Emerging WS$_2$/montmorillonite composite nanosheets as an efficient hydrophilic photocatalyst for aqueous phase reactions

Kang Peng1, Hongjie Wang1*, Xiaoyu Li2, Jianwei Wang1, Zhixin Cai1, Lei Su1 & Xingyu Fan1

Tungsten disulfide (WS$_2$) as one of transition metal dichalcogenides exhibits excellent catalytic activity. However, its catalytic performances in aqueous phase reactions are limited by its hydrophobicity. Here, the natural hydrophilic two-dimensional clay was used to enhance the dispersibility of WS$_2$ in aqueous phase. WS$_2$/montmorillonite (WS$_2$/MMT) composite nanosheets were prepared via hydrothermal synthesis of WS$_2$ on the surface of montmorillonite from WCl$_6$ and CH$_3$CSNH$_2$. The microstructure and morphology show that WS$_2$ nanosheets are assembled parallelly on the montmorillonite with the interface interaction. Through the support of montmorillonite, WS$_2$/MMT possesses higher photocatalytic ability for aqueous phase reactions than WS$_2$, which could be due to the synergistic effect of higher adsorption property, higher hydrophilicity, dispersibility and more catalytic reaction site. The strategy could provide new ideas for obtaining novel hydrophilic photocatalyst with excellent performance.

Since the discovery of graphene, two dimensional (2D) materials have pioneered a new field for nanomaterials. Due to their specific structure and unconventional physicochemical property, 2D nanomaterials have received world-wide of attention for energy storage and conversion11, electronics2 and catalysis3,4. In addition to graphene, many novel 2D nanomaterials have been found and researched heavily in recent years5, such as transition metal dichalcogenide (TMD)6,7, layered double hydroxides (LDHs)8 and graphene analogues9,10. Various 2D composite nanosheets were designed and fabricated via multifarious methods11, which exhibit exceptional properties and play important roles in many high-tech fields.

Recently, TMD has attracted a lot of attention due to peculiar electrical and optical characteristics and intrinsic semiconducting properties12. Interestingly, their electronic band gap transform into direct band gap from indirect band gap, with thickness decreasing to monolayer or few layers from bulk13. Tungsten disulfide (WS$_2$) with sandwich structure is a kind of TMD composed of multilayered nanosheets14,15. WS$_2$ sheets possess high absorption for the visible light and excellent photocatalytic activity16, which could be used in hydrogen evolution17, degradation of dyes18 and reduction of nitrophenol19. The photocatalytic ability of WS$_2$ nanosheets might mainly originate from unsaturated atoms on the surfaces and edges20,21. It is reported that the theoretical conduction band and valance band of WS$_2$ are -0.06 and 2.27 eV22, and WS$_2$ has photocatalytic hydrogen production performance23. Conventional methods to obtain few-layered WS$_2$ sheets include mechanical exfoliation and chemical vapor deposition. Hydrothermal synthesis using precursor of sodium molybdate could obtain fullerene-like WS$_2$ nanoparticles, 1D nanotubes and rods, but 2D nanosheets is hard to get in this way. Jieun Yang and co-workers23 first report the synthesis of WS$_2$/graphene nanosheets by hydrothermal method from tungsten chloride at 265 °C. The WS$_2$ nanosheets easily aggregate to reduce catalytic activity, and assembling them on the support materials is one of effective solutions. WS$_2$ and most WS$_2$ composites are hydrophobicity and poor dispersibility in aqueous phase. Therefore, design of hydrophilic WS$_2$ composites is significant for their catalytic ability in aqueous phase.

Montmorillonite (MMT) is one of natural sheet-like clay mineral with excellent hydrophobicity. Its layer structure consists of a central Al-O octahedral sheet and two Si-O tetrahedral sheets, and the unit layer stacks with cation in the interlayer. MMT possesses large special surface area, excellent adsorptive capacity and hydrophobicity, which make it a promising material for pollutants adsorption, catalyst supports$^{24-27}$, wastewater treatment28,29.

