Supporting Information for

Total Synthesis of (−)-Ambiguine P

Jiasu Xu and Viresh H. Rawal*

*Department of Chemistry, The University of Chicago
5735 South Ellis Avenue, Chicago, IL 60637

Table of Contents

Section	Page
Material and Methods	S2
Experimental Procedures and Characterization Data	S3
References	S19
Experimental Spectra	S20
X-ray Crystallographic Data for 25	S52
Materials and Methods

Unless stated otherwise, reactions were performed under a nitrogen atmosphere using oven- or flame-dried glassware and stir bars. Ambient temperature refers to 22-26 °C. Higher than ambient temperatures were maintained using pre-heated oil baths. Lower temperatures were maintained using acetone/CO$_2$(s) (−78 °C), MeCN/CO$_2$(s) (−40 °C) and water/ice (0 °C) baths. Dichloromethane (CH$_2$Cl$_2$ or DCM), tetrahydrofuran (THF), and dimethylformamide (DMF) were dried by passage through an activated alumina column purification system (Innovative Technology Inc. Pure Solv$^\text{TM}$). Anhydrous methanol (MeOH) and pyridine were purchased from Sigma-Aldrich and used as received. Anhydrous 1-propanol was purchased from Alfa Aesar and used as received. Commercially obtained reagents were used as received, unless stated otherwise. N-bromosuccinimide was recrystallized from water.

Thin-layer chromatography (TLC) was performed using EMD Millipore silica gel 60 Å plates with UV fluorescence quenching (254 nm), KMnO$_4$, or Seebach’s stain. Flash column chromatography was performed on SiliCycle SiliaFlash P60 (40-63 μm particle size) using ACS or HPLC grade solvents purchased from Fisher Scientific. 1H NMR spectra were recorded on Bruker 500 spectrometers (at 500 MHz) at 294-297 K. 13C NMR spectra were recorded on Bruker 500 and Bruker 400 spectrometers (at 125 MHz and 100 MHz, respectively) at 294-297 K. 1H spectra were calibrated from internal standard TMS (δ 0.0) or solvent resonance (CD$_3$OD: δ 3.31). 13C spectra were calibrated from solvent resonance (CDCl$_3$: δ 77.16, CD$_3$OD: δ 49.00). NMR data are reported as: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), and integration). 13C chemical shifts arising from 19F isotope effects are indicated in parentheses. High-resolution mass spectral analysis was measured on Agilent Technologies 6224 TOF LC/MS (electrospray ionization). Optical rotations were measured on a Jasco DIP-1000 polarimeter using a 100 mm or a 50 mm path-length cell, c = g/100mL. IR spectra were recorded on a Thermo Scientific Nicolet iS50 FT-IR spectrometer and are reported as frequency of absorption (cm$^{-1}$).
Experimental Procedures and Characterization Data

Alcohol 11. (Prepared according to literature)\(^1\) A 250 mL round-bottomed flask equipped with a magnetic stir bar was charged with ethyl indole-2-carboxylate (3.09 g, 16.3 mmol, 1 equiv.) and THF (46 mL). The resulting yellow solution was cooled to −78 °C. Methyl lithium solution (1.6 M in THF, 50 mL, 80 mmol, 4.9 equiv.) was added dropwise over 15 min, and precipitate formation was observed. After 2.5 h, the reaction was carefully quenched with 25 mL H\(_2\)O, and allowed to warm to ambient temperature. The reaction mixture was partitioned between 100 mL H\(_2\)O and 50 mL 1:1 Et\(_2\)O:hexanes, and the aqueous layer was extracted with 40 mL 1:1 Et\(_2\)O:hexanes. The combined organic layers were washed with brine, dried over Na\(_2\)SO\(_4\), and concentrated under reduced pressure. The crude material was purified by quick passage through a short silica plug (25:75 EtOAc:hexanes) to afford alcohol 11 (2.82 g, 16.1 mmol, 99% yield) as a white solid.

\(R_f = 0.25\) (25:75 EtOAc:hexanes)

\(^{1}\)H NMR (500 MHz, CDCl\(_3\)): δ 8.42 (s, 1H), 7.56 (d, \(J = 7.9\) Hz, 1H), 7.37 – 7.35 (m, 1H), 7.18 – 7.15 (m, 1H), 7.10 – 7.07 (m, 1H), 6.32 – 6.31 (m, 1H), 1.83 (s, 1H), 1.69 (s, 6H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): δ 145.7, 135.7, 128.5, 121.9, 120.5, 119.9, 111.0, 97.2, 69.8, 30.8.

HRMS (ESI): calcd for C\(_{11}\)H\(_{14}\)NO [M+H]\(^+\): 176.1070, found: 176.1053.

Tricycle 13. A 10 mL recovery flask equipped with a magnetic stir bar was charged with diene 12 (prepared according to literature)\(^2\) (238 mg, 1.05 mmol, 2 equiv.), alcohol 11 (92.1 mg, 0.526 mmol, 1
equiv.) and DCM (3.5 mL). The resulting colorless solution was cooled to −78 °C. TMSOTf (distilled over P₂O₅ before use; 0.105 mL, 0.578 mmol, 1.1 equiv.) was added dropwise, and the mixture immediately turned deep red. After 1 h, the reaction was quenched with 2 mL H₂O, and allowed to warm to ambient temperature. The reaction mixture was partitioned between 20 mL saturated aqueous NaHCO₃ and 20 mL DCM, and the aqueous layer was extracted with 20 mL DCM. The combined organic layers were washed with 10% HCl (40 mL × 2), dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by flash chromatography (20:80 → 25:75 EtOAc:hexanes) to afford tricycle 13 (74.0 mg, 0.326 mmol, 62% yield) as an off-white solid.

\[R_f = 0.36 \text{ (25:75 EtOAc:hexanes)} \]

\(^1\text{H NMR (500 MHz, CDCl₃)}: \delta 7.85 (s, 1H), 7.51 (dd, \(J = 7.8, 0.5 \text{ Hz, 1H})\), 7.33 – 7.31 (m, 1H), 7.19 – 7.15 (m, 1H), 7.14 – 7.11 (m, 1H), 3.12 – 3.10 (m, 2H), 2.94 (s, 2H), 2.74 – 2.72 (m, 2H), 1.43 (s, 6H).

\(^{13}\text{C NMR (100 MHz, CDCl₃)}: \delta 212.3, 140.7, 134.7, 128.2, 122.0, 119.6, 118.0, 110.5, 110.4, 54.9, 44.5, 35.2, 30.4, 19.0.

HRMS (ESI): calcd for C₁₅H₁₈NO [M+H]^+: 228.1383, found: 228.1386.

Tetracycle 15. A 25 mL recovery flask equipped with a magnetic stir bar was charged with diene 14 (prepared according to literature\(^3\) (282 mg, 1.01 mmol, 2 equiv.), alcohol 11 (88.1 mg, 0.503 mmol, 1 equiv.) and DCM (5 mL). The resulting light yellow solution was cooled to −78 °C. TMSOTf (distilled over P₂O₅ before use; 0.100 mL, 0.553 mmol, 1.1 equiv.) was added dropwise, and the mixture turned more yellow. After 1 h, the reaction was quenched with 0.5 mL H₂O, and allowed to warm to ambient temperature. After 20 min vigorous stirring, the reaction mixture was partitioned between 30 mL 1:1
saturated aqueous NaHCO₃:H₂O and 15 mL DCM, and the aqueous layer was extracted with 15 mL DCM. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude material was purified by flash chromatography (15:85 → 20:80 EtOAc:hexanes) to afford tetracycle 15 (123 mg, 0.437 mmol, 87% yield) as a white solid.

R_f = 0.31 (15:85 EtOAc:hexanes)

1H NMR (500 MHz, CDCl₃): δ 7.84 (s, 1H), 7.51 (d, J = 7.7 Hz, 1H), 7.32 (dt, J = 8.0, 0.9 Hz, 1H), 7.20 – 7.16 (m, 1H), 7.14 – 7.11 (m, 1H), 3.40 – 3.35 (m, 1H), 3.10 (d, J = 12.9 Hz, 1H), 2.92 (d, J = 3.3 Hz, 1H), 2.73 (d, J = 12.9 Hz, 1H), 2.47 – 2.45 (m, 1H), 2.03 – 2.00 (m, 1H), 1.87 – 1.83 (m, 1H), 1.64 – 1.59 (m, 1H), 1.57 – 1.44 (m, 4H), 1.41 (s, 3H), 1.41 (s, 3H).

13C NMR (100 MHz, CDCl₃): δ 213.4, 140.7, 134.7, 128.5, 122.1, 119.6, 118.0, 114.8, 110.6, 58.5, 51.4, 36.4, 34.3, 32.3, 31.0, 29.7, 29.4, 27.1, 22.7.

HRMS (ESI): calcd for C₁₉H₂₄NO [M+H]^⁺: 282.1852, found: 282.1856.

