Maximizing the number of x-colorings of 4-chromatic graphs

Aysel Erey∗

March 9, 2022

Abstract

Let $\mathcal{C}_4(n)$ be the family of all connected 4-chromatic graphs of order n. Given an integer $x \geq 4$, we consider the problem of finding the maximum number of x-colorings of a graph in $\mathcal{C}_4(n)$. It was conjectured that the maximum number of x-colorings is equal to $(x)_4(x-1)^{n-4}$ and the extremal graphs are those which have clique number 4 and size $n + 2$.

In this article, we reduce this problem to a finite family of graphs. We show that there exist a finite family \mathcal{F} of connected 4-chromatic graphs such that if the number of x-colorings of every graph G in \mathcal{F} is less than $(x)_4(x-1)^{|V(G)|-4}$ then the conjecture holds to be true.

Keywords: x-colouring, chromatic number, k-chromatic, chromatic polynomial, k-connected, subdivision, theta graph

1 Introduction

In recent years problems of maximizing the number of colorings over various families of graphs have received a considerable amount of attention in the literature, see, for example, [1, 5, 6, 7, 8, 10, 14, 16]. A natural graph family to look at is the family of connected graphs with fixed chromatic number and fixed order. Let $\mathcal{C}_k(n)$ be the family of all connected k-chromatic graphs of order n. What is the maximum number of k-colorings among all graphs in $\mathcal{C}_k(n)$? Or more generally, for an integer $x \geq k$, what is the maximum number of x-colorings of a graph in $\mathcal{C}_k(n)$ and what are the extremal graphs? The answer to this question depends on the chromatic number k. When $k \leq 3$, the answer to this question is known and when $k \geq 4$ the problem is wide open. It is well known that (see, for example, [4]) for $k = 2$ and $x \geq 2$, the maximum number of x-colorings of a graph in $\mathcal{C}_2(n)$ is equal to $x(x-1)^{n-1}$, and extremal graphs are trees when $x \geq 3$. For $k = 3$, Tomescu [13] settled the problem by showing the following:

Theorem 1.1. [13] If G is a graph in $\mathcal{C}_3(n)$ then

$$\pi(G, x) \leq (x - 1)^n - (x - 1) \quad \text{for odd } n$$

∗Department of Mathematics, University of Denver, aysel.erey@gmail.com
and

\[\pi(G, x) \leq (x - 1)^n - (x - 1)^2 \]

for every integer \(x \geq 3 \). Furthermore, the extremal graph is the odd cycle \(C_n \) when \(n \) is odd and odd cycle with a vertex of degree 1 attached to the cycle (denoted \(C_{n-1}^1 \)) when \(n \) is even.

Let \(\mathcal{C}_k^*(n) \) be the set of all graphs in \(\mathcal{C}_k(n) \) which have clique number \(k \) and size \(\binom{k}{2} + n - k \) (see Figure 1). It is easy to see that if \(G \in \mathcal{C}_k^*(n) \) then \(\pi(G, x) = (x)_{\downarrow k} (x - 1)^{n-k} \) where \((x)_{\downarrow k} \) is the \(k \)th falling factorial \(x(x-1)(x-2) \cdots (x-k+1) \). Tomescu \([12]\) conjectured that when \(k \geq 4 \), the maximum number of \(k \)-colorings of a graph in \(\mathcal{C}_k(n) \) is equal to \(k!(k-1)^{n-k} \) and extremal graphs belong to \(\mathcal{C}_k^*(n) \).

Conjecture 1.2. \([12]\) If \(G \in \mathcal{C}_k(n) \) where \(k \geq 4 \) then

\[\pi(G, k) \leq k!(k-1)^{n-k} \]

and extremal graphs belong to \(\mathcal{C}_k^*(n) \).

The conjecture above was later extended to all \(x \)-colorings with \(x \geq 4 \).

Conjecture 1.3. \([4, \text{pg. 315}]\) Let \(G \) be a graph in \(\mathcal{C}_k(n) \) where \(k \geq 4 \). Then for every \(x \in \mathbb{N} \) with \(x \geq k \)

\[\pi(G, x) \leq (x)_{\downarrow k} (x - 1)^{n-k}. \]

Moreover, the equality holds if and only if \(G \) belongs to \(\mathcal{C}_k^*(n) \).

Several authors have studied Conjecture 1.3. In \([13]\), Conjecture 1.3 was proven for \(k = 4 \) under the additional condition that graphs are planar:

Theorem 1.4. \([13]\) If \(G \) is a planar graph in \(\mathcal{C}_4(n) \) then

\[\pi(G, x) \leq (x)_{\downarrow 4} (x - 1)^{n-4} \]

for every integer \(x \geq 4 \) and furthermore equality holds if and only if \(G \) belongs to \(\mathcal{C}_4^*(n) \).

Also, in \([1]\) Conjecture 1.3 was proven for every \(k \geq 4 \), provided that \(x \geq n - 2 + \left(\binom{n}{2} - \binom{k}{2} - n + k \right)^2 \), and in \([7]\) it was proven for every \(k \geq 4 \) under the additional condition that independence number of the graphs is at most 2. In this article, our main result is Theorem 3.5 which reduces this conjecture (for \(k = 4 \)) to a finite family of 4-chromatic graphs.
2 Terminology and background

Let \(V(G) \) and \(E(G) \) be the vertex set and edge set of a (finite, undirected) graph \(G \), respectively. The order of \(G \) is \(|V(G)| \) and the size of \(G \) is \(|E(G)| \). For a nonnegative integer \(x \), a (proper) \(x \)-coloring of \(G \) is a function \(f : V(G) \to \{1, \ldots, x\} \) such that \(f(u) \neq f(v) \) for every \(uv \in E(G) \). The chromatic number \(\chi(G) \) is smallest \(x \) for which \(G \) has a \(x \)-coloring and \(G \) is called \(k \)-chromatic if \(\chi(G) = k \). Let \(\pi(G, x) \) denote the chromatic polynomial of \(G \). For nonnegative integers \(x \), the polynomial \(\pi(G, x) \) counts the number of \(x \)-colorings of \(G \).

