Effect of anisotropy pores on thermohaline convective instability in micropolar ferrofluid

Nirmala P Ratchagar¹ and S. Seyalmurugan²
¹Department of Mathematics, Annamalai University, Chidambaram, Tamilnadu - 608 002, India.
²Department of Mathematics, Jayagovind Harigopal Agarwal Agarsen College, Madhavaram, Chennai, Tamilnadu - 600 060, India.

Corresponding author: ²seyal18051990@gmail.com

Abstract: This work deals with the thermohaline convective instability on horizontal micropolar ferrofluid layer in anisotropic porous effect subjected to a transverse uniform magnetic field. The linear stability analysis is used to omit the non-linear terms on governing equations, normal mode analysis is taken to the study and free boundary conditions are applied. The critical magnetic thermal Rayleigh number N_{SC} is calculated analytically for sufficient large values of M_1. The principle of exchange of stabilities is satisfied for micropolar ferrofluid in an anisotropic porous medium without M_1, N_3, N_5 and τ. The sufficient conditions for the non-existent of overstability are also examined. Moreover, in this work, we tried to investigate the anisotropy effect on porous medium on the system. The parameters N_1 and N_5' dominate the system and the large porous medium is taken into account.

Keywords: Anisotropic porous medium, thermohaline convection, micropolar ferrofluid and Brinkman model.

1 Introduction

The double diffusion related to the thermohaline convective effects were first discovered an outstanding solutions of the various investigations by Stern [1], Turner [2]-[3], Huppert and Turner [4] - [5] and Turner and Stommel [6]. The phenomena on double diffusive convective instability excellently investigated by Turner [6]. Turner and Chen [7] have taken to analyse the sugar-salt system and shadowgraph photography is made to excellent work. Veronis [8] investigated the thermohaline convective instability in fluid layer. This thermohaline convective instability has been obtained by Veronis [9] in the in the Boussinesq approximation. Huppert and Moore [10] have obtained a various results of non-linearity on double diffusive convection and then Knobloch et al. [11] used a five mode truncation given by Veronis [8] to get the solution that were in excellent qualitative agreement with the numeral results of Huppert and Moore [10]. The two illustrations of 2D non-linear double diffusive convective instability has been studied by Knobloch and Proctor [12]. In this, non-linear solution could be found analytically. The unstable mode has been studied in the most cases on thermohaline convective instability subjected to linear grandients by Baines and Gill [13] and they introduced salinity Rayleigh number. Vaidyanathan et al.
[14] examined the ferrothermohaline convection. The flow of fluid phenomena with porous behavior is an important investigation because of its natural case. The stability analysis of fluid flow in a porous behavior was taken by Wooding [16] and Lapwood [15] with the Darcy resistance. Moreover, the effect of porous on double diffusive convective instability in a fluid is of interesting study in engineering sciences. Nield and Bejan [17] gave the double diffusive convective instability in porous medium. The engrossing features of the ferrofluid is the hope of influencing flow by the magnetic field and vice-versa (Feynman et al. [19], Shliomis [20]). High quality review on the convection of ferrofluid has been done by Rosensweig [21]. Finlayson [22] opened the convective instability work on ferrofluid layer with uniform vertical magnetic field. Vaidyanathan et al. [23] studied the porous effect on Finlayson [22] using Brinkman number. Then, this analysis was taken for investigate with the anisotropy effect on Brinkman pores by Sekar et al. [24].

Eringen [25] introduced the micropolar fluids theory. This theory has been developed by Eringen [26] on thermal effect. An excellent reviews and applications of this fluids theory can be obtained in by Ariman et al. [27] and Eringen [28]. Rosensweig [21] suggested the wonderful monograph on ferrofluid in this. It is apt to take the microrotation behavior on the particles. Due to this truth, the works have been assumed by treating the ferrofluid as micropolar fluids. The Rayleigh-Bénard convection problem has been analyzed by Abraham [29] on micropolar ferrofluid layer. In this, it is allowed by uniform magnetic field and stress-free boundaries is taken. Sunil and Bharti [30] has been undertaken the porous effect in micropolar ferrofluid. The thermosolutal convection has been taken by Sharma and Sharma [31] in micropolar fluids in an existence of a porous medium. Sunil et al. [32]-[38] investigated the double diffusive convective instability in micropolar ferrofluid in an existence of pores and non-pores effects.

Our plan is prolong this work to the investigation of thermohaline convective instability in Eringen’s micropolar fluid in an existence of anisotropic porous effect and uniform magnetic field taken into account. In other words, an infinite horizontal micropolar ferrofluid layer heated from below and it is salted from above existence of anisotropic porous medium. The thickness of the fluid layer is and the temperature and salinity at the bottom and top surfaces are and respectively and are maintained.

2 Mathematical formulation of problem

The continuity equation is

\[\nabla \cdot \mathbf{q} = 0. \quad (1) \]

The momentum equation is

\[\rho_0 \left(\frac{\partial \mathbf{q}}{\partial t} + \mathbf{q} \cdot \nabla \right) \mathbf{q} = \rho \mathbf{g} + \nabla \cdot (\mathbf{H} \mathbf{B}) - \nabla p + 2\zeta (\nabla \times \omega) + (\zeta + \eta) \nabla^2 \mathbf{q} - \frac{1}{k} (\zeta + \eta) \mathbf{q}. \quad (2) \]

The internal angular momentum equation is

\[\rho_0 \left(\frac{\partial \mathbf{\omega}}{\partial t} + (\mathbf{q} \cdot \nabla) \right) \mathbf{\omega} = 2\zeta (\nabla \times \mathbf{q} - 2\omega) + (\lambda' + \eta') \nabla (\nabla \cdot \mathbf{\omega}) + \mu_0 (\mathbf{M} \times \mathbf{H}) + \eta' \nabla^2 \mathbf{\omega}, \quad (3) \]

