Revisiting the Complexity of And/Or Graph Solution

Maise Dantas da Silva, Fábio Protti, Uéverton dos Santos Souza
Fluminense Federal University, Niterói, RJ, Brazil
maisedantas@id.uff.br, fabio@ic.uff.br, usouza@ic.uff.br

Abstract

This paper presents a study on two data structures that have been used to model several problems in computer science: and/or graphs and x-y graphs. An and/or graph is an acyclic digraph containing a source (a vertex that reaches all other vertices by directed paths), such that every vertex \(v \) has a label \(f(v) \in \{\text{and, or}\} \) and (weighted) edges represent dependency relations between vertices: a vertex labeled \textbf{and} depends on all of its out-neighbors (conjunctive dependency), while a vertex labeled \textbf{or} depends on only one of its out-neighbors (disjunctive dependency). X-y graphs are defined as a natural generalization of and/or graphs: every vertex \(v_i \) of an x-y graph has a label \(x_i - y_i \) to mean that \(v_i \) depends on \(x_i \) of its \(y_i \) out-neighbors. We analyze the complexity of the optimization problems Min-and/or and Min-x-y, which consist of finding solution subgraphs of optimal weight for and/or and x-y graphs, respectively. A solution subgraph \(H \) of an and/or-graph must contain the source and obey the following rule: if an \textbf{and}-vertex (resp. \textbf{or}-vertex) is included in \(H \) then all (resp. one) of its out-edges must also be included in \(H \). Analogously, if a vertex \(v_i \) is included in a solution subgraph \(H \) of an x-y graph then \(x_i \) of its \(y_i \) out-edges must also be included in \(H \). Motivated by the large applicability as well as the hardness of Min-and/or and Min-x-y, we study new complexity aspects of such problems, both from a classical and a parameterized point of view. We prove that Min-and/or remains NP-hard even for a very restricted family of and/or graphs where edges have weight one and \textbf{or}-vertices have out-degree at most two (apart from other property related to some in-degrees), and that deciding whether there is a solution subtree with weight exactly \(k \) of a given x-y tree is also NP-hard. We also show that: (i) the parameterized problem Min-and/or\((k, r)\), which asks whether there is a solution subgraph of weight at most \(k \) where every \textbf{or}-vertex has at most \(r \) out-edges with the same weight, is FPT; (ii) the parameterized problem Min-and/or\(^0\)(\(k \)), whose domain
includes and/or graphs allowing zero-weight edges, is W[2]-hard; (iii)
the parameterized problem Min-x-y(k) is W[1]-hard.

1 Introduction

In this paper we consider the complexity of problems involving two
important data structures, and/or graphs and x-y graphs. An and/or graph
is an acyclic digraph containing a source (a vertex that reaches all other
vertices by directed paths), such that every vertex \(v \in V(G)\) has a label
\(f(v) \in \{\text{and}, \text{or}\}\). In such digraphs, edges represent dependency relations
between vertices: a vertex labeled and depends on all of its out-neighbors
(conjunctive dependency), while a vertex labeled or depends on only one of
its out-neighbors (disjunctive dependency).

We define x-y graphs as a generalization of and/or graphs: every vertex
\(v_i\) of an x-y graph has a label \(x_i-y_i\) to mean that \(v_i\) depends on \(x_i\) of its
\(y_i\) out-neighbors. Given an and/or graph \(G\), an equivalent x-y graph
\(G'\) is easily constructed as follows: sinks of \(G\) are vertices with \(x_i = y_i = 0\);
and-vertices satisfy \(x_i = y_i\); and or-vertices satisfy \(x_i = 1\).

In representations of and/or graphs, and-vertices have an arc around its
out-edges. Figure 1 shows in (a) an example of and/or graph, and in (b) an
example of x-y graph.

And/or graphs were used for modeling problems originated in the 60’s
within the domain of Artificial Intelligence [17, 19]. Since then, they have
successfully been applied to other fields, such as Operations Research, Au-
tomation, Robotics, Game Theory, and Software Engineering, to model cutting
problems [15], interference tests [11], failure dependencies [4], robotic
task plans [5], assembly/disassembly sequences [7], game trees [13], software
versioning [6], and evaluation of boolean formulas [14]. With respect to
x-y graphs, they correspond to the x-out-of-y model of resource sharing in
distributed systems [3].

