WordCloud: a Cytoscape plugin to create a visual semantic summary of networks

Layla Oesper1*, Daniele Merico2,3, Ruth Isserlin2,3 and Gary D Bader2,3

Abstract

Background: When biological networks are studied, it is common to look for clusters, i.e. sets of nodes that are highly inter-connected. To understand the biological meaning of a cluster, the user usually has to sift through many textual annotations that are associated with biological entities.

Findings: The WordCloud Cytoscape plugin generates a visual summary of these annotations by displaying them as a tag cloud, where more frequent words are displayed using a larger font size. Word co-occurrence in a phrase can be visualized by arranging words in clusters or as a network.

Conclusions: WordCloud provides a concise visual summary of annotations which is helpful for network analysis and interpretation. WordCloud is freely available at http://baderlab.org/Software/WordCloudPlugin

In previous work, we manually created ‘word clouds’ to help us with this task [5]. The purpose of the WordCloud plugin is to automatically generate concise visual summaries of such textual attributes for fast access during network exploration (Figure 1).

The WordCloud plugin implements a visual information retrieval system known as a tag cloud. Tag cloud systems are used in a variety of domains from social bookmarking services [6] to summarization of PubMed database searches [7]. The WordCloud implementation extends the basic tag cloud concept of a simple collection of words by also displaying information about word co-occurrence [8,9].

WordCloud can also be used in combination with enrichment analysis to summarize any type of gene list. Gene-set enrichment analysis is a popular approach to functionally characterize gene lists [10], including gene clusters from protein networks. Known gene-sets, typically derived from standardized annotation systems such as the Gene Ontology, are statistically tested for overrepresentation in the query gene list. However, enrichment analysis can often produce long lists of enriched gene-sets, which are often redundant or interrelated, thus hindering the interpretation of the results. To overcome this problem, several visualization methods have been developed to arrange gene-sets as similarity networks, where clusters correspond to functionally related gene-sets...
WordCloud can be effectively used to summarize these gene-set clusters (Figure 2).

Methods and Implementation

WordCloud is a freely available, open source Cytoscape plugin written in Java and compatible with Cytoscape versions 2.6, 2.7 and 2.8. Given a user-defined node selection (i.e. a sub-network), a word cloud can be generated using one or more user-selected node attributes that are of type string or list of string. Input text from all selected attributes is collected and broken down into words using separation characters, such as punctuation and space delimiters. Flagged words, such as commonly occurring English words and numbers, can be removed. In addition, words that share the same stem (e.g. cell and cells) can be mapped to that stem using the Porter Stemming Algorithm [14]. Font size for all words is then calculated proportionally to word frequency in the input text. The user can optionally scale font size using ‘network-weighting’ which considers word frequencies of all text in the entire network, rather than just the node selection, to penalize words that appear frequently outside the node selection. In this case, the font size of any word w in a tag cloud is directly proportional to:

$$\frac{\text{sel}_w}{\text{sel}_{\text{tot}}} \left(\frac{\text{net}_w}{\text{net}_{\text{tot}}} \right)^k$$

where sel_w is the number of selected nodes that contain the word w, sel_{tot} is the total number of selected nodes, net_w is the number of nodes in the entire network that contain the word w, net_{tot} is the total number of nodes in the network, and k is the network normalization coefficient, which can be tuned by the user through an interactive slider bar.

The WordCloud plugin supports several layout options for the tag cloud. The most basic layout consists of the sequence of words arranged in order of descending frequency. The clustered and network layouts offer semantically richer summaries by considering co-occurrence patterns between words. Clusters are built by step-wise aggregation of frequently co-occurring word pairs. Specifically, the WordCloud plugin uses a greedy clustering algorithm similar to hierarchical clustering. Every ordered pair of words (w_i, w_j) that appear next to each other in at least one of the selected nodes is assigned a similarity score, defined by the ratio of the observed joint probability of these words appearing next
to each other in the specified order, to the expected independent probability of these words appearing next to each other:

$$P(w_1) \cdot P(w_2|w_1)$$

$$\frac{P(w_1) \cdot P(w_2)}{P(w_1) \cdot P(w_2)}$$

Each word starts in its own cluster. Next, the most similar word pair is merged to form a larger cluster, maintaining word order, and the process is repeated. Similarity between multi-word clusters is defined as the similarity of the last word appearing in the first cluster and the first word appearing in the second cluster. This helps maintain the order of words in the cluster in the standard left to right English text direction. The cluster merging process is bounded by a user-defined threshold on the word pair similarity score.

