Src Family Protein Tyrosine Kinase Regulates the Basolateral K Channel in the Distal Convoluted Tubule (DCT) by Phosphorylation of KCNJ10 Protein

Chengbiao Zhang†§, Lijun Wang†, Sherin Thomas§, Kemeng Wang§, Dao-Hong Lin§, Jesse Rinehart*¶, and Wen-Hui Wang*§

From the †Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China, the §Department of Pharmacology, New York Medical College, Valhalla, New York 10595, the ‡Department of Cellular and Molecular Physiology and §Systems Biology Institute, Yale University, New Haven, Connecticut 06520

Background: KCNJ10 is a key component of the basolateral K channels in DCT.

Results: SFK phosphorylates KCNJ10 at Tyr⁸ and Tyr⁹, and inhibition of SFK decreases basolateral K channel activity in DCT.

Conclusion: SFK stimulates the basolateral K channels in DCT by phosphorylating KCNJ10.

Significance: Tyrosine phosphorylation of KCNJ10 plays a role in regulating membrane transport in DCT.

The loss of function of the basolateral K channels in the distal nephron causes electrolyte imbalance. The aim of this study is to examine the role of Src family protein tyrosine kinase (SFK) in regulating K channels in the basolateral membrane of the mouse initial distal convoluted tubule (DCT1). Single-channel recordings confirmed that the 40-picosiemen (pS) K channel was the only type of K channel in the basolateral membrane of DCT1. The suppression of SFK reversibly inhibited the basolateral 40-pS K channel activity in cell-attached patches and decreased the Ba²⁺-sensitive whole-cell K currents in DCT1. Inhibition of SFK also shifted the K reversal potential from −65 to −43 mV, suggesting a role of SFK in determining the membrane potential in DCT1. Western blot analysis showed that KCNJ10 (Kir4.1), a key component of the basolateral 40-pS K channel in DCT1, was a tyrosine-phosphorylated protein. LC/MS analysis further confirmed that SFK phosphorylated KCNJ10 at Tyr⁸ and Tyr⁹. The single-channel recording detected the activity of a 19-pS K channel in KCNJ10-transfected HEK293T cells and a 40-pS K channel in the cells transfected with KCNJ10 + KCNJ16 (Kir5.1) that form a heterotetramer in the basolateral membrane of the DCT. Mutation of Tyr⁸ did not alter the channel conductance of the homotetramer and heterotetramer. However, it decreased the whole-cell K currents, the probability of finding K channels, and surface expression of KCNJ10 in comparison to WT KCNJ10. We conclude that SFK stimulates the basolateral K channel activity in DCT1, at least partially, by phosphorylating Tyr⁹ on KCNJ10. We speculate that the modulation of tyrosine phosphorylation of KCNJ10 should play a role in regulating membrane transport function in DCT1.

The DCT³ is responsible for the reabsorption of 5–10% of the filtered NaCl load and is the target of thiazide diuretics (1, 2). It is composed of early (DCT1) and late DCT (DCT2), and the expression of ion transporters is also not identical between DCT1 and DCT2. Although the Na/Cl cotransporter (NCC) is expressed in the apical membrane throughout the DCT (3, 4), ROMK (renal outer medullary K) and ENaC (epithelial Na channel) have been shown to be highly expressed in the apical membrane of DCT2 but not of DCT1 (5, 6). The absorption of NaCl in DCT1 is a two-step process. Na and Cl enter the cells across the apical membrane through the NCC, and Na is then pumped out the cell through the basolateral Na-K-ATPase, whereas Cl exits the cell along its electrochemical gradient by basolateral Cl channels (7).

The basolateral K channel in DCT1 plays several important roles in regulating the transepithelial membrane transport in DCT1. First, the K channels participate in generating the cell membrane potential, which is the driving force for Cl exit across the basolateral membrane (8). Therefore, the activity of the basolateral K channel has a significant effect on the transepithelial Cl absorption in DCT1. Second, they are responsible for K recycling, which is essential for maintaining Na-K-ATPase activity (9). It has been suggested that the activity of Na-K-ATPase must be matched with the basolateral K conductance to sustain transepithelial Na transport (9). Finally, the basolateral K channel provides the electrochemical driving force for apical Mg²⁺ entering the DCT cells.

The patch clamp experiments have identified a 40-pS K channel as the only type of K channel in the basolateral membrane of DCT1 (10). It has been established generally that the basolateral 40-pS K channel is a heterotetramer and composed of KCNJ10 (Kir4.1) and KCNJ16 (Kir5.1) (10–13). This is on
the basis of the observations that expression of Kir.4.1 and Kir.5.1 formed a 40-pS K channel, whereas expression of Kir.4.1 alone formed a 20-pS K channel, and expression of Kir.5.1 failed to produce a functional K channel (10, 14, 15). Although the molecular nature of the basolateral K channels is established, the regulatory mechanism of the basolateral K channels is poorly understood. It has been demonstrated that the 40-pS K channel in the DCT is inhibited by Mg²⁺ and pH-sensitive (10). Because SFKs such as c-Src are highly expressed in the distal nephron, including the DCT, and plays an important role in regulating ROMK (Kir1.1) (16, 17), we suspect that SFKs may also regulate the basolateral K channels. Therefore, the aim of this study is to explore the role of SFK in regulating the basolateral K channels in DCT1 and to determine the molecular mechanisms of the effect of SFKs.

