Prevalence and Predictors of Cervical Cytological (Pap Smear) Abnormalities Among HIV-infected Women at the HIV Treatment Center of Jos University Teaching Hospital Jos, Nigeria.

Olugbenga Akindele Silas (✉ drgbenga@yahoo.com)
University of Jos https://orcid.org/0000-0003-1585-9988

Philip O. Akpa
University of Jos

Tolulope O. Afolaranmi
University of Jos

Samuel Robsam Ohayi
Enugu State University of Science and Technology College of Medicine

Jonah Musa
University of Jos

Firas H. Wehbe
Northwestern University, Chicago

Atiene S. Sagay
University of Jos

Chad J. Achenbach
Northwestern University

Barnabas M. Mandong
University of Jos

Lifang Hou
Northwestern University

Robert L. Murphy
Northwestern University

Research Article

Keywords: Prevalence, predictors, cytology, Pap smear, Jos, Human Immunodeficiency virus

DOI: https://doi.org/10.21203/rs.3.rs-46916/v1
Abstract

Introduction:

Cervical cancer is the most common cancer among women living with HIV with the highest burden in sub-Saharan African countries with the highest prevalence of HIV. Early detection of precursor cervical lesions through routine Pap smear screening is central to cervical cancer prevention. This study was aimed at determining the prevalence and predictors of abnormal Pap smear findings among women with HIV in our cervical cancer screening program.

Methodology:

We carried out a cross sectional study of adult women with HIV who presented for Pap smear test for the first time at the Jos University Teaching Hospital, Jos, North Central Nigeria between November 2018 and January 2020. Prevalence of abnormal cervical finding was reported in percentage and also expressed per 100 population of women. The effects of the characteristics of the women of the abnormal pap smear finding was determined using the logistic regression model where 95% confidence interval and adjusted odds were used as point and interval estimates respectively while a probability value of < 0.05 was considered statistically significant.

Results:

A total of 949 women with HIV participated in the cervical screening program with mean age 43.3 ± 8.1 years. Abnormal smear findings were observed among 183 (19.3%; 19 cases per 100 women) with ASCUS, ASC-H, LSIL, HSIL, HSIL with suspicion of invasion and AGUS accounting for 96 (10.1%), 50(5.3%), 27 (2.9%), 6 (0.6%), 2 (0.2%) and 2(0.2%) respectively. Of the abnormal smear findings, 125 (68.3%) were adjudged to have mild cytological feature while the complementing proportion adjudged to have severe cytological features. Unadjusted odds of abnormal Pap smear result was associated with increasing age, OR 1.15(95% CI 1.127, 1.186; p = 0.001); parity, OR1.08 (95% CI 1.019, 1.141; p = 0.009). In the adjusted model, increasing age remained the only factor predicting abnormal Pap smear finding.

Conclusion: Prevalence of abnormal Pap smear results remains high in HIV- infected women and is associated with increasing age. Advocacy to institutionalize screening at earlier age is therefore key to improving dismal outcomes.

Introduction

Cervical cancer though preventable has continued to pose as a public health threat in sub-Saharan Africa. [1] According to WHO, 19 out of the top 20 countries worldwide with the highest burden of cervical cancer in 2018 were in Africa. [1] Ninety per cent of 311 000 cervical cancer deaths globally per year occur in low- and middle-income countries (LMICs), with the highest burden borne by sub-Sahara African countries that have the highest burden of Human Immunodeficiency Virus (HIV). [2]
HIV-positive women are at increased risk of human papillomavirus (HPV) infection and progression to invasive cervical cancer (ICC). [2] The likelihood that a woman living with HIV will develop invasive cervical cancer is up to five times higher than for a woman who is not living with HIV.[2] Few diseases reflect global inequities as much as cancer of the cervix. In LMICs its incidence is nearly twice as high, and its death rates three times as high, compared with high income countries (HICs). [2, 3] Proven and cost-effective measures for eliminating cervical cancer such as avoidance of risk factors, HPV vaccination, papanicolaou screening (pap smear) and treatment of precancerous lesions exist, but to date have not been widely implemented in regions of the world where the disease burden is highest.[2–6]

