α2MACROGLOBULIN BINDING TO THE PLASMA MEMBRANE OF CULTURED FIBROBLASTS

Diffuse Binding Followed by Clustering in Coated Regions

MARK C. WILLINGHAM, FREDERICK R. MAXFIELD, and IRA H. PASTAN
From the Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20205

ABSTRACT
Using transmission electron microscopy, we have studied the interaction of α2macroglobulin (α2M) with the surface of cultured fibroblasts. When cells were incubated for 2 h at 4°C with ferritin-conjugated α2M, ~90% of the α2M was diffusely distributed on the cell surface, and the other 10% was concentrated in "coated" pits. A pattern of diffuse labeling with some clustering in "coated" pits was also obtained when cells were incubated for 5 min at 4°C with α2M, fixed with glutaraldehyde, and the α2M was localized with affinity-purified, peroxidase-labeled antibody to α2M. Experiments in which cells were fixed with 0.2% paraformaldehyde before incubation with α2M showed that the native distribution of α2M receptors was entirely diffuse without significant clustering in "coated" pits. This indicates that some redistribution of the α2M-receptor complexes into clusters occurred even at 4°C.

In experiments with concanavalin A (Con A), we found that some of the Con A clustered in coated regions of the membrane and was internalized in coated vesicles, but much of the Con A was directly internalized in uncoated vesicles or pinosomes.

We conclude that unoccupied α2M receptors are diffusely distributed on the cell surface. When α2M-receptor complexes are formed, they rapidly cluster in coated regions or pits in the plasma membrane and subsequently are internalized in coated vesicles. Because insulin and epidermal growth factor are internalized in the same structures as α2M (Maxfield, F. R., J. Schlessinger, Y. Shechter, I. Pastan, and M. C. Willingham. 1978. Cell. 14: 805-810.), we suggest that all peptide hormones, as well as other proteins that enter the cell by receptor-mediated endocytosis, follow this same pathway.

KEY WORDS α2macroglobulin - coated regions - endocytosis - plasma membrane - receptors

The internalization of molecules that have receptors on the plasma membrane occurs through absorptive or receptor-mediated endocytosis (23). Substances that exert their action subsequent to specific binding to cell surface receptors include low-density lipoprotein (LDL) (2), lysosomal enzymes (11, 15), and hormones such as insulin (9) or epidermal growth factor (EGF) (6, 10). While
LDL and lysosomal enzymes require internalization to carry out their functions, it is unclear whether any of the functions of peptide hormones (insulin, EGF) are related to their internalization.

We have been studying the binding and internalization of α2-macroglobulin (α2M), a large serum protein that undergoes receptor-mediated endocytosis (13, 16, 24). Although we have found that insulin and EGF are internalized into the same vesicular structures as α2M (13, 21), although the fluorescence microscope techniques used in our previous studies have provided useful information about the time and temperature-dependent nature of the internalization, several important questions could not be answered by these methods. The initial distribution of the receptors, as determined by fluorescence microscopetechniques used in our previous studies, could not be determined by light microscopy. We have used two electron microscope localization methods to resolve these questions. One was similar to that previously used to localize LDL (2) in that we labeled α2M directly by conjugation with ferritin. We also employed affinity-purified antibodies to α2M and detected their presence on the cell surface with peroxidase-labeled antiglobulins. The results of these and other experiments presented in this paper show that α2M initially binds to receptors that are diffusely distributed on the cell surface without any detectable clustering of the unoccupied receptors. The receptor-α2M complexes accumulate in clusters in coated regions of the cell membrane. These coated regions or pits rapidly invaginate and pinch off to form coated vesicles. Our results and those of Anderson et al. (2) suggest a common mechanism for receptor-mediated endocytosis involving clathrin-coated (17, 4) regions of the plasma membrane.

MATERIALS AND METHODS

Cell Culture

Swiss 3T3-4 cells were obtained and propagated as previously described (26). Cells were grown in Dulbecco-Vogt's modified Eagle's medium supplemented with 10% calf serum (Colorado Serum Co., Denver, Colo.) at 37°C. 10-cm² dishes of cells were planted at subconfluent densities and incubated or fixed as indicated in the experimental protocols in Table I.

Sources of Commercial Reagents

Concanavalin A (Con A) and rabbit antibody to α2M were obtained from Miles Laboratories Inc. (Miles Research Products, Elkhart, Ind.). Goat anti-rabbit globulin conjugated to horseradish peroxidase (GAR-HRP) was obtained from N. L. Cappel Laboratories Inc., Cochranville, Pa. Ferritin and HRP were obtained from Sigma Chemical Co. (St. Louis, Mo.). Glutaraldehyde was obtained from Tousimis Research Corp. (Rockville, Md.) and paraformaldehyde from Fisher Scientific Co. (Pittsburgh, Pa.).

