Finite Time Vacuum Survival Amplitude and Vacuum Energy Decay.

Enrique Álvarez and Roberto Vidal

Instituto de Física Teórica UAM/CSIC and Departamento de Física Teórica Universidad Autónoma de Madrid, E-28049-Madrid, Spain
E-mail: enrique.alvarez@uam.es

ABSTRACT: The problem of the vacuum energy decay is studied for both signs of the cosmological constant, through the analysis of the vacuum survival amplitude, defined in terms of the conformal time, z, by $\mathcal{A}(z, z') \equiv \langle \text{vac } z | \text{vac } z' \rangle$. Transition amplitudes are computed for finite time-span, $Z \equiv z' - z$, and their late time behavior (directly related to the putative decay width of the state) as well as the transients are discussed up to first order in the coupling constant, λ.
Contents

1. Introduction

2. Overlaps and evolution
 2.1 Survival amplitudes.

3. Survival amplitudes in flat space
 3.1 Wavefunctionals
 3.2 Inclusion of the interaction
 3.3 Classical solutions
 3.4 Computation of the Schrödinger functional.
 3.5 Flat space survival amplitude
 3.6 Adding particles
 3.7 Quantum mechanics

4. Survival amplitudes in de Sitter space
 4.1 Wavefunctionals
 4.2 Classical solutions
 4.2.1 A different split between free and interaction terms.
 4.3 The Schrödinger functional
 4.4 Vacuum Wavefunctionals
 4.5 Survival amplitude

5. Conclusions

A. Flat space vacuum stability

B. A first (naïve) look at overlaps in de Sitter space.

C. Finite time propagators
 C.1 Dirichlet boundary conditions
 C.2 Feynman boundary conditions
 C.3 Feynman’s propagator including de Sitter boundary terms
1. Introduction

It has been claimed [1] that the free energy corresponding to an interacting theory in de Sitter space has got an imaginary part that can be interpreted as some sort of instability.

The way this imaginary part has to be (perhaps naively) computed is by doing the path integral at imaginary time. In Poincaré coordinates of de Sitter space \((dS^n)\) in which the metric reads

\[
ds^2 = \frac{l^2 dz^2 - \sum_i (dx^i)^2}{z^2}
\]

this leads to the metric of euclidean (anti) de Sitter space \((EAdS^n)\) with metric

\[
ds^2 = \frac{l^2 dz^2 + \sum_i (dx^i)^2}{z^2}
\]

(and not to the metric on the sphere \(S^n\)), and the corresponding free energy has been computed by us up to the one loop order in the first paper of [2], where no imaginary part was find to that order.

Some general arguments can be advanced, however, supporting that a nonvanishing result should be found to higher loop order. Namely, in the second paper of [2] it was pointed out that (if it were applicable) the optical theorem relates the (technically quite difficult) computation of the imaginary part of the free energy to a much simpler tree level calculation, id est, the vacuum decay into identical particles [3]. A related phenomenon is the decay of a particle into several identical particles [4]. Besides, there is no reason for this effect to be restricted to de Sitter space; on the contrary, it would be natural to expect it to be quite generic.

It is true, however, that all our intuition is based upon flat space examples, with the ensuing asymptotic regions, and S-matrix elements that can be computed through LSZ techniques. Outside this framework it is not even known how to define a particle to be decayed into nor the interacting vacuum \(|\text{vac}\rangle\) in the absence of a well-defined energetic argument.

A related issue is the study of the time dependence of transition amplitudes. The linear dependence in time is one of the key aspects of Fermi’s golden rule. The fact that is problematic in curved space, where there is no naturally preferred coordinate system in general, has been remarked in [4]. It is to be stressed that use of non-cartesian coordinates is not without problems even in flat space-time, and this is even more true about polar coordinates in field space. One of the purposes of the present work is to examine this problem, by computing overlaps between states that differ by a finite time in whatever coordinate system we are using.

The paper is organized as follows. In section 2 we review some results regarding transition amplitudes in both flat and curved space-time, and we present the basic quantum-mechanical formalism that we will use in our calculations. It is based in
the functional Schrödinger picture for finite time intervals. In section 3, we put our
techniques to work in order to recover the standard quantum evolution in Minkowski
space-time. This we do in order to check our formalism, and to compare with or-
dinary quantum mechanics (as opposed to field theory). In section 4 we apply this
formalism to de Sitter (and briefly to anti de Sitter) to examine the (conformal time)
dependence of its transition amplitudes. Some technical details have been relegated
to the appendixes
2. Overlaps and evolution

In flat n-dimensional space-time \([5]\) (where energy conservation holds) differential transition amplitudes \(^1\) from an initial state with \(N_i\) initial particles do behave for \(T\) large enough as

\[d\Gamma \sim TV_{n-1}^{-1-N_i}\]

where \(T\) is the time span during which the interaction is turned on, and \(V_{n-1}\) is the

\(^1\)It is not without interest to recall how the linear dependence in time appears on quantum mechanical survival amplitudes using old fashioned time-dependent perturbation theory (confer \([6]\)). We start with eigenstates of a free hamiltonian

\[H_0|k\rangle = E_k^0|k\rangle\]

and expand the full wavefunction as

\[\psi(t, \vec{x}) \equiv \sum_k c_k(t)u_k(\vec{x})e^{-iE_k^0t}.\]

Schrödinger’s equation

\[i\frac{\partial}{\partial t}|\psi\rangle = (H_0 + H_1)|\psi\rangle\]

then demands that

\[\sum_k H_1 c_k u_k e^{-iE_k^0t} = i \sum_{k'} \dot{c}_{k'} u_{k'} e^{-iE_{k'}^0t}\]

which implies

\[\dot{c}_k = -i \sum_{k'} c_{k'} \langle k|H_1(t)|k'\rangle e^{i(E_k - E_{k'})t}\]

When the initial state is an energy eigenstate of the unperturbed hamiltonian, id est, such that \(c_k(0) = \delta_{kp}\), then,

\[c_k(T) = -i \int_0^T dt' \langle k|H_1(t')|p\rangle e^{i\omega_{kp}t'}\]

where \(\omega_{kp} \equiv E_k - E_p\). Assuming a constant perturbation leads to

\[c_k(T) = \frac{2}{T} e^{i\omega_{kp}T} H_{1p}^1 \frac{\sin \omega_{kp}T}{\omega_{kp}}\]

and the decay probability to an state \(|k\rangle\) is

\[P_k(T) \equiv |c_k(T)|^2 = 4 |H_{1p}^1|^2 \frac{\sin^2 \omega_{kp}T}{\omega_{kp}^2}\]

In the limit when \(T \to \infty\) this reduces to

\[P_k(T) \equiv |c_k(T)|^2 = 4 |H_{1p}^1|^2 T \delta(\omega_{kp})\]

The survival probability is

\[P(T) \equiv 1 - \int \rho(k)dE_k P_k(T)\]

where \(\rho(k)\) is the density of final states.
volume of the codimension one spatial sections of constant time of the system (so that in the particular case of vacuum decay it is proportional to the full n-dimensional volume).

In the opposite limit, Maiani and Testa [7] have shown that there is a divergence at small times $T \to 0$ which survives even after renormalization. In order to eliminate it, a careful study of the incoming wave packet is necessary. They studied in particular the example of an unstable scalar particle of mass M decaying into two other scalar particles with masses m_1 and m_2. In the narrow packet approximation for the initial state they were able to prove that

$$S(t) = 2\pi g^2 e^{-iMt} (\alpha_0 + \alpha_1 + \beta_1(t))$$

where M is the renormalized mass of the resonant state.

The assumption will be made in section 2.1 that the quantum mechanical formula

$$\langle \varphi_f | \varphi_i \rangle \equiv \langle \varphi_f | e^{-iH(t'-t)} | \varphi_i \rangle \equiv \int \mathcal{D}\varphi e^{iS[\varphi]}$$

remains valid in curved backgrounds, where the Hamiltonian is generically time dependent.

2.1 Survival amplitudes.

Let us introduce the general formalism first in flat space language, but in such a way that it is easily amenable to generalizations to curved space. The whole aim of the present work is to compute the overlap between an state $|\text{in}\rangle$ defined at a given time time t_i and another state $|\text{out}\rangle$ defined at a different time t_f (both times can be finite). This would become S-matrix elements in case $t_i \to -\infty$, $t_f \to \infty$ and the interaction (including the one resulting from the background gravitational field, if any) is assumed to be switched off at asymptotic times.

First of all, the survival amplitude is an overlap

$$\mathcal{A}(t_f, t_i) \equiv \langle \psi(t_f) | \psi(t_i) \rangle$$

If the state is normalized so that

$$\langle \psi(t_i) | \psi(t_i) \rangle = 1$$

then the unitary evolution (this is a crucial hypothesis) does preserve the norm, so that

$$\langle \psi(t_f) | \psi(t_f) \rangle = 1$$

Then Cauchy-Schwarz’s inequality guarantees that

$$|\mathcal{A}(t_f, t_i)| \equiv |\langle \psi(t_f) | \psi(t_i) \rangle| \leq |\langle \psi(t_i) | \psi(t_i) \rangle| \cdot |\langle \psi(t_f) | \psi(t_f) \rangle| = 1$$
This means that the quantity $(T \equiv t_f - t_i)$

$$\Gamma(T) \equiv -\frac{2}{T} \log |A(t_f, t_i)|$$

must be positive, and in case it is independent of T in the asymptotic regime, could be rightfully interpreted as the decay width of the state. We shall refer to it loosely as decay width even when it is not constant.

Survival amplitudes are therefore powerful tools to detect instabilities; they are however somewhat blind to the final state of such decays; we will have no precise information on the decay products. This appears to be an important open problem from this viewpoint.

The first principles path integral formula reads

$$S(t_f, t_i)|_J \equiv \langle \text{out}|\text{in} \rangle|_J = \int [D\varphi_f][D\varphi_i] \Psi_{t_f}[\varphi_f]^{*} \langle \varphi_f t_f|\varphi_i t_i \rangle|_J \Psi_{t_i}[\varphi_i]$$ (2.1)

where the integration measure $[D\varphi]$ is defined in the space of field configurations at fixed “time”. The wavefunctionals, which are functionals of this fields, are given by

$$\Psi_{t_f}[\varphi_f] \equiv \langle \varphi_f t_f|\text{out} \rangle$$
$$\Psi_{t_i}[\varphi_i] \equiv \langle \varphi_i t_i|\text{in} \rangle$$ (2.2)

An external source J is introduced as usual in order to treat interactions by functional differentiation.

The problem is then reduced to first computing the wavefunctionals of both states (itself a nontrivial task), and then the field transition amplitude, which is really the Feynman Kernel, or in modern parlance essentially the Schrödinger functional

$$K[J][\varphi_f t_f, \varphi_i t_i] \equiv \langle \varphi_f t_f|\varphi_i t_i \rangle|_J$$ (2.3)

followed by a final functional integration over the possible values of the fields.

This Schrödinger functional will be computed using the general expression in terms of path integral:

$$K[J][\varphi', t', \varphi, t] = \langle \varphi' t'|\varphi t \rangle \equiv \int_{\phi(t), t}^{\phi'\epsilon, t'} D\phi e^{i S_{\Sigma_t}^{\phi, \epsilon} d^nx L(\phi, \partial\phi)}$$ (2.4)

where Σ_t is a codimension one hypersurface of constant time.

Let us remind some well known facts in quantum mechanics (confer, for example, [6]). If the initial state $|\text{in}, t_i \rangle$ (where we have explicitly indicated the possible time dependence) be it the vacuum state or otherwise, is an eigenstate of the full hamiltonian, then Schrödinger’s equation imply that the modulus of the survival rate is equal to one and this is true for any values of t_i and t_f:

$$|A_{\text{in}}(t_f, t_i)| \equiv |\langle \text{in}\ t_f|\text{in}\ t_i \rangle| = 1$$
It is plain that the survival rate is nothing else that the self-overlap ($|\text{in}\rangle = |\text{out}\rangle$) at finite time interval.

This means that the only way an state (vacuum or otherwise) can be unstable is by it being a superposition of energy eigenstates. Then the study of the survival amplitude for finite time is quite useful, because we do not need to know any details of the decay process (which is a complicated thing in the absence of asymptotically flat regions).

In order for a given state to be unstable it is not enough that the survival rate depends on time (this happens already for a linear superposition of only two energy eigenstates), but that this dependence has to be monotonic in time. It is enough, for example, that

$$\dot{A} \neq 0, \forall t$$

The actual dependence of the survival rate in quantum field theory with the time interval is however quite complicated. Besides the divergence at small times uncovered by Maiani and Testa [7] (whose understanding demands a careful treatment of wavepackets in the initial state), it can be explicitly shown in some models that the behavior is oscillating, except at asymptotic times ($T \equiv t_f - t_i \to \infty$).

