Ethnomedicinal knowledge among the Malayali tribal of Chitteri hills, Eastern Ghats, Tamil Nadu, India

R. Prabakaran¹, T. Senthil Kumar²*

¹Department of Botany, Ramakrishna Mission Vivekananda College (Autonomous), Mylapore, Chennai-600004, Tamil Nadu, India, ²Department of Botany, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India

ABSTRACT

The present study was aimed to document the ethnomedicinal knowledge among the Malayali tribal of Chitteri hills Eastern Ghats of Tamil Nadu, India. Field visits were made to the Chitteri hills every month covering all seasons. Interviews with traditional healers and other knowledgeable inhabitants and farmers were conducted. The Malayali tribal people of Chitteri hills use 320 plant species for their day-to-day life, this ethnomedical exploration revealed they were the habit of using around 216 species of medicinal plants belonging to 200 genera under 46 families. Malayali tribes use morphological characters such as bark surface, leaf colour, leaf taste and exudates, underground plant parts and ecology of species as criteria for identification of 135 species belongs to 105 genera under 46 families. The documentation of the knowledge of Malayali tribal identification of plants of Chitteri hills is to be accorded top priority in the preservation of our ancient traditional knowledge.

KEYWORDS: Ethnobotany, Chitteri, Tamil Nadu, Eastern Ghats and Malayali

INTRODUCTION

Traditional knowledge of taxonomy is developed from a basic human tendency to recognize plants that are imposed by nature. It is developed from the unique history and culturally defined beliefs, behaviors and preferences of particular traditional societies rooted in a clearly defined geographical area and transmit their knowledge to their offspring's. The universal identification of plants had been ubiquitous since the evolution of systematic botany. Evolution of taxonomy triggered botanists, to explore variety of plant species universally on their biological properties and evolved into the present modern ethnobotany, which emphasize on their, growth pattern and chemical compositions in traditional communities need. With the passage of time, they have developed a great deal of knowledge on the use of plants and plant products. The tribal have their own scientific knowledge of technology and they are still considered to be primitive and traditional bounded. The knowledge is very dynamic and is strongly influenced by indigenous creativity, innovation, rooted in geographical and cultural cognition. The knowledge is very vulnerable to degradation and even complete loss. In this perspective a rich diversity of flora of Chitteri hills was chosen for the study to document with objectives to reveal the criteria used by the Malayali of Chitteri hills use morphological characters and ecology of species as criteria for identification.

MATERIALS & METHODS

Study Area

The present study area, Chitteri hills, a part of Southern Eastern Ghats, is situated in Pappireddipatti revenue taluk of Dharmapuri district in Tamil Nadu, India. Dharmapuri district has the second highest forest cover in relation to the total geographical area, satisfying the criterion of optimum forest cover of 23.62% in its geographical area. The district accounts for 14.3% of the total forest area of the Tamil Nadu.

Chitteri is situated towards North East of Salem district within the geographical limit of 78°15’-78°45’ E, longitude and 11°44’-12°08’N, latitude (Figure-1) and occupies an area of about 654.22 Km². Chitteri hills form a compact block consisting of several hill ranges and contain tangled ridges and ravines running in the Northeast and Southwest directions, enclosing many narrow valleys, rivers such as Kallar, Varattar, Kambalai, Anaaimaduvu, Kovilar, Sholaiyar and Pungamaduvu rivers and their tributaries drain the area. These rivers are ephemeral in

Copyright: © The authors. This article is open access and licensed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
nature and structurally controlled in their flow. The mean maximum and minimum annual temperatures of the study area are 39.5°C and 19°C, and 31°C and 18°C respectively in winter, average rainfall ranges from 800-1000mm (Harur Forest Office Report, 2007). The Malayali tribes are the most and dominant significant tribes in Chitteri hills of Tamil Nadu. Malayali are the largest Scheduled Tribe constituting 47% of the state scheduled tribal population with a population of 11,482 (Census, 2011). There are 60 villages, out of these, 6 villages are located in plains and 54 villages are located in hill tops.

Field Visits

Field visits were made to the Chitteri hills every month covering all seasons during the period October 2009 – March 2013. Interview and data gathering methods were followed by (Schultes, 1962; Jain, 1995; Rao & Hajra, 1987) Interviews with traditional healers and other knowledgeable inhabitants and farmers were conducted in order to understand how Malayali tribes identify and utilize plants. In addition, we consulted the who is familiar with the study area. Voucher specimens were collected for the purpose of identification and deposited at Vivekanandha College of Arts and Sciences for Women herbarium.

Documentation of Ethnoidentification of Plants

Knowledge

The respondents or informants have been selected for the study based on the following criteria, prevalence of ethnobotanical knowledge in villages and willingness of respondents to share the knowledge. All the respondents are men belong to 25 to 85yrs of age group. Most of the respondents are illiterate or even never crossed primary education.

Data were collected from the tribes using two different methods: 1) The knowledgeable informants are taken to the field and collection of plants specimens with uses of the plants and 2) The other way is to collect all plants available in the village, show them to these informants one by one, and record the information about them. The data were gathered in a series of questionnaire, structured, semi-structured and unstructured interviews regarding plant uses, identification during several field trips. Random interviews with a different sub sect of tribal were used to verify data already collected regarding indigenous knowledge for identification of plant species of Malayali tribes of Chitteri hills was documented.

