Impact of Readability on Corporate Bond Market

Jieyan Fang-Klingler
Quoniam Asset Management GmbH

This Version : July 2019

Abstract

This paper investigates the impact of annual report readability on the corporate bond market. My findings indicate that in the US corporate bond market, firms with less readable annual reports tend to have higher credit spreads, higher credit spread volatilities, higher transaction costs, higher transaction costs volatility, smaller trade size, higher number of trades and higher number of trades volatility. This paper also provides the first answers to the question as to whether annual report readability matters to international market participants in the corporate bond market. My findings show evidence that in the EUR corporate bond market, firms with more readable annual reports are associated with lower credit spreads.

JEL classification: G12, G14, G28, M41

Keywords: Readability, Annual Report, Textual Analysis, Credit Spread, Spread Volatility, Transactions Costs

Declaration of Interest Statement:
I wish to draw the attention of the Editor to the following facts which may be considered as potential conflicts of interest and to significant financial contributions to this work: Jieyan Fang-Klingler is an employee of Quoniam Asset Management GmbH.

Funding: This work was supported by the Quoniam Asset Management GmbH.

1 Quoniam Asset Management GmbH, Westhafen Tower, Westhafenplatz 1, D-60327 Frankfurt am Main, Jieyan.Fang-Klingler@quoniam.com. The opinions, appraisals and information expressed in this article are those of the author and do not necessarily reflect those of Quoniam Asset Management GmbH. My thanks to Harald Henke for helpful comments. I am grateful to Yanqi Ma and Stephen Koenig for their support in text parsing of 10-k filings.
Impact of Readability on Corporate Bond Market

This Version: July 2019

Abstract

This paper investigates the impact of annual report readability on the corporate bond market. My findings indicate that in the US corporate bond market, firms with less readable annual reports tend to have higher credit spreads, higher credit spread volatilities, higher transaction costs, higher transaction costs volatility, smaller trade size, higher number of trades and higher number of trades volatility. This paper also provides the first answers to the question as to whether annual report readability matters to international market participants in the corporate bond market. My findings show evidence that in the EUR corporate bond market, firms with more readable annual reports are associated with lower credit spreads.

JEL classification: G12, G14, G28, M41

Keywords: Readability, Annual Report, Textual Analysis, Credit Spread, Spread Volatility, Transactions Costs
1. Introduction

Annual reports are very important information sources concerning publicly traded companies. Investors and analysts expend a lot of effort in the analysis of annual reports in order to obtain a true and complete view of the firms. Therefore, readability of annual reports is crucial for market participants. However, in the Wheat Report (1969), the Securities and Exchange Commission (SEC) complained about the complex language used in mandatory filings, and requested firms to improve the readability of their filings. Based on Arthur Levitt’s remarks to the Securities Regulation Institute in 1998, the SEC adopted the plain English regulation to improve the readability of financial reports. Despite the efforts of the regulator, the size of annual reports has increased strongly over the past 20 years. Furthermore, annual reports from different firms show very different levels of readability, which might be explained by the respective characteristics of the firms.

There is a growing amount of academic literature examining the relationship between annual report readability and equity market variables, e.g. the impact of readability on future performance and earnings persistence (Li 2008), firm investment efficiency (Biddle et al. 2009), analyst coverage and dispersion (Lehavy et al. 2011), trading behavior of equity investors (Miller 2010; Lawrence 2013), and return volatility and earnings forecast errors (Loughran and McDonald 2014). For debt markets, there is only a very limited amount of academic study available concerning the readability of annual reports. Most of the papers analyze the association between readability and pricing of debt securities (corporate bonds, bank loans and CDS).

Li (2008) shows in Figure 1 the steady increase of the total number of words from 1994 and 2004. In Panel A of Table II in this paper the average total number of words has increased from 22,789 to 61,488.
This paper contributes to the existing literature in the following ways:

First, I do not only analyze the relationship between readability and credit spread of corporate bonds, but I also provide the first evidence for the impact of annual report readability on spread volatility, transaction costs, transaction costs volatility, trading volume and trading volume volatility in corporate bond markets. I find that bonds issued by firms with less readable 10-k filings (i.e. larger Total Number of Words) are significantly associated with higher subsequent spreads, higher spread volatilities, higher transactions costs, higher transactions costs volatility, smaller trade size, higher number of trades and higher number of trades volatility.

Secondly, in the corporate bond market firms can issue corporate bonds in different currencies, which means that a group of firms that submit mandatory filings to the SEC also have corporate bonds in other currencies than USD. This allows me to conduct the first international examination regarding the impact of readability. The questions of interest are whether annual report readability matters to international market participants, and how it affects their evaluation of a firm’s credit risk. I find that investors in EUR corporate bonds also consider annual report readability in their pricing logic. Firms with less readable annual reports tend to have higher spreads.

Finally, I provide further evidence that the Fog Index is not an appropriate proxy for readability of financial filings with corporate bond data. I find that one element of the Fog Index (percentage of complex words) shows a significant negative impact on corporate bond spreads. This result is not unexpected and is in line with the findings of Loughran and McDonald (2014), who provide similar evidence for equity market data.
The paper proceeds as follows. In section 2, I summarize the relevant literature. Section 3 defines the readability measures and describes the data used. Section 4 develops hypotheses and reports the empirical findings. Section 5 concludes the paper.

2. Related Literature

2.1. Readability literature in the equity market

There are a large number of empirical papers that analyze the impact of annual report readability on equity markets. Li (2008) provides the first large-sample evidence on determinants of the readability of 10-k filings, and the relationship between 10-k readability and future performance and earnings persistence. Li (2008) uses two readability measures, Fog Index and Total Number of Words. His findings are in line with the motivation behind the plain English disclosure regulation of the SEC. Companies may be opportunistically choosing the readability of the annual report to hide adverse information from investors. Li (2008) finds that companies with lower earnings tend to publicize more complicated annual reports, and companies with more complicated annual reports show a lower persistence of earnings when they are profitable.

Biddle et al. (2009) examine the impact of readability on a firm’s investment efficiency by using the Fox Index. They find evidence that the quality of financial reporting positively influences the capital investment efficiency.

