The mitochondrial genome sequence of the ciliate *Paramecium caudatum* reveals a shift in nucleotide composition and codon usage within the genus *Paramecium*

Dana Barth¹ and Thomas U Berendonk¹,²*

Abstract

Background: Despite the fact that the organization of the ciliate mitochondrial genome is exceptional, only few ciliate mitochondrial genomes have been sequenced until today. All ciliate mitochondrial genomes are linear. They are 40 kb to 47 kb long and contain some 50 tightly packed genes without introns. Earlier studies documented that the mitochondrial guanine + cytosine contents are very different between *Paramecium tetraurelia* and all studied *Tetrahymena* species. This raises the question of whether the high mitochondrial G+C content observed in *P. tetraurelia* is a characteristic property of *Paramecium* mtDNA, or whether it is an exception of the ciliate mitochondrial genomes known so far. To test this question, we determined the mitochondrial genome sequence of *Paramecium caudatum* and compared the gene content and sequence properties to the closely related *P. tetraurelia*.

Results: The guanine + cytosine content of the *P. caudatum* mitochondrial genome was significantly lower than that of *P. tetraurelia* (22.4% vs. 41.2%). This difference in the mitochondrial nucleotide composition was accompanied by significantly different codon usage patterns in both species, i.e. within *P. caudatum* clearly A/T ending codons dominated, whereas for *P. tetraurelia* the synonymous codons were more balanced with a higher number of G/C ending codons. Further analyses indicated that the nucleotide composition of most members of the genus *Paramecium* resembles that of *P. caudatum* and that the shift observed in *P. tetraurelia* is restricted to the *P. aurelia* species complex.

Conclusions: Surprisingly, the codon usage bias in the *P. caudatum* mitochondrial genome, exemplified by the effective number of codons, is more similar to the distantly related *T. pyriformis* and other single-celled eukaryotes such as *Chlamydomonas*, than to the closely related *P. tetraurelia*. These differences in base composition and codon usage bias were, however, not reflected in the amino acid composition. Most probably, the observed picture is best explained by a hitherto unknown (neutral or adaptive) mechanism that increased the guanine + cytosine content in *P. tetraurelia* mtDNA on the one hand, and strong purifying selection on the ancestral amino acid composition on the other hand. These contradicting forces are counterbalanced by a considerably altered codon usage pattern.

Background

The genomic information and evolution of the mitochondrial genomes of metazoans is well documented. Knowledge on the evolution of mitochondrial DNA (mtDNA) in single-celled organisms on the other hand is more scarce. In order to promote the understaning of the mitochondrial genome evolution of single-celled eukaryotes, it is necessary to fill the large existing gaps of knowledge and data. For example only few ciliate mitochondrial genomes have been sequenced until today, most of them belonging to the genus *Tetrahymena*: *T. pyriformis* [1], *T. thermophila* [2], *T. pigmentosa*, *T. malacensis*, *T. paravorax* [3]. While the newest sequence belongs to *Euplotes minuta* [4], *P. tetraurelia* has been among the first unicellular eukaryotes, for which the complete mitochondrial genome sequence
was determined [5]. Therefore, to fill in one of the above mentioned gaps, we decided to sequence the mitochondrial genome of *P. caudatum*, a close relative of the *P. aurelia* species complex, in order to elucidate the mitochondrial genome evolution within this important ciliate genus.

Two interesting aspects of ciliate mtDNA are predominant and have made the assembly of mitochondrial genomes difficult. First, all hitherto known ciliate mitochondrial genomes are linear, from 40 kb (*P. tetraurelia*) to 47 kb (*Tetrahymena*) long, and contain some 50 tightly packed genes without introns. Second, for about half of the open reading frames (ORFs) in the ciliate mtDNA, a definite protein function is unknown, because there is not enough similarity to known proteins in other organisms [1,2]. Among these ORFs, *ymf77* in the *Tetrahymena* mtDNA is particularly unusual. This gene is ~1,350 amino acid residues long, shows extreme sequence divergence among *Tetrahymena* species and has no homolog in the *P. tetraurelia* or *Euplotes* mitochondrial genomes.

Paramecium and *Tetrahymena* belong to the class Oligohymenophorea, one out of eleven lineages within the phylum Ciliophora. Despite similarities in gene content and genome organization in *P. tetraurelia* and *Tetrahymena* mtDNA, there are great differences in the nucleotide composition. All studied *Tetrahymena* mitochondrial genomes have a guanine and cytosine (G+C) content of ~20%, whereas in *P. tetraurelia*, the G+C content is more than twice as high (c. 41%, [1]). *Paramecium tetraurelia* and *T. thermophila* are model organisms, whose macronuclear genome sequences have been recently completed [6,7]. Interestingly, the nuclear G+C contents are not significantly different in both species (69.9% vs. 72.3%, [8]). This raises the question of whether the high mitochondrial G+C content observed in *P. tetraurelia* is a characteristic property of *Paramecium* mtDNA, or an exception of the ciliate mitochondrial genomes known so far.

To test this question, we determined the mitochondrial genome sequence of *P. caudatum* and compared its gene content and sequence properties to the closely related *P. tetraurelia*.