3. Survival amplitudes in flat space

It has been already advertised that the use of our techniques is best illustrated in the simplest flat space example. It is going to be a rather long computation, so let us now draw its roadmap. There are three steps. The most important one is the computation of Schrödinger functional or Feynman Kernel; which is the quantum mechanical transition amplitude between states with well-defined values for the fields. This involves the computation of a determinant with Dirichlet boundary conditions. The final step is to integrate over the boundary values of the fields, weighted by the wavefunctional of the state, which we also need to know at this stage.

3.1 Wavefunctionals

This means that the first thing we have to do is to find the wavefunctionals [8][9] of the states $|\text{in}\rangle$ and $|\text{out}\rangle$. Let us begin with the vacuum. First of all, in flat space the free field and momentum operators read

$$\phi(\vec{x}) = \int \frac{d\vec{p}}{(2\pi)^{\frac{d-1}{2}}} \frac{1}{\sqrt{2\omega_p}} \left(a_{\vec{p}} e^{i\vec{p}\cdot\vec{x}} + a_{\vec{p}}^\dagger e^{-i\vec{p}\cdot\vec{x}} \right)$$

$$\pi(\vec{x}) = -i \int \frac{d\vec{p}}{(2\pi)^{\frac{d-1}{2}}} \sqrt{\frac{2}{\omega_p}} \left(a_{\vec{p}} e^{i\vec{p}\cdot\vec{x}} - a_{\vec{p}}^\dagger e^{-i\vec{p}\cdot\vec{x}} \right)$$

We will work in n dimensions, so the vector notation \vec{x}, \vec{p}, etc. will mean always an integration over $n-1$ variables.
so that

\[a_p^1 = \frac{1}{\sqrt{2}} \int \frac{d\vec{x}}{(2\pi)^{n-1}} e^{-i\vec{p}\vec{x}} \left(\sqrt{\omega_p} \phi(\vec{x}) + i \frac{1}{\sqrt{\omega_p}} \pi(\vec{x}) \right) \]

in such a way that the vacuum wavefunctional obeys

\[\int \frac{d\vec{x}}{(2\pi)^{n-1}} e^{i\vec{p}\vec{x}} \left(\sqrt{\omega} \phi(\vec{x}) + \sqrt{\frac{1}{\omega_p}} \frac{\delta}{\delta \phi(\vec{x})} \right) \langle \phi|0 \rangle = 0 \]

so that the solution looks exactly the same as in [8][9], namely,

\[\Psi_j[\phi] \equiv \langle \phi|0 \rangle = N e^{-\frac{i}{2} \int d\vec{x} d\vec{y} \omega(\vec{x},\vec{y}) \phi(\vec{x}) \phi(\vec{y})} \]

with

\[\omega(\vec{x},\vec{y}) = \sqrt{\omega} \]

Using the functional Schrödinger's equation

\[i \frac{\partial}{\partial t} \Psi_j[\phi, t] = \frac{1}{2} \int d\vec{x} \left(-\frac{\delta^2}{\delta \phi^2} - \eta^{ij} \partial_i \phi \partial_j \phi + m^2 \phi^2 \right) \Psi_j[\phi, t] \]

it is possible to determine

\[\Psi[\phi, t] = N e^{-iE_0 t} \Psi[\phi] \]

with the vacuum energy defined as

\[E_0 \equiv \frac{1}{2} \text{tr} \omega \equiv \frac{1}{2} \int d\vec{x} \omega(\vec{x}, \vec{x}) = V_{n-1} \rho_0 = V_{n-1} \frac{1}{2} \int \frac{d\vec{k}}{(2\pi)^{n-1}} \omega_k \]

where the spatial volume is denoted by \(V_{n-1} \equiv \int d\vec{x} \). From the expression above it is plain that \(E_0 \) is both ultraviolet and infrared divergent.

The time-independent normalization factor is given by

\[N = \det \left(\frac{\omega}{\pi} \right)^{\frac{1}{4}} = e^{-\frac{1}{2} \int \frac{d\vec{x}}{(2\pi)^{n-1}} \log \omega_k} \]

It is useful to consider eigenfunctions of the kernel defined such that

\[\int d\vec{y} \omega(\vec{x}, \vec{y}) f_\epsilon(\vec{y}) \equiv \epsilon f_\epsilon(\vec{x}) \]

In flat space those are just plane waves

\[f_\epsilon(\vec{x}) \equiv e^{i\vec{p}\vec{x}} \]

and the eigenvalue reads

\[\epsilon \equiv \omega_p \]
In momentum space the vacuum wavefunctional reads

\[\Psi_0[\phi] = e^{-\frac{1}{2} \int \frac{d^d k}{(2\pi)^d} \omega_k \phi_k \phi_k^*} \]

where

\[\phi_k \equiv \int d\vec{x} \, e^{-i\vec{k} \cdot \vec{x}}. \]

Then the one-particle state (defined in the non-interacting Fock space) would be defined as

\[\psi_1[\phi] \equiv \int d\vec{x} \, f(\vec{x}) \langle \phi|1\rangle = \frac{1}{\sqrt{2}} \int d\vec{x} \, f(\vec{x}) \phi(\vec{x}) \Psi_0[\phi] \]

(3.3)

so that

\[E_1 = E_0 + \epsilon = E_0 + \omega_p \]

In the general case in which there are no asymptotically flat regions of spacetime the usefulness of those is quite limited.

3.2 Inclusion of the interaction

First we write as usual the interacting kernel in terms of the free one using sources

\[K[J] = e^{i \int_{t_1}^{t_f} dtd\vec{x} L_1(\frac{\dot{x}}{\lambda}) K_0[J]} \]

where \(K_0 \) is the kernel that corresponds to the free action

\[S_0[\phi] - J\phi \equiv \int d^n x \left(\frac{1}{2} (\partial\phi)^2 - \frac{m^2}{2} \phi^2 - J(x)\phi(x) \right) = \int \frac{d^d k}{(2\pi)^d} \int_{t_1}^{t_f} dt \left(\frac{1}{2} |\dot{\phi}_k|^2 - \frac{\omega_k^2}{2} |\phi_k|^2 - j_{-k}(t)|\phi_k(t)| \right) \]

(3.4)

In order to perform the functional integration, we follow Sakita [10] and split the field into a classical piece, \(\phi_k(t) \) (with boundary conditions yet to be specified) and a quantum part, \(\chi_k(t) \)

\[\phi_k(t) = \phi_k^*(t) + \chi_k(t) \]

so that we have for the measure \(D\phi = D\chi \), as well as

\[S_0[\phi] - J\phi = S_0[\phi^*] + S_0[\chi] - J\phi^* + \int \frac{d^d k}{(2\pi)^d} \int_{t_1}^{t_f} dt \left(\dot{\phi}_k^* \chi_{-k} - \omega_k^2 \phi_k^* \chi_{-k} - j_k(t)\chi_{-k}(t) \right) \]

(3.5)
The last piece can be written as

$$\int_{t_i}^{t_f} dt \left(\frac{d}{dt} (\phi^*_k \chi_{-k}) - \chi_{-k} \dot{\phi}^*_k - \omega_k^2 \phi^*_k \chi_{-k} - j_k(t) \chi_{-k}(t) \right) =$$

$$= \dot{\phi}^*_k (t_f) \chi_{-k}(t_f) - \dot{\phi}^*_k (t_i) \chi_{-k}(t_i) - \int_{t_i}^{t_f} dt \chi_{-k} \left(\dot{\phi}^*_k + \omega_k^2 \phi^*_k + j_k(t) \right)$$ \hspace{1cm} (3.6)$$

and choose the classical field ϕ^*_k as the solution of the equation $\dddot{\phi}^*_k + \omega_k^2 \phi^*_k + j_k(t) = 0$, so

$$S_0[\phi] - J\phi = S_0[\phi^c] - J\phi^c + S_0[\chi] + \int d\vec{x} \left[\chi(x) \phi^c(x) \right]_{t_i}^{t_f}$$ \hspace{1cm} (3.7)$$

There is an additional contribution coming from the wavefunctionals in the survival amplitude (2.1). For Fock vacuum wavefunctionals like (3.2), the exponent, depending on the boundary values of ϕ, can be written as:

$$-\frac{1}{2} \int \frac{d\vec{k}}{(2\pi)^{n-1}} \omega_k \left(|\varphi_{f\vec{k}}|^2 + |\varphi_{i\vec{k}}|^2 \right) =$$

$$= -\frac{1}{2} \int \frac{d\vec{k}}{(2\pi)^{n-1}} \omega_k \left(|\varphi^*_k(t_f)|^2 + |\chi_k(t_i)|^2 + 2\chi_{-k}(t_i)\varphi^*_k(t_i) + (t_f \text{ term}) \right)$$ \hspace{1cm} (3.8)$$

The full monty of boundary terms in the sum of (3.7) and (3.8) is then

$$i \dot{\phi}^*_k (t_f) \chi_{-k}(t_f) - i \dot{\phi}^*_k (t_i) \chi_{-k}(t_i) - \omega_k (\phi^*_k(t_f) \chi_{-k}(t_f) + \chi_{-k}(t_i) \phi^*_k(t_i))$$

where the i comes from the one in front of the action, e^{iS_0}. This means that if we impose on the classical solution ϕ^c the boundary conditions

$$i \dot{\phi}^*_k (t_f) - \omega_k \phi^*_k(t_f) = 0$$

$$i \dot{\phi}^*_k (t_i) + \omega_k \phi^*_k(t_i) = 0$$ \hspace{1cm} (3.9)$$

this boundary terms vanish, and the classical field can be expressed in terms of the finite time Feynman propagator, $\Delta_T(x, x')$, so that

$$\phi^c(x) \equiv - \int d^n x' \Delta_T(x, x') J(x')$$

Taking into account that

$$S_0[\phi^c] - J\phi^c = \int dt d\vec{x} \frac{d}{dt} \left(\phi^c \dot{\phi}^c \right) - \int d^n x \frac{1}{2} (\Box + m^2) \phi^c - J\phi^c =$$

$$= \frac{1}{2} \int d\vec{x} \left(\phi^c \dot{\phi}^c \right)_{t_i}^{t_f} - J\phi^c =$$

$$= - \int \frac{d\vec{k}}{(2\pi)^{n-1}} \frac{\omega_k}{2} (|\phi^*_k(t_f)|^2 + |\phi^*_k(t_i)|^2) - \frac{J\phi^c}{2}$$ \hspace{1cm} (3.10)$$
(where the boundary conditions obtained in equation (3.9) have been used), the first terms cancel precisely with the remaining $|\phi|^2$ contribution in (3.8). The full classical piece in the exponent is given by an expression quadratic in J:

$$J \phi^c \equiv \int_{t_i}^{t_f} d^n x J(x) \phi^c(x) = - \int_{t_i}^{t_f} d^n x \int_{t_i}^{t_f} d^n x' J(x) J(x') \Delta_T(x, x') \equiv -J \Delta_T J$$

and we are left with the following expression for the free survival amplitude:

$$A_0(t_f, t_i)|_{J=0} = e^{\frac{1}{2} \int_{t_i}^{t_f} d^n x d^n x' J(x) \Delta_T(x, x') J(x')} A_0(t_f, t_i)$$

(3.11)

We still have to compute $K_0[0]$ insofar as it depends on the initial and final times, t_i and t_f as well as the boundary conditions $[\varphi_i, \varphi_f]$, and integrate it convoluted with the remaining terms of the wavefunctionals. The exponents of these terms depend only on

$$\chi|_{t_i} = \varphi_i - \phi^c|_{t_i}, \, \chi|_{t_f} = \varphi_f - \phi^c|_{t_f}$$

so the integration variables can be shifted:

$$[D\varphi_i][D\varphi_f] = [D\chi|_{t_i}][D\chi|_{t_f}]$$

(3.12)

3.3 Classical solutions

The way the computation has been organized is such that it stems from the careful evaluation of classical solutions with well-defined values for the fields at initial and final times. Let us first examine carefully the situation on flat space, and then build upon that.

