Activation of nuclear factor kappa B in peripheral blood mononuclear cells from malaria patients

Chuchard Punsawad1,6, Srivicha Krudsood2,6, Yaowapa Maneerat1,6, Urai Chaisri1, Noppadon Tangpukdee3,6, Emsri Pongponratn1,6, Kwannan Nantavisai4, Rachanee Udomsangpetch5,6 and Parnpen Viriyavejakul1,6*

Abstract

Background: Malaria parasites and their products can activate a specific immune response by stimulating cytokine production in the host’s immune cells. Transcription nuclear factor kappa B (NF-κB) is an important regulator for the control of many pro-inflammatory genes, such as interleukin-1 (IL-1) and tumor necrosis factor (TNF). The activation and expression of NF-κB p65 in peripheral blood mononuclear cells (PBMCs) of malaria patients were investigated and correlated with the levels of IL-10 and TNF to study the nature of NF-κB p65 and its linkage to inflammatory cytokines.

Methods: The sample group comprised 33 patients admitted with malaria caused by Plasmodium vivax (n = 11), uncomplicated Plasmodium falciparum (n = 11), and complicated Plasmodium falciparum (n = 11). Peripheral blood was collected at admission and on day 7 for PBMC isolation. Healthy subjects were used as a control group. The expressions of NF-κB p65 in the PBMCs from malaria patients and the plasma levels of IL-10 and TNF were measured by using enzyme-linked immunosorbent assay (ELISA). The immunofluorescence technique was used to determine NF-κB nuclear translocation.

Results: At admission, patients with P. vivax and uncomplicated P. falciparum had significantly elevated phospho-NF-κB p65 levels in the PBMCs compared with those of healthy controls. However, patients with complicated P. falciparum malaria had decreased levels of phospho-NF-κB p65. On day 7 post-treatment, significantly increased phospho-NF-κB p65 was found in the PBMCs from malaria patients and the plasma levels of IL-10 and TNF were measured by using enzyme-linked immunosorbent assay (ELISA). The immunofluorescence technique was used to determine NF-κB nuclear translocation.

Results: At admission, patients with P. vivax and uncomplicated P. falciparum had significantly elevated phospho-NF-κB p65 levels in the PBMCs compared with those of healthy controls. However, patients with complicated P. falciparum malaria had decreased levels of phospho-NF-κB p65. On day 7 post-treatment, significantly increased phospho-NF-κB p65 was found in the PBMCs of patients with complicated P. falciparum, compared with healthy controls. The plasma level of IL-10 was elevated in day 0 in patients with complicated P. falciparum malaria and was found to be negatively correlated with phospho-NF-κB p65 level ($r_s = -0.630$, $p = 0.038$). However, there was no correlation between phospho-NF-κB p65 expression and TNF level in patients with complicated P. falciparum malaria.

Conclusions: This is the first report demonstrating alterations in NF-κB p65 activity in the PBMCs of malaria patients. The altered lower features of NF-κB p65 in the PBMCs of patients with complicated P. falciparum at admission could be due to a suppressive effect of high IL-10 associated with complicated P. falciparum malaria.

Keywords: Malaria, Plasmodium falciparum, Plasmodium vivax, Nuclear factor kappa B, Peripheral blood mononuclear cells, Interleukin-10, Tumor necrosis factor

* Correspondence: parnpen.vir@mahidol.ac.th

1Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok 10400, Thailand

6Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok 10400, Thailand

Full list of author information is available at the end of the article

© 2012 Punsawad et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Background

Nuclear factor kappa B (NF-κB) plays a crucial role in immune and inflammatory responses, through the regulation of various genes involved in pro-inflammatory cytokines, adhesion molecules, chemokines, inducible enzymes, and apoptosis [1]. Mammals express five NF-κB protein members: NF-κB-1 (p50), NF-κB-2 (p52), Rel A (p65), Rel B, and c-Rel [2]. These proteins have a structurally conserved amino-terminal (300 amino-acid) region, containing dimerization, nuclear localization and DNA binding domains. In unstimulated cells, NF-κB is bound to its inhibitor, the inhibitor kappa B (IκB) protein, and it appears in the cytoplasm as an inactive form. Following stimulation, IκB is first phosphorylated by IκB kinase (IKK) and then rapidly degraded by the proteosome. Subsequently, activated NF-κB translocates into the nucleus, where it binds to the DNA regulatory site to regulate specific gene expressions [2,3].

