Incremental DFS algorithms:
a theoretical and experimental study

Surender Baswana† Ayush Goel * Shahbaz Khan ‡

Abstract
The depth first search (DFS) tree is a fundamental data structure used for solving various graph problems. For a given graph \(G = (V,E)\) on \(n\) vertices and \(m\) edges, a DFS tree can be built in \(O(m+n)\) time. In the last 20 years, a few algorithms have been designed for maintaining a DFS tree efficiently under insertion of edges. For undirected graphs, there are two prominent algorithms, namely, ADFS1 and ADFS2 [ICALP14] that achieve total update time of \(O(n^{3/2}\sqrt{m})\) and \(O(n^2)\) respectively. For directed acyclic graphs, the only non-trivial algorithm, namely, FDFS [IPL97] requires total \(O(mn)\) update time. However, even after 20 years of this result, there does not exist any non-trivial incremental algorithm for maintaining a DFS tree in directed graphs with \(o(m^2)\) worst case bound.

In this paper, we carry out extensive experimental and theoretical evaluation of the existing incremental DFS algorithms in random graphs and real world graphs and derive the following results.

1. For insertion of a uniformly random sequence of \(\binom{m}{n}\) edges, each of ADFS1, ADFS2 and FDFS perform equally well and are found to take \(\Theta(n^3)\) time experimentally. This is quite surprising because the worst case bounds of ADFS1 and FDFS are greater than \(\Theta(n^2)\) by a factor of \(\sqrt{m/n}\) and \(m/n\) respectively, which are also proven to be tight. We complement this experimental result with a probabilistic analysis of these algorithms establishing \(O(n^2)\) bound on their time complexity. For this purpose, we derive results about the structure of a DFS tree in a random graph. These results are of independent interest in the domain of random graphs.

2. The insight that we developed about DFS tree in random graphs leads us to design an extremely simple algorithm for incremental DFS that works for both undirected and directed graphs. Moreover, this algorithm theoretically matches and experimentally outperforms the state-of-the-art algorithm in dense random graphs. Furthermore, it can also be used as a single-pass semi-streaming algorithm for computing incremental DFS and strong connectivity for random graphs using \(O(n \log n)\) space.

3. Even for real world graphs, which are usually sparse, both ADFS1 and FDFS turn out to be much better than their theoretical bounds. Here again, we present two simple algorithms for incremental DFS for directed and undirected graphs respectively, which perform very well on real graphs. In fact our proposed algorithm for directed graphs almost always matches the performance of FDFS.

1Introduction

Depth first search (DFS) is a well known graph traversal technique. Right from the seminal work of Tarjan [53], DFS traversal has played the central role in the design of efficient algorithms for many fundamental graph problems, namely, biconnected components, strongly connected components, topological sorting [53], bipartite matching [24], dominators [54] and planarity testing [25].

A DFS traversal produces a rooted spanning tree (or forest), called DFS tree (forest). Let \(G = (V,E)\) be a graph on \(n = |V|\) vertices and \(m = |E|\) edges. It takes \(O(m+n)\) time to perform a DFS traversal and generate its DFS tree (forest). Given any ordered rooted spanning tree, the non-tree edges of the graph can be classified into four categories as follows. An edge directed from a vertex to its ancestor in the tree is called a back edge. Similarly, an edge directed from a vertex to its descendant in the tree is called a forward edge. Further, an edge directed from right to left in the tree is called a cross edge. The remaining edges directed from left to right in the tree are called anti-cross edges. A necessary and sufficient condition for such a tree to be a DFS tree is the absence of anti-cross edges. In case of undirected graphs, this condition reduces to the absence of all cross edges.

Most of the graph applications in the real world deal with graphs that keep changing with time. These changes can be in the form of insertion or deletion of edges. An algorithmic graph problem is modeled in the dynamic environment as follows. There is an online sequence of insertion and deletion of edges and the aim is to maintain the solution of the given problem after every edge update. To achieve this aim, we need to maintain some clever data structure for the problem such that the time taken to update the solution after an edge update is much smaller than that of the best static algorithm. A dynamic algorithm is called an incremental algorithm if it supports only insertion of edges.

In spite of the fundamental nature of the DFS tree, very

†Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, India (www.cse.iitk.ac.in), email: sbaswana@cse.iitk.ac.in, ayushgoel529@gmail.com.

*This research was partially supported by UGC-ISF (the University Grants Commission of India & Israel Science Foundation) and IMPECS (the Indo-German Max Planck Center for Computer Science).

‡Faculty of Computer Science, University of Vienna, Austria (cs.univie.ac.at), email: shahbaz.khan@univie.ac.at.

§This research work was done as a part of PhD degree at IIT Kanpur. The work was supported partially by Google India under the Google India PhD Fellowship Award, and partially by European Research Council under the European Union’s Seventh Framework Programme (FP2007-2013) / ERC Grant Agreement no. 340506.

† \(\tilde{O}(\cdot)\) hides the poly-logarithmic factors.
few incremental algorithms have been designed for maintaining a DFS tree. A short summary of the current-state-of-the-art of incremental DFS algorithms is as follows. An obvious incremental algorithm is to recompute the whole DFS tree in $O(m + n)$ time from scratch after every edge insertion. Let us call it SDFS henceforth. It was shown by Kapidakis [29] that a DFS tree can be computed in $O(n \log n)$ time for a random graph [17, 7] if we terminate the traversal as soon as all vertices are visited. Let us call this variant as SDFS-Int. Notice that both these algorithms recompute the DFS tree from scratch after every edge insertion. Let us now move onto the algorithms that avoid this recomputation from scratch.

The first incremental DFS algorithm, namely FDFS, was given by Franciosa et al. [19] for directed acyclic graphs, requiring total update time of $O(mn)$. For undirected graphs, Baswana and Khan [6] presented two algorithms, namely ADFS1 and ADFS2, that achieve total update time of $O(n^{3/2}/\sqrt{m})$ and $O(n^3)$ respectively. However, the worst case update time to process an edge for these algorithms is still $O(m)$. Recently, an incremental algorithm [4], namely WDFS, giving a worst case guarantee of $O(n \log^3 n)$ on the update time was designed. However, to date there is no non-trivial incremental algorithm for maintaining a DFS tree in general directed graphs. Refer to Table 1 for a comparison of these results.

Despite having several algorithms for incremental DFS, not much is known about their empirical performance. For various graph algorithms [41, 2, 3], the average-case time complexity (average performance on random graphs) has been proven to be much less than their worst case complexity. A classical example is the algorithm by Miccoli and Vazirani [42] for maximum matching. Its average case complexity has been proved to be only $O(m \log n)$ [45, 3], despite having a worst case complexity of $O(m \sqrt{n})$. An equally important aspect is the empirical performance of an algorithm on real world graphs. After all, the ideal goal is to design an algorithm having a theoretical guarantee of efficiency in the worst case as well as superior performance on real graphs. Often such an empirical analysis also leads to the design of simpler algorithms that are extremely efficient in real applications. The algorithm by Miccoli and Vazirani [42] has also been empirically analysed [39, 13, 30, 26] resulting in several important heuristics to improve its performance on various types of graphs. Thus, such an analysis bridges the gap between theory and practice. Experimental analysis of different algorithms for several dynamic graph problems has been performed including connectivity [1, 27], minimum spanning trees [48, 10], shortest paths [15, 22, 51], etc.

Our study focuses on incremental DFS algorithms as most dynamic graphs in the real world are dominated by insertion updates [32, 36, 14]. Moreover, in every other dynamic setting, only a single dynamic DFS algorithm is known [4, 5], making a comparative study impractical.

Table 1: A comparison of incremental DFS algorithms.

Algorithm	Graph	Update time	Total time
SDFS [53]	Any	$O(m)$	$O(m^2)$
SDFS-Int [29]	Random	$O(n \log n)$ expected	$O(mn \log n)$ expected
FDFS [19]	DAG	$O(n)$ amortized	$O(mn)$
ADFS1 [6]	Undirected	$O(n^{3/2}/\sqrt{m})$ amortized	$O(n^{3/2}/\sqrt{m})$
ADFS2 [6]	Undirected	$O(n^2/m)$ amortized	$O(n^2)$
WDFS [4]	Undirected	$O(n \log^3 n)$	$O(mn \log^3 n)$

1.1 Our results In this paper, we contribute to both experimental analysis and average-case analysis of incremental DFS algorithms. Our analysis reveals the following results.

1. **Empirical performance of the existing algorithms**

 We first evaluated the performance of the existing algorithms on the insertion of a uniformly random sequence of $\binom{n}{2}$ edges. The most surprising revelation of this evaluation was the similar performance of ADFS1 and ADFS2, despite the difference in their worst case bounds (see Table 1). Further, even FDFS performed better on random graphs taking just $\Theta(n^2)$ time. This is quite surprising because the worst case bounds of ADFS1 and FDFS are greater than $\Theta(n^2)$ by a factor of $\sqrt{m/n}$ and m/n respectively. Moreover, by constructing worst case examples the analysis of ADFS1 [6] and FDFS (see Appendix B) is also shown to be tight. Their superior performance on random graphs motivated us to explore the structure of a DFS tree in a random graph.

2. **Structure of DFS tree in random graphs**

 A DFS tree of a random graph can be seen as a broomstick: a possibly long path without any branching (stick) followed by a bushy structure (bristles). As the graph becomes denser, we show that the length of the stick would increase significantly and establish the following result.

 Theorem 1.1. For a random graph $G(n, m)$ with $m = 2n \log n$, its DFS tree will have a stick of length at least $n - n/2^l$ with probability $1 - O(1/n)$.

 The length of stick evaluated from our experiments matches perfectly with the value given by Theorem 1.1. It follows from the broomstick structure that the insertion of only the edges with both endpoints in the bristles can change the DFS tree. As follows from Theorem 1.1, the size of bristles decreases as the graph becomes denser. With this insight at the core, we are able
to establish $\tilde{O}(n^2)$ bound on ADFS1 and FDFS for a uniformly random sequence of $\binom{n}{2}$ edge insertions.

