Abstract

Degeneracy of the genetic code is a biological way to minimize effects of the undesirable mutation changes. Degeneration has a natural description on the 5-adic space of 64 codons \(C_5(64) = \{n_0 + n_1 5 + n_2 5^2 : n_i = 1, 2, 3, 4\} \), where \(n_i \) are digits related to nucleotides as follows: C = 1, A = 2, T = U = 3, G = 4. The smallest 5-adic distance between codons joins them into 16 quadruplets, which under 2-adic distance decay into 32 doublets. \(p \)-Adically close codons are assigned to one of 20 amino acids, which are building blocks of proteins, or code termination of protein synthesis. We shown that genetic code multiplets are made of the \(p \)-adic nearest codons.

1 Introduction

Genetic information in living systems is contained in the desoxyribonucleic acid (DNA) sequence. The DNA macromolecules are composed of two polynucleotide chains with a double-helical structure. The building blocks of the genetic information are four nucleotides called: adenine (A), guanine (G), cytosine (C) and thymine (T). A
and G are purines, while C and T are pyrimidines. Nucleotides are arranged along double helix through base pairs A-T and C-G. The DNA is packaged in chromosomes which are localized in the nucleus of the eukaryotic cells. One of the basic processes within DNA is its replication. The passage of DNA gene information to proteins, called gene expression, performs by the messenger ribonucleic acids (mRNA), which are usually single polynucleotide chains. The mRNA are synthesized in the first part of this process, known as transcription, when nucleotides A, G, C, T from DNA are respectively transcribed into their complements U, C, G, A of mRNA, where T is replaced by U (U is the uracil). The next step is translation, when the information coded by codons in the mRNA is translated into proteins. In this process two other RNA’s are involved: transfer tRNA and ribosomal rRNA. Codons are ordered sequences of three nucleotides taken of the A, G, C, U. Protein synthesis in all eukaryotic cells performs in the ribosomes of the cytoplasm.

The genetic code relates the information of the sequence of codons in mRNA to the sequence of amino acids in a protein. Although there are about dozen codes (see, e.g. [1]), the most important are two of them: the eukaryotic code and the vertebral mitochondrial code. In the sequel we shall mainly consider the vertebral mitochondrial code, because it looks the simplest one and the others can be regarded as its modifications. It is obvious that there are $4 \times 4 \times 4 = 64$ codons. However (in the vertebral mitochondrial code), 60 of them are distributed on the 20 different amino acids and 4 make stop-codons, which serve as termination signals. According to experimental observations, two amino acids are coded by six codons, six amino acids by four codons, and twelve amino acids by two codons. This property that to an amino acid corresponds more than one codon is known as genetic code degeneracy. This degeneracy is a very important property of the genetic code and gives an efficient way to minimize effects of the undesirable mutation changes. Since there is a huge number (about 10^{80}) of all possible assignments between codons and amino acids, and only a very small number (about dozen) of them is represented in living cells, it has been a persistent theoretical challenge to find an appropriate model explaining contemporary genetic codes. Still there is no generally accepted explanation of the genetic code. For a detail
and comprehensive information on molecular biology aspects of DNA, RNA and genetic code one can see Ref. [2]. It is worth mentioning that human genome, which presents all genetic information of the homo sapiens, is composed of about three billions DNA base pairs and contains more than 20,000 genes.

Modeling of DNA, RNA and genetic code is a challenge as well as an opportunity for modern mathematical physics. An interesting model based on the quantum algebra $U_q(sl(2) \oplus sl(2))$ in the $q \to 0$ limit was proposed as a symmetry algebra for the genetic code (see [1] and references therein). In a sense this approach mimics quark model of baryons. To describe correspondence between codons and amino-acids, it was constructed an operator which acts on the space of codons and its eigenvalues are related to amino acids. Besides some successes of this approach, there is a problem with rather many parameters in the operator. There are also papers [3] starting with 64-dimensional irreducible representation of a Lie (super)algebra and trying to connect multiplicity of codons with irreducible representations of subalgebras arising in a chain of symmetry breaking. Although interesting as an attempt to describe evolution of the genetic code these Lie algebra approaches did not succeed to get its modern form. For a very brief review of these and some other theoretical approaches to the genetic code one can see Ref. [1].

