Acid Hydrolysis Optimization of *Prosopis Juliflora* Stem for Bioethanol Production

Biniyam Tefera Amdebrhan¹, Sisay Asfaw², Gizachew Assefa¹

¹Department of Chemical and Bioengineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia
²Ethiopia Forestry Research Institute, Addis Ababa, Ethiopia

Email address: binyam.tefera@aait.edu.et (B. T. Amdebrhan)

To cite this article: Biniyam Tefera Amdebrhan, Sisay Asfaw, Gizachew Assefa. Acid Hydrolysis Optimization of *Prosopis Juliflora* Stem for Bioethanol Production. *Science Journal of Energy Engineering*. Vol. 4, No. 1, 2016, pp. 1-11. doi: 10.11648/j.sjee.20160401.11

Received: May 20, 2016; Accepted: June 3, 2016; Published: August 6, 2016

Abstract: Ethanol producing from biomass has become an interesting substitute to petroleum in the struggle against raised levels of fossil carbon dioxide emission to the atmosphere. The biotechnological conversion of biomass into fuels requires hydrolysis of the polysaccharide fraction into monomeric sugars. This study was aimed at the optimization of the processing conditions of the hydrolysis step of bioethanol production to produce high fermentable sugar. In this study dilute acid hydrolysis, temperature and residence time were used as process parameters. Response Surface Methodology (RSM) was employed for the optimization of hydrolysis conditions. A 3 (three) level design was used to develop a statistical model for the optimization of process variables. The raw material, *P. juliflora* stem, was collected from Afar region eastern part of Ethiopia specifically Werr Agricultural Research Center. The optimal hydrolysis conditions that resulting for the maximum total reducing sugar concentration were at acid concentration; 2% (v/v), temperature; 128.01°C and hydrolysis time; 55 minutes. Under these conditions, the total reducing sugar concentration was obtained to be 184.716mg/g.

Keywords: Ethanol, *Prosopis Juliflora*, Reducing Sugar, Hydrolysis

1. Introduction

1.1. Background

Fuels obtained from renewable resources have deserved a great deal of interest during the past decades mainly due to concerns about fossil fuels depletion and environment pollution. Research efforts have been multiplied in the last years as a consequence of constant increasing costs and environmental impact derived from the use of crude-based fuels (Gray & Emptage, 2006). Production of fuel from renewable resources has advantages over fossil fuel in that less environmental impact and sustainability of resource.

Shortage of oil supplies, the growing pressure on reduction in the net emission of CO₂, global warming, and the use of food crops for ethanol production resulted in global food crises have maintained research and development on the ethanol production from non edible renewable raw materials (Himmel, 2007). Although much progress has been made in many areas of biomass biorefinery, efficient production of cellulosic ethanol from plant biomass remains a challenge.

Prosopis juliflora (SW) D. C., Leguminosae, a popular plant known as mesquite, is native to Central and South America and has spread to North America.

In East Africa, *P. Juliflora* was introduced in the 1970s’ through collaborative projects involving local governments and outside agencies (Coppock, 2005). In the Afar region of Ethiopia, where *P. juliflora* is having dramatic impacts across the landscape, its spread and impacts on resources has been ranked as one of the leading threats to the range lands and biodiversity, ranked as the most problematic plant invader in Ethiopia (Tessema, 2007; EEP, 2006). The potential use of *P. juliflora* is that it is a fast growing plant, which can grow on any marginalized areas; this may be taken as advantageous to use as a sustainable feedstock for bioethanol production. Hydrolysis of the pod of *P. juliflora*, into simple sugar with water in the absence of acid shows that the potential as feedstock for ethanol production (Negusu, 2009).

The *P. juliflora* (Mesquite) has recently been suggested to be used as raw material for long-term sustainable production of cellulosic ethanol (Hopkins, 2007). Its nature to tolerate drought, grazing, heavy soil, sand as well as saline dry flats
and indigestibility by animals made it a potential feedstock for ethanol production.

1.2. Objective of the Study

The aim of this work was to determine optimum condition for the hydrolysis of *P. juliflora* stem to release fermentable sugar for ethanol production.

2. Method

2.1. Sample Collection and Preparation

Samples of *P. juliflora* stem were collected from Afar region (Werer) in February, 2013. They were collected by cutting with large knife from the upright part of the plant having approximately 3-4 mm in diameter.

The stems of *P. juliflora* were chopped to suitable size for drying and for further milling. The chopped stems were washed in tap water to remove impurity from outer part of the stem. Sample drying was carried out in oven at a temperature of 65°C for 48h.

Oven dried samples were milled in hammer mill (Brazil, model TRAPP, TRF300G) to 2-3mm size then in a disk mill (German, RETSCH, SK1) to more smaller sizes where sieved to a particle size of 1.4 mm and 0.5 mm. Milled material was stored at room temperature in air tight containers and dried in a laboratory oven at 50°C for 24h prior to use.

2.2. Sample Characterization

2.2.1. Moisture Analysis

Three grams of milled *P. juliflora* were taken for moisture determination and put in an oven working in forced hot air purging system at 105°C in a convection oven and the result of moisture content is expressed in percentage weight form.