Results

General characterization

The mitochondrial genome of *Paramecium caudatum* has been described as a linear molecule of 40-44 kb [9]. We determined 43,660 bp of the genome sequence [GenBank:FN424190], excluding only the terminal repeat regions that usually flank the linear ciliate mtDNA. The overall nucleotide composition was 9.9% G, 42.7% A, 34.9% T, and 12.5% C, the G+C content thereby being significantly lower than that of *P. tetraurelia* mtDNA (22.4% vs. 41.2%). The coding part of the genome was 41,091 bp (94.1%), the protein-coding part 36,585 bp (83.8%) in length. We determined 25 protein-coding genes with known function, 17 additional ORFs with unknown function, the small and large subunits of the ribosomal RNA genes and three transfer RNA genes (Figure 1). Genes in the *P. caudatum* mitochondrial genome were densely packed, with short intergenic spacers (0-85 bp). However, the intergenic regions adjacent to the *cox1* and *cob* genes were considerably longer (up to 503 bp; Figure 1). An overview of all protein-coding genes and a comparison with the *P. tetraurelia* mtDNA is given in Table 1.

The amino acid sequences of genes with known function were more similar between *Paramecium* species than sequences of the putative ORFs, with *atp9* and *nad10* being the most conserved genes (Table 1). The ratio of nonsynonymous vs. synonymous substitutions (Ka/Ks) also differed, with Ka/Ks values being significantly higher in putative ORFs than in known genes (Mann-Whitney-U-test z = -3.30; p < 0.001; mean values of 0.203 and 0.080, respectively). An exception was the *rpl2* gene, which possessed the highest Ka/Ks value among all protein-coding genes in *Paramecium* mtDNA, although it was still well within the range indicative for purifying selection (Table 1).

Nucleotide composition and codon usage

Nucleotide composition and codon usage of the newly determined *P. caudatum* mitochondrial genome were compared to the previously published mitochondrial genomes of *P. tetraurelia* [GenBank:NC001324] and *T. pyriformis* [GenBank:NC000862]. In *P. caudatum*, the G+C content of the protein-coding genes was similar to the G+C content of *T. pyriformis* (21.7% and 20.2%, respectively), but much lower than that of *P. tetraurelia* (43.2%). This difference was even more pronounced at 3rd codon positions, with 56.5% G or C ending codons in *P. tetraurelia* and only 12.8% and 11.9% G or C ending codons in *P. caudatum* and *T. pyriformis*, respectively. The G+C content of the noncoding regions (intergenic spacers) was slightly lower compared to protein-coding genes in all species, but the relative differences between species were similar (Table 2). In the mitochondrial rRNA genes, on the other hand, the G+C content differed only slightly among the ciliates (Table 2).

In order to gain further insight into the nucleotide composition of the *Paramecium* mtDNA, we sequenced a 776 bp fragment of the Cytochrome oxidase subunit 1 gene (*cox1*) from 13 more *Paramecium* species. A phylogenetic tree of *Paramecium* based on sequences of the *cox1* gene is shown in Figure 2B. The analysis of the nucleotide composition at 3rd codon positions of the
cox1 gene revealed high G+C values (45-50%) in species of the *P. aurelia* complex and a low G+C content (3-17%) in the remaining paramecia (Figure 2A).

The codon usage bias (CUB) differed significantly between *P. caudatum* and *P. tetraurelia* (Table 3). Only in one out of 19 amino acids (Phe) the same codon (TTT) was the most frequently used synonymous codon in *P. caudatum* and *P. tetraurelia*, whereas *P. caudatum* and *T. pyriformis* shared the most frequently used codon in 16 amino acids. The type of preferred codons was related to the nucleotide composition of the respective species (Table 2, 3). Generally, for *P. caudatum* and *T. pyriformis* A/T ending synonymous codons were abundant. This was also true for the stop codons, as only TAA was detected to terminate protein-coding genes in *P. caudatum* and *Tetrahymena*, whereas TAG never occurred (Table 3). In *P. tetraurelia* mtDNA, on the other hand, the codon usage was shifted against G/C ending codons. Only in two amino acids (Phe and Trp) the most frequent synonymous codon ended in A or T (and these are the termination codons). Furthermore, both the number of rare codons and the effective number of codons (*Nc*) indicate a more balanced usage of synonymous codons in *P. tetraurelia* compared to the other ciliates (Table 3). A higher *Nc* in *P. tetraurelia* was found for all protein-coding genes and putative ORFs, except *nad9* (additional file 1 Table S1).

Gene content and gene order

Gene composition, gene order and transcriptional orientation were essentially the same as in *P. tetraurelia* [1,5]. Most of the few observed differences between *P. caudatum* and *P. tetraurelia* could be attributed to sequencing or annotation errors in the *P. tetraurelia* mtDNA. For example, the small gene *rps19* was not described in *P. tetraurelia* neither in the original publication nor in the re-annotation paper [1,5]. We determined *rps19* in the newly sequenced *P. caudatum* mitochondrial genome as well as in *P. tetraurelia* at the same relative position (between *rps3* and *rpl2*) where it is located in all *Tetrahymena* species [2,3]. The mitochondrial genome of *P. caudatum* contained one ORF (*ymf87*) that was not present in *P. tetraurelia* (Figure 1). Furthermore, we determined five ORFs in *P. caudatum*, each of which seems to be equivalent to two adjacent ORFs in *P. tetraurelia*. Four of these ORFs (*ymf65, ymf66, ymf67* and *ymf76*) are also present in *Tetrahymena* mtDNA [1]. The fifth ORF refers to the heme maturase gene (*yejR*), which was much larger than *P. tetraurelia yejR* (447 vs. 255 aa), but similar to *Tetrahymena* (512-522 aa) and *Euplotes minuta yejR* (461 aa) [1-4]. In *P. tetraurelia*, *ymf82* is located directly downstream to the *yejR* gene [1]. In *P. caudatum*, however, *ymf82* was not present at this position or anywhere else in the mitochondrial genome (Figure 1). These results could indicate sequencing errors in the *P. tetraurelia* mitochondrial genome, which led to several frameshifts and premature stopcodons in the annotated sequence.

