A Necessary Tradeoff For Semiclassical Electrodynamics: Accurate Short-Range Coulomb Interactions Versus The Enforcement of Causality?

Tao E. Li,*† Hsing-Ta Chen,† Abraham Nitzan,† Maxim Sukharev,†¶ and Joseph E. Subotnik*†

†Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
‡Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
¶College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA

E-mail: taoli@sas.upenn.edu; subotnik@sas.upenn.edu

Abstract

We investigate two key representative semiclassical approaches for propagating resonant energy transfer between a pair of electronic two-level systems (donor and acceptor) with the coupled Maxwell-Liouville equations. On the one hand, when the electromagnetic (EM) field is treated classically and Coulomb interactions are treated quantum-mechanically, we find that a quantum-classical mismatch leads to a violation of causality, i.e., the acceptor can be excited before the retarded EM field arrives. On the other hand, if we invoke a classical intermolecular Coulomb operator, we find that the energy transfer in the near field loses quantitative accuracy compared with Förster theory, even though causality is strictly obeyed. Thus, our work raises a fundamental paradox when choosing a semiclassical electrodynamics algorithm. Namely, which is
more important: Accurate short range interactions or long range causality? Apparently, one cannot have one’s cake and eat it too.

1 Introduction: The Power-Zienau-Woolley Hamiltonian and Causality

Light-matter interactions are an essential research area in physics, chemistry and engineering. A host of recent experiments encountering strong light-matter interactions\cite{1–7} have demonstrated that the optical response of matter does not always follow response theory, and that we cannot always treat the electromagnetic (EM) field as a perturbation. In order to model such experiments, a better approach is to consider both the light and matter degrees of freedom on the same footing.

For a non-perturbative model of electrodynamics in terms of molecular properties, the usual approach is to perform a Power-Zienau-Woolley transformation\cite{8,9} so that the full quantum electrodynamics (QED) Hamiltonian reads as follows,

$$\hat{H} = \hat{H}_s + \frac{1}{2} \int dr \left[\frac{\left| \hat{D}_\perp (r) \right|^2}{\epsilon_0} + \frac{\left| \hat{B} (r) \right|^2}{\mu_0} \right]$$

$$- \int dr \frac{\hat{D}_\perp (r)}{\epsilon_0} \hat{P}_\perp (r) + \frac{1}{2 \epsilon_0} \int dr \left| \hat{P}_\perp (r) \right|^2$$

(1)

Here, we ignore the magnetic and diamagnetic interactions for the quantum subsystem. \hat{D}_\perp and \hat{B} are the displacement and magnetic field operators, \hat{H}_s is the Hamiltonian for the quantum subsystem, and \hat{P}_\perp is the transverse polarization operator of the quantum (molecular) subsystem that couples to the EM field.\cite{10} Note that the transverse component of \hat{P} satisfies $\nabla \cdot \hat{P}_\perp = 0$ and the longitudinal component of \hat{P} satisfies $\nabla \times \hat{P}_\parallel = 0$. $\hat{D}_\perp = \epsilon_0 \hat{E}_\perp + \hat{\mathcal{P}}_\perp$ and $\hat{B} = \nabla \cdot \hat{A}$, where \hat{A} is the vector potential. The canonical commutator relationship is $[\hat{D}_\perp (r), \hat{A}(r')] = i\hbar \delta_\perp (r-r')$, where δ_\perp is the transverse δ-function. Formally, the regularized transverse δ-function can be written as $\delta_{\perp ij} (r) = \frac{2}{3} \delta_{ij} \delta (r) + \frac{\eta (r)}{4 \pi r^2} \left(\frac{3r_i r_j}{r^2} - \delta_{ij} \right)$, where $i, j = x, y, z$ and $\eta (r)$ is 0 at $r = 0$ to suppress the divergence (but $\eta (r)$ equals 1
Note that for a neutral system, the displacement field is exclusively transverse, (i.e., $\hat{D}_\parallel = 0$), so that we can write \hat{D} or \hat{D}_\perp interchangeably. Although not discussed often, we note that Eq. (1) should formally include the self-interaction of all charges (which is infinitely large); see Eqs. (I.B.36) and (IV.C.38) in Ref. [11].

At this point, let us consider a system containing N separable and neutral molecules. Here, one can write:

$$\hat{H}_s = \sum_{n=1}^{N} \hat{H}_s^{(n)} + \sum_{n<l} \hat{V}_{Coul}^{(nl)}$$

$$\hat{P}_\perp = \sum_{n=1}^{N} \hat{P}_\perp^{(n)}$$

(2)

where the intermolecular Coulomb interactions $\hat{V}_{Coul}^{(nl)}$ are (for $n \neq l$) [11]

$$\hat{V}_{Coul}^{(nl)} = \frac{1}{\epsilon_0} \int d\mathbf{r} \, \hat{P}_\parallel^{(n)}(\mathbf{r}) \cdot \hat{P}_\parallel^{(l)}(\mathbf{r})$$

(3)

In Eq. (3), the intermolecular Coulomb operator is defined as the inner product of the longitudinal polarization operators for the molecules n and l. When the molecular size is much less than the intermolecular separation, one can make the point-dipole approximation, i.e., $\hat{P}_\parallel^{(n)}(\mathbf{r}) = \hat{\mu}^{(n)} \delta(\mathbf{r} - \mathbf{r}^{(n)})$. The longitudinal polarization operator is then $\hat{P}_\parallel^{(n)}(\mathbf{r}) = \hat{\mu}^{(n)} \delta(\mathbf{r} - \mathbf{r}^{(n)}) = \sum_{i,j} e_i \left[-\frac{1}{3} \delta_{ij} \delta(\mathbf{r} - \mathbf{r}^{(n)}) - \frac{\eta(r_{i-r}^{(n)})}{4\pi |r-r^{(n)}|^3} \left(\frac{3(r_i - r_i^{(n)})(r_j - r_j^{(n)})}{|r-r^{(n)}|^2} - \delta_{ij} \right) \right] \hat{\mu}_j$. Therefore, Eq. (3) can be reduced to the well-known instantaneous dipole-dipole interaction Hamiltonian [12]

$$\hat{V}_{Coul}^{(nl)} = \frac{1}{4\pi \epsilon_0} \left(\frac{\hat{\mu}^{(n)} \cdot \hat{\mu}^{(l)}}{|\mathbf{r}|^3} - 3(\hat{\mu}^{(n)} \cdot \hat{\mathbf{r}})(\hat{\mu}^{(l)} \cdot \hat{\mathbf{r}}) \right)$$

(4)

Here, $\hat{\mu}^{(n,l)}$ is the dipole moment operator of molecule n or l and \mathbf{r} ($\hat{\mathbf{r}}$) is the vector (unit vector) along the direction of molecular separation.

