Extensive studies on viral-mediated oncogenic transformation by human adenoviruses have revealed much of our current understanding on the molecular mechanisms that are involved in the process. To date, these studies have shown that cell transformation is a multistep process regulated by the cooperation of several adenoviral gene products encoded in the early regions 1 (E1) and 4 (E4). Early region 1A immortalizes primary rodent cells, whereas co-expression of early region protein 1B induces full manifestation of the transformed phenotype. Beside E1 proteins, also some E4 proteins have partial transforming activities through regulating many cellular pathways. Here, we summarize recent data of how adenoviral oncoproteins may contribute to viral transformation and discuss the challenge of pinpointing the underlying mechanisms.

Keywords: CBP; E1A; E1B-55K; E4; human adenovirus; oncogene; p300; p53; pRb; transformation

It is estimated that ~12% of human cancers worldwide have a viral etiology. Tumorigenesis induced by a viral infection has been shown to be slow and inefficient, usually with tumors developing in only a minority of infected individuals years or decades after primary infection. Therefore, most viruses do not cause cancer in their native host, but many can cause cancer in hosts where they persist or are replication-defective. Hence, after the first report from Trentin and coworkers showing that human adenovirus type 12 (HAdV-A12) can induce malignant tumors following inoculation into newborn hamsters, adenoviruses have not been shown to induce cancer in its natural host [1]. Nevertheless, it became apparent that adenoviruses provide an excellent experimental model to investigate molecular events involved in cell transformation. Transformation by viral proteins results from altering normal cell growth and differentiation pathways. Much of our current knowledge about the molecular mechanisms of viral-mediated oncogenic transformation derives from the study of the adenoviral gene products of the E1 and 4 (E4). In this review, we present the current state of knowledge of the adenoviral oncogenicity and the molecular mechanisms of the adenoviral gene products involved in the initiation and maintenance of morphologically transformed cells.

Transformation in cell culture

Despite HAdVs differ in their oncogenic activity, all types of the subgroups tested so far stably transform a broad range of rodent cells (e.g., from rat, mouse, or...
hamster) with comparable efficiencies [1–6], which could be extended to lagomorph cells, a closely related monophyletic group, such as primary rabbit lens epithelial cells [5]. However, HAdVs do not transform human cells. HAdV-A12 or HAdV-C5 DNA fragments have been shown to induce transformation of only a few types of cultured human primary cells, including human embryo kidney cells [6], human embryonic lung cells [7], human embryo retinoblasts [8–11], and amniocytes [12]. Additionally, Speiseder et al. [13] could only recently successfully transform multipotent human mesenchymal stem cells as efficiently as primary baby rat kidney (BRK) cells.

Adenoviral oncogenes

The E1 has been found to be integrated in the host-cell chromosomes, and expression of viral genes was found in most adenovirus-induced tumors, and tumor-derived and tumor-transformed cell lines [2]. Therefore, the classical concept of viral oncogenesis, in which viral genes persist within transformed cells, is given. Since only the E1 region is consistently found in virus-transformed cells and transfection of cultured cells with plasmids encoding E1 genes induces oncogenic transformation, it was believed that E1 genes are the only adenoviral oncogenes involved in cell transformation. Later on, reports on the frequent head-to-tail integration of the E1 and E4 region, which are encoded in the left and the right end of the viral DNA, respectively, suggested a possible contribution of the E4 region to transformation [14]. In line with this, the presence of E4-specific transcripts results in proteins with a molecular weight of 25 kDa, 24 kDa, and 20 kDa in adenovirus-transformed cells [15–18] and antibodies directed against E4 products were detected in tumor serum from hamsters [19–21].

Further evidence for the E4 region being involved in transformation has been deduced from a study of the subgroup D HAdV-D9, which has shown that the primary oncogenic determinant is encoded in the E4 [22]. Moreover, investigations revealed that the E4 region supports transformation of BRK cells in cooperation with E1A, and early region 1A (E1A) plus early region protein 1B (E1B) [23,24]. Recent publications have reported that the oncogenic properties of E1B and E4 open reading frame 3 (E4orf3) proteins could be related to nuclear tumor-suppressive promyelocytic leukemia nuclear bodies (PML-NB) [25–28]. Formation of PML-NBs is regulated by stress and leads to enhanced sequestration of target proteins allowing their regulation and/or posttranslational modification (PTM) by small ubiquitin modifier (SUMO) [24,27]. PML-NBs regulate many pathways associated with senescence, inflammatory responses, DNA damage, apoptosis, antiviral defense, and elevated ROS levels [29,30]. These regulations are dependent on intact PML-NBs and are a prerequisite for the tumor-suppressive role of PML [31]. The role of each viral oncogene on PML-NB is described in more detail in the next sections.

Early region 1

The E1 region consisting of the transcriptional units E1A and E1B is required for complete morphological transformation of infected cells. Expression of the E1A gene alone immortalizes primary cells by altering the cell growth cycle [32]. Transformation of BRK cells is only successful if E1A is expressed at least together with E1B-55K [33] and becomes effective if the E1A, E1B-55K, and E1B-19K proteins are co-expressed. Intriguingly, in vivo latency experiments with promoter-driven lung-specific expression of HAdV-C5 E1A and E1B have shown that E1A alone is not sufficient to induce lung carcinomas and confirmed the results obtained in BRK cells. However, co-expression of E1A and E1B caused lung carcinogenesis and impaired p53 response [34]. The role of adenovirus E1 oncogenes in malignant transformation has been summarized in many excellent reviews, which supplement this one [30,35–40].

The early region 1A proteins in cell transformation

Early region 1A is an extensively studied protein since it mediates one of the first steps of the transformation process, which is important for transformation and/or tumorigenicity by inducing unscheduled DNA synthesis and cell proliferation, which lead primary rodent cells to become immortalized [41]. To this end, E1A interacts with several growth-regulatory proteins participating in transcription control, cell-cycle progression, and apoptosis [42,43] (Table 1). The E1A gene produces an RNA precursor, the alternative splicing of which gives rise to two major mRNAs (13S and 12S, according to their sedimentation coefficients). The 13S mRNA encodes a polypeptide of 289 amino acids (aa) in the case of Ad2/5, while the 12S mRNA encodes a polypeptide of 243 aa [38]. Comparison of E1A sequences from different adenovirus serotypes revealed four highly conserved regions (CR1–CR4) [44,45]. The first 40 residues of HAdV-5 E1A harbor the nonconserved N-terminal region (NTR) of E1A [46–48] followed by the CR1 (aa: 41–80), which interacts with at least 15 different cellular targets that directly regulate...
gene expression [49]. Among them are specific transcriptional regulators such as AP-2 [50], myogenin [51], and thyroid hormone receptor (TR) [52,53] and general transcriptional coactivators, such as p300/CREB-binding protein (CBP) [54,55], p400 [56], TRRAP [57,58], p300/CBP-associated factor (pCAF) [59], and TBP [60,61]. The ability of E1A to bind a broad range of cellular regulatory proteins is mediated by its integrated short linear amino acid motifs, called molecular recognition features [62]. Moreover, the NTR together with the CR1 and CR2 domains drive cell-cycle progression from the quiescent phase (G1 phase) to the synthesis phase (S phase). Therefore, at least two independent but possibly synergistic pathways controlled by retinoblastoma protein (pRb) and p300 [63,64] are activated.

