Silencing of the SL-ZH13 Transcription Factor Gene Decreases the Salt Stress Tolerance of Tomato

Tingting Zhao, Jingkang Hu, Yingmei Gao, Ziyu Wang, Yufang Bao, Xiaochun Zhang, Huanhuan Yang, Dongye Zhang, Jingbin Jiang, He Zhang, and Jingfu Li
College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China 150030

Qingshan Chen1,2
College of Agronomy, Northeast Agricultural University, Harbin, China 150030

Xiangyang Xu1,2
College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China 150030

ADDITIONAL INDEX WORDS. zinc finger-homeodomains, VIGS, abiotic stress, salinity, gene expression

ABSTRACT. Zinc finger-homeodomains (ZF-HDs) are considered transcription factors that are involved in a variety of life activities in plants, but their function in regulating plant salt stress tolerance is unclear. The SL-ZH13 gene is significantly upregulated under salt stress treatment in tomato (Solanum lycopersicum) leaves, per our previous study. In this study, to further understand the role of the SL-ZH13 gene played in the response process of tomato plants under salt stress, the virus-induced gene silencing (VIGS) method was applied to down-regulate SL-ZH13 expression in tomato plants, and these plants were treated with salt stress to analyze the changes in salt tolerance. The silencing efficiency of SL-ZH13 was confirmed by quantitative real-time PCR analysis. SL-ZH13-silenced plants wilted faster and sooner than control plants under the same salt stress treatment condition, and the main stem bending angle of SL-ZH13-silenced plants was smaller than that of control plants. Physiological analysis showed that the activities of superoxide dismutase, peroxidase, and proline content in SL-ZH13-silenced plants were lower than those in control plants at 1.5 and 3 hours after salt stress treatment. The malondialdehyde content of SL-ZH13-silenced plants was higher than that in control plants at 1.5 and 3 hours after salt stress treatment; H2O2 and O2− accumulated much more in leaves of SL-ZH13-silenced plants than in leaves of control plants. These results suggested that silencing of the SL-ZH13 gene affected the response of tomato plants to salt stress and decreased the salt stress tolerance of tomato plants.

Salt stress is a problem for plant growth and agricultural productivity. During different developmental stages, cultivated plants are also exposed to changes in the environment and respond by activating gene expression (Yanez et al., 2009). In studies of stress tolerance in plants, it is found that the transcription factor activates or inhibits the expression of related genes through interactions with other related proteins or itself and then plays an important role in regulating the adaptability of plants to adverse conditions.

The homeobox (HB) gene encodes a highly conserved 60–61 amino acid homeodomain (HD), which confers sequence-specific DNA binding function by folding into a characteristic three alpha helix structure (Ariel et al., 2007; Hanes and Brent, 1989; Zhao et al., 2011). Plants have evolved the specific HD-Zip transcriptional factor family (Ariel et al., 2007), the members of which bear a unique leucine zipper domain at the C-terminus. Zinc fingers, which consist of two pairs of conserved cysteine and/or histidine residues binding a single zinc ion to form a finger-shaped loop (Klug and Schwabe, 1995), are necessary motifs that are found widely in regulatory proteins (Hu et al., 2018; Krishna et al., 2003; Takatsuji, 1999). According to the nature, number, and spacing pattern of zinc-binding residues, zinc fingers could be classified into different types (Englbrecht et al., 2004; Kosarev et al., 2002; Li et al., 2001; Wang et al., 2016; Yanagisawa, 2004). ZF-HD proteins are one of the HD-containing protein families.

The ZF-HD subfamily of homeobox genes has been researched in some model plants. They are considered transcription factors that regulate biotic and abiotic stress, and plant development processes. Functional studies of ZF-HD in abiotic stress responses have been reported in different plant species. AtZHD1 is a transcriptional regulator that binds to the promoter region of ERD1 (early response to dehydration stress 1), and its expression is induced by drought, salinity, and abscisic acid [ABA (Tran et al., 2007)]. The overexpression of NAC and AtZHD1 increases drought tolerance in Arabidopsis [Arabidopsis thaliana (Wang et al., 2014)]. Thirty-one ZF-HD genes were identified in Chinese cabbage (Brassica rapa ssp. pekinensis), and most of these genes are significantly induced under abiotic stresses (Wang et al., 2016).

