Quantum electric dipole glass and frustrated magnetism near a critical point in Li$_2$ZrCuO$_4$

E. Vavilova1,2, A. S. Moskvin3,4, Y. C. Arango1, A. Sotnikov1,5, S.-L. Drechsler3, R. Klingeler1, O. Volkova6, A. Vasiliev6, V. Kataev$^{1(a)}$ and B. Büchner1

1 Institute for Solid State Research, IFW Dresden - 01171 Dresden, Germany, EU
2 Zavoisky Physical-Technical Institute of RAS - 420029 Kazan, Russia
3 Institute for Theoretical Solid State Physics, IFW Dresden - 01171 Dresden, Germany, EU
4 Ural State University - 620083 Ekaterinburg, Russia
5 A. F. Ioffe Physical-Technical Institute of the RAS - 194021 St.-Petersburg, Russia
6 Moscow State University - 119992 Moscow, Russia

received on 16 September 2009; accepted by G. A. Sawatzky on 8 October 2009
published online 22 October 2009

PACS 75.10.Pq – Spin chain models
PACS 76.60.-k – Nuclear magnetic resonance and relaxation
PACS 77.22.-d – Dielectric properties of solids and liquids

Abstract – We report a new peculiar effect of the interaction between a sublattice of frustrated quantum spin-1/2 chains and a sublattice of pseudospin-1/2 centers (quantum electric dipoles) uniquely co-existing in the complex oxide γ-Li$_2$ZrCuO$_4$ (\equiv Li$_2$CuZrO$_4$). 7Li nuclear magnetic resonance, Cu$^{2+}$ electron spin resonance and a complex dielectric constant data reveal that the sublattice of Li$^+$-derived electric dipoles orders glasslike at $T_g \approx$ 70 K yielding a spin site nonequivalency in the CuO$_2$ chains. We suggest that such a remarkable interplay between electrical and spin degrees of freedom might strongly influence the properties of the spiral spin state in Li$_2$ZrCuO$_4$ that is close to a quantum ferromagnetic critical point. In particular that strong quantum fluctuations and/or the glassy behavior of electric dipoles might renormalize the exchange integrals affecting this way the pitch angle of the spiral as well as be responsible for the missing multiferroicity present in other helicoidal magnets.

The recently discovered quantum spin chain compound Li$_2$ZrCuO$_4$ [1] is a strongly frustrated quantum magnet located on the spin spiral side of the magnetic phase diagram in the very vicinity of a quantum critical point (QCP) to ferromagnetism. Surprisingly, contrarily to other related materials where ferroelectricity occurs simultaneously with a spiral magnetic order yielding a multiferroic behavior [2–4], here, below the magnetic ordering at $T_N \approx 6$ K no multiferroicity has been found hitherto [5]. This is puzzling since the usually supporting features such as the low symmetry of buckled CuO$_2$ chains allowing Dzyaloshinski-Moriya interactions and/or special positions for impurity spins are present in Li$_2$ZrCuO$_4$. In addition, the unusually large magnitude of the estimated main (nearest-neighbor) exchange integral $J_1 \sim -300$ K [1] differs markedly from those of other related edge-shared CuO$_2$ chain compounds such as Li$_2$CuO$_2$ ($J_1 \approx -230$ K) [6] and Ca$_2$Y$_2$Cu$_5$O$_{10}$ as well as from L(S)DA+U calculations for Li$_2$ZrCuO$_4$ itself [7]. The microscopic reasons for these puzzling deviations are completely unclear at present. We conjecture that under the special conditions of a QCP the effect of additional interactions or degrees of freedom might be crucial for various physical properties including the puzzle mentioned above.

