Comparative analysis of genetic diversity in Norway spruce (*Picea abies*) clonal seed orchards and seed stands

Elena CIOCÎRLAN1*, Neculae ȘOFLETEA1, Georgeta MIHAI2, Maria TEODOSIU2, Alexandru L. CURTU1

1Transilvania University of Brașov, Faculty of Silviculture and Forest Engineering, Eroilor nr.29, Brasov, Romania; ciocirlan.elena@unitbv.ro (*corresponding author); nic.sofletea@unitbv.ro, lucian.curtu@unitbv.ro
2National Institute for Research and Development in Forestry “Marin Dracea”, Romania, Bulevardul Eroilor 128, Voluntari, Romania; gmihai_2008@yahoo.com; teodosiumaria@yahoo.com

Abstract

Norway spruce, *Picea abies* (L.) Karst. is the most important conifer species in Romania and the most planted tree species in the Carpathian Mountains. Here we compare the genetic diversity of four Norway spruce clonal seed orchards and two seed stands located in the Eastern Carpathians. A set of highly polymorphic nuclear microsatellite markers was used. The analysis of genotypic identity of ramets for each Norway spruce clone in all seed orchards indicated that nearly all sampled ramets (97%) were genetically identical. The genetic diversity in seed orchards (*H*e=0.700) was slightly smaller compared to the seed stands (*H*e=0.718). Allelic richness was higher in seed stands (10.874), compared to clonal seed orchards (8.941). The Bayesian analysis indicated a genetic structure with two clusters, one corresponding to the clonal seed orchards and a second one consisting of the two seed stands. Our results provide valuable information for the management of Norway spruce seed orchards in Romania.

Keywords: genetic diversity; microsatellite; Norway spruce; seed orchards; seed stands

Introduction

Seed orchards are the most used method for obtaining forest reproductive materials with superior genetic properties (Funda *et al*., 2009; Funda and El-Kassaby, 2012). Seed orchards are an important and efficient type of transmission of superior genetic traits to offspring, by creating synthetic varieties (Chaloupková *et al*., 2019).

Long-term tree improvement implies, among other things, ensuring a balance between expected genetic gain and an appropriate level of genetic diversity, and the most common method of ensuring this is by establishing seed orchards (Tang and Ide, 2001). High genetic diversity in seed orchards may increase resilience and capacity to adapt to changing environments and thus productivity and quality of forest plantations. Genetic diversity among seed orchards crops is significantly influenced by the relatedness of orchard clones, parental fertility variation, and pollen contamination (Geburek, 1997; Ertekin, 2012). At the same time, of great importance is the number of parents involved in cloning the material for the installation of the seed orchard (Kang *et al*., 2001; Lindgren and Prescher, 2005; Hansen, 2008; Sonstebø *et al*., 2018).
In this study, we focused on Norway spruce (*Picea abies* (L.) Karst.), one of the most important forest trees in the boreal and subalpine conifer forests (San-Miguel-Ayanz *et al*., 2016). Norway spruce occupies approximately 30 million hectare (Jansen *et al*., 2017; Schiop *et al*., 2017) and it plays an important role for the society and economy. At present, it is the most common conifer tree species in Romania, occupying approximately 1,488,000 ha and 23.2% of the forest cover (Budeanu *et al*., 2019). The study of genetic diversity of Norway spruce in Romania is summarized only in a few studies based on allozyme (Curtu *et al*., 2009; Teodosiu, 2011; Radu *et al*., 2014) and nuclear microsatellite markers (Mihai *et al*., 2020) and no genetic analysis was done on seed orchards. In Romania, there have been installed only nine Norway spruce seed orchards that occupy approximately 72.9 ha (Mihai *et al*., 2019).

