A review of solar photovoltaic systems cooling technologies

A G Lupu¹, V M Homutescu¹, D T Balanescu¹ and A Popescu¹

¹Automotive and Mechanical Engineering Department, “Gheorghe Asachi” Technical University of Iasi, Iasi, Romania

E-mail: aristotel.popescu@tuiasi.ro

Abstract. The global need for energy increases with mankind evolution and proliferation. The sharp decrease in fossil fuel sources and pollution increase, triggered research for renewable energy sources. The solar energy, available and sustainable, may be easily converted into both electricity and thermal energy. The photovoltaic paradox (need solar energy to function, but the electricity output decreases if temperature rises under the Sun’s heat) was controlled by using various cooling techniques for panels. A large number of papers published to date in literature on solar energy conversion applications are reviewed and classified. The emphasis is placed on methods employed to increase the solar-to-electricity energy conversion efficiency, i.e. thermal management of photovoltaic panels. The use of thermoelectric modules (in PV-T-TE devices, photovoltaic-thermal-thermoelectric) is highlighted.

1. Introduction
Even though only a small fraction of the energy dissipated by the Sun reaches the surface of the Earth, it still represents the most important source of energy available, when compared to fossil fuel reserves. If the humankind would be able to capture the entire incident solar heat flux, the annual global energy demand would represent only 0.01%, figure 1.

Figure 1. Available annual insolation vs. fossil fuel reserves and annual energy consumption.
This huge energy resource is not used to its proper potential. Following the first major oil crisis in the '70s, it became clear that search for energy sources, alternative to classic fossil fuel energy, has to be intensified. These energy sources, termed “renewable”, include solar, wind, geothermal, bio- and hydro-power, all being connected in one way or another to solar energy. Nevertheless, even if the interest on renewable energy sources increased in the recent decades, the share of solar energy in global energy (and electricity) production is still below 2%, figure 2.

The French physicist Alexandre Edmond Becquerel observed the photovoltaic (PV) effect in 1839, but the PV technologies started to be developed a century later, after 1940. In early '50s, the first high purity silicon crystals were produced and, in 1954, specialists at Bell Laboratories unveiled the first silicon PV cell with a conversion efficiency of 6%. Both the materials and technologies were too expensive at the time for mass production. During the following decades, researchers strived to improve fabrication technologies and to find materials with better properties and/or with lower prices.

The most recent data, show PV cells conversion efficiencies of up to 46%, but in special laboratory conditions (with concentrators, small surface, ultra-clean environment), figure 3, [2].

Figure 2. Renewable energy share of global electricity production, end-2017 [1].

Figure 3. The conversion efficiency of PV cells, in April 2018, [2].
The evolution of PV technologies.

By comparison, the industrially manufactured and commercially available solar panels exhibit solar energy conversion efficiencies of 11% - 20%, depending on material and production technologies, [3]. Regardless of material and manufacturing technology, figure 4, the solar PV cell may be modeled using an equivalent electrical circuit, figure 5, and mathematically described by the formula (1), [4]:

\[
I = I_L - I_o \left[\exp \left(\frac{V + IR_o}{nkT/q} \right) - 1 \right] - \frac{V + IR}{Rs_h}
\]

where the output current, \(I \), is inversely proportional with absolute temperature, \(T \), ideality factor, \(n \), and Boltzmann constant, \(k \), and directly proportional with elementary charge, \(q \). Therefore, analytical and experimental studies, [4-9], demonstrate the same behavior of the PV cell output: the open circuit voltage decreases with increasing cell temperature, figure 6.

Intensive research has been performed in the area of cooling PV panels, in order to optimize and control the operational temperature. The first natural choices were related to use of fluid coolant, air and later, liquids, mainly water or glycols. The cooling methods evolved to more complex solutions, including heat pipes, microscale heat exchangers, phase-change materials (PCM), nano-fluids, thermo-electric generators (TEG), or combinations with other renewable energy systems, [10-20] and figure 7.

The main benefits sought from combining the PV panels with solar thermal collectors and/or other cooling solutions are:
- decrease/optimize/control the operational temperature of the PV panel;
- improve the system overall conversion efficiency (increase electrical and adding thermal);
- minimize the space required and possibly the cost of the system.

Figure 4. Evolution of PV technologies.

Figure 5. Equivalent electrical circuit for a PV cell.
2. Previous reviews

The early publications to review the photovoltaic/thermal (PVT) technologies were emphasizing the benefits of joining both solar conversion systems, thermal collectors and PV panels.

The concept of PVT (or PV/Th, [21]) technology is presented, along with description of different designs, evaluation models and potential benefits, especially in the building architecture, [22]. More detailed reviews on basic PVT include analytical and numerical modeling, numerical simulations, experimental work, as well as parameters affecting system performance (covered, uncovered, mass flow rate, absorber plate parameters, design types), and qualitative evaluation of thermal/electrical output, [23]. Also, in [24], manufacturing aspects, thermal and electrical module efficiency (losses) and reliability are presented. Another comprehensive review [25] details technological developments in air- and liquid-cooled PV modules, improvements proposed (high temperature applications, long wave absorption, autonomous applications, commercial applications), and market potential, especially in building integration.

The years that followed, witnessed the publication of several reviews [26-32] on PVT collectors, presenting the design, classification, performance, influence factors, theoretical and experimental analyses, for air and water-cooling agents. New PVT cooling technologies are described and reviewed, [33], such as refrigerant/heat pipe based hybrid collectors that provide higher conversion efficiencies. Opportunities for further works in development and optimization of feasible, economic and efficient system types and configurations adapted to real climatic conditions are also analyzed.

![Figure 6. The (I-V) curve for various operational temperature, [4].](image)

![Figure 7. PV cooling technologies.](image)
Mathematical models are reviewed [34] for simple thermal collectors or PV panels, as well as for various hybrid collector combinations and geometries. Technological solutions for both air and liquid cooled PV are presented [35-37].

The impact of various parameters (packing factor, mass flow rate, efficiency), of PV cell materials and manufacturing technologies (single crystalline silicon, polycrystalline silicon, amorphous silicon, GaAs, InP, thin film, dye sensitized) or the collector geometries and fluid agents, on the electrical and thermal performance of PVT collectors as well as improvement strategies are reviewed in [38]. Both non-concentrating and concentrating collectors are analyzed [39], along with thermal energy storage solutions (criteria for design, materials, heat transfer enhancement technologies) and a review of solar power stations.

For water flat plate PVT collectors, a review [40] included classification, discussions on thermal absorber (sheet-and-tube, roll bond, box channel, channels arrangement, pressure drop and connection system), performance comparison and thermal insulation. An extensive analysis [41] was performed to include the concentrating system, with the advantages and disadvantages of various combinations and technologies. Another overview of PVT technologies for both air and water-cooling fluids observed the improvements on overall solar conversion efficiency [42].

The large number of recent publications on PVT and combined cooling solutions triggered several extensive reviews. A reference guide, [43], included construction details of flat plate collectors (FPC), PV panels and PVT systems. Classifications and exhaustive presentations of cooling methods and flow geometries, along with tabulated data for experimental results, numerical models and software were included. Also, the guide indicates applications, limitations, advantages and future research directions in the PVT area. The structural/geometrical topologies of PVT panels for both liquid and air-based cooling solutions are presented in [44], detailing more than 30 distinct hybrid configurations. It also identifies the major factors that affect the typical PVT systems performance and effectively enhance the heat removal mechanisms thus improving the electrical and thermal solar conversion efficiencies.

An exhaustive review [45] compiles information on various factors that influences the conversion efficiency of PV panes: climatic parameters (solar irradiance, relative humidity, wind speed, ambient temperature, accumulated dust), design conditions (flow cannel geometry, tracking system geometry, glazing coating and thickness, material characteristics, fins, inlets) and operating parameters (mass flow rate, thermal resistance, fluid temperatures, packing factor, losses). The responses of the thermal, electrical and overall efficiencies of PVT system to various parameters and conditions are reviewed.

A comprehensive compilation and review [46] classifies the cooling solutions into two major categories, passive and active, with compatible methods already adopted and future trends. Even if it is focused on concentrating PV cooling solutions, [47] presents details for basic technologies for regular PV panels, including some recent advances in usage of heat pipes, microchannel heat sinks, phase change materials, thermoelectric materials, and indicates future areas of research.

A new approach [48] discussed and summarized the PV cooling technologies with emphasis on the thermal side (air cooled, water cooled, water and air, PCM, heat pipes, nano-fluids) more than on the electrical side. Both efficiencies (thermal and electrical) of PVT systems were compared for different heat transfer fluids, designs, advantages, limitations, applications, and scope.

Two of the most recent reviews [50,51] comprehensively present the now-classic air- and liquid-cooling technologies for PV panels, along with heat pipes, PCM, or TEG solutions, with emphasis on the works published in the last decade. The novel area reviewed in both publications is related to beam splitting (or spectrum filter) technology, that separates the wavelengths useful for PV cells from those used by thermal conversion part of the PVT system.

