Consolidation stabilizes memory traces after initial encoding. Rodent studies suggest that memory consolidation depends on replay of stimulus-specific activity patterns during fast hippocampal “ripple” oscillations. Here, we measured replay in intracranial electroencephalography recordings in human epilepsy patients, and related replay to ripples. Stimulus-specific activity was identified using representational similarity analysis and then tracked during waking rest and sleep after encoding. Stimulus-specific gamma (30–90 Hz) activity during early (100–500 ms) and late (500–1200 ms) encoding is spontaneously reactivated during waking state and sleep, independent of later memory. Ripples during nREM sleep, but not during waking state, trigger replay of activity from the late time window specifically for remembered items. Ripple-triggered replay of activity from the early time window during nREM sleep is enhanced for forgotten items. These results provide the first electrophysiological evidence for replay related to memory consolidation in humans, and point to a prominent role of nREM ripple-triggered replay in consolidation processes.
Results

Stimulus-specific representations during encoding. To assess stimulus-specific engram patterns, we first extracted for each channel and each item the iEEG activity within the gamma and epsilon band (30–90 Hz and 90–150 Hz, respectively; see Supplementary Note 2; Supplementary Fig. 2a, b; Methods). We used consecutive time windows of 200 ms (autocorrelation of the gamma activity was significant up to 250 ms; Supplementary Note 4; Supplementary Fig. 2e), overlapping by 100 ms (Fig. 1c), results refer to the center time points of the windows; we also tried consecutive time window of 100 ms, overlapping by 50 ms and it generated highly similar results; Supplementary Fig. 2c; Supplementary Note 3). During each time window, we obtained one activity pattern across electrodes per item. These patterns were correlated between each encoding time window and each retrieval time window of each item (Fig. 1b). Stimulus-specific representations were identified by comparing correlations between encoding and retrieval of the same item (RSA\textsubscript{same}) to correlations between encoding of one and retrieval of a different item (RSA\textsubscript{differ}). We controlled for multiple comparisons using surrogate-based cluster statistics30.

Consistent with previous results29,30, we observed significantly higher RSA\textsubscript{same} than RSA\textsubscript{differ} values in the gamma frequency range (30–90 Hz). Two separate temporal clusters were identified (Fig. 2a) with regard to encoding, an early cluster (100–500 ms, blue frame) and a late cluster (500–1200 ms, black frame; both \(p_{\text{corr}} < 0.001 \)). RSA\textsubscript{same} values were higher for remembered than forgotten items in the late (\(t(11) = 3.75, p = 0.003 \)) but not the early cluster (\(t(11) = 0.45, p = 0.66; \) Fig. 2b), indicating a relevance for subsequent memory only for the late cluster. In order to investigate in greater detail which encoding time windows are relevant for later memory, we compared the difference of the similarity levels between remembered and forgotten items within clusters showing stimulus-specific representations and found that predominantly reinstatement of activity during late time window (800–1100 ms; capturing activity in the time range from 700 to 1200 ms) was relevant for subsequent memory (\(p < 0.001 \) after multiple comparison correction; surrogate data were generated by shuffling condition labels of trial averages in individual participants). RSA\textsubscript{same} values did not differ between the nap day and the day without nap for either remembered or forgotten items (all \(t(11) < 0.68, all p > 0.51 \)). Two clusters in the epsilon band (90–150 Hz) showed higher RSA\textsubscript{same} than RSA\textsubscript{differ} values as well (Fig. 2c: 300–700 ms and 500–900 ms), however these effects were unrelated to memory (all \(t(11) < 0.84, all p > 0.52; \) Fig. 2d). We further investigated the brain regions underlying stimulus-specific representations in both time clusters. We found that 15% of all electrodes contributed significantly to stimulus-specific representations of either the early or the late encoding cluster (Supplementary Fig. 2d) which replicated our previous findings30 supporting the theoretical notion of sparse coding. We further investigated the distribution of positively contributing electrodes and found that more electrodes showed significant positive contributions to the early encoding cluster than the late encoding cluster (\(\chi^2(1) = 5.69, p = 0.017 \)) in the lateral temporal lobe (including fusiform gyrus, inferior temporal gyrus, and middle temporal gyrus). We found a trend for an opposite pattern for electrodes within the medial temporal lobe (MTL, including the hippocampus and the parahippocampal gyrus) where more electrodes contributed significantly to the late cluster than to the early cluster (\(\chi^2(1) = 2.96, p = 0.085 \)). Due to the overall small number of electrodes in the occipital (2 electrodes) and parietal (2 electrodes) cortex, we did not perform statistical analyses in these regions.

Spontaneous replay during rest. We assessed the spontaneous re-occurrence of stimulus-specific activity patterns of remote items (presented on the nap day before rest) during the rest period by calculating the similarity of these patterns during...
encoding with brain activity during rest (Methods and Fig. 3a). These reactivations were compared to correlations between rest activity and recent items (shown on the nap day after rest) which served as a baseline (Supplementary Note 1)14. We analyzed both spontaneous replay (across the entire rest period; Fig. 3a) and replay coincident with hippocampal ripples. Due to the small number of patients reaching REM sleep (5 out of 12) and the overall short duration of REM sleep in our data (Supplementary Fig. 3a), we focused on waking state and nREM sleep (including sleep stages N1, N2, and N3). The duration did not differ between waking state and nREM sleep ($t(11) = 0.82; p = 0.43$).

