Alien Gill Parasites of the Silver Carp
Hypophthalmichthys molitrix (Cypriniformes: Cyprinidae)
in Tochigi Prefecture, Central Japan

Masato Nitta¹,⁴ and Kazuya Nagasawa²,³

¹ Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
E-mail: licht.bsn.mono@gmail.com
² Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
³ Aquaparasitology Laboratory, 365-61 Kusanagi, Shizuoka 424-0886, Japan
⁴ Corresponding author

(Received 4 December 2018; Accepted 17 December 2019)

Four species of alien parasites, _Dactylogyrus skrjabini_ Achmerow, 1954, _D. hypophthalmichthys_ Achmerow, 1952, _D. wuhuensis_ Lee, 1960 (Platyhelminthes: Monogenea: Dactylogyridae), and _Sinergasilus lieni_ Yin, 1949 (Crustacea: Copepoda: Ergasilidae), were collected from the gills of the alien cyprinid, the silver carp _Hypophthalmichthys molitrix_ (Valenciennes, 1844) in the Watarase River flowing into the Watarase Retarding Basin, Tochigi Prefecture, central Japan. These alien parasites represent new geographical records from Japan. The generic position of _D. skrjabini_ has been doubted because its dorsal anchor shape is similar to those of _Pellucidhaptor_ spp. (Dactylogyridae), but the species should be assigned to _Dactylogyrus_ based on the phylogenetic analysis of 28S rDNA made in this study. The scientific name "_Pseudergasilus polycolpus_ Markewitsch, 1939" is an incorrect subsequent spelling of _P. undulatus_ Markewitsch, 1940, and _S. lieni_ is the oldest available name that can be applied to the ergasilid found in this study.

Key Words: Gill parasite, _Dactylogyrus_, Monogenea, _Sinergasilus_, Copepoda, _Hypophthalmichthys molitrix_, alien species, new country record, Japan.

Introduction

The silver carp _Hypophthalmichthys molitrix_ (Valenciennes, 1844) (Cypriniformes: Cyprinidae) is a freshwater fish, being natively distributed in southern Asia, eastern China, and Far-East Russia (Kolar et al. 2005). This species has been widely introduced and become established in aquaculture facilities in about 30 countries and territories around the world (Kolar et al. 2005). It was introduced into Japan from China and Taiwan between 1878 and the 1940s and established only in the Tone River system, central Japan (Maruyama et al. 1987; Matsuzawa and Senou 2008).

The Watarase Retarding Basin, a floodplain wetland belonging to the Tone River system, holds many endangered plants and animals and has been registered as a Ramsar site since 2012 (Obata et al. 2012; Ogawa 2012). About 50 species of freshwater fishes, including 19 alien species, have been reported from the basin (Sekine 2009; Nitta et al. 2016), in which the silver carp is known to occur as one of those alien species (Nakamura 1949; Sekine 2009). This cyprinid has been introduced in different water bodies along with its parasites in many countries (e.g., Hoffman and Schubert 1984), and the Tone River system is most likely under the same situation. We examined the gills of silver carp collected from the Watarase River flowing into the Watarase Retarding Basin and the results of this examination are presented herein.

Materials and Methods

Four specimens of the silver carp (507–750 mm in standard length) were collected by a cast net from the Watarase River (36°12′09.0″N, 139°40′59.4″E), a tributary of the Tone River system, in Fujioka, Tochigi City, Tochigi Prefecture, Japan on 19 August 2015. The fish were kept in a freezer before examination for gill parasites. After they were thawed, all gills were removed from them: the gills from one fish were examined for parasites in fresh conditions, while those from the second and third-fourth fish were examined after fixation in 5% formalin and 99% ethanol, respectively. The fish identification was based on Hosoya (2013).

Monogeneans were picked up from the gills using small needles and flattened between a glass slide and a coverslip. For molecular analysis, some specimens identified as _D. skrjabini_ under an Olympus BX51 light microscope were preserved in 99% ethanol. For morphological study, other specimens of this and other monogenean species were fixed in acetic acid-formalin-alcohol or 70% ethanol and stained in alum carmine, or fixed in modified picrate glycerin (Nitta and Nagasawa 2018). Monogeneans except the specimens for molecular analysis were dehydrated through a graded ethanol series, cleared in xylene, and mounted in Canada
balsam. Measurements of sclerotized parts of monogeneans are presented in Fig. 1 (see Gussev et al. 2010). The penis and accessory piece lengths were measured from images taken by an Olympus DP20 microscope digital camera using ImageJ software (version 1.48i) attached on an Olympus BX51 light microscope. The numbering of marginal hook pairs follows Mizelle (1936).

Copepods were removed from the gills using small needles and forceps and fixed in 70 or 99% ethanol. Copepods were cleared and dissected in lactic acid. The whole body was examined using the wooden slide method (Humes and Gooding 1964). The removed appendages and parts of the body were dehydrated through a graded ethanol series, cleared in xylene, mounted in Canada balsam, and examined for morphological characters.

Drawings were made with the aid of a drawing tube fitted on an Olympus BX51 light microscope. Measurements, in micrometers, are expressed as the range. The monogenean and copepod specimens are deposited in the Platyhelminthes and Crustacea collections of the National Museum of Nature and Science (NSMT-Pl and NSMT-Cr), Tsukuba City, Ibaraki Prefecture, Japan, respectively.

DNA was extracted from two specimens of D. skrjabini using the DNeasy blood and tissue kit (Qiagen) in accordance with the manufacturer's instructions. The DNA was amplified by polymerase chain reaction (PCR) using the primer pair C1 (5′-ACC CGC TGA ATT TAA GCA T-3′) and D2 (5′-TGG TCC GTG TTT CAA GAC-3′) to amplify partial 28S rDNA (Vân Le et al. 1993). A total of 25 µL PCR reaction consisted of 1 µL of DNA template, 10×Titanium Taq PCR Buffer (Clonetech), 0.2 mM of each dNTP, 1 µM of each primer, and 1×Titanium Taq DNA Polymerase (Clonetech). PCR was carried out with the following protocol: 94°C for 5 min followed by 35 cycles of 94°C for 60 sec, 56°C for 60 sec and 72°C for 60 sec, and 5 min of final hold at 72°C. PCR product was purified using NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel) and sequenced with a 3130xl Genetic Analyzer (Applied Biosystems) with the same primers that generated the PCR product. The newly generated 28S rDNA sequence was aligned with sequences for 14 Dactylogyrus species and two Pseudodactylogyrus species collected in East Asia retrieved from the GenBank database (Fig. 3). Alignment was performed with ClustalW using the default parameters. Phylogenetic trees were constructed for maximum likelihood methods under the GTR+G+I model selected as the best-fit model using AICc, and with the neighbor-joining (NJ) method under the K2 model, with the phylogeny tested by 1,000 bootstrap repeats using MEGA7 (Kumar et al. 2016).

Results

Class Monogenea van Beneden, 1858
Subclass Monopisthocotylea Odhner, 1912
Order Dactylogyridae Bychowsky, 1937
Family Dactylogyridae Bychowsky, 1933
[Japanese name: Shi-sen-chū-ka]
Genus Dactylogyrus Diesing, 1850
[Japanese name: Yubigata-mushi-zoku]
Dactylogyrus skrjabini Achmerow, 1954
[New Japanese name: Dai-yubigata-mushi]
(Fig. 2)
Gill parasites of silver carp in Japan 63

16; Zhang 2012: 123; Al-Jawda and Asmar 2015: 129; Mhaisen and Al-Rubaie 2016: 5, 7.

Dactylogyrus scrjabini [lapsus]: Bykhovskaya-Pavlovskaya *et al.* 1962: 254–255, fig. 603; Babayev 1964: 51; Gussev 1967: 56, 58, figs 1ge, 2ze; Osmanov 1971: 104; Yukhimenko 1972: 155, 156; Anonymous 1973a: 139, pl. 78, figs 157–158; Musselius 1973: 20–21, fig. 6be; Anonymous 1978: 50; Chen 1981: 115; Ji *et al.* 1982: 20; Molnár 1984: 154; Gussev 1985: 22, 122–123, figs 9–8, 157; Huang 1986: 16; Salih *et al.* 1988: 371, 378, 381–382, fig. 7; Gerasev 1989: 39–40, fig.1-1; Gerasev 1990: 367; Gerasev 1991: 224–226, fig. 5-18; Hoffmann 1999: 128; Urazbaev and

Fig. 2. *Dactylogyrus scrjabini* Achmerow, 1954. NSMT-Pl 6393. A, whole mount (ventral view); B, dorsal anchor; C, dorsal bar; D, ventral bar; E, marginal hook of pair I; F, marginal hook of pair II; G, marginal hook of pair III; H, marginal hook of pair IV; I, marginal hook of pair V; J, marginal hook of pair VI; K, marginal hook of pair VII; L, needle; M, male copulatory organ. Scale bars: A, 500 µm; B–M, 20 µm. Abbreviations: ap, accessory piece; e, eye-spot; dan, dorsal anchor; g, germarium; h, haptor; ho, head organ; in, intestine; mg, Mehlis’ gland; mh, marginal hook; o, ootype; od, oviduct; p, penis; ph, pharynx; pr, prostatic reservoir; sv, seminal vesicle; t, testis; va, vagina; vd, vas deferens; vl, vitellaria; vo, vaginal opening.
Material examined. Five specimens stained in alum carmine and three fixed in modified picrate glycerin (NSMT-Pl 6393).