In Nigeria as in other sub-Saharan African countries there is no organized screening program, and the few services available are only opportunistic with little or no impact.[7–12] Development of cervical cancer screening policy and institution of organized screening program targeted at covering ≥ 80% of population at risk is fundamental. [13–15]

Though HIV care and treatment in countries worst hit by HIV epidemic has resulted in prolongation of life expectancy, cervical cancer in women living with HIV has not received the attention and resources that is needed to address its prevention and treatment. [16, 19]

We therefore sought to determine the prevalence and predictors of abnormal Pap smear findings among a group of HIV-infected women accessing an opportunistic cervical cancer screening service newly established at the HIV treatment center in Jos, Nigeria.

Materials And Methods

Study design

This is a cross-sectional descriptive study that was carried out among HIV-positive women who were attending the adult HIV clinic in Jos University Teaching Hospital (JUTH), Jos between November 2018 and January 2020.

Study Area

JUTH is a tertiary health institution located at Jos, Plateau state with a catchment area of the four states of the north-central geopolitical region of Nigeria. These are Benue, Nassarawa, Kaduna and Bauchi states. Plateau state is located in Nigeria's middle belt with an area of 26,899 square kilometers and an estimated population of about three million people in 2019. [20]

Study Population

The study population comprised HIV-positive women attending the HIV clinic in the hospital. All HIV-positive women attending the clinic were included while those with a history of cervical cancer, previously
treated premalignant lesions of the cervix and those that were pregnant were excluded from the study.

Data Collection

De-identified data of HIV-positive women attending the adult HIV clinic in JUTH for the first time was obtained from the secured electronic records of the clinic. The cervical Pap smear cytology screening outcomes were reported according to the Bethesda 2001 cytology reporting system. [21]

The key dependent variable was the cervical cytology (Pap smear) screening outcomes. Data on sociodemographic and reproductive characteristics as well as clinical information such as nadir viral load and nadir CD4 counts were also obtained. The age, CD4 count and viral load were used as continuous variables while categorical variables were parity (0, 1–4, ≥ 5), age (≤ 43, >43), age at first sexual debut (< 15, 15–18, ≥ 19), number of sexual partners (1, 2–4, ≥ 5) and use of contraception (used, not used). Viral load was further log transformed for analysis in view of the skewed nature of the measurement. Pap smear results was categorized into normal squamous intraepithelial lesion (SIL) and abnormal SIL while the abnormal SIL was further categorized into mild dysplasia and severe dysplasia. Abnormal SIL were ASCUS, ASC-H, LSIL, HSIL, and HSIL with suspicion of invasion and AGUS while mild dysplasia and severe dysplasia were ASCUS, AGUS, LSIL and ASC-H, HSIL, HSIL with suspicion of invasion respectively.

Data analysis

The data collected was analyzed with STATA software, version 14 college station (Stata Corporation, TX, USA; 1985). Continuous variables were expressed as means, medians, standard deviations and interquartile range and categorical variables as percentages and proportions. Logistic regression models were developed to explore the association of selected variables with cervical cytological outcomes among the women.

Three level of analysis were done. The first level analysis was a descriptive analysis to determine the overall prevalence and pattern of cervical cytological abnormalities based on various sociodemographic and clinical characteristics of the women. Differences in proportions and means of observable measures between the cervical cytology outcomes were assessed using Chi-square test for proportions and t-test for difference of means.

The second level analysis was bivariate logistic regression analysis performed to assess the association between apriorically selected sociodemographic, clinical (viral load and CD4 count), reproductive characteristics and (1) cervical cytology results (normal and abnormal squamous intraepithelial lesion) (2) mild dysplasia (3) severe dysplasia. The third level analysis was a multivariate logistic regression analysis involving all the factors that were significantly associated with cervical cytology (Pap smear) results at the second level analysis. Box plots graphs of ages of these women by Pap smear results was
plotted. $P < 0.05$ was considered as statistically significant. The results are presented as crude odds ratios (CORs) or adjusted odds ratios (AORs) and their 95% CI.