Lehavy et al. (2011) investigate the relationship between readability, analyst coverage and dispersion by using the Fog Index. They find that firms with less readable annual reports tend to have higher analyst coverage, greater analyst dispersion, lower accuracy, and greater overall uncertainty in analyst earnings forecasts.
Miller (2010) and Lawrence (2013) focus on the relationship between readability and trading behavior of equity investors. Miller (2010) finds that firms with less readable annual reports tend to be less traded by equity investors. This is caused by a decrease of trading activity by small investors (trades less than or equal to $5,000 volume). Lawrence (2013) uses discount brokerage data of individual small investors, and finds that individual investors invest more money in firms with more readable annual reports.

Loughran and McDonald (2014) show that the traditional readability measure (Fog Index) is not a suitable readability measure for annual financial reports, and they suggest applying the “10-K file size” as a measure of readability. They argue that the element “complex words” of the Fog Index is the main issue of this measure, since there are a large number of multi-syllable words in business context which are easy for investors and analysts to understand. Therefore, the usage of multi-syllable words does not necessarily increase the complexity of financial documents. Loughran and McDonald (2014) find that the Fog Index does not show significant impact on unexpected earnings and analyst dispersion. The suggested measure “10-K file size” has a significant positive impact on return volatility, earnings forecast errors and earnings forecast dispersion.

2.2. Readability literature in the debt market

There is also some literature on the impact of annual report readability on debt markets (bank loans, corporate bonds and CDS).

Ertugrul et al. (2017) analyze bank loans for the time period between 1995 and 2013, and find that firms with less annual report readability and higher percentage of uncertain words in their annual reports tend to have higher loan spreads.
Bonsall and Miller (2017) examine 3,659 initial bond ratings and bond offering credit spreads between 1994 and 2014. Their evidence suggests that issuers with poorer readability tend to issue bonds with worse initial ratings, and with larger bond rating disparities amongst different rating agencies. Furthermore, the bond offering credit spreads are higher for issuers with less annual report readability.

Hu et al. (2018) investigate the CDS market for the time period 2005-2011. They show that firms with less readable annual reports are associated with higher CDS spreads. The impact of readability is more pronounced for firms with high information asymmetry (e.g. firms with high growth or with high R&D expenditures) and with investment grade ratings.

3. Readability Measures and Data

3.1. Readability measures

In this paper I apply the two most common readability measures: Fog Index and Total Number of Words. The Fog Index is developed by Gunning (1952) and is very widely used in various academic fields. The value of Fog Index can be interpreted as number of education years needed to understand the text after the initial reading. The definition of Fog Index is as following:

\[\text{Fog Index} = 0.4 \times (\text{Number of words per sentence} + \text{Percent complex words}) \]

The two elements of the Fog Index are average number of words per sentence in the entire text, and percentage of complex words (words more than 2 syllables) of all words. The idea behind the definition is that a text with longer sentences and more complex words is associated with less readability.

The second measure is Total Number of Words, which is defined as
Due to the skewness of the raw Total Number of Words I apply the natural logarithm of Total Number of Words to measure the readability of the text. This measure is easy to calculate and also widely used.

3.2. Data

In this paper I use a corporate bond universe based on the BofA Merrill Lynch Global Corporate Index 1999 to 2017. In the following analyses I include only senior, unsecured, bullet investment-grade corporate bonds. Different bond characteristics, e.g. option-adjusted spread (OAS), issue date, modified duration, are also provided by BofA Merrill Lynch. To get equity control variables and filing variables I use the issuer’s ultimate parent company do the mapping.\(^3\) Equity control variables, e.g. volatility of stock, market capitalization, debt to enterprise value, are collected from Datastream, Bloomberg and Thomsen Reuter MarketQA database. Trading volume and price data are sourced from FINRA Trace. Trace data are cleaned by using Dick-Nielsen (2014)’s procedure. 10-k filings are downloaded from EDGAR (Electronic Data Gathering, Analysis, and Retrieval System). The Loughran and McDonald (2011) parsing procedure is used to prepare the text.

Table I shows the number of observations (bond & month), number of bonds, number of ultimate parent companies and number of issuers for USD universe and EUR universe for the time period 1999-2017.

\(^3\) The reason for using ultimate parent company is that investors generally consider all companies under the ultimate parent company as sharing the same default risk.
In the USD universe there are 415,890 observations which contain 8,259 corporate bonds from 1,258 issuers under 748 ultimate parent companies. The EUR universe consists of 27,946 observations, which contain 640 corporate bonds from 138 issuers under 100 ultimate parent companies.

Table II reports the number of ultimate parent companies, average Total Number of Words, and average Fog Index in different years.

Consistent with the results of Li (2008) and Loughran and McDonald (2014), Total Number of Words shows a strong increasing trend. In the research period 1999 to 2017, Total Number of Words has tripled from 22,789 to 61,488. The Fog Index shows little variation over time. The correlation between Total Number of Words and Fog Index is just 0.14. The different trends and low correlation lead to the question of which measure is the appropriate proxy for readability.

4. Hypotheses and Empirical Results

4.1. Hypotheses

In this study I analyze the impact of the readability of annual reports on the subsequent corporate bond spreads, corporate bond transaction costs and trading behavior of corporate bonds.

Li (2008) finds that firms attempt to hide adverse information from investors by increasing the complexity of their annual reports. More complex annual reports require more efforts and time by investors to possess the information. It is also more difficult for investors to evaluate and interpret the information of annual reports (Bloomfield...
2002), which leads to a higher information risk and higher uncertainty in the forecast of future cash flows and default risk of the firms. Therefore, corporate bond investors require higher compensation for the greater information risk and uncertainty. Huang and Yu (2010) and Korteweg and Polson (2010) add the information uncertainty in the structural model framework. They show that information uncertainty impacts the bond pricing, and therefore the corporate bond spread. Accordingly, I hypothesize the following:

H1: firms with less readable annual reports are associated with higher corporate bond spreads. This relationship holds for USD investors as well as EUR investors.

