Distinct roles of non-overlapping surface regions of the coiled-coil domain in the potato immune receptor Rx1

Erik J. Slootweg, Laurentiu N. Spiridon, Eliza C. Martin, Wladimir I.L. Tameling, Philip D. Townsend, Rikus Pomp, Jan Roosien, Olga Drawska, Octavina C.A. Sukarta, Arjen Schots, Jan Willem Borst, Matthieu H.A.J. Joosten, Jaap Bakker, Geert Smant, Martin J. Cann, Andrei-Jose Petrescu, Aska Goverse

Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
Laboratory of Phytopathology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
Laboratory of Biochemistry/Microspectroscopy Centre, Department of Agrotechnology & Food Sciences, Wageningen University, 6708 WE, Wageningen, The Netherlands
Department of Biosciences & Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, United Kingdom

One-sentence summary
Mutation of the coiled-coil domain of the intracellular immune receptor Rx1 led to distinct cell death and resistance phenotypes and revealed regions of Rx1 required for interactions between Rx1 and the co-factor RanGAP2.

Author contributions
E.J.S., W.I.L.T., R.P., J.R., O.D., O.C.A.S., P.D.T performed the research. L.N.S., E.C.M., A-J.P contributed new analytic/computational/etc. tools for structural biology. J.W.B. contributed new analytic/computational/etc. tools for microscopy and microspectroscopy analysis. E.J.S., W.I.L.T., J.W.B., L.N.S., E.C.M., A-J.P. analyzed the data. E.J.S., A.S., M.H.A.J.J., J.B., G.S., A-J.P., M.J.C., A.G. designed the research. E.J.S., A-J.P., A.G. wrote paper with input from other authors.

Funding information
This work was supported by the EU-funded Integrated Project Bioexploit, the Dutch Top Technology Institute Green Genetics, the Dutch Technology Foundation STW and Earth and Life Sciences ALW, which are part of the Netherlands Organization for Scientific Research (NWO), the UEFISCDI grant PN-III-ID-PCE-2016-0650, projects 1 and 3 of IBAR from the Romanian Academy, and Biotechnology and Biological Sciences Research Council Grant BB/M007405/1. This work also benefited from interactions through the COST Action SUSTAIN FA1208.

Running title
Role of the Rx1 CC in immune responses

Corresponding author
Erik Slootweg (erik.slootweg@gmail.com)
Abstract
The intracellular immune receptor Rx1 of potato (Solanum tuberosum), which confers effector-triggered immunity to Potato virus X, consists of a central nucleotide-binding domain (NB-ARC) flanked by a C-terminal Leucine-Rich Repeat (LRR) domain and an N-terminal coiled-coil (CC) domain. Rx1 activity is strictly regulated by interdomain interactions between the NB-ARC and LRR, but the contribution of the CC domain in regulating Rx1 activity or immune signaling is not fully understood. Therefore, we used a structure-informed approach to investigate the role of the CC domain in Rx1 functionality. Targeted mutagenesis of CC surface residues revealed separate regions required for the intra- and intermolecular interaction of the CC with the NB-ARC-LRR and the co-factor Ran GTPase-activating protein 2 (RanGAP2), respectively. None of the mutant Rx1 proteins was constitutively active, indicating that the CC does not contribute to the autoinhibition of Rx1 activity. Instead, the CC domain acted as a modulator of downstream responses involved in effector-triggered immunity. Systematic disruption of the hydrophobic interface between the four helices of the CC enabled the uncoupling of cell death and disease resistance responses. Moreover, a strong dominant negative effect on Rx1-mediated resistance and cell death was observed upon co-expression of the CC alone with full-length Rx1 protein, which depended on the RanGAP2-binding surface of the CC. Surprisingly, co-expression of the N-terminal half of the CC enhanced Rx1-mediated resistance, which further indicated that the CC functions as a scaffold for downstream components involved in the modulation of disease resistance or cell-death signaling.
Introduction

To defend themselves against pests, plants have developed a complex cell-based immune system. Resistance proteins (R proteins) mediate recognition of pathogen-derived molecules and are able to initiate defense responses that hamper further spreading of the pathogen. Most known plant R proteins belong to the NB-LRR class, which is characterized by a central nucleotide-binding domain, the NB-ARC, and a C-terminal Leucine-Rich Repeat (LRR) domain. The NB-ARC domain shares homology with animal immune receptors and apoptosis proteins, hence its acronym; Nucleotide-Binding – Apaf-1, R proteins, CED-4 (van der Biezen and Jones, 1998). By cycling between an autoinhibited ADP-bound conformation and a signaling competent ATP-bound conformation, the NB-ARC acts like a molecular switch (Tameling et al., 2006; Williams et al., 2011; Bernoux et al., 2016). The LRR domain regulates this NB-ARC switch and often functions as the sensor for the pathogen (Takken et al., 2006).

The NB-LRR class of R proteins can be separated in two main subgroups according to the domain located N-terminal to the NB-ARC domain, which is in most cases either a putative coiled-coil (CC) domain or a TOLL/Interleukin Receptor-like (TIR) domain. These two subgroups represent an ancient split in the lineage of plant NB-LRR proteins, and each subgroup harbors specific conserved motifs in the NB-ARC and LRR domains (Meyers et al., 1999).

Coiled-coil domains derive their name from a specific helix-helix interaction in which α-helices wind around each other in a super-helical conformation (Crick, 1953; Cohen and Parry, 1986). A signature motif for the coiled coil, the leucine-rich heptad repeat, was recognized early on in CC-NB-LRRs. The first two structures of CC domains have been solved experimentally for the barley (*Hordeum vulgare*) immune receptor MLA against powdery mildew (*Blumeria graminis* f. sp. *hordei*) (Maekawa et al., 2011) and the potato (*Solanum tuberosum*) immune receptor Rx1 against Potato virus X (PVX) (Hao et al., 2013). The published tertiary structures of the coiled-coil domains of MLA and Rx1 differ markedly, despite the similarity in amino acid sequence and secondary structure. The CC domain of MLA folds into an antiparallel coiled-coil structure and forms a tight antiparallel dimer with the CC domain of a second MLA protein. Correspondingly, full-length MLA occurs as a homodimer in the cell, and mutations in the CC domain that disrupt the dimerization of MLA result in a loss of functionality, indicating the importance of this self-association (Maekawa et al., 2011).
et al., 2011). The coiled-coil domain of Rx1, however, forms a compact four-helix bundle in which the hydrophobic residues of the heptad repeat form the hydrophobic core of the bundle (Hao et al., 2013). A solution structure of the CC domain (aa 6-120) of Sr33, a close homolog of MLA from diploid wheat (*Aegilops tauschii*) that confers resistance to stem rust (*Puccinia graminis f.sp. tritici*), revealed a monomeric structure similar to that of the CC of Rx1, but longer constructs (aa1-142) dimerized in a yet unknown structure and displayed auto-active cell death signaling *in planta* (Casey et al., 2016). In the case of Rx1, there are no indications of homodimerization, but the CC of Rx1 forms a heteromeric complex with the WPP domain of RanGTPase-Activating Protein2 (RanGAP2) (Sacco et al., 2007; Tameling and Baulcombe, 2007; Hao et al., 2013).

Several roles have been attributed to the CC domains of NB-LRR immune receptors. They may play a role in i) intramolecular interactions regulating the activity of the NB-LRR, ii) interactions with downstream signaling components, iii) interactions with cofactors required for pathogen recognition, and iv) regulation of the subcellular distribution of NB-LRRs in the cell. A role in signaling is evident from the finding that CC domains of several NB-LRRs can activate cell death responses when expressed as a single domain. The CC domains of homologs of Rp1-D, a resistance protein against maize common rust (*Puccinia sorghi*) in maize (*Zea mays*) and MLA, Sr33 and Sr50 from barley, wheat and rye (*Secale cereale*) are able to induce cell death autonomously (Cesari et al., 2016; Maekawa et al., 2011; Wang et al., 2015). The signaling activity of the CC of Rp1 proteins is suppressed by the NB domain *in cis*, showing a mechanism by which an autoinhibited state is retained in the full-length protein in the absence of pathogens. The direct interaction of the CC of MLA with transcription factors, which either positively (MYB6) or negatively (WRKY1) regulate resistance, is an example of how a CC domain connects to downstream signaling components (Chang et al., 2013). Both CC domains belong to the subclass that harbor a conserved EDVID motif (Rairdan et al., 2008). For the CC of Rx1, which belongs to the same EDVID subclass, no such autonomous activity could be demonstrated. In contrast, the NB domain of Rx1 acts as the minimal part of the protein that can induce an auto-active cell death response (Rairdan et al., 2008).
The CC often plays an indirect role in recognition. It interacts with host proteins targeted by effectors, which act as bait to allow the NB-LRR to detect effector-induced modifications (Innes, 2004; Collier and Moffett, 2009). For example, the CC of RESISTANCE TO PSEUDOMONAS SYRINGAE5 (RPS5) binds the kinase AVRPPH1 Susceptible1 (PBS1), and RPS5 is activated when PBS1 is processed by the bacterial effector protease Avirulence protein Pseudomonas phaseolicolaB (AvrPphB) (DeYoung et al., 2012; Qi et al., 2014). Whether the interaction of the CC domain of Rx1 with a regulator of the small GTPase Ran (Sacco et al., 2007; Tameling and Baulcombe, 2007) functions similarly in pathogen recognition is unknown. However, the enhanced activation of the highly homologous potato R protein Gpa2 against the potato cyst nematode Globera pallida, that occurs when RanGAP2 and the cognate nematode effector are artificially tethered hints at such a role (Sacco et al., 2007; Tameling and Baulcombe, 2007; Sacco et al., 2009).

Moreover, a complex role has emerged for the CC domain in intramolecular interactions regulating the activity of NB-LRRs (Sukarta et al. 2016). Studies on the potato NB-LRR protein Rx1 revealed that the CC interacts with both the NB-ARC and LRR domains of the protein, probably by contacting both domains simultaneously (Moffett et al., 2002). These intramolecular interactions between the CC, NB-ARC and LRR domains of Rx1 depend on the activation state of the protein, as mutations modifying the activation- or nucleotide-bound state of the protein result in distinct patterns of domain interactions (Moffett et al., 2002; Rairdan et al., 2008). Mutagenesis of the CC domain of Rx1 reveals that the conserved ‘EDVID’ motif (EDMVD in Rx1) is required for the interaction between the CC and the NB-ARC and LRR domains and that this motif is essential for functionality of the resistance proteins (Rairdan et al., 2008; Mazourek et al., 2009; Lukasik-Shreepaathy et al., 2012).

A specific localization of NB-LRR proteins in the cell is required for effector recognition and for the subsequent activation of resistance signaling pathways (Bernoux et al., 2011). In the case of Rx1, the CC domain plays a dual role in balancing the nucleocytoplasmic partitioning required for full functionality (Slootweg et al., 2010; Tameling et al., 2010). The interaction of the Rx1 CC domain with cytoplasmic protein RanGAP2 retains the NB-LRR protein in the cytoplasm (Tameling et al., 2010) and interaction of the CC with nuclear components is linked to a nuclear accumulation of Rx1 (Slootweg et al; 2010). Recently, it was shown that the CC-NB-ARC of Rx1 can bind DNA directly and cause
it to bend, which suggests a nuclear role in transcriptional regulation. This DNA binding is aspecific and interactions of the CC with other nuclear proteins, like the Golden2-like transcription factor1 from *Nicotiana benthamiana* (NbGLK1), are likely required to target Rx1 to specific regions (Fenyk et al., 2015; Townsend et al., 2018).

