Progress and Problems in Nutraceuticals Delivery

Noha M. Zaki*
Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, KSA

Abstract

Nutraceuticals have always been considered as natural and safe supplements that may prevent disease, may substitute prescription drugs, may compensate for a poor diet or promote health. Several nutraceuticals products are in the market at present most of which are antioxidants and probiotics. The majority of nutraceutical products are intended for oral administration however, concerns related to their formulation, bioavailability and/or their site specific delivery arise. The labile nature, oral absorption and target-ability are the major underlying causes for poor nutraceuticals oral delivery. Investigators attempted to circumvent these obstacles by wide spectrum approaches tailored for each specific nutraceutical with solubility-enhancement techniques being the most commonly tackled. Recently, nanosizing techniques are utilized to answer the problem of nutraceuticals delivery with promising results in terms of nutraceutical-protection and stability on shelf and in vivo, solubility and dissolution rate enhancement, intestinal permeability improvement, intracellular and subcellular organelle targeting as well as extended circulation half-life all of which result in boosted bioavailability. The present review elucidates the progress and problems in the oral delivery of nutraceuticals.

Keywords: Nutraceuticals; Delivery oral; Targeting; Solubility enhancement; Probiotics; Antioxidants; Nanotechnology; Bioavailability

The International Food Information Council (IFIC) has defined foods that afford health benefits beyond basic nutrition, as “functional foods.” These can range from broccoli to fortified foods such as calcium-fortified orange juice, to soy-based products to dietary supplements [1]. The formulation of the dietary supplements, functional foods or herbal products into marketed medicinal products is known as “nutraceuticals”; a term which combines “nutrition” and “pharmaceuticals”. The nutraceuticals have many therapeutic benefits, and are especially relevant as antifatigue or for preventing or delaying a number of age-related diseases, i.e. arthritis, cancer, metabolic and cardiovascular diseases, Alzheimer’s, Huntington disease, osteoporosis, cataracts, brain disorders, etc. [2]. Examples of nutraceuticals widely used nowadays are the polyvitamins, omega-3 fatty acids, carotenoids, isoflavones, and ellagic acid [3]. The best characterized polyphenol member is Curcumin & its derivatives which are extracted from plant turmeric (Curcuma longa, family Zingiberaceae) which exhibits antioxidant, anti-inflammatory, and anti-cancer properties. The latter is known as “nutraceuticals” and dissolves in the intestine. The Probiotics Encapsulation Technology (PEPT) is a number of transporters (including peptide transporters (PEPT1), cation/camitine transporters (OCT1, OCTN1, OCTN2 and OCT3) and organic anion transporters (AE2 and MCT1) [15].

Another category of nutraceuticals that are quickly growing in the past two decades are the “Probiotics” (i.e. health-promoting bacteria); with global market value $32.6 billion in 2014 [16,17]. The oral delivery of probiotics is hampered by the low instability of the bacteria in the GIT and consequent loss of viability under the effect of high acidity and bile salt concentrations. The problem of oral delivery of the nutraceuticals at acceptable bioavailability has been tackled by formulators with various degrees of success. For Probiotics delivery, the bacteria could be immobilized into a polymer matrix, which is a kind of enteric-system that remains intact in the stomach but degrades and dissolves in the intestine. The Probiotics Encapsulation Technology or “PET” has emerged recently aiming for the protection and safe formulation and delivery of the living probiotic cell. Conditions that maintain cell viability like biodegradable material, solvent type and toxicity and choice of proper technology are of paramount concern. Pertaining to the biomaterial, natural and synthetic polymers are used; factors to be addressed are: (i) physiochemical properties (chemical composition, morphology, mechanical strength, stability in GI fluids; (ii) toxicity assay; (iii) manufacturing and sterilization processes [18]. The most common biomaterials used for probiotics encapsulation are alginate, chitosan, carragenan, gelatin, whey proteins, cellulose acetate phthalate, locust bean gum and starches [19]. The techniques are alginate, chitosan, carrageenan, gelatin, whey proteins, cellulose acetate phthalate, locust bean gum and starches [19].
nanocapsules, micelles and nanoparticles, however, biocompatibility of a carrier, an armory of nanocarriers is at hand for example: nature and improves its wettability and dissolution rate. In presence according to Noyes-Whitney equation, overcomes its “grease ball” enhancement of problematic nutraceuticals [25-27]. In this context, formulation strategies to be tackled for poorly soluble nutraceuticals and oral absorption [22-24]. Figure 1 illustrates a decision tree on the surface area available for GI fluids and enhancing dissolution rate cyclodextrin complexation are promising in maximizing the effective layer in GI tract [21]. In a different approach, solid dispersions and formlipophilic particles, and overcome the barrier of aqueous diffusion blood. The digested lipids of medium chain triglycerides with bile salts chain triglycerides were primarily absorbed directly into the portal lipoproteins, and secreted into the mesenteric lymph, whereas medium chain triglycerides were primarily absorbed directly into the portal blood. The digested lipids of medium chain triglycerides with bile salts formlipophilic particles, and overcome the barrier of aqueous diffusion layer in GI tract [21]. In a different approach, solid dispersions and cycloextrim complexation are promising in maximizing the effective surface area available for GI fluids and enhancing dissolution rate and oral absorption [22-24]. Figure 1 illustrates a decision tree on the formulation strategies to be tackled for poorly soluble nutraceuticals.

