COMPLETE SPHERICAL CONVEX BODIES

MAREK LASSAK

Abstract. Similarly to the classic notion in Euclidean space, we call a set on the sphere S^d complete, if adding any extra point increases the diameter. Complete sets are convex bodies of S^d. We prove that on S^d complete bodies and bodies of constant width coincide.

1. On spherical geometry

Let S^d be the unit sphere in the $(d + 1)$-dimensional Euclidean space E^{d+1}, where $d \geq 2$. By a great circle of S^d we mean the intersection of S^d with any two-dimensional subspace of E^{d+1}. The common part of the sphere S^d with any hyper-subspace of E^{d+1} is called a $(d-1)$-dimensional great sphere of S^d. By a pair of antipodes of S^d we mean any pair of points of intersection of S^d with a straight line through the origin of E^{d+1}.

Clearly, if two different points $a, b \in S^d$ are not antipodes, there is exactly one great circle containing them. By the arc ab connecting a and b we mean the “smaller” part of the great circle containing a and b. By the spherical distance $|ab|$, or shortly distance, of these points we understand the length of the arc connecting them. The diameter $\text{diam}(A)$ of a set $A \subset S^d$ is the number $\sup_{a,b \in A} |ab|$. By a spherical ball $B_\rho(r)$ of radius $\rho \in (0, \frac{\pi}{2}]$, or shorter a ball, we mean the set of points of S^d having distance at most ρ from a fixed point, called the center of this ball. Spherical balls of radius $\frac{\pi}{2}$ are called hemispheres. Two hemispheres whose centers are antipodes are called opposite hemispheres.

We say that a subset of S^d is convex if it does not contain any pair of antipodes and if together with every two points a, b it contains the arc ab. By a convex body, or shortly body, on S^d we mean any closed convex set with non-empty interior.

Recall a few notions from [6]. If for a hemisphere H containing a convex body $C \subset S^d$ we have $\text{bd}(H) \cap C \neq \emptyset$, then we say that H supports C. If hemispheres G and H of S^d are different and not opposite, then $L = G \cap H$ is called a lune of S^d. The $(d-1)$-dimensional hemispheres bounding the lune L and contained in G and H, respectively, are denoted by G/H and H/G. We define the thickness of a lune $L = G \cap H$ as the spherical distance of the centers of G/H and H/G. For a hemisphere H supporting a convex body $C \subset S^d$ we define the width $\text{width}_H(C)$ of C determined by H as the minimum thickness of a lune of the form $H \cap H'$, where H' is a hemisphere, containing C. If for all hemispheres H supporting C we have $\text{width}_H(C) = w$, we say that C is of constant width w.
2. Spherical complete bodies

Similarly to the traditional notion of a complete set in the Euclidean space E^d (for instance, see [1], [2], [3] and [10]) we say that a set $K \subset S^d$ of diameter $\delta \in (0, \pi)$ is complete provided $\text{diam}(K \cup \{x\}) > \delta$ for every $x \notin K$.

Theorem 1. Arbitrary set of a diameter $\delta \in (0, \pi)$ on the sphere S^d is a subset of a complete set of diameter δ on S^d.

We omit the proof since it is similar to the proof by Lebesgue [9] in E^d (it is recalled in Part 64 of [1]). Let us add that earlier Pál [12] proved this for E^2 by a different method.

The following fact permits to use the term a complete convex body for a complete set.

Lemma 1. Let $K \subset S^d$ be a complete set of diameter δ. Then K coincides with the intersection of all balls of radius δ centered at points of K. Moreover, K is a convex body.

Proof. Denote by I the intersection of all balls of radius δ with centers in K.

Since $\text{diam}(K) = \delta$, then K is contained in every ball of radius δ whose center is at a point of K. Consequently, $K \subset I$.

Let us show that $I \subset K$, so let us show that $x \notin K$ implies $x \notin I$. Really, from $x \notin K$ we get $|xy| > \delta$ for a point $y \in K$, which means that x is not in the ball of radius δ and center y, and thus $x \notin I$.

As an intersection of balls, K is a convex body. \hfill \Box

Lemma 2. If $K \subset S^d$ is a complete body of diameter δ, then for every $p \in \text{bd}(K)$ there exists $p' \in K$ such that $|pp'| = \delta$.

Proof. Suppose the contrary, i.e., that $|pq| < \delta$ for a point $p \in \text{bd}(K)$ and for every point $q \in K$. Since K is compact, there is an $\varepsilon > 0$ such that $|pq| \leq \delta - \varepsilon$ for every $q \in K$. Hence, in a positive distance below ε from p there is a point $s \notin K$ such that $|sq| \leq \delta$ for every $q \in K$. Thus $\text{diam}(K \cup \{s\}) = \delta$, which contradicts the assumption that K is complete. Consequently, the thesis of our lemma holds true. \hfill \Box

For different points $a, b \in S^d$ at a distance $\delta < \pi$ from a point $c \in S^d$ define the piece of circle $P_c(a, b)$ as the set of points $v \in S^d$ such that cv has length δ and intersects ab.

