Local boundary controllability in classes of differentiable functions for the wave equation

M.I. Belishev*

Abstract

The well-known fact following from the Holmgren-John-Tataru uniqueness theorem is a local approximate boundary L_2-controllability of the dynamical system governed by the wave equation. Generalizing this result, we establish the controllability in certain classes of differentiable functions in the domains filled up with waves.

1 Introduction

The paper deals with a local approximate boundary controllability of dynamical systems governed by the wave equation. This property means that the states of the system (waves) initiated by the boundary sources (controls), constitute L_2-complete sets in the domains, which the waves fill up. Such a result is derived from the fundamental Holmgren-John-Tataru uniqueness theorem [10] by the scheme proposed by D.L. Russel [9]. The L_2-controllability is a cornerstone of the boundary control method (BC-method), which is an approach to inverse problems based upon their relations to control and system theory [1, 2].

In this paper, we show that completeness of waves also holds in the certain classes of differentiable functions.

The first version of the paper was posted as a preprint [3] based on the graduate diploma project of A.N. Dolgoborodov, which was fulfilled under

*Saint-Petersburg Department of the Steklov Mathematical Institute, RAS, belishev@pdmi.ras.ru; Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia, m.belishev@spbu.ru. Supported by the RFBR grant 17-01-00529- and Volks-Wagen Foundation.
tutorship of the author in 1997 at the physical faculty of the St-Petersburg State University. However, it was never published in official issues. The given variant is a revised and extended version of [3]. Recently, prof. G.Nakamura informed the author about certain interest to this kind of results. It is the reason, which has stimulated to return to this subject.

I’m grateful to A.I.Nazarov for helpful consultations.

2 Dynamical systems

All the function classes and spaces are real.

Initial boundary value problem

Let \(\Omega \subset \mathbb{R}^n \) be a bounded domain with the \(C^\infty \)-smooth boundary \(\Gamma \); \(T > 0 \), \(Q^T := \Omega \times (0, T) \), \(\Sigma^T := \Gamma \times [0, T] \). Consider the problem

\[
\begin{align*}
 u_{tt} + Au &= 0 & \text{in } Q^T \quad (2.1) \\
 u|_{t=0} &= u_t|_{t=0} & \text{in } \Omega \quad (2.2) \\
 u|_{\Sigma^T} &= f , & (2.3)
\end{align*}
\]

where \(f \) is a boundary control, \(A \) is a differential expression of the form

\[
A = -\sum_{i,j=1}^n \partial_x^i a^{ij}(x) \partial_x^j
\]

with the coefficients \(a^{ij} \in C^\infty(\overline{\Omega}) \) provided

\[
a^{ij}(x) = a^{ji}(x); \sum_{i,j=1}^n a^{ij}(x) \xi_i \xi_j \geq \mu |\xi|^2, \quad x \in \overline{\Omega}, \quad \xi = \{\xi_1, \ldots, \xi_n\} \in \mathbb{R}^n
\]

with a constant \(\mu > 0 \). Let \(u = u^f(x,t) \) be a solution (wave); the following is the list of its known properties.

(i) Let

\[
\mathcal{M}^T := \{ f \in C^\infty(\Sigma^T) \mid \text{supp } f \subset \Gamma \times (0, T) \}
\]

be the class of smooth controls vanishing near \(t = 0 \). This class is dense in \(L_2(\Sigma^T) \). For \(f \in \mathcal{M}^T \), problem \((2.1)-(2.3)\) has a unique classical solution
$u^f \in C^\infty(\overline{Q^T})$. Since the operator A, which governs the evolution of waves, doesn’t depend on t and $\partial_t \mathcal{M}^T = \mathcal{M}^T$, this solution satisfies

$$u^f_t = u^f_t; \quad u^f_{tt} = u^f_{tt} - Au^f. \quad (2.5)$$

(ii) The map $f \mapsto u^f$ defined on \mathcal{M}^T is continuous from $L^2(\Sigma^T)$ to $C([0, T]; L^2(\Omega))$ \cite{3}. As such, it can be extended onto $L^2(\Sigma^T)$. From this point on, for $f \in L^2(\Sigma^T)$, we define a (generalized) solution u^f of the class $C([0, T]; L^2(\Omega))$ as the image of f via the extended map.

(iii) By $H^s(\ldots)$ we denote the Sobolev classes. For $f \in H^{2p}(\Sigma^T)$ provided $(\partial_t)^j f|_{t=0}, \ j = 0, 1, \ldots, 2p - 1$, one has $u^f \in C([0, T]; H^{2p}(\Omega))$ \cite{5-7}.