Previous studies that aimed at comparing genetic diversity between natural populations and seed orchards have shown a higher genetic diversity in seed orchards than in natural populations (Muona and Harju, 1989; El-Kassaby, 1992; Chaisurisri and El-Kassaby, 1994; Stoehr and El-Kassaby, 1997; Williams *et al*., 2001) in terms of allelic diversity and heterozygosity. In general, in forest tree species with a high degree of polymorphism, phenotypic selection in the early stages of breeding does not imply a significant reduction in genetic variability, as in *Picea abies* (Bergmann and Ruetz, 1991) or *Picea glauca* (Namroud *et al*., 2012). However, there are also data that indicate lower genetic diversity in seed orchards compared to natural populations, as an effect of the number of parents selected for cloning (Johnson and Lipow, 2002; Ilinov and Raevsky, 2017), or studies that report a similar genetic diversity (Ruņgis *et al*., 2019). Given these differences, we aimed to assess the level of genetic diversity in Norway spruce seed orchards and seed stands in the Eastern Carpathians, a region with a widespread distribution of Norway spruce. The specific objectives were: 1) to assess the genetic identity of ramets for Norway spruce clones used in seed orchards and 2) to compare the genetic diversity in clonal seed orchards and seed stands using highly polymorphic DNA markers.

Materials and Methods

Sampling design

Four Norway spruce clonal seed orchards (Paltinoasa – Cso-P, Bodesti – Cso-B, Dalhauti – Cso-D and Alunis – Cso-A) and two seed stands (Cucureasa – Nat-C, Manastirea Casin – Nat-M) have been sampled (Table 1). The seed orchards are located in the Eastern Carpathian region and were established between 1970 and 1981 with a different number of vegetative copies of plus trees (Cso-P - 33, Cso-B - 33, Cso-D – 81 and Cso-A - 197). Most of the plus trees were selected in natural seed stands distributed across the Eastern Carpathian Mountains, only several plus trees used for Cos-D seed orchard originated from the Southern Carpathian Mountains (Table 1). The sampling was done in 2017 and some of the initial clones were not found in the field. At least one individual per clone was sampled in each seed orchard. Two ramets per clone were sampled randomly for most of the clones in all seed orchards to verify the clonal identity.
Table 1. Geographic location of Norway spruce clonal seed orchards and seed stands

Nr. crt.	Abr.	Population	Region of provenance for the source population *	Number of sampled individuals	Number of unique genotypes	Latitude/Longitude
1	Cso-P	Paltnioasa	A2	50	27	47.571791/25.941412
2	Cso-B	Bodesti	A2,G3	90	54	47.042570/26.447690
3	Cso-D	Dalhauti	A2,B2,C1	79	69	45.707435/27.007750
4	Cso-A	Alunis	A2, G3	190	154	46.325000/27.452275
5	Nat-C	Cucureasa	A2	56	56	47.397383/25.045132
6	Nat-M	Manastirea Casin	A2	77	77	46.168066/26.678455

*Region of provenance (ecological region) according to The National Catalogue of Approved Basic Material for Production of Forest Reproductive Material (Parnuta et al., 2012)

DNA extraction and PCR amplification

DNA was extracted from buds, cambium or leaves using the CTAB (Doyle and Doyle, 1987) or ATMAB (Dumolin et al., 1995) methods.

A number of 12 nSSR nuclear microsatellites (WS00716.F13, WS0022.N15, WS0073.H08, WS00111.K13 and WS0023.B03 (Rungis et al., 2004) Pa_44 and Pa_47 (Fluch et al., 2011), EAC1F04 (Scotti et al., 2002), EATC1E03, EATC1B02, EATC2G05 (Scotti et al., 2002), SpAG2 (Pfeiffer et al., 1997) were used. EAC1F04 was excluded from further analysis because of some ambiguities in its interpretation and due to the presence of a large number of null alleles.

The PCR amplifications were performed using a PCR thermal cycler (Corber), in reaction mixtures (15 µL) containing 5 ng of template DNA, 1x Qiagen Multiplex PCR MasterMix 2x, 2µM for each primer and RNase free water. The PCR cycling conditions were as follows: 10 min at 95 °C followed by 30 cycles of 1 min. at 94 °C, 1:30 min. at a primer-specific annealing temperature (53 °C, 55 °C, 58 °C and 62 °C), 1 min. at 72 °C and a final elongation step of 30 min at 60 °C.

