KÄHLER-RICCI SOLITONS ON SOME WONDERFUL GROUP COMPACTIFICATIONS

DELGOVE FRANÇOIS

1. Introduction

The founding article on the Kähler-Ricci solitons is Hamilton’s article [Ham88]. The Kähler-Ricci solitons are natural generalizations of the Kähler-Einstein metrics and appear as fixed points of the Kähler-Ricci flow. On a Fano compact Kähler manifold M, a Kähler metric g is a Kähler-Ricci soliton if its Kähler form ω_g satisfies:

$$\text{Ric}(\omega_g) - \omega_g = L_X \omega_g,$$

where $\text{Ric}(\omega_g)$ is the Ricci form of g and $L_X \omega_g$ is the Lie derivative of ω_g along a holomorphic vector field X on M. Usually, we denote the Kähler-Ricci soliton by the pair (g, X) and X is called the solitonic vector field. We immediately note that if $X = 0$ then g is a Kähler-Einstein metric.

Firstly, the study of the solitonic vector field X was done in the article [TZ00, TZ02]. Thanks to the Futaki function, the authors discovered an obstruction to the existence of Kähler-Ricci soliton and proved that X is in the center of a reductive Lie subalgebra $\eta_r(M)$ of $\eta(M)$, which is the set of all holomorphic vector fields. This study also gives us a result about the Kähler-Ricci soliton’s unicity (theorem 0.1 in [TZ00]).

Subsequently, the study was supplemented by Wang, Zhu in [WZ04] where they show the existence of Kähler-Ricci solitons on toric varieties using the continuity method. This work was supplemented by a study of the Ricci flow by Zhu in [Zhu12] on the toric varieties which showed that the Kähler-Ricci flow converges to the Kähler-Ricci soliton of the toric variety. The result about existence of Kähler-Ricci solitons has been extended to cases of toric fibrations by Podesta and Spiro in [PS10]. Recently, the result concerning the convergence of the Ricci flow has been also extended in [Hua17].

In 2015, Delcroix used the approach of Zhu and Wang in the case of Kähler-Einstein metrics on some wonderful compactifications of reductive groups. In his paper [Del15], the main result is a necessary and sufficient condition for the existence of a Kähler-Einstein metric in some group compactifications. The condition is that the barycenter of the polytope associated to the group compactification must lie in a particular zone of the polytope. The first tool used in the proof is a study of the $K \times K$-invariant functions (for the KAK decomposition), in particular he computes the complex Hessian of a $K \times K$-invariant function. And the second tool is an estimate of the convex potential associated to a $K \times K$-invariant metric on ample line bundles. Then he proves the main result by reducing the problem to a real Monge-Ampère equation and by obtaining C^0 estimates along the continuity method. In our paper, we extend this result to some wonderful group compactifications in the following way:
Theorem 1.1. Let’s assume M is a Fano smooth wonderful $G \times G$-compactification on a complex algebraic connected and reductive group G such that $G \times G$ acts faithfully. There is a Kähler-Ricci soliton on M excepted for exceptional cases cited in [Pez09] (the exceptional cases are the cases where M does not satisfy $\text{Aut}^0(M) = G \times G$).

In our case, we do not use the barycenter of the polytope to get the a priori estimate. We will use the Futaki invariant (as in the articles [WZ04]) and compute this invariant in wonderful compactifications to get integral equations (similar to the toric case):

Theorem 1.2. Let’s assume M satisfies the conditions of the theorem 1.1. Then X is a solitonic vector field (modulo the action of $\text{Aut}^0(M)$) if and only if it is written

$$X = \sum_{j=1}^{r} a_j^1(\hat{a}_j^1 + \hat{s}_j^1) + a_j^2(\hat{a}_j^2 + \hat{s}_j^2),$$

where the vector fields \hat{a}_j^1 and \hat{s}_j^1 are induced by the action of $G \times G$ (see section 3.3 for more details). Moreover, the constants a_j^i satisfy:

$$0 = \int_{\text{p}^+} p_i \exp \left(\sum_{j=1}^{r} a_j^i p_j \right) \prod_{\alpha \in \varphi^+} \alpha(p)^2 dp, \ \forall i = 1, \cdots, r$$

where we denote $a_j := a_j^1 + a_j^2$.

Using this result and general results of [Del15] on Monge-Ampère equations, we can prove the a priori estimate and extend the result of the existence to these wonderful compactifications thanks to the continuity method. In particular, we do not need any notion of K-stability to prove this result.

2. Structure of a reductive Lie algebra

Let G be a complex algebraic group i.e. an algebraic subgroup of $GL_N(\mathbb{C})$ for $N > 0$. Furthermore, we suppose G is reductive, that means if K is a maximal compact subgroup of G then G is reductive if and only if G is isomorphic to the complexification of K. Thus, if we denote the Lie Algebra of G and K by \mathfrak{g} and \mathfrak{k} respectively then we have $\mathfrak{g} = \mathfrak{k} \otimes \mathbb{C}$.

Moreover, \mathfrak{g} admits the following decomposition (see for instance [Kna13]):

$$\mathfrak{g} = Z(\mathfrak{g}) \oplus [\mathfrak{g}, \mathfrak{g}],$$

where $[\mathfrak{g}, \mathfrak{g}]$ is the Lie algebra of the derived subgroup $D(G)$ of G and $Z(\mathfrak{g})$ is the center of \mathfrak{g}. We recall the Killing form B is nondegenerate on $[\mathfrak{g}, \mathfrak{g}]$ and zero on $Z(\mathfrak{g})$. We can extend globally this form on \mathfrak{g} by putting any nondegenerate bilinear form on $Z(\mathfrak{g})$ and assuming that $Z(\mathfrak{g})$ and $[\mathfrak{g}, \mathfrak{g}]$ are orthogonal. We denote it by $\langle \cdot, \cdot \rangle$.

2.1. Root System.
2.1.1. Semisimple case. If \(\mathfrak{g} \) is a semisimple complex Lie algebra and \(\mathfrak{t} \) a Cartan subalgebra of \(\mathfrak{g} \) then \(\mathfrak{g} \) admits the following Cartan decomposition:

\[
\mathfrak{g} = \mathfrak{g}_0 \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_\alpha,
\]

where \(\Phi \) is a finite subset of \(\mathfrak{t}^* \) called the root system of \(\mathfrak{g} \). Moreover, we have \(\mathfrak{g}_0 = \mathfrak{t} \) and \(\mathfrak{g}_\alpha = \{ x \in \mathfrak{g} \mid \text{ad}(h)(x) = \alpha(h) x \ \forall h \in \mathfrak{t} \} \) (see for instance [Kna13]). Also, using the nondegeneracy of the Killing form \(B \), we can associate to each root \(\alpha \in \Phi \) a unique element \(h_\alpha \in \mathfrak{t} \) such that \(\alpha(h) = B(h_\alpha, h) \) for all \(h \in \mathfrak{t} \). We set \((\alpha, \beta) := B(h_\alpha, h_\beta) \). Finally, the root system satisfies the following properties:

1. \(E := \text{span}_\mathbb{R}(\Phi) \) is a real vector subspace of \(\mathfrak{t}^* \) and \(\dim_{\mathbb{R}} E = \dim_{\mathbb{C}} \mathfrak{t} \).
2. \((\cdot, \cdot) \) is a positive definite form on \(E \).
3. \(\forall (\lambda, \alpha) \in \mathbb{R} \times \Phi, \lambda \alpha / \langle \lambda, \alpha \rangle \in \Phi \Rightarrow \lambda \in \{-1, 1\} \).
4. \(\forall (\beta, \alpha) \in \Phi^2, \beta - 2(\beta, \alpha) \alpha / (\alpha, \alpha) \in \Phi \).
5. \(\forall (\beta, \alpha) \in \Phi^2, 2(\beta, \alpha) / (\alpha, \alpha) \in \mathbb{Z} \).

