We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

3,900
Open access books available

116,000
International authors and editors

120M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit: www.intechopen.com
Aggravation of Allergic Rhinitis by Air Pollution: Demonstration by an Animal Model of Pollenosis

Takeshi Nabe and Nobuaki Mizutani

Kyoto Pharmaceutical University
Kobe Pharmaceutical University
Japan

1. Introduction

Numbers of patients suffering from allergic diseases, such as asthma, pollenosis, atopic dermatitis, etc. have been increased in industrially advanced countries. The increases are remarkable especially in urban area in such countries. It has been generally accepted that not only genetic but also environmental factors contribute to the pathogenesis of various diseases. Allergic diseases are also caused by both factors. Genetic factors can be explained by a concept of single nucleotide polymorphism (SNP), which means that only one nucleotide mutation can make a person highly sensitive to allergic diseases. However, the recent increase in the number of allergic patients cannot be explained merely by SNP.

It has been widely indicated that environmental factors such as air pollution, improvement of hygiene, changes in foods and dwelling, etc. are closely associated with the increase in patients. In this chapter, the relationship between air pollutants and allergic diseases in the airway tissues is focused on. In order to demonstrate this relationship, experimental animal models of allergic asthma have been widely utilized. First, the findings obtained from animal models are summarized. Second, we have actually evaluated whether the pyrenes present in diesel exhaust particles, cigarette smoke, etc. aggravate allergic rhinitis symptoms in a pollenosis guinea pig model (Mizutani et al., 2007). The methodology of development of this model of pollenosis and the effects of pyrenes on the model are also described.

2. Air pollutants that have been demonstrated to aggravate airway allergic diseases in experimental animal models

Allergic diseases are manifested by antigen-specific IgE antibody formation, increase in Th2 cytokine (IL-4, IL-5, IL-13, etc.) production and decrease in Th1 cytokine (interferon-γ) production. In allergic airway diseases, asthma is a potentially life-threatening disorder, and thus the mechanisms underlying allergen-induced asthmatic responses have been analyzed using murine models not only by measuring levels of IgE antibody and Th2 cytokines, but also by estimating leukocyte infiltration into the lung and especially the eosinophilia, airway hyperresponsiveness to a non-specific stimulus, and airway remodeling.
Various indoor and outdoor air pollutants have been evaluated to determine whether allergic airway diseases are aggravated by exposure to pollutants. Experimental animal models of asthma especially in mice have been extensively utilized to analyze the relationships between air pollutants and disease.

2.1 Diesel exhaust particles (DEPs)

Diesel fuel combustion results in the production of DEPs. DEPs consist of an elemental carbon core with a large surface area, to which hundreds of chemicals such as pyrenes, phenanthrenes, etc. and transition metals such as zinc, aluminium, iron, etc. are attached (Peden & Reed, 2010). In human studies, it was demonstrated that intranasal instillation of DEPs increased nasal IgE antibody secretion. Furthermore, the DEP treatment increased Th2-type cytokine production in the nasal cells. Those findings strongly suggest that exposure to DEPs further aggravates patients’ allergic state (Diaz-Sanchez, 1999; Riedl & Diaz-Sanchez, 2005).

In experimental animal models of allergic asthma, it has been reported that exposure to DEPs in mice resulted in enhanced allergen-induced IgE production in serum, airway Th2-type cytokine production, airway hyperresponsiveness, airway eosinophilia, etc. (Munakata, 1986; Takafuji, 1987; Fujimaki, 1994; Suzuki, 1996; Takano, 1997, 1998; Ichinose, 1998; Miyabara, 1998; Steerenberg, 1999; Kobayashi, 2000; Hashimoto, 2001; Liu, 2008). Interestingly, Takahashi et al. (2010) recently demonstrated that long-term mite antigen exposure-induced airway remodelling was also augmented by DEP exposure.

The mechanisms underlying DEP-induced aggravation of allergic responses are currently under investigation. Most studies have reported that exposure to DEPs induces production of reactive oxygen species (ROS) such as superoxide anion, hydrogen peroxide, hydroxy radical, etc., leading to cellular damage. The production of ROS may play important roles in the augmentation of antigen-induced asthmatic responses in the lung (Riedl & Diaz-Sanchez, 2005). Further analyses are required in order to understand the detailed molecular mechanisms of the effects of DEPs.

2.2 Residual oil fly ash (ROFA)

ROFA is an air pollutant produced by the combustion of fossil fuels, and contributes to total primary particulate matter emissions in the United States. ROFA is rich in water-soluble transition metals. Epidemiological and human experimental studies have attributed increased respiratory inflammation to high metal content of pollutants.

It has been demonstrated that exposure to ROFA enhances allergen-induced asthmatic responses in mice (Hamada, 1999; Goldsmith, 1999; Gavett, 1999; Arantes-Costa, 2008). Interestingly, Lambert et al. (2000) reported that water-soluble metals, either NiSO₄, VSO₄ or FeSO₄, are also capable of enhancing those asthmatic responses, indicating that the enhanced allergic responses by ROFA were mediated by soluble metal constituents. The relationships between environmental metal constituents and asthmatic responses should be further analyzed clinically and experimentally.

2.3 Cigarette smoke

Cigarette smoking has been implicated in the development of diseases in multiple organs, including cardiovascular diseases, malignancy, and respiratory disorders. Among the respiratory diseases, cigarette smoking is one of main causes of chronic obstructive pulmonary disease (COPD).
Epidemiologic studies in asthmatics have reported an association between environmental cigarette smoke (ETS) exposure and asthma symptoms. In asthmatic children, parental smoking increases levels of asthma symptoms and the frequency of asthma exacerbations (Evans, 1987; Chilmonczyk, 1993; Britton, 2005). In experimental animal models, chronic coexposure to ETS increased levels of allergen-induced airway remodelling and airway responsiveness by up-regulating the expression of chemokines (Min, 2007), suggesting that ETS is a risk factor for asthma. Other studies using animal models have also reported that exposure to ETS aggravates airway allergy (Seymour, 1997, 2003, 2005; Rumold, 2001), although there are also controversial reports (Kang, 1996; Boweles, 2005).

