Monomethylmercury (MMHg) is a potent toxin that bioaccumulates and magnifies in marine food webs. Recent studies show abundant methylated Hg in deep oceans (>1000 m), yet its origin remains uncertain. Here we measured Hg isotope compositions in fauna and surface sediments from the Mariana Trench. The trench fauna at 7000–11000 m depth all have substantially positive mass-independent fractionation of odd Hg isotopes (odd-MIF), which can be generated only in the photic zone via MMHg photo-degradation. Given the identical odd-MIF in trench fauna and North Pacific upper ocean (<1000 m) biota MMHg, we suggest that the accumulated Hg in trench fauna originates exclusively from MMHg produced in upper oceans, which penetrates to depth by sorption to sinking particles. Our findings reveal little in-situ MMHg production in deep oceans and imply that anthropogenic Hg released at the Earth’s surface is much more pervasive across deep oceans than was previously thought.
Humans are exposed to toxic monomethylmercury (MMHg) by the consumption of marine fish. Ocean circulation, biogeochemistry, and marine ecology play a crucial role in MMHg exposure to humans. Natural and anthropogenic releases of Hg to air, land, and water eventually enter the oceans by atmospheric deposition and terrestrial discharge.24,25. Within the oceans, inorganic Hg(II) (IHHg(II)) is reduced to gaseous Hg(0) through biotic and abiotic processes, but also transformed to its methylated forms, MMHg and dimethyl-Hg (DMHg), potentially by anaerobic bacteria.26,27. Particulate organic matter (POM) scavenges IHHg(II) in surface oceans and releases it at depth.26,27. This so-called biological pump results in a macronutrient-like vertical distribution of total Hg concentrations, with low values in epipelagic waters of the surface ocean (0–100 m), increasing through oxygen-depleted mesopelagic waters of the intermediate ocean (100–1000 m), and remaining high in deep ocean waters (>1000 m).28–31. MMHg makes up a large fraction of methylated Hg in pelagic marine waters, and its levels and chemical speciation determine the burden available to marine food webs.10–12. Investigating where and how MMHg is produced in oceans is critically important to understand global Hg cycling and human exposure. At present, MMHg is thought to be produced in situ in the oxygen-depleted zone of mesopelagic waters during microbial remineralization of sinking POM derived from phytoplankton primary production in the photic zone.3,12,14–16. A fraction of mesopelagic MMHg can be transported to surface oceans via diffusion and upwelling, and in situ MMHg production in oxygenated, epipelagic waters has also been demonstrated.8,10,17–20. Because MMHg in the epipelagic waters is readily photo-degraded, a depletion of MMHg concentrations is observed in surface ocean.21,22. Mesopelagic MMHg can penetrate into deep oceans via downwelling or via complexation to or incorporation in sinking POM (i.e., biological pump). However, field data and models indicate that the downward transport of mesopelagic MMHg via downwelling and sinking POM is possibly limited, if not negligible.12,23,24. Yet, available data, show abundant MMHg and DMHg in deep oceans,8,12,13 implying that in situ Hg methylation and/or di-methylation in deep oceans is plausible. Due to sparse incubation and measurement of deep waters, the origin (surface or deep), lifetime and fate of deep ocean MMHg and DMHg are therefore largely unknown.

Hg stable isotopes exhibit mass-dependent fractionation (MDF, represented by δ202Hg) in all investigated abiotic and biotic Hg transformations, and large mass-independent fractionation of odd-mass number isotopes (odd-MIF, represented by Δ199Hg and Δ201Hg) in abiotic, photochemical Hg transformations.25,26. Significant even-mass number MIF (even-MIF, represented by Δ200Hg and Δ204Hg) has also been observed primarily in atmospheric precipitations, which is proposed to be related to photochemical oxidation of gaseous Hg(0) in the upper atmosphere.27,28. Due to lack of significant Hg isotope fractionation during accumulation and trophic transfer of MMHg in aquatic food chains,29,30 Hg isotope compositions of marine biota have demonstrated great potential in tracing the sources, production and degradation of MMHg in oceans.31,32.