(iv) The inverse matrix $\{a_{ij}\} := \{a^{ij}\}^{-1}$ determines a Riemannian metric $d\tau^2 = \sum_{ij} a_{ij} dx^i dx^j$ in Ω and the corresponding distance dist_A. Denote $\tau(x) := \text{dist}_A(x, \Gamma)$ and

$$\Omega^r := \{x \in \overline{\Omega} \mid \tau(x) < r\}, \ r > 0.$$

The well-known finiteness of the domain of influence principle for the hyperbolic problem (2.1)–(2.3) holds and implies the following equivalent relations

$$\text{supp} \ u^f(\cdot, t) \subset \overline{\Omega}, \ t > 0; \quad \text{supp} \ u^f \subset \{(x, t) \in \overline{Q^T} \mid t \geq \tau(x)\} \quad (2.6)$$

(see, e.g., \cite{5}). So, Ω^T is the subdomain filled with waves at the final moment $t = T$. Under our assumptions on Ω and a^{ij}, the value

$$T_{\text{fill}} := \inf \{T > 0 \mid \Omega^T = \Omega\}$$

is finite; we call it a filling time.

Dual problem

The problem

$$v_{tt} + Av = 0 \quad \text{in} \ Q^T \quad (2.7)$$

$$v|_{t=T} = 0, \ v_t|_{t=T} = y \quad \text{in} \ \overline{\Omega} \quad (2.8)$$

$$v|_{\Sigma^T} = 0 \quad (2.9)$$

is called dual to problem (2.1)–(2.3); let $v = v^u(x, t)$ be its solution. The following is the list of its known properties.
(i*) For $y \in C^\infty_0(\Omega)$, problem \ref{eq:2.7}--\ref{eq:2.9} has a unique classical solution $v^y \in C^\infty(Q_T)$. The map $y \mapsto v^y$ acts continuously from $L_2(\Omega)$ to $C([0,T];H^1_0(\Omega))$ \cite{6,7}.

(ii*) Let $\partial_{\nu,A} := \sum_{i,j=1}^n a^{ij} \cos(\nu, x^j) \partial x^i$ be the conormal derivative at the boundary Γ (here ν is the Euclidean normal). The map $y \mapsto \partial_{\nu,A} v^y|_{\Sigma_T}$ is continuous from $L_2(\Omega)$ to $L_2(\Sigma_T)$ \cite{6,7}.

(iii*) By the finiteness of the domain of influence principle for the hyperbolic problem \ref{eq:2.7}--\ref{eq:2.9}, the trace $\partial_{\nu,A} v^y|_{\Sigma_T}$ is determined by the values of $y|_{\Omega_T}$ (does not depend on $y|_{\Omega\setminus\Omega_T}$). In particular, if $y|_{\Omega_T} = 0$ then $\partial_{\nu,A} v^y|_{\Sigma_T} = 0$ holds.

Spaces and operators

Here we consider the above introduced problems as dynamical systems and endow them with the standard attributes of control and system theory.

- The Hilbert space of controls $\mathcal{F}^T := L_2(\Sigma_T)$ is an outer space of the system \ref{eq:2.1}--\ref{eq:2.3}.

 The Hilbert space $\mathcal{H} := L_2(\Omega)$ is called an inner space. It contains the subspace $\mathcal{H}^T := \{ y \in \mathcal{H} \mid \text{supp } y \subset \overline{\Omega_T} \}$ of functions supported in the subdomain filled up with waves at the final moment $t = T$.

- The map $W^T : \mathcal{F}^T \to \mathcal{H}$, $W^T f := u^f(\cdot,T)$ is a control operator. By the property (ii), it is continuous.

 The map $O^T : \mathcal{H} \to \mathcal{F}^T$, $O^T y := \partial_{\nu,A} v^y|_{\Sigma_T}$ associated with the system \ref{eq:2.7}--\ref{eq:2.9} is an observation operator. The well-known fact is the duality relation

 $$O^T = (W^T)^*,$$

 which is derived by integration by parts (see, e.g., \cite{1,2}).

- The set of waves

 $$\mathcal{U}^T := \{ u^f(\cdot,T) \mid f \in \mathcal{F}^T \} = W^T \mathcal{F}^T = \text{Ran } W^T \subset \mathcal{H}$$

 is called reachable (at the moment $t = T$). By the first relation in \ref{eq:2.6}, the embedding

 $$\mathcal{U}^T \subset \mathcal{H}^T,$$ \hspace{1cm} $T > 0$

 holds. The general operator equality implies

 $$\text{Ker } O^T = \mathcal{H} \ominus \text{Ran } (O^T)^* \overset{\text{2.10}}{=} \mathcal{H} \ominus \text{Ran } W^T = \mathcal{H} \ominus \overline{\mathcal{U}^T}$$
(see, e.g., [4]), whereas (2.12) leads to
\[
\text{Ker } O^T \supset \mathcal{H} \ominus \mathcal{H}^T, \quad T > 0
\] (2.13)
that corresponds to the property (iii*).

