Solution structure of the first RNA recognition motif domain of human spliceosomal protein SF3b49 and its mode of interaction with a SF3b145 fragment

Kanako Kuwasako,1,2,3* Nobukazu Nameki,4 Kengo Tsuda,2,3 Mari Takahashi,2,3 Atsuko Sato,5 Naoya Tochio,2,6 Makoto Inoue,2 Takaho Terada,2 Takanori Kigawa,2 Naohiro Kobayashi,2 Mikako Shirouzu,2,3 Takuhiro Ito,2,3 Taichi Sakamoto,7 Kaori Wakamatsu,4 Peter Güntert,8,9 Seizo Takahashi,5 Shigeyuki Yokoyama,2,10 and Yutaka Muto1,2,3*

1Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
2RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
3RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
4Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
5Department of Chemical & Biological Sciences, Japan Women’s University, Mejirodai, Bunkyo, Tokyo 112-8681, Japan
6Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
7Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
8Tatsuo Miyazawa Memorial Program, RIKEN Genomic Sciences Center, Yokohama 230-0045, Japan
9Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute of Advanced Studies, Goethe University Frankfurt, Max-von-Laue-Str, Frankfurt am Main 60438, Germany
10RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan

Received 22 September 2016; Accepted 10 November 2016
DOI: 10.1002/pro.3080
Published online 16 November 2016 proteinscience.org

Abstract: The spliceosomal protein SF3b49, a component of the splicing factor 3b (SF3b) protein complex in the U2 small nuclear ribonucleoprotein, contains two RNA recognition motif (RRM) domains. In yeast, the first RRM domain (RRM1) of Hsh49 protein (yeast orthologue of human SF3b49) reportedly interacts with another component, Cus1 protein (yeast orthologue of human SF3b145 fragment). This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Abbreviations: HSQC, heteronuclear single quantum coherence spectroscopy; RRM, RNA recognition motif; SF3b, splicing factor 3b; snRNP, small nuclear ribonucleoprotein; TALOS, torsion angle likelihood obtained from shift and sequence similarity

Additional Supporting Information may be found in the online version of this article.

Grant sponsors: This work was supported by the RIKEN Structural Genomics/Proteomics Initiative (RSGI), National Project on Protein Structural and Functional Analyses of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and Musashino University Gakuin Tokubetsu Kenkyuhi to K.K.

*Correspondence to: Kanako Kuwasako, Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan. E-mail: kanameki@musashino-u.ac.jp or Yutaka Muto, Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan. E-mail: ymuto@musashino-u.ac.jp
SF3b145). Here, we solved the solution structure of the RRM1 of human SF3b49 and examined its mode of interaction with a fragment of human SF3b145 using NMR methods. Chemical shift mapping showed that the SF3b145 fragment spanning residues 598–631 interacts with SF3b49 RRM1, which adopts a canonical RRM fold with a topology of β1-α1-β2-β3-α2-β4. Furthermore, a docking model based on NOESY measurements suggests that residues 607–616 of the SF3b145 fragment adopt a helical structure that binds to RRM1 predominantly via α1, consequently exhibiting a helix–helix interaction in almost antiparallel. This mode of interaction was confirmed by a mutational analysis using GST pull-down assays. Comparison with structures of all RRM domains when complexed with a peptide found that this helix–helix interaction is unique to SF3b49 RRM1. Additionally, all amino acid residues involved in the interaction are well conserved among eukaryotes, suggesting evolutionary conservation of this interaction mode between SF3b49 RRM1 and SF3b145.

Keywords: nuclear magnetic resonance; RNA recognition motif; SF3b49; SF3b145; U2 snRNP

Introduction

Pre-mRNA splicing occurs in the nucleus through two successive trans-esterification reactions, in which the U2 small nuclear ribonucleoprotein (snRNP) binds to the branch point sequence in pre-mRNA for the formation of the active center of splicing machinery. The recognition of the branch point sequence involves splicing factor 3b (SF3b) protein complex, which is an essential component of the U2 snRNP. In human, SF3b is a large protein complex composed of seven proteins: SF3b155, SF3b145, SF3b130, SF3b49, SF3b14b, SF3b10, and p14. The SF3b49 protein interacts with the SF3b145 protein, forming a protein complex that is thought to play a role in tethering U2 snRNP to the branch site. Human SF3b49, composed of 424 amino acid residues, contains two consecutive RNA recognition motif (RRM) domains (first RRM domain [RRM1] for residues 15–86 and RRM2 for residues 102–174), while human SF3b145, composed of 895 residues, contains two domains of unknown function and structure, according to the Pfam database. One of the human SF3b145 domains is DUF382 (domain of unknown function, residues 549–597) and the other is the PSP domain (proline-rich domain, residues 605–657), a domain type often found in spliceosome-associated proteins. The region including DUF382 and PSP is termed the Cus1 domain. The sequence and domain architecture of both SF3b49 and SF3b145 are well conserved among eukaryotes ranging from yeast to human.