2.2.2. Ash Analysis

The crucible was marked with pencil and it was placed in the muffle furnace at 550°C until a constant weight gained. Three samples having 7.4, 8.03 and 9.17 g were taken for ash determination. The samples were inserted in the muffle furnace and ignited at 550°C for three hours.

2.2.3. Extractives Analysis

Ten gram of milled sample was taken for the analysis of extractive contents and extracted with 98% ethanol refluxing in a soxhlet apparatus for 24 hr. The extract was concentrated in a rotary evaporator and dried in a vacuum oven at 40°C for 24 hr. The amount of extractive substances expressed in percent on dry weight bases (ASTM D1105-84, 1993).

2.2.4. Acid Insoluble Lignin

The acid insoluble lignin amount was determined following the ASTM E 1721-95 (ASTM, 1995). Ten ml of Sulfuric acid (H\textsubscript{2}SO\textsubscript{4}) at a concentration of 72% was used to hydrolyze 3g of extract free sample in 100 ml beaker and the mixture was stirred and dispersed thoroughly with a glass rod and held for 2 hr at 30°C in a water bath. Then the solution was transferred to 250 ml Erlenmeyer flask and diluted to 3% and refluxed for 2 hr. The hydrolyzed substrate was filtered through fritted glass filter. The remaining residue was dried to constant weight and the dried residue was then placed in a furnace at 575°C for 3 hr and the residue ash was weighed.

2.2.5. Determination of Neutral Detergent Fiber (NDF) Procedure

Two gram sample of the *P. juliflora* stem was taken in a conical flask of 500 ml capacity and 100 ml of neutral detergent solution was added to it. Then 0.5 g sodium sulphate was added and refluxed for 1hr. The contents were filtered comprehensively, by washing its residues two times with distilled water. The residues were shifted to tared crucibles and kept in an oven at 105°C for 24 hr until constant weight achieved. Then, the Neutral Detergent Fiber was determined and expressed in percentage weight bases AOAC (Association of Official Analytical Chemists, 1972).

2.2.6. Acid-Detergent Fiber Procedure

Acid detergent solution:

Acid detergent solution was prepared by dissolving 20 g Cetyltrimethylammonium bromide (CTAB) in 1.0 N sulfuric acid. The residues of NDF were transferred to a 500ml conical flask, fitted over with an air condenser, and added 100 ml of the acid detergent solution. The flask was heated to boiling for 6 minutes, and allowed to reflux fiber for 60 minutes. The flask-contents were filtered, thoroughly, using a suction pump by washing twice with the acetone. The residues were transferred to a dried crucible and kept in the oven, at 105°C for 24 hr.

The oven-dried crucibles were taken out of the oven, desiccated and allowed to cool. The weight of the crucible along with dried residues was recorded.

2.2.7. Determination of Cellulose Contents (%)

Acid detergent fiber residues, in dried form, were taken in a crucible, weighed and placed in a beaker, to which 10ml of 24 NH\textsubscript{2}SO\textsubscript{4} was added and allowed to stand for one hour. After one hour, further 10 ml of 24 N H\textsubscript{2}SO\textsubscript{4} was added and then again allowed to stand for one hour. This process was repeated for the third time. After that distilled water was added to get 100 ml of the volume. The solution was, then, filtered and washed with distilled water. The residues left were transferred to tared crucibles and were kept in the oven at 105°C for 8 hours until constant weight of the dried residues reached.

2.2.8. Determination of Hemicellulose (%)

The weights of the dried residues of ADF and NDF, discussed previously, were taken.

The difference among them was determined and resulted Hemicellulose value.

2.3. Acid Hydrolysis

10% (w/v) of Milled wood samples at a solid loading was soaked in sulphuric acid (H\textsubscript{2}SO\textsubscript{4}) of 2, 4 and 6% (v/v). Acid hydrolysis was performed in triplicate at 110, 125 and 140°C in autoclave with residence times of 15, 35 and 55 min. After hydrolysis, the reaction vessels were rapidly cooled in a cold
water bath. The pH of the hydrolyze material was adjusted to pH 5.2 with 2M NaOH solution. The hydrolysate was filtrated to separate liquid and solid phase by suction with vacuum. Then, the filtrate fraction was collected for sugar analysis by using Titration (Canettieri, 2007; Melsert, 2007).

2.3.1. Determination of Sugar

The total reducing sugar from hydrolysis of P. juliflora were determined using standardisation of Fehling’s Solution

2.3.2. Experimental Design and Data Analysis

The RSM with three level factorial was chosen to determine the effect of three operating factors of the hydrolysis temperature, time, and acid concentration. One response variables which were yield of reducing sugars produced per total holocellulose dry mass, on the operating condition, which has a significant influence on the acid hydrolysis process. Mean values of the treatments were compared at p=0.05% confidence level with experimental designe 10.0 program.

