Effects of *in situ* climate warming on monarch caterpillar (*Danaus plexippus*) development

Nathan P Lemoine, Jillian N Capdevielle, John D Parker

Climate warming will fundamentally alter basic life history strategies of many ectothermic insects. In the lab, rising temperatures increase growth rates of lepidopteran larvae, but also reduce final pupal mass and increase mortality. Using *in situ* field warming experiments on their natural host plants, we assessed the impact of climate warming on development of monarch (*Danaus plexippus*) larvae. Monarchs were reared on *Asclepias tuberosa* grown under ‘Ambient’ and ‘Warmed’ conditions. We quantified time to pupation, final pupal mass, and survivorship. Warming significantly decreased time to pupation, such that an increase of 1°C corresponded to a 0.5 day decrease in pupation time. In contrast, survivorship and pupal mass were not affected by warming. Our results indicate that climate warming will speed the developmental rate of monarchs, influencing their ecological and evolutionary dynamics. However, the effects of climate warming on larval development in other monarch populations and at different times of year should be investigated.
Effects of in situ warming on monarch caterpillar (Danaus plexippus) development

Nathan P. Lemoine¹,4, Jillian Capdevielle², John D. Parker³

¹Florida International University
 MSB 350
 Department of Biological Sciences
 North Miami, Florida 33181

²University of California – Berkeley
 Department of Integrative Biology
 Berkeley, CA 94720

³Smithsonian Environmental Research Center
 647 Contees Wharf Rd.
 Edgewater, MD 21037

⁴corresponding author:
 Nathan P. Lemoine
 Florida International University - MSB 350
 North Miami, FL 33181
 email: nlemo001@fiu.edu
 phone: 305-919-4109

Running Header: Lemoine et al: Warming effects on monarch development
Abstract

Climate warming will fundamentally alter the development of many ectothermic insects; understanding how elevated temperatures affect insect development is becoming increasingly important. Yet most studies examining the relationship between temperature and insect development do so in highly controlled laboratory settings. While useful, laboratory studies cannot incorporate natural variability in temperatures or behavioral thermoregulation by insects. Using *in situ* field warming experiments, we assessed the impact of experimental warming on development of monarch butterfly larvae (*Danaus plexippus*). Monarch larvae were reared on butterfly weed (*Asclepias tuberosa*) grown under ‘Ambient’ and ‘Warmed’ conditions. We quantified time to pupation, final pupal mass, and survivorship. Monarch larval development proceeded more rapidly at higher temperatures, and this effect was even greater for monarch larvae reared under ‘Warmed’ conditions. In contrast, survivorship and pupal mass were not affected by warming. More rapid developmental rates of monarch larvae will alter their ecological and evolutionary dynamics by potentially speeding up northward migrations and increasing the number of generations during the summer breeding season. Our results contrast those from laboratory experiments, wherein rising temperatures increase growth rates of lepidopteran larvae, but also reduce final pupal mass and increase mortality. Therefore, more studies assessing the impact of warming and climate change on monarch biology are needed.
Introduction

Modified temperature regimes caused by climate change will fundamentally alter insect life cycles. As with other insects, lepidopteran larval development is temperature-dependent. Warming increases growth rates and survivorship; however both growth and survival decline rapidly once temperatures exceed an individual’s thermal optimum (Kingsolver et al. 2006, Kingsolver and Woods 1997). The effects of elevated temperatures on lepidopteran larval development have, to date, been mostly examined in highly controlled lab settings. Such laboratory experiments cannot incorporate natural temperature fluctuations that affect larval development and survival (Zalucki 1982) or changes in insect behavior (i.e. behavioral thermoregulation, predator avoidance). Furthermore, warming alters plant nutritional quality (Veteli et al. 2002), and lab experiments often use artificial foods (Kingsolver et al. 2006, Lee and Roh 2010) or leaf material that was not grown under elevated temperatures (Lemoine et al. 2014). Extrapolating results from laboratory experiments to natural settings is therefore problematic. Field experiments are necessary to identify how elevated temperatures influence insect development in a more natural, albeit, variable environment.