The most striking difference compared to *P. tetraurelia* was *ymf64*, a large open reading frame of 5,136 bp length (Figure 1). The C-terminal part of this ORF showed significant similarity to *ymf64* of *P. tetraurelia*.
and *Tetrahymena* (where this ORF is 234 and 330 amino acids long, respectively) and to the c-terminal part of *rps3* in *Euplotes*. The largest part of the gene, however, consisted of an N-terminal extension. The analysis revealed one transmembrane region from amino acid 1,469 to 1,491, with the alignable C-terminal part (see above) lying inside and the large extension lying outside of the membrane. BLAST searches of this extension detected no sequence similarity with any known sequence in GenBank.

Besides its size, *ymf64* possessed another unusual feature: an intragenic minisatellite, composed of nine repeat units of 18 bp close to the middle of the ORF. We amplified and sequenced this gene region from 20 further *P. caudatum* strains and found the repeat number to be highly variable, even between strains sharing the same *cox1* haplotype (Figure 3). We identified 12 length variants with repeat numbers ranging from six to 23 units. No length polymorphism (heteroplasmy) was detected within individual *P. caudatum* strains. The repeat was imperfect as we found differences (substitutions) between the repeat units within one sequence as well as variations between different strains. However, these sequence variations never led to nonsense mutations. Since the repeat unit size was a multiple of three

Table 1 Size of protein-coding genes in *P. caudatum* mtDNA and comparative data calculated for *P. caudatum* and *P. tetraurelia*

gene	length (in aa)	sequence identity	Ka/Ks	ORF length (in aa)	sequence identity	Ka/Ks	
cob	442	0.91	0.012	ymf56	81	0.73	0.067
cox1	745	0.93	0.019	ymf57	105	0.77	0.069
cox2	577	0.84	0.022	ymf59	127	0.40	0.340
atp9	75	1.00	0.001	ymf61	189	0.40	0.298
yejRα	447	0.47	0.242	ymf63α	525	0.44	0.258
nad1_a	287	0.93	0.012	ymf64α	1712	0.56	0.168
nad1_b	63	0.71	0.027	ymf65α	365	-	-
nad2	167	0.67	0.093	ymf66α	412	-	-
nad3	120	0.83	0.033	ymf67α	354	-	-
nad4	501	0.70	0.062	ymf68	395	0.76	0.044
nad4L	115	0.64	0.070	ymf76β	399	-	-
nad5	597	0.75	0.049	ymf78	69	0.48	0.298
nad6	256	0.73	0.064	ymf79	73	0.38	0.323
nad7	423	0.91	0.010	ymf80	97	0.68	0.076
nad9	184	0.67	0.072	ymf83	168	0.55	0.206
nad10	154	0.95	0.006	ymf84	158	0.33	0.291
rps3α	363	0.57	0.195	ymf87α	107	-	-
rps12	139	0.84	0.024				
rps13	244	0.66	0.049				
rps14	102	0.59	0.104				
rps19δ	88	0.46	0.188				
rpl2	265	0.68	0.523				
rpl6	178	0.71	0.055				
rpl14	119	0.75	0.030				
rpl16	166	0.74	0.047				

Table 2 Nucleotide composition in coding and noncoding regions of ciliate mitochondrial genomes

Protein-coding genes	noncoding DNA	rRNA genes										
gene	T. p.	P. c.	P. t.	T. p.	P. c.	P. t.	T. p.	P. c.	P. t.	T. p.	P. c.	P. t.
cob	10.3	12.1	19.5	6.2	8.0	18.7	13.8	19.0	21.2			
cox1	41.1	35.5	24.8	40.8	35.7	24.3	35.3	35.6	33.0			
cox2	38.7	42.8	32.0	46.3	49.0	36.1	35.7	32.3	30.3			
atp9	9.9	9.6	23.7	6.7	7.3	20.9	15.2	13.1	15.5			
yejRα	20.2	21.7	43.2	12.9	15.3	39.6	29.0	32.1	36.7			

T. *Tetrahymena pyriformis* [GenBank:NC000862], P. *c. Paramecium caudatum* [GenBank:FN424190], P. *t. Paramecium tetraurelia* [GenBank:NC001324], values are given in percent.

The sequence identity values were calculated from amino acid sequences. The Ka/Ks ratio was estimated using the method of Goldman and Yang [47] as implemented in the program Ka/Ks_Calculator [28].

a yejR, rps3, ymf63 and ymf64 were considerably longer in the mtDNA of *P. caudatum*. For comparative analyses the sequences were adjusted to the gene length in *P. tetraurelia*.

b ymf65, ymf66, ymf67 and ymf76 each appear to be equivalent to two adjacent ORFs in *P. tetraurelia*. Comparative data are omitted.

c ymf87 was only found in *P. caudatum*.

d rps19 in *P. tetraurelia* was annotated during the present work.
Figure 2 Mitochondrial nucleotide composition within the genus *Paramecium*. A) Guanine + cytosine content at 1st, 2nd and 3rd codon positions of the mitochondrial *cox1* gene. B) Phylogenetic tree based on 776 bp of the *cox1* gene. The numbers represent bootstrap values for 2,000 pseudoreplicates in the Neighbor Joining analysis and the scale bar equals 0.05 substitutions/site. The arrow indicates the phylogenetic position of the G+C shift.
Table 3 Comparative codon usage in the mtDNA of T. pyriformis, P. caudatum and P. tetraurelia