At this point, one can prove causality through the following argument. Consider the case of two molecules well separated from each other (so that $\int d\mathbf{r} \, \hat{P}_\parallel^{(n)} \cdot \hat{P}_\parallel^{(l)} = 0$). Then, if we substitute Eqs. (2) and (3) into Eq. (1), we find that all instantaneous interactions between...
molecular pairs vanish by cancellation:

$$\hat{H} = \sum_{n=1}^{N} H_{s}^{(n)} + \frac{1}{2} \int dr \left[\frac{|\hat{D}_{\perp}(r)|^2}{\epsilon_0} + \frac{|\hat{B}(r)|^2}{\mu_0} \right] - \sum_{n=1}^{N} \int dr \ \frac{\hat{D}_{\perp}(r)}{\epsilon_0} \hat{P}_{\perp}^{(n)}(r) + \sum_{n=1}^{N} \frac{1}{2 \epsilon_0} \int dr \ |\hat{P}_{\perp}^{(n)}(r)|^2 + \sum_{n<l} \hat{V}^{(nl)}$$

(5)

where

$$\hat{V}^{(nl)} = \hat{V}_{\text{Coul}}^{(nl)} + \frac{1}{\epsilon_0} \int dr \ \hat{P}_{\perp}^{(n)} \cdot \hat{P}_{\perp}^{(l)}$$

$$= \frac{1}{\epsilon_0} \int dr \ \hat{P}_{\parallel}^{(n)} \cdot \hat{P}_{\parallel}^{(l)} + \frac{1}{\epsilon_0} \int dr \ \hat{P}_{\perp}^{(n)} \cdot \hat{P}_{\perp}^{(l)}$$

$$= \frac{1}{\epsilon_0} \int dr \ \hat{P}_{\perp}^{(n)} \cdot \hat{P}_{\perp}^{(l)} = 0$$

(6)

Thus, QED strictly satisfies causality: molecules interact solely through the retarded EM field.

2 A semiclassical algorithm for QED: the lack of a unique approach

When dealing with realistically large systems, the many body Hamiltonian in Eq. (1) is almost impossible to propagate quantum-mechanically. A straightforward simplification is semiclassical electrodynamics, whereby one treats the EM field classically while treating the molecular subsystem quantum mechanically. According to this approach, one evolves the coupled Schrödinger-Maxwell or Liouville-Maxwell equations:

$$\frac{d}{dt} \hat{\rho}(t) = -\frac{i}{\hbar} \left[\hat{H}_{\text{sc}}(t), \hat{\rho}(t) \right]$$

(7a)

$$\frac{\partial}{\partial t} \mathbf{B}(\mathbf{r}, t) = -\nabla \times \mathbf{E}(\mathbf{r}, t)$$

(7b)

$$\frac{\partial}{\partial t} \mathbf{E}(\mathbf{r}, t) = c^2 \nabla \times \mathbf{B}(\mathbf{r}, t) - \frac{\mathbf{J}(\mathbf{r}, t)}{\epsilon_0}$$

(7c)

$$\mathbf{J}(\mathbf{r}, t) = \frac{d}{dt} \text{Tr} \left(\hat{\rho}(t) \hat{\mathcal{P}}(\mathbf{r}) \right)$$

(7d)
Here, $\hat{\rho}$, \hat{H}_{sc} and \hat{P} are (respectively) the density operator, semiclassical Hamiltonian and polarization operator for the quantum, molecular subsystem. For a subsystem containing N molecules, the total density operator $\hat{\rho}$ is expressed as $\hat{\rho} = \hat{\rho}^{(1)} \otimes \hat{\rho}^{(2)} \otimes \cdots \otimes \hat{\rho}^{(N)}$. In Eq. (7c), $c = 1/\sqrt{\mu_0\epsilon_0}$ and \mathbf{J} is the current density operator that connects the quantum molecular subsystem to the classical EM field. In Eq. (7d), \mathbf{J} is defined by a mean-field approximation,18,19 and so the set Eqs. (7) can also be called “Ehrenfest” electrodynamics.

As far as the notation below, it will be crucial to distinguish between the operator \hat{P} (with hat) and the average $\mathcal{P} = \text{Tr} \left(\hat{\rho} \hat{P} \right)$ (no hat).

Note that Eq. (7c) can be separated into two different equations for the transverse and perpendicular components:

$$\frac{\partial}{\partial t} \mathbf{E}_\perp (\mathbf{r}, t) = c^2 \nabla \times \mathbf{B}(\mathbf{r}, t) - \frac{\mathbf{J}_\perp (\mathbf{r}, t)}{\epsilon_0}$$ \hspace{1cm} (8a)
$$\frac{\partial}{\partial t} \mathbf{E}_\parallel (\mathbf{r}, t) = - \frac{\mathbf{J}_\parallel (\mathbf{r}, t)}{\epsilon_0}$$ \hspace{1cm} (8b)

and the latter equation can be integrated so that:

$$\mathbf{E}_\parallel (\mathbf{r}, t) = - \frac{\mathcal{P}_\parallel (\mathbf{r}, t)}{\epsilon_0}$$ \hspace{1cm} (9)

2.1 Hamiltonian #I

When defining the semiclassical, electronic Hamiltonian \hat{H}_{sc} in Eq. (7a), there is no unique prescription. One widely applied Hamiltonian9 reads

$$\hat{H}_{sc}^{(I)} = \sum_{n=1}^{N} \left[\hat{H}_s^{(n)} - \int d\mathbf{r} \mathbf{E}_\perp (\mathbf{r}, t) \cdot \mathbf{P}_\perp (\mathbf{r}) \right] + \sum_{n<l} \hat{V}_{Coul}^{(nl)}$$ \hspace{1cm} (10)

Henceforward, we will refer to Eq. (10) as Hamiltonian #I.

