Editorial: Interactions Fluids Polymers: Permeability, Durability
Gilles Kimmerlin

To cite this version:
Gilles Kimmerlin. Editorial: Interactions Fluids Polymers: Permeability, Durability. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, 2015, 70 (2), pp.219-225. 10.2516/ogst/2014055. hal-01931340

HAL Id: hal-01931340
https://hal.science/hal-01931340
Submitted on 22 Nov 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
This paper is a part of the hereunder thematic dossier published in OGST Journal, Vol. 70, No. 2, pp. 215-390 and available online here.

Cet article fait partie du dossier thématique ci-dessous publié dans la revue OGST, Vol. 70, n°2, pp. 215-390 et téléchargeable ici.

DOSSIER Edited by/Sous la direction de : B. Dewimille

Fluids-Polymers Interactions: Permeability, Durability

Interactions fluides polymères : perméabilité, durabilité

215 > Tribute to Yves Chauvin
Hommage à Yves Chauvin
S. Candel and O. Appert

219 > Editorial
G. Kimmerlin

227 > Gas Permeation in Semicrystalline Polyethylene as Studied by Molecular Simulation and Elastic Model
Perméation de gaz dans le polyéthylène semi-cristallin par simulation moléculaire et modèle élastique
P. Memari, V. Lachet and B. Rousseau

237 > Reinforcement of the Gas Barrier Properties of Polyethylene and Polyamide Through the Nanocomposite Approach: Key Factors and Limitations
Renforcement des propriétés barrière aux gaz de matrices polyéthylène et polyamide par l’approche nanocomposite : facteurs clés et limitations
E. Picard, J.-F. Gérard and É. Espuche

251 > Diffusio-Kinetics and Diffusio-Mechanics of Carbon Dioxide / Polyvinylidene Fluoride System under Explosive Gas Decompression: Identification of Key Diffusio-Elastic Couplings by Numerical and Experimental Confrontation
Cinétique de diffusion et comportement diffusio-mécanique du système dioxyde de carbone / polyfluorure de vinyleidène sous décompression explosive de gaz : identification des couplages diffusio-élastiques majeurs par confrontation numérique et expérimentale
J.-C. Granddidier, C. Boudet, S. A. E. Boyer, M.-H. Klopffer and L. Congiemi

267 > Characterization of Polymer Layered Silicate Nanocomposites by Rheology and Permeability Methods: Impact of the Interface Quality
Caractérisation de nanocomposites polymère silicate par des méthodes de rhéologie et de perméabilité : rôle de la qualité de l’interface
R. Waché, M.-H. Klopffer and S. Gonzalez

279 > Evaluation of Long Term Behaviour of Polymers for Offshore Oil and Gas Applications
Durabilité des polymères pour application pétrolière offshore
P.-Y. Le Gac, P. Davies and D. Choqueuse

291 > Development of Reactive Barrier Polymers against Corrosion for the Oil and Gas Industry: From Formulation to Qualification through the Development of Predictive Multiphysics Modeling
Développement de matériaux barrières réactifs contre la corrosion pour l’industrie pétrolière : de la formulation à la qualification industrielle en passant par le développement de modèles multiphysiques prédictifs
X. Lefebvre, D. Pasquier, S. Gonzalez, T. Epstein, M. Chirat and F. Demonze

305 > Development of Innovating Materials for Distributing Mixtures of Hydrogen and Natural Gas. Study of the Barrier Properties and Durability of Polymer Pipes
Développement de nouveaux matériaux pour la distribution de mélanges de gaz naturel et d’hydrogène. Étude des propriétés barrière et de la durabilité de tubes polymères
M.-H. Klopffer, P. Berne and É. Espuche

317 > New Insights in Polymer-Biofuels Interaction
Avancées dans la compréhension des interactions polymères-biocarburants
E. Richaud, F. Djoouni, B. Fayolle, J. Verdu and B. Flaconneche

335 > Biofuels Barrier Properties of Polyamide 6 and High Density Polyethylene
Propriétés barrière aux bio essences du polyamide 6 (PA6) et du polyéthylène haute densité (PEHD)
L.-A. Fillot, S. Ghiringelli, C. Prebet and S. Rossi

353 > Permeability of EVOH Barrier Material used in Automotive Applications: metrology Development for Model Fuel Mixtures
Perméabilité d’un matériau barrière EVOH utilisé dans des applications automobiles : développement métrologique pour des mélanges modèles de carburants
J. Zhao, C. Kanaan, R. Clément, B. Brulé, H. Lenda and A. Jonquières