Recently we introduced a p-adic approach to the DNA, RNA sequences and genetic code [4]. Let us mention that p-adic models in mathematical physics have been actively considered since 1987 (see [5], [6] for early reviews and [7], [8] for some recent reviews). It is worth noting that p-adic models with pseudodifferential operators have been successfully applied to interbasin kinetics of proteins [9]. Some p-adic aspects of cognitive, psychological and social phenomena have been also considered [10]. The present status of application of p-adic numbers in physics and related branches of sciences is reflected in the proceedings of the 2nd International Conference on p-Adic Mathematical Physics [11]. The main goal of this paper is to present p-adic root of the genetic code and, in particular, its degeneracy.
2 p-Adic space of codons

An elementary introduction to p-adic numbers can be found in the book [12]. However, for our purposes we will use here only a bit of p-adics, mainly a finite set of integers and ultrametric distance between them.

Let us introduce the set of natural numbers

$$C_5(64) = \{n_0 + n_1 5 + n_2 5^2 : n_i = 1, 2, 3, 4\}, \quad (1)$$

where n_i are digits related to nucleotides by the following assignment: C = 1, A = 2, T = U = 3, G = 4. This is an expansion to the base 5. It is obvious that 5 is a prime number and that the set $C_5(64)$ contains 64 numbers between 31 and 124 (in the usual base 10). In the sequel we shall denote elements of $C_5(64)$ by their digits to the base 5 in the following way: $n_0 + n_1 5 + n_2 5^2 \equiv n_0 n_1 n_2$. Note that here ordering of digits is the same as in the expansion (1), i.e this ordering is opposite to the usual one. There is now evident one-to-one correspondence between codons in letter XYZ and number $n_0 n_1 n_2$ representations.

In addition to arithmetic operations it is often important to know also a distance between numbers. Distance can be defined by a norm. On the set \mathbb{Z} of integers there are two kinds of nontrivial norm: usual absolute value $|\cdot|_\infty$ and p-adic absolute value $|\cdot|_p$, where p is any prime number. The usual absolute value is well known from elementary courses of mathematics and the corresponding distance between two numbers x and y is $d_\infty(x, y) = |x - y|_\infty$.

The p-adic absolute value is related to the divisibility of integers by prime numbers, and p-adic distance can be understood as a measure of this divisibility for the difference of two numbers (the more divisible, the shorter). By definition, p-adic norm of an integer $m \in \mathbb{Z}$, is $|m|_p = p^{-k}$, where $k \in \mathbb{N} \cup \{0\}$ is degree of divisibility of m by prime p (i.e. $m = p^k m', \ p \nmid m'$) and $|0|_p = 0$. This norm is a mapping from \mathbb{Z} into non-negative real numbers and has the following properties:

(i) $|x|_p \geq 0$, $|x|_p = 0$ if and only if $x = 0$,

(ii) $|xy|_p = |x|_p |y|_p$,

(iii) $|x + y|_p \leq \max \{|x|_p, |y|_p\} \leq |x|_p + |y|_p$ for all $x, y \in \mathbb{Z}$.

Because of the strong triangle inequality $|x + y|_p \leq \max\{|x|_p, |y|_p\}$, p-adic absolute value belongs to non-Archimedean (ultrametric) norm.
One can easily conclude that $0 \leq |m|_p \leq 1$.

p-Adic distance between two integers x and y is

$$d_p(x, y) = |x - y|_p.$$ \hfill (2)

Since p-adic absolute value is ultrametric, the p-adic distance (2) is also ultrametric, i.e. it satisfies

$$d_p(x, y) \leq \max \{d_p(x, z), d_p(z, y)\} \leq d_p(x, z) + d_p(z, y),$$ \hfill (3)

where x, y and z are any three integers.

The above introduced set $C_5(64)$ endowed by p-adic distance we shall call p-adic space of codons. 5-Adic distance between two codons $a, b \in C_5(64)$ is

$$d_5(a, b) = |a_0 + a_1 5 + a_2 5^2 - b_0 - b_1 5 - b_2 5^2|_5.$$ \hfill (4)

When $a \neq b$ then $d_5(a, b)$ may have three different values: (i) $d_5(a, b) = 1$ if $a_0 \neq b_0$, (ii) $d_5(a, b) = 1/5$ if $a_0 = b_0$ and $a_1 \neq b_1$, and (iii) $d_5(a, b) = 1/5^2$ if $a_0 = b_0$, $a_1 = b_1$ and $a_2 \neq b_2$. We see that the maximum 5-adic distance between codons is 1 and it is equal to the maximum p-adic distance on \mathbb{Z}. Let us also note that this distance depends only on the first two nucleotides in the codons. Use of 5-adic distance between codons is a natural one to describe information similarity between them.

