Supporting Information

Synthesis and Characterization of Dimethyl(di(2-pyridyl))borate Nickel(II) Complexes: A Unimolecular Square Planar to Square Planar Rotation Around Nickel(II)

Jeff A. Celaje,† Megan K. Pennington-Boggio,† Robinson W. Flaig,† Michael G. Richmond,‡ and Travis J. Williams*†

†Loker Hydrocarbon Institute and Department of Chemistry
University of Southern California, Los Angeles, California, 90089–1661, United States

‡Department of Chemistry, University of North Texas,
Denton, Texas, 76203–5017, United States

Contents

Section	Title	Page
I.	Graphical Spectra	2
II.	Studies on the Effect of PPh₃ Addition on the Rate of Rotation	8
III.	³¹P NMR Inversion Recovery Experiment for PPh₃ Exchange	10
IV.	Studies on the Effect of (n-Bu)₄NCl and LiCl Addition on the Rate of Rotation	12
V.	Tl(OTf) Experiments	15
VI.	Eyring Plot for Rotation	17
VII.	Eyring Plot for Ring Flip	18
VIII.	Inversion Recovery Data for Section III (PPh₃ Addition)	20
IX.	Inversion Recovery Data for Section V ((n-Bu)₄NCl and LiCl Addition)	53
X.	Inversion Recovery Data for Section VI (Tl(OTf) Addition)	80
XI.	Inversion Recovery Data for Section VII (Rotation Eyring)	86
XII.	Inversion Recovery Data for Section VIII (Ring Flip Eyring)	98
XIII.	Evans Method Study of Complex 4	125
XIV.	B3LYP Geometries and Energies for all Optimized Minima and Transition Structures	126
XV.	Comparison of Selected Bond Distances and Angles for Compounds 4/A	130
XVI.	References	131
I. Graphical Spectra

\[
\text{[(py)$_2$BMe$_2$]Ni(PPh$_3$)$_2$Cl (4)}
\]

\[\text{N} \quad \text{N} \quad \text{B} \quad \text{C} \quad \text{Cl} \]

Figure S-I.1. 1H NMR Spectrum of 4 at 25 °C in CD$_2$Cl$_2$.

Figure S-I.2. 1H NMR Spectrum of 4 at –40 °C in CD$_2$Cl$_2$.

2
Figure S-I.3. 13C NMR Spectrum of 4 at 25 °C in CD$_2$Cl$_2$.

Figure S-I.4. 11B NMR Spectrum of 4 at 25 °C in CD$_2$Cl$_2$.
Figure S-I.5. 31P NMR Spectrum of 4 at -40 °C in CD$_2$Cl$_2$.

Figure S-I.6. 1D NOESY Spectrum of 4 at -50 °C in CD$_2$Cl$_2$ (the upfield B(Me) is exo).
Figure S-I.7. 1D NOESY Spectrum of 4 at −50 °C in CD$_2$Cl$_2$ (the downfield B(Me) is endo).

Figure S-I.8. IR Spectrum of 4.
[(py)$_2$BMe$_2$]Ni(acac) (6)

Figure S-1.9. 1H NMR Spectrum of 6 at 25 °C in CD$_2$Cl$_2$.

Figure S-1.10. 13C NMR Spectrum of 6 at 25 °C in CD$_2$Cl$_2$.
Figure S-I.11. 11B NMR Spectrum of 6 at 25 °C in CD$_2$Cl$_2$.

Figure S-I.12. IR Spectrum of 6.
II. Studies on the Effect of PPh₃ Addition on the Rate of Rotation

Inversion recovery data were acquired on a VNMRS 500 or a VNMRS 600 according to previously published procedures. Inversion recovery data were then fitted into CIFIT 2.0 to obtain a rate constant (with a corresponding error) for each set of inversion recovery data.

Inversion recovery data were acquired using a screw cap NMR tube beginning with a 12.0 mM CD₂Cl₂ solution (1 mL) of nickel 4 and 0 equivalent of PPh₃. Inversion recovery data were then obtained for solutions of 4 with 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1, 1.25, 1.5, 2.0, 5, and 10 equivalents of PPh₃ at 41.1 °C. The PPh₃ was added via syringe as a concentrated solution (1.0 M PPh₃; 0.3 μL solution is added to obtain 0.1 equivalent). The temperature was calibrated (tempcal) using a methanol standard. Table S-II.1 shows the rate constants obtained when each set of inversion recovery data were fitted into CIFIT 2.0. A plot of ln[PPh₃] vs ln kₜₐₜ (Chart S-II.1) shows that the rate of rotation is independent of [PPh₃]. The error on the slope of the trend line and the y-intercept were calculated using a least squares optimization: 0.005(10) and 3.28(5), respectively. See Section VIII of the SI for inversion recovery data.

Table S-II.1. Rotation Rate Constants Obtained from Inversion Recovery Experiments.

Run	[Ni] (M)	[PPh₃] (M)	PPh₃ Equiv.	kₜₐₜ (s⁻¹)	er(kₜₐₜ) (s⁻¹)	ln[PPh₃]	ln kₜₐₜ	er (ln kₜₐₜ)
1	0.0120	0.0000	0	24.6496	0.3624	3.2048	0.0147	
2	0.0120	0.0012	0.1	25.1335	0.1980	-6.7254	3.2242	0.007877
3	0.0119	0.0024	0.2	24.7189	0.4233	-6.0323	3.2076	0.017126
4	0.0119	0.0036	0.3	25.0113	0.2475	-5.6268	3.2193	0.009897
5	0.0119	0.0048	0.4	25.6950	0.2316	-5.3391	3.2463	0.009012
6	0.0118	0.0059	0.5	27.8497	0.5792	-5.1309	3.3268	0.020796
7	0.0118	0.0089	0.75	27.4584	0.4796	-4.7217	3.3127	0.017467
8	0.0118	0.0118	1	26.2667	0.3792	-4.4436	3.2683	0.014436
9	0.0117	0.0120	1.25	27.1235	0.3685	-4.4228	3.3022	0.01356
10	0.0117	0.0175	1.5	25.7745	0.2856	-4.0440	3.2494	0.011081
11	0.0116	0.0232	2	24.9912	0.3304	-3.7622	3.2185	0.013222
12	0.0112	0.0561	5	26.1666	0.3257	-2.8801	3.2645	0.012446
14	0.0106	0.1063	10	25.5716	0.3028	-2.2416	3.2415	0.011841
Chart S-II.1. Plot of ln $[\text{PPh}_3]$ vs ln k_{obs}.

\[y = m_1 + m_2 \cdot M_0 \]

Error

Value	m_1	m_2
	0.0095771	0.0051408

Chisq

| Value | 0.016556 |

R^2

| Value | 0.0028007 |
III. 31P NMR Inversion Recovery Experiment for PPh$_3$ Exchange

To a 1 mL 12 mM CD$_2$Cl$_2$ solution of 4, 0.5 equiv PPh$_3$ (6 μmol; 1.5 μL of a 1 M PPh$_3$ stock solution) was added via syringe. 31P NMR inversion recovery was performed using a Varian VNMRS 500 at -42.4 °C. The temperature was calibrated (tempcal) using a methanol standard. When coordinated PPh$_3$ (Figure S–III.1; 12.60 ppm) is pulsed, no magnetization transfer from coordinated PPh$_3$ to free PPh$_3$ (−7.23 ppm) is observed. The inversion recovery stacked NMR spectra using different mixing times (d2) is shown in Figure S–III.2. A plot of Integration vs d2 is shown in Chart S–III.1. The integration for the free PPh$_3$ peak does not change, indicating that no magnetization transfer is occurring. See Section IX of the SI for inversion recovery data.

Figure S–III.1. 31P NMR Spectrum of 4 and Free PPh$_3$ at -42.4 °C.
Figure S–III.2. Stacked Spectra of 31P NMR Inversion Recovery Data.

Chart S–III.1. 31P NMR Inversion Recovery Data (Plot of Integration vs d2).

Parameter	Value 1	Value 2
m1	0.0073478	0.00040232
m2	1.767	0.00041336
m3	NA	0.010868
Chisq	NA	0.020278
R²	-0.76701	0.52845

Equation: $y = m1 + m2 \cdot (1 - \exp(-x/m3))$
IV. Studies on the Effect of \((n\text{-Bu})_4\text{NCl}\) and LiCl Addition on the Rate of Rotation

Addition of \((n\text{-Bu})_4\text{NCl}\) to a solution of complex 4 results in a reaction leading to formation of an unidentified paramagnetic side product (see Figure S-IV.1 below). Nevertheless, a small amount of complex 4 remains in solution and measurement of the rate of rotation using inversion recovery experiments is possible.

![Figure S-IV.1. \(^1\)H NMR Spectrum of 4 in the presence of 1 equiv. \((n\text{-Bu})_4\text{NCl}\) at -43.0 °C.](image)

Inversion recovery data were acquired using a J-Young NMR tube beginning with a 12.0 mM solution (1 mL) of nickel 4 and 0.4 equiv. \((n\text{-Bu})_4\text{NCl}\). Inversion recovery data were then obtained for solutions of 4 with 0.7, 1.1, 1.5, and 2.0 equivalents of \((\text{Bu})_4\text{NCl}\) at -43.0 °C. \((n\text{-Bu})_4\text{NCl}\) were added in one portion into the J-Young tube containing nickel complex 4 in the glove box. The temperature was calibrated using a methanol standard (tempcal). Table S-IV.1 shows the rate constants obtained when each set of inversion recovery data were fitted into CIFIT 2.0. A plot of \(\ln[(n\text{-Bu})_4\text{NCl}]\) added vs \(\ln k_{\text{obs}}\) (Chart S-IV.1) shows that the rate of rotation is independent of added \((n\text{-Bu})_4\text{NCl}\). The error on the slope of the trend line and the y-intercept were calculated using a least squares optimization: -0.01(3) and 3.0(1), respectively.
Table S-IV.1. Rotation Rate Constants With Added (n-Bu)$_4$NCl.

Run	Equiv. NBu4Cl	[NBu4Cl] (M)	k (s$^{-1}$)	erk (s$^{-1}$)
1	0.4	0.0048	21.509204	0.386532
2	0.7	0.0084	21.374766	0.656295
3	1.1	0.0132	22.238574	1.172882
4	1.5	0.018	22.2577	0.514013
5	2	0.024	20.394057	0.832915

Chart S-IV.1. Plot of Equivalents of (n-Bu)$_4$NCl Added vs k_{obs}.

The rate of rotation was also measured in the presence of excess LiCl, which is insoluble in CD$_2$Cl$_2$. Unlike addition (n-Bu)$_4$NCl, no reaction occurs upon addition of LiCl. Inversion recovery data were acquired using a J–Young NMR tube beginning with a 12.0 mM solution (1 mL) of nickel 4 and 0 equivalent of LiCl. Inversion recovery data were then obtained for solutions of 4 with 6, 12, 24, and 48 equivalents of LiCl at −42.0 °C. LiCl was added in one portion into the J–Young tube containing nickel complex 4 in the glove box. The temperature was calibrated (tempcal) using a methanol standard. Table S-IV.2 shows the rate constants obtained when each set of inversion recovery data were fitted into CIFIT 2.0. A plot of equivalents of LiCl added vs k_{obs} (Chart S-IV.2) shows that the rate of rotation is independent of added LiCl. The error on the slope of the trend line and the y-intercept were calculated using a least squares optimization: −0.02(3) and 22.7(7), respectively. See Section IX of the SI for inversion recovery data.
Table S-IV.2. Rotation Rate Constants with Added LiCl.

Run	Equiv. LiCl	k_{obs} (s$^{-1}$)	$\text{er}(k_{\text{obs}})$ (s$^{-1}$)
1	0	21.321882	0.3571153
2	6	23.315415	0.250699
3	12	23.126912	0.221502
4	24	22.650877	0.371693
5	48	21.093599	0.255429

Chart S-IV.2. Plot of Equivalents of LiCl Added vs k_{obs}.

![Chart of LiCl Added vs k_{obs}]
V. Tl(OTf) Experiments

To a solution of 4 (5.0 mg, 9 μmol) in CD₂Cl₂, Tl(OTf) (6.5 mg, 18.4 μmol) was added. The ¹H NMR spectrum of 4 remained largely the same even after standing for 4 days at room temperature. ¹H NMR inversion recovery experiments were performed and rate constants ca. 1 h and 4 d after addition were obtained at −42.0 °C. The rate constants of rotation for both experiments were the same as the rate constant in the absence of thallium. See Section X of the SI for inversion recovery data.

Figure S–V.1. ¹H NMR Spectrum of 4 at 25 °C 1 h after addition of 2 equiv. Tl(OTf).
Figure S–V.2. 1H NMR Spectrum of 4 at 25 °C 4 d after addition of 2 equiv. Tl(OTf).

Table S–V.1. Rotation Rate Constants with Added Tl(OTf).

Run	Time	Tl(OTf) Equiv.	k_{obs} (s$^{-1}$)	er(k_{obs}) (s$^{-1}$)
1	1 h	2	23.10981	0.361239
2	4d	2	23.52746	0.617042
VI. Eyring Plot for Rotation

Inversion recovery data were acquired on a Varian VNMRS 500 and VNMRS 600 (using a 12 mM CD$_2$Cl$_2$ solution of nickel 4) according to previously published procedure. Inversion recovery data were then fitted into CIFIT 2.0 to obtain a rate constant of each set of inversion recovery data. Table S–VI.1 shows the rate constants of rotation at different temperatures obtained from inversion recovery data. Standard error values for the activation parameters, σ(ΔH‡) and σ(ΔS‡), were calculated based on the equations derived by Girolami et al. Temperatures were calibrated using a methanol standard. From the Eyring plot (Chart S–VI.1), ΔH‡ = 12.2(1) kcal mol$^{-1}$ and ΔS‡ = 0.8(5) eu. See Section XI of the SI for inversion recovery data.

Table S–VI.1. Data for Eyring Analysis of Rotation.

T (°C)	T (K)	k_{obs} (s$^{-1}$)	$1000/T$ (K$^{-1}$)	$R\ln(k/T) - R\ln(k_B/h)$	σ(ΔH‡) (kcal/mol)	σ(ΔS‡) (eu)
-61.6	211.5	1.10	4.73	-57.63	0.10	0.43
-61.4	211.8	1.92	4.72	-56.53	0.11	0.45
-53.7	219.5	6.00	4.56	-54.33	0.10	0.41
-46.8	226.3	12.78	4.42	-52.89	0.09	0.40
-42.0	231.2	23.23	4.33	-51.74	0.10	0.16
-32.6	240.5	60.20	4.16	-49.93	0.09	0.19
-31.8	241.3	81.68	4.14	-49.33	0.22	0.87
-18.9	254.2	204.53	3.93	-47.61	0.23	0.94

<σ(ΔH‡)> 0.13 <σ(ΔS‡)> 0.48

Chart S–VII.1. Eyring Plot for Rotation.
VII. Eyring Plots for Ring Flip

Inversion recovery data were acquired on a Varian VNMRS 600 (using a 12 mM CD$_2$Cl$_2$ solution of nickel 4) according to previously published procedure. Inversion recovery data were then fitted into CIFIT 2.0 to obtain a rate constant of each set of inversion recovery data. Table S-VII.1 shows the rate constants of ring flip in CD$_2$Cl$_2$ at different temperatures obtained from inversion recovery data. Standard error values for the activation parameters, $\sigma(\Delta H^\ddagger)$ and $\sigma(\Delta S^\ddagger)$, were calculated based on the equations derived by Girolami et al. Temperatures were calibrated using a methanol standard. From the Eyring plot (Chart S-VII.1), $\Delta H^\ddagger = 15.0(2)$ kcal mol$^{-1}$ and $\Delta S^\ddagger = -4.2(7)$ eu. See Section XII of the SI for inversion recovery data.

Table S-VII.1. Data for Eyring Analysis of Ring Flip in CD$_2$Cl$_2$.

T (°C)	T (K)	k_{obs} (s$^{-1}$)	1000/T (K$^{-1}$)	Rln(k/T) - Rln(k_B/h)	$\sigma(\Delta H^\ddagger)$ (kcal/mol)	$\sigma(\Delta S^\ddagger)$ (eu)
286.8	13.7	2.69 (4)	3.49	-56.45	0.25	0.82
292.0	18.8	4.35 (2)	3.43	-55.54	0.17	0.63
301.3	28.1	10.02 (4)	3.32	-53.94	0.17	0.61
311.4	38.2	23.16 (17)	3.21	-52.34	0.18	0.63

<\sigma(\Delta H^\ddagger)> 0.19
<\sigma(\Delta S^\ddagger)> 0.67

Chart S-VII.1. Eyring Plot for Ring Flip in CD$_2$Cl$_2$.

Ring flip rate constants in CD$_2$Cl$_2$ were collected over a temperature range of only 24.5 °C because the solvent boils at 40 °C. Because it is recommended that data collected
over a temperature range of 40 °C be obtained for accurate values of ΔS^\ddagger, we attempted to obtain an Eyring plot for the ring flip in C$_6$D$_6$. Table S–VII.2 shows the rate constants of ring flip (using a 12 mM C$_6$D$_6$ solution of 4) at different temperatures. Data were collected over a temperature range of 37 °C because attempts to obtain a rate constant at 47 °C were unsuccessful (data would not converge when fitted into CIFIT). From the Eyring plot (Chart S–VII.2), $\Delta H^\ddagger = 15.5(3)$ kcal mol$^{-1}$ and $\Delta S^\ddagger = -3.3(11)$ eu.

Table S–VII.2. Data for Eyring Analysis of Ring Flip in C$_6$D$_6$.

T (°C)	T (K)	k_{obs} (s$^{-1}$)	1000/T (K$^{-1}$)	Rln(k/T) - Rln(k$_B$ / h)	σ(ΔH^\ddagger) (kcal/mol)	σ(ΔS^\ddagger) (eu)
7.0	280.2	1.13	3.57	-58.14	0.68	2.28
13.8	287.0	1.61	3.48	-57.47	0.15	0.50
24.0	297.1	3.88	3.37	-55.79	0.18	0.61
34.3	307.4	11.71	3.25	-53.67	0.17	0.57
44.2	317.3	31.59	3.15	-51.76	0.42	1.41

$<\sigma(\Delta H^\ddagger)>$ 0.32 $<\sigma(\Delta S^\ddagger)>$ 1.07

Chart S–VII.2. Eyring Plot for Ring Flip in C$_6$D$_6$.

![Eyring Plot](image)
VIII. Inversion Recovery Data for Section III (PPh₃ Addition).

1) Data for 0 Equivalent PPh₃:

![Stacked Spectra of Inversion Recovery Data at 0 Equivalent PPh₃](image)

Figure S–VIII.1. Stacked Spectra of Inversion Recovery Data at 0 Equivalent PPh₃.

Table S–VIII.1. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2
0.001	-0.3416	0.8998	-0.3289	0.9086	-0.0126	-0.0088
0.002	-0.3179	0.8771	-0.3102	0.8845	-0.0077	-0.0074
0.003	-0.2954	0.8555	-0.2959	0.8578	0.0005	-0.0022
0.004	-0.2740	0.8350	-0.2733	0.8348	-0.0008	0.0002
0.005	-0.2536	0.8155	-0.2483	0.8219	-0.0053	-0.0064
0.007	-0.2157	0.7793	-0.2122	0.7837	-0.0035	-0.0045
0.010	-0.1654	0.7314	-0.1559	0.7403	-0.0095	-0.0088
0.015	-0.0963	0.6662	-0.0950	0.6685	-0.0014	-0.0023
0.020	-0.0422	0.6157	-0.0391	0.6242	-0.0031	-0.0085
0.025	0.0003	0.5766	0.0019	0.5778	-0.0016	-0.0012
0.030	0.0338	0.5465	0.0358	0.5509	-0.0020	-0.0045
0.040	0.0811	0.5055	0.0712	0.4939	0.0099	0.0116
0.050	0.1109	0.4817	0.1079	0.4756	0.0030	0.0061
0.060	0.1301	0.4684	0.1254	0.4575	0.0047	0.0109
0.070	0.1428	0.4613	0.1440	0.4577	-0.0011	0.0036
0.080	0.1516	0.4581	0.1545	0.4594	-0.0028	-0.0013
d2	Inversion Recovery Data for 0 Equiv. PPh₃					
-----	--					
0.090	0.1581 0.4573 0.1597 0.4549 -0.0017 0.0024					
0.100	0.1630 0.4579 0.1621 0.4484 0.0009 0.0094					
0.150	0.1796 0.4683 0.1783 0.4601 0.0014 0.0082					
0.200	0.1930 0.4814 0.1985 0.4844 -0.0055 -0.0031					
0.250	0.2058 0.4943 0.2053 0.4803 0.0005 0.0140					
0.300	0.2182 0.5069 0.2148 0.4980 0.0035 0.0089					
0.350	0.2304 0.5193 0.2280 0.5096 0.0024 0.0097					
0.400	0.2422 0.5313 0.2470 0.5335 -0.0048 -0.0022					
0.500	0.2650 0.5544 0.2567 0.5338 0.0083 0.0206					
0.600	0.2867 0.5764 0.2870 0.5722 -0.0003 0.0042					
0.700	0.3073 0.5974 0.3089 0.5972 -0.0016 0.0001					
0.800	0.3269 0.6173 0.3273 0.6187 -0.0004 -0.0014					
0.900	0.3456 0.6362 0.3421 0.6297 0.0035 0.0065					
1.000	0.3633 0.6542 0.3636 0.6572 -0.0002 -0.0030					
1.500	0.4398 0.7319 0.4391 0.7336 0.0008 -0.0018					
2.000	0.4994 0.7923 0.4992 0.8017 0.0002 -0.0094					
2.500	0.5457 0.8393 0.5471 0.8496 -0.0014 -0.0103					
3.000	0.5817 0.8758 0.5819 0.8871 -0.0002 -0.0113					
5.000	0.6617 0.9571 0.6589 0.9615 0.0028 -0.0044					
6.000	0.6800 0.9756 0.6768 0.9799 0.0031 -0.0043					
8.000	0.6977 0.9936 0.6958 0.9961 0.0020 -0.0025					
10.000	0.7042 1.0002 0.6982 1.0091 0.0060 -0.0088					
15.000	0.7077 1.0037 0.6997 1.0007 0.0080 0.0030					
20.000	0.7080 1.0040 0.7020 1.0049 0.0060 -0.0009					

Chart S–VIII.1. Plot of Inversion Recovery Data at 0 Equivalent of PPh₃₂.
CIFIT Guesses and Fit Parameters

Initial values of parameters:
1/T1's
No. 0 = 0.8000 No. 1 = 0.2300
M(\infty)'s
No. 2 = 0.9000 No. 3 = 1.0000
M(0)-M(\infty)'s
No. 4 = -1.4000 No. 5 = 0.5000
and M(0)'s for reference
No. 4 = -0.5000 No. 5 = 1.5000
Rates
No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:
0 = 0.870554 +/- 0.172420
1 = 0.138770 +/- 0.170388
2 = 0.708001 +/- 0.002499
3 = 1.004030 +/- 0.002663
4 = -1.074394 +/- 0.003546
5 = -0.080304 +/- 0.004447
6 = 24.649642 +/- 0.362351

2) Data for 0.1 Equivalent PPh3-

![Figure S-VIII.2. Stacked Spectra of Inversion Recovery Data at 0.1 Equivalent PPh3-](image)

Table S-VIII.2. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2
0.001	-0.3273	0.8696	-0.3280	0.8705	0.0007	-0.0009
0.002	-0.3010	0.8442	-0.3030	0.8511	0.0020	-0.0069
0.003	-0.2759	0.8202	-0.2701	0.8215	-0.0058	-0.0014
0.004	-0.2521	0.7973	-0.2476	0.8003	-0.0045	-0.0030
0.005	-0.2294	0.7756	-0.2208	0.7826	-0.0086	-0.0070
0.007	-0.1873	0.7354	-0.1773	0.7362	-0.0100	-0.0008
0.010	-0.1316	0.6823	-0.1340	0.6826	0.0024	-0.0003
-------	-------	-------	-------	-------	-------	
0.015	-0.0554	0.6104	-0.0483	0.6160	-0.0071	-0.0056
0.020	0.0041	0.5549	0.0001	0.5551	0.0040	-0.0002
0.025	0.0506	0.5122	0.0500	0.5123	0.0006	-0.0001
0.030	0.0870	0.4795	0.0794	0.4762	0.0076	0.0033
0.040	0.1382	0.4354	0.1331	0.4314	0.0050	0.0040
0.050	0.1702	0.4101	0.1675	0.4079	0.0027	0.0022
0.060	0.1907	0.3961	0.1910	0.3940	-0.0002	0.0022
0.070	0.2043	0.3890	0.2035	0.3858	0.0008	0.0032
0.080	0.2137	0.3860	0.2144	0.3823	-0.0007	0.0036
0.090	0.2206	0.3854	0.2178	0.3766	0.0028	0.0087
0.100	0.2260	0.3863	0.2324	0.3871	-0.0064	-0.0008
0.150	0.2444	0.3986	0.2433	0.3924	0.0011	0.0062
0.200	0.2595	0.4134	0.2596	0.4100	-0.0002	0.0033
0.250	0.2740	0.4280	0.2773	0.4281	-0.0033	-0.0001
0.300	0.2881	0.4423	0.2871	0.4385	0.0009	0.0038
0.350	0.3018	0.4562	0.3004	0.4516	0.0014	0.0046
0.400	0.3152	0.4698	0.3143	0.4658	0.0009	0.0039
0.500	0.3409	0.4959	0.3432	0.4959	-0.0022	0.0000
0.600	0.3654	0.5207	0.3644	0.5195	0.0010	0.0011
0.700	0.3887	0.5442	0.3906	0.5427	-0.0020	0.0015
0.800	0.4107	0.5666	0.4127	0.5675	-0.0019	-0.0009
0.900	0.4317	0.5878	0.4313	0.5873	0.0004	0.0005
1.000	0.4516	0.6080	0.4520	0.6121	-0.0003	-0.0041
1.500	0.5372	0.6947	0.5358	0.6954	0.0014	-0.0006
2.000	0.6033	0.7618	0.6011	0.7625	0.0023	-0.0007
2.500	0.6545	0.8136	0.6523	0.8139	0.0022	-0.0003
3.000	0.6940	0.8537	0.6940	0.8589	0.0000	-0.0052
5.000	0.7806	0.9414	0.7807	0.9459	-0.0001	-0.0044
6.000	0.8000	0.9611	0.7987	0.9668	0.0012	-0.0057
8.000	0.8185	0.9786	0.8174	0.9806	0.0011	-0.0008
10.000	0.8251	0.9865	0.8219	0.9868	0.0032	-0.0003
15.000	0.8285	0.9899	0.8274	0.9915	0.0010	-0.0016
20.000	0.8287	0.9902	0.8223	0.9907	0.0065	-0.0005
Chart S-VIII.2. Plot of Inversion Recovery Data at 0.1 Equivalent of PPh₃.

