String theories as the adiabatic limit of Yang-Mills theory

Alexander D. Popov

Institut für Theoretische Physik
Leibniz Universität Hannover
Appelstraße 2, 30167 Hannover, Germany
Email: popov@itp.uni-hannover.de

Abstract

We consider Yang-Mills theory with a matrix gauge group G on a direct product manifold $M = \Sigma_2 \times H^2$, where Σ_2 is a two-dimensional Lorentzian manifold and H^2 is a two-dimensional open disc with the boundary $S^1 = \partial H^2$. The Euler-Lagrange equations for the metric on Σ_2 yield constraint equations for the Yang-Mills energy-momentum tensor. We show that in the adiabatic limit, when the metric on H^2 is scaled down, the Yang-Mills equations plus constraints on the energy-momentum tensor become the equations describing strings with a worldsheet Σ_2 moving in the based loop group $\Omega G = C^\infty(S^1, G)/G$, where S^1 is the boundary of H^2. By choosing $G = \mathbb{R}^{d-1,1}$ and putting to zero all parameters in $\Omega \mathbb{R}^{d-1,1}$ besides $\mathbb{R}^{d-1,1}$, we get a string moving in $\mathbb{R}^{d-1,1}$. In arXiv:1506.02175 it was described how one can obtain the Green-Schwarz superstring action from Yang-Mills theory on $\Sigma_2 \times H^2$ while H^2 shrinks to a point. Here we also consider Yang-Mills theory on a three-dimensional manifold $\Sigma_2 \times S^1$ and show that in the limit when the radius of S^1 tends to zero, the Yang-Mills action functional supplemented by a Wess-Zumino-type term becomes the Green-Schwarz superstring action.
1. Introduction. Superstring theory has a long history [1]-[3] and pretends on description of all four known forces in Nature. In the low-energy limit superstring theories describe supergravity in ten dimensions or supergravity interacting with supersymmetric Yang-Mills (SYM) theory. On the other hand, Yang-Mills and SYM theories in four dimensions give description of three main forces in Nature not including gravity [4]-[7]. The aim of this short paper is to show that bosonic strings (both open and closed) as well as type I, IIA and IIB superstrings can be obtained as a subsector of pure Yang-Mills theory with some constraints on the Yang-Mills energy-momentum tensor. Put differently, knowing the action for superstrings with a worldsheet Σ_2, we introduce a Yang-Mills action functional on $\Sigma_2 \times H^2$ or on $\Sigma_2 \times S^1$ such that the Yang-Mills action becomes the Green-Schwarz superstring action while H^2 or S^1 shrink to a point. We will work in Lorentzian signature, but all calculations can be repeated for the Euclidean signature of spacetime.

2. Yang-Mills equations. Consider Yang-Mills theory with a matrix gauge group G on a direct product manifold $M = \Sigma_2 \times H^2$, where Σ_2 is a two-dimensional Lorentz manifold (flat case is included) with local coordinates $x^a, a, b, ... = 1, 2$, and a metric tensor $g_{\Sigma_2} = (g_{ab})$, H^2 is the disc with coordinates $x^i, i, j, ... = 3, 4$, satisfying the inequality $(x^3)^2 + (x^4)^2 < 1$, and the metric $g_{H^2} = (g_{ij})$. Then $(x^\mu) = (x^a, x^i)$ are local coordinates on M with $\mu = 1, ..., 4$.

We start with the gauge potential $A = A_\mu dx^\mu$ with values in the Lie algebra $g = \text{Lie} G$ having scalar product (\cdot, \cdot) defined either via trace Tr or, for abelian groups like $\mathbb{R}^{p,q}$, $T^{p,q}$ etc., via a metric on vector spaces. The gauge field $F = dA + A \wedge A$ is the g-valued two-form

$$F = \frac{1}{2} F_{\mu\nu} dx^\mu \wedge dx^\nu \quad \text{with} \quad F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + [A_\mu, A_\nu] . \quad (1)$$

The Yang-Mills equations on M with the metric

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = g_{ab} dx^a dx^b + g_{ij} dx^i dx^j \quad (2)$$

have the form

$$D_\mu F^{\mu\nu} := \frac{1}{\sqrt{|\det g|}} \partial_\mu (\sqrt{|\det g|} F^{\mu\nu}) + [A_\mu, F^{\mu\nu}] = 0 , \quad (3)$$

where $g = (g_{\mu\nu})$ and $\partial_\mu = \partial/\partial x^\mu$.

The equations (3) follow from the standard Yang-Mills action on M

$$S = \frac{1}{4} \int_M d^4x \sqrt{|\det g|} (F_{\mu\nu}, F^{\mu\nu}) , \quad (4)$$

where (\cdot, \cdot) is the scalar product on the Lie algebra g. Note that the metric g_{Σ_2} on Σ_2 is not fixed and the Euler-Lagrange equations for g_{Σ_2} yield the constraint equations

$$T_{ab} = g^{\lambda\sigma} (F_{a\lambda}, F_{b\sigma}) - \frac{1}{4} g_{ab} (F_{\mu\nu}, F^{\mu\nu}) = 0 \quad (5)$$

for the Yang-Mills energy-momentum tensor $T_{\mu\nu}$, i.e. its components along Σ_2 are vanishing. Note that these constraints can be satisfied for many gauge configurations, e.g. for self-dual gauge fields not only $T_{ab} = 0$ but even $T_{\mu\nu} = 0$.

