Reduced endogenous Ca$^{2+}$ buffering speeds active zone Ca$^{2+}$ signaling

Igor Delvendahla,1, Lukasz Jablonskib, Carolin Baadec, Victor Matveevb, Erwin Neherc,1, and Stefan Hallermanna,1

aCarl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; bDepartment of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102; and cMax-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany

Contributed by Erwin Neher, April 30, 2015 (sent for review March 9, 2015; reviewed by Gary Matthews and Bert Sakmann)

Fast synchronous neurotransmitter release at the presynaptic active zone is triggered by local Ca$^{2+}$ signals, which are confined in their spatiotemporal extent by endogenous Ca$^{2+}$ buffers. However, it remains elusive how rapid and reliable Ca$^{2+}$ signaling can be sustained during repetitive release. Here, we established quantitative two-photon Ca$^{2+}$ imaging in cerebellar mossy fiber boutons, which fire at exceptionally high rates. We show that endogenous fixed buffers have a surprisingly low Ca$^{2+}$-binding ratio (~15) and low affinity, whereas mobile buffers have high affinity. Experimentally constrained modeling revealed that the low endogenous buffering promotes fast clearance of Ca$^{2+}$ from the active zone during repetitive firing. Measuring Ca$^{2+}$ signals at different distances from active zones with ultra-high-resolution confirmed our model predictions. Our results lead to the concept that reduced Ca$^{2+}$ buffering enables fast active zone Ca$^{2+}$ signaling, suggesting that the strength of endogenous Ca$^{2+}$ buffering limits the rate of synchronous synaptic transmission.

Active zone | calcium signaling | presynaptic | neurotransmitter release | calcium buffers

At presynaptic nerve terminals, the opening of voltage-gated Ca$^{2+}$ channels during action potentials (APs) leads to a brief Ca$^{2+}$ influx. The resulting microdomain Ca$^{2+}$ signals reach several tens of micromolar amplitude near open Ca$^{2+}$ channels and trigger neurotransmitter release at presynaptic active zones (1, 2). After Ca$^{2+}$ channel closing, the binding to endogenous Ca$^{2+}$ buffers and diffusion of Ca$^{2+}$ within the cytosol lead to collapse of the microdomain, increasing the residual [Ca$^{2+}$] in the presynaptic terminal to not more than a fraction of micromolar. During this equilibration with Ca$^{2+}$ buffers, the majority of entering Ca$^{2+}$ ions are bound to endogenous Ca$^{2+}$ buffers (3). The strength of intracellular Ca$^{2+}$ buffering can be characterized by the Ca$^{2+}$-binding ratio defined as the ratio of buffer-bound Ca$^{2+}$ to free Ca$^{2+}$ (4). It is established that strong Ca$^{2+}$ buffering limits the spread of Ca$^{2+}$ ions at active zones and thus restricts neurotransmitter release to the vicinity of Ca$^{2+}$ channels (5). Rapid removal of calcium from the active zone is essential to sustain synchronous release during repetitive activity. However, the mechanisms controlling the speed of active zone Ca$^{2+}$ signaling during repetitive synaptic transmission and the clearance of Ca$^{2+}$ from the active zone in between APs remain elusive.

The cerebellar mossy fiber bouton (cMFB) to granule cell synapse is ideally suited to analyze Ca$^{2+}$ signaling during repetitive synaptic transmission because of the synchronous neurotransmitter release at exceptionally high frequencies (6–8). Understanding rapid active zone Ca$^{2+}$ signaling requires knowledge about the Ca$^{2+}$ dynamics and the strength, mobility, and binding kinetics of endogenous Ca$^{2+}$ buffers. In particular, a dissection of fixed and mobile buffers (9, 10) is needed, which is technically challenging and requires access to the presynaptic terminal.

Here, we perform quantitative two-photon Ca$^{2+}$ imaging in cMFBs, which are dialedyzed with the pipette solution, and in remote cMFBs along the same axon, which are minimally perturbed, to separately characterize fixed and mobile Ca$^{2+}$ buffers. We show that rapid active zone Ca$^{2+}$ signaling is achieved by a low Ca$^{2+}$-binding ratio of endogenous fixed buffers with low affinity and mobile buffers with high affinity. Our data explain how a central synapse achieves the speed of active zone Ca$^{2+}$ signaling required for fast and synchronous transmitter release and suggest that the strength of endogenous Ca$^{2+}$ buffering limits the precision and synchronicity of repetitive synaptic activity.

Results

Quantitative Two-Photon Ca$^{2+}$ Imaging in cMFBs. Quantitative knowledge about presynaptic Ca$^{2+}$ dynamics is crucial to understanding the mechanisms of active zone Ca$^{2+}$ signaling. Here, we combined direct patch-clamp recordings from en passant cMFBs (6, 8) (Fig. 1 A–C) with quantitative two-photon Ca$^{2+}$ imaging. Single APs produced distinct and reproducible fluorescence transients (Fig. 1 D–F), consistent with previous measurements in mice and turtles (11, 12). Presynaptic recordings permit quantifying Ca$^{2+}$ transients using a dual-indicator method (13) (Fig. 1 G). For each combination of Ca$^{2+}$-sensitive (green) and Ca$^{2+}$-insensitive (red) dye, the signals were calibrated with presynaptic recordings by adding 10 mM EGTA or 10 mM CaCl$_2$ to the intracellular solution (Materials and Methods). The Ca$^{2+}$ concentration at rest ([Ca$^{2+}$]$_{rest}$) was 57 ± 7 nM in cMFBs based on recordings with the Ca$^{2+}$ indicator OGB-1 ($n = 30$; Fig. S1B), consistent with other presynaptic terminals (14–16). Establishing quantitative two-photon Ca$^{2+}$ imaging in combination with single-cell calibration measurements at cMFBs (Figs. S1 and S2) enabled us to analyze the Ca$^{2+}$ dynamics at these presynaptic terminals in detail.

Significance

Calcium influx during action potentials triggers neurotransmitter release at presynaptic active zones. Calcium buffers limit the spread of calcium and restrict neurotransmitter release to the vicinity of calcium channels. To sustain synchronous release during repetitive activity, rapid removal of calcium from the active zone is essential, but the underlying mechanisms are unclear. Therefore, we focused on cerebellar mossy fiber synapses, which are among the fastest synapses in the mammalian brain and found very weak presynaptic calcium buffering. One might assume that strong calcium buffering has the potential to efficiently remove calcium from active zones. In contrast, our results show that weak calcium buffering speeds active zone calcium clearance. Thus, the strength of presynaptic buffering limits the rate of synaptic transmission.
buffers. We used Ca²⁺ Transients in Remote Boutons Indicate Wash-Out of Mobile Aκ² and Dκ² extrapolation, respectively.

To analyze a potential wash-out of endogenous mobile buffers, we measured Ca²⁺ transients in remote boutons along the mossy fiber axon of patched cMFBs (Fig. 3A). There, Ca²⁺ transients elicited by single APs became smaller in amplitude and decayed more slowly during dye loading (Fig. 3B). Intrabouton concentration and Ca²⁺-binding ratio κB of Fluo-5F were calculated from the fluorescence intensity (Fig. 3 C and D). For quantification of Ca²⁺ signals, we corrected for a faster loading of Atto594 compared with Fluo-5F (Materials and Methods). Linear extrapolation of A⁻¹ and τ vs. κB resulted in low and sometimes negative estimates of κB (Fig. 3 E and F). These results indicate a wash-out of slow mobile Ca²⁺ buffers, because slow buffers speed the decay of Ca²⁺ transients and the initial presence of slow buffers consequently leads to an underestimation of κB (23). Indeed, simulating the wash-in of photon imaging (Fig. 2 C and D). Furthermore, a single-indicator method applicable for high-affinity Ca²⁺ dyes (being independent of intrabouton calibration measurements) (19) yielded very similar amplitudes (Fig. S3A). Thus, these data demonstrate that at cMFBs the Ca²⁺-binding ratio of endogenous fixed buffers is very low compared with other presynaptic terminals (14, 15, 20–22).

