1 Introduction

South Africa annually produces around 60,000 tons of sweet potato (DAFF 2014), a much lower production than most other countries in sub-Saharan Africa (FAOSTAT 2014). Notwithstanding, sweet potato is an important indigenized root crop in South Africa and a popular traditional crop in the northern subtropical regions of the country (Laurie et al. 2015b). The sweet potato industry in South Africa is notably different as there is, on one end, a small number of large commercial mechanized farmers and, on the other end, the crop features prominently in smallholder cropping systems delivering to the informal markets. Smallholder and subsistence farmers easily include sweet potato in their cropping programmes because of its versatility, ease to cultivate and hardiness. Additionally, many people are starting to note the value of orange cultivars as rich sources of provitamin A (Laurie et al. 2015b). This is of great importance since Vitamin A deficiency (VAD) in South Africa is a national public health problem with 43.6% of one- to nine-year-olds being vitamin A deficient (Shisana et al. 2013). The same survey also indicated that food security is at an unfavourable level, with 28.3% of the population at risk of hunger and 26.0% already experience hunger. Based on these alarming statistics, sweet potato is promoted for food and nutrition security. While the estimated informal market of 25,000 – 30,000 t for sweet potato brings an opportunity for income generation and enterprise development, there is a large potential for processing sweet potato into various products, such as biscuits, doughnuts, juice and chips that can be processed on kitchen-scale (Laurie et al. 2015b, but may be scaled to commercial size with higher sweet potato production.

Since 1995, the ARC-VOP breeding programme has been focussing on high yield, good root quality, adaptability, high dry mass and sweet taste. Furthermore, in 2003, β-carotene became the major breeding goal of the programme. Cultivars released include Ndou and Monate (2003), Bophelo (2011), and Mvuvhelo (2013), while a line from the International Potato Centre...
(CIP), 199062.1, is being promoted since 2010 (Laurie et al. 2015a,c). Trials at five research stations across 2008/9 to 2010/11 achieved total yield of 29.5 – 36.2 t/ha (mean 33.5 t/ha) and 17.3 – 24.6 t/ha (mean 20.0 t/ha) for marketable yield. However, the cultivars needed to be tested in a wider range of sites at on-farm conditions to confirm performance and for cultivar recommendations.

Farmers are basically interested in cultivars with consistent superior performance on their own farms, and those specifically adapted to farmer conditions and needs, with a high degree of stability over time Ceccarelli 1989). However, there are specific advantages with varieties that are input-responsive as these may be able to respond to changes in the environment in contrast to stable/non-responsive varieties. Popular multivariate approaches to investigate stability include the Tai stability test (Tai, 1971), Additive Main Effects and Multiplicative Interaction (AMMI) model (Gauch and Zobel 1996) and GGE (genotype main effect plus G x E interaction) biplot model, which simultaneously represents both mean performance and stability (Yan and Kang 2003), and variance components (Tumwegamire et al. 2016). In addition, there is potential in using additional statistical methods (e.g. Principal Component Analysis - PCA) to demonstrate association of variables and cultivars and Discriminant Analysis (DA) to determine the most prominent cultivar characteristics (Rencher, 2002).

Across the 2011/12 to 2014/15, commercially released cultivars for the informal market were evaluated under on-farm conditions and various agro-ecologies to identify those that perform well under farmer conditions and at different sites and, thus, can be widely recommended. This paper reports on the performance of released cultivars in on-farm trials in four provinces, their adaptability and stability, trait association and progress with vine distribution of the cultivars. The secondary purpose of the on-farm trials was to expose farmers to the improved cultivars and thereby extend production.

2 Methodology

2.1 Sites

On-farm trials were conducted in four provinces; nine locations in Kwa Zulu-Natal, four in Gauteng, one in the Eastern Cape province and one in Limpopo province. The experiments were conducted across the 2011/12 to 2014/15 planting seasons, one trial per site. The location information is presented in Table 1 and were representative of two regions, namely cool subtropical and warm temperate.