Here we report such a new peculiar feature absent, to the best of our knowledge, in all other known chain cuprates which should certainly affect the quantum magnetism. It is specifically related to the interaction of the quantum $S = 1/2$ spins in the CuO$_2$ chains with the quantum electrical dipoles derived from tunneling Li$^+$ ions. Our 7Li nuclear magnetic resonance (NMR), the Cu$^{2+}$ electron spin resonance (ESR) and the dielectric constant data show that a coupling between the active electrical and the magnetic degrees of freedom occurs already in the paramagnetic regime far above T_N. We

$^{(a)}$E-mail: v.kataev@ifw-dresden.de
argue that this peculiar effect is due to the interaction of interpenetrating magnetic and electrical sublattices formed specifically in Li$_2$ZrCuO$_4$.

The orthorhombic crystal structure of γ-Li$_2$ZrCuO$_4$ (\equiv Li$_2$CuZrO$_4$) [8] comprises chains formed by edge-shared CuO$_4$ plaquettes running along the c-axis (see fig. 1). Owing to an almost 90° Cu-O-Cu bonding geometry the quantum $S=1/2$ spins of Cu$^{2+}$ ions are coupled along the chain by the nearest-neighbor (NN) ferromagnetic and the next-NN (NNN) antiferromagnetic exchange interaction causing spin frustration [1]. The CuO$_2$ chains in Li$_2$ZrCuO$_4$ form planes similarly to, e.g., LiCu$_2$O$_2$. However, the interplane distance of 4.7 Å markedly exceeds that of other quasi-two-dimensional (2D) cuprates. At variance with many other Li-containing cuprates the Li ions in Li$_2$ZrCuO$_4$ occupy two different types of positions: 4b (Li$_{4b}$) with a 100% occupancy and 8l (Li$_{8l}$) with an occupancy of 50% (see fig. 1). An unusually large Debye-Waller factor suggests a splitting of the Li$_{8l}$ position [8]. This can be modeled by a double-well potential where the Li ion can hop over the energy barrier U_b between two contiguous 8l positions. In the most pronounced quantum situation at low temperatures $k_BT \ll U_b$, the Li$_{8l}$ split site can be approximated by a two-level system (TLS) described in terms of tunnelling Li$^{+}$ ions which is equivalent to pseudospin $s=1/2$ centers with a quantum reorienting electric dipole directed along the a-axis: $d_a = |\epsilon|ds_\perp$. Here d is the extent of the Li$_{8l}$ position along the a-axis. Hence, the Li$_{8l}$ subsystem can be described as a 3D pseudo-tetragonal pseudospin-$1/2$ lattice with Li$_{8l}$ planes sandwiched between the adjacent planes of CuO$_2$ chains (see fig. 1). Thus Li$_2$ZrCuO$_4$ may provide a unique model system to study a synergetic interplay of two interacting low-dimensional quantum subsystems: the magnetic cuprate chain planes and the Li$_{8l}$-derived electric dipole planes forming a natural laminar composite structure.

The effective TLS Hamiltonian for the Li$_{8l}$ subsystem using the pseudospin notation can be written as follows:

$$\hat{H}_{Li} = \sum_{i<j} I_{ij}^{\parallel} \hat{s}_i^{\parallel} \hat{s}_j^{\parallel} + h\Omega \sum_i \hat{s}_i^{\perp} + \sum_{i<j} I_{ij}^{\perp} \hat{s}_i^{\perp} \hat{s}_j^{\perp} ,$$

(1)

