The half-metallic ferromagnet $\text{Co}_2\text{Mn}_{0.5}\text{Fe}_{0.5}\text{Si}$.

Benjamin Balke, Hem C. Kandpal, Gerhard H. Fecher, and Claudia Felser

Institut für Anorganische und Analytische Chemie, Johannes Gutenberg - Universität, D-55099 Mainz, Germany.

(Dated: March 23, 2022)

Abstract

Electronic structure calculation were used to predict a new material for spintronic applications. $\text{Co}_2\text{Mn}_{0.5}\text{Fe}_{0.5}\text{Si}$ is one example which is stable against on-site correlation and disorder effects due to the position of the Fermi energy in the middle of the minority band gap. Experimentally the sample were made exhibiting $L2_1$ structure and a high magnetic order.

PACS numbers: 75.30.-m, 71.20.Be, 61.18.Fs

Keywords: half-metallic ferromagnets, electronic structure, magnetic properties, Heusler compounds, spintronic

*Electronic address: felser@uni-mainz.de
I. INTRODUCTION

Half-metallic ferromagnets have been proposed as ideal candidates for spin injection devices because they have been predicted to exhibit 100% spin polarization at the Fermi energy (ϵ_F) [1]. From the applications point of view, a high Curie temperature for a half-metallic ferromagnet may be an important condition. For this reason, Heusler alloys ($L2_1$ structure) have recently attracted great interest. Some of these alloys exhibit high Curie temperatures and, according to theory, should have a high spin polarization at the Fermi energy [2]. Calculations also show that anti-site disorder will destroy the high spin polarization [3], implying that precise control of the atomic structure of the Heusler alloys is required.

The Heusler alloy Co$_2$MnSi has attracted particular interest because it is predicted to have a large minority spin band gap of 0.4 eV and, at 985 K, has one of the highest Curie temperature, among the known Heusler compounds [4, 5]. Structural and magnetic properties of Co$_2$MnSi have been reported for films and single crystals [6, 7, 8]. From tunnelling magneto resistance (TMR) data with one electrode consisting of a Co$_2$MnSi film Sakuraba et al. [9] measured a TMR ratio of 159% at 2K and ≈ 70% at 300K. If using Co$_2$FeSi as one electrode Inomata et al. [10] obtained TMR ratios of 60% at 5K and 41% at 300K.

An important quantity for the application of the half-metallic ferromagnets is the size of the gap in the minority states and the position of ϵ_F inside of the gap. Small gaps may be easily destroyed by temperature effects or quasi-particle excitations [11]. The half-metallicity may also be easily destroyed if ϵ_F is located close to the band edges, either of the minority valence or conduction bands.

The recent TMR results [9, 10] show that electrodes made of Heusler compounds result in high TMR ratios at low temperatures but the temperature dependence is still a challenge which has to be solved to use Heusler electrodes in applications. The present investigation focuses on searching for a mixed compound where the half-metallic behaviour is stable against temperature effects.

The self-consistent electronic structure calculations were carried out using the full potential linearized augmented plane wave method (FLAPW) as provided by Wien2k [12]. The LDA+U method [13] was used to account for on-site correlation at the transition metal sites. Semi-empirical values corresponding to 7.5% of atomic values of Coulomb-exchange
FIG. 1: Dependence of the minority band gap on the Fe concentration x in Co$_2$Mn$_{1-x}$Fe$_x$Si. The extremal energies of the gap involving states are shown. The shaded areas indicate the region of half-metallic ferromagnetism. Lines are drawn for clarity.

parameter have been used as suggested in our previous publication [14].

II. RESULTS AND DISCUSSION

A. Electronic properties

The size of the minority band gap and position of ϵ_F can be seen from the calculated energies displayed in Fig. 1 for the Heusler alloy Co$_2$Mn$_{1-x}$Fe$_x$Si. In Co$_2$MnSi, ϵ_F is close to the top of the valence band. In Co$_2$FeSi, the situation is different and ϵ_F is near to the bottom of the conduction band. Both of the compounds are at the two corners of the gap. In Co$_2$Mn$_{0.5}$Fe$_{0.5}$Si ϵ_F is directly in the middle of the minority band gap and therefore this compound should be more stable against temperature effects or quasi-particle excitations compared to pure Co$_2$MnSi and Co$_2$FeSi.
FIG. 2: (a) XRD spectra for Co$_2$Mn$_{0.5}$Fe$_{0.5}$Si. The spectra were excited by Mo K$_\alpha$ radiation. (b) 57Fe Mößbauer spectrum of Co$_2$Mn$_{0.5}$Fe$_{0.5}$Si. The spectrum was taken at 290K and excited by a 57Co(Rh) source. Solid lines are results of a fit to determine the sextet and singlet contributions and to evaluate the hyperfine field.

