Effects of cococonut water and simvastatin in the treatment of sepsis and hemorrhagic shock in rats

Vanessa de Fátima Lima Paiva Medeiros¹, Ítalo Medeiros Azevedo¹, Marília Daniela Ferreira Carvalho¹, Eryvaldo Sócrates Tabosa Egito², Aldo Cunha Medeiros³

DOI: http://dx.doi.org/10.1590/S0102-865020160120000008

¹Fellow PhD degree, Postgraduate Program in Health Sciences, Universidade Federal do Rio Grande do Norte (UFRN), Natal-RN, Brazil. Acquisition and interpretation of data, technical procedures, manuscript preparation.
²Full Professor, Department of Pharmacy, UFRN, Natal-RN, Brazil. CNPq/PQ.1D fellowship. Analysis and interpretation of data, technical procedures, critical revision.
³Full Professor, Chairman, Nucleus of Experimental Surgery, UFRN, Natal-RN, Brazil. CNPq/PQ.2 fellowship. Conception, design, intellectual and scientific content of the study; analysis and interpretation of data; critical revision.

ABSTRACT
PURPOSE: To evaluate the effects of modified coconut water as fluid of resuscitation combined with simvastatin in hemorrhagic shock and sepsis model in rats.

METHODS: Four groups of Wistar rats with hemorrhagic shock and abdominal sepsis were studied (n=8/group). Rats were bled and maintained at a mean blood pressure 35mmHg for 60min. They were then resuscitated with: 1) saline 0.9%; 2) coconut water+3% NaCl; 3) coconut water+NaCl 3%+simvastatin microemulsion (10 mg/kg i.v.; 4) normal coconut water. At 8h post-resuscitation, blood and lungs were collected for exams.

RESULTS: Clinical scores, TNF-α, IL-1β, liver/kidney proof levels, and lung injury were significantly reduced in coconut water+NaCl 3%+simvastatin group treated rats, comparing with the other resuscitation treatments.

CONCLUSIONS: Resuscitation with coconut water with NaCl 3%+simvastatin had a significant beneficial effect on downregulating cytokines and decreasing lung injury in a rat model of abdominal sepsis and hemorrhagic shock. We also demonstrated that coconut water with NaCl 3%+simvastatin administration clearly made liver and kidney function better and improved clinical score.

Key words: Shock, Hemorrhagic. Sepsis. Resuscitation. Simvastatin. Foods Containing Coconut. Rats.
Introduction

Pathophysiology of sepsis is related to an imbalance between anti-inflammatory and pro-inflammatory substances that will mediate a response to damage body tissues. Despite intensive treatment with aggressive resuscitation, blood pressure control and adequate supply of oxygen, patients with sepsis often persist showing signs of tissue hypoperfusion, which can lead to acidosis and eventually multiple organ failure. Researchers have shown that sepsis is characterized by decreased velocity of microcirculatory flow, increased flow heterogeneity, increasing vascular stasis and decreasing perfused capillaries. Failure in the microcirculation flow results in shunting of blood from the tissues, leading to deficit in oxygen required for normal cell metabolism. Systemic inflammatory mediators and endotoxins disrupt intracellular connections and the signals used by endothelial cells, acting as a unified system. This disruption can result in altered distribution of blood flow in tissues.

The hemorrhagic shock and consequent tissue hypoperfusion lead to a reduction of cell oxygenation, metabolic acidosis and hypothermia. The reduction of O2 supply leads to increased anaerobic metabolism and reduction of ATP levels and intracellular calcium, which promote significant changes in cellular function by stimulating the release of pro-inflammatory cytokines. These, in turn, may alter the immune function of macrophages and lymphocytes, causing immunosuppression and increased risk of infection.

Some works have studied the composition of coconut water (CW). Santoso et al. described the presence of vitamins, sugars, organic acids, fatty acids, amino acids, minerals and electrolytes in the coconut (Cocus nucifera L.) water. Aleixo et al. determined their selenium content using atomic absorption spectrometry. Another important feature of CW is its antioxidant ability. Trace elements and metals in small dosages were determined, leading to believe that CW has potential for use in intravenous hydration or parenteral nutrition solutions. Campbell-Falck et al. reported a successful case of intravenous hydration in the Salomon Islands and described its use for this purpose during the II World War.

The electrolyte composition of the 6 months CW resembles more the intracellular fluid than the extracellular, and consists mainly of potassium, calcium, magnesium and chloride. Sodium is found in much lower concentration than in human plasma. Although CW has already been described as a viable solution for resuscitation, reports of its i.v. use are scarce, with the information that it does not interfere in hemostasis mechanisms.