Description. Body elongate (Fig. 2A), 1208–2618 long including haptor and long peduncle, width at mid-body. Three pairs of head organs. Two pairs of eye-spots. Pharynx subspherical, 80–103 long, 82–104 wide; esophagus followed by bifurcated intestine with branches confluenting posterior to testis. Testis ovate to pyriform, posterodorsal to germarium, 128–298 long, 115–158 wide. Vas deferens arising from anterior end of testis, looping dorsoventrally around left intestine, forming seminal vesicle. Two saccate prostatic reservoirs. Male copulatory organ sclerotized, consisting of penis and accessory piece, length 104–128 (Fig. 2M). Penis slightly curved tube, length 68–84. Accessory piece rod-shaped, its widened tip holding distal end of penis, length 104–127. Germarium ovate, in mid-body, 60–229 long, 82–120 wide. Oviduct arising from anterior margin of germarium, continuing to oötype. Mehlis’ gland surrounds base of oötype. Vagina unsclerotized, opening on right lateral side, mid-length of body, leading to right side of oviduct. Vitellaria approximately co-extensive with intestine.

Haptor 185–250 long, 180–250 wide. Dorsal anchor (Fig. 2B), total length 71–76; length to notch 28–35; outer root well developed, length 38–45, inner root length 11–18, point length 9–11. Dorsal bar plate-shaped, total length 17–25, total width 11–23, median width (Fig. 2C). Ventral bar broadly V-shaped with notched edge, total length 14–20 (16, n=4), total width 7–10, median width 3–4 (Fig. 2D). Marginal hooks 7 pairs; hook length: pair I (Fig. 2E) 40–47; pair II (Fig. 2F) 30–34; pair III (Fig. 2G) 31–37; pair IV (Fig. 2H) 36–45; pair V (Fig. 2I) well developed, 60–64, pair VI (Fig. 2J) 37–43; pair VII (Fig. 2K) 39–48. Pair of needles (Fig. 2L) located near fifth hooks, length 10–13 (12, n=3).

Host. Silver carp Hypophthalmichthys molitrix (Cypriniformes: Cyprinidae)

Site of infection. Gill rakers.

Molecular analysis. The partial 28S rDNA (731 bp) sequences from the two specimens were identical and submitted to the DNA Data Bank of Japan Centre (DDBJ) (LC414156). Two species of Pseudodactylogyrus were used as the outgroup for the phylogenetic analysis, the tree agree with the part of analysis by Nitta and Nagasawa (2016), and Dactylogyrus skrjabini forms a sister group with D. hypophthalmichthys (Fig. 3).

Remarks. This species was originally described from the gills of H. molitrix in the Amur River Basin, Far-East Russia (Achmerow 1954). It was subsequently reported from the gills of the same host in the natural distribution range of the host: Lake Taihu, and Anhui, Hubei, Fujian, Beitan, Habae, and Burqin provinces in China (Long and Lee 1960; Lee 1963; Anonymous 1973a; Huang 1986; Zhao 2011). The dorsal anchor shape and well developed fifth marginal hook are characters to distinguish D. skrjabini from the other congeneric species, and the specimens examined in this study agree with the descriptions by Achmerow, (1954), Bykhovskaya-Pavlovskaya et al. (1962), Long (2000), and Gussev et al. (2010). The detailed internal anatomy of the species was firstly described herein and showed the common dactylogyrid form.

The present finding represents the first record of D. skrjabini from Japan. This monogenean is established along with H. molitrix in the European region of Russia (Musselius 1969, 1973; Osmanov 1971), Turkmenistan (Babayev 1964), Kazakhstan (Gvozdev and Agapova 1977), Hungary (Hoffman and Schubert 1984; Molnár 1984), Iraq (Salih et al. 1988; Ali et al. 1989; Mhaisen et al. 2012; Al-Jawda and Asmar 2015), and the Aral Sea (Urazbaev and Kurbanova 2006; Zonn et al. 2009).

Japanese name. The species is one of the biggest species in the genus, and the new Japanese name refers it: “dai” and “yubigata-mushi” mean large and the genus, respectively.

Dactylogyrus hypophthalmichthys Achmerow, 1952
[New Japanese name: Hakuren-yubigata-mushi] (Fig. 4)
Gill parasites of silver carp in Japan

3a; Gussev 1955: 395; Long and Yu 1958: 10–11, fig. 3; Bykhovskaya-Pavlovskaya et al. 1962: 292, 294–295, fig. 683; Akmetov 1963: 462; Lee 1963: 76; Wu 1963: 112; Babayev 1964: 51; Agapova 1966: 134; Akmetov 1966: 258; Osmanov and Yusupov 1967: 212; Musselius 1969: 238, 240; Chentsov and Kirichenko 1970: 119; Osmanov 1971: 106; Kirichenko 1972: 115; Yukhimenko 1972: 154–156; Anonymous 1973a: 139, pl. 78, figs 155–156; Musselius 1973: 19–21, fig. 6a; Volovic 1973: 130–141, figs 1–3; Bauer and Hoffman 1976: 165; Belova 1977: 38–42; Gvozdev and Agapova 1977: 109; Musselius 1977: 146; Anonymous 1978: 41; Chang and Ji 1978: 355; Chen 1981: 115; Zhang 1981: 72; Ji et al. 1982: 13; Molnár 1984: 154; Gussev 1985: 166–168, fig. 241; Margaritov and VanThan 1985: 52–54, fig. 2; Huang 1986: 15; Mhaisen et al. 1988: 893; Salih et al. 1988: 371, 378, 380, fig. 6; Ali et al. 1989: 152–153; Jalali and Molnár 1990: 241; Ma and Li 1991: 3; Wu and Wang 1991: 18, 71–72, fig. 46; Li and Zhang 1992: 91; Zhang et al. 1992: 129; Jin et al. 1993: 327–328, fig. 99; Pojmanika 1995: 81; Gibson et al. 1996: 17; Blanc 1997: 497; Gelnar and Spakulová 1997: 189; Xia and Wang 1998: 19, 20; Hoffman 1999: 126; Long 2000: 92–93, fig. 40; Yao 2000: 25; Moravec 2001: 17; Xu et al. 2001: 715; Grigorovich et al. 2002: 1208; Yao and Nie 2004: 664–665; Johnson and Lunde 2005: 131; Šefrová and Laštůvka 2005: 157; Jalali and Barzegar 2006: 50–51, fig. 9; Molodozhnikova and Zhokhov 2006: 328, 334; Urazbaev and Kurbanova 2006: 537; Žy and Tě 2007: 121, 124, fig. 91; Wu et al. 2007: 653, 655, 657; Karabekova 2008: 331, 333; Zonn et al. 2009: 125; Gussev et al. 2010: 243–244, fig. 296; Singh and Chaudhary 2010: 123–126; Mhaisen et al. 2010: 96, 99–100; Tan et al. 2011: 133–134; Zhang et al. 2011: 30–34; Bozorgnia et al. 2012: 251; Davydov et al. 2012: 141; Mhaisen et al. 2012: 106, 116; Zhang 2012: 123; Paskornik and Masoumian 2012: 575; Fedorowych et al. 2013: 242–244; Gussev et al. 2013: 31; Zhatkanbayeva et al. 2013: 149; Zhou et al. 2014: 18, 20, figs 2L, J; Zaichenko 2015: 73, 77; Mhaisen and Al-Rubaie 2016b: 5, 7.

Neodactylogyrus hypophthalmichthys: Yamaguti, 1963a: 38, fig. 659.

Material examined. Eleven specimens fixed in modified picrate glycerin (NSMT-Pl 6394).