An in vitro systematic evolution of ligands by exponential enrichment system showed that SF3b49 from Caenorhabditis elegans possesses specific RNA-binding activity that resides in RRM2, but not or rarely in RRM1. Additionally, yeast two-hybrid screening and pull-down assays showed that RRM1 of Hsh49 protein (yeast orthologue of human SF3b49) binds to the Cus1 domain of Cus1 protein (yeast orthologue of human SF3b145). Thus, SF3b49 RRM1 is considered to be required for the interaction with SF3b145. However, no further detailed information about SF3b49 RRM1 interactions, particularly in humans, has been reported.

An RRM domain is one of the most abundant protein domains in eukaryotes and was first identified as the protein module that plays important roles in sequence-specific RNA binding. The canonical RRM domain consists of a four-stranded antiparallel β-sheet packed against two α-helices with a β1-α1-β2-β3-α2-β4 topology. It contains two well-conserved consensus sequences termed RNP1 ([K/R]-G-[F/Y]-[G/A]-[F/Y]-[I/L/V]-X-[F/Y]) and RNP2 ([I/L/V]-[F/Y]-[I/L/V]-X-N-L), which are included in the β3 and β1 strands, respectively. The RRM domain typically interacts with RNA on its β-sheet surface through specific intermolecular hydrogen bonds and stacking interactions mediated by the conserved and exposed aromatic rings located on the β1 and β3 strands. However, several RRMs have since been revealed to function as protein–protein interaction modules. Some RRMs interact with a protein via the β-sheet surface, as in the case of RNA recognition, while others interact via the opposite α-helical surface. For example, among splicing factors, the RRM domain of p14, a component of the SF3b complex, is classified into the former group and that of the small subunit of U2 snRNP auxiliary factor (U2AF35) is classified into the latter. The RRM domains of both types have characteristic amino acid residues required in the protein–protein interaction. The interaction with p14 RRM involves Gly and Thr laying side-by-side in β2 and β3, respectively, and Ile and Val laying side-by-side in β1 and β3, respectively; this combination of four residues is unique to the p14 RRM. In contrast, the U2AF RRm is classified into a novel class of protein recognition motif, and this unusual RRM is termed U2AF homology motif (UHM). The UHM family proteins always have a D/E-X-D/E motif in α1 and a R/K-W-X-F motif in the region followed by α2. However, the RRM1 of SF3b49 has none of the characteristic amino acid residues or motifs that have been previously identified as being required for RRM–protein interaction.

In this study, using multidimensional NMR spectroscopy, we solved the solution structure of the human SF3b49 RRM1 and examined its mode of interaction with a fragment of human SF3b145. Intermolecular NOE and mutational analyses indicated a limited number of residues crucial for this interaction...
interaction, which led to the establishment of a model of docking between the RRM domain and the fragment. Our findings also reveal a novel mode of interaction with SF3b49 RRM1 in that, on binding, part of the SF3b145 fragment adopts a helical structure and contacts an α-helix of the RRM domain.

Results
Structure determination of human SF3b49 RRM1
Chemical shift assignments for human SF3b49 RRM1 were performed by standard methods using a combination of triple resonance NMR experiments. All of the main-chain chemical shifts, except for Gly55 and 90.9% of the side-chain chemical shifts, were assigned in residues Thr14–Lys88 of SF3b49 RRM1. We solved the solution structures using NOE distance restraints obtained from 15N- and 13C-edited NOESY spectra. The structure calculations were performed using CYANA 2.0.17. An average of 25 restraints per residue were utilized for these calculations (Supporting Information Table S1). The structure composed of Thr14–Lys88 was well defined by the NMR data.
Supporting Information Table S1 and Fig. S1). SF3b49 RRM1 adopts a canonical RRM fold with the topology of babbab [Fig. 2(A)]. 13 Residues Thr14–Gly18 (b1), Val39–His43 (b2), Tyr56–Phe61 (b3), and Arg85–Lys88 (b4) constitute a four-stranded antiparallel b-sheet [Fig. 1(B)]. Helix 1 (a1, Glu26–Phe33) and helix 2 (a2, Glu64–Met74) connect b1–b2 and b3–b4, respectively [Fig. 1(B)]. An electrostatic potential surface of SF3b49 RRM1 is also shown in Figure 2(B). Furthermore, a characteristic feature of SF3b49 RRM1 is found in the a-helical surface, where there is a rather hydrophobic region in the space between a1 and a2. This region appears to form a concave structure, as often seen in other RRMs.

