INTRODUCTION

Since the introduction of the concept by Wright (1931), effective population size (N_e) has been adopted as a parameter in scores of evolutionary models, adaptive and neutral alike (Crow, 2010). The concept has found important applications in animal breeding (Caballero, Santiago, & Toro, 1996) and in conservation biology (Nunney & Elam, 1994). Two categories of methods to estimate N_e from field data were developed in the early 1980s, a single-sample approach based on disequilibrium between alleles at unlinked loci and a two-sample approach based on variance in allelic frequencies between generations (Caballero, 1994). Several single-sample methods not relying on linkage disequilibrium have more recently been proposed.

Despite the importance of the concept, however, effective population size has rarely been estimated for any gastropod population in the field. Crow and Morton (1955) used variance in progeny number to estimate the N_e/n ratio in a laboratory culture of the freshwater pulmonate snail Physa acuta (Draparnaud 1805), estimating effective population size with both single-sample and two-sample approaches. Estimated N_e declined from effectively infinite in 2009 to approximately 40–50 in 2012 and then rose back to infinity in 2015, corresponding to a striking fluctuation in the apparent census size of the population. Such volatility in N_e may reflect cryptic population subdivision.

KEYWORDS
alloyne frequencies, effective population size, Physa acuta, population subdivision, pulmonate snails, simultaneous hermaphroditic

1 INTRODUCTION

Since the introduction of the concept by Wright (1931), effective population size (N_e) has been adopted as a parameter in scores of evolutionary models, adaptive and neutral alike (Crow, 2010). The concept has found important applications in animal breeding (Caballero, Santiago, & Toro, 1996) and in conservation biology (Nunney & Elam, 1994). Two categories of methods to estimate N_e from field data were developed in the early 1980s, a single-sample approach based on disequilibrium between alleles at unlinked loci and a two-sample approach based on variance in allelic frequencies between generations (Caballero, 1994). Several single-sample methods not relying on linkage disequilibrium have more recently been proposed.

Despite the importance of the concept, however, effective population size has rarely been estimated for any gastropod population in the field. Crow and Morton (1955) used variance in progeny number to estimate the N_e/n ratio in a laboratory culture of the freshwater pulmonate Lymnaea (Pseudosuccinea) columella. The earliest field estimates were those of Murray (1964) and Greenwood (1974), who applied simple single-sample approaches to shell color polymorphism in an English population of the important land snail model Cepaea nemoralis. But another thirty years would elapse before estimates of effective population size were offered for other land snail populations, those of Arnaud and Laval (2004) using microsatellite markers and a two-sample method, and Ursenbacher, Alvarez, Armbruster, and Baur (2010) using a one-sample approach.

We are aware of two estimates of the effective size of marine gastropod populations, both inhabiting the European intertidal. Fernandez et al. (2005) followed variation at allozyme-encoding loci over 14 years in incipient species of Littorina saxatilis, estimating effective population size using a two-sample approach. Riquet, Le Cam, Fonteneau, and Viard (2016) analyzed microsatellite variation in an invasive population of Crepidula fornicata over 9 years, comparing both one-sample and two-sample estimates.

In the freshwater gastropods, Meunier, Hurtrez-Bousses, Durand, Rondelaud, and Renaud (2004) used both one-sample and two-sample analyses of microsatellite polymorphism to estimate the effective sizes of six French populations of the (predominantly self-fertilizing)
Pulmonate Lymnaea (Galba) truncatula. Microsatellites and two-sample techniques were also used by Trouve, Degen, and Goudet (2005) on six populations of L. truncatula sampled from Switzerland. The literature contains two single-sample microsatellite studies on Chinese populations of viviparid snails—Bellamya quadrata (Gu, Zhang, et al., 2015) and B. purificata (Gu, Zhou, et al., 2015).