RESULTS AND DISCUSSION

Periodical trips were made to the study area covering all the hamlets in the hills. Such frequent visits to tribal hamlets helped us to establish a good rapport with the natives, which aided us in the collection day today life. Much patience was needed for gathering information from tribes. Only after successive visits the native divulge their knowledge of plants, especially used for medicine and identification. A cordial relationship was established with them and they feel quite at ease in our company.

Most of the tribes are illiterate and this rules out the possibility of using questionnaires as means of collecting data, though we prepared questionnaires for ethno medicinal plants and traditional knowledge. Dialogues, conversations and subsequent recording of data are made. The authenticity of the information gathered is verified subsequent field trips to other areas with other persons. Such trips helped in verifying the validity of the other related uses. From such field visits, we recorded that Malayali tribal people of Chitteri hills are in the habit of using 320 species for their day today life.

Enumeration of Ethnobotanical Plants

The present ethnobotanical exploration revealed that the Malayali tribal people of Chitteri hills are in the habit of using around 216 species of medicinal plants belonging to 200 genera under 45 families. The families were named as per APG-III classification 2009.

The Malayali tribes of Chitteri hills prefer to use species from their native forest and species from surrounding areas. Among the plants used by them Apocynaceae topping the list with 37 species, Fabaceae (29 species), Acanthaceae and Rutaceae each listed with 16 species. Based on the habit, ethno medicinal plants of Chitteri hills fall under various categories such as trees, shrubs, herbs, climbers and lianas. Among them, trees and herbaceous growth forms dominate over other growth forms.

Identification of Plants by Tribal

Morphological characters

The Malayali tribes use morphological characters and ecology of species as criteria for identification of 135 species (Voucher specimen number from Vi-432 to Vi-567) belongs to 105 genera under 46 families. Morphological characters are often used to recognize plants of which vegetative features are more commonly used than floral features. Malayali tribes also identify plants based on morphological characters with other associated characters such as taste, colour, succulence of leaves and exudates.

Bark characters

The term bark denotes the tissues outside the vascular cambium of the axis, in either a primary or secondary state of growth. In botanical sense bark is that layer of tissue accumulated on the surface of the plant axis as a result of the activity of the phellogen. Bark is an outwardly visible and prominent macro character especially in trees. Malayali use bark characters as the main criterion for identifying tree species with other characters such as nature and colour of leaf and presence or absence of glands as supportive characters.

Bark features such as nature of the surface, thickness of bark and exudates are used by the Malayali as criteria for identification. Among the species, studied Malayali tribal classified 97 species based on bark features without ambiguity (Table 1).
Table 1: Identification of plants with bark characters in Chitteri hills by Malayali tribes

