CKJ REVIEW

Risk for subsequent hypertension and cardiovascular disease after living kidney donation: is it clinically relevant?

Charles J. Ferro and Jonathan N. Townend

1Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK, 2Department of Renal Medicine, Queen Elizabeth Hospital, Birmingham, UK and 3Department of Cardiology, Queen Elizabeth Hospital, Birmingham, UK

Correspondence to: Charles J. Ferro; E-mail: charles.ferro@uab.nhs.uk

ABSTRACT

The first successful live donor kidney transplant was performed in 1954. Receiving a kidney transplant from a live kidney donor remains the best option for increasing both life expectancy and quality of life in patients with end-stage kidney disease. However, ever since 1954, there have been multiple questions raised on the ethics of live kidney donation in terms of negative impacts on donor life expectancy. Given the close relationship between reduced kidney function in patients with chronic kidney disease (CKD) and hypertension, cardiovascular disease and cardiovascular mortality, information on the impact of kidney donation on these is particularly relevant. In this article, we review the existing evidence, focusing on the more recent studies on the impact of kidney donation on all-cause mortality, cardiovascular mortality, cardiovascular disease and hypertension, as well as markers of cardiovascular damage including arterial stiffness and uraemic cardiomyopathy. We also discuss the similarities and differences between the pathological reduction in renal function that occurs in CKD, and the reduction in renal function that occurs because of a donor nephrectomy. Kidney donors perform an altruistic act that benefits individual patients as well as the wider society. They deserve to have high-quality evidence on which to make informed decisions.

Keywords: all-cause mortality, arterial stiffness, blood pressure, cardiovascular disease, cardiovascular mortality, chronic kidney disease, hypertension, kidney donation, transplant, uraemic cardiomyopathy

INTRODUCTION

In 1954, at the age of 23, Ronald Herrick donated a kidney to his twin brother Richard [1, 2]. This was the first successful solid organ transplant in humans. However, Ronald went on to develop end-stage kidney disease (ESKD) requiring dialysis, suffered a stroke, required coronary artery angioplasty and eventually died from cardiovascular disease at the age of 79 [2]. This, and subsequent donations, raised ethical questions regarding the safety of donating a kidney, especially regarding the risks of developing cardiovascular disease [3–6]. Sixty-seven years on from Ronald Herrick’s donation, can we now resolve these uncertainties? In this article, we will examine the current available evidence focusing on the risks of hypertension and cardiovascular disease associated with kidney donation to answer these questions.
MORTALITY AND CARDIOVASCULAR EVENTS

All-cause mortality

The phrase ‘kidney donors live longer’ started appearing in the medical literature following a Swedish study published in 1997 [7]. This study followed up 430 donors for up to 31 years and compared their survival with national mortality rates. Perhaps not surprisingly, given that they have been extensively screened for illness and excluded from the donation process if found to have any significant abnormality, donors had a better survival rate. This has been a consistent feature of research into donor survival. Findings from multiple studies, with up to 40 years of follow-up, have shown no evidence of reduced survival compared with the general population [8–12], and indeed many have reported better life expectancy [7, 13–19]. Several studies have sought to overcome this by using selected ‘control’ populations, attempting to exclude individuals with conditions that would have precluded kidney donation, such as uncontrolled hypertension, diabetes mellitus and cancer (Tables 1 and 2). Thus, these reports often describe health event rates in kidney donors and control subjects far lower than the general population. These studies are also mostly of relatively short duration, with a median follow-up of ~10 years. The highly selected nature of kidney donors means that it should not be surprising that adverse events are rare, at least in the medium to short term.