Description. Body elongate, 384–544 long including haptor, width at mid-body 73–117 (104, n = 5). Pharynx spherical, 14–24 long, 15–24 wide. Male copulatory organ (Fig. 4L) sclerotized, consisting of penis and accessory piece, length 32–34. Penis tapered, sigmoid tube, length 31–35. Accessory piece (Fig. 4L) rod-shaped, its tip holding middle of penis, length 28–32. Vagina un sclerotized.

Haptor 55–77 long, 88–125 wide. Dorsal anchor (Fig. 4A) total length 33–40; length to notch 29–34; outer root length 4–6, inner root length 11–18 (13, n = 6), point length 9–11 (10, n = 6). Dorsal bar (Fig. 4B) broadly V-shaped, total length 24–27, total width 4–9, median width 3–5. Ventral bar (Fig. 4C) T-shaped, total length, total width 8–12, median width 5–11. Marginal hooks 7 pairs; hook length: pair I (Fig. 4D) 27–31; pair II (Fig. 4E) 31–38; pair III (Fig. 4F) 28–35; pair IV (Fig. 4G) 26–33; pair V (Fig. 4H), 30–34, pair VI (Fig. 4I) 33–44; pair VII (Fig. 4J) 26–43. Pair of needles (Fig. 4K) located near second hooks, length 9–11.

Host. Silver carp *Hypophthalmichthyus molitrix* (Cyprinidae-formes: Cyprinidae)

Site of infection. Gill filaments.

Remarks. This species was originally described by Achmerow (1952) from the gills of *H. molitrix* in Lake Petro pavlovsk, Lakes Bolon and Udyl, Far-East Russia. Subsequently, Yamaguti (1963a) transferred the species to the genus *Neodactylogyrus* Price, 1938, but this genus had already been synonymized with *Dactylogyrus* by Mizelle and Donahue (1944). As a native parasite, *D. hypophthalmichthys* was reported from the same host in Jiangsu, Anhui, Hubei, Zhejiang, Wuzhou, Chongqing, Liaoning, Jiangxi, Fujian, and Heilongjiang provinces, and Shanghai, China (Long and Yu 1958; Lee 1963; Wu 1963; Anonymous 1973a; Chang and Ji 1978; Zhang 1981; Huang 1986; Ma and Li 1991; Wu and Wang 1991; Li and Zhang 1992; Xia and Wang 1998; Yao 2000; Wu et al. 2007; Zhou et al. 2014) and the Amur River, Russia (Gussev 1955; Chentsov and Kirichenko 1970). Yao (2000) reported this monogenean from the gills of the grass carp *Ctenopharyngodon idellus* (Valenciennes, 1844) (Cyprinidae) in Jiangxi Province, China. The life cycle and development of *D. hypophthalmichthys* were described by Volovic (1973).

The specimens examined in this study conform to the descriptions and illustrations of *D. hypophthalmichthys* by Achmerow (1952), Bykhovskaya-Pavlovskaya et al. (1962), Long (2000), and Gussev et al. (2010): the tip of accessory piece holding the middle of the sigmoid penis is one of the features in *D. hypophthalmichthys*.

The present collection represents the first record of *D. hy-
Dactylogyrus wuhuensis Lee, 1960

[New Japanese name: Buko-yubigata-mushi] (Fig. 5)

Dactylogyrus wuhuensis Lee, 1960: 33–36, figs A, B; Lee 1963: 76; Yukihmenko 1972: 155; Anonymous 1973a: 138, pl. 77, figs 153–154; Musselius 1973: 20, 22, fig. 6e; Gvozdev and Agapova 1977: 109; Anonymous 1978: 52–53; Chen 1981: 116; Ji et al. 1982: 22; Gussev 1985: 125–126, fig. 161; Huang 1986: 15; Wu and Wang 1991: 18, 102–103, fig. 90; Long 2000: 94–95, fig. 41; Xia et al. 2000: 152; Urzaizav and Kurbanova 2006: 537; Ký and Tê 2007: 136, 139, fig. 116; Gussev et al. 2010: 189–190, 192, fig. 217; Davydov et al. 2012: 141; Zhang 2012: 123.

Dactylogyrus chenshuchenae Gussev in Bykhovskaya-Pavlovskaya et al., 1962 described from the gill filaments of the same host in Hubei, Fujian, and Zhejiang provinces, China (Anonymous 1973a; Huang 1986; Wu and Wang 1991) and Far-East Russia (Yukihmenko 1972; Musselius 1973). Dactylogyrus wuhuensis Gussev in Bykhovskaya-Pavlovskaya et al., 1962 described from the gill filaments of the same host in the Liao River, Liaoning Province, China, has been synonymized with D. wuhuensis (Anonymous 1973a). The haptoral structures and the accessory piece of the specimen examined in this study conform to those of Lee (1960), Wu and Wang (1991), Long (2000), and Gussev et al. (2010).

The present collection represents the first record of D. wuhuensis from Japan. This monogenean has been reported as an alien species parasitic on Hypophthalmichthys molitrix from Turkmenistan (Babayev 1964; Osmanov 1971), the Amu Darya River (Osmanov and Yusupov 1967), the European region of Russia (Musselius 1969), Kazakhstan (Gvozdev and Agapova 1977), the Aral Sea (Urzaizav and Kurbanova 2006), and Vietnam (Ký and Tê 2007).

Japanese name. In the new Japanese name, “buko” means Wuhu, the type locality of D. wuhuensis, in Japanese, and “yubigata-mushi” means the genus Dactylogyrus.

Material examined. One specimen fixed in modified picrate glycerin (NSMT-Pl 6395).

Description. Male copulatory organ (Fig. 5L) sclerotized, consisting of penis and accessory piece, composition of male copulatory organ of our specimen damaged during preparation. Penis long, length 138. Accessory piece (Fig. 5L) rod-shaped with bifurcated base and widened tip, length 60. Vagina unsclerotized.

Dorsal anchor (Fig. 5A) total length 40; length to notch 35; outer root length 5, inner root length 9, point length 1. Dorsal bar (Fig. 5B) bow-shaped, total length 22, total width 6, median width 3. Ventral bar (Fig. 5C) broadly M-shaped, total length 35, total width 5, median width 3. Marginal hooks 7 pairs; hook length: pair I (Fig. 5D) 29; pair II (Fig. 5E) 30; pair III (Fig. 5F) 30; pair IV (Fig. 5G) 30; pair V (Fig. 5H), 27, pair VI (Fig. 5I) 29; pair VII (Fig. 5J) 32. Pair of needles (Fig. 5K) length 11.

Host. Silver carp Hypophthalmichthys molitrix (Cypriniformes: Cyprinidae)

Site of infection. Gill filaments.

Remarks. This species was originally described by Lee (1960) from the gills, oral cavity, and nasal cavity of H. molitrix in Wuhu, Anhui Province, China. Subsequently, it was reported from the same host in Hubei, Fujian, and Zhejiang provinces, China (Anonymous 1973a; Huang 1986; Wu and Wang 1991) and Far-East Russia (Yukihmenko 1972; Musselius 1973). Dactylogyrus chenshuchenae Gussev in Bykhovskaya-Pavlovskaya et al., 1962 described from the gill filaments of the same host in the Liao River, Liaoning Province, China, has been synonymized with D. wuhuensis (Anonymous 1973a). The haptoral structures and the accessory piece of the specimen examined in this study conform to those of Lee (1960), Wu and Wang (1991), Long (2000), and Gussev et al. (2010).

The present collection represents the first record of D. wuhuensis from Japan. This monogenean has been reported as an alien species parasitic on H. molitrix from Turkmenistan (Babayev 1964; Osmanov 1971), the Amu Darya River (Osmanov and Yusupov 1967), the European region of Russia (Musselius 1969), Kazakhstan (Gvozdev and Agapova 1977), the Aral Sea (Urzaizav and Kurbanova 2006), and Vietnam (Ký and Tê 2007).

Pseudergasilus polycolpus (not of Markewitsch, 1940): Markewitsch, 1946: 233. (in part, incorrect subsequent spelling for Pseudergasilus undulatus Markewitsch, 1940)
Sinergasius lieni Yin, 1949. NSMT-Cr 26718. A, whole mount (dorsal view); B, antennule; C, antenna; D, mandible, maxillule and maxilla; E, leg 1; F, leg 2; G, legs 3; H, leg 4; I, leg 5; J, urosome (ventral view). Scale bars: A, 500 µm; B–J, 50 µm.
Antenna (Fig. 6C) 4-segmented; first segment shorter than second segment and claw of the antenna (Bykhovskaya-Pavlovskaya et al. 1962). The antennule armature of S. lieni is obscure in the past descriptions (e.g., Yin 1949, 1956; Mirzoeva 1973), but the present description almost agrees with the figure of the redescription by Yin (1956: pl. 16, fig. 2) and redefined herein the armature formula.

