Bismuth(III) Complexes with Bis(dimethylphenyl) Dithiophosphates: Synthesis, Characterization and Crystal Structure of \[\{(3,5-\text{CH}_3)\text{C}_6\text{H}_3\text{O}\}_2\text{PS}_2\}_3\text{Bi}\]

Ruchi Khajuria,1 Sandeep Kumar,1 Mandeep Kour,1 Atiya Syed,1 Geeta Hundal2 and Sushil K. Pandey1,*

1 Department of Chemistry, University of Jammu, Baba Saheb Ambedkar Road, Jammu–180006 (J & K), India
2 Department of Chemistry, Guru Nanak Dev University, Amritsar-143005, India
* Corresponding author: E-mail: kpsushil@rediffmail.com

Received: 16-05-2017

Abstract

This work presents four complexes with general formula \[\{(\text{ArO})_2\text{PS}_2\}_3\text{Bi}\] (1–4), where \(\text{Ar} = 2,4-(\text{CH}_3)\text{C}_6\text{H}_3, 2,5-(\text{CH}_3)\text{C}_6\text{H}_3, 3,4-(\text{CH}_3)\text{C}_6\text{H}_3\) and 3,5-(CH\(_3\))\(_2\)C\(_6\)H\(_3\), respectively. Reaction of \[\{(\text{ArO})_2\text{PS}_2\}_\text{Na}\] with \(\text{Bi(NO}_3\text{)}_3 \cdot 5\text{H}_2\text{O}\) in toluene in 3:1 molar stoichiometry afforded the complexes \[\{(\text{ArO})_2\text{PS}_2\}_3\text{Bi}\]. These newly synthesized complexes have been characterized by elemental analysis, FT-IR and multinuclear NMR (\(^1\text{H}, ^{13}\text{C}\) and \(^{31}\text{P}\) NMR). The crystal structure of \[\{(3,5-\text{CH}_3)\text{C}_6\text{H}_3\text{O}\}_2\text{PS}_2\}_3\text{Bi}\] (4) has been determined by X-ray crystallography. The compound crystallizes in monoclinic \(P2_1/c\) space group and Bi(III) centre is surrounded by six sulfur atoms from three symmetrically chelating bidentate diphenyl dithiophosphate ligands in a distorted octahedron environment. Screening these complexes for their antifungal activity against \textit{Pencillium chrysogenum} gave positive results.

Keywords: Bi(III) Complexes; X-ray; Dithiophosphate; Fungicidal

1. Introduction

Dithiolates of bismuth have attracted much interest due to their diverse structural features ranging from discrete monomer to polymeric supramolecular assemblies.1–8 Low lability9 and greater thermodynamic stability10,11 of Bi–S compounds as compared to Bi–O compounds has resulted into their wide applicability in medicine and biology.12,13 Due to its non-toxic and non-carcinogenic nature, the use of bismuth compounds in medicine can be traced back to the middle ages,14 although less consideration has been paid to bismuth chemistry in comparison with that of rest of the members of group 15 elements. In addition, chemistry of bismuth compounds has advanced considerably due to its potential in applications as precursors in material sciences,15–27 as X-ray imaging agents28 and as catalysts.29 Further interest in the study of these compounds lies in their significance in medicinal chemistry. The major medicinal applications of bismuth compounds are associated with the treatment of gastrointestinal disorders, antitumor, antimicrobial and antibacterial activity.30–36 Recently, with increasing environmental concerns and the need for ‘green reagents’, the interest in environmentally acceptable heavy metal and its compounds has increased tremendously in the last decade. The synthesis of coordination compounds with dithiophosphate ligand has been in the center of interest in chemical research for many years.37–43 Some Bi(III) complexes containing dithiophosphate ligand, such as \[\text{Bi}\{(\text{S}_2\text{P(OC}_6\text{H}_4\text{Me-m})}_2\}_3\],44 \[\text{Bi}\{(\text{S}_2\text{P(i-C}_3\text{H}_7\text{O})}_2\}_3\],45 have been reported previously. In addition to the above, there are myriad of bismuth compounds with short bite sulfur ligands for which X-ray structures are known e.g. \[\text{Bi}\{(\text{S}_2\text{P(C}_6\text{H}_4\text{)}_2\}_3\],46 \[\text{Bi}\{(\text{S}_2\text{P}(\text{i-C}_3\text{H}_7\text{H}_4\text{)}\}_2\}_3\],47 \[\text{Bi}\{(\text{S}_2\text{PMe}_2\}_3\],48 \[\text{Bi}\{(\text{S}_2\text{PCOPr}_2\}_3\],49 and \[\text{Bi}\{(\text{S}_2\text{CNEt}_2\}_3\].51 Bismuth, because of its large size, and the phosphorodithioate ligand, because it incorporates tetrahedral \(\text{S}_2\text{PO}_2\) rather than planar \(\text{S}_2\text{CN}\) or \(\text{S}_2\text{CO}\), were considered as logical candidates suitable for study. In the above perceptive it was considered worthwhile to prepare similar new dithiophosphate complexes and to study their structu-
2. Experimental