In Eq. (10), there are two terms containing instantaneous interactions: the non-local transverse E-field (\mathbf{E}_\perp) and the intermolecular Coulomb interactions ($\hat{V}_{Coul}^{(nl)}$). Just as for QED, one would expect that Eqs. (7-10) should preserve causality. This alleged cancellation can be made more explicit if we substitute in $\mathbf{E}_\perp = \mathbf{E} - \mathbf{E}_\parallel = \mathbf{E} + \frac{1}{\epsilon_0} \mathcal{P}_\parallel$, so that we can
rewrite Eq. (10) as:

\[\hat{H}_{sc}^I = \sum_{n=1}^{N} \left[\hat{H}_s^{(n)} - \int dr \left(E(r, t) + \frac{1}{\epsilon_0} \mathcal{P}^{(n)}(r) \cdot \hat{\mathcal{P}}^{(n)}(r) \right) \right] \]

\[- \frac{1}{\epsilon_0} \sum_{n \neq l} \int dr \mathcal{P}^{(n)}(r) \cdot \hat{\mathcal{P}}^{(l)}(r) + \sum_{n<l} \hat{V}_{Coul}^{(nl)} \]

(11)

Ideally, the second line of Eq. (11) should cancel (see Eq. (6)). However, note that in Eq. (11), one of the \(\mathcal{P} \) terms is treated classically while the Coulomb interactions are treated fully quantum-mechanically, and thus, there is no guarantee of cancellation or strict causality. In fact, below we will present numerical simulations showing that causality is not strictly enforced. Thus, one may further ask: can we find a different semiclassical Hamiltonian that does preserve causality? Indeed, this is possible, which brings us to Hamiltonian \#II.

2.2 Hamiltonian \#II

To preserve causality by construction, one can make the following approximation: \(\forall n, l \),

\[\hat{V}_{Coul}^{(nl)} = \frac{1}{\epsilon_0} \int dr \mathcal{P}^{(n)}(r) \cdot \hat{\mathcal{P}}^{(l)}(r) \]

\[+ \frac{1}{\epsilon_0} \int dr \mathcal{P}^{(l)}(r) \cdot \hat{\mathcal{P}}^{(n)}(r) \]

(12)

Compared with the quantum form of \(\hat{V}_{Coul}^{(nl)} \) in Eq. (3), the physical meaning of Eq. (12) is clear: the intermolecular Coulomb interactions between molecules are effectively the classical polarization energies as felt by one molecule in the field of another and as expressed by the classical longitudinal polarization fields (\(\mathcal{P}^{(n)} \) and \(\mathcal{P}^{(l)} \)). If we substitute Eq. (12) and \(E_\perp = \frac{1}{\epsilon_0} (D - \mathcal{P}_\perp) \) into Eq. (10), after some straightforward algebra, we find that a new semiclassical Hamiltonian emerges

\[\hat{H}_{sc}^{II} = \sum_{n=1}^{N} \hat{H}_s^{(n)} - \frac{1}{\epsilon_0} \int dr D(r, t) \cdot \hat{\mathcal{P}}^{(n)}(r) \]

\[+ \frac{1}{\epsilon_0} \int dr \mathcal{P}_\perp^{(n)}(r) \cdot \hat{\mathcal{P}}^{(n)}(r) \]

(13)
In Eq. (13), the intermolecular interactions are carried exclusively through the classical D-field, and thus causality is strictly preserved. Henceforward, to distinguish Eq. (13) from Eq. (10), we will refer to Eq. (13) as Hamiltonian #II.

Alternatively, by substituting Eq. (12) into Eq. (11), Eq. (13) is equivalent to

\[
\hat{H}_{II}^{sc} = \sum_{n=1}^{N} \left[\hat{H}_{s}^{(n)} - \int dr \left(\mathbf{E}(r, t) + \frac{1}{\epsilon_0} \mathbf{P}_{||}^{(n)}(r) \right) \cdot \mathbf{P}^{(n)}(r) \right]
\]

(14)

2.3 Hamiltonians # I’/ # II’

Before presenting any results, one final point is appropriate. As discussed in Sec. 1, Eq. (1) should formally include the self-interaction of all charges. And, for a single electron at each site \(n \), this self-interaction will be of the form

\[
\hat{V}_{\text{self}} = \frac{1}{2} \epsilon_0 \int dr |\mathbf{P}_{||}^{(n)}(r)|^2.
\]

If we make a semiclassical approximation (in the spirit of Eqs. (3) and (12)), we can approximate

\[
\hat{V}_{\text{self}} = \frac{1}{\epsilon_0} \int dr \mathbf{P}_{||}^{(n)}(r) \cdot \mathbf{P}^{(n)}(r),
\]

which will obviously cancel the self-interaction terms in Eqs. (11) and (14). The resulting Hamiltonians will be of the form

\[
\hat{H}_{I'}^{sc} = \sum_{n=1}^{N} \left[\hat{H}_{s}^{(n)} - \int dr \mathbf{E}(r, t) \cdot \mathbf{P}^{(n)}(r) \right] - \frac{1}{\epsilon_0} \sum_{n \neq l} \int dr \mathbf{P}_{||}^{(n)}(r) \cdot \mathbf{P}^{(l)}(r) + \sum_{n<l} \hat{V}_{\text{coul}}^{(nl)}
\]

(15a)

\[
\hat{H}_{II'}^{sc} = \sum_{n=1}^{N} \hat{H}_{s}^{(n)} - \int dr \mathbf{E}(r, t) \cdot \mathbf{P}^{(n)}(r)
\]

(15b)

In practice, as shown in the supporting information, we find that \(\hat{H}_{I'}^{sc} \) and \(\hat{H}_{II'}^{sc} \) behave effectively the same as \(\hat{H}_{I}^{sc} \) and \(\hat{H}_{II}^{sc} \). In the Appendix, we list the relevant energy expression that is conserved for each choice of \(\hat{H}_{sc} \).

