Radioactive 125I seed implantation for pancreatic cancer with unexpected liver metastasis: A preliminary experience with 26 patients

Cheng-Gang Li, Zhi-Peng Zhou, Yu-Ze Jia, Xiang-Long Tan, Yu-Yao Song

Abstract

BACKGROUND
Preoperative diagnosis rate of pancreatic cancer has increased year by year. The prognosis of pancreatic cancer patients with unexpected liver metastasis found by intraoperative exploration is very poor, and there is no effective and unified treatment strategy.

AIM
To evaluate the therapeutic effect of radioactive 125I seed implantation for pancreatic cancer patients with unexpected liver metastasis.

METHODS
The demographics and perioperative outcomes of patients who underwent 125I seed implantation to treat pancreatic cancer with unexpected liver metastasis between January 1, 2017 and June 1, 2019 were retrospectively analyzed. During the operation, 125I seeds were implanted into the pancreatic tumor under the guidance of intraoperative ultrasound, with a spacing of 1.5 cm and a row spacing of 1.5 cm. For patients with obstructive jaundice and digestive tract obstruction, choledochojejunostomy and gastroenterostomy were performed simultaneously. After operation, the patients were divided into a non-chemotherapy group and a chemotherapy group that received gemcitabine combined with albumin-bound paclitaxel treatment.

RESULTS
Preoperative imaging evaluation of all patients in this study showed that the tumor was resectable without liver metastasis. There were 26 patients in this study, including 18 males and 8 females, aged 60.5 ± 9.7 years. The most common tumor site was the pancreatic head (17, 65.4%), followed by the pancreatic neck and body (6, 23.2%) and pancreatic tail (3, 11.4%). Fourteen patients (53.8%)
INTRODUCTION

In recent years, with the development of computer technology and imaging technology combined with the detection of serum tumor markers, the preoperative diagnosis rate of pancreatic cancer has increased year by year. Pancreatic cancer is characterized by insidious onset, rapid progress, and poor prognosis[1-3]. It is a common tumor in the digestive system, and patients usually lack of early symptoms. Most of patients are at the late stage of disease when diagnosed, and radical resection is the most effective treatment for pancreatic cancer[3]. Clinically, only 20% of patients have surgical conditions, while the rest can only receive palliative treatment[4].

Even if enhanced computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography/computed tomography (PET/CT) was performed before the operation, about 8% of the patients who planned to undergo radical resection still had liver metastasis found during the exploration. Liver metastasis is a sign of advanced stage of pancreatic cancer. Usually, surgeons only terminate the operation for such patients after pathology. If there is obstructive jaundice or digestive tract obstruction, palliative operations such as choledochojejunostomy and gastro-intestinal anastomosis can be performed.

The liver is the most common organ with metastasis of pancreatic cancer. The average survival time of pancreatic cancer patients with liver metastasis is only 3-6 mo[5]. There is no consensus on the treatment strategy for patients with pancreatic cancer and liver metastasis. There are simultaneous pancreatectomy combined with liver metastasis resection, first pancreatectomy followed by liver metastasis resection, resection of pancreatic cancer combined with radiofrequency ablation of liver metastasis, systemic chemotherapy combined with TACE treatment of liver metastasis, immunotherapy, and so on. None of the above treatments is satisfactory.

Since 1965, radioactive 125I seeds began to be used in cancer treatment. It was initially used in the treatment of prostate cancer and achieved success[6]. A number of
studies have shown that implantation of radioactive seeds in the treatment of pancreatic cancer can benefit the survival of patients, reduce pain, and improve the quality of their life\cite{9-11}. The purpose of this study was to summarize a single center experience with 125I seed implantation combined with postoperative chemotherapy in the treatment of pancreatic cancer patients with unexpected liver metastasis.