Concerns relating to possible long-term adverse effects of donation arose in 2014 in an article examining 15-year outcomes in 1901 Norwegian donors and 32,621 control patients who were potentially eligible for donation [20]. The hazard ratios (HRs) for all-cause mortality (HR 1.30 [95% confidence interval (CI) 1.11–1.52]) were significantly increased in donors with curves diverging after about 10 years. Limitations of this study included exclusion of marginal donors, an older donor group (8 years) than controls and longer follow-up of donors compared with controls. In addition, the rural area of Norway used to conduct the study has an unusually high life expectancy [21]. Nevertheless, these data are at least cause for concern and at the very least, certainly warn against complacency. A Markov medical decision analysis found that donors had a reduced life expectancy of 0.5 to 1 year as a direct consequence of donation [22]. However, this was largely based on donors having chronic kidney disease (CKD) and, as will be discussed later, this is not necessarily correct. Nevertheless, for now, most of the available evidence does not seem to indicate that kidney donation is associated with a significant increase in all-cause mortality. Indeed, a recent meta-analysis of four studies [12, 13, 18, 20], including the Norwegian study, published between 2010 and 2016 with 84,495 donors and 62,484 controls did not find any evidence of an increase in all-cause mortality in donors [pooled-adjusted relative risk (RR) 1.10 (95% CI 0.31–1.10)] [23]. However, it should be noted that two of these studies contributing 97% of donors only had a median follow-up of 6.3 and 6.5 years [12, 13]. More intensive, longer-term follow-up of donor populations with suitable control groups are required. These studies are needed to counsel younger potential donors about the risks involved and any potential reduction in life expectancy. They will by their nature be difficult to fund, administer and maintain.

Cardiovascular disease and cardiovascular events

The main observational studies exploring the relationship between kidney donation and cardiovascular mortality and events are shown in Table 1. In general, studies have shown either a decrease or no increase in cardiovascular mortality [10, 11, 15]. Similarly, studies have not shown an increase in cardiovascular events or risk of developing cardiovascular disease [12, 14, 17, 19]. A recent meta-analysis of four studies [9, 12, 20, 24] published between 2009 and 2016 with a total of 4,274 donors and 53,246 controls, and an average follow-up time ranging from 6 to 15 years, found no evidence of an increase in cardiovascular risk in donors [pooled-adjusted RR 1.11 (95% CI 0.64–1.70)] [23].

These findings are perhaps surprising in the context of the strong relationship between CKD and cardiovascular disease. However, most of these studies are of relatively short duration, meaning that increased long-term cardiovascular risk cannot be excluded. To date, most studies have median follow-up periods of 6–8 years, which may be too much short to detect the adverse cardiovascular effects of donation on disease processes that may take decades to develop. Furthermore, all the same limitations that apply to studies that examine all-cause mortality apply to the studies examining cardiovascular events, especially those that relate to donor selection and control group comparisons, as well as duration of follow-up. There are also other potential explanations that relate to the degree and nature of the reduction in kidney function observed in donors. These are explored below.

Relationship between renal function and all-cause mortality and cardiovascular events

The relationship between CKD and increased all-cause and cardiovascular mortality and events is now well established, with several large observational studies showing an increased risk at estimated glomerular filtration rates (eGFRs) <60 mL/min/1.73 m² [25–28]. However, the really large increases in cardiovascular disease start to occur at an eGFR <45 mL/min/1.73 m². For example, in a study of over 1 million patients followed up for a median of 2.84 years, the age-standardized all-cause mortality per 100 person-years was 0.76, 1.08, 4.76 and 11.36 for the eGFR ranges of <60, 45–59, 30–44 and 15–29 mL/min/1.73 m², respectively [25]. Similarly, the age-standardized rates of cardiovascular events per 100 person-years was 2.11, 3.65, 11.29 and 21.80 for the eGFR ranges of <60, 45–59, 30–44 and 15–29 mL/min/1.73 m², respectively [25]. Furthermore, it should also be noted that patients with only mildly reduced eGFR without proteinuria or an elevated cystatin C have a much attenuated cardiovascular risk [29, 30].