In recent years, the freshwater basommatophoran pulmonate snail Physa acuta has found widespread use as a model organism for a variety of evolutionary studies (Figure 1). Populations of P. acuta in both field and laboratory settings have played important roles in studies of mating behavior (Janicke, Vellnow, Lamy, Chapuis, & David, 2014; Janicke, Vellnow, Sarda, & David, 2013; Wethington & Dillon, 1996), sex allocation (Janicke & Chapuis, 2016; Wethington & Dillon, 1993), inbreeding depression (Jarne, Perdieu, Pernot, Delay, & David, 2000; Noel et al., 2016), reproductive isolation (Dillon, Robinson, & Smith, 2002), and speciation (Dillon, Wethington, & Rhett, 2009; Bousset, Henry, Sourrouille, & Jarne, 2000; Noel et al., 2013), gene flow (Bousset, Henry, Sourrouille, & Jarne, 2000; Noel et al., 2016), reproductive isolation (Dillon, Robinson, & Wethington, 2007), speciation (Dillon, Wethington, & Lydeard, 2011), and ecophenotypic plasticity (Auld & Relyea, 2011; Dillon & Jacquemin, 2015; Gustafson, Kensinger, Bolek, & Luttbeg, 2014).

Native to North America, invasive populations of P. acuta have been introduced around the world and are now established on six continents, typically in rich, disturbed, and lentic environments (Albrecht, Kroll, Terrazas, & Wilke, 2009; Dillon, Wethington, Rhett, & Smith, 2002). The snail is simultaneously hermaphroditic and capable of self-fertilization (Dillon, McCullough, & Earnhardt, 2005), although outcrossing is preferred (Jarne, Perdieu, Pernot, Delay, & David, 2000; Noel et al., 2016), reproductive isolation (Dillon, Robinson, & Wethington, 2007), gene flow (Bousset, Henry, Sourrouille, & Jarne, 2004; Van Leeuwen et al., 2013), speciation (Dillon, Wethington, & Lydeard, 2011), and ecophenotypic plasticity (Auld & Relyea, 2011; Dillon & Jacquemin, 2015; Gustafson, Kensinger, Bolek, & Luttbeg, 2014).

FIGURE 1 Physa acuta (9 mm shell length), courtesy D. Liebmnn

We originally sampled the population of P. acuta inhabiting the Quartermar Park “Duck Pond” in North Charleston, SC, as part of a 1991 population genetic survey of the Carolina Sea Islands (population “NPK” of Dillon & Wethington, 1995). The population demonstrated allozyme variation interpretable as the product of codominant alleles segregating in Mendelian fashion at three loci: isocitrate dehydrogenase (Idsh), 6-phosphogluconate dehydrogenase (6pgd), and esterase-3 (Est3). Mendelian inheritance at the (strong, slow) Est3 locus has been confirmed by Dillon and Wethington (1994).

The Duck Pond drains directly into the brackish Cooper River, effectively isolating the population of freshwater snails it contains by both land and sea. The nearest neighboring population of P. acuta is probably that inhabiting the upper, freshwater marshes of Filbin Creek, approximately 2 km north overland. Ducks and other waterfowl doubtless visit both habitats, providing some opportunity for genetic exchange, albeit infrequent. The effects of migration on Ne have been studied by Gilbert and Whitlock (2015).

2 | MATERIALS AND METHODS

The Quartermar Park Duck Pond (32.87822°, −79.98077°) was constructed from a marshy embayment of the Cooper River in the early 20th century. For most of its history, it was tidally influenced and slightly brackish, but recent drainage improvements have rendered it entirely fresh, fed by local runoff. Its area at present is approximately 1.0 hectare, and depth is no more than 2 m.

The pond is maintained by city personnel at irregular intervals and has been kept free of macrophytic vegetation in recent years. Water temperatures can rise above 35°C during summer months, depressing dissolved oxygen to low levels, despite city efforts at artificial aeration. Its population of P. acuta reaches maximum density on allochthonous leaves and debris floating at the eastern (windward) end of the pond, at the drain.

We visited the pond each spring from 2009 to 2015, beginning in March, examining debris at the eastern end to qualitatively assess snail densities. If the apparent census size was sufficient to yield several hundred snails with reasonable effort, an annual sample was taken. Otherwise, we postponed the sample and returned a few weeks later. Approximately 150–200 P. acuta were ultimately sampled every spring, with one exception. The exception was 2012, when the snail population never reached an abundance at which it could be sampled, from March to August.