In addition to the above applications, special directed hypergraphs named
\(F\)-graphs are equivalent to and/or graphs [10]. An F-graph is a directed hyper-
graph where hyperarcs are called \(F\)-arcs (for forward arcs), which are
of the form \(E_i = (S_i, T_i)\) with \(|S_i| = 1\). An F-graph \(H\) can be easily
transformed into an and/or graph as follows: for each vertex \(v \in V(H)\) do
\(f(v)=\text{or}\); for each \(F\)-arc \(E_i = (S_i, T_i)\), where \(|T_i| \geq 2\), do: create an and-
vertex \(v_i\), add an edge \((u, v_i)\) where \(\{u\} = S_i\), and add an edge \((v_i, w_j)\) for
all \(w_j \in T_i\).
In this work, we denote by O_v and I_v, respectively, the subsets of out-neighbors and in-neighbors of a vertex v. Also, $\tau(e)$ denotes the weight of an edge e, and we define the weight of a graph as the sum of the weights of its edges. We assume $|V(G)| = n$ and $|E(G)| = m$.

The optimization problems associated with and/or graphs and x-y graphs are formally defined below.

Min-and/or

Instance: An and/or graph $G = (V, E)$ where each edge e has an integer weight $\tau(e) > 0$.

Goal: Determine the minimum weight of a subdigraph $H = (V', E')$ of G (solution subgraph) satisfying the following properties:
- $s \in V'$;
- if a non-sink node v is in V' and $f(v) = \text{and}$ then every out-edge of v belongs to E';
- if a non-sink node v is in V' and $f(v) = \text{or}$ then exactly one out-edge of v belongs to E'.

Min-x-y

Instance: An x-y graph $G = (V, E)$ where each edge e has an integer weight $\tau(e) > 0$.

Goal: Determine the minimum weight of a subdigraph $H = (V', E')$ of G satisfying the following properties:
- $s \in V'$;
- for every non-sink node v_i in V', x_i of its y_i out-edges belong to E'.

In 1974, Sahni [18] showed that Min-and/or is NP-hard via a reduction.
from 3-Sat. Therefore, Min-x-y is also NP-hard.

There are three trivial cases for which Min-and/or can be solved in polynomial time:

1. All vertices of G are and-vertices. In this case, G is the solution subgraph.

2. All vertices of G are or-vertices. In this case, the optimal solution subgraph is a shortest path between s and a sink.

3. G is a tree (and/or tree). In this case, the weight of the optimal solution subgraph of G, given by $c(s)$, can be obtained in $O(n)$ time via the recurrence relation below:

$$c(v_i) = \begin{cases}
0, & \text{if } v_i \text{ is a sink;} \\
\sum_{v_j \in O_{v_i}} (\tau(v_i, v_j) + c(v_j)), & \text{if } f(v_i) = \text{and}; \\
\min_{v_j \in O_{v_i}} \{\tau(v_i, v_j) + c(v_j)\}, & \text{if } f(v_i) = \text{or}.
\end{cases}$$

Other three trivial cases of Min-and/or can be listed: if every or-vertex has out-degree one then or-vertices can be converted into and-vertices, and case 1 above applies; if every and-vertex has out-degree one then and-vertices can be converted into or-vertices, and case 2 applies; finally, if every vertex with in-degree greater than 1 is a sink then the recurrence presented in the case 3 can be used.

As noted by Adelson-Velsky in [1], the problem Min-and/or has interesting connections with real-world applications in scheduling. An example is the work [2], which employs and/or graphs to model real-time scheduling of tasks in computer communication systems. Such a scheduling problem (AND/OR-SCHEDULING) generalizes the classical shortest-path and critical-path problems in graphs [1]. Given a weighted and/or graph, AND/OR-SCHEDULING consists of finding the earliest starting times $t(v_i)$, for all $v_i \in V(G)$, satisfying the following conditions:

- $t(v_i) = 0$, if v_i is a sink;
- $t(v_i) \geq \max_{v_j \in O_{v_i}} \{\tau(v_i, v_j) + t(v_j)\}$, if $f(v_i) = \text{and}$;
- $t(v_i) \geq \min_{v_j \in O_{v_i}} \{\tau(v_i, v_j) + t(v_j)\}$, if $f(v_i) = \text{or}$.
Min-and/or can thus be viewed as a variant of And/or-scheduling: while the latter aims at determining the minimum time necessary to perform a task, the former aims at determining the minimum cost to perform it. Since And/or-scheduling is solvable in polynomial time [1], its solution can be used as a practical lower bound for Min-and/or. In addition, the recurrence equations for and/or trees lead to a bottom-up dynamic programming algorithm to find in polynomial time a feasible solution (and hence an upper bound) of Min-and/or.

