WEIGHTED GENERALIZATION OF SOME INEQUALITIES FOR DOUBLE INTEGRALS

Mehmet Zeki Sarikaya and Hüseyin Budak

Abstract. We give some weighted double integral inequalities of Hermite–Hadamard type for co-ordinated convex functions in a rectangle from \mathbb{R}^2. The inequalities obtained provide generalizations of some result given in earlier works.

1. Introduction

The Hermite–Hadamard inequality discovered by C. Hermite and J. Hadamard see, e.g., [10, 23, p.137]) is one of the most well established inequalities in the theory of convex functions with a geometrical interpretation and many applications. These inequalities state that if $f : I \to \mathbb{R}$ is a convex function on the interval I of real numbers and $a, b \in I$ with $a < b$, then

$$f \left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{2}.$$ (1.1)

Both inequalities hold in the reversed direction if f is concave. We note that the Hermite–Hadamard inequality may be regarded as a refinement of the concept of convexity and it follows easily from Jensen’s inequality. The Hermite–Hadamard inequality for convex functions has received renewed attention in recent years and a remarkable variety of refinements and generalizations have been studied (see, for example, [4, 7, 10, 11, 15, 22, 26, 28, 31, 32, 34]).

The most well-known inequalities related to the integral mean of a convex function are the Hermite–Hadamard inequalities or its weighted versions, the so-called Hermite–Hadamard–Fejér inequalities. In [14], Fejér gave a weighted generalization of the inequalities (1.1) as follows:

Theorem 1.1. If $f : [a, b] \to \mathbb{R}$, is a convex function, then the inequality

$$f \left(\frac{a + b}{2} \right) \int_a^b g(x)dx \leq \int_a^b f(x)g(x)dx \leq \frac{f(a) + f(b)}{2} \int_a^b g(x)dx.$$ (1.2)

2010 Mathematics Subject Classification: Primary 26D07, 26D10, 26D15; Secondary 26B15, 26B25.

Communicated by Gradimir Milovanovic.
holds, where \(g : [a, b] \to \mathbb{R} \) is nonnegative, integrable, and symmetric about \(x = \frac{a+b}{2} \) (i.e., \(g(x) = g(a+b-x) \)).

In [28], Wu gives the following interesting result which is a weighted generalization of the Hermite–Hadamard inequality (i.e., this is Fejér’s inequality):

Theorem 1.2. Let \(f : [a, b] \to \mathbb{R} \) be a convex function on \([a, b]\), let \(g \) be a nonnegative, integrable function on \([0, 1]\), and let \(\lambda = \int_0^1 xg(x)dx/\int_0^1 g(x)dx \). Then,

\[
(1.3) \quad f(\lambda a + (1-\lambda)b) \leq \frac{\int_a^b f(x)g(\frac{b-x}{a})dx}{\int_a^b g(\frac{b-x}{a})dx} \leq \lambda f(a) + (1-\lambda)f(b).
\]

A formal definition for co-ordinated convex function may be stated as follows:

Definition 1.1. A function \(f : \Delta \to \mathbb{R} \) is called co-ordinated convex on \(\Delta \), for all \((x, u), (y, v) \in \Delta \) and \(t, s \in [0, 1] \), if it satisfies the following inequality:

\[
(1.4) \quad f(tx + (1-t)y, su + (1-s)v) \leq tf(x, u) + t(1-s)f(x, v) + s(1-t)f(y, u) + (1-t)(1-s)f(y, v).
\]

The mapping \(f \) is a coordinated concave on \(\Delta \) if inequality (1.4) holds in reversed direction for all \(t, s \in [0, 1] \) and \((x, u), (y, v) \in \Delta \).

In [8], Dragomir proved the following inequalities which are the Hermite–Hadamard type inequalities for co-ordinated convex functions on the rectangle from \(\mathbb{R}^2 \).