First, E1A-mediated induction of cell-cycle progression is regulated by the release of E2F transcription factors (E2Fs) that are associated with the cellular transcriptional repressor pRb and the related members p107 and p130. This association inhibits the expression of cellular cell-cycle progression genes [65,66]. Depending on the isoform, E2Fs activate (E2F-1, E2F-2, and E2F-3) or repress (E2F-4, E2F-5, and E2F-6) gene expression. E1A counteracts the tight control of E2F by pRb through binding to the pocket domains of pRb via its LXCXE motif located in CR2. Thus, E1A interaction with pRb family members dissociates it from E2F [65,67,68], which in turn activates viral and cellular gene expression resulting in the S-phase promotion of the cell cycle [69,70].

Second, E1A binding to the histone-directed acetyltransferases p300/CBP controls DNA synthesis and S-phase progression to immortalize cells [55,71]. This interaction is important as p300/CBP has versatile roles in gene regulation. On the one hand, at least 411 proteins are implicated in binding p300/CBP through their various protein interaction domains [72]. On the other hand, p300/CBP regulates transcription by inducing acetylation of proteins, thereby altering protein–protein interactions of transcription complexes. To date, about 100 proteins are supposed to be acetylated by p300/CBP [72]. The p300/CBP E1A interaction illustrates how E1A embeds itself deeply within the cellular protein interaction network. Moreover, E1A binds to 32 primary cellular hub proteins leading to secondary interactions with over 2000 other cellular targets [73]. As a consequence, E1A-mediated retargeting of many different transcription factors to specific loci of host gene promoters results in regulated widespread changes in H3K18 acetylation [67,74]. Thus, many cellular genes involved in differentiation are transcriptionally inactivated, while those regulating cell cycle are upregulated inducing immortalization of primary cells.

Besides direct interactions, E1A is also associated indirectly with histone acetyltransferases (HATs) by binding to TRRAP and p400 that are scaffolding proteins important for bridging interactions of HATs with transcriptional regulators [58]. The interaction of E1A with these proteins is important to transcriptionally activate cellular genes involved in cell proliferation in order to activate DNA synthesis and in stimulating cellular growth [75,76]. Therefore, CR1 and CR2 of E1A are involved in suppression of differentiation, induction of DNA synthesis and cell-cycle progression, and modulation of gene expression functions upon transformation [40,67,68,77,78].

The CR3 is crucial for transactivation of adenovirus early genes upon infection but is dispensable for immortalization and complete transformation by E1A in cooperation with E1B [79,80]. Furthermore, the CR3 is the most conserved domain among different adenovirus E1A proteins and is unique to 289R E1A [81], while the 243R E1A and 289R E1A proteins have in common the CRs 1 and 2 at their N terminus and the CR4 at their C terminus [82].

The CR4 is assumed to modulate the transforming activity of E1A and is required to maintain the cells in a proliferative state [48]. The mechanism behind this modulation is not completely solved as CR4 suppresses transformation by E1A in cooperation with ras by its binding to the C-terminal-binding protein [83,84]. Deletions of CR4 cause a ‘hyper-transformed’ phenotype [85]. In summary, E1A proteins are essential to mediate the most critical step in oncogenic transformation by invading and modifying protein interaction networks with far-reaching consequences.

The early region protein 1B in cell transformation

The E1B gene is located adjacent to E1A and produces two major mRNA species, 22S and 13S, with identical 5’ and 3’ termini derived from alternative splicing of a common mRNA precursor. The 22S mRNA encodes two major E1B proteins with overlapping reading frames. The first initiation site produces a 19K polypeptide of 176 residues (176R), whereas an internal initiation site with an alternative reading frame produces a 55K (495R) product. The second major E1B 13S mRNA encodes both 176R protein and an 84R protein, the N terminus of which is identical to that of 495R. Further minor mRNAs derived from the 22S precursor through alternative splicing are 14S and 14S [86]. 14S and 14S encode 55 kDa-related proteins namely 156R, 93R, and 84R [87] that have
the N-terminal 79 residues of E1B-55K in common, but differ at their C terminus. E1B-156R shares the 77 C-terminal residues of E1B-55K that harbors a transcription repression domain and contains homologous phosphorylation sites. However, 93R and 84R have unique C termini [87]. Generally, E1B proteins complete cell transformation of E1A-immortalized cells by counteracting E1A-induced programmed cell death (apoptosis) and growth arrest [88,89] (Table 1). It has been shown that the two major gene products E1B-19K and E1B 55K of the E1B region are involved in transformation [9]. It was suggested that both E1B proteins act in additive fashion as both proteins are individually capable of cooperating with E1A to transform BRK cells, but if both proteins are co-expressed with E1A the transformation efficacy is enhanced [90–93]. Furthermore, it has been shown that E1B-156R induces focal formation of BRK cells in cooperation with E1A.

Table 1. Functional characteristics of HAdV oncoproteins.

HAdV proteins	Cellular targets	Mode of action	Effect on host	References	
E1A	pRb, p300/CPB	Activation of E2F transcription factors	S-phase induction	[64,66–69]	
		Modulation of H3K18 acetylation	S-phase induction	[55,63,67,71–74]	
	TRRAP, p400	Indirect association with HATs	Activates cell proliferation	[57,58,75,76]	
E1B	E1B-19K	E1B-19K (Bcl-2 homolog) heterodimerization inhibits Bax	Suppresses apoptosis	[38]	
	P53	Inhibition of mitochondrial dysfunction	Suppresses apoptosis	[107]	
		Transcriptional repression of p53-dependent genes:	Suppresses apoptosis	[99,108–114]	
		• Relocalization to perinuclear bodies			
		• Inhibition of p53 acetylation			
		E3 SUMO ligase of p53			
	PML-IV, PML-NB components (Daxx, Sp100, PML, RNF4)	Repression of p53	Suppresses apoptosis	[125,127,128]	
		Daxx:	Suppresses apoptosis	[94,122,126]	
		• Intranuclear relocalization RNF4/E1B-55K interaction induces proteasomal degradation of Daxx	(indirect repression of p53 transcriptional activity)		
		Sp100:			
		• Relocalization to nuclear matrix and into cytoplasmic inclusion bodies			
	SUMO	Increased E1B-55K SUMOylation is linked to its nuclear localization	High transformation efficacy	[136,137]	
		Disruption of E1B-55K SUMOylation is linked to its cytoplasmic localization	Low transformation efficacy		
E4	E4orf1	PDZ proteins (MUPP1, DLG1, MAGI-1, and ZO-2)	Activation of the PI3K pathway	Promotes cell proliferation	[149–155]
	E4orf3	P53	Induction of H3K9 methylation at p53-dependent promoters	Suppresses apoptosis	[158,159]
		PML-II	Reorganization of PML-NBs into track-like structures	Uncontrolled cell proliferation	[27,28,160,161]
		MRN complex (Mre11, Rad50, NBS1)	Relocalization of MRN complex components into PML tracks	Inhibition of DSBR	[165]
	DNA PK	Inactivation of DNA PK	Inhibition of DSBR	[163]	
	E4orf6	P53	Transcriptional repression of p53-dependent genes	Suppresses apoptosis	[159]
	DNA PK	Inhibition of DSBR	Inhibition of DSBR	[163]	
adhesive apoptotic pathways such as the TNF-
assuming that in contrast to E1B-55K, the p53-inde-
mechanism by which E1B-19K inhibits apoptosis dur-
ting the transformation process is unknown, but it is
assumed that in contrast to E1B-55KDa, the p53-inde-
apoptotic pathways such as the TNF-α and Fas ligand cell death pathways are inhibited [91,98,99].
E1B-19K is a Bcl-2 family analogue that shares their
BH domains, which are important to regulate apopto-
[100,101]. E1B-19 kDa functions independently
from E1B-55K protein to inhibit apoptosis. Pro-
apoptotic proteins, such as Bax, activate caspases to
induce cell death. Their function is inhibited upon
heterodimerization of the BH domain of Bcl-2 with Bax. The viral Bcl-2 functional homologue E1B-19K
inhibits pro-apoptotic activities of Bax and Bak compar-
ably to Bcl-2 [38]. Moreover, E1B-19K blocks fur-
ther mitochondrial signaling events which are regulating apoptosis [98,102–106]. Furthermore, it has
been shown that E1B-19K rescues cells from p53-medi-
apoptosis that may be induced by alleviated p53-
methylated transcriptional repression rather than by
transcriptional activation [107]. The p53-dependent
and p53-independent anti-apoptotic functions of
E1B-19K confer full transformation potential.