3 Results

To compare the two semiclassical Hamiltonians above, we will now apply Ehrenfest electrodynamics and model resonant energy transfer between a pair of identical electronic two-level systems (TLSs)20,23 in three dimensions.
3.1 Model

Consider a pair of TLSs with a donor (D) and an acceptor (A). The Hamiltonian for both the donor and acceptor are

$$
\hat{H}^D_s = \hat{H}^A_s = \begin{pmatrix} 0 & 0 \\ 0 & \hbar \omega_0 \end{pmatrix}
$$

(16)

where Eq. (16) is expressed in the basis $\{|g\rangle, |e\rangle\}$; here $|g\rangle$ is the ground state and $|e\rangle$ is the excited state. $\hbar \omega_0$ is the energy difference between $|g\rangle$ and $|e\rangle$. The polarization operator for each molecule reads

$$
\hat{P}^{(n)}(r) = \xi(r - r^{(n)}_0) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ n = D, A
$$

(17)

Here, $\xi(r) = \psi_g^* q r \psi_e = (2\pi)^{-3/2}\sigma^{-5} \mu_{12} r_z \exp(-r^2/2\sigma^2)$ is the polarization density of a TLS where $|g\rangle$ is an s-orbital, $|e\rangle$ is a p_z orbital, q denotes the effective charge of the TLS, σ denotes the width of wave functions and $\mu_{12} = |\int d\mathbf{r} \psi_g^* q r \psi_e|$ denotes the magnitude of transition dipole moment. We assume the TLS has no permanent dipole. Without loss of generality, we suppose the donor (acceptor) sits on the negative (positive) side of the x-axis, i.e., $r^{(D)}_0 = (-R/2, 0, 0)$ and $r^{(A)}_0 = (R/2, 0, 0)$. We define R as the separation between the two TLSs.

Overall, the electronic Hamiltonians read as follows in matrix form (in the basis $\{|gg\rangle, |ge\rangle, |eg\rangle, |ee\rangle\}$):

$$
\hat{H}^{I}_{sc} = \begin{pmatrix} 0 & v_A & v_D & v \\ v_A & \hbar \omega_0 & v & v_D \\ v_D & v & \hbar \omega_0 & v_A \\ v & v_D & v_A & 2\hbar \omega_0 \end{pmatrix}
$$

(18)
and

\[
\hat{H}^{II}_{\text{sc}} = \begin{pmatrix}
0 & v'_A & v'_D & 0 \\
v'_A & \hbar \omega_0 & 0 & v'_D \\
v'_D & 0 & \hbar \omega_0 & v'_A \\
0 & v'_D & 2\hbar \omega_0 & 0
\end{pmatrix}
\] (19)

where \(v = \frac{1}{\epsilon_0} \int d\mathbf{r} \, \xi^{(D)}_|| \cdot \xi^{(A)}_|| \), \(v_{A,D} = -\int d\mathbf{r} \, \mathbf{E}_\perp \cdot \xi^{(A,D)}_\perp \) and \(v'_{A,D} = -\frac{1}{\epsilon_0} \int d\mathbf{r} \left(\mathbf{D} - 2\text{Re} \rho^{(A,D)}_{12} \mathbf{\xi}^{(A,D)}_\perp \right) \). \(\mathbf{\xi}^{(A,D)} \). All other simulation details and parameters are provided in Section 6 at the end of this article.

3.2 Analytical QED Results

When modeling resonant energy transfer with retardation,24-26 it is well known that energy transfer rates show an \(R^{-6} \) dependence when \(k_0 R \ll 1 \) and an \(R^{-2} \) dependence when \(k_0 R \gg 1 \). Here \(k_0 \equiv \omega_0 / c \). This difference in scaling arises because the usual instantaneous version of energy transfer theory27-29 does not account for the time delay required for an EM field to flow from donor to acceptor. For our purpose, in order to directly compare with our simulation, we will require a quantitatively calculation of energy transfer dynamics (beyond any rate expression, e.g., Förster theory). For such a calculation, one must work directly with response theory. A short-time analytical formula of the excited state population of the acceptor, \(\rho^{(A)}_{22}(t) \), can be derived with QED, as shown by Power and Thirunamachandran.30

By slightly modifying the result in Ref.30 we can obtain an analytical solution for \(\rho^{(A)}_{22}(t) \) at short times, starting in an arbitrary superposition state for the donor.31

\[
\rho^{(A)}_{22}(t) = \frac{\rho^{(D)}_{22}(0)}{(4\pi \epsilon_0 \hbar)^2} \left| \mu_{12}^{(D)} \mu_{12}^{(A)} \left[-\eta_1 \frac{k_0^2}{R^3} + \eta_3 \left(\frac{1}{R^3} - \frac{i k_0}{R^2} \right) \right] \right|^2 \times \left(t - \frac{R}{c} \right)^2 \theta \left(t - \frac{R}{c} \right)
\] (20)

Here, \(\rho^{(D)}_{22}(0) \) is the initial excited state population of the donor, \(\mathbf{e}_D \) and \(\mathbf{e}_A \) are the unit vectors oriented along the transition dipoles of the donor and the acceptor, \(\eta_1 = \mathbf{e}_A \cdot \mathbf{e}_D - (\mathbf{e}_A \cdot \mathbf{e}_R)(\mathbf{e}_D \cdot \mathbf{e}_R) \) and \(\eta_3 = \mathbf{e}_A \cdot \mathbf{e}_D - 3(\mathbf{e}_A \cdot \mathbf{e}_R)(\mathbf{e}_D \cdot \mathbf{e}_R) \). We define \(\mathbf{e}_R \) as the unit vector...
oriented along the separation between donor and acceptor. In our model, the pair of TLSs are located along the x-axis and the transition dipole moments are both p_z polarized, so that $\mathbf{e}_A \cdot \mathbf{e}_R = \mathbf{e}_D \cdot \mathbf{e}_R = 0$ and $\eta_1 = \eta_3 = \mathbf{e}_A \cdot \mathbf{e}_D = 1$. $\theta(t) = \frac{d}{dt} \max\{t, 0\}$ is the Heaviside step function.

Note that the unretarded energy transfer expression for $\rho^{(A)}_{22}$ is simply $\rho^{(A)}_{22}(t) = \rho^{(D)}_{22}(0) \times \frac{\mu^2 D_1^2 \mu^2 A_1^2}{(4\pi\varepsilon_0\hbar)^2 R^6} \eta_3^2 t^2$, which is equivalent to the FGR result with the coupling $\hat{V}_{\text{Coul}}^{(nl)}$ in Eq. (4). Eq. (20) includes two important time-dependent features: (i) all retardation is totally accounted for (i.e., $\rho_{22}^{(A)}(t)$ is zero when $t < R/c$) and (ii) $\rho_{22}^{(A)}(t)$ depends quadratically on time at short times.