Remark: It was Sibeyn [52] who first suggested viewing a DFS tree as a broomstick while studying the height of a DFS tree in random graph. However, his definition of stick allowed a few branches on the stick as well. Note that our added restriction (absence of branches on the stick) is crucial in deriving our results as is evident from the discussion above.

3. **New algorithms for random and real world graphs**

We use the insight about the broomstick structure and Theorem 1.1 to design a much simpler incremental DFS algorithm (referred as SDFS2) that works for both undirected graphs and directed graphs. Despite being very simple, it is shown to theoretically match (upto $\tilde{O}(1)$ factors) and experimentally outperform ADFS and FDFS for dense random graphs.

For real graphs both ADFS and FDFS were found to perform much better than other algorithms including SDFS2. With the insights from ADFS/FDFS, we design two simple algorithms for undirected and directed graphs respectively (both referred as SDFS3), which perform much better than SDFS2. In fact, for directed graphs SDFS3 almost matches the performance of FDFS for most real graphs considered, despite being much simpler to implement as compared to FDFS.

4. **Semi-Streaming Algorithms**

Interestingly, both SDFS2 and SDFS3 can also be used as single-pass semi-streaming algorithms for computing a DFS tree of a random graph using $O(n \log n)$ space. This immediately also gives a single-pass semi-streaming algorithm using the same bounds for answering strong connectivity queries incrementally. Strong connectivity is shown [8, 28] to require a working memory of $\Omega(em)$ to answer these queries with probability greater than $(1+\epsilon)/2$ in general graphs, for any $0<\epsilon \leq 1$. Hence, our algorithms not only give a solution for the problem in semi-streaming setting but also establish the difference in hardness of the problem in semi-streaming model for general and random graphs.

1.2 **Organization of the article**

We now present the outline of our paper. In Section 2, we describe the various notations used throughout the paper in addition to the experimental setting, datasets used as input and a brief overview of the existing algorithms. The experimental evaluation of these algorithms on random undirected graphs is presented in Section 3. In the light of inferences drawn from this evaluation, the experiments to understand the structure of the DFS tree for random graphs is presented in Section 4. Then, in Section 5 we theoretically establish the properties of this structure and provide a tighter analysis of the aforementioned algorithms for random graphs. The new algorithm for incremental DFS inspired by the broomstick structure of the DFS tree is presented and evaluated in Section 6. Section 7 evaluates the existing algorithms on real graphs and proposes simpler algorithms that perform very well on real graphs. Finally, Section 8 presents some concluding remarks and scope for future work.

2 **Preliminaries**

For all the experiments described in this paper, we add a pseudo root to the graph G, i.e., a dummy vertex s that is connected to all vertices in G. All the algorithms thus start with an empty graph augmented with the pseudo root s and its edges, and maintain a DFS tree rooted at s after every edge insertion. It can be easily observed that each subtree rooted at any child of s is a DFS tree of a connected component of G. Given a graph G under insertion of edges, the following notations will be used throughout the paper.

- T : A DFS tree of G at any time during the algorithm.
- $\text{path}(x, y)$: Path from the vertex x to the vertex y in T.
- $T(x)$: The subtree of T rooted at a vertex x.
- $\text{LCA}(u, v)$: Lowest common ancestor of u and v in T.

The two prominent models for studying random graphs are $G(n, m)$ [7] and $G(n, p)$ [16, 17]. A random graph $G(n, m)$ consists of the first m edges of a uniformly random permutation of all possible edges in a graph with n vertices. In a random graph $G(n, p)$, every edge is present in the graph with probability p independent of other edges. We now state the following classical result for random graphs that shall be used in our analysis.

Theorem 2.1. [20] Graph $G(n, p)$ with $p = \frac{1}{n} (\log n + c)$ is connected with probability at least $1 - e^{-c}$ for any constant $c > 0$.

2.1 **Experimental Setting**

In our empirical study on random graphs, the performance of different algorithms is compared in terms of the number of edges processed, instead of the time taken. This is because the total time taken by the evaluated algorithms is dominated by the time taken to process the graph edges (see Appendix A). Further, comparing the number of edges processed provides a deeper insight in the performance of the algorithm (see Section 3). Also, it makes this study independent of the computing platform making it easier to reproduce and verify. For random graphs, each experiment is averaged over several test cases to get the expected behavior. For the sake of completeness, the corresponding experiments are also replicated measuring the time taken in Appendix D. However, for real graphs the performance is evaluated by comparing the time taken and not the
edges processed. This is to ensure an exact evaluation of the relative performance of different algorithms. The source code of our project is available on Github under the BSD 2-clause license.

2.2 Datasets In our experiments we considered the following types of datasets.

- **Random Graphs:** The initial graph is a star graph, having an edge from the pseudo root \(s \) to each vertex. The update sequence is generated based on Erdős Rényi \(G(n, m) \) model by choosing the first \(m \) edges of a random permutation of all the edges in the graph. For the case of DAGs, the update sequence is generated using an extension of \(G(n, m) \) model for DAGs [12].

- **Real graphs:** We use a number of publically available datasets [32, 36, 14] derived from the real world. These include graphs related to Internet topology, collaboration networks, online communication, friendship networks and other interactions.

2.3 Existing algorithms We now give a brief overview of the results on maintaining incremental DFS. The key ideas used in these algorithms are crucial to understand their behavior on random graphs.

Static DFS algorithm (SDFS) The static algorithm for computing the DFS tree of a graph was given by Tarjan [53]. In the incremental version of the same, SDFS essentially computes the whole DFS tree from scratch after every edge insertion.

Static DFS algorithm with interrupt (SDFS-Int) Static DFS tree was shown to have much better performance for a random graph by Kipakakis [29]. Only difference from SDFS is that the algorithm terminates as soon as all the vertices of the graph are marked visited. Again, the algorithm recomputes the DFS tree from scratch after every edge insertion though requiring only \(O(n \log n) \) time for random graphs.

Incremental DFS for DAG/directed graph (FDFS) FDFS [19] maintains the post-order (or DFN) numbering of vertices in the DFS tree, which is used to rebuild the DFS tree efficiently. On insertion of an edge \((x, y)\) in the graph, it first checks whether \((x, y)\) is an anti-cross edge by verifying if \(\text{DFN}[x] < \text{DFN}[y]\). In case \((x, y)\) is not an anti-cross edge, it simply updates the graph and terminates. Otherwise, it performs a partial DFS on the vertices reachable from \(y\) in the subgraph induced by the vertices with DFN number between \(\text{DFN}[x]\) and \(\text{DFN}[y]\). In case of DAGs, this condition essentially represents a candidate set of vertices that lie in the subtrees hanging on the right of \(\text{path}(\text{LCA}(x, y), x) \) or on the left of \(\text{path}(\text{LCA}(x, y), y) \). FDFS thus removes these reachable vertices from the corresponding subtrees and computes their DFS tree rooted at \(y \) to be hanged from the edge \((x, y)\). The DFN number of all the vertices in candidate set is then updated to perform the next insertion efficiently. The algorithm can also be trivially extended to directed graphs. Here, the candidate set includes the subtrees hanging on the right of \(\text{path}(\text{LCA}(x, y), x) \) until the entire subtree containing \(y \) (say \(T' \)). Note that for DAGs instead of entire \(T' \), just the subtrees of \(T' \) hanging on the left of \(\text{path}(\text{LCA}(x, y), y) \) are considered. However, FDFS in directed graphs is not known to have any bounds better than \(O(m^2) \).

Incremental DFS for undirected graphs (ADFS) ADFS [6] (refers to both ADFS1 and ADFS2) maintains a data structure that answers LCA and level ancestor queries. On insertion of an edge \((x, y)\) in the graph, ADFS first verifies whether \((x, y)\) is a cross edge by computing \(w = \text{LCA}(x, y) \) and ensuring that \(w \) is not equal to either \(x \) or \(y \). In case \((x, y)\) is a back edge, it simply updates the graph and terminates. Otherwise, let \(u \) and \(v \) be the children of \(w \) such that \(x \in T(u) \) and \(y \in T(v) \). Without loss of generality, let \(x \) be lower than \(y \) in the \(T \). ADFS then rebuilds \(T(v) \) hanging it from \((x, y)\) as follows. It first reverses \(\text{path}(y, v) \) which converts many back edges in \(T(v) \) to cross edges. It then collects these cross edges and iteratively inserts them back to the graph using the same procedure. The only difference between ADFS1 and ADFS2 is the order in which these collected cross edges are processed. ADFS1 processes these edges arbitrarily, whereas ADFS2 processes the cross edge with the highest endpoint first. For this purpose ADFS2 uses a non-trivial data structure. We shall refer to this data structure as \(D \).

Incremental DFS with worst case guarantee (WDFS) Despite several algorithms for maintaining DFS incrementally, the worst case time to update the DFS tree after an edge insertion was still \(O(m) \). Baswana et al. [4] presented an incremental algorithm, giving a worst case guarantee of \(O(n \log^3 n) \) on the update time. The algorithm builds a data structure using the current DFS tree, which is used to efficiently rebuild the DFS tree after an edge update. However, building this data structure requires \(O(m) \) time and hence the same data structure is used to handle multiple updates (\(\approx O(m/n) \)). The data structure is then rebuilt over a period of updates using a technique called overlapped periodic rebuilding. Now, the edges processed for updating a DFS tree depends on the number of edges inserted since the data structure was last updated. Thus, whenever the data structure is updated, there is a sharp fall in the number of edges processed per update resulting in a saw-like structure on the plot.

2. https://github.com/shahbazk/IncDFS-Experimental
3 Experiments on Random Undirected graphs

We now compare the empirical performance of the existing algorithms for incrementally maintaining a DFS tree of a random undirected graph.

We first compare the total number of edges processed by the existing algorithms for insertion of $m = \binom{n}{2}$ edges, as a function of number of vertices in Figure 1 (a). Since the total number of edges is presented in logarithmic scale, the slope x of a line depicts the growth of the total number of edges as $O(n^x)$. The performance of SDFS, SDFS-Int and WDFS resemble their asymptotic bounds described in Table 1. For small values of n, WDFS performs worse than SDFS and SDFS-Int because of large difference between the constant terms in their asymptotic bounds, which is evident from their y-intercepts. However, the effect of constant term diminishes as the value of n is increased. The most surprising aspect of this experiment is the exceptional performance of ADFS1 and ADFS2. Both ADFS1 and ADFS2 perform extremely faster than the other algorithms. Furthermore, ADFS1 and ADFS2 perform equally well despite the difference in their asymptotic complexity (see Table 1).

