ON HARDY–LITTLEWOOD-TYPE
AND HAUSDORFF–YOUNG-TYPE INEQUALITIES
FOR GENERALIZED GEGENBAUER EXPANSIONS

Roman A. Veprintsev

Abstract. Using well-known techniques, we establish Hardy–Littlewood-type and Hausdorff–Young-type inequalities for generalized Gegenbauer expansions and their unification.

Key words and phrases: orthogonal polynomials, Jacobi polynomials, Gegenbauer polynomials, generalized Gegenbauer polynomials, Hardy–Littlewood-type inequalities, Hausdorff–Young-type inequalities

MSC 2010: 33C45, 41A17, 42C10

1. Introduction and preliminaries

In this section, we introduce some classes of orthogonal polynomials on [−1, 1], including the so-called generalized Gegenbauer polynomials. For a background and more details on the orthogonal polynomials, the reader is referred to [126, 10].

Let \(\alpha, \beta > -1 \). The Jacobi polynomials, denoted by \(P_{n}^{(\alpha,\beta)}(\cdot) \), where \(n = 0, 1, \ldots \), are orthogonal with respect to the Jacobi weight function \(w_{\alpha,\beta}(t) = (1-t)^{\alpha}(1+t)^{\beta} \) on \([-1,1]\), namely,

\[
\int_{-1}^{1} P_{n}^{(\alpha,\beta)}(t) P_{m}^{(\alpha,\beta)}(t) w_{\alpha,\beta}(t) \, dt = \begin{cases}
2^{\alpha+\beta+1} \Gamma(n+\alpha+1) \Gamma(n+\beta+1) \\
(2n+\alpha+\beta+1) \Gamma(n+1) \Gamma(n+\alpha+\beta+1)
\end{cases}, \quad n = m, \\
0, \quad n \neq m.
\]

Here, as usual, \(\Gamma \) is the gamma function.

For \(\lambda > -\frac{1}{2}, \mu \geq 0 \), and \(n = 0, 1, \ldots \), the generalized Gegenbauer polynomials \(C_{n}^{(\lambda,\mu)}(\cdot) \) are defined by

\[
C_{2n}^{(\lambda,\mu)}(t) = a_{2n}^{(\lambda,\mu)} P_{n}^{(\lambda-1/2,\mu-1/2)}(2t^{2} - 1), \quad a_{2n}^{(\lambda,\mu)} = \frac{(\lambda+\mu)_{n}}{(\mu+\frac{1}{2})_{n}},
\]

\[
C_{2n+1}^{(\lambda,\mu)}(t) = a_{2n+1}^{(\lambda,\mu)} t P_{n}^{(\lambda-1/2,\mu+1/2)}(2t^{2} - 1), \quad a_{2n+1}^{(\lambda,\mu)} = \frac{(\lambda+\mu)_{n+1}}{(\mu+\frac{1}{2})_{n+1}},
\]

where \((\lambda)_{n}\) denotes the Pochhammer symbol given by

\[
(\lambda)_{0} = 1, \quad (\lambda)_{n} = \lambda(\lambda+1) \cdots (\lambda+n-1) \quad \text{for} \quad n = 1, 2, \ldots
\]

They are orthogonal with respect to the weight function

\[
v_{\lambda,\mu}(t) = |t|^{2\mu}(1-t^{2})^{\lambda-1/2}, \quad t \in [-1,1].
\]

For \(\mu = 0 \), these polynomials, denoted by \(C_{n}^{(\lambda)}(\cdot) \), are called the Gegenbauer polynomials:

\[
C_{n}^{(\lambda)}(t) = C_{n}^{(\lambda,0)}(t) = \frac{(2\lambda)_{n}}{(\lambda+\frac{1}{2})_{n}} P_{n}^{(\lambda-1/2,\lambda-1/2)}(t).
\]
For \(\lambda > -\frac{1}{2} \), \(\mu > 0 \), and \(n = 0, 1, \ldots \), we have the following connection:

\[
C_n^{(\lambda,\mu)}(t) = c_\mu \int_{-1}^{1} C_n^{\lambda+\mu}(tx)(1 + x)(1 - x^2)^{\mu-1} \, dx, \quad c_\mu^{-1} = 2 \int_{0}^{1} (1 - x^2)^{\mu-1} \, dx.
\]