Preparation of α2M

Partially purified α2M was prepared by the procedure of Wickerhauser and Hao (25), except that a small amount of EDTA was used to solubilize the zinc-sulfate precipitate. The α2M was further purified on a Sepharose 6B column (0.9 x 50 cm) in 10 mM TrisCl (pH 7.8).

Preparation of Ferritin-α2M

Rhodamine-labeled ferritin was prepared by a modification of the procedure of Clark and Shepard (8), which we have used previously for preparing fluorescein- or rhodamine-labeled α2M (13). The rhodamine-ferritin was cross-linked to α2M with toluene-2,4-diisocyanate (TC) using the procedure of Schick and Singer (20). Free α2M was separated from the complex by centrifugation at 100,000 g. For control purposes, rhodamine-ferritin was treated with the cross-linking procedure except that buffer was used in place of the α2M solution.

The (rhodamine-ferritin)-α2M complex formed fluorescent patches on Swiss 3T3 cells which were visualized by video-intensification microscopy (26, 13). In double-labeling experiments, fluorescein-α2M and (rhodamine-ferritin)-α2M were observed in the same patches (results not shown). The TC-treated rhodamine-ferritin did not form fluorescent patches on cells. This indicates that the α2M in the complexes is recognized by its receptor on the cell surface.

Affinity-Purified Rabbit Anti-Human α2M

Commercial rabbit antibodies (Miles) to α2M showed binding to the surface of cells in the absence of added α2M which was not removed by preabsorption with purified human α2M. For this reason, we prepared affinity-purified antibody to α2M by the method of Yamada (29). 5.4 mg of purified α2M was coupled to 2 g of cyanogen bromide-activated Sepharose 4B (Pharmacia Fine Chemicals, Div. of Pharmacia Inc., Piscataway, N. J.). A globulin fraction, prepared from 10 ml of antiserum by precipitation with 50% ammonium sulfate, was...
applied to the column, and 4 mg of affinity-purified antibody was eluted.

Experimental Controls

For experiments with ferritin-α2M (Table I, exp 1), sections from 25 cells incubated with and without α2M at 3 mg/ml were examined. This concentration of α2M reduced the amount of ferritin-α2M associated with the cell surface in both a diffuse and clustered form by >90%. Non-specific binding to the extracellular matrix was still present under these conditions. Incubations with ferritin alone which had been treated by the same coupling procedure showed only non-specific binding to extracellular proteins, but no specific binding to the cell surface.

As a control for experiments with antibodies to α2M (Table I, exps 2 and 3), cells were incubated without added α2M before fixation, and neither the affinity-purified antibody to α2M nor a normal rabbit globulin control showed binding of any kind to the plasma membrane. In experiments in which 0.2% paraformaldehyde prefixation was employed, normal globulin and affinity-purified anti-α2M failed to show any surface binding in the absence of added α2M. When cells were incubated for 5 min with α2M and then fixed with 0.2% paraformaldehyde, the clustered pattern of α2M was not altered by this fixation step. By absorbing the affinity-purified antibody with calf serum, we obtained an antibody that was specific for human α2M. Using this reagent, we tested the specificity of the diffuse pattern seen with prefixation by competing the added human α2M with a fourfold excess of calf serum α2M. The loss of label by this competition showed that the diffuse pattern was specific for α2M (results not shown) and not caused by non-specific binding. (A 20-fold excess of bovine albumin failed to compete for α2M labeling.)

For experiments with Con A (Table I, exp 4), cells incubated either in the absence of Con A, or with Con A together with α-methylmannoside, were unlabeled.

Electron Microscopy

After fixation in 2% glutaraldehyde, cells were washed in PBS, incubated in 300 mM glycine buffer, pH 10, for 5 min to neutralize excess aldehydes, reacted with the diaminobenzidine substrate when peroxidase was employed (as in reference 5), postfixed in 1.5% OsO4 in PBS, dehydrated in ethanol, and embedded in situ in Epon 812. Thin sections were cut with a diamond knife and mounted on 200-mesh nickel grids. Sections were taken both parallel to and perpendicular to the plastic substratum. In Figs. 1–4 are micrographs of cells from nearly parallel sections which were otherwise unstained. Fig. 5 is from perpendicular sections which were poststained with the osmium-thiocarbohydrazide-osmium (OTO) procedure (22) followed by saturated uranyl acetate in methanol and lead citrate (19).

