A Membrane Glycoprotein, Sec12p, Required for Protein Transport from the Endoplasmic Reticulum to the Golgi Apparatus in Yeast

Akihiko Nakano, Daniela Brada, and Randy Schekman
Department of Biochemistry, University of California, Berkeley, California 94720

Abstract. SECI2, a gene that is required for secretory, membrane, and vacuolar proteins to be transported from the endoplasmic reticulum to the Golgi apparatus, has been cloned from a genomic library by complementation of a sec12 ts mutation. Genetic analysis has shown that the cloned gene integrates at the SEC12 locus and that a null mutation at the locus is lethal. The DNA sequence predicts a protein of 471 amino acids containing a hydrophobic stretch of 19 amino acids near the COOH terminus. To characterize the gene product (Sec12p) in detail, a lacZ-SECI2 gene fusion has been constructed and a polyclonal antibody raised against the hybrid protein. The antibody recognizes Sec12p as a ~70-kD protein that sediments in a mixed membrane fraction that includes endoplasmic reticulum. Sec12p is not removed from the membrane fraction by treatment at high pH and high salt and is not degraded by exogenous protease unless detergent is present. Glycosylation of Sec12p during biogenesis is indicated by an electrophoretic mobility shift of the protein that is influenced by tunicamycin and by imposition of an independent secretory pathway block. We suggest that Sec12p is an integral membrane glycoprotein with a prominent domain that faces the cytoplasm where it functions to promote protein transport to the Golgi apparatus. In the process of transport, Sec12p itself may migrate to the Golgi apparatus and function in subsequent transport events.

A series of temperature-sensitive secretory mutants has been isolated from Saccharomyces cerevisiae and complementation analyses have shown that at least 27 genes are involved in the yeast secretory pathway (9, 14, 28, 31). Biochemical and morphological analyses of these sec mutants have revealed that the process of protein export in yeast can be dissected into several steps: protein translocation through the membrane of the endoplasmic reticulum (ER), folding and posttranslational modification in the ER, transport from the ER to the Golgi apparatus, transit through the Golgi apparatus to form secretory vesicles, and discharge of the contents of secretory vesicles at the plasma membrane (36). Among these steps, the movement of proteins from the ER to the Golgi apparatus constitutes the first step of transport from a membrane-bound organelle. Protein sorting and packaging events that occur at this stage may use mechanisms that are repeated in later steps of membrane-to-membrane protein traffic.

The ER-to-Golgi transfer process requires ≥10 genes (31). SECI2 is one of these 10; a temperature-sensitive mutant, sec12, fails to transport secretory, membrane, and vacuolar proteins from the ER to the Golgi apparatus at a restrictive temperature (29, 31, 40). To understand the function of the SECI2 gene, we have characterized its product, Sec12p, by the application of molecular cloning techniques. We report that Sec12p is an integral membrane glycoprotein that resides in the ER and Golgi membranes.

Materials and Methods

Strains, Plasmids, and Materials

The bacterial and yeast strains used in this study are listed in Table I. E. coli plasmids pUC18 (42) and pUR290 (32); E. coli-yeast shuttle plasmids YEpl3, pSEY8, and pSEYCS8 (11); and yeast integration vector YEp13 (4) have been described previously. The yeast genomic DNA library originally constructed by Nasmyth and Tatchell (27) contains DNA fragments of a Sau 3A partial digest inserted into the Bam HI site of YEp13.

YPD medium contained 1% Bacto-Yeast Extract, 2% Bacto-Peptone (both from Difco Laboratories, Inc., Detroit, MI), and 5% glucose. Minimal medium (41) was also used with 5% glucose.

All reagents used were of analytical grade. [α-32P]dCTP, H235SO4, [α-35S]dCTP, and Na125I were obtained from Amersham Corp. (Arlington Heights, IL). Nitrocellulose filters were from Schleicher & Schuell, Inc. (Keene, NH), and nylon membranes were from Sartorius Filters Inc. (Hay-
Table 1. Strains

Strain	Genotype	Source or reference
S. cerevisiae		
X2180-1B	MATA gal2	YGSC*
MBY10-7A	MATA sec12-4 ura3-52 leu2-3,112 trpl-289 his	M. Bernstein*
MBY10-7C	MATA sec12-4 ura3-52 leu2-3,112 trpl-289 his	M. Bernstein*
MBY10-2D	MATA sec12-4 ura3-52 leu2-3,112 trpl-289 his	M. Bernstein*
SP821-8A	MATA sec7-1 ura3-52 leu2-3,112 trpl-289 his4-580	R. Schekman and C. Field*
ANY1-7D	MATA ura3-52 leu2-3,112	T. Achstetter†
TAY69	Mata/Mata ura3-52/ura3-52 leu2-3,112	
	suc2-Δ9/suc2-Δ9 HIS4/his4-519 ADE2/ade2-1	
E. coli		
MC1061	F' araDI39 ΔaraABOIC-leu7679 Δlac,74 galA galK rpsL hsdR	Reference 8
BMH71-18	Δ(lac pro) F' lacI2Z ΔM15 pro*	Reference 26

* Yeast Genetics Stock Center, University of California, Berkeley, CA.
† Department of Biochemistry, University of California, Berkeley, CA.

ward, CA). Lysate was prepared as described before (37). Protein A was labeled with 125I by the chloramine T method (17). Endoglycosidase H (endo H) was a gift from P. Robbins (Biology Department, Massachusetts Institute of Technology, Cambridge, MA) and used as described before (40).

