Impact of Catheter Ablation on Quality of Life and Healthcare Utilisation

Sanghamitra Mohanty and Andrea Natale

1. Texas Cardiac Arrhythmia Institute, St David’s Medical Center, Austin, TX, US; 2. Interventional Electrophysiology, Scripps Clinic, San Diego, CA, US; 3. Metro Health Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, US

Abstract

Impairment of quality of life (QoL) is a well-known complication of AF. Because of the association of AF with older age and many other cardiovascular comorbidities, there are multiple factors that could influence QoL score even after successful AF intervention. However, substantial improvement in QoL has been reported following catheter ablation for AF regardless of ablation outcomes. In terms of healthcare resource utilisation, the expenses associated with AF are very high because of the hospitalisations for AF-related thromboembolic complications, aggravation of heart failure, AF interventions, and emergency room visits for incessant arrhythmia episodes, and they represent a large economic burden worldwide. Several trials have shown a drastic reduction in healthcare costs following successful AF ablation. In this review, the authors discuss this evidence systematically.

Keywords
AF, catheter ablation, quality of life, hospitalisation

Impact of Catheter Ablation on QoL in AF Patients

Eliminating subjectivity (and thereby bias) in medicine was the focus of modern-day clinical research until recently. However, the emphasis is gradually shifting towards patient-reported outcomes and QoL. Several generic and disease-specific tools are used to measure QoL, and the majority of the studies assessing QoL in patients undergoing catheter ablation have shown significant improvement in this metric (Table 1).

In a consecutive series of AF patients undergoing catheter ablation, Wokhlu et al. reported post-ablation improvement in QoL regardless of ablation success.22 QoL improvement in patients with post-ablation recurrence was attributed to plausible causes such as a reduction in symptom burden, improved efficacy of drugs that were previously ineffective, and a placebo effect of the ablation procedure, among others.22 They also documented the superiority of AF-specific assessment (Atrial Fibrillation Effect on Quality of Life; AFEQT) over the generic QoL questionnaire, the 36-item Short-form Health Survey (SF-36), which most likely was not an appropriate metric to measure AF-related QoL.22 Raine et al. utilised both SF-36 and the AFEQT questionnaire to assess QoL in patients undergoing catheter ablation for AF.13 They reported improvement in QoL scores only in patients (of all AF types) who maintained sinus rhythm after ablation. Additionally, they reinstated the higher sensitivity of AFEQT over SF-36 in capturing changes after catheter ablation.13 Although the authors observed QoL improvement only in arrhythmia-free individuals, because of discontinuous arrhythmia monitoring the study was not able to rule out asymptomatic episodes in patients with sinus rhythm.13

In another prospective analysis, patients with long-standing persistent AF (LSPAF) with worse baseline QoL compared with the patients with paroxysmal AF had greater improvement in post-ablation QoL, particularly those who remained in sinus rhythm off anti-arrhythmic drugs.4 A shorter
Impact of Catheter Ablation on QoL and Healthcare Utilisation

Table 1: Studies on the Impact of Catheter Ablation on Quality of Life in Various AF Populations

Study	Year	Type of Study	Main Finding
General AF Population			
Andrade et al.	2020 Randomised trial	Significant improvement in AFEQT score at 6 and 12 months of follow-up	
Biviano et al.	2017 US registry study	Disease-specific QoL instrument scores improved significantly and similarly for older and younger patients at 1-year follow-up	
Bulková et al.	2014 Prospective study	Magnitude of QoL improvement after ablation of LSPAF was significantly greater particularly when good arrhythmia control was achieved	
Gupta et al.	2021 Consecutive series	QoL improvement was significantly associated with impairment at baseline and with AF burden after ablation	
Mark et al.	2019 Randomised trial	Mean AFEQT and MAFSI scores for QoL were significantly better at 12 months after ablation	
Blomström-Lundqvist et al.	2019 Randomised trial	Improvement in QoL at 12 months was greater for those treated with catheter ablation compared with anti-arrhythmic medication	
Field et al.	2014 California Healthcare database	Mean AFEQT and MAFSI scores for QoL were significantly better at 12 months after ablation	
Zeitler et al.	2021 Randomised trial	Improvement in QoL after ablation was similar between the sexes although women had lower baseline scores	

Subsets of the AF Population

Study	Year	Type of Study	Main Finding
Mohanty et al.	2011 Prospective study	QoL score improved significantly in all scales of SF-36 except physical functioning and bodily pain in overweight and obese patients	
Mohanty et al.	2012 Prospective study	QoL scores improved significantly at 1 year after ablation in all scales of SF-36 in AF patients with metabolic syndrome	
Mohanty et al.	2014 Prospective study	Successful ablation improved QoL in patients with asymptomatic LSPAF following ablation	
Di Biase et al.	2016 Randomised trial	Significant improvement in QoL in the ablation arm compared with the amiodarone arm in patients with coexistent AF and heart failure	