MATERIALS AND METHODS

Patients

The clinical data of 26 patients with pancreatic cancer with unexpected liver metastasis who underwent 125I seed implantation between January 1, 2017 and June 1, 2019 were retrospectively analyzed. This study was approved by the Institutional Review Board of Chinese PLA General Hospital.

Selection of the patients

The inclusion criteria were: (1) Preoperative CT, MRI, or PET-CT and other imaging examination showed no liver metastasis; (2) Primary pancreatic cancer with unexpected liver metastasis, with no other organ metastasis detected; and (3) In order to relieve jaundice and obstruction of digestive tract, anastomosis was performed and 125I seeds were implanted in the tumor. The exclusion criteria were: (1) KPS score < 70; (2) Preoperative imaging findings of liver or other organs metastasis; and (3) Other medical conditions that contraindicated anesthesia and surgery.

Physical characteristics of 125I seeds

The physical half-life of the 125I seeds (China Isotope & Radiation Corporation, Beijing, China) used in this study is 59.6 d, the diameter is 0.8 mm, the length is 4.5 mm, and the wall thickness is 0.05 mm. The half value layer of the seeds for lead is 0.025 mm and it is 20.0 mm for soft tissue in human body. The activity range of a single seed is 11.1-37 MBq and it can radiate 27.4 and 31.4 kev X-ray and 35.5 kev γ-ray.

Preoperative evaluation

MRI, contrast-enhanced CT, or PET-CT was performed as a routine diagnostic procedure. During the operation, 125I seeds were implanted into the tumor under the guidance of intraoperative ultrasound, with a spacing of 1.5 cm and a row spacing of 1.5 cm. The matched peripheral dose of 125I seeds implanted in patients in this study was 110-160 Gy.

Perioperative data

The baseline demographics and perioperative and pathology data were obtained from the electronic medical records. The clinical outcomes, including estimated blood loss (EBL), postoperative complications, postoperative hospital stay (PHS), and overall survival time (OS), were analyzed retrospectively. Postoperative biliary fistula was defined as the outflow of bile or bile containing fluid from the abdominal drainage tube. Postoperative pancreatic fistula was defined as pancreatic juice flowing out of the body through abdominal drainage tube or incision, and the amylase content in the drainage fluid was three times higher than that in the blood.

Surgical technique and postoperative chemotherapy

During the operation, tumor metastasis and resectability of the primary tumor in the pancreas were investigated. If there was metastasis in the liver and no metastasis in other organs of the abdominal cavity, part of the liver metastases was resected and frozen pathological examination was performed. According to the location of pancreatic tumor, the Kocher incision and gastrocolic ligament were dissociated to expose the pancreatic tumor. After confirmed by pathology as pancreatic cancer, 125I seeds were implanted into the tumor under the guidance of intraoperative ultrasound. For patients with obstructive jaundice and digestive tract obstruction, cholecdochojejunostomy and gastroenterostomy were performed simultaneously. After operation, the patients were divided into a non-chemotherapy group and a chemotherapy group that received gemcitabine combined with albumin-bound paclitaxel treatment.

All patients were followed 1 mo after discharge and then at 3-mo intervals thereafter.
Statistical analysis
Continuous data are presented as the mean ± SD or median and interquartile range according to their distributions. The Student’s t-test was used to compare normally distributed variables between groups, whereas the Mann-Whitney U test was used for non-normally distributed variables. Categorical data were compared using the Chi-squared test. OS was estimated using the Kaplan-Meier method, and comparison of OS between subgroups was performed using the log-rank test. Univariate and multivariate analyses were performed using the Cox proportional hazards regression model for potential prognostic factors on OS. A P value of < 0.05 was considered statistically significant. All analyses were performed with IBM SPSS statistical software, version 20 (SPSS, Chicago, IL, United States).

