D. Borah and B. Karmakar have proposed an A_4 flavoured linear seesaw model to realise light Dirac neutrinos. In this comment article, we show that some neutrino Yukawa interactions were missed in the model Ref. [1], thus implying that a different formula would be needed to determine the effective neutrino mass matrix, with significantly different results. Our result shows that, unlike stated in Ref. [1], that the inverted neutrino mass spectrum is not ruled out.

PACS numbers:

A recent study made by D. Borah and B. Karmakar has proposed an A_4 flavoured linear seesaw model to realise light Dirac neutrinos. That model predicts in terms of neutrino mass hierarchy, the leptonic Dirac CP phase, octant of atmospheric mixing angle as well as absolute neutrino masses.

In the A_4 flavoured linear seesaw model of Ref. [1], the Yukawa terms $\tilde{N}_L N_R(y_{33}\xi^\pm + y_{33}\phi^\pm_S + \ldots)$ could be missing.
In this case, the full neutrino mass matrix has the following form

$$M_{NN} = \begin{pmatrix} x_3 & 0 & s_3 + a_3 \\ 0 & x_3 & 0 \\ s_3 - a_3 & 0 & x_3 \end{pmatrix}, \quad M_{SS} = \begin{pmatrix} x_4 & 0 & s_4 + a_4 \\ 0 & x_4 & 0 \\ s_4 - a_4 & 0 & x_4 \end{pmatrix},$$

where

$$x_3 = y_{\xi_3} v_\xi, \quad s_3 = y_{\alpha_3} v_\alpha, \quad a_3 = y_{\alpha_3} v_\alpha, \quad x_4 = y_{\xi_4} v_\xi, \quad s_4 = y_{\alpha_4} v_\alpha, \quad a_4 = y_{\alpha_4} v_\alpha.$$ \hfill (2)

In this case, the full neutrino mass matrix has the following form

$$M_{\text{eff}} = \begin{pmatrix} 0 & m_{\nu N} & M_{\nu S} \\ m_{\nu N}' & M_{NN} & M_{NS} \\ M_{\nu S}' & M_{NS}' & M_{SS} \end{pmatrix} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_R \end{pmatrix},$$

$$M_D = (m_{\nu N} M_{\nu S}), \quad M_D^T = (m_{\nu N}' M_{\nu S}'), \quad M_R = \begin{pmatrix} M_{NN} & M_{NS} \\ M_{NS}' & M_{SS} \end{pmatrix},$$

which implies that the light Dirac neutrinos mass matrix can be written as

$$m_\nu = -M_D M_R^{-1} M_D^T = \begin{pmatrix} A_1 + A_2 & 0 & B_1 + B_2 \\ 0 & A & 0 \\ B_3 + B_4 & 0 & A_3 + A_4 \end{pmatrix},$$

where the different entries are given by:

$$A = (a' b x_1 + a b' x_2 - b b' x_3 - a a' x_4)/(x_1 x_2 - x_3 x_4),$$

$$A_1 = (a' b x_1 + a b' x_2 - b b' x_3 - a a' x_4) [(a_1 - s_1)(a_2 + s_2) - (a_3 - s_3)(a_4 + s_4)] - x_1 x_2 + x_3 x_4)/\alpha,$$

$$A_2 = [a a'(a_4 + s_4) - a' b(a_1 + s_1) + a b'(a_2 + s_2) - b b'(a_3 + s_3)] x[(a_2 - s_2)x_1 + (a_1 - s_1)x_2 - (a_4 - s_4)x_3 - (a_3 - s_3)x_4]/\alpha,$$

$$A_3 = (a' b x_1 + a b' x_2 - b b' x_3 - a a' x_4) [(a_1 + s_1)(a_2 - s_2) - (a_3 + s_3)(a_4 - s_4)] - x_1 x_2 + x_3 x_4)/\alpha,$$

$$A_4 = [b(-a_1 a' + a_3 b' + a' s_1 - b' s_3) + a(a_4 a' - a_2 b' + b' s_2 - a' s_4)]$$
and the light active neutrino masses m matrix where A, A with x

Here $m_\nu = aI, m'_\nu = a'I, M_{\nu S} = bI, M'_{\nu S} = b'I$ and $x_{3,4}, a_{3,4}, s_{3,4}$ are given by Eq. (2) and all the other parameters (e.g. $x_{1,2}, a_{1,2}, s_{1,2}$...) are the same as in Ref. [1].

To diagonalise the light active neutrino mass matrix m_ν in Eq. (5), we define a Hermitian matrix M, given by

$$
M = m_\nu^* m_\nu = \begin{pmatrix}
 m_{11} & 0 & m_{13} \\
 0 & m_{22} & 0 \\
 m_{13}^* & 0 & m_{33}
\end{pmatrix},
$$

(8)

where

$$
m_{11} = (A_1 + A_2)(A_1^* + A_2^*) + (B_3 + B_4)(B_3^* + B_4^*),
$$

$$
m_{22} = |A|^2,
$$

$$
m_{33} = (A_3 + A_4)(A_3^* + A_4^*) + (B_1 + B_2)(B_1^* + B_2^*),
$$

$$
m_{13} = (A_1^* + A_2^*)(B_1 + B_2) + (A_3 + A_4)(B_3^* + B_4^*),
$$

(9)

with $A, A_{1,2,3,4}$ and B_{12} are defined in Eqs. (3) and (7).

The mass matrix M is diagonalized by the rotation matrix U_{13} given by Eq. (21) of Ref. [1] and the light active neutrino masses $m_{1,2,3}^2$ are given by

$$
m_{1,3}^2 = \frac{1}{2} \left(m_{11} + m_{33} \mp \sqrt{(m_{11} - m_{33})^2 + 4|m_{13}|^2} \right) \equiv A + B,
$$

$$
m_2^2 = m_{22}.
$$

(10)

We see that the leptonic mixing matrix in this case is the same as in Ref. [1], however, the expressions of neutrino masses are different from each other. For instance, in the case of normal neutrino mass
hierarchy, by taking the best fit values on neutrino mass squared differences given in Ref. [2],
\[\Delta m^2_{21} = m_2^2 - m_1^2 = 7.53 \times 10^{-5} \text{eV}^2 \]
and
\[\Delta m^2_{32} = m_3^2 - m_2^2 = 2.51 \times 10^{-3} \text{eV}^2, \]
we find the solution:
\[A = 0.00121735 \text{ eV} + m_{22}, \quad B = -0.00129265 \text{ eV}. \]

The absolute values of neutrino masses as well as the neutrino mass ordering is still unknown, however, we can use the neutrino oscillation experimental data for normal hierarchy given in Ref. [2] to find:
\[m_2 \sim 0.0087 \text{ eV}. \]

In this case, the parameters \(A, B \) and the other neutrino masses are explicitly given as
\[A = 1.29304 \times 10^{-3} \text{ eV}, \quad B = -1.29265 \times 10^{-3} \text{ eV}, \quad m_1 = 6.245 \times 10^{-4} \text{ eV}, \quad m_3 = 5.08497 \times 10^{-2} \text{ eV}. \]

Then, the resulting sum of neutrino masses takes the form
\[\sum m_\nu \sim 0.06017 \text{ eV}, \]
which is consistent with the current cosmological constraints \(m_\nu < 0.17 \text{ eV} \) given in Ref. [4].

On the other hand, in the inverted neutrino mass spectrum [2],
\[\Delta m^2_{21} = m_2^2 - m_1^2 = 7.53 \times 10^{-5} \text{eV}^2 \]
and
\[\Delta m^2_{32} = m_3^2 - m_2^2 = -2.56 \times 10^{-3} \text{eV}^2, \]
we obtain:
\[A = -0.00131765 \text{ eV} + m_{22}, \quad B = 0.00124235 \text{ eV}. \]

Then, in the scenario of inverted neutrino mass ordering, we find
\[m_2 = 0.051 \text{ eV}, \]
with the parameters \(A, B \) and the other neutrino masses given as
\[A = 1.28335 \times 10^{-3} \text{ eV}, \quad B = 1.24235 \times 10^{-3} \text{ eV}, \quad m_1 = 5.02563 \times 10^{-2} \text{ eV}, \quad m_3 = 6.40312 \times 10^{-3} \text{ eV}. \]

Thus, we find that the sum of neutrino masses takes the form
\[\sum m_\nu \sim 0.107659 \text{ eV}, \]
which is consistent with the current cosmological constraints of Ref. [4]. This result is completely different from the one obtained in Ref. [1] where the inverted neutrino mass hierarchy is not allowed.

Conclusion

We have shown that some neutrino Yukawa terms must be added in the \(A_4 \) flavored linear seesaw model of Ref. [1]. When these terms are included, the obtained results are significantly different than the ones reported in Ref. [1]. Namely, in the normal neutrino mass spectrum, the leptonic mixing matrix in the case where the missed Yukawa terms are added is the same as in [1], however, the expressions for neutrino masses are different from each other. On the other hand, in the inverted neutrino mass spectrum, our result is completely different from the one obtained in Ref. [1] and the sum of neutrino masses satisfies the current cosmological constraints, thus implying, unlike stated in Ref. [1] that this scenario is not ruled out.

Acknowledgments

This research has been financially supported by Fondecyt (Chile), Grants No. 1170803, CONICYT PIA/Basal FB0821, the Vietnam National Foundation for Science and Technology Devel-
opment (NAFOSTED) under grant number 103.01-2017.341. H.N.L acknowledges the financial support of the Vietnam Academy of Science and Technology under grant NVCC05.01/19-19.

[1] D. Borah and B. Karmakar, Phys. Lett. B789 (2019) 5970, arXiv: 1806.10685 [hep-ph].
[2] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
[3] M. Chakrabortya, H. Zeen Devids and A. Ghosal, Phys.Lett. B 741 (2015) 210-216, arXiv: 1410.3276 [hep-ph].
[4] F. Couchot et al., Astron. Astrophys. 606, A104 (2017), arXiv: 1703.10829 [hep-ph].