It is still not clear how the CC of Rx1, with its relatively simple structure, can integrate multiple interactions and regulatory functions and how it contributes to resistance signaling. We used a structure-informed approach to resolve the contribution of specific regions of the CC structure in the activation of Rx-mediated cell death and disease resistance signaling. Specific mutations were introduced to disrupt the interaction of individual helices or combinations thereof with the rest of the CC. In addition, mutations were introduced in specific non-overlapping surfaces of the first and fourth helix of the coiled-coil domain. We tested the impact of these local disruptions on the interactions of the CC with the NB-ARC-LRR of Rx1 and with RanGAP2 and on the functionality of Rx1. Our results indicate that separate parts of the CC domain of Rx1 play a role in Rx1-mediated cell-death responses and disease resistance against PVX Any mutation that disrupted the structure of the CC prevented the accumulation of Rx1 in the nucleus. Residues in the surface of the N-terminal helix 1 were involved in the interaction of the CC with the NB-ARC-LRR. Furthermore, co-expression of a CC construct with full-length Rx1 exerted a strong dominant negative effect on Rx1-mediated resistance and cell death, which depended on the RanGAP2-binding surface of the CC. From this, a functional model emerged in which the CC domain of Rx1 is a modulator of downstream signaling responses involved in effector-triggered immunity in plant cells.
Results

A hydrophobic interface between the N- and C-terminal two-helix segments of the Rx1 CC domain is required for the reconstitution of a functional immune receptor

The CC domain plays a role in the nuclear and cytoplasmic localization of Rx1, but strikingly different localizations occur for the two halves of the CC domain (Slootweg et al. 2010). The N-terminal segment encompassing the first two α-helices of the CC domain (H1-H2) accumulates in the cytoplasm, whereas the C-terminal segment consisting of the third and fourth α-helix (H3-H4) accumulates in the nucleus. Moreover, the co-expression of the two fragments of the coiled-coil domain with the corresponding NB-ARC-LRR domains results in the functional reconstitution of Rx1 (Slootweg et al., 2010). Consistent with its compact four-helix bundle structure (Hao et al. 2013), we expected that the reconstitution of the functional CC from co-expressed segments requires these segments to interact. To test this, we performed a co-immunoprecipitation experiment with epitope-tagged versions of both segments following agroinfiltration of Nicotiana benthamiana leaves. H1-H2 and H3-H4 CC segments co-immunoprecipitated, demonstrating that the separate CC segments indeed form a functional CC structure in plant cells (Fig. 1A).
Even though the NB domain is the minimal region of Rx1 that can initiate a cell death response, the CC is essential for the activity of the full-length Rx1 protein (Rairdan et al., 2008). To study the role of the interaction between the individual helices of the CC in the functioning of Rx1, we applied a targeted mutagenesis strategy aimed at disrupting the interaction of each helix with the rest of the helix-bundle. The hydrophobic residues in the heptad repeats of the helices form the hydrophobic core of the helix bundle in the crystal structure (Hao et al., 2013). Hydrophobic residues in the core are packed in such a way that the hydrophobic residues from one helix fit in the spaces lined by the hydrophobic residues of the other helices; a hydrophobic zipping interaction (Fig. 1B). In a series of constructs, we replaced in each of the four helices three residues in the hydrophobic zipping interface with glutamate, which carries a negative charge under physiological conditions. Glutamate residues are relatively well accommodated in α-helices and are thus less likely to disrupt the
local secondary structure (Cohen and Parry, 1990). The groups of substitutions were named after the helix that harbors them: Z1 (V6E, L9E, I13E) in helix 1, Z2 (L31E, L34E, I37E) in helix 2, Z3 (L54E, I58E, V61E) in helix 3 and Z4 (I92E, L96E, L100E) in helix 4 (Fig. 1B).

The effectiveness of the mutations in disrupting the hydrophobic coiled-coil interactions of the helices in the CC structure was tested by a co-immunoprecipitation experiment combining mutant and wild-type versions of the H1-H2 and H3-H4 CC segments. Z1 and Z2 completely disrupted the ability of the H1-H2 CC segment to interact with wild-type H3-H4 (Fig. 1C). Similarly, both Z3 and Z4 disrupted the interaction of H3-H4 with the wild type H1-H2 (Fig. 1C). In accordance with the loss of interaction, the substitutions also abolished the ability of the H1-H2 and H3-H4 to reconstitute Rx1-mediated elicitor-dependent cell death signaling and PVX resistance in trans when co-expressed with the NB-ARC-LRR (Fig. 1D). Thus, the hydrophobic residues of the heptad repeat in each of the four...
helices are required for the interaction between the two segments of the CC, and the integrity of the CC is important to enable the reconstitution of Rx1 functionality in trans.

Local disruption of the interaction between the two segments of the CC has distinct effects on cell death and PVX resistance mediated by full-length Rx1.
Reconstitution of a functional protein from co-expressed fragments depends primarily on
the interaction between those fragments. The disruption of the interaction between the CC
fragments by the mutations therefore probably results in a stronger effect on functionality
of Rx1 \textit{in trans} than when the mutations are introduced in the full-length protein. To test
the impact of the disruption of the local tertiary structure of the CC on the functioning of
Rx1 \textit{in cis}, we introduced the mutations Z1, Z2, Z3, and Z4 in full-length protein constructs
and monitored the induction of an elicitor-dependent cell-death response after co-
expression of the Rx1 variants with the avirulent PVX coat protein CP106. PVX resistance
was monitored upon transient co-expression of the mutant full-length Rx1 constructs in \textit{N. benthamiana} leaves with an amplicon of the avirulent PVX strain. Co-expression of the full-
length Rx1 constructs with GFP showed that none of the mutant Rx1 proteins (Z1 to Z4)
initiated a cell-death response in the absence of the PVX coat protein, indicating that none
of the mutations alone releases the autoinhibitory mechanisms that keep Rx1 in its resting
state (Fig. 2A). Analysis of tagged versions of the proteins via SDS-PAGE and immunoblotting
showed the mutant variants accumulated to similar levels as the wild-type Rx1 protein (Fig.
S1). Combinations of mutated helices in the CC, Z1 + Z4 and Z2 + Z3, resulted in a complete
loss of function of Rx1, whereas each of the single CC Z variants gave rise to a distinct combination of effects on cell death and resistance levels. Mutations of the hydrophobic residues in helix 3 (Z3) did not lead to a marked decrease in cell death (Fig. 2A) or PVX resistance (Fig. 2B) mediated by Rx1. The substitution of hydrophobic zipping residues in helix 4 (Z4) resulted in a reduced elicitor-dependent cell death and a partial loss of PVX resistance (Fig. 2A and Fig. 2B). The Z2 mutant of Rx1 showed a similar partial loss of elicitor-dependent cell death, but surprisingly retained almost wild-type levels of PVX resistance in this assay. The mutations in helix 1 (Z1) resulted in a complete loss of both elicitor-dependent cell death and PVX resistance. The distinct effects of the local disruption of the CC structure on elicitor-dependent cell death and PVX resistance mediated by the mutant full-length Rx1 proteins suggests that different regions of the CC contribute to cell death and virus resistance signaling pathways.
Aromatic and hydrophobic surface residues in helix 1 and in the RanGAP2 interface on helix 4 contribute to the compact fold of the CC and the reconstitution of Rx1 functionality in trans.

The distinct effects of the local disruption of the CC structure on cell death and PVX resistance signaling might be related to changes in either the intramolecular interactions of the CC or the interaction of Rx1 with its co-factor RanGAP2 mediated by the CC surface. In the crystal structure, a surface-exposed hydrophobic patch on helix 4 containing a cluster of aromatic residues (F93, F94 and W90, see Fig. 3A) interacts with a hydrophobic groove on the WPP domain of RanGAP2, and the tryptophan at position 90 is required for the interaction between the CC and the WPP domain (Hao et al., 2013). Here, we replaced all three aromatic residues in helix 4 with the small and hydrophobic amino acid alanine (constructs named S4 (Fig. 3A)) to test if altering the intermolecular interaction via helix 4 can explain the functional effects observed after disrupting the local structure of helix 4 in Z4. In helix 1 the residues Y3 and M10 also contribute to a hydrophobic surface area separate from the RanGAP2-interacting surface (Fig. 3A). To determine if these residues are involved in interactions or the functioning of Rx1, we created constructs in which Y3 and M10 are replaced by alanine. The constructs with these substitutions were named S1 (Fig. 3A).
The effect of the S1 and S4 mutations on the intradomain interaction between the helices of the Rx1 CC was investigated in a co-immunoprecipitation assay of the S1 mutant version of the H1-H2 segment of the CC and of the S4 mutant version of the H3-H4 segment with the complementary wild-type H1-H2 and H3-H4 segments. The S1 mutant version of the H1-H2 constructs was not stably expressed, which made it difficult to assess its ability to bind the wild-type H3-H4 segment of the CC domain (Fig. 3B). On the other hand, the S4
mutant of the H3-H4 segment of the CC was detected in the total protein extract but did not interact with the wild-type H1-H2 construct in the co-immunoprecipitation assay (Fig. 3B). This indicates that the residues mutated in S4, which are mostly surface exposed in the crystal structure, also play a role in the intramolecular helix-helix interactions. The S4 mutant of the H3-H4 segment of the CC could not fully reconstitute a functional Rx1 protein when co-expressed with the wild-type H1-H2 segment and the NB-ARC-LRR of Rx1 in a
trans-complementation assay. This combination did not exhibit PVX resistance, and only a weak cell death was detected upon co-expression with the avirulent PVX coat protein CP106 (Fig. 3C). The lack of PVX resistance and cell death response in the combinations of the S1 mutant of the H1-H2 segment with the wild-type H3-H4 segment and the NB-ARC-LRR is likely due to the instability of the H1-H2 S1 CC segment. From this, we concluded that the
aromatic residues in the surface region of helix 4, which are mutated in S4, contribute to the compact fold of the CC and the reconstitution of Rx1 functionality \textit{in trans}.

To test the impact of the alanine substitutions in the hydrophobic outer surface areas of helix 1 and helix 4 on the functioning of Rx1, mutations S1 and S4 were introduced in full-length Rx1 constructs. Surprisingly, neither S1 nor S4 led to a marked decrease in elicitor-dependent cell death or resistance mediated by Rx1 in the transient assays, or an auto-active cell death response at the expression levels used here (Fig. 3D). Because cell death and virus resistance appear to be signaled via at least partially independent pathways, we also tested if any of the CC mutations led to an auto-active resistance response. For that purpose the Rx1 variants (wild type (wt), S1, S4, Z1-Z4) were overexpressed in \textit{N. benthamiana} leaves with a TMV:GFP amplicon. Tobacco mosaic virus (TMV) is not recognized by Rx1, but the resistance response initiated by Rx1 is able to stop the replication of viruses unrelated to PVX, including TMV (Kohm et al., 1993; Bendahmane et al., 1995). Thus, an auto-active resistance response of the Rx1 variants would result in lower levels of TMV and consequently, reduced GFP expression. The overexpression of wild-type Rx1 caused a mild cell death response as expected (Bendahmane et al., 2002) and consistently inhibited the accumulation of TMV:GFP expression (Fig. S2). Interestingly, the Rx1 S1 variant and the Z1, Z2, Z3, and Z4 variants lost this auto-active aspecific resistance response to TMV. Rx1 S4, however, displayed a mild auto-active cell death response and an auto-active resistance response against TMV similar to that of wild-type Rx1 (Fig. S2).

Compared to the zipping mutations Z1 to Z4, it seems that changes in the surface regions brought about by the S1 and S4 mutations had a subtler effect on the local structure of the CC and Rx1 functionality \textit{in cis}, and although S1 and S4 do not affect the elicitor-dependent response against PVX \textit{in cis}, at least the S1 mutations abolish the auto-active resistance response to TMV.

\textit{The effect of the mutations on the functioning of the full-length CC coincides with local disruptions of the helix-helix interactions}
The more pronounced effects of the Z mutations on the functionality of Rx1 in comparison to the limited effect of the S mutations could be due to a more severe disruption of the local structure of the CC by the Z mutations. If mutations cause the dissociation of a helix from the rest of the helix bundle, this would partially open up the structure of the CC and, as a consequence, would make the hydrophobic core surface of the complementary wild-type segment of the CC available for binding and trans-complementation by separate H1-H2 and H3-H4 segments. To test this hypothesis, we performed a co-immunoprecipitation assay with the mutant and wild-type versions of the complete CC domain (aa 1-142) co-expressed in planta (Fig. 4A and Fig. 4B). As expected for a closed conformation of the helix bundle, no interaction of either H1-H2 or H3-H4 with the wild-type CC could be detected. The lack of interaction between the S1 and S4 variants of the complete CC and either wild-type two-helix segment indicates that the substitution of these outer surface residues in helix 1 and 4 does not cause the helices of the CC to dissociate (Fig. 4A). The Z4 mutation in the complete CC, however, allowed the separate H3-H4 segment to bind (Fig. 4B). No such binding was detected for the Z3 mutant of the complete CC. The H1-H2 segment co-immunoprecipitated with the Z1 and Z2 version of the CC (Fig. 4A). Together, these results show that the hydrophobic surface regions, buried in the wild-type structure of the Rx1 CC domain, become exposed if the hydrophobic zipping interaction between the helices in the four-helix bundle is disrupted.