CIFIT Guesses and Fit Parameters

Initial values of parameters:

1/T1's
No. 0 = 0.8000 No. 1 = 0.2300

M(∞)'s
No. 2 = 0.9000 No. 3 = 1.0000

M(0)-M(∞)'s
No. 4 = -1.4000 No. 5 = 0.5000

and M(0)'s for reference
No. 4 = -0.5000 No. 5 = 1.5000

Rates
No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

0 = 0.852153 +/- 0.092977
1 = 0.181609 +/- 0.092132
2 = 0.828748 +/- 0.001450
3 = 0.990222 +/- 0.001542
4 = -1.183752 +/- 0.002075
5 = -0.093950 +/- 0.002597
6 = 25.133540 +/- 0.197980
3) **Data for 0.2 Equivalent PPh$_3$:**

![Figure S-VIII.3. Stacked Spectra of Inversion Recovery Data at 0.2 Equivalent PPh$_3$.](image)

Table S-VIII.3. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2
0.001	-0.0016	0.6848	-0.0105	0.6782	0.0089	0.0065
0.002	0.0115	0.6710	0.0004	0.6636	0.0112	0.0074
0.003	0.0241	0.6580	0.0176	0.6535	0.0064	0.0045
0.004	0.0360	0.6456	0.0321	0.6391	0.0039	0.0065
0.005	0.0473	0.6338	0.0409	0.6272	0.0065	0.0066
0.007	0.0685	0.6120	0.0652	0.6073	0.0032	0.0047
0.010	0.0965	0.5832	0.0949	0.5807	0.0016	0.0025
0.015	0.1350	0.5440	0.1339	0.5407	0.0011	0.0032
0.020	0.1652	0.5137	0.1662	0.5143	-0.0010	-0.0006
0.025	0.1890	0.4904	0.1911	0.4904	-0.0021	0.0000
0.030	0.2078	0.4725	0.2089	0.4744	-0.0012	-0.0019
0.040	0.2345	0.4483	0.2370	0.4520	-0.0025	-0.0037
0.050	0.2515	0.4345	0.2545	0.4390	-0.0029	-0.0045
0.060	0.2628	0.4270	0.2668	0.4340	-0.0040	-0.0070
0.070	0.2705	0.4232	0.2738	0.4280	-0.0034	-0.0048
0.080	0.2760	0.4218	0.2770	0.4273	-0.0010	-0.0055
0.090	0.2802	0.4217	0.2839	0.4287	-0.0037	-0.0070
0.100	0.2837	0.4225	0.2856	0.4289	-0.0019	-0.0064
0.150	0.2964	0.4308	0.2992	0.4379	-0.0028	-0.0070
Chart S–VIII.3. Plot of Inversion Recovery Data at 0.2 Equivalent of PPh₃₂.
CIFIT Guesses and Fit Parameters

Initial values of parameters:

\[\frac{1}{T_1} \text{'s} \]
No. 0 = 0.8000 No. 1 = 0.2300

\[M(\text{inf}) \text{'s} \]
No. 2 = 0.9000 No. 3 = 1.0000

\[M(0)-M(\text{inf}) \text{'s} \]
No. 4 = -1.4000 No. 5 = 0.5000

and \(M(0) \)'s for reference
No. 4 = -0.5000 No. 5 = 1.5000

Rates
No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

#	\(\frac{1}{T_1} \)	\(M(\text{inf}) \)	\(M(0) \)
0	-1.281365 +/- 0.167198	0.714064 +/- 0.001721	0.817754 +/- 0.001764
1	2.463663 +/- 0.195686	0.729518 +/- 0.002366	-0.118545 +/- 0.002963
2	0.714064 +/- 0.001721	0.729518 +/- 0.002366	0.817754 +/- 0.001764
3	0.817754 +/- 0.001764	0.729518 +/- 0.002366	-0.118545 +/- 0.002963
4	-0.729518 +/- 0.002366	0.817754 +/- 0.001764	-0.118545 +/- 0.002963
5	-0.118545 +/- 0.002963	0.817754 +/- 0.001764	-0.118545 +/- 0.002963
6	24.718904 +/- 0.423347	0.817754 +/- 0.001764	-0.118545 +/- 0.002963

Data for 0.3 Equivalent PPh\(_3\):

![Figure S-VIII.4. Stacked Spectra of Inversion Recovery Data at 0.3 Equivalent PPh\(_3\)](image)

Table S-VIII.4. CIFIT Plot File.

\(d_2 \) (s)	Observed M1	Observed M2	Fit M1	Fit M2	\(\sigma M1 \)	\(\sigma M2 \)
0.001	-0.4625	0.7588	-0.4548	0.7628	-0.0077	-0.0040
0.002	-0.4346	0.7323	-0.4489	0.7320	0.0144	0.0003
0.003	-0.4080	0.7071	-0.4117	0.7029	0.0037	0.0042
0.004	-0.3827	0.6832	-0.3758	0.6836	-0.0069	-0.0003
0.005	-0.3587	0.6605	-0.3538	0.6607	-0.0049	-0.0002
0.007	-0.3140	0.6184	-0.3157	0.6147	0.0017	0.0037
0.010	-0.2548	0.5630	-0.2515	0.5642	-0.0033	-0.0012
0.015	-0.1736	0.4878	-0.1760	0.4890	0.0024	-0.0012
0.020	-0.1100	0.4299	-0.1138	0.4289	0.0038	0.0010
0.025	-0.0602	0.3854	-0.0591	0.3874	-0.0011	-0.0020
0.030	-0.0210	0.3513	-0.0238	0.3476	0.0028	0.0037
0.040	0.0344	0.3057	0.0323	0.3057	0.0022	0.0000
0.050	0.0696	0.2800	0.0654	0.2778	0.0042	0.0022
0.060	0.0925	0.2662	0.0985	0.2685	-0.0060	-0.0023
0.070	0.1080	0.2597	0.1099	0.2563	-0.0019	0.0033
0.080	0.1191	0.2574	0.1212	0.2578	-0.0021	-0.0003
0.090	0.1275	0.2578	0.1271	0.2556	0.0003	0.0022
0.100	0.1342	0.2597	0.1298	0.2565	0.0044	0.0033
0.150	0.1586	0.2778	0.1657	0.2913	-0.0070	-0.0135
0.200	0.1794	0.2984	0.1808	0.3031	-0.0015	-0.0047
0.250	0.1993	0.3186	0.2006	0.3213	-0.0012	-0.0026
0.300	0.2187	0.3384	0.2224	0.3437	-0.0037	-0.0053
0.350	0.2376	0.3577	0.2409	0.3622	-0.0033	-0.0045
0.400	0.2561	0.3764	0.2554	0.3739	0.0007	0.0025
0.500	0.2914	0.4125	0.2903	0.4151	0.0011	-0.0026
0.600	0.3250	0.4467	0.3196	0.4416	0.0054	0.0051
0.700	0.3568	0.4791	0.3547	0.4746	0.0021	0.0045
0.800	0.3870	0.5098	0.3858	0.5037	0.0012	0.0062
0.900	0.4156	0.5390	0.4174	0.5383	-0.0018	0.0007
1.000	0.4427	0.5666	0.4362	0.5615	0.0066	0.0051
1.500	0.5588	0.6849	0.5564	0.6830	0.0024	0.0019
2.000	0.6478	0.7756	0.6452	0.7740	0.0026	0.0016
2.500	0.7161	0.8452	0.7154	0.8424	0.0007	0.0028
3.000	0.7685	0.8985	0.7751	0.9047	-0.0066	-0.0062
5.000	0.8813	1.0135	0.8911	1.0206	-0.0098	-0.0072
6.000	0.9059	1.0385	0.9122	1.0463	-0.0063	-0.0078
8.000	0.9289	1.0619	0.9323	1.0691	-0.0035	-0.0072
10.000	0.9368	1.0700	0.9318	1.0662	0.0050	0.0038
15.000	0.9407	1.0740	0.9334	1.0666	0.0074	0.0075
20.000	0.9410	1.0743	0.9374	1.0665	0.0037	0.0078
Chart S-VIII.4. Plot of Inversion Recovery Data at 0.3 Equivalent of PPh$_3$.

![Inversion Recovery Data for 0.3 Equiv. PPh$_3$](image)

CIFIT Guesses and Fit Parameters

Initial values of parameters:

1/T1's
- No. 0 = 0.8000
- No. 1 = 0.2300

M(inf)'s
- No. 2 = 0.9000
- No. 3 = 1.0000

M(0)–M(inf)'s
- No. 4 = -1.4000
- No. 5 = 0.5000

and M(0)'s for reference
- No. 4 = -0.5000
- No. 5 = 1.5000

Rates
- No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

- # 0 = 1.001771 +/- 0.097441
- # 1 = 0.067543 +/- 0.095210
- # 2 = 0.941040 +/- 0.001922
- # 3 = 1.074323 +/- 0.002032
- # 4 = -1.432870 +/- 0.002740
- # 5 = -0.287627 +/- 0.003356
- # 6 = 25.011297 +/- 0.247532
5) Data for 0.4 Equivalent PPh$_3$:

![Figure S-VIII.5. Stacked Spectra of Inversion Recovery Data at 0.4 Equivalents PPh$_3$.](image)

Table S-VIII.5. CIFIT Plot File.

d_2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2	
0.001	-0.0693	0.7084	-0.0642	0.7098	-0.0051	-0.0014	
0.002	-0.0536	0.6927	-0.0642	0.6928	0.0106	-0.0001	
0.003	-0.0386	0.6778	-0.0367	0.6779	-0.0019	-0.0001	
0.004	-0.0244	0.6636	-0.0218	0.6646	-0.0026	-0.0009	
0.005	-0.0108	0.6502	-0.0080	0.6503	-0.0028	-0.0001	
0.007	0.0142	0.6254	0.0181	0.6261	-0.0038	-0.0006	
0.010	0.0473	0.5928	0.0490	0.5949	-0.0017	-0.0021	
0.015	0.0924	0.5488	0.0934	0.5495	-0.0010	-0.0008	
0.020	0.1275	0.5150	0.1281	0.5164	-0.0006	-0.0014	
0.025	0.1548	0.4893	0.1540	0.4899	0.0008	-0.0006	
0.030	0.1761	0.4696	0.1768	0.4708	-0.0007	-0.0012	
0.040	0.2059	0.4435	0.2060	0.4434	-0.0001	0.0001	
0.050	0.2246	0.4288	0.2244	0.4302	0.0002	-0.0013	
0.060	0.2366	0.4210	0.2365	0.4213	0.0001	-0.0003	
0.070	0.2446	0.4172	0.2450	0.4163	-0.0004	0.0009	
0.080	0.2503	0.4158	0.2513	0.4146	-0.0010	0.0012	
0.090	0.2546	0.4158	0.2549	0.4158	-0.0003	0.0000	
0.100	0.2580	0.4167	0.2583	0.4158	-0.0004	0.0009	
T (100)	b (0.1)	b (0.2)	b (0.4)	b (0.3)	b (0.4)	b (0.0015)	b (0.0009)
--------	---------	---------	---------	---------	---------	------------	------------
0.150	0.2704	0.4255	0.2719	0.4246	-0.0015	0.0009	
0.200	0.2810	0.4356	0.2786	0.4330	0.0024	0.0026	
0.250	0.2913	0.4455	0.2915	0.4439	-0.0002	0.0017	
0.300	0.3013	0.4553	0.3020	0.4543	-0.0007	0.0009	
0.350	0.3110	0.4647	0.3098	0.4633	0.0012	0.0015	
0.400	0.3205	0.4740	0.3216	0.4727	-0.0010	0.0013	
0.500	0.3388	0.4918	0.3376	0.4894	0.0012	0.0024	
0.600	0.3562	0.5087	0.3561	0.5077	0.0001	0.0010	
0.700	0.3727	0.5248	0.3716	0.5241	0.0011	0.0007	
0.800	0.3884	0.5401	0.3849	0.5383	0.0035	0.0018	
0.900	0.4034	0.5547	0.4003	0.5529	0.0030	0.0018	
1.000	0.4176	0.5685	0.4156	0.5672	0.0020	0.0013	
1.500	0.4787	0.6281	0.4770	0.6265	0.0018	0.0016	
2.000	0.5262	0.6743	0.5253	0.6757	0.0010	-0.0014	
2.500	0.5631	0.7102	0.5659	0.7131	-0.0028	-0.0029	
3.000	0.5917	0.7381	0.5955	0.7414	-0.0038	-0.0033	
5.000	0.6551	0.7998	0.6580	0.8044	-0.0029	-0.0046	
6.000	0.6695	0.8138	0.6727	0.8186	-0.0032	-0.0048	
8.000	0.6834	0.8273	0.6836	0.8297	-0.0003	-0.0024	
10.000	0.6884	0.8323	0.6885	0.8307	-0.0001	0.0015	
15.000	0.6911	0.8349	0.6885	0.8335	0.0026	0.0013	
20.000	0.6913	0.8351	0.6840	0.8299	0.0073	0.0051	

Chart S-VII.5. Plot of Inversion Recovery Data at 0.4 Equivalent of PPh₃.

![Inversion Recovery Data for 0.4 Equiv. PPh₃](image-url)
CIFIT Guesses and Fit Parameters

Initial values of parameters:

1/T1's
No. 0 = 0.8000 No. 1 = 0.2300

M(inf)'s
No. 2 = 0.9000 No. 3 = 1.0000

M(0) - M(inf)'s
No. 4 = -1.4000 No. 5 = 0.5000

and M(0)'s for reference
No. 4 = -0.5000 No. 5 = 1.5000

Rates
No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

0 = -0.166572 +/- 0.095998
1 = 1.196100 +/- 0.102556
2 = 0.691299 +/- 0.001012
3 = 0.835076 +/- 0.001057
4 = -0.777191 +/- 0.001420
5 = -0.110073 +/- 0.001770
6 = 25.695039 +/- 0.231560

6) Data for 0.6 Equivalent PPh$_3$:

![Graph showing stacked spectra of inversion recovery data at 0.5 Equivalent PPh$_3$.]

Figure S–VIII.6. Stacked Spectra of Inversion Recovery Data at 0.5 Equivalent PPh$_3$.

Table S–VIII.6. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2
0.001	-0.5488	0.8086	-0.5234	0.8250	-0.0254	-0.0164
0.002	-0.5145	0.7767	-0.5247	0.7927	0.0102	-0.0160
0.003	-0.4821	0.7466	-0.4613	0.7591	-0.0208	-0.0125
0.004	-0.4515	0.7182	-0.4315	0.7357	-0.0200	-0.0175
0.005	-0.4225	0.6914	-0.4121	0.6981	-0.0103	-0.0067
0.007	-0.3691	0.6421	-0.3489	0.6580	-0.0202	-0.0159
0.010	-0.2993	0.5780	-0.2908	0.5817	-0.0086	-0.0038
0.015	-0.2059	0.4928	-0.2017	0.5055	-0.0042	-0.0126
0.020	-0.1349	0.4291	-0.1400	0.4299	0.0051	-0.0008
0.025	-0.0809	0.3815	-0.0828	0.3877	0.0020	-0.0062
0.030	-0.0396	0.3461	-0.0453	0.3394	0.0057	0.0067
0.040	0.0163	0.3005	0.0138	0.2976	0.0025	0.0029
0.050	0.0498	0.2762	0.0448	0.2645	0.0050	0.0117
0.060	0.0706	0.2641	0.0618	0.2465	0.0088	0.0177
0.070	0.0840	0.2590	0.0831	0.2506	0.0009	0.0084
0.080	0.0932	0.2577	0.0915	0.2425	0.0018	0.0152
0.090	0.1001	0.2587	0.1010	0.2457	-0.0009	0.0130
0.100	0.1056	0.2609	0.1001	0.2435	0.0055	0.0174
0.150	0.1262	0.2781	0.1304	0.2697	-0.0042	0.0084
0.200	0.1443	0.2968	0.1430	0.2800	0.0013	0.0168
0.250	0.1618	0.3151	0.1606	0.3043	0.0012	0.0109
0.300	0.1788	0.3330	0.1781	0.3185	0.0008	0.0145
0.350	0.1954	0.3504	0.1935	0.3381	0.0019	0.0123
0.400	0.2116	0.3674	0.2077	0.3517	0.0039	0.0157
0.500	0.2427	0.4001	0.2393	0.3895	0.0035	0.0106
0.600	0.2723	0.4311	0.2766	0.4252	-0.0043	0.0059
0.700	0.3004	0.4606	0.3029	0.4573	-0.0025	0.0034
0.800	0.3271	0.4887	0.3251	0.4782	0.0020	0.0104
0.900	0.3525	0.5153	0.3494	0.5156	0.0031	-0.0003
1.000	0.3766	0.5406	0.3788	0.5393	-0.0022	0.0013
1.500	0.4801	0.6492	0.4782	0.6496	0.0019	-0.0003
2.000	0.5602	0.7333	0.5652	0.7446	-0.0050	-0.0113
2.500	0.6222	0.7983	0.6246	0.8082	-0.0024	-0.0099
3.000	0.6701	0.8486	0.6724	0.8663	-0.0023	-0.0177
5.000	0.7752	0.9590	0.7773	0.9745	-0.0021	-0.0155
6.000	0.7988	0.9837	0.7938	1.0001	0.0050	-0.0164
8.000	0.8213	1.0073	0.8158	1.0186	0.0055	-0.0113
10.000	0.8294	1.0158	0.8181	1.0230	0.0113	-0.0071
15.000	0.8335	1.0202	0.8133	1.0230	0.0203	-0.0028
20.000	0.8338	1.0205	0.8074	1.0227	0.0265	-0.0022
Chart S-VIII.6. Plot of Inversion Recovery Data at 0.5 Equivalent of PPh$_3$.

CIFIT Guesses and Fit Parameters

Initial values of parameters:

1/\(T_1\)'s
- No. 0 = 0.8000
- No. 1 = 0.2300

\(M(\text{inf})\)'s
- No. 2 = 0.9000
- No. 3 = 1.0000

\(M(0) - M(\text{inf})\)'s
- No. 4 = -1.4000
- No. 5 = 0.5000

and \(M(0)\)'s for reference
- No. 4 = -0.5000
- No. 5 = 1.5000

Rates
- No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

#	Value	Uncertainty
0	1.894732	0.257126
1	-0.802632	0.236547
2	0.833876	0.004341
3	1.020544	0.004659
4	-1.418897	0.006409
5	-0.178219	0.007887
6	27.849716	0.579175
7) Data for 0.75 Equivalent PPh₃⁻:

![Stacked Spectra of Inversion Recovery Data at 0.75 Equivalents PPh₃⁻](image)

Figure S-VIII.7. Stacked Spectra of Inversion Recovery Data at 0.75 Equivalents PPh₃⁻.

Table S-VIII.7. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2
0.001	-0.3683	0.5956	-0.3578	0.6042	-0.0104	-0.0086
0.002	-0.3437	0.5727	-0.3556	0.5802	0.0119	-0.0075
0.003	-0.3205	0.5510	-0.3120	0.5572	-0.0084	-0.0063
0.004	-0.2985	0.5305	-0.2845	0.5375	-0.0140	-0.0071
0.005	-0.2777	0.5111	-0.2641	0.5161	-0.0136	-0.0049
0.007	-0.2393	0.4755	-0.2254	0.4830	-0.0138	-0.0075
0.010	-0.1889	0.4291	-0.1877	0.4348	-0.0013	-0.0057
0.015	-0.1213	0.3674	-0.1076	0.3772	-0.0137	-0.0098
0.020	-0.0696	0.3211	-0.0731	0.3227	0.0034	-0.0016
0.025	-0.0300	0.2864	-0.0341	0.2872	0.0041	-0.0007
0.030	0.0004	0.2606	-0.0065	0.2563	0.0069	0.0043
0.040	0.0420	0.2274	0.0356	0.2218	0.0064	0.0055
0.050	0.0674	0.2098	0.0619	0.2074	0.0054	0.0024
0.060	0.0834	0.2012	0.0820	0.1960	0.0014	0.0052
0.070	0.0940	0.1977	0.0929	0.1901	0.0012	0.0076
0.080	0.1015	0.1972	0.0989	0.1886	0.0026	0.0086
0.090	0.1073	0.1984	0.1064	0.1930	0.0009	0.0054
0.100	0.1120	0.2005	0.1096	0.1908	0.0024	0.0098
d2 (s)	Integration					
-------	-------------					
0.150	0.1301					
0.200	0.1462					
0.250	0.1618					
0.300	0.1770					
0.350	0.1918					
0.400	0.2063					
0.500	0.2340					
0.600	0.2604					
0.700	0.2854					
0.800	0.3091					
0.900	0.3316					
1.000	0.3530					
1.500	0.4448					
2.000	0.5156					
2.500	0.5702					
3.000	0.6123					
5.000	0.7041					
6.000	0.7244					
8.000	0.7437					
10.000	0.7505					
15.000	0.7540					
20.000	0.7543					

Chart S–VIII.7. Plot of Inversion Recovery Data at 0.75 Equivalent of PPh₃

Inversion Recovery Data for 0.75 Equiv. PPh₃

![Inversion Recovery Data](chart.png)
CIFIT Guesses and Fit Parameters

Initial values of parameters:

1/T1's
No. 0 = 0.8000 No. 1 = 0.2300

M(inf)’s
No. 2 = 0.9000 No. 3 = 1.0000

M(0) - M(inf)’s
No. 4 = -1.4000 No. 5 = 0.5000

and M(0)’s for reference
No. 4 = -0.5000 No. 5 = 1.5000

Rates
No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

0 = 1.559682 +/- 0.184452
1 = -0.482491 +/- 0.173228
2 = 0.754272 +/- 0.002681
3 = 0.863477 +/- 0.002847
4 = -1.148466 +/- 0.003911
5 = -0.243599 +/- 0.004746
6 = 27.458241 +/- 0.479607

8) Data for 1 Equivalent PPh₃⁻:

![Figure S–VIII.8. Stacked Spectra of Inversion Recovery Data at 1.0 Equivalent PPh₃⁻.](image)

Table S–VIII.8. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2	
0.001	-0.4305	0.7275	-0.4404	0.7240	0.0099	0.0035	
0.002	-0.4026	0.7017	-0.4282	0.7024	0.0256	-0.0007	
0.003	-0.3762	0.6773	-0.3675	0.6782	-0.0087	-0.0008	
0.004	-0.3511	0.6542	-0.3386	0.6557	-0.0125	-0.0015	
0.005	-0.3273	0.6323	-0.3107	0.6362	-0.0165	-0.0039	
-------	-------	-------	-------	-------	-------	-------	-------
0.007	-0.2832	0.5920	-0.2784	0.5920	-0.0048	0.0000	
0.010	-0.2251	0.5390	-0.2135	0.5427	-0.0116	-0.0037	
0.015	-0.1463	0.4680	-0.1316	0.4803	-0.0147	-0.0124	
0.020	-0.0855	0.4139	-0.0887	0.4159	0.0032	-0.0020	
0.025	-0.0384	0.3730	-0.0382	0.3769	-0.0002	-0.0039	
0.030	-0.0018	0.3421	-0.0102	0.3414	0.0084	0.0006	
0.040	0.0489	0.3015	0.0470	0.3044	0.0019	-0.0030	
0.050	0.0803	0.2792	0.0798	0.2825	0.0005	-0.0033	
0.060	0.1003	0.2678	0.1015	0.2683	-0.0012	-0.0005	
0.070	0.1136	0.2627	0.1108	0.2633	0.0028	-0.0007	
0.080	0.1230	0.2613	0.1211	0.2582	0.0019	0.0030	
0.090	0.1300	0.2621	0.1322	0.2623	-0.0022	-0.0003	
0.100	0.1357	0.2641	0.1376	0.2650	-0.0019	-0.0008	
0.150	0.1565	0.2809	0.1526	0.2715	0.0039	0.0094	
0.200	0.1745	0.2995	0.1678	0.2925	0.0067	0.0070	
0.250	0.1919	0.3177	0.1940	0.3155	-0.0022	0.0022	
0.300	0.2087	0.3354	0.2012	0.3225	0.0076	0.0129	
0.350	0.2252	0.3527	0.2217	0.3478	0.0035	0.0049	
0.400	0.2412	0.3696	0.2446	0.3770	-0.0034	-0.0074	
0.500	0.2720	0.4020	0.2733	0.3966	-0.0013	0.0053	
0.600	0.3013	0.4327	0.3014	0.4296	-0.0001	0.0031	
0.700	0.3290	0.4618	0.3268	0.4559	0.0022	0.0060	
0.800	0.3554	0.4895	0.3573	0.4864	-0.0019	0.0031	
0.900	0.3803	0.5158	0.3786	0.5103	0.0017	0.0055	
1.000	0.4040	0.5407	0.4048	0.5433	-0.0008	-0.0027	
1.500	0.5055	0.6473	0.5059	0.6477	-0.0004	-0.0004	
2.000	0.5836	0.7294	0.5860	0.7266	-0.0024	0.0027	
2.500	0.6436	0.7924	0.6460	0.7980	-0.0024	-0.0056	
3.000	0.6897	0.8409	0.6913	0.8437	-0.0016	-0.0028	
5.000	0.7895	0.9458	0.7961	0.9528	-0.0066	-0.0069	
6.000	0.8115	0.9689	0.8184	0.9753	-0.0070	-0.0064	
8.000	0.8321	0.9906	0.8354	0.9965	-0.0033	-0.0059	
10.000	0.8393	0.9982	0.8349	0.9991	0.0045	-0.0009	
15.000	0.8429	1.0019	0.8322	1.0003	0.0107	0.0016	
20.000	0.8432	1.0022	0.8305	0.9968	0.0127	0.0054	
Chart S–VIII.8. Plot of Inversion Recovery Data at 1.0 Equivalent of PPh₃₂

![Plot of Inversion Recovery Data for 1.0 Equiv. PPh₃](image)

CIFIT Guesses and Fit Parameters

Initial values of parameters:
- 1/T1's
 - No. 0 = 0.8000
 - No. 1 = 0.2300
- M(inf)'s
 - No. 2 = 0.9000
 - No. 3 = 1.0000
- M(0)–M(inf)'s
 - No. 4 = -1.4000
 - No. 5 = 0.5000
 - For reference
- M(0)'s
 - No. 4 = -0.5000
 - No. 5 = 1.5000
- Rates
 - No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:
- # 0 = 1.865732 +/− 0.154685
- # 1 = -0.749558 +/− 0.141844
- # 2 = 0.843196 +/− 0.002595
- # 3 = 1.002243 +/− 0.002775
- # 4 = -1.303100 +/− 0.003779
- # 5 = -0.247599 +/− 0.004607
- # 6 = 26.266672 +/− 0.379183
9) **Data for 1.25 Equivalents PPh$_3$:**

![Figure S-VIII.9](image)

Figure S-VIII.9. Stacked Spectra of Inversion Recovery Data at 1.25 Equivalents PPh$_3$.