In contrast, the effect of mainstream or active cigarette smoking (MTS) on asthma is controversial. MTS has been associated with increased serum levels of IgE and airway hyperresponsiveness (Barbee, 1987; Mitsunobu, 2004). However, other studies in asthmatic patients have failed to find any relationship between MTS and asthma (Siroux, 2000; Vidal, 2004). Even in experimental animal models, the impact of MTS on OVA-induced asthmatic responses in mice is controversial (Robbins, 2005; Moerloose, 2005, 2006; Thatcher, 2008). Thus, the difference between the effects of ETS and MTS on asthma should be further analyzed in experimental studies.

2.4 Nanoparticles
The development of nano-technology has increased opportunities to be exposed to engineered nanomaterials present in the environment. Nanomaterials are included in industrially manufactured products such as ink, toner, cosmetics, latex, etc. However, it has been largely unclear how exposure to these nanomaterials affects human health, especially the airway tissues.

Inoue et al. (2005, 2009a, 2009b) and others (Alessandrini, 2006; de Haar, 2008) have extensively studied the effects of nanoparticles on allergen-induced asthmatic responses in mice, reporting that relatively small diameters of particles induced enhancement of allergic airway inflammation. For example, nanoparticles with a diameter of 14 nm produced more prominent allergic airway inflammation, characterized by infiltration of eosinophils and neutrophils, by an increase in epithelial goblet cell number, and by increases in levels of cytokines and chemokines in the lung than those with a diameter of 56 nm.

Further studies are required to fully understand the mechanisms underlying the aggravation of nanomaterials on the allergic airway inflammation.

2.5 Asian sand dust
Asian sand dust is a dust storm originating in the deserts of China and Mongolia, and heading toward Japan, Taiwan, Korea, etc. It has been recognized that Asian sand dust may be artificially formed by environmental deterioration such as deforestation, etc. The diameters of particles in sand dust are several to several tens of micrometers. Such coarse particles may have limited adverse effects on the respiratory organ. However, recent studies have indicated that Asian sand dust contains sulfates and nitrates (Ro, 2005) that may originate from industrial areas in China. In addition, it was reported that fungi are adsorbed to Asian sand dust (Ichinose, 2008a).

Ichinose et al. (2008b) first reported that exposure to Asian sand dust to OVA-sensitized mice enhanced allergen challenge-induced asthmatic responses including lung eosinophilia, Th2 cytokine and chemokine production in the lungs. More interestingly, they
Air pollutant	Author, publication year	Species	Allergen	Characteristic effects of pollutants on allergic responses
DEP	Muranaka et al., 1986	Mouse	OVA, JPCA	Enhancement of IgE production
	Takafuji et al., 1987	Mouse	OVA	Enhancement of IgE production
	Fujimaki et al., 1995	Mouse	OVA, JPCA	Enhancement of IL-4 production
	Suzuki et al., 1996	Mouse	Mite	Enhancement of IgE and IgG1 production
	Takano et al., 1997	Mouse	OVA	Enhancement of lung eosinophilia and Th2 cytokine production
	Takano et al., 1998	Mouse	OVA	Enhancement of AHR
	Ichinose et al., 1998	Mouse	OVA	Enhancement of lung eosinophilia, airway epithelial damage
	Miyabara et al., 1998	Mouse	OVA	Enhancement of lung eosinophilia, production of Th2 cytokines, and increase in goblet cells in the epithelium
	Steerenberg et al., 1999	Rat	Grass pollen	Enhancement of IgE and IgG1 production
	Kobayashi, 2000	Guinea pigs	OVA	Enhancement of sneezing and nasal eosinophilia
	Hashimoto et al., 2001	Guinea pigs	OVA	Enhancement of IAR and LAR, mucus hypersecretion, lung eosinophilia, and airway vascular permeability
	Liu et al., 2008	Mouse	Af	Hypermethylation of IFN gamma promotor, and hypomethylation of IL-4 promotor
	Takahashi et al., 2010	Mouse	Mite	Enhancement of airway remodelling, AHR, Th2-type airway inflammation
ROFA	Hamada et al., 1996	Mouse	OVA	Enhancement of AHR and airway inflammation
	Goldsmith et al., 1999	Mouse	OVA	Enhancement of AHR
	Gavett et al., 1999	Mouse	OVA	Enhancement of IL-4 and IL-5 production
	Lambert et al., 2000	Rat	HDM	Enhancement of IgE production, bronchoconstriction, lymphocyte proliferation, and Th2 cytokine production
	Arantes-Costa et al., 2008	Mouse	OVA	Enhancement of AHR, and airway epithelial damage
ETS	Kang et al., 1996	Guinea pig	CRA	No change in anaphylactic antibody production, Reduction of antigen-induced bronchospasm
	Seymour et al., 1997	Mouse	OVA	Enhancement of IgE and IgG1 production, lung eosinophilia, Th2 cytokine production
	Rumold et al., 2008	Mouse	OVA	Enhancement of IgE and IgG1 production, lung
Aggravation of Allergic Rhinitis by Air Pollution: Demonstration by an Animal Model of Pollenosis

Study	Species	Pollutant	Outcome 1	Outcome 2
al., 2001	Mouse	Af	Enhancement of AHR, eosinophilia, and Th2 cytokine production	
Seymour et al., 2003	Mouse	OVA	Neither change in AHR, IgE production nor airway inflammation	
Boweles et al., 2005	Mouse	Af	Enhancement of nitric oxide production	
Seymour et al., 2005	Mouse	OVA	Enhancement of AHR, airway remodelling, epithelial chemokine expression, and increase in TGF-β+ cells	
Min et al., 2007	Mouse	OVA	Enhancement of AHR, eosinophilia, and Th2 cytokine production	Reduction of lung eosinophilia, Th2 cytokine production and AHR
Robbins et al., 2005	Mouse	OVA	Enhancement of airway inflammation and responsiveness	
Moerloose et al., 2005	Mouse	OVA	Enhancement of IgE production, increases in eosinophils, CD4+ T cells, and goblet cell in the lung	No change in AHR
Moerloose et al., 2006	Mouse	OVA	Reduction of airway eosinophilia, goblet cell metaplasia, IL-4 and IL-5 production, and IgE production	
Thatcher et al., 2008	Mouse	OVA	Enhancement of BAL cellularity, Th2 cytokine production, AHR, mucus production	
Inoue et al., 2005	Mouse	OVA	Enhancement of BAL cellularity, Th2 cytokine production, AHR, mucus production	
Alessandri et al., 2006	Mouse	OVA	Enhancement of proliferation of CD4+ cells, cytokine production, expression of co-stimulatory molecules	
de Haar et al., 2008	Mouse	OVA	Enhancement of IgE production and airway inflammation (by carbon nanotubes)	
Inoue et al., 2009a	Mouse	OVA	Enhancement of IgE production and airway inflammation (by latex nanomaterials)	
Inoue et al., 2009b	Mouse	OVA	Enhancement of IgE production and airway inflammation (by latex nanomaterials)	
Ichinose et al., 2008b	Mouse	OVA	Enhancement of IgE production, lung eosinophilia, goblet cell proliferation, cytokine production	
Ichinose et al., 2009	Guinea pig	JCPA	Enhancement of nasal obstruction, histamine and CysLT release in NCLF, nasal eosinophilia, and IgE production	Neither change in sneezing nor nasal secretion