Snails collected at each sampling year were returned to the laboratory and frozen individually in 80–160 μl of tris tissue buffer for analysis of allozyme polymorphism. We used horizontal starch gel electrophoresis in a TEB8 buffer system to resolve variation at the Est3, Idsh, and 6pgd loci and an aminopropylmorpholine pH 6 buffer system for a second examination of Idsh and 6pgd. Details regarding our electrophoretic methods, including a description of our equipment and recipes for all stains and buffers employed, have been published by Dillon (1992) and Dillon and Wethington (1995).
Allele frequencies and tests of fit to Hardy–Weinberg expectation were calculated using GenePop version 4.5.1 (Raymond & Rousset, 1995; Rousset, 2008). Values of F_{IS} were computed using the method of Weir and Cockerham (1984), and exact p-values were by the Markov chain method.

NeEstimator v2.01 is freely available software designed to estimate effective population size using three single-sample methods and three-two-sample (moment-based temporal) methods (Do et al., 2014). Among the single-sample methods, Gilbert and Whitlock (2015) reported that the linkage disequilibrium (LDNe) method of Waples and Do (2008) consistently returned the lowest root square mean error across the range of effective population numbers simulated, absent migration.

The three-two-sample methods implemented by NeEstimator 2.01 employ the standard temporal method (ST) of Waples (1989), with different approaches to computing standardized allele frequency variance: the F_c of Nei and Tajima (1981), the F_k of Pollak (1983), and the F_s of Jorde and Ryman (2007). The simulations of Gilbert and Whitlock (2015) suggested that all three of these two-sample methods perform with equivalent efficiency. Thus, we elected to estimate the effective population size of the Quarterman Park $P. acuta$ population using four approaches: LDNe, STFc, STFk, and STFs. Jackknife methods were used to calculate 95% confidence intervals (CI) for all N_e estimates.

3 | RESULTS

We resolved allozyme variation apparently encoded by two codominant alleles at the Est3 and 6pgd loci and three codominant alleles at Isdh. These alleles were named by the mobility of their allozyme bands relative to the standards set by Dillon and Wethington (1995) and plotted by their frequencies in Figure 2.

Sample sizes, values of F_{IS}, and values of p from goodness-of-fit tests to Hardy–Weinberg expectation are reported in Table 1. Over the entire data set of 3 loci x 6 years, 15 of the values of F_{IS} were positive, some strikingly so, and three were slightly negative. Four values of F_{IS} suggested significant heterozygote deficiencies (three at the Est3 locus and one at 6pgd), although not significant after Bonferroni correction.

The six single-sample estimates of effective population size based on linkage disequilibrium between the three loci are reported at the bottom of Table 1, with 95% CI. Table 2 shows the five-two-sample estimates of effective population size based on allele frequency variance across pairs of consecutive samples. Each two-sample calculation was performed using F_c, F_k, and F_s methods, yielding $3 \times 5 = 15$ N_e estimates, with confidence intervals.

4 | DISCUSSION

Tables 1 and 2 suggest that the effective size of the $P. acuta$ population inhabiting the Quarterman Park Duck Pond was strikingly volatile, dipping from infinite in 2009 down to (remarkably consistent) values of 44.0 ± 10.8 by static estimate, or 49.8 ± 8.1 by two-sample estimate, and then back up to infinity again. The dramatic fluctuation in N_e seemed to correspond to a fluctuation in apparent census size noticeable in the field, from (surely) thousands in the spring of 2009 to a very few in 2012, and then back up to thousands.

The spring of 2012 was exceptionally warm in North Charleston. The average temperature recorded by the National Weather Service over the month of March, 2012, was 65.3°F (18.5°C), the second highest mean March temperature in the 80-year record. It was our pond side observation that the $P. acuta$ population at Quarterman Park never bloomed in the spring of 2012, which seemed to depress its size for the remainder of the year.