2.2 Planting material and trial maintenance

Six cultivars, as indicated in Table 2, were tested in a RCBD with three replicates at all 15 locations. Sweet potato cuttings were planted 30 cm apart in-row and 1 m apart intra-row. Plot size varied from 30 to 40 plants/plot depending on availability of cuttings. All plants were used for data collection. Cuttings were produced in a field multiplication block at the ARC-VOP which was established with source material from the sweet potato disease-tested scheme. Fertilizer mix (500 kg/ha 2:3:4 N,P,K) was broadcast before planting due to the low nutrient status generally found in resource-poor farmer sites. Fertilizer application was, however, half of the recommended dosage (Niederwieser, 2004) since farmers seldom afford to apply more. Supplementary irrigation was applied during the growing season for five to six months at each site (Table 1).

2.3 Data collection

Data collection included rating of storage root defects such as veins, constrictions, grooves (where on a 5-point ordinal scale, 1=very bad, 5=very few), marketable storage root yield (good quality roots between 100 and 1200 g) and unmarketable storage root yield classes (cracked, insect damaged, long irregular, <100 g, >1200 g, mechanical damaged, rotten). Two medium storage roots (250 to 500 g) were sampled for determination of dry mass (dried in oven at 70°C for 48 hours). Taste acceptability of 3 to 4 cooked storage roots was determined with small informal panels, using a rating scale: 1=excellent to 5=very bad.

2.4 Statistical analysis

A combined analysis of variance was performed using SAS 9.4 (SAS Institute Inc., Cary, North Carolina) with sources: cultivar, location and region and their interaction (John and Quenouille 1977). The Additive Main Effects and the Multiplicative Interaction (AMMI) model was used to analyse genotype by environment interaction using Gen Stat Release 15.2 (VSN International Ltd., Hemel, Hempstead) for cultivar * location. “Year” was not a variable because the trials were not repeated per location (Gauch et al. 2008). Principal component analysis was performed to demonstrate association of variables (Loadings) and cultivars (Scores) with PCA Factor scores. A discriminant analysis (using XLSTAT 2013 (Addinsoft, Paris, France) was done to determine the most prominent cultivar characteristics (Rencher 2002).
Region	Loc Code	Location name	Location details	Province	Planting & Harvest date	Altitude (m)	Mean Max °C January	Mean Max °C June	Mean Min °C July	Mean annual rain mm	Mean rain months of trial mm	
Cool subtropical	BUL	Nongoma 1	Bululwane - Nongoma 2012/13	KwaZulu-Natal	29/10/2012-30/03/2013	367	29.9	21.9	7.4	775	548	
	MLA	Ulundi 1	Mhlabatini - Ulundi 2012/13	KwaZulu-Natal	30/10/2012-27/03/2013	522	28.9	21.9	7.5	685	481	
	MAYE	Nongoma 2	Maye – Nongoma/Hlabisa 2014/15	KwaZulu-Natal	29/10/2014-26/03/2014	337	29.9	21.9	7.4	775	548	
	CEZ	Ulundi 2	Ceza 1 Nongoma 2014/15	KwaZulu-Natal	10/12/2014-20/05/2015	353	29.9	21.9	7.4	775	500	
	PON	Pongola	Khiphunyawa - Piet Retief 2013/14	KwaZulu-Natal	05/12/2013-13/05/2014	830	28.7	21.7	7	632	447	
Warm temperate	NEB	Nebo	Mamphokgo - Nebo 2014/15	Limpopo	24/11/2014-19/05/2015	945	28.2	21.2	6	670	474	
	DUM	Paulpietersburg	Dumbe - Paulpietersburg 2014/15	KwaZulu-Natal	09/12/2014-27/05/2015	1144	27.3	20.2	4.1	746	463	
	KUT	Soshangueve	Kutlwano - Soshangueve 2011/12	Gauteng	18/01/2012-8/06/2012	1179	28.7	19.5	4	686	371	
	SIM	Ekangala 2	Simajo - Bronkhorstspruit 2011/12	Gauteng	20/01/2012-18/06/2012	1375	26.7	17.8	1.6	570	263	
	WIN	Winterveldt	Winterveldt 2011/12	Gauteng	19/01/2012-11/06/2012	1101	29	20	4	685	370	
	SYA	Ekangala 1	Siyathuthuka - Bronkhorstspruit 2011/12	Gauteng	21/01/2012-20/06/2012	1375	26.7	17.8	1.6	570	263	
	MON	Vryheid 1	Vryheid Mondlo 2013/14	KwaZulu-Natal	03/12/2013-14/05/2014	1150	26.4	19.6	3.5	688	359	
	MVU	Vryheid 2	Vryheid Mvunyane 2013/14	KwaZulu-Natal	04/12/2013-08/04/2014	1040	26.4	19.6	3.5	688	559	
	MAP	Ladysmith	Mphophomeni Ladysmith 2014/15	KwaZulu-Natal	24/10/2014-24/04/2015	1023	28.1	20	2.5	639	481	
	MJI	Kokstad	Mjila - Kokstad 2012/13	Eastern Cape	28/11/2012-26/05/2013	1319	25.5	18	1	620	439	
Cultivar	Origin	Yield	Skin colour	Flesh color	Storage root shape	β-carotene (mg/100g fwb)	Dry matter	Maturity period: Early (± 4.5 months), medium to late (± 5 months)	Resistance to SPFMV	Resistance to Alternaria blight	Resistance to Fusarium wilt	Resistance to nematodes (Meloidogyne sp.)
----------	--------	-------	-------------	-------------	--------------------	--------------------------	------------	--	------------------	-----------------------------	-----------------------------	----------------------------------
199062.1	CIP	High	Cream pale orange	Yellow orange	Heavy oblong – irregular	2.10	Medium	Early	S	R	R	MR
Ndou	ARC	High	Cream – slight pale orange	Cream–cream, pale orange Cream	Round elliptic to Long obovate	0.21	High	Medium	S	R	MR	MR
Monate	ARC	High	Cream, purple tip Cream	Cream	Long elliptic to Round elliptic	0.02	High	Early	S	R	MS	R
Mvuhelo	ARC	High	Cream-white Pale cream	Pale cream	Round	0.01	High	Early	S	R	MR	R
Bophelo	ARC	Medium-high Orange	Orange	Round elliptic to long elliptic	6.71	Medium	Medium	S	R	MR	MR	
Impilo	ARC	Medium Yellow orange	Pale orange	Round elliptic to Elliptic	5.09	Medium	Medium	S	R	R	MS	