Cluster order is determined by the number of words in a cluster and word frequency information. For any word w appearing in a tag cloud, $s(w)$ is the font size assigned to word w. A clustered tag cloud consists of a set of clusters $C = \{C_1, ..., C_m\}$ where each C_i contains some set of words $\{w'_1, ..., w'_n\}$. The clusters are laid out in decreasing order according to the following value:

$$S^i = ((s(w'_1))^2 + (s(w'_2))^2 + ... + (s(w'_n))^2)^{1/2}$$

This is the L2 norm (i.e. Euclidean length) of the cluster’s word size vector.

The greedy clustering algorithm described above does not consider the co-occurrence of all word pairs in the input text. Thus, as an alternative to the clustered layout, words can be visualized as a similarity network. Each word is represented as a node, with node and label size proportional to word frequency as previously described. Words are connected by edges whose width is proportional to their similarity score, as defined above. The resulting network can be laid out, analyzed and clustered using Cytoscape functionalities. The network layout is particularly useful when words tend to have multiple co-occurrence partners, rather than a single one.

Conclusions

WordCloud is a configurable tool for creating quick visual summaries of sub-networks within Cytoscape and is a useful tool to aid interactive network exploration. The configuration options provide a high degree of control over tag cloud visualization resulting in a publication.
quality summary of a sub-network. WordCloud also includes clustered tag cloud and word similarity network visualization options that retain the meaning of phrases by maintaining word order, rather than just displaying individual words.

Availability and Requirements

Project name: WordCloud

Project home page: http://baderlab.org/Software/WordCloudPlugin

Operating system: Platform independent

Programming language: Java

Other requirements: Cytoscape version 2.6 or newer, Java SE 5

License: GNU LGPL

Any restrictions to use by non-academics: None

Acknowledgements

We thank Maital Ashkenazi and Hannah Tipney for their useful comments. We thank the developers of Cytoscape for enabling development of this plugin. WordCloud development was supported by the Google Summer of Code program (to LO) and by a grant from the US NIH via National Human Genome Research Institute (NHGRI) grant P41 P41HG04118 (to GDB).

Author details

1Department of Computer Science, Brown University, Providence, RI, USA. 2The Donnelly Centre, University of Toronto, Toronto, ON, Canada. 3Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada.

Authors’ contributions

LO designed and developed the software and drafted the manuscript. DM and GDB conceived the project, contributed to the design of the software and aided in the drafting of the manuscript. All authors have read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 23 February 2011 Accepted: 7 April 2011

Published: 7 April 2011

References

1. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13:2498-2504.

2. Merico D, Gfeller D, Bader GD: Gene Ontology: tool for the unification of annotation networks. Nat Biotechnol 2005, 23:771-774.

3. Huynen MA, Bork P: Clustering proteins to functional groups. Nat Genet 2000, 24:202-204.

4. Schmidt EE, Dwight SS, Harris MA, Ralston JP, Weng S, Fang HW, Wodak SJ, Wolf Y, Gnad F, Schwikowski B, et al.: ClusterProteome: a web-based tool for the analysis of protein interaction maps. Source Code for Biology and Medicine 2008, 3:25.

5. Clu十九stih2007. 27:921-924.

6. Hammond T, Hanyay T, Lund B, Scott J: Social bookmarking tools (I): A general review. D-Lib Magazine 2005, 11(4).

7. Kuo BYL, Henrichs T, Good BM, Wilkinson MD: Tag clouds for summarizing web search results. Proceedings of the 16th International Conference on World Wide Web Banff, Alberta, Canada; 2007.

8. Begelman G, Keller P, Smadja F: Automated Tag Clustering: Improving search and exploration in the tag space. Proceedings of the 15th International Conference on World Wide Web Edinburgh, UK, 2006.

9. Hasan-Montero Y, Herrerera-Solana V: Improving tag-clouds as visual information retrieval interfaces. International Conference on Multidisciplinary Information Sciences and Technologies Merida, Spain; 2006.

10. Nam D, Kim SY: Gene-set approach for expression pattern analysis. Briefings in Bioinformatics 2008, 9:189-197.

11. Merico D, Isserlin R, Stueker O, Emili A, Bader GD: Enrichment Map A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation. PLoS ONE 2010, 5(11).

12. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Wodak SJ, et al.: Global proteome survey reveals pronounced peroxisomal protein complementation in human liver. Nat Biotechnol 2006, 24:767-776.

13. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski Z, Galon J: ClueGo: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 25:1091-1093.

14. Porter MF: An algorithm for suffix stripping. Program: electronic library and information systems 2006, 40:211-218.

Cite this article as: Oesper et al.: WordCloud: a Cytoscape plugin to create a visual semantic summary of networks, Source Code for Biology and Medicine 2011 6:7.