Antagonism of the Azoles to Olorofim and Cross-Resistance Are Governed by Linked Transcriptional Networks in Aspergillus fumigatus

Norman van Rhijn, Sam Hemmings, Isabelle S. R. Storer, Clara Valero, Hajer Bin Shuraym, Gustavo H. Goldman, Fabio Gsaller, Jorge Amich, Michael J. Bromley

Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom

Antimicrobial Resistance Network, University of Manchester, Manchester, United Kingdom

Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, Brazil

Institute of Molecular Biology/Biocenter, Innsbruck Medical University, Innsbruck, Austria

Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain

ABSTRACT Aspergillosis, in its various manifestations, is a major cause of morbidity and mortality. Very few classes of antifungal drugs have been approved for clinical use to treat these diseases and resistance to the first-line therapeutic class, the triazoles, is increasing. A new class of antifungals that target pyrimidine biosynthesis, the orotomides, are currently in development with the first compound in this class, olorofim in late-stage clinical trials. In this study, we identified an antagonistic action of the triazoles on the action of olorofim. We showed that this antagonism was the result of an azole-induced upregulation of the pyrimidine biosynthesis pathway. Intriguingly, we showed that loss of function in the higher order transcription factor, HapB a member of the heterotrimeric HapB/C/E (CBC) complex or the regulator of nitrogen metabolic genes AreA, led to cross-resistance to both the azoles and olorofim, indicating that factors that govern resistance were under common regulatory control. However, the loss of azole-induced antagonism required decoupling of the pyrimidine biosynthetic pathway in a manner independent of the action of a single transcription factor. Our study provided evidence for complex transcriptional cross-talk between the pyrimidine and ergosterol biosynthetic pathways.

IMPORTANCE Aspergillosis is a spectrum of diseases and a major cause of morbidity and mortality. To treat these diseases, there are a few classes of antifungal drugs approved for clinical use. Resistance to the first line treatment, the azoles, is increasing. The first antifungal, olorofim, which is in the novel class of orotomides, is currently in development. Here, we showed an antagonistic effect between the azoles and olorofim, which was a result of dysregulation of the pyrimidine pathway, the target of olorofim, and the ergosterol biosynthesis pathway, the target of the azoles.

KEYWORDS Aspergillus fumigatus, olorofim, orotomide, antimicrobial resistance, antifungal, transcription factor, aspergillosis, antagonism, metabolism, metabolic rewiring

Invasive and chronic forms of aspergillosis affect over 3 million people resulting in more than 300 thousand deaths per year (1). Only three classes of antifungals are currently available to treat aspergillosis, with triazoles used as first-line therapy in most centers (2). Resistance to the azoles is rising, which is linked to the use of triazole compounds in agriculture and horticulture (3, 4). It is predicted that more resistant strains of A. fumigatus will be seen as azole use and will be expanded to combat climate

Editor James W. Kronstad, University of British Columbia
Copyright © 2022 van Rhijn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
Address correspondence to Michael J. Bromley, mike.bromley@manchester.ac.uk.
The authors declare a conflict of interest.
Michael J. Bromley is a former employee of F2G Ltd. F2G currently funds a PhD position in the laboratory. F2G was not involved in any of the experimentation or analysis of data in this study.
Received 2 August 2022
Accepted 29 September 2022
Published 26 October 2022
change-associated increases in fungal crop damage (5). The development of novel classes of antifungals will be a key component in addressing the emerging resistance problem. Fortunately, several drugs represent novel classes of antifungals currently in development for the treatment of invasive aspergillosis (IA), including ibrexafungerp, which has recently (2021) gained FDA approval for the treatment of vulvovaginal candidiasis, and fosmanogepix, which targets glycosylphosphatidylinositol (GPI) anchor biosynthesis and olorofim (phase 3) (6). Olorofim (formerly known as F901318 and under development by F2G, Ltd.) is of particular interest because, like fosmanogepix, it has a novel mechanism of action that has not been exploited clinically (7). Because olorofim is orally bioavailable, it presents a realistic alternative to azoles for the long-term treatment of chronic and allergic infections and especially resistant infections (8). Moreover, it could potentially be used in combination therapy strategies to suppress the emergence of resistance.

Olorofim acts by inhibiting the enzyme dihydroorotate dehydrogenase (DHODH), encoded by the pyrE gene in A. fumigatus, which is a crucial enzyme within the pyrimidine biosynthesis pathway and is, thus, required for both DNA and RNA synthesis (7). Structural and biochemical analysis of dihydroorotate dehydrogenase (DHODH) suggests olorofim competes with CoQ to bind to DHODH, preventing the oxidation of dihydroorotate to orotate. DHODHs are grouped into 2 classes according to sequence similarity and subcellular localization. Both mammals and most fungi have class 2 DHODH, which is bound to the inner mitochondrial membrane (9). The human DHODH only shares a 30% protein sequence identity with the A. fumigatus DHODH, and olorofim has been demonstrated to be >2,200-fold more potent against the A. fumigatus enzyme (7). Inhibition of the pyrimidine biosynthesis pathway by olorofim prevents the germination of A. fumigatus conidia and causes hyphae to undergo morphological changes (10). Prolonged exposure of germlings and vegetative hyphae to olorofim also causes extensive isotropic expansion that is then followed by cell lysis (11).

Olorofim is effective against Coccidioides immitis, Scedosporium spp., Madurella mycetomatis, Lomentospora prolificans, and several Aspergillus species (12–18). However, olorofim has reduced activity against Fusarium solani species complex and Fusarium dimerum and is inactive against Mucorales (19). Olorofim is also effective against triazole-resistant A. fumigatus isolates and cryptic Aspergillus species (20, 21). In several murine models of aspergillosis, scedosporiosis, and lomentosporiosis, olorofim treatment significantly reduced fungal burden and mortality (15, 22). A recent study suggests that levels of resistance to olorofim in a collection of clinical isolates of A. fumigatus are low. Only 1 of 976 clinical isolates exhibited preexisting olorofim resistance caused by a single nucleotide polymorphism (SNP) in the pyrE gene (23).

In this study, we identified a concerning antagonistic effect of the triazoles on the action of olorofim in A. fumigatus. We showed that this antagonistic effect was governed by an azole-induced upregulation of the pyrimidine biosynthetic pathway. However, this did not appear to be regulated by the action of a single transcription factor. Through screening the collection of aspergillus fumigatus nulls (COFUN) A. fumigatus transcription factor null mutant library, we identified four transcription factors that regulated susceptibility to olorofim (24). Existing published literature and our phenotypic and transcriptomic data revealed these transcription factors regulated genes involved in processes immediately upstream of the pyrimidine biosynthesis pathway. Notably, two transcription factor null mutants, ΔhapB and ΔareA, had elevated MICs to olorofim and were resistant to the azole class of antifungals, highlighting potential routes to cross-resistance.

