addition to sleep and breastfeeding and as expected, overweight/obesity was not related to child development. This contradicts the results of a study with children below 4 years of age.[50] However, it is in line with the results of studies on older children, which also found no significant association between overweight/obesity and cognitive development or school performance.[48,49]

Strengths and limitations

Our study has some weaknesses. We studied a sample with above-average SES, which is thus relatively homogeneous and not representative of the whole population. This could lead to an underestimation of low SES as a risk factor for child development. Our sample sizes vary by factor studied (min = 259 children), so the strength of our large sample does not apply to each of the analyses. Furthermore, some of the questionnaires constructed for the LIFE child study have not been validated. As a weakness of the cross-sectional design of our study, we cannot draw causal conclusions from our results.

Conclusion

Low gestational age, low SES, being a boy, and behavioral difficulties are risk factors for healthy and age-appropriate development, and their importance changes during child development. Having older siblings may improve motor development in children, while sleep duration, breastfeeding duration, and overweight/obesity do not seem to affect the development of children below school age. For future research, we suggest focusing on the mechanisms underlying the well-established associations. The knowledge gained in this and other studies must be shared with those entrusted with children and their development. This enables parents,
educators and pediatricians, among others, to monitor the development of children growing up in conditions of risk, bearing in mind that children may be affected by several disadvantages at the same time. The best strategies to address the developmental risks must be well reflected in order to avoid possible discrimination or stereotyping through interventions themselves. One possibility to reduce social disadvantages would be the introduction of early, comprehensive, free and high-quality institutional childcare. Moreover, high-frequency checks (home visits) by pediatricians for early identification and intervention in children at risk (e.g., prematurely born children) would be helpful.
Acknowledgments

We would like to thank all LIFE Child research assistants for their efforts and the children and parents for their participation in the LIFE Child study.

Competing interests

The authors declare that they have no conflict of interest.

Funding statement

This publication is supported by LIFE – Leipzig Research Center for Civilization Diseases, University of Leipzig. LIFE is funded by means of the European Union, by means of the European Social Fund (ESF), the European Regional Development Fund (ERDF), and by means of the Free State of Saxony within the framework of the excellence initiative.

Funded by the Open Access Publishing Fund of Leipzig University supported by the German Research Foundation within the program Open Access Publication Funding.

Author’s contributions

CS, WK, and TP contributed to the conception and design of this study and the interpretation of data. CS, CM, and TP contributed to the acquisition of data and analysis. CS and TP wrote the original draft and CM, JK and WK revised it critically. All authors gave their final approval for this version to be published.

Data sharing statement

The datasets generated and/or analyzed during the current study are not publicly available due to ethical restrictions. The LIFE Child study is a study collecting potentially sensitive information. Publishing data sets is not covered by the informed consent provided by the study participants.

Furthermore, the data protection concept of LIFE requests that all (external as well as internal) researchers interested in accessing data sign a project agreement. Researchers that are interested in accessing and analyzing data collected in the LIFE Child study may contact the data use and access committee (forschungsdaten@medizin.uni-leipzig.de).

Trial registration

The LIFE Child study is registered on clinicaltrials.gov with the number NCT02550236.
Ethics approval

The LIFE Child study is conducted in accordance with the Declaration of Helsinki, and the study protocol has been approved by the Ethics Committee of the University of Leipzig (Reg. No. 264/10-ek).
REFERENCES

