Excitation and Modulation of TRPA1, TRPV1, and TRPM8 Channel-expressing Sensory Neurons by the Pruritogen Chloroquine*

Jonathan Y.-X. L. Than1, Lin Li1, Raquibul Hasan1, and Xuming Zhang1
From the Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom

Background: Chloroquine (CQ) evokes the sensation of itch by exciting peripheral sensory neurons.

Results: CQ not only directly excites a diverse population of sensory neurons but also strongly modulates ion channels involved in pain and itch transduction.

Conclusion: CQ exerts widespread actions on peripheral sensory neurons.

Significance: Our results increase our understanding of the action of CQ on sensory neurons.

The sensations of pain, itch, and cold often interact with each other. Pain inhibits itch, whereas cold inhibits both pain and itch. TRPV1 and TRPA1 channels transduce pain and itch, whereas TRPM8 transduces cold. The pruritogen chloroquine (CQ) was reported to excite TRPA1, leading to the sensation of itch. It is unclear how CQ excites and modulates TRPA1, TRPV1, and TRPM8 and thus affects the sensations of pain, itch, and cold. Here, we show that only 43% of CQ-excited dorsal root ganglion neurons expressed TRPA1; as expected, the responses of these neurons were completely prevented by the TRPA1 antagonist HC-030031. The remaining 57% of CQ-excited neurons did not express TRPA1, and excitation was not prevented by either a TRPA1 or TRPV1 antagonist but was prevented by the general transient receptor potential canonical (TRP) channel blocker BTP2 and the selective TRPC3 inhibitor Pyr3. Furthermore, CQ caused potent sensitization of TRPV1 in 51.9% of TRPV1+ neurons and concomitant inhibition of TRPM8 in 48.8% of TRPM8+ dorsal root ganglion neurons. Sensitization of TRPV1 is caused mainly by activation of the phospholipase C-PKC pathway following activation of the CQ receptor MrgprA3. By contrast, inhibition of TRPM8 is caused by a direct action of activated Goq independent of the phospholipase C pathway. Our data suggest the involvement of the TRPC3 channel acting together with TRPA1 to mediate CQ-induced itch. CQ not only excites itch by directly exciting itch-expressing neurons but also exerts previously unappreciated widespread actions on pain-, itch-, and cold-sensing neurons, leading to enhanced pain and itch.

Pain is a distressing somatic sensation closely related to itch. Temperature-activated transient receptor potential (TRP) ion channels have important roles in the sensation of pain. For example, TRPV1 and TRPA1 channels mediate heat hyperalgesia and cold pain, respectively (1–5). By contrast, activation of the cold-activated TRPM8 channel by innocuous cooling inhibits pain (6, 7). Under pathological conditions such as inflammation, the activities of these ion channels are either sensitized (e.g. TRPV1 and TRPA1) or inhibited (e.g. TRPM8) through different signaling mechanisms, leading to a more painful outcome. Sensitization of TRPV1 and TRPA1 by inflammatory mediators that activate Gαq-coupled G protein-coupled receptors (GPCRs) is caused mainly by activation of the phospholipase C (PLC) signaling pathway (8, 9). However, inhibition of TRPM8 by inflammatory mediators is largely independent of the PLC pathway; activated Goq protein instead directly inhibits TRPM8 (10).

In contrast to pain, the transduction of itch (pruritus) is less well-understood. There are two different types of itch, histamine-dependent (histaminergic) and histamine-independent (non-histaminergic), although the majority of pruritus is non-histaminergic and cannot be treated with antihistamines (11). Non-histaminergic itch is normally caused by exogenous pruritogens such as cowhage and chloroquine (CQ) (12–14).

Pruritogens cause itching by exciting sensory neurons largely through activation of Gαq-coupled GPCRs, which then couple to downstream excitable ion channels, predominantly TRP ion channels. For example, histamine excites sensory neurons by activating TRPV1 through a signaling mechanism involving both the PLCβ3 and phospholipase A2-lipoxygenase pathways (15–17). However, the non-histaminergic pruritogens serotonin and endothelin-1 induce itching without the involvement of TRPV1, although TRPV1-expressing neurons are required (16). On the other hand, CQ excites dorsal root ganglion (DRG) neurons and elicits itching by activating a Mas-related GPCR, MrgprA3, which then causes the opening of TRPA1 through a signaling mechanism involving Gβγ but not PLCβ (14, 16, 18). Therefore, different pruritogens seem to activate differential signaling mechanisms to excite DRG neurons.

