Minimizing COVID-19 Transmission Cases: Do Policies and Institutions Matter?

Dessie Tarko Ambaw

Vutha Hing

Patrick N. Osakwe

Shandre Mugan Thangavelu

Date: 14 July 2022

Abstract
This paper examines the effects of institutional factors and government policy responses on COVID-19 infection cases. It applies the Random Effects (RE) and GMM (Generalized Method of Moments) estimation techniques to panel data to explore the relationship between COVID-19 cases on the one hand and institutions and government policy responses on the other. The paper finds that the nature and timing of policy responses matter and that institutions play a crucial role in explaining observed infection cases across countries. The results also indicate that high population density and previous experience with infectious diseases are important factors in explaining infection cases across countries. One of the policy implications of our findings is the importance of timely policy intervention at the national level in reducing infection cases.

Key words: COVID-19 pandemic, Infection, GMM estimation, Institutions, Policies

JEL Classification: E00, I15, I18, O43

1 Corresponding author: Dessie Tarko Ambaw, UniSA Business School, University of South Australia, email: dessie.ambaw@unisa.edu.au; Vutha Hing, Institute for International Trade, University of Adelaide, email: vutha.hing@adelaide.edu.au; Patrick Osakwe, Head of the Trade and Poverty Branch, UNCTAD, email: Patrick.osakwe@unctad.org; Shandre Mugan Thangavelu, Jeffrey Cheah Institute for Southeast Asia, Sunway University; Institute for International Trade, University of Adelaide, email: Shandret@sunway.edu.my

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/twec.13340

This article is protected by copyright. All rights reserved.
1. Introduction

The World Health Organization (WHO) declared the coronavirus (COVID-19) disease a pandemic in March 2020. As of 26 May 2020, 5.59 million cases had been confirmed worldwide and 347,872 people had died. By 6 April 2022, the number of cases had increased exponentially to nearly 494 million and the number of deaths to 6.18 million. The United States is the most affected country with about 81 million confirmed cases and 1.01 million deaths as of 6 April 2022. The US figures represent 16.4 percent of the global cases and 16.3 percent of the global number of deaths. Developing countries, such as India and Brazil, have also been badly hit by the pandemic, with India recording about 43 million cases and 531,518 deaths and Brazil recording about 30 million cases and 660,586 deaths as of 6 April 2022.²

The pandemic has a devasting impact on the global economy and is slowly reversing the gains in economic and social performance made by countries over the past few decades, with dire consequences for efforts to achieve the Sustainable Development Goals (SDGs) by the target date of 2030. We are expected to get through this pandemic, but life will never be the same and there are likely to be profound changes in the way businesses and governments operate. The crisis began as a health problem, but quickly metamorphosized into an economic turmoil with dire consequences for households, enterprises, and governments. With the recent discovery of highly effective vaccines by, among others, Pfizer-BioNtech, Moderna, Oxford-AstraZeneca, Johnson & Johnson, and Sinovac, the world is beginning to see a light at the end of the tunnel. Despite this breakthrough, there is still uncertainty regarding the duration of the pandemic given the increasing mutation of the virus and the fact that many developing countries still do not have access to adequate supplies of the vaccines. This pandemic is unique in the sense that it is a health crisis that has degenerated into a global socio-economic crisis. Its impact is significant, mounting, and likely to be with us for quite some time. It is also evident that the pandemic will have long-term socio-economic impact on poor and vulnerable countries, such as those in the least developed countries (LDCs), because of their weak health systems, cramped living conditions, and the lack of the human and financial capacities to respond and cushion the impact of the crisis on their economies (Kovacevic and Jahic, 2020).

² See https://www.worldometers.info/coronavirus/
Two main strands of literature have emerged since the onset of the pandemic. The first strand focuses on identifying the impact of the pandemic on macroeconomic variables of interest such as output growth, employment, poverty, and inequality. Many of these studies adopt a global, multi-sector computable general equilibrium framework calibrated to data to examine the effects of the pandemic on economies. For example, Beckman et al. (2021) examined the impact of the pandemic on output and food security and found that it decreased global output by 7.2 percent and grain prices by 9 percent. Furthermore, as a result of the crisis the number of people who are food-insecure increased by 211 million in 2020.3

Several estimates of the macroeconomic impact of the crisis have also been provided by international organizations using global models. IMF (2022) indicates that global output decreased by 3.1 percent in 2020 before increasing by 5.9 percent in 2021. United Nations (2022) suggests that the crisis led to a contraction of global output by 3.4 percent in 2020 and an increase of 5.5 percent in 2021, which is 3.3 percent below the projected growth rate for 2021 before the outbreak of the pandemic. The pandemic has also led to an increase in the global number of people living in extreme poverty from 812 million in 2019 to 897 million in 2020 and 889 million in 2021. Similar results were obtained by Sumner et al. (2020). An important channel through which the crisis led to an increase in the poverty rate is the impact it had on employment. For example, ILO (2021) suggests that it led to the loss of about 137 million full-time jobs in 2021.

The second strand of literature on the pandemic examines factors behind the number of COVID-19 cases and deaths. Brown and Ravallion (2020) investigated the role of poverty, income inequality and other socioeconomic characteristics in explaining infection rates across counties in the United States. They found that in the United States, inequality and poverty tend to increase the infection rate. However, after controlling for race, the effect of inequality and poverty disappeared, indicating that the factor that is directly relevant is race and not inequality or poverty. Eichenbaum, Rebelo and Trabandt (2020) examined the interaction between economic decisions and epidemics using an extended epidemiology model in which

3 See also Bekkers et al. (2020) and Rungcharoenkitkul (2021). Brodeur et al. (2021) provide an interesting and comprehensive review of the literature on COVID-19.
an epidemic generates demand and supply effects that trigger a recession. They find that the optimal containment policy saves half a million lives in the United States but generates a severe recession. In this context, the paper suggests a trade-off between saving lives and protecting the economy. Ellison (2020) showed that incorporating heterogeneity in the frequency with which different population groups engage in risky interactions into models is important to avoid biased estimates of the impact of containment measures. In addition to the papers discussed above, some recent studies have examined the role of governance in explaining infection rates, albeit with mixed results. Nabin et al. (2021) found an inverse relationship between COVID-19 cases and good governance. Similarly, a paper by the COVID-19 National Preparedness Collaborators (2022) indicate that most variations in infection rates are explained by the proportion of the population living 100 meters below sea-level, GDP per capita, and seasonality. They also found that government corruption is positively associated with higher infection rates. By contrast, Martínez-Córdoba et al. (2021) found that European and American countries were less efficient in the governance of the pandemic than Asian and African countries. Furthermore, the study found that greater freedom of expression reduces efficiency in pandemic management, while compliance with the rule of law enhances it. In a related paper, Toshkov et al. (2021) found that countries with lower government effectiveness, freedom and societal trust responded faster and more decisively to the pandemic.

This paper fits into the second strand of literature on the pandemic. It attempts to identify the role of key institutional factors and government policy responses in explaining COVID-19 infection cases across countries. The quality of healthcare systems, availability of social protection coverage, the degree of inequality and poverty, vulnerability to diseases, fiscal space and government responses are some of the factors that have been identified as possible explanations for the variations in infection and mortality rates across countries and regions. But the role of the quality and nature of institutions has not been integrated into the analysis using a suitable empirical framework. Existing studies either rely on simple correlation analyses (COVID-19 National Preparedness Collaborators 2022), focus on data for a single country (Brown and Ravallion 2020), or use regression techniques that do not control for endogeneity in the estimations (Toshkov et al. 2021; Martínez-Córdoba et al. 2021; and Nabin et al. 2021). Our paper fills this gap in the literature. Using both the Random fixed
effects and the Generalized Method of Moments (GMM) estimation techniques, it examines whether the quality and nature of institutions have implications for COVID-19 infection cases, which is important given the wide disparities in the number of cases observed across countries. These disparities suggest that the causes of transmission may vary across countries and regions and should be integrated into the analyses, using appropriate empirical framework, to derive useful policy recommendations on how to contain the virus and induce economic recovery in the domestic economies and the region. In this context, the paper is an important contribution to the extant literature on the pandemic.

The paper adopts the Random fixed effects estimation as the baseline model and the Generalized Method of Moments (GMM) estimation is also employed to control for endogeneity effects in the estimation. The paper uses the Oxford COVID-19 Government Response Tracker (OxCGRT) database to capture the government policy responses to the COVID-19 pandemic. The key institutional variables used in the estimation are the economic and political risk indicators provided by the International Country Risk Guide (ICRG).