Theorem 1.3. Suppose that \(f : \Delta \to \mathbb{R} \) is co-ordinated convex, then we have the following inequalities:

\[
(1.5) \quad f \left(\frac{a+b}{2}, \frac{c+d}{2} \right) \leq \frac{1}{4} \left[\frac{1}{b-a} \int_a^b f \left(x, \frac{c+d}{2} \right) dx + \frac{1}{d-c} \int_c^d f \left(\frac{a+b}{2}, y \right) dy \right]
\]

\[
\leq \frac{1}{(b-a)(d-c)} \int_a^b \int_c^d f(x, y)dy dx
\]

\[
\leq \frac{1}{4} \left[\frac{1}{b-a} \int_a^b f(x, c)dx + \frac{1}{b-a} \int_a^b f(x, d)dx + \frac{1}{d-c} \int_c^d f(a, y)dy + \frac{1}{d-c} \int_c^d f(b, y)dy \right]
\]

\[
\leq \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4}.
\]

The above inequalities are sharp. The inequalities in (1.5) hold in the reverse direction if the mapping \(f \) is a coordinated concave mapping.

Over the years, many papers are dedicated to the generalizations and new versions of the inequalities (1.5) using the different type convex functions. For
the other Hermite–Hadamard type inequalities for co-ordinated convex functions, please refer to \[1, 2, 5, 6, 21, 24, 25, 27, 29, 33\].

Moreover, Farid et al. established a weighted version of inequalities \(1.5\) in \[12\]. Please see \[3, 13, 16, 20, 50\] for other papers focused on the Hermite–Hadamard–Fejér inequalities for co-ordinated convex functions.

Here we establish a new weighted generalization of the Hermite–Hadamard type double integral inequalities \(1.5\). The results provide extensions of those given in \[3, 5, 11, 12\].

2. Hermite–Hadamard–Fejér type inequalities

Let start with the following Hermite–Hadamard–Fejér type inequalities:

Theorem 2.1. Let \(\Delta := (a, b) \times (c, d)\) and \(f : \Delta \rightarrow \mathbb{R}\) be a convex function on co-ordinated in \(\Delta\) and let \(g_1 : (a, b) \rightarrow \mathbb{R}^+\) and \(g_2 : (c, d) \rightarrow \mathbb{R}^+\) be two integrable functions. Also let

\[
\lambda = \frac{1}{\int_0^1 g_1(t) dt} \int_0^1 tg_1(t) dt \quad \text{and} \quad \beta = \frac{1}{\int_0^1 g_2(s) ds} \int_0^1 sg_2(s) ds.
\]

Then, one has the following inequalities

\[\begin{align*}
(2.1) \quad f(\lambda a + (1 - \lambda)b, \beta c + (1 - \beta)d) & \leq \frac{1}{2} \left[\frac{1}{G_1} \int_a^b f(x, \beta c + (1 - \beta)d) g_1 \left(\frac{b - x}{b - a} \right) \, dx \
& \quad + \frac{1}{G_2} \int_c^d f(\lambda a + (1 - \lambda)b, y) g_2 \left(\frac{d - y}{d - c} \right) \, dy \right] \\
& \leq \frac{1}{G_1G_2} \int_a^b \int_c^d f(x, y) g_1 \left(\frac{b - x}{b - a} \right) g_2 \left(\frac{d - y}{d - c} \right) \, dy \, dx \\
& \leq \frac{1}{2} \left[\frac{\beta}{G_1} \int_a^b f(x, c) g_1 \left(\frac{b - x}{b - a} \right) \, dx + \frac{(1 - \beta)}{G_1} \int_a^b f(x, d) g_1 \left(\frac{b - x}{b - a} \right) \, dx \\
& \quad + \frac{\beta}{G_2} \int_c^d f(a, y) g_2 \left(\frac{d - y}{d - c} \right) \, dy + \frac{(1 - \beta)}{G_2} \int_c^d f(b, y) g_2 \left(\frac{d - y}{d - c} \right) \, dy \right] \\
& \leq \beta f(a, c) + \lambda(1 - \beta)f(a, d) + (1 - \lambda)\beta f(b, c) + (1 - \beta)(1 - \lambda)f(b, d),
\end{align*}\]

where

\[G_1 = \int_a^b g_1 \left(\frac{b - x}{b - a} \right) \, dx, \quad G_2 = \int_c^d g_2 \left(\frac{d - y}{d - c} \right) \, dy.\]

