Mannose-Containing Oligosaccharides of Non-Specific Human Secretory Immunoglobulin A Mediate Inhibition of *Vibrio cholerae* Biofilm Formation

Ashlesh K. Murthy, Bharat K. R. Chaganty, Ty Troutman, M. Neal Guentzel, Jieh-Juen Yu, Syed Khalid Ali, Crystal M. Lauriano, James P. Chambers, Karl E. Klose, Bernard P. Arulanandam

South Texas Center for Emerging Infectious Diseases, Department of Biology, San Antonio, Texas, United States of America

Abstract

The role of antigen-specific secretory IgA (SlgA) has been studied extensively, whereas there is a limited body of evidence regarding the contribution of non-specific SlgA to innate immune defenses against invading pathogens. In this study, we evaluated the effects of non-specific SlgA against infection with *Vibrio cholerae* O139 strain MO10 and biofilm formation. Seven day old infant mice deficient in IgA (IgA−/− mice) displayed significantly greater intestinal MO10 burden at 24 hr post-challenge when compared to IgA+/+ pups. Importantly, cross-fostering of IgA−/− pups with IgA+/+ nursing dams reversed the greater susceptibility to MO10 infection, suggesting a role for non-specific SlgA in protection against the infection. Since biofilm formation is associated with virulence of MO10, we further examined the role of human non-specific SlgA on this virulence phenotype of the pathogen. Human non-specific SlgA, in a dose-dependent fashion, significantly reduced the biofilm formation by MO10 without affecting the viability of the bacterium. Such an inhibitory effect was not induced by human serum IgA, IgG, or IgM, suggesting a role for the oligosaccharide-rich secretory component (SC) of SlgA. This was supported by the demonstration that SIgA treated with endoglycosidase H, to cleave the high-mannose containing terminal chitobiose residues, did not induce a reduction in biofilm formation by MO10. Furthermore, the addition of free mannose per se, across a wide dose range, induced significant reduction in MO10 biofilm formation. Collectively, these results suggest that mannose containing oligosaccharides within human non-specific secretory IgA can alter important virulence phenotypes of *Vibrio cholerae* such as biofilm formation, without affecting viability of the microorganism. Such effects may contribute significantly to innate immune defenses against invading pathogens in vivo in the gastrointestinal tract.

Citation: Murthy AK, Chaganty BK, Troutman T, Guentzel MN, Yu J-J, et al. (2011) Mannose-Containing Oligosaccharides of Non-Specific Human Secretory Immunoglobulin A Mediate Inhibition of *Vibrio cholerae* Biofilm Formation. PLoS ONE 6(2): e16847. doi:10.1371/journal.pone.0016847

Editor: Joy Sturtevant, Louisiana State University, United States of America

Received September 30, 2010; **Accepted** January 13, 2011; **Published** February 9, 2011

Copyright: © 2011 Murthy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project was funded National Institutes of Health Grants AR048973 and GM01894. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Bernard.arulanandam@utsa.edu

† These authors contributed equally to this work.

Introduction

The large surface area of mucosal membranes is a major portal of entry and site for colonization by microorganisms [1]. Mucosal surfaces are protected by fortified host defense mechanisms, including immunoglobulin A (IgA), the predominant immunoglobulin in these compartments [2]. The polymeric immunoglobulin receptor (pIgR) is expressed on the basolateral surface of epithelial cells and transports IgA as well as pentameric IgM from the lamina propria into mucosal secretions [3]. Upon pIgR-mediated IgA transcytosis, a portion of the pIgR is cleaved off and released as the secretory component (SC) bound to dimeric IgA, forming secretory IgA (SlgA) [4–7].

Secretory IgA has been shown to be involved in the clearance of immune complexes [8], extracellular neutralization of pathogen infectivity [9], and intracellular neutralization of bacterial lipopolysaccharide (LPS) and viruses within epithelial cells [10]. Much of the available evidence regarding the protective role of SlgA against pathogens is derived from studies of antigen-specific IgA [11]. However, there is an accumulating body of evidence to suggest that non-specific SlgA also may assist in modulating mucosal homeostasis and modulating inflammation at mucosal surfaces [12]. For example, we [13] have shown that mice deficient in pIgR displayed significantly enhanced intestinal inflammation in response to dextran sodium sulfate induced colitis. It is not clear how non-specific SlgA mediates these effects; however, several studies [14], including ours [13], point toward an important contribution of the secretory component (SC). More recent studies have shown the probable role of glycans on SlgA in mediating the recognition of bacterial polysaccharides in innate immune responses [15].