Interaction analysis between SF3b49 RRM1 and the SF3b145 fragment

RRM1 of yeast SF3b49 reportedly interacts with Cus1, which corresponds to yeast SF3b145, in two-hybrid experiments.11 Another report using two-hybrid experiments showed that yeast SF3b49 interacts with the fragment spanning residues 229–437 of yeast SF3b145, which corresponds to residues 553–788 in the human counterpart [Fig. 1(C)], but does not interact with either of the two parts into which the fragment was divided (residues 229–311 and residues 312–437).12 Additionally, a pull-down assay showed that yeast SF3b49 binds to the SF3b145 fragment spanning residues 171–311.12 However, expression of the SF3b145 fragment spanning residues 229–311 in Escherichia coli was undetectable. The authors therefore suggested that the region spanning SF3b145 residues 229–311 includes a binding site of yeast SF3b49, although the peptide composed of only this region may be instable or fold incorrectly.12 We examined if human SF3b49 RRM1 can bind to the human SF3b145 fragment spanning residues 553–631, which corresponds to residues 229–311 in the yeast counterpart [Fig. 1(C)]. We constructed a corresponding N-terminal GST-tagged fragment [termed the GST-SF3b145(553–631) fragment] and purified the fused protein as well as the GST protein as a control. However, we could not remove the GST tag from the GST-SF3b145(553–631) fragment because the GST-cleaved fragment becomes aggregated easily (data not shown). This would be consistent with the reported failure of expression of the region spanning residues 229–311 in the yeast counterpart. We then compared a series of [1H,15N]-heteronuclear single quantum coherence spectroscopy (HSQC) titration spectra of 15N-labeled SF3b49 RRM1 with GST with those of 15N-labeled SF3b49 RRM1 with the GST-SF3b145(553–631) fragment [Fig. 3(A,B)]. No obvious chemical shift changes were observed following the addition of GST to 15N-labeled SF3b49 RRM1 [Fig. 3(A)] vs. 15N-labeled SF3b49 RRM1 with the GST-SF3b145(553–631) fragment [Fig. 3(A)]. In contrast, when 15N-labeled SF3b49 RRM1 was titrated with the GST-SF3b145(553–631) fragment, distinct chemical shift changes were observed [Fig. 3(B)], suggesting that human SF3b49 RRM1 interacts with the fragment of human SF3b145.

To clarify the interaction region of SF3b145, we divided the fragment into two parts: a fragment
spanning residues 553–597 [termed the SF3b145(553–597) fragment], which is part of DUF382, and a fragment spanning residues 598–631 [the SF3b145(598–631) fragment], which consists of part of the PSP domain and the linker region between the two domains [Fig. 1(A)]. We then titrated 15N-labeled SF3b49 RRM1 with each fragment. When the SF3b145(598–631) fragment was added to 15N-labeled SF3b49 RRM1, the chemical shift changes that occurred [Fig. 3(D)] were almost the same as those that occurred on the addition of the GST-SF3b145(553–631) fragment [Fig. 3(B)]. In contrast, the addition of the SF3b145(553–597) fragment to
15N-labeled SF3b49 RRM1 did not cause any obvious chemical shift changes [Fig. 3(C)]. These findings show that the region ranging from residue 598 to 631 in SF3b145 is required for interaction with SF3b49 RRM1. Additionally, mapping of the chemical shift changes on the SF3b49 RRM1 structure suggested that a hydrophobic region in the α-helical surface is involved in the interaction with the SF3b145 fragment [Fig. 3(E,F)].

Furthermore, to confirm the interaction between SF3b49 RRM1 and the SF3b145 fragment, we prepared the 15N-labeled SF3b145(598–631) fragment and performed the reverse titration experiments. In the [1H, 15N]-HSQC spectra of the 15N-labeled SF3b145(598–631) fragment alone, the 1H chemical shifts of these resonances were observed within a narrow range between approximately 8.0 and 8.5 ppm [Fig. 4(A), red cross-peaks], indicating that this SF3b145 fragment predominantly adopts a random coil structure. In contrast, on addition of SF3b49 RRM1 to the 15N-labeled fragment, distinct chemical shift changes were observed in the [1H, 15N]-HSQC spectrum [Fig. 4(A)], showing that the fragment becomes structural on its binding to the RRM domain. Within the SF3b145 fragment, the most significant chemical shift changes occurred in residues Leu609–Val621, suggesting that these residues contribute to the interaction with SF3b49 RRM1 [Fig. 4(B)]. Based on the chemical shift changes, we estimate that the exchange rate between free and bound states is in the fast–medium range in the NMR time-scale (estimated K_d value is nearly 50 μM).