Proof. Since \(f\) is co-ordinated convex on \(\Delta\), if we define the mappings \(f_x : (c, d) \rightarrow \mathbb{R}, f_y : (y, x) = f(x, y)\), then \(f_x(y)\) is convex on \((c, d)\) for all \(x \in (a, b)\). If we apply inequality \(1.3\) for the convex function \(f_x(y)\), then we have

\[\begin{align*}
(2.2) \quad f_x(\beta c + (1 - \beta)d) & \leq \frac{\int_c^d f_x(y) g_2 \left(\frac{d - y}{d - c} \right) \, dy}{\int_c^d g_2 \left(\frac{d - y}{d - c} \right) \, dy} \leq \beta f_x(c) + (1 - \beta)f_x(d).
\end{align*}\]
That is,
\begin{equation}
(2.3) \quad f(x, \beta c + (1 - \beta)d) \leq \frac{\int_c^d f(x, y)g_2 \left(\frac{b-x}{d-c} \right) dy}{\int_c^d g_2 \left(\frac{b-x}{d-c} \right) dy} \leq \beta f(x, c) + (1 - \beta)f(x, d).
\end{equation}

Multiplying by \(g_1 \left(\frac{b-x}{b-a} \right) \) inequality (2.3) and integrating with respect to \(x \) from \(a \) to \(b \), and by dividing \(G_1 = \int_c^b g_1 \left(\frac{b-x}{b-a} \right) dx \), we obtain
\begin{equation}
(2.4) \quad \frac{1}{G_1} \int_a^b f(x, \beta c + (1 - \beta)d) g_1 \left(\frac{b-x}{b-a} \right) dx \leq \frac{1}{G_1 G_2} \int_a^b \int_c^d f(x, y)g_1 \left(\frac{b-x}{b-a} \right) g_2 \left(\frac{d-y}{d-c} \right) dy dx
\end{equation}
\begin{equation}
\leq \frac{\beta}{G_1} \int_c^b f(x, c)g_1 \left(\frac{b-x}{b-a} \right) dx + \frac{1 - \beta}{G_1} \int_c^b f(x, d)g_1 \left(\frac{b-x}{b-a} \right) dx.
\end{equation}

Similarly, as \(f \) is co-ordinated convex on \(\Delta \), if we define the mappings \(f_y : (a, b) \to \mathbb{R}, f_y(x) = f(x, y) \), then \(f_y(x) \) is convex on \((a, b) \) for all \(y \in (c, d) \). Utilizing inequality (2.3) for the convex function \(f_y(x) \), then we obtain the inequality
\begin{equation}
(2.5) \quad f_y (\lambda a + (1 - \lambda)b) \leq \frac{\int_a^b f_y(x)g_1 \left(\frac{b-x}{b-a} \right) dx}{\int_a^b g_1 \left(\frac{b-x}{b-a} \right) dx} \leq \lambda f_y(a) + (1 - \lambda)f_y(b),
\end{equation}
i.e.,
\begin{equation}
(2.6) \quad f (\lambda a + (1 - \lambda)b, y) \leq \frac{\int_a^b f(x, y)g_1 \left(\frac{b-x}{b-a} \right) dx}{\int_a^b g_1 \left(\frac{b-x}{b-a} \right) dx} \leq \lambda f(a, y) + (1 - \lambda)f(b, y).
\end{equation}

Multiplying by \(g_2 \left(\frac{d-y}{d-c} \right) \) inequality (2.6) and integrating with respect to \(y \) on \((c, d) \), and by dividing \(G_2 = \int_c^d g_2 \left(\frac{d-y}{d-c} \right) dy \), we get
\begin{equation}
(2.7) \quad \frac{1}{G_2} \int_c^d f (\lambda a + (1 - \lambda)b, y) g_2 \left(\frac{d-y}{d-c} \right) dy \leq \frac{1}{G_1 G_2} \int_a^b \int_c^d f(x, y)g_1 \left(\frac{b-x}{b-a} \right) g_2 \left(\frac{d-y}{d-c} \right) dy dx
\end{equation}
\begin{equation}
\leq \frac{\lambda}{G_2} \int_c^d f(a, y)g_2 \left(\frac{d-y}{d-c} \right) dy + \frac{1 - \lambda}{G_2} \int_c^d f(b, y)g_2 \left(\frac{d-y}{d-c} \right) dy.
\end{equation}

Summing inequalities (2.3) and (2.7), we obtain the second and third inequalities in (2.3).