2.1. Reagents, Materials and Measurements

Owing to extremely hydrolysable nature of the starting materials as well as the newly synthesized compounds, stringent precautions were taken to exclude atmospheric moisture throughout all the experimental manipulations. All chemicals were procured from Aldrich. Solvents were freshly distilled according to standard procedures. The characterization of the novel bismuth complexes has been done by elemental analyses, FTIR and NMR spectroscopy. C, H and S microanalysis were obtained with a CHNS/O Vario EL-III full-automatic Elemental Analyser (Indian Institute of Integrative Medicine, Jammu). Bismuth was estimated gravimetrically as BiOCl.52 The infrared spectra were recorded on a Perkin Elmer-RX1 FT-IR spectrophotometer (Sophisticated Analytical Instrumentation Facility, Panjab University, Chandigarh) using KBr discs.1H and 13C NMR spectra were run, relative to external TMS. All chemical shifts are reported in δ units downfield from 31P NMR in so-

2.2. Synthesis of [(2,4-CH3)2C6H3O]2PS2Na3 – Bi (1)

The bismuth complex was prepared by adding toluene suspension (25 mL) of the ligand L1 (1.00 g, 2.77 mmol) to the weighed amount of Bi(NO3)3 · 5H2O (0.44 g, 0.90 mmol) in toluene (25 mL) while stirring continuously at room temperature for 4 hours during which the solution color changes to yellow. Excess of solvent was removed by filtration using an alkoxy funnel fitted with a G-4 disc under reduced pressure, which resulted in the complex 1 as a yellow crystalline solid. Yield: 0.99 g (90%). FTIR (KBr, cm−1): 1117 s [ν(P)–O–C], 870 s [ν(P)–O–(C)], 673 s [ν(P)–S]sym 580 m [ν(P)–S]asym 256 w [νBi–S].1H NMR (CDCl3, ppm): 2.30 (s, 18H, 2–CH3), 2.39 (s, 18H, 4–CH3), 6.89 (d, JHH = 8 Hz, 6H, H3), 7.02 (d, JHH = 8 Hz, 6H, H5); 13C NMR (CDCl3, ppm): 17.27 (s, 2–CH3), 21.49 (s, 4–CH3), 121.05 (C4), 127.28 (C5–CH3), 128.25 (C5), 129.06 (C1–CH3), 130.22 (C4), 147.20 (C1–O); 31P NMR (CDCl3, ppm): 94.15 (s). Anal. Calcd. for C48H54P3S6O6Bi: C, 47.17; H, 4.43; S, 15.70; Bi, 16.95%. Found: C, 47.19; H, 4.40; S, 15.72; Bi, 17.11%. Found: C, 47.19; H, 4.43; S, 15.70; Bi, 16.97%.

2.3. Synthesis of [{(3,5-CH3)2C6H3O}2PS2Na3] – Bi (2)

The same synthetic procedure as for complex 1 was used for complex 2, except that ligand L2 (1.00 g, 2.77 mmol) was used instead of L1. Yield: 1.01 g (92%). FTIR (KBr, cm−1): 1024 s [ν(P)–O–C], 855 s [ν(P)–O–(C)], 682 s [ν(P)–S]sym 562 m [ν(P)–S]asym 255 w [νBi–S].1H NMR (CDCl3, ppm): 2.31 (s, 18H, 2–CH3), 2.34 (s, 18H, 5–CH3), 7.23 (d, JHH = 7.6 Hz, 6H, H3), 7.16 (d, JHH = 7.6 Hz, 6H, H5), 6.49 (s, 6 H, H2); 13C NMR (CDCl3, ppm): 15.03 (s, 2–CH3), 21.21 (s, 5–CH3), 120.38 (C4), 128.04 (C2–CH3), 130.74 (C3), 134.75 (C5–CH3), 155.93 (C1–O); 31P NMR (CDCl3, ppm): 94.36 (s). Anal. Calcd. for C48H54P3S6O6Bi: C, 47.19; H, 4.40; S, 15.72; Bi, 17.11%. Found: C, 47.17; H, 4.39; S, 15.72; Bi, 16.95%.

