Reinvestigation of Reactions of HgPh₂ with Eu and Yb Metal and the Synthesis of a Europium(II) Bis(tetraphenylborate) †

Michal Wiecko 1,‡, Zhifang Guo 2, Glen B. Deacon 1,* and Peter C. Junk 2 ‡

1 School of Chemistry, Monash University, Clayton, VIC 3800, Australia
2 College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
* Correspondence: glen.deacon@monash.edu
‡ Deceased.
† In memory of our colleague and co-author Dr. Michal Wiecko.
‡ Deceased.

Abstract: Europium bis(tetraphenylborate) [Eu(thf)₂][BPh₄]₂, thf containing a fully solvated [Eu(thf)₂]²⁺ cation, was synthesized by protolysis of “EuPh₂” (from Eu and HgPh₂) with Et₃NHBPh₄, and the structure was determined by single-crystal X-ray diffraction. Efforts to characterize the putative “Ph₂Ln” (Ln = Eu, Yb) reagents led to the synthesis of a mixed-valence complex, [(thf)₃Yb(µ-Ph)₂]Yb(µ-II)(Ph)₂(thf)₂·2thf, resulting from the reaction of Yb metal with HgPh₂ at a low temperature. This mixed-valence Yb(II)/Yb(III) compound was studied by ²⁷¹Yb-NMR spectroscopy and single-crystal X-ray diffraction, and the oxidation states of the Yb atoms were assigned.

1. Introduction

Rare earth metal compounds containing a carbon-to-metal σ-bond have been of considerable interest for many years [1–10]. The uniquely high reactivity of this mainly ionic bond not only poses a synthetic challenge from the fundamental research viewpoint but also affords an opportunity for widespread synthetic applications [11–15]. Brönstedt and Lewis basic alkyl or aryl ligands can easily be displaced to afford ionic species [9,16,17], offering access to more reactive systems, in particular for the catalysis of olefin polymerization reactions [18–24]. In this paper, a weakly coordinating tetraphenylborate BPh₄⁻ anion is used to increase the electropositive character of the central metal and to offer available sites for substrate coordination. In addition, complexes with BPh₄⁻ offer an interesting reactivity for metalorganic synthesis [25–28]. In recent years, our group has reported on the synthesis of a number of compounds with BPh₄⁻ anions [29]. The ionic perfluoroaryllanthanoid(II) tetraphenylborates [Eu(C₅F₅)(thf)₆][BPh₄] and [Yb(C₅F₅)(thf)₅][BPh₄] were obtained by treating Yb or Eu metal with HgPh(C₅F₅) in the presence of Me₃NHBPh₄ [30]. In the course of the present study, we found that the BPh₄⁻ anion has a stabilizing effect, increasing the thermal robustness of the ionic complexes relative to [Eu(C₅F₅)₂(thf)₅] and [Yb(C₅F₅)₂(thf)₄]. Motivated by these results, we were interested in the possible synthesis of analogs LnIII (Ln = Eu, Yb) complexes with an unsubstituted phenyl ligand.

2. Results

Initially, attempts were made to synthesize the desired complexes, [LnPh(thf)₆]BPh₄ by redox transmetalation/ligand exchange reactions of ytterbium or europium metal, HgPh₂, and Me₃NHBPh₄, a synthesis route similar to that used for the preparation of [Eu(C₅F₅)₂(thf)₅][BPh₄] and [Yb(C₅F₅)(thf)₅][BPh₄] [30]. However, along with Hg metal, non-crystalline, poorly soluble products, presumably the bis(tetraphenylborate) salts [Ln(thf)₆][BPh₄]₂ (Ln = Eu (1), n = 7; Yb (2); n = 6), were formed (Scheme 1, Equation (1)). The favoured formation of the Yb bis(tetraphenylborate) [Yb(thf)₆][BPh₄]₂ [31] in various ligand exchange
Molecules 2022, 27, x FOR REVIEW

were collected directly from the reaction mixture, and brown impurities were removed. The inner coordination sphere of the Eu-centered cation resembles a distorted pentagonal inner cube [32,33].

The reaction of ytterbium naphthalenide with THF of crystallization, after synthesis by a reaction of ytterbium naphthalenide with HgPh₂ [31], (2), showed that it is isostructural to the corresponding Sm II the respective Sm II and Eu II [34]. Our new facile synthesis route offers a unique opportunity for future selective syntheses of +2/+3 mixed-valence Yb compounds by protolytic ligand exchange reactions of [Yb(C₆F₅)(thf)₅]BPh₄•thf [31], owing to the similar sizes of Sm²⁺ and Eu²⁺ [34].

We were unable to directly characterize the putative “[LnPh₂(thf)₄]⁺” products from the redox transmetallation reaction (Scheme 1, Equation (2)). Considering the temperature sensitivity of lanthanoid aryls and alkyls and the possibility of ether cleavage reactions [35–38], the redox transmetallation reaction was repeated at −25 °C. At this temperature, a reaction of HgPh₂ with Eu or Yb was only observed at a concentration of at least ~0.5 mol/L. Storage of this slurry mixture at −25 °C for two weeks under daily sonication at r.t. for ~1 min. resulted in the formation of large red crystals of the mixed valent species [Yb₂Ph₃(thf)₄]·2thf (3) (Scheme 2), a complex previously isolated by Bochkarev et al. without THF of crystallization, after synthesis by a reaction of ytterbium naphthalenide with HgPh₂ [39].

Our new facile synthesis route offers a unique opportunity for future selective syntheses of +2/+3 mixed-valence Yb compounds by protolytic ligand exchange reactions of [Yb₂Ph₃(thf)₄]. No Eu compound similar to 3 or any solely divalent species was isolated from an analogous synthesis.
Figure 1. Left: Structure of the cation of 1 in the solid state drawn with ellipsoids at 50% probability and hydrogen atoms and anions omitted. Right: Space-filling representation of the environment around the [Eu(thf)]2+ cation with one BPh4− and one THF molecule removed for clarity.

Average Eu-O distance: <Eu-O-O> = 2.57 Å. Selected angles [°]: O1-Eu-O2 106.18(6), O1-Eu-O3 74.84(6), O1-Eu-O4 78.39(6), O1-Eu-O5 131.01(6), O1-Eu-O6 75.17(5), O1-Eu-O7 147.31(6), O2-Eu-O3 85.76(5), O2-Eu-O4 170.19(6), O2-Eu-O5 103.63(5), O2-Eu-O6 78.08(5), O2-Eu-O7 80.49(6), O3-Eu-O4 87.14(6), O3-Eu-O5 146.63(5), O3-Eu-O6 140.31(5), O3-Eu-O7 73.80(6), O4-Eu-O5 78.72(6), O4-Eu-O6 111.66(6), O4-Eu-O7 91.04(6), O5-Eu-O6 74.12(5), O5-Eu-O7 75.29(5), O6-Eu-O7 136.91(6).

Scheme 2. Synthesis of complex 3.

Compound 3 crystallized in the monoclinic space group C2/c with one whole molecule in the asymmetric unit (Figure 2), whereas the structure reported by Bochkarev was solved and refined in monoclinic space group P21 with two whole molecules in the asymmetric unit (one had two disordered THF ligands) [39]. In the structure, two six-coordinate Yb atoms are bridged by three phenyl ligands, each through a single C atom. Yb1 has two terminal phenyl ligands and one THF donor, whereas Yb2 has only three terminal THF ligands. The simplest explanation for the stoichiometry is that one Yb atom is YbII and the other is YbIII, and these should be distinguishable based on the ionic radius difference of 0.15 Å between six-coordinate YbII and YbIII [34]. However, the reality is more complex. Relevant bond lengths are listed in Table 1, together with comparable data reported by Bochkarev for molecule Yb3,4 of [Yb2Ph2(thf)]2 [39]. Both Yb1 and Yb2 have terminal THF ligands, where Yb1-O1 is 2.400(6) Å, whereas <Yb-O2,3,4> is 2.45 Å, which is a difference much less than that expected if Yb1 is trivalent and Yb2 is divalent. The corresponding difference for the reported complex is much larger, at 0.14 Å [39], but the difference is not significant according to the 3 e.s.d. criterion. On the other hand, the terminal Yb1-C1,7 bond lengths of 3 (2.446(8), 2.445(7)) correspond closely to those of the six-coordinate anionic YbIII complex [YbPh3(dme)]− (2.427(9)-2.475(9) Å) [40]. They are also close to the Yb-C bond lengths (2.398(5)-2.423(5) Å) of six-coordinate [YbIIIPh3(thf)]3 [40,41]. In the divalent six-coordinate
complex [Yb(C₈F₅)₂(thf)₄], Yb-C is considerably longer, at 2.649(3) Å [42]. Accordingly, the Yb-C bond lengths provide evidence that Yb1 is +III; therefore, Yb2 is in the +II oxidation state. The reported data support the view that Yb3 (Table 1) is trivalent, despite the high e.s.d. values [39]. The small difference in the terminal Yb-O bond lengths despite the differing oxidation states proposed above is consistent with the reported data; Yb-O is only marginally shorter in [YbPh₃(thf)₃] (2.381(3)-2.413(3) Å) [43] than in [Yb(C₈F₅)₂(thf)₄] (2.428(2)-2.440(2) Å) [30].

![Figure 2. X-ray crystal structure of compound 3. Thermal ellipsoids are shown at 40%. Hydrogen atoms have been removed for clarity.](image)

Table 1. Selected bond lengths of complex 3 and the reported structure of [Yb₂Ph₅(thf)₄].

Bond	This Work Length (Å)	Ref [39] * Length (Å)	
Yb1-C1	2.446 (8)	Yb3-C65	2.39 (4)
Yb1-C7	2.445 (7)	Yb3-C71	2.46 (3)
Yb1-O1	2.400 (6)	Yb3-O5	2.30 (2)
Yb1-C13	2.489 (9)	Yb3-C59	2.48 (3)
Yb1-C19	2.573 (8)	Yb3-C53	2.54 (3)
Yb1-C25	2.583 (8)	Yb3-C47	2.51 (4)
Yb2-C13	2.665 (8)	Yb4-C59	2.68 (3)
Yb2-C19	2.641 (10)	Yb4-C53	2.55 (3)
Yb2-C25	2.602 (8)	Yb4-C47	2.75 (4)
Yb1-O4	2.452 (6)	Yb4-O6	2.44 (2)
Yb2-O2	2.434 (6)	Yb4-O7	2.38 (3)
Yb2-O3	2.462 (6)	Yb4-O8	2.50 (3)
Yb2···C18	3.034 (4)	Yb4···C48	3.08 (4)
Yb2···C24	2.995 (4)	Yb4···C64	2.93 (3)
Yb2···C30	3.130 (4)	Yb4···C54	3.25 (4)
Yb1-C14 a	3.350 (4)	Yb3-C52 a	3.45 (4)
Yb1-C20 a	3.244 (4)	Yb3-C60 a	3.16 (4)
Yb1-C26 a	3.412 (4)	Yb3-C58 a	3.39 (5)
Yb2···H24	2.785		
Yb2···H18	2.921		
Yb2···H30	3.060		

*There are two similar molecules of [Yb₂Ph₅(thf)₄] in the reported structure. As some THF ligands were disordered in the molecules labelled Yb1 and Yb2, we only made a comparison with the non-disordered molecule Yb3 and Yb4. a Nonbonding.

In the case of the bridging phenyl groups, C13, 19, and 25 are bound more closely to Yb1 than Yb2, by 0.176, 0.068, and 0.019 Å, respectively (Table 1, Figure 3), the last difference not being significant; however, overall, these data are consistent with the above oxidation state assignments for Yb1 and Yb2. In addition an *ortho* carbon (C18, C24, and C30), of the phenyl rings of C13, 19, and 25 approach Yb2 at 2.993(4)-3.130 Å (Table 1),
whereas the other ortho carbon (C14, 20, and 26) of the same rings is more distant from Yb1, despite the higher oxidation state of Yb1. The Yb2-ortho-C contacts are in the range for intramolecular Yb-H-C interactions [44-49], whereas the Yb1-C distances are too long for credible Yb-H-C interactions [44]. There are also possible agnostic interactions with the ortho C-H groups on the phenyl rings of C(18,24,30), as the Yb(2)-H distances (Table 1) are just within the sum of the van der Waals radius of hydrogen (1.20 Å) [50] and the metallic radius (pseudo-van der Waals radius) of ytterbium (1.94 Å) [51]. The three bridging phenyl groups lie outside of the plane generated by C(13), C(19), and C(25) by 10, 17, and 9°, respectively, and all twist in the same direction towards Yb(2) in a propellor-like fashion. In summary, π and possible C-H-Yb agnostic interactions reinforce the bridging C-Yb2 interaction, leading to a closer approach of the bridging arene rings to divalent Yb2.

If the C13 Ph group, which has, by far the greatest difference between the Yb1-C and Yb2-C bond lengths, is allocated to Yb1, then the structure would be an association of [YbPh2(thf)] and [YbPh2(thf)]3, an outcome consistent with the proposal of Bochkarev that the complex is formed by an association of YbPh3 and YbPh2 [39]. Applying the 3 e.s.d. criterion to the reported [Yb2Ph5(thf)] structure, the separations of Yb3 and Yb4 from the same bridging C atom [39] are essentially indistinguishable. In the present structural refinement, the average Yb2-C bond distance is 2.64 Å (2.66 Å for Bochkarev’s structure [39]), whereas the analogous Yb1-C average is 2.51 Å (2.48 Å for that reported in [39]), and the average Yb-O distances are 2.45 and 2.40(6) Å for Yb2 and Yb1, respectively (2.44 and 2.30 Å for those reported in [39]).

Figure 3. Comparison of the numbering of complex 3 and [Yb2Ph5(thf)]3 [39].

The 171Yb NMR spectrum suggests that complex 3 dissociates into two neutral species of differing oxidation states, namely YbPh2 and YbPh3. As paramagnetic YbIII complexes have not been observed in 171Yb NMR spectra, it is unlikely that a mixed-valence Yb2Ph3 species would be observed, owing to bridging of YbIII through phenyl groups to YbIII. In the 171Yb NMR spectrum of the compound (Figure 4), a single resonance is observed at δ = 694 ppm. This value is similar to a resonance (686 ppm) in the 171Yb NMR spectrum of the reaction mixture from Yb metal and iodobenzene in THF at -78°C, a system that reacts as “PhYbI(thf)₅” [40]. Because the spectrum also has a resonance at 388 ppm attributable to YbI2 [40,41,52], the resonance at 686 ppm can be assigned to [YbPh2(thf)₅], the product with YbI₂ of the Schlenk equilibrium (Scheme 3). This, in turn, leads to the assignment of 694 ppm of 3 to [YbPh2(thf)₅], with coproduct YbPh3 silent in the 171Yb NMR spectrum, owing to paramagnetism. The chemical shift lies between those of four-coordinate [Yb(2,6-Ph₂C₆H₃)₂(thf)₂] reported by Niemeyer (927 ppm) [52], and that of six-coordinate [Yb(C₆F₅)₂(thf)] (1463 ppm) [30,42]. Because coordination number is a key determinant of the chemical shift in the 171Yb NMR spectra within a series of related compounds [53,54] and [YbPh2(thf)₅] is expected to have a coordination number more similar to that of [Yb(C₆F₅)₂(thf)] than the sterically crowded [Yb(2,6-Ph₂C₆H₃)₂(thf)₂], the observed value is probably reasonable for n = 3 (5 coordination), given the differing electron-withdrawing properties of C₆F₅ and Ph, or even n = 4.
was decanted, and the residue was treated with 10 mL of THF and decanted from the top. The solutions were allowed to mix over a period of 3 days. The remaining dark solution was decanted, evaporated and the resulting off-white crystalline solid was washed with 2 mL of THF, affording 71 mg (55 % based on Et3NHBPh4) of compound [Yb(C6F5)2(thf)4] (1). Single crystals suitable for X-ray diffraction were found in this solid. IR (Nujol, cm−1): 1577 (m), 1542 (m), 1307 (w), 1261 (s), 1156 (s), 1069 (w), 1030 (w), 856 (w), 800 (w), 747 (s), 711 (s). Anal. Calcd. for C76H96B2EuO7 (1295.66 g/mol, loss of THF of crystallization): C 70.48, H 7.47; found: C 70.85, H 7.68.

3.2. Synthesis of [Eu(thf)7][BPh4]2·thf (1)

"Ph2Eu" (60 mg) was dissolved in THF (3 mL) in a glass tube. The solution was slowly topped with a solution of Et3NHBPh4 (100 mg, 0.24 mmol) in 7 mL of THF. The solutions were allowed to mix over a period of 3 days. The remaining dark solution was decanted, evaporated and the resulting off-white crystalline solid was washed with 2 mL of THF, affording 71 mg (55 % based on Et3NHBPh4) of compound 1. Single crystals suitable for X-ray diffraction were found in this solid. IR (Nujol, cm−1): 1577 (m), 1542 (m), 1307 (w), 1261 (s), 1156 (s), 1069 (w), 1030 (w), 856 (w), 800 (w), 747 (s), 711 (s). Anal. Calcd. for C76H96B2EuO7 (1295.66 g/mol, loss of THF of crystallization): C 70.48, H 7.47; found: C 70.85, H 7.68.

3.3. Synthesis of [Yb(thf)6][BPh4]2·thf (2)

"Ph2Yb" (60 mg) was dissolved in THF (3 mL) in a glass tube. The solution was slowly topped with a solution of Et3NHBPh4 (100 mg, 0.24 mmol) in 7 mL of THF. The solutions were allowed to mix over a period of 3 days. The remaining dark solution was decanted, evaporated and the resulting yellow crystalline solid was washed with 2 mL of THF, affording compound 2. Single crystals suitable for X-ray diffraction were found in this solid, and 2 was identified by unit cell [31].

3.4. Synthesis of [Ph2Yb(thf)4]·2thf (3)

Ytterbium metal (260 mg, 1.5 mmol) and HgPh2 (355 mg, 1.0 mmol) were suspended in 2 mL of THF. Upon sonication at r.t. for 2 h, the mixture developed a red color and was thereafter cooled to −25 °C. Daily sonication for 1 min at r.t. and storage at −25 °C resulted in the formation of mercury metal and a dark red crystalline solid. The remaining solution was decanted, and the residue was treated with 10 mL of THF and decanted from the
mercury metal. Concentration of the solution to 5 mL resulted in the formation of large red crystals of 3-(thf)$_2$ suitable for X-ray diffraction. Isolated yield: 209 mg (41 %). 171Yb-NMR (thf, 52.6 MHz, $-30 \, ^\circ C$): $\delta = 694$ ppm.

3.5. X-ray Crystallography

Complexes 1 and 3 were measured on a Bruker APEX-II CCD diffractometer equipped with graphite-monochromated Mo-K$_\alpha$ radiation ($\lambda = 0.71073 \, \text{Å}$) at 123 K and mounted on a fiber loop in crystallography oil. Absorption corrections were completed using the Apex II program suite with SADABS [55]. Structural solutions were obtained by SHELXT [56] using full-matrix least-squares methods against F2 with SHELX2018 [56] in conjunction with the Olex2 [57] graphical user interface. All hydrogen atoms were placed in calculated positions according to the riding model.

Crystal data for 1 and 3:

1: C$_{30}$H$_{104}$B$_2$EuO$_8$, $M = 1367.21$, yellow block, 0.5 \times 0.4 \times 0.2 mm3, monoclinic, space group P2$_1$/n (No. 14), $a = 18.2175(6)$ Å, $b = 19.1237(6)$ Å, $c = 20.2661(6)$ Å, $\beta = 94.6320(10)^\circ$, $V = 7037.4(4)$ Å3, $Z = 4$, $\rho_c = 1.290$ g/cm3, $\mu = 0.947$ mm$^{-1}$, $F_{\text{000}} = 2884$, Bruker X8 Apex II CCD, MoK$_\alpha$ radiation, $\lambda = 0.71073$ Å, $T = 123(1)$K, $\theta_{\text{max}} = 52.0^\circ$, 202,209 reflections collected, 13,450 unique ($R_{\text{int}} = 0.0622$), Final Goof$^F = 1.035$, $R_1 = 0.0323$ [$I > 2\sigma(I)$], $wR_2 = 0.0681$.

3: C$_{54}$H$_{79}$O$_9$Yb$_2$, $M = 1164.20$, dark red block, 0.50 \times 0.30 \times 0.30 mm3, monoclinic, space group C2/c (No. 15), $a = 40.713(8)$ Å, $b = 11.271(2)$ Å, $c = 22.724(5)$ Å, $\beta = 104.70(3)^\circ$, $V = 10,086(4)$ Å3, $Z = 8$, $\rho_c = 1.533$ g/cm3, $\mu = 3.733$ mm$^{-1}$, $F_{\text{000}} = 4680$, Bruker X8 Apex II CCD, MoK$_\alpha$ radiation, $\lambda = 0.71073$ Å, $T = 123(1)$ K, $\theta_{\text{max}} = 55.8^\circ$, 39,023 reflections collected, 11,781 unique ($R_{\text{int}} = 0.0324$), Final Goof$^F = 1.006$, $R_1 = 0.0282$ [$I > 2\sigma(I)$], $wR_2 = 0.0590$.

4. Conclusions

In conclusion, we prepared the ionic Eu(II) complex [Eu(thf)$_2$][BPh$_4$]$_2$-thf. In an attempt to characterize the previously described “Ph$_2$Ln” compounds, which can be used to prepare [Ln(thf)$_3$][BPh$_4$] (Ln = Eu, Yb), an improved synthesis of the Yb$^\text{II}$/Yb$^\text{III}$ compound [Yb$_2$Ph$_3$(thf)$_4$] was developed. The Eu complex 1 (and the Yb complex 2) should be a source of homoleptic complexes via displacement of THF by neutral ligands in non-polar solvents, whereas 3 may yield other mixed-oxidation-state Yb complexes via protolysis reactions, whereby the phenyl groups of 3 are replaced by ligands (L) (e.g., L = OAr, OR, pyrazolate, amidinate, etc.) by reaction with the corresponding proligand (HL).

Author Contributions: The complexes were synthesized and characterized by M.W. and Z.G; the original draft of the manuscript was written by M.W. and subsequently reviewed and edited by Z.G., G.B.D. and P.C.J.; supervision, project administration and funding acquisition, G.B.D. and P.C.J. All authors have read and agreed to the published version of the manuscript.

Funding: Australian Research Council funding (DP190100798).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Crystal data can be obtained free of charge from the Cambridge Crystallographic Data Centre (CCDC 2211517 for 1 and 2211518 for 3).

Acknowledgments: G.B.D. and P.C.J. gratefully acknowledge ARC for funding (DP190100798). M.W. thanks Deutsche Forschungs-gemeinschaft (DFG) for a research fellowship.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ortu, F. Rare Earth Starting Materials and Methodologies for Synthetic Chemistry. Chem. Rev. 2022, 122, 6040–6116. [CrossRef] [PubMed]
2. Guo, Z.; Huo, R.; Tan, Y.Q.; Blair, V.; Deacon, G.B.; Junk, P.C. Syntheses of reactive rare earth complexes by redox transmetallation/protolysis reactions–A simple and convenient method. Coord. Chem. Rev. 2020, 415, 213232. [CrossRef]
3. Zimmermann, M.; Anwander, R. Homoleptic rare-earth metal complexes containing Ln–C α-bonds. Chem. Rev. 2010, 110, 6194–6259. [CrossRef] [PubMed]
4. Johnson, K.R.; Hayes, P.G. Synthesis and reactivity of dialkyl lutetium complexes supported by a novel bis (phosphinimine) carbazole pincer ligand. Organometallics 2009, 28, 6352–6361. [CrossRef]
5. Petrov, A.R.; Rufanov, K.A.; Harms, K.; Sundermeyer, J. Re-investigation of ortho-metalated N, N-dialkyl-benzylamine complexes of rare-earth metals. First structurally characterized arylation of neodymium and gadolinium Li [LnAr₂]. J. Organomet. Chem. 2009, 694, 1212–1218. [CrossRef]
6. Yan, K.; Upton, B.M.; Ellern, A.; Sadow, A.D. Lewis acid-mediated β-hydride abstraction reactions of divalent M(C(SiHMe₂)₃)₂THF₂ (M= Ca, Yb). J. Am. Chem. Soc. 2009, 131, 15110–15111. [CrossRef] [PubMed]
7. Ge, S.; Meetsma, A.; Hessen, B. Highly efficient hydrosilylation of alkenes by organoyttrium catalysts with sterically demanding amidinate and guanidinate ligands. Organometallics 2008, 27, 3131–3135. [CrossRef]
8. Lyubov, D.M.; Fukin, G.K.; Trifonov, A.A. N,N'-Disopropyl-1''-bis(trimethylsilyl)guanidinate Ligand as a Supporting Coordination Environment in Yttrium Chemistry. Synthesis, Structure, and Properties of Complexes [(Me₃Si)₂NC(Ni-Pr₂)₂YCl₂(THF)$_2$][(Me₃Si)₂NC(Ni-Pr₂)₂Y(CH₂SiMe₃)$_2$(THF)$_2$], and [Me₃Si]₂NC(Ni-Pr₂)₂Y[(μ-H)(μ-Et₂BEt₂)](THF). Inorg. Chem. 2007, 46, 11450–11456.
9. Bambirra, S.; Meetsma, A.; Hessen, B. Lanthanum tribenzyl complexes as convenient starting materials for organolanthanum chemistry. Organometallics 2006, 25, 3454–3462. [CrossRef]
10. Buschmann, D.A.; Schumacher, L.; Anwander, R. Rare-earth-metal half-sandwich complexes incorporating methyl, methylidene, and hydrido ligands. Chem. Commun. 2002, 58, 9132–9135. [CrossRef]
11. Molander, G.A.; Romero, J.A.C. Lanthanocene catalysts in selective organic synthesis. Chem. Rev. 2002, 102, 2161–2186. [PubMed]
12. Gromada, J.; Carpenter, J.F.; Mortreux, A. Group 3 metal catalysts for ethylene and α-olefin polymerization. Coord. Chem. Rev. 2004, 248, 397–410. [CrossRef]
13. Hou, Z.; Wakatsuki, Y. Recent developments in organolanthane polymerization catalysts. Coord. Chem. Rev. 2002, 231, 1–22. [CrossRef]
14. Trambitas, A.G.; Panda, T.K.; Jenter, J.; Roessky, P.W.; Daniluc, C.; Hrib, C.G.; Jones, P.G.; Tamm, M. Rare-earth metal alkyl, amidino, and cyclopentadienyl complexes supported by imidazolin-2- iminato ligands: Synthesis, structural characterization, and catalytic application. Inorg. Chem. 2010, 49, 2435–2446. [CrossRef]
15. Woole, A.J.; Mills, D.P.; Lewis, W.; Blake, A.J.; Liddle, S.T. Lanthanide tri-benzyl complexes: Structural variations and useful precursors to phosphorus-stabilised lanthanide carbenes. Dalton Trans. 2010, 39, 500–510. [CrossRef]
16. Ge, S.; Meetsma, A.; Hessen, B. Neutral and Cationic Rare Earth Metal Alkyl and Benzyl Compounds with the 1, 4, 6-Trimethyl-6-aryl-cyclopentadienyl complexes supported by imidazolin-2-iminato ligands. Organometallics 2008, 27, 5339–5346. [CrossRef]
17. Zeimzent, P.M.; Okuda, J. Cationic ary1 complexes of the rare-earth metals. Organometallics 2007, 26, 6388–6396. [CrossRef]
18. Arndt, S.; Okuda, J. Cationic Alkyl Complexes of the Rare-Earth Metals: Synthesis, Structure, and Reactivity. Adv. Synth. Catal. 2005, 347, 339–354.
19. Zeimzent, P.M.; Arndt, S.; Elvidge, B.R.; Okuda, J. Cationic organometallic complexes of scandium, yttrium, and the lanthanoids. Chem. Rev. 2006, 106, 2404–2433. [CrossRef]
20. Robert, D.; Spaniol, T.P.; Okuda, J. Neutral and Monocationic Half-Sandwich Methyl Rare-Earth Metal Complexes: Synthesis, Structure, and 1,3-Butadiene Polymerization Catalysis. Eur. J. Inorg. Chem. 2008, 2008, 2801–2809.
21. Nishiura, M.; Mashiko, T.; Hou, Z. Synthesis and styrene polymerisation catalysis of η2-and η1-pyrrolyl-ligated cationic rare earth metal aminobenzyl complexes. Chem. Commun. 2008, 2009, 2019–2021. [CrossRef] [PubMed]
22. Döring, C.; Kretschmer, W.P.; Bauer, T.; Kempe, R. Scandium Aminopyridinates: Synthesis, Structure and Isoprene Polymerization. Eur. J. Inorg. Chem. 2009, 2009, 4255–4264. [CrossRef]
23. Zimmermann, M.; Toömrroos, K.W.; Waymouth, R.M.; Anwander, R. Structure-Reactivity Relationships of Amido-Pyridine-Supported Rare-Earth Metal-Alkyl Complexes. Organometallics 2008, 27, 4310–4317. [CrossRef]
24. Li, X.; Nishiura, M.; Mori, K.; Mashiko, T.; Hou, Z. Cationic scandium aminobenzyl complexes. Synthesis, structure and unprecedented catalysis of copolymerization of 1-hexene and dicyclopentadiene. Chem. Commun. 2007, 4137–4139. [CrossRef] [PubMed]
25. Evans, W.J.; Seibcl, C.A.; Ziller, J.W. Unsolvated Lanthane Metalloocene Cations [(C₅Me₃)₂Ln][BP₄]: Multiple Syntheses, Structural Characterization, and Reactivity Including the Formation of (C₅Me₃)₂Nd¹⁻. J. Am. Chem. Soc. 1998, 120, 6745–6752. [CrossRef]
26. Evans, W.J.; Champagne, T.M.; Ziller, J.W. Synthesis and reactivity of mono(pentamethycyclopentadienyl) tetraethylborate lanthane complexes of ytterbium and samarium: Tris (ring) precursors to (C₅Me₅) Ln moieties. Organometallics 2007, 26, 1204–1211. [CrossRef]
27. Evans, W.J.; Walensky, J.R.; Champagne, T.M.; Ziller, J.W.; DiPasquale, A.G.; Rheingold, A.L. Displacement, reduction, and ligand redistribution reactivity of the cationic mono-C₅Me₅ Ln$^{2+}$ complexes (C₅Me₅) Ln (BP₄)(Ln= Sm, Yb). J. Organomet. Chem. 2009, 694, 1238–1243. [CrossRef]
28. Wiecko, M.; Roessky, P.W. A Cationic Bis (phosphiniminomethanide) Europium (II) Complex. Organometallics 2009, 28, 1266–1269. [CrossRef]
29. Deacon, G.B.; Evans, D.J.; Forsyth, C.M.; Junk, P.C. Lanthanoid (II) tetraphenylborate complexes: From discrete ions to pseudo metallocones. Coord. Chem. Rev. 2007, 251, 1699–1706. [CrossRef]

30. Deacon, G.B.; Forsyth, C.M. Synthesis and structures of the first cationic perfluoroaryllanthanoid (II) complexes. Chem. Eur. J. 2004, 10, 1798–1804. [CrossRef]

31. Evans, W.J.; Johnston, M.A.; Greci, M.A.; Gummersheimer, T.S.; Ziller, J.W. Divalent lanthanide complexes free of coordinating anions: Facile synthesis of fully solvated dicaticionic [LnL2]2+ compounds. Polyhedron 2003, 22, 119–126.

32. Starostina, T.A.; Shifrina, R.R.; Rybakova, L.F.; Petrov, E.S. Metallation of 1,3-diphenyl-2-benzylpropene by diphenyltytterbium. Russ. J. Gen. Chem. 2004, 74, 141.

33. Rybakova, L.F.; Tsygankova, S.V.; Rojtershtejn, D.M.; Petrov, E.S. Metalation of 1,3-diphenyl-2-benzylpropene by diphenyltytterbium. Zh. Obshch. Khim. 1987, 57, 2402.

34. Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [CrossRef]

35. Cole, M.L.; Deacon, G.B.; Forsyth, C.M.; Junk, P.C.; Konstas, K.; Wang, J. Steric modulation of coordination number and reactivity in the synthesis of lanthanoid (III) formamidinates. Chem. Eur. J. 2007, 13, 8092–8110. [PubMed]

36. Evans, W.J.; Allen, N.T.; Ziller, J.W. Facile dinitrogen reduction via organometallic Tm (II) chemistry. J. Am. Chem. Soc. 2001, 123, 7927–7928. [CrossRef]

37. Guo, Z.; Blair, V.; Deacon, G.B.; Junk, P.C. Can Bismuth Replace Mercury in Redox Transmetallation/Protolysis Syntheses from Free Lanthanoid Metals? Chem. Eur. J. 2018, 24, 17464–17474. [CrossRef]

38. Guo, Z.; Blair, V.; Deacon, G.B.; Junk, P.C. Widely contrasting outcomes from the use of tris (pentafluorophenyl) bismuth or pentafluorophenylbis(acetylene) oxides as oxidants in the reactions of lanthanoid metals with N,N-disubstitutedformamidines. Dalton Trans. 2020, 49, 13588–13600. [CrossRef]

39. Bochkarev, M.N.; Khramenkov, V.V.; Rad’ko, Y.F.; Zakharov, L.N.; Struchkov, Y.T. Synthesis and characterization of pentaphenylidytytterbium Ph2Yb(THF)(PhH)Yb(THF)3. J. Organomet. Chem. 1992, 429, 27–39.