Since \(f(x, \beta c + (1 - \beta)d) \) is convex on \((a, b) \) and \(g_1(x) \) is positive and integrable, using the Jensen integral inequality, we have
\begin{equation}
(2.8) \quad \frac{1}{G_1} \int_a^b f(x, \beta c + (1 - \beta)d) g_1 \left(\frac{b-x}{b-a} \right) dx
\end{equation}
integrable, we have the following inequality
\[f \left(\int_0^1 f(at + (1-t)b, \beta c + (1-\beta)d)g_1(t)\,dt \right) \]
\[\geq f \left(\int_0^1 (at + (1-t)b)g_1(t)\,dt, \beta c + (1-\beta)d \right) \]
\[= f(\lambda a + (1-\lambda)b, \beta c + (1-\beta)d). \]

And similarly, since \(f(\lambda a + (1-\lambda)b, y) \) is convex on \((c, d)\) and \(g_2(y) \) is positive and integrable, using the Jensen integral inequality, we get
\[\frac{1}{G_2} \int_c^d f(\lambda a + (1-\lambda)b, y) g_2 \left(\frac{d-y}{d-c} \right) dy \]
\[\geq f \left(\lambda a + (1-\lambda)b, \frac{1}{G_1} \int_0^1 (sc + (1-s)d)g_2(s)\,ds \right) \]
\[= f(\lambda a + (1-\lambda)b, \beta c + (1-\beta)d). \]

Summing inequalities (2.8) and (2.9), we obtain the first inequality in (2.1).

Since \(f(x, c) \) and \(f(x, d) \) are convex on \((a, b)\) and \(g_1(x) \) is positive, integrable, we have the following inequality
\[\frac{\beta}{G_1} \int_a^b f(x, c)g_1 \left(\frac{b-x}{b-a} \right) dx + \frac{(1-\beta)}{G_1} \int_a^b f(x, d)g_1 \left(\frac{b-x}{b-a} \right) dx \]
\[= \frac{\beta}{G_1} \int_0^1 f(at + (1-t)b, c)g_1(t)\,dt \]
\[+ \frac{(1-\beta)}{G_1} \int_0^1 f(at + (1-t)b, d)g_1(t)\,dt \]
\[\leq \beta \left[f(a, c) \int_0^1 t g_1(t)\,dt + f(b, c) \int_0^1 (1-t)g_1(t)\,dt \right] \]
\[+ (1-\beta) \left[f(a, d) \int_0^1 t g_1(t)\,dt + f(b, d) \int_0^1 (1-t)g_1(t)\,dt \right] \]
\[= \beta \lambda f(a, c) + \beta(1-\lambda)f(b, c) + (1-\beta) \lambda f(a, d) + (1-\beta)(1-\lambda)f(b, d). \]

And similarly, since \(f(a, y) \) and \(f(b, y) \) are convex on \((c, d)\) and \(g_2(y) \) is positive, integrable, we have the following inequality
\[\frac{\lambda}{G_2} \int_c^d f(a, y)g_2 \left(\frac{d-y}{d-c} \right) dy + \frac{(1-\lambda)}{G_2} \int_c^d f(b, y)g_2 \left(\frac{d-y}{d-c} \right) dy \]
\[= \frac{\lambda}{G_2} \int_0^1 f(a, cs + (1-s)d)g_2(s)\,ds \]
\[+ \frac{(1-\lambda)}{G_2} \int_0^1 f(b, cs + (1-s)d)g_2(s)\,ds. \]
Then, one has the following inequalities

\[
\leq \beta \lambda f(a, c) + \lambda (1 - \beta) f(a, d) + (1 - \lambda) \beta f(b, c) + (1 - \beta)(1 - \lambda) f(b, d).
\]

By summing resulting inequalities (2.10) and (2.11), then we obtain the last inequality in (2.1). This completes the proof. \(\square\)

Remark 2.1. Under assumptions of Theorem 2.1 with \(g_1(t) = 1\) and \(g_2(s) = 1\) for all \(t, s \in (0, 1)\), inequalities (2.1) reduce to inequalities (1.5) which were proved by Dragomir in [8].