Enol triflate 17. Ketone 16 was prepared according to the procedure reported by Baran and coworkers.⁴ The starting material for Baran’s procedure, (4S,8R/S)-(−)-p-menth-1-en-9-ol (CAS# 937035-21-7), was prepared by hydroboration/oxidation of (S)-(−)-limonene.⁵

A 250 mL round-bottomed flask with a magnetic stir bar was charged with ketone 16 (2.41 g, 13.5 mmol, 1 equiv.) and THF (48 mL). The colorless solution was cooled to −78 °C. KHMDS (1.0 M in THF, 17.6 mL, 17.6 mmol, 1.3 equiv.) was added dropwise, and the resulting yellow mixture was stirred at −78 °C for 1.5 h. Comins’ reagent (8.50 g, 21.7 mmol, 1.6 equiv.) was transferred in using a total of 20 mL THF, and stirring was continued for another 1.5 h. The reaction was quenched with 20 mL saturated aqueous NH₄Cl, and allowed to warm up ambient temperature. The reaction mixture was partitioned
between 200 mL 1:1 brine:H$_2$O and 100 mL 1:1 Et$_2$O:hexanes, and the aqueous layer was extracted with 70 mL 1:1 Et$_2$O:hexanes. The combined organic layers were washed with brine, dried over Na$_2$SO$_4$, and concentrated under reduce pressure. The crude material was purified by flash chromatography (0:100 → 1:99 EtOAc:hexanes) to afford enol triflate 17 (3.74 g, 12.1 mmol, 89% yield) as a pale yellow oil.

$R_f = 0.33$ (3:97 EtOAc:hexanes)

1H NMR (500 MHz, CDCl$_3$): δ 5.74 (dd, $J = 17.4, 10.6$ Hz, 1H), 5.71 (d, $J = 8.1$ Hz, 1H), 5.17 (dd, $J = 10.6, 0.7$ Hz, 1H), 5.12 (dd, $J = 17.4, 0.6$ Hz, 1H), 4.90 – 4.89 (m, 1H), 4.76 (s, 1H), 2.94 (dd, $J = 9.8, 5.2$ Hz, 1H), 1.83 – 1.76 (m, 1H), 1.77 (s, 3H), 1.73 – 1.68 (m, 1H), 1.65 – 1.61 (m, 1H), 1.58 – 1.52 (m, 1H), 1.27 (s, 3H).

13C NMR (100 MHz, CDCl$_3$): δ 153.4, 146.0, 141.7, 120.5, 118.5 (q, $J_{19F-13C} = 317$ Hz; actual signals at 123.3, 120.1, 116.9, 113.7), 114.9, 112.9, 42.4, 41.7, 34.7, 23.4, 22.6, 21.6.

HRMS (ESI): calcd for C$_{13}$H$_{18}$F$_3$O$_3$S [M+H]$^+$: 311.0923, found: 311.0925.

$[\alpha]^{24}_D = -89.4^\circ$ (c = 0.725, CHCl$_3$).

Enone 18. (Procedure adapted from Stoltz et al.)

A 500 mL round-bottomed flask with a magnetic stir bar was charged with enol triflate 17 (3.66 g, 11.8 mmol, 1 equiv.) and DMF (18 mL). CuI (225 mg, 1.18 mmol, 0.1 equiv.), Pd(dppf)Cl$_2$•DCM (963 mg, 1.18 mmol, 0.1 equiv.), and LiCl (flame-dried before use; 2.65 g, 62.5 mmol, 5.3 equiv.) were added sequentially. Another 100 mL DMF was cannulated in, and tributyl(1-ethoxyvinyl)tin (5.98 mL, 17.7 mmol, 1.5 equiv.) was added. The mixture was frozen in a liquid N$_2$ bath and degassed by three freeze-pump-thaw cycles. The reaction mixture was then placed in a pre-heated 40 $^\circ$C oil bath. After 14 h, the reaction mixture was cooled to ambient temperature and diluted with 200 mL H$_2$O. The mixture was then partitioned between 30 mL H$_2$O and 100 mL 1:1 Et$_2$O:hexanes,
and the aqueous layer was extracted with 1:1 Et$_2$O:hexanes (100 mL × 2). The combined organic layers were washed with 1 N HCl (× 2), H$_2$O (× 2), and brine (× 2), dried over Na$_2$SO$_4$, and concentrated under reduced pressure. The crude ethyl enol ether was dissolved in 150 mL DCM, and 75 mL 2 N HCl was added. The reaction mixture was stirred vigorously at ambient temperature for 1.75 h. The mixture was then partitioned between 50 mL H$_2$O and 60 mL DCM, and the aqueous layer was extracted with 70 mL DCM. The combined organic layer was washed with saturated aqueous NaHCO$_3$, dried over Na$_2$SO$_4$, and concentrated under reduced pressure. The resulting crude material was filtered through a plug of silica to remove residual solids using 25:75 Et$_2$O:hexanes as the eluent, and then concentrated under reduced pressure. The crude mixture was purified by flash chromatography (6:94 → 8:92 Et$_2$O:hexanes) to afford enone 18 (1.95 g, 9.54 mmol, 81% yield) as a yellow oil.

$R_f = 0.40$ (10:90 Et$_2$O:hexanes)

1H NMR (500 MHz, CDCl$_3$): δ 6.74 (d, $J = 3.5$ Hz, 1H), 5.91 (dd, $J = 17.5, 10.6$ Hz, 1H), 4.98 (dd, $J = 10.6, 1.2$ Hz, 1H), 4.87 – 4.86 (m, 1H), 4.86 (dd, $J = 17.5, 1.2$ Hz, 1H), 4.70 – 4.69 (m, 1H), 2.94 – 2.91 (m, 1H), 2.28 (s, 3H), 1.82 – 1.74 (m, 1H), 1.79 (m, 3H), 1.59 – 1.52 (m, 3H), 1.33 (s, 3H).

13C NMR (100 MHz, CDCl$_3$): δ 199.6, 147.2, 146.5, 145.9, 143.6, 112.1, 111.6, 43.9, 39.6, 36.4, 27.8, 25.7, 23.0, 21.6.

HRMS (ESI): calcd for C$_{14}$H$_{21}$O [M+H]$^+$: 205.1587, found: 205.1592.

$[\alpha]^{24.3}_D = -138^\circ$ (c = 0.865, CHCl$_3$).

TBS enol ether 19. A 250 mL round-bottomed flask with a magnetic stir bar was charged with TBSCl (2.30 g, 15.3 mmol, 1.5 equiv.) and THF (36 mL). The resulting colorless solution was cooled to -78 °C, and KHMDS (1.0 M in THF, 15.3 mL, 15.3 mmol, 1.5 equiv.) was added dropwise. After 5 min, enone 18
(2.08 g, 10.2 mmol, 1 equiv.) was added slowly over 25 min using a total of 15 mL THF. The reaction mixture was stirred at −78 °C for 1.5 h, and diluted with 150 mL hexanes. The reaction mixture was allowed to warm to ambient temperature, and filtered through a pad of Celite using 20:80 Et₂O:hexanes as the eluent. The mixture was concentrated under reduced pressure to provide the crude TBS enol ether 19 as a yellow oil, which was carried forward without further purification.

Tricycle 23. TBS enol ether 19 obtained in the previous step was divided evenly into three portions, and three identical reactions were performed. After all the reactions were quenched, they were combined, and subjected to further work-up and purification.

Each of the three 50 mL recovery flask with a magnetic stir bar was charged with alcohol 11 (307 mg, 1.75 mmol, 1 equiv.) and DCM (5.5 mL). TBS enol ether 19 (3.40 mmol, 1.94 equiv.) was added as a solution in 12 mL DCM. The resulting yellow solution was cooled to −78 °C. TMSOTf (distilled over P₂O₅ before use; 0.332 mL, 1.84 mmol, 1.05 equiv.) was added dropwise, and the mixture turned deep red. After 35 min, the reaction was quenched with 10 mL saturated aqueous NaHCO₃, and allowed to warm to ambient temperature.

The three reaction mixtures were combined and partitioned between 50 mL 1:1 saturated aqueous NaHCO₃:H₂O and 30 mL DCM. The aqueous layer was extracted with 15 mL DCM, and the combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash chromatography (6:94 → 7:93 EtOAc:hexanes) provided tricycle 23 (1.075 g, 2.97 mmol, 57% yield) as a yellow gel. Enone 18, which was generated from hydrolysis of unreacted 19, was recovered and reused.

\[R_f = 0.38 \ (10:90 \text{ EtOAc:hexanes}) \]
1H NMR (500 MHz, CDCl$_3$): δ 9.26 (s, 1H), 7.51 (dd, $J = 7.8$, 1.0 Hz, 1H), 7.34 – 7.31 (m, 1H), 7.12 – 7.09 (m, 1H), 7.05 – 7.02 (m, 1H), 6.54 (d, $J = 3.5$ Hz, 1H), 6.22 (dd, $J = 2.1$, 0.9 Hz, 1H), 5.88 (dd, $J = 17.5$, 10.6 Hz, 1H), 5.00 (dd, $J = 10.6$, 1.1 Hz, 1H), 4.87 (dd, $J = 17.5$, 1.1 Hz, 1H), 4.82 – 4.81 (m, 1H), 4.59 (m, 1H), 3.02 (d, $J = 16.6$ Hz, 1H), 2.94 (d, $J = 16.6$ Hz, 1H), 2.77 – 2.74 (m, 1H), 1.75 – 1.70 (m, 1H), 1.72 – 1.71 (m, 3H), 1.51 – 1.46 (m, 3H), 1.50 (s, 6H), 1.31 (s, 3H).