The main findings of the paper are as follows: First, the nature and timing of policy responses matter for mitigation of COVID-19 infections. In particular, policies are more effective when they are adopted early during the initial phases of the pandemic. Second, institutions play a crucial role in explaining observed infection cases across countries. The paper finds that countries characterized by high degrees of law and order and less internal conflicts tend to have lower infection cases. But it also finds that there are aspects of good institutions that can also increase infection cases. In particular, having better bureaucratic quality (or good governance) in a country may also make it more challenging for the government to unilaterally impose restrictive measures needed to control the spread of the virus (Porcher 2020). Furthermore, countries with higher bureaucratic quality will have better capacity to collect data on the number of infection cases, and are also more likely to report these cases, resulting in a positive association between bureaucratic quality and the number of reported

---

4 For example, at the onset of the crisis in 2020 the United States government was reluctant to impose a federal mask mandate because of concerns about encroaching on personal liberty.
cases. Third, the paper finds that high population density increases the number of COVID-19 cases, while previous experience with infectious diseases (such as tuberculosis) reduces it.

One of the policy implications of our findings is the importance of timely policy intervention at the national level in reducing infection cases. The results of our study also underscore the importance of pre-existing health infrastructure and experience in dealing with infectious diseases (such as tuberculosis and HIV programmes) in reducing COVID-19 infection cases.

The paper is organized as follows. The next section highlights the differences in the COVID-19 pandemic cases across key countries and regions. Section 3 presents the institutional variables used in the estimation and discusses their relationship with the number of COVID-19 cases. The empirical framework adopted, and the results of the estimations performed are presented in Section 4. The policy conclusions are discussed in Section 5.

2. Trends in COVID-19 Cases for Selected Countries and Regions

At the onset of the COVID-19 crisis in the first half of 2020, most of the confirmed cases were in the developed world, particularly the United States and European countries. Since then, it has spread rapidly to the developing world, with India and Brazil being the most affected. Figure 1 presents the pandemic curve for selected countries. It shows the rising cases of COVID-19 pandemic in developing countries, such as Brazil and India, as some developed countries are showing signs of mitigation against the pandemic. The cases in India have been increasing exponentially, since 1 March 2021, from 11.2 million on 1 March 2021 to nearly 20.2 million by 5 April 2021 and about 43 million by 2 March 2022. Similarly, in Brazil, the number of cases rose from 10.5 million on 1 March 2021 to 14.8 million by 5 April 2021 and about 28.8 million by 2 March 2022. Despite the recent increase in infection rates in some of the large developing countries, the United States is still the leading country with the highest number of cases. However, it should be noted that the developed countries are showing signs of mitigating and flattening the pandemic curve with the number of cases falling in the United States and the pandemic curves for Germany, France, and Italy flattening. The adoption of social isolation policies and the acceleration of vaccination programmes in developed countries seem to have contributed to the mitigation of the pandemic and thus flattening of their curves.
The devastating effects of COVID-19 are clearly reflected in various forecasts of the impact on global and regional GDP. For example, the United Nations estimates that global output fell by 3.4 percent in 2020, while the World Bank estimates that global GDP fell by 3.5 percent in 2020 (World Bank, 2021). Table 1 shows the initial relief and stimulus packages provided by the respective selected countries to mitigate the negative impact on the economy, businesses, and workers (in the right-hand column).

Table 1 here

It is also interesting to observe that the level and amount of relief and stimulus packages provided by developed and developing countries differ significantly based on the macroeconomic and fiscal conditions of the respective countries. The discretionary fiscal response and loan guarantees by developed and developing countries (as of 27 September 2021) are presented in figures 2A, 2B, and 2C below.

Based on Figures 2A to 2C, advanced economies have provided more discretionary fiscal support compared to emerging market and low-income developing countries, reflecting the fact that they have more financial resources and capacity to respond to shocks than developing countries and low-income countries. In addition, the persistence of the COVID-19 pandemic shock because of mutations of the virus will drain the limited fiscal resources of
low-income countries and increase their vulnerability. In this context, the fiscal status or space of countries will play an important role in mitigating the effects of the COVID-19 pandemic.

3. Institutional Factors and Policy Responses to the COVID-19 Pandemic

In this section of the paper, we discuss the indicators used to capture institutional factors and government policy responses to the COVID-19 pandemic shock.

a) Institutional factors: We have employed the economic and political risk indicators provided by the International Country Risk Guide (ICRG) to measure institutional risk. The ICRG uses 17 variables to quantify political and economic risk levels in countries. Political and economic risks in each country are assigned a numerical value (risk point), with the highest number of points indicating lowest risk level and the lowest number (0) representing the highest risk for the country. More detailed information on the components of the political and economic risk measures are discussed below:

(i) Political risk: according to the ICRG handbook, the political risk metric measures the level of political stability in each country. ICRG constructs the political risk composite index from 12 sub-components, including government stability, socio-economic conditions, investment profile, internal conflict, external conflict, corruption, military in politics, religious tensions, law and order, ethnic tensions, bureaucracy quality and demographic accountability. Each sub-component risk measure is assigned a risk point, where the lowest number of points (representing the highest risk) is zero and the maximum number of points (which represent the lowest risk) depends on the fixed weight given to the sub-component (Howell, 2013).

In our analysis, we first calculated the correlation between the 12 political risk components. Strong correlation between them may bias our coefficient estimates. Therefore, we have excluded some of the political risk components and have only used the following components in the study: socioeconomic conditions, bureaucracy quality, civil war, democratic accountability, ethnic tensions, external conflict,
religious tensions. Among these, the component (socioeconomic conditions) is based on an aggregation of indicators on unemployment, consumer confidence and poverty levels and it captures the socio-economic pressure at work in a society that influences government action. Similarly, bureaucratic quality assesses the strength of institutions and the quality of the bureaucracy. Countries with high bureaucratic quality tend to exhibit less risk of policy reversals after a shock such as COVID-19 (Howell, 2013).

(ii) **Economic risk:** The economic risk measure is derived from an aggregation of the following components: GDP per capita, real GDP growth, inflation, budget balance as a percentage of GDP, and the current account as a percentage of GDP. It measures the strength and weakness of the economy in each country. As with political risk, the minimum point number (zero) in economic risk indicates a higher risk level.

b) **Oxford COVID-19 policy response variables:** In addition to the institutional factors discussed above, our study also incorporates the policy responsiveness of governments to the COVID-19 pandemic. The Oxford COVID-19 Government Response Tracker (OxCGRT) is used to quantify COVID-19 related policy measures and responsiveness of the respective countries to the COVID-19 pandemic. OxCGRT provides 20 specific policy indicators for 185 countries as well as the subnational jurisdictions in US, Brazil, United Kingdom and Canada (Hale et al, 2021). The ordinal quantitative value of each policy indicator varies from 0 to 2, and for some indicators from 0 to 4, where zero indicates that the policy measure is not applied. Based on these policy indicators, the OxCGRT computes four aggregate indices capturing different types of government policy responses to the pandemic. Each of the four indices range from 0 to 100 with higher values reflecting a higher or more stringent response. While the index captures government responses to the pandemic, it does not show whether a government’s policy has been enforced or implemented effectively. Below, we explain the construction of the four aggregate indices used in the regression estimations.

i) **Government response index:** this measure is constructed using a simple average of 16 policies including school closure, work closure, cancellation of public events, restrictions on gathering, closure of public transport, stay at home requirements,
restriction on domestic travel, restriction on international movement, income support, debt/contract relief, public information campaign, testing policy, contact tracing, facial covering, vaccination policy and protection of the elderly.

ii) Containment and health index: this measure is a simple average of school closure, work closure, cancellation of public events, restrictions on gathering, closure of public transport, stay at home requirements, restriction on domestic travel, international travel control, public information campaign, testing policy, contact tracing, facial coverings, vaccination policy, and protection of the elderly.

iii) Economic support index: it is a simple average of income support and debt/contract relief policies.

iv) Stringency index: this composite index is constructed by using the simple average of the following 9 policy specific measures: school closure, workplace closure, cancellation of public events, restrictions on gatherings, closure of public transport, stay at home requirements, restrictions on internal movement, international travel controls and public information campaigns.