Ca²⁺ Transients in Remote Boutons Indicate Wash-Out of Mobile Buffers. To analyze a potential wash-out of endogenous mobile buffers during presynaptic recordings, we measured Ca²⁺ transients in remote boutons along the mossy fiber axon of patched cMFBs (Fig. 3A). There, Ca²⁺ transients elicited by single APs became smaller in amplitude and decayed more slowly during dye loading (Fig. 3B). Intrabouton concentration and Ca²⁺-binding ratio κB of Fluo-5F were calculated from the fluorescence intensity (Fig. 3 C and D). For quantification of Ca²⁺ signals, we corrected for a faster loading of Atto594 compared with Fluo-5F (Materials and Methods). Linear extrapolation of A⁻¹ and τ vs. κB resulted in low and sometimes negative estimates of κB (Fig. 3 E and F). These results indicate a wash-out of slow mobile Ca²⁺ buffers, because slow buffers speed the decay of Ca²⁺ transients and the initial presence of slow buffers consequently leads to an underestimation of κB (23). Indeed, simulating the wash-in of

Low Ca²⁺-Binding Ratio of Endogenous Fixed Buffers. The Ca²⁺-binding ratio of endogenous fixed buffers (κBfixed) can be estimated by loading a cellular compartment with various amounts of Ca²⁺ indicator dye (4, 17), as direct whole-cell recording from a small subcellular compartment leads to substantial wash-out of mobile Ca²⁺ buffers. We used Ca²⁺-sensitive dyes of different affinities to measure Ca²⁺ transients evoked by single APs (Fig. 2 A and B). Increasing the Ca²⁺-binding ratio of the added Ca²⁺ indicator (κI), which also acts as a Ca²⁺ buffer, reduced the amplitude and prolonged the decay of Ca²⁺ transients (Fig. 2 A and B and Fig. S3A). According to the single compartment model, the inverse of the amplitude (A⁻¹) and the decay time constant (τ) were linearly related to κB (4, 14) (Fig. 2 C and D). Hence, the Ca²⁺ transient without added buffer was estimated by linear extrapolation, yielding amplitude of 204 nM and τ of 50.3 ms. The Ca²⁺-extrusion rate (γ) was determined as 267 s⁻¹ and κBfixed as 1.3 and 12.5 from A⁻¹ and τ extrapolation, respectively, resulting in a mean estimate of ~15 (Fig. 2 C and D). The product of A and τ was independent of κB (18) (Fig. 2E). Statistical reliability was addressed with a bootstrap method, resulting in κBfixed of 17.5 ± 7.5 and 12.7 ± 7.2 from A⁻¹ and τ extrapolation, respectively (mean ± SEM, corresponding to a 16–84% CI based on 152 experiments; Materials and Methods and Fig. S3B).

These results depend on correct quantification of presynaptic [Ca²⁺]. To confirm that our two-photon imaging with dual-indicator calibration reliably estimates [Ca²⁺], we recorded Ca²⁺ transients in response to a single AP using the Ca²⁺ indicator Fura-2 and epifluorescence illumination with two alternating wavelengths (n = 12; Fig. 2B). The amplitude and decay time constant were in close agreement to the measurements with two-photon imaging (Fig. 2 C and D). Furthermore, a single-indicator method applicable for high-affinity Ca²⁺ dyes (being independent of intrabouton calibration measurements) (19) yielded very similar amplitudes (Fig. S3A). Thus, these data demonstrate that at cMFBs the Ca²⁺-binding ratio of endogenous fixed buffers is very low compared with other presynaptic terminals (14, 15, 20–22).

Materials and Methods

Quantitative two-photon Ca²⁺ imaging in cMFBs. (A) Illustration of the cellular connectivity within cerebellar cortex. Mossy fibers (magenta) send information to the cerebellar cortex. Presynaptic cerebellar mossy fiber boutons (cMFBs) transmit signals to postsynaptic granule cells (GC, green), which excite Purkinje cells (PC, gray) via parallel fibers. Purkinje cell axons represent the sole output of the cerebellar cortex. Patch-clamp pipette illustrates presynaptic recording configuration. (B) Left) Infrared image of a cMFB in an acute cerebellar slice during patch-clamp process. Arrow indicates membrane dimpling before seal formation. (Right) Same bouton after gaining whole-cell access. Asterisks indicate patch-pipette. (C) Two-photon image of a patched bouton filled with 10 μM Atto594 and 50 μM Fluo-5F (maximum z-projection of a stack of images over 45 μm; z-step, 2.5 μm). Line scan position is indicated. (D) cMFB APs elicited by current injection (200 pA, 3 ms). Inset) APs on expanded time scale; superposition of 15 consecutive APs (gray) with average (black). (Scale bars, 200 μs and 20 mV.) (E) Two-photon line scan for the green and red channel. Arrowheads denote time point of AP. (F) Change in fluorescence intensity within the cMFB (ΔFF) for the green and red channel. Colored traces are averages of 15 sweeps (gray). (G) Corresponding calculated Ca²⁺ concentration.
Fluo-5F and simultaneous wash-out of mobile buffers with slow binding kinetics reproduced well our observations (Fig. 3G).

To gain additional evidence that unperturbed cMFBs contain mobile Ca\(^{2+}\) buffers, we analyzed Ca\(^{2+}\) transients at the beginning of dye loading experiments. If a remote bouton was rapidly detected and recorded from, the initial concentration of added Ca\(^{2+}\) indicator was low (\(k_B < 15\); mean \(k_B = 9.0 \pm 1.3; n = 8\)). Ca\(^{2+}\) transients at the beginning of these experiments decayed with a time constant of 51.2 \pm 12.5 ms. Despite the presence of the Ca\(^{2+}\) indicator, the time constant is comparable to what the indicator was low (\(k_B < 15\); mean \(k_B = 9.0 \pm 1.3; n = 8\)). Ca\(^{2+}\) transients at the beginning of these experiments decayed with a time constant of 51.2 \pm 12.5 ms. Despite the presence of the Ca\(^{2+}\) indicator, the time constant is comparable to what the extrapolation to \(k_B = 0\) predicted for patched boutons (\(\tau = 50\) ms; Fig. 2D). This observation again indicates that slow mobile buffers speed the decay of residual Ca\(^{2+}\) in cMFBs. We thus infer that cMFBs contain a substantial amount of endogenous mobile buffers.

Mobile Buffers at cMFBs Have Slow Bindings Kinetics. To gain insights into the properties of the mobile buffers, we compared Ca\(^{2+}\) transients in remote and patched boutons at identical dye concentration. In the dye loading experiments (Fluo-5F pipette concentration, 200 \(\mu M\)), we selected transients measured at \(\sim 50\) \(\mu M\) Fluo-5F concentration (48.2 \pm 2.1 \(\mu M\); \(n = 24\)) during dye loading in remote cMFBs to compare with Ca\(^{2+}\) transients recorded using 50 \(\mu M\) Fluo-5F in separate experiments in patched cMFBs (Fig. 4A). The amplitudes were similar (\(P = 0.75\)), but the decay was significantly faster in remote compared with patched cMFBs (\(P < 0.001\); Fig. 4B). This result is consistent with the presence of a mobile buffer with slow binding kinetics in remote boutons, because slow buffers speed the initial decay of the Ca\(^{2+}\) transient with little effect on amplitude (24). Note that the limited duration (500 ms) of our recordings precluded a detailed analysis of the slower exponential component resulting from the slow buffer, as discussed previously (25).