The interaction of the wild-type H3-H4 segment with the CC Z1 construct was unexpected (Fig. 4B), because the Z1 mutations in helix 1 disrupt the interaction of the H1-H2 segment with H3-H4. However, we found that in contrast to the complete CC, H3-H4 segments of the CC can homodimerize using co-immunoprecipitation and fluorescence resonance energy transfer by fluorescence lifetime imaging (FRET-FLIM) assays (Fig. S3A-S3C). The H3-H4 dimerization was sensitive to the Z3 and Z4 mutations but not the S4 mutations, indicating that the interactions depended on the hydrophobic helix-helix interface (Fig. S3A). In the wild-type CC the interface of the H3-H4 interaction is buried in the structure and not expected to be available for homodimerization.
The results shown in Fig. 4A and Fig. 4B indicate that the Z1, Z2, and Z4 mutations open up the structure of the CC and enable wild-type segments to bind in trans to the exposed hydrophobic surface. To test if this interaction could allow transcomplementation and thereby the possibility to restore wild-type cell-death or resistance to the full-length Rx1 mutants, we co-expressed the full-length Rx1 constructs that displayed a complete (Z1) or partial (Z2, Z4) loss of function with the wild-type versions of either the H1-H2 or the H3-H4 segment (Fig. 4C). Resistance was assessed by co-expression with the PVX amplicon and cell death induction via co-expression with the PVX CP106 (Fig. 4C). The loss of function caused by mutations Z1 and Z2 in the first half of the CC were complemented by co-expression of the wild-type segment H1-H2 (Fig. 4C). Co-expression of GFP instead of the CP demonstrated that the observed cell death was not an auto-active response triggered by
the CC segment. The reduced cell-death induction and loss of resistance of Rx1 Z4 was complemented by co-expression of wild-type H3-H4 (Fig. 4C). As expected, no complementation was observed with co-expression of the CC segments that do not encompass the helices mutated in the full-length Rx1 protein. In conclusion, the local disruption of the interaction between the helices of the CC has distinct effects on Rx1 mediated cell death and PVX resistance. It seems that the disruption and thereby opening up of the CC structure in the full-length mutant proteins underlies the transcomplementation by co-expressed wild-type CC segments.

Local disruption of the CC structure affects the interaction of the CC with the NB-ARC and LRR

The CC domain of Rx1 interacts with the combined NB-ARC and LRR domains, but not at all or at a much lower affinity with the separate NB-ARC or LRR domains (Moffett et al., 2002; Rairdan et al., 2008). To determine the effect of the local disruption of the CC structure on the interdomain interactions within Rx1, we used affinity-tagged versions of the CC and the CC-NB-ARC harboring the hydrophobic core (Z) or surface (S) mutations in a co-immunoprecipitation experiment with the NB-ARC-LRR and the LRR, respectively. In the combination of the CC and NB-ARC-LRR constructs, only the HA-tagged CC S4 co-immunoprecipitated with the myc-tagged NB-ARC-LRR at levels similar to that of the wild-type HA-tagged CC (Fig. 5A). The binding of all other CC variants to the myc-tagged NB-ARC-LRR was strongly reduced (Z1, Z2, Z4), and two CC constructs were not detected on the immunoblot after immunoprecipitation (Z3, S1), even though all CC constructs were detected at similar levels in the input material (Fig. 5A). Similarly, from the six mutant versions of the CC-NB-ARC, only S4 still displayed a wild-type-like binding to the LRR (Fig. 5B). For all other mutant CC-NB-ARC variants, we did not detect a co-immunoprecipitation of the LRR, emphasizing the importance of the CC in the interaction of the CC-NB-ARC with the LRR (Fig. 5B).
In planta trans-complementation assays, where either the CC and NB-ARC-LRR or the CC-NB-ARC and LRR were co-expressed with an avirulent PVX CP106 or a PVX:GFP amplicon, yielded results which matched the interaction data of the co-immunoprecipitation experiments; loss of interaction led to loss of function in trans. Only the combinations of the CC S4 and the NB-ARC-LRR and of the CC-NB-ARC S4 and LRR mediated a PVX resistance and cell death similar to the wild-type constructs (Fig. S4A & S4B). CC-NB-ARC S1 and the double mutant CC-NB-ARC S1S4 no longer conferred virus resistance but still initiated a weak cell-death response (Fig. S4B). The loss of affinity between the CC-NB-ARC and LRR caused by the S1 mutations affected the induction of a virus resistance response more than the induction of the cell-death response.
The integrity of the overall structure of the CC domain is required for assembling a functional Rx1 protein

Most of the tested CC mutations reduced the interdomain interaction of the CC, NB-ARC and LRR in trans. We reasoned that if the CC mutations disrupted the intramolecular interaction of the CC with the NB-ARC and LRR in full-length Rx1 in cis, then the CC binding surface on the NB-ARC and LRR would become exposed. This exposed binding surface could enable a co-expressed wild-type CC to bind in trans and functionally complement the mutations in the CC of the full-length protein (Fig. 5C). Loss-of-function displayed by the full-length Rx1 Z1Z4 and Z23 versions was not functionally complemented by the co-expression of only the H1-H2 or H3-H4 CC segments. However, co-expressing the wild-type CC construct with the full-length Rx1 Z14 or Rx1 Z23 indeed restored their ability to initiate a cell death in response to the PVX CP (Fig. 5C). No elicitor-independent response was observed. The restoration of Rx1 functionality by co-expression of a functional CC supports the hypothesis that the CC mutations disrupted the intramolecular interaction of the CC with the NB-ARC-LRR and thereby provided access to the CC-interacting surface on the NB-ARC-LRR.

We tested whether these mutations indeed expose the CC-binding surface on the NB-ARC-LRR of the full-length Rx1 via a co-immunoprecipitation experiment. The full-length Rx1 carrying the Z14, Z1, and S1 mutations was co-expressed with an affinity-tagged wild-type CC construct. Wild-type Rx1 and Rx1 S4 served as controls, because domain interactions were not affected in these proteins in trans as shown (Fig. 5A). In comparison to the wild-type Rx1 and Rx1 S4, markedly more CC-4Myc co-immunoprecipitated with Rx1 Z14, Z1 and S1 (Fig. 5D). It was interesting to observe the increased interaction, especially for Rx1 S1, as full-length Rx1 S1 was not visibly affected in its functionality in transient assays and could therefore not be tested in a functional complementation assay with the wild-type CC domain (Fig. 5C). A truncated Rx1 construct which lacks the CC domain (NB-ARC-LRR) co-immunoprecipitated relatively higher amounts of the CC than any of the full-length Rx1 constructs. Steric hindrance by the CC in cis might limit accessibility to the CC-binding surface by the CC expressed in trans, even in the full-length constructs in which the
intramolecular interaction between the CC and the rest of the protein was disrupted. No signs of CC dimerization were seen in the assay; the low level of CC-4myc that co-immunoprecipitated with CC-4HA did not exceed the level of background binding of CC-4myc to GFP(HA).

H3 and H4 of the CC of Rx1 are required and sufficient for the interaction with RanGAP2

The surface residues mutated in the fourth helix (S4) are located in the interface of the CC and the RanGAP2 WPP domain. Previous interaction studies with truncated versions of the Rx1 CC domain indicate that the RanGAP2-binding surface partially overlaps with the NB-ARC-LRR binding region of the CC (Rairdan et al., 2008). The mutations we introduced in the helices of the CC domain to investigate the effect of local structure disruptions on the intramolecular interactions and functionality of Rx1 might also influence the interaction with RanGAP2. We tested this with immunoprecipitation assays.
The CC constructs with mutations in the two N-terminal helices (S1, Z1, Z2) were not affected in their interaction with a GFP-tagged RanGAP2 WPP domain (aa 112, NbRg2-ΔC-GFP) (Fig. 6A). As expected CC S4 showed a strong reduction in the amount of Rg2-ΔC-GFP that co-immunoprecipitated. From the hydrophobic core mutants, CC Z3 exhibited a similar loss of interaction to the WPP domain, whereas CC Z4 exhibited an intermediate binding level (Fig. 6A). The three groups of mutations that affected the interaction between the CC domain and the RanGAP2 WPP domain were all positioned in the C-terminal segment of the CC (H3-H4). It is interesting to note that in contrast to the S1 substitutions, the S4 substitutions did not affect the intramolecular interactions of Rx1 and both did not have a visible effect on elicitor-dependent activation of Rx1 in transient cell death and resistance assays. Co-immunoprecipitations of full-length Rx1 carrying either the S1 or S4 surface substitutions with the RanGAP2 WPP domain or with full-length RanGAP2 yielded similar results; the S4 substitutions abolished the interaction of Rx1 with RanGAP2, but the S1 substitutions did not affect this interaction (Fig. S5). To exclude the possibility that
additional plant proteins play a role in the changes in interaction of the mutant CC domains and RanGAP2 WPP, we tested the effect of the mutations in a yeast two-hybrid assay (Fig. S6). In the yeast system the wild-type CC and CC S1 interacted strongly with the WPP domain whereas the CC S4 did not interact with the WPP, corresponding to the interaction pattern in the co-immunoprecipitation experiments. From the tested Z mutations (Z1, Z3, Z4) only Z3 appeared to interact with the WPP domain (Fig. S6). No interaction was seen for CC Z1 and WPP, even though this CC variant interacted with the WPP domain in co-immunoprecipitation experiments. Interestingly, we found that RanGAP2 stabilized the interaction between the two-helix segments of the CC (H1-H2 and H3-H4) when it was co-expressed with these segments in planta. In this experiment the interaction between the wild-type H1-H2 and H3-H4 constructs was tested in the presence or absence of a co-expressed RanGAP2 WPP construct (Rg2-ΔC-mCh) (Fig. 6B). The strongly increased H1-H2/H3-H4 interaction seems to suggest
that the WPP domain of RanGAP2 has a stabilizing effect on the complete CC structure even though the minimal fragment of the CC domain required for binding RanGAP2 encompasses only H3 and H4 (Fig. S7).

Changes in the CC structure and RanGAP2 interaction affect the subcellular localization of Rx1

Previously, we have demonstrated that Rx1 requires a localization in both the nucleus and cytoplasm for full functionality and that the CC is required for nuclear localization (Slootweg et al., 2010). To test if changes in the surface and structure of the CC domain impact the subcellular distribution of Rx1, the localizations of GFP-tagged versions of the full-length Rx1 mutants (Z1 to Z4, S1 and S4) were studied by confocal microscopy. Rx1 S1 and S4 displayed a nucleocytoplasmic distribution similar to wild-type Rx1, whereas all the hydrophobic zipping mutations (Z1 to Z4) resulted in a clear reduction in the nuclear pool of Rx1 and fluorescence intensities in the cytoplasm were not visibly reduced (Fig. 6C). These results indicate that proper folding of the Rx1 CC domain is essential for the accumulation of Rx1 in the nucleus.

RanGAP2 can function as a cytoplasmic retention factor for Rx1; co-expression of the mostly cytoplasmic RanGAP2 leads to lower Rx1 levels in the nucleus and virus-induced gene silencing (VIGS) of RanGAP2 leads to higher nuclear Rx1 levels (Tameling et al., 2010). Because of their contrasting effects on the interaction of the CC with the NB-ARC and LRR and on the interaction with RanGAP2, we tested the effect of the S1 and S4 mutations on the subcellular localization of Rx1 co-expressed with full-length RanGAP2 (Fig. 6D). Co-expression of RanGAP2 with wild-type Rx1 reduced the nuclear pool of wild-type Rx1 and Rx1 S1, consistent with its role as a cytoplasmic retention factor of Rx1. The subcellular distribution of Rx1 S4 was not affected by the co-expression of RanGAP2 (Fig. 6D). Cell fractionation of leaf material co-expressing RanGAP2 and the Rx1 variants also showed that the distribution of Rx1 S4 was not affected by the co-expression of RanGAP2 (Fig. S8).

For full functionality Rx1 requires a balanced nucleocytoplasmic distribution, and a change in the ratio between the cytoplasmic and nuclear localized Rx1 results in reduced
PVX resistance (Slootweg et al., 2010). The co-expression of the N-terminal WPP domain of RanGAP2 fused to a nuclear localization signal (Rg2-ΔC-mCh-NLS) directs the wild-type Rx1 and Rx1 S1 into the nucleus but does not alter the nucleocytoplasmic distribution of Rx1 S4 (Fig. 6D). To test whether the observed differences in the nucleocytoplasmic distribution patterns would also result in differences in PVX resistance, wild-type Rx1, Rx1 S1 and Rx1 S4 were co-expressed with Rg2-ΔC-mCh-NLS and a PVX:GFP in a transient resistance assay. The forced nuclear accumulation caused by the Rg2-ΔC-mCh-NLS led to a reduction in PVX resistance for wild-type Rx1 and Rx1 S1 in comparison to the control where Rg2-ΔC-mCh-NLS was replaced by the fluorescent protein mCherry (Fig. 6E). No change in PVX resistance was observed for Rx1 S4 when co-expressed with Rg2-ΔC-mCh-NLS (Fig. 6E).

