Bone marrow-derived humoral factors suppress oxidative phosphorylation, upregulate TSG-6, and improve therapeutic effects on liver injury of mesenchymal stem cells

Takashi Miyaji,¹ Taro Takami,²,³,* Koichi Fujisawa,¹ Toshihiko Matsumoto,⁴ Naoki Yamamoto⁵ and Isao Sakaida¹,³

¹Department of Gastroenterology & Hepatology, ²Department of Liver Regenerative Medicine and ³Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, Yamaguchi 755-0046, Japan
²Center for Regenerative and Cell Therapy, Yamaguchi University Organization for Research Initiatives, Minamikogushi 1-1-1, Ube, Yamaguchi 755-0046, Japan
³Health Administration Center, Yamaguchi University, Minamikogushi 1-1-1, Ube, Yamaguchi 755-0046, Japan

(Received 9 December, 2019; Accepted 11 December, 2019)

Mesenchymal stem cells, which have the potential to be used in regenerative medicine, require improvements in quality for patient use. To maintain stemness of cultured bone marrow-derived mesenchymal stem cells, we focused on the bone marrow microenvironment, generated a conditioned medium of whole bone marrow cells (BMC-CM), and assessed its effects on bone marrow-derived mesenchymal stem cells. BMC-CM suppressed morphological deterioration and proliferative decline in cultured bone marrow-derived mesenchymal stem cells. BMC-CM suppressed oxidative phosphorylation activity, a stemness indicator, and upregulated suppressors of oxidative phosphorylation such as hypoxia-inducible factor 1-alpha, Sirtuin 3, 4, and 5. Furthermore, BMC-CM upregulated TNF-stimulated gene 6 mRNAs, which are considered OXPHOS suppressors. Furthermore, BMC-CM upregulated TNF-stimulated gene 6 protein (TSG-6) production, a central factor underlying the therapeutic effects of MSC, and analyzed the therapeutic effects of BM-MSCs on carbon tetrachloride (CCL₄)-induced liver injury in rats. Furthermore, since numerous recent studies have highlighted the changes in disease pathophysiology based on microRNAs (miRNAs), we investigated exosomal miRNAs derived from whole BM cells for quality improvement of MSC.

Key Words: mesenchymal stem cell, oxidative phosphorylation, TNF-stimulated gene 6, microRNA, liver disease

Mesenchymal stem cells (MSCs) are a promising source of cells for regenerative medicine of various organs including the liver, and clinical trials have been widely performed to explore their potential.⁴¹ Furthermore, given the increasing number of reports on the therapeutic potential of MSC,⁴⁻⁵ MSC therapies are expected to be developed for more diseases, including those with acute-stage conditions or excessive immune responses.⁵⁻⁷

We have been developing liver regenerative therapies using bone marrow (BM) cells, and we previously reported the clinical effectiveness of autologous bone marrow infusion (ABMI) therapy.⁶⁻⁸ Currently we are developing a less invasive liver regenerative therapy with cultured autologous BM-derived MSCs (BM-MSCs), and also attempting to develop new methods to culture higher-quality MSCs.

One of the most prominent issues in the development of regenerative therapies using MSCs is quality decrease during culturing. Although human BM-MSCs are readily cultured as adherent cells from bone marrow fluid, long-term subculture have been reported to result in deformation, enlargement, and loss of proliferative capacity in cells.⁹⁻¹² Whilst mouse- and rat-derived BM-MSCs can be isolated and harvested using similar protocols used for human,¹³⁻¹⁵ changes in cell deformation and proliferative capacity are more pronounced in mouse and rat.

In this study, we created a conditioned medium with whole BM cells (BM cells-conditioned medium; BMC-CM) to reproduce the BM microenvironment. The qualitative changes in BM-MSCs cultured in BMC-CM were evaluated by analyzing mitochondrial oxidative phosphorylation (OXPHOS) activity, which is considered an index of stemness, and changes in hypoxia-inducible factor 1-alpha (HIF-1α), Sirtuin 3, 4, and 5 (Sirt3, Sirt4, and Sirt5) mRNAs, which are considered OXPHOS suppressors. Furthermore, we evaluated TNF-stimulated gene 6 protein (TSG-6) production, a central factor underlying the therapeutic effects of MSC, and analyzed the therapeutic effects of BM-MSCs on carbon tetrachloride (CCL₄)-induced liver injury in rats. Furthermore, we investigated exosomal miRNAs derived from whole BM cells for quality improvement of MSC.

