Federated Face Anti-spoofing

Rui Shao1 Pramuditha Perera2 Pong C. Yuen1 Vishal M. Patel2
1Department of Computer Science, Hong Kong Baptist University
2Department of Electrical and Computer Engineering, Johns Hopkins University

Abstract

Face presentation attack detection plays a critical role in the modern face recognition pipeline. A face anti-spoofing (FAS) model with good generalization can be obtained when it is trained with face images from different input distributions and different types of spoof attacks. In reality, training data (both real face images and spoof images) are not directly shared between data owners due to legal and privacy issues. In this paper, with the motivation of circumventing this challenge, we propose Federated Face Anti-spoofing (FedFAS) framework. FedFAS simultaneously takes advantage of rich FAS information available at different data owners while preserving data privacy. In the proposed framework, each data owner (referred to as data centers) locally trains its own FAS model. A server learns a global FAS model by iteratively aggregating model updates from all data centers without accessing private data in each of them. Once the learned global model converges, it is used for FAS inference. We introduce the experimental setting to evaluate the proposed FedFAS framework and carry out extensive experiments to provide various insights about federated learning for FAS.

1. Introduction

Recent advances in face recognition methods have prompted many real-world applications, such as automated teller machines (ATMs), mobile devices, and entrance guard systems, to deploy this technique as an authentication method. Wide usage of this technology is due to both high accuracy and convenience it provides. However, many recent works\cite{13, 3, 22, 19, 11, 18, 20, 21} have found that this technique is vulnerable to various face presentation attacks such as print attacks, video-replay attacks\cite{2, 24, 4, 23, 11} and 3D mask attacks\cite{9, 10}. Therefore, developing face anti-spoofing (FAS) methods that make current face recognition systems robust to face presentation attacks has become a topic of interest in the biometrics community.

In this paper, we consider the deployment of a FAS system in a real-world scenario. We identify two types of stakeholders in this scenario – data centers and users. Data centers are entities that design and collect FAS datasets and propose FAS solutions. Typically data centers include research institutions and companies that carry out the research and development of FAS. These entities have access to both real data and spoof data and therefore are able to train FAS models. Different data centers may contain images of different identities and different types of spoof data. However, each data center has limited data availability. Real face images are obtained from a small set of identities and spoof attacks are likely to be from a few known types of attacks.
Therefore, these FAS models have poor generalization ability [18, 21] and are likely to be vulnerable against attacks unseen during training.

On the other hand, users are individuals or entities that make use of FAS solutions. For example, when a FAS algorithm is introduced in mobile devices, mobile device customers are identified as users of the FAS system. Users have access only to real data collected from local devices. Due to the absence of spoof data, they cannot locally train FAS models. Therefore, each user relies on a model developed by a data center for FAS as shown in Figure 1 (top). Since data center models lack generalization ability, inferring with these models are likely to result in erroneous predictions.

It has been shown that utilizing real data from different input distributions and spoof data from different types of spoof attacks through domain generalization and meta-learning techniques can significantly improve the generalization ability of FAS models [18, 21]. Therefore, the performance of FAS models, shown in Figure 1 (top), can be improved if data from all data centers can be exploited collaboratively. In reality, due to data sharing agreements and privacy policies, data centers are not allowed to share collected FAS data with each other. For example, when a data center collects face images from individuals using a social media platform, it is agreed not to share collected data with third parties.

In this paper, we present a framework called Federated Face Anti-spoofing (FedFAS) based on the principles of Federated Learning (FL) targeting FAS. The proposed method exploits information across all data centers while preserving data privacy. In the proposed framework, models trained at data centers are shared and aggregated while training images are kept private in their respective data centers, thereby preserving privacy.

Federate learning is a distributed and privacy preserving machine learning technique [14, 8, 22, 17, 15]. FL training paradigm defines two types of roles named server and client. Clients contain training data and the capacity to train a model. As shown in Fig. 1 (middle), each client trains its own model locally and uploads them to the server at the end of each training iteration. Server aggregates local updates and produces a global model. This global model is then shared with all clients which will be used in their subsequent training iteration. This process is continued until the global model is converged. During the training process, data of each client is kept private. Collaborative FL training allows the global model to exploit rich local clients information while preserving data privacy.