The present collection represents the first record of S. lieni from Japan. This copepod is natively distributed in China and Far-East Russia with H. molitrix and H. nobilis (Markewitsch 1946; Yin 1956; Wang et al. 2014). It also infects H. harmandi Sauvage, 1884 (Cyprinidae) in Vietnam (Ký and Tê 2007). Sinergasilus lieni has been reported as an alien species from the European region of Russia (Musselius 1969; Mirzoeva 1972, 1973; Zhokhov and Molodzhnikova 2006), Hungary (Molnár and Székely 2004), and Macedonia (Dimovska and Stojanovski 2015) from H. molitrix and H. nobilis; and Serbia and Montenegro from H. nobilis (Cakic et al. 2004).

Japanese name. The new Japanese generic and specific name is a combination of "chūka" and "era-jirami", which mean China and a gill louse in Japanese, respectively ("zoku" means a genus).

Discussion

The dorsal anchor of Dactylogyrus skrjabini is similar to those of the species in the genus Pellucidhaptor Price and Mizelle, 1964 (Dactylogyroridae), and the generic position of D. skrjabini was doubted (Gerasiev 1990). Based on the phylogenetic analysis of 28S rDNA (Fig. 3), this species should be assigned to Dactylogyrus as in the past. Unfortunately, there are no available sequence data of Pellucidhaptor, and the residual problem is a future study subject. Dactylogyrus skrjabini and D. hypophthalmichthys form a sister group in the phylogenetic tree. This affinity can be supported by the observed similar composition of both male copulatory organs, i.e., the tip of rod-shaped accessory piece holds the penis. The infection sites of both species are different: D. skrjabini mainly infects the gill rakers, while D. hypophthalmichthys only the gill filaments. The speciation of these species might have been prompted by the differences in infection site on the same host species.

The ergasilid collected in this study is herein identified as Sinergasilus lieni, but our use of this scientific name needs some explanations. The species was first reported as “Pseudergasilus polycopus” Markewitsch, 1939” by Markewitsch et al. 2010: 1192, pl. 1; Delibaier et al. 2014: 93; Wang et al. 2014: 180; Dimovska and Stojanovski 2015: 33–37, figs 1–7.

Pseudergasilus undulatus (not of Markewitsch, 1940): Markewitsch 1956: 64–66 (in part); Markewitsch 1976: 98–100 (in part).

Material examined. Six whole and three dissected females (NSMT-Cr 26718).

Description of adult female. Body (Fig. 6A) elongate, cylindrical, length 1760–2066. Prososome length 1334–1775, width, 394–494, depth 181–340, 2.5–3.2 times as long as wide.

Body (Fig. 6A) elongate,

cylindrical, length 1760–2066. Prosome length 1334–1775, width, 394–494, depth 181–340, 2.5–3.2 times as long as wide.

Table 1. Armature formula of legs 1–4 of Sinergasilus polycolpus Yin, 1949, adult female, NSMT-Cr 26718. Arabic numbers = number of seta, Roman numbers = number of spines.

	Coxa	Basis	Exopod	Endopod
Leg 1	0-0	1-0	I-0; 1-1; II-5	0-1; 0-1; II-4
Leg 2	0-0	1-0	I-0; 0-1; 1-6	0-1; 0-2; I-4
Leg 3	0-0	1-0	I-0; 0-1; 1-6	0-1; 0-2; I-4
Leg 4	0-0	1-0	I-0; 1-5	0-1; 0-2; I-3

Host. Silver carp Hypophthalmichthys molitrix (Cyprini-formes: Cyprinidae)

Site of infection. Gill filaments.

Remarks. The specimens examined in this study conform to the descriptions of S. lieni by Yin (1949, 1956) from the bighead carp Hypophthalmichthys nobilis (Richardson, 1845) and H. molitrix in China. This species is differentiated from two congeners, Sinergasilus major (Markewitsch, 1940) and S. undulatus, based on the ratio of the length of the second segment and claw of the antenna (Bykhovskaya-Pavlovskaya et al. 1962). The antennule armature of S. lieni is obscure in the past descriptions (e.g., Yin 1949, 1956; Mirzoeva 1973), but the present description almost agrees with the figure of the redescription by Yin (1956: pl. 16, fig. 2) and redefined herein the armature formula.

The present collection represents the first record of S. lieni from Japan. This copepod is natively distributed in China and Far-East Russia with H. molitrix and H. nobilis (Markewitsch 1946; Yin 1956; Wang et al. 2014). It also infects H. harmandi Sauvage, 1884 (Cyprinidae) in Vietnam (Ký and Tê 2007). Sinergasilus lieni has been reported as an alien species from the European region of Russia (Musselius 1969; Mirzoeva 1972, 1973; Zhokhov and Molodzhnikova 2006), Hungary (Molnár and Székely 2004), and Macedonia (Dimovska and Stojanovski 2015) from H. molitrix and H. nobilis; and Serbia and Montenegro from H. nobilis (Cakic et al. 2004).

Japanese name. The new Japanese generic and specific name is a combination of "chūka" and "era-jirami", which mean China and a gill louse in Japanese, respectively ("zoku" means a genus).

Discussion

The dorsal anchor of Dactylogyrus skrjabini is similar to those of the species in the genus Pellucidhaptor Price and Mizelle, 1964 (Dactylogyroridae), and the generic position of D. skrjabini was doubted (Gerasiev 1990). Based on the phylogenetic analysis of 28S rDNA (Fig. 3), this species should be assigned to Dactylogyrus as in the past. Unfortunately, there are no available sequence data of Pellucidhaptor, and the residual problem is a future study subject. Dactylogyrus skrjabini and D. hypophthalmichthys form a sister group in the phylogenetic tree. This affinity can be supported by the observed similar composition of both male copulatory organs, i.e., the tip of rod-shaped accessory piece holds the penis. The infection sites of both species are different: D. skrjabini mainly infects the gill rakers, while D. hypophthalmichthys only the gill filaments. The speciation of these species might have been prompted by the differences in infection site on the same host species.

The ergasilid collected in this study is herein identified as Sinergasilus lieni, but our use of this scientific name needs some explanations. The species was first reported as “Pseudergasilus polycopus” Markewitsch, 1939” by Markewitsch...
(1946) from the gills of crucian carp Carassius carassius (Linnaeus, 1758) from Lake Hanka and Hypophthalmichthys molitrix from the Amur River in Russia. However, the ergasilid was named as Pseudergasilus undulatus Markewitsch, 1940 in Markewitsch (1940a). Later, Markewitsch (1956: 64–68), the same author, stated that “The name P. polycolpus used for this species [= P. undulatus] in our [sic] article (Markewitsch, 1946) is due to oversight” (English translation in Markewitsch [1976]) and did not recognize P. polycolpus as a valid taxon. Further, there was no description of P. polycolpus in the Markewitsch’s paper (Markewitsch 1939, actually 1940a) and book (Markewitsch 1940b), and then Markewitsch (1946) did not propose a diagnosis of P. polycolpus nor indicate his purpose to establish a new taxon. Thus, “Pseudergasilus polycolpus Markewitsch, 1939” can be regarded as an incorrect subsequent spelling of “Pseudergasilus undulatus Markewitsch, 1939 (=1940)” (ICZN 1999: Article 33.3, 33.5). In China, Yin (1949) described S. polycolpus as the scientific name of the ergasilid. Based on the prevailing usage (ICZN 1999: Article 33.3.1), S. polycolpus can be regarded as a correct original spelling. However, this treatment does not replace “polycolpus” with “polycolpus” and “undulatus” and is considered inappropriate because P. undulatus (= S. undulatus) is still accepted as a valid taxon differed from S. polycolpus (=S. lieni) (e.g., Yin 1956; Anonymous 1973b; Bykhovskaya-Pavlovskaya et al. 1962; Gussev 1987). In addition, Markewitsch’s (1936) opinion to synonymize S. lieni with P. undulatus was rejected by Bykhovskaya-Pavlovskaya et al. (1962) and Gussev (1987), both of whom regarded S. lieni as a valid taxon. As stated above, “Pseudergasilus polycolpus Markewitsch, 1939” is an incorrect subsequent spelling of P. undulatus, and S. lieni is the oldest available scientific name of the ergasilid and, therefore, is herein used an accepted name for the ergasilid found in this study.

