Oncosuppressive functions of decorin

Thomas Neill¹, Liliana Schaefer², and Renato V Iozzo¹,*

1Department of Pathology; Anatomy and Cell Biology; and the Cancer Cell Biology and Signaling Program; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA; 2Department of Pharmacology; Goethe University; Frankfurt, Germany

Keywords: angiostasis, autophagy, mitophagy, mitostatin, Peg3, proteoglycans

Abbreviations: AMPKα, AMP-activated protein kinase; α; AP4, activating enhancer binding protein 4; ATG, autophagy-related gene; Bcl2, B-cell CLL/lymphoma 2; Braf, B-Raf proto-oncogene; CLEAR, coordinated lysosomal expression and regulation; CXCL12, C-X-C motif chemokine 12; CXCR4, C-X-C chemokine receptor type 4; Dyrk1, dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A; ECM, extracellular matrix; Egfr, epidermal growth factor receptor; Erk, extracellular regulated kinase; Gsk-3α, glycogen synthase kinase 3α; Hif-1α, hypoxia inducible factor-1α; Hgf, hepatocyte growth factor; IGF-1, insulin-like growth factor 1; IGF-IR, insulin-like growth factor 1 receptor; IgG, immunoglobulin G-like folds; IR-A, insulin receptor isoform A; Irs, insulin receptor substrate 1; Lc3, microtubule-associated protein 1A/1B-light chain 3; Lynus, lysosomal nutrient sensing; Mapk, mitogen activated protein kinase; Mmp, matrix metalloproteinase; Mtor, mechanistic target of rapamycin; Pdgfr, platelet derived growth factor receptor; Peg3, paternally expressed gene 3; Pink1, PTEN-induced putative kinase-1; P13K, phosphoinositide 3-kinase; Pkb/Akt, protein kinase B; Pkc, protein kinase C; Pgc-1α, peroxisome proliferator activated receptor γ co-activator-1α; Rac1, ras-related C3 botulinum toxin substrate 1; Rheb, Ras homolog enriched in brain; RhoA, ras homolog gene family, member A; Rock1, rho-associated, coiled-coil-containing protein kinase 1; Rrm, RNA recognition motif; Rtk, receptor tyrosine kinase; Peg3, paternally expressed gene 3; P70S6K, ribosomal protein S6 kinase, 70kDa; SlrP, small leucine-rich proteoglycan; Tmp3, tissue inhibitor of metalloproteinases 3; Tgf-B1, transforming growth factor β 1; Tfeb, transcription factor eb; Tsp1, thrombospondin 1; Ulk1, unc-51 like autophagy activating kinase 1; Vdac, voltage-dependent anion channel; Vegf, vascular endothelial growth factor receptor; Vps34, vacuolar protein sorting 34.

The extracellular matrix is rapidly emerging as a prominent contributor to various fundamental processes of tumorigenesis. In particular, decorin, a member of the small leucine-rich proteoglycan gene family, is assuming a central role as a potent soluble tumor repressor. Decorin binds and antagonizes various receptor tyrosine kinases and inhibits downstream oncogenic signaling in several solid tumors. Among other functions, decorin evokes cell cycle arrest, apoptosis, and antimitotic, and antiangiogenic programs. Recent work has revealed a paradigmatic shift in our understanding of the molecular mechanisms underlying its tumoricidal properties. Decorin adversely compromises the apoptotic nature of ECM molecules are embodied and exemplified by the small leucine-rich proteoglycan (SLRP) gene family. Decorin, the prototypical SLRP of this 18-member strong clan, is composed of a singular N-terminal glycosaminoglycan chain of dermatan or chondroitin sulfate, 12 leucine-rich tandem repeats, and a C-terminal Ear domain. Decorin was named for its function as an avid collagen-binding partner for fibrillogenic s. It and regulates various biomechanical properties of collagen-containing tissue, including tendons and skin. Subsequent paradigm-shifting work demonstrated a strong affinity of decorin for various receptor tyrosine kinases (RTKs) that resulted in potent and sustained oncostasis and angiostasis. Moreover, decorin binds and sequesters numerous growth factors, multiple matrix constituents, and indirectly suppresses downstream signaling.

Introduction

Solid malignancies are complex entities that arise from intricate associations among a heterogeneous population of cells derived from several epigenetically and transcriptionally distinct lineages. The impressive assortment of recruited mesenchymal and inflammatory cells within the elaborate network of the extracellular matrix (ECM) is emerging as a critical entity defining chemotherapeutic responsiveness and clinical outcomes. The ECM acts as a bidirectional signaling hub, linking the local microenvironment with the tumor cells. This communicative epicenter provides instructional cues in the form of solid-phrase ligands and/or soluble signals that are capable of modulating multiple aspects of tumorigenesis and angiogenesis.

The diverse regulatory properties exerted by the multifunctional nature of ECM molecules are embodied and exemplified by the small leucine-rich proteoglycan (SLRP) gene family. Decorin, the prototypical SLRP of this 18-member strong clan, is composed of a singular N-terminal glycosaminoglycan chain of dermatan or chondroitin sulfate, 12 leucine-rich tandem repeats, and a C-terminal Ear domain. Decorin was named for its function as an avid collagen-binding partner for fibrillogenic s. It and regulates various biomechanical properties of collagen-containing tissue, including tendons and skin. Subsequent paradigm-shifting work demonstrated a strong affinity of decorin for various receptor tyrosine kinases (RTKs) that resulted in potent and sustained oncostasis and angiostasis. Moreover, decorin binds and sequesters numerous growth factors, multiple matrix constituents, and indirectly suppresses downstream signaling.
decorin functions as a soluble tumor repressor that counteracts tumorigenic and angiogenic growth, and the protein has aptly been designated “a guardian from the matrix.”

Decorin is currently emerging as a multifaceted and multifunctional signaling molecule with roles beyond the tumor stroma. Pertinent examples include inflammatory responses,

Delayed hypersensitivity,

Wound healing,

Keratinocyte function,

Hepatic healing,

Diabetic nephropathies,

Myogenesis,

Shaping hematopoietic stem cell niches,

Convergent extension,

Renal diseases,

We are currently in the midst of a SLRP renaissance in which decorin is challenging established cancer biology precepts for tumorigenic and angiogenic suppression by matrix constituents.34

In this review, we will evaluate the consequences of autophagic and mitophagic processes that occur downstream of proautophagic RTKs and impinge upon the tumor microenvironment and the tumor proper. Importantly, autophagic and mitophagic processes evoked by decorin are above the operative threshold for ambient homeostatic function, thus controlled or limited autophagy may result in revitalization of cellular processes. The balance between excessive and insufficient autophagy is crucial as either may result in a pathological state. We will critically assess these novel avenues and their unique interfaces with the well-established tumoricidal properties of this versatile proteoglycan and discuss potential therapeutic interventions for decorin bioactivity.