1. Berk LE. *Entwicklungspsychologie*. 7., aktualisierte Auflage. Halbergmoos: Pearson 2020.
2. Sroufe LA, Coffino B, Carlson EA. Conceptualizing the role of early experience: Lessons from the Minnesota longitudinal study. *Dev Rev* 2010;30:36–51. doi:10.1016/j.dr.2009.12.002
3. Moster D, Lie RT, Markestad T. Long-Term Medical and Social Consequences of Preterm Birth. *N Engl J Med* 2008;359:262–73. doi:10.1056/NEJMoal0706475
4. Cheong JL, Doyle LW, Burnett AC, et al. Association Between Moderate and Late Preterm Birth and Neurodevelopment and Social-Emotional Development at Age 2 Years. *JAMA Pediatr* 2017;171:e164805. doi:10.1001/jamapediatrics.2016.4805
5. Zambrana IM, Vollrath ME, Jacobsson B, et al. Preterm birth and risk for language delays before school entry: A sibling-control study. *Dev Psychopathol* 2021;33:47–52. doi:10.1017/S0954579419001536
6. Woythaler M. Neurodevelopmental outcomes of the late preterm infant. *Semin Fetal Neonatal Med* 2019;24:54–9. doi:10.1016/j.siny.2018.10.002
7. Hochstedler KA, Bell G, Park H, et al. Gestational Age at Birth and Risk of Developmental Delay: The Upstate KIDS Study. *Am J Perinatol* 2021;38:1088–95. doi:10.1055/s-0040-1702937
8. Serenius F, Ewald U, Farooqi A, et al. Neurodevelopmental Outcomes Among Extremely Preterm Infants 6.5 Years After Active Perinatal Care in Sweden. *JAMA Pediatr* 2016;170:954. doi:10.1001/jamapediatrics.2016.1210
9. Johnson S, Evans TA, Draper ES, et al. Neurodevelopmental outcomes following late and moderate prematurity: a population-based cohort study. *Arch Dis Child - Fetal Neonatal Ed* 2015;100:F301–8. doi:10.1136/archdischild-2014-307684
10. Romeo DM, Di Stefano A, Conversano M, et al. Neurodevelopmental outcome at 12 and 18 months in late preterm infants. *Eur J Paediatr Neurol* 2010;14:503–7. doi:10.1016/j.ejpn.2010.02.002
11. Gurka MJ, LoCasale-Crouch J, Blackman JA. Long-term Cognition, Achievement, Socioemotional, and Behavioral Development of Healthy Late-Preterm Infants. *Arch Pediatr Adolesc Med* 2010;164. doi:10.1001/archpediatrics.2010.83
12. Quigley MA, Poulsen G, Boyle E, et al. Early term and late preterm birth are associated with poorer school performance at age 5 years: a cohort study. *Arch Child Fetal Neonatal Ed* 2012;7.
13. Twilhaar ES, de Kieviet JF, Aarnoudse-Moens CS, et al. Academic performance of children born preterm: a meta-analysis and meta-regression. *Arch Dis Child - Fetal Neonatal Ed* 2018;103:F322–30. doi:10.1136/archdischild-2017-312916
14. Bradley RH, Corwyn RF. Socioeconomic Status and Child Development. *Annu Rev Psychol* 2002;53:371–99. doi:10.1146/annurev.psych.53.100901.135233
15. González L, Cortés-Sanchez R, Murcia M, et al. The role of parental social class, education and unemployment on child cognitive development. *Gac Sanit* 2020;34:51–60. doi:10.1016/j.gaceta.2018.07.014
16. Christensen DL, Schieve LA, Devine O, et al. Socioeconomic status, child enrichment factors, and cognitive performance among preschool-age children: Results from the Follow-Up of Growth and Development Experiences study. *Res Dev Disabil* 2014;35:1789–801. doi:10.1016/j.ridd.2014.02.003
17. Skopek J, Passaretta G. Socioeconomic Inequality in Children’s Achievement from Infancy to Adolescence: The Case of Germany. *Soc Forces* 2021;100:86–112. doi:10.1093/sf/sosa093
18. Halle T, Forry N, Hair E, et al. Disparities in early learning and development: Lessons from the Early Childhood Longitudinal Study - Birth Cohort (ECLS-B). Washington, DC:
Child Trends 2009.

19 von Hippel P, Hamrock C. Do Test Score Gaps Grow before, during, or between the School Years? Measurement Artifacts and What We Can Know in Spite of Them. *Social Sci* 2019;6:43–80. doi:10.15195/v6.a3

20 Law J, Clegg J, Rush R, *et al.* Association of proximal elements of social disadvantage with children’s language development at 2 years: an analysis of data from the Children in Focus (CiF) sample from the ALSPAC birth cohort. *Int J Lang Commun Disord* 2019;54:362–76. doi:10.1111/1460-6984.12442

21 Cornish AM, McMahon CA, Ungerer JA, *et al.* Postnatal depression and infant cognitive and motor development in the second postnatal year: The impact of depression chronicity and infant gender. *Infant Behav Dev* 2005;28:407–17. doi:10.1016/j.infbeh.2005.03.004