Cloning and Sequence Analysis of SEC12

DNA clones that complement a sec12 ts mutation were isolated as described previously (2). Briefly, a yeast sec12-4 strain, MBY10-7C, was transformed with a genomic DNA library in YEpl3 which contains the LEU2 gene as a selectable marker (27). Transformants were selected on leucine-free minimal medium at 32°C. Growing colonies were chosen and plasmid DNA was isolated. Yeast plasmid DNA was propagated in E. coli strain JM109 and purified. Each plasmid was confirmed for transformation and named pSEC1210 and pSEC1230; the latter proved to contain the sec12 gene. The 0.7-kb Bam HI-Sal I fragment from pSEC1230 (Fig. 1, fragment D) was subcloned into pUC18 and its direction of transcription was determined by the dideoxy method (25) in combination with deletion techniques using exonuclease III (Bethesda Research Laboratories, Gaithersburg, MD) or nuclease BAL 31 (T. Achstetter; Department of Pediatrics and Cell Biology, University of California, Los Angeles, CA), and used as hybridization probes.

Northern Blotting Analysis

The 0.7-kb Bam HI–Sal I fragment from pSEC1230 (Fig. 1, fragment D) was subcloned into pUC18 and the 4.0-kb Xho I–Hind III fragment (Fig. 1, fragment B) into YEp5. These recombinant plasmids were nick translated in the presence of [α-32P]dCTP (25) and used as hybridization probes. Poly(A)*RNA purified from yeast strain X2180-1B was electrophoresed in an agarose gel containing 2.2 M formaldehyde. Transfer of RNA to nitrocellulose and DNA–RNA hybridization was performed as described (25).

Figure 1. Restriction map of the 6.4-kb insert in plasmid pSEC1230, which contains the authentic SEC12 gene. The heavy arrow indicates the coding region of SEC12 and its direction of transcription. Fragments A–D were subcloned into different vectors as described in the text.

Secl2p Antiserum

The Bam HI–Hind III fragment from pSEC1230 was inserted into pUR290 to make an in-frame gene fusion of lacZ and SEC12. The resultant plasmid, pANFI (see Fig. 4 a), was introduced into E. coli strain BMH71-18 and the transformant was induced to express a lacZ-SEC12 fusion gene product (~160 kD). This hybrid protein was purified by a modification of the method of Bernstein et al. (2). BMH71-18/pANFI was grown in 1 liter of Luria broth/amp medium at 37°C to an OD600 of 0.7 and isopropanol-β-D-galactoside was added to 1 mM. After a 1-h incubation at 37°C, cells were harvested and treated with 0.2 mg/ml lysozyme. Spheroplasts were broken by freeze-thawing and subjected to a brief sonication. Phenylmethylsulfonyl fluoride was added to a final concentration of 1 mM. The lysate (10 ml) was centrifuged for 1 h at 100,000 g in a rotor (type 40; Beckman Instruments, Inc., Fullerton, CA) at 4°C. The pellet was resuspended in 5 ml of 0.02% SDS and again centrifuged. About 70% of total β-galactosidase activity was recovered in the final pellet fraction. This final pellet was solubilized with 3 ml of SDS gel sampling buffer in a boiling water bath and subjected to preparative SDS-PAGE. The hybrid protein band was cut out and the protein eluted from the gel electrophoretically. Eluted protein was extensively dialyzed against distilled water and lyophilized.

The purified hybrid protein was suspended in PBS (20 mM sodium phosphate, pH 7.4, and 150 mM NaCl) and used for immunizing rabbits. Primary injections contained ~100 μg of the protein in complete Freund's adjuvant. Boosts of ~50 μg in incomplete Freund's adjuvant were given at 7–10-d intervals. The maximal titer was obtained after eight boosts.

Subcellular Fractionation

Wild-type yeast strain ANY1-7D harboring the SEC12 multicopy plasmid (pANY1-9; pSEY8 containing Xho I–Xba I fragment from pSEC1230) was grown to an OD600 in 500 ml minimal medium and centrifuged. Cells were treated with 10 ml of 0.1 M Tris-HCl, pH 9.4, and 10 mM diethiothreitol at 30°C for 20 min, sedimented, and resuspended in 10 ml YPD medium containing 0.5% glucose and 0.7 M sorbitol. Lysate (6,000 U) was added and incubation continued for 45 min. Spheroplasts were collected by centrifugation through a 20-ml cushion of 1.2 M sorbitol, resuspended in 10 ml YPD medium containing 20% (v/v) glycerol, and immediately homogenized with a motor-driven Teflon pestle five times for 1 min with 1-min intervals on ice. The extent of lysis was monitored visually in a phase-contrast microscope. As an indicator of membrane aggregation, the latency of NADPH cytochrome c reductase to its substrate, cytochrome c, was examined routinely by assaying reductase activity in the presence and absence of 0.1% Triton X-100 (13). Less than 3% of the total activity was latent in each experiment, indicating that the cytoplasmic surface of the ER membrane was almost completely accessible to exogenous cytochrome c. Membrane fractions were separated by differential centrifugation. First, the homogenate was centrifuged at 1,000 g for 10 min in a rotor (model SS-34; Sorvall Instruments Div., New York, NY) to yield low-speed pellet (LSP) and low-speed supernatant (LSS) fractions. The LSS fraction was further centrifuged at 100,000 g for 1 h in a type 40 rotor (Beckman Instruments, Inc.) to give a high-speed pellet (HSP) and a high-speed supernatant (HSS).
Results