Monarch butterflies (Danaus plexippus) are a charismatic species found throughout North America and are well known for their annual migrations between Mexico and northern United States and southern Canada. Monarch migrations have been extensively studied, focusing on factors that influence migration success and population size (Reppert et al. 2010, Flockhart et al. 2015), potential overwintering and migratory habitat loss (Oberhauser and Peterson 2003, Pleasants and Oberhauser 2012, Sáenz-Romero et al. 2012), and overwintering behavior (Masters et al. 1988). Reductions in overwintering and migratory habitat caused by changes in climate and land-use have stimulated research on thermal constraints experienced by migratory
adults and larvae, the need for cool night time temperatures to induce reproductive diapause in adult monarchs (Goehring and Oberhauser 2002, Guerra and Reppert 2013), and the threat posed by spring droughts that reduce monarch population sizes in their summer breeding grounds (Zipkin et al. 2012).

As with all insect species, monarch larval growth, consumption, and mortality rates depend upon environmental temperatures (Zalucki 1982, Goehring and Oberhauser 2002, York and Oberhauser 2002, Lemoine et al. 2014). Prolonged exposure to extreme heat reduces larval growth and survival rates in laboratory experiments (Zalucki 1982, York and Oberhauser 2002). Although warming alters the nutritional quality of monarchs’ milkweed host plants (Couture et al. 2015), few studies consider concurrent effects of warming on both monarch and milkweed (but see Couture et al. 2015). Milkweed nitrogen, lignin, and fiber content increase under elevated temperatures (Couture et al. 2015). Given that elevated temperatures affect both monarchs and milkweeds simultaneously, the relationship between temperature and monarch larval development and survival might be fundamentally different under climate warming. Field experiments are necessary to explore how warming affects monarch larval development in a scenario that incorporates natural temperature variability and changes in host plant quality.

Here, we report results from an in situ warming experiment designed to assess how elevated temperatures influence growth, survival, and development of monarch larvae under variable field conditions. We hypothesized that development time would decrease with rising temperatures under ambient conditions, as has commonly been reported for monarch larvae (Zalucki 1982). However, this relationship between development time and temperature would be significantly stronger under warming since milkweed grown under elevated temperatures contains significantly more nitrogen (Couture et al. 2015). We expected that pupal mass and
survival would decrease with rising temperatures (Zalucki 1982, York and Oberhauser 2002), but that warming would weaken these effects due to the effects of elevated temperatures on milkweed nutritional quality (Couture et al. 2015).

Methods

All experiments were conducted at the Smithsonian Environmental Research Center in Edgewater, MD. The experiment consisted of 16 replicate 2 x 2 m garden beds. Garden beds were assigned to temperature treatments in a completely randomized design. Warming treatments were imposed using a single Kalglo MRM-1215 1500W (Kalglo Electronics Company, Bethlehem, PA) heater installed 1.5 m from the ground over half of the garden beds. An aluminum frame of the same shape and size as the heaters was hung over the remaining garden beds to mimic any shading effects (n = 8 garden beds per temperature treatment). In each garden bed, 1 m long, 20 cm high aluminum sheets were driven 10 cm into the soil to quarter the 2 x 2 m garden bed into four 1 x 1 m subplots. In the fall of 2013, butterfly weed Asclepias tuberosa was sown into two of the subplots within each garden bed, resulting in a density of ~ 4 plants per subplot (the remaining two subplots were used for other experiments). We chose A. tuberosa over the A. syriaca because A. syriaca can grow to > 2 m tall, surpassing the height of our heaters. The experimental unit was therefore 32 1 x 1 m subplots (n = 16 per temperature) within the sixteen garden beds.

We placed Onset HOBO temperature loggers in the center of each garden bed to record air temperature in 10-minute intervals over the course of the experiment. In ‘Ambient’ treatments, average daytime temperatures were 25.2 ± 1.4°C and average nighttime temperatures of 19.9 ± 2.0°C. Maximum daytime temperatures at our study site were 30.7 ± 2.5°C, while
minimum nighttime temperatures were 18.2 ± 2.3°C. Since air temperature measurements may not accurately reflect the heating achieved by infrared heaters (Kimball et al. 2008), we verified heating treatments using a handheld IR thermometer to measure temperatures on a plastic sphere mounted 0.5 m from the ground placed in the middle each experimental subplot at midnight. Nighttime IR gun measurements verified that heaters raised surface temperatures by ~4°C on average ($p < 0.001$), which is below severe projections of a 6°C increase in temperature but above the more conservative estimate of a 2°C temperature increase by 2100 (IPCC 2007).