In general, we have chosen the OxCGRT database for three main reasons. First, OxCGRT provides an open access, near-real-time, and systematic dataset of cross-national and longitudinal measures of government policy responses of Covid-19 since 1 January 2020. The dataset provides a good framework to understand the effect of policies on disease spread, socioeconomic welfare and other outcomes. Second, the OxCGRT dataset contains multiple policy indicators (currently 19) covering health, economic, containment and closure policies in terms of global coverage of over 185 countries. Third, OxCGRT’s design underscores comparability, legibility and transparency characterizing its suitability for quantitative analysis (Hale et al., 2021). This open access, near-real-time and easily accessible global daily data offers an objective framework to compare and undertake empirical analysis of the Covid-19 policy responses across countries.

The policy response indices described above are likely to be highly correlated and will therefore create high multicollinearity in our empirical analysis. To address the issue of high multicollinearity and to establish the robustness of our empirical work, we implemented the policy variables separately in the empirical estimations. Experience during this pandemic has shown that most governments only react and respond when there is a significant increase in
the number of cases and deaths. In this context, the policy response variables should be interpreted as lagging variables and so, in the empirical analysis, we expect the covariates between government policy responsiveness to the COVID-19 cases to be positive because the government tends to respond as the number of COVID-19 cases increases (Hale et al. 2020).

4. The Empirical Framework

The main objective of the paper is to explore the role of institutions and government policies in mitigating COVID-19 infection and transmission (cases) using a large panel data. We used the daily reported infection cases as a dependent variable to identify the impact and response of government policies on the number of COVID-19 infection cases. To establish the robustness of our results, we implemented each policy variable separately in our regression analysis.

Our regression model specification is as follows:

$$COVID_{it} = \beta_1 + \beta_2 P_{it-k} + \beta_3 X_t + \beta_4 I_{it} + \eta_t + \epsilon_{it}$$ (1),

where $COVID_{it}$ denotes the daily reported infection cases for country $i$ at time $t$. The impact of policy on infection and new cases is given by policy variables, $P_{it}$ (Government response index, Health and containment index, Economic support index, and Stringency index). A recent study indicates that countries that can respond faster to an increase in COVID-19 cases tend to have better control and mitigation of the infection cases compared to countries that are not able to respond swiftly and effectively (World Bank, 2021). To capture the time impact of policy variables on new cases, we lagged the policy variables by 7 days, 15 days and 45 days. We also included other control variables (given by $X_t$) such as the following time invariant macroeconomic variables: the incidence of tuberculosis, number of people aged 65 and above, population density, number of physicians per 10000 people, and mobile phone subscription per 100 people.

In Equation (1), $I_{it}$ is a vector of institutional variables for country $i$ at time $t$. As discussed in the previous section, there are two aggregate institutional variables that measure the institutional risk level across countries and over time: (a) economic risk and (b) political risk.
The political risk index has the following sub-categories: socioeconomic conditions, bureaucratic quality, civil war, democratic quality, ethnic tensions, external conflict, religious tensions and government stability. We also introduced these sub-categories in our estimations to establish the robustness of our results. \( \eta_i \) and \( \epsilon_{it} \) represent the monthly fixed effect and the white noise random term of the model, respectively.

The empirical specification of our analysis is based on a panel data of cross-section of countries using daily cases from 1 January 2020 to 24 January 2021. We estimate Equation (1) using the panel random effects (RE) technique. In equation (1) the macroeconomic variables are time invariant since they are measured annually. Consequently, we cannot employ the fixed effects estimation technique in the baseline regression. However, if the country fixed effects correlate with the controlled explanatory variables, then our estimated regression coefficients with the RE model will be biased. To account for the potential endogeneity problem in the RE model, we have employed the generalized method of moments (GMM) estimation approach. We have used the system GMM approach (Blundell and Bond, 1998) because it allows us to control for the effect of the lagged infection cases on the current infection cases. Several studies have highlighted the efficiency of GMM estimation as compared to OLS (ordinary least squares) and WLS (weighted least squares) in a panel framework with large sample size and in the presence of heteroskedasticity of unknown form (Lu and Wooldridge, 2020). Further, the GMM estimation also tends to perform better in a dynamic panel data than in IV (instrumental variable) estimation (Kiviet, 2009). The GMM estimation will be able to address the variance of the cases over time due to the contagious effects of COVID-19 virus. The dynamic panel data for our study consists of 185 countries and daily COVID-19 cases from 1 January 2020 to 24 January 2021. Further, GMM framework also permits us to address potential endogeneity problems.

A widely noted potential bias with the system GMM estimator (Maudos & Solís, 2009) is the problem of too many instruments that arise when the number of countries is small relative to the number of time periods (e.g., years). If there are too many instruments relative to the cross-sectional unit, the estimated coefficients and the standard error estimates will be biased and weaken the Sargan-Hansen specification tests (Roodman, 2009a). To avoid such overfitting (strongly overidentified) bias in our model, we have restricted the set of
instruments using the collapse GMM command. With the restricted instruments, the Hansen test for over-identifying restrictions and the second order test for autocorrelation show that our system GMM specification is valid.

The system GMM estimation equation is specified as follows:

\[
COVID_{it} = \alpha_1 + \alpha_2 COVID_{i,t-1} + \alpha_3 P_{it-k} + \alpha_4 X_{i} + \alpha_5 I_{it} + \eta_t + \epsilon_{it} \tag{2}
\]

where \( COVID_{i,t-1} \) is the first period lag of the infection cases. We expect a positive coefficient for the lag of the infection cases as previous period infection will raise the likelihood of more infection in the current period. Robust standard errors are employed in both the RE and system GMM estimation to control for arbitrary heteroscedastic errors. Furthermore, the US, India and Brazil are excluded from the estimations since they are outliers in terms of infection rates.

4.1. Baseline results

Table 2 presents the baseline results that show the effect of policy responses on COVID-19 cases. As we have illustrated in Equation (1), we have used various lags of a given policy to identify the impact of earlier policy responses on the number of COVID-19 cases. Column (1) reports the estimated coefficients for the 7 days lag. Column (2) and (3) report the estimated coefficients for the 15 days and the 45 days policy lags, respectively. We expect the policy responses to be more effective if countries respond and implement them swiftly and timely. In all the estimation specifications, we have controlled for the country fixed effects and the time fixed effects. Furthermore, robust (clustered) standard errors that control for arbitrary heteroskedasticity are used in all regressions.

Interestingly, the coefficients decline as the number of lags increase implying that the effectiveness and responsiveness of the policies to the number of COVID-19 cases tend to decline if there is a slower policy response from the government. For example, the estimated coefficient of the country health and containment index declines from 57.6 to 54.7 and then to 15.5 when the lag increased from 7 to 15 days and then to 45 days, respectively. Similarly, the coefficient of the government response index decreases from 62.6 in the 7 days lags to
60.2 in the 15 days lag and to 18.6 for the 45 days lag. The same is true for the stringency index policy measure. The only exception is the impact of the economic policy measure. For this variable, there is no significant difference between 7 and 15-days economic policy measures to counter the spread of the pandemic. However, if countries apply economic policies that are relevant to tackle COVID-19 spread 45 days in advance or more then the infection rate is lower. In general, the estimated results of the baseline model suggest that countries that react slowly tend have less responsiveness and impact on reducing new cases.

Table 2 here

Table 3 reports the estimated coefficients when we include macroeconomic and institutional variables in the model. The five key macroeconomic variables used are the incidence of tuberculosis, the number of people aged 65 and above, population density, the number of physicians per 10000 people, and mobile phone subscription per 100 people. The two main institutional variables employed are the economic risk and political risk measures. Since the macroeconomic variables are time invariant, we estimated equation (1) with the random effects panel data model.

Table 3 here

As Table 3 shows, while the economic support index has a statistically insignificant effect, the health and containment index, the stringency index and the government response index have significant effects on the COVID-19 infection cases. Among the macroeconomic factors, only population density has a positive and statistically significant effect on the infection cases. In other words, the higher the population density the higher the COVID-19 infection cases. The impact of population density is also highly stable for the different policy response variables indicating the results are robust across model specifications.

The results indicate that economic risk and political risk have negative effects on the COVID-19 infection cases. Since higher economic and political risks indices represent lower economic and political risk levels, the results indicate that the spread of COVID-19 declines when the institutional quality of the country increases. However, it should be noted that only the
political risk measure has a statistically significant effect on containing the spread of the COVID-19 pandemic. The magnitude and the statistical significance of the political risk variable is almost the same when we control for the different economic policies that are applied to reduce the spread of the COVID-19 disease. Since the political risk measure is an aggregate index comprised of several subcomponents, the results do not permit us to determine the impact of the various components. Consequently, we have re-estimated the equation using the different components of political risk, namely: government stability, socioeconomic conditions, internal conflict, external conflict, law and order, democratic accountability, and bureaucratic quality.

