Isotherm moisture sorption of composite desiccant made from rice husk biomass

E Warsiki1,2*, D Agriawati3, E Noor1, A Iskandar1

1Department of Agroindustrial Technology, Faculty of Agricultural Technology and Engineering, Bogor Agricultural University (IPB University)
22nd Floor FATETA Building, IPB Darmaga Campus, Bogor, Indonesia 16680
3Surfactant and Bioenergy Research Center, Institute of Research and Community Services, Bogor Agricultural University (IPB University)
Jln. Raya Pajajaran No. 1 IPB Baranangsiang Campus, Bogor, Indonesia 16143
3North Sumatera Assessment Institute of Agricultural Technology (BPTP Sumut)
Jln. Jend. Besar A.H. Nasution No. 1B Medan, Indonesia 20143

*E-mail: endangwarsiki@apps.ipb.ac.id; delianaputri123@gmail.com

Abstract. The behavior of isothermal moisture sorption form rice husk-CaCl\textsubscript{2} composite desiccants was studied. The desiccant composite in various treatments was tested for its isothermal sorption using gravimetric method. Saturated solution of LiCl, CH\textsubscript{3}COOK, MgCl\textsubscript{2}, K\textsubscript{2}CO\textsubscript{3}, NaBr, NaNO\textsubscript{3}, NaCl, KCl, and K\textsubscript{2}SO\textsubscript{4} were used to obtain the moisture of 11 %, 22 %, 32 %, 44 %, 56 %, 64 %, 75 %, 84 % and 97 %. Water activity produced from these saturated salt solutions was measured using a\textsubscript{w} meter. The equilibrium moisture data was then fitted into several isothermal equation models that have been used and tested in several literature including the model of Courie, Oswin and Chen Clayton. This rice husk composite desiccant had exposed a J shape curve of equilibrium water content with a boundary zone A of a\textsubscript{w} 0.2 and zone B of a\textsubscript{w} 0.67. Based on the isothermic absorption curve, the Oswin equation model was able to predict the results of research with R2 of 0.96, 0.89 and 0.97, respectively for temperature of 30, 40 and 50 °C. This rice husk desiccant was able to absorb water vapor at low RH. It means that this desiccant is promising to be used for low water content or hygroscopic product such as flour based product, food flavor powder, chili powder, palm sugar and other products.

1. Introduction
Rice husk is already used for many commercial purposes such as traditional energy sources [1,2], carbon active for water treatment [3], soil amendment for fertilizer [4], nano silica for antimicrobial packaging [5], and filler for concrete producing [6]. Rice husk has a main chemical composition as polar components, namely lignin, cellulose, hemicellulose and high fiber content. The presence of OH groups and the polar side of cellulose makes the lignocellulose material naturally hydrophilic, so it has a high water-absorbing ability. This is due to the formation of hydrogen bonds of hydroxyl groups in the polymer chain with water molecules. The use of rice husk as moisture absorber for active food packaging would be very interesting to be developed, even more, the concern of food industries lately seem to look for natural moisture absorber sources as a substitute for synthetic of the silica gel one.

Nowadays, moisture absorber, also called desiccant, is widely attached into such food packaging to prolong the product self-life. This absorber would help the package dry thus it could maintain the crispiness of the product inside and also inhibit the growth of mold and other undesirable microbes. The development of desiccant so far is finding the more efficient moisture absorber by combining more than one active ingredient to improve the performance of the moisture absorbers in absorbing and controlling water vapor. The methods used include mixing two or more types of material [7,8] or using the method of impregnating active ingredients into a porous matrix [9] or co-materials polymer such as acrylamide [10]. The porous matrix of inorganic material is known as desiccant matrix, and is
commonly used to impregnate hygroscopic salts to form composite desiccant. The resulting composite desiccant is generally used for food and non-food products [11,12].