Vibrio cholerae is a Gram negative motile bacterium that is responsible for the life threatening exhaustive diarrheal disease, cholera [16]. Epidemics of cholera are observed in southern Asia, Africa, and South America and are still prevalent as seasonal outbreaks [16]. *V. cholerae* persists in the environment by forming biofilms [17] and in the human host, as suggested by the presence of biofilm-like bacterial aggregates present in stool samples from cholera-infected patients[16,18–20]. Removal of such aggregates from stool-contaminated water has been correlated with significant
reduction of infectivity [21]. Moreover, feces collected from cholera-infected patients also display *V. cholerae* coated with SlgA, suggesting an important contribution of IgA in interaction and elimination of the bacterium [18]. Given (a) the suggested role of non-specific SlgA in protection against mucosal pathogens, (b) the evidence of interaction between SlgA and *V. cholerae*, and (c) the correlation of biofilm formation with virulence, we evaluated the effects of SlgA on biofilm formation and virulence of *V. cholerae*.

In this study, we determined the effect of non-specific SlgA on the colonization and biofilm formation by O139 strain of *V. cholerae* (MO10) [22]. We found that infant suckling mice deficient in IgA displayed greater intestinal bacterial burdens than wild type pups following MO10 challenge. This effect could be reversed by feeding milk from wild type dams, suggesting a role for passively transferred non-specific SlgA in milk. Non-specific human SlgA, but not serum IgA or serum IgG and IgM, inhibited biofilm formation by MO10 in *vitro*, without affecting viability of the bacterium. The inhibitory effect on biofilms was reversed by removal of the high mannose containing oligosaccharides from SlgA, or could be induced by free mannose, suggesting an important role for oligosaccharides within SlgA in mediating this effect.

Results

Non-specific SlgA is involved in reduction of *Vibrio cholerae* colonization in *vivo*

We evaluated whether SlgA could alter the phenotype of *V. cholerae* infection in *vivo* using an established model of oral intra gastric *V. cholerae* challenge in infant suckling mice [23]. Groups of 7-day-old infant suckling IgA−/− and IgA+/+ mice, either separated (Fig 1A) or not separated from their mothers, or IgA−/− pups cross-fostered with lactating IgA+/+ mothers (Fig 1B) were challenged with *V. cholerae*. To evaluate the effects of innate non-specific IgA, the bacterial burden in the small intestines was measured at 24 hr post-challenge. As shown in Fig 1A, IgA−/− infant suckling mice separated from their mothers displayed significantly (*p*≤0.05) enhanced intestinal bacterial burden (>3 *log*_{10}) when compared to the IgA+/+ pups. Additionally, IgA−/− infant suckling mice not separated from their mothers displayed significantly (*p*≤0.05) greater intestinal bacterial burden (>2 *log*_{10}) when compared to the IgA+/+ pups (Fig 1B), suggesting the importance of IgA in controlling intestinal *Vibrio* infection. Importantly, IgA−/− suckling infant mice cross-fostered with lactating IgA+/+ mothers displayed a significant (*p*≤0.05) reduction (~2 *log*_{10}) in intestinal bacterial burden when compared to IgA+/+ pups with IgA+/+ dams (Fig 1B), suggesting the contribution of non-*Vibrio* specific SlgA in milk to the control of intestinal *V. cholerae* infection.

Non-specific human SlgA inhibits biofilm formation by *Vibrio cholerae*

Based on *in vivo* evidence in the infant mouse model that non-specific SlgA contributes to the reduction of virulence and/or colonization of *V. cholerae*, and that biofilm formation is associated with virulence of this bacterium [24], we further investigated the role of human non-specific SlgA on biofilm formation by *V. cholerae*. Overnight cultures of *V. cholerae* O139 (MO10) were diluted to approximately 2×10^{6} CFU/ml in 2X LB, and 50 µl was incubated at 30°C for 24 hr with escalating doses of human non-specific SlgA in 50 µl PBS or PBS alone. Wells with the *V. cholerae* mutant (vpsR) that is deficient in biofilm production were evaluated as negative controls. The biofilm formation was measured as described previously [25,26]. As shown in Fig. 2, wild type MO10 displayed significantly (*p*≤0.05) enhanced biofilm formation (0.41±0.03) compared to vpsR (0.04±0.02). The addition of SlgA to MO10 cultures significantly (*p*≤0.05) reduced biofilm formation across the entire examined dose range (0.06 to 2 mg/ml). At the highest dose examined (2 mg/ml), the biofilm formation by MO10 was comparable to that induced by vpsR, a mutant deficient for biofilm formation. As expected, culture wells with PBS or LB broth (no bacteria) did not display biofilm formation.

