SHORT COMMUNICATION

Comparison of Percent Body Fat Estimated by Near Infra-red Spectrophotometry Method with Body Mass Index in Health Screening of Male Employees

Yutaka Sakurai¹, Kou Nakamura², Koji Teruya³, Naoki Shimada⁴, Hiroshi Matsuda⁴, Masaru Sakurai⁵, and Suminori Kono¹

The relationship of percent body fat (%BF) and body mass index (BMI) to blood pressure, serum lipids, hypertension and self-reported diagnosis of diabetes mellitus was examined in a cross-sectional study of 1,174 male employees at a railway company. The %BF was measured by using the near infra-red (NIR) method. Because of high collinearity between %BF and BMI (r=0.72), we categorized %BF into two groups at median within each quartile of BMI, and performed analysis of covariance on serum cholesterol (TC), serum triglycerides (TG), systolic blood pressure (SBP), and diastolic blood pressure (DBP). Age-adjusted means of TC, TG, SBP, and DBP were almost progressively increased with increasing levels of BMI regardless of %BF, but there were nearly significant or significant interactions of %BF and BMI on TC, TG, and DBP; serum lipid levels were higher in the upper %BF group than in the lower %BF group at lower levels of BMI while the difference in DBP was more evident at higher levels of BMI. There was also a significant interaction between %BF and BMI on the prevalence of hypertension (p=0.03); the prevalence was much higher in the upper %BF group than in the lower %BF group at the highest BMI level. Diabetes mellitus was not measurably associated with either BMI or %BF. These findings suggest that the measurement of %BF in addition to BMI provides useful information in the evaluation and management of individual’s health. J Epidemiol, 1994 ; 4 : 47-50.

percent body fat, near infra-red spectrophotometry method, blood pressure, serum lipid, diabetes mellitus

Obesity is a major health problem in many affluent countries¹. Body mass index (BMI), body weight in kilogram divided by squared height in meter, is widely used as a measure of obesity in population surveys as well as in clinical practice. Being a function of height and body weight, the index is generally regarded as insufficient in the measurement of individual’s obesity or adiposity. It is a matter of concern whether measures of obesity other than BMI should be included in health screening. The under-water weighing method is a prototype of measuring adipose quantity in human body², but it is not a convenient method in population studies. Likewise, recently developed methods using computed tomography (CT) scan³ or magnetic resonance imaging (MRI)⁴ are not applicable as a routine procedure, although they can determine directly the true quantity of adipose tissue.

Cornway et al.⁵,⁶ developed the near infra-red spectrophotometry method (NIR) as a convenient tool of determining percent body fat (%BF), the proportion of fat weight to total body weight. In addition to safety in its use, the method seems to be highly valid; correlation coefficients between %BF estimated by the NIR method and those by under-water weighing and skinfold method range 0.8 to 0.9⁶. It is not clear whether %BF is related to

Received September 3, 1993; accepted November 29, 1993.
¹Department of Public Health, National Defense Medical College, Tokorozawa, Japan.
²Director, Medical Clinic, Sagami Railway Co. LTD, Yokohama, Japan.
³Department of Hygiene, School of Medicine, Kyorin University, Tokyo, Japan.
⁴Department of Preventive Medicine and Public Health, School of Medicine, Keio University, Tokyo, Japan.
⁵Second Department of Surgery, School of Medicine, Kyorin University, Tokyo, Japan.
Address for correspondence: Yutaka Sakurai, Department of Public Health, National Defense Medical College, 3-2 Namiki Tokorozawa Saitama 359, Japan.
cardiovascular risk factors independently of BMI7-10. This study examined the relationship of %BF and BMI to blood pressure, serum lipids, and diabetes mellitus in order to evaluate usefulness of the NIR method as a tool of measuring obesity.

MATERIALS AND METHODS

Study subjects were male employees of a railway company in the vicinity of Tokyo. All employees are to receive the health examination biannually (spring and autumn). The health examination includes measurements of height, weight, blood pressure, and urine tests; serum biochemical measurements including total cholesterol (TC) and triglycerides (TG) are also performed for employees aged 30 years or older only in autumn. In April 1991, we measured %BF, in addition to the routine examination items, with 1,230 (1,182 males and 48 females) of 1,970 blue-collar workers (1,879 males and 91 females). Because females were few, we analyzed only male employees. Excluding 8 men with whom biochemical data were not available, a total of 1,174 men was used for the present analysis.

