New inequalities for F-convex functions pertaining generalized fractional integrals

HÜSEYİN BUDAK, PINAR KÖSEM, ARTION KASHURI

Abstract. In this paper, the authors, utilizing F-convex functions which are defined by B. Samet, establish some new Hermite-Hadamard type inequalities via generalized fractional integrals. Some special cases of our main results recaptured the well-known earlier works.

1. Introduction

Let $f : I \subseteq R \rightarrow R$ be a convex function on the interval I of real numbers and $a, b \in I$ with $a < b$. If f is a convex function then the following double inequality, which is well known in the literature as the Hermite–Hadamard inequality, holds [17]:

$$f \left(\frac{a+b}{2} \right) \leq \frac{1}{b-a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{2}. \tag{1}$$

Both inequalities in (1) hold in the reversed direction if f is concave.

Over the last decade, this classical double inequality has been improved and generalized in a number of ways, see [5, 7, 8, 13, 18], [23]–[25] and the references therein. Also, many types of convexities have been defined, such as quasi–convex in [6], pseudo–convex in [14], strongly convex in [20], ε–convex in [11], s–convex in [10], h–convex in [28], etc. Recently, Samet in [21], has defined a new concept of convexity that depends on a certain function satisfying some axioms, that generalizes different types of convexity.

Recall the family \mathcal{F} of mappings $F : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times [0, 1] \rightarrow \mathbb{R}$ satisfying the following axioms:

2010 Mathematics Subject Classification. Primary: 26D07; Secondary: 26D10, 26D15, 26A33.

Key words and phrases. Convex function, trigonometrically ρ-convex functions.

Full paper. Received 9 December 2019, revised 21 July 2020, accepted 28 July 2020, available online 16 September 2020.
(A1) If \(e_i \in L^1(0,1), i = 1, 2, 3 \), then for every \(\lambda \in [0,1] \), we have
\[
\int_0^1 F(e_1(t), e_2(t), e_3(t), \lambda) dt = F \left(\int_0^1 e_1(t) dt, \int_0^1 e_2(t) dt, \int_0^1 e_3(t) dt, \lambda \right);
\]

(A2) For every \(u \in L^1(0,1), w \in L^\infty(0,1) \) and \((z_1, z_2) \in \mathbb{R}^2 \), we have
\[
\int_0^1 F(w(t)u(t), w(t)z_1, w(t)z_2, t) dt = T_{F,w} \left(\int_0^1 w(t)u(t) dt, z_1, z_2 \right),
\]
where \(T_{F,w} : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) is a function that depends on \((F, w) \), and it is nondecreasing with respect to the first variable;

(A3) For any \((w, e_1, e_2, e_3) \in \mathbb{R}^4, e_4 \in [0,1] \), we have
\[
w F(e_1, e_2, e_3, e_4) = F(we_1, we_2, we_3, e_4) + L_w,
\]
where \(L_w \in \mathbb{R} \) is a constant that depends only on \(w \).

Definition 1. Let \(f : [a, b] \to \mathbb{R}, (a, b) \in \mathbb{R}^2, a < b \), be a given function. We say that \(f \) is a convex function with respect to some \(F \in \mathcal{F} \) (or \(F \)-convex function), if and only if:
\[
F(f(tx + (1-t)y), f(x), f(y), t) \leq 0, \quad (x, y, t) \in [a, b] \times [a, b] \times [0,1].
\]

Remark 1. 1) Let \(\varepsilon \geq 0 \), and let \(f : [a, b] \to \mathbb{R}, (a, b) \in \mathbb{R}^2, a < b \), be an \(\varepsilon \)-convex function, see [11], that is
\[
f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) + \varepsilon, \quad (x, y, t) \in [a, b] \times [a, b] \times [0,1].
\]
Define the functions \(F : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times [0,1] \to \mathbb{R} \) by
\[
(2) \quad F(e_1, e_2, e_3, e_4) = e_1 - e_4 e_2 - (1-e_4) e_3 - \varepsilon
\]
and \(T_{F,w} : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) by
\[
(3) \quad T_{F,w}(e_1, e_2, e_3) = e_1 - \left(\int_0^1 tw(t) dt \right) e_2 - \left(\int_0^1 (1-t)w(t) dt \right) e_3 - \varepsilon.
\]
For
\[
(4) \quad L_w = (1-w)\varepsilon,
\]
it is clear that \(F \in \mathcal{F} \) and
\[
F(f(tx + (1-t)y), f(x), f(y), t) = f(tx + (1-t)y) - tf(x) - (1-t)f(y) - \varepsilon \leq 0,
\]
that is \(f \) is an \(F \)-convex function. Particularly, taking \(\varepsilon = 0 \), we show that if \(f \) is a convex function then \(f \) is an \(F \)-convex function with respect to \(F \) defined above.
2) Let $h : J \rightarrow [0, +\infty)$ be a given function which is not identical to 0, where J is an interval in \mathbb{R} such that $(0, 1) \subseteq J$. Let $f : [a, b] \rightarrow [0, +\infty)$, $(a, b) \in \mathbb{R}^2$, $a < b$, be an h-convex function, see [28], that is
\[
 f(tx + (1-t)y) \leq h(t)f(x) + h(1-t)f(y), \quad (x, y, t) \in [a, b] \times [a, b] \times [0, 1].
\]
Define the functions $F : \mathbb{R} \times \mathbb{R} \times [0, 1] \rightarrow \mathbb{R}$ by
\[
 (5) \quad F(e_1, e_2, e_3, e_4) = e_1 - h(e_4)e_2 - h(1-e_4)e_3
\]
and $T_{F,w} : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by
\[
 (6) \quad T_{F,w}(e_1, e_2, e_3) = e_1 - \left(\int_0^1 h(t)w(t)dt \right) e_2 - \left(\int_0^1 h(1-t)w(t)dt \right) e_3.
\]
For $L_w = 0$, it is clear that $F \in \mathcal{F}$ and
\[
 F(f(tx + (1-t)y), f(x), f(y), t) = f(tx + (1-t)y) - h(t)f(x) - h(1-t)f(y) \leq 0,
\]
that is, f is an F–convex function.