Since non-specific SlgA inhibited biofilm formation by MO10, we evaluated whether serum immunoglobulins (IgA or IgG or IgM) were capable of inducing similar effects using the highest examined dose of 2 mg/ml for each immunoglobulin. As shown in Fig 3, incubation of *V. cholerae* MO10 induced a high level of biofilm formation (0.41±0.02) and as expected, the vpsR mutant displayed minimal biofilm (0.04±0.001) formation. Importantly, biofilm formation by *V. cholerae* MO10 in the presence of SlgA (0.07±0.01), but not serum IgA (0.33±0.04), IgM (0.27±0.05), IgG (0.32±0.04), or an unrelated antigen BSA (0.29±0.05), was significantly (*p*≤0.05) reduced when compared to PBS (0.41±0.02). These results suggest that human non-specific SlgA, but not serum IgA or other immunoglobulin isotypes, plays an important role in inhibiting biofilm formation by *V. cholerae*. Additionally, the effects of SlgA and serum immunoglobulins on biofilm formation were quantified by measuring isosurface volume. As shown in Fig 4, the isosurface volume of biofilm by *V. cholerae* MO10 upon incubation with SlgA was reduced compared to incubation with serum IgA, IgG, IgM, control BSA or PBS alone. As expected, the vpsR mutant displayed a low isosurface volume of biofilm.

![Figure 1](https://www.plosone.org/figure/16847.g001)

Figure 1. Significance of IgA in inhibition of colonization. Groups (*n* = 5–7) of seven-day old infant suckling BL6/129 (IgA+/+) and IgA−/− pups were challenged intra-gastrically through the oral route with 10^{6} CFU of MO10. The mice were either (A) separated from the nursing dams or (B) housed with the nursing dams of the same strain, or IgA−/− pups were fostered with IgA−/− nursing dams. At 24 hr after challenge, small intestines were removed, homogenized, and the bacterial burdens analyzed. Each marker represents an individual pup and the mean±SD also is shown. * Significant difference in numbers of bacteria observed between the indicated groups (*p*≤0.05, Student’s *t* test). Results are representative of two to three independent experiments.

doi:10.1371/journal.pone.0016847.g001

PLoS ONE | www.plosone.org 2 February 2011 | Volume 6 | Issue 2 | e16847
We further determined whether the reduction in biofilm formation of MO10 was due to bacteriostatic or bactericidal effects induced by SIgA. Cultures of MO10 were grown for 24 hr in the presence of SIgA, serum IgA, serum IgG, or BSA. None of the immunoglobulins, including SIgA, displayed any significant change in growth characteristics of MO10 when compared to BSA (data not shown). Collectively, these results demonstrate the efficacy of non-specific SIgA in inhibiting the biofilm formation without affecting viability of V. cholerae.

Mannose containing oligosaccharides of non-specific human SIgA mediate inhibition of MO10 biofilm formation

Since SIgA, but not other serum immunoglobulins, inhibited biofilm formation by MO10, we hypothesized that the high oligosaccharide content in the secretory component of SIgA [27] may be responsible for the observed effects. To address this possibility, SIgA was treated with the enzyme EndoH to cleave the chitobiose core and release the high mannose terminal sugar residues. As shown in Fig. 5, EndoH-treated SIgA displays a reduced molecular weight of the SC and IgA heavy chain when compared to untreated SIgA, suggesting removal of oligosaccharides. Since the change in the molecular weight of SIgA was low, we also incubated EndoH with a positive RNaseB control and found clear reduction in the molecular weight of RNaseB, suggesting the efficient glycosidase activity of EndoH. Additionally, human non-specific SIgA (200 μg) was incubated with EndoH (25,000 units) in sodium citrate buffer (G5 buffer) at 37°C for 4 hr. The remaining EndoH was removed by filtration and the EndoH-treated SIgA was incubated with overnight V. cholerae culture, diluted to 2×10⁶ CFU/ml, in equal amounts at 30°C without shaking. Untreated SIgA in buffer and buffer alone were used as positive and negative controls, respectively, for inhibition of biofilm formation by MO10. As shown in Fig 6, MO10 expectedly produced significantly (p<0.05) greater biofilm formation (1.62±0.25) compared to vpsR (0.24±0.1). The addition of untreated SIgA (0.57±0.076), but not EndoH-treated SIgA (1.2±0.1), induced a significant (p<0.05) reduction in biofilm formation by MO10. To confirm our hypothesis further, we evaluated whether addition of free mannose could inhibit biofilm formation by MO10. Cultures of MO10 were compared for biofilm formation with addition of increasing concentrations (0.0125% to 0.1%) of free mannose in PBS. As shown in Fig 7, mannose significantly (p<0.05) inhibited biofilm formation by MO10 in a dose dependent fashion (0.22±0.01 at 0.03%; 0.28±0.01 at 0.015%; 0.31±0.02 at 0.007%; 0.43±0.04 at 0.003%) when compared to cultures with PBS added alone (0.9±0.06), and the inhibitory effect of mannose was lost with very low doses of mannose (1.1±0.1 at 0.0015%). Together, these results suggest that the terminal high-mannose residues on the SIgA contribute significantly to the inhibition of biofilm formation by V. cholerae.