*This work was supported by Medical Research Council New Investigator Research Grant G0801387 (to X. Z.).
1 Both authors contributed equally to this work.
2 Supported by an Islamic Development Bank scholarship.
3 To whom correspondence should be addressed: Dept. of Pharmacology, University of Cambridge, Tennis Court Rd., Cambridge CB2 1PD, UK. Tel.: 44-1223-761267; Fax: 44-1223-334100; E-mail: xz213@cam.ac.uk.
4 The abbreviations used are: TRP, transient receptor potential; GPCR, G protein-coupled receptor; PLC, phospholipase C; CQ, chloroquine; DRG, dorsal root ganglion; MEF, mouse embryonic fibroblast; BK, bradykinin; AITC, allyl isothiocyanate; BIM, bisindolylmaleimide I; TRPC, transient receptor potential canonical; PI(4,5)P2, phosphatidylinositol 4,5-bisphosphate.
Collectively, TRPV1 and TRPA1 are involved in the transduction of both pain and itch. Interestingly, activation of TRPM8 by cooling or by the cooling compound menthol inhibits pain and itch through both peripheral and central mechanisms (6, 19–21). It is thus not surprising that there is a complex and antagonistic relationship among the pain, itch, and cold pathways (20, 22–24). However, it is unclear how itching stimuli such as CQ affect the pain and cold pathways. In this study, we investigated how the non-histaaminerigic pruritogen CQ can excite and modulate the activity of TRPV1+, TRPA1+, and TRPM8+ DRG neurons, which are involved in transducing pain, itch, and cold.

EXPERIMENTAL PROCEDURES

Culture of DRG Neurons—DRG neurons were isolated from neonatal C57BL/6 mice as described previously (25). Briefly, mice of either sex were killed by cervical dislocation followed by decapitation. DRGs were collected from all cervical, thoracic, and lumbar segments and incubated in calcium- and magnesium-free Hanks’ balanced salt solution (Invitrogen) containing 2.5 mg/ml type IV collagenase (Worthington Biochemicals) at 37 °C for 1 h. After incubation, DRGs were washed with DMEM (Invitrogen) followed by trituration with 25-gauge needles to dissociate neurons. The dissociated neurons were plated onto coverslips precoated with poly-L-lysine (Sigma) and laminin (BD Biosciences) and cultured in DMEM containing 10% fetal bovine serum (Invitrogen), 2 mM L-glutamine, 100 IU/ml penicillin, and 100 μg/ml streptomycin supplemented with 5 μM cytosine β-D-arabinofuranoside (Sigma) and 1× N2 supplement (Invitrogen). Cultured neurons were used for experiments within 24 h after plating. DRG neurons were also isolated from adult mice (22 days after birth) and cultured in a similar manner as the neonatal DRG neurons. NGF and Glial cell-derived neurotrophic factor (GDNF) were not used for DRG cultures to avoid inducing the expression of TRP channels.

Culture and Transfection of Cell Lines—The HEK293 cell line and mouse embryonic fibroblast (MEF) cells lacking endogenous Gαq/11 (26) were maintained as described previously (10). Briefly, cells were cultured in DMEM containing 10% fetal bovine serum, 2 mM L-glutamine, 100 IU/ml penicillin, and 100 μg/ml streptomycin supplemented with 5 μM cytosine β-D-arabinofuranoside (Sigma) and 1× N2 supplement (Invitrogen). Cultured neurons were used for experiments within 24 h after plating. DRG neurons were also isolated from adult mice (22 days after birth) and cultured in a similar manner as the neonatal DRG neurons. NGF and Glial cell-derived neurotrophic factor (GDNF) were not used for DRG cultures to avoid inducing the expression of TRP channels.

Single-cell RT-PCR—Neurons were first examined by calcium imaging. CQ-sensitive neurons in each category were determined largely as described previously (9, 10). Briefly, patch
Multiple Actions of Chloroquine on Sensory Neurons

TABLE 1

Gene	Primer sequences	Product length	GenBank™ accession no.
MrgpA3	Forward 5′-CGACAAATGACACCCACCAAAC-3′	150 bp	NM_153067.2
	Reverse 5′-GGAAGCCAGAGGCCAGAAC-3′		
TRPV1	Forward 5′-CTGGAGCTGTTCAAGTTCACC-3′	362 bp	NM_00100445.1
	Reverse 5′-TGTTGTTCCAGGTAGTCCAG-3′		
TRPA1	Forward 5′-CCAAAGATGCCTTACGACCC-3′	684 bp	AY231177
	Reverse 5′-GGGTGGCTAATAGAAACAATGTGTTCAGTGC-3′	458 bp	NM_134252.0
TRPM8	Forward 5′-GTGGGAGCACTGTCGGAGC-3′	317 bp	NM_019510.2
	Reverse 5′-GTGTCCTAGACCTCAGGATGCG-3′		
TRPC3	Forward 5′-GGAACCTGGGCATGGGTAACTC-3′	302 bp	NM_008084
	Reverse 5′-CACTGGGGGCGTTTCAGTTCAGT-3′		