NOESY measurements and docking model of SF3b49 RRM1 with the SF3b145 fragment

To obtain information about the direct interaction between SF3b49 RRM1 and the SF3b145 fragment, we obtained 13C- and 15N-edited NOESY spectra for a mixture of the labeled and non-labeled proteins. Observation of the intramolecular NOEs of the SF3b145(598–631) fragment in the presence of SF3b49 RRM1 indicate that the region spanning residues Gly607–Ser616 adopts a helical structure.
Additionally, we observed 15 intermolecular NOEs between Leu609, Glu612, and Ile615 in the SF3b145(598–631) fragment and Lys23, Leu28, Leu32, Gln35, and Tyr80 of SF3b49 RRM1 (Supporting Information Table S2). The most obvious NOEs were confirmed between the aromatic ring protons of Tyr80 of SF3b49 RRM1 and the H' protons of Glu612 and H' and H'' protons of Ile615 of the SF3b145 fragment (Supporting Information Fig. S3). The formation of a helical structure within the SF3b145 fragment allows Leu609, Glu612, and Ile615 to adopt a linear arrangement. This positioning of the three residues is supported by the observed intermolecular NOEs from the three residues. These findings suggest that one side of the helical structure of the SF3b145(598–631) fragment contacts SF3b49 RRM1.

We then established a docking model based on the intermolecular NOE distance restraints (Supporting Information Table S2). The structure calculations were performed using CYANA 2.0.17. The 15 intermolecular restraints and 85 intramolecular...
Additionally, it seems likely that H contacts the alkyl side chain of Glu612 [Fig. 5(A)]. The side chain of Leu28, Leu32, and the aromatic ring of Tyr80 contact the fragment, respectively, and the side chain of Leu28 or Leu32 with an Ala residue severely abolished the detected band, and that of Tyr80 significantly decreased the band intensity [Fig. 5(D)]. These results confirm that Leu28, Leu32, and Tyr80 in SF3b49 RRM1 directly contribute to complex formation with the SF3b145 fragment.

Discussion

The present study shows that the region spanning residues Gly607–Ser616 of SF3b145 adopts a helical structure on binding to the α1 of SF3b49 RRM1 mainly via a hydrophobic interaction. All of the residues involved in this interaction are well preserved among eukaryotes [Fig. 1(C)], suggesting evolutionary conservation of this mode of interaction between SF3b49 RRM1 and the fragment of SF3b145.

In many RRM s with peptide-binding activity, the α-helical surface is used as a ligand-binding site. Figure 6 shows schematic diagrams of the relative positions of the two α-helices in an RRM domain and a bound protein fragment that are derived from the complex structures that have been determined thus far. The RRM interaction mode can be simply classified into two types, depending on whether the concave between α1 and α2 primarily contributes to the interaction. In the ligand complex with UHM family proteins21 and RNPS1–Acinus,26 the ligand in an extended conformation binds to the concave between α1 and α2, where an invariant Trp residue of the ligand is inserted into a hydrophobic pocket formed by α1 and α2 residues. Similarly, in the complex of PTB–Raver1, instead of Trp, a pair of Leu residues either crosses over both α1 and α2 (Snu17p–Bud13p),28 binds mainly to α2 (ALYREF–ICP27 and ALYREF–ORF57),29,30 or binds only to α1 (Snu17p–Pml1p).28 Additionally, Snu17p–Bud13p, ALYREF–ICP27, and ALYREF–ORF57 each have a Trp residue that interacts with α1 residues, while Snu17p–Pml1p has Phe and Leu residues instead of a Trp residue that interacts with residues of α1. Furthermore, the bound fragments of Bud13p, ICP27, and Pml1p form an extended conformation, while that of ORF57 forms a helical conformation. We found that in the complex of SF3b49 RRM1–SF3b145, the bound ligand forms a helical conformation and...
crosses over \(\alpha_1\) without interacting with \(\alpha_2\), resulting in a helix–helix interaction in almost antiparallel (Fig. 6). Thus, a comparison among the known RRM binding modes indicates that this interaction mode is unique to SF3b49 RRM1. This example also reflects the diversity of RRM–protein interactions. It seems likely that because various splicing factors have multiple RRM domains each binding to different proteins, the existence of such distinct binding modes for RRM domains may be effective at preventing unwanted crosstalk during the complicated interactions of protein–protein and RNA–protein that occur at various stages of the splicing process.

