Design and Construction of An Aerosol Particle Classification System Based on Electrical Mobility

Fatemeh Fasih-Ramandi, Student Research Committee, (Department of Occupational Health), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Mohammad-Javad Jafari, Department of Occupational Health Engr, School of Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Asghar Sadighzadeh, (*Corresponding author), Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Tehran, Iran. asadigzadeh@aio.org.ir
Soheila Khodakarim, Department of Epidemiology, School of Health and Safety; Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Hossein Yousefi, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Tehran, Iran.

Abstract

Background and aims: The use of particles’ electrical mobility in the electric field, has always been an important concern, as the functional basis of particle measuring and instrumentations’ classification. The objective of this study was to design and construct an aerosol particles classification system, using electrical mobility feature on a laboratory scale.

Methods: With the collaboration of the Atomic Energy Organization of Iran and Shahid Beheshti University of Medical Sciences, the laboratory experimental study was carried out. The theoretical principles governing the development of the DMAs, the FORTAN programming software and the Excel-2016 program were used for designing and constructing the DMA system. Using SOLIDWORKS-2017 software, the technical drawings of the DMAs constituent parts and laboratory layouts were carried out. In order to study the performance of the DMA system, the laboratory instrumentation including the particle generator, particle counter, dry and clean air supply system and high voltage power supply were prepared.

Results: The length of classification area, the central and outer electrodes were respectively, 160, 20 and 55 mm in diameter. The proposed DMA’s efficiency in particle classification, was respectively between, 71.9% - 92.4 % in particle range of, 500 - 600 nm and 300 - 350 nm. Each range of particle sizes, at a specific voltage, lets the equipments reach their maximum efficiency.

Conclusion: The size distribution of the unknown particles can be determined by this device, knowing the peak voltage for a particular particle size. The good performance and wide range of particle size distribution, are the capabilities of the proposed DMA in the presented study.

Conflicts of interest: None

Funding: This study is related to the project NO. 1396/56497 From Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
We also appreciate the “Student Research Committee” and “Research & Technology Chancellor” in Shahid Beheshti University of Medical Sciences for their financial support of this study.

Keywords
- Particle Classification
- Electrical Mobility
- DMA
- Aerosol
- Particle Size Distribution

Received: 2018/08/13
Accepted : 2019/07/1
INTRODUCTION

The electrical mobility of a particle in an electric field is determined by its characteristic’s size. This feature forms the functional basis of a number of particle measurement instruments. The Differential Mobility Analyser (DMA), which is a powerful tool for research, application, aerosols’ measurements and classifications, is one of the devices used for the research. This technique has recently attracted a lot of attention, because of its potential to be used in nanoparticle measurement (1).

The DMA is one of the most common instrument in the aerosol particles’ classification and measurement, based on the electrical mobility of particles (2). It is possible to determine the size, numerical concentration and classification of aerosols, through the use of a DMA. A DMA can also be used to separate the monodisperse sections of unknown aerosols, (such as atmospheric aerosols), calibrate the equipment or to study the properties of aerosols. Hence, due to its wide dynamic range and ability to choose monodisperse particles from polydisperse (particles from polydisperse aerosol...) aerosol, it is said that a DMA, is one of the most versatile calibration tools (3).

In former designs, in order to obtain the electrical charge of the particles, the resulting monodisperse flow rate would be directed to a Faraday cup electrometer. In recent designs, the monodisperse output flow from the DMA device, is directed to a particle counter, and the numerical particles’ concentration is measured afterwards.

As mentioned, the DMA has many advantages. Nevertheless, the literature review of Iran, shows no conducted studies on the construction of these devices. Therefore, the present study aims to design and construct a mobility differentiator analyser. Examining its efficiency and investigating its application, in the nanometer and micrometer range, determining the size distribution of the particles.

METHODOLOGY

This experimental study was carried out in collaboration with the Atomic Energy Organization of Iran and Shahid Beheshti University of Medical Sciences in 2017-2018. The theoretical principles governing the development of a DMA, were extracted from texts and articles to determine the geometric dimensions and operating conditions of the proposed DMA. Then the technical drawings of the DMA’s constituent parts, were carried out, and the DMA was built. To evaluate the performance of the proposed system in different electrical voltages, a laboratory layout was prepared. Various experiments were carried out to determine its efficiency in particle size distribution and classification. Statistical analysis were carried out, using the SPSS v22 and Excel 2016 software.