RESULTS

The surface of cells growing in medium with 10% calf serum has α2M bound to it. To detect the location of newly added α2M by immunological methods, the surface of the cells must be cleared of previously bound α2M. This was accomplished by incubating the cells in serum-free medium (SFM). Using peroxidase-labeled antibody to α2M, we determined that, following incubation in SFM for 4 h, no α2M remained on the cell surface (see below, Fig. 3c). Therefore, a 4-h incubation in SFM was used before each experiment. In the experiments reported here, 200 μg/ml (0.25 μM) of α2M or its labeled derivatives were used. However, similar results have been obtained with a wide range of concentrations (10–500 μg/ml).

Van Leuven et al. (24) have reported that protease-α2M complexes are taken up by human fibroblasts more rapidly than native α2M. Using rhodamine-labeled α2M (R-α2M) (13, 26), we examined the possibility that protease-α2M complexes might also be taken up preferentially by Swiss 3T3 cells. We have previously reported that excess unlabeled α2M blocks the binding of R-α2M (13); trypsin-α2M complexes block R-α2M binding at approximately the same concentration as untreated R-α2M (not shown). Also, trypsin-treated R-α2M binds to Swiss 3T3 cells and collects in the same cell surface clusters as untreated R-α2M. The binding of trypsin-treated R-α2M is inhibited by the same concentrations of α2M used to inhibit the binding of R-α2M. The differences between our results and those of Van Leuven et al. (24) probably are a result of differences in cell type. Because trypsin treatment does not significantly alter the way Swiss 3T3 cells handle α2M, we have used untreated α2M in all the experiments described in this paper.

Ferritin-Labeled α2M

Incubation of cells with ferritin-labeled α2M at 4°C for 2 h, followed by fixation with glutaraldehyde, showed that α2M was present on the cell surface (Table I, exp 1). Part of the α2M was diffusely distributed and part was clustered over coated regions of the membrane and in coated pits (Fig. 1). Coated pits were often seen at the base of microvilli, and in these coated pits the ferritin-α2M conjugate was concentrated and easily seen. The morphologic appearance of coated pits has been extensively described (1–4). Although the clathrin coat is not completely visible in unstained sections,
TABLE I

Experimental Protocols for Electron Microscopy

| Exp | Prefixation (0.2% paraformaldehyde 5 min) | 1st incubation (4°C) | Fixation-2% glutaraldehyde (10 min) | 2nd incubation (20 min) | 3rd incubation (20 min) | Results |
|-----|------------------------------------------|---------------------|----------------------------------|------------------------|------------------------|---------|
| 1   | -                                        | α2M-ferritin (2 h)  | +                                | AP anti-α2M            | GAR-HRP                | D, C    |
| 2   | -                                        | α2M (5 min)         | +                                | AP anti-α2M            | GAR-HRP                | D, C    |
| 3   | +                                        | α2M (30 min)        | +                                | AP anti-α2M            | GAR-HRP                | D       |
| 4   | -                                        | Con A (20 min)      | -                                | HRP                    | 2% glutaraldehyde      | D, C* I |

The following concentration of reagents was used: α2M-ferritin (200 μg/ml), α2M (200 μg/ml), Con A (20 μg/ml), affinity-purified (AP) anti-α2M (100 μg/ml), GAR-HRP, 100 μg/ml, HRP, 100 μg/ml. Con A and HRP incubations were at 4°C followed by warming to 37°C for 1 min before fixation. Incubations with α2M in Exp 3 included 5 mg/ml BSA to compete for any nonspecific binding induced by fixation. D, diffuse; C, clustered in coated regions; C*, clustered in coated and uncoated regions; I, internalized in coated and uncoated vesicles.

The coated pits could be easily identified by their characteristic shape. The characteristic appearance of both uncoated and coated pits is shown in Fig. 2 in a variety of planes of section. This figure shows the marked difference in size, shape, and distribution of uncoated pinosomal invaginations and coated pits in these Swiss 3T3-4 cells.