3. Result and Discussion

3.1. Proximate Chemical Composition of P. Juliflora

The chemical components for P. juliflora are comparable to other biomass source used for the same objective, for instance, for Eucalyptus grandis residue 40%, 16% and 23% for cellulose, hemicelluloses and insoluble lignin, respectively Canettieri et al., (2007); loblolly pine also showed that 43.6%, 21.2% and 26.8% cellulose, hemicelluloses and insoluble lignin, respectively (Puneet et al., 2009). Whereas for Cotton Stems, 37.9%, 20.4% and 24.0% for cellulose, hemicelluloses and insoluble lignin, respectively which is lower in cellulose content (Beck & Clements., 1982).

The considerably high cellulose and hemicelluloses content in P. juliflora indicates the potential for production of a great variety of products, as ethanol, which may be used as a fuel or raw material for synthesis of different chemicals, (Werpy & Petersen, 2004).

3.2. Total Reucing Sugar Yield

![Figure 1. Total reducing sugar content with relation to the three variable.](image)

The Prosopis juliflora when hydrolyzed with dilute H$_2$SO$_4$, at 110°C and 125°C, the release of sugar increased with increase in acid concentration from 2% to 4% (v/v) H$_2$SO$_4$ and it declined thereafter.

The total reducing sugars released in hydrolysis showed an increament with an increase of acid concentration, temperature and residence time but the yield of reducing sugar will start to fall when the hydrolysis temperature increases to 140°C high amount of reducing suar was obtaind when the sample was treated with 4% acid concentration at 125°C for 55 min. With two percent acid treatment in all conditions the reducing sugars yield increased with respective increase of processing parameters (figure 2a) while an increase of concentratarion to four and six percents an increase in residence time at iso thermic condition resulted in decline of yieds (figure 2b and figure 2c). The decline in reducing sugar release during hydrolysis at higher temperature and high residence time attributed to the condensation reaction leading to the formation of furfural and hydroxymethylfurulural from pentose and hexose sugars respectively (Kim et al., 2001).
Figure 2a shows the experiment carried out at 2% H$_2$SO$_4$ as a function of resident time and temperature. As it is shown in the figure, at 115°C, 125°C and 140°C, the amount of free sugar released were constantly increased as the resident time increases as shown in figure 2a. In addition, in all the three cases of the same residential time, the amounts of free sugar produced were increased as the temperature increases except in one case where the highest amount of free sugar production is attained figure 2a. The highest amount of free sugar release was found at a temperature of 125°C and resident time of 55 min, indicating at 2% of H$_2$SO$_4$ concentration figure 2b. An increase in temperature around 140°C, increase the formation of toxic compounds such as furfural and 5-hydroxymethyl-furfural (HMF). In addition, these compounds lead to reduction of fermentable sugars (Kootstra et al., 2009).

As depicted in Figure 2b, the yield of hydrolysate at 110°C and 125°C with increasing resident time had a positive effect on TRS yield. But further increase in temperature leads to decline the TRS yield even for a short resident time. This is an indication that at high temperature, in this case 140°C, leading to degradation of sugar. Thus high temperature, with increasing the reaction time reduced the yield of TRS which means that the reaction require resident time of less than 15 min. The studies of Ojumu & Ogunkunle (2005) also found that, the glucose yield gradually decreases after the 20 min of reaction due to its decomposition.

In the case of 6% H$_2$SO$_4$ figure 2c, the release of hydrolyzed sugar showed similar trend as 4% acid concentration. For a minimum temperature 110°C the influence of residence time is insignificant when compared to 2% and 4% H$_2$SO$_4$. Hydrolysis the prosopis stem with 2% and 4% of H$_2$SO$_4$ at 125°C the maximum reducing sugars were released at hydrolysis time of 55 min.

3.3. Statistical Analysis of the Experimental Result

Test no.	Coded value	Actual value	Yield of total reducing sugars (mg/g)
13	-1.00	15	123.29
27	0.00	15	147.06
26	1.00	55	158.66
15	-1.00	15	139.63
7	0.00	35	146.21
4	1.00	55	163.04
1	-1.00	15	136.44
31	0.00	35	139.93
9	1.00	55	156.25
8	-1.00	15	141.51
2	0.00	35	159.57
22	1.00	55	183.64
20	-1.00	15	148.22
25	0.00	35	160.94
23	1.00	55	194.30
29	-1.00	15	144.23
18	0.00	35	154.32
32	1.00	55	184.73
10	-1.00	15	148.22
5	0.00	35	164.47
16	1.00	55	178.50
17	-1.00	15	160.94
12	0.00	35	150.00
21	1.00	55	132.98
11	-1.00	15	152.44
28	0.00	35	145.91
14	1.00	55	113.64
24	0.00	35	159.23
6	0.00	35	158.89
30	0.00	35	161.23
19	0.00	35	161.23
3	0.00	35	161.12

Figure 2. TRS yield with respect at different acid concentration as a function of temperature and resident time.
The ANOVA results from quadratic equation described in Table 2 below indicate the model was significant due to high F-Value of 5.77 and have a low Probability value of 0.0004.

Table 2. Analysis of Variance (ANOVA) for Quadratic Models of TRS.