A donor nephrectomy represents the sudden loss of approximately 50% of the nephron mass with a concomitant and proportional initial decrease in GFR. However, the remaining kidney can compensate for a significant percentage, usually somewhere between 20% and 40% of the lost function [31–35]. As a consequence of this ‘adaptive hyperfiltration’ studies have shown that only a minority of donors have a measured GFR consistent with stage 3 CKD. For example, a study using iothalamate clearance to measure GFR in 255 donors at a mean time of 12.2 years post-donation found that only 15% of donors had a measured GFR <60 mL/min/1.73 m² and none had a measured GFR <30 mL/min/1.73 m² [9]. Furthermore, only 11% had microalbuminuria and only 1% had macroalbuminuria [9]. No donor had an eGFR <45 mL/min/1.73 m² and albuminuria [9]. In a prospective study of 68 donors measuring GFR isotopically, one-third had a measured GFR <60 mL/min/1.73 m², whereas half had an eGFR <60 mL/min/1.73 m² 1 year post-donation [36]. Only 7% of this cohort developed microalbuminuria. The cardiovascular risk of
Study/year/country	Donors	Control group	Median follow-up	All-cause mortality	Cardiovascular mortality	CV events	Comments
Munch et al. 2021 Denmark [19]	1325	General population 11 030 Blood donors 260 494	10 years	HR 0.57 (95% CI 0.40–0.80) SIR 1.10 (95% CI 0.75–1.61)	HR 0.68 (95% CI 0.52–0.89) SIR 1.17 (95% CI 0.88–1.55)	HR 0.57 (95% CI 0.40–0.80) SIR 1.10 (95% CI 0.75–1.61)	Coded Registry Data
Chaudry et al. 2020 Denmark [17]	1262	12 620 from general population	7 years	Mortality lower in donors (2.4% versus 3.4%; P < 0.001)	CV disease 6.5% donors, 7.1% controls (P = 0.37)	CV disease 6.5% donors, 7.1% controls (P = 0.37)	Coded Registry data
De La Mata et al. 2020 Australia and New Zealand [16]	3253	National Population Data	6.2 years	SMR 0.33 (95% CI 0.24–0.47) CRS	CRS	CRS	Coded Registry data
Janki et al. 2020 Netherlands [15]	761	1522 propensity score matched from general population studies	8 years	Mortality lower in donors [OR 0.06 (95% CI 0.05–0.08)]	No difference [OR 0.13 (95% CI 0.01–1.24)]	No difference [OR 0.13 (95% CI 0.01–1.24)]	Registry data linked to national death registry
Kim et al. 2020 South Korea [11]	1292	33 805 with no evidence of contraindications to kidney donation at voluntary health examination	Mean 11.4 years	No difference [HR 1.01 (95% CI 0.71–1.44)]	Donor 0.36 and control 0.36 CV deaths per 1000 patient years (P = 0.9)	Donor 0.36 and control 0.36 CV deaths per 1000 patient years (P = 0.9)	Coded registry data
Krishnan et al. 2020 UK [14]	9750	19 071 from Primary Care Database with no contraindications to kidney donation	8 years	Mortality higher in controls [HR 3.45 (95% CI 2.40–4.96)]	No difference [HR 0.66 (95% CI 0.48–0.90)]	CV disease higher in controls [HR 2.43 (95% CI 1.39–4.26)]	Coded registry data
Kiberg et al. 2017 USA [22]	3368	3368 matched from general population cohort study with comorbidity and diagnosis exclusions	7.84 years	No difference [HR 0.90 (95% CI 0.71–1.15)]	No difference (from alternative dataset of Medicare claims)	HR 1.00 (95% CI 0.87–1.20)	Assumes reduced GFR developed as a consequence of donation the same as CKD
Reese et al. 2014 USA [10]		32 621 general population with age, and comorbidity exclusions	15.1 years	Donors increased mortality [HR 1.30 (95% CI 1.11–1.52)]	Donors increased CV mortality 1.40 (95% CI 1.03–1.91)	Death and major cardiovascular event lower in donors [HR 0.66 (95% CI 0.48–0.90)]	Death and major cardiovascular event lower in donors [HR 0.66 (95% CI 0.48–0.90)]
Mjoen 2014 Norway [20]	1901	20 280 matched from the healthiest segment of the general population	6.5 years	No difference in mortality between donors and controls (0.8% versus 1.8%; P > 0.05)	No difference (from alternative dataset of Medicare claims)	HR 1.00 (95% CI 0.87–1.20)	Older donors, > 55 years
Garg et al. 2012 Canada [12]		20 280 matched from the healthiest segment of the general population	6.5 years	No difference in mortality between donors and controls (0.8% versus 1.8%; P > 0.05)	No difference (from alternative dataset of Medicare claims)	HR 1.00 (95% CI 0.87–1.20)	Older donors, > 55 years
Table 1. Continued.