EXPERIMENTAL PROCEDURES

Preparation of DCT1—C57BL/6 mice (either sex, 4–6 weeks old) were purchased from the Jackson Laboratory (Bar Harbor, ME). The mice were fed with control diet and had free access to water. After the mice were sacrificed by cervical dislocation, we perfused the left kidney with 5 ml collagenase type 2 (1 mg/ml) containing L-15 medium (Life Technology). The collagenase-perfused kidney was removed, and the renal cortex was cut with a sharp razor. The renal cortex was further cut into small pieces that were then incubated in collagenase-containing L-15 medium for 45–60 min. After collagenase treatment, the tissue was washed three times with L-15 medium and transferred to an ice-cold chamber for dissection. Fig. 1A shows an isolated tubule in which DCT is included. The experiments were performed on DCT1, a nephron segment immediately adjacent to the glomerulus (Fig. 1, B and C). The isolated DCT was transferred onto a 5 × 5-mm coverglass coated with polylysine (Sigma) to immobilize the tubule, and the coverglass was placed in a chamber mounted on an inverted microscope (Nikon). The DCT was superfused with HEPES-buffered NaCl solution containing 140 mM NaCl, 5 mM KCl, 1.8 mM MgCl₂, 1.8 mM CaCl₂, and 10 mM HEPES (pH = 7.4) at room temperature.

Cell Culture and Transient Transfection—HEK293T cells (ATCC) were used for transient expression of FLAG-tagged or GFP-tagged KCNJ10 and GFP-tagged KCNJ16. The cells were grown in DMEM (Invitrogen) supplemented with 10% FBS (Invitrogen) in 5% CO₂ and 95% air at 37 °C. Cells were grown to 50–70% confluence for transfection, and the corresponding cDNAs were applied simultaneously to the cells using TurboFect. After 24 h of incubation, the cells were treated with 1 ml of 1% PBST lysis buffer with protease and phosphatase inhibitors, followed by centrifugation at 13,000 rpm for 20 min at 4 °C. The supernatant was saved at −80 °C for the pull-down experiments in the next step. For harvesting FLAG-tagged KCNJ10 in the sample, 80 µl of anti-FLAG affinity gel (Sigma) was washed with PBS and added to the sample, and 4 µg of IgG conjugated beads were added to the sample as a control. The sample was gently rocked for 2 h at 4 °C and then subjected to centrifugation at 6000 rpm for 2 min to harvest KCNJ10 proteins.

Preparation of Protein Samples—The cells were placed in a lysis buffer containing 150 mM NaCl, 50 mM Tris HCI, 1% Nonidet P-40 (pH 8.0), and protease inhibitor mixture (1%) (Sigma). The prepared tissue was then homogenized and kept on ice for an additional 30 min. The sample was subjected to centrifugation at 13,000 rpm for 8 min at 4 °C, and protein concentrations were measured in duplicate using a Bio-Rad Dc protein assay kit.

Immunoprecipitation and Western Blot Analysis—The corresponding antibodies were added to the protein samples (500 µg) harvested from cell cultures with a ratio of 4:1 mg/liter protein. The mixture was gently rotated at 4 °C overnight, followed by incubation with 25 µl of protein A/G plus agarose (Santa Cruz Biotechnology, Santa Cruz, CA) for an additional 2 h at 4 °C. The tube containing the mixture was centrifuged at 3000 rpm, and the agarose bead pellets were mixed with 25 µl of 2× SDS sample buffer containing 4% SDS, 100 mM Tris-HCl (pH 6.8), 20% glycerol, 200 mM DTT, and 0.2% bromphenol blue. After boiling the sample for 5 min, the proteins were resolved by electrophoresis on 8% SDS-polyacrylamide gels and then transferred to nitrocellulose membranes. The membranes were blocked with 5% nonfat dry milk in TBS and incubated overnight with the primary antibody at 4 °C. The membrane was then washed with 0.05% Tween 20-Tris-buffered saline three times followed by incubation for 30 min with the respec-
tive second antibody. After three washes, the membranes were scanned by an Odyssey infrared imaging system (LI-COR) at a wavelength of 680 or 800 nm.

Electrophysiology—Within 24 h after transfection, the cells were treated with trypsin-containing medium (TrypleExpress-care) (Invitrogen) for 10 min to detach the cells. We followed the method described previously to prepare the cells for the patch clamp experiments (19). We carried out the perforated whole-cell patch clamp experiments at room temperature. The cells were incubated with a bath solution containing 140 mM KCl, 1.8 mM MgCl₂, 1.8 mM CaCl₂, and 10 mM HEPES (pH 7.4). Fluorescence signal (an indication of positive transfection) was detected with an intensified video imaging system, including a SITE 68 camera (Long Island Industries). Borosilicate glass (1.7-mm outer diameter) was used to make the patch clamp pipettes that were pulled with a Narishige electrode puller. The pipette had a resistance of 2–4 MΩ when filled with 140 mM KCl. The tip of the pipette was filled with pipette solution containing 140 mM KCl, 2 mM MgCl₂, 1 mM EGTA, and 5 mM HEPES (pH 7.4). The pipette was then backfilled with amphoterin B (20 μg/0.1 ml) containing the pipette solution. After forming a high-resistance seal (>2 GΩ), the membrane capacitance was monitored until the whole-cell patch configuration was formed. The cell membrane capacitance was measured and compensated. The K currents were measured by an Axon 200A patch clamp amplifier. The currents were low-pass-filtered at 1 kHz, digitized by an Axon interface (Digidata 1200), and data were analyzed using the pClamp software system 9 (Axon).