Amplified PCR products were diluted and were than run on a GemoneLab GeXP Genetic Analyser (Beckman Coulter) using Frag-3 method and Size Standard 400.

Data analysis

Microsatellite markers were tested for genotyping errors due to large allele drop-out, scoring of stutter peaks and non-amplified alleles using MICRO-CHECKER 2.2.0.3 (Van Oosterhout et al., 2004). The software indicated the presence of null alleles at very low frequencies (less than 7%) for two markers (WS00716 and WS00023). No evidence of large allele drop-out or scoring of stutter peaks was found.

The software GenAlEx ver. 6.5 (Peakall and Smouse, 2006, 2012) was used to estimate a standard genetic diversity indices: average number of alleles per locus (Na), effective number of allele (Ne), observed heterozygosity (Ho), expected heterozygosity (He), number of private alleles (Np) and fixation index (F). Principal component analysis (PCoA) was performed using the same software. Allelic richness (Ar), a measure that is independent of sample size, was estimated with FSTAT 2.9.3 (Goudet, 2001).

A matrix of pairwise genetic differentiation measures between all populations pairs was computed. For genetic differentiation among spruce populations, pairwise FS'T's were computed using ARLEQUIN 3.5.2.2 (Excoffier and Lischer, 2010). The significance of the FST statistics was tested by 10000 permutations. The graphical representations of all pairwise FST's were done using an Rfunction (pairFstMatrix.r) implemented in ARLEQUIN software. Analysis of Molecular Variance (AMOVA) was performed using the same software.
An Unweighted Pair Group Method with Arithmetic Mean (UPGMA) clustering was computed with 100 bootstrap replications, based on Nei’s (1972) standard genetic distance using the software Populations 1.2.31 (Langella, 1999) and TreeView 1.6.6 (Page, 2003).

The Bayesian clustering method implemented in STRUCTURE software ver. 2.3.3 (Pritchard et al., 2000) was used to genetically assign individuals to clusters. Simulations were run for 50000 steps following a burn-in period of 100000 steps, considering values of K (number of clusters) from one to 7, with 3 replications for each value of K. The analysis was performed using admixture, correlated allele frequencies and no prior information on sampling location. The number of population clusters was estimated using ΔK parameter according to (Evanno et al., 2005) using the STRUCTURE HARVESTER program (Earl and vonHoldt, 2012). The highest value of ΔK statistics was obtained for $K = 2$.

Results and Discussion

Genetic diversity

It was assumed that two ramets originating from the same clone possess identical genotypes. Genotypes of two ramets per clone were compared with each other at three highly polymorphic loci. The multilocus genotypes were identical in nearly 97% of the comparisons. Only in 9 out of the 297 clones (Cso-P - clone 4, Cso-B – clone 163, 169, 265, 267, 272 and 279; Cso-A – clone 270 and 300), the two ramets did not match at two or three loci. This is probably due to the growth of the rootstock to the detriment of scion (Prescher et al., 2007) or because of sampling errors. Only unique genotypes were included for further analyses. Thus, the total sample size was made of 437 individual trees, out of which, 304 and 133, were from seed orchards and seed stands, respectively.

All eleven microsatellite loci showed polymorphism across populations, with the total number of alleles ranging from 33 at the locus WS0023 to four at the locus Pa_47. The mean number of alleles per population was 11.921. Effective number of alleles across all populations was 6.503 ($SD \pm 0.566$), with mean value 5.081 in the seed orchards and 7.945 in natural stands (Table 2).