The region within the SF3b145(598–631) fragment that is involved in the interaction with SF3b49 is located in the PSP domain, the function of which has remained unknown [Fig. 1(A)]. Thus, the present results are the first to show that in humans the PSP domain of SF3b145 has a protein–protein interaction site. However, it is not clear from this study if the free forms of the region spanning residues 598–631 and the PSP domain each form a stable structure. In humans, according to the Pfam database, only two PSP domains have been found: one in SF3b145 and one in the Zinc finger CCHC domain-containing protein 8 (ZCCHC8). Given that ZCCHC8 is thought to be a spliceosome-associated protein, PSP domains may be generally related to protein–protein interactions during the splicing process.

It was reported that Vpr, an accessory gene product of human immunodeficiency virus type 1 (HIV-1), associates with SF3b49.\(^{31,32}\) Vpr interferes with the formation of the SF3b49–SF3b145 complex and inhibits the splicing of cellular pre-mRNA, therefore having multiple biological influences on both viral and cellular proliferation. In light of our results, a potential candidate for the Vpr-binding site is a region in the SF3b145 PSP domain that includes residues 598–631 because Vpr binding here could mask the site of interaction with SF3b49 RRM1.

The structure of a yeast-activated spliceosome including the U2 snRNP was very recently determined by cryo-electron microscopy. Although the electron density of Hsh49 (yeast orthologue of SF3b49) is so weak in the EM structure that there is no available information on the detailed molecular interactions, the RRM1 of Hsh49 obviously interacts with Cus1.\(^{33}\) There appears to be a helix–helix interaction between the RRM1 and Cus1, which is consistent with the result obtained in our present study. Additionally, the low binding affinity between SF3b49 RRM1 and the SF3b145 fragment may be related to the weak electron density of Hsh49. In fact, a similar weak binding affinity between structural domains is found in some spliceosomal protein complexes with dynamic properties. For example, the third RRM of RBM39 and the fragment of U2AF65, components of splicing machinery, showed a \(K_d\) value of \(\sim 20\ \mu M\).

SF3b49 RRM1 is clearly involved in a type of protein-binding, but this structural study cannot
rule out the possibility that the RRM1 can also bind to some RNA because the SF3b49 RRM1 has a structural feature typical of RNA-binding capacity. The β-sheet surface of SF3b49 RRM1 has both negatively and positively charged clusters around the hydrophobic patch formed by the two well-conserved aromatic amino acid residues on β1 and β3 [Tyr16 and Phe58 in the RNP motifs, Fig. 1(B)]. It is possible that the RNA-binding activity of RRM1 is exhibited only in the complex form of two RRM domains that arises at a stage during the conformational changes of SF3b49 that occur in the course of the splicing process. Further studies will be required to obtain a comprehensive understanding of the roles of the SF3b49 RRM domains.

Materials and Methods

Protein expression and purification
For structure determination, the DNA encoding the RRM1 (Pro5–Leu96) of human SF3b49 (GenBank: BAD97042.1) was subcloned by PCR from the human cDNA clone with the ID RIKEN cDNA hss001003928. Note that the amino acid sequence of the expressed RRM protein differs only in position 75 (Asn vs. Asp) from that of the protein of SwissProt accession no. Q15427. The changed position is located at the C-terminal end and is located in a side nearly opposite from the interaction site in the helical region.

The DNA fragment was cloned into the expression vector pCR2.1 (Invitrogen, Carlsbad, CA) as a fusion with an N-terminal native His affinity tag and a TEV protease cleavage site. The 15N, 13C -labeled fusion with an N-terminal native His affinity tag and a TEV protease cleavage site was placed between the tag and the protein expression system from E. coli strain BL21 (DE3) cells with the Nde I/Bam HI sites of pGEX6P-1 (GE Healthcare). Each of the fragments of SF3b49 was cloned into the Eco RI/Sal I sites of pET-15b (Novagen). For structure determination, the DNA encoding the protein expression system from E. coli was synthesized using a cell-free protein expression system from E. coli.34,35 The resulting tagged protein was purified by a 5-ml His Trap column (GE Healthcare, Little Chalfont, Buckinghamshire, UK) with an imidazole gradient from 12 to 500 mM. After tag removal, the tag-free protein was further purified by HiTrap SP and HiTrap Q column chromatography (GE Healthcare).

