Supplementary Materials for

Structure of the hexameric fungal plasma membrane proton pump in its autoinhibited state

Sabine Heit, Maxwell M. G. Geurts, Bonnie J. Murphy, Robin A. Corey, Deryck J. Mills, Werner Kühlbrandt, Maike Bublitz*

*Corresponding author. Email: maike.bublitz@bioch.ox.ac.uk

Published 10 November 2021, *Sci. Adv.* 7, eabj5255 (2021)
DOI: 10.1126/sciadv.abj5255

This PDF file includes:

Figs. S1 to S14
Tables S1 to S6
Fig. S1: Topology diagram and $E1/E2$ scheme of Pma1. (A) Overall Pma1 topology. Nucleotide-binding (N) domain red, actuator (A) domain yellow, phosphorylation (P) domain blue, regulatory (R) domain cyan, N-terminal extension (green), M1-2 pink, M3-4 gold, and M6-10 grey. (B) Canonical $E1$-$E2$ catalytic cycle for proton pumping by Pma1 with transient phosphorylation.
Fig. S2: Overview of the refinement of the Pma1 hexamer and monomer cryo-EM maps.
(A) Schematic representation of the refinement workflow resulting in the final hexamer map H3 and the final focused monomer map M. Masks for 3D classification and refinement are shown in white. (B) Angular distribution plot of all particles that contributed to the final hexamer map H3. The height of the bars is proportional to the number of particles in those views. (C) Local resolution of the final hexamer map H3 and (D) for the final monomer map M. Resolution estimates from Relion 3Drefine (51), maps shown are H3-DE and M-DE.
Fig. S3: Structural state comparison of Pma1 with related P-type ATPases. RMSD (root mean square deviation) calculated over all C-alpha atoms of Pma1 (E1) compared to the crystal structures of AHA2 (E1) and SERCA in different states along the catalytic cycle using PyMOL(82). PDB entries: 5KSD (AHA2 E1), 4HW1 (SERCA MgE1), 3N8G (SERCA Ca2E1), 1T5T (SERCA Ca2E1~P), 3BA6 (SERCA Ca2E1P), 3B9B (SERCA E2P), 3N5K (SERCA E2~P), 1WPJ (SERCA E2.P), 3NAL (SERCA E2).
Fig. S4: Nucleotide-binding site and assignment of the R domain to its respective monomer.