	T. p.	P. c.	P. t.	T. p.	P. c.	P. t.	
Ala	GCG	0.03	0.04	Pro	CGG	0.07	
	GCA	0.32	0.41	CCA	0.36	0.42	
	GCT	0.57	0.54	CCA	0.54	0.51	
	GCC	0.07	0.02	CCC	0.03	0.04	
Cys	TGT	0.86	0.85	Glu	AGG	0.06	
	TGC	0.14	0.15	CAA	0.94	0.86	
	Asp	GAT	0.81	0.19	Arg	AGG	0.02
	GAC	0.19	0.19	AQA	0.95	0.74	
	Glu	GAG	0.08	0.70	CQA	0.00	
	GAA	0.92	0.63	CGT	0.02	0.06	
	Phe	TTT	0.89	0.95	Ser	AGT	0.21
	TTC	0.11	0.05	ACA	0.53	0.45	
	Gly	GGG	0.03	0.27	TCG	0.03	0.03
	GGA	0.16	0.19	TCA	0.32	0.20	
	GGT	0.78	0.73	TCT	0.34	0.42	
	GCC	0.03	0.04	TCC	0.04	0.03	
His	CAT	0.69	0.69	Thr	AGC	0.01	
	CAC	0.31	0.31	ACA	0.53	0.45	
	Ile	ATA	0.62	0.53	ACC	0.06	
	ATT	0.33	0.53	ACT	0.41		
	ATC	0.33	0.46	Val	0.04		
	Lys	AAG	0.04	0.64	GTT	0.42	
	AAA	0.96	0.89	GTC	0.06		
	Leu	TGT	0.03	0.13	Trp	TGG	0.03
	TTA	0.75	0.74	TGA	0.97		
	CGT	0.01	0.01	TAC	0.18		
	CTA	0.13	0.05	TAT	0.82		
	CTT	0.07	0.11	TAC	0.18		
	CTC	0.01	0.01	TAG	0.00		
Met	ATG	1.00	1.00	TAA	1.00		
	Asn	AAT	0.79	0.77	Ser	28	
	AAC	0.21	0.23	Gc	31.5		

Bold values indicate the most frequent synonymous codons for each amino acid and species, italic values indicate rare codons. The overall number of rare codons (rare) and the effective number of codons (Nc) are also given for each species.

nucleotides, length variation in the repeat region did not cause a frameshift in the gene and left the reading frame intact.

Discussion
Codon usage
Closely related species usually show similar nucleotide composition and codon usage patterns. For example, five Tetrahymena species possess very similar mitochondrial G+C contents (18.5% - 21.3%; [3]), whereas T. pyriformis, P. tetraurelia and E. minuta differ significantly in this respect (21.7%, 41.9% and 36.0%, respectively; [1,4]). Therefore, it was unexpected that nucleotide composition and codon usage of P. caudatum mtDNA were much more similar to Tetrahymena than to the congeneric P. tetraurelia.

Phylogenetic relationships within the genus Paramecium are well studied [10,11]. In a species phylogeny based on 18S rRNA data, P. caudatum and the P. aurelia species complex are closely related and belong to the “P. aurelia subgroup” [11]. This was also supported by the tree based on cox1 sequences (Figure 2B). Taken into consideration the phylogenetic position of P. tetraurelia, it seems reasonable to hypothesize that a low G+C content and the preference for A/T ending codons represent the ancestral state in the genus Paramecium. An increased G+C content in combination with the preference for G/C ending codons would be a derived condition in P. aurelia mtDNA. No further complete Paramecium mitochondrial genomes were available to test this hypothesis. We analyzed the nucleotide
composition in a fragment of the cox1 gene, which can be used as an indicator for the overall mitochondrial G+C content [12,13]. These sequences supported the above hypothesis, since the shift in the nucleotide composition obviously took place in the lineage leading to the P. aurelia species complex (Figure 2A, B). Of course, this cox1 data set contained only few of the 15 known P. aurelia species, and for a conclusive statement all relevant species should be included. But in this context, please note that [14] and [15] obtained DNA sequences from different mitochondrial genes of all P. aurelia species and these data suggest that the increased mitochondrial G+C content is a consistent pattern throughout the species complex. The observed shift in the nucleotide composition of P. tetraurelia mtDNA was associated with a significantly reduced CUB. The CUB in P. caudatum mtDNA, exemplified by the effective number of codons, was similar to T. pyriformis and other single-celled eukaryotes such as Chlamydomonas [16]. P. tetraurelia, on the other hand, had a much lower CUB (i.e. higher Nc) in nearly all genes (Table 3, additional file 1, Table S1). These differences in base composition and CUB were not reflected in the derived amino acid composition, which was similar for all the compared species (additional file 2, Figure S1). This suggests strong purifying selection on the mitochondrial amino acid composition in P. tetraurelia.

The causes for this large shift in G+C content and codon usage in P. tetraurelia mtDNA are unknown. In a recent publication, the complete macronuclear genome sequences of P. tetraurelia and T. thermophila were compared [8]. The authors observed very similar nucleotide composition and codon usage patterns in both species. Thus, whatever caused the shift in the P. tetraurelia mitochondrial genome seems to have only affected mtDNA and not nuclear DNA. Furthermore, the altered nucleotide composition was observed for both protein-coding and noncoding regions (Table 2), indicating that the increased G+C content is not the consequence of selection for either a higher expression level of P. tetraurelia mitochondrial genes, or towards certain codons. Possible explanations for the increased G+C content in the P. tetraurelia mitochondrial genome are discussed below.