The single-channel Po was close to 0.5, the channel numbers could be calculated by counting the highest K current levels in a calculation of channel numbers, we selected a channel recording showing that application of 100 nM PP1 inhibited the 40-pS K channel in 178 patches. Moreover, this type of K channel was the only type of K channel in the basolateral membrane of the DCT1. Thus, we confirmed the previous report that the 40-pS K channel was the main type of K channels in the basolateral membrane of DCT1 (10). Fig. 2A is a typical channel recording showing that the K channel activity was not voltage-dependent between 0 and −60 mV and that the K channel current was typically inwardly rectifying. SFK has been shown to play a role in regulating K channels, such as ROMK, in the aldosterone-sensitive distal nephron (21, 22). To examine whether SFK also regulates the basolateral 40-pS K channels in the DCT1, we tested the effect of PP1, a specific inhibitor of SFK (23), on the 40-pS K channels in the DCT1. Fig. 3 is a recording showing that application of 100 nM PP1 inhibited the 40-pS K channel. From the inspection of Fig. 3, it is apparent that the inhibition of SFK not only reduced channel activity (NPo) from 2.9 ± 0.4 to 0.2 ± 0.1 (n = 10) but also decreased K current amplitude, suggesting that inhibition of the 40-pS K channel caused membrane depolarization. However, inhibition of SFK did not alter channel conductance (supplemental Fig. S1). Fig. 2B is an I (current)/V (voltage) curve demonstrating that the channel conductance was about 39.6 ± 3 pS in the presence of PP1. However, inhibition of SFK shifted the I/V curve to the left (depolarization). The effect of PP1 was reversible because washout restored the channel activity. Therefore, the results support the role of SFK in stimulating basolateral K channel activity.

After demonstrating that suppression of SFK inhibited the 40-pS K channel, we used perforated whole-cell recordings to measure Ba²⁺-sensitive whole-cell K currents under control conditions (without PP1) and in the presence of PP1. Because
we (data not shown) and others failed to detect any functional K channel activity in the apical membrane of DCT1 (8), the K currents measured with a perforated whole-cell recording in DCT1 cells should represent the whole population of basolateral 40-pS K channels. Fig. 4 shows a set of whole-cell recordings under control conditions (without PP1) and in the presence of 100 nM PP1 (lower panel). The whole-cell K currents in DCT1 show a typical inwardly rectifying characteristic. Moreover, inhibition of SFK decreased the Ba2+/H11001-sensitive inward K currents at 60 mV from 1296 ± 205 pA (n = 10) under control
conditions to 330 ± 144 pA ($n = 8$) (Fig. 4B). Therefore, the results obtained from the whole-cell recordings are consistent with the finding made in the single-channel recordings and support the role of SFK in regulating basolateral K channels in DCT1.

Because the 40-pS K channel is the only type of K channel expressed in the basolateral membrane of DCT1, inhibition of the 40-pS K channel activity is expected to depolarize the cell membrane potential in DCT1. This hypothesis was confirmed by measuring the K reversal potential in DCT1 with ramp volt-
age from −160 to 40 mV. Fig. 4C is a recording showing the I/V curve with 140 mM NaCl/5 mM KCl in the bath and 140 mM KCl in the pipette. Under control conditions, the K reversal potential was -65 ± 5 mV, whereas inhibition of SFK with 100 nm PP1 shifted the K reversal potential to -43 ± 8 mV ($n = 6$). This is consistent with the results reported in Fig. 2B in which inhibition of SFK shifted the I/V curve to the right (depolarization) about 20 mV. Hence, the results suggest that SFK plays an important role in determining the basolateral 40-pS K channel activity and the cell membrane potential in DCT1.

Immunostaining and electrophysiological studies have indicated that KCNJ10 is an important component of the basolateral K channels in the DCT (12, 15). Thus, we hypothesize that SFK may regulate the basolateral K channels in DCT1 by phosphorylating KCNJ10. Thus, we used a tyrosine phosphorylation antibody to examine whether c-Src phosphorylates KCNJ10. KCNJ10 proteins were harvested in HEK293T cells transfected with FLAG-tagged-KCNJ10 by immunoprecipitation of the cell lysates with FLAG antibody. Tyrosine-phosphorylated KCNJ10 was detected with anti-tyrosine phosphorylation antibody (PY20). Fig. 5 shows a Western blot analysis demonstrating that KCNJ10 is a tyrosine-phosphorylated protein and that the expression of c-Src increased tyrosine phosphorylation of KCNJ10. We followed the methods described previously and used mass spectrometry to identify phosphorylation sites of KCNJ10 (24). We isolated FLAG-tagged KCNJ10 from HEK293T cells, digested the protein with trypsin, and analyzed the peptides with LC/MS. We observed significant peptides that covered 25% of the protein sequence and unambiguously identified two phosphotyrosine residues at positions 8 (Tyr8) (supplemental Fig. S2) and 9 (Tyr9) in the amino terminus of KCNJ10 (Fig. 6).