Cloning and Genetic Analysis of the **sec12** Gene

Yeast genomic DNA clones that complement the ts mutation **sec12-4** were isolated from a DNA library constructed on the multicopy vector YEp13. Among 15,0000 **Leu** transformants, 20 showed a Ts+ phenotype. Analysis of plasmids purified from these Ts+ transformants revealed that two distinct fragments of DNA could complement **sec12-4**. Representative clones containing each type of insert were named pSEC1210 and pSEC1230. Southern hybridization probing of one clone to the other showed no homology between the two inserts (data not shown). Smaller fragments from the inserts were subcloned into a multicopy plasmid, pSEY8, or a single-copy centromere plasmid, pSEYC58, and the complementation of **sec12-4** was examined. Every fragment from pSEC1230 that complemented **sec12-4** on a multicopy plasmid did so on a single-copy plasmid as well. On the other hand, the smallest fragment from pSEC1210 that conferred a Ts+ phenotype to **sec12-4** on a multicopy plasmid failed to give Ts+ transformants on a single-copy plasmid. Therefore, we tentatively assumed that pSEC1230 contained the **SEC12** gene itself, whereas pSEC1210 contained a gene that could suppress the **sec12-4** mutation when its gene dosage was elevated.

A restriction map of the insert of pSEC1230 is shown in Fig. 1. The Xho I–Xba I fragment (Fig. 1, fragment **A**) was the smallest piece of DNA that complemented **sec12-4**, either on the single-copy plasmid pSEYC58 or on the multicopy plasmid pSEY8. Any further deletion of this fragment to the Bam HI, Kpn I, or Sal I sites resulted in a failure to complement, indicating that these sites were internal to the functional region of complementing activity. To show that this activity was due to the **SEC12** gene, chromosomal mapping of the cloned fragment was done. The Xho I–Hind III fragment (Fig. 1, fragment **B**) was subcloned into the integration vector pYEp5, which harbors the **URA3** gene as a marker. The recombinant plasmid was linearized by Bam HI digestion to facilitate homologous recombination and introduced into a **sec12-4** strain, MBY10-7A. A representative **Ura**+/Ts+ transformant was mated with a **SEC12**–**URA3** strain to form a diploid, which was then sporulated and subjected to tetrad analysis. Among 37 ascii analyzed, 35 showed 4:0 segregation of the Ts+/Ts− phenotypes and two showed a 3:1 pattern. The **Ura**+/**Ura**− phenotype segregated 3:1. This experiment demonstrated that the cloned DNA was integrated at or very close to the **sec12** locus, supporting the assumption that pSEC1230 contained the **SEC12** gene.

The Xho I–Sal I fragment (Fig. 1, fragment **C**) on a centromere plasmid, which itself did not complement **sec12-4**, was capable of converting the ts allele at a much higher frequency than by spontaneous reversion. Plasmid pSEYC58, with or without fragment **C** as an insert, was introduced into MBY10-7A. Several transformants were picked and grown in liquid culture to promote recombination between the plasmid and chromosomes. Cells were plated and the appearance of Ts+ colonies was examined. The plasmid with fragment **C** conferred a Ts+ phenotype at a frequency of 1.5 × 10−6, whereas the vector alone gave no Ts+ transformants out of 4 × 107 cells. This observation suggested that fragment **C** contained the site of the **sec12-4** mutation. Thus, from two lines of evidence, we confirmed that clone pSEC1230 contained the authentic **SEC12** gene.

The plasmid pSEC1210 allowed growth of **sec12-4** at the restrictive temperature by a different mechanism. This apparent complementation may result from overproduction of another protein that suppresses the effect of the **sec12-4** muta-
Figure 2. Nucleotide sequence of SECl2 gene and its predicted amino acid sequence. Solid triangles indicate possible sites of N-glycosylation. Underline indicates a hydrophobic stretch of 19 amino acid residues.
a conditional ts lethal, supporting the assumption that protein secretion is coupled to cell surface expansion and therefore to cell growth (28). To test the possibility that sec12 isolates were null mutations that exposed an independent thermosensitive process, the chromosomal copy of sec12 was disrupted and the phenotypic consequences monitored. The internal Bam HI–Sal I fragment of the sec12 gene (Fig. 1, fragment D) was subcloned into YIp5, linearized by cleavage with Kpn I, and introduced into a SEC12/SEC12, ura3/ura3 diploid strain, TAY69. Stable transformants were induced to sporulate and the resulting tetrads dissected. Among 33 asci analyzed, 24 gave rise to two viable spores and 9 tetrads produced only one progeny. None of the viable spores were Ura+. A Southern hybridization experiment confirmed that the diploid transformants contained both the wild-type and disrupted copies of SEC12, whereas all viable progeny contained only the wild-type copy (data not shown). These observations indicated that spores with the disrupted SEC12 gene could not initiate cell division. Hence SEC12 is directly essential for cell growth.

DNA Sequence and Transcription of SEC12

The nucleotide sequence of a 1.7-kb DNA fragment containing the SEC12 gene was determined. As shown in Fig. 2, SEC12 contained a single long open reading frame uninterrupted with introns, preceded by several stretches of As and a TATA sequence (Fig. 2, box), and terminated by two TGA codons. A polypeptide of 471 amino acids is predicted with an amino acid composition of high hydrophilicity (25% charged). Hydrophatic analysis by the method of Kyte and Doolittle (22) detected a hydrophobic stretch of 19 amino acids (Fig. 2, underline) flanked by three positively charged amino acids on both sides. This is a feature typical of the membrane-spanning domains of integral membrane proteins. Other hydrophobic sequences predicted in SEC12 were not of sufficient length to span a membrane lipid bilayer. Seven triangles in Fig. 2 depict possible N-glycosylation sites. The protein is rich in serine and threonine residues which are possible acceptors of O-linked oligosaccharides (see below). No significant homology in amino acid sequence was found to proteins catalogued in the protein data bank from the National Biomedical Research Foundation (23).