Nineteen species of alien fishes have been established in the Watarase Retarding Basin (Sekine 2009; Nitta et al. 2016). The parasites reported herein have a simple life cycle (Mirzoeva 1972, 1973; Volovic 1973), and other alien monogeneans and parasitic copepods may be co-established in the basin with the other alien fishes. It is necessary to clarify the alien and native parasite fauna of this area and the imperfections of alien parasites on domestic fishes.

Acknowledgments

We thank Takanori Ishikawa, Nihon University, and Takashi Kimura, Shimotsuga Fisheries Cooperative, for their help with fish sampling. We are also grateful to Koi-chiro Kawai, Hiroshima University, for his assistance with molecular analysis. This study was partially supported by JSPS KAKENHI grants (no. 15K05777 to M. N. and no. 15K07527 to K. N.)

References

Achmerow, A. K. 1952. [New species of monogenetic trematodes of the fishes of Amur River]. Parazitologicheskiy Sbornik Zoologicheskogo Institut Akademii Nauk SSSR 14: 181–212. [In Russian]
Achmerow, A. K. 1954. [A new species of Dactylogyrus from the gills of Amurean Hypophthalmichthys molitrix (Val.)] Doklady Akademii Nauk SSSR 98: 167–168. [In Russian]
Agapova, A. I. 1966. Parasites ryb vodoemov Kazakhstana [Parasites of fish in water reservoirs of western Kazakhstan]. Nauka, Alma-Ata, 342 pp. [In Russian]
Akmetov, B. A. 1963. [Change helmintoha fauna Amur fish in the process of acclimatization]. Problemy rybnoy zemel'. izpol'zovaniya rastitel'noyadnykh ryb v vodoyemakh SSSR, Ashkhabad 1963: 161–166. [In Russian]
Akmetov, B. A. 1966. [Parasites of herbivorous fish in Alma-Ata prud-hoz]. Biologicheskiy osnovy rybnoy khoyastva na vody-emakh Sredney Azii i Kazakhstana: Materialy nauch. konfer-entsii po probleme “Biol. osnovy osvoeniy, rational'nogo ispol'zovaniya i vosproizvodstva rybnych zapasov v vodoyemakh Sred. Azii i Kazakhstana” (12–17 apr. 1965 g., Alma-Ata): 257–259. [In Russian]
Ali, N. M., Mhaisen, T., Abul-Eis, E. S., and Kadim, L. S. 1989. Parasites of the silver carp, Hypophthalmichthys molitrix from Babylon fish farm, Hilla, Iraq. Rivista di Idrobiologia 28: 151–154.
Al-Jawda, J. M. and Asmar, K. R. 2015. A second collection of mono- geneans and trematodes (phylum Platyhelminthes) parasitic on some fishes from Tigris River at Baghdad Province, Iraq. Annual Research & Review in Biology 7: 126–132.
Al-Saadial A. J., Mhaisen, F. T., and Hasan, H. R. 2010. Ectoparasites of seven fish species from Al-Husainia Creek, Karbala province, Mid Iraq. Journal of Kerbala University 8: 1–7.
Anonymous. 1973a. Dactylogyrus wuhuensis Lee, 1960, Dactylogyrus hypophthalmichthys Achmerow, 1952, Dactylogyrus skrjabini Ach-merow, 1954. Pp. 138–139, 371–372. In: Institute of Hydrobiol-ogy of Hubei Province (Ed.) Hubei Sheng Yu bing Bingyuans Qa xi Yu Zhi [An Illustrative Guide to the Fish Diseases and Causative Pathogenic Fauna of Hubei Province]. Science Press, Peking. [In Chinese]
Anonymous. 1973b. Sinergasilus polycolpus (Mark., 1939). Pp. 235–236, 432. In: Institute of Hydrobiology of Hubei Province (Ed.) Hubei Sheng Yu bing Bingyuans Qa xi Yu Zhi [An Illustrative Guide to the Fish Diseases and Causative Pathogenic Fauna of Hubei Province]. Science Press, Peking. [In Chinese]
Anonymous. 1978. [Monogeneans of freshwater fish—catalogue of Dac-tylogyridae in China]. Journal of Huazhong Agricultural Univer-sity 1978: 24–63, 13 pls. [In Chinese]
Babayev, B. 1964. [Parasites of herbivorous fish undergoing acclimati-zation in the waters of the Turkmenskii SSR]. Izvestiya Akademii Nauk Turkmenskoi SSR, Seriya Biologicheskikh nauk 1964: 47–52. [In Russian]
Bauer, O. N. and Hoffman, G. L. 1976. Helminth range extension by translocation of fish. Pp. 163–172. In: Page, L. A. (Ed.) Wildlife Diseases. Springer Science Business Media, New York.
Belova, S. V. 1977. Variability of chitinoid structures of Dactylogyrus hypophthalmichthys (Monogeneidea) in relation to host size and season. Pp. 38–43. In: Skarlato O. A. (Ed.) Investigation of Monoge-neans in the USSR. Russian Translations Series 62, A.A. Balkema, Rotterdam.
Blanc, G. 1997. L'introduction des agents pathogènes dans les écosys-
tèmes aquatiques: aspects théoriques et réalités. Bulletin français de la pêche et de la pisciculture 344/345: 489–514.

Bogdanova, E. A. 1957. On the biology of Dactylogyrus skrjabini Achmerov, 1954, a parasite of the Amurian fish Hypophthalmichthydae [sic] molitrix. Val. Doklady Akademii Nauk SSR 133: 1391–1393. [In Russian with English title]

Bozorgnia, A., Youssefi, M. R., Barzegar, M., Hosseinifard, S. M., and Emamgholi, S. 2012. Diversity of parasites of fishes in Ghashlagh (Vahdat) Reservoir, Kurdistan Province, Iran. World Journal of Fish and Marine Sciences 4: 249–253.

Brünnich, M. Th. 1772. Zoologica fundamenta praeblectionibus academici accommodata. Grunale und Dyrelaeren. Apud Frider. Christ. Pelt. Hafniae et Lipsiae, 254 pp.

Burmeister, H. 1834. Beiträge zur Naturgeschichte der Rankenfüßer (Cirripedia). G. Reimer, Berlin, 60 pp.

Burmeister, H. 1835. Beschreibung einiger neuen oder weniger bekannten Schmarotzerkrebs, nebst allgemeinen Betrachtungen über die Gruppe, welcher sie anhören. Nova Acta Physico-Medica Academiae Caesareae Leopoldino-Carolinae Naturae Curiosorum 17: 269–336, pls 23, 24, 24a, 25.

Bychowsky, B. E. 1937. Beitrag zur Kenntnis neuer monogeneticher Fischtematoclen aus elem Kaspisee nebst einigen Bemerkungen über die Systematik der Monopisthodiscus fauna. 1932. Zoologischer Anzeiger 105: 17–38.

Bychowsky, B. E. 1937. Ontogenese und phylogenetische Beziehungen der parasitischen Plathelmintes. Izvestiya Akademii Nauk SSSR. Seriya Biologicheskaya 4: 1353–1383. [In Russian with German abstract]

Bykhovskaya-Pavlovskaya, I. E., Gussev, A. V., Gusev, A. V., and Pugachev, O. N. 2010. Order Dactylogyrana. Pp. 378–524. Gussev, A. V. 1987. Arthropoda. Pp. 378–524. Gussev, A. V. 1985. Monogenea. Pp. 10–268. Gussev, A. V. 1967. The morphological criterion and characters of freshwater monogenetic trematodes in modern taxonomy. Parasitologiya 1: 55–66. [In Russian]

Cakic, P., Lenhardt, M., and Kolarevic, J. 2004. Sinergasius polycolpus, a new copepod species in the ichthyoparasitofauna of Serbia and Montenegro. Diseases of Aquatic Organisms 58: 265–266.

Chang, C.-y. and Ji, G.-l. 1978. A preliminary report on monogeneic trematodes of commercial fishes from the Lake Hong-hu, with description of two new species. Acta Hydrobiologica Sinica 6: 353–363. [In Chinese with English abstract]

Chen, Z. 1981. Classification for Monogenoeidea parasitized on freshwater fishes on Northern China. Journal of Shandong University (Natural Science) 1981: 113–123. [In Chinese with English abstract]

Chentsov, Yu. S. and Kirichenko, L. M. 1970. [Monogenic trematodes Nikolskays fish hatcheries]. Voprosy Morfologii i Parasitologii Zhivotnykh. Volgograd 31: 113–120.