Samet in [21], established the following Hermite–Hadamard type inequalities using the new convexity concept:

Theorem 1. Let $f : [a, b] \rightarrow \mathbb{R}$, $(a, b) \in \mathbb{R}^2$, $a < b$, be an F-convex function, for some $F \in \mathcal{F}$. Suppose that $f \in L^1[a, b]$. Then
\[
 F\left(f\left(\frac{a+b}{2} \right) , \frac{1}{b-a} \int_a^b f(x)dx, \frac{1}{b-a} \int_a^b f(x)dx, \frac{1}{2} \right) \leq 0,
\]
\[
 T_{F,1}\left(\frac{1}{b-a} \int_a^b f(x)dx, f(a), f(b) \right) \leq 0.
\]

Definition 2. Let $f \in L^1[a, b]$. The Riemann–Liouville integrals $J^\alpha_{a+}f$ and $J^\alpha_{b-}f$ of order $\alpha > 0$ are defined by
\[
 J^\alpha_{a+}f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x-t)^{\alpha-1} f(t)dt, \quad x > a
\]
and
\[
 J^\alpha_{b-}f(x) = \frac{1}{\Gamma(\alpha)} \int_x^b (t-x)^{\alpha-1} f(t)dt, \quad x < b,
\]
respectively. Here, $\Gamma(\alpha)$ is the Gamma function and
\[
 J^0_{a+}f(x) = J^0_{b-}f(x) = f(x).
\]

Definition 3. Let $f \in L^1[a, b]$. Then k–fractional integrals of order α, $k > 0$ are defined by
\[
 I^\alpha_{a+} f(x) = \frac{1}{k\Gamma_k(\alpha)} \int_a^x (x-t)^{\alpha-k-1} f(t)dt, \quad x > a,
\]
New inequalities for F-convex functions

and

$$I_{b^+}^\alpha, k f(x) = \frac{1}{k \Gamma_k(\alpha)} \int_x^b (t-x)^{\alpha-1} f(t) dt, \quad b > x,$$

where $\Gamma_k(\cdot)$ stands for the k-gamma function. For $k = 1$, the k-fractional integrals yield Riemann–Liouville integrals. For $\alpha = k = 1$, the k-fractional integrals yield classical integrals. For more details, see [9, 12, 15, 19].

It is remarkable that Sarikaya et al. in [26], first give the following interesting integral inequalities of Hermite–Hadamard type involving Riemann–Liouville fractional integrals.

Theorem 2. Let $f : [a, b] \to \mathbb{R}$ be a positive function with $0 \leq a < b$ and $f \in L^1[a, b]$. If f is a convex function on $[a, b]$, then the following inequalities for fractional integrals hold:

$$f \left(\frac{a+b}{2} \right) \leq \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \left[J_{a^+}^\alpha f(b) + J_{b^-}^\alpha f(a) \right] \leq \frac{f(a) + f(b)}{2},$$

with $\alpha > 0$.

Budak et al. in [1], prove the following Hermite-Haddamard type inequalities for F-convex functions via fractional integrals:

Theorem 3. Let $I \subseteq \mathbb{R}$ be an interval, $f : I^0 \subseteq \mathbb{R} \to \mathbb{R}$ be a mapping on I^0, $a, b \in I^0$, $a < b$. If f is F-convex on $[a, b]$ for some $F \in \mathcal{F}$, then we have

$$F\left(f \left(\frac{a+b}{2} \right), \frac{\Gamma(\alpha + 1)}{(b-a)^\alpha} J_{a^+}^\alpha f(b), \frac{\Gamma(\alpha + 1)}{(b-a)^\alpha} J_{b^-}^\alpha f(a), \frac{1}{2} \right)$$

$$+ \int_0^1 L_{w(t)} dt \leq 0,$$

and

$$T_{F, w} \left(\frac{\Gamma(\alpha + 1)}{(b-a)^\alpha} [J_{a^+}^\alpha f(b) + J_{b^-}^\alpha f(a)], f(a) + f(b), f(a) + f(b) \right)$$

$$+ \int_0^1 L_{w(t)} dt \leq 0,$$

where $w(t) = \alpha t^{\alpha - 1}$.

