Eckhoff’s problem on convex sets in the plane

Adam S. Jobson
Department of Mathematics
University of Louisville
Louisville, KY 40292, U.S.A.
adam.jobson@louisville.edu

André E. Kézdy
Department of Mathematics
University of Louisville
Louisville, KY 40292, U.S.A.
kezdy@louisville.edu

Jenő Lehel
Alfréd Rényi Institute of Mathematics
Budapest, Hungary
and
Department of Mathematics
University of Louisville
Louisville, KY 40292, U.S.A.
lehelj@renyi.hu

Submitted: Oct 28, 2020; Accepted: Jun 11, 2021; Published: Aug 27, 2021
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract
Eckhoff proposed a combinatorial version of the classical Hadwiger–Debrunner (p,q)-problems as follows. Let \mathcal{F} be a finite family of convex sets in the plane and let $m \geq 1$ be an integer. If among every $\left(\binom{m+2}{2} \right)$ members of \mathcal{F} all but at most $m-1$ members have a common point, then there is a common point for all but at most $m-1$ members of \mathcal{F}. The claim is an extension of Helly’s theorem ($m = 1$). The case $m = 2$ was verified by Nadler and by Perles. Here we show that Eckhoff’s conjecture follows from an old conjecture due to Szemerédi and Petruska concerning 3-uniform hypergraphs. This conjecture is still open in general; its solution for a few special cases answers Eckhoff’s problem for $m = 3, 4$. A new proof for the case $m = 2$ is also presented.

Mathematics Subject Classifications: 52A10, 52A35, 05C62, 05D05, 05D15, 05C65

1 Introduction

The subject of this note is a combinatorial version of the classical Hadwiger–Debrunner (p,q)-problems proposed by Eckhoff [2] (see also [1]). A family \mathcal{F} of convex sets in the
plane has the $\Delta(m)$-property if \mathcal{F} has at least $|\mathcal{F}| - m + 1$ sets with non-empty intersection. We restate Eckhoff’s conjecture using this notation.

Problem 1. (Eckhoff [2, Problem 6]) Let $m \geq 1$, $k = \binom{m+2}{2}$ be integers, and let \mathcal{F} be a family of at least k convex sets in \mathbb{R}^2. If every k members of \mathcal{F} has the $\Delta(m)$-property, then \mathcal{F} also has the $\Delta(m)$-property.

Due to Helly’s theorem [5], Problem 1 has a positive answer for $m = 1$. The claim was verified also for $m = 2$ by Nadler [8] and by Perles [9]. In this note we show that Eckhoff’s conjecture follows from an old conjecture due to Szemerédi and Petruska [10] on 3-uniform hypergraphs.

In Section 2, Problem 1 is restated first (Problem 2) in terms of 2-representable 3-uniform hypergraphs. The Szemerédi-Petruska conjecture, as reformulated by Lehel and Tuza [11, Problem 18.(a)] states that $\binom{m+2}{2}$ is the maximum order of a 3-uniform τ-critical hypergraph with transversal number m. Thus Eckhoff’s conjecture becomes equivalent to a particular instance of a general extremal hypergraph problem (Theorem 6). The Szemerédi-Petruska conjecture is verified for $m = 2, 3, 4$ (see [7]) using the concept of 3-uniform τ–critical hypergraphs, cross-intersecting set-pair systems, and τ-critical graphs; this solves Eckhoff’s problem for $m = 3, 4$, with a new proof for $m = 2$ (Corollary 7).

Eckhoff made the remark that the value of k in Problem 1 is not expected to be tight. Examples in Section 5 show that $k = \binom{m+2}{2}$ cannot be lowered for $m = 2, 3$, but it is not optimal for $m = 4$.

2 Convex hypergraphs

Given a family \mathcal{F} of convex sets in \mathbb{R}^2, let H be the 3-uniform intersection hypergraph defined by vertex set $V(H) = \{F : F \in \mathcal{F}\}$ and edge set $E(H) = \{\{A, B, C\} : A, B, C \in \mathcal{F} \text{ and } A \cap B \cap C \neq \emptyset\}$.