Discussion

Secretory IgA is the principal immunoglobulin at mucosal sites and plays an important role in extracellular/intracellular neutralization and immune exclusion, functions that maintain mucosal homeostasis [12]. While the role of antigen-specific SIgA has been well studied in various models of infectious disease [11], the contribution and function of non-specific SIgA in modulating innate defenses is underappreciated. In this study, we demonstrate that non specific SIgA plays an important role in control of intestinal V. cholerae infection. Moreover, non-specific human
SIgA, but not serum IgA, IgG and IgM, was found to inhibit biofilm formation by *V. cholerae*, in a process that was mediated by the high mannose containing oligosaccharides of SIgA. Antigen-specific immune responses including Ag-specific SIgA have been shown to be involved in protection against pathogens. In general, SIgA has been shown to neutralize pathogen infectivity in the mucosal lumen, during transcytosis in intraepithelial cell compartments, and in the lamina propria [8–10]. Specifically with regard to *V. cholerae*, Guentzel et al. [28] demonstrated that the anti-flagellar sheath SIgA and SIgA directed against naked flagella or outer membrane microvesicles from non-flagellated organisms reduced the virulence of the pathogen in the suckling infant mouse model [29]. Since motility was associated with virulence of *V. cholerae* in the infant mouse model [30], a suggested mechanism was that the organisms were prevented from traversing the mucus layer thus gaining access through intervillous spaces down to the intestinal crypts; these relatively “unstirred” regions were observed to be a primary niche of the bacterium during infection [28,31]. Recent reports also support these observations by demonstrating that mucosal immunization with outer membrane vesicles induced anti-*V. cholerae* LPS antibodies that inhibit bacterial motility and reduce the virulence of *V. cholerae* in the infant suckling mouse model [32]. There was a minimal role for bacterial killing and/or anti-cholera toxin antibodies in these observed effects in both the early and recent studies. Collectively, antigen-specific SIgA clearly plays a role in defense against *V. cholerae*.

In this study, we focused on the contribution of non antigen-specific SIgA against *V. cholerae* infections. A role for the free secretory component (SC) has been suggested in innate immunity against various pathogens including enterotoxigenic [33] and

Figure 4. Quantification of inhibition of MO10 biofilm formation by non-specific human SIgA. Overnight cultures of GFP-expressing MO10 were diluted and incubated without shaking for 24 hr at 30°C with a 2 mg/ml dose of human non-specific SIgA or serum IgA, IgG, IgM, or with BSA. MO10 without immunoglobulin and the GFP expressing biofilm mutant vpsR were evaluated as positive and negative controls, respectively. (A) Three dimensional images were obtained using a Zeiss Axiovert 200M microscope equipped with an apotome. (B) The respective isosurface volumes were quantified using Imaris software. Significant (*p*≤0.05, ANOVA) difference in biofilm formation between * indicated group and *V. cholerae* grown in the presence of serum IgG or serum IgA. Results are representative of three independent experiments.
doi:10.1371/journal.pone.0016847.g004

