Placement of PV Units Considering Uncertainties of Generation and Load in Distribution Systems

Anshu Parashar, Anand Kumar Pandey, Ritesh Kumar Rai

Abstract - In conventional power system the transmission and distribution (T&D) losses is a major concern. Renewable energy resources placed at load centers can reduce the T&D losses. For power system planners and researchers it is essential to find the optimal size and position of renewable energy resources to be placed in distribution networks. Renewable energy source such as solar energy is abundantly present in the environment. With the help of solar photovoltaic (SPV) system solar energy can be converted to electrical energy. Placement of SPV in distribution system is an interesting area for researchers and planners, the random placement of SPV in distribution system leads to more power losses and poor voltage profile. In this article mathematical modelling of time varying nature of SPV and variable load has been explained and particle swarm optimization (PSO) method is proposed to find the best size and location of the SPV system. This method is tested on IEEE 33 bus system. For the validation of result existing technique based on analytical expression is selected. It is found that PSO gives better result in compare to analytical method.

Index Terms - Solar photovoltaic system, Multi-objective index, Time varying solar irradiance, Power system optimization, Particle swarm optimization.

I. INTRODUCTION

Owing to the technology advancement and Government policies, On Grid Solar Photovoltaic (PV) units are increasing worldwide. PV owners can receive incentives from utilities in case of surplus power [1]. In conventional distribution systems power loss is a major concern. By using Distributed Generation (DG) units near to the load center power loss can be reduced and other factors like voltage stability, loadability enhancement etc. can also be improved [2-10]. On the other hand, more and more diffusion of renewable resources with load variations may cause challenges such as increasing losses, voltage step, power fluctuations and short voltage strength [1-5]. Placement of DG in distribution system considering power loss and voltage profile improvement has been addressed separately in recent years. Some studies have been done on DG allocation by taking into account load variation and generation variations [11-13]. In the same way some studies has been done on voltage stability improvement by using DG unit’s at most sensitive buses using continuous power flow (CPF) [7]. Like conventional technologies, solar PV is unpredictable, discontinuous and non-dispatchable.

In literature [5-7] multi-objective optimization method based on active power index and reactive power index has been proposed. But the practical scenario of time dependent generation and load demand is not addressed. Different methods and techniques have been suggested in different literatures to come across the optimal allocation of solar PV. In Paper [14-20] metaheuristics techniques has been proposed to come across the optimal allocation of DG considering the peak load and fixed generation. In most of the papers the constant value of solar PV output and load is considered. From the literature survey done here, the time dependent load model and solar PV generation with multi-objective index for finding the optimal size and location of PV unit is not reported. This paper contributes the uncertainty of solar PV and load is modelled and multi-objective index based hybrid (MOI-PSO) method is presented to get the optimal location and size of solar PV. The other section of the paper is structured as follows; the load modelling and Solar PV modelling is explained in Section 2, problem formulation in Section 3, proposed method for optimal size and location of PV in Section 4, Test system and result for 33-bus distribution system in Section 5 and finally Section 6 presents the contributions and conclusions of the work.

II. SOLAR PV AND LOAD MODELLING:

A. Modelling of Solar PV System:
The probabilistic nature of solar PV on hourly basis is given by beta distribution function (BDF). To find the BDF, a day is split into 24-hour period and each hour has its own solar irradiance PDF. Each hour of the day is split into 20 states, standard and mean deviation from historical data for these 20 states has been found. In this study irradiance of solar with step size of 0.05 kW/m² is assumed. The BDF for each hour of a day is given as [1]

\[
BDF = \left\{ \begin{array}{ll}
\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}(R^{a-1})(1-R^{b-1}) & 0 \leq R \leq 1, a, b \geq 0 \\
0, & \text{otherwise}
\end{array} \right.
\]

(1)

where \(a \) and \(b \) are the parameters of BDF and it depends on the values of mean and standard deviation. \(R \) is the solar irradiance (kW/m²).

\[
b = (1 - \mu) \left[\frac{\mu(1+\sigma)}{\sigma^2} - 1 \right]
\]

(2)

\[
a = \frac{\mu(b-1)}{1-\mu}
\]

(3)

Where, \(\mu \) is mean and \(\sigma \) is standard deviation. The mean and standard deviation is calculated using the three years historical data and given in Table 1. The output from the solar PV module at any solar irradiance \(R \). \(P(R) \) can be determined as [1]
Placement of PV Units Considering Uncertainties of Generation and Load in Distribution Systems

\[P(R) = N \times ff \times V_x \times I_x \] \hspace{1cm} (4)