Female AF Patients

Study	Year	Type of Study	Main Finding
Kloosterman et al.	2020 Randomised trial	Improvement in QoL after ablation was similar between the sexes although women had lower baseline scores	
Zeiter et al.	2021 Randomised trial	QoL benefit of catheter ablation was similar across gender even though women had lower baseline score	

Healthcare Utilisation in AF Patients

Study	Year	Type of Study	Main Finding
Andrade et al.	2020 Randomised trial	Significant reduction in healthcare utilisation in the year following AF ablation using cryo or radiofrequency energy	
Biviano et al.	2017 US Registry study	For older patients (≥65 years) undergoing catheter ablation for paroxysmal AF, healthcare utilisation parameters were lower or not significantly different than for younger patients	
Dewland et al.	2014 California Healthcare Cost and Utilisation Project database	Atrial flutter ablation significantly lowered the adjusted risk of inpatient hospitalisation (HR 0.88, 95% CI [0.84–0.92], p<0.001), emergency department visits (HR 0.60, 95% CI [0.54–0.66], p<0.001), and overall hospital-based healthcare utilisation (HR 0.94, 95% CI [0.90–0.98], p<0.001)	
Gupta et al.	2021 Consecutive series	Cardiovascular hospitalisations were significantly decreased after ablation (42%, p<0.001)	
Saad et al.	2019 National database	Overall healthcare costs were reduced by 63.5% after catheter ablation	
Samuel et al.	2017 Consecutive series	After index catheter ablation, all-cause hospitalisations, hospitalisations for AF, emergency room visits, cardioversions, and echocardiograms were reduced 12 months after catheter ablation compared with 12 months prior.	
Ladapo et al.	2011 Consecutive series	Catheter ablation for AF reduced healthcare utilisation and expenditure for up to 3 years after ablation.	
Ha et al.	2020 Consecutive series	In the overall cohort (both paroxysmal and persistent AF), there was a 48% reduction in the rate of AF-related hospitalisation/emergency room visits in the year after versus before ablation	
Di Biase et al.	2016 Randomised trial	Unplanned hospitalisation was significantly lower in the ablation arm compared with the amiodarone arm	
Field et al.	2020 US administrative database	Catheter ablation in patients with AF and heart failure resulted in significant reductions in healthcare utilisation and cost in 3 years of follow-up	

AAD = anti-arrhythmic drug; AFEQT = AF Effect on Quality of Life; LSPAF = long-standing persistent AF; MAFSI = Mayo AF-Specific Symptom Inventory; MCS = mental component summary; PCS = physical component summary; QoL = quality of life; SF-36 = 36-item Short-form Health Survey.

history of AF, younger age and presence of LSPAF were found to be independent predictors of QoL improvement.8

Two multicentre US registry studies reported comparable improvement in post-ablation AF-specific QoL scores in patients older and younger than 65 years, at 1-year follow-up.7 In 2,204 randomised patients in the CABANA trial, both the AFEQT and MAFSI (Mayo AF-Specific Symptom Inventory) mean scores were more favourable in the catheter ablation group than in the drug therapy group.15 The CAPTAF randomised trial reported similar findings.14

A secondary analysis of the STAR AF II trial demonstrated a 92% reduction in AF burden following catheter ablation and a direct association of statistically significant improvement in QoL with decrease in AF burden at 18 months following the procedure.21 The QoL improvement was detected regardless of AF recurrence, defined as AF episodes lasting >30 seconds.21
Impact of Catheter Ablation on QoL and Healthcare Utilisation

The CIRCA-DOSE randomised trial also reported the same.2 Patients free of any atrial tachyarrhythmia recurrence had a significantly greater improvement in AFEQT score compared with those with tachyarrhythmia recurrence.2 Another consecutive series documented association of QoL improvement with residual tachyarrhythmia burden following catheter ablation.22