2.1.2. Reductive case. We suppose \(G \) being reductive with maximal compact group \(K \). We can choose a maximal compact torus \(S \) of \(K \) such that we denote \(T \) its complexification. We can observe immediately that \(T \) is a maximal torus of \(G \). Then we define the rank \(r := \text{rank}(G) \) of the group \(G \) as the complex dimension of \(T \) (which is the real dimension of \(S \)) and we define the root system \(\Phi \) associated with the pair \((G, T) \) as the root system of the semisimple part \([\mathfrak{g}, \mathfrak{g}] \) of \(\mathfrak{g} \) with Cartan algebra \(\mathfrak{t}_{ss} \) corresponding to \(\mathfrak{t} \cap [\mathfrak{g}, \mathfrak{g}] \). We obtain the same decomposition

\[
\mathfrak{g} = \mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_\alpha.
\]

We set \(\mathfrak{a} := \sqrt{-1} \mathfrak{s} \) and \(\mathfrak{A} := \exp \mathfrak{a} \). It can then be shown that

\[
\mathfrak{t} = \mathfrak{s} \oplus \bigoplus_{\alpha \in \Phi^+} \mathfrak{t}_\alpha,
\]

where \(\Phi^+ \) is the set of postives roots (set the section 2.2 for more details) and \(\mathfrak{t}_\alpha = \{ x \in \mathfrak{t} \mid \text{ad}(h)^2(x) = \alpha(h)^2 x, \ \forall h \in \mathfrak{g}_0 \} \) (see for instance [Kna13]).

2.2. Weyl Chamber. We keep the notations introduced in the previous section. We say that \(\Delta \subset \Phi \) is a set of simple roots if \(\Delta \) is a base of \(E \) such that for any root \(\alpha \in \Phi \) then the coordinates of \(\alpha \) in the base \(\Delta \) are all positive or negative. This implies a decomposition of \(\Phi \) into two disjoint sets \(\Phi = \Phi^+ \sqcup \Phi^- \). We then define the Weyl chamber \(\overline{\alpha}^+ \) by

\[
\overline{\alpha}^+ := \{ x \in \mathfrak{a} \mid \forall \alpha \in \Phi^+, \ \alpha(x) \geq 0 \}.
\]

We denote \(\mathfrak{A}^+ \) the image of \(\overline{\alpha}^+ \) by the exponential map. We observe that \(\mathfrak{A}^+ \) is a subspace of \(\mathfrak{A} \). We define the open Weyl chamber \(\alpha^+ \) as the interior of \(\overline{\alpha}^+ \). Moreover, for the rest of the article we define \(2 \rho := \sum_{\alpha \in \Phi^+} \alpha \). Finally, we define Weyl group (with respect to the maximum torus \(T \)) by \(\mathcal{W} := N_G(T)/T \). This group acts on \(T \) and thus induces an action on \(\mathfrak{a} \) such that Weyl chamber \(\overline{\alpha}^+ \) is a fundamental domain for the action of \(\mathcal{W} \) on \(\mathfrak{a} \).
2.3. KAK decomposition. We always consider a reductive group G and we keep the notations introduced previously. We recall here the decomposition KAK (see for instance [Kna13]):

Proposition 2.1. [Kna13] Let $g \in G$. There is a triplet $(k_1, k_2, t) \in K^2 \times A$ such that $g = k_1 t k_2$. Furthermore in this decomposition, the element t is unique modulo the action of W.

There are several consequences of this result. First of all, using the fact that \mathfrak{a}^+ is a fundamental domain for the action of W, we obtain that we can write $g = k_1 \exp(a) k_2$ where $a \in \mathfrak{a}^+$. It also means that the quotient of G by the action both left and right of K on G is isomorphic to A^+.

Secondly, any $K \times K$-invariant function f on G depends only on its values on A. Thus, we can define a function \tilde{f} on \mathfrak{a} such that $\tilde{f}(a) = f(\exp a)$. We then have the following proposition:

Proposition 2.2. [FJ78] The correspondence $f \mapsto \tilde{f}$ gives a bijection between $K \times K$-invariant functions on G (resp. smooth $K \times K$-invariant functions on G) and W-invariant functions on \mathfrak{a} (resp. smooth W-invariant function on \mathfrak{a}).

Similarly, there is another result:

Proposition 2.3. [AL92] The correspondence $f \mapsto \tilde{f}$ gives a bijection between $K \times K$-invariant plurisubharmonic functions on G (resp. smooth strictly plurisubharmonic $K \times K$-invariant functions on G) and W-invariant convex functions on \mathfrak{a} (resp. smooth strictly convex W-invariant function on \mathfrak{a}).

Now, we can easily compute the integration of a $K \times K$-invariant function thanks to the following proposition:

Proposition 2.4. [Kna13] Let dg denote a Haar measure on G, and dx a Lebesgue measure on \mathfrak{a}^+, then there exists a constant $C > 0$ such that for all $K \times K$-invariant function f on G:

$$\int_G f(g) dg = C \int_{\mathfrak{a}^+} J(x) f(\exp x) dx,$$

where

$$J(x) := \prod_{\alpha \in \Phi^+} \sinh^2(\alpha(x)).$$

Moreover, if $(l_i)_{i=1}^n$ is the base of \mathfrak{g} of the section 2.1.2 then in a neighborhood U_g of every point g, there exists a holomorphic coordinate system given by

$$(z_1, \cdots, z_n) \in \mathbb{C}^n \mapsto e^{z_1 l_1 + \cdots + z_n l_n} g \in U_g,$$

then we can compute the Hessian matrix $\text{Hess}_C(f)(g)$ and its determinant $\text{MA}_C(f)(g)$ for every $K \times K$-invariant function f in this basis. Before summing up the result, we denote for each f defined on \mathfrak{a} the determinant of its real hessian matrix by $\text{MA}_R(f)$ and its gradient for the scalar product $\langle \cdot, \cdot \rangle$ by ∇f.

Theorem 2.5. [Del15] Let a $K \times K$-invariant function f on G. In the previous holomorphic coordinate system and for all $a \in \mathfrak{a}^+$, we have

$$\text{MA}_C(f)(\exp a) = \frac{1}{4^{r+p}} \text{MA}_R(\tilde{f})(a) \prod_{\alpha \in \Phi^+} \alpha(\nabla f(a))^2 \frac{1}{J(a)}.$$

Moreover, renormalizing the basis, we obtain

\[MA_{\mathbb{C}}(f)(\exp a) = MA_{\mathbb{R}}(\tilde{f})(a) \prod_{\alpha \in \Phi^+} \alpha(\nabla f(a))^2 \frac{1}{J(a)}. \]

3. Group compactification

Let G an algebraic group. A variety X is a G-variety if X is equipped with an action of the algebraic group G which induces a morphism of variety.

3.1. Linearized line bundles on reductive groups.

Definition 3.1. A G-linearization of a line bundle L on a G-variety is a G-action on L such that the G-action on L lifts the G-action on X and the map between the fibers \(L_x \) and \(L_{gy} \) defined by the action of \(g \in G \) is linear.

In our case, we are interested in the case where G is a connected reductive group equipped with the action of \(G \times G \) acting by right and left translation i.e. \((g_1, g_2) \cdot g = g_1 g g_2^{-1} \). Thus we have the following lemma :

Lemma 3.2. Any \(G \times G \) linearized line bundle L on G admits a \(G \times \{ e \} \)-equivariant trivialisation.

Proof. It is sufficient to take a non-zero element \(x \) in the fiber \(L_e \) over the neutral element \(e \) of G. The section \(s(g) := (g, e) \cdot x \) checks the requested properties. \(\square \)

3.2. Group compactifications. Let G be a connected complex reductive group.

Definition 3.3. A normal irreductible projective G×G-variety is called a G×G-equivariant compactification of G if X admits an open dense orbit under G×G equivariantly isomorphic to G on which G×G acts by left and right multiplication.