Together, these data show a link between RanGAP2 binding, its effect on the nucleocytoplasmic partitioning of Rx1 in the cell and Rx1 functioning in disease resistance. Upon forced translocation to the nucleus, however, the Rx1 S1 mutant shows a stronger loss of PVX resistance compared to wild-type Rx1 (Fig. 6E) indicating that the disruption of the intramolecular interaction between the CC and the NB-ARC-LRR domains (Fig. 5) has an impact on the functioning of Rx1, even though we could not detect any in transient virus resistance assay in which the localization of Rx1 was not altered.

The wild-type CC of Rx1 is predominantly found in a heteromeric complex with RanGAP2 in the cell whereas the S4 variant of the CC appears to be monomeric.
Although co-immunoprecipitation demonstrated that the S4 mutations and not the S1 mutations affected the complex formation of the CC of Rx1 and the WPP domain of RanGAP2, this method does not exclude the possible contribution of other, untagged, endogenous proteins in this complex formation. To further investigate whether the observed interaction between the CC and WPP depends on other host proteins, Blue Native PAGE was used as it allows the analysis of proteins and protein complexes without denaturing them and is therefore informative on relative complex sizes (Wittig et al., 2006; Wittig and Schägger, 2009). We analyzed the behavior of HA-tagged versions of the wild-type CC and the S1 and S4 mutants without or with co-expressed GFP-tagged RanGAP2 (Fig. 7A). Wild-type and S1 were predominantly found in a larger complex, although some of the
wild-type CC was also detected as a band which ran below the GFP-4HA control (29 kDa). The higher band was likely the complex of the 4HA-tagged CC (21.6 kDa) with endogenous RanGAP2 (59 kDa). The lower band was likely a monomeric form of the CC as a dimer would be expected to run higher than the GFP control. The S4 mutant could not be detected in the higher complex and predominantly ran at a height corresponding with a monomer. Co-expression of GFP-tagged full-length RanGAP2 shifts the larger complex upwards when expressed with the wild type and S1 variant, but the lower bands containing the wild type and S4 variants remained at the same position with respect to the GFP control (Fig. 7A). On the anti-GFP blot a corresponding pattern was seen; RanGAP2-GFP expressed alone or in combination with 4HA-GFP ran as a single band. Co-expression of the CC S4 construct did...
not affect this, but co-expression of the CC S1 or the wild-type CC shifted a fraction of the RanGAP2-GFP upwards to the same height at which those CCs were detected on the anti-HA blot. Separating the same set of protein combinations on a denaturing gel shows all proteins as single bands, as the interactions are not retained under denaturing conditions (Fig. 7B). A similar experiment in which a GFP-tagged WPP domain of RanGAP2 was used instead of full-length RanGAP2-GFP yielded similar results (Fig. S9). Thus, most of the wild-type CC appeared to be present in the cell as a predominant complex with RanGAP2 or its WPP domain and partially as a monomer. The S4 mutations of the residues in the CC required for RanGAP2 binding via the WPP domain resulted in a complete absence of the CC in the larger complex, further supporting this observation. However, the detection of a few additional bands indicated that a minor portion of the CC formed complexes with either modified versions of RanGAPs or other host components.

Co-expressed Rx1 domains have a dominant negative effect on Rx1-mediated resistance, which is linked with the RanGAP2 interacting surface for the CC

Co-expression of the CC domain complemented mutations in the CC domain in full length Rx1 by the reconstitution of a functional protein in trans. The multidomain architecture of the protein allowed the CC domain to replace the mutated CC domain by interacting with surface exposed areas on the NB-ARC-LRR, resulting in the reconstitution of a functional protein (Fig. 6, Fig. 8A). However, truncated versions of proteins are also known to interfere with the functionality of their wild-type counterparts (Dinesh-Kumar et al., 2000; Du et al., 2012). This prompted us to address the question whether this also occurs when co-expressing the CC domain in trans with a normal functional wild-type Rx1 protein, potentially interfering with regular functionality. We tested whether co-expression of the individual CC domain would affect the resistance signaling by Rx1 and if so, how the intra- or intermolecular interactions of the CC contribute to this effect.
In a transient PVX resistance assay we expressed wild-type full-length Rx1 under control of its native promoter with the avirulent PVX:GFP in combination with either the CC domain of Rx1 or as control GFP or the CC domain of the related R protein Bs2, a CC-NB-LRR which confers resistance against bacterial spot disease (*Xanthomonas campestris pv. vesicatoria*) in pepper (*Capsicum annuum*) (Tai et al., 1999). The use of the native promoter Rx1 construct resulted in a lower expression level for Rx1 than the equivalent CaMV 35S construct, and an assay based on this combination of Rx1 and PVX constructs sensitively detects the effects of co-expressed proteins on Rx1-mediated resistance. Surprisingly, co-expression of the CC in this assay led to an increase in PVX accumulation which indicates a decrease in Rx1-mediated resistance (Fig. 8B). Co-expression of GFP or the CC domain of Capsicum R protein Bs2 did not affect Rx1-mediated resistance, demonstrating the specificity of this effect. In contrast to the functional complementation of Rx1 constructs with mutations in the CC, co-expression of the CC with wild-type Rx1 resulted in a loss of function. We hypothesized that this was the result of a dominant-negative effect of the overexpression of the CC domain on Rx1 functioning by competing for available interactions.
normally involved in activation of a Rx-mediated defense response and the formation of non-functional complexes through this interaction (Fig. 8A). Co-expression of either the NB-ARC or LRR had a similar suppressive effect on full-length Rx1 (Fig. S10A).

To test if the dominant negative effect of the CC is linked to the intramolecular interaction of the CC with the NB-ARC and LRR or with the intermolecular interaction with RanGAP2, the S1 and S4 substitutions of surface residues in the CC were used. Co-expression of wild-type CC, CC S1 and CC S4 with full-length Rx1 and PVX demonstrated a negative effect on Rx1-mediated resistance for the wild-type CC and the CC S1 construct, which had a strongly reduced interaction with the NB-ARC-LRR (Fig. 8C). The CC S4 construct, however, lost the dominant negative effect on resistance signaling by full-length Rx1. Similarly, the co-expression of the CC-NB-ARC S4 construct with full-length Rx1 did not suppress Rx1-mediated resistance, whereas both the wild-type CC-NB-ARC and the S1 version suppressed resistance by Rx1 (Fig. 8D). These results indicate that the aromatic residues in helix 4, which are required for the interaction with RanGAP2, are also required for the dominant negative suppression of Rx1 signaling.

If the dominant negative effect of the CC is linked to the interaction of the CC with RanGAP2, then the minimal interacting region, in this case the H3-H4 CC segment, might also be the minimal region needed to suppress Rx1 resistance. To test this, we co-expressed the complete CC, the H1-H2 segment, or the H3-H4 segment with full-length Rx1 and PVX CP106. To our surprise, the H3-H4 construct did not affect Rx1-mediated resistance like the CC (Fig. 8E, Fig. 8F and Fig. 8G). Immunoblots demonstrated that it accumulated to lower levels in the cell than the complete CC (Fig. 7 in Slootweg, et al. 2010), which could explain the lack of an effect. Alternatively, additional surface regions in H1-H2 are required for the dominant negative effect or the H3-H4 helices adopt a different conformation than in the context of the complete CC.

Even more remarkable, co-expression of the N-terminal two helices of the Rx1 CC consistently stimulated the resistance mediated by Rx1 as seen by the reduced virus levels (Fig. 8E) and reduced levels of GFP expressed via PVX:GFP (Fig. 8F and Fig. 8G). Expression of the H1-H2 segment with PVX in the absence of Rx1 did not result in reduced virus levels compared to the control (Fig. 8G).
Discussion

From the data presented in this study, a picture emerges which shows that distinct surfaces are important for the intramolecular interaction of the CC with the NB-ARC-LRR domains of Rx1 on the one hand and the intermolecular interaction with the protein RanGAP2 on the other. Surface changes disrupting the RanGAP2 interaction also affect the nucleocytoplasmic partitioning of Rx1 in the cell, and the overall integrity of the CC is required for the accumulation of Rx1 in the nucleus. Finally, we demonstrated that distinct regions of the CC play a role in different Rx1-mediated responses, which uncouple defense-related cell death and virus resistance in plant cells. From these findings a functional model can be inferred in which the CC domain of Rx1 plays a dual role in modulating effector-triggered immunity in plants.

In NB-LRR proteins the switch from the resting state to the active state is strictly regulated by intramolecular domain interactions. For example, a slight change in the interface of the NB-ARC and LRR can trigger the activation of Rx1 and thereby initiate resistance and cell death responses (Bendahmane et al., 2002; Slootweg et al., 2013). The simultaneous binding of the CC to both the NB-ARC and LRR and its dependency on the nucleotide-bound state of the NB-ARC suggest it plays a role in the regulation of the conformational switch (Moffett et al., 2002; Rairdan et al., 2008). The way the CC mutations in this study affected the domain interaction in Rx1 demonstrates their complex interdependency. Five out of the six groups of mutations, involving each of the four helices of the CC, disrupted in trans binding of the CC to the NB-ARC-LRR, but also binding of the CC-NB-ARC to the LRR. It is surprising therefore that the S1 and Z3 mutations, which severely disrupted the interaction of the CC with the NB-ARC and LRR, have so little effect on the functionality of the full-length Rx1 protein. None of the CC mutants resulted in increased activity or auto-activity, which suggests that the intramolecular interaction of the CC with the NB-ARC and LRR is not required to retain an autoinhibited state. The overexpression-induced auto-active resistance response of Rx1 to TMV:GFP was only observed for wild-type Rx1 and the Rx1 S4 variant and was lost in all other mutants (Fig. S2), even in those like S1 and Z3, which display wild-type like elicitor-dependent responses.
In the TIR-NB-LRR flax resistance proteins L6 and L7, the N-terminal TIR domain cooperates with the NB in the regulation of nucleotide-binding to the NB-ARC, both in elicitor-dependent or independent cell death signaling (Bernoux et al., 2011; Bernoux et al., 2016). Variants in which combinations of residues in the TIR and NB domains negatively regulate the ability of the NB-ARC to switch from the ADP-bound state to the ATP-bound state exhibit a reduced activity and also fail to bind to the cognate effector for which the LRR is required. This can be explained by a model in which the NB-LRRs exist in an equilibrium between ‘On’ and ‘Off’- states and the effector shifts the equilibrium by stabilizing the ‘On’-state (Bernoux et al., 2016). In Rx1 the cooperation between the ARC and LRR might be governed by a similar mechanism, but the role of the CC is probably relatively small as some mutations, like S1, that strongly affect domain interactions have little effect on elicitor-dependent activity (Fig. 3).

Changes in the domain interactions that play a role in the conformational switch of NB-LRRs have been studied by observing the interactions of the domains when co-expressed as separate polypeptides. The ability of the domains of Rx1 to reconstitute a functional protein is one of the reasons Rx1 is such an interesting model protein. In this study, we demonstrate changes in the intramolecular interactions in the full-length protein by detecting exposed domain binding surfaces. The interaction surface of the CC on the NB-ARC-LRR is mostly shielded by the CC in the wild-type protein. Its exposure due to mutations in the CC that disrupt this intramolecular interaction was successfully probed by testing if the full-length protein could interact with a co-expressed free wild-type CC domain (Fig. 5D). In a similar vein the partial disruption of the CC structure could be demonstrated via the induced interaction with co-expressed CC segments (Fig. 4A & 4B). These induced in trans interactions explain why co-expressed wild-type versions of domains trans-complement the loss-of-function phenotype of the full-length protein caused by these mutations (Fig. 4C, 4D & 5C). In a previous study a truncated Rx1 protein lacking its CC domain is functionally complemented by a co-expressed full-length Gpa2 protein. No interaction could be detected between full-length Rx1 proteins, but Rx1 lacking the CC domain interacted with a full-length protein (Moffett et al., 2002). Previously, we were also unable to detect self-association of either the CC-NB-ARC or the LRR domains of Rx1 under conditions where interdomain interactions are readily detected (Fig. S7 in (Slootweg et al., 2013)).
In contrast to Rx1, self-association is required for the functioning of several other CC- and TIR-NB-LRRs proteins (Mestre and Baulcombe, 2006; Ade et al., 2007; Bernoux et al., 2011a; Maekawa et al., 2011). In our experiments, however, we could not detect self-association of the wild-type CC domain via Blue Native PAGE (Fig. 7, Fig. S9), FRET-FLIM (Fig. S3) or co-immunoprecipitation (Fig. 5D). Only a truncated CC (H3-H4) lacking the first two α-helices exhibited homotypic interactions in co-immunoprecipitation (Fig. S3A) and FRET-FLIM assays (Fig. S3B & S3C), but these are likely an artefact caused by the exposure of residues that would be buried in the complete CC structure. Previously, sucrose density gradient centrifugation in combination with native PAGE showed that Rx1 is present either as a monomer or in a complex with the size of Rx1 plus the interacting RanGAP2 (Sacco et al., 2007), which is consistent with our Blue Native PAGE results (Fig. 7 & Fig. S9).