Table S-VIII.9. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2
0.001	-0.4649	0.7619	-0.4557	0.7689	-0.0092	-0.0070
0.002	-0.4356	0.7346	-0.4528	0.7394	0.0172	-0.0049
0.003	-0.4079	0.7087	-0.3961	0.7146	-0.0117	-0.0059
0.004	-0.3816	0.6843	-0.3720	0.6883	-0.0097	-0.0040
0.005	-0.3568	0.6611	-0.3446	0.6699	-0.0122	-0.0087
0.007	-0.3109	0.6186	-0.2952	0.6255	-0.0157	-0.0069
0.010	-0.2507	0.5630	-0.2427	0.5663	-0.0080	-0.0033
0.015	-0.1697	0.4889	-0.1675	0.4948	-0.0022	-0.0059
0.020	-0.1078	0.4331	-0.1078	0.4358	0.0001	-0.0027
0.025	-0.0603	0.3910	-0.0646	0.3923	0.0043	-0.0012
0.030	-0.0238	0.3596	-0.0212	0.3665	-0.0025	-0.0070
0.040	0.0262	0.3186	0.0213	0.3169	0.0049	0.0017
0.050	0.0565	0.2965	0.0508	0.2891	0.0057	0.0074
0.060	0.0755	0.2852	0.0681	0.2773	0.0074	0.0080
0.070	0.0878	0.2802	0.0868	0.2730	0.0010	0.0072
0.080	0.0964	0.2788	0.0953	0.2683	0.0011	0.0105
0.090	0.1028	0.2795	0.1050	0.2743	-0.0022	0.0051
0.100	0.1079	0.2814	0.1045	0.2722	0.0033	0.0092
0.150	0.1266	0.2965	0.1265	0.2869	0.0001	0.0097
T (ppm)	Inversion Recovery Data at 1.25 Equivalent of PPh₃					
---------	--					
0.200	0.1429 0.3133 0.1434 0.3061 -0.0005 0.0072					
0.250	0.1587 0.3297 0.1628 0.3266 -0.0041 0.0030					
0.300	0.1740 0.3457 0.1707 0.3359 0.0033 0.0098					
0.350	0.1889 0.3612 0.1865 0.3511 0.0024 0.0101					
0.400	0.2035 0.3764 0.2053 0.3715 -0.0018 0.0049					
0.500	0.2314 0.4056 0.2326 0.4054 -0.0011 0.0002					
0.600	0.2580 0.4333 0.2546 0.4241 0.0034 0.0091					
0.700	0.2832 0.4596 0.2851 0.4611 -0.0019 -0.0015					
0.800	0.3071 0.4845 0.3084 0.4861 -0.0013 -0.0016					
0.900	0.3298 0.5082 0.3300 0.5097 -0.0002 -0.0015					
1.000	0.3513 0.5306 0.3498 0.5293 0.0015 0.0014					
1.500	0.4435 0.6269 0.4404 0.6256 0.0031 0.0013					
2.000	0.5145 0.7010 0.5160 0.7056 -0.0015 -0.0046					
2.500	0.5692 0.7580 0.5723 0.7657 -0.0031 -0.0077					
3.000	0.6112 0.8019 0.6133 0.8094 -0.0021 -0.0075					
5.000	0.7024 0.8970 0.7026 0.9030 -0.0001 -0.0059					
6.000	0.7225 0.9180 0.7176 0.9237 0.0050 -0.0057					
8.000	0.7415 0.9378 0.7369 0.9414 0.0046 -0.0035					
10.000	0.7482 0.9448 0.7419 0.9508 0.0063 -0.0061					
15.000	0.7515 0.9482 0.7453 0.9507 0.0062 -0.0025					
20.000	0.7517 0.9485 0.7414 0.9487 0.0103 -0.0002					

Chart S-VIII.9. Plot of Inversion Recovery Data at 1.25 Equivalent of PPh₃.
CIFIT Guesses and Fit Parameters

Initial values of parameters:

1/T1's
No. 0 = 0.8000 No. 1 = 0.2300

M(inf)'s
No. 2 = 0.9000 No. 3 = 1.0000

M(0) - M(inf)'s
No. 4 = -1.4000 No. 5 = 0.5000
and M(0)'s for reference
No. 4 = -0.5000 No. 5 = 1.5000
Rates
No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

0 = 1.703998 +/- 0.163166
1 = -0.607661 +/- 0.152018
2 = 0.751755 +/- 0.002477
3 = 0.948506 +/- 0.002652
4 = -1.247507 +/- 0.003641
5 = -0.157704 +/- 0.004488
6 = 27.172459 +/- 0.368455

10) Data for 1.5 Equivalents PPh₃₂:

Figure S-VIII.10. Stacked Spectra of Inversion Recovery Data at 1.5 Equivalents PPh₃₂.

Table S-VIII.10. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2							
0.001	-0.53490	0.73780	-0.53450	0.73350	-0.00040	0.00430							
0.002	-0.50380	0.70780	-0.53510	0.70510	0.03120	0.00270							
0.003	-0.47440	0.67940	-0.48520	0.67410	0.01080	0.00530							
0.004	-0.44630	0.65240	-0.44760	0.64440	0.00130	0.00800							
0.005	-0.41970	0.62690	-0.42150	0.62070	0.00180	0.00610							
-----	------	------	------	------	------	------	------	------	------	------	------	------	------
0.007	-0.37050	0.57960	-0.35900	0.57170	-0.01150	0.00790							
0.010	-0.30540	0.51740	-0.29670	0.51220	-0.00870	0.00530							
0.015	-0.21680	0.43350	-0.21990	0.43040	0.00300	0.00320							
0.020	-0.14820	0.36930	-0.15100	0.37120	0.00280	-0.00190							
0.025	-0.09480	0.32020	-0.08920	0.32820	-0.00560	-0.00790							
0.030	-0.05330	0.28290	-0.05180	0.28500	-0.00140	-0.00210							
0.040	0.00460	0.23300	0.00080	0.23740	0.00380	-0.00440							
0.050	0.04050	0.20490	0.03940	0.20810	0.00110	-0.00320							
0.060	0.06330	0.18970	0.05870	0.19300	0.00460	-0.00320							
0.070	0.07830	0.18220	0.07520	0.18550	0.00310	-0.00330							
0.080	0.08870	0.17920	0.09160	0.18880	-0.00280	-0.00960							
0.090	0.09640	0.17900	0.09770	0.18490	-0.00140	-0.00590							
0.100	0.10240	0.18030	0.10520	0.18490	-0.00290	-0.00470							
0.150	0.12340	0.19510	0.12620	0.20090	-0.00280	-0.00590							
0.200	0.14100	0.21230	0.14590	0.22110	-0.00490	-0.00880							
0.250	0.15790	0.22940	0.15620	0.23240	0.00170	-0.00300							
0.300	0.17430	0.24600	0.17730	0.25200	-0.00290	-0.00610							
0.350	0.19030	0.26210	0.19130	0.26370	-0.00090	-0.00160							
0.400	0.20590	0.27790	0.20530	0.28070	0.00070	-0.00280							
0.500	0.23590	0.30810	0.23820	0.31060	-0.00230	-0.00250							
0.600	0.26420	0.33680	0.26210	0.33880	0.00210	-0.00210							
0.700	0.29110	0.36390	0.29080	0.36750	0.00040	-0.00360							
0.800	0.31660	0.38970	0.31560	0.38690	0.00100	0.00270							
0.900	0.34080	0.41400	0.33850	0.41220	0.00220	0.00180							
1.000	0.36370	0.43720	0.36170	0.43420	0.00190	0.00290							
1.500	0.46140	0.53590	0.46100	0.53370	0.00040	0.00210							
2.000	0.53610	0.61140	0.53180	0.60750	0.00430	0.00380							
2.500	0.59330	0.66910	0.59410	0.66840	-0.00080	0.00070							
3.000	0.63700	0.71320	0.63530	0.70920	0.00170	0.00400							
5.000	0.73050	0.80770	0.73650	0.80540	-0.00600	0.00230							
6.000	0.75070	0.82800	0.75990	0.82580	-0.00920	0.00220							
8.000	0.76940	0.84690	0.77580	0.84770	-0.00640	-0.00080							
10.000	0.77580	0.85340	0.78370	0.85230	-0.00790	0.00110							
15.000	0.77890	0.85650	0.78050	0.85050	-0.00160	0.00600							
20.000	0.77910	0.85670	0.77850	0.84610	0.00060	0.01070							
Chart S-VIII.10. Plot of Inversion Recovery Data at 1.5 Equivalent of PPh₃.

CIFIT Guesses and Fit Parameters

Initial values of parameters:

1/T₁'s
No. 0 = 0.8000 No. 1 = 0.2300
M(∞)'s
No. 2 = 0.9000 No. 3 = 1.0000
M(0)–M(∞)'s
No. 4 = -1.4000 No. 5 = 0.5000
and M(0)'s for reference
No. 4 = -0.5000 No. 5 = 1.5000
Rates
No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

#	Value	Uncertainty	Value	Uncertainty
0	0.792707	+/- 0.135379	0.135379	
1	0.282554	+/- 0.135140	0.135140	
2	0.779104	+/- 0.002309	0.002309	
3	0.856755	+/- 0.002450	0.002450	
4	-1.346653	+/- 0.003349	0.003349	
5	-0.087352	+/- 0.004194	0.004194	
6	25.774528	+/- 0.285602	0.285602	
Figure S–VIII.11. Stacked Spectra of Inversion Recovery Data at 2.0 Equivalents PPh₃₂.

Table S–VIII.11. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2
0.001	-0.6112	0.8798	-0.6257	0.8737	0.0146	0.0061
0.002	-0.5772	0.8481	-0.6200	0.8352	0.0429	0.0129
0.003	-0.5448	0.8180	-0.5503	0.8114	0.0055	0.0065
0.004	-0.5141	0.7893	-0.5146	0.7830	0.0005	0.0063
0.005	-0.4848	0.7622	-0.4725	0.7539	-0.0123	0.0082
0.007	-0.4305	0.7118	-0.4166	0.7102	-0.0139	0.0016
0.010	-0.3585	0.6455	-0.3443	0.6434	-0.0142	0.0021
0.015	-0.2599	0.5554	-0.2638	0.5530	0.0039	0.0024
0.020	-0.1829	0.4860	-0.1804	0.4895	-0.0025	-0.0036
0.025	-0.1226	0.4326	-0.1242	0.4365	0.0016	-0.0039
0.030	-0.0753	0.3917	-0.0737	0.3948	-0.0016	-0.0031
0.040	-0.0086	0.3367	-0.0164	0.3389	0.0078	-0.0022
0.050	0.0333	0.3054	0.0313	0.3112	0.0020	-0.0058
0.060	0.0603	0.2883	0.0570	0.2921	0.0033	-0.0038
0.070	0.0783	0.2799	0.0773	0.2861	0.0010	-0.0062
0.080	0.0909	0.2766	0.0874	0.2822	0.0036	-0.0057
0.090	0.1002	0.2764	0.0984	0.2874	0.0019	-0.0111
0.100	0.1075	0.2780	0.1053	0.2804	0.0023	-0.0024
d2 (s)	Integration					
-------	-------------					
5	0.150					
10	0.200					
15	0.250					
20	0.300					
25	0.350					

Chart S-VIII.11. Plot of Inversion Recovery Data at 2.0 Equivalent of PPh$_3$

Inversion Recovery Data for 2.0 Equiv. PPh$_3$
CIFIT Guesses and Fit Parameters

Initial values of parameters:

1/T1's
No. 0 = 0.8000 No. 1 = 0.2300

M(inf)'s
No. 2 = 0.9000 No. 3 = 1.0000

M(0) - M(inf)'s
No. 4 = -1.4000 No. 5 = 0.5000

and M(0)'s for reference
No. 4 = -0.5000 No. 5 = 1.5000

Rates
No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

0 = 1.639768 +/− 0.159698
1 = -0.395038 +/− 0.150298
2 = 0.830426 +/− 0.002911
3 = 1.021867 +/− 0.003118
4 = -1.477308 +/− 0.004337
5 = -0.108696 +/− 0.005390
6 = 24.991213 +/− 0.330442

12) Data for 5.0 Equivalents PPh₃:

Figure S–VIII.12. Stacked Spectra of Inversion Recovery Data at 5.0 Equivalents PPh₃.

Table S–VIII.12. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2
0.001	-0.6112	0.8798	-0.6257	0.8737	0.0146	0.0061
0.002	-0.5772	0.8481	-0.6200	0.8352	0.0429	0.0129
0.003	-0.5448	0.8180	-0.5503	0.8114	0.0055	0.0065
0.004	-0.5141	0.7893	-0.5146	0.7830	0.0005	0.0063
0.005	-0.4848	0.7622	-0.4725	0.7539	-0.0123	0.0082

47
0.007	-0.4305	0.7118	-0.4166	0.7102	-0.0139	0.0016
0.010	-0.3585	0.6455	-0.3443	0.6434	-0.0142	0.0021
0.015	-0.2599	0.5554	-0.2638	0.5530	0.0039	0.0024
0.020	-0.1829	0.4860	-0.1804	0.4895	-0.0025	-0.0036
0.025	-0.1226	0.4326	-0.1242	0.4365	0.0016	-0.0039
0.030	-0.0753	0.3917	-0.0737	0.3948	-0.0016	-0.0031
0.040	-0.0086	0.3367	-0.0164	0.3389	0.0078	-0.0022
0.050	0.0333	0.3054	0.0313	0.3112	0.0020	-0.0058
0.060	0.0603	0.2883	0.0570	0.2921	0.0033	-0.0038
0.070	0.0783	0.2799	0.0773	0.2861	0.0010	-0.0062
0.080	0.0909	0.2766	0.0874	0.2822	0.0036	-0.0057
0.090	0.1002	0.2764	0.0984	0.2874	0.0019	-0.0111
0.100	0.1075	0.2780	0.1053	0.2804	0.0023	-0.0024
0.150	0.1330	0.2962	0.1328	0.2973	0.0002	-0.0011
0.200	0.1540	0.3174	0.1628	0.3281	-0.0088	-0.0107
0.250	0.1741	0.3382	0.1775	0.3451	-0.0034	-0.0068
0.300	0.1935	0.3585	0.1928	0.3635	0.0007	-0.0050
0.350	0.2124	0.3782	0.2160	0.3879	-0.0037	-0.0098
0.400	0.2307	0.3972	0.2339	0.4041	-0.0032	-0.0069
0.500	0.2657	0.4337	0.2668	0.4342	-0.0011	-0.0005
0.600	0.2987	0.4680	0.3030	0.4737	-0.0043	-0.0056
0.700	0.3297	0.5004	0.3285	0.4983	0.0012	0.0021
0.800	0.3590	0.5308	0.3577	0.5327	0.0013	-0.0019
0.900	0.3865	0.5595	0.3868	0.5607	-0.0003	-0.0012
1.000	0.4124	0.5865	0.4126	0.5829	-0.0002	0.0036
1.500	0.5210	0.6996	0.5171	0.6932	0.0040	0.0065
2.000	0.6014	0.7833	0.5961	0.7733	0.0053	0.0100
2.500	0.6609	0.8453	0.6614	0.8427	-0.0005	0.0026
3.000	0.7049	0.8912	0.7017	0.8831	0.0032	0.0081
5.000	0.7928	0.9826	0.8033	0.9826	-0.0105	0.0001
6.000	0.8098	1.0004	0.8206	0.9997	-0.0108	0.0006
8.000	0.8242	1.0154	0.8297	1.0137	-0.0055	0.0017
10.000	0.8286	1.0199	0.8323	1.0179	-0.0038	0.0020
15.000	0.8303	1.0218	0.8335	1.0162	-0.0031	0.0056
20.000	0.8304	1.0219	0.8333	1.0136	-0.0028	0.0082
Chart S-VIII.12. Plot of Inversion Recovery Data at 5.0 Equivalent of PPh$_3$.

CIFIT Guesses and Fit Parameters

Initial values of parameters:

1/T1's
No. 0 = 0.8000 No. 1 = 0.2300
M(inf)'s
No. 2 = 0.9000 No. 3 = 1.0000
M(0)-M(inf)'s
No. 4 = -1.4000 No. 5 = 0.5000
and M(0)'s for reference
No. 4 = -0.5000 No. 5 = 1.5000
Rates
No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

0 = 1.153897 +/− 0.151221
1 = 0.051444 +/− 0.147752
2 = 1.103346 +/− 0.002131
3 = 1.088249 +/− 0.002263
4 = -1.167800 +/− 0.003175
5 = -0.095688 +/− 0.003948
6 = 26.166560 +/− 0.325674
13) Data for 10 Equivalents PPh$_3$:

Figure S-VIII.13. Stacked Spectra of Inversion Recovery Data at 10 Equivalents PPh$_3$.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2
0.001	0.1751	0.9324	0.1785	0.9367	-0.0033	-0.0043
0.002	0.1853	0.9225	0.1762	0.9222	0.009	0.0004
0.003	0.1949	0.9132	0.1982	0.9132	-0.0033	0
0.004	0.2041	0.9043	0.208	0.906	-0.0039	-0.0017
0.005	0.2128	0.8959	0.2171	0.8973	-0.0042	-0.0015
0.007	0.229	0.8803	0.2323	0.879	-0.0033	0.0013
0.01	0.2503	0.8598	0.2528	0.8624	-0.0025	-0.0026
0.015	0.2794	0.8321	0.2802	0.8318	-0.0008	0.0003
0.02	0.3021	0.8108	0.3018	0.811	0.0003	-0.0002
0.025	0.3197	0.7946	0.3176	0.7944	0.0022	0.0002
0.03	0.3335	0.7822	0.3306	0.7843	0.0029	-0.0021
0.04	0.3528	0.7657	0.3506	0.7627	0.0022	0.003
0.05	0.3648	0.7564	0.3634	0.7539	0.0015	0.0025
0.06	0.3726	0.7514	0.3704	0.7496	0.0022	0.0018
0.07	0.3777	0.749	0.3771	0.7481	0.0006	0.0008
0.08	0.3813	0.748	0.3807	0.7467	0.0007	0.0013
0.09	0.384	0.748	0.3836	0.7468	0.0004	0.0013
0.1	0.3862	0.7486	0.3857	0.7471	0.0004	0.0014
0.15	0.3938	0.754	0.3935	0.7536	0.0003	0.0004
d2 (s)	Integration	Inversion Recovery Data for 10 Equiv. PPh₃				
-------	-------------	--				
0.2	0.4003	0.7603 0.4018 0.7598 -0.0016 0.0005				
0.25	0.4064	0.7665 0.4071 0.7659 -0.0007 0.0006				
0.3	0.4125	0.7725 0.413 0.7706 -0.0006 0.0019				
0.35	0.4183	0.7784 0.4204 0.7791 -0.002 -0.0008				
0.4	0.424	0.7841 0.4259 0.783 -0.0019 0.001				
0.5	0.4349	0.795 0.4359 0.7937 -0.001 0.0013				
0.6	0.4452	0.8053 0.4465 0.8053 -0.0013 -0.0001				
0.7	0.4549	0.815 0.4556 0.8157 -0.0007 -0.0007				
0.8	0.4641	0.8242 0.4628 0.8239 0.0013 0.0004				
0.9	0.4728	0.8329 0.4725 0.8349 0.0003 -0.002				
1	0.481	0.8411 0.4805 0.8395 0.0006 0.0016				
1.5	0.5158	0.8759 0.5158 0.8749 0 0.001				
2	0.542	0.9021 0.5435 0.9007 -0.0015 0.0014				
2.5	0.5618	0.9219 0.5597 0.9212 0.002 0.0007				
3	0.5766	0.9368 0.5763 0.9386 0.0003 -0.0019				
5	0.6074	0.9676 0.6099 0.9719 -0.0025 -0.0043				
6	0.6138	0.9739 0.6134 0.9739 0.0003 0				
8	0.6194	0.9796 0.6179 0.9802 0.0015 -0.0007				
10	0.6212	0.9814 0.6199 0.9826 0.0014 -0.0012				
15	0.6222	0.9822 0.6202 0.9839 0.0019 -0.0017				
20	0.6221	0.9822 0.6193 0.9818 0.0028 0.0005				

Chart S-VIII.13. Plot of Inversion Recovery Data at 10 Equivalents PPh₃.
CIFIT Guesses and Fit Parameters

Initial values of parameters:

$1/T_1$'s
No. 0 = 0.8000 No. 1 = 0.2300

$M(\infty)$'s
No. 2 = 0.9000 No. 3 = 1.0000

$M(0)$-$M(\infty)$'s
No. 4 = -1.4000 No. 5 = 0.5000

and $M(0)$'s for reference
No. 4 = -0.5000 No. 5 = 1.5000

Rates
No. 6 = 20.0000

Final Values and Uncertainties:

0 = 0.578493 +/- 0.138359
1 = 0.553659 +/- 0.140746
2 = 0.622091 +/- 0.000805
3 = 0.982237 +/- 0.000850
4 = -0.457643 +/- 0.001171
5 = -0.039427 +/- 0.001464
6 = 25.571599 +/- 0.302792
IX. Inversion Recovery Data for Section V (\((n-\text{Bu})_4\text{NCl}\) and LiCl Addition)

1) Data for 0.4 Equivalent \((n-\text{Bu})_4\text{NCl}\):

![Stacked Spectra of Inversion Recovery Data at 0.4 Equivalents \((n-\text{Bu})_4\text{NCl}\).]

Figure S-IX.1. Stacked Spectra of Inversion Recovery Data at 0.4 Equivalents \((n-\text{Bu})_4\text{NCl}\).

Table S-IX.1. CIFIT Plot File.

\(d_2\) (s)	Observed M1	Observed M2	Fit M1	Fit M2	\(\sigma\)M1	\(\sigma\)M2	
0.001	-0.0441	0.8503	-0.0604	0.8397	0.0162	0.0106	
0.002	-0.0247	0.8333	-0.0386	0.8245	0.0139	0.0088	
0.003	-0.0062	0.8171	-0.0167	0.8124	0.0106	0.0047	
0.004	0.0116	0.8017	0.0055	0.7982	0.0061	0.0035	
0.005	0.0287	0.787	0.0278	0.7783	0.0009	0.0087	
0.006	0.0451	0.773	0.0396	0.7684	0.0055	0.0045	
0.007	0.0608	0.7596	0.0558	0.759	0.005	0.0006	
0.008	0.0758	0.7468	0.0771	0.7406	-0.0013	0.0062	
0.009	0.0902	0.7347	0.0842	0.7286	0.006	0.0061	
0.01	0.104	0.7231	0.1084	0.7168	-0.0043	0.0064	
0.015	0.1651	0.6731	0.168	0.6675	-0.0029	0.0056	
0.02	0.2149	0.634	0.2211	0.6334	-0.0062	0.0006	
0.025	0.2556	0.6038	0.2585	0.603	-0.003	0.0008	
0.03	0.289	0.5805	0.2914	0.5854	-0.0024	-0.0049	
0.035	0.3166	0.5628	0.3217	0.5663	-0.0051	-0.0035	
	0.04	0.3395	0.5496	0.341	0.5585	-0.0015	-0.0089
---	------	--------	--------	-------	--------	---------	---------
0.045	0.3587	0.54	0.3623	0.5477	-0.0036	-0.0077	
0.05	0.3749	0.5332	0.376	0.5408	-0.0011	-0.0076	
0.06	0.4007	0.5258	0.4013	0.5374	-0.0007	0.0115	
0.07	0.4201	0.5243	0.426	0.5387	-0.0059	-0.0144	
0.08	0.4356	0.5264	0.4405	0.5408	-0.0049	-0.0145	
0.09	0.4484	0.5307	0.4517	0.5399	-0.0033	-0.0092	
0.1	0.4594	0.5364	0.4586	0.5458	0.0008	-0.0094	
0.15	0.503	0.5722	0.503	0.582	0	-0.0098	
0.2	0.5391	0.6083	0.5378	0.6178	0.0014	-0.0095	
0.25	0.5717	0.6416	0.5684	0.6494	0.0033	-0.0078	
0.3	0.6014	0.672	0.5958	0.6762	0.0056	-0.0043	
0.35	0.6285	0.6997	0.6306	0.7036	-0.0021	-0.0038	
0.4	0.6533	0.7251	0.6532	0.7277	0.0001	-0.0026	
0.45	0.6758	0.7482	0.6727	0.7528	0.0031	-0.0046	
0.5	0.6964	0.7693	0.6934	0.7699	0.003	-0.0006	
0.6	0.7323	0.806	0.7239	0.8062	0.0084	-0.0003	
0.7	0.7622	0.8367	0.7584	0.8271	0.0038	0.0095	
0.8	0.7871	0.8621	0.7854	0.8559	0.0017	0.0063	
0.9	0.8078	0.8834	0.8007	0.8762	0.0071	0.0072	
1	0.825	0.901	0.8197	0.8942	0.0053	0.0068	
1.5	0.8765	0.9537	0.8778	0.9443	-0.0013	0.0094	
2	0.897	0.9747	0.9019	0.9713	-0.0049	0.0035	
2.5	0.9052	0.9831	0.9123	0.9821	-0.0071	0.001	
3	0.9085	0.9865	0.9173	0.984	-0.0088	0.0025	
4	0.9103	0.9884	0.9181	0.9884	-0.0078	-0.0001	
6	0.9107	0.9887	0.919	0.9887	-0.0083	0	
8	0.9107	0.9887	0.922	0.9866	-0.0113	0.0022	
10	0.9107	0.9887	0.9143	0.9863	-0.0036	0.0024	
12	0.9107	0.9887	0.9167	0.984	-0.006	0.0047	
16	0.9107	0.9887	0.9131	0.9812	-0.0024	0.0075	
20	0.9107	0.9887	0.9086	0.984	0.002	0.0047	
Chart S-IX.1. Plot of Inversion Recovery Data at 0.4 Equivalents \((n-\text{Bu})_4\text{NCl}\).

CIFIT Guesses and Fit Parameters

Initial values of parameters:

\(1/T1's\):
- No. 0 = 0.8000
- No. 1 = 0.2300

\(M(\text{inf})'s\):
- No. 2 = 0.9000
- No. 3 = 1.0000

\(M(0)-M(\text{inf})'s\):
- No. 4 = -1.4000
- No. 5 = 0.5000

and \(M(0)'s\) for reference:
- No. 4 = -0.5000
- No. 5 = 1.5000

Rates:
- No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

\# 0 = 2.355768 +/− 0.185780
\# 1 = 1.325387 +/− 0.189420
\# 2 = 0.910675 +/− 0.001832
\# 3 = 0.988722 +/− 0.001927
\# 4 = -0.975053 +/− 0.003073
\# 5 = -0.120648 +/− 0.003802
\# 6 = 21.509204 +/− 0.386532
2) **Data for 0.7 Equivalent \((n{-}\text{Bu})_2\text{NCl}\):**

![Stacked Spectra of Inversion Recovery Data at 0.7 Equivalents \((n{-}\text{Bu})_2\text{NCl}\).]

Figure S-IX.2. Stacked Spectra of Inversion Recovery Data at 0.7 Equivalents \((n{-}\text{Bu})_2\text{NCl}\).

Table S-IX.2. CIFIT Plot File.