3. PV cooling solutions review

This chapter presents in a concise tabular format the current technologies employed for PV cooling. The solutions are included in table 1 in the same order as in figure 7, starting with hybrid PVT cooling with air and water, and continuing with newer hybrid designs. The emphasis of this review work is placed on the solution that includes thermo-electric devices, and therefore is presented at the end.
Table 1. Assessment of different PV cooling solutions.

Technology	Highlights	Advantages	Disadvantages
Photovoltaic/Thermal hybrid solar system	Forced air circulation more efficient than natural (for building integration BIPVT)	Simple technology	Lower efficiency than water cooling
(PVT air cooling)	More effective in cold climatic conditions	Air readily available	Lower mass flow rates and PV temperature reduction
	Many designs possible (glazing, geometry etc.)	Increased overall efficiency	Blowers required for forced air circulation
Photovoltaic/Thermal hybrid solar system	Effectively increases electrical efficiency	Higher conversion efficiency to electric energy	High initial cost
(PVT water cooling)	More efficient on bottom side than on top side	Hot water used for domestic applications	Lower system life
	Temperature control by mass flow rate variation	Lower space requirement for separate systems	Possible freezing in cold climatic conditions
	Other liquids may be used		Electricity consumption for pumping power
	Large scale integration		Possible leakage, fouling
PV/Phase-Change Materials	Heat from PV panel is stored during PCM melting	Store large heat amounts at small temperature change	Low thermal conductivity of PCM in its solid state
(PV-PCM cooling)	Absorptive capabilities of material degrade over time	System may operate during off-sunshine hours	Some PCMs are toxic and have fire safety issue
	Compatibility, reliability, maintenance-free and high cooling capacity	Phase-change occurs at a constant temperature	Disposal problem after end of life cycle
PV/Heat Pipes (HP-PV cooling)	More complex design	Very high heat fluxes	Segregation reduces active volume for heat storage
	Improved thermal output	Passive heat exchange	
	Corrosion issues influence the choice of pipe material	Heat transfer across long distances	
		Easy to integrate	
PV/Microchannel heat sink	Effective heat exchange	Removes large amounts of heat in a smaller area	Pressure drop limitations
(PV-MCHS cooling)	Low contact thermal resistance between the substrate and heatsink	Low fluid inventory required	Corrosion problem
	Maintains isothermal conditions on the cell	Low power requirement	Undesirable uneven temperature distributions along the streamline
		Low thermal resistance	Manufacturing price
PV/Nano-fluids (PVT-NFs)	Improved thermal output	Nano-fluids are available	Incipient technology
	Enhance heat transfer / heat removal	Higher thermal efficiency	Influences not determined
	Sedimentation of nanoparticles may be a problem		(interaction with base fluids and characteristics)
			Nano-particles high cost
PV/water spraying (jet impingement)	Increased efficiency	Increased solar energy conversion	Surface area of PV panel is partially cooled
	Higher heat transfer characteristics	Higher heat capacity and thermal conductivity (low thermal resistance)	Higher cost (maintenance, pumping power)
	Water (and heat absorbed) is wasted		Heat waste
PV/water immersion cooling	Temperature reduced and efficiency increased	Highly efficient	Submersion depth
	Leak-proof design required	Environmentally friendly	influences efficiency
		Heat transfer from both front and back surfaces	Higher cost
			Complex system design
Table 1. (continued from previous page).

Technology	Highlights	Advantages	Disadvantages
Floating, tracking, concentrating and cooling	Uses reflectors and trackers Water sprays partially cool the surface	Operates highly efficient	Evaporation causes water waste
(FTCC)	May be hybridized with OCR, space heating etc.	Avoid energy dispersion problems	Sprinklers cannot cover whole PV module surface
PV/Spectrum filter (Beam Split PVT)	Minimize PV temperature by beam splitting Uses thin-film coatings,	Lowered operational temperature	Not fully developed technology
	liquids, mirrors to separate solar radiation wavelength	Suitable for hybridization with concentrating or	High cost (glass filters)
		other systems	
PV/Transparent coating (photonic crystal)	Temperature problem is eliminated Enhances conversion efficiency Heat is	Economic solution No space requirement necessary	Heat is wasted (reflected into space)
	wasted	Reduced PV temperature	
PV/Thermoelectric hybrid system (PV-TE cooling)	Waste heat used to increase electrical efficiency Heat sink decreases	Clean source of energy Electrical conversion	Low conversion efficiency Heat conduction loss through
	surface temperature Low conversion efficiency rate	efficiency improved	thermoelectric device
		No direct contact PV - coolant	Higher price for low energy conversion gain
		Alleviates hot spotting	
		Increasing life span of PV modules	

4. Review of relevant publications
The large amount of publications in the literature on the topic of PV cooling technologies prevents any extensive review that may attempt to include all papers on theoretical, numerical or experimental work performed in this area. Therefore, the authors selected what seemed to be the most relevant of older and recent publications for each of the cooling technologies highlighted in table 1.

The number of reviewed publications depends largely on the extent of technology use in practice and in research. The research interest of the authors in the area of PV cooling using thermo-electrical elements is reflected in a larger number of publications reviewed on this particular topic, table 2.

Table 2. Review of relevant publications on PV cooling solutions.

Technology	Reference	Relevant information
PVT air cooling	[52], 2002	Hybrid PVT solar collector cooled to evaluate PVT efficiency Outdoor tests show
		improved electrical efficiency
PVT air cooling	[53], 2004	PVT collector with blower, air passing to back side of PV Increased electrical
		efficiency and reduced surface temperature
PVT air cooling	[16], 2006	PV module integrated with air duct to evaluate overall efficiency Results show
		compatibility with model and increased efficiency
PVT air cooling	[17], 2007	Systems with fins and thin metal sheet (TMS), and glazing improves PVT performance
	[19], 2008	Efficiency increased at 50-60% thermal and 11-12% electrical
Table 2. (continued from previous page).

Technology	Reference	Relevant information
PVT air cooling	[54], 2009	PV modules with glass-to-tedlar and glass-to-glass are evaluated for performance comparison. Better performance in overall thermal efficiency for the glass-to-glass hybrid PVT air collector.
PVT air cooling	[55], 2010	Developed a computer simulation to calculate electrical and thermal parameters of a PVT air collector. Thermal, electrical and overall energy efficiencies are 17.18%, 10.01% and 45%, respectively.
PVT air cooling	[56], 2012	A comparative analysis of different types of PVT air collectors. Unglazed, glazed and standard hybrid PVT air systems are analyzed in real climate conditions.
PVT air cooling	[57], 2015	Most influencing parameters: solar radiation intensity, mass flow rate of air, optimum channel depth. Glazing improves thermal efficiency to 50-70%, but the electrical one remains at 10-12%.
PVT air cooling	[58], 2016	PVT system is applied to air source heat pump (ASHP) in cold climatic conditions. TRNSYS transient simulation show outlet temperature at 76.6°C.
PVT air cooling	[59], 2016	Model to determine PV module position effect on thermal and electrical performances. Maximum thermal and electrical performance for distance between PV module and cover of 3 cm and 5 cm, respectively. Analysis of variance demonstrates the superiority of hybrid PVT over standard PV system, comparing electrical efficiencies.
PVT air cooling	[60], 2017	Extreme learning machine (ELM) applied to PVT air cooling. ELM model compared with genetic programming and artificial neural networks models, ELM being most accurate.
PVT water cooling	[61], 1996	Hybrid PV/T system, water circulating through connecting pipes with fins attached to back side of PV module. Improved electrical performance.
PVT water cooling	[62], 2003	Different designs of PVT systems have been discussed. 1-D steady state model is used for PVT analysis.
PVT water cooling	[63], 2006	PVT models tested and electrical and thermal efficiencies evaluated. Increased electrical and thermal efficiency, and improved economic viability.
PVT water cooling	[64], 2007	PV/T water heating system designed with natural circulation. Experiments performed outdoor with different water masses and initial water temperatures, validated the proposed model. The higher the covering factor and the glazing transmissivity, the better the overall performance.
PVT water cooling	[65], 2007	Heat extraction system developed, cools PV panel either by air or water. Use of inserts, corrugated sheets and booster mirrors, that increases efficiency (30-70% thermal, 10-16% electric) and cost effectiveness.
PVT water cooling	[18], 2008	PVT with partially covered FPC has better thermal (40-55%) and PV cell average efficiency (11-12%).
Table 2. (continued from previous page).