To analyze spontaneous replay, we first calculated the level of replay of gamma band activity during each 200 ms time window (overlapping by 100 ms) during encoding. We averaged replay...
levels first across the eight time windows of the late (500–1200 ms) encoding cluster for each item, and then across items. This was done separately for remote and recent items. Replay levels were significantly larger than zero for remote (t(11) = 3.07, p = 0.011) but not recent items (t(11) = 1.11, p = 0.29; Fig. 3b). Moreover, replay levels of remote items were significantly higher than those of recent items (t(11) = 2.32, p = 0.041). We next separately analyzed replay during the different states of vigilance. Replay levels of remote items were significantly above zero during both waking state (t(11) = 3.11, p = 0.010) and nREM sleep (t(9) = 2.88, p = 0.018). This was not the case for recent items (both t(11) < 1.31, both p > 0.34). Replay levels were higher for remote than recent items during waking state (t(11) = 2.33, p = 0.040) and marginally during nREM sleep (t(9) = 1.85, p = 0.098). Replay levels of remote items did not differ between waking state and nREM sleep (t(9) = 1.46, p = 0.18; Fig. 3d). For gamma band activity from the early encoding cluster only a marginally significant replay effect was found (100–500 ms; Supplementary Fig. 4a; Supplementary Note 5).

We also tested for replay of the entire sequence (i.e., the temporal evolution) of gamma band activity within the two encoding clusters showing stimulus-specific representations. Results were very similar to replay of activity from the individual encoding time windows during these clusters described above (Supplementary Note 6; Supplementary Fig. 5). We did not find any temporally compressed or expanded replay effects (Supplementary Note 9).

Next, we analyzed replay of gamma band activity from all encoding time windows (i.e., extending beyond the two clusters showing stimulus-specific representations). Replay was analyzed for all 200 ms time windows, overlapping by 100 ms, covering the entire 1200 ms period from the onset to the offset of stimulus presentation. Several encoding time windows showed higher replay levels for remote vs. recent items (100–200 ms, 500–700 ms, and 1100–1200 ms; Fig. 3e; all p < 0.035, cluster-corrected for multiple comparisons; surrogate data was generated by switching remote and recent labels). Reactivations of remote items were significantly larger than zero during the latter two time periods (500–700 ms: t(11) = 2.98, p = 0.013; 1100–1200 ms: t(11) = 2.84, p = 0.016; Fig. 3f) and in trend during the first time period.

Fig. 2 Identification of stimulus-specific activity patterns. a Two clusters showed stimulus-specific representations (i.e., higher correlations between encoding of one and retrieval of the same item as compared to encoding of one and retrieval of a different item) in the gamma range: an early cluster (100–500 ms, blue frame) and a late cluster (500–1200 ms, black frame). b Functional relevance of clusters showing stimulus-specific representations in panel a for memory. Higher similarity between encoding and retrieval of subsequently remembered than forgotten items in the late cluster, but not in the early cluster. Each colorful dot indicates one participant. Same colors indicate data from the same participant. Error bars, standard error of the mean; **p < 0.01 (paired t test)**

Fig. 3 Spontaneous replay during rest. a Schematic illustration of analysis procedure. Reactivation is quantified by correlating activity during each encoding event and each time period during the resting state. Each circle in the brain indicates one channel. The hotter the color of the circle, the higher the EEG power. b Higher replay of stimulus-specific activity from late encoding cluster (500–1200 ms) of remote vs. recent items. * indicates p < 0.05 (paired t test). Reactivation does not differ between remembered and forgotten remote items c or between waking state and nREM sleep d. e Encoding-time resolved replay during rest. Reactivation differs between remote and recent items in three time periods marked with *s in different colors after cluster-based correction for multiple comparisons (surrogate data was generated by switching remote and recent labels). f Averaged replay levels of all clusters depicted in e as compared to zero. Each colorful dot indicates one participant. Same colors indicate data from the same participant. Error bars, standard error of the mean; * indicates significant difference from zero (one sample t-test, p < 0.05)
Ripple-triggered replay of remote items during nREM sleep.

We first evaluated nREM sleep ripple-locked replay of activity from the early (100–500 ms) and late encoding cluster (500–1200 ms) for both remembered and forgotten items. We performed a 2 × 2 ANOVA with “cluster” and “memory” as repeated measures and found a significant interaction ($F(1,9) = 11.12, p = 0.0087$; Fig. 4c). Further analyses showed that replay of activity from the late cluster was higher than replay of activity from the early cluster for remembered items ($t(9) = 2.92, p = 0.017$), while the pattern was reversed for forgotten items ($t(9) = 2.04, p = 0.071$).

For subsequently remembered remote items, encoding activity from the late but not the early cluster was more replayed during ripple events than during the overall (averaged) peri-ripple periods (late cluster: $t(9) = 2.61, p = 0.028$; early cluster: $t(9) = 1.31, p = 0.22$). An ANOVA comparing replay of activity from the late cluster during ripple events and all ten peri-ripple periods yielded the same result ($F(10,90) = 3.94, p < 0.001$; Supplementary Fig. 8a). Post hoc t tests showed that late-cluster replay was higher during ripple events as compared to all individual peri-ripple time windows, except the two windows immediately following the ripple (Supplementary Fig. 8a). Late-cluster replay levels for remembered items during ripple events were significantly greater than zero ($t(9) = 2.75, p = 0.022$). Moreover, the replay level of the late cluster was higher than both randomly selected epochs of spontaneous replay (Supplementary Note 13) and replay locked to surrogate ripples (Supplementary Note 14).