3.3 Numerical Semiclassical Results

As far as simulating energy transfer semiclassically, we will assume that there is no EM field in space initially, so the donor starts in a superposition state $(C_1^{(D)}(0), C_2^{(D)}(0)) = (1/\sqrt{2}, 1/\sqrt{2})$ and the acceptor starts in the ground state, where C_1 (C_2) represents the quantum amplitude of $\langle g |$ ($\langle e |$)). With these initial conditions, we can propagate Eqs. (7), and compare dynamics of Hamiltonians #I and #II. To keep the following context concisely, we will refer to the result of Hamiltonian #I (II) as result #I (II) for short.

In Figs. 1, we plot the excited state population of the acceptor $(\rho_{22}^{(A)}(t))$ at relatively short times ($t < 20$ fs) by varying the separation R, ($0.6 \leq k_0 R \leq 8.0$). In Fig. 1c, we find that result #I clearly doesn’t preserve causality: $\rho_{22}^{(A)}(t)$ begins to increase even before the retarded field from the donor arrives ($\omega_0 t < k_0 R$). Interestingly, however, for very large distances (when $k_0 R \gg 1$), Hamiltonian #I seems to do a better job of preserving causality because, in this limit, the intermolecular interactions are dominated by the retarded field (which decays as R^{-1}) rather than longitudinal Coulomb interactions (which decay as R^{-3}). Nevertheless, clearly, Hamiltonian #I violates the tenets of relativity. That being said, Hamiltonian #II does preserve causality exactly (see Fig. 1d). Thus, from this perspective, one would presume Hamiltonian #II has an obvious advantage over Hamiltonian #I.

At this point, however, let us turn our attention to Figs. 1e-f. Here, we compare rates
Figure 1: Plot of the excited state population of the acceptor ($\rho^{(A)}(t)$) at short times ($t_{\text{end}} = 20$ fs). Results for Hamiltonian #I (II) are plotted on the left (right). (a-b) $\rho^{(A)}(t)$ versus time using a logarithmic scale by varying the separation in the range $0.6 \leq k_0 R \leq 8.0$ (rainbow color from red to purple respectively), where $k_0 = \omega_0/c$; (c-d) Normalized $\rho^{(A)}_{22}(t)/\rho^{(A)}_{22}(t_{\text{end}})$ versus $\omega_0 t$ with the same separation range as in Fig. a-b, where now only the x-axis is plotted logarithmically; (e-f) $\rho^{(A)}_{22}(t_{\text{end}})$ versus $k_0 R$ in logarithmic scale; the simulation data (blue circles) of Hamiltonians #I and #II are compared with the QED result (Eq. (20), black dashed line) respectively. Parameters are set as the default (see Appendix).

Note that in Figs. a-b the straight lines when $t > 2$ fs indicate that the leading term of $\rho^{(A)}_{22}(t)$ varies $\sim t^2$ (same as Eq. (20)). Note that Hamiltonian #I (Fig. c) violates causality such that $\rho^{(A)}_{22}(t) > 0$ before the retarded field from the donor comes ($\omega_0 t < k_0 R$) while Hamiltonian #II (Fig. d) exactly preserves causality. In Figs. e-f, Both Hamiltonians show R^{-6} dependence when $k_0 R < 1$ and R^{-2} dependence when $k_0 R > 1$. However, Hamiltonian #I agrees with QED better for short separations than Hamiltonian #II, presumably because the former describes Coulomb interactions quantum-mechanically.
of energy transfer for the two methods as compared with the analytic theory in Eq. (20) as a function of R. According to Fig. 1e-f, even though results #I and #II (blue circles) recover qualitatively the same distance dependencies as Eq. (20) (black lines), results #I and #II differ in the limit of short donor-acceptor separation ($k_0R < 1$). For short distances, result #I agrees exactly with QED (Eq. (20)) while results #II is off by roughly a factor of two. This discrepancy is perhaps not surprising because, at short separation, the dominant Coulomb interactions are described quantum-mechanically in Hamiltonian #I but are classical in Hamiltonian #II, and there is no reason to suppose that these two methods should agree quantitatively in practice. By contrast, at long separations ($k_0R > 1$) – where the retarded field is dominant – both Hamiltonians #I and #II propagate the retarded field classically, and so both methods should agree; interestingly, in this limit, both semiclassical approaches differ from the QED results by roughly a factor of two.

4 Discussion: Can we model energy transfer accurately without spontaneous emission?

To better understand the origin of the disagreement between Hamiltonians #I and #II in Figs. 1 we believe it’s helpful to remind the reader that Ehrenfest electrodynamics do no recover the true FGR spontaneous emission rate\[^{17,34,35}\] Instead, as shown in Ref. 17, Ehrenfest dynamics predict a decay rate (k_{Eh}) proportional to the instantaneous ground state population: $k_{Eh}(t) = \rho_{11}(t)k_{FGR}$. One can argue that this failure arises from the fact that Ehrenfest electrodynamics predicts only a coherent scattering field (which is proportional to the ground state population of the molecule) without any incoherent scattering\[^{36,37}\]. By contrast, a true quantum treatment includes both the coherent and incoherent scattering. With this background in mind, one might expect that the Ehrenfest energy transfer rate will also depend strongly on initial state population; and one can ask: will our results using Hamiltonians #I and #II change in a similar fashion for different initial states? To that end, in Figs. 2, for a variety of initial conditions, we compare results for $\rho_{22}(A)(t)$ as calculated
according to both Hamiltonians #I (red triangle) and #II (cyan star). We also plot the short time fully QED results (black dashed line) from Eq. [20], where the initial excited state population is reflected in the initial donor ($\rho_{22}^{(D)}(0)$).