An x-y tree is an x-y graph where no two vertices share a common out-neighbor. As for Min-and/or, MIN-x-y can be solved in \(O(n)\) time when the input x-y graph is an x-y tree \(T = (V, E)\). To show this, observe first that the minimum weight of a solution subtree is given by a similar recurrence (shown below), since the optimal solution of an x-y tree rooted at a vertex \(v_i\) is obtained by \(x_i\) subtrees of \(v_i\):

\[
c(v_i) = \begin{cases}
0, & \text{if } v_i \text{ is a sink;} \\
\min_{X \subseteq O_{v_i}, |X| = x_i} \left\{ \sum_{x \in X} (\tau(v_i, x) + c(x)) \right\} & \text{else}
\end{cases}
\]

For each non-sink \(v_i\), we need to compute the sum of the \(x_i\) smallest values \(\tau(v_i, x) + c(x)\) among its children; determining the \(x_i\)-th smallest value takes \(O(y_i)\) time, and thus selecting the \(x_i\) smallest values takes \(O(y_i)\) time as well. Then the entire bottom-up procedure takes overall \(\sum_{i=1}^{n} O(y_i) = O(n)\) time.

Motivated by the large applicability as well as the hardness of MIN-and/or and MIN-x-y, we study new complexity aspects of such problems, both from a classical and a parameterized point of view. The latter is justified by the fact that many applications are concerned with satisfying a low cost limit. The remainder of this work is organized as follows. In Section 2, we prove that Min-and/or remains NP-hard even for a very restricted family of and/or graphs where edges have weight one and or-vertices have out-degree at most two (apart from another property related to some in-degrees), and that deciding whether there is a solution subtree with weight exactly \(k\) of a given x-y tree is NP-hard. In Section 3, we show that: (i) the parameterized problem MIN-and/or\((k, r)\), which asks whether there is a solution subgraph of weight at most \(k\) where every or-vertex has at most \(r\) out-edges with the same weight, is FPT; (ii) the parameterized problem Min-and/or\(^0\)(\(k\)), whose domain includes and/or graphs allowing zero-weight edges, is W[2]-hard; (iii) the parameterized problem MIN-x-y\((k)\) is W[1]-hard.
2 NP-hardness results

We now consider a very restricted family of and/or graphs, defined as follows: Let \mathcal{F} be the set of all and/or graphs G satisfying the following properties: every edge in $E(G)$ has weight one; every or-vertex in $V(G)$ has out-degree at most two; and vertices in $V(G)$ with in-degree greater than one are within distance at most one of a sink. We show that even for such and/or graphs the problem MIN-AND/OR remains NP-hard.

Theorem 1 MIN-AND/OR restricted to \mathcal{F} is NP-hard.

Proof. The proof uses a reduction from Vertex Cover, shown to be NP-hard by Karp in [12]. Given a graph $G = (V, E)$, we construct an and/or graph $G' = (V', E')$ in \mathcal{F} as follows. Suppose $V = \{v_1, \ldots, v_n\}$ and $E = \{e_1, \ldots, e_m\}$. Create a source $s \in V'$ with $f(s) = \text{and}$. For each edge $e_i \in E$ create an out-neighbor $w_{e_i} \in V'$ of s with $f(w_{e_i}) = \text{or}$. For each vertex $v_j \in V$ create a vertex $w_{v_j} \in V'$ with $f(w_{v_j}) = \text{or}$, and add an edge (w_{e_i}, w_{v_j}) in E' if and only if e_i is incident to v_j. Finally, create an out-neighbor t_{v_j} for each vertex $w_{v_j} \in V'$ and assign $\tau(e) = 1$ for all $e \in E'$.

Figure 2 illustrates in (a) a graph G and in (b) the and/or graph G' obtained by the construction above.