For subsequently forgotten remote items, we observed a strikingly different pattern of results. Replay of activity from the late cluster did not differ between ripple events and peri-ripple periods ($t(9) = 1.40, p = 0.20$). Interestingly, though—and in contrast to the results for later remembered items—replay of activity from the early cluster was higher during ripple events than during peri-ripple periods ($t(9) = 2.73, p = 0.023$). An ANOVA comparing replay of activity from the early cluster during ripple events and all ten peri-ripple periods showed a similar effect ($F(10,90) = 4.99, p < 0.001$; Supplementary Fig. 8a). Post hoc t tests indicated that the replay level of the early activity from forgotten items was higher during ripple events compared to all individual peri-ripple time windows, except the two windows immediately following the ripple. Early cluster replay levels for forgotten items during ripple events were significantly greater than zero ($t(9) = 3.29, p = 0.009$). The replay level of the early cluster was higher than both randomly selected epochs of spontaneous replay (Supplementary Note 13) and replay locked to surrogate ripples (Supplementary Note 14).

Analogous to the analysis of spontaneous replay, we also compared replay during ripple events and peri-ripple periods separately for all individual encoding time windows for both remembered and forgotten items. Encoding-related activity between 700 and 800 ms was significantly more replayed during ripple events vs. peri-ripple periods for subsequently remembered remote items ($p = 0.041$, cluster-corrected for multiple comparisons). When comparing remembered and forgotten items, encoding activity from the early but not the late cluster was more replayed during ripple events than during the overall (averaged) peri-ripple periods (early cluster: $t(9) = 2.59, p = 0.025$; late cluster: $t(9) = 3.42, p = 0.0076$; Supplementary Fig. 4d, e, right panels). These findings are thus consistent with the results of the analysis focusing on the late encoding cluster and show that stimulus-specific activity occurring relatively late after stimulus presentation is spontaneously reactivated during subsequent rest periods.

Is spontaneous replay of gamma band activity related to subsequent memory? We did not find different replay levels when comparing remembered and forgotten remote items, for either the late (500–1200 ms; Fig. 3c) or the early (100–500 ms; Supplementary Fig. 4a) encoding cluster (both $t(11) < 0.63$, both $p > 0.55$).

In the epsilon band, we did not find any evidence for replay, either for activity during the two clusters showing stimulus-specific epsilon band activity during encoding (300–700 ms and 500–900 ms; Supplementary Note 7; Supplementary Fig. 4b–c) or for activity sequences during each cluster (Supplementary Note 8; Supplementary Fig. 5d–e). Replay levels did not differ between remembered and forgotten items for either encoding cluster (both $t(11) < 0.20$, both $p > 0.85$; Supplementary Fig. 4b–c; Supplementary Fig. 5d–e).

Together, these results provide an electrophysiological basis for previous fMRI findings showing replay of stimulus-specific activity. More specifically, they show that spontaneous replay is predominantly related to gamma band activity occurring relatively late (>500 ms) after stimulus presentation. In line with previous fMRI studies on replay, similar replay levels across the entire rest period, excluding a short period right after stimulus presentation, were observed during encoding and rest (Supplementary Fig. 6d and Supplementary Note 12).

Ripple-triggered replay. Our data reported so far demonstrate that items presented before the rest period ("remote") are replayed more often than control items presented afterwards ("recent"). We next scrutinized replay of remote items in temporal relationship to hippocampal ripple oscillations, focusing on stimulus-specific activity in the gamma frequency range that showed spontaneous replay. We extracted hippocampal ripples based on previously established criteria (Methods; Fig. 4a, b and Supplementary Fig. 7). The incidence of ripples (mean ± SD: 3.04 ± 0.70 events per minute) was comparable to previous reports. The number of ripple events did not differ between waking state and nREM sleep ($t(11) = 1.37; p = 0.20$). Figure 4d displays ripple-triggered replay levels of gamma band activity during encoding, which we compared to replay during various “peri-ripple periods”, i.e., time intervals before and after ripples (Methods; Fig. 4c). We found that during nREM sleep but not during waking state, replay was enhanced during ripple events as compared to peri-ripple periods (Fig. 4d and Supplementary Fig. 8c). In addition, the ripple-locked replay level of remote items was higher than the ripple-locked replay level of recent items for both the early and late cluster during nREM sleep (both $t(9) > 2.19$, both $p < 0.016$). This was not the case during waking state (both $t(11) < 0.81$, both $p > 0.43$).

(100–200 ms: $t(11) = 2.14, p = 0.056$). We also separately compared replay levels of remote and recent items during different stages of vigilance (waking state and nREM sleep) for all encoding time windows. During waking state and nREM sleep, replay levels of remote items were higher than those of recent items for late windows (waking stage, 1000–1200 ms; $p = 0.022$; nREM sleep, 500–700 ms; $p = 0.021$; p values were corrected for multiple comparisons; surrogate data was generated by switching remote and recent labels; Supplementary Fig. 4d, e, left panels). Replay levels of remote items were consistently larger than zero in both clusters (waking state: $t(11) = 2.59, p = 0.025$; nREM sleep: $t(9) = 3.42, p = 0.0076$; Supplementary Fig. 4d, e, left panels). These findings are thus consistent with the results of the analysis focusing on the late encoding cluster and show that stimulus-specific activity occurring relatively late after stimulus presentation is spontaneously reactivated during subsequent rest periods.

Is spontaneous replay of gamma band activity related to subsequent memory? We did not find different replay levels when comparing remembered and forgotten remote items, for either the late (500–1200 ms; Fig. 3c) or the early (100–500 ms; Supplementary Fig. 4a) encoding cluster (both $t(11) < 0.63$, both $p > 0.55$).

In the epsilon band, we did not find any evidence for replay, either for activity during the two clusters showing stimulus-specific epsilon band activity during encoding (300–700 ms and 500–900 ms; Supplementary Note 7; Supplementary Fig. 4b–c) or for activity sequences during each cluster (Supplementary Note 8; Supplementary Fig. 5d–e). Replay levels did not differ between remembered and forgotten items for either encoding cluster (both $t(11) < 0.20$, both $p > 0.85$; Supplementary Fig. 4b–c; Supplementary Fig. 5d–e).

