Data for discriminating dead/live bacteria in homogenous cell suspensions and the effect of insoluble substrates on turbidimetric measurements

Citation for published version:
Duedu, KO & French, CE 2017, 'Data for discriminating dead/live bacteria in homogenous cell suspensions and the effect of insoluble substrates on turbidimetric measurements', Data in brief, vol. 12, pp. 169-174. https://doi.org/10.1016/j.dib.2017.04.003

Digital Object Identifier (DOI):
10.1016/j.dib.2017.04.003

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Data in brief

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Data Article

Data for discriminating dead/live bacteria in homogenous cell suspensions and the effect of insoluble substrates on turbidimetric measurements

Kwabena O. Duedu \(^{a,b,*}\), Christopher E. French \(^{a}\)

\(^{a}\) Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK

\(^{b}\) Department of Biomedical Sciences, School of Basic & Biomedical Sciences, University of Health & Allied Sciences, Ho, Ghana

Article info

Article history:
Received 16 February 2017
Received in revised form 28 March 2017
Accepted 4 April 2017
Available online 8 April 2017

Keywords:
Bacteria growth
Fluorimetry
Live/dead estimation
Propidium iodide
SYBR Green I nucleic acid gel stain

Abstract

Estimation of bacterial growth by rapid traditional methods such as spectrophotometric measurements at 600 nm (OD600) is not applicable for cultures containing insoluble particles in the growth media. Colony counts are the only suitable alternative but these are laborious and not high-throughput. The data presented in this article is related to the research article entitled "Two-colour fluorescence fluorimetric analysis for direct quantification of bacteria and its application in monitoring bacterial growth in cellulose degradation systems" (Duedu and French, 2017) [1]. This data article presents original primary data describing the discrimination of dead/live bacteria in homogenous cell suspensions and how the presence of insoluble substrates affect the turbidity of the suspensions.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
The data shown here represents a systematic process of inducing and assessing cell damage as well as the contribution of the presence of insoluble substrates to the optical density measurement of cell suspensions at 600 nm and enumeration of live cells following dual staining with SYBR Green I nucleic acid gel stain and propidium iodide. Turbidimetric measurements (optical density at 600 nm, OD600) and viable (plate/colony) counts [2,3] are the commonly used methods for direct quantification of bacteria. Fig. 1 shows background green and red fluorescence produced by the two stains in each other’s fluorescence excitation and emission channel. The overlapping excitation and emission profiles responsible for the background fluorescence was reported in the research article related to this data [1].

Fig. 2 demonstrates cell damage induced by ultra-sonication and evaluated by estimation of the total protein content of the cell suspensions. The data demonstrates that ultra-sonication of cells induces varying degrees of cell damage directly proportional to the duration of ultra-sonication representing increasing cell lysis and release of protein. However, when the same samples were totally lysed by incubation at 65 °C (1 h), the total protein was not significantly different from each other.

Addition of cellulose significantly increased the OD600 of cell suspensions and this increase (noise) was not cleared even when suspensions were allowed to stand for up to 15 min (Fig. 4). This
observation was the same for all the different strains of bacteria used. Furthermore, a similar observation was made for suspensions with higher or lower numbers of cells.

To test whether the presence of an insoluble substrate will only add proportional increase to the OD600 or not, cellulose was added to cell suspensions. There was no correlation between the original OD600 and the OD600 when insoluble substrates are present (Fig. 5). The correlation was not improved even when the cell suspensions were left to stand for 5 min or 15 min.

2. Experimental design, materials and methods

Human genomic DNA (200 ng μl⁻¹) was obtained from Bioline, London, UK, diluted serially in nuclease free water and used as a calibration standard. The diluted standards were stained with SYBR-I and/or PI and the fluorescence was measured using the Modulus™ Single Tube multimode reader. The blue (P/N 9200-040, λ_ex = 460 nm, λ_em = 515-570 nm) or green (P/N 9200-042, λ_ex = 525 nm,
$\lambda_{\text{em}} = 580–640)$ Modulus$^\text{TM}$ fluorescence kits (Turner BioSystems, Sunnyvale, CA, USA) were used for the measurement of green and red fluorescence respectively. Cell density was determined by measuring absorbance of cell suspensions at 600 nm using the absorbance module (Model E6076, GLOMAX MultiJR, Promega, Southampton, UK) on the Modulus reader.