Any solution of the free Klein Gordon equation in flat space can be written as

$$\phi(x) = \int \frac{d^3 k}{(2\pi)^3} e^{i k \cdot x} g(k) \delta(k^2 - m^2) = \int \frac{d^3 k}{(2\pi)^3} e^{-i k \cdot x} \frac{1}{\omega} (g_+ \cos \omega t + ig_- \sin \omega t)$$

where

$$g_\pm \equiv g(\omega, k) \pm g(-\omega, k)$$

It is not difficult to show that the solution that reduces to $\phi_i(\vec{x})$ at $t = t_i$ and $\phi_f(\vec{x})$ at $t = t_f \equiv t_i + T$ is given by

$$\phi_c(x) = \int \frac{d\vec{k}}{(2\pi)^{n-1}} e^{-i \vec{k} \cdot \vec{x}} \frac{\sin \omega_k (t - t_i) \phi_f(\vec{k}) - \sin \omega_k (t - t_f) \phi_i(\vec{k})}{\sin \omega_k T}$$

The derivatives at the boundary are fixed and given by

3The time integration in the definition of ϕ^c takes place in the whole real line, while the time integration in the $J \phi^c$ term is constrained within the interval $[t_i, t_f]$. Nevertheless, the result can be proved to be independent of the value of the source J outside this interval.
for a solution to exist is that Feynman’s kernel case. This is the quantity that in norelativistic quantum mechanics is aptly named amplitude between states with well-defined values for the quantum fields in the free

Let us compute the Schrödinger functional

3.4 Computation of the Schrödinger functional.

We will eventually be interested in the limit when $T \to \infty$. Choosing $t_i = -\frac{T}{2}$ and $t_f = \frac{T}{2}$ it reads

$$
\phi_c(x) = \int \frac{d^3k}{16\pi^3} e^{-ikx} \left(\left(\frac{\sin \omega_k t}{\sin \frac{\omega_k T}{2}} + \cos \frac{\omega_k t}{2} \right) \phi_f(\vec{k}) - \sin \frac{\omega_k t}{2} \left(\frac{\cos \omega_k t}{\cos \frac{\omega_k T}{2}} \right) \phi_i(\vec{k}) \right) = \\
\int \frac{d^3k}{16\pi^3} e^{-ikx} \left(\left(\frac{\sin \omega_k t}{\sin \frac{\omega_k T}{2}} - \frac{\cos \omega_k t}{\cos \frac{\omega_k T}{2}} \right) \phi_f(\vec{k}) - \sin \frac{\omega_k t}{2} \left(\frac{\cos \omega_k t}{\cos \frac{\omega_k T}{2}} \right) \phi_i(\vec{k}) \right)
$$

(3.13)

This formula does not hold when $\phi_i = \phi_f = 0$. In this case a necessary condition for a solution to exist is that

$$
t_i - t_f \in \frac{\pi}{\omega} \mathbb{Z}
$$

but this cannot hold true for all frequencies ω_k. The most we can do is to make the solution vanish at one point. In this case, the field reads

$$
\phi_c(x) = \int \frac{d^3k}{8\pi^3} e^{-ikx} g(k) \sin \omega_k(t - t_i)
$$

Let us examine the classical action when $g = \lambda = 0$

$$
S_c = \int d^nx \left(\frac{1}{2} (\partial \phi_c)^2 - \frac{m^2}{2} \phi_c^2 \right) = \\
= \int d^nx \frac{1}{2} \partial \phi_c \partial \phi_c - \frac{1}{2} \phi_c (\Box \phi_c - m^2 \phi_c^2) = \int d^nx \frac{1}{2} \phi_c \phi_c |_{t_i}^t = \\
= \int \frac{d^k}{(2\pi)^{n-1}} \frac{\omega_k}{2\sin \omega_k T} \left(|(\phi_f)k|^2 + |(\phi_i)k|^2 \right) \cos \omega_k T - 2 \text{Re}[(\phi_f)k(\phi_i)_{-k}]
$$

(3.14)

In the particular case when $T \to i\infty$ we get

$$
S_c = -i \int d^nx \frac{1}{2} \phi_c \partial \phi_c |_{t_i}^t = -i \int d^k \omega_k (\phi_f (-k) \phi_f (k) + \phi_i (-k) \phi_i (k))
$$

3.4 Computation of the Schrödinger functional.

Let us compute the Schrödinger functional $K_0[0][\chi_i, \chi_f]$ that is, the transition amplitude between states with well-defined values for the quantum fields in the free case. This is the quantity that in norelativistic quantum mechanics is aptly named Feynman’s kernel.

$$
K_0[0][\chi^f t_f, \chi^i t_i] \equiv \int_{\chi^i}^{\chi^f} D\chi e^{iS_0[\chi]}
$$

(3.15)
This functional integral is computed with fixed Dirichlet boundary conditions at the endpoints and its functional form is:

\[K_{0[0]}[\chi^i(t_f,\chi^i(t_i)] = e^{iS_c[\chi^i,\chi^f]} \det(\square + m^2)^{-\frac{1}{2}} \]

(3.16)

This expression can be achieved expanding again around a classical solution, given by:

\[\chi(t,\vec{x}) = \int \frac{d\vec{k}}{(2\pi)^{n-1}} \frac{\chi^i_k \sin \omega_k (t_f - t) + \chi^f_k \sin \omega_k (t - t_i)}{\sin \omega_k T} e^{-i\vec{k}\vec{x}} + \xi(t,\vec{x}) \]

(3.17)

so the classical action read

\[S_c[\chi^i,\chi^f] = \frac{1}{2} \int \frac{d\vec{k}}{(2\pi)^{n-1}} \chi_k \chi_k \bigg|_{t_i}^{t_f} = \]

\[= \int \frac{d\vec{k}}{(2\pi)^{n-1}} \frac{\omega_k}{2 \sin \omega_k T} \left[\left(|\chi^i_k|^2 + |\chi^f_k|^2 \right) \cos \omega_k T - 2 \text{Re} \chi_k \chi_k^f \right] \]

and the only thing that remains is to compute the determinant

\[\det(\square + m^2) \equiv \int_0^0 \mathcal{D} \xi e^{iS_0[\xi]} \]

(3.19)

with vanishing boundary conditions \(\xi \big|_{t_i} = \xi \big|_{t_f} = 0. \)

It is quite easy to check that the eigenfunctions are given by

\[\xi_k = \sqrt{\frac{2}{T}} \left(\sin \frac{j\pi (t - t_i)}{T} \right) e^{i\vec{k}\vec{x}} \]

with eigenvalues \(\lambda_j = \omega_k^2 - \frac{j^2 \pi^2}{T^2} \), where \(j = 1, 2, \ldots \) For \(k = 0 \) they are normalized in such a way that

\[\int_0^T dt \xi_n(t) \xi_m(t) = \delta_{nm} \]

The associated zeta function (confer [11] whose coventions we follow here) reads

\[\zeta(s) \equiv V_{n-1} \int \frac{d\vec{k}}{(2\pi)^{n-1}} \sum_j \left(\frac{k^2 + m^2 - \frac{j^2 \pi^2}{T^2}}{\mu^2} \right)^{-s} \]

where \(V_{n-1} \equiv \int d\vec{x} \). Now we can use the following identities

\[\int \frac{d\vec{k}}{(2\pi)^{n-1}} \left(k^2 + \alpha^2 \right)^{-s} = \frac{\pi^{\frac{n-1}{2}}}{(2\pi)^{n-1}} \frac{\Gamma(s - \frac{n-1}{2})}{\Gamma(s)} \left(\alpha^2 \right)^{-s + \frac{n-1}{2}} \]

\[\lambda^{-s} \Gamma(s) = \int_0^\infty d\tau \ \tau^{s-1} \ e^{-\lambda \tau} \]
where we have performed analytic continuation in the mass and \(\theta_3(z, \tau) \) is the ordinary Jacobi elliptic theta function,

\[
\theta_3 (z, \tau) \equiv \sum_{n=-\infty}^{\infty} e^{2 \pi i n z} e^{2 \pi i n \tau}
\]

This expression is divergent at \(s = 0 \), precisely the point at which its derivative is wanted. We can remedy using a Poisson resummation in the first summand, instead,

\[
\theta_3 \left(0, \frac{imT}{m^2 T^2} \right) = \frac{mT}{\sqrt{t\pi}} \theta_3 \left(0, \frac{im^2 T^2}{t \pi} \right)
\]

and representing by \(b^2 \equiv -\frac{\pi^2}{m^2 T^2} \),

\[
\zeta(s) \Gamma(s) = \frac{\pi^{n-s}}{2(2\pi)^{n-1}} \mu^{2s} V_{n-1} \left\{ \sqrt{\pi \frac{1}{b^2}} \int_{0}^{\infty} dt \ e^{-t} t^{\frac{s}{2}-1} - \sum_{|j| \geq 1} K_{\frac{s}{2}} \left(\frac{2\pi |j|}{b^2} \right) + \Gamma \left(s + \frac{n}{2} \right) \right\}
\]

The integral is now convergent for appropriate values of \(s \):

\[
\int_{0}^{\infty} dt \ e^{-t} t^{\frac{s}{2}-1} \theta_3 \left(0, \frac{\pi}{b^2 t} \right) = 2 \left(\frac{b}{|j|} \right)^{\frac{n}{2}-s} \sum_{|j| \geq 1} K_{\frac{s}{2}} \left(\frac{2\pi |j|}{b^2} \right) + \Gamma \left(s + \frac{n}{2} \right)
\]

and then

\[
\zeta(s) = \frac{\pi^{n-s}}{2(2\pi)^{n-1}} \mu^{2s} V_{n-1} \left\{ \frac{4(imT)^{s-\frac{n}{2}+1}}{\sqrt{\pi}} \sum_{j \geq 1} j^{s-\frac{n}{2}} K_{\frac{s}{2}}(2imTj) + \frac{imT}{\sqrt{\pi}} \Gamma \left(s - \frac{n}{2} \right) - \Gamma \left(\frac{1-n}{2} + s \right) \right\}
\]

For even values of \(n \):

\[
\zeta'(0)_{\text{even}} = \frac{\pi^{n-s}}{2(2\pi)^{n-1}} V_{n-1} \left\{ \frac{4(imT)^{1-\frac{n}{2}}}{\sqrt{\pi}} \sum_{j \geq 1} j^{-\frac{n}{2}} K_{\frac{s}{2}}(2imTj) - \Gamma \left(\frac{1-n}{2} \right) + \frac{(imT)(-1)^{\frac{n}{2}}}{\sqrt{\pi(n/2)!}} \left[\gamma - \log(m^2/\mu^2) + \psi^{(0)}(1+n/2) \right] \right\}
\]
The sourceless Feynman kernel is precisely

$$K_0[0] = e^{iS_0} e^{-\frac{1}{2} \zeta'(0)}$$ \hfill (3.24)

3.5 Flat space survival amplitude

Let us study the vacuum survival amplitude in the free case performing the relevant integrals by brute force, id est, without introducing any sources for the fields

$$A_0(t_f, t_i) = \langle 0 t_f | 0 t_i \rangle = \int [D\varphi_f] [D\varphi_i] \langle \varphi_f t_f \varphi_i t_i \rangle \langle \varphi_i t_i 0 t_f \rangle =$$

$$= |N|^2 \int [D\varphi_f] [D\varphi_i] e^{-\frac{1}{2} \int \varphi_f \omega \varphi_f} \langle \varphi_f t_f \varphi_i t_i \rangle e^{-\frac{1}{2} \varphi_i \omega \varphi_i}$$

where we have introduced the vacuum wavefunctional of section (3.1), and the free Feynman kernel has just been shown to be

$$K_0[0] = \langle \varphi_f t_f | \varphi_i t_i \rangle = \det \left(2 + m^2 \right)^-\frac{1}{2} e^{iS_0} \langle \varphi_i \varphi_f \rangle$$

where the determinant does not depend upon the boundary values for the field variables.

This yields

$$S_0(t_f, t_i) = |N|^2 \det \left(\Box + m^2 \right)^-\frac{1}{2} \int [D\varphi_f] [D\varphi_i] \cdot$$

$$\cdot \exp \left[i \int \frac{d\vec{k}}{(2\pi)^n} \omega_k \left(\varphi^*_f \varphi^*_i \left(\frac{1}{2} + \frac{1}{2} \cot \omega_k T \right) \right) \right]$$

We shall dub the functional determinant of the operator

$$B \equiv \left(\begin{array}{cc}
\frac{1}{2} + \frac{1}{2} \cot \omega_k T & -\frac{1}{2} \sin \omega_k T \\
-\frac{1}{2} \sin \omega_k T & \frac{1}{2} + \frac{1}{2} \cot \omega_k T
\end{array} \right)$$

the *boundary determinant*.

The eigenvalues of this matrix are:

$$\lambda = -1 - i \tan(\omega_k T/2), \quad -1 + i \cot(\omega_k T/2)$$ \hfill (3.25)

so the zeta function we have to consider in order to compute the boundary determinant is (recovering the ω_k factor we dropped in these eigenvalues):

$$\zeta(s) = V_{n-1} \mu^s \int \frac{d\vec{k}}{(2\pi)^{n-1}} \left(\frac{\omega_k}{2} \right)^{-s} \left\{ -e^{\frac{1}{2} \cos \omega_k T/2} \right\}^s =$$

$$= V_{n-1} \mu^s \Omega_{n-2} m^{n-1-s} \int_{1}^{\infty} dx \left(x^2 - 1 \right)^{\frac{n-2}{2} x^{1-s}} \left\{ -e^{\frac{z m T/2}{\sin x m T/2}} \right\}^s$$ \hfill (3.26)
Now we can perform use the following expansion:

\[
\frac{1}{(1 + y)^s} = \sum_{j=0}^{\infty} \frac{\pi_j(s)}{j!} y^j
\]
(3.27)

where \(\pi_0(s) = 1\) and \(\pi_{j+1}(s) = s \cdot \ldots \cdot (s - j)\). The zeta function is then:

\[
\zeta(s) = \frac{V_{n-1} \mu^s \Omega_{n-2} m^{n-1-s}}{2^{-s} (2\pi)^{n-1}} \int dx (x^2 - 1)^{-\frac{s-n}{2}} x^{1-s} \left\{ \left(-\frac{2}{1 + e^{-imTx}} \right)^{-s} + \left(-\frac{2}{1 - e^{-imTx}} \right)^{-s} \right\} = \\
= \frac{V_{n-1} \mu^s \Omega_{n-2} m^{n-1-s} (-1)^{-s}}{(2\pi)^{n-1}} 2 \sum_{j=0}^{\infty} \frac{\pi_2j(s)}{2j!} I_{2j}(s)
\]
(3.28)

with \(I_{2j}(s) = \int_{1}^{\infty} dx (x^2 - 1)^{-\frac{s-n}{2}} x^{1-s} e^{-2imTxj}\).

