Selective C–O bond formation via a photocatalytic radical coupling strategy: access to perfluoroalkoxyalted (ORF) arenes and heteroarenes†

Johnny W. Lee, ab Dominique N. Spiegowski ab and Ming-Yu Ngai a,b,*

Development of an efficient process that employs commercially available and cost effective reagents for the synthesis of perfluoroalkoxyalted aromatic compounds (Ar–ORF) remains a daunting challenge in organic synthesis. Herein, we report the first catalytic protocol using readily available perfluoroalkyl iodides (RFI) and N-(hetero)aryl-N-hydroxylamides to access a wide range of perfluoroalkoxyalted (hetero)arenes. Mild reaction conditions allow for selective O–RF bond formation over a broad substrate scope and are tolerant of a wide variety of functional groups. Mechanistic studies suggest the formation and recombination of persistent N-hydroxyl radicals and transient RF radicals under photocatalytic reaction conditions to generate N–ORF compounds that rearrange to afford the desired products.

Introduction

Molecules containing a perfluoroalkoxy group (ORF) have emerged as an important class of compounds in the fields of pharmaceutical, agrochemical, and materials science because incorporation of an ORF group into organic compounds often improves thermal, chemical and metabolic stability, lipophilicity, and bioavailability of parent molecules.1–15 While much progress has been made for late stage fluorination,11,12 perfluoroalkylation,13,14 and perfluoroalkylation15–18 of (hetero)arenes, the facile synthesis of perfluoroalkoxyalted (hetero)aromatic compounds remains an unmet challenge in synthetic organic chemistry.19–25 Unlike their analogous alkoxy groups, formation of an O–RF bond (e.g. RF = CF3) via direct SN2 type displacement is unfavorable due to (i) strong electron repulsion between fluorine atoms and incoming nucleophiles and (ii) the formation of an energetically adverse CF3 carbocation transition state (TS) structure (Fig. 1a).26,27 Umemoto et al. addressed this issue with an elegant electrophilic O–RF bond formation strategy via radical intermediates,28 yet the non-selective formation of O- and C-perfluoroalkylated products limited its synthetic utility. Although new strategies for the synthesis of perfluoroalkoxyalted (hetero)arenes have emerged over the past few years,29–32 a general and mild catalytic process has yet to be developed. As a result, the full potential of perfluoroalkoxyalted (hetero)aromatic compounds has not been fully exploited across a broad spectrum of technological applications.

To address this challenge, we recently developed trifluoromethylation reactions of aromatic compounds using N-(hetero)aryl-N-hydroxylamides and Togni reagents under mild reaction conditions.33,34 Our operationally simple and scalable protocols provide access to a diverse array of trifluoromethoxylated (hetero)aromatics with complex molecular architectures. Nevertheless, the high cost and multi-step synthesis of Togni reagents (e.g. Togni reagent I costs $55 980 mol−1)35 might hinder their synthetic application. Furthermore, preparation of other O-perfluoroalkylated analogues requires the use of unique hypervalent iodine(III) perfluorinating agents.

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc01684k
reagents, which are commercially unavailable, synthetically inaccessible, and thermally unstable. In order to develop a general method to access perfluoroalkoxylated (hetero)arenes, we turned our attention to R-F radicals (R = perfluoroalkyl) that are commercially available and cost efficient (e.g. CF$_3$I costs 83 mol^{-1}). Based on our prior mechanistic studies, selective O-R$_F$ bond formation is feasible if N-hydroxyl and R$_F$ radicals are generated simultaneously. Although direct single electron transfer (SET) from N-(hetero)aryl-N-hydroxylamides to R$_F$-I is kinetically and thermodynamically unfavorable, we hypothesize that such a SET process could be facilitated by using an appropriate photoredox catalyst. Herein, we describe our efforts to develop the first photocatalytic radical coupling reaction of N-(hetero)aryl-N-hydroxylamides with R$_F$-I to form N-OR$_F$ compounds, which then undergo OR$_F$-migration to afford a wide variety of perfluoroalkoxylated (hetero)arenes (Fig. 1b).