For other papers involving F-convex functions, see [1]-[4], [16, 27].

Now we summarize the generalized fractional integrals defined by Sarikaya and Erteğrul in [22].

Let’s define a function $\varphi : [0, +\infty) \to [0, +\infty)$ satisfying the following conditions:

$$\int_0^1 \frac{\varphi(t)}{t} dt < +\infty,$$
\[
\frac{1}{A_1} \leq \frac{\varphi(v)}{\phi(u)} \leq A_1 \quad \text{for} \quad \frac{1}{2} \leq \frac{v}{u} \leq 2,
\]
(12)

\[
\frac{\varphi(u)}{u^2} \leq A_2 \frac{\varphi(v)}{v^2} \quad \text{for} \quad v \leq u,
\]
(13)

\[
\left| \frac{\varphi(u)}{u^2} - \frac{\varphi(v)}{v^2} \right| \leq A_3 |u - v| \frac{\varphi(u)}{u^2} \quad \text{for} \quad \frac{1}{2} \leq \frac{v}{u} \leq 2,
\]
(14)

where \(A_1, A_2, A_3 > 0 \) are independent of \(u, v > 0 \). If \(\varphi(u)u^\alpha \) is increasing for some \(\alpha \geq 0 \) and \(\frac{\varphi(u)}{u^\beta} \) is decreasing for some \(\beta \geq 0 \), then \(\varphi \) satisfies the above conditions.

The following left-sided and right–sided generalized fractional integral operators are defined respectively, as follows:

\[
a^{+}_I \varphi f(x) = \int_a^x \frac{\varphi(x - t)f(t)dt}{x - t}, \quad x > a,
\]
(15)

\[
b^{-}_I \varphi f(x) = \int_x^b \frac{\varphi(t - x)f(t)dt}{t - x}, \quad x < b.
\]
(16)

The most important feature of generalized fractional integrals is that they generalize some types of fractional integrals such as Riemann–Liouville fractional integral, \(k \)–Riemann–Liouville fractional integral, Katugampola fractional integrals, conformable fractional integral, Hadamard fractional integrals, etc.

Sarikaya and Ertuğral in [22], establish the following Hermite–Hadamard inequality and lemmas for the generalized fractional integral operators:

Theorem 4. Let \(f : [a, b] \to \mathbb{R} \) be a convex function on \([a, b]\) with \(a < b \), then the following inequalities for fractional integral operators hold:

\[
f\left(\frac{a + b}{2}\right) \leq \frac{1}{2\Psi(1)} \left[a^{+}_I \varphi f(b) + b^{-}_I \varphi f(a) \right] \leq \frac{f(a) + f(b)}{2},
\]
(17)

where the mapping \(\Lambda : [0, 1] \to \mathbb{R} \) is defined by

\[
\Psi(x) = \int_0^x \frac{\varphi((b - a)t)}{t} dt.
\]

Budak et al. prove the following Hermite Hadamard type inequalities for \(F \)-convex functions.

Theorem 5 ([4]). Let \(I \subseteq \mathbb{R} \) be an interval, \(f : I^c \subseteq \mathbb{R} \to \mathbb{R} \) be a mapping on \(I^c \), \(a, b \in I^c \), \(a < b \). If \(f \) is \(F \)-convex on \([a, b]\) for some \(F \in \mathcal{F} \), then we have

\[
F\left(f\left(\frac{a + b}{2}\right), \frac{1}{\Psi(1)} a^{+}_I \varphi f(b), \frac{1}{\Psi(1)} b^{-}_I \varphi f(a), \frac{1}{2} \right) + \int_0^1 L_{w(t)} dt \leq 0,
\]
and
\[T_{F,w} \left(\frac{1}{\Phi(1)} \left[a + I_{\varphi} f(b) + (a + b) I_{\varphi} f(a) \right], f(a) + f(b), f(a) + f(b) \right) \]
\[\quad + \int_{0}^{1} L_{w(t)} dt \leq 0, \]
where \(w(t) = \frac{\varphi((b-a)t)}{t\Phi(1)} \).

Motivated by the above literatures, the main objective of this article is to establish some new Hermite–Hadamard type inequalities via generalized fractional integrals utilizing \(F \)-convex functions. Some special cases of our main results recaptured the well–known earlier works. At the end, a briefly conclusion will be given as well.

2. Main results

In this section, we establish some inequalities of Hermite–Hadamard type including generalized fractional integrals via \(F \)-convex functions.

