Consistent On-Line Off-Policy Evaluation

Assaf Hallak 1 Shie Mannor 1

Abstract

The problem of on-line off-policy evaluation (OPE) has been actively studied in the last decade due to its importance both as a stand-alone problem and as a module in a policy improvement scheme. However, most Temporal Difference (TD) based solutions ignore the discrepancy between the stationary distribution of the behavior and target policies and its effect on the convergence limit when function approximation is applied. In this paper we propose the Consistent Off-Policy Temporal Difference (COP-TD(λ, β)) algorithm that addresses this issue and reduces this bias at some computational expense. We show that COP-TD(λ, β) can be designed to converge to the same value that would have been obtained by using on-policy TD(λ) with the target policy. Subsequently, the proposed scheme leads to a related and promising heuristic we call log-COP-TD(λ, β). Both algorithms have favorable empirical results to the current state of the art on-line OPE algorithms. Finally, our formulation sheds some new light on the recently proposed Emphatic TD learning.

1. Introduction

Reinforcement Learning (RL) techniques were successfully applied in fields such as robotics, games, marketing and more (Kober et al., 2013; Al-Rawi et al., 2015; Barrett et al., 2013). We consider the problem of off-policy evaluation (OPE) – assessing the performance of a complex strategy without applying it. An OPE formulation is often considered in domains with limited sampling capability. For example, marketing and recommender systems (Theocharous & Hallak, 2013; Theocharous et al., 2015) directly relate policies to revenue. A more extreme example is drug administration, as there are only few patients in the testing population, and sub-optimal policies can have life threatening effects (Hochberg et al., 2016). OPE can also be useful as a module for policy optimization in a policy improvement scheme (Thomas et al., 2015a).

In this paper, we consider the OPE problem in an on-line setup where each new sample is immediately used to update our current value estimate of some previously unseen policy. We propose and analyze a new algorithm called COP-TD(λ, β) for estimating the value of the target policy; COP-TD(λ, β) has the following properties:

1. Easy to understand and implement on-line.
2. Allows closing the gap to consistency such that the limit point is the same that would have been obtained by on-policy learning with the target policy.
3. Empirically comparable to state-of-the art algorithms.

Our algorithm resembles (Sutton et al., 2015)'s Emphatic TD that was extended by (Hallak et al., 2015) to the general parametric form ETD(λ, β). We clarify the connection between the algorithms and compare them empirically. Finally, we introduce an additional related heuristic called Log-COP-TD(λ, β) and motivate it.

2. Notations and Background

We consider the standard discounted Markov Decision Process (MDP) formulation (Bertsekas & Tsitsiklis, 1996) with a single long trajectory. Let $M = (S, \mathcal{A}, \mathcal{P}, \mathcal{R}, \zeta, \gamma)$ be an MDP where S is the finite state space and \mathcal{A} is the finite action space. The parameter \mathcal{P} sets the transition probabilities $\Pr(s' \mid s, a)$ given the previous state $s \in S$ and action $a \in \mathcal{A}$, where the first state is determined by the distribution ζ. The parameter \mathcal{R} sets the reward distribution $r(s, a)$ obtained by taking action a in state s and γ is the discount factor specifying the exponential reduction in reward with time.

The process advances as follows: A state s_0 is sampled according to the distribution $\zeta(s)$. Then, at each-time step t starting from $t = 0$ the agent draws an action a_t according to the stochastic behavior policy $\mu(a \mid s_t)$, a reward $r_t = r(s_t, a_t)$ is accumulated by the agent, and the next state s_{t+1} is sampled using the transition probability $\Pr(s' \mid s_t, a_t)$.
The expected discounted accumulated reward starting from a specific state and choosing an action by some policy \(\pi \) is called the value function, which is also known to satisfy the Bellman equation in a vector form:

\[
V^\pi(s) = \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t r_t \mid s_0 = s \right], \quad T^\pi V \doteq R^\pi + \gamma P^\pi V,
\]

where \([R^\pi]_s \doteq \mathbb{E}_\pi [r(s, \pi(s))]\) and \([P^\pi]_{s,a'} \doteq \mathbb{E}_\pi [P \{s' \mid s, \pi(s)\}]\) are the policy induced reward vector and transition probability matrix respectively; \(T^\pi\) is called the Bellman operator. The problem of estimating \(V^\pi(s)\) from samples is called policy evaluation. If the target policy \(\pi\) is different than the behavior policy \(\mu\) which generated the samples, the problem is called off-policy evaluation (OPE). The TD(\(\lambda\)) (Sutton, 1988) algorithm is a standard solution to on-line on-policy evaluation: Each time step the temporal difference error updates the current value function estimate, such that eventually the stochastic approximation process will converge to the true value function. The standard form of TD(\(\lambda\)) is given by:

\[
R_{t,s_t}^{(n)} = \sum_{i=0}^{n-1} \gamma^i r_{t+i} + \gamma^n \hat{V}_t(s_{t+n}),
\]

\[
R_{t,s_t}^{\lambda} = (1 - \lambda) \sum_{n=0}^{\infty} \lambda^n P^\pi_{s,t}(s_{t+n}),
\]

\[
\hat{V}_{t+1}(s_t) = \hat{V}_t(s_t) + \alpha_t \left(R_{t,s_t}^{\lambda} - \hat{V}_t(s_t) \right),
\]

where \(\alpha_t\) is the step size. The value \(R_{t,s_t}^{(n)}\) is an estimate of the current state’s \(V(s_t)\), looking forward \(n\) steps, and \(R_{t,s_t}^{\lambda}\) is an exponentially weighted average of all of these estimates going forward till infinity. Notice that Equation 1 does not specify an on-line implementation since \(R_{t,s_t}^{(n)}\) depends on future observations, however there exists a compact on-line implementation using eligibility traces (Bertsekas & Tsitsiklis, 1996) for on-line TD(\(\lambda\)), and Sutton et al. (2014), Sutton et al. (2015) for off-policy TD(\(\lambda\)). The underlying operator of TD(\(\lambda\)) is given by:

\[
T^\lambda \pi V = (1 - \lambda) \sum_{n=0}^{\infty} \lambda^n \left(\sum_{i=0}^{n} \gamma^i P^\pi_{s,t} + \gamma^{n+1} P^\pi_{s,t} \right) + \gamma^{n+1} P^\pi_{s,t} V
\]

\[
= (1 - \lambda)(I - \lambda T^\pi)^{-1} T^\pi V,
\]

and is a \(\frac{\gamma(1-\frac{1}{\lambda})}{1 - \lambda}\)-contraction (Bertsekas, 2012).

We denote by \(d_\mu(s)\) the stationary distribution over states induced by taking the policy \(\mu\) and mark \(D_\mu = diag(d_\mu)\). Since we are concerned with the behavior at infinite horizon, we assume \(\zeta(s) = d_\mu(s)\). In addition, we assume that the MDP is ergodic for the two specified policies \(\mu, \pi\) so \(\forall s \in S : d_\mu(s) > 0, d_\pi(s) > 0\) and that the OPE problem is proper \(-\pi(a|s) > 0 \Rightarrow \mu(a|s) > 0\).

When the state space is too large to hold \(V^\pi(s)\), a linear function approximation scheme is used: \(V^\pi(s) \approx \theta^T \phi(s)\), where \(\theta\) is the optimized weight vector and \(\phi(s)\) is the feature vector of state \(s\) composed of \(k\) features. We denote by \(\Phi \in \mathbb{R}^{S \times k}\) the matrix whose lines consist of the feature vectors for each state and assume its columns are linearly independent.

TD(\(\lambda\)) can be adjusted to find the fixed point of \(\Pi_{d_\lambda} T^\pi\) where \(\Pi_{d_\lambda}\) is the projection to the subspace spanned by the features with respect to the \(d_\mu\)-weighted norm (Sutton & Barto, 1998):

\[
R_{t,s_t}^{(n)} = \sum_{i=0}^{n-1} \gamma^i r_{t+i} + \gamma^n \theta^T \phi(s_{t+n}),
\]

\[
R_{t,s_t}^{\lambda} = (1 - \lambda) \sum_{n=0}^{\infty} \lambda^n R_{s_t}^{(n+1)},
\]

\[
\theta_{t+1} = \theta_t + \alpha_t \left(R_{t,s_t}^{\lambda} - \theta_t^T \phi(s_t) \right) \phi(s_t).
\]

Finally, we define OPE-related quantities:

\[
\rho_t = \frac{\pi(a_t|s_t)}{\mu(a_t|s_t)} \quad \Gamma_t^n = \prod_{i=0}^{n-1} \rho_{t-i} \quad \rho_d(s) = \frac{d_\mu(s)}{d_\lambda(s)}.
\]

(2)

we call \(\rho_d\) the covariate shift ratio (as denoted under different settings by (Hachiya et al., 2012)).