A 3-uniform hypergraph H, that is the intersection hypergraph of some family \mathcal{F} of planar convex sets is called a 2-representable or convex hypergraph. Observe that a k-clique $N \subset V$ of the intersection hypergraph indicates that the k convex sets of \mathcal{F} corresponding to the vertices of N have a common point in the plane, due to Helly’s theorem. Eckhoff’s problem is stated next in terms of convex hypergraphs.

Problem 2. Let $m \geq 1$ and $n \geq \binom{m+2}{2}$ be integers, and let H be a 2-representable 3-uniform hypergraph of order n. If $\omega(H[X]) \geq \binom{m+2}{2} - m + 1$, for every $X \subseteq V$, $|X| = \binom{m+2}{2}$, then $\omega(H) \geq n - m + 1$.

Observe that by Helly’s theorem, a family \mathcal{F} of k convex sets in \mathbb{R}^2 has the $\Delta(m)$-property if and only if the 3-uniform intersection hypergraph H defined by \mathcal{F} has clique number $\omega(H) \geq k - m + 1$. This implies the equivalence of Problem 1 and Problem 2.
3 \(\tau \text{-critical 3-uniform hypergraphs} \)

Let \(H = (V, E) \) be an \(r \)-uniform hypergraph. For \(X \subseteq V \) define the subhypergraph \(H[X] \) on vertex set \(X \) with all those edges in \(E \) that are contained by \(X \). For \(e \in E \), denote \(H - e \) the partial hypergraph with vertex set \(V \) and edge set \(E \setminus \{e\} \). Let \(\hat{H} = (V, \hat{E}) \) be the \(r \)-uniform hypergraph obtained as the complement of \(H \) with \(\hat{E} \) containing all \(r \)-element subsets of \(V \) not in \(E \).

The transversal number of a hypergraph \(H \) is defined by

\[
\tau(H) = \min\{|T| : T \subseteq V, \ e \cap T \neq \emptyset, \ \text{for each } e \in E\}.
\]

A hypergraph \(H \) is \(\tau \)-critical if it has no isolated vertex \((\bigcup_{e \in E} e = V) \) and \(\tau(H - e) = \tau(H) - 1 \) for every \(e \in E \). Let \(v_{\max}(r, t) \) be the maximum order of an \(r \)-uniform \(\tau \)-critical hypergraph \(H \) with \(\tau(H) = t \). This function was introduced and investigated by Gyárfás et al. \([4]\) and by Tuza \([11, \text{Section 4.2}]\).

Denote \(\omega(H) \) the clique number of \(H \) defined as the maximum cardinality of a subset \(N \subseteq V \) such that every \(r \)-element set of \(N \) belongs to \(E \).

Lemma 3.

(a) If \(\hat{H} \) is a \(\tau \)-critical \(r \)-uniform hypergraph, then the maximum cliques of \(H \) have no common vertex.

(b) If the maximum cliques of an \(r \)-uniform hypergraph \(H \) have no common vertex, then \(|V| \leq v_{\max}(r, t) \), where \(t = \tau(\hat{H}) \).

Proof. Notice that \(N \subseteq V \) is a minimum cardinality transversal of \(\hat{H} \) if and only if \(T = V \setminus N \) is the vertex set of a maximum cardinality clique of \(H \).

(a) By definition, \(\hat{H} \) has no isolated vertex. Furthermore, for every \(x \in V \) and \(e \in \hat{E} \), \(x \in e \), we have \(\tau(\hat{H}[V \setminus \{x\}]) \leq \tau(\hat{H} - e) = \tau(\hat{H}) - 1 \). Then the union of \(\{x\} \) with a \((\tau(\hat{H}) - 1)\)-element transversal of \(\hat{H}[V \setminus \{x\}] \) forms a minimum transversal of \(\hat{H} \). Therefore, every \(x \in V \) belongs to some minimum transversal of \(\hat{H} \). Equivalently, the complements of the minimum transversals of \(\hat{H} \), the maximum cliques of \(H \), have no common vertex.

(b) Because the maximum cliques in \(H \) have no common vertex, the union of their complement in \(V \), that is, the union of the \(t \)-element transversals of \(\hat{H} \), is equal to \(V \). Let \(H' \) be a \(\tau \)-critical partial hypergraph of \(\hat{H} \) with vertex \(V' \) and \(\tau(H') = t \). We claim that \(|V'| = |V| \).