electrodes were filled with an internal solution of 140 mM KCl, 2.0 mM MgCl₂, 5.0 mM EGTA, and 10 mM HEPES (pH 7.4) with KOH. Standard Hanks’ solution was used as the external solution. TRPV1 inward currents were recorded at a holding potential of +60 mV. For recordings of the TRPM8 current, we used calcium-free solution in which 1.8 mM CaCl₂ was replaced with 2.0 mM MgCl₂, 5.0 mM EGTA, and 10 mM HEPES (pH 7.4) with KOH. Standard Hanks’ solution was used as the external solution. Rat TRPM8 was precipitated using anti-V5 antibody (Invitrogen) and transferred to a blot. Gαq protein was detected with anti-Gαq polyclonal antibody (Santa Cruz Biotechnology). The V5 tag does not affect the binding of Gαq to TRPM8 because Gαq can be similarly precipitated using anti-TRPM8 polyclonal antibody (10).

Statistics—All data are means ± S.E. Differences between groups were assessed by one-way analysis of variance with the Bonferroni post hoc test. Results were considered significant at p < 0.05.

RESULTS

CQ Excites a Subpopulation of Sensory Neurons Expressing TRPV1, TRPA1, and TRPM8—CQ is traditionally used to treat malaria. One of the common side effects associated with CQ therapy is the production of serious itching. CQ-induced itching has recently been found to be caused by the excitation of the TRPA1 ion channel in DRG neurons after activation of the CQ receptor MrgrpA3 (18, 14). However, it is unclear which populations of DRG neurons are excited by CQ and how they relate to TRPV1⁺, TRPA1⁺, and TRPM8⁺ neurons, which mediate the sensations of pain, itch, and cold.

To investigate this question, we assessed the responses of neonatal DRG neurons after sequential exposure to CQ, the TRPM8 agonist menthol, the TRPA1 agonist AITC, and the TRPV1 agonist capsaicin by monitoring intracellular calcium rises. Two minutes of CQ treatment rapidly induced calcium increases in a subpopulation of neurons (Fig. 1, A–D). About 12.8% (344 of 2693 total neurons) of DRG neurons were found to be excited by CQ (Fig. 1, F and H). Strikingly, only 43.3% (149 of 344) of these neurons also responded to AITC and thus coexpressed TRPA1 (Fig. 1, B, F, and H); some of these neurons (99 of 149) responded to both AITC and capsaicin and thus coexpressed both TRPA1 and TRPV1 (Fig. 1, D and F). Notably, 49.7% (171 of 344) of CQ-responsive neurons did not coexpress TRPA1 but expressed solely TRPV1, and the remaining 7% (24 of 344) of CQ-sensitive neurons expressed neither TRPV1 nor TRPA1 (Fig. 1, C, F, and H). Consistent with the pharmacological data, the single-cell RT-PCR revealed that MrgrpA3 mRNA was expressed in all CQ-responsive neurons (Fig. 1E). Some of them coexpressed TRPA1 and/or TRPV1 mRNA, whereas others coexpressed neither TRPV1 nor TRPA1 mRNA (Fig. 1E). Fig. 1F shows a summary of percentages of the individual populations of CQ-excited neurons described above related to a total of 2693 neurons isolated from neonatal mice. Similar percentages of CQ-excited DRG neurons for these individual populations were also obtained from a total of 1450 neurons isolated from adult mice (Fig. 1G). Hence, the properties of CQ-excited neurons do not change significantly after postnatal development.

We also found that a small proportion (14.2%, 49 of 344) of CQ-excited neurons was excited by menthol and thus coexpressed TRPM8 (Fig. 1H). Most of these neurons (76%) also coexpressed TRPV1 and/or TRPA1 (Fig. 1H) and were thus contained within TRPV1⁺ and TRPA1⁺ populations. Taken
Multiple Actions of Chloroquine on Sensory Neurons

To examine whether coexpressed TRPA1 or TRPV1 in DRG neurons is a bona fide ion channel responsible for mediating responses caused by CQ, we treated CQ-responsive neurons with the specific TRPA1 blocker HC-030031 or both TRPV1 and TRPA1. This experiment shows that CQ-induced excitation of sensory neurons is mediated by TRPA1 only in neurons coexpressing TRPA1 or TRPV1 antagonist capsazepine. Fig. 2 shows that capsazeine failed to prevent CQ-induced responses in neurons that were responsive to the TRPV1 agonist capsaicin, suggesting that ion channels other than TRPV1 mediate the excitation of TRPV1- neurons elicited by CQ. Calcium responses evoked by CQ are not likely to be caused by the release of intracellular calcium store because no calcium responses were observed when similar experiments were performed in a calcium-free solution (Fig. 2C). The CQ-induced calcium responses were prevented, however, by the general TRP channel blocker ruthenium red in all neurons, whether AITC-sensitive or not (Fig. 2, D and F), further supporting the notion that the calcium responses evoked by CQ are caused by extracellular calcium influx through Ca2+-permeable TRP ion channels in the plasma membrane (14). These results demonstrate that CQ-induced excitation of sensory neurons is mediated by TRPA1 only in neurons coexpressing TRPA1 or TRPA1/TRPV1, which account for 43.3% of the total CQ-excited neurons. The responses of the remaining populations of neurons (56.7%) to CQ are not mediated by either TRPA1 or TRPV1 but instead by an as-yet-unidentified TRP ion channel.