We summarize the assumptions used in the proofs:

1. Under both policies the induced Markov chain is ergodic.
2. The first state \(s_0\) is distributed according to the stationary distribution of the behavior policy \(d_\mu(s)\).
3. The problem is proper: \(\pi(a|s) > 0 \Rightarrow \mu(a|s) > 0\).
4. The feature matrix \(\Phi\) has full rank \(k\).

Assumption 1 is commonly used for convergence theorems as it verifies the value function is well defined on all states regardless of the initial sampled state. Assumption 2 can be relaxed since we are concerned with the long-term properties of the algorithm past its mixing time – we require it for clarity of the proofs. Assumption 3 is required so the importance sampling ratios will be well defined. Assumption 4 guarantees the optimal \(\theta\) is unique which greatly simplifies the proofs.

3. Previous Work

We can roughly categorize previous OPE algorithms to two main families. Gradient based methods that perform
stochastic gradient descent on error terms they want to minimize. These include GTD (Sutton et al., 2009a), GTD-2, TDC (Sutton et al., 2009b) and HTD (White & White, 2016). The main disadvantages of gradient based methods are (A) they usually update an additional error correcting term, which means another time-parameter needs to be controlled; and (B) they rely on estimating non-trivial terms, an estimate that tends to converge slowly. The other family uses importance sampling (IS) methods that correct the gains between on-policy and off-policy updates using the IS-ratios \(\rho_t \)'s. Among these are full IS (Precup et al., 2001) and ETD(\(\lambda, \beta \)) (Sutton et al., 2015). These methods are characterized by the bias-variance trade-off they resort to – navigating between biased convergent values (or even divergent), and very slow convergence stemming from the high variance of IS correcting factors (the \(\rho_t \) products).

There are also a few algorithms that fall between the two, for example TO-GTD (van Hasselt et al., 2014) and WIS-TD(\(\lambda \)) (Mahmood & Sutton, 2015).

A comparison of these algorithms in terms of convergence rate, synergy with function approximation and more is available in (White & White, 2016; Geist & Scherrer, 2014). We focus in this paper on the limit point of the convergence. For most of the aforementioned algorithms, the process was shown to converge almost surely to the fixed point of the projected Bellman operator \(\Pi_dT_\pi \) where \(d \) is some stationary distribution (usually \(d_\mu \)), however the \(d \) in question was never\(^4\) \(d_\pi \) as we would have obtained from running on-policy TD with the target policy. The algorithm achieving the closest result is ETD(\(\lambda, \beta \)) which replaced \(d \) with \(f = (I - \beta P_\pi^T)^{-1} d_\mu \), where \(\beta \) trades-off some of the process’ variance with the bias in the limit point. Hence, our main contribution is a consistent algorithm which can converge to the same value that would have been obtained by running an on-policy scheme with the same policy.

4. Motivation

Here we provide a motivating example showing that even in simple cases with “close” behavior and target policies, the two induced stationary distributions can differ greatly. Choosing a specific linear parameterization further emphasizes the difference between applying on-policy TD with the target policy, and applying inconsistent off-policy TD.

Assume a chain MDP with numbered states 1, 2, …, |\(S \)|, where from each state \(s \) you can either move left to state \(s - 1 \), or right to state \(s + 1 \). If you’ve reached the beginning or the end of the chain (states 1 or |\(S \)|) then taking a step further does not affect your location. Assume the behavior policy moves left with probability \(0.5 + \epsilon \), while the target policy moves right with probability \(0.5 + \epsilon \). It is easy to see that the stationary distributions are given by:

\[
d_\mu(s) \propto \left(\frac{0.5 - \epsilon}{0.5 + \epsilon}\right)^s, \quad d_\pi(s) \propto \left(\frac{0.5 + \epsilon}{0.5 - \epsilon}\right)^s.
\]

For instance, if we have a length 100 chain with \(\epsilon = 0.01 \), for the rightmost state we have \(d_\mu(|\{ S \}|) \approx 8 \cdot 10^{-4}, d_\pi(|\{ S \}|) \approx 0.04 \). Let’s set the reward to be 1 for the right half of the chain, so the target policy is better since it spends more time in the right half. The value of the target policy in the edges of the chain for \(\gamma = 0.99 \) is \(V^\pi(1) = 0.21, V^\pi(100) = 99.97 \).

Now what happens if we try to approximate the value function using one constant feature \(\phi(s) \equiv 1 \)? The fixed point of \(\Pi_dT_\pi \) is \(\theta = 11.92 \), while the fixed point of \(\Pi_dT_\pi \) is \(\theta = 88.08 \) – a substantial difference. The reason for this difference lies in the emphasis each projection puts on the states: according to \(\Pi_d_\mu \), the important states are in the left half of the chain – these with low value function, and therefore the value estimation of all states is low. However, according to \(\Pi_d_\pi \), the important states are concentrated on the right part of the chain since the target policy will visit these more often. Hence, the estimation error is emphasized on the right part of the chain and the value estimation is higher. When we wish to estimate the value of the target policy, we want to know what will happen if we deploy it instead of the behavior policy, thus taking the fixed point of \(\Pi_d_\pi T_\pi \) better represents the off-policy evaluation solution.

5. COP-TD(\(\lambda, \beta \))

Most off-policy algorithms multiply the TD summand of TD(\(\lambda \)) with some value that depends on the history and the current state. For example, full IS-TD by (Precup et al., 2001) examines the ratio between the probabilities of the trajectory under both policies:

\[
\frac{P_\pi(s_0, a_0, s_1, \ldots, s_t, a_t)}{P_\mu(s_0, a_0, s_1, \ldots, s_t, a_t)} = \prod_{m=0}^{t} \rho_m = \Gamma_t^\lambda \rho_t. \tag{3}
\]

In problems with a long horizon, or these that start from the stationary distribution, we suggest using the time-invariant covariate shift \(\rho_t \) multiplied by the current \(\rho_t \). The intuition is the following: We would prefer using the probabilities ratio given in Equation 3, but it has very high variance, and after many time steps we might as well look at the stationary distribution ratio instead. This direction leads us to the following update equations:

\[
\theta_{t+1} = \theta_t + \alpha_t \rho_d(s_t) \rho_t \left(r_t + \theta_t^T (\gamma \phi(s_{t+1}) - \phi(s_t)) \right) \phi(s_t) \tag{4}
\]
Lemma 1. If the α_t satisfy $\sum_{t=0}^{\infty} \alpha_t = \infty$, $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$ then the process described by Eq. (4) converges almost surely to the fixed point of $\Pi_\pi V = V$.

The proof follows the ODE method (Kushner & Yin, 2003) similarly to Tsitsiklis & Van Roy (1997) (see the appendix for more details).

Since $\rho_d(s)$ is generally unknown, it is estimated using an additional stochastic approximation process. In order to do so, we note the following Lemma:

Lemma 2. Let $\hat{\rho}_d$ be an unbiased estimate of ρ_d, and for every $n = 0, 1, \ldots$ define $\hat{\Gamma}_t^n = \hat{\rho}_d(s_{t-n})\Gamma_t$. Then:

$$\mathbb{E}_\mu \left[\hat{\Gamma}_t^n | s_t \right] = \rho_d(s_t).$$

For any state s_t there are $t \to \infty$ such quantities $\{\hat{\Gamma}_t^n\}_{n=0}^\infty$, where we propose to weight them similarly to TD(λ):

$$\hat{\Gamma}_t^\beta = (1 - \beta) \sum_{n=0}^\infty \beta^n \hat{\Gamma}_t^{n+1}. \quad (5)$$

Note that $\rho_d(s)$, unlike $V(s)$, is restricted to a close set since its d_μ-weighted linear combination is equal to 1 and all of its entries are non-negative; We denote d_μ-weighted simplex by Δ_d, and let Π_Δ_d be the (non-linear) projection to this set with respect to the Euclidean norm (Π_Δ_d can be calculated efficiently, (Chen & Ye, 2011)).