2.4. Synthesis of [(3,4-CH3)2C6H3O]2PS2Na3 – Bi (3)

The same synthetic procedure as for complex 1 was used for complex 3, except that ligand L3 (1.00 g, 2.77 mmol) was used instead of L1. Yield: 1.03 g (94%). FTIR (KBr, cm−1): 1117 s [ν(P)–O–C], 834 s [ν(P)–O–(C)], 683 s [ν(P)–S]sym 578 m [ν(P)–S]asym 246 w [νBi–S].1H NMR (CDCl3, ppm): 2.49 (s, 18H, 4–CH3), 2.65 (s, 18H, 3–CH3), 7.35 (d, JHH = 7.6 Hz, 6H, H5), 7.48 (s, 6H, H2), 7.55 (d, JHH = 8 Hz, 6H, H3); 13C NMR (CDCl3, ppm): 19.45 (s, 4–CH3), 21.79 (s, 3–CH3), 150.46 (C5), 122.88 (C4), 130.67 (C1–CH3), 134.27 (C3), 138.31 (C1–CH3), 148.96 (C1–O); 31P NMR (CDCl3, ppm): 95.03 (s). Anal. Calcd. for C48H56P3S6O6Bi: C, 47.21; H, 4.46; S, 15.75; Bi, 17.11%. Found: C, 47.19; H, 4.40; S, 15.72; Bi, 16.94%.

2.5. Synthesis of [{(3,5-CH3)2C6H3O}2PS2Na3] – Bi (4)

The same synthetic procedure as for complex 1 was used for complex 4, except that ligand L4 (1.00 g, 2.77 mmol) was used instead of L1. Yield: 1.04 g (95%). FTIR (KBr, cm−1): 1128 s [ν(P)–O–C], 834 s [ν(P)–O–(C)], 682 s
Acta Chim. Slov. 2017, 64, 672–678

Khajuria et al.: Bismuth(III) Complexes with Bis(dimethylphenyl) ...
temperature. In order to confirm the chemical composition of the synthesized complexes, X-ray, FT-IR, and 1H, 13C and 31P NMR analyses were carried out with results presented in the experimental section. The scheme for the formation of the complexes is as follows:

3. 1. Spectroscopic Analysis

The main infrared vibration bands are reported in the experimental section. The FTIR spectra of the complexes and the ligand were compared and assigned on careful comparison. One important band which confirms the bismuth to sulfur bonding ν(Bi–S) has been observed as a weak signal at 246–256 cm$^{-1}$. In addition, the spectrum of the complexes shows a strong band at 1141–1024 cm$^{-1}$ and 870–834 cm$^{-1}$ due to the $[\nu$(P)–O–C] and $[\nu$(P)–O–(C)] stretching vibrations. The most identifiable IR absorptions for complexes 1–4 are 683–673 cm$^{-1}$ and 580–562 cm$^{-1}$, assigned to $[\nu$(P)–S]_asym and $[\nu$(P)–S]_sym respectively. These bands are shifted to lower frequency as compared to the free ligand. It is found that the coordination mode of the dithiophosphate ligand is bidentate by the sulfur atoms. This is also consistent with the crystal structure of the complex.

The 1H NMR spectra of bismuth(III) dithiophosphate complexes were recorded in CDCl$_3$ with tetramethylsilane as an internal standard and are reported in experimental section. The spectra show the characteristic resonance for methyl and aromatic protons. In the complexes 1–4, a chemical shift for $-CH_3$ protons attached to aryl appears at 2.30–2.65 ppm as a singlet. The chemical shifts for the aryl ring protons were observed in the region 6.49–7.55 ppm with their usual splitting pattern.37,38 In the 13C(1H) NMR spectra of these complexes, the chemical shift for methyl carbon ($-CH_3$) attached to the aryl ring was observed in the region 15.03–21.79 ppm. The carbon nuclei of the phenyl group have displayed their resonance in the region 119.16–155.93 ppm.