3 Controlability

L_2-controllability

One of the central results of the boundary control theory, which plays the crucial role for the BC-method, is that the embedding (2.12) is dense:
\[
\mathcal{U}^T = \mathcal{H}^T, \quad T > 0
\] (3.1)
(see [1, 2]). In particular, for $T > T_{\text{fill}}$ one has $\mathcal{U}^T = \mathcal{H}$. As was mentioned in Introduction, (3.1) is derived from the Holmgren-John-Tataru Theorem on uniqueness of continuation of the solutions to the wave equation across a non-characteristic surfaces [10]. This result means that any function supported in the domain Ω^T filled with waves can be approximated (in the L_2-metric) by a wave $u^f(\cdot, T)$ with the properly chosen control $f \in \mathcal{F}^T$. In control theory such a property is referred to as a local approximate boundary controllability of system (2.1)–(2.3).

Since $\text{Ker } O^T = \mathcal{H} \ominus \mathcal{U}^T$, property (3.1) leads to the equality
\[
\text{Ker } O^T = \mathcal{H} \ominus \mathcal{H}^T, \quad T > 0
\] (3.2)
which refines (2.13) and is interpreted as an observability of the dual system (2.7)–(2.9). It means that the wave v^y isn’t observed at the boundary during the interval $0 \leq t \leq T$ if and only if the velocity perturbation y, which initiates the wave process, is separated from the boundary: $\text{dist}_{\mathcal{A}}(\text{supp } y, \Gamma) \geq T$. In particular, for $T > T_{\text{fill}}$ one has $\text{Ker } O^T = \{0\}$. The duality ‘controllability–observability’ is a very general fact of the system theory.

Later on we’ll use the following quite evident consequence of the observability (3.2).

Proposition 1

Let $0 < \delta < T$. The relation $O^T y|_{T \times [\delta, T]} = 0$ implies $y \in \mathcal{H} \ominus \mathcal{H}^{T-\delta}$ that is equivalent to $\text{supp } y \subset \Omega \setminus \Omega^{T-\delta}$.

5
Spaces \mathcal{D}_s

As is well known, the operator

$$A_0 : \mathcal{H} \to \mathcal{H}, \quad \text{Dom} \, A_0 = H^2(\Omega) \cap H^1_0(\Omega), \quad A_0 y := Ay$$

is positive definite in \mathcal{H} and has a purely discrete spectrum $\{\lambda_k\}_{k \geq 1} : 0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \ldots; \lambda_k \to \infty$. Let $\{e_k\}_{k \geq 1} : A_0 e_k = \lambda_k e_k$ be the basis of its eigenfunctions normalized by $(e_k, e_l)_{\mathcal{H}} = \delta_{kl}$.

For $s > 0$, define the Hilbert space of functions

$$\mathcal{D}_s := \text{Dom} \, A_0^{s/2}, \quad (y, w)_{\mathcal{D}_s} := (A_0^{s/2} y, A_0^{s/2} w)_{\mathcal{H}}$$

and note the relations $\mathcal{D}_s \subset H^s(\Omega)$ and $\mathcal{D}_s \supset \mathcal{D}_{s'}$ as $s < s'$ (see [8]). This space contains the subspace

$$\mathcal{D}_s^T := \left\{ y \in \mathcal{D}_s \mid \text{supp} \, y \subset \Omega^T \cup \Gamma \right\}$$

of functions supported in the filled domain. The definition easily implies

$$\mathcal{D}_s^T = \bigcup_{0 < \delta < T} \mathcal{D}_{s-\delta}^T.$$ \hfill (3.4)

Introduce the (sub)class of smooth controls

$$\mathcal{M}_0^T := \{ f \in \mathcal{M} \mid \partial_t^{2p} f|_{t=T} = 0, \ p = 0, 1, 2, \ldots \}$$

and note that $\partial_t^{2p} \mathcal{M}_0^T \subset \mathcal{M}_0^T$ holds for all $p \geq 0$. Let

$$\mathcal{W}_0^T := \{ u^f(\cdot, T) \mid f \in \mathcal{M}_0^T \} = W^T \mathcal{M}_0^T$$

be the corresponding reachable set.