Methodology

We performed a cross-sectional study of adult women with HIV who presented for Pap smear screening test at the Jos University Teaching Hospital, Jos, North Central Nigeria between November 2018 and January 2020. Prevalence of abnormal cervical finding was reported in percentage and also expressed per 100 population of women. Association between characteristics of the women and finding of pap smear screening was determined using logistic regression with 95% confidence interval and crude odd ratio used as interval and point estimates of the effect of the characteristics of the women on the outcome of the screening while a p-value of < 0.05 was considered statistical significant.

Results

A total of 949 HIV positive women's data was analyzed with mean age 43.3 ± 8.1 years. Abnormal smear findings were observed among 183 (19.3%; 19 cases per 100 women) with ASCUS, ASC-H, LSIL, HSIL, HSIL with suspicion of invasion and AGUS accounting for 96 (10.1%), 50(5.3%), 27 (2.9%), 6 (0.6%), 2 (0.2%) and 2(0.2%) respectively.

Abnormal SIL consisted of mild dysplasia 125(68.3%) and severe dysplasia 58(31.7%). Those with parity ≥ 5 had the highest frequency 493(51.9%). The age group with highest frequency at first sexual debut was 15–18 years, 449(47.3%). Those who did not use any form of contraceptive accounted for 540(53.9%). [Table 1]

In the bivariate analysis of the relationship between certain sociodemographic and clinical factors and Pap smear results only age and parity were statistically significant. [Table 2]

Results for the bivariate and multivariate logistic regression with unadjusted and adjusted odds ratio of the association of clinical, sociodemographic parameters and total Pap smear results (normal SIL and abnormal SIL): In the unadjusted model age OR 1.15(1.128, 1.186; $p = 0.001$), parity OR 1.08 (1.019, 1.141; $p = 0.009$) and ≥ 5 number of sexual partners OR 0.49(0.290, 0.818; $p = 0.006$) were statistically significantly associated with Pap smear results. While only age OR 1.16 (1.130, 1.191; $p = 0.001$) remained statistically significant in the adjusted model. [Table 3] Mild dysplasia: In the unadjusted model age OR 1.14(1.111, 1.173; $p = 0.001$) and ≥ 5 number of sexual partners OR 0.49(0.266, 0.917; $p = 0.026$) were statistically significantly associated with mild dysplasia. While only age OR 1.15(1.114, 1.179; $p = 0.001$) remained statistically significant in the adjusted model. [Table 4] Severe dysplasia: In the unadjusted model age OR 1.09(1.064, 1.135; $p = 0.001$) and nadirCD4 count OR 0.99(0.995, 0.999; $p = 0.006$) were statistically significantly associated with severe dysplasia. While only age OR 1.09(1.064, 1.136; $p = 0.001$) and Nadir CD4 count OR 0.99(0.995, 0.999; $p = 0.007$) remained statistically significant in the adjusted model. [Table 5]
First Box plot shows a higher median age 52 years for women with abnormal squamous intraepithelial lesion than median age 42 years for those negative squamous intraepithelial lesion. [Figure1] Second Box plot shows equal median ages 52 years for women with both mild and severe dysplasia. [Figure2]

Table 1 Baseline socio-demographic characteristics and pap smear results of HIV positive women who were screened at HIV treatment center of Jos University Teaching Hospital (JUTH) at Jos, Nigeria (N = 949)

Discussion

Our results highlights the distribution of sociodemographic and clinical factors associated with morphologic cervical cytological findings from an opportunistic Pap smear screening among adult HIV women managed in our HIV treatment center at Jos, Nigeria. We found that the median age and mean age at onset of screening was 43 years. [Table 1] This is in variance to the 35 years reported from an earlier study done in the same hospital but at a different center that screens for the general population. [22] This might be due to the lower sample size in this study. Other similar studies in other centers in the region also report a lower mean age at first screening. [23–26]

The prevalence of abnormal Pap smear results from this study was 19.3% which is higher than that reported in previous studies from same center but is consistent with reports of studies from other regions [22, 23] This study had a lower sample size than that of the previous studies in the same hospital .[24–27] In this study as in most similar studies ASCUS was the commonest and AGUS the least common subtype of the abnormal SILs.[22–27] Of the abnormal SILs reported, proportion of mild dysplasia was twice that for severe dysplasia which is consistent with similar studies.[22–27]

The average CD4 count in this study was about 260 cells/mm3 which is lower than that reported in a similar study in Southeastern Nigeria (325 cells/ mm3).[28] Cluster differentiation(CD4) count level has been reported in other studies to be related (inversely proportional) to severity of cervical dysplasia in HIV women.[Table 1][28–30]

Higher age of HIV positive women at screening is found to be predictive of abnormal pap smear result in general and both mild and severe dysplasias specifically which is consistent with similar studies. [Tables 2,3,4,5][Figures 1,2],[26–30] Since the mean age in this study was 43 years which is far higher than the age 21 years recommended by WHO and age 35 years previously reported as onset of ICC in the same setting, it implies that many of the women will have developed dysplasia at time of screening which can progress to invasive lesions.[31]

In this study we found a significant negative correlation between Nadir CD4 count and severe dysplasia. [Table 5] This is consistent with most similar studies that show that lower CD4 counts are associated with severity of dysplasia. [22–32]
Weakness of this study could be from the fact that these patients might not be representative of general HIV population since they are accessing care in the treatment center against all odds thus introducing bias. There is also the possibility of misinformation bias regarding some of the sociodemographic variables obtained from the women which they consider private and for fear of stigmatization. However, the strength of this study is the fact that the last study done specifically on HIV women in our center was as far back as eleven years ago (2009). This study therefore provides current reality.

Recommendations

Early age (21 years) at initiation of screening in line with WHO guideline should be encouraged to largely prevent cervical cytological abnormalities and ICC. This should be integrated with protocol for normal care of HIV positive women which will reduce incidence of cervical ICCs in this vulnerable group. Future research with larger sample size to increase the power of the measures and including other variables like cigarette smoking, presence of sexually transmitted infections, educational and economic status should be done. Widespread education of the populace on the burden of cervical cancer and importance of screening at early age using the mass media, counseling at antenatal clinics, and the involvement of men will contribute immensely to reduction in the incidence of ICC. Decentralization of services by incorporation of cervical screening and treatment in primary health care programs will ensure adequate rural-urban coverage.

Conclusion

This study shows that prevalence of abnormal cervical cytology has remained high with increasing age at onset of screening in our setting. Thus, there is need to intensify education on early Pap smear screening including making this screening accessible, affordable and a necessary part of care among our HIV positive women.

Declarations

Ethics Statement

The studies involving use of secondary data were reviewed and approved by Jos University Teaching Hospital’s (JUTH) Ethical committee and AIDS prevention initiative in Nigeria (APIN). Written informed consent from the participants’ legal guardian/next of kin was not required to participate in this study in accordance with the national legislation and the institutional requirements.

Consent for publication

Not applicable.

Availability of data and materials
All the relevant data for this analysis have been presented in the body of this manuscript. The original data sources and the dataset used in this analysis is available upon reasonable request to the corresponding author.

Competing interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding

This work and publication was supported by the National Cancer Institute of the National Institutes of Health under Award Number U54CA221205 and by the Fogarty International Center of the National Institutes of Health under Award Number D43TW009575. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Authors’ contributions

OAS conceptualized the study. JM, POA, TOA, CA, FHW and LH made technical inputs in the conceptualization and design of the study. OAS, JM, BMM, SAS and LH produced the first draft of the manuscript. SAS, RLM, LH, SRO and ETC contributed in further interpretation of findings and editing of the final draft of the manuscript. All co-authors contributed in revising the manuscript and approved the final version for submission.

Acknowledgement

We wish to appreciate the contributions by MrsMagretDavou, Miss JuGye and Mrs Florence Oyerimba of the JUTH’s cancer screening center situated at its adult HIV treatment center for their support.

References

1. WHO regional office for Africa. 2018. https://www.afro.who.int/health-topics/cervical-cancer. Accessed 17 th July 2020.
2. UNAIDS. The little-known links between cervical cancer and HIV. 3. https://. Accessed 17 th July 2020.
4. WHO. Draft. Global strategy towards eliminating cervical cancer as a public health problem, April 2020.https://www.who.int/docs/default-source/cervical-cancer/cervical-cancer-elimination-strategy-updated-11-may-2020.pdf?sfvrsn=b8690d1a. Accessed 17 th July 2020.
5. Musa J, Achenbach CJ, Evans CT, et al. HIV status, age at cervical Cancer screening and cervical cytology outcomes in an opportunistic screening setting in Nigeria: a 10-year Cross sectional data analysis. Infect Agents Cancer. 2019;14:43.
6. Agaba P, Thacher T, Ekwempu C, Idoko J. (2009). Cervical dysplasia in Nigerian women infected with HIV. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics. 2009;107. 29%.

7. Silas OA, Jonah M, Adoga AA, Ekwempu CC, Manasseh AN, et al. Atypical cells in Pap Smears, an evaluation of proportions and possible risk factors at the Jos University Teaching Hospital, Nigeria. Journal of Medical Care Research Review. 2019;2:125–9.

8. Okunowo AA, Smith-Okonu ST. Cervical cancer screening among urban women in Lagos, Nigeria: Focus on barriers and motivators for screening. Niger J Gen Pract. 2020;18:10–6.

9. Tomen EA, Yohanna S, Obilom RE. Awareness of papanicolaou smear and visual inspection with acetic acid as screening tools for cervical cancer among women attending the general outpatient clinic of a Tertiary Institution in North Central Nigeria. Niger Med J. 2019;60:76–9.

10. Sowemimo OO, Ojo OO, Fasubaa OB. Cervical cancer screening and practice in low resource countries: Nigeria as a case study. Trop J Obstet Gynaecol. 2017;34:170–6.

11. Layu D, Fanka KN, Dohbit JS, Claude NN, Fala B, Joyce, et al. Assessing the uptake of cervical cancer screening among women aged 25–65 years in Kumbo West Health District, Cameroon. Pan African Medical Journal. 2019;33:106.

12. Awoyesuku PA, Altraide BOA, MacPepple DA. Knowledge, Uptake and Barriers to Pap Smear Test among Female Workers in the Rivers State University Teaching Hospital, Nigeria. Journal of Advances in Medicine Medical Research. 2019;30:1–9.

13. Yvonne Nartey PCH, Amo-Antwi K, Nyarko KM, Yarney J, Cox B. Factors contributing to the low survival among women with a diagnosis of invasive cervical Cancer in Ghana. Int J Gynecol Cancer. 2017;27:1926–34.

14. Bassey G, Jeremiah I, Ikimalo JL, Fiebai PO, Athanasius BP. Abnormal cervical cytology among HIV-positive women in Nigeria. Int J Gynaecol Obstet. 2014;125:103–6.

15. Saba S, Adamu A, Mulukn G, Selamawit H, Wondim A, Seftonias G, et al. Knowledge about cervical cancer and barriers toward cervical cancer screening among HIV-positive women attending public health centers in Addis Ababa city, Ethiopia. Cancer Med. 2018;7:903–12.

16. Ugboaja JO, Ubajaka CF, Oranu EO, Oguejiofor CB, Anyaoku CS, Enenchukwu CI, et al. Determinants of cervical cytological abnormalities among HIV-positive women receiving care in a tertiary health facility in Southeast Nigeria. Niger J Gen Pract. 2019;17:31–6.

17. Agboeze J, Umeora O, Ozumba B, Onoh R, Ezeonu P, Edegbe F. Prevalence and pattern of abnormal cervical smear among women infected with HIV in Abakaliki, Nigeria. Afr J Med Health Sci. 2015;14:92–5.

18. Duru CB, Oluoha RU, Uwakwe KA, Diwe KC, Merenu IA, Emerole CA, et al. Pattern of PAP Smear Test Results among Nigerian Women Attending Clinics in a teaching Hospital. Int J Curr Microbiol Appl Sci. 2015;4:986–98.

19. Thorsteinsson K, Storgaard M, Katzenstein TL, Ladelund S, Rønsholt FF, Johansen IS, et al. Prevalence and distribution of cervical high-risk human papillomavirus and cytological abnormalities
in women living with HIV in Denmark – The SHADE. BMC Cancer. 2016;16:866.

20. Ononogbu U, Almujtaba M, Modibbo F, et al. Cervical cancer risk factors among HIV-infected Nigerian women. BMC Public Health. 2013;13:582.

21. National Bureau of Statistics Federal Republic of Nigeria. Population Census official Gazette FGP 71/52007/2,500(OL24); Legal Notice on Publication of the Details of the Breakdown of the National and State Provisional Totals 2006 Census. Accessed 12/07/2020. Available from: http://www.nigerianstat.gov.ng/connection/pop2006.pdf. Accessed 17th July 2020.

22. Solomon D, Davey D, Kurman R, Moriarty A, O'Connor D, Prey M, et al. Bethesda 2001 Workshop. The 2001 Bethesda System: terminology for reporting results of cervical cytology. JAMA. 2002;287:2114–9.

23. Musa J, Nankat J, Achenbach CJ, Shambe IH, Taiwo BO, Mandong B, Daru PH, Murphy RL, Sagay AS. Cervical cancer survival in a resource-limited setting-north Central Nigeria. Infec Agents Cancer. 2016;11:15.

24. Daniel GO. Outcomes of cervical cancer screening among HIV women in Jos, North Central, Nigeria. 24th World Nursing and Healthcare Conference. 2018. https://world.nursingconference.com/abstract/2018/outcomes-of-cervical-cancer-screening-among-hiv-women-in-jos-north-central-nigeria. Accessed 17th July 2020.

25. Muhammad Z, Usman IH, Datti ZA, Avidime AR, Danjuma SA, Taoheed AA, et al. Incidence and risk factors of cervical dysplasia among human immune deficiency virus positive and human immune deficiency virus negative women at Aminu Kano Teaching Hospital. Sahel Med J. 2017;20:160–7.

26. Cornelius OO, Peter UA, Peter ON. Prevalence and Risk Factors of Cervical Dysplasia among Human Immunodeficiency Virus Sero-Positive Females on Highly Active Antiretroviral Therapy in Enugu, Southeastern, Nigeria. Asian Pac J Cancer Prev. 2019;20:2987–94.

27. Bawa US, Kolawole AO, Madugu NH, Shehu SM. Cervical cytology pattern and human immunodeficiency virus serostatus of women seen in Ahmadu Bello University Teaching Hospital, Zaria, Nigeria. Port Harcourt Med J. 2017;11:90–5.

28. Lawal I, Agida TE, Offiong RA, Oluwole PO. Cervical Cytology among HIV Positive and HIV Negative Women in a Tertiary Hospital in North Central Nigeria: A Comparative Study. Ann Med Health Sci Res. 2017;7:308–11.

29. Ugboaja JO, Ubajaka CF, Oranu EO, Oguejiofor CB, Anyaoku CS, Enenchukwu CI, Igwegbe AO. Determinants of cervical cytological abnormalities among HIV-positive women receiving care in a tertiary health facility in Southeast Nigeria. Niger J Gen Pract. 2019;17:31–6.

30. Odafe S, Torpey K, Khamofu H, Oladele E, Adedokun O, Chabikuli O, Mukaddas H, Usman Y, Aiyenigba B, Okoye M. Integrating cervical cancer screening with HIV care in a district hospital in Abuja, Nigeria. Niger Med J. 2013;54:176–84.

31. Joshi S, et al. Screening of cervical neoplasia in HIV-infected women in India. AIDS. 2013;27:607–15.

32. WHO. WHO guidelines for screening and treatment of precancerous lesions for cervical cancer prevention. https://apps.who.int/iris/bitstream/handle/10665/94830/9789241548694_eng.pdf?
33. Ilesanmi RE, Kehinde DR. Pattern of Utilization of Cervical Cancer Screening Services among Female Sex Workers in Some Selected Brothels in Abuja, Nigeria. Asia Pac J Oncol Nurs. 2018;5:415–20.

34. Solomon D, Davey D, Kurman R, Moriarty A, O’Connor D, Prey M, Raab S, Sherman M, Wilbur D, Wright T Jr, Young N, Forum Group Members. Bethesda 2001 Workshop. The 2001 Bethesda System: terminology for reporting results of cervical cytology. JAMA. 2002;287:2114–9.

35. Avidime S, Ahmed SA, Ogunyayo A, Abu TO, Ndako JA. Pattern of cervical dysplasia among women of reproductive age in Zaria, Northern Nigeria. J Med Trop. 2014;16:52–5.

Tables

Table 1: Summary statistics of the socio-demographic and cervical cytology (Pap smear) outcomes of women who received first screening in an opportunistic cervical cancer screening program in Jos Nigeria (N = 949)
Characteristics	Frequency	Percentage (n = 949)		
Age Group (years)				
≤ 43	521	54.9		
> 43	428	45.1		
Total	949	100.0		
Age (years)	Mean 43.31612	SD (8.099537)		
	Median 43.0	IQR (38 – 49)		
Normal CIL	766	80.7		
Abnormal CIL	183	19.3		
Total	949	100.0		
Mild dysplasia	125	68.3		
Severe dysplasia	58	31.7		
Total	183	100.0		
Nadir CD4 count (cells/mm³)	Mean 259.883	SD (151.0319)		
	Median 251	IQR (383- 134)		
Log(Nadir viral load) (copies/ml)	Mean 5.377711	SD(1.451614)		
	Median 5.713733	IQR(6.289716 - 5.273)		
Current CD4 count copies/mm³	Mean 294.1739	SD (157.3366)		
	Median 290	IQR (421 – 168)		
Log(current viral load)copies/ml	Mean 3.271483	SD (1.776495)		
	Median 3.951244	IQR (4.430817 - 3.465736)		
Parity				
Nulliparous	37	3.90		
1-4	419	44.15		
5 and more	493	51.95		
Parity	Mean	SD(2.775)	Median	IQR(3-7)
--------	------	-----------	--------	----------
	4.863014		5.0	

Age at first sexual debut (years)		
< 15	65	6.85
15-18	449	47.31
≥19	435	45.84

Number of sexual partners		
1	285	30.0
2-4	478	50.4
≥ 5	186	19.6
Total	947	100.0

Use of any form of contraceptive		
Use	409	43.10
Not use	540	53.90

Log = logarithm; CD4 = cluster differentiation; contraceptive = barrier, non-barrier

Table 2 Bivariate analysis of socio-demographic characteristics by cervical cytological (pap smear) abnormalities (NSIL and ASIL) of HIV positive women who were screened at HIV treatment center of Jos University Teaching Hospital (JUTH) at Jos, Nigeria (N = 949).
Characteristics	NSIL (n=766)	ASIL (183)	P
Age (mean ± SD)	766 (41.6±7.3)	183 (50.1±7.6)	0.001
Parity (mean± SD)	183 (5.4±2.8)	766 (4.8±2.8)	0.001
Age at first sexual debut (mean± SD)	766 (18.8±3.7)	183 (18.7±3.8)	0.597
Number of sexual partners	766 (3.3±4.7)	183 (2.8±2.3)	0.383
Use of any form of contraceptive			
Use	426	114	
Not use	340	69	
Nadir CD4 count (Cells/mm³)	766 (262.3±151.6)	183 (249.8±148.8)	0.279
Log Nadir viral load (Copies/ml)	766 (5.4±1.4)	183 (5.4±1.2)	0.465

NSIL = Normal squamous intraepithelial lesion; ASIL = Abnormal squamous intraepithelial lesion

