Title
Community-acquired pneumonia in children: cell-free plasma sequencing for diagnosis and management.

Permalink
https://escholarship.org/uc/item/9nt4c72q

Journal
Diagnostic microbiology and infectious disease, 94(2)

ISSN
1879-0070

Authors
Farnaes, Lauge
Wilke, Julianne
Ryan Loker, Kathleen
et al.

Publication Date
2019-06-01

DOI
10.1016/j.diagmicrobio.2018.12.016

Peer reviewed
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Community-acquired pneumonia in children: cell-free plasma sequencing for diagnosis and management

Lauge Farnaes a,c,⁎, Julianne Wilke b, Kathleen Ryan Loker a, John S. Bradley a, Christopher R. Cannavino a, David K. Hong d, Alice Pong a, Jennifer Foley b, Nicole G. Coufal b

a University of California San Diego, Department of Pediatrics, Division of Infectious Disease
b University of California San Diego, Department of Pediatrics, Division of Critical Care
c Rady Children’s Institute of Genomic Medicine
d Karius Inc. Redwood City, CA

A R T I C L E I N F O

Article history:
Received 16 October 2018
Received in revised form 14 December 2018
Accepted 30 December 2018
Available online 2 February 2019

Keywords:
NGS
Pneumonia
Pediatric
Cell-free plasma sequencing
Infectious disease
Precision medicine

A B S T R A C T

Community-acquired pneumonia (CAP) is a common cause of pediatric hospital admission. Empiric antibiotic therapy for hospitalized children with serious CAP now targets the most likely pathogen(s), including those that may demonstrate significant antibiotic resistance. Cell-free plasma next-generation sequencing (CFPNGS) was first made available for Pediatric Infectious Diseases physicians in June 1, 2017, to supplement standard-of-care diagnostic techniques. A retrospective chart review was performed for children hospitalized with CAP between June 1, 2017, and January 22, 2018, to evaluate the impact of CPFNGS. We identified 15 hospitalized children with CAP without other underlying medical conditions for whom CPFNGS was performed. CPFNGS identified a pathogen in 13 of 15 (86%) children compared with 47% for those using standard culture and PCR-based methods alone. Changes in antibiotic management were made in 7 of 15 (47%) of children as a result of CPFNGS.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Pediatric community-acquired pneumonia (CAP) is a leading cause of hospital admissions (Li and Tancredi, 2010; Grijalva et al., 2010, 2011) with a potentially wide range of bacterial, viral, fungal, and mycobacterial etiologies (Erlichman et al., 2017). In a large multisite study of 2638 children hospitalized with CAP, 89% had radiographic evidence of pneumonia. Standard-of-care testing identified a viral infection in 66% of patients, a bacterial infection in 8% of patients, and both a viral and bacterial infection in 7% of patients (Jain et al., 2015). The current Pediatric CAP Guidelines by the Infectious Diseases Society of America (IDSA)/Pediatric Infectious Diseases Society (PIDS) recommend blood culture and viral testing for hospitalized patients with moderate to severe community-acquired or complicated pneumonia in order to identify a pathogen(s). Recommended empiric treatment include a third-generation cephalosporin for any patient with evidence of empyema, with the addition of vancomycin or clindamycin if there are clinical, laboratory, or imaging characteristics consistent with methicillin-resistant Staphylococcus aureus (Bradley et al., 2011) (MRSA) infection.

In cases where cultures (e.g., blood, respiratory, pleural fluid) are negative, physicians rely on epidemiology and clinical features to predict the most likely infectious organism(s) and guide empiric antibiotic selection. This can be challenging as causal organisms have overlapping clinical, radiographic, and laboratory features and/or atypical presentations. Additionally, the clinical course of complicated pneumonias is often lengthy despite the presence of appropriate antimicrobial coverage (Breuer et al., 2018). In the absence of an identified pathogen, children with serious infections may be treated with broad-spectrum antibiotics for prolonged courses, due to concern for MRSA.