Table 2. Standard genetic diversity indices

Population	Na	Ne	Ho	He	F	Aa	Np
Cso-P	Mean	8.455	4.505	0.693	0.674	-0.070	8.331
Cso-B	Mean	11.182	5.466	0.683	0.682	-0.036	9.253
Cso-D	Mean	10.909	5.071	0.734	0.732	-0.028	8.994
Cso-A	Mean	12.091	5.280	0.672	0.710	0.022	9.196
Nat-C	Mean	13.001	8.088	0.683	0.712	0.014	10.927
Nat-M	Mean	13.364	7.763	0.717	0.725	-0.011	10.820
Clonal seed orchards	Mean	10.659	5.081	0.696	0.700	-0.027	8.941
Seed stands	Mean	13.182	7.925	0.700	0.718	0.001	10.874
Total	Mean	11.921	6.503	0.698	0.709	-0.013	9.901
SE	0.793	0.566	0.022	0.025	0.024	0.021	-

* Na - average number of alleles per locus, Ne - effective number of alleles, Ho - observed heterozygosity, He - expected heterozygosity, F - fixation index, Aa - allelic richness, Np - number of private alleles; SE - standard error.

One of the roles of seed orchards is to maintain a high level of genetic diversity, which may reflect the genetic diversity of original populations (Ertekin, 2012). Our results show that expected heterozygosity of seed orchards (0.700) is slightly lower than that of natural stands (0.718). This might be because seed orchards are generally derived from a limited number of clones. The mean He in natural stands (0.718) were slightly higher than in seed orchards (0.700), which is consistent with other studies in Norway (Sonstebø et al., 2018) and Latvia (Rungis et al., 2019). Furthermore, the mean He was lower than it was previously
reported for Norway spruce core stands in Slovenia (0.935) (Westergren et al., 2018) and Czech Republic (0.780) (Máchová et al., 2018).

Allelic richness is one of the most important genetic diversity parameters, particularly when analysing populations of different sample size. This parameter is of importance when elaborating genetic conservation strategies (Foulley and Ollivier, 2006). In our study, larger differences were observed for allelic richness (A_R), which varied between 8.331 and 11.071. Mean A_R over all samples was 10.619. The allelic richness in seed orchards (8.941) was higher than previously reported values for this species using genomic SSRs markers in seed orchards (5.990) (Sønstebø et al., 2018). Although it has been reported that allelic richness increases with increasing number of parents (Sønstebø et al., 2018), allelic richness in Cso-A (9.196), the seed orchard with the highest number of clones, was similar to the other seed orchards. Moreover, Cso-P, which has the lowest number of clones, has the lowest value for A_R compared to the other three seed orchards. Compared to the seed orchard with the highest number of clones (Cso-A), in Cso-P the value of A_R is with 9.4% lower. On the other hand, the highest level of allelic richness was observed in the two natural stands.

The fixation index (F) ranged from -0.070 (Cso-P) to 0.022 (Cso-A). The total number of private alleles (Np) was 28, out of which 10 alleles in seed orchards and 18 alleles in the natural stands. Overall, the mean values of the genetic diversity parameters were slightly higher in the natural Norway spruce populations compared to the clonal seed orchards.

Genetic differentiation among populations

The genetic divergence among all Norway spruce populations was measured using F_{ST}. Pairwise Wright’s F_{ST} showed the lowest genetic differentiation between Nat-C and Nat-M ($F_{ST} = 0.0004$), and the highest genetic differentiation was detected between Cso-D and Nat-C ($F_{ST} = 0.0496$). The genetic differentiation among seed orchards was relatively low (Table 3).

	Cso-P	Cso-B	Cso-D	Cso-A	Nat-C	Nat-M
Cso-P	0.0000					
Cso-B	0.0109	0.0000				
Cso-D	0.0173	0.0277	0.0000			
Cso-A	0.0244	0.0147	0.0154	0.0000		
Nat-C	0.0486	0.0467	0.0496	0.0424	0.0000	
Nat-M	0.0439	0.0428	0.0450	0.0366	0.0004	0.0000

PCoA analysis showed that the first principal coordinate separated clonal seed orchards from the seed stands. The second principal coordinate separated population Cso-D from other clonal seed orchards (Cso-A, Cso-P and Cso-B). This may be a consequence of using plus trees from three region of provenance (C2 – region from the Southern Carpathians, A2 and B2 – region from the Eastern Carpathians) in the clonal seed orchard Cos-D. However, even if plus trees from the same regions of provenance were used for the installation of the Cos-A and Cos-B seed orchards, the observed differences can be due to the number of selected clones (the number of clones in population Cos-A is larger than the number of clones from Cos-B population). A balance between the expected genetic gain and the assumed but reduced loss of genetic diversity is necessary. Also, for advanced generations of seed orchards, the breeding strategy must provide the infusion of new genotypes in the breeding program, in order to avoid the risk of reducing genetic diversity (Funda and El-Kassaby, 2012).
Ciocîrlan E et al. (2021). Not Bot Horti Agrobo 49(4):12575