Statins inhibit HMG-CoA reductase and have been extensively studied for the prevention of atherosclerosis, inflammatory disease of the vascular endothelium, whose pathogenesis has similarities with the pathogenesis of sepsis. Although the effects of statins were initially assigned only to treat hyperlipid levels, many other benefits came to be considered and studied. Statins exert multiple effects on various cells for a number of mechanisms. These pleiotropic effects have been described as antiinflammatory, modifying the interactions between the endothelium and leukocytes. Additionally, statins modulate the signaling of inflammatory cells, which in turn reduces the release of cytokines and proteins of acute phase of sepsis, and other important antioxidant effects.

The ideal solution for volume replacement in situations of sepsis associated with hemorrhagic shock is not yet well established. In this protocol we studied the effects of modified CW solution, combined with intravenous simvastatin for the volume replacement in rats submitted to a double challenge: sepsis and hemorrhagic shock. These situations are common and deleterious in surgical practice, with high morbidity and mortality.

This study aimed to examine the effects of the modified CW combined with simvastatin as fluid resuscitation in hemorrhagic shock and abdominal sepsis model in rats.

Methods

The institutional Ethics Committee on Animal Use approved this protocol, which was performed at the Nucleus of Experimental Surgery-UFRN, Brazil. Care in the use of animals followed the standards of the Brazilian legislation for the scientific use of animals (Law No. 11794/2008). It was used animal model of hemorrhagic shock and abdominal sepsis to evaluate possible effects of simvastatin and hypertonic coconut water volume replacement in Wistar rats, weighing between 250 and 300g. Rats were fasting for 12 hours before the experiment. They were anesthetized with ketamine (70 mg / kg) and xylazine (10 mg / kg) intramuscular. These drugs were re-administered if necessary until the end of the experiments.

Hemorrhagic shock

After stabilization of anesthesia, monitoring was installed in all animals. The left femoral vein and right femoral artery were
dissected and isolated for the realization and monitoring of fluid loss and replacement. Silicone tubes (F24) were introduced into the femoral artery for mean arterial pressure (MAP) monitoring and in the femoral vein for fluid replacement. The blood was drained through the femoral artery until the MAP stabilize at 35 mmHg. We recorded the volume of collected blood to calculate the fluid volume to be reinfused. MAP was monitored through an Invasive Blood Pressure Monitor. Hemorrhagic shock was maintained for 60 minutes.

Abdominal sepsis and study groups design

After 60 min of shock, for the induction of the sepsis rats remained anesthetized. After shaving and disinfecting the lower quadrants of the abdomen a midline incision of approximately 4cm length was performed. The cecum was identified and the corresponding mesenteric membrane dissected. A cecal ligation was positioned consistently at the distal third, i.e. at 30–40% of the cecum. The perforation of the cecum was performed using a 18G needle, first puncturing the anti-mesenteric side, then continuing the needle penetration through the lumen to the second perforation on the mesenteric side. A small amount of fecal material was then gently extruded from both perforation holes. After repositioning the cecum within the abdominal cavity the abdomen was closed in two layers. Asseptic technique was used. After that the animals received fluid resuscitation intravenously over 10 minutes. The replacement volume was equal to twice the lost blood volume for each rat. We studied four groups (n = 8/group): 1) replacement with saline solution 0.9%; 2) replacement with coconut water + 3% NaCl (CW Na3%); 3) replacement with coconut water + NaCl + 3% sodium simvastatin (CWNa3%S) microemulsion 10 mg / kg i.v.; 4) replacement with normal coconut water (CW). During the period of shock and fluid replacement, the animals were kept in a warm microenvironment at 37°C (Hotplate, Insight, São Paulo, Brazil) and anesthetized by the end of the experiment.

Clinical score

Six and 18 hours after resuscitation, all rats had their clinical score evaluated. Time points for analysis were chosen based on previous data. The score consisted of analyzing the following parameters: 1- presence of piloerection, 2-altered respiration rate, 3-fecal alteration, 4-lacrimation/eyelid changes, 5-contraction of the abdomen, 6-lack of strength when grasping, 7-change in body temperature, 8-alert response (scape after touch), 9-exploration of the environment and 10-compromised locomotor activity. For every parameter present, we gave 1 point, and in the absence of the parameter analyzed, no points were given. Then, the points were computed for each rat. A score of 0 indicated that the rat did not present any clinical alteration, a score between 1 and 3 indicated mild sepsis, between 4 and 7 indicated moderate sepsis and between 8 and 10 indicated severe sepsis.