DNA sequencing of cell-free plasma (De Vlaminck et al., 2015; Long et al., 2016; Hong et al., 2018) allows for detection of pathogen DNA derived from both bloodstream infections and deeper body sites, including cases where there has been antibiotic pretreatment prior to cultures and in those with fastidious, difficult-to-culture organisms (Abril et al., 2016). This case series reflects an institutional experience applying...
cell-free sequencing technology, a new commercially available test whose application has not been extensively studied. The current retrospective series in children with CAP was performed to assess the clinical impact of this test compared with more traditional microbiologic methods.

2. Patients and methods

A retrospective chart review was approved by the Human Research Protections Program at the University of California San Diego (HRP#180245) to evaluate the use of a cell-free plasma next-generation sequencing (CFPNGS) plasma test in the management of children with infections between June 1, 2017, and January 22, 2018. Inclusion criteria included previously healthy children with CAP or complicated CAP as defined by the IDSA/PIDS guidelines, for whom CFPNGS was ordered and who were discharged prior to February 28, 2018. CFPNGS was a restricted test, ordered by pediatric infectious diseases faculty through the electronic medical record. No prospective, standardized criteria delineated when to obtain CFPNGS; rather, it was at the discretion of the pediatric infectious disease faculty. Children with chronic or complex underlying medical disease were excluded (i.e., underlying oncologic, genetic, or chronic illnesses and/or use of immunomodulatory medications). Chart review was performed using the electronic medical record and incorporated into a REDCap database (Harris et al., 2009).

2.1. Sample processing

Peripheral blood samples were collected in a BD Vacutainer Plasma Preparation Tube (PPT tube, Becton, Dickson and Company, Franklin Lakes, NJ), centrifuged, and sent to the Karius laboratory (Redwood City, CA) for CFPNGS (De Vlaminck et al., 2015). Cell-free DNA was extracted from plasma with a magnetic bead-based method (Omega Biotek, Norcross, GA). DNA libraries were constructed using a modified Ovation System V2 library kit (NuGEN, San Carlos, CA). Negative buffer-only controls and positive controls consisting of healthy patient plasma with addition of known mixture of microbial DNA fragments were processed in parallel, and all samples were sequenced on the Illumina NextSeq 500.

2.2. Standard of care

Blood, urine, respiratory and pleural bacterial, fungal, and mycobacterial cultures, as well as multiplex PCR (EPlex Respiratory Pathogen Panel) for detection of viral pathogens, were obtained at the discretion of treating physicians. Samples for culture and CFPNGS were not temporally matched at acquisition. Available standard care testing data were included when obtained within 72 h of the CFPNGS. Treating physicians determined antimicrobial therapy. The pediatric infectious disease faculty assessed the effects of the CFPNGS test on the selection of antibiotic therapy, subsequent procedures, and length of stay.

2.3. Analysis pipeline

Primary sequencing output files were processed using bcft2fastq (v2.17.1.14) to generate demultiplexed sequencing reads files. Reads were filtered based on sequencing quality and trimmed based on partial or full adapter sequences. Sequence alignment of remaining reads was performed against Karius’ human and synthetic-molecules references using Bowtie2 (Langmead and Salzberg, 2012). Sequencing reads that exhibited alignment against the human or synthetic molecule references were collected and filtered out from further analysis. The remaining reads were aligned against Karius’ proprietary microorganism reference database using NCBI-blast (version 2.2.30). To determine whether the levels observed in the samples exceeded those expected to originate from the environment alone, a Poisson model parameterized by the estimated background abundances was applied. Only taxa that rejected this null hypothesis at high significance levels were reported and included in downstream analyses. The entire process from DNA extraction through analysis was typically completed within 28 h.