Where, \(N \) represents module number, \(ff \) fill factor. \(V_x \) and \(I_x \) are voltage and current of the module which are calculated as follows:

Fill factor (\(ff \)) is obtained using the formula:

\[ff = \frac{V_{mp} \times I_{mp}}{V_{oc} \times I_{oc}} \] \hspace{1cm} (5)

| TABLE I: Hourly basis irradiance data [1] |
|-------------------------------|-----------------|-----------------|
Hour	\(\mu (\text{kw/m}^2) \)	\(\sigma \)	Hour	\(\mu (\text{kw/m}^2) \)	\(\sigma \)
1	0	0	13	0.657	0.164
2	0	0	14	0.612	0.147
3	0	0	15	0.497	0.143
4	0	0	16	0.349	0.116
5	0	0	17	0.203	0.081
6	0.007	0.021	18	0.068	0.063
7	0.081	0.036	19	0.003	0.012
8	0.237	0.056	20	0	0
9	0.400	0.087	21	0	0
10	0.523	0.127	22	0	0
11	0.632	0.156	23	0	0
12	0.663	0.162	24	0	0

Where, \(V_{mp} \) and \(I_{mp} \) are maximum power point voltage and current. \(V_{oc} \) and \(I_{oc} \) are respectively the open circuit voltage (\(V \)) and current (\(A \)).

Voltage (\(V_x \)) of the module is given by:

\[V_x = V_{oc} - C_v \times T_{y} \] \hspace{1cm} (6)

Here, \(C_v \) is voltage temperature coefficients \((V/^\circ C)\) and \(T_{y} \) is cell temperature \((^\circ C)\).

Current (\(I_x \)) of the module is given by:

\[I_x = R[I_{sc} + C_i \times T_{y}] \] \hspace{1cm} (7)

Here, \(C_i \) is current temperature coefficients \((A/^\circ C)\) and \(T_{y} \) is cell temperature \((^\circ C)\).

Cell temperature (\(T_{y} \)) is calculated using the relation:

\[T_{y} = T_a + \frac{(N_{att} - 20)}{0.8} \] \hspace{1cm} (8)

Here, \(T_a \) is ambient temperature \((^\circ C)\) and \(N_{att} \) is nominal operating temperature \((^\circ C)\) of the cell.

Now, the average output power of a module at any hour of a day can be calculated by

\[P(\tau) = \int P(R) \times BDF \text{d}R \] \hspace{1cm} (9)

Table 2 shows different values of PV modules taken for the calculation of eqn. (4) to (8).

B. Load Modelling:

In this study the commercial load with time varying nature [2] is considered. Which dependants on voltage and represented by active and reactive power injection.

Active power injection:

\[P_k(\tau) = P_k(\tau) \times V_x^{\text{op}}(\tau) \] \hspace{1cm} (10)

Reactive power injection:

\[Q_k(\tau) = Q_k(\tau) \times V_x^{\text{qr}}(\tau) \] \hspace{1cm} (11)

Equation (10), (11), the active and reactive loads are arranged as \(P_k(x) \), \(Q_k(x) \), voltage at kth bus is \(V_x^{\text{op}}(x) \), \(V_x^{\text{qr}}(x) \); \(P_k(x) \) is the active power injections and \(Q_k(x) \) is the reactive power injections at bus k. In this paper the value of \(np=1.51 \) and \(nq=3.40 \) is taken which is defined as commercial load voltage exponents.

III. PROBLEM FORMULATION

A. Active Power loss index (APLI)

The total APLI in the n-branch radial distribution system without PV (\(P_{\text{loss}} \)) can be defined as [3]

\[P_{\text{loss}} = \sum_{i=1}^{n} \frac{P_i^2 + Q_i^2}{|V_i|^2} R_i \] \hspace{1cm} (12)

Here, \(P_i \) is active and \(Q_i \) is reactive power flow through the branch i when no PV system is connected to the radial distribution system. \(|V_i| \); voltage magnitude of ith bus. \(R_i \); resistance of the ith branch.