In August 2014, monarch eggs and larvae were gathered from $A. syriaca$ within nearby old-growth fields. Eggs and larvae were reared in mesh cages and fed fresh $A. syriaca$ leaves daily until they reached the third instar. Larval development was checked continuously throughout the day. First or second instars escaped the mesh bags easily and thus were not used. Immediately after molting to the third instar, larvae were randomly assigned to a temperature treatment (‘Ambient’, ‘Warmed’) and a single larva was placed on a single $A. tuberosa$ within a randomly chosen plot ($n = 15$, $n = 18$ for ‘Ambient’ and ‘Warmed’ treatments, respectively). A 20 x 30.5 cm organza mesh bag was placed over the plant to retain the monarch. If the monarch larva consumed the entire host plant, they were transferred to another plant within the same subplot. Time to pupation was recorded as the number of hours between experiment initiation and onset of chrysalis formation, and this number was converted to number of days (development hour / 24). Dead individuals were recorded and removed from the host plant.

Chrysalids were transported to the lab and weighed to obtain final pupal mass. We measured three plant traits (specific leaf area (SLA), water content, and latex production) to determine whether warming effects on monarch development might be mediated through warming effects on plant traits. At the end of the experiment, two newly expanded
leaves were collected from each plant. For one leaf, we measured leaf area, obtained a fresh wet mass, and then dried the leaf to obtain a dry mass. We calculated specific leaf area (SLA) as area / dry mass and percent water content as \((1 - \text{dry mass (g)} / \text{fresh mass (g)})*100\). Using the second leaf, we determined latex production by cutting the tip of the leaf and blotting all latex onto a dry, pre-weighed piece of filter paper (Agrawal 2005). The filter paper was dried again and latex concentration calculated as the difference in post- and pre-latex filter weights divided by leaf area (Agrawal 2005).

Although heaters raised temperatures of ‘Warmed’ plots by ~4°C on average, plots varied considerably in temperature due to different light levels across the experimental garden and varying plant biomass within each plot. We therefore measured temperature with a handheld infrared thermometer in each subplot during the night at the end of the experiment. For consistency, we recorded temperature of a white plastic sphere mounted 0.5 m from the ground in the middle of each subplot. We then treated temperature as a quantitative rather than categorical variable in all analyses. Note that these measures reflect relative differences in temperature among plots that should be relatively constant over the experiment.

We used an ANCOVA design to regress days\(^{-1}\) until pupation and final pupal mass against night-time temperatures as measured by the IR gun. We included temperature treatment as a covariate, which allows for the possibility that slopes differ between temperature treatments. Mortality was assessed using logistic regression that also included night-time temperature and its interaction with temperature treatment, as in the ANCOVA. Although monarchs experience mortality as pupae, brief exposure to prolonged temperatures did not alter pupal mortality rates and third instars were the most sensitive to temperature increases (York and Oberhauser 2002). Thus, our experiment likely captured most of the influence of temperature on larval survival.
Model assumptions were verified with residual plots where appropriate. All analyses were conducted using Python v2.7 with the 'numpy', 'pandas', and 'statsmodels' modules (McKinney 2010, Seabold and Perktold 2010, Walt et al. 2011).

Results

Time to pupation decreased with increasing temperature, but did so differently under ‘Ambient’ and ‘Warmed’ conditions (interaction: \(p < 0.041 \)) (Fig. 1). At the lowest temperature in ‘Ambient’ treatments, 12.6˚ C, monarch larvae required 12.2 days to transition between third instar and pupa. At the warmest temperature achieved in the ‘Warmed’ plots, monarch larvae required only 10.0 days to pupate. Importantly, the relationship between temperature and time to development varied among treatments (Fig. 1). When reared under ‘Ambient’ conditions, larval development time decreased by ~ 0.4 days per 1˚ C increase in temperature. In ‘Warmed’ plots, larval development time decreased by ~ 0.7 days per 1˚ C increase in temperature. Climate change may therefore speed larval development by ~ 0.7 – 2.4 days, depending on the severity of temperature increases.