Salt stress mainly causes oxidative damage in plants due to the overproduction of reactive oxygen species [ROS (Ali et al., 2017a; Ashraf, 2009)]. Superoxide anions (O2−) and hydrogen peroxide (H2O2) are important ROS that can initiate a series of destructive processes, leading to gradual lipid peroxidation and the inactivation of antioxidant enzymes (Tanou et al., 2009).
Plants developed an antioxidative defense mechanism for the detoxification of excessively produced ROS. Among various antioxidants, superoxide dismutase (SOD) and peroxidase (POD) are enzymatic ones, while proline (Pro) is a non-enzymatic metabolite. These antioxidants all serve as ROS quenchers, thus protecting cells from oxidative damage (Yadav et al., 2016). The overproduction of ROS results in the accumulation of malondialdehyde (MDA) due to lipid peroxidation. MDA content estimation provides an effective means for assessing the extent of membrane damage (Ali et al., 2017b).

In our previous study, 22 ZF-HD genes (SL-ZH1–SL-ZH22) were identified from tomato (Hu et al., 2018), and most of these genes were responsive to abiotic stresses of cold, drought, and salinity. **SL-ZH13** is one of the salinity-responsive genes. This gene is upregulated significantly under salt stress treatment in tomato leaves. In this study, to understand the function of the **SL-ZH13** gene and determine the relationship between **SL-ZH13** expression and salt tolerance ability of tomato plants, we applied virus-induced gene silencing technology to decrease the expression level of **SL-ZH13** in tomato plants and analyzed changes in the salt tolerance ability in these plants.

Materials and Methods

Plant material. Tomato ‘Moneymaker’ was provided by Tomato Research Institute of Northeast Agricultural University (Harbin, China). All plants were grown at the Horticultural Experimental Station of Northeast Agricultural University. At the two- to three-leaf stage, the seedlings were used in a VIGS study.

Target fragments amplification and vectors construction. Total RNA was extracted from ‘Moneymaker’ seedling leaves using the Trizol method (Trizol; Invitrogen, Shanghai, China) according to the manufacturer’s instructions. First-strand cDNA was synthesized using an M-MLVRTase cDNA synthesis kit (Takara, Dalian, China) according to the manufacturer’s instructions. Primers (Table 1) of the **SL-ZH13** fragment were designed using the primer design tool of the National Center for Biotechnology Information [NCBI (Ye et al., 2012)], based on the sequence of Solye03g098060 from Sol Genomics Network [SGN (Fernandez-Pozo et al., 2014)]. The resulting PCR products were analyzed by agarose gel electrophoresis; bands with the correct size were excised from the gel and purified with the PCR purification system (PCR purification kit, Takara). The purified products were cloned into the pMD18-T vector (Takara) and sequenced (Sangon Biotech Co., Shanghai, China).

After the target fragment was identified, re-amplifications were applied using the primers with added restriction site sequences (EcoRI and BamHI). Target products were excised from the gel, purified and cloned into tobacco rattle virus RNA2 (TRV2), which was digested with restriction endonucleases EcoRI and BamHI (Takara). The cloned TRV2 vectors were transformed into competent cells of *Escherichia coli* DH5α and incubated at 37°C overnight. The white clones grown on lysogeny broth (LB) medium containing kanamycin/X-gal/isopropyl β-D-thiogalactoside (IPTG) were picked and cultured in a liquid LB culture with 50 μg·mL⁻¹ kanamycin, and the plasmids were extracted and verified by sequencing. The identified TRV2-SL-ZH13 strain was cultured in a liquid LB culture with 50 μg·mL⁻¹ kanamycin and used for plasmid extraction. The TRV constructs were transformed into *Agrobacterium tumefaciens* GV3101 according to the method of Huang et al. (2008).