Table 1. Representative studies evaluating relationship between air pollutants and airway allergic responses using experimental animal models. Abbreviations: Af, Aspergillus fumigatus; AHR, airway hyperresponsiveness; ASD; Asian sand dust, BAL; bronchoalveolar lavage fluid, CRA; cockroach allergen, CysLT; cysteinyl leukotriene, DEP; diesel exhaust particles, ETS; environmental tobacco smoke, IAR; Immediate asthmatic response, IL; interleukin, JCPA; allergen of Japanese cedar pollen, LAR; late asthmatic response, MTS; mainstream cigarette smoke, Nano Ps; nano particles, NCLF; nasal cavity lavage fluid, OVA; ovalbumin, ROFA; residual oil fly ash, RW; ragweed

www.intechopen.com
demonstrated that allergic rhinitis symptoms induced by Japanese cedar pollen in guinea pigs were also augmented by exposure to Asian sand dust (Ichinose, 2009). However, the relationship between Asian sand dust and health problems remains inconclusive, and further epidemiological and experimental studies are required.

3. Aggravation of allergic rhinitis by pyrenes: Demonstration by Japanese cedar pollen-induced allergic rhinitis model of guinea pigs

Pyrenes, such as benzo(a)pyrene (BaP) and 1-nitropyrene (1-NP), which are encountered in the environment mainly in the form of air pollution, are ubiquitous environmental pollutants found in DEP and cigarette smoke (Rosenkranz, 1980; Scheepers, 1995; Bai, 1998; Ohura, 2004). Carcinogenic and mutagenic effects of BaP and 1-NP in various cell types have been well documented (Bai, 1998; el-Bayoumy, 1995; Nakanishi, 2000). In addition, exposure to BaP enhances allergen-induced IgE and Th2 cytokine productions in mice (Kanoh, 1996; Kadkohda, 2005).

As described above, analyses of the relationships between air pollutants and airway allergy have been conducted using asthmatic mouse models. Meanwhile, pollenosis is a major health problem in Japan because the proportion of people with pollenosis in this country has been estimated to be more than 30%. Although the allergic symptoms of pollenosis, such as rhinitis and conjunctivitis, are not life-threatening like the airway obstructive response in asthma, chronic nasal blockage considerably lowers the quality of life of pollenosis patients. In addition, the nasal tissue is the first organ that contacts not only allergens but also air pollutants. Furthermore, “global warming” could increase the quantity of pollen from trees; it was experimentally demonstrated that a doubling of the atmospheric CO₂ concentration significantly stimulated ragweed pollen production (Wayne, 2002), suggesting that the health problem associated with pollens may be further exacerbated in future. Thus, the exposure effects of air pollutants on pollenosis should also be thoroughly examined.

We have established an experimental allergic rhinitis model in sensitized guinea pigs, using Japanese cedar pollen as the antigen (Nabe, 1997a, 1998). This experimental model has been used to assess whether short and long-term daily treatment with pyrenes, BaP and 1-NP aggravate antigen-induced sneezing and nasal blockage (Mizutani, 2007).

3.1 Development of an allergic rhinitis model showing nasal blockage

Japanese cedar pollen is also an air pollutant in the spring in Japan, and the most prevalent pollenosis allergen in this country. Thus, we have used cedar pollen as an allergen for development of an animal model of allergic rhinitis.

To begin with, we attempted to develop an animal model of allergic rhinitis that clearly shows allergic nasal symptoms including sneezing and nasal blockage like the patients. The guinea pig has long been used as a species showing a high responder of bronchial smooth muscle to various endogenous molecules such as histamine, cysteinyl leukotrienes, etc. Thus, we and others have used guinea pigs as a model animal of allergic asthma (Hutson, 1988; Matsumoto, 1994; Nabe, 1997b). From our experience of using of this species in asthma, we also used the guinea pig to develop an experimental model of allergic rhinitis.

In a disease model that can be utilized for pharmacological examinations and analyses of pathogenesis of diseases, several important considerations arise as follows: 1) The model animal should clearly exhibit symptoms that are similar to patients with the disease and actually torment patients, 2) symptoms should be reproducibly caused by reproducible methods, 3) symptoms can be measured as quantitatively as possible.
To satisfy these points, as shown in Fig. 1 (upper panel), guinea pigs were intranasally sensitized with the pollen extract+Al(OH)$_3$, and then intranasally challenged by a quantitative inhalation of the pollen once a week for several months (Nabe, 1997a). After the respective pollen challenge periods, the allergen-specific IgE antibody level in serum was measured, sneezing frequency was counted, and the degree of nasal blockage was assessed by measuring specific airway resistance (sRaw) using a double-flow plethysmograph system. Because a major antigen protein in Japanese cedar pollen is Cry j 1, the amount of Cry j 1-specific IgE antibody in the serum was measured until the 29th challenge. Consequently, Cry j 1-specific IgE antibody level was increased during the repeated pollen challenges (Fig. 1, lower left panel) (Nabe, 1997a, 2005). In addition, after respective pollen challenges, sneezing was induced within 1 h after a challenge (Nabe, 1998). Regarding nasal blockage, both early and late phase nasal blockage were induced with their respective peaks at 1-2 h and 4-6 h after pollen challenges. The magnitude of biphasic nasal blockage was enhanced until the 7th challenge, followed by induction of almost reproducible nasal blockage after respective pollen challenges until around 30 challenges (Nabe, 1998). Images of the time-course of sneezing, and early and late phase nasal blockage after a certain challenge period are illustrated in the lower right panel of Fig. 1.

Induction of sneezing and biphasic nasal blockage was very similar to the symptoms of allergic rhinitis in pollenosis patients. Although nasal secretion is also a characteristic sign in the patients, and could be clearly observed in the model guinea pigs, we did not attempt to quantify the secretions.