Localization of Decorin Within the Tumor and the Tumor Stroma

Understanding the biological effects of decorin on the tumor first requires a discussion of its expression patterns and localization within the tumor compartments. The degree of decorin expression in various types and grades of tumors has recently been reported and reveals several apparent discrepancies. Clinically, loss of decorin within the tumor microenvironment serves as a poor prognosticator of invasive breast cancer.12,35 Moreover, by querying the Human Protein Atlas, Bozoky et al.36 demonstrated a marked reduction in decorin levels within the stroma of many solid tumors, including bladder, breast, cervical, colon, kidney, ovary, pancreas, prostate, rectal, skin, stomach, and testis. Additionally, decorin expression is significantly reduced in the stroma of low- and high-grade bladder carcinomas, but is high in the submucosa and deep tumor stroma.37 Decorin expression is also decreased in multiple myeloma and monoclonal gammopathy of undetermined significance.38,39

However, other studies report an increase in the amount of stromal decorin in cancer, primarily within colon40-42 and breast43,44 carcinomas. Given the breadth of the decorin interactome with multiple matrix constituents,19 a role for decorin in orchestrating higher-order matrix assemblies and coordinating a desmoplastic reaction emerges. Formation of these collagen-rich structures (comprised of collagen II and IV microfibrils) and the propensity for sequestering potent antitumorigenic (e.g., decorin) and antiangiogenic factors (e.g., decorin and matrilin-1) into large complexes favor tumor suppression.7,19 We believe that

Decorin Promotes a Proautophagic Signaling Program in the Tumor Microenvironment

Intravital imaging of exogenously delivered near infrared-labeled decorin via tail vein injection demonstrated avid and exclusive targeting of orthotopic tumor xenografts.61,62 Importantly, decorin is not targeted to or retained by any other organ system and is subsequently secreted via the urine.61 Systemic delivery of decorin after establishment of triple-negative breast carcinoma orthotopic xenografts permitted high-resolution and simultaneous transcriptomic profiling of the host stromal compartment of mouse origin and the tumor parenchyma of human origin.39 Unexpectedly, decorin evoked significant transcriptomic changes within the host-provided tumor microenvironment without significantly modulating the mRNA profile of the human breast carcinoma.63 Collectively, these changes reprogrammed the tumor stroma in a manner that disfavored tumorigenic growth and metastases.19,59

Of the multitude of genes that are differentially expressed upon chronic decorin treatment, a small subset of targets have emerged that include a poorly-studied imprinted tumor suppressor known as Peg3.63-65 The induction of a tumor suppressor gene is clearly congruent with the antitumorigenic activity of decorin19 Furthermore, PEG3 is epigenetically silenced (via promoter hypermethylation of the active allele) in multiple gynecologic and neural tumors.66,67 Our interest in pursuing Peg3 stemmed from its previously described role in the suppression of Wnt/β-catenin signaling in a non-canonical manner,68 which mirrored the bioactivity

Localization of Decorin Within the Tumor and the Tumor Stroma

Understanding the biological effects of decorin on the tumor first requires a discussion of its expression patterns and localization within the tumor compartments. The degree of decorin expression in various types and grades of tumors has recently been reported and reveals several apparent discrepancies. Clinically, loss of decorin within the tumor microenvironment serves as a poor prognosticator of invasive breast cancer.12,35 Moreover, by querying the Human Protein Atlas, Bozoky et al.36 demonstrated a marked reduction in decorin levels within the stroma of many solid tumors, including bladder, breast, cervical, colon, kidney, ovary, pancreas, prostate, rectal, skin, stomach, and testis. Additionally, decorin expression is significantly reduced in the stroma of low- and high-grade bladder carcinomas, but is high in the submucosa and deep tumor stroma.37 Decorin expression is also decreased in multiple myeloma and monoclonal gammopathy of undetermined significance.38,39

However, other studies report an increase in the amount of stromal decorin in cancer, primarily within colon40-42 and breast43,44 carcinomas. Given the breadth of the decorin interactome with multiple matrix constituents,19 a role for decorin in orchestrating higher-order matrix assemblies and coordinating a desmoplastic reaction emerges. Formation of these collagen-rich structures (comprised of collagen II and IV microfibrils) and the propensity for sequestering potent antitumorigenic (e.g., decorin) and antiangiogenic factors (e.g., decorin and matrilin-1) into large complexes favor tumor suppression.7,19 We believe that

Decorin Promotes a Proautophagic Signaling Program in the Tumor Microenvironment

Intravital imaging of exogenously delivered near infrared-labeled decorin via tail vein injection demonstrated avid and exclusive targeting of orthotopic tumor xenografts.61,62 Importantly, decorin is not targeted to or retained by any other organ system and is subsequently secreted via the urine.61 Systemic delivery of decorin after establishment of triple-negative breast carcinoma orthotopic xenografts permitted high-resolution and simultaneous transcriptomic profiling of the host stromal compartment of mouse origin and the tumor parenchyma of human origin.39 Unexpectedly, decorin evoked significant transcriptomic changes within the host-provided tumor microenvironment without significantly modulating the mRNA profile of the human breast carcinoma.63 Collectively, these changes reprogrammed the tumor stroma in a manner that disfavored tumorigenic growth and metastases.19,59

Of the multitude of genes that are differentially expressed upon chronic decorin treatment, a small subset of targets have emerged that include a poorly-studied imprinted tumor suppressor known as Peg3.63-65 The induction of a tumor suppressor gene is clearly congruent with the antitumorigenic activity of decorin19 Furthermore, PEG3 is epigenetically silenced (via promoter hypermethylation of the active allele) in multiple gynecologic and neural tumors.66,67 Our interest in pursuing Peg3 stemmed from its previously described role in the suppression of Wnt/β-catenin signaling in a non-canonical manner,68 which mirrored the bioactivity
of decorin in a cervical carcinoma model. Our interest intensified when we found that Peg3 colocalized with subcellular structures highly reminiscent of autophagosomes upon decorin stimulation of macrovascular and microvascular endothelial cells used as a surrogate for the tumor stroma. Further investigation using the specific autophagic markers Beclin 1 and LC, confirmed that these Peg3-positive structures were autophagosomes (Fig. 1A, B). Intriguingly, Peg3 is required for the decorin-induced transcriptional activation and accumulation of Beclin 1 and LC3; moreover, Peg3 is required for maintenance of basal Beclin 1 levels in endothelial cells.