22 Koutra K, Chatzi L, Roumeliotaki T, *et al.* Socio-demographic determinants of infant neurodevelopment at 18 months of age: Mother–Child Cohort (Rhea Study) in Crete, Greece. *Infant Behav Dev* 2012;35:48–59. doi:10.1016/j.infbeh.2011.09.005

23 Krogh MT, Væver MS. Does gender affect Bayley-III scores and test-taking behavior? *Infant Behav Dev* 2019;57:101352. doi:10.1016/j.infbeh.2019.101352

24 Curtis PR, Frey JR, Watson CD, *et al.* Language Disorders and Problem Behaviors: A Meta-analysis. *Pediatrics* 2018;142:e20173551. doi:10.1542/peds.2017-3551

25 Helbig L, Caffier P, Sarrar L. Elterliche Wahrnehmung von Verhaltensauffälligkeiten bei Kindern mit spezifischer Sprachentwicklungsstörung. *Z Für Kinder- Jugendpsychiatrie Psychother* 2020;48:469–77. doi:10.1024/1422-4917/a000746

26 Clegg J, Law J, Rush R, *et al.* The contribution of early language development to children’s emotional and behavioural functioning at 6 years: an analysis of data from the Children in Focus sample from the ALSPAC birth cohort. *J Child Psychol Psychiatry* 2015;56:67–75. doi:10.1111/jcpp.12281

27 Ulrich F, Petermann F, Petermann U, *et al.* Verhaltensauffälligkeiten bei Kindern mit Entwicklungsdefiziten im Vorschulalter. *Z Für Entwicklungspsychologie Pädagog Psychol* 2016;48:80–9. doi:10.1026/0049-8637/a000146

28 Metcalfe LA, Harvey EA, Laws HB. The longitudinal relation between academic/cognitive skills and externalizing behavior problems in preschool children. *J Educ Psychol* 2013;105:881–94. doi:10.1037/a0032624

29 Brody GH. Siblings’ Direct and Indirect Contributions to Child Development. *Curr Dir Psychol Sci* 2004;13:124–6. doi:10.1111/j.0963-7214.2004.00289.x

30 Cruise S, O’Reilly D. The influence of parents, older siblings, and non-parental care on infant development at nine months of age. *Infant Behav Dev* 2014;37:546–55. doi:10.1016/j.infbeh.2014.06.005

31 Rebelo M, Serrano J, Duarte-Mendes P, *et al.* Effect of Siblings and Type of Delivery on the Development of Motor Skills in the First 48 Months of Life. *Int J Environ Res Public Health* 2020;17:3864. doi:10.3390/ijerph17113864

32 Rodrigues LP, Luz C, Cordovil R, *et al.* Siblings’ Influence on the Motor Competence of Preschoolers. *Children* 2021;8:204. doi:10.3390/children8030204

33 Beebe DW. Cognitive, Behavioral, and Functional Consequences of Inadequate Sleep in Children and Adolescents. *Pediatr Clin North Am* 2011;58:649–65. doi:10.1016/j.pcl.2011.03.002

34 Sadeh A. Consequences of Sleep Loss or Sleep Disruption in Children. *Sleep Med Clin* 2007;2:513–20. doi:10.1016/j.jsmec.2007.05.012

35 Chaput J-P, Gray CE, Poitras VJ, *et al.* Systematic review of the relationships between sleep duration and health indicators in school-aged children and youth. *Appl Physiol Nutr Metab* 2016;41:S266–82. doi:10.1139/apnm-2015-0627

36 Smithson L, Baird T, Tamana SK, *et al.* Shorter sleep duration is associated with
reduced cognitive development at two years of age. *Sleep Med* 2018;**48**:131–9.
doi:10.1016/j.sleep.2018.04.005

37 Hoyniak CP, Bates JE, McQuillan ME, *et al.* Sleep across early childhood:
implications for internalizing and externalizing problems, socioemotional skills, and cognitive
and academic abilities in preschool. *J Child Psychol Psychiatry* 2020;**61**:1080–91.
doi:https://doi.org/10.1111/jcpp.13225