We show the next lemma for S^d despite we apply it later only for S^2.

Lemma 3. Let $K \subset S^d$ be a complete convex body of diameter δ. Take $P_c(a, b)$ with $|ac|$ and $|bc|$ equal to δ such that $a, b \in K$ and $c \in S^d$. Then $P_c(a, b) \subset K$.

Proof. First let us show the thesis for a ball B of radius δ in place of K. There is unique $S^2 \subset S^d$ with $a, b, c \in S^2$. Consider the disk $D = B \cap S^2$. Take the great circle containing $P_c(a, b)$ and points a^*, b^* of its intersection with the circle bounding D. There is unique $c^* \in S^2$ such that $P_c(a, b) \subset P_{c^*}(a^*, b^*)$. Clearly, $P_{c^*}(a^*, b^*) \subset D \subset B$. Hence $P_c(a, b) \subset B$.

By the preceding paragraph and Lemma 1 we obtain the thesis of the present lemma. \hfill \Box
3. Complete and constant width bodies on \(S^d \) coincide

Here is our main result presenting the spherical version of the classic theorem in \(E^d \) proved by Meissner \[11\] for \(d = 2, 3 \) and by Jessen \[5\] for arbitrary \(d \).

Theorem 2. A convex body of diameter \(\delta \) on \(S^d \) is complete if and only if it is of constant width \(\delta \).

Proof. (\(\Rightarrow \)) Prove that if \(K \subset S^d \) of diameter \(\delta \) is complete, then \(K \) is of constant width \(\delta \).

Suppose the opposite, i.e., that \(\text{width}_I(K) \neq \delta \) for a hemisphere \(I \) supporting \(K \). By Theorem 3 and Proposition 1 of \[6\] \(\text{width}_I(K) \leq \delta \). So \(\Delta(K) < \delta \). By lines 1-2 of p. 562 of \[6\] the thickness of \(K \) is equal to the minimum thickness of a lune containing \(K \). Take such a lune \(L = G \cap H \), where \(G, H \) are different and non-opposite hemispheres. Denote by \(g, h \) the centers of \(G/H \) and \(H/G \), respectively. Of course, \(|gh| < \delta \). By Claim 2 of \[6\] we have \(g, h \in K \). By Lemma 2 there exists a point \(g' \in K \) in the distance \(\delta \) from \(g \). Since the triangle \(ghg' \) is non-degenerate, there is a unique two-dimensional sphere \(S^2 \subset S^d \) containing \(g, h, g' \). Clearly, \(ghg' \) is a subset of \(M = K \cap S^2 \). Hence \(M \) is a convex body on \(S^2 \). Denote by \(F \) this hemisphere of \(S^2 \) such that \(hg' \subset \text{bd}(F) \) and \(g \in F \). There is a unique \(c \in F \) such that \(|ch| = \delta = |cg'| \). By Lemma 3 for \(d = 2 \) we have \(P_c(h, g') \subset M \).

We intend to show that \(c \) is not on the great circle \(E \) of \(S^2 \) through \(g \) and \(h \). In order to see this, for a while suppose the opposite, i.e. that \(c \in E \). Then from \(|g'g| = \delta, |g'c| = \delta \) and \(|hc| = \delta \) we conclude that \(\angle ggc = \angle cg'g \). So the spherical triangle \(g'gc \) is isosceles, which together with \(|gg'| = \delta \) gives \(|cg| = \delta \). Since \(|gh| = \Delta(L) = \Delta(K) > 0 \) and \(g \) is a point of \(ch \) different from \(c \), we get a contradiction. Hence, really, \(c \notin E \).

By the preceding paragraph \(P_c(h, g') \) intersects \(\text{bd}(M) \) at a point \(h' \) different from \(h \) and \(g' \). So the non-empty set \(P_c(h, g') \setminus \{ h, h' \} \) is out of \(M \). This contradicts the result of the paragraph before the last. Consequently, \(K \) is a body of constant width \(\delta \).

(\(\Leftarrow \)) Let us prove that if \(K \) is a spherical body of constant width \(\delta \), then \(K \) is a complete body of diameter \(\delta \). In order to prove this, it is sufficient to take any point \(r \notin K \) and show that \(\text{diam}(K \cup \{ r \}) > \delta \).

Take the largest ball \(B_\rho(r) \) disjoint with the interior of \(K \). Since \(K \) is convex, \(B_\rho(r) \) has in common with \(K \) exactly one point \(p \). By Theorem 3 of \[8\] there exists a lune \(L \supset K \) of thickness \(\delta \) with \(p \) as the center of one of the two \((d - 1) \)-dimensional hemispheres bounding this lune. Denote by \(q \) the center of the other \((d - 1) \)-dimensional hemisphere. By Claim 2 of \[6\] also \(q \in K \). Since \(p \) and \(q \) are the centers of the two \((d - 1) \)-dimensional hemispheres bounding \(L \), we have \(|pq| = \delta \). From the fact that \(rp \) and \(pq \) are orthogonal to \(\text{bd}(H) \) at \(p \), we see that \(p \in rq \). Moreover, \(p \) is not an endpoint of \(rq \) and \(|pq| = \delta \). Hence \(|rq| > \delta \). Thus \(\text{diam}(K \cup \{ r \}) > \delta \). Since \(r \notin K \) is arbitrary, \(K \) is complete. \(\square \)

We say that a convex body \(D \subset S^d \) is of constant diameter \(\delta \) provided \(\text{diam}(D) = \delta \) and for every \(p \in \text{bd}(D) \) there is a point \(p' \in \text{bd}(D) \) with \(|pp'| = \delta \) (see \[8\]).

The following fact is analogous to the result in \(E^d \) given by Reidemeister \[13\].
Theorem 3. Bodies of constant diameter on S^d coincide with complete bodies.

Proof. Take a complete body $D \subset S^d$ of diameter δ. Let $g \in \text{bd}(D)$ and G be a hemisphere supporting D at g. By Theorem 2 our D is of constant width δ. So width$_G(D) = \delta$ and a hemisphere H exists that the lune $G \cap H \supset D$ has thickness δ. By Claim 2 of [6] centers h of H/G and g of G/H belong to D. So $|gh| = \delta$. Thus D is of constant diameter δ.

Consider a body $D \subset S^d$ of constant diameter δ. Let $r \notin D$. Take the largest $B_\rho(r)$ whose interior is disjoint with D. Denote by p the common point of $B_\rho(r)$ and D. Observe that $D \subset J$ (if not, there is point $v \in D$ out of J; clearly vp passes through int$B_\rho(r)$, a contradiction). Since D is of constant diameter δ, there is $p' \in D$ with $|pp'| = \delta$. Observe that $\angle rpp' \geq \frac{\pi}{2}$. If it is $\pi/2$, then $|rp'| > \delta$. If it is over $\pi/2$, the triangle rpp' is obtuse and then by the law of cosines $|rp'| > |pp'|$ and hence $|rp'| > \delta$. By $|rp'| > \delta$ in both cases we see that D is complete. □

By Theorem 2 in Theorem 8 we may exchange “complete” to “constant width”. This form is proved earlier as follows. Any body of constant width δ on S^d is of constant diameter δ and the inverse is shown for $\delta \geq \pi/2$, and for $\delta < \pi/2$ if $d = 2$ (see [8]). By [4] the inverse holds for any δ. Our short proof of Theorem 3 is different from these in [8] and [4].

References

[1] T. Bonnesen, W. Fenchel, Theorie der konvexen Körper, Springer, Berlin (1934) (English translation: Theory of Convex Bodies, BCS Associates, Moscow, Idaho, 1987).
[2] G. D. Chakerian, H. Groemer, Convex bodies of constant width, In Convexity and its applications, pp. 49–96, Birkhäuser, Basel (1983).
[3] H. G. Eggleston, Convexity, Cambridge University Press, 1958.
[4] H. Han, D. Wu, Constant diameter and constant width of spherical convex bodies, arXiv:1905.09098v2.
[5] B. Jessen, Über konvexe Punktmengen konstanter Breite. Math. Z. 29 (1) (1929), 378–380.
[6] M. Lassak, Width of spherical convex bodies, Aequationes Math. 89 (2015), 555–567.
[7] M. Lassak, When is a spherical convex body of constant diameter a body of constant width? Aequationes Math. 94 (2020), 393–400.
[8] M. Lassak, M. Musielak, Spherical bodies of constant width, Aequationes Math. 92 (2018), 627–640.
[9] H. Lebesque, Sur quelques questions de minimum, relatives aux courbes orbiformes, et sur leurs rapports avec le calcul des variations, J. Math. Pures Appl. 8 (4) (1921), 67–96.
[10] H. Martini, L. Montejano, D. Oliveros, Bodies of constant width. An introduction to convex geometry with applications, Springer Nature Switzerland AG, 2019.
[11] E. Meissner, Über Punktmengen konstanter Breite. Vjschr. Naturforsch. Ges. Zürich 56 (1911), 42–50.
[12] J. Pál, Über ein elementares Variationsproblem (Danish) Bull. de l’Acad. de Dan. 3 (2) (1920), 35pp.
[13] K. Reidemeister, Über Körper konstanter Durchmessers. Math. Z. 10 (1921), 214-216.

Marek Lassak
University of Science and Technology
al. Kaliskiego 7, Bydgoszcz 85-796, Poland
e-mail: lassak@utp.edu.pl