Since we know also that \(\pi'_0(0) = 1\) and \(\pi'_{j+1}(0) = (-1)^j j!\), we have:

\[
\zeta'(0) = \frac{1}{(2\pi)^{n-1}} \Omega_{n-2} m^{n-1} 2 \left\{ I'_0(0) - \log(-m/\mu) I_0(0) - \sum_{j \geq 1} \frac{1}{2j} I_{2j}(0) \right\}
\]
(3.29)

The integrals can be calculated then:

\[
I_0(s) = \int_{1}^{\infty} (x^2 - 1)^{-\frac{s-n}{2}} x^{1-s} dx = \Gamma \left(\frac{n-1}{2} \right) \frac{\Gamma \left(\frac{s-n+1}{2} \right)}{2\Gamma(s/2)}
\]

\[
I_{2j}(0) = \frac{1}{\sqrt{\pi}} \Gamma \left(\frac{n-1}{2} \right) (ijmT)^{1-j} K_{\frac{n}{2}}(2ijmT)
\]

In the even \(n\) case the zeta function corresponding to the boundary determinant is

\[
\zeta'(0)_{\text{even}} = \frac{2\Omega_{n-2} m^{n-1}}{(2\pi)^{n-1}} \Gamma \left(\frac{n-1}{2} \right) \left\{ \frac{1}{4} \Gamma \left(\frac{1-n}{2} \right) - \frac{(imT)^{1-n/2}}{2\sqrt{\pi}} \sum_{j \geq 1} j^{-\frac{n}{2}} K_{\frac{n}{2}}(2imTj) \right\}
\]
(3.30)

Collecting the results of this paragraph with the ones of the previous one, the vacuum survival amplitude in the even \(n\) case reads

\[
\mathcal{A}_0(t_f, t_i) \equiv \exp \left[-\frac{1}{2} \frac{n-1}{2} m^{n-1} V_{n-1} \left\{ \Gamma \left(\frac{1-n}{2} \right) + \frac{(imT)^{(-1)^j}}{\sqrt{\pi(n/2)!}} \left[\gamma - \log(m^2/2\mu^2) + \psi^{(0)}(1+n/2) \right] \right\} \right]
\]
(3.31)

In is remarkable that the end product of this computation is of the form

\[
\mathcal{A}_0(t_f, t_i) \propto e^{-iE_0 T}
\]
with the vacuum energy given by

\[
\frac{E_0}{V_{n-1}} = \frac{1}{2} \frac{\pi^{n-1} m^n}{(2\pi)^{n-1} \sqrt{\pi(n/2)!}} \left[\gamma - \log(m^2/2\mu^2) + \psi^{(0)}(1 + n/2) \right]
\]

(3.32)

The inclusion of the interaction in these considerations can be achieved through Feynman diagrams with finite time propagators built in them.

3.6 Adding particles

If we try to perform the same calculation above for an excited state (id est, an state containing particles), the only change is the boundary wavefunctions in the second determinant:

\[
\int [D\varphi_i][D\varphi_f] \varphi_i(\vec{p})^\ast \varphi_f(\vec{p}) \exp \left[\int \frac{d\vec{k}}{(2\pi)^{n-1}} \frac{\omega_k}{2} (\varphi_i \varphi_f)_{-\vec{k}} (i \cot \omega_k T - 1 - i \csc \omega_k T) (\varphi_i \varphi_f)_{\vec{k}} \right]
\]

(3.33)

for the case of an state with a particle of momenta \(\vec{p}\).

If we introduce sources coupled to the boundary values of \(\phi\), the calculation only needs the addition of a term coming from the derivatives:

\[
\int [D\varphi_i][D\varphi_f] \exp \left[\int \frac{d\vec{k}}{(2\pi)^{n-1}} (\varphi_i \varphi_f)_{-\vec{k}} M_{\vec{k}}^{-1} \left(J^i \varphi_f \right)_{\vec{k}} + (J^i, J^f)_{\vec{k}} \left(\varphi_i \varphi_f \right)_{\vec{k}} \right] =
\]

(3.34)

We can get then the additional factors due to the presence of particles:

\[
M_{\vec{k}}^{-1} = -\frac{i}{\omega_k} \begin{pmatrix} 1 & e^{-i\omega_k T} \\ e^{-i\omega_k T} & 1 \end{pmatrix}
\]

(3.35)

\[
\frac{\delta}{\delta J^i_{\vec{p}}} \frac{\delta}{\delta J^f_{\vec{p}}} \exp \left[-\frac{1}{4} \int \frac{d\vec{k}}{(2\pi)^{n-1}} (\varphi_i, J^f)_{-\vec{k}} M_{\vec{k}}^{-1} \left(\varphi_i \varphi_f \right)_{\vec{k}} \right] \bigg|_{J=0} \propto e^{-i\omega_k T}
\]

(3.36)

and this means that the energy in the exponent \(e^{-iE_0 T}\) calculated for the vacuum-to-vacuum amplitude increases precisely in \(\omega_k\). The reason why we did this check is that the way the linear dependence in time appears is quite different in quantum field theory and in quantum mechanics, as we detail in the next paragraph.

3.7 Quantum mechanics

It is useful to contrast the field theoretical calculation above with the quantum mechanical harmonic oscillator [12]
The vacuum survival amplitude for the harmonic oscillator with unit mass is given by
\[C(T) \equiv \langle 0 | t = T | 0 | t = 0 \rangle = \int Dq_i Dq_f e^{-\omega q_i^2/2} e^{-\omega q_f^2/2} \int_{q_i}^{q_f} Dq e^{iS[q]} \] (3.37)

Expanding the trajectory around the classical solution, \(q = q_c + y \), we have:
\[C(T) = \int Dq_i Dq_f e^{-\omega q_i^2/2} e^{-\omega q_f^2/2} e^{iS[q]} \int_{y(0)=y(T)=0} Dq e^{iS[q]} \] (3.38)

The action for the classical trajectory can be expressed as:
\[S[q_c] = \frac{1}{2} q_c \dot{q}_c \bigg|_{i}^{f} = \frac{\omega}{2 \sin \omega T} (q_f (\cos \omega T q_i - q_i) - q_i (q_f - \cos \omega T q_i)) \] (3.39)

and this is quadratic in the boundary values for \(q_c \) so that the boundary integral is gaussian:
\[\int Dq_i Dq_f e^{-\omega q_i^2/2} e^{-\omega q_f^2/2} e^{iS[q]} = \pi \left| -\frac{\omega}{2} + \frac{i}{2} \omega \cot \omega T \right|^{-1/2} \] (3.40)

The Dirichlet determinant can be computed through discretization, following Feynman’s original argument, to be
\[\det \left(-\frac{d^2}{dt^2} + \omega^2 \right)^{-1/2} = \left(\frac{\omega}{2 \pi i \sin \omega T} \right)^{1/2} \]

It is amusing to remark that a zeta function computation gives this same determinant only up to a constant. Altogether it yields
\[C(T) = \sqrt{\frac{\pi}{\omega}} e^{-\frac{1}{2} \omega T} \]

The differences with the quantum field theoretic computation are now clear. The dominant terms for large \(T \) come from the Schrödinger functional only in the field theoretic case, whereas as a result of cancellations, they come from the boundary determinant in quantum mechanics. We just checked that nevertheless the energies of the excited states are also correctly given in quantum field theory.
4. Survival amplitudes in de Sitter space

Let us now turn to the main object of our interest, namely the (in)stability of the vacuum state in (anti) de Sitter space. We shall mainly use here the de Sitter metric in horospheric (Poincaré) coordinates, where \(z \) plays the role of conformal time

\[
ds^2 = \frac{l^2 dz^2 - \delta_{ij} dx^i dx^j}{z^2}
\]

The conformal time is positive semidefinite

\[
0 \leq z \leq \infty
\]

It is sometimes useful to write \(z \equiv e^{-Ht} \), where the Hubble constant, \(H \) is related to the radius by \(H \equiv \frac{1}{l} \), so that the metric appears in the steady state form

\[
ds^2 = dt^2 - e^{2Ht} \delta_{ij} dx^i dx^j
\]

In these coordinates it is plain that in the limit \(H \to 0 \) (\(l \to \infty \)) flat space is recovered.

We are interested in the survival amplitude of a certain state \(|\text{in}\rangle \) between (conformal) time \(z \) and \(z' \) (both times can be finite)

\[
A_{\text{in}} (z_f, z_i) \equiv \langle \text{in} z_f \langle \text{in} z_i \rangle = \int [D\varphi_f] [D\varphi_i] \langle \text{in} z_f | \varphi_f z_f \rangle \langle \varphi_f z_f | \varphi_i z_i \rangle \langle \varphi_i z_i | \text{in} z_i \rangle
\]

4.1 Wavefunctionals

We shall expand the free field as

\[
\phi(z, \vec{x}) = \int d\vec{p} \left(a_p v_p(z) e^{i\vec{p}\vec{x}} + a_p^\dagger v_p^*(z) e^{-i\vec{p}\vec{x}} \right)
\]

and the canonically conjugated momentum

\[
\pi(z, \vec{x}) = \int \frac{d\vec{p}}{l z^{n-2}} \left(a_p v_p(z) e^{i\vec{p}\vec{x}} + a_p^\dagger v_p^*(z) e^{-i\vec{p}\vec{x}} \right)
\]

Our modes are normalized by the usual Klein-Gordon invariant scalar product

\[
v_p^* v_p - v_p^* v_p^* = i \frac{z^{n-2} l}{(2\pi)^{n-1}}
\]

The creation and annihilation operators are given by:

\[
a_k = -i \frac{z^{2-n}}{l} \int d\vec{x} e^{-i\vec{k}\vec{x}} \left((v_k^*)^*(x) \phi(z, \vec{x}) - l z^{n-2} v_k^*(z) \pi(z, \vec{x}) \right)
\]

\[
a_k^\dagger = i \frac{z^{2-n}}{l} \int d\vec{x} e^{i\vec{k}\vec{x}} \left(v_k(x) \phi(z, \vec{x}) - l z^{n-2} v_k(z) \pi(z, \vec{x}) \right)
\]
It is now quite plain (at least formally) how to compute wavefunctions for different states. Let us begin with the wavefunction of the free (Fock) vacuum. It is defined for appropriate destruction operators and a given conformal time \(z \) by

\[
a_k |0\rangle = \int d\vec{x} e^{-i\vec{k} \cdot \vec{x}} (v'_k(z)^* \phi(z, \vec{x}) - v_k(z)^* l z^{n-2} \pi(z, \vec{x})) |0\rangle = 0
\]

we are thus led to a differential equation common for the vacuum wavefunction,

\[
\int d\vec{x} e^{-i\vec{k} \cdot \vec{x}} \left(iv_k(z)^* z^{n-2} l \frac{\delta}{\delta \varphi(\vec{x})} + v'_k(z)^* \varphi(\vec{x}) \right) \langle \varphi z | 0 \rangle = 0
\]

The vacuum wavefunctional \(\langle \varphi | 0 \rangle \) is the exact analogue of the Schrödinger wavefunction \(\psi(q, t) \equiv \langle q | \psi \rangle \), where the completeness relationship \(\sum |q\rangle \langle q| = 1 \) is assumed in a time-independent way. Here we introduce a time-independent basis \(|\varphi\rangle \) such that

\[
\int [D\varphi] |\varphi\rangle \langle \varphi | = 1
\]

This basis is defined in such a way that the diagonalize the field operator

\[
\hat{\phi}(\vec{\bar{z}}, \vec{\bar{x}}) |\varphi\rangle = \varphi(\vec{x}) |\varphi\rangle
\]

at a certain fiducial time, \(\vec{\bar{z}} \). But the basis itself depends on this fiducial time in a nontrivial way, and this we have attempted to represent by writing explicitly the basis as \(|\varphi z\rangle \). It follows that a gaussian ansatz

\[
\langle \varphi z | 0 \rangle = N e^{-\frac{1}{2} \int d\vec{x} d\vec{y} K_z(\vec{x}, \vec{y}) \varphi(\vec{x}) \varphi(\vec{y})}
\]

is indeed a solution, provided

\[
K_z(\vec{x}, \vec{y}) = -\frac{i}{(2\pi)^{n-1}} \int d\vec{p} e^{i\vec{p} \cdot (\vec{x} - \vec{y})} \frac{1}{l z^{n-2}} v'_p(z)^* v_p(z)^*
\]

This gives a natural definition of non-interacting vacuum state corresponding to the modes \(v_p(z) \). The present definition of vacuum depends on the modes used, and this in turn depends on the physical setup of the question asked. This is a general problem of quantum field theory in a curved space, not specific to our formalism.