The auto-active cell death signaling by the CC domains of the resistance proteins MLA10, Sr33 and Sr50 coincides with their ability to self-associate (Casey et al. 2016). Interestingly, the ability to self-associate depends on a small sequence in these CC domains; constructs that are truncated upstream of a position equivalent to amino acid 142 in MLA10 (or position 160 in Rx1) do not self-associate and behave like a monomer in solution. MLA10, Sr33 and Sr50 CC constructs of 142 aa or longer do self-associate and induce cell death in planta. The nuclear magnetic resonance spectroscopy-determined structure of Sr33 6-120 reveals a 4-helix bundle similar to the structure of Rx1 1-122 determined via X-ray crystallography (Hao et al., 2013; Casey et al., 2016). The structure of self-associated Sr33 1-142 could not be resolved, so it is still unknown if it resembles the dimer found in the MLA10 5-120 crystal structure (Maekawa et al., 2011). The Rx1 CC constructs used in our study extend to amino acid 142 and do not show signs of self-association in contrast with the behavior of corresponding CC fragments of MLA10, Sr33 and Sr50. If the CC of Rx1 forms a MLA10 CC-like dimer, then the hydrophobic residues mutated in the Z constructs would be positioned in the interface between the helices of the two protomers and the residues mutated in S1 and S4 would be located on the surface of the structure (Fig. S11). In an in vitro size-exclusion chromatography analysis of Rx1 CC 1-142, the CC migrates like a protein close to twice its predicted size (Fig. S12). In the study by Casey et al. (2016), a similar behavior was shown for the Rx1 1-122 and Sr33 6-120 constructs, which were also convincingly shown to be monomeric in solution via, amongst others, small-angle X-ray
scattering (SAXS) (Casey et al., 2016). We conclude that Rx1 preferably associates with
RanGAP2 via the CC and WPP domain and is present in plant cells as a heteromeric complex
when in its resting state instead of a homomeric complex as shown for other CC-type NLRs.

Secondary structure prediction (PSIPred) of the Rx1 CC indicates that helix 4 does not
extend beyond aa 122 and is followed by a linker region rich in serine and proline. Around
amino acid 160 (corresponding to amino acid 185 in MLA10) the first secondary structure
motifs of the NB domain appear (Fig. S13). Much smaller segments of the CC of Rx1 are still
functional in trans with the NB-ARC-LRR, as has been shown by Rairdan et al. (2008). For
example, Rx1 1-86, lacking most of the fourth α-helix, still allows the induction of elicitor-
dependent cell death. Rx1 1-116 combined with the NB-ARC-LRR confers both cell death and
resistance in a transient virus resistance test. A 158 amino acid long construct of the CC
domain of Bs2, a CC-NB-LRR from pepper related to Rx1, does not induce a cell death
response either when transiently expressed in leaves (Collier et al., 2011). Alignment of
MLA, Sr33 and Sr50 with Rx and Bs2 (Fig. S13) shows that the region in MLA10, Sr33 and
Sr50 required for autonomous cell death signaling is not conserved between the two groups
of CCs. The CC of the resistance protein RPM1 (Resistance to Pseudomonas syringae pv.
maculicola 1) from Arabidopsis thaliana does self-associate, even when truncated at the C-
terminus to amino acid 135 (El Kasmi et al., 2017). In contrast to MLA10-like CCs, none of
the tested CC constructs in that study displayed autonomous cell death signaling. Thus, Rx1-
like CCs might have evolved different mechanisms for signaling than the MLA10-like CCs.
The helper NLRs NRC2, -3 and -4 have recently been shown to be required for Rx1-mediated
resistance (Wu et al., 2017). It is possible that these helper NLRs have taken over a role in
signaling from Rx1 that the autoactive CC domains of the MLA-like proteins still possess
themselves. The possibility that self-association of Rx1 occurs after activation cannot yet be
excluded and will be the focus of future research.

Rx1 and RanGAP2, a regulator of nucleocytoplasmic trafficking, form a heteromeric complex
via the interaction of their CC and WPP domains, respectively (Sacco et al., 2007; Tameling
and Baulcombe, 2007; Hao et al., 2013). The crystal structure of the complex of the CC and
WPP has been resolved, and the interface between the domains has been probed by
targeted mutagenesis (Hao et al., 2013). In our S4 mutant we specifically substituted the
aromatic surface residues in or adjacent to the RanGAP2 binding surface of helix 4 (W90A, F93A, F94A). Like the W90D substitution in Hao et al, the three alanine substitutions of S4 strongly disrupted the binding of the CC to RanGAP2. CC S4 was not affected in its interaction with the NB-ARC and LRR, showing that at least this part of the interface with RanGAP2 does not overlap with the binding surface for the intramolecular interactions and that the substitutions do not disrupt the overall structure of the CC. Surprisingly, S4 and W90D appear to have different effects on the functionality of Rx1. Hao et al. observed a loss of resistance, but not the cell death response, when the CC-NB-ARC W90D is co-expressed with the LRR. In our experiments we do not observe a loss of resistance or cell death for the full-length Rx1 S4 or for the co-expressed CC S4/NB-ARC-LRR or CC-NB-ARC S4/LRR combinations (Fig. S4). The substitution of W90 by an aspartate might have a different effect on the structure of the CC than the alanine-substitutions in S4, explaining the difference in effect on Rx1 functionality.

RanGAP2 has a positive role in Rx1 activation. Experiments with RanGAP2 and elicitors of Gpa2, which is highly homologous to Rx1, suggest a role for RanGAP2 as co-factor in effector recognition, analogous to the role of several other proteins interacting with N-termini of NB-LRRs (Collier and Moffett, 2009; Sacco et al., 2009). In that context it is surprising that the Z3 and S4 mutant constructs, which exhibit a strong reduction in RanGAP2 binding, are not affected in their ability to induce elicitor-dependent cell death or resistance in our assays (Fig. 2). This suggests that if RanGAP2 plays a role in the recognition of PVX it is rather an enhancer of recognition than it is an absolute requirement for recognition. Under circumstances where either Rx1 or the coat protein of PVX are present at low concentrations in the cell such enhancement of recognition could be beneficial. Beyond a certain concentration threshold of coat protein or Rx1 the recognition might take place without assistance by RanGAP2. Surprisingly, even the overexpression-induced auto-active resistance response that wild-type Rx1 displays is not visibly reduced for Rx1 S4, which indicates that the RanGAP2 interaction is not required for downstream signaling (Fig. S2).

The overlap in helix 3 of the CC between the binding surfaces for the NB-ARC-LRR and RanGAP2 raises the question if both interactions modulate each other. The results from the immunoprecipitations with the S1 and S4 mutants do not indicate that the interactions...
are mutually exclusive. The mutant CC S4 exhibits a strong reduction in binding RanGAP2 but does not show a clear increase in its interaction with the NB-ARC-LRR (Fig. 5A) and the CC S1 does not seem to bind more RanGAP2 than the wild-type CC even though its intramolecular interactions with the NB-ARC and LRR are reduced (Fig. 6A). On the other hand, the expression of RanGAP2 with the co-expressed segments H1-H2 and H3-H4 strongly enhances the interaction between these two segments (Fig. 6B), and if this mechanism acts in the full-length Rx1 it would stabilize the 4-helix bundle structure of the CC. Previous findings support this notion; the overexpression of RanGAP2 has been shown to increase the stability of full-length Rx1 and the silencing of RanGAP2 leads to lower level of Rx1 in the cell (Fig. 6 in (Tameling et al., 2010)). One could envision that the binding of RanGAP2 to the CC alters its conformation or stability, and the RanGAP2-bound and free pools of Rx1 in the cell differ in activity or stability.

The co-expression of either CC, CC-NB-ARC, NB-ARC or LRR with full-length Rx1 leads to a dominant negative suppression of Rx1-mediated resistance and cell death (Fig. 8, Fig. S10A). Dominant negative activities of truncated proteins are usually ascribed to the competition of the truncated protein with the full-length protein for binding partners required for signaling; the truncated protein sequesters these binding partners in a complex that is not signaling-competent. Therefore, dominant negative activities can be informative on the functional mechanisms of a protein. The suppressive activity by the CC domain appears specific; co-expression of the CC domain of Bs2 does not affect the activity of Rx1 (Fig. 8B). The suppressive effect of the CC of Rx1 likely works via a specific interaction which the CC of Bs2 cannot establish. Comparing the suppressive activity of the wild-type CC with that of the S1 and S4 mutants makes clear that the suppression does not act via an intramolecular interaction. The CC S1 has no detectable interaction with the NB-ARC and LRR but still exhibits a pronounced suppressive effect, indistinguishable from the wild-type CC (Fig. 8C & 8D). This sets the suppressive effect of the Rx1 CC apart from the suppression of the auto-activity of chimeric constructs of the tomato resistance protein Mi-1.2 against the root knot nematode Meloidogyne incognita and its non-functional homolog Mi-1.1 by the co-expressed N-terminal SD domain of Mi-1.2. The activity of these chimeric Mi constructs was only suppressed by an N-terminal domain originating from the same Mi.
protein as the LRR in the chimeric construct (Hwang et al., 2000; Hwang and Williamson, 2003). In contrast to the Rx1 CC S1 construct, the CC S4 and CC-NB-ARC S4 constructs lost the ability to suppress the activity of full-length Rx1. This implies that the residues in helix 4 of the CC that are required for the interaction with RanGAP2 are also required for the suppressive effect of the CC. If the suppressive effect depends on competition for an interaction partner, then RanGAP2 is a candidate, although other yet unknown interactors cannot be excluded. If they form a complex with Rx1, the NRC-like helper NLRs, which are required for signaling by Rx1 and related NLRs (Wu et al., 2017), might also be candidates for which sequestering in a non-functional complex would affect resistance. In this context it is interesting to note that co-expression of the CC of Bs2, which shows a similar dependence on NRCs as Rx1, does not affect the resistance mediated by Rx1 (Fig. 8B). The Blue Native PAGE indicates that most of the cytoplasmic wild-type CC is complexed with RanGAP2 and that the CC S4 products are predominantly monomeric (Fig. 7A). The Blue Native PAGE analysis does not take the nuclear pool of the CC into account and previous observations of a high nuclear accumulation and reduced diffusion speed of the CC inside the nucleus suggest that the CC has nuclear interactors besides RanGAP2 (Slootweg et al., 2010). The CC-NB-ARC of Rx1 has been shown to interact directly with DNA (Fenyk et al., 2015) and recently one nuclear interactor has been identified as a Golden2-like transcription factor (Townsend et al., 2018).