Catheter ablation has also been shown to positively impact QoL in subsets of AF patients with other comorbidities. In a prospective series of 660 normal versus high BMI patients, we observed significant increase in QoL scores in high BMI patients only.21 Furthermore, patients with successful ablation had more positive change in QoL compared with those with failed ablation.1 In another study including AF patients with metabolic syndrome, the QoL improvement was observed to be greater in patients with metabolic syndrome versus without.23 In a later series with asymptomatic LSPAF patients, successful ablation was shown to be associated with substantial bettterment in QoL scores.24 In the AATAC randomised trial, the Minnesota Living with Heart Failure questionnaire was used to assess the change in QoL in AF patients with congestive heart failure undergoing catheter ablation versus those remaining on amiodarone.25 Compared with the drug group (and with both cohorts having similar QoL scores at baseline), the ablation arm had significantly better QoL at follow-up.26

Another subset of AF in terms of QoL impairment is worth mentioning. Many trials have shown that women with AF have lower baseline QoL than men.26–30 The AXAFA-AFNET 5 trial reported similar improvement in QoL following catheter ablation, across gender.31 In a substudy of the CABANA trial population, catheter ablation was shown to be superior to drug-based therapy for improving QoL in women.32

Impact of Catheter Ablation on Healthcare Utilisation

According to a cross-sectional study using the Nationwide Inpatient Sample database for the years between 2000 and 2010, a total of 3,960,011 hospitalisations for AF as the primary discharge diagnosis were reported in the US.34 The contemporary costs of managing AF have been estimated to account for 1.0–2.7% of total annual healthcare expenditure, with a significant proportion of these expenses attributed to the direct costs associated with hospitalisation, emergency room visits and the provision of acute care.7 In 2010 the AF-specific cost was reported to be US$6.0 billion, consisting of US$2.3 billion for inpatient admissions with AF as the primary diagnosis and US$3.7 billion for outpatient care.35 Many independent trials have reported a significant reduction in healthcare resource utilisation following AF ablation (Table 1).

The CIRCA-DOSE randomised trial reported a reduction of 75% in cardiovascular, 62% in emergency room visits, 43% in hospitalisation and 86% in anti-arrhythmic drugs use following catheter ablation using either radiofrequency or cryo energy, in paroxysmal AF patients.2 In a consecutive series, Gupta et al. documented significant reduction in cardiovascular hospitalisation following AF ablation.23

In a large real-world population of 33,000 patients with a diagnosis of atrial flutter, catheter ablation was shown to significantly reduce the adjusted risk of inpatient hospitalisation, emergency room visits and overall hospital-based healthcare utilisation.23 Samuel et al. demonstrated reversal of healthcare resource utilisation at 2 years following catheter ablation to lower than pre-ablation levels in 1,556 AF patients.24 The rate of all-cause admissions and AF or atrial flutter hospitalisation and emergency room visits increased significantly over the 24-month period prior to ablation and subsequently decreased below pre-procedure levels throughout the 24 months following the ablation procedure.25

In another study on healthcare utilisation in the general and the Medicare populations, compared with the 6 months prior to ablation, there were significant reductions in the number of outpatient appointments, inpatient days, drug treatment, and emergency room visits in the total study population and in the subset ≥65 years, at 3 years after the ablation procedure.26 In the AATAC study, unplanned hospitalisation was significantly lower in the ablation arm in patients with coexistent AF and heart failure.27 Similar findings were reported by Field et al. at 3-year follow-up in patients with AF and heart failure undergoing catheter ablation.28 In two recently published studies, the authors showed benefits of catheter ablation in terms of healthcare utilisation and cost in both paroxysmal and persistent AF.36,37

Conclusion

Based on the above evidence, it is prudent to conclude that catheter ablation improves disease-specific QoL regardless of the ablation outcome. Furthermore, irrespective of AF type, it significantly reduces the healthcare utilisation in the post-ablation period for up to 3 years.38

Clinical Perspective

- Catheter ablation improves quality of life (QoL) in AF patients, regardless of ablation outcome.
- Positive change in QoL even in the absence of achievement of sinus rhythm is probably due to reduction in arrhythmia burden and improved efficacy of drugs that were previously ineffective.
- Significant reduction in healthcare utilisation such as hospitalisation and emergency room visits following catheter ablation has also been well documented.
- When determining the priority of catheter ablation in AF patients, the aforementioned benefits should be considered along with the success rate of the procedure in achieving arrhythmia-free survival.