Let \(G + e \) be the graph obtained from \(G \) by adding an edge \(e \) and \(G/e \) be the graph formed from \(G \) by contracting edge \(e \). For \(e \notin E(G) \), observe that

\[
\chi(G) = \min\{\chi(G + e), \chi(G/e)\}
\]

and

\[
|\chi(G + e) - \chi(G/e)| \leq 1. \tag{1}
\]

The well known Addition-Contraction Formula says that

\[
\pi(G, x) = \pi(G + e, x) + \pi(G/e, x).
\]

A graph \(G \) is called the \(r \)-clique sum of \(G_1, G_2, \ldots, G_n \) if \(G = G_1 \cup G_2 \cup \cdots G_n \) and \(G_1 \cap G_2 \cap \cdots G_n \) induces a complete graph \(K_r \) in \(G \) (see Figure 2). In this case the Complete Cutset Theorem says that

\[
\pi(G, x) = \prod_{i=1}^{n} \pi(G_i, x) \quad \left(\begin{array}{c} x \end{array}\right)_r^{n-1}.
\]

A subset \(S \) of the vertices of a graph \(G \) is called a cutset of \(G \) if \(G - S \) has more than one component. A connected graph is called \(k \)-connected if there does not exist a set of \(k - 1 \) vertices whose removal disconnects the graph. A block of a graph \(G \) is a maximal 2-connected subgraph of \(G \). A connected graph \(G \) is called a cactus graph if every block of
Figure 2: The 2-clique sum of C_3, C_4, K_4.

G is either an edge or a cycle. If B_1, \ldots, B_n be the blocks of a connected graph G then by the Complete Cutset Theorem,

$$\pi(G, x) = \frac{1}{x^{n-1}} \prod_{i=1}^{n} \pi(B_i, x) \quad (2)$$

The chromatic polynomial of a cycle graph C_n is given by

$$\pi(C_n, x) = (x - 1)^n + (-1)^n(x - 1).$$

A graph G' is called a subdivision of G if G' is obtained from G by replacing edges of G with paths whose endpoints are the vertices of the edges. Let $K_{p,q}$ denote the complete bipartite graph with partitions of size p and q. The t-spoke wheel, denoted by W_t, has vertices v_0, v_1, \ldots, v_t where v_1, v_2, \ldots, v_t form a cycle, and v_0 is adjacent to all of v_1, v_2, \ldots, v_t. Let V_t denote the graph whose vertex set is $\{u_1, u_2, \ldots, u_t, v_2, \ldots, v_{t-1}\}$ and edge set is

$$\{u_i u_{i+1}\}_{i=1}^{t-1} \cup \{v_i v_{i+1}\}_{i=2}^{t-2} \cup \{u_i v_1\}_{i=2}^{t-1} \cup \{u_1 v_2, u_t v_{t-1}, u_1 u_t\}$$

see Figure 3.

Proposition 2.1. If H is a connected subgraph of a connected graph G, then for all $x \in \mathbb{N}$,

$$\pi(G, x) \leq \pi(H, x)(x - 1)^{|V(G)| - |V(H)|}.$$

Proof. Let G' be a minimal connected spanning subgraph of G which contains H. Then, by the Complete Cutset Theorem, $\pi(G', x) = \pi(H, x)(x - 1)^{|V(G)| - |V(H)|}$. Every x-coloring of G is an x-coloring of G'. Hence, $\pi(G', x) \geq \pi(G, x)$. Thus the result follows. \qed

Proposition 2.2. \cite{7} Let $G \in \mathcal{C}_k(n)$ and $\omega(G) = k$. Then for all $x \in \mathbb{N}$ with $x \geq k$,

$$\pi(G, x) \leq (x)_k (x - 1)^{n - k}$$

with equality if and only if $G \in \mathcal{C}_k^*(n)$.

\[4\]
3 Proof of the main result

To prove our main result, we need the following three lemmas whose proofs are provided in Section 4.

Lemma 3.1. Let \(x \in \mathbb{N} \) be such that \(x \geq 4 \). Suppose that for every noncomplete 3-connected 4-chromatic graph \(H \), the inequality \(\pi(H, x) < (x)_{\downarrow 4} (x - 1)^{|V(H)| - 4} \) holds. Then, for every connected 4-chromatic graph \(G \) the inequality \(\pi(G, x) \leq (x)_{\downarrow 4} (x - 1)^{|V(G)| - 4} \) holds with equality if and only if \(G \in \mathcal{C}_4(|V(G)|) \).

Lemma 3.2. Let \(G \) be a subdivision of \(K_{3,10} \) and \(|V(G)| = n \). Then,
\[
\pi(G, x) < (x)_{\downarrow 4} (x - 1)^{n - 4}
\]
for every real number \(x \geq 3.95 \).

Lemma 3.3. Let \(G \) be a cactus graph of order \(n \) which has 6 cycles. Then,
\[
\pi(G, x) < (x)_{\downarrow 4} (x - 1)^{n - 4}
\]
for every real number \(x \geq 3.998 \).

We also make use of the following result.

Theorem 3.4. \([11] \) For every integer \(t \geq 3 \), there is an integer \(N = f(t) \) such that every 3-connected graph with at least \(N \) vertices contains a subgraph isomorphic to a subdivision of one of \(W_t, V_t, \) and \(K_{3,t} \).

![Figure 3: The graph \(V_t \) in Theorem 3.4](image)

Theorem 3.5. There exists a finite family \(\mathcal{F} \) of 3-connected nonplanar 4-chromatic graphs such that if every graph \(G \) in \(\mathcal{F} \) satisfies \(\pi(G, x) < (x)_{\downarrow 4} (x - 1)^{|V(G)| - 4} \) for all \(x \in \mathbb{N} \) with \(x \geq 4 \), then Conjecture [1.3] holds to be true.
Proof. Take \(t = 12 \) in Theorem \[\text{3.4}\] and let \(N = f(12) \). Let \(F \) be the family of all 3-connected nonplanar 4-chromatic graphs of order less than \(N \). Assume that for every graph \(G \) in \(F \), the inequality \(\pi(G, x) < (x)_{4,4}(x - 1)^{|V(G)| - 4} \) holds for every integer \(x \geq 4 \). Now we shall show that Conjecture \[\text{1.3}\] holds to be true. Let \(x \in \mathbb{N} \) with \(x \geq 4 \). By Lemma \[\text{3.1}\] it suffices to show that every noncomplete 3-connected 4-chromatic graph \(H \) satisfies \(\pi(H, x) < (x)_{4,4}(x - 1)^{|V(H)| - 4} \). Let \(H \) be a 3-connected 4-chromatic graph. By Theorem \[\text{1.4}\] we may assume that \(H \) is nonplanar. If \(|V(H)| < N\) then the result holds by the assumption. So we may assume that \(|V(H)| \geq N\). By Theorem \[\text{3.4}\] \(H \) contains a subgraph isomorphic to a subdivision of \(W_{12}, V_{12} \) and \(K_{3,12} \). If \(H \) contains a subgraph isomorphic to a subdivision of \(K_{3,12} \) then the result follows by Proposition \[\text{2.1}\] and Lemma \[\text{3.2}\]. If \(H \) contains a subgraph isomorphic to a subdivision of \(W_{12} \) or \(V_{12} \) then \(H \) contains a subgraph isomorphic to cactus graph having 6 cycles. Therefore the result follows from Proposition \[\text{2.1}\] and Lemma \[\text{3.3}\].