Laboratory parameters determination

The surviving animals after 18 hours of observation were again anesthetized and blood was harvested for dosages. Serum was separated by centrifugation at 3000 rpm and stored at -40°C for subsequent dosing. Plasma levels of TNF-α and IL-1β were determined using quantitative enzyme linked immunosorbent assay (ELISA) kits, according to manufacturer recommendations (PeproTech, USA). We determined aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, creatinine, C-reactive protein (CRP) and white blood cell count. Urea and creatinine are indicators of renal function and glomerular filtration. CRP was measured by nephelometry.

Lungs fluorescence imaging ex-vivo.

Immediately after blood collection, rats were injected into the femoral vein with indocyanine green 10mg/Kg, (Ophthalmos, São Paulo Brazil). Ten minutes after injection the lungs and
Effects of coconut water and simvastatin in the treatment of sepsis and hemorrhagic shock in rats

trachea were harvested for ex-vivo imaging. Optical imaging was performed using FX fluorescence reflectance imaging device (Carestream Molecular Imaging). Filters for excitation and emission were set at 710 nm and 700 nm, respectively. The lungs were placed into the equipment chamber. An imaging protocol (exposure time 20 seconds, 2x2 binning, f-stop 2.8, field of view 120 mm, and focal plane 10 mm) was maintained for all images, and comparative images were taken comparing groups. The optical images of the ex vivo study were evaluated qualitatively by assessing the presence or absence of visibly increased fluorescence in the lungs, comparing CW+Na 3%+ simvastatin group with the fluorescence of saline 0.9% treated group. Quantitative analysis of the lung scans was performed by measuring the fluorescence signal intensity (SI) of the lungs, using the Molecular Imaging software 5.0. A region of interest created by an automated tool was determined around the organ. Mean region of interest signal intensities were expressed as arbitrary fluorescent SI in pixels. Fluorescence grayscale images were colored for depiction purposes according to a color scale set to the highest and lowest levels of mean fluorescence intensity (red and purple indicated maximum and minimum light intensity, respectively). The targets were septic and inflammatory focus in lungs.

Histological evaluation of lung injury

The lungs were removed and immersed in 10% buffered formalin for 48 h and then embedded in paraffin. 4μm sections were stained with hematoxylin and eosin. Pulmonary architecture was evaluated by optical microscopy with BX50 microscope equipped with digital camera DS30 (Olympus, Japan). Two random tissue sections of four different lungs from each group were examined. Lung injury scores were quantified by an investigator blinded to the treatment groups using previous published criteria (Table 1), which gives an overall score between 0 and one.

TABLE 1 – Lung injury system (adapted from Matute-Bello et al.29).

Parameter	Score per field
a. Neutrophils in the alveolar space	None
b. Neutrophils in the interstitial space	None
c. Hyaline membranes	None
d. Proteinaceous debris filling the airspaces	None
e. Alveolar septal thickening	None

Score = [(20 x A) + (14 x B) + (7 x C) + (7 x D) + (2 x E)]/(number of fields x 100)

Statistical analysis

Data were stored and statistically analyzed using SPSS 17.0 and GraphPad Prism 7:00 software for Windows, GraphPad Software, La Jolla, California, USA, www.graphpad.com. The results were statistically studied using the method of multiple comparisons by analysis of variance (ANOVA) with repeated measures followed by Tukey and Newman-Keuls tests for comparison between groups. Results were considered statistically significant when p<0.05.

Results

All rats survived until the end of experiments. Coconut water Na3%+ simvastatin (CWS) administration prevented several alterations after sepsis induction. Therefore, we investigated the effect of CWS on sepsis severity and mortality using clinical scores. Six hours after CLP, rats presented clear clinical signs of sepsis, and most animals in the sepsis group had severe sepsis. CWS+Na 3% + simvastatin reduced the clinical score 24 hours after CLP and improved the clinical status of CWS treated-animals (Figure 1).

Serum levels of inflammatory cytokines TNF-α and IL-1β were measured in all groups, and were found to be significantly lower in the coconut water + simvastatin-treated group. Although all groups showed a significant difference (p<0.05) compared to the saline treated group, the best results were found in the coconut water + simvastatin-treated group rats (Table 2). More studies in
this area are needed to decipher the mechanism of this particular issue.

TABLE 2 - Interleukin dosage in animals with hemorrhagic shock and abdominal sepsis.

Cytokinesis Groups	TNF α (pg/ml)	IL-1β (pg/ml)
Saline 0.9%	545.5±36ab	174.9±16a
CW Na3%	364.8±42ab	86.2±12a
CW Na3%S	181.7±16.1a	48.1±8a
CW	210.1±14.5a	70.3±5a

*Mean ± Standard deviation.
(1) Measures followed by the same letter differ significantly at p<0.05. CW, coconut water; S, simvastatin.