We now show that there is a vertex cover of size at most k in G if and only if there is a solution subgraph of weight at most $2m + k$ in G'. Suppose first that G has a vertex cover C of size at most k. A suitable solution subgraph H of G' can be obtained as follows. Vertex s must belong to $V(H)$ by definition. Since s is an and-vertex, its m out-edges must belong to $E(H)$. But every out-neighbor w_{e_i} of s is an or-vertex; then exactly one of its out-edges in G', say (w_{e_i}, w_{v_j}), must also belong to $E(H)$. We choose edge (w_{e_i}, w_{v_j}) if and only if $v_j \in C$. At this point, at most $|C|$ vertices w_{e_i} belong to $V(H)$. Now each w_{v_j} has exactly one out-neighbor which is a sink; then for each w_{v_j} we add only one additional out-edge of it. Hence H has weight $2m + |C| \leq 2m + k$.

Conversely, suppose that G' contains a solution subgraph H of weight at most $2m + k$. By construction, m out-edges of s belong to $E(H)$, and for each vertex w_{e_i} in $V(H)$ exactly one of its out-edges is in $E(H)$. Since each vertex w_{v_j} in $V(H)$ must have one out-neighbor, $V(H)$ contains at most k vertices w_{v_j}. Let X be the subset of vertices of the form w_{v_j} in $V(H)$, and C a subset of vertices of G such that $v_j \in C$ if and only if $w_{v_j} \in X$. Every vertex w_{e_i} in $V(H)$ has an out-neighbor w_{v_j} in $V(H)$, and by construction of G' a vertex w_{e_i} is an in-neighbor of w_{v_j} if and only if e_i is incident to v_j.
in G. Since every w_{e_i} in $V(H)$ has an out-neighbor $w_{v_j} \in X$, every edge e_i in G is incident to a vertex $v_j \in C$. Hence C is a vertex cover of G and $|C| = |X| \leq k$. □

![Graph G and the corresponding and/or graph G'](image)

Figure 2: A graph G and the corresponding and/or graph G'.

To conclude this section, we show an interesting result concerning x-y trees. Although MIN-x-y can be solved in linear time when restricted to x-y trees, deciding whether there is a solution subtree with weight exactly k of a given x-y tree is NP-hard.

Theorem 2 Let T be an x-y tree. Deciding whether there is a solution subtree T' of T with weight exactly k is NP-hard.

Proof. The proof uses a reduction from the SUBSET SUM problem, shown to be NP-hard by Karp in [12]. It consists of deciding whether in a set of integers there is a subset S of cardinality p such that the sum of the integers in S is equal to an integer value q. Given a set of integers $Z = \{z_1, z_2, ..., z_n\}$, an integer q and a positive integer p, we construct an x-y tree $T = (V, E)$ such that there is a solution subtree T' of T of weight exactly $k = q + p$ if and only if there is a subset Z' of Z such that $|Z'| = p$ and the sum of the elements in Z' equals q. The construction is as follows. Create a source vertex $s \in V(T)$ with label $p-n$. For each element $z_i \in Z$, create a vertex $u_i \in V(T)$ with label 1-1 and add an edge $e_i = (s, u_i) \in E(T)$ where
\(\tau(e_i) = 1 \). Finally, for each element \(z_i \in Z \), create a vertex \(w_i \) with label 0-0 and add an edge \(f_i = (u_i, w_i) \) with \(\tau(f_i) = z_i \).

Suppose that there is a subset \(Z' \) of \(Z \) such that \(|Z'| = p \) and the sum of its elements equals \(q \). Since the source vertex \(s \) has label \(p-n \), a solution subtree \(T' \) is constructed as follows: \(s \in V(T') \), and for each \(z_i \in Z' \) add edges \((s, u_i) \) and \((u_i, w_i) \) to \(E(T') \), where \(u_i \) and \(w_i \) are vertices associated with \(z_i \) by construction. Observe that each out-edge \(e_i \) of \(s \) satisfies \(\tau(e_i) = 1 \), and each edge \(f_i = (u_i, w_i) \) satisfies \(\tau(f_i) = z_i \). Hence the weight of \(T' \) is \(k = q + p \).