When a PV system is connected at kth bus, the total active power loss of the system is given by

\[P_{\text{loss},PV} = \sum_{i=1}^{n} \frac{(P_i - P_{PV})^2 + Q_i^2}{|V_i|^2} R_i + \sum_{i=k+1}^{n} \frac{P_i^2}{|V_i|^2} R_i + \]

\[\sum_{i=1}^{k} (Q_i - Q_{PV})^2 V_i^2 + \sum_{i=k+1}^{n} Q_i^2 V_i^2 \] \hspace{1cm} (13)

The relation between active and reactive power of a PV system at bus k can be written as

\[Q_{PV} = a_k P_{PV} \] \hspace{1cm} (14)

Where, \(a_k = \pm \tan \theta \) (pfk)

By substituting (12) and (14) into (13), we get APLI as

\[APLI = \frac{P_{loss,PV}}{P_{loss}} \] \hspace{1cm} (15)

B. Reactive Power loss index (RPLI)

The total RPLI in the n-branch radial distribution network without PV (\(Q_{\text{loss}} \)) can be defined as[3]

\[Q_{\text{loss}} = \sum_{i=1}^{n} \frac{P_i^2 + Q_i^2}{|V_i|^2} X_i \] \hspace{1cm} (16)

Here, \(P_i \) is active and \(Q_i \) is reactive power flow through the branch i when there is no PV system connected to the radial distribution system. \(|V_i| \) is the voltage level of ith bus and \(X_i \) is the reactance of the ith bus.

When a PV system is connected at kth bus, the total reactive power loss of the system is given by

\[Q_{loss,PV} = \sum_{i=1}^{k} \frac{(P_i - P_{PV})^2 + Q_i^2}{|V_i|^2} X_i + \sum_{i=k+1}^{n} \frac{P_i^2}{|V_i|^2} X_i \]

\[+ \sum_{i=1}^{k} (Q_i - Q_{PV})^2 X_i + \sum_{i=k+1}^{n} Q_i^2 X_i \] \hspace{1cm} (17)

Active and reactive power of a PV system at bus k can be written as

\[Q_{PV} = a_k P_{PV} \] \hspace{1cm} (18)

Where, \(a_k = \pm \tan \theta \) (pfk)

By substituting (16) and (18) into (17), we get RPLI as

\[RPLI = \frac{Q_{loss,PV}}{Q_{loss}} \] \hspace{1cm} (19)

C. Multi-objective index (MOI)

\[MOI = \alpha_1 APLI + \alpha_2 RPLI \] \hspace{1cm} (20)

Where \(\sum_{i=1}^{2} \alpha_i = 1 \)
The value of impact indices are given by σ_1 and σ_2. It varies between 0 to 1. Impact indices values are considered as 0.7 and 0.3 [4]. It is the experience of the engineer that decides the suitable value of weight. Now the average multi-objective index (AMOI) for time varying generation and demand can be calculated as:

$$AMOI = \frac{1}{T} \int_0^T MOI(\tau) d\tau$$

$$= \frac{1}{24} \sum_{t=1}^{24} MOI(\tau) \Delta \tau$$

Minimum value of AMOI presents the optimal allocation of DG considering minimum power loss and voltage stability enhancement.

D. Objective Function

The aim of the research work is to minimize the active and reactive power loss of the system using multi-objective index (MOI) i.e.

$$\text{Min} (\text{MOI}) = \text{min} (\sigma_1 \text{APLI} + \sigma_2 \text{RPLI})$$

subject to:

$$V_{\text{min}} \leq V(t) \leq V_{\text{max}}$$

$$\text{DG}_{\text{min}} \leq \text{DG} \leq \text{DG}_{\text{max}}$$

V_{min} is minimum and V_{max} is maximum voltage limit of the bus. DG_{min} and DG_{max} are the minimum and maximum size of the DG.

IV. PROPOSED METHOD

Particle swarm optimization (PSO) approach is proposed in this paper to get the optimal size and location of solar PV considering the time varying load model and probabilistic solar PV generation. The steps used to code the problem are as follows:

Step 1: Algorithm specific parameters are initialized

Step 2: Possible solution are generated

Step 3: Solar panel constant parameters are initialized

Step 4: Size of solar PV in discrete form is generated

Step 5: Constraints of the problem is defined

Step 6: Objective function i.e. optimal allocation of DG is calculated

Step 7: Keeping constraints in mind fitness of the problem is determined

Step 8: Program termination parameter is initialized

V. TEST SYSTEMS AND RESULTS

In this paper 33 bus system has been used to implement the proposed work. The details about the system is given in paper [5].

Solar PV system modelling: In this paper the value of solar irradiance (R) is taken as 0.65 and number of modules=1. Now Eqn. (1) to (9) is calculated for each hour of a day using values from table 1-2.

