Data Article

Redox data of ferrocenylcarboxylic acids in dichloromethane and acetonitrile

Pieter J. Swarts, Jeanet Conradie*

Department of Chemistry, PO Box 339, University of the Free State, Bloemfontein, 9300, South Africa

A R T I C L E   I N F O

Article history:
Received 15 April 2020
Revised 22 April 2020
Accepted 23 April 2020
Available online 29 April 2020

Keywords:
Ferrocenyl acids
cyclic voltammetry
oxidation
solvent effect
electronic effect

A B S T R A C T

Redox data obtained from cyclic voltammetry experiments of the Fe\textsuperscript{II/III} oxidation of six ferrocenyl carboxylic acids is presented in this data in brief article. Data is obtained from the cyclic voltammograms at scan rates of two orders of magnitude (0.05 – 5.00 Vs\textsuperscript{-1}) using (i) acetonitrile as solvent and tetrabutylammonium hexafluorophosphate as supporting electrolyte and (ii) dichloromethane as solvent and tetrabutylammonium tetrakis(pentafluorophenyl)borate, as the electrolyte. Data is reported versus the Fe\textsuperscript{II/III} redox couple of ferrocene. For more insight in the reported data, see the related research article “Solvent and substituent effect on Electrochemistry of ferrocenylcarboxylic acids”, published in Journal of Electroanalytical Chemistry [1].

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

* Corresponding author.
E-mail address: conradj@ufs.ac.za (J. Conradie).

https://doi.org/10.1016/j.dib.2020.105650
2352-3409/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
Specifications Table

| Subject        | Chemistry                        |
|----------------|----------------------------------|
| Specific subject area | Electrochemistry                |
| Type of data   | Table                            |
|                | Image                            |
|                | Graph                            |
|                | Figure                           |
| How data were acquired | Princeton Applied Research PARSTAT 2273 potentiostat running Powersuite software (Version 2.58). |
| Data format    | Raw                              |
|                | Analysed                         |

Parameters for data collection

Samples were used as synthesized. All the electrochemical experiments were performed in an M Bruan Lab Master SP glove box under a high purity argon atmosphere ($H_2O$ and $O_2<10$ ppm).

Description of data collection

All electrochemical experiments were done in a 2 ml electrochemical cell containing three-electrodes (a glassy carbon working electrode, a Pt auxiliary electrode and a Pt pseudo reference electrode), connected to a Princeton Applied Research PARSTAT 2273 electrochemical analyser. Data obtained were exported to excel for analysis and diagram preparation.

Data source location

University of the Free State Bloemfontein South Africa

Data accessibility

With the article

Related research article

P.J. Swarts, J. Conradie, Solvent and substituent effect on electrochemistry of ferrocenylcarboxylic acids. J. Electroanal. Chem. (2020) 114164. doi:10.1016/j.jelechem.2020.114164.

Value of the Data

- This data provides detailed electrochemical data for six ferrocenyl carboxylic acids in both DCM and ACN for scan rates over two orders of magnitude ($0.05 - 5.0 \text{ Vs}^{-1}$).
- This data illustrates the influence of the solvent used in cyclic voltammetry experiments, on the formal redox potential of Fe of the ferrocenyl group for ferrocenylcarboxylic acids.
- This data illustrates the influence of the solvent on the peak current-voltage separations, $\Delta E_p$, of the Fe oxidation peak of ferrocenyl carboxylic acids.
- This data illustrates the electronic influence of electron-withdrawing carbonyl group on the iron’s oxidation potential, depending on how close the carbonyl group is to the iron.
- Accurate redox potential data of these ferrocenyl (Fc) carboxylic acids are important, since they are used as ligands in organometallic complexes.