RESULTS

Patient characteristics
There were 26 patients in this study, including 18 males and 8 females, aged 60.5 ± 9.7 years. Table 1 shows the detailed characteristics of those patients. Most of the tumors occurred in the head of the pancreas (17, 65.4%), in the pancreatic neck and body (6, 23.2%), or in the pancreatic tail (3, 11.4%). Palliative surgery was performed in 14 patients (53.8%) and postoperative pain was relieved in 22 patients (84.6%). All patients were confirmed as having pancreatic adenocarcinoma by postoperative pathology.

Perioperative outcomes
Preoperative imaging evaluation of all these patients showed that the tumor was resectable without liver metastasis. 125I seeds were successfully implanted in all the patients, of whom 11 underwent choledochojejunostomy, and 3 underwent choledochojejunostomy combined with gastroenterostomy. The EBL in operation was 148.3 ± 282.1 (5-1500) mL and one patient needed blood transfusion. Bile fistula and pancreatic fistula occurred in one patient each, and all the patients recovered after conservative treatment. The PHS of all patients was 7.6 ± 2.8 d. Postoperative reexamination of CT showed that the 125I seeds were evenly distributed in tumor (Figure 1).

Postoperative survival analysis
Three patients were still alive and 23 died at the last follow-up. Among all patients, 19 did not receive chemotherapy, and 7 received chemotherapy. Table 2 shows the comparison between the two groups of patients. No significant difference was detected in gender, age, operation mode, or tumor location between the two groups. There was a significant difference in 1-year survival rate of patients who received chemotherapy and those who did not (68.6% vs 15.8%, P = 0.012). Figure 2 shows the significant difference in mean OS of patients who received chemotherapy and those who did not (16.3 mo vs 10 mo, χ² = 7.083, P = 0.008).

DISCUSSION
Pancreatic cancer often develops metastasis early because of the rapid growth of tumor cells, the rich blood vessels and lymphatic vessels around the pancreas, and the lack of a complete capsule. The liver is the most common target organ for metastasis of pancreatic cancer. The metastasis pathway of cancer locating in the pancreatic head is different from that of the pancreatic body and tail[12,13]. Cancer of the pancreas head often invades the common bile duct, duodenum, stomach, and celiac arteries, and its lymph node metastasis pathway is from the lymph nodes around the superior mesenteric artery and the lymph nodes around the aorta. However, cancer of the pancreas body and tail metastasizes to the lymph nodes of the upper pancreas and the hilum of the liver, and finally to the liver.

Liver metastasis of pancreatic cancer often has multiple focuses, which can occur in both left and right lobes of the liver. Patients often lose the chance of radical operation. For pancreatic cancer patients with liver metastasis, the treatment is limited and the total effect is not ideal. However, if the condition allows, active treatment such as surgery and interventional chemotherapy can still improve the quality of life and prolong the survival period of such patients. The biological behavior of pancreatic
cancer itself is not sensitive to radiotherapy, and the radiation tolerance of its surrounding tissues is low. Therefore, it is difficult for conventional external radiotherapy to accurately locate the lesion area, so as to make enough therapeutic dose of radiation reach the target area, or even reach the tumor target area; it also causes great damage to the surrounding organs\cite{14-16}.

\(^{125}\)I seeds can continuously release a low dose of γ-ray when they are implanted into tumor tissue. It can damage the DNA of tumor cells and induce apoptosis of tumor cells, so as to kill the proliferative cancer cells\cite{17,18}. The advantages of \(^{125}\)I seeds in the treatment of pancreatic cancer are local adaptation and low dose continuous therapy\cite{19-21}. Compared with radical resection, local implantation of \(^{125}\)I seeds in pancreatic cancer has less trauma, faster postoperative recovery, less impact on patients' immunity, shorter postoperative recovery period, and less impact on early postoperative chemotherapy.