A high G+C content could be an adaptation to temperature, UV exposure or other environmental conditions that require a high DNA stability [17] (but see [18]). Although the presently available data suggest that some P. aurelia species may be restricted to certain biogeographic regions [19,20], there is no evidence for P. tetraurelia generally preferring higher temperatures than P. caudatum. In fact, both species often co-occur and have to cope with similar environmental conditions [21].

The observed pattern in P. tetraurelia mtDNA could as well be the consequence of neutral processes like biased gene conversion (BGC) or a general change in mutation pressure from AT towards GC. A neutral process being the underlying mechanism is in concordance with the observation that the G+C content in P. tetraurelia mtDNA was highest at most neutrally evolving sites (3rd codon positions and noncoding regions). In more constrained mtDNA regions (2nd codon positions and ribosomal RNA genes), the base composition of P. tetraurelia was not significantly different from P. caudatum (Table 2, Figure 2). However, this observation is not per se evidence for neutrality of the underlying mechanism. It is in principle also consistent with an adaptive process in combination with strong selective pressure on the amino acid composition.

BGC is a GC biased repair process in genome regions that undergo recombination and has been identified as a major drive in genome evolution [22]. Gene conversion has been suggested as recombinational mechanism in the mitochondrial genome of the killifish Kryptolebias marmoratus [23], and as an explanation for the exceptionally high mitochondrial G+C content in the green alga Polyomella capuana [24]. Previous studies using mtDNA found no evidence for recombination events among P. aurelia species [14,15]. It is, nevertheless, possible that such a mechanism has played a role in the evolutionary history of the P. aurelia complex.

In this context it is interesting to note, that a whole genome duplication (WGD) has occurred in the common ancestor of the P. aurelia complex [6]. A significantly reduced CUB was also found in nuclear encoded mitochondrial genes of Saccharomyces species, which experienced a WGD [25]. To our knowledge, the influence of a WGD on the mitochondrial genome has not been investigated. It is tempting to speculate that the WGD influenced the crosstalk between nuclear and mitochondrial genomes (e.g. through nuclear encoded genes for the mitochondrial replication and repair machinery).

In conclusion, the observed picture is best explained by a hitherto unknown (neutral or adaptive) mechanism that increased the G+C content in P. aurelia mtDNA on the one hand, and strong purifying selection on the ancestral amino acid composition on the other hand. These contradicting forces are counterbalanced by a considerably altered codon usage pattern.

Gene content and sequence evolution compared to P. tetraurelia

The size of the P. caudatum mitochondrial genome was within the range predicted from earlier RFLP analyses [9] and ~10% longer than the mitochondrial genome of P. tetraurelia [5]. This difference was primarily due to
the presence of the large open reading frame ymf64 in
P. caudatum (discussed in more detail below).

We found one unique ORF (ymf87) in P. caudatum,
which was not present in P. tetraurelia. This is in con-
trast to Tetrahymena, where complete synten among
five phylogenetically diverse Tetrahymena species was
observed, except for some rare gene duplications [3].
The existence of many ORFs of unknown function is a
general problem in protist mitochondrial genomes [26].
Likewise, for about half of the protein-coding mitochon-
drial genes in ciliates no definite function can be
assigned [1-3]. One main objective of studies obtaining
new ciliate mitochondrial genomes is therefore the
annotation of these unknown ymf genes. Unfortunately
we failed to assign any function to hitherto unknown
genes, which is most likely due to the high evolutionary
rate of ciliate mtDNA. This problem even challenged
the alignment of some ORFs from the closely related P.
caudatum and P. tetraurelia. For example, in ymf84
only 33% of the amino acids were identical among both
species. Therefore, BLAST searches as well as manual
alignments could not determine a possible equivalent of
this gene in Tetrahymena. The authors of the T. pyrifor-
mis mtDNA study suggested a possible homology of
Paramecium ymf84 and T. pyriformis ymf74 based on
gene size and position (between nad10 and rpl2) [1].
The recently published mitochondrial genome sequence
of the rather distantly related Euplotes minuta con-
firmed this suggestion, as this conserved gene order was
also found in Euplotes [4].

In general, evolutionary rates are governed by negative
(purifying) selection, neutrality or positive (diversifying)
selection. The ratio of nonsynonymous and synonymous
substitution rates (Ka/Ks) allows an estimation of the
selective constraint on a given gene. Values <1 are indi-
cative for purifying selection, whereas values >1 indicate
diversifying selection [27,28]. Ka/Ks values of the pro-
tein-coding genes in the Paramecium mtDNA were gen-
erally <1, indicating that purifying selection is acting on
all genes.

The genes with high sequence similarities between P.
caudatum and P. tetraurelia also had low Ka/Ks values.
This may indicate that the selective optimum for those
genes is similar in the compared species. An exception
to this trend was the ribosomal protein gene rpl2,
whose Ka/Ks ratio indicates a relaxed selective con-
straint in combination with moderate sequence diver-
gence. In Tetrahymena, no elevated Ka/Ks ratios were
observed for this gene [2,3]. In the present study, puta-
tive ORFs had significantly (2.5fold) higher Ka/Ks values
compared to known protein-coding genes, indicating a
lower selective pressure on those non-annotated genes.
Similar results were obtained in a study comparing T.
pyriformis and T. thermophila [2]. Furthermore, these
authors supposed that the high divergence of putative
ORFs causes difficulties to detect homologous genes
through similarity searches. Some of the putative ORFs
in Paramecium, however, had low Ka/Ks values and a
relatively high sequence similarity in P. caudatum and
P. tetraurelia (Table 1). It is surprising that for these
genes, which are conserved within ciliates and seem to
be under notable selective pressure, no homologs could
be detected in other organisms.