Several mutants or truncated versions of NB-LRR proteins are known to have a dominant negative effect. Loss of function mutants of the Arabidopsis RPS2 with alterations in the CC domain suppress the activity of the wild-type RPS2 expressed in the same Arabidopsis background, whereas loss-of-function mutants with changes in the nucleotide-binding site do not display a suppressive effect (Tao et al., 2000). Substitution E572K in the conserved third LRR inactivates the Arabidopsis CC-NB-LRR RPS5 (rps5-1), but surprisingly also suppresses a subset of other NB-LRRs in Arabidopsis, not limited to CC-NB-LRR proteins (Warren et al., 1998; Bittner-Eddy et al., 2000; Sinapidou et al., 2004). A mutation in the 12th repeat of the LRR also inactivates RPS5 (rps5-2), but the expression of this mutant does not affect other resistance proteins. Similarly, auto-active variants of the tomato NB-LRR Prf are suppressed when the LRR of Prf is co-expressed. This suppression is specific; a similar auto-active mutant of the resistance protein Rpi-blb1 from Solanum bulbocastanum is not
suppressed by the LRR of Prf. Interestingly, co-expression of the LRR leads to a
destabilization of the full-length Prf (Du et al., 2012). There does not appear to be a
difference in stability in the full-length Rx1 mutants co-expressed with a wild-type CC
construct that coincides with the ability to interact (Fig. 5D). However, to conclude if co-
expression of the CC affects the stability of full-length Rx1, a direct comparison of the
protein levels of full-level Rx1 in the presence and absence of co-expressed CC would be
necessary. Full-length CC-NB-LRR proteins encoded by Pm3 alleles in wheat (Triticum
aestivum) can suppress the resistance against powdery mildew (Blumeria graminis f. sp.
tritici) mediated by the homologous protein Pm8 (Hurni et al., 2014) and by other Pm3
alleles (Stirnweis et al., 2014). The suppression appears to depend on the formation of
heteromeric CC-NB-LRR/CC-NB-LRR complexes, although not all Pm3 variants that interact
have a suppressive effect. The N-terminal half of the LRR is crucial in this suppression, and in
contrast to what we observe for Rx1, the CC-NB-ARC of the Pm3 proteins does not suppress
the activity of full-length proteins. Resistance genes are often located in clusters of
homologous genes and subject to sequence exchange via unequal crossing overs (Meyers et
al., 2005). The dominant negative effect seen in examples as the Pm3 homologs or in case of
the truncated Rx1 proteins in our experiments show that the presence of genes encoding
such proteins in these clusters poses a risk to resistance when their expression is not
suppressed.

In this study, we observed that some of the mutants lost their ability to initiate PVX
resistance but still responded with a wild-type-like cell-death response to the PVX elicitor
(CP). This is the case when CC-NB-ARC variants containing the substitutions of the aromatic
residues in helix 1 (S1) only, or in combination with the substitution of aromatic residues in
helix 4 (S14) are co-expressed with the LRR (Fig. S4B). A similar loss of resistance, but not
cell death, has been seen in the series of deletion constructs of the Rx1 CC tested by Rairdan
et al. (2008). At least one truncation (construct C2: Rx1 1-86, lacking most of helix 4)
resulted in a loss of resistance, but not of elicitor-dependent cell death in trans, which could
be interpreted as a quantitative difference in the immune response. However, we also
observed the reverse phenotype. The full-length Rx1 Z2 construct, in which hydrophobic
residues in helix 2 are replaced by glutamate, conferred PVX resistance in a transient assay,
which was indistinguishable from the response of the wild-type construct, but responded
consistently with a reduced cell-death response to the PVX CP (Fig. 2A). This suggests the
pathways leading to the cell death response or the response that provides resistance against
PVX are not identical and are affected differently by the Z2 mutations.

The NB domain of Rx1 induces an auto-active cell death response when expressed as free
domain (Rairdan et al., 2008). When tested for dominant negative activity the NB did not
have a suppressive effect on Rx1 mediated resistance, unlike the CC, LRR and NB-ARC
constructs (Fig. S10B-S10D). Maybe more surprisingly, it also did not enhance virus
resistance like the H1-H2 segment of the CC does. If transiently expressed with PVX, a cell
death response occurs, like it does in the absence of PVX, but the replication of PVX is not
markedly hampered by the auto-active response of the NB domain (Fig. S10D). Further
study is required, but this lack of effect on PVX accumulation suggests that the NB-mediated
response is limited to cell death, and other domains, like the CC, are required for a full
resistance response.

Previous studies have indicated that the Rx1-induced virus resistance and the cell-
death response might indeed be distinct responses (Kohm et al., 1993; Bendahmane et al.,
1999). The anti-viral pathway includes the Argonaute4 (AGO4)-dependent inhibition of the
translation of viral RNAs (Bhattacharjee et al., 2009). Rx1-mediated resistance was called
extreme resistance because its highly efficient inhibition of viral replication often did not
include a cell-death response. Only when resistance is less efficient, as for example after the
silencing of RanGAP2, necrotic spots accompany the response (Tameling and Baulcombe,
2007). It will be interesting to see whether the phenotype observed in this study, in which
cell death and virus resistance are uncoupled, can be linked to different downstream
signaling pathways which are initiated by distinct CC-dependent configurations of Rx1. The R
protein MLA10 can no longer induce cell death if forced into the nucleus but is still able to
confer resistance (Bai et al., 2012). The auto-active cell-death induction by the CC domains
of MLA10, Sr33 and Sr50 also requires a cytosolic localization, and exclusion from the
nucleus via the fusion of a nuclear export signal even appears to enhance the cell death
response for Sr50 (Cesari et al., 2016). These examples suggest that the pathways resulting
in cell death and other defense responses are linked to different subcellular compartments
(Heidrich et al., 2012).
Previously, we have shown that the subcellular localization of Rx1 must be balanced between the cytoplasm and the nucleus for full resistance and that the PVX coat protein is recognized in the cytoplasm and not in the nucleus (Slootweg et al., 2010). Here, we show that proper folding of the CC domain is required for the accumulation of Rx1 in the nucleus, as disruption of the CC structure by the introduction of hydrophobic zipping mutations results in a shift of Rx1 towards a more cytoplasmic localization. The overall integrity of the CC domain is required for maintaining a balanced nucleocytoplasmic distribution pattern in line with our previous finding that a truncated Rx1 lacking the CC domain is mostly absent from the nucleus. The expression level of the Rx variants in this study is higher than that of the nuclear or cytoplasmic targeted Rx construct in our previous study, which might explain why the nuclear exclusion of the CC mutants does not always corresponds with a loss of functioning. Nuclear targeting of Rx1 or Rx1 S1 via the co-expression of WPP-NLS resulted in reduced PVX resistance (Fig. 6E) further supporting the role of the cytoplasmic Rx1 protein pool in recognition and signaling.
Methods

DNA constructs and mutagenesis

The mutations were introduced into the sequence of the Rx1 CC by DNA synthesis. The following codon changes were introduced in the coding sequence of Rx to create the mutants: Z1: 16-GTT-18 to GAG (V6E), 25-CTT-27 to GAG (L9E), 37-ATA-39 to GAA (I13E). Z2: 91-CTC-93 to GAG (L31E), 100-TTG-102 to GAG (L34E), 109-ATT-111 to GAG (I37E). Z3: 160-TTG-162 to GAG (L54E), 172-ATC-174 to GAG (I58E), 175-GTA-177 to GAA (V61E), Z4: 274-ATT-276 to GAG (I92E), 286-CTG-288 to GAG (L96E), 298-CTA-300 to GAG (L100E), S1: 7-TAT-9 to GCC (Y3A), 28-ATG-30 to GCG (M10A), S4: 268-TGG-270 to GCG (W90A), 277-TTT-279 to GCA (F93A), 280-TTC-282 to GCT (F94A). The altered sequences were cloned into the constructs encoding segments of Rx (amino acid 1-45, 45-116, 1-142, 1-473, or the full-length Rx sequence, which have been described previously as GFP-tagged constructs (Slootweg et al., 2010). Here the GFP sequence was replaced by either a 4x hemagglutinin (HA) tag or a 4x c-Myc tag.

Plant material, transient expression and PVX virus resistance assay

For expression in plants the constructs were cloned into the binary vector pBINPLUS (van Engelen et al., 1995). *Agrobacterium tumefaciens* MOG101 containing the vector was infiltrated in the leaves of *Nicotiana benthamiana* and leaf material was harvested two days after infiltration for further analysis of the expressed protein as described previously (Slootweg et al., 2010). Transient PVX resistance assays were performed by co-infiltrating *A. tumefaciens* carrying the Rx1 constructs (OD600 0.05) with *A. tumefaciens* carrying a PVX:GFP amplicon (pGR208; (Peart et al., 2002))(OD600 0.002). At 5 days post infiltration the leaves were harvested and an extract (24 mg leaf material in 250 μl 50 mM phosphate buffer pH 7) was incubated in anti-PVX CP antibody (Prime Diagnostics, Wageningen) coated plates. After stringent washing the presence of PVX was detected using alkaline phosphatase conjugated anti-PVX antibodies. p-nitrophenol formation was measured in a plate reader (Bio-Rad model 680 microplate reader) via its absorption at a wavelength of 405 nm. As a measure for the strengths of the cell-death response, the loss of chlorophyll was determined in the leaf area transiently expressing the tested constructs (modified from (Harris et al., 2013)). A 13-mm-diameter leaf disc was collected per agroinfiltration spot at 3
to 5 days after infiltration and incubated overnight in 500 : l DMSO. From this volume 150 : l
Chlorophyll extract was transferred to a clear 96-well plate and the absorption at 655 nm
was measured in a plate reader. IBM SPSS Statistics 22 & 24 software was used to
statistically analyze data from the enzyme-linked immunosorbent assays (ELISA) and
chlorophyll assays.

Confocal microscopy
Enhanced green fluorescent protein (EGFP) or the monomeric red fluorescent protein
mCherry (Shaner et al., 2004) tagged proteins were transiently expressed in *N. benthamiana*
and imaged at two days after agroinfiltration using a Zeiss LSM 510 confocal microscope.
The 488-nm line from an Argon-ion laser was used for the excitation of GFP and the 543 line
from a HeNe laser for the excitation of mCherry. GFP emission was detected after a 505-
530 nm band-pass filter. Chloroplast autofluorescence excited by the 488 nm line was
detected through a 650-nm long pass filter. The emission from mCherry was detected
through a 600-650 nm bandpass filter. Images were analyzed with ImageJ software
(Abramoff et al., 2004).

Immunoprecipitation and protein analysis
Protein was extracted from *N. benthamiana* leaves by grinding them in extraction buffer (50
mM Tris-HCl pH7.5, 10% (v/v) glycerol, 150 mM NaCl, 1 mM EDTA, 2% (w/v) polyclar-AT
PVPP, 0.4 mg/ml Pefabloc SC plus (Roche), 5 mM DTT) on ice. Prior to immunoprecipitation
the total protein extract was passed through a Sephadex G-25 column. The extract was
precleared with rabbit-IgG agarose (40 μl slurry per mL protein extract). After preclearing
the extract was mixed with 25 μl anti-Myc agarose beads (Sigma A7470) or anti-HA agarose
beads (Roche 11815016001, 3F10) and incubated for 2 hours at 4°C. After 6x washing in
protein extraction buffer to which 0.15% Igepal CA-630 was added, the beads were
resuspended in Laemmli buffer and the bound protein was separated by SDS-PAGE and
blotted. c-Myc tagged protein was detected by Abcam 9132 rabbit anti-c-Myc (1:5000) as
the primary antibody and Jackson 705-035-147 peroxidase conjugated donkey anti-rabbit
(1:10000) as the secondary antibody. HA-tagged proteins were detected with a peroxidase-
conjugated anti-HA antibody (Roche 10836800, 1:500), GFP with Abcam AB 290 (1:2000) or
Miltenyi 130-091-833 anti-GFP-HRP (1:2000), and mCherry with Abcam AB 34767 HRP conjugate (1:500). The peroxidase activity was visualized with the luminescent substrate SuperSignal West Dura & Femto (Techno Pierce) and imaged by the Syngene G:Box imaging system.

Blue native gel electrophoresis

The protocol used for the Blue Native gel electrophoresis was adopted from the protocol provided with the NativePAGE system (Life technologies). Protein combinations were expressed in *N. benthamiana* leaves via agroinfiltration and extracted by grinding 100 mg leaf sample frozen in liquid nitrogen and resuspending in 1 ml Native sample buffer (50 mM Bis-Tris, 25 mM NaCl, 10% glycerol (w/v), 0.001% Ponceau S, 5 mM DTT, pH 7.2). Fifteen μl of the soluble fraction was loaded on a cooled NativePAGE 4-16% Bis-Tris gel. The gradient gel was run at 150 to 250 V with the 1x NativePAGE anode buffer and the Light Blue NativePAGE cathode buffer. After running the gel, the protein was blotted on a PVDF membrane which was subsequently incubated in 8% acetic acid, dried and rewetted in methanol. The rewetted blot was further developed via standard immunoblotting protocols. The NativeMark unstained protein standard (Life technologies) and RuBisCO complex were visualized by staining the blots with Coomassie brilliant blue R250 after the tagged proteins detected by the anti-GFP or anti-HA antibodies had been visualized.
Accession Numbers

Rx1 (Solanum tuberosum): GenBank AJ011801
RanGAP2 (Nicotiana benthamiana): GenBank EF396237

Supplemental Data

Supplemental Figure S1. Stability of the full-length Rx1 mutant constructs.

Supplemental Figure S2. The effect of overexpressed Rx1 on the replication of Tobacco Mosaic Virus as test for auto-active resistance responses in wild-type and mutant Rx1.

