CrowdQM: Learning aspect-level user reliability and comment trustworthiness in discussion forums

Alex Morales, Kanika Narang, Hari Sundaram, and Chengxiang Zhai
{amorale4, knarang2, hs1, czhai}@illinois.edu
Modeling user’s expertise via commenting patterns

• More information than the comments users leave

• Not all comments are of equal quality

• User may have expertise in specialized topics

• How can we use language to model fine-grained expertise?
Truth-Discovery Principle

• **Truth-Discovery principle**: the answers written by reliable users tend to be more trustworthy, while the users who have given trustworthy answers are more likely to be reliable.
Truth-Discovery Principle

• **Truth-Discovery principle**: the answers written by reliable users tend to be more trustworthy, while the users who have given trustworthy answers are more likely to be reliable.
Example:

• Finding a diagnosis:

 m: headache, chills, fever
Example:

• User-post comments

m: headache, chills, fever

1_m: common cold, allergy

2_m: flu, viral

3_m: bone fracture, weakness
Example:

- Post/User-aspect distribution

m: headache, chills, fever

P_m

m_1: common cold, allergy
m_2: flu, viral
m_3: bone fracture, weakness
Example:

- User aspect reliability

\(m: \) headache, chills, fever

\(p_m \)

\(\mu_1^1: \) common cold, allergy

\(\mu_2^2: \) flu, viral

\(\mu_3^3: \) bone fracture, weakness
Modeling comment trustworthiness and user-aspect reliabilities

- For each post, \(m\), a **latent trustworthy comment embeddings**,
 - Comment embedding error
 \[E_{m,n} \]

- **infer user-aspect reliabilities**
 - User-post reliabilities
 \[R_{m,n} \]

- **learn word embeddings**
 - Context Error
 \[Q_{m,n} \]

\[a_m^* \in \mathbb{R}^D \]
\[r_n \in \mathbb{R}^K \]
\[v_\omega \in \mathbb{R}^D \]
Comment Embedding Error

- Learned trustworthy comment embeddings are similar learned to comment embeddings for the post

\[E_{m,n} = \|a_m^* - a_{m,n}\|^2 \]

\[a_{m,n} = [w_{m,n}]^{-1} \sum_{\omega \in w_{m,n}} v_{\omega} \]

user n’s comment on post m
Context Embedding Error

• Learned comment embeddings are similar to the context embedding of the post.

\[Q_{m,n} = \left| c_m \right|^{-1} \sum_{c \in c_m} \left\| a_{m,n} - v_c \right\|^2 \]

set of words in post m

post word embedding
User-Post Reliability

- User aspect similarity scores weighted by the user-aspect reliabilities

\[R_{m,n} = \sum_k r_n^{(k)} \cdot (u_n^{(k)} \cdot p_m^{(k)}) \]

- Reliability of aspect k for user n
- Aspect k familiarity for user n
- Aspect k weight for post m
Putting Everything Together

\[
\min_{\{\alpha_m^*, \nu_{\omega}, \{r_n\}} \sum_{n=1}^{N} \sum_{m \in \mathcal{M}_n} R_{m,n} \underbrace{\sum_{n=1}^{N}}_{\text{posts which user n has commented on}} \underbrace{\sum_{m \in \mathcal{M}_n} R_{m,n}}_{\text{user-post reliability}} (\underbrace{E_{m,n}}_{\text{embedding error}} + \beta \odot \underbrace{Q_{m,n}}_{\text{context error}}) \underbrace{\sum_{n=1}^{N} e^{-r_{n}^{(k)}}}_{1; \forall k}
\]
Experiments and Dataset

- Reddit Dataset: crawled 3 Subreddit communities until Oct, 2017

	AskDocs	AskScience	AskHistorians
Number of users	3,334	73,463	27,463
Number of experts	286	2,195	296
Number of posts	17,342	100,237	45,264
Trustworthy Comment Identification Results

- Using the latent trustworthy comment embedding as a measure for trustworthiness (i.e. feature for ranking)
- Precision @ 1 with gold standard: Experts

Model	*Docs	*Science	*Historians
MBoA	0.592	0.633	0.602
CRH [12]	0.585	0.597	0.556
CATD [11]	0.635	0.700	0.669
TrustAnswer [14]	0.501	0.657	0.637
CrowdQM-no-aspect	0.509	0.666	0.640
CrowdQM	0.617	0.734	0.753
Trustworthy Comment Identification Results

• Using the latent trustworthy comment embedding as a measure for trustworthiness (i.e. feature for ranking)

• Precision @ 1 with gold standard: Upvotes

Model	*Docs	*Science	*Historians
MBoA	0.434	0.302	0.257
CRH [12]	0.386	0.234	0.183
CATD [11]	0.405	0.291	0.257
TrustAnswer [14]	0.386	0.373	0.449
CrowdQM-no-aspect	0.388	0.368	0.450
CrowdQM	0.426	**0.402**	**0.493**
Qualitative Study: User Expert Ranking

• Using user-post reliability score as a feature for expert finding

Post Category: Computing
Embedded Systems, Software Engineering, Robotics
Computer Science
Quantum Optics, Singular Optics
Robotics, Machine Learning, Computer Vision, Manipulators
Computer Science
Biomechanical Engineering, Biomaterials

Post Category: Linguistics
Linguistics, Hispanic Sociolinguistics
Comparative Political Behaviour
Historical Linguistics, Language Documentation
Linguistics, Hispanic Sociolinguistics
Historical Linguistics, Language Documentation
Nanostructured Materials, Heterogeneous Catalysis
Qualitative Study: aspect terms on corresponding subject

- Correlate category specific user karma with reliability score to identify aspects relevant for that category

(a) Health
- code
- sexual
- corner
- eyesight
- feed
- prefer
- preventing
- vision
- pills
- software
- vacuum
- chamber
- retain
- smoke

(b) Cosmos
- speed
- light
- universe
- mass
- gravity
- time
- question
- black
- space
- earth

(c) Oceanography
- mouth
- legs
- twins
- held
- antimatter
- nose
- arms
- brown
- attack
- alive
Qualitative Study: Word Embedding Similarity

- Word Embedding analysis: encoding trust-aware words

Liquid	Cancer	Quantum
Initial	Initial	Initial
unimaginably	mg	search results
bigger so	curie	sis
two lenses	wobbly	shallower water
orbiting around	subject	starts rolling
fire itself	”yes” then	antimatter
gas	disease	galaxies
chemical	white	
solid	cell	
air	food	
material	complete	
		model
		energy
		particle
		mechanics
Summary

• **Unsupervised model** for trustworthiness finding
• Model for **user-aspect reliabilities**
• Trust-aware word embeddings
• Qualitative study for expert ranking and word embedding similarity