Ymf64

The most conspicuous feature in the P. caudatum
mtDNA was a large N-terminal extension of ymf64
compared to the previously published ciliate mitochon-
drial genomes. This was also the main reason for the
length difference between the mitochondrial genomes of
P. tetraurelia and P. caudatum (40,469 vs. 43,660 bp).
An initial PCR survey revealed that the large gene
extension was not present in the mitochondrial genomes
of three further members of the P. aurelia complex (P.
primaurelia, P. pentauruela and P. jenningsi), P. multimic-
ronucleatum, P. nephridiatum and P. putrinum (data
not shown). These results together with the phyloge-
netic analysis (Figure 2B) suggest that this gene exten-
sion is a unique feature of P. caudatum rather than an
ancestral feature that was lost in P. tetraurelia. The C-
terminal part of ymf64 also showed similarity to the C-
terminal part of a gene that was annotated as rps3 in
Euplotes (but is not homologous to rps3 in Paramecium
and Tetrahymena mtDNA). Interestingly, also in
Euplotes this gene possesses a large N-terminal exten-
sion, although it is smaller than in P. caudatum (gene
length of 758 aa in E. minuta) [4]. The size of ymf64
resembles ymf77 in the Tetrahymena mtDNA, which is
approximately 1,300 amino acids long [2]. However,
besides the gene length no other similarities could be
detected. The existence of two remarkably large but
unrelated mitochondrial genes in two relatively closely
related ciliate genera is surprising and needs further
study. We are currently investigating the sequence and
length variation of ymf64 in P. caudatum and will
furthermore apply RT-PCR analyses to test whether the
gene is expressed in full length.

The length variable repeat in the middle of ymf64 is
the first report of an intragenic mitochondrial minisatel-
lite in ciliates. Variable Number Tandem Repeats
(VNTRs) or minisatellites are common in the mtDNA
of many different organisms, especially metazoans [29].
The high variability (i.e. frequent changes in the number
of repeat units) is supposed to occur through slipped
strand mispairing during mtDNA replication. In most
cases these VNTRs are located in or adjacent to the
noncoding mitochondrial control region. To our knowledge, an intragenic mitochondrial minisatellite has been reported only from a gene of unknown function in the oomycete Phytophthora sojae [30]. On the other hand, minisatellites encoding nuclear sequences are not unusual. Genes containing polymorphic repeat elements are capable to rapidly adapt to changing environmental conditions or to generate new functions. This is of special importance in developmental genes of multicellular organisms [31] and in cell wall/surface proteins of unicellular prokaryotes [32] and eukaryotes [33]. Based on the present data, however, it is not possible to suggest a potential function for the repeat region within ymf64.

Minisatellites have been useful for the investigation of population structure and phylogeographic patterns and also for the identification of individual organisms or clones [34]. Only recently, mtDNA sequences have been successfully applied as genetic markers for the investigation of intraspecific variation in ciliates [35,36]. In one of these studies several polymorphic cox1 haplotypes were observed among natural isolates of *P. caudatum* and *P. multimicronucleatum*, which reflected no clear geographic structure [35]. The ymf64 repeat region proved to be polymorphic in different *P. caudatum* isolates that share the same cox1 haplotype (Figure 3). This indicates a higher evolutionary rate of this sequence region. Further analyses including more isolates will show whether the ymf64 minisatellite has potential as a genetic marker for *Paramecium*.

Conclusions

The aim of this study was to compare the mitochondrial genome sequence of *Paramecium caudatum* to the previously published mtDNA of *P. tetraurelia*. While gene order and gene content were very similar in both species, the analysis revealed that nucleotide composition and codon usage bias of the *P. caudatum* mtDNA differed greatly from *P. tetraurelia*. The G+C content of the *P. tetraurelia* mtDNA was nearly twice as high as in *P. caudatum* (41.2% vs. 22.4%) and the codon usage bias was much lower (Nc=: 52.1 vs. 33.5). Unexpectedly, the effective number of codons in the *P. caudatum* mitochondrial genome, is more similar to the distantly related *T. pyriformis* and other single-celled eukaryotes such as *Chlamydomonas*, than to the closely related *P. tetraurelia*. The analysis of cox1 data from additional *Paramecium* species showed that the shift towards a higher mitochondrial G+C content took place in the lineage leading to the *P. aurelia* species complex. The reasons for this shift are presently unknown and future studies will investigate whether this is linked to the whole genome duplication that occurred in the common ancestor of the *P. aurelia* complex.