(A) ADP is bound at the nucleotide-binding site between the P (blue) and N (light red) domains. ADP, residues involved in its coordination and Asp378 are shown as sticks (spheres for glycine) with C-atoms coloured in green (ADP) or according to their domain, a Mg$^{2+}$ ion is shown as a light green sphere. The cryo-EM map (M-DM) is shown as blue or black mesh for MgADP and the protein, respectively, with a higher contour level for MgADP. Polar contacts are indicated by yellow dashes. (B) The distance from the helical part of the R domain to M10 and M10’ (shown as cartoon) is very similar, the assignment is based on a short extension at the N terminus of the R-helix that points towards M10. The cryo-EM map (M-DM) is shown as grey mesh, residues of the non-helical part of R and M10 are shown in stick representation.
Fig. S5. Membrane lipid composition used in the coarse grained MD simulations of Pma1. For details on the lipids, refer to Table S6.
Fig. S6. Fractional interaction times of all lipids with Pma1 residues surrounding (A) site I and (B) site II, defined as the number of frames in which a lipid is within 0.6nm of a given residue. For details on the lipids, refer to Table S6.
Fig. S7: Monomerisation of Pma1 with OGNG. (A) Size-exclusion chromatography of Pma1 in n-dodecyl-β-D-maltopyranoside (DDM) (blue; highlighted fractions used for cryo-EM) or octyl glucose neopentyl glycol (OGNG) (orange). SEC column: Superose 6 Increase 10/300 (GE Healthcare). (B) Native PAGE of Pma1 in DDM or OGNG (samples in 0.2 M ammonium acetate buffer for native MS). Unlabelled arrows indicate uncharacterised Pma1 oligomers (potentially dimers and tetramers). Protein ladder (M): NativeMark™ (Invitrogen), gel: 3-12% NativePAGE™ (Invitrogen).
Fig. S8. Radial distribution functions of PIPC and DIPC in the coarse grained simulation of a PIPC/DIPC-only membrane. The distribution confirms a preferential binding of Pma1 to double-unsaturated lipids. For details on the lipids, refer to Table S6.
Fig. S9. Lipid density maps for PIPC, DIPA, Ergosterol, PIPE, PIPA, PIPS, PVSM, XNSM, DPCE, and PNCE. Values correspond to average numbers of molecules per nm³ and do not account for the respective membrane composition fraction. For details on the lipids, refer to Table S6.
Fig. S10. Quantitative bilayer deformation analysis. Average z-height position of lipid headgroup-phosphates in (A) the outer leaflet, and (B) the inner leaflet. Values represent the z-height difference in Ångström relative to the value at coordinate -50, 110 (assumed to represent a membrane region unperturbed by protein or boundary effects). (C) Zoom of (B) on the region of one Pma1 monomer. (D) Average leaflet thickness between phosphates (inner leaflet minus outer leaflet) at each x, y coordinate. Scale is in Ångström. (E) Zoom of (D) on the region of one monomer.
Fig. S11. Proposed model of the proton transport mechanism in Pma1, based on homology models with SERCA. In the $E1$ state, a proton enters from the cytosol and binds between D730 and N154, facilitated by a local membrane depression. The proton gets occluded by a concerted upward movement of M1-2. The side chain of R695 in M7 appears to shield the protonated D730 from the former ion entry region. A large conformational change is expected to follow phosphoryl transfer to the P domain, leading to the transient opening of the extracellular proton exit pathway in the $E2P$ state. In this state, N154 in M2 could interact with Q125 at the M1 kink to stabilise the bundle, and R695 can form a salt bridge with D730, favouring its deprotonation. A cluster of negatively charged residues (red shaded area) facilitates proton exit. In the subsequent dephosphorylation reaction, the exit pathway closes, leading to the $E2$ state, from which the pump cycles back to open up to the cytosol once again. Residues shown as coloured circles are: D (orange): protonated D730; D (red): deprotonated D730, N (purple): Asn154; Q (purple): Q125; R (blue): Arg695.
Fig. S12: Proton exit funnel in the open-to outside E2P homology model. Aqueous cavity representing the proton exit funnel between M1, M4 and M6. Important residues for proton transport are shown as sticks. M1-2 are coloured pink, M3-4 gold and M5-10 grey. The proton acceptor/donor Asp730 (labelled in red) at the inner end of the funnel lies in bonding distance to Arg695 (C-alpha distance: 7.3 Å; indicated bond: 4.9 Å), presuming a small side chain rotation of the latter. The E1-interaction partner of Asp730, Asn154 (labelled in red), has moved away and forms a putative hydrogen bond with Gln125 (2.8 Å). Putative bonds indicated as orange dashes. There is a clustering of negatively charged residues (Glu139, Asp140, Asp143, Glu324 and Glu720) at the extracellular end of the exit funnel.
Fig. S13: Distance between M10 and the R helix, and hexamer homology model diameters

(A) Distance between the C-alpha atoms of the last residue of M10 (Asp880) and the first residue of the R-helix (Gln897) in the autoinhibited E1 structure and homology models throughout the catalytic E1/E2 cycle. The R-helix was placed into the homology models in its relative position to the P domain as observed in E1. The homology models were generated with SWISS-MODEL (64) based on a structural alignment and SERCA crystal structures with the PDB entries 1T5T (E1~P), 3B9B (E2P), 3N5K (E2~P), and 3NAL (E2).

(B) Maximal outer diameter of the autoinhibited Pma1 E1 structure and homology models in states E1P, E2P, E2~P, and E2.
Fig. S14: Compound docking into Pma1. (A) Chemical structure of the docked tetrahydrocarbazole compounds. (B) Tetrahydrocarbazole compounds docked into Pma1 in the autoinhibited E_1 state giving estimated affinities stronger than -9 kcal/mol (only one representative mode with the highest affinity score shown per compound): 6/S (green), 7/R (blue), 7/S (pink), 8/R (yellow). The protein surface is coloured according to conservation with proton pumps from human- and plant-pathogenic fungi from purple (conserved) to bluegreen (variable) (calculated with ConSurf (42)). (C) Enlarged view of the putative inhibitor binding site with the protein shown as grey cartoon. Residues involved in binding of most compounds are shown as sticks.
Table S1. Cryo-EM data collection, refinement and validation statistics.