Figure 1. Principal component analysis of six Norway spruce populations. Axes 1 and 2 explain 57.28% and 19.95% of the genetic variation detected

Relationships among all six Norway spruce population were further illustrated by a dendrogram, using UPGMA based on Nei’s (1972) standard genetic distances (Figure 2 - B). The dendrogram showed a clear separation (bootstrapping value for the pair was 85) between natural Norway spruce stands and clonal seed orchards. Nat-C and Nat-M were grouped together although the geographical distance among them was considerable.

Population genetic structure

Using the Bayesian analysis (Figure 2 - A) we found that the best inferred number of genetic clusters is two (K = 2). All seed orchards showed a higher membership in the red genetic cluster. However, there were many admixed individuals and even individual clones with a higher membership value in the second genetic cluster (with green colour). As in the UPGMA dendrogram, the two seed stands are closely related to each other, showing a high membership in the second genetic cluster. This separation is also valid for K = 3 (Figure 2 - A).

The four seed orchards consists of vegetative copies of plus trees selected in several seed stands located across the Eastern Carpathian region, including the two stands sampled in this study. This can explain the observation of individual clones with high membership values in the genetic cluster that is specific for the two natural stands. The similarity between the two natural stands might be due to extensive gene flow between Norway spruce forests along the Eastern Carpathians. Little genetic differentiation was found among natural Norway spruce populations across the Romanian Carpathians (Radu et al., 2014).
Figure 2. Map of Norway spruce populations. Pie charts represent the average inferred ancestry of individuals for each cluster identified by STRUCTURE for $K=2$. STRUCTURE results for two and three distinct genetic clusters (A). UPGMA dendrogram constructed using Nei’s genetic distance (B).

Table 4. Analysis of molecular variance (AMOVA) for Norway spruce populations using 11 microsatellite loci

Source of variation	d.f.	Sum of squares	Variance components	Percentage of variation	P
Among populations	5	89.477	0.10541 Va	3.02	0.0224
Among individuals within populations	431	1484.095	0.06322 Vb	1.81	<0.001
Within individuals	437	1449.50	3.31693 Vc	95.16	<0.001
Total	873	3023.072	3.48557	-	-
Among groups (first group seed orchards, second group seed stands)	1	50.963	0.10819 Va	3.06	<0.001
Among populations within group	4	38.514	0.04700 Vb	1.33	0.0127
Among individuals within populations	431	1484.095	0.06322 Vc	1.79	<0.001
Within individuals	437	1449.50	3.31693 Vd	93.82	0.0615
Total	873	3023.072	3.53535	-	-

* d.f. - degrees of freedom; Va, Vb, Vc, Vd - associate covariance components; p – significance level.

Two different AMOVA analyses were conducted. The first analysis included all populations and the second one considered the two different groups established by STRUCTURE (first group for seed orchards and second group for natural stands). Most of the genetic variation between the six Norway spruce populations can be explained by intraindividual variation 95.16 % ($p < 0.001$) (Table 3). When the genetic variance was partitioned into two distinct groups, a small but significant ($p < 0.001$) amount of genetic variation (3.06 % of the total) was the result of differences between groups (Table 4).
Conclusions

The genotypic identity of the putative ramets of the same clone was certified for Norway spruce clonal seed orchards based on highly polymorphic DNA markers. Mismatches were very rare and may be explained by the growth of the rootstock to the detriment of scion or sampling errors. Slightly higher values for genetic diversity parameters were found in seed stands compared to clonal seed orchards. As expected, the degree of genetic admixture was higher in the four clonal seed orchards than in the two studied seed stands. Our molecular analysis provides valuable information for the management of Norway spruce seed orchards in Romania.