13C NMR (125 MHz, CDCl$_3$): δ 202.7, 147.1, 147.0, 146.5, 146.4, 142.5, 136.0, 128.1, 121.2, 120.0, 119.5, 112.1, 111.9, 110.9, 97.5, 51.4, 43.8, 39.9, 36.5, 34.6, 29.0, 28.8, 25.7, 22.9, 21.5.

HRMS (ESI): calcd for C$_{25}$H$_{32}$NO [M+H]$^+$: 362.2478, found: 362.2488.

[α]$^{24.7}_D = −76.6^\circ$ (c = 0.515, CHCl$_3$).

Tetracycle 21. A 50 mL recovery flask with a magnetic stir bar was charged with tricycle 23 (566 mg, 1.56 mmol, 1 equiv.) and 1-propanol (5 mL) to afford a yellow solution. A solution of NaAuCl$_4$•2H$_2$O (156 mg, 0.391 mmol, 0.25 equiv.) in 8 mL 1-propanol was prepared. 1 mL of the NaAuCl$_4$•2H$_2$O solution was added quickly into the substrate solution, and the rest of the catalyst solution was added slowly via a syringe pump in the dark over 20 h. The reaction mixture was stirred for an additional 7.5 h in the dark at ambient temperature, and then quenched with 10 mL saturated aqueous NaHCO$_3$. The mixture was partitioned between 50 mL 1:1 saturated aqueous NaHCO$_3$:H$_2$O and 40 mL 1:1 EtOAc:hexanes, and the aqueous layer was extracted with 50 mL 1:1 EtOAc:hexanes. The combined organic layers were washed with brine, dried over Na$_2$SO$_4$, and concentrated under reduced pressure. The crude material was purified via flash chromatography (25:75 → 35:65 Et$_2$O:hexanes) to give tetracycle 21 (315 mg, 0.871 mmol, 56% yield) as a pale yellow solid.
$R_f = 0.38$ (30:70 Et$_2$O:hexanes)

1H NMR (500 MHz, CDCl$_3$): δ 7.90 (s, 1H), 7.54 (d, $J = 8.0$ Hz, 1H), 7.29 – 7.26 (m, 1H), 7.12 (ddd, $J = 8.1$, 7.0, 1.1 Hz, 1H), 7.03 (ddd, $J = 8.0$, 7.0, 1.0 Hz, 1H), 5.96 (dd, $J = 17.6$, 10.9 Hz, 1H), 4.95 (dd, $J = 17.6$, 1.2 Hz, 1H), 4.93 (dd, $J = 10.9$, 1.2 Hz, 1H), 4.73 (m, 1H), 4.50 – 4.49 (m, 1H), 3.64 (dd, $J = 11.7$, 4.8 Hz, 1H), 2.93 (dd, $J = 4.7$, 1.1 Hz, 1H), 2.71 (d, $J = 10.3$ Hz, 1H), 2.63 – 2.56 (m, 1H), 2.59 (d, $J = 10.3$ Hz, 1H), 2.28 (td, $J = 12.0$, 3.3 Hz, 1H), 2.00 – 1.91 (m, 1H), 1.73 (ddd, $J = 13.6$, 7.6, 3.2 Hz, 1H), 1.52 (s, 3H), 1.51 – 1.47 (m, 1H), 1.38 (s, 3H), 1.27 (s, 3H), 1.19 (s, 3H).

13C NMR (100 MHz, CDCl$_3$): δ 211.6, 148.8, 148.5, 140.3, 133.9, 129.8, 121.7, 120.0, 118.9, 113.5, 111.4, 110.7, 110.2, 62.7, 58.6, 45.4, 39.5, 36.1, 34.6, 31.6, 29.9, 29.8, 28.4, 25.7, 23.3.

HRMS (ESI): calcd for C$_{25}$H$_{32}$NO [M+H]$^+$: 362.2478, found: 362.2489.

$[\alpha]_{D}^{24.6} = +7.9^\circ$ (c = 0.905, CHCl$_3$).

Pentacycle 24. A 100 mL recovery flask with a magnetic stir bar was charged with tetracycle 21 (481 mg, 1.33 mmol, 1 equiv.) and DCM (22 mL). The resulting yellow solution was cooled to 0 °C. BF$_3$•OEt$_2$ (0.657 mL, 5.32 mmol, 4 equiv.) was added dropwise, and the mixture turned deep red. After 5 min, MeOH (anhydrous, 0.054 mL, 1.33 mmol, 1 equiv.) was added dropwise. The reaction mixture was stirred at 0 °C for 24 h, and was then quenched with 10 mL saturated aqueous NaHCO$_3$ and warmed to ambient temperature. The mixture was partitioned between 40 mL 1:1 saturated aqueous NaHCO$_3$:H$_2$O and 25 mL DCM, and the aqueous layer was extracted with 25 mL DCM. Then the combined organic layers were washed with brine, dried over Na$_2$SO$_4$, and concentrated under reduced pressure. The crude material was purified by flash chromatography (30:70 → 40:60 Et$_2$O:hexanes) to provide pentacycle 24 (390 mg, 1.08 mmol, 81% yield) as a yellow solid.
$R_f = 0.40$ (40:60 Et$_2$O:hexanes)

1H NMR (500 MHz, CDCl$_3$): δ 7.72 (s, 1H), 7.10 – 7.05 (m, 2H), 6.97 (dd, $J = 6.3$, 1.6 Hz, 1H), 5.94 (dd, $J = 17.6$, 10.8 Hz, 1H), 5.08 (dd, $J = 17.6$, 1.2 Hz, 1H), 4.97 (dd, $J = 10.8$, 1.2 Hz, 1H), 3.80 (d, $J = 7.4$ Hz, 1H), 3.35 (dd, $J = 10.9$, 7.5 Hz, 1H), 2.76 (d, $J = 14.7$ Hz, 1H), 2.55 (d, $J = 14.7$ Hz, 1H), 2.44 – 2.38 (m, 1H), 1.87 – 1.84 (m, 1H), 1.81 (s, 3H), 1.65 – 1.48 (m, 3H), 1.50 (s, 3H), 1.39 (s, 3H), 1.24 (s, 3H), 1.23 (s, 3H).

13C NMR (100 MHz, CDCl$_3$): δ 210.5, 148.0, 141.3, 137.7, 132.4, 126.9, 122.4, 113.5, 111.7, 110.2, 107.6, 64.9, 54.9, 45.4, 37.8, 37.6, 33.1, 32.8, 32.7, 31.1, 29.8, 25.5, 25.1, 25.0, 20.5.

HRMS (ESI): calcd for C$_{25}$H$_{32}$NO [M+H]$^+$: 362.2478, found: 362.2485.

$[\alpha]^{21.3}_D = -106^\circ$ (c = 0.510, CHCl$_3$).

Enone 26. A 100 mL recovery flask with a magnetic stir bar was charged with pentacycle 24 (390 mg, 1.08 mmol, 1 equiv.) and THF (18.9 mL) to afford a yellow solution. H$_2$O (2.1 mL) was added, and the yellow solution was cooled to 0 °C. DDQ (1.71 g, 7.54 mmol, 7 equiv.) was added in two portions, and the mixture turned deep red. After 5 min, the ice/water bath was removed, and the deep red solution was stirred at ambient temperature for 2 h. The reaction mixture was quenched with 50 mL 2.5 N NaOH. The mixture was partitioned between 50 mL 1:1 2.5 N NaOH:H$_2$O and 60 mL EtOAc, and the aqueous layer was extracted with EtOAc (40 mL × 2). The combined organic layers were washed with 2.5 N NaOH and brine, dried over Na$_2$SO$_4$, and concentrated under reduced pressure. Purification by flash chromatography (20:80 EtOAc:hexanes) afforded enone 26 (374 mg, 1.04 mmol, 96% yield) as a yellow solid.
$R_f = 0.40$ (20:80 EtOAc:hexanes)

1H NMR (500 MHz, CDCl$_3$): δ 8.00 (s, 1H), 7.18 – 7.12 (m, 2H), 7.03 (dd, $J = 6.7$, 1.3 Hz, 1H), 5.89 (dd, $J = 17.5$, 10.7 Hz, 1H), 5.04 (dd, $J = 17.5$, 1.2 Hz, 1H), 4.99 (dd, $J = 10.7$, 1.2 Hz, 1H), 3.15 (d, $J = 11.5$ Hz, 1H), 2.70 (dd, $J = 11.1$, 6.5 Hz, 1H), 2.55 (d, $J = 11.5$ Hz, 1H), 2.02 – 1.96 (m, 1H), 1.91 – 1.83 (m, 1H), 1.74 (td, $J = 13.3$, 3.3 Hz, 1H), 1.64 – 1.60 (m, 1H), 1.53 (s, 6H), 1.46 (s, 3H), 1.34 (s, 3H), 1.03 (s, 3H).