For the NMR titration experiments and the pull-down assay, the RRM1 (Pro5–Leu96) of human SF3b49 was cloned into the Nde I/Bam HI sites of pET-15b (Novagen). Each of the fragments of SF3b145 (Q13435, 553–631), and 598–631), was cloned into the Eco RI/Sal I sites of pGEX6P-1 (GE Healthcare). In all constructs, a TEV protease cleavage site was placed between the tag and the protein sequences. E. coli strain BL21 (DE3) cells with the recombinant plasmids were grown at 37°C in LB medium supplemented with 50 mg/L of ampicillin for the non-labeled samples and in modified minimal medium supplemented with 50 mg/L of ampicillin for the 15N, 13C-labeled samples. After isopropyl β-D-1-thiogalactopyranoside induction (1 mM), the harvested cells were lysed, and the lysates were applied to a His Accept column (Nacalai Tesque) or a Glutathione Sepharose 4 Fast Flow column (GE Healthcare) eluted by the addition of imidazole or glutathione. The tag-free SF3b49 RRM1 was further purified by RESOURCE Q column chromatography (GE Healthcare). The GST-tagged SF3b145(553–631) and the tag-free SF3b145(598–631) were further purified by gel-filtration column chromatography (GE Healthcare). The peptides corresponding to the two non-labeled SF3b145 fragments (SF3b145(553–597) and SF3b145(598–631)) were purchased from Toray Research Center.

NMR spectroscopy and resonance assignments
The NMR samples were concentrated to approximately 1.0 mM in 20 mM d11-Tris-HCl buffer (pH 7.0), containing 100 mM NaCl, 1 mM 1,4-dl-dithiothreitol-d10 (d-DTT), and 0.02% NaN3 (in 90% H2O/10% D2O), using an Amicon Ultra-15 (5000 MWCO; Millipore). NMR experiments were performed at 25°C on 700 and 800 MHz spectrometers (Bruker AV700 and AV800) equipped with xyz-pulsed field gradients. Backbone and side-chain assignments were obtained by standard triple resonance experiments. All assignments were checked for consistency with three-dimensional 15N- and 13C-edited NOESY-HSQC spectra. Three-dimensional NOESY spectra were recorded with mixing times of 80–150 ms. The NMR data were processed with the program NMRPipe.36 Spectra were analyzed with the programs NMRView,40 KUJIRA,40 and SPARKY (T. D. Goddard and D. G. Kneller, SPARKY 3, University of California, San Francisco, CA).

Structure calculations
The three-dimensional structure was determined by combined automated NOESY cross-peak assignment and structure calculations with torsion angle dynamics implemented in the program CYANA 2.0.17.22 Dihedral angle constraints for φ and ψ were obtained from the main-chain and 13Cα chemical shift values using the program TALOS (torsion angle likelihood obtained from shift and sequence similarity), and by analyzing the NOESY spectra. Structure calculations started from 100 randomized conformers and used the standard CYANA simulated annealing schedule with 20,000 torsion angle dynamic steps per conformer. The 20 conformers with the lowest overall energy were subjected to restrained energy refinement with the program AMBER9, using the Generalized Born model.25 PROCHECK-NMR was used to validate the final structures. Structure figures were prepared with the program MOLMOL.

NMR titration experiments
For the chemical shift titration experiments, GST-SF3b145(553–631) was dissolved in the same buffer as the SF3b49 RRM1 sample to a concentration of
1 mM, and each of the two non-labeled SF3b145 fragments, SF3b145(553–597) and SF3b145(598–631), was dissolved to a concentration of 5 mM. The SF3b145(553–597) fragment often precipitated in the buffer utilized for the structure determination of SF3b49 RMs. Thus, we added choline-O-sulfate [2- (trimethylammonio)ethyl sulfate, COS] to each of the solutions to achieve a final concentration of 250 mM for protein solubilization and stabilization.15,46 Two-dimensional [1H, 15N]-HSQC spectra were recorded while increasing the concentrations of the GST-fused protein or of each of the SF3b145 fragments relative to that of SF3b49 RRM1 (0.2 mM) to a final ratio of 1:2 of SF3b49 RRM1:GST-fused protein or each of the fragments. The chemical shift titration experiments between the 15N-labeled SF3b145(598–631) fragment and the non-labeled SF3b49 RRM1 were performed in the same way, except for the number of increments of the titrations.

Intermolecular NOE between SF3b49 RRM1 and the SF3b145(598–631) fragment

We prepared 13C- and 15N-labeled SF3b145(598–631) and measured the 13C- and 15N-filtered NOESY spectra in the presence of the non-labeled SF3b49 RRM1 [2.0:1.0 molar ratio of SF3b49 RRM1:SF3b145(598–631)]. Simultaneously, we performed the NOESY experiment with the 13C- and 15N-labeled SF3b49 RRM1 and non-labeled SF3b145(598–631) to identify the intermolecular NOEs [1.0:2.0 molar ratio of SF3b49 RRM1:SF3b145(598–631)].