As for biochemical dosages, the rats treated with CW + Na3% and simvastatin had lower levels of C-reactive protein, AST, ALT, urea and creatinine than in the other groups, with statistically significant differences (Table 3). The same happened with the white blood cell count, where the total leukocytes and neutrophils values of the animals treated with CW + Na3% and simvastatin, were significantly lower than in the other groups. However, as shown in Table 4, the percentage of eosinophils was significantly higher in rats treated with CW + Na3% and simvastatin (p<0.05).

TABLE 3 - Influence of different fluid resuscitation procedures on excretion of PCR, AST, ALT, urea and creatinine.

Biochemicals Groups	C-reactive protein (mg/dL)	AST (mg/dL)	ALT (mg/dL)	Urea (mg/dL)	Creatinine (mg/dL)
Saline 0.9%	9.40 ± 0.9%	55.2±6.2ab	62.5±4.9a	76.8±4.9ab	3.78±0.5ab
CW Na3%	4.72 ± 0.39a	39.5±9.3a	39.3±5.7a	47.1±3.4a	2.64±0.6a
CW Na3%S	2.72 ± 0.46ab	32.1±2.4ab	26.5±2.6a	35.3±2.9ab	1.36±0.2ab
CW	4.45 ± 0.57b	42.1±7.4b	36.5±2.6a	45.3±4.0b	2.86±0.3b

*Mean ± Standard deviation.
(1) Measures followed by the same letter differ significantly at p<0.05. CW, coconut water; Na, sodium; S, simvastatin; AST, aspartate aminotransferase; ALT, alanine aminotransferase.

The fluorescence signal intensity (SI) of the lungs was measured in Saline and CW Na3%+ simvastatin groups. Fluorescent images (Figure 2) showed signal intensity markedly higher in the saline group rats compared to animals in the CW Na3%+ simvastatin group. In Table 5 it is shown that corresponding quantitative SI of lungs fluorescence in saline group animals were significantly higher compared to the CW Na3%+ simvastatin group after intravenous injection of 10 mg/kg ICG.

TABLE 4 - Influence of different fluid resuscitation procedures on leukocytes.

Leukocytes Groups	Leuc/µL (µL%)	Neutrophils (%)	Eosinophils (%)
Saline 0.9%	12.46 ± 1.26ab	77.37 ± 6.4ab	0.39 ± 0.4a
CW Na3%	8.72 ± 0.39a	54.50 ± 7.0a	4.57 ± 0.5a
CWNa3%S	6.68 ± 0.56a	47.17 ± 6.6ab	5.41 ± 0.6a
CW	8.32 ± 0.53b	57.10 ± 8.5b	3.68 ± 0.7a

*Mean ± Standard deviation. (1) Measures followed by the same letter differ significantly at p<0.05 (Tukey test).

The fluorescence signal intensity (SI) of the lungs was measured in Saline and CW Na3%+ simvastatin groups. Fluorescent images (Figure 2) showed signal intensity markedly higher in the saline group rats compared to animals in the CW Na3%+ simvastatin group. In Table 5 it is shown that corresponding quantitative SI of lungs fluorescence in saline group animals were significantly higher compared to the CW Na3%+ simvastatin group after intravenous injection of 10 mg/kg ICG.

FIGURE 2 - Comparisons between groups — The fluorescence of the lungs on postcontrast indocyanine green (ICG) ex-vivo images was markedly higher in group rats treated with saline (A,B,C) compared to rats of the group treated with coconut water + Na3% + simvastatin (D,E,F).

TABLE 5 - Influence of different fluid resuscitation procedures on Fluorescence signal intensity (arbitrary units) after intravenous injection of 10 mg/kg ICG.

Groups	Signal intensity (arbitrary unit)
Saline 0.9%	230±12.1
CWNa3%S	117±8.3*

Mean ± Standard deviation. * Measures differ significantly compared with saline group at p<0.05 (Tukey test). CW, coconut water; Na, sodium; S, simvastatin.
Histopathology

As shown in Figure 3, histopathological changes and lung injury were evident in lung tissues from rats with CLP-induced sepsis and shock treated with saline, compared to rats treated with coconut water. Light microscopic analysis of lung tissue from animals with sepsis and shock, treated with saline 0.9% showed thickened alveolar septum with increased cellularity. These animals developed increased neutrophils and a prominent increase in mononuclear and interstitial cells in alveolar septum. Alveolar edema was also present in this group. It is clear that histological damage and leukocytes infiltration were ameliorated after coconut water + Na3% + simvastatin treatment and was accompanied with a declined histology scores. There was no increase in neutrophils in alveolar septum, and minor cells or edema in the alveolar spaces (Figure 3). So, lung biopsy, done in animals at 18 h after treatment with coconut water 3% (Na) + simvastatin, showed minor changes in lung architecture by light microscopy. Histopathologic scores are summarized in Table 6.