The process of malaria pathogenesis is very complex and still poorly understood. Several studies have indicated that the expression of adhesion molecules on vascular endothelial cells and the production of pro-inflammatory cytokines are closely linked to the activation of NF-κB protein transcription. It is already known that circulating mononuclear cells are involved in the immune responses and production of pro-inflammatory cytokines. Accumulated evidence has demonstrated that excessive production of pro-inflammatory mediators leads to systemic and organ-related pathological conditions. Previous studies have reported that levels of endogenous pyrogens such as interleukin-6 (IL-6), IL-1β and IL-8 were elevated in *P. vivax* and *P. falciparum* malaria infections [4-7]. The increasing serum TNF levels were reported to be associated with increased mortality in Malawian children with severe malaria [8]. Plasma TNF levels were also found to be higher in Gambian children [9]. A recent study of experimental *P. falciparum* infection in malaria-naïve individuals has shown a coordinated increase in the level of pro-inflammatory cytokines, including IFN-γ, IL-12 and IL-8 in the serum [10]. Previous *in vitro* studies have demonstrated that haemozoin (HZ) [11] and glycosylphosphatidylinositol (GPI) [12,13] can stimulate monocytes and macrophages to synthesize pro-inflammatory cytokines via NF-κB pathways [12], leading to rapid phosphorylation of IκB, with subsequent nuclear translocation of NF-κB [13]. Using a microarray methodology, it has been reported that the transcripts of Toll-like receptor signaling through NF-κB pathways was significantly up-regulated in the peripheral blood mononuclear cells (PBMCs) of both experimentally and naturally acquired malaria infections [14]. Aside from the process of cytoadhesion and sequestration, the pathogenesis of malaria is associated with increased production of pro-inflammatory cytokines. Circulating mononuclear cells are known to be induced in the immune response, and are potent biological sensors of infection. No study has reported the expression of NF-κB in PBMCs from malaria patients and its association with circulating cytokines such as IL-10 and TNF. To elucidate this process, NF-κB p65 activity in the PBMCs of malaria patients was determined and correlated with the plasma levels of IL-10 and TNF as well as with pertinent clinical data.

Methods

Malaria patients and healthy controls

Thirty-three malaria patients admitted to the Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Thailand, were included in this study. The patients were divided into three groups: (1) *Plasmodium vivax* malaria (n = 11), classified based on a positive blood smear with *P. vivax* by microscopic examination, (2) uncomplicated *Plasmodium falciparum* malaria (n = 11), classified based on a positive blood smear with *P. falciparum*, and no evidence of severe or complicated malaria, and (3) complicated *Plasmodium falciparum* malaria (n = 11), defined by the WHO criteria [15]. Complicated malaria was defined as patients exhibiting one or more of the following manifestations: hyperparasitaemia (> 250,000 parasite/μl), hypoglycaemia (glucose < 22 mmol/l), severe anaemia (haematocrit < 20% or haemoglobin < 7.0 g/dl), or increased serum level of creatinine of more than 3.0 mg/dl. Cerebral malaria was defined as unrousable coma with positive asexual forms of *P. falciparum* in blood smears, with other causes of coma excluded. Eleven healthy volunteers living in Bangkok, a non-endemic malaria area, were recruited as the control group. This group had no history of malaria infection. Written informed consent was obtained from all patients or their legal representatives before enrollment in the study. The study protocol was approved by the Ethics Committee, Faculty of Tropical Medicine, Mahidol University (MUTM 2010-053-01).

Blood collection

Five milliliters (ml) of peripheral blood was collected in heparinized tubes from the malaria patients on day 0 (pre-treatment) and day 7 (post-treatment) for PBMC isolation. In addition, 20 ml of whole blood was obtained from the healthy controls for PBMC isolation, which were employed as unstimulated cells, to investigate the ability of malaria-patient sera to induce NF-κB activation. To prepare the sera from malaria patients, clotted blood was centrifuged at 1,700 g for 10 min. The supernatant representing the serum was harvested and stored in an aliquoted state at −80°C. The serum was heat-inactivated at 56°C for 30 min before use.
Preparation of PBMCs
PBMCs were isolated from freshly heparinized blood by
gradient centrifugation, using Isoprep® separation
medium (Robbins Scientific, CA, USA), according to
the manufacturer's instructions. The heparinized blood
samples were centrifuged at 1,700 g for 5 min and plasma
was removed and stored at −80°C until use for cytokine
measurements. The remaining blood samples were
diluted with an equal volume of phosphate-buffered sa-
line (PBS) (pH 7.4), layered carefully into a conical tube
containing Isoprep® solution, then centrifuged at
1,200 g for 25 min. After centrifugation, the PBMCs
were removed and washed three times with PBS. The
cells were stained with trypan blue and counted with a
hemocytometer to determine the number of viable
PBMCs.

Total protein extraction
PBMCs were suspended in ice-cold lysis buffer (Cell Sig-
naling, MA, USA) (20 mM Tris–HCl, 150 mM NaCl,
1 mM Na2EDTA, 1 mM EGTA, 1% Triton, 2.5 mM so-
dium pyrophosphate, 1 mM β-glycerophosphate, 1 mM
Na3VO4, 1 μg/ml leupeptin) and a protease inhibitor
cocktail (Sigma-Aldrich, MO, USA) for 5 min. The
lysates were briefly sonicated on ice, centrifuged at
14,000 g for 10 min at 4°C, and the supernatants were
harvested. Protein concentrations in each sample were
determined by Bradford assay (Pierce Biotechnology, IL,
USA), using bovine serum albumin (BSA) as the
standard.

