Quantum Monte Carlo Calculations of $A \leq 6$ Nuclei

B. S. Pudliner and V. R. Pandharipande

Physics Department, University of Illinois at Urbana-Champaign, 1110 West Green St., Urbana, Illinois 61801

J. Carlson

Theoretical Division, Los Alamos National Laboratory, Los Alamos New Mexico 87545

R. B. Wiringa

Physics Division, Argonne National Laboratory, Argonne, IL 60439

(January 11, 1995)

Abstract

The energies of 3H, 3He, and 4He ground states, the $\frac{3}{2}^-$ and $\frac{1}{2}^-$ scattering states of 5He, the ground states of 6He, 6Li, and 6Be and the 3^+ and 0^+ excited states of 6Li have been accurately calculated with the Green’s function Monte Carlo method using realistic models of two- and three-nucleon interactions. The splitting of the $A = 3$ isospin $T = \frac{1}{2}$ and $A = 6$ isospin $T = 1$, $J^\pi = 0^+$ multiplets is also studied. The observed energies and radii are generally well reproduced, however, some definite differences between theory and experiment can be identified.
A system of interacting nonrelativistic nucleons is the simplest model of nuclei. Even in this simple model exact calculations have been possible only for a limited number of light nuclei due to the strong spin-isospin dependence of nuclear forces. For many years, only two-nucleon states could be exactly calculated. Next, the Faddeev method was used to study the three-nucleon states \[1,2\]. In the past decade, many advances have become possible due to the development of supercomputers. Quantum Monte Carlo methods were used to study nuclei with \(A \leq 5 \) \[3,4\], the \(^4\)He ground state was calculated with the Faddeev-Yakubovosky method \[5\], and methods using hyperspherical functions were developed to study low-energy three- and four-nucleon states \[6\]. In this letter, we report the first realistic six-nucleon (6N) quantum Monte Carlo calculations along with updated results for nuclei with \(A \leq 5 \). Until now the \(A = 6 \) nuclei have been mostly treated as three-body systems with an \(\alpha \) and two nucleons \[7\].

The new Argonne \(v_{18} \) two-nucleon interaction \[8\] is used here. It is expressed as a sum of four parts:

\[
v = v_{14} + v_{cib} + v_{csb} + v_{em}.
\]

(1)

Its dominant part, \(v_{14} \), contains 14 isoscalar operators as in the old Argonne \(v_{14} \) \[9\]. The charge-independence-breaking part, \(v_{cib} \), has three isotensor terms with operators \([3\tau_i \cdot \tau_j - \tau_i \cdot \sigma_j - \tau_j \cdot \sigma_i] \otimes [1, \sigma_i \cdot \sigma_j, S_{ij}]\), and includes the effect of the mass difference between charged and neutral pions. The \(v_{cib} = 0 \) in isospin \(T = 0 \) states, while in \(T = 1 \) states \(v_{cib}(np) = -2v_{cib}(nn) = -2v_{cib}(pp) \). The isovector charge-symmetry-breaking part, \(v_{csb} \), contains the operator \((\tau_i \cdot \sigma_j + \tau_j \cdot \sigma_i)\); it accounts for the difference between \(nn \) and \(pp \) interactions and vanishes in \(np \) pairs. The electromagnetic part, \(v_{em} \), contains \(pp \) and \(np \) Coulomb and magnetic interactions in all pairs. The kinetic energy operator associated with this model has isoscalar and isovector parts denoted by \(K \) and \(K_{csb} \):

\[
K + K_{csb} = -\frac{\hbar^2}{4} \sum_i \left[\left(\frac{1}{m_p} + \frac{1}{m_n} \right) \nabla_i^2 + \left(\frac{1}{m_p} - \frac{1}{m_n} \right) \tau \cdot \sigma_i \nabla_i^2 \right]
\]

(2)
Due to its careful treatment of isospin-symmetry-breaking terms, the new Argonne \(v_{18} \) model is well-suited to study the mass differences between the \(T = \frac{1}{2}, 3^H e - 3^H H \) doublet and the \(T = 1, J^\pi = 0^+, 6^H e - 6^H Li - 6^H Be \) triplet.