Source	Sum of square	Degree of freedom	Mean square	F-value	P-value, Prob>F
Model	6545.80	10	654.58	5.77	0.0004 significant
A-Time	1660.61	1	14.55	14.55	0.0010
B-Acid conc.	347.60	1	3.05	3.05	0.0095
C-Temp.	74	1	0.65	0.65	0.0427
AB	650.33	1	5.70	5.70	0.0370
AC	1102.08	1	9.66	9.70	0.0053
BC	572.42	1	5.02	5.02	0.0361
A²	49.05	1	0.43	0.40	0.5192
B²	29.29	1	0.26	0.28	0.6177
C²	1586.08	1	13.90	14.09	0.0012
ABC	358.99	1	3.15	3.15	0.0906
Residual	2390.83	21	114.11		
Pure Error	5.42	5	1.08		
Cor Total	8942.5	31			

By applying multiple regression the three variable and total reducing sugar produced reationship was found by second degree polynomial.

Red. sugar (mg/g) = 161.87 + 9.60 A - 4.39 B + 2.04 C - 7.36 AB - 9.58 AC - 6.96 BC + 2.74 A² - 1.90 B² - 14.77 C² - 6.70 ABC 3.1.

Red. Sugar (mg/g) = -973.40886 - 0.85175 * Time - 12.01358 * Acidconc +17.0243 * Temp + 1.21153 * Time * Acidconc + 0.012714 Time * Temp + 0.16056 * Acidconc * Temp + 6.84234E – 003 * Time² - 0.47618 * Acidconc² - 0.065651 * Temp² - 0.011165 * Time * Acid conc * Temp 3.2.
The plot as shown in figure 3, the residuals follow a normal distribution, indicating that quadratic polynomial model satisfies the assumptions analysis of variance (ANOVA).

The plot in figure 4 shows constant range of residuals across the graph which is justifiable no need for a transformation to minimize personal error.

3.4. Effects of Experimental Variables on Hydrolysis Results

For lower value of acid concentration and reaction time had resulted in smaller conversion of *Prosopis juliflora* stem in to fermentable reducing sugar. For lower residence time increasing of the acid concentration had small effect on TRS yield and the plot indicates that for higher value of acid concentration TRS yield decreased from its value across the resident time. Due to liability of sugar components in higher concentration of acid better amount of TRS yield was obtained at lower acid concentration (2%) and highest residence time (55min) At higher concentration the formation of HMF and its yield increases (Talebnia, 2008). The formation of inhibitors such as furfural and HMF from the decomposition of liberated sugars through the secondary reactions (Bienkowski et al. 1987; Taherzadeh et al. 2000; Azhar et al. 1981). Formation of HMF during dilute-acid hydrolysis is a sequential reaction where cellulose and hemicellulose are first hydrolyzed to their hexoses and pentoses monomers with subsequent decomposition to furfural and HMF. These two reactions are influenced by temperature and acid concentration. The higher ratio of the first reaction rate constant compared to the second one increasing the yield of total liberating sugars.

These facts suggest that the conditions for dilute-acid hydrolysis and the variables affecting this process should be carefully selected and optimized to yield the highest hydrolyzate and extent of depolymerization of the carbohydrate polymers and maximum release of sugars, while the formation of inhibitory compounds is minimized. The hydrolysis is shown higher value at the corner of low value acid concentration and higher value of reaction time in which the temperature keeps at the centre point.

At lower temperature increasing of time had resulted in a
A considerable change with linear increment of TRS yield as a result of slow hydrolysis of the polysaccharides; whereas, at higher temperature the influence of increasing hydrolysis time had negative effect for TRS yield with inter molecular condensation of the released fermentable sugars to their corresponding furfural and HMF figure 6. As the temperature increased for each level of time the TRS yield had increased; however, further increasing of the reaction temperature resulted in a lower TRS yield, which might be due to the decomposition of TRS to form HMF, furfural, levulinic acid, and acetic acid (Change et al., 2007, Talebnia, 2008). In the other case, at lower residence time increasing of temperature to optimum level has a strong positive effect on the formation of TRS which followed by a decline of released sugar as the temperature increased beyond the suitable temperature value. Similarly, for higher residence time increasing temperature showed a moderate increment in the formation of TRS to its maximum yield for initial increasing temperature and reached maximum not far away from 120°C, then further increasing temperature decline the yield of TRS. Thus, more resident time is required if the hydrolyzate reaction takes place at minimum temperature. This graph also indicates that the maximum temperature at which higher TRS yield was obtain to be around 130°C In this work, the maximum TRS yield was achieved with a reaction time of 55 min.

![Figure 6. Effect of time and temperature on sugar yield when acid concentration was at the center point.](image)

![Figure 7. Effect of temperature & acid concentration on TRS yield when time was at the center point.](image)

However, increasing of temperature beyond 125°C the sugar yield generation by all the acid concentration was start to decline sharply. It can conclude from figure 4 at the higher levels of both temperature and acid concentration, the yield of sugars declined, certainly due to formation of HMF and furfural (Talebnia, 2008). Theoretically, higher temperature could accelerate the rate of cellulose hydrolysis to TRS; however, unwanted side reaction could also be produced at elevated temperature (Amarasekara & Wiredu, 2012; Chang et al. 2007; Li et al. 2008).