367 > Effects of Thermal Treatment and Physical Aging on the Gas Transport Properties in Matrimid®
Les effets du traitement thermique et du vieillissement physique sur les caractéristiques du transport au gaz dans le Matrimid®
L. Ansaloni, M. Minelli, M. Giacinti Baschetti and G. C. Sarti

381 > Separation of Binary Mixtures of Propylene and Propane by Facilitated Transport through Silver Incorporated Poly(Ether-Block-Amide) Membranes
Séparation de mélanges binaires de propylène et de propane par transport au travers des membranes de poly(éther-blocamide) incorporant de l’argent
R. Surya Murali, K. Yamuna Rani, T. Sankarshana, A. F. Ismail and S. Sridhar
The notion of the macromolecule appeared only late in the history of chemistry, and the Nobel Prize in Chemistry of Karl Ziegler and Giulio Natta only dates from 1963. The science and engineering of polymers, which are between the domains of oil and organic chemistry, are characterized by a very strong interdisciplinarity and an interweaving of the academic and industrial research, whether that of producers or “big users”. This recent discipline is experiencing strong growth and this special issue of Oil and Gas Science and Technology – Revue d’IFP Energies nouvelles constitutes a clear example of this.

The main domains of use of polymers are the following, according to the decreasing volume of their markets:

- packaging, the food industry and agriculture, where having an airtight polymer membrane, or at least little permeability to dioxygen, is very important for extending the shelf life of the protected product (polyethylene, polyethylene terephthalate, polypropylene and polyamide);
- building and public works, for electric caskets, insulation, door frames and certain floor coverings (especially polyvinyl chloride), and naturally pipes, where one finds, for example, multilayered products;
- everyday objects, airtight packaging and other uses, including health;
- the car industry, which uses many polymers in the cockpit, elements of the body and for peripheral features in the engine such as the pipes and fuel tanks and other fluids (high-density polyethylene, ethylene vinyl alcohol (EVOH), polyfluorene of vinylidene, polyamides, possibly in the form of multilayers);
- the energy transport industry for airtight pipes, metallic with polymer covers as protection, composites, or any polymer (high-density polyethylene, Rilsan® PA11);
- membrane separation of industrial gases, desalination of seawater, and more generally, the treatment processes of waters (Pebax®, poly (terephthalate of ethylene)).

It is clear that the dominant use of polymers requires that the latter present during their life expectancy, besides the expected mechanical stability, an airtight or little permeable barrier to the contents and/or to the external environment: classically, the dioxygen of the air and water. Whether it concerns gas or liquid (named permeant below), this supposes on one hand the knowledge and control of their internal architecture, and on the other hand, evidence and beyond that, the modeling and/or simulation, of diffusion/convection mechanisms and the possible reversible or irreversible interactions within them.

In the observation of the mechanisms of permeability, we can distinguish two abstract approaches which one finds in the experimental methodologies:

- the dynamic approach, where the permeability is obtained by measuring the flow of permeant through a membrane of polymer placed in a pressure or concentration gradient, the diffusion coefficient being calculated by following the kinetics of permeation over a long time, by the
method of time delay, the solubility being obtained ultimately by dividing the permeability by the diffusion coefficient;
– the thermodynamic balance, where the solubility is obtained by the quantity of permeant absorbed in the balance, the diffusion coefficient being calculated from the kinetics of the measurement of mass of the sample.

As experimental set-ups use dense membranes most of the time, the “sorption-diffusion” model is often preferred: the application of a pressure or concentration gradient between the upstream and downstream faces of the membrane causes the following three successive phenomena:
– absorption of the permeant on the upstream surface,
– dissolution and molecular diffusion of the permeant in the material,
– desorption of the permeant of the downstream surface.

Most of the time, the dissolution-diffusion stage is the slowest of the three stages: it is thus kinetically determining. On the contrary, the absorption and desorption stages are so fast that one can practically consider that a balance becomes established at the level of each of both opposed interfaces which limit the membrane. So, the process of permeation depends on the solubilization, the distribution, and the concentration gradient of the permeant within the membrane.

As a consequence, the distribution stage is the limiting factor in the transfer of material. This distribution, for a constant temperature, is a complex phenomenon which depends strongly on the local concentration of the permeant in the polymer membrane, and thus on the degree of inflation of the latter, with a “plasticizing” effect most of the time, which as a frequent consequence increases the diffusion and the solubility. In other words, the diffusion coefficient can vary between the upstream and downstream of the polymer membrane and, naturally, when several compounds inter-react themselves or with the polymer, which complicates the prediction and control of the diffusion of molecules through this type of material. For example, the constituents of a mixture of gas or fuel and biofuel are not going to spread at the same speed; so the local properties of the polymer are going to be variable in space and time. The models of distribution using a simple Fick’s law will thus often be invalidated and a discriminating description of mechanisms will require the use of more complex behavior laws combined with finite element calculations.