Theorem 2.2. Under assumptions of Theorem 2.1 let

\[
\begin{align*}
\lambda &= \frac{1}{\int_a^b (b-x)g_1(x)dx} \int_a^b (b-x)g_1(a+b-x)\,dx, \\
\beta &= \frac{1}{\int_c^d (d-y)g_2(y)dy} \int_c^d (d-y)g_2(c+d-y)\,dy.
\end{align*}
\]

Then, one has the following inequalities

\[
\begin{align*}
&f\left(\frac{a+\lambda b}{1+\lambda}, \frac{c+\beta d}{1+\beta}\right) \\
&\leq \frac{1}{2} \left[\frac{1}{G_3} \int_a^b f\left(x, \frac{c+\beta d}{1+\beta}\right) g_1(x)\,dx + \frac{1}{G_4} \int_c^d f\left(\frac{a+\lambda b}{1+\lambda}, y\right) g_2(y)\,dy \right] \\
&\leq \frac{1}{G_3 G_4} \int_a^b \int_c^d f(x, y)g_1(x)g_2(y)\,dy\,dx \\
&\quad + \frac{1}{(1+\beta)G_3} \int_a^b f(x, c)g_1(x)\,dx + \frac{\beta}{(1+\beta)G_4} \int_c^d f(x, d)g_1(y)\,dy \\
&\quad + \frac{1}{(1+\lambda)G_4} \int_c^d f(b, y)g_2(y)\,dy + \frac{\lambda}{(1+\lambda)G_4} \int_c^d f(b, y)g_2(y)\,dy \\
&\leq \frac{f(a, c) + \beta f(a, d) + \lambda f(b, c) + \lambda \beta f(b, d)}{(1+\lambda)(1+\beta)},
\end{align*}
\]

where \(G_3 = \int_a^b g_1(x)\,dx\) and \(G_4 = \int_c^d g_2(y)\,dy\).

Proof. Based on the assumption that \(g_1\) and \(g_2\) are nonnegative, integrable functions on \((a, b)\) and \((c, d)\), respectively, one can show that \(\varphi_1(t) = g_1(b-(b-a)t)\) and \(\varphi_2(s) = g_2(d-(d-c)s)\) are nonnegative, integrable functions on \((0, 1)\). Thus, by using Theorem 2.1 we can write the following inequalities

\[
\begin{align*}
f(\gamma a + (1 - \gamma)b, \delta c + (1 - \delta)d) \\
&\leq \frac{1}{2} \left[\int_a^b \frac{1}{\varphi_1 \left(\frac{b-x}{b-a}\right)} \varphi_1 \left(\frac{b-x}{b-a}\right) f(\varphi_1, \delta c + (1 - \delta)d) dx \\
&+ \int_c^d \frac{1}{\varphi_2 \left(\frac{d-y}{d-c}\right)} \frac{1}{\varphi_2 \left(\frac{d-y}{d-c}\right)} f(\gamma a + (1 - \gamma)b) \varphi_2 \left(\frac{d-y}{d-c}\right) dy \right]
\end{align*}
\]
\[
\begin{align*}
&\leq \frac{\int_a^b f(x,y)\varphi_1 \left(\frac{b-x}{b-a}\right) \varphi_2 \left(\frac{d-y}{d-c}\right) dy}{\int_a^b \varphi_1 \left(\frac{b-x}{b-a}\right) \varphi_2 \left(\frac{d-y}{d-c}\right) dy} dx \\
&\leq \frac{1}{2} \left[\frac{\delta}{G_3} \int_a^b f(x,y)g_1(x)g_2(y) dy + \frac{1}{G_4} \int_c^d f (\gamma a + (1-\gamma)b, y) dy \right] dx \\
&\leq \frac{1}{2} \left[\frac{\delta}{G_3} \int_a^b f(x,y)g_1(x)g_2(y) dy + \frac{(1-\delta)}{G_3} \int_a^b f(x,d)g_1(x) dx \\
&\quad + \frac{\delta}{G_4} \int_c^d f (a,y)g_2(y) dy + \frac{(1-\delta)}{G_4} \int_c^d f (b,y)g_2(y) dy \right] dx \\
&\leq \delta \gamma f(a,c) + \gamma (1-\delta)f(a,d) + (1-\gamma)\delta f(b,d) + (1-\delta)(1-\gamma)f(b,d),
\end{align*}
\]
i.e.,
\[
f (\gamma a + (1-\gamma)b, \delta c + (1-\delta)d)
\]
\[
\leq \frac{1}{2} \left[\frac{\delta}{G_3} \int_a^b f (x,\delta c + (1-\delta)d) g_1(x) dx \right] + \frac{1}{G_4} \int_c^d f (\gamma a + (1-\gamma)b, y) dy \\
\leq \frac{1}{2} \left[\frac{\delta}{G_3} \int_a^b f (x,y)g_1(x)g_2(y) dy \\
+ \frac{\gamma}{G_4} \int_c^d f (a,y)g_2(y) dy + \frac{(1-\gamma)}{G_4} \int_c^d f (b,y)g_2(y) dy \right]
\]
where
\[
\begin{align*}
\gamma &= \frac{1}{\int_0^1 g_1(b-(b-a)t) dt} \int_0^1 t g_1(b-(b-a)t) dt \\
&= \frac{1}{\int_a^b (b-a)g_1(x) dx} \int_a^b (b-x)g_1(x) dx \\
&= \frac{\int_a^b (b-x)g_1(x) dx}{\int_a^b (b-x)g_1(x) dx + \int_a^b (b-x)g_1(a+b-x) dx} = \frac{1}{1 + \lambda}
\end{align*}
\]
and similarly
\[
\begin{align*}
\delta &= \frac{1}{\int_0^1 g_2(d-(d-c)s) ds} \int_0^1 s g_2(d-(d-c)s) ds = \frac{1}{1 + \beta}.
\end{align*}
\]
Corollary 2.1. Under assumptions of Theorem 2.2, let \(g_1(x) = g_1(a + b - x) \) for any \(x \in (a, b) \) and \(g_2(y) = g_2(c + d - y) \) for any \(y \in (c, d) \), then we have the following inequality