Inference I$_1$: ADFS1 and ADFS2 perform equally well and much faster than other algorithms.

Remark: Inference I$_1$ is surprising because the complexity of ADFS1 and ADFS2 has been shown [6] to be $O(n^{3/2}\sqrt{m})$ and $O(n^2)$ respectively. Further, they also presented a sequence of m edge insertions where ADFS1 takes $\Omega(n^{3/2}\sqrt{m})$ time, proving the tightness of its analysis. However, ADFS2 takes slightly more time than ADFS1, for maintaining the data structure D (see Figure 11).

We now compare the total number of edges processed by the existing algorithms as a function of number of inserted edges in Figure 1 (b). The slopes of SDFS-Int, WDFS and ADFS represent the number of edges processed per edge insertion. Here again, the performance of SDFS, SDFS-Int and WDFS resembles with their worst case values (see Table 1). Similarly, both ADFS1 and ADFS2 perform equally well as noted in the previous experiment. When the graph is sparse ($m << n \log^3 n$), WDFS performs worse than SDFS because of high cost of update per edge insertion (see Table 1). Further, as expected the plots of SDFS-Int and WDFS grow linearly in m. This is because their update time per insertion is independent of m. However, the plots of ADFS are surprising once again, because they become almost linear as the graph becomes denser. In fact, once the graph is no longer sparse, each of them processes ≈ 2 edges per edge insertion to maintain the DFS tree. This improvement in the efficiency of ADFS for increasing value of m is counter-intuitive since more edges may be processed to rebuild the DFS tree as the graph becomes denser.

Inference I$_2$: ADFS processes ≈ 2 edges per insertion after the insertion of $O(n)$ edges.

Finally, to investigate the exceptional behavior of ADFS, we compare the number of edges processed per edge insertion by the existing algorithms as a function of number of inserted edges in Figure 1 (c). Again, the expected behavior of SDFS, SDFS-Int and WDFS matches with their worst case bounds described in Table 1. The plot of WDFS shows the saw like structure owing to overlapped periodic rebuilding of the data structure used by the algorithm (recall WDFS in Section 2.3). Finally, the most surprising result of the experiment are the plots of ADFS shown in the zoomed
component of the plot. The number of edges processed per edge insertion sharply increases to roughly 5 (for \(n = 1000 \)) when \(m \) reaches \(O(n) \) followed by a sudden fall to reach 1 asymptotically. Note that the inserted edge is also counted among the processed edges, hence essentially the number of edges processed to update the DFS tree asymptotically reaches zero as the graph becomes dense. This particular behavior is responsible for the exceptional performance of ADFS.

Inference I3: Number of edges processed by ADFS for updating the DFS tree asymptotically reaches zero as the graph becomes denser.

To understand the exceptional behavior of ADFS for random graphs inferred in I1, I2 and I3, we shall now investigate the structure of a DFS tree for random graphs.

4 Structure of a DFS tree: The broomstick

We know that SDFS, SDFS-Int and WDFS invariably rebuild the entire DFS tree on insertion of every edge. We thus state the first property of ADFS that differentiates it from other existing algorithms.

Property P1: ADFS rebuilds the DFS tree only on insertion of a cross edge.

Let \(T \) be any DFS tree of the random graph \(G(n, m) \). Let \(p_c \) denote the probability that the next randomly inserted edge is a cross edge in \(T \). We first perform an experimental study to determine the behavior of \(p_c \) as the number of edges in the graph increases. Figure 2 (a) shows this variation of \(p_c \) for different values of \(n \). The value \(p_c \) starts decreasing sharply once the graph has \(\Theta(n) \) edges. Eventually, \(p_c \) asymptotically approaches 0 as the graph becomes denser. Surely ADFS crucially exploits this behavior of \(p_c \) in random graphs (using Property P1). In order to understand the reason behind this behavior of \(p_c \), we study the structure of a DFS tree of a random graph.

Broomstick Structure The structure of a DFS tree can be described as that of a broomstick as follows. From the root of the DFS tree there exists a downward path on which there is no branching, i.e., every vertex has exactly one child. We refer to this path as the *stick* of the broomstick structure. The remaining part of the DFS tree (except the stick) is called the *bristles* of the broomstick.

Let \(l_s \) denote the length of the stick in the broomstick structure of the DFS tree. We now study the variation of \(l_s \) as the edges are inserted in the graph. Figure 2 (b) shows this variation of \(l_s \) for different values of \(n \). Notice that the stick appears after the insertion of roughly \(n \log n \) edges (see the zoomed part of Figure 2 (b)). After that \(l_s \) increases rapidly to reach almost 90% of its height within just \(\approx 3n \log n \) edges, followed by a slow growth asymptotically approaching its maximum height only near \(O(n^2) \) edges. Since any newly inserted edge with at least one endpoint on the stick necessarily becomes a back edge, the sharp decrease in \(p_c \) can be attributed to the sharp increase in \(l_s \). We now theoretically study the reason behind the behavior of \(l_s \) using properties of random graphs, proving explicit bounds for \(l_s \) described in Theorem 1.1.

4.1 Length of the stick

The appearance of broomstick after insertion of \(n \log n \) edges as shown in Figure 2 (b) can be explained by the connectivity threshold for random graphs (refer to Theorem 2.1). Until the graph becomes connected (till \(\Theta(n \log n) \) edges), each component hangs as a separate subtree from the pseudo root \(s \), limiting the value of \(l_s \) to 0. To analyze the length of \(l_s \) for \(m = \Omega(n \log n) \) edges, we first prove a succinct bound on the probability of existence.
of a long path without branching during a DFS traversal in $G(n, p)$ in the following lemma.

Lemma 4.1. Given a random graph $G(n, p)$ with $p = (\log n_0 + c)/n_0$, for any integer $n_0 \leq n$ and $c \geq 1$, there exists a path without branching of length at least $n - n_0$ in the DFS tree of G with probability at least $1 - 2e^{-c}$.

Proof. Consider any arbitrary vertex $u = x_1$, the DFS traversal starting from x_1 continues along a path without branching so long as the currently visited vertex has at least one unvisited neighbor. Let x_j denotes the j^{th} vertex visited during the DFS on $G(n, p)$ starting from x_1. The probability that x_j has at least one neighbor in the unvisited graph is $1 - (1 - p)^{n-j}$.

$$
\frac{1 - \left(1 - \frac{\log n_0 + c}{n_0}\right) 2^{n_0}}{1 - \frac{1}{n_0 c}} \geq 1 - e^{-2\cdot e}
$$

Hence, the probability that DFS from u traverses a path of length $n - n_0$ is at least $\Pi_{i=0}^{\log_2 n} \left(1 - \frac{1}{t^2}\right)$ for $t = e^c$. The value of this expression is lower bounded by $1 - 2e^{-c}$ using the inequality $\Pi_{i=0}^{\log_2 t} \left(1 - \frac{1}{t^2}\right) > 1 - \frac{2}{7}$, that holds for every $c \geq 1$ since it implies $t > 2$.

In order to establish a tight bound on the length of stick, we need to choose the smallest value of n_0 that satisfies the following condition. Once we have a DFS path of length $n - n_0$ without branching, the subgraph induced by the remaining n_0 vertices and the last vertex of this path v (see Figure 3) is still connected. According to Theorem 2.1, for the graph $G(n, p)$ if the value of $p \geq \frac{1}{n_0} (\log n_0 + c)$, the subgraph on n_0 vertices will be connected with probability at least $1 - e^{-c}$. Combining this observation with Lemma 4.1 proves that the probability that DFS tree of $G(n, p)$ is a broomstick with stick length $\geq n - n_0$ is at least $1 - 3e^{-c}$.

This probability tends to 1 for any increasing function $c(n)$, where $c(n) \geq 1$ for all n.

Now, a graph property \mathcal{P} is called a monotone increasing graph property if $G \in \mathcal{P}$ implies that $G + e \in \mathcal{P}$, where $G + e$ represents the graph G with an edge e added to it. Clearly, the length of the stick being at least $n - n_0$ is a monotone increasing property, as adding more edges can only increase this length. Thus, being a monotone increasing property, standard arguments\(^3\) can be used to show that the above high probability bound for random graph $G(n, p)$ also holds for the random graph $G(n, m)$ having $m = \lfloor p \cdot \binom{n}{2}\rfloor$. Finally, using $c = \log n$ we get the proof of Theorem 1.1 as well as the following corollary.

Corollary 4.1. For any random graph $G(n, m)$ with $m = 2^n \log n$, its DFS tree will have bristles of size at most $n/2^t$ with probability $1 - O(1/n)$.

To demonstrate the tightness of our analysis we compare the length of the stick as predicted theoretically (for $c = 1$) with the length determined experimentally in Figure 4, which is shown to match exactly. This phenomenon emphasizes the accuracy and tightness of our analysis.

5 Implications of broomstick property

Though the broomstick structure of DFS tree was earlier studied by Sibeyn [52], the crucial difference in defining the stick to be without branches proved to be extremely significant. To emphasize its significance we now present a few applications of the broomstick structure of DFS tree, in particular Corollary 4.1 to state some interesting results.

\(^3\)Refer to proof of Theorem 4.1 in [20]
Note that the absence of branches on the stick is crucial for all of the following applications.

Theorem 5.1. For a uniformly random sequence of edge insertions, the number of edge insertions with both endpoints in bristles of the DFS tree will be $O(n \log n)$

Proof. We split the sequence of edge insertions into phases and analyze the expected number of edges inserted in bristles in each phase. In the beginning of first phase there are $n \log n$ edges. In the i^{th} phase, the number of edges in the graph grow from $2^{i-1} n \log n$ to $2^i n \log n$. It follows from Corollary 4.1 that n_i, the size of bristles in the i^{th} phase, will be at most $n/2^{i-1}$ with probability $1 - O(1/n)$. Notice that each edge inserted during i^{th} phase will choose its endpoints randomly uniformly. Therefore, in i^{th} phase the expected number of edges with both endpoints in bristles are

$$m_i = \frac{n_i^2}{n^2} \leq 2^i n \log n / 2^{2(i-1)} = n \log n / 2^{i-2}$$

Hence, the expected number of edges inserted with both endpoints in bristles is $\sum_{i=1}^{\log n} m_i = O(n \log n)$.