Role of E1B-19K in cell transformation

There are conflicting results regarding the role of E1B-
19K during transformation as another analysis from
HAdV-A12 and HAdV-C5 E1B-19K showed that it is
dispensable for efficient transformation of BRK and
baby mouse kidney cells [95–97]. The entire molecular
mechanism by which E1B-19K inhibits apoptosis dur-
ting the transformation process is unknown, but it is
assumed that in contrast to E1B-55KDa, the p53-inde-
apoptotic functions independent of inhibiting
p53-stimulated transcription [94].

Role of E1B-55K in transformation

Extensive studies on E1B-55K have revealed new
mechanisms whereby E1B-55K mediates transforma-
tion. Hence, we review its main regulatory function
in cell transformation and summarize recent discoveries
on the additional roles of E1B-55K in this process.

Inhibition of p53 functions

The most extensively studied role of the E1B-55K pro-
tein regarding transformation is the inhibition of the
tumor suppressor p53 and specifically the inactivation of
p53 pro-apoptotic functions [99,108,109] and/or in-
duction of cell-cycle arrest [110,111]. E1B-55K is targeted to
p53-responsive promoters [112] by binding to p53 [113]
leading to efficient repression of p53-mediated tran-
scription [114]. Moreover, it is assumed that E1B-55K
sequesters p53 into perinuclear bodies to inhibit its tran-
scriptional activity [115]. It has been shown that a cellu-
lar corepressor that copurifies with RNA polymerase II
is required for the repressive activity of HAdV-C5 E1B-
55K together with p53 [114]. In line with this, binding
to cellular transcriptional repression factors such as his-
tone deacetylase 1 and mSin3A [116] is involved in the
E1B-55K-mediated transcriptional repression.

Besides modulating p53 itself, E1B-55K regulates
PTM of p53 in multiple ways to counteract its func-
tions. On the one hand, E1B-55K inhibits acetylation
by binding to both p53 and the transcriptional coacti-
vator PCAF [117]. On the other hand, E1B-55K serves
as a p53-SUMO1 E3 ligase that inhibits p53 functions
by relocating it into PML-NBs [118,119]. The above
summarizes multiple ways of E1B-55K-mediated p53
inhibition contribute to our understanding of p53 inhibi-
tion in transformation. Furthermore, targeting the
function of p53 in different ways ensures that although
the large E1B of HAdV-C5 and HAdV-A12 is sub-
stantially different from each other, some functions are
retained during evolution to inhibit p53, which is
important to counteract apoptosis.

Relocalization to PML-NB

Many of the so far identified interaction partners of
E1B-55K are transient or constitutive components of
the PML-NBs [120], such as p53 [121], Daxx [122],
ATRX [123], Sp100 [124], PML [125], and RNF4
[126]. Generally, it has been shown that the PML-NB
scaffold protein PML can reduce HAdV-C5-mediated
transformation of BRKs [24]. More detailed analysis
illustrated that HAdV-C5 E1B-55 kDa interacts with
the PML isoforms IV and V in a SUMO-dependent
and SUMO-independent manner, respectively [125].
Furthermore, PML-IV is the only known isoform,
which recruits and modulates p53 [127,128]. Therefore,
interaction of E1B-55K with p53 and PML-IV might
be important to repress p53 functions and contribute
to oncogenesis. Moreover, the PML-NB-associated
protein Sp100A has been identified as a tumor sup-
pressor protein, which, like p53, is being repressed in
cocartivation of p53-dependent promoters by being
recruited from the nucleoplasm to the nuclear matrix
and in cytoplasmic inclusion bodies [129]. Hence, the
relocalization of Sp100A by E1B-55K promotes E1A/
E1B-55K-mediated transformation. In summary, the
increasingly detected numbers of interaction between
E1B-55K and PML-NB components and their inhibi-
tory influence on the transformation capacity of
E1B-55K suggest how essential the interplay is in regulating transformation.

Posttranslational modifications in transformation

Protein SUMOylation has an important role in modulating cellular function, in which deregulation could induce cell transformation and has been linked to DNA repair, intracellular trafficking, cell signaling, and stress responses [130–133]. E1B-55K-mediated regulation of SUMOylation on target proteins increases their functional diversity. It has been shown that the capability of E1B-55K to regulate p53 is dependent on its SUMOylation at its conserved SUMO conjugation motif (SCM) as it ensures nuclear targeting of E1B-55K where it can inhibit p53 transcriptional activity [25]. Another PML-NB-associated protein that regulates E1B-55K SUMOylation dependently is Daxx, which is important for efficient transformation [134]. It has been shown that E1B-55K together with the cellular SUMO-targeted ubiquitin ligase RNF4 mediates ubiquitinylination of SUMOylated Daxx resulting in proteasomal degradation of Daxx [126]. Moreover, E1B-55K interacts with Daxx and relocates it within so far unknown nuclear structures [94,122]. The role of Daxx in transformation is not completely understood, but its inhibition inactivates its elevating function on p53-mediated transcription [122].

E1B-55K SUMOylation is crucial for its transforming activity, and cellular factors that regulate this PTM on E1B-55K could potentially modulate its transformation capacity.

A cellular protein, which has been shown to regulate E1B-55K SUMOylation, is the Kruppel-associated box (KRAB)-associated protein 1 (KAP1), which induces SUMO2 modification of E1B-55K, and in turn drives KAP1 deSUMOylation and phosphorylation during viral infection to activate transcription [135].

Small ubiquitin modifier modification and localization of E1B-55K are tightly linked to each other, as loss of SUMOylation by a conservative amino acid substitution from lysine to alanine at its SCM K104R results in cytoplasmic localization [25], whereas disruption of the nuclear export signal (NES) induces nuclear retention and increased SUMOylation of E1B-55K [26]. However, whether E1B-55K SUMOylation induces its nuclear retention or nuclear E1B-55K is increased SUMOylated, remains to be elucidated. As high transformation efficiency in the increased SUMOylated E1B-55K NES mutant has been determined, as opposed to low transformation efficiency in the non-SUMOylated E1B-55K K104R mutant, either E1B-55K localization to the nucleus or its level of SUMOylation is necessary for the transformation capacity [136,137].