![Figure 3](image)

TABLE 6 – Histological scores.

Groups	Scores
Saline 0.9%	0.78±0.04ab
CW Na3%	0.30±0.02b
CWNa3%S	0.23±0.01a
CW	0.51±0.04ab

*Mean ± Standard deviation.
(1) Measures followed by the same letter differ significantly at p<0.05. CW, coconut water; Na, sodium; S, simvastatin.

Discussion

The hemorrhagic shock causes tissue damage and increases hypoxia and proinflammatory activity. A rapid resuscitation with adequate fluids is essential to minimize damage and improve tissue perfusion. The present study examined an alternative to reduce the damage caused by hypovolemia using normal and modified coconut water, which showed positive results compared to resuscitation with 0.9% saline. In the present study, we compared the effects 0.9% saline, modified coconut water (Na 3%) and water coconut 3% + Na + simvastatin, and normal coconut water on serum cytokines, biochemical and white blood cell count in rodent model with hemorrhagic shock and abdominal sepsis. Experimental models of sepsis and hemorrhagic shock has often been employed in other studies.

From the molecular point of view, coconut water demonstrated to have a downregulating effect in the inflammatory response of TNF-α and IL-1β in serum. This is particularly important since there are not studies so far considering the role of i.v. coconut water in the cytokine response after shock and sepsis. In this regard, this is the first time we could encounter such a direct association with i.v. coconut water treatment of shock+ sepsis and lower TNF-α, IL-1β response then in controls.

TNF-α is considered the main inflammatory agent in cases of hemorrhagic shock and plays a crucial role in the release of other pro-inflammatory cytokines (IL-1β, IL-6), leading to excessive and auto-destructive inflammation. Farias et al. demonstrated a statistically significant reduction in the expression of pro-inflammatory cytokines in rats treated with modified coconut water volume replacement compared with saline and fresh blood. In the present study, we found that treatment of rats with sepsis and shock with coconut water modified with sodium 3% + simvastatin reduced serum cytokines, biochemical parameters and peripheral leukocytes. This reduction was statistically higher than the other fluids replacement treatments.

Simvastatin has shown immunomodulatory effects, independent of significant reduction in hyperlipidemia. These pleiotropic effects include anti-inflammatory action, improvement in endothelial and microvascular function, ischemia/reperfusion and sepsis. For all these properties, simvastatin acted synergistically with CW to improve the parameters studied in rats with shock and sepsis. In this study we used simvastatin microemulsion intravenously, based on the fact that this presentation developed in-UFRN Dispersed Systems Laboratory, has particles in nanoscale, with potential i.v. use without adverse effects. The results obtained in this study with the CW infusion.
are probably related to their physicochemical properties. A few studies have shown scientific evidence of coconut water use in medical practice, justified by its content of sugars, vitamins, minerals, amino acids, organic acids and fatty acids essential in medical practice, justified by its content of sugars, vitamins, minerals, amino acids, organic acids and fatty acids essential in medical practice, justified by its content of sugars, vitamins, minerals, amino acids, organic acids and fatty acids essential in medical practice, justified by its content of sugars, vitamins, minerals, amino acids, organic acids and fatty acids essential in medical practice, justified by its content of sugars, vitamins, minerals, amino acids, organic acids and fatty acids essential in medical practice, justified by its content of sugars, vitamins, minerals, amino acids, organic acids and fatty acids essential in medical practice, justified by its content of sugars, vitamins, minerals, amino acids, organic acids and fatty acids essential in medical practice, justified by its content of sugars, vitamins, minerals, amino acids, organic acids and fatty acids essential in medical practice, justified by its content of sugars, vitamins, minerals, amino acids, organic acids and fatty acids essential in medical practice, justified by its content of sugars, vitamins, minerals, amino acids, organic acids and fatty acids essential in medical practice, justified by its content of sugars, vitamins, minerals, amino acids, organic acids and fatty acids essential in medical practice, justified by its content of sugars, vitamins, minerals, amino acids, organic acids and fatty acids essential in medical practice, justified by its content of sugars, vitamins, minerals, amino acids, organic acids and fatty acids essential in medical practice, justified by its content of sugars, vitamins, minerals, amino acids, organic acids and fatty acids essential in medical practice, justified by its content of sugars, vitamins, minerals, amino acids, organic acids and fatty acids essential in medical practice, justified by its content of sugars, vitamins, minerals, amino acids, organic acids and fatty acids essential in medical practice, justified by its content of sugars, vitamins, minerals, amino acids, organic acids and fatty acids essential.