Now, we consider a G-linearized ample line bundle L on X. We can then associate to the couple \((X, L) \) a unique polytope using the theory of toric varieties. We have, in fact, the following result from [AK05].

Proposition 3.4. [AK05] Let \(\tilde{T} \) be a reductive group which we denote a maximal torus of group of characters M and X a G×G-compactification. If we put Z the closure of \(\tilde{T} \) into X then \((Z, L|_Z) \) is a polarized toric variety and we can associate it a polytope \(P \subset M \otimes \mathbb{R} \simeq \mathbb{R}^a \) W-invariant. Conversely, if we have a polytope \(P \) of complete dimension and W-invariant then there exists a G×G-compactification of G whose associated polytope is \(P \).

Now, we will be interested in wonderful compactifications.

Definition 3.5. A G×G-compactification X is called wonderful if it satisfies the conditions :

1. X is smooth,
2. \(X \setminus G \) is the union of smooth normal crossing prime divisors, with non-empty intersections,
3. the G×G-orbits in X are precisely the intersections of families of these divisors.
3.3. Automorphims of a wonderfull compactifications. Let’s first recall that the group of automorphisms of a compact complex manifold M is a Lie group of finite dimension whose Lie algebra is $\eta(M)$.

We fix a connected and complex reductive group G. We consider a wonderful G-compactification M such that $G \times G$ acts faithfully. This additional hypothesis make it possible, using the 3.1.2 theorem from [Pez09], to determine the group of automorphisms of M:

Theorem 3.6. [Pez09] If M is a wonderful G-compactification such that $G \times G$ acts faithfully. Then we have $\text{Aut}^0(M) = G \times G$ except for exceptional cases cited in [Pez09].

Now, we assume that $\text{Aut}^0(M) = G \times G$ and therefore exclude the exceptions of our reasoning. The first consequence of this result is that the Lie algebra of the holomorphic vector fields is reductive. Indeed, $\text{Aut}^0(X)$ is a Lie group whose Lie algebra $\eta(M)$ is formed by the holomorphic vectors fields. Thus, we obtain

$$ (2) \quad \eta(M) \simeq \mathfrak{g} \oplus \mathfrak{g}, $$

where \mathfrak{g} is the Lie algebra of G. We then conclude remembering that G is reductive.

Recall that if $\text{Aut}^0(M)$ is reductive then it means that there exists a maximal compact subgroup $K(M)$ of $\text{Aut}^0(M)$ such that $\text{Aut}^0(M)$ is the complexification of $K(M)$. Let’s also take a maximal torus $S(M)$ in $K(M)$ and denote by $T(M)$ its complexification, we notice immediately that it is a maximal torus for $\text{Aut}^0(M)$.

These properties can be translated on the Lie algebras $\mathfrak{k}(M), \mathfrak{s}(M), \mathfrak{t}(M)$ of $K(M), S(M)$ and $T(M)$ respectively. In particular, we write $\mathfrak{a}(M) := \sqrt{-1}\mathfrak{s}(M)$. In addition, as $\eta(M) \simeq \mathfrak{g} \oplus \mathfrak{g}$, we have that every element $X \in \mathfrak{g}$ induces two vector fields $\tilde{X}^1, \tilde{X}^2 \in \eta(M)$ corresponding to one of the two factors of the previous decomposition.

3.4. Hermitian metric on line bundles. Let X be a compact Kähler manifold and L a line bundle on X. Let’s recall that a hermitian metric is the data for all $x \in X$ of a hermitian metric h_x on the L_x fiber of L. Moreover, we say that the metric is smooth if the application $x \mapsto h_x$ is smooth.

3.4.1. Local potential. Let’s now take a trivialization s above an open $U \subset X$. This means that for all $x \in X$ the vector $s(x)$ is a base of L_x and hermitian h_x is summarized to give itself a positive real a_x that will be equal to the squared norm of $s(x)$ with respect to the hermitian form h_x i.e. $a_x = |s(x)|^2_{h_x}$. We then define the local potential of h (with respect to the trivialization s) by $\varphi : x \in U \mapsto -\ln(|s(x)|^2_{h_x}) \in \mathbb{R}$. Let’s note that the metric h is entirely determined by all its local potentials and that h is smooth if and only if all its local potentials are smooth.

Let’s finish by saying that we can associate to a hermitian smooth metric a $(1,1)$-form ω_h called curvature of h. To do this, we define locally $\omega_h|_U = -\sqrt{-1} \partial \bar{\partial} \varphi$ where φ is the local potential associated with the trivialization s above U. We verify that $\omega_h|_U$ does not depend on the trivialization and thus define a global $(1,1)$-form. Moreover, we can show that $\omega_h \in c_1(L)$. We will also say that L is positive curvature if there exists a metric h such that ω_h is a Kähler form ([Dem]).

3.4.2. Global Potential. There is also a notion of global potential. To define it, we set a reference hermitian metric h^0 and for any hermitian metric h we define the
function \(\psi \) on \(X \), called \textit{global potential of} \(h \) \textit{with respect to} \(h^0 \) by the following formula:

\[
|\xi|_h^2 = e^{-\psi(x)}|\xi|_{h^0}^2.
\]

Note that the function \(\psi \) satisfies the following relation (thanks to the \(\partial \bar{\partial} \)-lemma):

\[
\omega_{h^0} = \omega_h + \sqrt{-1} \partial \bar{\partial} \psi.
\]

3.4.3. \textit{Potentials in the case of compactifications.} Let \(G \) be a complex reductive group and a smooth \(G \times G \)-compactification \(X \) of \(G \). Let \(L \) be an ample \(G \times G \)-linearized line bundle. We will then identify the dense orbit of \(X \) with \(G \).

If we consider a Kähler form in \(c_1(L) \) then we can define the moment map \(\mu \) of the action of \(K \times K \) on \((X,\omega) \) and we can show that \(\text{im}(\mu) \cap (a \oplus a)^* \) is a convex polytope known as polytope moment identified by Brion’s work (see \[Bri87\]) with the intersection of the polytope \(P \subset a^* \) with \((a + a)^* \) where the latter are embedded in \((a \oplus a)^* \) by identifying \(a^* \) with the antidiagonal of \((a \oplus a)^* \).

Moreover, we know that there exists a \(G \)-equivariant trivialization (see lemma \[Del15\]) of \(L|_G \) and therefore we have a potential \(h \) on \(G \) with respect to \(s^0 \) defined by

\[
\Psi(z) := -\ln(|s^0(z)|_{h}^2).
\]

We note that if \(h \) is \(K \times K \)-invariant then \(\psi \) also is. We can then define a function \(\varphi : a \rightarrow \mathbb{R} \), called \textit{convex potential of} \(h \), by the formula \(\varphi(x) = \psi(\exp(x)) \). We remark that \(\varphi \) is indeed a convex function (which justifies terminology). We then have the following properties for the convex potential on the anticanonical bundle \(-K_X\) (see \[Del15\] for more details):

Proposition 3.7. \[Del15\] \textbf{Let} \(f : a \rightarrow \mathbb{R} \) \textbf{a convex potential of a} \(K \times K \)-\textit{invariant smooth hermitian metric} \(h \) \textbf{of positive curvature on} \(-K_X\). \textbf{Then we have}

1. \(f \) \textit{is} \(W \)-\textit{invariant}
2. \(\nabla f(a) = \text{int}(2P) \)
3. \(\nabla f(a^+) = \text{int}(2P^+) \)
4. \(|\nabla f| \leq d \) \textit{for some constant} \(d \) \textit{independent of} \(f \)
5. \(f(x) \leq v(x-x_0) + f(x_0) \) \textit{for any} \(x_0 \in a \) \textit{and where} \(v \) \textit{is the support function of the polytope} \(2P \).
6. \(f(x) \geq v(x) + C_1 \) \textit{for some constant} \(C_1 \) \textit{depending on} \(f \).