Fig. 1. Schedule for sensitization and challenge with Japanese cedar pollen in guinea pigs (upper panel), time-course change in amount of Cry j 1-specific IgE antibody in the serum during the sensitization and challenge period (lower left panel), and images of time-course changes in sneezing and nasal blockage induced after a certain period of pollen challenge. Each value in the lower left panel represents the mean±S.E. of 8 animals.
3.2 Aggravation of pollen-induced nasal blockage by BaP and 1-NP

As shown in Fig. 2 (upper panel), guinea pigs that had been sensitized with pollen extract plus Al(OH)$_3$ were repeatedly challenged with the pollen once a week. From 6 days before the first sensitization, BaP (100 µg/10 µl per nostril) or 1-NP (10 µg/10 µl per nostril) was daily administered into both nostrils (Fig. 2, upper panel). As expected, BaP aggravated both the early and late phase nasal blockage with statistical significance, and 1-NP also significantly enhanced the late phase response (Fig. 2, lower left and middle panels). In contrast, neither sneezing frequency nor the increase in Cry j 1-specific IgE antibody were affected even by long-term treatment (Fig. 2, lower right panel, and Table 2) (Mizutani, 2007).

Unexpectedly, a relatively short period (2 weeks) of treatment with BaP or 1-NP failed to significantly affect the magnitudes of early and late phase nasal blockage or the sneezing frequency (Mizutani, 2007).

![Fig. 2. Schedule for exposure to benzo(a)pyrene (BaP) or 1-nitropyrene (1-NP) during the sensitization and challenge period (upper panel), and effects of BaP and 1-NP on induction of the early and late phase nasal blockage (lower left and middle panels) and sneezing (lower right panel). Each column represents the mean±S.E. of 10 animals. AUC 0-3 h: Area under the curve for increase in sRaw in 0-3 h after the pollen challenge, AUC 3-8 h: Area under the curve for increase in sRaw in 3-8 h after the challenge.](www.intechopen.com)
We have reported that sneezing is mediated mainly by histamine that is released from the nasal mucosal mast cells via antigen-IgE antibody reaction (Yamasaki, 2001; Fukuda, 2003). Our findings suggest that the pyrenes did not affect the antigen-IgE antibody reaction of mast cells. Meanwhile we have previously suggested that oxidative stress can be closely associated with the induction of biphasic nasal blockage (Mizutani, 2008). As other studies have demonstrated that BaP induces an increase in oxidative stress (Jeng, 2010; Gao, 2011), the BaP-induced enhancement of nasal blockage may be due to increased oxidative stress. The aggravation of nasal blockage was reduced by cessation of the exposure to pyrenes in our model of pollenosis (Mizutani, 2007), indicating that avoidance of air pollutants is an appropriate method for treating the allergy.

Amount of IgE (AU/ml)
Vehicle: 45.3±19.5
BaP: 49.1±22.0
1-NP: 32.9±11.5

Table 2. Effects of benzo(a)pyrene (BaP) and 1-nitropyrene (1-NP) on the increase in Cry j 1-specific IgE at the 13th pollen challenge in sensitized guinea pigs. Each value represents the mean±S.E. of 10 animals.

4. Conclusion

It has been experimentally demonstrated that air pollutants such as DEP, ROFA, cigarette smoke, nanoparticles, Asian sand dust, etc. can aggravate allergic disorders. Exposure to those environmental pollutants in genetically allergic persons could synergistically aggravate their allergic symptoms. In future, both epidemiological and experimental analyses of the relationships between all candidate pollutants and allergic diseases are further required.

5. References

Alessandrini, F.; Schulz, H.; Takenaka, S.; Lentner, B.; Karg, E.; Behrendt, H. & Jakob, T. (2006). Effects of Ultrafine Carbon Particle Inhalation on Allergic Inflammation of the Lung. The Journal of Allergy and Clinical Immunology, Vol.117, No.4 (April 2006), pp. 824-830, ISSN 0091-6749

Arantes-Costa, F. M.; Lopes, F. D.; Toledo, A. C.; Magliarelli-Filho, P. A.; Moriya, H. T.; Carvalho-Oliveira, R.; Mauad, T.; Saldiva, P. H. & Martins, M. A. (2008). Effects of Residual Oil Fly Ash (ROFA) in Mice with Chronic Allergic Pulmonary Inflammation. Toxicologic Pathology, Vol.36, No.5 (May 2008), pp. 680-686, ISSN 0192-6233

Bai, F.; Nakanishi, Y.; Takayama, K.; Pei, X. H.; Tokiwa, H. & Hara, N. (1998). Ki-Ras Mutation and Cell Proliferation of Lung Lesions Induced by 1-Nitropyrene in A/J
Mice. *Molecular Carcinogenesis*, Vol.22, No.4 (August 1998), pp. 258-264, ISSN 0899-1987

Barbee, R. A.; Halonen, M.; Kaltenborn, W.; Lebowitz, M. & Burrows, B. (1987). A Longitudinal Study of Serum IgE in a Community Cohort: Correlations with Age, Sex, Smoking, and Atopic Status. *The Journal of Allergy and Clinical Immunology*, Vol.79, No.6 (June 1987), pp. 919-927, ISSN 0091-6749

Bowles, K.; Horohov, D.; Paulsen, D.; Leblanc, C.; Littlefield-Chabaud, M.; Ahlert, T.; Ahlert, K.; Pourciau, S. & Penn, A. (2005). Exposure of Adult Mice to Environmental Tobacco Smoke Fails to Enhance the Immune Response to Inhaled Antigen. *Inhalation Toxicology*, Vol.17, No.1 (January 2005), pp. 43-51, ISSN 0895-8378

Britton, J. (2005). Passive Smoking and Asthma Exacerbation. *Thorax*, Vol.60, No.10 (October 2005), pp. 794-795, ISSN 0040-6376

Chilmonczyk, B. A.; Salmun, L. M.; Megathlin, K. N.; Neveux, L. M.; Palomaki, G. E.; Knight, G. J.; Pullkkinen, A. J. & Haddow, J. E. (1993). Association Between Exposure to Environmental Tobacco Smoke and Exacerbations of Asthma in Children. *The New England Journal of Medicine*, Vol.328, No.23 (June 1993), pp. 1665-1669, ISSN 0028-4793

de Haar, C.; Kool, M.; Hassing, I.; Bol, M.; Lambrecht, B. N. & Pieters, R. (2008). Lung Dendritic Cells are Stimulated by Ultrafine Particles and Play a Key Role in Particle Adjuvant Activity. *The Journal of Allergy and Clinical Immunology*, Vol.121, No.5 (May 2008), pp. 1246-1254, ISSN 0091-6749