The indocyanine green (ICG) has been extensively used for decades in the fields of ophthalmology for retinal imaging and cardiology to study cardiac output. ICG has a well documented safety profile. We used a higher dose for rodents as described in patients for in order to compensate the short blood half life of ICG in rodents (1.5 - 2.3 min) as opposed to patients (3 - 4 min). The relatively high ICG dose provided a prolonged contrast enhancement and allowed sequential imaging of lungs without additional contrast injection.

Our results showed that inflamed and normal lung tissues differed significantly in normalized fluorescence. On the basis of the different temporal behavior of fluorescence intensity in septic rats, it is more likely that vasodilation in the inflamed lungs was present and new microvessels were formed, leading to a faster inflow of ICG contrast agent. Fluorescence imaging is limited to superficial organs and tissues, because the strong scattering and absorption of light in biologic tissue restricts the penetration depth of photons to a few millimeters. As fluorescence in vivo was not detectable with our device in lungs of rats in vivo, we decided to perform ex vivo imaging, and representative images were recorded in inflamed lungs. A way to further improve the specificity of this method is to use disease-specific contrast agents in combination of a marker for neovascularization.

Conclusions

The volume replacement with coconut water modified with Na 3%, combined with simvastatin had a positive influence in the treatment of rats with sepsis + hemorrhagic shock model. The findings may have significant therapeutically implications in the clinical setting.

References

1. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003 Jan;348(2):138-50. PMID: 12519925.
2. Lin SM, Huang CD, Lin HC, Liu CY, Wang CH, Kuo HP. A modified goal-directed protocol improves clinical outcomes in intensive care unit patients with septic shock: a randomized controlled trial. Shock. 2006 Dec;26(6):551–7. doi: 10.1097/01.shk.0000232271.09440.8f.
3. Jones AE, Brown MD, Trzeciak S, Shapiro NI, Garrett JS, Jeffner AC, Kline JA. The effect of a quantitative resuscitation strategy on mortality in patients with sepsis: a meta-analysis. Crit Care Med. 2008 Oct;36(10):2734–9. doi: 10.1097/CCM.0b013e318186f839.
4. Otero RM, Nguyen HB, Huang DT, Gaieski DF, Goyal M, Gunnerson KJ, Trzeciak S, Sherwin R, Holthaus CV, Osborn T, Rivers EP. Early goal-directed therapy in severe sepsis and septic shock revisited: concepts, controversies, and contemporary findings. Chest. 2006 Nov;130(5):1579–95. doi: 10.1378/chest.130.5.1579.
5. Ellis CG, Bateman RM, Sharpe MD, Siddall WJ, Gill R. Effect of a maldistribution of microvascular blood flow on capillary O(2) extraction in sepsis. Am J Physiol Heart Circ Physiol. 2002 Jan;282(1):H156–64. PMID: 11748059.
6. Fries M, Weil MH, Sun S, Huang L, Fang X, Cammarata G, Castillo C, Tang W. Increases in tissue Pco2 during circulatory shock reflect selective decreases in capillary blood flow. Crit Care Med. 2006 Feb;34(2):446–52. PMID: 16424727.
7. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002 Jul;166(1):98–104. PMID: 12091178.
8. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004 Sep;32(9):1825–31. PMID: 15343008.
9. Tymk K, Wang X, Lidington D, Ouelette Y. Lipopolysaccharide reduces intercellular coupling in vitro and arteriolar conducted response in vivo. Am J Physiol Heart Circ Physiol. 2001 Sep;281(3):H1397–406. PMID: 11514312.
10. Li Y, Guo M, Shen J, Zheng L, Wang J, Wang P, Li J. Limited fluid resuscitation attenuates lung and intestine injury caused by hemorrhagic shock in rats. J Invest Surg. 2014 Apr;27(2):81-7. doi: 10.3109/08941939.2013.837991.
11. Abreu GFS, Coelho ARB, Aguiar JLA, Moura Filho AS. Cardiocirculatory changes in hemorrhagic shock caused in pigs submitted to three distinct therapeutic methods. Acta Cir Bras. 2010 Feb;25(1):126-30. doi: 10.1590/S0894-1939.2010000100025.
12. Santoso U, Kubo K, Ota T, Tadokoro T, Mackawa A. Nutrient composition of kopyor coconut (cocos nucifera L.). Food Chem. 1996 Oct;57(2):299-304. doi: 10.1016/0308-8146(95)00237-5.
13. Alexio PC, Nóbrega JA, Santos D, Muller PCS. Determinação direta de selênio em água de coco e em leite de coco utilizando espectrometria de absorção atômica com atomização eletrotermica em forn o de raifte. Quim Nova. 2000 Mai-Jun;23(3):310-2. doi: 10.1590/S0100-40422000000300005.
14. Leong LP, Shi G. An investigation of antioxidant capacity of fruits in Singapure market. Food Chem. 2002 Jan;76(1): 69-75. doi: 10.1016/S0308-8146(01)00251-5.
15. Wagner KH, Derkits S, Herr M, Schuh H, Elmadfa I. Antioxidative potential of melanoidins isolated from a roasted glucose–glycine model. Food Chem. 2002 Aug;78(3):375-82. doi: 10.1016/S0308-8146(02)00297-5.
16. Fonseca AM, Bixerra ACM, Souza JSN, Monte FJQ, Oliveira MCF, Mattos MC, Cordell GA, Braz-Filho R, Lemos TLG. Constituents and antioxidant activity of two varieties of coconut water (Cocos nucifera L.). Food Chem. 2000 Feb;25(1):126-30. doi: 10.1590/S08941939.2010000100025.
17. Petroianu GA, Kosanovic M, Shehatta IS, Mahgoub B, Saleh A, Maleck WH. Traces and minor element contents in coconut water. J Trace Element Exp Med. 2004 Sept;17(4):273-6. doi: 10.1002/jtt.1067.
Effects of coconut water and simvastatin in the treatment of sepsis and hemorrhagic shock in rats