4. \textbf{The vector field of a Kähler-Ricci soliton}

In this section, a holomorphic invariant is defined and calculated in the case of wonderful compactification. This invariant is an obstruction to the existence of a Kähler-Ricci Soliton.

Definition 4.1. \textbf{Let} a \(n \)-\textit{dimensional compact Kähler manifold} \((M,g)\) \textbf{with positive first Chern class} \(c_1(M) \) \textbf{such that} its Kähler form \(\omega_g \in c_1(M) \). \textbf{Then, for any holomorphic vector field} \(X \in \eta(M) \), \textbf{we define the linear functional} \(F_X \), \textbf{called Futaki invariant, by}

\[
F_X : v \in \eta(M) \mapsto \int_M v(h_g - \theta_X) e^{\theta_X} \omega^n_g \in \mathbb{C},
\]

\textit{where we denote :}
• \(h_g \) is the unique function in \(C^\infty(M, \mathbb{R}) \) such that
\[
\text{Ric}(\omega_g) - \omega_g = \frac{\sqrt{-1}}{2\pi} \partial \overline{\partial} h_g, \quad \int_M e^{h_g} \omega_g^n = \int_M \omega_g^n,
\]

• \(\theta_X \) is the unique function in \(C^\infty(M, \mathbb{R}) \) such that
\[
i_X \omega_g = \frac{\sqrt{-1}}{2\pi} \partial \theta_X, \quad \int_M e^{\theta_X} \omega_g^n = \int_M \omega_g^n.
\]

A first remark is that, according to proposition 1.1 of [TZ02], the invariant does not depend on the chosen metric \(g \).

Now, if \(K(M) \) is a maximal compact subgroup of \(\text{Aut}^e(M) \) which is the identity component of \(\text{Aut}(M) \), then the decomposition of Chevalley gives us that
\[
\text{Aut}^e(M) = \text{Aut}_r(M) \times \mathbb{R}_u,
\]
where \(\text{Aut}_r(M) \) is a reductive subgroup of \(\text{Aut}^e(M) \) and the complexification of \(K(M) \) and \(\mathbb{R}_u(M) \) the unipotent radical of \(\text{Aut}^e(M) \). Moreover, if \(\eta(M) \), \(\eta_r(M) \), \(\eta_u(M) \) and \(\kappa(M) \) are the Lie algebras of \(\text{Aut}(M) \), \(\text{Aut}_r(M) \), \(\mathbb{R}_u(M) \) and \(K(M) \) respectively, then we have
\[
\eta(M) = \eta_r(M) \oplus \eta_u(M).
\]

After these notations, we have this fundamental proposition:

Proposition 4.2. There exists a unique holomorphic vector field \(X \in \eta_r(M) \) with \(\text{Im}(X) \in \kappa(M) \) such that the holomorphic invariant \(F_X \) vanishes on \(\eta_r(M) \). Moreover, \(X \) is either zero or an element of the center of \(\eta_r(M) \) and
\[
F_X([u,v]) = 0, \quad \forall (u,v) \in \eta_r(M) \times \eta(M).
\]

Now, if \(M \) is a smooth wonderful \(G \times G \)-compactification such that \(G \times G \) acts faithfully then we have
\[
\eta(M) = \eta_r(M).
\]
Furthermore, we have \(\mathfrak{z}(\eta(M)) \subset \mathfrak{t}(M) = \mathfrak{s}(M) \oplus \mathfrak{a}(M) \). Now, using the logarithmic coordinates \((w_1, w_2, \ldots, w_d) = (x_1 + \sqrt{-1} \theta_1, \ldots, x_d + \sqrt{-1} \theta_d)\), we obtain that
\[
\mathfrak{s}(M) = \bigoplus_{i=1}^d \mathbb{R} \cdot \frac{\partial}{\partial \theta_i},
\]
so
\[
X = \sum_{i=1}^d c_i \frac{\partial}{\partial w_i}, \quad c_i = r_i + \sqrt{-1} t_i \in \mathbb{C}.
\]

Thus, we get
\[
X = \sum_l (r_l + \sqrt{-1} t_l) \left(\frac{\partial}{\partial x^l} + \sqrt{-1} \frac{\partial}{\partial y^l} \right)
\]
\[
= \sum_l \left(r_l \frac{\partial}{\partial x^l} - t_l \frac{\partial}{\partial y^l} \right) + \sqrt{-1} \sum_l \left(t_l \frac{\partial}{\partial x^l} + r_l \frac{\partial}{\partial y^l} \right).
\]

Finally, we have
\[
\text{Im}(X) = \sum_l \left(t_l \frac{\partial}{\partial x^l} + r_l \frac{\partial}{\partial y^l} \right).
Yet $\text{Im}(X) \in s(M)$ which is generated by the family (∂_{α}), so we have $t_i = 0$ for all $i \in \{1, \cdots, n\}$. This is summarized in the following proposition:

Proposition 4.3. Keeping the previous notations, the vector field X canceling the Futaki invariant belongs to $\mathfrak{t}(M)$ and is written in the form

$$X = \sum_{i=1}^{d} a_i (\hat{A}_i + \sqrt{-1} J \hat{A}_i), \quad a_i \in \mathbb{R},$$

where $(\hat{A}_i)_{i=1,\cdots,d}$ is a real basis of $\mathfrak{a}(M)$ and J the complex structure of M.

Now, using the structure of the G group studied in the section 2.1.2, we get

$$\mathfrak{a}(M) = \mathfrak{a} \oplus \mathfrak{a},$$

and thus by setting $(a_i)_{i=1}^{r}$ a real basis of \mathfrak{a}, we obtain that

$$X = A^1 + A^2,$$

where for $i = 1, 2$

$$A^i = \sum_{j=1}^{r} a^i_j (a_j + \sqrt{-1} a_j), \quad a^i_j \in \mathbb{R}.$$

4.1. Futaki invariant in the wonderful case.

In this section, we want to compute the Futaki invariant in the wonderful case. To do this, we first must compute θ_X.

4.1.1. Computation of θ_X.

We fix a smooth $G \times G$-wonderful Fano compactification M such that $G \times G$ acts faithfully. We consider a $K \times K$-invariant Kähler form ω. In particular, we know that on the dense open M^0 isomorphic to G there exists a potential $K \times K$-invariant $\varphi \in C^\infty(G, \mathbb{R})$ such that

$$\omega|_G = \sqrt{-1} \partial \bar{\partial} \varphi.$$

Moreover, if we denote $(l_i)_{i=1}^{n}$ a complex basis of \mathfrak{g} then in a neighborhood U_g of any point g, there is a holomorphic coordinate system given by

$$(z_1, \cdots, z_n) \in \mathbb{C}^n \mapsto e^{z_1 l_1 + \cdots + z_n l_n} \quad g \in U_g,$$

then

$$\omega_g = \sum_{i=1}^{n} \sqrt{-1} u_{ij} \, dl^i \wedge d\bar{l}^j,$$

where $u : \mathfrak{a} \to \mathbb{R}$ is the convex potential φ i.e. $u(a) = \varphi(\exp a)$. Now, if $v \in \eta(M)$ then it can be written locally $v = v_i \frac{\partial}{\partial l_i}$ and

$$i_v \omega_g = \sum_{i,j=1}^{r} \sqrt{-1} u_{ij} v_j \, d\bar{l}^i.$$

Now, we take $v = \hat{l}_1$ then $v = \frac{\partial}{\partial \bar{l}^1}$ on these coordinates and we have for $j = 1, \cdots, r$