Transcription of SEC12 was examined by Northern hybridization. The DNA fragment internal to SEC12 (Fig. 1, fragment D) was used as a probe to identify SEC12 mRNA. As shown in Fig. 3, lane 1, a single species of ~1.7 kb was seen, which corresponded to the size of SEC12 message predicted from the DNA sequence. To estimate the abundance of this mRNA, the hybridization intensity was compared to URA3 mRNA (0.9 kb) using a nick-translated probe containing both the SEC12 and URA3 genes (YIp5 containing fragment B of Fig. 1). Lane 2 in Fig. 3 shows that the probe hybridized SEC12 mRNA about half as strongly as URA3 mRNA. Assuming that the URA3 message represented ~0.1% of total mRNA (1), a simple calculation leads to an estimate that the SEC12 message was ~0.02–0.03% of total mRNA or two to four copies per cell. A similar Northern blot experiment using single-stranded DNA probes confirmed the direction of transcription as shown in Fig. 1 (data not shown).

Identification of the SEC12 Gene Product, Sec12p

To identify and characterize the SEC12 gene product, Sec12p, we prepared an antibody against a lacZ–SEC12 fusion gene product. The fusion (Fig. 4 a) contained the promoter region and almost the whole coding sequence of the E. coli lacZ gene, contained on the fusion vector pUR290 (32), joined to 90% of the SEC12 coding sequence at the Bam HI site. E. coli strain BMH71-18 transformed with this gene fusion (pANF1) produced a novel 160-kD protein upon induction with isopropylthio-β-D-galactoside. This hybrid protein was purified and used to immunize rabbits. The resulting polyclonal antiserum showed titer against both E. coli β-galactosidase and yeast Sec12p epitopes, and was used without further purification.

Sec12p was detected in yeast extracts by two methods. First, wild-type or sec12 yeast cells that contained a multicopy plasmid with or without the SEC12 gene insert were lysed and analyzed by SDS-PAGE and Western immunoblotting (Fig. 4 b). The antibody recognized a single band with an apparent molecular mass of 70 kD when the SEC12 plasmid was present in the cells (Fig. 4 b, lanes 2 and 4). This band was not readily detected in the absence of the multicopy SEC12 gene (Fig. 4 b, lanes 1 and 3), indicating that Sec12p was not abundant. The mutant sec12 strain harboring the SEC12 multicopy plasmid (Fig. 4 b, lane 4) had a higher level of Sec12p expression than the wild-type strain containing the same plasmid (Fig. 4 b, lane 2), though both transformants grew similarly at 37°C.

Sec12p was also detected by immune precipitation from extracts of radiolabeled cells. The wild-type strain over-
producing Sec12p was grown in minimal medium and labeled with [35S]SO42− at 30°C for 1 h. Extracts treated with anti-Sec12p antibody and Protein A-Sepharose precipitated a single species (Fig. 4 c). This protein was not precipitated by preimmune serum (Fig. 4 c, lane 3) or when the immune serum incubation was performed in the presence of excess purified lacZ-SEC12 hybrid protein (data not shown).

Sec12p, a Membrane Protein That Fractionates with Rapidly Sedimenting Membranes

Sec12p was examined in subcellular fractions obtained from a wild-type strain harboring the SEC12 multicopy plasmid. Cells were converted to spheroplasts, homogenized, and subjected to differential centrifugation. All fractions were analyzed by Western immunoblotting. The data in Fig. 5 a show that Sec12p was almost exclusively found in a LSP fraction. Only a small amount was detected in LSS or HSP fractions; nothing remained soluble after a high speed centrifugation. Table II shows the distribution of various marker proteins in these fractions. A cytosolic protein (cytoplasmic invertase) was recovered in the HSS. Vacuolar proteins were found predominantly in the LSP. However, 40% of a soluble protein (mature CPY) was recovered in the HSS and a significant amount of a vacuolar membrane protein (heat-labile DPAP) was detected in the HSP. A Golgi enzyme, heat-stable DPAP, fractionated equally in the LSP and HSP. The bulk of the ER marker enzyme, NADPH cytochrome c reductase, was recovered in the LSP. Hence, the Sec12p was contained in a mixed membrane fraction that included most of the ER.