Theorem 6. Let \(I \subseteq \mathbb{R} \) be an interval, \(f : I^* \subseteq \mathbb{R} \to \mathbb{R} \) be a mapping on \(I^* \), \(a, b \in I^* \), \(a < b \) and let \(F \) be linear with respect to the first three variables. If \(f \) is \(F \)-convex on \([a, b] \) for some \(F \in \mathcal{F} \), then we have

\[F \left(f \left(\frac{a+b}{2} \right), \frac{1}{\Lambda(1)} \left(\frac{a+b}{2} \right) + I_{\varphi} f \left(b \right), \frac{1}{\Lambda(1)} \left(\frac{a+b}{2} \right) - I_{\varphi} f \left(a \right), \frac{1}{2} \right) \]
\[+ \int_{0}^{1} L_{w(t)} dt \leq 0, \]

and

\[T_{F,w} \left(\frac{1}{\Lambda(1)} \left[\left(\frac{a+b}{2} \right) + I_{\varphi} f \left(b \right) + \left(\frac{a+b}{2} \right) - I_{\varphi} f \left(a \right) \right] \right), \]
\[f(a) + f(b), f(a) + f(b) \]
\[+ \int_{0}^{1} L_{w(t)} dt \leq 0, \]

where \(w(t) = \frac{\varphi((b-a)t)}{t\Lambda(1)} \) and the function \(\Lambda : [0, 1] \to \mathbb{R} \) is defined by

\[\Lambda(x) = \int_{0}^{x} \frac{\varphi \left(\frac{b-a}{2} t \right)}{t} dt. \]

Proof. Since \(f \) is \(F \)-convex, we have

\[F \left(f \left(\frac{x+y}{2} \right), f(x), f(y), \frac{1}{2} \right) \leq 0, \quad \forall x, y \in [a, b]. \]
For
\[x = \frac{t}{2}a + \left(\frac{2-t}{2} \right) b \quad \text{and} \quad y = \left(\frac{2-t}{2} \right) a + \frac{t}{2} b, \]
we have
\[F \left(f \left(\frac{a+b}{2} \right), f \left(\frac{t}{2}a + \left(\frac{2-t}{2} \right) b \right), f \left(\left(\frac{2-t}{2} \right) a + \frac{t}{2} b, \frac{1}{2} \right) \right) \leq 0. \]
for all \(t \in [0,1] \). Multiplying this inequality by \(w(t) = \frac{\varphi((b-a) t)}{t \Lambda(1)} \) and using axiom (A3), we get
\[F \left(\varphi \left(\frac{(b-a) t}{t \Lambda(1)} \right) f \left(\frac{a+b}{2} \right), \varphi \left(\frac{(b-a) t}{t \Lambda(1)} \right) f \left(\frac{t}{2}a + \left(\frac{2-t}{2} \right) b \right), \right) \]
\[\varphi \left(\frac{(b-a) t}{t \Lambda(1)} \right) f \left(\left(\frac{2-t}{2} \right) a + \frac{t}{2} b, \frac{1}{2} \right) + L w(t) \leq 0 \]
for all \(t \in (0,1) \). Integrating over \((0,1)\) with respect to the variable \(t \) and using axiom (A1), we obtain
\[F \left(\frac{f \left(\frac{a+b}{2} \right)}{\Lambda(1)} \int_0^1 \varphi \left(\frac{(b-a) t}{t} \right) \frac{1}{\Lambda(1)} \int_0^1 \varphi \left(\frac{(b-a) t}{t} \right) f \left(\frac{t}{2}a + \left(\frac{2-t}{2} \right) b \right) dt, \right) \]
\[\frac{1}{\Lambda(1)} \int_0^1 \varphi \left(\frac{(b-a) t}{t} \right) f \left(\left(\frac{2-t}{2} \right) a + \frac{t}{2} b, \frac{1}{2} \right) dt + \int_0^1 L w(t) dt \leq 0. \]
Using the facts that
\[\int_0^1 \varphi \left(\frac{t}{2}a + \left(\frac{2-t}{2} \right) b \right) dt = \int_{\frac{a+b}{2}}^{b} \varphi \left(\frac{b-x}{b-x} \right) f(x) dx = (\frac{a+b}{2})+I_\varphi f (b) \]
and
\[\int_0^1 \varphi \left(\frac{(2-t)}{t} a + \frac{t}{2} b \right) dt = \int_{\frac{a+b}{2}}^{\frac{a+b}{2}} \varphi \left(\frac{x-a}{x-a} \right) f(x) dx = (\frac{a+b}{2})-I_\varphi f (a) , \]
we obtain
\[F \left(f \left(\frac{a+b}{2} \right), \frac{1}{\Lambda(1)} (\frac{a+b}{2})+I_\varphi f (b), \frac{1}{\Lambda(1)} (\frac{a+b}{2})-I_\varphi f (a), \frac{1}{2} \right) \]
\[+ \int_0^1 L w(t) dt \leq 0, \]
which gives (18).

On the other hand, since f is F–convex, we have

$$F\left(f\left(\frac{t}{2}a + \left(\frac{2-t}{2}\right)b\right), f(a), f(b), t \right) \leq 0, \quad \forall t \in [0, 1],$$

and

$$F\left(f\left(\frac{2-t}{2}a + \frac{t}{2}b\right), f(a), f(b), t \right) \leq 0, \quad \forall t \in [0, 1].$$