3.5. Optimization

Name	Goal	Lower Limit	Upper Limit
Time (min)	In range	15	55
Acid concentration (%v/v)	In range	2	6
Temperature (°C)	In range	110	140
Reducing sugar (mg/g)	Maximize	113.64	194.3

The optimum possible solutions in hydrolysis for different independent variables for reducing sugar yield and the corresponding surface plot are shown in table 4 and figure 8 below.
The optimum response values was tested using the optimum value 191mg/g. This result indicates that there is excellent concentration 194mg/g obtained was close to the predicted replications demonstrated that the maximum total sugar conditions mentioned above. The results obtained from three mg/g. This value is comparable with other studies, for example acid hydrolysis of bagasse from Agave tequilana weber (Saucedo et al. 2010) fermentable sugar yield was 200mg/g of agave bagasse treated when the reaction is carried out at 150°C, reaction time 10 min and 2% of catalyst. While any further increase in hydrolysis stringency caused the increase in release of toxic compounds without much effect on sugar yield.

3.6. Validation of the Model

The suitability of the model equation for predicting the optimum response values was tested using the optimum conditions mentioned above. The results obtained from three replications demonstrated that the maximum total sugar concentration 194mg/g obtained was close to the predicted value 191mg/g. This result indicates that there is excellent correlation between experimental and predicted values and in turn proves the validity of the model.

4. Conclusion

This research was designed to utilize P. juliflora stem for ethanol production. The optimization results of P. juliflora stem clearly showed that the plant’s stem is a promising raw material for production ethanol. The following conclusions are drawn from the study:

- P. juliflora containing 59% (w/w) holocellulose is used as a low-cost feedstock for bioethanol production.
- Hydrolysis of P. juliflora stem is influenced by the concentration of acid, time and temperature.
- The concentration of total reducing sugars produced during hydrolysis is related to acid concentration, time and temperature by a validated quadratic polynomial regression model.
- The optimum processing conditions drawn from RSM were an acid concentration of 2% (v/v), temperature of 128.01°C, and time of 55 minutes. Under these conditions, the maximum concentration of total reducing sugar obtained was 184.72mg/g.

Acknowledgments

I am highly grateful to the Almighty God for the strength that he gave me and helped me to stay focused on my vision in spite of all the challenges. I am deeply thankful to my supervisor: Eng. Gizachew Shieferaw (Ass. professor) for the research discussions. I want to express my sincere gratitude to my co-advisor Dr. Sisay Feleke for his willingness to offer critically constructive comments, for excellent scientific guidance, support. I am also grateful for chemical and finical support provided to me by Ethiopian Forest Research center. I want to say thank you too for the rest of my families and relatives. It is your greatest encouragement and sacrifices that brought this work to a successful end.

References

[1] Admasu, D. (December 2008). the case of Prosopis juliflora in the Afar region of Ethiopia. FARM_Africa for IUCN.

[2] Amarekara, A. &. (2011). aryl sulfonic acid catalyzed hydrolysis of cellulose in water. Genera applied chemistrty, 417-418, 259-262.

[3] Amartey, S. a. (1996). An improvement in Pichia stipitis fermentation of acidhydrolysed hemicellulose achieved by over-liming (calcium hydroxide treatment) and strain adaptation. Wo. J. Microbiol. Biotechnol. 12, 281-283.

[4] Association of Official Analatical Chemists, o. m. (1972). sample preparation. Washington, D. C.

[5] ASTM D 1105-84. (1993). "Method for Preparation of Extractive-Free Wood.". American Society for Testing and Materials: Annual Book of ASTM standards, Volume 04. 09. Philadelphia, PA.
[6] ASTM. (1995). Standard Test Method for Determination of Acid Insoluble Residues in Biomass. Philadelphia, Pennsylvania: ASTM E 1721-95 ASTM.

[7] Azhar, A. F. (1981). Factors affecting alcohol fermentation of wood acid hydrolysate. Biotechnol Bioeng. Symp 11, 293-300.

[8] Batista, A., Mustafá, A., McKinnon, J., & Kermasha, S. (2002). In situ ruminal and intestinal nutrient digestibilities of mesquite (Prosopis juliflora) pods. Animal Feed Science and technology, 107-112.

[9] Beck, R., & Clements., D. (1982). Ethanol Production from Cotton Gin Trash. Proceedings of the Symposium on: Cotton Gin Trash Utilization Alternatives. 163-181.

[10] Bienkowski, P. R. (1987). Correlation of glucose (dextrose) degradation at 90 to 190-degrees-C in 0.4 to 20-percent acid. Chem. Eng. Commun. 51 179-192.

[11] Bisaria, V. S. (1981). Biodegradation of cellulotic materials: Substrates, microorganisms, enzymes and products. Enz. Microb. Technol. 3, 90-104.

[12] Brennane, A., Hoagland, W., & Schell, D. (1986). High temperature acid hydrolysis of biomass using an engineering scale plug flow reactor: results of low solids testing. Biotechnology and Bioengineering 17, 53-70.

[13] Brink, D. L. (2007). Alcohol production from wood. USA.

[14] Buchert, J. J. (1988). Comparison of Pseudomonas fragii and Gluconobacter oxydans for production of xylonic acid from hemicellulosic hydrolysates. Appl. Microbiol. Biotechnol. 28, 367-372.