1. Data

This article presents redox data of six ferrocene-containing carboxylic acids, 1 – 6, reported versus the redox couple ferrocene (Fc) at 0, using decamethylferrocene (DmFc) as internal standard [2], see Figure 1 for the series of complexes of this data study. Cyclic voltammograms obtained in dichloromethane (DCM) and acetonitrile (ACN) for compound 1 – 6, with DmFc as internal standard, are shown in Figure 2–Figure 9. The cyclic voltammograms of DmFc and ferrocene in DCM and ACN are shown in Figure 10 and Figure 11. Electrochemical data obtained from the cyclic voltammograms at scan rates 0.05 Vs$^{-1}$ – 5.00 Vs$^{-1}$ are tabulated in Table 1–Table 12 (0.10 Vs$^{-1}$ data from reference [1]). Presented data is related to the research article “Solvent and substituent effect on Electrochemistry of ferrocenylcarboxylic acids”, published in Journal of Electroanalytical Chemistry [1]. The electronic influence of the different carboxylic acids
Fig. 1. Structure of compounds in this study used for cyclic voltammetry.
substituents on the redox potential of the ferrocenyl group they are attached to, is illustrated in Figure 2 and Figure 3. The electronic influence of the electron-withdrawing carbonyl group on the iron's oxidation potential, depends on how close the carbonyl group is to the iron. Redox data of ferrocene-containing compounds are important for application in asymmetric catalysis [3–6], energy transfer processes [7], biological applications [8, 9], as additives in high-burning rate composite rocket propellants [10] and non-linear optics [6].
2. Experimental Design, Materials, and Methods

Electrochemical studies through cyclic voltammetry (CV) experiments were performed in an M Bruan Lab Master SP glove box under a high purity argon atmosphere (H\textsubscript{2}O and O\textsubscript{2} < 10 ppm), utilising a Princeton Applied Research PARSTAT 2273 potentiostat running Powersuite software (Version 2.58). The cyclic voltammetry experimental setup consists of a cell with three electrodes, namely (i) a glassy carbon electrode as working electrode, (ii) a platinum wire auxiliary and (ii) a platinum wire as pseudo reference electrode. The glassy carbon working electrode was polished and prepared before every experiment on a Buhler polishing mat first with 1-micron and then with ¼-micron diamond paste, rinsed with H\textsubscript{2}O, acetone and DCM, and dried...
Fig. 4. Cyclic voltammograms in DCM of FeCO₂H at scan rates 0.050 (smallest peak currents), 0.100, 0.200, 0.300, 0.400 and 0.500 (largest peak currents) Vs⁻¹. All scans initiated in a positive direction. Data for the peak oxidation potential (E_{pa}), the formal reduction potential (E^\text{\textdagger}) and the peak current separation ΔE_p of the Fe^{II/III} oxidation of DmFc (internal standard, left) and the indicated ferrocene-containing carboxylic acid (right) are indicated in V.
