Micron-scale depth sensing: applications

inspektion

fabrication

defects on wing

1 mm

SWI depth

3D-printed coin

1 mm

SWI depth
Fiber-based SWI

- Fiber-based SWI diagram
- Fiber splitter
- Beam steering
- Single frequency lasers λ_1 and λ_2
- Detector / spectrometer
- Reference mirror
- Scene
Fiber-based SWI

single frequency lasers

fiber splitter

isolator

collimator

d

x

scene

reference mirror

detector / spectrometer

\(\lambda_1 \)

\(\lambda_2 \)
Fiber-based SWI

single frequency lasers

isolator

fiber splitter

collimator

scene

I

λ_1

λ_2

d

x

detector / spectrometer

reference mirror

I

λ_1

0

$d - x$
Fiber-based SWI

- Single frequency lasers
- Fiber splitter
- Isolator
- Collimator
- Scene
- Detector / spectrometer
- Reference mirror

\[\lambda_1 \quad \lambda_2 \]
\[d - x \]
Fiber-based SWI

- Single frequency lasers
- Fiber splitter
- Isolator
- Collimator
- Scene
- Detector/spectrometer
- Reference mirror

\[\lambda_1 \]
\[\lambda_2 \]
\[I \]
\[\lambda_s \]
Fiber-based SWI

- Single frequency lasers
- Fiber splitter
- Isolator
- Collimator
- Scene
- Detector / spectrometer
- Reference mirror

\(\lambda_1 \)
\(\lambda_2 \)

Beam steering

Mathematical expressions:

\[I \]
\[\lambda_s \]
\[d \]
\[d - x \]
Full-field SWI

λ_1

single frequency lasers

λ_2

reference mirror

scene

lens

splitter

camera
Full-field SWI errors: indirect light

- Single frequency lasers
- Splitter
- Lens
- Reference mirror
- Scene
- Camera

\(\lambda_1 \) and \(\lambda_2 \)
Full-field SWI errors: aberrations

\[\lambda_1, \lambda_2 \]

single frequency lasers

\[\text{splitter} \]

\[\text{reference mirror} \]

\[\text{scene} \]

\[\text{lens} \]

\[\text{camera} \]
Swept-angle SWI

Single frequency lasers

θ

Scene

Reference mirror
Constructing swept-angle source

- Single frequency lasers
- Splitter
- Lens
- Reference mirror
- Camera
- Scene
Error mitigation with swept-angle scanning

indirect light

free-space optics aberrations

reference mirror only

target

without swept-angle

with swept-angle
Signal processing pipeline

- raw frames
- interference-free
- interference-only
- denoised envelope
- envelope
- depth
Comparison with other interferometric methods

Method	Axial Resolution	Lateral Resolution	Acquisition Time	Indirect Light Robustness
FD-OCT scanning	high	low	slow	yes
TD-OCT full-field	high	high	slow	no
SWI scanning	high	low	slow	yes
SWI full-field	high	high	fast	no
SWI swept-angle	high	high	fast	yes
Results: $20 bill eagle

dollar bill scene recovered depth surface recovered depth map
Results: 1 mm depth range

Scene	Input Image	Swept-angle SWI, ours	No swept-angle scanning
quarter			
euro			
soap			
music box			
Results: microscopic scenes

- chocolate
- PlusPlus®
- business card

- scene
- input image
- swept-angle SWI, ours
- no swept-angle scanning

1 mm
0.90 mm
0.27 mm
0.10 mm
Results: macroscopic scenes

corner

pawn

toy cup

scene input image swept-angle SWI, ours no swept-angle scanning

1 mm
Acquisition time v/s quality

source

100 ms

25 ms

10 ms

{3, 4}-shift = 12

{4, 4}-shift = 16

{5, 4}-shift = 20

{5, 5}-shift = 25
Acquisition time v/s quality

- **100 ms**
- **25 ms**
- **10 ms**

Source: {3, 4}-shift = 12, {4, 4}-shift = 16, {5, 4}-shift = 20, {5, 5}-shift = 25
Robustness to environmental conditions

scene ours, no ambient light ours, 10% laser to ambient light ratio
Passive interferometry

swept-angle SWI passive interferometry

artificial light sources

dark room

vibration isolation

natural light

no active isolation

bright outdoors

passive interferometry
Swept-Angle Synthetic Wavelength Interferometry

more details: https://imaging.cs.cmu.edu/swept_angle_swi

many thanks to our sponsors:

SEE BELOW THE SKIN

visit our posters!
Wed, 21 Jun, 10:30-12:00
Tue, 20 Jun, 16:30-18:00

https://seebelowtheskin.org