Results and discussion

To examine the feasibility of our hypothesis, we started our investigation using N-(p-tert-butylyphenyl)-N-hydroxylamide (1a) and perfluorosopropyl iodide (2a) as model substrates. Pleasingly, after exposure of 1a (1.00 equiv.) and 2a (8.00 equiv.) to visible light irradiation [3 W blue light-emitting diodes (LEDs)] in the presence of a ruthenium photoredox catalyst [Ru(bpy)$_3$ (PF$_6$)$_2$ (0.500 mol%), and potassium carbonate (3.00 equiv.) in acetonitrile (0.100 M) at 23 °C for 12 hours, we obtained the desired product 3a in 38% yield (Table 1, entry 1). Exploration of photoredox catalysts, solvents, bases, concentrations, reactant stoichiometry and catalyst loading did not improve the product yield (entries 2-5). A breakthrough in optimization came when we lowered the reaction temperature to 0 °C, at which an 80% yield of the desired product 3a was obtained (entry 6). It is noteworthy that we did not observe addition of R$_F$ radicals directly to arenes even though such a reaction has been developed under photoredox-catalyzed reaction conditions. Apparently, this is due to the persistent radical effect that coupling of O- and R$_F$-radicals is more favorable than the addition of R$_F$ radicals to arenes. Finally, control experiments showed that a photoredox catalyst, a base, light, and an oxygen-free atmosphere are critical for the success of the perfluoroalkylation reaction (entries 7-10).

With the optimized reaction conditions in hand, we explored the scope of the perfluoroisopropylation reaction with respect to N-(hetero)aryl-N-hydroxylamides (1a-1t) (Table 2). The optimized reaction conditions were compatible with both aromatic and heteroaromatic hydroxylamides bearing a wide variety of functional groups and molecular scaffolds. For example, substrates with benzylic hydrogens, which are often prone to hydrogen atom abstraction in the presence of radical species, are tolerated (3b-3e and 3q-3s). Presumably, the rate of O- and R$_F$-radical coupling is faster than that of benzylic hydrogen atom abstraction. These results further demonstrate the chemoselectivity of our protocol. In addition, halogen functionalities (3f-3i, 3n, 3o and 3q) remained intact after the reaction, providing easy handles for further synthetic elaborations. Substrates containing polyfluorinated ethers were also viable and afforded good yields of the desired products (3j and 3k). Moreover, products derived from the heterocyclic N-hydroxylamides such as benzofuran (3l) and benzothiophene (3m) were formed smoothly with high levels of regioselectivity. Other functional groups such as esters (3e and 3m), ethers (3n), ketones (3s, 3q, 3t), oxindoles (3o), pyrazoles (3p), and ketals (3t) were susceptible to OR$_F$ addition as well. Importantly, more complex N-aryl-N-hydroxylamides derived from estrone and diacetone-D-glucose could be effectively converted to their perfluoroisopropylated analogs (3s and 3l), demonstrating that this method can be used in the preparation of pharmacologically relevant compounds. Notably, none of the perfluoroisopropylated arenes and pyridines reported herein have been prepared prior to this study.

Trifluoromethoxy aryl ethers (Ar–OCF$_3$) are constituents of several pharmacologically active compounds, agrochemicals, and functional materials. As a result, significant effort has recently been directed towards uncovering general and practical protocols for their preparation, yet methods that use commercially available CF$_3$I for their preparation have not been developed. We were pleased to see that our photocatalytic protocol can also be used for the synthesis of trifluoromethoxylated arenes (4a-4d) from CF$_3$I (Table 3). In general, O-trifluoromethylation required a longer reaction time (48 h vs. 12-24 h for perfluoroalkylation), possibly due to the lower reduction potential of CF$_3$I ($E^{red}_{1/2} = -1.52$ V vs. SCE) in comparison with CF$_3$I ($E^{red}_{1/2} = -0.66$ V vs. SCE), which required an over-potential of 0.19 V for the reduction of CF$_3$I to generate the CF$_3$ radical using Ru(bpy)$_3$ ($E^{red}_{1/2} = -1.33$ V vs. SCE). In addition, other perfluoroalkyl iodides such as n-
perfluoroheptyl iodide coupled smoothly to afford the desired products (4e and 4f) in synthetically useful yields. Importantly, our reaction is applicable to polyfluoroalkyl iodides such as 1-chloro-2-iodo-tetrafluoroethane and 1-bromo-2-iodo-tetrafluoroethane, albeit that 4h was obtained in a lower yield. This may be due to the instability of the 1-bromotetrafluoroethoxide species generated during the ORF-migration process. It is worth noting that the anilide moiety of the products could serve as a versatile handle for further synthetic functionalizations.14

In order to get an insight into the mechanism of the photocatalytic reaction, we performed a series of Stern–Volmer quenching experiments (Fig. 2a). While deprotonated N-phenyl-N-hydroxylamidine (Ia, $E_{1/2}^{red} = 0.62$ V vs. SCE)46 efficiently quenched *Ru(bpy)$_3$)$_2^{2+}$ in MeCN with a quenching constant of $k_q = 7.84 \times 10^3$ M$^{-1}$ s$^{-1}$, N-phenyl-N-hydroxylamidine (1u) and perfluoroisopropyl iodide (2a) quenched the photoexcited photocatalyst (*Ru(bpy)$_3$)$_2^{2+}$ only to a minor extent. We also observed that the ORF migration is slower with more electron deficient aromatics, which is consistent with our previous observations and suggests an ionic ORF-migration pathway.36