In this experiment, silencing of *phytoene desaturase* (PDS), which causes the plants to photobleach, was used as a silencing experimental efficiency control. This gene was silenced in a separate experimental group parallel to the experimental group with silencing of the target gene **SL-ZH13**. GV3101 carrying the TRV2-PDS vector we used in this experiment was constructed in our previous study (Zhao et al., 2017) and preserved at the Tomato Research Institute of Northeast Agricultural University.

Infilttation of tomato seedlings. Seedlings at the two- to three-leaf stage were used for infiltration experiments. For each target fragment, 20 seedlings were prepared for one experimental repeat, with three experimental repeats in total. All steps were performed as described by Velásquez et al. (2009).

Confirmation of gene silencing efficiency by quantitative real-time PCR. The leaves were collected from the VIGS-treated seedlings and the control seedlings at 25 d after infiltration. RNA extraction and cDNA synthesis were carried out as mentioned above. Quantitative real-time PCR (qRT-PCR) was performed according to a previous study (Zhao et al., 2016). The primers used for target fragment amplification were used as qRT-PCR primers (Table 1). The data were analyzed using the 2⁻ΔΔCT method (Livak and Schmittgen, 2001) with *EFα1* as a reference gene for normalization (Rotenberg et al., 2006).

Salt stress treatment and phenotypic observation. According to the method of our previous study (Hu et al., 2018) **SL-ZH13** silenced seedlings (selected based on the qRT-PCR result of gene silencing efficiency confirmation) and control seedlings were grown in nutrient solution for 24 h and then irrigated with 250 mM NaCl for 24 h. Tomato leaf samples were gathered at 1.5, 3, 6, 12, and 24 h after treatment and stored at –80°C for analysis. Three biological replicates were carried out. The angle between the part of the main stem inside the bottle and the part of the main stem outside the bottle was measured as the plant bending angle. Ten plants of each sample were measured, and the bending angle values were used to obtain the mean bending angle. Bending angle value data were analyzed with analysis of variance (ANOVA) (significance level 0.05) using SAS (version 9.1.3; SAS Institute, Cary, NC).

Assay of SOD, POD, Pro and MDA. The SOD activity was determined following the method of Giannopolitis and Ries (1977), and the activity of POD was determined following the method of Chance and Maehly (1955). The Pro content in leaf homogenates was estimated by the method of Bates et al. (1973) with the help of the standard curve. The MDA content was estimated following the method of Cakmak and Horst (1991) and determined following the method of Ali et al. (2017a). The activities of SOD and POD and

Primer name	Restriction site sequence	Primer sequence (5'–3')
VIGS Primer-F	CG (GAAATTC) TGCCTGCGGCTGTACCA	
VIGS Primer-R	CG (GGATCC) GATCCTCCGTAACCTCTGCTCTAAA	
qRT-PCR primer-F	ATGCCTGAGTGGTGTGA	
qRT-PCR primer-R	TGGCGTGGAAGTACGTTGA	
the content of MDA were estimated using the same method of mean bending angle mentioned above.

Nitroblue tetrazolium (NBT) and 3,3′ diaminobenzidine (DAB) staining. Leaves collected from control plants and *SL-ZH13* silenced plants at 0, 1.5, and 3 h after treatment were used for superoxide radical staining. NBT staining was performed according to Rao and Davis (1999), and DAB staining was performed according to Fryer et al. (2002) and Ivan et al. (2009). O$_2^−$ was visualized as a blue color produced by NBT precipitation. H$_2$O$_2$ was visualized as a brown color due to DAB polymerization.