13C NMR (125 MHz, CDCl$_3$): δ 204.4, 147.7, 141.8, 141.0, 140.1, 135.6, 132.7, 125.5, 123.1, 113.6, 111.7, 108.3, 107.9, 56.1, 47.7, 40.5, 38.9, 37.8, 35.0, 29.0, 28.1, 25.7, 25.3, 23.7, 20.0.

HRMS (ESI): calcd for C$_{25}$H$_{30}$NO [M+H]$^+$: 360.2322, found: 360.2330.

$[\alpha]^{22}_D = +59.1^\circ$ (c = 0.390, CHCl$_3$).

N-Boc indole 27. A 100 mL recovery flask with a magnetic stir bar was charged with enone 26 (373 mg, 1.04 mmol, 1 equiv.) and DCM (15 mL). DMAP (12.7 mg, 0.104 mmol, 0.1 equiv.), Et$_3$N (0.723 mL, 5.12 mmol, 5 equiv.), and Boc$_2$O (906 mg, 4.15 mmol, 4 equiv.) were added, followed by addition of another 10 mL DCM. After 13 h stirring at ambient temperature, the reaction mixture was concentrated under reduced pressure to give the crude material as a brown oil. Purification via flash chromatography (6:94 → 8:92 EtOAc:hexanes) afforded N-Boc indole 27 (456 mg, 0.992 mmol, 95% yield) as a yellow solid.

$R_f = 0.45$ (10:90 EtOAc:hexanes)

1H NMR (500 MHz, CDCl$_3$): δ 7.52 (dd, $J = 8.3$, 0.6 Hz, 1H), 7.24 (dd, $J = 8.2$, 7.5 Hz, 1H), 7.13 (dd, $J = 7.4$, 0.6 Hz, 1H), 6.05 (dd, $J = 17.5$, 10.7 Hz, 1H), 4.97 (dd, $J = 17.5$, 1.0 Hz, 1H), 4.95 (dd, $J = 10.7$, 0.6 Hz, 1H), 3.15 (d, $J = 11.5$ Hz, 1H), 2.70 (dd, $J = 11.1$, 6.5 Hz, 1H), 2.55 (d, $J = 11.5$ Hz, 1H), 2.02 – 1.96 (m, 1H), 1.91 – 1.83 (m, 1H), 1.74 (td, $J = 13.3$, 3.3 Hz, 1H), 1.64 – 1.60 (m, 1H), 1.53 (s, 6H), 1.46 (s, 3H), 1.34 (s, 3H), 1.03 (s, 3H).
1.0 Hz, 1H), 2.92 (d, \(J = 12.8 \) Hz, 1H), 2.74 (d, \(J = 12.8 \) Hz, 1H), 2.64 (dd, \(J = 10.7, 6.4 \) Hz, 1H), 1.98 – 1.93 (m, 1H), 1.83 – 1.75 (m, 1H), 1.70 (s, 9H), 1.68 – 1.59 (m, 2H), 1.54 (s, 3H), 1.51 (s, 3H), 1.48 (s, 3H), 1.47 (s, 3H), 1.05 (s, 3H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta \) 200.5, 151.4, 149.3, 146.2, 142.2, 142.1, 141.2, 134.4, 125.3, 124.8, 116.5, 116.1, 111.1, 109.8, 84.9, 60.7, 49.4, 40.4, 38.5, 38.3, 35.1, 28.2, 28.0, 25.0, 24.8, 23.9, 22.8, 20.2.

HRMS (ESI): calcd for C\(_{30}\)H\(_{38}\)NO\(_3\) [M+H]\(^+\): 460.2846, found: 460.2852.

\([\alpha]\)\(^{23,6}\) = +63.4° (c = 0.222, CHCl\(_3\)).

Allylic alcohol 28. A 25 mL recovery flask with a magnetic stir bar was charged with N-Boc indole 27 (105 mg, 0.228 mmol, 1 equiv.) and THF (6.5 mL). The resulting yellow solution was cooled to \(-40 \) °C. LiAl(OMe)\(_3\)H (freshly prepared from 1 M LiAlH\(_4\) in THF and 3 equiv. of MeOH; 1 M in THF, 1.59 mL, 7 equiv.) was added dropwise. The reaction mixture was stirred for 2.5 h, during which time the MeCN/CO\(_2\)(s) bath was allowed to warm to \(-10 \) °C, and then carefully quenched with 0.07 mL H\(_2\)O, 0.14 mL 2 N NaOH and 0.14 mL H\(_2\)O. After warming up to ambient temperature, the reaction was diluted with Et\(_2\)O and dried over MgSO\(_4\). The mixture was then filtered through a pad of Celite, and concentrated under reduced pressure to give the crude material. Purification via flash chromatography (6:94 \(\rightarrow \) 10:90 EtOAc:hexanes) provided allylic alcohol 28 (102 mg, 0.221 mmol, 97% yield) as a while solid.

\(R_f = 0.42 \) (10:90 EtOAc:hexanes)

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta \) 7.51 (dd, \(J = 8.3, 0.6 \) Hz, 1H), 7.21 (dd, \(J = 8.3, 7.4 \) Hz, 1H), 7.09 (dd, \(J = 7.4, 0.6 \) Hz, 1H), 6.20 (dd, \(J = 17.7, 10.6 \) Hz, 1H), 5.33 (dd, \(J = 17.7, 1.2 \) Hz, 1H), 5.26 (dd, \(J = 10.6, 1.2 \) Hz, 1H), 4.58 (ddd, \(J = 12.0, 7.7, 2.2 \) Hz, 1H), 2.81 (d, \(J = 12.1 \) Hz, 1H, exchangeable with D\(_2\)O), 2.49
(ddd, J = 9.4, 6.9, 2.2 Hz, 1H), 2.18 (ddd, J = 12.8, 7.8, 1.0 Hz, 1H), 1.91 (d, J = 12.9 Hz, 1H), 1.91 – 1.86 (m, 1H), 1.82 – 1.74 (m, 1H), 1.76 (s, 3H), 1.70 (s, 9H), 1.61 (td, J = 13.1, 3.1 Hz, 1H), 1.53 (s, 3H), 1.49 – 1.45 (m, 1H), 1.44 (s, 6H), 0.98 (s, 3H).

13C NMR (100 MHz, CDCl$_3$): δ 151.7, 149.0, 146.5, 142.9, 142.1, 134.9, 125.4, 124.3, 123.2, 115.6, 115.2, 113.5, 111.7, 84.0, 72.7, 59.2, 46.3, 41.4, 38.8, 38.3, 38.1, 29.6, 28.3, 28.2, 24.8, 23.8, 23.5, 20.4.

HRMS (ESI): calcd for C$_{30}$H$_{40}$NO$_3$ [M+H]$^+$: 462.3003, found: 462.3011.

$[\alpha]^{23.8}_D = +95.2^\circ$ (c = 0.251, CHCl$_3$).

N-Boc Diene 29. A 25 mL recovery flask with a magnetic stir bar was charged with allylic alcohol 28 (77.7 mg, 0.168 mmol, 1 equiv.) and DCM (6.7 mL). The resulting colorless solution was cooled to 0°C. Without weighing, Martin sulfurane (ca. 200 mg, 0.29 mmol, 1.7 equiv.) was added, and the mixture turned yellow. After 40 min stirring at 0°C, the reaction mixture was diluted with 6 mL saturated aqueous NaHCO$_3$, and allowed to warm to ambient temperature. Then the mixture was partitioned between 20 mL 1:1 saturated aqueous NaHCO$_3$:H$_2$O and 20 mL DCM, and the aqueous layer was extracted with 15 mL DCM. The combined organic layers were dried over Na$_2$SO$_4$, and concentrated under reduced pressure. The crude material was purified by flash chromatography (3:97 → 4:96 EtOAc:hexanes) to afford N-Boc diene 29 (72.1 mg) as a white solid, containing an impurity that was removed after the next step.