1State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049, China. 2School of Materials Science and Engineering, Chang’an University, Xi’an, 710064, China. *email: hjwang@xjtu.edu.cn
energy storage matrix30,31 and drug delivery systems32. Based on the special structure and property of MMT, hydrophilic composite nanosheets might be constructed through MMT supporting WS\(_2\) nanosheets, which could be used as an efficient photocatalyst for aqueous phase reactions. Hazardous wastewaters with organic dye are greatly harmful to the environment33–37. Photocatalysis technology is a potential approach to treat these waste waters38, and design of the efficient photocatalyst is one of the key procedures39,40.

Herein, we first designed and prepared the WS\(_2\)/montmorillonite (WS\(_2\)/MMT) composite nanosheets as a hydrophilic photocatalyst for aqueous phase reactions. WS\(_2\)/MMT was successfully fabricated through facile in-situ hydrothermal synthesis of WS\(_2\) on MMT. The microstructure and morphology were characterized, and the photocatalytic ability for aqueous phase reactions was evaluated by degradation of organic dye. The effect of MMT on catalytic ability was studied, and the possible catalysis mechanism for photocatalytic degradation of RhB were explored and illustrated in detail.

Results

As schematically depicted in Fig. 1, the WS\(_2\)/montmorillonite (WS\(_2\)/MMT) composite nanosheets were hydrothermally synthesized with tungsten chloride and thioacetamide at 220\(^\circ\)C for 24 h. Firstly, the montmorillonite (MMT) was added in water solution of WCl\(_6\) and CH\(_3\)CSNH\(_2\). The surface of MMT is negatively charged for the Si\(^{4+}\) lattice replaced by Al\(^{3+}\). Conventional tungstate precursors such as Na\(_2\)WO\(_4\) and (NH\(_4\))\(_{10}\)W\(_{12}\)O\(_{41}\) are unable to adsorb on of MMT. Therefore, WCl\(_6\) was employed as a precursor of tungsten, and W\(^{6+}\) was adsorbed on MMT by electrostatic interaction. In hydrothermal conditions, the thioacetamide was pyrolyzed and released H\(_2\)S, and WCl\(_6\) was reduced to form WS\(_2\) by sulfurization. Finally, the WS\(_2\) nanosheets were nucleated and grown, and the as-prepared WS\(_2\) was assembled on MMT to prepare WS\(_2\)/MMT nanosheets.

The crystallographic structure was inspected by XRD measurements, and the patterns of MMT, WS\(_2\), WS\(_2\)/MMT, WS\(_2\)/MMT-0.5 and WS\(_2\)/MMT-2 are presented in Fig. 2a. In the pattern of MMT, the reflection at 7.2° (2\(\theta\)) is attributed to the (001) reflection of Na-montmorillonite, indicating that the \(d_{001}\) basal spacing is 1.22 nm. The diffraction peaks at 19.7° and 34.7° (2\(\theta\)) are corresponding to (100) and (110) planes of MMT. The diffraction peaks in the pattern of hydrothermally synthesized WS\(_2\) can be attributed to 2H-WS\(_2\) phase (JCPDS#04-0237). The reflection at 14.2° due to the (002) diffraction shows the distance of lattice plane along (002) is 0.62 nm for WS\(_2\) multilayer. The reflections assigned to (100) and (110) planes of WS\(_2\) are found at 32.7° and 58.4°, respectively. The main reflections of MMT and WS\(_2\) were observed in XRD pattern of WS\(_2\)/MMT. Compared with WS\(_2\)/
MMT, the intensity of the reflections of WS₂ is relatively lower in the pattern of WS₂/MMT-0.5, indicating the lower content of WS₂. The reflection assigned to (100) plane of WS₂ has higher intensity in the WS₂/MMT-2, while the diffraction peak corresponding to (002) plane is broader and lower, which could be attributed to lower stacking of WS₂ layers.

The interface interaction was studied by FTIR analysis. In the FTIR spectrum of MMT (Fig. 2b), the bands due to vibration of Si–O is found at 471 and 1022 cm⁻¹, indicating that a silicon-oxygen tetrahedron exists in the layered structure of MMT. The broad band at 3620 cm⁻¹ is due to the aluminum hydroxy stretching vibration. The hydroxy bending vibration and H–O–H stretching vibration corresponding to hydrogen bonding water could be observed at 1637 and 3453 cm⁻¹. The bands at 1401, 1613 and 3125 cm⁻¹ in the FTIR spectrum of WS₂ are associated with the W–S bending vibration and stretching vibration. For WS₂/MMT, the bands corresponding to hydroxy decrease significantly, and the band of Si–O shifts to 1037 cm⁻¹ from 1022 cm⁻¹, which suggests the interface interaction between WS₂ and MMT.