where the first term describes the NN Li$_{8l}$-Li$_{8l}$ interaction, the second one represents the Li$_{8l}$-Li$_{8l}$ exchange between contiguous 8l positions with the frequency Ω, while the third one stands for the correlated exchange tunnelling for NN and more distant Li$_{8l}$ sites. The pseudospin-1/2 Hamiltonian (see eq. (1)) describes also the well-known transversal field Ising model frequently used in the theory of (anti)ferroelectrics and quantum glasses. The phase ordering depends essentially on the relation between $h\Omega$ and the effective NN coupling energy I^{\parallel}_{NN}; however, it is an inter-plane frustration and/or the coupling to the spin system that governs the Li$_{8l}$ dipole ordering. Turning to a magnetoelectric coupling between the Cu$^{2+}$ planes and the Li$_{8l}$ pseudospin-1/2 sublattice one should first note that the Li$_{8l}$ ion hopping between two contiguous 8l positions modulates the 2p orbital occupation at nearest oxygen ions and their displacement. The latter in turn modulates locally the Cu$^{2+}$ crystal field, the in-plane $t_{\parallel}^{||}$ and interplane $t_{\perp}^{||}$ transfer integrals within a single-band Hubbard-type model which describes the electron (hole) transfer between the CuO$_4$ plaquettes of the magnetic subsystem. (Note that the magnetic Cu$^{2+}$ sublattice can also produce an effective electric field which acts on the Li$_{8l}$ dipoles.) These correlated electronic models can be mapped afterwards on a Heisenberg model for the Cu spins hence resulting in a modulation of the corresponding exchange integrals. Focussing on one of the Li$_{8l}$ pseudospin sites (see fig. 1), both for the Cu$^{2+}$ crystal field V_{CF} and the in-plane Cu$^{2+}$-Cu$^{2+}$ charge transfer we deal with an anticorrelation effect leading to a local nonequivalence of upper and lower CuO$_2$ chains: $\Delta V_{CF}(1) = - \Delta V_{CF}(4) \propto s_{x}$; $\Delta V_{CF}(2) = - \Delta V_{CF}(3) \propto s_{z}$. The interaction term of the two subsystems reads

$$\Delta H_{tx} = \Delta t^\parallel (\hat{a}_1^{\dagger} \hat{a}_2 - \hat{a}_3^{\dagger} \hat{a}_4) s_z + h.c.,$$

(2)

where \hat{a}_i^{\dagger} and \hat{a}_j are electronic annihilation and creation operators and t^\parallel denotes the NN transfer integral in the chain direction. The modulation of the inter-plane Cu$^{2+}$-Cu$^{2+}$ electron transfer reads as follows:

$$\Delta H_{tx} = \Delta t^\perp \left(\sum_{i=1,2; j=3,4} \hat{a}_i^{\dagger} \hat{a}_j \right) s_x + h.c.,$$

(3)

Mapping the electronic part on a Heisenberg model, we arrive at the famous Kugel-Khomskii model [9] which describes the interaction of spins and pseudospins usually derived from orbital degrees of freedom. It has been widely used to model mostly on-site interactions of spins and orbitals and only in the mean-field approximation. To the best our knowledge a case of an inter-site interaction with
Quantum electric dipole glass and frustrated magnetism near a critical point in Li$_2$ZrCuO$_4$

a glassy state of one of the components was not described so far. However, based on our work to be reported below, we argue that it might become relevant for a broad class of systems with multiple degrees of freedom including orbital physics, too.

To verify the above conjectures we have carried out 7Li NMR, Cu$^{2+}$ ESR, and dielectric measurements on oriented polycrystals of Li$_2$CuZrO$_4$. Owing to a small anisotropy of the g-factor (see below) it was possible to align powder particles mixed with epoxy resin in a strong magnetic field. After its hardening a sample with a magnetic “easy” axis parallel to the a-axis has been obtained, as confirmed by the X-ray diffraction.