However, including 100 \(\mu M\) EGTA in the patch-pipette reproduced the speeding of the initial decay time constant observed in remote boutons (Fig. 4A and B). Furthermore, simulating the effect of mobile buffers with EGTA-like kinetics on the Ca\(^{2+}\) transient replicated well our results (Fig. 5A and B). These data indicate that the endogenous mobile buffers at cMFBs have slow binding kinetics, high affinity, and are equivalent to \(\sim 100\) \(\mu M\) EGTA (9).

Fig. 3. Ca\(^{2+}\) transients in remote boutons indicate wash-out of a mobile buffer. (A) Two-photon image of a patched bouton filled with 10 \(\mu M\) Atto594 and 200 \(\mu M\) Fluo-5F (maximum z-projection of a stack of images over 80 \(\mu M\); z-step, 4 \(\mu M\); patch-pipette is illustrated schematically). Dotted lines indicate line scan positions in the patched and remote bouton. (B) Example traces of Ca\(^{2+}\) transients during dye loading in a remote bouton elicited by single APs at different time points after gaining whole-cell access. Time and estimated dye concentration are indicated; black lines represent exponential fits. (C) Red and green fluorescence at a remote bouton increase with time during whole-cell recording. Fluorescence was background subtracted and calculated over the whole trace (600 ms, red channel) or 90 ms of baseline before stimulation (green channel). Black lines are fits of Eq. 8. (D) Ca\(^{2+}\)-binding ratio of added buffer (\(k_B\)) vs. time. Dye concentration was calculated from the fit in C, and \(k_B\) was computed using Eq. 5. (E) Inverse of the amplitude (Upper) and time constant \(\tau\) (Lower) of Ca\(^{2+}\) transients recorded during dye loading are plotted vs. \(k_B\). Lines represent linear fits; same experiment as in B. (F) Histograms of extrapolated \(k_B\) values obtained from extrapolation of A\(^{-1}\) (Upper) and \(\tau\) (Lower) in 26 dye loading experiments. Mean value is indicated in gray. (G) Simulating Ca\(^{2+}\) transients during dye loading and simultaneous washout of a slow endogenous buffer (100 \(\mu M\) mobile buffer with EGTA-like kinetics, red circles). Washout of the slow buffer impacts on \(\tau\)-extrapolation, resulting in a negative \(k_B\) estimate (dashed lines indicate linear extrapolation).

Fig. 4. Mobile buffers at cMFBs have slow bindings kinetics. (A) Example traces of Ca\(^{2+}\) transients evoked by a single AP. (Top) Ca\(^{2+}\) transient at a patched bouton recorded with 50 \(\mu M\) Fluo-5F. (Middle) Ca\(^{2+}\) transient recorded with 46 \(\mu M\) Fluo-5F in a remote bouton at the beginning of dye loading (200 \(\mu M\) Fluo-5F in the pipette solution). (Bottom) Ca\(^{2+}\) transient at a patched bouton measured with 50 \(\mu M\) Fluo-5F and 100 \(\mu M\) of the slow Ca\(^{2+}\) buffer EGTA. Traces are single sweeps. (B) Decay time constant (\(\tau\)) and amplitude of Ca\(^{2+}\) transients evoked at patched (green) or remote boutons (blue) and with EGTA added to the pipette solution (red). The estimated concentration of Fluo-5F at remote boutons in the initial phase of dye loading was 48.2 \pm 2.1 \(\mu M\) (\(n = 24\)), which is comparable to the Fluo-5F concentration in patched cMFBs (50 \(\mu M\)).

Delvendahl et al.
concentration measured during the transient in response to a train of 20 APs at a frequency of 300 Hz measured with different Ca$^{2+}$ indicators was estimated as 3.8 μM (Fig. 5A). Note the facilitation of the peak Ca$^{2+}$ currents caused by mobile buffers, which could be resolved well and appeared constant for the first APs of the intracellular solution on Ca$^{2+}$-extrusion mechanisms. Adding a mobile buffer (corresponding to 100 μM EGTA) markedly speeded Ca$^{2+}$ transients to a decay time constant of ~26 ms (Fig. 5B and D). Thus, our data suggest that residual Ca$^{2+}$ decays with a time constant of ~26 ms and summates to a few micromolar during high-frequency firing in unperturbed boutons.

Modeling Ca$^{2+}$ Transients in an Unperturbed Bouton. Because Ca$^{2+}$ indicators perturb intracellular [Ca$^{2+}$], we used back-extrapolation to $K_B = 0$ in Figs. 2 and 5. Extrapolation, however, does not address wash-out of mobile buffers. We therefore developed a detailed model to analyze residual Ca$^{2+}$ (Fig. 6) and active zone Ca$^{2+}$ (Fig. 7) of the unperturbed terminal. The model cMFB included the experimentally determined endogenous buffers (Figs. 2–5), Ca$^{2+}$ current amplitude (8), and Ca$^{2+}$ current facilitation (Fig. 5). The predicted free [Ca$^{2+}$] was calculated from Ca$^{2+}$ indicator occupancy, similarly as experimentally performed (Materials and Methods). Kinetic parameters of endogenous buffers were taken as experimentally determined values (see below). The remaining free parameters were optimized to reproduce the experimental data for single APs and trains of APs at 300 Hz with a single set of parameters (Fig. 6A and B). With this model, we then analyzed Ca$^{2+}$ transients in unperturbed boutons (without dyes, including mobile buffers), neglecting the possible influence of the intracellular solution on Ca$^{2+}$-extrusion mechanisms. Adding a mobile buffer (corresponding to 100 μM EGTA) markedly speeded Ca$^{2+}$ transients to a decay time constant of ~26 ms (Fig. 6C and D). Thus, our data suggest that residual Ca$^{2+}$ decays with a time constant of ~26 ms and summates to a few micromolar during high-frequency firing in unperturbed boutons.

Fig. 5. Buildup of residual Ca$^{2+}$ concentration during high-frequency firing. (A) (Top) Ca$^{2+}$ concentration measured during the first five stimuli of 300-Hz AP firing in a cMFB with 50 μM Fluo-5F (3-kHz temporal resolution) superimposed with the prediction of our model. (Middle) Voltage command. (Bottom) Corresponding presynaptic Ca$^{2+}$ currents. Note the facilitation of the peak Ca$^{2+}$ current amplitude. (B) Average peak Ca$^{2+}$ currents amplitude during high-frequency trains normalized to the first amplitude and plotted vs. stimulus number (n = 5 cells). (C) Example traces of Ca$^{2+}$ transients in response to a train of 20 APs at a frequency of 300 Hz measured with different Ca$^{2+}$ indicators. Traces are averages of two to five sweeps; black lines represent exponential fits. (D) Inverse of the amplitude and time constants (τ) of Ca$^{2+}$ transients in response to 20 APs at 300 Hz vs. k_0. Lines represent linear fits; color-coding is identical to C.