Proposition 2 The embedding $\mathcal{W}_0^T \subset \mathcal{D}_s^T$ holds for all $s > 0$ and $T > 0$.

Indeed, if $f \in \mathcal{M}_0^T$ then $u^f(\cdot, T) \in C^\infty(\Omega)$, $u^f(\cdot, T)|_{\Gamma} \overset{2.3}{=} f|_{t=T} = 0$ and, hence, $u^f(\cdot, T) \in \text{Dom} \, A_0$. Therefore,

$$A_0 u^f(\cdot, T) = A u^f(\cdot, T) \overset{2.5}{=} -u^{f_{tt}}(\cdot, T) \in \text{Dom} \, A_0$$

since $f_{tt} \in \mathcal{M}_0^T$. Thus, we have $u^f(\cdot, T) \in \text{Dom} \, A_0^2$. Going on in the evident way, we get $u^f(\cdot, T) \in \text{Dom} \, A_0^p$ with any integer $p \geq 1$. Hence, $u^f(\cdot, T) \in \mathcal{D}_s$ for all $s > 0$. In the mean time, supp $u^f(\cdot, T) \subset \Omega^T \cup \Gamma$ and, hence, $u^f(\cdot, T) \in \mathcal{D}_s^T$. The Proposition is proven.
D-controllability

The following result is referred to as an approximate boundary **D**-controllability of system (2.1)–(2.3).

Theorem 1 The relation

\[U_0^T = D_s^T, \quad s > 0, \quad T > 0 \]

(3.5)

(the closure in **D**) is valid. In particular, for \(T > T_{\text{fill}} \) one has \(U_0^T = D_s \).

Proof.

1. **Spectral representation.** Recall that \(\{ \lambda_k \}_{k \geq 1} \) and \(\{ e_k \}_{k \geq 1} \) are the spectrum and basis (in \(\mathcal{H} \)) of eigenfunctions of the operator \(A_0 \). As is easy to check, the system

\[\{ e^s_k \}_{k \geq 1} : \quad e^s_k := \lambda_k^{-s/2} e_k \]

constitutes an orthogonal normalized basis in \(D_s \).

The system

\[
\begin{align*}
v_{tt} + A v &= 0 \quad \text{in } \Omega \times \mathbb{R} \\
v|_{t=T} &= 0, \quad v|_{t=T} = y \quad \text{in } \Omega \\
v|_{\Gamma \times \mathbb{R}} &= 0
\end{align*}
\]

(3.6)

(3.7)

(3.8)

is an extension of the dual system to all times. For a \(y \in C_0^\infty(\Omega) \) it has a unique classical solution \(v^y \in C^\infty(\Omega \times \mathbb{R}) \). Applying the Fourier method to problem (2.7)–(2.9), one easily derives

\[
v^y(\cdot, t) = \sum_{k=1}^{\infty} \alpha_k \frac{\sin \sqrt{\lambda_k}(t - T)}{\sqrt{\lambda_k}} e_k; \quad \alpha_k = (y, e_k)_{\mathcal{H}}.
\]

(3.9)

Note that \(v^y(\cdot, t) \) is odd w.r.t. \(t = T \).

2. **Regularization.** For an arbitrary \(y \in \mathcal{H} \), the (generalized) solution \(v^y(\cdot, t) \) is also represented by the right hand side of (3.9) but may not belong to the classes **D**. Here we provide a procedure, which improves smoothness of solutions to the dual system.

- The role of the smoothing kernel is played by a function

\[
\phi_\varepsilon(t) := \varepsilon^{-1} \phi(\varepsilon^{-1} t) \xrightarrow{\varepsilon \to 0} \delta(t),
\]
where \(\phi \in C^\infty(\mathbb{R}) \) satisfies

\[
\phi \geq 0; \quad \phi(-t) = \phi(t); \quad \text{supp} \, \phi \subset [-1, 1]; \quad \int_{\mathbb{R}} \phi(t) \, dt = 1.
\]

Let \(y \in C^\infty_0(\Omega) \). The function

\[
v_\varepsilon(\cdot, t) := [\phi \ast v^y](\cdot, t) = \int_{\mathbb{R}} \phi_\varepsilon(\eta) v^y(\cdot, t - \eta) \, d\eta, \quad t \in \mathbb{R}
\]