RESULTS
Azoles were antagonistic to the action of olorofim in a manner consistent with azole-mediated upregulation of the pyrimidine biosynthetic pathway. To standardize assays throughout our experiments, the MIC of olorofim against Aspergillus fumigatus MFIG001 was determined. The MIC was defined as the minimum concentration of olorofim at which no germination from Aspergillus spores was observed. Microscopic evaluation revealed the MIC of olorofim to be 0.06 mg/L for A. fumigatus MFIG001, consistent with
previous findings of other *A. fumigatus* isolates (20). The effect of orolofim on the growth of *A. fumigatus* was further evaluated by measuring the optical density of the plates used to determine the MIC (Fig. 1A). The maximal growth observed (optical density at 600 nm [OD$_{600}$] = 0.39) and absence of growth (OD$_{600}$ = 0.04) was separated by a 64-fold difference in drug concentration, showing the effect of orolofim is progressive over a long range of concentrations until achieving total growth inhibition. This was in stark contrast to the inhibitory effects of the azoles on *A. fumigatus*, where the difference between maximal and minimal growth typically occurred over a drug concentration not exceeding 8-fold (Fig. S1). Because this range is broad, we considered it useful to measure the concentration at which growth was inhibited by 50% (referred to as IC$_{50}$ to distinguish from MIC$_{50}$, which is a MIC determination made of populations). For MFIG001, the IC$_{50}$ for orolofim was 0.0057 mg/L, whereas for itraconazole it was 0.21 mg/L. Because orolofim inhibited pyrimidine biosynthesis, it would be expected that the action of the drug would be fully reversed by supplementing the medium with an excess of exogenous pyrimidines (7). To confirm that the growth inhibition was due to directly targeting the pyrimidine biosynthesis pathway, the MIC was determined with the addition of 10 mM uridine and 10 mM uracil (Fig. 1B). Under these conditions, there was no observed reduction in *A. fumigatus* growth,
and at all olorfim concentrations, the median OD600 did not fall below control levels, indicating that there are no significant off-target effects of this drug.

Resistance to the clinical azoles has become a global problem that is being addressed in multiple centers by using combination therapy with either an echinocandin or amphotericin B. If approved for use, olorfim may be used in the same way. We, therefore, investigated the potential interaction in activity between the triazoles, voriconazole, itraconazole, and olorfim against CEA10, MFIG001, and a TR34 L98H azole-resistant isolate generated in the MFIG001 background (26). To our surprise, given the distinct mechanisms of action of the orotomides and the azoles, we observed a clear unidirectional antagonism by the azoles on olorfim in both liquid cultures using a checkerboard assay (fractional inhibitory concentration index [FICI] was 6 and 4 for CEA10 and TR34 L98H, respectively) resulting in a 4-fold increase in MIC to olorfim and solid medium as evidenced by the growth induced by voriconazole within the halo expected for olorfim (Fig. 1C and D). Interestingly, we did not see the same antagonism between olorfim and manogepix, another late-stage antifungal compound (Fig. S2). Significantly, the antagonism of the azoles to olorfim was also observed under nongrowth inhibitory concentrations of voriconazole for the TR34 L98H azole-resistant isolate, showing that this antagonistic response was independent of theazole antifungal activity (Fig. 1E).

To gain an understanding of the potential mechanisms driving this antagonism, we evaluated transcriptomic data for *A. fumigatus* MFIG001 exposed to increasing concentrations of itraconazole (Fig. 1F). As expected, the ergosterol biosynthetic pathway was differentially regulated throughout itraconazole concentrations. At sub-MIC levels of itraconazole, we observed a significant upregulation of genes in the pyrimidine biosynthetic pathway and those pathways that generate its precursors (Data Set S1). Most strikingly, the nitrate assimilation pathway, *glt1*, which encoded glutamate synthase, and the first three steps in the pyrimidine pathway that utilized glutamate (encoded by *glnA*-AFUB_070010, *pyrD*-AFUB_085720, and *pyrABC*-AFUB_077330 and its orthologues AFUB_025880 and AFUB_054340) were upregulated in sub-MIC levels of itraconazole (Fig. 1E). Interestingly, many of these genes were downregulated in supra-MICs of itraconazole, suggesting metabolic arrest (27). This led us to hypothesize that both the pyrimidine pathway and ergosterol biosynthesis pathways were potentially coregulated.

Deletion of HapB, AreA, DevR, and AcdX changed olorfim susceptibility. As we observed antagonism between the azoles and olorfim, and coregulation of those pathways upon azole exposure, we hypothesized that both pathways may be regulated by the same transcription factors. To assess this coregulation and identify novel transcriptional regulators associated with differential olorfim susceptibility and azole antagonism, the COFUN transcription factor knockout (TFKO) library was screened against olorfim at a concentration that reduces the growth of the isogenic wild-type isolate (MFIG001) by about 20% (0.002 mg/L). At this concentration, we were able to identify strains that have the potential to be resistant or hypersensitive (Fig. 2A) while utilizing resource-limiting levels of a drug.

Three transcription factor null mutants (Δ*areA*, Δ*hapB*, and Δ*devR*) showed reproducible increased relative fitness in the presence of olorfim and elevated MICs compared to MFIG001 (Fig. 2B to D). Remarkably, two of these mutants (Δ*areA* and Δ*hapB*) were also resistant to the azole class of antifungals (24). Loss of AreA, a transcription factor that had a global role in activating the expression of genes involved in nitrogen acquisition and processing (28), or loss of HapB, which along with HapC and HapE comprised the CCAAT binding complex (CBC) (29) resulted in a 2-fold increase in MIC to olorfim compared to the isotype control MFIG001. IC50 values for these strains were impacted much more with 50% growth inhibition reached at 0.04 mg/L (4-fold increase) for Δ*areA* and 0.07 mg/L (8-fold increase) for Δ*hapB* (Fig. 2B and C). This simultaneous decrease in azole and olorfim susceptibility suggests a higher-level regulatory link between ergosterol biosynthesis and pyrimidine biosynthesis. DevR is a bHLH transcription factor involved in sporulation and melanin biosynthesis (30). The
ΔdevR mutant showed a significant reduction in susceptibility to orofom at concentrations ranging from 0.008 mg/L to 0.06 mg/L (MIC) and had an IC50 of 0.025 mg/L (Fig. 2D). Although the MIC for this strain increased to >0.125 mg/L most spores did not germinate at this concentration.

One isolate (ΔAFUB_056620, ΔacdX) showed a reproducible significant increase in sensitivity to orofom and had a MIC of 0.03 mg/L and an IC50 of 0.006 mg/L, 2-fold lower than *A. fumigatus* MFIG001 (Fig. 2E). The acdX gene encoded a 612 amino acid transcription factor that contained six WD40 repeat units but no other functional domains, as shown by a simple modular architecture research tool (SMART) domain search. A reciprocal BLAST search of the AFUB_056620 protein sequence found a match to the *Saccharomyces cerevisiae* transcription factor Spt8. However, the proteins only shared 44% identity of the entire protein sequence. In *S. cerevisiae*, Spt8 formed part of the SAGA (Spt-Ada-Gcn5-acetyltransferase) complex (31), which is known to act as a transcriptional activator under several stress conditions. While the orthologue of AcdX in other fungi generally contained six WD40 domains, in species like *N. crassa* and *A. terreus*, only five domains are present. However, the significance of this is unclear. In *A. nidulans*, AcdX has been described to be functional in the SAGA complex and is involved in repressing genes in acetate metabolism, and has a regulatory role in the proline metabolic pathway (32).