[15] Burkart, A. (1976). A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). Arnold Arbor. 57, 219-249, 450-525.

[16] Canetti, E. d. (2007). Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology. Bioresource Technology 98, 422-428.

[17] Caraballo, J. (august 2005). Ethanol synthesis. Germany: Birkenfeld Germany.

[18] Chandrakant, P. a. (1998). Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Critical Reviews in Biotechnology 18, 295-331.

[19] Change, C., Cen, P., & Ma, X. (2007). Levulic acid production from what straw. Bioresour. Technol. 98, 1448-1453.

[20] Chum, H. e. (1990). Pretreatment-catalyst effects and the combined severity parameter. Applied Biochemistry and Biotechnology 24-25, 1-14.

[21] Converse et al., A. (1989). Kinetics of thermochemical pretreatment of lignocellulosic materials. Applied Biochemistry and Biotechnology 21, 111-116.

[22] Coppock, D. A. (2005). Agro-Pastoralists Wrath for the Prosopis Tree: the Case of the II Chamus of Baringo District, Kenya. Utah: ENVS Faculty publication.

[23] Council, W. E. (2007). Survey of Energy Resources. cand: Bioenergy.

[24] Dan, B. (2008). Cellulosic Ethanol. Iowa State Univerity.

[25] Deans, J. c. (2003). Comparative growth, biomass production, nutrient use and soil amelioration by nitrogenfixing tree species in semi-arid Senegal. Forest Ecology and Management 176, 23-264.

[26] Delgenes, J., Moletta, R., & Navarro, J. (1996). Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme and Microbial Technology, pp. 220-225.

[27] Demirbas, A. (2005). Bioethanol from Cellulosic Materials: A Renewable Motor Fuel from Biomass. Energy Sources 27:, 327-337.

[28] Deshpande, V. V. (1986). Direct conversion of cellulose/ hemicellulose to ethanol by Neurospora crassa. Enz. Microb. Technol. 8, 149.

[29] Dien, B., Ximenes, E., & Bryan, P. (2008). Enzyme characterization for hydrolysis of afex and liquid hot-water pretreated distillers' grains and their conversion to ethanol. Bioresource Technology 99, 5216-5225.

[30] Dien, B., Cotta, M., & Jeffries, T. (2003). Bacteria engineered for fuel ethanol production: Current status. Applied Microbiology and Biotechnology 63, 258-266.

[31] Duff, S., & Murray, W. (1996). Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresource Technology 55, 1-33.

[32] Durante, T. S. (2011). Economic impact of ethanol production. Maryland: Ethanol Across America.

[33] EEP. (2006). Proceeding of the Workshop on Afar Pastoralist Prospesis Project Immerging Issues. Addis Ababa.

[34] Elander RT, D. B. (2009). Summary of findings from the biomass refining consortium for applied fundamentals and innovation (CAFI): Corn stover pretreatment. 649-659: Cellulose 16.

[35] El-keblawy, A. a.-R. (2006). Germination of invasive P. juliflora (Sw.) DC. Journal of Arid Environment 61:, 555-565.

[36] ESDA, E. s. (2005). Revised Master Schedule for New and Expansion Projects Annual Implementation. Addis Ababa.

[37] Esteghlalian, A. H. (1997). Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass.. Bioresour. Technol. 59, 129-136.

[38] Felker, P. (1979). Mesquite-An all-purpose leguminous arid-land tree. In: G. A. Ritchie (ed.), New agricultural crops. American Association for the Advancement of Science, 89-132.

[39] Fengel, D., & Wegener, G. (1989.). Wood: Chemistry, Ultrastructure, Reactions. Berlin: de Gruyter.

[40] Galbe, M. a. (2002). A review of the production of ethanol from softwood. Applied Microbiology and Biotechnology 59: 618.

[41] Geirwyr. (1995). S. J., Analytical chemistry of food. Chapman and hall, Glasgow.

[42] Glazer, A., & Nikaido, H. (1995). From biomass to fuel. In Microbial Biotechnology: Fundamentals of Applied Microbiology, 325-391.
[43] Gray, K., & Empmue, M. (2006). Bioethanol. Current opinion in chemistry Biology 10, 141-146.

[44] Himmel, M. e. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production.

[45] Hogsett, D. A. (1992). Direct microbial conversion: Prospects, progress and obstacles. Appl. Biochem. Biotechnol. 34/35, 527-541.

[46] Hopkins, M. (2007). Cooking up a smoky solution. Nature News, doi: 10.1038/news070813-1.

[47] Iqbal, K. &. (1983). An analytical study on cell size variation in some arid zone trees of India. Acacia nilotica and Prosopis spicigera. IAWA Bull. n. s. 4, 46-52.

[48] Jackman, E. (1987). Industrial alcohol. In: Basic Biotechnology. London, Academic Press, 39-336.

[49] Jeevan, P., Nelson, R., & Edith Rena, A. (2011). Optimization studies on acid hydrolysis of Corn cob hemicellulosic. Journal of Microbiology and Biotechnology Research 1(4), 114-123.