Three-nucleon interactions, \(V_{ijk} \), described with the Urbana model \[10\] are included in the nuclear Hamiltonian. These contain a two-pion exchange part with its strength \(A_{2\pi} \) chosen to reproduce the observed binding energies of \(3^H H \) and \(4^H e \), and a phenomenological spin-isospin independent interaction of strength \(U_0 \) adjusted to obtain the empirical equilibrium density of nuclear matter. In Urbana models IX (VIII) of \(V_{ijk} \), to be used in conjunction with the new \(v_{18} \) (old \(v_{14} \)), these parameters have values \(A_{2\pi} = -0.0293 \) (−0.028) and \(U_0 = 0.0048 \) (0.005) MeV.

The Green’s function Monte Carlo (GFMC) calculations \[3,4\] are carried out with a simpler isoscalar Hamiltonian:

\[
\hat{H} = K + \sum_{i<j} v_8(ij) + \sum_{i<j<k} V_{ijk}.
\]

The interaction \(v_8(ij) \) has eight terms, with operators \([1, \tau_i \cdot \tau_j] \otimes [1, \sigma_i \cdot \sigma_j, S_{ij}, L \cdot S]\), chosen such that it equals the \(v_{14} \) in all \(S \)- and \(P \)-waves as well as in the \(3^D_1 \) wave and its coupling to the \(3^S_1 \). The eigenstates of \(\hat{H} \) are computed, and all other terms, namely \((v_{14} - v_8), v_{cib}, v_{csb}, v_{em}, \) and \(K_{csb} \), are treated as first order perturbations. The error in the binding energy of \(^3H \) due to the perturbative treatment of \(v_{14} - v_8 \) has been estimated by Kamada and Glöckle \[11\] to be \(\sim 0.02 \) MeV.

Nuclear states are represented by vector functions \(\Psi(R) \) whose components \(\psi_\alpha(R) \) give the amplitudes for the nucleons, at spatial coordinates \(R = (r_1, r_2, \ldots, r_A) \), to be in spin-isospin state \(|\alpha\rangle \). The GFMC calculation of the lowest energy state with quantum numbers \(\xi(J^\pi, T, T_z) \) starts with an approximate wave function \(\Psi_v(R) \) determined from a variational Monte Carlo (VMC) calculation for that state. It yields values of \(\Psi(\tau, R_i(\tau)) \), where

\[
\Psi(\tau, R) = e^{-\hat{H} \tau} \Psi_v(R), \tag{4}
\]

at configurations \(R_i(\tau) \) distributed with probability \(|\Psi^\dagger_v(R) \Psi(\tau, R)| \). Here \(i \) labels configurations which number \(\sim 10,000 \). The \(e^{-\hat{H} \tau} \) is considered as a product of many small imaginary
time steps $e^{-\hat{H}\Delta\tau}$, with $\Delta\tau \sim 0.0001\,MeV^{-1}$. Using the small-time limit of the propagator $e^{-\hat{H}\Delta\tau}$, correct up to order $\Delta\tau$, the $\Psi(\tau + \Delta\tau, \mathbf{R}_i(\tau + \Delta\tau))$ are stochastically estimated from the known $\Psi(\tau, \mathbf{R}_i(\tau))$.

The number of spin-isospin states that contribute to the $T = 0(1)$ 6N $\Psi(\mathbf{R})$ is 320(576), and their propagator $e^{-\hat{H}\Delta\tau}$ is a $320 \times 320(576 \times 576)$ complex matrix function. Therefore 6N GFMC calculations are numerically very intensive. They were performed on the IBM SP parallel computer at Argonne National Laboratory with 128 nodes operating at ~ 40 MFLOPS/node. Propagating 10,000 6N configurations up to $\tau = 0.06\,MeV^{-1}$ requires $\sim 2,000$ node hours. In contrast, the 4He ground state wave function $\Psi(\mathbf{R})$ has only 32 spin-isospin states, and requires ~ 100 node hours for a similar calculation.