Fig. 6. Modeling Ca$^{2+}$ transients in an unperturbed bouton. (A and B) Ca$^{2+}$ transients elicited by a single AP (A) and a train of 20 APs at 300 Hz (B) recorded with different dyes superimposed with the corresponding model prediction (magenta). Bold lines are grand averages; gray shaded areas represent ±SD. The model was optimized to best reproduce all traces with a single set of parameters. (C and D) Simulation of a Ca$^{2+}$ transient in response to a single AP (C) and a train of 20 APs at 300 Hz (D) at an unperturbed bouton (containing 100 μM of mobile buffer and no indicator dye).
Weak Endogenous Fixed Buffers Accelerate Active Zone Ca$^{2+}$ Signaling. How can cMFBs sustain synchronous vesicular release despite the substantial summation of residual Ca$^{2+}$ during high-frequency firing? To address this question, we investigated the spatiotemporal dynamics of Ca$^{2+}$ at the active zone and the influence of endogenous fixed and mobile buffers. We simulated active zone Ca$^{2+}$ diffusion and buffering based on the model established above (Materials and Methods) during a train of 20 APs at 300 Hz. The local [Ca$^{2+}$] of the 1st and 20th AP was analyzed at a distance of 20 nm from a channel (Fig. 7A). We focused our analysis on four functionally important parameters: First, the local peak [Ca$^{2+}$] of the 1st and 20th AP, which was markedly decreased with increasing $\kappa_{E,\text{fixed}}$, but increasing the slow mobile buffer concentration (0–200 μM), had little effect (Fig. 7B). Second, the local Ca$^{2+}$ clearance was defined as the time needed for [Ca$^{2+}$] to decrease to 20% of the peak during the AP. Clearance was much faster for lower $\kappa_{E,\text{fixed}}$ (fivefold acceleration with $\kappa_{E,\text{fixed}}$ of 15 compared with 100), but depended little on the amount of mobile buffer (Fig. 7C). Third, the relative Ca$^{2+}$ buildup during repetitive firing was defined as the [Ca$^{2+}$] before the 20th AP normalized to the peak [Ca$^{2+}$] of the 1st AP. Increasing $\kappa_{E,\text{fixed}}$ up to 50 reduced the relative buildup by a factor of ~2, and increasing $\kappa_{E,\text{fixed}}$ above 50 had no further effect. Increasing the mobile buffer concentration up to 200 μM reduced the relative buildup by a factor of ~3 (Fig. 7D).

Fourth, the spatial extent of active zone Ca$^{2+}$ was measured as full-width at half-maximum (FWHM) of a line profile through the center of the active zone 50 μs after the AP. FWHM was markedly enlarged with lower $\kappa_{E,\text{fixed}}$, but remained unaltered by changing the amount of mobile buffer (Fig. 7E), consistent with previous analytical calculations of the length constant (mean distance a Ca$^{2+}$ ion diffuses before being captured by a buffer molecule) (31, 32). To investigate the sensitivity of our results on the parameters of the model, we varied these parameters and obtained similar results to those shown in Fig. 7, revealing the robustness of our modeling approach (Materials and Methods). These data demonstrate that a low $\kappa_{E,\text{fixed}}$ enables active zone Ca$^{2+}$ signals with high amplitude, large spatial extent, and rapid decay. Furthermore, a high concentration of mobile buffer reduces the buildup of Ca$^{2+}$ between APs. Thus, fixed endogenous buffers with low affinity and low Ca$^{2+}$-binding ratio in combination with mobile buffers with high affinity seem ideally suited to speed active zone Ca$^{2+}$ clearance and thus enable synchronous and reliable high-frequency transmission.

Ca$^{2+}$ Signals at Different Distances from Active Zones. The rapid clearance of Ca$^{2+}$ from the active zone suggests that during an AP, Ca$^{2+}$ rapidly diffuses from active zones into the center of the presynaptic terminal. One might therefore expect that [Ca$^{2+}$] rises slightly slower at the center of the cMFB than at the edge.
Held presynaptic terminal (20, 33) and at chromaffin cells (34) and indicate that the endogenous fixed buffers at cMFBs are of low affinity with fast binding kinetics.

Weak Endogenous Fixed Buffers Enable Highly Synchronous Release.
To investigate whether the rapid clearance of Ca\(^{2+}\) from the active zone caused by weak endogenous fixed buffers promotes synchronous neurotransmitter release, we simulated the time course of release rate for a single AP (Fig. 9A). The duration and amplitude of the vesicular release rate were highly dependent on \(\kappa_{E, fixed}\). With \(\kappa_{E, fixed} = 15\), the FWHM of the release rate was 114 \(\mu\)s, similar to previously measured values (27). With \(\kappa_{E, fixed} = 100\), however, the FWHM was prolonged 2.8-fold (Fig. 9B). These results had little dependence on the implementation of the release scheme (Fig. S6). Thus, the strength of endogenous fixed Ca\(^{2+}\) buffers limits the synchronicity of release.

Discussion
In this study, we identified the mechanisms controlling the speed of active zone Ca\(^{2+}\) signaling using quantitative two-photon Ca\(^{2+}\) imaging with submillisecond temporal and subbouton spatial resolution at central presynaptic terminals. We found a surprisingly low Ca\(^{2+}\)-binding ratio of endogenous fixed buffers. Our experimentally constrained model revealed that such weak Ca\(^{2+}\) buffering enables rapid diffusional removal of Ca\(^{2+}\) from the active zone. Thus, our study provides a framework of presynaptic Ca\(^{2+}\) signaling explaining how central synapses can sustain fast and synchronous neurotransmitter release.

Low Ca\(^{2+}\)-Binding Ratio.
Dissection of fixed and mobile Ca\(^{2+}\) buffers requires efficient control of the cytosolic solution. This procedure has been performed at few preparations such as chromaffin cells (23, 35) and dendrites dialyzed via somatic recordings (18, 36–39). Previous studies investigating \(\kappa_{E}\) at presynaptic terminals provided estimates ranging from \(~\sim 20\) at hippocampal mossy fiber boutons (15), \(~\sim 56\) at boutons of cerebellar granule cells (21), and \(~\sim 140\) at boutons of layer 2/3 neocortical pyramidal cells (22), to up to \(~\sim 1,000\) at the crayfish neuromuscular junction (40). Due to somatic or axonal loading in these studies, however, mobile buffers might have contributed,

where active zones are located. To experimentally confirm this prediction, we performed measurements with the low-affinity dye OGB-5N and with increased spatial and temporal resolution. High-resolution point and line measurements (5- to 10- and 1- to 3-kHz sampling rate, respectively) revealed extremely rapid rise kinetics at the edge of cMFBs (0.143 ± 0.01 ms; \(n = 20\); average distance to edge, 278 ± 42 nm), significantly faster than at the center (2.20 ± 0.37 ms; \(n = 20\); \(P < 0.00001\), unpaired \(t\) test; Fig. 8A–C). The resolved difference in Ca\(^{2+}\) kinetics is most likely caused by equilibration of Ca\(^{2+}\) micromdomains within cMFBs. In our cMFB model, the Ca\(^{2+}\) influx is restricted to the surface of the cylinder, representing the \(~\sim 300\) active zones at the surface of cMFBs (Fig. S5D). The model nicely reproduced the high-resolution Ca\(^{2+}\) measurements (Fig. 8E), providing an independent validation of our modeling approach.

From the high-resolution data at the edge of cMFBs, we additionally determined limits for the binding kinetics of the endogenous fixed buffers. The analyses (Fig. S5) revealed that \(k_{\text{off}}\) must be \(>10,000\) s\(^{-1}\), \(K_{D} > 20\) \(\mu\)M, and \(k_{\text{on}} < 6 \times 10^{7}\) M\(^{-1}\)s\(^{-1}\), which is close to the upper diffusion limit. Our boundaries for \(k_{\text{off}}\) and \(K_{D}\) are similar to previous approximations at the calyx of

Fig. 8. Ca\(^{2+}\) signals at different distances from active zones. (A) Example of a two-photon point scan (sampling rate, 10 kHz) close to the edge of a cMFB (230 nm). (Left) Two-photon image of bouton filled with 10 \(\mu\)M Atto594 and 200 \(\mu\)M OGB-5N. (Center) In response to an AP (arrowhead), a rapid rise of \([Ca^{2+}]\) was observed. Unfiltered data trace; average of 34 traces. (Right) Rise of \([Ca^{2+}]\) on expanded time scale superimposed with exponential fit (blue dotted line; time constant, 120 ms). (B) Example of two-photon line scan at 3-kHz resolution at the center and close to the edge of boutons. (Left) Two-photon image of a bouton filled with 10 \(\mu\)M Atto594 and 200 \(\mu\)M OGB-5N. (Right) In response to an AP (arrowhead), a faster rise of \([Ca^{2+}]\) was observed close to the edge of the cMFB compared with the center. Average of 49 traces each; blue and orange dotted lines are exponential fits, time constants are indicated. (C) Average rise time constants \((n = 20\) each, \(P < 0.00001\), unpaired \(t\) test). (D) Illustration of the cylindrical cMFB model. Ca\(^{2+}\) influx occurs at the surface of the cylinder, where active zones are located. (E) Grand averages of subbouton Ca\(^{2+}\) signals superimposed with the model predictions at two distances from the surface (edge, 275 nm; center, 0.9 \(\mu\)m) as illustrated in D. Data were peak normalized and binned with 0.2-ms (edge, \(n = 20\)) or 0.3-ms bin duration (center, \(n = 20\)); error bars represent SEM.