Besides SUMOylation, E1B-55K is phosphorylated by casein kinase 2 within its C-terminal region at serine 490/491 and threonine 495 [109,138]. Interestingly, mutational inactivation of the SUMO and phosphorylation sites revealed remarkably similar regulatory roles on p53 comprising repression of p53-mediated transactivation and p53 nucleo-cytoplasmic relocation [139]. Furthermore, efficient E1B-55K-mediated Daxx degradation needs both PTMs [139]. These regulations by both E1B-55K PTMs seem to correlate with its oncogenic potential as mutational analysis of either PTM reduced focus-forming activity in contrast to E1B-55K-wt in combination with E1A.

Early region 4 in transformation

The E4 region with its various gene products produced by alternative splicing has an supportive effect in lytic infection and oncogenesis, which has been reviewed by Täuber et al. [36]. The E4 proteins cover diverse functions ranging from transcriptional regulation, inducing cell-cycle progression, counteracting antiviral defense mechanisms such as apoptosis and DNA repair, cell signaling, PTMs, and the integrity of PML-nuclear bodies (PML-NB) [140–142]. The E4 region is located at the right-hand end of the virus genome encoding for one precursor RNA [142,143]. The pre-RNA is alternatively spliced, encoding seven polypeptides named according to the arrangement of their open reading frames (orf) they are derived from, producing E4orf1, E4orf2, E4orf3, E4orf4, E4orf6, E4orf6/E4orf7, and the putative E4orf3/E4orf4 proteins [21,144–148]. Transformation potential is associated with three gene products of the E4 region namely E4orf1, E4orf3, and E4orf6 (Table 1). The role in oncogenicity has been revealed by investigating HAdV-D9, in which transformation capacity is unique among HAdVs as their E1 oncoproteins are dispensable for mammary tumorigenesis [22].

The oncogenic activity of HAdV-D9 E4orf1 is mediated by its C terminus harboring a functional PDZ (for ‘PSD-95/Discs Large/ZO-1’) domain-binding motif that is important for protein–protein interaction for proteins, which are involved in signal transduction [149]. The four E4orf1-associated PDZ proteins are multi-PDZ protein (MUPP1) [150], and the three membrane-associated guanylate kinase (MAGUK)-family proteins are DLG, MAGI-1, and ZO-2 [151–153]. E4orf1-associated PDZ proteins localize signaling complexes such as assembled receptors and cytosolic factors to the plasma membrane to selectively activate
Conclusion and perspectives

Adenoviruses encode oncogenes within their E1 and E4 regions that are functionally essential for viral replication but can also cause cell transformation as a side effect. E1 and E4 oncogenes serve as initiating or promoting factors, which appear to be not only sufficient but also necessary for transformation. These factors induce additional changes that modulate regulatory pathways and checkpoints in normal cells, in turn leading to complete transformation. Cancer develops upon accumulation of multiple noxious events, whereas the E1A proteins immortalize cells and, in cooperation with the multifunctional E1B proteins, induce a fully transformed cell phenotype. Additionally, some of the E4 region proteins either enhance E1A- and E1B-mediated transformation or contribute, together with E1A, to the transformation process by an unconventional ‘hit-and-run’ mechanism. However, although there appear to be general patterns of how adenoviral oncogenes function, which share with other viral oncogenes the interaction with cell tumor suppressor proteins p53 and pRB, a deeper insight into the fine-tuning of these processes through the identification of new binding partners and posttranscriptional modifications of the viral oncogenes is urgently needed. Importantly, adenoviruses provide an excellent model system for investigating basic molecular and cellular events that can unravel the steps and mechanisms underpinning oncogenesis.

References

1. Trentin JJ, Yabe Y and Taylor G (1962) The quest for human cancer viruses. Science 137, 835–841.
2. Branton PE and Rowe DT (1985) Stabilities and interrelations of multiple species of human adenovirus type 5 early region 1 proteins in infected and transformed cells. J Virol 56, 633–638.
3. Endter C and Dobner T (2004) Cell transformation by human adenoviruses. Curr Top Microbiol Immunol 273, 163–214.
4. Graham FL (1984) Transformation by and oncogenicity of human adenoviruses. The Adenoviruses, pp. 339–398. Springer, Boston, MA.
5. Wimmer P, Täuber B, Spruss T and Dobner T (2010) Adenovirus type 5 early encoded proteins of the E1 and E4 regions induce oncogenic transformation of primary rabbit cells. J Gen Virol 91, 1828–1833.
6. Graham FL, Smiley J, Russel WC and Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36, 59–72.
7. van den Heuvel SJ, The SI, Klein B, Jochemsen AG, Zantema A and van der Eb AJ (1992) p53 shares an antigenic determinant with proteins of 92 and 150 kilodaltons that may be involved in senescence of human cells. J Virol 66, 591–595.
Adenovirus transformation

8 Byrd P, Brown KW and Gallimore PH (1982) Malignant transformation of human embryo retinoblasts by cloned adenovirus 12 DNA. *Nature* **298**, 69–71.

9 Gallimore PH, Grand RJ and Byrd PJ (1986) Transformation of human embryo retinoblasts with simian virus 40, adenovirus and ras oncogenes. *Anticancer Res* **6**, 499–508.

10 Fallaux FJ, Kranenburg O, Cramer SJ, Houweling A, Van Ormondt H, Hoeben RC and van der Eb AJ (1996) Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. *Hum Gene Ther* **7**, 215–222.

11 Fallaux FJ, Bout A, van der Velde I, van den Wollenberg DJ, Hehir KM, Keegan J, Auger C, Cramer SJ, Van Ormondt H, van der Eb AJ et al. (1998) New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. *Hum Gene Ther* **9**, 1909–1917.

12 Schiedner G, Hertel S and Kochanek S (2000) Efficient transformation of primary human amniocytes by E1 functions of Ad5: generation of new cell lines for adenoviral vector production. *Hum Gene Ther* **11**, 2105–2116.

13 Speiseder T, Hofmann-Sieber H, Rodriguez E, Schellenberg A, Akyüz N, Dierlam J, Spruss T, Lange C and Dobner T (2017) Efficient transformation of primary mesenchymal stromal cells by adenovirus early region 1 oncogenes. *J Virol* **91**, 815–835.

14 Graham FL, Rowe DT, McKinnon R, Bacchetti S, Ruben M and Branton PE (1984) Transformation by human adenoviruses. *J Cell Physiol Suppl* **3**, 151–163.

15 Flint J (1976) Molecular biology of animal viruses. *Cell* **8**, 151–162.

16 Flint SJ, Gallimore PH and Sharp PA (1975) Comparison of viral RNA sequences in adenovirus 2-transformed and lytically infected cells. *J Mol Biol* **96**, 47–68.

17 Esche H (1982) Viral gene products in adenovirus type-2 transformed hamster cells. *J Virol* **41**, 1076–1082.

18 Esche H and Siegmann B (1982) Expression of early viral gene products in adenovirus type 12-infected and -transformed cells. *J Gen Virol* **60**, 99–113.

19 Brackmann KH, Green M, Wold WS, Cartas M, Matsuo T and Hashimoto S (1980) Identification and peptide mapping of human adenovirus type 2-induced early polypeptides isolated by two-dimensional gel electrophoresis and immunoprecipitation. *J Biol Chem* **255**, 6772–6779.

20 Sarnow P, Sullivan CA and Levine AJ (1982) A monoclonal antibody detecting the adenovirus type 5-E1b-58Kd tumor antigen: characterization of the E1b-58Kd tumor antigen in adenovirus-infected and -transformed cells. *Virology* **120**, 510–517.