Materials and Methods

Isolation and culturing of rat BM-MSCs and preparation of BMC-CM. Six-week-old male Wistar rats were purchased from Japan-SLC (Shizuoka, Japan). Rat BM-MSCs were cultured, as described previously (Fig. 1A).¹⁷ The femur and tibia of 8–10-week-old rats were excised, and the intramedullary cavity was flushed with Dulbecco’s modified Eagle medium (DMEM) (11885-084; Gibco, Waltham, MA) supplemented with 10% fetal bovine serum (FBS) (172012; Sigma-Aldrich, St. Louis, MO), from now on named “basal medium”. Bone fragments were crushed in a mortar and washed with phosphate-buffered saline (PBS) (14190-144; Gibco) and treated with DMEM supplemented with 2% collagenase (038-22363; Wako, Osaka, Japan) and 2.5% 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (17514-15; NACALAI TESQUE, Kyoto, Japan) at 37°C for 1 h to detach the adherent cells. The resulting cell suspension was

¹To whom correspondence should be addressed.
E-mail: t-takami@yamaguchi-u.ac.jp

doi: 10.3164/jcbn.19-125

J. Clin. Biochem. Nutr. | Published online: 6 March 2020 | 1–11
Fig. 1. Culturing of BM-MSCs and preparation of BMC-CM. BM-MSCs obtained from the cell suspension of collagenase-treated crushed compact bones were cultured. BMC-CM was prepared by culturing whole bone marrow cells for 3 days. The BM-MSCs obtained as adherent cells were subcultured in basal medium or BMC-CM (A). Almost all the adherent cells at the time of passage 1 in each medium exhibited surface antigens matching MSCs (B). Adherent cells cultured in basal medium at passage 1 were capable of differentiating into adipocytes, osteocytes, and chondrocytes (C). No significant difference was found between cells cultured in basal medium and those cultured in BMC-CM in terms of surface antigen pattern and differentiation ability. Cell growth curve of cells at passage 1 in each medium analyzed by IncuCyte® ZOOM (D) and cell counts by Infinite® TECAN (E) revealed that higher proliferation ability was maintained in long-term subculture in BMC-CM. BMC-CM also maintained the cell morphology and colony forming ability of MSCs during long-term subculture (F, G). Error bars indicate SE. *p<0.05 in t test. **p<0.01 in t test.
filtered using a 70-μm cell strainer (352350; BD Biosciences, Franklin Lakes, NJ) and centrifuged at 330 g for 5 min. The cell pellet was resuspended in basal medium, seeded in a culture dish (353046; Corning, Corning, NY), and cultured at 37°C and 5% CO₂. During the first 3 days, the medium was frequently exchanged every 8 h to eliminate floating cells. At 96 h post-seeding, adherent cells were sub-cultured by adding trypsin (0.25% Trypsin-EDTA, 25200-072; Gibco) in basal medium, BMC-CM or BMC-CM filtered with a 20-nm filter provided in a commercially available exosome-fractionation kit (ExoMIR® PLUS; Bioo Scientific, Austin, TX), from now on named “filtered BMC-CM” (Fig. 4A). Media were exchanged every 2 days and cells were sub-cultured until they were 100% confluent.

BMC-CM was prepared using a cell suspension containing whole BM cells obtained through flushing of the bone medullary space. Cells were resuspended in basal medium at 10⁶ cells per 100 ml, cultured in a T175-flask (353112; Corning) at 37°C and 5% CO₂ for 72 h, and centrifuged at 330 g for 5 min. The supernatant was filtered through a 220-nm filter (MILLEX® GP; Merck, Kenilworth, NJ) and used as BMC-CM (Fig. 1A).

Assays for cell viability and differentiation. Cells at passages 1, 3, and 5 in each medium were seeded in 96-well plates (351172; Corning) at 1,000 cells per well, and cell proliferation was evaluated at 37°C and 5% CO₂ using a live-cell imaging system (IncuCyte® ZOOM; Essen Bioscience, Tokyo, Japan), followed by cell counting at 4 days after seeding in a fluorescence plate reader (Infinite M200 PRO; TECAN, Mannedorf, Switzerland) for the cell proliferation assay (CyQUANT® plate reader). Furthermore, cells were seeded in a 100-mm dish (353003; Corning) at 100 cells per dish, cultured at 37°C and 5% CO₂ for 7 days, fixed with 10% formalin (11-0705-7; Sigma-Aldrich), and the fibroblast-like colonies were observed after Giemsa staining (colony-forming unit fibroblast assay; CFU-f assay).

Cells at passage 1 were cultured with commercially available differentiation-inducing reagents (SC020; R&D Systems, Minneapolis, MN), and the differentiation potential to the fibroblast-like colonies was evaluated at 37°C and 5% CO₂, media were exchanged with XF Assay Medium (Seahorse Biosciences) supplemented with 25 mM glucose, and OCR measurements were carried out over 5-min periods, following a 3 min mix period. Cells were treated via sequential addition of 1 µg/ml oligomycin, 300 nM cytochrome c, and 1 µM rotenone. The basal OCR was normalized to the cell number, and the spare respiratory capacity and the maximal respiration were determined in accordance with the manufacturer’s instructions (Seahorse Biosciences).