\(d2\) (s)	Observed M1	Observed M2	Fit M1	Fit M2	\(\sigma\)M1	\(\sigma\)M2
0.001	0.1638	0.7203	0.1478	0.7072	0.016	0.0131
0.002	0.1756	0.7106	0.1611	0.6978	0.0145	0.0128
0.003	0.1869	0.7015	0.1823	0.696	0.0046	0.0055
0.004	0.1978	0.6927	0.1918	0.6893	0.006	0.0035
0.005	0.2082	0.6844	0.2019	0.6832	0.0064	0.0013
0.006	0.2183	0.6765	0.2162	0.6659	0.0021	0.0107
0.007	0.2279	0.669	0.2227	0.6665	0.0052	0.0025
0.008	0.2371	0.6619	0.2397	0.6547	-0.0025	0.0072
0.009	0.246	0.6551	0.2435	0.655	0.0025	0.0001
0.01	0.2546	0.6487	0.2496	0.6476	0.005	0.0011
0.015	0.2926	0.6211	0.2913	0.6172	0.0013	0.0039
0.02	0.3239	0.6001	0.3262	0.5989	-0.0023	0.0011
0.025	0.3499	0.5842	0.3535	0.5859	-0.0036	-0.0017
0.03	0.3716	0.5724	0.3778	0.574	-0.0061	-0.0015
0.035	0.3899	0.564	0.3909	0.5671	-0.001	-0.0031
0.04	0.4055	0.5582	0.415	0.5677	-0.0096	-0.0095
0.045	0.4188	0.5545	0.4257	0.5626	-0.0069	-0.0081
0.05	0.4304	0.5524	0.4361	0.558	-0.0057	-0.0056
0.06	0.4495	0.552	0.4538	0.5633	-0.0043	-0.0113
0.07	0.4649	0.5548	0.4722	0.5628	-0.0073	-0.0079
0.08	0.4778	0.5598	0.4815	0.5773	-0.0037	-0.0175
0.09	0.489	0.566	0.4909	0.5802	-0.0019	-0.0142
0.1	0.4992	0.573	0.5004	0.5783	-0.0011	-0.0053
0.15	0.5419	0.6108	0.5398	0.618	0.0021	-0.0072
0.2	0.5782	0.6469	0.5822	0.6593	-0.0039	-0.0124
0.25	0.6108	0.6797	0.6111	0.6856	-0.0003	-0.0058
0.3	0.6401	0.7093	0.6377	0.7106	0.0024	-0.0013
0.35	0.6666	0.7359	0.664	0.7296	0.0026	0.0064
0.4	0.6904	0.76	0.6853	0.7591	0.0051	0.0008
0.45	0.7119	0.7816	0.7071	0.7811	0.0048	0.0005
0.5	0.7312	0.8011	0.7217	0.7995	0.0095	0.0017
0.6	0.7644	0.8346	0.7647	0.8326	-0.0003	0.002
0.7	0.7914	0.8618	0.7862	0.8588	0.0052	0.0029
0.8	0.8133	0.8839	0.8139	0.8803	-0.0006	0.0036
0.9	0.8311	0.9018	0.8263	0.8972	0.0048	0.0046
1	0.8455	0.9164	0.8442	0.91	0.0013	0.0064
1.5	0.886	0.9572	0.8872	0.9513	-0.0012	0.0058
2	0.9003	0.9716	0.903	0.966	-0.0027	0.0055
2.5	0.9054	0.9767	0.908	0.972	-0.0026	0.0047
3	0.9072	0.9785	0.9154	0.9783	-0.0083	0.0003
4	0.908	0.9794	0.9147	0.9762	-0.0067	0.0031
6	0.9081	0.9795	0.9092	0.9747	-0.0011	0.0048
8	0.9081	0.9795	0.9091	0.977	-0.0009	0.0025
10	0.9081	0.9795	0.9117	0.9791	-0.0036	0.0004
12	0.9081	0.9795	0.9098	0.983	-0.0017	-0.0035
16	0.9081	0.9795	0.9106	0.9822	-0.0025	-0.0027
20	0.9081	0.9795	0.9169	0.9795	-0.0088	0.0
Chart S-IX.2. Plot of Inversion Recovery Data at 0.7 Equivalents (n-Bu)$_4$NCl.

![Inversion Recovery Data Plot](image)

CIFIT Guesses and Fit Parameters

Initial values of parameters:

Parameter Type	Initial Value	Uncertainty
1/T1's		
No. 0	0.8000	
No. 1	0.2300	
M(inf)'s		
No. 2	0.9000	
No. 3	1.0000	
M(0)-M(inf)'s		
No. 4	-1.4000	
No. 5	0.5000	
M(0)'s		
No. 4	-0.5000	
No. 5	1.5000	
Rates		
No. 6	20.0000	

Final Values of Fitted Parameters and Uncertainties:

Parameter	Value	Uncertainty
# 0	2.253219	0.219951
# 1	1.902524	0.227138
# 2	0.908146	0.001750
# 3	0.979502	0.001816
# 4	-0.756649	0.002971
# 5	-0.249115	0.003533
# 6	21.374766	0.656295
3) **Data for 1.1 Equivalents \((n\text{-Bu})_2\text{NCl}\):**

![Figure S-IX.3. Stacked Spectra of Inversion Recovery Data at 1.1 Equivalents \((n\text{-Bu})_2\text{NCl}\).](image)

Table S-IX.3. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2
0.001	0.1353	0.7829	0.1064	0.7566	0.0289	0.0263
0.002	0.151	0.7711	0.1524	0.7745	-0.0013	-0.0034
0.003	0.1661	0.7599	0.1645	0.76	0.0017	-0.0001
0.004	0.1806	0.7494	0.1852	0.747	-0.0046	0.0024
0.005	0.1945	0.7394	0.191	0.7363	0.0035	0.003
0.006	0.2078	0.7299	0.2101	0.733	-0.0023	-0.0031
0.007	0.2206	0.721	0.2287	0.7257	-0.0081	-0.0047
0.008	0.2328	0.7126	0.236	0.7184	-0.0032	-0.0058
0.009	0.2446	0.7047	0.2502	0.711	-0.0056	-0.0063
0.01	0.2559	0.6972	0.2599	0.7029	-0.004	-0.0057
0.015	0.306	0.666	0.3028	0.6578	0.0032	0.0081
0.02	0.3472	0.6433	0.3062	0.6048	0.041	0.0385
0.025	0.3814	0.6272	0.3844	0.6292	-0.003	-0.002
0.03	0.4101	0.6164	0.4209	0.6216	-0.0108	-0.0052
0.035	0.4344	0.6096	0.4309	0.6082	0.0035	0.0014
0.04	0.4552	0.606	0.46	0.6148	-0.0048	-0.0087
0.045	0.4732	0.6049	0.4771	0.6097	-0.0038	-0.0048
0.05	0.4891	0.6056	0.4985	0.6159	-0.0095	-0.0103
0.06	0.5158	0.6112	0.5292	0.6205	-0.0134	-0.0094
0.07	0.5379	0.6202	0.546	0.6252	-0.0081	-0.005
0.08	0.5569	0.6311	0.5632	0.6467	-0.0063	-0.0156
0.09	0.5738	0.6431	0.5695	0.6467	0.0043	-0.0036
0.1	0.5893	0.6555	0.5851	0.6625	0.0041	-0.007
0.15	0.6539	0.7156	0.6564	0.727	-0.0025	-0.0114
0.2	0.7061	0.7673	0.7074	0.7704	-0.0013	-0.0031
0.25	0.7493	0.8105	0.7508	0.8165	-0.0015	-0.0059
0.3	0.7852	0.8465	0.7722	0.8373	0.013	0.0092
0.35	0.8151	0.8764	0.8149	0.8763	0.0002	0.0001
0.4	0.84	0.9013	0.8293	0.8924	0.0107	0.0089
0.45	0.8607	0.922	0.8535	0.9213	0.0073	0.0008
0.5	0.878	0.9392	0.8682	0.9327	0.0097	0.0066
0.6	0.9042	0.9655	0.9154	0.9675	-0.0112	-0.002
0.7	0.9224	0.9837	0.9215	0.9843	0.0009	-0.0006
0.8	0.935	0.9963	0.9282	0.9914	0.0068	0.0049
0.9	0.9437	1.005	0.9485	1.0069	-0.0048	-0.0019
1	0.9497	1.011	0.9283	0.9932	0.0214	0.0179
1.5	0.9611	1.0225	0.9733	1.0286	-0.0122	-0.0061
2	0.9629	1.0243	0.9697	1.027	-0.0068	-0.0027
2.5	0.9632	1.0246	0.9749	1.0363	-0.0116	-0.0117
3	0.9633	1.0246	0.9704	1.0264	-0.0072	-0.0018
4	0.9633	1.0246	0.9689	1.0291	-0.0056	-0.0045
6	0.9633	1.0246	0.9663	1.0146	-0.003	0.01
8	0.9633	1.0246	0.9731	1.0295	-0.0098	-0.0049
10	0.9633	1.0246	0.9444	1.0012	0.0189	0.0234
12	0.9633	1.0246	0.9777	1.0333	-0.0144	-0.0087
16	0.9633	1.0246	0.9807	1.0403	-0.0174	-0.0157
20	0.9633	1.0246	0.944	1.0045	0.0193	0.0202
Chart S-IX.3. Plot of Inversion Recovery Data at 1.1 Equivalents (n-Bu)₄NCl.

![Inversion Recovery Data for 1.1 Equiv. N(Bu)₄Cl](chart.png)

CIFIT Guesses and Fit Parameters

Initial values of parameters:
- $1/T_1$'s:
 - No. 0 = 0.8000
 - No. 1 = 0.2300
- $M(\infty)$'s:
 - No. 2 = 0.9000
 - No. 3 = 1.0000
- M(0)–M(\infty)'s:
 - No. 4 = -1.4000
 - No. 5 = 0.5000
- and M(0)'s for reference:
 - No. 4 = -0.5000
 - No. 5 = 1.5000
- Rates:
 - No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:
- # 0 = 3.685563 +/− 0.443326
- # 1 = 3.669400 +/− 0.488563
- # 2 = 0.963288 +/− 0.002882
- # 3 = 1.024618 +/− 0.003020
- # 4 = -0.844435 +/− 0.005449
- # 5 = -0.229181 +/− 0.006601
- # 6 = 22.238473 +/− 1.172882
4) **Data for 1.5 Equivalents \((n-\text{Bu})_4\text{NCl}\):**

![Stacked Spectra of Inversion Recovery Data at 1.5 Equivalents \((n-\text{Bu})_4\text{NCl}\).](image)

Figure S-IX.4. Stacked Spectra of Inversion Recovery Data at 1.5 Equivalents \((n-\text{Bu})_4\text{NCl}\).

Table S-IX.4. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2
0.001	0.1392	0.8458	0.1378	0.8469	0.0015	-0.0012
0.002	0.1577	0.8335	0.1451	0.8266	0.0127	0.0069
0.003	0.1754	0.8219	0.1702	0.8189	0.0052	0.0031
0.004	0.1924	0.8111	0.1967	0.8071	-0.0043	0.004
0.005	0.2086	0.8009	0.2061	0.8008	0.0026	0
0.006	0.2242	0.7913	0.2165	0.7913	0.0077	0
0.007	0.2392	0.7823	0.2443	0.7789	-0.0051	0.0034
0.008	0.2535	0.7739	0.2548	0.7693	-0.0013	0.0046
0.009	0.2672	0.7661	0.2741	0.7707	-0.0069	-0.0047
0.01	0.2804	0.7587	0.2819	0.7589	-0.0015	-0.0002
0.015	0.3389	0.7288	0.3432	0.7301	-0.0043	-0.0013
0.02	0.3871	0.7083	0.3912	0.7119	-0.0041	-0.0036
0.025	0.4271	0.695	0.4267	0.7011	0.0004	-0.0061
0.03	0.4608	0.6873	0.4569	0.6904	0.0039	-0.0031
0.035	0.4893	0.6838	0.488	0.683	0.0014	0.0008
0.04	0.5139	0.6835	0.5182	0.6913	-0.0043	-0.0078
0.045	0.5354	0.6856	0.5381	0.6838	-0.0027	0.0018
0.05	0.5543	0.6896	0.5605	0.686	-0.0062	0.0036
------	--------	--------	--------	-------	---------	--------
0.06	0.5864	0.7011	0.5864	0.7018	0.0008	-0.0048
0.07	0.6131	0.7154	0.6153	0.7202	-0.0022	-0.0048
0.08	0.6361	0.7311	0.6276	0.7318	0.0084	-0.0008
0.09	0.6564	0.7476	0.6564	0.7538	0.0069	-0.0068
0.1	0.6748	0.7628	0.6708	0.7636	0.0039	-0.0007
0.15	0.7479	0.8329	0.75	0.8365	-0.0021	-0.0036
0.2	0.8007	0.8861	0.7983	0.8835	0.0024	0.0025
0.25	0.8397	0.9255	0.8365	0.9227	0.0032	0.0027
0.3	0.8685	0.9546	0.8607	0.953	0.0078	0.0117
0.35	0.8898	0.9762	0.8813	0.9721	0.0085	0.0042
0.4	0.9056	0.9922	0.9144	0.9919	-0.0088	0.0003
0.45	0.9173	1.004	0.9186	0.9982	-0.0013	0.0058
0.5	0.9259	1.0128	0.9304	1.0103	-0.0044	0.0025
0.6	0.9371	1.024	0.9381	1.0217	-0.0011	0.0024
0.7	0.9432	1.0302	0.9487	1.0361	-0.0056	-0.0059
0.8	0.9465	1.0336	0.9501	1.0343	-0.0036	-0.0007
0.9	0.9483	1.0354	0.9522	1.0387	-0.0039	-0.0033
1	0.9493	1.0364	0.9528	1.0353	-0.0035	0.0011
1.5	0.9505	1.0376	0.9548	1.0463	-0.0043	-0.0087
2	0.9505	1.0377	0.9474	1.0236	0.0032	0.0141
2.5	0.9505	1.0377	0.9509	1.0331	-0.0003	0.0045
3	0.9505	1.0377	0.9532	1.0405	-0.0027	-0.0028
4	0.9505	1.0377	0.9472	1.0374	0.0034	0.0003
6	0.9505	1.0377	0.9584	1.042	-0.0079	-0.0043
8	0.9505	1.0377	0.9467	1.0419	0.0039	-0.0043
10	0.9505	1.0377	0.9498	1.0334	0.0008	0.0042
12	0.9505	1.0377	0.9457	1.0351	0.0049	0.0026
16	0.9505	1.0377	0.9469	1.0341	0.0037	0.0036
20	0.9505	1.0377	0.9474	1.0429	0.0031	-0.0052
Chart S-IX.4. Plot of Inversion Recovery Data at 1.5 Equivalents \((n\text{-Bu})_4\text{NCl}\).

CIFIT Guesses and Fit Parameters

Initial values of parameters:

1/T1's

No. 0 = 0.8000

No. 1 = 0.2300

M(\text{inf})'s

No. 2 = 0.9000

No. 3 = 1.0000

M(0)−M(\text{inf})'s

No. 4 = −1.4000

No. 5 = 0.5000

and M(0)'s for reference

No. 4 = −0.5000

No. 5 = 1.5000

Rates

No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

#	Value	Uncertainty
0	6.288211	±0.223150
1	5.761302	±0.266559
2	0.950538	±0.001076
3	1.037666	±0.001136
4	−0.830596	±0.002272
5	−0.178808	±0.002763
6	22.257770	±0.514013
5) Data for 2.0 Equivalents \((n{-}Bu)_2\text{NCl}\):

![Stacked Spectra of Inversion Recovery Data at 2.0 Equivalents \((n{-}Bu)_2\text{NCl}\)](image)

Figure S-IX.5. Stacked Spectra of Inversion Recovery Data at 2.0 Equivalents \((n{-}Bu)_2\text{NCl}\).

Table S-IX.5. CIFIT Plot File.

\(d_2\) (s)	Observed M1	Observed M2	Fit M1	Fit M2	\(\sigma\)M1	\(\sigma\)M2
0.001	0.3691	0.8144	0.3623	0.8105	0.0068	0.0038
0.002	0.3836	0.8067	0.3672	0.7953	0.0165	0.0114
0.003	0.3976	0.7995	0.4004	0.8041	-0.0028	-0.0047
0.004	0.4111	0.7927	0.4122	0.7912	-0.0011	0.0015
0.005	0.424	0.7865	0.4243	0.7848	-0.0003	0.0017
0.006	0.4365	0.7807	0.442	0.7865	-0.0055	-0.0058
0.007	0.4485	0.7752	0.4452	0.7722	0.0033	0.003
0.008	0.46	0.7702	0.4622	0.7708	-0.0021	-0.0006
0.009	0.4711	0.7656	0.476	0.7712	-0.0048	-0.0056
0.01	0.4819	0.7613	0.4851	0.7561	-0.0033	0.0051
0.015	0.5299	0.7445	0.5356	0.7417	-0.0056	0.0028
0.02	0.5703	0.7342	0.5649	0.7308	0.0054	0.0034
0.025	0.6045	0.7288	0.601	0.7368	0.0035	-0.008
0.03	0.6338	0.7271	0.6414	0.733	-0.0076	-0.0059
0.035	0.6592	0.7282	0.6609	0.7332	-0.0018	-0.005
0.04	0.6813	0.7314	0.6867	0.7346	-0.0054	-0.0032
0.045	0.7009	0.7362	0.7027	0.7303	-0.0019	0.0059
t	r(t)	g(t)	r(t)	g(t)	r(t)	g(t)
----	--------	--------	-------	-------	-------	-------
0.05	0.7183	0.742	0.7255	0.7464	-0.0072	-0.0044
0.06	0.7483	0.7558	0.7438	0.7604	0.0045	-0.0046
0.07	0.7733	0.7709	0.7663	0.7741	0.007	-0.0031
0.08	0.7948	0.7863	0.7924	0.7851	0.0024	0.0013
0.09	0.8136	0.8014	0.8097	0.8043	0.0039	-0.003
0.1	0.8303	0.8157	0.83	0.8175	0.0003	-0.0018
0.15	0.8926	0.8744	0.8921	0.8704	0.0004	0.004
0.2	0.9322	0.9135	0.9243	0.9104	0.0079	0.0031
0.25	0.9579	0.939	0.954	0.9287	0.0039	0.0103
0.3	0.9747	0.9556	0.9736	0.9501	0.0011	0.0056
0.35	0.9856	0.9664	0.9929	0.9727	-0.0073	-0.0062
0.4	0.9927	0.9735	0.9908	0.9746	0.0019	-0.0011
0.45	0.9973	0.9781	1.0027	0.98	-0.0054	-0.002
0.5	1.0003	0.9811	1.0049	0.9864	-0.0046	-0.0053
0.6	1.0035	0.9843	1.004	0.9859	-0.0005	-0.0016
0.7	1.0049	0.9856	1.0136	0.9928	-0.0087	-0.0072
0.8	1.0055	0.9862	0.998	0.9851	0.0075	0.0011
0.9	1.0057	0.9865	1.0078	0.9797	-0.0021	0.0067
1	1.0058	0.9866	1.0019	0.9833	0.0039	0.0032
1.5	1.0059	0.9866	1.006	0.9818	-0.0001	0.0048
2	1.0059	0.9866	1.0118	0.9909	-0.0059	-0.0043
2.5	1.0059	0.9866	1.0074	0.987	-0.0015	-0.0003
3	1.0059	0.9866	1.0059	0.9903	0	-0.0037
4	1.0059	0.9866	1.0048	0.9851	0.0011	0.0015
6	1.0059	0.9866	1.0063	0.9865	-0.0004	0.0002
8	1.0059	0.9866	0.9969	0.9811	0.009	0.0056
10	1.0059	0.9866	1.0124	0.9903	-0.0066	-0.0037
12	1.0059	0.9866	1.0007	0.9795	0.0052	0.0071
16	1.0059	0.9866	1.0011	0.9878	0.0048	-0.0011
20	1.0059	0.9866	1.0137	0.9876	-0.0078	-0.0009
Chart S-IX.5. Plot of Inversion Recovery Data at 2.0 Equivalents \((n-\text{Bu})_4\text{NCl}\).

CIFIT Guesses and Fit Parameters

Initial values of parameters:
- 1/T1's
 - No. 0 = 0.8000
 - No. 1 = 0.2300
- M(\text{inf})'s
 - No. 2 = 0.9000
 - No. 3 = 1.0000
- M(0)–M(\text{inf})'s
 - No. 4 = -1.4000
 - No. 5 = 0.5000
 - and M(0)'s for reference
 - No. 4 = -0.5000
 - No. 5 = 1.5000
- Rates
 - No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:
- # 0 = 8.441348 +/- 0.364276
- # 1 = 8.730979 +/- 0.482589
- # 2 = 1.005886 +/- 0.001133
- # 3 = 0.986632 +/- 0.001185
- # 4 = -0.651955 +/- 0.002527
- # 5 = -0.164032 +/- 0.003049
- # 6 = 20.394057 +/- 0.832915
6) Data for 6 Equivalents LiCl:

![Stacked Spectra of Inversion Recovery Data at 6 Equivalents LiCl.](image)

Figure S-IX.6. Stacked Spectra of Inversion Recovery Data at 6 Equivalents LiCl.

Table S-IX.6. CIFT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2	
0.001	-0.3495	0.8316	-0.3649	0.8199	0.0154	0.0117	
0.002	-0.3239	0.8068	-0.3343	0.7999	0.0104	0.0068	
0.003	-0.2994	0.7831	-0.3082	0.7751	0.0087	0.008	
0.004	-0.2761	0.7606	-0.2817	0.7563	0.0055	0.0042	
0.005	-0.2539	0.7391	-0.2619	0.7329	0.008	0.0062	
0.006	-0.2326	0.7186	-0.2369	0.7128	0.0043	0.0058	
0.007	-0.2123	0.6991	-0.2189	0.6898	0.0066	0.0092	
0.008	-0.193	0.6805	-0.1977	0.6748	0.0048	0.0057	
0.009	-0.1745	0.6627	-0.1785	0.6557	0.004	0.0071	
0.01	-0.1568	0.6458	-0.159	0.6409	0.0022	0.0049	
0.015	-0.0797	0.5725	-0.079	0.5695	-0.0008	0.003	
0.02	-0.0185	0.515	-0.0162	0.5135	-0.0022	0.0015	
0.025	0.0303	0.4699	0.0325	0.4693	-0.0022	0.0006	
0.03	0.0692	0.4347	0.0721	0.4357	-0.0028	-0.001	
0.035	0.1004	0.4073	0.1043	0.4097	-0.0039	-0.0025	
0.04	0.1253	0.3859	0.1292	0.3904	-0.0038	-0.0045	
0.045	0.1454	0.3695	0.1474	0.3757	-0.0019	-0.0062	
0.05	0.1617	0.3569	0.1641	0.3623	-0.0023	-0.0055	
---	------	------	------	------	------	------	------
0.055	0.1749	0.3473	0.1765	0.3529	-0.0016	-0.0056	
0.06	0.1857	0.3401	0.1875	0.3464	-0.0018	-0.0063	
0.065	0.1947	0.3347	0.1973	0.342	-0.0027	-0.0072	
0.07	0.2021	0.3309	0.205	0.3402	-0.0029	-0.0093	
0.075	0.2083	0.3283	0.2109	0.3339	-0.0025	-0.0057	
0.08	0.2136	0.3265	0.217	0.3356	-0.0033	-0.0091	
0.09	0.2221	0.3251	0.2245	0.3345	-0.0023	-0.0094	
0.1	0.2288	0.3256	0.2298	0.3333	-0.001	-0.0077	
0.15	0.2508	0.3383	0.251	0.3478	-0.0002	-0.0095	
0.2	0.2682	0.3548	0.2694	0.3647	-0.0012	-0.0099	
0.25	0.2848	0.3714	0.2858	0.3801	-0.001	-0.0088	
0.3	0.3009	0.3875	0.3019	0.3958	-0.001	-0.0083	
0.35	0.3167	0.4032	0.3185	0.4091	-0.0018	-0.0059	
0.4	0.332	0.4186	0.3333	0.4256	-0.0014	-0.007	
0.45	0.3469	0.4336	0.347	0.4394	-0.0001	-0.0058	
0.5	0.3615	0.4482	0.3592	0.4495	0.0024	-0.0013	
0.6	0.3896	0.4763	0.3868	0.4789	0.0028	-0.0026	
0.7	0.4163	0.503	0.4132	0.5028	0.0031	0.0002	
0.8	0.4417	0.5284	0.4366	0.527	0.0051	0.0015	
0.9	0.4658	0.5526	0.4633	0.5504	0.0025	0.0021	
1	0.4888	0.5756	0.4829	0.5707	0.0058	0.0049	
1.5	0.5877	0.6746	0.5821	0.6692	0.0056	0.0054	
2	0.6646	0.7515	0.6628	0.7442	0.0018	0.0073	
2.5	0.7243	0.8114	0.7272	0.8094	-0.0029	0.002	
3	0.7707	0.8579	0.7732	0.8531	-0.0025	0.0047	
4	0.8349	0.9221	0.847	0.9237	-0.0121	-0.0017	
6	0.8971	0.9843	0.9065	0.9833	-0.0095	0.001	
8	0.9197	1.007	0.9226	0.9999	-0.0029	0.0072	
10	0.928	1.0153	0.9313	1.0043	-0.0032	0.011	
12	0.931	1.0183	0.9355	1.0093	-0.0044	0.009	
16	0.9326	1.0198	0.9381	1.0124	-0.0056	0.0075	
20	0.9328	1.02	0.9439	1.018	-0.0112	0.002	

69
Chart S-IX.6. Plot of Inversion Recovery Data at 6 Equivalents LiCl.

CIFIT Guesses and Fit Parameters

Initial values of parameters:	Final Values of Fitted Parameters and Uncertainties:
1/T1's	
No. 0 = 0.8000 No. 1 = 0.2300	# 0 = 0.530935 +/- 0.112951
M(inf)'s	# 1 = 0.477127 +/- 0.114632
No. 2 = 0.9000 No. 3 = 1.0000	# 2 = 0.932782 +/- 0.002180
M(0)-M(inf)'s	# 3 = 1.020079 +/- 0.002294
No. 4 = -1.4000 No. 5 = 0.5000	# 4 = -1.309037 +/- 0.002993
and M(0)'s for reference	# 5 = -0.162456 +/- 0.003797
No. 4 = -0.5000 No. 5 = 1.5000	# 6 = 23.315415 +/- 0.250699
Rates	
No. 6 = 20.0000	
7) Data for 12 Equivalents LiCl:

![Figure S-IX.7. Stacked Spectra of Inversion Recovery Data at 12 Equivalents LiCl.](image)

Table S-IX.7. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2	
0.001	-0.2804	0.8935	-0.2947	0.8817	0.0143	0.0117	
0.002	-0.2562	0.8705	-0.268	0.8617	0.0118	0.0088	
0.003	-0.2331	0.8487	-0.2424	0.8416	0.0093	0.007	
0.004	-0.211	0.8278	-0.2179	0.824	0.0069	0.0039	
0.005	-0.1899	0.8079	-0.1924	0.8033	0.0025	0.0047	
0.006	-0.1698	0.789	-0.1728	0.7868	0.003	0.0022	
0.007	-0.1506	0.7709	-0.154	0.7651	0.0034	0.0058	
0.008	-0.1322	0.7537	-0.1334	0.7506	0.0012	0.0031	
0.009	-0.1147	0.7373	-0.1157	0.7335	0.001	0.0038	
0.01	-0.0979	0.7216	-0.0985	0.7183	0.0006	0.0033	
0.015	-0.0247	0.6537	-0.0223	0.6513	-0.0024	0.0023	
0.02	0.0336	0.6003	0.0364	0.6008	-0.0029	-0.0006	
0.025	0.08	0.5584	0.0806	0.5547	-0.0006	0.0037	
0.03	0.1172	0.5256	0.1175	0.5232	-0.0003	0.0024	
0.035	0.1469	0.5	0.1484	0.5018	-0.0014	-0.0018	
0.04	0.1708	0.4802	0.1708	0.4817	0	-0.0016	
0.045	0.1901	0.4648	0.1906	0.4666	-0.0005	-0.0018	
0.05	0.2057	0.453	0.208	0.458	-0.0023	-0.005	
	0.055	0.2184	0.444	0.2181	0.4484	0.0003	-0.0043
-------	-------	--------	--------	--------	--------	--------	---------
0.06	0.2288	0.4373	0.2299	0.4419	-0.0011	-0.0046	
0.065	0.2374	0.4323	0.2371	0.4379	0.0003	-0.0055	
0.07	0.2445	0.4288	0.2442	0.4356	0.0003	-0.0068	
0.075	0.2505	0.4263	0.2499	0.4316	0.0006	-0.0053	
0.08	0.2556	0.4247	0.2563	0.4323	-0.0007	-0.0076	
0.09	0.2638	0.4234	0.2655	0.432	-0.0017	-0.0086	
0.1	0.2702	0.4239	0.273	0.4326	-0.0029	-0.0087	
0.15	0.2912	0.4363	0.2926	0.4431	-0.0014	-0.0068	
0.2	0.3077	0.4523	0.3109	0.4589	-0.0032	-0.0066	
0.25	0.3233	0.4682	0.3243	0.4735	-0.001	-0.0053	
0.3	0.3385	0.4838	0.3382	0.4906	0.0003	-0.0069	
0.35	0.3533	0.4989	0.3564	0.5058	-0.0031	-0.0069	
0.4	0.3677	0.5137	0.3675	0.5195	0.0001	-0.0059	
0.45	0.3817	0.528	0.382	0.532	-0.0003	-0.004	
0.5	0.3953	0.542	0.3965	0.5475	-0.0012	-0.0055	
0.6	0.4215	0.5688	0.4212	0.5724	0.0003	-0.0036	
0.7	0.4463	0.5942	0.4452	0.5973	0.001	-0.0031	
0.8	0.4697	0.6182	0.4679	0.6181	0.0018	0.0001	
0.9	0.492	0.641	0.4892	0.6418	0.0028	-0.0008	
1	0.5131	0.6626	0.5099	0.6618	0.0032	0.0008	
1.5	0.6029	0.7547	0.6009	0.7512	0.002	0.0035	
2	0.6715	0.8249	0.6707	0.8207	0.0007	0.0042	
2.5	0.7238	0.8785	0.7252	0.8731	-0.0014	0.0054	
3	0.7637	0.9194	0.7639	0.9137	-0.0002	0.0057	
4	0.8174	0.9744	0.8181	0.9662	-0.0007	0.0082	
6	0.8668	1.025	0.8715	1.0186	-0.0047	0.0065	
8	0.8836	1.0422	0.8859	1.0354	-0.0023	0.0068	
10	0.8893	1.048	0.8942	1.0436	-0.005	0.0044	
12	0.8912	1.05	0.8983	1.0422	-0.0071	0.0078	
16	0.8921	1.0509	0.9014	1.0486	-0.0093	0.0023	
20	0.8922	1.051	0.9022	1.052	-0.0101	-0.001	
Chart S-IX.7. Plot of Inversion Recovery Data at 12 Equivalents LiCl.