3. Adiabatic limit. On $M = \Sigma_2 \times H^2$ we have the obvious splitting

$$A = A_\mu dx^\mu = A_a dx^a + A_i dx^i , \quad (6)$$
\[F = \frac{1}{2} F_{\mu \nu} dx^\mu \wedge dx^\nu = \frac{1}{2} F_{ab} dx^a \wedge dx^b + F_{ai} dx^a \wedge dx^i + \frac{1}{2} F_{ij} dx^i \wedge dx^j , \] (7)

\[T = T_{\mu \nu} dx^\mu \wedge dx^\nu = T_{ab} dx^a \wedge dx^b + 2T_{ai} dx^a \wedge dx^i + T_{ij} dx^i \wedge dx^j . \] (8)

By using the adiabatic approach in the form presented in [8, 9], we deform the metric (2) and introduce the metric

\[ds_\varepsilon^2 = g_{ab} dx^a \wedge dx^b + \varepsilon^2 g_{ij} dx^i \wedge dx^j , \] (9)

where \(\varepsilon \in [0, 1] \) is a real parameter. It is assumed that the fields \(A_\mu \) and \(F_{\mu \nu} \) smoothly depend in \(\varepsilon^2 \), i.e. \(A_\mu = A_\mu^{(0)} + \varepsilon^2 A_\mu^{(1)} + \ldots \) and \(F_{\mu \nu} = F_{\mu \nu}^{(0)} + \varepsilon^2 F_{\mu \nu}^{(1)} + \ldots \). Furthermore, we have \(\det g_\varepsilon = \varepsilon^4 \det(g_{ab}) \det(g_{ij}) \) and

\[F_{\varepsilon^{ab}} = g_\varepsilon^{ac} g_\varepsilon^{bd} F_{cd} = F_{ab} , \quad F_{\varepsilon}^{ai} = g_\varepsilon^{ac} g_\varepsilon^{ij} F_{cj} = \varepsilon^{-2} F^{ai} \quad \text{and} \quad F_{\varepsilon}^{ij} = g_\varepsilon^{ik} g_\varepsilon^{jl} F_{kl} = \varepsilon^{-4} F^{ij} , \] (10)

where indices in \(F_{\mu \nu} \) are raised by the non-deformed metric tensor \(g^{\mu \nu} \).

For the deformed metric (9) the action functional (4) is changed to

\[S_\varepsilon = \frac{1}{4} \int_M d^4 x \sqrt{|\det g_{\varepsilon^{ab}}|} \sqrt{|\det g_{H^2}|} \left\{ \varepsilon^2 (F_{ab}, F_{ab}) + 2(F_{ai}, F_{ai}) + \varepsilon^{-2} (F_{ij}, F_{ij}) \right\} . \] (11)

The term \(\varepsilon^{-2} (F_{ij}, F_{ij}) \) in the Yang-Mills Lagrangian (11) diverges when \(\varepsilon \to 0 \). To avoid this we impose the flatness condition

\[F_{ij}^{(0)} = 0 \quad \Rightarrow \quad \lim_{\varepsilon \to 0} (\varepsilon^{-1} F_{ij}) = 0 \] (12)

on the components of the field tensor along \(H^2 \). Here \(F_{ij}^{(0)} = 0 \) but \(F_{ij}^{(1)} \) etc. in the \(\varepsilon^2 \)-expansion must not be zero. For the deformed metric (9) the Yang-Mills equations have the form

\[\varepsilon^2 D_a F^{ab} + D_i F^{ib} = 0 , \] (13)

\[\varepsilon D_a F^{aj} + \varepsilon^{-1} D_i F^{ij} = 0 . \] (14)

In the deformed metric (9) the constraint equations (5) become

\[T_{\varepsilon}^{ab} = \varepsilon^2 \left\{ g^{cd} (F_{ac}, F_{bd}) - \frac{1}{2} g_{ab} (F_{cd}, F^{cd}) \right\} + g^{ij} (F_{ai}, F_{bj}) - \frac{1}{2} g_{ab} (F_{ci}, F^{ci}) - \frac{1}{4} \varepsilon^{-2} g_{ab} (F_{ij}, F^{ij}) = 0 . \] (15)

In the adiabatic limit \(\varepsilon \to 0 \) the Yang-Mills equations (13) and (14) become

\[D_i F^{ib} = 0 , \] (16)

\[D_a F^{aj} = 0 , \] (17)

since the \(\varepsilon^{-1} \)-term vanishes due to (12). We also keep (17) since it follows from the action (11) after taking the limit \(\varepsilon \to 0 \). One can see that the constraint equations (15) are nonsingular in the limit \(\varepsilon \to 0 \) also due to (12):

\[T_{\varepsilon}^{ab} = g^{ij} (F_{ai}, F_{bj}) - \frac{1}{2} g_{ab} (F_{ci}, F^{ci}) = 0 . \] (18)

Note that for the adiabatic limit of instanton equations [8, 9] the constraints (15) disappear since the energy-momentum tensor for self-dual and anti-self-dual gauge fields vanishes on any four-manifold \(M \).
4. Flat connections. Now we start to consider the flatness equation (12), the equations (16), (17) and the constraint equations (18). From now on we will consider only zero modes in e^2-expansions and equations on them. For simplicity of notation we will omit the index “(0)” from all $A^{(0)}$ and $F^{(0)}$ tensor components. In the adiabatic approach it is assumed that all fields depend on coordinates $x^a \in \Sigma_2$ only via moduli parameters $\phi^\alpha(x^a), \alpha, \beta = 1, 2, ..., $ appearing in the solutions of the flatness equation (12).