TRPC channels are Ca2+-permeable nonselective cation channels. Several subtypes are abundantly expressed in DRG neurons (27). To determine the role of TRPC channels in TRPA1-independent excitation of DRG neurons caused by CQ, DRG neurons were treated with the general TRPC channel inhibitor BTP2. The CQ-induced responses in TRPA1- neurons (insensitive to AITC) were greatly reduced when neurons were pretreated with BTP2 (Fig. 2, E and F). TRPC3 has recently been found to be involved in the excitation of sensory neurons...
induced by the IgG immune complex (28). We then examined the possible contribution of TRPC3 to CQ-excited responses by treating neurons with the selective TRPC3 inhibitor Pyr3. Fig. 2F shows that Pyr3 prevented CQ-elicited responses in TRPA1+ neurons to a similar extent as BTP2. The single-cell RT-PCR further revealed that this population of DRG neurons coexpressed TRPC3 mRNA (Fig. 1E). These data demonstrate that the excitation of DRG neurons in TRPA1+ DRG neurons caused by CQ is mediated by TRPC3.

CQ Sensitizes TRPV1 in DRG Neurons—Because most of the CQ-excited neurons (78.5%) coexpressed TRPV1 (Fig. 1H), and yet TRPV1 is not a mediator for the direct excitation of TRPV1+ neurons by CQ, we wondered whether CQ might be involved in the modulation of TRPV1 function instead, thereby affecting the sensations of pain and itch. To test this hypothesis, we monitored TRPV1-mediated calcium responses evoked by capsaicin in DRG neurons. A short treatment (2 min) with CQ caused a robust enhancement of TRPV1-mediated calcium responses (Fig. 3A). However, CQ treatment itself did not generate calcium signals. To exclude the possible effect of repeated capsaicin stimulation on the CQ-excited calcium response, neurons were also stimulated first with CQ and then with capsaicin. The second pulse of CQ similarly enhanced the TRPV1-mediated calcium increase despite the fact that CQ did not evoke a calcium response by itself (Fig. 3B). In fact, 93% of the neurons that were sensitized by CQ did not show a CQ-excited response. TRPV1 is thus unlikely to be a downstream effector ion channel underlying CQ-initiated excitation of neurons, in agreement with our findings (above) and the previous observations of others (18). The absence of CQ-excited calcium responses in these sensitized neurons may be caused by the lack of a downstream effector ion channel such as TRPA1. Indeed, most of these neurons were not co-excited by AITC (Fig. 3, A and B); however, in some neurons (7%), CQ not only sensitized TRPV1 but also excited a calcium response itself despite the lack of expression of TRPA1 (Fig. 3C). Surprisingly, CQ did not cause the sensitization of TRPV1 in some neurons (25 of 581 TRPV1+ neurons) that were also excited by CQ (Fig. 3D). Presumably, CQ excites these neurons through an MrgprA3-independent mechanism.

Interestingly, although CQ excited only 24.5% (270 of 1100) of TRPV1+ neurons (Fig. 1H), CQ caused sensitization in 51.9% of TRPV1+ neurons (Fig. 3, E and F), comparable with the sensitization induced by BK (9). These data suggest that the CQ receptor is expressed in at least twice as many sensory neurons as what we estimated above by monitoring CQ-excited calcium responses and that the CQ receptor is widely distributed across diverse populations of DRG neurons and thus may have much more widespread actions on DRG neurons than previously appreciated.

CQ-induced Sensitization of TRPV1 Involves the PLC-PKC Pathway—CQ acts on the CQ receptor MrgrpA3, which belongs to a family of orphan GPCRs known as Mrgs (Mas-related genes). Two other members, MrgA1 and MrgC11, are coupled to the Gq/11 pathway (29). To test whether MrgrpA3 is also coupled to Gαq/11, we used Tubby-R332H-cYFP, a sen-