Authors’ Contributions

Conceptualization - EC, ALC; Data curation - EC, ALC, NS, GM, MT; Formal analysis - EC, MT; Investigation - EC, ALC, NS, GM, MT; Methodology - EC, MT; Project administration - ALC; Resources - ALC; Software - EC, MT; Supervision – ALC, NS, GM; Validation - NS, GM; Visualization - EC, ALC, NS, GM, MT; Writing - original draft- EC; Writing - review and editing – EC, ALC, NS, GM, MT. All authors read and approved the final manuscript.

Acknowledgements

This work was funded by UEFISCDI, PN-III-P2-2.1-BG-2016-0465 project.

Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

Bergmann F, Ruetz W (1991). Isozyme genetic variation and heterozygosity in random tree samples and selected orchard clones from the same Norway spruce populations. Forest Ecology and Management 46:39-47. https://doi.org/10.1016/0378-1127(91)90243-O

Budeanu M, Apostol EN, Popescu F, Postolache D, Ioniţă L (2019). Testing of the narrow-crowned Norway spruce ideotype (Picea abies f. pendula) and the hybrids with normal crown form (pyramidalis) in multisite comparative trials. Science of the Total Environment 689:980-990. https://doi.org/10.1016/j.scitotenv.2019.06.518

Chaisurisri K, El-Kassaby YA (1994). Genetic diversity in a seed production population vs. natural populations of Sitka spruce. Biodiversity and Conservation 3:512-523. https://doi.org/10.1007/BF00115157

Chaloupková K, Stejskal J, El-Kassaby YA, Frampton J, Lstiburek M (2019). Current advances in seed orchard layouts: two case studies in conifers. Forests 10:93. https://doi.org/10.3390/F10020093

Curțu AL, Sofletea N, Radu R, Bacea A, Abrudan IV, Butiuc-Keul A, Farcaș S (2009). Allozyme variation of coniferous tree species from Maramureș Mountains, Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37:245-251. https://doi.org/10.15835/NBHA3723250

Doyle J, Doyle J (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11-15.

Dumolin S, Demesure B, Petit RJ (1995). Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theoretical and Applied Genetics 91:1253-1256. https://doi.org/10.1007/BF00220937
Earl DA, vonHoldt BM (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4:359-361. https://doi.org/10.1007/S12686-011-9548-7/FIGURES/3

El-Kassaby YA (1992). Domestication and genetic diversity - should we be concerned? Forestry Chronicle 68:687-700. https://doi.org/10.5558/TFC68687-6

Ertekin M (2012). Genetic diversity of seed orchard crops. The Molecular Basis of Plant Genetic Diversity. https://doi.org/10.5772/33802

Evanno G, Regnaut S, Goudet J (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14:2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

Excoffier L, Lischer HEL (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10:564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

Foulley JL, Ollivier L (2006). Estimating allelic richness and its diversity. Livestock Science 101:150-158. https://doi.org/10.1016/j.livprodsci.2005.10.021

Funda T, El-Kassaby YA (2012). Seed orchard genetics. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 7. https://doi.org/10.1079/PAVSNNR20127013

Funda T, Lstibůrek M, Lachout P, Klápště J, El-Kassaby YA (2009). Optimization of combined genetic gain and diversity for collection and deployment of seed orchard crops. Tree Genetics and Genomes 5:583-593. https://doi.org/10.1007/S11298-009-0211-3

Geburek T (19970. Isozymes and DNA markers in gene conservation of forest trees. Biodiversity & Conservation 6:1639-1654. https://doi.org/10.1023/A:1018336908678

Goudet J (2001). FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3. https://www.scienceopen.com/document?vid=7909/7bb4-ec3c-4c7c-9a14-47085d21ce6b

Hansen OK (2008). Mating patterns, genetic composition and diversity levels in two seed orchards with few clones-Impact on planting crop. Forest Ecology and Management 256:1167-1177. https://doi.org/10.1016/J.FORECO.2008.06.032