Denote by \(\{\tilde{C}_n^{(\lambda,\mu)}(\cdot)\}_{n=0}^{\infty} \) the sequence of orthonormal generalized Gegenbauer polynomials. It is easily verified that these polynomials are given by the following formulae:

\[
\tilde{C}_2n^{(\lambda,\mu)}(t) = \tilde{a}_{2n}^{(\lambda,\mu)} P_n^{(\lambda-1/2,\mu-1/2)}(2t^2 - 1),
\]

\[
\tilde{\alpha}^{(\lambda,\mu)}_{2n} = \left(\frac{(2n + \lambda + \mu)\Gamma(n + 1)\Gamma(n + \lambda + \mu)}{\Gamma(n + \lambda + \frac{1}{2})\Gamma(n + \mu + \frac{1}{2})} \right)^{1/2},
\]

\[
\tilde{C}_{2n+1}^{(\lambda,\mu)}(t) = \tilde{a}_{2n+1}^{(\lambda,\mu)} t P_n^{(\lambda-1/2,\mu+1/2)}(2t^2 - 1),
\]

\[
\tilde{\alpha}^{(\lambda,\mu)}_{2n+1} = \left(\frac{(2n + \lambda + \mu + 1)\Gamma(n + 1)\Gamma(n + \lambda + \mu + 1)}{\Gamma(n + \lambda + \frac{3}{2})\Gamma(n + \mu + \frac{3}{2})} \right)^{1/2}.
\]

The generalized Gegenbauer polynomials play an important role in Dunkl harmonic analysis (see, for example, [2, 6]). So, the study of these polynomials and their applications is very natural.

The notation \(f(n) \asymp g(n) \), \(n \to \infty \), means that there exist positive constants \(C_1, C_2 \), and a positive integer \(n_0 \) such that \(0 \leq C_1 g(n) \leq f(n) \leq C_2 g(n) \) for all \(n \geq n_0 \). For brevity, we will omit “\(n \to \infty \)” in the asymptotic notation.

Define the uniform norm of a continuous function \(f \) on \([-1, 1]\) by

\[
\|f\|_\infty = \max_{-1 \leq t \leq 1} |f(t)|.
\]

The maximum of two real numbers \(x \) and \(y \) is denoted by \(\max(x, y) \).

In [11], we prove the following result.

Theorem 1. Let \(\lambda > -\frac{1}{2}, \mu > 0 \). Then

\[
\|\tilde{C}_n^{(\lambda,\mu)}\|_\infty \asymp n^{\max(\lambda,\mu)}.
\]

Given \(1 \leq p \leq \infty \), we denote by \(L_p(v_{\lambda,\mu}) \) the space of complex-valued Lebesgue measurable functions \(f \) on \([-1, 1]\) with finite norm

\[
\|f\|_{L_p(v_{\lambda,\mu})} = \left(\int_{-1}^{1} |f(t)|^p v_{\lambda,\mu}(t) \, dt \right)^{1/p}, \quad 1 \leq p < \infty,
\]

\[
\|f\|_{L_\infty} = \sup_{x \in [-1, 1]} |f(x)|, \quad p = \infty.
\]

For a function \(f \in L_p(v_{\lambda,\mu}), 1 \leq p \leq \infty \), the generalized Gegenbauer expansion is defined by

\[
f(t) \sim \sum_{n=0}^{\infty} \hat{f}_n \tilde{C}_n^{(\lambda,\mu)}(t), \quad \text{where} \quad \hat{f}_n = \int_{-1}^{1} f(t) \tilde{C}_n^{(\lambda,\mu)}(t) v_{\lambda,\mu}(t) \, dt.
\]

For \(1 < p < \infty \), we denote by \(p' \) the conjugate exponent to \(p \), that is, \(\frac{1}{p} + \frac{1}{p'} = 1 \).