Using the linearity of F, we get

$$F\left(f\left(\frac{t}{2}a + \left(\frac{2-t}{2}\right)b\right) + f\left(\frac{2-t}{2}a + \frac{t}{2}b\right), f(a) + f(b), f(a) + f(b), t \right) \leq 0,$$

for all $t \in [0, 1]$. Applying the axiom (A3) for $w(t) = \frac{\varphi\left(\frac{(b-a)t}{2}\right)}{t\Lambda(1)}$, we obtain

$$F\left(\varphi\left(\frac{(b-a)t}{2}\right) \right) \left[f\left(\frac{t}{2}a + \left(\frac{2-t}{2}\right)b\right) + f\left(\frac{2-t}{2}a + \frac{t}{2}b\right) \right],$$

$$\varphi\left(\frac{(b-a)t}{2}\right) \frac{\varphi\left(\frac{(b-a)t}{2}\right)}{t\Lambda(1)} [f(a) + f(b)], \frac{\varphi\left(\frac{(b-a)t}{2}\right)}{t\Lambda(1)} [f(a) + f(b), t] + L_{w(t)} \leq 0,$$

for all $t \in (0, 1)$. Integrating over $(0, 1)$ and using axiom (A2), we have

$$T_{F,w}\left(\int_0^1 \varphi\left(\frac{(b-a)t}{2}\right) \left[f\left(\frac{t}{2}a + \left(\frac{2-t}{2}\right)b\right) + f\left(\frac{2-t}{2}a + \frac{t}{2}b\right) \right] dt,\right.$$

$$f(a) + f(b), f(a) + f(b) + \int_0^1 L_{w(t)} dt \leq 0,$$

that is

$$T_{F,w}\left(\frac{1}{\Lambda(1)} \left[(a+b)^{\frac{1}{2}} I_{\varphi} f(b) + (a+b)^{-\frac{1}{2}} I_{\varphi} f(a) \right], f(a) + f(b), f(a) + f(b) \right)$$

$$+ \int_0^1 L_{w(t)} dt \leq 0.$$

The proof of Theorem 6 is completed. □
Remark 2. If we choose $\phi(t) = t$ in Theorem 6, then we have the following inequalities

\[
F \left(f \left(\frac{a+b}{2} \right), \frac{2}{b-a} \int_a^b f(t) dt, \frac{2}{b-a} \int_a^b \frac{a+b}{2} f(t) dt \right) \times \frac{1}{1}
\]
(20)

\[
+ \int_0^1 L_w(t) dt \leq 0,
\]

and

\[
T_{F,w} \left(\frac{2}{b-a} \int_a^b f(t) dt, f(a), f(b), f(b), f(b) \right) + \int_0^1 L_w(t) dt \leq 0,
\]

where $w(t) = 1$.

Remark 3. If we choose $\phi(t) = \frac{t^\alpha}{\Gamma(\alpha)}$ in Theorem 6, then we have the following inequalities for Riemann-Liouville fractional integrals

\[
F \left(f \left(\frac{a+b}{2} \right), \frac{2^\alpha \Gamma(\alpha+1)}{(b-a)^\alpha} J_\alpha^{\alpha+1} f(b), \frac{2^\alpha \Gamma(\alpha+1)}{(b-a)^\alpha} J_\alpha^{\alpha+1} f(a) \right) \times \frac{1}{1}
\]
(21)

\[
+ \int_0^1 L_w(t) dt \leq 0,
\]

and

\[
T_{F,w} \left(\frac{2^\alpha \Gamma(\alpha+1)}{(b-a)^\alpha} \left[J_\alpha^{\alpha+1} f(b) + J_\alpha^{\alpha+1} f(a) \right], f(a), f(b), f(b), f(b) \right) + \int_0^1 L_w(t) dt \leq 0,
\]

where $w(t) = \alpha t^{\alpha-1}$ which is given by Budak et al. in [5].

Corollary 1. If we take $\phi(t) = \frac{t^\frac{\alpha}{k \Gamma(k)}}{k \Gamma(k)}$ in Theorem 6, then we have the following inequalities for k–Riemann–Liouville fractional integrals

\[
F \left(f \left(\frac{a+b}{2} \right), \frac{2^\alpha \Gamma_k(\alpha+k)}{(b-a)^\alpha} I_\alpha^{\alpha+1} f(b), \frac{2^\alpha \Gamma_k(\alpha+k)}{(b-a)^\alpha} I_\alpha^{\alpha+1} f(a) \right) \times \frac{1}{1}
\]

\[
+ \int_0^1 L_w(t) dt \leq 0,
\]

and

\[
T_{F,w} \left(\frac{2^\alpha \Gamma_k(\alpha+k)}{(b-a)^\alpha} \left[I_\alpha^{\alpha+1} f(b) + I_\alpha^{\alpha+1} f(a) \right], f(a), f(b), f(b), f(b) \right) + \int_0^1 L_w(t) dt \leq 0,
\]

where $w(t) = \alpha t^{\alpha-1}$ which is given by Budak et al. in [5].
New inequalities for F-convex functions

$$f(a) + f(b), f(a) + f(b) + \int_0^1 L_w(t) dt \leq 0,$$

where $w(t) = \frac{a}{t} t^{\frac{n}{k} - 1}$.