Table 4 reports the regression result when political risk is disaggregated. Some of the components of political risk are excluded since they are strongly correlated with the other components. Among the different measures of political risk, only socioeconomic conditions and land and order have statistically significant effects on the spread of COVID-19 pandemic. Socioeconomic condition is constructed from unemployment, consumer confidence and poverty. In general, the effect of socioeconomic conditions on infection cases is theoretically ambiguous because there are opposing forces involved. For example, on one hand, poor people are more exposed to being infected because of cramped living conditions. On the other hand, because testing is either costly or difficult to access, poor people are less likely to go for a test, resulting in a lower number of reported cases. As the estimated coefficient in table 4 shows, lower socioeconomic risk (in terms of lower unemployment, consumer confidence and poverty) leads to significantly lower infection cases globally. However, we observe higher bureaucratic quality, where the bureaucracy tends to be somewhat autonomous from political pressures and to have an established bureaucratic structure tend to experience higher number of COVID-19 cases. This result may be because having better institutions (or good governance) in a country also make it more challenging for the government to unilaterally impose restrictive measures needed to control the spread of the virus. But it may also be a reflection of the fact that countries with higher bureaucratic quality

---

5 Brown and Ravallion (2020) also argue that poverty can limit social interaction resulting in less exposure to viruses and lower number of infection cases among the poor.

6 Porcher (2020) found that public health measures are less stringent in countries with effective governance and better public health systems. In addition, Martinez-Cordoba et al. (2021) found that European and American countries are less efficient in the governance of the pandemic than Asian and African countries.
have better capacity to collect and report data on the number of infection cases. Furthermore, we find that the law-and-order institutional variables has a negative and statistically significant. This implies that countries with higher law and order risk tend to have lower infection cases. The other institutional variables such as democratic accountability, external conflict, internal conflict, and government stability appear to have insignificant effects on reported infection cases. The results presented in table 4 might be biased due to endogeneity effects in the estimated model. Therefore, we explore the stability and robustness of our results using GMM estimation.

4.3. Results of GMM Estimation

Although we have taken unobserved factors into account by controlling for fixed effects, the baseline estimation did not address the potential endogeneity problem related to the possibility of reverse causality between the infection cases and the policy variables. This is likely to bias the baseline estimation results obtained with the Random effects model. The baseline estimation indicates that the infection cases are lower for countries that are quick to put in place the COVID-19 intervention measures, such as health and containment policies or economic support policies. However, the results might be biased due to the possibility of reverse causalities in our estimation. In this context, the panel random effect estimator generates biased and inconsistent estimate (Olsen, 2006; Wooldridge, 2016). To correct the endogeneity problem in our empirical estimation, we re-estimated Equation (1) using the system GMM method that corrects for endogeneity and is more efficient than simple IV estimators (Arellano & Bond, 1991; Roodman, 2009b). In the GMM estimation, robust standard errors are employed to control for arbitrary heteroscedastic errors.

Table 5 presents the results from the system GMM estimation. Before discussing the results, we need to discuss two standard post-estimation tests to establish the validity of econometric specification under GMM estimation. First, we used the Arellano-Bond test to check if there is serial autocorrelation among the residuals, under the null hypothesis that the error terms
of two different time periods are uncorrelated, to validate the results of the GMM. Under this
test, the estimation suffers second-order serial autocorrelation if the p-value is less than 0.05
(Roodman, 2009b). Second, we established the joint validity of the lagged instruments. The
estimate is said to satisfy the instrument validity condition if the p-value of the Sargan-Hansen
test is greater than 0.05. The p-values of AR (2) and Sargan-Hansen tests are given in Table 5.
The fact that the p-values for both tests are greater than 0.05 indicates the lagged
instruments are valid and that there is no second-order serial autocorrelation in our GMM
estimation. In this case, the GMM estimation provides efficient and consistent estimates.

In general, the key results of our GMM estimation are similar to the baseline regression
results obtained with the Random effects estimations. The coefficients of the health and
containment index, the government response index, and the stringency index are positive
and statistically significant. The economic support index under the GMM estimation is
positive but statistically insignificant. For the macroeconomic variables, results are similar to
those of the baseline estimations in terms of sign and magnitude. Specifically, the number of
elderly populations, the number of physicians and mobile phone subscription have
insignificant effects on the infection cases. However, the GMM estimation provides more
robust estimates for the incidence of tuberculosis and population density. The results suggest
that countries with higher incidence of tuberculosis tend to have lower infection cases
whereas the infection is higher in countries that have greater population density. The finding
that the higher the incidence of tuberculosis in a country the lower the infection cases
captures the notion that countries with a previous history of infectious diseases tend to have
some experience and relevant health infrastructure necessary to manage and contain
infectious diseases, which would enable them to reduce the transmission of the COVID-19
disease (Gholizadeh et al., 2021). Both the COVID-19 virus and tuberculosis are infectious
diseases that primarily attack the lungs and also have similar symptoms. However,
tuberculosis has a longer incubation period compared to the COVID-19 virus. Therefore,
countries with pre-existing national programmes and infrastructure for mitigating
tuberculosis can respond better to the COVID-19 pandemic as opposed to countries with no

7 See WHO website: https://www.who.int/teams/global-tuberculosis-programme/covid-
19#:~:text=While%20experience%20on%20COVID%20and%20TB%20treatment%20as%20prescribed.
pre-existing national programmes. This has important policy implications for developing and less developed countries that have pre-existing national programmes and infrastructure for tuberculosis and HIV which could be used to complement efforts to manage and contain the spread of COVID-19 (Sarinoglu et al., 2020).

Regarding the aggregate institutional variables, as expected, the relationship between the infection cases and the economic and political risk indices are negative. However, the coefficients are not statistically significant. We explore the impact of the sub-categories of political risk variable as we did for the baseline estimation.

**Table 5 here**

As with the baseline estimation, we also performed the GMM estimation using the sub-categories of the political risk index, to capture the effects of institutional factors on the COVID-19 infection cases. We excluded the economic risk and some of the sub-components of political risk as we found them to be strongly correlated with the other political risk measures. The results are reported in Table 6. The GMM estimation results provide further support for the findings of the baseline estimation based on the Random effects model with the coefficients for health and containment, government response and stringency measures are being positive and statistically significant. In addition, we also found the coefficient of economic support to be positive and statistically significant. This is in contrast to the GMM estimation in Table 5, where the economic support variable was not statistically significant. This indicates that the economic support variable is sensitive to the control variables used in the estimation and hence not robust in our estimation.

In contrast to the Random effects estimation, where the coefficient of the socio-economic conditions variable is negative and statistically significant, in the GMM estimation the coefficient is positive and statistically significant. As indicated earlier, the impact of this variable on infection cases is theoretically ambiguous because there are opposing forces involved. On one hand, poor people are more exposed to being infected because of cramped living conditions. On the other hand, because testing is either costly or difficult to access, poor people are less likely to go for a test, resulting in a lower number of reported cases. That said,
the GMM estimates should be considered more reliable than the Random effects estimates because it controls for endogeneity. In this context, the positive coefficient on socio-economic conditions may reflect the following factors: (1) people in poor countries are less likely to go for a test because it is either costly or difficult to access; and (2) countries with higher socio-economic conditions are generally advanced countries, and in these countries, the governments tend to be hesitant in imposing strict measures on movement of people thereby constraining their ability to control the spread of the virus (see Porcher 2020).

The bureaucratic quality variable is positive and statistically significant. This result may be capturing the fact that having better institutions (good governance) in a country also make it more challenging for the government to unilaterally impose restrictive measures needed to control the spread of the virus (see Porcher 2020). But it may also be a reflection of the fact that countries with higher bureaucratic quality have better capacity to collect and report data on the number of infection cases. Regarding the other institutional variables, we find that internal conflict and law and order variables are negative and statistically significant. This suggests that countries with less internal conflicts and law and order tend to have lower infection cases. The other institutional variables such as democratic accountability, external conflict, and government stability appear to have insignificant effects on infection cases.

Table 6 here

We summarized the key results for random effect and GMM estimations in Table 7 below. The health ad containment, government response, and stringency indices are robust to both random effect and GMM estimations. Economic support index is only robust to the GMM estimation. Given that GMM is more efficient estimator, we will take economic support index has positive impact on the reported COVID-19 cases. The bureaucratic quality index is robust to both random effect and GMM estimation and it is positive impact on reported COVID-19 cases. We also observe population density to be robust to both random effect and GMM estimation with the same positive sign. The sign of socioeconomic conditions index is ambiguous in our estimation as random effect and GMM provides opposite signs. Again, we will take GMM as the efficient estimator as we observe a positive impact on reported COVID-19 cases. The internal conflict, law and order, political risk rating, and incidence of
tuberculosis is only robust in the GMM estimations.