Table II: Calculated values of a, b, BDF and P for each hour of a day

Hour	a	b	BDF	P (W)	Hour	a	b	BDF	P (W)
1	NaN	NaN	0	0	13	25.9358	13.5403	5.1703	774.4082
2	NaN	NaN	0	0	14	27.3284	17.3258	4.9367	739.4199
3	NaN	NaN	0	15	17.5856	17.7979	0.9136	136.8432	
4	NaN	NaN	16	11.8618	22.1263	0.0084	1.2590		
5	NaN	NaN	17	7.3529	28.8683	0	0		
6	0.1048	14.8792	0	18	1.1762	16.1215	0	0	
7	5.3915	61.17093	0	19	0.0596	19.8361	0	0	
8	21.918	70.5660	0	20	NaN	NaN	0	0	
9	29.1943	43.7915	0	0.0879	21	NaN	NaN	0	0
10	25.3053	23.0795	1.1711	175.4068	22	NaN	NaN	0	0
11	26.1538	15.2288	5.2484	786.1055	23	NaN	NaN	0	0
12	27.1911	13.8211	5.1908	777.4680	24	NaN	NaN	0	0

From Eqn. (4-8) we get, ff = 0.7105, V_{oc}=32.0157 V, I_{sc}=6.5840 A, T_{cell}=38.6875 °C and P(R)=149.7775 W.

Location selection and sizing: For each bus multi-objective index (MOI) is calculated using (21). The bus where the value of AMOI is minimum is optimal location for the DG placement. For 33-bus system the value of MOI is minimum at bus 6 with industrial load model. For the 33 bus system at bus 6 the maximum output of the PV system is obtained at hour 11 which gives the optimal size of the DG. Table 4 shows the optimal location and size of solar PV system in 33-bus system.

Table IV: Optimal location and size for 33-bus system

Load Models	Optimal bus	Optimal Size (MW)	MOI
Industrial	6	1.07	0.22
VI. CONCLUSION

This paper discusses the optimal location and size of solar PV system in commercial distribution system using multi objective index (MOI) based PSO algorithm. Here, we are simultaneously reducing the active power loss and reactive power loss. The probabilistic nature of solar irradiance is modelled using beta distribution function (BDF) and also time varying load modelled is proposed. Result obtained from the proposed method is compared with the existing analytical method. It is found that this method is fast and gives improved results.

Proposed method	Existing Method
Size (MW)	Location
1.07	6
1.50	6

REFERENCES

1. Duong Quoc Hung, N.M., and and K.Y. Lee, Determining PV penetration for Distribution systems with Time-Varying load Models. IEEE TRANSACTIONS ON POWER SYSTEMS, 2014. 29 NO. 6.
2. Niknam T, Taheri SI, Aghaei J, Tabatabaei S, Nayerpour M. A modified honey bee mating optimization algorithm for multiobjective placement of renewable energy resources. Appl Energy 2011;88(12):4817–30.

3. Taher N. A new HBMO algorithm for multiobjective daily Volt/Var control in distribution systems considering distributed generators. Appl Energy 2011;88(3):778–88.

4. Martinez-Rojas M, Sumper A, Gomis-Bellmunt O, Sudrià-Andreu A. Reactive power dispatch in wind farms using particle swarm optimization technique and feasible solutions search. Appl Energy 2011;88(12):4678–86.

5. Anand Kumar Pandey and Sheeraz Kirmani. “Multi-objective optimal location and sizing of hybrid system using analytical crown search optimization algorithm.” International Transactions on Electrical Energy Systems 30, no. 5(2020), e12327.

6. L. F. Ochoa, A. Padilha-Feltrin, and G. P. Harrison, “Evaluating distributed generation impacts with a multiobjective index,” IEEE Trans Power Del., vol. 21, no. 3, pp. 1452–1458, Jul. 2006.

7. D. Singh and K. S. Verma, “Multiobjective optimization for DG planning with load models,” IEEE Trans. Power Syst., vol. 24, no. 1, pp. 427–436, Jan. 2009.

8. A.M. El-Zonkoly, “Optimal placement of multi-distributed generation units including different load models using particle swarm optimisation,” IETGener. Transm. Distrib., vol. 5, no. 7, pp. 760–771, Jul. 2011.

9. Bakos GC. Distributed power generation: a case study of small scale PV power plant in Greece. Appl Energy 2009;86(9):1757–66.