S. No.	Botanical Name	Family	Local name	Bark Characters
1.	Acacia leucophloea (Roxb.) Willd.	Fabaceae	Velvelam/Velamaram	Smooth Bark
2.	Alangium salviolium (L.f) Wang.	Alangiaceae	Azhingi	Rough Bark
3.	Albizia amara	Fabaceae	Unzai	Flaked Bark
4.	Albizia chinensis (Osbeck.) Merr.	Fabaceae	Selavengi	Rough Bark
5.	Albizia lebebeck (L.) Wild.	Fabaceae	Pattaasilai/Vagai	Rough Bark
6.	Albizia procera	Fabaceae	Kudumaduramaram	Smooth & Thick Bark
7.	Anacardium occidentale L.	Anacardiaceae	Mundhiri	Rough Bark
8.	Anogeissus latifolia (Roxb. ex DC.) Wall. ex Gill. & Perr.	Combretaceae	Namaimaram	Flaked & Thick Bark
9.	Arctocarpus heterophyllus Lam.	Moraceae	Palamaram	Rough Bark
10.	Atalantia monophylla (L.) DC.	Rutaceae	Kaatuعلmichi	Prickled Bark
11.	Bauhinia tomentosa	Fabaceae	Aacharam/Pathinimaram	Rough Bark
12.	Bombax ceiba	Bombacaceae	Ilavu	Prickled Bark
13.	Bridelia crenulataRoxb.Buchanania axillaris (Desr.) T.P. Ramamoorthyinc.J.Saldanha& Nicolson	Anacardiaceae	Sulluki/Sararappumaram	Rough and Segmented bark
14.	Canthium dicoccum (Gaertn.) Tejisma & Binn.	Rubiaceae	Nekkini	Rough Bark
15.	Capparis zeylanica	Fabaceae	Athandai	Prickled Bark
16.	Cassia fistula L.	Fabaceae	Konnai/Sarakonkai	Smooth & Thick Bark
17.	Cassia siamea Lam.	Fabaceae	Thagaramaram	Smooth Bark
18.	Ceiba pentandra (L.) Gaertn.	Bombacaceae	Ilavu	Prickled Bark
19.	Chloroxylon swietenia DC.	Rutaceae	Purasaram	Rough Bark
20.	Chukrasia tabularis A. Juss.	Meliaceae	Magombumaram	Rough Bark
21.	Cleistanthus collinus (Roxb.) Hook.f.	Euphorbiaceae	Oduvanthazhai	Rough Bark
22.	Commiphora caudata (Wight. & Arnn.) Engl.	Buseraceae	Pachakulivai	Smooth & Flaked Bark
23.	Cordia obliquaWilld.	Boraginaceae	Vallukaram	Rough Bark
24.	Cordia wullschlii G. Don.	Fabaceae	Panthekku	Rough Bark
25.	Dalbergia lancoetaria L.	Fabaceae	Eetimaram	Rough Bark
26.	Dalbergia latifoliaRoxb.	Fabaceae	Eetimaram	Rough & Thick Bark
27.	Diospyros ebenum J. Koen. ex Retz	Ebenaceae	Karungali	Rough-Hand Segmented bark
28.	Diospyros ferrnea (Willd.) Bakh.	Ebenaceae	Irumbuli	Rough Bark
29.	Diospyros melanoxylonRoxb.	Ebenaceae	Thumbaaramaram	Rough and Segmented bark
30.	Diospyros montanaRoxb.	Ebenaceae	Vellunumaram	Prickled Bark
31.	Diospyros oviformia Wight.	Ebenaceae	Kari maram	Rough Bark
32.	Erythroxylum monogynumRoxb.	Erythroxylaceae	Sembiluca/Devadhau	Flaked Bark
33.	Eucalyptus tereticornis Smith	Myrtaceae	Thailaram	Flaked Bark
34.	Ficus racemosa L.	Moraceae	Athimaram	Thick Bark
35.	Ficus benghalensis L.	Moraceae	Aalamaram	Smooth Bark
36.	Ficus microcarpa L.	Moraceae	Kalichi	Smooth Bark
37.	Ficus racemosa L.	Moraceae	Athi	Smooth Bark
38.	Ficus religiosa L.	Moraceae	Arasaram	Smooth Bark
39.	Ficus virensAit.	Moraceae	Irall/Marachi	Smooth Bark
40.	Ficus virensAit.	Moraceae	Irall/Marachi	Smooth Bark
41.	Fliciicum decipiens (Wight. & Arnn.) Thwaites	Sapindaceae	Jannimaram	Smooth Bark
42.	Gardenia gymnifera L.f.	Rubiaceae	Kambumaram	Thick Bark
43.	Glycyrhiza glabra L.	Fabaceae	Athimaduram	Smooth Bark
44.	Gmelina arboreaRoxb.	Lamiaceae	Kumizhamaram	Rough Bark
45.	Grevillea robusta A. Cunn. ex R. Br.	Proteaceae	Silver rook	Rough Bark
46.	Gyropus americanusJacq.	Hernandiaceae	Thanku	Smooth Bark
47.	Ixora pavettaAndr.	Rubiaceae	Koraamaram	Rough Bark
48.	Lanea coromandelica (Houtt.) Merr.	Anacardiaceae	Kullumathi/Ohdiyamaram	Smooth & Thick Bark
49.	Ligustrum perrottetia/A.DC.ex DC.	Oleaceae	Pasaram	Smooth Bark
50.	Limonia acidissima L.	Rutaceae	Vila	Prickled Bark
51.	Madhuca longifolia (L.) Machr.	Sapotaceae	Kaatuiluppi	Rough Bark
52.	Mallotus philippensis (Lam.) Muell. Arg.	Euphorbiaceae	Thiruchilaimaram	Rough Bark
53.	Mangifera indica L.	Anacardiaceae	Manaram	Rough Bark
54.	Memecylon eduleRoxb.	Melastomataceae	Allanaram	Rough and Segmented bark
55.	Mimosa senegel L.	Sapotaceae	Mulliva/Magizhamaram	Rough Bark
56.	Mitragyna parvifolia (Roxb.) Korth.	Rubiaceae	Neerkadampa	Flaked Bark
57.	Morinda cordifoliaBuch. Ham.	Rubiaceae	Nunaramaram	Rough-Hand Segmented bark
58.	Naringi crenulata (Roxb.) Nicolson	Rutaceae	Naivila/Porvillangaram	Rough Bark
59.	Nothopegia colebrookeana (Wight.) Blume	Anacardiaceae	Kuttumathi/Kuttama	Rough & Thick Bark
60.	Phyllanthus semilic L.	Phyllanthaceae	Periyanelli	Smooth Bark
61.	Pithecellobium dulce (Roxb) Benth.	Fabaceae	Konakai/Kodukkaipuli	Rough Bark
62.	Pittosporum apaulense (DC.) Rehder&E.H.Wilson	Pittosporaceae	Vellaimathi	Smooth Bark
63.	Pleurostoma opposita (Wall.) Alston	Celastraceae	Sutholingi	Rough Bark
64.	Plumeria rubra L.	Apocynaceae	Arali	Smooth Bark
65.	Polyalthia cerasoides (Roxb.) Bedd.	Annonaceae	Senthalamaram	Rough and Segmented bark

(Contd...)
Rough bark, rough segmented bark, smooth bark, prickled bark, fissured bark and flaked bark are the six different types of bark surfaces recognized by the Malayali in the tree species of Chitteri hills. The trees recorded in the study possess Rough bark and belongs to 50 species, 42 genera under 38 families. The tree possess Smooth bark belongs to 26 species, 23 genera under 17 families. The rough and segmented bark reported in 7 tree species belong to 5 genera under 5 families. The Prickled bark is reported in 6 tree species. The Flaked bark reported in 8 species belongs to 8 genera. Malayali identify 25 milky and white latex yielding plants belonging to 17 families. The diversity of habit of these trees that possess thick bark and. They also identify2 species with colourless latex yielding plants, 5 species are reported with red exudates yielding plants. Eight species reported as gum yielding plants and 5 species are resin yielding plants.

