CASE REPORT

A first case report of clinical response to targeted therapy in a patient with primary myoepithelial carcinoma of the lung harboring EGFR exon 19 deletion

Xiaohong Xie 1, Xinqing Lin 1, Ming Liu 1, Yinyin Qin 1, Ming Ouyang 1, Shiyue Li 1, Yingying Gu 2, Shuyin Chen 3, Jianxing Xiang 3 and Chengzhi Zhou 1*

Abstract

Background: Primary myoepithelial carcinoma of the lung is a rare subtype in lung cancer. Comprehensive molecular profiling of myoepithelial carcinoma of the lung is absent, neither was clinical evidence of targeted therapy available for this disease. Therefore, the optimal treatment regimen of this tumor needs to be established.

Case presentation: Here we present a case of a 68-year-old patient with stage IVB primary myoepithelial carcinoma of the lung who harbored EGFR exon 19 deletion and KRAS mutation and underwent icotinib targeted therapy, achieving partial response (PR) with progression free survival (PFS) of 3 months.

Conclusion: To our knowledge, this study describes the first documented case of primary myoepithelial carcinoma lung cancer patient harboring EGFR exon 19 deletion and KRAS mutation, and showed clinical efficacy of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI) treatment in this patient.

Keywords: Lung, Myoepithelial carcinoma, Salivary gland type tumor, EGFR 19del, Icotinib

Introduction

Myoepithelial Carcinoma of the lung is a rare subset of primary salivary-type tumors, accounting for less than 1% in all lung tumors [1]. It was first described in 1975 by Stromeyer et al., and modified by Dardick et al., with the histopathologic guidelines in 1995 [2]. It seems that due to the lack of sufficient knowledge and diagnostic criteria for this tumor in the past, the incident rate of this tumor may be underestimated [3].

Myoepithelial carcinoma usually occurs in middle-aged adults, the average age at diagnosis is around 55 years old. Although it mainly occurs in the parotid gland, it can also be found in primary sites other than the salivary glands, such as lung, skin and soft tissue [4–6]. The molecular profiling of these tumors has not been systematically studied. EGFR mutation is very common in lung adenocarcinoma, but it has not been reported in this tumor owing to the rarity of the disease and lack of attempts to characterize it molecularly. Therefore, it is unknown whether targeted therapies such as EGFR-TKI could achieve similar response in primary myoepithelial carcinoma as in lung adenocarcinoma.
Case report
A 68-year-old man presented to our institution for the treatment with cough and chest pain which already last for 4 months. He had a medical history of chronic gastritis for 3 years, and he was a smoker (30 cigarettes/day) for 40 years. He denied other symptoms like nausea, fever, vomiting or shortness of breath. Electrocardiography shows T wave changes and echocardiography showed moderate tricuspid regurgitation. The left ventricular diastolic pressure decreased. Routine laboratory examinations found carcinoembryonic antigen (CEA) at 4.7 ng/mL (normal

Fig. 1 Histologic features of primay myoepithelial carcinoma of the lung. a Hematoxylin-eosin (HE) stain (magnification X400): The cancer cells are arranged like small nests with many hyaline substances in the stroma. b-h. Immunohistochemical staining of Calponin (b), CK (c), P63 (d), CK7 (e), CK5/6 (f), Ki67 (g), S-100 (h) (magnification X200)
within normal limits, but increased level of Prostate-specific antigen (PSA) (5.1 ng/mL; normal range, < 4.4 ng/mL), cancer antigen 125 (CA-125) (41.7 U/mL; normal range, < 35 U/mL), and carbohydrate antigen 19–9 (CA19–9) (53.4.1 U/mL; normal range, < 27 U/mL) in the serum. Furthermore, the fiberoptic bronchoscopic biopsy sample was fixed with 10% neutral formalin, embedded in paraffin, routinely prepared, stained with hematoxylin-eosin, and observed under light microscope. Streptavidin-peroxidase method was used for immunohistochemistry. The Immunohistochemical staining results showed that the tumor cells were positive for CK(+), P63(+), CK7(+), CK5/6(+), Ki67(+), S-100(+), Calponin(+), while negative for P40, NapsinA, TTF1, WT-1 and CR (Fig. 1).

Based on the radiopathological result, he was diagnosed with stage IVB myoepithelial carcinoma accompanied by metastases in the left pulmonary hilum, mediastinal lymph nodes, and cervical vertebra. Besides, there was no measurable tumor observed from PET-CT along his salivary gland. His Eastern Cooperative Oncology Group (ECOG) performance status was 1, and his vital signs were normal.

Furthermore, the biopsy samples were tested by targeted next generation sequencing (NGS) with a 168-gene cancer panel (Burning Rock Biotech, Guangzhou, Guangdong, China). The NGS sequencing results revealed EGFR exon 19 deletion (p.E746_A750del; 0.04%) and KRAS mutation (p.G12C; 0.15%) from plasma sample, and only the KRAS mutation (p.G12C; 53.18%) from needle biopsy tissue sample of the lung (Fig. 2). Subsequently, he was treated with EGFR-TKI icotinib at 125 mg orally thrice daily from July 25th 2019. After 40 days, the patient came back for reexamination of chest CT. The radiography showed a significant reduction in his primary lung lesion (6.2 × 4.7 cm vs 4.2 × 3.5 cm). There was significant improvement in clinical symptoms including chest pain. He achieved partial response (PR) under the criteria of Response Evaluation Criteria In Solid Tumors (RECIST) 1.1 (Fig. 3). Unfortunately, the disease progressed after 2.5 months of EGFR-TKI treatment. The magnetic resonance imaging (MRI) revealed disseminated bone metastases and brain atrophy. On Oct 31st 2019, the patient passed away due to multiple organ failures with an overall survival (OS) of 3 months.