Together, these results provide an electrophysiological basis for previous fMRI findings showing replay of stimulus-specific activity. More specifically, they show that spontaneous replay is predominantly related to gamma band activity occurring relatively late (>500 ms) after stimulus presentation. In line with previous fMRI studies on replay, similar replay levels were observed during waking state and nREM sleep.

Control analyses ruled out that replay was related to the overall power of 30–90 Hz activity during encoding of an item (Supplementary Fig. 6a–b; Supplementary Note 10) or during the rest period (Supplementary Fig. 6c; Supplementary Note 11). Numerically, replay levels were even higher when resting gamma power was low, as shown by negative correlation coefficients between replay levels and resting gamma power ($r = −0.14 ± 0.30$; mean ± SD), but correlations were not consistently different from zero ($t(11) = −1.61, p = 0.14$). Remote items showed similar replay levels across the entire rest period, excluding a possible bias caused by temporal correlations between brain activity during encoding and rest (Supplementary Fig. 6d and Supplementary Note 12).
comparisons; Supplementary Fig. 8b) during nREM sleep. We did not find any other effects either for forgotten items during nREM sleep or for remembered or forgotten items during waking state.

Finally, we also directly compared replay levels of remembered and forgotten remote items within all individual encoding time windows. The replay level of activity from a late encoding time period (1100–1200 ms) was higher for remembered than forgotten items ($p = 0.014$, cluster-corrected for multiple comparisons; Fig. 4f), supporting the relevance of ripple-triggered replay of late encoding activity during nREM sleep for memory consolidation.

Control analyses for ripple-triggered replay. During waking state, results were clearly different (Fig. 4d, right column): Replay of activity from the early and the late cluster did not differ between ripple events and peri-ripple periods, either for remembered or forgotten remote items (Supplementary Note 15).
Replay levels of recent items did not differ between ripple events and peri-ripple periods during either nREM sleep or waking state (Supplementary Fig. 8c and Supplementary Note 16).

Control analyses ruled out that the observed higher replay level of stimulus-specific gamma band activity during ripple events compared with peri-ripple periods during nREM sleep was driven by power differences in either the ripple (80–100 Hz) or the gamma (30–90 Hz) frequency bands (Supplementary Notes 17–18). After matching the ripple power between nREM sleep and waking state, the ripple-triggered replay effect was still restricted to nREM sleep (Supplementary Note 17). We also did not find any relation between gamma power and ripple-locked replay levels (Supplementary Note 18), which is consistent with our findings on spontaneous replay.

Discussion

Our results provide direct electrophysiological evidence for replay of stimulus-specific neural representations in humans. They show that replay is related to hippocampal ripples, and that ripple-triggered replay occurs specifically during nREM sleep. These data are conceptually consistent with previous findings of replay during ripples in rodents. Unlike the single-cell results in rodents, however, stimulus-specific representations were analyzed on a network level. The relationship between stimulus-specific representations at the level of single units and in large-scale brain networks remains to be addressed in future studies in both animals and humans.

Notably, in the rodent literature, researchers typically record activities from a control sleep period before the task. However, in humans a bias between the first and the second sleep period may occur because of the typical physiological adaptations to sleep laboratory conditions. In addition, we did not want to overstrain the patients by fixing polysomnography electrodes two times. On the other hand, two sleep periods back in back with a learning session in between was logistically not possible because we used an experimental design with an afternoon nap, and patients would not have been able to sleep both before and after the experiment. Instead of a control nap before the experiment to which replay during the experimental nap would be compared, we presented stimuli both before and after the nap and compared replay of remote and recent items. The presentation of stimuli both before and after the sleep period optimally balances temporal distances and thereby prevents any possible problems related to temporal autocorrelations. Further studies are required to assess the difference between those two different experimental settings.

Consistent with previous results, stimulus-specific representations were found predominantly in the gamma frequency range. Previous studies combining electrophysiological recordings with fMRI in monkey visual cortex reported a positive relation between gamma power during ripple events and ripple time before and after. Thus, it may appear surprising that we found slightly negative correlations between replay scores and gamma power during rest. Even though this relationship was not significant (and is therefore difficult to interpret), it is reminiscent of a previous finding from our group that encoding-retrieval similarity during viewing of movies is negatively related to gamma power during retrieval in a significant subset of electrodes. This was particularly the case for “informative” electrodes, i.e., those electrodes which contributed to global representations (based on a jackknife procedure; see ref. 30). Our interpretation for this effect is that high levels of gamma power in the positively contributing (”informative”) electrodes obscure item-specific spatial patterns and thereby reduce reinstatement of information from encoding. However, more studies are necessary to elucidate the relationship between the magnitude of neural activity measured at various different levels of brain organization (from spike rates to local field potentials and frequency-resolved iEEG data to BOLD responses) to the representation of stimulus-specific information.

Interestingly, only stimulus-specific activity relatively late post stimulus (500–1200 ms) was related to subsequent memory, but not stimulus-specific activity from an earlier cluster (100–500 ms, Fig. 2a). The functional relevance of the later encoding time window is in line with a recent study showing memory-selective neurons responding around 550 ms after stimulus onset. We interpret this result in a levels of processing framework and suggest that activity related to “deeper”, more semantic processing stages needs to reoccur during retrieval to support item recognition, while reoccurrence of stimulus-specific activity from a “superficial”, more perceptual processing step is not beneficial. This assumption is supported by findings showing that electrodes located in fusiform and inferior temporal lobe are more involved in stimulus-specific representations of early encoding activities while the medial temporal lobe (MTL) seems to be more engaged during representations of late encoding activity. Regions contributing to the early encoding cluster were substantially overlapping with the ventral visual system that is predominantly relevant for processing perceptual information, while the MTL is a key region for high level information processing and memory.