Now, we can devise a TD algorithm which estimates ρ_d and uses it to find θ, which we call COP-TD(0, β) (Consistent Off-Policy TD).

Algorithm 1 COP-TD(0, β), Input: θ_0, $\hat{\rho}_d(0)$.

1: Init: $F_0 = 0$, $n_0^2 = 1$, $N(s) = 0$
2: for $t = 1, 2, \ldots$ do
3: Observe s_t, a_t, r_t, s_{t+1}
4: Update normalization terms:
5: $N(s_t) = N(s_t) + 1$, $\forall s \in S : \hat{d}_\mu(s) = \frac{N(s)}{t}$
6: $n_t^2 = \beta n_{t-1}^2 + 1$
7: Update Γ_t^n's weighted average:
8: $F_t = \rho_{t-1}(\beta F_{t-1} + c_{s_{t-1}})$
9: Update ρ_d's TD error:
10: $\delta_t = F_t - \hat{\rho}_d t - \hat{\rho}_d(s_t)$
11: $\hat{\rho}_d + \alpha_t \delta_t e_{s_t}$
12: Off-policy TD(0):
13: $\delta_t = r_t + \gamma \phi(s_{t+1}) - \phi(s_t)$
14: $\theta_{t+1} = \theta_t + \alpha_t \hat{\rho}_d(s_{t+1}) \rho_d \phi(s_t)$
15: end for

Similarly to the Bellman operator for TD-learning, we define the underlying COP-operator Y and its β extension:

$$Y u = D_\mu^{-1} P_\pi^T D_\mu u,$$

$$Y^\beta u = (1 - \beta) D_\mu^{-1} P_\pi^T (1 - \beta P_\pi^T)^{-1} D_\mu u. \quad (6)$$

The following Lemma may give some intuition on the convergence of the ρ_d estimation process:

Lemma 3. Under the ergodicity assumption, denote the eigenvalues of P_π by $0 \leq \cdots \leq |\xi| < \xi_1$. Then Y^β is a $\max_{x \in [0,1]} \{1 - |\xi_1|\} < 1$-contraction in the L_2-norm on the orthogonal subspace to ρ_d, and ρ_d is a fixed point of Y^β.

The technical proof is given in the appendix.

Theorem 1. If the step sizes satisfy $\sum t \alpha_t = \sum t \alpha_t^2 = \infty$, $\sum t (\alpha_t^2 + (\alpha_t^2)^2) < \infty$, $\frac{\alpha_t}{\frac{\alpha_t^2}{t}} \to 0$, $t a_t^2 \to 0$, and $\mathbb{E} [\{(\beta^n \Gamma_t^n)^2 | s_t\}] \leq C$ for some constant C and every t and n, then after applying COP-TD(0, β), $\hat{\rho}_d$, converges to ρ_d almost surely, and θ_t converges to the fixed point of $\Pi_\pi V$.

Notice that COP-TD(0, β) given in Alg. 1 is infeasible in problems with large state spaces since $\rho_d \in \mathbb{R}^{|S|}$. Like TD(λ), we can introduce linear function approximation: represent $\rho_d(s) \approx \theta^T \phi(s)$ where θ is a weight vector and $\phi(s)$ is the off-policy feature vector and adjust the algorithm accordingly. For $\hat{\rho}_d$ to still be contained in the set Δ_d, we pose the requirement on the feature vectors: $\phi(s) \in \mathbb{R}_k^t$, and $\sum d_\mu(s) \phi(s) = 1$ (noted as the simplex projection $\Pi_{\Delta_d} [\phi(s)]$). In practice, the latter requirement can be approximated: $\sum d_\mu(s) \phi(s) \approx \frac{1}{t} \sum \phi(s) = 1$ resulting in an extension of the previously applied d_μ estimation (step 5 in COP-TD(0, β)). We provide the full details in Algorithm 2, which also incorporates non-zero λ (similarly to ETD(λ, β)).

Theorem 2. If the step sizes satisfy $\sum t \alpha_t = \sum t \alpha_t^2 = \infty$, $\sum t (\alpha_t^2 + (\alpha_t^2)^2) < \infty$, $\frac{\alpha_t}{\frac{\alpha_t^2}{t}} \to 0$, $t a_t^2 \to 0$, and $\mathbb{E} [\{(\beta^n \Gamma_t^n)^2 | s_t\}] \leq C$ for some constant C and every t, n, then after applying COP-TD(0, β) with function approximation satisfying $\phi(s) \in \mathbb{R}_k^t$, $\hat{\rho}_d$ converges to the fixed point of $\Pi_{\Delta_d} [\phi(s)] Y^\beta$ denoted by ρ_d^{COP} almost surely, and if θ_t converges it is to the fixed point of $\Pi_{\Delta_d} [\phi(s)] V_\pi$, where ϕ is a coordinate-wise product of vectors.

The proof is given in the appendix and also follows the ODE method. Notice that a theorem is only given for $\lambda = 0$, convergence results for general λ should follow the work by Yu (2015).

A possible criticism on COP-TD(0, β) is that it is not actually consistent, since in order to be consistent the original state space has to be small, in which case every off-policy algorithm is consistent as well. Still, the dependence on another set of features allows to trade-off accuracy with
Algorithm 2 COP-TD(λ, β) with Function Approximation.

Input: θ_0, ρ_0.

1: Init: $F_0 = 0$, $n_0^2 = 1$, $N_\phi = 0$, $e_0 = 0$.
2: for $t = 1, 2, \ldots$ do
3: Observe s_t, a_t, r_t, s_{t+1}.
4: Update normalization terms:
5: $n_t^\beta = n_t^{\beta+1}$, $N_\phi = N_\phi + \phi(s_t)$, $\tilde{\phi}_{\rho} = \frac{N_\phi}{t}$.
6: Update Γ_t^n’s weighted average:
7: $F_t = \rho_{t-1}(\beta F_{t-1} + \phi(s_{t-1}))$.
8: Update & project by ρ_d’s TD error:
9: $\delta_t^d = \theta_{p,t-1}^T \left(\frac{F_t}{n_t^\beta} - \phi_p(s_t)\right)$.
10: $\theta_{p,t+1} = \Pi_{\Delta_{\Phi_p}}(\theta_{p,t} + \alpha_t \delta_t^d \phi_p(s_t))$.
11: Off-policy TD(λ):
12: $M_t = \lambda + (1 - \lambda)\theta_{p,t-1}^T \phi_p(s_t)$.
13: $e_t = \rho_t \left(\beta \rho_{t+1} \phi_p(s_{t+1})\right)$.
14: $\delta_t = r_t + \gamma \phi(s_{t+1}) - \phi(s_t)$.
15: $\theta_{t+1} = \theta_t + \alpha_t \delta_t e_t$.
16: end for

computational power in estimating ρ_d and subsequently V. Moreover, smart feature selection may further reduce this gap, and COP-TD(0, β) is still the first algorithm addressing this issue. We conclude with linking the error in ρ_d’s estimate with the difference in the resulting θ, which suggests that a well estimated ρ_d results in consistency:

Corollary 1. Let $0 < \epsilon < 1$. If $(1 - \epsilon)\rho_d \leq \rho_d^{\text{COP}} \leq (1 + \epsilon)\rho_d$, then the fixed point of COP-TD($0, \beta$) with function approximation θ^{COP} satisfies the following, where $\| \cdot \|_\infty$ is the L_∞ induced norm:

$$
\|\theta^* - \theta^{\text{COP}}\|_\infty \leq \epsilon \|A_\infty^{-1} \Phi^T \|_\infty \left(R_{\text{max}} + (1 + \gamma)\|\Phi\|_\infty\|\theta^{\text{COP}}\|_\infty\right),
$$

(7)

where $A_\infty = \Phi^T D_\infty (I - \gamma P_\infty) \Phi$, and θ^* sets the fixed point of the operator $\Pi_{\delta_{\Phi_p}} T_\infty V$.