Because every vertex \(x \in V \setminus V' \) belongs to some \(t \)-element transversal \(T \) of \(\hat{H} \), the set \(T \setminus \{x\} \) is a \((t - 1)\)-element transversal for all edges of \(\hat{H} \) not containing \(x \); hence \(\tau(H') < t \), a contradiction. Thus \(|V'| = |V| \) implies \(|V'| \leq v_{\max}(r, t) \) follows.

Recall that \(v_{\max}(3, m) \) is the maximum order of a 3-uniform \(\tau \)-critical hypergraph \(H \) with \(\tau(H) = m \). The conjecture that \(v_{\max}(3, m) = \binom{m + 2}{2} \) for every \(m \) \([11, \text{Problem 18.(a)}]\) was verified only for a few small values of \(m \):
Proposition 4 ([7]). Let \(m = 2, 3, \) or \(4, \) and \(n > m. \) If \(H \) is a 3-uniform hypergraph of order \(n \) with clique number \(\omega(H) = n - m = k \geq 3 \) and the intersection of the \(k \)-cliques of \(H \) is empty, then \(n \leq \binom{m+2}{2}. \)

Corollary 5. \(v_{\text{max}}(3, m) = \binom{m+2}{2}, \) for \(m = 2, 3 \) and \(4. \)

Proof. For every \(m \geq 1, \) a 3-uniform \(\tau \)-critical hypergraph of order \(n = \binom{m+1}{2} + m + 1 \) with transversal number \(m \) is obtained from the complete graph \(K_{m+1} \) by extending each edge with one vertex using additional distinct vertices. This construction implies \(v_{\text{max}}(3, m) \geq \binom{m+2}{2}. \)

Let \(\hat{H} \) be a \(\tau \)-critical 3-uniform hypergraph with \(\tau(\hat{H}) = m \) and \(|V| = v_{\text{max}}(3, m). \) By Lemma 3(a) and by applying Proposition 4, we obtain \(|V| = v_{\text{max}}(3, m) \leq \binom{m+2}{2}, \) \(m = 2, 3, 4. \) Thus \(v_{\text{max}}(3, m) = \binom{m+2}{2} \) follows for \(m = 2, 3 \) and \(4. \)

4 Eckhoff’s problem and \(\tau \)-critical hypergraphs

Eckhoff’s problem relates to the hypergraph extremal problem of determining \(v_{\text{max}}(3, m) \) as is shown by the next theorem.

Theorem 6. For \(m \geq 1 \) and \(n \geq k \geq v_{\text{max}}(3, m), \) let \(\mathcal{F} \) be a family of \(n \) convex sets in \(\mathbb{R}^2. \) If every \(k \) members of \(\mathcal{F} \) have the \(\Delta(m) \)-property, then \(\mathcal{F} \) has the \(\Delta(m) \)-property.

Proof. Assume that the claim is not true. Let \(H_0 \) be a 3-uniform convex hypergraph of minimum order \(n_0 \) such that \(\omega(H_0) \leq n_0 - m, \) but \(\omega(H_0[X]) > k - m + 1, \) for every \(X \subseteq V_0, \) \(|X| = k. \) Notice that the definition of \(H_0 \) implies \(n_0 > k; \) furthermore, since \(n_0 \) is minimal, \(\omega(H_0) = n_0 - m. \)

We claim that the intersection of the maximum cliques of \(H_0 \) is empty. If \(x \in V_0 \) was a common vertex of all maximum cliques, then \(H' = H_0[V_0 \setminus \{x\}] \) has order \(n' = n_0 - 1, \) and for its clique number we have \(\omega(H') = \omega(H_0) - 1 = n_0 - m - 1 = n' - m. \) At the same time, \(\omega(H'[X]) \geq k - m + 1, \) for every \(k \)-element subset \(X \subseteq V_0 \setminus \{x\}. \) Hence \(H' \) is a counterexample of order \(n', \) contradicting the minimality of \(n_0. \) Therefore, the maximum cliques of \(H_0 \) have no common vertex, and because \(\tau(H_0) = n_0 - \omega(H_0) = m, \) Lemma 3 implies \(k < n_0 \leq v_{\text{max}}(3, m) \leq k, \) a contradiction.