The hadal zone of oceans hosts a great diversity of endemic fauna, potentially serving as useful vectors to constrain MMHg dynamics and sources in deep oceans. Here, we measured concentrations and isotope compositions of Hg in endemic amphipods (mostly Hirondellea gigas) at water depths of 7000–11,000 m below the surface (mbs) and in benthic sediments at water depths of 5500–9200 mbs from the oligotrophic Mariana Trench in the North Pacific Ocean (NPO, 11.5°N, 142.5°E). Two amphipod samples (Hirondellea gigas) and one snailfish sample at water depths of ~8000 mbs from the nearby Yap Trench (9.5°N, 138.5°E) were also collected and measured (Fig. 1 and Supplementary Fig. 1). We find that both MDF and MIF of trench fauna are comparable to those of upper NPO biota MMHg, suggesting that the accumulated Hg in trench fauna originates from MMHg produced in upper oceans.

Results

Total Hg and MMHg concentrations. Total Hg concentrations in trench amphipods have an average of 547 ± 230 ng g−1 (1 SD, 235 to 1070 ng g−1, dry weight, Supplementary Table 1), which is comparable to their counterparts from the abyssal Arctic Ocean (250–1000 ng g−1) but considerably higher than benthic organisms in freshwater and coastal ecosystems (mostly ~400 ng g−1 on average).33,34. The relatively high Hg concentrations in trench amphipods likely relate to their low tissue turnover rates and long life spans.35,36. Total Hg concentrations of amphipods show no correlation with their depths of occurrence (R2 = 0.00, P = 0.85), and an insignificantly positive correlation with their body length, a surrogate of life span (R2 = 0.12, P = 0.08, Supplementary Fig. 2a). MMHg concentrations were measured in nearly half of amphipods, and vary from 8 to 403 ng g−1. The fraction of MMHg (MMHg%) is highly variable, from 2 to 59% of total Hg. A significantly negative correlation is observed between MMHg% and body length of amphipods (R2 = 0.48, P = 0.02, Supplementary Fig. 2b). The snailfish that feeds on amphipods has a total Hg concentration of 970 ng g−1 and MMHg concentration of 809 ng g−1, which indicates that its MMHg% (83%) is higher than the corresponding values of amphipods (Supplementary Tables 1 and 2).

Hg isotope compositions. The most striking observation of Hg isotopes is that both MDF (Δ202Hg: −0.05 to 0.54‰, n = 28) and odd-MIF (Δ199Hg: 1.26 to 1.70‰, Δ201Hg: 1.01 to 1.37‰, n = 28) of trench amphipods are comparable to those of NPO fishes at 300–600 mbs,16,32 despite their dramatic difference in depths (Fig. 2). The variability of MDF and odd-MIF for amphipods is only ~0.5‰, and their variations are not correlated with MMHg% (2 to 59%, Fig. 3), depths of occurrence (7000–11,000 mbs), sampling locations (Yap and Mariana trenches) or sampling time (July 2016 to March 2017) (Supplementary Fig. 3 and Supplementary Table 2). However, positive correlations are seen between δ202Hg and Hg concentrations (235–1070 ng g−1) (R2 = 0.27, P = 0.01), and between Δ199Hg and body length (1–4.5 cm) (R2 = 0.18, P = 0.04) (Supplementary Fig. 3). Although these positive correlations suggest that physiological processes in amphipods may affect their Hg isotope compositions, they can only explain 20–30% of Hg isotope variations. Hg isotope compositions of the snailfish are within those of amphipods (Fig. 2). In contrast, the trench sediments have negative δ202Hg (~0.96 ± 0.27‰, 1 SD, n = 5) and very small, positive odd-MIF (Δ199Hg = 0.20 ± 0.07‰, Δ201Hg = 0.18 ± 0.04‰, 1 SD, n = 5) (Supplementary Table 3). The even-MIF of trench fauna (amphipod and snailfish) is characterized by positive Δ200Hg (0.02–0.13‰) and negative Δ204Hg (~0.18 to ~0.03‰), which is very similar to those of trench sediments, and upper marine particles and fishes from the upper NPO.16,32 (Supplementary Fig. 4).