4 Proofs of lemmas used in the proof of the main result

4.1 Reduction to 3-connected graphs

Let \(S \) be a set of vertices in a graph \(G \). An \(S \)-lobe of \(G \) is an induced subgraph of \(G \) whose vertex set consists of \(S \) and the vertices of a component of \(G - S \). A \(k \)-chromatic graph \(G \) is called \(k \)-critical if \(\chi(H) < \chi(G) \) for every proper subgraph \(H \) of \(G \).

Proposition 4.1. \[\text{[15] pg. 218}\] Let \(G \) be a \(k \)-critical graph with a cutset \(S = \{x, y\} \). Then

(i) \(xy \notin E(G) \), and

(ii) \(G \) has exactly two \(S \)-lobes and they can be named \(G_1, G_2 \) such that \(G_1 + xy \) is \(k \)-critical and \(G_2 / xy \) is \(k \)-critical.

Proof of Lemma \[\text{3.1}\] We proceed by induction on the number of edges. If \(G \in \mathcal{E}_4^*(|V(G)|) \), then the equality \(\pi(G, x) = (x)_{4,4}(x - 1)^{|V(G)| - 4} \) holds and the result is clear. The minimum number of edges of a connected 4-chromatic graph \(G \) which does not belong to \(\mathcal{E}_4^*(|V(G)|) \) is 8 and the extremal graph is the union of a \(K_4 \) and \(K_3 \) which intersect in an edge. So \(\pi(G, x) = (x)_{4,4}(x - 1)^8 = (x)_{4,4}(x - 2) \) and the strict inequality \((x)_{4,4}(x - 2) < (x)_{4,4}(x - 1) \) holds.

Now suppose that \(G \) is a connected 4-chromatic graph with \(|E(G)| > 8 \) and \(G \notin \mathcal{E}_4^*(|V(G)|) \).

If \(G \) is not 2-connected, then \(G \) has a block \(B \) such that \(|E(B)| < |E(G)| \) and \(\chi(B) = 4 \) as \(\chi(G) = \max\{\chi(B) : B \text{ is a block of } G\} \). If \(B \cong K_4 \) then the result follows by Proposition \[\text{2.2}\]. Suppose \(B \ncong K_4 \), then \(B \notin \mathcal{E}_4^*(|V(B)|) \) as \(B \) is 2-connected and the only 2-connected graph in \(\mathcal{E}_4^*(|V(B)|) \) is the complete graph. By the induction hypothesis we have \(\pi(B, x) < (x)_{4,4}(x - 1)^{|V(B)| - 4} \). By Proposition \[\text{2.1}\] we have \(\pi(G, x) \leq \pi(B, x)(x - 1)^{|V(G)| - |V(B)|} \). Hence we get \(\pi(G, x) < (x)_{4,4}(x - 1)^{|V(G)| - 4} \).

Now we may assume that \(G \) is 2-connected. If \(G \) is not 4-critical then there is an edge \(e \in E(G) \) such that \(\chi(G - e) = 4 \). Also \(G - e \) is connected as \(G \) is 2-connected. If \(G - e \) is not 2-connected then we can repeat the same argument as in the previous case to show that \(\pi(G - e, x) < (x)_{4,4}(x - 1)^{|V(G - e)| - 4} \) with equality if and only if \(G - e \in \mathcal{E}_4^*(|V(G - e)|) \). Note
that $V(G) = V(G-e)$. If $G-e \in \mathcal{C}_4^*(|V(G)|)$ then $\chi(G/e) \geq 4$ and hence $\pi(G/e, x) > 0$. If $G-e \notin \mathcal{C}_4^*(|V(G)|)$ then $\pi(G-e, x) < (x)_{\downarrow 4}(x-1)^{|V(G)|-4}$ by the induction hypothesis. In each case we get

$$\pi(G, x) = \pi(G-e, x) - \pi(G/e, x) < (x)_{\downarrow 4}(x-1)^{|V(G)|-4}. $$

For the rest of the proof we may assume that G is a 4-critical graph and G is not 3-connected. Let $S = \{u, v\}$ be a cutset of G. By Proposition 4.1, $uv \notin E(G)$ and G has exactly two S-lobes and they can be named as G_1, G_2 such that $G_1 + uv$ is 4-critical and G_2/uv is 4-critical. So by the induction hypothesis, we have

$$\pi(G_1 + uv, x) \leq (x)_{\downarrow 4}(x-1)^{|V(G_1+uv)|-4}$$

and

$$\pi(G_2/uv, x) \leq (x)_{\downarrow 4}(x-1)^{|V(G_2/uv)|-4}. $$

By the observation in 4.1, the inequalities $3 \leq \chi(G_2 + uv) \leq 5$ and $3 \leq \chi(G_1/uv) \leq 5$ hold. If $\chi(G_2 + uv) = 3$ then by Theorem 1.1

$$\pi(G_2 + uv, x) \leq (x-1)^{|V(G_2+uv)|} - (x-1).$$

If $\chi(G_2 + uv) \geq 4$ then let G' be a 4-chromatic connected spanning subgraph of $G_2 + uv$. By the induction hypothesis,

$$\pi(G', x) \leq (x)_{\downarrow 4}(x-1)^{|V(G')|-4} = (x)_{\downarrow 4}(x-1)^{|V(G_2+uv)|-4}. $$

Since $\pi(G_2 + uv, x) \leq \pi(G', x)$, we get $\pi(G_2 + uv, x) \leq (x)_{\downarrow 4}(x-1)^{|V(G_2+uv)|-4}$. Now it is easy to check that

$$(x)_{\downarrow 4}(x-1)^{|V(G_2+uv)|-4} \leq (x-1)^{|V(G_2+uv)|} - (x-1).$$

Hence, in each case we have

$$\pi(G_2 + uv, x) \leq (x-1)^{|V(G_2+uv)|} - (x-1).$$

Similarly, we also have

$$\pi(G_1/uv, x) \leq (x-1)^{|V(G_1/uv)|} - (x-1).$$

By the Complete Cutset Theorem,

$$\pi(G + uv, x) = \frac{\pi(G_1 + uv, x) \pi(G_2 + uv, x)}{x(x-1)}$$

$$\leq \frac{(x)_{\downarrow 4}(x-1)^{|V(G_1+uv)|-4} ((x-1)^{|V(G_2+uv)|} - (x-1))}{x(x-1)}$$

$$= \frac{(x)_{\downarrow 4}((x-1)^{|V(G)|-3} - (x-1)^{|V(G_1)|-4})}{x}.$$
Thus the result follows.

(see, for example, [2] for details).

we shall first analyze theta graphs and a subdivision of polynomialsof the graph and a certainsubdivision of K_4.