Both the effective size and the apparent census size of the $P. acuta$ population in the Quarterman Duck Pond apparently returned to many thousands (at minimum) in just 2 years, perhaps four generations. So
the most obvious hypothesis to account for the depression in effective size observed between 2011 and 2013 would be a population bottleneck. But \(N_e \) is not expected to recover from such a striking bottleneck event until many generations have passed, absent migration (Caballero, 1994).

A less obvious hypothesis might be fluctuation in the selfing rate, such that the population of \(P. \text{acuta} \) in Quarterman Park shifted from outbreeding to inbreeding and then back again over the study interval. The only estimates of \(N_e \) remotely comparable to ours in the published literature are the works of Meunier et al. (2004) and Trouve et al. (2005) on European populations of the preferentially selfing \(Lymnaea \) (Gaib) \(truncatula \). The French populations studied by the former authors generally demonstrated \(N_e < 30 \), and the Swiss populations studied by the latter \(N_e < 10 \). But the selfing rates inferred for all \(L. \) \(truncatula \) populations in both studies, estimated from \(F_{IS} \), consistently exceeded 80%. The heterozygosities we observed in our study population of \(P. \text{acuta} \) did not vary from expectation through our 7-year observation period.

We suggest that cryptic population subdivision may be the most likely hypothesis to account for the apparent volatility of \(N_e \) in our

| TABLE 2 | Two-sample estimates of effective population size calculated for the Quarterman Park \(P. \text{acuta} \) population 2009–2015, using three different approaches to estimate standardized allele frequency variance. Inf., effectively infinite

	2009–2010	2010–2011	2011–2013	2013–2014	2014–2015
STFc	Inf.	131.5	49.8	255.8	Inf.
95% CI	9.2	8.1	7.3		
STFs	Inf.	113.6	40.6	205.4	15.361
95% CI	34.8	17.3	35.9	453	
STFk	Inf.	104.7	56.5	354.2	Inf.
95% CI	8.0	9.0	8.1		
outcrossing freshwater pulmonate, Lymnaea stagnalis, and several measures of fitness, including maturation age and fecundity. The authors suggested that their measures of genetic variation might indirectly estimate effective population size, with lower values of N_e promoting the random fixation of deleterious alleles. But Puurtinen and colleagues could not demonstrate a correlation between either genetic variability or population fitness and the current densities of the snail populations they sampled.

It should be cautioned that the number of genetic markers employed for the present study was small. The effectively infinite population sizes we estimated 2009–2010 and 2015 might result from fluctuating sampling variance. But our results, suggesting as they do striking volatility in the effective population size of a common and widespread pulmonate snail, offer a potential resolution to quandaries such as those reported by Viard, Puurtinen, and their colleagues.

CONFLICT OF INTEREST

None declared.

ORCID

Robert T. Dillon
http://orcid.org/0000-0002-4224-536X

REFERENCES

Albrecht, C., Kroll, O., Terrazas, E., & Wilke, T. (2009). Invasion of ancient Lake Titicaca by the globally invasive Physa acuta (Gastropoda: Pulmonata: Hygrophila). *Biological Invasions*, 11, 1821–1826. https://doi.org/10.1007/s10530-008-9360-9

Arnaud, J.-F., & Laval, G. (2004). Stability of genetic structure and effective population size inferred from temporal changes of microsatellite DNA polymorphisms in the land snail Helix aspersa (Gastropoda: Helicidae). *Biological Journal of the Linnean Society*, 82, 89–102. https://doi.org/10.1111/j.1095-8312.2004.00320.x

Auld, J., & Relyea, R. (2011). Adaptive plasticity in predator-induced defenses in a common freshwater snail: Altered selection and mode of predation due to prey phenotype. *Evolutionary Ecology*, 25, 189–202. https://doi.org/10.1007/s10682-010-9394-1

Bousset, L., Henry, P.-Y., Sourrouille, P., & Jarne, P. (2004). Population biology of the invasive freshwater snail Physa acuta approached through genetic markers, ecological characterization and demography. *Molecular Ecology*, 13, 2023–2036. https://doi.org/10.1111/j.1365-294X.2004.02200.x