Technology	Reference	Relevant information
PVT water cooling	[66], 2009	Glazing is favorable to photothermic process, but not to PV process.
		Increase of PV cell efficiency depends on packing factor, water mass to collector area ratio, and wind velocity (unglazed panel) and on ambient temperature and on-site solar radiation (glazed panel)
PVT water cooling	[67], 2011	PV panel cooled by thin film of water
		Results show improved electrical efficiency
PVT water cooling	[68], 2012	Exhaustive review of technological advancement in PVT solar systems
		Useful applications: solar heating, water desalination, solar greenhouse, solar still, PVT-heat pump/air-conditioning system, building integrated PVT (BIPVT) and solar power co-generation
PVT water cooling	[69], 2013	PVT water collectors analyzed for constant collection temperature, and constant flow rate conditions, respectively
PVT water cooling	[70], 2013	Performance of two designs and flow configurations compared on annual overall thermal energy and exergy gain for four different real climatic conditions
PVT water cooling	[71], 2014	Second Law analysis of a water-cooled PVT collector
		Simulations and optimization of operation
		Electricity production from PV cells is better at low temperatures, but usability of thermal energy gets higher at high temperatures
PVT water cooling	[72], 2014	Seawater-proof PVT solar collector developed and applied to reverse osmosis (RO) desalination plant
		Results show increased electrical efficiency with seawater cooling
PVT water cooling	[73], 2015	Investigated the effect of dust deposition and of ambient air dry bulb temperature on the performance of the PVT module efficiency
		Dust deposition significantly affects the output current
PVT water cooling	[74], 2015	Water glazed PV/T system, with roll-bond flat plate aluminum absorber
		Model developed to evaluate performance of PV/T collectors show enhancements in electrical efficiency
PVT water cooling	[43], 2015	FPC used to increase PV module efficiency
		Investigation on different solar flat plate collector PVT, efficiencies, advantages and disadvantages
PVT water cooling	[75], 2016	Model to maximize the energy conversion by optimizing flow rate
		Extracted energy increased by 7.82%, thermal efficiency decreased between 5.54% and 7.34% using connecting pipes
PVT water cooling	[76], 2016	Hybrid PVT solar collector for net zero energy buildings is proposed
		Results indicate higher yield in solar electricity
		The output covers hot water, air conditioning, lighting and household appliances requirements
PVT water cooling	[77], 2017	Parallel plate thermal collector without absorber plate is proposed as pancake setup
		Conversion efficiency is about 10% electrical and 50-60% thermal
PVT water cooling	[78], 2017	Multiple-channel heat sink for concentrated PV cells
		Cell temperature rises to 91.4°C and flow rate at 0.6 m/s optimized conversion efficiency to 31.8% and net power to 4064 W
Table 2. (continued from previous page).

Technology	Reference	Relevant information
PV-PCM cooling	[79], 2004	Model for a 2D finite volume heat transfer in building-integrated PV-PCM. Both numerical simulation and experimental results indicate efficiency increase
PV-PCM cooling	[80], 2006	Internal fins for bulk PCM thermal conductivity compared with datum single flat aluminum plate - system temperature by 30°C
PV-PCM cooling	[81], 2015	Overall PV efficiency increased to around 13% Graphite infused PCM has increased thermal conductivity from 0.25 to 16.6 W/(mK)
PV-PCM cooling	[82], 2016	Experiments on ZnO/water nanofluid (0.2 wt%) and paraffin wax PCM/Nanofluid increased PVT thermal energy output by 48%
PV-PCM cooling	[83], 2016	PCM based thermal regulation of PV panel results in higher electricity production by 7.3% for a period of one year Surface temperature of PV module was found to be 35.6°C lower
PV-PCM cooling	[84], 2016	Dynamic model for comparative performance analysis of PV/PCM Upper PCM ensured improved performance with 10.7%
PV-PCM cooling	[85], 2017	Proposed system yields about a maximum of 72% more thermal gains PV module operating temperature reduced by 17°C during peak hours
PV-PCM cooling	[86], 2017	Pure and combined PCM enhances electrical performance of PV panel Transient energy balance presented to analyze thermal behavior Combined PCM increased electrical efficiency by an average of 5.8%
PV-PCM cooling	[87], 2017	Maximum temperature reduction for simple water based and PCM-PVT arrangements were found to be around 47 and 53% respectively Gain of 2% in electrical efficiency achieved with paraffin (RT 30)
HP-PVT	[88], 2010	Micro-heat pipe array with evaporator and condenser for heat transfer Experiments show increased electrical efficiency by 2.6% (air cooling) and by 3% (water cooling)
HP-PVT	[89], 2011	Model to predict thermal-electrical performance of heat pipe Overall thermal, electrical and exergy efficiencies increased to 63.65%, 8.45% and 10.26%
HP-PVT	[90], 2015	Annual average collector efficiency of 34.37% and thermal collection of 2328.16 MJ/year Tank volume is inversely proportional to the PV surface temperature
HP-PVT	[91], 2016	Thermal efficiency from 20% in winter to 40% in summer, electrical efficiency constant at 13% MHAP-PVT more economic and efficient than conventional systems
HP-PVT	[92], 2016	Wickless heat pipe compared with wire-meshed heat pipe Thermal efficiency on wickless heat pipe and wire-meshed heat pipe was 52.8% and 51.5%, respectively
HP-PVT	[93], 2017	Advanced thermal management technique: nano-coated heat pipe plate Solar cell can be cooled down to below 40°C
HP-PVT	[94], 2017	Experiments on hybrid PV/T systems to analyze hot water to consumer Results show systems able to supply 60% of consumer's hot water needs on cloudy days and 100% on sunny days
Table 2. (continued from previous page).

Technology	Reference	Relevant information
PV-MCHS cooling	[95], 2010	Proposed microchannel cooling of solar panel heat pipes condenser Possible use for HP-PVT systems, high heat flux transfer
PV-MCHS cooling	[96], 2011	Novel design of flow channel configurations in liquid cooled heat sinks Flow field configurations exhibit appreciable benefits for application of heat sinks in PV cooling
PV-MCHS cooling	[97], 2013	Novel flat plate solar collector with micro-channel heat pipe array Maximum instantaneous efficiency of 80%, with the slope −4.72
PV-MCHS cooling	[98], 2017	Comprehensive, 3-D thermo-fluid model for PV layers, integrated with microchannel heat sink. Parallel flow more effective than counter flow
PV-MCHS cooling	[99], 2018	Maintains the solar cell temperature < 301 K Increase the Nusselt number between 1.8 and 1.6 times, respectively
PV-MCHS cooling	[100], 2018	Active microchannel cooling to meet the escalating heat flux demands of CPV. Proposed novel heat sink structures and emerging technologies
PVT-NFs	[101], 2017	Use of nanofluid (water + Cu) more efficient than water in all cases Yearly enhancements of 4.35% thermal and 1.49% electrical
PVT-NFs	[102], 2018	Compared to no cooling and water cooling, by using 4 wt% nanofluid (with turbulent flow) the power output of the panel increased by ~35% and ~10% and exergy efficiency was higher by 50% and 30%
PVT-NFs	[103], 2018	Highest increase (of about 14%) in average Nu noticed for the Cu-MgO hybrid at 2% volume concentration Water based hybrid nanofluids with 2% Ag-MgO offers highest values in collector efficiency
Jet impingement	[104], 2016	With jet cooling, power output and conversion efficiency was enhanced by 51.6% and 66.6% for June and by 49.6% and 82.6% for December
Jet impingement	[105], 2017	With 36 nozzles on the back side of the PV panel, electrical, thermal, and combined PVT efficiencies were 12.75%, 85%, and 97.75%
Jet impingement	[106], 2018	An array of jets or a multiple jet are used to attain a steady elevated thermal performance on whole plane Water jets exhibit secondary peaks at low flow parameters of Re 10000 and a low distance between impingement plates to nozzle
Immersion cooling	[107], 2009	Improved performance of PV cells immersed in liquids under simulated sunlight. Non-polar silicon oil showed best performance
Immersion cooling	[108], 2010	PV panel submerged in water at different submersion depths Lower electrical efficiency when submerged in deeper water
Immersion cooling	[109], 2011	PV cells in two-axis dish concentrator tracking system immersed in de-ionized water CPV module cooled to 45°C at a 920 W/m² irradiance, 17°C ambient temperature and 30°C water inlet temperature
Immersion cooling	[110], 2012	Two structural models were developed and tested under actual weather conditions at axial and lateral direction in agreement with simulations
Immersion cooling	[111], 2013	PV panel analyzed when submerged in water at various depths Surface temperature reduced effectively, enhances electrical efficiency
Technology	Reference	Relevant information
--------------------------------	-------------	---
Immersion cooling	[112], 2014	Direct liquid-immersion cooling (dimethyl silicon oil) of CPV cells Temperature controllable from 20°C to 31°C at 920 W/m² irradiance
FTCC	[113], 1976	Parabolic concentrators parameters are evaluated: sensitivity to mirror errors, average reflections, acceptance angle, reflector area Useful for high temperature thermal applications
FTCC	[114], 1995	Performance evaluation of PV module with V-trough concentrator Showed increased efficiency in hot desert climate
FTCC	[115], 2015	Proposed high efficiency luminescent solar concentrator for flexible wave-guiding PV with optimal optical and power conversion efficiency Cost-effective and negligible heat losses or absorbed
FTCC	[116], 2015	Model for angular distribution light escaping from luminescent solar concentrator (LSC) edge Enhances efficiency of PV modules
FTCC	[117], 2015	Collection efficiency of LSC-PV elements with various shapes is studied. Overall values are slightly above 20% for optimized dye concentration, with a maximum of 30%
FTCC	[118], 2016	Dynamic heating in solar dish concentrators was studied May provide thermal energy for high temperature applications
FTCC	[119], 2016	Investigation on improving optical efficiency of LSC Double-layer LSC assured optically efficiencies 10–14% greater than the maximum value of single-dye layer
FTCC	[120], 2016	Smart solar concentrators lightweight, low cost and generate electricity 3-D tracing technique to analyze optimal optical performance
PV/Spectrum filter	[121], 2004	Analysis of spectral beam splitting approach for solar applications Selective filters for incoming solar spectrum for PV and the unfiltered part used as heat separately
PV/Spectrum filter	[122], 2010	Different spectrally-selective photonic structures improve solar PV cell systems (Rugate filter, edge filter and 3D photonic crystals)
PV/Spectrum filter	[123], 2013	May achieve high efficiency solar energy conversion Suggests improvements for optical efficiency (including geometrical limitations) and fabrication costs of spectrally splitting solar receivers
PV/Spectrum filter	[124], 2017	Analysis of PVT with easily available and less expensive liquids as spectrum filters (UV–VIS–NIR) Average efficiency of 12.53% electrical and 47% thermal
PV/photonic crystal cooling	[125], 2013	3-D metallic photonic crystals modified to be within emission spectrum for useful solar PVT High quality tungsten photonic crystals maintain stability to 1400°C
PV/photonic crystal cooling	[126], 2014	Micro-photonic design approaching ideal performance scheme to cool PV panel via radiative cooling
PV/photonic crystal cooling	[127], 2016	Thermo-photovoltaic (TPV) diodes are a trade-off to increase potential short-circuit current, but to maintain a reasonable open circuit voltage The best TPV system can give up to 23% efficiency around 1050°C, with potential for up to 50% conversion at reasonable temperatures
Table 2. (continued from previous page).