Supplemental Figure S3. Homodimerization of the H3-H4 segment of the Rx1 CC.

Supplemental Figure S4. A loss of interaction between domains in trans (CC/NB-ARC-LRR, CC-NB-ARC/LRR) results in a loss of resistance and cell death in trans.

Supplemental Figure S5. Interaction of full-length Rx1 variants with the RanGAP2 WPP domain or full-length RanGAP2.

Supplemental Figure S6. Yeast two-hybrid assay to test the interaction between the WPP domain of RanGAP2 and the variants of the Rx1 CC in the absence of additional plant proteins.

Supplemental Figure S7. Interaction of the H3-H4 segment of the Rx1 CC with the WPP domain of RanGAP2.

Supplemental Figure S8. Effect of RanGAP2 co-expression on the localization of Rx1 S1 and S4 tested via cell fractionation.

Supplemental Figure S9. Analysis of complex formation by the Rx1 CC variants (wild type (wt), S1, S4) and the WPP domain of RanGAP2 via Blue Native gel electrophoresis.
Supplemental Figure S10. The Rx1 NB-ARC and LRR domains exhibit a suppressive activity on Rx1-mediated resistance.

Supplemental Figure S11. The CC mutations mapped on a hypothetical dimer of the Rx1 CC.

Supplemental Figure S12. Size-exclusion chromatography (SEC) analysis of purified CC domain of Rx1 (aa 1-144).

Supplemental Figure S13. Structural alignment of the amino acid sequence of the CC domains and P-loop motif of the NB domain of the proteins Rx1, Bs2, MLA10, Sr33 and Sr50.
Figure legends

Figure 1

Assessing the role of the hydrophobic interface between the N- and C-terminal two-helix segments of the Rx1 CC domain

A. The two halves of the Rx1 CC interact in a co-immunoprecipitation assay. Combinations of co-expressed CC fragments H1-H2 (aa 1-45) and H3-H4 (aa 45-116) fused to 4xMyc or 4xHA affinity tags were subjected to anti-c-Myc immunoprecipitation. Extracts of leaves expressing the single strands were included as controls for aspecific binding and protein stability. The blots show the cell extract used as input and the result of the immunoprecipitation as detected with anti-c-Myc and anti-HA antibodies.

B. Targeted mutagenesis of hydrophobic residues in the heptad repeats. A set of constructs was made in which three apolar residues per α-helix were exchanged for glutamate (E). The groups of three substitutions were named Z1 to Z4 in correspondence with the predicted helix in which they are positioned. Hydrophobic positions of the heptad repeat are indicated in yellow in the CC structure and the amino acid sequence. The substituted residues are indicated.

C. The effect of mutations Z1 to Z4 on the intramolecular interaction of the Rx1 CC domain. Mutant versions of H1-H2-4Myc were co-expressed with wild-type (wt) H3-H4-4HA or vice versa. The H1-H2-4Myc constructs were pulled down by anti-Myc antibodies and the co-immunoprecipitated H3-H4-4HA constructs were visualized by anti-HA immunoblot. Some of the lanes have been rearranged to align input and corresponding immunoprecipitation results; this is indicated by solid lines on the immunoblot.

D. Mutant versions of H1-H2-4Myc and H3-H4-4HA were transiently expressed with Rx1 NB-ARC-LRR-GFP (aa 142-937) in the presence of the coat protein (CP106) of PVX to assess the cell-death response. The combinations of the Rx1 segments are indicated in a schematic drawing. Images were taken 5 days post infiltration (dpi). To assess PVX resistance, variants of H1-H2 and H3-H4 were co-infiltrated in *N. benthamiana* leaves with the NB-ARC-LRR-GFP and a PVX:GFP amplicon. Virus accumulation was determined by anti-PVX CP ELISA of leaf extracts at 5 dpi with alkaline phosphatase-conjugated antibodies. *p*-nitrophenol accumulation was detected via its absorbance at 405 nm. As a control (ctrl), PVX:GFP was expressed in the absence of Rx1.
Figure 2
The effect of mutations Z1 to Z4 on the functionality of full-length Rx1, either as the separate groups of mutations or in the combinations of Z1 with Z4 (Rx1 Z14) and Z2 with Z3 (Rx1 Z23).

A. Rx1 constructs were co-expressed with the CP of PVX to assess their ability to induce an elicitor-dependent cell death. The constructs were co-expressed with GFP to detect autoactivity. Images of the cell death response at 5 dpi are shown. The level of cell death was quantified by measuring the absorption of light at 655 nm by chlorophyll in a leaf extract (see Methods). A stronger cell death leads to lower chlorophyll levels. The error bars represent standard error of the mean (n=8). Different letters represent significant differences (one-way ANOVA with a post-hoc Tukey test, \(p < 0.05 \)).

B. Rx1 mediated resistance was tested by co-expressing the Rx1 constructs with a PVX:GFP amplicon and subsequent detection of the CP of PVX with an alkaline phosphatase-conjugated antibody in an ELISA assay at 5 dpi. The error bars represent standard error of the mean (n=8). Statistical analysis as in (A).

Figure 3
Alanine substitution of aromatic and hydrophobic surface residues in helix 1 and helix 4 of the CC

A. Two groups of mainly aromatic residues in the CC (highlighted in magenta in the structure and amino acid sequence) were substituted for alanines (A). In helix 1 Y3A and M10A were combined and named S1. In helix 4 the substitutions W90A, F93A and F94A were introduced and this combination was referred to as S4. Both groups of substitutions were introduced in several constructs including the H1-H2 and H3-H4 CC strands and full-length Rx1.

B. The effect of the S1 and S4 mutations on the interaction between the H1-H2 and H3-H4 strands of the CC. An anti-HA immunoprecipitation was performed to study the interaction between co-expressed wild-type (wt) and mutated (S1, S4) versions of the H1-H2-4Myc and H3-H4-4HA constructs. Expression of only H1-H2-4Myc or H3-H4-4HA was used as a negative control.
C. The effect of the S1 and S4 mutations on Rx1 functioning was tested for the transcomplementation of H1-H2 and H3-H4 with the NB-ARC-LRR as shown by a schematic drawing. Resistance was tested by co-expressing the Rx1 constructs with the PVX:GFP amplicon in *N. benthamiana* followed by an anti-PVX CP ELISA with extracts of the infiltrated leaf material. Error bars indicate the standard deviation of the mean of six samples. The ability of the constructs to induce cell death (HR) was assessed by co-expression of the complementary Rx1 fragments with the avirulent PVX elicitor CP106.

D. The effect of S1 and S4 on the functioning of full-length Rx1 was tested in transient PVX resistance and cell death assays. Mutant constructs (S1, S4 or the combination S14) and wt Rx1 were co-expressed with a PVX:GFP amplicon to test for resistance. A leaf infiltrated with PVX:GFP, but not Rx1, was included as a control. Error bars indicate the standard deviation of the mean (n=6). To assess the ability of the mutants to induce a cell death response, the full-length Rx1 constructs were co-expressed with the avirulent PVX CP and images of the response were taken at 3 dpi. As control for auto-active cell death response, the Rx1 constructs were co-expressed with GFP.

Figure 4

Immunoprecipitation assay to test if the loss-of-interaction between H1-H2 and H3-H4 due to mutations (Z1 to Z4, S1, S4) causes the strands to dissociate in the complete CC and expose internal binding surfaces.

HA-tagged versions of the wild-type (wt) and mutant Rx1 CC (aa 1-142) were co-expressed with wild-type H1-H2-4Myc (aa 1-45) (**A**) or H3-H4-4Myc (aa 45-116) (**B**) (indicated by a schematic overview of the constructs). The CC constructs were immunoprecipitated with antibodies against the HA tag. Co-immunoprecipitation of the interacting H1-H2 or H3-H4 strands was detected by anti-Myc immunoblotting.

C. Complementation of the loss of function caused by the Z1, Z2 and Z4 mutations via co-expression of wild-type H1-H2 or H3-H4 strands. Full-length Rx1 mutant constructs displaying a decreased elicitor-dependent cell death (Z1, Z2, Z4) or decreased PVX resistance (Z1, Z4) were co-expressed with H1-H2-GFP, H3-H4-GFP or GFP to investigate if the presence of the wild-type strands could restore the functionality of Rx1. Combinations in which Rx1-
mediated cell death was reconstituted are indicated by a blue asterisk. These three combinations were also tested in the absence of the CP to determine if the co-expressed CC fragment induces an auto-active response (row of images below the main panel). Resistance was assessed by the detection of PVX in an ELISA assay (error bars represent the standard deviation of the means, n=8). The CC strands or GFP were co-expressed with PVX:GFP in the absence of Rx1 as a negative control.

Figure 5
The effect of the mutations in the CC on the domain interactions of Rx1

A. The effect of the mutations Z1 to Z4, S1 and S4 on the interaction between the CC and the NB-ARC-LRR of Rx1. A myc-tagged construct of the Rx1 NB-ARC-LRR (aa 144-937) was co-expressed with 4xHA tagged constructs of the wild-type (wt) and mutant CC. The NB-ARC-LRR was pulled down using anti-Myc antibodies, and the co-immunoprecipitation of the CC constructs was detected via an anti-HA immunoblot.

B. Immunoprecipitation assay testing the effect of the CC mutations on the interaction between the CC-NB-ARC and LRR of Rx1. 4Myc-tagged CC-NB-ARC constructs were co-expressed with 4HA-LRR. Immunoprecipitation was performed with anti-Myc antibodies, and the co-precipitation of the HA-tagged LRR was visualized by anti-HA immunoblot.

C. Complementation of functionality for full-length Rx1 mutants by co-expression of the wild-type CC. The full-length Rx1 constructs carrying the combined Z14 or Z23 mutations were co-expressed with wild-type versions of the individual CC strands (H1-H2, H3-H4) or the complete CC (shown in schematic drawing above figure). The PVX CP was co-expressed to test if the presence of the CC or CC strands could restore the ability of the Rx1 mutant to initiate a cell-death response. The combinations in which a cell death occurred are marked with a white asterisk. These combinations were tested with GFP instead of the CP to test for auto-activity (image row below the main panels).

D. Interaction study to test if mutations in the CC disrupt the interaction between the CC and NB-ARC-LRR in the full-length Rx1 protein and thereby make the CC-binding surface on the NB-ARC-LRR accessible for co-expressed CC constructs. GFP-4HA tagged constructs of full-length Rx1 (wild type, Z14, Z1, S1, S4) were co-expressed with a wild-type CC-4Myc construct. The full-length Rx1 constructs were immunoprecipitated by anti-HA antibodies...
and the co-immunoprecipitation of the CC was detected via anti-Myc immunoblot. The truncated NB-ARC-LRR served as a positive control for this interaction. An HA-tagged CC and HA-tagged GFP constructs were used as negative controls.
The effect of the mutations in the CC on the interaction with RanGAP2 and the subcellular localization of Rx1

A. Co-immunoprecipitation of HA-tagged versions of the Rx1 CC variants Z1 to Z4, S1, S4 and the wild type with the N-terminal WPP domain of RanGAP2 (Rg2-ΔC-GFP). Equal loading of the input material is shown by the Coomassie Brilliant Blue-stained RuBiSCO (CBB).

B. Effect of the presence of the RanGAP2 WPP domain on the interaction between H1-H2 and H3-H4. Anti-HA immunoprecipitation of H1-H2-4HA co-expressed with H3-H4-4Myc in the presence or absence of mCherry-tagged RanGAP2 WPP domain (Rg2-ΔC-mCh). Two exposures (30s and 120s) are shown for the anti-Myc immunoblot with the results of the anti-HA immunoprecipitation to show the two bands of different intensity.

C. Full-length Rx1 constructs (wild type, Z1 to Z4, S1, S4) with a C-terminal GFP fusion were imaged using confocal microscopy after 2 days expression in N. benthamiana leaves. The images show nuclei (n) and surrounding cytoplasm in representative cells. Chlorophyll autofluorescence is shown in red. A scale bar indicating 10 μm is shown in the first panel. The other images have the same scale. The ratio of GFP fluorescence intensity in the cytoplasm and nucleus was determined in 7 to 12 cells for each construct. The graph shows the average IC/IN ratio (cytoplasmic intensity / nuclear intensity). The error bars represent the standard error. Higher values indicate a more cytoplasmic localization profile.