Gene expression pattern analysis. To further investigate the expression level of *SL-ZH13* in gene-silenced plants during the treatment process, leaves collected at 1.5, 3, 6, 12, and 24 h after treatment were used for qRT-PCR analysis. RNA extraction and cDNA synthesis were carried out as mentioned above. qRT-PCR was performed according to a previous study (Zhao et al., 2016). The primers used for target fragment amplification were used as qRT-PCR primers (Table 1). The data were analyzed using the 2$−$ΔΔCT method (Livak and Schmittgen, 2001) with EFa1 as a reference gene for normalization (Rotenberg et al., 2006).

Results

Verification of PDS silencing efficiency. Silencing of the *PDS* control gene caused photobleaching in tomato plants. Photobleaching was observed as soon as 12 d after infiltration. Of 45 plants in three experimental repeats in total, 41 (91%)

Fig. 1. Changes in *SL-ZH13* expression. Twenty *SL-ZH13*-silenced tomato plants were analyzed (VIGS-1 to VIGS-20); 15 *SL-ZH13*-silenced plants showed down-regulated expression pattern of the *SL-ZH13* gene. CK = control plant; VIGS-TRV2 = empty vector control plants.

Fig. 2. Phenotype changes of *SL-ZH13*-silenced (VIGS) tomato plants under salt stress treatment. Plant wilt was very obvious on stems and petioles but not on leaves. Petioles and stems were curved. The mean bending angle of *SL-ZH13*-silenced plants during wilting is smaller than that of control (CK) and empty vector control plants (CK-TRV2) plants. (A) CK plants at 0 h after salt stress treatment; (B) CK plants at 1.5 h after salt stress treatment; (C) CK plants at 3 h after salt stress treatment; (D) mean bending angle of *SL-ZH13*-silenced plants; (E) CK-TRV2 plants at 0 h after salt stress treatment; (F) CK-TRV2 plants at 1.5 h after salt stress treatment; (G) CK-TRV2 plants at 3 h after salt stress treatment; (H) mean bending angle of CK-TRV2 plants; (I) *SL-ZH13*-silenced plants at 0 h after salt stress treatment; (J) *SL-ZH13*-silenced plants at 1.5 h after salt stress treatment; (K) *SL-ZH13*-silenced plants at 3 h after salt stress treatment; and (L) mean bending angle of *SL-ZH13*-silenced plants. Red lines show the bending angle of plants.
showed the characteristic photobleaching phenotype 20 d after infiltration. Empty TRV2 vector-control plants and untreated-control plants grew normally. *SL-ZH13*-silenced plants did not show obvious abnormalities in tomato plant morphology.

The expression levels of target gene *SL-ZH13*-silenced plants were compared with the expression levels in wild-type control plants and empty vector control plants. The results showed that the expression level of the *SL-ZH13* gene decreased significantly after *SL-ZH13* silencing in most plants, but there were five plants showing normal expression levels of the *SL-ZH13* gene. Fifteen successfully silenced plants that showed obviously down-regulated expression patterns were used for subsequent experiments (Fig. 1).

PLANT PHENOTYPE OBSERVATION UNDER SALT STRESS TREATMENT. As shown in Fig. 2, all plants under salt stress treatment were wilted. This phenomenon was observed at 1.5 h after treatment and was even worse at 3 h after treatment. Plant wilt was very obvious on stems and petioles but not on leaves. Petioles and stems were curved. The mean bending angle of *SL-ZH13*-silenced plants during wilting is smaller than that of CK and CK-TRV2 plants.

GENE EXPRESSION PATTERN ANALYSIS. To further confirm the effect of gene silencing throughout the whole treatment process and to compare expression levels between control plants and *SL-ZH13*-silenced plants directly, qRT-PCR analysis was applied to leaves gathered from control plants and *SL-ZH13*-silenced plants at 0, 1.5, 3, 6, 12, and 24 h after salt stress treatment. The results (Fig. 3) showed that the *SL-ZH13* gene expression level increased after salt stress treatment in control plants and peaked at 3 h after salt stress treatment. In *SL-ZH13*-silenced plants, the expression levels were very low and stable.