19. Richter EM, Jesus DP, Munoz RAA, Lago CL, Angnes L. Determination of anions, cations, and sugars in coconut water by capillary electrophoresis. J Braz Chem Soc. 2005 Nov-Dec;16(6):1134-9. doi: 10.1590/S0103-50532005000700008.

20. Olunrin EO, Durowoju JEO, Bassir O. Intravenous coconut water therapy in surgical practice. West Afr Med J. 1972 Oct;21(5):124-31. PMID: 4671292.

21. Felipe JC, Nascimento LTA, Souza GSS, Toledo LN, Medeiros VB, Azevedo IM, Medeiros AC. Coconut water as a resuscitation fluid and their effect on colon anastomosis healing in rats with hemorrhagic shock. J Surg Clin Res. 2014 Dec;59(2):80-91. doi: 10.20398/jscr.v52.s2.7624.

22. Pummer S, Heil P, Maleck W, Petroianu G. Influence of coconut water on hemostasis. Am J Emerg Med. 2001 Jul;19(4):287-9. doi: 10.1053/ajem.2001.24477.

23. Tuttolomondo A, Di Raimondo D, Pecoraro R, Arnao V, Pinto A, Licata G. Atherosclerosis as an inflammatory disease. Curr Pharm Des. 2012 Dec;18(28):4266-88. PMID: 22390643.

24. Jacobson JR, Barnard JW, Grigoryev DN, Ma SF, Tuder RM, Garcia JD. Simvastatin attenuates vascular leak and inflammation in murine inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol. 2005 Jun;288(6):1026-32. PMID: 15665042.

25. Steiner S, Speidl W, Pleiner J, Seidinger D, Zorn G, Kaun C, Wojta J, Huber K, Minar E, Wolzt M, Kopp CW. Simvastatin blunts endotoxin induced tissue factor in vivo. Circulation. 2005 Apr;111(14):1841-6. doi: 10.1161/CIRCULATIONAHA.104.512281.27783.OC.

26. Dichtel W, Dulak J, Frick M, Alber HF, Schwarzacher SP, Ares MP, Nilsson J, Pachinger O, Weidinger F. HMG-CoA reductase inhibitors regulate transcriptional factors in human endothelial and vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2003 Jan;23(1):58-63. PMID: 12524225.

27. Durant R, Klouche K, Delbosc S, Morena M, Amigues L, Beraud F, Hermann KG, Ebert B, Petzetl D, Macdonald R, Licha K, Schirmer M, Krenn V, Kamradt T, Taupitz M. Assessment of unspecific near-infrared dyes in laser-induced fluorescence imaging of experimental arthritis. Acad Radiol. 2006 Jan;13(1):4–13. PMID: 16399028.

28. Vde F, Azevedo IM, Lima FP, Medeiros AC. Heart and systemic microvascular dysfunction in sepsis. Microvasc Res. 2012 Sept;84(2):218–21. doi: 10.1016/j.mvr.2012.05.006.

29. Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthey MA, Slutsyk AS, Kuebler WM; Acute Lung Injury in Animals Study Group. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011 May;44(5):725-38. doi: 10.1165/rcmb.2009-0210ST.

30. Macedo R, Javadi SM, Higuchi T, Carvalho MD, Medeiros Vde F, Azevedo IM, Lima FP, Medeiros AC. Heart and systemic effects of statin pretreatment in a rat model of abdominal sepsis. Assessment by Tc99m-sestamibi biodistribution. Acta Cir Bras. 2015 Jun;30(6):388-93. doi: 10.1590/S0102-86502015000600003.