3. Results

During the 8-month review period, a total of 125 children were admitted to the hospital with CAP, 31 of whom had CFPNGS testing obtained at the discretion of the pediatric infectious disease attending physician. Of these 31 children, 2 were excluded due to a diagnosed underlying genetic disorder and 14 due to chronic comorbid conditions. Patient demographics for the remaining cohort demonstrated an average age of 4.16 years and 53% male gender (Table 1). The average length of hospital stay was 14 days, reflecting the fact that CFPNGS tended to be requested only in cases of complicated pneumonia. In total, 10 of the 15 children were diagnosed with complicated CAP (pneumonia with pleural effusion or empyema), and 9 required admission to the pediatric intensive care unit (PICU). Nine children were treated with thoracoscopic parapneumonic effusion or empyema, and 6 children required surgical intervention with video-assisted thorascopic surgery.

As indicated in Table 2, only 1 of 15 (6.7%) patients had a positive blood culture at the time of admission. This culture yielded Streptococcus pneumoniae, and CFPNGS was also positive in this case. Pneumococci were identified in 8 additional cases only by CFPNGS (Fig. 1, Table 2). Respiratory cultures were obtained only in intubated children as endotracheal aspirates and yielded putative causal organisms in 33% of the study population (7 positive cultures from 5 patients). Of the respiratory samples, only 1 of the 3 patient cultures was concordant with the CFPNGS diagnostic test (patient 1 identified S. pneumoniae from the ET and blood cultures as well as by CFPNGS). The 2 other patients with positive respiratory cultures were patient 10 (identified Pseudomonas aeruginosa from sputum and had negative CFPNGS) and patient 3.
(isolated methicillin-susceptible Staphylococcus aureus [MSSA] from ETT culture and S. pneumoniae detected by CFPNGS). Three patients had negative respiratory cultures despite a positive CFPNGS test: patient 13 identified Fusobacterium nucleatum, Epstein–Barr virus, and Parvimonas micra detected on CFPNGS; patient 5 had S. pneumoniae detected; and patient 15 had Streptococcus pyogenes, Actinomyces grævenitzii, Veillonella dispar, and Actinomyces odontolyticus detected on CFPNGS. Seven patients did not have respiratory cultures obtained. Abscess fluid cultures obtained during placement of chest tube thoracostomies were positive in only 1 of 9 children: Patient 11 isolated Streptococcus intermedius from culture which was also detected by CFPNGS, CFPNGS also detected Aggregatibacter segnis and Epstein–Barr virus (Supplementary Table 1). A combination of conventional culture methods yielded a bacterial diagnosis in only 27% of children; with inclusion of PCR testing for viral etiologies, only 40% of children had an organism identified. Of note, the viral etiologies detected on a respiratory viral panel were not detected by CFPNGS due to the fact that RNA viruses are not detected this CFPNGS test. Patient 2 had coronavirus detected from a nasopharyngeal swab and S. pneumoniae by CFPNGS, and patient 1 had human metapneumovirus detected from a nasopharyngeal swab and S. pneumoniae from CFPNGS. Traditional testing yielded a result on average 31.4 h (range 2–42.8 h) after the sample was obtained, whereas CFPNGS yielded a result on average 98.1 h (range 48–245.3 h) after the sample was obtained. The use of CFPNGS independently identified a plausible bacterial pathogen in 86% of children (13 of 15), with 60% (9 of 16) being positive for S. pneumoniae (Table 1). The results of CFPNGS led to a change in antibiotic management in 7 of 15 children (47%).