$$\frac{\partial \theta_{\hat{l}_1}}{\partial \bar{l}^j} = \frac{\partial}{\partial \bar{l}^j} \left(\frac{\partial \varphi}{\partial \bar{l}^1} \right).$$
In particular, as \(\theta_{\hat{l}i} \) is bounded on \(M \) thus on \(G \) and \(\text{im}(\nabla \varphi) = 2P \) (so \(\nabla \varphi \) is bounded too), we obtain for \(i = 1, \cdots, n \)
\[
\theta_{\hat{l}i}|_G = \hat{l}^1_i(\varphi) + \phi^1_i, \ \phi^1_i \in \mathbb{R}.
\]
Similarly, by taking the coordinate system:
\[
(z_1, \cdots, z_n) \in \mathbb{C}^n \mapsto g e^{zi_1 + \cdots + z_n} \in U_g,
\]
we have
\[
\theta_{\hat{l}2i}|_G = \hat{l}^2_i(\varphi) + \phi^2_i, \ \phi^2_i \in \mathbb{R}.
\]
Now recall \(g \) is the complexification of \(k \) and so the complexification of \(\sqrt{-1}k \) i.e. \(g = \sqrt{-1}k \otimes \mathbb{C} \). Moreover, \(G \) admits the following decomposition :
\[
\mathfrak{g} = \mathfrak{s} \oplus \bigoplus_{\alpha \in \Phi^+} \mathfrak{f}_\alpha,
\]
thus
\[
\mathfrak{g} = \left(\mathfrak{a} \oplus \mathfrak{t} \right) \otimes \mathbb{C}.
\]
Now, taking a basis of \(\mathfrak{g} \) adapted of this decomposition, we can suppose \(l_i := a_i \otimes 1 \) for \(i = 1, \cdots, r \) where the elements \(a_i \) form a basis of \(\mathfrak{a} \). Now, thanks to the \(K \times K \)-invariance of \(\varphi \), we obtain
\[
\hat{l}^j_i(\varphi) = 0, \ \forall i = r + 1, \cdots, n, \ j = 1, 2
\]
and by \(K \times K \)-invariance
\[
\hat{l}^j_i(\varphi) = \frac{\partial u}{\partial a_i}, \ \forall i = 1, \cdots, r, \ j = 1, 2.
\]

4.1.2. Futaki invariant reformulation. For this section, the reference article is [TZ02].

To compute the Futaki invariant, it is preferable to renormalize the function \(\theta_X \) to a function \(\tilde{\theta}_X \) by requesting that it checks
\[
i_X \omega_g = \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \tilde{\theta}_X, \ \Delta \tilde{\theta}_X + X(h_g) = -\tilde{\theta}_X.
\]
This condition is equivalent to
\[
\int_M \tilde{\theta}_X e^{\tilde{\theta}_X} \omega^n_g = 0,
\]
and we obtain
\[
F_X(v) = -\int_M \tilde{\theta}_v e^{\tilde{\theta}_X} \omega^n_g.
\]
In particular, it can be seen that in the case where \(X = \hat{l}^j_i \) for \(i = 1, 2 \) and \(j = 1, \cdots, r \) then
\[
\tilde{\theta}_{\hat{l}^j_i}|_G = \tilde{\theta}^j_i(\varphi).
\]
4.1.3. Computation of the Futaki Invariant. We can then compute the Futaki invariant directly for the vectors \tilde{l}^i_j with $i = 1, \cdots, r$:

$$F_X(\tilde{l}^i_j) = \int_M \tilde{\theta} e^{\delta x} \omega^n$$

$$= \int_G \tilde{a}^i_j(\varphi) \exp \left[\sum_{i=1}^r \sum_{j=1}^r \tilde{a}^i_j(\varphi) \right] MAC(\varphi) dg$$

$$= C \int_{a^+} \left(\frac{\partial u}{\partial a_i} \exp \left[\sum_{j=1}^r (a^1_j + a^2_j) \frac{\partial u}{\partial a_i} \right] \right) MAC(\varphi) J(a) da$$

$$= C \int_{2a^+} \left[\sum_{j=1}^r a_j p_j \prod_{\alpha \in \phi^+} \alpha(p)^2 dp, \forall \alpha = 1, \cdots, r \right]$$

where $a_j := a^1_j + a^2_j$. Now, using the proposition [4.2], we obtain:

Theorem 4.4. Let’s assume M is a Fano smooth wonderful $G \times G$-compactification on a complex algebraic connected and reductive groupe G such that $G \times G$ acts faithfully and M is not an exceptional case cited in [Pez09]. Then $X \in \eta(M)$ is a solitonic vector field (modulo the action of $Aut^0(M)$) if and only if it is written

$$X = \sum_{j=1}^r a_j^1 (\tilde{a}^1_j + \tilde{s}^1_j) + a_j^2 (\tilde{a}^2_j + \tilde{s}^2_j),$$

where $(a_j)_{j=1,\ldots,r}$ is a real basis of a, $s_j = \sqrt{-1} \alpha_j \in s$ for all $j \in \{1, \cdots, r\}$ and the constants a_j^i satisfy:

$$0 = \int_{2a^+} p_i \exp \left[\sum_{j=1}^r a_j p_j \prod_{\alpha \in \phi^+} \alpha(p)^2 dp, \forall \alpha = 1, \cdots, r \right]$$

where we denote $a_j := a^1_j + a^2_j$.

5. Existence of soliton in the wonderful case

In this section, we want to prove the following theorem:

Theorem 5.1. Let’s assume M is a Fano smooth wonderful $G \times G$-compactification on a complex algebraic connected and reductive groupe G such that $G \times G$ acts faithfully. There is a Kähler-Ricci soliton on M excepted for exceptional cases cited in [Pez09] (the exceptional cases are the cases where M does not satisfy $Aut^0(M) = G \times G$).

5.1. Monge Ampère equation in the wonderful case. We fix a compact Fano manifold (M, g^0) with $\omega^0 \in c_1(M)$ such that (X, g) is a Kähler-Ricci soliton i.e.

$$Ric(\omega) - \omega = L_X \omega.$$

Thanks to the $\partial \bar{\partial}$-lemma, there is a function ψ such that

$$\omega = \omega^0 + \sqrt{-1} \partial \bar{\partial} \psi.$$
Noting \(\theta_X(g) = \theta_X(g^0) + X(\phi) \), it is shown (WZ04 for instance) that solving the Kähler-Ricci soliton equation is equivalent to finding a potential \(\psi \) solution of the following Monge-Ampère equation:

\[
\begin{cases}
\det(g_{i\overline{j}}^0 + \psi_{i\overline{j}}) = \det(g_{i\overline{j}}^0) \exp(h - \theta_X(g^0) - X(\psi) - \psi) \\
(g_{i\overline{j}}^0 + \psi_{i\overline{j}}) > 0.
\end{cases}
\]

Moreover, if we fix a hermitian metric \(m^0 \) on \(-K_M \) such that \(\omega_{m^0} = \omega_{g^0} \) then we can define a volume form \(dV \) given in a local trivialisation \(s \) of \(-K_M \) by \(dV = |s|_{m^0}s^{-1} \wedge \overline{s}^{-1} \) then modulo a constant we obtain that \(h \) is equal to the logarithm of the potential of \(dV \) with respect to \(\omega_{g^0}^m \), so we renormalize to match it. Another way to write the first equation of (5) is then:

\[
(\omega_{g^0}^n + \partial \overline{\partial} \psi)^n = e^{h - \psi - \theta_X(g^0) - X(\psi)} \omega_{g^0}^n.
\]

