Association of Circulating Vascular Endothelial Growth Factor Levels With Autoimmune Diseases: A Systematic Review and Meta-Analysis

Haoting Zhan1,2†, Haolong Li1,2†, Chenxi Liu1,2, Linlin Cheng1,2, Songxin Yan1,2 and Yongzhe Li1,2*

1 Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China, 2 Department, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China

Background: Autoimmune diseases (ADs) are characterized by immune-mediated tissue damage, in which angiogenesis is a prominent pathogenic mechanism. Vascular endothelial growth factor (VEGF), an angiogenesis modulator, is significantly elevated in several ADs including rheumatoid arthritis (RA), systemic sclerosis (SSc), and systemic lupus erythematosus (SLE). We determined whether circulating VEGF levels were associated with ADs based on pooled evidence.

Methods: The analyses included 165 studies from the PubMed, EMBASE, Cochrane Library, and Web of Science databases and fulfilled the study criteria. Comparisons of circulating VEGF levels between patients with ADs and healthy controls were performed by determining pooled standard mean differences (SMDs) with 95% confidence intervals (CIs) in a random-effect model using STATA 16.0. Subgroup, sensitivity, and meta-regression analyses were performed to determine heterogeneity and to test robustness.

Results: Compared with healthy subjects, circulating VEGF levels were significantly higher in patients with SLE (SMD 0.84, 95% CI 0.25–1.44, P = 0.0056), RA (SMD 1.48, 95% CI 0.82–2.15, P <0.0001), SSc (SMD 0.56, 95% CI 0.36–0.75, P <0.0001), Behcet’s disease (SMD 1.65, 95% CI 0.88–2.41, P <0.0001), Kawasaki disease (SMD 2.41, 95% CI 0.10–4.72, P = 0.0406), ankylosing spondylitis (SMD 0.78, 95% CI 0.23–1.33, P = 0.0052), inflammatory bowel disease (SMD 0.57, 95% CI 0.43–0.71, P <0.0001), psoriasis (SMD 0.98, 95% CI 0.62–1.34, P <0.0001), and Graves’ disease (SMD 0.69, 95% CI 0.20–1.19, P = 0.0056). Circulating VEGF levels correlated with disease activity and hematological parameters in ADs.

Conclusion: Circulating VEGF levels were associated with ADs and could predict disease manifestations, severity and activity in patients with ADs.
INTRODUCTION

Angiogenesis, a hallmark of inflammatory activation, is an integral part of pathogenic processes including endothelial cell proliferation and migration and subsequent neovascularization and remodeling in autoimmune diseases (ADs). Synovial pannus initiates the invasion of cartilage and subchondral bone to perpetuate rheumatoid arthritis (RA) (1, 2), whereas ankylosing spondylitis (AS) is characterized by increased vascularity and vascular lesions (3). Vascular endothelial dysfunction and injury are considered as the primum movens triggering Kawasaki disease (KD), systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), Behçet’s disease (BD), systemic sclerosis (SSc), and psoriasis (PsA) (4–9). Therefore, early detection of vascular involvement is pivotal in AD diagnosis.

Vascular endothelial growth factor (VEGF)-A, generally known as VEGF, is a crucial regulator of endothelial dysfunction, capillary permeability, and angiogenesis. For example, serum VEGF level and intrathyroid microvessel density were reported to be increased patients with Graves’ disease (GD) compared to healthy control (HC) subjects (10). Increased serum VEGF and significant difference in diffused and limited SSc suggest VEGF as a potential surrogate indicator of capillary damage (11). Strong VEGF expression in synovial fluid and serum of patients with RA was shown to lead to synovial neovascularization and destruction in cartilage and bones (12, 13). VEGF was reported to be overexpressed in the skin and peripheral blood of patients with PsA (14). Serum VEGF levels were shown to be elevated and to correlate with disease activity and severity in PsA, SLE, BD, IBD, KD, and AS (14–19). These findings suggest VEGF as a potential pathogenic factor with promising diagnostic value in ADs. However, no clinical guidelines currently recommend serum VEGF evaluation in routine care and counseling of patients with ADs, and intensive studies are warranted to identify the clinical implications of the findings regarding VEGF’s role in ADs to date and to resolve contradictory results (20–24).

Given the inconsistency among these findings and lower statistic power of the studies, we performed a systematic review and meta-analysis to generate independent results and recognize the source of heterogeneity. In the present study, we aimed to determine whether circulating VEGF was a causative factor in ADs.

MATERIALS AND METHODS

Literature Search

The present systematic review with meta-analysis was performed according to the PRISMA guidelines (PROSPERO registration number, CRD42021227843). Two authors (HTZ and HLL) independently searched the PubMed, Embase, Cochrane Library, and the Web of Science databases for studies published until October 14. The detailed search strategies are provided in the online Supplemental Materials. Reference lists were manually retrieved.

Eligibility Criteria

Without restrictions on time, language, ethnicity, and geographical region, studies satisfying the following criteria were included: (1) case-control or cohort studies on the association between circulating VEGF and ADs including SLE, RA, SSc, BD, KD, AS, IBD, PsA, and GD; (2) HCs without ADs (2); available data on circulating VEGF levels (serum or plasma); (3) sufficient data on VEGF levels for both HCs and patients with ADs to evaluate standard mean differences (SMDs) with 95% confidence intervals (CIs). Studies based on animal and cellular models, those comprising HCs with insufficient data; and editorial letters with insufficient data were excluded.

Data Extraction and Quality Assessment

Two independent investigators (HTZ and HLL) individually screened the literature and extracted and evaluated the data. Any discrepancies were resolved by consensus or by a third opinion (YZL). Study number, name of the first author, publication year, country, study type, sample type, inclusion and exclusion criteria, demographic features, aggregated number of subjects and circulating VEGF levels in patients with ADs and HCs, diagnostic criteria, type of VEGF assay, and treatment history and strategy were extracted into pre-designed charts. For meta-analysis, continuous variables were translated from medians (interquartile range [IQR] or range) to means ± standard deviation (25). Newcastle–Ottawa quality assessment scale was used to evaluate study quality. Further details of the pooled studies were obtained by directly contacting the authors if warranted.

Data Analysis

STATA V.16.0 was used to perform the meta-analysis. SMDs with 95% CIs were used to estimate the pooled results and compare circulating VEGF levels between patients and HC groups. Random-effect model was used for analysis. Significant heterogeneity was ascertained based on a p value of ≤0.10 using the Cochrane Q test or an I^2 value of >50%. Subgroup, sensitivity, and meta-regression analyses were performed to identify the source of heterogeneity and to test robustness. Spearman correlation coefficients were transformed into Pearson’s r values, which were converted to Fisher’s z values to obtain approximately normal distributions. Ultimately, the summary Fisher’s z values were converted into summary r values. Summary r values of 0.8–1.0, 0.6–0.8, 0.4–0.6, and 0.2–0.4
indicated extreme, high, and moderate relevance and poor correlation, respectively (details provided in the online Supplemental Materials). Publication bias was assessed by Egger’s linear regression test and contour-enhanced funnel plots with collaborative meta-trim. A two-sided \(P < 0.05 \) was considered to indicate statistical significance.

RESULTS

Search Results and Population Characteristics

The literature search is summarized in Figure 1. After removing duplicate studies (\(n = 3,322 \)) and irrelevant publications (\(n = 8,673 \)), 298 articles were analyzed and the full texts of 273 articles were read. Thirty-two full-text articles were eliminated due to incomplete data or unrelated outcomes. Among 241 eligible studies meeting the inclusion criteria, 76 articles were excluded due to unextractable data, insufficient data on HCs, irrelevant VEGF sample type (urine/synovial fluid/tear fluid), or inappropriate disease control groups. Finally, 165 studies were included in the meta-analysis, with 28, 29, 40, 13, 8, 12, 16, 23, and six studies on SLE (20, 21, 26–51), RA (12, 22–24, 38, 43, 52–74), SSc (11, 38, 39, 64, 75–110), BD (111–123), KD (18, 124–130), AS (55, 73, 131–140), IBD (141–156), PsA (12, 14, 135, 136, 157–175) and GD (10, 176–180), respectively. The main study characteristics are summarized in Table 1 and Appendix 1. The studies were medium-to-high quality based on the Newcastle-Ottawa quality assessment scale scores (range, 4–9).

Meta-Analysis of the Association Between Circulating VEGF and SLE

Circulating VEGF levels were significantly higher in SLE than in HC (SMD 0.84, 95%CI 0.25–1.44, \(P = 0.0056 \)) (Figure 2A). Additionally, circulating VEGF was higher in active SLE than in inactive SLE (SMD 0.80, 95%CI 0.02–1.59, \(P = 0.0454 \)) (Figure 2B-i). Serum VEGF levels remained remarkable higher in active SLE.
TABLE 1 | Population characteristics of the studies included in the meta-analysis.