B. Structural and magnetic properties

Co$_2$Mn$_{0.5}$Fe$_{0.5}$Si samples were prepared by arc melting of stoichiometric amounts of the constituents in an argon atmosphere at 10^{-4} mbar. The polycrystalline ingots were then annealed in an evacuated quartz tube at 1273 K for 21 days. The samples exhibiting the Heusler type L_2_1 structure with a lattice parameter of 5.64 Å (see Fig. 2(a)). Another proof of the high order of the samples are the results from the 57Fe Mößbauer spectra taken of the samples (see Fig. 2(b)). The spectrum is dominated by an intense sextet with a line width of approximately (0.14 ± 0.01) mm/s. In addition to the sextet, a much weaker line at the centre of the spectrum is visible. Its contribution to the overall intensity of the spectrum is approximately 3.5 %. The origin of the singlet may be caused by anti-site disorder leading to a small fraction of paramagnetic Fe atoms. The hyperfine field (HFF) at the Fe sites amounts to 26.5 \times 10^6 A/m. For more details and other properties of the whole series of Co$_2$Mn$_{1-x}$Fe$_x$Si with the Fe concentration ranging from $x = 0$ to 1 in steps of 0.1 see Ref. 15.
III. SUMMARY

Electronic structure calculations predicted the Heusler compound Co$_2$Mn$_{0.5}$Fe$_{0.5}$Si due to the position of ϵ_F in the middle of the minority band gap as very stable against any kind of effects destroying the halfmetallicity and therefore well suited for spintronic applications. Polycrystalline samples were prepared exhibiting $L2_1$ structure and a high magnetic order.

This work is financially supported by the DFG (project TP1 and TP7 in research group FG 559).

[1] R.A. de Groot, F.M. Mülller, P.G. van Engen, and K.H.J. Buschow, Phys. Rev. Lett 50 (1983), p. 2024.
[2] G. H. Fecher, H. C. Kandpal, S. Wurmehl, C. Felser, and G. Schönhense, J. Appl. Phys. 99 (2006), 08J106.
[3] S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B. 69 (2004), 094423.
[4] S. Fujii, S. Sugimura, S. Ishida, and S. Asano, J. Phys.: Condens. Matter 2 (1990), p. 8583.
[5] P. J. Brown, K.-U. Neumann, P. J. Webster, and K. R. A. Ziebeck, J. Phys.: Condens. Matter 12 (2000), p. 1827.
[6] M. P. Raphael, B. Ravel, Q. Huang, M. A. Willard, S. F. Cheng, B. N. Das, R. M. Stroud, K. M. Bussmann, J. H. Claassen, and V. G. Harris, Phys. Rev. B. 66 (2002), 104429.
[7] S. Kämmerer, S. Heitmann, D. Meyners, D. Sudfeld, A. Thomas, A. Hüttten, and G. Reiss, J. Appl. Phys. 93 (2003), p. 7945.
[8] W. H. Wang, M. Przybylski, W. Kuch, L. I. Chelaru, J. Wang, Y. F. Lu, J. Barthel, H. L. Meyerheim, and J. Kirschner, Phys. Rev. B. 71 (2005), 144416.
[9] Y. Sakuraba, T. Miyakoshi, M. Oogane, H. Kubota, Y. Ando, A. Sakuma, and T. Miyazaki, Appl. Phys. Lett. submitted.
[10] K. Inomata, S. Okamura, A. Miyazaki, M. Kikuchi, N. Tezuka, M. Wojcik, and E. Jedryka, Journal of Physics D: Applied Physics 39 (2006), p.816.
[11] L. Chioncel, E. Arrigoni, M. I. Katsnelson and A. I. Lichtenstein, Phys. Rev. Lett. 96 (2006), 137203.
[12] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, An Augmented
Plane Wave + Local Orbitals Program for Calculating Crystal Properties, (2001).

[13] V. I. Anisimov, F. Aryasetiawan and A. I. Lichtenstein, *J. Phys. Condens. Matter* 9 (1997), p. 767.

[14] H. C. Kandpal, G. H. Fecher, C. Felser and G. Schönhense, *Phys. Rev. B* 73 (2006), 094422.

[15] B. Balke, H. C. Kandpal, G. H. Fecher, and C. Felser, *Phys. Rev. B*. submitted, cond-mat/0606108