Mechanistically, decorin induces Peg3-dependent autophagy downstream of VEGFR2, the primary RTK for endothelial cell homeostasis. In contrast to the aforementioned function of decorin as a pan-RTK inhibitor, decorin acts as a partial VEGFR2 agonist for autophagic initiation (Fig. 1A). Decorin binds the VEGFR2 ectodomain (IgG domains 3–5) that partially overlaps with the binding site of VEGFA (IgG domains 1–3). By doing so, it activates the proautophagic AMPKα/Vps34 signaling arm and concurrently represses the antiautophagic PI3K/Akt/mTOR/p70S6K pathway (Fig. 1A). Collectively, the net cellular output of these concerted signaling events promotes the formation of a Peg3–Beclin 1–LC3 ternary complex, induction of proautophagic gene targets, and concomitant disruption of the inhibitory Bcl-2–Beclin 1 complex. Decorin rapidly promotes activation of the catalytic core of the central energy sensor, AMPKα, at Thr172 in a VEGFR2-dependent manner within a nutrient-rich setting.

In theory, it is possible that decorin mediates activation of AMPKα by recruiting ULK1 (also known as ATG1) and promoting the formation of AMPKα–ULK1 heterodimers for the initiation of autophagy, with further and protracted antagonism of mTORC1 components (such as Raptor, Rheb, and GβL). Notably, recent studies have elaborated an inhibitory function for EGFR and Akt signaling through phosphorylation and consequent inactivation of Beclin 1 (BSCN1) that is conducive to autophagic suppression and chemoresistance. As many RTKs share the core signaling machinery, it is possible that decorin abrogates phosphorylated Beclin 1 downstream of VEGFR2, thereby permitting autophagic activation and downstream supramolecular complex assembly.

Successful autophagy relies on positive flux, lysosomal fusion, and the successful formation of autophagolysosomes. Decorin may positively regulate transcription factor EB (TFEB), a crucial sensory node between autophagy and lysosomal formation. Intriguingly, TFEB is held inactive and sequestered

![Figure 1.](image-url)
within the cytosol (at the lysosomal membrane) by inhibitory mTOR/LYNUS signaling. As decorin inactivates mTOR downstream of VEGFR2, in the presence of decorin TFEB may become dephosphorylated (either passively or actively) and translocate into the nucleoplasm for the activation of proautophagic targets (e.g., BECN1 and CLEAR network genes such as PPARG1A), potentially in a Peg3-dependent manner.

One of the key tenets of decorin bioactivity is the suppression of rampant neovascularization. Notably, biglycan, the closest member of the SLRP gene family, has opposite effects to decorin in both inflammation and angiogenesis, demonstrating specific bioactivities for individual SLRPs. As endothelial cells play a critical role in vascularization of an oxygen- and nutrient-starved solid tumor, we propose that increased autophagy may represent a novel mechanism by which decorin triggers a halt in migration, proliferation, and capillary morphogenesis, and, ultimately, in angiogenesis—all key properties orchestrated by the MAPK signaling system. In the case of hepatocyte growth factor (HGF)/Met, this particu-
lar signaling system results in the direct stabilization and nuclear localization of Met results in the non-canonical and selective degradation of β-catenin and transcriptional activation of β-catenin targets. Seemingly, this pathway functions independently of Wnt signaling via direct phosphorylation and inhibition of GSK-3β. In contrast, binding of decorin to Met disrupts this signaling cascade in what appears to be a GSK-3β-independent manner, resulting in prompt 26S-proteasomal degradation and suppression of β-catenin (CTNNB1) expression (Fig. 2, left panel).

A prime example is EGFR, in which decorin initiates a rapid phosphorylation that activates the MAPK signaling system. This counterintuitively results in apoptosis and cell cycle arrest concomitant with the cleavage and subsequent activation of caspase-3 and induction of p21WAF1 (p21), (Fig. 2, left panel), despite the fact that total cell surface EGFR levels are diminished by 50%. A second example is the recently discovered Met receptor, which undergoes a strong Tyr phosphorylation signal on a phosphotyrosine array following decorin treatment; this transient activation results in recruitment of c-Cbl and receptor downregulation. The transient nature of decorin-evoked receptor phosphorylation and the downstream transduction mechanisms represents a key tenet in cell signaling in which the duration, frequency, and strength of the signal combinatorially dictate cellular behaviors. The oscillatory nature of the downstream signaling molecules (receptors, MAKs, PI3K/Akt/mTOR) framed within this conceptual scaffold may prove crucial for decorin-transduced signals and biological outcomes.

EGFR and Met are not the only RTKs responsible for decorin bioactivities. Several members of the EGFR family, such as the ErbB2/ErbB4 heterodimers, are also targeted by decorin, although recent evidence now suggests direct ErbB4 antagonism. Many other RTKs have been identified, including IGF-IR, IR-A, and their ligands, PDGFRα and associated PDGFA ligand, and VEGFR2. Notably, IGF-IR represents the only known exception where the receptor is not internalized and tagged for destruction by decorin binding; instead, decorin suppresses the IRS-1/Akt/ERK/p70S6K pathway, blocks migration, and prevents IGF-I-dependent localization of IGF-IR into caveosomes.

Suppression of Proliferative, Survival, and Migratory Signaling Pathways

Downstream of the robust binding events and receptor internalization and degradation, soluble decorin evokes potent and prolonged attenuation of several signaling pathways responsible for tumor cell proliferation, survival, and angiogenesis. Attenuation of Met results in the non-canonical and selective degradation of β-catenin and Myc with concurrent induction of p21. In the case of hepatocyte growth factor (HGF)/Met, this particular signaling system results in the direct stabilization and nuclear accumulation of β-catenin and transcriptional activation of β-catenin targets. Seemingly, this pathway functions independently of Wnt signaling via direct phosphorylation and inhibition of GSK-3β. In contrast, binding of decorin to Met disrupts this signaling cascade in what appears to be a GSK-3β-independent manner, resulting in prompt 26S-proteasomal degradation and suppression of β-catenin (CTNNB1) expression (Fig. 2, left panel). Furthermore, Myc is also destabilized by increased phosphorylation on Thr58, a known phospho-acceptor site that designates Myc for degradation via the proteasome with concurrent suppression of MYC mRNA (Fig. 2, left panel). The increase in phosphorylated Myc at this position may be a result of derepressed GSK-3β downstream of attenuated Met signaling. However, the nuclear-localized priming kinase DYRK1 that is adept for phospho-transfer at Ser62 of Myc might work in concert with the GSK-3β-mediated phosphorylation of Myc at Thr58 that occurs downstream of decorin/Met binding.
Interestingly, decorin evokes strong nuclear translocation and subsequent degradation of Myc, concomitant with p21 accumulation. Additionally, transcriptional induction of p21 (also known as CDKN1A) may be linked to inactivation and destruction of the Met/β-catenin/Myc signaling axis as AP4, a gene target of Myc, actively represses CDKN1A expression (Fig 2, left panel).