When we compared the number of ferritin particles associated with the coated regions, which represent a small percentage of the total cell surface (2), to the number of particles associated with the uncoated regions which make up most of the cell surface, it was evident that a majority of the α2M was in a diffuse pattern. On a typical cell, 11% of the ferritin-α2M molecules were inside and 89% were outside of coated pits. This result is different from observations with LDL (2), where 70% of the LDL-receptor complexes are located inside coated pits after incubating cells with ferritin-LDL at 4°C. Competition of this ferritin-α2M with a 15-fold excess (3 mg/ml) of unlabeled α2M abolished ~95% of both the diffuse and clustered labeling, indicating that the ferritin visualized in these locations represented ferritin coupled to α2M and bound to the α2M receptor (Fig. 1 c). When cells with ferritin α2M bound to their surface were incubated at 37°C for 1 min before fixation and the cells were sectioned perpendicular to the substrate, ferritin α2M was observed in coated vesicles in the cytoplasm (results not shown).

The ferritin-conjugated α2M also bound nonspecifically to large fibrillar aggregates of extracellular protein matrix which were clearly separated from the plasma membrane. This nonspecifically bound ferritin α2M on the extracellular matrix could easily be distinguished from the specifically bound ferritin α2M on the cell surface in experiments where the cells were not warmed above 4°C. However, when cells were warmed to 37°C, some of the nonspecifically bound ferritin-α2M in these heavily labeled aggregates was eventually detected still bound to aggregated protein in large, uncoated pinosomes within the cell. This type of nonspecific binding was also detected with ferritin treated by the cross-linking procedure but without α2M. This result makes it difficult to determine the eventual intracellular fate of the specifically bound ferritin α2M. It is known that uncoated pinosomes rapidly fuse with lysosomes on entry into the cell (27). It is also known that the phase-neutral endocytic vesicles seen with fluorescently labeled α2M (13, 26) do not rapidly fuse with phase-dense lysosomes. Therefore, the detection of ferritin in "secondary" lysosomes at early times of incubation could be caused by nonspecific uptake of the heavily labeled extracellular matrix material rather than by transfer from vesicles that contain specifically bound α2M. For this reason, we believe that the ferritin conjugate is most useful for obtaining quantitative data about the distribution of α2M-receptor complexes on the cell surface at 4°C.

α2M Localized by Peroxidase-Labeled Antibody

Using affinity-purified antibody to α2M, fol-
FIGURE 1  Exp I: Binding of ferritin-α2M at 4°C. After incubating in SFM for 4 h at 37°C, cells were transferred to 4°C and incubated in 200 μg/ml ferritin-α2M conjugate; after 2 h, the cells were washed and fixed at 4°C in 2% glutaraldehyde. Note the ferritin particles in the tangential sections of plasma membrane in Fig. 1 a and b which show diffuse labeling of the entire membrane and some concentration of label in coated pits (cp). The location of coated pits at the base of microvilli (mv) is followed by peroxidase-labeled antiglobulin antibody, we were able to indirectly label the α2M bound to the cell surface without encountering nonspecific binding of one of the reagents. Furthermore, the cytochemical detection of peroxidase allowed us to show the distribution of receptor-bound α2M more clearly than was possible with ferritin. In one such experiment, cells were incubated with purified human α2M at 4°C for 5 min, fixed at 4°C with glutaraldehyde, and then incubated sequentially with affinity-purified anti-α2M and peroxidase-labeled antiglobulin (see Table I, exp 2). This method also demonstrated that α2M was bound to the surface in both a diffuse and clustered pattern, and that the clusters were exclusively located over coated regions (Fig. 3 a and b; also Fig. 2 G and H). The small amount of clustering observed at 4°C could not be detected by fluorescence microscopy (14, 21). When α2M was omitted from the incubation medium, no surface reaction product was detected (Fig. 3 c). This result showed that nonspecific binding of the globulin reagents did not occur and that there was no residual α2M left on the surface from the original calf-serum-containing medium. Because the cells were kept at 4°C during the incubation with α2M and subsequent fixation, none of the surface-bound α2M should have been internalized by endocytosis. Unfortunately, this labeling technique was not useful for following α2M after endocytosis, because once α2M was sequestered intracellularly it was not available to antibody. Further, allowing α2M to react with this divalent antibody on the surface of living cells before internalization might not show the clustering and internalization characteristic of α2M itself, but rather an effect induced by antibody.

