Influence of Broken Condition and Instability of the Excavation Site Parameters on the Reliability of the Breakage Face

A Bulgakov¹, A Evsiukova², E Kolesnichenko³

¹Department of Mechatronic, South-Russian State Polytechnic University (NPI), 132 Prosveshcheniya Str., Novocherkassk 346248, Russia
²Department of Mining, Shakhty Road Institute (branch) South-Russian State Polytechnic University (NPI) named after M. I. Platov, Lenin Square, 1, Shakhty 346500, Russia
³Department of Civil Engineering, Shakhty Road Institute (branch) South-Russian State Polytechnic University (NPI) named after M. I. Platov, Lenin Square, 1, Shakhty 346500, Russia

E-mail: agi.bulgakov@mail.ru

Abstract. This article presents a method for determining the influence of disturbance and instability of the parameters of the excavation site on the reliability of the work of the treatment face. To determine the impact of disturbance and instability of the parameters of the excavation site on the reliability of the treatment face, a method was model for calculating the quantitative and qualitative characteristics of violations. The general assessment of the reliability of the operation of the technological scheme of treatment works in the dredging areas with changing mining and geological conditions is the sum of the partial estimates of its operation in the areas with stable and unstable operating conditions. The change in the readiness coefficient on the disturbed parts of the excavation site is determined, depending on the magnitude of the influence of geological disturbances on the rate of lava movement. The analysis of some results of the problem under study, obtained using the proposed methodology, is given. The dependence was established that the readiness coefficient decreases most intensively at large values of the ratio, and then the intensity of the decrease decreases towards smaller values.

1. Introduction

At the present time, when the requirements for the accuracy of the forecast for the efficiency of mining excavation fields have sharply increased, it is relevant to assess the reliability of the technological schemes of the treatment excavation (availability coefficient, probability of failure-free operation, etc.), both as a whole for the excavation field, taking into account changing mining and geological conditions, and on its individual parts [1-17]. An analysis of the trends in the economic and social development of the country, as well as the global energy complex, shows the continuing importance of coal in the fuel and energy balance of the main industrial countries of the world. The corresponding methodology is proposed.
2. Research objectives
The aim of the study is to establish the influence of the disturbance and the parameters of the excavation site on the reliability of the work of the treatment face. To establish the regularities of the development of geomechanical processes in the massif during the development of reserves in the dredging areas of high-performance mines to justify technological solutions to improve the reliability, safety and efficiency of mining operations [18-25]. Analysis of the results of the problem under study, taking into account the proposed methodology.

3. Materials research methods
The overall assessment of the reliability of the operation of the technological scheme of treatment works at the excavation sites with changing mining and geological conditions is the sum of the partial assessments of its operation at sites with stable and unstable operating conditions (with and without violations).

The total coefficient of readiness K_g is the sum of the products of the coefficients of readiness of the system in areas without violations K_{gbn} and with violations K_{gn} the probability of the state of the treatment face R_{bn} and R_{n}:

$$K_g = K_{gbn}R_{bn} + K_{gn}R_{n}$$ (1)

The probability of the state of the treatment face in areas without violations of R_{bn} can be determined as the ratio of the time of operation of the lava in such areas to the total time of working out the site:

$$R_{bn} = \frac{L_u - L_n}{L_{bn}} - \frac{L_u - L_n}{V_{bn}} + \frac{L_n}{V_n}$$ (2)

where L_u is the length of the excavation area, m;
L_n - length of the disturbed part of the excavation area, m;
V_{bn} - the speed of movement of the treatment face on the parts of the excavation site without geological disturbances, m / cm;
V_n - the same for parts of the excavation site with geological disturbances, m/sm.

If the length of the disturbed part L_n is expressed in terms of the length of the lava l, the length between the displaced wings of the formation l_n, and the angle of the line of disturbance to the strike of the formation a, we get:

$$R_{bn} = \left[L_u - \left(\frac{l_n}{\sin a} - \frac{l}{\tan a} \right) \left(\frac{l_n}{\sin a} + \frac{l}{\tan a} \right) \right]^{-1}. $$ (3)

Probability of the state of the treatment face in areas with violations:

$$P_{n} = 1 - P_{bn} $$ (4)

The system readiness factor in areas with violations and taking into account the change in the length of the lava in the excavation area can be expressed by the following formula:

$$K_{gn} = \left(1 + \frac{1-K_{gbn}}{K_{gbn}} + \frac{V_p \cdot 1080 \cdot \tau}{l \cdot V_{bn}} + \frac{V_p \cdot \tau \cdot l_{p} \cdot K}{100 \cdot l_{l}} \right)^{-1}, $$ (5)

where V_p - the feed speed of the combine, m / min;
τ - width of the combine harvester, m;
l - length of the lava, m;
t - the rate of time for the reduction (extension) of the lava equipment per 1 m 2 of lava, min;
K is a coefficient that takes into account that part of the stops (failures) associated with the change in the length of the lava falls on the repair and preparation shifts.

After setting the values of the corresponding indicators in formula (5), we get the value of the total system availability coefficient:

$$K_{gob} = \left(1 + \left[\frac{L_n - (L_n/\sin \alpha + (l/tga))}{(L_n/\sin \alpha + (l/tga))}\right]^{-1} v_n + R_{bn} + K_{gn}\right)$$

(6)

Below are some particular dependencies obtained according to the formulas given.

4. Experimental investigations and analysis of their results

Figure 1 shows the dependence of the total availability coefficient on the disturbance of the excavation site.

![Figure 1](image)

Figure 1. The dependence of the total readiness coefficient on the disturbance of the excavation site.

Change in the availability factor on the disturbed parts of the excavation site, depending on the magnitude of the influence of geological disturbances on the speed of lava movement v_n/v_{bn} shown in Figure 2.