(the convolution w.r.t. time) is also \(C^\infty \)-smooth in \(\overline{\Omega} \times \mathbb{R} \) and odd w.r.t. \(t = T \). Integrating in (3.9), one easily gets its spectral representation:

\[
v_\varepsilon(\cdot, t) = \sum_{k=1}^{\infty} \beta_\varepsilon^k \alpha_k \sin \sqrt{\lambda_k} t \, e_k, \quad \alpha_k = (y, e_k)_{\mathcal{H}}, \quad \beta_\varepsilon^k = \int_{-\varepsilon}^{\varepsilon} \phi_\varepsilon(\eta) \cos \sqrt{\lambda_k} \eta \, d\eta = \int_{-1}^{1} \phi(t) \cos \varepsilon \sqrt{\lambda_k} t \, dt
\]

with \(|\beta_\varepsilon^k| \leq 1 \). Taking into account the properties of \(\phi \), one can easily derive

\[
\beta_\varepsilon^k \rightarrow 1, \quad k \geq 1; \quad \lambda_k^{s/2} \beta_\varepsilon^k \rightarrow 0, \quad s \geq 0, \quad \varepsilon > 0.
\]

Comparing (3.9) with (3.11), we see that \(v_\varepsilon^y \) is a solution to problem (3.6)–(3.8) satisfying

\[
v_\varepsilon^y \big|_{t=T} = 0, \quad (v_\varepsilon^y)_t \big|_{t=T} = \sum_{k=1}^{\infty} \beta_\varepsilon^k \alpha_k e_k =: y_\varepsilon.
\]

So, we have \(v_\varepsilon^y = v_\varepsilon^y \). Also, note that \(y_\varepsilon \in \mathcal{D}^s \) for all \(s > 0 \) by virtue of the second relation in (3.12).

- By the aforesaid, the operator (regularizer) \(R_\varepsilon : \mathcal{H} \rightarrow \mathcal{H}, \, R_\varepsilon y := y_\varepsilon \) is well defined on \(C^\infty_0(\Omega) \). Estimating

\[
\|y_\varepsilon\|^2_{\mathcal{H}_s} = \sum_{k=1}^{\infty} \lambda_k^s (\beta_\varepsilon^k)^2 \alpha_k^2 \leq \text{const} \sum_{k=1}^{\infty} \alpha_k^2 = \text{const} \|y\|^2_{\mathcal{H}} \quad (\varepsilon > 0),
\]

we see that \(R_\varepsilon \) acts continuously from \(\mathcal{H} \) to \(\mathcal{D}^s \).

Representation (3.13) implies

\[
R_\varepsilon e_k = \beta_\varepsilon^k e_k, \quad (3.14)
\]
i.e., the regularizer is diagonal in the eigenbasis of A_0. Hence, we have $R_\varepsilon e_k^\varepsilon = \beta_k^\varepsilon e_k^\varepsilon$ in \D_s. Since β_k^ε are uniformly bounded, R_ε is continuous as an operator in \D_s and its norm is bounded uniformly w.r.t. ε. In the mean time, by the first relation in (3.12), the regularizer converges to the identical operator I on the dense set span $\{e_k\}_{k \geq 1}$ as $\varepsilon \to 0$. As a result, the convergence $R_\varepsilon \to I$ in the strong operator topology in \D_s does occur.

• Fix $\delta \in (0, T)$ and a positive $\varepsilon < \delta$. For the controls $f \in \F_T$ provided $\text{supp } f \subset \Gamma \times [\delta, T]$, the operation $f \mapsto f_\varepsilon$:

$$f_\varepsilon(\cdot, t) := \int_0^T [\phi_\varepsilon(t - \eta) - \phi_\varepsilon(2T - t - \eta)] f(\cdot, \eta) \, d\eta, \quad 0 \leq t \leq T \quad (3.15)$$

is well defined. With regard to the definition of the class \mathcal{M}_0^T and properties of the kernel ϕ_ε, one can easily check that $f_\varepsilon \in \mathcal{M}_0^T$. Note that the latter implies

$$W^T f_\varepsilon = u^{f_\varepsilon}(\cdot, T) \in \U_0^T \subset \D^T_s.$$

Proposition 3 For any admissible $f \in \F_T$ and $y \in \mathcal{H}$, the relation

$$(f_\varepsilon, O^T y)_{\F_T} = (f, O^T R_\varepsilon y)_{\F_T} \quad (3.16)$$

holds.