The chemical statuses of the samples were investigated using XPS. Fig. 3a shows the XPS survey spectra of samples in the range 0–700 eV. Compared with the XPS spectrum survey of MMT, the peaks of W and S are observed in the WS₂/MMT. The binding energy of Si 2p in WS₂/MMT (Fig. 3b) shifts to a little higher energy state compared with that of MMT, indicating electronic interaction between WS₂ and MMT. The W 4f peaks of WS₂/MMT (Fig. 3c) are located at the binding energies of 32.2, 34.3, 36.1 and 38.2 eV, respectively. The binding energies of W 4f⁷/2 and W 4f⁵/2 peaks at 32.2 and 34.3 eV are correspond to W⁴⁺ (oxide states), and the binding energies at 36.1 and 38.2 eV are attributed to W⁶⁺ (oxide states), which might be due to the partial oxidation of tungsten on the surface and the interface interaction between WS₂ and MMT. In the scans of S 2p electrons of WS₂/MMT (Fig. 3d), the binding energies of S 2p₁/₂ and S 2p₃/₂ peaks are 161.9 and 163.3 eV, respectively.

The morphologies of samples were characterized with SEM. In the SEM image of MMT (Fig. 4a), the sample presents a lamellar morphology and smooth surface, which is favorable for the supporting of WS₂. The WS₂ synthesized by hydrothermal method exhibits the agglomerated particles with irregular shapes (Fig. 4c). For WS₂/MMT (Fig. 4e), WS₂ and MMT exhibit two dimensional morphology and stack with each other to form layer structure. In the WS₂/MMT composites, MMT could reduce the agglomeration of WS₂. The energy dispersive spectrum of WS₂/MMT indicates that the mass contents of W and S element are 29.84 Wt% and 10.60 Wt%, which is in accord with the theoretical element ratio of WS₂.

Further details of the microstructure could be obtained by TEM and HRTEM. The TEM image of MMT (Fig. 4b) shows dispersed nanosheet. As shown in Fig. 4d, the synthesized WS₂ is irregular nanoparticle. The HRTEM image indicates that the (002) plane WS₂ nanoparticle is 0.62 nm, in accordance with XRD result. From the TEM and HRTEM of WS₂/MMT (Fig. 4f), the microstructure of sample exhibits composite nanosheets, and
WS₂ nanosheets are assembled parallelly on MMT. The WS₂ nanosheets could possess better dispersibility and expose more catalytic reaction edges attributed to support of MMT.

The specific surface area was characterized by nitrogen adsorption-desorption isotherms. In the curves of MMT and WS₂/MMT (Fig. 5a), the type IV adsorption branches are corresponding to the mesoporous structure. The specific surface area of WS₂/MMT and MMT are calculated to be 16.13 and 38.02 m²·g⁻¹, respectively. No hysteresis loop is observed in the curve of WS₂, and the specific surface area is 6.56 m²·g⁻¹. Compared with WS₂, WS₂/MMT has relatively higher specific surface area, and it might be because MMT could reduce the stack and inhibit the agglomeration of WS₂ nanosheets. The pore size distributions are shown in Fig. 5b. The average pore size of MMT is about 3 nm, while those of WS₂ and WS₂/MMT are around 40 nm. Due to the support of MMT, WS₂/MMT composite nanosheets possess larger special surface area than WS₂, which might provide more reactive sites to enhance photocatalytic activity.

The UV–vis diffuse reflectance spectra of samples are shown in Fig. 6a. The visible light absorption of MMT is very weak. WS₂ and WS₂/MMT exhibit considerable visible absorption, which is consistent with the black color of

Figure 4. Morphologies of the samples. SEM images of (a) MMT, (c) WS₂, and (e) WS₂/MMT and the EDS spectrum. TEM images of (b) MMT, (d) WS₂, and (f) WS₂/MMT and the HRTEM image.
the samples. It is of great significance for visible light photocatalytic application. The band gap energies of MMT, WS₂ and WS₂/MMT (Fig. 6b) are 3.86, 1.37 and 1.51 eV, respectively. Compared with WS₂, WS₂/MMT possesses larger band gap energy, which could be due to the effects of the few layered WS₂ and MMT.