Transcription factor mutants with altered susceptibility to orofom had defects in nitrogen assimilation. Further phenotypic analysis of the null mutants with differential susceptibility to orofom revealed that all had differential growth on *Aspergillus* complete medium (ACM) (Fig. 3A and B) and *Aspergillus* minimal medium (AMM), which contained ammonium tartrate as a nitrogen source (Fig. 3A and C). The hapB, devR, areA, and acdX null mutants showed a reduction of radial growth on ACM of 28%, 22%, 12%, and 24%, respectively, compared to the isotype control (*P < 0.05*). On AMM, the hapB mutant showed an increase in radial growth (58%). However, colony growth was more diffuse than the isotype strain (Fig. 3A and C). Because orofom inhibited DHODH, which acted
within the pyrimidine biosynthetic pathway, we hypothesized that these growth defects could be reflecting an alteration in the abundance of precursors of this pathway. As expected for a strain that was unable to initiate a nitrate assimilation response, when ammonium tartrate was substituted with nitrate, the ΔareA isolate was unable to grow. Similarly, the growth defect for the ΔhapB isolate was exacerbated in this media. The growth defects of the other transcription factor null mutants were not rescued (Fig. 3D and Fig. S3). Glutamine substitution rescued the growth rate defects of ΔacdX and ΔareA.
although significant phenotypic growth defects were still present even after supplementation (Fig. 3E). Similarly, urea almost completely rescued ΔacdX and proline fully rescued ΔhapB, ΔdevR, and ΔacdX (Fig. 3F and G). Taken together, these results showed that these transcription factor null mutants had defects in nitrogen utilization that, given its connection with the pyrimidine pathway, could be linked to olorofim susceptibility.

Changes in susceptibility to olorofim in ΔdevR and ΔacdX mutants were caused by opposing regulation of pathways preceding pyrimidine biosynthesis. To facilitate our understanding of how these transcription factors were functioning to alter olorofim sensitivity, we performed a whole transcriptome analysis. Upon olorofim exposure (1 × MIC) for 1 h, a modest 41 genes and 185 genes were upregulated and downregulated, respectively (>2-fold differentially regulated; P < 0.05). (B) KEGG pathways were enriched within differentially regulated genes, blue categories denote those associated with downregulated genes, and red denotes those with upregulated genes. (C) Interactions of proteins involved in response to olorofim as determined by StringDB. Proteins derived from upregulated transcripts are in red and downregulated in blue.
associated with pathways that synthesize precursors of the pyrimidine biosynthetic pathway were identified, including oxaloacetate metabolism and glutamate biosynthesis (Fig. 4B and C; Data Set S1). Genes associated with tyrosine metabolism, secondary metabolite biosynthesis, glycolysis/glucogenesis, and valine, leucine, and isoleucine degradation were enriched among downregulated genes (Fig. 4B). A search tool for the retrieval of interacting genes/proteins (STRING) analysis of differentially regulated genes showed an interconnected network of genes involved in ergosterol biosynthesis, the TCA cycle and nitrogen metabolism (Fig. 4C).

To characterize the basis of differential orofim susceptibility in the \(\Delta devR \) and \(\Delta acdX \) mutants, the transcriptomes of these two mutants were compared to the wild-type (Data Set S2). In the absence of orofim, 510 and 137 genes were, respectively, downregulated and upregulated in the \(\Delta devR \) isolate while 212 were downregulated and 194 upregulated upon orofim exposure. In the absence of orofim, notable enriched functional categories included downregulation of genes involved in tyrosine metabolism and an upregulation of genes involved in the biosynthesis of branched-chain amino acids and metabolism of arginine and proline, the latter of which was also seen under orofim exposure (Fig. 5A). A detailed pathway analysis under orofim challenge of genes involved in pathways upstream of and including the pyrimidine pathway. The target of orofim, DHODH, is highlighted. Blue denotes more than 1-fold downregulated, yellow denotes more than 1-fold upregulated, and red denotes more than 5-fold upregulated. The right of each box is associated with \(\Delta acdX \) and the left with \(\Delta devR \).
Antagonism of the Azoles to Orofom in A. fumigatus

contribute to orotate precursors were also significantly upregulated, notably the nitrate assimilation pathway (NAP [cmaA, niaD, niiA]), and glutamate, glutamine, and carbamoyl-P synthesis). Pathways that competed with orotidine biosynthesis for l-glutamate were not differentially regulated in any of the assessed mutants (Data Set S2). Our transcriptional data, therefore, suggested that nitrogen metabolism was probably altered in this strain in ways that favored the generation of precursors for orotate biosynthesis and, hence, could explain the reduced sensitivity of devR null mutant to orofom.

The transcriptome of the orofom hypersensitive ΔacdX mutant also revealed that proline and arginine metabolism were upregulated compared to the wild-type, but genes involved in the NAP and glutamate, glutamine, and carbamoyl-P synthesis pathways were downregulated suggesting that AcdX and DevR have directly opposing functions on these linked pathways (Fig. 5C and D) and providing further evidence to suggest that regulation of these pathways was important for orofom sensitivity.

Our transcriptomic data and the phenotype of the null mutants led us to assess the effect of pyrimidine pathway precursors on orofom susceptibility in the transcription factor null mutants. A. fumigatus will utilize glutamine as a preferential nitrogen source even in the presence of other nitrogen-containing compounds, such as nitrate, because pathways that process these precursors are repressed (33, 34). Intriguingly, however, when nitrate was added to the glutamine containing RPMI 1640, the sensitivity of A. fumigatus to orofom increased indicating that even in the presence of preferential nitrogen sources, nitrate could initiate an adaptive response (Fig. S4). In the orofom resistant, nitrate nonutilizing strain ΔareA, the addition of nitrate to RPMI reduced susceptibility levels back to that observed for the wild-type. For the ΔdevR isolate, where the nitrate assimilation pathway, as well as all other pathways leading to pyrimidine biosynthesis, were upregulated, the addition of nitrate did not reduce orofom susceptibility. The orofom hypersensitive acdX null was the most impacted by changes in nitrogen sources and counterintuitively given the downregulation of the NAP in this strain, the addition of nitrate reduced orofom susceptibility. These data, combined with results from our transcriptomic analysis suggested that modification of environmental nitrogen sources and or dysregulation of nitrogen metabolism directly impacted changes in orofom sensitivity.

Azole-mediated antagonism of orofom was linked to dysregulation of pyrimidine precursor pathways but was not mediated by transcription factors that governed drug resistance. Next, we assessed if the transcription factor null mutants with differential susceptibility to orofom retained antagonism by voriconazole. To our surprise, antagonism, as determined by the area of growth inside the orofom halo, was not affected in these mutants (Fig. 6A and Fig. S5). This indicated that antagonism was more complex and potentially required multiple regulatory factors. This led us to hypothesize that we could affect antagonism by unlinking the pyrimidine pathway from the transcriptional effect of the addition of sub-MICs of azole. Therefore, we replaced the promoters of glnA (AFUB_070010), pyrABCN (AFUB_077330), and its paralogues AFUB_025880, pyrD (AFUB_085720) and pyrE (AFUB_026780) with the doxycycline-regulatable promoter (tetOFF). As expected, replacing the native promoter of pyrE with the highly expressing and inducible tetOFF promoter increased the expression of pyrE (c. 25-fold; Fig. S6A) and a dramatic decrease in susceptibility to orofom when assessed by broth microdilution (Fig. 6B). In keeping with our hypothesis that genes upstream of pyrE were also important in mediating orofom susceptibility, modest but reproducible decreases in susceptibility were also observed when the promoters of either pyrABCN or pyrD were replaced. Next, we assessed the susceptibility of these mutants on a solid medium using a disk assay, by measuring the diameter of the inhibition halo. Strikingly under the same conditions, the susceptibility of the strains to the azoles increased, suggesting that strains may be hypersensitive to the azoles if resistance to orofom was induced by upregulation of this pathway (Fig. 6C).