Our results are plotted in Figs. 2. When the donor is weakly excited initially ($\rho_{22}^{(D)}(0) = 0.1$), we find that all three results agree with each other. However, when $\rho_{22}^{(D)}(0)$ is increased, we find less and less agreement between either of the semiclassical results and QED results at long distances; the semiclassical results strongly underestimate the energy transfer rate. These results strongly suggest that, if a semiclassical approach is to capture energy transfer accurately both at short and long distances, the approach must be able to capture spontaneous emission as well. After all, at long distances, we know that energy transfer is modulated by a retarded field, and if Ehrenfest dynamics cannot capture spontaneous emission, there is no surprise that one cannot recover the correct energy transfer rate either.

Lastly, let us now consider results at short distances. Here, we find very different behavior between Hamiltonians #I and #II. On the one hand, we find that, no matter the initial
donor population, Hamiltonian #I always produces accurate results; because Hamiltonian #I includes explicitly quantum-mechanical Coulomb interactions, we believe this method should always agree with QED at short range (where retardation effects are not important). On the other hand, in Fig. 2, we also see that Hamiltonian #II fails and drastically underestimates the energy transfer rate for $\rho^{(D)}_{22}(0) = 0.9$. Here, we need only recognize that, because Hamiltonian #II treats the EM field exclusively classically, such an approach can never be accurate (either at short range or at long range) if spontaneous emission is not capture correctly. Thus, in the end, a crucial question emerges: If we can develop a means to include spontaneous emission on top of Ehrenfest dynamics, what will be the most accurate approach: to include a combination of quantum Coulomb interactions with a classical (but exclusively transverse) EM field (i.e. Hamiltonian #I)? Or to employ an entirely classical (transverse plus longitudinal) EM field? As we look forward to future methodological development of this understudied area, many questions remain.

5 Conclusion

In conclusion, by numerically studying coherent energy transfer between a pair of TLSs with Ehrenfest electrodynamics, our conclusions are as follows. (i) The standard Hamiltonian #I (\hat{H}^{sc}_{I} in Eq. (10)) violates causality, especially when the molecular separation is small ($k_0 R < 1$) because of a mismatch between a quantum description of the matter and a classical description of the EM field; (ii) Causality can be preserved if one models both the retarded field and the intermolecular Coulomb interactions in a classical fashion (Hamiltonian \hat{H}^{sc}_{II} in Eq. (13)). (iii) For resonant energy transfer, both Hamiltonians #I and #II predict qualitatively the same distance behavior as retarded Förster theory, and when the electronic excitation of the donor is weak, both semiclassical methods recover QED results quantitatively. However, (iv) even though Hamiltonian #I violates causality, this approach better agrees with QED as far as resonant energy transfer rates at short distances. The pros and cons of these different Hamiltonians suggest that the specific choice of a semiclassical Hamiltonian may depend on the particular problem one is investigating — for now, it
would appear there is no sinecure for the inconsistencies inevitably faced by a semiclassical ansatz. Nevertheless, if spontaneous emission can be incorporated into Ehrenfest dynamics, the accuracy of these methods should be dramatically enhanced. This work is ongoing in our laboratory.

6 Appendix I: Simulation details and parameters

We evolve the EM field and the total density matrix $\rho = \rho^{(D)} \otimes \rho^{(A)}$ by Eqs. (7). Maxwell’s equations are simulated using the finite-difference time-domain (FDTD) method with the perfect matching layer (PML) as the absorbing boundary condition. We use an open-source package MIT Electromagnetic Equation Propagation (Meep) to propagate the EM field and update the current source J at each time step through Eq. (7d). We propagate ρ by

$$\rho(t + \Delta t) = \exp(-i\hat{H}_{sc}(t)\Delta t/\hbar)\rho(t),$$

where \hat{H}_{sc} is either calculated as Hamiltonian #I (Eq. (11)) or #II (Eq. (14)). Note that in practice, we do not directly calculate the time-consuming transverse E-field in Eq. (10) at each time step. Instead, because the polarization operators can be separated into a product of the spatial and electronic parts, we calculate the spatial integrals of

$$\frac{1}{\epsilon_0} \int d\mathbf{r} \hat{P}^{(n)}(\mathbf{r}) \cdot \hat{P}^{(l)}(\mathbf{r})$$

and

$$\frac{1}{\epsilon_0} \int d\mathbf{r} \hat{P}^{(n)}(\mathbf{r}) \cdot \hat{P}^{(n)}(\mathbf{r})$$

only one time (for each R) at the beginning of the calculation. To calculate the longitudinal vector field, we transform to Fourier space, where

$$\hat{P}_{\parallel}(\mathbf{k}) = \mathbf{k} \cdot \hat{P}(\mathbf{k})/|\mathbf{k}|^2,$$

and then take the inverse Fourier transform. For calculating \hat{H}_{sc}^{II}, we use Eq. (14) above. As shown in the supplementary information, $\hat{H}_{sc}^{II'} (\hat{H}_{sc}^{II})$ Behaves exactly the same as $\hat{H}_{sc}^I (\hat{H}_{sc}^{II})$, suggesting that the term $\frac{1}{\epsilon_0} \int d\mathbf{r} \hat{P}^{(n)} \cdot \hat{P}^{(n)}$ is not very important for energy transfer dynamics.

The parameters for the TLSs are as follows: for the transition dipole moment $\mu_{12} = 9.57 \times 10^4 \text{ C} \cdot \text{nm/mol}$, for the energy difference $\hbar \omega_0 = 6.58 \text{ eV}$, and for the molecular width $\sigma = 3 \text{ nm}$. In the FDTD simulation, we calculate the EM field in a $(96 + R) \text{ nm} \times 96 \text{ nm} \times 96 \text{ nm}$ grid with spacing $\Delta x = 3 \text{ nm}$, where R is the separation between two TLSs. We choose a small time step $\Delta t = 2 \times 10^{-4} \text{ fs}$ to guarantee the accuracy and convergence.
7 Appendix II: Energy conservation

For each semiclassical Hamiltonian discussed above, we can define a total energy function that is conserved. These energies are as follows:

Table 1: Energy conservation for semiclassical Hamiltonians

Hamiltonian	H_s^{total}	conserved quantity							
\# I (Eqs. \[10-11\])	$\sum_{n=1}^{N} \hat{H}_s^{(n)} + \sum_{n<l} \hat{V}_{\text{out}}^{(nl)}$	$\frac{1}{2} \int d\rho \left(\epsilon_0	E_\perp	^2 +	B	^2_{\rho 0} \right) + \text{Tr} \left(\hat{\rho} \hat{H}_s^{total} \right)$		
\# II (Eqs. \[13-14\])	$\sum_{n=1}^{N} \hat{H}_s^{(n)} - \frac{1}{\epsilon_0} \int d\rho \parallel \hat{P}^{(n)} \parallel \cdot \hat{P}^{(n)}$	$\frac{1}{2} \int d\rho \left(\epsilon_0	E_\perp	^2 +	B	^2_{\rho 0} \right) + \text{Tr} \left(\hat{\rho} \hat{H}_s^{total} \right) + \frac{1}{\epsilon_0} \sum_{n<l} \parallel \hat{P}^{(n)} \parallel \cdot \parallel \hat{P}^{(l)} \parallel$		
\# I’ (Eq. \[15a\])	$\sum_{n=1}^{N} \hat{H}_s^{(n)} + \sum_{n<l} \hat{V}_{\text{out}}^{(nl)} - \frac{1}{\epsilon_0} \int d\rho \parallel \hat{P}^{(n)} \parallel \cdot \hat{P}^{(n)}$	$\frac{1}{2} \int d\rho \left(\epsilon_0	E_\perp	^2 +	B	^2_{\rho 0} \right) + \text{Tr} \left(\hat{\rho} \hat{H}_s^{total} \right) + \frac{1}{\epsilon_0} \sum_{n<l} \int d\rho	\hat{P}^{(n)}	^2$
\# II’ (Eq. \[15b\])	$\sum_{n=1}^{N} \hat{H}_s^{(n)}$	$\frac{1}{2} \int d\rho \left(\epsilon_0	E_\perp	^2 +	B	^2_{\rho 0} \right) + \text{Tr} \left(\hat{\rho} \hat{H}_s^{total} \right)$		

In Table 1, $\hat{H}_s = \sum_{n=1}^{N} \hat{H}_s^{(n)}$.

Supporting Information Available

The following files are available free of charge.

- SI.pdf: Results for Hamiltonians #I’ and #II’, showing that self-interaction is not important for accurately modeling the dynamics of energy transfer.

Acknowledgement

This material is based upon work supported by the the National Science Foundation under Grant No. CHE-1764365 (T.L., H.T.C., J.E.S.), AFOSR Grant No. FA9550-15-1-0189 (M.S.), US-Israel Binational Science Foundation Grant No. 2014113 (M.S. and A.N.) and the US National Science Foundation Grant No. CHE1665291 (A.N.).
References

(1) Törmä, P.; Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: a review. *Reports on Progress in Physics* **2015**, *78*, 013901.

(2) Sukharev, M.; Nitzan, A. Optics of exciton-plasmon nanomaterials. *Journal of Physics: Condensed Matter* **2017**, *29*, 443003.

(3) Vasa, P.; Lienau, C. Strong Light-Matter Interaction in Quantum Emitter/Metal Hybrid Nanostructures. *ACS Photonics* **2018**, *5*, 2–23.

(4) Khitrova, G.; Gibbs, H. M.; Kira, M.; Koch, S. W.; Scherer, A. Vacuum Rabi splitting in semiconductors. *Nature Physics* **2006**, *2*, 81–90.

(5) Gibbs, H. M.; Khitrova, G.; Koch, S. W. Exciton-polariton light-semiconductor coupling effects. *Nature Photonics* **2011**, *5*, 275–282.

(6) Lodahl, P.; Mahmoodian, S.; Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. *Reviews of Modern Physics* **2015**, *87*, 347–400.

(7) Ribeiro, R. F.; Martínez-Martínez, L. A.; Du, M.; Campos-Gonzalez-Angulo, J.; Yuen-Zhou, J. Polariton chemistry: controlling molecular dynamics with optical cavities. *Chemical Science* **2018**, *17*.

(8) Power, E. A.; Thirunamachandran, T. Quantum electrodynamics with nonrelativistic sources. I. Transformation to the multipolar formalism for second-quantized electron and Maxwell interacting fields. *Physical Review A* **1983**, *28*, 2649–2662.

(9) Mukamel, S. *Principles of Nonlinear Optical Spectroscopy*; Oxford University Press: New York, 1999; pp 84–92.

(10) Note that obviously $\left[\hat{D}_\perp, \hat{P}_\perp\right] = 0$.

(11) Cohen-Tannoudji, C.; Dupont-Roc, J.; Grynberg, G. *Photons and Atoms: Introduction to Quantum Electrodynamics*. 1997.
(12) A straightforward proof of Eq. (4) is given here. Starting from Eq. (3),
\[\hat{V}_{Coul}^{(nl)} = \frac{1}{\epsilon_0} \int dr \ \hat{P}_\parallel^{(n)}(r) \cdot \hat{P}_\parallel^{(l)}(r) = -\frac{1}{\epsilon_0} \int dr \ \hat{P}_\perp^{(n)}(r) \cdot \hat{P}_\perp^{(l)}(r) = -\frac{1}{\epsilon_0} \int dr \ \hat{P}_\perp^{(n)}(r) \cdot \hat{P}_\perp^{(l)}(r) \]. Applying the definition of the transverse δ-function,
\[\hat{V}_{Coul}^{(nl)} = -\frac{1}{\epsilon_0} \int d^2r \sum_{ij} \mu_i \mu_j \delta_\perp(r-r^{(n)}) \delta_\parallel(r-r^{(l)}) = -\frac{1}{\epsilon_0} \int d^2r \sum_{ij} \mu_i \mu_j \delta_\perp(r-r^{(n)}) \left[\frac{2}{r^2} \delta_\parallel(r-r^{(l)}) + \frac{1}{4\pi r^3} \left(\frac{3(r_i - r_i')(r_j - r_j')}{|r-r'|^2} - \delta_{ij} \right) \right] \delta_\parallel(r'-r^{(l)}). \] Eq. (4) is derived by evaluating the above double integrals.

(13) Masiello, D.; Deumens, E.; Öhrn, Y. Dynamics of an atomic electron and its electromagnetic field in a cavity. *Physical Review A - Atomic, Molecular, and Optical Physics* 2005, 71, 032108.

(14) Lopata, K.; Neuhauser, D. Nonlinear nanopolaritons: Finite-difference time-domain Maxwell-Schrödinger simulation of molecule-assisted plasmon transfer. *Journal of Chemical Physics* 2009, 131, 014701.

