Owing to intense efforts and significant progress in the understanding of the complex nature of anticancer immune responses and of the mechanisms employed by tumors to overcome such responses, cancer immunotherapy has come of age. Among various immunotherapeutic strategies, anticancer vaccines based on tumor-associated antigen (TAA) subunits are attractive as a standard, ready-to-use and cost-effective treatment approach. Numerous preclinical and clinical studies have demonstrated that progressing tumors evade immunity by interfering with all the three arms of the immune system: innate, adaptive and regulatory immune responses. By extrapolation, effective anticancer vaccines will have to target the same arms of the immune system to achieve therapeutic responses.

Since most TAAs, except viral ones, are self and—as such—weakly immunogenic, the therapeutic efficacy of TAA-based vaccines requires the use of adjuvants with pleiotropic effects on the immune system. Co-stimulatory members of the tumor necrosis factor ligand (TNFL) family may constitute an adjuvant of choice for the development of therapeutic vaccines, due to their pleiotropic effects on various cellular components of the innate, adaptive and regulatory immune system. We have recently proposed that 4-1BBL (CD137L), a co-stimulatory member of the TNFL family, may constitute an adjuvant of choice for the development of therapeutic vaccines, due to its pleiotropic effects on various cellular components of the innate, adaptive and regulatory immune system. We thus focused on the use of natural co-stimulatory ligands as adjuvants for TAA subunit-based vaccines.

4-1BBL exists as a trimer and exerts no functions in a soluble form as such. We therefore designed a novel form of 4-1BBL by fusing the extracellular portion of murine 4-1BBL to the C-terminus of core streptavidin (SA), hence generating a chimeric SA-4-1BBL molecule. In this configuration, SA-4-1BBL molecules exist as tetramers or higher-order multimers, exerting robust co-stimulatory activity on both CD4+ and CD8+ T cells in vitro and in vivo but none of the adverse effects associated with the use of a 4-1BB-targeting agonistic antibody targeting co-stimulatory receptors, such as various members of the CD28 family, is associated with adverse effects. Thus, we hypothesized that natural co-stimulatory ligands may not only overcome the toxicity associated with antibodies but also result in improved therapeutic outcomes, as they deliver signals that differ qualitatively and/or quantitatively from those elicited by agonistic antibodies. We thus focused on the use of natural co-stimulatory ligands as adjuvants for TAA subunit-based vaccines.
(3H3). Most importantly, SA-4-1BBL exerts better co-stimulatory activity on CD4+ T cells than 3H3. In a recent study published in *PLoS ONE*, we demonstrated that a vaccine formulation containing survivin (SVN) as self TAA and SA-4-1BBL as adjuvant is very efficient (~70%) against 3LL lung carcinoma in a prime-only setting. Mice in which the vaccine completely eradicated tumors effectively controlled disease recurrence as simulated by the injection of a lethal dose of live 3LL tumor cells 60 days later, demonstrating the presence of long-lasting immunological memory. The therapeutic efficacy of the vaccine—which was improved to 100% using a prime-boost regimen—was associated with increased percentages of IFNγ-secreting CD8+ T cells and improved cytotoxic T- and NK-cell responses. Importantly, the depletion of CD8+ T cells one day before vaccination completely abrogated its efficacy, while NK-cell depletion negatively affected efficacy, but did not completely abolish it. Interestingly, the depletion of CD4+ T cells had no effects on the therapeutic efficacy of the vaccine, which is surprising given that SVN is a self antigen and the generation of SVN-specific CD8+ T-cell responses, in particular memory responses, may require considerable CD4+ T-cell help. This notion is consistent with previous results indicating that CD4+ T cells are required not only for CD8+ T-cell memory responses to weak viral antigens, but also for primary responses in selected settings. Although our observations suggest that CD4+ T cells are dispensable for the efficacy of TAA subunit-based vaccines adjuvanted with SA-4-1BBL, they do not completely rule out a role of this cell population in the eradication of primary tumors and in the establishment of long-term immunological memory. Indeed, CD4+ T cells may only be required for priming, which can take place by the sheer exposure of the immune system to the tumor in vivo, a setting in which TAAs are efficiently taken up, processed and presented by DCs. Studies are underway in our laboratory to clarify this issue. Importantly, our vaccine formulation was efficient while failing to induce any observable toxicity or autoimmune events.