Based on these results, a detailed description of our proposed photocatalytic cycle for selective O–R$_F$ bond formation and the subsequent ORF-migration is outlined in Fig. 2b. Irradiation of Ru(bpy)$_3$)$_2^{2+}$ with visible light produces a long-lived (1.10 µs) photoexcited state, *Ru(bpy)$_3$)$_2^{2+}$, which engages in a SET with Ia to give N-hydroxyl radical (lb) and a strong reductant Ru(bpy)$_3$)$_2^{+}$ ($E_{1/2}^{red} = -1.33$ V vs. SCE).45 A single electron reduction of perfluoroalkyl iodide (R$_F$I) with Ru(bpy)$_3$)$_2^{+}$ forms a perfluoroalkyl radical (R$_F$) and regenerates Ru(bpy)$_3$)$_2^{2+}$. Subsequent radical–radical coupling between lb and R$_F$ affords O-perfluoroalkylated N-phenyl-N-hydroxylamidine lc, which undergoes heterolytic N–OR$_F$ bond cleavage47,48 followed by recombination of the resulting short-lived ion pair (ld) and then tautomerization to yield the final perfluoroalkoxylated arene product.36
Acknowledgements

This work was partially supported by the National Institute of General Medical Sciences (R35GM119652) and start-up funds from Stony Brook University (SBU). J. W. L. is grateful for the Chemistry Graduate Fellowship from the Department of Chemistry at SBU. We thank James Herbolt, an NSF REU student (CHE-1358959), and Katarzyna N. Lee for the preparation of some N-(hetero)aryl-N-hydroxylamides. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Notes and references