Fig. 5. Cyclic voltammograms in DCM of FcCH₂CO₂H at scan rates 0.050 (smallest peak currents), 0.100, 0.200, 0.300, 0.400 and 0.500 (largest peak currents) Vs⁻¹. All scans initiated in a positive direction. Data for the peak oxidation potential (Eₚₒ), the formal reduction potential (E⁰'), and the peak current separation ΔEₚ of the Fe²⁺/³⁺ oxidation of DmFc (internal standard, left) and the indicated ferrocene-containing carboxylic acid (right) are indicated in V.
Fig. 6. Cyclic voltammograms in DCM of Fe(CH)2CO2H at scan rates 0.050 (smallest peak currents), 0.100, 0.200, 0.300, 0.400 and 0.500 (largest peak currents) Vs⁻¹. All scans initiated in a positive direction. Data for the peak oxidation potential (Epa), the formal reduction potential (E'0), and the peak current separation ΔEp of the FeII/III oxidation of DmFc (internal standard, left) and the indicated ferrocene-containing carboxylic acid (right) are indicated in V.
Fig. 7. Cyclic voltammograms in DCM of Fc(CH$_2$)$_2$CO$_2$H at scan rates 0.050 (smallest peak currents), 0.100, 0.200, 0.300, 0.400 and 0.500 (largest peak currents) V$s^{-1}$. All scans initiated in a positive direction. Data for the peak oxidation potential ($E_{pa}$), the formal reduction potential ($E^{0'}$) and the peak current separation $\Delta E_p$ of the Fe$^{II/III}$ oxidation of DmFc (internal standard, left) and the indicated ferrocene-containing carboxylic acid (right) are indicated in V.
Fig. 8. Cyclic voltammograms in DCM of Fe(CH$_2$)$_3$CO$_2$H at scan rates 0.050 (smallest peak currents), 0.100, 0.200, 0.300, 0.400 and 0.500 (largest peak currents) Vs$^{-1}$. All scans initiated in a positive direction. Data for the peak oxidation potential ($E_{pa}$), the formal reduction potential ($E^0$) and the peak current separation $\Delta E_p$ of the Fe$^{II/III}$ oxidation of DmFc (internal standard, left) and the indicated ferrocene-containing carboxylic acid (right) are indicated in V.
Fig. 9. Cyclic voltammograms in DCM of FeCO(CH₂)₂CO₂H at scan rates 0.050 (smallest peak currents), 0.100, 0.200, 0.300, 0.400 and 0.500 (largest peak currents) Vs⁻¹. All scans initiated in a positive direction. Data for the peak oxidation potential (E_p), the formal reduction potential (E⁰) and the peak current separation ΔE_p of the Fe^{II/III} oxidation of DmFc (internal standard, left) and the indicated ferrocene-containing carboxylic acid (right) are indicated in V.
Fig. 10. Cyclic voltammograms in ACN of decamethylferrocene and ferrocene at scan rate 0.100 V s$^{-1}$. The scan is initiated in a positive direction. Data for the peak oxidation potential ($E_{pa}$), the formal reduction potential ($E^0$) and the peak current separation $\Delta E_p$ of the Fe$^{II/III}$ oxidation of DmFc (internal standard, left) and Fc (right) is indicated in V.
Fig. 11. Cyclic voltammograms in DCM of decamethylferrocene and ferrocene at scan rate 0.100 Vs$^{-1}$. The scan is initiated in a positive direction. Data for the peak oxidation potential ($E_{pa}$), the formal reduction potential ($E^\circ$) and the peak current separation $\Delta E_p$ of the Fe$^{II/III}$ oxidation of DmFc (internal standard, left) and Fc (right) is indicated in V.
Table 1
Electrochemical data (potential in V vs Fc/Fc⁺) in ACN for c.a. 5 × 10⁻⁴ mol dm⁻³ of FcCO₂H at indicated scan rates (v in V/s).