$\pi(G/uv, x) = \frac{\pi(G_1/uv, x) \pi(G_2/uv, x)}{x}$

$\leq \frac{(x-1)^{V(G_1/uv)} - (x-1)}{x} \frac{\pi(G_2/uv)|^{4}}{x}$

$= \frac{(x-1)^{V(G_1/uv)} - (x-1)}{x} \frac{\pi(G_2/uv)|^{4}}{x}$

as $\pi(G_1/uv) = |V(G_1)| - 1, |V(G_2/uv)| = |V(G_2)| - 1$. Now, let $|V(G)| = n, |V(G_1)| = n_1$ and $|V(G_2)| = n_2$. Then,

$\pi(G, x) = \pi(G + uw, x) + \pi(G/uw, x)$

$\leq \frac{(x-1)^{n-3} - (x-1)}{x} \frac{\pi(G_1)|^{n-4} - (x-1)^{n_1-4}}{x}$

$= \frac{(x-1)^{n-3} + (x-1)^{n-4} - (x-1)^{n_1-4} - (x-1)^{n_2-4}}{x}$

$= \frac{(x-1)^{n_1-4} - (x-1)^{n_2-4}}{x} - \frac{(x-1)^{n_2-4}}{x}$

$< (x-1)^{n_4 - 4}$

Thus the result follows. \square

4.2 Proof of Lemma 3.2

The chromatic polynomial of a subdivision of $K_{3,t}$ can be calculated using the chromatic polynomials of theta graphs and a certain subdivision of K_4. So, in order to prove Lemma 3.2, we shall first analyze theta graphs and a subdivision of K_4.

4.2.1 Theta graphs

A theta graph θ_{s_1, s_2, s_3} is formed by taking a pair of vertices u, v and joining them by three internally disjoint paths of sizes s_1, s_2, s_3 (see Figure 1). By the Addition-Contraction Formula, it is easy to see that

$$\pi(\theta_{s_1, s_2, s_3}, x) = \frac{3 \prod_{i=1}^{3} ((x-1)^{s_i+1} + (-1)^{s_i+1}(x-1))}{(x(x-1))^2} + \frac{3 \prod_{i=1}^{3} ((x-1)^{s_i} + (-1)^{s_i}(x-1))}{x^2}$$

(see, for example, [2] for details).
Lemma 4.2. $\pi(\theta_{s_1,s_2,s_3}, x + 1)$ is equal to

$$\frac{x}{x + 1} \left(x \left(\sum_{i=1}^{3} s_i \right)^{-1} + (-1)^{s_1 + s_2} x^{s_3} + (-1)^{s_1 + s_3} x^{s_2} + (-1)^{s_2 + s_3} x^{s_1} + (-1)^{\sum_{i=1}^{3} s_i} (x - 1) \right).$$

Proof. Using the formula given in [3],

$$\pi(\theta_{s_1,s_2,s_3}, x + 1) = \prod_{i=1}^{3} \left(x^{s_i+1} + (-1)^{s_i+1} x \right) \frac{x^2(x+1)^2}{x^2(x+1)} + \prod_{i=1}^{3} \left(x^{s_i} + (-1)^s x \right) \frac{(x+1)^2}{x^2}$$

Calculations show that the latter is equal to

$$\frac{x}{(x+1)^2} \left(\prod_{i=1}^{3} \left(x^{s_i+1} + (-1)^{s_i+1} \right) + x^2 \prod_{i=1}^{3} \left(x^{s_i-1} + (-1)^{s_i} \right) \right).$$

Now we rewrite the latter as

$$\frac{x}{(x+1)^2} (x^{s_1+s_2+s_3-1}(x+1) + (-1)^{s_2+s_3} x^{s_1} (x+1) + (-1)^{s_1+s_3} x^{s_2} (x+1)$$

$$+ (-1)^{s_1+s_2} x^{s_3} (x+1) + (-1)^{s_1+s_2+s_3} x^2 - (-1)^{s_1+s_2+s_3} x)$$

which simplifies to

$$\frac{x}{x+1} \left(x^{s_1+s_2+s_3-1} + (-1)^{s_1+s_2} x^{s_3} + (-1)^{s_1+s_3} x^{s_2} + (-1)^{s_2+s_3} x^{s_1} + (-1)^{s_1+s_2+s_3} (x - 1) \right).$$

Definition 4.3. Given $a, b, c \in \mathbb{Z}^+$, we define a function $G_{a,b,c}$ by

$$G_{a,b,c}(x) = \begin{cases}
1 + \frac{3}{x^2} + \frac{1}{x^2} & \text{if none of } a, b, c \text{ is equal to } 1 \\
1 + \frac{2}{x^2} + \frac{1}{x^2} & \text{if exactly one of } a, b, c \text{ is equal to } 1 \\
1 + \frac{1}{x^2} + \frac{1}{x^2} & \text{if exactly two of } a, b, c \text{ are equal to } 1 \\
1 + \frac{2}{x} + \frac{1}{x^2} & \text{if all of } a, b, c \text{ are equal to } 1
\end{cases}$$
Lemma 4.4. Let \(a, b, c \in \mathbb{Z}^+ \). Then for every real number \(x \geq 1 \),

\[
\pi(\theta_{a,b,c} x + 1) \leq \frac{x^{a+b+c}}{x+1} G_{a,b,c}(x)
\]

Proof. By Lemma 4.2, \(\pi(\theta_{a,b,c} x + 1) \) is equal to

\[
\frac{x}{x+1} \left(x^{a+b+c-1} + (-1)^{a+b} x^c + (-1)^{a+c} x^b + (-1)^{b+c} x^a + (-1)^{a+b+c} (x-1) \right).
\]

So, it suffices to show that

\[
x^{a+b+c-1} + (-1)^{a+b} x^c + (-1)^{a+c} x^b + (-1)^{b+c} x^a + (-1)^{a+b+c} (x-1) \leq G_{a,b,c}(x) x^{a+b+c-1}. \tag{4}
\]

To prove the inequality in \((4)\), we consider several cases.

Case 1: \(a, b, c \geq 2 \).

By the definition of \(G_{a,b,c} \),

\[
G_{a,b,c}(x) x^{a+b+c-1} = x^{a+b+c-1} + 3x^{a+b+c-4} + x^{a+b+c-5}.
\]

Each of \((-1)^{a+b} x^c\), \((-1)^{a+c} x^b\) and \((-1)^{b+c} x^a\) is at most \(x^{a+b+c-4} \). So,

\[
(-1)^{a+b} x^c + (-1)^{a+c} x^b + (-1)^{b+c} x^a \leq 3x^{a+b+c-4}.
\]

Also, it is clear that \((-1)^{a+b+c} (x-1) \leq x^{a+b+c-5} \). Now the inequality in \((4)\) follows.