Il'Inov AA, Raevsky BV (2017). Comparative evaluation of the genetic diversity of natural populations and clonal seed orchards of *Pinus sylvestris* L. and *Picea × fennica* (Regel) Kom. in Karelia. Russian Journal of Genetics: Applied Research 7:607-616. https://doi.org/10.1134/S2079059717060065

Jansen S, Konrad H, Geburek T (2017). The extent of historic translocation of Norway spruce forest reproductive material in Europe. Annals of Forest Science 74:1-17. https://doi.org/10.1007/S13595-017-0644-Z/FIGURES/4

Johnson R, Lipow S (2002). Compatibility of breeding for increased wood production and longterm sustainability: the genetic variation of seed orchard seed and associated risks. In: Proceedings Wood Compatibility Initiative Workshop 18:169-179. https://www.fs.usda.gov/treesearch/pubs/pubs/4927

Kang KS, Harju AM, Lindgren D, Niukkanen T, Almqvist C, Suh GU (2001). Variation in effective number of clones in seed orchards. New Forests 21:17-33. https://doi.org/10.1023/A:101078522169

Langella O (1999). Populations 1.2.32. https://bioinformatics.org/populations/

Lindgren D, Prescher F (2005). Optimal clone number for seed orchards with tested clones. Silvae Genetica 54:80-92. https://doi.org/10.1515/SIG-2005-0013

Máčová P, Trčkovan O, Cvrčková H (2018). Use of nuclear microsatellite loci for evaluating genetic diversity of selected populations of *Picea abies* (L.) Karsten in the Czech Republic. Forests 9:92. https://doi.org/10.3390/F9020092

Mihai G, Curtu AL, Garbacea P, Alexandru AM, Mirancea I, Teodosiu M (2019). Genetic variation and inheritance of bud flushing in a Norway spruce seed orchard established in Romania. Proceedings of the Biennial International Symposium "Forest and Sustainable Development" 25-27 October 2018, Braşov, Romania, pp 73-82. https://silvic.unitbv.ro/images/conferinte/fsd/proceedings/8-Mihai-et-al.--ID-171.pdf

Mihai G, Teodosiu M, Birsan MV, Alexandru AM, Mirancea I, Apostol EN, Garbacea P, Ionita L (2020). Impact of climate change and adaptive genetic potential of Norway spruce at the south-eastern range of species distribution. Agricultural and Forest Meteorology 291:108040. https://doi.org/10.1016/J.AGRFORMET.2020.108040

Muona O, Harju A (1989). Effective population sizes, genetic variability, and mating system in natural stands and seed orchards of *Pinus sylvestris* Silvac Genetica 38:221-228.
Namroud MC, Bousquet J, Doerksen T, Beaulieu J (2012). Scanning SNPs from a large set of expressed genes to assess the impact of artificial selection on the undomesticated genetic diversity of white spruce. Evolutionary Applications 5:641-656. https://doi.org/10.1111/j.1752-4571.2012.00242.X

Page RDM (2003). Visualizing phylogenetic trees using TreeView. Current Protocols in Bioinformatics 6.2.1-6.2.15. https://doi.org/10.1002/0471235551.bi0602s01

Parnuţa G, Stuparu E, Budeanu M, Scarlatescu V, Marica FM, Lala I, ... Curtu AL (2012). Catalogul Naţional al materialelor de bază pentru producerea materialelor forestiere de reproducere din România. [The National Catalogue of Basic Materials for production of forest reproductive materials]. Editura Silvica, Bucureşti. http://www.minedu.ro/beta/wp-content/uploads/2013/08/2013-08-30_Catalogul_National_pentru_PR ODUCEREA_MATERIALELOR_FORESTIERE_de_REPRODUCERE.pdf

Peakall R, Smouse PE (2012). GenAlEx 6.5; genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics (Oxford, England) 28:2537-2539. https://doi.org/10.1093/bioinformatics/bts460

Peakall R, Smouse PE (2006). Genalex 6; genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6:288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

Pfeiffer A, Olivieri AM, Morgante M (1997). Identification and characterization of microsatellites in Norway spruce (Picea abies K.). Genome 40:411-419. https://doi.org/10.1139/G97-055