Methods

Paramecium strains

The *P. caudatum* strain GB-E used for mitochondrial genome sequencing was originally isolated from a small pond in the vicinity of the University of Edinburgh and kept as clonal culture in the collection of the Molecular Evolution laboratory at Leipzig University. The following *Paramecium* species were used for the nucleotide composition analysis and phylogenetic reconstruction (Accession numbers for the cox1 sequences are given in parentheses): *P. primaurelia* [GenBank:FN421324], *P. biurelia* [GenBank:FN421325], *P. tetraurelia* [GenBank:FN421326], *P. novaurelia* [GenBank:FN421327], *P. jenningsi* [GenBank:FN421328], *P. schewiakoffi* [GenBank:AM072773], *P. multimicronucleatum* [GenBank:AM072766], *P. calcis* [GenBank:FN421329], *P. nephridiata* [GenBank:FN421331], *P. dubosci* [GenBank:FN421332], *P. polycaryum* [GenBank:FN421330], *P. putrinum* [GenBank:FN421333], *P. bursaria* [GenBank:FN421334].

Molecular methods

DNA extraction followed a Chelex® protocol as described in [35]. The nearly complete mitochondrial genome of *P. caudatum* was amplified in overlapping fragments of 3-15 kb length using Phusion™ high fidelity DNA polymerase (Finnzymes OY). PCR primers were designed from alignments of conserved gene regions from *P. tetraurelia* [GenBank:NC001324] and *T. pyriformis* [GenBank:NC000862].

PCR products <5 kb were directly sequenced employing a primer walking method. Longer PCR products were gel-purified (GFX™ PCR DNA and Gel Band Purification Kit, Amersham Biosciences) and then digested with the restriction endonuclease *Xba I* (Fermentas) to obtain smaller fragments. Restriction fragments up to 3 kb were A-tailed using a *Taq* DNA polymerase (Fermentas), cloned into pGEM-T Vector (Promega), and sequenced with universal vector primers. Longer fragments were completed by primer walking. Peripheral regions of the linear mtDNA were amplified via step-out PCR [37], single primer PCR [38], and uneven PCR [39]. Cox1 fragments were amplified with primers and PCR conditions described in [35].

Genome annotation and sequence analysis

Sequences were manually checked and assembled using BioEdit v. 7.0.5.3 [40] and then annotated with ARTEMIS v. 9 [41]. Open reading frames of > 60 aa length were compared to GenBank entries using the BlastP program [42]. Additionally, the corresponding nucleotide sequences and intergenic spacers supposed to contain the RNA genes were manually aligned to the
mitochondrial genome of *P. tetraurelia* [GenBank: NC001324]. The tRNAscan-SE server [43] was employed to assign the tRNA genes. The Ka/Ks_Calculator [28] was used to estimate the selective pressure on protein-coding genes. Phylogenetic analyses were carried out with MEGA4 [44]. Nucleotide composition, codon usage, and sequence statistics were analyzed with MEGA4 and different programs implemented in the Sequence Manipulation Suite [45]. The effective number of codons (Nc) was estimated with the program CodonW v. 1.3 http://codonw.sourceforge.net// and the number of rare codons was calculated according to [8]. Nc describes to what degree the codon usage in a genome is biased. It is a number between 20 and 61 where 20 means only one codon is used for each amino acid and values approaching 61 suggest equal usage of synonymous codons [46].

Additional material

Additional file 1: Codon usage and open reading frames in *Paramecium*. Effective number of codons Nc in protein-coding genes and putative ORFs of *Paramecium tetraurelia* and *P. caudatum* mtDNA.

Additional file 2: Amino acid composition of the mitochondrial genome. Amino acid composition in the mitochondrial genomes of *Paramecium caudatum, P. aurelia* and *Tetrahymena pyriformis* (values are given in percent).

Acknowledgements This study was supported by a grant from Deutsche Forschungsgemeinschaft (DFG), priority programme “AQUASHIFT” (BE 2299/3-1,2,3) and the priority programme “Host-Parasite Coevolution - Rapid Reciprocal Adaptation and its Genetic Basis” (BE 2299/5-1). We thank Tom Little for collecting the *P. caudatum* strain in Edinburgh, S. I. Fokin for providing the strains of *P. calkinsi*, *P. jenningsi* and *P. duboscquii*, and C. Burkhart for her help in sequencing the repeat region of some *P. caudatum* strains. We thank A. Dorothea Sommerfeldt for her very helpful corrections of our manuscript. Finally we thank two anonymous reviewers for careful suggestions, which improved the manuscript considerably.

Author details
1University of Leipzig, Chair of Molecular Evolution and Animal Systematics, Talstrasse 33, 04103 Leipzig, Germany.
2Dresden University of Technology, Institute for Hydrobiology, Zellescher Weg 40, 01062 Dresden, Germany.

Authors’ contributions
DB conducted the experiments and performed all necessary analyses, TIJB wrote the grant proposal and assisted in the design of the experiments. Both authors wrote the manuscript and approved the final version.