| v (V/s) | Eₚa / V | ΔEₚ / V | Eᵦ / V | iₚa / μA | iₚc/iₚa |
|---------|---------|---------|--------|----------|----------|
| DmFc    |         |         |        |          |          |
| 0.100   | -0.480  | 0.080   | -0.520 | 3.21     | 0.99     |
| FcCO₂H  |         |         |        |          |          |
| 0.050   | 0.217   | 0.078   | 0.178  | 2.16     | 0.99     |
| 0.100   | 0.218   | 0.080   | 0.178  | 3.86     | 0.99     |
| 0.200   | 0.218   | 0.080   | 0.178  | 5.54     | 0.99     |
| 0.300   | 0.218   | 0.080   | 0.178  | 6.59     | 0.99     |
| 0.400   | 0.219   | 0.082   | 0.178  | 8.01     | 0.99     |
| 0.500   | 0.219   | 0.082   | 0.178  | 9.04     | 0.99     |
| 5.000   | 0.220   | 0.084   | 0.178  | 28.91    | 0.99     |

Table 2
Electrochemical data (potential in V vs Fc/Fc⁺) in DCM for c.a. 5 × 10⁻⁴ mol dm⁻³ of FcCO₂H at indicated scan rates (v in V/s).

| v (V/s) | Eₚa / V | ΔEₚ / V | Eᵦ / V | iₚa / μA | iₚc/iₚa |
|---------|---------|---------|--------|----------|----------|
| DmFc    |         |         |        |          |          |
| 0.100   | -0.580  | 0.060   | -0.610 | 3.47     | 0.99     |
| FcCO₂H  |         |         |        |          |          |
| 0.050   | 0.320   | 0.072   | 0.284  | 2.33     | 0.99     |
| 0.100   | 0.321   | 0.074   | 0.284  | 3.60     | 0.99     |
| 0.200   | 0.321   | 0.074   | 0.284  | 5.62     | 0.99     |
| 0.300   | 0.321   | 0.074   | 0.284  | 6.80     | 0.99     |
| 0.400   | 0.322   | 0.076   | 0.284  | 8.16     | 0.99     |
| 0.500   | 0.322   | 0.076   | 0.284  | 9.14     | 0.99     |
| 5.000   | 0.323   | 0.078   | 0.284  | 25.27    | 0.99     |

Table 3
Electrochemical data (potential in V vs Fc/Fc⁺) in ACN for c.a. 5 × 10⁻⁴ mol dm⁻³ of FcCH₂CO₂H at indicated scan rates (v in V/s).

| v (V/s) | Eₚa / V | ΔEₚ / V | Eᵦ / V | iₚa / μA | iₚc/iₚa |
|---------|---------|---------|--------|----------|----------|
| DmFc    |         |         |        |          |          |
| 0.100   | -0.481  | 0.078   | -0.520 | 3.35     | 0.99     |
| FcCH₂CO₂H |         |         |        |          |          |
| 0.050   | -0.048  | 0.080   | -0.088 | 2.31     | 0.99     |
| 0.100   | -0.047  | 0.082   | -0.088 | 3.57     | 0.99     |
| 0.200   | -0.047  | 0.083   | -0.088 | 4.29     | 0.99     |
| 0.300   | -0.046  | 0.084   | -0.088 | 6.45     | 0.99     |
| 0.400   | -0.046  | 0.085   | -0.088 | 8.15     | 0.99     |
| 0.500   | -0.045  | 0.086   | -0.088 | 10.22    | 0.99     |
| 5.000   | -0.043  | 0.090   | -0.088 | 27.12    | 0.99     |

before each experiment. The electrochemical analysis is performed in dichloromethane (DCM, anhydrous, ≥ 99.8%, containing 40-150 ppm amylene as a stabilizer) and in acetonitrile (ACN, anhydrous, 99.8%) as solvents, at RT. Solutions were made in 0.001 dm³ spectrochemical grade anhydrous DCM or ACN containing ca. 5 × 10⁻⁴ M of analyte, 5 × 10⁻⁴ mol dm⁻³ of internal reference (decamethylferrocene, DmFc) and 0.1 mol dm⁻³ of supporting electrolyte tetrabutylammonium tetrakis(pentafluorophenyl)borate, [N(nBu)₄][B(C₆F₅)₄] in DCM, or tetrabutylammonium hexafluorophosphate, TBAPF₆, [N(nBu)₄][PF₆] in ACN. Experimental potential data was measured vs. the redox couple of decamethylferrocene DmFc as internal standard [2] and reported vs. the redox couple of ferrocene, Fc, as suggested by IUPAC [11]. Eᵦ(DmFc) = -0.610 V vs. Fc/Fc⁺ at 0 V in DCM/[N(Bu)₄][B(C₆F₅)₄] and -0.520 vs. Fc/Fc⁺ at 0 V in ACN/[N(Bu)₄][PF₆]. Scan rates were between 0.05 and 5.00 Vs⁻¹.
Table 4
Electrochemical data (potential in V vs Fc/Fc⁺) in DCM for c.a. 5 × 10⁻⁴ mol dm⁻³ of FeCH₂CO₂H at indicated scan rates (ν in V/s).