Table 3: Univariable and multivariable Logistic regression with unadjusted and adjusted odds ratio of the association of HIV-clinical parameters and other sociodemographic variables and cervical cytology results (pap smear test) in Jos, Nigeria (N=949)
Variable	Unadjusted (95% CI)	p-value	Adjusted HR (95% CI)
Age	1.16(1.127917,1.186286)	0.001	1.16(1.128791,1.19015)
Parity	1.08(1.019118,1.140563)	0.009	0.97(0.904746,1.035065)
Number of sexual partners			
1	1		-
2-4	0.87(.60724,1.240166)	0.436	
≥ 5	0.49(.2903536,.8176697)	0.006	
Age at first sexual debut			
≤ 15	1		-
15-18	0.89(.4812841,1.662634)	0.725	
>18	0.67(.3582139,1.261373)	0.216	
Use of contraception			
Not used	1		-
Used	1.32(.9468724,1.836364)	0.102	
Nadir CD4 count	0.99(.9983782,1.000526)	0.317	
Nadir log (viral load)	1.02(.9107995,1.143346)	0.727	

Referent values were contraception (not used), Age at first sexual debut (≤15), number of sexual partners (1), age (<34), Nadir CD4 count (cells/mm3), Nadir viral load (copies/ml)

Table 4: Univariable and multivariable Logistic regression with unadjusted and adjusted odds ratio of the association of HIV-clinical parameters and other sociodemographic variables and mild cervical dysplasia at pap smear test in Jos, Nigeria (N = 125)
Variable	Unadjusted (95% CI)	p-value	Adjusted HR (95% CI)
Age	1.14 (1.111543 1.172786)	0.001	1.15 (1.114464 1.179861)
Age (Group)			
<34 (ref.)	1.0		
≥ 34	6.77 (4.219456 10.87706)	0.001	
Parity	1.06 (.9966807 1.13217)	0.063	0.95 (.8841163 1.027615)
Number of sexual Partners			
1	1.0		
2-4	0.92 (.606069 1.388794)	0.684	1.22 (.7685212 1.920938)
≥ 5	0.49 (.265705 .9172436)	0.026	0.79 (.4048118 1.533719)
Age at first sexual Debut			
≤ 15	1		
15-18	1.20 (.5499461 2.644928)	0.640	
>18	0.97 (.4369926 2.141434)	0.935	
Use of contraception			
Not used	1		
Used	1.15 (.7892526 1.69922)	0.453	
Nadir CD4 count	1.00 (.9992692 1.001756)	0.420	
Nadir log (viral load)	1.02 (.8935557 1.166512)	0.760	

Referent values were contraception (not used), Age at first sexual debut (≤15), number of sexual partners (1), age (<34). Nadir CD4 count (cells/mm³), Nadir viral load (copies/ml)
Table 5: Univariable and multivariable Logistic regression with unadjusted and adjusted odds ratio of the association of HIV-clinical parameters and other sociodemographic variables and severe cervical dysplasia at pap smear test in Jos, Nigeria (N = 58)

Variable	Unadjusted (95% CI)	p-value	Adjusted HR (95% CI)	p-value
Age	1.09(1.063574 1.134968)	0.001	1.09(1.063579 1.135905)	0.001
Age (Group)				
<34(ref.)	1.0			
≥ 34	4.59(2.442268 8.631273)	0.001		
Parity	1.08(.9911224 1.172712)	0.080		
Number of sexual partners				
1	1.0			
2-4	0.812(.4537969 1.452818)	0.483		
≥ 5	0.565(.265705 .9172436)	0.181		
Age at first sexual debut				
≤ 15	1			
15-18	0.593(.2492119 1.412231)	0.238		
>18	0.420(.1711417 1.032148)	0.059		
Use of contraception				
Not used	1			
Used	1.59(.9089841 2.808791)	0.103		
Nadir CD4 count	0.99(.9954877 .9992402)	0.006	0.99(.9953228 .9992535)	0.007
Nadir log (viral load)	1.01(.840942 1.222482)	0.885		

Referent values were contraception (not used), Age at first sexual debut (≤15), number of sexual partners (1), age (<34). Nadir CD4 count (cells/mm3), Nadir viral load (copies/ml)
Figures

Figure 1

Box plot of age at screening by Pap smear result
Figure 2

Box plot of age at screening by severity of dysplasia.