Table 2

Patient	Age (y)	Diagnosis	Culture results	Time to culture result (h)	Organisms detected by CFPNGS	Change in antibiotic management due to CFPNGS result
11	0.9	Empyema	Blood culture = Streptococcus pneumoniae; ETT culture = Streptococcus pneumoniae, Moraxella catarrhalis; Respiratory Viral Panel = Human metapneumovirus	20; 42.8; 3.5	Streptococcus pneumoniae	none
10	1.5	Abscess	Respiratory Viral Panel = Coronavirus	5.5	Streptococcus pneumoniae	Clindamycin discontinued for ceftriaxone monotherapy
13	2.4	Empyema	ETT culture = MSSA	26.7	Streptococcus pneumoniae	Clindamycin discontinued for ceftriaxone monotherapy
2	1	Empyema	Negative	NA	Streptococcus pneumoniae	none
5	4.5	Empyema	Negative	NA	Streptococcus pneumoniae	Ceftaroline narrowed to ceftriaxone
8	3.6	Empyema	Negative	NA	Streptococcus pneumoniae	Ceftriaxone narrowed to ceftriaxone
7	2	Empyema	Negative	NA	Streptococcus pneumoniae	none
15	2.7	Pneumonia	Negative	NA	Streptococcus pneumoniae	Ceftaroline narrowed to ampicillin
14	5.1	Pneumonia	Cultures not obtained	NA	Streptococcus pneumoniae	none
10	10.7	Pneumonia	Sputum culture = Pseudomonas aeruginosa	24.1	No organisms detected	none
6	6.4	Abscess	Pulmonary abscess culture = Streptococcus intermedius	43.4	No organisms detected	Clindamycin discontinued for clindamycin monotherapy
12	9.1	Abscess	Respiratory viral panel = Coronavirus	2	No organisms detected	none
3	10.7	Pneumonia	Negative	NA	Pseudomonas aeruginosa, Burkholderia multivorans, Human adenovirus C	none
4	0.7	Pneumonia	Negative	NA	Streptococcus pyogenes, Actinomyces grævenitzii, Veillonella dispar, Actinomyces odontolyticus detected	none
9	1.1	Empyema	Negative	NA	Streptococcus pneumoniae	47% change in antibiotic management

bacterial dx = 4/15; Viral dx = 3/15

Avg

Cx = 31.4

Avg RVP = 3.6

bacterial dx = 13/15

Avg = 98.1

\[
\text{D} = \text{diagnostic yield of testing obtained within 72 h of when the CFPNGS was obtained, which identified bacterial infections in 4 of 15 patients and viral infections in 3 of 15 patients as compared to CFPNGS testing which yielded bacterial etiology in 13 of 15 patients and viral infections in 3 of 15 patients. The CFPNGS diagnosis positive patients led to a change of management in 7 of 15 patients (47%).}

\[
\text{a Time for CFPNGS was from when blood was drawn until faxed result was scanned into electronic medical record including laboratory processing, shipping, time at Karius Inc., and time to get result into EMR after result faxed in.}
\]

4. Discussion

In this retrospective study, CFPNGS identified 13 of 15 children to have bacterial infectious etiologies that could potentially explain acute pneumonia, as opposed to only 4 of 15 by traditional culture methods. Since the introduction of the 7-valent Pneumococcal Conjugate Vaccine (PCV7), followed by PCV13, there has been a decrease in pediatric hospital admissions for pneumococcal pneumonia by 26–61%, but an increase in staphylococcal pneumonia and unspecified empyema by
Clinicians believed that, with identiﬁcation of bacterial real-time PCR; however, such prospective, comparative studies would be helpful to further differentiate the role of CFPNGS in the context of other available tests in clinical practice.

This retrospective study has numerous limitations to the broad applicability of these ﬁndings. First, the study is limited in scope given the small patient numbers and the uncontrolled nature of the decision to consult the infectious diseases service and to have the consultant order the CFPNGS test, although these data reﬂect a real-world experience. Children with CAP selected for CFPNGS evaluation represented a more severely ill patient population, as demonstrated by a high rate of PICU admission, prolonged hospitalization, and the predominance of complicated CAP with empyema and/or parapneumonic efﬂusion. The average time to CFPNGS results was 4 days, although it is possible that this time may decrease as efﬁciencies in transport, processing, and analysis improve. Overall, these data suggest that CFPNGS in conjunction with standard culture techniques may signiﬁcantly increase diagnostic yield and facilitate antibiotic selection in severe CAP.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.diagmicrobio.2018.12.016.