Table 1. Primers used in this study

Gene name	NCBI reference	Primer sequence	Product size (bp)
Gapdh	NM_017008	Forward: 5’-GGCAAGTTCAACGGCAGCTC-3’	96
		Reverse: 5’-AGCACACGATCACCCATT-3’	
Hif1a	NM_0024359.1	Forward: 5’-TCTAGTGAAAGGATGGAG-3’	96
		Reverse: 5’-TCGTTAATGTCAGTGTTGGA-3’	
Sirt3	NM_001106313.2	Forward: 5’-TGACACGGTCTGCAAGCTG-3’	83
		Reverse: 5’-ATGTCAGGTTTCACAGGCCAGTA-3’	
Sirt4	NM_001107147.1	Forward: 5’-CTGCTGCCCTTAAATAGACACCACA-3’	117
		Reverse: 5’-GATGCAAGACAGTAAAGCTCCCA-3’	
Sirt5	NM_001004256.1	Forward: 5’-GCAAGGGTGTGGTCTCATG-3’	106
		Reverse: 5’-CAGGAAATCAGGCAACACCGA-3’	
Vegfa	NM_001110333.2	Forward: 5’-CTCTTGGCTCATACCAGGTACTG-3’	103
		Reverse: 5’-ACAGTGGTGGCCCCAGTCCA-3’	
Hk2	NM_012735.2	Forward: 5’-TGGATGGGATTCGTCAACAGAAGA-3’	65
		Reverse: 5’-ACACTACAGTCGGGACCCACAGG-3’	
Tsg6 (Tnfalpha)	NM_05382.1	Forward: 5’-CGTCTTGGCAACTCAACAGCAGCTA-3’	100

T. Miyaji et al.
J. Clin. Biochem. Nutr. | Published online: 6 March 2020 | 3
analyzed using mRNA-microarray chips (3D-Gen®; TORAY, Tokyo, Japan). The results of the pathway analysis were integrated via Ingenuity Pathway Analysis (IPA) (QIAGEN).

Western blot analysis. Protein lysates were obtained from cell pellets at passage 1 using a commercially available cell lysis buffer (98035; Cell Signaling Technology, Danvers, MA) containing protease inhibitors (complete Mini; Roche Diagnostics GmbH, Mannheim, Germany), mixed with sample buffer containing sodium dodecyl sulfate (SDS) (161-0737; BIO-RAD, Hercules, CA) at a ratio of 1:1 (v/v), followed by boiling for 5 min. Western blot analysis was performed with purified polyclonal anti-rabbit IgG against TSG-6 (PA5-67008; Invitrogen) at 1,000-fold dilution, and monoclonal anti-β-actin antibody produced in mouse (A5316; Sigma-Aldrich) at 5,000-fold dilution as the primary antibodies, and horseradish peroxidase-linked secondary antibodies from donkey against rabbit IgG (NA934; GE Healthcare, Little Chalfont, UK) or from sheep against mouse IgG (NA931; GE Healthcare) at 5,000-fold dilution. Casein-based blocking reagent (1 BlockTM; Invitrogen) dissolved at a concentration of 1% in the basal buffer, PBS with 0.1% tween (160-21211; Wako), was used as the blocking buffer. Imaging and data-analysis were performed using the ChemiDoc™ system (BIO-RAD) and Image Lab™ software (BIO-RAD).

Animal studies. All animals were maintained in accordance with the animal care guidelines of Yamaguchi University, and all animal experiments received approval (No. 21-044). After 1 week of acclimatization, twenty-four 8-week-old male Wistar rats, were intraperitoneally administered CCl₄ (037-08075; Wako) diluted 2-fold with corn oil (032-17016; Wako) at 0.5 ml/kg body weight twice a week for 8 weeks. Rats were divided into three groups: control, basal, and BMC-CM groups. The basal and BMC-CM groups were administered 1 ml of 10⁶ BM-MSCs in PBS cultured in basal medium or BMC-CM at passage 1, and the control group was administered 1 ml PBS at 5, 6, and 7 weeks via the tail vein. After 8 weeks, the rats were euthanized via 4% isoflurane in basal medium or BMC-CM at passage 1, and the control group was administered 1 ml of 10⁶ BM-MSCs in PBS cultured in basal medium or BMC-CM at passage 1, and the control group was administered 1 ml PBS at 5, 6, and 7 weeks via the tail vein. After 8 weeks, the rats were euthanized via 4% isoflurane anesthesia, blood was sampled from the inferior vena cava, and the liver was excised (Fig. 3A).

Serum albumin (ALB), alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels were measured using a biochemical measurement device (SpotChem™ D-02; Arkley. Kyoto, Japan). Liver tissues were fixed in formalin, embedded in paraffin, cut into 3-μm-thick sections, and deparaffinized. Hematoxylin-eosin (H-E) staining was performed with 1% Sirius-red solution (3306-1; MUTO PURE CHEMICALS, Tokyo, Japan) containing Van Gieson Solution P (19,20) and the number of vacuolated hepatocytes and of TUNEL-positive cells and the ratio of Sirius-red stained area were determined.