![Inversion Recovery Data for 12 Equiv. LiCl](chart.png)

CIFIT Guesses and Fit Parameters

Initial values of parameters:

- $1/T_1$'s
 - No. 0 = 0.8000
 - No. 1 = 0.2300

- M(∞)'s
 - No. 2 = 0.9000
 - No. 3 = 1.0000

- M(0)–M(∞)'s
 - No. 4 = -1.4000
 - No. 5 = 0.5000

And M(0)'s for reference

- No. 4 = -0.5000
- No. 5 = 1.5000

Rates

- No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

#	Value	Uncertainty
0	1.106666	±0.103311
1	-0.011124	±0.100364
2	0.892200	±0.001773
3	1.051018	±0.001881
4	-1.197991	±0.002480
5	-0.133519	±0.003141
6	23.126912	±0.221502
8) **Data for 24 Equivalents LiCl:**

![Stacked Spectra](image)

Figure S-IX.8. Stacked Spectra of Inversion Recovery Data at 24 Equivalents LiCl.

Table S-IX.8. CIFIT Plot File.

d2	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2
(s)						
0.001	-0.219	0.9198	-0.2408	0.9027	0.0218	0.017
0.002	-0.1956	0.8975	-0.2137	0.885	0.018	0.0124
0.003	-0.1733	0.8762	-0.1917	0.8645	0.0184	0.0116
0.004	-0.152	0.8558	-0.163	0.8454	0.011	0.0104
0.005	-0.1316	0.8364	-0.1434	0.8257	0.0118	0.0108
0.006	-0.1121	0.8179	-0.1183	0.8095	0.0062	0.0084
0.007	-0.0935	0.8003	-0.0991	0.7915	0.0057	0.0087
0.008	-0.0756	0.7834	-0.0781	0.7765	0.0024	0.0069
0.009	-0.0586	0.7673	-0.06	0.7595	0.0014	0.0079
0.01	-0.0423	0.752	-0.0425	0.7453	0.0002	0.0067
0.015	0.029	0.6852	0.0303	0.6822	-0.0013	0.003
0.02	0.0861	0.6325	0.0905	0.6313	-0.0044	0.0011
0.025	0.1318	0.5909	0.1354	0.5904	-0.0035	0.0005
0.03	0.1685	0.5582	0.1717	0.5603	-0.0031	-0.002
0.035	0.1981	0.5326	0.2013	0.5347	-0.0033	-0.0021
0.04	0.2219	0.5126	0.2259	0.518	-0.004	-0.0054
0.045	0.2412	0.497	0.244	0.5044	-0.0028	-0.0074
0.05	0.2569	0.485	0.2606	0.4923	-0.0037	-0.0073
---	---	---	---	---	---	---
0.055	0.2698	0.4759	0.2752	0.4842	-0.0054	-0.0083
0.06	0.2803	0.4689	0.2827	0.4788	-0.0024	-0.0099
0.065	0.289	0.4637	0.294	0.4764	-0.005	-0.0126
0.07	0.2963	0.46	0.2994	0.4717	-0.003	-0.0117
0.075	0.3025	0.4573	0.3073	0.473	-0.0048	-0.0157
0.08	0.3077	0.4556	0.3114	0.4688	-0.0037	-0.0132
0.09	0.3162	0.4541	0.3194	0.4665	-0.0033	-0.0124
0.1	0.3227	0.4544	0.3251	0.4672	-0.0023	-0.0128
0.15	0.3443	0.4664	0.3441	0.4803	0.0002	-0.0139
0.2	0.3609	0.4823	0.3632	0.4939	-0.0023	-0.0116
0.25	0.3767	0.4982	0.3771	0.5086	-0.0004	-0.0104
0.3	0.3919	0.5137	0.3904	0.522	0.0015	-0.0083
0.35	0.4068	0.5287	0.4042	0.5376	0.0025	-0.0089
0.4	0.4212	0.5433	0.419	0.551	0.0022	-0.0077
0.45	0.4352	0.5575	0.4327	0.5641	0.0025	-0.0065
0.5	0.4488	0.5713	0.4457	0.5757	0.0031	-0.0044
0.6	0.4749	0.5978	0.4692	0.6014	0.0057	-0.0036
0.7	0.4995	0.6228	0.4939	0.6234	0.0056	-0.0006
0.8	0.5228	0.6464	0.5195	0.6468	0.0033	-0.0004
0.9	0.5448	0.6687	0.5392	0.6675	0.0056	0.0012
1	0.5655	0.6897	0.5583	0.6866	0.0072	0.0031
1.5	0.6533	0.7787	0.65	0.7721	0.0033	0.0066
2	0.7192	0.8456	0.719	0.839	0.0002	0.0065
2.5	0.7687	0.8958	0.7729	0.8905	-0.0041	0.0053
3	0.806	0.9336	0.8103	0.9253	-0.0043	0.0083
4	0.855	0.9833	0.8637	0.9801	-0.0087	0.0032
6	0.8983	1.0272	0.9115	1.0217	-0.0132	0.0055
8	0.9121	1.0412	0.9233	1.033	-0.0102	0.0082
10	0.9165	1.0457	0.9238	1.0304	-0.0073	0.0153
12	0.9179	1.0471	0.927	1.0355	-0.0091	0.0116
16	0.9185	1.0477	0.9302	1.0384	-0.0117	0.0093
20	0.9186	1.0478	0.9311	1.0404	-0.0125	0.0074
Chart S-IX.8. Plot of Inversion Recovery Data at 24 Equivalents LiCl.

![Inversion Recovery Data for 24 Equiv. LiCl](image)

CIFIT Guesses and Fit Parameters

Initial values of parameters:

1/T1's
- No. 0 = 0.8000
- No. 1 = 0.2300

M(inf)'s
- No. 2 = 0.9000
- No. 3 = 1.0000

M(0)–M(inf)'s
- No. 4 = -1.4000
- No. 5 = 0.5000

and M(0)'s for reference
- No. 4 = -0.5000
- No. 5 = 1.5000

Rates
- No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

		±	
0	0.894	0.178	0.179
1	0.253	0.177	0.177
2	0.919	0.003	0.003
3	1.048	0.003	0.003
4	-1.162	0.004	0.004
5	-0.105	0.005	0.005
6	22.650	0.372	0.372
9) **Data for 48 Equivalents LiCl:**

![Stacked Spectra of Inversion Recovery Data at 48 Equivalents LiCl.](image)

Figure S–IX.9. Stacked Spectra of Inversion Recovery Data at 48 Equivalents LiCl.

Table S–IX.9. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2
0.001	-0.272	0.9168	-0.2888	0.9072	0.0168	0.0096
0.002	-0.2492	0.8953	-0.2633	0.8838	0.0141	0.0115
0.003	-0.2274	0.8748	-0.2389	0.866	0.0115	0.0088
0.004	-0.2065	0.8552	-0.2151	0.8474	0.0086	0.0078
0.005	-0.1864	0.8364	-0.1928	0.8293	0.0064	0.0072
0.006	-0.1671	0.8184	-0.1744	0.8114	0.0072	0.0071
0.007	-0.1487	0.8012	-0.1534	0.7953	0.0047	0.0059
0.008	-0.131	0.7847	-0.1339	0.7792	0.0029	0.0055
0.009	-0.114	0.7689	-0.114	0.7642	0	0.0048
0.01	-0.0977	0.7538	-0.0974	0.7485	-0.0004	0.0053
0.015	-0.0258	0.6874	-0.0246	0.6813	-0.0013	0.0061
0.02	0.0325	0.6341	0.0327	0.6297	-0.0002	0.0044
0.025	0.08	0.5914	0.0805	0.592	-0.0005	-0.0006
0.03	0.1187	0.5572	0.1201	0.5564	-0.0015	0.0008
0.035	0.1502	0.5299	0.1519	0.5284	-0.0018	0.0015
0.04	0.1759	0.5082	0.1783	0.5092	-0.0024	-0.0011
0.045	0.1971	0.4909	0.1985	0.4964	-0.0015	-0.0054
0.05	0.2144	0.4773	0.2151	0.4825	-0.0007	-0.0052

77
0.055	0.2287	0.4667	0.2324	0.4716	-0.0037	-0.005
0.06	0.2406	0.4584	0.2422	0.4655	-0.0016	-0.0071
0.065	0.2505	0.452	0.2502	0.4579	0.0003	-0.0059
0.07	0.2588	0.4471	0.2598	0.4546	-0.0009	-0.0074
0.075	0.2658	0.4435	0.2657	0.4509	0.0001	-0.0074
0.08	0.2718	0.4409	0.2735	0.452	-0.0017	-0.0111
0.09	0.2813	0.438	0.2834	0.4484	-0.0021	-0.0104
0.1	0.2886	0.4372	0.2883	0.4486	0.0003	-0.0114
0.15	0.311	0.4466	0.3119	0.457	-0.0009	-0.0105
0.2	0.327	0.4614	0.3292	0.4735	-0.0023	-0.0121
0.25	0.3418	0.4765	0.343	0.487	-0.0012	-0.0105
0.3	0.3561	0.4912	0.3568	0.5	-0.0007	-0.0088
0.35	0.3701	0.5057	0.3723	0.5147	-0.0022	-0.009
0.4	0.3837	0.5197	0.3836	0.5288	0.0002	-0.009
0.45	0.397	0.5334	0.398	0.5394	-0.001	-0.006
0.5	0.4099	0.5467	0.41	0.5542	-0.0001	-0.0075
0.6	0.4348	0.5724	0.4339	0.5777	0.0009	-0.0053
0.7	0.4584	0.5968	0.46	0.6011	-0.0016	-0.0044
0.8	0.4808	0.6199	0.4793	0.6222	0.0015	-0.0023
0.9	0.5021	0.6419	0.4997	0.642	0.0024	-0.0001
1	0.5223	0.6627	0.5204	0.6628	0.0019	-0.0001
1.5	0.609	0.7521	0.605	0.7485	0.004	0.0037
2	0.6759	0.8211	0.6723	0.8146	0.0036	0.0066
2.5	0.7274	0.8744	0.725	0.8655	0.0024	0.0089
3	0.7672	0.9154	0.767	0.9063	0.0002	0.0091
4	0.8216	0.9715	0.824	0.9624	-0.0024	0.0092
6	0.8732	1.0247	0.8802	1.0162	-0.007	0.0085
8	0.8915	1.0436	0.8986	1.0372	-0.0071	0.0064
10	0.8979	1.0503	0.9093	1.0453	-0.0114	0.005
12	0.9002	1.0526	0.909	1.0446	-0.0088	0.008
16	0.9013	1.0538	0.9119	1.0464	-0.0106	0.0074
20	0.9014	1.0539	0.9139	1.049	-0.0125	0.0049
Chart S-IX.9. Plot of Inversion Recovery Data at 48 Equivalents LiCl.

CIFIT Guesses and Fit Parameters

Initial values of parameters:
1/T1's
No. 0 = 0.8000 No. 1 = 0.2300

M(inf)'s
No. 2 = 0.9000 No. 3 = 1.0000

M(0)-M(inf)'s
No. 4 = -1.4000 No. 5 = 0.5000
and M(0)'s for reference
No. 4 = -0.5000 No. 5 = 1.5000
Rates
No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

#	Value	Uncertainty
0	0.894011	+/−0.178277
1	0.253202	+/−0.177138
2	0.918561	+/−0.002971
3	1.047780	+/−0.003142
4	-1.161982	+/−0.004162
5	-0.104642	+/−0.005296
6	22.650877	+/−0.371693
X. Inversion Recovery Data for Section VI (Tl(OTf) Addition)

1) Data 1 h after addition of 2 equiv. Tl(OTf):

![Stacked Spectra of Inversion Recovery Data 1 h After Tl(OTf) Addition.](image)

Figure S–X.1. Stacked Spectra of Inversion Recovery Data 1 h After Tl(OTf) Addition.

Table S–X.1. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2	
0.001	-0.0773	0.7513	-0.0894	0.7429	0.0121	0.0084	
0.002	-0.0608	0.7358	-0.0611	0.7359	0.0003	-0.0001	
0.003	-0.0451	0.721	-0.0489	0.7187	0.0038	0.0023	
0.004	-0.0301	0.7069	-0.0346	0.7059	0.0045	0.001	
0.005	-0.0157	0.6935	-0.0182	0.6914	0.0025	0.002	
0.006	-0.002	0.6806	-0.0068	0.6792	0.0047	0.0015	
0.007	0.0111	0.6684	0.0101	0.665	0.001	0.0034	
0.008	0.0236	0.6568	0.0194	0.6437	0.0042	0.0131	
0.009	0.0355	0.6457	0.0321	0.6384	0.0034	0.0072	
0.01	0.0469	0.6351	0.0413	0.6313	0.0056	0.0038	
0.015	0.0968	0.5892	0.0936	0.581	0.0032	0.0083	
0.02	0.1366	0.5532	0.1425	0.5531	-0.0058	0.0001	
0.025	0.1684	0.525	0.1697	0.5258	-0.0013	-0.0008	
0.03	0.1939	0.503	0.1927	0.5052	0.0012	-0.0022	
0.035	0.2144	0.4859	0.2156	0.4909	-0.0012	-0.0049	
0.04	0.2309	0.4727	0.2313	0.4662	-0.0004	0.0066	
Value	0.045	0.2443	0.4625	0.2375	0.4612	0.0067	0.0014
-------	-------	--------	--------	--------	--------	--------	--------
Value	0.05	0.2551	0.4548	0.2582	0.465	-0.0031	-0.0102
Value	0.06	0.2714	0.4447	0.2743	0.4526	-0.0029	-0.0079
Value	0.07	0.2827	0.4394	0.2845	0.4504	-0.0019	-0.011
Value	0.08	0.2908	0.4372	0.2915	0.4428	-0.0007	-0.0056
Value	0.09	0.2969	0.4369	0.3075	0.4435	-0.0106	-0.0065
Value	0.1	0.3018	0.4378	0.3051	0.4463	-0.0033	-0.0085
Value	0.15	0.3189	0.449	0.3272	0.4594	-0.0083	-0.0104
Value	0.2	0.3328	0.4626	0.3358	0.4668	-0.003	-0.0041
Value	0.25	0.3461	0.4761	0.3399	0.4778	0.0062	-0.0016
Value	0.3	0.359	0.4893	0.3565	0.4988	0.0025	-0.0095
Value	0.35	0.3716	0.5022	0.3721	0.5047	-0.0006	-0.0026
Value	0.4	0.3838	0.5147	0.3856	0.5242	-0.0018	-0.0095
Value	0.45	0.3957	0.5269	0.3915	0.5238	0.0042	0.0031
Value	0.5	0.4073	0.5387	0.4066	0.54	0.0008	-0.0013
Value	0.6	0.4297	0.5615	0.4315	0.5615	-0.0018	0.0001
Value	0.7	0.4509	0.5832	0.4543	0.5862	-0.0034	-0.003
Value	0.8	0.471	0.6037	0.4682	0.6037	0.0027	0.0001
Value	0.9	0.49	0.6232	0.4964	0.6245	-0.0064	-0.0013
Value	1	0.5081	0.6417	0.4995	0.6324	0.0086	0.0093
Value	1.5	0.5855	0.7208	0.583	0.7178	0.0025	0.003
Value	2	0.645	0.7815	0.6428	0.7769	0.0022	0.0046
Value	2.5	0.6907	0.8282	0.6879	0.8223	0.0028	0.0059
Value	3	0.7258	0.8641	0.7356	0.8631	-0.0098	0.001
Value	4	0.7735	0.9128	0.7758	0.9142	-0.0023	-0.0014
Value	6	0.8182	0.9585	0.8232	0.957	-0.0049	0.0015
Value	8	0.8338	0.9744	0.8292	0.972	0.0046	0.0025
Value	10	0.8393	0.98	0.8368	0.9761	0.0025	0.0039
Value	12	0.8412	0.9819	0.8472	0.9758	-0.0061	0.0061
Value	16	0.8421	0.9828	0.8491	0.9839	-0.007	-0.0011
Value	20	0.8422	0.983	0.8485	0.9794	-0.0063	0.0036
Chart S-X.1. Plot of Inversion Recovery Data 1 h After TlOTf Addition.

CIFIT Guesses and Fit Parameters

Initial values of parameters:

1/T1's
No. 0 = 0.8000 No. 1 = 0.2300

M(\text{inf})'s
No. 2 = 0.9000 No. 3 = 1.0000

M(0)−M(\text{inf})'s
No. 4 = -1.4000 No. 5 = 0.5000

and M(0)'s for reference
No. 4 = -0.5000 No. 5 = 1.5000

Rates
No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

0 = 1.027168 +/- 0.142993
1 = 0.037824 +/- 0.139149
2 = 0.842176 +/- 0.001980
3 = 0.982968 +/- 0.002091
4 = -0.936670 +/- 0.002771
5 = -0.215392 +/- 0.003395
6 = 23.109811 +/- 0.361239
Data 4 d after addition of 2 equiv. of Tl(OTf):

Figure S-X.2. Stacked Spectra of Inversion Recovery Data 4 d After Tl(OTf) Addition.

Table S-X.2. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2	
0.001	0.4471	0.7782	0.4416	0.7739	0.0054	0.0043	
0.002	0.452	0.7733	0.4498	0.7713	0.0022	0.002	
0.003	0.4567	0.7687	0.454	0.7677	0.0027	0.0009	
0.004	0.4612	0.7642	0.46	0.7628	0.0012	0.0015	
0.005	0.4655	0.7611	0.4681	0.7611	-0.0026	-0.0011	
0.006	0.4696	0.756	0.4669	0.754	0.0027	0.002	
0.007	0.4735	0.7522	0.4776	0.7539	-0.0041	-0.0017	
0.008	0.4773	0.7486	0.4778	0.75	-0.0005	-0.0013	
0.009	0.4808	0.7452	0.4823	0.7465	-0.0015	-0.0013	
0.01	0.4842	0.7419	0.489	0.7449	-0.0048	-0.003	
0.015	0.4992	0.7277	0.4975	0.727	0.0017	0.0007	
0.02	0.5111	0.7167	0.5031	0.7108	0.0079	0.0059	
0.025	0.5206	0.7082	0.5201	0.7069	0.0006	0.0013	
0.03	0.5283	0.7016	0.5293	0.7005	-0.001	0.0011	
0.035	0.5345	0.6966	0.5333	0.6948	0.0012	0.0018	
0.04	0.5395	0.6928	0.539	0.6933	0.0006	-0.0005	
0.045	0.5437	0.6899	0.5437	0.6898	-0.0001	0.0001	
0.05	0.5471	0.6878	0.5407	0.6848	0.0064	0.003	
	Value1	Value2	Value3	Value4	Value5	Value6	Value7
---	--------	--------	--------	--------	--------	--------	--------
0.06	0.5523	0.6852	0.5559	0.689	-0.0036	-0.0037	
0.07	0.5561	0.6842	0.5553	0.6843	0.0008	-0.0002	
0.08	0.559	0.684	0.5597	0.6834	-0.0008	0.0007	
0.09	0.5613	0.6845	0.5625	0.6863	-0.0012	-0.0018	
0.1	0.5633	0.6852	0.562	0.6839	0.0013	0.0013	
0.15	0.5712	0.691	0.572	0.6924	-0.0009	-0.0014	
0.2	0.578	0.6975	0.5806	0.6999	-0.0026	-0.0025	
0.25	0.5847	0.7038	0.588	0.7065	-0.0033	-0.0027	
0.3	0.5911	0.7099	0.5907	0.7101	0.0004	-0.0002	
0.35	0.5974	0.7159	0.601	0.7183	-0.0036	-0.0024	
0.4	0.6035	0.7217	0.6047	0.7231	-0.0012	-0.0014	
0.45	0.6094	0.7274	0.6103	0.7286	-0.0009	-0.0013	
0.5	0.6152	0.7328	0.6157	0.7351	-0.0005	-0.0022	
0.6	0.6262	0.7434	0.6273	0.7446	-0.001	-0.0012	
0.7	0.6367	0.7533	0.6383	0.7564	-0.0016	-0.003	
0.8	0.6466	0.7628	0.6512	0.7673	-0.0046	-0.0046	
0.9	0.6559	0.7717	0.6584	0.7734	-0.0025	-0.0018	
1	0.6647	0.7801	0.6626	0.7792	0.0022	0.0009	
1.5	0.7022	0.8158	0.6983	0.8127	0.0039	0.003	
2	0.7304	0.8427	0.7244	0.8393	0.0061	0.0034	
2.5	0.7518	0.8631	0.7494	0.8617	0.0023	0.0014	
3	0.7679	0.8784	0.7678	0.8775	0.0001	0.0009	
4	0.7893	0.8988	0.7891	0.8994	0.0002	-0.0006	
6	0.8085	0.9171	0.8067	0.9138	0.0018	0.0033	
8	0.8147	0.9231	0.8123	0.9201	0.0024	0.0029	
10	0.8167	0.925	0.8207	0.9264	-0.004	-0.0014	
12	0.8174	0.9256	0.8186	0.9246	-0.0012	0.001	
16	0.8177	0.9259	0.8226	0.9274	-0.0049	-0.0015	
20	0.8177	0.9259	0.8189	0.9267	-0.0012	-0.0008	
Chart S-X.2. Plot of Inversion Recovery Data 4 d After Ti(OTf) Addition.

CIFIT Guesses and Fit Parameters

Initial values of parameters:

1/T1's
- No. 0 = 0.8000
- No. 1 = 0.2300

M(\text{inf})'s
- No. 2 = 0.9000
- No. 3 = 1.0000

M(0)–M(\text{inf})'s
- No. 4 = -1.4000
- No. 5 = 0.5000

and M(0)'s for reference
- No. 4 = -0.5000
- No. 5 = 1.5000

Rates
- No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

#	Value	Uncertainty
0	-0.538128	0.177407
1	1.714098	0.196291
2	0.817723	0.001004
3	0.925923	0.001027
4	-0.375819	0.001400
5	-0.142635	0.001666
6	23.527460	0.617042
XI. Inversion Recovery Data for Section VII (Rotation Eyring)

1) Rotation Eyring Data at -61.4 °C:

![Stacked Spectra of Inversion Recovery Data at -61.4 °C.]

Figure S–XI.1. Stacked Spectra of Inversion Recovery Data at -61.4 °C.

Table S–XI.1. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2
0.001	-0.2647	0.921	-0.2866	0.9234	0.0219	-0.0024
0.002	-0.2624	0.9191	-0.2727	0.9201	0.0103	-0.001
0.003	-0.2601	0.9171	-0.2707	0.9179	0.0106	-0.0008
0.004	-0.2579	0.9152	-0.268	0.9235	0.0101	-0.0083
0.005	-0.2556	0.9134	-0.2554	0.9146	-0.0002	-0.0012
0.006	-0.2534	0.9115	-0.2566	0.9154	0.0032	-0.0039
0.007	-0.2511	0.9096	-0.2536	0.9068	0.0025	0.0028
0.008	-0.2489	0.9077	-0.2539	0.9077	0.005	0.0001
0.009	-0.2467	0.9059	-0.2441	0.9052	-0.0025	0.0007
0.01	-0.2444	0.904	-0.2457	0.9047	0.0012	-0.0007
0.015	-0.2335	0.8949	-0.2342	0.8863	0.0007	0.0086
0.02	-0.2228	0.8861	-0.2189	0.8831	-0.0038	0.003
0.025	-0.2122	0.8774	-0.2061	0.8728	-0.0061	0.0046
0.03	-0.2019	0.869	-0.2021	0.8612	0.0002	0.0078
0.035	-0.1917	0.8607	-0.1848	0.8628	-0.0069	-0.0021
0.04	-0.1818	0.8527	-0.1756	0.8566	-0.0062	-0.0039
0.045	-0.172	0.8449	-0.1655	0.8406	-0.0065	0.0043
0.05	-0.1625	0.8373	-0.1547	0.8331	-0.0077	0.0041
0.06	-0.1438	0.8226	-0.1363	0.8181	-0.0075	0.0044
0.07	-0.1259	0.8086	-0.1225	0.8027	-0.0034	0.0059
0.08	-0.1087	0.7953	-0.1019	0.7945	-0.0068	0.0008
0.09	-0.092	0.7827	-0.0866	0.7834	-0.0055	-0.0007
0.1	-0.076	0.7708	-0.0665	0.77	-0.0096	0.0008
0.15	-0.0042	0.7196	-0.0038	0.7192	-0.0004	0.0003
0.2	0.0558	0.6806	0.0561	0.6842	-0.0003	-0.0036
0.25	0.1063	0.6514	0.1085	0.6601	-0.0022	-0.0087
0.3	0.1491	0.63	0.1489	0.6367	0.0002	-0.0067
0.35	0.1856	0.6148	0.1842	0.6206	0.0014	-0.0058
0.4	0.217	0.6045	0.2168	0.6091	0.0003	-0.0046
0.45	0.2443	0.5981	0.2404	0.6053	0.0039	-0.0071
0.5	0.2682	0.5948	0.2618	0.6001	0.0065	-0.0053
0.6	0.3083	0.5949	0.3084	0.5955	-0.0002	-0.0006
0.7	0.3407	0.6011	0.3402	0.6039	0.0005	-0.0028
0.8	0.3679	0.6108	0.3663	0.6112	0.0017	-0.0005
0.9	0.3915	0.6224	0.386	0.6208	0.0055	0.0017
1	0.4123	0.6351	0.4111	0.6334	0.0012	0.0017
1.5	0.4927	0.6981	0.4905	0.6896	0.0022	0.0085
2	0.5507	0.7497	0.5518	0.7468	-0.0011	0.0029
2.5	0.5946	0.7895	0.5936	0.789	0.001	0.0004
3	0.628	0.8198	0.6334	0.8168	-0.0054	0.0031
4	0.6728	0.8606	0.673	0.8621	-0.0002	-0.0015
6	0.714	0.898	0.7183	0.9016	-0.0043	-0.0036
8	0.7279	0.9107	0.7289	0.9095	-0.0009	0.0012
10	0.7326	0.9149	0.7312	0.9122	0.0014	0.0027
12	0.7342	0.9164	0.7351	0.919	-0.0009	-0.0026
16	0.7349	0.917	0.7358	0.9179	-0.0009	-0.0009
20	0.735	0.9171	0.7369	0.9082	-0.0019	0.0088
Chart S-XI.1. Plot of Inversion Recovery Data at -61.4 °C.