Two experiments were conducted to test whether Sec12p was soluble in a membrane-enclosed compartment or was an integral membrane protein. First, the LSP fraction was treated with 0.1 M Na2CO3, pH 11.5, and centrifuged. This treatment generated membrane sheets, removing soluble and peripherally associated membrane proteins (15). Fig. 5 b shows that Sec12p remained sedimentable after this treatment, suggesting a firm association with the lipid bilayer. Second, a "detergent blotting" method developed by Ito and Akiyama (19) was used to assess membrane association of Sec12p. In a modification of the normal immunoblot procedure, this technique uses a polyacrylamide gel containing the detergent NP-40 inserted between the original SDS gel and a nylon membrane. During electrophoretic transfer from the SDS gel to nylon, integral membrane proteins form large
Figure 5. Determination of Secl2p localization by biochemical analyses. (a) Subcellular fractionation of membranes. Wild-type cells containing the SEC12 multicopy plasmid (ANY1-7D/pANY1-9) were converted to spheroplasts and homogenized. The homogenate (2.9 mg protein/ml) in 0.3 M mannitol, 0.1 M KCl, 50 mM Tris-HCl, pH 7.4, 1 mM EGTA was centrifuged at 1,000 g for 10 min to separate LSP from LSS fractions. LSS was further fractionated by centrifugation at 100,000 g for 1 h into HSP and HSS fractions. Each fraction equivalent to 1 OD_600 of cells was resolved on an SDS gel and subjected to immunoblot analysis using anti-Secl2p antibody. Arrowhead, Secl2p. (b) Sodium carbonate treatment of LSP. The LSP fraction at a final protein concentration of 10 mg/ml was treated with 0.1 M Na_2CO_3, pH 11.5, on ice for 30 min and centrifuged at 100,000 g for 1 h. Supernatant (sup) and pellet (ppt) fractions derived from the same amount of LSP were analyzed by immunoblot to determine the distribution of Secl2p. Arrowhead, Secl2p. (c) “Detergent blot” analysis of Secl2p. The same wild-type cells (ANY1-7D/pANY1-9) were labeled with [35S]SO_4^2- at 30°C for 1 h, lysed by agitation with glass beads in the presence of 1% SDS, and subjected to immunoprecipitation with anti–Secl2p (lanes 8 and 10) or anti–CPY (lanes 9 and 11) antibodies. Immunoprecipitates were resolved on an SDS-polyacrylamide gel and electrophoretically transferred to a nylon membrane. In this transfer, another polyacrylamide gel containing 1% NP-40 was placed between the original SDS gel and nylon (19). After transfer, the NP-40 gel and nylon were dried and autoradiographed. Arrowhead, Secl2p; open triangle, CPY. Other prominent bands are contaminants in the immunoprecipitates.

micelles with NP-40 molecules and are markedly retarded in migration. Secl2p, as well as the soluble vacuolar protein CPY as a control, were immunoprecipitated from wild-type cells labeled with [35S]SO_4^2- and subjected to detergent blotting. Fig. 5 c shows that Secl2p was trapped in the NP-40 gel (Fig. 5 c, lane 8), whereas CPY passed through and was blotted to nylon (Fig. 5 c, lane 11). These results substantiated the prediction that Secl2p is an integral membrane protein.

The orientation of Secl2p with respect to the bilayer was probed by treatment of homogenates with trypsin in the presence or absence of Triton X-100. Without detergent, Secl2p was not degraded during 30 min at 0°C (Fig. 6 a, lanes 1–4). When the detergent was present, Secl2p was degraded rapidly to produce a 43-kD fragment (Fig. 6 a, lanes 5–8). No shift in the mobility of Secl2p was produced in incubations that contained detergent but no protease (Fig. 6 a, lanes 9 and 10). Resistance to trypsin in the absence of the detergent was not seen for cytosolic proteins (data not shown). These observations indicate that some site(s) in Secl2p was accessible to trypsin only when the membrane was permeabilized. Similar experiments using proteinase K instead of trypsin and saponin instead of Triton X-100 gave the same results (data not shown).

The presence or absence of N-linked carbohydrate on Secl2p and on the 43-kD fragment was used to probe further the orientation of Secl2p with respect to the membrane. Five potential N-glycosylation sites are found in the NH_2-terminal hydrophilic domain that precedes the putative membrane anchor peptide (Fig. 2); two such sites are represented on the COOH-terminal domain. If the NH_2-terminal domain faces the lumen of the organelle in which Secl2p resides, and proteolysis in the presence of detergent removes this domain from the whole protein, the 43-kD fragment should be glycosylated. If the 43-kD fragment instead represents a cytoplasmic, protease-resistant domain attached to the membrane anchor, with a trypsin cleavage site in the luminal COOH-terminal domain, then the 43-kD fragment

Protein	Localization	% Total		
Total protein		26	23	51
Invertase*	Cytosol	3	3	94
Mature CPY*	Vacuole content	50	10	40
Heat-labile DPAP	Vacuole membrane	65	24	11
Heat-stable DPAP	Golgi membrane	45	46	9
Cytochrome c reductase	ER membrane	76	14	10
Secl2p*		90	9	<1

The same fractions as in Fig. 5 a were analyzed. Proteins were quantified by Western blotting (*) or their activities were determined.

Downloaded from jcb.rupress.org on August 19, 2017
Figure 6. Susceptibility of Sec12p to tryptic digestion from the cytoplasmic side of the membranes. (a) The homogenate from wild-type cells (ANY1-7D/pANYI-9), identical to that shown in Fig. 5 a, lane 1, was treated on ice with (lanes 1–8) or without (lanes 9 and 10) 0.5 mg/ml trypsin in the absence (lanes 1–4) or presence (lanes 5–10) of 0.1% Triton-X-100. After the indicated times, tryptic action was stopped by the addition of 1.1 mg/ml soybean trypsin inhibitor. Each sample equivalent to 1 OD_{400} of cells was resolved on an SDS gel and subjected to immunoblotting with anti-Sec12p antibody. Arrowheads, mature 70-kD form and 43-kD fragment of Sec12p. (b) Endo H sensitivity of the 70-kD protein and 43-kD fragment was examined. A homogenate was treated with 0.5 mg/ml trypsin in the presence of 0.1% Triton X-100 on ice for 0 or 30 min. Digestion was stopped by the addition of trypsin inhibitor followed by heating to 95°C in the presence of 1% SDS. Samples were divided in half, brought to final concentrations of 0.3% SDS, 0.15 M sodium citrate, pH 5.5, and 5 mM NaN₃, and treated with or without 0.05 U/ml endo H at 37°C for 18 h. Sec12p polypeptides were resolved on an SDS gel and detected by immunoblotting with anti-Sec12p antibody.

will not be glycosylated. Samples from untreated or trypsin + Triton X-100–treated fractions were exposed to endo H. The data in Fig. 6 b shows that heterogeneous 70-kD Sec12p was converted to a more defined 65-kD species by removal of N-linked carbohydrate. In contrast, the 43-kD proteolytic fragment migrated sharply and was not reduced in apparent molecular mass by endo H treatment. This result suggested that the 43-kD fragment was not glycosylated and may represent a cytoplasmically oriented, protease-resistant domain of Sec12p.