Technology	Reference	Relevant information
PV/TEC	[128], 2011	Thermoelectric (TE) converters attached to back part of PV panels. Energy yield increase of 24.9% for developed model and 10% for experimental work.
PV/TEC	[129], 2011	Water pipelines used for more effective heat transfer. Evaluation of theoretical conversion efficiency limit of system. PV/TE/GEHW system superior to PV/GEHW and conventional PV systems as electrical efficiency increases by 30%.
PV/TEC	[130], 2012	Model developed to determine temperature in different sections and calculate required power for TEC and excess heat generated. Simulation results validate efficiency improvements.
PV/TEC	[131], 2013	Model determines system temperatures and required power for cooling. Temperature maintained within limits at maximum output power.
PV/TEC	[132], 2014	Studies on thermoelectric power generation using large pn-junction. Efficiency increases from 6.8% to 10.92% at 83°C.
PV/TEC	[133], 2014	System increases overall efficiency by keeping temperature constant. Model developed to evaluate performance and reveals improved overall efficiency.
PV/TEC	[134], 2015	TEC module used to cool PV panel in hot climatic areas. Efficiency increased.
PV/TEC	[135], 2016	Heat rejected by heat sink may be useful in domestic applications. Experimental results in agreement with proposed geometric model.
PV/TEC	[136], 2016	Performance analysis of pin shaped thermoelectric generator. Increased output power of PV module corresponds to more efficient air flow duct design.
PV/TEC	[137], 2016	Formulate equations for cooling capacity, heat rejection rate and input power for PV generator. Future analyses required (technical, economic and environmental).
PV/TEC	[138], 2016	Model derived for geometry optimization of TEC modules. Simulation confirms the increase in electrical efficiency.
PV/TEC	[139], 2016	Hybrid PV/TE modules are integrated with heat sink specific design requirements. Simulation results in agreement with experimental measurements.
PV/TEC	[140], 2016	Dynamic model simulates thermal and electrical characteristics of TEM material. Simulation results for dynamic perturbation reveal maximum energy harvesting.
PV/TEC	[141], 2017	Combining the TEC module and water block heatsink improve output performance of the PV panel. Reducing PV panel temperature by 16.04%, the average output power has been increased from 8.59 W to 9.03 W.
PV/TEC	[142], 2017	A thermal model for semitransparent PVT-TEC collector is proposed. The two-proposed cases of semitransparent PVT-TEC collector exhibit electrical efficiency higher than regular semitransparent PV collector by 7.266% and 4.723%, respectively.
Technology	Reference	Relevant information
------------	-----------	---------------------
PV/TEC	[143], 2017	Fifteen TEC air duct modules assisted by a 300 Wp PV system to cool a 9.45 m\(^3\) test room investigated through experiments and simulations. Optimum temperature difference of 6.8°C, cooling capacity 517.24 W and COP 1.15. Combined system saves 1806.75 kWh/year.
PV/TEC	[144], 2017	Temperature based maximum power point tracking (MPPT) scheme presented to find optimal temperature of PV system. Simulated results demonstrate performance improvement of PV system with TEC.
PV/TEC	[145], 2017	Optimal total photovoltaic device size has been found to be around 127 μm and 1.25 μm for the mono- and poly-crystalline silicon, respectively, leading to efficiencies up to 20%, depending on photovoltaic recombination characteristics. With the cooling device, the overall efficiency was increased by up to an additional 10% (an increase of almost 50%), leading to overall efficiencies around 25%.
PV/TEC	[146], 2017	Performs a detailed thermal resistance analysis of PV-TE hybrid system and specifies criteria for selecting coupling devices and optimal design. c-Si PV and p-Si PV cells are proved to be inapplicable for the PV-TE hybrid system and practical PV-TE hybrid design process is provided.
PV/TEC	[147], 2018	An opaque photovoltaic integrated thermoelectric cooler (PV-TEC) collector has been proposed, wherein thermoelectric (TEC) module is integrated at the base of opaque photovoltaic (PV) module for the enhancement of an overall electrical efficiency.
PV/TEG	[148], 2009	Thermoelectric generator used for low-temperature waste heat recovery. The TE modules stacked in a parallel-plate heat exchanger.
PV/TEG	[149], 2010	Proposes a low-temperature waste heat thermoelectric generator setup. To enhance performance: increase waste heat temperature, TE modules series setup, expand heat sink surface area and enhance cold-side heat transfer capacity in a proper range.
PV/TEG	[150], 2011	Describes a solar heat pipe thermoelectric generator (SHP-TEG) unit. Basic parameters that influence maximum power output and conversion efficiency: solar irradiation, cooling water temperature, TE length and cross-section area, and number of TEs.
PV/TEG	[151], 2011	A system of 24 thermoelectric generators (TEG) recover and convert heat to electrical energy, at low temperature. Enhances the TEG efficiency.
PV/TEG	[152], 2012	Developed an analytic model to incorporate thermoelectric modules in glass evacuated-tube heat-pipe solar collectors and validated against the experimental data. Used to optimize design and operating parameters of prototype for combined water heating and extra electricity generation.
PV/TEG	[153], 2013	Solar-driven hybrid generation system (HGS) that integrates a silicon thin-film solar cell (STC), thermoelectric generators (TEGs) and a heat collector. Twice the generated power of a single (STC).
PV/TEG	[154], 2013	The optimal required number of TEG modules needed in order to achieve the highest overall output power by the system for fixed weather conditions is evaluated and discussed.
Technology	Reference	Relevant information
------------	-----------	----------------------
PV/TEG	[155], 2013	A micro plate-fin heat exchanger applied to a TEG is optimized to maximize output power and cost performance of generic TEG systems. Channel width, channel height, fin thickness of heat exchanger, and fill factor of TEG are optimized for a wide range of pumping power.
PV/TEG	[156], 2013	Characterization and optimization of a mTEG integrated with a two layer mHTS. A net output power of 126.3 mW/cm² was achieved with a ZT of 0.1 at ΔT of 95 K.
PV/TEG	[157], 2013	Low-cost solar thermoelectric co-generator (STECG) based on ETCs incorporating TEMs, to supply both electricity and heat simultaneously. STECG can generate 0.19 kWh of electrical energy and about 300 l of hot water at 55°C per day, when the figure of merit of thermoelectric module, ZT_m, is 0.59 and solar insolation is less than 1000 W/m².
PV/TEG	[158], 2014	Proposed 3D electro-conjugate heat transfer model for an embedded microfluidic/TEG system (μF/TEG) system. Identifies heat transfer, fluid flow and electrical parameters to optimize the system to generate enough electricity to cool itself. Maintains the temperature of the electronic device below 80°C.
PV/TEG	[159], 2016	Performance of a tandem PV–TEG hybrid, employing poly-Si as well as dye-sensitized solar cells, has been examined experimentally. Utilization of TEGs with shorter thermo-elements results in enhanced power output levels, under actual operation conditions.
PV/TEG	[160], 2016	A thermally coupled model of PV/TEG panel is established to precisely predict system performance under different weather conditions. Critical parameters: radiative heat loss from top surface and wind speed.
PV/TEG	[161], 2016	Presents thermal concentrated PV-TE hybrid power generation system with high performance, achieving a high efficiency of 23%.
PV/TEG	[162], 2017	Efficiency constrains of different PVT configurations and performance of TEG integrated PV modules, and different natural (wind velocity, ambient temperature, solar irradiation) and design (glazing, coolant and its flow type, flow rates, thermal resistance) factors and their impact on performance of different hybrid configurations (PV/T, solar thermal-TEG, and PV-TEG).
PV/TEG	[163], 2017	Underlying concepts of PV and TE and research accomplishments are reviewed. Various approaches used to optimize hybrid PV/TE systems. Future prospects and suggestions of potential approaches for further development of these generators are also discussed.
PV/TEG	[164], 2017	Investigated experimentally power and efficiency of a hybrid PV/TEG system, for five different cooling methods for TEM’s cold side: natural cooling, forced cooling, water cooling, SiO₂/water nano-fluid cooling and Fe₃O₄/water nano-fluid cooling. TEG contributes extra electrical energy of 648 J even in absence of sun.
PV/TEG	[165], 2017	A novel hybrid system with a PV cell and four TE generators. A theoretical model is developed and experimental setup is designed to test the new PV - TE hybrid system and its performance. Experiments were performed for a hybrid PV-PCM-TE system, but the results demonstrate insignificant improvements.
5. Conclusions

