q-Analogues of some supercongruences related to Euler numbers

Victor J. W. Guo

School of Mathematics and Statistics, Huaiyin Normal University, Huai’an, People’s Republic of China

ABSTRACT
Let \(E_n \) be the \(n \)th Euler number and \((a)_n = a(a + 1) \cdots (a + n - 1)\) the rising factorial. Let \(p > 3 \) be a prime. In 2012, Sun proved that

\[
\sum_{k=0}^{(p-1)/2} (-1)^k (4k + 1) \left(\frac{1}{2}\right)_k^3 \equiv p(-1)^{(p-1)/2} + p^3 E_{p-3} \mod p^4,
\]

which is a refinement of a famous supercongruence of Van Hamme. In 2016, Chen, Xie, and He established the following result:

\[
\sum_{k=0}^{p-1} (-1)^k (3k + 1) \left(\frac{1}{2}\right)_k^3 2^{3k} \equiv p(-1)^{(p-1)/2} + p^3 E_{p-3} \mod p^4,
\]

which was originally conjectured by Sun. In this paper, we give \(q \)-analogues of the above two supercongruences as well as another supercongruence related to Euler numbers by employing the \(q \)-WZ method. As a conclusion, we also provide a \(q \)-analogue of the following supercongruence of Sun:

\[
\sum_{k=0}^{(p-1)/2} \frac{(1/2)_k^2}{k!^2} \equiv (-1)^{(p-1)/2} + p^2 E_{p-3} \mod p^3.
\]

1. Introduction
In 1914, Ramanujan [30] gave a number of rapidly convergent series of \(1/\pi \). Although the following series, due to Bauer [1], is not listed in [30], it gives an example of this kind:

\[
\sum_{k=0}^{\infty} (-1)^k (4k + 1) \left(\frac{1}{2}\right)_k^3 = \frac{2}{\pi},
\]
where \((a)_k = a(a+1)\cdots(a+k-1)\) denotes the rising factorial. Ramanujan’s formulas for \(1/\pi\) got widely admired in 1980s when they were discovered to offer efficient algorithms for calculating decimal digits of \(\pi\). See the monograph [2]. For a recent proof of Ramanujan’s series for \(1/\pi\), we refer the reader to Guillera [6].

In 1997, Van Hamme [35] developed interesting \(p\)-adic analogues of Ramanujan-type series. In particular, he conjectured the following supercongruence corresponding to (1):

\[
\sum_{k=0}^{(p-1)/2} (-1)^k (4k+1) \left(\frac{1}{2}\right)_k^3 \equiv p(-1)^{(p-1)/2} \pmod{p^3},
\]

where \(p\) is an odd prime. Note that we may calculate the sum in (2) for \(k\) up to \(p-1\), since the \(p\)-adic order of \((\frac{1}{2})_k/k!\) is 1 for \(k\) in the range \((p+1)/2 \leq k \leq p-1\). Congruences of this kind are called Ramanujan-type supercongruences. The congruence (2) was first proved by Mortenson [28] in 2008 using a \(6F_5\) transformation and the \(p\)-adic Gamma function and received a WZ (Wilf–Zeilberger [37,38]) proof by Zudilin [39] shortly afterwards.

In 2012, also employing the WZ method, Sun [33] gave the following refinement of (2):

\[
\sum_{k=0}^{m} (-1)^k (4k+1) \left(\frac{1}{2}\right)_k^3 \equiv p(-1)^{(p-1)/2} + p^3 E_{p-3} \pmod{p^4},
\]

where \(m = p-1\) or \((p-1)/2\), and \(E_{p-3}\) is the \((p-3)\)th Euler number, which may be given by

\[
\sum_{k=0}^{\infty} E_k \frac{x^k}{k!} = \frac{2}{e^x + e^{-x}}.
\]

In recent years, \(q\)-analogues (or rational function generalizations) of congruences and supercongruences have aroused the interest of many researchers (see [7,8,10–14,16–18,20–23,25,26,29,36,40]). For instance, the author in [7] gave the following \(q\)-analogue of (2): for any odd integer \(n > 1\),

\[
\sum_{k=0}^{(n-1)/2} (-1)^k q^k [4k+1] \left[\frac{(q; q^2)_k^3}{(q^2; q^2)_k^3}\right] \equiv [n]q^{(n-1)/4} (-1)^{(n-1)/2} \pmod{[n] \Phi_n(q)^2},
\]

Here we need to be familiar with the standard \(q\)-notation. The \(q\)-integer is defined by \([n] = 1 + q + \cdots + q^{n-1}\), and the \(q\)-shifted factorial is defined as \((a; q)_n = (1-a)(1-aq)\cdots(1-aq^{n-1})\) for \(n \geq 1\) and \((a; q)_0 = 1\). Moreover, let the \(n\)th cyclotomic polynomial \(\Phi_n(q)\) be

\[
\Phi_n(q) = \prod_{1 \leq k \leq n, \gcd(k,n)=1} (q - \zeta^k),
\]

where \(\zeta = e^{2\pi i/n}\) (an \(n\)th primitive root of unity). It is well known that \(\Phi_n(q)\) is an irreducible polynomial in the polynomial ring \(\mathbb{Z}[q]\).
Let $A(q)$ and $B(q)$ be two rational functions in q and $P(q)$ a polynomial in q with integer coefficients. We say that $A(q)$ is congruent to $B(q)$ modulo $P(q)$, denoted by $A(q) \equiv B(q) \pmod{P(q)}$, if $P(q)$ divides the reduced numerator of $A(q) - B(q)$ in $\mathbb{Z}[q]$.

In this paper, we shall give a q-analogue of (3).

Theorem 1.1: Let n be a positive odd integer. Then

$$\sum_{k=0}^{N} (-1)^k q^{k^2} (4k + 1) \frac{q^{3k}}{(q^2; q^2)_k} \equiv (-1)^{(n-1)/2} q^{(1 - n^2)/4} \left(\frac{\binom{n}{2}}{n} + \frac{(n^2 - 1)(1 - q^2)}{24} [n]^3 \right)$$

$$+ [n]^3 \sum_{k=1}^{(n-1)/2} \frac{q^{k^2} (q^2; q^2)_k}{[2k][2k - 1][2k]^3} \pmod{[n] \Phi_n(q)^3},$$

(4)

where $N = (n - 1)/2$ or $n-1$.

Note that Sun [31, Equation (3.1)] proved that, for any odd prime p,

$$\sum_{k=1}^{(p-1)/2} \frac{4^k}{k(2k - 1)\binom{2k}{k}} \equiv 2E_{p-3} \pmod{p}.$$

Letting $n = p$ be a prime greater than 3 and taking $q \to 1$ in (4), we immediately get (3).

Still using the WZ method, Guillera and Zudilin [5] established the following supercongruence: for odd primes p,

$$\sum_{k=0}^{(p-1)/2} (-1)^k (3k + 1) \frac{\left(\frac{1}{2}\right)^3 k^{3k}}{k!^3} \equiv p(-1)^{(p-1)/2} \pmod{p^3}.$$

(5)

Moreover, in 2016, Chen, Xie, and He [4] gave the following refinement of (5):

$$\sum_{k=0}^{p-1} (-1)^k (3k + 1) \frac{\left(\frac{1}{2}\right)^3 k^{3k}}{k!^3} \equiv p(-1)^{(p-1)/2} + p^3 E_{p-3} \pmod{p^4},$$

(6)

which was originally conjectured by Sun [32, Conjecture 5.1]. The author [10] established a q-analogue of (5):

$$\sum_{k=0}^{n-1} (-1)^k [3k + 1] \frac{q^{k^3}}{(q; q^2)_k} \equiv [n] q^{(n-1)^2/4} (-1)^{(n-1)/2} \pmod{[n] \Phi_n(q)^2}.$$

(7)

We point out that a supercongruence for the left-hand side of (5) modulo p^4, also conjectured by Sun [32, Conjecture 5.1], was recently confirmed by Mao [27].

In this paper, we shall also establish a q-analogue of (6).
Let n be a positive odd integer. Then

$$
\sum_{k=0}^{n-1} (-1)^k [3k + 1] \frac{(q^2)^3}{(q; q^2)_k^3} \equiv (-1)^{(n-1)/2} q^{(1-n^2)/4} \left(\frac{q^{(n)} [n]}{} + \frac{(n^2 - 1)(1 - q^2)}{24} [n]^3 \right)
$$

$$
+ [n]^3 \sum_{k=1}^{(n-1)/2} \frac{q^k (q^2; q^2)_k}{[2k][2k - 1](q; q^2)_k} \quad (\text{mod } [n] \Phi_n(q)^3).
$$

(8)

Recently, the author and Liu [15] established a supercongruence similar to (3): for any prime $p > 3$,

$$
\sum_{k=0}^{(p+1)/2} (-1)^k (4k - 1) \frac{(-1)^3}{k!^3} \equiv p(-1)^{(p+1)/2} + p^3(2 - E_{p-3}) \quad (\text{mod } p^4).
$$

(9)

Moreover, a partial q-analogue of the supercongruence (9) modulo p^3 is already known: for any positive odd integer n,

$$
\sum_{k=0}^{M} (-1)^k [4k - 1] \frac{(q^{-1}; q^2)_k^3}{(q^2; q^2)_k^3} q^{k^2+2k} \equiv [n](-q)^{(n-3)(n+1)/4} \quad (\text{mod } [n] \Phi_n(q)^2),
$$

(10)

where M stands for $n-1$ or $(n + 1)/2$. See [17, Section 5] or [20, Theorem 4.9] with $r = -1, d = 2$ and $a = 1$.

The last aim of this paper is to give the following q-analogue of (9).

Theorem 1.3: Let n be a positive odd integer. Then, modulo $[n] \Phi_n(q)^3$,

$$
\sum_{k=0}^{M} (-1)^k [4k - 1] \frac{(q^{-1}; q^2)_k^3}{(q^2; q^2)_k^3} q^{(k+1)^2} \equiv (-1)^{(n+1)/2} q^{(1-n^2)/4} \left(\frac{q^{(n)} [n]}{} + \frac{(n^2 - 1)(1 - q^2)}{24} [n]^3 \right)
$$

$$
+ [n]^3 q^2 + (-1)^{(n-1)/2} q^{(n-1)^2/4+1} - [n]^3 \sum_{k=1}^{(n-1)/2} \frac{q^{1-k} (q^2; q^2)_k}{[2k - 1](q; q^2)_k},
$$

(11)

where $M = (n + 1)/2$ or $n-1$.

Note that Sun [32] has proved that, for any odd prime p,

$$
\sum_{k=1}^{(p-1)/2} \frac{4^k}{(2k - 1)(2k)_k^3} \equiv E_{p-3} - 1 + (-1)^{(p-1)/2} \quad (\text{mod } p).
$$

Letting $n = p, M = (p + 1)/2$, and taking $q \to 1$ in (11), we are led to (9).
The remainder of the paper proceeds as follows. We prove Theorems 1.1–1.3 in Sections 2–4, respectively, by using the \(q \)-WZ method, together with a \(q \)-analogue of Wolstenholme’s congruence and a \(q \)-analogue of Morley’s congruence. In Section 5, we give some concluding remarks and two open problems. Particularly in Corollary 5.2, using a recent result of Wei [36], we shall deduce a \(q \)-analogue of another supercongruence of Sun from Theorem 1.1.

2. Proof of Theorem 1.1

Recall that the \(q \)-binomial coefficients \(\binom{M}{N} \) are defined by

\[
\binom{M}{N}_q = \begin{cases}
(q; q)_M/(q; q)_N(q; q)_{M-N} & \text{if } 0 \leq N \leq M, \\
0 & \text{otherwise.}
\end{cases}
\]

We need the following \(q \)-analogue of Wolstenholme’s congruence (see [19, Lemma 3.1]).

Lemma 2.1: Let \(n \) be a positive integer. Then

\[
\binom{2n-1}{n-1}_q \equiv (-1)^{n-1}q^{(n)_2}/12 + (n^2 - 1)(1 - q^2)[n]^2 \pmod{\Phi_n(q^3)}.
\]

Moreover, a \(q \)-analogue of Morley’s congruence (see [24, (1.5)]) and a \(q \)-analogue of Fermat’s little theorem (see [19, Lemma 3.2]) will also be used in our proof.

Lemma 2.2: Let \(n \) be a positive odd integer. Then, modulo \(\Phi_n(q^3) \),

\[
\binom{n-1}{n-1/2}_{q^2} \equiv (-1)^{(n-1)/2}q^{(1-n^2)/4}\left((-q; q)_{n-1}^2 - \frac{(n^2 - 1)(1 - q^2)[n]^2}{24}\right).
\]

Lemma 2.3: Let \(n \) be a positive odd integer. Then

\[
(-q; q)_{n-1} \equiv 1 \pmod{\Phi_n(q)}.
\]

Proof of Theorem 1.1: By [11, Theorem 6.1], modulo \([n]\Phi_n(q)(1 - aq^n)(a - q^n)\),

\[
\sum_{k=0}^{(n-1)/2} (aq; q^2)_k(q/a; q^2)_k(q/b; q^2)_k(q; q^2)_k b^k
\]

\[
\equiv \sum_{k=0}^{n-1} (aq; q^2)_k(q/a; q^2)_k(q/b; q^2)_k(q; q^2)_k b^k,
\]

where \(a \) and \(b \) are indeterminates. Letting \(b \to \infty \) and \(a = 1 \) in (13), we get

\[
\sum_{k=0}^{(n-1)/2} (-1)^k q^{k^2} (aq; q^2)_k^3 (aq^2; q^2)_k^3 \equiv \sum_{k=0}^{n-1} (-1)^k q^{k^2} (aq; q^2)_k^3 (aq^2; q^2)_k^3 \pmod{\Phi_n(q^4)}.
\]

(14)
By [20, Theorem 4.1], both sides of (14) are congruent to 0 modulo \([n]\), and so (14) is also true modulo \([n]\Phi_n(q)^3\). Thus, to prove Theorem 1.1, it suffices to prove the \(N = (n - 1)/2\) case.

We introduce two rational functions in \(q\):

\[
F(m, k) = (-1)^{m+k} q^{(m-k)k/2} [4m + 1] (q; q^2)_m (q; q^2)_{m+k} (q^2; q^2)_m (q; q^2)_{m-k} (q; q^2)_k^2,
\]

\[
G(m, k) = (-1)^{m+k} q^{(m-k)k/2} (q; q^2)_m (q; q^2)_{m+k-1} (1 - q)(q^2; q^2)_{m-1} (q; q^2)_{m-k} (q; q^2)_k^2,
\]

where we assume that \(1/(q^2; q^2)_M = 0\) for negative integers \(M\). As mentioned in [7], the functions \(F(m, k)\) and \(G(m, k)\) form a \(q\)-WZ pair. Namely, they satisfy the following equality

\[
F(m, k - 1) - F(m, k) = G(m + 1, k) - G(m, k).
\]

(15)

Summing (15) over \(m\) from 0 to \((n - 1)/2\), we get

\[
\sum_{m=0}^{(n-1)/2} F(m, k - 1) - \sum_{m=0}^{(n-1)/2} F(m, k) = G\left(\frac{n + 1}{2}, k\right) - G(0, k) = G\left(\frac{n + 1}{2}, k\right).
\]

(16)

Summing (16) further over \(k\) from 1 to \((n - 1)/2\) and noticing that \(F(m, (n - 1)/2) = 0\) for \(m < (n - 1)/2\), we obtain

\[
\sum_{m=0}^{(n-1)/2} F(m, 0) - F\left(\frac{n - 1}{2}, \frac{n - 1}{2}\right) = \sum_{k=1}^{(n-1)/2} G\left(\frac{n + 1}{2}, k\right).
\]

(17)

Note that, for \(k = 1, 2, \ldots, (n - 1)/2\), we have

\[
G\left(\frac{n + 1}{2}, k\right) = (-1)^{(n+1)/2+k} q^{((n+1)/2-2-k)^2} (q; q^2)_{(n+1)/2} (q; q^2)_{(n-1)/2+k} (1 - q)(q^2; q^2)_{(n-1)/2-k} (q; q^2)_k^2
\]

\[
= (-1)^{(n+1)/2+k} q^{((n+1)/2-2-k)^2} \frac{(1 - q^n)(q; q^2)^3_{(n-1)/2} (q^{n+2}; q^2)_{k-1}}{(1 - q)(q^2; q^2)_{(n-1)/2-k} (q^2; q^2)_{(n-1)/2-k} (q; q^2)_k^2}.
\]

(18)

Since \(q^n \equiv 1\ (\text{mod } \Phi_n(q))\), there hold

\[
(q^2; q^2)_{(n+1)/2-k} = \frac{(q^2; q^2)_{(n-1)/2}}{(q^{n+3-2k}; q^2)_{k-1}}
\]

\[
\equiv \frac{(q^2; q^2)_{(n+1)/2}}{(q^{3-2k}; q^2)_{k-1}} = (-1)^{k-1} q^{(k-1)^2} \frac{(q^2; q^2)_{(n-1)/2}}{(q; q^2)_{k-1}} \ (\text{mod } \Phi_n(q)),
\]

(19)
and
\[
\frac{(q; q^2)_{(n-1)/2}}{(q^2; q^2)_{(n-1)/2}} = \prod_{j=1}^{(n-1)/2} \frac{1 - q^{2j-1}}{1 - q^{n-2j+1}}
\equiv \prod_{j=1}^{(n-1)/2} \frac{1 - q^{2j-1}}{1 - q^{1-2j}} = (-1)^{(n-1)/2} q^{(n-1)^2/4} \pmod{\Phi_n(q)}. \tag{20}
\]

Employing the above two q-congruences, we deduce from (18) that, for $1 \leq k \leq (n - 1)/2$,
\[
G\left(\frac{n + 1}{2}, k\right) = \frac{q^k(1 - q^n)^3(q^2; q^2)_{k-1}}{(1 - q)(1 - q^{2k-1})(q; q^2)_k} = \frac{q^k[n]^3(q^2; q^2)_k}{[2k][2k - 1](q; q^2)_k} \pmod{\Phi_n(q)^4}. \tag{21}
\]

Since $(q^2; q^2)_k/(q; q^2)_k = (-q; q^2)^2/[2k]_k$ and the q-binomial coefficient can be written as a product of different cyclotomic polynomials (see [3, Lemma 1]), we see that the right-hand side of (21) is congruent to 0 modulo $[n]$, and so is (18). Namely, the q-congruence (21) holds modulo $[n]\Phi_n(q)^3$.

In addition, by Lemmas 2.1–2.3,
\[
F\left(\frac{n - 1}{2}, \frac{n - 1}{2}\right) = \frac{[n]}{(-q; q^2)_{n-1}^2} \left[\frac{2n - 1}{n - 1}\right]^{n-1/2} q^2
\equiv (-1)^{(n-1)/2} q^{(1-n^2)/4} \left\{ q([n]) + \frac{(n^2 - 1)(1 - q^2)}{24} \left(2 - \frac{q^2([n])}{(-q; q^2)_{n-1}^2}\right) [n]^3 \right\}
\equiv (-1)^{(n-1)/2} q^{(1-n^2)/4} \left\{ q([n]) + \frac{(n^2 - 1)(1 - q^2)}{24} [n]^3 \right\} \pmod{[n]\Phi_n(q)^3}, \tag{22}
\]
where we have used $q([n]) \equiv 1 \pmod{\Phi_n(q)}$ for odd n in the last step.

Substituting (22) and the modulus $[n]\Phi_n(q)^3$ case of (21) into (17), we are led to (4) in the case where N is equal to $(n - 1)/2$. This completes the proof of the theorem. \hfill \blacksquare

3. Proof of Theorem 1.2

The author [10] employed the following functions
\[
F(m, k) = (-1)^m [3m - 2k + 1] \left[\frac{2m - 2k}{m}\right] \frac{(q; q^2)_m(q; q^2)_{m-k}}{(q; q)_m(q^2; q^2)_{m-k}}
\]
\[
G(m, k) = (-1)^{m+1} [m] \left[\frac{2m - 2k}{m-1}\right] \frac{(q; q^2)_m(q; q^2)_{m-k}q^{m+1-2k}}{(q; q)_m(q^2; q^2)_{m-k}}
\]
to establish (7). It is not difficult to verify that $F(m, k)$ and $G(m, k)$ satisfy the relation
\[
F(m, k - 1) - F(m, k) = G(m + 1, k) - G(m, k). \tag{23}
\]
That is, they form a q-WZ pair.

Since (8) is clearly true for $n = 1$, we now assume that $n \geq 3$. Summing (23) over $m = 0, 1, \ldots, n - 1$, we obtain

$$\sum_{m=0}^{n-1} F(m, k - 1) - \sum_{m=0}^{n-1} F(m, k) = G(n, k). \quad (24)$$

Summing (24) further over $k = 1, \ldots, n - 1$ and noticing that $F(m, n - 1) = 0$ for $m \leq n - 1$, we arrive at

$$\sum_{m=0}^{n-1} F(m, 0) = \sum_{k=1}^{n-1} G(n, k) = \sum_{k=1}^{(n+1)/2} G(n, k). \quad (25)$$

In view of

$$\left[\begin{array}{c} 2m \\ m \end{array} \right] = \frac{(q; q^2)_m (-q; q^2)_m}{(q^2; q^2)_m},$$

the identity (25) can be written as

$$\sum_{m=0}^{n-1} (-1)^n [3m + 1] \frac{(q; q^2)_m^3}{(q; q^2)_m} = \frac{[n][2n-1]}{(-q; q)_n-1} \sum_{k=1}^{(n+1)/2} \left[\begin{array}{c} 2n - 2k \\ n - 1 \end{array} \right] \frac{(q; q^2)_{n-k}q^{n+1-2k}}{(q^2; q^2)_{n-k}}. \quad (26)$$

For $1 \leq k \leq (n - 1)/2$, we have

$$\frac{(q; q^2)_{n-k}}{(q^2; q^2)_{n-k}} = \frac{(1 - q^n)(q; q^2)_{(n-1)/2}(q^{n+2}; q^2)_{(n-1)/2-k}}{(1 - q^{n-1})(q^2; q^2)_{(n-3)/2}(q^{n+1}; q^2)_{(n+1)/2-k}}$$

$$= \frac{(1 - q^n)(q^{n+2-2k}; q^2)_{k-1}}{(1 - q^{n-1})(q^{n+1-2k}; q^2)_{k-1}}$$

$$= \frac{(1 - q^n)(q^{2-2k}; q^2)_{k-1}}{(1 - q^{1})(q^{1-2k}; q^2)_{k-1}} = \frac{q^k(1 - q^n)(q^{2}; q^2)_{k-1}}{(q^2; q^2)_k} \pmod{\Phi_n(q)^2},$$

and

$$\left[\begin{array}{c} 2n - 2k + 1 \\ n \end{array} \right] = \prod_{k=1}^{n-2k+1} \frac{1 - q^{n+j}}{1 - q^j} \equiv 1 \pmod{\Phi_n(q)}.$$

It follows that

$$\sum_{k=1}^{(n+1)/2} \left[\begin{array}{c} 2n - 2k \\ n - 1 \end{array} \right] \frac{(q; q^2)_{n-k}q^{n+1-2k}}{(q^2; q^2)_{n-k}}$$

$$= \frac{(q; q^2)_{(n-1)/2}}{(q^2; q^2)_{(n-1)/2}} + \sum_{k=1}^{(n-1)/2} \left[\begin{array}{c} 2n - 2k \\ n - 1 \end{array} \right] \frac{(q; q^2)_{n-k}q^{n+1-2k}}{(q^2; q^2)_{n-k}}$$
\[
\begin{align*}
\sum_{n=0}^{\frac{n-1}{2}} \frac{1}{q^2 (-q; q)_{n-1}} + \sum_{k=1}^{\frac{(n-1)/2}{n}} \left[\frac{2n-2k+1}{n} \right] (1-q^n)(q; q^2)_{n-k} q^{n+1-2k} / (1-q^{2n-2k+1})(q; q^2)_{n-k} \\
\equiv (-1)^{(n-1)/2} q^{(1-n^2)/4} \left((-q; q)_{n-1} - \frac{(n^2 - 1)(1-q)^2 [n]^2}{24} \right) \\
+ [n]^2 \sum_{k=1}^{(n-1)/2} \frac{q^k (q^2; q^2)_k}{[2k][2k-1](q; q^2)_k} (\text{mod } \Phi_n(q)^3),
\end{align*}
\]

where we have used Lemmas 2.2 and 2.3 in the last step.

By Lemmas 2.1 and 2.3, we have
\[
\frac{[2n-1]}{(-q; q)_{n-1}} \equiv (-1)^{n-1} q^{2} (-q; q)_{n-1} + \frac{(n^2 - 1)(1-q)^2 [n]^2}{12} (\text{mod } \Phi_n(q)^3).
\]

Substituting (27) and (28) into (26) and making some simplifications, we immediately obtain (8).

4. Proof of Theorem 1.3

This time we need the following two rational functions in \(q \):
\[
F(m, k) = (-1)^{m+k} q^{(m-k+1)^2} \frac{[4m - 1](q^{-1}; q^2)_m (q^{-1}; q^2)_{m+k}}{(q^2; q^2)_m (q^2; q^2)_{m-k} (q^{-1}; q^2)_k},
\]
\[
G(m, k) = (-1)^{m+k} q^{(m-k+1)^2} \frac{(q^{-1}; q^2)_m (q^{-1}; q^2)_{m+k-1}}{(1-q)(q^2; q^2)_{m-1} (q^2; q^2)_{m-k} (q^{-1}; q^2)_k}.
\]

It is easy to check that the functions \(F(m, k) \) and \(G(m, k) \) form a \(q \)-WZ pair (in fact, they are the \((d, r) = (2, -1)\) case of the \(q \)-WZ pair in [9]). Namely, they meet the following relation:
\[
F(m, k - 1) - F(m, k) = G(m + 1, k) - G(m, k).
\]

Summing (29) over \(m \) from 0 to \((n + 1)/2\), we get
\[
\sum_{m=0}^{(n+1)/2} F(m, k - 1) - \sum_{m=0}^{(n+1)/2} F(m, k) = G \left(\frac{n + 3}{2}, k \right) - G(0, k) = G \left(\frac{n + 3}{2}, k \right).
\]

Summing (30) further over \(k \) from 1 to \((n + 1)/2\) and noticing that \(F(m, (n + 1)/2) = 0 \) for \(m < (n + 1)/2 \), we obtain
\[
\sum_{m=0}^{(n+1)/2} F(m, 0) = F \left(\frac{n + 1}{2}, \frac{n + 1}{2} \right) + \sum_{k=1}^{(n+1)/2} G \left(\frac{n + 3}{2}, k \right).
\]

By (22) and the \(q \)-congruence \([2n + 1]/[n + 1]^2 \equiv 1 - q[n]^2 \) (mod \(\Phi_n(q)^3 \)), we have
\[
F \left(\frac{n + 1}{2}, \frac{n + 1}{2} \right).
\]
This means that
\[
\sum_{k=1}^{(n+1)/2} G\left(\frac{n+3}{2}, k\right) \equiv q^2[n]^3 - [n]^3 \sum_{k=1}^{(n-1)/2} \frac{q^{1-k}(q^2; q^2)_k}{[2k-1](q; q^2)_k} \pmod{[n] \Phi_n(q)^3}. \tag{33}
\]
Substituting (32) and (33) into (31), we immediately obtain (11) for \(M = (n + 1)/2 \).

To prove (11) is also true for \(M = n - 1 \), we only need to prove that
\[
\sum_{k=(n+3)/2}^{n-1} (-1)^k [4k - 1] \frac{(q^{-1}; q^2)_k}{(q^2; q^2)_k} (q^{k+1})^2 \equiv 0 \pmod{[n] \Phi_n(q)^3}.
\]
By (10), the above congruence holds modulo \([n]\). It remains to prove the modulus \(\Phi_n(q)^4 \) case. This can be easily done by showing that the \(((n + 3)/2 + k)\)-th and \((n - 1 - k)\)-th summands cancel each other modulo \(\Phi_n(q)^4 \). (Note that each summand is congruent to 0 modulo \(\Phi_n(q)^3 \).)
V. J. W. Guo

5. Concluding remarks and open problems

From (3) and (6), one sees that, for any prime \(p > 3 \),

\[
\sum_{k=0}^{m} (-1)^k (4k + 1) \left(\frac{1}{2} \right)_k^3 \equiv \sum_{k=0}^{p-1} (-1)^k (3k + 1) \left(\frac{1}{2} \right)_k^3 2^{3k} \pmod{p^4}, \tag{34}
\]

where \(m = p-1 \) or \((p - 1)/2 \). Further, combining (4) and (8), we have the following \(q \)-analogue of (34): for any positive odd integer \(n \),

\[
\sum_{k=0}^{N} (-1)^k q^k [4k + 1] \frac{(q; q^2)_k}{(q^2; q^2)_k} = \sum_{k=0}^{n-1} (-1)^k [3k + 1] \frac{(q; q^2)_k}{(q; q^2)} (\mod{[n] \Phi_n(q)^3}), \tag{35}
\]

where \(N = (n - 1)/2 \) or \(n-1 \).

We now provide a conjectural parametric generalization of (35).

Conjecture 5.1: Let \(n \) be a positive odd integer. Then, modulo \([n] \Phi_n(q)(1 - aq^n)(a - q^n)\),

\[
\sum_{k=0}^{N} (-1)^k q^k [4k + 1] \frac{(aq; q^2)_k(q/a; q^2)_k(q; q^2)_k}{(aq^2; q^2)_k(q^2/a; q^2)_k(q^2; q^2)_k} = \sum_{k=0}^{n-1} (-1)^k [3k + 1] \frac{(aq; q^2)_k(q/a; q^2)_k(q; q^2)_k}{(aq; q)_k(q/a; q)_k(q; q)_k}, \tag{36}
\]

where \(N = (n - 1)/2 \) or \(n-1 \).

Using the ‘creative microscoping’ method introduced in [20] and the Chinese remainder theorem for relatively prime polynomials, the author [11, Theorem 5.3] has shown that the left-hand side of (36) is congruent to

\[
(-1)^{(n-1)/2} q^{(n-1)^2/4} [n] + (-1)^{(n-1)/2} q^{(n-1)^2/4} \frac{(1 - aq^n)(a - q^n)}{(1 - a)^2} [n]
\]

\[
- \frac{(1 - aq^n)(a - q^n)}{(1 - a)^2} [n] \sum_{k=0}^{(n-1)/2} \frac{(q; q^2)_k}{(aq^2; q^2)_k(q^2/a; q^2)_k}
\]

modulo \([n] \Phi_n(q)(1 - aq^n)(a - q^n)\). But it seems rather difficult to prove that the right-hand side of (36) is also congruent to the above expression, though a three-parametric generalization of (7) was already proved by the author and Schlosser [17, Theorem 6.1] (see also [20, Conjecture 4.6]).

In 2011, Sun [32] studied many interesting supercongruences related to Euler numbers. In particular, Sun [32, Theorems 1.1 and 1.2] proved that, for any prime \(p > 3 \),

\[
\sum_{k=0}^{p-1} \frac{1}{2^k} \binom{2k}{k} \equiv (-1)^{(p-1)/2} - p^2 E_{p-3} \pmod{p^3}, \tag{37}
\]
Hence, the

\[
\sum_{k=0}^{p-1} \frac{1}{16k} \binom{2k}{k}^2 \equiv (-1)^{(p-1)/2} + p^2 E_{p-3} \pmod{p^3},
\]

(38)

\[
\sum_{k=0}^{p-1} \frac{1}{16k} \binom{2k}{k}^2 \equiv (-1)^{(p-1)/2} - p^2 E_{p-3} \pmod{p^3}.
\]

(39)

Recently, Wei [36, Theorem 1.1 with \(c = q, d \to \infty\)] gave the following result: for any positive odd integer \(n\), and \(N = (n - 1)/2\) or \(n-1\),

\[
\sum_{k=0}^{N} (-1)^k q^k [4k + 1] \frac{(q; q^2)_k^3}{(q^2; q^2)_k^3} \equiv q^{(1-n)/2} \left([n] + \frac{(n^2 - 1)(1 - q)^2}{24} \right) \times \sum_{k=0}^{(n-1)/2} \frac{(q; q^2)_k^2}{(q^2; q^2)_k^2} q^{2k} \pmod{[n] \Phi_n(q)^3},
\]

(40)

which is clearly a \(q\)-analogue of the relation between (3) and (38): for any prime \(p > 3\),

\[
\sum_{k=0}^{m} (-1)^k (4k + 1) \frac{1}{k!} \equiv p \sum_{k=0}^{(p-1)/2} \frac{1}{16k} \binom{2k}{k}^2 \pmod{p^4},
\]

where \(m = p-1\) or \((p - 1)/2\).

Note that the author, Pan and Zhang [16] gave the following \(q\)-supercongruence:

\[
\sum_{k=0}^{(n-1)/2} \frac{(q; q^2)_k^2}{(q^2; q^2)_k^2} q^{2k} \equiv (-1)^{(n-1)/2} q^{(n^2-1)/4} \pmod{\Phi_n(q)^2}.
\]

(41)

Hence, the \(q\)-supercongruence (40) may be written as

\[
q^{(n-1)/2} \sum_{k=0}^{N} (-1)^k q^k [4k + 1] \frac{(q; q^2)_k^3}{(q^2; q^2)_k^3}
\]

\[
\equiv [n] \sum_{k=0}^{(n-1)/2} \frac{(q; q^2)_k^2}{(q^2; q^2)_k^2} q^{2k}
\]

\[
+ \frac{(n^2 - 1)(1 - q)^2}{24} [n]^3 (-1)^{(n-1)/2} q^{(n^2-1)/4} \pmod{[n] \Phi_n(q)^3}.
\]

(42)

Combining (4) and (42), we immediately obtain a \(q\)-analogue of (38).

Corollary 5.2: Let \(n\) be a positive odd integer. Then

\[
\sum_{k=0}^{(n-1)/2} \frac{(q; q^2)_k^2}{(q^2; q^2)_k^2} q^{2k} \equiv (-1)^{(n-1)/2} q^{(n^2-1)/4}
\]

\[
+ (-1)^{(n-1)/2} \frac{(n^2 - 1)(1 - q)^2}{24} [n]^2 \left(q^{-(n-1)/4} - q^{(n^2-1)/4} \right)
\]
\[q^{(n-1)/2} \left\lfloor \frac{n-1}{2} \right\rfloor^2 \sum_{k=1}^{(n-1)/2} \frac{q^k (q^2; q^2)_k}{[2k][2k - 1](q; q^2)_k} \quad (\text{mod } \Phi_n(q)^3). \]

However, to the best of the author’s knowledge, no \(q\)-analogues of (37) and (39), even conjectural, are known in the literature. It follows from (37) and (39) that, for any odd prime \(p\),

\[
\sum_{k=0}^{p-1} \frac{1}{2^k} \binom{2k}{k} \equiv \sum_{k=0}^{p-1} \frac{1}{16^k} \binom{2k}{k}^2 \quad (\text{mod } p^3). \quad (43)
\]

On the other hand, for odd \(n\), the author [8] proved that

\[
\sum_{k=0}^{n-1} q^k \frac{2k}{(-q; q)_k} \equiv (-1)^{(n-1)/2} q^{(n^2-1)/4} \quad (\text{mod } \Phi_n(q)^2), \quad (44)
\]
confirming a conjecture of Tauraso [34].

In light of (41) and (44), we believe that the following \(q\)-analogue of (43) is true.

Conjecture 5.3: Let \(n\) be a positive odd integer. Then

\[
\sum_{k=0}^{n-1} q^k \frac{2k}{(-q; q)_k} \equiv \sum_{k=0}^{n-1} \frac{(q; q^2)_k^2}{(q^2; q^2)_k^2} q^{2k} \quad (\text{mod } \Phi_n(q)^3).
\]

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The author was partially supported by the National Natural Science Foundation of China [grant number 11771175].

ORCID

Victor J. W. Guo
http://orcid.org/0000-0002-4153-715X

References

[1] G. Bauer, *Von den Coefficienten der Reihen von Kugelfunctionen einer Variablen*, J. Reine Angew. Math. 56 (1859), pp. 101–121.
[2] J.M. Borwein and P.B. Borwein, *Pi and the AGM, a study in analytic number theory and computational complexity*, reprint of the 1987 original, Canadian Mathematical Society Series of Monographs and Advanced Texts, Vol. 4, John Wiley & Sons, Inc., New York, 1998.
[3] W.Y.C. Chen and Q.-H. Hou, *Factors of the Gaussian coefficients*, Discrete Math. 306 (2006), pp. 1446–1449.
[4] Y. Chen, X. Xie, and B. He, *On some congruences of certain binomial sums*, Ramanujan J. 40 (2016), pp. 237–244.
[5] J. Guillera and W. Zudilin, “Divergent” Ramanujan-type supercongruences, Proc. Amer. Math. Soc. 140 (2012), pp. 765–777.
[6] J. Guillera, *A method for proving Ramanujan’s series for $1/\pi$*, Ramanujan J. 52 (2020), pp. 421–431.

[7] V.J.W. Guo, *A q-analogue of a Ramanujan-type supercongruence involving central binomial coefficients*, J. Math. Anal. Appl. 458 (2018), pp. 590–600.

[8] V.J.W. Guo, *Proof of a q-congruence conjectured by Tauraso*, Int. J. Number Theory 15 (2019), pp. 37–41.

[9] V.J.W. Guo, *q-Analogues of the (E.2) and (F.2) supercongruences of Van Hamme*, Ramanujan J. 49 (2019), pp. 531–544.

[10] V.J.W. Guo, *q-Analogues of two “divergent” Ramanujan-type supercongruences*, Ramanujan J. 52 (2020), pp. 605–624.

[11] V.J.W. Guo, *q-Supercongruences modulo the fourth power of a cyclotomic polynomial via creative microscoping*, Adv. Appl. Math. 120 (2020), Art. 102078.

[12] V.J.W. Guo, *A further q-analogue of Van Hamme’s (H.2) supercongruence for primes $p \equiv 3 \pmod{4}$*, Int. J. Number Theory 17 (2021), pp. 1201–1206.

[13] V.J.W. Guo, *Some variations of a ‘divergent’ Ramanujan-type q-supercongruence*, J. Differ. Equ. Appl. 27 (2021), pp. 376–388.

[14] V.J.W. Guo and J.-C. Liu, *q-Analogues of two Ramanujan-type formulas for $1/\pi$*, J. Differ. Equ. Appl. 24 (2018), pp. 1368–1373.

[15] V.J.W. Guo and J.-C. Liu, *Some congruences related to a congruence of Van Hamme*, Integral Transforms Spec. Funct. 31 (2020), pp. 221–231.

[16] V.J.W. Guo, H. Pan, and Y. Zhang, *The Rodriguez-Villegas type congruences for truncated q-hypergeometric functions*, J. Number Theory 174 (2017), pp. 358–368.

[17] V.J.W. Guo and M.J. Schlosser, *Some q-supercongruences from transformation formulas for basic hypergeometric series*, Constr. Approx. 53 (2021), pp. 155–200.

[18] V.J.W. Guo and M.J. Schlosser, *A family of q-supercongruences modulo the cube of a cyclotomic polynomial*, Bull. Aust. Math. Soc. 10.1017/S0004972721000630, in press.

[19] V.J.W. Guo and S.-D. Wang, *Some congruences involving fourth powers of central q-binomial coefficients*, Proc. Roy. Soc. Edinb. A 150 (2020), pp. 1127–1138.

[20] V.J.W. Guo and W. Zudilin, *A q-microscope for supercongruences*, Adv. Math. 346 (2019), pp. 329–358.

[21] L. Li, *Some q-supercongruences for truncated forms of squares of basic hypergeometric series*, J. Differ. Equ. Appl. 27 (2021), pp. 16–25.

[22] L. Li and S.-D. Wang, *Proof of a q-supercongruence conjectured by Guo and Schlosser*, Rev. R. Acad. Cienc. Exactas Fis. Nat., Ser. A Mat. 114 (2020), Art. 190.

[23] J.-C. Liu, *On a congruence involving q-Catalan numbers*, C. R. Math. Acad. Sci. Paris 358 (2020), pp. 211–215.

[24] J. Liu, H. Pan, and Y. Zhang, *A generalization of Morley’s congruence*, Adv. Differ. Equ. 2015 (2015), Art. 254.

[25] J.-C. Liu and F. Petrov, *Congruences on sums of q-binomial coefficients*, Adv. Appl. Math. 116 (2020), Art. 102003.

[26] Y. Liu and X. Wang, *q-Analogues of two Ramanujan-type supercongruences*, J. Math. Anal. Appl. 502 (2021), Art. 125238.

[27] G.-S. Mao, *Proof of two supercongruences by the Wilf–Zeilberger method*, preprint (2019). Available at arXiv:1911.01790.

[28] E. Mortenson, *A p-adic supercongruence conjecture of van Hamme*, Proc. Amer. Math. Soc. 136 (2008), pp. 4321–4328.

[29] H.-X. Ni and H. Pan, *Divisibility of some binomial sums*, Acta Arith. 194 (2020), pp. 367–381.

[30] S. Ramanujan, *Modular equations and approximation to π*, Quart. J. Math. 45 (1914), pp. 350–372.

[31] Z.-W. Sun, *On congruences related to central binomial coefficients*, J. Number Theory 131 (2011), pp. 2219–2238.

[32] Z.-W. Sun, *Super congruences and Euler numbers*, Sci. China Math. 54 (2011), pp. 2509–2535.

[33] Z.-W. Sun, *A refinement of a congruence result by van Hamme and Mortenson*, Illinois J. Math. 56 (2012), pp. 967–979.
[34] R. Tauraso, Some q-analogs of congruences for central binomial sums, Colloq. Math. 133 (2013), pp. 133–143.

[35] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, p-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math., Vol. 192, Dekker, New York, 1997, pp. 223–236.

[36] C. Wei, Some q-supercongruences modulo the fourth power of a cyclotomic polynomial, preprint (2020). Available at arXiv:2005.14196.

[37] H.S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities, Invent. Math. 108 (1992), pp. 575–633.

[38] H.S. Wilf and D. Zeilberger, Rational function certification of multisum/integral/“q” identities, Bull. Amer. Math. Soc. (N.S.), 27 (1992), pp. 148–153.

[39] W. Zudilin, Ramanujan-type supercongruences, J. Number Theory 129 (2009), pp. 1848–1857.

[40] W. Zudilin, Congruences for q-binomial coefficients, Ann. Combin. 23 (2019), pp. 1123–1135.