Discussion

The similar MIF signatures in deep fauna and surface fishes reveal important insight into hadal Hg provenance. First, Δ200Hg has thus far been used as a conservative tracer at the Earth’s surface, and is thought to be generated during net Hg(0) oxidation in the upper atmosphere.28,38. The identical, positive Δ204Hg in deep and surface fauna (Supplementary Fig. 4) suggests that the IHg (II) precursor to MMHg in the deep and surface fauna is similar
and likely of atmospheric Hg origin. Second, odd-MIF mainly accompanies photoreduction of IHg(II) and photodegradation of MMHg in aqueous environments\(^{39,40}\). The \(\Delta^{199}\text{Hg}/\Delta^{201}\text{Hg} \) ratio is a diagnostic of photochemical reaction types, with an experimental value of \(\sim 1.3\) for MMHg photodegradation and \(\sim 1.0\) for IHg(II) photoreduction\(^{39}\). The deep fauna all have positive odd-MIF values, and \(\Delta^{199}\text{Hg} \) and \(\Delta^{201}\text{Hg} \) are highly correlated along a linear slope of \(1.15 \pm 0.08\) (1SE, Fig. 4a). This \(\Delta^{199}\text{Hg}/\Delta^{201}\text{Hg} \) slope is comparable to slopes (~1.2) reported for fishes from upper NPO and other coastal and open marine waters\(^{16,31,32,41}\), suggesting that the odd-MIF in the trench fauna is produced by similar surface ocean MMHg photodegradation processes.

Experimental photodegradation of aqueous MMHg has also been suggested to induce a characteristic \(\Delta^{199}\text{Hg}/\delta^{202}\text{Hg} \) ratio of \(2.43 \pm 0.10\)\(^{39}\). A similar slope is observed in NPO fishes \((2.13 \pm 0.19, 1SE, \text{Fig. 4b})^{16,32}\). Most of our trench fauna samples lie on the NPO fish slope, but do not show sufficient variation in both \(\Delta^{199}\text{Hg} \) and \(\delta^{202}\text{Hg} \) to confirm the \(\Delta^{199}\text{Hg}/\delta^{202}\text{Hg} \) slope as a diagnostic. Minor \(\delta^{202}\text{Hg} \) deviations in some fauna samples (Fig. 4b) are likely caused by small amounts of non-photochemical, microbial degradation of MMHg, which results in no MIF but increases the \(\delta^{202}\text{Hg} \) of residual MMHg accumulated in fauna\(^{42}\).

The isotope compositions of total Hg in trench amphipods are representative of the isotope signatures of MMHg in the same amphipods, despite the relatively low MMHg% of 2–59%. The reason for this is that most of the IHg(II) in the amphipods is likely produced by in vivo degradation of MMHg rather than assimilation of IHg(II) from the ambient environments. This is supported by multiple lines of evidence. (1) The significantly negative correlation between MMHg% and body length of amphipods (Supplementary Fig. 2b) indicates that in vivo demethylation of MMHg likely occurs in the amphipods. MMHg demethylation is commonly observed in organisms with a
gastro-intestinal tract including isopods, fish and mammals. (2) The trench fauna MIF values exhibit a $\Delta^{201}\text{Hg}/\Delta^{202}\text{Hg}$ regression slope of 1.15 that is diagnostic of MMHg photoreduction. This suggests that most of the Hg(II) fraction in amphipods inherits its $\Delta^{199}\text{Hg}$ and $\Delta^{202}\text{Hg}$ signatures from ingested MMHg, following in vivo demethylation. (3) Trench amphipods have very consistent, high $\delta^{202}\text{Hg}$ $(0.27 \pm 0.14\‰, 1\ SD)$ and $\Delta^{199}\text{Hg}$ $(1.47 \pm 0.13\‰, 1\ SD)$, and exhibit little variation in both signatures in spite of large variations in MMHg% (Fig. 3). The snailfish with 83% of MMHg% has nearly the same Hg isotope composition as trench amphipods which have varying and low MMHg%. If significant fraction of IHg(II) was to be assimilated from the surrounding environments, we would expect a more scattered Hg isotope distribution due to the mixing of IHg(II) and MMHg. We would expect that the trench fauna with high IHg(II)% to have low $\delta^{202}\text{Hg}$ and $\Delta^{199}\text{Hg}$, because IHg(II) in the oceans has relatively low $\Delta^{202}\text{Hg}$ and $\Delta^{199}\text{Hg}$, as seen from our measured seafloor sediments and previously reported ocean particles and sediments, and coastal seawater. (4) Insignificant differences ($<0.1\%$) in Hg isotope compositions are observed between the whole tissues and the separated tissues (muscle, lipid, and gut contents) of amphipods, although their Hg concentrations and speciation vary significantly (Supplementary Table 2). This suggests that the internal distribution or in vivo transformation of Hg species do not significantly fractionate Hg isotopes between MMHg and IHg(II) in amphipods. In the following we discuss the origin of fauna MMHg, based on all available open ocean Hg isotope data, and make a number of deductions that constrain the deep ocean MMHg cycling.