The exhaustive review on PV panel cooling presented attempts to classify known cooling technologies published to date in literature. Beside classic solutions of PVT with air cooling and water cooling, the last decades witnessed theoretical analyses, numerical modeling and simulations, and experimental work on novel cooling solutions using phase-change materials (PCM), heat pipes (HP), microchannel heat sinks (MCHS), nano-fluids (NFs), floating, tracking, concentrating and cooling (FTCC), fluid immersion, jet impingement, spectrum filtering or transparent coating. Given research interest of the authors in the area of thermo-electric cooling, the emphasis or the review was placed on thermoelectric cooling (TEC) and thermoelectric power generation (TEG).

The relevant information covered various aspects and characteristics presented in analyzed papers, not only thermal, electrical or economic (conversion efficiency, power enhancement, space reduction, financial benefits related to cost, installation, operation, management or warranty), but also uniformity and architectural aesthetics, functionality, liquid tightness, roof protection or life cycle extent.

Some general conclusions are briefly mentioned:
- Different parts of solar spectrum are used by PV (infrared wavelengths) and thermal collectors and use of spectrum filtering (beam splitting) technology would control PV panel temperature.
- PV panel power output, and consequently the conversion efficiency, decreases with increasing operational temperature and, therefore, cooling technologies may be employed.
- Hybrid PVT systems may decrease, optimize and control the PV panel temperature, improve the overall energy conversion efficiency, as well as minimize the space required.
- PVT system may increase the surface shading during summer, reducing the thermal load.
- Architectural aesthetics may improve, having only one type of front panel (usually PV) exposed on the outside building facade.
- PVT air cooling is the simplest solution and is very effective for space heating applications in the cold regions and for building integration applications (BIPVT).
- PVT water cooling with channel(s) below PV module is most efficient, but freezing during cold seasons may limit their applications.
- Forced circulation of liquids is more efficient that of air, but the required pumping power is also higher for liquids than for air.
- Natural circulation is more economical, but less efficient, for both air and water.
- Air is readily available everywhere, while water usage may be restricted.
- Performance of PV or PVT may be improved by hybridization with PCM, HP, MCHS, nF, TE or complementary technologies (spectrum filtering, surface coating, jet impingement etc.)
- PCM increase the electrical efficiency, maintain constant lower temperature and store energy for night time applications, however, material properties may degrade over time.
- HP and MCHS have a beneficial effect on hybrid PV system performance, but manufacturing cost and localized cooling may reduce their use.
- NFs clearly improve thermal output of the system, but technology is still under development and influences of material characteristics are not yet completely determined.
- Other aforementioned technologies may improve overall system efficiency, but may also incur higher costs, technical difficulties and require more research for proper development.
- Liquid cooling, liquid immersion, jet impingement and FCCC that use non-encapsulated liquid cooling solutions may incur corrosion and leak-proofing problems.
- Surface coating improves conversion efficiency on the electrical side, but useful heat is rejected into surroundings as waste heat.
- TE modules are capable to recover and convert low-temperature energy from the waste heat at the back side of PV panel or PVT collector, producing extra electricity at a minimum system cost, thus improving electrical conversion efficiency and controlling system temperature.

This review demonstrates that studies on TE-based solar systems are limited and significant only for the current decade. The development of technology advances at a high pace and new TE materials or structures with high figure of merit will soon represent the next generation of PVT-TE systems.
6. References