[50] Jeffries, T. (2006). Engineering yeasts for xylose metabolism. Current Opinion in Biotechnology 17, 320-326.

[51] Kadar, Z. a. (2004). Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Industrial crops and Products 96, 673-686.

[52] Kailappan, R. G. (2000). Production of activated carbon from prosopis (Prosopis juliflora). Bioresource Technology 75, 241-243.

[53] Kapoor, M. N. (2008). Cost-effective xylanase production from free and immobilized Bacillus pumilus strain mobilized Bacillus strain Mko1 and its application in saccharification prosopis juliflora. Biochem. Eng. J. 38, 88-97.

[54] Kim, J., Lee, Y., & Torget, R. (2001). Cellulose hydrolysis under extremely low sulfuric acid and. Biochem., 331-340.

[55] Klapatch, T. R. (1994). Organism development and characterization for ethanol production using thermophilic bacteria. Appl. Biochem. Biotechnol. 45/46, 209-213.

[56] Klinke, H. B. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pretreatment of biomass. Applied Microbiology and Biotechnology 66, 10-26.

[57] Kootstra, A., Beetlink, H., & Scott, E. (2009). Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochemical Engineering Journal, Vol. 46, No. 2, 126-131.

[58] Ladisch, M., Mosier, N., & Kim, Y. (2010). Converting cellulose to biofuels. Chemical Engineering Progress 106, 56-63.

[59] Li, W.-Z.-j.-F. C.-q.-C. (2008). Studies of momosaccharide production through lignocellulosic waste hydrolysis using double acid. energy fuels 22 (3), 2015-2021.

[60] Licht, C. B. (2013). World fuel ethanol analysis and out look.

[61] Licht, F. (2006). World Ethanol Market: The Outlook to 2015. Europe Special Report U.K.: Tunbridge Wells, Agra.

[62] Licht, F. (2012). World Ethanol and Biofuels Report. New York: Earth Policy Institute with data: W. W. Norton & Company.

[63] Lin, Y. a. (2006). Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology 69, 627-642.

[64] Luo, C. e. (2002). Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass and Bioenergy 22, 125-138.

[65] Lynd, L., Weimer, P., van Zyl, W., & Pretorius, I. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews 66, 506-577.

[66] Mabee, W. E. (2007). Policy Options to Support Biofuel Production. Biofuels, 329-357.

[67] Matura, U., Nuanphan, N., & Woathchhiah, N. (2012). Reducing Sugar Production from Durian Peel by Hydrochloric Acid Hydrolysis. World Academy of Science, Engineering and Technology 69, 444-449.

[68] McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83, 37-46.

[69] Melsert, R. M. (2007). Energy Optimization of the Production of Cellulosic Ethanol from Southern Pine. Thesis for the Degree Masters of Science in the School of Mechanical Engineering. Georgia Institute of Technology, Georgia., 78.

[70] Mitiku, S. G. (2008). THE ECOLOGICAL DISTRIBUTION AND SOCIO-ECONOMIC IMPACTS OF Prosopis juliflora (Sw.) DC. IN THE AMIBARA WOREDA, AFAR NATIONAL REGION STATE. Addis Ababa: Addis Ababa University thesis.

[71] Moisier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource technology 96, 673-686.

[72] MoME. (2007). (Ministry of Mines and Energy) Biofuel Development and Utilization strategy. Addis Ababa.

[73] Negusu. (2009). Potential biofuel production from prosopis juliflora. Addis Ababa: Addis Ababa University.

[74] Nigam, J. N. (2001). Ethanol production from wheat straw hemicellulose hydrolysate by Pichia Stipitis. J. Biotechnol. 87 (1) 17-21.

[75] Nigus, W. (2011). Ethanol production from Bamboo. Addis Ababa: Addis Ababa University.

[76] Nishikawa, N. K. (1988). The influence of lignin degradation products on xylose fermentation by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 27, 549-552.

[77] Ogunkunle, T. O. (2005). Production of Glucose from Lignocellulosic under Extremely Low Acid. Journal of Applied Sciences 5 (1), 15-17.

[78] Ojumu, T., & Ogunkunle, O. (2005). Production of Glucose from Lignocellulosic under Extremely Low Acid. Journal of Applied Sciences 5 (1), 15-17.

[79] Olsson, L., & Hahn-Hägerdal, B. (1996). Fermentation of lignocellulosic hydrolysates forethanol production. Enzyme and Microbial Technology 18, 312-331.

[80] Onuki, S. (2005). Bioethanol, Industrial production process and recent studies. USA.
[81] Otero, J., Panagiotou, G., & Olsson, L. (2007). Fueling Industrial Biotechnology Growth with Bioethanol. Adv Biochem Eng Biotechnology 108, 1-40.

[82] Patel, R. R., & Safaya, V. (1986). The Role of Prosopis in Wasteland Development. Jivrajbhai Patel Agroforestry Center.

[83] Periyasamy, S. V. (2009). Production of Bioethanol from Sugar Molasses Using S. cerevisiae. Modern Appl. Science 3, 32-36.