In order to rebuild the DFS tree after insertion of a cross edge, it is sufficient to rebuild only the bristles of the broomstick, leaving the stick intact (as cross edges cannot be incident on it). Corollary 4.1 describes that the size of bristles decreases rapidly as the graph becomes denser making it easier to update the DFS tree. This crucial insight is not exploited by the algorithm SDFS, SDFS-Int or WDFS. We now state the property of ADFS that exploits this insight implicitly.

Property P2: ADFS modifies only the bristles of the DFS tree keeping the stick intact.

We define an incremental algorithm for maintaining a DFS for random graph to be bristle-oriented if executing the algorithm A on G is equivalent to executing the algorithm on the subgraph induced by the bristles. Clearly, ADFS is bristle-oriented owing to property P2 and the fact that it processes only the edges with both endpoints in rerooted subtree (refer to Section 2.3). We now state an important result for any bristle-oriented algorithm (and hence ADFS) as follows.

Theorem 5.2. For any bristle-oriented algorithm A if the expected total time taken to insert the first $2n \log n$ edges of a random graph is $O(n^\alpha \log^\beta n)$ (where $\alpha > 0$ and $\beta \geq 0$), the expected total time taken to process any sequence of m edge insertions is $O(m + n^\alpha \log^\beta n)$.

Proof. Recall the phases of edge insertions described in the proof of Lemma 5.1, where in the i^{th} phase the number of edges in the graph grow from $2^{i-1} n \log n$ to $2^i n \log n$. The size of bristles at the beginning of i^{th} phase is $n_i = n/2^{i-1}$ w.h.p.. Further, note that the size of bristles is reduced to half during the first phase, and the same happens in each subsequent phase w.h.p. (see Corollary 4.1). Also, the expected number of edges added to subgraph represented by the bristles in i^{th} phase is $O(n_i \log n)$ (recall the proof of Lemma 5.1). Since A is bristle-oriented, it will process only the subgraph induced by the bristles of size n_i in the i^{th} phase. Thus, if A takes $O(n^\alpha \log^\beta n)$ time in first phase, the time taken by A in the i^{th} phase is $O(n_i^\alpha \log^\beta n_i)$. The second term $O(m)$ comes from the fact that we would need to process each edge to check whether it lies on the stick. This can be easily done in $O(1)$ time by marking the vertices on the stick. The total time taken by A is $O(n^\alpha \log^\beta n)$ till the end of the first phase and in all subsequent phases is given by the following

$$m + \sum_{i=2}^{\log n} cn_i^\alpha \log^\beta n_i \leq \sum_{i=2}^{\log n} c \left(\frac{n}{2^{i-1}} \right)^\alpha \log^\beta \left(\frac{n}{2^{i-1}} \right)$$

$$\leq m + cn^\alpha \log^\beta n \sum_{i=2}^{\log n} \frac{1}{2^{(1-\alpha)i}}$$

$$\leq m + c \cdot c' n^\alpha \log^\beta n \left(\sum_{i=2}^{\log n} \frac{1}{2^{(1-\alpha)i}} = c', \text{for } \alpha > 0 \right)$$

Thus, the total time taken by A is $O(m + n^\alpha \log^\beta n)$.

Lemma 5.1 and Lemma 5.2 immediately implies the similarity of ADFS1 and ADFS2 as follows.

Equivalence of ADFS1 and ADFS2 On insertion of a cross edge, ADFS performs a path reversal and collects the back edges that are now converted to cross edges, to be iteratively inserted back into the graph. ADFS2 differs from ADFS1 only by imposing a restriction on the order in which these collected edges are processed. However, for sparse graphs ($m = O(n)$) this restriction does not change its worst case performance (see Table 1). Now, Lemma 5.2 states that the time taken by ADFS to incrementally process any number of edges is of the order of the time taken to process a sparse graph (with only $2n \log n$ edges). Thus, ADFS1 performs similar to ADFS2 even for dense graphs. Particularly, the time taken by ADFS1 for insertion of any $m \leq \binom{n}{2}$ edges is $O(n^2 \sqrt{\log n})$, i.e., $O(n^{3/2} m_{1/2}^{1/2})$ for $m_0 = 2n \log n$. Thus, we have the following theorem.

Theorem 5.3. Given a uniformly random sequence of arbitrary length, the expected time complexity of ADFS1 for maintaining a DFS tree incrementally is $O(n^2 \sqrt{\log n})$.

Remark: The factor of $O(\sqrt{\log n})$ in the bounds of ADFS1 and ADFS2 comes from the limitations of our analysis whereas empirically their performance matches exactly.
the logarithmic scale. As expected SDFS2 processes
\[\sim \]
m compares the total number of edges processed for insertion of \(m = \binom{n}{2} \) edges for different values of \(n \). Figure 5 (a) compares the number of edges processed per edge insertion for \(n = 1000 \) and up to \(n\sqrt{n} \) edge insertions. See Figure 12 for corresponding time plot.

6 New algorithms for Random Graphs

Inspired by Lemma 5.1 and Lemma 5.2 we propose the following new algorithms.

6.1 Simple variant of SDFS (SDFS2) for random undirected graphs

We propose a \textit{bristle-oriented} variant of SDFS which satisfies the properties \(P_1 \) and \(P_2 \) of ADFS, i.e., it rebuilds only the bristles of the DFS tree on insertion of only cross edges. This can be done by marking the vertices in the bristles as unvisited and performing the DFS traversal from the root of the bristles. Moreover, we also remove the non-tree edges incident on the \textit{stick} of the DFS tree. As a result, SDFS2 would process only the edges in the bristles, making it \textit{bristle-oriented}. Now, according to Lemma 5.2 the time taken by SDFS2 for insertion of \(m = 2n \log n \) edges (and hence any \(m \leq \binom{n}{2} \)) is \(O(m^2) = O(n^2 \log^2 n) \). Thus, we have the following theorem.

\textbf{Theorem 6.1.} Given a random graph \(G(n,m) \), the expected time taken by SDFS2 for maintaining a DFS tree of \(G \) incrementally is \(O(n^2 \log^2 n) \).

We now compare the performance of the proposed algorithm SDFS2 with the existing algorithms. Figure 5 (a) compares the total number of edges processed for insertion of \(m = \binom{n}{2} \) edges, as a function of number of vertices in the logarithmic scale. As expected SDFS2 processes \(\tilde{O}(n^2) \) edges similar to ADFS. Figure 5 (b) compares the number of edges processed per edge insertion as a function of number of inserted edges. Again, as expected SDFS2 performs much better than WDFS and SDFS-Int, performing asymptotically equal to ADFS as the performance differs only when the graph is very sparse (\(\approx n \log n \)). Interestingly, despite the huge difference in number of edges processed by SDFS2 and ADFS (see Figure 5 (a)), SDFS2 is faster than ADFS and equivalent to ADFS1 in practice (see Figure 12 (a)).

6.2 Experiments on directed graphs and DAGs

The proposed algorithm SDFS2 also works for directed graphs. It is easy to show that Corollary 4.1 also holds for directed graphs (with different constants). Thus, the properties of broomstick structure and hence the analysis of SDFS2 can also be proved for directed graphs using similar arguments. The significance of this algorithm is highlighted by the fact that there \textit{does not} exist any \(o(m^2) \) time algorithm for maintaining incremental DFS in general directed graphs. Moreover, FDFS also performs very well and satisfies the properties \(P_1 \) and \(P_2 \) (similar to ADFS in undirected graphs).

Note that extension of FDFS for directed graphs is not known to have complexity \(o(m^2) \), yet for random directed graphs we can prove it to be \(\tilde{O}(n^2) \) using Lemma 5.2.

We now compare the performance of the proposed algorithm SDFS2 with the existing algorithms in the directed graphs. Figure 6 (a) compares the total number of edges processed for insertion of \(m = \binom{n}{2} \) edges, as a function of number of vertices in the logarithmic scale. As expected SDFS2 processes \(\tilde{O}(n^2) \) edges similar to FDFS. Figure 6 (b) compares the number of edges processed per edge insertion as a function of number of inserted edges for directed graphs. Thus, the proposed SDFS2 performs much better than SDFS, and asymptotically equal to FDFS. Again despite the huge difference in number of edges processed by SDFS2 with respect to FDFS, it is equivalent to FDFS in practice (see Figure 6 (a) and Figure 13 (a)).

Finally, we compare the performance of the proposed algorithm SDFS2 with the existing algorithms in DAGs. Figure 7 (a) compares the total number of edges processed for insertion of \(m = \binom{n}{2} \) edges, as a function of number of vertices in the logarithmic scale. Both SDFS and SDFS-Int perform equally which was not the case when the experiment was performed on undirected (Figure 1) or directed graphs (Figure 6). Moreover, SDFS2 processes around \(\tilde{O}(n^3) \) edges...
which is more than the proven bound of $\tilde{O}(n^2)$ for undirected and directed graphs. However, FDFS processes $\tilde{O}(n^2)$ edges as expected. Figure 7 (b) compares the number of edges processed per edge insertion as a function of number of inserted edges. Again, both SDFS and SDFS-Int perform similarly and SDFS2 does not perform asymptotically equal to FDFS even for dense graphs. Notice that the number of edges processed by SDFS2 does not reach a peak and then asymptotically move to zero as in case of undirected and general directed graphs. Also, FDFS performs much better (similar to ADFS for undirected graphs) for DAGs as compared to directed graphs. Again, despite superior performance on random DAGs, for general DAGs the analysis of FDFS can be shown to be tight (see Appendix B).