The aim of this paper is to establish Hardy–Littlewood-type and Hausdorff–Young-type inequalities for generalized Gegenbauer expansions in Sections 2 and 3, respectively. Also, we give their unification in Section 4.
2. Hardy–Littlewood-type inequalities for generalized Gegenbauer expansions

The analogue of the Hardy–Littlewood inequality is given in the following theorem, which can be deduced as a corollary from [9, Theorems 3.2 and 3.6] (for (2) and (4), respectively). Nevertheless, for convenience we give a direct proof of the theorem, based on Theorem 1 and our settings.

Theorem 2. (a) If $1 < p \leq 2$ and $f \in L_p(v_{\lambda,\mu})$, then

$$\left\{ \sum_{n=0}^{\infty} \left((n+1) \left(\frac{1}{p} - \frac{1}{2} \right)(\max(\lambda,\mu)+1) |\hat{f}_n| \right)^p \right\}^{1/p} \leq A_p \|f\|_{L_p(v_{\lambda,\mu})}. \quad (2)$$

(b) If $2 \leq q < \infty$ and ϕ is a function on non-negative integers satisfying

$$\sum_{n=0}^{\infty} \left((n+1) \left(\frac{1}{q} - \frac{1}{2} \right)(\max(\lambda,\mu)+1) |\phi(n)| \right)^q < \infty, \quad (3)$$

then the algebraic polynomials

$$\Phi_N(t) = \sum_{n=0}^{N} \phi(n) \tilde{C}^\lambda \mu_n(t)$$

converge in $L_q(v_{\lambda,\mu})$ to a function f satisfying $\hat{f}_n = \phi(n), n = 0, 1, \ldots$, and

$$\|f\|_{L_q(v_{\lambda,\mu})} \leq A_q \left\{ \sum_{n=0}^{\infty} \left((n+1) \left(\frac{1}{q} - \frac{1}{2} \right)(\max(\lambda,\mu)+1) |\phi(n)| \right)^q \right\}^{1/q}. \quad (4)$$

Proof. Let $\sigma = \max(\lambda,\mu) + 1$.

(a) To prove (2), we note that for $p = 2$ the Parseval identity implies equality in (2) with $A_2 = 1$. Consider (2) as the transformation from $L_p(v_{\lambda,\mu})$ into the sequence $\{ (n+1)^{\frac{1}{q} - \frac{1}{2}}(\max(\lambda,\mu)+1) |\phi(n)| \}_{n=0}^{\infty}$ in the ℓ_p norm with the weight $\{ (n+1)^{-2\sigma} \}_{n=0}^{\infty}$ and show that this transformation is of weak type $(1,1)$. We have

$$m\{ n: (n+1)^{\sigma} |\hat{f}_n| > t \} = \sum_{(n+1)^{\sigma} |\hat{f}_n| > t} (n+1)^{-2\sigma} \equiv I_t.$$

By Theorem 1, $|\hat{f}_n| \leq C_1 \|f\|_{L_1(v_{\lambda,\mu})} (n+1)^{\sigma-1}$ and consequently

$$I_t \leq \sum_{(n+1)^{\sigma} |\hat{f}_n| > t} (n+1)^{-2\sigma}, \quad A = C_2 \left(\frac{t}{\|f\|_{L_1(v_{\lambda,\mu})}} \right)^{\frac{1}{2\sigma-1}}.$$

Hence, using the easily verified inequality

$$\sum_{(n+1)^{\sigma} > \tilde{A}} (1+n)^{-\delta} \leq 2^{\delta-1} \tilde{A}^{-\delta+1}, \quad \tilde{A} > 0, \quad \delta \geq 2,$$
we observe that, for \(\tilde{A} = A \) and \(\delta = 2\sigma \),

\[
I_t \leq C_3 \frac{\|f\|_{L_1(v_{\lambda,\mu})}}{t}.
\]

The last estimate is a weak \((1,1)\) estimate which, using the Marcinkiewicz interpolation theorem, implies \((2)\).