The temperature equation is

\[\left[\rho_0 C_{v,H} - \mu_0 \mathbf{H} \cdot \left(\frac{\partial \mathbf{M}}{\partial t} \right)_{v,H} \right] \frac{\partial T}{\partial t} + \rho_s C_s \left(\frac{\partial T}{\partial t} \right)_{v,H} + \mu_0 T \left(\frac{\partial \mathbf{M}}{\partial t} \right)_{v,H} \cdot \frac{\partial \mathbf{H}}{\partial t} = K_1 \nabla^2 T + \delta (\nabla \times \mathbf{\omega}) \cdot \nabla T + \phi, \quad (4) \]
Considering the Maxwell’s equation, one can consider that the magnetization is

\[M = \frac{H}{\mu} M(H, T, S), \]
(5)

The linearized magnetic equation in terms of \(H_0, T_a \) and \(S_a \) is

\[M = M_0 + (H - H_0)\chi - (T - T_a)K + (S - S_a)K_2, \]
(6)

The density equation is

\[\rho = \rho_0 \left[1 - \alpha_t(T - T_a) + \alpha_s(S - S_a) \right], \]
(7)

The basic state quantities obtained are

\[\mathbf{q} = \mathbf{q}_b = (0, 0, 0), \quad T_b = T_0 - \beta_t z, \quad p = p_b(z), \quad S_b = S_0 - \beta_s z, \]
\[\rho(z) = \rho_0 [1 + \alpha_t \beta_t z - \alpha_s \beta_s z], \quad \mathbf{H}_b(z) = \left[H_0 - \frac{K_1 \beta_t z}{1 + \chi} + \frac{K_2 \beta_s z}{1 + \chi} \right] \hat{k}, \]
\[\mathbf{M}_b(z) = \left[M_0 + \frac{K_1 \beta_t z}{1 + \chi} - \frac{K_2 \beta_s z}{1 + \chi} \right] \hat{k}, \quad M_0 + H_0 = H_0'^{ext}, \quad \omega = \omega_b = (0, 0, 0). \]
(8)

A small thermal disturbance is made on the system. Let us take the perturbed components of \(\mathbf{M} \) and \(\mathbf{H} \) be \([M'_1, M'_2, M_0(z) + M'_3] \) and \([H'_1, H'_2, (H_0(z) + H'_3)] \), respectively. The perturbed state quantities are

\[\mathbf{q} = \mathbf{q}_b + \mathbf{q}', \quad \omega = \omega_b + \omega', \quad \rho = \rho_b + \rho', \quad p = p_b(z) + p', \quad T = T_0(z) + \theta, \]
\[S = S_b(z) + S', \quad \mathbf{H} = \mathbf{H}_b(z) + \mathbf{H}', \quad \mathbf{M} = \mathbf{M}_b(z) + \mathbf{M}', \]
(9)

The equation (7) can be calculated as

\[\rho' = \rho_0 (-\alpha_t \theta + \alpha_s S'), \]
(10)

Then the \(x, y \) and \(z \) components of Eq. (2) become

\[\rho_0 \frac{\partial u}{\partial t} = -\frac{\partial p}{\partial x} + \mu_0 (M_0 + H_0) \frac{\partial H'_1}{\partial x} + 2 \zeta \Omega'_1 + (\zeta + \eta) \nabla^2 u - \frac{1}{k_z} (\zeta + \eta) u, \]
(11)

\[\rho_0 \frac{\partial v}{\partial t} = -\frac{\partial p}{\partial y} + \mu_0 (M_0 + H_0) \frac{\partial H'_2}{\partial y} + 2 \zeta \Omega'_2 + (\zeta + \eta) \nabla^2 v - \frac{1}{k_z} (\zeta + \eta) v, \]
(12)

\[\rho_0 \frac{\partial w}{\partial t} = -\frac{\partial p}{\partial z} + \mu_0 (M_0 + H_0) \frac{\partial H'_3}{\partial z} - \mu_0 K \beta_t H'_3 + \frac{\mu_0 K^2 \beta_t \theta}{1 + \chi} - \frac{\mu_0 K \beta_s S'}{1 + \chi} + \mu_0 K \beta_s S'_3 + \mu_0 K \beta_s S'_3 \]
\[+ 2 \zeta \Omega'_3 + (\zeta + \eta) \nabla^2 w - \frac{1}{k_z} (\zeta + \eta) w, \]
(13)

Eqs. (3) can be calculated as

\[\rho_0 I \left(\frac{\partial \Omega'_3}{\partial t} \right) = -2 \zeta (\nabla^2 w + 2 \Omega'_3) + \eta' \nabla^2 \Omega'_3, \]
(14)

\[\rho C_1 \frac{\partial \theta}{\partial t} - \mu_0 K T_0 \frac{\partial}{\partial t} \left(\frac{\partial \phi}{\partial z} \right) \]
\[= K_1 \nabla^2 \theta + \left[\rho C_2 \beta_t - \left(\frac{\mu_0 K^2 \beta_t}{1 + \chi} \right) + \left(\frac{\mu_0 K \beta_s}{1 + \chi} \right) \right] \theta - \beta_t \Omega'_3, \]
(15)

\[\frac{\partial S}{\partial t} + \beta_s w = K_s \nabla^2 S', \]
(16)

3 Normal mode analysis technique

We undertake the perturbed quantities by use of normal modes are

\[f(x, y, z, t) = f(z, t) \exp[i k_x x + i k_y y], \]
(17)