To understand the reason behind this poor performance of SDFS-Int and SDFS2 on DAGs, we compare the variation in length of broomstick for the undirected graphs, general directed graphs and DAGs in Figure 7 (c). The length of the broomstick varies as expected for undirected and general directed graphs but always remains zero for DAGs. This is because the stick will appear only if the first neighbor of the pseudo root s visited by the algorithm is the first vertex (say v_1) in the topological ordering of the graph. Otherwise v_1 hangs as a separate child of s because it is not reachable from any other vertex in the graph. Since the edges in $G(n,m)$ model are permuted randomly, with high probability v_1 may not be the first vertex to get connected to s. The same argument can be used to prove branchings at every vertex on the stick. Hence, with high probability there would be some bristles even on the pseudo root s. This explains why SDFS-Int performs equal to SDFS as it works same as SDFS until all the vertices are visited. SDFS2 only benefits from the inserted edges being reverse cross edges which are valid in a DFS tree and hence avoids rebuilding on every edge insertion. Thus, Corollary 4.1 and hence the bounds for SDFS2 proved in Theorem 6.1 are not valid for the
case of DAGs as resulting in performance described above. Moreover, the absence of the broomstick phenomenon can also be proved for other models of random graphs for DAGs [12] using the same arguments.

Finally, Lemma 5.1 also inspires interesting applications of SDFS2 in the semi-streaming environment as follows.

6.3 Semi-streaming algorithms In the streaming model we have two additional constraints. Firstly, the input data can be accessed only sequentially in the form of a stream. The algorithm can do multiple passes on the stream, but cannot access the entire stream. Secondly, the working memory is considerably smaller than the size of the entire input stream. For graph algorithms, a semi-streaming model allows the size of the working memory to be $O(n)$.

The DFS tree can be trivially computed using $O(n)$ passes over the input graph in the semi-streaming environment, each pass adding one vertex to the DFS tree. However, computing the DFS tree in even $O(1)$ passes is considered hard [18]. To the best of our knowledge, it remains an open problem to compute the DFS tree using even $o(n)$ passes in any relaxed streaming environment [46, 50]. Now, some of the direct applications of a DFS tree in undirected graphs are answering connectivity, bi-connectivity and 2-edge connectivity queries. All these problems are addressed efficiently in the semi-streaming environment using a single pass by the classical work of Westbrook and Tarjan [57]. On the other hand, for the applications of a DFS tree in directed graphs as strong connectivity, strong lower bounds of space for single-pass semi-streaming algorithms have been shown. Borradaile et al. [8] showed that any algorithm requires a working memory of $\Omega(\epsilon m)$ to answer queries of strong connectivity, acyclicity or reachability from a vertex require with probability greater than $(1 + \epsilon)/2$.

We now propose a semi-streaming algorithm for maintaining Incremental DFS for random graphs. The key idea to limit the storage space required by this algorithm is to just discard those edges from the stream whose at least one endpoint is on the stick of the DFS tree. As described earlier, this part of DFS tree corresponding to the stick will never be modified by the insertion of any edge. If both the endpoints of the edge lie in bristles, we update the DFS tree using ADFS/SDFS2. Lemma 5.1 implies that the expected number of edges stored will be $O(n \log n)$. In case we use SDFS2 (for directed graphs) we also delete the non-tree edges incident on the stick. Hence, we have the following theorem.

Theorem 6.2. Given a random graph $G(n, m)$, there exists a single pass semi-streaming algorithm for maintaining the DFS tree incrementally, that requires $O(n \log n)$ space.

Further, for random graphs even strong connectivity can be solved using a single pass in the streaming environment by SDFS2 as follows. Now, SDFS2 keeps only the tree edges and the edges in the bristles. For answering strong connectivity queries, we additionally store the highest edge from each vertex on the stick. The strongly connected components can thus be found by a single traversal on the DFS tree [53]. Thus, our semi-streaming algorithm SDFS2 not only gives a solution for strong connectivity in the streaming setting but also establishes the difference in its hardness for general graphs and random graphs. To the best of our knowledge no such result was known for any graph problem in streaming environment prior to our work. Thus, we have the following theorem.

Theorem 6.3. Given a random graph $G(n, m)$, there exists a single pass semi-streaming algorithm for maintaining a data structure that answers strong connectivity queries in G incrementally, requiring $O(n \log n)$ space.

7 Incremental DFS on real graphs

We now evaluate the performance of existing and proposed algorithms on real graphs. Recall that for random graphs, bristles represent the entire DFS tree until the insertion of $\Theta(n \log n)$ edges. This forces SDFS2 to rebuild the whole tree requiring total $\Omega(n^2)$ time even for sparse random graphs, whereas ADFS and FDFS only partially rebuild the DFS tree and turn out to be much better for sparse random graphs (see Figure 5 (b), 6 (b) and 7 (b)). Now, most graphs that exist in the real world are known to be sparse [40]. Here again, both ADFS and FDFS perform much better as compared to SDFS2 and other existing algorithms. Thus, we propose another simple variant of SDFS (SDFS3), which is both easy to implement and performs very well even on real graphs (much better than SDFS2).

7.1 Proposed algorithms for real graphs (SDFS3) The primary reason behind the superior performance of ADFS and FDFS is the partial rebuilding of the DFS tree upon insertion of an edge. However, the partial rebuilding by SDFS2 is significant only when the broomstick has an appreciable size, which does not happen until the very end in most of the real graphs. With this insight, we propose new algorithms for directed and undirected graphs with the aim to rebuild only the part of DFS tree affected by the edge insertion.

- **Undirected Graphs**
 On insertion of a cross edge (x, y), ADFS rebuilds one of the two candidate subtrees hanging from $LCA(x, y)$ containing x or y. We propose algorithm SDFS3 that will rebuild only the smaller subtree (less number of vertices) among the two candidate subtrees (say $x \in T_1$ and $y \in T_2$). This heuristic is found to be extremely efficient compared to rebuilding one of T_1 or T_2 arbitrarily. The smaller subtree, say T_2, can be identified efficiently by simultaneous traversal in both T_1 and T_2, and terminate as soon as either one is
completely traversed. This takes time of the order of \(|T_2|\). We then mark the vertices of \(T_2\) as unvisited and start the traversal from \(y\) in \(T_2\), hanging the newly created subtree from edge \((x, y)\).

- **Directed Graphs**

 On insertion of an anti-cross edge \((x, y)\), FDFS rebuilds the vertices reachable from \(y\) in the subgraph induced by a candidate set of subtrees described in Section 2.3. FDFS identifies this affected subgraph using the DFN number of the vertices. Thus, this DFN number also needs to be updated separately after rebuilding the DFS tree. This is done by building an additional data structure while the traversal is performed, which aids in updating the DFN numbers efficiently. We propose SDFS3 to simply mark all the subtrees in this candidate set as unvisited and proceed the traversal from \((x, y)\). The traversal then continues from each unvisited root of the subtrees marked earlier, implicitly restoring the DFN number of each vertex.

 We shall now see that these simple heuristics lead to a significant improvement in their empirical performance.

7.2 **Experimental Setup**

The algorithms are implemented in C++ using STL (standard template library), and built with GNU g++ compiler (version 4.4.7) with optimization flag

= \textit{O3}. The correctness of our code was exhaustively verified on random inputs by ensuring the absence of anti-cross edges (or cross edge) in directed (or undirected) graphs. Our experiments were run on Intel Xeon E5-2670V 2.5 GHz 2 CPU-IvyBridge (20-cores per node) on HP-Proliant-SL-230s-Gen8 servers with 1333 MHz DDR3 RAM of size 768 GB per node. Each experiment was performed using a single dedicated processor.

7.3 **Datasets**

We consider the following types of graphs:

- **Internet topology:** These datasets represent snapshots of network topology on CAIDA project \((\text{asCaida} [35, 36])\), Oregon Route Views Project’s Autonomous Systems \((\text{ass733} [35, 36])\) and Internet autonomous systems \((\text{intTop} [58, 32])\).

- **Collaboration networks:** These datasets represent the collaboration networks as recorded on arxiv’s High-Energy-Physics groups of Phenomenology \((\text{arxivPh} [34, 14, 32])\) and Theory \((\text{arxivTh} [34, 14, 32])\), and on DBLP \((\text{dblp} [37, 14, 32])\).

- **Online communication:** These datasets represent communication of linux kernel messages \((\text{lnKMMsg} [32])\), Gnutella p2p file sharing network \((\text{gnutella} [49, 36])\), Slashdot’s message exchange \((\text{slashdt [21, 32]}\), Facebook’s wall posts \((\text{fbWall [56, 32]})\), Democratic National Committee’s (DNC) email correspondence \((\text{dncCoR }[32])\), Enron email exchange \((\text{enron} [31, 32])\), Digg’s reply correspondence \((\text{digg [11, 32]}\) and UC Irvine message exchange \((\text{ucrv [47, 32]})\).

- **Friendship networks:** These datasets represent the friendship networks of Flickr \((\text{flickr} [44, 32])\, Digg \((\text{diggnw} [23, 32])\), Epinion \((\text{epinion} [38, 32])\), Facebook \((\text{fbFrnd} [56, 32])\) and Youtube \((\text{youTb [43, 32]})\).

- **Other interactions:** These datasets represent the other networks as Chess game interactions \((\text{chess} [32])\), user loans on Prosper \((\text{perLoan [32]}\)\, hyperlink network of Wikipedia \((\text{wikiHy} [43, 32])\\), voting in elections on Wikipedia \((\text{wikiEl} [33, 32])\) and conflict resolution on Wikipedia \((\text{wikiC [9, 32]}\).

In some of these datasets there are some rare instances in which edges are deleted (not present in new snapshot). Thus, in order to use these datasets for evaluation of incremental algorithms we ignore the deletion of these edges (and hence reinsertion of deleted edges). Moreover, in several datasets the edges are inserted in form of batches (having same insertion time), where the number of batches are significantly lesser than the number of inserted edges. Almost all the algorithms (except FDFS and SDFS3) can be tweaked to handle such batch insertions more efficiently, updating the DFS tree once after insertion of an entire batch, instead of treating every edge insertion individually.