CIFIT Guesses and Fit Parameters

Initial values of parameters:
1/T1's
No. 0= 0.8000 No. 1= 0.2300
M(inf)'s
No. 2= 0.9000 No. 3= 1.0000
M(0)-M(inf)'s
No. 4= -1.4000 No. 5= 0.5000
and M(0)'s for reference
No. 4= -0.5000 No. 5= 1.5000
Rates
No. 6= 20.0000

Final Values of Fitted Parameters and Uncertainties:
0 = 0.368664 +/- 0.016620
1 = 0.734924 +/- 0.029447
2 = 0.735023 +/- 0.001894
3 = 0.917094 +/- 0.002057
4 = -1.002029 +/- 0.002121
5 = 0.005814 +/- 0.002590
6 = 1.915320 +/- 0.023656
2) **Rotation Eyring Data at -53.7 °C:**

![Figure S-XI.2. Stacked Spectra of Inversion Recovery Data at -53.7 °C.](image)

Table S-XI.2. CiFiT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2			
0.001	-0.4474	0.977	-0.4553	0.9798	0.0079	-0.0028			
0.002	-0.4394	0.9696	-0.4495	0.9712	0.01	-0.0017			
0.003	-0.4316	0.9622	-0.4409	0.9651	0.0094	-0.003			
0.004	-0.4238	0.9549	-0.4292	0.9544	0.0054	0.0005			
0.005	-0.4161	0.9477	-0.4136	0.9504	-0.0025	-0.0027			
0.006	-0.4085	0.9406	-0.4063	0.94	-0.0022	0.0005			
0.007	-0.401	0.9336	-0.4006	0.9343	-0.0004	-0.0007			
0.008	-0.3936	0.9267	-0.3915	0.924	-0.0021	0.0026			
0.009	-0.3863	0.9198	-0.3855	0.9129	-0.0008	0.0069			
0.01	-0.379	0.9131	-0.3738	0.9066	-0.0052	0.0065			
0.015	-0.3441	0.8807	-0.3418	0.8824	-0.0023	-0.0017			
0.02	-0.3112	0.8504	-0.309	0.8489	-0.0021	0.0015			
0.025	-0.2802	0.8221	-0.2758	0.8173	-0.0043	0.0048			
0.03	-0.2509	0.7955	-0.2428	0.7964	-0.0082	-0.0008			
0.035	-0.2234	0.7707	-0.2198	0.7703	-0.0036	0.0004			
0.04	-0.1974	0.7475	-0.1934	0.7528	-0.004	-0.0053			
0.045	-0.1729	0.7259	-0.1702	0.7272	-0.0027	-0.0014			
0.05	-0.1498	0.7056	-0.1466	0.7043	-0.0031	0.0013			
x	z	y	z	y	z	y	z	y	z
----	-----	-----	-----	-----	-----	-----	-----	-----	-----
0.06	-0.1074	0.669	-0.1026	0.6708	-0.0048	-0.0017			
0.07	-0.0696	0.6372	-0.066	0.6383	-0.0036	-0.0011			
0.08	-0.0358	0.6094	-0.0392	0.6126	0.0034	-0.0031			
0.09	-0.0057	0.5854	-0.0038	0.5903	-0.0019	-0.0049			
0.1	0.0213	0.5646	0.0233	0.5725	-0.002	-0.0079			
0.15	0.1204	0.4969	0.1203	0.5046	0.0001	-0.0077			
0.2	0.1809	0.4682	0.1738	0.4752	0.0071	-0.007			
0.25	0.2206	0.46	0.2206	0.4606	-0.0001	-0.0006			
0.3	0.2489	0.4627	0.2518	0.4646	-0.0029	-0.0019			
0.35	0.271	0.4708	0.2696	0.47	0.0015	0.0008			
0.4	0.2896	0.4818	0.2844	0.4808	0.0052	0.001			
0.45	0.3062	0.4941	0.3053	0.4868	0.0009	0.0072			
0.5	0.3214	0.5068	0.3173	0.4976	0.0042	0.0092			
0.6	0.3496	0.5325	0.3455	0.5211	0.0041	0.0114			
0.7	0.3757	0.5573	0.3716	0.5526	0.0041	0.0047			
0.8	0.4003	0.5809	0.3989	0.5764	0.0014	0.0045			
0.9	0.4235	0.6033	0.4253	0.6004	-0.0018	0.0029			
1	0.4454	0.6245	0.4405	0.6184	0.0049	0.0062			
1.5	0.5383	0.7146	0.5386	0.7095	-0.0002	0.0051			
2	0.6087	0.7827	0.6166	0.7841	-0.0079	-0.0013			
2.5	0.662	0.8344	0.6644	0.838	-0.0024	-0.0036			
3	0.7024	0.8735	0.7142	0.8795	-0.0118	-0.006			
4	0.7561	0.9255	0.7606	0.9384	-0.0045	-0.013			
6	0.8046	0.9724	0.8039	0.9772	0.0006	-0.0048			
8	0.8205	0.9878	0.8238	0.9899	-0.0033	-0.0021			
10	0.8257	0.9929	0.8252	0.997	0.0006	-0.0041			
12	0.8275	0.9946	0.8234	0.9922	0.004	0.0024			
16	0.8282	0.9953	0.8194	0.9879	0.0088	0.0074			
20	0.8283	0.9954	0.8211	0.9924	0.0072	0.003			
Chart S-XI.2. Plot of Inversion Recovery Data at –53.7 °C.

CIFIT Guesses and Fit Parameters

Initial values of parameters:

1/T1's
No. 0= 0.8000 No. 1= 0.2300

M(Inf)'s
No. 2= 0.9000 No. 3= 1.0000

M(0)–M(Inf)'s
No. 4= -1.4000 No. 5= 0.5000

and M(0)'s for reference
No. 4= -0.5000 No. 5= 1.5000

Rates
No. 6= 20.0000

Final Values of Fitted Parameters and Uncertainties:

#	Value	Uncertainty
0	0.366672	0.029155
1	0.751950	0.035598
2	0.828296	0.001760
3	0.995370	0.001903
4	-1.283774	0.002117
5	-0.010744	0.002631
6	6.003374	0.044677
3) **Rotation Eyring Data at -42.0 °C:**

![Figure S-XI.3: Stacked Spectra of Inversion Recovery Data at -42.0 °C.](image)

Table S-XI.3. CIFIT Plot File.

d2	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2
0.001	-0.1303	0.8252	-0.1429	0.8224	0.0127	0.0028
0.002	-0.1113	0.8065	-0.1191	0.7996	0.0078	0.0068
0.003	-0.0931	0.7886	-0.0965	0.7873	0.0034	0.0013
0.004	-0.0757	0.7716	-0.0795	0.7673	0.0038	0.0043
0.005	-0.0591	0.7554	-0.0607	0.7526	0.0016	0.0028
0.006	-0.0433	0.7399	-0.045	0.7339	0.0017	0.006
0.007	-0.0282	0.7251	-0.0333	0.7207	0.0051	0.0045
0.008	-0.0138	0.7111	-0.0137	0.7107	-0.0001	0.0004
0.009	0	0.6977	0.0003	0.6924	-0.0002	0.0053
0.01	0.0132	0.6849	0.0131	0.68	0.0001	0.0049
0.015	0.0707	0.6295	0.0749	0.6285	-0.0042	0.001
0.02	0.1164	0.586	0.1176	0.5827	-0.0012	0.0033
0.025	0.1529	0.5519	0.1515	0.5584	0.0014	-0.0065
0.03	0.182	0.5253	0.1894	0.5264	-0.0074	-0.0011
0.035	0.2054	0.5045	0.2068	0.5108	-0.0014	-0.0063
0.04	0.2241	0.4884	0.2296	0.4978	-0.0055	-0.0094
0.045	0.2393	0.4759	0.2424	0.4828	-0.0031	-0.0069
0.05	0.2515	0.4664	0.256	0.472	-0.0045	-0.0056
x	y	x	y	y	x	
-----	-----	-----	-----	-----	-----	
0.06	0.2697	0.4537	0.271	0.4611	-0.0013	-0.0074
0.07	0.2822	0.4468	0.2817	0.4504	0.0005	-0.0035
0.08	0.291	0.4436	0.29	0.4465	0.001	-0.003
0.09	0.2976	0.4426	0.2997	0.4458	-0.0021	-0.0033
0.1	0.3027	0.443	0.3017	0.4462	0.001	-0.0033
0.15	0.3202	0.4531	0.3215	0.4596	-0.0014	-0.0065
0.2	0.334	0.4661	0.3315	0.4693	0.0026	-0.0032
0.25	0.3472	0.479	0.351	0.4848	-0.0037	-0.0057
0.3	0.3601	0.4917	0.3579	0.4925	0.0022	-0.0009
0.35	0.3726	0.504	0.3729	0.5069	-0.0004	-0.0029
0.4	0.3847	0.516	0.3851	0.5165	-0.0004	-0.0005
0.45	0.3966	0.5276	0.3956	0.5274	0.001	0.0002
0.5	0.4081	0.539	0.4038	0.5395	0.0043	-0.0005
0.6	0.4303	0.5608	0.428	0.5624	0.0022	-0.0016
0.7	0.4513	0.5815	0.4509	0.5786	0.0003	0.0029
0.8	0.4712	0.6011	0.4656	0.5956	0.0056	0.0055
0.9	0.4901	0.6197	0.4871	0.6165	0.003	0.0032
1	0.508	0.6374	0.505	0.6327	0.003	0.0047
1.5	0.5844	0.7127	0.5834	0.7093	0.001	0.0034
2	0.643	0.7704	0.6432	0.7762	-0.0002	-0.0058
2.5	0.6878	0.8145	0.689	0.8127	-0.0012	0.0019
3	0.7221	0.8484	0.7266	0.8449	-0.0045	0.0034
4	0.7685	0.8941	0.7753	0.9002	-0.0068	-0.0061
6	0.8117	0.9366	0.8202	0.9355	-0.0085	0.0011
8	0.8265	0.9512	0.8328	0.9509	-0.0063	0.0003
10	0.8316	0.9562	0.8353	0.952	-0.0037	0.0042
12	0.8334	0.958	0.837	0.9543	-0.0036	0.0037
16	0.8342	0.9588	0.8335	0.9509	0.0007	0.0079
20	0.8343	0.9589	0.8286	0.9548	0.0057	0.0041
Chart S-XI.3. Plot of Inversion Recovery Data at -42.0 °C.

CIFIT Guesses and Fit Parameters

Initial values of parameters:

- 1/T1's
 No. 0= 0.8000 No. 1= 0.2300

- M(\text{inf})'s
 No. 2= 0.9000 No. 3= 1.0000

- M(0)-M(\text{inf})'s
 No. 4= -1.4000 No. 5= 0.5000
 and M(0)'s for reference
 No. 4= -0.5000 No. 5= 1.5000

- Rates
 No. 6= 20.0000

Final Values of Fitted Parameters and Uncertainties:

- No. 0 = 0.190781 +/- 0.113610
- No. 1 = 0.882260 +/- 0.119240
- No. 2 = 0.834290 +/- 0.001591
- No. 3 = 0.958876 +/- 0.001670
- No. 4 = -0.984521 +/- 0.002220
- No. 5 = -0.114023 +/- 0.002792
- No. 6 = 23.226432 +/- 0.247924
4) **Rotation Eyring Data at -31.8 °C:**

![Figure S-XI.4. Stacked Spectra of Inversion Recovery Data at -31.8 °C.](image)

Table S-XI.4. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2
0.001	0.111	0.4656	0.1221	0.4743	-0.0111	-0.0087
0.002	0.1409	0.4335	0.1504	0.444	-0.0095	-0.0105
0.003	0.1663	0.4063	0.1759	0.4165	-0.0096	-0.0103
0.004	0.1879	0.3832	0.2011	0.3954	-0.0133	-0.0122
0.005	0.2062	0.3637	0.2223	0.3758	-0.0161	-0.012
0.006	0.2219	0.3472	0.2335	0.3602	-0.0116	-0.013
0.007	0.2352	0.3333	0.2505	0.3461	-0.0153	-0.0128
0.008	0.2465	0.3215	0.2573	0.3302	-0.0108	-0.0087
0.009	0.2562	0.3116	0.2655	0.3197	-0.0093	-0.0081
0.01	0.2645	0.3032	0.2721	0.3073	-0.0076	-0.0041
0.015	0.2911	0.2776	0.2996	0.2867	-0.0085	-0.0092
0.02	0.3038	0.2673	0.3104	0.2749	-0.0066	-0.0076
0.025	0.3103	0.2636	0.3145	0.272	-0.0041	-0.0084
0.03	0.3142	0.263	0.3156	0.2676	-0.0013	-0.0046
0.035	0.317	0.2636	0.3196	0.2696	-0.0026	-0.006
0.04	0.3191	0.2648	0.3185	0.27	0.0007	0.0053
0.045	0.3211	0.2662	0.3143	0.2627	0.0068	0.0035
0.05	0.323	0.2677	0.3198	0.2643	0.0032	0.0034
r	x	y	z	w	u	v
------	---------	---------	---------	---------	---------	---------
0.06	0.3266	0.2709	0.3218	0.2681	0.0048	0.0028
0.07	0.3301	0.2741	0.3235	0.2662	0.0066	0.0079
0.08	0.3336	0.2773	0.3281	0.2695	0.0056	0.0077
0.09	0.3371	0.2805	0.328	0.2683	0.0092	0.0122
0.1	0.3406	0.2836	0.3319	0.2721	0.0087	0.0115
0.15	0.3577	0.2992	0.3426	0.2827	0.0152	0.0165
0.2	0.3744	0.3143	0.3638	0.299	0.0106	0.0153
0.25	0.3907	0.3291	0.3795	0.3144	0.0111	0.0146
0.3	0.4065	0.3434	0.3926	0.3279	0.0139	0.0155
0.35	0.4219	0.3574	0.4108	0.3417	0.0112	0.0158
0.4	0.4369	0.3711	0.4276	0.3568	0.0093	0.0143
0.45	0.4516	0.3844	0.4432	0.3695	0.0084	0.0149
0.5	0.4658	0.3973	0.4544	0.381	0.0114	0.0163
0.6	0.4932	0.4222	0.4857	0.4085	0.0075	0.0137
0.7	0.5193	0.4458	0.515	0.4366	0.0043	0.0092
0.8	0.5439	0.4682	0.5399	0.4562	0.004	0.012
0.9	0.5674	0.4895	0.5633	0.4846	0.0041	0.0049
1	0.5896	0.5097	0.5869	0.5054	0.0027	0.0043
1.5	0.6849	0.5962	0.6914	0.6024	-0.0065	-0.0063
2	0.7582	0.6627	0.7703	0.678	-0.0121	-0.0153
2.5	0.8146	0.7139	0.8329	0.7364	-0.0184	-0.0224
3	0.858	0.7534	0.8738	0.7755	-0.0158	-0.0222
4	0.9171	0.807	0.9285	0.8232	-0.0115	-0.0162
6	0.9728	0.8576	0.9727	0.8675	0.0002	-0.0098
8	0.9924	0.8754	0.9861	0.8775	0.0063	-0.0021
12	1.0016	0.8838	0.9893	0.877	0.0123	0.0067
16	1.0028	0.8848	0.9884	0.878	0.0144	0.0068
20	1.0029	0.885	0.9933	0.879	0.0096	0.0059
Chart S-XI.4. Plot of Inversion Recovery Data at $-31.8 \, ^\circ\text{C}$.

CIFIT Guesses and Fit Parameters

Initial values of parameters:

1/T1's
- No. 0 = 0.8000
- No. 1 = 0.2300

M(inf)'s
- No. 2 = 0.9000
- No. 3 = 1.0000

M(0)–M(inf)'s
- No. 4 = -1.4000
- No. 5 = 0.5000

and M(0)'s for reference
- No. 4 = -0.5000
- No. 5 = 1.5000

Rates
- No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

#	Value	Uncertainty
0	-6.995422	1.016564
1	8.805540	1.205582
2	1.002937	0.004595
3	0.884974	0.009043
4	-0.927070	0.009043
5	-0.381346	0.010430
6	81.684411	4.608239
XII. Inversion Recovery Data for Section VIII (Ring Flip Eyring).

1) Ring Flip Eyring Data in CD$_2$Cl$_2$ at 13.7 °C:

![Stacked Spectra of Inversion Recovery Data at 13.7 °C in CD$_2$Cl$_2$.](image)

Figure S–XII.1. Stacked Spectra of Inversion Recovery Data at 13.7 °C in CD$_2$Cl$_2$.

Table S–XII.1. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2
0.001	-0.4817	0.79	-0.485	0.7887	0.0033	0.0012
0.002	-0.4755	0.7863	-0.4795	0.7847	0.004	0.0015
0.003	-0.4693	0.7826	-0.4738	0.7804	0.0045	0.0022
0.004	-0.4631	0.779	-0.4678	0.7775	0.0046	0.0014
0.005	-0.457	0.7754	-0.4633	0.7731	0.0063	0.0023
0.007	-0.4449	0.7683	-0.448	0.7668	0.0031	0.0015
0.01	-0.427	0.758	-0.4314	0.7559	0.0045	0.0021
0.015	-0.3978	0.7415	-0.3991	0.74	0.0013	0.0015
0.02	-0.3695	0.7259	-0.3708	0.7252	0.0013	0.0007
0.025	-0.342	0.7111	-0.3412	0.7105	-0.0008	0.0006
0.03	-0.3153	0.6972	-0.3119	0.6971	-0.0035	0.0001
0.035	-0.2894	0.684	-0.2883	0.6841	-0.0011	-0.0001
0.04	-0.2642	0.6716	-0.2637	0.67	-0.0006	0.0015
0.045	-0.2398	0.6598	-0.2376	0.661	-0.0022	-0.0012
0.055	-0.1929	0.6383	-0.2005	0.6339	0.0076	0.0044
0.06	-0.1704	0.6285	-0.1685	0.6291	-0.0019	-0.0006
0.065	-0.1485	0.6193	-0.147	0.6199	-0.0015	-0.0006
0.07	-0.1273	0.6107	-0.1283	0.6104	0.001	0.0003
0.075 -0.1066 0.6026 -0.0988 0.6063 -0.0078 -0.0038
0.08 -0.0865 0.595 -0.079 0.5974 -0.0074 -0.0024
0.085 -0.0669 0.5879 -0.0616 0.59 -0.0053 -0.0022
0.09 -0.0478 0.5812 -0.0413 0.5839 -0.0065 -0.0026
0.095 -0.0292 0.5751 -0.0222 0.578 -0.0071 -0.003
0.1 -0.0112 0.5693 -0.0067 0.5706 -0.0044 -0.0013
0.15 0.1462 0.5316 0.153 0.5366 -0.0068 -0.005
0.2 0.2695 0.5198 0.2777 0.5266 -0.0083 -0.0068
0.25 0.3679 0.5239 0.3691 0.5284 -0.0012 -0.0045
0.3 0.4479 0.5371 0.4448 0.5405 0.003 -0.0034
0.35 0.5139 0.5551 0.4977 0.551 0.0162 0.0041
0.4 0.5691 0.5754 0.5702 0.5802 -0.0011 -0.0048
0.45 0.6159 0.5961 0.6036 0.5945 0.0123 0.0017
0.5 0.6558 0.6164 0.6484 0.6167 0.0074 -0.0003
0.6 0.7199 0.6533 0.711 0.6516 0.009 0.0017
0.7 0.7685 0.6844 0.7716 0.6873 -0.0031 -0.0029
0.8 0.8057 0.7096 0.8112 0.7135 -0.0056 -0.0039
0.9 0.8344 0.7298 0.8281 0.7265 0.0063 0.0033
1 0.8568 0.7457 0.8535 0.7437 0.0033 0.002
1.5 0.913 0.7865 0.9107 0.7853 0.0023 0.0012
2 0.9294 0.7985 0.9381 0.8011 -0.0087 -0.0026
2.5 0.9342 0.802 0.9277 0.7968 0.0064 0.0052
3 0.9356 0.803 0.9261 0.7962 0.0095 0.0068
4 0.9361 0.8034 0.9489 0.8073 -0.0128 -0.004
5 0.9361 0.8034 0.9516 0.809 -0.0155 -0.0056
6 0.9361 0.8034 0.9332 0.8001 0.003 0.0033
7 0.9361 0.8034 0.9497 0.8091 -0.0136 -0.0057
8 0.9361 0.8034 0.9321 0.8002 0.004 0.0032
9 0.9361 0.8034 0.9484 0.8084 -0.0123 -0.0005
10 0.9361 0.8034 0.932 0.7999 0.0042 0.0035
12 0.9361 0.8034 0.9493 0.8088 -0.0132 -0.0054
14 0.9361 0.8034 0.9364 0.8017 -0.0002 0.0017
15 0.9361 0.8034 0.9123 0.7908 0.0238 0.0126
16 0.9361 0.8034 0.9406 0.8043 -0.0045 -0.0009
18 0.9361 0.8034 0.9327 0.8009 0.0035 0.0025
19 0.9361 0.8034 0.9248 0.7961 0.0113 0.0073
20 0.9361 0.8034 0.9465 0.8065 -0.0103 -0.0031
Chart S-XII.1. Plot of Inversion Recovery Data at 13.68 °C.

CIFIT Guesses and Fit Parameters

Initial values of parameters:
- 1/T1's
 No. 0 = 0.8000 No. 1 = 0.2300
- M(inf)'s
 No. 2 = 0.9000 No. 3 = 1.0000
- M(0)-M(inf)'s
 No. 4 = -1.4000 No. 5 = 0.5000
- Rates
 No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:
- # 0 = 1.742447 +/- 0.035463
- # 1 = 3.456408 +/- 0.098012
- # 2 = 0.936134 +/- 0.001407
- # 3 = 0.803401 +/- 0.001447
- # 4 = -1.424087 +/- 0.002192
- # 5 = -0.009672 +/- 0.002731
- # 6 = 2.688728 +/- 0.041685
2) Ring Flip Eyring Data in CD$_2$Cl$_2$ at 18.8 °C:

Figure S-XII.2. Stacked Spectra of Inversion Recovery Data at 18.8 °C.

Table S-XII.2. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2	
0.001	-0.661	0.8814	-0.659	0.8801	-0.0019	0.0013	
0.002	-0.6513	0.8749	-0.6503	0.8741	-0.001	0.0008	
0.003	-0.6417	0.8685	-0.6428	0.8682	0.0011	0.0003	
0.004	-0.6322	0.8622	-0.6323	0.863	0.0001	-0.0008	
0.005	-0.6228	0.856	-0.6242	0.8554	0.0015	0.0006	
0.007	-0.6042	0.8438	-0.6045	0.8439	0.0003	-0.0001	
0.01	-0.5769	0.8262	-0.5785	0.8258	0.0016	0.0004	
0.015	-0.5331	0.7984	-0.5374	0.796	0.0043	0.0025	
0.02	-0.4911	0.7727	-0.4916	0.773	0.0005	-0.0004	
0.025	-0.451	0.7487	-0.4517	0.7493	0.0007	-0.0006	
0.03	-0.4126	0.7265	-0.4128	0.7271	0.0002	-0.0006	
0.035	-0.3758	0.706	-0.3742	0.707	-0.0016	-0.001	
0.04	-0.3406	0.6869	-0.3422	0.6857	0.0016	0.0012	
0.045	-0.3068	0.6694	-0.3064	0.6703	-0.0004	-0.0009	
0.055	-0.2434	0.6383	-0.2465	0.6355	0.0031	0.0027	
0.06	-0.2136	0.6246	-0.2139	0.6237	0.0003	0.0009	
0.065	-0.1849	0.612	-0.1825	0.6132	-0.0024	-0.0012	
0.07	-0.1575	0.6005	-0.1558	0.601	-0.0016	-0.0005	
0.075	-0.1311	0.59	-0.1321	0.5884	0.0011	0.0016	
0.08	-0.1057	0.5805	-0.1019	0.5825	-0.0038	-0.002	
---	---	---	---	---	---	---	---
0.085	-0.0812	0.5718	-0.0801	0.5723	-0.0011	-0.0005	
0.09	-0.0577	0.564	-0.0567	0.565	-0.0011	-0.001	
0.095	-0.0351	0.557	-0.0328	0.5583	-0.0023	-0.0014	
0.1	-0.0133	0.5507	-0.0111	0.5521	-0.0022	-0.0014	
0.15	0.1668	0.5196	0.1682	0.5213	-0.0014	-0.0017	
0.2	0.2971	0.5258	0.2985	0.528	-0.0014	-0.0022	
0.25	0.3959	0.5503	0.3918	0.5483	0.0041	0.002	
0.3	0.4739	0.5827	0.4737	0.5835	0.0002	-0.0008	
0.35	0.5374	0.6174	0.5369	0.6188	0.0005	-0.0014	
0.4	0.5904	0.6515	0.5894	0.6516	0.001	-0.0002	
0.45	0.6356	0.6835	0.6316	0.6819	0.0039	0.0016	
0.5	0.6744	0.7128	0.6741	0.7139	0.0003	-0.001	
0.6	0.7374	0.763	0.7365	0.7638	0.0009	-0.0008	
0.7	0.7857	0.8028	0.7855	0.8026	0.0002	0.0002	
0.8	0.823	0.834	0.8222	0.8339	0.0008	0.0001	
0.9	0.8519	0.8583	0.8512	0.858	0.0007	0.0003	
1	0.8743	0.8772	0.875	0.8785	-0.0007	-0.0013	
1.5	0.9303	0.9245	0.9302	0.9244	0.0001	0.0001	
2	0.9462	0.9378	0.9443	0.9365	0.0018	0.0014	
2.5	0.9506	0.9416	0.9517	0.9426	-0.0011	-0.001	
3	0.9519	0.9427	0.9533	0.9426	-0.0014	0.0001	
4	0.9524	0.9431	0.9543	0.9446	-0.002	-0.0015	
5	0.9524	0.9431	0.9498	0.9413	0.0026	0.0019	
6	0.9524	0.9431	0.9524	0.9432	0	-0.0001	
7	0.9524	0.9431	0.9549	0.9437	-0.0025	-0.0005	
8	0.9524	0.9431	0.9545	0.9434	-0.0021	-0.0003	
9	0.9524	0.9431	0.9557	0.9444	-0.0033	-0.0013	
10	0.9524	0.9431	0.9547	0.945	-0.0023	-0.0018	
12	0.9524	0.9431	0.9548	0.9443	-0.0024	-0.0012	
14	0.9524	0.9431	0.9435	0.9359	0.0089	0.0072	
15	0.9524	0.9431	0.9506	0.9415	0.0018	0.0016	
16	0.9524	0.9431	0.9526	0.9423	-0.0002	0.0008	
18	0.9524	0.9431	0.9547	0.9434	-0.0023	-0.0003	
19	0.9524	0.9431	0.9534	0.9431	-0.001	0	
20	0.9524	0.9431	0.9531	0.9429	-0.0007	0.0002	
Chart S-XII.2. Plot of Inversion Recovery Data at 18.8 °C.