Compared with the PL peak of WS₂ (Fig. S1), the peak shape and position of WS₂/MMT are similar, while the peak intensity is higher. It might be related to luminescence-inactive multilayer structure in WS₂. In the PL spectrum of MMT, the peak at 354 and 398 nm could be due to the intrinsic defects of surplus oxygen on the surface and intrinsic diamagnetic defect center, respectively. The PL peak intensity of WS₂/MMT is weaker than that of MMT, which is attributed to the less recombination of photo-generated carriers.

Photodegradation of organic dyes was applied to evaluate the photocatalytic abilities of samples for aqueous phase reactions. The variation of decoloration rate with MMT, WS₂, WS₂/MMT, WS₂/MMT-0.5 and WS₂/MMT-2 as catalysts is shown in Fig. 7a. The RhB aqueous solution is stable with visible light irradiation during 1 h, and the decoloration rate has hardly the change without catalyst. Adsorption equilibrium was reached without light irradiation for 15 min, and physical adsorption of samples was recorded. MMT has the highest adsorption capacity up to 17.0%, and the adsorption rate of WS₂ is lowest. The WS₂/MMT has higher adsorption rate than WS₂, and the adsorption rate has an increase tendency with the increasing of MMT content. It might be because the special structure of MMT, and the high specific surface area and abundant surface hydroxyl groups are in favor of the adsorption for RhB. WS₂/MMT has the highest degradation speed, and the overall decoloration rate of RhB is up to 99.8% after visible light irradiation for 45 min. The degradation speeds of WS₂/MMT-0.5 and WS₂/MMT-2 are higher than that of WS₂, but lower than WS₂/MMT. Photocatalytic ability of WS₂/MMT composite nanosheets is enhanced via the support of MMT. It might be because the MMT sheets prevent WS₂ nanosheets aggregation, and improve the hydrophilicity and dispersibility of aqueous phase, which could supply composites more reactive sites. As shown in Fig. S4, the photocatalytic ability of WS₂/MMT does not show obvious change after four cycles, indicating the high stability of WS₂/MMT in the aqueous phase photocatalytic reaction process. WS₂/MMT also shows excellent photodegradation performance for Methylene blue (MB), Methyl orange (MO) and Congo red (CR) in the aqueous phase (Fig. S5). The photodegradation of RhB was observed to follow pseudo-first-order kinetics according to the formula (\(\ln(\frac{C}{C_0}) = -kt \)), where C and \(C_0 \) is the homologous and initial concentration, and k is apparent reaction rate constant. The apparent reaction rate constants of WS₂/MMT and WS₂ are 0.16 and 0.09 min\(^{-1}\) (Fig. S6), indicating the higher photocatalytic ability of WS₂/MMT.

![Figure 5](https://www.nature.com/scientificreports/) Specific surface area of the samples. (a) N\(_2\) adsorption/desorption isotherm curves and (b) pore-size distributions of MMT, WS₂ and WS₂/MMT.

![Figure 6](https://www.nature.com/scientificreports/) Energy band structure of MMT, WS₂ and WS₂/MMT. (a) UV-vis diffuse reflectance spectra, (b) the corresponding plots of \((\alpha h\nu)^2\) vs. photon energy (hν).
In Fig. 7b, WS₂/MMT composite nanosheets uniformly disperse in water, while WS₂ almost floated on the aqueous phase, which could be attributed to the hydrophobicity of hydrothermally synthesized WS₂. Contact angles of MMT, WS₂/MMT and WS₂ (Fig. S2) are 18.7°, 32.3° and 54.5°, respectively. With the supporting of MMT, WS₂/MMT has better hydrophilicity than WS₂.