Prefixation of α2M Receptors

To determine whether the clusters observed at 4°C occurred after binding of α2M or represented the native distribution of α2M receptors, we used prefixation to immobilize the α2M receptors in the membrane without destroying their ability to bind α2M. To perform this experiment, we fixed cells with a variety of agents and found that cells fixed commonly observed. Competition of this label with a 15-fold excess of unlabeled α2M virtually abolished the surface labeling (c) Arrowhead, single ferritin core. (a) × 39,000; (b) × 54,000; (c) × 63,500. Bars, 0.1 μm. Unstained.
with 0.2% paraformaldehyde still specifically bound \( \alpha_2 \)M. Concentrations of paraformaldehyde \( \geq 1\% \) abolished any binding of \( \alpha_2 \)M. Although the morphological preservation of cells fixed with only 0.2% formaldehyde is poor, there was sufficient preservation to allow us to determine the distribution of \( \alpha_2 \)M receptors on the surface. Further, tangential sections are shown so that a large amount of membrane surface can be observed (Fig. 4). By prefixing cells at 23°C with 0.2% paraformaldehyde and subsequently labeling with \( \alpha_2 \)M, affinity-purified anti-\( \alpha_2 \)M (Table I, exp 3), and peroxidase-labeled antoglobulin, the native distribution of the \( \alpha_2 \)M receptor could be seen. Fig. 4 shows that under these conditions, \( \alpha_2 \)M receptors are diffusely distributed over the entire membrane. Only in rare instances was a very small amount of clustering observed over coated regions. In no instance was a coated pit seen which contained the amount of label shown in pits without prefixation (Fig. 3a and b). Thus, clustering was vastly decreased relative to the clustering observed in cells incubated with \( \alpha_2 \)M at 4°C without prefixation (Fig. 3a and b) or with ferritin \( \alpha_2 \)M at 4°C (Fig. 1). We conclude that most of the \( \alpha_2 \)M receptors are diffusely distributed.

Because our results differ from those obtained with LDL (1-4), we considered the possibility that prefixation might selectively inactivate diffuse or clustered receptors, or decrease total binding to all receptors. We believe that this is unlikely because we were unable to detect any difference in the amount of \( \alpha_2 \)M bound between prefixed cells subsequently exposed to \( \alpha_2 \)M or live cells to which \( \alpha_2 \)M had been bound at 4°C for 5 min before fixation (from the appearance of cells treated with \( \alpha_2 \)M and peroxidase labeling). In addition, the competition control (in experimental controls) indicates that the binding observed in prefixed cells is still specific.

Con A

Con A binds to a large number of glycoproteins on the cell surface. We thought that it would be of interest to compare Con A with \( \alpha_2 \)M. When cells were incubated with Con A at 4°C, washed, and then exposed to HRP (5), we could determine the location of the Con A. When cells were incubated with these molecules at 4°C and then warmed to 37°C for only 1 min (Table I, exp 4; Fig. 5), Con A was seen on the surface and within the cell. Part of the surface-bound Con A was diffusely distributed or collected in patches away from coated regions, and part was clustered in coated regions. The internalized Con A was also in two locations. Some was in coated vesicles (Fig. 5b) and some in small uncoated vesicles (Fig. 4c). The uncoated vesicles had a thin layer of reaction product presumably representing the concentration of Con A that was diffusely bound over the entire surface. We have never observed \( \alpha_2 \)M in small uncoated vesicles although it is conceivable that small amounts at low concentrations could enter the cell in this way. In contrast to its distribution in uncoated vesicles, Con A is concentrated in coated vesicles, producing vesicles almost completely filled with reaction product (Fig. 5b).

DISCUSSION

The data presented here show that \( \alpha_2 \)M is internalized by clustering in coated regions or pits on the plasma membrane. These structures rapidly pinch off to form coated vesicles. Because insulin and EGF are known to follow the same pathway as \( \alpha_2 \)M (13), the coated vesicle is the presumptive endocytic organelle for these molecules as well. Previously, LDL has been shown to bind to specific receptors and enter the cell in coated vesicles (2). Recently, Anderson et al. have shown that LDL binds to the clathrin-coated regions using antibodies to clathrin (4). Therefore it seems likely that this pathway represents the major route of physiologic receptor-mediated endocytosis. Other candidates for this pathway would be other peptide hormones and the receptor-mediated uptake of lysosomal enzymes (11, 15). The reason for the involvement of coated vesicles is not clear. One possibility is that the clathrin coat prevents early fusion of physiologically valuable endocytosed molecules with the destructive mechanisms in lysosomes. Because \( \alpha_2 \)M is a broad-spectrum protease inhibitor, is present in serum in large amounts, and also enters clathrin-coated vesicles, its simultaneous endocytosis with biologically potent molecules may serve to protect them or their receptors from the action of proteases. This mechanism also provides the cell with a means of efficiently concentrating specific molecules on the cell surface.