In the context of FedFAS, both data centers and users can be identified as clients. However, roles of data centers and users are different from conventional clients found in FL. In FL, all clients train models and carry out inference locally. In contrast, in FedFAS, only data centers carry out local model training. Data centers share their models with the server and download the global model during training. On the other hand, users download the global model at the end of the training procedure and only carry out inference as shown in Figure 1 (bottom).

Main contributions of our paper can be summarized as follows:

1. This paper is the first to study the federated learning technique for the task of FAS. We propose the Federated Face Anti-spoofing (FedFAS) framework to develop the robust and generalized FAS model in a data privacy preserving way.
2. An experimental setting is defined for the FedFAS framework. Extensive experiments are carried out to show the effectiveness of the proposed framework. Various issues and insights about federated learning for FAS are discussed and provided.

2. Related Work

2.1. Face Anti-spoofing

Current FAS methods can be categorized under single-domain and multi-domain approaches. Single-domain approach focuses on extracting discriminative cues between real and spoof samples from a single dataset, which can be further divided into appearance-based methods and temporal-based methods. Appearance-based methods focus on extracting various discriminative appearance cues for detecting face presentation attacks. Multi-scale LBP [13] and color textures [8] methods are two texture-based methods that extract various LBP descriptors in various color spaces for the differentiation between real/spoof samples. Image distortion analysis [23] aims to detect the surface distortions as the discriminative cue.

On the other hand, temporal-based methods extract different discriminative temporal cues through multiple frames between real and spoof samples. Various dynamic textures are exploited in [16, 20, 19] to extract discriminative facial motions. rPPG signals are exploited by Liu et al. [10, 9] to capture discriminative heartbeat information from real and spoof videos. [11] learns a CNN-RNN model to estimate different face depth and rPPG signals between the real and spoof samples.

Various FAS datasets are introduced recently that explore different characteristics and scenarios of face presentation attacks. Multi-domain approach is proposed in order to improve the generalization ability of the FAS model to unseen attacks. Recent work [18] casts FAS as a domain generalization problem and proposes a multi-adversarial discriminative deep domain generalization framework to search generalized differentiation cues in a shared and discriminative feature space among multiple FAS datasets.
Figure 2. Overview of the proposed FedFAS framework. Through several rounds of communication between data centers and server, the collaborated trained global FAS model parameterized by W_t can be obtained in a data privacy preserving way. Users can download this global model from the server to their device to detect various face presentation attacks.

3. Proposed Method

The proposed FedFAS framework is summarized in Fig. 2 and Algorithm 1. Suppose that K data enters collect their own FAS datasets designed for different characteristics and scenarios of face presentation attacks. The corresponding collected FAS datasets are denoted as $D^1, D^2, ..., D^K$ with data provided with image and label pairs denoted as x and y. y are ground-truth with binary class labels ($y = 0/1$ are the labels of spoof/real samples). Based on the collected FAS data, each data center can train its own FAS models by iteratively minimizing the cross-entropy loss as follows:

$$
L(W^k) = \sum_{(x,y) \sim D^k} y \log F^k(x) + (1 - y) \log(1 - F^k(x)),
$$

where the FAS model F^k of the k-th data enter is parameterized by $W^k (k = 1, 2, 3, ..., K)$. After optimization with several local epochs via

$$
W^k \leftarrow W^k - \eta \nabla L(W^k),
$$

each data center can obtain the trained FAS model with the updated model parameters.

It should be noted that dataset corresponding to each data enter is from a specific input distribution and it only contains a finite set of known types of spoof attack data. When a model is trained using this data, it focuses on addressing the characteristics and scenarios of face presentation attacks prevalent in the corresponding dataset. However, a model trained from a specific data center will not generalize well to unseen face presentation attacks. It is
Algorithm 1: Federated Face Anti-spoofing

Require:
Input: K Data Centers have K FAS datasets D^1, D^2, \ldots, D^K.
Initialization: K Data Centers have K FAS models F^1, F^2, \ldots, F^K parameterized by $W_0^1, W_0^2, \ldots, W_0^K$. L is the number of local epochs. η is the learning rate. t is the federated learning rounds.