21 Downey JF, Rowe DT, Bacchetti S, Graham FL and Bayley ST (1983) Mapping of a 14,000-dalton antigen to early region 4 of the human adenovirus 5 genome. *J Virol* **45**, 514–523.

22 Thomas DL, Shin S, Jiang BH, Vogel H, Ross MA, Kaplitt M, Shenk TE and Javier RT (1999) Early region 1 transforming functions are dispensable for mammary tumorigenesis by human adenovirus type 9. *J Virol* **73**, 3071–3079.

23 Nevels M, Rubenwolf S, Spruss T, Wolf H and Dobner T (1997) The adenovirus E4orf6 protein can promote E1A/E1B-induced focus formation by interfering with p53 tumor suppressor function. *Proc Natl Acad Sci USA* **94**, 1206–1211.

24 Nevels M, Täuber B, Kremer E, Spruss T, Wolf H and Dobner T (1998) Transforming potential of the adenovirus type 5 E4orf3 protein. *J Virol* **73**, 1–10.

25 Endter C, Khyshkowska J, Stauber R and Dobner T (2001) SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. *Proc Natl Acad Sci USA* **98**, 11312–11317.

26 Endter C, Härtil B, Spruss T, Hauber J and Dobner T (2005) Blockage of CRM1-dependent nuclear export of the adenovirus type 5 early region 1B 55-kDa protein augments oncogenic transformation of primary rat cells. *Oncogene* **24**, 55–64.

27 Carvalho T, Seeler JS, Ohman K, Jordan P, Pettersson U, Akusjarvi G, Carmo-Fonseca M and Dejean A (1995) Targeting of adenovirus E1A and E4-ORF3 proteins to nuclear matrix-associated PML bodies. *J Cell Biol* **131**, 45–56.

28 Doucas V, Ishov AM, Romo A, Juguilon H, Weitzman MD, Evans RM and Maul GG (1996) Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. *Genes Dev* **10**, 196–207.

29 Hsu K-S and Kao H-Y (2018) PML: regulation and multifaceted function beyond tumor suppression. *Cell Biosci* **8**, 5.

30 Berk AJ (2005) Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. *Oncogene* **24**, 7673–7685.

31 Salomoni P and Pandolfi PP (2002) The role of PML in tumor suppression. *Cell* **108**, 165–170.

32 Braithwaite AW, Cheetham BF, Li P, Parish CR, Waldron-Stevens LK and Bellett AJ (1983) Adenovirus-induced alterations of the cell growth cycle: a requirement for expression of E1A but not of E1B. *J Virol* **45**, 192–199.

33 den Elsen P, Houweling A and der Eb A (1983) Expression of region E1b of human adenoviruses in
the absence of region E1a is not sufficient for complete transformation. *Virology* **128**, 377–390.

34 Yang Y, McKeirie C, Lu Z, Wang L and Buchwald M (2008) *In vivo* potential effects of adenovirus type 5 E1A and E1B on lung carcinogenesis and lymphoproliferative inflammation. *J Virol* **82**, 8105–8111.

35 Frisch SM and Mymryk JS (2002) Adenovirus-5 e1a: paradox and paradigm. *Nat Rev Mol Cell Biol* **3**, 441–452.

36 Täuber B and Dobner T (2001) Adenovirus early E4 genes in viral oncogenesis. *Oncogene* **20**, 7847–7854.

37 Turnell AS and Mymryk JS (2006) Roles for the coactivators CBP and p300 and the APC/C E3 ubiquitin ligase in E1A-dependent cell transformation. *Br J Cancer* **95**, 555–560.

38 White E (2006) Mechanisms of apoptosis regulation by viral oncoproteins in infection and tumorigenesis. *Cell Death Differ* **13**, 1371–1377.

39 Blackford AN and Grand RJA (2009) Adenovirus E1B 55-kilodalton protein: multiple roles in viral infection and cell transformation. *J Virol* **83**, 4000–4012.

40 Hearing P (2009) Adenovirus transformation. In DNA Tumor Viruses (Pipas J and Damania B, eds), pp. 145–161. Springer, New York, NY.

41 Houweling A, van den Elen PJ and van der Eb AJ (1980) Partial transformation of primary rat cells by the leftmost 4.5% fragment of adenovirus 5 DNA. *Virology* **105**, 537–550.

42 Flint J and Shenk T (1997) Viral transactivating proteins. *Annu Rev Genet* **31**, 177–212.

43 Sussenbach JS and van der Vliet PC (1984) The mechanism of adenovirus DNA replication and the characterization of replication proteins. *Curr Top Microbiol Immunol* **109**, 53–73.

44 Moran E and Mathews MB (1987) Multiple functional domains in the adenovirus E1A gene. *Cell* **48**, 177–179.

45 Avvakumov N, Wheeler R, D’halluin J-C and Mymryk JS (2002) Comparative sequence analysis of the largest E1A proteins of human and simian adenoviruses. *J Virol* **76**, 7968–7975.

46 Subramanian T, Malstrom SE and Chinnadurai G (1991) Requirement of the C-terminal region of adenovirus E1a for cell transformation in cooperation with E1b. *Oncogene* **6**, 1171–1173.

47 Douglas JL and Quinlan MP (1995) Efficient nuclear localization and immortalization ability, two functions dependent on the adenovirus type 5 (Ad5) E1A second exon, are necessary for cotransformation with Ad5 E1B but not with T24ras. *J Virol* **69**, 8061–8065.

48 Quinlan MP and Douglas JL. (1992) Immortalization of primary epithelial cells requires first- and second-exon functions of adenovirus type 5 12S. *J Virol* **66**, 2020–2030.

49 Avvakumov N, Kajon AE, Hoeben RC and Mymryk JS (2004) Comprehensive sequence analysis of the E1A proteins of human and simian adenoviruses. *Virology* **329**, 477–492.

50 Somasundaram K, Jayaraman G, Williams T, Moran E, Frisch S and Thimmapaya B (1996) Repression of a matrix metalloprotease gene by E1A correlates with its ability to bind to cell type-specific transcription factor AP-2. *Proc Natl Acad Sci USA* **93**, 3088–3093.

51 Taylor DA, Kraus VB, Schwarz JJ, Olson EN and Kraus WE (1993) E1A-mediated inhibition of myogenesis correlates with a direct physical interaction of E1A12S and basic helix-loop-helix proteins. *Mol Cell Biol* **13**, 4714–4727.

52 Meng X, Yang YF, Cao X, Govindan MV, Shuen M, Hollenberg AN, Mymryk JS and Walfish PG (2003) Cellular context of coregulator and adaptor proteins regulates human adenovirus 5 early region 1A-dependent gene activation by the thyroid hormone receptor. *Mol Endocrinol* **17**, 1095–1105.

53 Wahlstrom GM, Vennstrom B and Bondesson Bolin M (1999) The adenovirus E1A protein is a potent coactivator for thyroid hormone receptors. *Mol Endocrinol* **13**, 1119–1129.

54 Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB and Livingston DM (1994) Molecular cloning and functional analysis of the adenovirus E1A- associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. *Genes Dev* **8**, 869–884.

55 Arany Z, Newsome D, Oldred E, Livingston DM and Eckner R (1995) A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. *Nature* **374**, 81–84.