Bark has been used as a means of recognition of trees by many tribal societies across the world. For example, the tribes in West Africa classified *Adansonia digitata* L. the Baobab tree into the following four types using bark character such as colour and surface of bark: 1.) Smooth pink bark, 2.) Rough grey bark, 3.) Smooth grey bark and 4.) Black bark (Assogbadjo et al., 2006). Batoros and Bakigas in Western Uganda recognize trees based on life forms. Identifying trees by their architecture is no problem for them (Kakudidi, 2004).

Modern day field-botanists tend to use vegetative features such as bark characters, leaf characters, overall branching pattern and life form for on-the-spot identification of trees. The above mentioned a few publications in which this approach has been standardized.

Plant Exudates

The secretory spaces in the form of cavities or canals are formed by schizogeny or by lysigeny or sometimes by both phenomena combined. Laticifers are cells or series of fused cells containing fluid called latex and forming systems that permeate various tissues of the plant body.

Any discharge from the plants named as exudates by Malayali tribes of Chitteri hills. They use colour of exudates, change of colour in the exudates and the drying characters of the exudates as important criteria for identifying plant species. Malayali tribes consider the milky and white latex as *pal* in Tamil meaning milky secretion. They recognize 25 milky and white latex yielding plants belonging to 21 genera and 7 families (Table-2). The diversity of habit of these species is trees (14 species), shrubs (3 species), straggler (3 species), climber (3 species) and herb (2 species). Seven species are reported with colourless latex yielding plants, 5 species are reported with red exudates yielding plants. Eight species reported as gum yielding plants and 5 species are resin yielding plants.

For example, the bark of *Pterocarpus marsupium* naturally discharges red coloured latex in a steady continuous flow. Initially it is non viscous and later on it becomes viscous. After a period of 48 hrs, the red coloured latex changes into a semi solid black substance. The bark of *Buchanania axillaris* discharges watery latex very slowly without any cut open, after 2-3 hrs it turns into semi solid. Without any cut open bark steadily discharge of viscous milky latex is characteristic of *Ficus benghalensis*, *F. glomerata* and *F. microcarpa* and *Freitagosa*. The watery latex from the bark of *Cassine glatca* is natural one and turns into semisolid colourless gum in a few hours after discharge. The bark of *Semecarpus anacardium* is cut open, it discharges red coloured exudates very slowly and it turns into a semi solid black mass. On physical contact with the latex is injurious to the skin causing blisters.