Identification of miRNAs corroborating the effects of BMC-CM. Exosomal miRNAs in BMC-CM cultured for 3, 12, and 72 h were extracted using a commercially available kit with combination filters (ExoMin™PLUS) containing a set of 20-nm and 220-nm filters. These miRNAs were analyzed using a miRNA microarray chip (3D-Gen®; TORAY), and 49 miRNAs were upregulated over time in the BMC-CM samples (Table 2). Seven of these miRNAs targeted numerous genes related to the change of OXPHOS activity observed in the mRNA microarray of BM-MSCs cultured in 20-nm-filtered BMC-CM vs BMC-CM, which were selected in accordance with the "microRNA Target Filter" function of IPA (Table 3). (19,20) Agonists, and the associated negative controls (mirVana™; Life Technologies, Carlsbad, CA) for each of the selected seven miRNAs were purchased and

| Table 2. Increasing miRNA expression in the BMC-CM incubation process |
|---------------------------|-------------------------|-----------------------------|
miRbase ID	12 h vs 3 h (fold)	72 h vs 3 h (fold)
rno-miR-666-5p	4.26	29.79
rno-miR-92b-3p	2.15	17.94
rno-miR-92a-3p	1.57	12.45
rno-miR-291a-5p	2.26	8.24
rno-miR-25-5p	1.22	6.69
rno-miR-486	1.47	6
rno-miR-375-5p	2.71	5.58
rno-let-7d-3p	1.74	4.61
rno-miR-23a-3p	0.95	3.39
rno-miR-128-3p	0.95	3.01
rno-miR-221-3p	1.07	2.99
rno-miR-23b-3p	0.99	2.98
rno-miR-294	1.56	2.94
rno-miR-181b-5p	1.75	2.9
rno-miR-25-3p	1.06	2.8
rno-miR-3473	1.24	2.74
rno-miR-290	2.15	2.71
rno-miR-505-3p	2.1	2.66
rno-miR-212-3p	1.33	2.4
rno-miR-874-3p	2.11	2.34
rno-miR-702-5p	1.34	2.2
rno-miR-326-5p	1.99	2.2
rno-miR-145-5p	0.9	2.18
rno-miR-378a-5p	1.72	2.11
rno-miR-10a-5p	0.8	2.03
rno-miR-339-5p	1.36	2.02
rno-miR-22-3p	0.86	1.97
rno-miR-1188-3p	1.51	1.93
rno-miR-328a-3p	1.07	1.89
rno-miR-328b-3p	1.07	1.83
rno-miR-99b-5p	0.92	1.8
rno-miR-532-3p	1.68	1.77
rno-miR-99a-5p	0.77	1.77
rno-miR-3594-3p	1.56	1.72
rno-miR-27a-3p	0.83	1.68
rno-miR-425-5p	0.7	1.66
rno-miR-598-5p	3.55	1.56
rno-miR-484	1.38	1.54
rno-miR-551b-3p	0.69	1.53
rno-miR-100-5p	0.71	1.51
rno-miR-1247-3p	2.81	1.46
rno-miR-3085	1.75	1.46
rno-miR-204-3p	1.68	1.37
rno-miR-3593-3p	1.9	1.12
rno-miR-128-1-5p	3.59	1.08
rno-miR-6318	2.21	0.94
rno-miR-350	1.65	0.92
rno-miR-128-2-5p	2.32	0.74
rno-miR-652-5p	1.55	0.68

Under bar: miRNAs selected for the transduction experiment on BM-MSC. †miRNAs that can decrease in liver cirrhosis. ‡miRNAs reported to decrease with fat deposition of HepG2 cells. doi: 10.3164/jcbn.19-125
transfected into BM-MSCs cultured in the basal medium at passage 1 via culturing with transfection reagents (Lipofectamine 2000). The transfection efficiency was confirmed by flow cytometry and real-time PCR. The expression of the transfection marker was analyzed using a fluorescence-activated cell sorter (FACS) and qPCR. The results were analyzed using statistical software (GraphPad Prism) to determine the significance of differences. The data are presented as mean ± standard error of the mean (SEM) values.

Statistical analysis. All data are expressed as mean ± standard error of the mean (SEM) values. Statistical analysis was performed using the JMP Pro software (SAS Institute, Cary, NC). The results were analyzed using Student’s t-test and one-way analysis of variance (ANOVA) with post hoc analysis using Turkey’s multiple comparison test. Differences were considered significant at p values < 0.05. All results except microarrays for miRNAs and mRNAs presented are from at least three independent experiments for each condition.

Results

BMC-CM improves the viability of BM-MSCs. At the first passage, very few adherent cells were found to express the leucocyte common antigen CD45, hematopoietic progenitor cell marker CD34, or monocyctic lineage marker CD11b. In contrast, nearly all cells expressed MSC markers, including CD54 and CD90 (Fig. 1B). Furthermore, cells differentiated into adipocytes, osteocytes, and chondrocytes (Fig. 1C). Thus, adherent cells at the first passage displayed considerably sufficient purity of MSCs for subsequent experiments. No significant difference was observed between cells cultured in basal medium and those cultured in BMC-CM in terms of their surface antigen pattern and differentiation potential.

Cultured cells initially exhibited small spindle-shaped morphology; however, those cultured in basal medium rapidly transformed into large spherical cells upon repeated sub-culturing (Fig. 1F). Although the growth potential peaked at passage 3 in each medium, a marked reduction in growth potential was subsequently observed in basal medium. In contrast, the morphology and proliferative capacity of the cells were retained for a longer period of time in BMC-CM (Fig. 1D–F). Results from CFU-f assay revealed that the colony forming potential was reduced and lost upon subsequent sub-culturing in basal medium, whereas in BMC-CM, the number and size of colonies were maintained for a longer period (Fig. 1G).