Flat connection $A_{H^2} := A_i dx^i$ on H^2 has the form

$$A_{H^2} = g^{-1} d g \quad \text{with} \quad d = dx^i \partial_i \quad \text{for} \quad \partial_i = \frac{\partial}{\partial x^i},$$

where $g = g(\phi^\alpha(x^a), x^i)$ is a smooth map from H^2 into the gauge group G for any fixed $x^a \in \Sigma_2$.

Let us introduce on H^2 spherical coordinates: $x^3 = \rho \cos \varphi$ and $x^4 = \rho \sin \varphi$. Using these coordinates, we impose on g the condition $g(\varphi = 0, \rho^2 \rightarrow 1) = \text{Id}$ (framing) and denote by $C^\infty_0(H^2, G)$ the space of framed flat connections on H^2 given by (19). On H^2, as on a manifold with a boundary, the group of gauge transformations for any fixed $x^a \in \Sigma_2$ is defined as (see e.g. [9, 10, 11])

$$G_{H^2} = \{ g : H^2 \rightarrow G \mid g \rightarrow \text{Id} \quad \text{for} \quad \rho^2 \rightarrow 1 \}.$$

Hence the solution space of the equation (12) is the infinite-dimensional group $\mathcal{N} = C^\infty_0(H^2, G)$, and the moduli space of solutions is the based loop group $[9, 10, 12]$

$$\mathcal{M} = C^\infty_0(H^2, G)/G_{H^2} = \Omega G.$$

This space can also be represented as $\Omega G = LG/G$, where $LG = C^\infty(S^1, G)$ is the loop group with the circle $S^1 = \partial H^2$ parameterized by $e^{i \varphi}$.

5. Moduli space. On the group manifold (21) we introduce local coordinates ϕ^α with $\alpha = 1, 2, ...$ and recall that A_i’s depend on $x^a \in \Sigma_2$ only via moduli parameters $\phi^\alpha = \phi^\alpha(x^a)$. Then moduli of gauge fields define a map

$$\phi : \Sigma_2 \rightarrow \mathcal{M} \quad \text{with} \quad \phi(x^a) = \{ \phi^\alpha(x^a) \}.$$

These maps are constrained by the equations (16), (17) and (18). Since A_{H^2} is a flat connection for any $x^a \in \Sigma_2$, the derivatives $\partial_\alpha A_i$ have to satisfy the linearized (around A_{H^2}) flatness condition, i.e. $\partial_\alpha A_i$ belong to the tangent space $T_\alpha \mathcal{N}$ of the space $\mathcal{N} = C^\infty_0(H^2, G)$ of framed flat connections on H^2. Using the projection $\pi : \mathcal{N} \rightarrow \mathcal{M}$ from \mathcal{N} to the moduli space \mathcal{M}, one can decompose $\partial_\alpha A_i$ into the two parts

$$T_\alpha \mathcal{N} = \pi^* T_\alpha \mathcal{M} \oplus T_\alpha \mathcal{G} \quad \iff \quad \partial_\alpha A_i = (\partial_\alpha \phi^\beta) \xi_{\beta i} + D_i \epsilon_\alpha,$$

where \mathcal{G} is the gauge group G_{H^2} for any fixed $x^a \in \Sigma_2$, $\{ \xi_\alpha = \xi_{\alpha i} dx^i \}$ is a local basis of tangent vectors at $T_\alpha \mathcal{M}$ (they form the loop Lie algebra Ωg) and ϵ_α are g-valued gauge parameters ($D_i \epsilon_\alpha \in T_\alpha \mathcal{G}$) which are determined by the gauge-fixing conditions

$$g^{ij} D_i \xi_{\alpha j} = 0 \quad \iff \quad g^{ij} D_i D_j \epsilon_\alpha = g^{ij} D_i \partial_\alpha A_j.$$

Note also that since $A_i(\phi^\alpha, x^j)$ depends on x^a only via ϕ^α, we have

$$\partial_\alpha A_i = \frac{\partial A_i}{\partial \phi^\beta} \partial_\alpha \phi^\beta \quad \iff \quad \epsilon_\alpha = (\partial_\alpha \phi^\beta) \epsilon_\beta.$$
where the gauge parameters \(\epsilon_\beta \) are found by solving the equations
\[
g^{ij} D_i D_j \epsilon_\beta = g^{ij} D_i \frac{\partial A_i}{\partial \phi^\beta} .
\] (26)

Recall that \(A_i \) are given explicitly by (19) and \(A_a \) are yet free. It is natural to choose \(A_a = \epsilon_a \) [5, 6] and obtain
\[
F_{ai} = \partial_a A_i - D_i A_a = (\partial_a \phi^\beta) \xi_{\beta i} = \pi_s \partial_a A_i \in T_A M .
\] (27)

Thus if we know the dependence of \(\phi^\alpha \) on \(x^a \) then we can construct
\[
(A_\mu) = (A_a, A_i) = \begin{pmatrix} (\partial_a \phi^\beta) \epsilon_\beta, g^{-1}(\phi^\alpha, x^j) \partial_i g(\phi^\beta, x^k) \end{pmatrix},
\] (28)

which are in fact the components \(A_\mu^{(0)} = A_\mu(\epsilon=0) \).