A salt of CaCl$_2$ could be inserted into rice husk to improve the performance of water vapor sorption of this desiccant [13,14]. The mechanism of sorption of moisture is closely related to the isothermic adsorption/desorption of a material. The stability of the solid state of the product, interactions in the early stages and influence of moisture on the physicochemical properties can be known from the absorption of isothermic. Sorption isotherms are also needed to determine the sorption capacity, thus the effectiveness of desiccation at the same temperature can be calculated. Based on the isothermic absorption curve, the critical points which affect the quality of the product would be obtained. Therefore, this study investigated isothermic moisture absorber of a composite desiccant made from rice husk powder and CaCl$_2$.

2. Materials and Methods

2.1. Materials

Rice husk was purchased from local market. A salt of CaCl$_2$ analytical grade and other chemicals of K$_2$SO$_4$, KCl, NaCl, NaBr, NaNO$_2$, LiCl, K$_2$CO$_3$, CH$_3$COOK, MgCl$_2$ were supplied by PT Merck Indonesia Tbk.

2.2. Methods

2.2.1. Production of desiccant composite of rice husk-CaCl$_2$

The production method is according to Wang et al. [15]. The rice husk was washed, dried and ground to make a powder rice husk in a size of 60 mesh and then it was dried at 105 °C for 8 h. The concentration of CaCl$_2$ solution was prepared in 5, 10, and 15 % w/v. A matrix of rice husk of 20 g was then put into CaCl$_2$ solution of 200 mL and stirred until mixed evenly and then soaked for 2 h. The composite of rice-husk-CaCl$_2$ then was dried at 105 °C for 4 h or until the weight was constant to get composite desiccant of rice husk-CaCl$_2$.

2.2.2. Characterization of isothermic water vapor sorption using static gravimetric method

Characterization of isothermic water vapour was carried out by storing samples in the isothermal desiccator [16]. The preparation of a saturated salt solution was prepared to regulate the humidity in the desiccator according to ASTM E104. Saturated salt solutions used was included LiCl, CH$_3$COOK, MgCl$_2$, K$_2$CO$_3$, NaBr, NaNO$_2$, NaCl, KCl, and K$_2$SO$_4$, respectively to produce moisture of 11 %, 22 %, 32 %, 44 %, 56 %, 64 %, 75 %, 84 % and 97 %. Water activity produced from these saturated salt solutions was measured using a_w meters. a_w meter is the equipment to measure the a_w (water activity) of these salts.

The composite desiccant sample was dried at 105 °C until constant moisture content was reached. The desiccant was then put into a cup and arranged them in a desiccator. The desiccator then was stored in an incubator with temperature of 30, 40 and 50 °C and the desiccant scaled everyday to a constant weight for 2-4 weeks [17]. The sample was then measured for its water content using the gravimetric method to obtain equilibrium water content based on dry weight as in Equation 1. The relationship of water content equilibrium of composite desiccation at various a_w will form an isothermic sorption curve.

$$M_t = \frac{W_{f} - W_{i}}{W_{i}}$$ \hspace{0.5cm} (1)

Where M_t is desiccant water content (g H$_2$O/g desiccant) at time t, W_{f} is final desiccation weight (g) at time t and W_{i} = weight of initial desiccation at time t (g).
2.2.3. Isothermic Sorption Model and Model Accuracy Test
The equilibrium water content data was then fitted into several isothermal equation models that have been used and tested in several literature, so that an accurate curve and model of isothermic vapor absorption were obtained. Some of the equation use in this research was displayed in Table 1. These models will describe the relationship between a_w, equilibrium water content at certain temperature and constant value will be obtained from them.