To ensure there was no significant impact on changing the susceptibility of the azoles in our assessment of antagonism in our plate assay, doxycycline levels were titrated to ensure the halo induced by orofom and voriconazole was almost identical to that of MFIG001 (Fig. S6B). Consistent with our hypothesis that azole-induced antagonism was
mediated by the pyrimidine biosynthesis pathway, antagonism (as measured by fungal growth within the halo or via a checkerboard assay) was reduced in a stepwise manner within genes of the pyrimidine pathway and completely ablated in the tetOFF:pyrE regardless of the amount of doxycycline used (Fig. 6D; Fig. S6C and S7).

In conclusion, we identified high-level coordination of the regulation of azole and orotomide resistance, seemingly caused by crosstalk between the control of the ergosterol

FIG 6 Antagonism between orotomide and the azoles through dysregulation of the pyrimidine pathway. (A) Antagonism for the TF mutants with differential susceptibility to orotomide (n = 6). (B) Broth microdilution assay by EUCAST methodology to orotomide for MFIG001 and the generated tetOFF mutants in the pyrimidine pathway (n = 3). (C) The halo size for the generated tetOFF mutants in the pyrimidine pathways to voriconazole and orotomide (n = 4). Statistical significance was assessed using a one-way ANOVA with Dunnett’s correction (P < 0.05 are shown). (D) Antagonism for the tetOFF mutants within the pyrimidine pathway (n = 6). Statistical significance was assessed using a one-way ANOVA with Dunnett’s correction (P < 0.05 are shown).
and pyrimidine biosynthetic pathways. These pathways were induced in the presence of the azoles, resulting in an antagonistic effect on the novel DHODH inhibitor oloro.

DISCUSSION

Olorofim is a novel antifungal, currently in phase 3 clinical trials. It has a broad spectrum of activity against most molds and acts by inhibiting the pyrimidine biosynthetic pathway through disruption of DHODH activity (7). Our preliminary analysis of the inhibitory effects of oloro revealed that the MIC and the IC₅₀ were separated over a relatively large concentration range (5-fold). This contrasted with what has been observed with itraconazole and other azoles where this concentration spread was typically 2-fold. The clinical implication of this finding remains unclear. However, oloro will likely support clearance of infection at doses well below the MIC. At these lower concentrations, however, drug exposure will be imparting selective pressure and has the potential to induce the production of mutagenic precursors that may drive the emergence of resistance as has been shown for several antibiotics (35). As with other anti-infectives that act by inhibiting a single biological target there is clear potential for the emergence of resistance. Understanding these mechanisms will provide a framework for the development of diagnostics to detect resistance rapidly in the clinic.

Our previous survey of itraconazole sensitivity in the *A. fumigatus* COFUN transcription factor knockout library (36) revealed 6 null mutants that had decreased sensitivity (ranging from 4 to 6-fold increase in MIC compared to the isogenic control) and 6 had increased sensitivity (4 to 8-fold decrease in MIC) to itraconazole. Here, our screen revealed that only 1 mutant (Δacdx) showed increased sensitivity while 3 showed decreased sensitivity (ΔhapB, ΔdevR, and ΔareA) to oloro. The changes in sensitivity in these isolates were less extreme than seen for the azoles, indicating that the frequency of oloro resistance may be lower than that seen for itraconazole. Indeed, this hypothesis was supported by a recent study that revealed the frequency of oloro resistance was variable between strains ranging from 1.3 × 10⁻³ to 6.9 × 10⁻⁵, while for itraconazole resistance occurred at an order of magnitude higher (1.2 × 10⁻⁶ and 3.3 × 10⁻⁸) (23). It is unsurprising, given the mechanism of action of oloro, that the transcription factors identified in this screen either have well-defined roles in regulating nitrogen utilization or have been linked to this function in our study.

What is remarkable, however, given the distinct mechanisms of action of the two compound classes, loss of function of either AreA and HapB resulted in cross-class resistance to both the azoles and orotomides. HapB is a member of the heterotrimeric CCAAT-binding complex (CBC) and, alongside HapC and HapE, regulates the expression of over a third of the genome (26), including several genes involved in ergosterol biosynthesis. The hapB null displayed the highest levels of resistance to oloro and was able to germinate at 0.12 mg/L, which is 8-fold higher than the parental isolate but within the concentration range needed for clinical utility. In *A. nidulans*, AreA is a positive regulator of many genes that are required for utilization of nitrogen sources other than glutamate or ammonia (37) with loss of function resulting in an inability to utilize among other nitrogen sources, nitrate, nitrite, uric acid, and many amino acids (38). Reassuringly, however, drug concentrations in animal models are tolerated well above the increased MIC levels of the null mutants identified in this screen. Dosing 8 mg/kg at 8 h intervals in mice resulted in peak serum levels of 2.5 to 3 mg/L (8). Olorofim could be tolerated at doses as high as 30 mg/kg intravenously, giving scope for higher drug levels *in vivo*, if required. In cynomolgus monkeys, a single oral dose of oloro resulted in peak levels of 0.605 to 0.914 mg/L in serum for female and male animals, respectively (39).

Our studies have shown there is a clear unidirectional antagonism of the azoles on oloro, mediated by azole-induced overexpression of the pyrimidine biosynthetic pathway and/or metabolic flux through this pathway. While concerning, the antagonism was only evident when relatively low levels of both drugs were used. It is interesting to note that the TR₃₄ L98H isolate used in this study had reduced susceptibility to oloro compared...
to the CEA10 isolate, and the antagonism drove the MIC above 0.5 mg/L. Whether this is of clinical significance remains to be determined. Interestingly, overexpression of any part of the pyrimidine biosynthetic pathway resulted in a modest increase in susceptibility of A. fumigatus to the azoles, indicating that some strains that were resistant to olorofin may be more susceptible to the azoles and highlighting that there is complex crosstalk between the ergosterol and pyrimidine biosynthetic pathways. If these drugs are to be used in combination in a clinical setting, careful evaluation of respective drug levels at the site of infection to ensure sufficient concentration of drug to avoid antagonism would be sensible. The consequences of using azoles and olorofin in combination for the treatment of strains harboring the TR34 L98H allele also need further evaluation.

In summary, we explored the mechanism behind olorofin susceptibility through a systematic analysis of the COFUN transcription factor null library. All the mutants we identified that had altered sensitivity to olorofin had associated defects in nitrogen metabolism. Two of these mutants, ΔdevR, and ΔacdX, showed dysregulation of genes involved in metabolic pathways immediately upstream of the pyrimidine pathway, potentially leading to a differential flux of metabolites into this pathway. Importantly, we identified two transcription factors, the CBC and AreA, that regulated cross-resistance to both the azoles and olorofin. Lastly, we detected an antagonistic effect between olorofin and the azoles, which we could modulate through transcriptionally unlinking the pyrimidine pathway from upstream pathways.