5.1. Relation to ETD(λ, β)

Recently, Sutton et al. (2015) had suggested an algorithm for off-policy evaluation called Emphatic TD. Their algorithm was later on extended by Hallak et al. (2015) and renamed ETD(λ, β), which was shown to perform extremely well empirically by White & White (2016). ETD(0, β) can be represented as:

$$
F_t = (1 - \beta) \sum_{n=0}^{\infty} \beta^n \Gamma^n_t,
$$

$$
\hat{V}_{t+1}(s_t) = \hat{V}_t(s_t) + \alpha_t F_t \rho_t \left(r_t + \beta_t \left(\gamma \phi(s_{t+1}) - \phi(s_t)\right)\right).
$$

(8)

As mentioned before, ETD(λ, β) converges to the fixed point of ΠF_t^λ (Yu, 2015), where $f = \mathbb{E}[V_t|s_t] = (I - \beta P_\infty) \rho_d$. Error bounds can be achieved by showing that the operator ΠF_t^λ is a contraction under certain requirements on β and that the variance of F_t is directly related to β as well (Hallak et al., 2015) (and thus affects the convergence rate of the process).

When comparing ETD(λ, β)’s form to COP-TD(λ, β)’s, instead of spending memory and time resources on a state/feature-dependent F_t, ETD(λ, β) uses a one-variable approximation. The resulting F_t is in fact a one-step estimate of ρ_d, starting from $\rho_d(s) = 1$ (see Equations 15, 8), up to a minor difference: $F_t^{\text{ETD}} = \beta F_t^{\text{COP-TD}} + 1$ (which following our logic adds bias to the estimate).

Unlike ETD(λ, β), COP-TD(λ, β)’s effectiveness depends on the available resources. The number of features $\phi_p(s)$ can be adjusted accordingly to provide the most affordable approximation. The added cost is fine-tuning another step-size, though β’s effect is less prominent.

6. The Logarithm Approach for Handling Long Products

We now present a heuristic algorithm which works similarly to COP-TD(λ, β). Before presenting the algorithm, we explain the motivation behind it.

6.1. Statistical Interpretation of TD(λ)

Konidaris et al. (2011) suggested a statistical interpretation of TD(λ). They show that under several assumptions the TD(λ) estimate $R^n_{s_t}$ is the maximum likelihood estimator of $V(s_t)$ given $R^n_{s_t}$: (1) Each $R^n_{s_t}$ is an unbiased estimator of $V(s_t)$; (2) The random variables $R^n_{s_t}$ are independent and specifically uncorrelated; (3) The random variables $R^n_{s_t}$ are jointly normally distributed; and (4) The variance of each $R^n_{s_t}$ is proportional to λ^n.

Under Assumptions 1-3 the maximum likelihood estimator of $V(s)$ given its previous estimate can be represented as a linear convex combination of $R^n_{s_t}$ with weights:

$$
w_n = \frac{\left[\text{Var} \left(R^n_{s_t} \right) \right]^{-1}}{\sum_{m=0}^{\infty} \left[\text{Var} \left(R^{(m)}_{s_t} \right) \right]^{-1}}.
$$

(9)

Subsequently, in Konidaris et al. (2011) Assumption 4 was relaxed and instead a closed form approximation of the variance was proposed. In a follow-up paper by Thomas et al. (2015b), the second assumption was also removed and the weights were instead given as: $w_n =$

\[\text{We have conducted several experiments with an altered ETD and indeed obtained better results compared with the original, these experiments are outside the scope of the paper.}\]
Update normalization terms: \(\beta \) in assessing the similar role of weights should be recalculated to match a new sample. While both the approximated variance and learned covariance matrix solutions improve performance on several benchmarks, the first uses a rather crude approximation, and the second solution is both state-dependent and based on noisy estimates of the covariance matrix. In addition, there aren’t efficient on-line implementations since all past weights should be recalculated to match a new sample.

Still, the suggested statistical justification is a valuable tool in assessing the similar role of \(\beta \) in ETD(\(\lambda, \beta \)).

6.2. Variance Weighted \(\Gamma^\pi \)

As was shown by Konidaris et al. (2011), we can use state-dependent weights instead of \(\beta \) exponents to obtain better estimates. The second moments are given explicitly as follows:

\[
\begin{align*}
& E \left[(\Gamma^n)^2 s \right] = \frac{d_d}{d_{\rho}(s_t)} \epsilon_n, \quad \text{where} \quad \hat{P}_{s,s'} = \\
& \sum_{a \in A} \pi^a(s) \mathbb{P}(s'|s, a).
\end{align*}
\]

These can be estimated for each state separately. Notice that the variances increase exponentially depending on the largest eigenvalue of \(\hat{P} \) (as Assumption 4 dictates), but this is merely an asymptotic behavior and may be relevant only when the weights are already negligible. Hence, implementing this solution on-line should not be a problem with the varying weights, as generally only the first few of these are non-zero. While this solution is impractical in problems with large state spaces parameterizing or approximating these variances (similarly to Thomas et al. (2015b)) could improve performance in specific applications.

6.3. Log-COP-TD(\(\lambda, \beta \))

Assumption 3 in the previous section is that the sampled estimators \(\{R^n, \Gamma^n\} \) are normally distributed. For on policy TD(\(\lambda \)), this assumption might seem not too harsh as the estimators \(R^n \) represent growing sums of random variables. However, in our case the estimators \(\Gamma^n \) are growing products of random variables. To correct this issue we can define new estimators using a logarithm on each \(\Gamma^n \):

\[
\log [\rho_d(s_t)] = \log \left[E \left[\hat{\rho}_d(s_t-m) \prod_{k=t-m}^{t-1} \rho_k | s_t \right] \right] \\
\approx \log [\hat{\rho}_d(s_t-m)] + \sum_{k=t-m}^{t-1} E[\log [\rho_k] | s_t].
\]

(10)

This approximation is crude – we could add terms reducing the error through Taylor expansion, but these would be complicated to deal with. Hence, we can relate to this method mainly as a well-motivated heuristic.

Notice that this formulation resembles the standard MDP formulation, only with the corresponding “reward” terms \(\log[\rho_d] \) going backward instead of forward, and no discount factor. Unfortunately, without a discount factor we cannot expect the estimated value to converge, so we propose using an artificial one \(\gamma_{log} \). We can incorporate function approximation for this formulation as well. Unlike COP-TD(\(\lambda, \beta \)), we can choose the features and weights as we wish with no restriction, besides the linear constraint on the resulting \(\rho_d \) through the weight vector \(\theta_\rho \). This can be approximately enforced by normalizing \(\theta_\rho \) using \(\lambda = 1 / \sum_{t} \exp(\theta_\rho^T \phi(s_t)) \) (which should equal 1 if we were exactly correct). We call the resulting algorithm Log-COP-TD(\(\lambda, \beta \)).

Algorithm 3 Log-COP-TD(\(\lambda, \beta \)) with Function Approximation, Input: \(\theta_\mu, \theta_\rho, 0 \)

1: Init: \(F_0 = 0, \quad n_0(\beta) = 1, \quad N(s) = 0 \)
2: for \(t = 1, 2, ... \) do
3: Observe \(s_t, a_t, r_t, s_{t+1} \)
4: Update normalization terms:
5: \(n^2_t = \beta n^2_t + 1, \quad N_d = \gamma_{log}(\beta N_\phi + \phi_\rho(s_t)) \)
6: Update \(\log(\Gamma^n)^d \)’s weighted average:
7: \(F_t = \beta \gamma_{log} F_{t-1} + n^2_t \log[\rho_d(s_{t-1})] \)
8: Update & project by log(\(\rho_d \))’s TD error:
9: \(\delta^d_t = \frac{r_t - \theta_\rho^T \phi_\rho(s_t)}{n^2_t} \)
10: \(\theta_\rho, t+1 = \theta_\rho, t + \alpha d_t \delta_t \phi_\rho(s_t) \)
11: Off-policy TD(\(\lambda \)):
12: \(M_t = \lambda + (1 - \lambda) \exp(\theta_\rho^T \phi_\rho(s_t)) / (X/t) \)
13: \(e_t = \rho_d(\gamma e_t + M_t) \phi(s_{t+1}) \)
14: \(\delta_t = r_t + \theta_\rho^T (\gamma \phi(s_{t+1}) - \phi(s_t)) \)
15: \(\theta_{t+1} = \theta_t + \alpha_t \delta_t e_t \)
16: end for

6.4. Using the Original Features

An interesting phenomenon occurs when the behavior and target policies employ a feature based Boltzmann distribution for choosing the actions: \(\mu(a|s) = \exp(\theta_a^T \phi(s)) \), and \(\pi(a|s) = \exp(\theta_{a, \pi}^T \phi(s)) \), where a constant feature is added to remove the (possibly different) normalizing constant. Thus, \(\log(\rho_d) = (\theta_{a, \pi} - \theta_{a, \mu})^T \phi(s_t) \), and Log-COP-TD(\(\lambda, \beta \)) obtains a parametric form that depends on the original features instead of a different set.
6.5. Approximation Hardness

As we propose to use linear function approximation for \(\rho_d(s) \) and \(\log(\rho_d(s)) \) one cannot help but wonder how hard it is to approximate these quantities, especially compared to the value function. The comparison between \(V(s) \) and \(\rho_d(s) \) is problematic for several reasons:

1. The ultimate goal is estimating \(V^\pi(s) \), approximation errors in \(\rho_d(s) \) are second order terms.

2. The value function \(V^\pi(s) \) depends on the policy-induced reward function and transition probability matrix, while \(\rho_d(s) \) depends on the stationary distributions induced by both policies. Since each depends on at least one distinct factor - we can expect different setups to result in varied approximation hardness. For example, if the reward function has a poor approximation then so will \(V^\pi(s) \), while extremely different behavior and target policies can cause \(\rho_d(s) \) to behave erratically.