We keep the previous notations but we consider that in addition the variety \(M \) is a variety of Fano which is a smooth \(G \times G \)-compactification of \(G \) such that \(G \times G \) acts faithfully and we denote by \(P \) the polytope associated with the bundle \(-K_M \). By continuity of the metrics and the potentials, it suffices to study the equation of Monge-Ampère in restriction to the dense open isomorphic to \(G \). In this case, we have the existence (see lemma 3.2) of a \(G \)-invariant section \(s \) of the line bundle \(-K_X \) on \(G \) such that

\[
(\omega_{g^0}^n)|_G = (\sqrt{-1} \partial \overline{\partial} \psi_0)^n = MA_C(\psi_0)s^{-1} \wedge \overline{s}^{-1}
\]

so

\[
(\omega_{g}^n)|_G = MA_C(\psi^0 + \psi)s^{-1} \wedge \overline{s}^{-1}.
\]

Moreover, we consider only the \(K \times K \)-invariant metrics. It is therefore assumed that \(m^0 \) is \(K \times K \)-invariant and we note \(u^0 \) the convex potential associated with \(m^0 \) i.e. \(u^0(a) = \psi(\exp(a)) \). Similarly, we suppose that \(\varphi \) is \(K \times K \)-invariant and we denote by \(\varphi \) its associated convex potential i.e.

\[
\varphi(a) := \psi(\exp(a)).
\]

Note then that \(\omega_g \) is \(K \times K \)-invariant and that its convex potential \(u \) is then \(u = u^0 + \varphi \). Thus we obtain

\[
\omega_g^n|_G = MA_R(u(a)) \frac{1}{J(a)} \prod_{\alpha \in \Phi^+} \alpha (\nabla u(a))^2 s^{-1} \wedge \overline{s}^{-1}.
\]

Moreover, by definition of \(h \) and by the renormalisation chosen, we have

\[
e^{h} \omega_g^n|_G = e^{-\psi_0} s^{-1} \wedge \overline{s}^{-1},
\]

so we finally get

\[
e^{h - \psi - \theta_X(g^0) - X(\psi)} \omega_{g^0}^n = \exp \left[-u - \sum_{l=1}^{r} a_l \frac{\partial u}{\partial a_l}\right].
\]

So we must solve the following equation:

\[
MA_R(u(a)) \cdot \prod_{\alpha \in \Phi^+} (\alpha (\nabla u(a))^2 = J(a) \cdot \exp \left[-u - \sum_{l=1}^{r} a_l \frac{\partial u}{\partial a_l}\right].
\]
5.2. The continuity method. We now want the existence of Kähler-Ricci solitons in the wonderful case. To do this, we will use the method of continuity which we now recall the approach.

To begin with, we introduce into the Monge-Ampère equation a parameter \(t \in [0,1] \) :

\[
\begin{cases}
\det(g^{\alpha\beta}_{ij} + \psi g_{ij}) = \det(g^{\alpha\beta}_{ij}) \exp(h - \theta X - X(\psi) - t\psi) \\
(g^{\alpha\beta}_{ij} + \psi g_{ij}) > 0.
\end{cases}
\]

We note that the equation \([5] \) is the previous equation with \(t = 1 \). Moreover, if a solution exists at time \(t \), we denote it by \(\psi_t \). Now, if \(\psi_t \) is \(K \times K \)-invariant, it has a convex potential \(\varphi_t \). Thus, setting \(u_t = u^0 + \varphi_t \) and \(w_t = t \cdot u_t + (1-t) \cdot u^0 \), we can write this equation on the dense orbit as :

\[
\begin{align*}
(9) & \quad \text{MA}_R(u_t) \cdot \prod_{\alpha \in \Phi^+} (\alpha(\nabla u_t(a)) \cdot J(a)^2 = J(a) \cdot \exp \left[-w_t(a) - \sum_{i=1}^r \alpha_i \frac{\partial u_t}{\partial a_i}(a) \right].
\end{align*}
\]

Moreover, setting \(j(a) = -\ln(J(a)) \) and \(\nu_t(a) = w_t(a) - j(a) \), we get finally :

\[
(10) & \quad \text{MA}_R(u_t) \cdot \prod_{\alpha \in \Phi^+} (\alpha(\nabla u_t(a)) \cdot J(a)^2 = \exp \left[-\nu_t(a) - \sum_{i=1}^r \alpha_i \frac{\partial u_t}{\partial a_i}(a) \right].
\]

The method of continuity consists in considering the set \(S \) of times when there exists a solution:

\[
S := \{ t \in [0,1] / \text{There is a solution } u_t \text{ of the equation } (5) \text{ at the time } t \},
\]

and showing that \(S \) is a close open and nonempty set of \([0,1]\).

The openness and existence of a solution at time \(t = 0 \) comes from the study of the Monge-Ampère equations made in [Anb78, Yau78]. We can also consult [TZ00] for a study made in the case of the Kähler-Ricci solitons. Moreover, thanks to the Arzelà-Ascoli theorem, it suffices to have an a priori estimate \(C^3 \) of the potentials \(\psi_t \) and thus the potentials \(\varphi_t \) to obtain that \(S \) is close. Now, thanks to the works of Yau and Calabi made in appendix A of [Yau78], we can reduce this estimate \(C^3 \) to an estimate \(C^0 \). Moreover, by the following Harnack inequality (see [TZ00, WZ04] for instance)

\[
-\inf_M \varphi_t \leq C(1 + \sup_M \varphi_t),
\]

we can reduce to a uniform upper bound for the \(\varphi_t \).

6. Proof of the a priori estimation

We must a priori find an estimate for \(t \in [0,1] \). Now, using the fact that \(0 \in S \) and \(S \) is open, one can reduce to show an estimate on \([t_0,1]\) for \(t_0 > 0 \). We set such a \(t_0 \) for the rest. Moreover, we denote by \(t \) the notations introduced in the 5.1 section for the solutions of the equations \([5.9, 10]\).

6.1. The steps of the proof. The approach is inspired by the works [WZ04, Del15] and splits in several points:

- We show that the function \(u_t \) admits a unique minimum \(m_t \) reached in \(x_t \).
- We show that to find an estimate of \(u_t \) is equivalent to find a uniform estimate of \(|x_t| \) and \(|m_t| \).
- We find the estimates \(|x_t| \) and \(|m_t| \).
The first step comes from section 6.2.2 of [Del15] which does not depend on the solitonic Monge-Ampère equation. We just recall the results that will be needed later.

Lemma 6.1. [Del15] The function j is strictly convex on \mathfrak{a}^+ and so the function ν_t is a strictly convex function which admits a minimum m_t in x_t. Moreover, there is a constant $b_1 > 0$ independent of t such that $x_t \in b_1 \rho + \mathfrak{a}^+$ and for any $b > 0$, there exists a constant C such that for any $x \in b \rho + \mathfrak{a}^+$,

$$|\nabla(j)(x)| \leq C,$$

and for any $M > 0$, there exists a constant $b > 0$ independent of t such that for any $x \in \mathfrak{a}^+$ satisfying $\alpha(x) < b \alpha(p)$ for some root $\alpha \in \Phi^+$ defining a wall of \mathfrak{a}^+, we have

$$\nu_t(x) \geq m_t + M.$$
To conclude, it suffices to note that x_t is contained in the closed ball of radius C_x independent of t centered at the origin and therefore as j and u^0 are continuous, we can bound these functions on this ball which will therefore not depend on t. □

6.3. Uniform estimate of $|m_t|$. In this section, we prove the following lemma:

Lemma 6.3. We have

$$m_t = \inf_{x \in \mathbb{R}^n} u_t(x) \leq C,$$

where $C > 0$ is independent of $t \in [\varepsilon_0, 1]$.

Before starting the proof, we recall a result concerning the convex domains which will be used in the proof:

Lemma 6.4. [WZ04, Guz75, Gut01] Let Ω be a bounded convex domain in \mathbb{R}^n. Then there is a unique ellipsoid E, called the minimum ellipsoid of Ω, which attains minimum volume among all ellipsoids containing Ω, such that

$$\frac{1}{n} E \subset \Omega \subset E.$$

Let T be a linear transformation with $|T| = 1$, which leaves the center x_0 of E invariant, namely $T(x) = A(x - x_0) + x_0$ for some matrix A, such that $T(E)$ is a ball B_R. Then we have $B_{R/\varepsilon} \subset T(\Omega) \subset B_{R}$ for two balls with concentrated center.