MATERIALS AND METHODS

Fungal strains. Conidia of Aspergillus fumigatus MFIG001 (a derivative of CEA10) and transcription factor null mutants (24, 40) were prepared by inoculating strains in vented 25 cm² tissue culture flasks with Sabouraud Dextrose agar (Oxoid, Hampshire, England) and incubating at 37°C for 48 h. Spores were harvested in PBS + 0.01% Tween 20 by filtration through Miracloth. Spores were counted using a hemocytometer (Marienfeld Superior, Baden-Württemberg, Germany). To generate the TR34/L98H isolate the coding region of cyp51A was amplified by PCR (using primers cyp51a-fw and cyp51a-rv) from an azole-resistant clinical isolate (F10017) and transformed into a previously generated isolate that harbored the tandem repeat region of cyp51A was amplified by PCR (using primers cyp51a-fw and cyp51a-rv) from an azole-resistant clinical isolate (F10017) and transformed into a previously generated isolate that harbored the tandem repeat duplication (TR34) in the MFIG001 (26). Transformants were selected for voriconazole resistance (>16 mg/L) and validated by Sanger sequencing.

Olorofin MIC screening. Olorofin was a kind gift of F2G Ltd. The MIC of olorofin against A. fumigatus was assessed using the European Committee for Antimicrobial Susceptibility Testing (EUCAST) methodology (19, 41). Briefly, 2 × 10⁵ spores/mL (in 100 μL) were added to a CytoOne 96-well plate (StarLab, Brussels, Belgium) containing 1 × RPMI-1640 medium (Sigma-Aldrich, St. Louis, MO), 165 mM 3-(N-morpholino) propane sulfonic acid (MOPS) buffer (pH 7.0), 2% glucose, with olorofin 2-fold dilution series ranging from 0.1 μg/L to 0.25 mg/L and a drug-free control (n = 4). Additionally, a serial dilution of olorofin containing 10 mM uracil and uridine was performed. The 96-well plates were incubated at 37°C for 48 h. The MIC was determined as the minimum drug concentration at which no germination was observed. Optical density was measured at 600 nm using a Synergy HTX Multi-Mode Microplate Reader (BioTek, Winooski, VT). In keeping with research laboratory-based definitions, but in contrast to definitions used clinically, we defined in vitro resistance as a strain that was less susceptible to the drug than the parental isolate (42).

Olorofin sensitivity screening of the A. fumigatus transcription factor null mutant library. In total, 2 × 10⁵ spores/mL from each of the 484 members of the transcription knockout library were added to 1 × RPMI 1640 medium, 165 mM MOPS buffer (pH 7.0), 2% glucose in each well of a CytoOne 96-well plate (n = 4). Plates were incubated at 37°C for 48 h. Fitness was calculated by dividing the optical density of respective null mutants by the MFIG001 control. Relative fitness in olorofin was calculated by dividing fitness in olorofin with general growth fitness of the transcription factor null mutants using the same microculture conditions in 1 × RPMI 1640 medium, 165 mM MOPS buffer (pH 7.0), and 2% glucose without olorofin (n = 4). Optical density was measured at 600 nm on a Synergy HTX Multi-Mode Microplate Reader (BioTek, Winooski, VT).

RNA extraction. For RNA extraction, 1 × 10⁶ spores/mL of A. fumigatus MFIG001, ΔAFUB_056620, and ΔAFUB_030440 were inoculated into 50 mL of Aspergillus complete medium (ACM) (43) and incubated for 18 h at 37°C in a rotary shaker (180 rpm). Mycelia were harvested using filtration through Miracloth (Merck Millipore) and washed in 1 × RPMI 1640 medium. Approximately 1 g of mycelia was added to shake flasks containing 50 mL RPMI 1640 medium, 165 mM MOPS buffer (pH 7.0), and 2% glucose and then incubated for 1 h at 37°C in a rotary shaker (180 rpm) in the presence or absence of 0.062 mg/L olorofin (n = 3) or the presence or absence of 0.25 mg/L, 0.5 mg/L, 1 mg/L, or 2 mg/L itraconazole (n = 3) and incubated for 4 h. Mycelia was filtered through Miracloth and snap-frozen using liquid nitrogen and kept at −80°C until required.

To extract RNA, 1 mL of TRIzol reagent (Sigma-Aldrich) and 710 to 1180 μL acid-washed glass beads (Sigma-Aldrich) were added to frozen mycelia and placed in a TissueLyser II (Qiagen, Hilden, Germany) for 3 min at 30 Hz. The solution was centrifuged (12,000 rpm) for 1 min at 4°C. The aqueous phase was
added to 200 μL of chloroform and centrifuged (12,000 rpm) for 10 min at room temperature. The supernatant was added to 0.2 M sodium citrate, 0.3 M sodium chloride, and 25% (vol/vol) isopropanol and then left at room temperature for 10 min. This solution was centrifuged (12,000 rpm) for 15 min at 4°C. The supernatant was removed, and the pellet was washed in 70% (vol/vol) ethanol and then resuspended in RNase-free water (Thermo Fisher Scientific, Waltham, MA). RNA samples were treated with RNase-Free DNase (Promega, Madison, WI) and purified using an RNeasy Minikit (Qiagen). RNA quality and quantity were assessed using gel electrophoresis and using a NanoDrop™ 2000/2000c Spectrophotometer (Thermo Fisher Scientific). All RNA extractions were carried out in triplicate.

Transcriptomic analysis. RNA sequencing was carried out by the Genomic Technologies Core Facility (GTCF) at the University of Manchester. Sequencing libraries were prepared from mRNA using TruSeq Stranded mRNA assay (Illumina, San Diego, CA). Samples were sequenced on a single lane on an Illumina HiSeq2500 (Illumina). Low-quality reads of resulting fastq files were removed using FastQC and trimmed using Trimmomatic (quality >20, sliding window average of 4 bases) (44). Bowtie was used to align libraries to the A. fumigatus A1163 genome assembly GCA_000150145.1 with gene annotation from CADRE/Ensembl Fungi v24 (45). Differential expression analysis was performed using DESeq2 (46).

Functional category and gene ontology enrichment analysis was carried out using FungiFun2 2.2.8, converting genes to Af293 gene names to allow using the KEGG option (47). Genes that showed over 2-fold in differential expression and Benjamin-Hochberg FDR <0.01 underwent enrichment analysis. StringsDB analysis was performed by only, including genes with at least two connections.

Phenotypic analysis. For colony images, 500 spores per isolate were spotted onto solid ACM or Aspergillus minimal medium (AMM) and left to dry. Plates were incubated at 37°C for 72 h and imaged. Growth on solid AMM supplemented with different nitrogen sources (50 mM ammonium tartrate, 10 mM sodium nitrate, 10 mM l-glutamine, 10 mM urea, or 10 mM l-proline) was assessed by spotting 500 spores from each isolate (n = 3). Plates were incubated at 37°C for 72 h. MICs were determined using the same supplementation as the phenotypic test with a serial dilution of olorofim (ranging from 0.1 μL/L to 0.25 mg/L). The 96-well plates were incubated for 48 h at 37°C, and growth was determined by microscopic evaluation.