Davydov, O. N., Kuzovskaya, L. Y., Temnikhanov, Y. D., and Nebrochek, S. I. 2012. Parasites of some invasive fishes of the fresh water. Hydrobiological Journal 48: 72–84.

Delibaier, Liu, X.-c., Jiao, L., Hao, C.-l., Zhu, M.-y., Zhou, Y., Zhang, F., and Yue, C. 2014. Species of parasitic crustacean of fishes in Eging River. Journal of Hydroecology 35: 92–96. [In Chinese with English abstract]

Diesing, K. M. 1850. Delibaier, Liu, X.-c., Jiao, L., Hao, C.-l., Zhu, M.-y., Zhou, Y., Zhang, F., and Yue, C. 2014. Species of parasitic crustacean of fishes in Eging River. Journal of Hydroecology 35: 92–96. [In Chinese with English abstract]

Diesing, K. M. 1850. Systematics. Pp. 233–261. In: Courtenay, W. R. Jr. and Stauffer, J. R. Jr. (Eds) Systematic Biology and Management of Exotic Fishes. The Johns Hopkins University Press, Baltimore and London.

Hoffman, G. L. 1999. Parasites of North American Freshwater Fishes. Second Edition. Cornell University Press, Ithaca, 539 pp.

Hoffman, G. L. and Schubert, G. 1984. Some parasites of exotic fishes. Pp. 233–261. Kohnen, W. R. Jr. and Stauffer, J. R. Jr. (Eds) Distribution Biology and Management of Exotic Fishes. The Johns Hopkins University Press, Baltimore and London.

Hosoya, K. 2013. Cyprinidae. Pp. 308–327, 1813–1819. In: Nakabo, T. (Ed.) Fishes of Japan with Pictorial Keys to the Species, Third Edition. Tokai University Press, Hadano. [In Japanese]

Huang, S. 1986. A catalogue of monogenetic parasites on freshwater fish of Fujian Province. Journal of Jimei University (Natural Science) 2: 9–24. [In Chinese with English abstract]

Humes, A. G. and Gooding, R. V. 1964. A method for studying the external anatomy or copepods. Crustacea 6: 238–240.

ICZN 1999. International Code of Zoological Nomenclature. International Trust for Zoological Nomenclature, London, xxii + 306 pp.

Jalali, B. and Barzegar, M. 2006. Fish Parasites in Zarivar Lake. Journal of Agricultural Science and Technology 8: 47–58.
Jalili, B. and Molnár, K. 1990. Occurrence of monogeneans on fresh-water fishes in Iran: Dactylogyrus spp. On cultured Iranian fishes. Acta Veterinaria Hungarica 38: 239–242.

Ji, G., Zhang, J., and Chen, C. 1982. A list of monogenetic trematodes of freshwater fishes from China. Journal of Huazhong Agricultural College, Supplement 4: 1–32. [In Chinese with English abstract]

Jin, X., Dae, Z., Liu, X., Zeng, G., Zhang, B., He, S., and Xiang, J. 1993. Investigation and studies of fish parasites and pathogen flora in Huan Province. Journal of Hunan Agricultural College 19: 297–389. [In Chinese with Chinese abstract]

Johnson, P. T. J. and Lunde, K. B. 2005. Parasite infection and limb malformations: a growing problem in amphibian conservation. Pp. 124–138. In: Lannoos, M. (Ed.) Amphibian Declines: the Conservation Status of United States Species. University of California Press, Berkeley.

Karabekova, D. U. 2008. Monogenea of the Chu River basin. Parasitologiya 42: 330–334. [In Russian with English abstract]

Kirichenko, L. M. 1972. [Parastizofauna of Nicholas fish hatchery]. Pp. 113–122. In: Markov, G. (Ed.) Voprosy Morfologii, Biologii i Parasitologii Zhivotnykh [Questions on Morphology, Ecology and Parasitology of Animals]. Volgogradskaya Pravda, Volgograd. [In Russian]

Kolar, C. S., Chapman, D. C., Courtenay, W. B. Jr., Houseal, C. M., Wil- liams, J. D., and Jennings, D. P. 2005. Asian Carp of the Genus Hypophthalmichthys (Pisces, Cyprinidae) — A Biological Synopsis and Environmental Risk Assessment. U.S. Fish and Wildlife Service, Washington, D.C. 175 pp.

Kuang, P. 1991. Parasitic Crustacea on fishes from Yunnan, China, with description of a new species. Zoological Research 12: 343–348. [In Chinese with English abstract]

Kuang, P.-r. and Liu, D.-s. 1992. Comparative study on the thorax-plate deformations: a growing problem in amphibian conservation. Pp. 1–32. In: Lannoos, M. (Ed.) Amphibian Declines: the Conservation Status of United States Species. University of California Press, Berkeley.

Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: molecular evolu- tionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874.

Ký, H. and Tê, B. Q. 2007. Ký Sinh Trùng cá Nước Ngọt Việt Nam [Parasites of Freshwater Fish in Vietnam]. Science and Technics Publisher, Hanoi, 360 pp. [In Vietnamese]

Lee, Y.-t. 1960. Description of a new species of Dactylogyrus from pond rearing Hypophthalmichthys molitrix (Dactylogyrus wuhuensis Lee sp. nov.). Journal of Wannan University 1960(3): 1–4. [In Chinese with English abstract]

Lee, Y.-t. 1963. [Dactylogyrid parasites of cultured fish of pond in Wuhu Region]. Journal of Anhui Agricultural Sciences 6: 76. [In Chinese]

Li, G. and Zhang, J. 1992. Monogenea of South China fresh water fishes XI — Monogenean list of freshwater fishes of Guangxi. Journal of Guangxi Normal University 10: 90–94. [In Chinese with English abstract]

Long, S. 2000. Dactylogyrus wuhuensis Lee, 1960, Dactylogyrus hypoph- thalmichthys Achmerow, 1952. Dactylogyrus skrjabini Achmerow, 1954. Pp. 92–96. In: Wu, B., Long, S., Wang, W., Ma, C., Jiang, N., Chen, Z., Liu, J., Liang, R., Yao, W., and Zhao, Y. (Eds) Fauna Sinica, Platycladimnethes Monogenea. Science Press, Beijing. [In Chinese]

Long, S. and Lee, W.-c. 1960. Worm parasites from Taihu fishes: Monogenea III. Two additional Dactylogyrus from Yuen and Lien with the description of a new species. Acta Zoologica Sinica 12: 217–220. [In Chinese with English abstract]

Long, S. and Yu, K. 1958. [Parasitic worms of Lake Taihu fishes. Mono- genea I. Dactylogyrus (Dactylogyridae): dactylogyrid parasitic on Aristichthys nobilis, Hypophthalmichthys molitrix, Ctenopharyn- godon idella, Parahrami pekinensis, Megalobrama terminals, and Megalobrama terminals with description of two new species]. Journal of East China Normal University (Natural Science) 1958: 7–19. [In Chinese]

Ma, C. and Li, Y. 1991. The parasitic Monogenea of fishes from Sichuan Province. Journal of Chongqing Teachers College (Natural Science Edition) 8: 1–18. [In Chinese with English abstract]

Margaritov, N. and Van Thân, N. 1985. Studies on the parasite status and morphometry of monogeneans from breeding material of herbivorous fishes in Bulgaria. Khelmintologiya 20: 50–59. [In Bulgarian with English abstract]

Markewitsch, A. P. 1940a. New representatives of Copepoda parasitica of the family Ergasilidae. Prasi Nauk-Dosidl Zool.-Biologii Instituta Kharkiv. L’Universite de Kiev. Travaux de l’Institut de Recherches Scientifiques de Biologie 4: 107–123. [In Ukrainian with English title]

Markewitsch, A. P. 1940b. Khvoroby Prisnovodnykh Ryb [Diseases of freshwater fishes]. Vydavatelayo Akademii Nauk URSR, Kiev, 167 pp. [In Ukrainian]

Markewitsch, A. P. 1946. Parasitic copepods of fishes in the Amur R. Basin. Kyyivsky Derzhavnyy Univerystet, Naukovy Zapsyky 5: 225–246. [In Ukrainian with English abstract]

Markewitsch, A. P. 1956. Paraziticheskii Veselonye Ryb SSSR. [Parasitic Copepods on the Fishes of the USSR]. Izdatelstvo Akademii Nauk Ukrainkoi SSR, Kiev, 259 pp. [In Russian]

Markewitsch, A. P. 1976. Parasitic Copepods on the Fishes of the USSR. Indian National Scientific Documentation Centre, Hillside Road, New Delhi, 445 pp. [Translated from Russian]

Matsuzawa, Y. and Senou, H. 2008. Alien Fishes of Japan. Bun-i-chi Co., Ltd., Tokyo, 160 pp. [In Japanese]

Mhaisan, F. T. and Al-Rubaie, A. L. 2016. Checklist of parasites of farm fishes of Babylon province, Iraq. Journal of Parasitology Research 2016: 7170534.