Besides, other parameters influence the diffusion coefficient, such as the temperature of the polymer and the permeant, the size of the molecules of the permeant and their condensability if it is a gas, the density of the cohesion energy of the polymer, its reticulation and its crystallinity, as well as the flexibility of its chains, and it is thus these that affect the values of the permeability, but only as long as the polymer matrix is not too permeable.

As a solid, polymers are the site of various types of bonds allowing its cohesion: the covalent primary bonds, the ionic bonds, the hydrogen bonds, the van der Waals forces and the dipolar interactions. The secondary strengths which hold chains together in the crystal lattice must be rather strong to surpass the disordering effect of the thermal motion. The presence of hydrogen bonds or strong dipoles of interaction favors crystallinity and so increases the melting point. The polymers which do not respect these conditions are not crystalline, they are completely amorphous, which changes their industrial added value. On the other hand, the rate of crystallinity can reach 98% in the best cases.

The properties observed in polymers are understandable by the organization of these crystalline regions presenting micelles in the border, or crystallites inserted into an amorphous matrix. These crystallites, which have a size of the order of 10 nm, are arranged in small groupings in which molecular chains are regularly aligned parallel with each other. In the crystal lattice, these chains are strongly concentrated, every crystalline zone being separated from another one by an amorphous region. These crystallites constitute barriers in the diffusion, while the amorphous zones are the preferential site of the molecular diffusion. We see that, besides a better specificity of the organic synthesis to control the crystallinity and the geometry of crystallites (metallocene catalyst), the addition of mineral or nano-composite fillers will increase the barrier effect of polymers. The relative orientation and the length of fillers impervious to the permeant, their state of dispersal, the quality of their interfaces with the organic matrix and their concentration in the polymer will allow an increase in the times of diffusion by the increase in the tortuosity which will be
manifested, either by a strengthening of the barrier effect, or by an increase in the selectivity for the diffusion, according to the physical property studied.

The level of permeability is thus connected to the rate of crystallinity, but it also depends on the chemical affinity between the polymer and the permeant. For example, polyethylene shows a great affinity for hydrocarbons, while it has a small one with water or alcohols, which will show solubility and very low permeability. On the other hand, PA11 is going to interact more with water and alcohols than with hydrocarbons, with which the permeability will be lower.

For polymers, preservation of this barrier effect presents horizons of time varying from a few weeks for food packaging to a few decades for pipes for energy transport, and it requires precise experimental measurements and the understanding of the effect of the degradation of their diffusional routes with time. This degradation, which also affects their mechanical properties, results from the split of the connections in the carbon chains due to oxidation, whether it is by direct contact with the air, by dioxygen diffusion, by exposure to low-wavelength UV radiation or by exposure to heat and humidity. In any case, the phenomena involved in the aging are too complex to be able to be modeled only with an Arrhenius law, and it is necessary to implement other approaches already used in the study of porous media, such as statistical thermodynamics and the Monte-Carlo method, as well as molecular dynamics simulation.

Polymers are used more and more to perform specialized and complex functions, and it is knowledge of their behavior, and their modeling and simulation, associated with the wide possibilities of synthesis, formulation and implementation that will allow one to conceive new applications. The likely development which they can reach in the future is based on the extensive academic and industrial knowledge which has been accumulated by more than half a century of research and which has already been rewarded by the granting of five Nobel prizes, but also on their intrinsic properties: wide availability, variety of possible polymer architectures, ease of implementation, and wide spectrum of specific properties.
La notion de macromolécule n’est apparue que tardivement dans l’histoire de la chimie et le Prix Nobel de chimie de Karl Ziegler et de Giulio Natta ne date que de 1963. La science et l’ingénierie des polymères, qui sont à la croisée des domaines du pétrole et de la chimie organique, sont caractérisées par une très forte interdisciplinarité et imbrication de la recherche académique et industrielle, que ce soit celle des producteurs ou des “grands utilisateurs”. Cette discipline récente est dotée d’une forte croissance et ce numéro spécial d’*Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles* en constitue un exemple éclairant.