1. Mohanty S, Mohanty P, Di Biase L, et al. Influence of body mass index on quality of life in atrial fibrillation patients undergoing catheter ablation. Heart Rhythm 2018;15:1847–52. https://doi.org/10.1016/j.hrthm.2017.07.005; PMID: 27108799.
2. Andrade JS, Moxley L, Verma A, et al. CIRCA-DOSE Study Investigators. Quality of life and health care utilization in the CIRCA-DOSE Study. JACC Clin Electrophysiol 2020;6:935–44. https://doi.org/10.1016/j.jcloop.2020.04.007; PMID: 32189528.
3. Nielsen JC, Johansen H, Aastrup M, et al. Long-term efficacy of catheter ablation as first-line therapy for paroxysmal atrial fibrillation: 5-year outcome in a randomised clinical trial. Heart 2017;103:366–74. https://doi.org/10.1136/heartjnl-2016-310978; PMID: 27562995.
4. Imberti JF, Ding WY, Kotzias A, et al. Catheter ablation as first-line treatment for paroxysmal atrial fibrillation: a systematic review and meta-analysis. Heart 2021;107:1630–6. https://doi.org/10.1136/heartjnl-2021-319496; PMID: 34267372.
5. Santageli P, Di Biase L, Natale A. Ablation versus drugs: what is the best first-line therapy for paroxysmal atrial fibrillation? Antiarrhythmic drugs are outdated and catheter ablation should be the first-line option for all patients with paroxysmal atrial fibrillation. Prog. Circ Arrhythm Electrophysiol 2014;7:739–46. https://doi.org/10.1016/j.circarrsep.2013.09.013.
6. Hassan KH, Yang J, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the
Impact of Catheter Ablation on QoL and Healthcare Utilisation

11. Gupta D, Vijgen J, Potter T, et al. Quality of life and healthcare utilization and quality of life improvement after ablation for paroxysmal versus long-standing persistent atrial fibrillation: a prospective study with 3-year follow-up. J Am Heart Assoc. 2016;5:e002881. https://doi.org/10.1161/JAHA.114.002881; PMID: 25037195.

12. Bulková V, Fiala M, Havránek S, et al. Improvement in healthcare utilization and expenditures in atrial fibrillation treated with catheter ablation. J Cardiovasc Electrophysiol. 2012;23:1–8. https://doi.org/10.1111/j.1550-6406.2011.02130.x; PMID: 22777124.

13. Mohrny S, Mohrny P, Di Biase L, et al. Impact of metabolic syndrome on procedural outcomes in patients with atrial fibrillation undergoing catheter ablation. J Am Coll Cardiol. 2012;59:2308–16. https://doi.org/10.1016/j.jacc.2011.11.051; PMID: 22642527.

14. Sahadevan C, Mantravadi R, Vijay CV, et al. Association between quality of life and procedural outcome after catheter ablation for atrial fibrillation: a secondary analysis of a randomized clinical trial. JAMA Netw Open. 2020;3:e2025473. https://doi.org/10.1001/jamanetworkopen.2020.25473; PMID: 32275551.

15. Feldman DJ, Field ME, Rahman M, et al. Catheter ablation and healthcare utilisation and cost among patients with paroxysmal versus persistent atrial fibrillation. Heart Rhythm. 2020;20:28–36. https://doi.org/10.1016/j.hrthm.2020.12.017; PMID: 34155002.

16. Sridhar AR, Colbert R. Quality of life after atrial fibrillation ablation: measuring the most important endpoint. Heart Rhythm. 2015;12:1637–44. https://doi.org/10.1016/j.hrthm.2015.01.001; PMID: 24930364.

17. Zeitler EP, Russo AM, Silverstein A, et al. B-PO05-06.9 Sex-specific quality of life outcomes of ablation versus antiarrhythmic therapy for AF: insights from CABANA. Heart Rhythm. 2021;18(Suppl):S399. https://doi.org/10.1016/j.hrthm.2021.08.003; PMID: 34212147.

18. Lassen TA, Gleden DV, Marcus GM. Healthcare utilization and clinical outcomes after catheter ablation of atrial flutter. Pacing Clin Electrophysiol. 2014;37:e00509. https://doi.org/10.1037/journal.pone.0190509; PMID: 24983883.

19. Freeman JV, Taboada GH, Reynolds K, et al. Contemporary procedural complications, hospitalizations, and emergency visits after catheter ablation for atrial fibrillation. Am J Cardiol. 2018;121:602–8. https://doi.org/10.1016/j.amjcard.2017.11.034; PMID: 28228467.

20. Rienstra M, Van Veldhuisen DJ, Hagens VE, et al. Gender differences in clinical presentation and 1-year outcomes in atrial fibrillation. Heart. 2017;103:K224–38. https://doi.org/10.1136/heartjnl-2016-310406; PMID: 28228467.

21. Li YM, Jiang C, He L, et al. Sex differences in presentation, perception, and arrhythmia-free survival. J Cardiovasc Electrophysiol. 2014;25:K57–64. https://doi.org/10.1111/jce.12467; PMID: 24903064.