6. Effective action. For finding equations for \(\phi^\alpha(x^a) \) we substitute (27) into (16) and see that (16) are resolved due to (24). Substituting (27) into (17), we obtain the equations
\[
\frac{1}{\sqrt{|\det g_{\Sigma^2}|}} \partial_a \left(\sqrt{|\det g_{\Sigma^2}|} g^{ab} \partial_b \phi^\beta \right) g^{ij} \xi_{\beta j} + g^{ab} g^{ij} (D_a \xi_{\beta j}) \partial_b \phi^\beta = 0 .
\] (29)

We should project (29) on the moduli space \(\mathcal{M} = \Omega G \), metric \(G = (G_{\alpha\beta}) \) on which is defined as
\[
G_{\alpha\beta} = \langle \xi_\alpha, \xi_\beta \rangle = \int_{H^2} d \text{vol} \ g^{ij} (\xi_{\alpha i}, \xi_{\beta j}) .
\] (30)

The projection is provided by multiplying (29) by \(\langle \xi_\alpha, \cdot \rangle \) (cf. e.g. [13, 14]). We obtain
\[
\frac{1}{\sqrt{|\det g_{\Sigma^2}|}} \partial_a \left(\sqrt{|\det g_{\Sigma^2}|} g^{ab} \partial_b \phi^\beta \right) \langle \xi_\alpha, \xi_\beta \rangle + G_{\alpha\beta} \langle \xi_\alpha, D_a \xi_\beta \rangle \partial_b \phi^\beta = 0 .
\] (31)

\[
= G_{\alpha\sigma} \left\{ \frac{1}{\sqrt{|\det g_{\Sigma^2}|}} \partial_a \left(\sqrt{|\det g_{\Sigma^2}|} g^{ab} \partial_b \phi^\sigma \right) + \Gamma_{\beta\gamma}^\sigma g^{ab} \partial_a \phi^\beta \partial_b \phi^\gamma \right\} = 0 ,
\]

where
\[
\Gamma_{\beta\gamma}^\sigma = \frac{1}{2} G^{\sigma\lambda} (\partial_\gamma G_{\beta\lambda} + \partial_\beta G_{\gamma\lambda} - \partial_\lambda G_{\beta\gamma}) \quad \text{with} \quad \partial_\gamma := \frac{\partial}{\partial \phi^\gamma} ,
\] (32)

are the Christoffel symbols and \(\nabla_\gamma \) are the corresponding covariant derivatives on the moduli space \(\mathcal{M} \) of flat connections on \(H^2 \).

The equations
\[
\frac{1}{\sqrt{|\det g_{\Sigma^2}|}} \partial_a \left(\sqrt{|\det g_{\Sigma^2}|} g^{ab} \partial_b \phi^\alpha \right) + \Gamma_{\beta\gamma}^\sigma g^{ab} \partial_a \phi^\beta \partial_b \phi^\gamma = 0
\] (33)
are the Euler-Lagrange equations for the effective action

\[S_{\text{eff}} = \int_{\Sigma^2} d^4x \sqrt{-\det(g_{ab})} g^{cd} G_{\alpha\beta} \partial_c \phi^\alpha \partial_d \phi^\beta \] (34)

obtained from the action functional (11) in the adiabatic limit \(\varepsilon \to 0 \); it appears from the term \((\mathcal{F}_a, \mathcal{F}^a)\) in (11) (other terms vanish). The equations (33) are the standard sigma-model equations defining maps from \(\Sigma^2 \) into the based loop group \(\Omega G \).

7. Virasoro constraints. The last undiscussed equations are the constraints (18). Substituting (27) into (18), we obtain

\[g^{ij}(\xi_{\alpha i}, \xi_{\beta j}) \partial_a \phi^\alpha \partial_b \phi^\beta - \frac{1}{2} g_{ab} g^{cd} G_{\alpha\beta} \partial_c \phi^\alpha \partial_d \phi^\beta = 0 . \] (35)

Integrating (35) over \(H^2 \) (projection on \(\mathcal{M} \)), we get

\[G_{\alpha\beta} \partial_a \phi^\alpha \partial_b \phi^\beta - \frac{1}{2} g_{ab} g^{cd} G_{\alpha\beta} \partial_c \phi^\alpha \partial_d \phi^\beta = 0 . \] (36)

These are equations which one will obtain from (34) by varying with respect to \(g_{ab} \). Thus

\[T^V_{ab} = G_{\alpha\beta} \partial_a \phi^\alpha \partial_b \phi^\beta - \frac{1}{2} g_{ab} g^{cd} G_{\alpha\beta} \partial_c \phi^\alpha \partial_d \phi^\beta \] (37)

is the traceless stress-energy tensor and equations (36) are the Virasoro constraints accompanying the Polyakov string action (34).