Measurement of total- and phospho-NF-κB p65
The expression of NF-κB p65 in the PBMCs was
assessed by sandwich ELISA kit (Cell Signaling, MA,
USA) according to the manufacturer’s protocol. Total
cell proteins (10 μg/well) were added into a 96-well
microplate coated with total-/phospho-NF-κB p65
mouse monoclonal antibody and incubated for 2 h at
37°C. The plate was then washed with PBS containing
0.05% (w/v) Tween-20 (PBS-T) and 100 μl of total-
/ phospho-NF-κB p65 rabbit monoclonal antibody was
added to the wells and incubated for 1 h at 37°C to de-
tect the captured total-/phospho-NF-κB p65 protein.
After washing with PBS-T, 100 μl of anti-rabbit IgG sec-
ondary antibody conjugated with horseradish peroxidase
(HRP) was added and incubated for 30 min at 37°C. To
develop the reaction, 100 μl of 3,3',5,5'-tetramethylbenzi-
dine (TMB) substrate (Cell Signaling, MA, USA) was
added and incubated for 10 min at 37°C. Finally, 100 μl
of 0.18 M sulfuric acid was added to stop the reaction.
The optical density (OD) of the yellow-colored product
was determined with a microplate reader at 450 nm. All
assays were carried out in duplicate.

Determination of NF-κB p65 nuclear translocation
The translocation of NF-κB p65 from the cytoplasm to
the nucleus was examined by immunofluorescence.
PBMCs were smeared on adhesive slides coated with 3-
aminopropyltriethoxysilane (Sigma-Aldrich, MO, USA)
and fixed with 3.7% formaldehyde in PBS (pH 7.4) for
20 min at room temperature. After fixation, the cells
were permeabilized with 0.5% Triton X-100 for 10 min.
After washing with PBS, the slides were blocked with 5%
BSA for 30 min at room temperature and incubated with
mouse anti-human NF-κB p65 (F-6) monoclonal anti-ody (1:200) (Santa Cruz Biotechnology, Santa Cruz,
CA) for 1 h at 37 °C. The slides were then incubated
with goat anti-mouse antibodies conjugated with Alexa-
488 (1:1000) (Invitrogen, Carlsbad, CA) for 45 min at
37°C. Finally, the slides were mounted with FluorSave™
reagent (Calbiochem, Nottingham, UK) and observed
under a fluorescence microscope (Olympus BX 41,
Tokyo, Japan) connected to a digital camera (Olympus
DP 20, Tokyo Japan) and a standard UV filter set. Nor-
ormal PBMCs stimulated with 50 ng/ml of TNF for
30 min were used as a positive control and the omission
of primary antibody was used as a negative control. For
quantitative analysis, PBMCs (approximately 200–300
cells) were randomly examined by fluorescence micros-
copy under high power (x400) and cells stained positive
for nuclear NF-κB p65 were counted. To calculate the
percentage of cells with NF-κB nuclear translocation,
the number of positive nuclear stained cells was divided
by the total number of cell and the result was multiplied by 100.

Measurement of IL-10 and TNF in plasma of malaria
patients
The levels of IL-10 and TNF in plasma was determined
by the Human IL-10 and TNF ELISA Development Kit
(Peprotech, NJ, USA), a quantitative sandwich enzyme
immunoassay using a purified rabbit antibody against
IL-10 or by TNF pre-coated onto an ELISA plate (Nunc
Maxisorp F96, Roskilde, Denmark), and then incubated
overnight at room temperature. Human recombinant IL-
10 and TNF protein at serial concentrations and 2-fold
diluted plasma samples were incubated into the wells.
Assay standards and samples were added to duplicate
wells in the plate, which was incubated for 2 h at room
temperature. After washing, either a biotinylated purified
rabbit anti-human IL-10 or TNF antibody as the detect-
ion antibody was added to each well at a concentration
of 50 ng/ml and incubated for 2 h at room temperature.
Then, an avidin-horseradish peroxidase (HRP) conjugate
was added to the wells and incubated for 30 min at
room temperature. For color development, 2,2'-azino-bi-
3-ethylbenzothiazoline-6-sulfonic acid), or ABTS liquid
substrate (Sigma-Aldrich, MO, USA), was added and
incubated at room temperature. Absorbance was read at 405 nm with wavelength correction set at 650 nm. The sensitivity of the kit was within the range of 32–2000 pg/ml for IL-10 and 16–2000 pg/ml for TNF.