[1] REN21 2018 Renewables 2018 Global Status Report (Paris: REN21 Secretariat)
[2] NREL https://www.nrel.gov/pvl (accessed on 25.04.2018)
[3] Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2016 Solar cell efficiency tables (version 47) Prog Photovolt: Res Appl 24 pp. 3–11
[4] Tian H, Mancilla-David F, Ellis K, Muljadi E and Jenkins P 2012 A cell-to-module-to-array detailed model for photovoltaic panels Sol Energy 86 pp 2695-2706
[5] Evans D L 1981 Simplified method for predicting photovoltaic array output Sol Energy 27 pp. 555-60
[6] Petreus D, Farcas C and Ciocan I 2008 Modelling and simulation of photovoltaic cells Acta Technica Napocensis, Electronics and Communications 49 pp 42-7
[7] Abdel-Basit W, Abdel-Maksood A and Soliman F 2013 Mathematical Model for Photovoltaic Cells Leonardo J Sci 12 pp 13-28
[8] Al-Showany E 2016 The impact of the environmental condition on the performance of the photovoltaic cell American Journal of Energy Engineering 4(1) pp 1-7
[9] Marcu M, Niculescu T, Slusariuc R and Popescu F 2016 Modeling and simulation of temperature effect in polycrystalline silicon PV cells IOP Conf Ser: Mater Sci Eng 133 012005
[10] Wolf M 1976 Performance analysis of combined heating and photovoltaic power systems for residences Energy Convers Manag 16 pp 79-90
[11] Kern Jr E C and Russell M C 1978 Combined photovoltaic and thermal hybrid collector systems Proc of 13th IEEE Photovoltaic Specialists Washington DC USA pp 1153-7
[12] Suzuki A and Kitamura S 1980 Combined photovoltaic and thermal hybrid collector J Appl Phys 19 pp 79-83
[13] Cox III C H and Raghuraman P 1985 Design considerations for flat plate photovoltaic/thermal collectors Sol Energy 35 pp 227-41
[14] Sharma S N, Mathur S S and Kandpal T C 1987 Analytical performance evaluation of combined photovoltaic-thermal concentrator receiver systems with linear absorbers Energy Convers Manag 27 pp 361-5
[15] Agarwal R K and Garg H P 1994 Study of a photovoltaic thermal system thermosyphonic solar water heater combined with solar cells Energy Convers Manag 35 pp 605-20
[16] Tiwari A and Sodha M S 2006 Performance evaluation of solar PV/T system: an experimental validation Sol Energy 80 pp 751-9
[17] Tonui J K and Tripanagnostopoulos Y 2007 Air-cooled PV/T solar collectors with low cost performance improvements Sol Energy 81 pp 498-511
[18] Dubey S and Tiwari G N 2008 Thermal modeling of a combined system of photovoltaic thermal (PV/T) solar water heater Sol Energy 82 pp 602-12
[19] Tonui J K and Tripanagnostopoulos Y 2008 Performance improvement of PV/T solar collectors with natural air flow operation Sol Energy 82 pp 1-12
[20] Santbergen R, Rindt C C M, Zondag H A and van Zolingen R J Ch 2010 Detailed analysis of the energy yield of systems with covered sheet-and-tube PVT collectors Sol Energy 84 pp 867-78
[21] Leenders F, Schaap A B, van der Ree B G C and van der Helden W G 2000 Technology review on PV/Thermal concepts Proc of European PV Solar Energy Conference, Glasgow, Scotland
[22] Robles-Ocampo B, Ruiz-Vasquez E, Canseco-Sanchez H, Cornejo-Meza R C, Trapaga-Martinez G, Garcia-Rodriguez F J, Rodriguez-Hernandez J and Vorobiev Y 2007 Photovoltaic/thermal solar hybrid system with bifacial PV module and transparent plane collector Sol Energy Mater Sol Cells 91 pp 1966-71
[23] Charalambous P G, Maidment G G, Kalogirou S A and Yiakoumetti K 2007 Photovoltaic thermal (PV/T) collectors: a review Appl Therm Eng 27 pp 275-86
[24] Zondag H A 2008 Flat-plate PV–Thermal collectors and systems: a review 2008 Renew Sustain Energy Rev 12 pp 891–959
[25] Chow T T 2010 A review on photovoltaic/thermal hybrid solar technology Appl Energy 87 pp 365-79
[26] Figueiredo R, Cardoso A, Aderito A 2010 Hybrid photovoltaic-thermal collectors: a review IFIP Adv Inf Commun Technol 314 pp 477-84
[27] Hasan M A and Sumathy K 2010 Photovoltaic thermal module concepts and their performance analysis: a review Renew Sustain Energy Rev 14 pp1845-59
[28] Adnan I, Othman M Y, Ruslan M H, Sohif M and Kamaruzzaman S 2011 Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors Renew Sustain Energy Rev 15 pp 352-65
[29] Avezov R R, Akhato M and Avezova N R 2011 A review on photovoltaic–thermal (PV-T) air and water collectors Appl Sol Energy 47 pp 169-83
[30] Chen H and Riffat S B 2011 Development of photovoltaic thermal technology in recent years: a review Int J Low-Carbon Technol 6 pp 1-13
[31] Kumar R and Rosen M A 2011 A critical review of photovoltaic-thermal solar collectors for air heating Appl Energy 88 pp 3603-14
[32] Riffat S B and Cuce E 2011 A review on hybrid photovoltaic/thermal collectors and systems Int J Low-Carbon Technol 6 pp 212–41
[33] Zhang X, Zhao X, Smith S, Xu J and Yu X 2012 Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies Renew Sustain Energy Rev 16 pp 599-617
[34] Bhaskar P and Edison G 2013 A review of mathematical models for performance analysis of hybrid solar Photovoltaic-Thermal (PV/T) air heating systems Adv Mater Res: Trans Techn Publ 768 pp 29-39
[35] Bhaskar B G and Tendolkar M V 2013 Hybrid photovoltaic thermal system: a state-of-the-art literature review Int J Mech Prod Eng 2 pp 44-51
[36] Othman M Y, Adnan I, Li J G, Ruslan M H and Kamaruzzaman S 2013 Photovoltaic-thermal (PV/T) technology - the future energy technology Renew Energy 49 pp 171-4
[37] Palaskar V and Deshmukh S 2013 A critical review on enhancement in system performance of a hybrid solar flat plate PV/T collector system Int J Energy Sci 3 pp 395-403
[38] Moradi K, Ebadian M A and Lin C X 2013 A review of PV/T technologies: effects of control parameters Int J Heat Mass Transf 64 pp 483-500
[39] Tian Y and Zhao C Y 2013 A review of solar collectors and thermal energy storage in solar thermal applications Appl Energy 104 pp 538-53
[40] Aste N, del Pero C and Leonforte F 2014 Water flat plate PV-thermal collectors: a review Sol Energy 102 pp 98-115
[41] Gulhane N P and Chavan K V 2014 A critical technological literature review of photovoltaic-thermal solar collectors system Int J Current Eng Tech Special Issue-3 pp 258-264
[42] Hamid S A, Othman M Y, Kamaruzzaman S and Zaidi, S H 2014 An overview of photovoltaic thermal combination (PV/T combi) technology Renew Sustain Energy Rev 38 pp 212-22
[43] Michael J J, Iniyann S and Goic R 2015 Flat plate solar photovoltaic-thermal (PV/T) systems: a reference guide Renew Sustain Energy Rev 51 pp 62-88
[44] Besheer A H, Smyth M, Zacharopoulos A, Mondol J and Pugsley A 2016 Review on recent approaches for hybrid PV/T solar technology Int J Energy Res 40 pp 2038-53
[45] Elbreki A M, Alghoul M A, Al-Shamani A N, Ammara A A, Yegani B, Aboghrara A M, Rusaln M H and Sopian K 2016 The role of climatic-design-operational parameters on combined PV/T collector performance: A critical review Renew Sustain Energy Rev 57 pp 602-47
[46] Hasanuzzaman M, Malek A B M A, Islam M M, Pandey A K and Rahim N A 2016 Global advancement of cooling technologies for PV systems: A review Sol Energy 137 pp 25-45
[47] Jakhair S, Soni M S and Gakkar N 2016 Historical and recent development of concentrating photovoltaic cooling technologies Renew Sustain Energy Rev 60 pp 41-59
[48] Al-Waeli A H A, Sopian K, Kazem H A and Chaichan M T 2017 Photovoltaic/Thermal (PV/T) systems: Status and future prospects Renew Sustain Energy Rev 77 pp 109-30

[49] Siecker J, Kusakana K and Numbi B P 2017 A review of solar photovoltaic systems cooling technologies Renew Sustain Energy Rev 79 pp 192-203

[50] Chauhan A, Tyagi V V and Anand S 2018 Futuristic approach for thermal management in solar PV/thermal systems with possible applications Energy Convers Manag 163 pp 314-54

[51] Joshi S S and Dhole A S 2018 Photovoltaic -Thermal systems (PVT): Technology review and future trends Renew Sustain Energy Rev 92 pp 848-82

[52] Tripanagnostopoulos Y, Nousia T, Souliotis M and Yianoulis P 2002 Hybrid photovoltaic/thermal solar systems Sol Energy 72 pp 217-34

[53] Rahul S R and Hariharan R 2004 Performance study of solar photovoltaic thermal collector integrated with cooling system Int J Emerg Eng Res Technol 2 pp 132-45

[54] Joshi A S, Tiwari A, Tiwari G N, Dincer I and Reddy B V 2009 Performance evaluation of a hybrid photovoltaic thermal (PV/T) (glass-to-glass) system Int J Thermal Sci 48 pp 154-64

[55] Sarhaddi F, Farahat S, Ajam H, Behzadmehr A and Mahdavi Adeli M 2010 An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector Appl Energy 87 pp 2328-39

[56] Singh G K, Agrawal S and Tiwari A 2012 Analysis of different types of hybrid photovoltaic thermal air collectors: a comparative study J Fundamentals Renew Energy Appl 2 pp 1-4

[57] Bahrehmand D, Ameri M and Gholampour M 2015 Energy and exergy analysis of different solar air collector systems with forced convection Renew Energy 83 pp 1119-30

[58] Cao C, Li C, Feng G, Zhang R and Huang K 2016 Research on PV/T – air source heat pump integrated heating system in severe cold region Procedia Eng 146 pp 410-4

[59] Saygin H, Nowzari R, Mirzaei N and Aldabaghi L B Y 2016 Performance evaluation of a modified PV/T solar collector: a case study in design and analysis of experiment: an Experimental study Sol Energy 141 pp 210-21

[60] Mojumder J C, Ong H C, Chong W T, Izadyar N and Shamshirband S 2017 The intelligent forecasting of the performances in PV/T collectors based on soft computing method Renew Sustain Energy Rev 72 pp 1366-78

[61] Tripanagnostopoulos Y, Yianoulis P and Patrikios D 1996 Hybrid PV/TC solar system Renew Energy 8 pp 505-8

[62] Zondag H A, de Vries D W, van Helden W G J, van Zolingen R J C and van Steenhoven A A 2003 The yield of different combined PV-thermal collector designs Sol Energy 74 pp 253-69

[63] Kalogirou S A and Tripanagnostopoulos Y 2006 Hybrid PV/T solar systems for domestic hot water and electricity production Energy Convers Manag 47 pp 3368-82

[64] Ji J, Lu J P, Chow T T, He W and Pei G 2007 A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation Appl Energy 84 pp 222-37

[65] Tripanagnostopoulos Y 2007 Aspects and improvements of hybrid photovoltaic/thermal solar energy systems Sol Energy 81 pp 1117–31

[66] Chow T T, Pei G, Fong K F, Lin Z, Chan A L S and Ji J 2009 Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover Appl Energy 86 pp 310-16

[67] Hosseini R, Hosseini N and Khorasanizadeh H 2011 An experimental study of combining a photovoltaic system with a heating system Proc of WREC Photovolt Technol 8 pp 2993-3000

[68] Tyagi V V, Kaushik S C and Tyagi S K 2012 Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology Renew Sustain Energy Rev 16 pp 1383-98

[69] Mishra R K and Tiwari G N 2013 Energy and exergy analysis of hybrid photovoltaic thermal water collector for constant collection temperature mode Sol Energy 90 pp 58-67

[70] Rajoria C S, Agrawal S, Tiwari G N 2013 Exergetic and enviroeconomic analysis of novel hybrid PVT array Sol Energy 88 pp 110-9

[71] Evola G and Marletta L 2014 Exergy and thermoeconomic optimization of a water-cooled glazed hybrid photovoltaic/thermal (PVT) collector Sol Energy 107 pp 12-25
[72] Kroi A, Prabst A, Hamberger S, Spinnler M, Tripanagnostopoulos Y and Sattelmayer T 2014 Development of a seawater-proof hybrid Photovoltaic/Thermal solar collector Int Conf Altern Energy 52 pp 93-103