Year	Author	Country	Study type	SLE	Sample size	Female (%)	Age (years)	HC	Sample size	Female (%)	Age (years)
2015	Barbulescu AL	Romania	case-control	SLE	18	16 (88.88)	45.00 ± 10.81	17	16 (94.11)	range: 19-64	
2019	Barraclough M	UK	case-control	SLE	36	34 (94)	40 ± 12.41	30	30 (100)	32 ± 14.44	
2008	Ciprandi G	Italy	case-control	SLE	40	40 (100)	41.95 ± 8.3	40	33 (82.5)	43 ± 8.2	
2014	De Jesus GR	Brazil	case-control	SLE	80	80 (100)	42.6 ± 9.1	80	80 (100)	40.1 ± 9.5	
2015	Ding Y	China	case-control	SLE	41	30 (73.2)	11.1 ± 2.4	10	0		
2009	Elhelaly NS	Egypt	case-control	SLE	23	21 (91.3)	Range: 19-64	25	5 (25)	12 ± 3	
2008	Ciprandi G	Italy	case-control	SLE	40	34 (100)	41.95 ± 8.3	40	33 (82.5)	43 ± 8.2	
2014	De Jesus GR	Brazil	case-control	SLE	80	80 (100)	42.6 ± 9.1	80	80 (100)	40.1 ± 9.5	
2015	Ding Y	China	case-control	SLE	41	30 (73.2)	11.1 ± 2.4	10	0		
2009	Elhelaly NS	Egypt	case-control	SLE	23	21 (91.3)	Range: 19-64	25	5 (25)	12 ± 3	
2008	Ciprandi G	Italy	case-control	SLE	40	34 (100)	41.95 ± 8.3	40	33 (82.5)	43 ± 8.2	
2014	De Jesus GR	Brazil	case-control	SLE	80	80 (100)	42.6 ± 9.1	80	80 (100)	40.1 ± 9.5	
2015	Ding Y	China	case-control	SLE	41	30 (73.2)	11.1 ± 2.4	10	0		
2009	Elhelaly NS	Egypt	case-control	SLE	23	21 (91.3)	Range: 19-64	25	5 (25)	12 ± 3	
2008	Ciprandi G	Italy	case-control	SLE	40	34 (100)	41.95 ± 8.3	40	33 (82.5)	43 ± 8.2	
2014	De Jesus GR	Brazil	case-control	SLE	80	80 (100)	42.6 ± 9.1	80	80 (100)	40.1 ± 9.5	
2015	Ding Y	China	case-control	SLE	41	30 (73.2)	11.1 ± 2.4	10	0		
2009	Elhelaly NS	Egypt	case-control	SLE	23	21 (91.3)	Range: 19-64	25	5 (25)	12 ± 3	
2008	Ciprandi G	Italy	case-control	SLE	40	34 (100)	41.95 ± 8.3	40	33 (82.5)	43 ± 8.2	
2014	De Jesus GR	Brazil	case-control	SLE	80	80 (100)	42.6 ± 9.1	80	80 (100)	40.1 ± 9.5	
2015	Ding Y	China	case-control	SLE	41	30 (73.2)	11.1 ± 2.4	10	0		
2009	Elhelaly NS	Egypt	case-control	SLE	23	21 (91.3)	Range: 19-64	25	5 (25)	12 ± 3	
2008	Ciprandi G	Italy	case-control	SLE	40	34 (100)	41.95 ± 8.3	40	33 (82.5)	43 ± 8.2	
2014	De Jesus GR	Brazil	case-control	SLE	80	80 (100)	42.6 ± 9.1	80	80 (100)	40.1 ± 9.5	
2015	Ding Y	China	case-control	SLE	41	30 (73.2)	11.1 ± 2.4	10	0		
2009	Elhelaly NS	Egypt	case-control	SLE	23	21 (91.3)	Range: 19-64	25	5 (25)	12 ± 3	
2008	Ciprandi G	Italy	case-control	SLE	40	34 (100)	41.95 ± 8.3	40	33 (82.5)	43 ± 8.2	
2014	De Jesus GR	Brazil	case-control	SLE	80	80 (100)	42.6 ± 9.1	80	80 (100)	40.1 ± 9.5	
2015	Ding Y	China	case-control	SLE	41	30 (73.2)	11.1 ± 2.4	10	0		
2009	Elhelaly NS	Egypt	case-control	SLE	23	21 (91.3)	Range: 19-64	25	5 (25)	12 ± 3	
2008	Ciprandi G	Italy	case-control	SLE	40	34 (100)	41.95 ± 8.3	40	33 (82.5)	43 ± 8.2	
2014	De Jesus GR	Brazil	case-control	SLE	80	80 (100)	42.6 ± 9.1	80	80 (100)	40.1 ± 9.5	
TABLE 1 | Continued

Year	Author	Country	Study type	RA Sample size	RA Female (%)	RA Age (years)	RA	HC Sample size	HC Female (%)	HC Age (years)
1998	Kikuchi K	Japan	case-control	11	10 (90.9)	51 ± 10.75	20	16 (80)	50 ± 12.5	
2007	Cho ML	Korea	case-control	72	49.6 ± 1.3	54.3 ± 14.25	31		47.1 ± 2.1	
2006	Kurylczyn-Moskal A	Poland	case-control	64	54 (84.4)	58.6 ± 12.6	32		52.7 ± 10.6	
2004	Kuwana M	Japan	case-control	11	11 (100)	59.1 ± 12.0	11	11 (100)	52.7 ± 10.6	
2010	Milman N	Canada	case-control	47	78.7	54.3 ± 14.25	30	28 (93.3)	34.03 ± 10.3	
2018	Misra S	India	case-control	50	46 (92)	35.90 ± 18.607	20		25 ± 1	
2016	Novikov A	Russia	case-control	74	59 (79.7)	35.90 ± 18.607	20		52.0 ± 2.5	
2012	Oranskiy SP	Russia	case-control	39	82.0	53.0 ± 2.75	20		52.0 ± 2.5	
2010	Ozgonenel L	Turkey	case-control	40	32 (80)	46 ± 12.59	38	18 (47.4)	44 ± 11.11	
2009	Young HR	America	case-control	169	69.20	54.2 ± 11.8	92	63	53.2 ± 11.6	
2016	Rodriguez-Carrillo J	Spain	case-control	212	175 (82.5)	54 ± 17.25	175	102 (58.3)	51 ± 14.25	
2016	Smets P	France	case-control	80:RA13	8 (61.5)	71 ± 7.97	37	24 (64.9)	73.35 ± 8.55	
2004	Strunk J	Germany	case-control	16	16 (78.2)	range: 38–79	41	38 (92.7)	56.09 ± 7.82	
2010	Ozgonenel L	Turkey	case-control	40	32 (80)	46 ± 12.59	38	18 (47.4)	44 ± 11.11	
2001	Sone H	Japan	case-control	155	130 (83.9)	range: 21–57	75	62 (82.7)	55.8 ± 15.4	

Year	Author	Country	Study type	SSc Sample size	SSc Female (%)	SSc Age (years)	RA Sample size	RA Female (%)	RA Age (years)	HC Sample size	HC Female (%)	HC Age (years)
2012	Bosello SL	Italy	case-control	48	45 (81.8)	40.6 ± 13	55	30	38 ± 6			
2017	Chora I	Italy	case-control	55	49 (89.0)	64 ± 11	55	51 (92.7)	52 ± 10.25			
2013	De Lauretis A	UK	case-control	74	59 (79.7)	51.4 ± 12.1	20	7 (35)	32.7 ± 6.3			
2017	Delle Sedie A	Italy	case-control	41	40 (97.6)	56 ± 15	31	25 (80.6)	50 ± 16			
2011	Distler JHW	Germany	case-control	40	34 (85)	46 ± 14.5	66	44 (66.7)	39 ± 13.75			
2002	Distler O	Italy	case-control	43	35 (81.4)	61 ± 13.75	21	16 (76.2)	55 ± 16.75			
2012	Dunne JV	Ireland	case-control	40	35 (87.5)	45.5 ± 9.5	40					
2005	Dziankowska-Bartkowiak B	Poland	case-control	34	26 (76.5)	48 ± 13.5	20	19 (95.0)	46 ± 9.75			
2006	Dziankowska-Bartkowiak B	Poland	case-control	28	22 (78.6)	47.5 ± 13	20	15 (75)	46 ± 9.75			
2013	Farouk HM	Egypt	case-control	26	21 (84)	40.3 ± 5.86	20	17 (85)	38.9 ± 3.8			
2014	Glokowska-Mrowka E	Poland	case-control	66	60 (90)	53 ± 13.25	21	18 (85.7)	52 ± 10.25			
2018	Gigante A	Italy	case-control	15	15 (100)	41 ± 10.835	10		39 ± 10.484			

(Continued)
Year	Author	Country	Study type	Sample size	SSc	Sample size	HC		
2008	Hummers LK (93)	America	case-control	113	88.90	53.0 ± 12.2	27	63	57.5 ± 2.8
2017	Ibrahim SE (94)	Egypt	case-control	35	33 (94.2)	30.43 ± 4.53	20	16 (80)	50 ± 12.5
2018	Kawashiri S (95)	Japan	case-control	60	56 (93.3)	64 ± 6.67	25		
1998	Kikuchi K (38)	Japan	case-control	40	37 (92.5)	53 ± 16.25	0		
2004	Kuryliszyn-Moskal A (96)	Poland	case-control	31	31 (100)	55.2 ± 10.4	100		
2013	Koca SS (39)	Turkey	case-control	37	32 (86.5)	45.7 ± 13.6	40		
2019	Michalska-Jakubus M (98)	Poland	case-control	47	47 (100)	58.43 ± 11.01	27	27 (100)	52.37 ± 8.87
2010	Minier T (99)	Hungary	case-control	131	90.80	55.9 ± 11.3	30		
2012	Morgel E (100)	Poland	case-control	30	28 (60.7)	54 ± 10.3	20		
2009	Papaioannou AI (101)	Greece	case-control	40	33 (82.5)	56.75 ± 12.5	13		
2015	Reiseter S (102)	Norway	cohort	298	243 (82)	56.0 ± 13.8	100		
2001	Satou S (103)	Japan	case-control	32	29 (90.6)	47 ± 18	20		
2010	Ricceri V (104)	Italy	case-control	65	63 (96.9)	57.3 ± 15.25	16		
2017	Saranya C (105)	India	case-control	55	median	57.4 ± 10.3	30		
2016	Shenavandeh S (106)	Iran	case-control	44	40 (90.9)	40.7 ± 12.8	44	41 (93.2)	39.4 ± 11.76
2003	Cekmen M (112)	Turkey	case-control	39	18 (46.2)	38.1 ± 10.4	13		
2012	Ganeb SS (115)	Egypt	case-control	70	27 (38.6)	32.8 ± 3.63	20		
2019	Gheita TA (116)	Egypt	case-control	40	16 (40)	37.6 ± 8.7	25	20 (90)	59.4 ± 9.9
2011	Ibrahim SE (117)	Egypt	case-control	40	8 (20)	40.35 ± 7.34	40	9 (22.5)	37.3 ± 7.06
2009	Ozdamar Y (119)	Turkey	case-control	30	20	32.6 ± 9.14	70	29 (104.4)	32.81 ± 3.89