3. Subsequently, the choice of features for approximating \(V^\pi(s) \) and \(\rho_d(s) \) can differ significantly depending on the problem at hand.

If we would still like to compare \(V^\pi(s) \) and \(\rho_d(s) \), we could think of extreme examples:

- When \(\pi = \mu \), \(\rho_d(s) \equiv 1 \), when \(R(s) \equiv 0 \) then \(V^\pi(s) \equiv 0 \).

- In the chain MDP example in Section 4 we saw that \(\rho_d(s) \) is an exponential function of the location in the chain. Setting reward in one end to 1 will result in an exponential form for \(V^\pi(s) \) as well. Subsequently, in the chain MDP example approximating \(\log(\rho_d(s)) \) is easier than \(\rho_d(s) \) as we obtain a linear function of the position; This is not the general case.

7. Experiments

We have performed 3 types of experiments. Our first batch of experiments (Figure 1) demonstrates the accuracy of predicting \(\rho_d \) by both COP-TD(\(\lambda, \beta \)) and Log-COP-TD(\(\lambda, \beta \)). We show two types of setups in which visualization of \(\rho_d \) is relatively clear - the chain MDP example mentioned in Section 4 and the mountain car domain (Sutton & Barto, 1998) in which the state is determined by only two continuous variables - the car’s position and speed. The parameters \(\lambda \) and \(\beta \) exhibited low sensitivity in these tasks so they were simply set to 0, we show the estimated \(\rho_d \) after \(10^6 \) iterations. For the chain MDP (top two plots, notice the logarithmic scale) we first approximate \(\rho_d \) without any function approximation (top-left) and we can see COP-TD manages to converge to the correct value while Log-COP-TD is much less exact. When we use linear feature space (constant parameter and position) Log-COP-TD captures the true behavior of \(\rho_d \) much better as expected. The two lower plots show the error (in color) in \(\rho_d \) estimated for the mountain car with a pure exploration behavior policy vs. a target policy oriented at moving right. The z-axis is the same for both plots and it describes a much more accurate estimate of \(\rho_d \) obtained through simulations. The features used were local state aggregation. We can see that both algorithms succeed similarly on the position-speed pairs which are sampled often due to the behavior policy and the mountain. When looking at more rarely observed states, the estimate becomes worse for both algorithms, though Log-COP-TD seems to be better performing on the spike at position > 0.

Next we test the sensitivity of COP-TD(\(\lambda, \beta \)) and Log-COP-TD(\(\lambda, \beta \)) to the parameters \(\beta \) and \(\gamma_{\log} \) (Figure 2) on two distinct toy examples - the chain MDP introduced before but with only 30 states with the position-linear features, and a random MDP with 32 states, 2 actions and a 5-bit binary feature vector along with a free parameter (this compact representation was suggested by White & White (2016) to approximate real world problems). The policies on the chain MDP were taken as described before, and on the random MDP a state independent 0.75/0.25 probability to choose an action by the behavior/target policy. As we can see, larger values of \(\beta \) cause noisier estimations in the random MDP for COP-TD(\(\lambda, \beta \)), but has little effect in other venues. As for \(\gamma_{\log} \) - we can see that if it is too large or too small the error behaves sub-optimally, as expected for the crude approximation of Equation 10. In conclusion, unlike ETD(\(\lambda, \beta \)), Log/COP-TD(\(\lambda, \beta \)) are much less effected by \(\beta \), though \(\gamma_{\log} \) should be tuned to improve results.
Our final experiment (Figure 3) compares our algorithms to ETD(λ, β) and GTD(λ, β) over 4 setups: chain MDP with 100 states with right half rewards 1 with linear features, a 2 action random MDP with 256 states and binary features, acrobot (3 actions) and cart-pole balancing (21 actions) (Sutton & Barto, 1998) with reset at success and state aggregation to 100 states. In all problems we used the same features for ρd and Vπ(s) estimation, γ = 0.99, constant step size 0.05 for the TD process and results were averaged over 10 trajectories, other parameters (λ, β, other step sizes, γlog) were swiped over to find the best ones. To reduce figure clutter we have not included standard deviations though the noisy averages still reflect the variance in the process. Our method of comparison on the first 2 setups estimates the value function using the suggested algorithm, and finds the dπ weighted average of the error between V and the on-policy fixed point ΠπTVπ:

\[||\hat{V} - \Pi_\pi TV_\pi||^2_{d_\pi} = \sum d_\pi(s) \left[(\theta^* - \hat{\theta})^\top \phi(s) \right]^2, \quad(11) \]

where \(\theta^* \) is the optimal \(\theta \) obtained by on-policy TD using the target policy. On the latter continuous state problems we applied on-line TD on a different trajectory following the target policy, used the resulting \(\theta \) value as ground truth and taken the sum of squared errors with respect to it. The behavior and target policies for the chain MDP and random MDP are as specified before. For the acrobot problem the behavior policy is uniform over the 3 actions and the target policy chooses between these with probabilities \(\frac{1}{2}, \frac{1}{3}, \frac{1}{3} \). For the cart-pole the action space is divided to 21 actions from -1 to 1 equally, the behavior policy chooses among these uniformly while the target policy is 1.5 times more prone to choosing a positive action than a negative one.

The experiments show that COP-TD(λ, β) and Log-COP-TD(λ, β) have comparable performance to ETD(λ, β) where at least one is better in every setup. The advantage in the new algorithms is especially seen in the chain MDP corresponding to a large discrepancy between the stationary distribution of the behavior and target policy. GTD(λ) is consistently worse on the tested setups, this might be due to the large difference between the chosen behavior and target policies which affects GTD(λ) the most.

8. Conclusion

Research on off-policy evaluation has flourished in the last decade. While a plethora of algorithms were suggested so far, ETD(λ, β) by Hallak et al. (2015) has perhaps the simplest formulation and theoretical properties. Unfortunately, ETD(λ, β) does not converge to the same point achieved by on-line TD when linear function approximation is applied.

We address this issue with COP-TD(λ, β) and proved it can achieve consistency when used with a correct set of features, or at least allow trading-off some of the bias by adding or removing features. Despite requiring a new set of features and calibrating an additional update function, COP-TD(λ, β)'s performance does not depend as much on β as ETD(λ, β), and shows promising empirical results.

We offer a connection to the statistical interpretation of TD(λ) that motivates our entire formulation. This interpretation leads to two additional approaches: (a) weight the \(T_{\pi_\beta}^\top \) using estimated variances instead of \(\beta \) exponents and (b) approximating \(\log[\rho_d] \) instead of \(\rho_d \); both approaches deserve consideration when facing a real application.
Consistent On-Line Off-Policy Evaluation

References

Al-Rawi, Hasan AA, Ng, Ming Ann, and Yau, Kok-Lim Alvin. Application of reinforcement learning to routing in distributed wireless networks: a review. Artificial Intelligence Review, 43(3):381–416, 2015.

Barrett, Enda, Howley, Enda, and Duggan, Jim. Applying reinforcement learning towards automating resource allocation and application scalability in the cloud. Concurrency and Computation: Practice and Experience, 25(12):1656–1674, 2013.