We start with the 7Li NMR measurements that proved to be very useful before to study both the magnetic ordering in cuprates [5,10,11] and the Li ion mobility (see, e.g., [12]). The 7Li ($I = 3/2$) NMR spectra of Li$_2$ZrCuO$_4$ samples were measured by a Tecmag pulse spectrometer in two orientations: $\mathbf{H}_\parallel a$ and $\mathbf{H}_\perp a$ by sweeping the magnetic field at a frequency $\omega_N = 38$ MHz. The signal was obtained by integrating the spin-echo envelope. The longitudinal T_1^- and transversal T_2^- relaxation rates were measured at the peak of the signal using the stimulated echo sequence and the $\pi/2$-π sequence, respectively. The quadrupole splitting, typical for 7Li nuclei in cuprates [10,11] and estimated to be of the order of 0.05 MHz, is unresolved in the spectrum whose shape can be described by a single Gaussian line. In the paramagnetic state at high temperatures ($T \geq 150$ K $\gg T_N$) the 7Li NMR response of Li$_2$CuZrO$_4$, see fig. 2, seemingly presents a single line. However, a careful analysis of the lineshape and T_2^- rates shows that we deal with an unresolved superposition of two lines with a full width of 0.01 T, which may be ascribed to two Li species, i.e. to the immobile Li$_{II}$ and the mobile Li$_I$ ions, respectively. For $\mathbf{H}_\perp a$ lowering the temperature below $T \sim 100$ K yields a separation of the NMR spectrum in two well-resolved lines with a strong and unusual T-dependent frequency redshift and inhomogeneous broadening of the low-field (left) line, see fig. 2, that can be associated with the NMR response of the mobile Li$_I$ ions. For $\mathbf{H}_\parallel a$ the signals from different Li sites merge and only at $T > T^*_0 \sim 100$ K one can separate two contributions due to the narrowing of one of them, apparently of Li$_I$. A characteristic temperature $T^*_0 \sim 100$ K can be associated with the onset of the quenching of the Li$_I$ hopping between two equivalent positions on the NMR timescale, i.e. with the onset of the motional narrowing. It means that at $T > T^*_0$ the Li$_I$ pseudospin system reveals most likely a classical high-temperature paraelectric behavior. One should note that the T-dependence of the 7Li NMR linewidth for immobile Li$_{II}$ ions (high-field right line) shows up a rather conventional low-T rise due to a critical increase of spin fluctuations in the vicinity of T_N. Since the distances Li$_{II}$–Cu and Li$_I$–Cu are similar, one can assume roughly the same spin fluctuation contribution to both NMR signals. Thus one can single out the additional contribution to the inhomogeneous broadening of the left line (dashed line in fig. 2(b)) whose T-dependence turns out to be typical for systems with mobile Li ions (see, e.g., [12]). The temperature of the ceasing of the motional narrowing of the NMR line is usually correlated with the onset of the critical glassy freezing, which suggests T^* as an upper boundary for the glass-ordering temperature $T_g \lesssim T^*$.

The low-T behavior of $T_2^-(T)$ (see fig. 2(d)) with characteristic values of $\sim 10^4$ s$^{-1}$ and a pronounced peak near T_N for both 7Li species and both field directions is typical for spin-ordering cuprates [11]. The spin-lattice relaxation (SLR) rates T_1^{-1} for both Li species reveal a very similar T behavior with nearly the same constant value of ~ 750 s$^{-1}$ down to low $T \sim 10$ K where both start to increase with a peak at $T \sim 6$ K for the 7Li$_I$ line and a divergence for the 7Li$_{II}$ line in the case of $\mathbf{H}_\perp a$. A similar behavior is observed for the $\mathbf{H}_\parallel a$ orientation where contributions from 7Li$_{II}$ and 7Li$_I$ nuclei are hardly resolved.

Fig. 2: (Color online) (a) Selected 7Li NMR spectra of the oriented Li$_2$ZrCuO$_4$ sample at $\omega_N = 38$ MHz for $\mathbf{H}_\perp a$; (b) T-dependence of the NMR linewidth for low- and high-field NMR lines. The dashed curve denotes an inhomogeneous broadening due to a glass-like ordering of Li$_I$ ions. The inset shows the behavior of resonance fields; (c) and (d) T-dependences of the spin-lattice T_1^{-1} and spin-spin relaxation rates T_2^{-1}, respectively. In (b)–(d) ○ denote data for $\mathbf{H}_\parallel a$, ■ and • are data for low- and high-field lines for $\mathbf{H}_\perp a$, respectively.
A typical mobility-induced SLR rate for 7Li NMR in a wide number of nonmagnetic solids is due to the quadrupole mechanism which is usually small as compared to a strong SLR due to a magnetic mechanism. In Li$_2$ZrCuO$_4$ where strong magnetic fluctuations take place in the anisotropic lattice the decrease of relaxation rates below 100 K reflects the ceasing of the motion that was averaging local magnetic fields created by fluctuations of Cu magnetic moments. The anisotropic character of this motion becomes apparent in the different relaxation behavior in different field orientations. One can see in fig. 2(c), (d) that T_1 for $H \parallel a$ increases concomitantly with T_2 for $H \perp a$, which are both caused by magnetic fluctuations perpendicular to the a-direction. To summarize this part, all 7Li NMR data clearly indicate a freezing of the Li$_1$ paraelectric sublattice below $T^* \lesssim 100$ K.