where \(f(z, t) \) represents \(w(z, t), \theta(z, t), \phi(z, t) \) and \(S(z, t) \).
With use of the Eqs. (11)-(13), the \(z \) component of Eq. (2) can be manipulated as
\[
\rho_0 \frac{\partial}{\partial t} \left(\frac{\partial^2}{\partial z^2} - k_0^2 \right) w
= \mu_0 K \beta_t k_0^2 \frac{\partial \phi}{\partial z} - \left(\mu_0 K^2 K_2 \beta_t \right) \frac{\partial^2}{\partial z^2} \theta + \mu_0 K_2 \beta_3 k_0^2 \phi \frac{\partial \phi}{\partial z}
+ \left(\mu_0 K \beta_3 \frac{\partial^2}{\partial z^2} \right) \theta + \left(\mu_0 K^2 K_2 \beta_3 \frac{\partial^2}{\partial z^2} \right) \phi - \rho_0 g \alpha_c k_0 \theta + \rho_0 g \alpha_s k_0^2 S
+ 2 \zeta \left(\frac{\partial^2}{\partial z^2} - k_0^2 \right) \Omega^3 + (\zeta + \eta) \left(\frac{\partial^2}{\partial z^2} - k_0^2 \right)^2 w \frac{1}{k_1} (\zeta + \eta) \frac{\partial^2 w}{\partial z^2} + \frac{k_2}{k_1} \phi (\zeta + \eta) w, \tag{18}
\]
From Eq. (3) after doing mathematical calculation, one gets
\[
\rho_0 I \frac{\partial \alpha}{\partial t} = -2 \zeta \left[\left(\frac{\partial^2}{\partial z^2} - k_0^2 \right) w + 2 \Omega^3 ' \right] + \eta \left(\frac{\partial^2}{\partial z^2} - k_0^2 \right) \Omega^3 ', \tag{19}
\]
The modified Fourier heat conduction equation is
\[
\rho C_1 \frac{\partial \theta}{\partial t} - \mu_0 K T_0 \frac{\partial}{\partial z} \left(\frac{\partial \phi}{\partial z} \right)
= K_1 \left(\frac{\partial^2}{\partial z^2} - k_0^2 \right) \theta + \left(\rho C_2 \beta_t - \left(\mu_0 K^2 T_0 \frac{\partial^2}{\partial x^2} \right) \right) \theta - \delta \beta_t \Omega^3', \tag{20}
\]
The Salinity equation is
\[
\left(\frac{\partial S}{\partial t} \right) + \beta_3 w = K_S \left(\frac{\partial^2}{\partial z^2} - k_0^2 \right) S', \tag{21}
\]
By the investigation similar to Vaidyanathan et al. [?], we gets
\[
(1 + \chi) \frac{\partial^2 \phi}{\partial z^2} - \left[1 + \frac{M_0}{\mu_0} \right] k_0^2 \phi - K \frac{\partial}{\partial z} + K_2 \frac{\partial S}{\partial z} = 0, \tag{22}
\]
Then, Eqs. (18)-(22) become non-dimensional equations
\[
\frac{\partial}{\partial \tau^*} (D^2 - a^2) w^*
= R^{1/2} M_1 D \phi^* - (1 + M_1) a R^{1/2} T^* + a R^{1/2} M_5 D \phi^* + a R_S^{1/2} (1 + M_K) S^*
- a R^{1/2} M_1 M_5 T^* + a R_S^{1/2} M_5 S^* + 2 N_1 (D^2 - a^2) \Omega_3^* + (\zeta + \eta) (D^2 - a^2)^2 w^*
- (1 + N_1) \left(\frac{D^2}{k_1} - \frac{a^2}{k_2} \right) w, \tag{23}
\]
\[
N_3 \frac{\partial \Omega^3}{\partial t} = -2 N_1 \left[(D^2 - a^2) w^* + 2 \Omega^3 ' \right] + N_3 (D^2 - a^2) \Omega_3^*, \tag{24}
\]
\[
\left[P_r \frac{\partial \phi^*}{\partial \tau^*} + \varepsilon P_r M_2 \frac{\partial}{\partial \tau^*} (D \phi^*) \right]
= (D^2 - a^2) T^* + a R^{1/2} (1 - M_2 - M_5) w^* - a R^{1/2} N_4 \Omega_3^*, \tag{25}
\]
\[
P_r \frac{\partial S^*}{\partial \tau^*} = \tau (D^2 - a^2) S^* - a R_S^{1/2} \left(\frac{M_5}{M_0} \right) w^*, \tag{26}
\]
\[
D^2 \phi^* - M_3 a^2 \phi^* - DT^* + \frac{M_3}{\tau} \left(\frac{R}{R_S} \right)^{1/2} D S^* = 0, \tag{27}
\]

4 Linear stability theory

We consider the free boundary conditions. The boundary conditions on \(w, T, S \) and \(\Omega_3 \) are
\[
w^* = D^2 w^* = T^* = D \phi^* = S^* = \Omega_3^* = 0 \text{ at } z = \pm 1/2, \tag{28}
\]
The exact solutions satisfying above Eq. (28) are
\[
w^* = A e^{\sigma t} \cos \pi z^*, \quad T^* = B e^{\sigma t} \cos \pi z^*, \quad S^* = C e^{\sigma t} \cos \pi z^*,
D \phi^* = E e^{\sigma t} \cos \pi z^*, \quad \phi^* = \frac{E}{\pi} \sin \pi z^*, \quad \Omega_3^* = F e^{\sigma t} \cos \pi z^*, \tag{29}
\]
where A, B, C, E, and F are constants.

All the partial derivatives are omitted by use of Eq. (29). Then find the result of the system of homogeneous equations in Eqs. (30)-(34). Using Eq. (29) in Eqs. (23)-(27), one get

$$
\begin{align*}
-2N_1 \left[A + \frac{\pi^2 + a^2}{N_3} \right] 2M_1(1 + M_3)E - 2N_1 \left[\pi^2 + a^2 \right] F = 0, \\
0 = 0
\end{align*}
$$

(30)

$$
aR^{1/2} \left(1 - M_2 - M_2 M_5 \right) A - \left(\pi^2 + a^2 + P_r \sigma \right) B + P_r \sigma M_2 E - aR^{1/2} N_3 F = 0, \quad (32)
$$

$$
aR^{1/2} \left(\pi^2 + a^2 \right) \left[\tau \left(\pi^2 + a^2 \right) + \sigma P_r \right] C = 0, \quad (33)
$$

$$
-R^{1/2} \pi^2 B + \pi^2 M_6 \left(\frac{M_5}{M_6} \right) \left[+ R^{1/2} \left(\pi^2 + a^2 \right) M_3 \right] E = 0, \quad (34)
$$