BMC-CM suppresses mitochondrial OXPHOS activity and enhances TSG-6 expression of BM-MSCs. Subsequently, we evaluated the changes in mitochondrial OXPHOS activity as an index of the stemness in cultured BM-MSCs. OCR measurements with an extracellular flux analyzer revealed that the maximal respiration (0.52-fold, p = 0.001) and the spare respiratory capacity (p < 0.001) were significantly suppressed in BMC-CM (Fig. 2A). We further evaluated RT-PCR for mRNA expression levels of various proteins that control the OXPHOS activity. Expression of Hif1α was decreased upon repeated sub-culturing in basal medium but it was increased in BMC-CM. Since HIF-1α protein is rapidly degraded in the presence of oxygen, it was difficult to quantify the protein concentration. However, due to increased mRNA expression of downstream targets of HIF-1, including Vegfa and Hk2, the HIF-1 signaling pathway was suggested to be activated by BMC-CM. We further evaluated the changes in mRNA expression of Sirt3-5 co-localized with the mitochondria, which is considered a modulator that suppresses the mitochondrial OXPHOS activity (21). Expression of Sirt3, Sirt4, and Sirt5 in basal medium peaked at passage 3, while upregulation continued to increase in BMC-CM (Fig. 2B).

Furthermore, we evaluated the variation of Tsg6, which is considered as a quality index of MSC from the viewpoint of the treatment mechanism for liver injury. Although the Tsg6 expression peaked at passage 3 and then decreased regardless of the medium, in passage 1 and 3, the expression was significantly enhanced in BMC-CM-cultured cells (Fig. 2B). Tsg6 protein expression at passage 1 was significantly increased in cells cultured in BMC-CM (4.08-fold, p = 0.013), as demonstrated by Western blot analysis (Fig. 2C).

BMC-CM improves the viability of BM-MSCs. Results are expressed as mean ± standard error of the mean (SEM). Statistical analysis was performed using Student’s t-test and one-way analysis of variance (ANOVA) with post hoc analysis using Turkey’s multiple comparison test. Differences were considered significant at p values < 0.05. All results except microarrays for miRNAs and mRNAs presented are from at least three independent experiments for each condition.
them, seven miRNAs, miR-1247-3p, miR-204-3p, miR-128-1-5p, miR-92b-3p, miR-23b-3p, miR-326-5p, and miR-145-5p, were considered to be involved in the change of mitochondrial OXPHOS activity between the cells cultured in 20-nm-filtered BMC-CM and BMC-CM (Table 3), based on the data of mRNA-microarray of cultivated BM-MSCs and information regarding the target genes obtained from the IPA database (using “microRNA Target Filter” function of IPA).

By transfecting the selected seven miRNAs into BM-MSCs, the following trends in upregulation were observed (Fig. 5A): miR-92b-3p (1.82-fold, \(p = 0.002 \)), miR-23b-3p (1.20-fold, \(p = 0.029 \)), miR-204-3p (1.29-fold, \(p = 0.007 \)), and miR-1247-3p (1.33-fold, \(p = 0.038 \)) enhanced the expression of Hif1a; miR-92b-3p (1.64-fold, \(p < 0.001 \)), miR-23b-3p (1.53-fold, \(p = 0.021 \)), and miR-204-3p (1.60-fold, \(p = 0.022 \)) enhanced Sirt3 expression; miR-92b-3p (1.68-fold, \(p = 0.001 \)) and miR-23b-3p (1.18-fold, \(p = 0.048 \)) enhanced Sirt4; and miR-23b-3p (1.34-fold, \(p = 0.0197 \)), miR-204-3p (5.25-fold, \(p < 0.001 \)), miR-1247-3p (4.77-fold, \(p = 0.002 \)), and miR-326-5p (3.92-fold, \(p = 0.003 \)) upregulated the expression of Tsg6.

Discussion

In this study, we first tried to improve the quality of cultured BM-MSCs through reconstruction of the BM microenvironment maintaining stemness of MSC, and found the OXPHOS-inhibitory
Fig. 3. Administration of BM-MSCs to rats with CCl4-induced liver injury. Male Wistar rats (8-week-old) were intraperitoneally administered 0.5 ml/kg CCl4 twice a week for 8 weeks and treated with BM-MSCs cultured in basal medium or BMC-CM on weeks 5, 6, and 7 (A). In the blood biochemistry examination, the BMC-CM group showed a significant reduction in serum AST and ALT levels compared with that shown by the basal group (B). The ratio of the fibrotic area evaluated with Sirius-red staining, the number of vacuolated hepatocytes, and the number of TUNEL-positive cells were also reduced in the BMC-CM group compared with the basal group (C). Error bars indicate SE. *p<0.05 in t test. **p<0.01 in t test.
Fig. 4. Effects of removing particles over 20 nm from BMC-CM. Using the ExoMir™ PLUS kit, particles over 20 nm were removed from BMC-CM (filtered BMC-CM), and exosomal microRNAs contained in BMC-CM were extracted (A). Mitochondrial OXPHOS activity was accelerated, and the spare respiratory capacity was significantly increased in filtered BMC-CM compared with non-filtered BMC-CM in cells at passage 1 (B). Expression of Hif1α tended to decrease, and that of Sirt3, Sirt4, and Sirt5 were significantly reduced by filtered BMC-CM in cells at passage 3 (C). Pathway analysis of mRNA-microarray data from BM-MSCs cultured in BMC-CM vs filtered BMC-CM analyzed by IPA revealed that 20–220-nm particles were involved in multiple signaling pathways such as OXPHOS, Sirtuin signaling, mTOR signaling, PI3K/Akt signaling, and IGF-1 signaling pathways (D). The overlap p value (p value), indicator of overlap between observed gene expression changes and known targets regulated by transcriptional regulators, was calculated using Fisher’s exact test. The activated z-score (z-score), indicator of regulation direction of pathways, was calculated based on the database of molecular network that represents experimentally observed gene expression or transcription events; positive z-score means “activating” and negative “inhibiting”. OXPHOS-pathway map by pathway analysis of IPA showed that all of the mitochondrial complexes I to V were suppressed by 20–220-nm particles in BMC-CM. Up-regulated components are colored red, and down-regulated green (E). Error bars indicate SE. *p<0.05 in t test. **p<0.01 in t test.
effect of BMC-CM. High-quality stem cells, retaining their stemness, are known to suppress mitochondrial OXPHOS and depend on glycolysis.\cite{22} One of the most important enzymes in such cellular metabolic reprogramming of stem cells is HIF-1α, which is upregulated in a hypoxic environment such as BM, suppresses mitochondrial OXPHOS activity and activates the anaerobic glycolytic metabolic pathway.\cite{23,24} HIF-1α has been further demonstrated to participate in various cell functions such as proliferation, angiogenesis, and immunoregulation, and is currently considered as one of the master regulators of the stemness.\cite{25–27}

Therefore, we have demonstrated the upregulation of HIF-1α upon culturing in BMC-CM under normoxic conditions. Intra-cellular upregulation of HIF-1α under hypoxia is generally considered to be primarily due to the oxygen-dependence of its degrading enzyme, but not from an increase in its production.\cite{28,29} In contrast, multiple pathways including growth factors upregulating HIF-1α regardless of the oxygen concentration, such as IGF-1 or mTOR signaling pathways, have also been reported.\cite{30–34}

Fig. 5. Whole bone marrow cell-derived miRNAs may improve the therapeutic quality of MSCs. Of the seven miRNAs used for transfection experiments, miR-23b-3p, miR-92b-3p, miR-204b-3p, miR-326b-5p, and miR-1247b-3p significantly upregulated one or more mRNA (Hif1a, Sirt3, Sirt4, Sirt5, and Tsg6) (A). There were many common miRNAs involved in OXPHOS suppression and in increased TSG-6 expression. Of these five miRNAs, three were reported to be downregulated in cirrhotic liver and fatty HepG2 cells (B).\cite{44,45} Error bars indicate SE. *p<0.05 in t test. **p<0.01 in t test.
The pathway analysis in this study also revealed the activation of the mTOR/Akt/PI3K and IGF-1 signaling pathways by 20–220-nm particles in BMC-CM, suggesting the possibility that humoral regulation in BMC-CM, independent of the oxygen concentration, promotes HIF-1α production.

TSG-6, which is produced in response to various inflammatory stimuli and exerts anti-inflammatory effects through various pathways (35) was also significantly upregulated upon culturing in BMC-CM in this study. It is reported that human BM-MSCs with higher mRNA expression of TSG6 show higher anti-inflammatory effects, (36) and that administration of TSG-6 suppresses liver injury in mice on a methionine choline-deficient diet through inhibition of hepatocyte apoptosis. (37) For these reasons, TSG-6 is now considered one of the most important factors responsible for inducing the immunoregulatory effects of MSCs, and a promising biomarker of their therapeutic effects. Furthermore, it is reported that TSG-6-deficient MSCs exhibit morphological changes similar to senescent or degraded MSCs and show a reduction in their proliferation and differentiation potentials, indicating that the TSG-6 produced by MSCs possibly helps to maintain the stemness of the MSCs themselves. (38)

The bone marrow (BM) and liver are closely interlinked in adult humans. (39–40) and the niche for stem/progenitor cells in the BM and liver share some similarities. MSCs are well known for their important role in establishing a niche for hematopoietic stem cells (HSCs) in BM, (41) and their possible involvement in niche formation of hepatic progenitor cells in the liver has also been reported. (42,43) This study shows that humoral factors derived from whole BM cells maintain the quality of cultured BM-MSCs. MSCs play an important role as a BM-HSC niche; conversely, BM cells may also be important in maintaining the MSC niche. Besides, the relationship between hepatic microenvironment and MSCs, which has not been well understood, may lead to the elucidation of correlation between the BM and liver mediated via MSCs.