The advent of nanotechnology for pharmaceutical applications has opened a new avenue for stability, solubility and/or permeability-enhancement of problematic nutraceuticals [25-27]. In this context, nanometric systems in absence or presence of carriers have been attempted. In absence of a carrier, nanorization of the bioactive, according to Noyes-Whitney equation, overcomes its "grease ball" nature and improves its wettability and dissolution rate. In presence of a carrier, an armory of nanocarriers is at hand for example: nanocapsules, micelles and nanoparticles, however, biocompatibility and biodegradability-related issues are crucial. Biodegradable FDA-approved polymers e.g. polyesters are favored by formulators to develop nutraceutical-loaded nanoparticles. Polymer-based nanoparticles modulate the release of encapsulated bioactives, protect them from degradation, alter their biodistribution and shift their transport across biological membranes from a passive diffusion process to endocytosis one [28-31]. Additionally, targeting moiety can be fixed to nanoparticles surface [32-35]. The targeted and/or endocytic-uptake of nanoparticles maximizes their intracellular delivery which is strictly needed to exert for example an anticancer effect [36-39]. Sub-cellular organelle targeting like mitochondrial-targeting (in case of coenzyme Q10) have been achieved by especial targeting moiety namely lipophilic triphenylphosphonium cation either chemically conjugated to the nanocarrier or the coenzyme Q10 [40], or resveratrol molecule [41]. Conjugating resveratrol to the membrane-permeable lipophilic triphenylphosphonium cation provided transient protection against metabolic conjugation, accumulated into mitochondria and was cytotoxic for fast-growing but not for slower-growing cells [41]. Such mitochondrial targeting of antioxidant nutraceuticals furnished a powerful tool to mediate mitochondrial and cellular redox processes of pathophysiological consequences [42]. The approach in which a bioactive is chemically linked to a polymer is well known as “Polymer Conjugates”. The conjugates modulate the physicochemical, pharmacokinetic and therapeutic properties of the therapeutic agent. The water-soluble anticancer curcumin polyconjugates showed altered biodistribution and improved anticancer efficacy as it combines the dual advantage of enhanced aqueous solubility and polymer-mediated drug internalization [43].

For recapitulation, the consumer preferences and the advance in the field of functional foods, dietary supplements and phytochemical compounds triggered the search and implementation of novel formulation strategies to develop nutraceutical products to overcome low bioavailability and improve therapeutic efficacy. References

1. Espin JC, Garcia-Conesa MT, Tomas-Barberan FA (2007) Nutraceuticals: facts and fiction. Phytochemistry 68: 2986-3008.
2. Prakash D, Ratnesh J, Chandan K, Suresh S, Grace S, et al. (2009) Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer. J Biomed Nanotechnol 5: 445-455.
3. Narayanan NK, Nargi D, Randolph C, Narayanan BA (2009) Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer 125: 1-8.
4. Kondler BS (1999) Nutritional strategies in cardiovascular disease control: an update on vitamins and conditionally essential nutrients. Prog Cardiovasc Nurs 14: 124-129.
5. Borek C (2006) Aging and antioxidants. Fruits and vegetables are powerful armor. Adv Nurse Pract 14: 35-38.
6. Woo CC, Kumar AP, Sethi G, Tan KH (2012) Thymoquinone: potential cure for inflammatory disorders and cancer. Biochem Pharmacol 83: 443-451.