Indeed, let $y \in C^\infty_0(\Omega)$, so that v^y is classical and smooth in $\overline{\Omega} \times \mathbb{R}$. Applying ∂_{ν_A} in (3.10), we get

$$\partial_{\nu_A} v_\varepsilon^y = \phi_\varepsilon \ast \partial_{\nu_A} v^y \quad \text{on } \Gamma \times \mathbb{R}. $$

By the evenness/oddness of ϕ_ε and v^y, for the times $t < T$ the right hand side can be written in the form

$$[\phi_\varepsilon \ast \partial_{\nu_A} v^y](\cdot, t) = \int_{-\infty}^T [\phi_\varepsilon(t - \eta) - \phi_\varepsilon(2T - t - \eta)] \partial_{\nu_A} v^y(\cdot, \eta) \, d\eta. \quad (3.17)$$

Taking into account (3.15), (3.17) and changing the order of integration, one
derives
\[
(f, O^T y)_{\mathcal{F}} = \int_{\Sigma_T} f_\varepsilon(\gamma, t) \, \partial_{\nu_A} v^y(\gamma, t) \, d\Gamma \, dt =
\]
\[
= \int_{\Sigma_T} f(\gamma, t) \left[\int_{-\varepsilon}^\varepsilon \phi_\varepsilon(\eta) \, \partial_{\nu_A} v^y(\gamma, t - \eta) \, d\eta \right] \, d\Gamma \, dt =
\]
\[
= \int_{\Sigma_T} f(\gamma, t) \, \partial_{\nu_A} v^y(\gamma, t - \eta) \, d\Gamma \, dt =
\]
\[
= \int_{\Sigma_T} f(\gamma, t) \, \partial_{\nu_A} v^\varepsilon(\gamma, t - \eta) \, d\Gamma \, dt = (f, O^T R_\varepsilon y)_{\mathcal{F}}.
\]

Thus, we get (3.16) for the given \(y \). Since such \(y \)'s constitute a dense set in \(\mathcal{H} \), whereas the operator \(O^T R_\varepsilon \) is continuous, we extend (3.16) to all \(y \in \mathcal{H} \).

The Proposition is proven.

3. Completing the proof of Theorem. Let \(z \in D^T_s \ominus \mathcal{F}^T_0 \) (the orthogonality in \(D^T_s \)); we are going to show that \(z = 0 \). Recall that the scalar product in \(D^T_s \) is
\[
(y, w)_{D^T_s} = (A^s_{1/2} y, A^s_{1/2} w)_{\mathcal{H}} = \sum_{k=1}^{\infty} \lambda^s_k (y, e_k)_\mathcal{H} (w, e_k)_\mathcal{H}.
\]

Let \(\alpha_k = (z, e_k)_\mathcal{H} \). Fix a \(\delta \in (0, T) \) and positive \(\varepsilon < \delta \). By the choice of \(z \), for \(f \in \mathcal{F}^T \) provided \(\text{supp} \, f \subset \Gamma \times [\delta, T] \) one derives
\[
0 = (W^T f_\varepsilon, z)_{D^T_s} = \sum_{k=1}^{\infty} \lambda^s_k (W^T f_\varepsilon, e_k)_\mathcal{H} (z, e_k)_\mathcal{H} \overset{2.10}{=} \sum_{k=1}^{\infty} \lambda^s_k \alpha_k (f_\varepsilon, O^T e_k)_{\mathcal{F}} =
\]
\[
= \sum_{k=1}^{\infty} \lambda^s_k \alpha_k (f, O^T R_\varepsilon e_k)_{\mathcal{F}} \overset{3.14}{=} \sum_{k=1}^{\infty} \lambda^s_k \alpha_k \beta^s_k (f, O^T e_k)_{\mathcal{F}} =
\]
\[
= \left(f, O^T \sum_{k=1}^{\infty} \lambda^s_k \alpha_k \beta^s_k e_k \right)_{\mathcal{F}} \overset{3.13}{=} (f, O^T A^s_0 z_\varepsilon)_{\mathcal{F}}.
\]

the continuity of \(O^T : \mathcal{H} \to \mathcal{F}^T \) being in the use. Since \(f \) is arbitrary on \(\Gamma \times [\delta, T] \), we see that
\[
(O^T A^s_0 z_\varepsilon)_{\Gamma \times [\delta, T]} = 0.
\]

By Proposition II the latter implies
\[
A^s_0 z_\varepsilon = 0 \quad \text{in} \quad \Omega^{T-\delta}.
\]

(3.18)
Next, for a $y \in \mathcal{D}^{-\delta}_s$ we have
\[
(y, z_\varepsilon)_{\mathcal{D}_s} = (A_0^{\varepsilon/2} y, A_0^{\varepsilon/2} z_\varepsilon)_{\mathcal{H}} = (y, A_0^s z_\varepsilon)_{\mathcal{H}} \equiv 0,
\]
i.e., $z_\varepsilon \in \mathcal{D}_s^T \cap \mathcal{D}_s^{T-\delta}$. Tending $\varepsilon \to 0$, we get $z_\varepsilon = R_\varepsilon z \to z$ in \mathcal{D}_s and conclude that $(y, z)_{\mathcal{D}_s} = 0$ for any $y \in \mathcal{D}_s^{T-\delta}$ and $\delta \in (0, T)$. Referring to (3.4), we arrive at $z = 0$ and, thus, prove Theorem 1.