S. No.	Botanical Name	Family	Local name	Bark Characters
66.	*Pongamia pinnata* (L.) Pierre.	Fabaceae	Pungamaram	Rough Bark
67.	*Prema tomentosa* Willd.	Lamiaecae	Ponnari	Rough Bark
68.	*Pterocarpus marsupium* Roxb.	Fabaceae	Vengai	Rough & Thick Bark
69.	*Santalum album* L.	Santalaceae	Sahnam	Rough Bark
70.	*Schleicheria oleosa* (Lour.) Oken.	Sapindaceae	Sakattamaram	Rough Bark
71.	*Semecarpus anacardium* L.	Anacardiaceae	Serra maram	Rough & Thick Bark
72.	*Shorea roxburghii* G. Don.	Dipterocarpaceae	Silar/Kunjiliyam	Rough & Thick Bark
73.	*Strychnos nux-vomica* L.	Loganiaceae	Yetti	Rough Bark
74.	*Strychnos spotatorum* L.	Loganiaceae	Thethamaram	Rough Bark
75.	*Swietenia mahagoni* (L.) Jacq.	Meliaceae	Mahagony	Rough Bark
76.	*Syzygium cumini* (L.) Skeels	Myrtaceae	Naval	Flaked Bark
77.	*Tamarindus indica* L.	Fabaceae	Puliymaram	Rough Bark
78.	*Tectona grandis* L.f.	Lamiaecae	Theku	Rough Bark
79.	*Terminalia arjuna* (DC.) Wight. & Arn.	Combretaceae	Neeramthi	Smooth, Thick & Flaked Bark
80.	*Terminalia bellirica* (Gaertn.) Roxb.	Combretaceae	Thandri	Rough & Thick Bark
81.	*Terminalia hebulata* Retz.	Combretaceae	Kadukai	Rough Bark
82.	*Terminalia crenulata* Roth.	Combretaceae	Karumarudhu	Rough and Segemented bark
83.	*Terminalia tomentosa* W. & A.	Combretaceae	Pillaimarudu	Rough & Thick Bark
84.	*Thespesia populnea* (L.) Soland. ex Corrêa	Malvaceae	Pouvarasu	Rough Bark
85.	*Thevetia peruviana* K. Schum.	Apocynaceae	Thangaarali	Rough Bark
86.	*Vitex altissima* L.f.	Verbenaceae	Mayiladi	Smooth Bark
87.	*Vitex negundo* L.	Verbenaceae	Vellainochi	Smooth Bark
88.	*Wrightia tinctoria* (Roxb.) R. Br.	Apocynaceae	Vetpaalai	Smooth Bark
S. No.	Botanical Name	Family	Local Name	Identification Characters
-------	--------------------------------	--------------------	------------	---
1	Agave angustifolia L.	Agavaceae	Katarali	Succulence leaves
2	Albizia procera L.	Fabaceae	Kudumudurai	Riparian & Watery latex
3	Aloe vera (L.) Burm.f.	Liliaceae	Katralai	Succulence leaves & Watery latex
4	Andrographis alata (Vahl.) Nees.	Acanthaceae	Siriyanganai	Taste
5	Andrographis paniculata (Burm.f.) Wallich ex Nees.	Acanthaceae	Nilavembu	Taste
6	Anogeissus latifolia (Roxb. ex DC.) Wall. ex Guill. & Per.	Combretaceae	Naimamaram/Vetkaali gum	Colour young leaves & Gum
7	Aristolochia indica L.	Aristolochiaceae	Aduthinapalai	Colour leaves
8	Artocarpus heterophyllus Lam.	Moraceae	Kaatupalai	Milky latex
9	Artocarpus hirsutus L.f.	Moraceae	Kari palamaram	Milky latex
10	Asparagus officinalis Wild.	Liliaceae	Thaineeravetankizangu	Tuber
11	Bombax ceiba L.	Bombaceae	Ilavu	Riparian
12	Bridelia crenulata Roxb.	Euphorbiaceae	Marivaengai	Red latex
13	Buchanania axillaris (Dess.) T.P. Ramamoorthy inc. J. Saldanha & Nicolson	Anacardiaceae	Sulluki/Saraparuppumaram	Watery latex
14	Calatropsis procera Br.	Apocynaceae	Vellaeukkan	Milky latex
15	Calotropis gigantea (L.) R.Br.	Apocynaceae	Erukkan	Milky latex
16	Caralluma ascodens var. attenuata Wight	Apocynaceae	Kallumullian	Watery latex
17	Cassine glauca (Rottb.) Kuntze	Celastraceae	Eelmanaram	Gum
18	Catunaregum spinoa (Retz.) Poiret	Rubiaceae	Marakaram	Root
19	Chloroxylon swieteni DC.	Rutaceae	Purasamarang	Watery latex
20	Clerodendrum inerme (L.) Gaertn.	Verbenaceae	Nar Sangullali	Taste of leaves
21	Cordia wallichii G. Don.	Boraginaceae	Panthekku	Watery latex
22	Cosmystigma racemosum (Roxb.) Wight	Apocynaceae	Padameratti	Milky latex
23	Crateva magni DC.	Capparaceae	-	Tuber
24	Croton bonplandianus Ballion	Euphorbiaceae	Poondu	Watery latex
25	Cryptolepis grandiflora Wight.	Apocynaceae	Athankodi/Matangodi	Milky latex
26	Curcuma longa (L.) R.Br.	Hypoxidaceae	Nilapalaliu	Tuber
27	Decalepis hamsamani Wight. & Arn.	Apocynaceae	Mavilangum	Tuber & Milky latex
28	Dioscorea pentaphylla L.	Dioscoreaceae	Vallikilangu	Tuber
29	Dioscorea bulbifera L.	Dioscoreaceae	Kavallikilangu	Tuber
30	Dioscorea oppositifolia L.	Dioscoreaceae	Malaiyankilangu	Tuber
31	Diospyros ferruginea (Wild.) Bakh.	Ebenaceae	Irumbuli	Gum
32	Drynaria quercifolia (L.) J. Sm.	Polyopodiaceae	Attukakkilangu	Tuber
33	Eucalyptus tereticornis Smith	Myrtaceae	Thaialamaram	Gum
34	Euphoria antiqorum H. L.	Euphorbiaceae	Sathurakalli	Milky latex
35	Euphoria herophylly L.	Euphorbiaceae	Venmaikolunthu	Milky latex
36	Ficus benghalensis L.	Moraceae	Alararam	Milky latex
37	Ficus glomerata Roxb.	Moraceae	Athimaram	Milky latex
38	Ficus infectoria Wild.	Moraceae	Malalitichi	Milky latex & Riparian
39	Ficus microcarpa L.f.	Moraceae	Kalarasan	Milky latex
40	Ficus racemosa L.	Moraceae	Athi	Milky latex & Riparian
41	Ficus religiosa L.	Moraceae	Arsamaram	Milky latex
42	Flueggea virosa (Wild.) Baillon	Euphorbiaceae	-	Colour leaves
43	Gardenia gummi fera L.f.	Rubiaceae	Kambimaram	Resin
44	Gardenia resinifera Roth.	Rubiaceae	Kambimaram	Resin
45	Grevillea robusta A. Cunn. ex R. Br.	Proteaceae	Malaisavuku	Resin
46	Gymnema sylvestre (Retz.) L. R.Br. ex Roemer & Schultes	Apocynaceae	Sirukurinjan	Milky latex & Taste of leaf
47	Hardwickia binauta Roxb.	Fabaceae	Achamanaram	Resin
48	Hemidesmus indicus (L.) R.Br.	Apocynaceae	Sirumolikilangu	Tuber & Milky latex
49	Hiptage benghalensis (L.) Kurz.	Malpighiaceae	Suthalakodi	Leaf Glands
50	Incocarpus rutescens (L.) R.Br.	Apocynaceae	Palavikkolidi	Milky latex
51	Limonia acidissima L.	Rutaceae	Vila	Gum
52	Litsea oleoides (Meissner) Hook. f.	Lauraceae	-	Colour leaves
53	Madhuca longifolia (L.) Machr.	Sapotaceae	Kaatulluppa	Milky latex, Colour leaves & Riparian
54	Maerua albiflora (Forskall) A.Rich.	Capparaceae	Pumisarkaralikzhangu	Tuber
55	Mallotus philippensis (Lam.) Muell. Arg.	Euphorbiaceae	Thiruchiilaimaram	Leaf Glands
56	Mangifera indica L.	Anacardiaceae	Ma	Riparian
57	Manilkara hexandra Dubard	Sapotaceae	-	Riparian
58	Marsdenia tenacissima (Roxb.) Moon	Apocynaceae	-	Watery latex
59	Mirusosus elengi L.	Saptoaceae	Mulavumaram	Milky latex
60	Mirabilis jalapa L.	Nyctaginaceae	Anthimantharai	Tuber
61	Mitragyna parvifolia (Roxb.) North.	Rubiaceae	Neerkadapai	Riparian & Red latex
62	Morinda corea ex Buch. Ham.	Rubiaceae	ManjallKadapai/Nuna	Riparian & Gum
63	Musa paradisical L.	Musaceae	Valai	Tuber
64	Nerium olender L.	Apocynaceae	Alari	Milky latex