Broad clinical implications of decorin-mediated suppression of the Met/β-catenin axis have recently emerged from high-throughput transcriptomic screening. Basal mammary carcinomas driven by Wnt/β-catenin and HGF/Met signaling have a unique genetic fingerprint known as the “Wnt-Met” signature, in which aberrant β-catenin activity drives self-renewal programs and Met suppresses differentiation commitments. It is plausible that clinical cases expressing the Wnt-Met signature would greatly benefit from receiving decorin, or related SLRPs, as an adjuvant protein-based therapy. The expected results of such treatment would include a reduction in the capacity for tumor self-renewal and the induction of a more differentiated tumor phenotype with decreased metastatic capacity. Personalized genomics combined with an understanding of matrix-derived tumor repressors may represent an important therapeutic option in the future. Indeed, molecular therapies targeting this system greatly alleviate tumor burden and increase overall survival. Moreover, a similar genetic signature was found for synergistic cooperativity between Myc and Her2/Neu (ErbB2) for stem-like breast cancer cell phenotypes without the requisite epithelial-to-mesenchymal transition discussed elsewhere. Therefore, decorin may suppress stem-like progenitors that would otherwise permit enhanced malignant states.

Intriguingly, as part of the newly described “Wnt-Met” signature, Wnt/β-catenin signaling actively drives expression of CXCL12, a critical chemokine for tumor migration and metastasis. Moreover, HGF acting via the Akt/Rac1/PKCζ arm evokes CXCR4 expression in breast carcinoma. Based on these findings, perturbation of the HGF/Met and Wnt/β-catenin axis by decorin may significantly nullify the CXCR4/CXCL12 chemotactic system and thereby provide a molecular basis for the observed antimetastatic role of this multifunctional proteoglycan. Alternatively, the antimetastatic properties of decorin may be linked to the tumor suppressive function of MMP8 via antagonism of miR-21 and induction of MMP8.

Figure 2. Schematic representations delineating the classic growth inhibitory functions (left panel) and novel promitophagic activities (right panel) of decorin in a tumor cell. Please refer to the text for a full mechanistic description.
Suppression of Angiogenic Signaling Pathways

The cellular and molecular mechanisms responsible for governing and orchestrating tumor neovascularization are becoming more clearly defined. Moreover, several endogenous cues, chiefly soluble and matrix-derived in nature, that potentially impede rampant tumor angiogenesis are being discovered. The literature surrounding the role of decorin in mediating angiogenic responses reflects the inherent intricacies of this vital developmental process. Perhaps the most striking example of complexity in decorin-mediated angiogenesis stems from studies on the normally developing cornea, in where dichotomous roles have been found; however, literature on the role of decorin in mediating tumor angiogenesis favors an antiangiogenic role. Furthermore, the observation that angiosarcomas exhibit a total lack of stromal decorin whereas hemangiomas have abundant decorin expression implies an inverse relationship between vascularized tumor malignancy and decorin expression.

Mechanistically, decorin directly suppresses the HGF/Met signaling axis that ultimately inhibits VEGFA-mediated angiogenesis. Under normoxic conditions, decorin transcriptionally silences a potent combination of proangiogenic transcription factors, including hypoxia inducible factor-1α (HIF-1α), β-catenin, and Myc, downstream of engaging Met (Fig. 2, left panel). Moreover, decorin non-canonically promotes the degradation of HIF-1α protein in a manner dependent on Von-Hipple Lindau tumor suppressor protein (pVHL). Within the extracellular milieu, decorin attenuates the liberation of matrix-bound VEGFA by inhibiting the expression and activity of MMP-2 and MMP-9, which depend on competent β-catenin for sufficient transactivation (Fig. 2, left panel). Decorin also promotes the induction and secretion of well-known antiangiogenic effectors such as TSP-1 and TIMP3. Intriguingly, decorin promotes rapid secretion of TSP-1 by inhibiting the RhoA/ROCK1 signaling cascade for early tempering of the initial angiogenicity of the tumor environment. Importantly, decorin significantly abrogates the HGF/Met signaling axis in vivo in the well-established matrigel plug assay, providing firm mechanistic evidence for decorin-mediated angiostasis. In essence, decorin subverts HGF signaling through Met and thus reduces vascularization and vessel density of the malignancy.

The implications of attenuating HIF-1α and triggering the rapid release of TSP-1 under normoxic conditions open various possibilities of reprogramming the tumor parenchyma and tumor stroma that favor continued tumorigenic growth. It is plausible that decorin disrupts early vascularization events by quelling the angioplasticity of the stroma and repressing potent proangiogenic factors within the tumor proper. Collectively, inhibition of several key EGFR- and Met-mediated pathways including migration, proliferation, survival, and angiogenesis underlies many of the antioncogenic properties of soluble decorin.

New Antioncogenic Properties: Tumor Cell Mitophagy

Fulfilling its role as “a guardian from the matrix,” decorin antagonizes tumorigenic progression indirectly by evoking endothelial autophagy and directly by circumventing the angiogenicity of the tumor proper via growth inhibition, suppression of proangiogenic promoters, and secretion of antianangiogenic factors. A novel mechanism that underlies and potentially unifies the classic tumoricidal effects evoked by decorin has been recently delineated. Functionally akin with VEGFR2 (see above), decorin is a partial agonist of Met for the induction of tumor cell mitochondrial autophagy (mitophagy) (Fig. 2, right panel). At the core of this novel regulatory paradigm is a poorly understood decorin-inducible tumor suppressor gene known as mitostatin. Mitostatin (a mitochondrial protein with oncostatic activity, also known as tricopein), embodies all known characteristics of a conventional tumor suppressor while residing at the mitochondria, possibly at specialized interfaces between the mitochondria and endoplasmic reticulum.

Downstream of Met signaling, decorin elicits rapid post-transcriptional regulation of mitostatin mRNA through PGC-1α, a master regulator of mitochondrial biogenesis. The prompt stabilization of mitostatin mRNA is coordinated by its direct binding to the C-terminal RNA-recognition motif (RRM) of PGC-1α, which is dependent on arginine methylation of PGC-1α by PRMT1. Methylation of RNA binding proteins is commonly required for interactions between this polybasic domain and mRNA target binding. Interruption of the RRM of PGC-1α ablates the induction and accumulation of mitostatin protein. Therefore, we have delineated an operative and mechanistic role for PGC-1α, a crucial factor for BRAF-mediated oncogenesis, in stabilizing and permitting induction of a decorin-evoked tumor suppressor gene for mitophagic induction (Fig. 2, right panel).

Silencing of mitostatin abrogates the ability of breast carcinoma cells to undergo canonical or decorin-evoked mitophagy, as measured by oxidative phosphorylation (OXPHOS) complex turnover, voltage-dependent anion channel (VDAC) activity, and mtDNA depletion (Fig. 2, right panel). An antitumorigenic consequence of mitophagic induction is demonstrated by the inability of decorin to suppress tumor-derived VEGFA in the absence of mitostatin (Fig. 2, right panel). Therefore, mitophagy and decorin-evoked angiostasis may be functionally linked through mitostatin.

Mitophagy is initially evoked following the depolarization of mitochondria. Loss of mitochondrial membrane potential is recognized by Parkin, an E3-ubiquitin ligase that is implicated in recessive forms of neurodegenerative disease, such as Parkinson’s disease. This signal permits discrimination of healthy from failing mitochondria. As a very early harbinger of mitophagic induction, decorin triggers depolarization of the mitochondrial membrane analogous to that induced by the protonophore FCCP. Interestingly, cytosolic calcium fluxes are
reported for mitophagy, concomitant with depolarization. As soluble decorin promotes oscillations of cytosolic calcium in an EGFR-dependent manner, this release may precede and play a role in depolarizing the mitochondria. Furthermore, mitostatin may play a role in coordinating calcium release and subsequent mitochondrial depolarization, as it clusters with mitochondrial-associated membranes and interacts with mitofusin-2.

Mitostatin may interact with, or even function as, an intracellular mitochondrial receptor for Parkin recruitment (Fig. 2, right panel). This scenario appears plausible as Parkin promotes mitophagy and respiratory chain turnover mimicking the effects of decorin/mitostatin signaling. Parkin interacts with PINK1, a master mitophagic kinase that senses mitochondrial distress (e.g., loss of membrane potential) and permits activation of Parkin and downstream ubiquitination of target proteins for mitophagic progression. As both Parkin and mitostatin interact with mitofusin-2, a quaternary complex may exist among PINK1, Parkin, mitostatin, and mitofusin-2 for mitophagic initiation in response to traditional stimuli (e.g., FCCP, CCCP, nutrient deprivation) or decorin.

Currently, no crystal structure of mitostatin exists; however, an in silico analysis of the primary structure revealed an internal domain that shares homology with the DnaJ family of molecular chaperones. Intriguingly, selective destruction of mitochondrial proteins, primarily those associated with the outer mitochondrial membrane, promotes selective respiratory chain component turnover and mitophagy in a PINK1/Parkin-dependent manner. It appears that mitophagy depends on an association between p62 (also known as sequestosome) and VDAC. Decorin promotes loss of VDAC in a mitostatin-dependent manner. Further, long-lived pools of p62/sequestosome promote mammary tumorigenesis via abnormal ErbB2, Akt, and β-catenin activation, whereas mitochondrial turnover promotes degradation of p62/sequestosome. As such, mitostatin may elicit mitophagy in a PINK1/Parkin-dependent fashion, resulting in the turnover of downstream targets involved in this process (e.g., via p62/sequestosome). Tantalizingly, given that mitostatin may function as a molecular chaperone, additional decorin targets including Myc, β-catenin, and HIF-1α may be targeted for degradation via mitostatin during the course of mitophagic signaling and progression.

Therefore, the induction of mitophagy within the tumor by soluble decorin via mitostatin may account for the molecular outcomes and biological manifestations of decorin, such as inhibition of tumorigenic growth and rampant tumor angiogenesis.

Conclusions and Perspectives

Our increased understanding of the biofunctionality of decorin parallels our evolving and expanding comprehension of the fundamental mechanisms underlying molecular and cellular oncology. Originally characterized as a collagen binding factor and key regulator of fibrillogenesis, decorin has recently emerged as the frontrunner for a novel class of soluble and matrix-derived tumor repressors that potentially antagonizes RTK signaling. The decorin interactome encompasses a broad and diverse repertoire of binding partners that effectively quell the tumor microenvironment and antagonize tumor angiogenesis and metastasis by multiple mechanisms. Original studies investigating decorin as a potent tumoricidal molecule focused on the multitude of interactions between decorin and RTK-enriched tumor cells and downstream antioncogenic and antiangiogenic effects. However, a paradigmatic shift has recently emerged with the demonstration that decorin affects the transcriptomic profile of the tumor microenvironment without significantly perturbing the genetic signature of the tumor itself. This discovery heralded a new interest in decorin biology to understand the mechanisms operative within the stroma and how these signals interface with the known effects of decorin on the biology of the tumor proper. As such, a new regulatory mechanism has emerged that posits decorin as a procatabolic agent that activates the conserved autophagic machinery. Acting as a partial agonist, decorin engages a new class of proautophagic signaling receptors—VEGFR2 for endothelial cell autophagy and Met for tumor cell mitophagy—that are activated following decorin binding. Importantly, induction of autophagy and mitophagy may be required for the underlying antitumorigenic effects of decorin on a variety of tumors, including cell cycle arrest, apoptosis, angiogenesis, and metastasis. Such a model connects the secreted extracellular matrix component, with complex intracellular metabolic and bioenergetic systems.

Therefore decorin, related SLRPs, and matrix components may be of great clinical interest as advanced chemotherapeutic modalities that could be genetically matched with the patient’s individual cancer. Matrix-derived therapies may prove to be valuable armaments in the continued war against cancer.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Funding

The original research was supported in part by the National Institutes of Health grants R01 CA39481, R01 CA47282 and R01 CA164462.

References

1. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21:309-22; PMID:22439926; http://dx.doi.org/10.1016/j.ccr.2012.02.022
2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144:646-74; PMID:21376230; http://dx.doi.org/10.1016/j.cell.2011.02.013
3. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polisky K, Tubo R, Weinberg RA. Mesenchymal stem cells within tumor stroma promote breast cancer metastasis. Nature 2007; 449:557-65; PMID:17914389; http://dx.doi.org/10.1038/nature06188
4. Curran CS, Keely PJ. Breast tumor and stromal cell response to TGF-b and hypoxia in matrix deposition. Matrix Biol 2013; 32-95-105; PMID:23262216; http://dx.doi.org/10.1016/j.matbio.2012.11.016
5. Hynes RO. Cell-matrix adhesion in vascular development. J Thromb Haemost 2007; 5 (Suppl 1):S2-40; PMID:17635786; http://dx.doi.org/10.1111/j.1538-7836.2007.02509.x
6. Goldoni S, Iozzo RV. Tumor microenvironment: modulation by decorin and related molecules.
harboring leucine-rich tandem motifs. Int J Cancer 2008; 123:2473-9; PMID:18798267; http://dx.doi.org/10.1002/ijc.23930

7. Iozzo RV, Sanderson RD. Proteoglycans in cancer biology: tumor microenvironment and angiogenesis. J Cell Mol Med 2011; 15:1013-31; PMID:21215597; http://dx.doi.org/10.1111/j.1582-4934.2010.01266.x

8. Merline R, Nastase MV, Iozzo RV, Schafer L. Small Leucine-rich Proteoglycans: multiple functional signaling effects. In: Karamanos N, ed. Extracellular Matrix Pathobiology and Signaling. Berlin: Walter de Gruyter GmbH and Co.; 2012:185-96.

9. Grahovac J, Wells A. Matrikine and matricellular regulations of EGF receptor signaling on cancer cell migration. Lab Invest 2014; 94:31-40; PMID:24224762; http://dx.doi.org/10.1038/labinvest.2013.132

10. Schaefer L, Iozzo RV. Small leucine-rich proteoglycans, at the crossroad of cancer growth and inflammation. Curr Opin Crit Care 2012; 18:56-7; PMID:22326829; http://dx.doi.org/10.1016/j.ccr.2011.12.002

11. Iozzo RV, Schafer L. Proteoglycans in health and disease. Annu Rev Biochem 2010; 79:755-91; PMID:20489648; http://dx.doi.org/10.1146/annurev.biochem.062309.102857

12. Schaefer L. Small leucine-rich proteoglycans in kidney fibrosis. FEBS J 2010; 277:3864-75; PMID:20840584; http://dx.doi.org/10.1111/j.1742-4658.2010.07797.x

13. Zhang G, Chen S, Goldoni S, Calder BW, Simpson AJ, Beason DP, Iozzo RV, et al. Decorin regulates assembly of collagen fibrils and their innate immune receptors in inflammation. J Immunol 2011; 187:6108-9; PMID:21457716; http://dx.doi.org/10.4049/jimmunol.1100739

14. Zelinski JJ, Muradali M, Dezsö M, Iozzo RV, Sage H, Wight TN. A role for decorin in cutaneous wound healing and angiogenesis. Wound Rep Reg 2016; 24:43-52; PMID:26683623; http://dx.doi.org/10.1111/wrr.12480

15. Dunkman AA, Buckley MR, Mienaltowski MJ, Srivastava K, Schaff Z, Sviderski M. Decorin antagonizes IGF receptor I (IGF-IR) function by interfering with IGF-IR activity and attenuating downstream signaling. J Biol Chem 2011; 286:34712-21; PMID:21840990; http://dx.doi.org/10.1074/jbc.M111.267266

16. Stock C, Jungmann O, Seidler DG. Decorin and chondroitin-6-sulfate inhibit B16F1 melanoma cell migration and invasion by cellular adhesion. J Cell Physiol 2011; 226:2641-50; PMID:21772923; http://dx.doi.org/10.1002/jcp.22612

17. Kristensen IB, Pedersen L, Ro TD, Christensen JH, Lyng MB, Masmussen LM, Dietel HJ, Borster M, Abildgaard N. Decorin is down-regulated in multiple myeloma and MGUS bone marrow plasma and inhibits IGF-1 induced myeloma plasma cell viability and migration. Eur J Haematol 2013; 91:196-200; PMID:23607924; http://dx.doi.org/10.1111/ejh.12125

18. Iozzo RV, Sampson PM, Schmitt G. Neoplastic modulation of extracellular matrix: stimulation of chondroitin sulfate proteoglycan and hyaluronan synthesis in co-cultures of human colon carcinoma and smooth muscle cells. J Cell Biochem 1989; 39:355-7; PMID:22722866; http://dx.doi.org/10.1002/jcb.2890400320

19. Iozzo RV, Bolender RP, Wight TN. Proteoglycan changes in the intercellular matrix of human colon carcinoma. Lab Invest 1982; 47:124-38; PMID:7109538

20. Iozzo RV, Wight TN. Isolation and characterization of proteoglycans synthesized by colon cancer cells. J Biol Chem 2012; 287:11335-44; PMID:22707648

21. Brown LF, Giudici AJ, Schmitt SJ, van de Water L, Iruela-Arispe ML, Yoo T-K, Togasaki K, Dvorak HF. Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin Cancer Res 1999; 5:1041-56; PMID:10353737

22. Leygue E, Sestili D, Dintzou H, Truong S, Hiller-Hitchcock T, Murphy LC, Roughley PJ, Watson PH. Lumican and decorin are differentially expressed in human breast carcinoma. J Pathol 2000; 192:513-20; PMID:10956714; http://dx.doi.org/10.1002/(SICI)1096-9896(200011)192:3<513::AID-PATH649>3.0.CO;2-B

23. Foradori MJ, Chen Q, Fernandez CA, Harper J, Li X, Tsang PC, Langer R, Moses MA. Marlin-1 is a inhibitor of neovascularization. Mol Biol Cell 2014; 25:14301-9; PMID:24692560; http://dx.doi.org/10.1091/mc.2013.529982

24. Bostrom P, Sainio A, Kakkö T, Savontaus M, Soderstrom M, Jarvelainen H. Localization of decorin gene expression in normal human breast tissue and in benign and malignant tumors of the human breast. Histochem Cell Biol 2013; 139:161-71; PMID:23067289; http://dx.doi.org/10.1007/s00418-012-0626-0

25. Henke A, Grace OC, Ashley GR, Stewart GD, Ridckett AC, Yeung H, O’Donnell M, Anderson RA, Thomson AA. Stromal expression of decorin, semaphorinD, SPARC, Sprouty 1 and Tsukushi in developing prostate and decreased levels of decorin in prostate cancer. PLoS One 2012; 7:e40151; PMID:22743151; http://dx.doi.org/10.1371/journal.pone.0042516

26. Sainio A, Nyman M, Lund R, Vuorikoski S, Boström P, Lanto M, Bostrom P, Jarvelainen H. Lack of decorin gene expression by human bladder cancer cells offers new tools in the therapy of urothelial malignancies. PLoS One 2013; 8:e76190; PMID:24146840; http://dx.doi.org/10.1371/journal.pone.0076190

27. Horvath Z, Kovalsky I, Fullar A, Kiss K, Schaff Z. Iozzo RV, Baghy K. Decorin deficiency promotes tumor microenvironment. Cancer Med 2014; 3:485-91; PMID:24634138; http://dx.doi.org/10.1002/cam4.231

28. Iozzo RV, Durachi S, Genna M, Xu S-Q, Solomides CC, Petri M, Gomella LG, Owens RT, Morrison A. Decorin antagonizes IGF receptor I (IGF-IR) function by interfering with IGF-IR activity and attenuating downstream signaling. J Biol Chem 2011; 286:34712-21; PMID:21840990; http://dx.doi.org/10.1074/jbc.M111.267266
hepatic carcinogenesis. Matrix Biol 2014; 35:194-205; PMID:24616483; http://dx.doi.org/10.1016/j.matbio.2013.11.004