Conversely, suppose that there is a solution subtree \(T' \) of \(T \) with weight \(p+q \). By definition, \(s \in V(T') \), and there are \(p \) out-edges \(e_i \) of \(s \) belonging to \(E(T') \), each one with weight equal to 1. Let \(E' \) be the subset of edges of the form \(f_i = (u_i, w_i) \) in \(E(T') \). Note that \(|E'| = p \) and \(\sum_{f_i \in E'} \tau(e_i) = q \). Define \(Z' = \{ z_i \in Z \mid f_i = (u_i, w_i) \in E' \} \). Clearly, \(|Z'| = p \) and \(\sum_{z_i \in Z'} z_i = q \). \(\square \)

3 Parameterized complexity results

The Parameterized Complexity Theory was proposed by Downey and Fellows [8] as a promising alternative to deal with NP-hard problems described by the following general form [16]: given an object \(x \) and a nonnegative integer \(k \), does \(x \) have some property that depends only on \(k \) (and not on the size of \(x \))? In parameterized complexity theory, \(k \) is fixed as the parameter, considered to be small in comparison with the size \(|x| \) of object \(x \). It may be of high interest for some problems to ask whether they admit deterministic algorithms whose running times are exponential with respect to \(k \) but polynomial with respect to \(|x| \).

Definition 1 [9] A parameterized problem \(\Pi \) is fixed-parameter tractable, or FPT, if the question “\((x,k) \in \Pi?\)” can be decided in running time \(f(|k|) \cdot |x|^{O(1)} \), where \(f \) is an arbitrary function on nonnegative integers. The corresponding complexity class is called FPT.

Definition 2 [9] Let \(\Pi = (I,k) \) be a parameterized problem, where instance \(I \) is asked to have a solution of size \(k \). Reduction to problem kernel means to replace instance \((I,k) \) by a reduced instance \((I', k') \) (called problem kernel) such that \(k' \leq ck \) for a constant \(c \), \(|I'| \leq g(k) \) for some function \(g \) only depending on \(k \), and \((I,k) \in \Pi \) if and only if \((I',k') \in \Pi \). Furthermore, the reduction from \((I,k) \) to \((I',k') \) is computable in polynomial time.
Definition 3 [9] Let \((Q, k)\) and \((Q', k')\) be parameterized problems over alphabets \(\Sigma\) and \(\Sigma'\), respectively. An FPT-reduction from \((Q, k)\) to \((Q', k')\) is a mapping \(R : \Sigma^* \rightarrow (\Sigma')^*\) such that:

1. For all \(x \in \Sigma^*\), it holds that \(x \in Q\) if and only if \(R(x) \in Q'\);
2. \(R\) is computable by an FPT-algorithm (with respect to \(k\));
3. There is a computable function \(g : N \rightarrow N\) such that \(k'(R(x)) \leq g(k(x))\) for all \(x \in \Sigma^*\).

In addition to the FPT class, some classes of parameterized problems are defined according to their parameterized intractability level. These classes are organized in a \(W\)-hierarchy \((\text{FPT} \subseteq W[1] \subseteq W[2] \subseteq \cdots \subseteq W[P])\), and it is conjectured that each of the containments is proper [8]. If \(P = NP\) then the hierarchy collapses [8].

We define \(C\)-hardness and \(C\)-completeness of a parameterized problem \((Q, k)\) as in classical complexity theory: \((Q, k)\) is \(C\)-hard under FPT-reductions if every problem in \(C\) is FPT-reducible to \((Q, k)\); \((Q, k)\) is \(C\)-complete under FPT-reductions if \((Q, k) \in C\) and \((Q, k)\) is \(C\)-hard.

To cite a few examples where parameter \(k\) is associated with the size of a solution, \(\text{Vertex cover}(k)\) is FPT, \(\text{Clique}(k)\) is \(W[1]\)-complete, and \(\text{Dominating set}(k)\) is \(W[2]\)-complete (see [8]). Several other results can be found in [8].

3.1 The problem \(\text{MIN-AND/OR}(k, r)\)

By Theorem 1, \(\text{MIN-AND/OR}\) remains NP-hard even when each or-vertex has at most two out-neighbors. Let \(\text{MIN-AND/OR}(k, r)\) stand for the parameterized version of \(\text{MIN-AND/OR}\) where every or-vertex of the input graph has at most \(r\) out-edges with the same weight and it is asked whether there is a solution subgraph of weight at most \(k\). Note that the restriction “at most \(r\) out-edges with the same weight” imposed on or-vertices is in fact a far more general situation than simply restricting the out-degree of vertices to a constant. In this subsection, we show that \(\text{MIN-AND/OR}(k, r)\) is in FPT for parameters \(k\) and \(r\).

Theorem 3 \(\text{MIN-AND/OR}(k, r)\) is reducible to a problem kernel in time \(O(m)\).