IHg(II) in sinking marine particles of different sizes and depths in the NPO has a constant $\Delta^{199}\text{Hg}$ of $0.16 \pm 0.09\‰$ (1 SD), which is found back at depth in Mariana sediments $(0.20 \pm 0.07\‰, 1\ SD)$ (Fig. 2). Potential MMHg produced in situ in trench sediments or deep water column should therefore inherit the low $\Delta^{199}\text{Hg}$ of $\sim 0.2\‰$. MMHg produced from hydrothermal vent fluids is expected to have near-zero $\Delta^{199}\text{Hg}$, because Hg of geological origin generally has near-zero MIF. The trench amphipods are benthic scavengers, which mainly reside in the top of the sediments surrounding the hydrothermal vent fields, and feed on sinking particles. If MMHg is produced in the sediments, diffusing to the water column, or in hydrothermal fluids or in the deep water column, it would transfer the near-zero to very small $\Delta^{199}\text{Hg}$ to the amphipods. The occurrence of significant, $1.47 \pm 0.13\‰$ (1 SD), $\Delta^{199}\text{Hg}$ in the deepest marine fauna on Earth suggests that this $\Delta^{199}\text{Hg}$ is not produced in situ in the deep ocean environments. Instead, elevated MMHg $\Delta^{199}\text{Hg}$ can only be acquired during photodegradation of MMHg in the euphotic zone (Fig. 2), since potential microbial methylation of IHg(II) and non-photodegradation of MMHg in deep waters would not induce MIF. We therefore suggest that the trench MMHg is produced in the surface ocean and subsequently transport to depth before entering the deep ocean food web.

IHg(II) and MMHg can be transported from surface to intermediate and even deep oceans by sinking particles, and by subducting water masses during deep water formation. The latter transport pathway is unlikely in the Mariana/Yap trench system because there is little deep water formation in the NPO. The...
estimate a weighted average surface and intermediate dissolved MMHg concentrations to infer, and isotope fractionation trajectories during microbial methylation of IHg(II) marine particles and lytic uncertainty of our fauna (sediment) samples was 0.08 correspondence of the weighted mean surface/intermediate food web MMHg (see Methods). The close linear regression lines of Hg isotope compositions for values in trench fauna at 7000 – 11000 mbs (0.27 ± 0.14‰, 1 SD) are ~0.3‰ higher than the weighted mean δ202Hg (~0.05 ± 0.30‰, 1 SD) of NPO surface/intermediate MMHg (see Methods). This magnitude of the δ202Hg shift is comparable to the ~0.4‰ shift observed during microbial degradation of MMHg in culture, which increases the δ202Hg value of residual MMHg42. Thus, microbial degradation of MMHg likely occur during MMHg transport from the upper ocean to depth. The ensuing question is why MMHg is degraded, but not produced in the deep ocean that occupies more than 70% of the whole Ocean’s volume. Both non-photochemical degradation and production of MMHg are predominantly mediated by microbes. The microbes that produce MMHg are thought to be mostly anaerobic bacteria with hgcaB genes, while the microbes that degrade MMHg could be either aerobic or anaerobic bacteria37,58. The microbes that are capable of MMHg degradation are thus more widespread in nature, including oceans. The deep marine waters are cold, nutrient-limited, and oxygen-rich59 (Fig. 5), which might inhibit the methylation ability of anaerobic bacteria60. The bacteria in deep oceans that are capable to demethylate MMHg also likely exist in the guts of trench amphipods44,45, and cause the in vivo demethylation of MMHg we infer above.

The Hg isotope compositions of trench fauna clearly indicate that bioavailable MMHg in the planet’s deepest ocean is produced in the upper ocean, and that consequently little MMHg is produced in the deep ocean. We use a binary mixing model based on δ199Hg to estimate that 37 – 48% and 52 – 63% of MMHg in the trench fauna is derived from the surface and the intermediate ocean, respectively (see Methods). Several centuries of human activities have severely perturbed natural Hg cycling, elevating atmospheric Hg levels at the Earth’s surface by a factor of 3 – 2.61. Currently, ~300 Mmol of anthropogenic Hg is estimated to reside in oceans, with two thirds in the upper ocean and the remainder subducting in North Atlantic Deep Water and Antarctic Bottom Water. The tight MMHg linkage between trench fauna and the upper ocean suggest that anthropogenic Hg is much more pervasive across the world’s oceans than was previously thought, and may reach the deepest ocean by fast particle sinking. Ongoing surface ocean warming was recently suggested to increase MMHg levels in the upper ocean62, which would likely rapidly propagate to the hadal ecosystems.