Case 2: exactly one of \(a, b \) and \(c \) is equal to 1.

Without loss, we may assume that \(a = 1 \) and \(b, c \geq 2 \). By the definition of \(G_{a,b,c} \),

\[
G_{a,b,c}(x) x^{a+b+c-1} = x^{b+c} + 2x^{b+c-3} + x^{b+c-6}.
\]

Also, the left side of \((4)\) is equal to

\[
x^{b+c} + (-1)^{1+b} x^c + (-1)^{1+c} x^b + (-1)^{b+c}.
\]

If \(b = c = 2 \) then \(G_{a,b,c}(x) x^{a+b+c-1} \) is equal to \(x^4 + 2x + x^{-2} \) and the left side of \((4)\) is equal to \(x^4 - 2x^2 + 1 \leq x^4 + 2x + x^{-2} \). And it is clear that \(x^4 - 2x^2 + 1 \leq x^4 + 2x + x^{-2} \).

If exactly one of \(b \) and \(c \) is equal to 2, say, \(b = 2 \) and \(c \geq 3 \), then \(G_{a,b,c}(x) x^{a+b+c-1} \) is equal to \(x^{c+2} + 2x^{c-1} + x^{c-4} \) and the left side of \((4)\) is equal to \(x^{c+2} - x^c + (-1)^{c+1} x^2 + (-1)^c \). Now it is easy to see that \(x^{c+2} - x^c + (-1)^{c+1} x^2 + (-1)^c \leq x^{c+2} + 2x^{c-1} + x^{c-4} \) since \(c \geq 3 \).

If \(b, c \geq 3 \) then each of \((-1)^{1+b} x^c\) and \((-1)^{1+c} x^b\) is at most \(x^{b+c-3} \). So, \((-1)^{1+b} x^c + (-1)^{1+c} x^b \leq 2x^{b+c-3} \). Also, \((-1)^{b+c} \leq x^{b+c-6} \). Therefore,

\[
x^{b+c} + (-1)^{1+b} x^c + (-1)^{1+c} x^b + (-1)^{b+c} \leq x^{b+c} + 2x^{b+c-3} + x^{b+c-6}.
\]

Case 3: exactly two of \(a, b \) and \(c \) is equal to 1.
Without loss, we may assume that \(a = b = 1 \) and \(c \geq 2 \). By the definition of \(G_{a,b,c} \),
\[
G_{a,b,c}(x) x^{a+b+c-1} = x^{1+c} + x^c + x^{c-2} + x^{c-3}.
\]
Also, the left side of (4) is equal to
\[
x^{1+c} + x^c + (-1)^{1+c}(x + 1).
\]
It is easy to see that \((-1)^{1+c}(x + 1) \leq x^{c-2} + x^{c-3}\) since \(c \geq 2 \). So,
\[
x^{1+c} + x^c + (-1)^{1+c}(x + 1) \leq x^{1+c} + x^c + x^{c-2} + x^{c-3}.
\]

Case 4: \(a = b = c = 1 \).

By the definition of \(G_{a,b,c} \),
\[
G_{a,b,c}(x) x^{a+b+c-1} = x^2 + 2x + 1.
\]
The left side of (4) is also equal to \(x^2 + 2x + 1 \). Therefore the result follows. \(\square \)

Lemma 4.5. Let \(a, b, c \in \mathbb{Z}^+ \) be such that at least one of \(a, b, c \) is at least 2. Then,
\[
\pi(\theta_{a,b,c}, x + 1) \leq \frac{x^{a+b+c}}{x + 1} \left(1 + \frac{1}{x} + \frac{1}{x^3} + \frac{1}{x^4} \right)
\]
for every real number \(x \geq \sqrt{2} \).

Proof. It is straightforward to check that
\[
\frac{3}{x^3} + \frac{1}{x^4} \leq \frac{1}{x} + \frac{1}{x^3} + \frac{1}{x^4}
\]
and
\[
\frac{2}{x^3} + \frac{1}{x^6} \leq \frac{1}{x} + \frac{1}{x^3} + \frac{1}{x^4}
\]
for all real \(x \geq \sqrt{2} \). Thus the result follows by Lemma 4.4. \(\square \)

4.2.2 A subdivision of \(K_4 \)

Let \(SK_{4}^{s_1,s_2,s_3} \) denote a subdivision of \(K_4 \) such that three edges of \(K_4 \) are replaced with paths of sizes \(s_1, s_2 \) and \(s_3 \), and all the other edges of \(K_4 \) are left undivided (see Figure 5). If \(uv \) is an undivided edge of \(K_4 \), then
\[
SK_{4}^{s_1,s_2,s_3} - uv \cong \theta_{s_1+1,s_2,s_3+1}
\]
and
\[
SK_{4}^{s_1,s_2,s_3} / uv \cong \theta_{s_1,s_2+1,s_3}.
\]
Therefore,
\[
\pi(SK_{4}^{s_1,s_2,s_3}, x) = \pi(\theta_{s_1+1,s_2,s_3+1}, x) - \pi(\theta_{s_1,s_2+1,s_3}, x)
\] (5)
Lemma 4.6. Let \(s_1, s_2, s_3 \in \mathbb{Z}^+ \) and \(x \) be a real number with \(x \geq 2 \). Then,

\[
\pi(SK_4^{s_1,s_2,s_3}, x + 1) \leq \frac{x - 1}{x + 1} x^{s_1+s_2+s_3+1} \left(1 + \frac{2}{x^2} \right).
\]

Proof. Using (5) and Lemma 4.2, calculations show that \(\pi((SK_4)^{s_1,s_2,s_3}, x + 1) \) is equal to

\[
\frac{x(x-1)}{x+1} \left(\sum_{i=1}^{3} s_i + (-1)^{s_1+s_2+1} x^{s_3} + (-1)^{s_1+s_3+1} x^{s_2} + (-1)^{s_2+s_3+1} x^{s_1} + 2(-1)^{\sum_{i=1}^{3} s_i} \right).
\]

Now, all of \(s_1 + s_2, s_1 + s_3, s_2 + s_3 \) cannot be odd at the same time. So at least one of \(s_1 + s_2, s_1 + s_3, s_2 + s_3 \) is even. So this means that at least one of the terms \((-1)^{s_1+s_2+1} x^{s_3}, (-1)^{s_1+s_3+1} x^{s_2}, (-1)^{s_2+s_3+1} x^{s_1} \) is negative. Therefore it is easy to see that \(\sum_{i=1}^{3} s_i \) is at most \(\frac{3}{x+1} \left(1 + \frac{2}{x^2} \right) \) for every real \(x \geq 2 \). Thus the result follows. \(\square \)