Table 7 here

5. Conclusions

This section discusses the main findings and implications of the paper. Our econometric results indicate that population density is one of the drivers of infection cases. This implies that high population density, particularly in poor countries without basic infrastructure, presents significant risks to global health security. One of the lessons we have learned from the pandemic is that poor access to water, sanitation and handwashing facilities makes people vulnerable to infectious diseases which can be easily spread across countries because of the high degree of global economic integration. Policymakers can reduce this risk to global health security and prevent spread of infectious diseases by supporting the development of basic infrastructure (such as water and sanitation) in low-income countries. The international community recognized the importance of water and sanitation in improving human health and wellbeing by devoting goal 6 of the sustainable development goals (SDGs) to “clean water and sanitation.” While some progress has been made in this area over the past few years, it is evident that more needs to be done to achieve the overall goal by the 2030 target date. For example, it is estimated that about 30 percent of the world’s population do not have access to safe drinking water and about 40 percent lack access to basic hand-washing facilities with soap and water at home (United Nations 2020).

The results of our study also suggest that previous experience in dealing with infectious diseases such as tuberculosis, Ebola and HIV can play a positive role in containing the spread of the COVID-19 pandemic. The existence of pre-existing national programmes and health infrastructures for dealing with tuberculosis and other infectious diseases is one of the explanations that have been offered for the relatively lower infection cases observed in several African and Asian countries (Gholizadeh et al 2021; Sarinoglu et al., 2020). The analysis conducted in this paper also indicate that institutions play a crucial role in explaining COVID-19 cases across countries. For example, the results show that countries characterized by law and order and less internal conflicts tend to have lower infection cases.
In principle, countries with strong, credible and high-quality institutions are likely to have the capacity to respond effectively to public health challenges. The economic literature acknowledges the crucial role institutions play in the economic development process. For example, Acemoglu and Robinson (2013) argued that institutions are pivotal to the development process. In particular, they have demonstrated that promoting sustained and shared prosperity requires the existence of inclusive rather than extractive institutions. However, the results of our study also highlight the challenges and vulnerability of countries with better institutions (bureaucratic quality) to the COVID-19 pandemic. In particular, having better institutions (or good governance) in a country may also make it more challenging for the government to unilaterally impose restrictive measures needed to control the spread of the virus.

The results of the paper highlight the difficulties of designing policies with pandemic shock paralysing the market activities, which makes market-based policies ineffective to mitigate the shock and also to design the simulation policies for pandemic recovery. For example, the results of our study highlight the challenges and vulnerability of countries with better institutions (or good governance) for the government to unilaterally impose restrictive measures to contain the pandemic. However, the results of our study provide several policy implications to manage the pandemic shocks.

One of the policy implications of our findings is the importance of timely policy intervention at the national level in reducing infection cases. During the first and second waves of the pandemic, governments-imposed travel restrictions and containment measures, but the timing, scope, depth, and duration of these measures differed across countries. For example, Australia and New Zealand reacted much more swiftly and had much more restrictive measures than the United States and member States of the European Union. An early response to a pandemic is crucial in halting its spread and reducing the potential damage to human health and the economy. The early response to the pandemic requires more concerted regional and global framework to coordinate the policy and resource responses across countries. In particular, a regional platform for the consideration of mass testing and vaccination against the COVID-19 virus could be an important area of cooperation at both regional and global level. That said, in democratic societies this presents a challenge for
governments because it often leads to protests, which can have dire consequences for the economy. Secondly, the coordination between public and private sector seems to be critical to manage the impact of COVID-19 pandemic shock on the domestic economy in terms of the ‘new normal’ of business activities of work-home framework and digital transformation of labour market. The ‘new normal’ business activities require more resources and policy coordination between the private and private sector. This is the future area of study that could not be covered in this paper.

Another interesting issue arising from our study, which we leave for future research is how to enhance coherence between health policy and socio-economic policies. Although the COVID-19 crisis began as a public health problem, it quickly triggered an economic crisis and some of the policy measures designed to deal with the economic turmoil also have consequences for the number of COVID-19 cases and deaths. In this context, there is the need for policy coordination at the national level to ensure that economic and social policies are consistent with the goal of promoting public health.
References

Acemoglu, D. and J. A. Robinson (2013). Why Nations Fail: The Origins of Power, Prosperity, and Poverty. London: Profile Books.

Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The Review of economic studies, 58(2), 277-297.

Arellano, Manuel, and Stephen Bond. 1991. 'Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations', The Review of economic studies, 58: 277-97

Beckman, J., Baquedano, F., and A. Countryman (2021). “The impacts of COVID-19 on GDP, food prices, and food security,” Q Open, 1: 1-17. DOI: 10.1093/qopen/qoab005

Bekkers, E., A. Keck, R. Koopman and C. Nee. (2020). Methodology for the WTO Trade Forecast of 8 April 2020. WTO Background Paper.

Brodeur, A., Gray, D., Islam, A., and S. Bhuiyan (2021). “A literature review of the economics of COVID-19,” Journal of Economic Surveys, 35: 1007-1044.

Brown, Caitlin S. and Martin Ravallion. 2020. Inequality and the Coronavirus: Socioeconomic Covariates of Behavioral Responses and Viral Outcomes Across US Counties, NBER Working Paper No. 27549, NBER, Cambridge, US.

COVID-19 National Preparedness Collaborators (2022). “Pandemic preparedness and COVID-19: an exploratory analysis of infection and fatality rates, and contextual factors associated with preparedness in 177 countries, from Jan 1, 2020, to Sept 30, 2021,” Lancet, https://doi.org/10.1016/S0140-6736(22)00172-6

Eichenbaum, M. S., Rebelo, S. and M. Trabandt (2020). The Macroeconomics of Epidemics. NBER Working Paper No. 26882.

Ellison, G. (2020). Implications of Heterogeneous SIR Models for Analysis of COVID-19, NBER Working Paper, 27373.

Gholizadeh, P., Sanogo, M., Oumarou, A., Mohammed, M., Cissoko, Y., Sow, M., Pagliano, P., Akouda, P., Soufiane, S., Ikane, A., Oury, M., Diallo, S., Kose, S., Dao, S., and H. Kafil (2021). Fighting COVID-19 in the West Africa after Experiencing the Ebola Epidemic. Health Promotion Perspectives, vol 11(1), pp 5-11.

Howell, L. D. (2013). ICRG methodology. Prs Group: Syracuse, NY, USA.

Hale, T., Petherick, A., Phillips, T., and S. Webster (2020). “Variation in Government Responses to COVID-19.” Version 4.0 Blavatnik School of Government Working Paper, University of Oxford. April.
Hale, T., Angrist, N., Goldszmidt, R., Kira, B., Petherick, A., Phillips, T., ... & Tatlow, H. (2021). A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nature Human Behaviour, 5(4), 529-538.

ILO (2021). ILO Monitor: COVID-19 and the World of Work. 8th Edition. 27 October.

IMF (2022). World economic Outlook Update: Rising Caseloads, A Disrupted Recovery, and Higher Inflation. Washington, DC: International Monetary Fund.

Kiviet, Jan, 2009. ‘Strength and weakness of instruments in IV and GMM estimation of dynamic panel data models’, University of Amsterdam and Tinbergen Institute. (https://www.semanticscholar.org/paper/Strength-and-weakness-of-instruments-in-IV-and-GMM-Kiviet/76034db7c1360ae0b747207c225ac151a4875ef9)

Kovacevic, M and A. Jahic. (2020). COVID-19 and Human Development: Exploring global preparedness and vulnerability. UNDP, 29 April.

Olsen, K. B. (2006). Productivity impacts of offshoring and outsourcing: A review. OECD Science, Technology and Industry Working Paper No. 2006/01. Paris: OECD Publishing.

Lu, Cuici and Jeffrey Wooldridge, 2020. ‘A GMM estimator asymptotically more efficient than OLS and WLS in the presence of heteroskedasticity of unknown form’, Applied Economics Letter, vol. 27, issue 12, 2020.