ARC = Agricultural Research Council, South Africa, CIP = International Potato Centre, N/A = Not applicable, R = Resistant, S = Susceptible, M = Moderate

For resistance refer to: SPFMV - Domola et al. (2008), Alternaria – Kandolo et al. (2016), Fusarium wilt – Dau (2016), Nematodes – Pofu et al. (2016)
3 Results

3.1 Yield components

Significant effects were detected for location*cultivar and region*cultivar for total and marketable storage root yield, and for marketable yield only cultivar (Table 3). Unmarketable classes insect damage (%) and cracked (%) showed significant effects for locality, region and cultivar, and their interactions. The marketable yield (Table 4) of cultivars 199062.1 and Ndou were significantly higher than that of all the other cultivars, and the mean marketable yield over 15 locations was 15.8 t/ha. The mean total yield ranged from 24.8 to 28.5 t/ha (mean 26.8 t/ha).

Cultivar 199062.1 had significantly less insect-damaged roots than all other cultivars (Table 4). Ndou and 199062.1 had lower percentage cracked roots. The average marketable root weight was 242.2 g, which was significantly higher in cultivar 199062.1 than in other cultivars; therefore, indicative of larger storage roots. Ndou was shown to be high in dry mass with a good taste rating (Table 4). The most prevalent unmarketable class was insect-damaged roots (mean of 15.1%), predominantly caused by sweet potato weevil (Table 5). The mean marketable percentage was 59.1% (data not shown).

Table 3: Combined analysis of variance of a series of on-farm cultivar demonstration trials in 15 locations

Source	df	ms	pr>F	df	ms	pr>F	df	ms	pr>F
Locality	14	1297.1	<0.001	212.6	<0.001	742.5	<0.001		
Region	1	99.9	0.131	691.7	<0.001	5427.0	<0.001		
Rep(Local)	30	74.0	0.020	27.0	0.389	184.1	<0.001		
Cultivar	5	80.4	0.106	114.4	<0.001	502.1	<0.001		
Local x Cult	70	79.8	0.001	50.3	<0.001	75.8	<0.001		
Region x Cult	5	208.5	<0.001	133.1	<0.001	143.2	<0.001		
Error	150	43.4	25.4	45.8	149	21.5	<0.001		
Total	269								

df = Degrees of Freedom, ms = Mean Squares and pr = Probability of F

Table 4: Mean storage root yield performance for six cultivars over 15 on-farm sites in South Africa