References

Abril MK, Barnett AS, Wegermann K, Fountain E, Strand A, Heyman BM, et al. Diagn Open Forum Infect Dis 2016;3(3):ofw144. (Sep).
Bradley JS, Byington CL, Shah SS, Alverson B, Carter ER, Harrison C, et al. Executive summary: the management of community-acquired pneumonia in infants and children older than 3 months of age: clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin Infect Dis 2011;53(7):S70–3. (Oct).
Breuer O, Picard E, Benahu N, Erlichman I, Reiter J, Tsabari R, et al. Predictors of Prolonged Hospitalizations in Pediatric Complicated Pneumonia. Chest 2018;151(3):172–80. (Jan).
De Vlamink I, Martin L, Kertesz M, Patel K, Kowarsky M, Strehl C, et al. Noninvasive monitoring of infection and rejection after lung transplantation. Proc Natl Acad Sci U S A 2015;112(43):13336–41. (Oct).
Erlichman I, Breuer O, Shoeyev D, Cohen-Cymberknob M, Koplewitz B, Averbuch D, et al. Complicated community-acquired pneumonia in childhood: Different types, clinical course, and outcome. Pediatr Pulmonol 2017;52(2):247–54. (Feb).
Fontela PS, Quach C, Karim ME, Willson DF, Gilfoyle E, McNally JD, et al. Determinants of Antibiotic Tailoring in Pediatric Intensive Care: A National Survey. Pediatr Crit Care Med 2017;18(9):e395–405. (Sep).
Grijalva CG, Nuorti JP, Zhi Y, Griffin MR. Increasing incidence of empyema complicating childhood community-acquired pneumonia in the United States. Clin Infect Dis 2010;50:805–13.
Grijalva CG, Zhi Y, Nuorti JP, Griffin MR. Emergence of parapneumonic empyema in the USA. Thorax 2011;66:563–8.
Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009;42:377–81.
Hong DK, Pauwskamp TA, Kertesz M, Bercovici S, Truong C, Banaei N. Liquid biopsy for infectious diseases: sequences of cell-free plasma to detect pathogen DNA in patients with invasive fungal disease. Diagn Microbiol Infect Dis 2018;92:210–3. (Feb).
Hultén KG, Mason EO, Lambeth LB, Forbes AR, Revell PA, Kaplan SL. Analysis of invasive community-acquired methicillin-susceptible Staphylococcus aureus infections during a period of declining community acquired methicillin-resistant Staphylococcus aureus infections at a large children’s hospital: Pediatr Infect Dis J 2017;36:237–41.
Jain S, Williams DJ, Arnold SR, Ampofo K, Bramley AM, Reed C, et al. Community-acquired pneumonia requiring hospitalization among U.S. children. N Engl J Med 2015;372(9):805–13. (Feb).
Krenke K, Sadowsky E, Podsaidly A, Hytniewicz W, Demkow U, Kulus M. Etiology of parapneumonic efﬂusion and pleural empyema in children. The role of conventional and molecular microbiological tests. Respir Med 2016;116:28–33.
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357–9.
Li ST, Tancredi D. Empyema hospitalizations increased in US children despite pneumococcal conjugate vaccine. Pediatrics 2010;125:26–33.
Lin TY, Hwang KP, Liu CC, Tang RB, Lin CY, Gilbert GL, et al. Etiology of empyema thoracis and parapneumonic pleural efﬂusion in Taiwanese children and adolescents younger than 18 years of age. Pediatr Infect Dis J 2013;32(4):419–21. (Apr).
Long Y, Zhang Y, Gong Y, Sun R, Su L, Lin X, et al. Diagnosis of Sepsis with Cell-free DNA by Next-Generation Sequencing Technology in ICU Patients. Arch Med Res 2016;47(5):365–71. (Jul).