Our results showed that patients with pancreatic cancer with unexpected liver metastasis experienced pain relief and quality of life was improved after implantation of radioactive \(^{125}\)I seeds. The combination of postoperative chemotherapy is helpful to

Table 1 Characteristics of pancreatic cancer patients with unexpected liver metastasis (n = 26)

Clinicopathologic feature	Value (%)
Mean age (range), yr	60.5 ± 9.7 (38-81)
Sex, M/F	
Male	18 (69.2)
Female	8 (30.8)
Tumor location in the pancreas	
Head	17 (65.4)
Neck and body	6 (23.2)
Tail	3 (11.5)
Vascular involvement	
Any superior mesenteric vein	10 (38.5)
Any superior mesenteric artery	9 (34.6)
Both venous and arterial	8 (30.8)
Palliative operation	14 (53.8)
Choledochojunostomy	11 (78.6)
Choledochojunostomy and gastroenterostomy	3 (21.4)
Postoperative pain relief	
Complete remission	5 (19.2)
Partial remission	17 (65.4)
No relief	4 (15.4)
PHS (d)	7.6 ± 2.8 (4-14)
EBL (mL)	148.3 ± 282.1 (5-1500)
Postoperative complications	
Biliary fistula	1 (3.8)
Pancreatic fistula	1 (3.8)
Vital status at last follow-up	
Alive	3 (11.5)
Dead	23 (88.5%)
Median overall survival (range), mo	10.0 (1-27)

PHS: Postoperative hospital stay; EBL: Estimated blood loss.
Table 2 Baseline data of patients from the two groups (n = 26)

Clinicopathologic feature	Non-chemotherapy (n = 19)	Chemotherapy (n = 7)	P value
Mean age (rang), yr	60.74 (38-81)	59.86 (48-70)	0.841
Sex, M/F			
Male	14	4	0.715
Female	5	3	
Tumor location in the pancreas			1.000
Head	12	5	
Neck and body	5	1	
Tail	2	1	
Palliative operation			0.505
Choledochojejunostomy	8	3	
Choledochojejunostomy and gastroenterostomy	1	2	
1-yr survival rate (%)	15.8	68.6	0.012

Figure 1 Radioactive 125I seeds implanted in pancreatic cancer patients with unexpected liver metastasis. A: Preoperative computed tomography (CT) showed the primary pancreatic cancer (arrow); B: Postoperative CT showed the radioactive 125I seeds implanted in the pancreatic cancer.

In conclusion, our experience showed that the survival time could be prolonged and the quality of life be improved in pancreatic cancer patients with unexpected liver metastasis by 125I seed implantation combined with postoperative chemotherapy. More cases need to be accumulated in future studies to determine the effectiveness of this treatment strategy further.

CONCLUSION

In conclusion, our experience showed that the survival time could be prolonged and the quality of life be improved in pancreatic cancer patients with unexpected liver metastasis by 125I seed implantation combined with postoperative chemotherapy. More cases need to be accumulated in future studies to determine the effectiveness of this treatment strategy further.
ARTICLE HIGHLIGHTS

Research background
The liver is the most common target organ for metastasis of pancreatic cancer. The survival time of pancreatic cancer patients with liver metastasis is very short, and they need timely and effective treatment.

Research motivation
There is no consensus on the treatment strategy for patients with pancreatic cancer and liver metastasis.

Research objectives
To evaluate the therapeutic effect of radioactive 125I seed implantation for pancreatic cancer patients with unexpected liver metastasis.

Research methods
The demographics and perioperative outcomes of patients who underwent 125I seed implantation to treat pancreatic cancer with unexpected liver metastasis were retrospectively analyzed.

Research results
There was a significant difference in the 1-year survival rate between the chemotherapy group and non-chemotherapy group. The mean overall survival of patients in the chemotherapy group was 16.3 mo, while it was 10 mo in the non-chemotherapy group.

Research conclusions
The survival time of pancreatic cancer patients with unexpected liver metastasis could be prolonged, and their quality of life could be improved by 125I seed implantation combined with postoperative chemotherapy.