8. B-field. In string theory the action (34) is often extended by adding the B-field term. This term can be obtained from the topological Yang-Mills term

\[\frac{1}{2} \int_M d^4x \sqrt{\det g^\varepsilon_{H^2}} \varepsilon_{\mu\nu\lambda\sigma}(\mathcal{F}^\mu_{\varepsilon}, \mathcal{F}^\lambda_{\varepsilon}) \] (38)

which in the adiabatic limit \(\varepsilon \to 0 \) becomes

\[\int_M d^4x \sqrt{\det g_{H^2}} \varepsilon^{ab} \varepsilon^{ij}(\mathcal{F}_{ai}, \mathcal{F}_{bj}) = \int_{\Sigma^2} d^4x \sqrt{-\det g} B_{\alpha\beta} \partial_c \phi^\alpha \partial_d \phi^\beta , \] (39)

where

\[B_{\alpha\beta} = \int_{H^2} d \text{vol} \varepsilon^{ij}(\xi_{\alpha i}, \xi_{\beta j}) . \] (40)

are components of the two-form \(\mathbb{B} = (B_{\alpha\beta}) \) on the moduli space \(\mathcal{M} = \Omega G \).

9. Remarks on superstrings. The adiabatic limit of supersymmetric Yang-Mills theories with a (partial) topological twisting on Euclidean manifold \(\Sigma \times \bar{\Sigma} \), where \(\Sigma \) and \(\bar{\Sigma} \) are Riemann surfaces, was considered in [15]. Several sigma-models with fermions on \(\Sigma \) (including supersymmetric ones) were obtained. Switching to Lorentzian signature and adding constraints of type (18), which were not considered in [15], one can get stringy sigma-model resembling NSR strings. However, analysis of these sigma-models demands more efforts and goes beyond the scope of our paper.

Another possibility is to consider ordinary Yang-Mills theory (11) but with Lie supergroup \(G \) as the structure group. We restrict ourselves to the \(N=2 \) super translation group with ten-dimensional
Minkowski space $\mathbb{R}^{9,1}$ as bosonic part. This super translation group can be represented as the coset [16, 17]

$$G = \text{SUSY}(N=2)/\text{SO}(9,1),$$

(41)

with coordinates (X^α, θ^A), where $\theta^p = (\theta^A)$ are two Majorana-Weyl spinors in $d = 10, \alpha = 0, ..., 9, A = 1, ..., 32$ and $p = 1, 2$. The generators of G obey the Lie superalgebra $\mathfrak{g} = \text{Lie} \, G$,

$$\{\xi_{Ap}, \xi_{Bq}\} = (\gamma^\alpha C)_{AB} \delta_{pq} \xi_\alpha, \quad [\xi_\alpha, \xi_{Ap}] = 0, \quad [\xi_\alpha, \xi_\beta] = 0,$$

(42)

where γ^α are the γ-matrices in $\mathbb{R}^{9,1}$ and C is the charge conjugation matrix. On the superalgebra \mathfrak{g} we introduce the standard metric

$$\langle \xi_\alpha \xi_\beta \rangle = \eta_{\alpha\beta}, \quad \langle \xi_\alpha \xi_{Ap} \rangle = 0 \quad \text{and} \quad \langle \xi_{Ap} \xi_{Bq} \rangle = 0,$$

(43)

where $(\eta_{\alpha\beta}) = \text{diag}(-1, 1, ..., 1)$ is the Lorentzian metric on $\mathbb{R}^{9,1}$.

It was shown in [18] that the action functional for Yang-Mills theory on $\Sigma_2 \times H^2$ with the gauge group G, defined by (42),

$$S_\varepsilon = \frac{1}{2\pi} \int_{\Sigma_2 \times H^2} d^4x \sqrt{\det g_{\Sigma_2}} \sqrt{\det g_{H^2}} \left\{ \varepsilon^2 \langle F_{ab} F^{ab} \rangle + 2 \langle F_{ai} F^{ai} \rangle + \varepsilon^{-2} \langle F_{ij} F^{ij} \rangle \right\}$$

(44)

plus the Wess-Zumino-type term

$$S_{WZ} = \frac{1}{\pi} \int_{\Sigma_3 \times H^2} dx^a \wedge dx^b \wedge dx^c \wedge dx^2 \wedge dx^4 \int_{\Gamma_{\Delta \Lambda}} \tilde{F}_{ai} \tilde{F}^i_{bj} \tilde{F}^j_{ck} \tilde{F}_{\delta k} \xi^k$$

(45)

yield the Green-Schwarz superstring action [17] in the adiabatic limit $\varepsilon \rightarrow 0$. Here Σ_3 is a Lorentzian manifold with the boundary $\Sigma_2 = \partial \Sigma_3$ and local coordinates $x^a, \hat{a} = 0, 1, 2$; the structure constants $f_{\Gamma_{\Delta \Lambda}}$ are given in [16] and $(\xi_i) = (\sin \varphi, -\cos \varphi)$ is the unit vector on H^2 running the boundary $S^1 = \partial H^2$.