As an immediate corollary of Theorem 6 and Proposition 5 we obtain an extensions of Helly’s theorem together with a combinatorial proof for the case \(m = 2 \) (verified earlier by Nadler [8] and by Perles [9]).

Corollary 7. Let \(1 \leq m \leq 4, \) \(k = \binom{m+2}{2}, \) and let \(\mathcal{F} \) be a family of at least \(k \) convex sets in \(\mathbb{R}^2. \) If every \(k \) members of \(\mathcal{F} \) has the \(\Delta(m) \)-property, then \(\mathcal{F} \) also has the \(\Delta(m) \)-property.
5 Concluding remarks

5.1 The best known general bound $v_{\text{max}}(3, m) \leq \frac{3}{2}m^2 + m + 1$ is obtained by Tuza\(^1\) using the machinery of τ-critical hypergraphs. This bound combined with Theorem 6 yields the following finiteness result on Eckhoff’s problem, for every m.

Corollary 8. Let \mathcal{F} be a family of at least $k \geq \frac{3}{2}m^2 + m + 1$ convex sets in \mathbb{R}^2. If every k members of \mathcal{F} has the $\Delta(m)$-property, then \mathcal{F} also has the $\Delta(m)$-property. \(\square\)

5.2 In Corollary 7 the value of k is optimal (the smallest possible) if there is a family of $n \geq k$ convex sets in \mathbb{R}^2 such that every $k - 1$ members of \mathcal{F} satisfy the $\Delta(m)$-property, but \mathcal{F} fails it. It was proved by Nadler [8] that $k = \binom{m+2}{2}$ is optimal for $m = 2$, but as noted by Eckhoff [1], it is ‘somewhat unlikely’ that it is optimal for every m. We address optimality for $m = 2, 3, 4$ by defining a family \mathcal{F}_m of convex sets as follows.

\mathcal{F}_2: $m = 2$, $k = 6$. Let \mathcal{F}_2 be the family of $n = 6$ line segments, taken each side of the triangle $T = (p,q,r)$ twice. Then any vertex of T covers only $4 = n - m$ members of \mathcal{F}_2; meanwhile, when removing a copy of one side, say qr, vertex p covers $(k-1) - (m-1) = 4$ members.

\mathcal{F}_3: $m = 3$, $k = 10$. Let $p_0, p_1, p_2, p_3, p_4 \in \mathbb{R}^2$ be the vertices of a regular pentagon P, and let \mathcal{F}_3 be the family of $n = 10$ convex sets: the five triangles $T_i = (p_i, p_{i+1}, p_{i+2})$ plus the five quadrangles $Q_i = (p_i, p_{i+1}, p_{i+2}, p_{i+3})$, $0 \leq i \leq 4$, with (mod 5) index arithmetic. Notice that among eight members there are at least three triangles, and among three triangles the intersection of some two is a vertex of P, which covers only $7 = n - m$ members of \mathcal{F}_3. On the other hand when removing some member C from \mathcal{F}_3, any vertex of P not in C covers $(k-1) - (m-1) = 7$ members.

\mathcal{F}_4: $m = 4$, $k = \binom{m+2}{2} - 1 = 14$. Let $S = \{p_0, p_1, \ldots, p_7\}$ be the set of vertices of a regular octagon, and let \mathcal{F}_4 be the family of $n = 14$ convex sets defined as follows. Take the eight hexagons determined by the vertex sets $S \setminus \{p_i, p_{i+1}\}$, $0 \leq i \leq 7$, and take the six quadrangles $Q_i = (p_i, p_{i+1}, p_{i+2}, p_{i+3})$, for $i \in \{1, 2, 3, 5, 6, 7\}$, with (mod 8) index arithmetic. Notice that the undefined Q_0, Q_4 do not belong to \mathcal{F}_4, furthermore, the six quadrangles defined in \mathcal{F}_4 form three disjoint pairs. Taking one quadrangle from each pair plus the eight hexagons form a subfamily of 11 convex sets with no common point, thus at most 10 = $n - m$ members of \mathcal{F}_4 can be covered by one point. On the other hand, three intersecting quadrangles plus seven more hexagons contained in every subfamily $\mathcal{F}_4 \setminus \{C\}$, that is, $(k-1) - (m-1) = 10$ members have a common point q of the plane as it is seen in Fig.1.

