REPRODUTIBILIDADE DAS VARIÁVEIS FISIOLÓGICAS DO TESTE DE CAMINHADA DE SEIS MINUTOS EM ESCOLARES SAUDÁVEIS

Reproducibility of physiological variables of the six-minute walk test in healthy students

Patrícia Morgana Rentz Keila, Janaína Cristina Scalco, Renata Maba Gonçalves Wamosy, Camila Isabel Santos Schivinski

RESUMO

Objetivo: Verificar a reprodutibilidade do desempenho e das variáveis fisiológicas do teste de caminhada de seis minutos (TC_6) realizado por escolares saudáveis.

Métodos: Estudo transversal prospectivo. A amostra foi composta de escolares saudáveis, entre 6 e 12 anos, provenientes de escolas públicas e privadas da Grande Florianópolis, SC, Brasil. A higidez foi controlada por meio do recordatório de saúde, do questionário International Study of Asthma and Allergies in Childhood (ISAAC) e dos valores espirométricos de volume expiratório forçado no primeiro segundo (VEF_1) e capacidade vital forçada (CVF) acima de 80% do predito. Foram registradas as variáveis fisiológicas utilizando-se o analisador de gases telemétrico portátil K4b2 (Cosmed, Itália), e, para análise, consideraram-se o índice de dispneia, a percepção de esforço e as variáveis de desempenho identificadas nos dois TC_6. Verificou-se a distribuição dos dados pelo teste de Shapiro-Wilk, e a análise estatística incluiu: teste t de Student pareado, ou teste de Wilcoxon, e o coeficiente de correlação intraclasse (ICC). O nível de significância adotado foi de 5%.

Resultados: Participaram 22 escolares com idade média de 10,2±1,5 anos. Identificou-se reprodutibilidade da distância percorrida e da variação do consumo de oxigênio entre os dois TC_6, com ICC=0,76 e ICC=0,87, respectivamente. Houve similaridade no comportamento das variáveis fisiológicas na comparação entre os dois testes (p=0,001), destacando-se o volume minuto (VE), o consumo de oxigênio (VO_2) e a produção de dióxido de carbono (VCO_2).

Conclusões: O TC_6 apresentou valores reprodutíveis tanto no desempenho como nos parâmetros fisiológicos nos escolares saudáveis estudados.

Palavras-chave: Criança; Reprodutibilidade dos testes; Caminhada.

ARTIGO ORIGINAL

http://dx.doi.org/10.1590/1984-0462/2021/39/2019326

Objective: To verify the reproducibility of the six-minute walk test (6MWT) performance and its physiological variables in healthy students.

Methods: This is as prospective cross-sectional study. The sample consisted of healthy students aged 6–12 years old from public and private schools in the region of Florianópolis City, Santa Catarina State, (Southern Brazil). The medical state was considered according to the health records and scores on the International Study of Asthma and Allergies in Childhood (ISAAC) and the spirometric values of forced expiratory volume in the first second and forced vital capacity above 80% of what was predicted. Two 6MWTs were conducted with a 30-minute interval between them, following the recommendations from the American Thoracic Society. Physiologic variables were recorded using the portable telemetric gas analyzer K4b2 (Cosmed, Italy). For analysis, the dyspnea index, the perception of effort and performance variables identified in both 6MWT were considered. Data distribution was verified with the Shapiro-Wilk test and statistical analysis included paired t-test or Wilcoxon test, and intraclass correlation coefficient (ICC). The significance level adopted was 5%.

Results: A total of 22 students with a mean age of 10.2±1.5 years participated in the study. The covered distance and the variation of oxygen consumption reproducibility between the two 6MWTs presented ICC=0.76 and ICC=0.86, respectively. There was also similar behavior of the physiological variables when comparing the two tests (p=0.001), especially the minute volume (MV), the oxygen consumption (VO_2), and the carbon dioxide production (VCO_2).

Conclusions: The 6MWT showed reproducible values, both in performance and physiological parameters, in the healthy students analyzed.

Keywords: Child; Reproducibility of results; Walking.
INTRODUÇÃO
O estado funcional é um conceito multidimensional que se refere à forma como um indivíduo é capaz de completar as atividades de vida diária (AVD), indispensáveis para atender às suas necessidades físicas, psicológicas e sociais.1 Esse termo pode ser medido em quatro segmentos distintos: o desempenho funcional, a reserva funcional, a capacidade funcional de utilização e a capacidade funcional, sendo o último concernente ao potencial máximo do indivíduo para executar as AVD.1,2 A capacidade funcional pode ser avaliada por meio de testes de campo,3 como o teste senta e levanta, o AVD-Grílter adaptado para crianças, o teste do degrau e o teste de caminhada de seis minutos (TC6).4-7

Por ser um teste de fácil aplicação, seguro, de baixo custo6 e ter propriedades de medida e equações de referência estabelecidas para diversas populações pediátricas,9 o TC6 é o teste mais utilizado na avaliação da capacidade funcional de crianças e adolescentes. O desempenho no teste é atribuído à distância percorrida (DP) em metros, durante os seis minutos, a qual é considerada uma medida sensível e importante para monitorar respostas a intervenções terapêuticas de crianças com diferentes disfunções.9,11 além de ser uma medida preditora de morbimortalidade.12

Contudo, o TC6 ainda não dispõe de protocolos nem de orientações específicas para sua aplicação em pediatria, uma vez que o documento da American Thoracic Society (ATS) e da European Respiratory Society (2014) padroniza a aplicação desse teste com base em estudos incluindo indivíduos adultos com doença respiratória crônica.10 Atualmente, preconiza-se a realização de dois TC6, com intervalo de 30 minutos entre eles, considerando um possível efeito de aprendizado constatado na população adulta.13 Entretanto, na pediatria, esse comportamento é ainda controverso.8,14-16 Nesse grupo, discute-se a influência de fatores antropométricos no desempenho do teste, pois estes se encontram em crescimento e desenvolvimento, e há a necessidade de normatizações técnicas mais específicas para faixa etária, como comando verbal e escalas de esforço pictóricas.17

Posto isto, precisa-se conhecer o comportamento das demandas cardiovasculares, ventilatórias e metabólicas induzidas pelo TC6 quando o teste é realizado pela população pediátrica, além da real necessidade de dois testes em um mesmo dia, no que concerne à sua habitual indicação para a avaliação e monitorização clínica de crianças com doenças crônicas.7,14

Sendo assim, o objetivo do presente estudo foi verificar a reprodutibilidade do desempenho e das variáveis fisiológicas (cardiovasculares, ventilatórias e metabólicas) do TC6 desempenhado por escolares saudáveis.

MÉTODO
Realizou-se um estudo transversal de caráter prospectivo pelo período de três meses, em que foram incluídas crianças saudáveis, entre 6 e 12 anos de idade, provenientes de escolas da Grande Florianópolis, Santa Catarina, Brasil, após aprovação pelo Comitê de Ética em Pesquisa da Universidade do Estado de Santa Catarina, sob Parecer nº 708.446 (Certificado de Apresentação para Apreciação Ética 22676113.6.0000.0118). As coletas de dados aconteceram mediante a assinatura do termo de consentimento livre e esclarecido pelos pais e/ou responsáveis e a concordância da criança pelo termo de assentimento para menores. A higidez dos participantes foi controlada por meio da aplicação e análise de:

- Recordatório de saúde, formulado pelas pesquisadoras e considerando-se o histórico e o estado do indivíduo com ausência de doença.
- Questionário International Study of Asthma and Allergies in Childhood (ISAAC) — módulo I para controle de asma — , exigindo-se pontuação menor que 5 para crianças de 6 a 9 anos e menor que 6 pontos para adolescentes de 10 a 14 anos.
- Exame de espirometria, realizado por meio do equipamento portátil Easy One Frontline (Medical Technologies®, Inc., Estados Unidos), respeitando-se as recomendações da ATS,18 sendo elegíveis os escolares que apresentaram volume expiratório forçado no primeiro segundo (VEF1) e capacidade vital forçada (CVF) com valores acima de 80% do predito.19,20

Com base nos dados de controle de higidez, foram incluídos no estudo os escolares com percentil ≥3 e <97, classificados como eutróficos e com sobrepeso, não asmáticos e não atletas de alto rendimento (inscritos em federações esportivas). Crianças e adolescentes com incapacidade para a realização de qualquer um dos procedimentos da avaliação seriam excluídos da amostra, o que não aconteceu.

Avaliaram-se os dados antropométricos dos participantes, a massa corporal e a estatura, seguidos do cálculo do índice de massa corporal (IMC), por intermédio do programa Telessaúde do Ministério da Saúde (http://www.telessaudebrasil.org.br/apps/calculadoras/). Em seguida, conduziram-se dois TC6 (TC61 e TC62), com intervalo de 30 minutos entre eles, no período matutino, de acordo com as recomendações da ATS. Para a realização do teste, o escolar foi orientado a percorrer a maior distância possível durante o período de seis minutos e encorajado para tal com frases padronizadas a cada minuto.10 Todos os testes foram conduzidos pelos mesmos avaliadores, previamente treinados, os quais aferiram a pressão arterial (PA) e a sensação de dispneia por meio da escala de percepção de esforço (EPEC) e pela escala de Borg modificada — a primeira é pontuada de 0 a 5, e a de segunda, de 0 a 10, sendo 10 o síntoma máximo.21,22 Considerou-se para análise a maior distância percorrida (DP) entre os dois testes, a qual foi registrada em metros.
Para análise das respostas fisiológicas durante o TC₆, os indivíduos usaram um analisador de gases telemétrico portátil K4b2 (Cosmed®, Itália). Foram coletadas as variáveis frequência respiratória (FR), frequência cardíaca (FC), volume minuto (VE), consumo de oxigênio (VO₂), VO₂ em relação à massa corporal (VO₂/kg), produção de dióxido de carbono (VCO₂), taxa de troca gasosa (R), tempo inspiratório (Ti), tempo expiratório (Te), tempo total do ciclo respiratório (Ttot), relação do tempo inspiratório/tempo total do ciclo (Ti/Ttot), saturação de pulso de oxigênio (SpO₂) e o equivalente metabólico para o oxigênio (MET). Para a análise dos dados, as variáveis foram mensuradas por meio da técnica de respiração, antes e ao longo dos dois TC₆, levando-se em conta a média dos 15 segundos finais do repouso inicial e a média dos 15 segundos finais de cada minuto do TC₆, coletados utilizando-se o analisador de gases.²³

O cálculo amostral foi baseado em um coeficiente de correlação intraclass (ICC) esperado de 0,70 para a DP no TC₆ e para variáveis fisiológicas, considerando-se α=0,05 e β=0,10, totalizando uma amostra de 17 escolares como suficientes para pesquisa.²⁴

Conduziu-se a análise estatística no software da IBM Statistical Package for the Social Sciences (SPSS®, Chicago, IL, Estados Unidos), versão 20.0. Inicialmente, verificou-se a distribuição dos dados pelo teste de Shapiro-Wilk, e, para comparação das variáveis fisiológicas entre o início e o fim de cada um dos dois TC₆, empregou-se o teste t de Student pareado, ou o teste de Wilcoxon. A reprodutibilidade do TC₆ foi analisada pelo ICC e pela disposição gráfica de Bland-Altman. Os valores de ICC obtidos foram interpretados de acordo com a classificação de Munro et al.,²⁵ sendo pouca correlação=≤0,25, baixa=0,26–0,49, moderada=0,50–0,69, alta=0,7–0,89 e muito alta=0,9–1,0. O nível de significância adotado foi de 5%.

RESULTADOS

Participaram deste estudo 22 escolares saudáveis com idade média de 10,1±1,4 anos. O IMC médio dos escolares foi de 17,6 kg/m² (±2,20), sendo a maioria dos participantes classificada como eutrófica (73,9%), e 26% deles apresentaram sobrepeso. As características da amostra em relação a idade, variáveis antropométricas e parâmetros espirométricos estão descritas na Tabela 1.

Avaliação da reprodutibilidade entre o TC₆¹ e TC₆²

Analisando-se a reprodutibilidade da DP e da variação do VO₂ entre o primeiro e o segundo teste, identificou-se alta confiabilidade entre eles, com ICC=0,76 (intervalo de confiança de 95% — IC95% 0,41–0,90) e ICC=0,87 (IC95% 0,68–0,94), respectivamente. A representação do comportamento do VO₂ é apresentada na Figura 1, e sua reprodutibilidade e a da DP estão dispostas na Figura 2 por meio de gráficos de Bland-Altman. Também se observou de moderada a alta

Tabela 1 Distribuição dos dados de idade, das variáveis antropométricas e de parâmetros espirométricos da amostra estudada.

Parâmetros	Média±DP	Mediana	(Mínimo–Máximo)
Idade (anos)	10,1±1,4	9,9	(7,5–12,9)
Massa corporal (kg)	35,2±9,0	32,7	(24,5–59,6)
Altura (cm)	1,4±0,1	1,3	(1,2–1,6)
IMC (kg/cm²)	17,6±2,2	17,3	(14,1–22,3)
VEF₁ (%prev)	96,3±9,2	98,0	(81–115)
CVF (%prev)	100±10,0	103,4	(83–118)

DP: desvio padrão; kg: quilograma; cm: centímetro; IMC: índice de massa corporal; VEF₁: volume expiratório forçado no primeiro segundo; CVF: capacidade vital forçada; %prev: percentual do previsto.²⁰,²¹

Figura 1 Representação do comportamento da variável de consumo de oxigênio entre os dois TC₆.
Reprodutibilidade do desempenho e da variação dos parâmetros fisiológicos entre TC₁ e TC₂.

TC₁ – TC₂	ICC	IC95%	p-valor
Desempenho (m)	0,76	0,41–0,90	0,001
ΔBORG	0,79	0,52–0,91	< 0,001
ΔEPEC	0,63	0,09–0,85	0,015
ΔFR (rpm)	0,62	0,12–0,84	0,012
ΔFC (bpm)	0,71	0,29–0,88	0,004
ΔVE (L/min)	0,83	0,61–0,93	< 0,001
ΔVO₂ (mL/min)	0,87	0,68–0,94	< 0,001
ΔVO₂/kg (mL/min/kg)	0,77	0,45–0,90	0,001
ΔVCO₂ (mL/min)	0,84	0,62–0,93	< 0,001
ΔR	0,72	0,34–0,88	0,003
ΔT (s)	0,74	0,38–0,89	0,002
ΔTe (s)	0,47	-0,26–0,78	0,076
ΔTTot (s)	0,56	-0,05–0,81	0,034
ΔTi/Tot (s)	0,66	0,21–0,86	0,007
ΔSpO₂ (%)	0,23	-0,50–0,65	0,229
ΔMETS	0,77	0,45–0,90	0,001

TC₁: primeiro teste de caminhada de seis minutos; TC₂: segundo teste de caminhada de seis minutos; ICC: coeficiente de correlação intraclass; IC95%: intervalo de confiança de 95%; p: valor teste de confiabilidade; Δ: variação (Δ=final-inicial); BORG: escala de dispneia (pontos); EPEC: escala de percepção de esforço (pontos); FR: frequência respiratória; FC: frequência cardíaca; VE: volume minuto; VO₂: consumo de oxigênio; VO₂/kg: VO₂ em relação à massa corporal; VCO₂: produção de dióxido de carbono; R: taxa de troca gasosa; Ti: tempo inspiratório; Te: tempo expiratório; Ttot: tempo total do ciclo respiratório; Ti/Tot: relação do tempo inspiratório/tempo total do ciclo; SpO₂: saturação de pulso de oxigênio; METS: equivalente metabólico para o oxigênio; m: metros; rpm: respirações por minuto; bpm: batimentos por minuto; L: litros; min: minuto; mL: mililitro; kg: quilograma; s: segundos.

DISCUSSÃO

Este estudo analisou a reprodutibilidade da DP e das respostas fisiológicas desencadeadas por dois TC₆, executados por crianças e adolescentes saudáveis. Com base na identificação de correlações de magnitude baixa nas variáveis de Te e SpO₂, moderadas nas variáveis de EPEC, FR, Ttot e Ti/Ttot, assim como na alta confiabilidade na DP, BORG, FC, VE, VO₂, VO₂/Kg, VCO₂, R, Ti e equivalente metabólico para o oxigênio (METS), entre os dois testes realizados por uma mesma população de escolares, pode-se afirmar que o TC₆ é reprodutível nesse grupo. Na mesma linha, alguns estudos já haviam constatado a reprodutibilidade desse teste na população pediátrica saudável, bem como no comportamento dos parâmetros cardiorespiratórios, avaliados de maneira padrão. Um estudo que incluísse a presença de um analisador de gases para avaliação do comportamento dos parâmetros fisiológicos de escolares saudáveis...
Keil PMR et al.

durante o TC₆ ainda não havia sido conduzido, o que justifica esta investigação e atribui pioneirismo a ela.

Leunkeu et al.,¹¹ entre suas análises, demonstraram a reproduzibilidade das variáveis de DP e das respostas fisiológicas coletadas no TC₆, utilizando-se um analisador de gases portátil, em uma amostra de crianças e adolescentes (14,2 ± 1,8 anos) com paralisia cerebral, classificadas nos níveis I e II do Sistema de Classificação da Função Motora Grossa (GMFCS). Os valores obtidos nos dois TC₆ foram reprodutíveis, com confiabilidade alta para DP (ICC=0,80 e DP=395 ± 95 vs. 421 ± 100 m, p=0,53), e também para as variáveis de resposta fisiológica (VO₂ pico: ICC=0,85; VE pico: ICC=0,83; FC máxima: ICC=0,82). Esses resultados foram similares aos obtidos na presente pesquisa.

Entre as variáveis fisiológicas, o consumo de oxigênio é interpretado na literatura como o principal índice de aptidão aeróbica durante o exercício.²⁶ Visto isso, em pediatria, o estudo de Bos et al.²⁷ utilizou o VO₂ pico para determinar o nível de atividade física e a aptidão aeróbica de crianças com idades entre 6 e 12 anos submetidas a transplante hepático. A avaliação foi constituída da análise de gases medida por meio do teste cardíopulmonar de exercício (TCPE), considerado o padrão ouro para essa avaliação. Entre as variáveis, foram calculados o VO₂, o VO₂ pico, o VE e o VCO₂, os quais definiram que as crianças têm níveis normais de condicionamento aeróbico.

O estudo das medidas obtidas pela análise de gases durante testes de avaliação da capacidade funcional e de exercício em pediatria viabiliza o conhecimento das modificações que esses testes desencadeiam nas pressões parciais arteriais e venosas de gases, bem como possíveis limitações ventilatórias durante o esforço (cardiovascular, respiratório e muscular ou metabólico), além da avaliação do comportamento do volume sistólico, obtido pela análise das curvas e dos valores máximos do pulso de oxigênio (VO₂/FC) e dos equivalentes ventilatórios (VE/VO₂ e VE/VCO₂), quando é realizado um protocolo incremental.²⁸ Sendo assim, pode-se considerar uma limitação do presente estudo a ausência do TCPE, tendo em vista que os dados utilizados como parâmetros de comparação com as respostas alcançadas no TC₆, foram por intermédio de equações de predição. A avaliação dos níveis de condicionamento aeróbico foi realizada com o TC₆, que é constituído da análise de gases medida por meio do teste cardíopulmonar de exercício (TCPE), considerado o padrão ouro para essa avaliação. Entre as variáveis, foram calculados o VO₂, o VO₂ pico, o VE e o VCO₂, os quais definiram que as crianças têm níveis normais de condicionamento aeróbico.

O estudo das medidas obtidas pela análise de gases durante testes de avaliação da capacidade funcional e de exercício em pediatria viabiliza o conhecimento das modificações que esses testes desencadeiam nas pressões parciais arteriais e venosas de gases, bem como possíveis limitações ventilatórias durante o esforço (cardiovascular, respiratório e muscular ou metabólico), além da avaliação do comportamento do volume sistólico, obtido pela análise das curvas e dos valores máximos do pulso de oxigênio (VO₂/FC) e dos equivalentes ventilatórios (VE/VO₂ e VE/VCO₂), quando é realizado um protocolo incremental.²⁸ Sendo assim, pode-se considerar uma limitação do presente estudo a ausência do TCPE, tendo em vista que os dados utilizados como parâmetros de comparação com as respostas alcançadas no TC₆ foram por intermédio de equações de predição. Por sua vez, Pereira et al.¹⁴ avaliaram o desempenho funcional no TC₆ em duas populações distintas: escolares com fibrose cística (n=55) e escolares saudáveis (n=185), cujas médias de idade eram de 12,2±4,3 e 11,3±4,3 anos, respectivamente.

Tabela 3 - Resultado da comparação das medidas de desempenho e da variação dos parâmetros fisiológicos, entre o TC₁ e TC₂, bem como os dados de média e desvio padrão.

	TC₁	TC₂	p-valor		
	Média±DP	Mín – Máx	Média±DP	Mín – Máx	
Desempenho	584,8±85,1	408,0–730,6	584±97,5	437–818	
ΔBORG*	0,4±1,0	0,0–4,0	0,1±0,6	0,0–3,0	0,12
ΔEPEC*	0,8±1,0	0,0–4,0	0,8±1,1	0,0–4,0	1,00
ΔFR	18,6±8,4	6,0–37,5	21,4±7,7	5,4–38,0	0,12
ΔFC	42,8±19,8	0,7–77,1	43,2±17,3	17,3–80,5	0,91
ΔVE	16,0±5,0	4,6–24,3	16,6±6,8	6,0–30,6	0,56
ΔVO₂	643,3±232,5	163,3–1,138,9	656,0±260,9	261,4–1219,5	0,72
ΔVO₂/kg	18,2±5,0	6,0–27,7	18,5±5,9	9,6–31,3	0,76
ΔVCO₂	600,5±203,7	154,6–999,4	610,6±251,6	194,3–1,181,7	0,78
ΔR	-0,0±0,1	-0,3–0,1	-0,0±0,1	-0,2–0,1	0,71
ΔTi*	-0,4±0,3	-1,4–0,0	-0,4±0,3	-1,4–(0,0)	0,68
ΔTe*	-0,9±0,5	-2,1–(0,1)	-1,1±0,8	-4,2–(0,3)	0,42
ΔTtot*	-1,4±0,8	-3,5–(0,1)	-1,6±0,9	-5,0–(0,3)	0,57
ΔTi/Ttot*	0,0±0,0	-0,0–0,1	0,0±0,0	0,0–0,2	0,45
ΔSpO₂*	-0,5±1,1	-3,0–1,5	-1,6±1,8	-7,0–0,8	0,03
ΔMETS	5,2±1,4	1,7–7,9	5,3±1,6	2,7–8,9	0,76

TC₁: primeiro teste de caminhada de seis minutos; TC₂: segundo teste de caminhada de seis minutos; DP: desvio padrão; Mín: mínimo; Máx: máximo; p: valor do teste estatístico; *variáveis com distribuição não paramétrica analisadas pelo teste de Wilcoxon; Δ: variação (Δ=final-inicial); BORG: escala de dispneia (pontos); EPEC: escala de percepção de esforço (pontos); FR: frequência respiratória; FC: frequência cardíaca; VE: volume minuto; VO₂: consumo de oxigênio; VO₂/kg: VO₂ em relação à massa corporal; VCO₂: produção de dióxido de carbono; R: taxa de troca gásosa; Ti: tempo inspiratório; Te: tempo expiratório; Ttot: tempo total do ciclo respiratório; Ti/Tot: relação do tempo inspiratório/tempo total do ciclo; SpO₂: saturação de pulso de oxigênio; METS: equivalente metabólico para o oxigênio.
Os resultados demonstraram que as DP alcançadas, entre o primeiro e o segundo teste, foram similares em ambos os grupos. Esses achados constataram a reprodutibilidade do TC₆, com altas correlações, tanto para o grupo com fibrose cística (ICC=0,81), como nos saudáveis (ICC=0,77), e o resultado do ICC para a população de saudáveis foi similar ao observado na corrente investigação.

Na mesma linha, Cunha et al. avaliaram o desempenho relacionado às variáveis clínicas de crianças com fibrose cística (11,0±1,9 anos), com média de VEF% de 63,1 (±21,1), e não identificaram diferença significativa entre as médias da DP (582,3±60 e 598,2±56,8 m), das respostas cardiorespiratórias e da sensação de dispneia entre os dois TC₆. Em escolares obesos, o mesmo padrão foi verificado por Morinder et al., em pesquisa cuja amostra incluiu idades entre 8 e 16 anos, e evidenciou-se reprodutibilidade do teste-reteste, com alta confiabilidade (ICC=0,84) nesse grupo. Ainda sobre obesidade, vale ressaltar que quase 30% da amostra da corrente investigação se caracterizou com sobrepeso, o que pode ser considerado uma limitação, uma vez que se sabe que esse perfil de indivíduos pode apresentar comprometimento no desempenho ao exercício físico.

O comportamento de indivíduos adultos durante o TC₆ se mostra bem estabelecido, sendo consenso a presença do efeito aprendizado na execução do teste, o que reforça as orientações mostras bem estabelecido, sendo consenso a presença do efeito aprendizado na execução do teste,13 o que reforça as orientações quanto a necessidade de realização de dois testes.14 Na doença renal crônica, em pediatria, esse padrão foi verificado por Watanabe et al., em pesquisa que avaliou a reprodutibilidade do TC₆ em 38 crianças e adolescentes (6 e 16 anos de idade), os quais estavam em diálise ou tinham sido submetidos a transplante renal. Os autores constataram que essa população apresentou maior distância percorrida no segundo teste (519 m vs. 538,5 m (405–685); p<0,001), com confiabilidade baixa entre eles (ICC>0,4). Segundo os autores, nessa condição específica, há necessidade de realização de teste-reteste, como descrito pela ATS.10

Em pediatria, ainda se discute a necessidade de dois testes. Nesse sentido, dois estudos avaliaram crianças saudáveis e notaram alta reprodutibilidade da DP no TC₆ (ICC=0,82 e ICC=0,84, respectivamente), mas não evidenciaram efeito aprendizagem nas referidas investigações, com DP semelhantes entre o teste-reteste. Martins et al. atribuíram esse comportamento ao fato de as crianças saudáveis serem motivadas pela novidade diante da realização do primeiro teste e não se empenharem tanto na repetição de um segundo TC₆, já que o teste passa a ser conhecido.

Os resultados do presente estudo refletem as características de uma amostra de crianças saudáveis, o que pode ser considerado uma limitação desta investigação. Sendo assim, recomenda-se o desenvolvimento de outras pesquisas nessa linha, incluindo populações de doentes pulmonares crônicos e outras situações específicas, visto a importância do acompanhamento da capacidade funcional nesses indivíduos e da identificação de resultados semelhantes aos aqui apresentados. Isso porque a aplicação de um só teste pode ser discutida para esses indivíduos, o que simplifica sua aplicação e realização, já que a repetição do TC₆ exige maior gasto energético, o qual pode não ser indicado em doentes crônicos graves. Além disso, a economia do tempo despendido para dois TC₆ aumenta sua viabilidade e aplicabilidade tanto em ambientes ambulatoriais quanto em estudos epidemiológicos conduzidos externamente e, por isso, justifica outras investigações.

Os resultados aqui exibidos, os quais verificaram similaridade no desempenho e na resposta de variáveis fisiológicas na execução de dois TC₆, sugerem a possibilidade de condução de um só teste em populações de crianças saudáveis.

Financiamento
Apoyo a infraestrutura para grupos de pesquisa FAPESC 522/2017 termo de outorga N 2017TR645.

Conflito de interesses
Os autores declaram não ter conflito de interesses.
Keil PMR et al.

1. Lima CA, Andrade AD, Campos SL, Brandão DC, Mourato IP, Britto MC. Six-minute walk test as a determinant of the functional capacity of children and adolescents with cystic fibrosis: a systematic review. Respir Med. 2018;137:83-9. https://doi.org/10.1016/j.rmed.2018.02.016

2. Watanabe FT, Koch VH, Juliani RC, Cunha MT. Six-minute walk test in children and adolescents with renal diseases: tolerance, reproducibility and comparison with healthy subjects. Clinics (São Paulo). 2016;71:22-7. https://doi.org/10.6061/clinics/2016(01)05

3. Cacau LA, Santana-Filho VJ, Maynard LG, Gomes Neto M, Fernandes M, Carvalho VO. Reference values for the six-minute walk test in healthy children and adolescents: a systematic review. Braz J Cardiovasc Surg. 2016;31:381-8. https://doi.org/10.5935/1678-9741.20160081

4. Holland AE, Spruit MA, Troosters T, Puhan MA, Pepin V, Saey D, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44:1428-46. https://doi.org/10.1183/09031936.00150314

5. Nsenga Leunkeu A, Shephard RJ, Ahmaidi S. Six-minute walk test in children and adolescents: a systematic review. J Pediatr. 2017;112:326-68. https://doi.org/10.5935/abc.20190048

6. Scalco JC, Martins R, Keil PMR, Mayer AF, Schivinski CI. Psychometric properties of functional capacity tests in children and adolescents: systematic review. Rev Paul Pediatri. 2018;36:500-10. doi:10.1590/1984-0462/2018;36;4;000002

7. Scalco JC. Respostas ventilatórias, cardiovasculares e metabólicas induzidas por testes de exercício em escolares saudáveis [master’s thesis]. Florianópolis: UDESC; 2015.

8. Hulley SB, Cummings SR, Browner WS, Grady D, Hearst N, Newman TB. Designing Clinical Research. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 1997.

9. Munro BH. Munro’s statistical methods for health care research. 3rd ed. New York: Lippincott Williams & Wilkins; 1997.

10. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319-38. https://doi.org/10.1183/09031936.05.00034805

11. Knudson RJ, Slatin RC, Lebowitz MD, Burrows B. The maximal expiratory flow-volume curve. Normal standards, variability, and effects of age. Am Rev Respir Dis. 1976;113:587-600. https://doi.org/10.1164/arrd.1976.113.5.587

12. Polgar C, Weng TR. The functional development of the respiratory system from the period of gestation to adulthood. Am Rev Respir Dis. 1979;120:625-95. https://doi.org/10.1164/arrd.1979.120.3.625

13. Scalco JC. The use of Borg’s modified scale in asthma crises. Acta Paul Enferm. 2008;21:466-73. https://doi.org/10.1590/S0103-21002008000300014

14. Scalco JC, Martins R, Keil PMR, Mayer AF, Schivinski CI. Psychometric properties of functional capacity tests in children and adolescents: systematic review. Rev Paul Pediatri. 2018;36:500-10. doi:10.1590/1984-0462/2018;36;4;000002

15. Scalco JC. Respostas ventilatórias, cardiovasculares e metabólicas induzidas por testes de exercício em escolares saudáveis [master’s thesis]. Florianópolis: UDESC; 2015.

16. Hulley SB, Cummings SR, Browner WS, Grady D, Hearst N, Newman TB. Designing Clinical Research. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 1997.

17. Munro BH. Munro’s statistical methods for health care research. 3rd ed. New York: Lippincott Williams & Wilkins; 1997.

18. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319-38. https://doi.org/10.1183/09031936.05.00034805

19. Knudson RJ, Slatin RC, Lebowitz MD, Burrows B. The maximal expiratory flow-volume curve. Normal standards, variability, and effects of age. Am Rev Respir Dis. 1976;113:587-600. https://doi.org/10.1164/arrd.1976.113.5.587

20. Polgar C, Weng TR. The functional development of the respiratory system from the period of gestation to adulthood. Am Rev Respir Dis. 1979;120:625-95. https://doi.org/10.1164/arrd.1979.120.3.625

21. Cavalcante TD, Diccini S, Barbosa DA, Bittencourt AR. The use of Borgs modified scale in asthma crises. Acta Paul Enferm. 2008;21:466-73. https://doi.org/10.1590/S0103-21002008000300014

22. Scalco JC, Martins R, Keil PMR, Mayer AF, Schivinski CI. Psychometric properties of functional capacity tests in children and adolescents: systematic review. Rev Paul Pediatri. 2018;36:500-10. doi:10.1590/1984-0462/2018;36;4;000002

23. Scalco JC. Respostas ventilatórias, cardiovasculares e metabólicas induzidas por testes de exercício em escolares saudáveis [master’s thesis]. Florianópolis: UDESC; 2015.

24. Hulley SB, Cummings SR, Browner WS, Grady D, Hearst N, Newman TB. Designing Clinical Research. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 1997.

25. Munro BH. Munro’s statistical methods for health care research. 3rd ed. New York: Lippincott Williams & Wilkins; 1997.

26. Sanabria D, Luque-Casado A, Perales JC, Ballester R, Ciria LF, Huertas F, et al. The relationship between vigilance capacity and physical exercise: a mixed-effects multidstudy analysis. PeerJ. 2019;7:e7118. https://doi.org/10.7717/peerj.7118

27. Bos GJ, Lelieveld OT, Scheenstra R, Maurer JH, Dijkstra PU. Physical activity and aerobic fitness in children after liver transplantation. Pediatr Transplant. 2019;23:e13465. https://doi.org/10.1111/petr.13465

28. Chorayeb N, Stein R, Daher DJ, Silveira AD, Ritt LE, Santos DF, et al. Atualização da Diretriz em Cardiologia do Esporte e do Exercício da Sociedade Brasileira de Cardiologia e da Sociedade Brasileira de Medicina do Esporte - 2019. Arq Bras Cardiol. 2019;112:326-68. https://doi.org/10.5935/abc.20190048

29. Cunha MT, Rozov T, de Oliveira RC, Jardim JR. Six-minute walk test results predict risk of hospitalization for youths with cystic fibrosis. J Pediatr Pulmonol. 2006;41:618-22. https://doi.org/10.1097/01.pul.000021002008000300014

30. Cunha MT, Rozov T, de Oliveira RC, Jardim JR. Six-minute walk test results predict risk of hospitalization for youths with cystic fibrosis. J Pediatr Pulmonol. 2006;41:618-22. https://doi.org/10.1097/01.pul.000021002008000300014

© 2020 Sociedade de Pediatria de São Paulo. Publicado por Zeppelin Publishers. Este é um artigo Open Access sob a licença CC BY (https://creativecommons.org/licenses/by/4.0/deed.pt).