10. Wang C, Nehrir MH. Analytical approaches for optimal placement of distributed generation sources in power systems. IEEE Trans Power Syst 2004;19(4):2068–76. Acharya N, Mahat P, Mithulananthan N. An analytical approach for DG allocation in primary distribution network. Int J Electr Power Energy Syst 2006;28(10):669–78.

11. Hung DQ, Mithulananthan N, Bansal RC. Analytical expressions for DG allocation in primary distribution networks. IEEE Trans Energy Convers 2010;25(3):814–20.

12. Singh D, Verma KS. Multiobjective optimization for DG planning with load models. IEEE Trans Power Syst 2009;24(1):427–36.

13. Khatod DK, Pant V, Sharma J. Evolutionary programming based optimal placement of renewable distributed generators.

14. IEEE Trans Power Syst 2013;28(2):683–95. Ochoa LF, Harrison GP. Minimizing energy losses: optimal accommodation and smart operation of renewable distributed generation. IEEE Trans Power Syst 2011;26(1):198–205.

15. Hung DQ, Mithulananthan N, Bansal RC. Analytical strategies for renewable distributed generation integration considering energy loss minimization. Appl Energy 2013;105:75–85.

16. Anand Kumar Pandey and Sheeraz Kirmani. “Multi-Objective Optimal Location and Sizing of Hybrid Photovoltaic System in Distribution Systems Using Crow Search Algorithm.” International Journal of Renewable Energy Research (IJRER) 9.4 (2019): 1681–1693.

17. C. T. Ioan, “The particle swarm optimization algorithm: Convergence analysis and parameter selection,” Inf. Process. Lett. vol. 85, pp. 317–325, 2003.

18. Lee S-H, Park J-W. Selection of optimal location and size of multiple distributed generations by using kalman filter algorithm. Power Syst IEEE Trans 2009; 24:1393–400.

19. Singh D, Singh D, Verma K. GA based optimal sizing and placement of distributed generation for loss minimization. Int J Electr Comput Eng 2007; 2:556–62.

20. Nara K, Hayashi Y, Ikeda K, Ashizawa T. Application of tabu search to optimal placement of distributed generators. IEEE Power Engineering Society Winter Meeting, vol. 2; 2001, p. 918–923.

AUTHORS PROFILE

Assistant Professor. Ms. Anshu Parashar, Teaching in Electrical Engineering Department, Faculty of Engineering, JIMS Engineering Management Technical Campus, Greater Noida, M.Tech in Electrical Engineering/Punjab Engineering College/ Chandigarh, Punjab Engineering College University of Technology/ Chandigarh/ Specialization: Control Systems, Post-Graduation Year: July 2014. B.Tech in Electrical & Electronics Engineering/ Career Institute of Technology & Management/ Faridabad, Maharishi Dayanand University/ Rohatik, *Graduation Year: July 2011. Experience: Holding 4 years of research and academics experience in different universities. Research Interests, Solar Photo voltaic, System Identification, Modelling of Power Electronics Converter, Current Mode-KHN KHN-Equivalent Biquad Filter. Member of organizing committee for various national and international seminars.

Anand Kumar Pandey is currently working as an assistant professor in the Department of Electrical & Electronics Engineering, JSS Academy of Technical Education, Noida. He has nine years of teaching experience. He completed his B.Tech. in Electrical & Electronics engineering from UIET, Punjab University, Chandigarh in 2009. M.Tech. in Power Systems from National Institute of Technology, Calicut, Kerala (NITC) in 2011 and currently he is Pursuing Ph.D. from Jamia Millia Islamia (A Central University), New Delhi, India in the area of Optimization of Distributed energy resources. His research interests are Optimization methods in power systems, Distributed generation system, load flow of power system, Power system economics, Electric distribution system etc. He has published/presented many papers in various peer reviewed International/National Journals/conferences and has received MHRD scholarship.

Mr. Ritesh Kumar Rai has done his M.Tech in Power System From Maharshi Dayanand University (MDU) Rohtak & B. Tech in Electrical and Electronics Engineering from GL Baj Institute of technology and Management Greater Noida. Working as an ASSISTANT PROFESSOR in JIMS Engineering Management Technical Campus Greater Noida. Having 9 years of Teaching, Research & Administrative experience in various reputed institutions. Published more than 10 research papers in various National and International Conferences and Journals. Awarded by Hon’ble Vice Chancellor, Uttar Pradesh Technical University, (UPTU) Lucknow for extra ordinary contributing in academics. Member of organizing committee for various national and international seminars.