31. Botelho NM, Silveira EL, Lopes LN, Santos FA, Teixeira RK, Silva TT. Copaiha oil effect under different pathways in mice subjected to sepsis. Acta Cir Bras. 2014 Aug;29(8):528-31. PMID: 25140595.

32. d’Acampora AJ, Locks Gde F. Median lethal needle caliber in two models of experimental sepsis. Acta Cir Bras. 2014 Jan;29(1):1-6. doi: 10.1590/S0102-86502014000100001.

33. Suzuki K, Hino M, Kutsuna H, Hato F, Sakamoto C, Takahashi T, Tatsumi N, Kitagawa S. Selective activation of p38 mitogen-activate protein kinase cascade in human neutrophils stimulated by IL-1b. J Immunol. 2001 Nov;167(10):5940-7. PMID: 11698472.

34. Farias DC, Mariz JC, Silva PMN, Medeiros VFLP, Macedo Filho R, Carvalho MDF, Araújo-Filho I, Régio ACM, Azevedo IM, Medeiros AC. Volume replacement with coconut water in rats with hemorrhagic shock. J Surg Clin Res. 2013 Dec;4:35-44. doi: 10.20398/jscr.v4i2.5490.

35. Kwak B, Mulhaupt F, Myit S. Statins as a newly recognized type of immunomodulator. Nat Med. 2000 Dec;6(12):1399-402. doi: 10.1038/82219.

36. Pruefer D, Makowski J, Schnell M, Buerke U, Dahm H, Oelert H, Siebelus U, Grandel U, Grimminger F, Seeger W, Meyer J, Darius H, Buerke M. Simvastatin inhibits inflammatory properties of Staphylococcus aureus alpha toxin. Circulation. 2003 Oct;106(16):2104–10. PMID: 12379581.

37. Naidu BV, Woolley SM, Farivar AS, Thomas R, Fraga C, Mulligan MS. Simvastatin ameliorates injury in an experimental model of lung ischemia-reperfusion. J Thorac Cardiovasc Surg. 2003 Aug;126(2):482-9. PMID: 12928648.

38. Merx MW, Liehn EA, Janssens U, Lütteken R, Schrader J, Hanrath P, Weber C. HMG-CoA reductase inhibitor simvastatin profoundly improves survival in a murine model of sepsis. Circulation. 2004 Jun;109(21):2560-5. doi: 10.1161/01.CIR.0000129774.09737.5B.

39. Yong JW, Liya NG, Fei Y. The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules. 2009 Dec;14(12):5144-64. doi: 10.3390/molecules14125144.

40. Sim DA, Chu CJ, Selvam S, Powner MB, Liyanage S, Copland DA, Keane PA, Tufail A, Egan CA, Bainbridge JW, Lee RW, Dickinson D, Fruttiger M. A simple method for in vivo labelling of infiltrating leukocytes in the mouse retina using indocyanine green dye. J Microsc. 2015 Nov;8(11):1479-87. doi: 10.1242/dmm.019018.

41. Gendy MG, Fawzi AA, Wendel RT, Piersamici DJ, Miller JA, Jampol LM. Multimodal imaging in persistent placoid maculopathy. JAMA Ophthalmol. 2014 Jan;132(1):38-49. doi: 10.1001/jamaophthalmol.2013.6310.

42. Fischer T, Gemeinhardt I, Wagner S, Stieglitz DV, Schnorr J, Herrmann KG, Ebert B, Petzetl D, Macdonald R, Licha K, Schirmer M, Krenn V, Kamradt T, Taupitz M. Assessment of unspecific near-infrared dyes in laser-induced fluorescence imaging of experimental arthritis. Acad Radiol. 2006 Jan;13(1):4–13. PMID: 16399028.

43. Meier R, Boddington S, Krug C, Acosta FL, Thullier D, Henning TD. Detection of postoperative granulation tissue with an ICG-enhanced integrated OI-X-ray system. J Transl Med. 2008 Nov;6(11):73-9. doi: 10.1186/1479-5876-6-73.

Correspondence: Aldo Cunha Medeiros
Avenida Nilo Pecanha, 620
59012-300 Natal – RN Brasil
cirurgex.ufrn@gmail.com

Received: Aug 15, 2016
Review: Oct 17, 2016
Accepted: Nov 18, 2016
Conflict of interest: none
Financial source: CNPq (Grant 4449083/2014-4)

Research performed at Nucleus of Experimental Surgery, Department of Surgery, Universidade Federal do Rio Grande do Norte (UFRN), Brazil. Part of PhD degree thesis, Postgraduate Program in Health Sciences. Tutor: Aldo Cunha Medeiros.