Figure 5. Digestion of SIgA with EndoH. 2 mg/ml of SIgA alone (lane 1) or SIgA with EndoH in buffer (lane 2), RNaseB alone (lane 3) or RNaseB with EndoH (lane 4) were incubated for 4 hr at 37°C, and then subjected to SDS-PAGE and stained with Coomassie blue. Results are representative of three independent experiments.
doi:10.1371/journal.pone.0016847.g005
enteropathogenic *Escherichia coli* [34], indirectly implicating a role for the SC of SIgA in the observed effects. Specifically, these studies employed in vitro model systems and demonstrated a dose-dependent effect of milk components including free SC on pathogen-binding and/or blocking pathogen infectivity. It also was shown that glycans in free SC are responsible for binding and reducing the infectivity of enteropathogenic *E. coli* and the cytopathic affect of *Clostridium difficile* toxin A [35]. We extend these observations by demonstrating that SC-containing SIgA, but not non-SC containing immunoglobulins including serum IgA, IgG and IgM, are capable of inhibiting biofilm formation by the MO10 strain of *V. cholerae*. This suggested that the SC itself of SIgA may be responsible for the biofilm inhibitory effects. This effect of SIgA was dose dependent and was observed even at 0.06 mg/ml, a concentration below the physiological levels present in mucosal secretions. The biofilm inhibitory effect of SIgA was dependent upon the oligosaccharides, since cleaving the chitobiase core reversed the effect. Additionally, the terminal residues of the oligosaccharide side chains contain high-mannose residues, and the addition of free mannose inhibited biofilm formation by MO10, collectively suggesting that the terminal high mannose residues in oligosaccharides in SIgA may be predominantly responsible for inhibition of biofilm formation by *Vibrio cholerae*.

It is to be noted that the biofilm inhibitory properties of SIgA did not involve bacterial killing. Similar results were reported recently by Bishop et al. [32] that the anti-*V. cholerae* LPS antibody reduces bacterial motility and infectious burden independent of bacterial killing. Additionally, Guentzel et al. [28] demonstrated that treatment with anti-IgA reversed the immobilization of motile vibrios allowing them to breach the mucus barrier and spread along the villi, and was associated with reversal of protection in animals immunized with flagellar or vesicular vaccines. The reduction of infectious burden without an effort to eliminate the pathogen appears to align well with the hypothesis that mucosal immunoglobulins protect without eliciting much inflammation [36], given the expected serious consequences of strong inflammatory responses at mucosal surfaces. This also is supported by the finding that IgA, as opposed to the predominant serum immunoglobulin IgG or IgM, does not activate the classical complement pathway, and is at best a weak inducer of the alternative complement pathway [37,38]. Thus, it appears that the mucosal immunoglobulin IgA evolved to meet the tailored needs for protection of mucosal surfaces [36]. To this end, it has been demonstrated recently that most, if not all, jawed vertebrate taxa display a functionally similar but specific mucosal immunoglobulin isotype IgA (mammals and birds), IgX (amphibians), or IgT (bony fish) [39]. IgA, IgX, and IgT have been suggested to be products of convergent evolution, implying the recruitment of a unique immunoglobulin to mucosal immunity at least three times [39]. Collectively, these results emphasize the unique nature of SIgA when compared to other immunoglobulins in host defenses against pathogens.

Biofilm formation has been suggested to be an important aspect of virulence in *V. cholerae* [17]. Specifically, removal of *V. cholerae* biofilm-like aggregates from cholera stools reduces the infectivity significantly [21]. Therefore, SIgA and/or free SC may act as host defense mechanisms to curtail the formation of such biofilm-like aggregates in *vivo* and reduce the virulence of *V. cholerae*, an idea clearly supported by the results from our *in vivo* experiments. IgA−/− infant suckling mice displayed significantly enhanced intestinal *V. cholerae* burden as early as 24 hr post challenge compared to IgA+/+ pups, suggesting a role for innate, non-antigen-specific, mechanisms in the protective effect, as also has been shown previously [40]. In fact, this study by Hsiao et al. [2006] also demonstrated that the mannose sensitive hemagglutinin (mshA) of *V. cholerae* is important for binding to SIgA, and that this mannose sensitive interaction prevents the bacterium from penetrating mucus barriers and attaching to epithelial cells. The results of the current study confirm and extend these observations by demonstrating that intestinal colonization by *V. cholerae* and *in vitro* biofilm formation are reduced upon interaction with SIgA in a mannose dependent fashion. Such protective effects of IgA were apparent both in IgA+/+ pups separated from the IgA−/+ dams, or if the dams were allowed to nurse the pups. Importantly, the reduction in bacterial burdens with the cross-fostering of IgA−/+ pups with IgA+/+ mothers suggests that passive transfer of IgA in milk contributed to the protective effect. In mucosal secretions including milk, IgA is secreted as dimeric SIgA, thus suggesting that non-specific SIgA contributes to the reduction in *V. cholerae* burden in the intestines. Additionally, the enhancement of
intestinal bacterial burden in IgA−/− suckling infant mice occurred despite the presence of an intact polymeric immunoglobulin receptor (pIgR), and therefore presumably normal levels of free SC, suggesting that the SlgA containing SC plays a predominant role in innate protective immunity against V. cholerae in vivo. This is supported by reports that differences in oligosaccharide composition between serum IgA and SlgA may also result from differences in IgA1 and IgA2 composition, which differ substantially in oligosaccharide content [5]. Specifically, serum IgA is primarily composed of IgA1, whereas SlgA is an approximately equal mixture of IgA1 and IgA2, and IgA2 contains greater oligosaccharides than IgA1 [5]. However, a role for SC is supported by other studies which show that the SC in human milk binds to Clostridium difficile toxin A receptors [41], and thus may inhibit toxin-mediated disease, suggesting that differences in oligosaccharide composition within IgA subclasses itself, or due to the presence of SC may contribute to protection against mucosal pathogens. The implications of such effects may be manifold including, but not limited to, (a) reduction in intestinal pathogenic burden, (b) reduced concentrations of toxins in the gut microenvironment, and/or (c) reduced systemic spread of the pathogen, all subsequently resulting in reduced disease manifestation.