Air temperature measurements do not accurately reflect the intensity of infrared heating because infrared energy warms surfaces and not the air (Kimball et al. 2008), calculations of degree-days may not accurately reflect the underlying temperature treatments. Still, we calculated the number of degree days experienced by each individual for which there was adequate temperature data following the simple averaging method, since temperatures remained within the upper and lower thermal limits throughout the experiment (Allen 1976). Monarch caterpillars experienced ~ 155 ± 17 degree days, and this did not differ between temperature
treatments \((p = 0.978)\). Thus, monarch larvae accumulated their required number of degree days faster in the warming treatment than in the ambient treatment.

Temperature had no effect on pupal mass \((p = 0.454, R^2 = 0.023)\). Similarly, mortality was low throughout the experiment \((18\%)\) and independent of temperature \((p = 0.610, \text{pseudo}-R^2 = 0.01)\).

Warming had no effect on any measured plant trait. SLA \((p = 0.940, R^2 = 0)\), percentage water content \((p = 0.313, R^2 = 0.05)\), and latex concentration \((p = 0.739, R^2 = 0.01)\) all did not vary with temperature. Thus, any effects of warming on monarch development time were direct effects of temperature on monarch physiology rather than being mediated through the plant traits we measured.

Discussion

Our study indicates that warming accelerates monarch larval development but has little effect on larval mortality or pupal mass at our study site. This is consistent with numerous studies showing positive correlations between larval development and temperature (Kingsolver and Woods 1997, Bale et al. 2002). Since warming increases larval growth rates, lepidopteran larvae reach critical mass needed for pupation earlier and proceed through larval stadia more quickly. Monarch larvae developed more rapidly from the third instar but experienced roughly the same number of degree days. Our results suggest that climate warming might facilitate monarch larval development through later instars under moderate climate change scenarios at sites with relatively cool temperatures, potentially increasing the number of generations in the temperate summer breeding grounds of eastern migratory monarch populations.
Laboratory studies have consistently documented negative effects of extreme temperatures on monarch caterpillar development and survival. Short-term, extreme heat stress can have weak negative effects on pupal mass (York and Oberhauser 2002). Likewise, constant temperatures above 28° C induced high mortality rates in monarch larvae (Zalucki 1982, York and Oberhauser 2002). However, these studies used either pulses of extremely high temperatures (i.e. 36° C) or held monarch larvae at a constant temperature (i.e. 28° C). Ambient, maximum daytime temperatures averaged 30° C during our experiment; warming increased this maximum to $32-34^\circ$ C. Although these temperatures are above the thermal optimum of monarch survival, we found no effect of *in situ* warming on either pupal mass or survival of older monarch larvae.

Eggs and first instar larvae are resistant to high temperatures, with third instars, fourth instars, and pupae being the most sensitive to extreme heat (Zalucki et al. 1982, York and Oberhauser 2002). As temperatures exceeded 28° C for less than 20% of the full 24 hour day, it is likely that diel and daily temperature fluctuations mitigated the lethality of high temperatures.

Interestingly, our study site had warmer temperatures during our experiment than other locations of the monarch breeding range. Monarchs typically experience cool temperatures during their northward migration: maximum March temperatures in Texas average $23.5 \pm 2.4^\circ$ C, maximum April temperatures in Iowa and the midwestern US average $20.7 \pm 1.5^\circ$ C, and maximum May temperatures in the Great Lakes region average $18 \pm 2.3^\circ$ C (averages based on 50 year weather station data provided by WorldClim). Even maximum temperatures during the summer breeding season in the Great Lakes region are typically lower than at our study site, averaging $26.0 \pm 2.3^\circ$ C compared to $30.7 \pm 2.5^\circ$ C at during our experiment. We found no influence of increased temperatures on larval monarch pupal mass and survival at our study site, which had temperatures well above those in other important breeding ranges. Indeed,
temperatures in these ranges rarely exceed the thermal optimum of 28˚C and do not exceed the critical thermal maximum of 36˚C (Zalucki 1982, York and Oberhauser 2002). Thus, climate change is unlikely to raise temperatures to a range that is detrimental to monarch larval performance.