| ν (V/s) | E_{pa} / V | ΔE_p / V | E° / V | i_{pa} / μA | i_{pc} / i_{pa} |
|---------|------------|-----------|--------|-------------|---------------|
| DmFc    |            |           |        |             |               |
| 0.100   | -0.580     | 0.060     | -0.610 | 3.65        | 0.99          |
| FeCH₂CO₂H |          |           |        |             |               |
| 0.050   | 0.046      | 0.065     | 0.014  | 2.21        | 0.99          |
| 0.100   | 0.047      | 0.067     | 0.014  | 3.78        | 0.99          |
| 0.200   | 0.047      | 0.068     | 0.014  | 4.35        | 0.99          |
| 0.300   | 0.047      | 0.068     | 0.014  | 6.25        | 0.99          |
| 0.400   | 0.047      | 0.069     | 0.014  | 8.24        | 0.99          |
| 0.500   | 0.048      | 0.070     | 0.014  | 10.51       | 0.99          |
| 5.000   | 0.049      | 0.072     | 0.014  | 25.72       | 0.99          |

Table 5
Electrochemical data (potential in V vs Fc/Fc⁺) in ACN for c.a. 5 × 10⁻⁴ mol dm⁻³ of Fe(CH₂)₂CO₂H at indicated scan rates (ν in V/s).

| ν (V/s) | E_{pa} / V | ΔE_p / V | E° / V | i_{pa} / μA | i_{pc} / i_{pa} |
|---------|------------|-----------|--------|-------------|---------------|
| DmFc    |            |           |        |             |               |
| 0.100   | -0.480     | 0.080     | -0.520 | 3.82        | 0.99          |
| Fe(CH₂)₂CO₂H |      |           |        |             |               |
| 0.050   | 0.104      | 0.076     | 0.066  | 2.01        | 0.99          |
| 0.100   | 0.105      | 0.078     | 0.066  | 3.93        | 0.99          |
| 0.200   | 0.105      | 0.078     | 0.066  | 4.84        | 0.99          |
| 0.300   | 0.105      | 0.078     | 0.066  | 6.48        | 0.99          |
| 0.400   | 0.106      | 0.080     | 0.066  | 7.85        | 0.99          |
| 0.500   | 0.106      | 0.080     | 0.066  | 8.84        | 0.99          |
| 5.000   | 0.107      | 0.082     | 0.066  | 26.87       | 0.99          |

Table 6
Electrochemical data (potential in V vs Fc/Fc⁺) in DCM for c.a. 5 × 10⁻⁴ mol dm⁻³ of Fe(CH₂)₂CO₂H at indicated scan rates (ν in V/s).

| ν (V/s) | E_{pa} / V | ΔE_p / V | E° / V | i_{pa} / μA | i_{pc} / i_{pa} |
|---------|------------|-----------|--------|-------------|---------------|
| DmFc    |            |           |        |             |               |
| 0.100   | -0.579     | 0.061     | -0.610 | 3.25        | 0.99          |
| Fe(CH₂)₂CO₂H |      |           |        |             |               |
| 0.050   | 0.209      | 0.078     | 0.170  | 1.98        | 0.99          |
| 0.100   | 0.210      | 0.079     | 0.170  | 3.36        | 0.99          |
| 0.200   | 0.210      | 0.079     | 0.170  | 4.91        | 0.99          |
| 0.300   | 0.210      | 0.079     | 0.170  | 6.54        | 0.99          |
| 0.400   | 0.211      | 0.080     | 0.170  | 7.94        | 0.99          |
| 0.500   | 0.211      | 0.080     | 0.170  | 8.94        | 0.99          |
| 5.000   | 0.212      | 0.084     | 0.170  | 25.58       | 0.99          |

Table 7
Electrochemical data (potential in V vs Fc/Fc⁺) in ACN for c.a. 5 × 10⁻⁴ mol dm⁻³ of Fe(CH₂)₂CO₂H at indicated scan rates (ν in V/s).