10. **Superstrings from $d = 3$ Yang-Mills.** Here we will show that the Green-Schwarz superstrings with a worldsheet Σ_2 can also be associated with a Yang-Mills model on $\Sigma_2 \times S^1$. When the radius of S^1 tends to zero, the action of this Yang-Mills model becomes the Green-Schwarz superstring action. So, we consider Yang-Mills theory on a direct product manifold $M^3 = \Sigma_2 \times S^1$, where Σ_2 is a two-dimensional Lorentzian manifold discussed before and S^1 is the unit circle parameterized by $x^3 \in [0, 2\pi]$ with the metric tensor $g_{S^1} = (g_{33})$ and $g_{33} = 1$. As the structure group G of Yang-Mills theory we consider the super translation group in $d = 10$ auxiliary dimensions (41) with the generators (42) and the metric (43) on the Lie superalgebra $\mathfrak{g} = \text{Lie} \, G$. As in (20), we impose framing over S^1, i.e. consider the group of gauge transformations equal to the identity over S^1. Coordinates on G are X^α and $\theta^A\varepsilon$ introduced in the previous section. The one-forms

$$\Pi^\Delta = \{\Pi^\alpha, \Pi^{Ap}\} = \{dX^\alpha - i \delta_{pq} \bar{\theta}^p \gamma^\alpha d\theta^q, \ d\theta^{Ap}\}$$

(46)

form a basis of one-forms on G [16].

By using the adiabatic approach, we deform the metric on $\Sigma_2 \times S^1$ and introduce

$$dx^2 = g_{\mu\nu} \, dx^\mu \, dx^\nu = g_{ab} \, dx^a \, dx^b + \varepsilon^2 (dx^3)^2,$$

(47)
where $\varepsilon \in [0, 1]$ is a real parameter, $a, b = 1, 2, \mu, \nu = 1, 2, 3$. This is equivalent to the consideration of the circle S^1_ε of radius ε. It is assumed that for the fields A_μ and $F_{\mu \nu}$ there exist limits $\lim_{\varepsilon \to 0} A_\mu$ and $\lim_{\varepsilon \to 0} F_{\mu \nu}$. Indices are raised by $g^{\mu \nu}_\varepsilon$ and we have

$$F^{\mu \nu}_\varepsilon = g^{ac}_\varepsilon g^{bd}_\varepsilon F_{cd} = F^{ab}_\varepsilon , \quad F^{a3}_\varepsilon = g^{ac}_\varepsilon g^{33}_\varepsilon F_{c3} = \varepsilon^{-2} F^{a3}_3 ,$$

where indices in $F^{\mu \nu}_\varepsilon$ are raised by the non-deformed metric tensor.

We consider the Yang-Mills action of the form

$$S_\varepsilon = \int_{M^3} d^3 x \sqrt{\det g_{\Sigma^2}} \left\{ \varepsilon^2 D_a F^{ab}_\varepsilon + D_3 F^{3b}_\varepsilon = 0 , \quad D_a F^{a3}_\varepsilon = 0 , \quad T^{e}_{ab} = \varepsilon^2 \left(g^{cd} (F_{ac} F^{bd}_\varepsilon) - \frac{1}{4} g_{ab} (F_{cd} F^{cd}_\varepsilon) \right) + (F_{a3} F_{b3}) - \frac{1}{2} g_{ab} (F_{c3} F^{c3}_\varepsilon) \right\} ,$$

which for $\varepsilon = 1$ coincides with the standard Yang-Mills action. Variations with respect to A_μ and g_{ab} yield the equations

$$D_3 F^{3b}_\varepsilon = 0 , \quad D_a F^{a3}_\varepsilon = 0 , \quad T^0_{ab} = (F_{a3} F_{b3}) - \frac{1}{2} g_{ab} (F_{c3} F^{c3}_\varepsilon) .$$

In the adiabatic limit $\varepsilon \to 0$ equations (50), (51) become

$$D_3 F^{3b}_\varepsilon = 0 , \quad D_a F^{a3}_\varepsilon = 0 , \quad T^0_{ab} = (F_{a3} F_{b3}) - \frac{1}{2} g_{ab} (F_{c3} F^{c3}_\varepsilon) .$$

Notice that as a function of $x^3 \in S^1$, the field A_3 belongs to the loop algebra $L_\Omega = g \oplus \Omega g$, where Ωg is the Lie superalgebra of the based loop group ΩG. Let us denote by A^0_3 the zero-mode in the expansion of A_3 in $\exp(i x^3) \in S^1$ (Wilson line). The generic A_3 can be represented in the form

$$A_3 = h^{-1} A^0_3 h + h^{-1} \partial_3 h ,$$

where G-valued function h depends on x^a and x^3. For fixed $x^a \in \Sigma_2$ one can choose $h \in \Omega G = \text{Map}(S^1, G) / G$. We denote by \mathcal{N} the space of all A_3 given by (54) and define the projection $\pi : \mathcal{N} \to G$ on the space G parametrizing A^0_3 since we want to keep only A^0_3 in the limit $\varepsilon \to 0$. We denote by Q the fibres of the projection π.