FIGURE 2. CQ excites DRG neurons through both TRPA1- and TRPC3-dependent mechanisms. A and B, representative calcium responses from three DRG neurons activated by CQ (1 mM) and AITC (100 μM). The TRPA1 antagonist HC-030031 (10 μM) was added together with the second CQ application as indicated. Iono, ionomycin. C–E, typical calcium responses from DRG neurons excited by CQ followed by exposure to AITC (100 μM) and capsaicin (Cap; 500 nM). The calcium-free solution, ruthenium red (RR; 10 μM), and BTP2 (10 μM) were perfused together with the second CQ addition as indicated. F, summary of ratio percentages between the second CQ-excited response and the first CQ-induced response obtained from neonatal DRG neurons in experiments similar to those in A–E. +, CQ-sensitive, AITC-sensitive, and capsaicin-sensitive neurons; —, insensitive neurons. The TRPA1 antagonist HC-030031 (10 μM), the TRPC3 channel blocker BTP2 (10 μM), the TRPC3 channel inhibitor Pyr3 (10 μM), the TRPV1 antagonist capsaicine (CSZ; 10 μM), and ruthenium red were added as indicated. The numbers of neurons are given above each bar. Data are means ± S.E. *, p < 0.001; NS, not significant. All results are compared with the first bar.
Multiple Actions of Chloroquine on Sensory Neurons

CQ sensitizes TRPV1 in DRG neurons. A and B, the calcium response elicited by capsaicin (Cap; 100 nm) was enhanced by CQ (1 mM) in a DRG neuron; however, the neuron did not respond to 100 μM AITC, and CQ did not elicit a calcium increase irrespective of whether CQ was applied before (B) or after (A) capsaicin. Men, menthol. C and D, representative calcium response traces from a DRG neuron in an experiment similar to that in A, but CQ induced a transient calcium increase. Note that the application sequence of AITC in D was different from that in C. AITC was added after the second application of CQ in D. E, distribution of TRPV1-dependent calcium response ratios after (fifth response) and before (fourth response) CQ in DRG neurons from experiments similar to those in A. The number of cells was 137 for the control cells and 581 for the CQ-treated cells. F, summary of experiments similar to those in E. The number of experiments was 5 for the control (Con) cells, 11 for the 1 mM CQ-treated cells, and 7 for the BIM-pretreated cells (a total of 108 cells). Data are means ± S.E. *** p < 0.001 compared with the control; ###, p < 0.001 compared with the second bar.

CQ Inhibits TRPM8 in a Subpopulation of DRG Neurons—In contrast to TRPV1 and TRPA1, which mediate the sensations of pain and itch, activation of TRPM8 by moderate cooling or menthol inhibits pain and itch (20). Because CQ-excited neurons were also found to overlap partly with TRPM8+ neurons (Fig. 1H), we were interested in determining whether CQ could also modulate TRPM8 function in DRG neurons. To this end, we monitored TRPM8-mediated calcium responses elicited by menthol. Importantly, menthol was also reported to activate the TRPA1 channel (31). To identify TRPM8+ neurons specifically, we therefore also applied AITC and selected neurons that were both menthol-sensitive and AITC-insensitive. In fact, only 3.2% of AITC-sensitive neurons were also menthol-sensitive (Fig. 1H), suggesting that menthol largely activates TRPM8+ neurons. Fig. 5A shows that 2 min of exposure to CQ significantly reduced the TRPM8-mediated calcium increase and that CQ itself also induced a transient calcium response. In some neurons, CQ still inhibited TRPM8 even if CQ did not elicit a calcium response (Fig. 5B); these neurons probably expressed the CQ receptor MrgprA3 but lacked downstream effector ion channels for excitation. Overall, CQ inhibited 48.8% (21 of 43) of TRPM8+ neurons. The mean ratio of calcium responses after and before CQ treatment was significantly reduced (Fig. 5, C and D).

We have previously found that TRPM8 can also be inhibited by BK in DRG neurons (10). Compared with BK-elicted inhi-
bition of TRPM8, the TRPM8-mediated calcium response ratio after and before CQ treatment was significantly larger than that caused by BK (Fig. 5E), showing that CQ inhibits TRPM8 to a lesser extent than BK.

CQ-mediated Inhibition of TRPM8 Involves Direct Actions of Activated Gaq/11 on TRPM8—We then investigated the mechanisms underlying CQ-elicited inhibition of TRPM8. In contrast to PKC-mediated sensitization of TRPV1 caused by CQ,
CQ-induced inhibition of TRPM8 was not prevented by treatment with the specific PKC inhibitor BIM (Fig. 5D), suggesting that inhibition of TRPM8 by CQ is not caused by PKC.

To further investigate possible signaling mechanisms, TRPM8 inward and outward currents were recorded in HEK293 cells expressing both TRPM8 and MrgprA3. Fig. 6A shows that CQ stimulation inhibited TRPM8 inward currents but not outward currents. It is noteworthy that although MrgprA3 and the BK receptor B2R are both Gq-coupled receptors and can initiate PI3 depletion to a similar extent (Fig. 4B) (10), CQ caused TRPM8 inhibition to a much lesser extent than BK (Fig. 6B) (10), consistent with the above findings in DRG neurons. CQ-induced inhibition of TRPM8 was not reversed by either the PLC inhibitor U73122 or coexpression of PLCβ-ct (Fig. 6C, 6A, and B), both of which completely inhibited CQ-induced sensitization of TRPV1 (Fig. 4E). These data suggest that inhibition of TRPM8 by CQ takes place through a mechanism independent of the PLC-PKC pathway.