Checkerboard assays. For assessing drug combination efficacies of itraconazole and olorofim against A. fumigatus, we used a checkerboard assay similar to the EUCAST MIC testing described above. Two-fold serial dilutions of itraconazole were made across the x-axis and olorofim serial dilutions across the y-axis. The MIC was determined by microscopy by visually assessing the well containing the lowest drug concentration with nongerminated spores. The fractional inhibitory concentration index (FICI) was calculated as the MIC in combination divided by the MIC of individual drugs (48).

Generation of TetOFF mutants. The tetOFF cassette was amplified from pSK606 (49) containing 50 bp homology arms targeted to the promoter of each target gene (Table S1). These PCR products were used as a repair template for CRISPR-Cas9 mediated transformation (50) using the corresponding crRNA for each gene (Table S1). Transformants were selected using pyrithiamine (concentration) containing AMM (ranging from 0.1 μL/L to 0.25 mg/L) against A. fumigatus mBio. We also thank F2G for supplying the antifungal olorofim. We also thank the Genomic Technology Core Facility, and the Bioinformatics Core Facility at the University of Manchester for their technical support.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

DATA SET S1, XLSX file, 2.7 MB.
DATA SET S2, XLSX file, 10.8 MB.
FIG S1, JPG file, 0.02 MB.
FIG S2, JPG file, 0.3 MB.
FIG S3, JPG file, 0.8 MB.
FIG S4, JPG file, 0.5 MB.
FIG S5, JPG file, 0.9 MB.
FIG S6, JPG file, 0.1 MB.
FIG S7, JPG file, 0.1 MB.
TABLE S1, XLSX file, 0.01 MB.

ACKNOWLEDGMENTS

We thank F2G for supplying the antifungal olorofim. We also thank the Genomic Technology Core Facility, and the Bioinformatics Core Facility at the University of Manchester for their technical support.

Figure S1 shows the alignment of A. fumigatus A1163 genome assembly GCA_000150145.1 with gene annotation from CADRE/Ensembl Fungi v24 (45). Differential expression analysis was performed using DESeq2 (46).

Transcriptomic analysis. RNA sequencing was carried out by the Genomic Technologies Core Facility (GTCF) at the University of Manchester. Sequencing libraries were prepared from mRNA using TruSeq Stranded mRNA assay (Illumina, San Diego, CA). Samples were sequenced on a single lane on an Illumina HiSeq2500 (Illumina). Low-quality reads of resulting fastq files were removed using FastQC and trimmed using Trimmomatic (quality >20, sliding window average of 4 bases) (44). Bowtie was used to align libraries to the A. fumigatus A1163 genome assembly GCA_000150145.1 with gene annotation from CADRE/Ensembl Fungi v24 (45). Differential expression analysis was performed using DESeq2 (46).

Functional category and gene ontology enrichment analysis was carried out using FungiFun2 2.2.8, converting genes to Af293 gene names to allow using the KEGG option (47). Genes that showed over 2-fold in differential expression and Benjamin-Hochberg FDR <0.01 underwent enrichment analysis. StringsDB analysis was performed by only, including genes with at least two connections.

Phenotypic analysis. For colony images, 500 spores per isolate were spotted onto solid ACM or Aspergillus minimal medium (AMM) and left to dry. Plates were incubated at 37°C for 72 h and imaged. Growth on solid AMM supplemented with different nitrogen sources (50 mM ammonium tartrate, 10 mM sodium nitrate, 10 mM l-glutamine, 10 mM urea, or 10 mM l-proline) was assessed by spotting 500 spores from each isolate (n = 3). Plates were incubated at 37°C for 72 h. MICs were determined using the same supplementation as the phenotypic test with a serial dilution of olorofim (ranging from 0.1 μL/L to 0.25 mg/L). The 96-well plates were incubated for 48 h at 37°C, and growth was determined by microscopic evaluation.

Checkerboard assays. For assessing drug combination efficacies of itraconazole and olorofim against A. fumigatus, we used a checkerboard assay similar to the EUCAST MIC testing described above. Two-fold serial dilutions of itraconazole were made across the x-axis and olorofim serial dilutions across the y-axis. The MIC was determined by microscopy by visually assessing the well containing the lowest drug concentration with nongerminated spores. The fractional inhibitory concentration index (FICI) was calculated as the MIC in combination divided by the MIC of individual drugs (48).

Generation of TetOFF mutants. The tetOFF cassette was amplified from pSK606 (49) containing 50 bp homology arms targeted to the promoter of each target gene (Table S1). These PCR products were used as a repair template for CRISPR-Cas9 mediated transformation (50) using the corresponding crRNA for each gene (Table S1). Transformants were selected using pyrithiamine (concentration) containing AMM (ranging from 0.1 μL/L to 0.25 mg/L) against A. fumigatus mBio. We also thank F2G for supplying the antifungal olorofim. We also thank the Genomic Technology Core Facility, and the Bioinformatics Core Facility at the University of Manchester for their technical support.

Supplemental material is available online only.

DATA SET S1, XLSX file, 2.7 MB.
DATA SET S2, XLSX file, 10.8 MB.
FIG S1, JPG file, 0.02 MB.
FIG S2, JPG file, 0.3 MB.
FIG S3, JPG file, 0.8 MB.
FIG S4, JPG file, 0.5 MB.
FIG S5, JPG file, 0.9 MB.
FIG S6, JPG file, 0.1 MB.
FIG S7, JPG file, 0.1 MB.
TABLE S1, XLSX file, 0.01 MB.

ACKNOWLEDGMENTS

We thank F2G for supplying the antifungal olorofim. We also thank the Genomic Technology Core Facility, and the Bioinformatics Core Facility at the University of Manchester for their technical support.
Antagonism of the Azoles to Olorofim in A. fumigatus

This work was supported by the Wellcome Trust grant number 219551/Z/19/Z and 208396/2/Z/17/2 to MJB. C.V. was funded by a postdoctoral fellowship from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-BEPE 2020/011315-5).

Michael J. Bromley is a former employee of F2G Ltd. F2G currently funds a Ph.D. position in the laboratory. F2G was not involved in any of the experimentation or analysis of data in this study.

N.V.R. designed and performed the experiments, and analysis wrote and edited the manuscript. S.H. designed and performed experiments and analyses. I.S.R.S. designed and performed experiments and analyses. C.V. designed and performed experiments and analyses. H.B.S designed and performed experiments and analyses. G.H.G. provided funding and edited the manuscript. F.G. designed and performed experiments and analyses. J.A. designed and performed experiments and analyses. M.J.B. provided funding, designed the experiments, analyzed the data, and wrote and edited the manuscript.

REFERENCES

1. Bongomin F, Gago S, Oladele RO, Denning DW. 2017. Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi (Basel) 3:57. https://doi.org/10.3390/jof3040057.

2. Patterson TF, Thompson GR, Denning DW, Fishman JA, Hadley S, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Nguyen MH, Segal BH, Steinbach WJ, Stevens DA, Walsh TJ, Wingard JR, Young J-AH, Bennett JE. 2016. Practice guidelines for the diagnosis and management of Aspergillus: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 63:e1–e60. https://doi.org/10.1093/cid/ciw326.