4.2.3 A subdivision of \(K_{3,t} \)

Lemma 4.7. Let \(\{a,b,c\} \) and \(\{v_1,v_2,\ldots,v_t\} \) be the bipartition of the graph \(K_{3,t} \). Let \(G \) be a subdivision of \(K_{3,t} \) such that the edge \(av_i \) (resp. \(bv_i \) and \(cv_i \)) of \(K_{3,t} \) is replaced with a path of size \(a_i \) (resp. \(b_i \) and \(c_i \)) for \(i = 1,\ldots,t \). Then \(\pi(G,x) \) is equal to

\[
\frac{\prod_{i=1}^{t} \pi(\theta_{a_i,b_i,c_i}, x)}{(x(x-1))^{t-1}} + \frac{\prod_{i=1}^{t} \pi(\theta_{a_i,b_i+1,c_i}, x)}{(x(x-1))^{t-1}} + \frac{\prod_{i=1}^{t} \pi(\theta_{a_i,b_i,c_i+1}, x)}{(x(x-1))^{t-1}} + \frac{\prod_{i=1}^{t} \pi(SK_4^{a_i,b_i,c_i}, x)}{(x(x-1)(x-2))^{t-1}} + \frac{\prod_{i=1}^{t} \pi(\theta_{a_i,b_i,c_i}, x)}{x^{t-1}}.
\]
Proof. We apply the addition contraction formula successively. Let $A = G + ab$ and $B = G/ab$. So,

$$\pi(G, x) = \pi(A, x) + \pi(B, x).$$

Let u be the vertex of B which is obtained by contracting a and b. $B_1 = B + uc$ and $B_2 = B/uc$. So,

$$\pi(B, x) = \pi(B_1, x) + \pi(B_2, x).$$

Let $A_1 = A + bc$ and $A_2 = A/bc$. So,

$$\pi(A, x) = \pi(A_1, x) + \pi(A_2, x).$$

Let $A_1^1 = A_1 + ac$ and $A_2^1 = A_1/ac$. So,

$$\pi(A, x) = \pi(A_1^1, x) + \pi(A_2^1, x).$$

Hence, we obtain that

$$\pi(G, x) = \pi(A_1^1, x) + \pi(A_2^1, x) + \pi(A_2, x) + \pi(B_1, x) + \pi(B_2, x).$$

Now we use the Complete Cutset Theorem to find the chromatic polynomials of the graphs A_1^1, A_2^1, A_2, B_1, B_2. Observe that A_1^1 is the 3-clique sum of $(SK_4)^{a_1,b_1,c_1}, \ldots, (SK_4)^{a_t,b_t,c_t}$. Hence,

$$\pi(A_1^1, x) = \prod_{i=1}^t \pi(SK_4^{a_i,b_i,c_i}, x) \frac{x(x-1)(x-2)}{(x-1)^{t-1}}$$

The graph A_2^1 is the 2-clique sum of $\theta_{a_1,b_1+1,c_1}, \ldots, \theta_{a_t,b_t+1,c_t}$, so

$$\pi(A_2^1, x) = \prod_{i=1}^t \pi(\theta_{a_i,b_i+1,c_i}, x) \frac{x(x-1)}{(x-1)^{t-1}}$$

Similarly, A_2 is the 2-clique sum of $\theta_{a_1+1,b_1,c_1}, \ldots, \theta_{a_t+1,b_t,c_t}$; B_1 is the 2-clique sum of $\theta_{a_1,b_1,c_1+1}, \ldots, \theta_{a_t,b_t,c_t+1}$; B_2 is the 1-clique sum of $\theta_{a_1,b_1,c_1}, \ldots, \theta_{a_t,b_t,c_t}$. Therefore,

$$\pi(A_2, x) = \prod_{i=1}^t \pi(\theta_{a_i+1,b_i,c_i}, x) \frac{x(x-1)}{(x-1)^{t-1}}$$

$$\pi(B_1, x) = \prod_{i=1}^t \pi(\theta_{a_i,b_i,c_i+1}, x) \frac{x(x-1)}{(x-1)^{t-1}}$$

$$\pi(B_2, x) = \prod_{i=1}^t \pi(\theta_{a_i,b_i,c_i}, x) x^{t-1}$$

Thus, the result follows. \qed
Lemma 4.8. Let \(\{a, b, c\} \) and \(\{v_1, v_2, \ldots, v_t\} \) be the bipartition of the graph \(K_{3,t} \). Let \(G \) be a subdivision of \(K_{3,t} \) such that the edge \(av_i \) (resp. \(bv_i \) and \(cv_i \)) of \(K_{3,t} \) is replaced with a path of size \(a_i \) (resp. \(b_i \) and \(c_i \)) for \(i = 1, \ldots, t \). Define

\[
F(x, t) = 3 \left(1 + \frac{1}{x} + \frac{1}{x^3} + \frac{1}{x^4} \right)^t + \frac{1}{x} \left(1 + \frac{2}{x} + \frac{1}{x^2} \right)^t + (x - 1) \left(1 + \frac{2}{x^2} \right)^t.
\]

Then for every real \(x \geq 2 \),

\[
\pi(G, x + 1) \leq \frac{x^{n+2t-2}}{(x + 1)^{2t-1}} F(x, t).
\]

Proof. By Lemma 4.5, each of \(\pi(\theta_{a_i+1, b_i, c_i}, x + 1), \pi(\theta_{a_i, b_i+1, c_i}, x + 1), \pi(\theta_{a_i, b_i, c_i+1}, x + 1) \) is at most

\[
x^{a_i+b_i+c_i+1} \left(1 + \frac{1}{x} + \frac{1}{x^3} + \frac{1}{x^4} \right)
\]

for every real \(x \geq \sqrt{2} \). Also, \(1 + \frac{2}{x} + \frac{1}{x^2} \geq 1 + \frac{1}{x} + \frac{1}{x^3} + \frac{1}{x^4} \) holds for all \(x \geq 1 \). Hence Lemmas 4.4 and 4.5 yield

\[
\pi(\theta_{a_i, b_i, c_i}, x + 1) \leq x^{a_i+b_i+c_i} \left(1 + \frac{2}{x} + \frac{1}{x^2} \right).
\]

By Lemma 4.6 we also have

\[
\pi(SK_{4}^{a_i,b_i,c_i}, x + 1) \leq \frac{x - 1}{x + 1} x^{a_i+b_i+c_i+1} \left(1 + \frac{2}{x^2} \right)
\]

for every real \(x \geq 2 \). Observe that

\[
n + 2t - 3 = \sum_{i=1}^{t} (a_i + b_i + c_i).
\]

Hence,

\[
x^{n+2t-3} = \prod_{i=1}^{t} x^{a_i+b_i+c_i}.
\]