It is well known that there are no $A = 5$ bound states. The $\frac{3}{2}^-$ and $\frac{1}{2}^-$ resonances in 5He have been studied as $n - ^4He$ scattering and the phase shifts in these partial waves have been extracted [12]. The GFMC calculations for these states are carried out with an external $\alpha - n$ potential that vanishes for $|\mathbf{r}_\alpha - \mathbf{r}_n| < 12.5$ fm and is infinitely repulsive for $|\mathbf{r}_\alpha - \mathbf{r}_n| > 12.5$ fm. These conditions also imply that the external potential is $0(\infty)$ for $|\mathbf{r}_n| < 10(> 10)$ fm in the center of mass frame. The calculated Ψ_o corresponds to a scattering solution with a node at $|\mathbf{r}_\alpha - \mathbf{r}_n| = 12.5$ fm, however, only the interesting part with $|\mathbf{r}_\alpha - \mathbf{r}_n| < 12.5$ fm is retained in the calculation. Assuming that the interaction between α and n is negligible for $|\mathbf{r}_\alpha - \mathbf{r}_n| > 12.5$ fm the true energy of this state can be obtained from the phase shifts [13].

The variational wave functions used in these calculations include spatial and spin-isospin two-body and three-body correlations denoted by $f_c(r_{ij}), U_{ij}$, and U_{ijk} in ref. [14]. The uncorrelated wave functions for 3H and 4He are as given in [14], while those for 5He have an additional nucleon in the $(p_{\frac{3}{2}})$ or $(p_{\frac{1}{2}})$ scattering state. The two extra nucleons in 6N states are in optimized superpositions of $(p_{\frac{3}{2}})^2$, $(p_{\frac{1}{2}}p_{\frac{3}{2}})$, and $(p_{\frac{3}{2}})^2$ states whose radii are constrained to reasonable values. Details of the VMC and GFMC calculations will be published separately.
The transient energy $E(\tau)$ defined as:

$$E(\tau) = \frac{\langle \Psi_v | \hat{H} | \Psi(\tau) \rangle}{\langle \Psi_v | \Psi(\tau) \rangle} = \frac{\langle \Psi(\frac{\tau}{2}) | \hat{H} | \Psi(\frac{\tau}{2}) \rangle}{\langle \Psi(\frac{\tau}{2}) | \Psi(\frac{\tau}{2}) \rangle},$$

(5)

provides an upper bound which approaches the lowest-energy eigenvalue with quantum numbers ξ in the limit $\tau \to \infty$. The values of $E(\tau)$, calculated from 10,000 configurations for each of the three 6N states and 20,000 configurations for 4He are shown in Fig. [I] along with their statistical error estimates. The 4He $E(\tau)$ decreases from the variational energy $E_v = E(\tau = 0)$ by ~ 1.2 MeV in $\sim 0.02 MeV^{-1}$, and is almost independent of τ thereafter, suggesting that the Ψ_v has $\leq 2\%$ admixture of states with excitation energy ≥ 50 MeV. The $E(\tau)$ of the 6N states, in contrast, decreases by ~ 4 MeV from E_v, and does not appear to have reached the $\tau \to \infty$ asymptotic value at $\tau = 0.06 MeV^{-1}$. The statistical error, governed by variance of $\hat{H}\Psi_v(R)/\Psi_v(R)$ is larger in the 6N $E(\tau)$. These indicate that the 6N Ψ_v are not as accurate as the 4He Ψ_v, and that they need to be improved for more accurate GFMC calculations.

The average value of $E(\tau)$ in the τ interval 0.03 to 0.06 MeV$^{-1}$ is listed as \bar{E} in Table I. The \bar{E} of 3H, 4He, and 5He can be identified with their ground state energies, however, those of the 6N states can only be regarded as upper bounds. It is difficult to extrapolate the 6N $E(\tau)$ to $\tau \to \infty$, particularly due to the large statistical errors; nevertheless we have attempted it in the following way. Let Ψ_i be the eigenstates with quantum numbers ξ and energies E_i. The Ψ_v contains admixtures of Ψ_i with amplitude β_i in addition to the Ψ_o of the lowest-energy state. Admixtures with the smallest $E_i - E_o$ determine the behavior of $E(\tau)$ at large τ. We approximate the contribution of low-lying states with two delta functions at E_1 and E_2 with amplitudes β_1 and β_2. It is experimentally known that the lowest $T = 0$, $J^\pi = 1^+(3^+)$ resonances in 6Li are $5.65(\sim 13.6)$ MeV above the $1^+(3^+)$ bound states [13]. Accordingly, we assume that $E_1 - E_o = 5.65(13.6)$ MeV for the $1^+(3^+)$ states and also use the value 13.6 for $T = 1$, $J^\pi = 0^+$. Further assuming that $E_2 - E_o = 30$ MeV the calculated values of $E(\tau > 0.01 MeV^{-1})$ are fitted by varying E_o, β_1, and β_2. Fortunately, the fits are not very sensitive to $E_2 - E_o$, and are shown in Fig. [I]. The resulting value of E_o is listed as
the calculated energy in Table I. The error in the extrapolated E_o is much larger than that in \bar{E} and less reliable.