Progressive Glycosylation of Sec12p

The 70-kD form of Sec12p detected by immunoblotting was larger than expected from the DNA sequence (Fig. 2; 51.6-kD polypeptide predicted). At least part of this difference was due to N-linked carbohydrate. In contrast, the 43-kD proteolytic fragment migrated sharply and was not reduced in apparent molecular mass by endo H treatment. This result suggested that the 43-kD fragment was not glycosylated and may represent a cytoplasmically oriented, protease-resistant domain of Sec12p.

Pulse labeled with [³⁵S]SO₄²⁻ for 5 min and chased for the indicated times in the presence (Fig. 7, lanes 1–5) or absence (Fig. 7, lanes 6–10) of tunicamycin. In the control, newly synthesized Sec12p displayed a gradual increase in apparent molecular mass up to 70 kD during the chase (Fig. 7, lanes 6–10). In the presence of tunicamycin, Sec12p increased in size over a lower range of molecular mass (Fig. 7, lanes 1–5). The apparent size difference was ~5 kD at each time point. Endo H treatment of Sec12p labeled in the absence of tunicamycin gave the same decrement of 5 kD in apparent molecular mass (Fig. 6 b). This result suggested that only part of the size anomaly of Sec12p was due to N-glycosylation with one or two oligosaccharide chains.

The progressive decrease in electrophoretic mobility of Sec12p was not due to modification of N-linked sugars because it occurred in the presence or absence of tunicamycin. To test the possibility that some other glycosyl modification took place, binding of Sec12p to concanavalin A (Con A) was examined (Fig. 8); and samples from a pulse–chase experi-
Figure 7. Biosynthesis and modification of Sec12p. Wild-type cells (ANY1-7D/pANY1-9) were grown in a low sulfate medium, washed, and resuspended in minimal medium with no sulfate. Three tubes, each containing 2 OD_{600} cells in 1 ml medium, were preincubated at 30°C for 15 min. Cells were then pulse labeled with 2 mCi \[^{35}S\]SO_4^{2-} at 30°C for 5 min, and chased by the addition of cold sulfate, cysteine, and methionine. The first tube (lanes 1-5) contained 10 μg/ml tunicamycin from the period of preincubation through the chase, the second tube contained no drugs (Control, lanes 6-10), and the third tube received 100 μg/ml cycloheximide at the beginning of the chase period (lanes 11-15). After chase at 30°C for the times indicated, 180-μl aliquots were withdrawn from each tube. Extracts were prepared by agitation with glass beads in the presence of 1% SDS, and Sec 12p was immunoprecipitated.

Figure 8. Con A binding of Sec12p. Wild-type cells (ANY1-7D/pANY1-9) were pulse labeled and chased in the presence or absence of tunicamycin (TM) as described in the legend to Fig. 7. Extracts were prepared from samples taken at the indicated chase times and incubated with Con A-Sepharose CL-4B in 1.6% Triton X-100, 0.1% SDS, 0.5 M NaCl, and 20 mM sodium phosphate, pH 7.4. To ensure quantitative binding of glycoproteins, 5 μl of swollen Con A-Sepharose beads were used for extracts equivalent to 0.1 OD_{600} of cells. After gentle agitation at room temperature for 3 h, beads were collected by a brief spin in a microfuge and the supernatant fraction containing unbound material was saved. Beads were washed three times with 0.05% SDS, 0.5 M NaCl, and 20 mM Tris HCl, pH 7.4, and treated with 1% SDS in a boiling water bath for 5 min. Eluted material was adjusted to 1.6% Triton X-100 and 0.2% SDS in PBS and subjected to immunoprecipitation with anti–Sec12p or anti–CPY antibody. Immunoprecipitation was also performed for total extracts and unbound fractions in parallel. T, total extract; B, bound fraction; U, unbound fraction. Two major bands in lanes 13-15 derive from precursor and mature forms of CPY (40).
The extensive modification of Sec12p resembled the kind of heterogeneous glycosylation that accompanies transport of secretory molecules through the Golgi apparatus (12). This possibility was tested with another sec mutant strain, sec18, in which protein transport from the ER is defective. sec18 (31) and wild-type strains harboring the SEC12 multicopy plasmid were labeled with [35S]SO₄²⁻ for 5 min at 30°C (a restrictive temperature for sec18-I), followed by a chase period of 10 min, 1 h, or 3 h at 30°C. In the earliest time point, Sec12p immunoprecipitated from extracts of wild-type or mutant cells migrated at the 65-kD position earlier (compare Fig. 7, lane 7 with Fig. 9, lanes 1 and 2). After 1 h of continued incubation at 30°C, and more dramatically after 3 h, Sec12p in the wild-type strain was converted to a species of heterogeneous migration, while that produced in the sec18 strain persisted at the same position of migration (Fig. 9, lanes 3–4). In addition, Sec12p accumulated in sec18 appeared to be labile, perhaps as a result of degradation as a consequence of a failure to mature or localize the protein properly. From this we suggest that the early processing of Sec12p seen in Fig. 7, lanes 6–8, occurred in the ER, while the later modification (Fig. 7, lanes 9 and 10) required transport to the Golgi apparatus.