ASSAY OF SOD, POD, PRO, AND MDA. SOD and POD activities and Pro content were increased significantly in all studied plants due to the imposition of salt stress (Fig. 4). Salt-induced increases in SOD and POD activities and Pro content were larger in the control plants CK and CK-TRV2 compared with the *SL-ZH13*-silenced plants. Similar to the SOD and POD activities and Pro content, the leaf MDA content also increased significantly due to the imposition of salt stress, while a smaller increase was found in control plants compared with *SL-ZH13*-silenced plants.

NBT AND DAB STAINING. Superoxide radical detection and quantification were performed using the NBT staining method. As shown in Fig. 5, the levels of superoxide radical staining before salt treatment were quite similar between control plants and *SL-ZH13*-silenced plants. A blue coloration appeared in all studied plants treated with salt. The blue coloration in *SL-ZH13*-silenced plants was stronger than that in the control plants CK and CK-TRV2 at the same treatment time. A brown precipitate in the presence of H2O2 was detected in all DAB strained leaves. Similar to the NBT staining result, the brown precipitate in *SL-ZH13*-silenced plants was stronger than that in the control plants CK and CK-TRV2.

Discussion

In this study, VIGS technology was used to down-regulate the *SL-ZH13* gene. qRT-PCR analysis results showed that the gene silencing success rate of twenty plants was 75% (plants with a *SL-ZH13* gene expression level reduction of more than 50% were classified as successfully silenced plants); the average silencing efficiency of 15 successfully silenced plants was 54%. This
also showed changes caused by plants and stems drooped more obviously. Another analysis in this study caused a change in the plant phenotype under salt stress. According to our results, SOD and POD activities as well as Pro and MDA contents were measured to evaluate plant antioxidant ability under salt stress. According to our results, SOD and POD activities as well as Pro and MDA contents all increased in plants treated with salt stress, while the activities of SOD and POD and the content of Pro in SL-ZH13-silenced plants were all lower than those in control plants at the same treated time. The MDA content of SL-ZH13-silenced plants was higher than that of control plants at the same treated time. This result indicated that silencing of the SL-ZH13 gene reduced the salt stress tolerance of tomato plants. Similar results were also found in plant salt stress tolerance ability studies in arabinopsis (Zhang et al., 2016). The study indicated that arabinopsis overexpressing the Tamarix hispida zinc finger protein ThZFP1 showed more tolerance to salt and osmotic stress. The POD and SOD activities, Pro content and expression levels of relative genes, such as delta-pyrrrole-5-carboxylate synthetase (P5CS), all increased (Sun et al., 2007; Zang et al., 2015).

DAB and NBT staining methods have been used in many abiotic stress tolerance-related gene functional studies (Fryer et al., 2002). DAB reacts with H$_2$O$_2$ in the presence of peroxidases to produce a brown polymerization product, making the production of H$_2$O$_2$ visible in leaves infiltrated with DAB. O$_2^-$ was visualized as a blue color produced by NBT precipitation (Fryer et al., 2002). These analyses could intuitively show the damage situation of the study plants. In this study, DAB and NBT staining results showed that H$_2$O$_2$ and O$_2^-$ accumulated in tomato leaves treated with salt stress, and this accumulation increased with treatment time. At 1.5 and 3 h after salt stress treatment, brown and blue colors of leaves from SL-ZH13-silenced plants were all deeper than colors of control plant leaves. The results showed that salt stress caused more damage to plants with SL-ZH13 gene silencing and coincided with POD and SOD activity as well as Pro and MDA content changes.

In all analyses of this study, there were no remarkable differences between control plants and SL-ZH13-silenced plants before salt stress treatment. This finding may suggest that the down-regulation of the SL-ZH13 gene did not cause remarkable damage to the plants.