To induce cell damage and evaluate how useful dual staining with SYBR-I and PI is for quantification of live bacterial cells demonstrated in flow cytometry [4–10] and demonstrated for fluorimetry in ref [1], a cell suspension was prepared and aliquoted into different tubes numbered 1 to 6. The tubes (1 to 6) were ultra-sonicated for one pulse at 10 μm (amplitude) for 0, 3, 7, 10, 15 and 20 s each respectively on ice using the MSE Soniprep 150 Ultrasonic Disintegrator. The degree of damage was accessed by the quantity of extracellular protein using the Pierce Coomassie plus (Bradford) assay kit (ThermoScientific, Rockford, IL, USA) following the manufacturer’s instructions. Dual staining of the ultra-sonicated cells with SYBR-I and PI was performed to determine whether damage to the cells correlated with dead cells as estimated from fluorescence measurements.

To determine the effect of the presence of an insoluble substrate in the cell suspension, the suspensions were spiked with equal amounts of microcrystalline cellulose (avicel). The OD600 was determined. Suspensions were also left to stand for 5 and 15 minutes to check whether OD600 values

Fig. 3. Strong correlation between the dead cells estimated by red fluorescence following dual staining of both E. coli (A) and C. freundii (B).

Fig. 4. Changes in turbidity of cell suspensions with the addition of insoluble cellulosic substrate. Escherichia coli strains JM109, DH5a and MG1655 and Citrobacter freundii strains NCIMB11490 and SBS197 were used. ‘A’ shows results from cell suspensions with lower densities than those in ‘B’. Error bars are standard errors of three biological replicates.
or the live or dead cell quantification will be improved. Dual staining with SYBR-I and PI for fluorometry has been described in the research article related to this data [1].

Acknowledgements

The authors thank the Darwin Trust of Edinburgh for the award of a scholarship for KOD.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.04.003.

References

[1] K.O. Duedu, C.E. French, Two-colour fluorescence fluorimetric analysis for direct quantification of bacteria and its application in monitoring bacterial growth in cellulose degradation systems, J. Microbiol. Methods 135 (2017) 85–92.
[2] R.S. Breed, W.D. Dotterrer, The number of colonies allowable on satisfactory agar plates, J. Bacteriol. 1 (3) (1916) 321–331.
[3] A.L. Koch, Turbidity measurements of bacterial cultures in some available commercial instruments, Anal. Biochem. 38 (1) (1970) 252–259.
[4] A.S. Kaprelyants, D.B. Kell, Rapid assessment of bacterial viability and vitality by rhodamine 123 and flow cytometry, J. Appl. Bacteriol. 72 (5) (1992) 410–422.
[5] J. Porter, D. Deere, R. Pickup, C. Edwards, Fluorescent probes and flow cytometry: new insights into environmental bacteriology, Cytometry 23 (2) (1996) 91–96.
[6] S. Barbesti, S. Citterio, M. Labra, M.D. Baroni, M.G. Neri, S. Sgorbati, Two and three-color fluorescence flow cytometric analysis of immunoidentified viable bacteria, Cytometry 40 (3) (2000) 214–218.
[7] J.P. Diaper, K. Tither, C. Edwards, Rapid assessment of bacterial viability by flow cytometry, Appl. Microbiol. Biotechnol. 38 (2) (1992) 268–272.
[8] G.N.-V. Caron, R.A. Badley, Viability assessment of bacteria in mixed populations using flow cytometry, J. Microsc. 179 (1) (1995) 55–66.
[9] P. Foladori, L. Bruni, S. Tamburini, G. Ziglio, Direct quantification of bacterial biomass in influent, effluent and activated sludge of wastewater treatment plants by using flow cytometry, Water Res. 44 (13) (2010) 3807–3818.
[10] S. Tamburini, P. Foladori, G. Ferrentino, S. Spilimbergo, O. Jousson, Accurate flow cytometric monitoring of Escherichia coli subpopulations on solid food treated with high pressure carbon dioxide, J. Appl. Microbiol. 117 (2) (2014) 440–450.