56 Fuchs M, Gerber J, Drapkin R, Sif S, Ikura T, Ogyrzko V, Lane WS, Nakatani Y and Livingston DM (2001) The p400 complex is an essential E1A transformation target. *Cell* **106**, 297–307.

57 Deleu L, Shellard S, Alevizopoulos K, Amati B and Land H (2001) Recruitment of trtrap required for oncogenic transformation by E1A. *Oncogene* **20**, 8270–8275.

58 Lang SE and Hearing P (2003) The adenovirus E1A oncoprotein recruits the cellular TRRAP/GCN5 histone acetyltransferase complex. *Oncogene* **22**, 2836–2841.

59 Hamamori Y, Sartorelli V, Ogyrzko V, Puri PL, Wu HY, Wang JYJ, Nakatani Y and Kedes L (1999) Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. *Cell* **96**, 405–413.

60 Hateboer G, Timmers HTM, Rustgi AK, Billaud M, Van ’t Veer LJ and Bernards R (1993) TATA-binding protein and the retinoblastoma gene product bind to
overlapping epitopes on c-Myc and adenovirus E1A protein. *Proc Natl Acad Sci USA* **90**, 8489–8493.

61 Geisberg JV, Lee WS, Berk AJ and Ricciardi RP (1994) The zinc finger region of the adenovirus E1A transactivating domain complexes with the TATA box binding protein. *Proc Natl Acad Sci USA* **91**, 2488–2492.

62 Pelka P, Ablack JNG, Fonseca GJ, Yousef AF and Mymryk JS (2008) Intrinsic structural disorder in adenovirus E1A: a viral molecular hub linking multiple diverse processes. *J Virol* **82**, 7252–7263.

63 Howe JA, Mymryk JS, Egan C, Branton PE and Bayley ST (1990) Retinoblastoma growth suppressor and a 300-kDa protein appear to regulate cellular DNA synthesis. *PNAS* **87**, 5883–5887.

64 Lillie JW, Loewenstein PM, Green MR and Green M (1987) Functional domains of adenovirus type 5 E1A proteins. *Cell* **50**, 1091–1100.

65 Cress WD and Nevin JS (1996) Use of the E2F transcription factor by DNA tumor virus regulatory proteins. *Curr Top Microbiol Immunol* **208**, 63–78.

66 Horwitz GA, Zhang K, McBrian MA, Grunstein M, Kurbistani SK and Berk AJ (2008) Adenovirus small E1A alters global patterns of histone modification. *Science* (80-.) **321**, 1084–1085.

67 Kovessi I, Reichel R and Nevin JS (1986) Identification of a cellular transactivation factor involved in E1A trans-activation. *Cell* **45**, 219–228.

68 Reichel R, Kovessi I and Nevin JS (1987) Developmental control of a promoter-specific factor that is also regulated by the E1A gene product. *Cell* **48**, 501–506.

69 Ferrari R, Pellegrini M, Horwitz GA, Xie W, Berk AJ and Kurbistani SK (2008) Epigenetic reprogramming by adenovirus elA. *Science* (80-.) **321**, 1086–1088.

70 Bayley ST and Mymryk JS (1994) Adenovirus elA proteins and transformation (review). *Int J Oncol* **5**, 425–444.

71 King CR, Zhang A, Tessier TM, Gameiro SF and Mymryk JS (2018) Hacking the cell: network intrusion and exploitation by adenovirus E1A. *MBio* **9**, 118–159.

72 Dancy BM and Cole PA (2015) Protein lysine acetylation by p300/CBP. *Chem Rev* **115**, 2419–2452.

73 Yang XJ, Ogryzko VV, Nishikawa J, Howard BH and Nakatani Y (1996) A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. *Nature* **382**, 319–324.

74 Ben-Israel H and Kleinberger T (2002) Adenovirus and cell cycle control. *Front Biosci* **7**, d1369–d1395.

75 Stein GH, Beeson M and Gordon L (1990) Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts. *Science* (80-.) **249**, 666–669.

76 Yan G, Eller MS, Elm C, Larocca CA, Ryu B, Panova IP, Dancy BM, Bowers EM, Meyers D, Lareau L et al. (2013) Selective inhibition of p300 HAT blocks cell cycle progression, induces cellular senescence, and inhibits the DNA damage response in melanoma cells. *J Invest Dermatol* **133**, 2444–2452.

77 Moran E (1993) Interaction of adenoviral proteins with pRB and p53. *FASEB J* **7**, 880–885.

78 Gallimore PH and Turnell AS (2001) Adenovirus E1A: remodelling the host cell, a life or death experience. *Oncogene* **20**, 7824–7835.

79 Berk AJ (1986) Adenovirus promoters and E1A transactivation. *Annu Rev Genet* **20**, 45–79.

80 Jones N and Shenk T (1979) Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. *Cell* **17**, 683–689.

81 Kimelman D (1986) A novel general approach to eukaryotic mutagenesis functionally identifies conserved regions within the adenovirus 13S E1A polypeptide. *Mol Cell Biol* **6**, 1487–1496.

82 Kimelman D, Miller JS, Porter D and Roberts BE (1985) E1A regions of the human adenoviruses and of the highly oncogenic simian adenovirus 7 are closely related. *J Virol* **53**, 399–409.

83 Boyd JM, Subramanian T, Schaepfer U, La Regina M, Bayley S and Chinnadurai G (1993) A region in the C-terminus of adenovirus 2/5 E1A protein is required for association with a cellular phosphoprotein and important for the negative tumorigenesis and metastasis. *EMBO J* **12**, 469–478.

84 Schaepfer U, Boyd JM, Verma S, Uhlmann E, Subramanian T and Chinnadurai G (1995) Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. *Proc Natl Acad Sci USA* **92**, 10467–10471.

85 Subramanian T, La Regina M and Chinnadurai G (1989) Enhanced ras oncogene mediated cell transformation and tumorigenesis by adenovirus 2 mutants lacking the C-terminal region of E1A protein. *Oncogene* **4**, 415–420.

86 Virtanen A and Pettersson U (1985) Organization of early region 1B of human adenovirus type 2: identification of four differentially spliced mRNAs. *J Virol* **54**, 383–391.

87 Anderson KP and Klessig DF (1984) Altered splicing in monkey cells abortively infected with human adenovirus may be responsible for inefficient synthesis of the virion fiber polypeptide. *PNAS* **81**, 4023–4027.