Fig. 9. Weak endogenous fixed buffers enable highly synchronous release. (A) Visualization of the active zone model (Fig. 7). Ca\(^{2+}\) channel to vesicle coupling distance was 20 nm. The release scheme was based on ref. 75; see Fig. S6 for details. (B) Comparison of the local \([Ca^{2+}]\) at the position of the vesicle (Middle) and release rate (Bottom) for a single AP (Ca\(^{2+}\) channel opening illustrated at Top) with different binding ratios of fixed buffer \((\kappa_{E, fixed} = 15\) and 100). Low \(\kappa_{E, fixed}\) leads to highly synchronous release.
leading either to overestimation of $\kappa_{E,fixed}$ or, as demonstrated in Fig. 3G, to underestimation of $\kappa_{E,fixed}$. To our knowledge, a rigorous dissection of mobile and fixed buffers at presynaptic terminals has only been possible at preloaded and whole-cell dialyzed calyx of Held synapses (9) and at somatically loaded presynaptic terminals of retinal bipolar cells (10). At the calyx of Held, values for $\kappa_{E,fixed}$ of ~22 (25), ~40 (14, 20, 46), or ~46 (41) have been determined. By systematic dialysis of cMFBs with Ca$^{2+}$-bound indicator of different affinity, we demonstrate a Ca$^{2+}$-binding ratio of the fixed buffers of ~15 (Fig. 2). Thus, our data show that $\kappa_{E,fixed}$ at cMFBs is lower than all previously determined values.

Because the estimate of $\kappa_{E,fixed}$ depends on the correct quantification of [Ca$^{2+}$], we used three independent quantification approaches: two-photon Ca$^{2+}$ imaging with dual-indicator quantification based on intrabouton calibration; two-photon Ca$^{2+}$ imaging with single-indicator quantification based on an independent calibration approach (Figs. S1 and S2); and ratiometric Ca$^{2+}$ imaging with Fura-2 using UV-epifluorescence excitation. The three independent methods were in excellent agreement, demonstrating the reliability of our quantification.

In addition, our high-resolution experiments revealed that the endogenous fixed buffers have low affinity ($K_D > 20 \mu M$; Fig. S5), consistent with estimates at the calyx of Held (20, 33), indicating that fixed buffers are present at >300 μM concentration in cMFBs (calculated from $K_D = 15$ and $K_P > 20 \mu M$; Fig. S5).

Mobile Ca$^{2+}$ Buffers with Slow Binding Kinetics. By comparing remote and dialyzed boutons we demonstrate that—in addition to the background of fixed buffers—there is a small but substantial contribution of mobile Ca$^{2+}$ buffers with slow, EGTA-like kinetics (Figs. 3 and 4). These high-affinity mobile buffers speed the decay of residual Ca$^{2+}$ in cMFBs (Fig. 4) in a strikingly similar way to mobile buffers at the calyx of Held (9). In contrast, we found that mobile buffers had little impact on active zone Ca$^{2+}$ clearance (see below). Simple calculation of the Ca$^{2+}$-binding ratio of mobile buffers ($\kappa_P = [B]/K_D$) results in ~500. However, the concept of a binding ratio is only useful if Ca$^{2+}$ and buffers are in kinetic equilibrium and if the equilibration time constant between slow buffers and Ca$^{2+}$ is faster than the Ca$^{2+}$-extrusion rate (22). At cMFBs, though, extrusion and equilibration time constant are both in the range of 100 ms (Figs. 2 and 5).

The molecular identity of endogenous mobile buffers is unknown at cMFBs, but Ca$^{2+}$-binding proteins including parvalbumin, calretinin, and calbindin-D28k are obvious candidates (3, 42). Kinetically, parvalbumin seems a likely candidate for a slow buffer (9, 43). However, we found very weak expression levels of parvalbumin, calretinin, and calbindin-D28k assessed by immunohistochemistry in cMFBs, indicating that none of these proteins is a dominant Ca$^{2+}$ buffer in cMFBs. Because Ca$^{2+}$ transients were very similar in patched boutons in the presence of EGTA and in remote boutons in the presence of mobile buffers (Fig. 4), we used a mobile buffer with kinetics of EGTA in our simulations and did not implement any cooperativity (44, 45).

Speeding Active Zone Ca$^{2+}$ Signaling. We show that a low Ca$^{2+}$-binding ratio of endogenous fixed buffers is essential for Ca$^{2+}$ microdomains with high amplitudes, large spatial extent, and rapid clearance (Fig. 7). Although one could assume that a high $\kappa_{E,fixed}$ has the potential to efficiently remove Ca$^{2+}$ from the active zone, our results show the opposite, namely that a low $\kappa_{E,fixed}$ speeds active zone Ca$^{2+}$ clearance (Fig. 7). This finding can be explained by the acceleration of the apparent Ca$^{2+}$ diffusion by reduced fixed buffers (46) and, intuitively, by less unbinding of Ca$^{2+}$ from the fixed buffers in-between APs.

In addition, slow mobile buffers help to prevent facilitation of intracellular [Ca$^{2+}$] during high-frequency firing but have little impact on active zone Ca$^{2+}$ signals at cMFBs (Fig. 7 and Fig. S4). In contrast, mobile buffers seem to influence active zone Ca$^{2+}$ signals at hippocampal mossy fiber boutons (47) and ribbon-type synapses (10, 48, 49). In these preparations, however, the mobile buffers have faster kinetics and/or the Ca$^{2+}$ channel to vesicle coupling is less tight compared with cMFBs (8). Under these conditions, binding to the slow buffer and an acceleration of the apparent Ca$^{2+}$ diffusion by mobile buffers (37, 46, 50) are expected to impact active zone Ca$^{2+}$ signals. Furthermore, our data argue against substantial saturation of mobile buffers causing facilitation of release (38, 51). The low affinity of fixed buffers at cMFBs (Fig. S5) also prevents substantial saturation, which would allow slow buffers to impact local Ca$^{2+}$ signals (43).

Thus, our results establish that active zone Ca$^{2+}$ signaling is mainly accelerated by the lack of a large amount of fixed buffers allowing rapid diffusional collapse of local Ca$^{2+}$ signals and by mobile buffers with slow kinetics that bind Ca$^{2+}$ during fast repetitive firing. This concept of active zone Ca$^{2+}$ signaling is consistent with the low $\kappa_{E,fixed}$ found in cMFBs and the synchronous release of cMFBs during high-frequency transmission (8). The previously determined larger presynaptic $\kappa_{E,fixed}$ and the slower firing regimes of the respective synapses corroborate the concept that the strength of endogenous fixed buffers limits the maximum synchronous transmission frequency.