The expectation values of various terms in the Hamiltonian are also listed in Table I. These are averages over the interval $\tau = 0.03$ to $0.06 MeV^{-1}$, calculated using

$$\langle \hat{O}(\tau) \rangle = 2 \frac{\langle \Psi_v | \hat{O} | \Psi(\tau) \rangle}{\langle \Psi_v | \Psi(\tau) \rangle} - \frac{\langle \Psi_v | \hat{O} | \Psi_v \rangle}{\langle \Psi_v | \Psi_v \rangle},$$

(6)
correct up to order $|\Psi(\tau)\rangle - |\Psi_v\rangle$. The dominant $\langle v_{14} \rangle$ and $\langle K \rangle$ have similar values in 4He and 5He; while in the 6N states they are closer to the sum of their values in 4He and 2H. The $\langle V_{ijk} \rangle$ are similar in 4He, 5He, and 6N states. The $\langle v_{LS} \rangle$ contains both $L S$ and $L S(\tau_i \tau_j)$ terms in the NN interaction. They contribute, along with V_{ijk}, to the splitting between $\frac{3}{2}^-$ and $\frac{1}{2}^-$ states of 5He. However, the calculated splitting of 0.8(3) MeV is much smaller than the observed 1.4 MeV. The magnitudes of $\langle v_{LS} \rangle$ and $\langle V_{ijk} \rangle$ are larger in the 6N 0$^+$ and 3$^+$ states than in the 1$^+$, suggesting that the 1$^+$ has less contribution from the $(p\frac{3}{2})^2$ configuration than the other two. The underbinding of the 6N 0$^+$ and 3$^+$ states by ~ 1 MeV is probably related to that of the $^5He \frac{3}{2}^-$ state. In 5He, only the expectation value $\langle v_{pp}^{coul} \rangle$ of the Coulomb interaction between protons is calculated. The other terms in $\langle v_{em} \rangle$ for 5He (given in parentheses in Table I) are estimated from results for 4He and 6He. The $\langle v_{pp}^{coul} \rangle$ decreases by $\sim 5\%$ from 4He to 6He indicating that the α-cluster expands as we go from $A = 4$ to 6.

The last three lines of Table I give rms proton and neutron radii. The calculated values of $R(p)$ compare well with the those extracted from observed charge radii [17]. The experimental $R(p)$ of 3He is 1.77 fm, in reasonable agreement with the calculated $R(n)$ of 3H. The Coulomb interaction accounts for most of the isovector $^6Be - ^6He$ difference (Table II). Since this difference is correctly predicted, the $R(p)$ of 6Be, assumed to be equal to the $R(n)$ of 6He, appears to have a reasonable value.

The contributions of v_{em}, v_{cib}, v_{csb}, and K_{csb}, treated as first order perturbations in this work, are responsible for the energy differences within the $T = \frac{1}{2}$ and $T = 1$, $J^\pi = 0^+$ 6N multiplets listed in Table II. The present Hamiltonian explains the isovector energy
differences $^3\text{He} -^3\text{H}$ and $^6\text{Be} -^6\text{He}$ fairly well. The three-body calculations show that the isovector v_{csb} and K_{csb} are necessary to obtain the observed $^3\text{He} -^3\text{H}$ difference, in agreement with earlier results of Faddeev calculations [18]. Unfortunately, the calculated value of the isotensor difference $\frac{1}{2}(^6\text{Be} + ^6\text{He}) - ^6\text{Li}$ is much larger than observed. The observed difference is essentially explained by the electromagnetic interaction alone. This is very puzzling because most of the contribution of the isotensor v_{cib} to this difference should be from the relative 1S_0 two-nucleon state in which the difference between pp and np phase shifts seems to be well established [19,20]. The nonperturbative contribution of the Coulomb interaction, particularly in ^6Be, neglected here, may reduce the value of this isotensor difference. There could also be some contribution from charge-dependence of the two-pion exchange V_{ijk}.