Now by Lemma 4.7 for every real \(x \geq 2 \), we get

\[
\pi(G, x + 1) \leq x^{n+2t-2} \left(\frac{3}{(x + 1)^{2t-1}} \left(1 + \frac{1}{x} + \frac{1}{x^3} + \frac{1}{x^4} \right)^t \right) + x^{n+2t-2} \left(\frac{1}{x(x + 1)^{2t-1}} \left(1 + \frac{2}{x} + \frac{1}{x^2} \right)^t \right) + x^{n+2t-2} \left(\frac{(x - 1)}{(x + 1)^{2t-1}} \left(1 + \frac{2}{x^2} \right)^t \right) = \frac{x^{n+2t-2}}{(x + 1)^{2t-1}} F(x, t).
\]

\[\square\]
Proof of Lemma 3.2 We shall show that
\[\pi(G, x + 1) < (x + 1)_{14} x^{n-4} \]
holds for every real number \(x \geq 2.95 \). Take \(t = 10 \) for the rest of the proof. Recall that
\[F(x, t) = 3 \left(1 + \frac{1}{x} + \frac{1}{x^3} + \frac{1}{x^4} \right)^t + \frac{1}{x} \left(1 + \frac{2}{x} + \frac{1}{x^2} \right)^t + (x - 1) \left(1 + \frac{2}{x^2} \right)^t. \]
By Lemma 4.8, it suffices to show that
\[\frac{x^{n+2t-2}}{(x + 1)^{2t-1}} F(x, t) < (x + 1)_{14} x^{n-4} \]
which is equivalent to showing that
\[x^{2t+2} F(x, t) < (x + 1)^{2t-1} (x + 1)_{14}. \]
Calculations show that \(x^{2t+2} F(x, t) \) is equal to
\[x^{-2t+1} \left(3x(x^4 + x^3 + x + 1)^t + (x^4 + 2x^3 + x^2)^t + x(x - 1)(x^4 + 2x^2)^t \right). \]
So we shall show that
\[q(x) := 3x(x^4 + x^3 + x + 1)^t + (x^4 + 2x^3 + x^2)^t + x(x - 1)(x^4 + 2x^2)^t \]
is less than \(r(x) := x^{2t-1}(x + 1)^{2t-1} (x + 1)_{14} \) for all \(x \geq 2.95 \). Let
\[p(x) = r(x) - q(x). \]
Calculations show that for \(t = 10 \), the polynomial \(p(x) \) has positive leading coefficient and the largest real root of \(p(x) \) is 2.9408 Thus the result follows.

4.3 Proof of Lemma 3.3

Lemma 4.9. Let \(G \) be a cactus graph with \(t \) edges and \(p \) cycles \(C_1, \ldots, C_p \) where \(|V(C_i)| = n_i \) for \(i = 1, \ldots, p \). Then
\[\pi(G, x) = \frac{(x - 1)^t_{x+1}}{x^{p-1}} \prod_{i=1}^{p} ((x - 1)^{n_{i-1}} + (-1)^{n_{i}}) \]
Proof. By the formula given in equation (2),
\[\pi(G, x) = \frac{1}{x^{t_p-1}} (x(x - 1))^t \prod_{i=1}^{p} \pi(C_i, x) = \frac{(x - 1)^t}{x^{p-1}} \prod_{i=1}^{p} \pi(C_i, x). \]
Since \(\pi(C_i, x) = (x - 1)^{n_i} + (-1)^{n_i}(x - 1) \), the latter simplifies to
\[
\frac{(x - 1)^{t+p}}{x^{p-1}} \prod_{i=1}^{p} ((x - 1)^{n_i-1} + (-1)^{n_i}).
\]
Thus the result follows. \(\square \)

Lemma 4.10. Let \(p, N_1, \ldots, N_p \in \mathbb{Z}^+ \) be such that \(N = \sum_{i=1}^{p} N_i \) and \(N_1, \ldots, N_p \geq 3 \). Then,
\[
\prod_{i=1}^{p} (x^{N_i} + 1) \leq x^{N-3p} \left(x + \frac{1}{3x^2} \right)^{3p}
\]
for every real \(x \geq 1 \).

Proof.
\[
\prod_{i=1}^{p} (x^{N_i} + 1) \leq \sum_{i=0}^{p} \binom{p}{i} x^{N_i-3i} = x^{N-3p} \sum_{i=0}^{p} \binom{p}{i} x^{3p-3i} \leq x^{N-3p} \sum_{i=0}^{3p} \binom{3p}{i} x^{3p-i} \left(\frac{1}{3x^2} \right)^i = x^{N-3p} \left(x + \frac{1}{3x^2} \right)^{3p}
\]
where the last inequality holds since
\[
\binom{p}{i} \leq \frac{1}{3!} \binom{3p}{i}
\]
for all \(i = 0, \ldots, p \). \(\square \)

Lemma 4.11. Let \(G \) be a cactus graph of order \(n \) with \(t \) edges and \(p \) cycles \(C_1, \ldots, C_p \) where \(|V(C_i)| = n_i \) for \(i = 1, \ldots, p \). Then,
\[
\pi(G, x + 1) \leq \frac{x^{n-8p-1} (3x^3 + 1)^{3p}}{3^{3p} (x + 1)^{p-1}}
\]
for every real \(x \geq 1 \).

Proof. Assume that exactly \(l \) of the cycles \(C_1, \ldots, C_p \) are equal to \(C_3 \) where \(0 \leq l \leq p \). Without loss we may assume \(n_1, \ldots, n_l = 3 \) and \(n_{l+1}, \ldots, n_p \geq 4 \). Also observe that
\[
n = t - p + 1 + \sum_{i=1}^{p} n_i
\]
holds. Now,

\[
\pi(G, x + 1) = \frac{x^{l+p}}{(x + 1)^{p-1}} \prod_{i=1}^{p} (x^{a_i - 1} + (-1)^{n_i})
\]

(6)

\[
\leq \frac{x^{l+p}}{(x + 1)^{p-1}} \prod_{i=1}^{l} (x^{a_i - 1} - 1) \prod_{i=l+1}^{p} (x^{a_i - 1} + (-1)^{n_i})
\]

(7)

\[
\leq \frac{x^{l+p}}{(x + 1)^{p-1}} \prod_{i=1}^{l} x^{a_i - 1} \prod_{i=l+1}^{p} (x^{a_i - 1} + 1)
\]

(8)

\[
\leq \frac{x^{l+p}}{(x + 1)^{p-1}} \sum_{i=1}^{l} (n_i - 1) \left(\sum_{i=l+1}^{p} (n_i - 1) \right)^{3(p-l)} \left(x + \frac{1}{3x^2} \right)^{3(p-l)}
\]