Cultivars	Total root yield (t/ha)	Marketable root yield (t/ha)	Average marketable root weight (g)	Insect damaged roots %	Cracked roots %	Dry mass %	Taste rating**
199062.1	28.5	19.0a	304.5a	9.9d	1.8c	26.39	2.60
Ndou	27.8	17.8a	256.6b	14.1bc	1.4c	29.29	2.14
Monate	27.2	15.8b	242.4b	18.1a	2.5bc	26.44	2.65
Mvuvhelo	25.9	15.2bc	206.3c	14.0c	4.5ab	26.28	2.31
Bophelo	26.6	13.8cd	207.9c	16.9ab	5.3a	23.66	2.31
Impilo	24.8	13.1d	203.6c	18.9a	4.2ab	21.41	2.85
Pr > F	0.106	<.0001	<.0001	<.0001	<.0001	na	na
CV	24.6%	29.3%	16.6%	na	na	na	na
LSDp=0.05	ns	1.93	16.39	2.82	2.10	na	na
Overall Range	3.8-61.5	1.4-49.6	88-618.1	0-81	0-45.5	16.2-35.8	1.3-4.6

na = not applicable ns = not significant

*Mean from 12 locations (collection of replicated results were not possible at all sites; variable excluded in ANOVA)

**Rating scale: 1=Excellent; 5=Very bad; Mean of one rating at 15 sites (variable excluded in ANOVA)
3.2 Effect of region and location

As indicated, the trial locations were divided in two different climatic regions, warm temperate and cool subtropical. ANOVA (Table 3) showed the interaction of cultivar*region had significant effect on cultivar yield. Cultivar Muvhelo performed particularly well at Ulundi 1 (47.4 t/ha) and Ekangala 2 (44.0 t/ha), while having very low total yield at Ladysmith (8.1 t/ha), Nongoma 1 (10.5 t/ha) and Vryheid 1 (11.0 t/ha) (Fig. 1). Ekangala 2 (37.9 t/ha), Ulundi 1 (36.5 t/ha) and Soshanguve (36.1 t/ha) had the highest total yield, while at Nongoma 2 (10.1 t/ha), Vryheid 1 (14.1 t/ha) and Winterveldt (17. t/ha) had low mean total yield (Fig. 1). However, the factor region was not significant for total yield nor for marketable storage root yield (Table 3).

3.3 Genotype by environment interaction

The AMMI biplot of the first PCA versus marketable storage root yield explained 52.39% of the genotype by environment interaction (Fig. 2a). AMMI indicated a stable (PC1 score between 1.5 and -1.5) and high marketable yield for Ndou, while Monate had also stable although average marketable yield. The highest yielding cultivar 199062.1 as well as Muvhelo had unstable marketable yields; PC1 scores surpassing 2.5 and -2.5, respectively. The PC1 score of orange-fleshed cultivar Bophelo was just inside the cut-off line of being stable. This can be an advantage as the cultivar may have the potential to adapt to changes in conditions. Ndou performed well at environment sites Ulundi 2 (CEZ), Pongola (PON), Vryheid 2 (MON), Vryheid 2 (MVU), Kokstad (MJI), lying in their close proximity. A second grouping of similar sites were Nongoma 2 (MAYE), Ladysmith (MAP), Nebo (NEB) and Ekangala 2 (SIM). Bophelo was specifically adapted to Paulpietersburg (DUM) and 199062.1 to Ulundi 1 (MLA); Monate to Nongoma 1 (BUL); and Mvuvhelo and Impilo to Ekangala 1 (SYA).

Table 5: Mean values and range for unmarketable storage root classes, taste acceptability score and dry mass content over 15 on-farm locations in South Africa

Class	Minimum	Maximum	Mean
Insect damaged %	0	67.3	15.1
Unmarketable small %	0	25.6	6.5
Damaged %	0	19.9	5.7
Grooves %	0	30.0	5.1
Unmarketable large %	0	36.7	4.7
Veins %	0	55.0	4.3
Constrictions %	0	20.0	3.6
Cracked %	0	26.3	2.9
Rat damaged %	0	36.2	2.8
Rotten %	0	13.7	1.8
Curved %	0	22.0	1.7
Taste score*	1.3	4.6	2.5
Dry mass %	16.2	35.8	25.5