Research perspectives
With the development of science and technology, the cure rate of cancer will be higher.
and higher.

REFERENCES

1. Zhou B, Wu D, Liu H, Du LT, Wang YS, Xu JW, Qiu FB, Hu SY, Zhan HX. Obesity and pancreatic cancer: An update of epidemiological evidence and molecular mechanisms. *Pancreatology* 2019; 19: 941-950 [PMID: 31447281 DOI: 10.1016/j.pan.2019.08.008]

2. Noel M, Fiscella K. Disparities in Pancreatic Cancer Treatment and Outcomes. *Health Equity* 2019; 3: 532-540 [PMID: 31663065 DOI: 10.1089/heq.2019.0057]

3. Rawla P, Sundarka T, Gaduputi V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. *World J Oncol* 2019; 10: 10-27 [PMID: 30834048 DOI: 10.14740/wjon1166]

4. Shridhar R, Takahashi C, Huston J, Meredith KL. Neoadjuvant therapy and pancreatic cancer: a national cancer database analysis. *J Gastrointest Oncol* 2019; 10: 663-673 [PMID: 31392047 DOI: 10.21037/jgco.2019.02.09]

5. Furukawa K, Shibita H, Hamura R, Haruki K, Fujiwara Y, Usuba T, Nakabayashi Y, Misawa T, Okamoto T, Yanaga K. Prognostic Factors in Patients With Recurrent Pancreatic Cancer: A Multicenter Database Analysis. *Anticancer Res* 2020; 40: 293-298 [PMID: 31892579 DOI: 10.21873/anticancer.13952]

6. Wegner RE, Verma V, Hasan S, Schiffman S, Thakkar S, Horne ZD, Kulkarni A, Williams HK, Monga D, Finley G, Kirichenko AV. Incidence and risk factors for post-operative mortality, hospitalization, and readmission rates following pancreatic cancer resection. *J Gastrointest Oncol* 2019; 10: 1080-1093 [PMID: 31949925 DOI: 10.21037/jgco.2019.09.01]

7. Gai B, Zhang F. Chinese expert consensus on radioactive 125I seeds interstitial implantation brachytherapy for pancreatic cancer. *J Cancer Res Ther* 2018; 14: 1455-1462 [PMID: 30589023 DOI: 10.4103/jcrt.JCRT_96_18]

8. Beyer DC, Priestley JB Jr. Biochemical disease-free survival following 125I prostate implantation. *Int J Radiat Oncol Biol Phys* 1997; 37: 559-563 [PMID: 9112453 DOI: 10.1016/s0360-3016(96)00609-8]

9. Xu W, Liu Y, Lu Z, Jin ZD, Hu YH, Yu JG, Li ZS. A new endoscopic ultrasonography image processing method to evaluate the prognosis for pancreatic cancer treated with interstitial brachytherapy. *World J Gastroenterol* 2013; 19: 6479-6484 [PMID: 24151368 DOI: 10.3748/wjg.v19.i38.6479]

10. Huang ZM, Pan CC, Wu PH, Zhao M, Li W, Huang ZL, Yi RY. Efficacy of minimally invasive therapies on unresectable pancreatic cancer. *Chin J Cancer* 2013; 32: 334-341 [PMID: 22958741 DOI: 10.5732/cjc.012.10093]

11. Du YQ, Li ZS, Jin ZD. Endoscope-assisted brachytherapy for pancreatic cancer: From tumor killing to pain relief and drainage. *J Interv Gastroenterol* 2011; 1: 23-27 [PMID: 21686109 DOI: 10.4161/jig.1.1.14596]

12. Du W, Brekenra K. Does Axl have potential as a therapeutic target in pancreatic cancer? *Expert Opin Ther Targets* 2018; 22: 955-966 [PMID: 30244621 DOI: 10.1080/14728222.2018.1527315]