Diffuse \( \alpha_2 \)M Receptors Cluster in Coated Regions

The results in the prefixation experiment (Fig. 4) demonstrate the diffuse distribution of unoc-
occupied receptors. Apparently, ligand-induced clustering in coated pits occurs to a small degree at 4°C (Fig. 3). However, at 37°C the ligand-receptor complexes are rapidly and preferentially redistributed into coated regions. Thus, the coated region, rather than being the site of unoccupied α2M receptors, is the nidus for the accumulation of receptor-ligand complexes, ensuring that endocytosis of most of the ligand occurs through the coated vesicle pathway. Our finding differs from that with LDL, which is found to be partly concentrated in coated regions even in prefixed cells (1, 2). We also find less clustering of α2M-receptor complexes at 4°C (11% on coated pits) than has been reported for cells incubated with LDL at 4°C. The differences between LDL and α2M may reflect differences between specific receptors, cell types, or experimental conditions.

**Significance for Insulin and EGF**

The diffuse appearance of most of the bound α2M at 4°C is in agreement with its diffuse appearance when observed in fluorescence experiments with video intensification microscopy (VIM) (13, 26). Previous experiments with VIM (13) had shown that insulin, EGF and α2M cluster in the same region of the plasma membrane. Therefore, insulin and EGF bound to their receptors must also form clusters in coated regions of the membrane (also see reference 10). It is also clear that a great deal of the surface-bound α2M is still diffuse at these early times, but this remaining diffuse component most likely follows the same pathway as the early clusters by collecting in newly exposed coated regions until all the surface α2M has been cleared (Fig. 3c).

**Coated Pits Form Coated Vesicles**

We have seen coated vesicles containing ferritin-α2M in perpendicular sections as early as 1 min after raising the incubation temperature from 4° to 37°C (results not shown). A similar result was seen with Con A incubations when warmed to 37°C (Fig. 5 a and b). This is in agreement with experiments with ferritin-LDL (1) in which it was shown that coated pits pinch off to form coated vesicles.

**Coated Vesicles Fail to Fuse with Lysosomes**

In experiments using VIM (26), we have failed to observe fusion of α2M-containing phase-neutral endocytic vesicles with phase-dense lysosomes for up to 4 h after the uptake of rhodamine-α2M by fibroblasts (M. C. Willingham and I. Pastan, unpublished results). Similarly, we did not find clear examples of rapid fusion of coated vesicles with lysosomes in the electron microscope experiments described in this paper. Uncoated vesicles (micropinosomes) freely fuse with lysosomes (27; also Fig. 5c). These uncoated pinosomes are not, however, the vesicles in which highly concentrated α2M enters the cell. It is known that after 12–24 h
FIGURE 3 Exp 2: Affinity-purified antibody labeling of bound α2M at 4°C. After incubating in SFM for 4 h at 37°C, cells were incubated at 4°C either with 200 μg/ml α2M for 5 min (a and b) or without α2M (c). After washing at 4°C, the cells were fixed in 2% glutaraldehyde at 4°C, then incubated with affinity-purified rabbit antibody to α2M, GAR-HRP, and fixation in 2% glutaraldehyde. Note the diffuse nature of label on the tangentially sectioned plasma membrane in Fig. 3a without significant concentration in coated pits (cp). The absence of label in Fig. 3c demonstrates the specificity of the antibody in the absence of added α2M and the lack of residual α2M present on the surface after the SFM preincubation. (a) × 49,500; (b) × 79,000; (c) × 43,700. Bars, 0.1 μm. Unstained.

FIGURE 4 Exp 3: Prefixation with 0.2% paraformaldehyde followed by labeling with α2M. After incubation in SFM at 37°C, cells were fixed for 5 min in 0.2% paraformaldehyde in PBS at 23°C, then incubated with (a) or without (b) 200 μg/ml α2M for 20 min followed by affinity-purified rabbit antibody to α2M, GAR-HRP, and fixation in 2% glutaraldehyde. Note the diffuse nature of label on the tangentially sectioned plasma membrane in Fig. 4a without significant concentration in coated pits (cp). The lack of labeling on the plasma membrane, coated pit, or microvillus (mv) in Fig. 4b confirms the specificity of the label for α2M. (a) × 51,600; (b) × 50,600. Bars, 0.1 μm. Unstained.
\(\alpha_2\)M is found in lysosomal structures in the cell (16, 28). The pathway by which this process occurs is not clear. We speculate that coated vesicles, or vesicles containing material derived from coated vesicles, eventually fuse with components of the Golgi system (28).