Server aggregates:
initialze W_0
for each round $t = 0, 1, 2, \ldots$ do
for each data center $k = 1, 2, \ldots, K$ in parallel do
$W_t^k \leftarrow$ DataCenterUpdate(k, W_t)
end for
$W_t = \frac{1}{K} \sum_{k=1}^{K} W_t^k$
Download W_t to Data Centers
end for
Users Download W_t

DataCenterUpdate(k, W):
for each local epoch $i = 1, 2, \ldots, L$ do
$\mathcal{L}(W_t^k) = \sum_{(x,y) \sim D^K} y \log F^k(x) + (1-y) \log (1-F^k(x))$
$W_t^k \leftarrow W_t^k - \eta \nabla \mathcal{L}(W_t^k)$
end for
Upload W_t^k to Server

well known fact that diverse FAS training data contributes to a better generalized FAS model. A straightforward solution is to collect and combine all the data from K data centers denoted as $D = \{D^1 \cup D^2 \cup \ldots \cup D^K\}$ to train a FAS model. It has been shown that domain generalization and meta-learning based FAS methods can further improve the generalization ability with the above combined multi-domain data D [18, 21]. However, when sharing data between different data centers are prohibited due to the privacy issue, this naive solution is not practical.

To circumvent this limitation and enable various data centers to collaboratively train a FAS model, we propose the FedFAS framework. Instead of accessing private FAS data of each data center, the proposed FedFAS framework introduces a server to exploit the FAS information of all data centers by aggregating the above model updates (W^1, W^2, \ldots, W^K) of all data centers. Inspired by the Federated Averaging [14] algorithm, in the proposed framework, server carries out the aggregation of model updates via calculating the average of updated parameters (W^1, W^2, \ldots, W^K) in all data centers as follows:

$$W = \frac{1}{K} \sum_{k=1}^{K} W^k.$$ \hspace{1cm} (2)

After the aggregation, server produces a global FAS model parameterized by W that exploits the FAS information of various data centers without accessing the private FAS data.

We can further extend the above aggregation process into t rounds. Server distributes the aggregated model W to every data center as the initial model parameters for the next-round updating of local parameters. Thus, data centers can obtain the t-th round updated parameters denoted as $(W_t^1, W_t^2, \ldots, W_t^K)$. The t-th aggregation in the server can be carried out as follows:

$$W_t = \frac{1}{K} \sum_{k=1}^{K} W_t^k.$$ \hspace{1cm} (3)

After t-rounds of communication between data centers and the server, the trained global FAS model parameterized by W_t can be obtained without compromising the private data of individual data centers. Once training is converged, users will download the trained model from the server to their devices to carry out FAS locally.

4. Experiments

To evaluate the performance of the proposed FedFAS framework, we carry out experiments using five 2D FAS datasets and two 3D mask FAS datasets. In this section, we first describe the datasets and the testing protocol used in our experiments. Then we report various experimental results based on multiple FAS datasets. Discussions and analysis about the results are carried out to provide various insights about FL for FAS.

4.1. Experimental Settings

4.1.1 Datasets

Dataset	Extra light	Complex background	Attack type	Display devices
C	No	Yes	Printed photo	iPad
I	Yes	Yes	Replayed video	iPhone 3GS
M	No	Yes	Printed photo	iPad Air
O	Yes	No	Display photo	Dell 1905FP
			Replayed video	Macbook Retina
S	Yes	Yes	Display photo	Dell 1905FP
			Replayed video	iPad Pro
				iPhone 7
				Galaxy S8
				Asus MB168B
3	No	No	Thatsmyface 3D mask	Kinect
H	Yes	Yes	Thatsmyface 3D mask	MV-U3IB

We evaluate our method using the following seven publicly available FAS datasets which contain print, video replay and 3D mask attacks:
1) Oulu-NPU [2] (O for short)
2) CASIA-MFSD [24] (C for short)
3) Idiap Replay-Attack [4] (I for short)
4) MSU-MFSD [23] (M for short)
5) SiW [11] (S for short)
6) 3DMAD [5] (3 for short)
7) HKBUMARsV2 [9] (H for short).