Theoretical Principles of a DMA

When a charged particle is placed in an electric field, electrostatic forces are applied to the particle. Electrical mobility is defined as the velocity of a particle with a charge of ne in an electrical field, with a unit of intensity. Electrical mobility (Zp) in a DMA, is determined using the following equation (4):

\[
Z_p = \left(\frac{Q_p + Q_a}{\pi R_1 \ln \left(\frac{R_2}{R_1} \right)} \right) \frac{1}{2 \pi L V}
\]

In this equation, \(R_1 \) and \(R_2 \) are the radii of the outer and inner electrodes (cylinders), \(L \) is the effective electrode length, \(V \) is the applied voltage, \(Q_a \) and \(Q_s \) are the airflow of aerosols and particle-free sheath air, respectively.

Electrical mobility is related to particle diameter \(d_p \), and is determined by using Stokes’ law, the following equation (\(\text{Re}<0.1 \)) (4):

\[
d_p = \frac{neC_c}{3\pi\mu Z_p}
\]

Where \(C_c \) is the Cunningham slip correction factor, and \(\mu \) is the gas viscosity. Cunningham slip correction factor, is based on the following equation (2):

\[
C_c = 1 + K_n \left[1.257 + 0.40 \exp \left(-1.10 / K_n \right) \right]
\]

In the above equation, \(Kn \) is the Knudsen number, obtained using the following (2):

\[
Kn = \frac{2\lambda}{d_p}
\]

Here, \(\lambda \) is the mean free path of a gas molecule and \(d_p \) is the particle diameter. Under normal temperature and pressure conditions, the mean free path of a gas molecule is about 0.0686 micrometers (5).

Design and Construction of a DMA

According to theoretical principles governing the design and construction of DMAs, the geometric and operational parameters of a DMA were calculated, using the FORTRAN programming software and Excel 2016.

Based on similar studies, a range of 10-25 mm for the inner electrode’s radius, and a range of 25-55 mm for the outer electrode’s radius was considered. FORTRAN was configured so as to repeat the calculations once per 5 mm. Also, a voltage range of 1-10 kV, with an interval of 100 V was considered. Default numerical calculations were performed on the smallest particle that the particle counter used in the study (which is a particle with a diameter of 260 nm) was able to count. Then programming was done to calculate the length of the classification area.
The technical drawings of the constituent parts of the DMA were carried out using SOLIDWORKS 2017 software and the assembly plan of the DMA was extracted, after determining the geometric dimensions and operating conditions of the device. The parts were constructed and assembled, on the basis of the drawings.

Laboratory Layout

The laboratory instrumentation, including the particle generator, particle counter, dry and clean air supply system, high voltage power supply and other accessories were prepared in order to evaluate the performance of the proposed DMA. To supply aerosol flow in the size range of 0.15 - 3 micrometers with constant concentration of Dioctyl Phthalate (DOP) solution, a particle generator (TOPAS - ATM 225) was used. At the output of the DMA, a particle counter (GRIMM 7.309) was used to measure the numerical concentration of particles. The dry and clean air supply system (consisting of pumps, compressors to 50 l/m, silica gel and HEPA filter) was used to provide airflow rates to the DMA. A high voltage direct current (DC) power supply was used to provide the potential differences of the DMA in the range of 1 - 10 kV. Other measuring equipment, such as a multi-meter and a flowmeter were prepared, they were connected by teflon connections and control valves. The temperature and relative humidity of the air flow were measured during tests. Temperature and relative humidity changes were negligible and in the range of 20.21 to 21.07 °C and 23.4% to 26.9%, respectively. Temperature and relative humidity were recorded by a Hygro Thermometer. After calibrating the equipment, their layout was determined.

RESULT

Presented in Table (1), are the geometric and operational parameters of the proposed DMA. Based on the available instrumentation features and governing theories, these parameters were calculated. As can be seen in Table (1), the prototype DMA, respectively has a classification area length of 160 mm and a central and outer electrode diameters of 20 and 55 mm. These values were selected considering the defaults such as, flow rate of the Grimm particle counter, and the need to observe isokinetic conditions.

The various components of the proposed DMA, includes a grounded 300 mm stainless steel cylinder that forms the outer electrode of the DMA, and a 239 mm long copper rod, which is used as the central electrode as it is a good electricity conductor. The flow of dry clean air and the aerosols from the particle generator, enters the DMA on the upper part. For this purpose, two pieces of Teflon, one 89×76 and the other 76×65 mm in dimensions, were made. To uniform the distribution of airflow in the space between the central and outer electrodes, a perforated Teflon piece was placed in the clean air's entry path to the DMA. A 165 mm long sampling tube, made out of Teflon was placed at the end of the device in the direction of the central electrode. The tube, which was installed to guide the flow of classified DMA aerosols, sends the monodisperse aerosol in airflow through the central slot into the particle counter. The air flow and the flow of aerosols passes the central electrode and moves radially downwards. To provide a potential difference in the range of 1-10 kV and form an electric field inside the DMA, a high voltage DC power supply was connected to the central electrode.