13. Yamada M, Sugita T, Okamura Y, Ito T, Yamamoto Y, Ashida R, Sasaki K, Nagino M, Uesaka K. Microscopic Venous Invasion in Pancreatic Cancer. *Ann Surg Oncol* 2018; 25: 1043-1051 [PMID: 29302820 DOI: 10.1245/s10434-017-6324-2]

14. Fujinaga H, Sakai Y, Yamashita T, Arai K, Terashima T, Komura T, Seki A, Kawaguchi K, Nastri A, Yoshida K, Wada T, Yamamoto K, Kume K, Hasegawa T, Takata T, Honda M, Kaneko S. Biological characteristics of gene expression features in pancreatic cancer cells induced by proton and X-ray irradiation. *Int J Radiat Biol* 2019; 95: 571-579 [PMID: 30557072 DOI: 10.1080/09553002.2019.1558207]

15. Zhang ZK, Yang YM. [Current research status and progress in comprehensive diagnosis and treatment of pancreatic cancer in the era of targeted therapy]. *Zhonghua Wai Ke Za Zhi* 2020; 58: 22-26 [PMID: 31902165 DOI: 10.3760/cma.j.issn.0529-5815.2020.01.006]

16. Li D, Su D, Xue L, Liu Y, Pang W. Establishment of pancreatic cancer stem cells by flow cytometry and their biological characteristics. *Int J Clin Exp Pathol* 2015; 8: 11218-11223 [PMID: 26617845]

17. Ghaly M, Gogineni E, Saif MW. The Evolving Field of Stereotactic Body Radiation Therapy in Pancreatic Cancer. *Pancreas (Fairfax)* 2019; 3: 9-14 [PMID: 31930185 DOI: 10.17140/POJ-3-110]

18. Nichols RC, Rutenberg M. Optimizing neoadjuvant radiotherapy for resectable and borderline resectable pancreatic cancer using protons. *World J Gastrointest Surg* 2019; 11: 303-307 [PMID: 31602289 DOI: 10.4240/wjgs.v11.i7.303]

19. Liu SF, Lu J, Wang H, Han Y, Wang DF, Yang LL, Li ZX, Hu XK. Computed tomography-magnetic resonance imaging fusion-guided iodine-125 seed implantation for single malignant brain tumor: Feasibility and safety. *J Cancer Res Ther* 2019; 15: 818-824 [PMID: 31436237 DOI: 10.4103/jcrt.JCRT_70_19]

20. Song Z, Ye J, Wang Y, Li Y, Wang W. Computed tomography-guided iodine-125 brachytherapy for unresectable hepatocellular carcinoma. *J Cancer Res Ther* 2019; 15: 1553-1560 [PMID: 31939437 DOI: 10.4103/jcrt.JCRT_629_19]

21. Kou F, Gao S, Liu S, Wang X, Chen H, Zha X, Guo J, Zhang X, Feng A, Liu B. Preliminary clinical efficacy of iodine-125 seed implantation for the treatment of advanced malignant lung tumors. *J
Li CG et al. Radioactive seeds implantation for pancreatic cancer

Cancer Res Ther 2019; 15: 1567-1573 [PMID: 31939439 DOI: 10.4103/jcrt.JCRT_581_19]

Lee JM, Choi HS, Chun HJ, Kim ES, Keum B, Seo YS, Jeen YT, Lee HS, Um SH, Kim CD, Kim HB. EUS-guided irreversible electroporation using endoscopic needle-electrode in porcine pancreas. Surg Endosc 2019; 33: 658-662 [PMID: 30374794 DOI: 10.1007/s00464-018-6425-4]

Hicks AM, Chou J, Capanu M, Lowery MA, Yu KH, O'Reilly EM. Pancreas Adenocarcinoma: Ascites, Clinical Manifestations, and Management Implications. Clin Colorectal Cancer 2016; 15: 360-368 [PMID: 27262896 DOI: 10.1016/j.clcc.2016.04.014]