38 Vaughn BE, Elmore-Staton L, Shin N, *et al.* Sleep as a Support for Social
Competence, Peer Relations, and Cognitive Functioning in Preschool Children. *Behav Sleep
Med* 2015;**13**:92–106. doi:10.1080/15402002.2013.845778

39 Sun W, Li SX, Jiang Y, *et al.* A Community-Based Study of Sleep and Cognitive
Development in Infants and Toddlers. *J Clin Sleep Med JCSM Off Publ Acac Med Sleep Med*
2018;**14**:977–84. doi:10.5664/jcsm.7164

40 Mäkelä TE, Peltola MJ, Nieminen P, *et al.* Night awakening in infancy:
Developmental stability and longitudinal associations with psychomotor development. *Dev
Psychol* 2018;**54**:1208–18. doi:10.1037/dev0000503

41 Pennestri M-H, Laganière C, Bouvette-Turcot A-A, *et al.* Uninterrupted Infant Sleep,
Development, and Maternal Mood. *Pediatrics* 2018;**142**:e20174330. doi:10.1542/peds.2017-
4330

42 Rouw E, von Gartzen A, Weißenborn A. Bedeutung des Stillens für das Kind.
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 2018;**61**:945–51.
doi:10.1007/s00103-018-2773-4

43 Walfisch A, Sermer C, Cressman A, *et al.* Breast milk and cognitive development—
the role of confounders: a systematic review. *BMJ Open* 2013;**3**:e003259.
doi:10.1136/bmjopen-2013-003259

44 Colen CG, Ramey DM. Is breast truly best? Estimating the effects of breastfeeding on
long-term child health and wellbeing in the United States using sibling comparisons. *Soc Sci
Med* 2014;**109**:55–65. doi:10.1016/j.socscimed.2014.01.027

45 Sanefuji M, Senju A, Shimono M, *et al.* Breast feeding and infant development in a
cohort with sibling pair analysis: the Japan Environment and Children’s Study. *BMJ Open*
2021;**11**:e043202. doi:10.1136/bmjopen-2020-043202

46 Robert Koch-Institut. Übergewicht und Adipositas im Kindes- und Jugendalter in
Deutschland – Querschnittergebnisse aus KiGGS Welle 2 und Trends. Published Online First:
2018. doi:10.17886/RKI-GBE-2018-005.2

47 Black N, Johnston DW, Peeters A. Childhood Obesity and Cognitive Achievement.
Health Econ 2015;**24**:1082–100. doi:10.1002/hec.3211

48 Bisset S, Fournier M, Pagani L, *et al.* Predicting academic and cognitive outcomes
from weight status trajectories during childhood. *Int J Obes* 2013;**37**:154–9.
doi:10.1038/ijo.2012.106

49 Palermo TM, Dowd JB. Childhood obesity and human capital accumulation. *Soc Sci
Med* 2012;**75**:1989–98. doi:10.1016/j.socscimed.2012.08.004

50 Camargos ACR, Mendonça VA, Andrade CA de, *et al.* Overweight and obese infants
present lower cognitive and motor development scores than normal-weight peers. *Res Dev
Disabil* 2016;**59**:410–6. doi:10.1016/j.ridd.2016.10.001

51 Poulain T, Baber R, Vogel M, *et al.* The LIFE Child study: a population-based
perinatal and pediatric cohort in Germany. *Eur J Epidemiol* 2017;**32**:145–58.
doi:10.1007/s10654-016-0216-9

52 Quante M, Hesse M, Döhnert M, *et al.* The LIFE child study: a life course approach to
disease and health. *BMC Public Health* 2012;**12**:1021. doi:10.1186/1471-2458-12-1021