7.4 **Evaluation**

The comparison of the performance of the existing and the proposed algorithms for real undirected graphs and real directed graphs is shown in Table 2 and Table 3 respectively. To highlight the relative performance of different algorithms, we present the time taken by them relative to that of the fastest algorithm (see Appendix E for the exact time and memory used by different algorithms). In case the time exceeded 100hrs the process was terminated, and we show the relative time in the table with a ‘\(\ast\)’ sign and the ratio corresponding to 100hrs. If all algorithms exceed 100hrs giving no fastest algorithm, their corresponding relative time is not shown (\(-\)). For each dataset, the first row corresponds to the experiments in which the inserted edges are processed one by one, and the second row corresponds to the experiments in which the inserted edges are processed in batches \((m/n)\) denotes the corresponding number of batches). The density of a graph can be judged by comparing the average degree \((m/n)\) with the number of vertices \((n)\). Similarly, the batch density of a graph can be judged by comparing the average batch size \((m/m^\ast)\) with the number of vertices \((n)\).

For undirected graphs, Table 2 clearly shows that ADFS1 outperforms all the other algorithms irrespective of whether the edges are processed one by one or in batches (except youTb). Moreover, despite ADFS2 having better
Table 2: Comparison of time taken by different algorithms, relative to the fastest (shown in bold), for maintaining incremental DFS on real undirected graphs. See Table 4 for corresponding table comparing the exact performance.

Dataset	m	n	m/n	ADFS	ADFS2	SDFS1	SDFS2	SDFS3	WDFS
arxvTh	22.91K	2.44M	0.10	1.88	249.45	3.09K	>22.56K	>22.56K	>22.56K
arxvPh	28.09K	3.15M	0.10	1.88	249.45	3.09K	>22.56K	>22.56K	>22.56K
dblp	1.28M	3.32M	0.38	57.94	2.54K	>36.29K	>36.29K	>36.29K	>36.29K
youTb	3.22M	9.38M	0.30	353.00	>347.00	>347.00	>347.00	>347.00	>347.00

Table 3: Comparison of time taken by different algorithms, relative to the fastest (shown in bold), for maintaining incremental DFS on real directed graphs. See Table 5 for corresponding table comparing the exact performance.

Dataset	m	n	m/n	FDFS	SDFS1	SDFS2	SDFS3	WDFS
dncCoR	1.89K	5.52K	0.35	2.92	1.55	1.00	2.27	9.86
uclv	1.90K	20.30K	0.10	10.69	1.69	1.00	2.25	21.81
chess	7.30K	60.05K	0.10	8.22	1.94	1.00	2.54	20.00
diggNo	30.40K	85.25K	0.10	2.80	1.00	1.33	3.60	14.50
arxCaida	31.30K	97.84K	0.32	3.13	1.00	4.31	11.60	64.71
wikiEl	7.12K	103.62K	0.07	14.55	1.01	1.00	2.58	51.80
slashDt	51.08K	130.37K	0.39	2.55	1.03	1.00	2.78	5.85
inKMsg	27.93K	237.13K	0.10	8.49	1.00	1.00	2.07	3.79
fbWall	46.95K	264.00K	0.18	1.29	1.00	1.00	2.30	23.13
enron	87.27K	320.15K	0.27	3.67	1.00	1.00	2.73	17.11
genetella	62.59K	501.75K	0.12	8.02	1.23	1.00	2.54	19.13
opinion	131.83K	840.80K	0.15	6.38	1.00	1.00	2.29	17.77
digg	279.63K	1.73M	0.16	6.19	1.00	1.18	3.96	>29.28
perLoan	89.27K	3.33M	0.27	37.31	1.00	1.00	3.48	<30.92
flickr	2.30M	33.14M	0.07	14.39	-	-	-	-
wikiHy	1.87M	39.95M	0.04	21.36	-	-	-	-

Observations: For real undirected graphs

- ADFS outperforms all other algorithms by a huge margin, with ADFS1 mildly better than ADFS2.
- SDFS2 mildly improves SDFS, whereas SDFS3 significantly improves SDFS2.
- WDFS performs worse than SDFS for sparse graphs.

For directed graphs, Table 3 shows that both FDFS and SDFS3 perform almost equally well (except perLoan) and outperform all other algorithms when the edges are processed one by one. In general SDFS3 outperforms FDFS marginally when the graph is dense (except slashDt and perLoan). The significance of SDFS3 is further highlighted by the fact that it is much simpler to implement as compared to FDFS. Again, SDFS2 significantly improves over SDFS (> 2 times). Further, by adding a simple heuristic, SDFS3 improves over SDFS2 (> 2 times), and this improvement becomes more pronounced when the graph is very dense (perLoan). Now, in case of batch updates, both FDFS and SDFS3 are unable to exploit the insertion of edges in batches. Hence, they perform worse than SDFS and SDFS2 follows.
for batch updates, if the average size of a batch is at least 600. SDFS and SDFS2 perform almost equally well in such cases with SDFS marginally better than SDFS2 when the batch density is significantly high \(\text{asCaída, gnutella and flickr.}\)

Observations: For real directed graphs

- FDFS and SDFS3 outperform all other algorithms unless batch density is high, where SDFS is better.
- SDFS3 performs better than FDFS in dense graphs.
- SDFS2 mildly improves SDFS, and SDFS3 mildly improves SDFS2.

Overall, we propose the use of ADFS1 and SDFS3 for undirected and directed graphs respectively. Although SDFS3 performs very well on real graphs, its worst case time complexity is no better than that of SDFS on general graphs (see Appendix C). Finally, in case the batch density of the input graph is substantially high, we can simply use the trivial SDFS algorithm.

Remark: The improvement of SDFS3 over SDFS2 is substantially better on undirected graphs than on directed graphs. Even then ADFS1 outperforms SDFS3 by a huge margin. Also, when the batch density is extremely high \(\text{youTb}\), ADFS1 performs only mildly slower than the fastest algorithm (SDFS). These observations further highlight the significance of ADFS1 in practice.

8 Conclusions

Our experimental study of existing algorithms for incremental DFS on random graphs presented some interesting inferences. Upon further investigation, we discovered an important property of the structure of DFS tree in random graphs: the broomstick structure. We then theoretically proved the variation in length of the stick of the DFS tree as the graph density increases, which also exactly matched the experimental results. This led to several interesting applications, including the design of an extremely simple algorithm SDFS2. This algorithm theoretically matches and experimentally outperforms the state-of-the-art algorithm in dense random graphs. It can also be used as a single pass semi-streaming algorithm for incremental DFS as well as strong connectivity in random graphs, which also establishes the difference in hardness of strong connectivity in general graphs and random graphs. Finally, for real world graphs, which are usually sparse, we propose a new simple algorithm SDFS3 which performs much better than SDFS2. Despite being extremely simple, it almost always matches the performance of FDFS in directed graphs. However, for undirected graphs ADFS was found to outperform all algorithms (including SDFS3) by a huge margin motivating its use in practice.

For future research directions, recall that ADFS (see Inference \(I_2\)) performs extremely well even on sparse random graphs. Similarly, FDFS and SDFS3 also perform very good even on sparse random graphs. However, none of these have asymptotic bounds any better than \(O(n^2)\). After preliminary investigation, we believe that the asymptotic bounds for ADFS and FDFS (in DAGs) should be \(O(m + n \log n)\), and for SDFS3 and FDFS (in directed graphs) should be \(O(m + n^{4/3} \log n)\), for random graphs. It would be interesting to see if these bounds can be proved theoretically.

References

[1] David Alberts, Giuseppe Cattaneo, and Giuseppe F. Italiano. An empirical study of dynamic graph algorithms. *ACM Journal of Experimental Algorithmics*, 2:5, 1997.

[2] Paola Alimonti, Stefano Leonardi, and Alberto Marchetti-Spaccamela. Average case analysis of fully dynamic reachability for directed graphs. *ITA*, 30(4):305–318, 1996.

[3] Holger Bast, Kurt Mehlhorn, Guido Schäfer, and Hisao Tamaki. Matching algorithms are fast in sparse random graphs. *Theor. Comput. Syst.*, 39(1):3–14, 2006.

[4] Surender Baswana, Shrejritt Chaudhury, Keerti Choudhary, and Shahbaz Khan. Dynamic DFS in dense graphs: breaking the \(O(m)\) barrier. In *SODA*, pages 730–739, 2016.

[5] Surender Baswana and Keerti Choudhary. On dynamic DFS tree in directed graphs. In *MFCS, Proceedings, Part II*, pages 102–114, 2015.

[6] Surender Baswana and Shahbaz Khan. Incremental algorithm for maintaining a DFS tree for undirected graphs. *Algorithmica*, 79(2):466–483, 2017.

[7] Béla Bollobás. The evolution of random graphs. *Transactions of the American Mathematical Society*, 286 (1):257–274, 1984.

[8] Glencora Borradaile, Claire Mathieu, and Theresa Migler. Lower bounds for testing digraph connectivity with one-pass streaming algorithms. *CoRR*, abs/1404.1323, 2014.

[9] Ulrike Brandes, Patrick Kenis, Jürgen Lerner, and Denise van Raaij. Network analysis of collaboration structure in wikipedia. In *Proceedings of the 18th International Conference on World Wide Web*, WWW, pages 731–740, 2009.

[10] Giuseppe Cattaneo, Pompeo Faruolo, Umberto F. Petrillo, and Giuseppe F. Italiano. Maintaining dynamic minimum spanning trees: An experimental study. *Discrete Applied Mathematics*, 158(5):404–425, 2010.

[11] Munmun D. Choudhury, Hari Sundaram, Ajita John, and Dore D. Seligmann. Social synchrony: Predicting mimicry of user actions in online social media. In *Proc. Int. Conf. on Computational Science and Engineering*, pages 151–158, 2009.