88 Debbs M and White E (1993) Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. *Genes Dev* **7**, 546–554.

89 Lowe SW and Ruley HE (1993) Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. *Genes Dev* **7**, 535–545.
90 Bernards R, de Leeuw MGW, Houweling A and van der Eb AJ (1986) Role of the adenovirus early region 1B tumor antigens in transformation and lytic infection. Virology 150, 126–139.
91 White E and Cipriani R (1990) Role of adenovirus E1B proteins in transformation: altered organization of intermediate filaments in transformed cells that express the 19-kilodalton protein. Mol Cell Biol 10, 120–130.
92 McLoire W, McGlade CJ, Takayesu D and Branton PE (1991) Individual adenovirus E1B proteins induce transformation independently but by additive pathways. J Gen Virol 72 (Pt 6), 1467–1471.
93 Rao L, Debmas M, Sabbatini P, Hockenbery D, Korsmeyer S and White E (1992) The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins. PNAS 89, 7742–7746.
94 Sieber T and Dobner T (2007) Adenovirus type 5 early region 1B 156R protein promotes cell transformation independently of repression of p53-stimulated transcription. J Virol 81, 95–105.
95 Edbauer C, Lamberti C, Tong J and Williams J (1988) Adenovirus type 12 E1B 19-kilodalton protein is not required for oncogenic transformation in rats. J Virol 62, 3265–3273.
96 Williams J, Williams JF, Liu C and Telling G (1995) Assessing the role of E1A in the differential oncogenicity of group A and group C human adenoviruses. Curr Top Microbiol Immunol 1995 (Pt 3), 149–175.
97 Zhang S, Mak S and Branton PE (1992) Overexpression of the E1B 55-kilodalton (482R) protein of human adenovirus type 12 appears to permit efficient transformation of primary baby rat kidney cells in the absence of the E1B 19-kilodalton protein. J Virol 66, 2302–2309.
98 Han J, Sabbatini P, Perez D, Rao L, Modha D and White E (1996) The E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein. Genes Dev 10, 461–477.
99 Chinnadurai G (1998) Control of apoptosis by human adenovirus genes. Semin Virol 8, 399–408.
100 Yasuda M, Theodorakisi P, Subramanian T and Chinnadurai G (1998) Adenovirus E1B-19K/BCL-2 interacting protein BNI3 contains a BH3 domain and a mitochondrial targeting sequence. J Biol Chem 273, 12415–12421.
101 White E, Cipriani R, Sabbatini P and Denton A (1991) Adenovirus E1B 19-kilodalton protein overcomes the cytotoxicity of E1A proteins. J Virol 65, 2968–2978.
102 Henry H, Thomas A, Shen Y and White E (2002) Regulation of the mitochondrial checkpoint in p53-mediated apoptosis confers resistance to cell death. Oncogene 21, 748–760.
103 Shen Y and Shenk T (1994) Relief of p53-mediated transcriptional repression by the adenovirus E1B 19-kDa protein or the cellular Bcl-2 protein. Proc Natl Acad Sci USA 91, 8940–8944.
104 Horikoshi N, Usheva A, Chen J, Levine AJ, Weinmann R and Shenk T (1995) Two domains of p53 interact with the TATA-binding protein, and the adenovirus 13S E1A protein disrupts the association, relieving p53-mediated transcriptional repression. Mol Cell Biol 15, 227–234.
105 Thomas A and White E (1998) Suppression of the p300-dependent MDM2 negative-feedback loop induces the p53 apoptotic function. Genes Dev 12, 1975–1985.
106 Perez D and White E (2000) TNF-α signals apoptosis through a bid-dependent conformational change in Bax that is inhibited by E1B 19K. Mol Cell 6, 53–63.
107 Lomonosova E, Subramanian T and Chinnadurai G (2005) Mitochondrial localization of p53 during adenovirus infection and regulation of its activity by E1B-19K. Oncogene 24, 6796–6808.
108 White E (2001) Regulation of the cell cycle and apoptosis by the oncogenes of adenovirus. Oncogene 20, 7836–7846.
109 Teodoro JG and Branton PE (1997) Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55-kilodalton E1B protein of human adenovirus type 5. J Virol 71, 3620–3627.
110 Steegenga WT, Riteco N, Jochemsen AG, Fallaux FJ and Bos JL (1998) The large E1B protein together with the E4orf6 protein target p53 for active degradation in adenovirus infected cells. Oncogene 16, 349–357.
111 Knight M, Hutton FG, Turnell AS, Gallimore PH and Grand RJ (2000) Consequences of disruption of the interaction between p53 and the larger adenovirus early region 1B protein in adenovirus E1 transformed human cells. Oncogene 19, 1–11.
112 Yew PR, Liu X and Berk AJ (1994) Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev 8, 190–202.
113 Sarnow P, Hearing P, Anderson CW, Reich N and Levine AJ (1982) Identification and characterization of an immunologically conserved adenovirus early region 11,000 Mr protein and its association with the nuclear matrix. J Mol Biol 162, 565–583.
114 Martin ME and Berk AJ (1999) Corepressor required for adenovirus E1B 55,000-molecular-weight protein repression of basal transcription. Mol Cell Biol 19, 3403–3414.
115 Zhao LY and Liao D (2003) Sequestration of p53 in the cytoplasm by adenovirus type 12 E1B 55-kilodalton oncoprotein is required for inhibition of p53-mediated apoptosis. J Virol 77, 13171–13181.
116 Punga T and Akusjarvi G (2000) The adenovirus-2 E1B-55K protein interacts with a mSin3A/histone deacetylase 1 complex. FEBS Lett 476, 248–252.

117 Liu Y, Colosimo AL, Yang X-J and Liao D (2000) Adenovirus E1B 55-kilodalton oncoprotein inhibits p53 acetylation by PCAF. Mol Cell Biol 20, 5540–5553.

118 Zhong S, Muller S, Ronchetti S, Freemont PS, Dejean A and Pandolfi PP (2000) Role of SUMO-1 modified PML in nuclear body formation. Blood 95, 2748–2752.

119 Pennella MA, Liu Y, Woo JL, Kim CA and Berk AJ (2010) Adenovirus E1B 55-kilodalton protein is a p53-SUMO1 E3 ligase that represses p53 and stimulates its nuclear export through interactions with promyelocytic leukemia nuclear bodies. J Virol 84, 12210–12225.

120 van Damme E, Laukens K, Dang TH and van Ostade X (2010) A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci 6, 1–17.

121 Kao CC, Yew PR and Berk AJ (1990) Domains required for in vitro association between the cellular p53 and the adenovirus 2 E1B 55K proteins. Virology 179, 806–814.

122 Zhao LY, Colosimo AL, Liu Y, Wan Y and Liao D (2003) Adenovirus E1B 55-kilodalton oncoprotein binds to Daxx and eliminates enhancement of p53-dependent transcription by Daxx. J Virol 77, 11809–11821.

123 Schreiner S, Bürck C, Glass M, Groitl P, Wimmer P, Kinkley S, Mund A, Everett RD and Dobner T (2013) Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes. Nucleic Acids Res 41, 3532–3550.

124 Berscheminski J, Wimmer P, Brun J, Ip WH, Groitl P, Horlacher T, Jaffray E, Hay RT, Dobner T and Schreiner S (2014) Sp100 isoform-specific regulation of human adenovirus 5 gene expression. J Virol 88, 6076–6092.

125 Wimmer P, Schreiner S, Everett RD, Sirma H, Groitl P and Dobner T (2010) SUMO modification of E1B-55K oncoprotein regulates isoform-specific binding to the tumour suppressor protein PML. Oncogene 29, 5511–5522.

126 Münchberg S, Hay RT, Ip WH, Meyer T, Weiß C, Brenke J, Masser S, Hadkan K, Dobner T and Schreiner S (2018) E1B-55K-mediated regulation of RNF4 SUMO-targeted ubiquitin ligase promotes human adenovirus gene expression. J Virol 92, 7018–7029.

127 Fogal V (2000) Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J 19, 6185–6195.

128 Ivanschitz L, Takahashi Y, Jollivet F, Ayrault O, Le Bras M and de Thé H (2015) PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence. Proc Natl Acad Sci USA 112, 14278–14283.

129 Berscheminski J, Brun J, Speiseder T, Wimmer P, Ip WH, Terzic M, Dobner T and Schreiner S (2015) Sp100A is a tumor suppressor that activates p53-dependent transcription and counteracts E1A/E1B–55K-mediated transformation. Oncogene 35, 3178–3189.