We have previously found that BK and histamine inhibit TRPM8 via a direct action of activated Gq on TRPM8 (10). To test whether this mechanism also applies to CQ-induced inhibition of TRPM8, we performed similar experiments in MEF cells lacking endogenous Gq/11. As expected, inhibition of TRPM8 was absent after CQ treatment in MEF cells (Fig. 6C). However, coexpression of the 3Gq/11q chimera, which is unable to couple to PLCβ (10), rescued inhibition of TRPM8 caused by CQ (Fig. 6C, 6A, and B). Furthermore, TRPM8 interacted with Gq as indicated by the coprecipitation of Gq with TRPM8 (Fig. 6D). However, CQ did not induce significant additional binding of Gq to TRPM8 (Fig. 6D), suggesting that a conformation change in activated Gq is sufficient to inhibit TRPM8. These experiments indicate that inhibition of TRPM8 evoked by CQ is caused by a direct action of activated Gq on TRPM8 independent of downstream signaling pathways.

DISCUSSION

CQ causes itching by activating the CQ receptor MrgprA3, which then couples to excitation of the TRPA1 channel (14, 18). Hence, both MrgprA3 and TRPA1 are essential for mediating CQ-induced itch. In this study, we found that CQ excited a diverse population of DRG neurons and that TRPA1 mediated responses in only 43.3% of CQ-excited DRG neurons. The responses in the remaining 56.7% of CQ-excited neurons were not mediated by either TRPA1 or TRPV1 despite the fact that CQ-excited neurons (78.5%) coexpressed TRPV1. All CQ-excited responses were abolished, however, by the general TRP channel blocker ruthenium red. The CQ-induced responses in a subpopulation of TRPA1− DRG neurons were also inhibited by both a general TRPC channel blocker and a selective TRPC3 inhibitor. These results suggest that the TRPC3 channel may also be involved in CQ-induced itch.

Very recently, MrgprA3+ neurons were reported to be itch-specific DRG neurons dedicated to the transduction of itch, and it was shown that activation of TRPV1 in MrgprA3+ neurons caused itch but not pain behavior (32). TRPV1 was also reported to mediate histamine-induced itch (15). Interestingly, we found that TRPV1 was robustly sensitized by CQ, although TRPV1 did not mediate CQ-induced excitation of DRG neurons directly. This finding suggests that indirect sensitization of TRPV1 within MrgprA3+ itch-specific neurons could lead to the sensitization of both histaminergic and non-histaminergic itching responses. Hence, CQ not only causes itching through...
direct excitation of itch-transducing neurons via TRPA1 but also enhances itching through facilitation of activation of TRPV1.

Additionally, we found that activation of MrgprA3 by CQ inhibited the cold-sensitive ion channel TRPM8. Activation of TRPM8 by cooling was reported to inhibit pain and itch (20); thus, concomitant inhibition of TRPM8 could also lead indirectly to enhanced sensations of pain and itch. CQ acts on multiple TRP ion channels; it excites TRPA1, sensitizes TRPV1, and inhibits TRPM8. Strikingly, CQ produces these actions through completely different signaling mechanisms. The CQ receptor MrgprA3 is a Gαq-coupled GPCR. Activation of TRPA1 by CQ is believed to be mediated by Gβγ released after activation of MrgprA3. In contrast, sensitization of TRPV1 elicited by CQ is mediated mainly by activation of the PLC-PKC pathway. However, CQ-evoked inhibition of TRPM8 is independent of either of these two pathways; instead, a direct action of activated Gαq on the TRPM8 channel seems to be responsible (Fig. 7).

Both the CQ receptor MrgprA3 and the BK receptor B2R are Gαq/11-coupled receptors. Activation of these two receptors depleted PIP2 to a similar extent as shown in Fig. 4 (A and B) and in a similar experiment with BK reported previously (10). Furthermore, CQ caused sensitization of TRPV1 to a similar extent as BK in both DRG neurons and transfected cells (Fig. 4E) (9), suggesting that a similar degree of activation of downstream PKC has been triggered by CQ and BK. Despite these similarities between CQ- and BK-initiated signaling, CQ inhibited TRPM8 to a much lesser extent than BK, suggesting that PIP2 cleavage caused by the activation of PLCβ may not be the major mediator of the modulation of TRPM8 by activated Gαq/11. We have also recently found that activated Gα11 inhibits TRPM8 to a much smaller extent than activated Gαq, although these proteins are indistinguishable in activating PLC and hydrolyzing PIP2 (33). The weaker inhibition of TRPM8 caused by CQ could thus be due to differential expression of Gα11 in MrgprA3+ neurons. It could also be caused by the differential binding of Gαq/11 to TRPM8 in MrgprA3+ neurons, leading to different levels of TRPM8 inhibition.