Similarly, only ripple-triggered replay of activity from the late but not the early cluster during nREM sleep supported later memory, suggesting similar benefits of deep representations during ripple-triggered replay.

Contrary to the parsimonious idea that remembered items are replayed while forgotten items are not, we found that the encoding traces of both remembered and forgotten items are spontaneously replayed during the post-encoding rest periods (Fig. 3). We did not find any difference in spontaneous replay levels between remembered and forgotten items. These data suggest that aspects of both remembered and forgotten items are replayed to some extent. However, replay patterns differed between remembered and forgotten items when replay was specifically evaluated triggered to ripples (Fig. 4). For remembered
items, ripple-triggered replay mainly concerned brain patterns from late encoding periods; for forgotten items, neural activity from early encoding time periods was replayed. These results may account for findings that information which only undergoes superficial, but not deep processing cannot be explicitly remembered. This information may still be accessible in implicit memory tests, although the relevance of replay for implicit memory needs to be studied further. Previous studies investigating replay of stimulus-specific activity via fMRI observed higher replay of remembered than forgotten items14,15; however, due to the relatively low temporal resolution of fMRI recordings, these studies could not distinguish between activities from different processing steps during encoding.

A previous iEEG study investigated replay of distributed sequences of high-gamma activity during sleep42. This study reported that replay could indeed be detected (i.e., it was enhanced during sleep periods following as compared to preceding the initial occurrence of these sequences) and that it was related to the timing of several sleep graphoelements including sleep spindles and hippocampal ripples. However, this previous study extracted activity sequences across waking periods characterized by various everyday activity and cognitive experiments, but not locked to specific events. By contrast, we identified stimulus-specific neural representations during a recognition memory task. This allowed us not only to track the re-occurrence of neural activity patterns across multiple processing stages of individual events, but also to relate replay to later memory of individual items and thereby to clarify the functional relevance of replay for memory consolidation.

Another related study43 provided evidence that local field potential responses recorded via tetrodes in rat parietal cortex are tuned to specific egocentric movements (specifically, to specific combinations of angular and linear velocity), that these responses are reactivated during post-expiration sleep periods and that reactivation is linked to hippocampal ripples. These results demonstrate that replay does not only occur at the level of single cells but also on a population level, conceptually similar to the results reported in our current study. This study differs from our study not only in terms of methodology (rats vs. humans, distributed iEEG representations vs. “modules” in parietal cortex, assessment of reactivation etc.), but also with regard to the fact that our design allowed us to assess the functional relevance of reactivation for subsequent memory. Nevertheless, we feel that the studies by Jiang et al.42 and Wilber et al.43 (and the results presented here) constitute an important step towards an integration of animal and human research, which should be followed by future investigations in both rodents and humans with parallel experimental designs, recording methodology and analysis methods.

Our study provides first evidence for a differential contribution of spontaneous and ripple-triggered replay to memory consolidation of stimulus-specific representations in humans. These data may explain an apparent paradox of previous studies providing evidence for consolidation-related replay during waking rest14,15, despite the well-documented beneficial role of sleep for memory consolidation18–21. Our data show pronounced differences of ripple-triggered replay during waking rest and nREM sleep, suggesting ripple-triggered replay as a mechanism to account for the beneficial role of sleep for memory.

Methods

Epilepsy patients. Twelve epilepsy patients (8 female; mean age ± standard deviation (SD): 37.9 ± 9.6) participated in the study. No seizure occurred during the test session or during rest. All patients were implanted with invasive EEG electrodes for diagnostic purpose. Medial temporal depth electrodes (AD-Tech, Racine, WI, USA) with ten cylindrical platinum-iridium (diameter: 1.3 mm) contacts were implanted in all patients. Moreover, subdural grid and strip electrocorticography (ECoG) electrodes with stainless-steel contacts (diameter: 4 mm) were implanted in the frontal, temporal, and parietal lobes of several patients. Two different electrodes were ipsilateral to the seizure onset zone. In addition, we excluded contralateral electrodes if they were severely contaminated by epileptiform activity. See Supplementary Fig. 1 for an overview of all remaining implanted electrode contacts that were used for final analyses. Recordings were performed using a Stellate recording system (Stellate GmbH, Munich, Germany) at the Department of Epileptology, University of Bonn, Germany. The study was conducted according to the latest version of the Declaration of Helsinki and approved by the ethics committee of the Medical Faculty of the University of Bonn, and all patients provided written informed consent.

Experimental design. The experimental paradigm is depicted in Fig. 1a. The experiment consisted of two consecutive days, a “nap day” and a “no-nap day”. On the day with a nap, the sequence of the day with and the day without nap was counterbalanced across patients. Continuous EEG data were recorded from the depth and ECoG electrodes during remote encoding, recent encoding, retrieval, and nap periods. A design with a nap day and a day without nap was chosen to investigate the role of an afternoon nap on memory consolidation. Results from this original study in a smaller group of patients than the current study have been reported in previous papers14,44. We provided written informed consent. We accounted for the beneﬁcial role of sleep for memory.