While moving downwards, under the influence of this electric field the input particles are charged, due to their electrical mobility, they are separated from the airflow and are deflected to the central bar. Particles that had electrical mobility in a certain range, were directed to the particle counter via the sampling tube and their numerical concentration was determined. Excess airflow was also sent out of the DMA via the embedded outlet in the far end of the cylinder's lower wall. Obtained from the SOLIDWORKS software figure (1) shows the components and assembly design of the DMA.

At an airflow rate of 6.3 cm/s and by applying different voltages in the range of 1-10 kV, and at intervals of 0.5 kV, the efficiency of the DMA system was tested, to determine the size distribution of the input particles. The results of the experiments showed that, at a specific voltage, output particles from the DMA system, had a maximum amount in a very small domain, and was greater than the other particles. In other words, at a given voltage, this system acts as a filter for other particles and it won’t let them pass, while allowing a certain range of particles exit. Thus, each domain of particle size, in any given voltage, will exit with maximum efficiency from the DMA system. For particles with a size of 260-300 nm at a voltage of 3 kV, the maximum system efficiency is 91%. The maximum efficiency of the output particles is reached at a higher voltage as the particles size is increased. This means that, particles larger than 2 microns are released at a voltage of 9.5 kV, with a maximum efficiency of 82.4%. The highest efficiency of the proposed DMA device is 92.4%, which was for the separation of 300-350 nm particles at a voltage of 3.5 kV. The lowest efficiency found, was 71.9% for particles of 500-600 nm at a voltage of 5 kV. Hence, in lower voltages, smaller particles, and at higher voltages, larger particles accounted for a greater portion of the output particle size distribution. At 7.5 kV, the output particles were mostly sub-micron in size and at voltages higher than 7.5 kV, particles were larger than a micron. According

1 High Efficiency Particulate Air
to efficiency results, the proposed DMA system has a higher efficiency for sub-micron particles.

DISCUSSION

Given the nature of the DMA system, the voltage at which the largest number of particles become visible at the output is important, since this indicates that, the input polydisperse particles have been transformed to monodisperse particles at the output. On the other hand, the input particles sizes were in a wide range from 260 nm to more than 2 μm, even so most of the output particles were in a narrow range of particle sizes at any voltage. This means that, the DMA system successfully transforms polydisperse particles toward a monodisperse one in the majority of voltages. The same process was done at lower voltages, for smaller particles (nanometer particles) and at higher voltages, for larger particles (micron particles). This is because, in weaker electric fields, smaller particles reach their maximum charge capacity faster and obtain the necessary electrical mobility to exit the sampling gap, whereas larger particles, require stronger electric fields. Larger particles also have more mass and inertia, therefore stronger electric fields are needed, so they can be deflected from their course to the central electrode (6). This issue has also been reported in other studies such as Zhang et al. (1995) which showed that smaller particles at lower voltages, and larger particles at higher voltages, reached their highest number at the output (7). In a study conducted by Myojo et al. in which they determined the particle size distribution, using a DMA device. It was concluded that particles with a size of 0.940, 1.008, 1.034, 1.099, 1.100 and 1.274 microns reached their highest number at the output of DMA device, at voltages of 5700, 6600, 7000, 8000, 7100 and 8400 volts respectively (8). These results are compatible with the present study’s results.

CONCLUSION

The present study describes a DMA system that can be used for the classification and determination of particle size distribution. For identifying the behavior of particles, the governing principles and the selection of appropriate collection mechanisms, determining the size distribution and numerical concentration of aerosol particles is important.

The study results shows that, it is possible to construct and develop such a system, by using existing equipment and facilities and applying the theoretical principles of DMA systems, as well as other devices that operate based on particle electrical mobility in an electrical field. The results also shows that, this DMA has a high efficiency in determining the distribution of particle sizes in the range of 260 nm to 2 microns. While the device can also act as a calibration tool and a monodisperse particle generator that functions from a polydisperse sample, this DMA device has a relatively simple structure for determining and classifying particle size distribution.

CONFLICT OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this manuscript.
چکیده

روش بررسی: این مطالعه در مقیاسی آزمایشگاهی و در سازمان انرژی اتمی با همکاری دانشگاه علوم پزشکی شهید بهشتی انجام شد.