Taken together, our data suggest that CQ produces a much broader action than previously appreciated by acting on multiple TRP ion channels, including TRPV1, TRPA1, TRPC3, and TRPM8, across diverse populations of DRG neurons, leading to enhanced pain and itch. TRP ion channels thus represent attractive targets for the treatment of both pain and itch.

Acknowledgments—We thank Dr. Xinzhong Dong (The Johns Hopkins University) for providing MrgprA3 cDNA and Dr. Stephen Ikeda (National Institutes of Health, Bethesda, MD) for providing PLCβ-ct cDNA. We thank Dr. Mike Edwardson (Department of Pharmacology, University of Cambridge) for critical reading of the manuscript.

REFERENCES
1. Caterina, M. J., Leffler, A., Malmberg, A. B., Martin, W. J., Trafton, J., Petersen-Deed, K. R., Koltzenburg, M., Basbaum, A. I., and Julius, D. (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313
2. Davis, J. B., Gray, J., Gunthorpe, M. J., Hatcher, J. P., Davey, P. T., Overend, P., Harries, M. H., Latcham, J., Clapham, C., Atkinson, K., Hughes, S. A., Rance, K., Grau, E., Harper, A. J., Pugh, P. L., Rogers, D. C., Bingham, S., Randall, A., and Sheardown, S. A. (2000) Vanilloid receptor-1 is essential for inflammatory hyperalgesia. Nature 405, 183–187
3. Kwan, K. Y., Allehorne, A. J., Vollrath, M. A., Christensen, A. P., Zhang,
D. S., Woolf, C. J., and Corey, D. P. (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277–289

4. Karashima, Y., Talavera, K., Everaerts, W., Janssens, A., Kwan, K. Y., Vennekens, R., Nilius, B., and Voets, T. (2009) TRPA1 acts as a cold sensor in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 106, 1273–1278

5. Vetter, I., Touska, F., Hess, A., Hinshey, R., Sattler, S., Lampert, A., Sergejeva, M., Sharov, A., Collins, L. S., Eberhardt, M., Engel, M., Cabot, P. J., Wood, J. N., Vlachová, V., Reeh, P. W., Lewis, R. J., and Zimmermann, K. (2012) Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling. EMBO J. 31, 3795–3808

6. Proudfoot, C. J., Garry, E. M., Cottrell, D. F., Rosie, R., Anderson, H., Robertson, D. C., Fleetwood-Walker, S. M., and Mitchell, R. (2006) Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr. Biol. 16, 1591–1605

7. Dhaa, A., Murray, A. N., Mathur, J., Earley, T. J., Petrus, M. J., and Patapoutian, A. (2007) TRPM8 is required for cold sensation in mice. Neuron 54, 371–378

8. Wang, S., Dai, Y., Fukuoka, T., Yamanaka, H., Kobayashi, K., Obata, K., Cui, X., Tominaga, M., and Noguchi, K. (2008) Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain 131, 1241–1251

9. Zhang, X., Li, L., and McNaughton, P. A. (2008) Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron 59, 450–461

10. Zhang, X., Mak, S., Li, L., Parra, A., Denlinger, B., Belmonte, C., and McNaughton, P. A. (2012) Direct inhibition of the cold-activated TRPM8 ion channel by Gαq. Nat. Cell Biol. 14, 851–858

11. Jeffry, J., Kim, S., and Chen, Z. F. (2011) Itch signaling in the nervous system. Physiology 26, 286–292

12. Davidson, S., Zhang, X., Yoon, C. H., Khasabov, S. G., Simone, D. A., and Giesler, G. J., Jr. (2007) The itch-producing agents histamine and cowhage activate separate populations of primate spinothalamic tract neurons. J. Neurosci. 27, 10007–10014

13. Papoiu, A. D., Tey, H. L., Coghill, R. C., Wang, H., and Yosipovitch, G. (2011) Cowhage-induced itch as an experimental model for pruritus. A comparative study with histamine-induced itch. PLoS ONE 6, e17786

14. Liu, Q., Tang, Z., Suredenikova, L., Kim, S.,Patel, K. N., Kim, A., Ru, F., Guan, Y., Weng, H. J., Geng, Y., Undem, B. J., Kollarik, M., Chen, Z. F., Anderson, D. J., and Dong, X. (2009) Sensory neuron-specific GPCR Mrgrps are itch receptors mediating chloroquine-induced itch. Cell 139, 1353–1365