H^1_0-controllability

In the rest of the paper we consider certain applications of Theorem 1.

In terms of the Riemannian geometry in Ω determined by the metric $d\tau^2 = a_{ij} dx^i dx^j$, the subdomain Ω^T is a near-boundary layer of the thickness T. It increases as T grows. Recall that $\tau(x) = \text{dist}_A(x, \Gamma)$. For $T < T_{\text{fill}}$, the boundary of the layer consists of two parts: $\partial \Omega^T = \Gamma \cup \Gamma^T$, where
\[
\Gamma^T := \{x \in \Omega \mid \tau(x) = T\}
\]
is a surface equidistant to Γ.

The smoothness of Γ provides $\mathcal{D}_1 = H^1_0(\Omega)$, i.e., these spaces consist of the same reserve of functions, whereas the norms $\| \cdot \|_{\mathcal{D}_1}$ and $\| \cdot \|_{H^1_0(\Omega)}$ are equivalent. Hence, one has
\[
\mathcal{D}^T_1 \equiv \{y \in H^1_0(\Omega) \mid \text{supp } y \subset \Omega^T \cup \Gamma\} = H^1_0(\Omega^T)
\]
(the closure in H^1-metric), the latter equality being valid since the compactly supported functions are dense in $H^1_0(\Omega^T)$. As a result, we arrive at
\[
\mathcal{U}^T_0 = H^1_0(\Omega^T), \quad T > 0. \quad (3.19)
\]

H^1-controllability

Using the wider class of controls \mathcal{M}^T instead of \mathcal{M}^T_0, one extends the corresponding reachable set from \mathcal{U}^T_0 to
\[
\mathcal{U}^T_* := \{u^f(\cdot, T) \mid f \in \mathcal{M}^T\} = W^T \mathcal{M}^T,
\]
so that $\mathcal{U}^T_0 \subset \mathcal{U}^T_* \subset \mathcal{U}^T$ holds.
For $T > 0$, define the class
\[
H^1_+(\Omega^T) := \{ y \in H^1(\Omega) \mid \text{supp } y \subset \Omega^T \cup \Gamma \}
\]
(the closure in $H^1(\Omega)$). Its elements differ from the ones of $H^1_0(\Omega)$ by that $y|_\Gamma = 0$ is cancelled: $H^1_0(\Omega) = \{ y \in H^1(\Omega^T) \mid y|_\Gamma = 0 \}$.

Lemma 1 For any $T > 0$, the relation
\[
\overline{\mathcal{W}^T_+} = H^1_+ (\Omega^T)
\]
(the closure in $H^1(\Omega)$) is valid. In particular, for $T > T_{\text{fill}}$ one has $\overline{\mathcal{W}^T_+} = H^1(\Omega)$.

Proof.

- The well-known geometric fact, which is popularly referred to as a variant of the ‘collar theorem’, is that there exists a domain $\hat{\Omega} \supset \Omega$ with the properties listed below. The objects related with it are marked with dots.

 1. The boundary $\partial \hat{\Omega} =: \hat{\Gamma}$ is C^∞-smooth. The coefficients $\hat{a}^{ij} \in C^\infty(\hat{\Omega})$ obey the ellipticity conditions (2.4) with a constant $\hat{\mu} > 0$ and satisfy $\hat{a}^{ij}|_{\Omega} = a^{ij}$.

 2. The distance $\text{dist}_{\hat{\Omega}}$ in $\hat{\Omega}$ is such that $\hat{\Gamma}^{\eta} = \Gamma$ for some $\eta > 0$, and, respectively, $\hat{\Gamma}^{T+\eta} = \Gamma^T$ ($T > 0$).

- Let $y \in H^1_+ (\Omega^T)$. To prove the Lemma, it suffices to construct a sequence $\{f_j\}_{j \geq 1} \subset \mathcal{M}^T_+$ such that $u^{ij}(\cdot, T) \rightarrow y$ in $H^1(\Omega)$. We do it as follows.

 Extend y to a function $\hat{y} \in H^1_+(\hat{\Omega}^{T+\eta}) : \hat{y}|_{\Omega} = y$. Such an extension does exist owing to smoothness of $\hat{\Gamma}$: see, e.g., [8].