Diaz-Sanchez, D.; Garcia, M. P.; Wang, M.; Jyrala, M. & Saxon, A. (1999). Nasal Challenge with Diesel Exhaust Particles Can Induce Sensitization to a Neoaллерgen in the Human Mucosa. *The Journal of Allergy and Clinical Immunology*, Vol.104, No.6, (December 1999), pp. 1183-1188, ISSN 0091-6749

el-Bayoumy, K.; Chae, Y. H.; Upadhyaya, P.; Rivenson, A.; Kurtzke, C.; Reddy, B. & Hecht, S. S. (1995). Comparative Tumorigenicity of Benzo[a]pyrene, 1-Nitropyrene and 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine Administered by Gavage to Female CD Rats. *Carcinogenesis*, Vol.16, No.2 (February 1995), pp. 431-434, ISSN 0143-3334

Evans, D.; Levison, M. J.; Feldman, C. H.; Clark, N. M.; Wasilewski, Y.; Levin, B. & Mellins, R. B. (1987). The Impact of Passive Smoking on Emergency Room Visits of Urban Children with Asthma. *The American Review of Respiratory Disease*, Vol.135, No.3 (March 1987), pp. 567-572, ISSN 0003-0805

Fujimaki, H.; Saneyoshi, K.; Nohara, O.; Shiraishi, F. & Imai, T. (1995). Intranasal Instillation of Diesel Exhaust Particulates and Antigen in Mice Modulated Cytokine Productions in Cervical Lymph Node Cells. *International Archives of Allergy and Immunology*, Vol.108, No.3 (November 1995), pp. 268-273, ISSN 1018-2438

Fukuda, S.; Midoro, K.; Gyoten, M.; Kawano, Y.; Ashida, Y.; Nabe, T.; Kohno, S. & Nagaya, H. (2003). Effects of TAK-427 on Acute Nasal Symptoms and Nasal Obstruction in Guinea Pig Model of Experimental Allergic Rhinitis. *European Journal of Pharmacology*, Vol.476, No.3 (August 2003), pp. 239-247, ISSN 0014-2999
Gao, M.; Li, Y.; Long, J.; Shah, W.; Fu, L.; Lai, B. & Wang, Y. (2011). Induction of Oxidative Stress and DNA Damage in Cervix in Acute Treatment with Benzo[a]pyrene. *Mutation Research*. Vol.719, No.1-2 (February 2011), pp. 52-59, ISSN 0027-5107

Gavett, S. H.; Madison, S. L.; Stevens, M. A. & Costa, D. L. (1999). Residual Oil Fly Ash Amplifies Allergic Cytokines, Airway Responsiveness, and Inflammation in Mice. *American Journal of Respiratory and Critical Care Medicine*, Vol.160, No.6 (December 1999), pp. 1897-1904, ISSN 1073-449X

Goldsmith, C. A.; Hamada, K.; Ning, Y.; Qin, G.; Catalano, P.; Krishna Murthy, G. G.; Lawrence, J. & Kobzik, L. (1999). Effects of Environmental Aerosols on Airway Hyperresponsiveness in a Murine Model of Asthma. *Inhalation Toxicology*, Vol.11, No.11 (November 1999), pp. 981-998, ISSN 0895-8378

Hamada, K.; Goldsmith, C. A. & Kobzik, L. (1999). Increased Airway Hyperresponsiveness and Inflammation in a Juvenile Mouse Model of Asthma Exposed to Air-Pollutant Aerosol. *Journal of Toxicology and Environmental Health*. Part A, Vol.58, No.3 (October 1999), pp. 129-143, ISSN 1528-7394

Hashimoto, K.; Ishii, Y.; Uchida, Y.; Kimura, T.; Masuyama, K.; Morishima, Y.; Hirano, K.; Nomura, A.; Sakamoto, T.; Takano, H.; Sagai, M. & Sekizawa, K. (2001). Exposure to Diesel Exhaust Exacerbates Allergen-Induced Airway Responses in Guinea Pigs. *American Journal of Respiratory and Critical Care Medicine*, Vol.164, No.10 Pt 1 (November 2001), pp. 1957-1963, ISSN 1073-449X

Hutson, P. A.; Church, M. K.; Clay, T. P.; Miller, P. & Holgate, S. T. (1988). Early and Late-Phase Bronchoconstriction After Allergen Challenge of Nonanesthetized Guinea Pigs. I. The Association of Disordered Airway Physiology to Leukocyte Infiltration. *The American Review of Respiratory Disease*, Vol.137, No.3 (March 1988), pp. 548-557, ISSN 0003-0805

Ichinose, T.; Takano, H.; Miyabara, Y. & Sagai, M. (1998). Long-Term Exposure to Diesel Exhaust Enhances Antigen-Induced Eosinophilic Inflammation and Epithelial Damage in the Murine Airway. *Toxicological Sciences*, Vol.44, No.1 (July 1998), pp. 70-79. ISSN 1096-6080

Ichinose, T.; Yoshida, S.; Hiyoshi, K.; Sadakane, K.; Takano, H.; Nishikawa, M.; Mori, I.; Yanagisawa, R.; Kawazato, H.; Yasuda, A. & Shibamoto, T. (2008a). The Effects of Microbial Materials Adhered to Asian Sand Dust on Allergic Lung Inflammation. *Archives of Environmental Contamination and Toxicology*, Vol.55, No.3 (October 2008), pp. 348-357, ISSN 0090-4341

Ichinose, T.; Yoshida, S.; Sadakane, K.; Takano, H.; Yanagisawa, R.; Inoue, K.; Nishikawa, M.; Mori, I.; Kawazato, H.; Yasuda, A. & Shibamoto, T. (2008b). Effects of Asian Sand Dust, Arizona Sand Dust, Amorphous Silica and Aluminum Oxide on Allergic Inflammation in the Murine Lung. *Inhalation Toxicology*, Vol.20, No.7, (May 2008), pp. 685-694, ISSN 0895-8378