\[
\begin{align*}
&f \left(\frac{a+b}{2}, \frac{c+d}{2} \right) \\
&\leq \frac{1}{2} \left[\frac{1}{G_3} \int_a^b f \left(x, \frac{c+d}{2} \right) g_1(x) \, dx + \frac{1}{G_4} \int_c^d f \left(\frac{a+b}{2}, y \right) g_2(y) \, dy \right] \\
&\leq \frac{1}{G_3 G_4} \int_a^b \int_c^d f(x, y) g_1(x) g_2(y) \, dy \, dx \\
&\leq \frac{1}{4} \left[\frac{1}{G_3} \int_a^b [f(x, c) + f(x, d)] g_1(x) \, dx + \frac{1}{G_4} \int_c^d [f(a, y) + f(b, y)] g_2(y) \, dy \right] \\
&\leq \frac{f(a, c) + f(a, d) + f(b, c) + f(b, d)}{4}
\end{align*}
\]

which is the same result as proved by Farid et al. in \[12\].

References

1. T. Ali, M. A. Khan, A. Kilicman, Q. Din, On the refined Hermite-Hadamard inequalities, Math. Sci. Appl. E-Notes 6(1) (2018) 85–92.
2. M. Alomari, M. Darus, The Hadamards inequality for s-convex function of 2-variables on the coordinates, Int. J. Math. Anal. 2(13) (2008), 629–638.
3. , Fejér inequality for double integrals, Facta Univ., Ser. Math. Inform. 24 (2009), 15–28.
4. A. G. Azpeitia, Convex functions and the Hadamard inequality, Rev. Colombiana Math. 28 (1994), 7–12.
5. M. K. Bakula, An improvement of the Hermite-Hadamard inequality for functions convex on the coordinates, Aust. J. Math. Anal. Appl. 11(1) (2014), 1–7.
6. F. Chen, A note on the Hermite-Hadamard inequality for convex functions on the co-ordinates, J. Math. Inequal. 8(4) (2014), 915–923.
7. S. S. Dragomir, Two mappings in connection to Hadamard’s inequalities, J. Math. Anal. Appl. 167 (1992), 49–56.
8. , On Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwan. J. Math. 4 (2001), 775–788.
9. , Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones, J. Math. 37(4) (2015), 343–341.
10. S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
11. S. S. Dragomir, J. Pečarić, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21 (1995), 335–341.
12. G. Farid, M. Marwan, Atiq Ur Rehman, Fejer-Hadamard inequality for convex functions on the co-ordinates in a rectangle from the plane, Internat. J. Anal. Appl. 10(1) (2016), 40–47.
13. G. Farid, Atiq Ur Rehman, Generalization of the Fejer-Hadamard’s inequality for convex function on coordinates, Commun. Korean Math. Soc. 31(1) (2016), 53–64.
14. L. Fejer, Über die Fourierreihen, II, Math. Naturwiss. Anz Ungar. Akad. Wiss. 24 (1906), 369–390. (Hungarian).
15. U. S. Kirmaci, M. K. Bakula, M. E. Ozdemir, J. Pečarić, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput. 193 (2007), 26–35.
16. M. A. Latif, *On some Fejér-type inequalities for double integrals*, Tamkang J. Math. 43(3) (2012), 423–436.
17. M. A. Latif, S. S. Dragomir, *On some new inequalities for differentiable co-ordinated convex functions*, J. Inequal. Appl. 28 (2012).