Now we can prove the lemma 6.3.

Proof. We set

$$A_k := \{ x \in \mathbb{R}^n / m_t + k \leq \nu_t(x) \leq m_t + k + 1 \},$$

And then we have the following elementary properties:

- A_k is bounded for $k \geq 0$ et $\cup_k A_k = \mathbb{R}^n$.
- $m_t \in A_0$.
- $\cup_{i=0}^k A_i$ is a convex set for $k \geq 0$.

Moreover, since u, u^0 and j are convex, we have that (u_{ij}) and (u^0_{ij}) are positive matrices. In particular, there is a linear algebra result which gives us

$$\det(\nu_{ij}) = \det(tu_{ij} + (1 - t)u^0_{ij} + (j_{ij}) \geq \det(tu_{ij}) + \det((1 - t)u^0_{ij}) + \det(j_{ij}),$$

and

$$\det(\nu_{ij}) \geq \det(t \cdot u_{ij})$$

$$\geq t^n \cdot \det(u_{ij})$$

$$\geq t^n \cdot e^{-c-d} \cdot e^{-w}$$

(thanks to 10)

where $d = \sup\{c_t y_t / y \in 2P\}$ and $c > \log \sup\{\prod_{\alpha \in \Phi^+} (\alpha(p))^2 / p \in 2P\}$. But $t \in [\varepsilon_0, 1]$, so we get

$$\det(\nu_{ij}) \geq C_0 e^{-m_t} \text{ in } A_0,$$

where $C_0 = t^n_0 e^{-c-d-1}$. Using the lemma 6.4, there exists a linear transformation $y = T(x)$ with $|T| = 1$ and leaving the center of the minimal ellipsoid of A_0 invariant,

$$B_{R/\varepsilon} \subset T(A_0) \subset B_R,$$
and thus preserving the previous inequality. Moreover, we have
\[R \leq \sqrt{2} r C_0^{-1/2} e^{m_t/2r}. \]

Indeed, we set the map
\[v : y \in \mathbb{a}^+ \mapsto \frac{1}{2} C_0^{1/r} e^{m_t/r} [||y - y_t||^2 - \left(\frac{R}{r} \right)^2] + m_t + 1 \in \mathbb{R} \]
where \(y_t \) is the center of the minimal ellipsoid of \(A_0 \). A computation gives us that
\[\det(v_{ij}) = C_0 e^{-m_t} \text{ on } T(A_0), \]
and \(v \geq \nu \) on \(\partial T(A_0) \) thus on \(T(A_0) \) thanks to the comparison principle. In particular, we get
\[m_t \leq \nu_t \leq \nu(y_t) = -\frac{1}{2} C_0^{1/r} e^{m_t/r} \left(\frac{R}{r} \right)^2 + m_t + 1. \]

Now, thanks to the convexity of \(w \), we get
\[T(A_k) \subset B_{2(k+1)R}, \]
and
\[\bigcup_k A_k = \mathbb{a}^+. \]
Furthermore, \(T \) is affine isometry of \(\mathbb{R}^r \) so is isomorphism thus the family \(\{ T(A_k) \}_{k \in \mathbb{N}} \) is a cover of \(\mathbb{a}^+ \). Now, if we denote \(\omega_r \) the area of the sphere \(S_{r-1} \) then we have
\[\int_{\mathbb{a}^+} e^{\nu_t} \leq \sum_k \int_{T(A_k)} e^{-\nu_t} \leq \sum_k e^{-m_t-k} |T(A_k)| \leq \omega_r \sum_k e^{-m_t-k} |2(k+1)R|^r = \omega_r \frac{(2R)^r}{e^{m_t}} \sum_k \frac{(k+1)^r}{e^k} \leq C e^{m_t/2}. \]

We note that the above integration is invariant under any linear transformation \(T \) with \(|T| = 1 \) so
\[e^{m_t/2} \geq \frac{1}{C} \int_{\mathbb{a}^+} \prod_{\alpha \in \Phi^+} \alpha(\nabla u_t(a))^2 e^{-\nu_t(a)} da. \]
Moreover, using the equation \(10 \) we get :
\[e^{m_t/2} \geq \int_{\mathbb{a}^+} \prod_{\alpha \in \Phi^+} \alpha(\nabla u_t(a))^2 \det((u_t)_{ij}(a)) \exp(\sum_i a_i \frac{\partial u_t}{\partial a_l}(a)) da. \]
Finally, we obtain
\[e^{m_t/2} \geq \frac{1}{C} \int_{2P^+} \prod_{\alpha \in \Phi^+} \alpha(p)^2 \cdot \exp(\sum_i a_i p_i) dp =: \beta, \]
is independent of t (thanks to the last equality). In the end, we obtain, passing to the logarithm, that
\[m_t \leq C, \]
where C is a positive constant independent of t.

It remains to show a uniform minoration. For this, we remark
\[
\int_{a^+} e^{\nu_t(a)} da = \int_{a^+} \int_{\nu_t(x)}^{+\infty} e^{-s} ds da
\]
\[
= \int_{-\infty}^{+\infty} e^{-s} \int_{a^+} \mathbf{1}_{\nu_t(a) \leq s} ds da
\]
\[
= \int_{-\infty}^{+\infty} e^{-s} \text{Vol}\{\nu_t \leq s\} ds da
\]
\[
= \int_{-m_t}^{+\infty} e^{-s} \text{Vol}\{\nu_t \leq s\} ds da
\]
\[
= e^{-m_t} \int_0^{+\infty} e^{-s} \text{Vol}\{\nu_t \leq m_t + s\} ds da.
\]

Now, thanks to the convexity of ν_t, we get $\{\nu_t \leq m_t + s\} \subset s \cdot A_0$, and thus
\[
\int_{a^+} e^{\nu_t(a)} da \geq e^{m_t} \int_0^{+\infty} e^{-s} S^r \text{Vol}(A_0) ds
\]
\[
\geq e^{m_t} \int_1^{+\infty} e^{-s} S^r \text{Vol}(A_0) ds
\]
\[
\geq e^{m_t} \text{Vol}(A_0) \int_1^{+\infty} e^{-s} ds.
\]

Moreover, thanks to the equation 9 we have
\[
\int_{a^+} e^{\nu_t(a)} da = \beta
\]
where β is independent of t. Finally, we get
\[
m_t \geq \ln(\beta) - \ln(\text{Vol}(A_0)) \int_1^{+\infty} e^{-s} ds.
\]

To conclude, we must bound above uniformly $\text{vol}(A_0)$ and it is the result of the following lemma.

Lemma 6.5. [Del15] There exists a constant $c > 0$ independent of t such that
\[
\text{Vol}(A_0) \geq c.
\]

Proof. The proof is taken from [Del15]. There exists a constant b_2 independent of t such that $0 < b_2 < b_1$ and $A_0 \subset b_2 \rho + a^+$. This is a corollary of [6.1] taking b_2 corresponding to $M = 1$. Indeed, by lemma [6.1] and proposition [5.7] on $b_2 \rho + a^+$, $|\nabla(\nu_t)|$ is bounded independently of t, say by M. Then it is clear that the ball $B(x_t, M)$ is contained in A_0. So $\text{Vol}(A_0) \geq \text{Vol}(B(x_t, M) = \text{Vol}(B(0, M)) = c$, for some $c > 0$ independent of t.