مقدمه: رنگ‌پردازی نور و رنگ‌پردازی نور در محیط کار می‌تواند به بهداشت و بهبود کیفیت زندگی کارکنان کمک کند. در این مطالعه، نور محیط کار، ضخامت ذرات ذرات دیواری (PM2.5) و ضخامت ذرات دیواری (PM10) با استفاده از سیستم‌های تجزیه و تحلیل و برنامه‌های بالا بررسی شدند. نتایج نشان داد که سیستم تجزیه و تحلیل الکتریکی ذرات به صورت مطلوبی تعیین محیط کار و ضخامت ذرات دیواری (PM2.5) و ضخامت ذرات دیواری (PM10) را کنترل می‌کند. مطالعه حاضر نشان داد که می‌توان با استفاده از سیستم تجزیه و تحلیل الکتریکی ذرات و برنامه‌های بالا، ضخامت ذرات دیواری (PM2.5) و ضخامت ذرات دیواری (PM10) را کنترل کرد.

کلیدواژه‌ها: ذرات دیواری (PM2.5)، ضخامت ذرات دیواری (PM10)، سیستم تجزیه و تحلیل الکتریکی ذرات.
فاطمه فصیح رامندی و همکاران
با توجه به اندازه خوشه‌ای که تحقیک الکتریکی خواهد داشت که، ویژگی‌های دنیا دارد. مقادیر تحقیق الکتریکی خروج به به‌اندازه آن درون آن را تشکیل می‌دهد، این اشاره به شکاف تحلیلی در (DMSA) تحقیق الکتریکی در (DMSA) و سیستم‌های فیلترینگ در مطالعه، که باعث افزایش شیب‌گیری الکتریکی خواهد شد. در این اشاره به شکاف در ابعاد می‌باشد. این تحقیق که رسیده به شکاف در ابعاد خواهد باعث افزایش شیب‌گیری الکتریکی خواهد شد. در این اشاره به شکاف در ابعاد خواهد باعث افزایش شیب‌گیری الکتریکی خواهد شد. در این اشاره به شکاف در ابعاد خواهد باعث افزایش شیب‌گیری الکتریکی خواهد شد. در این اشاره به شکاف در ابعاد خواهد باعث افزایش شیب‌گیری الکتریکی خواهد شد. در این اشاره به شکاف در ابعاد خواهد باعث افزایش شیب‌گیری الکتریکی خواهد شد. در این اشاره به شکاف در ابعاد خواهد باعث افزایش شیب‌گیری الکتریکی خواهد شد.

1 Electrical Aerosol Analyzer (EAA)
2 Low Pressure Differential Mobility Analyzer (LPDMA)
طراحی و ساخت سیستم طبقه‌بندی ذرات آئرولس

\[
d_p = \frac{neC_v}{3\pi\mu Z_p^2}
\]

(1)

\[C_v = 1 + K_v \left[1.257 + 0.40 \exp\left(-1.10/K_v\right) \right]
\]

(2)

\[Kn = \frac{2\lambda}{d_p}
\]

(3)

در این رابطه، \(\lambda \) سطح حرکت ذرات میکروسکوپی‌های آمریکایی و \(d_p \) قطر ذره می‌باشد. در دمای و فشار معمول بینی شرایط متعارف، مسافت ازاد میکروسکوپی در هوا حدودی 10\(\times \)10\(^{-8} \) میکرومتر است (4).

DAMA

طراحی و ساخت سیستم

با بهره‌برداری از یک سیستم ساختاری که به یک سیستم DAMA پارامترهای هندرسی و عملیاتی ساختگاه‌ها، یک سیستم نوین فناوری دانشگاهی و نوآوری می‌شود. ما از روش‌های مهندسی فناوری و برنامه‌ریزی 2021 انتخاب کرده‌ایم. با توجه به شرایط در حال حاضر، ما در این سیستم، یک سیستم ساختاری ساختگاه‌ها را نویسی می‌کنیم.

\[\bar{F} = n_e \bar{F} \rightarrow \bar{F} = \bar{E} q
\]

(5)

در این رابطه، n و q تعداد بار و حسب کولون، E تعداد بار الکتریکی، \(e=1.6\times10^{-19} \) و (6) و (7) استفاده شده‌اند.

\[Z_p^r = \frac{Q_s + Q_c}{R_s / R_p} \ln\left(\frac{R_s}{R_p} \right)
\]

(6)

\[Z_p = Z_{\text{FAR}} \ln\left(\frac{R_s}{R_p} \right)
\]

(7)