Caballero, A. (1994). Developments in the prediction of effective population size. *Heredity*, 73, 657–679. https://doi.org/10.1038/hdy.1994.174

Caballero, A., Santiago, E., & Toro, M. (1996). Systems of mating to reduce drift in small populations. *Journal of Animal Science*, 74, 431–442. https://doi.org/10.2527/1996-0431

Cain, A., & Currey, J. (1963). Area effects in Cepaea. *Philosophical Transactions of the Royal Society of London B: Biological Sciences*, 246, 1–81. https://doi.org/10.1098/rstb.1963.0001

Crow, J. (2010). Wright and fisher on inbreeding and random drift. *Genetics*, 184, 609–611. https://doi.org/10.1534/genetics.109.110023

Crow, J., & Morton, N. (1955). Measurement of gene frequency drift in small populations. *Evolution*, 9, 202–214. https://doi.org/10.1111/j.1558-5646.1955.tb01531.x

Dillon, R. T. Jr (2000). The ecology of freshwater molluscs. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511542008

Dillon, R. T. Jr, & Jacquemin, S. (2015). The heritability of shell morphometrics in the freshwater pulmonate gastropod Physa. *PLoS One*, 10, e0121962. https://doi.org/10.1371/journal.pone.0121962

Dillon, R. T. Jr, McCullough, T., & Earnhardt, C. (2005). Estimates of natural allosporogenesis storage capacity and self-fertilization rate in the hermaphrodite freshwater snail, *Physa acuta*. *Invertebrate Reproduction & Development*, 47, 111–115. https://doi.org/10.1007/037924259.2005.956215

Dillon, R. T. Jr, Robinson, J., & Wethington, A. R. (2007). Empirical estimates of reproductive isolation among the freshwater pulmonate snails *Physa acuta*, *P. pomilia*, and *P. hensdersoni*. *Malacologia*, 49, 283–292. https://doi.org/10.4002/0076-2997-49.2.283

Dillon, R. T. Jr, & Wethington, A. R. (1994). Inheritance at five loci in the freshwater snail, *Physa heterostropha*. *Biochemical Genetics*, 32, 75–82. https://doi.org/10.1007/BF00554416

Dillon, R. T. Jr, & Wethington, A. R. (1995). The biogeography of sea islands: Clues from the population genetics of the freshwater snail, *Physa heterostropha*. *Systematic Biology*, 44, 400–408. https://doi.org/10.1093/sysbio/44.3.400

Dillon, R. T. Jr, Wethington, A., & Lydeard, C. (2011). The evolution of reproductive isolation in a simultaneous hermaphrodite, the freshwater snail *Physa*. *BMC Evolutionary Biology*, 11, 144. https://doi.org/10.1186/1471-2148-11-144

Dillon, R. T. Jr, Wethington, A. R., Rhett, J., & Smith, T. (2002). Populations of the European freshwater pulmonate *Physa acuta* are not reproductively isolated from American *Physa heterostropha* or *Physa integra*. *Invertebrate Biology*, 121, 226–234.

Do, C., Waples, R., Peel, D., Macbeth, G., Tillett, B., & Ovenden, J. (2014). NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (N_e) from genetic data. *Molecular Ecology Resources*, 14, 209–214. https://doi.org/10.1111/1755-0998.12157

Dybdahl, M., & Lively, C. (1996). The geography of coevolution: Comparative population structures for a snail and its trematode parasite. *Evolution*, 50, 2264–2275. https://doi.org/10.1111/j.1558-5646.1996.tb03615.x

Escobar, J., Auld, J., Correa, A., Alonso, J., Bony, Y., Coutellec, M., ... David, P. (2011). Patterns of mating-system evolution in hermaphroditic animals: Correlations among selfing rate, inbreeding depression, and the timing of reproduction. *Evolution*, 65, 1233–1253. https://doi.org/10.1111/j.1558-5646.2011.01218.x

Fernandez, J., Galindo, J., Fernandez, B., Perez-Figueroa, A., Caballero, A., & Rolan-Alvarez, E. (2005). Genetic differentiation and estimation of effective population size and migration rates in two sympatric ecotypes of the marine snail *Littorina saxatilis*. *Journal of Heredity*, 96, 460–464. https://doi.org/10.1093/jhered/esi064

Gilbert, K., & Whitlock, M. (2015). Evaluating methods for estimating local effective population size with and without migration. *Evolution*, 69, 2154–2166. https://doi.org/10.1111/evo.12713

Greenwood, J. (1974). Effective population numbers in the snail *Cepaea nemoralis*. *Evolution*, 28, 513–526. https://doi.org/10.1111/1558-5646.1974.tb00785.x

Gu, Q.-H., Zhang, M., Zhou, C.-J., Zhu, G.-R., Dong, J., Gao, Y.-N., ... Chen, P. (2015). Analysis of genetic diversity and population structure of *Bellamya quadriata* from lakes of middle and lower Yangtze river. *Genetica*, 143, 545–554. https://doi.org/10.1007/s10709-015-9852-2

Gu, Q.-H., Zhou, C.-J., Cheng, Q.-Q., Li, X.-J., Zhu, G.-R., Zhang, M., ... Dong, J. (2015). The perplexing population genetic structure of *Bellamya purificata* (Gastropoda: Viviparidae): Low genetic differentiation despite low dispersal ability. *Journal of Molluscan Studies*, 81, 466–475. https://doi.org/10.1093/mollus/eyv017
Jarne, P., & Delay, B. (1990). Inbreeding depression and self-fertilization depends on the strength of male-male competition. *Evolution, 67*, 2861–2875.

Jarne, P., & Delay, B. (1990). Inbreeding depression and self-fertilization in *Lymnaea peregra* (Gastropoda: Pulmonata). *Heredity, 64*, 169–175. https://doi.org/10.1038/hdy.1990.21

Jarne, P., Perdieu, M.-A., Pernot, A.-F., Delay, B., & David, P. (2000). The influence of self-fertilization and grouping on fitness attributes in the freshwater snail *Physa acuta*: Population and individual inbreeding depression. *Journal of Evolutionary Biology, 13*, 645–655. https://doi.org/10.1046/j.1420-9101.2000.00204.x

Jorde, P., & Ryman, N. (2007). Unbiased estimator for genetic drift and effective population size. *Genetics, 177*, 927–935. https://doi.org/10.1534/genetics.107.075481

Meunier, C., Hurtrez-Bousses, S., Durand, P., Rondelaud, D., & Renaud, F. (2004). Small effective population sizes in a widespread selfing species, *Lymnaea truncatula* (Gastropoda: Pulmonata). *Molecular Ecology, 13*, 2535–2543. https://doi.org/10.1046/j.1365-294X.2004.02242.x

Murray, J. (1964). Multiple mating and effective population size in *Cepaea nemoralis*. *Evolution, 18*, 283–291. https://doi.org/10.1111/j.1558-5646.1964.tb01601.x

Murray, J., & Clarke, B. (1968). Partial reproductive isolation in the genus *Partula* on Moorea. *Evolution, 22*, 103–117.

Nei, M., & Tajima, F. (1981). Genetic drift and estimation of effective population size. Genetics, 98, 625–640.

Noel, E., Chemtob, Y., Janicke, T., Sarda, V., Pelissie, B., Jarne, P., & David, P. (2016). Reduced mate availability leads to evolution of self-fertilization and purging of inbreeding depression in a hermaphrodite. *Evolution, 70*, 625–640. https://doi.org/10.1111/evo.12886

Nunney, L., & Elam, D. (1994). Estimating the effective size of conserved populations. *Conservation Biology, 8*, 175–184. https://doi.org/10.1046/j.1523-1739.1994.08010175.x

Pollak, E. (1983). A new method for estimating effective population size from allele frequency changes. *Genetics, 104*, 531–548.

Puurtinen, M., Knott, K., Suonpaa, S., Van Ooik, T., & Kaitala, V. (2004). Genetic variability and drift load in populations of an aquatic snail. *Evolution, 58*, 749–756. https://doi.org/10.1111/j.0014-3820.2004.tb00408.x

Raymond, M., & Rousset, F. (1995). GENEPOP (version 1.2): Population genetics software for exact tests and ecumenism. *Journal of Heredity, 86*, 248–249. https://doi.org/10.1093/oxfordjournals.jhered.a111573

Riquet, F., Le Cam, S., Fonteneau, E., & Viard, F. (2016). Moderate genetic drift is driven by extreme recruitment events in the invasive mollusk *Crepidula fornicata*. *Heredity, 117*, 42–50. https://doi.org/10.1038/hdy.2016.24

Rousett, F. (2008). Genepop007: A complete reimplementation of the Genepop software for Windows and Linux. *Molecular Ecology Resources, 8*, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

Selander, R., & Kaufman, D. (1975). Genetic structure of populations of the brown snail (*Helix aspersa*) I. Microgeographic variation. *Evolution, 29*, 385–401.

Trouve, S., Degen, L., & Goudet, J. (2005). Ecological components and evolution of selfing in the freshwater snail *Galba truncatula*. *Journal of Evolutionary Biology, 18*, 358–370.

Ursenbacher, S., Alvarez, C., Armbruster, G., & Baur, B. (2010). High population differentiation in the rock-dwelling land snail (*Trochulus caelatus*) endemic to the Swiss Jura Mountains. *Conservation Genetics, 11*, 1265–1271. https://doi.org/10.1007/s10592-009-9956-3

Van Leeuwen, C., Huig, N., Van der Velde, G., Van Alen, T., Wagemaker, C., Sherman, C., ... Figuerola, J. (2013). How did this snail get here? Multiple dispersal vectors inferred for an aquatic invasive species. *Freshwater Biology, 58*, 88–99. https://doi.org/10.1111/fwb.12041

Viard, F., Justy, F., & Jarne, P. (1997). The influence of self-fertilization and population dynamics on the genetic structure of subdivided populations: A case study using microsatellite markers in the freshwater snail *Bulinus truncatus*. *Evolution, 51*, 1518–1528. https://doi.org/10.1111/j.1558-5646.1997.tb01475.x

Waples, R. (1989). A generalized approach for estimating effective population size from temporal changes in allele frequency. *Genetics, 121*, 379–391.

Waples, R., & Do, C. (2008). LDNe: A program for estimating effective population size from data on linkage disequilibrium. *Molecular Ecology Resources, 8*, 753–756. https://doi.org/10.1111/j.1755-0998.2007.02061.x

Weir, B., & Cockerham, C. (1984). Estimating F-statistics for the analysis of population structure. *Evolution, 38*, 1358–1370.

Wethington, A. R., & Dillon, R. T. Jr (1993). Reproductive development in the hermaphroditic freshwater snail, Physa, monitored with complementing albino lines. *Proceedings of the Royal Society of London, Series B: Biological Sciences, 252*, 109–114. https://doi.org/10.1098/rspb.1993.0053

Wethington, A. R., & Dillon, R. T. Jr (1996). Gender choice and gender conflict in a non-reciprocally mating simultaneous hermaphrodite, the freshwater snail, *Physa*. *Animal Behaviour, 51*, 1107–1118. https://doi.org/10.1006/anbe.1996.0112

Wethington, A. R., & Dillon, R. T. Jr (1997). Selfing, outcrossing, and mixed mating in the freshwater snail *Physa heterostropha*: Lifetime fitness and inbreeding depression. *Invertebrate Biology, 116*, 192–199. https://doi.org/10.2307/3226896

Wright, S. (1931). Evolution in Mendelian populations. *Genetics, 16*, 97–159.

How to cite this article: Dillon Jr RT. Volatility in the effective size of a freshwater gastropod population. *Ecol Evol*. 2018:8:2746–2751. https://doi.org/10.1002/eev.3.3912