Family \mathcal{F}_m shows that $k = \binom{m+2}{2}$ is optimal in Corollary 7 for $m = 2, 3$. Each of \mathcal{F}_2 and \mathcal{F}_3 is derived from a 3-uniform hypergraph witnessing $v_{\text{max}}(3, m) = \binom{m+2}{2}$. For $m = 4$ the 3-uniform witness hypergraphs are not 2-representable. This fact was observed by Jobson et al. [6] when a similar method using convex hypergraphs was applied to

\(^1\)Personal communication
another geometry problem on convex sets in the plane [6]. Thus the optimum for \(m = 4 \)

is less than \(\binom{4+2}{2} = 15 \); and \(\mathcal{F}_4 \) shows that for \(m = 4 \) the optimum value in Corollary 7 is

actually \(k = \binom{4+2}{2} - 1 = 14 \).

5.3 In the light of the discussions above, Eckhoff’s problem takes the form of an extremal

problem asking for the smallest integer \(k(m) \leq \binom{m+2}{2} \) such that Theorem 6 remains true

when \(v_{\text{max}}(3, m) \) is replaced with \(k(m) \). The exact values, which we know are

\(k(1) = 3 \), \(k(2) = 6 \), \(k(3) = 10 \), \(k(4) = 14 \), and we ask the question whether \(k(m) = \Omega(m^2) \).

Acknowledgements

We would like to thank András Gyárfás for calling our attention to Eckhoff’s problem,

and for his valuable comments to an earlier version of the manuscript.

References

[1] J. Eckhoff. A survey of the Hadwiger–Debrunner \((p, q)\)-problem. in: Discrete and

computational geometry, 347–377, Algorithms Combin., 25, Springer, Berlin, 2003.

https://doi.org/10.1007/978-3-642-55566-4_16.

[2] J. Eckhoff. Problems in discrete geometry. Convexity and discrete geometry including

graph theory, 269–273, Springer Proc. Math. Stat., 148, Springer, 2016.

https://doi.org/10.1007/978-3-319-28186-5_26.

[3] P. Erdős, and T. Gallai. On the maximal number of vertices representing the edges

of a graph. Közl. Magyar Tud. Akad. Mat. Kutató Int. Közl, 6 (1961), 181–203.

[4] A. Gyárfás, J. Lehel, and Zs. Tuza. Upper bound on the order of \(\tau \)-criti-cal hyper-

graphs. J. Combin. Theory Ser., B 33 (1982), no. 2, 161–165.

https://doi.org/10.1016/0095-8956(82)90065-X.

[5] E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. Jahres-

bericht der Deutschen Mathematiker-Vereinigung 32 (1923), 175–176.

[6] A. S. Jobson, A. E. Kézdy, J. Lehel, T. Pervenecki, and G. Tóth. Petruska’s question

on planar convex sets. Discrete Math., 343 (2020), no. 9, 13pp.
[7] A. S. Jobson, A. E. Kézdy, and J. Lehel. The Szemerédi-Petruska conjecture for a few small values. *Eur. J. Math.*, May (2021) 8pp.
 https://doi.org/10.1007/s40879-021-00466-9
[8] D. Nadler. Minimal 2-fold coverings of E^d. *Geom. Dedicata*, 65 (1997), no 3. 305–312.
[9] M. A. Perles. A Helly type theorem for almost intersecting families. *Talk at the Convex Geometry meeting, Oberwolfach*. June 1993.
[10] E. Szemerédi, and G. Petruska. On a combinatorial problem I. *Studia Sci. Math. Hungar.*, 7 (1972), 363–374.
[11] Zs. Tuza. Critical hypergraphs and intersecting set-pair systems *J. Combin. Theory Ser. B*, 39 (1985), no. 2, 134–145.
 https://doi.org/10.1016/0095-8956(85)90043-7