Theorem 7. Let $I \subseteq \mathbb{R}$ be an interval, $f : I^\circ \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a mapping on I°, $a, b \in I^\circ$, $a < b$ and let F be linear with respect to the first three variables. If f is F-convex on $[a, b]$ for some $F \in F$, then we have

$$F \left(f\left(\frac{a + b}{2} \right), \frac{1}{\Lambda(1)} b - I_\varphi f \left(\frac{a + b}{2} \right), \right),$$

(22)

$$\frac{1}{\Lambda(1)} a + I_\varphi f \left(\frac{a + b}{2} \right) + \int_0^1 L_w(t) dt \leq 0,$$

and

$$T_{F,w} \left(\frac{1}{\Lambda(1)} \left[a + I_\varphi f \left(\frac{a + b}{2} \right) + b - I_\varphi f \left(\frac{a + b}{2} \right) \right], \right),$$

(23)

$$f(a) + f(b), f(a) + f(b) + \int_0^1 L_w(t) dt \leq 0,$$

where $w(t) = \frac{\varphi((b-a)t)}{t\Lambda(1)}$.

Kanıt. Since f is F-convex, we have

$$F \left(f\left(\frac{x + y}{2} \right), f(x), f(y), \frac{1}{2} \right) \leq 0, \quad \forall x, y \in [a, b].$$

For

$$x = \left(\frac{1 - t}{2} \right) a + \left(\frac{1 + t}{2} \right) b \quad \text{and} \quad y = \left(\frac{1 + t}{2} \right) a + \left(\frac{1 - t}{2} \right) b,$$

we have

$$F \left(f \left(\frac{a + b}{2} \right), f \left(\left(\frac{1 - t}{2} \right) a + \left(\frac{1 + t}{2} \right) b \right), \right),$$

$$f \left(\left(\frac{1 + t}{2} \right) a + \left(\frac{1 - t}{2} \right) b \right) \leq 0,$$

for all $t \in [0, 1]$. Multiplying this inequality by $w(t) = \frac{\varphi((b-a)t)}{t\Lambda(1)}$ and using axiom (A3), we get

$$F \left(\frac{\varphi \left(\frac{b-a}{2} \right) t}{t\Lambda(1)} f \left(\frac{a + b}{2} \right), \frac{\varphi \left(\frac{b-a}{2} \right) t}{t\Lambda(1)} f \left(\left(\frac{1 - t}{2} \right) a + \left(\frac{1 + t}{2} \right) b \right), \right),$$

$$\frac{\varphi \left(\frac{b-a}{2} \right) t}{t\Lambda(1)} f \left(\left(\frac{1 + t}{2} \right) a + \left(\frac{1 - t}{2} \right) b \right) \frac{1}{2} + L_w(t) \leq 0,$$
for all $t \in (0,1)$. Integrating over $(0,1)$ with respect to the variable t and using axiom (A1), we obtain

$$
F \left(\int_0^1 \varphi \left(\frac{(b-a)t}{2} \right) \frac{t}{2} \, dt \right),
$$

$$
\frac{1}{\Lambda(1)} \int_0^1 \varphi \left(\frac{(b-a)t}{2} \right) f \left(\left(\frac{1 \mp t}{2} \right) a + \left(\frac{1 \mp t}{2} \right) b \right) \, dt,
$$

$$
\frac{1}{\Lambda(1)} \int_0^1 \varphi \left(\frac{(b-a)t}{2} \right) f \left(\left(\frac{1}{2} + \frac{1}{2} t \right) a + \left(\frac{1}{2} - \frac{1}{2} t \right) b \right) \, dt, \frac{1}{2}
$$

$$
+ \int_0^1 L_{w(t)} \, dt \leq 0.
$$

Using the facts that

$$
\int_0^1 \varphi \left(\frac{(b-a)t}{2} \right) \frac{t}{2} \, dt = \int_{a+b}^{b} \varphi \left(\frac{x-a+b}{2} \right) \frac{x-a+b}{2} \, dx
$$

$$
= b - I_\varphi f \left(\frac{a+b}{2} \right),
$$

and

$$
\int_0^1 \varphi \left(\frac{(b-a)t}{2} \right) \frac{t}{2} \, dt = \int_{a}^{a+b} \varphi \left(\frac{a+b}{2} - x \right) \frac{a+b}{2} - x \, dx
$$

$$
= a + I_\varphi f \left(\frac{a+b}{2} \right),
$$

we obtain

$$
F \left(f \left(\frac{a+b}{2} \right), \frac{1}{\Lambda(1)} b - I_\varphi f \left(\frac{a+b}{2} \right), \frac{1}{\Lambda(1)} a + I_\varphi f \left(\frac{a+b}{2} \right), \frac{1}{2} \right)
$$

$$
+ \int_0^1 L_{w(t)} \, dt \leq 0,
$$

which gives (22).

On the other hand, since f is F–convex, we have

$$
F \left(\left(\frac{1 \mp t}{2} \right) a + \left(\frac{1 \mp t}{2} \right) b \right), f(a), f(b), t \right) \leq 0, \quad \forall t \in [0,1],
$$
and
\[F \left(f \left(\left(\frac{1-t}{2} \right) a + \left(\frac{1+t}{2} \right) b \right), f(a), f(b), t \right) \leq 0, \quad \forall t \in [0, 1]. \]

Using the linearity of \(F \), we get
\[F \left(f \left(\left(\frac{1+t}{2} \right) a + \left(\frac{1-t}{2} \right) b \right) + f \left(\left(\frac{1-t}{2} \right) a + \left(\frac{1+t}{2} \right) b \right), f(a) + f(b), f(a) + f(b), t \right) \leq 0, \quad \forall t \in [0, 1]. \]

Applying the axiom (A3) for \(w(t) = \varphi \left(\frac{(b-a) t}{2} \right) t \Lambda(1) \), we obtain
\[F \left(\varphi \left(\frac{(b-a) t}{2} \right) t \Lambda(1) \times \left[f \left(\left(\frac{1+t}{2} \right) a + \left(\frac{1-t}{2} \right) b \right) + f \left(\left(\frac{1-t}{2} \right) a + \left(\frac{1+t}{2} \right) b \right) \right], \varphi \left(\frac{(b-a) t}{2} \right) t \Lambda(1) \right] \left[f(a) + f(b) \right], t \right) + L_w(t) \leq 0, \]
for all \(t \in (0, 1) \). Integrating over \((0, 1)\) and using axiom (A2), we have
\[T_{F,w} \left(\int_0^1 \varphi \left(\frac{(b-a) t}{2} \right) t \Lambda(1) \times \left[f \left(\left(\frac{1+t}{2} \right) a + \left(\frac{1-t}{2} \right) b \right) + f \left(\left(\frac{1-t}{2} \right) a + \left(\frac{1+t}{2} \right) b \right) \right] dt, f(a) + f(b), f(a) + f(b) \right) + \int_0^1 L_w(t) dt \leq 0, \]
that is
\[T_{F,w} \left(\frac{1}{\Lambda(1)} \left[a + I_{\varphi} f \left(\frac{a+b}{2} \right) + b - I_{\varphi} f \left(\frac{a+b}{2} \right) \right], f(a) + f(b), f(a) + f(b) \right) + \int_0^1 L_w(t) dt \leq 0. \]

The proof of Theorem 7 is completed. \(\square \)

Remark 4. If we take \(\varphi(t) = t \) in Theorem 7, then the inequalities (22) and (23) reduce to the inequalities (20) and (21).
Remark 5. If we take \(\varphi(t) = \frac{t^\alpha}{\Gamma(\alpha)} \) in Theorem 7, then we have the following inequalities for Riemann-Liouville fractional integrals

\[
F \left(f \left(\frac{a+b}{2} \right), \frac{2^\alpha \Gamma(\alpha+1)}{(b-a)^\alpha} J_b^\alpha f \left(\frac{a+b}{2} \right), \right.
\]

\[
\frac{2^\alpha \Gamma(\alpha+1)}{(b-a)^\alpha} J_a^\alpha f \left(\frac{a+b}{2}, \frac{1}{2} \right) + \int_0^1 Lw(t) dt \leq 0,
\]

and

\[
T_{F,w} \left(\frac{2^\alpha \Gamma(\alpha+1)}{(b-a)^\alpha} \left[J_b^\alpha f \left(\frac{a+b}{2} \right) + J_a^\alpha f \left(\frac{a+b}{2} \right) \right], \right.
\]

\[
f(a) + f(b), f(a) + f(b) + \int_0^1 Lw(t) dt \leq 0,
\]

where \(w(t) = \alpha t^{\alpha-1} \) which is given by Budak et al. in [5].

Corollary 2. If we take \(\varphi(t) = \frac{t^\frac{\alpha}{k}}{\Gamma(\alpha)} \) in Theorem 7, then we have the following inequalities for \(k \)-Riemann–Liouville fractional integrals:

\[
F \left(f \left(\frac{a+b}{2} \right), \frac{2^\frac{\alpha}{k} \Gamma_k(\alpha+k)}{(b-a)^\frac{\alpha}{k}} I_{b^-}^\alpha, \frac{1}{2} \right), \right.
\]

\[
\frac{2^\frac{\alpha}{k} \Gamma_k(\alpha+k)}{(b-a)^\frac{\alpha}{k}} I_{a^+}^\alpha, \frac{1}{2} + \int_0^1 Lw(t) dt \leq 0,
\]

and

\[
T_{F,w} \left(\frac{2^\frac{\alpha}{k} \Gamma_k(\alpha+k)}{(b-a)^\frac{\alpha}{k}} \left[I_{b^-}^\alpha + I_{a^+}^\alpha \right], \right.
\]

\[
f(a) + f(b), f(a) + f(b) + \int_0^1 Lw(t) dt \leq 0,
\]

where \(w(t) = \frac{\alpha}{k} t^{\frac{\alpha}{k}-1} \).

Remark 6. One can obtain several results for convexity, \(\varepsilon \)-convexity, \(h \)-convexity, etc by special choice of the function \(F \) in Theorems 6 and 7.

3. Conclusion

In the development of this work, using the definition of \(F \)-convex functions some new Hermite-Hadamard type inequalities via generalized fractional integrals have been deduced. We also give several results capturing Riemann-Liouville fractional integrals and \(k \)-Riemann-Liouville fractional integrals as special cases. The authors hope that these results will serve as a motivation for future work in this fascinating area.
References

[1] H. Budak, M.Z. Sarikaya, and M.K. Yildiz, *Hermite–Hadamard type inequalities for F-convex function involving fractional integrals*, Filomat, 32 (16) (2018), 5509-5518.