Guo et al. (2017) examine the relationship between uncertainty and liquidity of corporate bond market. They find that information uncertainty influences the liquidity of the corporate bond market. Corporate bonds with greater information uncertainty are associated with lower trading volume, and higher bid/ask spreads. They argue that in case of high information uncertainty, corporate bond investors are not confident with their corporate bond valuation. This reduces willingness to trade, and therefore lowers the trading volume. Additionally, information uncertainty influences the corporate bond dealers. Bond dealers are not willing to make a market for firms with high information uncertainty, due to the high probability of pricing errors. Therefore, I test the following hypothesis:

H2: firms with less readable annual reports tend to have lower liquidity, which means lower trading volume, higher transaction costs, and smaller trade size.

Lehavy et al. (2011) analyze the relationship between the readability of annual reports and analyst earnings forecasts. They argue that complex annual reports lead to disagreement or ambiguity among analysts. Accordingly, they find that firms with less readable annual reports are associated with greater analyst dispersion, lower accuracy,
and greater overall uncertainty in analyst earnings forecasts. For the corporate bond market, Bonsall and Miller (2017) find that firms with less readable annual reports are associated with higher probability of split ratings (Moody’s and S&P) on the same issuance and exhibit a greater difference between the ratings of the two rating agencies. This disagreement among equity analysts and bond rating analysts can cause - or intensify - the disagreement among investors and dealers concerning pricing. These arguments lead to the following hypothesis:

H3: firms with less readable annual reports are associated with higher credit spread volatility, higher volatility of transaction costs, and higher volatility of trading behavior (trading volume / number of trades).

4.2. Multivariate Results for USD Universe

This section reports the empirical results of the impact of readability on Option Adjusted Spreads (OAS), transaction costs, trading volume, number of trades, and trade size and volatility of variables above.

Impact of readability on OAS

Table III shows the results of multivariate regressions for the impact of readability on spreads in the USD universe.

Insert Table III about here

For this research question, the following equation is used:

\[
OAS_{it} = \beta_0 + \beta_1 \times \text{Readability}_{it} + \beta_2 \times \text{Volatility}_{30D_{it}} + \beta_3 \times \log(\text{MarketCap})_{it} + \beta_4 \times \text{Debt/EnterpriseValue}_{it} + \beta_5 \times \text{Ebitda/TotalAssets}_{it} + \beta_6 \times \text{RatingScore}_{it} + \beta_7 \times \text{ModifiedDuration}_{it} + \epsilon_{it}
\]

(1)
The dependent variable is the OAS of a corporate bond at the end of each month. Readability measures are the natural logarithm of Total Number of Words and the Fog Index. The readability measures of certain 10-k filings are matched to the 12 months following publication of the filings.\(^5\) The control variables are based on prior literature regarding determinants of corporate bond spreads. Merton’s (1974) structural model shows that asset volatility (historical volatility of the ultimate parent companies’ stocks is used as proxy for asset volatility) and leverage ratio (Debt / Enterprise Value) are very important spread determinants. I also include profitability (Ebitda / Total Assets) and size (natural logarithm of the market capitalization) of the ultimate parent companies. Two bond characteristics - rating score and modified duration - are included. Rating score varies between 1 and 10 and represents rating AAA to BBB-, respectively. The higher the rating score, the worse the rating category. AAA (BBB-) rating has a score of 1 (10). All regressions include an intercept, month fixed effect and industry sector fixed effect. Standard errors are adjusted for month and industry clusters. 10-k filings with less than 3,000 words are excluded.

In the baseline regression (1) of Panel A, all control variables show the expected signs. Equity Volatility, Debt Ratio, Rating Score and Modified Duration have positive impact on the corporate bond spread. Size and profitability are negatively associated with spread. In regression (2) the readability measure Log (Number of Words) has a significantly positive estimate, which means that firms with less readable annual reports (higher number of words) tend to have higher credit spreads. This finding is consistent with the findings of Bonsall and Miller (2017) for initial bond offering credit spreads, the findings of Ertugrul et al. (2017) for bank loan spreads, and the findings of Hu et al. (2018) for CDS spreads. Based on Li (2008)’s findings, firm managers may

\(^5\) I also run this regression by only using one month-end observation directly following publication of the filings. The results show qualitatively similar results.
try to hide adverse information from investors by increasing the complexity of their written documents. Complex documents are more difficult for investors to analyze and interpret. Therefore, the readability of annual reports can be considered as a proxy for information risk and uncertainty about the future performance and cash flows. The more readable the annual reports, the less information asymmetry and less information risk. Investors require higher compensation (higher credit spread) for the higher information risk.

The Fog Index in regression (3) also shows a significantly positive effect on the credit spread, but less significant than Log (Number of Words). In regression (4) and (5) I regress OAS on two elements of the Fog Index separately. The average sentence length shows significantly positive impact on credit spread. However, the percentage of complex words has a significantly negative estimate, which means 10-k filings with a higher percentage of complex words tend to have lower credit spreads. This is not consistent with the hypothesis 1. This is in line with the findings by Loughran and McDonald (2014); namely that the Fog Index is not an appropriate readability/complexity measure for business filings. The main reason is the component “percentage of complex words”. Complex words are defined in the Fog Index context as words with more than two syllables. Loughran and McDonald (2014) argue that in annual reports there are many complex words which are easy to understand and do not make the text less readable, e.g. words like company, financial, agreement, management. Based on the definition of the Fog Index, usage of these words leads to a high Fog Index value, which indicates less readable text. Therefore, the component “percent of complex words” might lead to a wrong assessment of business text readability. In the empirical analysis of Loughran and McDonald (2014) they find that the Fog Index has the expected significant and positive impact on subsequent volatility.
However, the component “percent complex words” shows an insignificantly negative impact on stock price volatility.

Li (2008) finds that complexity of a company’s business is positively related to the readability measures. Therefore, I include the Herfindahl Index in term of the sales in different business segments. The maximum of the Herfindahl Index is 1 which means the company has only one business segment. The smaller the Herfindahl Index, the more complex is the company’s business. The results in regression (6) show the same evidence for the Total Number of Words, even after controlling for the complexity of the business. The worse readability (higher number of words) of the 10-k filings, the higher the credit spread. Investors require more compensation for greater information risk. The Herfindahl Index has a significant negative estimate, which means firms with more complex business structures are associated with higher credit spreads. The Fog Index in regression (7) does not show significant impact after controlling for the complexity of the business (T-value=1.42). Regression (9) shows again the problem with the “percent complex words”; namely, that “percent complex words” has a significantly negative impact on spreads. Based on this finding, the Fog Index is not an appropriate proxy of readability for corporate bond characteristics. Therefore, I use only Total Number of Words as the proxy of readability in the following analyses.