In summary, this study demonstrates that high mannose containing oligosaccharides of SlgA play an important role in reducing the intestinal burden of V. cholerae. Beyond the well-characterized adaptive immune defenses by antibodies, these results suggest the involvement of mucosal immunoglobulins in characterized adaptive immune defenses by antibodies, these results suggest the involvement of mucosal immunoglobulins in improving innate protective immunity against "V. cholerae" in vivo. This is supported by reports that differences in oligosaccharide composition between serum IgA and SlgA may also result from differences in IgA1 and IgA2 composition, which differ substantially in oligosaccharide content [5]. Specifically, serum IgA is primarily composed of IgA1, whereas SlgA is an approximately equal mixture of IgA1 and IgA2, and IgA2 contains greater oligosaccharides than IgA1 [5]. However, a role for SC is supported by other studies which show that the SC in human milk binds to Clostridium difficile toxin A receptors [41], and thus may inhibit toxin-mediated disease, suggesting that differences in oligosaccharide composition within IgA subclasses itself, or due to the presence of SC may contribute to protection against mucosal pathogens. The implications of such effects may be manifold including, but not limited to, (a) reduction in intestinal pathogenic burden, (b) reduced concentrations of toxins in the gut microenvironment, and/or (c) reduced systemic spread of the pathogen, all subsequently resulting in reduced disease manifestation.

Materials and Methods

Ethics Statement

All animal experiments were performed in compliance with the Animal Welfare Act, the U.S. Public Health Service Policy on Humane Care and Use of Laboratory Animals and the “Guide for the Care and Use of Laboratory Animals” published by the National Research Council. The University of Texas at San Antonio Institutional Animal Care and Use Committee (IACUC) approved this study under the protocol number MU013-08/11A0.

Bacterial strains

A virulent V. cholerae O139 strain, MO10 [22], was used for this study and a defined mutant of MO10 flaA::Cm _vpsR _lacZ designated vpsR [26], defective in biofilm formation, was used as a control for the experiments. For isosurface volume quantification, green fluorescent protein (GFP) expressing strains of MO10 and vpsR were utilized.

Infant mouse colonization assays

Mice were housed and bred at the University of Texas at San Antonio and provided food and water ad libitum. Animal care and experimental procedures were performed in compliance with the Institutional Animal Care and Use Committee (IACUC) guidelines. Groups (n = 5-7) of 7-day old IgA−/− (BL6/129) and IgA−/− mice [43] were challenged through the oral route intragastrically with 10⁶ CFU of MO10 in sterile saline using intramedic tubing. In one experiment, pups were separated from the mothers in the group. In the other, the pups were allowed to remain in the cage with nursing dams. Additionally, one group of IgA−/− pups were fostered with IgA+/+ nursing dams as a source of breast milk SlgA. Approximately 24 hrs later, pups were euthanized and the entire small intestine was removed. Small intestines were homogenized and serial dilutions plated on LB agar containing 50 μg/ml streptomycin (Sigma Aldrich, St. Louis, MO) and incubated for 24 hr at 37°C for determination of Vibrio cholerae burdens.