(b) We have \(1 < q' \leq 2\). For brevity, write \(\psi_n \) in place of \(\left((n+1) \left(\frac{1}{q} - \frac{1}{q'} \right) \sigma \left| \phi(n) \right| \right)^q \). Suppose that \(g \in L_{q'}(v_{\lambda,\mu}) \) and that \(N < N' \) are positive integers. Applying Hölder’s inequality and (a), we find that

\[
\left| \int_{-1}^{1} \Phi_N(t) \ g(t) \ v_{\lambda,\mu}(t) \ dt \right| = \left| \sum_{n=0}^{N} \phi(n) \hat{g}_n \right| = \left| \sum_{n=0}^{N} \left(n + 1 \right) \left(\frac{1}{q'} - \frac{1}{q} \right) \sigma \left| \phi(n) \right| \left(n + 1 \right) \left(\frac{1}{q} - \frac{1}{q'} \right) \sigma \hat{g}_n \right| \leq \left\{ \sum_{n=0}^{N} \psi_n \right\}^{1/q} \left\{ \sum_{n=0}^{N} \left(n + 1 \right) \left(\frac{1}{q'} - \frac{1}{q} \right) \sigma |\hat{g}_n| \right\}^{q'/q'} \leq \left\{ \sum_{n=0}^{N} \psi_n \right\}^{1/q} A_{q'} \|g\|_{L_{q'}(v_{\lambda,\mu})}. \tag{5}
\]

Similarly,

\[
\left| \int_{-1}^{1} \left(\Phi_N(t) - \Phi_{N'}(t) \right) \ g(t) \ v_{\lambda,\mu}(t) \ dt \right| \leq \left\{ \sum_{n=N+1}^{N'} \psi_n \right\}^{1/q} A_{q'} \|g\|_{L_{q'}(v_{\lambda,\mu})}. \tag{6}
\]

Hence, by \([7, \text{Theorem (12.13)}]\), the inequalities \((5)\) and \((6)\) lead respectively to the estimates

\[
\|\Phi_N\|_{L_q(v_{\lambda,\mu})} \leq \left\{ \sum_{n=0}^{N} \psi_n \right\}^{1/q} A_{q'} \tag{7}
\]

and

\[
\|\Phi_N - \Phi_{N'}\|_{L_q(v_{\lambda,\mu})} \leq \left\{ \sum_{n=N+1}^{N'} \psi_n \right\}^{1/q} A_{q'}.
\]

The last inequality combined with \((3)\) show that the sequence \(\{\Phi_N\}_{N=1}^{\infty} \) is a Cauchy sequence in \(L_q(v_{\lambda,\mu}) \) and therefore convergent in \(L_q(v_{\lambda,\mu}) \); let \(f \) be its limit. Then, by mean convergence,

\[
\hat{f}_n = \lim_{N \to \infty} \left(\hat{\Phi}_N \right)_n, \quad n = 0, 1, \ldots,
\]

which is easily seen to equal \(\phi(n) \). Moreover, the defining relation

\[
f = \lim_{N \to \infty} \Phi_N \quad \text{in} \quad L_q(v_{\lambda,\mu})
\]

and the inequality \((7)\) show that \((1)\) holds and so complete the proof. \(\square \)
To prove the following result, we use the Riesz–Thorin interpolation theorem.

Theorem 3. (a) If $1 < p \leq 2$ and $f \in L_p(v_\lambda,\mu)$, then

$$\left\{ \sum_{n=0}^{\infty} \left(n + 1 \right) \left(\frac{1}{q'} - \frac{1}{q} \right) \max(\lambda,\mu) |\hat{f}_n| \right\}^{1/p'} \leq B_p \|f\|_{L_p(v_\lambda,\mu)}.$$ \hfill (8)