Martínez-Córdoba, P., Benito, B., and I. García-Sánchez (2021). “Efficiency in the governance of the Covid19 pandemic: political and territorial factors,” Globalization and Health, 17: 1-13. https://doi.org/10.1186/s12992-021-00759-4

Maudos, J., & Solís, L. (2009). The determinants of net interest income in the Mexican banking system: An integrated model. Journal of Banking & Finance, 33(10), 1920-1931.

Nabin, M., Chowdhury, M. and S. Bhattacharya (2021). “It matters to be in good hands: the relationship between good governance and pandemic spread inferred from cross-country COVID-19 data,” Humanities and Social Sciences Communications, https://doi.org/10.1057/s41599-021-00876-w

Porcher, S. (2020). “Contagion: The Determinants of Governments Public Health Responses to COVID-19 all Around the World.” April 21, 2020. Available at SSRN: https://ssrn.com/abstract=3581764

Roodman, D. (2009a). A note on the theme of too many instruments. Oxford Bulletin of Economics and Statistics 71 (1): 135–158.

Roodman, D. (2009b). 'How to do xtabond2: An introduction to difference and system GMM in Stata', The Stata Journal, 9: 86-136.

Rungcharoenkitkul, P. (2021). “Macroeconomic effects of COVID-19: A mid-term review,” Pacific Economic Review, 26:439–458.
Sarinoglu, Rabia Can, Uluhan Sili, Emel Eryuksel, Sehnaz Olgun Yildizeli, Cagatay Cimsit, Aysegul Karahasan Yagci, 2020. Tuberculosis and COVID-19: An overlapping situation during pandemic, Journal of Infection in Developing Countries, 14(7), pp. 721-725.

Sumner, A., C. Hoy, and E. Ortiz-Juarez (2020). 'Estimates of the Impact of COVID-19 on Global Poverty'. WIDER Working Paper 2020/43. Helsinki: UNU-WIDER.

Toshkov, D., Carroll, B. and K. Yesilkagit (2021). "Government capacity, societal trust or party preferences: what accounts for the variety of national policy responses to the COVID-19 pandemic in Europe? Journal of European Public Policy, DOI: 10.1080/13501763.2021.1928270

United Nations (2020). The Sustainable Development Goals Report 2020. New York: United Nations.

United Nations. (2022). World Economic Situation and Prospects 2022. New York: United Nations.

Wooldridge, Jeffrey M. (2009). 'On estimating firm-level production functions using proxy variables to control for unobservables', Economics letters, 104: 112-14.

Wooldridge, J. M. (2016). Introductory econometrics: A modern approach. South-Western Cengage Learning.

World Bank. 2021. Global Economic Prospects, June 2021. Washington, DC: World Bank. doi:10.1596/978-1-4648-1665-9.
Table 1: Forecast of Impact of Global Pandemic (COVID-19) on Selected Countries’ GDP in 2020 and Relief Packages

| Countries         | GDP (%) | Relief and Stimulus Packages* |
|-------------------|---------|-------------------------------|
| Italy             | -8.87   | €25 billion (March 2020), €55 billion (May 2020), €25 billion (August 2020), €5.4 billion (October 2020), €72 billion (May 2021) |
| Australia         | -0.28   | A$312 billion (as of 1 July 2021) |
| Japan             | -4.70   | ¥117 trillion (total second package) (7 April 2020), ¥117 trillion (May 2020), ¥73 trillion (December 2020) |
| Republic of Korea | -0.95   | KRW 10.9 trillion (March 2020), KRW 14.3 trillion (April 2020), KRW 35.1 trillion (July 2020), KRW 71.1 trillion (July 2020), KRW 14.9 trillion (March 2021), KRW 33.3 trillion (July 2021) |
| France            | -8.11   | £180 billion (as of November 2020), £100 billion (2021 budget on recovery plan) |
| United States     | -3.50   | $2.20 trillion (26 March 2020) |
| Germany           | -4.89   | €156 billion (March 2020), €130 billion (June 2020), €60 billion (March 2021) |
| Indonesia         | -2.07   | IDR 579.8 trillion (in 2020) |
| China             | 2.30    | RMB 4.9 trillion (as of 2020) |
| India             | -7.96   | INR 20 trillion ($267 billion) (Announced by PM on 12 May 2020) |

COVID-19 = coronavirus disease, GDP = gross domestic product.
Notes: ‘$’ refers to United States dollars, unless stated otherwise.
* The announcement date is shown in parentheses.
Sources: World Bank (2021) and the relief packages as reported at IMF COVID-19 Pandemic Policy Tracker (https://www.imf.org/en/Topics/imf-and-covid19/Policy-Responses-to-COVID-19#S)
Table 2: Policy Impact on COVID-19 Pandemic

| Index                     | 7 days lag       | 15 days lag      | 45 days lag      |
|---------------------------|------------------|------------------|------------------|
|                           | 7 days lag       | 15 days lag      | 45 days lag      |
| Econ. Support Index        | 8.209** (1.637)  | 8.751** (1.631)  | 5.454*** (0.959) |
| Constant                  | -109.44 (596.11) | -414.82 (541.78) | -264.02 (351.02) |
| Observations              | 66331            | 66498            | 61354            |
| R-Square                  | 0.033            | 0.033            | 0.038            |
| Country-Fixed Effects     | Yes              | Yes              | Yes              |
| Time-Fixed Effects        | Yes              | Yes              | Yes              |
| Health and Containment    |                  |                  |                  |
| Index                     | 57.581*** (2.888) | 54.701*** (2.891) | 15.463*** (1.786) |
| Constant                  | -2986.7** (611.35) | -3133.9** (557.2) | -834.814** (324.7) |
| Observations              | 66421            | 66498            | 61354            |
| R-Square                  | 0.038            | 0.037            | 0.039            |
| Country-Fixed Effects     | Yes              | Yes              | Yes              |
| Time-Fixed Effects        | Yes              | Yes              | Yes              |
| Govt. Response Index      |                  |                  |                  |
|                           | 62.605*** (3.128) | 60.153*** (3.136) | 18.621*** (1.922) |
| Constant                  | -3478.58** (555.12) | -3347.97** (555.48) | -989.67** (326.6) |
| Observations              | 66608            | 66608            | 61410            |
| R-Square                  | 0.038            | 0.037            | 0.039            |
| Country-Fixed Effects     | Yes              | Yes              | Yes              |
| Time-Fixed Effects        | Yes              | Yes              | Yes              |
| Stringency Index          |                  |                  |                  |
|                           | 48.771*** (2.187) | 45.721*** (2.192) | 11.962*** (1.335) |
| Constant                  | -2476.9** (599.4) | -2628.7 (546.3)  | -643.0 (318.5)   |
| Observations              | 66438            | 66571            | 61408            |
| R-Square                  | 0.039            | 0.038            | 0.039            |
| Country-Fixed Effects     | Yes              | Yes              | Yes              |
| Time-Fixed Effects        | Yes              | Yes              | Yes              |

Note: N is the number of observations and *, **, ***: represent 10%, 5% and 1% level of statistical significance respectively.
|                                | (1)       | (2)       | (3)       | (4)       |
|--------------------------------|-----------|-----------|-----------|-----------|
| **Dependent variable:** Number of daily confirmed cases |           |           |           |           |
| Health and containment index (45 days lag) | 12.971*** |           |           |           |
| Economic support index (45 days lag)     |           | -2.113    |           |           |
| Gov’t response index (45 days lag)       |           |           | 12.267*** |           |
| Stringency index (45 days lag)           |           |           |           | 7.940***  |
| Incidence of TB                         | -0.002    | 0.030     | 0.016     | -0.004    |
| Number of people age 65 & above          | -0.000    | 0.000     | 0.000     | 0.000     |
| Population density                      | 0.230**   | 0.227**   | 0.228**   | 0.233**   |
| Number of physicians per 10,000 people   | 3.660     | 4.762     | 3.855     | 3.768     |
| Mobile phone Subs. per 100 people        | 1.249     | 0.678     | 1.203     | 1.176     |
| Economic Risk Rating                    | -1.735    | -7.388    | -0.031    | -2.135    |
| Political Risk Rating                   | -48.699** | -52.183** | -52.158***| -49.242** |
| Month Fixed Effects                     | Yes       | Yes       | Yes       | Yes       |
| Constant                                | 3008.069**| 4283.496***| 3230.552***| 3314.600***|
| Observations                            | 23218     | 23215     | 23219     | 23219     |
| R-Square                                | 0.0373    | 0.0191    | 0.0331    | 0.0307    |