The determinant of co-efficients of A, B, C, E and F must vanish for the existence of non-trivial Eigen functions. Eqs. (29)-(33) have been adopted to obtain

$$
U \sigma^4 + V \sigma^2 + W \sigma^2 + X \sigma + Y = 0, \quad (35)
$$

where

$$
U = u_1 P_r P_r' P_r' h, \quad V = P_r h (l' (u_1^2 P_r^2 u_2 + 1) + u_2 u_3) + u_1 u_7 P_r', \\
W = h (u_1^2 (P_r^2 u_2 + 1) + u_2 u_3) - l' (a^2 u_4 u_8 R - u_1 (u_2^2 u_2 + u_3)) P_r - 4u_1^2 P_r^2 + u_1 \tau (l' (u_1^2 P_r^2 u_2 + 1) + u_2 u_3) + u_1 u_7 P_r' + a^2 M_6 \left[l' P_r' R \right. \\
\left. - \pi^2 u_2 P_r u_7 u_8 - \pi^2 P_r R (M_5 / M_6), \right. \\
X = h (u_1^2 u_7 (u_2^2 P_r^2 u_2 + 1) + u_2 u_3) - l' (a^2 u_4 u_8 R - u_1 (u_2^2 u_2 + u_3)) + a^2 (hu_5 P_r' R - \pi^2 u_6 \left. P_r R (M_5 / M_6), \right. \\
\left. - h u_7 (u_2^2 u_4 u_8 R - u_1 (u_2^2 u_2 + u_3)), \right. \\
Y = a^2 u_1 u_7 M_6 \left(u_5 h R_x - u_6 \pi^2 \left(M_5 / M_6, \right) - 2u_1 N_1 \\
+ 2u_1^2 \pi^2 u_2 u_7 \tau R u_7 u_8 - u_1 u_7 \pi^2 \left(u_2^2 u_4 u_8 R - u_1 (u_2^2 u_2 + u_3) \right) + a^2 u_1 u_7 M_6 (hu_5 R_x - \pi^2 u_6 R (M_5 / M_6), \right. \\
h = \pi^2 + a^2 M_3, \quad u_1 = \pi^2 + a^2, \quad u_2 = 1 + N_1, \quad u_3 = (\epsilon \pi^2 + a^2 / k_1 \epsilon, \\
u_4 = 1 + u_6, \quad u_5 = 1 - M_4 + M_4^{-1} M_5, \quad u_6 = M_1 (1 + M_3), \\
u_7 = 4N_1 + u_1 N_3', \quad u_8 = 1 - M_2 - M_2 M_5.
$$

4.1 The case of stationary convection

For steady state, we consider $\sigma = 0$ in Eq. (35) one can examine the Eigen value R_{sc} and upon using $k_2 = \epsilon k_1$, the critical thermal magnetic Rayleigh number R_{sc} is obtained as

$$
R_{sc} = \frac{N_r}{D r} \quad (36)
$$

where

$$
N_r = (\pi^2 + a^2)^2 \left(4N_1 + (\pi^2 + a^2) N_3' \right) (1 + N_1) \left(\frac{\epsilon \pi^2 + a^2}{\epsilon k_1} \right) - 4 (\pi^2 + a^2) N_3', \\
D r = a^2 (1 + M_1 (1 + M_3)) (4N_1 + (\pi^2 + a^2) (N_3' - 2N_1 N_3')).
$$
To analyze analytically the effect of k_1, r, R_s, M_3, N_1, N'_3 and N'_5, we obtain the behavior of $\frac{dR_{sc}}{dk_1}$, $\frac{dR_{sc}}{dR_s}$, $\frac{dR_{sc}}{dN_1}$, $\frac{dR_{sc}}{dN'_3}$ and $\frac{dR_{sc}}{dN'_5}$. Eq. (36) gives

$$\frac{dR_{sc}}{dk_1} = -\frac{(\pi^2 + a^2)(4N_1 + (\pi^2 + a^2)N'_3)(1 + N_1 N'_5)(\pi^2 + a^2)}{\epsilon k_1^2 dr},$$

(37)

$$\frac{dR_{sc}}{d\epsilon} = -\frac{a^2(\pi^2 + a^2)(4N_1 + (\pi^2 + a^2)N'_3)(1 + N_1)}{\epsilon^2 dr},$$

(38)

$$\frac{dR_{sc}}{dR_s} = -\frac{a^2(4N_1 + (\pi^2 + a^2)N'_3)(1 + M_4 + M_4 M_5^{-1})}{\tau dr},$$

(39)

This gives that the porous medium, anisotropy parameter and Salinity Rayleigh number always have a destabilizing behavior, if $L_1 > L_2$ for stationary convection. In the non-presence of coupling parameter, N_1, the permeability of medium, anisotropic effect and stable solute gradient have a destabilizing behavior and also the same behavior is shows for the absence of spin diffusion effect (N'_3).

It follows from Eq. (36) that

$$\frac{dR_{sc}}{dM_3} = -4 \frac{N_r}{\tau^2} \frac{M_3}{2} a^2 \pi^2 M_1 (1 + M_5)N_1 (1 + M_5 \tau^{-1})$$

$$- \frac{N_r}{\tau^2} (\pi^2 + a^2)(N'_3 (1 + M_5 \tau^{-1}) - 2N_1 N'_5),$$

(40)

which is negative always if

$$(1 + M_5 \tau^{-1}) > \frac{2N_1 N'_5}{N'_3} \text{ and } L_3 > L_4$$

(41)

In this, M_3 gives destabilizing behavior when Eq. (41) satisfies. In the non-existence of N_1, R_s, τ and M_1 show the destabilizing behavior on the convective system.