Resolving Intrabouton Ca$^{2+}$ Diffusion During Single APs. In this study, we resolved local Ca$^{2+}$ signals during the equilibration of microdomain Ca$^{2+}$ at a mammalian central synapse (Fig. 8). Recently, local Ca$^{2+}$ signals at synaptic and nonsynaptic regions were resolved with different rise time and initial amplitude at the calyx of Held synapse (20). Furthermore, local Ca$^{2+}$ signals with long-lasting differences in amplitude were recorded at hippocampal mossy fiber boutons (52). In contrast, we measured complete Ca$^{2+}$ equilibration within the first few milliseconds of a single AP. The fast rise time (~140 μs) argues that our local Ca$^{2+}$ signals were recorded very close to the Ca$^{2+}$ entry site. The small size of cMFBs with active zones that are small (diameter, 160 nm) (53) and closely spaced (~400 nm) (54) can explain the rapid equilibration (model prediction in Fig. 5E).

Experimental high-resolution analysis of intrabouton Ca$^{2+}$ diffusion is essential to understand Ca$^{2+}$ dynamics at the active zone and to constrain computer simulations. Previously, comparable analyses of local Ca$^{2+}$ signals have also been performed at neuromuscular junctions (2, 55), cerebellar synaptosomes (56), chromaffin cells (57), and inner hair cells (58). Our results at bona fide central synapses are consistent with the previous studies and extend our understanding of microdomain signaling by elucidating the differential role of endogenous fixed and mobile buffers for active zone Ca$^{2+}$-signals.

Conclusion

The fixed endogenous Ca$^{2+}$ buffers of cerebellar mossy fiber boutons are of low affinity and have a very low binding capacity. The buffering properties of cMFBs are ideal for rapid clearance of Ca$^{2+}$ from the active zone, which allows synchronous release at high repetition rates. These data pinpoint the mechanisms allowing highly synchronous, fast neurotransmitter release at central presynaptic terminals.

Materials and Methods

Electrophysiology. Cerebellar slices were prepared from P21-P61 CD-1, or C57BL/6 mice of either sex. Animals were treated in accordance with the German Protection of Animals Act and with the guidelines for the welfare of experimental animals issued by the European Communities Council Directive. Mice were anesthetized with isoflurane and killed by rapid decapitation; the cerebellar vermis was quickly removed and mounted in a parasagittal 300-µm-thick slice cut using a Leica VT1200 microtome (Leica Microsystems), transferred to an incubation chamber at 35 °C for ~30 min, and then stored at room temperature until use. The extracellular solution for slice cutting, storage, and experiments contained (in mM) the following: NaCl 125, NaHCO$_3$ 25, glucose 20, KCl 2.5, CaCl$_2$, NaH$_2$PO$_4$ 1.25, MgCl$_2$ 1 (310 mOsm, 152 mOmol/L, pH 7.35).

Delvendahl et al.

PNAS | Published online May 26, 2015 | E3081
pH 7.3 when bubbled with Carbogen (5% vol/vol) O₂/95% vol/vol CO₂). Presynaptic patch-pipettes were pulled to open-tip resistances of 6–16 MΩ (when filled with intracellular solution) from borosilicate glass (Science Products) using a DMZ Puller (Zeitz-Instruments). The intracellular solution contained (in mM) the following: K-Glucuronate 150, NaCl 10, K-Hepes 10, Mg-ATP 3, and Na-GTP 0.3 (pH adjusted to 7.3 using KOH). AttoS94 (10–20 μM) and one of the following Ca²⁺-sensitive dyes were added to the intracellular solution: OGB-1 (50 or 100 μM), Fluo-5F (50 or 200 μM), Fluo-4FF (100 μM), or OGB-5N (200 μM). Experiments were performed at 34–37 °C. We purchased AttoS94 from Atto-Tec, Ca²⁺-sensitive fluorophores from Life Technologies, and all other chemicals from Sigma-Aldrich.

Cerebellar mossy fiber boutons were visualized with oblique illumination and infrared optics. Whole-cell patch-clamp recordings from cMFBs were made using a HEKA EPC10/2 amplifier (HEKA Elektronik). Presynaptic CaMBFs were identified as previously described (8). Measurements were corrected for a liquid junction potential of ~13 mV. Series resistance was typically ~<40 MΩ. APs were evoked in current-clamp mode by brief current pulses (amplitude 50–500 pA; duration 1–3 ms). For train stimulations (20 stimuli at a frequency of 300 Hz), brief depolarizations (0 mV, 200 μs) were applied in voltage-clamp mode. Ca²⁺ transients recorded in response to current injections (current-clamp) or short depolarizations (voltage-clamp) did not differ in amplitude or decay time constant (Fig. 3C1). In voltage-clamp experiments, the holding potential was ~80 mV.

Quantitative Two-Photon Ca²⁺ Imaging. Two-photon Ca²⁺ imaging was performed with a Femto2D laser-scanning microscope (Femtonics) equipped with a pulsed Ti:Sapphire laser (MaTiAl, SpectraPhysics) tuned to 810 nm, a 60x/1.0 NA objective (Olympus) or 100x/1.1 NA objective (Nikon), and a 1.4 NA oil-immersion condenser (Olympus). Data were acquired in line scan mode, typically at a 1-kHz sampling rate. In a subset of experiments, we performed line- and point-scan measurements with a sampling rate of 3–10 kHz (Figs. 5A and 8 and Figs. S4A and S5B). Background was measured outside of boutons in a neighboring area and subtracted. Imaging data were acquired and processed using Mes software (Femtonics).

We calculated the ratio (R) of green-over-red fluorescence to quantify intracellular [Ca²⁺] with Ca²⁺ indicators of different affinity. Using green and red indicators, [Ca²⁺] can be calculated as (13)

$$[\text{Ca}^{2+}] = \frac{R - R_{\text{min}}}{R_{\text{max}} - R} \cdot [\text{Ca}^{2+}]_{\text{eff}} + K_{\text{eff}}$$

Minimum (R_{\text{min}}) and maximum (R_{\text{max}}) fluorescence ratios were determined with 10 mM EGTA or 10 mM CaCl₂ in the intracellular solution, respectively. We performed these measurements in situ, i.e., in cMFBs or cerebellar granule cells to account for possible different dye properties in cytosol (17). Details of the calibration are described in SI Materials and Methods. For the high-affinity dye OGB-1, we also compared single- and dual-indicator quantification methods, which gave very similar results (SI Materials and Methods and Figs. S1B and S3A).

The decay of the Ca²⁺ concentration (C) fit with an exponential function

$$C(t) = C_0 + A \cdot e^{-t/\tau}$$

where A₀ was constrained to the baseline level calculated for 20–90 ms before stimulation. For display purposes, Ca²⁺ transients in the figures were digitally filtered using Igor Pro software (WaveMetrics; ~3-dB filter cutoff frequency, 170 Hz) unless stated otherwise (Figs. 2A, 5A, and 8 and Fig. S5).

The two-photon signal is a convolution of the imaged structure and the microscope’s point-spread function. Typical dimensions of two-photon point-spread functions are ~<1 μm radially and ~<2 μm axially (59). Because most Ca²⁺ dyes have a diameter ~3 μm (54), the heterogeneous fluorescence signal within boutons (Fig. 8) cannot be explained by artifacts due to partial overlap of the point-spread function with boutons but rather represents kinetic differences of the intrabouton [Ca²⁺].