Through the functional Schrödinger’s equation perturbative corrections to the noninteracting vacuum can easily be found. The concept of particle is a delicate one when asymptotically flat regions are absent. A possible definition of a multiparticle state in the present context is, for example,

\[
\langle \varphi z | k_1 \ldots k_p \rangle \equiv \langle \varphi z | a_{k_1}^\dagger \ldots a_{k_p}^\dagger |0\rangle
\]

but it is plain that the usefulness of such a definition is quite limited.
4.2 Classical solutions

The action for a scalar field in a generic conformally flat space (of which both de Sitter and anti de Sitter are particular instances) can be written in a very simple form. We shall insist for no particular reason in keeping the coordinate \(z \) dimensionless, so that the dimensionful coordinates are \(x^\mu \equiv (x^0, x^1, \ldots, x^{n-2}, lx) \). The metric is conformally flat

\[
ds^2 = a(z)^2 \eta_{\mu\nu}dx^\mu dx^\nu
\]

In de Sitter space the coordinate \(z \) is timelike, so that it follows that

\[
S_{dS}[\phi] = \int \left\{ \frac{1}{a^2} \left(\frac{1}{l^2} (\partial_z \phi)^2 - (\nabla \phi)^2 \right) - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4 \right\}
\]

In anti de Sitter, owing to the fact that the \(z \) coordinate is spacelike, this reads

\[
S_{AdS}[\phi] = \int \left\{ -\frac{1}{a^2} \left(\frac{1}{l^2} (\partial_z \phi)^2 + \dot{\phi}^2 - (\nabla \phi)^2 \right) - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4 \right\}
\]

(where now \(\vec{x} \) includes all coordinates except \(x^0 \equiv t \) and \(z \)).

We shall actually redefine the quantum field (but keep the same notation for it) in order to shift all dependence on the background towards the potential

\[
\phi_{new} \equiv a^{\frac{n-2}{2}} \phi_{old}
\]

The lagrangian now reads (remember, now \(\phi \equiv \phi_{new} \))

\[
L = \frac{1}{2} (\partial \phi)^2 - \frac{m(z)^2}{2} \phi^2 - \frac{g(z)}{6} \phi^3 - \frac{\lambda(z)}{24} \phi^4 \pm \frac{2 - n d}{4l^2} \left(\frac{\dot{a}}{a} \phi^2 \right)
\]

where

\[
m^2(z) \equiv m^2 a^2 \pm \left(1 - \frac{n}{2} \right) \frac{\ddot{a}}{a} a \pm \left(\frac{n}{2} - 2 \right) \left(\frac{n}{2} - 1 \right) \frac{\dot{a}^2}{a^2 l^2}
\]

\[
\lambda(z) \equiv a^{4-n} \lambda
\]

(4.2)

where \(\dot{a} \equiv \frac{da}{dz} \); the upper signs are for de Sitter space, and the lower ones for anti de Sitter).

In both de Sitter and anti de Sitter, \(a \equiv \frac{1}{z} \) which gives, paying due attention to the fact that \(z \) is dimensionless,

\[
S_{dS} = \frac{1}{2} \int d\vec{x} dz \left\{ \frac{1}{l^2} (\partial_z \phi)^2 - (\nabla \phi)^2 - \frac{m^2 l^2 - \frac{n(n-2)}{4}}{l^2 z^2} \phi^2 - \frac{\lambda}{12} \frac{z^{n-4}}{l} \phi^4 \right\} + \int d\vec{x} \left| \frac{n-2}{4z l} \phi \right|_{z_f}^{z_1}
\]

\[
S_{AdS} = \frac{1}{2} \int d^{n-1}x dz \left\{ -\frac{1}{l^2} (\partial_z \phi)^2 + \dot{\phi}^2 - (\nabla \phi)^2 + \frac{m^2 l^2 + \frac{n(n-2)}{4}}{l^2 z^2} \phi^2 - \frac{\lambda}{12} \frac{z^{n-4}}{l} \phi^4 \right\}
\]

– 21 –
where care has been taken to keep in de Sitter all boundary terms for future use. Incidentally, those are totally irrelevant for anti de Sitter, because we are only integrating the time variable over a finite time interval; but they are quite important for de Sitter space, because they enforce a change in Feynman’s propagator as explained in the appendix in some detail.

It is amusing to remark that up to a constant factor the γ factor defined in the appendix as $\gamma \equiv \frac{n-2}{2n}\frac{1}{l^2}$ is just the de Sitter temperature $T \equiv \frac{1}{4\pi l}$

$$\gamma m = \frac{n-2}{z}2\pi T$$

It is well known that this temperature is associated to the unavoidable presence of a horizon because of the lack of a globally timelike Killing vector \cite{13}. This coincidence is due to the fact that there is a single energy scale in de Sitter space.

This action can (and will) be interpreted as a Minkowskian action for a massive field, with a time-dependent potential given by

$$V(z, \phi) \equiv -L_I(z, \phi) \equiv \frac{m^2 l^2 (1 - z^2)}{2l^2 z^2} \left(\frac{n(4-n)}{4} \phi^2 + \frac{\lambda}{24} z^{n-4} \phi^4 \right)$$

The perturbation is a time dependent one for de Sitter space; whereas space dependent in anti de Sitter. In this split between free and interacting hamiltonian all information on the curvature of the space has been dumped into the potential term.

4.2.1 A different split between free and interaction terms.

It can be more convenient for some purposes to keep all quadratic terms (dimension two operators) in the free lagrangian and treat higher dimensional operators as interacting terms.

The scalar field action in de Sitter space

$$S = \int_{z_i}^{z_f} \frac{Ldxdz}{z^n} \left(\frac{z^2}{l^2} \left(\partial_z \phi \right)^2 - l^2 \left(\nabla \phi \right)^2 \right) - \frac{m^2}{2} \phi^2 - J\phi$$

reads in momentum space

$$\phi(z, \vec{x}) = \int \frac{dk}{(2\pi)^{n-1}} \phi_k(z) e^{ik\vec{x}}$$

$$S = \int_{z_i}^{z_f} \frac{Ldxdzdk}{z^n} \left(\frac{z^2}{l^2} \left(k^2 |\phi_k|^2 + l^2 k^2 |\phi_k|^2 \right) - \frac{m^2}{2} |\phi_k|^2 - J_{-k}\phi_k \right)$$

Writing as in flat space,

$$\phi_k = \phi_k^c + \chi_k$$
\[
S = \int_{z_i}^{z_f} \frac{ldzd\vec{k}}{z^n} \left(\frac{z^2}{l^2} \left(|\partial_x \phi_k|^2 + l^2 k^2 |\phi_k|^2 \right) - \frac{m^2}{2} |\phi_k|^2 - J_{-k} (\phi_k + \chi_k) + \frac{z^2}{l^2} \left(|\partial_x \chi_k|^2 + l^2 k^2 |\chi_k|^2 \right) - \frac{m^2}{2} |\chi_k|^2 \right) \]

\[
= \frac{z^2}{l^2} \left(|\partial_x \chi_k|^2 + l^2 k^2 |\chi_k|^2 \right) - \frac{m^2}{2} |\chi_k|^2 + \frac{2z^2}{l^2} \left(\partial_z \phi_k \partial_{-k} \chi + l^2 k^2 \phi_k \chi_{-k} \right) - m^2 \phi_k \chi_{-k}
\]

the equation of motion reads

\[
\phi''_k - \frac{n}{z} \phi'_k + \frac{l^2 (k^2 + m^2)}{z^2} \phi_k = 0
\]

whose general solution reads

\[
\phi_k(z) = z^{\frac{n}{2}} \left(C_1 J_{\left(\frac{n-1}{2} \right)^2 - m^2 l^2} (klz) + C_2 Y_{\left(\frac{n-1}{2} \right)^2 - m^2 l^2} (klz) \right)
\]

To find the solution that reduces to \(\phi_1 (\vec{x}) \) at \(z = z_1 \) and to \(\phi_2 (\vec{x}) \) at \(z = z_2 \), let us define

\[
J_{1,2} \equiv J_{\left(\frac{n-1}{2} \right)^2 - m^2 l^2} (klz_{1,2})
Y_{1,2} \equiv Y_{\left(\frac{n-1}{2} \right)^2 - m^2 l^2} (klz_{1,2})
\]

Then

\[
C_1 = \frac{Y_2 \phi_1 (k) z_1^{\frac{1-n}{2}} - Y_1 \phi_2 (k) z_2^{\frac{1-n}{2}}}{J_1 Y_2 - J_2 Y_1}
C_2 = \frac{-J_2 \phi_1 (k) z_1^{\frac{1-n}{2}} + J_1 \phi_2 (k) z_2^{\frac{1-n}{2}}}{J_1 Y_2 - J_2 Y_1}
\]

and

\[
\phi_k^{\text{class}} (z) = C_1 J_{\nu} (klz) + C_2 Y_{\nu} (klz)
\]

where \(\nu \equiv \left(\frac{n-1}{2} \right)^2 - m^2 l^2 \). For any classical solution the action on shell is given by

\[
S_c = \int d\vec{x} \frac{2^n}{l^2} \phi \partial_x \phi |_1^2 = (2\pi)^{n-1} \int \frac{d\vec{k}}{l^2} \frac{1}{z^{n-2}} |\phi_k(z) (\partial_z \phi_k) (z)|_1^2
\]

Let us now find the solution of the equation of motion with a delta-function source and Dirichlet boundary conditions.

Using the fact that the Wronskian

\[
W[J_{\nu} (z), Y_{\nu} (z)] = 2 \frac{e^{\pi \nu}}{z \cos \pi}
\]

the Dirichlet propagator is easily found to be

\[
\Delta_{k}^D (z, z_0) = \frac{1}{2} e^{-\pi \nu} klz_0 \theta (z - z_0) \cos \pi \nu \left(-Y_{\nu} (klz_0) J_{\nu} (klz) + J_{\nu} (klz_0) Y_{\nu} (klz) \right) + \phi_k^{\text{class}} (z)
\]

We shall develop the expansion associated to this propagator in a forthcoming work.
4.3 The Schrödinger functional

The Schrödinger functional is given by finite-time Feynman’s diagrams with position-dependent vertices

\[\mathcal{A}(z_f, z_i)|J = e^{-i \int_{z_i}^{z_f} \mathbb{d}z \mathbb{d}x V(z, i) \mathbb{d}x} e^{i \int_{z_i}^{z_f} \mathbb{d}x \mathbb{d}x' J(x) \Delta_T(x, x') J(x')} \ \bigg|_{J=0} \mathcal{A}_0|J=0 \]

To a given order in perturbation theory, it corresponds to vacuum diagrams (the same that contribute to the usual vacuum energy) computed with finite time Feynman propagators. The important thing to notice is that the only dependence on the boundary values of the fields stems from the classical action.

The first diagram to be computed is the “circle”, which is simply:

\[M_{0,0} = \int_{z_i}^{z_f} l \mathbb{d}z \int \frac{\mathbb{d}k}{(2\pi)^{n-1}} \Delta_T(k)[z, z] \] (4.5)

It is to be remarked that even this diagram carries some information about the curvature of the space through the \(\gamma \) terms in the propagator.

We can take advantage of the specific form of the said propagator, in the sense that only the first coefficient (C.13) contributes to the simple diagrams we will consider. In this case, the amplitude reads:

\[M_{0,0} = V_n-1 \int \frac{\mathbb{d}k}{(2\pi)^{n-1}} e^{-2i\omega_k Z} \frac{\left(m(\gamma_i - \gamma_f) + e^{2i\omega_k Z} (4\omega_k^2 Z + m(\gamma_f - \gamma_i)(1 - 2i\omega_k Z))\right)}{4\omega_k^2 (m(\gamma_i - \gamma_f) - 2i\omega_k)} \] (4.6)

where we have neglected the product \(\gamma_i \gamma_f \).

In the limits of large and small \(Z \), (physically, the relevant quantity is \(Zml \)) we have:

\[M_{0,0} \xrightarrow{Z \rightarrow \infty} V_n-1 \frac{\Omega_n-2m^{n-2}}{2(2\pi)^{n-1}} \left\{ \frac{imlZ J \left(\frac{n-3}{2} \right)}{2} + \frac{\gamma_i}{2} I_{00}(Z) \right\} \]

\[M_{0,0} \xrightarrow{Z \rightarrow 0} V_n-1 \frac{\Omega_n-2m^{n-2}}{2(2\pi)^{n-1}} \left\{ iZ J \left(\frac{n-3}{2} \right) \gamma_i \frac{2^{2z_i}}{2} J \left(\frac{n-3}{2}, -1 \right) \right\} \] (4.7)

where

\[J(a, b) = \int_{-1}^{1} dx (x^2 - 1)^a x^b \]

\[I_{00}(Z) = \int_{-1}^{1} dx (x^2 - 1)^{\frac{n-3}{2}} \frac{e^{-2imlZx} - 1}{(\gamma_i - 2ix) x} \] (4.8)
The second diagram is the same as before, but with a mass insertion:

$$M_{1,0} = -\int_{z_i}^{z_f} dz \int d\vec{x} \frac{d\vec{k}}{(2\pi)^{n-1}} \Delta_T(k)[z, z] (\alpha + \frac{\beta}{z^2})$$ (4.9)

with $\alpha = -m^2/2$ and $\beta = (m^2 - n(n-2)/4f^2)/2$. We have a part proportional to the first diagram, and a second part proportional to:

$$\int_{z_i}^{z_f} dz \frac{1}{2z^2} e^{il\omega k(2z'-z_f-z_i)} \left((2\omega_k - i\gamma fm)e^{2il\omega k(z_f-z')} + i\gamma fm \right) \left(\gamma \right) m \left(1 + e^{2il\omega_k(z_i-z')} \right) + 2i\omega_k =$$

$$= \frac{1}{z_f z_i} l\omega_k e^{-il\omega k(z_f+z_i)} \left[-2il\omega_k z_f z_i (\gamma_f (\text{Ei}(2il\omega_k) - \text{Ei}(2il\omega_k)) + \gamma_i e^{2il\omega k(z_f+z_i)}(\text{Ei}(-2il\omega_k) - \text{Ei}(-2il\omega_k)) - me^{2il\omega_k z_i (\gamma_f z_f + \gamma_i z_i) + e^{2il\omega k(z_f - z_i)}} \right]$$ (4.10)

where we have neglected again the terms quadratic in the γ's.

For large Z this contribution is just a constant independent of Z, while that for small Z has a linear and a quadratic part. In this last limit, the full amplitude reads:

$$M_{1,0} \xrightarrow{Z \to 0} -(\alpha + \frac{\beta}{z_i^2}) M_{00} + \frac{V_{n-1} \Omega_{n-2} m^{n-2}}{2(2\pi)^{n-1} z_i^3} \cdot ilZ^2 \frac{J(n - 3)}{2\pi}$$ (4.11)

where the M_{00} has to be understood as the small-Z limit shown above.

The third diagram (the first contribution of the self interaction) is given by

$$M_{1,0} = 3i \int_{z_i}^{z_f} dz \int d\vec{x} \frac{d\vec{k}d\vec{p}}{(2\pi)^{2n-2}} \Delta_T(k)[z, z] \Delta_T(p)[z, z] \lambda(z)$$ (4.12)

with $\lambda(z) = z^{n-4}/24$. The diagram is then proportional to:

$$\int_{z_i}^{z_f} dz \frac{z^{n-4}}{4} \left((2\omega_k - i\gamma fm)e^{2il\omega k(z_f-z')} + i\gamma fm \right) \left((2\omega_p - i\gamma fm)e^{2il\omega p(z_f-z')} + i\gamma fm \right) \cdot \left(\gamma \right) m \left(1 + e^{2il\omega_k(z_i-z')} \right) + 2i\omega_k \left(\gamma \right) m \left(1 + e^{2il\omega_p(z_i-z')} \right) + 2i\omega_p \left(\gamma \right) e^{il(\omega_k+\omega_p)(2z'-z_f-z_i)} \approx$$

$$\approx -2il\omega k \omega_p e^{-il(\omega_k+\omega_p)(z_f+z_i)} \left[\gamma l^{1/4}m^{3/2-n} \omega_k \omega_p (il\omega_k)^{-n-1} e^{2il(z_f(\omega_k+\omega_p)+\omega_k z_i)}(\Gamma(n - 3, 2ilz f \omega_k) - \Gamma(n - 3, 2ilz f \omega_k)) + \gamma l^{1/4}m^{3/2-n} \omega_k \omega_p (il\omega_p)^{-n-1} e^{2il(z_f(\omega_k+\omega_p)+\omega_k z_i)}(\Gamma(n - 3, 2ilz f \omega_p) - \Gamma(n - 3, 2ilz f \omega_p)) \right.$$

$$- \Gamma(n - 3, 2ilz f \omega_k)) + \gamma l^{1/4}m^{3/2-n} \omega_k \omega_p (il\omega_f)^{-n-1} e^{2il(z_f(\omega_k+\omega_p)+\omega_k z_i)}(\Gamma(n - 3, 2ilz f \omega_p)) - \Gamma(n - 3, 2ilz f \omega_k)) \left.$$

$$- \gamma l^{1/4}m^{3/2-n} \omega_k (il\omega_k)^{3/2-n} e^{2il\omega k z_f (\Gamma(n - 3, -2ilz f \omega_k) - \Gamma(n - 3, -2ilz f \omega_k))} - \gamma l^{1/4}m^{3/2-n} \omega_k (il\omega_k)^{3/2-n} e^{2il\omega k z_f (\Gamma(n - 3, -2ilz f \omega_p) - \Gamma(n - 3, -2ilz f \omega_p))} \right]$$ (4.13)
Feynman kernel in curved space reads

\[
M_{0,1} \xrightarrow{z \to \infty} \frac{i\lambda V_{n-1} \Omega^2 n^{-2} m^{2n-4}}{32(2\pi)^{2n-2}} \left\{ J \left(\frac{n-3}{2} \right)^2 \frac{iZ^{n-3}}{n-3} + \left[-J \left(\frac{n-3}{2} \right)^2 \lambda \right] I_{01}(Z) \right\} lZ^{n-4}
\]

\[
M_{0,1} \xrightarrow{z \to 0} \frac{i\lambda V_{n-1} \Omega^2 n^{-2} m^{2n-4}}{32(2\pi)^{2n-2}} \left\{ -z_0^{n-4} J \left(\frac{n-3}{2}, 0 \right) Z + \frac{z^{n-5}}{2} \left[i\gamma_4 J \left(\frac{n-3}{2}, -1 \right) - (n-4)J \left(\frac{n-3}{2}, 0 \right) \right] Z^2 \right\}
\]

where:

\[
I_{01}(Z) = \int_1^\infty dx \int_1^\infty dy (x^2 - 1)^{n-3} (y^2 - 1)^{n-3} e^{-2i\lambda Z xy} x(2xy + \gamma_i(x+y))
\]

4.4 Vacuum Wavefunctionals

When using, as we do, the variables \(\phi_{\text{new}} \) the appropriate starting point for the vacuum wavefunctional is the Minkowski one,

\[
\Psi_0[\phi] \equiv e^{-i z \int_u x \phi_{uu} - \frac{1}{2} \int_{x,y} K_x \phi_x \phi_y}
\]

The functional Schrödinger’s equation, which stems from our main hypothesis on the Feynman kernel in curved space reads

\[
i \frac{\partial \Psi[\phi]}{\partial z} = \int_u \left(-\frac{1}{2} \delta^2 + \frac{m^2(z)}{2} \phi_u^2 + (\nabla \phi)^2 + \frac{\lambda(z)}{24} \phi_u^4 \right) \Psi[\phi]
\]

It is possible to solve it in a perturbative way in \(\lambda(z) \) and \(\Delta \equiv m^2(z) - m^2 \) by writing

\[
\Psi[\phi] = \Psi_0[\phi] + \Delta(z) \Psi_{10}[\phi] + \lambda(z) \Psi_{01}[\phi]
\]

In this way

\[
\psi_{10}[\phi] = z^2 e^{iz \int_u (K_{uu} \phi_u)^2 - K_{uu} \phi_u^2 - \frac{1}{2} \int_{x,y} K_{xy} \phi_x \phi_y}
\]

\[
\left(-i \int_u \frac{\delta_u^2}{2} \int_v (K_{uv} \phi_v)^2 \right) \Gamma \left(-1, iz \int_u (K_{uv} \phi_v)^2 \right)
\]

as well as

\[
\psi_{01}[\phi] = z^{-(n-4)} e^{iz \int_u (K_{uu} \phi_u)^2 - K_{uu} \phi_u^2 - \frac{1}{2} \int_{x,y} K_{xy} \phi_x \phi_y}
\]

\[
\left(-i \int_u \frac{\delta_u^2}{2} \int_v (K_{uv} \phi_v)^2 \right) (-1)^n \Gamma \left(5 - n, iz \int_u (K_{uv} \phi_v)^2 \right)
\]

It is remarkable that both terms are proportional to \(\Psi_0 \), so that the total vacuum wavefunctional can be written as

\[
\Psi[\phi] = \Psi_0 \left(1 + \Delta \Psi + \lambda \delta_2 \Psi \right)
\]

It is also possible to view the functional Schrödinger equation as an evolution equation, and assume that at a given conformal time \(z = z_0 \) the wavefunctional is \(\Psi_0[\phi] \), and then compute its future evolution in the conformal time. This is not what we have done here.
4.5 Survival amplitude

\[
\begin{align*}
\text{Order (0, 0)} & & \text{Order (1, 0)} \\
\lambda(z) & & \lambda(z) \\
\text{Order (0, 1)} & & \text{Order (1, 1)} \\
m(z)^2 & & m(z)^2
\end{align*}
\]

Figure 1: The first few diagrams that contribute to the vacuum energy.

The only step still left in order to compute the (vacuum) survival amplitude is the integration over the boundary values of the fields, weighed by the vacuum wavefunctions as well as the classical action. We know already from our previous computation (confer equation (3.32)) that this contribution is subdominant in the large \(Z\) limit, and besides it preserves the modulus of the (exponentiated) survival amplitude, so that it gives vanishing contribution to the width.

There are however calculable interaction dependent corrections to the vacuum wavefunction (as to any other wavefunction); they can be obtained through the functional Schrödinger’s equation to any given order in perturbation theory along the lines of the subsection 4.4. We have not attempted to compute the effect of those corrections on the width.

In conclusion, the value we get for the width of the vacuum state in the asymptotic regime \(Z \to \infty\) under the approximations of the present work is

\[
\Gamma(Z) \xrightarrow{Z \to \infty} \frac{\alpha V_{n-1} \Omega_{n-2} m^{n-3} \gamma_i}{2(2\pi)^{n-1} Z} \Re I_{00}(Z) + \frac{\lambda V_{n-1} \Omega_{n-2}^2 m^{2n-5} \gamma_i}{16(2\pi)^{2n-2} Z^{n-5} \Im I_{01}(Z)} (4.18)
\]

5. Conclusions

In this paper we have concentrated in computing overlaps between arbitrary states (in particular the vacuum) defined at two different times such that they span a finite time interval (were this interval infinite they would become \(S\)-matrix elements, in
case those happen to be well defined). This has been done because there is some initial doubt as to how to define the good observables (id est, the analogous to the decay rate, for example \[4\][2]) which would presumably involve some sort of square of the overlap matrix elements themselves.

The most important quantity we have analyzed is the survival rate, or self-overlap at finite (conformal) time span. This in turn determines a decay width in a straightforward way. It is found that there some effects already at tree level, which are presumably related to particle creation in the presence of an external non-static gravitational field, but we have not idetintified them unambiguously. Our computations are consistent with them being transients. They are however of potential physical relevance in the physics of the inflationary epoch.

At the next order in perturbation theory, there is a new contribution which determines the vacuum width in a precise way in the adequate spacetime dimension (namely, \(n = 5\) were the dependence of both \(I_{01}(Z)\) as well as \(I_{00}(Z)\) on their argument subdominant). Further diagrams should be studied before a definite conclusion can be drawn on the main issue.

This computation has been done for a particular wavefunction, which does receive corrections owing to the interaction. Other states can easily be studied within our framework. To the extent that flat space computations are a good guide, we do not expect those improvements to change the physical picture dramatically.

All the physical quantities studied in this paper turn out to be observer-dependent. It is not completely clear what could be the physical meaning of some phenomenon which is coordinate dependent (or what amounts to more or less the same thing, observer dependent). There are by now many examples of observer-dependent phenomena even in Minkowski spacetime (of which the Unruh radiation \([14]\) observed by an accelerated observer in the Minkowski vacuum is perhaps the best known); this does not necessarily mean that their physical meaning is fully understood.

On the other hand, it is well known that the usual semiclassical approximation to the full quantum theory of the gravitational field interacting with arbitrary matter, namely quantum field theory in a external gravitational field treated classically (upon which the latter identification is based) is only an approximation to the true equations of motion, to wit

\[
\langle \text{vac} | \frac{\delta S}{\delta g_{\mu\nu}} [g_{\mu\nu}, \psi_i] | \text{vac} \rangle = 0
\]

Where the total action is the sum of the Einstein-Hilbert part depending on the metric only, the matter part, which depend on the matter fields, denoted here collectively by \(\psi_i, i = 1 \ldots N\), and the necessary counterterms, which depend on the metric as well as on the matter fields. Including sources,

\[
S[J_{\mu\nu}, J_i] \equiv S_{EH}[g] + S_{\text{mat}}[g, \psi_i] + S_{\text{count}}[g, \psi_i] + i \int d^n x \sqrt{|g|} \left(J^{\mu\nu} g_{\mu\nu} + \sum_i J^i \psi_i \right)
\]
The equations of motion are always formally true because they can be written in terms of the full partition function

\[Z[J_{\mu\nu}, J_i] \equiv \int Dg_{\mu\nu} \prod_i D\psi_i \ e^{iS[J_{\mu\nu}, J_i]} \]

as

\[\frac{\delta S}{\delta g_{\mu\nu}} \left[\frac{1}{i} \frac{\delta}{\delta J_{\mu\nu}(x)} \right] \frac{\delta}{\delta J_i(x)} \left. Z[J_{\mu\nu}, J_i] \right|_{J=0} = 0 \]

It remains to give a working definition of the composite operator \(g_{\mu\nu} \), but at the perturbative level this can be done. The state \(|\text{vac}\rangle \) is the one obtained through the boundary conditions imposed on the path integral.

The semiclassical framework states that this vacuum can be approximated by the matter vacuum in a fixed gravitational background \(\bar{g}_{\mu\nu} \)

\[|\text{vac}\rangle \sim |0_{\text{matter}}\rangle_{\bar{g}} \]

This can be proven to be the dominant term the first term in a \(1/N \) expansion \([17]\) of a theory of gravity interacting with \(N \) identical matter species, but it is difficult to believe that this is the only instance in which this semiclassical approximation is physically reasonable. A general analysis of its validity would be welcome.

Observables in the full quantum gravity theory should presumably be gauge invariant, that is, diffeomorphism invariant, and thus independent on the observer. What seems to be needed here is a gauge invariant definition of vacuum decay.

More comprehensive computations are in progress taking into account the dynamics of the gravity sector.

Acknowledgments

This work has been partially supported by the European Commission (HPRN-CT-200-00148) as well as by FPA2009-09017 (DGI del MCyT, Spain) and S2009ESP-1473 (CA Madrid). R.V. is supported by a MEC grant, AP2006-01876.
A. Flat space vacuum stability

Let us first review the reason why those effects vanish in flat Minkowski space, deriving in this way a simple formula for it that subsequently could be applied to the spaces of our interest in different physical situations. To assert that the flat space vacuum state is stable is equivalent to assert that the free energy is formally real in Minkowski space, which through the optical theorem ensures the stability of flat space versus multiparticle decay. Using LSZ reduction, the S-matrix amplitude for vacuum decay to four identical particles with wave functions $u_{k_1} \ldots u_{k_4}$ reads

$$\langle k_1 k_2 k_3 k_4 | 0 \rangle = i \int \sqrt{|g(y_1)|} \sqrt{|g(y_2)|} \sqrt{|g(y_3)|} \sqrt{|g(y_4)|} \left(2y_1 + m^2\right) \left(2y_2 + m^2\right) \left(2y_3 + m^2\right) \left(2y_4 + m^2\right) \times$$

$$\langle 0 | T \phi(y_1) \phi(y_2) \phi(y_3) \phi(y_4) | 0 \rangle$$

At tree level

$$\langle 0 | T \phi(y_1) \phi(y_2) \phi(y_3) \phi(y_4) | 0 \rangle = \frac{\lambda}{24} \int d^n y \sqrt{|g(y)|} \Delta (y_1 - y) \Delta (y_2 - y) \Delta (y_3 - y) \Delta (y_4 - y)$$

where the Feynman propagator obeys

$$\left(\square + m^2\right) \Delta(x - y) = \frac{1}{\sqrt{|g(x)|}} \delta(x - y)$$

In flat space

$$u_k \equiv \frac{1}{\sqrt{2(2\pi)^{n-1} \omega_k}} e^{-ikx}$$

so that the net output at tree level is

$$\int d^n y \sqrt{\frac{1}{\omega_1 \omega_2 \omega_3 \omega_4}} e^{-i(k_1 + k_2 + k_3 + k_4) y} = (2\pi)^n \frac{1}{\sqrt{\omega_1 \omega_2 \omega_3 \omega_4}} \delta(k_1 + k_2 + k_3 + k_4)$$

This implies in particular a delta function on the sum of all energies,

$$\delta \left(\sum E_i\right)$$

which does not enjoy support on physical particles.

At the same time this gives a simple condition (assuming LSZ reduction is still valid) for this amplitude to be nonvanishing in an arbitrary spacetime, namely, the vacuum is unstable with respect to decay into four particles whenever the fourfold overlap, where

$$\mathcal{O}^{(n=4)}[\phi]$$

$$\mathcal{O}^{(n)}[\phi] \equiv \int d^n y \sqrt{|g(y)|} u_{k_1}(y) \ldots u_{k_n}(y)$$
has got nonvanishing support on physical states. It is plain that this depends on the
value of the determinant g (there is always a gauge in which $g = 1$) as well as on the
set of modes u_k. Another quantity of interest in connection to a single particle decay
into two or three identical particles is

$$O^{(n-1,1)}[\phi] \equiv \int d^n y \sqrt{|g(y)|} u_{k_1}^*(y) \cdots u_{k_n}(y)$$

B. A first (naïve) look at overlaps in de Sitter space.

Let us examine the overlap with several different particles (id est, different coordinate
systems) and in different spaces assuming LSZ reduction. The purpose of the present
paper was precisely to improve upon this analysis, which we want to briefly present
here.

To begin with, let us assert that there is no vacuum decay, nor single particle
decay into two or three identical particles in static coordinates (which exist for both
de Sitter and anti de Sitter). We call static coordinates ones adapted to the timelike
Killing, in such a way the timelike coordinate is ignorable. There may be many
different such systems for a given spacetime.

The reason is in them the exact modes have got a piece

$$u_k \sim e^{-i\omega t} f_k$$

where the functions f_k do not contain the variable time. This is enough to produce
a delta function

$$\delta(\sum \omega)$$

which do not have support on positive energy particles. Using the fact that

$$\omega^2 - m^2 \geq 0$$

it is also possible to show that there is no single particle decay in the static case.

To be specific, de Sitter in static coordinates reads

$$ds^2 = \left(1 - \frac{r^2}{l^2}\right) dt^2 - \frac{dr^2}{1 - \frac{r^2}{l^2}} - r^2 d\Omega_{n-2}^2$$

where the radius of the spacetime is related to Hubble’s constant by

$$l = \frac{1}{H}$$

and anti de Sitter space in the same coordinates,

$$ds^2 = \left(1 + \frac{r^2}{l^2}\right) dt^2 - \frac{dr^2}{1 + \frac{r^2}{l^2}} - r^2 d\Omega_{n-2}^2$$
In anti de Sitter space the horospherical coordinate is spacelike, and it will be denoted by \(x \), so that Poincaré coordinates admit a FRW-like form

\[
ds^2 = -dx^2 + e^{2x} \left(dt^2 - \sum dy_i^2 \right)
\]

which is manifestly static, so that there is no vacuum energy decay here.

De Sitter space in global coordinates (spherical spatial spacelike sections) reads

\[
ds^2 = d\tau^2 - \cosh^2 \tau d\Omega^2_{n-1}
\]

Again, in anti de Sitter in global coordinates, the metric reads

\[
ds^2 = \cosh^2 \tau d\theta^2 - d\tau^2 - \sinh^2 \tau d\Omega^2_{n-2}
\]

Finally, when hyperbolic spacelike sections are considered, de Sitter metric reads

\[
ds^2 = d\tau^2 - \sinh^2 \tau (d\psi^2 + \sinh^2 \psi d\Omega^2_{n-2})
\]

In contrast, anti de Sitter space in the same coordinates yields

\[
ds^2 = \sinh^2 \chi d\psi^2 - \cosh^2 \chi d\chi^2 - \cosh^2 \chi d\Omega^2_{n-3}
\]

which is again explicitly static.

Lest the reader has the impression that anti de Sitter looks atatic in all coordinates systems, let us mention stereographic coordinates, in which the metric reads

\[
ds^2 = \Omega^2 \eta_{\mu\nu} dx^\mu dx^\nu
\]

and for de Sitter space

\[
\Omega \equiv \frac{1}{1 - \frac{x^2}{4l^2}}
\]

with \(x^2 \equiv \eta_{\mu\nu} x^\mu x^\nu \equiv t^2 - r^2 \). For anti de Sitter space

\[
\Omega \equiv \frac{1}{1 + \frac{x^2}{4l^2}}
\]

In this coordinates, the global staticity of anti de Sitter space is not manifest.

First of all, a general observation \[15\][16]. The link between the field modes and the particle concept is through the WKB approximation. Indeen, the Klein-Gordon equation

\[
(g^{\alpha\beta} \nabla_\alpha \nabla_\beta + m^2) \phi = 0
\]

yields, for

\[
\phi = e^{\frac{2\phi}{r}} + ...
\]

the mass shell condition

\[
g^{\alpha\beta} \partial_\alpha S \partial_\beta S = m^2
\]
encoding the definition of positive and negative frequencies for the solutions at hand.

By covariantly deriving the expression above we get

\[\nabla_\mu \partial_\alpha S g^{\alpha \beta} \partial_\beta S = 0 \]

Now, for any scalar,

\[(\nabla_\alpha \nabla_\beta - \nabla_\beta \nabla_\alpha) S = 0 \]

it follows that

\[g^{\alpha \beta} \partial_\beta S \nabla_\alpha \nabla_\mu S = 0 \]

namely the geodesic equation. This means that the vector \(u^\alpha \equiv \frac{\partial_\alpha S}{m} \) is the tangent vector to a geodesic, which in turn implies that the hypersurfaces \(S = \text{constant} \) are geodesic orthogonal.

C. Finite time propagators

The general solution of the Klein Gordon equation

\[(\Box + m^2) \phi = J \]

can be written as

\[\phi(x) = \int \frac{d\vec{k}}{(2\pi)^{n-1}} e^{-i\vec{k}\cdot \vec{x}} \left(a_k \cos \omega_k t + b_k \sin \omega_k t \right) + \int d^n x' \frac{d^nk}{(2\pi)^n} e^{ik(x-x')} \frac{P}{-k_0^2 + \omega_k^2} J(x') \]

The contribution of the principal value is:

\[\int \frac{dk_0}{2\pi} e^{i\omega_0(t-t')} \frac{P}{-k_0^2 + \omega_0^2} = \int \frac{dk_0}{2\pi} e^{i\omega_0(t-t')} \frac{1}{2\omega_k} \left(\frac{P}{k_0 + \omega_k} - \frac{P}{k_0 - \omega_k} \right) = \]

\[= \frac{1}{2\omega_k} S(t-t') \sin \omega_k(t-t') \quad \text{(C.1)} \]

where we have used

\[\int \frac{dk}{k-a} e^{ikx} = \int \frac{dk}{k-a} \left(e^{i\omega_0(t-t')} \frac{P}{-k_0^2 + \omega_0^2} \right) =
\int \frac{dk}{k-a} e^{i\omega_0(t-t')} \frac{P}{-k_0^2 + \omega_0^2} \]

and \(S(x) \equiv \theta(x) - \theta(-x) \) is the sign function. All this leads to

\[\phi(x) = \int \frac{d\vec{k}}{(2\pi)^{n-1}} e^{-i\vec{k}\cdot \vec{x}} \left(a_k \cos \omega_k t + b_k \sin \omega_k t \right) + \int d^n x' \int \frac{dk}{(2\pi)^{n-1}} \frac{e^{-i\vec{k} \cdot (x-x')}}{2\omega_k} S(t-t') \sin \omega_k(t-t') J(x') \quad \text{(C.2)} \]

In momentum space,

\[\phi_{-k}(t) = a_k \cos \omega_k t + b_k \sin \omega_k t + \frac{1}{2\omega_k} \int d^n x' e^{i\vec{k}\cdot \vec{x}'} S(t-t') \sin \omega_k(t-t') J(x') \]
C.1 Dirichlet boundary conditions

The solution that vanishes at \(t = t_i \) as well as at \(t = t_f \) then reads

\[
\phi(x) = \frac{d k}{(2\pi)^{n-1} 2 \omega_k \sin \omega_k (t_f - t_i)} \int dt' J(t', x') \left[\sin \omega_k (t_i - t') S(t' - t_i) \sin \omega_k (t_f - t) + \right. \\
+ \sin \omega_k (t_f - t') S(t' - t_f) \sin \omega_k (t - t_i) + \sin \omega_k (t_f - t_i) \sin \omega_k (t - t') S(t - t') \right] \tag{C.3}
\]

It vanishes for \(J = 0 \), in agreement with previous results.