40. Wiecko, M.; Deacon, G.B.; Junk, P.C. Organolanthanoid-halide synthons – a new general route to monofunctionalized lanthanoid (ii) compounds? Chem. Commun. 2010, 46, 5076–5078.

41. Ali, S.H.; Deacon, G.B.; Junk, P.C.; Hamidi, S.; Wiecko, M.; Wang, J. Lanthanoid Pseudo–Grignard Reagents: A Major Untapped Resource. Chem. Eur. J. 2018, 24, 230–242. [CrossRef] [PubMed]

42. Deacon, G.B.; Forsyth, C.M. A half-sandwich perfluoro-organoytterbium(II) complex from a simple redox transmetallation/ligand exchange synthesis. Organometalics 2003, 22, 1349–1352. [CrossRef]

43. Bochkarev, L.N.; Zheleznova, T.A.; Safronova, A.V.; Drozdov, M.S.; Zhiltsov, S.F.; Zakharov, L.N.; Fukin, G.K.; Khorshev, S.Y. Synthesis and crystal structure of triphenyltris(tetrahydrofuran)ytterbium, Ph3Yb(THF)3. Russ. Chem. Bull. 1998, 47, 163–166. [CrossRef]

44. Deacon, G.B.; Shen, Q. Complexes of lanthanoids with neutral π donor ligands. J. Organomet. Chem. 1996, 511, 1–17. [CrossRef]

45. Cloke, F.G.N. Zero oxidation state compounds of scandium, yttrium, and the lanthanides. Chem. Soc. Rev. 1993, 22, 17–24. [CrossRef]

46. Liang, H.; Shen, Q.; Jin, S.; Lin, Y. Synthesis and X-ray crystal structure of [Eu(η4−C6Me5)(AlCl4)]2: the first cyclotetrameric lanthanide(II) complex with a neutral π-ligand. J. Chem. Soc. Chem. Commun. 1992, 480–481. [CrossRef]

47. Deacon, G.B.; Forsyth, C.M.; Junk, P.C.; Skelton, B.W.; White, A.H. The striking influence of intramolecular lanthanoid π-arene interactions on the structural architecture of the homoleptic aryloxoanthanoid(II) complexes, [{Yb2(Odpp)(μ-Odpp)}3] and [{Yb2(Odpp)(μ-Odpp)}2] and the Yb(II)–Yb(III) trimetallic [{Yb2(μ-Odpp)}3][Yb(Odpp)4]− (Odpp = 2,6-di-phenylphenolato). Chem. Eur. J. 1999, 5, 1452–1459.

48. Deacon, G.B.; Forsyth, C.M. Linkage isomerism and C-H activation in an ytterbium(II) tetraphenylborate. Chem. Commun. 2002, 2522–2523.

49. Deacon, G.B.; Junk, P.C.; Moxey, G.J.; Ruhlland-Senge, K.; Price, C.S.; Zuniga, M.F. Charge-separated and molecular heterobiometallic rare earth–rare earth and alkali-earth–rare earth aryloxo complexes featuring intramolecular metal–π-arene interactions. Chem. Eur. J. 2009, 15, 5503–5519. [CrossRef]

50. Bondi, A. van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441–451. [CrossRef]

51. Wells, A.F. Structural Inorganic Chemistry, 5th ed; Oxford University Press: Oxford, UK, 1984; p. 1288.

52. Heckmann, G.; Niemeyer, M. Synthesis and first structural characterization of lanthanide (II) aryls: Observation of a Schlenk equilibrium in europium(II) and ytterbium(II) chemistry. J. Am. Chem. Soc. 2000, 122, 4227–4228. [CrossRef]

53. Avent, A.G.; Edelman, M.A.; Lappert, M.F.; Lawless, G.A. The first high resolution direct NMR observation of an f-block element. J. Am. Chem. Soc. 1989, 111, 3423–3425. [CrossRef]

54. Deacon, G.B.; Fallon, G.D.; Forsyth, C.M.; Schumann, H.; Weimann, R. Organooamido- and Aryloxo-lanthanoids. 15. Syntheses of low coordination number divalent lanthanoid organoamido complexes and the X-ray crystal structures of Bis[N-2,6-di-isopropylphenyl](N-trimethylsilyl)amido]bis(tetrahydrofuran)-samarium(II) and -ytterbium(II). Chem. Ber. 1997, 130, 409–415.

55. Sheldrick, G.M. SADABS, Software for Empirical Absorption Corrections; Standard Software Reference; University of Göttingen: Göttingen, Germany, 1996.
56. Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. *Acta Cryst.* 2015, *C71*, 3–8. [CrossRef] [PubMed]

57. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. *J. Appl. Cryst.* 2009, *42*, 339–341. [CrossRef]