(b) If $2 \leq q < \infty$ and ϕ is a function on non-negative integers satisfying

$$\sum_{n=0}^{\infty} \left(n + 1 \right) \left(\frac{1}{q'} - \frac{1}{q} \right) \max(\lambda,\mu) |\phi(n)| < \infty,$$

then the algebraic polynomials

$$\Phi_N(t) = \sum_{n=0}^{N} \phi(n) \tilde{C}_n^{(\lambda,\mu)}(t)$$

converge in $L_q(v_\lambda,\mu)$ to a function f satisfying $\hat{f}_n = \phi(n)$, $n = 0, 1, \ldots$, and

$$\|f\|_{L_q(v_\lambda,\mu)} \leq B_q \left\{ \sum_{n=0}^{\infty} \left(n + 1 \right) \left(\frac{1}{q'} - \frac{1}{q} \right) \max(\lambda,\mu) |\phi(n)| \right\}^{q'/q}.$$ \hfill (10)

Proof. Let $\sigma = \max(\lambda,\mu)$.

(a) Note that for $p = 2$ the Parseval identity implies equality in (8) with $B_2 = 1$. We now consider (8) as the transformation from $L_p(v_\lambda,\mu)$ into the sequence $\{ (n+1)^{-\sigma} \hat{f}_n \}_{n=0}^{\infty}$ in the ℓ_p norm with the weight $\{ (n+1)^{2\sigma} \}_{n=0}^{\infty}$ and show that this transformation is of strong type $(1, \infty)$. Using Theorem 1, we get

$$\sup_{n=0,1,\ldots} \left\{ (n+1)^{-\sigma} |\hat{f}_n| \right\} \leq B_1 \|f\|_{L_1(v_\lambda,\mu)}.$$

Thus, applying the Riesz–Thorin theorem, we deduce (8) with $B_p = B_1^{\frac{1}{p} - \frac{1}{q'}}$.

(b) The proof of this part is closely related to the proof of part (b) of Theorem 2. One can obtain this proof. We give it here for completeness.

We have $1 < q' \leq 2$. For brevity, write ψ_n in place of $\left((n+1)^{\frac{1}{q'} - \frac{1}{q}} |\phi(n)| \right)^{q'}$. Suppose that $g \in L_{q'}(v_\lambda,\mu)$ and that $N < N'$ are positive integers. Applying Hölder’s inequality and
(a), we find that
\[\left| \int_{-1}^{1} \Phi_N(t) g(t) v_{\lambda,\mu}(t) \, dt \right| = \left| \sum_{n=0}^{N} \phi(n) \hat{g}_n \right| = \left| \sum_{n=0}^{N} (n+1) \left(\alpha^{\beta} \right)^{\sigma} \phi(n) (n+1) \left(\alpha^{\beta} \right)^{\sigma} \hat{g}_n \right| \leq \left\{ \sum_{n=0}^{N} \psi_n \right\}^{1/q} \left\{ \sum_{n=0}^{N} \left((n+1) \left(\alpha^{\beta} \right)^{\sigma} |\hat{g}_n| \right)^{q} \right\}^{1/q} \leq \left\{ \sum_{n=0}^{N} \psi_n \right\}^{1/q} B_q g_{L_q(v_{\lambda,\mu})}. \]
(11)

Similarly,
\[\left| \int_{-1}^{1} (\Phi_N(t) - \Phi_{N'}(t)) g(t) v_{\lambda,\mu}(t) \, dt \right| \leq \left\{ \sum_{n=N+1}^{N'} \psi_n \right\}^{1/q} B_q g_{L_q(v_{\lambda,\mu})}. \]
(12)

Hence, by [7, Theorem (12.13)], the inequalities (11) and (12) lead respectively to the estimates
\[\| \Phi_N \|_{L_q(v_{\lambda,\mu})} \leq \left\{ \sum_{n=0}^{N} \psi_n \right\}^{1/q} B_q. \]
(13)

and
\[\| \Phi_N - \Phi_{N'} \|_{L_q(v_{\lambda,\mu})} \leq \left\{ \sum_{n=N+1}^{N'} \psi_n \right\}^{1/q} B_q. \]