After demonstrating that KCNJ10 is a tyrosine-phosphorylated protein, we examined the role of tyrosine phosphorylation in regulating KCNJ10 activity in HEK293T cells transfected with WT or KCNJ10Y9F. We detected a 19 \pm 1-pS K channel in the cells transfected with WT KCNJ10 but not in the vector-transfected cells (Fig. 7A). Thus, our finding is in agreement with the report that the conductance of the basolateral K channel in DCT is about 20 pS in KCNJ16 knockout mice in whom

c-Src Phosphorylates KCNJ10 (Kir4.1)

![Western Blot Analysis](image1)

FIGURE 5. Shown is a Western blot analysis demonstrating the tyrosine phosphorylation of KCNJ10 in the absence or presence of c-Src. HEK293T cells were transfected with FLAG-tagged KCNJ10 or KCNJ10 + c-Src. KCNJ10 proteins were harvested with FLAG antibody, and tyrosine-phosphorylated KCNJ10 proteins were detected with PY20. The expression of KCNJ10 and c-Src is shown in the two lower panels. IP, immunoprecipitation; IB, immunoblot.

![LC/MS Workflow](image2)

FIGURE 6. LC/MS workflow for KCNJ10 phosphotyrosine identification. Immunoprecipitated KCNJ10 was digested with trypsin, and phosphopeptides were enriched with titanium dioxide (TiO_2) and identified with LC/MS. A representative annotated tandem MS spectrum and sequence coverage (y and b ions) are shown for the KCNJ10 phosphopeptide VYY8SQTQTESRPLMGPGIR ($m/z = 794.03$).
four KCNJ10 monomers presumably form a homotetramer (15). We also used perforated whole-cell recordings to measure the Ba\(^{2+}\)/H11001-sensitive K currents in the cells transfected with WT or KCNJ10 mutants in which Tyr 8 (KCNJ10Y8F), Tyr 9 (KCNJ10Y9F), or Tyr8/9 (KCNJ10Y8/9F) were each mutated to phenylalanine. Fig. 8A shows a recording of a typical inwardly rectifying K current with symmetrical 140 mM KCl solution in the bath and pipette. It is apparent that the K currents in the cells transfected with either KCNJ10Y9F or KCNJ10Y8/9F were significantly lower than those with WT KCNJ10, whereas the protein expression of KCNJ10Y9F and KCNJ10Y8/9F was similar to those of WT KCNJ10. The results summarized in Fig. 8B demonstrate that K currents in cells transfected with KCNJ10Y9F and KCNJ10Y8/9F were 57 ± 14 pA/pF and 80 ± 20 pA/pF (n = 6), a value significantly lower than in those transfected with WT KCNJ10 (290 ± 40 pA/pF, n = 6). The mutation of the Tyr9-induced decrease in whole-cell K currents was specific because of the K currents measured in the cells transfected with KCNJ10Y9F (295 ± 42 pA/pF, n = 6) and KCNJ10Y8/9F (310 ± 50 pA/pF, n = 6) were similar to those of WT K channels (supplemental Fig. S3 and Fig. 8B).

To examine whether the mutation of the Tyr9-induced decrease in K currents was due to diminishing K channel conductance or channel activity (NPo), we examined the K channel activity in the cells transfected with WT or KCNJ10Y9F. The mutation of Tyr9 did not significantly affect K channel conductance (18.5 ± 1 pS) in comparison to that of the WT (Fig. 7B), but it significantly decreased the probability of finding the 19-pS K channels in the KCNJ10Y9F-transfected cells. We observed 19-pS K channels in WT KCNJ10-transfected cells in 23 of 41 total patches (56%), whereas this K channel was only observed in 14 of 45 total patches (31%) in cells transfected with KCNJ10Y9F (Fig. 7C). Moreover, the mean NPo per patch with the 19-pS K channel was also significantly lowered (1.0 ± 0.15) in cells transfected with KCNJ10Y9F than in those with the WT KCNJ10 (1.59 ± 0.1) (Fig. 7D). Thus, the decrease in K currents of cells transfected with KCNJ10Y9F was possibly induced by decreasing the channel open probability and reducing the number of active K channels in the plasma membrane.

To test the role of Tyr9 phosphorylation in the regulation of the basolateral K channel in the DCT, we extended the study by examining the channel activity in cells transfected with KCNJ10 + KCNJ16 because the basolateral K channel in the native DCT is a heterotetramer of Kir4.1/Kir5.1 (10). Fig. 9 shows a single-channel recording in HEK293T cells transfected with KCNJ10/KCNJ16 or KCNJ10Y9F/KCNJ16. The experiments were performed in cell-attached patches with 140 mM NaCl/5 mM KCl in the bath and 140 mM KCl in the pipette. We confirmed a previous report that coexpression of KCNJ10 and