Data collection	hexamer	monomer
Instrument	FEI Titan Krios / Gatan K3	
Magnification	105’000	
Voltage (kV)	300	
Electron dose (e-/Å²)	42	
Defocus range (μm)	-1.3 to -2.5	
Calibrated pixel size (Å)	0.837	

Map values	hexamer	monomer
Map ID	H3	M
EMDB ID	EMD-12644	EMD-12638
No. of particles	59’511	293’999
Map symmetry	C6	C1
Map resolution (Å)	3.28	3.21
FSC threshold 0.143		

Model		
PDB ID	7NY1	7NXF
Protein residues	4'974	829
Ligands (no.)	K (6), Mg (6), ADP (6)	K (1), Mg (1), ADP (1)

Model validation		
Map CC (ligands)	0.76 (0.70)	0.80 (0.79)
MolProbity score	2.08	1.96
Clash score	12.01	8.99
Bond length rmsd (Å)	0.007	0.006
Bond angle rmsd (°)	1.142	0.816
B factor (Å²) (min/max/mean)		
Protein	19.28/155.87/82.25	
ligands	61.94/109.49/107.30	
Rotamer outliers (%)	0	
Cβ outliers (%)	0	
Ramachandran Plot		
Favoured/allowed/outliers (%)	92.1 / 7.9 / 0	
Table S2: Residues involved in intra- and intermolecular contacts mediated via the R domain.

	R – P	R – P’	R – R’/ R” – R
Pro893	G589	Val562	Leu902
Lys 894	M592	Gly563	Ser892
Arg900	G594	Arg566	Arg893
Glu903	Ser595	Asn577	
Asp904	Tyr598	Ile578	
Val907	Asp599	Tyr579	
Arg911	Glu602	Arg583	
	Arg625	Asp500	
		Phe600	
Table S3: Residues involved in the intermolecular contact within the M domain.

M3 / M4	M7 / L7-8	M10
Thr295	Ile772	Ile862
Ile299	Thr775	Phe863
Ile302	Thr776	Cys869
Leu306	/	Ile870
Trp309	Gly784	Tyr876
Val310	Gly785	
Phe313	Ile786	
Tyr314	Gln788	
	/	
Pro318		
Ile319		
Table S4: Alignment of Neurospora crassa Pma1 with the plasma membrane proton pumps of human-pathogenic (above black line) and plant-pathogenic (below black line) fungi.

Neurospora crassa	Sporothrix schenckii	Histoplasma capsulatum	Coccidioides immitis	Blastomyces dermatitidis	Acremonium chrysogenum	Talaromyces marneffei	Syncephalastrum racemosum	Rhizopus stolonifer	Cryptococcus gattii	Cryptococcus neoformans	Claviceps purpurea	Colletotrichum gloeosporioides	Magnaporthe oryzae	Fusarium oxysporum	Botrytis cinerea	Fusarium graminearum	Aspergillus niger	Blumeria graminis	Sclerotinia sclerotiorum	Mycosphaerella graminicola	Cochliobolus heterostrophus	Rhizoctonia solani	Ustilago maydis	Puccinia graminis			
N	Y	S	D	E	D	E	D	S	D	E	D	S	D	S	D	S	D	E	D	D	D	D	S	D	D	D	
Q	K	P	K	E	K	K	P	K	E	K	E	K	K	P	K	E	K	K	Q	K	K	K	K	K	K	K	K
K	E	K	E	K	K	K	K	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
K	K	E	K	E	K	K	K	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
P	C	I	N	C	I	N	C	I	N	C	I	N	C	I	N	C	I	N	P	C	I	N	I	N	C	I	N
Y	Q	K	P	E	K	K	P	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
K	E	K	E	K	K	K	K	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
P	C	I	N	C	I	N	C	I	N	C	I	N	C	I	N	C	I	N	P	C	I	N	I	N	C	I	N
K	E	K	E	K	K	K	K	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
Q	K	P	E	K	E	K	E	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
Y	Q	K	P	E	K	K	E	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
K	E	K	E	K	K	K	K	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
P	C	I	N	C	I	N	C	I	N	C	I	N	C	I	N	C	I	N	P	C	I	N	I	N	C	I	N
K	E	K	E	K	K	K	K	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
Q	K	P	E	K	E	K	E	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
Y	Q	K	P	E	K	K	E	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
K	E	K	E	K	K	K	K	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
P	C	I	N	C	I	N	C	I	N	C	I	N	C	I	N	C	I	N	P	C	I	N	I	N	C	I	N
K	E	K	E	K	K	K	K	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
Q	K	P	E	K	E	K	E	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
Y	Q	K	P	E	K	K	E	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
K	E	K	E	K	K	K	K	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
P	C	I	N	C	I	N	C	I	N	C	I	N	C	I	N	C	I	N	P	C	I	N	I	N	C	I	N
K	E	K	E	K	K	K	K	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
Q	K	P	E	K	E	K	E	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
Y	Q	K	P	E	K	K	E	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
K	E	K	E	K	K	K	K	K	E	K	E	K	K	K	K	E	K	K	Q	K	K	K	K	K	K	K	K
P	C	I	N	C	I	N	C	I	N	C	I	N	C	I	N	C	I	N	P	C	I	N	I	N	C	I	N
Database	Taxonomy	Species	Table S4: continued																								
-----------	----------	---------	---------------------																								
Neurospora crassa	VDELKLADAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	42																									
Sporothrix schenckii	VDELKTLADAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	22																									
Histoplasma capsulatum	VDELKTLADAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	22																									
Coccioides immitis	VDELKTLADAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	22																									
Blastomyces dermatitidis	VDELKTLADAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	22																									
Acremonium chrysogenum	VDELKTLADAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	22																									
Trichophyton rubrum	VDELKTLADAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	22																									
Candida glabrata	VDELKTLADAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	22																									
Candida auris	VDELKTLADAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	22																									
Candida albicans	VDELKTLADAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	22																									
Pneumocystis jirovecii	VDELKTLADAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	22																									
Aspergillus fumigatus	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	7																									
Talaromyces marneffei	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	23																									
Syncphalastrum racemosum	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	146																									
Rhizopus stolonifer	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	48																									
Lichtheimia corymbifera	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	21																									
Cryptococcus gattii	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	23																									
Cryptococcus neoformans	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	33																									
Claviceps purpurea	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	223																									
Colletotrichum gloeosporioides	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	223																									
Magnaporthe oryzae	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	223																									
Fusarium oxysporum	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	223																									
Botrytis cinerea	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	223																									
Fusarium graminearum	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	223																									
Aspergillus niger	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	223																									
Blumeria graminis	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	223																									
Sclerotinia sclerotiorum	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	223																									
Mycosphaerella graminicola	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	223																									
Cochliobolus heterostrophus	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	223																									
Rhizoctonia solani	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	223																									
Ustilago maydis	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	223																									
Puccinia graminis	VASLGDIAKAVLVRGSKTEIAKRYVPQSGDLVVEEGIIIPAGKIVTE	223																									
Table S4: continued