| ν (V/s) | E_{pa} / V | ΔE_p / V | E° / V | i_{pa} / μA | i_{pc} / i_{pa} |
|---------|------------|-----------|--------|-------------|---------------|
| DmFc    |            |           |        |             |               |
| 0.100   | -0.482     | 0.076     | -0.520 | 3.58        | 0.99          |
| Fe(CH₂)₂CO₂H |      |           |        |             |               |
| 0.050   | -0.078     | 0.070     | -0.113 | 2.22        | 0.99          |
| 0.100   | -0.077     | 0.072     | -0.113 | 3.74        | 0.99          |
| 0.200   | -0.077     | 0.073     | -0.113 | 4.84        | 0.99          |
| 0.300   | -0.076     | 0.074     | -0.113 | 6.48        | 0.99          |
| 0.400   | -0.076     | 0.075     | -0.113 | 8.39        | 0.99          |
| 0.500   | -0.075     | 0.076     | -0.113 | 9.55        | 0.99          |
| 5.000   | -0.074     | 0.078     | -0.113 | 26.71       | 0.99          |
Table 8
Electrochemical data (potential in V vs Fc/Fc\(^+\)) in DCM for c.a. \(5 \times 10^{-4}\) mol dm\(^{-3}\) of Fc(CH\(_2\)\(_2\))CO\(_2\)H at indicated scan rates (\(\nu\) in V/s).

| \(\nu\) (V/s) | \(E_{pa}\) / V | \(\Delta E_p\) / V | \(E^\circ\) / V | \(i_{pa}\) / \(\mu A\) | \(i_{pc}/i_{pa}\) |
|----------------|-----------------|------------------|----------------|-----------------|-----------------|
| 0.100          | -0.579          | 0.060            | -0.610         | 3.74            | 0.99            |
| Fc(CH\(_2\)\(_2\))CO\(_2\)H |                 |                  |                |                 |                 |
| 0.050          | 0.019           | 0.068            | -0.015         | 2.12            | 0.99            |
| 0.100          | 0.020           | 0.070            | -0.015         | 3.87            | 0.99            |
| 0.200          | 0.020           | 0.070            | -0.015         | 5.11            | 0.99            |
| 0.300          | 0.020           | 0.070            | -0.015         | 6.73            | 0.99            |
| 0.400          | 0.021           | 0.072            | -0.015         | 8.01            | 0.99            |
| 0.500          | 0.021           | 0.072            | -0.015         | 9.11            | 0.99            |
| 5.000          | 0.022           | 0.074            | -0.015         | 25.32           | 0.99            |

Table 9
Electrochemical data (potential in V vs Fc/Fc\(^+\)) in ACN for c.a. \(5 \times 10^{-4}\) mol dm\(^{-3}\) of Fc(CH\(_2\)\(_2\))CO\(_2\)H at indicated scan rates (\(\nu\) in V/s).

| \(\nu\) (V/s) | \(E_{pa}\) / V | \(\Delta E_p\) / V | \(E^\circ\) / V | \(i_{pa}\) / \(\mu A\) | \(i_{pc}/i_{pa}\) |
|----------------|-----------------|------------------|----------------|-----------------|-----------------|
| 0.100          | -0.482          | 0.075            | -0.520         | 3.64            | 0.99            |
| Fc(CH\(_2\)\(_2\))CO\(_2\)H |                 |                  |                |                 |                 |
| 0.050          | -0.091          | 0.077            | -0.131         | 2.52            | 0.99            |
| 0.100          | -0.092          | 0.078            | -0.131         | 3.83            | 0.99            |
| 0.200          | -0.092          | 0.079            | -0.131         | 5.15            | 0.99            |
| 0.300          | -0.092          | 0.080            | -0.131         | 6.95            | 0.99            |
| 0.400          | -0.093          | 0.081            | -0.131         | 8.35            | 0.99            |
| 0.500          | -0.093          | 0.082            | -0.131         | 9.69            | 0.99            |
| 5.000          | -0.094          | 0.084            | -0.131         | 27.31           | 0.99            |

Table 10
Electrochemical data (potential in V vs Fc/Fc\(^+\)) in DCM for c.a. \(5 \times 10^{-4}\) mol dm\(^{-3}\) of Fc(CH\(_2\)\(_2\))CO\(_2\)H at indicated scan rates (\(\nu\) in V/s).