Our findings not only inform on the source of MMHg in the deep ocean, but also allow us to speculate about the production of DMHg in the deep ocean. Mean oceanic dissolved MMHg and DMHg profiles show similar concentration trends at depth throughout the world’s oceans10 – 13,24. The limited global variation in MMHg and DMHg concentrations indicates slow transformations, supported by our finding that little IHg(II) methylation takes place in the deep NPO. The exact link between MMHg and DMHg in marine waters is presently unclear. State of the art marine Hg models exclude direct DMHg formation from IHg(II)24,63, supported by slow observed rates17, but include microbial methylation of IHg(II) to form MMHg, and subsequent microbial methylation of MMHg to form DMHg in deep waters.
Here, we find that deep ocean MMHg is supplied from the upper ocean by particle sinking rather than in situ microbial methylation. DMHg is a dissolved gas and is unlikely to be transported on particles. If in situ microbial MMHg production in the deep waters is limited, then microbial methylation of MMHg to form DMHg is likely also limited. This leads us to speculate that deep ocean DMHg is abiotically produced, possibly on particle surfaces as supported by recent laboratory experiments.

Methods

Sampling. Endemic amphipods were captured by bait traps installed on the deep-sea lander vehicles (@Tianya, @Yuanwei, @Wanquan) that were operated by the Chinese Academy of Sciences during several cruises between July 2016 and March 2017. The lander vehicles were deployed to the seafloor of Mariana (11.5°N, 142.5° E) and Yap trenches (9.5°N, 138.5°E) in the NPO at depths of 11,000 mbsf–11,000 mbsf for 12–24 h and monitored by cameras (Fig. 1 and Supplementary Table 1). The bait was enclosed in an isolated mesh bag of a funnel trap, which allowed for odor release and short sediment cores were collected by pushing PVC tubes (L = 12 cm, ID = 9 cm) into the sediment blocks. The top 0–5 cm layers of sediments from all the short cores were then subsampled and stored at −20 °C before freeze-drying and homogenization.

Total Hg and MMHg concentration measurement. Total Hg concentrations in the homogenized freeze-dried samples were measured by a Lumex RA-915F Mercury Analyzer. The samples were combusted in the PYRO-915+ unit, and the evaporated Hg(0) was then purified and transferred to an analytical cell before measurement by differential Zeeman atomic absorption spectrometry (AAS). Total Hg concentrations in the digested sample solutions used for Hg isotope ratio analysis were measured by a Tekran 2600 cold vapor atomic fluorescence spectrometer (CV-AFS) according to US-EPA method 1631E. MMHg was determined in amphibod and sniffish samples by a Tekran 2700 gas chromatograph-CV-AFS after solvent extraction using KOH/CH₃OH solution, and ethylation by NaBE₄ in closed purge vessels. The combined 2 SD analytic uncertainties of total Hg concentrations, as evaluated by periodically measured certified reference materials (CRMs, GBW07405, soil; DORM-4, dogfish muscle), were <5% for both Lumex RA-915F and Tekran 2600. The combined 2 SD analytic uncertainties for MMHg concentrations of DORM-4, were <15%. The relative standard deviations of sample/CRM duplicates were <5% for THg and <8% for MMHg concentrations.