Although it is undeniable that other factors in the BM-derived exosomes such as proteins, miRNAs, or DNAs are also involved, we identified four miRNAs that upregulate Hif1α and four miRNAs that upregulate Tsg6. The involvement of MSCs in pathophysiology of various diseases is becoming increasingly apparent, and some diseases demonstrate miRNA variations in the background. (16–18) Of the five miRNAs that upregulated Hif1α or Tsg6 in this study, three types are potentially associated with liver diseases (Fig. 5B). miR-204 and miR-92b are among the 44 primary miRNAs reportedly downregulated in liver cirrhosis in a study examining miRNA expression in surgically resected liver. (44) and miR-1247-3p and miR-92b-3p are among the 87 mature miRNAs reportedly downregulated upon fat deposition via HepG2 cells and upregulated upon liraglutide treatment. (45)

Thus, BM-derived humoral factors contain miRNAs involved in maintaining the quality of BM-MSCs through OXPHOS suppression and TSG-6 expression promotion, and some of these are also present in the hepatic microenvironment and may be downregulated in liver diseases. These results and observations indicate that BM-MSC humoral factors containing miRNAs are potentially important factors contributing to the pathogenesis of liver diseases and are mediators of the interaction between the BM and liver. Although the qualitative transformation of MSCs caused by variations in such humoral factors has unknown implications with respect to their mechanisms and significance, their application would help to improve the therapeutic effects of MSCs on liver diseases. BM-derived humoral factors containing exosomal miRNAs suppress mitochondrial OXPHOS, enhance TSG-6 expression, improve the therapeutic effects of BM-MSCs on liver injury, and are potentially involved in the pathogenesis of liver diseases. Their practical applications may help further ameliorate the quality of MSCs for regenerative therapies.

Author Contributions

TM, TT, and IS: conception and design.
TM: experiments and data analysis and interpretation.
KF, TM, and NY: provision of study, materials.
TM and TT: manuscript writing.
TT and IS: funding.

Acknowledgments

We thank Ms. M. Yamada, Ms. K. Ota, and Ms. R. Mochizuki for their technical assistance. Further, this study was supported by The Project Promoting the Research and Development (R&D) Center on Regenerative Medicine in Yamaguchi Prefecture. This study was also supported by JSPS KAKENHI Grant Numbers JP17H04162 to IS and JP17K09428 to TT.

Abbreviations

Abbreviation	Description
Akt	protein kinase B
BMC	bone marrow cell
BMC-CM	conditioned medium made with whole bone marrow cells
CCL4	carbon tetrachloride
DMEM	Dulbecco's modified Eagle medium
FBS	fetal bovine serum
HIF-1α	hypoxia inducible factor-1 alpha
HK2	hexokinase 2
HSC	hematopoietic stem cells
IGF-1	insulin-like growth factor 1
MSC	mesenchymal stem cells
mTOR	mammalian target of rapamycin
OXPHOS	oxidative phosphorylation
PBS	phosphate buffered saline
PI3K	phosphatidylinositol 3-kinase
ROS	reactive oxygen species
Sirt	Sirtuin
TSG-6	TNF-stimulated gene 6
VEGFa	vascular endothelial growth factor A

Conflict of Interest

No potential conflicts of interest were disclosed.

References

1 Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant 2016; 25: 829–848.
2 Caplan Al, Correa D. The MSC: an injury drugstore. Cell Stem Cell 2011; 9: 11–15.
3 Lee RH, Pulim AA, Seo MJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009; 5: 54–63.
4 Krasnodembskaya A, Song Y, Fang X, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 2010; 28: 2229–2238.
5 Young PP, Schäfer R. Cell-based therapies for cardiac disease: a cellular therapist’s perspective. Transfusion 2015; 55: 441–451.
6 Peired AJ, Sisti A, Romagnani P. Mesenchymal stem cell-based therapy for kidney disease: a review of clinical evidence. Stem Cells Int 2016; 2016: 4798639.
7 Liu KD, Wilson JG, Zhuo H, et al. Design and implementation of the START (STem cells for ARDS Treatment) trial, a phase 1/2 trial of human mesenchymal stem/stromal cells for the treatment of moderate-severe acute
T. Miyaji et al. T. Miyaji et al.