This means that the correct propagator to be used in the integral over \(D\xi \) is given by

\[
D(x, x') = \int \frac{dk}{2(2\pi)^{n-1} \omega_k} \left[\sin \omega_k (t_i - t') S(t' - t_i) \sin \omega_k (t_f - t) + \right. \\
+ \sin \omega_k (t_f - t') S(t' - t_f) \sin \omega_k (t - t_i) + \sin \omega_k T \sin \omega_k (t - t') S(t - t') \right] \tag{C.4}
\]

That is, this is the only solution to the equation

\[
(\Box + m^2) D(x, x') = \delta(x - x')
\]

such that

\[
D(x, x')|_{t=t_i} = D(x, x')|_{t'=t_f} = 0
\]

C.2 Feynman boundary conditions

The boundary conditions for the Feynman propagator are defined by

\[
i \dot{\phi}_k(t_f) = \omega_k \phi_k(t_f) \\
i \dot{\phi}_k(t_i) = -\omega_k \phi_k(t_i) \tag{C.5}
\]

In momentum space

\[
\dot{a}_k(t) = -\omega_k a_k \sin \omega_k t + b_k \omega_k \cos \omega_k t + \int_{\mathbb{R}^n} d^nx' \frac{e^{i k \cdot x'}}{2 \omega_k} S(t - t') \omega_k \cos \omega_k (t - t') J(x')
\]

(the delta function does not contribute).

The boundary conditions are then

\[
-\omega_k a_k \sin \omega_k t_f + i b_k \omega_k \cos \omega_k t_f + i \int_{\mathbb{R}^n} d^nx' \frac{e^{i k \cdot x'}}{2 \omega_k} S(t_f - t') \omega_k \cos \omega_k (t_f - t') J(x') = \\
\omega_k \left(a_k \cos \omega_k t_f + b_k \sin \omega_k t_f + \frac{1}{2 \omega_k} \int_{\mathbb{R}^n} d^nx' e^{i k \cdot x'} S(t_f - t') \sin \omega_k (t_f - t') J(x') \right)
\]
\[-i\omega_k a_k \sin \omega_k t_i + ib_k \omega_k \cos \omega_k t_i + i \int_{\mathbb{R}^n} d^n x' \frac{e^{i k' x'}}{2 \omega_k} S(t_i - t') \omega_k \cos \omega_k (t_i - t') J(x') = \\
-\omega_k \left(a_k \cos \omega_k t_i + b_k \sin \omega_k t_i + \frac{1}{2 \omega_k} \int_{\mathbb{R}^n} d^n x' e^{i k x'} S(t_i - t') \sin \omega_k (t_i - t') J(x') \right) \]

This can be written as

\[
\begin{pmatrix}
-e^{i \omega_k t_f} & i e^{i \omega_k t_f} \\
-e^{-i \omega_k t_i} & i e^{-i \omega_k t_i}
\end{pmatrix}
\begin{pmatrix}
a_k \\
b_k
\end{pmatrix} = -\frac{1}{2 \omega_k} \int_{\mathbb{R}^n} d^n x' e^{i k x'} \left(S(t_f - t') e^{-i \omega_k (t' - T)} - S(t_i - t') e^{i \omega_k (T + t')} \right) J(x')
\]

and this yields

\[
a_k = \frac{i}{4 \omega_k} e^{-i \omega_k T} \int_{\mathbb{R}^n} d^n x' e^{i k x'} J(x') \left(S(t_f - t') e^{-i \omega_k (t' - T)} - S(t_i - t') e^{i \omega_k (T + t')} \right) = \\
\frac{i}{4 \omega_k} \int_{\mathbb{R}^n} d^n x' e^{i k x'} J(x') \left(S(t_f - t') e^{-i \omega_k (t' - T)} - S(t_i - t') e^{i \omega_k (T + t')} \right)
\]

\[
b_k = -\frac{1}{4 \omega_k} \int_{\mathbb{R}^n} d^n x' e^{i k x'} J(x') e^{-i \omega_k T} \left(S(t_f - t') e^{i \omega_k (T - t')} + S(t_i - t') e^{i \omega_k (T + t')} \right) = \\
-\frac{1}{4 \omega_k} \int_{\mathbb{R}^n} d^n x' e^{i k x'} J(x') \left(S(t_f - t') e^{-i \omega_k (t' - T)} + S(t_i - t') e^{i \omega_k (T + t')} \right)
\]

This means that the corresponding classical solution reads

\[
\phi(x) \equiv \int_{\mathbb{R}^n} d^n x' \Delta_T(x, x') J(x')
\]

with \(\Delta_T \) the finite time Feynman propagator:

\[
\Delta_T(x, x') \equiv \int \frac{dk}{(2\pi)^{n-1}} e^{-ik(x-x')} \Delta_T(k)
\]

\[
\Delta_T(k) = \frac{i}{4\omega_k} \left[\left(S(t_f - t') e^{-i \omega_k t'} - S(t_i - t') e^{i \omega_k t'} \right) \cos \omega_k t + \\
+i \left(S(t_f - t') e^{-i \omega_k t'} + S(t_i - t') e^{i \omega_k t'} \right) \sin \omega_k t \right] + \\
+\frac{1}{2\omega_k} S(t - t') \sin \omega_k (t - t')
\]

It is then plain that in the limit \(t_f = -t_i = \frac{T}{2} \) and \(T \to \infty \), Feynman’s continuum result is recovered.

\[
\lim_{T \to \infty} \Delta_T(k) = \Delta_F(k) \equiv \frac{i}{2\omega_k} \left[\cos \omega_k (t - t') - i S(t - t') \sin \omega_k (t - t') \right]
\]

- 35 -
In general it yields
\[
\Delta_T(k) = \frac{i}{4\omega_k} \left[S(t_f - t') - S(t_i - t') - 2 \right] \cos \omega_k(t - t') + \\
+ i \left[S(t_f - t') + S(t_i - t') \right] \sin \omega_k(t - t') \right] + \Delta_F(k) \quad (C.9)
\]

The above results are valid for general sources with arbitrary support. When (as in our case) the support is restricted to the interval \(t_i \leq t' \leq t_f \), it is quite easy to check that the finite time propagator with Feynman’s boundary conditions coincides exactly with the usual Feynman’s propagator.

\[
\Delta_T(k) \big|_{[t_i,t_f]} = \Delta_F(k) \big|_{[t_i,t_f]}
\]

C.3 Feynman’s propagator including de Sitter boundary terms

The boundary terms that appear when redefining the field in de Sitter space imply (after the splitting \(\phi = \phi_c + \chi \)) an addition of

\[
i \frac{n - 2}{2z_f l} \phi_c(z_f) \chi(z_f) - i \frac{n - 2}{2z_i l} \phi_c(z_i) \chi(z_i) \equiv i \gamma_f m \phi_c(z_f) \chi(z_f) - i \gamma_i m \phi_c(z_i) \chi(z_i)
\]

to the boundary. In order to eliminate those cross-terms the boundary conditions to be imposed are

\[
i \dot{\phi}_c^e(z_f) - \omega_k l \phi_c^e(z_f) + i \gamma_f m \dot{\phi}_c^e(z_f) = 0
\]
\[
i \dot{\phi}_c^e(z_i) + \omega_k l \phi_c^e(z_i) + i \gamma_i m \dot{\phi}_c^e(z_i) = 0 \quad (C.10)
\]

Let us now can make an slightly different ansatz for the form of the propagator, namely

\[
\Delta_T(k) = \frac{1}{2\omega_k} S(z - z') \sin \omega_k l(z - z') + \\
+ a_k \cos \omega_k l(z - z') + b_k \sin \omega_k l(z - z') \quad (C.11)
\]

The previous equations for the boundary values give rise to the following coefficients:

\[
D_k = e^{-i\omega_k z} \\
a_k = \frac{D_k}{4} \left((2\omega_k - i\gamma_f m)e^{2i\omega_k(z_f - z')} + i\gamma_f m \right) \left(\gamma_i m \left(-1 + e^{2i\omega_k(z_i - z')} \right) + 2i\omega_k \right). \\
b_k = \frac{D_k}{4} e^{-i\omega_k(2z' + z_f + z_i)} \left[S(z_f - z') \left(\gamma_f m e^{2iz'\omega_k} + e^{2i\omega_k z_f} (\gamma_f (-m) - 2i\omega_k) \right) \left(e^{2iz'\omega_k} (\gamma_i m - 2i\omega_k) + \\
+ \gamma_i m e^{2i\omega_k z_i}) + S(z' - z_i) \left(\gamma_f m e^{2iz'\omega_k} + e^{2i\omega_k z_f} (\gamma_f m + 2i\omega_k) \right) \right) \\
. \left(e^{2iz'\omega_k} (\gamma_i m - 2i\omega_k) - \gamma_i m e^{2i\omega_k z_i} \right) \right] \quad (C.12)
\]
where $Z = z_f - z_i$.

However, the interaction takes place only in the interval $[z_i, z_f]$, so we should restrict the variables z and z' to be into this interval, so:

$$a_k = \frac{D_k}{2} e^{i\omega_k (2z' - z_f - z_i)} \left((2\omega_k - i\gamma_J m)e^{2i\omega_k (z_f - z')} + i\gamma_J m \right) \left(\gamma_i m \left(-1 + e^{2i\omega_k (z_i - z')} \right) + 2i\omega_k \right)$$

$$b_k = \frac{D_k}{2} m e^{-i\omega_k (2z' + z_f + z_i)} \left(\gamma_f e^{4i\omega_k (\gamma_i m - 2i\omega_k)} - \gamma_i (\gamma_f m + 2i\omega_k) e^{2i\omega_k (z_f + z_i)} \right)$$

(C.13)

Also, since the exponent of the Feynman Kernel is symmetric in the source J, we must symmetrise the propagator.
References

[1] A. M. Polyakov, “De Sitter Space and Eternity”, Nucl. Phys. B 797 (2008) 199 [arXiv:0709.2899 [hep-th]].
 A. M. Polyakov, “Decay of Vacuum Energy,” arXiv:0912.5503 [hep-th].

[2] E. Alvarez and R. Vidal, “Eternity and the cosmological constant,” JHEP 0910 (2009) 045 [arXiv:0907.2375 [hep-th]].
 “Comments on the vacuum energy decay,” JCAP 1011 (2010) 043, [arXiv:1004.4867 [hep-th]].

[3] A. Higuchi, “Decay of the free-theory vacuum of scalar field theory in de Sitter spacetime in the interaction picture,” Class. Quant. Grav. 26 (2009) 072001.

[4] J. Bros, H. Epstein and U. Moschella, “Particle decays and stability on the de Sitter universe,” arXiv:0812.3513 [hep-th].
 J. Bros, H. Epstein and U. Moschella, “Lifetime of a massive particle in a de Sitter universe,” JCAP 0802 (2008) 003 [arXiv:hep-th/0612184].

[5] S. Weinberg, "The quantum theory of fields" (Cambridge, 1995)

[6] J.J. Sakurai, "Advanced quantum mechanics" (Addison Wesley, Reading, MA, 1967)
 "Modern Quantum Mechanics" (Addison Wesley, 1994)

[7] L. Maiani, M. Testa, “Unstable systems in relativistic quantum field theory,” Annals Phys. 263 (1998) 353-367. [hep-th/9709110].

[8] R. Jackiw, “Analysis On Infinite Dimensional Manifolds: Schrodinger Representation For Quantized Fields,” In *Jackiw, R.: Diverse topics in theoretical and mathematical physics* 383-445..

[9] D. V. Long, G. M. Shore, “The Schrodinger wave functional and vacuum states in curved space-time,” Nucl. Phys. B530, 247-278 (1998). [hep-th/9605004].
 “The Schrodinger wave functional and vacuum states in curved space-time. 2. Boundaries and foliations,” Nucl. Phys. B530 (1998) 279-303. [gr-qc/9607032].

[10] B. Sakita, "Quantum theory of many-variable systems and fields”, (World Scientific, 1985)

[11] E. Alvarez, A. F. Faedo, “Renormalized Kaluza-Klein theories,” JHEP 0605, 046 (2006). [hep-th/0602150].

[12] R.P Feynman, ”Quantum mechanics and path integrals”, McGraw-Hill Companies; First Edition edition (June 1, 1965)

[13] G. W. Gibbons, S. W. Hawking, “Cosmological Event Horizons, Thermodynamics, and Particle Creation,” Phys. Rev. D15 (1977) 2738-2751.

[14] W. G. Unruh, “Notes on black hole evaporation,” Phys. Rev. D14, 870 (1976).
[15] E. Scrödinger, ”Expanding Universes” (Cambridge University Press, 1956)

[16] E. Alvarez, J. Conde, “Are the string and Einstein frames equivalent,” Mod. Phys. Lett. A17, 413-420 (2002). [gr-qc/0111031].

[17] J. B. Hartle, G. T. Horowitz, “Ground State Expectation Value Of The Metric In The 1/n Or Semiclassical Approximation To Quantum Gravity,” Phys. Rev. D24, 257-274 (1981).