Bertsekas, D. Dynamic Programming and Optimal Control, Vol II. Athena Scientific, 4th edition, 2012.

Bertsekas, D. and Tsitsiklis, J. Neuro-Dynamic Programming. Athena Scientific, 1996.

Chen, Yunmei and Ye, Xiaojing. Projection onto a simplex. arXiv preprint arXiv:1101.6081, 2011.

Geist, Matthieu and Scherrer, Bruno. Off-policy learning with eligibility traces: A survey. The Journal of Machine Learning Research, 15(1):289–333, 2014.

Hachiya, Hirotaka, Sugiyama, Masashi, and Ueda, Naonori. Importance-weighted least-squares probabilistic classifier for covariate shift adaptation with application to human activity recognition. Neurocomputing, 80:93–101, 2012.

Hallak, Assaf, Tamar, Aviv, Munos, Remi, and Mannor, Shie. Generalized emphatic temporal difference learning: Bias-variance analysis. arXiv preprint arXiv:1509.05172, 2015.

Hochberg, Irit, Feraru, Guy, Kozdoba, Mark, Mannor, Shie, Tennenholtz, Moshe, and Yom-Tov, Elad. Encouraging physical activity in patients with diabetes through automatic personalized feedback via reinforcement learning improves glycemic control. Diabetes care, 39(4):e59–e60, 2016.

Kober, Jens, Bagnell, J Andrew, and Peters, Jan. Reinforcement learning in robotics: A survey. The International Journal of Robotics Research, pp. 0278364913495721, 2013.

Konidaris, George, Niekum, Scott, and Thomas, Philip S. Td-gamma: Re-evaluating complex backups in temporal difference learning. In Advances in Neural Information Processing Systems 24, pp. 2402–2410. Curran Associates, Inc., 2011.

Kushner, Harold and Yin, G George. Stochastic approximation and recursive algorithms and applications, volume 35. Springer Science & Business Media, 2003.

Mahmood, A Rupam and Sutton, Richard S. Off-policy learning based on weighted importance sampling with linear computational complexity. In Conference on Uncertainty in Artificial Intelligence, 2015.

Precup, Doina, Sutton, Richard S, and Dasgupta, Sanjoy. Off-policy temporal-difference learning with function approximation. In ICML, 2001.

Schuss, Zeev and Borkar, Vivek S. Stochastic approximation: A dynamical systems viewpoint, 2009.

Sutton, R. S. and Barto, A. Reinforcement learning: An introduction. Cambridge Univ Press, 1998.

Sutton, R. S., Mahmood, A. R., and White, M. An emphatic approach to the problem of off-policy temporal-difference learning. arXiv:1503.04269, 2015.

Sutton, Rich, Mahmood, Ashique R, Precup, Doina, and Hasselt, Hado V. A new q (lambda) with interim forward view and monte carlo equivalence. In Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 568–576, 2014.

Sutton, Richard S. Learning to predict by the methods of temporal differences. Machine learning, 3(1):9–44, 1988.

Sutton, Richard S, Maei, Hamid R, and Szepesvári, Csaba. A convergent o(n) temporal-difference algorithm for off-policy learning with linear function approximation. In Advances in neural information processing systems, pp. 1609–1616, 2009a.

Sutton, Richard S, Maei, Hamid Reza, Precup, Doina, Bhatnagar, Shalabh, Silver, David, Szepesvári, Csaba, and Wiewiora, Eric. Fast gradient-descent methods for temporal-difference learning with linear function approximation. In Proceedings of the 26th Annual International Conference on Machine Learning (ICML-15), pp. 993–1000. ACM, 2009b.

Theocharous, Georgios and Hallak, Assaf. Lifetime value marketing using reinforcement learning. RLDM 2013, pp. 19, 2013.

Theocharous, Georgios, Thomas, Philip S, and Ghavamzadeh, Mohammad. Personalized ad recommendation systems for life-time value optimization with guarantees. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-15), 2015.

Thomas, Philip, Theocharous, Georgios, and Ghavamzadeh, Mohammad. High confidence policy improvement. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pp. 2380–2388, 2015a.
Thomas, Philip S, Niekum, Scott, Theocharous, Georgios, and Konidaris, George. Policy evaluation using the omega-return. In *Advances in Neural Information Processing Systems* 28, pp. 334–342. Curran Associates, Inc., 2015b.

Tsitsiklis, John N and Van Roy, Benjamin. An analysis of temporal-difference learning with function approximation. *Automatic Control, IEEE Transactions on*, 42(5): 674–690, 1997.

van Hasselt, Hado, Mahmood, A Rupam, and Sutton, Richard S. Off-policy td (λ) with a true online equivalence. In *Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence, Quebec City, Canada*, 2014.

White, Adam and White, Martha. Investigating practical, linear temporal difference learning. *arXiv preprint arXiv:1602.08771*, 2016.

Yu, H. On convergence of emphatic temporal-difference learning. In *COLT*, 2015.
9. Appendix

Table 1. Notation table
λ, β, γ
S
A
**P, P(s'
R, r(s, a)
ζ
γ
r_t = r(s_t, a_t)
**μ(a
**π(a
V^\pi(s)
T
R_π, P_π, T_π
R_λ(s_t, s_{t+1}), R_λ(s_t)
T_λ
d_π(s)
φ(s)
θ
ρ_t
Γ_t^n
ρ_d
Φ
Γ_t^n
Γ_t^β
∆_d_μ
α_t
Y, Y^β
θ_ρ

Assumptions:

1. Under both policies the induced Markov chain is ergodic.

2. The first state s_0 is distributed according to the behavior policy d_μ(s).

3. The support of μ contains the support of π, i.e. π(a|s) > 0 ⇒ μ(a|s) > 0.

4. The feature matrix [Φ]_{s,:} ≡ φ(s) has full rank.

9.1. Proof of Lemma 1

If the step sizes α_t hold \(\sum_{t=0}^{\infty} \alpha_t = \infty, \sum_{t=0}^{\infty} \alpha_t^2 < \infty \) then the process described by Equation 4 converges almost surely to the fixed point of \(\Pi_\pi T_\pi V = V \).

Proof. Similarly to on-policy TD, we define A and b, the fixed point is the solution to \(A\theta = b \). First we find A and show
stability:

\[A = \lim_{t \to \infty} E_{\mu} \left[\rho_t \rho_d(s_t) \phi_t (\phi_t - \gamma \phi_{t+1})^T \right] \]
\[= \sum_s d_{\mu}(s) \rho_d(s) E_{\mu} \left[\rho_k \phi_k (\phi_k - \gamma \phi_{k+1})^T | s_k = s \right] \]
\[= \sum_s d_{\pi}(s) E_{\pi} \left[\rho_k \phi_k (\phi_k - \gamma \phi_{k+1})^T | s_k = s \right] \]
\[= \Phi^T D_{\pi} (I - \gamma P_{\pi}) \Phi. \] (12)

This is exactly the same \(A \) we would have obtained from TD(0) and it is negative definite (see (Sutton et al., 2015)). Similarly we can find \(b \):

\[b = \lim_{t \to \infty} E_{\mu} \left[\rho_t \rho_d(s_t) \phi_t r_t^T | s_k = s \right] \]
\[= \sum_s d_{\mu}(s) \rho_d(s) E_{\mu} \left[\rho_k \phi_k r_k | s_k = s \right] \]
\[= \sum_s d_{\pi}(s) E_{\pi} \left[\rho_k r_k | s_k = s \right] \]
\[= \Phi^T D_{\pi} R_{\pi}, \] (13)

and we obtained the same \(b \) as on-policy TD(0) with \(\pi \).