In the adiabatic approach it is assumed that A^0_3 depends on $x^a \in \Sigma_2$ only via the moduli parameters $(X^\alpha, \theta^A p) \in G$. Therefore, the moduli define the maps

$$(X, \theta^P) : \quad \Sigma_3 \to G$$

which are not arbitrary, they are constrained by the equations (52), (53). The derivatives $\partial_a A_3$ of $A_3 \in \mathcal{N}$ belong to the tangent space $T_{A_3} \mathcal{N}$ of the space \mathcal{N}. Using the projection $\pi : \mathcal{N} \to G$, one can decompose $\partial_a A_3$ into two parts

$$T_{A_3} \mathcal{N} = \pi^* T_{A^0_3} G \oplus T_{A_3} Q \quad \Leftrightarrow \quad \partial_a A_3 = \Pi^A_\Delta \xi_\Delta + D_3 \varepsilon_a ,$$

where $\Delta = (\alpha, Ap)$ and

$$\Pi^A_\alpha := \partial_a X^\alpha - i \delta_{pq} \bar{\theta}^p \gamma^a \partial_a \theta^q , \quad \Pi^A p := \partial_a \theta^A p .$$
In (56), \(\epsilon_a \) are g-valued parameters \((D_3 \epsilon_a \in T_{A_3}Q)\) and the vector fields \(\xi_{\Delta_3} \) on \(G \) can be identified with the generators \(\xi_{\Delta} = (\xi_{\alpha}, \xi_{\alpha p}) \) of \(G \).

On \(\xi_{\Delta_3} \) we impose the gauge fixing condition

\[
D_3 \xi_{\Delta_3} = 0 \quad \overset{(56)}{\Rightarrow} \quad D_3 D_3 \epsilon_a = D_3 \partial_a A_3 .
\]

Recall that \(A_3 \) is fixed by (54) and \(A_a \) are yet free. In the adiabatic approach one chooses \(A_a = \epsilon_a \) (cf. [5, 6]) and obtains

\[
\mathcal{F}_{a3} = \partial_a A_3 - D_3 A_a = \Pi^\Delta_a \xi_{\Delta_3} \in T_{A_3}G .
\]

Substituting (59) into the first equation in (52), we see that they are resolved due to (58). Substituting (59) into the action \(S_0 = \lim_{\epsilon \to 0} S_\epsilon \) given by (49) and integrating over \(x^3 \), we obtain the effective action

\[
S_0 = 2\pi \int_{\Sigma_2} \sqrt{|\det g_{\Sigma_2}|} g^{ab} \Pi^\alpha_a \Pi^\beta_b \eta_{\alpha\beta} ,
\]

which coincides with the kinetic part of the Green-Schwarz superstring action [17]. One can show (cf. [14]) that the second equations in (52) are equivalent to the Euler-Lagrange equations for \((X^\alpha, \theta^{Ap})\) following from (60). Finally, substituting (59) into (53), we obtain the equations

\[
\Pi^\alpha_a \Pi^\beta_b \eta_{\alpha\beta} - \frac{1}{2} g^{cd} \Pi^\alpha_c \Pi^\beta_d \eta_{\alpha\beta} = 0
\]

which can also be obtained from (60) by variation of \(g^{ab} \).

For getting the full Green-Schwarz superstring action one should add to (60) a Wess-Zumino-type term which is described as follows [16, 17]. One should consider a Lorentzian 3-manifold \(\Sigma_3 \) with the boundary \(\Sigma_2 = \partial \Sigma_3 \) and coordinates \(x^\hat{a}, \hat{a} = 0, 1, 2 \). On \(\Sigma_3 \) one introduces the 3-form [16]

\[
\Omega_3 = i dx^\hat{a} \Pi^\alpha_\hat{a} \wedge (\bar{\partial} \theta^1 \gamma^\beta \wedge \bar{\partial} \theta^1 - \bar{\partial} \theta^2 \gamma^\beta \wedge \bar{\partial} \theta^2) \eta_{\alpha\beta} = \check{d} \Omega_2 ,
\]

where

\[
\Omega_2 = -i \check{d} X^\alpha \wedge (\bar{\partial}^1 \gamma^\beta \check{d} \theta^1 - \bar{\partial}^2 \gamma^\beta \check{d} \theta^2) \quad \text{with} \quad \check{d} = dx^\hat{a} \frac{\partial}{\partial x^\hat{a}} .
\]

Then the term

\[
S_{WZ} = \int_{\Sigma_3} \Omega_3 = \int_{\Sigma_2} \Omega_2
\]

is added to (60) with a proper coefficient \(\kappa \) and \(S_{GS} = S_0 + \kappa S_{WZ} \) is the Green-Schwarz action for the superstrings of type I, IIA and IIB.