Ichinose, T.; Hiyoshi, K.; Yoshida, S.; Takano, H.; Inoue, K.; Nishikawa, M.; Mori, I.; Kawazato, H.; Yasuda, A. & Shibamoto, T. (2009). Asian Sand Dust Aggravates Allergic Rhinitis in Guinea Pigs Induced by Japanese Cedar Pollen. *Inhalation Toxicology*, Vol.21, No.12 (October 2009), pp. 985-993, ISSN 0895-8378
Inoue, K.; Takano, H.; Yanagisawa, R.; Sakurai, M.; Ichinose, T.; Sadakane, K. & Yoshikawa, T. (2005). Effects of Nano Particles on Antigen-related Airway Inflammation in Mice. *Respiratory Research*, Vol.6, (September 2005), pp. 106, ISSN 1465-9921

Inoue, K.; Koike, E.; Yanagisawa, R.; Hirano, S.; Nishikawa, M. & Takano, H. (2009a). Effects of Multi-walled Carbon Nanotubes on a Murine Allergic Airway Inflammation Model. *Toxicology and Applied Pharmacology*, Vol.237, No.3 (June 2009), pp. 306-316, ISSN 0041-008X

Inoue, K.; Takano, H.; Yanagisawa, R.; Koike, E. & Shimada, A. (2009b). Size Effects of Latex Nanomaterials on Lung Inflammation in Mice. *Toxicology and Applied Pharmacology*, Vol.234, No.1 (January 2009), pp. 68-76, ISSN 0041-008X

Jeng, H. A.; Pan, C. H.; Diawara, N.; Chang-Chien, G. P.; Lin, W. Y.; Huang, C. T.; Ho, C. K. & Wu, M. T. (2010). Poly cyclic Aromatic Hydrocarbon-Induced Oxidative Stress and Lipid Peroxidation in Relation to Immunological Alteration. *Occupational and Environmental Medicine*, (December 2010), ISSN 1351-0711

Kadkhoda, K.; Pourfathollah, A. A.; Pourpak, Z. & Kazemnejad, A. (2005). The Cumulative Activity of Benzo(a)pyrene on Systemic Immune Responses with Mite Allergen Extract After Intranasal Instillation and Ex Vivo Response to Ovalbumin in Mice. *Toxicology Letters*, Vol.157, No.1 (May 2005), pp. 31-39, ISSN 0378-4274

Kang, B. C.; Zhou, K.; Lai, Y. L. & Hong, C. B. (1996). Experimental Asthma Developed by Room Air Contamination with Cockroach Allergen. *International Archives of Allergy and Immunology*, Vol.111. No.3 (November 1996), pp. 299-306, ISSN 1018-2438

Kanoh, T.; Suzuki, T.; Ishimori, M.; Ikeda, S.; Ohasawa, M.; Ohkuni, H. & Tunetoshi, Y. (1996). Adjuvant Activities of Pyrene, Anthracene, Fluoranthene and Benzo(a)pyrene in Production of Anti-IgE Antibody to Japanese Cedar Pollen Allergen in Mice. *Journal of Clinical & Laboratory Immunology*, Vol.48, No.4 (1996), pp. 133-147, ISSN 0141-2760

Kobayashi, T. (2000). Exposure to Diesel Exhaust Aggravates Nasal Allergic Reaction in Guinea Pigs. *American Journal of Respiratory and Critical Care Medicine*, Vol.162, No.2 Pt 1 (August 2000), pp. 352-356. ISSN 1073-449X

Lambert, A. L.; Dong, W.; Selgrade, M. K. & Gilmour, M. I. (2000). Enhanced Allergic Sensitization by Residual Oil Fly Ash Particles Is Mediated by Soluble Metal Constituents. *Toxicology and Applied Pharmacology*, Vol.165, No.1 (May 2000), pp. 84-93, ISSN 0041-008X

Liu, J.; Ballaney, M.; Al-alem, U.; Quan, C.; Jin, X.; Perera, F.; Chen, L. C. & Miller, R. L. (2008). Combined Inhaled Diesel Exhaust Particles and Allergen Exposure Alter Methylation of T Helper Genes and IgE Production in Vivo. *Toxicological Sciences*, Vol.102, No.1 (March 2008), pp. 76-81. ISSN 1096-6080

Matsumoto, T.; Ashida, Y. & Tsukuda, R. (1994). Pharmacological Modulation of Immediate and Late Airway Response and Leukocyte Infiltration in the Guinea Pig. *The Journal of Pharmacology and Experimental Therapeutics*, Vol.269, No.3 (June 1994), pp. 1236-1244, ISSN 0022-3565

Min, M. G.; Song, D. J.; Miller, M.; Cho, J. Y.; McElwain, S.; Ferguson, P. & Broide, D. H. (2007). Coexposure to Environmental Tobacco Smoke Increases Levels of Allergen-
induced Airway Remodeling in Mice. *The Journal of Immunology*, Vol.178, No.8 (April 2007), pp. 5321-5328, ISSN 0022-1767

Mitsunobu, F.; Ashida, K.; Hosaki, Y.; Tsugeno, H.; Okamoto, M.; Nishida, N.; Nagata, T.; Tanizaki, Y. & Tanimoto, M. (2004). Influence of Long-term Cigarette Smoking on Immunoglobulin E-Mediated Allergy, Pulmonary Function, and High-Resolution Computed Tomography Lung Densitometry in Elderly Patients with Asthma. *Clinical and Experimental Allergy*, Vol.34, No.1 (January 2004), pp. 59-64, ISSN 0954-7894

Miyabara, Y.; Ichinose, T.; Takano, H.; Lim, H. B. & Sagai, M. (1998). Effects of Diesel Exhaust on Allergic Airway Inflammation in Mice. *The Journal of Allergy and Clinical Immunology*, Vol.102, No.5 (November 1998), pp. 805-812, ISSN 0091-6749

Mizutani, N.; Nabe, T.; Ohtani, Y.; Han, H. Y.; Fujii, M.; Yoshino, S.; Hirayama, T. & Kohno, S. (2007). Polycyclic Aromatic Hydrocarbons Aggravate Antigen-Induced Nasal Blockage in Experimental Allergic Rhinitis. *Journal of Pharmacological Sciences*, Vol.105, No.3, (November 2007), pp. 291-297, ISSN 1347-8613