 Consider problem (2.1)–(2.3) in $\hat{\Omega} \times (0, T+\eta)$. By (3.19), one can choose the controls $\{f_j\} \subset \mathcal{M}^T_0$ so that $u^{ij}(\cdot, T + \eta) \rightarrow \hat{y}$ in $H^1(\hat{\Omega})$. Correspondingly, the convergence $u^{ij}(\cdot, T + \eta)|_{\Omega} \rightarrow \hat{y}|_{\Omega} = y$ holds in $H^1(\Omega)$.

- Return to problem (2.1)–(2.3) in $\Omega \times (0, T)$ and put $\{f_j\} \subset \mathcal{F}^T : f_j(\cdot, t) := u^{ij}(\cdot, t + \eta)|_{\Gamma}, \ 0 \leq t \leq T$. Recalling the properties (2.5) and (2.6), one can easily verify that $f_j \in \mathcal{M}^T_+$ holds and provides $u^{ij}(\cdot, t) = u^{ij}(\cdot, t + \eta)|_{\Omega} \rightarrow y$.

The Lemma is proven.
H^p- and C^m-controllability

The result of Lemma 1 can be easily generalized as follows.

- In the spaces $H^p(\Omega)$ for $p = 0, 1, 2, \ldots$ define the subspaces

 $$H^p_s(\Omega^T) := \{ y \in H^p(\Omega) \mid \text{supp}\, y \subset \Omega^T \cup \Gamma \}, \quad T > 0.$$

 The relation

 $$\overline{H^p_s(\Omega^T)} = H^p_s(\Omega^T), \quad T > 0$$

 (the closure in $H^1(\Omega)$) is valid for all $T > 0$.

- Let $m = 0, 1, 2, \ldots$. In the spaces $C^m(\Omega)$, define the subspaces

 $$C^m_s(\Omega^T) := \{ y \in C^m(\Omega) \mid \text{supp}\, y \subset \Omega^T \cup \Gamma \}, \quad T > 0.$$

 By the Sobolev embedding theorems, for $s \geq m+1+\left\lceil \frac{n}{2} \right\rceil$ the relation $H^s(\Omega) \subset C^m(\Omega)$ holds [3]. As a simple consequence, one has

 $$\overline{C^m_s(\Omega^T)} = C^m_s(\Omega^T), \quad T > 0$$

 (the closure in $C^m(\Omega)$).

- Note in conclusion that all the above obtained results are valid in the case $A = - \sum_{i,j=1}^{n} \partial_{x_i} a^{ij}(x) \partial_{x_j} + q$ with $q \in C^\infty(\Omega)$.

References

[1] M.I.Belishev. Boundary control in reconstruction of manifolds and metrics (the BC method). *Inverse Problems*, 13(5): R1–R45, 1997.

[2] M.I.Belishev. Recent progress in the boundary control method. *Inverse Problems*, 23 (2007), no 5, R1–R67.

[3] M.I.Belishev, A.N.Dolgoborodov. Local boundary controllability in smooth classes of functions for the wave equation. *PDMI PREPRINT* – 1/1997, (1997), 1–9.

[4] M.S.Birman, M.Z.Solomyak. Spectral Theory of Self-Adjoint Operators in Hilbert Space. *D.Reidel Publishing Comp.*, 1987.
[5] M. Ikawa. Hyperbolic PDEs and Wave Phenomena. *Translations of Mathematical Monographs*, v. 189 AMS; Providence. Rhode Island, 1997.

[6] I. Lasiecka, J-L. Lions, R. Triggiani. Non homogeneous boundary value problems for second order hyperbolic operators. *J. Math. Pures Appl*, v. 65 (1986), no 3, 142–192.

[7] I. Lasiecka, R. Triggiani. Recent advances in regularity of second-order hyperbolic mixed problems, and applications. In Christopher K. R. T. (ed.) et al. Jones, editor, *Dynamics reported. Expositions in dynamical systems*, volume 3, pages 104–162. Berlin: Springer-Verlag, 1994.

[8] J-L. Lions and E. Magenes. Problèmes aux limites non homogenes et applications. Vols 1–3. *Dunod, Paris*, 1968.

[9] D.L. Russell. Boundary value control theory of the higher-dimensional wave equation. *SIAM J. Control*, 9 (1971), 29–42.

[10] D. Tataru. Unique continuation for solutions to PDE’s: between Hormander’s and Holmgren’s theorem. *Comm. PDE*, 20 (1995), 855–884.