The %BF was measured by the NIR method using BFT-2000 (Kett Electric Laboratory, Tokyo). The probe was placed at the anterior midline of biceps muscle midway in sitting position. Optical densities for the two waves, 937 and 947 nm, were recorded, and %BF was calculated allowing for sex, height, weight and exercise level by a modified formula in accordance with the Cornway’s formula6. Because test-retest reliability of %BF by the NIR method has been reported to be very high (correlation coefficients 0.96 to 0.97)11, only a single measurement was performed. Body weight in unit of kilogram was measured with subjects wearing light clothes, and height in centimeter was recorded without shoes. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were determined by an automatic blood pressure recorder based on an oscillometric method (Kenzmedico, Kodama, Saitama). A single measurement was used as an individual’s blood pressure. Because the measurements of serum TC and TG were performed only in autumn, the averages of two measurements in the years 1990 and 1991 were used here. Serum TC and TG were enzymatically assayed at an external laboratory (Health Science Research Institute, Yokohama).

Use of antihypertensive drugs was ascertained, and hypertensives were defined as those on antihypertensives or those who had SBP of at least 160 mmHg or DBP of at least 95 mmHg. Reported physician’s diagnosis of diabetes mellitus was used as the prevalence of this disease. Analysis of covariance was used to obtain age-adjusted means of serum lipids and blood pressure and to assess independent effects of %BF, BMI and their interaction. Because of the collinearity between %BF and BMI (see below), we categorized %BF into two groups at median within each quartile of BMI to examine an independent effect of %BF in addition to BMI. Numbers of hypertensives and diabetics were small, and so the tertile classification of BMI was used in studying the prevalence of hypertension and diabetes mellitus. Logistic regression analysis was used to estimate odds ratios of hypertension or diabetes mellitus according to categories of %BF and BMI. Trend of the association with BMI levels and possible interaction between BMI and %BF were assessed by assigning ordinal values 0-3 or 0-2 to BMI values. Reported p-values are always two-sided, and p-values less than 0.05 were regarded as statistically significant. All computations were done using Statistical Analysis System12,13.

RESULTS

Characteristics of study subjects were summarized in Table 1. There were 41 men (3.5%) taking antihypertensive drugs, and 141 were classified as hypertensives (12.0%). A total of 73 men (6.2%) reported that they had been diagnosed as having diabetes mellitus. Correlation coefficient between %BF and BMI was 0.72.

Figure 1 shows age-adjusted means of blood pressure and serum lipids for the upper and lower %BF groups in each quartile of BMI, based on analysis of covariance including age (years), %BF (dichotomous) and BMI (four categories) as independent variables. Men taking antihypertensive drugs were excluded in the analysis on blood pressure. Blood pressure and serum lipids were almost progressively increased with increasing levels of BMI, and the increasing trends with allowance for %BF were highly significant : p=0.0001 for all of the four dependent variables. Both SBP and DBP trended to be higher in the upper %BF group at higher levels of BMI; the interaction between %BF and BMI was significant for DBP (p=0.007) but not for SBP (p=0.18). TC and TG levels were consistently higher in the upper %BF group than in the

Variable (unit)	Mean±S.D.
Age (year)	39.3±10.7
Height (cm)	168.3±6.2
Body weight (kg)	65.9±9.9
Body mass index (kg/m2)	23.4±3.0
Percent body fat (%)	17.3±3.7
Systolic blood pressure (mmHg)	129.5±13.3
Diastolic blood pressure (mmHg)	79.3±10.9
Serum total cholesterol (mg/dl)	198.6±33.8
Serum triglycerides (mg/dl)	152.0±97.0
lower %BF group at each quartile of BMI; and there was a nearly significant interaction on TC (p = 0.05) and a significant interaction on TG (p = 0.04).

Age-adjusted odds ratios of hypertension and diabetes mellitus for the two groups of %BF and tertiles of BMI are depicted in Figure 2. Trend in the association between BMI and hypertension was significant (p = 0.0001), and there was also a significant interaction between %BF and BMI (p = 0.03). Diabetes mellitus was not materially associated with either BMI (p = 0.13) or %BF (p = 0.61), and there was no interaction (p = 0.40) between %BF and BMI.

DISCUSSION

The %BF measured by the NIR method was found to be highly correlated with BMI. Because there was an appreciable interaction between %BF and BMI on TC, TG and DBP, it is difficult to estimate the overall effect of %BF independent of BMI. The comparison between the upper and lower %BF groups in each quartile of BMI showed that effects of %BF on TC, TG and DBP were differential according to BMI levels. The %BF seems to be more important among men with lower BMI with regard to serum lipids, and among men with higher BMI with respect to blood pressure; the latter is also suggested by findings on hypertension. These apparently differential effects of %BF may be ascribed to chance, but our data suggest that %BF is important in the relation of obesity to blood pressure and serum lipids.