Hg isotope ratio measurement. According to the measured total Hg concentrations in freeze-dried samples, ~0.2–0.6 g of each fauna sample was digested using 4 mL double-distilled HNO₃ and 4 mL super-pure H₂O₂ in a 30 mL Teflon lined vessel heated by a programmed microwave digestion system. Sediments were pre-concentrated for Hg using the combustion-trapping method, and 10 mL of 40% double-distilled acid (2HNO₃/1HCl, v/v) was used to trap the volatilized Hg (0). Procedural blanks and CRMs were processed with the samples in a same manner. The procedural blanks accounted for 1% of Hg mass in the samples, and the Hg digestion and preconcentration recoveries were in the range of 88–110% for both the samples and procedural CRMs. The processed solution samples were diluted with Milli-Q water to Hg concentrations of 0.5–2 ng g⁻¹, and were measured for Hg isotope ratios by coupling a customized cold vapor generation system to multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS, Nu Plasma 3D at Tianjin University, China). The typical sensitivity for 202Hg was ~2 V per ng g⁻¹. Hg at a solution uptake rate of 0.8 mL min⁻¹. Instrumental mass bias was corrected by both an internal NIST 997 TI standard solution (supplied via Aridus II desolvation nebulizer system) using the exponential fractionation law and NIST 3133 Hg standard-sample bracketing method. The bracketed NIST 3133 solutions were matched to the sample solutions within 5% in both acid matrix and Hg concentrations. The Faraday cups were positioned to simultaneously collect all seven Hg isotopes and two Ti isotopes. Acquisition time was 7 min (5 blocks, 20 cycles, 4.2 s of integration time) with 3 min of initial uptake time. Between samples,
Data availability

The authors declare that the main data supporting the findings of this study are available within the article and its Supplementary Information file. Extra data are available from the corresponding author upon request.

Code availability

Binary mixing model codes are available at the following link: [https://github.com/ruoyusun/Mixing-models].