[12] Daniel Cordeiro, Grégory Mounié, Swann Perarnau, Denis Trystram, Jean-Marc Vincent, and Frédéric Wagner. Random graph generation for scheduling simulations. In *3rd International Conference on Simulation Tools and Techniques*, SIMUTools ’10, Malaga, Spain - March 16 - 18, 2010, page 60, 2010.
[13] Steven T. Crocker. An experimental comparison of two maximum cardinality matching programs. In Network Flows And Matching. Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, October 14-16, 1991, pages 519–538, 1991.
[14] Erik Demaine and Mohammad T. Hajiaghayi. BigDND: Big Dynamic Network Data. http://projects.csail.mit.edu/ddn/, 2014.
[15] Camil Demetrescu and Giuseppe F. Italiano. Experimental analysis of dynamic all pairs shortest path algorithms. ACM Trans. Algorithms, 2(4):578–601, 2006.
[16] Paul Erdős and Alfréd Rényi. On random graphs I. Publications Mathematicae (Debrecen), 6:290–297, 1959.
[17] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. In Publication of the Mathematical Institute of the Hungarian Academy of Sciences, pages 17–61, 1960.
[18] Martin Farach-Colton, Tsan-sheng Hsu, Meng Li, and Meng-Tsung Tsai. Finding articulation points of large graphs in linear time. In Algorithms and Data Structures, WADS, pages 363–372, 2015.
[19] Paolo G. Franciosa, Giorgio Gambosi, and Umberto Nanni. The incremental maintenance of a depth-first-search tree in directed acyclic graphs. Inf. Process. Lett., 61(2):113–120, 1997.
[20] Alan M. Frieze and Michal Karonski. Introduction to Random Graphs. Cambridge University Press, 2015.
[21] Vicen Gómez, Andreas Kaltenbrunner, and Vicente López. Statistical analysis of the social network and discussion threads in Slashdot. In Proc. Int. World Wide Web Conf., pages 645–654, 2008.
[22] Robert Görke, Pascal Maillard, Andrea Schumm, Christian Staudt, and Dorothea Wagner. Dynamic graph clustering combining modularity and smoothness. ACM Journal of Experimental Algorithmics, 18, 2013.
[23] Tad Hogg and Kristina Lerman. Social dynamics of Digg. EPJ Data Science, 1(5), 2012.
[24] John E. Hopcroft and Richard M. Karp. An $n^{5/2}$ algorithm for maximum matchings in bipartite graphs. SIAM J. Comput., 2(2):225–231, 1973.
[25] John E. Hopcroft and Robert E. Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568, 1974.
[26] Michael Huang and Clifford Stein. Extending search phases in the Micali-Vazirani algorithm. In 16th International Symposium on Experimental Algorithms, SEA 2017, June 21-23, 2017, London, UK, pages 10:1–10:19, 2017.
[27] Raj Iyer, David R. Karger, Harirahan Rahul, and Mikkel Thorup. An experimental study of polylogarithmic, fully dynamic, connectivity algorithms. ACM Journal of Experimental Algorithmics, 6:4, 2001.
[28] Abhabongse Janthong. Streaming algorithm for determining a topical ordering of a digraph. UG Thesis, Brown University, 2014.
[29] Sarantos Kapidakis. Average-case analysis of graph-searching algorithms. PhD Thesis, Princeton University, no. 286, 1990.
[30] John D. Kececioglu and A. Justin Pecqueur. Computing maximum-cardinality matchings in sparse general graphs. In Algorithm Engineering, 2nd International Workshop, WAE '92, Saarbrücken, Germany, August 20-22, 1998, Proceedings, pages 121–132, 1998.
[31] Bryan Klimt and Yiming Yang. The Enron corpus: A new dataset for email classification research. In Proc. European Conf. on Machine Learning, pages 217–226, 2004.
[32] Jérôme Kunegis. KONECT - The Koblenz Network Collection. http://konect.uni-koblenz.de/networks/, October 2016.
[33] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Governance in social media: A case study of the Wikipedia promotion process. In Proc. Int. Conf. on Weblogs and Social Media, 2010.
[34] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking diameters. ACM Trans. Knowledge Discovery from Data, 1(1):1–40, 2007.
[35] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graphs over time: densification laws, shrinking diameters and possible explanations. In Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, Illinois, USA, August 21-24, 2005, pages 177–187, 2005.
[36] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data/, June 2014.
[37] Michael Ley. The DBLP computer science bibliography: Evolution, research issues, perspectives. In Proc. Int. Symposium on String Processing and Information Retrieval, pages 1–10, 2002.
[38] Paolo Massa and Paolo Avesani. Controversial users demand local trust metrics: an experimental study on epinions.com community. In Proc. American Association for Artificial Intelligence Conf., pages 121–126, 2005.
[39] R. Bruce Mattingly and Nathan P. Ritchey. Implementing O(NM) cardinality matching algorithm. In Network Flows And Matching, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, October 14-16, 1991, pages 539–556, 1991.
[40] Guy Melancon. Just how dense are dense graphs in the real world?: A methodological note. In Proceedings of the 2006 AVI Workshop on BEyond Time and Errors: Novel Evaluation Methods for Information Visualization, BELIV '06, pages 1–7, 2006.
[41] Ulrich Meyer. Single-source shortest-paths on arbitrary directed graphs in linear average-case time. In Proceedings of the Twelfth Annual Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA, pages 797–806, 2001.
[42] Silvio Micali and Vijay V. Vazirani. An $O(\sqrt{(|V|)} |E|)$ algorithm for finding maximum matching in general graphs. In 21st Annual Symposium on Foundations of Computer Science, Syracuse, New York, USA, 13-15 October 1980, pages 17–27, 1980.
[43] Alan Mislove. Online Social Networks: Measurement, Analysis, and Applications to Distributed Information Systems. PhD thesis, Rice University, Department of Computer Science, May 2009.
[44] Alan Mislove, Hema S. Koppula, Krishna P. Gummadi, Peter Druschel, and Bobby Bhattacharjee. Growth of the Flickr social network. In Proceedings of the 1st ACM SIGCOMM
The LCA/LA data structures used by dynamic data structure for answering LCA and LA (level ancestor) queries. The time taken for every vertex whose ancestor is changed in the DFS tree. Figure 8 shows that the time taken by these data structures is insignificant in comparison to the total time taken by the algorithm. Analyzing the number of edges processed instead of time taken allows us to ignore the time taken for maintaining and querying this LCA/LA data structure. Moreover, the performance of ADFS and FDFS is directly proportional to the number of edges processed along with some vertex updates (updating DFN numbers for FDFS and LCA/LA structure for ADFS). However, the tasks related to vertex updates can be performed in $O(1)$ time using dynamic trees [55]. Thus, the actual performance of these algorithms is truly depicted by the number of edges processed, justifying our evaluation of relative performance of different algorithms by comparing the number of edges processed.

A Performance analysis in terms of edges

Most of the algorithms analyzed in this paper require a dynamic data structure for answering LCA and LA (level ancestor) queries. The LCA/LA data structures used by Baswana and Khan [6] takes $O(1)$ amortized time to maintain the data structure for every vertex whose ancestor is changed in the DFS tree. However, it is quite difficult to implement and seems to be more of theoretical interest. Thus, we use a far simpler data structure whose maintenance require $O(\log n)$ time for every vertex whose ancestor is changed in the DFS tree. Figure 8 shows that the time taken by these data structures is insignificant in comparison to the total time taken by the algorithm. Analyzing the number of edges processed instead of time taken allows us to ignore the time taken for maintaining and querying this LCA/LA data structure. Moreover, the performance of ADFS and FDFS is directly proportional to the number of edges processed along with some vertex updates (updating DFN numbers for FDFS and LCA/LA structure for ADFS). However, the tasks related to vertex updates can be performed in $O(1)$ time using dynamic trees [55]. Thus, the actual performance of these algorithms is truly depicted by the number of edges processed, justifying our evaluation of relative performance of different algorithms by comparing the number of edges processed.

B Worst Case Input for FDFS

We now describe a sequence of $O(m)$ edge insertions in a directed acyclic graph for which FDFS takes $\Theta(mn)$ time to maintain DFS tree. Consider a directed acyclic graph $G = (V, E)$ where the set of vertices V is divided into two sets $A = \{a_1, a_2, ..., a_{n/2}\}$ and $B = \{b_1, b_2, ..., b_{n/2}\}$, each of size $n/2$. The vertices in both A and B are connected in the form of a chain (see Figure 9 (a), which is the DFS tree of the graph). Additionally, set of vertices in B are connected using $m - n/2$ edges (avoiding cycles), i.e. there can exist edges between b_i and b_j, where $i < j$. For any $n \leq m \leq \binom{n}{2}$, we can add $\Theta(m)$ edges to B as described above. Now, we add $n/2$ more edges as described below.

We first add the edge (a_1, b_1) as shown in Figure 9 (b). On addition of an edge (x, y), FDFS processes all outgoing
edges of the vertices having rank $\phi(x) < \phi'(y)$, where ϕ is the post order numbering of the DFS tree. Clearly, the set of such vertices is the set B. Hence, all the $\Theta(m)$ edges in B will be processed to form the final DFS tree as shown in Figure 9 (c). We next add the edge (a_2, b_1) which will again lead to processing of all edges in B, and so on. This process can be repeated $n/2$ times adding each (a_i, b_1), for $i = 1, 2, ..., n/2$ iteratively. Thus, for $n/2$ edge insertions, FDFS processes $\Theta(m)$ edges each, requiring a total of $\Theta(mn)$ time to maintain the DFS tree. Hence, overall time required for insertion of m edges is $\Theta(mn)$, as FDFS has a worst case bound of $O(mn)$. Thus, we have the following theorem.

Theorem B.1. For each value of $n \leq m \leq \left(\frac{n}{2}\right)$, there exists a sequence of m edge insertions for which FDFS requires $\Theta(mn)$ time to maintain the DFS tree.

C Worst Case Input for SDFS3

We now describe a sequence of m edge insertions for which SDFS3 takes $\Theta(m^2)$ time. Consider a graph $G = (V, E)$ where the set of vertices V is divided into two sets V' and I, each of size $\Theta(n)$. The vertices in V' are connected in the form of a three chains (see Figure 10 (a)) and the vertices in I are isolated vertices. Thus, it is sufficient to describe only the maintenance of DFS tree for the vertices in set V', as the vertices in I will exist as isolated vertices connected to the dummy vertex s in the DFS tree (recall that s is the root).