Though monarch larval development proceeded more rapidly when exposed to high temperatures, this effect was stronger on plants grown under warmed conditions. Increased sensitivity to temperature in ‘Warmed’ plots likely stems from altered plant nutritional content. Though we found no different in A. tuberosa leaf characteristics between ‘Ambient’ and ‘Warmed’ treatments, elevated temperatures alter foliar water content, nutritional content, and secondary metabolite concentrations of numerous plant species (Zvereva and Kozlov 2006). In particular, milkweed nitrogen content increases at elevated temperatures (Couture et al. 2015). Insect development proceeds more rapidly at high temperatures on nitrogen-rich plants (Lemoine et al. 2013, Lemoine et al. 2014). It is therefore likely that increased foliar nitrogen content of A. tuberosa grown under elevated temperatures is responsible for the greater sensitivity of monarch larvae to rising temperatures.

Our paper demonstrates that climate warming may minimally impact the development of monarch larvae in temperate regions. Though numerous laboratory studies have reported detrimental impacts of extreme temperatures on monarch larval development and survival (Zalucki 1982, York and Oberhauser 2002), our field experiment demonstrated that in situ warming had little influence on larval survival or pupal mass even in a site with extreme daytime temperatures. Rising temperatures may, however, have other important effects on monarch larvae. Monarch larvae may, for example, suffer higher parasitism rates at high temperatures as occurs in other insect-parasitoid pairs (Bezemer et al. 1998). Predatory insects also increase their
attack and ingestion rates at high temperatures, suggesting that predation pressure on monarch larvae may increase substantially under warming (Rall et al. 2010). Furthermore, landscape level distributions of milkweed host plants may be substantially different at elevated temperatures. Warming may reduce the availability of *Asclepias* host plants during the northward migration via increased drought or drastically alter the geographic range of *Asclepias* host plants (Zipkin et al. 2012, Lemoine 2015). Thus, this research establishes an important baseline for future work considering numerous other consequences of increased temperature on monarch larval performance and survival.
Acknowledgements

We thank S. Cook-Patton, D. Doublet, and M. Palmer for their assistance during this project. We thank L. Higley, J. Pleasants, R. Peterson, and one anonymous reviewer for their helpful comments and suggestions.
References

Agrawal, A. 2005. Natural selection on common milkweed (Asclepias syriaca) by a community of specialized herbivores. Evol. Ecol. Res. 7: 651-667.

Allen, J. C. 2006. A modified sine wave method for calculating degree days. Env. Entomol. 5: 88-396.

Bale, J. S., G. J. Masters, I. D. Hodkinson, C. Awmack, T. M. Bezemer, V. K. Brown, J. Butterfield, A. Buse, J. C. Coulson, J. Farrar, J. E. G. Good, R. Harrington, S. Hartley, T. H. Jones, R. L. Lindroth, M. C. Press, I. Symrniodis, A. D. Watt, J. B. Whittaker. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Bio. 8:1-16.

Bezemer, T. M., T. H. Jones, and K. J. Knight. 1998. Long-term effects of elevated CO₂ and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid Aphidius matricariae. Oecologia 116: 128-135.

Couture, J. J., S. P. Serbin, and P. A. Townsend. 2015. Elevated temperature and periodic water stress alter growth and quality of common milkweed (Asclepias syriaca) and monarch (Danaus plexippus) larval performance. Arthropod-Plant Inte. 9: 149-161.

Flockhart, D. T. T., J.-B. Pichancourt, D. R. Norris, and T. G. Martin. 2015. Unravelling the annual cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch butterflies. J. Anim. Ecol. doi:10.1111/1365-2656.12253.

Goehring, L. and K. S. Oberhauser. 2002. Effects of photoperiod, temperature, and host plant age on induction of reproductive diapause and development time in Danaus plexippus. Ecol. Entomol. 27: 674-685.

Guerra, P. A. and S. M. Reppert. 2013. Coldness triggers northward flight in remigrant monarch butterflies. Curr. Biol. 23: 419-423.

IPCC. 2007. Climate change 2007: synthesis report.

Kimball, B. A., M. M. Conley, S. Wang, X. Lin, C. Luo, J. Morgan, and D. Smith. 2008. Infrared heater arrays for warming ecosystem field plots. Global Change Biol. 14: 309-320.