Immunoelectron microscopy using a protein A-gold method was used to localize Sec12p in thin sections. As shown in Fig. 10, a and c, Sec12p was observed in the Golgi apparatus when this organelle was accumulated in a sec7 strain (Golgi-accumulating mutant) that was overproducing Sec12p. Gold particles were not observed beyond a background level when the labeling was competed with lacZ-SEC12 hybrid protein (Fig. 10, b and d) or when Sec12p was not overproduced (not shown). This result supported a role for the Golgi apparatus in Sec12p biogenesis. Unfortunately, Sec12p was not reproducibly visualized in wild-type or sec18 cells, even with cells that contained the multicopy SEC12 plasmid. Detection by this method may require a high local concentration of the antigen. Sec12p may be diluted over the large luminal surface of the ER, or the protein may be masked by close interaction with other components in this organelle.

Discussion

Molecular cloning and sequence analysis of the SEC12 gene predicts a protein with a single potential membrane-spanning domain. Antibody generated against the SEC12 product detects a membrane glycoprotein in yeast that resides in an intracellular compartment. This glycoprotein, Sec12p, is overproduced when yeast cells are transformed with a SEC12 multicopy plasmid, and immune precipitation of the yeast protein is competed by excess SEC12 product made in E. coli.

Routine immune detection of Sec12p has been possible only in lysates of cells that harbor the SEC12 gene on a multicopy plasmid, therefore it appears that Sec12p is not an abundant protein in normal cells. Although our conclusions concerning Sec12p localization, or the rate of its maturation, may be influenced by the requirement for detecting an overproduced protein, the apparent size of Sec12p does not depend on SEC12 gene dosage. Prolonged autoradiography of SDS gels containing normal and overproduced levels of Sec12p show the same ~70-kD species.

Sec12p resides in a rapidly sedimentable intracellular compartment(s), possibly the ER. Proteolysis of homogenates shows that Sec12p has a site(s) susceptible to proteases within a membrane-enclosed compartment. This observation

The Journal of Cell Biology, Volume 107, 1988 860
diminishes the possibility that Sec12p resides in the plasma membrane which in homogenates of yeast spheroplasts remains in open sheets with both cytoplasmic and extracellular surfaces exposed (7, 39). Two possible orientations of Sec12p within an organelle membrane are shown in Fig. 11.

Both models seek to account for the production of a nonglycosylated 43-kD fragment of Sec12p produced when membranes are treated with trypsin in the presence of detergent. Model a suggests the COOH-terminal domain, which from the sequence data contains two potential N-glycosylation sites, occupies a lumenal position. A potential trypsin cleavage site is located on the COOH-terminal side of the putative membrane-spanning domain. Proteolysis at this position would, in the absence of cleavage at any more NH2-terminal site, generate a 374-amino acid-long polypeptide (~41 kD). Model b places the NH2-terminal domain in the lumen with one glycosylation site separating the membrane anchor from the trypsin cleavage site. A 337-amino acid-long (~37 kD) possible proteolytic fragment is the largest NH2-terminal segment that conforms to this model. Furthermore, for model b to be correct, the four other potential N-glycosylation sites in the NH2-terminal domain of sec12p must somehow escape recognition by the oligosaccharide transfer apparatus. For these reasons we favor model a and suggest that the protease resistance of the exposed NH2-terminal domain may derive from unusual folding or through interaction with other proteins. In any case, this domain may provide an anchoring site for cytoplasmic proteins involved in membrane sorting or vesicle budding.

Glycosylation of Sec12p proceeds in an unusual manner
that can only partly be accounted for by addition of N-linked oligosaccharides. Of the ~18-kD apparent molecular mass difference between the polypeptide predicted from the DNA sequence and the protein detected on immunoblots, ~5 kD is due to N-glycosylation. An additional glycosyl modification independent of N-linked oligosaccharides occurs during or shortly after synthesis of Sec12p. This species, labeled in the presence of tunicamycin, binds Con A and is eluted by α-d-methylmannoside. Among the possibilities for this modification are O-linked mannose, whose assembly on yeast glycoproteins begins in the ER (16), or a mannose-containing glycolipid anchor (24), a structure that has not yet been examined in yeast.

Yet another modification of Sec12p, accounting for ~4kD of apparent molecular mass, occurs slowly and depends upon transit to the Golgi apparatus. This component is independent of N-linked glycosylation and may represent maturation of the other carbohydrate structure, or an altogether new modification. Although protein transport through the yeast secretory pathway ordinarily is rapid and does not require ongoing protein synthesis (30, 31), the slow modification of Sec12p is blocked by cycloheximide. One speculative interpretation of this result is that Sec12p migrates rapidly in a cycle from the ER to the Golgi apparatus and back, experiencing progressive modification in successive passages through the Golgi apparatus. Transport of Sec12p from the ER may require a cargo of newly made proteins such that inhibition of protein synthesis retards this cycling. A precedent for ligand-dependent cycling is seen in epidermal growth factor receptor in liver (10). Alternatively, the enzymes that slowly modify Sec12p may be turned over rapidly, resulting in a depletion of activity during prolonged inhibition of protein synthesis. Since protein transport from the ER to the Golgi apparatus is interrupted in Sec12 cells, these results and the immune EM visualization of Sec12p in Golgi structures suggest that this protein may serve both in protein transport from the ER and within the Golgi apparatus.