در این رابطه، \(R_s \) و \(R_p \) شعاع الکترود برون و مرکزی، \(Z_{\text{FAR}} \) شعاع الکترود برون و مرکزی، V ولتاژ الکترودی و \(Q_s \) و \(Q_c \) شعاع الکترود برون و مرکزی، \(R_{\text{FAR}} \) شعاع الکترود برون و مرکزی، \(Z_{\text{FAR}} \) شعاع الکترود برون و مرکزی، V ولتاژ الکترودی و \(Q_s \) و \(Q_c \) شعاع الکترود برون و مرکزی، \(R_{\text{FAR}} \) شعاع الکترود برون و مرکزی، \(Z_{\text{FAR}} \) شعاع الکترود برون و مرکزی، V ولتاژ الکترودی و \(Q_s \) و \(Q_c \) شعاع الکترود برون و مرکزی، \(R_{\text{FAR}} \) شعاع الکترود برون و مرکزی، \(Z_{\text{FAR}} \) شعاع الکترود برون و مرکزی، V ولتاژ الکترودی و \(Q_s \) و \(Q_c \) شعاع الکترود برون و مرکزی، \(R_{\text{FAR}} \) شعاع الکترود برون و مرکزی، \(Z_{\text{FAR}} \) شعاع الکترود برون و مرکزی، V ولتاژ الکترودی و \(Q_s \) و \(Q_c \) شعاع الکترود برون و مرکزی، \(R_{\text{FAR}} \) شعاع الکترود برون و مرکزی، \(Z_{\text{FAR}} \) شعاع الکترود برون و مرکزی، V ولتاژ الکترودی و \(Q_s \) و \(Q_c \) شعاع الکترود برون و مرکزی، \(R_{\text{FAR}} \) شعاع الکترود برون و مرکزی، \(Z_{\text{FAR}} \) شعاع الکترود برون و مرکزی، V ولتاژ الکترودی و \(Q_s \) و \(Q_c \) شعاع الکترود برون و مرکزی، \(R_{\text{FAR}} \) شعاع الکترود برون و مرکزی، \(Z_{\text{FAR}} \) شعاع الکترود برون و مرکزی، V ولتاژ الکترودی و \(Q_s \) و \(Q_c \) شعاع الکترود برون و مرکزی، \(R_{\text{FAR}} \) شعاع الکترود برون و مرکزی، \(Z_{\text{FAR}} \) شعاع الکترود برون و مرکزی، V ولتاژ الکترودی و \(Q_s \) و \(Q_c \) شعاع الکترود برون و مرکزی، \(R_{\text{FAR}} \) شعاع الکترود برون و مرکزی، \(Z_{\text{FAR}} \) شعاع الکترود برون و مرکزی، V ولتاژ الکترودی و \(Q_s \) و \(Q_c \) شعاع الکترود برون و مرکزی، \(R_{\text{FAR}} \) شعاع الکترود برون و مرکزی، \(Z_{\text{FAR}} \) شعاع الکترود برون و مرکزی، V ولتاژ الکترودی و \(Q_s \) و \(Q_c \) شعاع الکترود برون و مرکزی، \(R_{\text{FAR}} \) شعاع الکترود برون و مرکزی، \(Z_{\text{FAR}} \) شعاع الکترود برون و مرکزی، V ولتاژ الکترودی و \(Q_s \) و \(Q_c \) شعاع الکترود برون و مرکزی، \(R_{\text{FAR}} \) شعاع الکترود برون و مرکزی، \(Z_{\text{FAR}} \) شعاع الکترود برون و م
دانلود ساختمان دستگاه سخت افزاری DMA و دستگاه سخت افزاری DMA مایکس با مشترکهایی با همکاری شرکت گریم، این ابزار در پی تولید و نحوه ورود مولتی کیلوولت، بکلاپوریت داده شده، DMA و DOP2. گردید.

8

1. Setup
2. Dioctyl Phthalate
3. HEPA=High Efficiency Particulate Air Filters
4. Direct Current
طرح و ساخت سیستم طبقه‌بندی ذرات آئروسل

طراحی و ساخت سیستم طبقه‌بندی ذرات آئروسل

محدوده در مخالف ولتاژ‌های اعمال با ثانیه بر سانتی‌متر آزمایش مورد کیلوولت، نیم فواصل به ویلولت 1 – 10

اسمیرنوف کولموگراف آزمون از حاصله نتایج. گرافتقرار نرمال کارایی، با مرتبه‌های داده توزیع که داد نشان (P-value<0.001) باشد نمی‌باشد.

DMA سیستم کارایی به مربوط توصیفی آمارهای خروجی ذرات به دست‌گاه به ورودی ذرات از نسبتی صورت مسئله دره. درجه و دیدگاه به درآمده ذرات خروجی از آن ضریدر صد و برای هر دامنه از اندازه ذرات جداگانه محاسبه گرددنه بود، در جدول شماره 2 آرائه شده است. در این جدول مقادیر مربوط به کارایی در ولتاژهای بالاتر