Les principaux domaines d’usage des polymères sont les suivants, en fonction du volume décroissant de leurs marchés :

- l’emballage, l’industrie alimentaire et les films agricoles, où avoir un film polymère étanche ou du moins très peu perméable au dioxygène est très important pour prolonger la durée de vie du produit protégé (polyéthylène, polyéthylène téréphtalate, polypropylène et polyamide) ;
- le BTP, pour les coffrets électriques, l’isolation, les huisseries et certains revêtements de sol (surtout le polychlorure de vinyle) et bien entendu les canalisations où l’on retrouve par exemple des produits multicouches ;
- les objets usuels, les conteneurs étanches et autres usages dont la santé ;
- l’industrie automobile qui utilise beaucoup de polymères dans l’habitacle, les éléments de carrosserie et pour les fonctionnalités périphériques au moteur comme les canalisations et réservoirs de carburant et autres fluides (polyéthylène haute densité, éthylène vinyle alcool (EVOH), polyfluorure de vinylidène, polyamides, etc., éventuellement sous forme de multicouches) ;
- l’industrie du transport de l’énergie pour des canalisations étanches, métalliques avec des revêtements polymères de protection, composites, ou tout polymère (polyéthylène haute densité, *Rilsan*® PA11, etc.) ;
- la séparation membranaire des gaz industriels, la désalinisation de l’eau de mer et plus généralement des procédés de traitement des eaux (*Pebax*®, poly(téréphtalate d’éthylène) etc.).

Il apparaît clairement que l’usage prédominant des polymères impose que ces derniers présentent sur leur durée de vie, outre la stabilité mécanique attendue, une barrière étanche ou peu perméable au contenu et/ou à l’environnement externe : classiquement, le dioxygène de l’air et l’eau. Qu’il s’agisse de gaz ou de liquide (nommés ci-après perméant), ceci suppose d’une part la connaissance et la maîtrise de leur architecture interne, d’autre part la mise en évidence et au-delà, jusqu’à la modélisation et/ou la simulation, des mécanismes de diffusion/convection et des éventuelles interactions réversibles ou irréversibles en leur sein.
Dans l’observation des mécanismes de perméabilité, on peut distinguer deux approches conceptuelles que l’on retrouve dans les méthodologies expérimentales :

- l’approche dynamique, où la perméabilité est obtenue en mesurant le flux de perméant à travers une membrane de polymère placée dans un gradient de pression ou de concentration, le coefficient de diffusion étant calculé en suivant la cinétique de perméation aux temps longs, par la méthode dite du temps retard, la solubilité étant obtenue in fine en divisant la perméabilité par le coefficient de diffusion ;
- l’équilibre thermodynamique, où la solubilité est obtenue par la quantité de perméant absorbé à l’équilibre, le coefficient de diffusion étant calculé à partir de la cinétique de prise de masse de l’échantillon.

Du fait que les set up expérimentaux utilisent le plus souvent des membranes denses, le modèle “sorption-diffusion” est souvent préféré : l’application d’un gradient de pression ou de concentration entre les faces amont et aval de la membrane provoque les trois phénomènes successifs suivants :

- absorption du perméant à la surface amont,
- dissolution et diffusion moléculaire du perméant dans le matériau,
- désorption du perméant de la surface aval.

La plupart du temps, l’étape de dissolution-diffusion est la plus lente des trois étapes, elle est donc cinétiquement déterminante. Au contraire, les étapes d’absorption et de désorption sont si rapides que l’on peut pratiquement considérer qu’un équilibre s’établit au niveau de chacune des deux interfaces opposées qui limitent le film. Ainsi, le processus de perméation dépend de la solubilisation, de la diffusion, et du gradient de concentration du perméant dans le film.

En conséquence, l’étape de diffusion est le facteur limitant dans le transfert de matière. Cette diffusion, pour une température constante, est un phénomène complexe qui dépend fortement de la concentration locale du perméant dans le film polymère et donc du degré de gonflement de ce dernier, avec le plus souvent un effet “plastifiant” qui a pour conséquence fréquente d’augmenter la diffusion et la solubilité. En d’autres termes, le coefficient de diffusion peut varier entre l’amont et l’aval du film polymère et, bien entendu, lorsque plusieurs composés inter-réagissent entre eux ou avec le polymère, ce qui complexifie la prédiction et le contrôle de la diffusion des molécules à travers ce type de matériau. Par exemple, les constituants d’un mélange de gaz ou de carburant et bio-carburant ne vont pas diffuser à la même vitesse ; ainsi les propriétés locales du polymère vont être variables dans l’espace et le temps. Les modèles de diffusion utilisant une loi de Fick simple seront donc souvent mis en défaut et une description fine des mécanismes demandera l’utilisation de lois de comportement plus complexes associées à un calcul aux éléments finis.