22. Rashidi A, Mirakhorli M, Mohajerzadeh H, et al. Differences in healthcare use between patients with persistent and paroxysmal atrial fibrillation undergoing catheter-based atrial fibrillation ablation: a population-based cohort study from Ontaria, Canada. J Am Heart Assoc. 2021;10:e016071. https://doi.org/10.1161/JAHA.120.010440; PMID: 24883000.

23. Kohsaka S, Ikemura N, Kimura T, et al. Assessment of sex difference in procedural outcomes in patients with atrial fibrillation. J Am Coll Cardiol. 2015;65:2308–16. https://doi.org/10.1016/j.jacc.2015.05.078; PMID: 25791887.

24. Blomström-Lundqvist C, Gizurarson S, Schwieler J, et al. Effect of catheter ablation vs antiarrhythmic medication on quality of life in patients with atrial fibrillation: the CAPAF randomized clinical trial. JAMA. 2019;321:1275–85. https://doi.org/10.1001/jama.2019.6652; PMID: 30904766.

25. Khan ZZ, Wypij D, Leong L, et al. Gender differences in catheter ablation of atrial fibrillation: results from AXAFA-APNET S. Europace. 2020;22:1026–35. https://doi.org/10.1177/1040139320912879; PMID: 27914493.

26. Ikemura N, Kohsaka S, Kimura T, et al. Assessment of sex differences in the initial symptom burden, applied treatment strategy, and quality of life in Japanese patients with atrial fibrillation. JAMA. 2015;313:1901–8. https://doi.org/10.1001/jamaintern Med.2015.313833; PMID: 25824896.

27. Blomström-Lundqvist C, Gizurarson S, Schwieler J, et al. Specific quality of life outcomes of ablation versus drug therapy for AF: insights from CABANA. Heart Rhythm. 2021;18(Suppl):S399. https://doi.org/10.1016/j.hrthm.2021.06.989.

28. Sridhar AR, Colbert R. Quality of life after atrial fibrillation ablation: measuring the most important endpoint. Heart Rhythm. 2020;20:196–7. https://doi.org/10.1016/j.hrthm.2020.01.070; PMID: 33895975.

29. Fassan M, Feresin E, Mancini M, et al. Gender-related differences in rhythm control treatment in persistent atrial fibrillation: data of the Rate Control Versus Electrical Cardioversion (RACE) study. J Am Coll Cardiol. 2005;46:298–306. https://doi.org/10.1016/j.jacc.2005.05.078; PMID: 16198647.

30. Bulková V, Fiala M, Havránek S, et al. Improvement in quality of life after catheter ablation for paroxysmal versus long-standing persistent atrial fibrillation: a prospective study with 3-year follow-up. J Am Heart Assoc. 2016;5:e002881. https://doi.org/10.1161/JAHA.114.002881; PMID: 25037195.

31. Dewland TA, Gleden DV, Marcus GM. Healthcare utilization and clinical outcomes after catheter ablation of atrial flutter. Pacing Clin Electrophysiol. 2014;37:e00509. https://doi.org/10.1037/journal.pone.0190509; PMID: 24983883.

32. Freeman JV, Taboada GH, Reynolds K, et al. Contemporary procedural complications, hospitalizations, and emergency visits after catheter ablation for atrial fibrillation. Am J Cardiol. 2018;121:602–8. https://doi.org/10.1016/j.amjcard.2017.11.034; PMID: 28228467.

33. Schoenfeld AB, Pecen L, Opela FM, et al. Gender differences in clinical presentation and 1-year outcomes in atrial fibrillation. Heart. 2017;103:K224–38. https://doi.org/10.1136/heartjnl-2016-310406; PMID: 28228467.

34. Sridhar AR, Mirakhorli M, Mohajerzadeh H, et al. Differences in healthcare use between patients with persistent and paroxysmal atrial fibrillation undergoing catheter-based atrial fibrillation ablation: a population-based cohort study from Ontaria, Canada. J Am Heart Assoc. 2021;10:e016071. https://doi.org/10.1161/JAHA.120.010440; PMID: 24883000.

35. Kim MH, Johnston SS, Chu BC, et al. Estimation of total incremental health care costs in patients with atrial fibrillation in the United States. Circ Cardiovasc Qual Outcomes. 2011;4:318–26. https://doi.org/10.1161/CIRCOUTCOMES.110.958165; PMID: 21540439.

36. Shenabe AB, Pecen L, Opela FM, et al. Gender differences in clinical presentation and 1-year outcomes in atrial fibrillation. Heart. 2017;103:K224–38. https://doi.org/10.1136/heartjnl-2016-310406; PMID: 28228467.