Induction of NF-κB activation in healthy volunteer PBMCs by malaria patient sera

To investigate whether the sera from malaria patients could induce the expression of NF-κB p65 in PBMCs of healthy volunteers, PBMCs (2 x 10^6 cells) were separately stimulated by 10% sera from healthy controls and patients with *P. vivax*, uncomplicated *P. falciparum*, and complicated *P. falciparum* malaria for 0, 30, and 60 min, at 37°C, 5% CO₂. TNF (50 ng/ml) was used as positive control. After incubation, PBMCs were washed with PBS and total proteins were isolated to detect the phospho-NF-κB p65 using sandwich ELISA.

Statistical analysis

Data were expressed as mean ± standard error of the mean (SEM). The normality of distribution was determined by the Kolmogorov-Smirnov test. Differences in NF-κB p65 levels between groups were compared by unpaired Student’s t-test. Student’s paired t-test was used to assess differences in NF-κB p65 within groups. Differences in IL-10 and TNF cytokine levels between groups were analysed by the Mann–Whitney test and the Wilcoxon signed-rank test was used to compare the difference in cytokine levels within groups between day 0 and day 7. In addition, the correlations within groups between levels of NF-κB p65 and pertinent clinical data including age, days of fever, malaria parasite density, RBC, WBC, haemoglobin, haematocrit, platelet, and cytokine levels were calculated using Spearman’s rank correlation (rₛ). Data was analysed by statistical analysis performed using SPSS version 17.0 software (SPSS, IL, USA). The p value < 0.05 was considered significantly different.

Results

Study subjects

The clinical and laboratory parameters of malaria patients and healthy controls are shown in Table 1. On admission, the mean parasite density was significantly higher in patients with complicated *P. falciparum* malaria compared to those with uncomplicated *P. falciparum* infection (p = 0.001). Patients diagnosed with *P. vivax* malaria were administered chloroquine and primaquine, whereas patients with *P. falciparum* malaria were treated with artesunate and mefloquine. On day 7 post-treatment, no asexual forms of malaria parasites were found in the peripheral blood of all malaria patient groups. Complications in patients with complicated *P. falciparum* malaria included pulmonary oedema (four of 11, 36.4%), cerebral malaria (six of 11, 54.5%), acute renal failure (six of 11, 54.5%), shock (three of 11, 27.3%), anaemia (six of 11, 54.5%), and acidosis (one of 11, 9.1%).

Activation of NF-κB p65 in the PBMCs of malaria patients

The total-NF-κB p65 levels detected in the PBMCs was similar in all experimental groups (p > 0.05) on both day 0 and day 7 (Figure 1A). At admission, phospho-NF-κB p65 levels were significantly elevated in the PBMCs of patients with *P. vivax* (0.182 ± 0.04, p < 0.001) and uncomplicated *P. falciparum* malaria (0.250 ± 0.10, p < 0.001), compared to the healthy controls (0.104 ± 0.04). However, the phospho-NF-κB p65 levels were significantly lower in the PBMCs of patients with complicated *P. falciparum* malaria on admission compared to day 7 post-treatment (0.086 ± 0.06, p = 0.01). Among the patient groups, phospho-NF-κB p65 activity was significantly higher in the PBMCs of patients with uncomplicated *P. falciparum* malaria, compared to patients with *P. vivax* (p = 0.01) or complicated *P. falciparum* malaria (p = 0.001) (Figure 1B). On day 7 post-treatment, phospho-NF-κB p65 activity was significantly increased in the PBMCs of patients with complicated *P. falciparum* malaria, compared to the healthy controls (0.197 ± 0.03 vs. 0.103 ± 0.01, p = 0.002) (Figure 1B). Levels of phospho-NF-κB p65 remained significantly elevated in PBMCs of the patients with *P. vivax* (0.151 ± 0.01), whereas phospho-NF-κB p65 levels in PBMCs from patients with uncomplicated *P. falciparum* malaria showed an increasing trend, but this was not statistically significant (p = 0.210) when compared to healthy controls (0.103 ± 0.01). In addition, no difference in the level of phospho-NF-κB p65 was found between uncomplicated and complicated *P. falciparum* malaria on day 7 (p > 0.05). No correlation was observed in any group of patients between the level of phospho-NF-κB p65 and other clinical parameters such as age, days of fever, malaria parasite density, RBC, WBC, haemoglobin, haematocrit, and platelet levels.

Nuclear translocation of NF-κB p65 in the PBMCs of malaria patients

The work performed in the study demonstrated and confirmed nuclear translocation of NF-κB in the PBMCs from malaria patients by immunofluorescence assay (Figure 2A). The percentages of NF-κB p65 nuclear staining with immunofluorescence were consistent with the findings of phospho-NF-κB p65 determined by ELISA. At admission, the mean percentage of cells with NF-κB p65 nuclear translocation was significantly increased in patients with *P. vivax* and uncomplicated *P. falciparum* malaria, compared to healthy controls (55.0 ± 2.8% vs 44.8 ± 5.4% vs 13.2 ± 1.3%, p < 0.001, p < 0.001, respectively) (Figure 2B). However, on day 7 the mean percentage of cells with NF-κB p65 nuclear localization was significantly lower (44.6 ± 6.7% vs 20.0 ± 4.8%, p = 0.001) (Figure 2B).
Table 1 Clinical and laboratory parameters of malaria patients and healthy controls