Now we consider the noise of this off-policy TD, which is exactly the same noise as the on-policy TD only multiplied by \(\rho_t \rho_d(s_t) \) - as long as the noise term of the ODE formulation (Kushner & Yin, 2003) is still bounded, the proof is exactly the same. According to Assumption 1, we know that \(\rho_d \) is lower and upper bounded. By Assumption 3 we also know that \(\rho_t \) is lower and upper bounded. Therefore the noise of the new process is bounded and the same a.s. convergence applies as on-policy TD(0) (Tsitsiklis & Van Roy, 1997). Since \(A, b \) are the same as on-policy TD(0) for the target policy \(\pi \), the convergence is to the same fixed point. \(\square \)

9.2. Proof of Lemma 2

Let \(\hat{\rho}_d \) be an unbiased estimate of \(\rho_d \), and for every \(n = 0, 1, \ldots, t \) define \(\tilde{\Gamma}_t^n = \hat{\rho}_d(s_{t-n}) \Gamma_t^n \). Then:

\[E_{\mu} \left[\tilde{\Gamma}_t^n | s_t \right] = \rho_d(s_t). \]

Proof. For any function on the state space \(u(s) \):

\[E_{\mu} \left[\tilde{\Gamma}_t^n u(s_{t-n}) | s_t \right] = \sum_{(s_i)_{i=t-n}} \Pr((s_i)_{i=t-n} | s_t) \Gamma_t^n u(s_{t-n}) \]
\[= \sum_{(s_i)_{i=t-n}} \frac{\Pr((s_i)_{i=t-n}, s_t)}{\Pr(s_t)} \Gamma_t^n u(s_{t-n}) \]
\[= \sum_{(s_i)_{i=t-n}} \frac{\Pr(s_{t-n}) Pr((s_i)_{i=t-n}, s_t | s_{t-n}) u(s_{t-n})}{\Pr(s_t)} \] (14)
\[= \sum_{s_{t-n}} \frac{\Pr(s_{t-n}) Pr(s_t | s_{t-n}) u(s_{t-n})}{\Pr(s_t)} \]
\[= u^T D_{\mu} P^n D_{\mu}^{-1} e_s, \]
where e_s is the unit vector of state s_t. So, for an unbiased estimate of ρ_d denoted $\hat{\rho}_d$ we can define and derive:

$$
\hat{\Gamma}_t^n \doteq \hat{\rho}_d(s_{t-n})\Gamma_t^n = \hat{\rho}_d(s_{t-n}) \prod_{i=0}^{n-1} \rho_{t-i-1},
$$

$$
\Rightarrow \mathbb{E}_\mu \left[\hat{\Gamma}_t^n | s_t \right] = \mathbb{E} \left[\hat{\rho}_d \right] ^\top D_\mu P_\pi^n D_\mu^{-1} e_s,
$$

$$
= \rho_d D_\mu P_\pi^n D_\mu^{-1} e_s,
$$

$$
= d_\pi^n P_\pi^n D_\mu^{-1} e_s,
$$

$$
= d_\pi^n D_\mu^{-1} e_s = \rho_d(s_t).
$$

\hfill \Box

9.3. Proof of Lemma 3

Under the ergodicity assumption, denote the eigenvalues of P_π by $0 \leq \cdots \leq |\xi_2| < |\xi_1| = 1$. Then Y^β is a max-inf $\frac{(1-\beta)|\xi_i|}{1-|\xi_i|}$-contraction in the L_2-norm on the orthogonal subspace to ρ_d, and ρ_d is a fixed point of Y^β.

Proof. We first show that ρ_d is a fixed point of Y^β:

$$
Y^\beta \rho_d = (1 - \beta) D^{-1}_\mu P_\pi^\top (I - \beta P_\pi^\top)^{-1} D_\mu \left(D^{-1}_\mu d_\pi \right)
$$

$$
= (1 - \beta) D^{-1}_\mu P_\pi^\top (I - \beta P_\pi^\top)^{-1} d_\pi
$$

$$
= (1 - \beta) D^{-1}_\mu (1 - \beta)^{-1} d_\pi
$$

$$
= D^{-1}_\mu d_\pi = \rho_d.
$$

Due to similarity, the eigenvalues of Y^β are the same as those of $(1 - \beta) P_\pi^\top (I - \beta P_\pi^\top)^{-1}$ which is a stochastic matrix with eigenvalues $\left(\frac{(1-\beta)|\xi_i|}{1-|\xi_i|} \right)_{i=1}^{|S|}$, where for $i = 1$ we obtain the eigenvalue 1. For every vector orthogonal to ρ_d, the first eigenvalue has no effect on its spectral decomposition, which means that $\|Y^\beta u\| \leq \text{max}_{\neq 1} \frac{(1-\beta)|\xi_i|}{1-|\xi_i|} \|u\|$.

\hfill \Box

9.4. Proof of Theorem 1

If the step sizes satisfy $\sum t \alpha_t = \sum t \alpha_t^d = \infty$, $\sum t (\alpha_t^2 + (\alpha_t^d)^2) < \infty$, $\alpha_t \alpha_t^d \to 0$, $t\alpha_t^d \to 0$, and $\mathbb{E} \left[(\beta \eta^\top t)^2 | s_t \right] \leq C$ for some constant C and every t, n, then after applying COP-TD($0, \beta$), $\hat{\rho}_{d,t}$ converges to ρ_d almost surely, and $\hat{\theta}_t$ converges to the fixed point of $\Pi_s T_\mu V$.

Proof. We use a three timescales stochastic approximation analysis. The fastest process is $\hat{d}_\mu(s)$ which converges naturally with time-step $O(\frac{1}{t})$:

$$
\hat{d}_{\mu,t+1} = \frac{1}{t+1} \sum_{k=0}^{t} e_s = \frac{1}{t+1} (t \hat{d}_{\mu,t} + e_s) = \hat{d}_{\mu,t} + \frac{1}{t+1} (e_s - \hat{d}_{\mu,t}).
$$

(17)

The process $\hat{d}_{\mu,t}$ converges almost surely to d_μ by the strong law of large numbers. Our next process is $\hat{\rho}_{d,t}$, which we will show converges a.s. to ρ_d with $\hat{\rho}_d(s) = d_\mu(s)$:

Lemma 4. The process:

$$
F_t = \rho_{t-1} (\beta F_{t-1} + e_{s_{t-1}}), \quad n(\beta) = \beta n(\beta) + 1
$$

$$
\hat{\rho}_{d,t+1}(s_t) = \Pi_{\Delta_{d_\mu}} \left(\hat{\rho}_{d,t}(s_t) + \alpha_t \left(\frac{F_t}{n(\beta)} \hat{\rho}_{d,t} - \hat{\rho}_{d,t}(s_t) \right) \right)
$$

(18)

Converges almost surely to ρ_d.
Since \(\Delta E \) the step size conditions follow by the theorem's assumption. Now we move on to the Martingale conditions.

Now let's consider the projection where we follow the discussion in (Schuss & Borkar, 2009). The projection to the simplex zeros some coordinates and decreases a constant from the other coordinates. If indeed it zeros some coordinates - we are at a problematic area of the space since the projection is not Frechet differentiable there.

Proof. Similarly to the proof of Theorem, we can analyze the system on 3-time scales. The fastest process is \(\hat{d}_{\phi} \) which converges naturally with time-step \(O(\frac{1}{t}) \):

\[
\hat{d}_{\phi,t+1} = \frac{1}{t+1} \sum_{k=0}^{t} \phi_p(s_k) = \frac{1}{t+1} (\hat{d}_{\phi,t} + \phi_p(s_k)) = \hat{d}_{\phi,t} + \frac{1}{t+1} (\phi_p(s_k) - \hat{d}_{\phi,t}).
\]

The process \(\hat{d}_{\phi} \) converges almost surely to \(\mathbb{E}_t[\phi_p(s)] \) by the strong law of large numbers.
We now show that $\hat{\rho}_{d,t}$ converges to ρ_d^{COP}. The proof follows the same lines as that of Theorem 1, where two things changed: (a) The estimated value $\hat{\rho}_{d,t}$ is now contained in a linear subspace spanned by Φ_ρ, and (b) the projection changed as well from the d_μ simplex to the $E_\mu[\phi_\rho(s)]$ simplex.