Year	Author	Country	Study type	Sample size	BD	Sample size	HC		
2018	Arica DA (111)	Turkey	case-control	45	22 (48.9)	36.7 ± 10.3	28		
2003	Cekmen M (112)	Turkey	case-control	39	18 (46.2)	38.1 ± 10.4	15	7 (46.7)	39.2 ± 9.3
2013	Eldin AB (113)	Egypt	case-control	30	6 (20)	30.6 ± 9.36	20	4 (20)	26.9 ± 8.38
2003	Erdem F (114)	Turkey	case-control	33	16 (48.5)	33.2 ± 10.4	30	9 (30)	34.0 ± 11.1
2012	Ganeb SS (115)	Egypt	case-control	70	27 (38.6)	32.8 ± 3.63	70	29 (104.4)	32.81 ± 3.89
2019	Gheta TA (116)	Egypt	case-control	96	active 59	34.9 ± 10.1	60	9 (25)	36.7 ± 12.6
2011	Ibrahim SE (117)	Egypt	case-control	40	active 40	37.6 ± 8.7	40	18 (45)	38.8 ± 7.9
2017	Kul A (118)	Turkey	case-control	16	active	33 ± 6			
2009	Ozdamar Y (119)	Turkey	case-control	7 (35)	active	33 ± 6			

Year	Author	Country	Study type	Sample size	KD	Sample size	HC		
2011	Breunis WB (120)	Netherlands	case-control	21	early101	35.8 ± 8.6	21		
2001	Hamamichi Y (125)	Japan	case-control	55	18 (32.7)	40 ± 10	31	12 (38.7)	40 ± 13
2006	Shaker O (122)	Egypt	case-control	30	20	32.6 ± 9.14	15	20	30.13 ± 12.32
2013	Yalincig A (123)	Turkey	case-control	65	32 (49)	40.3 ± 9.8	21	11 (48)	38.5 ± 9.3

(Continued)
TABLE 1 | Continued

Year	Author	Country	Study type	Sample size	Female (%)	Age (years)	Sample size	Female (%)	Age (years)	
1998	Maeno N (126)	Japan	case-control	convalescent 30	4.8 ± 0.7	10 (45.5)	2.2 ± 1.4	healthy 19	9 (47.7)	1.4 ± 1.4
				acute 20	1.5 ± 1.15	10 (50)	2.5 ± 1.325	febrile 22	10 (45.5)	1.3 ± 1.4
				subacute 13	1.9 ± 1.4	5 (38.5)				
				convalescent 15	1.79 ± 2.375	8 (53.3)				
1999	Ohno T (19)	Japan	case-control	acute 66	1.3 ± 1.15	24 (36.4)				
				acute phase	31					
				convalescent phase31	1.93 ± 2.75					
2002	Takuro Ohno (127)	Japan	case-control	acute phase	41	14 (34.1)	1.83 ± 2.17			
				convalescent phase	41					
2019	Su Y (128)	China	case-control	acute phase	31	24 (36.4)	2.55 ± 1.72	healthy 60	28 (46.7)	2.19 ± 2.22
				febrile	18	9 (47.7)	4.25 ± 1.75	febrile 40	20 (50)	2.84 ± 1.63
2009	Ueno K (129)	Japan	case-control	acute	80	37 (46.25)	2.1 ± 1.8			
2016	Zeng H (130)	China	case-control	acute	52	37 (46.25)	2.1 ± 1.8			

(Continued)
Year	Author	Country	Study type	Sample size	IBD	HC		
					Female (%)	Age (years)	Female (%)	Age (years)
2011	Pousa ID	Spain	case-control	CD 145	84 (57.9)	33 ± 14.5	69 (51.3)	32 ± 9.75
2004	Magro F	Portugal	case-control	CD 145	84 (57.9)	33 ± 14.5	69 (51.3)	32 ± 9.75
				UC 73	43 (58.9)	35 ± 11.75	50 (40.3)	33 ± 11.15
1997	Schurer-Maly CC	Switzerland	case-control	CD 24	46	46 ± 12	30 (60)	43 ± 14
				CD 70	39 (55.7)	42 ± 13	20 (40)	43 ± 14
2020	deZoeten EF	America	case-control	UC 23	5/18 (27.8)	12.7 ± 12	17 (78.9)	12.7 ± 16.5
2007	Wiercinska-Drapalo A	Poland	case-control	UC 33	13 (39.4)	43 ± 12.75	20 (75)	38 ± 6

Year	Author	Country	Study type	Sample size	PsA	HC			
					Female (%)	Age (years)	Female (%)	Age (years)	
2009	Ablin JN	Israel	case-control	skin10	4 (40)	48.6 ± 18.6	16 (75)	41.69 ± 9.71	
2007	Akman A	Turkey	case-control	arthritis22	10 (45.5)	47.18 ± 8.15	20 (75)	34.6 ± 14.5	
2010	Anderson KS	Sweden	case-control	plaque(PV)14	4 (28.6)	47 ± 10.75	14	43 ± 14.75	
2001	Ballara S	UK	cohort	arthritis13	62	46 ± 17.04	31 (65)	49 ± 12.59	
2016	Batycka-Baran A	Poland	case-control	arthritis24	37.5	48.29 ± 9.05	36	41.35 ± 15.23	
2012	Batycka-Baran A	Poland	case-control	plaque-type psoriasis	41.3	42.16 ± 15.42	31	48.4	
2016	Capkin AA	Turkey	case-control	chronic plaque 15	16 (33.3)	48.6 ± 12.5	48	21 (41.7)	52.3 ± 8.4
1999	Bhushan M	UK	case-control	chronic plaque 15	6 (30)	45 ± 13.75	13	7 (53.8)	43 ± 14.75
2002	Creamer D	UK	case-control	severe 11 moderate 11 arthritis 10 non-arthritis 12 chronic plaque 59 mild 24 moderate 20 severe 15 arthritis 28 active 14 inactive 14 arthritis 28 active 14 inactive 14 arthritis 28 active 14 inactive 14	16 (27.1)	49.1 ± 2.1	20	4.3 ± 4.3	
2010	Fisiak I	Poland	case-control	skin10	10 (35.7)	48.6 ± 18.6	9 (22.2)	56 ± 9	
2007	Fink AM	Austria	case-control	plaque(PV)58	23 (39.7)	41.7 ± 12.0	58 (51.7)	41.4 ± 12.1	
2012	Kaur S	Estonia	case-control	plaque(PV)58	22 (37.9)	30.17 ± 10.71	22 (100)	29.36 ± 8.83	
2014	Méki AR	Saudi Arabia	case-control	plaque(PV)58	16 (29.6)	41.26 ± 11.83	54 (100)	41.22 ± 11.77	
2002	Nielsen HU	Denmark	cohort	plaque(PV)16	9 (56.25)	24–70 years	13	40 (40)	
2008	Nofal A	Egypt	case-control	plaque(PV)30	11 (37)	42 ± 12.2	10	4 (40)	38.5 ± 11.6
2015	Przepiera-Bedzak H	Poland	case-control	plaque(PV)69	39 (56.5)	52.0 ± 12.0	29 (65.5)	48.2 ± 13.5	
2016	Przepiera-Bedzak H	Poland	case-control	plaque(PV)76	43 (56.6)	50.8 ± 12.7	30 (60)	43.5 ± 9.4	
2013	Przepiera-Bedzak H	Poland	case-control	plaque(PV)80	43 (53.8)	50.1 ± 12.0	20 (60)	48.1 ± 14.0	
2016	Shahidi-Dadras M	Iran	case-control	severe chronic plaque psoriasis 50	27 (45)	38.35 ± 14.96	60	27 (45)	39.55 ± 15.24
2016	Shahidi-Dadras M	Iran	case-control	moderate-severe chronic plaque psoriasis 50	27 (46.6)	37.5 ± 14.1	60 (25)	39.6 ± 15.2	
TABLE 1 | Continued

Year	Author	Country	Study type	GD	PSa	HC			
			Sample size	Female (%)	Age (years)	Sample size	Female (%)	Age (years)	
2009	Takahashi H	Japan	case-control	122	41 (33.6)	47.5 ± 7.6	78	24 (30.8)	36.6 ± 12.25
2017	Zheng YZ	China	case-control	74	74 (38.1)	39.5 ± 12.7	175	81 (46.3)	40.2 ± 7.58
1998	Iitaka M	Japan	case-control	49	49 (79.6)	34.7 ± 11.9	55	29 (52.7)	46.36 ± 11.03
2016	Rancier M	Tunisia	case-control	21	21 (19.0)	44.84 ± 12.10	30	20 (66.7)	32.8 ± 10.8
2020	Cheng CW	China	case-control	64	64 (96.3)	34.50 ± 13.45	14	100	44.1 ± 13.8
2009	Figueroa-Vega N	Spain	case-control	44	32 (72.7)	45.11 ± 15.20	22	14 (63.6)	43.47 ± 8.62
1998	Takahashi H	Japan	plaque psoriasis	122	9 (69.2)	46.42 ± 12.58	78	13 (72.2)	48.77 ± 19.31
2014	Kajdaniuk D	Poland	case-control	49	12 (75)	37 ± 9	37	26 (70.3)	35.7 ± 11.2
2016	Rancier M	Tunisia	case-control	21	4 (19.0)	44.84 ± 12.10	55	29 (52.7)	46.36 ± 11.03

SLE, systemic lupus erythematosus; LN, lupus nephritis; HC, healthy control; RA, rheumatoid arthritis; SSc, systemic sclerosis; UCTD, undifferentiated connective tissue disease; RD, Behcet’s disease; DDR, healthy control; KD, Kawasaki disease; HC, healthy control. AS, ankylosing spondylitis; HC, healthy control; IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis; HC, healthy control; PsA, psoriasis; PV, psoriasis vulgaris; HC, healthy control; Gr, Graves’ disease; Oph, ophthalmopathy; HC, healthy control.