[73] Ali A H, Serag ElDin A M and Abdel-Gaid S M 2015 Effect of dust and ambient temperature on PV panels performance in Egypt Jordan Journal of Physics 8 pp 113-24

[74] Aste N, Leonforte F and Del Pero C 2015 Design, modeling and performance monitoring of a photovoltaic–thermal (PVT) water collector Sol Energy 112 pp 85–99

[75] Ntsaluba S, Zhu B and Xia X 2016 Optimal flow control of a forced circulation solar water heating system with energy storage units and connecting pipes Renew Energy 89 pp 108-24

[76] Sotehi O, Chaker A and Maalouf C 2016 Hybrid PV/T water solar collector for net zero energy building and fresh water production: a theoretical approach Desalination 385 pp 1-11

[77] Nahar A, Hasanuzzaman M and Rahim A 2017 A three-dimensional comprehensive numerical investigation of different operating parameters on the performance of a photovoltaic thermal system with pancake collector J Sol Energy Eng 139 pp 1-16

[78] Tan W C, Chong K K and Tan M H 2017 Performance study of water-cooled multiple channel heat sinks in the application of ultra-high concentrator photovoltaic system Sol Energy 147 pp 314-27

[79] Huang M J, Eames P C and Norton B 2004 Thermal regulation of building-integrated photovoltaics using phase change materials Int J Mass Heat Transf 47 pp 2715-33

[80] Huang M J, Eames P C and Norton B 2006 Phase change materials for limiting temperature rise in building integrated photovoltaics Sol Energy 80 pp 1121-30

[81] Atkin P and Farid M M 2015 Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins Sol Energy 114 pp 217-28

[82] Sardarabadi M, Passandideh-Fard M, Maghrebi M J and Ghazikhani M 2016 Experimental study of using both ZnO/ water nanofluid and phase-change material (PCM) in photovoltaic thermal systems Sol Energy Mater Sol Cells 161 pp 62-9

[83] Stropnik R and Strith U 2016 Increasing the efficiency of PV panel with the use of PCM Renew Energy 97 pp 671-9

[84] Su D, Jia Y, Alva G, Liu L and Fang G 2016 Comparative analysis on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials Energy Convers Manag 131 pp 79-89

[85] Al-Waeli A H A, Sopian K, Chaichan M T, Kazem H A, Ibrahim A, Mat S and Ruslan M H 2017 Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: an experimental study Energy Convers Manage 151 pp 693-708

[86] Hachem F, Abdulhlay B, Ramadan M, El Hage H, El Rab M G and Khaled M 2017 Improving the performance of photovoltaic cells using pure and combined phase change materials – experiments and transient energy balance Renew Energy 107 pp 567-75

[87] Preet S, Bhushan B and Mahajan T 2017 Experimental investigation of water based PVT system with and without phase change material (PCM) Sol Energy 155 pp 1104-20

[88] Tang X, Quan Z and Zhao Y 2010 Experimental investigation of solar panel cooling by a novel micro-heat pipe array Energy Power Eng 2 pp 171-4

[89] Wu S Y, Zhang Q L, Xiao L and Guo F H 2011 A heat pipe photovoltaic/thermal (PV/T) hybrid system and its performance evaluation Energy Build 43 pp 3558-67

[90] Zhang B, Lv J, Yang H, Li T and Ren S 2015 Performance analysis of a heat pipe PV/T system with different circulation tank capacities Appl Therm Eng 87 pp 89-97

[91] Hou L, Quan Z, Zhao Y, Wang L and Wang G 2016 An experimental and simulative study on a novel photovoltaic-thermal collector with micro heat pipe array (MHPA-PV/T) Energy Build 124 pp 60-9

[92] Hu M, Zheng R, Pei G, Wang Y, Li J and Ji J 2016 Experimental study of the effect of inclination angle on the thermal performance of heat pipe photovoltaic/thermal (PV/T) systems with wickless heat pipe and wire-meshed heat pipe Appl Therm Eng 106 pp 651-60
[93] Du Y 2017 Advanced thermal management of a solar cell by a nano-coated heat pipe plate: a thermal assessment Energy Convers Manage 134 pp 70-6

[94] Jouhara H, Szulgowska-Zgrzywa M, Sayegh M A, Milko J, Danielewicz J, Nannou T K and Lester S P 2017 The performance of a heat pipe based solar PV/T roof collector and its potential contribution in district heating applications Energy 136 pp 117-25

[95] Popescu A, Hernandez-Guerrero A, Donosa D and Panaite C E 2010 Environmentally friendly, improved solar thermal collectors Environ Eng Manag J 9 pp 1363-9

[96] Ramos-Alvarado B, Li P, Liu H and Hernandez-Guerrero A 2011 CFD study of liquid-cooled heat sinks with microchannel flow field configurations for electronics, fuel cells, and concentrated solar cells Appl Therm Eng 31 pp 2494–507

[97] Deng Y, Zhao Y, Wang W, Quan Z, Wang L and Yu D 2013 Experimental investigation of performance for the novel flat plate solar collector with micro-channel heat pipe array (MHPA-FPC) Appl Therm Eng 54 pp 440-9

[98] Radwan A and Ahmed M 2017 The influence of microchannel heat sink configurations on the performance of low concentrator photovoltaic systems Appl Energy 206 pp 594-611

[99] Di Capua M, Escobar R, Diaz A J and Guzman A M 2018 Enhancement of the cooling capability of a high concentration photovoltaic system using microchannels with forward triangular ribs on sidewalls Appl Energy 226 pp 160-80

[100] Gilmore N, Timchenko V and Menictas C 2018 Microchannel cooling of concentrator photovoltaics: A review Renew Sustain Energy Rev 90 pp 1041-59

[101] Bellos E and Tzivanidis C 2017 Yearly performance of a hybrid PV operating with nanofluid Renew Energy 113 pp 867-84

[102] Aberoumand S, Ghamari S and Shabani B 2018 Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: An experimental study Sol Energy 165 pp 167-77

[103] Minea A A and El-Maghlany W M 2018 Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: Recent findings and numerical comparison Renew Energy 120 pp 350-64

[104] Bahaidarah H M 2016 Experimental performance evaluation and modeling of jet impingement cooling for thermal management of photovoltaics Sol Energy 135 pp 605-17

[105] Hasan H A, Sopian K, Jaaz A H and Al-Shamani A N 2017 Experimental investigation of jet array nanofluids impingement in photovoltaic/thermal collector Sol Energy 144 pp 321-34

[106] Nadda R, Kumar A and Maiithani R 2018 Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: A review Renew Sustain Energy Rev 93 pp 331-53

[107] Wang Y, Fang Z, Zhu L, Huang Q, Zhang Y and Zhang Z 2009 The performance of silicon solar cells operated in liquids Appl Energy 86 pp 1037-42

[108] Rosa-Clot M, Rosa-Clot P, Tina G M and Scandura P F 2010 Submerged photovoltaic solar panel: SP2 Renew Energy 35 pp 1862-5

[109] Zhu L, Boehm R F, Wang Y, Halford C and Sun Y 2011 Water immersion cooling of PV cells in a high concentration system Sol Energy Mater Sol Cells 95 pp 538–45

[110] Xiang H, Wang Y, Zhu L, Han X, Sun Y and Zhao Z 2012 3D numerical simulation on heat transfer performance of a cylindrical liquid immersion solar receiver Energy Convers Manag 64 pp 97-105

[111] Chinamhora T, Cheng G, Tham Y and Irshad W 2013 PV panel cooling system for Malaysian climate conditions Proc of 2013 International Conference on Energy and Sustainability Karachi, Pakistan

[112] Sun Y, Wang Y, Zhu L, Yin B, Xiang H and Huang Q 2014 Direct liquid-immersion cooling of concentrator silicon solar cells in a linear concentrating photovoltaic receiver Energy 65 pp 264-71