D. Co-expression of Rx-GFP variants with RanGAP2 constructs to test the effect on the localization of Rx. Rx-GFP (wild type, S1, S4) was co-expressed with either full-length RanGAP2-mCherry (Rg2-mCh) or with Rg2-ΔC-mCh-NLS, a construct in which the RanGAP2 WPP domain was tagged to a nuclear localization signal (NLS). The localization of wild type Rx is affected by the co-expression of these constructs; RanGAP2 sequesters it in the cytoplasm and Rg2-ΔC-mCh-NLS targets it to the nucleus. The GFP intensities from the Rx-GFP constructs were determined for the nucleus and cytoplasm and the average ratios of the intensities are plotted (n=9, error bars denote the standard error of mean).

E. PVX resistance assay. Full-length Rx (wild type, S1, S4) was co-expressed with either mCherry as control or with Rg2-ΔC-mCh-NLS and with an avirulent PVX amplicon. Previously we could show that targeting full-length Rx to the nucleus led to a partial loss of resistance (Slootweg et al., 2010). The level of virus after 5 days was determined by an anti-PVX CP
ELISA. Error bars represent the standard error of means (n=9). A t-test was used to determine if co-expression of Rg2-ΔC-mCh-NLS resulted in a significantly higher virus level than co-expression with free mCherry (* p<0.5, ** p<0.05).

Figure 7

Blue Native gel analysis of the complex formed by the Rx1 CC and RanGAP2 in the cell

A. Blue Native gel analysis of Rx1 CC constructs (wild type, S1, S4) co-expressed with RanGAP2-GFP (right two panels) or expressed alone (left two panels). HA-tagged GFP (4HA-GFP) was included as control and was detected with the anti-HA and anti-GFP antibody. The mass given for the RanGAP2, Rx1-CC and GFP constructs represents the mass of a monomer and for RuBisCO the approximate mass of the complex is given. The behaviour of the proteins in this gel is determined by the mass of the complex they are part of and by their shape. The blots were aligned to each other using the RuBisCO complex and the 4HA-GFP which is present on each immunoblot.

B. SDS-PAGE analysis of the samples used in (A) demonstrating that the banding patterns on the Native Blue blot are not due to protein degradation or modifications. RanGAP2-GFP and the CC-4HA constructs run as single bands on SDS-PAGE. A Coomassie Brilliant Blue (CBB) stained blot is included as control for equal loading. The dashed vertical lines indicate the position of the marker lane on the immunoblots.

Figure 8

Exploring suppressive effects of the co-expressed CC domain on the functionality of wild-type Rx1

A. Schematic view of the potential mechanisms behind the functional complementation and the dominant negative phenotypes that could occur upon co-expression of the wild type CC domain with mutant or wild type Rx, respectively. A red cross indicates a loss of signaling of the full-length protein, and the green V indicates a state in which the protein is able to signal.

B. Assay to test if co-expression of the CC of Rx1 suppresses the resistance mediated by Rx1, leading to higher PVX levels in a transient PVX resistance assay. Co-expression of GFP or the CC domain of Bs2 were used as negative controls. PVX accumulation was determined via an
anti-PVX ELISA. The error bars present the standard error of the means (n=8) and the letters denote significantly (p<0.05) different groups (oneway ANOVA with post-hoc Tukey test).

C. To determine if the S1 or S4 mutations affected the suppressive effect seen for the wild-type Rx1 CC, CC constructs harboring these mutations were co-expressed with wild-type Rx1 in a transient PVX assay. Co-expression of GFP served as a negative control. The error bars present the standard error of the means (n=12) and the letters denote significantly (p<0.05) different groups (oneway ANOVA with post-hoc Tukey test).

D. Co-expression of wild type, S1 and S4 variants of the CC-NB-ARC with wild-type Rx1 in a transient PVX assay to test if the mutations affect the suppressive effect of the CC-NB-ARC. Co-expression of GFP was used as a negative control. The error bars present the standard error of the means (n=8) and the letters denote significantly (p<0.05) different groups (oneway ANOVA with post-hoc Tukey test).

E. Co-expression of the N- and C-terminal CC segments with the full-length Rx1 in a transient PVX resistance assay to test if the suppressive effect is caused by a specific region in the CC. The error bars present the standard error of the means (n=8) and the letters denote significantly (p<0.01) different groups (oneway ANOVA with post-hoc Tukey test).

F. Co-expression of PVX:GFP, Rx1 and the CC segments. The virus accumulation was visualised via the GFP expressed from the PVX genome. Lower GFP levels are apparent on leaves in which H1-H2 is co-expressed.

G. To test if the reduction of PVX levels was a direct effect of the H1-H2 segment on the virus or if it was due to an enhancement of Rx1 activity, the CC segments were co-expressed with PVX:GFP in the absence and presence of Rx1. PVX levels were compared on an anti-GFP immunoblot via the GFP expressed by PVX. All samples were loaded undiluted and 8x diluted to make a better comparison possible between the samples with high and low GFP concentrations.
Bramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with imageJ. Biophotonics International 11: 36-41

Bai S, Liu J, Chang C, Zhang L, Maekawa T, Wang Q, Xiao W, Liu Y, Chai J, Takken FLW, Schulze-Lefert P, Shen Q-H (2012) Structure-Function Analysis of Barley NLR Immune Receptor MLA10 Reveals Its Cell Compartment Specific Activity in Cell Death and Disease Resistance. PLoS Pathog 8: e1002752

Bendahmane A, Farnham G, Moffett P, Baulcombe DC (2002) Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato. Plant Journal 32: 195-204

Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11: 781-791

Bendahmane A, Kohm BA, Dedi C, Baulcombe DC (1995) The coat protein of potato virus X is a strain-specific elicitor of Rx1-mediated virus resistance in potato. Plant Journal 8: 933-941

Bernoux M, Burdett H, Williams SJ, Zhang X, Chen C, Newell K, Lawrence GJ, Kobe B, Ellis JG, Anderson PA, Dodds PN (2016) Comparative Analysis of the Flax Immune Receptors L6 and L7 Suggests an Equilibrium-Based Switch Activation Model. Plant Cell 28: 146-159

Bernoux M, Ellis JG, Dodds PN (2011) New insights in plant immunity signaling activation. Current Opinion in Plant Biology 14: 512-518

Bernoux M, Ve T, Williams S, Warren C, Hatters D, Valkov E, Zhang X, Ellis JG, Kobe B, Dodds PN (2011) Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9: 200-211

Bhattacharjee S, Zamora A, Azhar MT, Sacco MA, Lambert LH, Moffett P (2009) Virus resistance induced by NB-LRR proteins involves Argonaute4-dependent translational control. Plant J 58: 940-951

Bittner-Eddy PD, Crute IR, Holub EB, Beynon JL (2000) RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant Journal 21: 177-188

Bonardi V, Tang S, Stallmann A, Roberts M, Cheriks K, Dangl JL (2011) Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc Natl Acad Sci USA 108: 16463-16468

Casey LW, Lavrencic P, Bentham AR, Cesari S, Ericsson DJ, Croll T, Turk D, Anderson PA, Mark AE, Dodds PN, Mobli M, Kobe B, Williams SJ (2016) The CC domain structure from the wheat stem rust resistance protein Sr33 challenges paradigms for dimerization in plant NLR proteins. Proc Natl Acad Sci USA 17: 201609922

Cesari S, Moore J, Chen C, Webb D, Periyannan S, Mago R, Bernoux M, Lagudah ES, Dodds PN (2016) Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC-NLR proteins. Proc Natl Acad Sci USA 113: 10204-10209

Chang C, Yu D, Jiao J, Jing S, Schulze-Lefert P, Shen Q-H (2013) Barley MLA Immune Receptors Directly Interfere with Antagonistically Acting Transcription Factors to Initiate Disease Resistance Signaling. Plant Cell 25: 1158-1173
Qi D, Dubiella U, Kim SH, Sloss DI, Dowen RH, Dixon JE, Innes RW (2014) Recognition of the protein kinase AVRPPHB SUSCEPTIBLE1
by the disease resistance protein RESISTANCE TO PSEUDOMONAS SYRINGAE5 is dependent on s-acylation and an exposed loop in
AVRPPHB SUSCEPTIBLE1. Plant Physiol 164: 340-351

Rairdan GJ, Collier SM, Sacco MA, Baldwin TT, Boettrich T, Moffett P (2008) The Coiled-Coil and Nucleotide Binding Domains of the
Potato Rx Disease Resistance Protein Function in Pathogen Recognition and Signaling. Plant Cell 20: 739-751

Sacco MA, Koropacka K, Grenier E, Jaubert MJ, Blanchard A, Goverse A, Smant G, Moffett P (2009) The Cyst Nematode SPRYSEC
Protein RBP-1 Elicits Gpa2- and RanGAP2-Dependent Plant Cell Death. PLoS Pathogen 5: e1000564

Sacco MA, Mansoor S, Moffett P (2007) A RanGAP protein physically interacts with the NB-LRR protein Rx, and is required for Rx-
mediated viral resistance. Plant J 52: 82-93

Saccomani E, Williams K, Nott L, Bahkt S, Tor M, Crute I, Bittner-Eddy P, Beynon J (2004) Two TIR:NB:LRR genes are required to
specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis. Plant Journal 38: 898-909

Tameling WI, Nooijen C, Ludwig N, Boter M, Slootweg E, Goverse A, Shirasu K, Joosten MH (2010) RanGAP2 mediates
nucleocytoplasmic partitioning of the NB-LRR immune receptor Rx in the Solanaceae, thereby dictating Rx function. Plant Cell 22:
4176-4194

Slootweg EJ, Roosien J, Spiridon LN, Petrescu AJ, Tameling W, Joosten M, Pomp R, van Schaik C, Dees R, Borst JW, Smant G, Schots
A, Bakker J, Goverse A (2010) Nuclear cyttoplasmic distribution is required for activation of resistance by the potato NB-LRR receptor
Rx1 and is balanced by its functional domains. Plant Cell 22: 4195-4215

Stirnweis D, Milani SD, Brunner S, Herren G, Buchmann G, Peditto D, Jordan T, Keller B (2014) Suppression among alleles encoding
nucleotide-binding-leucine-rich repeat resistance proteins interferes with resistance in F1 hybrid and allele-pyramided wheat plants.
Plant J 79: 893-903

Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ (1999) Expression of the Bs2 pepper gene
confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci U S A 96: 14153-14158

Tameling W, Nooijen C, Ludwig N, Boter M, Slootweg E, Goverse A, Shirasu K, Joosten MH (2010) RanGAP2 mediates
nucleocytoplasmic partitioning of the NB-LRR immune receptor Rx in the Solanaceae, thereby dictating Rx function. Plant Cell 22:
4176-4194

Tameling WL, Vossen JH, Albrecht M, Longauer T, Berden JA, Haring MA, Cornelissen BJC, Takken FLW (2006) Mutations in the NB-

ARC Domain of I-2 That Impair ATP Hydrolysis Cause Autoactivation. Plant Physiol. 140: 1233-1245

Tao Y, Yuan FH, Leister RT, Ausubel FM, Katagiri F (2000) Mutational analysis of the Arabidopsis nucleotide binding site-leucine-rich repeat resistance gene RPS2. Plant Cell 12: 2541-2554

Townsend PD, Dixon CH, Slootweg EJ, Sukarta OC, Yang AW, Hughes TR, Sharples GJ, Palsson L-O, Takken FLW, Govers A, Cann MJ (2018) The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor. Journal of Biological Chemistry 293: 3218-3233

van der Biezen EA, Jones JDG (1998) The NB-ARC domain: A novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Current Biology 8: R226-R227

van Engelen FA, Molthoff JW, Conner AJ, Nap JP, Pereira A, Stiekema WJ (1995) pBINPLUS: an improved plant transformation vector based on pBIN19. Transgenic Res 4: 288-290.

Warren RF, Henk A, Mowery P, Holub E, Innes RW (1998) A mutation within the leucine-rich repeat domain of the arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell 10: 1439-1452

Williams SJ, Sornaraj P, deCourcy-Ireland E, Menz RI, Kobe B, Ellis JG, Dodds PN, Anderson PA (2011) An autoactive mutant of the M flax rust resistance protein has a preference for binding ATP, whereas wild-type M protein binds ADP. Mol Plant Microbe Interact 24: 897-906

Wittig I, Braun HP, Schagger H (2006) Blue native PAGE. Nat Protoc 1: 418-428

Wittig I, Schägger H (2009) Native electrophoretic techniques to identify protein–protein interactions. Proteomics 9: 5214-5223

Wu CH, Abd-El-Halim A, Bozkurt TO, Belhaj K, Terauchi R, Vossen JH, Kamoun S (2017) NLR network mediates immunity to diverse plant pathogens. Proc Natl Acad Sci U S A 114: 8113-8118