Received: 7 February 2020; Accepted: 8 June 2020; Published online: 07 July 2020

References

1. Sunderland, E. M., Li, M. & Bullard, K. Decadal changes in the edible supply of seafood and methylmercury exposure in the United States. Environ. Health Perspect. 126, 017006 (2018).
2. Lamborg, C. H. et al. A global ocean inventory of anthropogenic mercury based on water column measurements. Nature 512, 65–68 (2014).
3. Streets, D. G. et al. Total mercury released to the environment by human activities. Environ. Sci. Technol. 51, 9569–9577 (2017).
4. Fitzgerald, W. F., Lamborg, C. H. & Hammerschmidt, C. R. Marine biogeochemical cycling of mercury. Chem. Rev. 107, 641–662 (2007).
5. Podar, M. et al. Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci. Adv. 1, e1300675 (2015).
6. Lamborg, C. H., Hammerschmidt Chad, R. & Bowman Katlin, L. An examination of the role of particles in oceanic mercury cycling. Philos. T. R. Soc. A 374, 20150297 (2016).
7. Zhang, Y., Jasségé, L. & Thompson, L. Natural biogeochemical cycle of mercury in a global three-dimensional ocean tracer model. Global Biogeochem. Cycles 28, GB400841 (2014).
8. Cossa, D. et al. Mercury in the Southern Ocean. Geochim. Cosmochim. Acta 75, 4037–4052 (2011).
9. Sunderland, E. M., Krabbenhoff, D. P., Moreau, J. W., Strode, S. A. & Landig, W. M. Mercury sources, distribution, and bioavailability in the North Pacific Ocean: insights from data and models. Global Biogeochem. Cycles 23, GB2010 (2009).
10. Hammerschmidt, C. R. & Bowman, K. L. Vertical mercurymethylmercury distribution in the subtropical North Pacific Ocean. Mar. Chem. 132–133, 77–82 (2012).
11. Bowman, K. L., Hammerschmidt, C. R., Lamborg, C. H. & Swart, G. Mercury in the North Atlantic Ocean: The U.S. GEOTRACES zonal and meridional sections. Deep Sea Res. Pt. II 116, 251–261 (2015).
12. Munson, K. M., Lamborg, C. H., Swart, G. J. & Saito, M. Mercury species concentrations and 0908 in the Central Tropical Pacific Ocean. Global Biogeochem. Cycles 29, 656–676 (2015).
13. Bowman, K. L., Hammerschmidt, C. R., Lamborg, C. H., Swart, G. J. & Agather, A. M. Distribution of mercury species across a zonal section of the eastern tropical South Pacific Ocean (U.S. GEOTRACES GP16). Mar. Chem. 156–166 (2016).
14. Cossa, D., Averty, B. & Pirlone, N. The origin of methylmercury in open Mediterranean waters. Limnol. Oceanogr. 54, 837–844 (2009).
15. Choy, C. A., Popp, B. N., Kaneko, J. J. & Drazen, J. C. The influence of depth on mercury levels in pelagic fishes and their prey. Proc. Natl Acad. Sci. USA 106, 13865–13869 (2009).
16. Blum, I. D., Popp, B. N., Drazen, J. C., Anela Cosh, C. & Johnson, M. W. Methylmercury production below the mixed layer in the North Pacific Ocean. Nat. Geosci. 6, 879–884 (2013).
17. Lehnherr, I., Louis, V. L. S., Hintelmann, H. & Kirk, J. L. Methylithionin inorganic mercury in polar marine waters. Nat. Geosci. 4, 298–302 (2011).
18. Heimbürger, L.-E. et al. Methyl mercury distributions in relation to the presence of nano- and picophytoplankton in an oceanic water column (Ligurian Sea, North-western Mediterranean). Geochim. Cosmochim. Acta 74, 5549–5559 (2010).
19. Monperrus, M. et al. Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea. Mar. Chem. 107, 49–63 (2007).
20. Munson, K. M., Lamborg, C. H., Boiteau, R. M. & Saito, M. A. Dynamic mercury methylation and demethylation in oligotrophic marine water. Biogeosciences 15, 6451–6460 (2018).
21. Mason, R. P. & Sullivan, K. A. The distribution and speciation of mercury in the South and equatorial Atlantic. Deep Sea Res. Pt. II 46, 937–956 (1999).
22. Black, P. J., Poulain, B. A. & Flegal, A. R. Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters. Geochim. Cosmochim. Acta 84, 492–507 (2012).
23. Kim, H. et al. Methylmercury mass budgets and distribution characteristics in the western Pacific Ocean. Environ. Sci. Technol. 51, 1186–1194 (2017).
24. Zhang, Y., Soerensen, A. L., Scharup, A. T. & Sunderland, E. M. A global model for methylmercury formation and uptake at the base of marine food webs. Global Biogeochem. Cycles 34, e2019GB006348 (2020).
25. Sun, R. et al. Modelling the mercury stable isotope distribution of Earth surface reservoirs: implications for global Hg cycling. Geochim. Cosmochim. Acta 156–173 (2019).
26. Blum, J. D., Sherman, L. S. & Johnson, M. W. Mercury isotopes in Earth and environmental sciences. Annu. Rev. Earth Planet. Sci. 42, 249–269 (2014).
27. Sun, G. et al. Mass-dependent and -independent fractionation of mercury isotope during gas-phase oxidation of elemental mercury vapor by atomic Cl. Environ. Sci. Technol. 50, 9232–9241 (2016).
28. Chen, J., Hintelmann, H., Feng, X. & Dimock, B. Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada. Geochim. Cosmochim. Acta 90, 33–46 (2012).
29. Kwon, S. Y., Blum, J. D., Chirby, M. A. & Chesney, E. J. Application of mercury isotopes for tracing trophic transfer and internal distribution of mercury in marine fish feeding experiments. Environ. Toxicol. Chem. 32, 2322–2330 (2013).
30. Madigan, D. J. et al. Mercury stable isotopes reveal influence of foraging depth on mercury concentrations and growth in Pacific bluefin tuna. Environ. Sci. Technol. 52, 6256–6266 (2018).