	P. vivax	Uncomplicated P. falciparum	Complicated P. falciparum	Healthy controls
	Day 0	Day 7	Day 0	Day 7
Age (years)	25 (18–36)	31 (18–55)	35 (18–57)	26 (21–33)
Sex (Male/Female)	11/0	10/1	10/1	7/4
Duration of fever (days)	3 (1–5)	5 (2–9)	6 (3–9)	None
Parasitaemia (μl)	62,916	0	0	825,475*
WBC (10³/μl)	6.3	7.4	6.5	8.5*
RBC (10⁶/μl)	4.9	5.0	4.1*	4.2*
Haematocrit (%)	39.2*	39.3*	32.2*	34.0*
Haemoglobin (g/dl)	13.2*	13.1	10.6*	11.6*
Platelet (10³/μl)	97*	303	106*	36*

Data presented as mean. (n = 11 for each group).

*Significant difference (p < 0.05) vs uncomplicated P. falciparum malaria.

*Significant difference (p < 0.05) vs healthy controls.

Figure 1 Activation of NF-κB p65 in the PBMCs of malaria patients determined by ELISA.

(A) Total NF-κB level in the PBMCs of malaria patients (n = 5 for each group). No difference in total-NF-κB p65 level was observed in PBMCs of all malaria patient groups, p > 0.05 compared with healthy controls (Student t-test). (B) Phospho-NF-κB p65 levels in the PBMCs of malaria patients on day 0 and day 7 (n = 11 for each group). Protein extract from PBMCs stimulated with 50 ng/ml of TNF for 30 min was used as a positive control. *Significance of p < 0.05 compared with healthy controls (Student t-test). **Significance of p < 0.05 compared with the day of admission (Student t-test). Data are presented as a mean ± SEM.
translocation in all patient groups was similar to healthy controls (Figure 2B).

IL-10 and TNF levels in the plasma of malaria patients

The expression levels of IL-10 and TNF in the plasma of malaria patients are presented in Figure 3. Complicated *P. falciparum* malaria had strikingly higher plasma IL-10 concentrations than *P. vivax* (*p* < 0.001) and uncomplicated *P. falciparum* (*p* = 0.002) patients during the acute illness (day 0). The mean plasma IL-10 on day 0 for *P. vivax* was 437.44 ± 104.60 pg/ml as compared with uncomplicated *P. falciparum* (630.13 ± 183.78 pg/ml) and complicated *P. falciparum* malaria patients (1,898.80 ± 666.50 pg/ml) (Figure 3A). Nonetheless, levels of IL-10 in these malaria groups were significantly higher than those of the healthy controls (8.20 ± 5.96 pg/ml, all *p* < 0.001). On day 7, the mean plasma IL-10 in the three malaria groups declined significantly compared to their levels on day 0.
At admission, plasma TNF was markedly elevated in patients with *P. vivax* (231.08 ± 47.89 pg/ml), uncomplicated *P. falciparum* (331.70 ± 77.55 pg/ml), and complicated *P. falciparum* (479.64 ± 133.53 pg/ml), compared with the healthy controls (10.35 ± 10.02 pg/ml, all \(p < 0.001 \)). The mean TNF concentration of patients with complicated *P. falciparum* was significantly higher than patients with *P. vivax* malaria (\(p < 0.05 \)) (Figure 3B). TNF concentrations were monitored at day 7 and the levels were 211.19 ± 51.73 pg/ml, 237.65 ± 73.39 pg/ml and 263.95 ± 70.25 pg/ml for *P. vivax*, uncomplicated *P. falciparum* and complicated *P. falciparum* malaria patients, respectively. TNF concentrations did not differ within each group of malaria patients at admission and day 7 post-treatment (all \(p > 0.05 \)) (Figure 3B). In addition, there was no correlation between the plasma levels of IL-10 and TNF in any malaria groups.

Correlations between NF-κB p65 in PBMCs and plasma IL-10

In complicated *P. falciparum* malaria, a significant negative correlation between phospho-NF-κB p65 in PBMCs and plasma level of IL-10 (\(r_s = -0.630, p = 0.038 \)) was established during acute illness. No correlation was observed between phospho-NF-κB p65 in PBMCs and plasma TNF in any of the malaria groups.

Effect of malaria serum on NF-κB p65 in the PBMCs of healthy controls

The level of phospho-NF-κB p65 in the PBMCs increased significantly in response to sera from all malaria patient groups (*P. vivax*, uncomplicated *P. falciparum*, and complicated *P. falciparum* malaria) at 30 min after stimulation (Figure 4) with the highest stimulation by sera from uncomplicated *P. falciparum* malaria. In addition, the levels of phospho-NF-κB p65 activation induced by sera from patients with uncomplicated *P. falciparum* malaria were significantly higher than those induced by sera from patients with complicated *P. falciparum* malaria (\(p = 0.044 \)). However, this effect seems to be transient. In the present study, the level of phospho-NF-κB p65 induced by sera from patients showed a tendency to return to the pre-stimulation state after 60 min (Figure 4).