Model	Equation	Range of a_w
Caurie	$\ln M_e = \ln P_1 - P_2 \cdot a_w$	0.4-0.8; Tipe II
Oswin	$M_e = P_1 [(a_w/(1-a_w))]^2$	0.05-0.9; Tipe II dan III
Chen Clayton	$a_w = \exp[-P/e^{P_2/\exp(P_2 M_e)}]$	0.1-0.9; Tipe II

Note: M_e is equilibrium water content; K and n are constant; a_w is water activity; P_1 and P_2 are constant; Type II is the Sigmoid or S-shaped isotherm; Type III is known as the Flory-Huggin isotherm.

3. Result and Discussion

3.1. Isotherm sorption characteristic
The behavior of the desiccant composites in absorbing water vapor at various a_w until equilibrium produced an isothermal sorption curve as presented in Figure 1. According to Monte et al. [18], sorption mechanism is occurred due to a specific interaction between moisture and oxygen groups on the surface such as (carbonyl and hydroxyl groups) of organic matter. The presence of additional pores causes the material to have the ability to absorb water molecules [19]. The water content of an equilibrium material at a certain temperature and humidity is called the equilibrium water content (M_e) [20].

When the a_w environmental is greater than the composite desiccant water content (Figure 2), the equilibrium water content rises sharply at a_w above 0.2. In this condition, the presence of CaCl$_2$ in the activated husk would expose two chemical absorption process, i.e., CaCl$_2$ as hygroscopic salts and CaCl$_2$ in form of hydrate, nH$_2$O, it is therefore the ability of activated husks to absorb water vapor increase [21] and resulted in a J Shape curve (Figure 3) as characteristic of amorphous material. At low a_w, it absorbs a little moisture and at high a_w, it will absorb very much water vapor. This illustrated that the adsorption process takes place quickly and the absorption process continues even though CaCl$_2$ has turned into a liquid. Calcium chloride (CaCl$_2$) has the highest vapor binding capacity, and melts within 22 hours of storage compared to sorbitol and KCl [22]. Based on isothermic curves (Figure 2), the boundaries of zones A, B and C which describe bounded water by composite desiccation [23]. According to Mathlouthi [24], zone A describes that water is bounded to the material very strong at low relative humidity. Furthermore, in zone B, water is bounded weakly to medium humidity and zone C is free water. However, the result of sorption curve showed that this composite desiccant was able to absorb moisture at very low RH.
Figure 1. Equilibrium water content (Mₑ) of composite desiccant (rice husk - CaCl₂) in 5, 10, 15 % b/v at temperature of 30 °C (a), 40 °C (b), and 50 °C (c).

Figure 2. Boundary zone of rice-husk composite desiccant at temperature of 30, 40, and 50 °C.

3.2 Isothermic sorption model and model accuracy test
Mathematical equation models that explain theoretical isothermic sorption phenomena have been developed, but in this study a mathematical equation only showed the relationship of two parameters of a_w and Mₑ [17]. The isothermal sorption curve obtained from this study was carried out to obtain high smoothness curves and can describe the state of composite desiccant sorption vapor phenomena in various a_w. Figure 3 showed the fitting of Courier, Oswin and Chen Clayton model with the experimental data.
Based on Figure 3, the relationship of a_w and the moisture content of composite desiccant equilibrium can be described well by the Oswin Model. The Oswin model is an empirical equation that describe the state of water vapor absorption in the composite desiccant with a wide enough a_w range at the three study temperatures, forming a curve like the letter S (sigmoid). In contrast to the other two models, the Oswin model was able to explain the hygroscopic characteristics of a material, which has a non-crystalline material which also describes the absorption of water vapor in a multilayer surface of a material [24].

The ability of water vapor absorption by composite desiccation is influenced by a_w or environmental humidity. At low environmental humidity, the ability of desiccate in absorbing moisture is also low thus resulting in only small changes in equilibrium water content. The ability of water vapor absorption by desiccation increases at higher humidity following an exponential equation at a_w more than 0.6. The increase in ambient temperature causes the level of sorption on the desiccation of the composite tend to decrease. This is shown from the achievement of lower equilibrium at higher temperatures. The zone B boundary on the isothermal sorption curve shifts at a higher a_w as the temperature increases. Based on this behavior, it should consider how to keep the desiccant prior to use. This desiccant storage needs to be maintained at $a_w < 0.6$ (zone B boundary). Thus desiccant will have good moisture absorption performance when applied to maintain a_w products in packages below 0.6. Therefore, moderate temperature is recommended to store this desiccant.