Biofilm formation

A microtiter plate assay was adapted for the evaluation of biofilm formation. Briefly, V. cholerae O139 (MO10) and the vpsR mutant were grown overnight at 37°C with shaking in LB containing 50 μg/ml streptomycin. The bacterial cultures were diluted in 2X LB to a concentration of approximately 2×10⁶ CFU/ml and 50 μL was inoculated into sterile 96-well polystyrene microtiter plates along with 50 μL of PBS, or bovine serum albumin (BSA) (Fisher Scientific, Fairlawn, NJ) or serum immunoglobulin A (IgA, Pierce, Rockford, IL) or secretory IgA (SlgA) (Sigma Aldrich) or human serum IgG (Pierce) or human serum IgM (Pierce) at a final concentration of 200 μg/well in PBS. In another experiment, escalating doses of free mannose (Difco, Detroit, MI) (serially doubling from 0.0015% to 0.03%) were added to cultures of MO10. Cultures were incubated without shaking for 24 hr at 30°C, removed, and the plates washed 3X with PBS and allowed to dry. Biofilms were quantified using crystal violet staining for 15 min as described previously [25,26], washed with 1X PBS, and the absorbance was measured at 570 nm using a μQuant ELISA plate reader (BioTek, Winooski, VT).

Three-dimensional imaging

MO10 was grown overnight at 37°C in LB containing 50 μg/ml streptomycin. Overnight cultures were diluted to a final concentration of approximately 2×10⁶ CFU/ml using fresh LB with streptomycin and kanamycin and 150 μL of this suspension was inoculated into sterile 24-well polystyrene microtiter plates containing cover slips. Proteins were added to the wells containing MO10 at a concentration of 2 mg/ml in a total volume of 150 μL and the cultures were allowed to incubate for 24 hr at 30°C without shaking. One set of triplicate wells containing the vpsR mutant, defective for biofilm formation, was evaluated as a negative control. After incubation, the cover slips were removed and washed with sterile 1X PBS, and mounted on glass slides with FluorSave Reagent (Calbiochem, La Jolla, CA). Slides were imaged using a Zeiss Axiovert 200M (Carl Zeiss Vision Microimaging Inc., Thornwood, NY) microscope equipped with an apotome and analysis of volume was performed using Imaris software (Bitplane Inc., Saint Paul, MN).

High mannose digestion assay and biofilm formation

High mannose sugars on SlgA were enzymatically removed using Endoglycosidase H (Endo H, New England Biolabs, MA) digestion. Briefly, 200 μg of SlgA was incubated in the presence of EndoH (25,000 units) and G5 buffer at 37°C for 4 hr. A positive RNaseB control provided by the manufacturer also was used to evaluate the glycosidase activity of EndoH. Following the 4 hr incubation period, sample mixtures were subjected to SDS-PAGE electrophoresis to confirm the glycosidase activity of EndoH. Following EndoH treatment, SlgA also was loaded on a Microcentricon (MilliPore, MA) of 100 kDa cutoff to separate the cleaved sugars. The treated SlgA was resuspended in 50 μL of sterile PBS and incubated with MO10 for biofilm formation as described earlier.
Author Contributions

Conceived and designed the experiments: AKM MNG JPC KEK BPA. Performed the experiments: BRC TT MNG JY. Analyzed the data: AKM BRC TT JPC BPA. Contributed reagents/materials/analysis tools: JPC KEK SKA CML. Wrote the paper: AKM BRC MNG BPA.