FIGURE 7. A recording showing the representative K channel activity in HEK293T cells transfected with GFP-tagged KCNJ10 (A) or with KCNJ10Y9F (B). The experiments were performed in a cell-attached patch with 140 mM KCl in the patch pipette and 140 mM NaCl/5 mM KCl in the bath. The channel closed level is indicated by a dotted line, and the clamping potential is indicated at the top of each trace. C, bar graph showing the total number of patches with channel activity (gray bar) and without K channel activity (black bar) in cells transfected with WT or KCNJ10Y9F. D, bar graph showing the mean channel activity (NPo) in cells transfected with WT (n = 23) or KCNJ10Y9F (n = 14).
KCNJ16 formed a 40-pS K channels (10). Fig. 10A shows an I/V curve of WT and the mutant heterotetramer (KCNJ10Y9F / H11001KCNJ16). It is apparent that the mutation of Tyr9 did not affect single K channel conductance. Moreover, the analysis of the single-channel recording in those patches with K channel activity showed that the mean channel open probability (P\textsubscript{o}) in the cells transfected with KCNJ10Y9F / H11001KCNJ16 (0.55 ± 0.1, \(n = 5\)) was not significantly lower than those with WT K channels (0.75 ± 0.1, \(n = 6\)) (Fig. 10B). However, as observed in the cells transfected with KCNJ10 alone, the probability of finding the 40-pS K channel in KCNJ10Y9F / H11001KCNJ16-transfected cells was lower than in those with KCNJ10 + KCNJ16. We observed a
40-pS K channel in WT heterotetramer-transfected cells in 13 of 26 total patches (50%), whereas this K channel was only observed in 9 of 33 total patches (27%) in the cells transfected with KCNJ10Y9F/KCNJ16 (Fig. 10A). Thus, the mean number per patch in the cells transfected with KCNJ10 + KCNJ16 (1.8 ± 0.4, n = 26) was significantly higher than in those with the mutant (0.8 ± 0.25, n = 33). The whole-cell K currents in the cells transfected with KCNJ10Y9F + KCNJ16 (161 ± 12 pA/pF) were also significantly lower than in those with WT K channels (440 ± 30 pA/pF, n = 7) (Fig. 11A). The notion that the mutation of Tyr9 of KCNJ10 decreased the functional K channel number in the plasma membrane is also supported by biotin surface labeling. Fig. 11B shows a Western blot analysis showing the expression of KCNJ10 in the plasma membrane of the cells transfected with FLAG-tagged KCNJ10 and GFP-tagged KCNJ16. Although the total expression of KCNJ10 and KCNJ16 was similar in WT or in the mutant-transfected cells, the expression of KCNJ10 in the plasma membrane of the mutant-transfected cells was lower than those in WT heterotetramer-transfected cells. In four such experiments, the normalized surface expression of KCNJ10 in cells transfected with mutant Kir4.1/5.1 was only 40 ± 8% (p < 0.05) of those with WT K channels (data were normalized in comparison with tubulin). Thus, a Tyr9 mutation-induced decrease in K channel activity results, at least partially, from a decrease in K channel number in the plasma membrane.

DISCUSSION

This study confirmed the previous finding that the inwardly rectifying 40-pS K channel is the only type of K channel expressed in the basolateral membrane of DCT1(10). The basolateral K channels in DCT1 are responsible for maintaining K recycling across the basolateral membrane and participate in generating cell membrane potential, which provides the driving force for Cl exit across the basolateral membrane. Thus, it is conceivable that basolateral K channel activity should play a role in regulating transepithelial Cl movement in the DCT1 so that a high basolateral K channel activity stimulates Cl secretion, whereas a low basolateral K channel activity inhibits it. Relevant to this notion is the observation that inhibition of basolateral membrane K conductance decreased the short-circuit current and the net rate of transepithelial Cl movement in the airway epithelium (25). Because the intracellular Cl concentration has been shown to affect Na-coupled Cl transporters (26), it is possible that basolateral K channel activity may also regulate NCC activity through altering the intracellular Cl levels in the DCT. Hence, the basolateral K channels are critically involved in the maintenance of the trans-epithelial transport in the DCT.

Three lines of evidence indicate that SFK plays an important role in regulating the basolateral 40-pS K channels. First, the inhibition of SFK decreased the 40-pS K channel activity defined by \(N_P \). Second, inhibition of SFK reduced the whole-cell \(\text{Ba}^{2+} \)-sensitive K currents in DCT1. Because no functional apical K channel activity was detected in DCT1, a decrease in the whole-cell K currents induced by inhibiting SFK must be the result of inhibiting the basolateral K channels. Third, inhibiting SFK shifted the K reversal potential of DCT1 from \(-65 \text{ mV}\) to \(-43 \text{ mV}\), an indication of membrane depolarization. This is consistent with the notion that the basolateral 40-pS K channel is the main K channel type in DCT1. Thus, SFK-mediated regulation of the 40-pS K channel plays an important role in determining membrane potential in DCT1. In contrast to the
effect of SFK on the basolateral 40-pS K channels in DCT1, SFK has been shown to inhibit ROMK channels in the CCD (16, 27–29). This effect on ROMK is achieved through direct phosphorylation and by abolishing the stimulatory effect of serum glucocorticoid-inducible kinase 1 (SGK1) on with-no-lysine (K) kinase 4 (WNK4), which inhibits ROMK (16, 19, 30). We speculate that the different responses of ROMK and basolateral 40-pS K channels to SFK may play a role in regulating renal K secretion. For instance, a high K intake has been shown to suppress the expression of SFK in the kidney (31). A decrease in SFK activity in the DCT1 is expected to inhibit basolateral 40-pS K channels, thereby depolarizing cell membrane potential. A depolarization in the basolateral membrane should lead to a decrease in the driving force for Cl exit in the basolateral membrane, thereby inhibiting the interaction between WNK and Ste20-related proline/alanine-rich kinase (SPAK) (26), which is required for the activation of the NCC (32, 33). Hence, a decrease in basolateral K channel activity should inhibit Na absorption and increase Na delivery to the connecting tubule and the CCD. Accordingly, it stimulates K secretion in the connecting tubule/CCD. On the other hand, the down-regulation of SFK activity induced by high K intake is expected to stimulate ROMK channels (34). Thus, SFK may function to synchronize apical ROMK channel activity in the connecting tubule/CCD and basolateral 40-pS K channels in the DCT to stimulate renal K secretion.