In conclusion, we obtained tomato plants with SL-ZH13 gene silencing using the VIGS method. The silencing efficiency was confirmed by the down-regulation of SL-ZH13 gene expression. SL-ZH13- silenced plants wilted faster and sooner than control plants under the same salt stress treatment conditions. Physiological analysis showed that the SOD and POD activities and Pro content in SL-ZH13- silenced plants were lower than those in control plants at 1.5 and 3 h after salt stress treatment. The MDA content of SL-ZH13-silenced plants was higher than that in control plants at 1.5 and 3 h after salt stress treatment. H$_2$O$_2$ and O$_2^-$ accumulated much more in leaves from SL-ZH13-silenced plants than those from control plants. These results suggested that silencing of the SL-ZH13 gene affected the response of tomato plants under salt stress and decreased the salt stress tolerance of tomato plants.
Literature Cited

Ali, Q., M.T. Javed, A. Noman, M.Z. Haider, M. Waseem, N. Iqbal, M. Waseem, M.S. Shah, F. Shahzad, and R. Perveen. 2017a. Assessment of drought tolerance in mung bean cultivars/lines as depicted by the activities of germination enzymes, seedling’s antioxidative potential and nutrient acquisition. Arch. Agron. Soil Sci. 64:84–102.

Ali, Q., M.K. Daud, M.Z. Haider, S. Alid, M. Rizwander, N. Aslame, A. Nomanf, N. Iqbal, F. Shahzada, F. Deebac, I. Alig, and S.J. Zhu. 2017b. Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiol. Biochem. 119:50–58.

Ariel, F.D., P.A. Manavella, C.A. Dezar, and R.L. Chan. 2007. The true story of the HD-Zip family. Trends Plant Sci. 12:419–426.

Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 27:84–93.

Bates, L.S., R.P. Waldren, and L.D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant Soil 39:205-208.

Cakmak, I. and W.J. Horst. 1991. Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 83:463–468.

Caverzan, A., A. Casassola, and S.P. Brammer. 2016. Antioxidant responses of wheat plants under stress. Genet. Mol. Biol. 39:1–6.

Chance, B. and A. Maehly. 1955. Assay of catalases and peroxidases. Methods Enzymol. 2:764–775.

Englbrecht, C.C., H. Schoof, and S. Böhm. 2004. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics 5:39.

Fernandez-Pozo, N., N. Menda, J.D. Edwards, S.R. Saha, I.Y. Tecle, S.R. Ivan, C., B. Matthieu, S. Cécile, R. Fanny, and G. Gwenola. 2009. Zinc finger homeodomain transcription factors associated with diverse phenomena unique to plants. Mol. Genet. Genomics 291:1451–1464.

Gianopolitis, C.N. and S.K. Ries. 1977. Superoxide dismutase occurrence in higher plants. Plant Physiol. 59:309–314.

Hanes, S.D. and R. Brent. 1989. DNA specificity of the bicom activator proteins determined by homeodomain recognition helix residue 9. Cell 57:1275–1283.

Hu, J.K., Y.M. Gao, T.T. Zhao, J.F. Li, M.N. Yao, and X.Y. Xu. 2018. Genome-wide identification and expression pattern analysis of Zinc-finger protein ThZFP1 participates in salt and osmotic stress response. PLoS One 11:e0168367.

Ivan, C., B. Matthieu, S. Cécile, R. Fanny, and G. Gwenola. 2009. Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol. 9:28.

Krug, A. and J.W. Schwabe. 1995. Protein motifs 5. Zinc fingers. Methods Enzymol. 2:764–775.

Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408.

Rao, M.V. and K.R. Davis. 1999. Ozone-induced cell death occurs via two distinct mechanisms in arabisbdopsis: The role of salicylic acid. Plant J. 17:603–614.

Rothenberg, D., T.S. Thompson, T.L. German, and D.K. Willis. 2006. Methods for effective real-time RT-PCR analysis of virus-induced gene silencing. J. Virol. Methods 138:49–59.