The %BF estimated by the NIR method is a recently developed method and has been well validated against skinfold method and under-water weighing method. It is, however, important to evaluate the value of %BF in addition to BMI in predicting disease risk and risk factors. Several population studies suggested that %BF was an important determinant of blood pressure and serum lipids, but these studies did not evaluate the relative importance of %BF compared with BMI. In a study of male air crewmembers, both BMI and %BF were correlated with blood pressure, TC, TG, and serum uric acid to almost the same degree. Another population study of men and women in fact observed that %BF was correlated with blood pressure and serum glucose independent of BMI; serum lipids were not examined in this study.

There are several weaknesses in the present study. Our study subjects were male employees of a company. We cannot address the usefulness of %BF in women. Male employees may differ from men in the general population in their constitutions. Hypertensives included men taking antihypertensive drugs, and it is possible that they may have been under weight control. The relation of %BF and BMI to blood pressure was, however, examined after exclusion of antihypertensive users. We used a self-reported diagnosis of diabetes mellitus; again, men knowing diabetes mellitus or under the treatment tend to reduce obesity. It is thus likely that any positive relation between %BF or BMI and diabetics was biased toward the null
association with reported diabetes mellitus. Our observed relation between BMI and diabetes is much weaker than reported elsewhere.17) If men developing cardiovascular diseases have left the company, then the relation of BMI and %BF to hypertension and hyperlipidemia would be weaker than the true association.

Our study cannot address a question as to whether %BF is predictive of cardiovascular disease risk independently of BMI. Our observed additional effects of %BF on several cardiovascular risk factors indicate that the measurement of %BF in addition to BMI provides useful information in measuring individual’s health at least in male employees in Japan.

REFERENCES

1. Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: A 26-year follow-up of participants in the Framingham Heart Study. Circulation, 1983; 67: 968-977.
2. Brozek J, Grande F, Anderson JT, Keys A. Densitometric analysis of body composition: Review of some quantitative assumptions. Ann N Y Acad Sci, 1963; 110: 113-140.
3. Tokunaga K, Matsuzawa Y, Ishikawa K, Tarui S. A novel technique for the determination of body fat by computed tomography. Int J Obes, 1983; 7: 437-445.
4. Seidell JC, Bakker CJG, van der Kooy K. Imaging techniques for measuring adipose-tissue distribution—a comparison between computed tomography and 1.5-T magnetic resonance. Am J Obes, 1983; 7: 437-445.
5. Conway JM, Norris KH, Bodwell CE. A new approach for the estimation of body composition: infrared interactance. Am J Clin Nutr, 1990; 51: 953-957.
6. Conway JM, Norris KH. Noninvasive body composition in humans by near infrared interactance. In: Ellis KJ, Yasumura S and Morgan WD eds. In vivo body composition studies. The Institute of Physical Sciences in Medicine, London, 1987: 163-170.
7. Spiegelman D, Israel RG, Bouchard C, Willett WC. Absolute fat mass, percent body fat, and body-fat distribution: which is the real determinant of blood pressure and serum glucose? Am J Clin Nutr, 1992; 55: 1033-1044.
8. Folsom AR, Burke GL, Ballew C et al. Relation of body fatness and its distribution to cardiovascular risk factors in young blacks and whites. Am J Epidemiol, 1989; 130: 911-924.
9. Siervo RM, Roche AF, Chumlea WC et al. Blood pressure, body composition, and fat tissue cellularity in adults. Hypertension, 1982; 4: 382-386.
10. Weinier RL, Fuchs RI, Kay TD, Triebwasser JH, Lancaster MC. Body fat: Its relationship to coronary heart disease, blood pressure, lipids and other risk factors measured in a large male population. Am J Med, 1976; 61: 815-824.
11. Heyward VH, Jenkins KA, Cook KL et al. Validity of single-site and multi-site models for estimating body composition of women using near-infrared interactance. Am J Human Biol, 1992; 4: 579-593.
12. SAS Institute. SAS user's guide: statistics, version 5 edition. SAS Institute Inc., Cary, NC, 1985.
13. Harrell FE Jr. The LOGIST procedure. In: Hastings RP, Ed. SUGI supplementary library user's guide, version 5 edition. SAS Institute Inc., Cary, NC, 1986.
14. Sawai S, Shirayama M, Mutoh Y, Miyashita M. Estimation of body fat by near infrared spectroscopic technique. Jpn J Phys Fitness Sports Med, 1990; 39: 155-163 (in Japanese with English abstract).
15. Sunagawa Y, Kono S, Sunagawa H. Application of body fat rate by infra-red spectrometry for obesity estimation. Adolescology, 1990; 8: 325-330 (in Japanese with English abstract).
16. Brodie DA, Eston RG. Body fat estimations by electrical impedance and infra-red interactance. Int J Sports Med, 1992; 13: 319-325.
17. Ohlson LO, Larsson B, Svardsudd K et al. The influence of body fat distribution on the incidence of diabetes mellitus: 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes, 1985; 34: 1055-1058.