Proof. The proof is based on some correct reduction rules that must be applied once in the order given below:
1. for each and-vertex v_i, if $\sum_{v_j \in O_{v_i}} \tau(v_i, v_j) > k$ then remove it;

2. for each edge $e \in E(G)$, if $\tau(e) > k$ then remove it;

3. for every vertex $v_i \neq s$, if the weight of a shortest path from s to v_i is greater than k then remove it;

4. if some vertex becomes unreachable from s then remove it;

5. for every vertex that becomes a sink, assign weight $k + 1$ to all its in-edges;

6. for each and-vertex such that some of its out-neighbors has been removed, assign weight $k + 1$ to all its in-edges.

Let G' be the graph obtained by applying the above reduction rules. The reduction rules have modified or removed only vertices and edges that could not be part of a solution subgraph of maximum weight k in G and vice-versa. Thus, if S is a solution subgraph of weight at most k in G' then S is also a solution subgraph of weight at most k in G. Note that the running time to apply the above reduction rules is $O(m)$, since G is acyclic.

In G' the longest shortest-path from s to a sink has cost at most k, and each vertex has at most kr out-neighbors. Thus, G' will have a maximum number of vertices if: (i) all its non-sink vertices have out-degree equal to kr, (ii) no vertex shares a same out-neighbor with another vertex, and (iii) the cost of the shortest path from s to any sink is k. Hence the number of vertices at distance i from s is at most $(kr)^i$, that is, the total number of the vertices in G' is at most $O((kr)^{k+1})$.

Since (a) the reduction rules can be applied in $O(m)$ time, (b) the size of G' is a function of the parameters k and r, and (c) a solution subgraph of maximum weight k in G' is also a solution subgraph of maximum weight k in G, we conclude that G' is a kernel for MIN-AND/OR(k, r). Hence MIN-AND/OR(k, r) is reducible to a problem kernel in $O(m)$ time.

Corollary 4 MIN-AND/OR(k, r) is in FPT. □

3.2 And/or graphs with zero-weight edges

In this subsection, we consider the family Z of and/or graphs where zero-weight edges are allowed. This can model practical situations in which some decisions can be taken at no cost, although in the original definition of MIN-AND/OR [18] all edges have positive weights. Let MIN-AND/OR$^0(k)$ stand for
the parameterized version of Min-and/or applied to and/or graphs in Z, and Dominating Set(c) for the W[2]-hard parameterized problem where it is asked whether an input graph Q has a dominating set of size at most c (see [8]).

Theorem 5 Dominating Set(c) is FPT-reducible to Min-and/or$^0(k)$.

Proof. Given an instance (Q, c) of Dominating Set(c), we construct an instance (G, k) of Min-and/or$^0(k)$ as follows: (a) create a source vertex s in G where $f(s) =$ and; (b) for each vertex $v_i \in V(Q)$, create three associated vertices u_i, w_i, t_i where $f(u_i) =$ or, $f(w_i) =$ and, $f(t_i) =$ or; (c) for each vertex $u_i \in V(G)$, add an edge (s, u_i) with $\tau(s, u_i) = 0$, and add an edge (u_i, w_j) with $\tau(u_i, w_j) = 0$ if and only if $i = j$ or $(v_i, v_j) \in E(Q)$; (d) create an edge $(w_i, t_i) \in E(G)$ with $\tau(w_i, t_i) = 1$ for all $i \in \{1, \ldots, n\}$; (e) finally, set $k = c$.

If Q contains a dominating set C such that $|C| \leq c$ then it is possible to construct a solution subgraph H of G with weight at most k as follows: s and all of its out-neighbors belong to $V(H)$; for each vertex $u_i \in V(H)$, include in $V(H)$ an out-neighbor w_j of u_i if and only if $v_j \in C$; and for each vertex $w_j \in V(H)$, add an edge (w_j, t_j) to $E(H)$. Since $|C| \leq c = k$ then at most k edges (w_j, t_j) belong to $E(H)$. Hence H has weight at most k.

Conversely, if G has a solution subgraph H with weight at most k then it is possible obtain a dominating set C of Q as follows: a vertex v_i of Q belongs to C if and only if w_i belongs to $V(H)$. Since H is a solution subgraph, by definition every non-sink or-vertex has exactly one out-neighbor. Hence H has at most k vertices w_i and $|C| \leq k$. □

Figure 3 illustrates in (a) an instance of Dominating Set and in (b) the corresponding instance of Min-and/or$^0(k)$ obtained by the construction above.