Mizutani, N.; Nabe, T.; Fujii, M.; Yoshino, S. & Kohno, S. (2008). Involvement of Peroxynitrite in Pollen-Induced Nasal Blockage in Guinea Pigs. *European Journal of Pharmacology*, Vol.582, No.1-3 (March 2008), pp. 139-144, ISSN 0014-2999

Moerloose, K. B.; Pauwels, R. A. & Joos, G. F. (2005). Short-term Cigarette Smoke Exposure Enhances Allergic Airway Inflammation in Mice. *American Journal of Respiratory and Critical Care Medicine*, Vol.172, No.2 (July 2005), pp. 168-172, ISSN 1073-449X

Moerloose, K. B.; Robays, L. J.; Maes, T.; Brusselle, G. G.; Tournoy, K. G. & Joos, G. F. (2006). Cigarette Smoke Exposure Facilitates Allergic Sensitization in Mice. *Respiratory Research*, Vol.7, (March 2006), pp. 49, ISSN 1465-9921

Muranaka, M.; Suzuki, S.; Koizumi, K.; Takafuji, S.; Miyamoto, T.; Ikemori, R. & Tokiwa, H. (1986). Adjuvant Activity of Diesel-Exhaust Particulates for The Production of IgE Antibody in Mice. *The Journal of Allergy and Clinical Immunology*, Vol.77, No.4 (April 1986), pp. 616-623, ISSN 0091-6749

Nabe, T.; Shimizu, K.; Mizutani, N.; Saeki, Y.; Yamamura, H.; Takenaka, H. & Kohno, S. (1997a). A New Model of Experimental Allergic Rhinitis Using Japanese Cedar Pollen in Guinea Pigs. *Japanese Journal of Pharmacology*, Vol.75, No.3 (November 1997), pp. 243-251, ISSN 0021-5198

Nabe, T.; Shinoda, N.; Yamada, M.; Sekioka, T.; Saeki, Y.; Yamamura, H. & Kohno, S. (1997b). Repeated Antigen Inhalation-Induced Reproducible Early and Late Asthma in Guinea Pigs. *Japanese Journal of Pharmacology*, Vol.75, No.1 (September 1997), pp. 65-75, ISSN 0021-5198

Nabe, T.; Mizutani, N.; Shimizu, K.; Takenaka, H. & Kohno, S. (1998). Development of Pollen-induced Allergic Rhinitis with Early and Late Phase Nasal Blockage in Guinea Pigs. *Inflammation Research*, Vol.47, No.9 (September 1998), pp. 369-374, ISSN 1023-3830

Nabe, T.; Kubota, K.; Terada, T.; Takenaka, H. & Kohno, S. (2005). Effect of Oral Immunotherapy on Nasal Blockage in Experimental Allergic Rhinitis. *Journal of Pharmacological Sciences*, Vol.98, No.4 (August 2005), pp. 380-387, ISSN 1347-8613
Nakanishi, Y.; Pei, X. H.; Takayama, K.; Bai, F.; Izumi, M.; Kimotsuki, K.; Inoue, K.; Minami, T.; Wataya, H. & Har, A. N. (2000). Polycyclic Aromatic Hydrocarbon Carcinogens Increase Ubiquitination of p21 Protein After the Stabilization of p53 and the Expression of p21. American Journal of Respiratory Cell and Molecular Biology, Vol.22, No.6 (June 2000), pp. 747-754, ISSN 1044-1549

Ohura, T.; Amagai, T.; Fusaya, M. & Matsushita, H. (2004). Polycyclic Aromatic Hydrocarbons in Indoor and Outdoor Environments and Factors Affecting Their Concentrations. Environmental Science & Technology, Vol.38, No.1 (January 2004), pp. 77-83, ISSN 0013-936X

Peden, D. & Reed, C. E. (2010). Environmental and Occupational Allergies. The Journal of Allergy and Clinical Immunology, Vol.125, No.2 Suppl.2, (February 2010), pp. S150-S160, ISSN 0091-6749

Riedl, M. & Diaz-Sanchez, D. (2005). Biology of Diesel Exhaust Effects on Respiratory Function. The Journal of Allergy and Clinical Immunology, Vol.115, No.2 (February 2005), pp. 221-228, ISSN 0091-6749

Ro, C.U.; Hwang, H.; Kim, H.; Chun, Y. & Van Grieken, R. (2005). Single-particle Characterization of Four "Asian Dust" Samples Collected in Korea, Using Low-Z Particle Electron Probe X-ray Microanalysis. Environmental Science & Technology, Vol.39, No.6 (March 2005), pp. 1409-1419, ISSN 0013-936X

Robbins, C. S.; Fouladi, M. A.; Fattouh, R.; Dawe, D. E.; Vujicic, N.; Richards, C. D.; Jordana, M.; Inman, M. D. & Stampfl, M. R. (2005). Mainstream Cigarette Smoke Exposure Attenuates Airway Immune Inflammatory Responses to Surrogate and Common Environmental Allergens in Mice, Despite Evidence of Increased Systemic Sensitization. The Journal of Immunology, Vol.175, No.5 (September 2005), pp. 2834-2842, ISSN 0022-1767

Rosenkranz, H. S.; McCoy, E. C.; Sanders, D. R.; Butler, M.; Kiriazides, D. K. & Mermelstein, R. (1980). Nitropyrenes: Isolation, Identification, and Reduction of Mutagenic Impurities in Carbon Black and Toners. Science, Vol.209, No.4460 (August 1980), pp. 1039-1043, ISSN 0036-8075

Rumold, R.; Jyrala, M. & Diaz-Sanchez, D. (2001). Secondhand Smoke Induces Allergic Sensitization in Mice. The Journal of Immunology, Vol.167, No.8 (October 2001), pp. 4765-4770, ISSN 0022-1767

Scheepers, P. T.; Martens, M. H.; Velders, D. D.; Fijneman, P.; van Kerkhoven, M.; Noordhoek, J. & Bos, R. P. (1995). 1-Nitropyrene as a Marker for the Mutagenicity of Diesel Exhaust-derived Particulate Matter in Workplace Atmospheres. Environmental and Molecular Mutagenesis, Vol.25, No.2 (1995), pp. 134-147, ISSN 0893-6692

Seymour, B. W.; Pinkerton, K. E.; Friebertshauser, K. E.; Coffman, R. L. & Gershwin, L. J. (1997). Second-hand Smoke Is an Adjuvant for T Helper-2 Responses in a Murine Model of Allergy. The Journal of Immunology, Vol.159, No.12 (December 1997), pp. 6169-6175, ISSN 0022-1767