CIFIT Guesses and Fit Parameters

Initial values of parameters:

- 1/T1's
 - No. 0 = 0.8000
 - No. 1 = 0.2300

- M(inf)'s
 - No. 2 = 0.9000
 - No. 3 = 1.0000

- M(0)–M(inf)'s
 - No. 4 = -1.4000
 - No. 5 = 0.5000

and M(0)'s for reference

- No. 4 = -0.5000
- No. 5 = 1.5000

Rates
- No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

- No. 0 = 1.848960 +/− 0.012173
- No. 1 = 3.324287 +/− 0.024308
- No. 2 = 0.952404 +/− 0.000430
- No. 3 = 0.943127 +/− 0.000445
- No. 4 = -1.623167 +/− 0.000714
- No. 5 = -0.055117 +/− 0.000875
- No. 6 = 4.347268 +/− 0.015079
3) **Ring Flip Eyring Data at 28.1 °C in CD$_2$Cl$_2$:**

![Stacked Spectra of Inversion Recovery Data at 28.1 °C.](image)

Figure S–XII.3. Stacked Spectra of Inversion Recovery Data at 28.1 °C.

Table S–XII.3. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2				
0.001	-0.4737	0.7392	-0.4749	0.7373	0.0013	0.0019				
0.002	-0.4584	0.7275	-0.4603	0.7247	0.002	0.0028				
0.003	-0.4434	0.716	-0.4455	0.715	0.0021	0.001				
0.004	-0.4287	0.7048	-0.4311	0.7036	0.0025	0.0013				
0.005	-0.4142	0.694	-0.4178	0.692	0.0035	0.002				
0.007	-0.3863	0.6731	-0.3873	0.6731	0.0011	0				
0.01	-0.3463	0.6438	-0.347	0.643	0.0007	0.0009				
0.015	-0.2847	0.6001	-0.2835	0.5999	-0.0012	0.0002				
0.02	-0.2287	0.5622	-0.2295	0.5602	0.0007	0.0019				
0.025	-0.1778	0.5293	-0.1786	0.5301	0.0008	-0.0008				
0.03	-0.1314	0.5009	-0.133	0.4996	0.0016	0.0013				
0.035	-0.0891	0.4765	-0.0877	0.4771	-0.0014	-0.0006				
0.04	-0.0504	0.4557	-0.0481	0.4554	-0.0023	0.0003				
0.045	-0.0149	0.438	-0.0132	0.4386	-0.0018	-0.0006				
0.055	0.0476	0.4108	0.0486	0.4107	-0.001	0.0002				
0.06	0.0752	0.4007	0.0768	0.4008	-0.0015	-0.0001				
0.065	0.1008	0.3925	0.1042	0.3952	-0.0034	-0.0027				
0.07	0.1244	0.386	0.1259	0.3878	-0.0014	-0.0018				
0.075	0.1464	0.3811	0.1478	0.3825	-0.0015	-0.0014				
0.08	0.1668	0.3775	0.1675	0.3774	-0.0007	0.0001				
X	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9	Y10
----	------	------	------	------	------	------	------	------	------	------
0.085	0.1859	0.3751	0.1865	0.3775	-0.0006	-0.0024				
0.09	0.2038	0.3738	0.2034	0.3756	0.0003	-0.0018				
0.095	0.2205	0.3734	0.2218	0.3766	-0.0013	-0.0032				
0.1	0.2363	0.3738	0.2375	0.3756	-0.0012	-0.0018				
0.15	0.3558	0.4052	0.3548	0.4078	0.0009	-0.0025				
0.2	0.4371	0.4559	0.4363	0.4597	0.0007	-0.0038				
0.25	0.5004	0.5072	0.4985	0.51	0.0018	-0.0028				
0.3	0.5529	0.554	0.5503	0.5561	0.0027	-0.0022				
0.35	0.5977	0.5951	0.5959	0.5961	0.0018	-0.0009				
0.4	0.6362	0.631	0.6346	0.6323	0.0016	-0.0013				
0.45	0.6694	0.662	0.6681	0.663	0.0013	-0.001				
0.5	0.6981	0.6889	0.6961	0.6891	0.002	-0.0002				
0.6	0.7444	0.7323	0.7428	0.7324	0.0016	-0.0001				
0.7	0.779	0.7648	0.7762	0.7629	0.0028	0.0018				
0.8	0.8049	0.7891	0.8027	0.7872	0.0022	0.0019				
0.9	0.8243	0.8072	0.8211	0.8048	0.0031	0.0025				
1	0.8387	0.8208	0.836	0.8172	0.0028	0.0036				
1.5	0.8717	0.8517	0.8698	0.8492	0.0018	0.0025				
2	0.8794	0.8589	0.8781	0.8561	0.0013	0.0028				
2.5	0.8812	0.8606	0.8793	0.8578	0.0019	0.0028				
3	0.8816	0.861	0.8795	0.8587	0.0021	0.0023				
4	0.8817	0.8611	0.8802	0.8572	0.0015	0.0039				
5	0.8817	0.8611	0.8813	0.86	0.0004	0.0012				
6	0.8817	0.8611	0.8823	0.8593	-0.0006	0.0018				
7	0.8817	0.8611	0.8834	0.8607	-0.0016	0.0005				
8	0.8817	0.8611	0.8838	0.8606	-0.002	0.0005				
9	0.8817	0.8611	0.8831	0.8604	-0.0014	0.0007				
10	0.8817	0.8611	0.8845	0.8612	-0.0028	-0.0001				
12	0.8817	0.8611	0.8834	0.8613	-0.0017	-0.0002				
14	0.8817	0.8611	0.8838	0.862	-0.0021	-0.0009				
15	0.8817	0.8611	0.8857	0.8635	-0.004	-0.0023				
16	0.8817	0.8611	0.885	0.8623	-0.0033	-0.0012				
18	0.8817	0.8611	0.8858	0.8637	-0.0041	-0.0026				
19	0.8817	0.8611	0.886	0.8625	-0.0042	-0.0013				
20	0.8817	0.8611	0.8859	0.8634	-0.0042	-0.0022				
Chart S–XII.3. Plot of Inversion Recovery Data at 28.1 °C.

CIFIT Guesses and Fit Parameters

Initial values of parameters:

1/T1's
No. 0= 0.8000 No. 1= 0.2300

M(∞)'s
No. 2= 0.9000 No. 3= 1.0000

M(0)–M(∞)'s
No. 4= -1.4000 No. 5= 0.5000

and M(0)'s for reference
No. 4= -0.5000 No. 5= 1.5000

Rates
No. 6= 20.0000

Final Values of Fitted Parameters and Uncertainties:

#	Value	Uncertainty
0	2.280800	0.026497
1	3.567518	0.037314
2	0.881739	0.000438
3	0.861147	0.000455
4	-1.371021	0.000821
5	-0.109826	0.001018
6	10.024921	0.041309
4) Ring Flip Eyring Data at 38.2 °C in CD$_2$Cl$_2$:

![Figure S-XII.4. Stacked Spectra of Inversion Recovery Data at 38.2 °C.](image)

Table S-XII.4. CIFIT Plot File.

d_2 (s)	Observed M_1	Observed M_2	Fit M_1	Fit M_2	σM_1	σM_2				
0.001	-0.3031	0.6618	-0.3085	0.6593	0.0054	0.0025				
0.002	-0.277	0.6402	-0.282	0.6367	0.005	0.0035				
0.003	-0.252	0.6198	-0.2552	0.6157	0.0032	0.0041				
0.004	-0.2281	0.6006	-0.2304	0.5992	0.0023	0.0014				
0.005	-0.2053	0.5824	-0.2105	0.5775	0.0052	0.0048				
0.007	-0.1626	0.549	-0.165	0.5453	0.0025	0.0037				
0.01	-0.1051	0.5056	-0.1048	0.5036	-0.0003	0.002				
0.015	-0.0244	0.4486	-0.024	0.4458	-0.0003	0.0027				
0.02	0.0412	0.4068	0.0417	0.4062	-0.0005	0.0006				
0.025	0.0949	0.3769	0.0974	0.3793	-0.0025	-0.0024				
0.03	0.1393	0.3562	0.1438	0.3576	-0.0045	-0.0014				
0.035	0.1764	0.3426	0.1784	0.3446	-0.002	-0.002				
0.04	0.2079	0.3345	0.2109	0.3391	-0.003	-0.0047				
0.045	0.2348	0.3305	0.236	0.3348	-0.0012	-0.0043				
0.05	0.2788	0.3315	0.2804	0.3335	-0.0015	-0.0019				
0.06	0.2972	0.3351	0.2993	0.3387	-0.0021	-0.0035				
0.065	0.3138	0.3402	0.316	0.3435	-0.0021	-0.0033				
0.07	0.329	0.3462	0.3309	0.3498	-0.0019	-0.0036				
0.075	0.3431	0.3531	0.3438	0.357	-0.0008	-0.0039				
0.08	0.3562	0.3605	0.3553	0.3636	0.0008	-0.0031				
0.085	0.3685	0.3684	0.3673	0.3713	0.0011	-0.0029				
x	y1	y2	y3	y4	y5	y6	y7	y8	y9	y10
----	------	------	------	------	------	------	------	------	------	------
0.09	0.3802	0.3765	0.3808	0.3808	-0.0006	-0.0044				
0.095	0.3913	0.3847	0.3916	0.3886	-0.0003	-0.0038				
0.1	0.402	0.3931	0.4019	0.3963	0.0001	-0.0032				
0.15	0.4928	0.4742	0.4906	0.4742	0.0022	0.0001				
0.2	0.5654	0.5435	0.5629	0.5447	0.0025	-0.0012				
0.25	0.6251	0.6007	0.6231	0.6009	0.002	-0.0002				
0.3	0.6744	0.6479	0.6724	0.6472	0.0019	0.0007				
0.35	0.7149	0.6869	0.7122	0.6855	0.0027	0.0014				
0.4	0.7484	0.719	0.7469	0.7191	0.0014	-0.0001				
0.45	0.776	0.7455	0.7739	0.7449	0.002	0.0006				
0.5	0.7987	0.7673	0.7941	0.7633	0.0046	0.004				
0.6	0.8329	0.8001	0.8316	0.7986	0.0013	0.0015				
0.7	0.8562	0.8225	0.8533	0.8202	0.0029	0.0022				
0.8	0.872	0.8376	0.8699	0.8348	0.0021	0.0028				
0.9	0.8827	0.848	0.8796	0.845	0.0031	0.0029				
1	0.89	0.855	0.8888	0.8538	0.0012	0.0012				
1.5	0.9033	0.8677	0.9004	0.8643	0.0029	0.0034				
2	0.9052	0.8696	0.9017	0.8651	0.0035	0.0045				
2.5	0.9055	0.8698	0.9049	0.8679	0.0006	0.0019				
3	0.9055	0.8699	0.9044	0.867	0.0011	0.0029				
4	0.9056	0.8699	0.9039	0.8649	0.0017	0.005				
5	0.9056	0.8699	0.9068	0.8685	-0.0012	0.0013				
6	0.9056	0.8699	0.9059	0.8689	-0.0004	0.001				
7	0.9056	0.8699	0.9064	0.8683	-0.0008	0.0016				
8	0.9056	0.8699	0.9082	0.8707	-0.0026	-0.0008				
9	0.9056	0.8699	0.9083	0.8695	-0.0027	0.0003				
10	0.9056	0.8699	0.9077	0.87	-0.0021	-0.0002				
12	0.9056	0.8699	0.9081	0.8701	-0.0025	-0.0003				
14	0.9056	0.8699	0.9088	0.8711	-0.0032	-0.0012				
15	0.9056	0.8699	0.9106	0.872	-0.0051	-0.0022				
16	0.9056	0.8699	0.91	0.872	-0.0045	-0.0021				
18	0.9056	0.8699	0.9114	0.8725	-0.0058	-0.0026				
19	0.9056	0.8699	0.9107	0.873	-0.0051	-0.0031				
20	0.9056	0.8699	0.9115	0.8721	-0.0059	-0.0023				
Chart S-XII.4. Plot of Inversion Recovery Data at 38.2 °C.

CIFIT Guesses and Fit Parameters

Initial values of parameters:
1/T1's
No. 0 = 0.8000 No. 1 = 0.2300
M(inf)'s
No. 2 = 0.9000 No. 3 = 1.0000
M(0) - M(inf)'s
No. 4 = -1.4000 No. 5 = 0.5000
and M(0)'s for reference
No. 4 = -0.5000 No. 5 = 1.5000
Rates
No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:
0 = 2.929290 +/- 0.070971
1 = 4.827882 +/- 0.085781
2 = 0.905556 +/- 0.000590
3 = 0.869870 +/- 0.000610
4 = -1.235982 +/- 0.001361
5 = -0.185295 +/- 0.001655
6 = 23.164390 +/- 0.176035
5) Ring Flip Eyring Data at 7.0 °C in C₆D₆:

![Figure S-XII.5. Stacked Spectra of Inversion Recovery Data at 7.0 °C in C₆D₆.](image)

Table S-XII.5. CIFIT Plot File.

d² (s)	Observed	Observed	Fit	Fit	σM1	σM2
0.001	-0.1049	0.7551	-0.1389	0.7522	0.0339	0.0029
0.002	-0.1019	0.7543	-0.1328	0.7519	0.0309	0.0024
0.003	-0.0989	0.7534	-0.1245	0.7505	0.0256	0.0029
0.004	-0.0959	0.7525	-0.1177	0.7488	0.0218	0.0037
0.005	-0.0929	0.7516	-0.1093	0.7482	0.0164	0.0034
0.007	-0.087	0.7499	-0.0986	0.7453	0.0116	0.0046
0.01	-0.0782	0.7474	-0.0868	0.7427	0.0086	0.0046
0.015	-0.0637	0.7433	-0.0705	0.7398	0.0068	0.0035
0.02	-0.0495	0.7394	-0.0541	0.7377	0.0046	0.0017
0.025	-0.0355	0.7357	-0.0353	0.7349	-0.0002	0.0008
0.03	-0.0218	0.7322	-0.0193	0.7301	-0.0025	0.0021
0.035	-0.0083	0.7288	-0.0027	0.7292	-0.0057	-0.0004
0.04	0.0049	0.7257	0.012	0.7249	-0.0071	0.0008
0.045	0.0179	0.7226	0.0264	0.7229	-0.0086	-0.0003
0.05	0.0306	0.7197	0.042	0.7207	-0.0113	-0.001
0.055	0.0431	0.717	0.055	0.7169	-0.0118	0.0001
0.06	0.0554	0.7144	0.0703	0.7145	-0.0149	-0.0001
0.065	0.0675	0.7119	0.0851	0.7141	-0.0176	-0.0022
0.07	0.0793	0.7096	0.0968	0.7126	-0.0174	-0.003
0.075	0.091	0.7073	0.1091	0.7105	-0.0181	-0.0031
0.08	0.1024	0.7053	0.1218	0.707	-0.0194	-0.0018
0.085	0.1136	0.7033	0.1344	0.7064	-0.0208	-0.0031
-------	--------	--------	--------	--------	---------	---------
0.09	0.1247	0.7014	0.1468	0.7033	-0.0221	-0.0019
0.095	0.1355	0.6997	0.1587	0.7039	-0.0232	-0.0043
0.1	0.1461	0.698	0.1703	0.7009	-0.0242	-0.0029
0.15	0.2428	0.6865	0.2532	0.6928	-0.0103	-0.0062
0.2	0.324	0.6821	0.326	0.6905	-0.002	-0.0084
0.25	0.3925	0.6824	0.3875	0.6907	0.005	-0.0084
0.3	0.4504	0.6857	0.4405	0.6929	0.0099	-0.0072
0.35	0.4994	0.6908	0.4863	0.6968	0.0131	-0.006
0.4	0.5412	0.6971	0.5245	0.7013	0.0166	-0.0042
0.45	0.5767	0.7038	0.5607	0.7077	0.016	-0.004
0.5	0.6071	0.7105	0.5892	0.712	0.0179	-0.0015
0.6	0.6553	0.7234	0.6371	0.7231	0.0183	0.0003
0.7	0.6909	0.7346	0.6724	0.7316	0.0185	0.003
0.8	0.7171	0.7439	0.7008	0.7393	0.0163	0.0046
0.9	0.7367	0.7513	0.7233	0.7471	0.0134	0.0043
1	0.7512	0.7572	0.7401	0.7526	0.0111	0.0047
1.5	0.7842	0.7716	0.7832	0.7671	0.001	0.0045
2	0.792	0.7752	0.7961	0.7722	-0.0041	0.0031
2.5	0.7939	0.7761	0.7996	0.7729	-0.0057	0.0032
4	0.7945	0.7764	0.8023	0.7747	-0.0078	0.0017
6	0.7945	0.7764	0.8029	0.7757	-0.0084	0.0007
8	0.7945	0.7764	0.8037	0.777	-0.0093	-0.0006
10	0.7945	0.7764	0.8029	0.7765	-0.0084	-0.0001
12	0.7945	0.7764	0.8044	0.7774	-0.0099	-0.001
14	0.7945	0.7764	0.8018	0.7742	-0.0073	0.0022
16	0.7945	0.7764	0.8012	0.7743	-0.0067	0.002
18	0.7945	0.7764	0.8011	0.7744	-0.0067	0.0019
20	0.7945	0.7764	0.8003	0.7743	-0.0058	0.0021
Chart S-XII.5. Plot of Inversion Recovery Data at 7.0 °C in C$_6$D$_6$.

CIFIT Guesses and Fit Parameters
Initial values of parameters:
1/T1's
 No. 0 = 0.8000 No. 1 = 0.2300
M(inf)'s
 No. 2 = 0.9000 No. 3 = 1.0000
M(0)−M(inf)'s
 No. 4 = −1.4000 No. 5 = 0.5000
and M(0)'s for reference
 No. 4 = −0.5000 No. 5 = 1.5000
Rates
 No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:
 # 0 = 2.263373 +/- 0.104782
 # 1 = 4.118448 +/- 0.578497
 # 2 = 0.794467 +/- 0.003048
 # 3 = 0.776389 +/- 0.003163
 # 4 = −0.902448 +/- 0.004006
 # 5 = −0.020334 +/- 0.005169
 # 6 = 1.126540 +/- 0.111701
6) **Ring Flip Eyring Data at 13.8 °C in C₆D₆:**

Figure S–XII.6. Stacked Spectra of Inversion Recovery Data at 13.8 °C in C₆D₆.

Table S–XII.6. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2				
0.001	-0.1791	1.0251	-0.1815	1.0267	0.0024	-0.0016				
0.002	-0.1746	1.0235	-0.1782	1.0244	0.0035	-0.0009				
0.003	-0.1702	1.022	-0.1731	1.0209	0.0029	0.0011				
0.004	-0.1657	1.0204	-0.1684	1.0	0.0027	0.0004				
0.005	-0.1613	1.0189	-0.1639	1.0185	0.0026	0.0004				
0.007	-0.1525	1.0159	-0.1549	1.0148	0.0023	0.0011				
0.01	-0.1395	1.0115	-0.1416	1.01	0.0021	0.0015				
0.015	-0.1181	1.0045	-0.1193	1.0032	0.0012	0.0013				
0.02	-0.0972	0.9978	-0.0983	0.998	0.0011	-0.0002				
0.025	-0.0767	0.9915	-0.0775	0.9903	0.0008	0.0011				
0.03	-0.0566	0.9855	-0.0559	0.985	-0.0007	0.0004				
0.035	-0.0369	0.9798	-0.0363	0.9794	-0.0006	0.0004				
0.04	-0.0176	0.9744	-0.017	0.9746	-0.0006	-0.0002				
0.045	0.0013	0.9693	0.0023	0.9698	-0.001	-0.0004				
0.05	0.0198	0.9646	0.0215	0.9641	-0.0016	0.0005				
0.055	0.038	0.9601	0.0403	0.9611	-0.0023	-0.0011				
0.06	0.0558	0.9558	0.0573	0.9544	-0.0015	0.0014				
0.065	0.0732	0.9518	0.0754	0.9518	-0.0021	0.0001				
0.07	0.0904	0.9481	0.0931	0.9482	-0.0027	-0.0001				
0.075	0.1071	0.9446	0.1096	0.9437	-0.0025	0.0009				
0.08	0.1236	0.9413	0.126	0.9413	-0.0024	0				
Value	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	Column 8	Column 9	Column 10
-------	----------	----------	----------	----------	----------	----------	----------	----------	----------	-----------
0.085	0.1397	0.9383	0.142	0.9393	-0.0023	-0.001				
0.09	0.1555	0.9354	0.1578	0.9354	-0.0023	0				
0.095	0.1711	0.9328	0.1732	0.9332	-0.0022	-0.0004				
0.1	0.1863	0.9303	0.1881	0.9307	-0.0018	-0.0004				
0.15	0.3235	0.915	0.3254	0.9162	-0.0019	-0.0012				
0.2	0.4376	0.9121	0.4389	0.9138	-0.0013	-0.0016				
0.25	0.5329	0.9173	0.5334	0.9201	-0.0005	-0.0028				
0.3	0.6131	0.9274	0.613	0.93	0.0001	-0.0026				
0.35	0.681	0.9402	0.6802	0.9424	0.0008	-0.0022				
0.4	0.7387	0.9544	0.7366	0.9571	0.0021	-0.0027				
0.45	0.788	0.9688	0.7864	0.9709	0.0016	-0.0021				
0.5	0.8302	0.983	0.8286	0.984	0.0016	-0.0009				
0.6	0.8977	1.0092	0.8955	1.0093	0.0022	-0.0001				
0.7	0.9481	1.0315	0.9455	1.0302	0.0026	0.0013				
0.8	0.986	1.0496	0.9831	1.0473	0.0029	0.0023				
0.9	1.0146	1.0642	1.0113	1.0611	0.0034	0.0031				
1	1.0363	1.0756	1.0319	1.0715	0.0044	0.004				
1.5	1.0879	1.104	1.0836	1.0983	0.0043	0.0056				
2	1.1013	1.1116	1.0991	1.107	0.0023	0.0046				
2.5	1.1048	1.1135	1.1029	1.11	0.0019	0.0035				
4	1.1061	1.1142	1.1057	1.111	0.0004	0.0033				
6	1.1061	1.1143	1.1059	1.1128	0.0002	0.0014				
8	1.1061	1.1143	1.1065	1.1144	-0.0004	-0.0002				
10	1.1061	1.1143	1.1079	1.1154	-0.0018	-0.0011				
12	1.1061	1.1143	1.11	1.1164	-0.0039	-0.0022				
14	1.1061	1.1143	1.1098	1.1164	-0.0037	-0.0021				
16	1.1061	1.1143	1.1102	1.1171	-0.0042	-0.0028				
18	1.1061	1.1143	1.1093	1.1184	-0.0032	-0.0041				
20	1.1061	1.1143	1.1111	1.119	-0.005	-0.0048				
Chart S-XII.6. Plot of Inversion Recovery Data at 7.0 °C in C₆D₆.

CIFIT Guesses and Fit Parameters

Initial values of parameters:
- 1/T1's
 - No. 0 = 0.8000
 - No. 1 = 0.2300
- M(inf)'s
 - No. 2 = 0.9000
 - No. 3 = 1.0000
- M(0)−M(inf)'s
 - No. 4 = -1.4000
 - No. 5 = 0.5000
- and M(0)'s for reference
 - No. 4 = -0.5000
 - No. 5 = 1.5000
- Rates
 - No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:
- # 0 = 1.985377 +/- 0.016838
- # 1 = 3.902108 +/- 0.063284
- # 2 = 1.106079 +/- 0.000643
- # 3 = 1.114254 +/- 0.000666
- # 4 = -1.289669 +/- 0.000852
- # 5 = -0.087541 +/- 0.001092
- # 6 = 1.614867 +/- 0.019787
7) Ring Flip Eyring Data at 24.0 °C in C₆D₆:

Figure S–XII.7. Stacked Spectra of Inversion Recovery Data at 24.0 °C in C₆D₆.