130 Bettermann K, Benesch M, Weis S and Haybaeck J (2012) SUMOylation in carcinogenesis. Cancer Lett 316, 113–125.

131 Dou H, Huang C, Van Nguyen T, Lu L-S and Yeh ETH (2011) SUMOylation and de-SUMOylation in response to DNA damage. FEBS Lett 585, 2891–2896.

132 Meulmeester E and Melchior F (2008) Cell biology: SUMO. Nature 452, 709–711.

133 Saitoh H (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275, 6252–6258.

134 Schreiner S, Wimmer P, Groitl P, Chen S-YY, Blanchette P, Branton PE and Dobner T (2011) Adenovirus type 5 early region 1B 55K oncoprotein-dependent degradation of cellular factor Daxx is required for efficient transformation of primary rodent cells. J Virol 85, 8752–8765.

135 Bürck C, Mund A, Berscheminski J, Kieweg L, Münchberg S, Dobner T and Schreiner S (2016) KAP1 is a host restriction factor that promotes human adenovirus E1B-55K SUMO modification. J Virol 90, 930–946.

136 Kindsmüller KK, Groitl PP, Härtl BB, Blanchette PP, Hauber JJ and Dobner TT (2007) Intranuclear targeting and nuclear export of the adenovirus E1B-55K protein are regulated by SUMO1 conjugation. PNAS 104, 6684–6689.

137 Wimmer P, Blanchette P, Schreiner S, Ching W, Groitl P, Berscheminski J, Branton PE, Will H and Dobner T (2012) Cross-talk between phosphorylation and SUMOylation regulates transforming activities of an adenoviral oncoprotein. Oncogene 32, 1626–1637.

138 Ching W, Dobner T and Koyuncu E (2012) The human adenovirus type 5 E1B 55-kilodalton protein is phosphorylated by protein kinase CK2. J Virol 86, 2400–2415.

139 Wimmer P, Blanchette P, Schreiner S, Ching W, Groitl P, Berscheminski J, Branton PE, Will H and Dobner T (2012) Cross-talk between phosphorylation and SUMOylation regulates transforming activities of an adenoviral oncoprotein. Oncogene 32, 1–12.

140 Imperiale MJ, Akuşşnärvi G and Leppard KN (1995) Post-transcriptional control of adenovirus gene expression. Curr Top Microbiol Immunol, 199 (Pt 2), 139–171.

141 Leppard KN (1997) E4 gene function in adenovirus, adenovirus vector and adenovirus infections. J Gen Virol 78 (Pt 9), 2131–2138.
Adenovirus transformation

W. H. Ip and T. Dobner

142 Hérisse J, Rigolet M, de Dinechin SD and Galibert F (1981) Nucleotide sequence of adenovirus 2 DNA fragment encoding for the carboxylic region of the fiber protein and the entire E4 region. Nucleic Acids Res 9, 4023–4042.

143 Freyer GA, Katoh Y and Roberts RJ (1984) Characterization of the major mRNAs from adenovirus 2 early region 4 by cDNA cloning and sequencing. Nucleic Acids Res 12, 3503–3519.

144 Tigges MA and Raskas HJ (1982) Expression of adenovirus 2 early region 4: assignment of the early region 4 polypeptides to their respective mRNAs, using in vitro translation. J Virol 44, 907–921.

145 Rigolet M and Galibert F (1984) Organization and expression of the E4 region of adenovirus 2. Nucleic Acids Res 12, 7649–7661.

146 Cutt JR, Shenk T and Hearing P (1987) Analysis of adenovirus early region 4-encoded polypeptides synthesized in productively infected cells. J Virol 61, 543–552.

147 Javier RT (1994) Adenovirus type 9 E4 open reading frame 1 encodes a transforming protein required for the production of mammary tumors in rats. J Virol 68, 3917–3924.

148 Dix I and Leppard KN (1995) Expression of adenovirus type 5 E4 Orf2 protein during lytic infection. J Gen Virol 76 (Pt 4), 1051–1055.

149 Sheng M and Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24, 1–29.

150 Lee SS, Glaunsinger B, Mantovani F, Banks L and Javier RT (2000) Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol 74, 9680–9693.

151 Lee SS, Weiss RS and Javier RT (1997) Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA 94, 6670–6675.

152 Glaunsinger BA, Lee SS, Thomas M, Banks L and Javier R (2000) Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19, 5270–5280.

153 Glaunsinger BA, Weiss RS, Lee SS and Javier R (2001) Link of the unique oncogenic properties of adenovirus type 9 E4-ORF1 to a select interaction with the candidate tumor suppressor protein ZO-2. EMBO J 20, 5578–5586.

154 Frese KK, Lee SS, Thomas DL, Latorre JJ, Weiss RS, Glaunsinger BA and Javier RT (2003) Selective PDZ protein-dependent stimulation of phosphatidylinositol 3-kinase by the adenovirus E4-ORF1 oncoprotein. Oncogene 22, 710–721.

155 Kong K, Kumar M, Taruishi M and Javier RT (2014) The human adenovirus E4-ORF1 protein subverts discs large 1 to mediate membrane recruitment and dysregulation of phosphatidylinositol 3-kinase. PLoS Pathog 10, e1004102.

156 Moore M, Horikoshi N and Shenk T (1996) Oncogenic potential of the adenovirus E4orf6 protein. Proc Natl Acad Sci USA 93, 11295–11301.

157 Nevels M, Spruss T, Wolf H and Dobner T (1999) The adenovirus E4orf6 protein contributes to malignant transformation by antagonizing E1A-induced accumulation of the tumor suppressor protein p53. Oncogene 18, 9–17.

158 Soria C, Estermann FE, Espantman KC and Oshea CC (2010) Heterochromatin silencing of p53 target genes by a small viral protein. Nature 466, 1076–1081.

159 Dobner T, Horikoshi N, Rubenwolf S and Shenk T (1996) Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science (80-. 272, 1470–1473.

160 Hoppe A, Beech SJ, Dimmock J and Leppard KN (2006) Interaction of the adenovirus type 5 E4 Orf3 protein with promyelocytic leukemia protein isoform II is required for ND10 disruption. J Virol 80, 3042–3049.

161 Leppard KN and Everett RD (1999) The adenovirus type 5 E1b 55K and E4 Orf3 proteins associate in infected cells and affect ND10 components. J Gen Virol 80 (Pt 4), 997–1008.

162 Nevels M, Täuber B, Spruss T, Wolf H, Dobner T and Kremmer E (1999) Transforming potential of the adenovirus type 5 E4orf3 protein. J Virol 73, 1591–1600.

163 Boyer J, Rohleder K and Ketner G (1999) Adenovirus E4 34k and E4 11k inhibit double strand break repair and are physically associated with the cellular DNA-dependent protein kinase. Virology 263, 307–312.

164 Smith GCM and Jackson SP (1999) The DNA-dependent protein kinase. Genes Dev 13, 916–934.

165 Stracker TH, Carson CT and Weilzman MD (2002) Adenovirus oncoproteins inactivate the Mre11-Rad50-Nbs1 DNA repair complex. Nature 418, 348–352.

166 Nevels M, Täuber B, Spruss T, Wolf H and Dobner T (2001) “Hit-and-run” transformation by adenovirus oncogenes. J Virol 75, 3089–3094.