31P(1H) NMR spectra showed only one sharp resonance signal at 93.30–95.03 ppm in the upfield region compared to that of the free ligand (106.5–107.4 ppm) with a difference of 13 ppm, which indicates a considerable drift of electron density from the phosphorus to the metal atom through both sulfur atoms and thus confirms the formation of a chelated structure with a bidentate behavior of the dithiophosphate moiety.54

3. 2. Molecular and Crystal Structure of 4

In order to understand the structural details, single crystal X-ray diffraction study of compound 4 was performed. Complex 4 crystallizes in the monoclinic P_2_1/c space group. ORTEP view of the molecular structure of 4 with atom numbering scheme is given in Figure 1.

![Fig. 1: ORTEP view of [(3,5-CH$_3$)$_2$C$_6$H$_3$O$_2$]$_3$Bi (4).](image)

The molecule consists of neutral well separated monomeric units. The ligands are bidentate but the attachment of each dithiophosphato moiety to bismuth is slightly unsymmetrical with one short (2.6926(12) to 2.7884(12) Å) and one long (2.7794(12) to 2.9162(13) Å) Bi–S bond forming distorted octahedral geometry. Due to three short and three long Bi–S bond, the configuration is approximately C_3v. These ranges are consistent with typical values reported for the short and long ligand bond in [Bi(S$_2$P(OC$_6$H$_4$Me-m)$_2$)$_3$]$_2$ (2.678(2) to 2.953(2) Å)44, [Bi(S$_2$P(OEt)$_2$)$_3$]$_2$ (2.747(14) to 2.795(12) Å)55 and [Bi(S$_2$P(Oi-Pr)$_3$)$_3$]$_2$ (2.702(6) to 2.8784(6) Å)45.

Asymmetrical coordination necessarily leads to an inverse relationship between the Bi–S and related P–S bond lengths. P$_1$–S$_1$ and P$_2$–S$_2$ bond length in 4 [P$_1$–S$_1$ = 1.9807(17) and P$_2$–S$_2$ = 1.9727 (17) Å] are intermediate between single (2.14 Å) and double (1.94 Å) P–S bonds, suggesting the negative charge is delocalized over the S–P–S fragment. The shorter P–S (1.9727(17) Å) is associated with sulfur atoms forming the longer Bi–S interaction (2.8457(13) Å) while the longer P–S bond (1.9807(17) Å) is allied with the sulfur atoms forming the shorter bonds to the bismuth (2.7884(12) Å). The S–Bi–S bite angle in 4 cover a wide range of 88.6(4) to 92.73(4)°. The interligand angles involving the longer Bi–S bonds are considerably larger ranging from 88.86(4) to 110.64(4)°.

3. 3. Antifungal Activity

Antifungal activities of free ligands, metal salt Bi(NO$_3$)$_3$·5H$_2$O and synthesized compounds have been...
examined at four different concentrations 100 ppm, 500 ppm and 1000 ppm against fungus *Penicillium chrysogenum*. Obtained results have been compared with the standard drug. We conclude that sulfur donor bismuth complexes inhibit the growth of fungi to a greater extent, as concentration is increased. All the results are summarized in Table 3. The results have been obtained as follows:

1. The ligands L1, L2, L3 and L4 showed a negligible inhibitory effect compared to the complexes.
2. Complexes exhibit higher antifungal activities than the corresponding free ligands due to the chelation of the ligand with bismuth.
3. On increasing the concentration of the complex, antifungal activity increases.
4. The increase in antifungal activity might be due to faster diffusion of the complexes as a whole through the cell membrane, or due to a combined activity effect of the metal and the ligand. The polarity of the metal ion will be reduced to a greater extent due to the overlap of the ligand orbitals.

The illustrated comparative results of antifungal analysis are given graphically in Figure 2.

Table 2. Selected bond lengths (Å) and angles (°) for \([\{(3.5-CH_3)_2C_6H_3O\}_2PS_2\}_3Bi (4)

Bond/Angle	Value
O1–P1	1.584 (3)
O2–P1	1.592 (3)
O3–P2	1.586 (3)
O4–P2	1.566 (3)
O5–P3	1.582 (3)
O6–P3	1.579 (3)
P1–S2	1.9727 (17)
P1–S1	1.9807 (17)
P2–S4	1.9755 (17)

Table 3. Antifungal activity of diphenyl dithiophosphate ligands and bismuth(III) complexes against the fungus *Penicillium chrysogenum*.