Pull-down assay and immunoblotting

His-tagged SF3b49 RRM1 and the GST-tagged SF3b145(598–631) fragment were expressed in *E. coli* cells, as described above. Cell lysates at volumes of 200 μL and 1 mL containing SF3b49 RRM1 and the SF3b145(598–631) fragment, respectively, were mixed, to which 25 μL of the glutathione sepharose resin was added. The resultant mixture was incubated for 30 min at 4°C, and then the resin was washed five times with PBS containing 0.05% Nonidet P-40 (Nacalai Tesque). The proteins bound to the resin were analyzed by SDS-PAGE and transferred to a PVDF membrane (Bio-Rad). His-tagged proteins were immunoblotted by Anti-His-tag mAb-HRP-DirectT (MBL). The protein was visualized using ImageQuant LAS-4000 (GE Healthcare).

Accession codes

The atomic coordinates for the ensemble of 20 energy-refined NMR conformers that represent the solution structures of the first RRM of SF3b49 have been deposited in the Protein Data Bank with accession code PDB 5GVQ.

Acknowledgment

The authors have no conflict of interest to report.

References

1. Nelson KK, Green MR (1989) Mammalian U2 snRNP has a sequence-specific RNA-binding activity. Genes Dev 3:1562–1571.
2. Pan ZQ, Prives C (1989) U2 snRNA sequences that bind U2-specific proteins are dispensable for the function of U2 snRNP in splicing. Genes Dev 3:1887–1898.
3. Champion-Arnaud P, Reed R (1994) The prespliceosome components SAP 49 and SAP 145 interact in a complex implicated in tethering U2 snRNP to the branch site. Genes Dev 8:1974–1983.
4. Das BK, Xia L, Palandjian L, Gozani O, Chyung Y, Reed R (1999) Characterization of a protein complex containing spliceosomal proteins SAPs 49, 130, 145, and 155. Mol Cell Biol 19:6796–6802.
5. Gozani O, Fold R, Reed R (1996) Evidence that sequence-independent binding of highly conserved U2 snRNP proteins upstream of the branch site is required for assembly of spliceosomal complex A. Genes Dev 10:233–243.
6. Gozani O, Potashkin J, Reed R (1998) A potential role for U2AF-SAP 155 interactions in recruiting U2 snRNP to the branch site. Mol Cell Biol 18:4752–4760.
7. MacMillan AM, Query CC, Allerson CR, Chen S, Verdiere GL, Sharp PA (1994) Dynamic association of proteins with the pre-mRNA branch region. Genes Dev 8:3008–3020.
8. Will CL, Urlaub H, Achsel T, Gentzel M, Wilm M, Lührmann R (2002) Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein. EMBO J 21:4978–4988.
9. Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics Chapter 2/Unit 2 3.
10. Tanaka Y, Ohta A, Terashima K, Sakamoto H (1997) The RNP domain: a sequence-specific RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372:432–438.
11. Igel H, Wells S, Perriman R, Ares M, Jr (1998) Conservation of structure and subunit interactions in yeast homologues of splicing factor 3b (SF3b) subunits. RNA 4:1–10.
12. Pauling MH, McPheeters DS, Ares M Jr (2000) Functional Cus1p is found with Hsh155p in a multiprotein splicing factor associated with U2 snRNA. Mol Cell Biol 20:2176–2185.
13. Oubridge C, Ito N, Evans PR, Teo CH, Nagai K (1994) Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372:432–438.
14. Nagai K, Oubridge C, Ito N, Avis J, Evans P (1995) The RNP domain: a sequence-specific RNA-binding domain involved in processing and transport of RNA. Trends Biochem Sci 20:235–240.
15. Bandzioh JS, Swanson MS, Dreyfuss G (1989) RNA-binding proteins as developmental regulators. Genes Dev 3:431–437.
16. Burd CG, Dreyfuss G (1994) Conserved structures and diversity of functions of RNA-binding proteins. Science 265:615–621.
17. Perez-Canadillas JM, Varani G (2001) Recent advances in RNA-protein recognition. Curr Opin Struct Biol 11:53–58.
18. Clery A, Blatter M, Allain FH (2008) RNA recognition motifs: boring? Not quite. Curr Opin Struct Biol 18:290–298.
19. Kuwasa K, Dohmame N, Inoue M, Shirouzu M, Taguchi S, Guntert P, Seraphin B, Muto Y, Yokoyama S (2008) Complex assembly mechanism and an RNA-binding mode of the human p14-SF3b155 spliceosomal
22. Kielkopf CL, Lucke S, Green MR (2004) U2AF homology motifs: protein recognition in the RRM world. Genes Dev 18:1513–1526.