53 Petermann F, Macha T. *ET 6-6-R. Entwicklungstest für Kinder von 6 Monaten bis 6
Jahren - Revision. Manual (2. korr. Aufl.).* Frankfurt: : Pearson Assessment and Information
2015.
54 Walter F, Petermann F, Daseking M. Vorhersage von kognitiven Fähigkeiten in der WPSSI-IV durch den ET 6-6-R. Kindh Entwickl 2018;27:133–41. doi:10.1026/0942-5403/a000253
55 Daseking M, Lemcke J, Macha T, et al. Frühkindliche Schlaganfälle - Studie zur klinischen Validität des ET 6-6. Z Für Kinder- Jugendpsychiatrie Psychother 2007;35:311–21. doi:10.1024/1422-4917.35.5.311
56 Lissmann I, Domsch H, Lohaus A. Zur Stabilität und Validität von Entwicklungstestergebnissen im Alter von sechs Monaten bis zwei Jahren. Kindh Entwickl 2006;15:35–44. doi:10.1026/0942-5403.15.1.35
57 Lampert T, Mütters S, Stoltenberg H, et al. Messung des sozioökonomischen Status in der KiGGS-Studie. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 2014;57:762–70. doi:10.1007/s00103-014-1974-8
58 Goodman R. The Strengths and Difficulties Questionnaire: A Research Note. J Child Psychol Psychiatry 1997;38:581–6. doi:10.1111/j.1469-7610.1997.tb01545.x
59 Woerner W, Becker A, Friedrich C, et al. Normierung und Evaluation der deutschen Elternversion des Strengths and Difficulties Questionnaire (SDQ): Ergebnisse einer repräsentativen Felderhebung. Z Für Kinder- Jugendpsychiatrie Psychother 2002;30:105–12. doi:10.1024//1422-4917.30.2.105
60 Kromeyer-Hauschild K, Wabitsch M, Kunze D, et al. Perzentile für den Body-mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilkd 2001;149:807–18. doi:10.1007/s001120170107
61 Sadeh A. A Brief Screening Questionnaire for Infant Sleep Problems: Validation and Findings for an Internet Sample. Pediatrics 2004;113:e570–7. doi:10.1542/peds.113.6.e570
62 Schlarb AA, Schwerdtle B, Hautzinger M. Validation and psychometric properties of the German version of the Children’s Sleep Habits Questionnaire (CSHQ-DE). Somnologie - Schlafforschung Schlafmed 2010;14:260–6. doi:10.1007/s11818-010-0495-4
63 R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2022.https://www.R-project.org/
64 Cohen J. Statistical power analysis for the behavioral sciences. 2. ed. Hillsdale, NJ: : Erlbaum 1988.
65 Cheong JLY, Thompson DK, Olsen JE, et al. Late preterm births: New insights from neonatal neuroimaging and neurobehaviour. Semin Fetal Neonatal Med 2019;24:60–5. doi:10.1016/j.siny.2018.10.003
66 Hintz SR, Kendrick DE, Vohr BR, et al. Gender differences in neurodevelopmental outcomes among extremely preterm, extremely-low-birthweight infants. Acta Paediatr 2006;95:1239–48. doi:10.1080/08035250600599727
67 Netto CA, Sanches E, Odorczyk FK, et al. Sex-dependent consequences of neonatal brain hypoxia-ischemia in the rat. J Neurosci Res 2017;95:409–21. doi:10.1002/jnr.23828
68 O’Driscoll DN, McGovern M, Greene CM, et al. Gender disparities in preterm neonatal outcomes. Acta Paediatr 2018;107:1494–9. doi:10.1111/apa.14390
69 O’Driscoll DN, Greene CM, Molloy EJ. Immune function? A missing link in the gender disparity in preterm neonatal outcomes. Expert Rev Clin Immunol 2017;13:1061–71. doi:10.1080/1744666X.2017.1386555
70 Poulain T, Vogel M, Sobek C, et al. Associations Between Socio-Economic Status and Child Health: Findings of a Large German Cohort Study. Int J Environ Res Public Health 2019;16:677. doi:10.3390/ijerph16050677
71 Brandlistuen RE, Flato M, Stoltenberg C, et al. Gender gaps in preschool age: A study of behavior, neurodevelopment and pre-academic skills. Scand J Public Health 2021;49:503–10. doi:10.1177/1403494820944740
72 Lange BP, Euler HA, Zaretisky E. Sex differences in language competence of 3- to 6-year-old children. Appl Psycholinguist 2016;37:1417–38. doi:10.1017/S0142716415000624
73 Rinaldi P, Pasqualetti P, Volterra V, et al. Gender differences in early stages of language development. Some evidence and possible explanations. *J Neurosci Res* 2021;[Preprint]. doi:10.1002/jnr.24914