Fig. 2 The Integrative Genomics Viewer (IGV) screenshots displayed the reads from ctDNA sequencing and revealed the harboring of EGFR exon 19 deletion [NM_005228.3(EGFR):c.2235_2249del(p.Glu746_Ala750del)] and KRAS mutation [NM_033360.3(KRAS):c.34G > T(p.Gly12Cys)] from plasma (a) and tissue (b) samples.
Discussion
The most common practice to manage localized myoepithelial carcinoma is by performing surgical excision with or without adjuvant radiation therapy [7]. However, myoepithelial carcinoma has a high tendency of local recurrences and metastases that warrants close clinical follow-up. After developing into advanced disease, systemic therapy plays an essential role in prolonging survival. Although chemotherapy was the most frequently used systemic therapy, some studies showed that this tumor is not sensitive to chemotherapy [8]. And there is limited evidence of targeted therapy and immunotherapy. Our case is unique because we presented the first clinical evidence of EGFR-TKI targeted therapy for myoepithelial carcinoma.

EGFR mutation is very common in lung cancer patients. But pulmonary myoepithelial carcinoma is a rare subtype of lung carcinoma; there is no previous report of myoepithelial carcinoma patient harboring EGFR mutation. To the best of our knowledge, this is the first time that a myoepithelial carcinoma patient was reported to carry EGFR mutation (exon 19 deletion) and achieve PR after EGFR-TKI therapy.

Previous studies in lung cancer suggested that KRAS mutation is a poor prognostic marker for
In conclusion, we presented a case report demonstrating clinical evidence of the efficacy of icotinib in a patient with advanced myoepithelial carcinoma of the lung who harbored EGFR exon 19 deletion. We also provided evidence that molecular profiling and targeted therapy might be potential critical implications in this rare type of disease.

Abbreviations
CEA: Carcinoembryonic antigen; PFS: Progression-free survival; TKI: Tyrosine kinase inhibitor; PR: Partial response; ECOG: Eastern Cooperative Oncology Group; RECIST: Response evaluation criteria in solid tumors; NGS: Next-generation sequencing; OS: Overall survival

Acknowledgments
We owe thanks to the patients and his family. We also thank the stuff at from Burning Rock Biotech who worked on these case.

Authors’ contributions
XH Xie acquired data. SY Chen drafted the manuscript under the supervision of XH Xie and CZ Zhou. All the authors have given final approval of the version to be published.

References
1. Song DH, Choi IH, Ha SY, et al. Epithelial-myoepithelial carcinoma of the tracheobronchial tree: the prognostic role of myoepithelial cells. Lung Cancer. 2014;83(3):416–9.
2. Dardick I. Myoepithelioma: definitions and diagnostic criteria. Ultrastruct Pathol. 1995;19(5):335–45.
3. Savera AT, Sloman A, Huvos AG, Klimstra DS. Myoepithelial carcinoma of the salivary glands: a clinicopathologic study of 25 patients. Am J Surg Pathol. 2000;24(6):761–74.
4. Dhawan A, Shennoy A, Srirakash D. Myoepithelial carcinoma of the nasopharynx: case report of a rare entity. Natl J Maxillofac Surg. 2011;2(2):207–9.
5. Noronha V, Cooper DL, Higgins SA, Muren JR, Kluger HM. Metastatic myoepithelial carcinoma of the vulva treated with carboplatin and paclitaxel. Lancet Oncol. 2006;7(3):270–1.
6. Jo VY, Fletcher CD. Myoepithelial neoplasms of soft tissue: an updated review of the clinicopathologic, immunophenotypic, and genetic features. Head Neck Pathol. 2015;9(1):32–8.
7. Chamberlain F, Cojocaru E, Scarant M, et al. Adult soft tissue myoepithelial carcinoma: treatment outcomes and efficacy of chemotherapy. Med Oncol. 2019;37(2):13.
8. Murak K, Harada H, Alba S, Tsutsui Y. Myoepithelial carcinoma of the lung arising from bronchial submucosa. Am J Surg Pathol. 2000;24(9):1300–4.
9. Linardou H, Dahabreh IJ, Kanloupiti D, et al. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol. 2008;9(10):962–72.
10. Ludovini V, Bianconi F, Pistola L, et al. Phosphoinositide-3-kinase catalytic alpha and KRAS mutations are important predictors of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer. J Thorac Oncol. 2011;6(4):707–15.
11. Wang Z, Cheng Y, An T, et al. Detection of EGFR mutations in plasma circulating tumour DNA as a selection criterion for first-line gefitinib
treatment in patients with advanced lung adenocarcinoma (BENEFIT): a phase 2, single-arm, multicentre clinical trial. Lancet Respir Med. 2018;6(9): 681–90.

12. Fiala O, Pesek M, Finek J, Benesova L, Belsanova B, Minarik M. The dominant role of G12C over other KRAS mutation types in the negative prediction of efficacy of epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Cancer Genet. 2013;206(1–2):26–31.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.