A large body of evidence indicates that the basolateral membrane of the DCT (10, 12). Second, coexpression of Kir4.1 and Kir5.1 in HEK293 cells (35) and in *Xenopus* oocytes (14) formed a K channel sharing the biophysical properties of the basolateral 40-pS K channel in the DCT. We also showed that coexpression of KCNJ10 and KCNJ16 formed a 40-pS K channel. Third, an immunostaining study has shown that both Kir4.1 and the calcium-sensing receptor were colocalized in the basolateral membrane of the DCT (36). The significance of Kir4.1 in regulating membrane transport in the DCT is demonstrated in patients with SeSAME or EAST (epilepsy, ataxia, sensorineural deafness, and tubulopathy) syndrome, characterized by seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (15,33). The renal phenotypes of SeSAME syndrome are hypokalemia, metabolic alkalosis and hypomagnesemia(37). Hypomagnesemia should be the result of the decrease in the driving force for Mg2+ entry across the apical membrane because of the depolarization of the DCT, whereas hypokalemia results from compromised NCC activity induced by the diminished Cl exit across the basolateral membrane. Consequently, delivery of NaCl to both the connecting tubule and the CCD is increased, and it leads to enhanced Na absorption at the expense of increased K secretion.

The observation that KCNJ10 is phosphorylated by SFK suggests that the stimulatory effect of SFK on the basolateral 40-pS K channel is achieved, at least in part, by phosphorylation of KCNJ10 at Tyr9. Although LS/MS analysis identified the phosphorylation of KCNJ10 at Tyr9 and Tyr5, two lines of evidence suggest that phosphorylation of Tyr9 is essential for the effect of SFK on the basolateral 40-pS K channels. First, mutation of
Tyr9 decreased K currents in the cells transfected with KCNJ10 alone or KCNJ10 + KCNJ16. Second, the probability of finding KCNJ10 was significantly lower in cells transfected with KCNJ10 and is one of the important sites that regulate the basolateral K channel. This conclusion is supported by the observation that the surface expression of KCNJ10 is significantly lower in cells transfected with KCNJ10 than those with the WT. However, it is also possible that mutation of Tyr9 of KCNJ10 may also have a minor effect on the channel open probability.

Although the role of SFK in stimulating basolateral K channels in the DCT1 was established, the physiological stimuli that activate SFK and regulate the basolateral K channels are not known. Angiotensin II has been shown not only to play an important role in regulating the NCC in the DCT but also to stimulate SFK activity (20, 38). Therefore, it is possible that angiotensin II may stimulate the basolateral K channel activity by an SFK-dependent pathway. Further experiments are required to test this hypothesis. In conclusion, the basolateral 40-pS K channel is phosphorylated by SFK and Tyr9 of KCNJ10 and is one of the important sites that regulate the basolateral K channel activity in DCT1.