We divide the sequence of edge insertions into k phases, where each phase is further divided into k stages. At the beginning of each phase, we identify three chains having vertex sets from the set V', namely $A = \{a_1, ..., a_k\}$, $X = \{x_1, ..., x_p\}$ in the first chain, $B = \{b_1, ..., b_l\}$ and $Y = \{y_1, ..., y_q\}$ in the second chain and $C = \{c_1, ..., c_q\}$, $Z = \{z_1, ..., z_r\}$ in the third chain as shown in Figure 10 (a). The constants $k, p, q, r = \Theta(\sqrt{m})$ such that $q > r + k$ and $p \approx q + r + k$. We then add $e_x = \Theta(m)$ edges to the set Z, $e_y = e_z + k + 1$ edges to Y and $e_x = e_z + e_y$ edges to X, which is overall still $\Theta(m)$. The size of A and C is k in the first phase and decreases by 1 in each the subsequent phases. Figure 10 (a) shows the DFS tree of the initial graph.

Now, the first stage of the phase starts with addition of the cross edge (b_1, c_1) as shown in Figure 10 (b). Clearly, s is the LCA of the inserted edge and SDFS3 would rebuild the smaller of the two subtrees $T(b_1)$ and $T(c_1)$. Since $q > r$, SDFS3 would hang $T(c_1)$ through edge (b_1, c_1) and perform partial DFS on $T(c_1)$ requiring to process $\Theta(m)$ edges in Z. This completes the first stage with the resultant DFS tree shown in the Figure 10 (c). This process continues for k stages, where in i^{th} stage, $T(c_1)$ would initially hang from b_{i-1} and (b_1, c_1) would be inserted. The DFS tree at the end of k^{th} stage is shown in Figure 10 (d). At the end of k stages, every vertex in B is connected to the vertex c_1, hence we remove it from C for the next phase. For this we first add the edge (a_1, c_1). Since both $T(b_1)$ and $T(a_1)$ have approximately same number of vertices (as $p \approx q + r + k$), we add constant number of vertices (if required) to Z from I to ensure $T(b_1)$ is rebuilt. The resultant DFS tree is shown in Figure 10 (e). Finally, we add (a_2, c_1). Again both $T(c_1)$ and $T(a_2)$ have approximately same number of vertices, so we add constant number of vertices from I to X ensuring $T(a_2)$ is rebuilt as shown in Figure 10 (f). Note the similarity between Figures 10 (a) and 10 (f). In the next phase, the only difference is that $A' = \{a_2, ..., a_k\}$, $C' = \{c_2, ..., c_k\}$ and $s' = c_1$. In each phase one vertex each from A and C are removed and constant number of vertices from I are removed. Hence the phase can be repeated k times.

Thus, we have k phases each having k stages. Further, in each stage we add a single cross edge forcing SDFS3 to process $\Theta(m)$ edges to rebuild the DFS tree. Thus, the total number of edges added to the graph is $k \cdot k = \Theta(m)$ and the total time taken by ADFS1 is $k \cdot k = \Theta(m)$ and $\Theta(m)$ and hence we get the following theorem for any $n \leq m \leq \left(\frac{n}{2}\right)$.

Theorem C.1. For each value of $n \leq m \leq \left(\frac{n}{2}\right)$, there exists a sequence of m edge insertions for which SDFS3 requires $\Theta(m^2)$ time to maintain the DFS tree.

Remark: The worst case example mentioned above (say G_1) would also work without X, Y and Z. Consider a second example (say G_2), where we take size of $A = 2 \cdot k + 2, B = k + 1$ and $C = k$ and the vertices of C have $\Theta(m)$ edges amongst each other. The same sequence of edge insertions would also force SDFS3 to process $\Theta(m^2)$ edges. However, G_1 also ensures the same worst case bound for SDFS3 if it chooses the subtree with lesser edges instead of the subtree with lesser vertices, which is an obvious workaround of the example G_2. The number of edges e_x, e_y and e_z are chosen precisely to counter that argument.
Figure 10: Example to demonstrate the tightness of the SDFS3. (a) Beginning of a phase with vertex sets A, B and X. (b) Phase begins with addition of two vertex sets C and D. The first stage begins by inserting a back edge (a_1, b_k) and a cross edge (b_1, c_k). (c) The rerooted subtree with the edges in $A \times X$ and (b_k, a_1) as cross edges. (d) Final DFS tree after the first stage. (e) Final DFS tree after first phase. (f) New vertex sets A', B' and X for the next phase.

Figure 11: For various existing algorithms, the plot shows (a) Total time taken (logarithmic scale) for insertion of $m = \binom{n}{2}$ edges for different values of n, (b) Total time taken for $n = 1000$ and up to $n \sqrt{n}$ edge insertions, (c) Time taken per update for $n = 1000$ and up to $n \sqrt{n}$ edge insertions.

Figure 12: Comparison of existing and proposed algorithms on undirected graphs: (a) Total time taken (logarithmic scale) for insertion of $m = \binom{n}{2}$ edges for different values of n. (b) Time taken per edge insertion for $n = 1000$ and up to $n \sqrt{n}$ edge insertions.
In this section we present the corresponding time plots for experiments performed earlier which were measured in terms of number of edges processed. The comparison of the existing incremental algorithms for random undirected graphs are shown in Figure 11. The comparison of the existing and proposed algorithms for random undirected graphs, random directed graphs and random DAGs are shown in Figure 12, Figure 13 and Figure 14 respectively.

E Exact performance comparison for real graphs

The performance of different algorithms in terms of time and memory required on real undirected graphs and real directed graphs is shown in Table 4 and Table 5 respectively.
Table 4: Comparison of time taken by different algorithms in seconds(s)/minutes(m)/hours(h) and memory required in kilobytes(K)/megabytes(M)/gigabytes(G) for maintaining incremental DFS on real directed graphs.

Dataset	n	m/m *	ADFS1	ADFS2	SDFS3	SDFS2	SDFS	WDFS								
ass733	7.72K	21.47K	2.78	0.08s	35.09M	0.15s	37.17M	2.73s	39.91M	51.16s	33.25M	1.51m	33.25M	3.99m	450.66M	
inTop	107.72K	3.10	0.05s	160.14M	1.07s	162.58M	55.66s	150.17M	31.50m	152.12M	1.13m	148.95M	2.04	2.57G		
fbFnd	63.73K	12.82	10.26s	187.67M	22.39	837.23M	25.06s	725.08M	5.75s	747.55M	41.80	746.68M	33.48	15.13G		
wikiC	116.84K	2.03M	17.36	15.96s	1.89G	29.01s	1.91G	13.71	1.65G	16.7G	>100.00	-	>100.00	-	-	
arxivTh	22.91K	2.44M	106.72	9.01s	2.10G	16.28s	2.11G	4.25	1.81G	8.53s	1.81G	>100.00	-	14.68	35.9G	
arxivPh	20.09K	3.15M	112.07	9.92s	2.69G	23.59s	2.71G	9.58	2.33G	7.00s	>100.00	-	>100.00	-	31.19	50.8G
dblp	2.86K	1.39K	8.15s	2.69G	1.12s	2.70G	9.61s	2.33G	14.06	2.32G	26.11	2.32G	7.18	26.1G		
youTb	3.22M	9.38M	29.11	17.29M	13.29G	1.02s	14.04G	100.00	>100.00	-	>100.00	-	>100.00	-	-	
203.00	46.18K	23.44M	13.27G	42.08M	11.55G	>100.00	-	18.67	12.28G		18.62m	12.28G	80.93	165.8G		

Table 5: Comparison of performance of different algorithms in terms of time in seconds(s)/minutes(m)/hours(h) and memory required in kilobytes(K)/megabytes(M)/gigabytes(G) for maintaining incremental DFS on real directed graphs.

Dataset	n	m/m *	FDFS	FDFS3	SDFS3	SDFS2	SDFS				
dncCoR	1.89K	5.52K	2.92	0.34s	9.22M	0.22s	8.61M	0.50s	8.50M	2.17s	8.50M
ucIrV	1.90K	20.30K	10.69	0.88s	17.47M	0.52s	15.30M	1.17s	22.94M	11.34s	15.17M
chess	7.30K	60.05K	8.22	26.03s	44.58M	13.39s	38.42M	34.00s	38.20M	4.46s	45.98M
diggNu	30.40K	85.25K	2.80	2.23m	85.05M	2.98s	82.64M	8.03s	82.36M	32.33	81.58M
asCaUa	31.30K	97.84K	3.13	35.21s	97.45M	2.53s	87.00M	7.98s	87.95M	37.98s	86.48M
wikiE	7.12K	103.62K	14.55	16.21s	65.69M	16.02s	61.53M	41.27s	66.11M	13.83s	56.23M
sloahDt	51.08K	130.37K	2.55	14.30s	127.23M	13.98s	123.47M	38.50s	116.55M	1.33s	122.88M
lnKMg	27.93K	237.13K	4.89	9.52s	161.89M	5.22s	139.08M	12.51s	139.38M	2.02s	138.66M
fbWall	46.95K	264.00K	5.62	27.11s	200.05M	21.08s	175.05M	52.52s	174.80M	5.21s	174.81M
entreX	87.27K	320.15K	3.67	10.32m	258.92M	16.00s	240.08M	58.40s	235.11M	11.63s	235.12M
gnutella	62.59K	501.75K	8.02	29.11m	345.39M	23.64m	286.66M	1.00s	284.76M	7.54s	284.88M
opinion	131.83K	840.80K	6.38	3.28h	556.69M	2.58	487.06M	5.71s	478.86M	44.34s	479.22M
gegg	279.63K	1.73M	6.19	3.42h	1.13	4.02s	986.58M	13.53s	977.58M	>100.00	-
perLoan	89.27K	3.33M	37.31	9.39M	1.33G	4.32	986.58M	13.20s	977.58M	>100.00	-
flickr	2.30M	33.14M	14.39	>100.00	-	>100.00	-	>100.00	-	>100.00	-
wikiHy	1.87M	39.95M	21.36	>100.00	-	>100.00	-	>100.00	-	>100.00	-
2.20K	18.18K	>100.00	>100.00	>100.00	-	1.44	16.99G	1.63	16.99G		

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited