SHORT COMMUNICATION

Immune escape from NY-ESO-1-specific T-cell therapy via loss of heterozygosity in the MHC

ZK Klippel1,2, J Chou1,2, AM Towlerton1, LN Voong1,3, P Robbins4, WI Bensinger1,2 and EH Warren1,2

Adoptive immunotherapy of tumors with T cells specific for the cancer-testis antigen NY-ESO-1 has shown great promise in preclinical models and in early stage clinical trials. Tumor persistence or recurrence after NY-ESO-1-specific therapy occurs, however, and the mechanisms of recurrence remain poorly defined. In a murine xenograft model of NY-ESO-1+ multiple myeloma, we observed tumor recurrence after adoptive transfer of CD8+ T cells genetically redirected to the prototypic NY-ESO-1157-165 peptide presented by HLA-A*02:01. Analysis of the myeloma cells that had escaped from T-cell control revealed intact expression of NY-ESO-1 and B2M, but selective, complete loss of HLA-A*02:01 expression from the cell surface. Loss of heterozygosity (LOH) in the major histocompatibility complex (MHC) involving the HLA-A locus was identified in the tumor cells, and further analysis revealed selective loss of the allele encoding HLA-A*02:01. Although LOH involving the MHC has not been described in myeloma patients with persistent or recurrent disease after immune therapies such as allogeneic hematopoietic cell transplantation (HCT), it has been described in patients with acute myelogenous leukemia who relapsed after allogeneic HCT. These results suggest that MHC loss should be evaluated in patients with myeloma and other cancers who relapse after adoptive NY-ESO-1-specific T-cell therapy.

INTRODUCTION

Adaptive transfer of T cells whose specificity has been genetically redirected to tumor-associated or -specific antigens is an increasingly feasible and effective therapeutic option for several cancers.1–9 Redirection to tumor targets is achieved through transduction with vectors encoding T-cell receptors (TCRs)—specific for tumor peptides presented by major histocompatibility complex (MHC) molecules10–15—or chimeric antigen receptors.16,17 This genetic modification can overcome central and peripheral tolerance, and enable the production of autologous products containing large number of highly potent tumor-reactive T cells from most patients, even those who harbor few, if any, native tumor-reactive T cells in their blood.8,10–15,18–21

Multiple myeloma (MM) is a suitable malignancy in which to evaluate adoptive therapy with T cells redirected toward cancer-testis (C-T) antigens such as NY-ESO-1. Evidence demonstrates that NY-ESO-1 and other C-T antigens are often expressed in the tumor cells of patients with advanced MM.22–26 Primary MM cells from most patients also demonstrate preserved expression of MHC class I molecules, making myeloma particularly suitable for targeting with myeloma-reactive TCRs.27–29 These observations have prompted both preclinical studies21 and clinical trials30 of adoptive therapy for myeloma with autologous T cells transduced with NY-ESO-1-specific TCRs or chimeric antigen receptors. Most, if not all, NY-ESO-1+ myeloma cell lines, but had limited in vivo efficacy in a subcutaneous xenograft model of NY-ESO-1+/HLA-A*02:01+ tumor cell lines, and a phase I/II clinical trial in patients with advanced melanoma and synovial sarcoma confirmed the safety and efficacy of adoptive therapy with autologous T cells transduced with this TCR.2

Alternative strategies for targeting the NY-ESO-1157-165/HLA-A*02:01 complex are being explored. A bispecific T cell-engaging molecule that couples a high affinity, soluble variant of the 1G4 TCR to a single chain, human CD3-specific antibody variable fragment demonstrated in vitro activity against NY-ESO-1+/HLA-A*02:01+ tumor cell lines, but had limited in vivo efficacy in a murine xenograft model of human MM.21

Despite encouraging results from studies evaluating NY-ESO-1157-165/HLA-A*02:01-specific therapy, persistence or recurrence of disease has consistently been observed in a subset of subjects. Potential mechanisms of tumor escape include: poor persistence of adoptively transferred T cells; loss of expression of NY-ESO-1, HLA class I, or both in myeloma cells; inability of T cells to penetrate into the tumor microenvironment; and post-infusion inhibition of T-cell function by suppressor cells or cytokines in the tumor microenvironment, among others. We observed recurrence of myeloma in a murine xenograft model after adoptive therapy with NY-ESO-1157-165/HLA-A*02:01-specific T cells, and describe our evaluation of the mechanism of tumor escape in this model.

RESULTS

Transduction of MM patient lymphocytes with 1G4 α95:LY TCR T cells from G-CSF-mobilized leukapheresis products from HLA-A*02:01+ MM patients were transduced with a retrovirus encoding the affinity-enhanced α95:LY variant of the 1G4 NY-ESO-1157-165-specific, HLA-A*02:01-restricted TCR.31

1Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; 2Department of Medicine, University of Washington, Seattle, WA, USA; 3Department of Molecular Biosciences, Northwestern University, Bethesda, MD, USA; and 4Surgery Branch, National Cancer Institute, Bethesda, MD, USA. Correspondence: Dr E H Warren, Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, D3-100 19024, Seattle, WA, USA. E-mail: ehwarren@uwashington.edu

Received 9 September 2013; revised 16 December 2013; accepted 18 December 2013; published online 23 January 2014
TCR-transduced cells were identified using a NY-ESO-1 Tetramer (Figure 1a). Flow-sorted CD8\(^+\) tetramer\(^+\) and CD8\(^+\) tetramer\(^-\) cells were tested for recognition of target cells that expressed the NY-ESO-1\(_{157-165}\) peptide, HLA-A*02:01, both or neither. Only CD8\(^+\) tetramer\(^+\) cells demonstrated significant cytotoxicity against target cells that expressed both NY-ESO-1\(_{157-165}\) peptide and HLA-A*02:01 (Figure 1b).

Adoptive transfer of NY-ESO-1-specific T cells improves survival of myeloma-bearing mice

The in vivo activity of sorted CD8\(^+\) tetramer\(^+\) 1G4 \(\alpha\)-95.1Y TCR-transduced T cells (termed TCR-transduced T cells) derived from a HLA-A*02:01 \(^+\) MM patient was assessed in an immune-deficient mouse xenograft model of disseminated human MM (Figure 2a). Eighteen mice were sub-lethally irradiated 1 day prior to tail-vein injection of luciferase-transduced U266 (termed U266/Luc) human MM cells, which uniformly express CD138, NY-ESO-1, and HLA-A2 (Figures 3a and b). Subsequently, mice were divided into three cohorts to receive two daily injections of phosphate-buffered saline (PBS), \(1 \times 10^7\) sham-transduced T cells or \(1 \times 10^7\) TCR-transduced T cells.

Mice in the PBS cohort developed detectable MM within 2 weeks and thereafter progressed steadily (Figure 2b). All such mice met criteria for euthanasia by week 9. Mice receiving sham-transduced T cells exhibited slower development of myeloma compared with those that received PBS (Figure 2b, and Supplementary Figure 1), but nonetheless uniformly developed progressive myeloma and met criteria for euthanasia by day +127 (18 weeks). Of the six mice in the TCR-transduced cohort, four (mice 1–4) had no evidence of MM by either bioluminescence or necropsy evaluation at the end of study (day +127). Of the six mice in the TCR-transduced cohort, four (mice 1–4) had no evidence of MM by either bioluminescence or necropsy evaluation at the end of study (day +127). Two mice in this group (mice 5 and 6), however, had a low burden of MM demonstrated by bioluminescence at the time of their sacrifice on day +127, but no evidence of MM was detected by either bioluminescence or postmortem exam.

Escape from NY-ESO-1-specific T-cell therapy via selective loss of HLA-A2 expression

Flow cytometric analysis of the human CD138\(^+\) cells recovered from all of the mice in the cohorts that received PBS or sham-transduced T cells demonstrated no significant change in the aggregate level of expression of HMC class I molecules (Figure 3a) compared with the parental U266/Luc cells. In contrast, mice 5 and 6 of the TCR-transduced cohort with evidence of MM, showed complete loss of surface expression of HLA-A2 (Figures 3a and b), which would prevent their recognition by TCR-transduced T cells. Real-time PCR analysis of human CD138\(^+\) cells obtained from the bone marrow of all of the mice that developed MM demonstrated comparable expression of NY-ESO-1 and beta-2-microglobulin (B2M) transcripts compared with the parental U266-Luc cells (data not shown).

LOH in the MHC underlying selective loss of HLA-A*02:01 expression

To evaluate whether selective loss of HLA-A2 expression in the myeloma xenografts resistant to NY-ESO-1-specific T cells was

Figure 1. CD8\(^+\) TCR-transduced cells are specifically cytolytic against NY-ESO-1\(_{157-165}\), HLA-A*02:01 \(+\) target cells. (a) Flow cytometric analysis of CD8\(^+\) tetramer-negative (left panel) and CD8\(^+\) tetramer-positive (right panel) cells. (b) Cytolytic activity of CD8\(^+\) tetramer-negative (left) and CD8\(^+\) tetramer positive (right) T cells against targets that expressed NY-ESO-1 only (UM-9), NY-ESO-1 and HLA-A*02:01 (U266 cells; T2 cells pulsed with NY-ESO-1\(_{157-165}\) peptide), or neither (T2 without peptide).
associated with changes in the genomic locus containing the HLA-A*02:01 allele, loss of heterozygosity (LOH) analysis was performed. The genotypes of the parental U266 and U266/Luc cells, and the human CD138+ cells recovered from mice in the PBS, sham-transduced, and TCR-transduced cohorts were determined at six short tandem repeat (STR) loci spanning the MHC in the chromosome 6p21.3 region and two loci on chromosome 15 (Figure 3c). The parental U266 and U266/Luc cells, and the myeloma cells recovered from the mice that received either PBS or sham-transduced T cells, have identical genotypes at these six loci, and are heterozygous at five of the six STR loci on chromosome 6p21.3 and one of two loci on chromosome 15. Bone marrow cells from mice without evidence of disease had minimal to no signal (mouse 1 on Figure 3c). In contrast, myeloma cells isolated from mice 5 and 6 of the TCR-transduced cohort had evidence for LOH at several STR loci on chromosome 6p21.3, involving the MHC and the HLA-A locus, but not at the loci on chromosome 15 (Figure 3c). LOH was observed at three loci in myeloma cells from mouse 5 and at five in mouse 6, suggesting that the genomic events occurring in the myeloma cells from the two mice were not identical. Analysis of the STR fragment sizes at the affected loci, however, suggested involvement of the same HLA-A allele in the two cases (Figure 3d).

DISCUSSION

Current techniques for redirecting the antigenic specificity of T cells to tumor-associated or -specific antigens via TCR or CAR gene transfer allow for reliable generation of T-cell products with potent antitumor activity. Using a vector that encodes an affinity-enhanced TCR specific for NY-ESO-1, we redirected CD8+ T cells from MM patients to recognize the NY-ESO-1157-165 peptide presented by HLA-A*02:01. TCR-transduced cells were specifically cytolytic against NY-ESO-1+ HLA-A*02:01+ MM cells, and adoptive transfer of TCR-transduced T cells was protective against an otherwise lethal challenge of MM cells in four of six mice. Two mice developed MM despite adoptive therapy with TCR-transduced T cells, and analysis of the tumor cells in these mice revealed selective loss of expression of HLA-A*02:01, associated with LOH in the MHC, as the likely mechanism of immune escape. An intriguing observation is the lag in disease development in mice that received sham-transduced T cells. We hypothesize that this lag was due to weak alloreactivity of the polyclonal CD8+ sham-transduced T cells against U266/Luc.

Other studies of adoptive T-cell therapy targeting NY-ESO-1 have likewise demonstrated potent antitumor activity but occasional therapeutic failures.2,3,21,30 A recent preclinical study of adoptive therapy with T cells expressing a CAR specific for the NY-ESO-1157-165/HLA-A*02:01 complex showed in vivo activity against the human U266 MM line, but resistance was observed in some animals.21 The mechanism underlying resistance in this study was not investigated. Adoptive therapy with autologous T cells transduced with the α95:LY variant of the 1G4 TCR used in
our study was evaluated in a clinical trial in melanoma and sarcoma patients. Clear antitumor activity was observed in some but not all patients. An ongoing trial of a very similar approach in patients with advanced MM has similarly shown objective clinical responses in many patients, but lack of response in others.

Given abundant evidence that *in vivo* persistence of adoptively transferred T cells correlates with response, much attention has been focused on the lack of T-cell persistence as the main mechanism for treatment failure. However, other potential mechanisms such as antigen loss, inability of T cells to migrate within the tumor microenvironment, and post-infusion inhibition of T-cell function are also possible. For example, antigen loss has recently been described in a patient with acute lymphocytic leukemia who received autologous CD19-CAR-transduced T cells.

MHC class I loss, as demonstrated in our study, is a potential mechanism by which tumors can escape adoptive therapy with CD8+ T cells expressing tumor-reactive TCRs. Loss of MHC class I expression has been described extensively in solid tumors (reviewed in Garcia-Lora et al.) and has been associated with LOH in patients with acute leukemia or high-risk myelodysplastic syndrome who relapsed after haploidentical HCT. In the latter setting, it is likely that mitotic recombination in the tumor cells led to acquired uniparental disomy for the short arm of chromosome 6 and resultant loss of the non-shared MHC haplotype, thereby allowing the tumor cells to escape from recognition by donor T cells specific for MHC molecules encoded on that haplotype. Published reports on the outcome of haploidentical transplantation in patients with MM are limited, however, and it is unknown if the same phenomenon can occur in MM cells after haploidentical transplantation. More generally, the extent to which MHC loss can contribute to recurrence of MM after T cell-based immunotherapy—such as donor lymphocyte infusion after allogeneic HCT—is also unknown. The observation in our study of escape from NY-ESO-1-directed adoptive T-cell therapy via specific loss of the MHC allele recognized by the TCR-transduced cells, however, suggests that immune escape due to MHC loss could also occur in the clinical setting. Although our study is based on a genetically unstable human MM cell line, relapsed MM patients exhibit genetic instability and clonal...
evolution. Given that adoptive T-cell therapy targeting NY-ESO-1 is currently being evaluated in clinical trials, close monitoring for MHC class I loss and related mechanisms of immune escape is warranted.

MATERIALS AND METHODS

Cell culture
The MM cell lines U266 (ATCC, Manassas, VA, USA) and UM-9 (kind gift from Drs Tuna Mutis and Henk Lokhorst, University of Utrecht, The Netherlands) were cultured in complete medium comprising RPMI-HEPES, 1% penicillin-streptomycin, 1% l-glutamine and 20% FBS. T2 cells were cultured in complete medium with 10% FBS. U266 was transduced with a retrovirus (kind gift from Dr Elizabeth Budde, FHCRC), comprising a MMLV backbone with firefly luciferase, a neomycin resistance gene, and THY1.1 as a reporter. The retrovirus was produced in the packaging cell line Phoenix G. Transduced cells were subsequently selected in 800 μg/ml 1 - genetin (Sigma-Aldrich, St. Louis, MO, USA) to produce the U266-Luc cell line. All PBMC and T cells were cultured in RPMI 1640 medium supplemented with 10% FBS. U266 was transduced with a retrovirus containing the MSV/G1 backbone and encoding the α- and β-chains of a variant of the 1G4 TCR specific for NY-ESO-1157-165/HLA-A*02:01 for 13–15 days prior to their use in functional assays.

Generation and functional evaluation of NY-ESO-1157-165/HLA-A*02:01-specific T cells
MM patients undergoing autologous stem cell collection via leukapheresis were enrolled on an IRB-approved protocol to provide up to 10 ml of leukapheresis product after the targeted CD34 cell count was collected. The products were washed with PBS/EDTA, counted, and cryopreserved. HLA-A typing of patient samples was performed using the HLA-A locus Allset Gold SSP Low Resolution (Invitrogen, Carlsbad, CA, USA). Mononuclear cells from leukapheresis products were transduced with a retrovirus containing the MSV/G1 backbone and encoding the α- and β-chains of a variant of the 1G4 TCR specific for NY-ESO-1157-165/HLA-A*02:01 with dual amino-acid substitutions at positions 95–96 in the α-chain (α95V, α96I), packaged in the Phoenix Amphi cell line.24 After activation with anti-CD3 antibody (Centocor Ortho Biotech, Horsham, PA, USA) and 50 IU/ml of interleukin-2 (Novartis, Basel, Switzerland) as previously described25 for 13–15 days prior to their use in functional assays.

Human myeloma xenographs
Eighteen NOD/SCID/interleukin-2 Rγ−/− (NSG) mice were irradiated with 250 C Gy from a 137 Cs source (UL Shepherd Mark I) to allow for reproducible xenografting.65 One day after irradiation, three cohorts of six mice each received 5 × 106 U266/Luc cells via tail-vein injection. The mice subsequently received tail-vein injections on day +2 and day +3 of either PBS, 1 × 109 sham-transduced T cells in PBS, or 1 × 109 TCR-transduced T cells in PBS. Starting 2 weeks after U266/Luc injection, mice were injected intraperitoneally with 40 mg/kg −1 d-luciferin (Caliper Life Sciences, Hopkinton, MA, USA) and imaged on a Xenogen in vivo imaging system (Caliper Life Sciences). Mice were euthanized when they had lost 20% of baseline weight and/or had other signs of suffering such as lethargy, hind limb paralysis and/or hunching. Bioluminescence images were analyzed using Living Image 3.2 software (Caliper Life Sciences).

Flow cytometry
Transduced cells were evaluated for expression of the 1G4/s95LY TCR using an APC-labeled NY-ESO-1157-165/HLA-A*02:01 tetramer (Immune Monitoring Facility, FHCRC) and anti-CD8-FITC (BD Biosciences). CD8−/−tetramer− population was isolated by fluorescence-activated cell sorting (FACS). Engraftment of U266/Luc in the blood, bone marrow, and selected organs of xenografted mice was assessed using anti-CD138-APC, anti-HLA-A2-FITC and -APC and anti-human MHC class I-FITC antibodies (BD Biosciences).

LOH analysis
Integrity of the MHC in genomic DNA from MM cells recovered from the xenografted mice in all treatment groups was assessed by LOH analysis with previously defined STR markers mapping to chromosomes 6 and 15.48 Multiplex PCR amplification was performed using Multiplex PCR kit (Qiagen, Hilden, Germany). Each 20 μl reaction contained 1.2 μl of genomic DNA, 2 μl of Primer Mix (final concentration 5 μl each primer), 10 μl of 2 × Multiplex master mix and 2 μl of 5 × Q solution. Tagged primer combinations included: mix 1: D6S105 (6-FAM); D6S276 (TET); mix 2: D6S291 (6-FAM)-D6S273 (TET); mix 3: D15S209 (6-FAM) D6S311 (6-FAM); mix 4: D6S112 (6-FAM) D6S275 (6-FAM). The D6S1168 (TET) marker was evaluated alone. Amplification of STR loci was performed on the Mastercycler ProS (Eppendorf, Hamburg, Germany) using a thermal cycling profile of 95 °C for 15 min; 40 cycles of 94 °C for 40 s, 55 °C for 40 s, 72 °C for 45 s; and 72 °C for 10 min. Aliquots of each PCR reaction were diluted 1:100 and the products were separated on an ABI-3730xl Genetic Analyzer and quantitated using GeneMapper v4 software.

Statistical analysis
Survival differences were analyzed using the Kaplan–Meier method with correction for multiple comparisons. Serial bioluminescence levels in the three groups of xenografted mice were analyzed by one-way analysis of variance. A P-value of <0.05 was considered significant, and a Bonferroni adjustment was applied to correct for multiple comparisons.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
We thank Melissa Comstock and LaKeisha Perkins of the FHCRC NOD/SCid Core Facility for their assistance with the murine xenograft studies. The authors also thank the patients who have donated their blood and tissues for our work. These studies were supported by the J. Orin Edson Fund for Immunotherapy, a Senior Research Award from the Multiple Myeloma Research Foundation (to EWH), and NIH grants P30 CA015704-34, P30 DK56465 Plt. B. Torok-Storb, and ST32HL07093-39.

REFERENCES
1. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2000; 285: 133–137.
2. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011; 29: 917–924.
3. Rapoport AP, Stadtmueller EA, Vogl DT, Weiss BM, Binder-Scholl GK, Brewer JE et al. Adoptive transfer of gene-modified T cells engineered to express high-affinity TCRs for cancer-testis antigens (CTAs) NY-ESO-1 or LAGE-1, in MM patients post-auto-SCT. ASH Annu Meet Abstr 2012: 472.
4. Porter DL, Kalos M, Zheng Z, Levine B, June C. Chimeric antigen receptor therapy for B-cell malignancies. J Cancer 2011; 2: 331–332.
5. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG et al. CD19-targeted T cells rapidly induce molecular remissions in patients with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5: 177ra38.
6. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365: 725–733.
7. Chapuis AG, Ragnarsson GB, Nguyen HN, Chaney CN, Puňnock JS, Schmitt TM et al. Transferred WT1-reactive CD8−/− T cells can mediate antileukemic activity and persist in post-transplant patients. Sci Transl Med 2013; 5: 174ra27.
8. Carpenter RD, Ebbovuomwo MO, Pittaluga S, Rose JJ, Raffeld M, Yang S et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res 2013; 19: 2048–2060.
9. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 2011; 118: 6050–6056.
10. Clay TM, Custer MC, Sachs J, Hwu P, Rosenberg SA, Nishimura MI. Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J Immunol 1999; 163: 507–513.
11. Cooper LJ, Kalos M, Lewinsohn DA, Riddell SR, Greenberg PD. Transfer of specificity for human immunodeficiency virus type 1 into primary human T lymphocytes by introduction of T-cell receptor genes. J Virol 2000; 74: 8207–8212.
Mechanism of myeloma escape from T-cell therapy
ZK Klippel et al

12 Fujio K, Misaki Y, Setoguchi K, Morita S, Kawaehata K, Kato I et al. Functional reconstitution of class II MHC-restricted T cell immunity mediated by retroviral transfer of the alpha beta TCR complex. J Immunol 2000; 165: 528–532.
13 Johnson LA, Heemskerk B, Powell Jr. DJ, Cohen CJ, Morgan RA, Dudley ME et al. Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J Immunol 2006; 177: 6548–6559.
14 Moss PA. Redirecting T cell specificity by TCR gene transfer. Nat Immunol 2001; 2: 900–901.
15 Schaft N, Willemsen RA, de Vries J, Lankiewicz B, Evers BW, Gratama JW et al. Peptide fine specificity of anti-glycoprotein 100 CTL is preserved following transfer of engineered TCR alpha beta genes into primary human T lymphocytes. J Immunol 2003; 170: 2186–2194.
16 Wang G, Chopra RK, Royal RE, Yang JC, Rosenberg SA, Hwu P. AT cell-independent antimtumor response in mice with bone marrow cells retrovirally transduced with an antibody-Fc-gamma chain chimeric receptor gene recognizing a human ovarian cancer antigen. Nat Med 1998; 4: 168–172.
17 Jena B, Dotti G, Cooper LJ. Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood 2010; 116: 1035–1044.
18 Grupp SA, Kalos M, Barrett D, Apelenc R, Porter DL, Rhengold SR et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368: 1509–1518.
19 Kalos M, Levine BL, Porter DL, Katz S, Bagg A et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011; 3: 95ra73.
20 Rubinstein MP, Kadima AN, Salem ML, Nguyen CL, Gillanders WE, Nishimura MI et al. Transfer of TCR genes into mature T cells is accompanied by the maintenance of parental T cell avidity. J Immunol 2003; 170: 1209–1217.
21 Schubert PC, Jakka G, Jensen SM, Jakka G, Jensen SM, Wadle A, Gautschi F, Haley D et al. Effector memory and central memory NY-ESO-1-specific re-directed T cells for treatment of multiple myeloma. Gene Ther 2013; 20: 386–395.
22 Atanackovic D, Afshten J, Cao Y, Gnjatic S, Schnieders F, Bartels K et al. Cancer-testis antigens are commonly expressed in multiple myeloma and induce systemic immunity following allogeneic stem cell transplantation. Blood 2007; 109: 1103–1112.
23 Condomines M, Hose D, Raynaud P, Hundermer M, De Vos J, Baudard M et al. Cancer/testis genes in multiple myeloma: expression patterns and prognosis value determined by microarray analysis. J Immunol 2007; 178: 3307–3315.
24 Dhopadkar MV, Osman K, Teruya-Feldstein J, Filippa D, Hedvat CV, Gratama JW et al. Expression of cancer/testis (CT) antigens MAGE-A1, MAGE-A3, MAGE-A4, CT-7, and NY-ESO-1 in malignant gompaphomities is heterogeneous and correlates with site, stage and risk status of disease. Cancer Immun 2003; 3: 9.
25 Jungbluth AA, Ely S, DiIberto M, Niesvizky R, Williamson B, Frosina D et al. The cancer-testis antigens CT7 (MAGE-C1) and MAGE-A6 are commonly expressed in multiple myeloma and correlate with plasma-cell proliferation. Blood 2005; 106: 167–174.
26 van Duin M, Broyl A, de Knek Y, Goldschmidt H, Richardson PG, Hop WC et al. Cancer testis antigens in newly diagnosed and relapse multiple myeloma: prognostic markers and potential targets for immunotherapy. Haematologica 2011; 96: 1662–1669.
27 Carbone E, Neri P, Mesuraca M, Fulciniti MT, Otsuki T, Pende D et al. Assessment of intracellular TAP-1 and TAP-2 in conjunction with surface MHC class I in plasma cells from patients with multiple myeloma. Br J Haematol 1997; 98: 426–432.
28 Yi Q, Dabadghao S, Osterborg A, ter Borg BR, Warmuth M, Holm G et al. Myeloma bone marrow plasma cells: evidence for their capacity as antigen-presenting cells. Blood 1997; 90: 1960–1967.
29 Levine BL, Rapoport AP, Staedtmauer EA, Vogl DT, Weiss B, Binder-Scholl GK et al. Adaptive transfer of gene-modified T-cells engineered to express high-affinity TCR’s for cancer-testis antigens NY-ESO-1 or LAGE-1, in multiple myeloma (MM) patients post-autologous hematopoietic stem cell transplant (ASCT). Cytostherapy 2013; 15: S13.
30 Robbins PF, Li YF, El-Gamil M, Zhao Y, Warga JA, Zheng Z et al. Single and dual amino-acid substitutions in TCR CDRs can enhance antigen-specific T cell functions. J Immunol 2008; 180: 6116–6131.
31 McCormack E, Adams KJ, Hassan NJ, Kotian A, Lissin NM, Sami M et al. Bispecific TCR anti-CD3 redirected T-cell targeting of NY-ESO-1- and LAGE-1-positive tumors. Cancer Immunol Immunother 2013; 62: 773–785.
32 Garcia-Lora A, Algarra I, Garrido F, MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 2003; 195: 346–355.
33 Vago L, Perna SK, Zanussi M, Mazzi B, Barlassina C, Stanghellini MT et al. Loss of mismatched HLA in leukemia after stem-cell transplantation. N Engl J Med 2009; 361: 478–488.
34 Villalobos JB, Takahashi Y, Akatsu Y, Muramatsu H, Nishio N, Hama A et al. Relapse of leukemia with loss of mismatched HLA resulting from uniparental disomy after haploidentical hematopoietic stem cell transplantation. Blood 2010; 115: 3158–3161.
35 Bethge WA, Haegel M, Faul C, Lang P, Schumm M, Bornhauser M et al. Haploidentical allogeneic hematopoietic stem cell transplantation in adults with reduced-intensity conditioning and CD3/CD29 depletion: fast engraftment and low toxicity. Exp Hematol 2006; 34: 1746–1752.
36 Luznik L, O’Donnell PV, Symons HJ, Chen AR, Leffell MS, Zahrak M et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant 2008; 14: 641–650.
37 Nonami A, Miyamoto T, Kuroiwa M, Kunisaki Y, Kamezaki K, Takenaka K et al. Successful treatment of primary plasma cell leukemia by allogeneic stem cell transplantation from haploidentical sibling. Jpn J Clin Oncol 2007; 37: 969–972.
38 Zomas A, Stefanoudaki K, Fisfis M, Papadaki T, Mehta J. Graft-versus-myeloma after donor leukocyte infusion: maintenance of marrow remission but extramedullary relapse with plasmaclomycosis. Bone Marrow Transplant 1998; 21: 1163–1165.
39 Aiyeva E, Weller E, Schlossman R, Canning C, Webb I, Doss D et al. T-cell–depleted allogeneic bone marrow transplantation followed by donor lymphocyte infusion in patients with multiple myeloma: induction of graft-versus-myeloma effect. Blood 2001; 98: 934–939.
40 Bellucci R, Aiyeva EP, Weller E, Chillemi A, Hochberg E, Wu CJ et al. Immunoologic effects of prophylactic donor lymphocyte infusion after allogeneic marrow transplantation for multiple myeloma. Blood 2002; 99: 4610–4617.
41 El-Cheikh K, Crocchioni R, Furst S, Ladapque L, Castagna L, Faucher C et al. Lenalidomide plus donor-lymphocytes infusion after allogeneic stem-cell transplantation with reduced-intensity conditioning in patients with high-risk multiple myeloma. Exp Hematol 2012; 40: 521–527.
42 Lokhorst HM, Schattenberg A, Cornelissen JJ, van Oers MH, Fibbe W, Russell J et al. Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem-cell transplantation: predictive factors for response and long-term outcome. J Clin Oncol 2000; 18: 3031–3037.
43 Osini E, Aiyeva EP, Chillemi A, Schlossman R, McLaughlin S, Canning C et al. Conversion to full donor chimerism following donor lymphocyte infusion is associated with disease response in patients with multiple myeloma. Blood Marrow Transplant 2000; 6: 375–386.
44 Riddell SR, Greenberg PD. The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. J Immunol Methods 1990; 128: 189–201.
45 Chou J, Voog LN, Mortales CL, Towlerton AM, Pollack SM, Chen X et al. Epigenetic modulation to enable antigen-specific T-cell therapy of colorectal cancer. J Immunother 2012; 35: 131–141.
46 Brehm MA, Racki WJ, Leif J, Burzenski L, Hosur V, Wetmore A et al. Engraftment of human HSCs in nonirradiated newborn NOD-scid IL2ragmoma null mice is enhanced by transgenic expression of membrane-bound human SCF. Blood 2012; 119: 2778–2788.
47 Ramal LM, Maleno I, Cabrera T, Collado A, Ferron A, Lopez-Nevot MA et al. Molecular strategies to define HLA haploptcyt loss in microdissected tumor cells. Hum Immunol 2000; 61: 1001–1012.

Supplementary Information accompanies this paper on Gene Therapy website (http://www.nature.com/gt)