(Contd...)
Table 2: (Continued)

S. No.	Botanical Name	Family	Local Name	Identification Characters
65.	Pavonia zeylanica (L.) Cav.	Malvaceae	Sitramutti	Root
66.	Pentatropsis capensis (T.f.) Bullock	Apocynaceae	Uppalankodi	Watery latex
67.	Pergularia daemia (Forsskal) Chiov	Apocynaceae	Uthamanai	Milky latex
68.	Plecospermum spinosum (Roxb. ex Wild.) Trecul.	Moraceae	-	Milky latex
69.	Plumeria rubra L.	Apocynaceae	Arali	Milky latex
70.	Polygonia cerasoides (T.f.) Bullock	Apocynaceae	Senthalamaram	Red latex
71.	Pongamia pinnata (L.) Pierre	Fabaceae	Pungan	Riparian
72.	Premna tormentosanaW. & A.	Verbenaceae	Ponneri	Colour leaves
73.	Pterocarpus marsupiumRoxb.	Fabaceae	Vengai	Red latex
74.	Semecarpus anacardiun L.	Anacardiaceae	Serra maram	Red latex, Taste & Colour leaves
75.	Shorea roxburghii. Don.	Dipterocarpaceae	Silari/Kungiliyam	Gum
76.	Syzygium cumini (L.) Skeels	Myrtaceae	Naval	Riparian
77.	Tephrosia purpurea (L.) Pers.	Fabaceae	Kozingi	Root
78.	Terminalia arjuna (DC.) Wight. &Arn.	Combretaceae	Neermathi	Riparian, Resin & leaf Glands
79.	Terminalia bellirica (Gaertner) Roxb.	Combretaceae	Thandrikaai	Riparian
80.	Terminalia crenulata Roth.	Combretaceae	Karumarudhu	Riparian & Gum
81.	Terminalia tomentosa W. & A.	Combretaceae	Pillaimarudu	Leaf Glands
82.	Tylorrhapha indica (Burmit) Merr.	Apocynaceae	Kuthupalai	Milky latex
83.	Vitex negundo L.	Verbenaceae	Notchi	Riparian & Colour leaves
84.	Withania somnifera (L.) Duanl	Solanaceae	Amarakankilangu	Root
85.	Wrightia tinctoria (Roxb.) R.Br.	Apocynaceae	Veppalai	Milky latex

Figure: 1 Study area

the Malayali explain the periodicity of the flow of latex thus: “The rate of flow of latex from the trees is influenced by rainfall. If the species receives sufficient rainfall, the discharge of latex is copious and if the species receives insufficient rainfall, the discharge of latex is scanty”. The scientific explanation for this phenomenon is as follows: “Under conditions of heavy rainfall, the cells are supersaturated with water resulting in increased turgour within the plant body. This leads to copious discharge of latex. On the other hand under conditions of drought or scanty rainfall, the cells become flaccid resulting in scanty discharge of the latex”. Though they may not know the scientific basis for this phenomenon, it must be agreed that their observation is correct.