Impact of readability on OAS Volatility

Table IV reports the evidence of the readability’s impact on spread volatility\(^6\).

\(^6\) Due to availability of daily OASs I run this regression for the time period 2009-2017.
In this analysis, I only include the observations of month t+1 following publication month. The dependent variable $ExOASDailyVol_{i(t; t+1)}$ is daily spread volatility in excess of daily market spread volatility in the month t+1 following publication of the 10-k filings. It regresses on the latest readability measure as of publication month t, the excess daily spread volatility in the month t, the natural logarithm of days since issue date of the corporate bond at the end of month t, the natural logarithm of market value of the corporate bond at the end of month t and the rating score of the bond at the end of month t.

Panel A of Table IV presents the results for the USD universe. The readability measure Total Number of Words shows a weak but positive impact on spread volatility (T-Value=1.64). Lehavy et al. (2011) investigate the relationship between readability and analyst coverage and dispersion in the equity market. They find that firms with less readable annual reports are associated with greater analyst dispersion. Bonsall and Miller (2017) find that bonds with less readable annual reports tend to receive split ratings and exhibit higher difference between Moody’s and S&P ratings. This disagreement among equity analysts and bond rating analysts can cause or intensify disagreement among investors and dealers concerning pricing. This is in line with the findings of spread volatility; namely, that firms with less readable annual reports are associated with higher information risk and higher dispersion, which leads to higher spread volatility in the time period following publication of the filings.

The OAS volatility in the previous month has a significant positive impact on spread volatility. Bonds with worse ratings have higher spread volatility.
Impact of readability on trading behavior: transaction costs (Average Price Spread), transaction cost volatility, trading volume, number of trades, trading volume volatility and number of trades volatility

Table V reports the results of the impact of readability on trading costs of corporate bonds, based on the following equation:

\[
\text{PriceSpread}_{i,t+1} = \beta_0 + \beta_1 \times \text{Readability}_{it} + \beta_2 \times \text{PriceSpread}_{i,t} + \beta_3 \times \text{Log(DaysSinceIssueDate)}_{it} + \beta_4 \times \text{Log(MarketValue)}_{it} + \beta_5 \times \text{Volatility30D}_{it} + \beta_6 \times \text{RatingScore}_{it} + \beta_7 \times \text{Modified Duration}_{it} + e_{it}
\]

(3)

According to Hong and Warga (2000) and Chakravarty and Sarkar (2003), the price spread for a certain month is calculated as the average daily price spread in that month.

The daily price spread is calculated as \(100 \times \frac{\text{Mean}(P^{\text{buy}}_{d,j})/\text{Mean}(P^{\text{sell}}_{d,j}) - 1}{\text{Mean}(P^{\text{buy}}_{d,j})}\).

\(\text{Mean}(P^{\text{buy}}_{d,j})\) and \(\text{Mean}(P^{\text{sell}}_{d,j})\) are average reported buy and sell bond price for bond j on day d. This price spread captures the average round-trip transaction costs of corporate bonds. The higher the price spread, the higher the transaction costs. \(\text{PriceSpread}_{i,t+1}\) is the average of daily price spread in month t+1 (the following month after the publication of 10-k filing). Other control variables are the price spread in the month t, the natural logarithm of days since the issue date of the corporate bond, the natural logarithm of market value of the corporate bond, volatility of the ultimate parent company stock, rating score and modified duration of the bond. The regression (2) in Table V shows that the readability measure Total Number of Words has a significantly positive impact on the price spread of corporate bonds in the month following publication of 10-k filings, which means bonds with poorer readable 10-k filings have higher transaction costs. This is evidence that corporate bond dealers also consider
readability of the annual reports in their decisions as to whether and/or how to make a market for the bonds of certain issuers. Corporate bond dealers prefer bonds with better readability of annual reports (firms with less information risk and less uncertainty about the future performance and cash flows) and therefore lower price spreads of their bonds.

Table VI reports the results of the readability’s impact on subsequent transaction costs volatility. I use the same regression as equation (3) and replace the dependent variable $\text{Price}_{\text{Spread}}_{i,t+1}$ with $\text{Price}_{\text{Spread STD}}_{i,t+1}$ and replace the independent variable $\text{Price}_{\text{Spread}}_{i,t}$ with $\text{Price}_{\text{Spread STD}}_{i,t}$. $\text{Price}_{\text{Spread STD}}_{i,t+1}$ and $\text{Price}_{\text{Spread STD}}_{i,t}$ are the standard deviation of daily price spread in month $t+1$ and t, respectively. The readability measure Total Number of Words shows a significantly positive impact on the volatility of the transaction costs in the subsequent month after the publication of 10-k filings (T-Value=1.92). This finding is consistent with the previous findings of readability impact on subsequent spread volatility. Readability of annual report shows a positive impact on subsequent spread volatility and transaction costs volatility. This is consistent with the hypothesis 3; namely that firms with less readable annual reports are associated with higher volatility of transaction costs. This can be explained by the Lehavy et al. (2011)’s finding that firms with less readable annual reports tend to have greater analyst dispersion, lower accuracy and greater overall uncertainty in analyst earnings forecasts. Bonsall and Miller (2017) find that firms with less readable annual reports are associated with higher probability of split ratings and a greater difference between the ratings of the two rating agencies. The dispersion among equity analysts and bond analysts leads to the dispersion among investors and dealers, and therefore higher volatility of transaction costs in the time period following publication of annual reports.
For the trading volume analysis I use the following equation:

\[
TradingVolume_{i,t+1} \mid NoTrades_{i,t+1} \mid AvgTradeSize_{i,t+1} = \beta_0 + \beta_1 \ast \text{Readability}_{it} + \beta_2 \ast TradingVolume_{i,t} \mid NoTrades_{i,t} \mid AvgTradeSize_{i,t} + \beta_3 \ast \\
\log(\text{DaysSinceIssueDate})_{it} + \beta_4 \ast \log(\text{MarketValue})_{it} + \beta_5 \ast \text{Volatility30D}_{it} + \beta_6 \ast \\
\text{RatingScore}_{it} + \beta_7 \ast \text{Modified Duration}_{it} + \epsilon_{it}
\]