First we represent the corresponding A and b of the projected ρ_d ODE as follows (we assume $\beta = 0$, but the results are similar for general β):

$$A = \Phi_\rho^\top D_\mu (D_\mu^{-1} P_\pi^\top D_\mu - I) \Phi_\rho = \Phi_\rho^\top (P_\pi^\top - I) D_\mu \Phi_\rho, \quad b = 0. \tag{21}$$

We can now verify that a solution to $Ax = b$ also holds the Projected COP equation: $\Pi_{d_\mu}^\phi Y \Phi_\rho \theta_\rho = \Phi_\rho \theta_\rho$ by multiplying it from the left by $\Phi_\rho^\top D_\mu$:

$$\Phi_\rho^\top D_\mu \left[\Pi_{d_\mu}^\phi Y \Phi_\rho \theta_\rho - \Phi_\rho \theta_\rho \right] = \Phi_\rho^\top D_\mu \left[\Phi_\rho (\Phi_\rho^\top D_\mu \Phi_\rho)^{-1} \Phi_\rho^\top D_\mu \left(D_\mu^{-1} P_\pi D_\mu \right) \Phi_\rho \theta_\rho - \Phi_\rho \theta_\rho \right]
= \Phi_\rho^\top D_\mu \Phi_\rho \theta_\rho - \Phi_\rho^\top D_\mu \Phi_\rho \theta_\rho
= \Phi_\rho^\top (P_\pi - I) D_\mu \Phi_\rho \tag{22}$$

Let’s look on the new projection $\Pi_{\Delta_{d_\mu}^{\phi_{\rho_\mu}}}$. Since we demanded $\phi_\rho(s) \in \mathbb{R}^k_+$, this set is close and bounded, so the convergence is guaranteed.

In order for the new projection $\Pi_{\Delta_{d_\mu}^{\phi_{\rho_\mu}}}$ to be Frechet differentiable, we should verify it still avoids the boundaries meaning $\theta_\rho > 0$ coordinate-wise. However, even were this not true, we could simply throw away one of the features and get a smaller problem that does hold this condition, keeping the projection Frechet differentiable similarly to before. Subsequently $\hat{\rho}_{d,t}$ converges to the fixed point of $\Pi_{\Delta_{d_\mu}^{\phi_{\rho_\mu}}} \Pi_{\theta_\rho} Y \beta$ denoted by ρ_d^{COP} almost surely.

Moving on to the last process, we get the following equations:

$$A = \lim_{t \to \infty} \mathbb{E}_\mu \left[\rho_t \rho_d^{\text{COP}}(s_t) \phi_t \phi_t \gamma \phi_{t+1} \right] = \Phi_\rho^\top D_\mu \text{diag}(\rho_d^{\text{COP}})(I - \gamma P_\pi) \Phi,$$

$$b = \lim_{t \to \infty} \mathbb{E}_\mu \left[\rho_t \rho_d^{\text{COP}}(s_t) \phi_t r_{t+1} | s_t = s \right] = \Phi_\rho^\top D_\pi \text{diag}(\rho_d^{\text{COP}}) R_\pi, \tag{23}$$

leading us to the known convergence solution (if indeed the process converge, which is not necessarily true) which is the fixed point of $\Pi_{d_\mu \circ \rho_d^{\text{COP}}} T_\pi V$.

9.6. Proof of Corollary 1

Let $0 < \epsilon < 1$. If $(1 - \epsilon) \rho_d \leq \rho_d^{\text{COP}} \leq (1 + \epsilon) \rho_d$, then the fixed point of COP-TD(0, β) with function approximation θ^{COP} satisfies the following, where $\| \cdot \|_\infty$ is the L_∞ induced norm:

$$\| \theta^* - \theta^{\text{COP}} \|_\infty \leq \epsilon \| A_\pi^{-1} \Phi_\rho \|_\infty \left(R_{\max} + (1 + \gamma) \| \Phi \|_\infty \| \theta^{\text{COP}} \|_\infty \right), \tag{24}$$

where $A_\pi = \Phi_\rho^\top D_\pi (I - \gamma P_\pi) \Phi$, and θ^* sets the fixed point of the operator $\Pi_{d_\mu} T_\pi V$.

Proof. If $(1 - \epsilon) \rho_d \leq \rho_d^{\text{COP}} \leq (1 + \epsilon) \rho_d$, then we know that the weights of the projection hold:

$$(1 - \epsilon)d_\pi \leq d_\pi \leq d_\mu \circ \rho_d^{\text{COP}} \leq (1 - \epsilon)d_\pi. \tag{25}$$

We write the solution equations for both weight vectors

$$\begin{align*}
(\Phi_\rho^\top D_\pi (I - \gamma P_\pi) \Phi) \theta^* &= \Phi_\rho^\top D_\pi R \\
(\Phi_\rho^\top D_\pi (I - \gamma P_\pi) \Phi) \theta^{\text{COP}} &= \Phi_\rho^\top D_\pi R
\end{align*} \tag{26}$$

Now we subtract both equations and add and subtract $(\Phi_\rho^\top D_\pi (I - \gamma P_\pi) \Phi) \theta^{\text{COP}}$:

$$\begin{align*}
(\Phi_\rho^\top D_\pi (I - \gamma P_\pi) \Phi)(\theta^* - \theta^{\text{COP}}) &= \Phi_\rho^\top (D_\pi - D_\pi) R + (\Phi_\rho^\top (D_\pi - D_\pi)(I - \gamma P_\pi) \Phi) \theta^{\text{COP}} \tag{27}
\end{align*}$$
Now we take L_∞ norm on both sides, and use induced matrix sub-multiplicative property:

$$\|\theta^* - \theta_{\text{COP}}\|_\infty = \| (\Phi^T D_\pi (I - \gamma P_\pi) \Phi)^{-1} (\Phi^T (D_\pi - D_\tilde{\pi}) R + (\Phi^T (D_\tilde{\pi} - D_\pi) (I - \gamma P_\pi) \Phi) \theta_{\text{COP}}) \|_\infty$$

$$\leq \| (\Phi^T D_\pi (I - \gamma P_\pi) \Phi)^{-1} \|_\infty \left(\| (D_\pi - D_\tilde{\pi}) R \|_\infty + \| (D_\tilde{\pi} - D_\pi) (I - \gamma P_\pi) \Phi) \theta_{\text{COP}} \|_\infty \right)$$

$$\leq \| A_\pi^{-1} \|_\infty \left(\| D_\pi - D_\tilde{\pi} \|_\infty \| R \|_\infty + \| D_\pi - D_\tilde{\pi} \|_\infty \| I - \gamma P_\pi \|_\infty \| \Phi \|_\infty \| \theta_{\text{COP}} \|_\infty \right)$$

$$\leq \epsilon \| A_\pi^{-1} \Phi^T \|_\infty \left(R_{\text{max}} + (1 + \gamma) \| \Phi \|_\infty \| \theta_{\text{COP}} \|_\infty \right)$$

(28)

9.7. More details on the experiments

Experiments for Figure 1: 100 states chain MDP, with probability 0.51 to move left / right for the behavior / target policy. Results were taken after $T = 1e6$ iterations. For COP-TD we used $\beta = 0$ and a constant step size 0.5. For Log-COP-TD we used $\beta = 0$, $\gamma_{\log} = 0.9999$ and constant step size 0.5. The experiment was conducted 10 times and the standard deviation is given as shading in the graph.

For the mountain car experiment we used the simulator given by https://jamh-web.appspot.com/download.htm. The state aggregation was obtained by running kmeans with 100 clusters and taking the centers as representative states. The behavior policy was taken to be uniform over the 3 possible actions (-1, 0, 1), and the target policy chose these actions with probabilities (1/6, 1/3, 1/2) regardless of the state. COP-TD was applied with $\beta = 0$ and constant step size 0.01, and Log-COP-TD was applied with $\beta = 0$, $\gamma_{\log} = 0.9$ and constant step size 0.01. Both algorithms ran for $T = 1e6$ iterations before the estimated ρ_d was taken.

Experiments for Figure 2: 100 states chain MDP, with probability 0.51 to move left / right for the behavior / target policy. For both algorithms constant step size 0.5. For Log-COP-TD we used $\beta = 0$, $\gamma_{\log} = 0.9999$ when sweeping on the other parameter. All experiments were conducted 10 times and we show the average result.

In the randomized MDP with 32 states we used uniform distribution over transition probabilities for two possible actions, and the target policy had $p = 0.75$ to choose one action where the behavior policy had $p = 0.75$ to choose the other action. All experiments were conducted 10 times and we show the average result.

Experiments for Figure 3 were obtained by running COP-TD, Log-COP-TD, ETD and GTD over 4 setups. The distinct parameters of each algorithm were swiped over to find the best value: COP-TD’s step size and β, Log-COP-TD’s steps size, β and γ_{\log}, ETD’s β and GTD’s step size. The step size of the main process and λ were taken to be the same for all algorithms: step size = 0.05 and $\lambda = 0$ (obtained also by sweeping over possible values). The simulators for acrobot and pole-balancing were taken from https://jamh-web.appspot.com/download.htm.