Eq. (36) yields that

$$\frac{dR_{sc}}{dN_1} = \frac{1}{D_T^2} \left\{ D_r \left[(\pi^2 + a^2)(8N_1 + 4(1 + (\pi^2 + a^2)N'_3)) \left(\frac{\pi^2 + a^2}{\epsilon k_1} \right) \right]

+ N_r \left[\frac{a^2 \pi^2 M_1 (1 + M_5)}{\tau^2 + a^2 M_3} \frac{(4(1 + M_5 \tau^{-1}) - 2N_1')}{(\pi^2 + a^2)} \right] \right\},$$

(42)

which is positive always if

$$\frac{1}{u_1} > \frac{N'_3}{u_t} > \frac{2N'_3}{u_t} > \frac{1}{u_1} > \frac{N'_3}{u_t} > \frac{2N'_3}{u_t} > u_7 (1 + M_5) \text{ and } L_1 > L_2.$$

(43)

which implies that

$$\frac{1}{u_1} < \frac{N'_3}{u_t} < \frac{1}{u_1} < \frac{1}{u_1} > \frac{N'_3}{u_t} > \frac{2N'_3}{u_t}$$

(44)

This gives that N_1 has stabilizing behavior when Eq. (43) satisfies. In the absence of N'_3, Eq. (42) submits that $\frac{dR_{sc}}{dN_1}$ is always positive which imply that the stabilizing effect of N_1. Therefore, N'_3 has an most important role to develop the conditions for the stabilizing behavior which gives in Eq. (43).

It can be very easily done from Eq. (36) that

$$\frac{dR_{sc}}{dN'_3} = -\frac{1}{D_T^2} \left\{ D_r \left[\frac{a^2 (\pi^2 + a^2)(1 + M_4 + M_4 M_5^{-1})}{\tau^2 + a^2 M_3} \right] R_s M_6 \tau^{-1} \right\}$$

$$+ (\pi^2 + a^2)N_r \left[a^2 (1 + M_1 (1 + M_5)) \frac{a^2 \pi^2 M_4 (1 + M_5)}{\tau^2 + a^2 M_3} (1 + M_5 \tau^{-1}) \right],$$

(44)
which is always negative if
\[
\frac{N'_3}{2} > N'_1 N'_5 > \frac{u_2(1 + M_3 \tau^{-1})}{2u_1}, \quad L_1 > L_2 \quad \text{and} \quad L'_1 > L'_2.
\] (45)

This gives that \(N'_3\) analyzed for destabilizing behavior when Eq. (45) satisfies. In the absence of \(k_1\) and \(\varepsilon\), Eq. (44) submits that \(\frac{dR_{sc}}{dN'_5}\) is negative always which imply that the destabilizing behavior of spin diffusion. Eq. (36) also yields
\[
\frac{dR_{sc}}{dN'_5} = \left(2\alpha^2 u_1 N_2 N_5 \frac{D\tau^2}{D\tau^2} \left(u_4 - \frac{u_0}{h}\right)\right),
\] (46)
which is always positive if
\[
u_4 > \frac{u_0}{h}.
\] (47)

This presence that \(N'_5\) is analyzed for stabilizing behavior when Eq. (47) satisfies. In the absence of \(M_3\), the convective system gets stabilizing behavior and in this moment, the convection of micropolar ferromagnetic fluid is getting more. When \(M_1\) is large, one can gets \((N_{sc} = M_1 R_{sc})\) as
\[
\frac{N_{sc}}{M_1} = \frac{N_5}{D\tau^4}
\] (48)

where
\[
D\tau_1 = a^2(1 + M_3)(4N_1 + (\pi^2 + a^2)(N'_1 - 2N_1 N'_5))
\]
\[
-\frac{a^2(1 + M_3 + \pi^2)}{(2\pi + a^2)(\pi^2 + a^2)} \left((4N_1 + (\pi^2 + a^2)N'_5)(1 + M_3 \tau^{-1}) - 2N_1 N'_5(\pi^2 + a^2))\right).
\]

4.2 Principle of exchange of stabilities

We analyze the possibility of oscillatory modes, if any, on stability problem due to the presence of magnetic numbers, porous medium, micropolar parameters, anisotropy porous medium and salinity gradient. Then, equate the imaginary part of Eq. (35), we obtain
\[
\sigma_1[(VX_1 - X_3 U)\sigma'_1 + (VX_5 + X_1 X_4 - X_2 X_3)\sigma'_1 + (X_4 X_5 - X_3 X_6)] = 0,
\] (49)

where
\[
X_1 = a^2 h P_2^I u_4 u_9 + a^2 \pi^2 u_3 (1 + P'_2) u_2 + u_3 \left((1 + P'_2) u_2 + u_3\right) - h P_2 u_1 (u_2^2 u_2 + u_3) + \tau u_1 (P'_2 - u_2 u_3) + u_1 u_2 P'_2,
\]
\[
X_2 = -4 h P_1 P'_2 N'_1 u_7^2 + h P_2 u_1 (u_2^2 (1 + P'_2) u_2 + u_3) - h P_2 u_1 (u_2^2 u_2 + u_3) + \tau u_1 (u_2^2 u_2 + u_3) + u_1 u_2 P'_2,
\]
\[
X_3 = a^2 h u_4 k_1 u_1 - a^2 h u_4 u_4 u_7 P_2^I k_1 \tau - a^2 u_6 u_7 u_9 P'_2 M_6 - a u_6 u_9 l',
\]
\[
X_4 = h u_4 [u_7 (u_2^2 (1 + P'_2 u_2 + u_3) + u_1 u_2 P'_2)]
\]
\[
+ h P_2 u_3 u_2 u_2 (u_2^2 u_2 + u_3) + a^2 h u_5 u_7 M_6 R s P'_2 + a^2 h u_3 u_2 u_2,
\]
\[
X_5 = -a^2 M_5 u_6 u_7 - a^2 \pi^2 \tau l' u_1 u_6 u_9 + 2a^2 \pi^2 \tau N_1 u_2^2 u_6
\]
\[
+ 2a^2 \pi^2 N_1 N'_5 u_2^2 u_4 - a^2 \tau u_1 u_4 u_7 u_9 - a^2 \pi^2 l'M_5 u_1 u_6,
\]
\[
X_6 = 2a^2 h M_6 R s u_1 u_5 u_7 - 4\tau u_1 + \tau u_2^2 u_7 (u_2^2 u_2 + u_3),
\]

It is very clear from Eq. (49) that \(\sigma_1\) almost either non-zero or zero which means that the modes almost either oscillatory or non-oscillatory instabilities. In the non-presence of \(N_1\), \(N'_3\), \(N'_5\), \(P_1\), \(P'_2\) and \(\tau\), we obtain the result as
\[
\sigma_1^2 ((a l'u_1 u_2)^2) = 0,
\] (50)

In Eq. (50), \((a l'u_1 u_2)^2\) is positive definite. Therefore, \(\sigma_1 = 0\), it gives that oscillatory modes are not permitted and the principle of exchange of stabilities is hold for micropolar ferrofluid layer heated from below and salted from above saturating an anisotropy
porous behavior, in the non-presence of N_1, N_3, N_5, P_r, P_r' and τ. Thus from Eq. (49), one can adjudge that the oscillatory modes are introduced because of the presence of N_1, N_3, N_5, P_r, P_r' and τ, which were non-existent in their non-presence.

4.3 The case of overstability

In this part, we examine the possibility that the observed instability may really be overstability. Since we desire to examine R through the state of good oscillations, it is adequate to obtain the conditions for which Eq. (35) will allow solutions with real σ_i. Then, we equate real and imaginary part of Eq. (35) and removing R between them, one gets

$$B_1C_1^3 + B_2C_1^2 + B_3C_1 + B_4 = 0,$$

(51)

where

$$B_1 = UX_1, \quad B_2 = X_1X_2 + UX_5, \quad B_3 = X_1X_6 + X_2X_5 + X_3X_4, \quad B_4 = X_5X_6.$$

It is understanding from Eq. (51), B_1 is positive if $I' = \frac{hP\rho u_a}{M_6}$.

Also, it is understanding from Eq. (51), B_4 positive if

$$N_1N_5 > \frac{|I'|}{2u_1}, \quad N_1N_5 > \frac{\pi^2\rho u_a}{\tau u_1}, \quad N_1N_5 > I'(u_1^2u_2 + u_3)/L_5,$$

$$N_1N_5 > \frac{\rho u_a}{L_5}, \quad I' > \frac{L_5}{\rho u_a}, \quad L_7 > L_8, \quad \tau > \frac{\rho u_a}{L_5} \quad \text{and} \quad \tau > a^2I'M_6R_s,$$

(52)

which implies that

$$N_1N_5 > \max \left\{ \frac{|I'|}{2u_1}, \frac{\pi^2\rho u_a}{\tau u_1}, \frac{\rho u_a}{L_5}, \frac{I'(u_1^2u_2 + u_3)/L_5}{} \right\},$$

$$I' > \max \left\{ \frac{L_5}{\rho u_a}, \frac{u_2^2u_3}{L_5^2} \right\}, \quad L_7 > L_8 \quad \text{and} \quad \tau > a^2I'M_6R_s,$$

(53)

The coefficients B_2 and B_3 of Eq. (51) are lengthy structure and it is not required in the examination of overstability.

5 Results and Discussion

The classical linear stability analysis is taken to analyse the thermohaline convective instability on micropolar ferrofluid with uniform angular velocity. The anisotropic effect is considered on porous medium. The thermal perturbation method and normal mode technique are used to get the solution. The stationary and oscillatory instabilities are obtained. In this investigation, we tried to analyse the effect of anisotropy porous on thermohaline convective instability in micropolar ferrofluid and Brinkman method is considered.

Before we analyze the various physical quantities, we first form some physical comments on these like M_1 is taken to be 1000 and M_2 is assumed to be zero, M_3 is ranges from 5 to 25 (Vaidyanathan et al. [18]). The porous medium k_1 is ranges from 0.1 to 0.9. The anisotropic porous medium ε is assumed from 0.3 to 3.1 (Sekar et al.[24]) and τ is taken as 0.05 (0.02) 0.11 (Vaidyanathan et al.[18]). R_s is ranges from -500 to 500 and M_4 and M_6 are taken to be 0.1 and $M_5 = 0.5$. Moreover, N_1, N_3', N_5' are getting some physical comments due to the suspended particles. Assuming the Clausius-Duhem inequality, Eringen [34] given the non-negativeness of N_1, N_3', N_5'. It is clear that the couple stress comes into play at small values of N_3'. This supports the condition that $0 \leq N_1 \leq 1$ and that N_3' is small positive real number and N_5' has to be positive finite number (Sunil et al. [33]).

Fig. 1 shows the variation of N_{SC} versus N_1 for various k_1 and anisotropic porous medium ε. This gives that k_1 and ε have stabilizing effect. When the layer is taken to be following in an anisotropic porous medium, then an anisotropic porous effect ε has a destabilizing behavior and this behavior gets for k_1 also. This is because, as anisotropy effect
and k_1 increases, the void space increases and the fluid flow gets on the plane will be increased clearly. Naturally, isotropic and anisotropic porous medium have a destabilizing behavior which was investigated by (Sekar et al. [35]).

Fig. 2 displays the variation of N_{SC} versus N_1 for various R_S. It is obvious from the Fig. 2 that coupling parameter N_1 has a stabilizing behavior on the system for increasing of R_S from -500 to 0 and system gets high energy. But, an influence of R_S (= 100 and 500) the system gets null effect. In other words, the convective system has an equilibrium state. When increasing value of salt on the fluid layer, the fluid is released to the lowest viscosity. Due to this, convection of the fluid is lead to fast.

Fig. 2 displays the variation of N versus N for various R. It is obvious from the Fig. 2 that coupling parameter N has a stabilizing behavior on the system for increasing of R from -500 to 0 and system gets high energy. But, an influence of R (= 100 and 500) the system gets null effect. In other words, the convective system has an equilibrium state. When increasing value of salt on the fluid layer, the fluid is released to the lowest viscosity. Due to this, convection of the fluid is lead to fast.

In Fig. 6, the variation of N_{SC} versus N_1' for different M_3 and $R_S = 500$ is investigated. This shows that decrease in N_1' from 2 to 4, and shows a sudden dip up to 4; it then increases, exempted to $M_3 = 5$. When $M_3 = 5$ and N_1' increases from 2 to 4, N_{SC} increases and then decreases. The cell shapes have peristaltic flow form when $M_3 = 5$ and 15.

Figs. 7-11 give the variation of N_{SC} with respect to N_1', k_1, τ and R, respectively. Figs. 7 and 8 show that the heat induced into the fluid due to microelements is increased when N_1' increases. Thus increasing of N_1' gives to increase in N_{SC}. Hence, N_1' has always a stabilizing flow for $M_3 = 5$ and 10. Further, it is observed that Fig. 7 has exponential increase for $\epsilon = 0.3$. Where as Fig. 8 has exponential increase for all ϵ.

Figs. 9 and 10 analyzed for τ, $R_S = -500$ and $R_S = 500$, respectively. The nature of the stabilizing behavior is made for presence and absence of salt on the system. When $R_S = -500$, N_{SC} gets a highest value also the same effect is made for $R_S = 500$, but at this moment, the system has a low energy. Fig. 11 is illustrated for $M_3 = 20$ for various R_S. In this situation, when R_S is increasing from -500 to 0, N_{SC} is increased. Therefore, the system gets stabilizing flow. But, for $R_S = 100$ and 500, the system has internal energy due to heavy salting on the system.

In Fig. 12, the variation of N_{SC} versus ϵ is analyzed in existence and non-existence of coupling parameter N_1. It is clear that anisotropy effect ϵ has destabilizing behavior. This is indicated by a decrease in N_{SC}, which is given by Sekar et al. [35] in non-existence of N_1. In existence of N_1 (= 0.2), convective system gets high energy, but in non-existence of N_1 (= 0), the convective system gets low energy. However, N_{SC} converges to zero when $\epsilon = 3.1$. Hence, the system has an equilibrium state.

In Fig. 13 gives the variation of N_{SC} versus M_3 for different ϵ in existence and non-existence of N_1. It is seen from this figure that as M_3 increases from 5 to 25, N_{SC} decreases. The system gets destabilized effect even with and without N_1.

9
From Fig. 14, the cell shape and N_{SC} with respect to τ, indicate that the system destabilizes as τ increases. This is indicated by decrease in N_{SC} in existence and non-existence of N_1.

Fig. 1. Variation of N_{sc} versus N_1 for various k_1 and ε, $N_3' = 0.2$, $N_3'' = 2$, $M_3=5$, $R_s=-500$, $\tau = 0.05$ and $\tau = 0.07$.

Fig. 2. Variation of N_{sc} versus N_1 for various R_s, $k_1=0.1$, $\varepsilon = 0.3$, $N_3' = 0.2$, $N_3'' = 2$, $M_3=5$ and $\tau = 0.09$.
Fig. 3. Variation of N_{sc} versus N_1 for various M_3, $R_s = -500$, $k_1=0.1$, $\varepsilon = 0.3$, $N'_5 = 0.2$, $N'_3 = 2$, and $\tau = 0.11$.

Fig. 4. Variation of N_{sc} versus N_1 for various ε ($R_s = -500$) and $k_1=0.1$ ($R_s = -100$), $N'_5 = 0.2$, $N'_3 = 2$, $M_3=5$, and $\tau = 0.05$.
Fig. 5. Variation of N_{sc} versus N'_3 for various τ, $\epsilon = 0.3$, $R_s = 100$, $k_1=0.1$, $N'_5 = 0.2$, $N_1 =0.2$ and $M_3=5$.

Fig. 6. Variation of N_{sc} versus N'_3 for various M_3, $\epsilon = 0.3$, $R_s = 500$, $k_1=0.1$, $N'_5 = 0.2$, $N_1 =0.2$ and $\tau = 0.05$.
Fig. 7. Variation of N_{sc} versus N_5' for various ε, M_3 = 5, R_s = - 500, k_1 = 0.1, N_3' = 2, N_1 = 0.2 and $\tau = 0.05$.

Fig. 8. Variation of N_{sc} versus N_5' for various k_1, ε = 0.3, M_3 = 10, R_s = - 500, N_3' = 2, N_1 = 0.2 and $\tau = 0.05$.
Fig. 9. Variation of N_{sc} versus N'_5 for various τ, $k_1=0.1$, $\varepsilon=0.3$, $M_3=15$, $R_s = -500$, $N'_3 = 2$, and $N_1=0.2$.

Fig. 10. Variation of N_{sc} versus N'_5 for various τ, $k_1=0.1$, $\varepsilon=0.3$, $M_3=15$, $R_s = 500$, $N'_3 = 2$, and $N_1=0.2$.
Fig. 11. Variation of N_{sc} versus N_3' for various R_s, $\tau = 0.05$, $k_1=0.1$, $\varepsilon=0.3$, $M_3 = 15$, $N_3' = 2$, and $N_1 = 0.2$.

Fig. 12. Variation of N_{sc} versus ε for various k_1 ($N_i=0$ and 0.2), $R_s = -500$, $N_3' = 0.2$, $\tau = 0.05$, $M_3 = 5$ and $N_3' = 2$.
Fig. 13. Variation of N_{sc} versus M_3 for various ε ($N_1=0$ and 0.2), $k_1=0.1$, $R_s=-500$, $N'_5=0.2$, $\tau=0.05$, $M_3=5$ and $N'_3=2$.

Fig. 14. Variation of N_{sc} versus τ for various ε ($N_1=0$ and 0.2), $M_3=5$, $k_1=0.1$, $R_s=-500$, $N'_5=0.2$ and $N'_3=2$.