1. G. Siegemund, W. Schwertfeger, A. Feiring, B. Smart, F. Behr, H. Vogel and B. McKusick, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2000, DOI: 10.1002/14356007.a11_349.
2. P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, Wiley-VCH, Weinheim, 2004.
3. F. Leroux, P. Jeschke and M. Schlosser, Chem. Rev., 2005, 105, 827–856.
4. K. Müller, C. Faeh and F. Diederich, Science, 2007, 317, 1881–1886.
5. P. Jeschke, E. Baston and F. R. Leroux, Mini-Rev. Med. Chem., 2007, 7, 1027–1034.
6. F. R. Leroux, B. Manteau, J. P. Vors and S. Pazenok, Beilstein J. Org. Chem., 2008, 4, 13.
7. A. Tressaud and G. N. Haufe, Fluorine and Health: Molecular Imaging, Biomedical Materials and Pharmaceuticals, Elsevier Science, Amsterdam, 1st edn, 2008.
8. B. Manteau, S. Pazenok, J. P. Vors and F. R. Leroux, J. Fluorine Chem., 2010, 131, 140–158.
9. G. Landelle, A. Panossian and F. R. Leroux, Curr. Top. Med. Chem., 2014, 14, 941–951.
10. E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly and N. A. Meanwell, J. Med. Chem., 2015, 58, 8315–8359.
11. P. S. Fier and J. F. Hartwig, Science, 2013, 342, 956–960.
12. T. Liang, C. N. Neumann and T. Ritter, Angew. Chem., Int. Ed., 2013, 52, 8214–8264.
13. Y. Ji, T. Brueckl, R. D. Baxter, Y. Fujiwara, I. B. Seiple, S. Su, D. G. Blackmond and P. S. Baran, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 14411–14415.
14. M. G. Mormino, P. S. Fier and J. F. Hartwig, Org. Lett., 2014, 16, 1744–1747.
15. M. Nappi, G. Bergonzini and P. Melchiorre, Angew. Chem., Int. Ed., 2014, 53, 4921–4925.
16. G. Teverovskiy, D. S. Surry and S. L. Buchwald, Angew. Chem., Int. Ed., 2011, 50, 7312–7314.
17. C.-P. Zhang and D. A. Vicic, J. Am. Chem. Soc., 2012, 134, 183–185.
18. X. Shao, X. Wang, T. Yang, L. Lu and Q. Shen, Angew. Chem., Int. Ed., 2013, 52, 3457–3460.
19. R. Pluta, P. Nikolaenko and M. Rueping, Angew. Chem., Int. Ed., 2014, 53, 1650–1653.
20. T. Umemoto and O. Miyano, Bull. Chem. Soc. Jpn., 1984, 57, 3361–3362.
21 M.-L. Fu, J.-B. Liu, X.-H. Xu and F.-L. Qing, *J. Org. Chem.*, 2017, 82, 3702–3709.
22 K. E. Peterman and W. Dmowski, *Org. Prep. Proced. Int.*, 1991, 23, 760–762.
23 T. M. Sokolenko, Y. A. Davydova and Y. L. Yagupolskii, *J. Fluorine Chem.*, 2012, 136, 20–25.
24 K. N. Lee, J. W. Lee and M.-Y. Ngai, *Synlett*, 2016, 27, 313–319.
25 A. Tlili, F. Toulgoat and T. Billard, *Angew. Chem., Int. Ed.*, 2016, 55, 11726–11735.
26 T. Umemoto, K. Adachi and S. Ishihara, *J. Org. Chem.*, 2007, 72, 6905–6917.
27 C. Huang, T. Liang, S. Harada, E. Lee and T. Ritter, *J. Am. Chem. Soc.*, 2011, 133, 13308–13310.
28 F. Venturini, W. Navarrini, A. Famulari, M. Sansotera, P. Dardani and V. Tortelli, *J. Fluorine Chem.*, 2012, 140, 43–48.
29 T. Khotavivattana, S. Verhoog, M. Tredwell, L. Pfeifer, S. Calderwood, K. Wheelhouse, T. Lee Collier and V. Gouverneur, *Angew. Chem., Int. Ed.*, 2015, 54, 9991–9995.
30 J. B. Liu, C. Chen, L. Chu, Z. H. Chen, X. H. Xu and F. L. Qing, *Angew. Chem., Int. Ed.*, 2011, 133, 13308–13310.
31 Q. W. Zhang, A. T. Brusoe, V. Mascitti, K. D. Hesp, D. C. Blakemore, J. T. Kohrt and J. F. Hartwig, *Angew. Chem., Int. Ed.*, 2016, 55, 9758–9762.
32 M. Zhou, C. F. Ni, Z. B. He and J. B. Hu, *Org. Lett.*, 2016, 18, 3754–3757.
33 K. N. Hojczyk, P. J. Feng, C. B. Zhan and M. Y. Ngai, *Angew. Chem., Int. Ed.*, 2014, 53, 14559–14563.
34 P. Feng, K. N. Lee, J. W. Lee, C. Zhan and M.-Y. Ngai, *Chem. Sci.*, 2016, 7, 424–429.
35 J. W. Beatty, J. J. Douglas, K. P. Cole and C. R. Stephenson, *Nat. Commun.*, 2015, 6, 7919.
36 K. N. Lee, Z. Lei, C. A. Morales-Rivera, P. Liu and M. Y. Ngai, *Org. Biomol. Chem.*, 2016, 14, 5599–5605.
37 V. Matoušek, E. Pietrasiak, L. Sigrist, B. Czarniecki and A. Togni, *Eur. J. Org. Chem.*, 2014, 3087–3092.
38 D. A. Nagib, M. E. Scott and D. W. MacMillan, *J. Am. Chem. Soc.*, 2009, 131, 10875–10877.
39 C. K. Prier, D. A. Rankic and D. W. C. MacMillan, *Chem. Rev.*, 2013, 113, 5322–5363.
40 A. Studer, *Angew. Chem., Int. Ed.*, 2012, 51, 8950–8958.
41 A. Studer, *Chem.–Eur. J.*, 2001, 7, 1159–1164.
42 A. Studer, *Chem. Soc. Rev.*, 2004, 33, 267–273.
43 For some substrates, reaction was run at −40 °C, and filtration and/or heating were required for the ORF-migration step. See the ESI† for detailed reaction conditions.
44 V. G. Koshechko and L. A. Kiprianova, *Theor. Exp. Chem.*, 1999, 35, 18–36.
45 A. Juris, V. Balzani, P. Belser and A. von Zelewsky, *Helv. Chim. Acta*, 1981, 64, 2175–2182.
46 F. Xu, J. J. Kulytys, K. Duke, K. C. Li, K. Krikstopaitis, H. J. W. Deussen, E. Abbate, V. Galinyte and P. Schneider, *Appl. Environ. Microbiol.*, 2000, 66, 2052–2056.
47 A. Porzelle, A. W. J. Cooper, M. D. Woodrow and N. C. O. Tomkinson, *Synlett*, 2010, 2471–2473.
48 A. A. Tabolin and S. L. Ioffe, *Chem. Rev.*, 2014, 114, 5426–5476.