SLE than in inactive SLE (SMD 0.51, 95% CI 0.33–0.70, P < 0.0001) (Figure 2B-ii), whereas serum VEGF levels were significantly higher in SLE with renal involvement than that without renal involvement (SMD 1.43, 95% CI 0.58–2.28, P = 0.0010) (Figure 2C). Due to the observed heterogeneity, the sample types were stratified (serum versus plasma); the heterogeneity in serum VEGF levels in active and inactive SLE disappeared after removing studies using plasma (before, I² = 94.04%, P = 0.0002; after, I² = 0.00%, P = 0.3178).

The subgroup analysis indicated significantly higher serum (SMD 0.64, 95% CI 0.37–0.91, P < 0.0001) and plasma (SMD 1.56, 95% CI 0.49–2.63, P = 0.0040) VEGF levels in SLE (Figure 2D-i). Significantly higher circulating VEGF levels were present in small (n ≤50) (SMD 0.39, 95% CI 0.07–0.72, P = 0.0170) studies (Figure 2D-ii).

Meta-regression analysis adjusted for age and percentage of female patients demonstrated age (P = 0.0030) but not sex (P = 0.9700) had a significant effect.

Meta-analysis of the Association Between Circulating VEGF and RA
Circulating VEGF levels were significantly higher in RA than in HC (SMD 1.48, 95% CI 0.82–2.15, P < 0.0001) (Figure 3A). Overall heterogeneity was apparent.

The subgroup analysis indicated significantly higher VEGF levels in serum (SMD 1.49, 95% CI 1.09–1.88, P < 0.0001) but not plasma (P = 0.0820) in RA (Figure 3B-i). Higher circulating VEGF levels were present in small (n ≤50) (SMD 1.58, 95% CI 1.10–2.05, P < 0.0001) and large (n >50) (SMD 1.03, 95% CI 0.47–1.60, P < 0.0001) studies on RA (Figure 3B-ii).

Meta-regression analysis adjusted for age and female sex demonstrated neither age (P = 0.4090) nor sex (P = 0.7570) had a significant effect.

Meta-analysis of the Association Between Circulating VEGF and SSc
Circulating VEGF levels were significantly higher in SSc than in HC (SMD 0.56, 95% CI 0.36–0.75, P < 0.0001) (Figure 4A). The comparison of serum VEGF levels between limited and diffused SSc did not reach statistical significance (P = 0.2735) (Figure 4B).

The subgroup analysis performed due to the obvious overall heterogeneity (I² = 98.35%, P < 0.0001) revealed significantly higher VEGF levels in serum (SMD 0.48, 95% CI 0.28–0.67, P < 0.0001) and plasma (SMD 0.86, 95% CI 0.49–1.24, P < 0.0001) samples of patients with SSc (Figure 4C-i). Elevated circulating VEGF levels were observed in small (n ≤50) (SMD 0.57, 95% CI 0.33–0.81, P < 0.0001) and large (n >50) (SMD 0.52, 95% CI 0.28–0.75, P < 0.0001) studies on SSc (Figure 4C-ii).

Meta-regression analysis adjusted for age and female sex demonstrated neither age (P = 0.2740) nor sex (P = 0.7020) had a significant effect.

Meta-analysis of the Association Between Circulating VEGF and BD
Circulating VEGF levels were significantly higher in BD than in HC (SMD 1.65, 95% CI 0.88–2.41, P < 0.0001) (Figure 5A) as
well as in active BD than in inactive BD (SMD 0.91, 95% CI 0.26–1.55, \(P = 0.0064\)) (Figure 5B). Heterogeneity was present.

The subgroup analysis revealed significantly elevated serum VEGF levels (SMD 1.60, 95% CI 0.85–2.34, \(P <0.0001\)) (Figure 5C-i), specifically in small (n ≤50) (SMD 1.86, 95% CI 1.15–2.57, \(P <0.0001\)) and not in large (n >50) studies (\(P = 0.1200\)) (Figure 5C-ii).

Meta-regression analysis adjusted for age and female sex demonstrated neither age (\(P = 0.2700\)) nor sex (\(P = 0.0720\)) had a significant effect.

Meta-Analysis of the Association Between Circulating VEGF and KD

Circulating VEGF levels were elevated in KD than in HC (SMD 2.41, 95% CI 0.10–4.72, \(P = 0.0406\)) (Figure S1A) and febrile controls (SMD 1.08, 95% CI 0.02–2.14, \(P = 0.0452\)) (Figure S1B). The comparison of serum VEGF levels between acute and convalescent KD revealed no statistical significance (\(P = 0.0831\)) (Figure S1C). Heterogeneity was prominent.

The subgroup analysis indicated serum VEGF levels were higher in KD than in HC (SMD 2.26, 95% CI 0.10–4.42, \(P = 0.0100\)) (Figure S1D-i). Increased circulating VEGF levels were found in small (n ≤50) (SMD 1.36, 95% CI 0.45–2.27, \(P = 0.0030\)) and large (n >50) studies (SMD 3.19, 95% CI 1.01–5.38, \(P = 0.0040\)) (Figure S1D-ii). Meta-regression analysis adjusted for age and female sex demonstrated female sex (\(P = 0.0100\)) but not age (\(P = 0.1280\)) had a significant effect.

Meta-Analysis of the Association Between Circulating VEGF and AS

Circulating VEGF levels were significantly elevated in AS than in HC (SMD 0.78, 95% CI 0.23–1.33, \(P = 0.0052\)) (Figure S2A). The overall heterogeneity was apparent (\(I^2 = 95.68\%), \(P <0.0001\)).
FIGURE 3 | Forest plot of RA associated with the circulating VEGF. (A) RA vs. HC, forest plot; (B) Subgroup analysis: (i) Serum vs. Plasma (a for serum and b for plasma); (ii) Sample size n≤50 vs. n>50 (a for n≤50 and b for n>50).

FIGURE 4 | Forest plot of SSc associated with the circulating VEGF. (A) SSc vs. HC, forest plot; (B) Limited SSc vs. Diffused SSc, forest plot; (C) Subgroup analysis: (i) Serum vs. Plasma (a for serum and b for plasma); (ii) Sample size n≤50 vs. n>50 (a for n≤50 and b for n>50).
The subgroup analysis revealed significantly higher serum VEGF levels in AS than in HC (SMD 0.60, 95% CI 0.36–0.84, \(P < 0.0001 \)) \((\text{Figure S2B-i})\). Significantly elevated circulating VEGF levels were found in small \((n \leq 50)\) (SMD 1.66, 95% CI 0.35–2.98, \(P = 0.0130 \)) and large \((n >50)\) studies (SMD 0.55, 95% CI 0.29–0.80, \(P < 0.0001 \)) on AS \((\text{Figure S2B-ii})\).

Meta-regression analysis adjusted for age and female sex demonstrated neither age (\(P = 0.8040 \)) nor sex (\(P = 0.8500 \)) had a significant effect.

Meta-Analysis of the Association Between Circulating VEGF and IBD

Serum VEGF levels were significantly higher in IBD than in HC (SMD 0.57, 95% CI 0.43–0.71, \(P < 0.0001 \)) \((\text{Figure S3A})\). The overall heterogeneity was extremely low \((I^2 = 3.12\%, \ P < 0.0001)\). Meta-regression analysis adjusted for age or females demonstrated insignificantly increased circulating VEGF levels were present in small \((n \leq 50)\) (SMD 0.86, 95% CI 0.32–1.40, \(P = 0.0020 \)) but not in large \((n >50)\) studies \((P = 0.0600)\) \((\text{Figure S3C-i})\). Moreover, serum VEGF levels were significantly higher in active CD than in inactive CD (SMD 0.53, 95% CI 0.09–0.96, \(P = 0.0176 \)) \((\text{Figure S3C-ii})\). Meta-regression analysis adjusted for age and female sex demonstrated age \((P = 0.0120)\) and sex \((P = 0.0010)\) had significant effects.

Meta-Analysis of the Association Between Circulating VEGF and PsA

Circulating VEGF levels were significantly higher in PsA (SMD 0.98, 95% CI 0.62–1.34, \(P < 0.0001)\) \((\text{Figure S4A})\), in psoriatic arthritis (SMD 0.72, 95% CI 0.12–1.32, \(P = 0.0192)\) \((\text{Figure S4B})\), and psoriasis with skin involvement (SMD 1.26, 95% CI 0.65–1.86, \(P = 0.0001)\) than in HC \((\text{Figure S4C})\). Heterogeneity was observed in the analyses.