Mhaisan, F. T., Ali, A. H., and Khamees, N. R. 2013. Checklists of monogeneans of freshwater and marine fishes of Basrah Province, Iraq. Basrah Journal of Agricultural Sciences 26: 26–49.

Mhaisan F. T., Ali, N. M., Abul-Eis, E. S., and Kadim, L. S. 1988. First record of Dactylogyrus achmerowi Guusev, 1955 with an identifica- tion key for the Dactylogyrid fishes of Iraq. Journal of Biological and Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874.

Mhaisan, F. T., Al-Niaem, K. S., and Al-Zabady, A. B. 2012. Literature review on fish parasites of Al-Furat fish farm, Babylon Province, Iraq. Iraqi Journal of Aquaculture 9: 93–122.

Mhaisan F. T., Al-Niaem, K. S., and Jassim, A. A. B. 2010. Parasites and disease agents of cultured of Basrah Province Iraq: the present status. Basrah Journal of Agricultural Sciences 23: 92–106.

Milne Edwards, H. 1840. Histoire Naturelle des Crustaces, Compendant l’Anatomie, la Physiologie et la Classification de ces Animaux III. Li- brairie Encyclopédique de Roret, Paris, 638 pp.

Mirzoeva, L. M. 1972. Life cycle and biology of Sinergasilus lienii Yin 1949 (Crustacea, Copepoda, parasitica). Parazitologiya 6: 252–258.

Mirzoeva, L. M. 1973. Lifecycle and morphology [sic] of Sinergasilus lienii Yin, 1949 (Copepoda, Parasitica). Trudy Vsesoyuznogo Nauchnogo Issledovatelskogo Instituty Prudovogo i Rybnyho Khozyaistwa 22: 143–158. [In Russian with English abstract]

Mizelle, J. D. 1936. New species of trematodes from the gills of Illinois fishes. American Midland Naturalist 17: 785–806.
Mizelle, J. D. and Donahue, M. A. 1944. Studies on monogenetic trematodes XI. Dactylogyridae from Algonquin Park fishes. American Midland Naturalist 17: 600–624.

Molnár, K. 1984. Occurrence of new monogeneans of Far-East origin on the gills of fishes in Hungary. Acta Veterinaria Hungarica 32: 153–157.

Molnár, K. and Székely, Cs. 2004. Occurrence and pathology of Siner- gasius beni (Copepoda: Ergasilidae), a parasite of the silver carp and bighead, in Hungarian ponds. Acta Veterinaria Hungarica 52: 51–60.

Mołodożnikowa, N. M. and Zhokhov, A. E. 2006. Taxonomic diversity of parasites from aganathas and fishes in the Volga basin. II. Parasitic Coelenterata and Monogenea. Parazitologiya 40: 328–354. [In Russian with English abstract]

Moravec, F. 2001. Checklist of the Metazoan Parasites of Fishes of the Czech Republic and the Slovak Republic (1873–2000). Academia, Praha, 168 pp.

Musselius, V. A. 1969. Parasites of phytophagous fishes from the Far East cultivated in ponds of the European part of the USSR. Parazi- tologiya 3: 236–243. [In Russian with English abstract]

Musselius, V. A. 1973. Parasites and diseases of Far-East complex gras- ses feeding in USSR ponds. Trudy Vsesoyuznogo Nauchno-issledovateyskogo Instituta Prudnovogo Rybvnovo Khozaistva 22: 4–129. [In Russian with English abstract]

Musselius, V. A. 1977. Monogeneans of fish farms and their importance in modern methods of pisciculture. Pp. 143–151. In: Skarlatova O. A. (Ed.) Investigation of Monogeneans in the USSR. Russian Translations Series 62, A. A. Balkema, Rotterdam.

Nakamura, M. 1949. Notes on the Chinese cyprinids, Ctenopharyngodon idellus (Cuv. et Val.) and Hypophthalmichthys molitrix (Cuv. et Val.) propagating in Japan. Miscellaneous Reports of the Research Institute for Natural Resources 14: 31–34. [In Japanese with English abstract]

Nie, P. and Yao, W. J. 2000. Seasonal population dynamics of parasitic copepods, Siner- gasius spp. on farmed fish in China. Aquaculture 187: 239–245.

Nitta, M., Ishikawa, T., and Nagasawa, K. 2016. Record of Tachysurus fulvidracus (Siluriformes: Bagridae) based on specimens from Watarase Retarding Basin in Tochigi Prefecture, central Japan. Bulletin of the Biogeographical Society of Japan 71: 259–263. [In Japanese with English abstract]

Nitta, M. and Nagasawa, K. 2016. A new species of Dactylogyra (Monogenea: Dactylogyridae) parasitic on an endangered fresh- water fish, Rhodeus arenae, endemic to Japan. Parasiti- tology International 65: 483–487.

Nitta, M. and Nagasawa, K. 2018. Gyrodactylus madoka n. sp. (Monoge- nea: Gyrodactylidae) parasitic on wild and laboratory-reared medaka Oryzias latipes (Beloniformes: Adianichthyidae) in Japan. Parasitology International 67: 651–658.

Obata, T., Ishi, J., Kadoka, T., and Washitani, I. 2012. Effect of past top- soil removal on the current distribution of threatened plant spe- cies in a moist tall grassland of the Watarase wetland, Japan: Mapping of selected sites for wetland restoration by topsoil removal. Japanese Journal of Conservation Ecology 17: 221–233. [In Japanese with English abstract]

Odhnner, T. 1912. Die Homologien der Weiblichen Genitalwege bei den Trematoden und Cestoden. Nebst Bemerkungen zum natürlichen System der monogenen Trematoden. Zoologischer Anzeiger 39: 337–351.

Ogawa, H. 2012. Ramsar convention registered of the Watarase Retard- ing Basin. Kasen 68 (10): 38–40. [In Japanese with English title]

Osmanov, S. O. 1971. Parazity Ryb Uzbekistana [Parasites of fish of Uzbekistan]. Izdatelstvo EAN Uzbekskoj SSR, Taskent, 530 pp. [In Russian]

Osmanov, S. O. and Yusupov, O. 1967. Pp. 211–212. In: Ostroverklov A. P. (Ed.) Biologicheskije osnovy rybnych khozayavstva respublik Srednyj Azii i Kazakhstana [Biological basis of fisheries in water bodies of Central Asia and Kazakhstan]. Nauka, Kazakhskoy SSR, Alma-Ata. [In Russian]

Pazooki, J. and Masoumian, M. 2012. Synopsis of the parasites in Ira- nian freshwater fishes. Iranian Journal of Fisheries Sciences 11: 570–589.

Peng, G.-x., Gao, Q., Song, Y., Zhao, Q.-p., Luo, Y.-l. and Nie, P. 2010. Mitochondrial genes of Siner- gasius polycolpus (Copepoda, Ergasi- lidae) parasitizing the gills of fish. Acta Hydrobiologica Sinica 34: 177–183. [In Chinese with English abstract]

Pojmanska, P. 1995. Seasonal dynamics of occurrence and reproduc- tion of some parasites in four cyprinid fish cultured in ponds. II. Monogenea. Acta Parazitologica 40: 79–84.

Rohde, K. 1979. A critical evaluation of intrinsic and extrinsic factors responsible for niche restriction in parasites. The American Natu- ralist 114: 648–671.

Salih, N. E., Ali, N. M., and Abdul-Amee, K. N. 1988. Helmynth fauna of three species of carp raised in pond in Iraq. Journal of Biological Science Research 19: 369–386.

Sefrová, H. and Lastůvka, Z. 2005. Catalogue of alien animal species in the Czech Republic. Acta Universitatis Agriculturae et Silvicultu- rae Mendelianae Brunensis 53: 151–170.

Selekine, K. 2009. Watarase Yûsui-chi no Sakana Zukan [Freshwa- ter Fishes of the Watarase Retarding Basin]. Watarase Yûsui-chi Akurîmëshon Shintó Zaidan, Tochigi, 64 pp. [In Japanese]

Singh, H. S. and Chaudhary, A. 2010. Genetic characterization of Dac- tylogyroides longicirrus (Tripathi, 1959) Gussev, 1976 by nuclear 28S segment of ribosomal DNA with a morphological redescrip- tion. Scientia Parasitologica 11: 119–127.