[113] Rabl A 1976 Comparison of solar concentrators Sol Energy 18 pp 93-111

[114] Shaltout M A M, Ghettas A and Sabry M 1995 V-trough concentrators on a photovoltaic full tracking system in a hot desert climate Renew Energy 6 pp 527-32
[115] Correia S F H, Lima P P, Andre P S, Ferreira M R S and Carlos L A D 2015 High-efficiency luminescent solar concentrators for flexible wave guiding photovoltaics Sol Energy Mater Sol Cells 138 pp 51-7
[116] Parel T S, Pistolas C, Danos L and Markwart T 2015 Modelling and experimental analysis of the angular distribution of the emitted light from the edge of luminescent solar concentrators Opt Mater 42 pp 532-7
[117] Vishwanathan B, Reinders A H M E, de Boer D K G, Desmet L, Ras A J M, Zahn F H and Debije M G 2015 A comparison of performance of flat and bent photovoltaic luminescent solar concentrators Sol Energy 112 pp 120-7
[118] Andrade L A, Barroso M A S and Vieira L G M 2016 A study on dynamic heating in solar dish concentrators Renew Energy 87 pp 501-8
[119] Carlotti M, Ruggieri G, Bellina F and Pucci A 2016 Enhancing optical efficiency of thin-film luminescent solar concentrators by combining energy transfer and stacked design J Lumin 171 pp 215-20
[120] Wu Y, Connelly K, Liu Y, Gu X, Gao Y and Chen G Z 2016 Smart solar concentrators for building integrated photovoltaic façades Sol Energy 133 pp 111-8
[121] Imenes A G and Mills D R 2004 Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review Sol Energy Mater Sol Cells 84 pp 19-69
[122] Peters M, Goldschmidt J C, Loper P, Gross B, Upping J, Dimroth F, Wehrspho B R B and Blasi B 2010 Spectrally-selective photonic structures for PV applications Energies 3 171-93
[123] Mojiri A, Taylor R, Thomsen E and Rosengarten G 2013 Spectral beam splitting for efficient conversion of solar energy - A review Renew Sustain Energy Rev 28 pp 654-63
[124] Joshi S and Dhoble A S 2017 Experimental investigation of solar photovoltaic thermal system using water, coconut oil and silicone oil as spectrum filters J Braz Soc Mech Sci Eng 39 pp 1-10
[125] Arpin A K, Losego M D, Cloud A N, Ning H, Mallek J, Sergeant N P, Zhu L, Yu Z, Kalanyan B, Parsons G N, Girolami G S, Abelson J R, Fan S and Braun P V 2013 Three dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification Nat Commun 4:2630 DOI:10.1038/ncomms3630
[126] Zhu L, Raman A, Wang K X, Anoma M A and Fan S 2014 Radiative cooling of solar cells Optica 1 pp 32-8
[127] Zhou Z, Sakr E, Sun Y and Bermel P 2016 Solar thermophotovoltaics: reshaping the solar spectrum Nanophotonics 5 pp 1-21
[128] van Sark W G J H M 2011 Feasibility of photovoltaic-thermoelectric hybrid modules Appl Energy 88 pp 2785-90
[129] Yang D and Yin H 2011 Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric, and heat utilization IEEE Trans Energy Convers 26 pp 662-70
[130] Najafi H and Woodbury K 2012 Feasibility study of using thermoelectric cooling modules for active cooling of photovoltaic panels ASME Proc IMECE2012 6 pp 1743-51
[131] Najafi H and Woodbury K 2013 Optimization of a cooling system based on Peltier effect for photovoltaic cells Sol Energy 91 pp 152-60
[132] Ahadi S, Hoseini H R and Faez R 2014 Using thermoelectric devices in photovoltaic cells in order to increase efficiency Indian J Sci Res 2 pp 20-6
[133] Borkar D S, Prayagi S V and Gotmare J 2014 Performance evaluation of photovoltaic solar panel using thermoelectric cooling Int J Eng Res 3 pp 536-9
[134] Benghanem M, Al-Mashraqi A A and Daffalla K O 2015 Performance of solar cells using thermoelectric module in hot sites Renew Energy 89 pp 51-9
[135] Senthil K R, Puya Priyadharshini N and Natarajan E 2015 Experimental and numerical analysis of photovoltaic solar panel using thermoelectric cooling Indian J Sci Technol 8 pp 1–9
[136] Ali H, Yilbas B S and Al-Sulaiman F A 2016 Segmented thermoelectric generator: influence of pin shape configuration on the device performance Energy 111 pp 439-52
[137] Enescu D and Spertino F 2016 Applications of hybrid photovoltaic modules with thermoelectric cooling *Energy Procedia* 111 pp 904-913

[138] Hashim H, Bomphe J J and Min G 2016 Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system *Renew Energy* 87 pp 458-63

[139] Sopranì S, Haertel J, Lazarov B, Sigmund O and Engelbrecht K 2016 A design approach for integrating thermoelectric devices using topology optimization *Appl Energy* 176 pp 49-64

[140] Verma V, Kane A and Singh B 2016 Complementary performance enhancement of PV energy system through thermoelectric generation *Renew Sustain Energy Rev* 58 pp 1017-26

[141] Amelia A R, Jusoh M A and Idris I S 2017 Effect of Thermoelectric Cooling (TEC) module and the water flow heatsink on Photovoltaic (PV) panel performance *EPJ Web of Conferences* 162, 01077

[142] Dimri N, Tiwari A and Tiwari G N 2017 Thermal modelling of semitransparent photovoltaic thermal (PVT) with thermoelectric cooler (TEC) collector *Energy Convers Manage* 146 pp 68-77

[143] Irshad K, Habib K, Basrawi F and Saha B B 2017 Study of a thermoelectric air duct system assisted by photovoltaic wall for space cooling in tropical climate *Energy* 119 pp 504-22

[144] Kane A, Verma V and Singh B 2017 Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel *Renew Sustain Energy Rev* 75 pp 1295-305

[145] Machrafi H 2017 Enhancement of a photovoltaic cell performance by a coupled cooled nanocomposite thermoelectric hybrid system, using extended thermodynamics *J Appl Phys* 17 pp 890-911

[146] Yin E, Li Q and Xuan Y 2017 Thermal resistance analysis and optimization of photovoltaic-thermoelectric hybrid system *Energy Conv Manag* 143 pp 188-202

[147] Dimri N, Tiwari A and Tiwari G N 2018 Effect of thermoelectric cooler (TEC) integrated at the base of opaque photovoltaic (PV) module to enhance an overall electrical efficiency *Sol Energy* 166 pp 159-70

[148] Niu X, Yu J and Wang S 2009 Experimental study on low-temperature waste heat thermoelectric generator *Journal of Power Sources* 188 pp 621-6

[149] Gou X, Xiao H and Yang S 2010 Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system *Appl Energy* 87 pp 3131-6

[150] He W, Su Y, Riffat S B, Hou J X and Ji J 2011 Parametrical analysis of the design and performance of a solar heat pipe thermoelectric generator unit *Appl Energy* 88 pp 5083-9

[151] Hsu C T, Huang G Y, Chu H S, Yu B and Yao D J 2011 Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators *Appl Energy* 88 pp 1291-7

[152] He W, Su Y, Wang Y Q, Riffat S B and Ji J 2012 A study on incorporation of thermoelectric modules with evacuated-tube heat-pipe solar collectors *Renew Energy* 37 pp 142-9

[153] Deng Y, Zhu W, Wang Y and Shi Y 2013 Enhanced performance of solar-driven photovoltaic–thermoelectric hybrid system in an integrated design *Sol Energy* 88 pp 182-91

[154] Najafi H and Woodbury K A 2013 Model and Analysis of a Combined Photovoltaic-Thermoelectric Power Generation System *J Sol Energy Eng* 135 031013

[155] Rezania A, Yazawa K, Rosendahl L A and Shakouri A 2013 Co-optimized design of microchannel heat exchangers and thermoelectric generators *International Journal of Thermal Sciences* 72 pp 73-81

[156] Wojtas N, Rüthemann L, Glatz W and Hierold C 2013 Optimized thermal coupling of micro thermoelectric generators for improved output performance *Renew Energy* 60 pp 746-53

[157] Zhang M, Miao L, Kang Y P, Tanemura S, Fisher C A J, Xu G, Li C X and Fan G Z 2013 Efficient, low-cost solar thermoelectric cogenerators comprising evacuated tubular solar collectors and thermoelectric modules *Appl Energy* 109 pp 51-9

[158] Kiflemariam R, Fekrmandi H and Lin C 2014 Embedded microfluidic/thermoelectric generation system for self-cooling of electronic devices *Proc 2014 COMSOL Conference*, Boston, US
[159] Kossyvakis D N, Voutsinas G D and Hristoforou E V 2016 Experimental analysis and performance evaluation of a tandem photovoltaic-thermoelectric hybrid system Energy Convers Manag 117 pp 490-500

[160] Rezania A, Sera D and Rosendahl L A 2016 Coupled thermal model of photovoltaic-thermoelectric hybrid panel for sample cities in Europe Renew Energy 99 pp 127-35

[161] Zhu W, Deng Y, Wang Y, Shen S and Gulfam R 2016 High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management Energy 100 pp 91-101

[162] Babu C and Ponnambalam P 2017 The role of thermoelectric generators in the hybrid PV/T systems: A review Energy Convers Manag 151 pp 368-85

[163] Huen P and Daoud W A 2017 Advances in hybrid solar photovoltaic and thermoelectric generators Renew Sustain Energy Rev 72 pp 1295–302

[164] Soltani S, Kasaeian A, Sarrafha H and Wen D 2017 An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application Sol Energy 155 pp 1033-43

[165] Zhang J and Xuan Y 2017 Performance improvement of a photovoltaic - thermoelectric hybrid system subjecting to fluctuant solar radiation Renew Energy 113 pp 1551-8

Acknowledgments
This work was partly supported by the project POSCCE-A2-O2.2.1-2009-4-ENERED, ID nr. 911, co-financed by the European Social Fund within the Sectoral Operational Program “Increase of Economic Competitiveness”.

24