The subgroup analysis indicated significantly higher serum VEGF levels in CD (SMD 0.62, 95% CI 0.10–1.15, \(P = 0.0200 \) and SMD 0.78, 95% CI 0.33–1.22, \(P = 0.0010 \)) \((\text{Figure S3D-ii})\). Significantly increased serum VEGF levels were present in small \((n \leq 50)\) (SMD 0.86, 95% CI 0.32–1.40, \(P = 0.0020 \)) but not in large \((n >50)\) studies \((P = 0.0600)\) \((\text{Figure S3D-iii})\). Moreover, serum VEGF levels were significantly higher in active CD than in inactive CD (SMD 0.53, 95% CI 0.09–0.96, \(P = 0.0176)\) \((\text{Figure S3C-ii})\). Meta-regression analysis adjusted for age and female sex demonstrated age \((P = 0.0120)\) and sex \((P = 0.0010)\) had significant effects.

FIGURE 5 | Forest plot of BD associated with the circulating VEGF. (A) BD vs. HC, forest plot; (B) Active BD vs. Inactive BD, forest plot; (C) Subgroup analysis: (i) Serum vs. Plasma (a for serum and b for plasma); (ii) Sample size n<50 vs. n>50 (a for n≤50 and b for n>50).
Meta-Analysis of the Association Between Circulating VEGF and GD

Circulating VEGF levels were significantly higher in GD than in HC (SMD 0.69, 95% CI 0.20–1.19, P = 0.0056), with considerable heterogeneity (Figure S5A). Circulating VEGF levels were higher in active than in inactive Graves’ ophthalmopathy (GO) (SMD 0.80, 95% CI 0.29–1.30, P = 0.0019), without any heterogeneity (I² = 0.00%, P = 0.7548) (Figure S5B).

Serum (SMD 0.77, 95% CI 0.27–1.28, P = 0.0020) but not plasma (P = 0.3880) VEGF levels were significantly higher in GD than in HC (Figure S5C). Meta-regression analysis adjusted for age and female sex demonstrated the significant effect of age (P = 0.0070) but not sex (P = 0.2420).

Correlation Analyses Between Circulating VEGF and AD Clinical Features

We explored the potential correlation of VEGF in clinical implications and hematological indicators of ADs. For SLE (Figure S6), the summary Fisher’s z showed a positive, moderate correlation between circulating VEGF level and disease activity (SLEDAI/SLAM, ES 0.55, 95% CI 0.29–0.81, P < 0.0001; summary r = 0.50), erythrocyte sedimentation rate (ESR; ES 0.40, 95% CI 0.18–0.63, P = 0.0004; summary r = 0.38). A negative, poor correlation was found for C3 (ES −0.45, 95% CI −0.81 to −0.08, P = 0.0162, summary r = −0.42). There was no correlation between circulating VEGF level and platelet count (P = 0.1163).

In RA (Figure S7), there was a positive, weak correlation between circulating VEGF and disease activity (DAS-28; ES 0.33, 95% CI 0.22–0.44, P < 0.0001, summary r = 0.32), ESR (ES 0.35, 95% CI 0.18–0.51, P < 0.0001; summary r = 0.34) as well as C-reactive protein (CRP; ES 0.38, 95% CI 0.24–0.52, P < 0.0001; summary r = 0.36).

In SSc (Figure S8), there was a positive, moderate relationship between circulating VEGF level and pulmonary artery pressure (ES 0.62, 95% CI 0.37–0.87, P < 0.0001; summary r = 0.55) and Medical Research Council dyspnea score (ES 0.65, 95% CI 0.08–1.22, P = 0.0246; summary r = 0.57). There was no relationship between circulating VEGF level and modified Ronan skin score (P = 0.3100).

In BD (Figure S9), summary correlation coefficients indicated a significant, positive, and strong correlation with disease activity based on Behcet’s disease current activity form score (ES 1.22, 95% CI 0.03–2.41, P = 0.0446, summary r = 0.84) and moderate correlation with ESR (ES 0.47, 95% CI 0.11–0.82, P = 0.0108, summary r = 0.44).

In AS (Figure S10), circulating VEGF level was poorly correlated with disease activity (BASDAI/BASMI; ES 0.35, 95% CI 0.09–0.60, P = 0.0080; summary r = 0.34), ESR (ES 0.26, 95% CI 0.17–0.36, P < 0.0001; summary r = 0.25), and CRP (ES 0.24, 95% CI 0.14–0.35, P < 0.0001; summary r = 0.24).

In IBD (Figure S11), circulating VEGF level exhibited a positive, poor correlation with Crohn’s disease activity index (CDAI; ES 0.34, 95% CI 0.10–0.57, P = 0.0053, summary r = 0.33), medium correlation with UC activity index (UDDAI; ES 0.57, 95% CI 0.29–0.86, P = 0.0001; summary r = 0.52), strong correlation with ESR (ES 0.87, 95% CI 0.63–1.12, P < 0.0001; summary r = 0.70), and weak correlation with platelet count (ES 0.32, 95% CI 0.16–0.49, P = 0.0001; summary r 0.31).

In PsA (Figure S12), circulating VEGF level was positively correlated with psoriasis area and severity index score (ES 1.12, 95% CI 0.64–1.60, P < 0.0001; summary r = 0.81) and had a positive, moderate correlation with disease duration (ES 0.51, 95% CI 0.32–0.69, P < 0.0001; summary r = 0.47).

Sensitivity Analysis and Publication Bias

The sensitivity analysis revealed the stability of pooled results (data not shown). For SLE, RA, SSc, KD, and AS, the contour-enhanced funnel plots revealed no publication bias (Figure S13), the meta-trim practice demonstrated that all imputed studies fell into the significant region. In contrast, Egger’s test suggested publication bias for SLE, RA, and KD (P < 0.0001 for all) as well as for AS (P = 0.0001). However, there was consistency in publication bias for SSc by Egger’s test (P = 0.1413). This remind us to be cautious with using Egger’s test to determine publication bias in small number of studies (<20). There was no publication bias with PsA and GD (P = 0.4874 and P = 0.5419, respectively), in contrast to that observed with BD (P = 0.0006). The imputed studies on IBD fell into the non-significant region, and Egger’s test also represented evidence of it (P = 0.0017) in UC; the existence of publication bias was proven by Egger’s test (P = 0.0113) in CD.

DISCUSSION

In the current meta-analysis, we found a close relationship between circulating VEGF level and ADs. First, our analyses revealed significantly increased circulating VEGF levels in SLE, RA, SSc, BD, KD, AS, IBD, PsA, and GD. Additionally, we showed that serum VEGF could distinguish active from inactive SLE and renal from non-renal SLE; it could also discriminate between active and inactive CD. Likewise, circulating VEGF had a strong ability to differentiate active from inactive BD and GO. Serum VEGF exhibited its dipartite boundedness in limited/diffused cutaneous SSc, active/inactive UC, and acute/convalescent KD. Furthermore, we demonstrated the correlation of circulating VEGF levels with metrics of disease activity and severity (SLEDAI/SLAM, DAS-28, MRC dyspnea score, modified Ronan skin score, BD current activity form score, BASDAI/BASMI, CDAI, UDDAI, psoriasis area and severity index) as well as with hematological parameters (ESR, CRP, platelet count, pulmonary artery pressure). Overall, these results indicate that circulating VEGF reflects pathogenesis and should be considered as a potent hematological marker for diagnosis and disease progression in ADs.

Structural and functional abnormalities in neovascularization may lead to damage in chronic inflammatory diseases. Consecutive angiogenesis and immune-mediated vascular endothelial cell injury and dysfunction as well as persistent inflammation play important pathological roles in SLE (20), whereas expansion and invasion of synovial vessels facilitate inflammation and erosive joint destruction in RA (12). Early generalized microvascular endothelial damage leading to immune activation and defective...
angiogenesis are significant events in cumulative systemic fibrosis and microangiopathy in SSc (76). Additionally, BD is characterized by systemic vasculitis, inflammatory infiltrates, subsequent vascular lesions, and neovascularization (113, 115), whereas subendothelial edema and fenestrated endothelium constitute acute systemic vasculitis observed in KD (181). Structural changes in vascular endothelium due to inflammation and hypoxia stimulate angiogenesis to permeate vascular and mediate tissue repair in IBD (6). Finally, early psoriatic skin plaque formation is triggered by inappropriate expansion and vascular alterations, pronounced permeability, and endothelial cell proliferation (162). Therefore, angiogenesis and angiopathy are considered as major pathogenic events predisposing to ADs.

VEGF, an increasingly recognized proangiogenic inducer of endothelial proliferation and microvascular hyperpermeability, may reverse the tide of inducers against inhibitors and promote angiogenesis (182). Despite the unclear role of angiogenesis in AS and GD, higher-than-normal VEGF levels support its role in bone and enchondral ossification in AS (183) and increased microvessel density in GD (184). Over the past decades, numerous studies have reported increased VEGF levels in ADs, beyond its well-known role in tumorigenesis. In the present study, our meta-analysis reveals differences in circulating VEGF levels between patients with ADs and HC subjects, providing further evidence for its utility in determining disease activity and severity in ADs.