Discussion
As shown in Fig. S3, the UV–vis absorption peak of RhB is located at 554 nm, while no obvious absorption peak is observed after RhB is photodegraded. The possible photocatalysis mechanism for the degradation of RhB is shown in Fig. 7c. With the excitation of visible light, the photoinduced electrons (e⁻) and holes (h⁺) are generated in WS₂, respectively. Hydroxyl groups could capture h⁺ to form hydroxyl radicals (OH⁻), which could restrain recombination and improve the photocatalytic ability. The photoexcited e⁻ electrons might induce the O₂⁻ with O₂, and these h⁺, OH⁻ and O₂⁻ could photo-oxidize organic molecules RhB.

In conclusion, WS₂/MMT nanosheets were prepared by the hydrothermal method, which were utilized as an efficient hydrophilic photocatalyst for aqueous phase reactions. Few-layered WS₂ nanosheets are grown parallelly on MMT, and MMT could reduce the stack and inhibit the agglomeration of WS₂ nanosheets, which supply composites more catalytic reaction sites. With WS₂/MMT as photocatalyst, the overall decoloration capacity of RhB was up to 99.8%. Through the support of MMT, WS₂/MMT possesses high hydrophilicity and dispersibility of aqueous phase, which is conducive to the enhancement of catalytic ability. The WS₂/MMT composite nanosheets have potential to treat organic waste water. The strategy could provide insights for construction of efficient hydrophilic photocatalyst with excellent activity for environmental treatment.

Methods
Materials. The montmorillonite (MMT) used was obtained from Zhejiang Sanding Technology Co. Ltd. (Zhejiang, China). It consisted primarily of MMT (>97%) with minor impurity of quartz. The chemical compositions of MMT were as follows: SiO₂ 61.5 Wt%, Al₂O₃ 19.3 Wt%, MgO 3.5 Wt%, Fe₂O₃ 1.4 Wt%, Na₂O 2.8 Wt%, CaO 2.5 Wt%, K₂O 0.6 Wt%, and the loss on ignition was approximately 8.4 Wt%. Tungsten chloride (WCl₆),...
thioacetamide (CH₃CSNH₂) and Rhodamine B were purchased from Sinopharm Chemical Reagent Co. Ltd. All reagents were analytical grade and used without further purification46.

Preparation. The WS₂/montmorillonite (WS₂/MMT) composite nanosheets were synthesized by a facile hydrothermal method. In a typical experiment, 1.785 g of tungsten chloride and 3.415 g of thioacetamide were dissolved in 60 mL of deionized water and mechanically stirred for 30 min at room temperature. 1.000 g of MMT was added in the solution, and the mixture suspension was stirred for another 30 min and sonicated for 10 min at room temperature. Then, the suspension was transferred into a 100 mL Teflon-lined stainless steel autoclave, heated up to 220 °C, and kept for 24 h41. After cooling naturally, the precipitates were collected by centrifugation, and subsequently washed several times with deionized water. The final products were obtained after drying at 60 °C for 24 h. For comparison, pure WS₂ samples were synthesized by a similar process, without MMT. Other samples were similarly prepared with different additive amounts of tungsten chloride and thioacetamide. A sample prepared with 0.893 g of tungsten chloride and 1.708 g of thioacetamide was labeled as WS₂/MMT-0.5. A sample with 3.570 g of tungsten chloride and 6.830 g of thioacetamide was labeled as WS₂/MMT-24.

Characterization. Powder X-ray diffraction (XRD) patterns of the samples were obtained on a RIGAKU D/max-2550 PC X-ray diffractometer with Cu Kα radiation (λ = 0.15406 nm) at a scan rate of 0.02°/s32. Fourier transform infrared (FTIR) spectra of the samples were obtained between 4000 and 400 cm⁻¹ on a Nicolet Nexus 670 FTIR spectrophotometer using KBr pellets. Scanning electron microscopy (SEM) images were obtained with a JEOL JSM-6360LV scanning electron microscope at an accelerating voltage of 5 kV, which equipped with energy dispersive spectrometer (EDS). Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) were operated with a JEOL JEM-2100F transmission electron microscope at an acceleration voltage of 200 kV42. The N₂ adsorption-desorption isotherms were record at 77 K and analyzed using an ASAP 2020 surface area analyzer. X-ray photoelectron spectroscopy (XPS) measurements were performed using an ESCALAB 250 spectrometer. The UV–vis diffuse reflectance spectra (UV–vis DRS) were obtained with a Shimadzu UV2450 UV–vis spectrophotometer, and barium sulfate was used as reference. The photoluminescence (PL) experiment were conducted on a Hitachi F-4500 fluorescence spectrometer using an excitation wavelength of 254 nm1. The contact angles of the samples were measured using the sessile-drop technique using a goniometer (GBX, France).