Yeast	Molecular Biology and Pathogenesis	Table S4: described in the text
Neurospora crassa	Q C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Sporothrix schenckii	Q C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Histoplasma capsulatum	T C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Coccidioides immitis	T C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Blastomyces dermatitidis	T C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Acremonium chrysogenum	N C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Trichophyton rubrum	H C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Candida glabrata	Q F S T Y E A A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Candida auris	S Y S T Y E A A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Candida albicans	S Y S T Y E A A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Pneumocystis jirovecii	S Y S T Y V E A A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Aspergillus fumigatus	T C Y T T G K K A T A I V A A K Q F Y G A A T V L V A G Q D H D D Q V Q L V A R C V F L U S G E	34
Talaromyces marneffei	T C Y T T G K K A T A I V A A K Q F Y G A A T V L V A G Q D H D D Q V Q L V A R C V F L U S G E	34
Syncyphalastrum racemosum	35	
Rhizopus stolonifer	E Y S T Y E A A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Lithichaeum corymbifera	E Y S T Y E A A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Cryptococcus gattii	E Y S T Y E A A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Cryptococcus neoformans	E Y S T Y E A A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Claviceps purpurea	N C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Colletotrichum gloeosporioides	N C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Magnaporthe oryzae	Q C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Fusarium oxysporum	N C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Botrytis cinerea	T C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Fusarium graminearum	N C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Aspergillus niger	V C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Blumeria graminis	V C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Sclerotinia sclerotiorum	V C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Mycosphaerella graminicola	V C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Cochliobolus heterostrophus	V C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Rhizoctonia solani	V C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Ustilago maydis	O C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Puccinia graminis	O C Y A S K E A F Y V I A R G N D T Y G A A L L N A A S S G G T G E V L G G I T L I L I L Y V	34
Organism	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
----------------------------------	--	
Neurospora crassa	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Sporothrix schenckii	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Histoplasma capsulatum	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Coccidioides immitis	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Blastomyces dermatitidis	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Acremonium chrysogenum	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Trichophyton rubrum	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Candida glabrata	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Candida auris	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Candida albicans	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Pneumocystis jirovecii	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Aspergillus fumigatus	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Talaromyces marneffei	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Syncephalasrum racemosum	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Rhizopus stolonifer	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Lichtheimia corymbifera	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Cryptococcus gattii	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Cryptococcus neoformans	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Claviceps purpurea	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Colletotrichum gloeosporioides	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Magnaporthe oryzae	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Fusarium oxysporum	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Botrytis cinerea	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Fusarium graminearum	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Aspergillus niger	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Blumeria graminis	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Sclerotinia sclerotiorum	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Mycosphaerella graminicola	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Cochliobolus heterostrophus	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Rhizoctonia solani	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Ustilago maydis	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	
Puccinia graminis	AAYLAKKAIYVGLAIcirculated AYVLGII7RMLCKKLGKeligic7086a = GYVPKDLILX 46	