A direct evidence of a glass-like structural ordering of this sublattice can be provided by measurements of the dielectric constant $\varepsilon = \varepsilon' + i \varepsilon''$ that have been performed with pressed pellets of Li$_2$ZrCuO$_4$ at a number of frequencies f. The behavior of the real part ε' above 300 K (see fig. 3) evidences most likely a contribution of Li$_1$ to ionic conductivity. However, the most strong change of ε' occurs in the T range 50–150 K. A significant reduction of ε' clearly indicates a “randomly antiferro” freezing of the paraelectric subsystem in Li$_2$ZrCuO$_4$ [13]. Remarkably, in this T range the electric-field dependence of the polarization $P(E)$ exhibits a hysteresis (see fig. 4(a)) with the values of the remanent polarization P_r (see fig. 3) comparable with those of multiferroic cuprates [3,4]. The frequency dependence of the step in $\varepsilon''(T)$ concomitant with the shift of the peak temperature $T_{\varepsilon''\max}$ of the imaginary part $\varepsilon''(T)$ to lower T with decreasing the frequency f (see fig. 3, inset, and fig. 4(a)) reveals a typical for a glass-like transition critical dynamic slowing down towards the glass transition at T_g. The temperature $T_{\varepsilon''\max}$ can be associated with the frequency f-dependent freezing temperature below which the longest relaxation time of the system gets larger than the characteristic observation time $1/f$ and the system enters a nonequilibrium regime [14]. In the three-dimensional (3D) case where a finite glass-ordering temperature T_g can be expected, f and $T_{\varepsilon''\max}$ can be connected by the power law relation $f = f_0 t^{z\nu}$ [15]. Here f_0 is the fluctuation frequency, $t = (T_{\varepsilon''\max}/T_g - 1)$ is the reduced temperature, and z and ν are critical exponents. The f vs. $T_{\varepsilon''\max}$ dependence can be well fitted by this expression, yielding the glass-ordering temperature $T_g \approx 70$ K and $z\nu \approx 5.5$, fig. 4(b). The value of T_g relates well with the characteristic NMR “freezing” temperature T^*. Notably, the obtained product of the critical exponents $z\nu \approx 5.5$ is very close to the result $z\nu = 6 \pm 1$ of a reported Monte Carlo simulation for the 3D Ising glass [16]. This supports the appropriateness of the Ising (pseudospin-1/2) model adopted above for the description of the electric Li$_1$ subsystem in Li$_2$ZrCuO$_4$.

E. Vavilova et al.
How can the magnetic Cu$^{2+}$ subsystem respond to this effect? First of all one may anticipate a change of the crystal field and of the g-factors for Cu$^{2+}$ ions which can be detected by the ESR technique. We have carried out high-field ESR (HF-ESR) experiments at sub-THz frequencies in a broad temperature range with a homemade spectrometer (for details, see [17]). In the high-T regime above $T_g \approx 70$ K the ESR spectrum comprising a single Lorentzian absorption line has been found (see fig. 5, inset). The resonance field corresponds to g-factors of $g_\parallel = 2.19$ and $g_\perp = 2.02$ for $\mathbf{H} \parallel \mathbf{a}$ and $\mathbf{H} \perp \mathbf{a}$, respectively, typical for a Cu$^{2+}$ ion in a distorted square planar ligand coordination [18]. A remarkable evolution of the ESR spectrum has been observed upon cooling the sample below T_g where the spectrum begins to split into two lines. The shape of the spectrum can be perfectly fitted with two Lorentzians of comparable intensity, see fig. 5, inset. Representative T-dependences of the resonance fields at a frequency of 352 GHz obtained from the fit are shown, see fig. 5. The two lines in the HF-ESR spectrum whose separation increases with decreasing T can be straightforwardly assigned to the occurrence of two nonequivalent Cu sites with slightly different g-factors. Since the g-factor is very sensitive to the symmetry and the strength of the ligand electrical-field potential V_{cf}, the splitting of the spectrum evidences that the mobile Li$^+$ ions freeze in the lattice on a particular pattern yielding two distinct local crystal field potentials $V_{\text{cf}} \pm \Delta V_{\text{cf}}$ at the Cu$^{2+}$ sites. The shift of both lines to higher fields indicates the onset of low-frequency spin correlations which develop in a low-D spin system far above T_N. Owing to a much shorter timescale of the ESR they are detected at higher T compared to the NMR relaxation data (see fig. 2(c), (d)).