Photocatalytic activity evaluation. Photodegradation of Rhodamine B (RhB) was selected as a typical reaction to evaluate the photocatalytic activity of samples for aqueous phase reactions. The light source was a 150 W high pressure mercury lamp with wave length λ > 400 nm. In a typical photocatalytic experiment, 100 mg of catalyst was added in 100 mL RhB aqueous solution (0.02 mmol/L). Firstly, the mixture suspension was magnetically stirred in the dark for 15 min to ensure the establishment of an adsorption-desorption equilibrium between the catalyst and RhB aqueous solution. Then, the reaction vessel was positioned with light irradiation, and 1 mL of 3% H₂O₂ was added as oxidant to initiate the reaction. About 3 mL of analytical sample was withdrawn from the reaction suspension every 5 min, and the catalyst was removed by a centrifuge. The concentration of the photodegradable compound was monitored by recording the absorbance (A) of the clarified solution at 554 nm with an UV-visible spectrophotometer. The decoloration rate (%) was calculated from the formula: decoloration rate (%) = (A₀ − A)/A₀ × 100%, where A₀ was the initial absorbance, and A was the absorbance at homologous times39. The catalyst was centrifuged for the next cycle. Photocatalytic degradation of Methylene blue (MB), Methyl orange (MO) and Congo red (CR) were performed under the similar condition.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

Received: 4 January 2019; Accepted: 15 August 2019; Published online: 08 November 2019