15. Shim, W. S., Tak, M. H., Lee, M. H., Kim, M., Kim, M., Koo, J. Y., Lee, C. H., Kim, M., and Oh, U. (2007) TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J. Neurosci. 27, 2331–2337

16. Imamachi, N., Park, G. H., Lee, H., Anderson, D. J., Simon, M. I., Basbaum, A. I., and Han, S. K. (2009) TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms. Proc. Natl. Acad. Sci. U.S.A. 106, 11330–11335

17. Han, S. K., Mancino, V., and Simon, M. I. (2006) Phospholipase Cβ3 mediates the scratching response activated by the histamine H1 receptor on C-fiber nociceptive neurons. Neuron 52, 691–703

18. Wilson, S. R., Gerhold, K. A., Bifolck-Fisher, A., Liu, Q., Patel, K. N., Dong, X., and Bautista, D. M. (2011) TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat. Neurosci. 14, 595–602

19. Harrington, A. M., Hughes, P. A., Martin, C. M., Yang, J., Castro, J., Isaacs, N. I., Blackshaw, L. A., and Brierley, S. M. (2011) A novel role for TRPM8 in visceral afferent function. Pain 152, 1459–1468

20. Biró, T., Tóth, B. I., Marincsák, R., Dobrosi, N., Géczy, T., and Paus, R. (2007) TRP channels as novel players in the pathogenesis and therapy of itch. Biochim. Biophys. Acta 1772, 1004–1021

21. Han, J. H., Choi, H. K., and Kim, S. J. (2012) Topical TRPM8 agonist (icilin) relieved vulva pruritus originating from Lichen sclerosus et atrophicus. Acta Derm. Venereol. 92, 561–562

22. Liu, Y., Abdel Samad, O., Zhang, L., Duan, B., Tong, Q., Lopes, C., Ji, R. R., Lowell, B. B., and Ma, Q. (2010) VGLUT2-dependent glutamate release from nociceptors is required to sense pain and suppress itch. Neuron 68, 543–556

23. Ross, S. E. (2011) Pain and itch: insights into the neural circuits of aversive somatosensation in health and disease. Curr. Opin. Neurobiol. 21, 880–887

24. Lagerström, M. C., Rogoz, K., Abrahamsen, B., Persson, E., Reinius, B., Nordenankar, K., Olund, C., Smith, C., Mendez, J. A., Chen, Z. F., Wood, J. N., Wallén-Mackenzie, A., and Kullander, K. (2010) VGLUT2-dependent sensory neurons in the TRPV1 population regulate pain and itch. Neuron 68, 529–542

25. Zhang, X., Huang, J., and McNaughton, P. A. (2005) NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J. 24, 4211–4223

26. Offermanns, S., Zhao, L. P., Gohla, A., Sarosi, I., Simon, M. I., and Wilkie, T. M. (1998) Embryonic cardiomyocyte hypoplasia and craniofacial defects in Gαq/Gα11-mutant mice. EMBO J. 17, 4304–4312

27. Kress, M., Karasek, J., Ferrer-Montiel, A. V., Scherbakov, N., and Habeberger, R. V. (2008) TRPC channels and diacylglycerol dependent calcium signaling in rat sensory neurons. Histochem. Cell Biol. 130, 655–667

28. Qu, L., Li, Y., Pan, X., Zhang, P., LaMotte, R. H., and Ma, C. (2012) Transient receptor potential canonical 3 (TRPC3) is required for IgG immune complex-induced excitation of the rat dorsal root ganglion neurons. J. Neurosci. 32, 9554–9562

29. Han, S. K., Dong, X., Huang, J. I., Zyka, M. J., Anderson, D. J., and Simon, M. I. (2002) Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively activated by RF-amide-related peptides through the Gαq and Gβγ. J. Pharmacol. Exp. Ther. 301, 1474–1479

30. Kammermeier, P. J., Ruiz-Velasco, V., and Ikeda, S. R. (2000) A voltage-independent calcium current inhibitory pathway activated by muscardinic agonists in rat sympathetic neurons requires both Gαq/11 and Gβγ. J. Neurosci. 20, 5623–5629

31. Karashima, Y., Damann, N., Preven, J., Talavera, K., Segal, A., Voets, T., and Nilius, B. (2007) Bimodal action of menthol on the transient receptor potential channel TRPA1. J. Neurosci. 27, 9874–9884

32. Han, L., Ma, C., Liu, Q., Weng, H. J., Cui, Y., Tang, Z., Kim, Y., Nie, H., Qu, L., Patel, K. N., Li, Z., McNeil, B., He, S., Guan, Y., Xiao, B., LaMotte, R. H., and Dong, X. (2013) A subpopulation of nociceptors specifically linked to itch. Nat. Neurosci. 16, 174–182

33. Li, L., and Zhang, X. (2013) Differential inhibition of the TRPM8 ion channel by Gαq and Gα11. Channels 7, 1–4