Compound	Concentration (ppm)	Zone of inhibition (cm)
L1	100	0.0
	500	0.0
	1000	0.0
L2	100	0.0
	500	0.0
	1000	0.0
L3	100	0.0
	500	0.0
	1000	0.0
L4	100	0.6
	500	0.8
	1000	1.0
I	100	1.1
	500	1.3
	1000	1.6

5. Conclusion

Four new complexes of Bi(III) with disubstituted diphenyl dithiophosphate ligands have been isolated and characterized by IR and NMR (1H, 13C and 31P) spectroscopy. The molecular structure of complex 4 was determined.
ned by single-crystal X-ray diffraction study and depicted that the diphenylthiophosphate ions act as bidentate ligands coordinating to the bismuth atom through their two S atoms. Each forms a four-membered chelate ring in the equatorial plane having [BiS$_2$] unit. The structural analysis reveals that these monomeric complexes possess a distorted octahedral about the bismuth center. The bismuth complexes proved to be a potent antifungal agent as compared to the free dithiophosphate ligand.

6. Supplementary Information

CCDC 1547047 contains the supplementary crystallographic data for compound 4. The data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail:deposit@ccdc.cam.ac.uk.

7. Acknowledgements

The authors are grateful to the NMR laboratory Department of Chemistry, University of Jammu, Jammu, for providing the spectral facilities. The authors are grateful to Professor Geeta Hundal, Department of Chemistry, Guru Nanak Dev University, Amritsar, India, for her valuable suggestions.

8. References

1. O. C. Monteri, T. Trindade, J. H. Park, P. O’Brien, Chem. Vap. Dep. 2000, 6, 230–232.
2. Y. W. Koh, C. S. Lai, A. Y. Du, E. R. T. Tiekn, K. P. Loh, Chem. Mater. 2003, 15, 4544–4554. https://doi.org/10.1021/cm021813k
3. A. Gupta, R. K. Sharma, R. Bohra, V. K. Jain, J. E. Drake, M. B. Hursthouse, M. E. Light, J. Organomet. Chem. 2003, 678, 122–127. https://doi.org/10.1016/S0022-328X(03)00435-2
4. M. Kimura, A. Iwata, M. Itoh, K. Yamada, T. Kimura, N. Sugiiura, M. Ishida, S. Kato, Helv. Chem. Acta 2006, 89, 747–783. https://doi.org/10.1002/hlca.200609070
5. W. Lou, M. Chen, X. Wang, W. Liu, Chem. Mater. 2007, 19, 872–878. https://doi.org/10.1021/cm062549o
6. K. R. Chaudhari, A. Wadawale, S. Ghoshal, S. M. Chopade, V. S. Sagoria, V. K. Jain, Inorg. Chim. Acta 2009, 362, 1819–1824. https://doi.org/10.1016/j.jica.2008.08.022
7. D. W. Zhang, W. T. Chen, Y. F. Wang, Luminescence 2017, 32, 201–205. https://doi.org/10.1002/bio.3168
8. W. T. Chen, J. G. Huang, X. G. Yi, Acta Chim. Slov. 2016, 63, 899–904. https://doi.org/10.17344/acsi.2016.2897
9. N. Yang, H. Sun, Coord. Chem. Rev. 2007, 251, 2354–2366. https://doi.org/10.1016/j.ccr.2007.03.003
10. A. Luqman, V. L. Blair, R. Brammananth, P. K. Crellin, R. L. Coppe, P. C. Andrews, Chem. Eur. J. 2014, 20, 14362–14377. https://doi.org/10.1002/chem.201404109
11. L. Agocs, G. G. Briand, N. Burford, M. D. Eelman, N. Au- meerally, D. Mackay, K. N. Robertson, T. S. Cameron, Can. J. Chem. 2003, 81, 632–637. https://doi.org/10.1139/v03-054
12. R. Mohan, Nat. Chem. 2010, 2, 336–336. https://doi.org/10.1038/nchem.609
13. O. Rohr, Ind. Labr. Tribol. 2002, 54, 153–164. https://doi.org/10.1180/00058970210431709
14. G. G. Briand, N. Burford, Chem. Rev. 1999, 99, 2601–2657. https://doi.org/10.1021/cr980425s
15. H. Maeda, Y. Tamaka, M. Fukutomi, T. Asano, Jpn. J. Appl. Phys. 1988, 27, L209–L210. https://doi.org/10.1143/JJAP.27.L209
16. T. Asaka, Y. Okazawa, T. Hirayama, K. Tachikawa, Jpn. J. Appl. Phys. 1990, 29, L280–L283. https://doi.org/10.1143/JJAP.29.L280
17. S. Katayama, M. Sekine, J. Mater. Res. 1991, 6, 36–41. https://doi.org/10.1557/JMR.1991.0036
18. B. A. Vaarstra, J. C. Huffman, W. E. Streib, K. G. Caulton, Inorg. Chem. 1991, 30, 3068–3072. https://doi.org/10.1021/ic00015a024
19. R. D. Rogers, A. H. Bond, S. Aguinaga, J. Am. Chem. Soc. 1992, 114, 2960–2967. https://doi.org/10.1021/ja00034a031
20. R. D. Rogers, A. H. Bond, S. Aguinaga, A. Reyes, J. Am. Chem. Soc. 1992, 114, 2967–2977. https://doi.org/10.1021/ja00034a032
21. S. R. Breeze, S. Wang, L. K. Thompson, Inorg. Chim. Acta. 1996, 250, 163–171. https://doi.org/10.1016/S0020-1693(96)05223-1
22. E. Moya, L. Contreras, C. Zaldo, J. Opt. Soc. Am. 1988, B5, 1737–1742. https://doi.org/10.1364/JOSAB.5.001737
23. S. Wang, D. B. Mitzi, G. A. Landrum, H. Genin, R. Hoffmann, J. Am. Chem. Soc. 1997, 119, 724–732. https://doi.org/10.1021/ja961753h
24. P. Majewski, Adv. Mater. 1994, 6, 460–469. https://doi.org/10.1002/adma.1994006004
25. J. F. Scott, F. M. Ross, C. A. Paz de Araujo, M. C. Scott, M. Huffman, Mater. Res. Soc. Bull. 1996, 21, 33–39. https://doi.org/10.1557/S0883769400035892
26. A. Ekstrand, M. Nygren, G. Westin, J. Sol-Gel Sci. Technol. 1997, 8, 697–701.
27. F. Soares-Carvalho, P. Thomas, J. P. Mercurio, B. Frit, S. Papola, J. Sol-Gel Sci. Technol. 1997, 8, 759–763.
28. L. O. Rosik, U. S. Patent, Mullinckrodt Medical. Inc. 1995, A61B 005/055.
29. C. Coin, T. Zevaco, E. Dunach, M. Postel, Bull. Soc. Chim. Fr. 1996, 133, 913–918.
30. J. L. Lambert, P. Midolo, Aliment Pharmacol. Ther. 1997, 11, 27–33. https://doi.org/10.1046/j.1365-2036.11.s1.13.x
31. P. J. Sadler, H. Sun, J. Chem. Soc., Dalton Trans. 1995,
Povzetek