References

1. Woods, J. M. et al. One-step synthesis of MoS₂/WS₂ layered heterostructures and catalytic activity of defective transition metal dichalcogenide films. *ACS Nano* 10, 2004–2009 (2016).
2. Fu, Q. et al. Synthesis and enhanced electrochemical catalytic activity of monolayer WS₁₁₋₂,Se₂ with a tunable band gap. *Adv. Mater.* 27, 4732–4738 (2015).
3. Zhong, Y. et al. Band-gap-matched CdSe QD/WS₂ nanosheet composite: Size-controlled photocatalyst for high-efficiency water splitting. *Nano Energy* 31, 84–89 (2017).
4. Gao, Y. et al. Defect-induced efficient dry reforming of methane over two-dimensional Ni/h-boron nitride nanosheet catalysts. *Appl. Catal. B:Environ.* 238, 51–60 (2018).
5. Han, X., Yu, Y., Huang, T., Liu, D. & Zhang, B. Photogenerated carriers boost water splitting activity over transition-metal/ semiconductor metal oxide bifunctional photocatalysts. *Chem. Soc. Rev.* 46, 4450–4463 (2017).
6. Peng, K., Fu, L., Yang, H., Ouyang, J. & Tang, A. Hierarchical MoS₂ intercalated clay hybrid nanosheets with enhanced catalytic activity. *Nano Res.* 10, 570–583 (2016).
7. Li, N. et al. Stable multiphasic 1T/2H MoSe₂ nanosheets integrated with 1D sulfide semiconductor for drastically enhanced visible-light photocatalytic hydrogen evolution. *Appl. Catal. B:Environ.* 238, 27–37 (2018).
8. Zhao, Y. et al. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photocoreduction of CO₂ to CO with water. *Adv. Mater.* 27, 7824–7831 (2015).
9. Pumera, M. & Sofer, Z. Towards stoichiometric analogues of graphene: graphene, fluorographene, graphol, graphene acid and others. *Chem. Soc. Rev.* 46, 4450–4463 (2017).
10. Liu, H., Chen, D., Wang, Z., Jing, H. & Zhang, R. Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C₃N₄ heterojunctions with highly enhanced photocatalytic hydrogen evolution performance. "*Appl. Catal. B:Environ.*" 203, 300–313 (2017).
11. Peng, K., Fu, L., Ouyang, J. & Yang, H. Emerging parallel dual 2D composites: natural clay mineral hybridizing MoS₂ and interfacial structure. *Adv. Funct. Mater.* 26, 2666–2675 (2016).
12. Shi, J. et al. Temperature-mediated selective growth of MoS2/WSe2 and WS2/MoS2 vertical stacks on au foils for direct photocatalytic applications. Adv. Mater. 28, 10664–10672 (2016).
13. Sang, Y. et al. From UV to near-infrared, WS2, nanosheet: A novel photocatalyst for full solar light spectrum photodegradation. Adv. Mater. 27, 363–369 (2015).
14. Su, D., Dou, S. & Wang, G. WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. Chem. Commun. 50, 4192 (2014).
15. Zhong, Y., Zhao, G., Ma, F., Wu, Y. & Hao, X. Utilizing photocorrosion-recrystallization to prepare a highly stable and efficient CdS/WS2 nanocomposite photocatalyst for hydrogen. Appl. Catal. B-Environ. 199, 466–472 (2016).
16. Raza, F. et al. Structuring Pd nanoparticles on 2H-WS2 nanosheets induces excellent photocatalytic activity for cross-coupling reactions under visible light. J. Am. Chem. Soc. 139, 14767–14774 (2017).
17. Zhao, X., Ma, X., Sun, J., Li, D. & Yang, X. Enhanced catalytic activities of surfactant-assisted exfoliated WS2 nanodots for hydrogen evolution. ACS Nano 10, 2159–2166 (2016).
18. Zou, J.-P. et al. Fabrication of novel heterostructured few layered WS2-Bi2WO6/Bi2S3/WSe2O6,21,22,23 composites with enhanced photocatalytic performance. Appl. Catal. B-Environ. 179, 220–228 (2015).
19. Wen, Y., Zhang, H. & Zhang, S. One-step gas–solid reaction synthesis of W@WS2 nanorattles and their novel catalytic activity. Nanoscale 6, 13090–13096 (2014).
20. Vattikutti, S. V. P., Byon, C. & Reddy, C. V. Preparation and improved photocatalytic activity of mesoporous WS2 using combined hydrothermal-evaporation induced self-assembly method. Mater. Res. Bull. 75, 193–203 (2016).
21. Koyyada, G. et al. Enhanced solar light-driven photocatalytic degradation of pollutants and hydrogen evolution over exfoliated hexagonal WS2 platelets. Mater. Res. Bull. 109, 246–254 (2019).
22. Ma, X. et al. Evidence of direct Z-scheme g-C3N4/WS2 nanocomposite under interfacial coupling: First-principles study. J. Alloy. Comp. 788, 1–9 (2019).
23. Yang, J. et al. Two-dimensional hybrid nanosheets of tungsten disulphide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew. Chem.-Int. Edit. 52, 13751–13754 (2013).
24. Peng, K. et al. One-step hydrothermal growth of MoS2 nanosheets/Cds nanoparticles heterostructures on montmorillonite for enhanced visible light photocatalytic activity. Appl. Clay Sci. 175, 86–93 (2019).
25. Peng, K., Fu, L., Yang, H. & Ouyang, J. Pervoskite LaFeO3/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity. Sci. Rep. 6, 19723 (2016).