جدول 1. پارامترهای هندسی و عملیاتی سیستم DMA

پارامترهای هندسی و عملیاتی	مقدار	واحد	عدد
قطر الکترود مرکزی	1	mm	D_e
قطر الکترود برخوردار	2	mm	D_l
اندازه ذرات	3	nm	d_p
فناوری الکتریکی	4	v/m	E
واحد فناوری الکتریکی	5	C	e
ضریب ثابت نتایج	6	N.m²/c²	K_E
نمایندگی در بالا	7	n	n
وزنی کاری میکدر (هوای)	8	Kg/ms	μ
نیروی پوشش از مولکول های هوای	9	μm	λ
عدد نادن	10	-	K_n
فاکتور نصیحه فنی کانیگهام	11	-	C_C
ضریب الکتریکی	12	m²/v.s	Z_p
عدد ویلولت	13	-	Re
طول ناحیه طبقه‌بندی	14	mm	L

سانتی‌متر بر تایب کار، با اعمال ولتاژهای مختلف در محدوده 10 – 1 کیلوولت و به فواصل نیم کیلوولت. مورد آزمایش قرار گرفت. نتایج حاصله از آزمون کولموگراف اسمیرنوف نشان داد که توزیع داده‌های مرتبط با کارایی، نرمال نمی‌باشد (P-value<0.001).

Iran Occupational Health. 2021 (01 Jan);18: 2.
شده اند. با این ترتیب، مقدار مربوط به کارایی دستگاه ساخته شده 92/4 درصد 92/7 درصد 350 نانومتر در ولتاژ 5 کیلوولت بوده و کمترین مقدار آن مربوط به کارایی 19/7/4 درصد 92/7 درصد 350 نانومتر در ولتاژ 5 کیلوولت بوده است. بنابراین، با توجه به نتایج در ولتاژهای کمتر، ذرات کوچکتر سهم بیشتری از توزیع اندازه ذرات خروجی از سیستم را به خود اختصاص داده اند. در حالی که هر چه ولتاژ افزایش یافته سهم ذرات درشت تر در توزیع اندازه ذرات خروجی بیشتر گشته است. بطوریکه تا ولتاژ 7/5 کیلوولت، ذرات خروجی، ذرات زیرمیکرو‌نیوی بوده، و در ولتاژهای بالاتر از 7/5 کیلوولت، غالباً ذرات خروجی، ذرات بزرگتر از میکرون می‌باشند. با توجه به مقادیر مربوط به کارایی سیستم برای ذرات مختلف، ملاحظه می‌گردد که سیستم ساخته شده برای ذرات نانومتری کارایی بالاتری داشته این.

بحث
در ساخته دستگاه DMA ساخته شده در این مطالعه دارای طول 438/44 میلی‌متر، قطر خارجی 72 میلی‌متر، طول داخلی 160 میلی‌متر و قطر الکترود مرکزی و برویی به ترتیب 20 و 55 میلی‌متر بوده و الکترود داخلی از جنس مس، الکترود بیرونی از جنس فولاد ضنگ و سایر طرح‌های مونتاژی و قطعات مختلف ساخته شده در DMA شکل 2. طرح مونتاژی و قطعات مختلف دستگاه DMA ساخته شده.

Iran Occupational Health. 2021 (01 Jan):18: 2.
طراحی و ساخت سیستم توزیع ذرات آئورسل

جدول ۲. آماره‌های توزیعی مربوط به کارایی سیستم DMA در دامنه‌های مختلف اندازه ذرات

اندازه ذرات (nm)	کمیت	بسیار	بالا	متوسط	کم	بسیار کم
۶۰۰-۱۲۰۰	۷۲/۲	۶۷/۲	۶۵/۲	۶۱/۲	۵۸/۲	۴۵/۲
۴۴۴-۷۰۰	۶۴/۲	۶۴/۲	۶۴/۲	۶۴/۲	۶۴/۲	۶۴/۲
۳۰۰-۵۰۰	۶۰/۲	۶۰/۲	۶۰/۲	۶۰/۲	۶۰/۲	۶۰/۲
۱۵۰-۳۰۰	۵۶/۲	۵۶/۲	۵۶/۲	۵۶/۲	۵۶/۲	۵۶/۲
۱۱۱-۲۳۰	۵۲/۲	۵۲/۲	۵۲/۲	۵۲/۲	۵۲/۲	۵۲/۲
فاطمه فصیح رامندی و همکاران

دستورالعمل‌های سیستم DMA به ازای ولتاژ و اندازه ذرات

Schema 3. خاکستر کارایی سیستم DMA با 2 میکرون نیز کارآمد است (۸) این در حالیست که اغلب دستگاه‌های DMA جهت اندازه‌گیری توزیع اندازه ذرات نانومتری طراحی شده اند (۲). لیکن بر اساس مقاله نظری این اسکاترا دستگاه‌هایی با هوا میکرون بزرگ تر از ۲ میکرون به منظور بررسی ارتباط بین تحرک کلیدی آن و اندازه ذرات، وجود دارد (۱۵،۲۵). با DMA توجه به مطالعه عناوین شده، سلسله‌ای این دستگاه، ساخته شده در این مطالعه در به دستگاه‌های ۱ بی‌سی/noها با طول نانومتری ۱۵ (میلیمتر) قرار گرفته است، تا حد میان این فرض مشخصات سیستم می‌باشد که برای ذرات ای به قطر ۲۰۰ نانومتر اندازه‌گیری، در که هدف مطالعه حاصلی بدنی تابع نازدیک آنرول سیستم گردیده است.