The last inequality combined with (7) show that the sequence \(\{ \Phi_N \}_{N=1}^{\infty} \) is a Cauchy sequence in \(L_q(v_{\lambda,\mu}) \) and therefore convergent in \(L_q(v_{\lambda,\mu}) \); let \(f \) be its limit. Then, by mean convergence,
\[\hat{f}_n = \lim_{N \to \infty} \left(\Phi_N \right)_n, \quad n = 0, 1, \ldots, \]
which is easily seen to equal \(\phi(n) \). Moreover, the defining relation
\[f = \lim_{N \to \infty} \Phi_N \quad \text{in} \quad L_q(v_{\lambda,\mu}) \]
and the inequality (13) show that (10) holds and so complete the proof. \(\square \)

4. Unification of the Hardy–Littlewood-type and the Hausdorff–Young-type inequalities

Theorem 5 contains the Hardy–Littlewood-type and the Hausdorff–Young-type inequalities for the expansions by orthonormal polynomials with respect to the weight function \(v_{\lambda,\mu} \) (see (11)). To prove it, we need Stein’s modification of the Riesz–Thorin interpolation theorem (see [8, Theorem 2, p. 485]) given below.
Theorem 4 (Stein). Suppose \(\nu_1 \) and \(\nu_2 \) are \(\sigma \)-finite measures on \(M \) and \(S \), respectively, and \(T \) is a linear operator defined on \(\nu_1 \)-measurable functions on \(M \) to \(\nu_2 \)-measurable functions on \(S \). Let \(1 \leq r_0, r_1, s_0, s_1 \leq \infty \) and
\[
\frac{1}{r} = \frac{1}{r_0} + \frac{1}{r_1}, \quad \frac{1}{s} = \frac{1}{s_0} + \frac{1}{s_1}, \text{ where } 0 \leq t \leq 1.
\]
Suppose further that
\[
\|(Tg) \cdot v_i\|_{L_{s_i}(S,\nu_2)} \leq L_i \|g \cdot u_i\|_{L_{r_i}(M,\nu_1)}, \quad i = 0, 1,
\]
where \(u_i \) and \(v_i \) are non-negative weight functions. Let \(u = u_0^{1-t} \cdot u_1^t \), \(v = v_0^{1-t} \cdot v_1^t \).

Then
\[
\|(Tg) \cdot v\|_{L_s(S,\nu_2)} \leq L \|g \cdot u\|_{L_r(M,\nu_1)}
\]
with \(L = L_0^{1-t} \cdot L_1^t \).

Theorem 5. Let \(\sigma = \max(\lambda, \mu) \).

(a) If \(1 < p \leq 2 \), \(f \in L_p(v_{\lambda,\mu}) \), and \(p \leq s \leq p' \), then
\[
\left\{ \sum_{n=0}^{\infty} \left((n+1) \left(\frac{1}{p} - \frac{1}{s} \right) + \left(\frac{1}{p} - \frac{1}{t} \right) (\sigma + 1) \right) |\hat{f}_n| \right\}^{1/s} \leq C_p(s) \|f\|_{L_p(v_{\lambda,\mu})}.
\]
(b) If \(2 \leq q < \infty \), \(q' \leq r \leq q \), and \(\phi \) is a function on non-negative integers satisfying
\[
\sum_{n=0}^{\infty} \left((n+1) \left(\frac{1}{q} - \frac{1}{r} \right) + \left(\frac{1}{q} - \frac{1}{\sigma} \right) (\sigma + 1) |\phi(n)| \right)^{q'} < \infty,
\]
then the algebraic polynomials
\[
\Phi_N(t) = \sum_{n=0}^{N} \phi(n) \tilde{C}_n^{(\lambda,\mu)}(t)
\]
converge in \(L_q(v_{\lambda,\mu}) \) to a function \(f \) satisfying \(\hat{f}_n = \phi(n), n = 0, 1, \ldots, \) and
\[
\|f\|_{L_q(v_{\lambda,\mu})} \leq C_q(r) \left\{ \sum_{n=0}^{\infty} \left((n+1) \left(\frac{1}{q} - \frac{1}{r} \right) + \left(\frac{1}{q} - \frac{1}{\sigma} \right) (\sigma + 1) |\phi(n)| \right) \right\}^{1/r'}.
\]

Proof. (a) This part was proved for \(s = p \) (with \(C_p(p) = A_p \)) and \(s = p' \) (with \(C_p(p') = B_p \)) in Theorems 2 and 8 respectively. So for \(p = 2 \), we obtain the equality in (14) with \(C_2(2) = 1 \).