[84] Philippidis, G. (1993). Study of the Enzymatic-Hydrolysis of Cellulose for Production of Fuel Ethanol by the Simultaneous Saccharification and Fermentation Process. Biotechnology and Bioengineering 41, 846-85.

[85] prasad, S., Singh, A., & Joshi, H. (2007). Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resources Conservation and Recycling 50, 1-39.

[86] Puncet, D., Janaki, R., Alavalapati, & Pankaj, L. (2009). Cellulosic Ethanol Production. Florida: School of Forest Resources and Conservation, University of Florida.

[87] Rajput, S. &. (1986). Some studies on the utilisation of bio-mass of Prosopis spp. India: In: V. J. Patel (ed.), The role of Prosopis in wasteland development. Jivrajbhai Patel Agroforestry Center. Surendrabag, Gujarat. In Pasiecznik et al. Renewable fuels association. (2012). Ethanol industry outlook. USA.

[88] Riveros, F. (1992). The genus Prosopis and its potential to improve vegetation in arid and semi-arid regions. FAO Animal Production and Health paper, 257-276.

[89] Saeman, J. F. (1945). Kinetics of wood saccharification - Hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind. Eng. Chem. 37, 43-52.

[90] Saucedo, I. J., Castro, M. A., Rico, J., & campos-Garcia, J. (2010). Optimization of Acid hydrolysis of bagasse from Agave tequilana Weber. Revista Mexicana de ingenieria Quimica, vol. 9, num. 1, 95.

[91] Sedlak, M., NWY, H., Ladisch, M., Mosier, N., & Case, E. (2011). Biofuels from Cellulosic Feedstocks. Elsevier, 52-61.

[92] Shene, C. B. (2001). Zymomonas mobilis CP 4 fed-batch fermentations of glucose-fructose mixtures to ethanol and sorbitol. Applied Microbiology and biotechnology 57, 323-328.

[93] Shetic, G. (2008). The Ecological Distribution and Socio-Economic impacts of P. juliflora (Sw.) DC. in the Amibara Woreda, Afar National Regional State. Addis Ababa: Master Thesis. AAU.

[94] Shiferaw, H. (2004). Some biological characteristics that foster the invasion of P. juliflora (Sw.) DC. At Middle Awash Rift Valley, North-eastern Ethiopia. Journal of Arid Environment 58, 34-153.

[95] Sirmah, P., Muisu, F., Mburu, F., & Dumarcay, S. (2008). Evaluation of Prosopis juliflora Properties as Alternative to Wood Shortage in Kenya. Bois Et Forets Des Tropiques 298 (4), 25-35.

[97] Sivers, M. V., & Zacchi, G. (1996). Ethanol from lignocellulosics: a review of economy. Bioresource Technology, 131-140.

[98] Solomon, B. D. (2007). Grain and cellulose ethanol: History, economics, and energy policy. 416-425. Biomass & Bioenergy 31.

[99] Sun, Y. a. (2002). Hydrolysis of lignocellulosic materials for ethanolproduction. Bioresource Technology 83, 1-11.

[100] Szczodrak, J. a. (1996). Technology for conversion of lignocellulosic biomass to ethanol. Biomass and Bioenergy 10, 367-375.

[101] Taherzadeh, M. J. (1997). Grain and cellulose ethanol. Industrial and Engineering Chemistry Reasearch 36, 4659-4665.

[102] Taherzadeh, M. J. (2000). Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae," I. Appl Microbio Biotechnol. 53 701-709.

[103] Talebnia, F. (2008). Ethanol production from cellulosic biomassby Encapsulated saccharomyces cervesiae. Sweden: Chalmers University of Technology.

[104] Tano, M., & Buzato. (2003). Effect of the presence of initial ethanol production in sugar cane juice fermented by Zymomonas mobilis. Brazilian Journal of microbiology 34, 242-244.

[105] TEFERA, N. (2009). potential production of biofuel from prosopis julifora pod. Addis Ababa Universy: Addis Ababa Universy.

[106] Tessema, T. (2007). The Prospects of Biological Controls of Weeds in Ethiopia. Ethiopian Journal of weed Management 1, 63-67.

[107] Tewodros Wakie, P. E. (july 2012). Utilization Assessment of Prosopis juliflora in Afar Region, Ethiopia. Colorado: Colorado State University, thesis.

[108] Tilahun, S. L., & A. A. (2012). Modeling the Expansion of Prosopis Juliflora and Determining its Optimum Utilization Rate to Control its Invasion in Afar Regional State of Ethiopia. International Journal of Applied Mathematical Research, 726-743.

[109] Torget, R., Himmel, M., & Grohmann, K. (1991). Dilute sulfuric acid pretreatment of hardwood barks. Bioresource Technol 35, 239-246.

[110] Vish Noi, N. (1996). Advanced practial organic chemistry. Viskas publisher house PVT limited.

[111] Werpy, T., & Petersen, G. (2004). Top value added chemicals from biomass volume I: Results of screening for potential candidates from sugars and synthesis gas. Available at: www1.eere.energy.gov/biomass/pdfs/35523.pdf.

[112] Zhu, J. p. (2010). Woody biomass pretreatment for cellulose ethanol production: technology and energy consumption evaluation. Bioresource Technology 101, 992-5002.