Prescher F, Lindgren D, Almqvist C, Kroon J, Lestander TA, Mullin TJ (2007). Female fertility variation in mature Pinus sylvestris clonal seed orchards, Scandinavian Journal of Forest Research, 22:4, 280-289. https://doi.org/10.1080/02872580701419259

Pritchard JK, Stephens M, Donnelly P (2000). Inference of population structure using multilocus genotype data. Genetics 155:945-959. https://doi.org/10.1093/GENETICS/155.2.945

Radu GR, Curtu AL, Sparchez G, Sofletea N (2014). Genetic diversity of Norway spruce [Picea abies (L.) Karst.] in Romanian Carpathians. Annals of Forest Research 57:19-29. https://doi.org/10.15287/AFR.2014.178

Rungis D, Bérubé Y, Zhang J, Ralph S, Ritland CE, Ellis BE, Douglas C, Bohlmann J, Ritland K (2004). Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. Theoretical and Applied Genetics 109:1283-1294. https://doi.org/10.1007/S00122-004-1742-5/FIGURES/4

Rungis D, Luguza S, Baders E, Šķipars V, Jansons A (2019). Comparison of genetic diversity in naturally regenerated Norway spruce stands and seed orchard progeny trials. Forests 10:926. https://doi.org/10.3390/F10090926

San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (2016). European atlas of forest tree species. Director. https://doi.org/10.2788/038466

Schiop ST, Al Hassan M, Sestras AF, Boscaiu M, Sestras RE, Vicente O (2017). Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce (Picea abies (L.) Karst.). Trees - Structure and Function 31:1479-1490. https://doi.org/10.1007/S00468-017-1563-1/FIGURES/7

Scorti I, Magni F, Paglia GP, Morgante M (2002). Trinucleotide microsatellites in Norway spruce (Picea abies): their features and the development of molecular markers. Theoretical and Applied Genetics 106:40-50. https://doi.org/10.1007/S00122-002-0986-1

Sønstebø JH, Tollefsrud MM, Myking T, Steffenrem A, Nilsen AE, Edvardsen M, Johnskås OR, El-Kassaby YA (2018). Genetic diversity of Norway spruce (Picea abies (L.) Karst.) seed orchard crops: Effects of number of parents, seed year, and pollen contamination. Forest Ecology and Management 411:132-141. https://doi.org/10.1016/J.FORECO.2018.01.009

Stoehr MU, El-Kassaby YA (1997). Levels of genetic diversity at different stages of the domestication cycle of interior spruce in British Columbia. TAG. Theoretical and Applied Genetics. Theoretische und Angewandte Genetik 94:83-90. https://doi.org/10.1007/S001220050385

Tang DQ, Ide Y (2001). Genetic variation in fruitfulness in a Hinoki (Chamaecyparis obtusa Endl.) seed orchard and its impact on the maintenance of genetic diversity in seedlots. Journal of Forest Research 6:67-72. https://doi.org/10.1007/BF02762490

Teodosiu M (2011). Research regarding genetic variability in Norway spruce stands from Obcinele Bucovinei. Phd Dissertation, University Transilvania of Brasov. http://rs.unitbv.ro/teze/rezumate/2011/rom/Carpiciu_TeodosiuMaria.pdf

Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004). Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4:535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.X
Westergren M, Bozic G, Kraigher H (2018). Genetic diversity of core vs. peripheral Norway spruce native populations at a local scale in Slovenia. IForest - Biogeosciences and Forestry 11:104. https://doi.org/10.3832/IFOR2444-011
Williams Joseph H, Godt MJW, Hamrick JL, Edwards-Burke MA, Williams JH (2001). Comparisons of genetic diversity in white spruce (Picea glauca) and jack pine (Pinus banksiana) seed orchards with natural populations. Canadian Science Publishing 31:943-949. https://doi.org/10.1139/x01-024

The journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

License - Articles published in Notulæ Botanicae Horti Agrobotanici Cluj-Napoca are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) License. © Articles by the authors; UASVM, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.