Corollary 6 Min-and/or$^0(k)$ is W[2]-hard. □

3.3 The problem Min-x-y(k)

Let Min-x-y(k) stand for the parameterized version of Min-x-y, where it is asked whether there is a solution subgraph of weight at most k, and Clique(c) for the W[1]-hard parameterized problem where it is asked whether the input graph Q has a clique of size c (see [8]).

Theorem 7 Clique(c) is FPT-reducible to Min-x-y(k).
Proof. Given an instance \((Q,c)\) of \textsc{Clique}(c), we construct an instance \((G,k)\) of \textsc{Min-x-y}(k) as follows:

- create a source vertex \(s\) in \(G\);
- create a set \(\{u_1,u_2,...,u_n\}\) of out-neighbors of \(s\), where \(n = |V(Q)|\) (vertex \(u_i\) of \(G\) is associated with vertex \(v_i\) in \(Q\));
- for each vertex \(u_i\), create two out-neighbors \(z_i\) and \(w_i\) of \(u_i\);
- for each vertex \(z_i\), create an edge \((z_i,w_j)\) if and only if \(v_j\) and \(v_i\) are neighbors in \(Q\);
- for each vertex \(w_i\), create an out-neighbor \(t_i\) of \(w_i\) (\(t_i\) is a sink);
- if \(v_i \in V(Q)\) has degree less than or equal to \(c - 1\) then \(\tau(s,u_i) = c^2 + 3c + 1\) else \(\tau(s,u_i) = 1\); for all other edges in \(G\) their weights are 1;
- \(s\) has label \(c-n\);
- every vertex \(u_i\) has label 2-2;
- every vertex \(w_i\) has label 1-1;
- every vertex \(t_i\) has label 0-0;

Figure 3: An instance of \textsc{Dominating Set}(c) in (a), and the corresponding instance of \textsc{Min-AND/OR}^0(k) in (b).
- for each vertex z_i, if $d(v_i) \geq c - 1$ then z_i is labeled $(c - 1) - d(v_i)$, otherwise z_i is labeled $d(v_i) - d(v_i)$ (where $d(v_i)$ is the number of neighbors of v_i in Q);

- set $k = c^2 + 3c$.

Figure 4 illustrates in (a) a graph Q, and in (b) the corresponding graph G.

Observe that the construction of G can be done in $O(m)$ time, since $|V(G)| = 4|V(Q)| + 1$. We show that Q contains a clique of size c if and only if G contains a solution subgraph of size less than or equal to k.

If Q contains a set of vertices $\{v_1, v_2, ..., v_c\}$ forming a clique C of size c, then a solution subgraph H of G is constructed as follows. Since s is a vertex with label $c - n$, choose $\{u_1, u_2, ..., u_c\}$ to be the out-neighbors of s in H. Now each vertex u_i has label $2 - n$, and thus vertices $w_1, w_2, ..., w_c$ and $z_1, z_2, ..., z_c$ are also part of the solution subgraph H. This implies that vertices $t_1, t_2, ..., t_c$ belong to $V(H)$ as well. At this point, H already contains $4c$ edges of weight 1. Since each vertex z_i depends on $c - 1$ out-neighbors, choose an out-neighbor w_j of z_i if and only if $v_j \in C$. Note that out-edges of vertices $z_1, z_2, ..., z_c$ add weight $c(c - 1)$ to H. In addition, selected out-neighbors of each vertex z_i were already in H before their choice. Hence the weight of H is $c(c - 1) + 4c = c^2 + 3c = k$.

Conversely, suppose that G contains an optimal solution subgraph H of weight at most $k \leq c^2 + 3c$. Note that H is a solution subgraph such that: (i) s has c out-neighbors u_i; (ii) each out-neighbor u_i of s has two out-neighbors z_i and w_i; (iii) each one of the c vertices z_i has $c - 1$ out-neighbors. From these observations, H contains so far at least $c^2 + 2c$ edges, that is, H contains at most c vertices w_i. By construction, if $w_i \in V(H)$ then vertices u_i and z_i also belong to $V(H)$; but since there is no edge between z_i and w_i, H contains exactly c vertices w_i, and $(z_i, w_j) \in E(H)$ for all $w_j \neq w_i$ belonging to $V(H)$. Let C be the subset of vertices $v_i \in V(Q)$ such that $v_i \in C$ if and only if $w_i \in H$. Since u_i, z_i, w_i in G are associated with v_i in Q and out-edges of z_i in G represent the neighborhood of v_i in Q, we conclude that C is a clique of size c in Q. Hence $\text{CLIQUE}(c)$ is FTP-reducible to $\text{MIN-X-Y}(k)$.