Table 1 shows the variations in these seven datasets. Some sample images from these datasets are shown in Fig. 3. From Table 1 and Fig. 3 it can be seen that different FAS datasets exploit different characteristics and scenarios of face presentation attacks (i.e. different attack types, display materials and resolution, illumination, background and so on). Therefore, significant domain shifts exist among these datasets.

4.1.2 Protocol

The testing protocol used in the paper is designed to test the generalization ability of FAS models. Therefore, in each test, performance of a trained model is evaluated against a dataset that it has not been observed during training. In particular, we choose one dataset at a time to emulate the role of users and consider all other datasets as data centers. Real images and spoof images of data centers are used to train a FAS model. The trained model is tested considering the dataset that emulates the role of users. We evaluate the performance of the model by considering how well the model is able to differentiate between real and spoof images belonging to each user.

4.1.3 Evaluation Metrics

Half Total Error Rate (HTER) [1] (half of the summation of false acceptance rate and false rejection rate), Equal Error Rates (EER) and Area Under Curve (AUC) are used as evaluation metrics in our experiments, which are three most widely-used metrics for the cross-datasets/cross-domain evaluations. Following [12], in the absence of a development set, thresholds required for calculating evaluation metrics are determined based on the data in all data centers.

4.1.4 Implementation Details

Our deep network is implemented on the platform of PyTorch. We adopt Resnet-18 [6] as the structure of FAS models $F_i(i = 1, 2, 3, ..., K)$. The Adam optimizer [7] is used for the optimization. The learning rate is set as 1e-2. The batch size is 64 per data center. Local optimization epoch L is set equal to 3.

4.2. Experimental Results

In this section we demonstrate the practicality and generalization ability of the proposed framework in the real-world scenario. We first compare the performance of the proposed framework with models trained with data from a single data center. As mentioned above, due to the limitation of data privacy that exists in the real-world, data cannot be shared between different data centers. In this case, users will directly obtain a trained model from one of the data centers. We report the performance of this baseline in the Table 2 under the label Single. For different choices of user datasets (from O, C, I, M), we report the performance when the model is trained from the remaining datasets independently.

Rather than obtaining a trained model from a single data center, it is possible for users to obtain multiple trained models from several data centers and fuse their prediction scores during inference, which is also privacy preserving. In this case, we fuse the prediction scores of the trained model from various data centers by calculating the average. The results of this baseline are shown in Table 2 denoted as Fused. According to Table 2 fusing scores obtained from different data centers improves the FAS performance on average. However, this would require higher inference time and computation complexity (of order three for the case considered in this experiment).

On the other hand, Ours shows the results obtained by the proposed FedFAS framework. Table 2 illustrates that the average values of all evaluation metrics of the proposed framework outperform both baselines. This demonstrates that the proposed method is more effective in exploiting FAS information from multiple data centers. This is because the proposed framework actively combines FAS information across data centers during training as opposed to...
Table 2. Comparison with model trained by data from single data center and various data centers.

Methods	Data Centers	User	HTER (%)	EER (%)	AUC (%)	Avg. HTER	Avg. EER	Avg. AUC
Single	O	M	41.29	37.42	67.93	36.43	34.31	70.36
	C	M	27.09	24.69	82.91			
	I	M	49.05	20.04	85.89			
	O	C	31.33	34.73	73.19			
	M	C	39.80	40.67	66.58			
	I	C	49.25	47.11	55.41			
	O	I	42.21	43.05	54.16			
	C	I	45.99	48.55	51.24			
	M	I	48.50	33.70	66.29			
	M	O	29.80	24.12	84.86			
	C	O	33.97	21.24	84.33			
	I	O	46.95	35.16	71.58			
Fused	O&C&I	M	34.42	23.26	81.67	35.75	31.29	73.89
	O&M&I	C	38.32	38.31	67.93			
	O&C&M	I	42.21	41.36	59.72			
	I&C&M	O	28.04	22.24	86.24			
Ours	O&C&I	M	19.45	17.43	90.24	32.17	28.84	76.51
	O&M&I	C	42.27	36.95	70.49			
	O&C&M	I	32.53	26.54	73.58			
	I&C&M	O	34.44	34.45	71.74			
All	O&C&I	M	21.80	17.18	90.96	27.26	25.09	80.42
(Upper Bound)	O&M&I	C	29.46	31.54	76.29			
	O&C&M	I	30.57	25.71	72.21			
	I&C&M	O	27.22	25.91	82.21			

the fused baseline. As a result, it is able to generalize better to unseen/novel spoof attacks.