Time-frequency transformation was performed in each EEG trial using complex spectro-temporal decomposition. EEG trials were visually inspected for artifacts (e.g., epileptiform spikes), and trials with artifacts were excluded from further analyses, resulting in exclusion of 14.22 ± 13.05% (mean ± SD) of all trials. Time-frequency transformation was performed in each EEG trial using complex Morlet wavelet transformation (seven cycles), and power values were extracted. Only data from 100 ms before the onset of each picture to 100 ms after the offset of that picture was kept for further analyses (1.4 s for each trial). We transformed the EEG power data within each frequency and each channel (i.e., we normalized the power data by first subtracting the average value and then dividing by the standard deviation across all trials). Further data analyses were based on normalized data. Each trial was divided into 13 time windows of 200 ms, overlapping by 100 ms (~100 to 100 ms; 0–200 ms; …; 1100–1300 ms). Then, we averaged the EEG power within each time window and frequency band of interest (gamma, 30–90 Hz; epsilon, 90–150 Hz; Supplementary Fig. 2a.b; Supplementary Note 2)28.

Stimulus-specific brain patterns were identified by RSA. (ref. 17; Fig. 1c), using a simple statistical model, as in previous studies29,30. In the statistical model, we combined activity during remembered and forgotten items from both experimental days. First, we calculated a non-parametric Spearman’s correlation
between encoding of a picture (n pictures after artifact rejection, with n = 320, which is the total number of pictures during the remote and recent sessions across both days) and retrieval of either the same picture (RSA_total) or a different picture (RSA_diff). Correlations were calculated across electrodes, separately for each time window during encoding and each time window during retrieval. For each frequency band and patient, this yielded a \(t \times \text{timesencoding} \times \text{timesretrieval} \times \text{N} \times (n – 1) \) matrix of RSA_diff values. Second, the Fisher-Z transformed correlation matrices were averaged across trials for both RSA_total and RSA_diff, separately for each frequency band and patient. This generated two \(13 \times (\text{timesencoding} \times \text{timesretrieval}) \) similarity matrices—one for RSA_total and one for RSA_diff—for each frequency band and patient. Third, we compared RSA_total and RSA_diff matrices using paired \(t \) tests across patients within each \(\text{timesencoding} \times \text{timesretrieval} \) bin and each frequency band. Fourth, we also compared RSA_total values against 0 using a one sample \(t \) test against 0 using a one sample \(t \) test across patients within each \(\text{timesencoding} \times \text{timesretrieval} \) and each frequency band. This was done to ensure that RSA_total values were reliably larger than zero.

For each frequency band, these values were corrected for multiple comparisons using surrogate-based cluster statistics \(^{46} \) (for a similar procedure, see ref. \(^ {45} \)). First, we extracted cluster values from the empirical data (i.e., based on the actual difference between RSA_total and RSA_diff matrices and between RSA_total and 0). We thresholded the \(t \) value of each \(\text{timesencoding} \times \text{timesretrieval} \) bin such that only time bins with \(t \) values corresponding to \(p \) values smaller than 0.01 in both comparisons were taken into account. Time bins with shared edges were defined as belonging to the same cluster. \(T \) values (RSA_total vs. RSA_diff) of all contiguous clusters above the threshold \(p = 0.01 \) were summed up. These averaged cluster values were compared to a distribution of surrogate clusters. To obtain these surrogate clusters, we randomly shuffled trial labels (within each patient and frequency band) and performed the same RSA procedure as described above. We extracted cluster values from the surrogate matrices and selected the cluster with the largest \(T \) value (RSA_total vs. RSA_diff) for each surrogate. This procedure was repeated 10,000 times and produced 10,000 surrogate clusters (if no cluster was found in one of the surrogates, a cluster value of 0 was assumed for this surrogate). Then, we ranked each empirical cluster within the distribution of all surrogate clusters. Clusters with \(T \) values larger than 99% (alpha level \(= 0.01 \)) of all surrogate \(T \) clusters were selected. The cluster-based surrogate method effectively controls the alpha level for multiple comparisons on an assumption-free basis regarding the sampling distribution under the null hypothesis \(^ {46} \). As this analysis was done independently in each frequency band, we additionally Bonferroni-corrected the resulting rank statistics for the two different frequency bands. We also utilized another method to extract surrogate clusters in which we randomly switched condition labels between RSA_total and RSA_diff, at the subject level (i.e., across trial averages). This method generated the same results (i.e., \(p < 0.001 \)).

Next, we compared encoding-retrieval similarity of remembered and forgotten items. In the cluster resulting from the analysis above (i.e., showing significantly higher RSA_total than RSA_diff values regardless of memory), we extracted RSA_total values for remembered and forgotten items, and averaged them separately. This yielded one RSA_total value for all remembered items and one for all forgotten items per patient, which were then compared by a paired \(t \) test across patients.

Brain regions supporting stimulus-specific representations. We conducted a jackknife analysis to evaluate the contribution of different brain regions to stimulus-specific representations within the temporal clusters obtained from the analysis above. This was done separately for each electrode (i.e., at the single subject level) because of the different implantation schemes across patients. First, we calculated the overall representational similarity indices of each cluster by averaging Fisher-Z transformed correlation values across all time bins within each cluster for each stimulus (RSA_total). Second, we calculated the correlation between encoding and retrieval by leaving one electrode out (\(E(i) \)). Again, we calculated the representational similarity indices of \(E(i) \) by averaging Fisher-Z transformed correlation values across all bins within each cluster for each stimulus (RSA_total). We calculated the contribution of each electrode by performing a paired \(t \) test between RSA_total and RSA_diff across all stimuli. The higher the difference between RSA_total and RSA_diff, the higher was the contribution of \(E(i) \).