6 Conclusion

The results of thermohaline convective instability in a micropolar ferrofluid in an anisotropic porous medium is considered. These free-free boundary conditions are most significant because we can calculate an exact solution. The critical thermal magnetic Rayleigh number for the onset of instability is depicted graphically for sufficient large values of M_1. The destabilizing behavior of an anisotropic porous medium, permeability of medium,
salinity Rayleigh number, non-buoyancy magnetization and ratio of mass transport to heat transport is analyzed in the presence and absence of coupling parameter N_1. This is shown in Figs. 12-14 and also these figures showed that the system leads to high energy when $N_1 = 0.2$. The parameters N_1 and N'_3 get stabilizing effect, which is dominating the effect of the permeability of the porous medium, anisotropic porous medium and non-buoyancy magnetization parameter which are depicted in Figs. 1-3 and Figs. 7-10. The parameter N'_3 is analysed for destabilizing effect which is depicted in Figs. 4-6.

References:
1. Sterm, M. E. The salt-Fountain and thermohaline convection, Tellus, 12, 72-175 (1960).
2. Turner, J. S. Double-Diffusive phenomena, Annual Reviews Fluid Mechanics, 6, 37-56 (1974).
3. Turner, J. S. The behavior of a stable salinity gradient heated from below, Journal of Fluid Mechanics, 33, 183-200 (1968).
4. Huppert, H. E., Turner, J. S. Ice blocks melting into a salinity gradient, Journal of Fluid Mechanics, 100, 367-384 (1980).
5. Huppert, H. E., Turner, J. S. Double-Diffusive convection, Journal of Fluid Mechanics, 106, 299-329 (1981).
6. Turner, J. S., Stommel H. A new case of convection in the presence of combined vertical salinity and temperature gradients, Proceedings of National Academy of Science, U.S.A. 55, 49-53 (1964).
7. Turner, J. S., Chen, C. F. Two-dimensional effects in double diffusive convection, Journal of Fluid Mechanics, 63, 577-592 (1974).
8. Veronis, G. On finite amplitude instability in thermohaline convection, Journal of Marine Research, 23, 1-17 (1965).
9. Veronis, G. Effect of a stabilizing gradient of solute on thermal convection, Journal of Fluid Mechanics, 34, 315-336 (1968).
10. Huppert, H. E., Moore, D. R. Non-linearity double diffusion convection, Journal of Fluid Mechanics, 78, 821-854 (1976).
11. Knobloch, E., Weiss, N. O., Da Dosta, L. N. Oscillatory and steady convection in a magnetic field, Journal of Fluid Mechanics, 113, 153-186 (1981).
12. Knobloch, E., Proctor, M. R. E. Non-linear periodic convection in double diffusive system, Journal of Fluid Mechanics, 108, 291-316 (1981).
13. Baines, P. G., Gill, A. E. On thermohaline convection with linear gradients, Journal of Fluid Mechanics, 37, 289-306 (1969).
14. Vaidyanathan, G., Sekar, R., Ramanathan, A. Ferro thermohaline convection, Journal of Magnetism and Magnetic Materials, 176, 321-330 (1997).
15. Lapwood, E. R. Convection in a porous medium, Proc. Comb. Phil. Soc., 44, 508-521 (1948).
16. Wooding, R. A. Rayleigh instability of a thermal boundary layer in flow through a porous medium, Journal of Fluid Mechanics, 9, 183-192 (1960).
17. Nield, D. A., Bejan, A. Convection in a porous medium, Spinger, New York (Third Edition) (2006).
18. Vaidyanathan, G, Sekar, R., Ramanathan, A. Ferro thermohaline convection in a porous medium, Journal of Magnetism and Magnetic Materials, 149, 137-142 (1995).
19. Feynman, R. P., Leighton, R. B., Sands, M. Lecturers on physics, Addition-Wesley, Reading, (1963).
20. Shliomis, M. I. Ferrofluids as thermal Ratchets, Physical Review Letters, 92, Article ID: 188901 (2004).
21. Rosensweig, R. E. Ferrohydrodynamics, Cambridge University Press, Cambridge, (1985).
22. Finlayson, B. A. Convective instability of ferromagnetic fluids, International Journal of Fluid Mechanics, 40, 753-767 (1970)
23. Vaidyanathan, G., Sekar, R., Balasubramanian, R. Ferroconvection instability of fluids saturating a porous medium, International Journal of Engineering Sciences, 29, 1259-1267 (1991).
24. Sekar, R., Vaidyanathan, G., Ramanathan, A. Ferroconvection in an anisotropic porous medium, International Journal of Engineering Sciences, 34, 399-405 (1996)
25. Eringen, A. C. Theory of micropolar fluids, J. Math. Mech., 16, 1-18, (1966).
26. Eringen, A. C. Theory of thermomorphic fluids, Journal of Mathematical Analysis and Applications, 38, 480-496, (1972).
27. Ariman, T., Turk, M. A., Sylvester N. D. Applications of microcontinuum fluid mechanics, International Journal Engineering Science, 12, 273-293, (1974).
28. Eringen, A. C. Microcontinuum fields theories, II: Fluent Media, Springer, New York, (2001).
29. Abraham, A. Rayleigh-Benard convection in a micropolar magnetic fluids, International Journal of Engineering Sciences, 40, 449-460 (2002).
30. Sunil, Bharti P. K. Thermal convection in a micropolar ferromagnetic fluid saturating porous medium, Proceedings of the International Conference on Frontiers in Fluid Mechanics (ICFFM), 2006.
31. Sharma, V., Sharma, S. Thermosolutal convection of micropolar fluids in hydromagnetics in porous medium, Indian Journal of Pure and Applied Mathematics, 31, 1353-1367 (2000).
32. Sunil., Anu Sharma, Pavan Kumar Bharti, Shandil, R. G. Linear stability of double-diffusive convection in a micropolar ferromagnetic fluid saturating a porous medium, International Journal of Mechanical Sciences, 49, 1047-1059 (2007).
33. Sunil, Pragash, C., Bharti, P. K. Double diffusive convection in a micropolar ferromagnetic fluid, Applied Mathematics and Computation, 189, 1648-1661 (2007).
34. Eringen, A. C. Simple microfluids, International Journal of Engineering Science, 2205-217 (1964).
35. Sekar R., Raju K., Vasanthakumari R. A linear analytical study of Soret-driven ferrothermohaline convection in an anisotropic porous medium, Journal of Magnetism and Magnetic Materials, 331, 122-128 (2013).