**Con A**

The uptake of Con A is complex because at the concentrations used here (20 \(\mu\)g/ml) two separate pathways seem to be involved. There is selective concentration of a small fraction of the surface-bound Con A into coated pits and eventually coated vesicles (Fig. 5a and b). There is also, however, some internalization of Con A in uncoated pinosomes which rapidly fuse with lysosomes (Fig. 5c). Thus, both uncoated and coated vesicles are involved in this process. Receptor molecules for protein hormones exist on the cell surface, some of which are probably glycoproteins or associated with glycoproteins (7, 12, 18). We speculate that Con A may cross-link these receptors and induce them to cluster in coated pits. It is also possible that Con A binds to glycoproteins already clustered in coated pits and allows them to be visualized. The observation that some of the Con A bound to the cell surface clustered in coated pits allowed us to use peroxidase bound to Con A as a probe to easily follow the formation of coated vesicles from coated pits after brief incubations at 37°C. The constant internalization of the entire plasma membrane in uncoated micropinosomes could account for the small amount of diffusely distributed Con A found in uncoated vesicles.

**Figure 5 Exp 4: Labeling with concanavalin A.** After washing with SFM at 4°C, cells were incubated in 20 \(\mu\)g/ml Con A at 4°C, followed by washing and incubation in 100 \(\mu\)g/ml HRP for 20 min. They were then warmed to 37°C for 1 min and immediately fixed in 2% glutaraldehyde. Sections perpendicular to the substratum which have been counterstained with the OTO procedure and uranyl acetate and lead citrate are shown here. Note the tendency for concentration of the diffuse surface label in coated pits (cp) in Fig. 5a and the presence of coated vesicles (cv) which have already pinched off from the plasma membrane in Fig. 5a and b which contain an extremely high concentration of label. In Fig. 5c, an uncoated pinosome (p) has already pinched off from the surface and fused with a lysosome (ly) near the surface, showing its characteristic low concentration of label. (a) \(\times 33,750\); (b) \(\times 45,000\); (c) \(\times 63,000\). Bars, 0.1 \(\mu\)m. OTO and UALC stained.
A Model of Receptor-Mediated Endocytosis

A scheme depicting the steps involved in a2M uptake is shown in Fig. 6. First, a2M binds to diffusely distributed unoccupied receptors. Next, the ligand-receptor complexes cluster in coated pits. Then, the a2M-receptor complexes are internalized in coated vesicles. Insulin and EGF follow this same pathway. We postulate that this mechanism could be the general pathway of receptor-mediated endocytosis. This could function as a mechanism to regulate the number of receptors for various ligands exposed on the cell surface, or as a mode of intracellular selective delivery of ligands to potential sites of action. a2M could accompany other molecules in a protective role as a protease inhibitor or have other functions of its own not yet elucidated. The further fate of a2M and other molecules internalized by this mechanism is still under investigation.

The authors wish to thank Ms. Maria Gallo for preparing affinity-purified antibody to a2M, and Ms. Susan Yamada for expert technical assistance in preparing specimens for electron microscopy.

Received for publication 8 December 1978, and in revised form 17 April 1979.

REFERENCES

1. ANDERSON, R. G. W., M. S. BROWN, and J. L. GOLDSTEIN. 1977. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell 10:353-364.

2. ANDERSON, R. G. W., J. L. GOLDSTEIN, and M. S. BROWN. 1976. Localization of low density lipoprotein receptors on plasma membrane of normal human fibroblasts and their absence in cells from a familial hypercholesterolemia homoygote. Proc. Natl. Acad. Sci. U. S. A. 73:2434-2438.

3. ANDERSON, R. G. W., J. L. GOLDSTEIN, and M. S. BROWN. 1977. A mutation that impairs the ability of lipoprotein receptors to localize in coated pits on the cell surface of human fibroblasts. Nature (Lond.) 279:693-699.

4. ANDERSON, R. G. W., E. VASILE, R. J. MELLO, M. S. BROWN, and J. L. GOLDSTEIN. 1978. Immunocytochemical visualization of coated pits and vesicles in human fibroblasts: relation to low density lipoprotein receptor distribution. Cell 15:919-933.

5. BERNHARD, W., and S. AVRAMEAS. 1971. Ultrastructural visualization of cellular carbohydrate components by means of concanavalin A. Exp. Cell Res. 66:232-236.

6. CARPENTER, G., and S. COHEN. 1976. 125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts. J. Cell Biol. 71:159-171.

7. CARPENTER, G., and S. COHEN. 1977. Influence of lecithin on the binding of 125I-labeled EGF to human fibroblasts. Biochem. Biophys. Res. Commun. 76:545-552.