Table S4: continued
Table S4: continued
Neurospora crassa
Neurospora crassa
Sporothrix schenckii
Histoplasma capsulatum
Coccidioides immitis
Blastomyces dermatitidis
Acremonium chrysogenum
Trichophyton rubrum
Candida glabrata
Candida auris
Candida albicans
Pneumocystis jirovecii
Aspergillus fumigatus
Talaromyces marneffei
Syncyphalastrum racemosum

| **Claviceps purpurea** | **Colletotrichum gloeosporioides** | **Magnaporthe oryzae** | **Fusarium oxysporum** | **Botrytis cinerea** | **Fusarium graminearum** | **Aspergillus niger** | **Buchnera glaucescens** | **Sclerotinia sclerotiorum** | **Myxococcus xanthus** | **Cochliobolus heterostrophus** | **Rhizoctonia solani** | **Ustilago maydis** | **Puccinia graminis** |
|------------------------|-------------------------------|-----------------------|-------------------|---------------------|---------------------|-------------------|---------------------|-------------------|---------------------|---------------------|-------------------|-------------------|
| Claviceps purpurea | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Colletotrichum gloeosporioides | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Magnaporthe oryzae | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Fusarium oxysporum | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Botrytis cinerea | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Fusarium graminearum | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Aspergillus niger | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Buchnera glaucescens | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Sclerotinia sclerotiorum | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Myxococcus xanthus | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Cochliobolus heterostrophus | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Rhizoctonia solani | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ustilago maydis | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Puccinia graminis | - | - | - | - | - | - | - | - | - | - | - | - | - |
Table S4: continued

Organism	Sensitivity	Specificity
Neurospora crassa	0.97	0.97
Sporothrix schenckii	0.97	0.97
Histoplasma capsulatum	0.97	0.97
Coccioides immitis	0.97	0.97
Blastomyces dermatitidis	0.97	0.97
Acremonium chrysogenum	0.97	0.97
Trichophyton rubrum	0.97	0.97
Candida glabrata	0.97	0.97
Candida auris	0.97	0.97
Candida albicans	0.97	0.97
Pneumocystis jirovecii	0.97	0.97
Aspergillus fumigatus	0.97	0.97
Talaromyces marneffei	0.97	0.97
Syncphalariae racemosum	0.97	0.97
Rhizopus stolonifera	0.97	0.97
Lichtheimia corymbifera	0.97	0.97
Cryptococcus gattii	0.97	0.97
Cryptococcus neoformans	0.97	0.97
Claviceps purpurea	0.97	0.97
Colletotrichum gloeosporioides	0.97	0.97
Magnaporthe oryzae	0.97	0.97
Fusarium oxysporum	0.97	0.97
Botrytis cinerea	0.97	0.97
Fusarium graminearum	0.97	0.97
Aspergillus niger	0.97	0.97
Blumeria graminicola	0.97	0.97
Sclerotinia slerotiorum	0.97	0.97
Mycosphaerella graminicola	0.97	0.97
Cochliobolus heterostrophus	0.97	0.97
Rhizoctonia solani	0.97	0.97
Ustilago maydis	0.97	0.97
Puccinia graminis	0.97	0.97
Table S4: continued		

- **Neurospora crassa**
- **Sporothrix schenckii**
- **Histoplasma capsulatum**
- **Coccidioides immitis**
- **Blastomyces dermatitidis**
- **Acremonium chrysogenum**
- **Trichophyton rubrum**
- **Candida glabrata**
- **Candida auris**
- **Candida albicans**
- **Pneumocystis jirovecii**
- **Aspergillus fumigatus**
- **Talaromyces marneffei**
- **Syncephalastrum racemosum**
- **Rhizopus stolonifer**
- **Lichtheimia corymbifera**
- **Cryptococcus gattii**
- **Cryptococcus neoformans**

- **Claviceps purpurea**
- **Colletotrichum gloeosporioides**
- **Magnaporthe oryzae**
- **Fusarium oxysporum**
- **Botrytis cinerea**
- **Fusarium graminearum**
- **Aspergillus niger**
- **Blumeria graminis**
- **Sclerotinia sclerotiorum**
- **Mycosphaerella graminicola**
- **Cochliobolus heterostrophus**
- **Rhizoctonia solani**
- **Ustilago maydis**
- **Puccinia graminis**

| Neurospora crassa | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
|-------------------|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|----|
| Sporothrix schenckii | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Histoplasma capsulatum | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Coccidioides immitis | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Blastomyces dermatitidis | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Acremonium chrysogenum | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Trichophyton rubrum | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Candida glabrata | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Candida auris | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Candida albicans | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Pneumocystis jirovecii | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Aspergillus fumigatus | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Talaromyces marneffei | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Syncephalastrum racemosum | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Rhizopus stolonifer | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Lichtheimia corymbifera | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Cryptococcus gattii | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Cryptococcus neoformans | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |

- **Claviceps purpurea**
- **Colletotrichum gloeosporioides**
- **Magnaporthe oryzae**
- **Fusarium oxysporum**
- **Botrytis cinerea**
- **Fusarium graminearum**
- **Aspergillus niger**
- **Blumeria graminis**
- **Sclerotinia sclerotiorum**
- **Mycosphaerella graminicola**
- **Cochliobolus heterostrophus**
- **Rhizoctonia solani**
- **Ustilago maydis**
- **Puccinia graminis**

- **Claviceps purpurea** | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Colletotrichum gloeosporioides | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Magnaporthe oryzae | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Fusarium oxysporum | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Botrytis cinerea | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Fusarium graminearum | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Aspergillus niger | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Blumeria graminis | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Sclerotinia sclerotiorum | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Mycosphaerella graminicola | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Cochliobolus heterostrophus | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Rhizoctonia solani | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Ustilago maydis | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
| Puccinia graminis | V V | V L | G W | V L | V V | V V | A Q | R E | E C | V O | P K | N T | P E | 7 9 |
Table S4: continued

Neurospora crassa	**Sporothrix schenckii**	**Histoplasma capsulatum**	**Coccidioides immitis**	**Blastosomyces dermatitidis**	**Acremonium chrysogenum**	**Trichophyton rubrum**	**Candida glabrata**	**Candida auris**	**Candida albicans**	**Pneumocystis jirovecii**	**Aspergillus fumigatus**	**Talaromyces marneffei**	**Syncephalastrum racemosum**	**Rhizopus stolonifer**	**Lichtheimia corymbifera**	**Cryptococcus gattii**	**Cryptococcus neoformans**
Table 1 continued...																	
Pathogen Name	Codon Sequence																
--------------------------------	----------------																
Neurospora crassa	NN...																
Sporothrix schencki	GN...																
Histoplasma capsulatum	KN...																
Coccidioides immitis	KG...																
Blastomyces dermatitidis	KN...																
Acremonium chrysogenum	KS...																
Trichophyton rubrum	KS...																
Candida glabrata	TK...																
Candida auris	RK...																
Candida albicans	RN...																
Pneumocystis jirovecii	RM...																
Aspergillus fumigatus	RN...																
Talaromyces marneffi	AT...																
Syncphalastrum racemosum	AQ...																
Rhizopus stolonifer	AAAAAA																
Lichtheimia corymbifera	AAAA																
Cryptococcus gattii	CC...																
Cryptococcus neoformans	CC...																
Claviceps purpurea	RRA																
Colletotrichum gloeosporioides	RRA																
Magnaporthe oryzae	RRA																
Fusarium oxysporum	RRA																
Botrytis cinerea	RRA																
Fusarium graminearum	RRA																
Aspergillus niger	RRA																
Rhizoctonia solani	SRRRRRRR																
Ustilago maydis	SRRRRRRR																
Puccinia graminis	LKLVDAIGFLRR																
Neurospora crassa																	
Sporothrix schencki																	
Histoplasma capsulatum																	
Coccidioides immitis																	
Blastomyces dermatitidis																	
Acremonium chrysogenum																	
Trichophyton rubrum																	
Candida glabrata																	
Candida auris																	
Candida albicans																	
Pneumocystis jirovecii																	
Aspergillus fumigatus																	
Talaromyces marneffi																	
Syncphalastrum racemosum																	
Rhizopus stolonifer																	
Lichtheimia corymbifera																	
Cryptococcus gattii																	
Cryptococcus neoformans																	
Claviceps purpurea																	
Colletotrichum gloeosporioides																	
Magnaporthe oryzae																	
Fusarium oxysporum																	
Botrytis cinerea																	
Fusarium graminearum																	
Aspergillus niger																	
Rhizoctonia solani																	
Ustilago maydis																	
Puccinia graminis																	
Table S5: Alignment of *Neurospora crassa* Pma1 with plasma membrane proton pumps of selected plants.

Sequences are sorted in descending order according to their identity with Pma1. Accession codes: *N. crassa* (sp|P07038), *Coffea eugenioides* (XP_021716212.1), *Spinacia oleracea* (XP_021865157.1), *Cucumis sativus* (XP_004152192.1), *Hordeum vulgare* (KAE8805265.1:29-858), *Jatropha curcas* (XP_012068768.1:37-846), *Triticum aestivum* (P83970.1:29-858), *Ananas comosus* (XP_02090190.1), *Chenopodium quinoa* (XP_021755229.1:32-855), *Carica papaya* (XP_021899224.1), *Ricinus communis* (XP_015572514.1:34-875), *Punica granatum* (XP_031378860.1), *Nicotiana tabacum* (NP_001312285.1), *Brassica napus* (XP_022556197.1), *Gossypium hirsutum* (KAA3489374.1:33-874), *Arabidopsis thaliana* (NP_194748.1), *Manihot esculenta* (XP_021598156.1:34-875), *Malus domestica* (XP_008372282.1:35-876), *Camellia sinensis* (XP_028098451.1:32-870), *Zea mays* (AQK46772.1:25-866), *Theobroma cacao* (EOY29625.1), *Sesamum indicum* (XP_011084025.1), *Hevea brasiliensis* (XP_021654241.1:37-846), *Glycine max* (XP_003549696.1:32-903)

```
Neurospora crassa Pma1
Coffea eugenioides
Spinacia oleracea
Cucumis sativus
Hordeum vulgare
Jatropha curcas
Triticum aestivum
Ananas comosus
Chenopodium quinoa
Carica papaya
Ricinus communis
Punica granatum
Nicotiana tabacum
Brassica napus
Gossypium hirsutum
Arabidopsis thaliana
Manihot esculenta
Malus domestica
Camellia sinensis
Zea mays
Theobroma cacao
Sesamum indicum
Hevea brasiliensis
Glycine max
```

Table S5: Alignment of *Neurospora crassa* Pma1 with plasma membrane proton pumps of selected plants.
Table S5: continued

Neurospora crassa

Coffea eugenioides
Spinacia oleracea
Cucumis sativus
Hordeum vulgare
Jatropha curcas
Triticum aestivum
Arabidopsis thaliana
Manihot esculenta
Malus domestica
Camellia sinensis
Zea mays
Theobroma cacao
Sesamum indicum
Hevea brasiliensis
Glycine max

Neurospora crassa
Coffea eugenioides
Spinacia oleracea
Cucumis sativus
Hordeum vulgare
Jatropha curcas
Triticum aestivum
Ananas comosus
Chenopodium quinoa
Carica papaya
Ricinus communis
Punica granatum
Nicotiana tabacum
Brassica napus
Gossypium hirsutum
Arabidopsis thaliana
Manihot esculenta
Malus domestica
Camellia sinensis
Zea mays
Theobroma cacao
Sesamum indicum
Hevea brasiliensis
Glycine max

Neurospora crassa
Coffea eugenioides
Spinacia oleracea
Cucumis sativus
Hordeum vulgare
Jatropha curcas
Triticum aestivum
Ananas comosus
Chenopodium quinoa
Carica papaya
Ricinus communis
Punica granatum
Nicotiana tabacum
Brassica napus
Gossypium hirsutum
Arabidopsis thaliana
Manihot esculenta
Malus domestica
Camellia sinensis
Zea mays
Theobroma cacao
Sesamum indicum
Hevea brasiliensis
Glycine max

Neurospora crassa
Coffea eugenioides
Spinacia oleracea
Cucumis sativus
Hordeum vulgare
Jatropha curcas
Triticum aestivum
Ananas comosus
Chenopodium quinoa
Carica papaya
Ricinus communis
Punica granatum
Nicotiana tabacum
Brassica napus
Gossypium hirsutum
Arabidopsis thaliana
Manihot esculenta
Malus domestica
Camellia sinensis
Zea mays
Theobroma cacao
Sesamum indicum
Hevea brasiliensis
Glycine max
Table S5: continued

Neurospora crassa	Coffea eugenioides	Spinacia oleracea	Cucumis sativus	Hordeum vulgare	Jatropha curcas	Triticum aestivum	Arabidopsis thaliana	Manihot esculenta	Malus domestica	Camellia sinensis	Zea mays	Theobroma cacao	Sesamum indicum	Hevea brasiliensis	Glycine max
Table S5: continued