18. M. A. Latif, S. S. Dragomir, E. Momoniat, *Weighted generalization of some integral inequalities for differentiable co-ordinated convex functions*, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 78(4) (2016), 197–210.
19. M. A. Latif, S. Hussain, S. S. Dragomir, *On some new Fejér-type inequalities for coordinated convex functions*, Transylvan. J. Math. Mechan. 3(2) (2011), 57–80.
20. M. E. Ozdemir, C. Yildiz, A. O. Akdemir, *On the co-ordinated convex functions*, Appl. Math. Inf. Sci. 8(3) (2014), 1085–1091.
21. Z. Pavić, *Improvements of the Hermite-Hadamard inequality*, J. Inequal. Appl. 222 (2015).
22. J. E. Pečarić, F. Proschan, Y. L. Tong, *Convex Functions, Partial Orderings and Statistical Applications*, Academic Press, Boston, 1992.
23. M. Z. Sarikaya, E. Set, M. E. Ozdemir, S. S. Dragomir, *New some Hadamard’s type inequalities for co-ordinated convex functions*, Tamsui Oxford J. Inform. Math. Sci. 28(2) (2012), 137–152.
24. E. Set, M. E. Özdemir, S. S. Dragomir, *On the Hermite-Hadamard inequality and other integral inequalities involving two functions*, J. Inequal. Appl. 9 (2010), Article 148102.
25. K. L. Tseng, S. R. Hwang, *New Hermite-Hadamard inequalities and their applications*, Filomat 30(14) (2016), 3667–3680.
26. D. Y. Wang, K. L. Tseng, G. S. Yang, *Some Hadamard’s inequalities for co-ordinated convex functions in a rectangle from the plane*, Taiwan. J. Math. 11 (2007), 63–73.
27. S. Wu, *On the weighted generalization of the Hermite-Hadamard inequality and its applications*, Rocky Mountain J. Math. 39(5) (2009), 1741–1749.
28. B. Y. Xi, J. Hua, F. Qi, *Hermite-Hadamard type inequalities for extended s-convex functions on the co-ordinates in a rectangle*, J. Appl. Anal. 20(1) (2014), 1–17.
29. R. Xiang, F. Chen, *On some integral inequalities related to Hermite-Hadamard-Fejér inequalities for coordinated convex functions*, Chinese Journal of Mathematics 2014, Article 796132, 10 pp.
30. G. S. Yang, M. C. Hong, *A note on Hadamard’s inequality*, Tamkang J. Math. 28 (1997), 33–37.
31. G. S. Yang, K. L. Tseng, *On certain integral inequalities related to Hermite-Hadamard inequalities*, J. Math. Anal. Appl. 239 (1999), 180–187.
32. M. E. Yıldırım, A. Akkurt, H. Yıldırım, *Hermite-Hadamard type inequalities for co-ordinated (α₁, m₁) – (α₂, m₂)-convex functions via fractional integrals*, Contempor. Anal. Appl. Math. 4(1) (2016), 48–63.
33. H.-P. Yin, F. Qi, *Hermite-Hadamard type inequalities for the product of (α, m)-convex functions*, J. Nonlinear Sci. Appl. 8 (2015), 231–236.

Department of Mathematics, Faculty of Science and Arts
Düzce University
Düzce
Turkey
sarikayamz@gmail.com
hsyn.budak@gmail.com