8. CRAW, H. F., and C. S. SHEPHERD. 1963. A dialysis technique for preparing fluorescent antibody. Virology. 20:642-644.

9. FAIN, J. N. 1974. Mode of action of insulin. In: Biochemistry Series One, MTP International Review of Science. H. V. Rickenberg, editor. Park Press, Baltimore, Md. 8:1-23.

10. GORDON, P. J., R. L. CARPENTER, S. COHEN, and J. ORL. 1978. Epidermal growth factor: Morphological demonstration of binding, internalization, and lysosomal association in human fibroblasts. Proc. Natl. Acad. Sci. U. S. A. 75:5025-5029.

11. KAPLAN, A., D. T. ACHORD, and W. S. SLY. 1977. Phosphorylated components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts. Proc. Natl. Acad. Sci. U. S. A. 74:2020-2023.

12. MATUKO, J. M., and M. D. HOLLENBERG. 1978. Insulin receptor interaction with non receptor glycoprotein from liver cell membranes. Proc. Natl. Acad. Sci. U. S. A. 75:3070-3074.

13. MAXFIELD, F., R. J. SCHLEININGER, Y. SHECHTER, I. PASTAN, and M. C. WILLINGHAM. 1977. Collection of insulin, EGF, and α-macroglobulin in the same patches on the surface of cultured fibroblasts and common internalization. Cell. 14:805-810.

14. MAXFIELD, F. R., M. C. WILLINGHAM, J. SCHLEININGER, P. J. A. DAVIES, and I. PASTAN. 1979. Receptor-mediated internalization of protons and polypeptide hormones by cultured fibroblasts. Cold Spring Harbor Conf. Cell Proliferation. Hormones and Cell Culture. A. In press.

15. NIEFELD, E. F., G. N. SANDO, A. J. GARVIN, and L. H. ROME. 1977. The transport of lysosomal enzymes. J. Supramol. Struct. 6:93-101.

16. FASTAN, L. M, W. WILLINGHAM, W. ANDERSON, and M. GALLO. 1977. Localization of serum-derived α-macroglobulin in cultured cells and decrease after Moloney sarcoma virus transformation. Cell. 12:609-617.

17. PEARSON, B. M. F. 1977. Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc. Natl. Acad. Sci. U. S. A. 74:1255-1259.

18. PRAYE, R., and I. PASTAN. 1978. Decreased binding of epidermal growth factor to Balb/c 3T3 mutant cells deficient in glycoprotein synthesis. Nature (Lond.) 272:668-70.

19. REYNOLDS, E. S. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17:298-313.

20. SCHICK, A. F., and S. J. SINGER. 1961. On the formation of covalent linkages between two protein molecules. J. Biol. Chem. 236:2477-2485.

21. SCHLEININGER, J., Y. SHECHTER, M. C. WILLINGHAM, and I. PASTAN. 1978. Direct visualization of the binding, aggregation, and internalization of insulin and epidermal growth factor on fibroblastic cells. Proc. Natl. Acad. Sci. U. S. A. 75:2659-2663.

22. SENIGUGI, A. M., H. H. WASSERBURG, and J. S. HANKER, 1966. A new staining method (OTO) for enhancing contrast of lipid-containing membranes and droplets in osmium tetroxide-fixed tissues with osmiumphilic thio carbamylazide (TCA). J. Cell Biol. 38:424-432.

23. SILVERSTEIN, S. C., R. M. STEINMAN, and Z. A. COHN. 1977. Endocy-
24. Van Leuven, F., J. J. Cassiman, and H. Van den Berghe. 1978. Uptake and degradation of α,-macroglobulin-protease complexes in human cells in culture. Exp. Cell Res. 115:273-282.
25. Wickerhauser, M., and Y. L. Hao. 1972. Large scale preparation of macroglobulins. Vox Sang. 23:119-122.
26. Willingham, M. C., and I. Pastan. 1978. The visualization of fluorescent proteins in living cells by video intensification microscopy (VIM). Cell 13:501-507.
27. Willingham, M. C., and S. S. Yamada. 1978. A mechanism for the destruction of pinosomes in cultured fibroblasts. Piranhalysis. J. Cell Biol. 78:480-487.
28. Willingham, M. C., S. S. Yamada, and I. Pastan. 1978. Ultrastructural antibody localization of α,-macroglobulin in membrane-limited vesicles in cultured cells. Proc. Natl. Acad. Sci. U. S. A. 75:4359-4363.
29. Yamada, K. M. 1978. Immunological characterization of a major transformation-sensitive fibroblast cell surface glycoprotein. Localization, redistribution, and role in cell shape. J. Cell Biol. 78:520-541.