Analysis of spontaneous replay during rest. Patients had on average 1 h and 16 ± 20 min (mean ± SD) of rest. Sleep staging was performed according to the criteria of the American Academy of Sleep Medicine \(^ {47} \) for non-overlapping time windows of 20 s. Across the group of 12 patients, two did not fall asleep during the rest period; ten reached shallow sleep stages (sleep stages N1 and N2); seven reached deep sleep (sleep stages N3, besides N1 and N2); and five had an improvement sleep (REM). The percentage of time that patients spent at the different sleep stages is shown in Supplementary Fig. 3. The EEG data during rest was visually inspected for artifacts (e.g., epileptiform spikes), and periods from 2 s before to 2 s after each artifact window were excluded from further analyses. This resulted in a total of 10,000 time windows (N = 5 for each band) of \(500 \)–\(900 \) ms) showing high memory-related activity. To avoid introducing biases in the analysis described above: Eight time windows centered at time points from 500 to 1200 ms post stimulus (400–600 ms; 500–700 ms; 1100–1300 ms) in the gamma frequency range (30–90 Hz) were used (Fig. 2a). Correlations with activity during rest were calculated separately for each remote item (presented before the nap) and each recent item (shown after the nap). We segmented the normalized EEG data during rest into small windows again each lasting 200 ms, overlapping by 100 ms, and averaged EEG gamma (30–90 Hz) power within each window and channel. This resulted in a specific brain pattern across channels of each rest window. Next, we calculated a Spearman’s correlation between the brain pattern of each of the selected encoding time windows of each picture and the brain pattern of each rest window across channels. Spontaneous replay was quantified by averaging all Fisher-Z transformed correlation coefficients across all rest windows, all stimulus-specific time windows and all items, separately for the remote and the recent condition. Finally, we performed a paired \(t \) test between replay of items shown before the nap (remote) and those shown after the nap (recent) across patients.

In addition, we extracted encoding activity and time windows showing stimulus-specific representations that were not related to subsequent memory: the five gamma power time windows centered at time points from 100 to 500 ms post stimulus, and one 500–600 ms; 500–700 ms; 1100–1300 ms second time windows centered at time points from 300 to 700 ms post stimulus and five epsilon power time windows centered at time points from 500 to 900 ms post stimulus. These results are reported in the Supplementary Notes 5 and 7.

We also investigated the spontaneous replay of the sequence—i.e., the temporal evolution of activities within each rest window (500–1200 ms) of gamma band activity showing subsequent memory-related stimulus-specific representations during encoding. This was calculated as indicated in Supplementary Fig. 5a: First, we extracted the power time courses in the gamma frequency range (30–90 Hz) within the late encoding time windows (500–1200 ms; 701 data points) and concatenated them across all electrodes. This resulted in a vector with the length of \(701 \times n \) (\(n \) is the number of electrodes) (\(V_{\text{encoding}} \)). We generated a series of \(V_{\text{rest}} \) patterns by shifting them in steps of 1 ms. Third, we calculated the correlation between \(V_{\text{encoding}} \) of each item and each of the \(V_{\text{rest}} \) patterns using Spearman’s correlations and Fisher-Z transformed the resulting correlation values. Spontaneous replay was defined as the averaged correlation values, separately for remote and recent items. Finally, we performed a paired \(t \) test between replay of remote and recent items across patients. We also conducted the corresponding analyses to activity from the early encoding cluster (100–500 ms) for the gamma frequency range, and two clusters (300–700 and 500–900 ms) for the epsilon frequency range. The results are reported in the Supplementary Notes 6, 8 and in Supplementary Fig. 5b. For an increasing-time resolved replay we calculated the normalized EEG power of each encoding time window (from 0 to 1200 ms) with each rest window separately for the gamma range and the epsilon range. Fisher-Z transformed correlations were averaged across all rest windows and items, separately for each encoding time window of the remote and recent condition. Finally, we performed a paired \(t \) test between the remote and recent condition at each encoding time window across patients within each frequency range. Results were corrected for multiple comparisons (the individual encoding time windows) using an analogous cluster-based procedure as for the analysis of encoding-retrieval similarity. In detail, we first thresholded the \(t \) value of each encoding time bin such that only time bins with \(t \) values corresponding to \(p \) values smaller than 0.05 were taken into account. Adjacent time bins were defined as belonging to the same cluster. \(T \) values of each contiguous cluster were summed up. These empirical cluster values were compared to a distribution of surrogate clusters to correct for multiple comparisons. Surrogate data were generated by randomly switching condition labels (remote vs. recent) and performing the same paired \(t \) test as applied to the empirical data. We extracted clusters from these surrogate matrices and selected the cluster with the largest \(T \) value for each surrogate. This surrogate procedure was repeated 10,000 times and produced 10,000 surrogate clusters (if no cluster was found in one of the surrogates, a cluster value of 0 was assumed for this surrogate). Then, we ranked each empirical cluster within the distribution of all surrogate clusters.

Analysis of ripple-triggered replay during rest. Ripples were extracted using a two-step procedure. The first step consisted of a combined manual and automatic artifact detection to reject epilepsy-related high-frequency events. The second step involved the ripple data. First, we established their topographic map and performed a scalp electrode contact with the least epileptic contamination by visual inspection in each patient and manually rejected larger artifacts (e.g., epileptiform spikes). Automatic
artifact detection was then performed on artifact-free (by visual inspection) data from the hippocampal channel of each patient using a similar procedure as in ref. 25. We extracted scores of the EEG amplitude, of its gradient, and of the EEG amplitude after applying a 250 Hz highpass filter. A time bin was defined as containing artifacts if any of these three indices had a z-score larger than 5, or if any two of these three indices had z-scores larger than 3.