Kingsolver, J. G., G. Schlichta, G. J. Ragland, and K. R. Massie. 2006. Thermal reaction norms for caterpillar growth depend on diet. Evol. Ecol. Res. 8: 705-715.
Kingsolver, J. G. and H. A. Woods. 1997. Thermal sensitivity of growth and feeding in *Manduca sexta* caterpillars. Physiol. Zool. 70: 631-638.

Lee, K. P. and C. Roh. 2010. Temperature-by-nutrient interactions affecting growth rate in an insect ectotherm. Entomol. Exp. Appl. 136: 151-163.

Lemoine, N. P., W. A. Drews, D. E. Burkepile, and J. D. Parker. 2013. Increased temperature alters feeding behavior of a generalist herbivore. Oikos 122: 1669-1678.

Lemoine, N. P., D. E. Burkepile, and J. D. Parker. 2014. Variable effects of temperature on insect herbivory. PeerJ 2: e376.

Lemoine, N. P. 2015. Climate change may alter monarch spring migration and summer breeding ground distributions. Plos One 10:e0118614

Masters, A. R., S. B. Malcolm, and L. P. Brower. 1988. Monarch butterfly (*Danaus plexippus*) thermoregulatory behavior and adaptations for overwintering in Mexico. Ecology 69: 458-467.

McKinney, W. 2010. Data structures for statistical computing in Python, pp. 51-56. In Proceedings, 9th Python in Science Conference, June 28 - July 3, Austin, TX.

Oberhauser, K. and A. T. Peterson. 2003. Modeling current and future potential wintering distributions of eastern North American monarch butterflies. P. Natl. Acad. Sci. USA. 100: 14063-14068.

Pleasants, J. M. and K. S. Oberhauser. 2012. Milkweed loss in agricultural fields because of herbicide loss: effect on the monarch butterfly population. Insect Conserv. Diver. 6: 135-133.

Rall, B. C., O. Vucic-Pestic, R. B. Ehnes, M. Emmerson, and U. Brose. 2010. Temperature, predator-prey interaction strength and population stability. Glob. Change Biol. 16:2145-2157.

Reppert, S. M., R. J. Gegear, and C. Merlin. 2010. Navigational mechanisms of migrating monarch butterflies. Trends Neurosci. 33: 399-406.

Seabold, S. and Perktold, J.. 2010. Statsmodels: econometric and statistical modeling with Python, pp 57-61. In Proceedings, 9th Python in Science Conference, June 28 - July 3, Austin, TX.
Sáenz-Romero, C., G. E. Rehfeldt, P. Duval, and R. A. Lindig-Cisneros. 2012. *Abies religiosa* habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico. Forest Ecol. Manag. 275: 98-106.

Veteli, T. O., K. Kuokkanen, R. Julkunen-Tiitto, H. Roininen, and J. Tahvanainen. 2002. Effects of elevated CO$_2$ and temperature on plant growth and herbivore defensive chemistry. Global Change Biol. 8: 1240-1252.

York, H. A. and K. S. Oberhauser. 2002. Effects of duration and timing of heat stress on monarch butterfly (*Danaus plexippus*) (Lepidoptera: Nymphalidae) development. J. Kansas Entomol. Soc. 75: 290-298.

Zalucki, M. P. 1982. Temperature and rate of development in *Danaus plexippus* L. and *D chrysippus* L. (Lepidoptera: Nymphalidae). J. Aust. Entomol. Soc. 21: 241-246.

Zipkin, E. F., L. Ries, R. Reeves, J. Regetz, and K. S. Oberhauser. 2012. Tracking climate impacts on the migratory monarch butterfly. Global Change Biol. 18: 3039-3049.

Zvereva, E. L. and M. V. Kozlov. 2006. Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a metaanalysis. Global Change Biol. 12: 27-41.

van der Walt, S., S. C. Colbert, and G. Varoquaux. 2011. The NumPy Array: a structure for efficient numerical computation. Comput. Sci. Eng. 13: 22-30.
Figure 1 (on next page)

Effects of temperate on monarch development time.

Monarch development time decreased as temperature increased in both Ambient (open circles) and Warmed (filled circles) plots. However, the effect of temperature on monarch larval development was stronger in Warmed plots.