3. Snelders E, Huis In ’t Veld RAG, Rijs AJMM, Kema GHJ, Melchers WJG. 2018. Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. Eur J Med Chem 183:1–24. https://doi.org/10.1016/j.ejmech.2019.111681.

4. Rhodes J, Abdolrasouli A, Dunne K, Sewell TR, Zhang Y, Ballard E, Brackin S, Pippione AC, Sainas S, Lolli ML. 2019. Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. Eur J Med Chem 183:1–24. https://doi.org/10.1016/j.ejmech.2019.111681.

5. van Rhijn N, Bromley M. 2021. The consequences of our changing environment: new opportunities for treatment of multidrug-resistant fungal diseases. mBio 8:e01157-17. https://doi.org/10.1128/mBio.01157-17.

6. Verbon A, van de Sande W. 2020. Madurella mycetomatis, the main causative agent of eumycetoma, is highly susceptible to olorfim. J Antimicrob Chemother 75:936–941. https://doi.org/10.1093/jac/dkz529.

7. Wiederhold NP, Law D, Birch M. 2017. Dihydroorotate dehydrogenase inhibitor F901318 has potent in vitro activity against Scedosporium species and Lomentospora prolificans. J Antimicrob Chemother 72:1977–1980. https://doi.org/10.1093/jac/dkk065.

8. Wiederhold NP, Najjar LX, Jaramillo R, Olivo M, Birch M, Law D, Rex JH, Catano G, Patterson TF. 2018. The orotomide olorfim is efficacious in an experimental model of central nervous system coccidiodiomycosis. Antimicrob Agents Chemother 62:e00999-18. https://doi.org/10.1128/AAC.00999-18.

9. Lackner M, Birch M, Naschberger V, Drescher J, Beckmann N, Lass-Flörl C, Binder U. 2018. Dihydroorotate dehydrogenase inhibitor olorfim exhibits promising activity against all clinically relevant species within Aspergillus section Terrei. J Antimicrob Chemother 73:3068–3073. https://doi.org/10.1093/jac/dky329.

10. Jorgensen KM, Astvad KM, Hare RK, Arendrup MC. 2018. EUCAST determination of olorfim (F901318) susceptibility of mold species, method validation, and MICs. Antimicrob Agents Chemother 62:e00487-18.

11. Bull JB, Rijs AJMM, Meis JF, Birch M, Law D, Melchers WJG, Verweij PE. 2017. In vitro activity of the novel antifungal compound F901318 against difficult-to-treat Aspergillus isolates. J Antimicrob Chemother 72:2548–2552. https://doi.org/10.1093/jac/dkx177.

12. Rivero-Menendez O, Cuenca-Estrella M, Alastruey-Izquierdo A. 2019. In vitro activity of olorfim (F901318) against clinical isolates of cryptic species of Aspergillus by EUCAST and CLSI methodologies. J Antimicrob Chemother 74:1586–1590. https://doi.org/10.1093/jac/dkz078.

13. Seyedmousavi S, Chang YC, Youn JH, Law D, Birch M, Rex JH, Kwon-Chung KJ. 2019. Efficacy of olorfim (F901318) against Aspergillus fumigatus, A. nidulans, and A. tanneri in murine models of profound neutropenia and chronic granulomatous disease. Antimicrob Agents Chemother 63:e00129-19. https://doi.org/10.1128/AAC.00129-19.

14. Verweij PE. 2009. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl Environ Microbiol 75:4053–4057. https://doi.org/10.1128/AEM.00231-09.

15. van Rhijn N, Bromley M. 2021. The consequences of our changing environment: new opportunities for treatment of multidrug-resistant fungal diseases. Nof J 7:376. https://doi.org/10.3390/jof7050367.

16. Rauceo AM, Coler-Reilly A, Larson L, Spec A. 2020. Hope on the horizon: novel fungal treatments in development. Open Forum Infect Dis 7: oofa016. https://doi.org/10.1093/ofid/ofaa016.

17. Oliver JD, Sibley GEM, Beckmann N, Dobb KS, Slater MJ, McEntee L, du Pré S, Livermore J, Bromley MJ, Wiederhold NP, Hope WW, Kennedy AJ, Law D, Birch M. 2016. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc Natl Acad Sci U S A 113: 12809–12814. https://doi.org/10.1073/pnas.1608304113.

18. Hope WW, McEntee L, Livermore J, Whalley S, Johnson A, Farrington N, Kolamunnage-Donna R, Schwartz J, Kennedy A, Law D, Birch M, Rex JH. 2017. Pharmacodynamics of the orotomides against Aspergillus fumigatus: new opportunities for treatment of multidrug-resistant fungal disease. mBio 8:e01157-17. https://doi.org/10.1128/mBio.01157-17.

19. Boschi D, Pippione AC, Sainas S, Lolli ML. 2019. Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. Eur J Med Chem 183:1–24. https://doi.org/10.1016/j.ejmech.2019.111681.

20. du Pre S, Birch M, Law D, Beckmann N, Sibley GE, Bromley MJ, Read ND, Oliver JD. 2020. The dynamic influence of olorfim (F901318) on the cell morphology and organization of living cells of Aspergillus fumigatus. J Fungi (Basel) 6:647. https://doi.org/10.3390/jof6020047.

21. du Pre S, Beckmann N, Almeida MC, Sibley GE, Law D, Brand AC, Birch M, Read ND, Oliver JD. 2018. Effect of the novel antifungal drug F901318 (olorofim) on growth and viability of Aspergillus fumigatus. Antimicrob Agents Chemother 62:e00231-18. https://doi.org/10.1128/AAC.00231-18.

22. Biswas C, Law D, Birch M, Halliday C, Sorrell TC, Rex J, Slavin M, Chen SC. 2018. In vitro activity of the novel antifungal compound F901318 against Australian Scedosporium and Lomentospora fungi. Med Mycol 56:1050–1054. https://doi.org/10.1093/mycol/myx161.

23. Kirchhoff L, Dittmer S, Weisner AK, Buer J, Rath PM, Steinmann J. 2020. Anti-biofilm activity of antifungal drugs, including the novel drug olorfim, against Lomentospora prolificans. J Antimicrob Chemother 75:2133–2140. https://doi.org/10.1093/jac/dkaa157.

24. Lim W, Eadie K, Konings M, Rijnders B, Fahal AH, Oliver JD, Birch M, Verbon A, van de Sande W. 2020. Madurella mycetomatis, the main causative agent of eumycetoma, is highly susceptible to olorfim. J Antimicrob Chemother 75:936–941. https://doi.org/10.1093/jac/dkz529.

25. Seyedmousavi S, Chang YC, Law D, Birch M, Rex JH, Kwon-Chung KJ. 2019. Efficacy of olorfim (F901318) against Aspergillus fumigatus, A. nidulans, and A. tanneri in murine models of profound neutropenia and chronic granulomatous disease. Antimicrob Agents Chemother 63:e00129-19. https://doi.org/10.1128/AAC.00129-19.
Paul S, Cook P, Parker JE, Kelly S, Cramer RA, Latgé J-P, Moye-Rowley S, Bignell E, Bowyer P, Bromley MJ. 2020. The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nat Commun 11:1–16. https://doi.org/10.1038/s41467-019-14191-1.