Using the convexity of ν_t, we obtain the following corollary:
Corollary 6.6. There are constants \(\kappa > 0 \) and \(C > 0 \) independent of \(t \) such that for every \(a \in a^+ \)

\[
\nu_t(a) \geq \kappa |x - x_t| - C.
\]

Thus, for all \(\varepsilon > 0 \), there is \(\delta > 0 \) independent of \(t \) such that

\[
\int_{a^+ \setminus B(x_t, \delta)} e^{-\nu_t(a)} da < \varepsilon.
\]

Proof. The proof is taken from [Del15]. The two previous lemmas tell us that there are two constants \(C_1 > 0 \) and \(C_2 > 0 \) independent of \(t \) such that

\[
C_2 \leq \text{Vol}(A_0) \leq C_1.
\]

By the proof of lemma 6.5, we know that \(\delta_0 > 0 \) is independent of \(t \) such that \(B(x_t, \delta_0) \subset A_0 \) so we can find \(\delta \) independent of \(t \) and depending only on \(\delta_0 \) and \(C_1 \) such that \(A_0 \subset B(x_t, \delta) \). By convexity of \(\nu_t \), one obtains that

\[
\nu_t(a) \geq \frac{1}{\delta} |x - x_t| + m_t, \quad \forall x \in a^+ \setminus B(x_t, \delta).
\]

We conclude by remarking that this last inequality can be extended to the whole space \(a^+ \) by subtracting 1 i.e.

\[
\nu_t(a) \geq \frac{1}{\delta} |x - x_t| + m_t - 1, \quad \forall x \in a^+.
\]

\[\square\]

6.4. Uniform estimate of \(|x_t| \). We have the following lemma:

Lemma 6.7. Let \(x^t = (x^t_1, \ldots, x^t_n) \) be the minimal point of \(\nu_t \). Then

\[
|x^t| \leq C,
\]

where \(C \) is a uniform constant.

Proof. Let’s first note that for \(i \in \{1, \ldots, r\} \), we have

\[
\int_{a^+} \frac{\partial u_t}{\partial a_i} e^{-\nu_t} dx = 0,
\]

and by linearity:

\[
0 = \int_{\mathbb{R}^n} \frac{\partial u_t}{\partial \xi} e^{-\nu_t} d\xi,
\]

for every unit vector \(\xi \in a^+ \). Indeed, we have, thanks to the equation 4 that:

\[
0 = \int_{\Omega} \prod_{\alpha \in \phi^+} \alpha(p)^2 \cdot p_i \exp(\sum_{l=1}^{n} a_i y_l) dp,
\]

\[
0 = \int_{a^+} \prod_{\alpha \in \phi^+} \alpha(\nabla(u_t)(x))^2 \cdot \frac{\partial u_t}{\partial a_i} \exp(\sum_{l=1}^{n} a_i \frac{\partial u_t}{\partial a_l}) \det((u_t)_{pq}) dx
\]

\[= \int_{a^+} \frac{\partial u_t}{\partial a_i} e^{-\nu_t} dx \quad \text{ (thanks to [10]).} \]
Moreover, by the corollary [6.6] we know that for every $\varepsilon > 0$, there exists $\delta > 0$ such that
\[
\int_{a^+ \setminus B(x_1, \delta)} e^{-\nu_t(a)} da < \varepsilon.
\]
Thus, setting $d_0 := \sup_{x \in \mathbb{R}^n} \{ |x| / x \in 2P \}$ and remembering that $\text{im}(\nabla u) = 2P$, we get that for all $\xi \in a^+$:
\[
\forall \varepsilon > 0, \exists \delta > 0, \int_{a^+ \setminus B(x_1, \delta)} \partial u / \partial \xi e^{-\nu_t(a)} da < d_0 \varepsilon.
\]
We fix ε and δ which verify the property above. We now argue by the absurd: we suppose therefore that
\[
\forall C > 0, \exists t \in [t_0, 1], |x^t| > C.
\]
As ∇u is a diffeomorphism of a^+ into $2P^+$ and $0 \in 2P^+$, there exists $t \in [t_0, 1]$ such that
\[
\partial u / \partial \xi(x) > \frac{1}{2} a_0, \forall x \in B(x_1, \delta)
\]
where $\xi = x_1/|x_1|$ and $a_0 = \inf \{|x| / x \in 2\partial P\}$. We obtain
\[
\int_{B(x_1, \delta)} \partial u / \partial \xi(x) e^{\nu_t} dx > 1/4 a_0 \beta.
\]
(We recall that
\[
\int_{a^+} e^{\nu_t(a)} da =: \beta
\]
is independant of t.) Thus for ε small enough,
\[
\int_{a^+} \partial u / \partial \xi(x) e^{\nu_t} dx > 0.
\]
We reach a contradiction. This complete the proof. \(\square\)

REFERENCES

[AK05] V. Alexeev and L. Katzarkov. On k-stability of reductive varieties. Geometric & Functional Analysis GAF A, 15(2):297–310, 2005.
[AL92] H Azad and JJ Loeb. Plurisubharmonic-functions and kählerian metrics on complexification of symmetrical spaces. INDAGATIONES MATHEMATICAE-NEW SERIES, 3(4):365–375, 1992.
[Aub78] Thierry Aubin. Equations du type Monge-Ampère sur les variétés kähleriennes compactes. Bull. Sci. Math., (2), 1978.
[Bri87] Michel Brion. Sur l’image de l’application moment, pages 177–192. Springer Berlin Heidelberg, Berlin, Heidelberg, 1987.
[Del15] Thibault Delcroix. Kähler-Einstein metrics on group compactifications. PhD thesis, Université Grenoble Alpes, 2015.
[Dem] Jean-Pierre Demailly. Complex analytic and differential geometry. Notes de cours.
[FJ78] Mogens Flenssted-Jensen. Spherical functions on a real semisimple lie group. a method of reduction to the complex case. Journal of Functional Analysis, 30(1):106 – 146, 1978.
[Gut01] C.E. Gutierrez. The Monge—Ampère Equation. Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser Boston, 2001.
[Guz75] M. Guzmán. Differentiation of Integral in \mathbb{R}^n. Lecture notes in mathematics. Springer-Verlag, 1975.
[Ham88] Richard S. Hamilton. The Ricci flow on surfaces. In Mathematics and general relativity (Santa Cruz, CA, 1986), volume 71 of Contemp. Math., pages 237–262. Amer. Math. Soc., Providence, RI, 1988.
[Hua17] H. Huang. Kähler-Ricci flow on homogeneous toric bundles. ArXiv e-prints, 2017.

[Kna13] A.W. Knapp. Lie Groups Beyond an Introduction. Progress in Mathematics. Birkhäuser Boston, 2013.

[Pez09] Guido Pezzini. Automorphisms of wonderful varieties. Transformation Groups, 14(3):677–694, 2009.

[PS10] Fabio Podestà and Andrea Spiro. Kähler-Ricci solitons on homogeneous toric bundles. J. Reine Angew. Math., 642:109–127, 2010.

[TZ00] Gang Tian and Xiaohua Zhu. Uniqueness of kähler-ricci solitons. Acta Mathematica, 184(2):271–305, 2000.

[TZ02] G. Tian and X. Zhu. A new holomorphic invariant and uniqueness of Kähler-Ricci solitons. Commentarii Mathematici Helvetici, 77(2):297–325, 2002.

[WZ04] Xu-Jia Wang and Xiaohua Zhu. Kähler–ricci solitons on toric manifolds with positive first chern class. Advances in Mathematics, 188(1):87 – 103, 2004.

[Yau78] Shing-Tung Yau. On the ricci curvature of a compact kähler manifold and the complex monge-ampére equation, i. Communications on Pure and Applied Mathematics, 31(3):339–411, 1978.

[Zhu12] Xiaohua Zhu. Kähler-Ricci flow on a toric manifold with positive first Chern class. In Differential geometry, volume 22 of Adv. Lect. Math. (ALM), pages 323–336. Int. Press, Somerville, MA, 2012.