Corollary 8 $\text{MIN-X-Y}(k)$ is $W[1]$-hard.
Figure 4: FPT-reduction of graph Q in (a) to x-y graph G in (b).

4 Conclusions

In this paper we have proved that Min-and/or remains NP-hard even for and/or graphs where edges have weight one, or-vertices have out-degree at most two, and vertices in with in-degree greater than one are within distance at most one of a sink; and that deciding whether there is a solution subtree with weight exactly k of a given x-y tree is also NP-hard. We also have shown that Min-and/or(k, r) is in FPT, Min-and/or$^0(k)$ is W[2]-hard, and Min-x-y(k) is W[1]-hard.

The question of classifying the parameterized problem Min-and/or(k) for and/or graphs whose edges have positive weights remains open.

References

[1] Adelson-Velsky G. M., Gelbukh A. F., Levner, E., A fast scheduling algorithm in AND-OR graphs, Topics in Applied and Theoretical Mathematics and Computer Science, WSEAS Press, p. 170-175, 2001.

[2] Adelson-Velsky G. M., Levner E., Routing information flows in networks: A generalization of Dijkstra’s algorithm, Proceedings of the International Conference “Distributed Computer Communication Networks”, 1999.
[3] Barbosa V. C., The combinatorics of resource sharing, in Fialles, M. and Gomes, F., editors, *Models for Parallel and Distributed Computation: Theory, Algorithmic Techniques and Applications*, Kluwer Academic Publishers, The Netherlands, 2002.

[4] Barnett J. A., Verma T., Intelligent reliability analysis, *10th IEEE Conference on Artificial Intelligence for Applications*, p. 428-433, 1994.

[5] Cao T., Sanderson, A. C., And/or net representation for robotic task sequence planning, *IEEE Trans. Systems Man Cybernet, Part C: Applications and Reviews*, v. 28, p. 204-218, 1998.

[6] Corandi R., Westfechtel B., Version models for software configuration management, *ACM Computing Surveys*, v. 30, p. 233-282, 1998.

[7] DeMello L. S. H., Sanderson A. C., A correct and complete algorithm for the generation of mechanical assembly sequences, *IEEE Trans. Robotics and Automation*, v. 7, p. 228-240, 1991.

[8] Downey, R., Fellows, M., *Parameterized Complexity*, Springer-Verlag, 1999.

[9] Flum J., Grohe M., *Parameterized Complexity Theory*, Springer, 2006.

[10] Gallo G., Longo G., Nguyen S., Pallottino S., Directed hypergraphs and applications, *Discrete Applied Mathematics*, v. 42, p. 177-201, 1993.

[11] Jiménez P., Torras C., Speeding up interference detection between polyhedra, *IEEE International Conference on Robotics and Automation*, v. 2, p. 1485-1492, 1996.

[12] Karp R. M., Reducibility among combinatorial problems, in R. E. Miller and J. W. Thatcher, editors, *Complexity of Computer Computations*, Plenum Press, 1972.

[13] Kumar V., Kanal L. N., Parallel branch-and-bound formulations for and/or tree search, *IEEE Transactions Pattern Analysis and Machine Intelligence*, PAMI-6, p. 768-778, 1984.

[14] Laber, E. S., A randomized competitive algorithm for evaluating priced and/or trees, *Theoretical Computer Science*, v. 401, n. 1, p. 120-130, 2008.

[15] Morabito R., Pureza V., A heuristic approach based on dynamic programming and and/or-graph search for the constrained two-dimensional
guillotine cutting problem, *Annals of Operation Research*, v. 179, p. 297-315, 2010.

[16] Niedermeier, R., *Invitation to Fixed-Parameter Algorithms*, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, 2006.

[17] Nilsson N. J., Problem-reduction representations, in Dojny, R. F. and Eakins, M., editors, *Problem Solving Methods in Artificial Intelligence*, McGraw-Hill, 1971.

[18] Sahni S., Computationally related problems, *SIAM Journal on Computing*, v. 3, n. 4, p. 262-279, 1974.

[19] Simon R., Lee R. C. T., On the optimal solution of and/or series parallel graphs, *Journal of Association for Computing Machinery*, v. 18, n. 3, p. 354-372, 1971.