In conclusion, we have demonstrated that the GFMC method can be used to accurately calculate the energies of the many nuclear states with $A \leq 6$ from realistic models of nuclear forces. It appears possible to extend these calculations to several $A = 7$ and 8 states by using larger parallel computers such as the IBM SP2. The calculated energies are in good agreement with experiment. However, some differences, such as the underestimation of the splitting between $\frac{3}{2}^-$ and $\frac{1}{2}^-$ states of ^5He are clearly established. We could attempt to probe relativistic effects [21,22], and the spin-isospin dependence of the short-range part of the V_{ijk} using these differences. A detailed analysis of the GFMC wave function $e^{-\hat{H}\tau}\Psi_{v}$ is in progress to study the structure of the 6N states and improve upon their Ψ_{v}.

ACKNOWLEDGMENTS

The 6N calculations were made possible by a generous grant of computer time from the Mathematics and Computer Science Division of Argonne National Laboratory. We also received valuable support from the National Energy Research Supercomputer Center at Livermore and the National Center for Supercomputing Applications at Urbana. The authors thank Dr. Steven C. Pieper for many useful suggestions. The work of BSP and
VRP is supported by the U.S. National Science Foundation via grant PHY89-21025, that of JC by the U.S. Department of Energy, and that of RBW by the U.S. Department of Energy, Nuclear Physics Division, under contract No. W-31-109-ENG-38.
REFERENCES

[1] C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys. Rev. C 31, 2266 (1985).

[2] W. Glöckle, H. Witala, and Th. Cornelius, Nucl. Phys. A508, 115C (1990).

[3] J. Carlson, Phys. Rev. C 38, 1879 (1988); Nucl. Phys. A508, 141c (1990); A522, 185c (1991).

[4] J. Carlson and R. Schiavilla, in Few Body Systems Suppl. 7, edited by B. L. G. Bakker and R. van Dantzig (Springer-Verlag, Wien, 1994), p.349.

[5] W. Glöckle and H. Kamada, Phys. Rev. Lett. 71, 971 (1993).

[6] A. Kievsky, M. Viviani, and S. Rosati, Nucl. Phys. A551, 241 (1993); A577, 511 (1994).

[7] N. W. Schellingerhout, L. P. Kok, S. A. Coon, and R. M. Adam, Phys. Rev. C 48, 2714 (1993) and references therein.

[8] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C (in press).

[9] R. B. Wiringa, R. A. Smith, and T. L. Ainsworth, Phys. Rev. C 29, 1207 (1984).

[10] J. Carlson, V. R. Pandharipande, and R. B. Wiringa, Nucl. Phys. A401, 59 (1983).

[11] H. Kamada and W. Glöckle, private communication (1994).

[12] R. A. Arndt and L. D. Roper, Nucl. Phys. A209, 447 (1973).

[13] J. Carlson, V. R. Pandharipande, and R. B. Wiringa, Nucl. Phys. A424, 47 (1984).

[14] R. B. Wiringa, Phys. Rev. C 43, 1585 (1991).

[15] F. Ajzenberg-Selove, Nucl. Phys. A413, 1 (1984).

[16] S.C. Pieper and V.R. Pandharipande, Phys. Rev. Lett. 70, 2541 (1993).

[17] H. De Vries, C. W. De Jager, and C. De Vries, At. Data Nucl. Data Tables 36, 495 (1987).
[18] Y. Wu, S. Ishikawa, and T. Sasakawa, Phys. Rev. Lett. 64, 1875 (1990); 66, 242 (1991).

[19] J. R. Bergervoet, P. C. van Campen, R. A. M. Klomp, J.-L. de Kok, T. A. Rijken, V. G. J. Stoks, and J. J. de Swart, Phys. Rev. C 41, 1435 (1990).

[20] V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and J. J. de Swart, Phys. Rev. C 48, 792 (1993).

[21] G. E. Brown, W. Weise, G. Baym, and J. Speth, Comments Nucl. Part. Phys. XVII, 39 (1987).