One possibility for the function of Sec12p is in packaging the precursors of secretory, plasma membrane, and vacuolar proteins into the vesicular intermediates that mediate compartmental traffic within the cell. Accordingly, Sec12p should be enriched in these vesicles. Thus far, the only such vesicle that has been identified in yeast is the mature secretory vesicle involved in transport from the Golgi apparatus to the plasma membrane (28), which does not appear to contain Sec12p (Holcomb, C., and A. Nakano, unpublished results). Hence, either Sec12p plays no role in the formation of secretory vesicles derived from the Golgi apparatus, or it does so without being packaged into the membrane of this vesicle.

In the course of cloning the SEC12 gene, a suppressor gene was obtained which, when its dosage is raised, allows sec12 ts mutant cells to grow at 37°C. Deletion of the chromosomal locus of the suppressor gene in a wild-type cell is a lethal event, hence the suppressor product is essential for normal growth. Interestingly, the sequence of this gene predicts a ras-related GTP-binding protein (Nakano, A., manuscript in preparation). A similar finding has been reported for the SEC4 gene, which encodes a distinct ras-homologue and which partially suppresses the ts growth phenotype of several mutants that accumulate secretory vesicles at 37°C (33). From these results, it appears that different GTP-binding proteins may regulate each stage in the secretory pathway. A further test of this hypothesis requires the generation and analysis of conditional alleles of the SEC12 suppressor gene.

We are grateful to Mitchell Bernstein, Miriam Hassan, and Gregory Payne for their help and valuable discussion throughout this study. Peter Bohni, Alex Franzusoff, and Linda Hicke provided useful comments on the manuscript.

This work was supported by grants from the National Institutes of Health and the National Science Foundation. A. Nakano was a recipient of fellowships from the Science and Technology Agency of Japan and from the University of California Biotechnology Research and Training Program. D. Brada was supported by a fellowship from the American Cancer Society, California Division.

Received for publication 12 November 1987, and in revised form 10 May 1988.
19. Ito, K., and Y. Akiyama. 1985. Protein blotting through a detergent layer, a simple method for detecting integral membrane proteins prepared by SDS-polyacrylamide gel electrophoresis. Biochem. Biophys. Res. Commun. 133:214-221.
20. Julius, D., L. Blair, A. Brake, G. Sprague, and J. Thorner. 1983. Yeast α-factor is processed from a larger precursor polypeptide: the essential role of a membrane-bound dipeptidyl aminopeptidase. Cell. 32:839-852.
21. Kubota, S. Y., Y. Yoshida, H. Tamaoka, and H. Furumichi. 1977. Studies on the microsomal electron transport system of anaerobically-grown yeast. V. Purification and characterization of NADPH-cytochrome c reductase. J. Biochem. (Tokyo). 81:197-206.
22. Kyte, J., and R. F. Doolittle. 1982. A method for displaying the hydrophobic character of a protein. J. Mol. Biol. 157:105-132.
23. Lilmum, D. J., and W. R. Pearson. 1985. Rapid and sensitive protein similarity searches. Science (Wash. DC). 227:1435-1441.
24. Low, M. G. 1987. Biochemistry of the glycosyl-phosphatidyl-inositol membrane protein anchors. Biochem. J. 244:1-13.
25. Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 545 pp.
26. Messing, J., B. Gronenborn, B. Muller-Hill, and P. H. Hofschneider. 1977. Filamentous coliphage M13 as a cloning vehicle: insertion of a HindII fragment of the lac regulatory region in M13 replicative form in vitro. Proc. Natl. Acad. Sci. USA. 74:3642-3646.
27. Naumykh, K. A., and K. Tatchell. 1980. The structure of transposable yeast mating type. Cell. 19:753-764.
28. Novick, P., and R. Schekman. 1979. Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 76:1858-1862.
29. Novick, P., and R. Schekman. 1983. Export of major cell surface proteins is blocked in yeast secretory mutants. J. Cell Biol. 96:541-547.
30. Novick, P., S. Ferro, and R. Schekman. 1981. Order of events in the yeast secretory pathway. Cell. 25:461-469.
31. Novick, P., C. Field, and R. Schekman. 1980. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 21:205-215.
32. Rather, U., and B. Muller-Hill. 1983. Easy identification of cDNA clones. EMBO (Eur. Mol. Biol. Organ.) J. 2:1791-1794.
33. Schekman, R., and P. Novick. 1987. A ras-like protein is required for a post-Golgi event in yeast secretion. Cell. 49:527-538.
34. Sanger, F. S., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74:5463-5467.
35. Schaffner, W., and C. Weissmann. 1973. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal. Biochem. 56:502-514.
36. Schekman, R. 1985. Protein localization and membrane traffic in yeast. Annu. Rev. Cell Biol. 1:135-143.
37. Scott, J. H., and R. Schekman. 1980. Lyticase: endoglucanase and protease activities that act together in yeast cell lysis. J. Bacteriol. 142:414-423.
38. Sherman, F., G. R. Fink, and J. B. Hicks. 1983. Methods in Yeast Genetics: A Laboratory Manual, revised edition. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 120 pp.
39. Sosinsky, G., R. Schekman, and R. M. Glaeser. 1986. Morphological observations on the formation and stability of the crystalline arrays in the plasma membrane of Saccharomyces cerevisiae. J. Ultrastruct. Mol. Struct. Res. 94:37-51.
40. Stevens, T., B. Esmon, and R. Schekman. 1982. Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole. Cell. 30:439-448.
41. Wickerham, L. J. 1946. A critical evaluation of the nitrogen assimilation tests commonly used in the classification of yeasts. J. Bacteriol. 52:293-301.
42. Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene (Amst.). 33:103-110.