Predstavljeni so štirje kompleksi s splošno formula \([(\text{ArO})_2\text{PS}_2]_\text{m} \cdot \text{Bi} \) (1–4), kjer je \(\text{Ar} = \text{2,4-CH}_3\text{C}_6\text{H}_3, \text{2,5-CH}_3\text{C}_6\text{H}_3, \text{3,4-CH}_3\text{C}_6\text{H}_4 \) in \(\text{3,5-CH}_3\text{C}_6\text{H}_4 \). Reakcija \([(\text{ArO})_2\text{PS}_2]_\text{m} \cdot \text{Bi(NO}_3)_3\cdot 5\text{H}_2\text{O} \) v molskem razmerju 3:1 v toluenu vodi do nastanka kompleksov \([(\text{ArO})_2\text{PS}_2]_\text{m} \cdot \text{Bi} \). Navedeni sintetizirani kompleksi so bili okarakterizirani z elementno analizo, FT-IR in NMR spektroskopijo \((^1\text{H}, ^13\text{C} \text{in} ^31\text{P} \text{NMR}) \). Kristalna struktura \([(3,5-\text{CH}_3\text{C}_6\text{H}_4\text{O})_2\text{PS}_2]_\text{m} \cdot \text{Bi} \) (4) je bila določena s pomočjo rengleksne difrakcije. Spojina kristalizira v monoklinski P2\(_1/c\) prostorski skupini, Bi(III) center je obdan s šestimi žveolivimi atomi treh kelatnih difenil ditiofosfatnih ligandov v obliki popačenega oktaedra.

Testiranje teh kompleksov proti Pencillium chrysogenum je dalo pozitivne rezultate.