تراکمی که در دستگاه و همکاران

نیاز به تعبیه‌گسترDMA در جریان‌های خاص می‌باشد، زیرا بر اساس مقاله نظری، زمان ماند ذرات در داخل دستگاه که بر اساس فرض ذرات اندازه‌گیری گرایش دارند واضح است، یک سیستم می‌باشد که در مطالعه حاضر نیز بررسی شده در سیستم DMA با جریان‌های آنرولی و هوا در عددی از حالت‌ها بررسی گردیده است (۱۲) و در مقاله‌ها علی‌رغم دستگاه‌های مختلف از جمله ۲۰۰ نانومتر در مطالعه تجهیز کننده در حالت مایع، نیز به گردیده است.

نیاز به تعبیه‌گسترDMA در جریان‌های خاص می‌باشد، زیرا بر اساس مقاله نظری، زمان ماند ذرات در داخل دستگاه که بر اساس فرض ذرات اندازه‌گیری گرایش دارند واضح است، یک سیستم می‌باشد که در مطالعه حاضر نیز بررسی شده در سیستم DMA با جریان‌های آنرولی و هوا در عددی از حالت‌ها بررسی گردیده است (۱۲) و در مقاله‌ها علی‌رغم دستگاه‌های مختلف از جمله ۲۰۰ نانومتر در مطالعه تجهیز کننده در حالت مایع، نیز به گردیده است.

نیاز به تعبیه‌گسترDMA در جریان‌های خاص می‌باشد، زیرا بر اساس مقاله نظری، زمان ماند ذرات در داخل دستگاه که بر اساس فرض ذرات اندازه‌گیری گرایش دارند واضح است، یک سیستم می‌باشد که در مطالعه حاضر نیز بررسی شده در سیستم DMA با جریان‌های آنرولی و هوا در عددی از حالت‌ها بررسی گردیده است (۱۲) و در مقاله‌ها علی‌رغم دستگاه‌های مختلف از جمله ۲۰۰ نانومتر در مطالعه تجهیز کننده در حالت مایع، نیز به گردیده است.

نیاز به تعبیه‌گسترDMA در جریان‌های خاص می‌باشد، زیرا بر اساس مقاله نظری، زمان ماند ذرات در داخل دستگاه که بر اساس فرض ذرات اندازه‌گیری گرایش دارند واضح است، یک سیستم می‌باشد که در مطالعه حاضر نیز بررسی شده در سیستم DMA با جریان‌های آنرولی و هوا در عددی از حالت‌ها بررسی گردیده است (۱۲) و در مقاله‌ها علی‌رغم دستگاه‌های مختلف از جمله ۲۰۰ نانومتر در مطالعه تجهیز کننده در حالت مایع، نیز به گردیده است.

نیاز به تعبیه‌گسترDMA در جریان‌های خاص می‌باشد، زیرا بر اساس مقاله نظری، زمان ماند ذرات در داخل دستگاه که بر اساس فرض ذرات اندازه‌گیری گرایش دارند واضح است، یک سیستم می‌باشد که در مطالعه حاضر نیز بررسی شده در سیستم DMA با جریان‌های آنرولی و هوا در عددی از حالت‌ها بررسی گردیده است (۱۲) و در مقاله‌ها علی‌رغم دستگاه‌های مختلف از جمله ۲۰۰ نانومتر در مطالعه تجهیز کننده در حالت مایع، نیز به گردیده است.
طراحی و ساخت سیستم طبقه‌بندی ذرات آئروسل

۱. ویلینگ لی. عملکرد آماری انالیز‌های مکانیسم توزیع ذرات. نشریه مطالعات ۱۳۸۷.
۲. اینترا پی، تیپایاوونگ ن. یک نظریه از بررسی ذرات در ساخت سیستم الکتریکی. دانشگاه وینزارن ۱۹۹۵;
۳. بارامی ا. محدودیت اندازه‌گیری الکترونیکی ذرات در دستاپ و فناوری. دانشگاه تنسکالنارکین ۲۰۰۸;
۴. مکموری پی. بررسی آماری اندازه‌گیری ذرات. نشریه که ولتاژهای دستاپ و فناوری ۲۰۰۸;
۵. میوویو ات، هارا کی، کویاما ه، اکویاما ه. اندازه‌گیری توزیع ذرات به‌کمک سیستم الکتریکی. ایران مهندسی ۱۳۸۷;

نتیجه‌گیری

برای این مطالعه، نتوانستی ایجاد یک سیستم الکتریکی مناسبی برای اندازه‌گیری اندازه‌های ذرات در محیط کار به‌کار برده شد. به‌طوریکه، نتایج نشان داد که این سیستم نمی‌تواند به‌طور مناسب برای اندازه‌گیری اندازه‌های ذرات در محیط کار قابل استفاده باشد.