Ratiometric Fura-2 Ca²⁺ Imaging. In addition, presynaptic Ca²⁺ transients were recorded using Fura-2 (100 μM) and a Ca²⁺-imaging system (TILL-Photonics) with an excitation light source (Polychrome V) coupled to the epifluorescence port of the microscope (FN-1 with 100x/1.1 NA objective; Nikon) via a light guide, following previous descriptions (18, 33, 60). Fluorescence was measured with a back-illuminated electron-multiplying frame-transfer charge coupled device camera (iXon DU897, Andor Technology). Fura-2 fluorescence at both 350 and 380 nm was sampled every 10–30 ms; camera binning was 8 × 8. Background was measured in an area close to the patched bouton and subtracted. In these experiments, [Ca²⁺] was calculated as previously described (18, 33, 60).
In all experiments, the resulting apparent diffusion coefficients were higher for Atto594 than for Fluor-5F (35.4 ± 7.0 and 20.5 ± 4.0 μm²·s⁻¹, respectively). Therefore, we determined the concentration of the dyes separately from the fit with Eq. 8, referred to as [Atto] and [Fluo] in the following. For each time point of the dye loading, we calculated a corrected green-over-red ratio \(R^* \) as

\[
R^* = \frac{[\text{Atto}]_{\text{pipette}}}{[\text{Atto}]_{\text{pipette}}} + [\text{Fluo}]_{\text{pipette}}
\]

where [Atto]_{\text{pipette}} and [Fluo]_{\text{pipette}} are the red and green dye concentrations in the pipette, respectively. \(k_g \) was determined with Eq. 5 using the [Fluo] and \(\text{Ca}^{2+} \) transient amplitude. At the end of dye loading experiments, \(\text{Ca}^{2+} \) transients in remote boutons had a slightly faster decay and higher amplitude than in patched boutons (\(t > 494 \pm 55 \) vs. 681 ± 47 ms, \(P = 0.02 \); amplitude: 24.3 ± 3.4 vs. 19.7 ± 1.1 nM, \(P = 0.1 \); n = 26 and 57, respectively). This difference is consistent with lower dye concentrations in remote compared with patched boutons, as expected from Eq. 8 and the limited time course of these experiments. In our analysis, we did not correct for differences in z-depth between patched and remote boutons, as fluorescence ratios were <20% different up to 100-μm depth measured with sealed pipettes.

\section*{Ca²⁺ Current Recordings}
In some experiments (Fig. S A and B), we pharmacologically isolated \(\text{Ca}^{2+} \)-currents using the [Fluo]Neuron extrusion pump mechanism (Eq. 2A). The \(\text{Ca}^{2+} \) influx was measured in the whole cMFB (Figs. 6 and 8), we assumed that the K⁺ influx per AP in cMFBs (range, 4–38), single channel conductance (range, 0.05–0.4 pA), distance between \(\text{Ca}^{2+} \) channels (range, 10–60 nm), and the distance of the position where the local \(\text{Ca}^{2+} \) concentration was sampled to the nearest \(\text{Ca}^{2+} \) channel (range, 10–60 nm). Furthermore, the number of x-y grid points (range, 10–80) and Ca²⁺ accuracy (range, 10⁻⁹–10⁻⁷) were varied. As expected from previous studies investigating the impact of \(\text{Ca}^{2+} \) distribution on synaptic release (20, 65, 66, 72–74), the peak local \(\text{Ca}^{2+} \) was different when we varied the model parameters (range, 12–122 μM). However, the main finding of this study—the speeding of active zone \(\text{Ca}^{2+} \) signaling with low \(\text{K}_g \) fixed—was very robust with all tested parameters (fold-change of clearance time for \(k_g \) fixed from 15 and 100 as indicated in Fig. 7C ranged from 3.2 to 8.9).

\section*{Modeling of Spatiotemporal \(\text{Ca}^{2+} \) Diffusion and Buffering}
The model simulated the time course of \(\text{Ca}^{2+} \) influx and buffered diffusion in a cMFB, using a finite-difference scheme (51, 64–66). Previous electrophysiological experiments (8) and our \(\text{Ca}^{2+} \)-imaging measurements constrained key parameters of the model (Table S1). Simulations were implemented in Calc 7.4.7 (67), further evaluations were performed with Wolfram Mathematica 10.1. All calculations were executed on a MacBook Pro computer with 2.7-GHz Intel Core i7 processor and 16-GB RAM operating on Mac OS X 10.8.

When simulating \(\text{Ca}^{2+} \) dynamics in the whole cMFB (Figs. 6 and 8), we assumed a cylindrical morphology, 1.8 μm in diameter and 24.8 μm in length, to reproduce the \(\text{Ca}^{2+} \) transients recorded with the various dyes (Figs. 6 and 8) and the diffusional properties within cMFBs (Fig. 8). Grid size of the model was set to 20 points in radial and longitudinal dimensions (increasing grid size did not change the results). The AP-evoked \(\text{Ca}^{2+} \) current influx at the surface of the cylinder was approximated by a Gaussian of 99-μm FWHM and 543-pA peak amplitude (8). The simulations included fixed endogenous buffers, ATP, glucose (Table S1), and the following \(\text{Ca}^{2+} \) extrusion pump mechanism, which was implemented with the \(\text{Ca}^{2+} \) flux, \(J \), defined as

\[
J = \gamma (\text{Ca}^{2+}) - \gamma (\text{Ca}^{2+})_{\text{rest}} - \nu_{\text{Na}} \left(\frac{\text{Ca}^{2+}}{\text{Ca}^{2+}} \right)_{\text{rest}}^{\text{mem}} + k_D \left(\frac{\text{Ca}^{2+}}{\text{Ca}^{2+}} \right)_{\text{rest}}^{\text{mem}} + k_D^2 \left(\frac{\text{Ca}^{2+}}{\text{Ca}^{2+}} \right)_{\text{rest}}^{\text{mem}} + k_D^3 \left(\frac{\text{Ca}^{2+}}{\text{Ca}^{2+}} \right)_{\text{rest}}^{\text{mem}}
\]

where \(\gamma = 0.14 \mu M \mu m/s \), \(\nu_{\text{Na}} = 0.25 \mu M/\mu m/s \), \(n = 2.5 \), and \(k_D = 3.7 \mu M \). J has units of \(\mu M/\mu m/s \) = 10⁻⁶ mol·cm⁻²·s⁻¹. The second nonlinear component of the definition describes the speeding of \(\text{Ca}^{2+} \) extrusion at higher \(\text{Ca}^{2+} \), e.g., during 100-ms depolarization to 0 mV, and is based on previous analyses of \(\text{Ca}^{2+} \) extrusion mechanisms (28). The parameters \(\nu_{\text{Na}}, n \), and \(k_D \) were adjusted to reproduce the measured \(\text{Ca}^{2+} \) transients elicited by single APs and trains of APs (Fig. 6 A and B). The model did not include an axon, but diffusion of \(\text{Ca}^{2+} \) into the mossy fiber axon would be excluded in the implemented extrusion mechanism.

1. Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Nature 396(6):861–872.
2. Llinás R, Sugimori M, Silver RB (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science 256(5057):677–679.
3. Schwallier B (2010) Cytosolic \(\text{Ca}^{2+} \) buffers. Cold Spring Harb Perspect Biol 2(11):a004501.
4. Neher E, Augustine GJ (1992) Calcium gradients and buffers in bovine chromaffin cells. J Physiol 450:273-301.
5. Egermann I, Buicăreanu I, Goswami SP, Jonas P (2012) Nanodomain coupling between \(\text{Ca}^{2+} \) channels and sensors of exocytosis at fast mammalian synapses. Nat Rev Neurosci 13(1):3-21.
6. Rancz EA, et al. (2007) High-fidelity transmission of sensory information by single presynaptic terminal. PNAS 104(11):4236–4241.
7. Saviane C, Silver RA (2006) Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature 439(7079):983–987.
8. Ricca-Ettore A, et al. (2014) Ultrafast action potentials mediate kilohertz signaling at a central synapse. Neuron 84(1):152–163.
9. Müller M, Felmy F, Schwaner B, Schneegubben R et al. (2007) Parvalbumin is a mobile presynaptic \(\text{Ca}^{2+} \) buffer in the calyx of Held that accelerates the decay of \(\text{Ca}^{2+} \) and short-term facilitation. J Neurosci 27(30):2261-2271.
10. Burrow J, Neves G, Gomis A, Cooke A, Lagano L (2000) Endogenous calcium buffers regulate fast exocytosis in the synaptic terminal of retinal bipolar cells. Neuron 33(1):101–112.
11. Thomsen LB, Jörntell H, Midgård J (2010) Presynaptic calcium signaling in cerebellar mossy fibres. Front Neural Circuits 4:1.
12. Beierlein M, Gee KR, Martin VV, Regehr WG (2004) Presynaptic calcium measurement at physiological temperatures using a new class of dextran-conjugated indicators. J Neurophysiol 92(5):591–599.