REFERENCES

1. Ellison, D. H., Valazquez, H., and Wright, F. S. (1987) Thiazide-sensitive sodium chloride cotransport in early distal tubule. Am. J. Physiol. Renal Physiol. 253–22:F546–F554
2. Ellison, D. H., Velazquez, H., and Wright, F. S. (1989) Adaptation of the distal convoluted tubule of the rat. Structural and functional effects of dietary salt intake and chronic diuretic infusion. J. Clin. Invest. 83, 113–126
3. Obermüller, N., Bernstein, P., Velázquez, H., Reilly, R., Moser, D., Ellison, D. H., and Bachmann, S. (1995) Expression of the thiazide-sensitive Na–Cl cotransporter in rat and human kidney. Am. J. Physiol. 269, F900–F910
4. Gamba, G. (1999) Molecular biology of distal nERNON sodium transport mechanisms. Kidney Int. 56, 1606–1622
5. Wade, J. B., Fang, L., Coleman, R. A., Liu, J., Grimm, P. R., Wang, T., and Welling, P. A. (2011) Differential regulation of ROMK (Kir1.1) in distal nERNON segments by dietary potassium. Am. J. Physiol. Renal Physiol. 300, F1385–F1393
6. Schmitt, R., Ellison, D. H., Farman, N., Rossi, B. C., Reilly, R. F., Reeves, W. B., Oherb+fumer, I., Tapp, R., and Bachmann, S. (1999) Developmental expression of sodium entry pathways in rat nERNON. Am. J. Physiol. Renal Physiol. 276, F367–F381
7. Bernstein, P. L., and Ellison, D. H. (2011) Diuretics and salt transport along the nERNON. Semin. Nephrol. 31, 475–482
8. Hebert, S. C., Déliger, G., Giebisch, G., and Wang, W. (2005) Molecular diversity and regulation of renal potassium channels. Physiol. Rev. 85, 319–371
9. Schultz, G. S. (1981) Homocellular regulatory mechanisms in sodium transport epithelia: avoidance of extinction by “flush-through”. Am. J. Physiol. 241, F579–F590
10. Lourdel, S., Paulais, M., Cluzeaud, F., Bens, M., Tanemoto, M., Kurachi, Y., Vandewalle, A., and Teulon, J. (2002) An inward rectifier K+ channel at the basolateral membrane of the mouse distal convoluted tubule. Similarities with Kir4.1–Kir5.1 heteromeric channels. J. Physiol. 538, 391–404
11. Williams, D. M., Lopes, C. M., Rosenhouse-Dantsker, A., Connelly, H. L., Matavel, A., O-Uchi, J., McBeath, E., and Gray, D. A. (2010) Molecular basis of decreased Kir4.1 function in SeSAME/EAST syndrome. J. Am. Soc. Nephrol. 21, 2117–2129
12. Lachheb, S., Cluzeaud, F., Bens, M., Genete, M., Hibino, H., Lourdel, S., Kurachi, Y., Vandewalle, A., Teulon, J., and Paulais, M. (2008) Kir4.1/Kir1.1 channel forms the major K+ channel in the basolateral membrane of mouse renal collecting duct principal cells. Am. J. Physiol. Renal Physiol. 294, F1398–F1407
13. Cha, S. K., Huang, C., Ding, Y., Qi, X., Huang, C. L., and Miller, R. T. (2011) Calcium-sensing receptor decreases cell surface expression of the inwardly rectifying K+ channel Kir4.1. J. Biol. Chem. 286, 1828–1835
14. Pessia, M., Tucker, S. J., Lee, K., Bond, C. T., and Adelman, J. P. (1996) Subunit positional effects revealed by novel heteromeric inwardly rectifying K+ channels. EMBO J. 15, 2980–2987
15. Paulais, M., Bloch-Faure, M., Picard, N., Jacques, T., Ramakrishnan, S. K., Keck, M., Sohret, F., Eladari, D., Houiller, P., Lourdel, S., Teulon, J., and Tucker, S. J. (2011) Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K+ channel subunit contrasts with that observed in SeSAME/EAST syndrome. Proc. Natl. Acad. Sci. U.S.A. 108, 10361–10366
16. Lin, D. H., Yue, P., Rinehart, J., Sun, P., Wang, Z., Lifton, R., and Wang, W. H. (2012) Protein phosphatase 1 modules the inhibitory effect of with-no-lysin kinase 4 on ROMK channels. Am. J. Physiol. Renal Physiol. 303, F110–F119
17. Lin, D. H., Sterling, H., Yang, B., Hebert, S. C., Giebisch, G., and Wang, W. H. (2004) Protein tyrosine kinase is expressed and regulates ROMK1 location in the cortical collecting duct. Am. J. Physiol. Renal Physiol. 286, F881–F892
18. Shifman, M. A., Li, Y., Colangelo, C. M., Stone, K. L., Wu, T. L., Cheung, K. H., Miller, P. L., and Williams, K. R. (2007) YPDE. A web-accessible database system for protein expression analysis. J. Proteome Res. 6, 4019–4024
19. Yue, P., Lin, D. H., Pan, C. Y., Leng, Q., Giebisch, G., Lifton, R. P., and Wang, W. H. (2009) Src family protein tyrosine kinase (PTK) modulates the effect of SGK1 and WNK4 on ROMK channels. Proc. Natl. Acad. Sci. U.S.A. 106, 15061–15066
20. Wei, Y., Zavilowitz, B., Satlin, L. M., Wang, W. H. (2007) Angiotensin II inhibits the ROMK-like small-conductance K channel in renal cortical collecting duct during dietary K restriction. J. Biol. Chem. 282, 6455–6462
21. Moral, Z., Dong, K., Wei, Y., Sterling, H., Deng, H., Ali, S., Gu, R., Huang, X. Y., Hebert, S. C., Giebisch, G., and Wang, W. H. (2001) Regulation of ROMK1 channels by protein-tyrosine kinase and -tyrosine phosphatase. J. Biol. Chem. 276, 7156–7163
22. Lin, D. H., Sterling, H., Yang, B., Hebert, S. C., Giebisch, G., and Wang, W. H. (2004) Protein tyrosine kinase is expressed and regulates ROMK1 location in the cortical collecting duct. Am. J. Physiol. Renal Physiol. 286, F881–F892
23. Hanke, J. H., Gardner, J. P., Dow, R. L., Changelian, P. S., Brissette, W. H., Weringer, E. J., Pollock, B. A., and Connelly, P. A. (1996) Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J. Biol. Chem. 271, 695–701
24. Rinehart, J., Maksimova, Y. D., Tanis, J. E., Stone, K. L., Hodson, C. A., Zhang, J., Risinger, M., Pan, W., Wu, D., Colangelo, C. M., Forbush, B., Joiner, C. H., Gulicsek, E. E., Gallagher, P. G., and Lifton, R. P. (2009) Sites of regulated phosphorylation that control K+ cotransporter activity. Cell 138, 525–536
25. Welch, M. J. (1983) Barium inhibition of basolateral membrane potassium conductance in tracheal epithelium. Am. J. Physiol. Renal Physiol. 244, F639–F645
26. Ponce-Coria, J., San-Cristobal, P., Kahle, K. T., Vazquez, N., Pacheco-Alvarez, D., de Los Heros, P., Juarez, P., Muñoz, E., Michel, G., Bobadilla, N. A., Gimenez, I., Lifton, R. P., Hebert, S. C., and Gamba, G. (2008) Regulation of NKKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases. Proc. Natl. Acad. Sci. U.S.A. 105, 8458–8463
27. Lin, D., Kamsteeg, E. J., Zhang, Y., Jin, Y., Sterling, H., Yue, P., Roos, M., Duffield, A., Spencer, J., Caplan, M., and Wang, W. H. (2008) Expression of tetraspan protein CD63 activates protein-tyrosine kinase (PTK) and enhances the PTK-induced inhibition of ROMK channels. J. Biol. Chem. 283, 7673–7681
28. Sterling, H., Lin, D. H., Gu, R. M., Dong, K., Hebert, S. C., and Wang, W. H.