Leaf characters

Many tribes familiar with plants use sight, touch, taste, smell and sound for identification and classification of particular plant species. Tribal experience with the organoleptic properties of plants in identification comprises smell, touch and taste (Newmaster et al., 2006). Sensory perception gained by experience is an important tool for plant identification (Getchell et al., 1991; Messer, 1991).

The taste qualities that humans perceive in plants, especially bitterness, have been proposed as significant clue used in primitive societies. Malayali of Chitteri hills have clear knowledge of identification of the species in which leaf characters such as colour, taste, smell, succulence and glands form important criteria.

The Malayali of Chitteri hills also use their personal experience of taste for identification of certain species of plants. By experiencing the leaf taste they identified the following plants Andrographis paniculata, Andrographis alata, Gymnema
Prabakaran and Senthil Kumar

Prabakaran and Senthil Kumar, Nannari Moodi Anogeissus latifolia parts belonging to 16 genera under 15 families. Roots, rhizome of the plant species by utility. They used 19 underground plant Malayali tribes of Chitteri hills identified underground parts of rhizome, tuber, corms and bulbs for their use. Tribes of Kadars, Malasars, Maduvars and Malamalaars of various regions use underground parts for their sustainable use. Tribes of Kadars, Malasars, Maduvars and Malamalaars of Parambikulam wild life sanctuary, Kerala, listed ten edible plants and tuber of these plants are used for preparing raw drug to cure ailments and food. Of these 19 species, 5 are used as food, the rest are used for medicinal properties.

Rhizomes of Dioscorea bulbifera, Dioscorea pentaphylla and Dioscorea oppositifolia are cooked and eaten. Roots of Decalepis hamiltonii are pickled and used as food adjuvant. The roots of Hemidesmus indicus yield a coolant drink called ‘Nannari sharbath’.

The Malayali tribal have a wide knowledge of conserving plant species. They adopt specific strategies while harvesting plant parts for their use. For example while collecting the Dioscorea sp. they know at what stage of plant growth the rhizome is to be dugout. Based on plant and leaf growth, a Malayali knows whether the rhizome is mature or immature. They are also conscious of conserving the plant for posterity. While digging out the rhizome, they leave out some portion of rhizome with bud (called as “Moodi” in Tamil) so that it can grow in next season. This practice protects the species from extinction. They roast or boil the rhizome for consumption. The upper portion of rhizome is not used in cooking, as it cause itching sensation.

The roots of Decalepis hamiltonii is collected, washed with water, cut into small pieces and dried in the sun. The dried root pieces are pickled. Roots of Hemidesmus indicus collected, washed with water and crushed freshly to prepare a coolant drink called ‘Nannari sharbath’ Malayali tribes of Chitteri hills and tribes of various regions use underground parts for their sustainable use. Tribes of Kadors, Malasars, Maduvars and Malamalaars of Parambikulam wild life sanctuary, Kerala, listed ten edible underground parts of rhizome, tuber, corms and bulbs for cooking curry. The rhizome of Dioscorea sp. causes terrible itching sensation in ones throat if eaten raw. They peel off the outer layer, boil the rhizome in tamarind water and smear with turmeric paste to make it palatable (Yesodharan & Sujana, 2007).

Today we know that raphides (the needle like crystals) of calcium oxalate present in the parenchyma cells of the tubers prick the tongue and mouth causing irritation. When soaked and cooked with tamarind, the tannic acid present in tamarind dissolves the crystals. It is surprising as to how the tribal people knew of the use of tamarind for this purpose.

Ecological characters

Ecological knowledge, such as where a particular plant lives is another important criterion used by the tribes for identifying plants and is perhaps limited to the geographic region. Ecology appears to play an important role in how people classified the flora and fauna of a given area (Areendran & Rao, 2009).

Malayali tribes use landscape characters to a greater extent for identifying certain species of plants. They have accurate knowledge about species such as Ficus tomentosa, Caralluma attuneta and C. umbellata occurring in rocky terrains. Malayali tribes are knowledgeable about connecting certain species to
the particular landscape and naming the species accordingly. The naming of plant in vernacular language is based on habitat; one typical example is *Caralluma attunetra* which is locally called *kallumuliyan* in Tamil, because this species always occurs in rocky areas.

Albizia procera an exotic plant that occurs very rarely in Chitteri hills is another good example for this. The bark of this tree, which is used to cure all types of bone fractures, is called *Koodumathurai* in Tamil. The Tamil word *Koodu* means meeting or group and ‘to join’. This species always occurs in a group of three to five. Its medicinal property joins fractured bones as well. Therefore, the Tamil vernacular name appears appropriate. *Decalepis hamiltonii* of Apocynaceae is another species growing in rocky areas. Malayali always look for this plant in rocky areas as their root tubes picked as consumed as food adjuvant. The tubers have cooling properties.

To cite some more examples on their knowledge of the habitat characteristic of plants, they recognize the following plants as riparian. The field notes of the following species: *Terminalia arjuna* is characteristic riparian (riverbanks) (Matthew, 1995). According to Gamble it is more scarce in Carnatic region except in Tirunelveli and on the West coast; on the banks of rivers and streams. *Terminalia crenulata* reported as occasional in riverbanks (Matthew, 1995), *Syzygium cumini* is representing variety of habitats: Shoals, riverbanks, scrub jungle (Matthew, 1995). It occur in all forest districts, both in plains and in the hills up to 6000 ft., usually along river banks and in moisture localities (Gamble & Fisher, 1935).