Soothill JS, Ward R, Girling AJ. 1992. The IC50: an exactly defined measure of antibiotic sensitivity. J Antimicrob Chemother 29:137–139. https://doi.org/10.1093/jac/29.2.137.

Gsaller F, Hortschansky P, Furukawa T, Carr PD, Rash B, Capilla J, Müller C, Brachter F, Bowyer P, Haas H, Brakhage AA, Bromley MJ. 2016. Sterol biosynthesis andazole tolerance is governed by the opposing actions of SrbA and the CCAAT binding complex. PLoS Pathog 12:e1005775. https://doi.org/10.1371/journal.ppat.1005775.

Poulsen JS, Madsen AM, White JK, Nielsen JL. 2021. Physiological responses of Aspergillus niger challenged with itraconazole. Antimicrobial Agents Chemother 65:e02549-20. https://doi.org/10.1128/AAC.02549-20.

Amaar YG, Moore MM. 1998. Mapping of the nitrate-assimilation gene cluster (crnA-niiA-niiD) and characterization of the nitrile reductase gene (niiA) in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Genet 33:206–215. https://doi.org/10.1007/s002940050328.

Huitschansky P, Ando E, Tuppatsch K, Arikawa H, Kobayashi T, Kato M, Haas H, Brakhage AA. 2015. Deciphering the combinatorial DNA-binding code of the CCAAT-binding complex and the iron-regulatory basic region leucine zipper (bZIP) transcription factor HapX. J Biol Chem 290:6508–65070. https://doi.org/10.1074/jbc.M114.628677.

Valiente V, Baldin C, Hortschansky P, Jain R, Thywillen A, SlaBurger M, Shelest E, Heinnekamp T, Brakhage AA. 2016. The Aspergillus fumigatus conidial melanin production is regulated by the bifunctional bHLH DevR and MADS-box RlmA transcription factors. Mol Microbiol 102:321–335. https://doi.org/10.1111/mmi.13462.

Sermwittayawong D, Tan S. 2006. SAGA binds TBP via its Spt8 subunit in human cells. EMBO J 25:3791–3800. https://doi.org/10.1038/sj.emboj.7601265.

Georgakopoulos P, Lockington RA, Kelly JM. 2012. SAGA complex components and acetate repression in Aspergillus nidulans. G3 (Bethesda) 2:1357–1367. https://doi.org/10.1534/g3.112.003913.

Marzluf GA. 1993. Regulations of sulfur and nitrogen metabolism in filamentous fungi. Annu Rev Microbiol 47:31–55. https://doi.org/10.1146/annurev.micro.47.100193.000335.

Krappmann S, Braus G. 2005. Nitrogen metabolism of Aspergillus and its role in pathogenicity. Med Mycol 43:31–40. https://doi.org/10.1080/1369378400042271.

Kohanski MA, Depristo MA, Collins JJ. 2010. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 37:311–320. https://doi.org/10.1016/j.molcel.2010.01.003.

Furukawa T, van Rhijn N, Fraczek M, Gsaller F, Davies E, Carr P, Gago S, Fortuné-Grant R, Rahman S, Gilsenan JM, Haulder E, Kowalski CH, Raj S, Paul S, Cook P, Parker JE, Kelly S, Cramer RA, Latgé J-P, Moye-Rowley S, Bignell E, Bowyer P, Bromley MJ. 2020. The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nat Commun 11:427. https://doi.org/10.1038/s41467-019-14191-1.

Hensel M, Arst HN, Aufauvre-Brown A, Holden DW. 1998. The role of the Aspergillus fumigatus areA gene in invasive pulmonary aspergillosis. Mol Gen Genet 258:553–557. https://doi.org/10.1007/s004380050767.

Arst HN, Cove DJ. 1973. Nitrogen metabolite repression in Aspergillus nidulans. Mol Gen Genet 126:111–141. https://doi.org/10.1007/BF00330988.

Law D, Birch M, Oliver J. 2015. Pharmacokinetics of the Novel Antifungal Agent F901318 in Mice, Rats and Cynomolgus monkey. Fifty-fifth Interscience Conference on Antimicrobial Agents and Chemotherapy. San Diego, California.

Bertuzzi M, Van Rhijn N, Krappmann S, Bowyer P, Bromley MJ, Bignell EM. 2020. On the lineage of Aspergillus fumigatus fungi isolates in common laboratory use. Med Mycol 59:7–13. https://doi.org/10.1093/mycopathology/maa075.

Rodriguez-Tudela JL, Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Monzon A, Cuenca-Estrella M. 2008. Epidemiological cutoffs and cross-resistance to azole drugs in Aspergillus fumigatus. Antimicrobial Agents Chemother 52:2468–2472. https://doi.org/10.1128/AAC.00156-08.

Berman J, Krysan DJ. 2020. Drug resistance and tolerance in fungi. Nat Rev Microbiol 18:319–331. https://doi.org/10.1038/s41579-019-0322-2.

Barratt RW, Johnson GB, Ogata WN. 1965. Wild-type and mutant stocks of Aspergillus nidulans. Genetics 52:233–246. https://doi.org/10.1093/genetics/52.1.233.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170.

Howe KL, Contreras-Moreira B, De Silva N, Maslen G, Akanni W, Allen J, Alvarez-Jarreta J, Barba M, Bolser DM, Cambell L, Carbajo M, Chakiachvili M, Christensen M, Cummins C, Cuzick A, Davis P, Fexova S, Gall A, George N, Gil L, Gupta P, Hammond-Kosack KE, Haskell E, Hunt SE, Jaiswal P, Janacek SH, Kersey PJ, Langridge N, Maheswari U, Maurel T, McDowell MD, Moore B, Muffato M, Naamati G, Naitiani S, Olson A, Papatheodorou I, Patricio M, Paulini M, Pedro H, Perry E, Preece J, Rosello M, Russell M, Sitnik V, Staines DM, Stein J, Tello-Ruiz MK, Trevisan SJ, Urban MJ. 2020. Ensembl Genomes 2020-enabled non-vertebrate genomic research. Nucleic Acids Res 48:D686–D693. https://doi.org/10.1093/nar/gkz2890.

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8.

Priebe S, Kreisel C, Horn F, Guthke R, Linde J. 2015. FungiFun2: a comprehensive online resource for systematic analysis of gene lists from fungal species. Bioinformatics 31:445–446. https://doi.org/10.1093/bioinformatics/btu627.

Odds FC. 2003. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52:1. https://doi.org/10.1093/jac/dkg301.

Wanka F, Cairns T, Boecker S, Berens C, Happel A, Zheng X, Sun J, Sitnik V, Staines DM, Stein J, Tello-Ruiz MK, Trevisan SJ, Urban MJ. 2020. On the lineage of Aspergillus fumigatus isolates in common laboratory use. Med Mycol 59:7–13. https://doi.org/10.1093/mycopathology/maa075.

van Rhijn N, Furukawa T, Zhao C, McCann BL, Bignell E, Bromley MJ. 2020. Development of a marker-free mutagenesis system using CRISPR-Cas9 in the pathogenic mould Aspergillus fumigatus. Fungal Genet Biol 145:103479. https://doi.org/10.1016/j.fgb.2020.103479.