Song, D.-s. and Kuang, P.-r. 1990. Zhîngwû Dângwû. Jiâ qiao Dângwû. Di Sì Cè [Illustrations of Chinese Animals. Crustacea. Vol- ume 4]. Science Publisher, Beijing, 90 pp. [In Chinese]

Song, Y., Wang, G. T., Yao, W. J., Gao, Q., and Nie, P. 2008. Phylogeny of freshwater parasitic copepods in the Ergasilidae (Copepoda: Pec- cilostomatoida) based on 18S and 28S rDNA sequences. Parasitol- ogy Research 102: 299–306.

Tan, W. B., Fong, M. Y., and Lim, L. H. S. 2011. Relationships of the heteronchelidids (Heteronchelidae, Eutrichonchorus and Tri- anchoratus) as inferred from ribosomal DNA nucleotide sequence data. The Raffles Bulletin of Zoology 59: 127–138.

Urzâeva, A. N. and Kurbâнова, A. I. 2006. Parasitofauna of fish of the Far East complex established in reservoirs of the southern Aral Sea. Vestnik zoologii 40: 535–540.

van Beneden, P. J. 1858. Mémoire sur les vers intestinaux. Mémoire qui a obtenu de l’Institut de France (Académie des Sciences) le Grand Prix des Sciences physiques pour l’année 1853. Comptes Rendus des Séances de l’Académie des Sciences, Supplément 2: 1–376.

Van Le, H. L., Lecointre, G., and Perasso, R. 1993. A 28S rRNA based phylogeny of the gnathostomes: First steps in the analysis of con- flict and congruence with morphological based cladograms. Mo- lecular Phylogenetics and Evolution 2: 31–51.

Volovic, S. V. 1973. Life cycle and biology of Dactylogyra hypophthal- michtys, Achmerov, 1952. Trudy Vsesoyuznogo Nauchno-issledovateyskogo Instituta Prudnovogo Rybvnovo Khozaistva 22: 130–142. [In Russian with English abstract]

Wang, G. T., Li, W. X., Yao, W. J., and Nie, P. 2002. Mortalities induced by the copepod Siner- gasius polycolpus in farmed silver and big- head carp in a reservoir. Diseases of Aquatic Organisms 48: 237–239.

Wang, J.-j., Duan, S. Jiao, L., Jia, S.-a., Hao, C.-l., Wang, X., and Yue, C. 2014. The Parasites fauna research on fishes in Shihzen Daquan- gou. Xinjiang Agricultural Sciences 51: 178–182. [In Chinese with
Gill parasites of silver carp in Japan

73

English abstract

Wang, K.-n. 1959. Preliminary studies on the parasitic crustaceans found on the fresh-water fishes in Nanking, China. Journal of Nanjing University, Natural Sciences 23–30. [In Chinese with English abstract]

Wu, N. 1963. [Ecology and fauna of fish parasites in Tangxi area, Hangzhou I. Studies on the Monogenea.] Journal of Hangzhou University (Nature Science) 1963: 109–120. [In Chinese with Russian abstract]

Wu, B. and Wang, S. 1991. Dactylogyridae. Pp. 46–136. In: Wu, B., Sun, X., and Song, C. (Eds) Fauna of Zhejiang, Trematoda. Zhejiang Science and Technology Publishing House, Zhejiang. [In Chinese with English abstract]

Wu, X.-y., Xie, M.-q., and Li, A.-x. 2007. Initial radiation of Dactylogyrus and coevolution with the dactylogyrid-cyprinid association. Acta Zoologica Sinica 53: 651–658. [In Chinese with English abstract]

Xia, X.-q. and Wang, W.-j. 1998. Studies on the behavior of three species of monogeneans. Journal of Chongqing Teachers College (Natural Science Edition) 15: 18–21. [In Chinese with English abstract]

Xia, X.-q., Wang, W.-j., and Lu, C.-p. 2000. The distribution of monogenean parasites on aquatic vertebrates inhabiting Chinese inland waters. Systematic Parasitology 46: 151–155.

Xu, D.-y., Sun, L.-h., Han, X.-q., Li, X., and Liu, R.-l. 2001. Investigation and research on fish parasites within Baotou. Acta Scientiarum Naturalium Universitatis NeiMongol 32: 714–716. [In Chinese with English abstract]

Yamaguti, S. 1963a. Systema Helminthum IV. Monogenea and Aspidocotylea. Interscience Publishers, New York, v+699 pp.

Yamaguti, S. 1963b. Parasitic Copepoda and Branchiura of Fishes. Interscience Publishers, New York, vii+1104 pp.

Yao, W.-j. 2000. [Investigation on the monogeneans parasitic on fishes in Jiangkou Reservoir]. Reservoir Fisheries 20: 25–26. [In Chinese]

Yao, W.-j. and Nie, P. 2004. Population distribution and seasonal alternation of two species of monogeneans on the gills of Hypophthalmichthys molitrix and Ctenopharyngodon idella. Acta Hydrobiologica Sinica 28: 664–667. [In Chinese with English abstract]

Yin, W.-y. 1949. Three new species and a new genus of parasitic copepods (Ergasilidae) from Chinese pond fishes. Sinensia 20: 32–42.

Yin, W.-y. 1956. Studies on the Ergasilidae (parasitic Copepoda) from the freshwater fishes of China. Acta Hydrobiologica Sinica 1956: 209–270, pls 1–18.

Yukhimenko, S. S. 1972. [Parasitic fauna of silver carp Hypophthalmichthys molitrix (Val.), and grass carp Ctenopharyngodon idella (Val.) in the Amur River]. Izvestiya Tikhookeanskogo Nauchno-Issledovatskogo Instituta Rybnogo Khozyaistva i Odeanografii (TINRO) 77: 151–159. [In Russian]

Zaichenko, N. 2015. Age and seasonal dynamics of the symbionces of grass carp and silver carp on fish pond. Fisheries Science of Ukraine 2015: 69–80. [In Ukrainian with English abstract]

Zhang, C., Zhao, Y.-k., Ling, F., and Wang, G.-x. 2011. Establishment of a screening method for drugs against monogenean. Journal of Northwest A & F University (Natural Science Edition) 39: 28–34. [In Chinese with English abstract]

Zhang, J. 1981. Thirty-five species of monogenetic trematodes from freshwater fishes in China. Journal of South China Normal University (Natural Science Edition) 1981: 62–76. [In Chinese with English abstract]

Zhang, J., Li, Z., An, D., and Wen, J. 1992. Monogenea of South China freshwater fishes XIII. List of Polyonchoinea from Guangdong Province. Journal of South China Normal University (Natural Science Edition) Biology Monograph: 124–137. [In Chinese with English abstract]

Zhang, K. 2012. The Parasite Release Hypothesis and the Success of Invasive Fish in New Zealand. Ph.D. dissertation, University of Waikato, Auckland, 180 pp.

Zhao, J.-s. 2011. The Classification and Population Biology on Monogenea of Fishes in Ergis River. Ph.D. dissertation, Xinjiang Agricultural University, Urumqi, VI+72 pp.

Zhokhov, A. E. and Molodozhnikova, N. M. 2006. Taxonomic diversity of parasites in agnaths and fishes from the Volga River Basin. VII. Crustacea and Hydracarina. Parazitologiya 42: 476–485. [In Russian with English abstract]

Zhores, A. E. and Molodozhnikova, N. M. 2006. Taxonomic diversity of parasites in agnaths and fishes from the Volga River Basin. VII. Crustacea and Hydracarina. Parazitologiya 42: 476–485. [In Russian with English abstract]

Zhou, N., Li, F.-c., Cao, J.-y., Kang, X.-j., Zhang, Z.-h., and Li, Q.-z. 2014. [Investigation of dactylogyrid parasitic on four commercial fish in Baiyangdian]. Hebei Fisheries 243: 17–21. [In Chinese]

Zhu, N.-n., Gao, Q., Li, W.-x., Song, Y., Yao, W.-j., and Nie, P. 2010. Observation on three species of Sinergasilus (Copepoda: Ergasilidae) by scanning electron microscopy. Acta Hydrobiologica Sinica 34: 1190–1192. [In Chinese with English abstract]

Zonn, I. S., Glantz, M., Kosarev, A. N., and Kostianoy, A. G. 2009. The Aral Sea Encyclopedia. Springer Science+Business Media, Berlin and Heidelberg, viii+290 pp.