(15) Sukharev, M.; Nitzan, A. Numerical studies of the interaction of an atomic sample with the electromagnetic field in two dimensions. *Physical Review A - Atomic, Molecular, and Optical Physics* 2011, 84, 043802.

(16) Puthumpally-Joseph, R.; Atabek, O.; Sukharev, M.; Charron, E. Theoretical analysis of dipole-induced electromagnetic transparency. *Physical Review A - Atomic, Molecular, and Optical Physics* 2015, 91, 043835.

(17) Li, T. E.; Nitzan, A.; Sukharev, M.; Martinez, T.; Chen, H.-T.; Subotnik, J. E. Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy. *Physical Review A* 2018, 97, 032105.

(18) Prezhdo, O. V.; Rossky, P. J. Mean-field molecular dynamics with surface hopping. *Journal of Chemical Physics* 1997, 107, 825–834.

(19) Li, X.; Tully, J. C.; Schlegel, H. B.; Frisch, M. J. Ab initio Ehrenfest dynamics. *Journal of Chemical Physics* 2005, 123.
(20) West, B. J.; Lindenberg, K. Energy transfer in condensed media. I. Two level systems. *The Journal of Chemical Physics* **1985**, *83*, 4118–4135.

(21) Spano, F. C.; Mukamel, S. Superradiance in molecular aggregates. *The Journal of Chemical Physics* **1989**, *91*, 683–700.

(22) Alfonso Hernandez, L.; Nelson, T.; Tretiak, S.; Fernandez-Alberti, S. Photoexcited energy transfer in a weakly coupled dimer. *Journal of Physical Chemistry B* **2015**, *119*, 7242–7252.

(23) Mirkovic, T.; Ostroumov, E. E.; Anna, J. M.; Van Grondelle, R.; Govindjee; Scholes, G. D. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. *Chemical Reviews* **2017**, *117*, 249–293.

(24) Andrews, D. L.; Juzeliūnas, G. Intermolecular energy transfer: Retardation effects. *The Journal of Chemical Physics* **1992**, *96*, 6606–6612.

(25) Andrews, D. L.; Craig, D. P.; Thirunamachandran, T. Molecular quantum electrodynamics in chemical physics. *International Reviews in Physical Chemistry* **1989**, *8*, 339–383.

(26) Andrews, D. L. A unified theory of radiative and radiationless molecular energy transfer. *Chemical Physics* **1989**, *135*, 195–201.

(27) Scholes, G. D. long-range resonance energy transfer in molecular systems. *Annual Review of Physical Chemistry* **2003**, *54*, 57–87.

(28) Lakowicz, J. R. Principles of Fluorescence Spectroscopy. 2006.

(29) Nelson, T.; Fernandez-Alberti, S.; Roitberg, A. E.; Tretiak, S. Conformational disorder in energy transfer: beyond Förster theory. *Physical Chemistry Chemical Physics* **2013**, *15*, 9245.

(30) Power, E. A.; Thirunamachandran, T. Quantum electrodynamics with nonrelativistic sources. III. Intermolecular interactions. *Physical Review A* **1983**, *28*, 2671–2675.
If we ignore the factor of $P_{2}^{(D)}(0)$, Eq. (20) is derived from Eq. (4.7.19) in Ref. 40. Now in Ref. 40, the initial donor state is chosen as the excited state $(0,1)$, so $P_{2}^{(D)}(0) = 1$. For our purposes, with a donor in a superposition state, we will make the rotating wave approximation so that our final energy transfer expression (Eq. (20)) can be derived by multiplying Eq. (4.7.19) in Ref. 40 by a factor of $P_{2}^{(D)}(0)$.

For our simulations, we set E and B initially to be exactly zero throughout space. Of course a more accurate initial condition would be to set D is 0 everywhere (instead of E) given that the QED calculation are performed assuming no excitation of the D-photon field. Nevertheless, for resonant energy transfer, since $D(0) = \epsilon_0 E(0) + P^{(D)}(0)$ and $P^{(D)}(0) \sim \text{Re} \rho_{12}^{(D)}(0)$, setting E as 0 should not change the overall population dynamics at all if we average over the initial phases. Moreover, the initial energy in the field $(\frac{1}{\epsilon_0} \int d\mathbf{r} |P^{D}(0)|^2)$ is very small compared to $\hbar \omega_0$, so these initial conditions should not be very different in practice.

Note that, when the pair of TLSs are relatively close $(k_0 R \approx 1)$, causality is clearly violated by Hamiltonian #I according to Fig. 1-c. That being said, in this regime, one usually ignores all retardation effects. Such a simplification usually makes sense because, if a resonant EM field arrives, the pair of TLSs will feel effectively the same external perturbation (in phase) and all emission between the pair of TLSs will interface constructively or disconstructively, so that the time delay between the two systems is usually not important. In contrast, for this standard case, however, here we have imagined that somehow we can prepare the two quantum subsystems asymmetrically, with one initially excited and the other relaxed to its ground state. For such a case, retardation (albeit very small) might indeed be measurable.

Schwabl, F. Quantum mechanics, 4th ed.; Springer-Verlag: Berlin, 2007; p 306.

Miller, W. H. A classical/semiclassical theory for the interaction of infrared radiation with molecular systems. The Journal of Chemical Physics 1978, 69, 2188–2195.
(36) Mollow, B. R. Power Spectrum of Light Scattered by Two-Level Systems. *Physical Review* **1969**, *188*, 1969–1975.

(37) Chen, H.-T.; Li, T. E.; Sukharev, M.; Nitzan, A.; Subotnik, J. E. Ehrenfest+R Dynamics: A Mixed Quantum-Classical Electrodynamics Simulation of Spontaneous Emission. *arXiv:1806.04662* 2018.

(38) Taflove, A. *Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method*; Artec House Inc: Norwood, 1998.

(39) Oskooi, A. F.; Roundy, D.; Ibanescu, M.; Bermel, P.; Joannopoulos, J.; Johnson, S. G. Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. *Computer Physics Communications* **2010**, *181*, 687–702.

(40) Salam, A. *Molecular quantum electrodynamics: long-range intermolecular interactions*; John Wiley & Sons: New Jersey, 2010.