References

1. Brandtzæg P (2009) Mucosal immunity: induction, dissemination, and effector functions. Scand J Immunol 70: 505–515.
2. van der Heijden PJ, Stek W, Bianchi AT (1987) Contribution of immunoglobulin secreting cells in the rat small intestine to the total background immunoglobulin production. Immunology 62: 551–555.
3. Kaetzel CS (2001) Polymeric Ig receptor: defender of the fort or Trojan horse? Curr Biol 11: R35–R38.
4. Mestecky J, McGhee JR (1987) Immunoglobulin A (IgA): molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv Immunol 40: 153–245.
5. Kerr MA (1990) The structure and function of human IgA. Biochem J 271: 285–296.
6. Cunningham-Rundles C (2001) Physiology of IgA and IgA deficiency. J Clin Immunol 21: 303–309.
7. Wool JM, Kerr MA (2006) The function of immunoglobulin A in immunity. J Pathol 208: 270–292.
8. Lamme ME, Robinson JK, Kaetzel CS (1992) Transport of IgA immune complexes across epithelial membranes: new concepts in mucosal immunity. Adv Exp Med Biol 327: 91–94.
9. Mestecky J, Russell MW, Elson CO (1999) Intestinal IgA: novel views on its functions in the defence of the largest mucosal surface. Gut 44: 2–5.
10. Mazanec MB, Kaetzel CS, Lamme ME, Fletcher D, Nedrud JG (1992) Intracellular neutralization of virus by immunoglobulin A antibodies. Proc Natl Acad Sci USA 89: 6901–6905.
11. Lamme ME (1997) Interaction of antigens and antibodies at mucosal surfaces. Annu Rev Microbiol 51: 311–340.
12. Mason KL, Hultinagle GR, Noverr MC, Kao JY (2008) Overview of gut immunology. Adv Exp Med Biol 635: 1–14.
13. Murphy AK, Dubose CN, Banas J, Coolon JJ, Arulananand BM (2006) Contribution of polymeric immunoglobulin receptor to regulation of intestinal inflammation in dextran sulfate sodium-induced colitis. J Gastrointest Hepatol 21: 1372–1380.
14. Corryth B (2010) Role of secretory immunoglobulin A and secretory component in the protection of mucosal surfaces. Future Microbiol 5: 817–829.
15. Royle L, Roos A, Harvey DJ, Wormald MR, van Gijlswijk-Janssen D, et al. (1997) Interaction of antigens and antibodies at mucosal surfaces. J Biol Chem 272: 20410–20415.
16. Faruque SM, Albert MJ, Mekalanos JJ (1998) Epidemiology, genetics, and infectivity and persistence in the environment. Proc Natl Acad Sci USA 103: 539–548.
17. Watnick PI, Kolter R (1999) Steps in the development of a biofilm. Mol Microbiol 34: 586–595.
18. Watnick PI, Kolter R (1999) Steps in the development of a biofilm. Mol Microbiol 34: 586–595.
19. Yildiz FH, Schoolnik GK (1999) Characterization of Vibrio cholerae O1 El Tor genomic and pathogenic mutations on lipopolysaccharide structure, colonization, and biofilm formation. Infect Immun 69: 435–445.
20. Lamm ME, Robinson JK, Kaetzel CS (1992) Transport of IgA immune complexes across epithelial membranes: new concepts in mucosal immunity. Adv Exp Med Biol 327: 91–94.
21. Colwell RR, Huq A, Islam MS, Aziz KM, Yunus M, et al. (2003) Reduction of cholera in Bangladeshi villages by simple filtration. Proc Natl Acad Sci USA 100: 14280–14287.
22. Russell MW, Reinholdt J, Kilian M (1989) Anti-inflammatory activity of human intertitular immunoglobulin A. IV. Carbohydrate composition. J Immunol 108: 1631–1636.
23. Kelleher AI, Kilian M, Flanigan T, Flaherty J (1989) Secretory IgA antibodies bound to antigen interfere with complement (C3) fixation induced by IgG or by antigen alone. Scand J Immunol 30: 273–276.
24. Guentzel MN, Berry LJ (1977) Evaluation of surface components of Vibrio cholerae as protective immunogens. Infect Immun 15: 533–539.
25. Guentzel MN, Berry LJ (1975) Mutolytic as a virulence factor for Vibrio cholerae. Infect Immun 11: 890–897.
26. Guentzel MN, Auerine D, Guererro D, Gay TV (1981) Association of Vibrio cholerae mutants with the intestinal mucosa of infant mice. Scan Electron Microsc 4: 115–124.
27. Papen F, Schlueter M, Ullrich LG, Kinter H, Kistemaker H, et al. (1995) Inhibition of enteropathogenic Escherichia coli (EPEC) adherence to HeLa cells by human colostrum. Detection of specific SIgA related to EPEC outer-membrane proteins. Adv Exp Med Biol 371A: 673–676.
28. Perrier C, Sprenger N, Corryth B (2006) Glycans on secretory component participate in innate protection against mucosal pathogens. J Biol Chem 281: 14280–14287.
29. Hooper LV, Macpherson AJ (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10: 159–169.
30. Nikolova EB, Tomana M, Russell MW (1994) All forms of human IgA antibodies bound to antigen interfere with complement (C3) fixation induced by IgG or by antigen alone. Scand J Immunol 30: 273–276.
31. Lauriano CM, Ghosh C, Correa NF, Klese KE (2004) The sodium-driven flagellar motor controls exopolysaccharide expression in Vibrio cholerae. J Bacteriol 186: 4864–4874.
32. Tomana M, Mestecky J, Niedermeier W (1972) Studies on human secretory immunoglobulin A IV. Carbohydrate composition. J Immunol 108: 1631–1636.
33. Flajnik MF (2010) All GOD’s creatures got dedicated mucosal immunity. Nat Rev Immunol 10: 1459–1465.