Supporting Information

On-Demand Droplet Fusion: A Strategy for Stimulus-Responsive Biosensing in Solution

Mohan, Praveena; Noonan, Patrick; Nakatsuka, Matthew; Goodwin, Andrew*

Competitive model for thrombin assay

Gibbs Energy calculations (SantaLucia’s nearest neighbor model):

Bases	ΔH (kcal/mol)	ΔS (Cal/K.mol)
AA/TT	-7.9	-22.2
AT/TA	-7.2	-20.4
TA/AT	-7.2	-21.3
CA/GT	-8.5	-22.7
GT/CA	-8.4	-22.4
CT/GA	-7.8	-21
GA/CT	-8.2	-22.2
CG/GC	-10.6	-27.2
GC/CG	-9.8	-24.4
GG/CC	-8	-19.9
Term. G-C	0.1	-2.8
Term. A-T	2.3	4.1

$$\Delta G^\circ (total) = \sum n_i \Delta G^\circ (i) + \Delta G^\circ (5'\text{term}) + \Delta G^\circ (3'\text{term})$$

$$\Delta G^\circ (37^\circ C, 1M NaCl) = \Delta H^\circ - \Delta S^\circ \times (273.15 + 37^\circ C)K$$

$$\Delta G (37^\circ C, 0.15M NaCl) = \Delta G^\circ (1M NaCl) - 0.114 \times \frac{kcal}{mol} \times 4.18 \times \frac{kJ}{kcal} \times N \times \ln(0.15)^1$$

Specific sequence overlap:

5'-TGTGGTTGTTT-3'
3'-ACACCAACCCAAA-5'

Bases	n_i	ΔH (kcal/mol)	ΔS (cal/mol.K)
TG/AC	3	-8.5	-22.7
GT/CA	3	-8.4	-22.4
GG/CC	2	-8	-19.9
Calculation of Dissociation constant:

\[\Delta G = -RT \ln K_a \]

\[K_d = \frac{1}{K_a} \]

\[R = 8.314 \frac{J}{\text{mol} \cdot K} \]

\[T = 310.15 \text{ K} \]

\[\Delta G^\circ(37 \, ^\circ\text{C}, 0.15M \text{ NaCl}) = -46.5 \frac{kJ}{\text{mol}} \]

\[K_d = 15 \text{ nM at } 37 \, ^\circ\text{C} \]

Equations used for the model:

\[K_{D,\text{Thr.Apt}} = \frac{[\text{Thr}]_f [\text{Apt}]_f}{[\text{Thr}.\text{Apt}]} \approx 200 \text{ nM}^2 \]

\[K_{D,\text{Link1.Apt}} = \frac{[\text{Link1}]_f [\text{Apt}]_f}{[\text{Link1}.\text{Apt}]} \approx 15 \text{ nM} \]

\[[\text{Apt}]_{\text{tot}} = [\text{Apt}]_f + [\text{Link1}.\text{Apt}] + [\text{Thr}.\text{Apt}] = 180 \text{ nM} \]

\[[\text{Thr}]_{\text{tot}} = [\text{Thr}]_f + [\text{Thr}.\text{Apt}] \]

\[[\text{Link1}]_{\text{tot}} = [\text{Link1}]_f + [\text{Link1}.\text{Apt}] = 135 \text{ nM} \]

Where:

- \(K_{D,\text{Thr.Apt}} \): Thrombin/Aptamer disassociation constant
- \(K_{D,\text{Link1.Apt}} \): 5’chol-DNA/Aptamer disassociation constant
- \([\text{Thr}]_f\): Free thrombin concentration
- \([\text{Apt}]_f\): Free aptamer concentration
- \([\text{Link1}]_f\): Free 5’chol-DNA concentration
- \([\text{Link1}.\text{Apt}]\): 5’chol-DNA/aptamer duplex concentration
- \([\text{Thr}.\text{Apt}]\): Thrombin-aptamer concentration
- \([\text{Apt}]_{\text{tot}}\): Total aptamer concentration
- \([\text{Thr}]_{\text{tot}}\): Total thrombin concentration
- \([\text{Link1}]_{\text{tot}}\): Total 5’chol-DNA concentration
Solving five simultaneous equations to obtain concentrations of \([\text{Apt}]_f, [\text{Thr}]_f, [\text{Link1}]_f, [\text{Link1. Apt}]\) and \([\text{Thr. Apt}]\) at different thrombin concentrations. These equations were solved using a MATLAB (MathWorks) code.

MATLAB code:

```matlab
% K1 and K2 are dissociation constants for TA-TH and TA-DNA respectively
k1=200;
k2=15;

% Concentrations of total Aptamer and Thrombin respectively
TA=180;
DNA=135;
TH=0;

% free aptamer (a), free thrombin (b), free L1-DNA (c), bound aptamer-L1DNA (y), bound aptamer-thrombin
% (x)
syms a b c x y
F1=k2*y-a*c;
F2=k1*x-a*b;
F3=x+y+a-TA;
F4=x+b-TH;
F5=y+c-DNA;
S = solve(F1,F2,F3,F4,F5,a,b,c,x,y);
double(S.a)
double(S.b)
double(S.c)
double(S.x)
double(S.y)
```

Figure S1. Dye-labelled DNA probe shows the presence of Chol-DNA on the droplet surface; A) Cy3-labelled DNA probe (red) for Link-1 and B) FAM-labeled DNA probe for Link-2. Scale bar is 2 µm
Figure S2. Histogram of colocalization fraction \(\frac{I_G}{I_G + I_R} \) is shown for one image in each group; A) DiI only (red columns) and BPEA only (green columns) droplets have colocalization fractions near 0 and 1 respectively when imaged individually and B) Mixing of droplets without DNA (black columns) and mixing of droplets with complimentary DNA (patterned columns) – values between 0.15 and 0.85 can be considered fused droplets.

Figure S3. Average Diameter of non-fused and fused droplets compared between PEG concentrations of 8 and 40 µM. The diameters were calculated using MATLAB analysis of the droplet images. The diameter of fused droplets is higher for 8 µM PEG concentration compared to 40 µM PEG concentration.

1. SantaLucia, J., Jr. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. *Proceedings of the National Academy of Sciences of the United States of America* 1998, 95 (4), 1460-5.

2. Bock, L. C.; Griffin, L. C.; Latham, J. A.; Vermaas, E. H.; Toole, J. J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. *Nature* 1992, 355 (6360), 564-566.