Finally, we argue that the frozen “glassy” Li$^+$-derived quantum dipoles may produce a random electrical-field potential that might disturb the oriented “multiferroic” dipoles induced in some way by the magnetic spiral with the aid of special impurity spins or by the Dzyaloshinskii-Moriya interaction. As a result no multiferroicity will be observed below the magnetic ordering at T_N. Furthermore, the absence of any long-range order of the Li$^+$-dipoles comprising in Li$_2$ZrCuO$_4$ a regular (although frustrated) electrical dipole sublattice is noteworthy, because a glassy ground state was observed so far only for essentially nonstoichiometric random systems [13]. The only feasible source for an effective randomness at Li$^+$ sites in our high-quality samples should then be due to short-range spiral-like correlated spins. Note that even a perfectly ordered but intrinsically *incommensurate* spiral state is expected to introduce a quasi-random potential at the commensurate Li$^+$ positions. Thus, one conjectures that owing to a sufficiently strong coupling of spins and pseudospins short-range spin correlations seen by ESR already at $T \sim T_g$ may introduce disorder also in the electrical Li$^+$-dipole sublattice. An additional decrease of ε' below ~ 30 K concomitant with a rapid decrease of P_r (see fig. 3) may indicate a crossover from a classical regime dominating the response of the glassy ordered Li$^+$ sublattice at higher temperatures to a quantum tunneling regime which interferes with the development of quantum magnetism in CuO$_2$ chains. In this context it would be of considerable interest to suppress or to modulate the electrical dipole disorder, e.g., by external electric fields or pressure, and to investigate how the paraspiral state in between T_g and T_N as well as the spiral state below T_N will respond. In particular, in the region $T_N < T < T_g$ the renormalization of the chain exchange integrals due to the spin-pseudospin interaction might take place. As a consequence, it would require different fits for the magnetic susceptibility $\chi(T)$ [1] above and below T_g, being thus possibly helpful to resolve or to contribute to the solution of the above-mentioned J_1 puzzle for Li$_2$ZrCuO$_4$. This way, our observation of a pseudospin (electric dipole) - spin-1/2 coupling paves a way to new experimental and theoretical studies of Li$_2$ZrCuO$_4$ to get more insight into the fundamental features of multiferroicity, magnetic ordering, as well as the nature of the critical point itself.

In conclusion, by measuring 7Li NMR, Cu$^{2+}$ ESR and dielectric constants of the quantum spin-1/2 incommensurate chain cuprate Li$_2$ZrCuO$_4$ we have observed a new peculiar effect of the interaction between spins-1/2 associated with Cu$^{2+}$ ions and pseudospins-1/2 (Ising-like electrical dipoles) due to tunneling Li$^+$ ions. From the NMR and dielectric measurements we conclude that at $T_g \approx 70$ K a glass-like structural ordering of the electrical sublattice takes place. Its remarkable impact on the spin system is evidenced by the development of spin site nonequivalency at $T < T_g$ revealed by ESR. These
results put forward Li$_2$ZrCuO$_4$ as new type of the intrinsic single-phase magnetoelectric composites where quantum magnetism of CuO$_2$ chains meet the electrically active regular sublattice of Li$^+$ ions. As such it emerges as a unique model system to study the influence of additional interactions and degrees of freedom on frustrated magnetism near a critical point where the magnetic spin subsystem is especially soft. One of the feasible consequences of such influence could be, e.g., the suppression of multiferroicity in the title compound.