[22] J. Carlson, R. Schiavilla, and V. R. Pandharipande, Phys. Rev. C 47, 484 (1993).
FIGURES

FIG. 1. The top to bottom data sets show the $E(\tau)$ for ^{6}He, $^{6}\text{Li}(3^{+})$, ^{4}He, and $^{6}\text{Li}(1^{+})$ states, along with the fits described in the text. Constants of 2.5, 1.5, and 0.5 MeV have been added to the $E(\tau)$ of ^{6}He, $^{6}\text{Li}(3^{+})$, and ^{4}He, respectively, for clarity.
TABLE I. Calculated energies and radii in MeV and fm.

Nucleus (J)	$^2H(1)$	$^3H(\frac{1}{2})$	$^4He(0)$	$^5He(\frac{3}{2})$	$^5He(\frac{1}{2})$	$^6He(0)$	$^6Li(1)$	$^6Li(3)$
E(Expt.)	−2.22	−8.48	−28.3	−27.2	−25.8	−29.3	−32.0	−29.8
E(Calc.)	−2.22	−8.47(2)	−28.3(1)	−26.5(2)	−25.7(2)	−28.2(8)	−32.4(9)	−28.9(6)
\bar{E}	−2.22	−8.47(2)	−28.3(1)	−26.5(2)	−25.7(2)	−27.3(4)	−31.1(4)	−28.2(3)
$\langle K \rangle$	19.9	50.(1)	118.(1)	122.(2)	117.(2)	146.(4)	143.(3)	138.(3)
$\langle v_{14} \rangle$	−22.1	−58.(1)	−142.(1)	−145.(2)	−140.(2)	−172.(4)	−173.(3)	−165.(3)
$\langle V_{ijk} \rangle$	0	−1.20(3)	−6.5(3)	−7.0(4)	−6.4(4)	−7.0(7)	−6.2(6)	−6.9(5)
$\langle v_{LS} \rangle$	−0.08	−0.20(5)	−0.4(1)	−1.2(1)	−0.4(1)	−2.7(3)	−1.5(5)	−3.0(4)
$\langle v_{em} \rangle$	0.018	0.039(1)	0.879(5)	(0.86)	(0.86)	0.87(1)	1.71(2)	1.72(2)
$\langle v_{pp}^{coul} \rangle$	0.	0.761(2)	0.745(3)	0.751(3)	0.724(8)	1.55(2)	1.57(2)	
R(n)	1.967	1.72	1.42(1)	3.02(3)	3.57(3)	2.62(1)	2.41(5)	2.46(7)
R(p)	1.967	1.58	1.42(1)	1.84(2)	1.99(2)	1.89(6)	2.41(5)	2.46(7)
R(p)(Expt.)	1.953	1.61	1.47					2.43

TABLE II. Energy differences in MeV within isospin multiplets

	$^3He - ^3H$	$^6Be - ^6He$	$\frac{1}{2}(^6Be + ^6He) - ^6Li$
$\langle v_{em} \rangle$	0.669	2.33	0.33
$\langle K_{csb} \rangle$	0.014	0.036	0
$\langle v_{csb} \rangle$	0.066	0.116	0
$\langle v_{cib} \rangle$	0	0	0.28
$\Delta(Calc.)$	0.749(1)	2.5(1)	0.6(1)
$\Delta(Expt.)$	0.764	2.35	0.34
\[6Li\quad 1^+\]
\[6Li\quad 3^+\quad (+1.5\text{ MeV})\]
\[6He\quad 0^+\quad (+2.5\text{ MeV})\]
\[4He\quad 0^+\quad (+0.5\text{ MeV})\]

Graph:
- **Y-axis:** \(E(\tau)\) (MeV)
- **X-axis:** \(\tau\) (1/MeV)

The graph shows the energy \(E(\tau)\) in MeV as a function of \(\tau\) in 1/MeV, with error bars indicating uncertainty. Different symbols represent different isotopes:
- **Black circle:** \(6Li\quad 1^+\)
- **Black square:** \(6Li\quad 3^+\quad (+1.5\text{ MeV})\)
- **Black diamond:** \(6He\quad 0^+\quad (+2.5\text{ MeV})\)
- **Black square with diamond:** \(4He\quad 0^+\quad (+0.5\text{ MeV})\)