Plant Name	Neuron	Correlation Coefficient
Neurospora crassa		5.7
Coffea eugenioides		7.14
Spinacia oleracea		7.15
Cucumis sativus		7.15
Hordeum vulgare		6.83
Jatropha curcas		6.83
Triticum aestivum		6.83
Arabidopsis thaliana		6.83
Chenopodium quinoa		6.83
Carica papaya		7.14
Ricianus communis		7.17
Punica granatum		7.17
Nicotiana tabacum		7.17
Brassica napus		7.17
Gossypium australis		6.83
Ananas comosus		7.75
Manihot esculenta		6.83
Malus domestica		6.83
Zea mays		6.83
Theobroma cacao		6.83
Sesamum indicum		6.82
Hevea brasiliensis		6.82
Glycine max		6.83

Plant Name	Neuron	Correlation Coefficient
Neurospora crassa		7.98
Coffea eugenioides		7.01
Spinacia oleracea		7.01
Cucumis sativus		7.01
Hordeum vulgare		7.01
Jatropha curcas		7.01
Triticum aestivum		7.01
Arabidopsis thaliana		7.01
Chenopodium quinoa		7.01
Carica papaya		7.01
Ricianus communis		7.01
Punica granatum		7.01
Nicotiana tabacum		7.01
Brassica napus		7.01
Gossypium australis		7.01
Ananas comosus		7.01
Manihot esculenta		7.01
Malus domestica		7.01
Zea mays		7.01
Theobroma cacao		7.01
Sesamum indicum		7.01
Hevea brasiliensis		7.01
Glycine max		7.01

Plant Name	Neuron	Correlation Coefficient
Neurospora crassa		8.55
Coffea eugenioides		8.21
Spinacia oleracea		8.35
Cucumis sativus		8.35
Hordeum vulgare		8.35
Jatropha curcas		8.35
Triticum aestivum		8.35
Arabidopsis thaliana		8.35
Chenopodium quinoa		8.35
Carica papaya		8.35
Ricianus communis		8.35
Punica granatum		8.35
Nicotiana tabacum		8.35
Brassica napus		8.35
Gossypium australis		8.35
Malus domestica		8.35
Theobroma cacao		8.35
Sesamum indicum		8.35
Hevea brasiliensis		8.35
Glycine max		8.35
Table S5: continued

Species	Amino Acid Sequence	Alignments
Neurospora crassa		
Coffea eugenioides		
Spinacia oleracea		
Cucumis sativus		
Hordeum vulgare		
Jatropha curcas		
Triticum aestivum		
Ananas comosus		
Chenopodium quinoa		
Carica papaya		
Ricinus communis		
Punica granatum		
Nicotiana tabacum		
Brassica napus		
Gossypium australe		
Arabidopsis thaliana		
Manihot esculenta		
Malus domestica		
Camellia sinensis		
Zea mays		
Theobroma cacao		
Sesamum indicum		
Hevea brasiliensis		
Glycine max		

Species	Amino Acid Sequence	Alignments
Neurospora crassa		
Coffea eugenioides		
Spinacia oleracea		
Cucumis sativus		
Hordeum vulgare		
Jatropha curcas		
Triticum aestivum		
Ananas comosus		
Chenopodium quinoa		
Carica papaya		
Ricinus communis		
Punica granatum		
Nicotiana tabacum		
Brassica napus		
Gossypium australe		
Arabidopsis thaliana		
Manihot esculenta		
Malus domestica		
Camellia sinensis		
Zea mays		
Theobroma cacao		
Sesamum indicum		
Hevea brasiliensis		
Glycine max		
Table S6. Lipid composition used in the coarse-grained molecular dynamics simulations.

Lipid name	Head group	Tail	Net charge	Content in inner leaflet (%)	Content in outer leaflet (%)
PIPC	Phosphatidylcholine	C16:0/18:2	0	11	28
DIPC	Phosphatidylcholine	di-C16:2-C18:2	0	5	14
PIPE	Phosphatidylethanolamine	C16:0/18:2	0	8	13
DIPE	Phosphatidylethanolamine	di-C16:2-C18:2	0	4	7
PIPA	Phosphatidic acid	C16:0/18:2	-2	11	11
DIPA	Phosphatidic acid	di-C16:2-C18:2	-2	5	5
PIPS	Phosphatidylerine	C16:0/18:2	-1	17	0
DIPS	Phosphatidylerine	di-C16:2-C18:2	-1	9	0
PIPI	Phosphatidylinositol	C16:0/18:2	-1	8	0
XNSM	Sphingomyelin	C(d24:1/24:1)	0	2	2
PVSM	Sphingomyelin	C(d18:1/18:1)	0	4	4
DPCE	Ceramide	C(d18:1/18:0)	0	3	3
PNCE	Ceramide	C(d18:1/24:1)	0	8	8
ERGO	Ergosterol	–	0	5	5