Country clustered standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
Table 4: The effects of policy and institution on COVID-19 confirmed cases

| Dependent variable: Number of daily confirmed cases | (1) | (2) | (3) | (4) |
|-----------------------------------------------------|-----|-----|-----|-----|
| Health and containment index (45 days lag)          | 11.714*** |   | 11.714*** |   |
| Economic support index (45 days lag)                | -2.430 |   | 10.820*** |   |
| Gov’t response index (45 days lag)                  |   |   | 10.820*** |   |
| Stringency index (45 days lag)                      |   |   | 6.978*** |   |
| Incidence of TB                                     | -0.681 | -0.812 | -0.685 | -0.716 |
| Number of people age 65 & above                     | 0.000 | 0.000 | 0.000 | 0.000 |
| Population density                                  | 0.271*** | 0.277** | 0.272** | 0.275** |
| Number of physicians per 10,000 people              | 0.401 | 0.449 | 0.435 | 0.336 |
| Mobile phone subscription per 100 people            | 2.067 | 1.822 | 2.004 | 2.031 |
| Socioeconomic Conditions                            | -340.171*** | -392.659*** | -348.697*** | -350.311*** |
| Bureaucratic Quality                                | 352.749 | 362.512 | 357.502 | 359.265 |
| Democratic Accountability                          | -98.571 | -114.050 | -106.376 | -107.147 |
| External Conflict                                   | 169.906 | 211.856* | 165.911 | 188.563 |
| Government Stability                                | 29.390 | 42.201 | 26.402 | 31.060 |
| Internal Conflict                                   | -254.593 | -236.655 | -258.697 | -253.903 |
| Law and Order                                        | 443.152* | 541.680* | 450.542* | 460.954* |
| Month FE                                             | Yes | Yes | Yes | Yes |

Country clustered standard errors in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01
Table 5: The estimates for policy effects on COVID-19 confirmed cases using GMM method

| VARIABLES                        | (1)        | (2)        | (3)        | (4)        |
|----------------------------------|------------|------------|------------|------------|
|                                  | GMM        | GMM        | GMM        | GMM        |
| Health and containment index     | 7.032*     | (3.749)    |            |            |
| (45 days lag)                    |            |            |            |            |
| Economic support index           |            | 4.562      | (2.847)    |            |
| (45 days lag)                    |            |            |            |            |
| Gov't response index             |            |            | 10.15**    | (4.211)    |
| (45 days lag)                    |            |            |            |            |
| Stringency index                 |            |            | 5.254**    | (2.411)    |
| (45 days lag)                    |            |            |            |            |
| Incidence of TB                  | -0.582**   | -0.520*    | -0.571**   | -0.603**   |
| (0.265)                          | (0.275)    | (0.263)    | (0.270)    |            |
| Number of populations aged 65    | -1.28e-06  | 7.29e-08   | -1.61e-06  | -1.43e-06  |
| and above                        | (1.92e-06) | (2.05e-06) | (1.84e-06) | (1.87e-06) |
| Population density               | 0.297***   | 0.289***   | 0.277***   | 0.289***   |
| (0.0475)                         | (0.0507)   | (0.0603)   | (0.0510)   |            |
| Number of physicians             | 0.133      | 1.465      | 0.123      | 0.881      |
|                                 | (3.796)    | (3.804)    | (3.796)    | (3.842)    |
| Mobile subscription              | 0.937      | 0.705      | 1.841      | 1.459      |
|                                 | (1.466)    | (1.380)    | (1.562)    | (1.587)    |
| Economic risk rating             | -4.082     | -1.004     | -5.891     | -3.728     |
|                                 | (11.95)    | (12.06)    | (11.92)    | (12.16)    |
| Political risk rating            | -1.206     | -7.225     | -2.383     | -0.716     |
|                                 | (5.721)    | (6.871)    | (5.689)    | (5.844)    |
| Constant                         | 177.5      | 519.6      | 218.2      | 66.94      |
|                                 | (358.5)    | (362.9)    | (355.8)    | (357.0)    |
| Month Fixed Effects              | Yes        | Yes        | Yes        | Yes        |
| Observations                     | 23,245     | 23,242     | 23,246     | 23,246     |
| AR(2) (p-value)                  | 0.600      | 0.599      | 0.601      | 0.601      |
| Hansen test (p-value)            | 0.607      | 0.620      | 0.596      | 0.499      |

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Table 6: The estimates for institutional effects on COVID-19 confirmed cases using GMM method

| VARIABLES                              | (1) GMM          | (2) GMM          | (3) GMM          | (4) GMM          |
|----------------------------------------|------------------|------------------|------------------|------------------|
| Health and containment index (45 days lag) | 8.216**         | 5.290*           |                   |                   |
|                                        | (3.666)          | (2.904)          |                   |                   |
| Economic support index (45 days lag)    |                  |                  | 9.519**          |                   |
|                                        |                  |                  | (4.021)          |                   |
| Gov’t response index (45 days lag)      | -0.136           | -0.167           | -0.160           | -0.176           |
|                                        | (0.269)          | (0.276)          | (0.277)          | (0.268)          |
| Stringency index (45 days lag)          | 0.308***         | 0.312***         | 0.289***         | 0.310***         |
|                                        | (0.0511)         | (0.0447)         | (0.0670)         | (0.0539)         |
| Incidence of TB                         |                  |                  |                  |                  |
|                                        |                  |                  |                  |                  |
| Number of populations aged 65 and above | -1.99e-06        | -9.74e-07        | -2.13e-06        | -1.68e-06        |
|                                        | (2.25e-06)       | (2.30e-06)       | (2.27e-06)       | (2.24e-06)       |
| Population density                      | 0.308***         | 0.312***         | 0.289***         | 0.310***         |
|                                        | (0.0511)         | (0.0447)         | (0.0670)         | (0.0539)         |
| Number of physicians                    | 1.383            | 1.107            | 1.143            | 1.313            |
|                                        | (4.007)          | (4.192)          | (4.107)          | (4.004)          |
| Mobile subscription                     | 1.587            | 1.122            | 1.846            | 1.594            |
|                                        | (1.552)          | (1.623)          | (1.639)          | (1.670)          |
| Socioeconomic Conditions                | 96.78**          | 86.47*           | 86.55**          | 98.06**          |
|                                        | (42.84)          | (44.94)          | (43.98)          | (43.44)          |
| Bureaucratic Quality                    | 137.3*           | 140.0*           | 140.2*           | 144.8*           |
|                                        | (81.79)          | (84.61)          | (84.12)          | (84.12)          |
| Democratic Accountability               | 47.30            | 31.85            | 41.34            | 41.50            |
|                                        | (35.79)          | (37.22)          | (35.58)          | (35.80)          |
| External Conflict                       | -141.8           | -132.3           | -135.5           | -139.5           |
|                                        | (107.7)          | (107.0)          | (109.3)          | (107.5)          |
| Government Stability                    | 28.57            | 38.95            | 34.97            | 30.85            |
|                                        | (60.41)          | (64.50)          | (64.05)          | (62.90)          |
| Internal Conflict                       | -99.33*          | -109.7*          | -93.23*          | -98.55*          |
|                                        | (55.24)          | (57.38)          | (55.89)          | (54.75)          |
| Law and Order | -180.6** | -200.0** | -183.2** | -182.4** |
|--------------|----------|----------|----------|----------|
|              | (77.05)  | (77.73)  | (79.40)  | (78.93)  |
| Constant     | 1,442    | 1,660    | 1,351    | 1,413    |
|              | (951.9)  | (1,022)  | (979.1)  | (972.1)  |
| Month Fixed Effects | Yes | Yes | Yes | Yes |
| Observations | 23,245   | 23,242   | 23,246   | 23,246   |
| AR(2) (p-value) | 0.600   | 0.599    | 0.601    | 0.601    |
| Hansen test (p-value) | 0.459   | 0.402    | 0.249    | 0.330    |