In the present meta-analysis, there were variations in circulating VEGF levels due to differences in sample collection methods and demographic characteristics across the studies, requiring adjustment for the interpretation of the final laboratory results. Serum VEGF levels are 7–10 times higher than plasma VEGF levels in RA (60). Serum VEGF is a combination of efflux from platelets, neutrophils during coagulation, and circulating VEGF, which rarely occurs in vivo; in contrast, plasma VEGF directly reflects circulating VEGF in the absence of coagulation in vivo. In support of this difference, the present meta-analysis also revealed that the removal of plasma samples from the analysis led to the disappearance of heterogeneity in serum VEGF levels in active and inactive SLE. Plasma samples with citrate anticoagulants had the lowest VEGF levels, reflecting that that reservation of platelets VEGF releasing is effective and that different anticoagulation procedures should be considered in evaluating variations in VEGF levels across studies. Higher plasma VEGF levels in female patients compared with male patients, increasing VEGF levels with age in adults, and decreasing VEGF levels with age in children illustrate the contributory roles of sex and age to discrepancy (185). The cohort size in specific studies might also impact the mean and standard deviation. Therefore, we addressed these variables in subgroup and meta-regression analyses. The subgroup analyses explored the source of heterogeneity in serum VEGF levels for only studies on active and inactive SLE (before, $I^2 = 94.04\%$, $P = 0.0002$; after, $I^2 = 0.00\%$, $P = 0.3178$). We also observed apparent associations of circulating VEGF levels with age and female sex in SLE and CD, with sex in KD, and with age in GD.

There are several limitations in the present meta-analysis. First, although subgroup and meta-regression analyses were performed to explore heterogeneity, much of it remains to be explained and reported. Second, the funnel plots indicated publication bias in studies on BD and IBD, including UC as well as CD, which might have led to the overestimation of pooled SMDs. Third, data could not be fully retrieved, which might have resulted in missing values in meta-regression and the omission of covariates in tests assessing heterogeneity. Availability of complete data on patient inclusion and exclusion criteria, ethnicity, AD treatment details, and exact timing and method of VEGF measurement would greatly reduce the bias in our analyses. Although the existing heterogeneity could be partially explained by age, sex, sample type, and sample size of the individual studies, an exact conclusion could not be drawn due to the lacking explanation for the remaining heterogeneity. Further studies using more comprehensive data should be performed to elucidate the association of circulating VEGF levels with ADs.

In conclusion, our meta-analysis unveiled a close association between circulating VEGF levels and ADs including disease activity and severity as well as clinical hematological manifestations. Serum VEGF is a reliable marker that can distinguish active from inactive in SLE and GO and can potentially differentiate IBD from HC. Early and regular measurement of circulating VEGF levels may be considered as a noninvasive method to monitor vascular involvement and activity in ADs. Future studies should focus on the prognostic and diagnostic utility of circulating VEGF, its role in pathogenesis, and the utility of VEGF-targeted therapeutic strategies in ADs.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

YL conceived and designed the research. HZ and HL extracted data and conducted quality assessment. CL, LC, SY, HL, and HZ analyzed the data. HZ and HL wrote the paper. All authors are accountable for all aspects of the study, and attest to the accuracy and integrity of the results. All authors contributed to the article and approved the submitted version.

FUNDING

This research was supported by grants from the National Natural Science Foundation of China Grants (81871302) and Beijing Key Clinical Specialty for Laboratory Medicine - Excellent Project (No. ZK201000).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2021.674343/full#supplementary-material
REFERENCES

1. Koch AE. Angiogenesis as a Target in Rheumatoid Arthritis. Ann Rheum Dis (2003) 62(Suppl 2):i60–7. doi: 10.1136/ard.62.suppl_2.i60

2. Brenchley PE. Angiogenesis in Inflammatory Joint Disease: A Target for Therapeutic Intervention. Clin Exp Immunol (2000) 121:426–9. doi: 10.1046/j.1365-2249.2000.01299.x

3. Kidd BL, Moore K, Walters MT, Smith JL, Cavley MJ. Immunohistological Features of Synovitis in Ankylosing Spondylitis: A Comparison With Rheumatoid Arthritis. Ann Rheum Dis (1989) 48:92–8. doi: 10.1136/adr.48.2.92

4. Terai M, Yasukawa K, Narumoto S, Oana S, Kohno Y. Vascular Endothelial Growth Factor in Acute Kawasaki Disease. Am J Cardiol (1999) 83:337–9. doi: 10.1016/s0002-9149(98)00864-9

5. Coilkiewicz M, Kurylszyzm-Moskal A, Klimiuk PA. Analysis of Correlations Between Selected Endothelial Cell Activation Markers, Disease Activity, and Nailfold Capillaroscopy Microvascular Changes in Systemic Lupus Erythematosus Patients. Clin Rheumatol (2010) 29:175–80. doi: 10.1007/s10067-009-1308-7

6. Cibor D, Domagala-Rodacka R, Rodacki T, Jurczyszyn A, Mach T, Owczarek D. Endothelial Dysfunction in Inflammatory Bowel Diseases: Pathogenesis, Assessment and Implications. World J Gastroenterol (2016) 22:1067–77. doi: 10.3748/wjg.v22.i3.1067

7. Sakane T, Takeno M, Suzuki N, Inaba G. Behçet's Disease. N Engl J Med (1999) 341:1284–91. doi: 10.1056/nejm199910212311707

8. Spigset R, Grunewald MS, Dietrich H, Rechis H, Gershwin ME, Wick G. Endothelial Cell Apoptosis is a Primary Pathogenic Event Underlying Skin Lesions in Avian and Human Scleroderma. J Clin Invest (1996) 98:785–92. doi: 10.1172/jci118851

9. Henno A, Blacher S, Lambert CA, Deroanne C, Noel A, Lapière C, et al. Histological and Transcriptional Study of Angiogenesis and Lymphangiogenesis in Uninvolved Skin, Acute Pinpoint Lesions and Established Psoriasis Plaques: An Approach of Vascular Developmental Chronology in Psoriasis. J Dermatol Sci (2010) 57:162–9. doi: 10.1016/j.jdermsci.2009.12.006

10. Cheng CW, Wu CZ, Tang KT, Fang WF, Lin JD. Measurement of Twenty-Nine Circulating Cytokines and Growth Factors in Patients With Overt Autoimmune Thyroid Diseases. Autoimmunity (2020) 53:261–9. doi: 10.1080/08916934.2020.1755965

11. Choi JJ, Min DJ, Cho ML, Min SY, Kim SJ, Lee SS, et al. Elevated Vascular Endothelial Growth Factor in Systemic Sclerosis. J Rheumatol (2003) 30(7):1529–33.

12. Ballara S, Taylor PC, Reusch P, Marme D. Endothelial Dysfunction in Inflammatory Bowel Disease: Pathogenesis, Assessment and Implications. World J Gastroenterol (2016) 22:1067–77. doi: 10.3748/wjg.v22.i3.1067

13. Misra S, Mondal S, Chatterjee S, Guin A, Sinhamahapatra P, Ghosh A. Association of Angiogenic and Inflammatory Markers With Power Doppler Ultrasound Vascularity Grade and DAS28-CRP in Early Rheumatoid Arthritis: A Comparative Analysis. BioMed Res Int (2018) 2018:6906374. doi: 10.1155/2018/6906374

14. Arica DA, Aksan B, Orem A, Altintaynak BA, Yavlı S, Sönmez M. High Levels of Endothelial Progenitor Cells and Circulating Endothelial Cells in Patients With Behçet's Disease and Their Relationship to Disease Activity. Bras Dermatol (2019) 94:320–6. doi: 10.1590/abd1806-4841.20198169

15. Zhan et al. VEGF Levels and AD Association. Frontiers in Immunology | www.frontiersin.org May 2021 Volume 12 Article 674343

16. Aksoy EK, Çentikaya H, Savaş B, Ensari A, Torgutalp M, Efe C. Vascular Endothelial Growth Factor, Endostatin Levels and Clinical Features Among Patients With Ulcerative Colitis and Irritable Bowel Syndrome and Among Healthy Controls: A Cross-Sectional Analytical Study. Sao Paulo Med J (2018) 136:543–50. doi: 10.1590/1516-3180.20180274161118

17. Barbulescu AL, Vreju AF, Boga AM, Sandu RE, Criveanu C, Tudorascu DR, et al. Vascular Endothelial Growth Factor in Systemic Lupus Erythematosus - Correlations With Disease Activity and Nailfold Capillaroscopy Changes. Romanian J Morphol Embryol (2015) 56(3):1011–6.

18. Al-Outman P, Demirtas H, Allenon M, Al-Swaify S, Al-Daar K, et al. Vascular Endothelial Growth Factor and Disease Activity in Systemic Lupus Erythematosus Patients With Anti-Phospholipid Syndrome. Pediatr Nephrol (2012) 27:1045–51. doi: 10.1007/s00467-011-1915-5

19. Alhwasly NA, El-Sawy WS, El-Hawary IM, Metwally MM, et al. Association of miRNA-145 Expression in Vascular Smooth Muscle Cells With Vascular Damages in Patients With Lupus Nephritis. Int J Exp Pathol (2015) 96(10):2064–56. doi: 10.1016/j.ijep.2015.09.010

20. Torgutsal C, Efe C, Ensari A, Torgutalp M, Efe C. Vascular Endothelial Growth Factor (VEGF) as a Biomarker for Disease Activity in Lupus Nephritis. Pediatr Nephrol (2012) 27:793–800. doi: 10.1007/s00467-011-1206-2

21. Elgazzar II, Ibrahim SE, El-Sawy WS, Fathi HM, Elshawy HM, Sherif MM. The Clinical Utility of Vascular Endothelial Growth Factor as Predictive Marker for Systemic Lupus Erythematosus Activity in Children and Adolescents. J Biomed Res (2019) 33:949–54. doi: 10.3923/jbr.2019.949.54

22. Elhelaly NS, Elhawary IM, Alaziz IAA, Alsalam MIA, El-Sawy WS, et al. Assessment of Vascular Endothelial Growth Factor (VEGF) as a Biomarker for Disease Activity in Lupus Nephritis. Pediatr Nephrol (2019) 34:41–5. doi: 10.1007/s00467-2018-03005-0