*Rating scale: 1=Excellent; 5=Very bad

Figure 1: Locality by cultivar interaction means for total yield for six cultivars by 15 on-farm trials (localities)
In terms of total storage root yield (Fig. 2b), the AMMI biplot of the first principal component versus total yield explained 58.45% of the genotype by environment interaction. The AMMI analysis indicated stable total yield performance from Ndou and Monate (placed close to a zero PC1 score), while the other four cultivars had unstable performance (PC1 scores surpassing 2.5 and -2.5). Impilo cultivar performed well at environment sites SYA and Soshanguve (KUT). Monate and Ndou performed particularly well at MON, while cultivars 199062.1 and Bophelo performed better at MLA.

The AMMI graph insect (mostly weevil) damage percentage presented in Figure 3a revealed that the first principal component explained 59.02% of the genotype by environment interaction. The highest insect (mostly weevil) damage % was detected for Impilo. The cultivar was stable with regards to this negative trait (PC1 score -1.25). Monate, Mvuhelo and Bophelo had medium high insect damage but unstable in this regard, while Ndou was stable, lying close to the zero line. The lowest weevil damage was observed for 199062.1 cultivar. A mega-environment (group of similar environments) was seen for KUT, Winterveld (WIN), SIM, MJI, MON, CEZ, DUM and MVU associating with Ndou and 199062.1 cultivars.

The AMMI biplot of the first principal component versus cracked roots percentage explained 58.45% of

Figure 2: Biplot of IPCA1 versus a) mean marketable storage root yield and b) total storage root yield for six sweet potato cultivars evaluated over 15 sites (Site abbreviations are explained in Table 1) (The cut-off line for stability is indicated in perforated blue line).
the genotype by environment interaction (Fig. 3b). Bophelo, Mvuvhelo and Impilo had high mean cracked root percentage. Impilo and Ndou was stable (PC1 score between 1.5 and -1.5) and the other four cultivars were unstable. Environments reacting similarly included WIN, MAP, KUT, MVU, DUM, PON, NEB, MON and BUL forming a mega-environment with Ndou cultivar, which had the lowest cracked percentage. Monate and 199062.1 cultivars were associated with MJL, whereas Bophelo cultivar associated with SYA and CEZ sites.

3.4 Cultivar association and predominant traits of cultivars

The discriminant analysis divided the cultivars into three groups (Fig. 4a), of which the grouping was mostly based on veins (%), dry mass% and average root mass. The three cream-fleshed, dry cultivars Ndou, Monate and Mvuvhelo grouped together in the top right quadrant, whereas the orange-fleshed cultivars Bophelo and Impilo are in the bottom right quadrant medium dry mass percentages).
The yellow-orange cultivar 199062.1 was separated from all other cultivars and tended to produce many storage roots with the defect veins.

The results of the PCA biplot showed that the characteristics curved (%), veins, damaged (%), grooves and dry mass (%), those displayed furthest away from the centre, were most important to distinguish the cultivars (Fig. 4b). The PCA further demonstrates the association of variables (loadings) and cultivars (scores) with PCA factor scores in terms of quality traits of cultivars. Figure 4b shows that Ndou has high % marketable roots and high dry mass; therefore, it is a cultivar with good root quality. However, Ndou may also show some grooves on its roots. Monate and Mvuhelvo cultivars, despite their good yielding ability, tend to have high root-infestation by weevil and some rotten roots. The 199062.1 cultivar produced a high total yield but the large-sized roots showed several defects such as veins, curved and damaged roots. Orange-fleshed cultivars bear more unmarketable small roots (<100g), and tend to have cracked, rat-damaged and insect-infested roots.

4 Discussion

In the present study, an overall mean total yield of 15.8 t/ha was measured for the six sweet potato cultivars in the on-farm trials at 15 sites. A mean total storage root yield of 15.3 t/ha was observed for 10 sweet potato cultivars evaluated by Tumwegamire et al. (2016). In a study by Andrade et al. (2016), cultivar 199062.1 achieved a total yield of 15.3 t/ha over a three-year period at Umbeluzi, Mozambique. The mean yield observed in the present study is slightly higher than the mean marketable yield of 13.5 t/ha achieved by informal market cultivars grown by four farmers in Limpopo Province in sweet potato enterprise establishment projects. The results of this study are comparable to farmers’ yield and present representative sites for selection of cultivars for this level of farmers. However, the factor region was not significant for total yield nor for marketable storage root yield (Table 3). Thus, the differences in cultivar performance need to be explained in follow-up experiments by other factors; possibly water application, management, and soil conditions.