In the case of standard distance $d_\infty(a, b) = |a_0 + a_1 5 + a_2 5^2 - b_0 - b_1 5 - b_2 5^2|_\infty$, third nucleotides a_2 and b_2 play more important role than those at the second place (i.e. a_1 and b_1), and nucleotides a_0 and b_0 are of the smallest importance.

\section{p-Adic genetic code}

Living cells are very complex systems composed mainly of proteins which play various roles. These proteins are long linear chains made of only 20 amino acids, which are the same for all living world on the Earth. Different sequences of amino acids form different proteins.

An intensive study of connection between ordering of nucleotides in the DNA (and RNA) and ordering of amino acids in proteins led to the experimental discovery of genetic code in the mid-1960s. Genetic code
is understood as a dictionary for translation of information from the DNA (through RNA) to production of proteins by amino acids. The information on amino acids is contained in codons. To the sequence of codons in the RNA corresponds quite definite sequence of amino acids in a protein, and this sequence of amino acids determines a primary structure of the protein.

However, there is no simple theoretical understanding of genetic coding. In particular, it is not clear why genetic code exists just in the known way and not in many other possible ways. What is a principle (or principles) used in establishment of a basic (mitochondrial) code? What are properties of codons connecting them into definite multiplets which code the same amino acid or termination signal? These are only some of many questions whose answers should lead us to make an appropriate theoretical model of the genetic code.

111 CCC Pro	211 ACC Thr	311 UCC Ser	411 GCC Ala
112 CCA Pro	212 ACA Thr	312 UCA Ser	412 GCA Ala
113 CCU Pro	213 ACU Thr	313 UCU Ser	413 GCU Ala
114 CCG Pro	214 ACG Thr	314 UCG Ser	414 GCG Ala
121 CAC His	221 AAC Asn	321 UAC Tyr	421 GAC Asp
122 CAA Gln	222 AAA Lys	322 UAA Ter	422 GAA Glu
123 CAU His	223 AUA Asn	323 UAU Tyr	423 GAU Asp
124 CAG Gln	224 AAG Lys	324 UAG Ter	424 GAG Glu
131 CUC Leu	231 AUC Ile	331 UUC Phe	431 GUC Val
132 CUA Leu	232 AUA Met	332 UUA Leu	432 GUA Val
133 CUU Leu	233 AUU Ile	333 UUU Phe	433 GUU Val
134 CUG Leu	234 AUG Met	334 UGA Leu	434 GUG Val
141 CGC Arg	241 AGC Ser	341 UGC Cys	441 GGC Gly
142 CGA Arg	242 AGA Ter	342 UGA Trp	442 GGA Gly
143 CGU Arg	243 AGU Ser	343 UGU Cys	443 GGU Gly
144 CGG Arg	244 AGG Ter	344 UGG Trp	444 GGG Gly

Table: The vertebral mitochondrial code
Let us now look at the experimental Table of the vertebral mitochondrial code and compare it with the above introduced \(C_5(64) \) codon space. To this end, codons are simultaneously denoted by three digits and standard capital letters (recall: C=1, A=2, U=3, G=4). The corresponding amino acids are presented in the usual three-letter form.

First of all let us note that our Table is constructed according to the gradual change of digits and, as a consequence, there is a different spatial distribution of amino acids comparing to the standard (Watson-Crick) table (see, e.g. [1]). Any of these tables can be regarded as a big rectangle divided into 16 equal smaller rectangles: 8 of them are quadruplets which one-to-one correspond to 8 amino acids, and other 8 rectangles are divided into 16 doublets coding 14 amino acids and termination (stop) codon (by two doublets at different places). Note that 2 of 16 doublets code 2 amino acids (Ser and Leu) which are already coded by 2 quadruplets, thus amino acids Serine and Leucine are coded by 6 codons. In our Table quadruplets and doublets together form a figure, which is symmetric with respect to the mid vertical line, i.e. it is invariant under interchange 1 \(\leftrightarrow \) 4 and 2 \(\leftrightarrow \) 3 of the first digits in codons. Recall that the DNA is symmetric under simultaneous interchange of complementary nucleotides in its strands. In other words, the DNA is invariant under nucleotide interchange 1 \(\leftrightarrow \) 4 and 2 \(\leftrightarrow \) 3 between strands. All doublets in the Table form a nice figure which looks like letter \(T \).