Vitex negundo is common in riverbanks or fencing near households (Matthew, 1995). It is present in the dry region up to 5000ft in the hills, on wastelands around villages, on roadsides and the banks of streams, common (Gamble & Fisher, 1935). *Bombax ceiba* occur from plains to coast, especially along riverbanks; on the deciduous belt of the hills to 800m (Matthew, 1995), *Drosera indica* is bloom up with the monsoons (unless in perennially moist ground) (Matthew, 1995) and wet places in hills. According to Gamble *Mangifera indica* occurs in ravines up to 4000ft. *Mitragyna parvifolia* is often reported along rivers and foothills to 800m (Matthew, 1995). *Pongamia pinnata* represent mostly by banks of rivers, in ravine (Matthew, 1995). It is present from coastal forest to tidal riverbanks; inland chiefly along streams and rivers in most districts in the hills up to 5000ft (Gamble & Fisher, 1935) attests to their riparian nature.

Just as a field-botanist has his own scientific approach towards identifying plants in order to pick useful ones, native tribes also have their own approach based on direct observation and macro characters and this serves the purpose. Therefore, we should not dismiss the traditional knowledge of the tribal people as something without scientific basis.

In conclusion, the identification of the usefulness of a plant by organoleptic characters as practiced by the tribal people around the world may be a simple and useful tool to those who do not have a formal botanical training. This knowledge is transmitted orally from generation to generation in the tribal population. Though for scientific purposes this approach of identification of plants cannot be the sole basis, it is certainly useful as it offers supportive field characters for confirming identification. In this context, it is recommended that such indigenous knowledge is documented and incorporated in the floristic publications of the regional floras.

ACKNOWLEDGEMENTS

We thank Mr. Murugesan, Malayali tribe, Chitteri hill and Chitteri Malayali tribal village heads Tamil Nadu, India for the help rendered during the field survey for their help in identifying the plants. The authors also thank DST-PURSE (Grant No.SR/PURSE Phase 2/16) and UGC- SAP DRS-II (No.F5-13/2018/DRS-II (SAP-II) for financial support.

REFERENCES

Areendran, G., & Rao, P. (2009). Vegetation types the Southern Eastern Ghats. A Remote sensing perspective, World Wide Fund for Nature-India.

Assogbadjo, A. E., Kyndt, T., Sinsin, B., Gheysen, G., & Andamme, P. V. (2006). Patterns of genetic and morphometric diversity in baobab (*Adansonia digitata*) populations across different climatic zones of Benin (West Africa). *Annals of Botany*, 97, 819-830. https://doi.org/10.1093/aob/mcl043

Berlin, B. (1992). Ethnobotanical classifications principles of categorization of plants and animals in traditional societies, Princeton University press, Princeton.

Classen, C. (1992). The odour of the other: Olfactory symbolism and cultural categories. *Ethos*, 20, 133-166. https://doi.org/10.1525/eth.1992.20.2.02x00010

Gamble, J. S., & Fisher, C. E. C. (1935). Flora of the Presidency of Madras, Parts 1-3 Aldard & Son, London.

Getchell, T. V., Doty, R. C., Bartoshuk, L. M., & Snow Jr. J. B. (eds.) (1991). Smell and taste in health disease, Raven Press, New York.

Harur Forest office Report. (2007). Tamil Nadu Forest Department, Harur range, Harur.

Heinrich, M., & Gibbons, S. (2001). Ethnopharmacology in drug discovery: an analysis of its role and potential contribution. *Journal of Pharmacology and Pharmacology*, 53(4), 425–432. https://doi.org/10.1211/0022357011775712

Jain, S. K. (1995). A manual of ethnobotany (2nd Eds.), Jodhpur, India: Scientific Publishers.

Kakudidi, E. K. (2004). Folk plant classification by communities’ crowned Kibale National park, Western Uganda. *African Journal of Ecology*, 22(1), 57-63. https://doi.org/10.1111/j.1365-2028.2004.00462.x

Matthew, K. M. (1995). The Flora of the Tamil Nadu Carnatic. The Rapinat Associates.

Messer, Z. (1991). Systematic and medicinal reasoning in Mithila folk botany. *Journal of Ethnopharmacology*, 33, 107-128. https://doi.org/10.1016/0378-8741(91)90170-I

Newmaster, S. G., Ragupathy, S., Ivanoff, R. F., & Nirmala, C. B. (2006). Mechanisms of ethnobotanical classifications. *Ethnobotany*, 18, 4-26.

Rao, R. R., & Hajra, P. K. (1987). Methods of research in ethnobotany In *Manual of Ethnobotany* (Ed.), India: S.K. Jain Scientific Publishers.

Schultes, R. E. (1962). The role of ethnobotanist in the search for new medicinal plants. *Lloydia*, 25, 257-266.

Yesodharan, K., & Sujana, K. A. (2007). Wild edible plants traditionally used by the tribes in the Parambikulam wild life sanctuary, Kerala, India. *Natural Product Radiance*, 6(1), 73-80.