Food and nutrition of Gaur (Bos gaurus C.H. Smith, 1827) at the edge of Khao Yai National Park, Thailand

Rattanawat Chaiyarat1, Suphat Prasopsin2,3* & Naris Bhumpakphan3

The presence of gaur (Bos gaurus) at the border of Khao Yai National Park (KYNP) in Thailand has resulted in a dramatic increase in the number of individuals' crop feeding. This study examines the feeding adaptations of gaur at the edge of the protected area and assesses whether gaur response to increased nutrient availability in crop plants compared to natural forage. During the day, gaur mostly utilized forest areas in KYNP and entered the agricultural areas at night. Gaur ate 43 natural forage species. Natural forage species contain high levels of crude protein and lipid, but they are found in small quantities and scattered areas when compared to crop plants, especially Zea mays L., that are available in large quantity and are heavily foraged on by gaur. However, greater understanding of the electivity index and nutrition of forage species along the edge of the protected area can be used to reduce the gaur-human conflict by keeping gaur in KYNP. Reducing the large monoculture areas that is the food sources of gaur along the edge may reduce or prevent gaur leaving the park and can be applied to advance conservation actions.

Human-wildlife coexistence at the edge of protected areas can create problems that are referred to as human-wildlife conflicts1. In general, specialist species are more affected by habitat modification than are generalist species. Moreover, some species are able to change to forage on food species that are more readily available when their preferred forage species are scarce3, thereby using crops as an alternative food source. Some crops are attractive to wild animals and provide both energy and nutrition5. However, this subject is poorly studied, especially in the large bovids of tropical environments.

Gaur (Bos gaurus), family Bovidae (Fig. 1), is globally vulnerable4, and protected under the Thai Reserved and Protected Animals Act, B.C.25626. Gaur are distributed in scattered areas of Bhutan, Cambodia, China, India, Lao PDR, peninsular Malaysia, Myanmar, Nepal, Viet Nam and Thailand. The global population is estimated at 15,000–35,000 animals7. In Thailand, an estimated total of 920 Gaur remained in 1994 and none of them were found outside protected areas8, but a recent field survey found that the number of gaur are increasing7 and entering agricultural areas such as those near Khao Yai National Park (KYNP).

Gaur require a larger habitat area and higher food consumption than do smaller-bodied herbivores8. Based on the Jarman-Bell principle, the gaur’s large body mass allows it to subsist on lower quality forage than do smaller ruminants, but to meet their caloric demands, gaur require a larger quantity of it9,10. Gaur prefer grassland habitat and open areas of moist evergreen forest, dry evergreen forest, semi-evergreen forest, and mixed deciduous forest11. However, Steinmetz12 found that gaur are present in dry dipterocarp forest more often than in semi-evergreen forest. In the seasonal forest ecosystems of Thailand and India, gaur live in higher densities in mixed deciduous forests13 than in other available habitats14 due to the former having a richer array of available food types. This allows them to graze and browse at a single location12.

Gaur in Thailand are mainly restricted to protected areas because they are threatened by habitat loss and degradation, as documented in other areas12,14-17. When restricted to habitats in protected areas, the ground cover species used as forage, both monocots and dicots, are diminished in abundance. Then, gaur may move to disturbed and open areas along the border of protected areas18,19. Agricultural land that is accessible to gaur may be attractive because it meets their forage requirements. This may cause a positive association between gaur and...
Figure 1. The gaur (Bos gaurus) are the largest extant bovids and feed at the edge of Khao Yai National Park, Thailand. Photographs from camera-trap by R. Chaiyarat.
In grasslands, we used the wildlife observation towers, but in the forest areas, each location was selected based on natural signs indicating gaur activity, and we observed from blinds positioned to view the entire feeding area. The frequency of occurrence per area (%) was calculated from the proportion between the percentage of occurrence and percentage of the area. (b) the percentage of plant species on transect that had been grazed or browsed by gaur. Four transects with a total length of 21 km were located at the disturbed edge inside the protected area (natural forages) to study the gaurs' food utilization and nutrition. A total of 210 plots (1 x 2 m²) were sampled along four transects at intervals of 100 m apart. Most of these sampling plots were located in dry evergreen forest and mixed deciduous forest. In the small paths of man-made grassland and agricultural areas, the areas were crossed with a few line plots. Then, 40 random plots were randomly located and measured in each area in both dry season (November to April) and wet season (May to October) since systematic transect plots at intervals of 100 m apart from each other were not possible (Fig. 2). All stems (i.e. availability) of each species and number of stems showing evidence of gaur herbivory (i.e. use) were counted and the measurements extrapolated to stems per hectare. All detections of a plant species across the plots were pooled as recommended by Lashley et al.26.

To avoid the mistake of misidentifying the foraging of gaur for that of other herbivores, the structure of the damage in remaining forage tissues and the foraging ecology of gaur and other wildlife to distinguish herbivory between gaur and other wildlife species as Lashley et al.27 recommended. This method was particularly useful in distinguishing between lagomorphs’ indirect bite and that of ungulates. However, distinguishing herbivory between wildlife species can be difficult and may result in sampling errors related to damage detectability that may change with leaf morphology of plant species. To limit false counts of gaur direct bites, only plants with signs of newly eaten vegetation, without necrotic black tissue surrounding the older bite26,27, after intensive consideration of the distinctive bite morphology along with new signs of gaur hoof prints in the area, without any other signs of other herbivore species, were recorded. At the disturbed edge area, only gaur, a small population of sambar deer (Rusa unicolor), and elephants (Elephas maximus) were directly observed. Other small nocturnal mammals (e.g. Northern Red Muntjac, Muntiacus vaginalis) or Greater Oriental Chevrotain (Tragulus napu) were not found or had different forage species and bite behavior. These animals had no impact on the study.

The electivity index of individual forage species consumed. At the end of each season, a twig-count method28 was used to measure the percentage of individual species forage biomass found in the areas. In each consumed species, the diameters of fifty fresh stems at the bite location were measured and averaged. Based on an average stem diameter, fifty fresh stems without bite signs beside the sample plots were clipped and weighed to the nearest 0.01 g. Samples of each plant species, both fresh and consumed, were separated, bagged in plastic and sent to Mahidol University Laboratory at Kanchanaburi Campus. At the laboratory, each sample was put in Figure 2. Study area and line transects of gaurs’ forage species and nutrition in the edge along Khlong Pla Kang National Park Guard Station, Khao Yai National Park. Maps created using ARC GIS 10.3, modified after Department of National Parks, Wildlife and Plant Conservation (DNP)23; (c and f) photographs by S. Prasopsin; all other photographs by R. Chaiyarat.
Table 1. Numbers of gaur feeding at the edge along Khlong Pla Kang National Park Guard Station, Khao Yai National Park (n = 36 days). *(1) = Man-made grassland at wildlife observation tower number 2, (2) Man-made grassland at wildlife observation number 1, (3) Boundary between Khlong Pla Kang National Park Guard Station and agriculture area; this area also served as resting area before going to the agriculture area, and (4) agriculture area outside the national park.

Feeding site	1	2	3	4
Occurrence Number of occurrence (times)	16	52	35	17
Percentage of occurrence (%)	13.3	43.3	29.2	14.2
Observed area (km²)	0.06	0.31	18.5	7.7
Percentage of area (%)	0.2	1.2	69.6	29
Frequency of occurrence per area (%)	60.8	38.3	0.4	0.5

The gaur grazed more in man-made grassland (43.3% of observations counted) than in other areas (Table 1). During day time, the relative occurrence per observation area was highest in man-made grassland (60.8% and 38.3%) and lowest in the forest between KPK and agricultural areas and where gaur entered agricultural areas at night.

Forage species. A total of 43 natural forage species were recorded in the study area. As many as 41 of these species were consumed by gaur during the wet season, while 25 species were consumed in the dry season. Additionally, 23 species were consumed in both seasons (Tables 2 and 3). The electivity index of natural forage species showed that *Ageratum conyzoides* L. had the highest value in wet seasons and *Chromolaena odorata* (L.) R.M. L. had the highest value in wet seasons and *Zea mays* L. had an avoid electivity index in wet season, but it was highest in availability and consumption (Table 3). The gaur did not show a strong preference in forage species between dicots and monocots or between seasons (F = 0.976; df = 3, 18; p = 0.32), although dicots were more eaten by gaur in both wet (80.5%) and dry (84%) seasons (Table 4).

The electivity index of crop damage showed that most crops were consumed in the wet season with a low electivity index. *Hevea brasiliensis* Muell. Arg. was consumed in wet season. *Manihot esculenta* Crantz was consumed in both seasons (Table 3).

Food quality assessment. Thirteen species (11 wild species and two crop plants) that were noted during direct observation as forage species were sampled. Moisture content, ash, fiber, crude protein and lipid were different among the species (p < 0.05). The highest fiber containing plants were *Mallotus paniculatus* Mull.
Family	Scientific Name	Forage Species	Eaten Part	Habitat type			
				DEF	FP	TGL	AA
Natural forage species							
Apocynaceae	*Alstonia scholaris* (L.) R.Br	T	L, S	N	P	P	A
Apocynaceae	*Wrightia arborea* (Dennst.) Mabbe	T	L	P	P	P	A
Asteraceae	*Ageratum conyzoides* L.	H	F, S	P	P	P	P
Asteraceae	*Chromolaena odorata* (L.) R.M. King & H. Rob	H	F, S	P	P	P	P
Bignoniaceae	*Markhamia stipulata* Seem	T	L	P	P	A	A
Combretaceae	*Combretum deciduum* Collet & Hemsl	S	L	P	P	A	A
Costaceae	*Costus speciosus* (Koen.) Sm	H	L	P	P	P	A
Cyperaceae	*Cyperus* sp.	Gs	L	A	A	P	A
Dilleniaceae	*Dillenia obovata* (Blume)	T	L	A	P	A	A
Dioscoreaceae	*Dioscorea glabra* Roxb	C	L	A	P	P	A
Dipterocarpaceae	*Dipterocarpus turbinatus* C.F Gaertn	T	L	P	A	A	A
Euphorbiaceae	*Croton persimilis* Mull. Arg	S	S	A	P	A	A
Fabaceae	*Asacca catechu* (L.) Wild.	ExT	L	A	P	A	A
Fabaceae	*Asacca concinna* (wildld.) DC.	ScanS	L	A	P	P	A
Fabaceae	*Adenanthera pavonina* L.	T	L	A	P	A	A
Fabaceae	*Pterocarpus macrocarpus* Kurz	T	L	P	P	A	A
Fabaceae	*Xylicum xylocarpa* (Roxb.) Taub	T	L	P	A	P	A
Irvingiaceae	*Irvingia malayana* Oliv. Ex A.W.Benn	T	L	P	A	A	A
Lauraceae	*Cinnamomum iners* Reinv. Ex Blume	T	L	P	A	A	A
Lauraceae	*Litsea glutinosa* (Lour.) C.B.Rob	T	L	P	A	A	A
Malvaceae	*Helicteres lanata* (Tejusam. & Binn.) Kurz	S	L	P	P	P	A
Malvaceae	*Mallotus paniculatus* Mull. Arg	T	L, S	A	P	A	A
Malvaceae	*Mallotus philippensis* Mull. Arg	ST	L	A	P	P	A
Malvaceae	*Macrocos paniculata* L.	T	L	A	P	A	A
Malvaceae	*Urena lobata* L.	US	L	A	P	P	P
Menispermaceae	*Tilia cordata* (Cokeleb.) Diels	H	L	P	P	A	A
Musaceae	*Musa cylindrica* Colla	H	L, S	A	P	A	A
Oleaceae	*Jasminum anodontum* Gagnep	C	L	A	P	A	A
Oleaceae	*Jasminum simplicifolium* C. Forst	C	L	A	P	A	A
Phyllanthaceae	*Bischofia javanica* Blume	T	L	A	P	A	A
Phyllanthaceae	*Phyllanthus emblica* L.	T	S	A	P	A	A
Phyllanthaceae	*Phyllanthus sp.1*	H	L	A	P	P	A
Phyllanthaceae	*Phyllanthus sp.2*	S	L, S	A	P	A	A
Poeaeae	*Arundo donax* L.	Gs	L	A	P	P	A
Poeaeae	*Brachiaria mutica* (Forsk.) Stapf	Gs	L	A	P	P	A
Poeaeae	*Imperata cylindrica* (L.) Rauesch	Gs	L	A	P	P	P
Poeaeae	*Neyraudia reynaudiana* (Kunth) H.Keng ex Hitch.	Gs	L	A	P	P	P
Poeaeae	*Pennisetum polystachyon* (L.) Schult	ExGs	L	A	P	P	P
Poeaeae	*Sorghum halepense* (L.) Pers	Gs	L	A	P	P	P
Poeaeae	*Sorghum propinquum* (Kunth) Hitchc	Gs	L	A	P	P	A
Rhamnaceae	*Ziziphus oenoplia* (L.) Mill.	WC	L	A	P	A	A
Rubiaceae	*Isora umbellata* Valeton ex koord	S	S	P	P	A	A
Simaroubaceae	*Harrisonia perforata* (Blanco) Merr	ScanS	L, S	A	P	P	A
Agriculture crop plant							
Annonaceae	*Annona squamosa* L. (Sugar apple)	ExST	L, S	A	A	A	P
Euphorbiaceae	*Hevea brasiliensis* Muell. Arg. (Para rubber tree)	ExT	L, s	A	A	A	P
Euphorbiaceae	*Manihot esculenta* Crantz (Cassava)	ExST	L, S	A	A	A	P
Myrtaceae	*Eucalyptus camaldulensis* Dehn. (River red gum)	ExT	L, S	A	A	A	P
Poeaeae	*Zea mays* L. (Corn)	ExGs	L, S	A	A	A	P
Solanaceae	*Capsicum annuum* L. (Capsicum)	ExS	L, S	A	A	A	P
Umbelliferae	*Coriandrum sativum* L. (Coriander)	ExH	L, S	A	A	A	P
Table 2. Species list of gaurs’ forage species and their edible parts in the transition zone around Khlong Pla Kang National Park Guard Station, Khaoyai National Park. ‘Forage species: C = Climber, ExGs = Exotic Grass, ExH = Exotic Herb, ExS = Exotic Shrub, ExST = Exotic Shrub/Exotic Shrubby Tree, ExT = Exotic Tree, Gs = Grass, H = Herb, S = Shrub, ScanS = Scandent Shrub, ST = Shrubby Tree, T = Tree, US = Under Shrub, WC = Woody Climber. ‘Part of forage species: L = Leaf, F = Flower, S = Shoot.

Discussion

Feeding ecology is an important aspect of understanding the relationships between consumers and their environments48 in order to explain the increase in crop raids at the edge of protected areas. Using indirect bite count surveys to calculate for individual plant species has flaws. We suggest that in diet selection studies, it is preferable to use microhistological surveys together with indirect bite counts to assess the utility of the latter in gaur diet selection (see Holechek et al.35 and Lashley et al.26 for comparative approaches).

In KPK, gaur sightings occurred mostly in man-made grassland during the day time (06:00 AM and 06.00 PM). Gaur have previously been reported in Northern Kerala, India to enter grassland areas during the night time (06:00 PM–06:00 AM) (Jayson, 2016)46. The forage species selected by gaur did not differ between dicots and monocots in both dry and wet seasons. These results differed from those reported by Bidayabha18 on the gaur population in the Khao Phaeng-Ma Non-Hunting Area (KPM) adjacent to KYNP. The KPM is mainly covered by evergreen and deciduous forests, but the KPM Area was restored mainly from man-made grassland and in 2017 Prayong and Srikomasatara37 found forage grass species in KPM were covered by pioneer tree species. There can be large changes in wildlife intake on grassland over different periods38,39. In this way, wildlife can show an opportunistic behavior in relation to forage availability40. The differences between browsers and grazers extend beyond diet selection; they include specialization within the digestive tract that may allow grazing and browsing herbivores to better extract nutrients from their preferred forage class (grass or browse)41,42. Ungulate species have been found to have different food and feeding habits43. Gaur, have been described as grazers44,45, browsers46 and generalists47 depending on habitat types.

Additionally, the results of our study show that 43 species of plants are consumed by gaur in KPK. Eighteen forage species were absent in the dry season. A change of food preference by animals during the vegetative growth season was clearly pointed out by Fresehi et al.38, and this could be due to modification in palatability of forage species according to their different stage of development39. It could also be influenced by forage biomass or plants’ reaction to utilization, and that reaction can change during growing seasons38. In the natural habitat, this process is important in ecology40, and should be accounted for in future studies. This evolution cannot be negative because the utilization of native species by wildlife can occur to a remarkable degree, and species can adapt, in particular situations, to browse on species of reduced forage quality48.

The variation in preference rating could be influenced by difference in the plant species and mode of presentation48. For example, the electivity index of natural forage species showed that Ageratum conyzoides L. had the highest value in wet seasons, Chromolaena odorata (L.) R.M. King & H. Rob. had high electivity index in both seasons. These two species are high in crude protein that induce gaur to select them with a high electivity index, even though Ageratum conyzoides L. was scare and low in biomass per area when compared to other species. Chromolaena odorata (L.) R.M. King & H. Rob. is available or present in all habitat types, but it emits strong odors and may not be favorable or relished if gaur have other forage choices as explained by Kaitho et al.52. In comparison, Wrightia arborea (Dennst.) Mabb. contains the highest crude protein, but it produces a white latex that may not be favorable to gaur. Furthermore, the texture and chemical constituents of the leaves41, secondary compounds, macronutrient concentrations, flavors and odors3,45 also have been found to be important to preference rating of animals. These factors are not taken into account in this study and are recommended for future study. It should be noted that crop plants such as Manihot esculenta Crantz and Zea mays L. are higher in moisture content and are grown in larger areas as a monoculture as opposed to natural forage that is usually scattered in small areas. Additionally, crude protein in the Manihot esculenta Crantz and Zea mays L. were lower than the average of wild forage species, while lipids were higher than the average of natural forage species. These lipids can give gaur more energy to support their activities in shorter feedings within a large area of crop plants. This finding can support the theory of crop feeding as an optimizing strategy in which gaur choose behavioral strategies that are most likely to give them maximum benefit in comparison with the cost incurred55. Gaur may encounter the dangers from agricultural owners when feeding their crops.
Table 3. Biomass of available, removal and electivity index of gaurs’ forage species in transition zone around Khlong Pla Kang National Park Guard Station, Khao Yai National Park.

Family	Scientific name	Available (g ha\(^{-1}\))	Removal (g ha\(^{-1}\))	Electivity index			
		Dry	Wet	Dry	Wet	Dry	Wet
Natural forage species							
Apocynaceae	*Alstonia scholaris* (L.) R.Br	139.2	212	49.6	152.8	0.15	−0.26
Apocynaceae	*Wrightia arbores* (Dennst.) Mabb	24.5	3.5	13.3	2.1	−0.05	−0.17
Asteraceae	*Ageratum conyzoides* L.	N/A	28.8	N/A	0.2	N/A	0.97
Asteraceae	*Chromolaena odorata* (L.) R.M. King & H. Rob	170.6	454.8	4.5	11.1	0.9	0.89
Bignoniaceae	*Markhamia stipulata* Seem	N/A	14.5	N/A	3.5	N/A	0.28
Combretaceae	*Combretum deciduum* Collet & Hemsl	N/A	67.2	N/A	6.5	N/A	0.63
Costaceae	*Costus speciosus* (Koen.) Sm	N/A	1.4	N/A	0.4	N/A	0.2
Cyperaceae	*Cyperus* sp.	N/A	151.5	N/A	1.3	N/A	0.96
Dilleniaceae	*Dillenia obovata* (Blume) Hoogland	N/A	1.7	N/A	1.7	N/A	−0.4
Dioscoreaceae	*Dioscorea glabra* R.M. King & H. Rob	0.6	5.6	0.6	3.4	−0.35	−0.7
Dipterocarpaceae	*Dipterocarpus turbinatus* C.F. Gaertn	1.2	N/A	0.6	N/A	−0.01	N/A
Euphorbiaceae	*Croton persimilis* Mull. Arg	N/A	1.3	N/A	0.5	N/A	0.05
Fabaceae	*Acacia catechu* (L.f.) Willd	N/A	209.1	N/A	108.8	N/A	−0.1
Fabaceae	*Acacia concinna* (willd.) DC	73	125.8	40.5	88	−0.07	−0.24
Fabaceae	*Adenanthera pavonina* L.	N/A	13.6	N/A	7.1	N/A	−0.1
Fabaceae	*Pterocarpus macrocarpus* Kurz	4.6	21.5	0.6	16.8	0.58	−0.29
Fabaceae	*Xylia xylocarpa* (Roxb.) Taub	N/A	9.3	N/A	2.3	N/A	0.27
Fabaceae	*Irvingia malayana* Oliv. Ex A.W.Benn	5.3	23.7	4.4	7.9	−0.26	0.12
Lauraceae	*Cinnamomum iners* Reinw. Ex Blume	3.4	N/A	3.4	N/A	−0.35	N/A
Lauraceae	*Litsea glutinosa* (Lour.) C.B.Rob	0.4	2.9	0.2	1.2	−0.01	0.02
Malvaceae	*Helicteres lanata* (Teijsm. & Binn.) Kurz	N/A	0.7	N/A	0.7	N/A	−0.4
Malvaceae	*Microcos paniculata* L.	N/A	100.4	N/A	56.4	N/A	−0.14
Malvaceae	*Urena lobata* L.	58	108.6	6.5	10.5	0.63	0.63
Menispermaceae	*Tiliacora triandra* (Colebr.) Diels	N/A	0.8	N/A	0.8	N/A	−0.4
Moraceae	*Musa* cylindrica Colla	3.4	2.3	2.4	0.5	−0.18	0.33
Oleaceae	*Jasminum anodontum* Gagnep.	11.4	52	6.8	47.1	−0.1	−0.36
Oleaceae	*Jasminum simplicifolium* G. Forst	25.2	26.5	14.6	15.6	−0.09	−0.16
Phyllanthaceae	*Baccaea javanica* Blume	N/A	8.4	N/A	6.4	N/A	−0.28
Phyllanthaceae	*Phyllanthus emblica* L.	N/A	38.4	N/A	25.6	N/A	−0.22
Phyllanthaceae	*Phyllanthus sp.1*	4.3	12.5	1.7	4.3	0.1	0.11
Phyllanthaceae	*Phyllanthus sp.2*	2.4	10.8	2	9.6	−0.26	−0.35
Poaceae	*Arundo donax* L.	56.4	50.9	3.4	26.5	0.78	−0.1
Poaceae	*Brachiaria mutica* (Dorsak.) Stapf	N/A	1.8	N/A	0.9	N/A	−0.08
Poaceae	*Imperata cylindrica* (L.) Raeusch	N/A	3638.5	N/A	2099.1	N/A	−0.15
Poaceae	*Neyraudia reynaudiana* (Kunth) H.Keng ex Hitchc	59.1	14.3	53.8	11.2	−0.3	−0.29
Poaceae	*Pennisetum polystachyon* (L.) Schult	N/A	38.7	N/A	20.3	N/A	0.1
Poaceae	*Sorghum halepense* (L.) Pers	16.8	26.9	4.9	11.8	0.25	−0.01
Poaceae	*Sorghum propinquum* (Kunth) Hitchc	14.5	105.9	8.8	63.6	−0.11	−0.17
Poaceae	*Sorghum halepense* (L.) Pers	16.8	26.9	4.9	11.8	0.25	−0.01
Poaceae	*Zea mays* L. (Corn)	N/A	2084.8	N/A	912.1	N/A	−0.01
Poaceae	*Ziziphus oenoplia* (L.) Mill	23	127.5	4.7	63.2	0.01	−0.07
Poaceae	*Zea mays* L. (Corn)	N/A	2084.8	N/A	912.1	N/A	−0.01
Poaceae	*Capsicum annuum* L. (Capsicum)	N/A	686	N/A	196	N/A	0.2
Poaceae	*Coriandrum sativum* L. (Coriander)	N/A	4075.5	N/A	1254	N/A	0.16

Agricultural crop plant

Annonaceae	*Annona squamosa* L. (Sugar apple)	N/A	65.2	N/A	16.6	N/A	0.25
Euphorbiaceae	*Hevea brasiliensis* Mull. Arg. (Pará rubber tree)	N/A	29.9	N/A	6.6	N/A	0.38
Euphorbiaceae	*Manihot esculenta* Cramer. (Cassava)	264	281	198	105	−0.21	0.04
Myrtaceae	*Eucalyptus camaldulensis* Dehnh. (River red gum)	N/A	240	N/A	60	N/A	0.26
Poaceae	*Zea mays* L. (Corn)	N/A	2084.8	N/A	912.1	N/A	−0.01
Solanaceae	*Capsicum annuum* L. (Capsicum)	N/A	686	N/A	196	N/A	0.2
Umbelliferae	*Coriandrum sativum* L. (Coriander)	N/A	4075.5	N/A	1254	N/A	0.16
Our results at the edge of KPK indicated that gaur were entering the agriculture areas at higher rates in the wet season (May to October). Because most crop plants are dependent on rainfall\cite{36,50}, they are grown in the wet season and harvested in the dry season. The mineral content in consumed species (> 80% dicots) was higher in KYNP than in gaur dietary items in Bhagvan Mahaveer Wildlife Sanctuary and Mollem National Park, India (> 60% monocots)\cite{16} presumably due to different geographical and variation in the plant community (more open area than KPK). In spite of the forage quality of crop plants such as *Manihot esculenta* Crantz and *Zea mays* L. in early the wet season, the quality of crop plants are nearly equal when compared to natural species, but late in the wet season, the quality of natural species were dropped off much faster than crop plants. During this period, the availability of crop plants at the edge of KPK may have contributed to the crop raiding and gaur-human conflict in the area, since the forage availability in KYNP has sparse amounts of low herbaceous ground cover.

Table 4. The type of forage species in the wet season and dry season at the edge along Khlong Pla Kang National Park Guard Station, Khao Yai National Park. T = Tree; S = Shrub; H = Herb; G = Grass; C = Climber; St = Shrubby tree; Et = Exotic tree; Ss = Scandent shrub; Us = Under shrub; Eg = Exotic grass; Wc = Woody climber.

Season	Forage species (species)	Percentage of selection (%)
Wet	T 13; S 5; H 6; G 7; C 3; St 1; Et 3; Ss 2; Us 1; Eg 1	80.5; 17.4
Dry	T 8; S 2; H 3; G 4; C 3; St 1; Et 0; Ss 2; Us 1; Eg 0	84; 14.8
F	0.976	
df	3, 18	
p-value	0.426	

Table 5. Food quality of gaur foods in the transition zone around Khlong Pla Kang National Park Guard Station, Khao Yai National Park (n = 3). (mean ± sd), a = sd < 0.001, N/A = not analyzed due to not found consumed.

Scientific name	Moisture content (%)	Food quality (mg g⁻¹)	Electivity index				
		Ash	Fiber	Crude protein	Lipid	Dry	Wet
Natural forage species							
Chromolaena odorata (L.) R.M. King & H. Rob	54.17b	0.097 ± 0.001a	0.277 ± 0.01ab	0.101 ± 0.001ab	0.035 ± 0.003d	0.9	0.89
Ageratum conyzoides L.	44.544b	0.096 ± 0.001a	0.359 ± 0.009a	0.382 ± 0.266d	0.013 ± 0.005abc	N/A	0.97
Alstonia scholaris (L.) R.Br	68c	0.154 ± 0.011c	0.466 ± 0.091b	0.06 ± 0.001a	0.064 ± 0.006f.	0.15	−0.26
Croton persimilis Mull. Arg	46.43b	0.106 ± 0.001a	0.388 ± 0.005a	0.083 ± 0.001a	0.02 ± 0.001a	N/A	0.05
Mallotus paniculatus Mull. Arg	63.64c	0.08 ± 0.001c	0.789 ± 0.044d	0.229 ± 0.22cc	0.44 ± 0.004a	−0.01	−0.4
Wrightia arborea (Dennst.) Mabb	36.36b	0.092 ± 0.000d	0.349 ± 0.001a	0.686 ± 0.009a	0.057 ± 0.002e.	−0.05	−0.17
Jasminum anodontum Gagnep	40.41b	0.057 ± 0.001b	0.339 ± 0.007b	0.392 ± 0.002d	0.014 ± 0.003abc	−0.1	−0.36
Microcos paniculata L.	34.02b	0.058 ± 0.004b	0.071 ± 0.089a	0.119 ± 0.001ac	0.008 ± 0.001ab	N/A	−0.14
Impexta cylindrica (L.) Rauesch	14.71b	0.059 ± 0.001b	0.734 ± 0.054d	0.036 ± 0.007c	0.018 ± 0.001bc	N/A	−0.15
Harrisonia perforata (Blanco) Merr	47.22b	0.057 ± 0.001b	0.364 ± 0.07b	0.075 ± 0.001ab	0.006 ± 0.003a	−0.18	−0.29
Phyllanthus emblica L.	19.8b	0.027 ± 0.004a	0.332 ± 0.003a	0.328 ± 0.006b	0.023 ± 0.004a	N/A	−0.22
Mean ± s.d	42.66 ± 15.84	0.08 ± 0.033	0.464 ± 0.185	0.226 ± 0.214	0.028 ± 0.019		

Agriculture crop plant							
Manihot esculenta Crantz	68.4 ± 6.48c	0.123 ± 0.002E	0.597 ± 0.139a	0.11 ± 0.019ab	0.039 ± 0.000ab	−0.21	0.04
Zea mays L.	73.67 ± 3.4c	0.119 ± 0.002E	0.535 ± 0.007c	0.081 ± 0.002b	0.017 ± 0.004ab	N/A	−0.01
F	246.331	1094.632	2.404	11.842	101.016		
df	12, 26	12, 26	12, 26	12, 26	12, 26		
p-value	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
and grass that are the main forage species of gaur. Retamosa et al. suggested that reliance on crops will be increased when crop plants such as Zea mays L. are located close to the woodland as found at the edge of KPK.

The primary conservation technique used at the edge was managing grasslands to improve the quantity and quality of grasses and other food plants for successful and sustainable conservation of gaur. The critical problem is to have cooperation of local residents to mitigate conflicts of interest between conservation and economics. Improving public awareness by conducting outreach programs and strict law enforcement by patrolling combined with habitat management along the habitat site might reduce human and gaur conflict in the area.

This study suggests that gaur living in edge areas are generalists and consume forage species as opportunists. Gaur entered the agricultural areas at the edge of the protected area, even though the food quality of crop species was lower than the average of natural forage species. Manihot esculenta Crantz is the main crop damaged in the area and reduce the large areas of monocrop around the edge of protected areas to improve farmer vigilance and increase benefits for farmers who have to live next to this protected area.

References
1. Guerbois, C., Chapanda, E. & Fritz, H. Combining multi-scale socio-ecological approaches to understand the susceptibility of subsistence farmers to elephant crop raiding on the edge of a protected area. J. Appl. Ecol. 49, 1149–1158 (2012).
2. Felton, A. M. et al. Protein content of diets dictates the daily energy intake of a free-ranging primate. Behav. Ecol. 20, 685–690 (2009).
3. Rode, K. D., Chiyo, P. I., Chapman, C. A. & McDowell, L. R. Nutritional ecology of elephants in Kibale National Park, Uganda, and its relationship with crop-raiding behaviour. J. Trop. Ecol. 22, 441–449 (2006).
4. Duckworth, J. W., Sankar, K., Williams, A. C., Kumar, N. S. & Timmins, R. J. Bos gaurus. The IUCN Red List of Threatened Species 2016, e.T289146363646 (2016).
5. Royal Thai Government Gazette. Wildlife Preservation and Protection Act, B.E.2562 (2019) of Thailand. www.ratchakitchatso.co.th (2019, in Thai).
6. Sriksomaratara, S. & Suteethorn, V. Populations of gaur and banteng and their management in Thailand. Nat. His. Bull. Siam Soc. 43(1), 55–83 (1995).
7. Laichanthuek, P., Sukmasuang, R. & Duengkae, P. Population and habitat use of gaur (Bos gaurus) around Khao Phaeng Ma Non-Hunting Area, Nakhon Ratrasima Province. J. Wildl. Thailand 24, 83–95 (2017).
8. Chetri, M. Diet analysis of gaur, Bos gaurus gaurus (Smith, 1827) by micro-histological analysis of fecal samples in Parsa Wildlife Reserve, Nepal. Our Nat. 4, 20–28 (2006).
9. Bell, R. H. V. The use of the herb layer by grazing ungulates in Serengeti. In Watson, A. (Ed.). Animal Population in Relation to Their Food Resources. (Blackwell Scientific Publication 1970).
10. Jarman, P. J. The social organization of antelope in relation to their ecology. Behaviour 48, 215–266 (1974).
11. Bhumpakphan, N. & McShea, W. J. Ecology of gaur and banteng in the seasonally dry forests of Thailand. In: McShea, W. J., Davies, S. J. & Bhumpakphan, N. (Eds.). The Ecology and Conservation of Seasonally Dry Forests in Asia. (Rowman and Littlefield Publishers, Inc. and Smithsonian Institution Scholarly Press 2011).
12. Steinmetz, R. Gaur (Bos gaurus) and banteng (Bos javanicus) in the lowland forest mosaic of Xe Pian Protection Area, Lao PDR: Abundance, habitat use and conservation. Mammalia 68, 141–157 (2004).
13. Karanth, K. U. & Sunquist, M. E. Population structure, density and biomass of large herbivores in the tropical forests of Nagarhole, India. J. Trop. Ecol. 8, 21–35 (1992).
14. Steinmetz, R. Ecological surveys, monitoring, and the role of local people in protected areas of Lao PDR. (International Institute for Environment and Development 2000).
15. Choudhury, A. Distribution and conservation of gaur Bos gaurus in the Indian Subcontinent. Mammal. Rev. 12, 199–226 (2002).
16. Gad, S. D. & Shyama, S. K. Diet composition and quality in Indian bison (Bos gaurus) based on fecal analysis. Zoool. Sci. 28(4), 264–267 (2011).
17. Velho, N., Sirivivasaan, U., Singh, P. & Laurance, W. F. Large mammal use of protected and community-managed lands in a biologically hotspot. Anim. Conserv. https://doi.org/10.1111/acv.12234 (2015).
18. Bidayabha, T. Ecology and behavior of gaur (Bos gaurus) in a degraded area at Khao Phaeng-Ma, the Northeastern Edge of Khao Yai National Park. (Faculty of Biology, Mahidol University 2001).
19. Panusitikorn, P. & Prato, T. Conservation of protected areas in Thailand: the case of Khao Yai National Park, protected areas in East Asia. George Wright Forum 18(2), 66–76 (2001).
20. Sorensen, A. A., van Beest, P. M. & Brook, R. K. Quantifying overlap in crop selection patterns among three sympatric ungulates in an agricultural landscape. Basic App. Ecol. 16, 601–609 (2015).
21. Dodorov, N. A. Cereals, pulses and oilseeds. Livestock Prod. Sci. 19, 47–95 (1988).
22. Curzer, H. J., Wallace, M. C., Perry, G., Muhlberger, P. J. & Perry, D. The ethics of wildlife research: a nine R theory. ILAR J. 54(1), 52–57 (2013).
23. Department of National Parks, Wildlife and Plant Conservation (DNP). Management plan for Dong Phayayen-Khao Yai Forest Complex. (Department of National Parks, Wildlife, and Plant Conservation 2006).
24. Kao-mim, N. Use of Hyperspectral Imaging System Data from HJ – 1A Satellite for Forest Types Classification in Khao Yai National Park. (MS thesis, Kasetsart University 2018, in Thai).
25. Ngoprasert, D. & Gale, G. A. Tiger density, home occupancy, and prey occupancy in the human disturbed Dong Phayayen – Khao Yai Forest Complex, Thailand. Mammo. Biol. 95, 51–58 (2019).
26. Lashley, M. A., Chittwood, M. C., Street, G. M., Moorman, C. E. & DePerno, C. S. Do indirect bite count surveys accurately represent diet selection of white-tailed deer in a forested environment? Wildl. Res. 43, 254–260 (2016).
27. Lashley, M. A., Chittwood, M. C., Harper, C. A., Moorman, C. E. & DePerno, C. S. Collection, handling and analysis of forages for concentrate selectors. Wildl. Biol. Pract. 10(1), 6–15 (2014).
28. Shafer, E. L. Jr. The twig-count method for measuring hardwood deer browse. J. Wildl. Manag. 27(3), 428–437 (1963).
29. Ivlev, V. S. Experimental Ecology of the Feeding of Fishes. (Yale University Press 1961).
30. Association of Official Analytical Chemists (AOAC). Guidelines for collaborative study procedure to validate characteristics of a method of analysis. J. Assoc. Off. Anal. Chem. 71, 161–171 (1988).
Correspondence

The authors declare no competing interests.

Author contributions

R.C. and S.P. analyzed the data, wrote the article and edited the manuscript. All authors read and approved the final manuscript and agree to authorship and submission of the manuscript for peer review.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to S.P.

Reprints and permissions information is available at www.nature.com/reprints.
Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021