| \(\nu\) (V/s) | \(E_{pa}\) / V | \(\Delta E_p\) / V | \(E^\circ\) / V | \(i_{pa}\) / \(\mu A\) | \(i_{pc}/i_{pa}\) |
|----------------|-----------------|------------------|----------------|-----------------|-----------------|
| 0.100          | -0.579          | -0.061           | -0.610         | 3.89            | 0.99            |
| Fc(CH\(_2\)\(_2\))CO\(_2\)H |                 |                  |                |                 |                 |
| 0.050          | 0.010           | 0.068            | -0.024         | 2.39            | 0.99            |
| 0.100          | 0.011           | 0.070            | -0.024         | 3.98            | 0.99            |
| 0.200          | 0.011           | 0.070            | -0.024         | 5.26            | 0.99            |
| 0.300          | 0.012           | 0.072            | -0.024         | 6.82            | 0.99            |
| 0.400          | 0.012           | 0.072            | -0.024         | 8.23            | 0.99            |
| 0.500          | 0.013           | 0.074            | -0.024         | 9.46            | 0.99            |
| 5.000          | 0.014           | 0.076            | -0.024         | 25.04           | 0.99            |

Table 11
Electrochemical data (potential in V vs Fc/Fc\(^+\)) in ACN for c.a. \(5 \times 10^{-4}\) mol dm\(^{-3}\) of FcCO(CH\(_2\)\(_2\))CO\(_2\)H at indicated scan rates (\(\nu\) in V/s).

| \(\nu\) (V/s) | \(E_{pa}\) / V | \(\Delta E_p\) / V | \(E^\circ\) / V | \(i_{pa}\) / \(\mu A\) | \(i_{pc}/i_{pa}\) |
|----------------|-----------------|------------------|----------------|-----------------|-----------------|
| 0.100          | -0.480          | 0.080            | -0.520         | 3.13            | 0.99            |
| FcCO(CH\(_2\)\(_2\))CO\(_2\)H |                 |                  |                |                 |                 |
| 0.050          | 0.219           | 0.078            | 0.180          | 2.31            | 0.99            |
| 0.100          | 0.220           | 0.080            | 0.180          | 5.29            | 0.99            |
| 0.200          | 0.220           | 0.080            | 0.180          | 6.85            | 0.99            |
| 0.300          | 0.220           | 0.080            | 0.180          | 8.66            | 0.99            |
| 0.400          | 0.221           | 0.082            | 0.180          | 9.85            | 0.99            |
| 0.500          | 0.221           | 0.082            | 0.180          | 27.26           | 0.99            |
| 5.000          | 0.222           | 0.084            | 0.180          | 27.26           | 0.99            |
Table 12
Electrochemical data (potential in V vs Fc/Fc\textsuperscript{+}) in DCM for c.a. 5 × 10\textsuperscript{-4} mol dm\textsuperscript{-3} of FcCO(CH\textsubscript{2})\textsubscript{2}CO\textsubscript{2}H at indicated scan rates (ν in V/s).

| ν (V/s) | E\textsubscript{pa} / V | ΔE\textsubscript{p} / V | E\textsubscript{oc} / V | i\textsubscript{pa} / μA | i\textsubscript{pc}/i\textsubscript{pa} |
|---------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 0.100   | -0.580          | 0.060           | -0.610          | 3.51            | 0.99            |
| FeCOC(CH\textsubscript{2})\textsubscript{2}CO\textsubscript{2}H |                   |                 |                 |                 |                 |
| 0.050   | 0.329           | 0.068           | 0.295           | 2.42            | 0.99            |
| 0.200   | 0.330           | 0.070           | 0.295           | 5.22            | 0.99            |
| 0.300   | 0.331           | 0.072           | 0.295           | 6.99            | 0.99            |
| 0.400   | 0.331           | 0.072           | 0.295           | 8.31            | 0.99            |
| 0.500   | 0.332           | 0.074           | 0.295           | 9.55            | 0.99            |
| 5.000   | 0.335           | 0.080           | 0.295           | 25.84           | 0.99            |

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Acknowledgements

This work has received support from the South African National Research Foundation (Grant numbers 113327 and 96111) and the Central Research Fund of the University of the Free State, Bloemfontein, South Africa.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dib.2020.105650.