(4)

Table VII shows that the readability measure Total Number of Words has a significantly positive impact (T-Value=1.68) on Number of Trades and significantly negative impact (T-Value=-1.68) on the Average Trade Size of corporate bonds in the month following publication of the 10-k filings. Firms with poorer readability of annual reports are associated with a larger total number of trades and smaller trade size. Edwards et al. (2007) find that trade size is an important factor for bond liquidity and transaction costs. The smaller trade size is associated with less liquidity and higher transaction costs. This is consistent with the hypothesis 2; namely that bonds from issuers with lesser readability of annual reports tend to be less liquid. The impact of readability on Trading Volume is not significant (T-Value=0.45). This finding is in line with Miller (2010)’s findings that firms with less readable annual reports tend to have lower aggregate trading volume of stocks, and this is driven by a decreasing amount of small investors’ (trades less than or equal to $50,000) trade volume. Miller (2010) does not find evidence for a reduction of large investors’ (trades more than $50,000) trade volume and Table 5 of Miller (2010) shows a positive and not significant estimate of the readability measure Total Number of Words. In contrast to the equity market, the corporate bond market is populated almost entirely by institutional investors. The statistics of Trace data in Graphic I show that from 2002 to 2018 the average percentage of trading volume caused by small trades (less than €100,000) is 2%. Therefore, a strong impact of small investors cannot be expected for the corporate
bond market. In contrast to the equity market, there is no significant relationship between readability and aggregate trading volume in the corporate bond market, due to the different investor characteristics.

Table VIII reports the results of the impact of readability on trading volume volatility and number of trades volatility of corporate bonds, based on the following equation:

\[
Volume_{DailyVol_{t+1}}|NoTradesDailyVol_{t+1} = \beta_0 + \beta_1 \times Readability_{it} + \beta_2 \times \\
Volume_{DailyVol_{t}}|NoTradesDailyVol_{t} + \beta_3 \times Log(DaysSinceIssueDate)_{it} + \beta_4 \times \\
Log(MarketValue)_{it} + \beta_5 \times Volatility30D_{it} + \beta_6 \times RatingScore_{it} + \beta_7 \times \\
Modified\ Duration_{it} + e_{it}
\] (5)

The dependent variable \(Volume_{DailyVol_{t+1}}|NoTradesDailyVol_{t+1}\) is the daily trading volume volatility / daily number of trades volatility in the month following publication of the 10-k filings (t+1). Control variables are the daily trading volume volatility / daily number of trades volatility in the month t, the natural logarithm of days since the issue date of the corporate bond, the natural logarithm of market value of the corporate bond, volatility of the ultimate parent company stock, rating score and modified duration of the bond. The readability measure Total Number of Words has significantly positive T-Value 1.76 in regression (2), which means bonds with less readable filings tend to have higher number of trades volatility in the month following publication of the 10-k filings. There is no evidence of significant impact of readability on trading volume volatility. This observation is consistent with the previous finding; namely that the readability of annual reports has no significant impact on subsequent trading volume.
4.3. Multivariate Results for EUR Universe

Impact of readability on OAS

Some of the companies which submit 10-k filings to the SEC also issue non-USD denominated bonds. In the non-USD universe there are bonds denominated in EUR, GBP, JPY, AUD and CAD which are relevant for investors in the respective currency areas. EUR-denominated bonds are the second-largest universe in the BofA Merrill Lynch Global Corporate Index. By using this EUR universe I can analyze whether EUR investors consider readability of the filings.

Panel B of Table III presents the regression results for the EUR universe regarding the impact of readability on corporate bond spreads. For this research question the following equation is used:

\[
OAS_{it} = \beta_0 + \beta_1 * \text{Readability}_{it} + \beta_2 * \text{Volatility30D}_{it} + \beta_3 * \log(\text{MarketCap})_{it} + \beta_4 * \text{Debt/EnterpriseValue}_{it} + \beta_5 * \text{Ebitda/TotalAssets}_{it} + \beta_6 * \text{RatingScore}_{it} + \beta_7 * \text{ModifiedDuration}_{it} + e_{it}
\]

(1)

Regressions (2) and (4) of Panel B show that Total Number of Words has a statistically highly significant positive impact on spread, with or without control of the complexity of business (Herfindahl Index). This is the first evidence for international investors. Based on this result, EUR investors take into account the readability of the annual report in the pricing of the firms’ credit risk. Firms with less readable annual reports tend to have higher credit spreads. This result is consistent with the result for USD investors; namely that investors consider the readability of annual reports as a proxy for information risk.

\[\text{Other currencies have very small number of observations. Therefore, an analysis with other currencies is not possible here.}\]
of the firms. Firms with less readable annual reports tend to have higher information risk and therefore higher corporate bond spreads. The Fog Index in regressions (3) and (5) are not statistically significant. This is consistent with the previous finding for the USD universe and the finding of Loughran and McDonald (2014); namely that Fog Index is not an appropriate readability measure for financial filings.

Impact of readability on OAS Volatility

Panel B of Table IV reports the results for the EUR universe in terms of the impact on spread volatility\(^8\). The following equation is used.

\[
E_{t}OAS_{i,t+1} = \beta_{0} + \beta_{1} \times \text{Readability}_{it} + \beta_{2} \times E_{t}OAS_{i,t-1,t} + \beta_{4} \times \log(Days\text{SinceIssueDate})_{it} + \beta_{5} \times \log(\text{MarketValue})_{it} + \beta_{6} \times \text{RatingScore}_{it} + e_{it}
\]

(2)

In the EUR universe the readability of annual reports has a positive but not significant (T-Value=1.19) impact on excess spread volatility in the subsequent month. One reason could be that there are only a small number of observations. There are only 1,182 observations for the EUR universe.