[2] H. Budak and M.Z. Sarikaya, *On Ostrowski type inequalities for F-convex function*, AIP Conference Proceedings, 1833 (020057) (2017). https://doi.org/10.1063/1.4981705

[3] H. Budak, T. Tunç, and M.Z. Sarikaya, *On Hermite-Hadamard type inequalities for F-convex functions*, Miskolc Mathematical Notes, 20 (1) (2019), 169-191.

[4] H. Budak, M.A. Ali and A. Kashuri, *Hermite-Hadamard type inequalities for F-convex functions involving generalized fractional integrals*, Studia Universitatis Babeş-Bolyai Mathematica, in press.

[5] H. Budak, *Refinements of Hermite-Hadamard inequality for trigonometrically ρ-convex functions*, Mathematica Moravica, 23 (2) (2019), 87-96.

[6] B. Defnetti, *Sulla strati cazioni convesse*, Annali di Matematica Pura ed Applicata, 30 (1949), 173-183.

[7] S.S. Dragomir and C.E.M. Pearce, *Selected topics on Hermite–Hadamard inequalities and applications*, RGMIA Monographs, Victoria University, 2000.

[8] S.S. Dragomir and R.P. Agarwal, *Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula*, Applied Mathematics Letters, 11 (5) (1998), 91-95.

[9] R. Gorenflo and F. Mainardi, *Fractional calculus: integral and differential equations of fractional order*, Springer Verlag, Wien, 223-276, 1997.

[10] H. Hudzik and L. Maligranda, *Some remarks on s-convex functions*, Aequationes mathematicae, 48 (1994), 100-111.

[11] D.H. Hyers and S.M. Ulam, *Approximately convex functions*, Proceedings of the American Mathematical Society, 3 (1952), 821-828.

[12] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, *Theory and Applications of Fractional Differential Equations*, North-Holland Mathematics Studies, 204 (2006).

[13] U.S. Kirmaci, *Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula*, Applied Mathematics and Computation, 147 (2004), 91-95.

[14] O.L. Mangasarian, *Pseudo-convex functions*, SIAM Journal on Control and Optimization (SICON), 3 (1965), 281-290.

[15] S. Miller and B. Ross, *An introduction to the Fractional Calculus and Fractional Differential Equations*, John Wiley & Sons, USA, 1993.

[16] P.O. Mohammed and M.Z. Sarikaya, *Hermite–Hadamard type inequalities for F-convex function involving fractional integrals*, Journal of Inequalities and Applications, 2018 (359) (2018).

[17] J.E. Pečarić, F. Proschan, and Y.L. Tong, *Convex functions, partial orderings and statistical applications*, Academic Press, Boston, 1992.

[18] C.E.M. Pearce and J. Pecaric, *Inequalities for differentiable mappings with application to special means and quadrature formula*, Applied Mathematics Letters, 13 (2000), 51-55.

[19] I. Podlubni, *Fractional Differential Equations*, Academic Press, San Diego, 1999.

[20] B. T. Polyak, *Existence theorems and convergence of minimizing sequences in extremum problems with restrictions*, Doklady Mathematics, 7 (1966), 72-75.
[21] B. Samet, *On an implicit convexity concept and some integral inequalities*, Journal of Inequalities and Applications, 2016 (2016), Article ID: 308, 16 pages.

[22] M.Z. Sarikaya and F. Ertuğral, *On the generalized Hermite-Hadamard inequalities*, Annals of the University of Craiova – Mathematics and Computer Science Series, 47 (1) (2020), 193-213.

[23] M.Z. Sarikaya, A. Saglam, and H. Yildirim, *New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex*, Welcome to the Website of the International Journal of Open Problems in Computer Science and Mathematics (IJOPCM), 5 (3) (2012), 1-14.

[24] M.Z. Sarikaya and N. Aktan, *On the generalization some integral inequalities and their applications*, Mathematical and Computer Modelling, 54 (9-10) (2011), 2175-2182.

[25] M.Z. Sarikaya, A. Saglam, and H. Yildirim, *On some Hadamard-type inequalities for h−convex functions*, Journal of Mathematical Inequalities, 2 (3) (2008), 335-341.

[26] M.Z. Sarikaya, E. Set, H. Yaldiz, and N. Basak, *Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities*, Mathematical and Computer Modelling, 57 (2013), 2403-2407.

[27] M.Z. Sarikaya, T. Tunç, and H. Budak, *Simpson’s type inequality for F-convex function*, Facta Universitatis, Series: Mathematics and Informatics, 32 (5) (2017), 747-753.

[28] S. Varosanec, *On h-convexity*, Journal of Mathematical Analysis and Applications, 326 (1) (2007), 303-311.

Hüseyin Budak
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE AND ARTS
DÜZCE UNIVERSITY
DÜZCE
TURKEY
E-mail address: hsyn.budak@gmail.com

Pınar Kösem
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE AND ARTS
DÜZCE UNIVERSITY
DÜZCE
TURKEY
E-mail address: pinarksm18@gmail.com

Artion Kashuri
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE AND ARTS
DÜZCE UNIVERSITY
DÜZCE
TURKEY
E-mail address: artionkashuri@gmail.com