References

[1] P.J. Swarts, J. Conradie, Solvent and substituent effect on electrochemistry of ferrocenylcarboxylic acids, J. Electroanal. Chem. (2020) 114164, doi: 10.1016/j.jelechem.2020.114164.
[2] I. Noviandri, K.N. Brown, D.S. Fleming, P.T. Gulyas, P.A. Lay, A.F. Masters, L. Phillips, The Decamethylferrocenium/Decamethylferrocene Redox Couple: A Superior Redox Standard to the Ferrocenium/Ferrocene Redox Couple for Studying Solvent Effects on the Thermodynamics of Electron Transfer, J. Phys. Chem. B. 103 (1999) 6713–6722.
[3] J. Conradie, Density functional theory calculations of Rh-β-diketonato complexes, Dalt. Trans. 44 (2015) 1503–1515, doi: 10.1039/C4DT02268H.
[4] J. Conradie, G.J. Lamprecht, A. Roodt, J.C. Swarts, Kinetic study of the oxidative addition reaction between methyl iodide and [Rh(FcCOCHOCF\textsubscript{3})\textsubscript{2}(CO)(PPh\textsubscript{3})]; Structure of [Rh(FcCOCHOCF\textsubscript{3})\textsubscript{2}(CO)(PPh\textsubscript{3})(CH\textsubscript{2})\textsubscript{2}I]), Polyhedron 26 (2007) 5075–5087, doi: 10.1016/j.poly.2007.07.004.
[5] Q. Shen, S. Shekhar, J.P. Stambuli, J.F. Hartwig, Highly reactive, general, and long-lived catalysts for coupling het-eraryl and aryl chlorides with primary nitrogen nucleophiles, Angew. Chem. - Int. Ed. 44 (2005) 1371–1375, doi: 10.1002/anie.200462629.
[6] P.T.N. Nonjola, U. Siegert, J.C. Swarts, Synthesis, Electrochemistry and Cytotoxicity of Ferrocene-Containing Amides, Amines and Amino-Hydrochlorides, J. Inorg. Organomet. Polym. Mater. 25 (2015) 376–385, doi: 10.1007/s10904-015-0195-4.
[7] F. Spänig, C. Kovacs, F. Hauke, K. Ohkubo, S. Fukuzumi, D.M. Guldi, A. Hirsch, Tuning charge transfer energetics in reaction center mimics via T H-functionalization of fullerenes, J. Am. Chem. Soc. 131 (2009) 8180–8195, doi: 10.1021/ja900675t.
[8] J. Conradie, J.C. Swarts, Relationship between electrochemical potentials and substitution reaction rates of ferrocene-containing β-diketonato rhodium (I) complexes; Cytotoxicity of [Rh(FcCOCHOCPh)(cod)], Dalt. Trans. (2011) 40, doi: 10.1039/c1dt00013f.
[9] S.C. by Perry Reeves, C.J. by J Mrowca, M.M. Borecki, W.A. Sheppard, Carboxylation of Aromatic Compounds: Ferrocenecarboxylic acid, Org. Synth. Coll. (1988) 6, doi:10.15227/orgsyn.056.0028.

[10] P.J. Swarts, M. Immelman, G.J. Lamprecht, S.E. Greyling, J.C. Swarts, Ferrocene derivatives as high burning rate catalysts in composite propellants, South African, J. Chem. 50 (1997) 208–216.

[11] G. Gritzner, J. Kuta, Recommendations on reporting electrode potentials in nonaqueous solvents (Recommendations 1983), Pure Appl. Chem. 56 (1984) 461–466, doi:10.1351/pac198456040461.