50. Duncan MB. Extracellular matrix transcriptome dynamics by binding epidermal carcinoma. Matrix Biol 2013; 32:393-8; PMID:23727097; http://dx.doi.org/10.1016/j.matbio.2013.05.003

51. Dyrskjot L, Krudhfeve M, Thykjaer T, Marcussen N, Jensen JL, Møller K, Ørntoft TF. Gene expression in the primary bladder: a common carcinoma in situ gene expression signature exists disregarding histopathological classification. Cancer Res 2004; 64:4404-8; PMID:15173019; http://dx.doi.org/10.1158/0008-5472.CAN-03-3629

52. Sanchez-Carbayo M, Socci ND, Lozano J, Saint P, Cardon-Cardo C. Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J Clin Oncol 2006; 24:3732; PMID:16643078; http://dx.doi.org/10.1200/JCO.2005.33.2579

53. Danielson KG, Baribault H, Holmes DF, Graham H, Ohara H, Harland RM, Wilson AC, Wrana JL, Iozzo RV. Suppression of tumor-angiogenic factor of tumour endothelial cells. Brit J Cancer 2002; 87:477-81; PMID:12032837; http://dx.doi.org/10.1038/sj.onc.1206171

54. Reed CC, Warehouse A, Kirby S, Kay P, Owens RA, McQuillan DJ. The transcription factor TFEB links autophagy to lysosomal biogenesis. Science 2011; 332:1429-33; PMID:21617040; http://dx.doi.org/10.1126/science.1204592

55. Iozzo RV, Chakrani F, Perrotti D, McQuillan DJ, Williams SA, Wilson AC, Wrana JL, Iozzo RV. Decorin antagonizes the angiogenic factor of tumour endothelial cells. Brit J Cancer 2002; 87:477-81; PMID:12032837; http://dx.doi.org/10.1038/sj.onc.1206171

56. Buraschi S, Neill T, Owens RT, Iniguez LA, Purkins MP, Schaefer L, Iozzo RV. Decorin 4-signaling exacerbates the pathophysiology of ischaemic acute kidney injury. Matrix Biol 2014; 35:143-51; PMID:24480070; http://dx.doi.org/10.1016/j.matriobio.2014.01.010

57. Nikitovic D, Aggeliadis J, Young MF, Iozzo RV, Karamanos NK, Tzanakakis GN. The biology of small leucine-rich proteoglycans in bone pathophysicsiology. J Biol Chem 2012; 287:33926-33; PMID:22878388; http://dx.doi.org/10.1074/jbc.R112.376062

58. Kuroiwa Y, Kaneko-Ishino T, Kagaita F, Kohda T, Li L-L, Tada M, Suzuki R, Yokoyama M, Shirouhi T, Wakanaka S et al. Pgp3 injected gene on proximal chromosome 17a contributies angiogenic factor of tumour endothelial cells. Nature Genet 1996; 12:186-90; PMID:8567358; http://dx.doi.org/10.1038/ng0296-186

59. Yamaguchi A, Taniguchi M, Hori O, Ogawa S, Tojo N, Matsunaka N, Miyake S, Kasai K, Sugimori H, Tannamari M et al. Peg3/Begm1 is involved in p53-mediated cell death pathway in brain ischemia/hypoxia. J Biol Chem 2002; 277:623-9; PMID:11679586; http://dx.doi.org/10.1074/jbc.M1045200

60. Kohda T, Asai A, Kuroiwa Y, Kobayashi A, Aisaka K, Nagashima G, Yoshida M, Kondo Y, Kagiyama N, Kirino T et al. Tumour suppressor activity of human imprinted gene PEG3 in a glioma cell line. Genes Cells 2001; 6:257-47; PMID:11426027; http://dx.doi.org/10.1046/j.1365-2443.2001.00412.x

61. Dowdy SC, Gustot BS, Shridhar V, Wu X, Smith DJ, Podratz KC, Jiang S-W. Biliary melellation and suppressing of paternally expressed gene 3 (PEG3) in gynecologic cancer cell lines. Gynecol Oncol 2005; 99:126-34; PMID:16218552; http://dx.doi.org/10.1016/j.ygyno.2005.05.036

62. Jiang X, Yu Y, Yang HW, Agar NYR, Frado L, Johnsson L, Kruh OD, Wesselborg S, Stork B. Role of decorin in the innate inflammatory tissue response via MyD88/TRIF pathways. Matrix Biol 2014; 35:132-42; PMID:24361484; http://dx.doi.org/10.1016/j.matbio.2013.12.003
endothelial growth factor-induced human trophoblast migration and acquisition of endothelial phenotype. Biol Reprod 2012; 87(article 591):14.

90. Khan GA, Girish GV, Lala N, DiGiuglielmo GM, Lala PK. Decorin is a novel VEGFR-2-binding antagonist for the human extravillous trophoblast. Mol Endocrinol 2011; 25:1431-43; PMID:21659473; http://dx.doi.org/10.1210/me.2010-04026

91. Purdie CA, Harrison DJ, Peter A, Dobise L, White S, Howse S, SFM, Turner DJ, Ruth CC, Wyllie AH, Hooper ML et al. Tumour incidence, spread and ploidy in mice with a large deletion in the p53 gene. Oncogene 1994; 9:690-3; PMID:8290271

92. Becker W. Emerging role of Dyrk family protein kinases as activators of protein translation in cell cycle control. Cell Cycle 2012; 11:3389-94; PMID:22918246; http://dx.doi.org/10.4161/cc.21404

93. Yoshida Y, Wang I-C, Yoder HM, Davidson NO, Lally M, Iozzo RV. Decorin induces rapid secretion of endothelial growth factor-induced human trophoblast microvesicles. J Biol Chem 2013; 288:42468-79; PMID:23958878; http://dx.doi.org/10.1074/jbc.M112.448894

94. Baghy K, Horvath Z, Regan E, Sunderkotter C, Schafer L, Thanos S, Graesel S, Oldberg A, Iozzo RV, Young MF, Krese H. Decorin deficiency leads to impaired angiogenesis in injured mouse cornea. J Vase Res 2004; 41:499-508; PMID:15528932; http://dx.doi.org/10.1006/jvare.20030816

95. Mohan RR, Tovey JCK, Sharma A, Schultz G, Cowen JW, Tandon A. A new decorin gene therapy delivered with adenov-associated virus effectively retards corneal neovascularization in vivo. PLoS One 2011; 6:e26432; PMID:22003946; http://dx.doi.org/10.1371/journal.pone.0026432