Now we can look at the Table as a representation of the \(C_5(64) \) codon space. Namely, we observe that there are 16 quadruplets such that each of them has the same first two digits. Hence 5-adic distance between any two different codons inside a quadruplet is

\[
d_5(a, b) = |a_0 + a_1 5 + a_2 5^2 - a_0 - a_1 5 - b_2 5^2|_5 = |(a_2 - b_2) 5^2|_5 = 5^{-2},
\]

because \(a_0 = b_0, a_1 = b_1 \) and \(|a_2 - b_2|_5 = 1 \).

Since codons are composed of three nucleotides, each of which is either a purine or a pyrimidine, it is natural to try to quantify similarity inside purines and pyrimidines, as well as distinction between elements from these two groups of nucleotides. Fortunately there is a tool, which is again related to the \(p \)-adics, and now it is 2-adic distance. One can easily see that the 2-adic distance between pyrimidines
C and U is 1/2 as the distance between purines A and G. However
2-adic distance between C and A or G as well as distance between U
and A or G is 1 (i.e. maximum).

With respect to the 2-adic distance, the above quadruplets may
be regarded as composed of two doublets: \(a = a_0 a_1 1 \) and \(b = a_0 a_1 3 \)
make the first doublet, and \(c = a_0 a_1 2 \) and \(d = a_0 a_1 4 \) form the second
one. 2-Adic distance between codons within each of these doublets is
\(\frac{1}{2} \), i.e.

\[
d_2(a, b) = |(3 - 1) 5^2|_2 = \frac{1}{2}, \quad d_2(c, d) = |(4 - 2) 5^2|_2 = \frac{1}{2}, \quad (6)
\]

because \(3 - 1 = 4 - 2 = 2 \).

One can now look at the Table as a system of 32 doublets. Thus 64
codons are clustered by a very regular way into 32 doublets. Each of
21 subjects (20 amino acids and 1 termination operation) is coded by
one, two or three doublet. In fact, there are two, six and twelve amino
acids coded by three, two and one doublets, respectively. Residual
two doublets code termination signal.

To have a more complete picture on the genetic code it is useful
to consider possible distances between codons from different quadru-
plets as well as from different doublets. Also, we introduce distance
between quadruplets or between doublets, especially when distances
between their codons have the same value. Thus 5-adic distance be-
tween a quadruplet and quadruplets in the same column is 1/5, while
such distance toward all other quadruplets is 1. 5-Adic distance be-
tween doublets coincides with distance between quadruplets, and this
distance is \(\frac{1}{125} \) when doublets are inside the same quadruplet.

The 2-adic distance between codons, doublets and quadruplets is
more complex. There are three basic cases: (1) codons differ only in
one digit, (2) codons differ in two digits, and (3) codons differ in all
three digits. In the first case, 2-adic distance can be \(\frac{1}{2} \) or 1 depending
whether difference between digits is 2 or not, respectively.

Let us now look at 2-adic distances between doublets coding Leucine
and also between doublets coding Serine. These are two cases of amino
acids coded by three doublets. Doublet consisting of codons 332 and
334 should be compared with doublet of codons 132 and 134. The
largest 2-adic distance between them is \(\frac{1}{2} \). We again obtain maximum
distance \(\frac{1}{2} \) for Serine when we compare doublets (311, 313) and (241, 243).

Other known codes may be regarded as some modifications of the vertebral mitochondrial code (inside five quadruplets of T-like region and quadruplet coding Leucine). The modification means that some codons change their meaning and code either other amino acids or termination signal. So, in the universal (standard, canonical) code there are the following changes: (i) 232 AUA: Met \(\rightarrow \) Ile, (ii) 242 AGA and 244 AGG: Ter \(\rightarrow \) Arg, (iii) 342 UGA: Trp \(\rightarrow \) Ter.