(9)

\[
\leq \frac{x^{l+p}}{(x + 1)^{p-1}} \sum_{i=1}^{l} (n_i - 1) \left(\sum_{i=l+1}^{p} (n_i - 1) \right)^{3p} \left(x + \frac{1}{3x^2} \right)^{3p}
\]

(10)

\[
= \frac{x^{n-2p-1}}{(x + 1)^{p-1}} \left(x + \frac{1}{3x^2} \right)^{3p}
\]

(11)

\[
= \frac{x^{n-8p-1} (3x^3 + 1)^{3p}}{3^p (x + 1)^{p-1}}
\]

(12)

(13)

where (6) follows by Lemma 4.9, (7) holds as \((-1)^{n_i} = -1\) for \(i = 1, \ldots, l\); (8) follows because \(x^{a_i - 1} - 1 \leq x^{a_i - 1}\) and \(x^{a_i - 1} + (-1)^{n_i} \leq x^{a_i - 1} + 1\); (9) holds by Lemma 4.10 (note that if \(l = 0\) then \(\prod_{i=1}^{l} x^{a_i - 1} = 1\) and if \(l = p\) then \(\prod_{i=l+1}^{p} (x^{a_i - 1} + 1) = 1\); (10) holds since \(x^{3l} (x + \frac{1}{3x^2})^{-3l} \leq 1\); (11) is clear; (12) holds because \(\left(\sum_{i=1}^{p} (n_i - 1) \right) - 3p = n - t - 1 - 3p\); (13) follows by a routine simplification. Therefore we obtain the desired result.

Proof of Lemma 3.3 We shall show that \(\pi(G, x + 1) < (x + 1)_{\mathbb{Q}} x^{n-4}\) holds for every real number \(x \geq 2.998\). Let \(p = 6\). By Lemma 1.11, it suffices to show that

\[
\frac{x^{n-8p-1} (3x^3 + 1)^{3p}}{3^p (x + 1)^{p-1}} \leq (x + 1)_{\mathbb{Q}} x^{n-4}
\]

which is equivalent to showing that

\[
(3x^3 + 1)^{3p} \leq 3^p x^{8p-3} (x + 1)_{\mathbb{Q}} (x + 1)^{p-1}.
\]

Let

\[
q(x) = 3^p x^{8p-3} (x + 1)_{\mathbb{Q}} (x + 1)^{p-1} - (3x^3 + 1)^{3p}.
\]

Calculations show that the polynomial \(q(x)\) has positive leading coefficient and the largest real root of \(q(x)\) is equal to 2.99791\ldots. Hence the result follows.
5 Concluding Remarks

To prove our main result we reduced the problem to 3-connected graphs and made use of typical subgraphs of 3-connected graphs which are large enough. Existence of such typical subgraphs guarantee that the number of x-colorings cannot exceed the desired upper bound. Consequently a natural question to ask is what typical subgraphs do 4-chromatic graphs have and can we make use of such subgraphs to settle the problem? A well known result due to Dirac [3] says that every 4-chromatic graph has a subgraph that is a subdivision of K_4. But unfortunately existence of a subdivision of K_4 is not helpful. For example, consider $G = SK_3^4, 4$, which is depicted in Figure 5. Then G has 12 vertices,

$$\pi(G, x) = x^{12} - 14x^{11} + 90x^{10} - 352x^9 + 935x^8 - \cdots$$

and

$$(x)_{\downarrow 4}(x - 1)^8 = x^{12} - 14x^{11} + 87x^{10} - 318x^9 + 762x^8 - \cdots.$$

Calculations show that for every real $x > 2$,

$$\pi(G, x) \not\approx (x)_{\downarrow 4}(x - 1)^8.$$

Also, Conjecture [13] (for $k = 4$) was proven in [13] for planar graphs. Therefore, by Lemma [3.1] it suffices to restrict our attention to 3-connected nonplanar graphs. It is known that every 3-connected nonplanar graph distinct from K_5 contains a subdivision of $K_{3,3}$ (see, for example, [9]). Note that if G is a subdivision of $K_{3,3}$ then the inequality $\pi(G, x) < (x)_{\downarrow 4}(x - 1)^{\text{V(G)} - 4}$ does not hold for every $x \geq 4$, however we believe that it holds for $x \geq 7.405$.

References

[1] J. Brown, A. Erey, New bounds for chromatic polynomials and chromatic roots, *Discrete Math.* 338(11) (2015) 1938–1946.

[2] J.I. Brown, C. Hickman, A.D. Sokal, D.G. Wagner, On the Chromatic Roots of Generalized Theta Graphs, *J. Combin. Theory Ser. B* 83 (2001) 272–297.

[3] G.A. Dirac, The structure of k-chromatic graphs and some remarks on critical graphs, *J. Lond. Math. Soc.* 27 (1952) 269–271.

[4] Dong, F.M., Koh, K.M. and Teo, K.L., *Chromatic Polynomials And Chromaticity Of Graphs*, World Scientific, London, (2005).

[5] J. Engbers, Maximizing H-colorings of connected graphs with fixed minimum degree, *J. Graph Theory*, to appear.
[6] J. Engbers, D. Galvin, Extremal H-colorings of trees and 2-connected graphs, *J. Combin. Theory Ser. B*, to appear.

[7] A. Erey, On the maximum number of colorings of a graph, submitted.

[8] P.S. Loh, O. Pikhurko, B. Sudakov, Maximizing the number of q-colorings, *Proc. London Math. Soc.* 101(3) (2010) 655–696.

[9] A.K. Kelmans, A strengthening of the Kuratowski planarity criterion for 3-connected graphs, *Discrete Math.* 51 (1984) 215–220.

[10] J. Ma, H. Naves, Maximizing proper colorings on graphs, *J. Combin. Theory Ser. B* 115 (2015) 236–275.

[11] B. Oporowski, J. Oxley, R. Thomas, Typical Subgraphs of 3- and 4-Connected Graphs, *J. Combin. Theory Ser. B* 57(2) (1993) 239–257.

[12] I. Tomescu, Le nombre des graphes connexes k-chromatiques minimaux aux sommets étiquetés, *C. R. Acad. Sci. Paris* 273 (1971) 1124–1126.

[13] I. Tomescu, Maximal Chromatic Polynomials of Connected Planar Graphs, *J. Graph Theory* 14 (1990) 101–110.

[14] S.N. Tofts, An Extremal Property of Turán Graphs, II, *J. Graph Theory* 75(3) (2014) 275–283.

[15] D.B. West, Introduction to Graph Theory, second ed., Prentice Hall, New York, 2001.

[16] Y. Zhao, The Bipartite Swapping Trick on Graph Homomorphisms, *SIAM J. Discrete Math.* 25 (2011) 660–680.