Discussion

This is the first report showing NF-κB expression in the PBMCs of malaria patients and its correlation with IL-10 and TNF by using sandwich ELISA. The use of ELISA has become a powerful method for measuring protein phosphorylation. ELISA is more quantitative than Western blotting and possesses high specificity and sensitivity due to the use of two antibodies specific for the target protein employed together in the sandwich. NF-κB p65 activation
was increased in the PBMCs of *P. vivax* and uncomplicated *P. falciparum* patients, on both day 0 and day 7, whereas in complicated *P. falciparum* patients, elevated NF-κBp65 activity was observed only on day 7 post-treatment. NF-κB activation may be triggered by various ligands or proteins of malaria parasites that induce up-regulation of the NF-κB signaling pathway, leading to nuclear translocation of NF-κB and regulation of gene expression. It is possible that the increased NF-κBp65 levels in the PBMCs with malaria infection are involved in the enhancement of inflammatory cytokines. Consistent with the increased level of phospho-NF-κBp65 in the PBMCs, the immunofluorescence assay confirmed NF-κBp65 immunostaining in PBMC nuclei, indicating the active NF-κB protein state in malaria infection. Data from the literature of experimental in vitro malaria studies show that the mechanisms induced or involved in the activation of NF-κBp65 include haemozoin (HZ)-induced enhancement of inflammatory cytokines [11,16-18], activation of matrix metalloproteinase-9 (MMP-9) in human monocytes fed with trophozoites and HZ [19], and *P. falciparum* glycosylphosphatidylinositol (GPI) stimulating monocytes and macrophages, leading to the activation of NF-κB downstream signaling pathways induced expression of pro-inflammatory mediators, such as TNF, IL-6, IL-12, and nitric oxide (NO) [12,13]. Recent investigations studied the innate immune response in malaria infection, showing that Toll-like receptor 1 (TLR1), TLR2, and TLR4 were induced in PBMCs from both experimentally [14,20] and naturally acquired malaria infections [14]. These findings suggest that the activation of TLRs by GPI [21] and HZ [22] transmit signals in an intracellular pathway leads to the activation of transcription factor NF-κB, which in turn propagates a signal to the nucleus to regulate the expression of pro-inflammatory cytokines. Consequently, these actions could cause increased levels of phospho-NF-κBp65 and nuclear translocation of NF-κBp65 in the PBMCs of malaria patients.

NF-κBp65 activity was decreased in PBMCs from patients with complicated *P. falciparum* at admission, consistent with the reduced mean percentage of NF-κBp65 nuclear translocation evidenced by the immunofluorescence study. These findings agree with previous reports which demonstrated that PBMCs from patients with sepsis and major trauma reduced the active form of NF-κBp65 on the day of admission [23,24]. The silencing of NF-κBp65 gene expression reported in severe systemic inflammation may also explain the important signaling event in complicated *P. falciparum* wherein NF-κBp65 could be repressed by cytokines [25]. Studies have shown that immunosuppressives such as TGF-β [26,27] and IL-10 (also known as anti-inflammatory cytokine) [28] reportedly alter NF-κB expression and translocation, and contribute to cell desensitization [26-28]. Normally, IL-10 is produced by macrophages as well as T and B lymphocytes, and has been shown to play a significant role in immunoregulation, involving negative feedback on the production of pro-inflammatory cytokine [29]. It has been reported that increasing plasma IL-10 was detected in cerebral and severe malaria patients at admission, in contrast to the patients with

![Figure 4 Malaria sera-induced NF-κB p65 activation in the PBMCs of healthy controls (n = 5).](http://www.malariajournal.com/content/11/1/191)
uncomplicated *P. falciparum* malaria [30]. Elevated IL-10 levels have been detected in serum of Thai patients with acute *P. falciparum* malaria prior to treatment and the levels were found to return to normal after malaria treatment [31]. To investigate whether the decrease in nuclear translocation of NF-κB found in complicated *P. falciparum* malaria patients is linked to plasma IL-10 levels, IL-10 levels were determined in the malaria groups. In this study, the plasma level of IL-10 was significantly elevated in complicated *P. falciparum* malaria infection and had a negative correlation with phospho-NF-κB p65 expression at admission. When the IL-10 levels were high, the phospho-NF-κB p65 levels were low. This correlation was not found in *P. vivax* or uncomplicated *P. falciparum* infections. At admission, the plasma levels of IL-10 in patients with complicated *P. falciparum* malaria were 4.3 times and 3 times higher than in patients with *P. vivax* and uncomplicated *P. falciparum*, respectively. This observation suggests that decreased levels of NF-κB p65 in the PBMCs of complicated *P. falciparum* patients during acute infection could be due to a negative feedback loop mechanism, or the consequence of high levels of IL-10, an important anti-inflammatory cytokine associated with severe disease. It has been shown that IL-10 inhibits NF-κB activation rapidly and in a dose-dependent manner [28]. At day 7 post-treatment, the plasma levels of IL-10 in complicated *P. falciparum* malaria declined 5.7 times from the level on day 0, to the same levels as the *P. vivax* and uncomplicated *P. falciparum* malaria groups. This trend is similar to results in a previous report [30]. The lower level of IL-10 could explain the elevated level of activated NF-κB in the PBMCs from complicated *P. falciparum* malaria at day 7 post-treatment.