$R_f = 0.46$ (5:95 EtOAc:hexanes)
Diene 7. A 5 mL round-bottomed flask fitted with a condenser containing a magnetic stir bar was charged with N-Boc diene 29 (72.1 mg, containing an impurity, see previous page), and THF (1.8 mL) to afford a colorless solution. Sodium methoxide (25 wt% in MeOH; 0.557 mL, 2.44 mmol, 15 equiv.) was added, followed by additional 0.5 ml THF. The reaction was then placed in a pre-heated oil bath and stirred at reflux. After 3.5 h, additional sodium methoxide (25 wt% in MeOH; 0.186 mL, 0.813 mmol, 5 equiv.) was added, and stirring was continued for another 3 h. The reaction was cooled to ambient temperature, and partitioned between 20 mL 1:1 saturated aqueous NaHCO₃·H₂O and 20 mL DCM. The aqueous layer was extracted with 15 mL DCM, and the combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. Purification via flash chromatography (8:92 → 12:88 Et₂O:hexanes) gave diene 7 (50.4 mg, 0.147 mmol, 87% yield over 2 steps) as a light yellow solid.

\[R_f = 0.43 \text{ (10:90 EtOAc:hexanes)} \]

\(^1\)H NMR (500 MHz, CDCl₃): \(\delta \) 7.80 (s, 1H), 7.16 – 7.12 (m, 2H), 7.02 (dd, \(J = 5.3 \), 2.6 Hz, 1H), 5.92 (dd, \(J = 11.4 \), 0.9 Hz, 1H), 5.85 (dd, \(J = 17.5 \), 10.6 Hz, 1H), 5.33 (dd, \(J = 11.4 \), 0.9 Hz, 1H), 5.09 (dd, \(J = 17.5 \), 1.4 Hz, 1H), 5.02 (dd, \(J = 10.6 \), 1.4 Hz, 1H), 2.88 (dd, \(J = 11.0 \), 7.2 Hz, 1H), 2.00 – 1.95 (m, 1H), 1.95 – 1.87 (m, 1H), 1.71 (td, \(J = 13.0 \), 3.9 Hz, 1H), 1.66 – 1.62 (m, 1H), 1.64 (s, 3H), 1.53 (s, 3H), 1.40 (s, 3H), 1.03 (s, 3H), 0.99 (s, 3H).

\(^{13}\)C NMR (100 MHz, CDCl₃): \(\delta \) 149.2, 140.8, 138.1, 134.8, 132.9, 130.1, 129.5, 128.2, 125.5, 122.8, 113.4, 111.0, 110.3, 108.1, 46.7, 40.3, 39.6, 36.8, 35.4, 26.9, 25.7, 25.0, 23.7, 23.6, 19.8.

HRMS (ESI): calcd for C_{25}H_{30}N [M+H]⁺: 344.2373, found: 344.2378.

\([\alpha]^{25.0}_{D} = -25.8^\circ \text{ (c = 0.580, CHCl₃)}\).
(-)-Ambiguine P (5). A 2-dram vial equipped with a magnetic stir bar and a screw cap containing a Teflon-faced silicon septum was charged with diene 7 (6.3 mg, 0.0183 mmol, 1 equiv.). 0.75 mL DCM and 0.75 mL pyridine (both were sparged with Argon for 40 min before use) were added sequentially to afford a light yellow solution, and H₂O (0.040 mL, 2.20 mmol, 120 equiv.) was added. After 5 min of stirring, the light yellow solution was cooled to −40 °C, and NBS (3.3 mg, 0.0183 mmol, 1 equiv.) was added dropwise as a 0.15 mL DCM solution (prepared with 32.6 mg NBS and 1.50 mL DCM). The resulting orange solution was stirred at −40 °C for 25 min, and quenched with a mixture of 1 mL saturated aqueous Na₂S₂O₃ and 1 mL saturated aqueous NaHCO₃. The mixture was allowed to warm to ambient temperature, and partitioned between 20 mL 1:1 saturated aqueous NaHCO₃:H₂O and 10 mL DCM. The aqueous layer was extracted with DCM (10 mL × 2), and the combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. Purification by preparative thin layer chromatography (25:75 EtOAc:hexanes) gave ambiguine P (5) as a 2.0:1 mixture of diastereomers at C-15 (4.1 mg, 0.0114 mmol, 62% yield) as a white solid. Further subjection of the diastereomers to HPLC purification (OD-H column, 250 × 4.6 mm, 5:95 1PrOH:hexanes, 1 mL/min, 254 nm, multiple injections) afforded (-)-ambiguine P (5) (2.6 mg, 0.00723 mmol, 39%) as a white solid, and 15-epi-ambiguine P (1.2 mg, 0.00334 mmol, 18%) as a white solid.

(-)-ambiguine P (5):

R₁ = 0.51 (20:80 EtOAc:hexanes)

¹H NMR (500 MHz, CD₃OD): δ 7.16 (d, J = 8.0 Hz, 1H), 7.07 (dd, J = 7.9, 7.2 Hz, 1H), 6.95 (d, J = 7.2 Hz, 1H), 5.93 (d, J = 11.5 Hz, 1H), 5.89 (dd, J = 17.4, 10.5 Hz, 1H), 5.40 (d, J = 11.5 Hz, 1H), 5.11 (dd, J = 10.5, 1.8 Hz, 1H), 4.93 (dd, J = 17.4, 1.8 Hz, 1H), 2.18 – 2.12 (m, 1H), 1.99 – 1.93 (m, 1H), 1.79 (ddd, 1H), 1.28 (dd, J = 10.5, 1.8 Hz, 1H), 1.12 (ddd, J = 10.5, 1.8 Hz, 1H), 0.88 (s, 3H), 0.86 (s, 3H), 0.84 (s, 3H), 0.83 (s, 3H), 0.82 (s, 3H), 0.81 (s, 3H), 0.80 (s, 3H), 0.79 (s, 3H).
$J = 13.6, 3.8, 2.7$ Hz, 1H), 1.68 (s, 3H), 1.60 (dt, $J = 13.3, 3.4$ Hz, 1H), 1.53 (s, 3H), 1.23 (s, 3H), 1.02 (s, 3H), 1.00 (s, 3H).

13C NMR (125 MHz, CD$_3$OD): δ 146.9, 142.2, 139.2, 135.0, 133.9, 133.5, 133.3, 128.6, 125.6, 123.5, 114.9, 114.6, 108.8, 77.2, 45.9, 42.5, 36.7, 34.0, 29.2, 28.9, 27.5, 27.1, 26.4, 18.6.

IR (Neat film): 3552, 3306, 2960, 2922, 1559, 1458, 1360, 1320, 1265, 1156, 1089, 1029, 751, 699.

HRMS (ESI): calcd for C$_{25}$H$_{30}$NO [M+H]$^+$: 360.2322, found: 360.2311.

$[\alpha]^{24.6}_{D} = -184^\circ$ (c = 0.059, MeOH).

15-epi-ambiguine P:

$R_f = 0.51$ (20:80 EtOAc:hexanes)

1H NMR (500 MHz, CD$_3$OD): δ 7.17 – 7.15 (m, 1H), 7.09 – 7.06 (m, 1H), 6.96 (d, $J = 6.9$ Hz, 1H), 5.89 (d, $J = 11.5$ Hz, 1H), 5.87 (dd, $J = 17.6, 10.7$ Hz, 1H), 5.34 (d, $J = 11.5$ Hz, 1H), 5.11 (dd, $J = 17.6, 1.4$ Hz, 1H), 5.00 (dd, $J = 10.7, 1.4$ Hz, 1H), 2.31 (td, $J = 14.2, 3.3$ Hz, 1H), 2.08 – 2.02 (m, 1H), 1.91 (dt, $J = 13.9, 3.4$ Hz, 1H), 1.66 (s, 3H), 1.56 (s, 3H), 1.49 (dt, $J = 13.2, 3.5$ Hz, 1H), 1.39 (s, 3H), 1.04 (s, 3H), 1.02 (s, 3H).

13C NMR (125 MHz, CD$_3$OD): δ 150.0, 141.9, 139.0, 135.4, 135.0, 133.0, 131.9, 128.6, 125.6, 123.5, 114.9, 111.4, 109.6, 108.7, 77.0, 45.7, 41.5, 36.7, 34.1, 29.0, 27.6, 27.4, 26.5, 23.0, 18.5.

IR (Neat film): 3343, 2966, 2360, 2342, 1559, 1457, 1380, 1317, 1059, 912, 748, 668.

HRMS (ESI): calcd for C$_{25}$H$_{30}$NO [M+H]$^+$: 360.2322, found: 360.2305.

$[\alpha]^{25.8}_{D} = +71.7^\circ$ (c = 0.024, MeOH).
C-12 gem-dimethyl analog 25. 25 was prepared by the same route starting from (5S)-2,2-dimethyl-5-isopropenylcyclohexanone.

In a 20 mL scintillation vial, 1.9 mg pentacycle 25 was dissolved in ca. 5 mL 1:1 EtOAc:hexanes. The solvent was removed via rotary evaporation, and a yellow oil/gel was obtained. The vial was capped and kept in a fridge for 14 h to allow crystals to grow. See X-ray crystallographic data below.

\(R_f = 0.28 \) (15:85 EtOAc:hexanes)
m.p. = 226-230 °C.

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta 7.72 \) (s, 1H), 7.10 – 7.06 (m, 2H), 6.96 (dd, \(J = 5.9, 2.0 \) Hz, 1H), 3.70 (d, \(J = 7.5 \) Hz, 1H), 3.32 (dd, \(J = 11.0, 7.5 \) Hz, 1H), 2.84 (d, \(J = 14.6 \) Hz, 1H), 2.57 (dd, \(J = 14.6, 1.3 \) Hz, 1H), 2.23 – 2.17 (m, 1H), 1.82 (s, 3H), 1.80 – 1.77 (m, 1H), 1.57 – 1.49 (m, 2H), 1.52 (s, 3H), 1.38 (s, 3H), 1.37 – 1.34 (m, 1H), 1.21 (s, 3H), 1.12 (s, 3H), 0.99 (s, 3H).