De surcroît, d’autres paramètres influent sur le coefficient de diffusion, comme la température du polymère et du perméant, la taille des molécules de perméant et leur condensabilité s’il s’agit d’un gaz, la densité d’énergie de cohésion du polymère, sa réticulation et sa cristallinité, ainsi que la flexibilité de ses chaînes, et ce sont donc eux qui affectent les valeurs de la perméabilité, mais que dans la mesure où la matrice polymère n’est pas trop perméable.

En tant que solide, les polymères sont le siège de différents types de liaisons permettant sa cohésion : les liaisons primaires covalentes, les liaisons ioniques, les ponts hydrogène, les liaisons de van der Waals, et les interactions dipolaires. Les forces secondaires qui tiennent les chaînes ensemble dans le réseau cristallin doivent être assez fortes pour surpasser l’effet désordonnant de l’agitation thermique. La présence de liaisons hydrogène ou de forts dipôles d’interaction favorise la cristallinité et augmente ainsi le point de fusion. Les polymères qui ne respectent pas ces conditions ne sont pas cristallins, ils sont complètement amorphes, ce qui change leur valeur ajoutée industrielle. En revanche, le taux de cristallinité peut atteindre 98 % dans les meilleurs cas.

Les propriétés observées dans les polymères s’expliquent par l’organisation de ces régions cristallines présentant des micelles en bordure, ou des cristallites insérés dans une matrice amorphe. Ces cristallites, qui ont une taille de l’ordre de 10 nm, sont disposés en petits regroupements dans lesquels les chaînes moléculaires sont régulièrement alignées parallèlement.
les unes aux autres. Dans le réseau cristallin, ces chaînes sont fortement concentrées, chaque zone cristalline étant séparée d’une autre par une région amorphe. Ces cristallites constituent des barrières à la diffusion, alors que les zones amorphes sont le siège préférentiel de la diffusion moléculaire. On voit bien que, outre une meilleure spécificité de la synthèse organique visant à contrôler la cristallinité et la géométrie des cristallites (catalyse métallocène), l’ajout de charges minérales ou nanocomposites augmentera l’effet barrière des polymères. L’orientation relative et la longueur des charges imperméables au perméant, leur état de dispersion, la qualité de leur interface avec la matrice organique et leur concentration dans le polymère permettront d’augmenter les temps de diffusion par l’augmentation de la tortuosité ce qui se traduira, soit par un renforcement de l’effet barrière, soit par une augmentation de la sélectivité à la diffusion, ceci en fonction de la propriété physique recherchée.

Le niveau de perméabilité est donc lié au taux de cristallinité, mais il dépend aussi de l’affinité chimique entre le polymère et le perméant. Par exemple, le polyéthylène montre une grande affinité pour les hydrocarbures alors qu’il en a très peu avec l’eau ou les alcools qui vont montrer des solubilités et des perméabilités très faibles. Par contre, un PA11 va plus interagir avec l’eau et les alcools qu’avec les hydrocarbures avec lesquels les perméabilités seront plus faibles.

Pour les polymères, la conservation de cet effet barrière présente des horizons de temps variant de quelques semaines pour l’emballage alimentaire à quelques décennies pour les canalisations de transport de l’énergie, ce qui nécessite de bien mesurer expérimentalement et de bien comprendre l’effet de la dégradation dans le temps de leurs trajets diffusionnels. Cette dégradation, qui affecte aussi leurs propriétés mécaniques, résulte de la scission des liaisons dans les chaînes carbonées due à l’oxydation, que ce soit par contact direct avec l’air, par diffusion du dioxygène, par exposition aux rayons UV de faible longueur d’onde ou par exposition à la chaleur et à l’humidité. En tout état de cause, les phénomènes mis en jeu dans le vieillissement sont trop complexes pour pouvoir être modélisés uniquement avec une loi d’Arrhenius et il faut mettre en œuvre d’autres approches utilisées déjà dans l’étude des milieux poreux, comme la thermodynamique statistique, la méthode Monte-Carlo, ainsi que la dynamique moléculaire.

Les polymères sont de plus en plus utilisés pour remplir des fonctions pointues et complexes, et ce sont les connaissances sur leur comportement, leur modélisation et simulation, associées aux larges possibilités de synthèse, de formulation et de mise en œuvre qui permettront de concevoir de nouvelles applications. Le vraisemblable développement qu’ils pourront atteindre dans le futur repose sur les vastes connaissances académiques et industrielles qui ont été accumulées depuis plus d’un demi-siècle de recherches et qui se sont déjà vue récompensées par l’octroi de cinq Prix Nobel, mais aussi sur leurs propriétés intrinsèques : grande disponibilité, variété des architectures polymériques possibles, facilité de mise en œuvre, et large spectre de propriétés spécifiques.