Consider now the case that \(1 < p < 2 \). To prove (14), we set in Theorem 4 \(M = [-1, 1], \nu_1 \) the Lebesgue measure, \(S = \{n\}_{n=0}^{\infty}, \nu_2 \) the counting measure, \(g = f, Tg = \{\hat{f}_n\}_{n=0}^{\infty}, \)
\[
r = r_0 = r_1 = p, u = u_0 = u_1 = v_{\lambda,\mu}, s_0 = s_1 = p', v_0 = \{(n+1) \left(\frac{1}{p'} - \frac{1}{p} \right) \}_{n=0}^{\infty},
\]
\[
u_1 = \{(n+1) \left(\frac{1}{p'} - \frac{1}{p} \right) (\sigma + 1) \}_{n=0}^{\infty}, L_0 = B_p, L_1 = A_p, \quad \text{and} \quad \frac{1}{s} = \frac{1-t}{p'} + \frac{t}{p}.
\]
As \(\frac{1}{p} + \frac{1}{p'} = 1 \), \(\frac{1}{s} - \frac{1}{p'} = (1-t) \left(\frac{1}{p'} - \frac{1}{p} \right) \), \(\frac{1}{p'} - \frac{1}{s} = t \left(\frac{1}{p'} - \frac{1}{p} \right) \), the proof of (14) is concluded.

Because of
\[
1-t = \frac{1}{s} - \frac{1}{p'}, \quad t = \frac{1}{p'} - \frac{1}{s},
\]
it is clear that \(C_p(s) = B_p^{1-t} A_p^t \).

(b) Taking into account the previously given proofs (see parts (b) and (b) in Theorems 2 and 8 respectively), the proof is obvious and left to the reader. \(\square \)
Acknowledgements

This work was done thanks to the remarkable papers [3–5] of Z. Ditzian.

REFERENCES

1. G. E. Andrews, R. Askey, and R. Roy, *Special Functions*, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, Cambridge, 1999.
2. F. Dai and Y. Xu, *Approximation theory and harmonic analysis on spheres and balls*, Springer Monographs in Mathematics, Springer, 2013.
3. Z. Ditzian, Estimates of the coefficients of the Jacobi expansion by measures of smoothness, *J. Math. Anal. Appl.* 384 (2011), 303–306.
4. Z. Ditzian, Relating smoothness to expressions involving Fourier coefficients or to a Fourier transform, *J. Approx. Theory* 164 (2012), 1369–1389.
5. Z. Ditzian, Norm and smoothness of a function related to the coefficients of its expansion, *J. Approx. Theory* 196 (2015), 101–110.
6. C. F. Dunkl and Y. Xu, *Orthogonal polynomials of several variables*, 2nd ed., Encyclopedia of Mathematics and its Applications 155, Cambridge University Press, Cambridge, 2014.
7. E. Hewitt and K. A. Ross, *Abstract harmonic analysis. Vol. I*, Springer-Verlag, Heidelberg, 1963.
8. E. Stein, Interpolation of linear operators, *Trans. Amer. Math. Soc.* 83 (1956), 482–492.
9. E. Stein and G. Weiss, Interpolation of operators with change of measures, *Trans. Amer. Math. Soc.* 87 (1958), 159–172.
10. G. Szegő, *Orthogonal polynomials*, 4th ed., American Mathematical Society Colloquium Publications 23, American Mathematical Society, Providence, Rhode Island, 1975.
11. R. A. Veprintsev, On the asymptotic behavior of the maximum absolute value of generalized Gegenbauer polynomials, arXiv preprint 1602.01023 (2015).

Department of scientific research, Tula State University, Tula, Russia

E-mail address: veprintsevroma@gmail.com