Furthermore, the study investigated whether malaria patient serum could induce NF-κB p65 activation in unstimulated PBMCs. Significantly, transiently increased levels of phospho-NF-κB p65 were found in the healthy PBMCs 30 min after stimulation with malaria serum, consistent with previous studies on endothelial cells [32], monocytes [33], and human cardiac myocytes [34]. However, the transient increased of phospho-NF-κB p65 in malaria sera-induced healthy PBMCs did not concur with the decline of NF-κB p65 at admission in complicated *P. falciparum* malaria. The PBMCs from healthy controls are naïve and activation is short-lived. The effect might not be long enough to initiate a complex response to malaria serum. In contrary, the PBMCs collected from complicated *P. falciparum* malaria patients was sensitized by prolonged infection and response mechanisms induced by other cell signaling processes. The present study elucidates that sera from malaria patients can induce NF-κB p65 activation in naïve PBMCs. It would be helpful to further analyse the expression of NF-κB in PBMCs from malaria patients after stimulation with malaria sera to determine the event of “desensitization” in malaria. Further work to investigate whether pre-incubation of the malaria sera with an anti-IL-10 neutralizing monoclonal antibody would suppress NF-κB activation in PBMCs from complicated *P. falciparum* patients will be of interest.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
CP received a Research Assistantship (RA) scholarship from the Faculty of Graduate Studies, Mahidol University, Thailand. This study was funded by research grants from the Faculty of Tropical Medicine, year 2010, Mahidol University, Thailand, the Office of the Higher Education Commission, and Mahidol University under the National Research Universities Initiative, Thailand. We thank all of the staff at the Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Thailand for their support throughout this study.

Authors’ contributions
CP carried out the ELISA and immunofluorescence work, preliminary data analysis, and wrote the first draft of the manuscript. SK, NT and KN collected clinical data, supervised patient recruitment, critically analysed, and interpreted the data. YM, UC, EP and RU participated in the study design and manuscript preparation and revision. PV formulated the research idea, designed the experiments, gave laboratory and technical support, supervised, and revised the manuscript. All authors have approved the final version of the manuscript.

Received: 12 March 2012 Accepted: 10 June 2012
Published: 10 June 2012

References
1. Tripathi T, Aggarwal A: NF-kappa B transcription factor: a key player in the generation of immune response. Curr Sci India 2006; 90:519–531.
2. Baldwin AS: The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996, 14:649–683.
3. Birbach A, Gold P, Binder BR, Hofer E, de Martin R, Schmid JA: Signaling molecules of the NF-kappa B pathway shuttle constitutively between cytoplasm and nucleus. J Biol Chem 2002, 277:10842–10851.
4. Friedland JS, Ho M, Remick DG, Bunnag D, White NJ, Griffin GE: Interleukin-8 and Plasmodium falciparum malaria in Thailand. Trans R Soc Trop Med Hyg 1993, 87:54–55.
5. Lyke KE, Burges R, Cissoko Y, Sangare L, Dao M, Diarra I, Areno K, Harley R, Plowe CV, Doumoua OK, Sztein MB: Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12p70 in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect Immun 2004, 72:5630–5637.
6. Mishna RN, Boulandi J, Mishna NM, Mayombo J, Mendome G: Cytokines in the pathogenesis of malaria: levels of IL-1 beta, IL-4, IL-6, TNF alpha and IFN-gamma in plasma of healthy individuals and malaria patients in a holoendemic area. J Clin Lab Immunol 1991, 34:131–139.

http://www.malariajournal.com/content/11/1/191

Page 9 of 10
14. Ockenhouse CF, Kester KE, Cummings JF, Stewart A, Heppner DG: Severe falciparum malaria. World Health Organization, Communicable Diseases Cluster. N Engl J Med 1989, 320:1586–1591.

15. Zhu J, Krishnegowda G, Gowda DC: Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositol of Plasmodium falciparum. J Exp Med 2005, 202:8617–8627.

16. Pichyangkul S, Saengkrai P, Webster HK: Modulation of cytokine profiles by malaria pigment haemozoin: role of IL-10 in suppression of proliferative responses of mitogen stimulated human PBMC. J Biol Chem 2004, 280:21255–21262.