23. Hashmat NM, El-Kerdany TH. Serum Levels of Vascular Endothelial Growth Factor in Children and Adolescents With Systemic Lupus Erythematosus. Pediatr Allergy Immunol (2007) 18:436–53. doi: 10.1111/j.1399-3038.2006.00510.x
35. Hrycek A, Janowska J, Cieslik P. Selected Angiogenic Cytokines in Systemic Lupus Erythematosus Patients. *Autoimmunity* (2009) 42:459–66. doi: 10.1080/08916930902960339

36. Hrycek A, Pierzchała W, Olsawska-Dzierżega A, Cieslik P. Selected Growth Factors and Dicapsifying Capacity of the Lung for Carbon Monoxide in Patients With Systemic Lupus Erythematosus. *Rheumatol Int* (2009) 30:175–9. doi: 10.1007/s00296-009-0930-7

37. Ibrahim FF, Draz HM, Min SY, Yoon CH, Lee SH, et al. Interleukin-18 Induces the Production of Vascular Endothelial Growth Factor (VEGF) in Rheumatoid Arthritis Synovial Fibroblasts. *Virol J* (2006) 103:159–66. doi: 10.1046/j.1365-2133.1998.02563.x

38. Koca SS, Akbas F, Ozgen M, Yolbas S, Ilhan N, Gundogdu B, et al. Serum Galexin-3 Level in Systemic Sclerosis. *Clin Rheumatol* (2014) 33:215–20. doi: 10.1007/s10067-013-2346-8

39. Kuruşyazn-Moskal A, Klimiuk PA, Sierakowski S, Ciołkiewicz M. Vascular Endothelial Growth Factor in Systemic Lupus Erythematosus: Relationship to Disease Activity, Systemic Organ Manifestation, and Nailfold Capillaroscopic Abnormalities. *Archiv Immunol Et Ther Experiment* (2007) 55:179–85. doi: 10.1007/s00005-007-0017-7

40. Liu J, Wang X, Yang X, Yan Q, Wang S, Han W. Investigating the Role of Angiogenesis in Systemic Lupus Erythematosus. *Lupus* (2015) 24:621–7. doi: 10.1177/100313401565293

41. Merayo-Chalico J, Barrera-Vargas A, Juarez-Vega G, Holt L, Bukhari M, Denton J, et al. Placenta Growth Factor (PIGF) Induces Vascular Endothelial Growth Factor (VEGF) Secretion From Mononuclear Cells and is Co-Expressed With VEGF in Synovial Fluid. *Clin Exp Immunol* (2000) 119:182–8. doi: 10.1046/j.1365-2249.2000.100197.x

42. Robak E, Draz HM, Al Sherbeni HH. Serum Levels of Vascular Endothelial Growth Factor in Patients With Rheumatoid Arthritis. *Clin Rheumatol* (2004) 11:301. doi: 10.1016/s1529-0131(03)00015-x

43. Robak E, Wozniak M, Kann A, Korycka-Wolowiec H, Robak T. Circulating Total and Active Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinasin-1 in Patients With Systemic Lupus Erythematosus. *Mediators Inflamm.* (2006) 2006:17898. doi: 10.1155/mi/2006/17898

44. Robak E, Cisowski K, Wozniak M, Kann A, Korycka-Wolowiec H, Robak T. Circulating Total and Active Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 in Patients With Systemic Lupus Erythematosus. *Mod Rheumatol* (2009) 19:259–62. doi: 10.1080/15290131.2009.1059687

45. Robak E, Cisowski K, Wozniak M, Kann A, Korycka-Wolowiec H, Robak T. Circulating Total and Active Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 in Patients With Systemic Lupus Erythematosus. *Mod Rheumatol* (2009) 19:259–62. doi: 10.1080/15290131.2009.1059687

46. Robak E, Wozniak M, Kann A, Korycka-Wolowiec H, Robak T. Circulating Total and Active Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 in Patients With Systemic Lupus Erythematosus. *Mod Rheumatol* (2009) 19:259–62. doi: 10.1080/15290131.2009.1059687

47. Robak E, Wozniak M, Kann A, Korycka-Wolowiec H, Robak T. Circulating Total and Active Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 in Patients With Systemic Lupus Erythematosus. *Mod Rheumatol* (2009) 19:259–62. doi: 10.1080/15290131.2009.1059687

48. Robak E, Wozniak M, Kann A, Korycka-Wolowiec H, Robak T. Circulating Total and Active Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 in Patients With Systemic Lupus Erythematosus. *Mod Rheumatol* (2009) 19:259–62. doi: 10.1080/15290131.2009.1059687

49. Robak E, Wozniak M, Kann A, Korycka-Wolowiec H, Robak T. Circulating Total and Active Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 in Patients With Systemic Lupus Erythematosus. *Mod Rheumatol* (2009) 19:259–62. doi: 10.1080/15290131.2009.1059687

50. Willis R, Smikle M, DeCeulaer K, Romay-Penabad Z, Papalardo E, Jajoria P, Miller NE. Angiogenesis and Endothelial Cells and Proangiogenic Factors in Systemic Lupus Erythematosus and Their Clinical Significance. *BioMed Res Int* (2014) 2014:627126. doi: 10.1155/2014/627126

51. Zhou L, Lu GY, Shen L, Wang LF, Wang MJ. Serum Levels of Three Angiogenic Factors in Systemic Lupus Erythematosus and Their Clinical Significance. *BioMed Res Int* (2014) 2014:627126. doi: 10.1155/2014/627126
80. Bosello SL, Di Giorgio A, Foti F, De Luca G, Bocci M, Parisi F, et al. Decrease in VEGF Levels and AD Association.

81. Chora I, Romano E, Margiotta D, Barbano B, Afefla E, Rosato E. Female Sexual Dysfunction in Systemic Sclerosis: The Role of Endothelial Growth Factor and Endostatin. J Scleroderma Related Disord (2019) 4:71–6. doi: 10.1177/2397198318876593

82. Gigante A, Navarrini L, Margiotta D, Barbano B, Afefla E, Rosato E. Female Sexual Dysfunction in Systemic Sclerosis: The Role of Endothelial Growth Factor and Endostatin. J Scleroderma Related Disord (2019) 4:71–6. doi: 10.1177/2397198318876593

83. Zayed A, Amer H, Nasar H, Ibrahiem A, Mottawie H. Some Biochemical Changes in Serum and Synovial Fluid of Patients With Rheumatoid Arthritis. J Med Sci (2007) 7:526–35. doi: 10.3923/jms.2007.526.535

84. Distler JHW, Strapatsas T, Huscher D, Dees C, Akhmetschina A, Kiener HP, et al. Dysbalance of Angiogenic and Angiostatic Mediators in Patients With Mixed Connective Tissue Disease. Ann Rheumatic Dis (2011) 70:1197–202. doi: 10.1136/ard.2010.140657

85. Dziankowska-Bartkowiak B, Waszczykowska E, Zalewska A, Sysa-Jedrzejowska A. Correlation of Endostatin and Tissue Inhibitor of Metallopeptinases 2 (TIMP2) Serum Levels With Cardiovascular Involvement in Systemic Sclerosis Patients. Mediators Inflamm (2005) 2005:144–9. doi: 10.1155/mit.2005.144
Organ Damage in Systemic Sclerosis and Mixed Connective Tissue Disease: An Observational Study. *Arthritis Res Ther* (2015) 17(1):231. doi: 10.1186/s13075-015-0756-5.

103. Sato S, Hasegawa M, Takehara K. Serum Levels of Interleukin-6 and interleukin-10 Correlate With Total Skin Thickness Score in Patients With Systemic Sclerosis. *J Dermatol Sci* (2001) 27:140–6. doi: 10.1016/s0923-1811(01)00128-1.

104. Riccieri V, Stefanononti K, Vasic M, Macri V, Sciarrta I, Iannace N, et al. Abnormal Plasma Levels of Different Angiogenic Molecules are Associated With Different Clinical Manifestations in Patients With Systemic Sclerosis. *Clin Exp Rheumatol* (2019) 27(2):546–52.

105. Saranya C, Ramesh R, Bhuvanesh M, Balaji C, Balamane S, Rajeswari S. Serum Vascular Endothelial Growth Factor Levels as a Marker of Skin Thickening, Digital Ischemia, and Interstitial Lung Disease in Systemic Sclerosis. *Indian J Rheumatol* (2018) 13:182–5. doi: 10.4103/ijnr.injr.132_17.

106. Shenavandeh S, Tarakemeh T, Sarvestani EK, Nazarinia MA. Serum Vascular Endothelial Growth Factor (VEGF), Soluble VEGF Receptor-1 (sVEGFR-1) and sVEGFR-2 in Systemic Sclerosis Patients: Relation to Clinical Manifestations and Capillaroscopic Findings. *Egyptian Rheumatol* (2017) 39:19–24. doi: 10.106/j.ejr.2016.03.004.

107. Solanailla A, Villeneuve J, Auguste P, Hugues M, Alioum A, Lepreux S, et al. The Transport of High Amounts of Vascular Endothelial Growth Factor by Blood Platelets Underlines Their Potential Contribution in Systemic Sclerosis Angiogenesis. *Rheumatology* (2009) 48:1036–44. doi: 10.1093/ rheumatology/kep154.

108. Yalcinkaya Y, Adin-Cinar S, Artim-Esen B, Kamali S, Pehlivan O, Ocal L, et al. Capillaroscopic Findings and Vascular Biomarkers in Systemic Sclerosis: Association of Low CD40L Levels With Late Scleroderma Pattern. *Microvascular Res* (2016) 108:17–21. doi: 10.1016/j.mvr.2016.07.002.

109. Wszczyszynska A, Ros G, Wszczyszynska E, Dziakowska-Bartkowiak B, Podgorski M, Jurowski P. The Role of Angiogenesis Factors in the Formation of Vascular Changes in Scleroderma by Assessment of the Concentrations of VEGF and sVEGFR2 in Blood Serum and Tear Fluid. *Mediators Inflammation* (2020) 2020. doi: 10.1155/2020/7649480.

110. Wipfj J, Avouac J, Borderie D, Zerkak D, Lemarechal H, Kahan A, et al. Disturbed Angiogenesis in Systemic Sclerosis: High Levels of Soluble Endoglin. *Rheumatology* (2008) 47:972–5. doi: 10.1093/rheumatology/ ken100.

111. Arica DA, Aksan B, Orem A, Altinkaynak BA, Yayli S, Sonmez M, et al. High Levels of Endothelial Progenitor Cells and Circulating Endothelial Cells in Patients With Behcet’s Disease and Their Relationship to Disease Activity. *Anais Brasileiros Dermatol* (2019) 94:320–6. doi: 10.1590/abd1806-4841.20198169.

112. Cekmen M, Evereklioglu C, Er H, Inalöz HS, Doganay S, Türköz Y, et al. Vascular Endothelial Growth Factor Levels are Increased and Associated With Disease Activity in Patients With Behcet’s Syndrome. *Int J Dermatol* (2003) 42:870–5. doi: 10.1046/j.1365-4362.2003.01688.x.

113. Eldin AB, Ibrahim A. Assessment of the Relationship Between Vascular Endothelial Growth Factor and Cardiovascular Involvement in Egyptian Patients With Behcet’s Disease. *Egyptian Rheumatol* (2014) 36:131–7. doi: 10.106/j.ejr.2013.12.006.

114. Erdem F, Günçdogu M, Kiki I, Ali Sari R, Kıziltan E, Cakmakian S, et al. Vascular Endothelial and Basic Fibroblast Growth Factor Serum Levels in Patients With Behcet’s Disease. *Rheumatoid Int* (2005) 25:599–603. doi: 10.1093/rheumatology/kei120.

115. Ganeb SS, Sabry HH, El-Assal MM, Kamal HM, Fayed AA, El-Shazly IM. The Transport of High Amounts of Vascular Endothelial Growth Factor by Blood Platelets Underlines Their Potential Contribution in Systemic Sclerosis Angiogenesis. *Rheumatology* (2009) 48:1036–44. doi: 10.1093/ rheumatology/kep154.

116. Yalcindag A, Gedik-Oguz Y, Yalcindag FN. The Relationship Between Serum VEGF and sVEGFR-1 Levels With Vascular Endothelial Growth Factor and Carotid Intima-Media Thickness in Patients With Behcet’s Disease. *Clin Rheumatol* (2008) 27:961–6. doi: 10.1007/s10067-007-0825-5.

117. Sertoğlu E, Ömma A, Yucel C, Colak S, Sandikci SC, Ozgurta T. The Relationship of Serum VEGF and sVEGFR-1 Levels With Vascular Involvement in Patients With Behcet’s Disease. *Scandinavian J Clin Lab Invest* (2018) 78:443–9. doi: 10.1080/003655153.2018.1488179.

118. Shaker O, Ay El-Deen MA, El Haddi H, Grace BD, El Sherif H, Abdel Halam A. The Role of Heat Shock Protein 60, Vascular Endothelial Growth Factor and Antiphospholipid Antibodies in Behcet Disease. *Br J Dermatol* (2007) 156:32–7. doi: 10.1111/j.1365-2133.2006.07536.x.

119. Zhan et al. VEGF Levels and AD Association (2019) 38:2201–10. doi: 10.1080/003655153.2018.1488179.

120. Zokurl MA, Unverdi S, Oktar SO, Bukan N, Gurbahar O, Ureten K, et al. Vascular Endothelial Growth Factor and Carotid Intima-Media Thickness in Patients With Behcet’s Disease. *Clin Rheumatol* (2008) 27:961–6. doi: 10.1007/s10067-007-0825-5.
Angiogenesis in Psoriasis. Clin Exp Dermatol. (2021) 46(1):50–7. doi: 10.1111/ced.14335

169. Nielsen HJ, Christensen I, Svendsen MN, Hansen U, Werther K, Brünner N, et al. Elevated Plasma Levels of Vascular Endothelial Growth Factor and Plasminogen Activator Inhibitor-1 Decrease During Improvement of Psoriasis. Inflammation Res (2002) 51:563–7. doi: 10.1007/pl00012428

170. Nofal A, Al-Makhzangy I, Attwa E, Nassar A, Abdalmoati A. Vascular Endothelial Growth Factor in Psoriasis: An Indicator of Disease Severity and Control. J Eur Acad Dermatol Venereol (2009) 23:803–6. doi: 10.1111/j.1468-3083.2009.03181.x

171. Przepiera-Bedzak H, Fischer K, Brzosko M. Serum Levels of Angiogenic Cytokines in Psoriatic Arthritis and SAPHO Syndrome. Polskie Archiwum Medycyny Wewnetrznej-Polish Arch Internal Med (2013) 123:297–302. doi: 10.20452/pawm.1772

172. Shahidi-Dadras M, Haghighatkhah HR, Abdollahimajd F, Younespour S, Kia MP, Zargari O. Correlation Between Vascular Endothelial Growth Factor and Subclinical Atherosclerosis in Patients With Psoriasis. Int J Dermatol (2016) 55:52–9. doi: 10.1111/jid.12842

173. Shahidi-Dadras M, Abdollahimajd F, Younespour S, Nikvar M. Serum Vascular Endothelial Growth Factor in Iranian Patients With Moderate–Severe Psoriasis Before and After Treatment: A Pasi-75 Response as a Practical Treatment Goal. Iranian J Dermatol (2016) 19:119–24.

174. Takahashi H, Tsujii H, Hashimoto Y, Ishida-Yamamoto A, Iizuka H. Serum Cytokines and Growth Factor Levels in Japanese Patients With Psoriasis. Clin Exp Dermatol (2010) 35:645–9. doi: 10.1111/j.1365-2230.2009.03704.x

175. Zheng YZ, Chen CF, Jia LY, Yu TG, Sun J, Wang XY. Correlation Between Vascular Endothelial Growth Factor and Disease Activity in Psoriasis Patients. Am J Clin Exp Dermatol (2017) 8:51288–95. doi: 10.18632/oncotarget.17260

176. Figueroa-Vega N, Sanz-Cameno P, Moreno-Otero R, Sanchez-Madrid F, Gonzalez-Amaro R, Marazuela M. Serum Levels of Angiogenic Molecules in Autoimmune Thyroid Diseases and Their Correlation With Laboratory and Clinical Features. J Clin Endocrinol Metab (2009) 94:1145–53. doi: 10.1210/jc.2008-1571

177. Iitaka M, Miura S, Yamanaka K, Kawasaki S, Yamanaka K, Kawakami Y, et al. Increase Serum Vascular Endothelial Growth Factor Levels and Intra-thyroidal Vascular Area in Patients With Graves’ Disease and Hashimoto’s Thyroiditis. J Clin Endocrinol Metab (1998) 83:3908–12. doi: 10.1210/jcem.83.11.5281

178. Kajdaniuk D, Marek B, Niedziolka-Zielonka D, Foltyń W, Nowak M, Sieminska I, et al. Transforming Growth Factor Beta 1 (TGF Beta 1) and Vascular Endothelial Growth Factor (VEGF) in the Blood of Healthy People and Patients With Graves’ Ophthalmopathy - a New Mechanism of Glucocorticoids Action? Endokrynol Polska (2014) 65:348–56. doi: 10.5603/ep.2014.0048

179. Rancier M, Zaaber I, Stathopoulou MG, Chatelin J, Saleh A, Marmouch H, et al. Pro- and Anti-Angiogenic VEGF mRNAs in Autoimmune Thyroid Diseases. Autoimmunity (2016) 49:366–72. doi: 10.1080/08916934.2016.1199019

180. Ye X, Liu J, Wang Y, Bin L, Wang J. Increased Serum VEGF and b-FGF in Graves’ Ophthalmopathy. Graefe’s Arch Clin Exp Ophtalmol (2014) 252:1639–44. doi: 10.1007/s00417-014-2662-y

181. Breunis WB, Biezeveld MH, Geissler J, Ottenkamp J, Kuipers IM, Lam J, et al. Vascular Endothelial Growth Factor Gene Haplotype Variants in Kawasaki Disease. Arthritis Rheumatol (2006) 54:1588–94. doi: 10.1002/art.21811

182. Leung DW, Cachianes G, Kung WJ, Goodell DV, Ferrara N. Vascular Endothelial Growth Factor is a Secreted Angiogenic Mitogen. Science (1989) 246:1306–9. doi: 10.1126/science.2479986

183. Danve A, O’Dell J. The Ongoing Quest for Biomarkers in Ankylosing Spondylitis. Int J Rheum Dis (2015) 18:826–34. doi: 10.1111/1756-185x.12779

184. Huang SM, Liao WT, Lin CF, Sun HS, Chow NH. Effectiveness and Mechanism of Preoperative Lugol Solution for Reducing Thyroid Blood Flow in Patients With Euthyroid Graves’ Disease. World J Surgery (2016) 40:505–9. doi: 10.1007/s00268-015-3298-8

185. Berrahmoune H, Lamont JV, Herbeth B, FitzGerald PS, Visvikis-Siest S. Biological Determinants of and Reference Values for Plasma interleukin-8, Monocyte Chemoattractant protein-1, Epidermal Growth Factor, and Vascular Endothelial Growth Factor: Results From the STANISLAS Cohort. Clin Chem (2006) 52:504–10. doi: 10.1373/clinchem.2005.055798

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Zhan, Li, Liu, Cheng, Yan and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright holder(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.