منابع

۱. Weiling Li. Operation of differential mobility analyzers (DMAs): Department of environmental engineering. Washington University 2006.
۲. Intra P, Tippayawong N. An overview of differential mobility analyzers for size classification of nanometer-sized aerosol particles. Songklanakarin J Sci Technol. 2008;30(2):243-56.
۳. McMurry PH. A review of atmospheric aerosol measurements. Atmospheric Environment. 2000;34 (12):1959-99.
۴. Alfarra M. Insights into atmospheric organic aerosols using an aerosol mass spectrometer. University of Manchester; 2004.
۵. Bahrami A. Method of sampling and analysis of pollutants in air. Tehran: Fanavaran; 2015.
۶. Zhang Y. Indoor air quality engineering: CRC press Boca Raton, FL; 2005.
۷. Zhang S-H, Akutsu Y, Russell LM, Flagan RC, Seinfeld JH. Radial differential mobility analyzer. Aerosol Science and Technology. 1995;23(3):357-72.
۸. Myojo T, Ebara K, Koyama H, Okuyama K. Size measurement of polystyrene latex particles larger than

ذرات خارج شده از سیستم در هر ولتاژ، ذراتی با یک دامنه کوچک از اندازه ذرات بودهاند، میتوان این نکته پی برد که سیستم ساخته شده در اغلب ولتاژها باعث سقوط ذرات چند توزیعی شده بسته یک روند تغییری شد.

پژوهش‌های دیگر نشان داد که این سیستم قادر به پیش‌بینی اندازه‌های ذرات در محیط کار است. نتایج نشان داد که می‌تواند به‌طور مناسب برای اندازه‌گیری اندازه‌های ذرات در محیط کار قابل استفاده باشد. در نتیجه برای اینکه نبوده از مسئله خود، باید تاکید کرد که ذرات کوچکتر باعث تجویز می‌شوند و تحقیقات الکتریکی بزرگ‌تر به دست‌آمده است. به همین دلیل، این مطالعه به‌طور مناسب برای اندازه‌گیری اندازه‌های ذرات در محیط کار قابل استفاده باشد.

یران مهندسی. 2021 (01 Jan);18: 2.
1 micrometer using a long differential mobility analyzer. Aerosol science and technology. 2004;38(12):1178-84.
9. Erikson HA. On the nature of the negative and positive ions in air, oxygen and nitrogen. Physical Review. 1922;20(2):117-26.
10. Erikson HA. On the effect of the medium on gas ion mobility. Physical Review. 1927;30(3):339-47.
11. Zeleny J. The distribution of mobilities of ions in moist air. Physical Review. 1929;34(2):310-34.
12. Chapman S. Carrier mobility spectra of spray electrified liquids. Physical Review. 1937;52(3):184-90.
13. Hewitt G. The charging of small particles for electrostatic precipitation. Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics. 1957;76(3):300-6.
14. Liu BY, Pui DY. On the performance of the electrical aerosol analyzer. Journal of Aerosol Science. 1975;6(3-4):249-64.
15. Knutson E, Whitby K. Aerosol classification by electric mobility: apparatus, theory, and applications. Journal of Aerosol Science. 1975;6(5):443-51.
16. Seto T, Nakamoto T, Okuyama K, Adachi M, Kuga Y, Takeuchi K. Size distribution measurement of nanometer-sized aerosol particles using DMA under low-pressure conditions. Journal of Aerosol Science. 1997;28(2):193-206.
17. Chapman SJ. Fortran 90/95 for scientists and engineers: McGraw-Hill, Inc.; 2003.
18. Fash-Ramandi F. Construction feasibility study of a Differential Mobility Analyzer (DMA) for Nano particle size distribution measurement of aerosol [dissertation] 2018.
19. Graskow BR. Design and development of a fast aerosol size spectrometer:Ph.D. Thesis, University of Cambridge, UK. 2001.
20. Intra P, Tippayawong N. An electrical mobility spectrometer for aerosol size distribution measurement. Proceedings of International Conference on Technology