31. Motta, L. C. et al. Mercury cycling in the North Pacific Subtropical Gyre as revealed by mercury stable isotope ratios. Global Biogeochem. Cycles 33, 777–794 (2019).
32. Shellenkman, T. F. et al. Scavenging amphipods: sentinels for penetration of mercuric and persistent organic chemicals into food webs of the Deep Arctic Ocean. Environ. Sci. Technol. 47, 5553–5561 (2013).
33. Yan, H., Li, Q., Yuan, Z., Jin, S. & Jing, M. Research progress of mercury bioaccumulation in the aquatic food chain, china: a review. Bull. Environ. Contam. Toxicol. 102, 612–620 (2019).
34. Meng, M. et al. Mercury isotope variations within the marine food web of Chinese Bohai Sea: implications for mercury sources and biogeochemical cycling. J. Hazard. Mater. 384, 121379 (2020).
35. Jamsion, A. J., Fujii, T., Mayor, D. J., Solan, M. & Priede, I. G. H. T. Gad deep-trenches: the ecology of the deepest places on Earth. Trends Ecol. Evol. 25, 190–197 (2010).
36. Gerringa, L. J. M. E. On the success of the hadal snailfishes. Integ. Organ. Biol. 1, 1–18 (2019).
37. Oberst, D. et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature 547, 201–204 (2017).
38. Bergquist, B. A. & Blum, J. D. Mass-dependent and -independent fractionation of hg isotopes by photoablation in aquatic systems. Science 318, 417–420 (2007).
39. Zheng, W. & Hintelmann, H. Mercury isotope fractionation during photoablation in natural water is controlled by its Hg/DOC ratio. Geochim. Cosmochim. Acta 73, 6704–6715 (2009).
40. Senn, D. B. et al. Stable isotope (N, C, Hg) study of methylmercury sources and trophic transfer in the northern Gulf of Mexico. Environ. Sci. Technol. 44, 1630–1637 (2010).
41. Kritee, K., Barkay, T. & Blum, J. D. Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury. Geochim. Cosmochim. Acta 73, 1285–1296 (2009).
42. Moshou, J. et al. Hg-stable isotope variations in marine top predators of the Western Arctic Ocean. ACS Earth Space Chem. 2, 479–490 (2018).
43. Holde, N., Drobne, D., Horvat, M. & Jereb, V. Reduction and methylation of Horror stable isotope variations in marine top predators of the Arctic Ocean. Global Biogeochem. Cycles 30, 560–575 (2016).
44. Janssen, S. E., Schaefer, J. K., Barkay, T. & Reinfeiler, J. R. Fractionation of mercury stable isotopes during microbial methylmercury production by iron- and sulfate-reducing bacteria. Environ. Sci. Technol. 50, 8077–8083 (2016).
45. Perrot, V. et al. Identical Hg isotope mass dependent fractionation signature during methylation by sulfate-reducing bacteria in sulfate and sulfate-free environment. Environ. Sci. Technol. 49, 1365–1373 (2015).
46. Archer, D. E. & Blum, J. D. A model of mercury cycling and isotopic fractionation in the ocean. Biogeosciences 15, 6297–6313 (2018).
47. Lumpkin, R. & Speer, K. Global ocean meridional overturning. J. Phys. Oceanogr. 37, 2550–2562 (2007).
48. Wang, N. et al. Penetration of bomb 14C into the deepest ocean trench. Geophys. Res. Lett. 46, 5413–5419 (2019).
49. Parks, J. M. et al. The genetic basis for bacterial mercury methylation. Science 339, 1332–1335 (2013).
50. Hsu-Kim, H., Kucharzyk, K. H., Zhang, T. & Deshusses, M. A. Mechanisms regulating mercury bioavailability for methylation microorganisms in the aquatic environment: a critical review. Environ. Sci. Technol. 47, 2441–2456 (2013).
51. Nunoura, T. et al. Halad biopshere: insight into the microbial ecosystem in the deepest ocean on Earth. Proc. Natl Acad. Sci. USA 112, E1230–E1236 (2015).
52. Bowman, K. L. et al. Distribution of mercury-cycling genes in the Arctic and equatorial Pacific Oceans and their relationship to mercury speciation. Limnol. Oceanogr. 65, 1285–1301 (2020).
53. Amos, H. M. et al. Observational and modeling constraints on global anthropogenic enrichment of mercury. Environ. Sci. Technol. 49, 4036–4047 (2015).
54. Schartup, A. T. et al. Climate change and overfishing increase neurotoxicant in marine predators. Nature 572, 648–650 (2019).
55. Soerensen, A. L. et al. A mass budget for mercury and methylmercury in the Arctic Ocean. Global Biogeochem. Cycles 30, 560–575 (2016).
56. Jonsson, S., Mazrui, N. M. & Mazon, R. P. Dimethylmercury formation mediated by inorganic and organic reduced sulfur surfaces. Sci. Rep. 6, 27958 (2016).
57. Sun, R., Enrico, M., Heimburger, L.-E., Scott, C. & Sonke, J. E. A double-stage tube furnace—acid-trapping protocol for the pre-concentration of mercury from solid samples for isotopic analysis. Anal. Bioanal. Chem. 405, 6771–6781 (2013).
58. Blum, J. D. & Bergquist, B. A. Reporting of variations in the natural isotopic composition of mercury. Anal. Bioanal. Chem. 388, 353–359 (2007).

Acknowledgements
We thank P. Li for assistance with MC-ICPMS operation and Hg stable isotope analysis; J. Martin and Y. Zhang for helping constructing the Matlab codes of mixing models; and anonymous, reviewer(s) for their contributions to the peer review of this work. Peer review reports are available.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-17045-3.

Correspondence and requests for materials should be addressed to Y.L. or X.P.

Peer review information Nature Communications thanks Kathleen Munson and other, anonymous, reviewer(s) for their contributions to the peer review of this work. Peer review reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