Predictions of increasing equilibrium water content caused by an increase in a_w can be explained by the Oswin Model by following the equation as in Table 2. The characteristic of water vapor absorption in composite desiccation is not only influenced by humidity, but also influenced by ambient temperature. The results of the plot data in the Oswin Model at all three temperature studies produce a good coefficient of determination (R^2) which is around 0.89-0.97.

Table 2. Mathematical equation derived from Oswin model.

Temperature (°C)	Equation	R^2
30	$\ln M_e = 3.291 + 0.583 \ln(a_w/(1-a_w))$	0.96
40	$\ln M_e = 2.906 + 0.342 \ln(a_w/(1-a_w))$	0.89
50	$\ln M_e = 3.145 + 0.5171 \ln(a_w/(1-a_w))$	0.97
4. Conclusion

Composite desiccation of rice husk – CaCl₂ comprises a J shape of equilibrium water content exposing in zone A, B and C similarly in temperature treatment of 30, 40, and 50 °C. This rice husk composite desiccant had exposed a J shape curve of equilibrium water content with a boundary zone A of αₑ 0.2 an, zone B of αₑ 0.67. This desiccant also demonstrated its ability to perform in vapour sorption at low RH. Based on the isothermic absorption curve, the Oswin equation model was able to predict the results of research with the smallest R² values, ranging between 0.89-0.97. It was recommended to store this desiccant in high moderate temperature prior to use for maintaining the good performance when it is applied for food products.

5. References

[1] Rios-Badrán IM, Luzardo-OCampo I, Garcia-Trejo J, Santos-Cruz J and Gutiérrez-Antonio C 2020 Production and characterization of fuel pellets from rice husk and wheat straw Renewable Energy 145 500–507 https://doi.org/10.1016/j.renene.2019.06.048
[2] Moayedi H, Aghel B, Abdullahi MM, Nguyen H, Safuan ARA 2019 Applications of rice husk ash as green and sustainable biomass. Journal of Cleaner Production 237 117851. https://doi.org/10.1016/j.jclepro.2019.117851
[3] An D, Guo ., Zou B, Zhu Y and Wang Z 2011 A study on the consecutive preparation of silica powders and active carbon from rice husk ash Biomass and Bioenergy 35(3) 1227–1234 https://doi.org/10.1016/j.biombioe.2010.12.014
[4] Singh R, Srivastava P, Singh P, Sharma AK, Singh H and Raghubanshi AS 2019 Impact of rice-husk ash on the soil biophysical and agronomic parameters of wheat crop under a dry tropical ecosystem Ecological Indicators 105 505–515 https://doi.org/10.1016/j.ecolind.2018.04.043
[5] Biswas MC, Tiimob BJ, Abdela W, Jeelani S, and Rangari VK 2019 Nano silica-carbon-silver ternary hybrid induced antimicrobial composite films for food packaging application Food Packaging and Shelf Life 19, 104–113 https://doi.org/10.1016/j.fpsl.2018.12.003
[6] Noaman MA, Karim MR and Islam MN 2019 Comparative study of pozzolanic and filler effect of rice husk ash on the mechanical properties and microstructure of brick aggregate concrete. Helinyon 5(6) e01926. https://doi.org/10.1016/j.helinyon.2019.e01926
[7] Azevedo S, Cunha LM, Mahajan PV and Fonseca SC 2011 Application of simplex lattice design for development of moisture absorber for oyster mushrooms Procedia Food Science 1:184-189.
[8] Shahraki MH, Maghsoudlou Y and Mashkour M 2013 Optimisation of humidity absorbers in active packaging of button mushroom by response surface methodology and genetic algorithms Quality Assurance and Safety of Crops & Foods 5(3): 227-235
[9] Zheng X, Ge TS, Wang RZ and Hu LM. 2014 Performance study of composite silica gels with different pore sizes and different impregnating hygroscopic salts Chemical Engineering Science 120: 1-9.
[10] Choi HY and Lee YS 2013. Characteristics of moisture-absorbing film impregnated with synthesized attapulgite with acrylamide and its effect on the quality of seasoned laver during storage Journal of Food Engineering 116(4): 829-839.
[11] Yuan Y, Zhang H, Yang F, Zhang N and Cao X 2016 Inorganic composite sorbents for water vapor sorption: A research progress Renewable and Sustainable Energy Reviews. 54:761-776
[12] Zhang H, Yuan Y, Sun Q, Cao X and Sun L. 2016 Steady-state equation of water vapor sorption for CaCl₂-based chemical sorbents and its application Scientific report 6
[13] Agriawati DP, Warsiki E, Iskandar A and Noor E 2019 Application of alkali treatment rice husk – CaCl₂ as moisture absorber of coconut palm sugar granule IOP Conf. Series: Earth and Environmental Science 347 012062 doi:10.1088/1755-1315/347/1/012062
[14] Rahmah A, Warsiki E and Iskandar A 2020 Multi absorber made from rice husk and CaCl2-KMnO4 in absorbing water vapor and ethylene IOP Conf. Series: Earth and Environmental Science 472 (2020) 012004 doi:10.1088/1755-1315/472/1/012004