To get (63) from Yang-Mills theory we consider the manifold \(\Sigma_3 \times S^1 \) and notice that in addition to (59) we now have the components

\[
\mathcal{F}_{\alpha 3} = \Pi^\alpha_\Delta \xi_{\Delta 3} = (\partial_0 X^\alpha - i \delta_{pq} \bar{\partial}^p \gamma^q \partial_0 \theta^q) \xi_{\alpha 3} + (\partial_0 \theta^{Ap}) \xi_{\alpha p 3} .
\]

Introduce one-forms \(F_3 := \mathcal{F}_{a3}dx^\hat{a} \) on \(\Sigma_3 \), where \(\mathcal{F}_{a3}(\epsilon) \) are general Yang-Mills fields on \(\Sigma_3 \times S^1 \) which take the form (59),(64) only in the limit \(\epsilon \to 0 \), and consider the functional

\[
S_Y M = \int_{\Sigma_3 \times S^1} f_{\Delta \Lambda \Gamma} F^\Delta_3 \wedge F^\Lambda_3 \wedge F^\Gamma_3 \wedge dx^3 ,
\]
where the explicit form of the constant $f_{\Delta \Lambda r}$ can be found in [16]. Therefore, the Yang-Mills action (49) plus (65) in the adiabatic limit $\varepsilon \to 0$ becomes the Green-Schwarz action. This result can be considered as a generalization of the Green result [19] who derived the superstring theory in a fixed gauge from Chern-Simons theory on $\Sigma_2 \times \mathbb{R}$.

11. Concluding remarks. We have shown that bosonic strings and Green-Schwarz superstrings can be obtained via the adiabatic limit of Yang-Mills theory on manifolds $\Sigma_2 \times H^2$ with a Wess-Zumino-type term. Notice that the constraint equations (15) on the Yang-Mills energy momentum tensor with $\varepsilon > 0$ are important for restoring the unitarity of Yang-Mills theory on $\Sigma_2 \times H^2$. More interestingly, the same result is also obtained by considering Yang-Mills theory on three-dimensional manifolds $\Sigma_2 \times S^1_{\varepsilon}$ with the radius of the circle S^1_{ε} given by $\varepsilon \in [0,1]$. For $\varepsilon \neq 0$ we have well-defined quantum Yang-Mills theory on $\Sigma_2 \times S^1_{\varepsilon}$. For $\varepsilon \to 0$ we get superstring theories. This raises hopes that various results for superstring theories can be obtained from results of the associated Yang-Mills theory on $\Sigma_2 \times S^1_{\varepsilon}$.

Acknowledgements

This work was partially supported by the Deutsche Forschungsgemeinschaft grant LE 838/13.

References

[1] M.B. Green, J.H. Schwarz and E. Witten, Superstring theory: Volumes 1 & 2, Cambridge University Press, Cambridge, 1987 & 1988.
[2] J. Polchinski, String theory: Volumes 1 & 2, Cambridge University Press, Cambridge, 1998.
[3] K. Becker, M. Becker and J.H. Schwarz, String theory and M-theory: A modern introduction, Cambridge University Press, Cambridge, 2007.
[4] D. Bailin and A. Love, Supersymmetric gauge theory and string theory, Taylor & Francis, New York, 1994.
[5] N.S. Manton and P. Sutcliffe, Topological solitons, Cambridge University Press, Cambridge, 2004.
[6] E.J. Weinberg and P. Yi, “Magnetic monopole dynamics, supersymmetry, and duality,” Phys. Rept. 438 (2007) 65 [hep-th/0609055].
[7] M. Shifman, Advanced topics in quantum field theory, Cambridge University Press, Cambridge, 2012.
[8] S. Dostoglou and D.A. Salamon, “Self-dual instantons and holomorphic curves,” Ann. Math. 139 (1994) 581.
[9] D.A. Salamon, “Notes on flat connections and the loop group,” Preprint, University of Warwick, 1998.
[10] S.K. Donaldson, “Boundary value problems for Yang-Mills fields,” J. Geom. Phys. 8 (1992) 89.
[11] S. Jarvis and P. Norbury, “Degenerating metrics and instantons on the four-sphere,” J. Geom. Phys. 27 (1998) 79.

[12] A.N. Pressley and G.B. Segal, Loop groups, Oxford University Press, Oxford, 1984.

[13] J.M. Figueroa-O’Farrill, C. Kohl and B.J. Spence, “Supersymmetric Yang-Mills, octonionic instantons and triholomorphic curves,” Nucl. Phys. B 521 (1998) 419 [hep-th/9710082].

[14] A.D. Popov, “Loop groups in Yang-Mills theory,” arXiv:1505.06634 [hep-th].

[15] M. Bershadsky, A. Johansen, V. Sadov and C. Vafa, “Topological reduction of 4-d SYM to 2-d sigma models,” Nucl. Phys. B 448 (1995) 166 [hep-th/9501096].

[16] M. Henneaux and L. Mezincescu, “A sigma model interpretation of Green-Schwarz covariant superstring action,” Phys. Lett. B 152 (1985) 340.

[17] M.B. Green and J.H. Schwarz, “Covariant description of superstrings,” Phys. Lett. B 136 (1984) 367.

[18] A.D. Popov, “Green-Schwarz superstring as subsector of Yang-Mills theory,” arXiv:1506.02175 [hep-th].

[19] M.B. Green, “Supertranslations, superstrings and Chern-Simons forms,” Phys. Lett. B 223 (1989) 157.