Moreover, we further consider the case where a model is trained with data from all available data centers, which is denoted as All in Table 2. Note that this baseline violates the assumption of preserving data privacy, and therefore is not a valid comparison for FedFAS. Nevertheless, it indicates the upper bound of performance for the proposed FedFAS framework. From Table 2, it can be seen that the proposed FedFAS framework is only 3.9% worse than the upper bound in terms of AUC. This shows the proposed framework is able to obtain a privacy persevering FAS model without sacrificing too much FAS performance. This result verifies the practicality of the proposed framework.

4.2.1 Comparison of different number of data centers

In this section, we investigate the importance of having more data centers during training. Different data centers exploit different characteristics of face presentation attacks. Therefore, we expect aggregating information from more data centers in the proposed FedFAS framework to produce more robust models with better generalization. In order to verify this point, we increase the number of data centers in the proposed FedFAS framework and report the results in Fig. 4. The experiments are carried out using five datasets (O, M, I, C, S). In Fig. 4 (left), we select the dataset C as the data presented to the user and the remaining datasets as the data centers for training the FAS model with our FedFAS framework. We increase the number of data centers from 2 to 4 and corresponding data centers are shown in the X-axis. Another experiment is carried out with a different combination of the same five datasets and the results are shown in Fig. 4 (right). From the curve in Fig. 4, it can be seen that most values of evaluation metrics improve along when the number of data centers increases. This demonstrates that increasing the number of data centers in the proposed FedFAS framework can improve the performance.

4.2.2 Generalization ability to various 2D spoof attacks

In reality, due to limited resources, one data center usually is only able to collect one particular type of 2D attack such as print attacks or video-replay attacks. However, various 2D attacks may appear to the users. As illustrated in Table 3, first, we select real faces and print attacks from dataset I and real faces and video-replay attacks from dataset O to train a FAS model respectively and evaluate them on dataset M (containing both print attacks and video-replay attacks). In both considered cases as shown in Table [3] the corresponding trained models cannot generalize well to dataset M which contains the additional types of 2D attacks compared to dataset I and O, respectively. This tendency can be alleviated when the prediction scores of two independently
Table 3. Effect of using different types of spoof attacks

Methods	Data Centers	User	HTER (%)	EER (%)	AUC (%)
Single	I (Print)	M (Print, Video)	38.82	33.63	72.46
	O (Video)	M (Print, Video)	35.76	28.55	78.86
Fused	I (Print) & O (Video)	M (Print, Video)	35.22	25.56	81.54
Ours	I (Print) & O (Video)	M (Print, Video)	30.51	26.10	84.82

Table 4. Impact of adding data centers with diverse attacks

Data Centers	User	HTER (%)	EER (%)	AUC (%)
O&C&M (2D)	3 (3D)	27.21	31.63	76.05
O&C&M (2D) & H (3D)	3 (3D)	34.70	14.20	92.35

trained models on both types of attacks are fused as show in Table 3. Comparatively, FedFAS method obtains a performance gain of 4.71% in HTER and 3.3% in AUC compared to score fusion. This experiment demonstrates that carrying out FedFAS framework among data centers with different types of 2D spoof attacks can improve the generalization ability of the trained FAS model to various 2D spoof attacks.

4.2.3 Generalization ability to 3D mask attacks

In this section, we investigate the generalization ability of the proposed FedFAS framework to 3D mask attacks. First, a FAS model is trained with data centers exploiting 2D attacks (data from datasets O, C and M). This model is tested with 3D mask attacks (data from dataset 3). Then, we include one more data center containing 3D mask attacks (dataset H) into our FedFAS framework and retrain our model. Table 4 shows that introducing diversity of data centers (by including a 3D mask attack) can significantly improve performance in EER and AUC. HTER performance corresponding to the considered threshold for the latter is lower - but comparable with the former. This experiment demonstrates that increasing data centers with 3D mask attacks can improve the generalization ability of the trained model.