An alternative way of evaluating genotype by environment interaction is by using variance components as demonstrated by Tumwegamire et al. (2016). Furthermore, Yan et al. (2015) developed a function to calculate the optimum number of locations. Results of the present study showed wide variations for locations for both total and marketable root yields (Figs. 2a and 2b). Cracked and insect-damaged percentage (predominantly caused by weevil) showed pertinent similar performance at various locations (Figs. 3a and 3b). These traits formed mega-environments and, consequently, require fewer environment sites to make recommendations. The significant environment effects on root yield are consistent with previous studies (Tumwegamire et al. 2016, Mcharo and Ndolo 2013). As expected, cultivar Ndou performed well under farmer conditions over several sites; thus, it...
can be widely recommended for farmer use. Furthermore, a performance index can be calculated to recommend cultivars per site using various traits and ranking each as equally important if data from two years of evaluation per location is available (Lehmann and D’Abrera 2006).

A nursery foundation block established at ARC-VOP from disease-tested planting material of the evaluated cultivars, during February to April 2016 disseminated vines to nine vine grower enterprises in five provinces. In total 2.1 million cuttings from 10 nurseries were disseminated to farmers (3868 bags of vines), whereas a total of 3885 bags were disseminated in 2014/15 (Table 6). The amount of vine dissemination in 2015/16 was negligible due to severe drought in those years. The area planted during 2016/17 season was 86 ha, of which 59% were orange-fleshed sweet potato – almost all from Bophelo cultivar. The fresh produce was delivered to the informal markets in the various areas. Bophelo was the dominant orange-fleshed cultivar, while Ndou topped the cream-fleshed informal market cultivars (Table 6). The dissemination of vines is a continuation of projects that were initiated in 2010 and 2013 (Laurie et al. 2015b).

5 Conclusions

Over the past three planting seasons, there has been a considerable increase in availability of vines and fresh produce of the informal market cultivars. The cultivars have a large potential for income generation. The present findings need to be further validated using multi-location and multi-season data to confirm repeatability and for future recommendation of the cultivars. Principle component analysis and discriminative analysis were found to be quick analytical tools to associate quality traits with cultivars to ease cultivar recommendations in conjunction with ranking.

The present study indicated that a mean marketable yield of 15.8 t/ha was achieved in on-farm trials, and that cultivar 199062.1, followed by Ndou had the highest marketable yields. The best orange-fleshed cultivar in terms of uptake by farmers was Bophelo, with slight advantage with regards to yield and yield stability, dry mass (%) and taste over Impilo cultivar. Ndou also produced stable high total as well as marketable yield over 15 environment sites. The most prevalent unmarketable root yield class was weevil infestation. Veins, dry mass and mean marketable root mass were the main variables that made cultivars distinguishable. The improved sweet potato cultivars produce sustainable yields and, therefore, have a large commercial potential to generate income for producers to sell in the informal markets. This study is also significant because it confirmed the cultivar Bophelo as the best orange-fleshed cultivar to address vitamin A deficiency in South Africa.

Acknowledgements: The authors thank the ARC-VOP sweet potato team, Department of Agriculture collaboration with on-farm trials and funding by ARC for on-farm trials and the National Department of Rural Development for vine and production enterprise project.

Type of cultivar	Cultivar name	2016/17	2014/15
Commercial cream-fleshed	Blesbok	413	727
Orange-fleshed, medium dry for informal marketing	Bophelo	1942	1933
	Impilo	164	126
Cream, dry taste for informal marketing	Ndou	335	834
	Monate	546	203
	Mvuvhelo	10	51
	199062.1	282	N/A
Other		176	N/A
TOTAL		3868	3885

N/A = Not applicable
References

Andrade M.I., Naico A., Ricardo J., Eyzaguirre R., Makunde G.S., Ortiz O., Grünberg W.J., Genotype x environment interaction and selection for drought adaptation in sweetpotato (Ipomoea batatas (L.) Lam.) in Mozambique, Euphytica, 2016, 209, 261-280