4 Discussion and concluding remarks

We have chosen \(p = 5 \) as the base in expansion of an element of the \(C_5(64) \) space of codons, because 5 is the smallest prime number which contains four nucleotides (A, T, G, C) in DNA, or (A, U, G, C) in RNA, in the form of four different digits. At the first glance, because there are four nucleotides, one could start to think that a 4-adic expansion, which has just four digits, might be more appropriate. However, note that 4 is a composite integer and that such expansion is not suitable since the corresponding \(|\cdot|_4\) absolute value is not a norm but a pseudonorm and it makes a problem with uniqueness of the distance between two points. To illustrate this problem let us consider, for instance, a distance between numbers 4 and 0. Then we have \(d_4(0, 4) = |4|_4 = \frac{1}{9} \), but on the other hand \(d_4(0, 4) = |2|_4 |2|_4 = 1 \).

Recall that there are generally 5 digits \((0, 1, 2, 3, 4) \) in representation of 5-adic numbers. In this approach, we omitted the digit 0 to represent a nucleotide, because its consistent meaning can be only absence of any nucleotide.

Let us note that there are in general 24 possibilities to connect four digits with four nucleotides. However, we find that the above choice seems to be the most appropriate.

An essential property of the \(C_5(64) \) space of codons is ultrametric behavior of distances between its elements, which radically differs from usual distances. One can easily observe that quadruplets and doublets of codons in the vertebral mitochondrial code have natural explanation within 5-adic and 2-adic closeness. It follows that degeneracy of the genetic code in the form of doublets, quadruplets and sextuplets is
direct consequence of p-adic ultrametricity between codons.

There is an important aspect of genetic coding related to particular connections between codons and amino acids. Namely, which amino acid corresponds to which multiplet of codons? An answer should be related to connections between stereochemical properties of codons and amino acids.

Let us also note a recent paper [13], where an ultrametric approach to the genetic code is considered on a diadic plane.

Acknowledgments

The work on this paper was partially supported by the Ministry of Science and Environmental Protection, Serbia, under contract No 144032D. One of the authors (B.D) would like to thank M. Rakcevic for useful discussions on the genetic code and amino acids.

References

[1] L. Frappat, A. Sciarrino and P. Sorba, J. Biol. Phys. 27 (2001) 1-38; physics/0003037.

[2] J.D. Watson, T.A. Baker, S.P. Bell, A. Gann, M. Levine and R. Losick, Molecular Biology of the Gene, CSHL Press,Benjamin Cummings, San Francisco, 2004.

[3] J.E.M.Hornos and Y.M.M. Hornos, Phys. Rev. Lett. 71 (1993) 4401-4404; M. Forger and S. Sachse, Lie superalgebras and the Multiplet Structure of the Genetic Code I: Codon Representations; math-ph/9808001.

[4] B. Dragovich and A. Dragovich, A p-Adic Model of DNA Sequence and Genetic Code; q-bio.GN/0607018.

[5] L. Brekke and P.G.O. Freund, Phys. Rept. 233 (1993) 1–66.

[6] V.S. Vladimirov, I.V. Volovich and E.I. Zelenov, p-Adic Analysis and Mathematical Physics, World Scientific, Singapore, 1994.

[7] B. Dragovich, p-Adic and Adelic Quantum Mechanics, Proc. V. A. Steklov Inst. Math. 245 (2004) 72-85; hep-th/0312046.
[8] B. Dragovich, *p-Adic and Adelic Cosmology: p-Adic Origin of Dark Energy and Dark Matter*, in 'p-Adic Mathematical Physics', AIP Conference Proceedings 826 (2006) 25 - 42; hep-th/0602044.

[9] V.A. Avetisov, A.Kh. Bikulov and V.A. Osipov, *J. Phys. A: Math. Gen.* 36 (2003) 4239-4246.

[10] A. Khrennikov, *Information Dynamics in Cognitive, Psychological, Social and Anomalous Phenomena*, Kluwer AP, Dordrecht, 2004.

[11] *p-Adic Mathematical Physics*, Proceedings of the 2nd International Conference on p-Adic Mathematical Physics, AIP Conference Proceedings 826, 2006.

[12] F.Q. Gouvea, *p-Adic numbers: An introduction*, (Universitext), Springer, Berlin, 1993.

[13] A.Yu. Khrennikov and S.V. Kozyrev, *Genetic code on a diadic plane*: q-bio/0701007.