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Table 7: Summary of findings: Random Effect (RE) Model and Generalized Methods of Moments (GMM)

| Variables                      | Robust* results from both estimators | Robust* result with one estimator | Remarks                                                                                                                                                                                                 |
|--------------------------------|--------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Policy variables           |                                       |                                   |                                                                                                                                                                                                          |
| Economic Support Index         | -                                    | (+) GMM                           | We examine impact of earlier response with lag estimation of 7 days, 15 days and 45 days. The coefficients decline as the number of lags increase implying that the effectiveness and responsiveness of the policies to the number of COVID-19 cases tend to decline if there is a slower policy response from the government. |
| Health and Containment Index   | (+) RE                               | (-) GMM                           |                                                                                                                                                                                                          |
| Government Response Index      | (+) RE                               | (-) GMM                           |                                                                                                                                                                                                          |
| Stringency Index               | (+) RE                               | (-) GMM                           |                                                                                                                                                                                                          |
| 2. Institutional variables    |                                       |                                   |                                                                                                                                                                                                          |
| Political risk rating          | -                                    | (-) RE                            | Lower political risk level reduces the spread of COVID-19.                                                                                                                                               |
| Socioeconomic Conditions**     | (-) RE                               | (+) GMM                           | The sign of this variable is ambiguous. However, we will adopt the GMM estimation result since it is the efficient estimator. The result under GMM may reflect the fact that countries with higher socio-economic conditions are hesitant to impose strict measures and this constrains their ability to control the spread of the virus. |
| Bureaucratic Quality           | (+) RE                               | (-) GMM                           | There are 2 possible explanations for this result. First, it may reflect the fact that countries with higher bureaucratic quality have better capacity to collect and report the number of infection cases. Second, having better institutions (good governance) in a country also make it more challenging for the government to unilaterally impose restrictive measures needed to control the spread of the virus. |
| Internal Conflict              | -                                    | (-) GMM                           | Countries with less internal conflict tend to have lower infection cases.                                                                                                                                |
| Law and Order                  | -                                    | (-) GMM                           | Countries with weak laws and order conflict tend to have lower infection cases.                                                                                                                           |
| 3. Macroeconomic variables     |                                       |                                   |                                                                                                                                                                                                          |
| Incidence of TB                | -                                    | (-) GMM                           | Countries with higher incidence of tuberculosis tend to have lower infection cases.                                                                                                                       |
| Population density             | (+) RE                               | (-) GMM                           | The infection is higher in countries that have greater population density.                                                                                                                                  |

* Statistically significant at least 10% level
** Cases in which we have opposite signs of the coefficients, we will use the results of GMM as it is more efficient estimator.
The sign of the coefficient is given in the parenthesis.
### List of Countries in the Sample

| Region | Country | Region | Country | Region | Country | Region | Country |
|--------|---------|--------|---------|--------|---------|--------|---------|
| Africa | Algeria | Asia   | Azerbaijan | Europe | Albania | America | Argentina |
|        | Angola  |        | Bahrain    |        | Austria  |        | Bahamas  |
|        | Botswana|        | Bangladesh |        | Belarus  |        | Bolivia  |
|        | Burkina Faso | | Brunei    |        | Belgium  |        | Canada   |
|        | Cameroon |        | China      |        | Bulgaria |        | Chile    |
|        | Congo   |        | Cyprus     |        | Croatia  |        | Colombia |
|        | Egypt   |        | Hong Kong  |        | Czech Republic |        | Costa Rica |
|        | Ethiopia|        | Indonesia  |        | Denmark  |        | Cuba     |
|        | Gabon   |        | Iran       |        | Estonia  |        | Dominican Republic |
|        | Gambia  |        | Iraq       |        | Finland  |        | Ecuador  |
|        | Ghana   |        | Israel     |        | France   |        | El Salvador |
|        | Guinea  |        | Japan      |        | Germany  |        | Guatemala |
|        | Kenya   |        | Jordan     |        | Greece   |        | Guyana   |
|        | Liberia |        | Kazakhstan |        | Hungary  |        | Haiti    |
|        | Libya   |        | Kuwait     |        | Iceland  |        | Honduras |
|        | Madagascar | | Lebanon    |        | Ireland  |        | Jamaica  |
|        | Malawi  |        | Malaysia   |        | Italy    |        | Mexico   |
|        | Mali    |        | Mongolia   |        | Latvia   |        | Nicaragua |
|        | Morocco |        | Myanmar    |        | Lithuania |        | Panama   |
|        | Mozambique | | Oman      |        | Luxembourg |        | Paraguay |
|        | Namibia |        | Pakistan   |        | Malta    |        | Peru     |
|        | Niger   |        | Philippines |       | Moldova  |        | Suriname |
|        | Nigeria |        | Qatar      |        | Netherlands |       | Uruguay  |
|        | Senegal |        | Saudi Arabia |   | Norway   |        | Venezuela |
|        | Sierra Leone | | Singapore |       | Poland |        | Australia |
|        | Somalia |        | Sri Lanka  |        | Portugal |        | New Zealand |
|        | South Africa | | Syria     |        | Romania  |        | Papua New Guinea |
|        | Sudan   |        | Taiwan     |        | Russia   |        |         |
|        | Tanzania |        | Thailand   |        | Serbia   |        |         |
|        | Togo    |        | Turkey     |        | Slovenia |        |         |
|        | Tunisia |        | Vietnam    |        | Spain    |        |         |
|        | Uganda  |        | Yemen      |        | Sweden   |        |         |
|        | Zambia  |        |           |        | Switzerland |        |         |
|        | Zimbabwe |       |           |        | Ukraine  |        |         |
|        |         |        |           |        | United Kingdom |    |         |
Figure 1: COVID-19 Pandemic Curve for Selected Countries

Figure 2A: Discretionary Fiscal Response by Advanced Economies (% of GDP)

Sources: Database of Country Fiscal Measures in Response to the COVID-19 Pandemic; and IMF staff estimates. Note: Estimates as of September 27, 2021. Numbers in U.S. dollar and percent of GDP are based on October 2021 World Economic Outlook unless otherwise stated. Country group averages are weighted by GDP in US
dollars adjusted by purchasing power parity. Data labels use International Organization for Standardization country codes.\(^1\) AEs = advanced economies; EMEs = emerging market economies; LIDCs = low-income developing countries.

https://www.imf.org/en/Topics/imf-and-covid19/Fiscal-Policies-Database-in-Response-to-COVID-19

**Figure 2B: Discretionary Fiscal Response by Emerging Market Economies (% of GDP)**

Sources: Database of Country Fiscal Measures in Response to the COVID-19 Pandemic; and IMF staff estimates.

Note: Estimates as of September 27, 2021. Numbers in U.S. dollar and percent of GDP are based on October 2021 World Economic Outlook unless otherwise stated. Country group averages are weighted by GDP in US dollars adjusted by purchasing power parity. Data labels use International Organization for Standardization country codes (see footnote 1). AEs = advanced economies; EMEs = emerging market economies; LIDCs = low-income developing countries.

https://www.imf.org/en/Topics/imf-and-covid19/Fiscal-Policies-Database-in-Response-to-COVID-19

---

\(^1\) Developed Countries (AEs = advanced economies): FIN=Finland, NOR=Norway, SWE=Sweden, KOR=South Korea, NLD=Netherlands, DNK=Denmark, CZE=Czech Republic, CHE=Switzerland, ESP=Spain, FRA=France, BEL=Belgium, ITA=Italy, DEU=Germany, CAN=Canada, JPN=Japan, SGP=Singapore, AUS=Australia, GBR=United Kingdom, NZL=New Zealand, US=United States

Developing Countries (EMMEs = emerging market and middle-income economies): MEX=Mexico, EGY=Egypt, PAK=Pakistan, ALB=Albania, SAU=Saudi Arabia, ROU=Romania, KAZ=Kazakhstan, PHL=Philippines, IND=India, ARG=Argentina, COL=Columbia, RUS=Russian Federation, BGR=Bulgaria, IDN=Indonesia, CHN=China, GEO=Georgia, PER=Peru, POL=Poland, CHL=Chile, THA=Thailand, BRA=Brazil

Less Developing Countries (Low-income developing countries): NGA=Nigeria, NER=Niger, MMR=Myanmar, BGD=Bangladesh, VNM=Vietnam, CIV=Ivory Coast, ZMB=Zambia, HND=Honduras, KEN=Kenya, ETH=Ethiopia, GHA=Ghana, SEN=Senegal, UZB=Uzbekistan, GNB=Guinea-Bissau
Figure 2C: Discretionary Fiscal Spending by Low Income Developing Countries (% of GDP)

Sources: Database of Country Fiscal Measures in Response to the COVID-19 Pandemic; and IMF staff estimates. Note: Estimates as of September 27, 2021. Numbers in U.S. dollar and percent of GDP are based on October 2021 World Economic Outlook unless otherwise stated. Country group averages are weighted by GDP in US dollars adjusted by purchasing power parity. Data labels use International Organization for Standardization country codes (see footnote 1). AEs = advanced economies; EMEs = emerging market economies; LIDCs = low-income developing countries.

https://www.imf.org/en/Topics/imf-and-covid19/Fiscal-Policies-Database-in-Response-to-COVID-19