Ceccarelli S., Wide adaptation: How wide?, Euphytica, 1989, 40, 197-205

DAFF, Abstracts of Agricultural Statistics, Department of Agriculture, Forestry and Fisheries, Pretoria, South Africa, 2014, www.daff.gov.za

Dau N., Characterization, pathogenicity and cultivar screening of Fusarium wilt of sweet potato in South Africa. M dissertation. Tshwane University of Technology, Pretoria, South Africa, 2016

Domola M.J., Laurie S.M., Thompson G.J., Strydom H.D., van den Berg A.A., Aveling T.A.S., Sweet potato viruses in South Africa and the effect of viral infection on storage root yield. Afr. Plant Prot., 2008, 14, 15-23

FAOSTAT, Major food and agricultural commodities and producers, Food and Agricultural Organization of the United Nations, 2014, http://faostat.fao.org/site/339/default.aspx

Gauch H.G., Piepho H., Annicchiarico P., Statistical analysis of yield trials by AMMI and GGE: further considerations, Crop Sci., 2008, 48, 866-889

Gauch H.G., Zobel R.W., AMMI analysis of yield trials. In: Kang, M.S. and Zobel, H.G. Jr (Eds.). Genotype by environment interaction. CRC Press, Boca Raton, Florida, 1996

John J.A, Quenouille, M.H., Experiments: Design and Analysis, Charles Griffin & Company Ltd, London and High Wycombe, UK, 1977

Kandolo S.D., Thompson A.H., Callit F.J., Laurie S.M., Truter M., et al., Field sensitivity of selected cultivars and fungicide efficacy against Alternaria blight of sweet potato. Afr. Crop Sci. J., 2016, 24, 235-243

Laurie S.M., Booyse, M., Labuschagne M.T., Greyling, M.M., Multi-environment performance of new orange-fleshed sweetpotato varieties in South Africa, Crop Sci., 2015a, 55, 1585-1595

Laurie S.M., Faber M., Adebola P., Belete A., Biofortification of sweetpotato for food and nutrition security in South Africa. Food Res. Int., 2015b, 76, 962-970

Laurie S.M., Tjale S.S., van den Berg A.A., Mileni M.M., Labuschagne M.T., Agronomic performance of new cream to yellow-orange sweetpotato varieties in diverse environments across South Africa, S. Afr. J. Plant & Soil, 2015c, 32, 147-156

Lehmann E. L., D'Abreza H. J. M., Nonparametrics: Statistical Methods Based on Ranks. Rev. ed. Springer Science & Business Media, New York, 2006

Mcharo M., Ndolo P., Root-yield performance of pre-release sweet potato genotypes in Kenya, J. Appl. Biosci., 2013, 65, 4914–4921

Niederwieser G.J., Guide to sweet potato production in South Africa. ARC-Roodeplaat, Pretoria, South Africa, 2004

Pofu K.M., Mashela P.W., Laurie S.M., Host status to Meloidogyne javanica in sweet potato cultivars: A potential threat in developmental projects. Acta Agric. Scand., Sect. B. Discipline · Plant science, 2016, (in press) DOI: 10.1080/09064710.2016.1220613

Rencher A.C., Methods of multivariate analysis, 2nd edition, John Wiley & Sons Inc., 2002

Shisana O., Labadarios D., Rehle T, Simbayi L., Zuma K., Dhansay M.A., et al., South African National Health and Nutrition Examination Survey (SANHANES-1). HSRC Press, Cape Town, South Africa, 2013

Tai G.C.C., Genotypic stability analysis and its application to potato regional trials, Crop Sci. 1971, 11, 184-190

Tumwegamire S., Rubaihayo P.R., Grüneberg W.J., LaBonte et al., Genotype x Environment Interactions for East African Orange-Fleshed Sweetpotato Clones Evaluated across Varying Ecogeographic Conditions in Uganda, Crop. Sci., 2016, 56(4), 1626-1644, doi: 10.2135/cropsci2015.10.0612

Yan W., Fre'geau-Reid J, Martin R., Pageau D., Mitchell-Fetch J., How many test locations and replications are needed in crop variety trials for a target region?, Euphytica, 2015, 202, 361–372

Yan W., Kang M.S., GGE Biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton, Florida, 2003