Table S–XII.7. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2
0.001	-0.1408	0.8095	-0.1478	0.8082	0.0069	0.0013
0.002	-0.1328	0.8063	-0.1398	0.8038	0.007	0.0025
0.003	-0.1248	0.8031	-0.1311	0.8008	0.0063	0.0023
0.004	-0.1168	0.8	-0.1231	0.7958	0.0063	0.0042
0.005	-0.1089	0.797	-0.1152	0.7939	0.0063	0.0031
0.007	-0.0934	0.7911	-0.0988	0.7885	0.0054	0.0026
0.01	-0.0706	0.7826	-0.0743	0.78	0.0037	0.0026
0.015	-0.0338	0.7696	-0.0356	0.7677	0.0018	0.0018
0.02	0.0014	0.7578	0.0021	0.756	-0.0007	0.0017
0.025	0.0352	0.7471	0.0366	0.7451	-0.0014	0.002
0.03	0.0676	0.7376	0.0701	0.7363	-0.0025	0.0012
0.035	0.0987	0.729	0.1014	0.7294	-0.0026	-0.0004
0.04	0.1286	0.7214	0.1325	0.7205	-0.0039	0.0009
0.045	0.1573	0.7147	0.1617	0.7149	-0.0044	-0.0002
0.05	0.1849	0.7088	0.1899	0.7098	-0.005	-0.001
0.055	0.2114	0.7037	0.2165	0.7059	-0.0051	-0.0022
0.06	0.2369	0.6993	0.2418	0.7005	-0.005	-0.0012
0.065	0.2614	0.6955	0.2654	0.6977	-0.004	-0.0022
0.07	0.285	0.6924	0.2901	0.6948	-0.0051	-0.0024
0.075	0.3077	0.6898	0.3128	0.6925	-0.0052	-0.0027
0.08	0.3296	0.6878	0.3342	0.6912	-0.0046	-0.0034
---	-----	-----	-----	-----	-----	-----
0.085	0.3507	0.6863	0.3561	0.6904	-0.0055	-0.0041
0.09	0.371	0.6852	0.3761	0.6887	-0.0051	-0.0035
0.095	0.3906	0.6845	0.3944	0.688	-0.0039	-0.0035
0.1	0.4095	0.6843	0.4125	0.6889	-0.0031	-0.0046
0.15	0.5666	0.6977	0.5661	0.7036	0.0005	-0.006
0.2	0.6804	0.7272	0.6762	0.7342	0.0042	-0.0071
0.25	0.7656	0.7615	0.7592	0.7668	0.0064	-0.0053
0.3	0.8308	0.7953	0.8241	0.7998	0.0068	-0.0045
0.35	0.8819	0.8261	0.8739	0.829	0.0079	-0.0029
0.4	0.9223	0.8531	0.9153	0.8533	0.0071	-0.0002
0.45	0.9548	0.8762	0.9458	0.8754	0.009	0.0007
0.5	0.981	0.8956	0.9721	0.8929	0.0089	0.0027
0.6	1.0195	0.9253	1.012	0.9216	0.0074	0.0037
0.7	1.0451	0.9456	1.0395	0.9398	0.0057	0.0058
0.8	1.0623	0.9594	1.0563	0.9534	0.006	0.006
0.9	1.0738	0.9687	1.0691	0.9617	0.0047	0.007
1	1.0816	0.975	1.0789	0.9682	0.0027	0.0068
1.5	1.0953	0.9861	1.0933	0.98	0.002	0.006
2	1.0972	0.9876	1.0958	0.9814	0.0014	0.0062
2.5	1.0974	0.9878	1.0969	0.983	0.0006	0.0048
4	1.0975	0.9878	1.0991	0.9836	-0.0016	0.0042
6	1.0975	0.9878	1.1	0.9862	-0.0025	0.0016
8	1.0975	0.9878	1.1017	0.9875	-0.0042	0.0004
10	1.0975	0.9878	1.1047	0.9902	-0.0072	-0.0024
12	1.0975	0.9878	1.1048	0.9901	-0.0073	-0.0022
14	1.0975	0.9878	1.1059	0.9922	-0.0084	-0.0043
16	1.0975	0.9878	1.1061	0.992	-0.0086	-0.0041
18	1.0975	0.9878	1.1067	0.9943	-0.0092	-0.0065
20	1.0975	0.9878	1.1064	0.9929	-0.0089	-0.0051
Chart S-XII.7. Plot of Inversion Recovery Data at 24.0 °C in C₆D₆

![Inversion Recovery Data at 24.0 °C in C₆D₆](image)

CIFIT Guesses and Fit Parameters

Initial values of parameters:

Parameter	No. 0	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6
$1/T_1$'s	0.800	0.230	0.900	1.000	-1.400	-0.500	20.000
M(inf)'s							
No. 2	0.900	1.000					
M(0)−M(inf)'s							
No. 4	-1.400	0.500					
and M(0)'s for reference							
No. 4	-0.500	1.500					

Rates

No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:

#	Value	Uncertainty
0	3.226847	0.060591
1	4.875314	0.138039
2	1.097482	0.001221
3	0.987835	0.001297
4	-1.246472	0.001904
5	-0.175058	0.002376
6	3.883901	0.078210
8) **Ring Flip Eyring Data at 34.2 °C in C₆D₆:**

![Figure S-XII.8. Stacked Spectra of Inversion Recovery Data at 34.2 °C in C₆D₆.](image)

Table S-XII.8. CIFIT Plot File.

d2 (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2
0.001	-0.0071	0.7384	-0.0072	0.7416	0.0001	-0.0032
0.002	0.0078	0.7322	0.0032	0.7305	0.0045	0.0017
0.003	0.0224	0.7263	0.0144	0.7224	0.008	0.0039
0.004	0.0367	0.7206	0.0294	0.7156	0.0073	0.005
0.005	0.0508	0.7153	0.0469	0.7115	0.0038	0.0038
0.007	0.078	0.7053	0.0736	0.6994	0.0044	0.0059
0.01	0.1168	0.6921	0.1155	0.687	0.0013	0.0052
0.015	0.1765	0.6746	0.1755	0.6711	0.0011	0.0035
0.02	0.2308	0.6618	0.2348	0.6611	-0.0041	0.0007
0.025	0.2802	0.6531	0.283	0.6525	0.0028	0.0005
0.03	0.3254	0.6477	0.3294	0.6492	-0.004	0.0015
0.035	0.3669	0.6453	0.3703	0.6468	-0.0034	0.0014
0.04	0.4051	0.6453	0.41	0.649	-0.005	0.0037
0.045	0.4403	0.6474	0.4448	0.6507	-0.0044	0.0033
0.05	0.473	0.6511	0.4769	0.655	-0.0038	0.0038
0.055	0.5035	0.6563	0.5085	0.6624	-0.0051	0.0006
0.06	0.5318	0.6627	0.5358	0.6677	-0.004	0.005
0.065	0.5584	0.67	0.5612	0.6742	-0.0028	0.0041
0.07	0.5833	0.6781	0.5853	0.6822	-0.002	0.0004
0.075	0.6068	0.6869	0.6089	0.6911	-0.0021	0.0042
0.08	0.6289	0.6961	0.6305	0.6997	-0.0016	0.0036
0.085	0.6499	0.7057	0.6487	0.7076	0.0011	-0.0019
0.09	0.6698	0.7156	0.6679	0.7177	0.0018	-0.0021
0.095	0.6886	0.7257	0.689	0.7276	-0.0003	-0.0019
0.1	0.7066	0.7359	0.7043	0.738	0.0023	-0.0021
0.15	0.8502	0.8357	0.8464	0.8367	0.0038	-0.001
0.2	0.9507	0.9191	0.9455	0.9182	0.0052	0.001
0.25	1.0246	0.9839	1.0193	0.9815	0.0053	0.0024
0.3	1.0799	1.033	1.075	1.0305	0.0049	0.0026
0.35	1.1214	1.0702	1.116	1.0667	0.0054	0.0034
0.4	1.1526	1.0981	1.1484	1.0951	0.0042	0.003
0.45	1.1761	1.1192	1.1709	1.1162	0.0052	0.0029
0.5	1.1937	1.135	1.1882	1.1315	0.0055	0.0035
0.6	1.217	1.1559	1.2129	1.1527	0.0041	0.0032
0.7	1.2302	1.1677	1.2293	1.1647	0.0009	0.0031
0.8	1.2377	1.1744	1.2353	1.1724	0.0024	0.002
0.9	1.2419	1.1782	1.2409	1.1767	0.0011	0.0016
1	1.2443	1.1804	1.2434	1.1775	0.0009	0.0029
1.5	1.2473	1.183	1.2459	1.1816	0.0014	0.0014
2	1.2475	1.1832	1.2461	1.1808	0.0013	0.0024
2.5	1.2475	1.1832	1.2469	1.1832	0.0005	0
4	1.2475	1.1832	1.2483	1.1826	-0.0008	0.0006
6	1.2475	1.1832	1.2517	1.1847	-0.0042	-0.0015
8	1.2475	1.1832	1.2505	1.1842	-0.003	-0.001
10	1.2475	1.1832	1.2526	1.1851	-0.0052	-0.0019
12	1.2475	1.1832	1.2535	1.1847	-0.0061	-0.0015
14	1.2475	1.1832	1.2535	1.185	-0.006	-0.0018
16	1.2475	1.1832	1.2526	1.185	-0.0051	-0.0018
18	1.2475	1.1832	1.253	1.1845	-0.0055	-0.0013
20	1.2475	1.1832	1.2539	1.1855	-0.0064	-0.0023
Chart S-XII.8. Plot of Inversion Recovery Data at 34.2 °C in C₆D₆

CIFIT Guesses and Fit Parameters

Initial values of parameters:

1/T1's
No. 0= 0.8000 No. 1= 0.2300

M(inf)'s
No. 2= 0.9000 No. 3= 1.0000

M(0)−M(inf)'s
No. 4= -1.4000 No. 5= 0.5000

and M(0)'s for reference
No. 4= -0.5000 No. 5= 1.5000

Rates
No. 6= 20.0000

Final Values of Fitted Parameters and Uncertainties:

0 = 4.474118 +/- 0.091534
1 = 7.032864 +/- 0.133538
2 = 1.247476 +/- 0.000842
3 = 1.183201 +/- 0.000876
4 = -1.269876 +/- 0.001608
5 = -0.438303 +/- 0.001956
6 = 11.707086 +/- 0.216313
9) **Ring Flip Eyring Data at 44.2 °C in C₆D₆:**

Figure S-XII.9. Stacked Spectra of Inversion Recovery Data at 44.2 °C in C₆D₆.

Table S-XII.9. CIFIT Plot File.

d² (s)	Observed M1	Observed M2	Fit M1	Fit M2	σM1	σM2	
0.001	0.4714	1.8291	0.4653	1.8277	0.0061	0.0014	
0.002	0.5473	1.8131	0.531	1.7995	0.0163	0.0136	
0.003	0.6199	1.8001	0.6017	1.7857	0.0182	0.0144	
0.004	0.6894	1.7898	0.6673	1.7702	0.0221	0.0196	
0.005	0.7561	1.7821	0.7378	1.7617	0.0183	0.0204	
0.007	0.8816	1.7734	0.8687	1.7592	0.0129	0.0142	
0.01	1.0525	1.7751	1.0614	1.7741	-0.0089	0.001	
0.015	1.2999	1.8079	1.3068	1.8088	-0.0069	-0.0009	
0.02	1.5113	1.8666	1.5175	1.8769	-0.0061	-0.0103	
0.025	1.6961	1.9418	1.7123	1.9592	-0.0163	-0.0173	
0.03	1.8605	2.0271	1.8	2.0393	-0.0095	-0.0121	
0.035	2.0093	2.1179	2.0231	2.137	-0.0138	-0.0191	
0.04	2.1457	2.2113	2.1697	2.2307	-0.024	-0.0195	
0.045	2.272	2.305	2.2835	2.317	-0.0115	-0.012	
0.05	2.39	2.3978	2.4021	2.4218	-0.0121	-0.024	
0.055	2.5008	2.4887	2.5117	2.4919	-0.0109	-0.0032	
0.06	2.6053	2.5772	2.6061	2.5852	-0.0007	-0.008	
0.065	2.7044	2.6629	2.713	2.6737	-0.0086	-0.0108	
0.07	2.7985	2.7456	2.805	2.7475	-0.0066	-0.0019	
0.075	2.888	2.8252	2.8936	2.8407	-0.0056	-0.0155	
0.08	2.9732	2.9017	2.9771	2.9075	-0.0039	-0.0058	
x	y	x	y	y	y	y	y
-----	-------	-------	-------	-------	-------	-------	-------
0.085	3.0546	2.9751	3.0549	2.9785	-0.0004	-0.0034	
0.09	3.1322	3.0455	3.1244	3.0419	0.0078	0.0036	
0.095	3.2063	3.1129	3.1953	3.1093	0.011	0.0036	
0.1	3.2771	3.1775	3.2726	3.1734	0.0045	0.0041	
0.15	3.8349	3.6885	3.8277	3.679	0.0072	0.0095	
0.2	4.1919	4.0162	4.178	3.9979	0.0139	0.0182	
0.25	4.4206	4.226	4.4011	4.2038	0.0195	0.0223	
0.3	4.5671	4.3605	4.5409	4.3362	0.0262	0.0243	
0.35	4.6609	4.4466	4.6363	4.4229	0.0246	0.0237	
0.4	4.721	4.5018	4.6876	4.4675	0.0334	0.0342	
0.45	4.7595	4.5371	4.7276	4.5034	0.0319	0.0338	
0.5	4.7842	4.5598	4.759	4.5398	0.0252	0.02	
0.6	4.8101	4.5836	4.7815	4.5527	0.0286	0.0309	
0.7	4.8208	4.5933	4.7984	4.5638	0.0224	0.0295	
0.8	4.8251	4.5973	4.7927	4.5775	0.0324	0.0199	
0.9	4.8269	4.599	4.8028	4.5726	0.0241	0.0263	
1	4.8276	4.5996	4.8052	4.5756	0.0224	0.024	
1.5	4.8282	4.6001	4.7936	4.5792	0.0346	0.0209	
2	4.8282	4.6001	4.819	4.5918	0.0092	0.0083	
2.5	4.8282	4.6001	4.8155	4.591	0.0126	0.0091	
4	4.8282	4.6001	4.8273	4.6027	0.0009	-0.0026	
6	4.8282	4.6001	4.848	4.6157	-0.0198	-0.0156	
8	4.8282	4.6001	4.8591	4.6378	-0.031	-0.0376	
10	4.8282	4.6001	4.8633	4.6253	-0.0352	-0.0251	
12	4.8282	4.6001	4.8708	4.635	-0.0427	-0.0349	
14	4.8282	4.6001	4.8774	4.6424	-0.0493	-0.0423	
16	4.8282	4.6001	4.8735	4.6442	-0.0453	-0.0441	
18	4.8282	4.6001	4.8743	4.6438	-0.0461	-0.0436	
20	4.8282	4.6001	4.8993	4.6413	-0.0711	-0.0412	
Chart S-XII.9. Plot of Inversion Recovery Data at 44.2 °C in C₆D₆.

CIFIT Guesses and Fit Parameters

Initial values of parameters:
- \(1/T1's\)
 - No. 0 = 0.8000 No. 1 = 0.2300
- \(M(\infty)'s\)
 - No. 2 = 0.9000 No. 3 = 1.0000
- \(M(0)-M(\infty)'s\)
 - No. 4 = -1.4000 No. 5 = 0.5000
- and \(M(0)'s\) for reference
 - No. 4 = -0.5000 No. 5 = 1.5000
- Rates
 - No. 6 = 20.0000

Final Values of Fitted Parameters and Uncertainties:
- \# 0 = 6.311334 +/- 0.328134
- \# 1 = 11.736610 +/- 0.387678
- \# 2 = 4.828156 +/- 0.005139
- \# 3 = 4.600111 +/- 0.005177
- \# 4 = -4.436135 +/- 0.013904
- \# 5 = -2.751749 +/- 0.015276
- \# 6 = 31.590672 +/- 1.895127
XIII. Evans Method Study of Complex 4.

An Evans method magnetic susceptibility experiment revealed no paramagnetic contact shift to dichloromethane solvent. We attempted to detect paramagnetism in complex 4 using the Evans method (equation 1). In the dry box, a solution of complex 4 (35.0 mg, 63.4 μmol) in 0.5 mL of CD$_2$Cl$_2$ was placed into an insert tube and sealed. The insert tube was placed into an NMR tube containing only CD$_2$Cl$_2$. The 1H NMR spectrum (600 MHz) was obtained at 25 °C (Figure S–XIII.1). No shift in the solvent peak could be detected; this signal was Lorentzian with half–height width of 4 Hz. Thus, we could not calculate the magnetic susceptibility of complex 4.

![Figure S–XIII.1. H NMR Spectrum of complex 4 (127 mM) in CD$_2$Cl$_2$.](image)

\[
\chi_m = \left(\frac{-3 \Delta f}{4 \pi fm} \right) + \chi_o + \left(\frac{\chi_o (d_o - d_s)}{m} \right) \quad \text{(eq. 1)}
\]

where:
- χ_m = mass magnetic susceptibility of the solute (cm3 g$^{-1}$)
- Δf = observed frequency shift of reference resonance (Hz)
- f = spectrometer frequency (Hz)
- m = mass of substance per cm3 of solution (g)
- χ_o = mass magnetic susceptibility of solvent (5.4×10^{-7} cm3 g$^{-1}$; calculated from molar magnetic solubility of dichloromethane)
- d_o = density of solution (1.362 g cm$^{-3}$)
- d_s = density of solvent (1.3606 g cm$^{-3}$)
XIV. B3LYP geometries and energies for all optimized minima and transition structures

Species A
HF energy = -1691.10366444
No imaginary frequency
Zero–point correction = 0.347339 (Hartree/Particle)
Thermal correction to Energy = 0.371984
Thermal correction to Enthalpy = 0.372928
Thermal correction to Gibbs Free Energy = 0.295084
Sum of electronic and zero–point Energies = -1690.756325
Sum of electronic and thermal Energies = -1690.731681
Sum of electronic and thermal Enthalpies = -1690.730736
Sum of electronic and thermal Free Energies = -1690.808580

Coordinates: A

Cl	8.57840000	3.96570000	6.39970000
Ni	10.09160000	3.12510000	7.78110000
N	11.46530000	2.26390000	8.76260000
P	11.33100000	4.87390000	7.23970000
N	8.86800000	1.76460000	8.43260000
C	8.02800000	1.28560000	7.58010000
H	12.57110000	1.81010000	8.11610000
H	12.60110000	1.98670000	7.03440000
C	13.60580000	1.15530000	8.78050000
H	14.47510000	0.79780000	8.21920000
C	13.48910000	0.97980000	10.17040000
H	14.28810000	0.48570000	10.73690000
C	12.33100000	1.42400000	11.88860000
H	12.20180000	1.27390000	11.88860000
C	11.27980000	2.05630000	10.10280000
B	9.82950000	2.43330000	10.76000000
C	9.73430000	1.95220000	12.32250000
H	9.90600000	0.86790000	12.48920000
H	8.74100000	2.18300000	12.75780000
H	10.46530000	2.48940000	12.96110000
C	8.79510000	1.60090000	9.78890000
C	7.14590000	0.13180000	8.04130000
H	6.53350000	-0.42230000	7.32250000
C	7.01610000	-0.04930000	9.42670000
H	6.28350000	-0.76000000	9.82920000
C	7.83880000	0.68480000	10.28560000
H	7.76140000	0.55920000	11.37020000
C	9.51970000	4.05380000	10.64360000
Species B
HF energy = -1691.08876337
no imaginary frequency
Zero-point correction = 0.345759 (Hartree/Particle)
Thermal correction to Energy = 0.371132
Thermal correction to Enthalpy = 0.372076
Thermal correction to Gibbs Free Energy = 0.290622
Sum of electronic and zero-point Energies = -1690.743004
Sum of electronic and thermal Energies = -1690.717631
Sum of electronic and thermal Enthalpies = -1690.716687
Sum of electronic and thermal Free Energies = -1690.798141

Coordinates: B
Cl 9.87520000 2.74130000 5.67950000
Ni 10.08950000 3.20370000 7.91860000
N 11.54140000 2.04430000 8.63670000
P 11.18320000 5.19120000 7.36300000
N 8.65950000 1.98410000 8.65350000
C 7.61730000 1.55820000 7.90130000
H 7.61040000 1.90860000 6.86250000
C 12.55820000 1.61570000 7.85250000
H 12.51750000 1.93520000 6.80450000
C 13.57530000 0.79700000 8.34440000
H 14.38260000 0.46770000 7.68200000
C 13.51810000 0.41440000 9.69470000
H 14.30030000 0.22450000 10.12350000
C 12.44380000 0.84380000 10.47990000
H 12.36890000 0.54220000 11.52970000
C 11.42460000 1.66870000 9.94710000
B	10.10470000	2.16330000	10.78600000
C	10.13530000	1.64820000	12.33830000
H	10.17600000	0.54470000	12.45390000
H	9.24080000	1.98630000	12.89980000
H	11.00710000	2.05190000	12.89280000
C	8.81300000	1.58550000	9.95590000
C	6.63200000	0.70970000	8.40920000
H	5.80230000	0.39100000	7.76970000
C	6.74960000	0.28280000	9.74070000
H	5.99970000	-0.38920000	10.17700000
C	7.84040000	0.71840000	10.50100000
H	7.95750000	0.39330000	11.54100000
C	10.00530000	3.81500000	10.73850000
H	10.90520000	4.30950000	11.15530000
H	9.12570000	4.17720000	11.30740000
H	9.87020000	4.25970000	9.71290000
C	10.09010000	6.34340000	6.41870000
H	9.23840000	6.65060000	7.05060000
H	10.63940000	7.24360000	6.08720000
H	9.69650000	5.79980000	5.54290000
C	12.62100000	4.96950000	6.23600000
H	12.29760000	4.37470000	5.36760000
H	13.02380000	5.94430000	5.89740000
H	13.42700000	4.41730000	6.76050000
C	11.87120000	6.26770000	8.70950000
H	11.06420000	6.55750000	9.40410000
H	12.62290000	5.70070000	9.28580000
H	12.34210000	7.17830000	8.29610000

Species TSBB'

HF energy = -1691.08394573
Imaginary frequency: 83i
Zero-point correction = 0.345215 (Hartree/Particle)
Thermal correction to Energy = 0.370008
Thermal correction to Enthalpy = 0.370952
Thermal correction to Gibbs Free Energy = 0.291136
Sum of electronic and zero-point Energies = -1690.738731
Sum of electronic and thermal Energies = -1690.713938
Sum of electronic and thermal Enthalpies = -1690.712994
Sum of electronic and thermal Free Energies = -1690.792810

Coordinates: TSBB'
Cl 2.25980000 1.65030000 0.00000000
Ni 0.18750000 0.64680000 0.00000000
N 0.38820000 -0.72730000 1.42600000
Atom	X	Y	Z
P	-0.7881	2.8298	0.0000
N	0.3882	-0.7273	-1.4260
C	1.2229	-0.5111	-2.4710
H	1.7901	0.4261	-2.4388
C	1.2229	-0.5111	2.4710
H	1.7901	0.4261	2.4388
C	1.3690	-1.4380	3.5038
H	2.0523	-1.2284	4.3332
C	0.6294	-3.7681	0.0000
H	-0.7909	-3.6810	2.2514
C	-0.3402	-1.8797	1.3084
H	-1.3122	-2.0542	0.0000
C	-2.1102	-3.4815	0.0000
H	-1.4505	-4.3746	0.0000
H	-2.7733	-3.5838	-0.8831
H	-2.7733	-3.5838	0.8831
C	-0.3402	-1.8797	-1.3084
C	1.3690	-1.4380	-3.5038
H	2.0523	-1.2284	-4.3332
C	0.6294	-2.6290	-3.4320
H	0.7181	-3.3861	4.2213
C	-0.2119	-2.8427	2.3356
H	-0.7909	-3.7681	2.2514
C	-0.3402	-1.8797	1.3084
H	-1.3122	-2.0542	0.0000
C	-2.1102	-3.4815	0.0000
H	-1.4505	-4.3746	0.0000
H	-2.7733	-3.5838	-0.8831
H	-2.7733	-3.5838	0.8831
C	-0.3402	-1.8797	-1.3084
C	1.3690	-1.4380	-3.5038
H	2.0523	-1.2284	-4.3332
C	0.6294	-2.6290	-3.4320
H	0.7181	-3.3861	4.2213
C	-0.2119	-2.8427	2.3356
H	-0.7909	-3.7681	2.2514
C	-0.3402	-1.8797	1.3084
H	-1.3122	-2.0542	0.0000
C	-2.1102	-3.4815	0.0000
H	-1.4505	-4.3746	0.0000
H	-2.7733	-3.5838	-0.8831
H	-2.7733	-3.5838	0.8831
C	-0.3402	-1.8797	-1.3084
C	1.3690	-1.4380	-3.5038
H	2.0523	-1.2284	-4.3332
C	0.6294	-2.6290	-3.4320
H	0.7181	-3.3861	4.2213
C	-0.2119	-2.8427	2.3356
H	-0.7909	-3.7681	2.2514
C	-0.3402	-1.8797	1.3084
H	-1.3122	-2.0542	0.0000
C	-2.1102	-3.4815	0.0000
H	-1.4505	-4.3746	0.0000
H	-2.7733	-3.5838	-0.8831
H	-2.7733	-3.5838	0.8831
C	-0.3402	-1.8797	-1.3084
C	1.3690	-1.4380	-3.5038
H	2.0523	-1.2284	-4.3332
C	0.6294	-2.6290	-3.4320
H	0.7181	-3.3861	4.2213
C	-0.2119	-2.8427	2.3356
H	-0.7909	-3.7681	2.2514
C	-0.3402	-1.8797	1.3084
H	-1.3122	-2.0542	0.0000
C	-2.1102	-3.4815	0.0000
H	-1.4505	-4.3746	0.0000
H	-2.7733	-3.5838	-0.8831
H	-2.7733	-3.5838	0.8831
C	-0.3402	-1.8797	-1.3084
C	1.3690	-1.4380	-3.5038
H	2.0523	-1.2284	-4.3332
C	0.6294	-2.6290	-3.4320
H	0.7181	-3.3861	4.2213
C	-0.2119	-2.8427	2.3356
H	-0.7909	-3.7681	2.2514
C	-0.3402	-1.8797	1.3084
H	-1.3122	-2.0542	0.0000
C	-2.1102	-3.4815	0.0000
H	-1.4505	-4.3746	0.0000
H	-2.7733	-3.5838	-0.8831
H	-2.7733	-3.5838	0.8831
C	-0.3402	-1.8797	-1.3084
C	1.3690	-1.4380	-3.5038
XV. Comparison of Selected Bond Distances and Angles for Compounds 4/A

Table S-XV.1. Comparison and Measured and Calculated Geometries.

Metric	Diffraction data	DFT data
Ni(1)–P(1)	2.2260(9)	2.2108
Ni(1)–Cl(1)	2.1742(9)	2.2146
Ni(1)–N(1)	1.893(3)	1.895
Ni(1)–N(2)	1.945(2)	1.942
P(1)–Ni(1)–N(2)	170.48(8)	171.65
P(1)–Ni(1)–N(1)	94.08(8)	94.58
P(1)–Ni(1)–Cl(1)	86.82(3)	85.99
Cl(1)–Ni(1)–N(1)	169.87(9)	172.19
Cl(1)–Ni(1)–N(2)	92.31(8)	92.56
N(1)–Ni(1)–N(2)	88.44(10)	87.97

XVI. References

1) Hodgkins, T. G.; Powell, D. R. *Inorg. Chem.* **1996**, *35*, 2140–2148.
2) (a) Williams, T. J.; Kershaw, A. D.; Li, V.; Wu, X. *J. Chem. Educ.* **2011**, *88*, 665–669. (b) Bain, A. D.; Cramer, J. A. *J. Magn. Reson.* **1996**, *118 A*, 21–27.
3) Morse, P. M.; Spencer, M. D.; Wilson, S. R.; Girolami, G. S. *Organometallics* **1994**, *13*, 1646–1655.
4) (a) Schubert, E. M. *J. Chem. Ed.* **1992**, *69*, 62. (b) Evans, D. F. *J. Chem. Soc.* **1959**, 2003–2005.
5) (a) Eaton, D. R.; Phillips, W. D.; Caldwell, D. J. *J. Am. Chem. Soc.* **1963**, *85*, 397–406. (b) Sacconi, L.; Paoletti, P.; Ciampani, M. *J. Am. Chem. Soc.* **1963**, *85*, 411–416. (c) Holm, R. H.; Chakravorty, A.; Dudek, G. O. *J. Am. Chem. Soc.* **1964**, *86*, 379–387. (d) Chakravorty, A.; Holm, R. H. *J. Am. Chem. Soc.* **1964**, *86*, 3999–4004. (e) Everett, G. W., Jr.; Holm, R. H. *J. Am. Chem. Soc.* **1965**, *87*, 2117–2128.

Complete list of authors for reference 26 of the main text

(26) Gaussian 09, Revision A.02: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.