23. Koradi R, Billeter M, Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14:51–55, 29–32.

24. Kurt Wuthrich (1986) NMR of proteins and nucleic acids. New York: Wiley.

25. Case DA, Cheatham TE, III, Darden T, Gohlke H, Luo R, Merz KM, Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688.

26. Murachelli AG, Ebert J, Basquin C, Le Hir H, Conti E (2012) The structure of the ASAP core complex reveals the existence of a Pinin-containing PSAP complex. Nat Struct Mol Biol 19:378–386.

27. Joshi A, Coelho MB, Kotik-Kogan O, Simpson PJ, Matthews SJ, Smith CW, Curry S (2011) Crystallographic analysis of polypryimidine tract-binding protein-Raver1 interactions involved in regulation of alternative splicing. Structure 19:1816–1825.

28. Wysoczanski P, Becker S, Zweckstetter M (2015) Structures of intermediates during RES complex assembly. Sci Rep 5:12545.

29. Tunnicliffe RB, Hautbergue GM, Kalra P, Jackson BR, Whitehouse A, Wilson SA, Golovanov AP (2011) Structural basis for the recognition of cellular mRNA export factor REF by herpes viral proteins HSV-1 ICP27 and HVS ORF57. PLoS Pathog 7:e1001244.

30. Tunnicliffe RB, Hautbergue GM, Wilson SA, Kalra P, Golovanov AP (2014) Competitive and cooperative interactions mediated RNA transfer from herpesvirus saimiri ORF57 to the mammalian export adaptor AYLRF. PLoS Pathog 10:e1003987.

31. Hashizume C, Kuramitsu M, Zhang X, Kurosawa T, Kamata M, Aida Y (2007) Human immunodeficiency virus type 1 Vpr interacts with spliceosomal protein SAP145 to mediate cellular pre-mRNA splicing inhibition. Microbes Infect 9:490–497.

32. Terada Y, Yasuda Y (2006) Human immunodeficiency virus type 1 Vpr induces G2 checkpoint activation by interacting with the splicing factor SAP145. Mol Cell Biol 26:8149–8158.

33. Yan C, Wan R, Bai R, Huang G, Shb Y (2016) Structure of a yeast activated spliceosome at 3.5 A resolution. Science 353:904–911.

34. Kigawa T, Yabuki T, Matsuda N, Matsuda T, Nakajima R, Tanaka A, Yokoyama S (2004) Preparation of Escherichia coli cell extract for highly productive cell-free protein expression. J Struct Funct Genomics 5:63–68.

35. Kigawa T, Yabuki T, Yoshida Y, Tsutsui M, Ito Y, Shibata T, Yokoyama S (1999) Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett 442:15–19.

36. Kuwasako K, He F, Inoue M, Tanaka A, Sugano S, Güntert P, Muto Y, Yokoyama S (2006) Solution structures of the SURP domains and the subunit-assembly mechanism within the splicing factor SF3a complex in 17S U2 snRNP. Structure 14:1677–1689.

37. Clore GM, Gronenborn AM (1994) Multidimensional heteronuclear magnetic resonance of proteins. Methods Enzymol 239:349–363.

38. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293.

39. Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278:313–352.

40. Kobayashi N, Iwahara J, Koshiba S, Tomizawa T, Tochio N, Güntert P, Kigawa T, Yokoyama S (2007) KUJIRA, a package of integrated modules for systematic and interactive analysis of NMR data directed to high-throughput NMR structure studies. J Biomol NMR 39:31–52.

41. Herrmann T, Güntert P, Wuthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227.

42. Güntert P, Mumenthaler C, Wuthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298.

43. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302.

44. Laskowski RA, Rullmann JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486.

45. Hagihara M, Takei A, Ishii T, Hayashi F, Kubota K, Wakamatsu K, Nameki N (2012) Inhibitory effects of choline-O-sulfate on amyloid formation of human islet amyloid polypeptide. FEBS Open Bio 2:20–25.

46. Xiang L, Ishii T, Hosoda K, Kamiya A, Enomoto M, Kuroda T, Yamaguchi T (2008) Interaction of anti-aggregation agent dimethylethylammonium propane sulfonate with acidic fibroblast growth factor. J Magn Reson 194:147–151.