17. Prato M, Gallo V, Arese P: Phagocytosis of haemozoin enhances matrix metalloproteinase-9 activity and TNF alpha production in human monocytes: role of matrix metalloproteinases in the pathogenesis of falciparum malaria. J Immunol 2005, 175:6436–6442.

18. Deshpande P, Shetty P: Modulation of cytokine profiles by malaria pigment-haemozoin: role of IL-10 in suppression of proliferative responses of mitogen stimulated human PBMC. J Biol Chem 2004, 280:21255–21262.

19. Prato M, Gallo V, Birbal S, Parissenti AM, Ramana CV, Xu X, Parrillo JE: Human serum from patients with septic shock activates transcription factors STAT1, IRF1, and NF-kappaB and induces apoptosis in human cardiac myocytes. J Biol Chem 2005, 280:24619–24626.

20. Punsawad et al. Malaria Journal 2012, 11:191 http://www.malariajournal.com/content/11/1/191

21. Krishnegowda G, Hajjar AM, Zhu J, Douglass EJ, Uematsu S, Akira S, Woods AS, Webster HK: Interleukin-10 inhibits tumor necrosis factor production but not antigen-specific lymphoproliferation in acute Plasmodium falciparum malaria. J Infect Dis 1995, 172:838–844.

22. Heyron F, Burdin N, Ringwald F, Vailliez JP, Rousset F, Banchereau J: High levels of circulating IL-10 in human malaria. Clin Exp Immunol 1994, 95:300–303.

23. Wenisch C, Parschalk B, Narzt E, Locarsesuwan S, Suntharasamai P, Webster HK: Interleukin-10 inhibits tumor necrosis factor production but not antigen-specific lymphoproliferation in acute Plasmodium falciparum malaria. J Infect Dis 1995, 172:838–844.

24. Adib-Conquy M, Prato M, Gallo V, Arese P: Phagocytosis of haemozoin enhances matrix metalloproteinase-9 activity and TNF alpha production in human monocytes: role of matrix metalloproteinases in the pathogenesis of falciparum malaria. J Immunol 2005, 175:6436–6442.

25. McCall CE, Yozsa BK: Gene silencing in severe systemic inflammation. Am J Respir Crit Care Med 2007, 175:763–767.

26. Miller-Graziano CL, Szabo G, Griffey K, Mehta B, Kody K, Catalano D: Role of elevated monocyte transforming growth factor beta (TGF beta) production in posttrauma immunosuppression. J Immunol 1991, 147:101–102.

27. Arsura M, Wu, M, Sonnenshein G: TGF beta 1 inhibits NF-kappa B/Rel activity inducing apoptosis of B cells: transcriptional activation of I kappa B alpha. Immunol 1996, 5:31–40.

28. Wang P, Wu P, Siegel MI, Egan RW, Bilal MM: Interleukin (IL)-10 inhibits nuclear factor kappa B (NF-kappa B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. J Biol Chem 1995, 270:5558–5563.

29. Ho M, Sexton MW, Tongtawee P, Locareasuwan S, Suntharasamai P, Webster HK: Interleukin-10 inhibits tumor necrosis factor production but not antigen-specific lymphoproliferation in acute Plasmodium falciparum malaria. J Infect Dis 1995, 172:838–844.

30. McNamara PF, Loonen PHM, Knaapene G, Ruitenberg I, Brongersma L, van Vugt AE, van der Meer JW, van Mierlo GJ, Eling WM, Hack CE, Sauerwein RW: Circulating concentrations of soluble granulyme A and B increase during natural and experimental Plasmodium falciparum infections. Clin Exp Immunol 2003, 132:467–472.

31. Jaramillo M, Gowda DC, Radzioch D, Olivier M: Haemozoin increases IFN-gamma-inducible macrophage nitric oxide generation through extracellular signal-regulated kinase- and NF-kappa B-dependent pathways. J Immunol 2003, 170:4435–4455.

32. Tachado SD, Gerald P, McConvilie MJ, Baldwin T, Quilici D, Schwarz RT, Schofield C: Glycosylphosphatidylinositols of Plasmodium induce nitric oxide synthase expression in macrophages and vascular endothelial cells by a protein tyrosine kinase-dependent and protein kinase C-dependent signaling pathway. J Immunol 1996, 156:1897–1907.

33. Zhu J, Krishnegowda G, Gowda DC: Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositol of Plasmodium falciparum: the requirement of extracellular signal-regulated kinase, p38, c-Jun N-terminal kinase and NF-kappaB pathways for the expression of proinflammatory cytokines and nitric oxide. J Biol Chem 2005, 280:8617–8627.

34. Punsawad et al. Malaria Journal 2012, 11:191 http://www.malariajournal.com/content/11/1/191

35. www.biomedcentral.com/submit

Submit your manuscript at www.biomedcentral.com/submit

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution