Algebraically determined topologies on permutation groups

Taras Banakh, Igor Guran, Igor Protasov

Kielce-Lviv-Kyiv

SPM 2012, Caserta
For a set X by $S(X)$ we denote the *symmetric group*, i.e., the group all permutations (＝bijections) of X.

Symmetric groups are important because of

Theorem (Cayley, 1854)

Each group G is isomorphic to a subgroup of the symmetric group $S(G)$.

By a *permutation group* we understand a subgroup G of a symmetric group $S(X)$.
For a set X by $S(X)$ we denote the symmetric group, i.e., the group all permutations (=bijections) of X.

Symmetric groups are important because of

Theorem (Cayley, 1854)

Each group G is isomorphic to a subgroup of the symmetric group $S(G)$.

By a permutation group we understand a subgroup G of a symmetric group $S(X)$.
For a set X by $S(X)$ we denote the symmetric group, i.e., the group all permutations (=bijections) of X.

Symmetric groups are important because of

Theorem (Cayley, 1854)

Each group G is isomorphic to a subgroup of the symmetric group $S(G)$.

By a permutation group we understand a subgroup G of a symmetric group $S(X)$.
The symmetric group $S(X)$ contains the normal subgroup $S_\omega(X)$ consisting of all permutations $f : X \to X$ that have finite support

$$\text{supp}(f) = \{x \in X : f(x) \neq x\}.$$

Fact

If $\text{supp}(f) \cap \text{supp}(g) = \emptyset$, then $f \circ g = g \circ f$.
The symmetric group $S(X)$ contains the normal subgroup $S_\omega(X)$ consisting of all permutations $f : X \to X$ that have finite support

$$\text{supp}(f) = \{x \in X : f(x) \neq x\}.$$

Fact

If $\text{supp}(f) \cap \text{supp}(g) = \emptyset$, then $f \circ g = g \circ f$.

Taras Banakh, Igor Guran, Igor Protasov

Algebraically determined topologies on permutation groups
On each permutation group $G \subset S(X) \subset X^X$ we can consider the \textit{topology of pointwise convergence} \mathcal{T}_p inherited from the Tychonoff power X^X of X endowed with the discrete topology.

\textbf{Fact}

The topology \mathcal{T}_p turns G into a Hausdorff topological group. In other words, \mathcal{T}_p is a \textit{Hausdorff group topology} on G.

A neighborhood base of the topology \mathcal{T}_p at the neutral element 1_G consists of the subgroups

$$G_A = \{g \in G : g|A = \text{id}\}$$

where A runs over finite subsets of X.
On each permutation group $G \subset S(X) \subset X^X$ we can consider the *topology of pointwise convergence* \mathcal{T}_p inherited from the Tychonoff power X^X of X endowed with the discrete topology.

Fact

The topology \mathcal{T}_p turns G into a Hausdorff topological group.

In other words, \mathcal{T}_p is a *Hausdorff group topology* on G.

A neighborhood base of the topology \mathcal{T}_p at the neutral element 1_G consists of the subgroups

$$G_A = \{ g \in G : g|A = \text{id} \}$$

where A runs over finite subsets of X.
On each permutation group $G \subset S(X) \subset X^X$ we can consider the *topology of pointwise convergence* \mathcal{T}_p inherited from the Tychonoff power X^X of X endowed with the discrete topology.

Fact

The topology \mathcal{T}_p turns G into a Hausdorff topological group. In other words, \mathcal{T}_p is a Hausdorff group topology on G.

A neighborhood base of the topology \mathcal{T}_p at the neutral element 1_G consists of the subgroups

$$G_A = \{g \in G : g|A = \text{id}\}$$

where A runs over finite subsets of X.
On each permutation group $G \subset S(X) \subset X^X$ we can consider the *topology of pointwise convergence* \mathcal{T}_p inherited from the Tychonoff power X^X of X endowed with the discrete topology.

Fact

*The topology \mathcal{T}_p turns G into a Hausdorff topological group. In other words, \mathcal{T}_p is a Hausdorff group topology on G.***

A neighborhood base of the topology \mathcal{T}_p at the neutral element 1_G consists of the subgroups

$$G_A = \{ g \in G : g|A = \text{id} \}$$

where A runs over finite subsets of X.
Extremal properties of the topology \mathcal{T}_p

Theorem (Dierolf-Schwanengel, 1977)

For any group G with $S_\omega(X) \subset G \subset S(X)$, the topology \mathcal{T}_p is a minimal Hausdorff group topology on G.

Theorem (Gaughan, 1967)

For the group $G = S(X)$, the topology \mathcal{T}_p is the smallest Hausdorff group topology on G.

Problem (Dikranjan, 2010)

Let G be a group such that $S_\omega(X) \subset G \subset S(X)$. Is \mathcal{T}_p the smallest Hausdorff group topology on G?

Answer (B-G-P, 2011)

Yes!
Theorem (Dierolf-Schwanengel, 1977)

For any group G with $\mathbb{S}_\omega(X) \subset G \subset S(X)$, the topology \mathcal{T}_p is a minimal Hausdorff group topology on G.

Theorem (Gaughan, 1967)

For the group $G = S(X)$, the topology \mathcal{T}_p is the smallest Hausdorff group topology on G.

Problem (Dikranjan, 2010)

Let G be a group such that $\mathbb{S}_\omega(X) \subset G \subset S(X)$. Is \mathcal{T}_p the smallest Hausdorff group topology on G?

Answer (B-G-P, 2011)

Yes!
Theorem (Dierolf-Schwanengel, 1977)

For any group G with $S_\omega(X) \subset G \subset S(X)$, the topology \mathcal{T}_p is a minimal Hausdorff group topology on G.

Theorem (Gaughan, 1967)

For the group $G = S(X)$, the topology \mathcal{T}_p is the smallest Hausdorff group topology on G.

Problem (Dikranjan, 2010)

Let G be a group such that $S_\omega(X) \subset G \subset S(X)$. Is \mathcal{T}_p the smallest Hausdorff group topology on G?

Answer (B-G-P, 2011)

Yes!
Extremal properties of the topology \mathcal{T}_p

Theorem (Dierolf-Schwanengel, 1977)

*For any group G with $S_\omega(X) \subseteq G \subseteq S(X)$, the topology \mathcal{T}_p is a minimal Hausdorff group topology on G.***

Theorem (Gaughan, 1967)

*For the group $G = S(X)$, the topology \mathcal{T}_p is the smallest Hausdorff group topology on G.***

Problem (Dikranjan, 2010)

*Let G be a group such that $S_\omega(X) \subseteq G \subseteq S(X)$. Is \mathcal{T}_p the smallest Hausdorff group topology on G?***

Answer (B-G-P, 2011)

Yes!
Various sorts of topologized groups

A group G endowed with a topology \mathcal{T} is called

- a **topological group** if the binary operation $(x, y) \mapsto xy^{-1}$ is continuous;
- a **quasi-topological group** if the binary operation $(x, y) \mapsto xy^{-1}$ is separately continuous;
- a **semi-topological group** if the binary operation $(x, y) \mapsto xy$ is separately continuous;
- a **[quasi]-topological group** if the binary operations $(x, y) \mapsto xy^{-1}$ and $(x, y) \mapsto [x, y] = xyx^{-1}y^{-1}$ are separately continuous;
- a **[semi]-topological group** if the binary operations $(x, y) \mapsto xy$ and $(x, y) \mapsto [x, y] = xyx^{-1}y^{-1}$ are separately continuous.
A group G endowed with a topology \mathcal{T} is called

- a **topological group** if the binary operation $(x, y) \mapsto xy^{-1}$ is continuous;
- a **quasi-topological group** if the binary operation $(x, y) \mapsto xy^{-1}$ is separately continuous;
- a **semi-topological group** if the binary operation $(x, y) \mapsto xy$ is separately continuous;
- a **[quasi]-topological group** if the binary operations $(x, y) \mapsto xy^{-1}$ and $(x, y) \mapsto [x, y] = xyx^{-1}y^{-1}$ are separately continuous;
- a **[semi]-topological group** if the binary operations $(x, y) \mapsto xy$ and $(x, y) \mapsto [x, y] = xyx^{-1}y^{-1}$ are separately continuous.
Various sorts of topologized groups

A group G endowed with a topology T is called

- a **topological group** if the binary operation $(x, y) \mapsto xy^{-1}$ is continuous;
- a **quasi-topological group** if the binary operation $(x, y) \mapsto xy^{-1}$ is separately continuous;
- a **semi-topological group** if the binary operation $(x, y) \mapsto xy$ is separately continuous;
- a **[quasi]-topological group** if the binary operations $(x, y) \mapsto xy^{-1}$ and $(x, y) \mapsto [x, y] = xyx^{-1}y^{-1}$ are separately continuous;
- a **[semi]-topological group** if the binary operations $(x, y) \mapsto xy$ and $(x, y) \mapsto [x, y] = xyx^{-1}y^{-1}$ are separately continuous.
A group G endowed with a topology \mathcal{T} is called

- a **topological group** if the binary operation $(x, y) \mapsto xy^{-1}$ is continuous;
- a **quasi-topological group** if the binary operation $(x, y) \mapsto xy^{-1}$ is separately continuous;
- a **semi-topological group** if the binary operation $(x, y) \mapsto xy$ is separately continuous;
- a **[quasi]-topological group** if the binary operations $(x, y) \mapsto xy^{-1}$ and $(x, y) \mapsto [x, y] = xyx^{-1}y^{-1}$ are separately continuous;
- a **[semi]-topological group** if the binary operations $(x, y) \mapsto xy$ and $(x, y) \mapsto [x, y] = xyx^{-1}y^{-1}$ are separately continuous.
Various sorts of topologized groups

A group G endowed with a topology \mathcal{T} is called

- a **topological group** if the binary operation $(x, y) \mapsto xy^{-1}$ is continuous;
- a **quasi-topological group** if the binary operation $(x, y) \mapsto xy^{-1}$ is separately continuous;
- a **semi-topological group** if the binary operation $(x, y) \mapsto xy$ is separately continuous;
- a **[quasi]-topological group** if the binary operations $(x, y) \mapsto xy^{-1}$ and $(x, y) \mapsto [x, y] = xyx^{-1}y^{-1}$ are separately continuous;
- a **[semi]-topological group** if the binary operations $(x, y) \mapsto xy$ and $(x, y) \mapsto [x, y] = xyx^{-1}y^{-1}$ are separately continuous.
A group G endowed with a topology \mathcal{T} is called

- **a topological group** if the binary operation $(x, y) \mapsto xy^{-1}$ is continuous;
- **a quasi-topological group** if the binary operation $(x, y) \mapsto xy^{-1}$ is separately continuous;
- **a semi-topological group** if the binary operation $(x, y) \mapsto xy$ is separately continuous;
- **a [quasi]-topological group** if the binary operations $(x, y) \mapsto xy^{-1}$ and $(x, y) \mapsto [x, y] = xyx^{-1}y^{-1}$ are separately continuous;
- **a [semi]-topological group** if the binary operations $(x, y) \mapsto xy$ and $(x, y) \mapsto [x, y] = xyx^{-1}y^{-1}$ are separately continuous.
Interplay between various sorts of topologized groups

Fact

A group G with topology T is [semi]-topological if and only if for any $a, b \in G$

- the shift $s_{a,b} : x \mapsto axb$ and
- the conjugator $\gamma_a : x \mapsto xax^{-1}$

are T-continuous.
Interplay between various sorts of topologized groups

Fact

A group G with topology \mathcal{T} is [semi]-topological if and only if for any $a, b \in G$

- the shift $s_{a,b} : x \mapsto axb$ and
- the conjugator $\gamma_a : x \mapsto xax^{-1}$

are \mathcal{T}-continuous.
Main result answering the Dikranjan’s Problem

Theorem (B-G-P, 2011)

For any group G with $S_\omega(X) \subset G \subset S(X)$, the topology T_p is the smallest T_1-topology turning G into a [semi]-topological group.
Proof of Theorem

Let $S_\omega(X) \subset G \subset S(X)$ and \mathcal{T} be a T_1-topology on G such that (G, \mathcal{T}) is a [semi]-topological group.

Our aim: To prove that $\mathcal{T}_p \subset \mathcal{T}$.
This is trivial if X is finite. So, we assume that X is infinite.

Observe that the subgroups

$$G_A = \{ g \in G : g|A = \text{id} \}, \quad |A| < \infty$$

form a neighborhood base of the topology \mathcal{T}_p at 1_G, while the family

$$\{ G_A : A \subset X, \ |A| = 3 \}$$

is a neighborhood subbase of \mathcal{T}_p at 1_G.

So, to prove the theorem, it suffices to check that for each 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T}-open.
Proof of Theorem

Let $S_\omega(X) \subset G \subset S(X)$ and \mathcal{T} be a T_1-topology on G such that (G, \mathcal{T}) is a [semi]-topological group.

Our aim: To prove that $\mathcal{T}_p \subset \mathcal{T}$.

This is trivial if X is finite. So, we assume that X is infinite.

Observe that the subgroups

$$G_A = \{ g \in G : g|A = \text{id} \}, \quad |A| < \infty$$

form a neighborhood base of the topology \mathcal{T}_p at 1_G, while the family

$$\{ G_A : A \subset X, \ |A| = 3 \}$$

is a neighborhood subbase of \mathcal{T}_p at 1_G.

So, to prove the theorem, it suffices to check that for each 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T}-open.
Let $S_\omega(X) \subset G \subset S(X)$ and \mathcal{T} be a T_1-topology on G such that
(G, \mathcal{T}) is a [semi]-topological group.

Our aim: To prove that $\mathcal{T}_p \subset \mathcal{T}$.

This is trivial if X is finite. So, we assume that X is infinite.

Observe that the subgroups

$$G_A = \{g \in G : g|A = \text{id}\}, \quad |A| < \infty$$

form a neighborhood base of the topology \mathcal{T}_p at 1_G,

while the family

$$\{G_A : A \subset X, \ |A| = 3\}$$

is a neighborhood subbase of \mathcal{T}_p at 1_G.

So, to prove the theorem, it suffices to check that for each 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T}-open.
Proof of Theorem

Let $S_\omega(X) \subset G \subset S(X)$ and \mathcal{T} be a T_1-topology on G such that (G, \mathcal{T}) is a [semi]-topological group.

Our aim: To prove that $\mathcal{T}_p \subset \mathcal{T}$.

This is trivial if X is finite. So, we assume that X is infinite.

Observe that the subgroups

$$G_A = \{g \in G : g|A = \text{id}\}, \quad |A| < \infty$$

form a neighborhood base of the topology \mathcal{T}_p at 1_G, while the family

$$\{G_A : A \subset X, \ |A| = 3\}$$

is a neighborhood subbase of \mathcal{T}_p at 1_G.

So, to prove the theorem, it suffices to check that for each 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T}-open.
Proof of Theorem

Let $S_\omega(X) \subset G \subset S(X)$ and \mathcal{T} be a T_1-topology on G such that (G, \mathcal{T}) is a [semi]-topological group.

Our aim: *To prove that* $\mathcal{T}_p \subset \mathcal{T}$.

This is trivial if X is finite. So, we assume that X is infinite.

Observe that the subgroups

$$G_A = \{ g \in G : g|A = \text{id} \}, \quad |A| < \infty$$

form a neighborhood base of the topology \mathcal{T}_p at 1_G.

While the family

$$\{ G_A : A \subset X, \ |A| = 3 \}$$

is a neighborhood subbase of \mathcal{T}_p at 1_G.

So, to prove the theorem, it suffices to check that for each 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T}-open.
Proof of Theorem

Let $S_\omega(X) \subset G \subset S(X)$ and \mathcal{T} be a T_1-topology on G such that (G, \mathcal{T}) is a [semi]-topological group.

Our aim: To prove that $\mathcal{T}_p \subset \mathcal{T}$.

This is trivial if X is finite. So, we assume that X is infinite.

Observe that the subgroups

$$G_A = \{ g \in G : g|A = \text{id} \}, \ |A| < \infty$$

form a neighborhood **base** of the topology \mathcal{T}_p at 1_G, while the family

$$\{ G_A : A \subset X, \ |A| = 3 \}$$

is a neighborhood **subbase** of \mathcal{T}_p at 1_G.

So, to prove the theorem, it suffices to check that for each 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T}-open.
Lemma

For each 3-element subset $A \subset X$ the subgroup G_A is T-closed.

Proof.

Given any permutation $g \notin G_A$, find a point $a \in A$ with $g(a) \neq a$. Choose any $b \in A \setminus \{a, g(a)\}$ and consider the transposition $t : X \to X$ such that $\text{supp}(t) = \{a, b\}$. Then $t \circ g \neq g \circ t$ as $g \circ t(a) = g(b)$ while $t \circ g(a) = g(a)$.

So,

$$U = \{f \in G : f \circ t \neq t \circ f\} = \{f \in G : f \circ t \circ f^{-1} \neq t\} = \gamma_t^{-1}(G\{t\})$$

is a T-open neighborhood of g, which is disjoint with G_A. \qed
Lemma

For each 3-element subset $A \subset X$ the subgroup G_A is T-closed.

Proof.

Given any permutation $g \notin G_A$, find a point $a \in A$ with $g(a) \neq a$. Choose any $b \in A \setminus \{a, g(a)\}$ and consider the transposition $t : X \rightarrow X$ such that $\text{supp}(t) = \{a, b\}$. Then $t \circ g \neq g \circ t$ as $g \circ t(a) = g(b)$ while $t \circ g(a) = g(a)$.

So,

$$U = \{f \in G : f \circ t \neq t \circ f\} = \{f \in G : f \circ t \circ f^{-1} \neq t\} = \gamma_t^{-1}(G \setminus \{t\})$$

is a T-open neighborhood of g, which is disjoint with G_A.
Lemma

For each 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T}-closed.

Proof.

Given any permutation $g \notin G_A$, find a point $a \in A$ with $g(a) \neq a$. Choose any $b \in A \setminus \{a, g(a)\}$ and consider the transposition $t : X \to X$ such that $\text{supp}(t) = \{a, b\}$. Then $t \circ g \neq g \circ t$ as $g \circ t(a) = g(b)$ while $t \circ g(a) = g(a)$.

So,

$$U = \{f \in G : f \circ t \neq t \circ f\} = \{f \in G : f \circ t \circ f^{-1} \neq t\} = \gamma_t^{-1}(G \setminus \{t\})$$

is a \mathcal{T}-open neighborhood of g, which is disjoint with G_A. \qed
Lemma

For each 3-element subset $A \subset X$ the subgroup G_A is T-closed.

Proof.

Given any permutation $g \notin G_A$, find a point $a \in A$ with $g(a) \neq a$. Choose any $b \in A \setminus \{a, g(a)\}$ and consider the transposition $t : X \to X$ such that $\text{supp}(t) = \{a, b\}$. Then $t \circ g \neq g \circ t$ as $g \circ t(a) = g(b)$ while $t \circ g(a) = g(a)$.

So,

$$U = \{f \in G : f \circ t \neq t \circ f\} = \{f \in G : f \circ t \circ f^{-1} \neq t\} = \gamma_t^{-1}(G \setminus \{t\})$$

is a T-open neighborhood of g, which is disjoint with G_A. □
Lemma

For each 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T}-closed.

Proof.

Given any permutation $g \notin G_A$, find a point $a \in A$ with $g(a) \neq a$. Choose any $b \in A \setminus \{a, g(a)\}$ and consider the transposition $t : X \to X$ such that $\text{supp}(t) = \{a, b\}$. Then $t \circ g \neq g \circ t$ as $g \circ t(a) = g(b)$ while $t \circ g(a) = g(a)$.

So,

$$U = \{ f \in G : f \circ t \neq t \circ f \} = \{ f \in G : f \circ t \circ f^{-1} \neq t \} = \gamma_t^{-1}(G \setminus \{t\})$$

is a \mathcal{T}-open neighborhood of g, which is disjoint with G_A. \square
Lemma

For some 3-element subset \(A \subset X \) the subgroup \(G_A \) is \(T \)-open.

Proof. Assume not. Then for each 3-element subset \(A \subset X \) the subgroup \(G_A \) is not open and being closed is nowhere dense in \((G, T)\).

Claim

For any 3-element subset \(A \subset X \) and any finite set \(B \subset X \) the set

\[
G(A, B) = \{ g \in G : g(A) \subset B \}
\]

is closed and nowhere dense in \((G, T)\).

Proof. Since the set of maps \(A \to B \) is finite, we can choose a finite subset \(F \subset G(A, B) \) such that for each \(g \in G(A, B) \) there is \(f \in F \) with \(f|A = g|A \). Then \(f^{-1} \circ g \in G_A \) and hence \(g \in f \circ G_A \). So, \(G(A, B) = \bigcup_{f \in F} f \circ G_A \) is closed and nowhere dense as a finite union of closed nowhere dense subspaces.
Lemma

For some 3-element subset $A \subset X$ the subgroup G_A is T-open.

Proof. Assume not. Then for each 3-element subset $A \subset X$ the subgroup G_A is not open and being closed is nowhere dense in (G, \mathcal{T}).

Claim

For any 3-element subset $A \subset X$ and any finite set $B \subset X$ the set

$$G(A, B) = \{ g \in G : g(A) \subset B \}$$

is closed and nowhere dense in (G, \mathcal{T}).

Proof. Since the set of maps $A \rightarrow B$ is finite, we can choose a finite subset $F \subset G(A, B)$ such that for each $g \in G(A, B)$ there is $f \in F$ with $f|A = g|A$. Then $f^{-1} \circ g \in G_A$ and hence $g \in f \circ G_A$. So, $G(A, B) = \bigcup_{f \in F} f \circ G_A$ is closed and nowhere dense as a finite union of closed nowhere dense subspaces.
Lemma

For some 3-element subset $A \subset X$ the subgroup G_A is T-open.

Proof. Assume not. Then for each 3-element subset $A \subset X$ the subgroup G_A is not open and being closed is nowhere dense in (G, T).

Claim

For any 3-element subset $A \subset X$ and any finite set $B \subset X$ the set

$$G(A, B) = \{g \in G : g(A) \subset B\}$$

is closed and nowhere dense in (G, T).

Proof. Since the set of maps $A \to B$ is finite, we can choose a finite subset $F \subset G(A, B)$ such that for each $g \in G(A, B)$ there is $f \in F$ with $f|A = g|A$. Then $f^{-1} \circ g \in G_A$ and hence $g \in f \circ G_A$. So, $G(A, B) = \bigcup_{f \in F} f \circ G_A$ is closed and nowhere dense as a finite union of closed nowhere dense subspaces.
Lemma

For some 3-element subset \(A \subset X \) the subgroup \(G_A \) is \(T \)-open.

Proof. Assume not. Then for each 3-element subset \(A \subset X \) the subgroup \(G_A \) is not open and being closed is nowhere dense in \((G, T) \).

Claim

For any 3-element subset \(A \subset X \) and any finite set \(B \subset X \) the set

\[
G(A, B) = \{ g \in G : g(A) \subset B \}
\]

is closed and nowhere dense in \((G, T) \).

Proof. Since the set of maps \(A \to B \) is finite, we can choose a finite subset \(F \subset G(A, B) \) such that for each \(g \in G(A, B) \) there is \(f \in F \) with \(f|A = g|A \). Then \(f^{-1} \circ g \in G_A \) and hence \(g \in f \circ G_A \). So, \(G(A, B) = \bigcup_{f \in F} f \circ G_A \) is closed and nowhere dense as a finite union of closed nowhere dense subspaces.
Choose two disjoint 3-element subsets $A, B \subset X$ and consider the nowhere dense subset $G(A, A \cup B) \cup G(B, A \cup B)$ in (G, \mathcal{T}).

For any distinct points $a, b \in A \cup B$ let $t_{a,b} \in S_\omega(X) \subset G$ be the transposition with $\text{supp}(t_{a,b}) = \{a, b\}$.

Put $T = \{t_{a,b} : a, b \in A \cup B\}$.

For every $t \in T$ the set

$$V_t = \{u \in G : u \circ t \neq t \circ u\} = \gamma_t^{-1}(G \setminus \{t\})$$

is \mathcal{T}-open and contains each transposition $s \in T$ with $s \circ t \neq t \circ s$.

Then the set

$$U_{s,t} = \gamma_s^{-1}(V_t) = \{u \in G : (usu^{-1})t \neq t(usu^{-1})\}$$

is a \mathcal{T}-open neighborhood of 1_G and so is the intersection

$$U = \bigcap\{U_{s,t} : s, t \in T, t \circ s \neq s \circ t\}.$$
Choose two disjoint 3-element subsets $A, B \subset X$ and consider the nowhere dense subset $G(A, A \cup B) \cup G(B, A \cup B)$ in (G, \mathcal{T}). For any distinct points $a, b \in A \cup B$ let $t_{a,b} \in S_\omega(X) \subset G$ be the transposition with $\text{supp}(t_{a,b}) = \{a, b\}$.

Put $T = \{t_{a,b} : a, b \in A \cup B\}$.

For every $t \in T$ the set

$$V_t = \{u \in G : u \circ t \neq t \circ u\} = \gamma_t^{-1}(G \setminus \{t\})$$

is \mathcal{T}-open and contains each transposition $s \in T$ with $s \circ t \neq t \circ s$.

Then the set

$$U_{s,t} = \gamma_s^{-1}(V_t) = \{u \in G : (usu^{-1})t \neq t(usu^{-1})\}$$

is a \mathcal{T}-open neighborhood of 1_G and so is the intersection

$$U = \bigcap\{U_{s,t} : s, t \in T, t \circ s \neq s \circ t\}.$$
Choose two disjoint 3-element subsets $A, B \subset X$ and consider the nowhere dense subset $G(A, A \cup B) \cup G(B, A \cup B)$ in (G, \mathcal{T}). For any distinct points $a, b \in A \cup B$ let $t_{a,b} \in S_\omega(X) \subset G$ be the transposition with $\text{supp}(t_{a,b}) = \{a, b\}$. Put $T = \{t_{a,b} : a, b \in A \cup B\}$. For every $t \in T$ the set

$$V_t = \{u \in G : u \circ t \neq t \circ u\} = \gamma_t^{-1}(G \setminus \{t\})$$

is \mathcal{T}-open and contains each transposition $s \in T$ with $s \circ t \neq t \circ s$. Then the set

$$U_{s,t} = \gamma_s^{-1}(V_t) = \{u \in G : (usu^{-1})t \neq t(usu^{-1})\}$$

is a \mathcal{T}-open neighborhood of 1_G and so is the intersection

$$U = \bigcap\{U_{s,t} : s, t \in T, t \circ s \neq s \circ t\}.$$
Choose two disjoint 3-element subsets $A, B \subset X$ and consider the nowhere dense subset $G(A, A \cup B) \cup G(B, A \cup B)$ in (G, \mathcal{T}).

For any distinct points $a, b \in A \cup B$ let $t_{a,b} \in S_\omega(X) \subset G$ be the transposition with $\text{supp}(t_{a,b}) = \{a, b\}$.

Put $T = \{t_{a,b} : a, b \in A \cup B\}$.

For every $t \in T$ the set

$$V_t = \{u \in G : u \circ t \neq t \circ u\} = \gamma_t^{-1}(G \setminus \{t\})$$

is \mathcal{T}-open and contains each transposition $s \in T$ with $s \circ t \neq t \circ s$.

Then the set

$$U_{s,t} = \gamma_s^{-1}(V_t) = \{u \in G : (usu^{-1})t \neq t(usu^{-1})\}$$

is a \mathcal{T}-open neighborhood of 1_G and so is the intersection

$$U = \bigcap\{U_{s,t} : s, t \in T, t \circ s \neq s \circ t\}.$$
Continuation of the Proof

Choose two disjoint 3-element subsets $A, B \subset X$ and consider the nowhere dense subset $G(A, A \cup B) \cup G(B, A \cup B)$ in (G, \mathcal{T}).

For any distinct points $a, b \in A \cup B$ let $t_{a,b} \in S_\omega(X) \subset G$ be the transposition with $\text{supp}(t_{a,b}) = \{a, b\}$.

Put $T = \{t_{a,b} : a, b \in A \cup B\}$.

For every $t \in T$ the set

$$V_t = \{u \in G : u \circ t \neq t \circ u\} = \gamma_t^{-1}(G \setminus \{t\})$$

is \mathcal{T}-open and contains each transposition $s \in T$ with $s \circ t \neq t \circ s$.

Then the set

$$U_{s,t} = \gamma_s^{-1}(V_t) = \{u \in G : (usu^{-1})t \neq t(usu^{-1})\}$$

is a \mathcal{T}-open neighborhood of 1_G and so is the intersection

$$U = \bigcap\{U_{s,t} : s, t \in T, t \circ s \neq s \circ t\}.$$
Choose a permutation $u \in U \setminus (G(A, A \cup B) \cup G(B, A \cup B))$ and observe that $u(a), u(b) \not\in A \cup B$ for some points $a \in A$ and $b \in B$.

Choose any point $c \in B \setminus \{b\}$ and consider two non-commuting permutations $t = t_{a,c}$ and $s = t_{a,b}$.

It follows from $u \in U \subset U_{s,t} = \gamma_s^{-1}(V_t)$ that the permutation $v = usu^{-1} = \gamma_s(u) \in V_t$ and hence $v \circ t \neq t \circ v$.

On the other hand, $\text{supp}(v) = u(\text{supp}(s)) = u(\{a, b\})$ does not intersect $\{a, b\} = \text{supp}(t_{a,b})$ and hence v commutes with t.

This contradiction shows that, the subgroup G_A is \mathcal{T}-open for some 3-element subset $A \subset X$.
Choose a permutation $u \in U \setminus \left(G(A, A \cup B) \cup G(B, A \cup B) \right)$ and observe that $u(a), u(b) \notin A \cup B$ for some points $a \in A$ and $b \in B$.

Choose any point $c \in B \setminus \{b\}$ and consider two non-commuting permutations $t = t_{a,c}$ and $s = t_{a,b}$.

It follows from $u \in U \subset U_{s,t} = \gamma^{-1}_s(V_t)$ that the permutation $v = usu^{-1} = \gamma_s(u) \in V_t$ and hence $v \circ t \neq t \circ v$.

On the other hand, $\text{supp}(v) = u(\text{supp}(s)) = u(\{a, b\})$ does not intersect $\{a, b\} = \text{supp}(t_{a,b})$ and hence v commutes with t.

This contradiction shows that, the subgroup G_A is \mathcal{T}-open for some 3-element subset $A \subset X$.
Choose a permutation $u \in U \setminus (G(A, A \cup B) \cup G(B, A \cup B))$ and observe that $u(a), u(b) \notin A \cup B$ for some points $a \in A$ and $b \in B$.

Choose any point $c \in B \setminus \{b\}$ and consider two non-commuting permutations $t = t_{a,c}$ and $s = t_{a,b}$.

It follows from
\[u \in U \subseteq U_{s,t} = \gamma_s^{-1}(V_t) \]
that the permutation $v =usu^{-1} = \gamma_s(u) \in V_t$ and hence $v \circ t \neq t \circ v$.

On the other hand, $\text{supp}(v) = u(\text{supp}(s)) = u(\{a, b\})$ does not intersect $\{a, b\} = \text{supp}(t_{a,b})$ and hence v commutes with t.

This contradiction shows that, the subgroup G_A is \mathcal{T}-open for some 3-element subset $A \subset X$.

Taras Banakh, Igor Guran, Igor Protasov

Algebraically determined topologies on permutation groups
Choose a permutation $u \in U \setminus (G(A, A \cup B) \cup G(B, A \cup B))$ and observe that $u(a), u(b) \notin A \cup B$ for some points $a \in A$ and $b \in B$.

Choose any point $c \in B \setminus \{b\}$ and consider two non-commuting permutations $t = t_{a,c}$ and $s = t_{a,b}$.

It follows from $u \in U \subset U_{s,t} = \gamma_s^{-1}(V_t)$

that the permutation $v =usu^{-1} = \gamma_s(u) \in V_t$ and hence $v \circ t \neq t \circ v$.

On the other hand, $\text{supp}(v) = u(\text{supp}(s)) = u(\{a, b\})$ does not intersect $\{a, b\} = \text{supp}(t_{a,b})$ and hence v commutes with t.

This contradiction shows that, the subgroup G_A is \mathcal{T}-open for some 3-element subset $A \subset X$.

Taras Banakh, Igor Guran, Igor Protasov

Algebraically determined topologies on permutation groups
Choose a permutation $u \in U \setminus (G(A, A \cup B) \cup G(B, A \cup B))$ and observe that $u(a), u(b) \notin A \cup B$ for some points $a \in A$ and $b \in B$. Choose any point $c \in B \setminus \{b\}$ and consider two non-commuting permutations $t = t_{a,c}$ and $s = t_{a,b}$.

It follows from $u \in U \subset U_{s,t} = \gamma_s^{-1}(V_t)$ that the permutation $v = usu^{-1} = \gamma_s(u) \in V_t$ and hence $v \circ t \neq t \circ v$.

On the other hand, $\text{supp}(v) = u(\text{supp}(s)) = u(\{a, b\})$ does not intersect $\{a, b\} = \text{supp}(t_{a,b})$ and hence v commutes with t.

This contradiction shows that, the subgroup G_A is T-open for some 3-element subset $A \subset X$.

Taras Banakh, Igor Guran, Igor Protasov
Algebraically determined topologies on permutation groups
Claim

For each 3-element subset $B \subset X$ the subgroup G_B is T-open.

Proof. Choose any permutation $f \in S_\omega(X) \subset G$ with $f(A) = B$ and observe that $G_B = f \circ G_A \circ f^{-1}$ is T-open, being a two-sided shift of the T-open subgroup G_A.
Claim

For each 3-element subset $B \subset X$ the subgroup G_B is \mathcal{T}-open.

Proof. Choose any permutation $f \in S_\omega(X) \subset G$ with $f(A) = B$ and observe that $G_B = f \circ G_A \circ f^{-1}$ is \mathcal{T}-open, being a two-sided shift of the \mathcal{T}-open subgroup G_A.
What we have just proved

Theorem (B-G-P, 2011)

For any group G with $S_\omega(X) \subset G \subset S(X)$, the topology \mathcal{T}_p is the smallest T_1-topology turning G into a [semi]-topological group.

Remark

The [semi]-topological cannot be replaced by semi-topological as the group $G = S_\omega(\mathbb{Z})$ admits a shift-invariant Hausdorff topology \mathcal{T} which is incomparable with \mathcal{T}_p.

Theorem (B-G, 2011)

The group $G = S_\omega(X)$ is σ-discrete in any T_2-topology turning G into a semi-topological group.
What we have just proved

Theorem (B-G-P, 2011)

For any group G with $S_\omega(X) \subset G \subset S(X)$, the topology \mathcal{T}_p is the smallest T_1-topology turning G into a [semi]-topological group.

Remark

The [semi]-topological cannot be replaced by semi-topological as the group $G = S_\omega(\mathbb{Z})$ admits a shift-invariant Hausdorff topology \mathcal{T} which is incomparable with \mathcal{T}_p.

Theorem (B-G, 2011)

The group $G = S_\omega(X)$ is σ-discrete in any T_2-topology turning G into a semi-topological group.
What we have just proved

Theorem (B-G-P, 2011)

For any group G with $S_\omega(X) \subset G \subset S(X)$, the topology T_p is the smallest T_1-topology turning G into a [semi]-topological group.

Remark

The [semi]-topological cannot be replaced by semi-topological as the group $G = S_\omega(\mathbb{Z})$ admits a shift-invariant Hausdorff topology T which is incomparable with T_p.

Theorem (B-G, 2011)

The group $G = S_\omega(X)$ is σ-discrete in any T_2-topology turning G into a semi-topological group.
Definition

A group G is *topologizable* if G admits a non-discrete Hausdorff group topology.

Remark

Each infinite abelian group G is topologizable as G embeds in $\mathbb{T}^{|G|}$.

Problem (Markov, 1946)

Is each infinite group topologizable?

Answer

There exist:
- an uncountable non-topologizable group (Hesse, 1979);
- a countable non-topologizable group (Olshanski, 1980).
Topologizable groups

Definition

A group G is *topologizable* if G admits a non-discrete Hausdorff group topology.

Remark

Each infinite abelian group G is topologizable as G embeds in $\mathbb{T}^{|G|}$.

Problem (Markov, 1946)

Is each infinite group topologizable?

Answer

There exist:

- an uncountable non-topologizable group (Hesse, 1979);
- a countable non-topologizable group (Olshanski, 1980).
Topologizable groups

Definition
A group G is topologizable if G admits a non-discrete Hausdorff group topology.

Remark
Each infinite abelian group G is topologizable as G embeds in $T^{|G|}$.

Problem (Markov, 1946)
Is each infinite group topologizable?

Answer
There exist:
- an uncountable non-topologizable group (Hesse, 1979);
- a countable non-topologizable group (Olshanski, 1980).
Definition

A group G is *topologizable* if G admits a non-discrete Hausdorff group topology.

Remark

Each infinite abelian group G is topologizable as G embeds in $\mathbb{T}^{|G|}$.

Problem (Markov, 1946)

Is each infinite group topologizable?

Answer

There exist:
- an uncountable non-topologizable group (Hesse, 1979);
- a countable non-topologizable group (Olshanski, 1980).
Definition
A group G is topologizable if G admits a non-discrete Hausdorff group topology.

Remark
Each infinite abelian group G is topologizable as G embeds in $\mathbb{T}^{|G|}$.

Problem (Markov, 1946)
Is each infinite group topologizable?

Answer
There exist:
- an uncountable non-topologizable group (Hesse, 1979);
- a countable non-topologizable group (Olshanski, 1980).
Zariski and Markov topologies on groups

Definition

For a group G

- the *Markov topology* \mathcal{M}_G is the intersection of all Hausdorff groups topologies on G;
- the *Zariski topology* \mathcal{Z}_G is generated by the subbase consisting of algebraically open sets
 \[\{ x \in G : a_1 x^{k_1} a_2 x^{k_2} \cdots a_n x^{k_n} \neq 1_G \} \]
 where $a_1, \ldots, a_n \in G$ and $k_1, \ldots, k_n \in \mathbb{Z}$.

Fact

- $\mathcal{Z}_G \subset \mathcal{M}_G \subset T$ for each group T_2-topology T on G.
- (G, \mathcal{Z}_G) and (G, \mathcal{M}_G) are T_1 [quasi]-topological groups.
- G is non-topologizable $\iff \mathcal{M}_G$ is discrete $\iff \mathcal{Z}_G$ is discrete.
Definition

For a group G

- the *Markov topology* \mathcal{M}_G is the intersection of all Hausdorff groups topologies on G;
- the *Zariski topology* \mathcal{Z}_G is generated by the subbase consisting of algebraically open sets
 \[\{ x \in G : a_1x^{k_1}a_2x^{k_2} \cdots a_nx^{k_n} \neq 1_G \} \]
 where $a_1, \ldots, a_n \in G$ and $k_1, \ldots, k_n \in \mathbb{Z}$.

Fact

- $\mathcal{Z}_G \subset \mathcal{M}_G \subset T$ for each group T_2-topology T on G.
- (G, \mathcal{Z}_G) and (G, \mathcal{M}_G) are T_1 [quasi]-topological groups.
- G is non-topologizable $\iff \mathcal{M}_G$ is discrete $\iff \mathcal{Z}_G$ is discrete.
Zariski and Markov topologies on groups

Definition

For a group \(G \)
- the \textit{Markov topology} \(\mathcal{M}_G \) is the intersection of all Hausdorff groups topologies on \(G \);
- the \textit{Zariski topology} \(\mathcal{Z}_G \) is generated by the subbase consisting of algebraically open sets
 \[
 \{ x \in G : a_1x^{k_1}a_2x^{k_2} \cdots a_nx^{k_n} \neq 1_G \}
 \]
 where \(a_1, \ldots, a_n \in G \) and \(k_1, \ldots, k_n \in \mathbb{Z} \).

Fact

- \(\mathcal{Z}_G \subset \mathcal{M}_G \subset \mathcal{T} \) for each group \(T_2 \)-topology \(\mathcal{T} \) on \(G \).
- \((G, \mathcal{Z}_G) \) and \((G, \mathcal{M}_G) \) are \(T_1 \) [quasi]-topological groups.
- \(G \) is non-topologizable \(\iff \mathcal{M}_G \) is discrete \(\iff \mathcal{Z}_G \) is discrete.
Zariski and Markov topologies on groups

Definition

For a group G

- the **Markov topology** \mathcal{M}_G is the intersection of all Hausdorff groups topologies on G;
- the **Zariski topology** \mathcal{Z}_G is generated by the subbase consisting of algebraically open sets

$$\{ x \in G : a_1 x^{k_1} a_2 x^{k_2} \cdots a_n x^{k_n} \neq 1_G \}$$

where $a_1, \ldots, a_n \in G$ and $k_1, \ldots, k_n \in \mathbb{Z}$.

Fact

- $\mathcal{Z}_G \subset \mathcal{M}_G \subset T$ for each group T_2-topology T on G.
- (G, \mathcal{Z}_G) and (G, \mathcal{M}_G) are T_1 [quasi]-topological groups.
- G is non-topologizable \iff \mathcal{M}_G is discrete \iff \mathcal{Z}_G is discrete.
Zariski and Markov topologies on groups

Definition

For a group G

- the *Markov topology* \mathcal{M}_G is the intersection of all Hausdorff groups topologies on G;
- the *Zariski topology* \mathcal{Z}_G is generated by the subbase consisting of algebraically open sets
 \[\{ x \in G : a_1x^{k_1}a_2x^{k_2} \cdots a_nx^{k_n} \neq 1_G \} \]
 where $a_1, \ldots, a_n \in G$ and $k_1, \ldots, k_n \in \mathbb{Z}$.

Fact

- $\mathcal{Z}_G \subset \mathcal{M}_G \subset T$ for each group T-topology T on G.
- (G, \mathcal{Z}_G) and (G, \mathcal{M}_G) are T_1 [quasi]-topological groups.
- G is non-topologizable $\iff \mathcal{M}_G$ is discrete $\iff \mathcal{Z}_G$ is discrete.
Coincidence of Zariski and Markov topologies

Theorem

\[\mathcal{Z}_G = \mathcal{M}_G \text{ if the group } G \text{ is:} \]

- countable (Markov, 1946);
- Abelian (Dikranjan-Shakhmatov, 2010).

Theorem (Hesse, 1979)

There is an uncountable non-topologizable group \(G \) with \(\mathcal{M}_G \neq \mathcal{Z}_G \) (so, \(\mathcal{M}_G \) is discrete while \(\mathcal{Z}_G \) is not).

Problem (Dikranjan-Shakhmatov, 2007 (OPIT2))

Is \(\mathcal{Z}_G = \mathcal{M}_G \) for each symmetric group \(G = S(X) \)?

Answer (B-G-P, 2011)

Yes: \(\mathcal{Z}_G = \mathcal{M}_G = T_p \) for each group \(G \) with \(S_\omega(X) \subset G \subset S(X) \).
Coincidence of Zariski and Markov topologies

Theorem
\[Z_G = \mathcal{M}_G \text{ if the group } G \text{ is:} \]
- countable (Markov, 1946);
- Abelian (Dikranjan-Shakhmatov, 2010).

Theorem (Hesse, 1979)
There is an uncountable non-topologizable group \(G \) with \(\mathcal{M}_G \neq Z_G \) (so, \(\mathcal{M}_G \) is discrete while \(Z_G \) is not).

Problem (Dikranjan-Shakhmatov, 2007 (OPIT2))
Is \(Z_G = \mathcal{M}_G \) for each symmetric group \(G = S(X) \)?

Answer (B-G-P, 2011)
Yes: \(Z_G = \mathcal{M}_G = T_p \) for each group \(G \) with \(S_{\omega}(X) \subset G \subset S(X) \).
Theorem

\[\mathcal{Z}_G = \mathcal{M}_G \text{ if the group } G \text{ is:} \]
- countable (Markov, 1946);
- Abelian (Dikranjan-Shakhmatov, 2010).

Theorem (Hesse, 1979)

There is an uncountable non-topologizable group \(G \) with \(\mathcal{M}_G \neq \mathcal{Z}_G \) (so, \(\mathcal{M}_G \) is discrete while \(\mathcal{Z}_G \) is not).

Problem (Dikranjan-Shakhmatov, 2007 (OPIT2))

Is \(\mathcal{Z}_G = \mathcal{M}_G \) for each symmetric group \(G = S(X) \)?

Answer (B-G-P, 2011)

Yes: \(\mathcal{Z}_G = \mathcal{M}_G = T_p \) for each group \(G \) with \(S_\omega(X) \subset G \subset S(X) \).
Theorem

\[\mathcal{Z}_G = \mathcal{M}_G \] if the group \(G \) is:
- countable (Markov, 1946);
- Abelian (Dikranjan-Shakhmatov, 2010).

Theorem (Hesse, 1979)

There is an uncountable non-topologizable group \(G \) with \(\mathcal{M}_G \neq \mathcal{Z}_G \) (so, \(\mathcal{M}_G \) is discrete while \(\mathcal{Z}_G \) is not).

Problem (Dikranjan-Shakhmatov, 2007 (OPIT2))

Is \(\mathcal{Z}_G = \mathcal{M}_G \) for each symmetric group \(G = S(X) \)?

Answer (B-G-P, 2011)

Yes: \(\mathcal{Z}_G = \mathcal{M}_G = T_p \) for each group \(G \) with \(S_\omega(X) \subset G \subset S(X) \).
Problem (Dikranjan-Shakhmatov, 2010)

Let G be a group with $\mathcal{Z}_G = \mathcal{M}_G$. Is $\mathcal{Z}_H = \mathcal{M}_H$ for each subgroup H of G?

Answer (B-G-P, 2011)

No!

Proof.

Take Hesse's non-topologizable group H with $\mathcal{Z}_H \neq \mathcal{M}_H$ and using Cayley theorem, embed H into the permutation group $G = S(H)$. Then G is a group with $\mathcal{Z}_G = \mathcal{M}_G$ containing the subgroup $H \subset G$ with $\mathcal{Z}_H \neq \mathcal{M}_H$. \qed
Problem (Dikranjan-Shakhmatov, 2010)

Let G be a group with $Z_G = M_G$. Is $Z_H = M_H$ for each subgroup H of G?

Answer (B-G-P, 2011)

No!

Proof.
Take Hesse’s non-topologizable group H with $Z_H \neq M_H$ and using Cayley theorem, embed H into the permutation group $G = S(H)$. Then G is a group with $Z_G = M_G$ containing the subgroup $H \subset G$ with $Z_H \neq M_H$.

Taras Banakh, Igor Guran, Igor Protasov
Algebraically determined topologies on permutation groups
Problem (Dikranjan-Shakhmatov, 2010)

Let G be a group with $Z_G = M_G$. Is $Z_H = M_H$ for each subgroup H of G?

Answer (B-G-P, 2011)

No!

Proof.

Take Hesse’s non-topologizable group H with $Z_H \neq M_H$ and using Cayley theorem, embed H into the permutation group $G = S(H)$. Then G is a group with $Z_G = M_G$ containing the subgroup $H \subset G$ with $Z_H \neq M_H$.
Since the subgroup $S_\omega(X)$ is normal in $S(X)$, we can consider the quotient group $S(X)/S_\omega(X)$.

Problem (Giordano Bruno and Dikranjan, 2008)

Is the group $S(X)/S_\omega(X)$ topologizable?

Answer (B-G-P, 2011)

Yes!
Since the subgroup $S_\omega(X)$ is normal in $S(X)$, we can consider the quotient group $S(X)/S_\omega(X)$.

Problem (Giordano Bruno and Dikranjan, 2008)

Is the group $S(X)/S_\omega(X)$ topologizable?

Answer (B-G-P, 2011)

Yes!
Since the subgroup $S_\omega(X)$ is normal in $S(X)$, we can consider the quotient group $S(X)/S_\omega(X)$.

Problem (Giordano Bruno and Dikranjan, 2008)

Is the group $S(X)/S_\omega(X)$ topologizable?

Answer (B-G-P, 2011)

Yes!
Two natural topologies on $S(X)$

Each discrete space X has two natural compactifications:
- αX, the *Aleksandrov* one-point compactifications;
- βX, the *Čech-Stone* compactification.

Fact

*Each bijection $f : X \rightarrow X$ can be uniquely extended to homeomorphisms $\alpha f : \alpha X \rightarrow \alpha X$ and $\beta f : \beta X \rightarrow \beta X$.***

Consequently, the group $S(X)$ can be identified with the homeomorphisms groups $\mathcal{H}(\alpha X)$ and $\mathcal{H}(\beta X)$ of the compactifications αX and βX.

This identification allows us to introduce the compact-open topologies \mathcal{T}_α and \mathcal{T}_β on $S(X)$.
Each discrete space X has two natural compactifications:

- αX, the *Aleksandrov* one-point compactifications;
- βX, the *Čech-Stone* compactification.

Fact

Each bijection $f : X \to X$ *can be uniquely extended to homeomorphisms* $\alpha f : \alpha X \to \alpha X$ *and* $\beta f : \beta X \to \beta X$.

Consequently, the group $S(X)$ can be identified with the homeomorphisms groups $\mathcal{H}(\alpha X)$ and $\mathcal{H}(\beta X)$ of the compactifications αX and βX.

This identification allows us to introduce the compact-open topologies T_α and T_β on $S(X)$.

Taras Banakh, Igor Guran, Igor Protasov
Algebraically determined topologies on permutation groups
Each discrete space X has two natural compactifications:

- αX, the *Aleksandrov* one-point compactifications;
- βX, the *Čech-Stone* compactification.

Fact

*Each bijection $f : X \to X$ can be uniquely extended to homeomorphisms $\alpha f : \alpha X \to \alpha X$ and $\beta f : \beta X \to \beta X$.***

Consequently, the group $S(X)$ can be identified with the homeomorphisms groups $\mathcal{H}(\alpha X)$ and $\mathcal{H}(\beta X)$ of the compactifications αX and βX.

This identification allows us to introduce the compact-open topologies \mathcal{T}_α and \mathcal{T}_β on $S(X)$.

Taras Banakh, Igor Guran, Igor Protasov

Algebraically determined topologies on permutation groups
Each discrete space X has two natural compactifications:
- αX, the *Aleksandrov* one-point compactifications;
- βX, the Čech-Stone compactification.

Fact

*Each bijection $f : X \to X$ can be uniquely extended to homeomorphisms $\alpha f : \alpha X \to \alpha X$ and $\beta f : \beta X \to \beta X$.***

Consequently, the group $S(X)$ can be identified with the homeomorphisms groups $\mathcal{H}(\alpha X)$ and $\mathcal{H}(\beta X)$ of the compactifications αX and βX.

This identification allows us to introduce the compact-open topologies \mathcal{T}_α and \mathcal{T}_β on $S(X)$.
Topologies \mathcal{T}_α and \mathcal{T}_β on $S(X)$

Fact

$\mathcal{T}_\alpha = \mathcal{T}_p$. Consequently, $S_\omega(X)$ is a dense subgroup of the topological group $(S_\omega(X), \mathcal{T}_\alpha) = \mathcal{H}(\alpha X)$.

Theorem (B-G-P, 2011)

The subgroup $S_\omega(X)$ is closed and nowhere dense in the topological group $(S(X), \mathcal{T}_\beta) = \mathcal{H}(\beta X)$. Consequently, the quotient topological group $S(X)/S_\omega(X)$ is not discrete and thus is topologizable.
Topologies \mathcal{T}_α and \mathcal{T}_β on $S(X)$

Fact

$\mathcal{T}_\alpha = \mathcal{T}_p$. Consequently, $S_\omega(X)$ is a dense subgroup of the topological group $(S_\omega(X), \mathcal{T}_\alpha) = \mathcal{H}(\alpha X)$.

Theorem (B-G-P, 2011)

The subgroup $S_\omega(X)$ is closed and nowhere dense in the topological group $(S(X), \mathcal{T}_\beta) = \mathcal{H}(\beta X)$. Consequently, the quotient topological group $S(X)/S_\omega(X)$ is not discrete and thus is topologizable.
Topologies \mathcal{T}_α and \mathcal{T}_β on $S(X)$

Fact

$\mathcal{T}_\alpha = \mathcal{T}_p$. Consequently, $S_\omega(X)$ is a dense subgroup of the topological group $(S_\omega(X), \mathcal{T}_\alpha) = \mathcal{H}(\alpha X)$.

Theorem (B-G-P, 2011)

The subgroup $S_\omega(X)$ is closed and nowhere dense in the topological group $(S(X), \mathcal{T}_\beta) = \mathcal{H}(\beta X)$. Consequently, the quotient topological group $S(X)/S_\omega(X)$ is not discrete and thus is topologizable.
An Open Problem

Definition
A group G is *quasi-topologizable* if G admits a Hausdorff topology turning G into a quasi-topologizable group.

```
topologizable → [quasi]-topologizable → [semi]-topologizable
                ↓     ↓
quasi-topologizable → semi-topologizable
```

Theorem (Zelenyuk, 2000)
Each infinite group is quasi-topologizable.

Open Problem
Is each infinite group [quasi]-topologizable? [semi]-topologizable?
An Open Problem

Definition

A group G is quasi-topologizable if G admits a Hausdorff topology turning G into a quasi-topologizable group.

\[
\text{topologizable} \Rightarrow \text{[quasi]-topologizable} \Rightarrow \text{[semi]-topologizable} \Rightarrow \text{quasi-topologizable} \Rightarrow \text{semi-topologizable}
\]

Theorem (Zelenyuk, 2000)

Each infinite group is quasi-topologizable.

Open Problem

Is each infinite group [quasi]-topologizable? [semi]-topologizable?
Definition
A group G is *quasi-topologizable* if G admits a Hausdorff topology turning G into a quasi-topologizable group.

\[
\text{topologizable} \rightarrow \text{[quasi]-topologizable} \rightarrow \text{[semi]-topologizable} \\
 \downarrow \downarrow \\
 \text{quasi-topologizable} \rightarrow \text{semi-topologizable}
\]

Theorem (Zelenyuk, 2000)
Each infinite group is quasi-topologizable.

Open Problem
Is each infinite group [quasi]-topologizable? [semi]-topologizable?
Definition

A group G is *quasi-topologizable* if G admits a Hausdorff topology turning G into a quasi-topologizable group.

Theorem (Zelenyuk, 2000)

Each infinite group is quasi-topologizable.

Open Problem

Is each infinite group [quasi]-topologizable? [semi]-topologizable?
T. Banakh, I. Guran, I. Protasov, *Algebraically determined topologies on permutation groups*, Topology Appl. **159** (2012) 2258-2268.

* * * *

Thanks!
T. Banakh, I. Guran, I. Protasov,
Algebraically determined topologies on permutation groups,
Topology Appl. **159** (2012) 2258-2268.

* * *

Thanks!