\(^1^3\)C NMR (125 MHz, CDCl\(_3\)): \(\delta 211.0, 141.4, 137.6, 132.4, 127.0, 122.4, 113.5, 110.6, 107.5, 64.9, 55.2, 45.6, 37.7, 35.3, 33.2, 32.7, 32.2, 31.2, 29.9, 29.1, 28.3, 25.5, 25.0, 21.1.

HRMS (ESI): calcd for C\(_{24}\)H\(_{32}\)NO [M+H]+: 350.2478, found: 350.2478.

\([\alpha]^{24^\circ}_D = -69.1^\circ \) (c = 0.288, CHCl\(_3\)).
References

1. Bergman, J.; Norrby, P.-O.; Tilstam, U.; Venemalm, L. Structure Elucidation of Some Products Obtained by Acid-Catalyzed Condensation of Indole with Acetone. *Tetrahedron* **1989**, *45*, 5549.

2. Snyder, S. A.; Corey, E. J. Concise Total Syntheses of Palominol, Dolabellatrienone, β-Araneosene, and Isoedunol via an Enantioselective Diels-Alder Macrobicyclization. *J. Am. Soc. Chem.* **2006**, *128*, 740.

3. Grant, T. N.; West, F. G. A New Approach to the Nazarov Reaction via Sequential Electrocyclic Ring Opening and Ring Closure. *J. Am. Soc. Chem.* **2006**, *128*, 9348.

4. (a) Baran, P. S.; Maimone, T. J.; Richter, J. M. Total Synthesis of Marine Natural Products without Using Protecting Groups. *Nature* **2007**, *446*, 404. (b) Maimone, T. J.; Ishihara, Y.; Baran, P. S. Scalable Total Syntheses of (−)-Hapalindole U and (+)-Ambiguine H. *Tetrahedron* **2015**, *71*, 3652.

5. Cravero, R. M.; González-Sierra, M.; Labadie, G. R. Convergent Approaches to Saudin Intermediates. *Helv. Chim. Acta* **2003**, *86*, 2741.

6. Enquist, J. A., Jr.; Virgil, S. C.; Stoltz, B. M. Total Syntheses of Cyanthiwigins B, F, and G. *Chem.-Eur. J.* **2011**, *17*, 9957.
Experimental Spectra
Supporting Information

Current Data Parameters
NAME jiasuxu-13-135-03
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20190114
Time 19.54
INSTRUM spect
PROBHD 5 mm PATXI 1H/
PULFROG zg
TD 59998
SOLVENT CDCl3
NS 8
DS 0
SWH 10000.000 Hz
FIDRES 0.166672 Hz
AQ 2.9999001 sec
RG 97.37
DW 50.000 usec
DE 10.000 usec
TE 296.4 K
D1 10.00000000 sec
TD0 1

======== CHANNEL f1 ========
SPOL 500.1300885 MHz
NUC1 1H
F1 9.90 usec
PLM1 12.19999961 W

F2 - Processing parameters
SI 55536
SF 500.1300159 MHz
WDW no
SSB 0
LB 0 Hz
GB 1.00
PC 1.00

S25
Current Data Parameters
NAME jiasuxu-11-129-02
EXPMO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20180622
Time 22.33
INSTRUM spect
PROBMD 5 mm PATRX 3H/
PULPROG zg
TD 59998
SOLVENT CDC13
NS 8
DS 0
SWH 10000.000 Hz
FIDRES 0.166672 Hz
AQ 2.9999001 sec
RG 196.79
DW 50.000 usec
DE 10.000 usec
TE 294.2 K
D1 10.00000000 sec
TDC 1

******* CHANNEL f1 *******
SPOL 500.1330085 MHz
NUCL 1H
P1 8.00 usec
PLW1 12.19999981 W

F2 - Processing parameters
SI 65536
SF 500.1300129 MHz
WDW no
SGB 0
LB 0 Hz
GB 0
PC 1.00
Current Data Parameters
NAME: jiasuxu-ii-205-CNMR
EXPNO: 1
PROCNO: 1

F2 - Acquisition Parameters
Date: 20180926
Time: 5.40 h
INSTRUM: spect
PROBDHD: Z140678_00101
PULPROG: zgdc
TD: 151512
SOLVENT: CDCl3
NS: 4096
DS: 0
SWH: 25.252525 MHz
FIDRES: 0.333340 Hz
AQ: 2.9999735 sec
RG: 211.9
DW: 13.800 usec
DE: 6.50 usec
TE: 297.4 K
D1: 2.00000000 sec
D11: 0.00000000 sec
TD0: 1
SFO1: 100.6278593 MHz
NOC1: 13C
P1: 10.00 usec
PLW1: 69.85900116 W
SPD2: 400.1516006 MHz
NXC2: 1H
CPDPRG[2]: waltz16
PCPD2: 90.00 usec
PLAG: 16.09099980 W
PLWL2: 0.19865000 W

F2 - Processing parameters
SI: 65536
SP: 100.6177841 MHz
WDW: EM
SSB: 0
LB: 1.00 Hz
GB: 0
PC: 1.40
BRUKER

Current Data Parameters
NAME: jiasuxu-13-147-CNMR
EXPN0: 1
PROCNO: 1

F2 - Acquisition Parameters
Date: 20190204
Time: 4.47 h
INSTRUM: spect
PROBHD: z140678_0010
PULPROG: zgdc
TD: 151512
SOLVENT: CDCl3
NS: 5120
DS: 0
SWH: 25252.525 Hz
FIDRES: 0.333340 Hz
AQ: 2.9999375 sec
RG: 211.9
DW: 19.800 usc
DE: 6.50 usc
TE: 297.2 K
D1: 2.0000000 sec
D11: 0.0300000 sec
TD0: 1
SP01: 100.6278593 MHz
NUC1: 13C
F1: 10.00 usc
PLW1: 69.85900116 W
SP02: 400.1516006 MHz
NUC2: 1H
CPDPFG[2] [waltz16
PCPD2: 90.00 usc
PLW2: 16.09009960 W
PLW12: 0.19865000 W

F2 - Processing parameters
SI: 65536
SF: 100.6177853 MHz
WDW: EM
SSB: 0
LB: 1.00 Hz
GB: 0
PC: 1.40
Current Data Parameters
NAME jiasuxu-12-207-03
EXPNO 1
PROCNO 1

P2 - Acquisition Parameters
Date_ 20180830
Time 18.44
INSTRUM spect
PROBHD 5 mm PATXI 1H/
PULPROG zg
TD 59998
SOLVENT CDC13
NS 8
DS 10
SWH 10000.000 Hz
FIDRES 0.166672 Hz
AQ 2.9999001 sec
RG 196.79
DW 50.000 usec
DE 10.000 usec
TE 296.3 K
TD0 10.00000000 sec

******** CHANNEL f1 ********
SFO1 500.1300885 MHz
NUC1 1H
P1 9.90 usec
PLW1 12.19999981 W

P2 - Processing Parame
SI 65536
SF 500.1300132 MHz
WDW no
SSB 0
LB 0 Hz
GB 0
PC 1.00
(-)-ambiguine P (5)
(CD$_3$OD, 125 MHz)
X-ray Crystallographic Data for 25

Crystal growth of C$_{24}$H$_{31}$NO: Jiasu Xu (prof. Viresh H. Rawal’s group).

Data collected and structure solved/refined: Andrew McNeece/Alexander S. Filatov, July/2018 (X-ray Laboratory, Searle B013, Department of Chemistry, the University of Chicago, Chicago, Il).

General information: The diffraction data were measured at 100 K on a Bruker D8 VENTURE with PHOTON 100 CMOS detector system equipped with a Mo-target X-ray tube (λ = 0.71073 Å). Data reduction and integration were performed with the Bruker APEX3 software package (Bruker AXS, version 2015.5-2, 2015). Data reduction and integration were performed with the Bruker APEX3 software package (Bruker AXS, version 2015.5-2, 2015). Data were scaled and corrected for absorption effects using the multi-scan procedure as implemented in SADABS (Bruker AXS, version 2014/5, Krause, Herbst-Irmer, Sheldrick & Stalke, J. Appl. Cryst. 2015, 48, 3-10). The structure was solved by SHELXT (Version 2014/5: Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3-8) and refined by a full-matrix least-squares procedure using OLEX2 (O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann. J. Appl. Crystallogr. 2009, 42, 339-341) (XL refinement program version 2018/3, Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3-8). Crystallographic data and details of the data collection and structure refinement are listed in Table 1.

Specific details for structure refinement: All atoms were refined with anisotropic thermal parameters. Hydrogen atoms were included in idealized positions for structure factor calculations except those of N-H groups which were located in the difference Fourier map and freely refined without any restraints. All structures are drawn with thermal ellipsoids at 50% probability.
Table 1 Crystal data and structure refinement for 0632.

Property	Value
Identification code	0632
Empirical formula	C_{24}H_{31}NO
Formula weight	349.50
Temperature/K	100(2)
Crystal system	monoclinic
Space group	P2_1
a/Å	10.883(4)
b/Å	14.071(6)
c/Å	13.651(6)
α/°	90
β/°	105.587(11)
γ/°	90
Volume/Å^3	2013.7(14)
Z	4
ρ_{calc} g/cm^3	1.153
μ/mm^-1	0.069
F(000)	760.0
Crystal size/mm^3	0.387 × 0.251 × 0.114
Radiation	MoKα (λ = 0.71073)
2θ range for data collection/^o	4.846 to 50.212
Index ranges	-12 ≤ h ≤ 12, -16 ≤ k ≤ 16, -16 ≤ l ≤ 16
Reflections collected	31216
Independent reflections	6779 [R_{int} = 0.1216, R_{sigma} = 0.0863]
Data/restraints/parameters	6779/1/489
Goodness-of-fit on F^2	1.028
Final R indexes [I>=2σ (I)]	R_1 = 0.0543, wR_2 = 0.1276
Final R indexes [all data]	R_1 = 0.1015, wR_2 = 0.1494
Largest diff. peak/hole / e Å^-3	0.18/-0.23

R_{int} = \Sigma | F_o^2 - <F_o^2> | / \Sigma | F_o^2 |
R1 = \Sigma | | F_o | - | F_c || | F_o | / \Sigma | F_o |
wR2 = [\Sigma [w (F_o^2 - F_c^2)^2] / \Sigma [w (F_o^2]^2]]^{1/2}
Goodness-of-fit = [\Sigma [w (F_o^2 - F_c^2)^2] / (n-p)]^{1/2}

n: number of independent reflections; p: number of refined parameters
Two independent molecules in the crystal
The crystal is made of dimers based on N–H···O intermolecular hydrogen bonds
Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 0632. \(U_{eq}\) is defined as 1/3 of the trace of the orthogonalised \(U_{ij}\) tensor.

Atom	\(x\)	\(y\)	\(z\)	\(U_{eq}\)
O1	6646(3)	3809(2)	10162(2)	45.4(8)
N1	3326(4)	4510(3)	7456(3)	38.1(10)
C1	2375(4)	4245(3)	7886(3)	36.6(11)
C2	1205(4)	4649(3)	7887(4)	42.4(12)
C3	538(5)	4229(3)	8487(4)	45.1(13)
C4	986(4)	3422(4)	9088(4)	43.0(12)
C5	2130(4)	3001(3)	9080(3)	36.2(11)
C6	2802(4)	3418(3)	8449(3)	35.0(11)
C7	4022(4)	3183(3)	8337(3)	34.1(11)
C8	4703(4)	2338(3)	8919(3)	34.1(11)
C9	4261(4)	2252(3)	9905(3)	36.5(11)
C10	2768(4)	2128(3)	9680(3)	41.1(12)
C11	2409(5)	2039(4)	10693(4)	53.2(14)
C12	2299(5)	1238(4)	9029(4)	47.4(13)
C13	5022(5)	1490(4)	10620(4)	44.5(12)
C14	6453(4)	1667(4)	10854(3)	42.9(12)
C15	6940(4)	1671(3)	9909(4)	41.0(12)
C16	6774(5)	688(3)	9401(4)	50.7(13)
C17	8365(4)	1912(4)	10188(4)	51.1(14)
C18	6176(4)	2404(3)	9116(3)	35.0(11)
C19	6532(4)	3437(3)	9330(3)	37.7(11)
C20	6703(4)	4031(3)	8451(3)	41.8(12)
C21	5566(4)	4016(3)	7455(3)	36.3(11)
C22	4340(4)	3876(3)	7744(3)	35.9(11)
C23	5705(4)	3236(4)	6711(3)	44.0(12)
C24	5597(5)	4974(4)	6918(4)	47.1(13)
O2	2663(3)	6184(3)	6261(3)	54.7(9)
N2	2049(4)	9070(3)	7644(3)	40.1(10)
C25	806(4)	8931(3)	7659(3)	36.5(11)
C26	132(5)	9184(3)	8351(4)	45.7(12)
C27	-1132(5)	8916(4)	8110(4)	48.7(13)
C28	-1714(5)	8393(4)	7229(4)	48.7(13)
C29	-1057(4)	8139(3)	6544(4)	41.5(12)
C30	213(4)	8440(3)	6766(3)	35.1(11)
Table 3 Anisotropic Displacement Parameters (Å²×10³) for 0632. The Anisotropic displacement factor exponent takes the form: -2π²[h²a²*U₁₁+2hka*b*U₁₂+...].

Atom	U₁₁	U₁₂	U₁₃	U₂₂	U₂₃	U₁₂
O₁	54 (2)	40 (2)	33.1 (18)	-1.6 (16)	-2.9 (15)	-3.2 (16)
N₁	39 (2)	34 (2)	39 (2)	6 (2)	5 (2)	3 (2)
C₁	37 (3)	35 (3)	34 (3)	3 (2)	3 (2)	0 (2)
C₂	37 (3)	35 (3)	50 (3)	1 (2)	3 (2)	3 (2)
C₃	36 (3)	45 (3)	52 (3)	-1 (3)	7 (2)	2 (2)
C₄	37 (3)	43 (3)	49 (3)	-3 (3)	10 (2)	-1 (2)
C₅	37 (3)	36 (3)	33 (3)	-5 (2)	4 (2)	-3 (2)
C₆	37 (3)	34 (3)	30 (2)	-4 (2)	1 (2)	-2 (2)
C₇	37 (3)	33 (3)	28 (2)	-4 (2)	1 (2)	3 (2)
C₈	39 (3)	26 (2)	34 (2)	2 (2)	4 (2)	2.1 (19)
C₉	42 (3)	33 (3)	32 (2)	3 (2)	5 (2)	0 (2)
C₁₀	42 (3)	35 (3)	44 (3)	-2 (2)	9 (2)	-4 (2)
C₁₁	57 (3)	55 (3)	52 (3)	13 (3)	21 (3)	8 (3)
C₁₂	40 (3)	39 (3)	58 (3)	1 (3)	4 (2)	-7 (2)
C13	51 (3)	42 (3)	37 (3)	7 (2)	8 (2)	2 (2)
C14	46 (3)	40 (3)	37 (3)	9 (2)	1 (2)	5 (2)
C15	40 (3)	37 (3)	41 (3)	0 (2)	2 (2)	2 (2)
C16	54 (3)	40 (3)	51 (3)	-3 (3)	2 (3)	7 (2)
C17	42 (3)	52 (3)	52 (3)	7 (3)	1 (2)	7 (2)
C18	34 (2)	35 (3)	33 (2)	0 (2)	3 (2)	4 (2)
C19	33 (2)	39 (3)	35 (3)	3 (2)	0 (2)	3 (2)
C20	40 (3)	41 (3)	41 (3)	5 (2)	6 (2)	-5 (2)
C21	41 (3)	39 (3)	27 (2)	3 (2)	6 (2)	3 (2)
C22	40 (3)	34 (3)	31 (2)	4 (2)	4 (2)	3 (2)
C23	45 (3)	36 (3)	54 (3)	2 (2)	7 (2)	7 (2)
C24	48 (3)	49 (3)	46 (3)	7 (3)	16 (3)	3 (3)
O2	67 (2)	41 (2)	53 (2)	13.3 (18)	12.0 (18)	9.8 (18)
N2	41 (2)	46 (3)	31 (2)	-5 (2)	5 (2)	-2 (2)
C25	40 (3)	35 (3)	35 (2)	5 (2)	11 (2)	5 (2)
C26	56 (3)	39 (3)	41 (3)	3 (2)	11 (3)	3 (2)
C27	56 (3)	43 (3)	53 (3)	2 (3)	25 (3)	8 (3)
C28	42 (3)	50 (3)	57 (3)	5 (3)	18 (3)	4 (2)
C29	40 (3)	37 (3)	47 (3)	5 (2)	11 (2)	4 (2)
C30	39 (3)	31 (3)	33 (2)	2 (2)	5 (2)	-1 (2)
C31	36 (2)	26 (2)	30 (2)	-1 (2)	2 (2)	-2 (2)
C32	41 (3)	35 (3)	29 (2)	1 (2)	0 (2)	-4 (2)
C33	47 (3)	40 (3)	40 (3)	0 (2)	9 (2)	-8 (2)
C34	43 (3)	48 (3)	48 (3)	-7 (3)	7 (2)	-5 (2)
C35	62 (4)	73 (4)	97 (5)	-23 (4)	30 (4)	-30 (3)
C36	48 (3)	76 (4)	51 (3)	-5 (3)	-9 (3)	10 (3)
C37	59 (3)	51 (4)	59 (3)	-13 (3)	13 (3)	-20 (3)
C38	78 (4)	43 (3)	58 (3)	-15 (3)	25 (3)	-18 (3)
C39	56 (3)	41 (3)	42 (3)	-14 (2)	9 (3)	-11 (2)
C40	66 (4)	61 (4)	34 (3)	-10 (3)	2 (3)	-14 (3)
C41	75 (4)	47 (3)	58 (3)	-14 (3)	22 (3)	-3 (3)
C42	43 (3)	35 (3)	34 (3)	1 (2)	3 (2)	-1 (2)
C43	50 (3)	32 (3)	38 (3)	0 (2)	12 (2)	6 (2)
C44	43 (3)	47 (3)	38 (3)	8 (2)	3 (2)	8 (2)
C45	40 (3)	43 (3)	32 (2)	-1 (2)	2 (2)	-3 (2)
C46	39 (3)	35 (3)	32 (2)	2 (2)	2 (2)	-1 (2)
C47	47 (3)	48 (3)	47 (3)	4 (3)	11 (2)	-6 (2)
Table 4 Bond Lengths for 0632.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C19	1.226(5)	O2	C43	1.225(6)
N1	C1	1.371(6)	N2	C25	1.373(6)
N1	C22	1.392(6)	N2	C46	1.392(6)
C1	C2	1.394(6)	C25	C26	1.389(7)
C1	C6	1.404(6)	C25	C30	1.399(6)
C2	C3	1.368(7)	C26	C27	1.377(7)
C3	C4	1.408(7)	C27	C28	1.407(7)
C4	C5	1.383(6)	C28	C29	1.369(6)
C5	C6	1.400(6)	C29	C30	1.399(6)
C5	C10	1.534(6)	C29	C34	1.535(7)
C6	C7	1.416(6)	C30	C31	1.409(6)
C7	C8	1.508(6)	C31	C32	1.523(6)
C7	C22	1.370(6)	C31	C46	1.377(6)
C8	C9	1.551(6)	C32	C33	1.547(6)
C8	C18	1.556(6)	C32	C42	1.553(6)
C9	C10	1.581(6)	C32	C34	1.558(7)
C9	C13	1.534(6)	C33	C37	1.531(7)
C10	C11	1.539(6)	C34	C35	1.539(7)
C10	C12	1.542(7)	C34	C36	1.544(7)
C13	C14	1.524(7)	C37	C38	1.519(8)
C14	C15	1.521(6)	C38	C39	1.515(7)
C15	C16	1.535(7)	C39	C40	1.548(7)
C15	C17	1.532(7)	C39	C41	1.533(7)
C15	C18	1.563(6)	C39	C42	1.563(6)
C18	C19	1.513(7)	C42	C43	1.505(6)
C19	C20	1.514(6)	C43	C44	1.511(7)
C20	C21	1.574(6)	C44	C45	1.570(7)
C21	C22	1.504(6)	C45	C46	1.501(6)
C21	C23	1.530(6)	C45	C47	1.525(6)
C21	C24	1.538(7)	C45	C48	1.542(6)
Table 5 Bond Angles for 0632.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	N1	C22	109.7(4)	C25	N2	C46	109.7(4)
N1	C1	C2	133.2(4)	N2	C25	C26	132.6(4)
N1	C1	C6	106.4(4)	N2	C25	C30	106.4(4)
C2	C1	C6	120.3(4)	C26	C25	C30	121.0(4)
C3	C2	C1	117.2(5)	C27	C26	C25	116.3(5)
C2	C3	C4	122.8(5)	C26	C27	C28	122.6(4)
C5	C4	C3	120.8(4)	C29	C28	C27	121.5(5)
C4	C5	C6	116.5(4)	C28	C29	C30	116.1(5)
C4	C5	C10	128.2(4)	C28	C29	C34	128.8(4)
C6	C5	C10	115.4(4)	C30	C29	C34	115.1(4)
C1	C6	C7	108.5(4)	C25	C30	C31	108.8(4)
C5	C6	C1	122.3(4)	C29	C30	C25	122.4(4)
C5	C6	C7	128.9(4)	C29	C30	C31	128.7(4)
C6	C7	C8	118.1(4)	C30	C31	C32	118.2(4)
C22	C7	C6	106.9(4)	C46	C31	C30	106.9(4)
C22	C7	C8	134.8(4)	C46	C31	C32	134.8(4)
C7	C8	C9	107.2(4)	C31	C32	C33	106.7(3)
C7	C8	C18	112.5(4)	C31	C32	C42	112.2(3)
C9	C8	C18	113.6(4)	C33	C32	C42	115.2(4)
C8	C9	C10	112.5(4)	C32	C33	C34	112.8(4)
C13	C9	C8	111.5(4)	C37	C33	C32	110.2(4)
C13	C9	C10	113.4(4)	C37	C33	C34	114.2(4)
C5	C10	C9	108.0(4)	C29	C34	C33	109.6(4)
C5	C10	C11	111.0(4)	C29	C34	C35	109.5(4)
C5	C10	C12	108.1(4)	C29	C34	C36	107.5(4)
C11	C10	C9	109.3(4)	C35	C34	C33	109.4(4)
C11	C10	C12	109.1(4)	C35	C34	C36	108.8(5)
C12	C10	C9	111.4(4)	C36	C34	C33	112.1(4)
C14	C13	C9	111.5(4)	C38	C37	C33	111.4(4)
C15	C14	C13	113.1(4)	C39	C38	C37	113.0(4)
C14	C15	C16	110.8(4)	C38	C39	C40	110.1(4)
C14	C15	C17	110.5(4)	C38	C39	C41	110.0(5)
C14	C15	C18	110.4(4)	C38	C39	C42	110.8(4)
C16	C15	C18	107.8(4)	C40	C39	C42	107.8(4)
C17	C15	C16	107.4(4)	C41	C39	C40	107.7(4)
Table 6 Hydrogen Atom Coordinates ($\AA\times10^4$) and Isotropic Displacement Parameters ($\AA^2\times10^3$) for 0632.

Atom	x	y	z	U(eq)
H1	3300(50)	5020(50)	7140(40)	68(19)
H2	885.61	5193.05	7487.06	51
H3	-261.71	4491.48	8499.59	54
H4	494.99	3165.16	9504.87	52
H8	4407.48	1757.59	8499.61	41
H9	4473.29	2871.66	10269.4	44
H11A	2777.17	2571.73	11137.21	80
H11B	2743.79	1439.29	11024.45	80
H11C	1478.73	2047.98	10561.34	80
H12A	1382.8	1154.28	8944.74	71
H12B	2758.64	677.76	9368.97	71
H12C	2459.55	1314.23	8360.9	71
H13A	4764.83	1489.87	11262.36	53
H13B	4822.17	857.04	10300.46	53
H14A	6653.31	2286.66	11204.06	51
---	-------	-------	-------	-------
H14B	6908.24	1167.7	11324	51
H16A	5863.73	540.78	9149.74	76
H16B	7192.6	207.02	9897.64	76
H16C	7161.57	690.29	8830.07	76
H17A	8647.05	1965.1	9566.19	77
H17B	8848.09	1407.84	10619.45	77
H17C	8510.44	2516.97	10556.57	77
H18	6363.21	2248.57	8455.76	42
H20A	7481.75	3810.21	8276.87	50
H20B	6851.42	4697.95	8684.24	50
H23A	6546.26	3284.86	6581.42	66
H23B	5039.97	3311.94	6070.26	66
H23C	4916.91	4988.09	6280.3	71
H24A	6425.18	5051.51	6772.3	71
H24B	5468.66	5491.8	7360.35	71
H2A	2630(50)	9240(40)	8120(40)	48(16)
H26	520.29	9522.96	8956.31	55
H27	-1629.02	9091.47	8556.1	58
H28	-2583.37	8212.57	7106.73	58
H32	286.6	8211.93	4666.6	44
H33	13.27	6637.28	5916.23	52
H35A	-2088.11	6350.6	6190.96	113
H35B	-2881.5	6509.79	5033.01	113
H35C	-3184.25	7141.19	5915.07	113
H36A	-2898.57	8574.93	4887.57	94
H36B	-2498.72	7918.83	4066.23	94
H36C	-1567.72	8749.15	4627.16	94
H37A	-1384.88	5922.72	4489.51	69
H37B	-1136.9	6764.65	3776.34	69
H38A	788.19	5473.92	4856.39	70
H38B	124.13	5416.26	3660.89	70
H40A	192.18	7461.32	3072.91	84
H40B	583.84	6581.54	2477.48	84
H40C	1576.34	7426.62	2876.27	84
H41A	3247.19	6367.4	3869.22	89
H41B	2332.47	5500.91	3384.84	89
---	--------	--------	--------	---
H41C	2911.69	5568.82	4591.28	89
H42	2251.26	7798.11	4622.36	46
H44A	4455.42	7612.47	5905.35	53
H44B	4353.05	7302.79	7004.46	53
H47A	2875.81	9149.9	5101.29	71
H47B	4389.71	9250.33	5535.32	71
H47C	3464.57	9970.19	5901.95	71
H48A	4441.34	9650.15	7648.57	76
H48B	5424.62	8912.75	7383.36	76
H48C	4554.02	8595.37	8102.56	76