Seymour, B. W.; Scheele, E. S.; Pinkerton, K. E.; Friebertshauser, K. E.; Peake, J. L.; Kurup, V. P.; Coffman, R. L. & Gershwin, L. J. (2003). Second-hand Smoke Increases Bronchial Hyperreactivity and Eosinophilia in a Murine Model of Allergic
Aggravation of Allergic Rhinitis by Air Pollution: Demonstration by an Animal Model of Pollenosis

Seymour, B. W.; Peake, J. L.; Pinkerton, K. E.; Kurup, V. P. & Gershwin, L. J. (2005). Second-hand Smoke Increases Nitric Oxide and Alters the IgE Response in a Murine Model of Allergic Aspergillosis. Clinical and Developmental Immunology, Vol.10, No.1 (March 2003), pp. 35-42. ISSN 1740-2522

Soroux, V.; Fin, I.; Oryszczyn, M. P.; Le Moual, N. & Kauffmann, F. (2000). Relationships of Active Smoking to Asthma and Asthma Severity in the EGEA Study. Epidemiological Study on the Genetics and Environment of Asthma. The European Respiratory Journal, Vol.15, No.3 (March 2000), pp. 470-477. ISSN 0903-1936

Steerenberg, P. A.; Dormans, J. A.; van Doorn, C. C.; Middendorp, S.; Vos, J. G. & van Loveren, H. (1999). A Pollen Model in the Rat for Testing Adjuvant Activity of Air Pollution Components. Inhalation Toxicology, Vol.11, No.12 (December 1999), pp. 1109-1122. ISSN 0895-8378

Suzuki, T.; Kanoh, T.; Ishimori, M.; Ikeda, S. & Ohkuni, H. (1996). Adjuvant Activity of Diesel Exhaust Particulates (DEP) in Production of Anti-IgE and Anti-IgG1 Antibodies to Mite Allergen in Mice. Journal of Clinical & Laboratory Immunology, Vol.48, No.5 (1996), pp. 187-199. ISSN 0141-2760

Takafuji, S.; Suzuki, S.; Koizumi, K.; Tadokoro, K.; Miyamoto, T.; Ikemori, R. & Muranaka, M. (1987). Diesel-Exhaust Particulates Inoculated by the Intranasal Route Have an Adjuvant Activity for IgE Production in Mice. The Journal of Allergy and Clinical Immunology, Vol.79, No.4 (April 1987), pp. 639-645. ISSN 0091-6749

Takahashi, G.; Tanaka, H.; Wakahara, K.; Nasu, R.; Hashimoto, M.; Miyoshi, K.; Takano, H.; Yamashita, H.; Inagaki, N. & Nagai, H. (2010). Effect of Diesel Exhaust Particles on House Dust Mite-Induced Airway Eosinophilic Inflammation and Remodeling in Mice. Journal of Pharmacological Sciences, Vol.112, No.2 (February 2010), pp. 192-202. ISSN 1347-8613

Takano, H.; Yoshikawa, T.; Ichinose, T.; Miyabora, Y.; Imaoka, K. & Sagai, M. (1997). Diesel Exhaust Particles Enhance Antigen-Induced Airway Inflammation and Local Cytokine Expression in Mice. American Journal of Respiratory and Critical Care Medicine, Vol.156, No.1 (July 1997), pp. 36-42. ISSN 1073-449X

Takano, H.; Ichinose, T.; Miyabora, Y.; Yoshikawa, T. & Sagai, M. (1998). Diesel Exhaust Particles Enhance Airway Responsiveness Following Allergen Exposure in Mice. Immunopharmacology and Immunotoxicology, Vol.20, No.2 (May 1998), pp. 329-336. ISSN 0892-3973

Thatcher, T. H.; Benson, R. P.; Phipps, R. P. & Sime, P. J. (2008). High-Dose But Not Low-Dose Mainstream Cigarette Smoke Suppresses Allergic Airway Inflammation by Inhibiting T Cell Function. American Journal of Physiology, Lung Cellular and Molecular Physiology, Vol.295, No.3 (September 2008), pp. L412-L421. ISSN 1040-0605

Vidal, C.; Boquete, O.; Gude, F.; Rey, J.; Meijide, L. M.; Fernández-Merino, M. C. & González-Quintela, A. (2004). High Prevalence of Storage Mite Sensitization in a General Adult Population. Allergy, Vol.59, No.4 (April 2004), pp. 401-405. ISSN 0105-4538

www.intechopen.com
Wayne, P.; Foster, S.; Connolly, J.; Bazzaz, F. & Epstein, P. (2002). Production of Allergenic Pollen by Ragweed (Ambrosia artemisiifolia L.) is Increased in CO2-Enriched Atmospheres. Annals of Allergy, Asthma & Immunology, Vol.88, No.3 (March 2002), pp. 279-282, ISSN 1081-1206

Yamasaki, M.; Sasaki, K.; Mizutani, N.; Nabe, T.; Sakura, Y.; Matsumoto, T.; Ashida, Y. & Kohno, S. (2001). Pharmacological Characterization of the Leukocyte Kinetics After Intranasal Antigen Challenge in a Guinea Pig Model of Allergic Rhinitis. Inflammation Research, Vol.50, No.9 (September 2001), pp. 474-482, ISSN 1023-3830
The book describes the effects of air pollutants, from the indoor and outdoor spaces, on the human physiology. Air pollutants can influence inflammation biomarkers, can influence the pathogenesis of chronic cough, can influence reactive oxygen species (ROS) and can induce autonomic nervous system interactions that modulate cardiac oxidative stress and cardiac electrophysiological changes, can participate in the onset and exacerbation of upper respiratory and cardio-vascular diseases, can lead to the exacerbation of asthma and allergic diseases. The book also presents how the urban environment can influence and modify the impact of various pollutants on human health.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Takeshi Nabe and Nobuaki Mizutani (2011). Aggravation of Allergic Rhinitis by Air Pollution: Demonstration by an Animal Model of Pollenosis, Advanced Topics in Environmental Health and Air Pollution Case Studies, Prof. Anca Moldoveanu (Ed.), ISBN: 978-953-307-525-9, InTech, Available from: http://www.intechopen.com/books/advanced-topics-in-environmental-health-and-air-pollution-case-studies/aggravation-of-allergic-rhinitis-by-air-pollution-demonstration-by-an-animal-model-of-pollenosis