Acknowledgment—We thank Dr. Ute Scholl (laboratory of Dr. R. Lifton) for providing the KCNJ10/16 construct.
Inhibition of protein-tyrosine phosphatase stimulates the dynamin-dependent endocytosis of ROMK1. J. Biol. Chem. 277, 4317–4323
29. Wang, W., Lerea, K. M., Chan, M., and Giebisch, G. (2000) Protein tyrosine kinase regulates the number of renal secretory K channels. Am. J. Physiol. Renal Physiol. 278, F165–F171
30. Lin, D. H., Sterling, H., Lerea, K. M., Welling, P., Jin, L., Giebisch, G., and Wang, W. H. (2002) K depletion increases the protein tyrosine-mediated phosphorylation of ROMK. Am. J. Physiol. Renal Physiol. 283, F671–F677
31. Wei, Y., Bloom, P., Lin, D., Gu, R., and Wang, W. H. (2001) Effect of dietary K intake on the apical small-conductance K channel in the CCD. Role of protein tyrosine kinase. Am. J. Physiol. Renal Physiol. 281, F206–F212
32. San-Cristobal, P., Pacheco-Alvarez, D., Richardson, C., Ring, A. M., Vazquez, N., Rafiqi, F. H., Chari, D., Kahle, K. T., Leng, Q., Bobadilla, N. A., Hebert, S. C., Alessi, D. R., Lifton, R. P., and Gamba, G. (2009) Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway. Proc. Natl. Acad. Sci. U.S.A. 106, 4384–4389
33. Reichold, M., Zdebsik, A. A., Lieberer, E., Rapedius, M., Schmidt, K., Bandulik, S., Sterner, C., Tegtmeier, I., Penton, D., Baukrowitz, T., Hulton, S. A., Witzgall, R., Ben-Zeev, B., Howie, A. J., Kleta, R., Bockenhauer, D., and Warth, R. (2010) KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. Proc. Natl. Acad. Sci. U.S.A. 107, 14490–14495
34. Wang, W., Lerea, K. M., Chan, M., and Giebisch, G. (2000) Protein tyrosine kinase regulates the number of renal secretory K channel. Am. J. Physiol. Renal Physiol. 278, F165–F171
35. Tanemoto, M., Kittaka, N., Inanobe, A., and Kurachi, Y. (2000) In vivo formation of a proton-sensitive K⁺ channel by heteromeric subunit assembly of Kir5.1 with Kir4.1. J. Physiol. 525, 587–592
36. Huang, C., Sindic, A., Hill, C. E., Hujer, K. M., Chan, K. W., Sassen, M., Wu, Z., Kurachi, Y., Nielsen, S., Romero, M. F., and Miller, R. T. (2007) Interaction of the Ca²⁺-sensing receptor with the inwardly rectifying potassium channels Kir4.1 and Kir4.2 results in inhibition of channel function. Am. J. Physiol. Renal Physiol. 292, F1073–F1081
37. Scholl, U. I., Choi, M., Liu, T., Ramsakkers, V. T., Häusler, M. G., Grimmer, J., Tobe, S. W., Farhi, A., Nelson-Williams, C., and Lifton, R. P. (2009) Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc. Natl. Acad. Sci. U.S.A. 106, 5842–5847
38. Castañeda-Bueno, M., Cervantes-Pérez, L. G., Vázquez, N., Uribe, N., Kantesaria, S., Morla, L., Bobadilla, N. A., Doucet, A., Alessi, D. R., and Gamba, G. (2012) Activation of the renal Na:Cl cotransporter by angiotensin II is a WNK4-dependent process. Proc. Natl. Acad. Sci. U.S.A. 109, 7929–7934