Received: 21 December 2010 Accepted: 31 May 2011

References
1. Burger G, Zhu Y, Littlejohn TG, Greenwood SJ, Schneer MN, Lang BF, Gray MW: Complete sequence of the mitochondrial genome of *Tetrahymena pyriformis* and comparison with *Paramecium aurelia* mitochondrial DNA. *J Mol Biol* 2000, 297:365-380.
2. Brunk CF, Lee LC, Tran AB, Li JL: Complete sequence of the mitochondrial genome of *Tetrahymena thermophila* and comparative methods for identifying highly divergent genes. *Nucleic Acids* 2003, 31:1671-1682.
3. Moradian MM, Beglayan D, Skazylas JM, Kerikovan V: Complete mitochondrial genome sequence of three *Tetrahymena* species reveals mutation hot spots and accelerated nonsynonymous substitutions in *yfm* genes. *PLoS ONE* 2007, 2:e650.
4. De Graaf RM, van Alen TA, Duthil BE, Kuiper JWP, van Zoggel HJA, Huynh MB, Gärnz H-D, Huynen MA, Hackstein JHP: The mitochondrial genomes of the ciliates *Euplotes minuta* and *Euplotes crassus*. *BMC Genomics* 2009, 10:514.
5. Pritchard AE, Seilhameier JJ, Mahalingam R, Sable CI, Venuti SE, Cummings DJ: Nucleotide sequence of the mitochondrial genome of *Paramecium*. *Nucleic Acids Res* 1990, 18:173-180.
6. Auy J, Jaillon O, Durst L, Noel R, Jabin C, Parrot BM, Séguerson B, Daubin V, Anthouard V, Avach N, Arnoux O, Billaut A, Besson J, Blanc I, Bouhouche K, Cárdenas F, Duharcourt S, Guirao G, Gogendeau D, Katinka M, Keller AM, Kimmeth J, Klotz C, Koll F, Le Mouël A, Lepère G, Malinsky S, Nowacki M, Nowak J, Platter H, Poujolain J, Ruz F, Serano V, Zagalik M, Dessen P, Bérétegui M, Weissenbach J, Scarpelli C, Schächter V, Sperling L, Meyer E, Cohen J, Winkler P: Global trends of whole-genome duplications revealed by the ciliate *Paramecium tetraurelia*. *Nature* 2006, 444:171-178.
7. Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, Badger JH, Ren Q, Amedeo P, Jones KM, Tallon LJ, Delscher AL, Salzberg SL, Silva JC, Haas BJ, Majors WH, Farzad M, Carlton JM, Smith RK Jr, Gang J, Pearlman RE, Karer KM, Sun L, Manning G, Ede NC, Turkewitz AP, Asai DJ, Willkies DE, Wang Y, Cai H, Collins K, Stewart BA, Lee SR, Willamowski K, Weinberg Z, Ruzzo WL, Wloga D, Gaing T, Frankel J, Tsao CC, Gorovsky MA, Keeling PJ, Weller RF, Cherry JM, Stover NA, Krieger CJ, del Toro C, Ryder HF, Williamson SC, Barreau BA, Hamilton EP, Orias E: Macronuclear genome sequence of the ciliate *Tetrahymena thermophila*, a model eukaryote. *PLoS Biol* 2006, 4:e286.
8. Salah HMW, Ring KL, Cavalcanti ARQ: Patterns of codon usage in two ciliates that reassign the genetic code: *Tetrahymena thermophila* and *Paramecium tetraurelia*. *Protist* 2008, 159:283-298.
9. Tsukii Y: Evolution of mitochondrial DNA in *Paramecium caudatum*. *Jpn J Genet* 1994, 69:307-319.
10. Studer-Kypke CM, Wright GA, Fokin SI, Lynn DH: Phylogenetic relationships of the subclass Penicilia (Oligohymenophorea, Ciliophora) inferred from small subunit rRNA gene sequences. *J Eukaryot Microbiology* 2000, 47:419-429.
11. Fokin SI, Przyboś E, Chivilev SV, Beier CL, Horm M, Skotarczak B, Wodecka B, Fujimura M: Morphological and molecular investigations of *Paramecium scheviakoffi* sp. nov. (Ciliophora, Oligohymenophorea) and current status of distribution and taxonomy of *Paramecium* spp. *Eur J Protistol* 2004, 40:225-243.
12. Min XJ, Hickey DA: DNA barcodes provide a quick preview of mitochondrial genome composition. *PLoS ONE* 2007, 3:e325.
13. Clare EL, Kerr KCR, von Königswiß TE, Wilson JG, Hepert PD: Diagnosing mitochondrial DNA diversity: applications of a sentinel gene approach. *J Mol Evol* 2008, 66:362-363.
14. Barth D, Przyboś E, Fokin SI, Schiegel M, Berendonk TU: *Cytochrome b* data suggest rapid speciation within the *Paramecium aurelia* species complex. *Mol Phylogenet Evol* 2008, 49:669-673.
15. Catania F, Wurmsner F, Potekhin AA, Przyboś E, Lynch M: Genetic diversity in the *Paramecium aurelia* species complex. *Mol Biol Evol* 2009, 26:421-431.
16. Popescu CE, Lee RW: Mitochondrial genome sequence evolution in *Chlamydorhonda*. *Genetics* 2007, 175:819-826.
17. Bernardi G: The human genome: organization and evolutionary history. *Annu Rev Genet* 1995, 29:445-476.
18. Ghilter N, Lobey JR: Relationships between genomic G+C content, RNA secondary structures, and optimal group temperature in prokaryotes. *J Mol Evol* 1997, 44:632-636.
19. Przyboś E, Fokin SI: Data on the occurrence of species of the *Paramecium aurelia* complex world-wide. *Protoplasma* 2000, 1:179-184.
20. Przyboś E, Barth D, Berendonk TU: The *Paramecium aurelia* species complex, frequency and co-occurrence across Europe. *Folia Biol Krakow* 2008, 56:77-81.
21. Przyboś E, Rautian M, Potekhin A: Species of the *Paramecium aurelia* complex in Russia, Lower Volga Basin. *Prototaxia* 2005, 4:129-134.
22. Marais G: Biased gene conversion: implications for genome and sex evolution. *Trends Ecol Evol* 2003, 19:330-338.
23. Tatarnikov A, Avise JC: Rapid concerted evolution in animal mitochondrial DNA. *Proc R Soc B* 2007, 274:822-826.