[15] Wang W, Li A, Zhang J and Wang A 2007 Study on superabsorbent composite. XI. Effect of thermal treatment and acid activation of attapulgite on water absorbency of poly(acrylic acid)/attapulgite superabsorbent composite Polymer composites 28(3): 397-404.

[16] Mujumbar A 2007 Principles, Classification, and Selection of Dryers. Handbook of Industrial Drying Third edition Taylor & Francis Group.

[17] Saad A, Touati B, Draoui B, Tabti B, Abdenebi A and Benaceur S 2014 Mathematical modeling of moisture sorption isotherms and determination of isosteric heats of sorption of ziziphus leaves Modelling and Simulation in Engineering Article ID 427842 8 pages https://doi.org/10.1155/2014/427842

[18] Monte LS, Escócio VA, de Sousa AMF, Furtado CRG, Leite MCAM, Visconte LLY and Pacheco EBAV 2018. Study of time reaction on alkaline pretreatment applied to rice husk on biomass component extraction Biomass Conversion and Biorefinery 8(1):189-197

[19] Castro JP, Nobre JRC, Bianchi ML, Trugilho P F, Napoli A, Chiou BS and Tonoli GH. 2018. Activated carbons prepared by physical activation from different pretreatments of amazon piassava fibers Journal of Natural Fibers 1-16

[20] Brooker DB, Bakker AFW and Hal CW 1992 Drying and Storage of Grains and Oilseeds New York (US): An Avia Book

[21] Zhu D, Huijun W and Shengwei W 2006 Experimental study on composite silica gel supported CaCl2 sorbent for low grade heat storage International Journal of Thermal Sciences. 45(8): 804-813

[22] Rux G, Mahajan PV, Linke M, Pant A, Sängerlaub S, Caleb OJ and Geyer M 2016 Humidity-regulating trays: moisture absorption kinetics and applications for fresh produce packaging Food and bioprocess technology 9(4): 709-716.

[23] Labuza TP 1975 Sorption Phenomena in Foods: Theoretical And Practical Aspects. In theory, determination and control of physical properties of food materials Springer Dordrecht. P 197-219

[24] Mathlouthi M 200 Water content, water activity, water structure and the stability of foodstuffs Food control 12(7): 409-417