96. Grant DS, Yenicey R, Rose RW, Tooottel M, Sanna M, Iozzo RV. Decorin suppresses tumor cell-mediated angiogenesis. Oncogene 2002; 21:4765-77; PMID:12101415; http://dx.doi.org/10.1038/sj.onc.1205595

97. Salmakii HH, Sainio AO, Soderstrom M, Pakkanen S, Laine J, Jarvelianen HT. Differential expression of decorin by human malignant and benign vascular tumors. J Histochem Cytochem 2008; 56:639-46; PMID:18340956; http://dx.doi.org/10.1389/hist.2008.56.639

98. Peschard P, Ishiyama N, Lin T, Lipkowitz S, Park M. A conserved DyrP Motif in the juxtamembrane domain of the Met receptor family forms an atypical e-Cbl-Clb-tyrosine kinase binding domain binding site required for suppression of oncogene activation. J Biol Chem 2004; 279:29565-71; PMID:15123609; http://dx.doi.org/10.1074/jbc.M310342200

99. Santra M, Reed CC, Iozzo RV. Decorin reverses internalization and degradation of the EGF receptor following downregulation of ErbB2 leading to growth suppression and cytodifferentiation of mammary carcinoma cells. J Biol Chem 2000; 275:35153-61; PMID:10942781; http://dx.doi.org/10.1074/jbc.M008621200

100. Purdie CA, Harrison DJ, Peter A, Dobise L, White S, Howse S, SFM, Turner DJ, Ruth CC, Wyllie AH, Hooper ML et al. Tumour incidence, spread and ploidy in mice with a large deletion in the p53 gene. Oncogene 1994; 9:690-3; PMID:8290271

101. Lala N, Gannareddy VG, Cloutier-Bosworth A, Lala PK. Mechanisms in decorin regulation of vascular growth using EndoGFP as a reporter. J Biol Chem 2013; 288:25947-62; PMID:21597651; http://dx.doi.org/10.1074/jbc.M112.448894

102. Snuderl E, Sunderkotter C, Schafer L, Thanos S, Graesel S, Oldberg A, Iozzo RV, Young MF, Krese H. Decorin deficiency leads to impaired angiogenesis in injured mouse cornea. J Vase Res 2004; 41:499-508; PMID:15528932; http://dx.doi.org/10.1006/jvare.20030816

103. Schaefer L, Iozzo RV. Decorin induces a novel antagonistic ligand of the Met receptor. J Biol Chem 2001; 276:35671-81; PMID:12105206; http://dx.doi.org/10.1074/jbc.M205317200

104. Baghy K, Horvath Z, Regan E, Sunderkotter C, Schafer L, Thanos S, Graesel S, Oldberg A, Iozzo RV, Young MF, Krese H. Decorin deficiency leads to impaired angiogenesis in injured mouse cornea. J Vase Res 2004; 41:499-508; PMID:15528932; http://dx.doi.org/10.1006/jvare.20030816

105. Lala N, Gannareddy VG, Cloutier-Bosworth A, Lala PK. Mechanisms in decorin regulation of vascular growth using EndoGFP as a reporter. J Biol Chem 2013; 288:25947-62; PMID:21597651; http://dx.doi.org/10.1074/jbc.M112.448894
Nellore A, King AL et al. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell 2013; 23:302-15; PMID:23477830; http://dx.doi.org/10.1016/j.ccr.2013.02.003

132. Vaquero F, Lim J-H, Chim H, Bhatta K, Girnan G, Pierce K, Chish CB, Granter SR, Widlund HR, Spiegelman BM et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 2013; 23:287-301; PMID:23416000; http://dx.doi.org/10.1016/j.ccr.2012.11.020

133. Dagda R, Cherra SJI, Kulich SM, Tandon A, Park D, Chu CT. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fusion. J Biol Chem 2009; 284:13843-55; PMID:19279012; http://dx.doi.org/10.1074/jbc.M808515200

134. Narendra D, Walker JE, Youle R. Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb Perspect Biol 2012; 4 pii: a011338; PMID:23125018

135. Patel S, Santra M, McQuillan DJ, Iozzo RV, Thomas AP. Decorin activates the epidermal growth factor receptor and elevates cytosolic Ca²⁺ in A431 cells. J Biol Chem 1998; 273:3121-4; PMID:9452417; http://dx.doi.org/10.1074/jbc.273.6.3121

136. Coordí G, Santra M, Reed CC, Eichstetter I, McQuillan DJ, Gross D, Nugent MA, Hajnóczy G, Iozzo RV. Sustained down-regulation of the epidermal growth factor receptor by decorin. A mechanism for controlling tumor growth in vivo. J Biol Chem 2000; 275:32879-87; http://dx.doi.org/10.1074/jbc.M005609200

137. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 2010; 12:119-31; PMID:20098416; http://dx.doi.org/10.1038/ncb2012

138. Vincow ES, Merrihew G, Thomas RE, Shulman NJ, Beyer RF, MacCoss MJ, Pallanck LJ. The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc Natl Acad Sci U S A 2013; 110:6400-5; PMID:23509287; http://dx.doi.org/10.1073/pnas.1221135110

139. Iguchi M, Kujuro Y, Okatsu K, Koyano F, Kosako H, Kimura M, Suzuki N, Uchiyama S, Tanaka K, Matsuda N. Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J Biol Chem 2013; 288:22019-32; PMID:23754282; http://dx.doi.org/10.1074/jbc.M113.467530

140. Rakovic A, Griswold A, Kortvies J, Bruggemann N, Pramstaller PP, Lohmann K, Klein C. Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fibroblasts. PLoS One 2011; 6:e16746; PMID:21408142; http://dx.doi.org/10.1371/journal.pone.0016746

141. Poole AC, Thomas RE, Yu S, Vincow ES, Pallanck LJ. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS One 2010; 5:e10054; PMID:20383334; http://dx.doi.org/10.1371/journal.pone.0010054

142. Cai-McRae X, Zhong H, Karantza V. Sequestosome 1/p62 facilitates HER2-induced mammary tumorigenesis through multiple signaling pathways. Oncogene 2015; in press; PMID:25088198

143. Komatsu M, Ichimura Y. Physiological significance of selective degradation of p62 by autophagy. FERS Lett. 2010; 584:1374-8; PMID:20153326; http://dx.doi.org/10.1016/j.ferslet.2010.02.017

144. Bolton K, Segal D, McMillan J, Jowett J, Heilbronn L, Abberton K, Zimmer P, Chisholm D, Colllier G, Walder K. Decorin is a secreted protein associated with obesity and type 2 diabetes. Int J Obes 2008; 32:1113-21; http://dx.doi.org/10.1038/ijo.2008.41