Support of the DFG (grants 436 RUS 113/936/0-1, DR269/3-1 and KL1824/3-1) and the RFBR (grants 08-02-91952-NNIO-a, 07-02-01184-a, 07-02-96047, and 08-02-00633), is gratefully acknowledged. YCA acknowledges support of the EU Programme Alban. We thank A. A. Zvyagin and N. M. Plakida for discussions.

REFERENCES

[1] Drechsler S.-L., Volkova O., Vasiliev A. N., Tristan N., Richter J., Schmitt M., Rosner H., Mälek J., Klingeler R., Zvyagin A. A. and Büchner B., Phys. Rev. Lett., 98 (2007) 077202.

[2] Fiebig M., J. Phys. D: Appl. Phys., 38 (2005) R123.

[3] Naito Y., Sato K., Yasui Y., Kobayashi Y., Kobayashi Y. and Sato M., J. Phys. Soc. Jpn., 76 (2007) 023708.

[4] Park S., Choi Y. J., Zhang C. L. and Cheong S.-W., Phys. Rev. Lett., 98 (2007) 057601.

[5] Tarui Y., Kobayashi Y. and Sato M., J. Phys. Soc. Jpn., 77 (2008) 043703.

[6] Lorenz W. E. A., Kuzian R. O., Drechsler S.-L., Stein W. D., Wizent N., Behr G., Mälek J., Nitzsche U., Rosner H., Hiess A., Schmidt W., Klingeler R., Loewenhaupt M. and Büchner B., to be submitted to EPL; Drechsler S.-L., Mälek J., Lorenz W. E. A., Kuzian R O., Klingeler R., Nishimoto S., Nitzsche U., Knuffer M., Wizent N., Behr G., Rosner H., Eschrig H. and Büchner B., to be published in J. Phys.: Conf. Ser. (2009).

[7] Schmitt M., Mälek J., Drechsler S.-L. and Rosner H., to be published in Phys. Rev. B, 80 (2009).

[8] Dussarrat C., Mather G. C., Caignaert V., Domenges B., Fletcher J. G. and West A. R., J. Solid State. Chem., 166 (2002) 311.

[9] Kugel K. I. and Khomskii D. I., Sov. Phys. Usp., 25 (1982) 231.

[10] Gippius A. A., Morozova E. N., Moskvin A. S., Zalesky A. V., Bush A. A., Baenitz M., Rosner H. and Drechsler S.-L., Phys. Rev. B, 70 (2004) 020406.

[11] Kegler C., Büttgen N., Kruc Von Nidda H.-A., Loidl A., Nath R., Mahajan A. V., Prokofiev A. V. and Assmus W., Phys. Rev. B, 73 (2006) 104418.

[12] Brinkmann D., Mali M. and Roos J., Phys. Rev. B, 26 (1982) 4810.

[13] Loidl A., Annu. Rev. Phys. Chem., 40 (1989) 29; Höchli U. T., Korrk K. and Loidl A., Adv. Phys., 39 (1990) 405.

[14] Binder K. and Young A. P., Rev. Mod. Phys., 58 (1986) 801.

[15] Hohenberg P. C. and Halperin B. I., Rev. Mod. Phys., 49 (1977) 435.

[16] Ogilvieski A. T. and Morgenstern I., Phys. Rev. Lett., 54 (1985) 928.

[17] Golze C., Alfonsov A., Klingeler R., Büchner B., Kataev V., Mennerich C., Klaus H.-H., Goiran M., Broto J.-M., Rakoto H., Demeshko S., Leibeling G. and Meyer F., Phys. Rev. B, 73 (2006) 224403.

[18] Pilbrow J. R., Transition Ion Electron Paramagnetic Resonance, Vol. 9 (Clarendon Press, Oxford) 1990.