5. Conclusion

In this paper, I show that on the US corporate bond market, firms with less readable annual reports tend to have higher credit spreads, higher credit spread volatilities, higher transaction costs, higher transaction costs volatility, higher number of trades, smaller trade size and higher number of trades volatilities in the month following publication of the 10-k filings. This paper also provides the first answers to the question as to whether international market participants take readability of the annual report into

\(^8\) Due to availability of daily OASs I run this regression for the time period 2009-2017.
account when pricing a firm’s credit risk. Firms with less readable annual reports tend to have higher credit spreads. This result is consistent with the result for USD investors.
Graphic I: Trace data statistics

This graph shows the percentage of trading volume from small trades (trades with volume less than $100,000) to total trading volume in each month.

![Graphic I: Trace data statistics]

Table I: Sample Overview

USD universe includes only US dollar-denominated bonds. EUR universe consists of corporate bonds denominated in EUR.

Jan. 1999- Dec. 2017	USD Universe	EUR Universe
No. of bond & month: all corporate bonds	1,366,934	417,640
No. of bond & month: investment grade, senior, unsecured, bullet USD corporate bonds	818,018	271,332
No. of bond & month: investment grade, senior, unsecured, bullet USD corporate bonds with mapping filing data / Number of Words>=3000	415,890	27,946
No. of bonds	8,259	640
No. of ultimate parent companies	748	100
No. of companies	1,258	138
Table II: Summary Statistics

Panel A: Descriptive Statistics
I present summary statistics for readability proxies used in this paper. It includes the number of ultimate
parent companies, average total number of words of the filings and average Fog index for the research
time period 1999-2017.

Year	Number of ultimate parent companies	Total number of words	Fog Index
1999	399	22,789	23.26
2000	426	22,216	23.10
2001	452	25,214	23.17
2002	475	27,304	23.00
2003	492	37,036	23.39
2004	502	39,918	23.05
2005	508	43,703	23.00
2006	519	47,363	22.96
2007	551	49,305	22.98
2008	568	52,140	23.03
2009	581	56,707	23.06
2010	580	57,526	23.18
2011	587	58,406	23.29
2012	595	58,834	23.38
2013	594	58,956	23.32
2014	587	59,571	23.45
2015	575	59,260	23.45
2016	545	60,859	23.50
2017	512	61,488	24.45

Panel B: Correlation of different readability measures

	Total number of words	Fog Index
Total number of words	1	0.14
Fog Index	0.14	1
Table III: Impact of readability on spreads

Panel A: USD Universe

The dependent variable in each regression is the OAS (Option Adjusted Spread) in basis points. Log (Number of Words) is the natural logarithm of the total number of words in each filing. Fog Index is calculated by using 0.4*(average number of words per sentence + percent of complex words). The readability measures of certain 10-k filing are matched to the 12 bond & month observations following publication. Definitions of control variables can be found in Appendix A. All regressions include an intercept, month fixed effect and industry sector fixed effect. T-statistics are in parentheses, with standard errors clustered by month and industry.

OASit	1	2	3	4	5	6	7	8	9
Log (Number of Words)	3.60	3.00							
Fog Index	0.39	0.31							
Average Sentence Length	0.21								
Percentage Complex Words		-0.64						-0.83	
Control variables									
Volatility30D	2.78	2.77	2.78	2.78	2.78	2.80	2.81	2.81	2.81
Log (MarketCap)	-16.98	-17.39	-16.99	-16.98	-16.92	-17.76	-17.42	-17.42	-17.37
Debt/Enterprise Value	74.73	73.63	74.93	74.84	74.26	73.51	74.65	74.54	73.88
Ebitda/Total Assets	-72.11	-68.24	-71.63	-71.88	-73.37	-62.49	-65.04	-65.17	-66.91
Rating Score	10.62	10.33	10.62	10.60	10.58	10.43	10.68	10.66	10.62
Modified Duration	5.77	5.75	5.77	5.77	5.77	5.66	5.67	5.67	5.68
Herfindahl Index						-14.23	-14.67	-14.78	-15.17
Fixed Effect: Month	Yes								
Fixed Effect: Industry Sector	Yes								
R2	62.79%	62.82%	62.79%	62.79%	62.79%	62.79%	62.51%	62.48%	62.49%
# bonds & month	415,890	415,890	415,890	415,890	415,890	399,008	399,008	399,008	399,008

Electronic copy available at: https://ssrn.com/abstract=3413509
Panel B: EUR Universe
The dependent variable in each regression is the OAS (Option Adjusted Spread) in basis points. Log (Number of Words) is the natural logarithm of the total number of words in each filing. Fog Index is calculated by using 0.4*(average number of words per sentence + percent of complex words). The readability measures of certain 10-k filing are matched to the 12 bond & month observations following publication. Definitions of control variables can be found in Appendix A. All regressions include an intercept, month fixed effect, industry sector fixed effect and currency fixed effect. T-statistics are in parentheses, with standard errors clustered by month and industry.

OAS_{it}	1	2	3	4	5
Readability measures:	EUR	EUR	EUR	EUR	EUR
Log (Number of Words)	4.80	4.85			
Fog Index	0.38	0.37			
Control variables					
Volatility30D	2.68	2.64	2.68	2.63	2.67
Log (MarketCap)	-16.83	-18.33	-16.87	-19.79	-18.23
Debt/Enterprise Value	40.71	39.08	41.21	40.61	42.93
Ebidta/Total Assets	-242.65	-236.78	-243.01	-248.07	-253.38
Rating Score	8.40	7.76	8.40	7.70	8.36
Modified Duration	5.36	5.35	5.36	5.25	5.26
Herfindahl Index	-10.93	-11.63			
Fixed Effect: Month	Yes	Yes	Yes	Yes	Yes
Fixed Effect: Industry Sector	Yes	Yes	Yes	Yes	Yes
R2	63.74%	63.79%	63.74%	63.89%	63.83%
# bonds & month	27,946	27,946	27,946	27,350	27,350
Table IV: Impact of readability on spread volatility

Panel A: USD Universe

The dependent variable (ExOASdailyVol\(_{(t+1)}\)) in each regression is daily OAS volatility in excess of daily market spread volatility, in the month following publication of 10-k filings. Log (Number of Words) is the natural logarithm of the total number of words in each filing. Definitions of control variables can be found in Appendix A. All regressions include an intercept, month fixed effect and industry sector fixed effect. T-statistics are in parentheses, with standard errors clustered by month and industry.

	1	2
ExOASdailyVol\(_{(t+1)}\)		
Readability measures:		
Log (Number of Words)	0.36	(1.64)
Control variables		
ExOASdailyVol\(_{(t-1, t)}\)	0.66	0.66
(20.79)	(20.76)	
Log (Days Since Issue Date)	0.10	0.10
(1.28)	(1.28)	
Log (Market Value)	0.26	0.21
(1.11)	(0.93)	
Rating Score	0.21	0.18
(1.95)	(1.86)	
Fixed Effect: Month	Yes	Yes
Fixed Effect: Industry Sector	Yes	Yes
R2	52.99%	53.01%
# bonds & month	16,587	16,587

Panel B: EUR Universe

The dependent variable (ExOASdailyVol\(_{(t+1)}\)) in each regression is daily OAS volatility in excess of daily market spread volatility, in the month following publication of 10-k filings. Log (Number of Words) is the natural logarithm of the total number of words in each filing. Definitions of control variables can be found in Appendix A. All regressions include an intercept, month fixed effect and industry sector fixed effect. T-statistics are in parentheses, with standard errors clustered by month and industry.

	1	2
ExOASdailyVol\(_{(t+1)}\)		
Readability measures:		
Log (Number of Words)	0.79	(1.19)
Control variables		
ExOASdailyVol\(_{(t-1, t)}\)	1.42	1.41
(19.04)	(19.20)	
Log (Days Since Issue Date)	0.60	0.56
(3.00)	(2.95)	
Log (Market Value)	-1.31	-1.46
(-1.09)	(-1.17)	
Rating Score	-0.29	0.23
(0.86)	(0.68)	
Fixed Effect: Month	Yes	Yes
Fixed Effect: Industry Sector	Yes	Yes
R2	60.96%	60.99%
# bonds & month	1,182	1,182
Table V: Impact of readability on average price spread

The dependent variable (Price Spread\(_{t+1}\)) in each regression is the average price spread, in the month following publication of the 10-k filing. Price Spread is average daily bid/ask spread estimates for a certain month. Daily bid/ask spread is calculated as average buy price/average sell price -1 of a certain day. Log (Number of Words) is the natural logarithm of the total number of words in each filing. Definitions of control variables can be found in Appendix A. All regressions include an intercept, month fixed effect and industry sector fixed effect. T-statistics are in parentheses, with standard errors clustered by month and industry.

Price Spread\(_{t+1}\)	1	2
Readability measures:		
Log (Number of Words)		0.03
		(2.72)
Control variables		
Price Spread\(_{t}\)	0.01	0.01
	(1.11)	(1.12)
Log (Days Since Issue Date)	0.05	0.05
	(10.38)	(10.47)
Log (Market Value)	-0.09	-0.09
	(-7.27)	(-7.45)
Volatility30D	0.01	0.01
	(6.02)	(5.96)
Rating Score	-0.004	-0.01
	(-0.82)	(-1.61)
Modified Duration	0.03	0.03
	(19.03)	(19.03)
Fixed Effect: Month	Yes	Yes
Fixed Effect: Industry Sector	Yes	Yes
R2	27.88\%	27.94\%
# bonds & month	13,008	13,008

Electronic copy available at: https://ssrn.com/abstract=3413509
Table VI: Impact of readability on price spread volatility

The dependent variable (Price_Spread_STD\(_{t+1}\)) in each regression is the daily price spread volatility, in the month following publication of the 10-k filing. Daily bid/ask spread is calculated as average buy price/average sell price -1 of a certain day. Log (Number of Words) is the natural logarithm of the total number of words in each filing. Definitions of control variables can be found in Appendix A. All regressions include an intercept, month fixed effect and industry sector fixed effect. T-statistics are in parentheses, with standard errors clustered by month and industry.

	1	2
Price_Spread_STD\(_{t+1}\)		
Readability measures:		
Log (Number of Words)	0.02	(1.92)
Control variables		
Price_Spread_STD\(_t\)	0.001	0.001
	(1.37)	(1.42)
Log (Days Since Issue Date)	0.03	0.03
	(5.44)	(5.46)
Log (Market Value)	-0.06	-0.06
	(-4.84)	(-4.94)
Volatility30D	0.01	0.01
	(6.83)	(6.77)
Rating Score	0.0005	-0.001
	(0.11)	(-0.23)
Modified Duration	0.03	0.03
	(17.40)	(17.26)
Fixed Effect: Month	Yes	Yes
Fixed Effect: Industry Sector	Yes	Yes
R2	20.45%	20.51%
# bonds & month	8,719	8,719
Table VII: Impact of readability on trading volume / number of trades / average trade size

The dependent variable in each regression is trading volume, number of trades and average size of each trade, in the month following publication of the 10-k filing. Log (Number of Words) is the natural logarithm of the total number of words in each filing. Definitions of control variables can be found in Appendix A. All regressions include an intercept, month fixed effect and industry sector fixed effect. T-statistics are in parentheses, with standard errors clustered by month and industry.

Dependent Variables	TradingVolume_{t+1}	NoTrades_{t+1}	AvgTradeSize_{t+1}
Readability measures:			
Log (Number of Words)	0.50 (0.45)	3.82 (1.68)	-0.02 (-1.68)
Control variables			
TradingVolume_{t}	0.58 (7.89)		
NoTrades_{t}		0.84 (17.75)	
AvgTradeSize_{t}			0.03 (1.76)
Log (Days Since Issue Date)	-5.94 (-2.50)	-0.80 (-0.52)	-0.20 (-16.96)
Log (Market Value)	38.40 (7.43)	29.41 (5.43)	0.12 (7.82)
Volatility30D	0.13 (1.62)	0.19 (1.39)	-0.0001 (-0.19)
Rating Score	1.19 (2.27)	-1.86 (-1.05)	0.09 (11.12)
Modified Duration	-0.35 (-2.44)	-1.40 (-3.97)	0.03 (9.70)
Fixed Effect: Month	Yes	Yes	Yes
Fixed Effect: Industry Sector	Yes	Yes	Yes
R2	57.05%	71.46%	9.23%
# bonds & month	27,428	27,428	26,148

Electronic copy available at: https://ssrn.com/abstract=3413509
Table VIII: Impact of readability on trading volume volatility / number of trades volatility

The dependent variable in each regression is trading volume daily volatility and number of trades daily volatility, in the month following publication of the 10-k filing. Log(Number of Words) is the natural logarithm of the total number of words in each filing. Definitions of control variables can be found in Appendix A. All regressions include an intercept, month fixed effect and industry sector fixed effect. T-statistics are in parentheses, with standard errors clustered by month and industry.

Dependent Variable:	VolumeDailyVol_{t+1}	NoTradesDailyVol_{t+1}
Readability measures:		
Log (Number of Words)	0.08	0.15
	(0.82)	(1.76)
Control variables		
VolumeDailyVol_{t}	0.08	
	(2.92)	
NoTrades DailyVol_{t}		0.46
		(8.33)
Log (Days Since Issue Date)	-1.19	0.004
	(-12.68)	(0.07)
Log (Market Value)	4.43	1.34
	(21.67)	(7.61)
Volatility30D	0.02	0.01
	(2.08)	(1.85)
Rating Score	0.18	-0.06
	(4.85)	(-0.90)
Modified Duration	-0.03	-0.07
	(-2.34)	(-4.42)

Fixed Effect: Month | Yes | Yes
Fixed Effect: Industry Sector | Yes | Yes
R2 | 17.32% | 40.88%
bonds & month | 27,233 | 27,233
Appendix A: Definitions of Variables

Control Variables	Definitions
Volatility30D	Volatility of stock return, based on 30 daily returns
Log (Market Cap)	Natural logarithm of market capitalisation of stocks
Debt/Enterprise Value	Debt to enterprise value ratio
Ebitda/Total Assets	Ebitda to total assets ratio
Rating Score	Rating scores of corporate bonds
Modified Duration	Modified duration of corporate bonds
Herfindahl Index	Herfindahl index based on revenues in different industry business segments.
	Herfindahl index = sum of squares of percentage of revenue of individual
	industry segment in total revenue
ExOASdailyVol_{(t-1,t)}	OAS volatility in excess of market OAS volatility based on daily OASs
	in time period t-1 to t
Log (Days Since Issue Date)	Natural logarithm of number of days since issue date of corporate bonds
Log (Market Value)	Natural logarithm of market value of corporate bonds
Price Spread_{t}	Average daily price spread of corporate bonds in month t.
	Daily price spread is defined as 100*(mean(BuyPrice)/mean(SellPrice)-1)
Price_Spread_STD_{t}	Standard deviation of daily price spreads of corporate bonds in month t.
TradingVolume_{t}	Total trading volume of corporate bonds in month t
NoTrades_{t}	Total number of trades of corporate bonds in month t
AvgTradeSize_{t}	Total trading volume / total number of trades of corporate bonds in month t
VolumeDailyVol_{t}	Standard deviation of daily trading volume of corporate bonds in month t
NoTradesDailyVol_{t}	Standard deviation of daily number of trades of corporate bonds in month t
References:

Biddle, G. C., Hilary, G., Verdi, R. S., 2009. How does financial reporting quality relate to investment efficiency? Journal of Accounting and Economics 48 (2-3), 112-131.

Bloomfield, R. J., 2002. The “Incomplete Revelation Hypothesis” and Financial Reporting. Accounting Horizons: September 2002, 16 (3), 233-243.

Bonsall, S. B., Miller, B. P., 2017. The impact of narrative disclosure readability on bond ratings and the cost of debt. Review of Accounting Studies, 22 (2), 608-643.

Chakravarty, S., Sarkar, A., 2003. Trading costs in three U.S. bond markets. Journal of Fixed Income, 13 (1), 39-48.

Chiu, T., Guan, Y., Kim, J., 2017. The effect of risk factor disclosures on the pricing of credit default swaps, Contemporary Accounting Research, 35 (4), 2191-2224.

Dick-Nielsen, J., 2014. How to clean enhanced trace data. Working Paper.

Edwards, A. K., Harris, L. E., Piwowar, M. S., 2007. Corporate bond market transaction costs and transparency. Journal of Finance, 63 (3), 1421-1451.

Ertugrul, M., Lei, J., Qiu, J., Wan, C., 2017. Annual report readability, tone ambiguity, and the cost of borrowing. Journal of Financial and Quantitative Analysis, 52 (2), 811-836.

Gunning, R., 1952. The technique of clear writing. McGraw-Hill, 36-37.

Guo, L., Lien, D., Hao, M., Zhang, H., 2017. Uncertainty and liquidity in corporate bond market, Applied Economics, 49, 4760-4781.

Hong, G., Warga, A., 2000. An empirical study of bond market transactions. Financial Analyst Journal, 56, 32-46.

Huang, S. J., Yu, J., 2010. “Bayesian analysis of structural credit risk models with microstructure noises.” Journal of Economic Dynamics and Control 34 (11): 2259–2272.

Hu, N., Liu, L., Zhu, L., 2018. Credit default swap spreads and annual report readability. Review of Quantitative Finance and Accounting, 50 (2), 1-31.

Korteweg, A. G., Polson, N., 2010. “Corporate credit spreads under parameter uncertainty.” Working Paaper. Graduate School of Business, Standard University.

Lawrence, A., 2013. Individual investors and financial disclosure. Journal of Accounting and Economics 56, 130-147.

Lehavy, R., Li, F., Merkley, K., 2011. The effect of annual report readability on analyst following and the properties of their earnings forecasts. The Accounting Review 86 (3), 1087-1115.

Li, F., 2008. Annual report readability, current earnings, and earnings persistence, Journal of Accounting and Economics, 45 (2), 221-247.

Electronic copy available at: https://ssrn.com/abstract=3413509
Loughran, T., McDonald, B., 2011. When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks. Journal of Finance, 66 (1), 35-65.

Loughran, T., McDonald, B., 2014. Measuring readability in financial disclosures. Journal of Finance, 69 (4), 1643-1671.

Merton, R. C., 1974. On the pricing of corporate debt: The risk structure of interest rates. Journal of finance, 29 (2), 449-470.

Miller, B. P., 2010. The effects of reporting complexity on small and large investor trading. The Accounting Review, 85 (6), 2107-2143.