J. Clin. Biochem. Nutr. | Published online: 6 March 2020 | 11

respiratory distress syndrome. Ann Intensive Care 2014; 4: 22.
8 Terai S, Ishikawa T, Omori K, et al. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells 2006; 24: 2292–2298.
9 Takami T, Terai S, Sakaia I. Advanced therapies using autologous bone marrow cells for chronic liver disease. Discov Med 2012; 14: 7–12.
10 Shin TH, Lee S, Choi KR, et al. Quality and freshness of human bone marrow-derived mesenchymal stem cells decrease over time after trypsinization and storage in phosphate-buffered saline. Sci Rep 2017; 7: 1106.
11 Agata H, Asahina I, Watanabe N, et al. Characteristic change and loss of in vivo osteogenic abilities of human bone marrow stromal cells during passage. Tissue Eng Part A 2010; 16: 663–673.
12 Block TJ, Marinkovic M, Tran ON, et al. Restoring the quantity and quality of elderly human mesenchymal stem cells for autologous cell-based therapies. Stem Cell Res Ther 2017; 8: 239.
13 Soleimani M, Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc 2009; 4: 102–106.
14 Wang J, Ju B, Pan C, et al. Application of bone marrow-derived mesenchymal stem cells in the treatment of intratracheal adhesions in rats. Cell Physiol Biochem 2016; 39: 1553–1560.
15 Zhu H, Guo ZK, Jiang XX, et al. A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protoc 2010; 5: 550–560.
16 Guo Q, Chen Y, Guo L, Jiang T, Lin Z. miR-23a/b regulates the balance of pyruvate dehydrogenase kinase: a metabolic switch required for in vivo liver cirrhosis after autologous bone marrow cell infusion therapy. Ann Intensive Care 2013; 7: 198–214.
17 Yeung DK, Griffith JF, Antonio GE, Lee FK, Woo J, Leung PC. Characteristic change and loss of mesenchymal stem cells in the treatment of intratracheal adhesions in rats. Cell Physiol Biochem 2016; 39: 1553–1560.
18 Cordes C, Baum T, Dieckmeyer M, et al. MR-based assessment of bone marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging 2005; 22: 279–285.
19 Verdin E, Hirschey MD, Finley LW, Haigis MC. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 2010; 35: 669–675.
20 Colmes CD, Nelson TJ, Martinez-Fernandez A, et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 2011; 14: 264–271.
21 Kim JW, Tchernyshev I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3: 177–185.
22 Majmundar AJ, Wong JW, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 2010; 40: 294–309.
23 Soni S, Padwad YS. HIF-1 in cancer therapy: two decade long story of a transcription factor. Acta Oncol 2017; 56: 503–515.
24 Mineault M, Batra SK. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med 2013; 17: 30–54.
25 Martinez VG, Otorria-Oviedo I, Ricardo CP, et al. Overexpression of hypoxia-inducible factor 1 alpha improves immunomodulation by dental mesenchymal stem cells. Stem Cell Res Ther 2017; 8: 208.
26 Iwai K, Yamanaka K, Kamura T, et al. Identification of the von Hippel-Lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc Natl Acad Sci U S A 1999; 96: 12436–12441.
27 Lisztwan J, Imbert G, Wirbelauer C, Gstaiger M, Keek W. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev 1999; 13: 1822–1833.
28 Kallio PJ, Pongratz I, Gradin K, McGuire J, Poellinger L. Activation of hypoxia-inducible factor 1alpha: posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor. Proc Natl Acad Sci U S A 1997; 94: 5667–5672.
29 Brugaras J, Lei K, Hurley RL, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 2004; 18: 2893–2904.
30 Hudson CC, Liu M, Chiang GG, et al. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol Cell Biol 2002; 22: 7004–7014.
31 Fukuda R, Hirota K, Fan F, Jung YD, Ellis LM, Semenza GL. Insulin-like growth factor I induces hypoxia-inducible factor-1 mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem 2002; 277: 38205–38211.
32 Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T, Vogt PK. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 2001; 12: 363–369.
33 Milner CM, Day AJ. TSG-6: a multifunctional protein associated with inflammation. J Cell Sci 2003; 116 (Pt 10): 1863–1873.
34 Lee RH, Yu JM, Foskett AM, et al. TSG-6 as a biomarker to predict efficacy of human mesenchymal stem/progenitor cells (hMSCs) in modulating sterile inflammation in vivo. Proc Natl Acad Sci U S A 2014; 111: 16766–16771.
35 Wang S, Lee C, Kim J, et al. Tumor necrosis factor-inducible gene 6 protein ameliorates chronic liver damage by promoting autophagy formation in mice. Exp Mol Med 2017; 49: e380.
36 Romano B, Elangovan S, Erreni M, et al. TNF-stimulated gene-6 (TSG-6) is a key regulator in switching stemness and biological properties of mesenchymal stem cells. Stem Cells 2019; 37: 973–987.
37 Theise ND, Nimmakayalu M, Gardiner R, et al. Liver from bone marrow in humans. Hepatology 2000; 32: 11–16.
38 Bihari C, Anand L, Rooge S, et al. Bone marrow stem cells and their niche components are adversely affected in advanced cirrhosis of the liver. Hepatology 2016; 64: 1273–1288.
39 Méndez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466: 829–834.
40 Takase HM, Itoh T, Ino S, et al. FGF7 is a functional niche signal required for stimulation of adult liver progenitor cells that support liver regeneration. Genes Dev 2013; 27: 169–181.
41 Katsumata LW, Miyajima A, Itoh T. Portal fibroblasts marked by the surface antigen Thy1 contribute to fibrosis in mouse models of cholestatic liver injury. Hepatol Commun 2017; 1: 198–214.
42 Du H, Yu H, Yang Y, et al. Computational identification of microRNAs and their targets in liver cirrhosis. Oncol Lett 2017; 14: 7691–7698.
43 Shen Y, Liu M, Chen C, Lai X, Zhang M. MicroRNA profile changes in liraglutide treated streptotic HepG2 cells. Int J Clin Exp Med 2017; 10: 4856–4864.