In conclusion, the results of numerous studies conducted by others with 4-1BB-targeting agonistic antibodies, coupled to our observations on the efficacy of SA-4-1BBL as an adjuvant for TAA subunit-based anticancer vaccines, demonstrate the potential of the 4-1BB co-stimulatory pathway as a prominent target for the development of efficient anticancer vaccines. The use of SA-4-1BBL as an adjuvant provides considerable advantages over that of agonistic antibodies, mostly due to its potential to elicit robust immune responses in the absence of detectable systemic toxicity.

Disclosure of Potential Conflicts of Interest
The technology described herein is licensed from University of Louisville by ApoVax, Inc., for which Haval Shirwan serves as CSO and Member of the Board. Haval Shirwan and Esma Yolcu have significant financial Interest in the company.

References

1. Schabowsky RH, Madireddi S, Sharma R, Yolcu ES, Shirwan H. Targeting CD4+CD25+FoxP3+ regulatory T-cells for the augmentation of cancer immunotherapy. *Curr Opin Investig Drugs* 2007; 8:1002-8; PMID:1805871.

2. Croft M. The role of TNF superfamily members in T-cell function and disease. *Nat Rev Immunol* 2009; 9:271-85; PMID:19310144; http://dx.doi.org/10.1038/nri2526

3. Madireddi S, Schabowsky RH, Srivastava AK, Yolcu ES, Shirwan H. SA-4-1BBL costimulation inhibits conversion of conventional CD4+ T cells into CD4+ FoxP3+ T regulatory cells by production of IFNγ. *PLoS One* 2012; 7:e42459; PMID:22870329; http://dx.doi.org/10.1371/journal.pone.0042459

4. Srivastava AK, Sharma RK, Yolcu ES, Ulker V, MacLeod K, Dinc G, et al. Prime-boost vaccination with SA-4-1BBL costimulatory molecule and survivin eradicates lung carcinoma in CD8+ T and NK cell dependent manner. *PLoS One* 2012; 7:e48463; PMID:23144888; http://dx.doi.org/10.1371/journal.pone.0048463

5. Sharma RK, Schabowsky RH, Srivastava AK, Elpek KG, Madireddi S, Zhao H, et al. 4-1BB ligand as a novel multi-functional immunomodulator and antigen delivery vehicle for the development of therapeutic cancer vaccines. *Cancer Res* 2010; 70:3945-54; PMID:20406989; http://dx.doi.org/10.1158/0008-5472.CAN-09-4480

6. Halstead ES, Mueller YM, Ahman JD, Katsikis PD. In vivo stimulation of CD137 broadly primary antiviral CD8+ T-cell responses. *Nat Immunol* 2002; 3:56-61; PMID:12021777; http://dx.doi.org/10.1038/nri798
7. Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellström KE, et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med 1997; 3:682-5; PMID:9176498; http://dx.doi.org/10.1038/nm0697-682

8. Uno T, Takeda K, Kojima Y, Yoshizawa H, Akiba H, Mirtler RS, et al. Eradication of established tumors in mice by a combination antibody-based therapy. Nat Med 2006; 12:693-8; PMID:16680149; http://dx.doi.org/10.1038/nm1405

9. Schabowski RH, Elpek KG, Madirola S, Sharma RK, Yolcu ES, Bandura-Morgan L, et al. A novel form of 4-1BBL has better immunomodulatory activity than an agonistic anti-4-1BB Ab without Ab-associated severe toxicity. Vaccine 2009; 28:512-22; PMID:19836479; http://dx.doi.org/10.1016/j.vaccine.2009.09.127

10. Wang JC, Livingstone AM. Cutting edge: CD4+ T cell help can be essential for primary CD8+ T cell responses in vivo. J Immunol 2003; 171:6339-43; PMID:14662830