13. Yasuda R, et al. (2004) Imaging calcium concentration dynamics in small neuronal compartments. Sci STKE 2004(219):pl5.

14. Helmsen F, Borst JG, Sakmann B (1997) Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys J 72(3):1458–1471.

15. Jackson MB, Redman SJ (2003) Calcium dynamics, buffering, and buffer saturation in the bounties of dentate granule-cell axons in the hilus. J Neurosci 23(16):1612–1621.

16. Scott R, Rusakov DA (2006) Main determinants of presynaptic Ca²⁺ dynamics at individual mossy fibre-Ca³⁺ pyramid cell synapses. J Neurosci 26(27):7071–7082.

17. Neher E (1995) The use of fura-2 for estimating Ca²⁺ buffers and Ca fluxes. Neuropharmacology 34(11):1423–1442.

18. Lee SH, Rosenmund C, Schwaller B, Neher E (2000) Differences in Ca²⁺ buffering properties between excitatory and inhibitory hippocampal neurones from the rat. J Physiol 525(Pt 2):405–418.

19. Maravall M, Mainen ZF, Sabatini BL, Svoboda K (2000) Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys J 78(5):2655–2667.

20. Nakamura Y, et al. (2015) Nanoscale Distribution of Presynaptic Ca²⁺ Channels and Its Impact on Vesicular Release during Development. Neuron 85(1):145–158.

21. Brenowitz SD, Regehr WG (2007) Reliability and heterogeneity of calcium signaling at single presynaptic boutons of cerebellar granule cells. J Neurosci 27(30):7888–7898.

22. Koester H, Sakmann B (2000) Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J Physiol 529(Pt 3):625–646.

23. Lee SH, Schellhase K, Oertner TG, Svoboda K (2000) Kinetics of Ca²⁺ binding to parvalbumin in bovine cardiomyocytes. Biophys J 78(4):2313–2324.

24. Neher E (1998) Usefulness and limitations of linear approximations to the unimolecular binding of Ca²⁺ to macromolecules. Annu Rev Physiol 60:333–363.

25. Habets RL, Borst JG (2006) An increase in calcium influx contributes to post-tetanic potentiation at the rat calyx of Held synapse. J Neurophysiol 96(6):2668–2676.

26. Xu T, Naraghi M, Kang H, Neher E (1997) Kinetic studies of Ca²⁺ binding and Ca²⁺ clearance in the cytosol of adrenal chromaffin cells. Biophys J 73(1):532–545.

27. Zhou Z, Neher E (1993) Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. Biophys J 60(2):273–279.

28. Helmsen F, Imoto K, Sakmann B (1996) Ca²⁺ buffering and action-potentiated Ca²⁺ signaling in dendrites of pyramidal neurons. Biophys J 70(2):1069–1081.

29. Matthews EA, Schoch S, Dietrich D (2013) Developmental changes in parvalbumin regulate presynaptic calcium dynamics and buffering in controlling slow transmitter release. Nat Neurosci 16(11):1442–1453.

30. Eggertmann E, Jonas P (2012) How the ‘slow’ Ca²⁺ buffer parvalbumin affects transmitter release in nanodomain-coupling regimes. Nat Neurosci 15(1):20–22.

31. Faas GC, Schwaller B, Vergara JL, Mody I (2007) Resolving the fast kinetics of cooperative binding of Ca²⁺ by calretinin. PLoS Biol 5(11):e311.

32. Schönauer B (2015) The continuing disappearance of "pure" Ca²⁺ buffers. Cell Mol Life Sci 66(27):275–300.

33. Gabbott M, Neher E, Spira ME (1997) Low mobility of the Ca²⁺ buffers in axons of cultured Aplysia neurons. Neuron 19(3):473–481.

34. Vityetra NP, Jonas P (2014) Loose coupling between Ca²⁺ channels and release sensors at a plastic hippocampal synapse. Science 343(6171):665–670.

35. Edmonds B, Reyes R, Schwaller B, Roberts WM (2000) Calretinin modifies presynaptic calcium signaling in frog saccular hair cells. Nat Neurosci 3(8):786–790.

36. Pangršić T, et al. (2015) EF-hand protein Ca²⁺ buffers regulate Ca²⁺ influx and exocytosis in sensory hair cells. Proc Natl Acad Sci USA 112(9):E1028–E1037.

37. Soler-Llavinia GJ, Sabatini BL (2006) Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells. Nat Neurosci 9(6):798–806.

38. Matveev V, Zucker RS, Sherman A (2004) Facilitation through buffer saturation: Constraints on endogenous buffering properties. Biophys J 86(5):2691–2709.

39. Chamberland S, Efstatova A, Töth K (2014) Interplay between synchronization of multisynaptic release and recruitment of additional release sites support short-term facilitation at hippocampal mossy fiber to CA3 pyramid cell synapses. J Neurosci 34(33):11023–11047.

40. Romo R, Oviedo JG (1999) Measurement of action potential-induced presynaptic calcium domains at a cultured neuromuscular junction. J Physiol 19(10):7846–7859.

41. Wöhrer A, Lin KH, Neher E (2014) Calcium-buffering effects of glutamate and nucleotides, as determined by a novel fluorimetric titration method. J Physiol 590(22):4863–4875.

42. Aponte Y, Bischofberger J, Jonas P (2008) Efficient Ca²⁺ buffering in fast-spiking basket cells of rat hippocampus. J Physiol 588(6):2061–2075.

43. Koch C (1999) Biophysics of computation. Information Processing in Single Neurons (Oxford Univ Press, New York).

44. Pan B, Zucker RS (2009) A general model of synaptic transmission and short-term plasticity. Neuron 62(4):539–554.

45. Meinrenken CJ, Borst JGG, Sakmann B (2002) Calcium secretion coupling at calyx of Held governed by nonuniform channel-vesicle topography. J Neurosci 22(20):7952–7967.

46. Sheng J, et al. (2013) Microtubule channel number critically influences synaptic strength and plasticity at the active zone. Nat Neurosci 16(7):998–1006.

47. Ermolyuk YS, et al. (2012) Independent regulation of basal neurotransmitter release efficacy by variable Ca²⁺ influx and bouton size at small central synapses. PLoS Biol 10(9):e1001396.

48. Haiden C, et al. (2012) Release probability of hippocampal glutamatergic terminal scales with the size of the active zone. Nat Neurosci 15(7):988–997.

49. Scimemi A, Diamond JS (2012) The number and organization of Ca²⁺ channels in the active zone shapes neurotransmitter release from Schaffer collateral synapses. J Neurosci 32(50):18157–18176.

50. Wang LV, Neher E, Tashenberger H (2008) Synaptic vesicles in mature calyx of Held synapses sense higher nanodomain calcium concentrations during action potential-evoked glutamate release. J Neurosci 28(3):14450–14458.

51. Hallermans M, et al. (2012) Maximising speeds vesicle reloading at a central excitatory synapse. Neuron 68(4):710–723.