5. Conclusion

In this paper, we presented FedFAS, a FL-based framework targeting application of FAS with the objective of obtaining generalized FAS models while preserving data privacy. Through communications between data centers and the server, a globe FAS model is obtained by iteratively aggregating the model updates from various data centers. Local private data is not accessed during this process. Extensive experiments are carried out to demonstrate the effectiveness of the proposed framework which provide various insights regarding FL for FAS.

In our experiments, we encountered situations where adding more data centers slightly decreased the performance (Fig. 4(right) when the data center increases from 2 to 3 and Table 4 when dataset H is added). Adding more data centers into our framework not only increases the diversity of FAS information but also intensifies domain shift among data centers. This domain shift may increase the difficulties in exploiting an optimal FAS model in the federated learning process. In the future, we will explore an improved federated learning method that tackles data centers with significant domain shift effectively.
References

[1] S. Bengio and J. Mariéthoz. A statistical significance test for person authentication. In The Speaker and Language Recognition Workshop, 2004.

[2] Z. Boukenenat and et al. Oulu-npu: A mobile face presentation attack database with real-world variations. In FG, 2017.

[3] Z. Boukenenat, J. Komulainen, and A. Hadid. Face spoofing detection using colour texture analysis. In IEEE Trans. Inf. Forens. Security, 11(8): 1818-1830, 2016.

[4] I. Chingovska, A. Anjos, and S. Marcel. On the effectiveness of local binary patterns in face anti-spoofing. In BIOSIG, 2012.

[5] N. Erdogmus and S. Marcel. Spoofing face recognition with 3D masks. 2014. TIFS.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.

[7] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In arXiv preprint arXiv:1412.6980, 2014.

[8] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning: Challenges, methods, and future directions. In arXiv preprint arXiv:1908.07873, 2019.

[9] S. Liu, X. Lan, and P. C. Yuen. Remote photoplethysmography correspondence feature for 3D mask face presentation attack detection. In ECCV, 2018.

[10] S. Liu, P. C. Yuen, S. Zhang, and G. Zhao. 3D mask face anti-spoofing with remote photoplethysmography. In ECCV, 2016.

[11] Y. Liu, A. Jourabloo, and X. Liu. Learning deep models for face anti-spoofing: Binary or auxiliary supervision. In CVPR, 2018.

[12] Y. Liu, J. Stehouwer, A. Jourabloo, and X. Liu. Deep tree learning for zero-shot face anti-spoofing. In CVPR, 2019.

[13] J. Määttä, A. Hadid, and M. Pietikäinen. Face spoofing detection from single images using micro-texture analysis. In IJCB, 2011.

[14] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, et al. Communication-efficient learning of deep networks from decentralized data. In AISTATS, 2016.

[15] M. Mohri, G. Sivek, and A. T. Suresh. Agnostic federated learning. 2019.

[16] T. F. Pereira and et al. Face liveness detection using dynamic texture. In EURASIP Journal on Image and Video Processing, (1): 1-15, 2014.

[17] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith. On the convergence of federated optimization in heterogeneous networks. In arXiv preprint arXiv:1812.06127, 2018.

[18] R. Shao, X. Lan, J. Li, and P. C. Yuen. Multi-adversarial discriminative deep domain generalization for face presentation attack detection. In CVPR, 2019.

[19] R. Shao, X. Lan, and P. C. Yuen. Deep convolutional dynamic texture learning with adaptive channel-discriminability for 3D mask face anti-spoofing. In IJCB, 2017.

[20] R. Shao, X. Lan, and P. C. Yuen. Joint discriminative learning of deep dynamic textures for 3D mask face anti-spoofing. In IEEE Trans. Inf. Forens. Security, 14(4): 923-938, 2019.

[21] R. Shao, X. Lan, and P. C. Yuen. Regularized fine-grained meta face anti-spoofing. In AAAI, 2020.

[22] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar. Federated multi-task learning. In NIPS, 2017.

[23] D. Wen, H. Han, and A. K. Jain. Face spoof detection with image distortion analysis. In IEEE Trans. Inf. Forens. Security, 10(4): 746-761, 2015.

[24] Z. Zhang and et al. A face antispoofing database with diverse attacks. In ICB, 2012.