26. Li, X. & Tang, A. Pd modified kaolinite nanocomposite as a hydrogenation catalyst. RSC Adv. 6, 15585–15591 (2016).
27. Yan, Z., Yang, H., Ouyang, J. & Tang, A. In situ loading of highly-dispersed CuO nanoparticles on hydroxyl-group-rich SiO2–AIOH composite nanosheets for CO catalytic oxidation. Chem. Eng. J. 316, 1035–1046 (2017).
28. Li, X., Ouyang, J., Zhou, Y. & Yang, H. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies. Sci. Rep. 5, 13763 (2015).
29. Yan, Z., Fu, L., Yang, H. & Ouyang, J. Amino-functionalized hierarchical porous SiO2–AIOH composite nanosheets with enhanced adsorption performance. J. Hazard. Mater. 344, 1090–1100 (2018).
30. Peng, K., Fu, L., Li, X., Ouyang, J. & Yang, H. Stearic acid modified montmorillonite as emerging microparticles for thermal energy storage. Appl. Clay Sci. 135, 100–106 (2017).
31. Peng, K., Zhang, J., Yang, H. & Ouyang, J. Acid-hybridized expanded perlite as a composite phase-change material in wallboards. RSC Adv. 5, 66134–66140 (2015).
32. Li, X., QianYang, Ouyang, J., Yang, H. & Chang, S. Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier. Appl. Clay Sci. 126, 306–312 (2016).
33. Peng, K., Yang, H. & Ouyang, J. Tungsten tailing powders activated for use as cementitious material. Powder Technol. 286, 678–683 (2015).
34. Peng, K., Lv, C. & Yang, H. Novel preparation of glass ceramics from amorphized tungsten tailings. Ceram. Int. 40, 10291–10296 (2014).
35. Gao, S. et al. Triboelectric nanogenerator powered electrochemical degradation of organic pollutant using Pt-free carbon materials. ACS Nano 11, 3965–3972 (2017).
36. Li, X. et al. Facile synthesis of wormhole-like mesoporous tin oxide via evaporation-induced self-assembly and the enhanced gas-sensing properties. Nanoscale Res. Lett. 13, 14 (2018).
37. Liu, W. et al. Kinetic and mechanism studies on pyrolysis of printed circuit boards in the absence and presence of copper. ACS Sustainable Chem. & Eng. 7, 1879–1889 (2018).
38. Li, X. & Peng, K. Synthesis of 3D mesoporous alumina from natural clays for confining Cds nanoparticles and enhanced photocatalytic performances. Appl. Clay Sci. 165, 188–196 (2018).
39. Sun, M., Zhao, Q., Du, C. & Liu, Z. Enhanced visible light photocatalytic activity in BiOCl/SnO2: heterojunction of two wide band-gap semiconductors. RSC Adv. 5, 22740–22742 (2015).
40. Liu, X., Su, Y., Zhao, Q., Du, C. & Liu, Z. Constructing Bi2O3/Cl2/O3 heterojunction via a simple thermal annealing route for achieving enhanced photocatalytic activity and selectivity. Sci. Rep. 6, 28689 (2016).
41. Wu, J. et al. Glucose aided preparation of tungsten sulfide/multi-wall carbon nanotube hybrid and use as counter electrode in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 4, 6530–6536 (2012).
42. Li, X. & Peng, K. Hydrothermal synthesis of MoS2 nanosheet/polyglycerine nanofiber hybrid nanostuctures for enhanced catalytic activity. Appl. Clay Sci. 162, 175–181 (2018).
43. Peng, K., Wang, H. Carbon hybridized montmorillonite nanosheets: preparation, structural evolution and enhanced adsorption performance. Chem. Commun. 53, 6085–6088 (2017).
44. Yan, Z., Fu, L., Zuo, X. & Yang, H. Green assembly of stable and uniform silver nanoparticles on 2D silica nanosheets for catalytic reduction of 4-nitrophenol. Appl. Catal. B-Environ. 226, 23–30 (2018).
45. Li, X., Peng, K., Chen, H. & Wang, Z. TiO2 nanoparticles assembled on kaolinites with different morphologies for efficient photocatalytic performance. Sci. Rep. 8, 11663 (2018).
46. Li, X. & Peng, K. MoSe2/montmorillonite composite nanosheets: hydrothermal synthesis, structural characteristics, and enhanced photocatalytic activity. Minerals 8, 268 (2018).

Acknowledgements

This work was supported by National Natural Science Foundation of China (51802422, 51772237, 51704030), the China Postdoctoral Science Foundation (2018T111054, 2017M623182, 2017M610617) and Natural Science Basic Research Plan in Shaanxi province of China (2018JQ5155). Shaanxi Science & Technology co-ordination & Innovation project (No. 2015KCTC01-13) Shaanxi Innovation Capacity Support Program (2018TD-031).
Author contributions
K.P. and H.W. conceived the experiment. K.P., X.L. and J.W. performed the experiments. Z.C., L.S. and X.F. were involved in scientific discussion and data analysis. K.P. wrote initial drafts of the work. All authors commented on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-52191-9.

Correspondence and requests for materials should be addressed to H.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019