This is due to the fact that the very fact of the occurrence of a geological disturbance, although with a small amplitude, leads to a significant decrease in the movement of the treatment face.

The dependence of the readiness coefficient on the change in the length of the lava within the excavation area is shown in Fig. 3. With the currently achieved availability coefficients and average feed rates of harvesters, changes in the length of the lava by 10 m leads to a decrease in K_g by 5%.

Figure 3 shows that the availability factor of the treatment face decreases towards higher values $\frac{V_n}{V_{bn}}$ and increases with decrease $\frac{V_n}{V_{bn}}$.
Figure 2. Change in the readiness coefficient on the disturbed parts of the excavation site, depending on the magnitude of the influence of geological disturbances on the speed of lava movement.

Figure 3. The dependence of the readiness coefficient on the change in the length of the lava within the excavation area.

5. Conclusion
Thus, along with the precise determination of the location of the violation, information about the quantitative and qualitative characteristics of the violations (meeting angle, amplitude, etc.), as well as the variability of the length of the lava within the excavation area of the lava, the use of which makes
it possible to quantify the performance of the excavation columns, is of great importance. To determine the impact of disturbance and instability of the parameters of the excavation site on the reliability of the treatment face, a method was modeled for calculating the quantitative and qualitative characteristics of violations. The general assessment of the reliability of the operation of the technological scheme of treatment works at the excavation sites with changing mining and geological conditions is the sum of the partial estimates of its operation at the sites with stable and unstable operating conditions. The change in the readiness coefficient on the disturbed parts of the excavation site is determined, depending on the magnitude of the influence of geological disturbances on the rate of lava movement. The analysis of some results of the problem under study, obtained using the proposed methodology, is given. The dependence was established that the readiness coefficient decreases most intensively at large values of the ratio, and then the intensity of the decrease decreases towards smaller values.

6. References

[1] Ardashev K, Akhmatov V, Katkov G 1981 Methods and devices for studying the manifestation of mountain pressure Moscow Nedra p 25-120
[2] Ardashev K, Zaidenvarg V, Reva V 1996 Geomechanical substantiation of effective fastening and maintenance of coal seam workings under conditions of intense mountain pressure Proceedings of the International Conference Efficient and safe underground coal mining based on modern achievements of geomechanics (St. Petersburg)
[3] Baklashov I, Kartozia B 1984 Mechanics of underground structures and structures of supports Moscow Nedra pp 133-136
[4] Borisov A 1980 Mechanics of rocks and massifs Moscow Nedra p 34
[5] Borisov A 1979 Research and calculations between chamber tselikov Scientific works of the Moscow State University. Scientific bases of creation of high-performance complex mechanized mines p 67
[6] Bordunov L, Toporkov A 1988 Mechanized coal mining in foreign mines TSNIEiugol p 53
[7] Bratchenko B, Ustinov M, Gapanovich L, Nilva E, Beskov M, Likoglter L 1985 Methods of opening, preparation and development systems of mine fields Moscow Nedra pp 231-234
[8] Bublik F, Ivaev G, 1974 Plakhov A On the issue of determining the load on safety and barrier pillar Coal 2 pp 3-5
[9] Bazhin M 1983 Maintenance of preparatory workings without leaving pillar Coal 2 pp 20-23
[10] Bazhin M 1975 Protection of preparatory workings without pillar Moscow Nedra p 296
[11] Voronin V, Myasnikov V, Studenikov L 1975 Industrial application of the method of protection of workings by unloading the array of wells on the formation at the Kirovskaya mine Coal of Ukraine 1 pp 22-25
[12] Volkov V 1985 Strengthening of roof rocks at the coupling of lavas with adjacent workings TSNIEiugol pp 2-3
[13] Vyaltsev M, Lunaev E, Martynenko I 1981 Sovershennsuvanie okhrana gornykh vyrabotki shakhty Vostochnogo Donbasa TSNIEiugol p 76
[14] Glebov V, Kudrevanova E, Yakovenko A 1987 Efficiency of the use of high-level mechanized treatment complexes in the Donetsk basin TSNIEiugol Vol 7 pp 3-14
[15] Gorbachev D Likalter L, Kaganovich M 1988 Improving the mining industry in coal mines TSNIEiugol Vol 7 pp 2-12
[16] Grinko N, Ustinov M 1987 The main directions of improving the mining economy of mines Coal No 9 pp 3-10
[17] Yevtushenko A, Krasilnikov B, Prokopenko S The main directions of structural restructuring of the coal industry of Kuzbass Ugol 9 p 18
[18] Yevtushenko A, Luriy V, Mikheev O 1994 On the question of sgragegiarestructuring of the
[19] Zhikharev S 1995 The state of preparatory workings in the Vorkutaugol association Problems and solutions Coal 1 pp 13-18
[20] Zhikharev S 1996 The state of preparatory workings in the Vorkutaugol association Problems and solutions Coal 2 pp 20-22
[21] Zhdankin H, Zhdankin A 1990 Geomechanics of mining workings. Lava-drift coupling Novosibirsk Nauka, Siberian Branch p 112
[22] Zaidenvarg V 1996 Actual problems of geomechanics St. Petersburg Proceedings of the International Conference Efficient and Safe coal mining based on modern achievements of geomechanics p 222
[23] Zaidenvarg V 1994 Geomechanical justification and implementation of directions for improving the efficiency of underground mining operations Moscow Mining Institute p 76
[24] Zubov V 1995 Problems of improving traditional technologies in underground mining of coal seams St. Petersburg Zapiski SPGTI pp 68-78
[25] Zubov V 1994 On improving the methods of protection and maintenance of preparatory workings Coal 2 pp 68-78