Ripple events were extracted using exactly the same procedure as in a previous study.26 First, resting EEG data from the selected hippocampal channel were bandpass filtered at the frequency of human ripples (80–100 Hz; we also calculated the 80–140 Hz bands as ripples26,27, and found 94.6 ± 4.4% of 80–140 Hz ripples were identified as 80–100 Hz ripples), excluding periods with artifacts (both visually and automatically detected artifacts). Second, the root mean square (RMS) signal was calculated by averaging the filtered EEG data using a moving average of 20 ms. Epochs with RMS values ranking higher than 99% within the RMS values of the entire rest period (including both, nREM sleep and waking state) and lasting more than 38 ms (around three cycles at the lowest ripple frequency of 80 Hz) were marked. Following ref. 26, we only included events that showed at least three peaks or troughs in the unfiltered raw data. These periods together with activity 10 ms before and afterwards (to take temporal smearing of ripple power into account) were defined as “ripple events” (Fig. 4c).

Next, we analyzed replay during ripples and peri-ripple events, using an analogous procedure as for the analysis of spontaneous replay (Fig. 4c). This analysis was conducted separately for ripples occurring during nREM sleep and waking state (Supplementary Note 13). Because only 5 out of 12 patients reached REM sleep and because of the overall short duration of that sleep stage (Supplementary Fig. 3a), we did not analyze ripple-related replay during REM sleep.

First, we extracted the EEG power from ten overlapping 200 ms time windows surrounding each ripple event in the frequency range where stimulus-specific activity had been found (gamma band, across all these extracted time periods in each channel and each patient). For this, we then averaged across all frequencies. We extracted five time windows of 200 ms, overlapping by 100 ms, before and after ripple events, and defined them as “peri-ripple periods” (before ripples: −400 ms with regard to the beginning of the ripple events to −400 ms before; −500 ms to −300 ms; ...; −200 ms to the beginning of the ripple event; after ripples: from the end of the ripple event to 200 ms afterwards: 100 ms to 300 ms; ...; 400 ms to 600 ms; see Fig. 4c). Furthermore, EEG power in the gamma range (30–90 Hz) was extracted during the ripple events. Second, we calculated the Spearman’s correlation between brain patterns of each encoding time window of each item and brain patterns of the ripple event and each peri-ripple period (one correlation with activity during the “ripple event”, and ten correlations with time windows during the “peri-ripple period”).

Analogous to the analysis of spontaneous replay, data were analyzed by both averaging the (Fisher-Z transformed) correlations during the late (500–1200 ms) and early (300–500 ms) encoding clusters showing stimulus-specific representations, and separately for all encoding time windows (0–1200 ms) in the gamma band. For comparison, the same analysis was then conducted for later forgotten remote items, as well as later remembered and forgotten recent items (Supplementary Note 14).

For both the late and the early encoding cluster in the gamma band, we performed a paired t test between replay levels during ripple events and the averaged replay levels across all peri-ripple periods. Whenever the replay level differed between ripple events and overall peri-ripple periods, we performed an ANOVA and (when significant) post hoc t tests to test if indeed replay during each individual time window of the peri-ripple period differed from replay during the ripples.

For the individual analysis of all encoding time windows (0–1200 ms), we again compared replay levels during ripple events and averaged replay levels across all peri-ripple periods. Results were corrected for multiple comparisons (the individual encoding time windows) using an analogous cluster-based procedure as described above. Some data was generated by randomly switching condition labels (ripple events vs. peri-ripple periods).

Data availability
All relevant data are available from the authors upon reasonable request, including the EEG data, behavioral log files, pre-implantation MRI, post-implantation MRI, and MATLAB scripts. Patients’ private identifications are all anonymized.
34. Watrous, A. J., Fell, J., Ekstrom, A. D. & Axmacher, N. More than spikes: common oscillatory mechanisms for content specific neural representations during perception and memory. Curr. Opin. Neurobiol. 31, 33–39 (2015).

35. Skaggs, W. E. & McNaughton, B. L. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271, 1870–1873 (1996).

36. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

37. Rutishauser, U., Aflalo, T., Rosario, E. R., Pouratian, N. & Andersen, R. A. Single-neuron representation of memory strength and recognition confidence in left human posterior parietal cortex. Neuron 97, 209–220 (2018).

38. Craik, F. I. M. & Lockhart, R. S. Levels of processing—framework for memory research. J. Verb. Learn. Verb. Behav. 11, 671–684 (1972).

39. Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

40. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

41. Voss, J. L. & Paller, K. A. Brain substrates of implicit and explicit memory: the importance of concurrently acquired neural signals of both memory types. Neuropsychologia 46, 3021–3029 (2008).

42. Jiang, X. et al. Replay of large-scale spatio-temporal patterns from waking during subsequent NREM sleep in human cortex. Sci. Rep. 7, 17380 (2017).

43. Wilber, A. A., Skelin, I., Wu, W. & McNaughton, B. L. Laminar organization of encoding and memory reactivation in the parietal cortex. Neuron 95, 1406–1419 (2017).

44. Axmacher, N., Haupt, S., Fernandez, G., Elger, C. E. & Fell, J. The role of sleep in declarative memory consolidation—direct evidence by intracranial EEG. Cereb. Cortex 18, 500–507 (2008).

45. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J. M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011).

46. Maris, E. & Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164, 177–190 (2007).

47. Iber, C., Ancoli-Israel, S., Chesson, A., Quan, S. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications 1st edn (American Academy of Sleep Medicine, 2007).

Acknowledgements
H.Z. was supported by SFB 874. J.F. was funded via SFB 1089 and DFG grant FE366/9-1. N.A. received support via DFG (SFB 1280/A02, A03, F02; SFB 874/A11, B11; and project AX82/3).

Author contributions
H.Z., J.F. and N.A. designed the experiment. H.Z. analyzed the data. H.Z. and N.A. wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-06553-y.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018