74 Miller DI, Halpern DF. The new science of cognitive sex differences. *Trends Cogn Sci* 2014;18:37–45. doi:10.1016/j.tics.2013.10.011

75 Toivainen T, Papageorgiou KA, Tosto MG, et al. Sex differences in non-verbal and verbal abilities in childhood and adolescence. *Intelligence* 2017;64:81–8. doi:10.1016/j.intell.2017.07.007

76 Chaplin TM, Aldao A. Gender differences in emotion expression in children: A meta-analytic review. *Psychol Bull* 2013;139:735–65. doi:10.1037/a0030737

77 Korsch F, Petermann U, Schmidt S, et al. Kognitive, sprachliche, motorische und sozial-emotionale Defizite bei verhaltensauffälligen Schulanfängern. *Prax Kinderpsychol Kinderpsychiatr* 2013;62:405–19. doi:10.13109/prkk.2013.62.6.405

78 Barr R, Hayne H. It’s Not What You Know, It’s Who You Know: Older siblings facilitate imitation during infancy. *Int J Early Years Educ* 2003;11:7–21. doi:10.1080/096697603200066055

79 Sadeh A, Gruber R, Raviv A. The effects of sleep restriction and extension on school-age children: what a difference an hour makes. *Child Dev* 2003;74:444–55. doi:10.1111/1467-8624.7402008

80 Nelson TD, Nelson JM, Kidwell KM, et al. Preschool Sleep Problems and Differential Associations With Specific Aspects of Executive Control in Early Elementary School. *Dev Neuropsychol* 2015;40:167–80. doi:10.1080/87565641.2015.1020946
Figure 1 - Flow chart of participant selection. ET-6-6-R: Entwicklungstest für Kinder von 6 Monaten bis 6 Jahren (“Development Test for Children between 6 Months and 6 Years – Revision”); SES: socioeconomic status.

Figure 2 - Distribution of scores in the different developmental domains (n = 778).

Figure 3 - Effect plot illustrating the association (+ 95% CI) between gestational age and hand motor skills in girls and boys (n = 778).
1319 datasets of participations in the ET 6-6-R

820 datasets of one visit per child

778 children with complete data were included in the analyses

499 excluded due to participation more than once

42 excluded due to missing data in ET-6-6-R, SES, and gestational age
VARIABLES COLLECTED THROUGH QUESTIONNAIRES

Sleep duration

Excerpt from the Brief Infant Sleep Questionnaire:

- How long does your child sleep at night (between 7pm and 7am)? - hours
- How long does your child sleep at night (between 7pm and 7am)? - minutes
- How long does your child sleep during the day (between 7am and 7pm)? - hours
- How long does your child sleep during the day (between 7am and 7pm)? - minutes

Excerpt from The Children’s Sleep Habits Questionnaire:

- Your child’s usual amount of sleep per day (total amount of sleep from night and day): hours
- Your child’s usual amount of sleep per day (total amount of sleep from night and day): minutes

Older Siblings

- Number of older siblings of the test person

Breastfeeding

- How long did you breastfeed your child in total? If you are still breastfeeding, please indicate until now. If you cannot remember, please leave the field blank!

For “The Strentghs and Difficulties Questionnaire” see:

- Goodman R. The Strengths and Difficulties Questionnaire: A Research Note. J Child Psychol Psychiatry 1997

For the Questionnaire on the Socioeconomic Status see:

- Lampert T, Müters S, Stolzenberg H, et al. Messung des sozioökonomischen Status in der KiGGS-Studie. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 2014
STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study’s design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	7
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7-9
Data sources/measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7-9
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	7 + Figure 1
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7-9
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	9-10
		(b) Describe any methods used to examine subgroups and interactions	9
		(c) Explain how missing data were addressed	7
		(d) If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	

Results
Section	Item	Description	Page, Table, Figure
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	7, Table 1, Figure 1
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	10, Table 1
		(b) Indicate number of participants with missing data for each variable of interest	Table 1
Outcome data	15*	Report numbers of outcome events or summary measures	10, Table 1
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	12, Table 2
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	14
Discussion	18	Summarise key results with reference to study objectives	14
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	17
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	17-18
Generalisability	21	Discuss the generalisability (external validity) of the study results	17
Other information	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	19

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.