Sun, Q.J., H.L. Jiang, Y.X. Xu, H.M. Li, X.Y. Wu, Q. Xie, and C.Y. Li. 2007. The CCCH-Type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol. 8:1148–1158.

Takatsu, H. 1999. Zinc-finger proteins: The classical zinc finger emerges in contemporary plant science. Plant Mol. Biol. 39:1073–1078.

Tanou, G., A. Molassiotis, and G. Diamantidis. 2009. Hydrogen peroxide- and nitric oxide-induced systemic antioxidant prime-like activity under NaCl-stress and stress-free conditions in citrus plants. J. Plant Physiol. 166:1904–1913.

Tran, L.S., K. Nakashima, Y. Sakuma, Y. Osakabe, F. Qin, S.D. Simpson, K. Maruyama, Y. Fujita, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2007. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J. 49:46–63.

Velásquez, A.C., S. Chakravarthy, and G.B. Martin. 2009. Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato. JoVE. 28:1292.

Wang, H., X. Yin, X. Li, L. Wang, Y. Zheng, X. Xu, and X. Wang. 2014. Genome-wide identification, evolution and expression analysis of the grape (Vitis Vinifera L.) zinc finger-homeodomain gene family. Intl. J. Mol. Sci. 15:5730–5748.

Wang, W.L., P. Wu, Y. Li, and X.L. Hou. 2016. Genome-wide analysis and expression patterns of ZF-HD transcription factors under different developmental tissues and abiotic stresses in Chinese cabbage. Mol. Genet. Genomics 291:1451–1464.

Yadav, G., P.K. Srivastava, P. Parihar, S. Tiwari, and S.M. Prasad. 2016. Orogen toxicity and antioxidative responses in arsenic stressed Helianthus annuus L. seedlings against UV-B. J. Photochem. Photobiol. B 165:558–70.

Yanagisawa, S. 2004. Dof domain proteins: Plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol. 45:386–391.

Yanez, M., S. Caceres, S. Orellana, A. Bastias, I. Verdugo, S. Suz- Lara, and J.A. Casaretto. 2009. An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes. Plant Cell Physiol. 28:1497–1507.

Ye, J., G. Coullouris, S. Zaretzka, I. Cutcutache, S. Rozen, and T. Madden. 2012. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134.

Zang, D., C. Wang, X. Ji, and Y. Wang. 2015. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities. Plant Sci. 235:111–121.

Zhang, A.D., D.D. Liu, C.M. Hua, A. Yan, B.H. Liu, Y.H. Liu, L.L. Huang, I. Ali, and Y.B. Gan. 2016. The Arabidopsis gene zinc finger protein 3(ZF3) is involved in salt stress and osmotic stress response. PLoS One 11:e0168367.

Zhao, T.T., J.B. Jiang, G. Liu, S.S. He, H. Zhang, X.L. Chen, J.F. Li, and X.Y. Xu. 2016. Mapping and candidate gene screening of tomato Cladosporium fulvum-resistant gene Cf-19, based on high-throughput sequencing technology. BMC Plant Biol. 16:51.

Zhao, T.T., H.H. Yang, J.B. Jiang, G. Liu, H. Zhang, D. Xiao, X.L. Chen, J.F. Li, and X.Y. Xu. 2017. Silencing of the SAMDC gene decreases resistance of tomato to Cladosporium fulvum. Physiol. Mol. Plant. 102:1–7.

Zhu, Y., Y.Q. Zhou, H.Y. Jiang, X.Y. Li, D.F. Gan, X.J. Pen, S.W. Sun, J.Q., H.L. Jiang, Y.X. Xu, H.M. Li, and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408.

Zhu, Y., Q. Zhou, H.Y. Jiang, X.Y. Li, D.F. Gan, X.J. Pen, S.W. Zhu, and B.J. Chen. 2011. Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize. PLoS One 6:e28488.