Study/year/country	Donors	Control group	Median follow up	All-cause mortality	Cardiovascular mortality	CV events	Comments
Berger et al. 2011 USA [18]	219 aged >70	219 matched from general population cohort study with no contraindication to donation.	Not given	Donors versus controls [HR 0.39 [95% CI 0.21–0.65]; P < 0.001]			
Segev et al. 2010 USA [13]	80 347	80 347 comorbidity matched from general population cohort study	6.3 years	Mortality lower for donors (1.5%) than controls (2.9%) (log rank < 0.001)			
Ibrahim et al. 2009 USA [9]	3698	3698 from NHANES matched for age, sex, race and BMI.	Mean 12.2 years	No difference			
Garg et al. 2008 Canada [8]	1278	6359 matched randomly selected healthy residents (1:5)	Mean 6.2 years	Composite endpoint of death or CV events not different			
Fehrman-Ekholm et al. 1997 Sweden [7]	430	Expected survival calculated from mortality data in the general Swedish population	Data censored at 20 years	33 deaths compared with an expected 46 (P = 0.04)			

CRS, cumulative relative survival; CV, cardiovascular; SIR, standardized incidence ratio; SMR, standardized mortality ratio.
Table 2. Key studies since 2019 examining the incidence of hypertension and change in blood pressure associated with kidney donation

Reference/year/country	Donors	Controls	Follow-up	Main results	Comments
Munch et al. 2021	1103	1007	Median 10 years	HR 1.11 (95% CI 0.93–1.32) for being diagnosed hypertension, SIR 1.40 (95% CI 1.17–1.66) for starting antihypertensive medication	Hypertension defined as redemption of prescriptions for at least two different antihypertensive drug classes.
Price et al. 2021	50	45 screened as per live donor protocol except for investigations requiring radiation.	Median 10 years	No difference in 24-h ambulatory BP. Mean difference +1.91 (95% CI –2.72 to 6.54)	Prospectively collected data with 24-h ambulatory BP.
Krishnan et al. 2020	9750	19 071 from Primary Care Database with no contraindication to kidney donation	Live donors median 8.4 years Controls median 5.5 years	Controls had a lower risk of developing hypertension at 5 years but not at 10 years [OR 0.66 (95% CI 0.61–0.73) at 5 years] [OR 0.86 (95% CI 0.73–1.00) at 10 years]	Clinically assigned or BP >140/90 mmHg.
Chaudry et al. 2020	1262	12 620 From National Registries (coded diagnoses excluded)	Median 7 years	Donors have a higher 10-year absolute risk of hypertension than controls [1.64 (95% CI 1.44–1.88)]	Hypertension defined as being on two antihypertensive medicines.
Janki et al. 2020	761	1522 propensity score matched from population cohort studies	Median 8 years	New onset of hypertension lower in donors [OR 0.45 (95% CI 0.33–0.62)]	Incidence of hypertension defined as use of antihypertensive medication, systolic BP >140 mmHg or diastolic BP >90 mmHg.
Price et al. 2020	168	138 prospectively recruited with same criteria as potential donors	1 year	Compared with baseline, at 1 year the mean within-group difference in ambulatory systolic BP in donors was 0.1 mmHg (95% CI –1.7 to 1.9) and 0.6 mmHg (95% CI –0.7 to 2.0) in controls. The between-group difference was –0.5 mmHg (95% CI –2.8 to 1.7)	Multicentre, prospectively collected data with 24-h ambulatory BP.
Haugen et al. 2020	1029	16 084 from general population studies	Mean 11.3 years	New onset of hypertension higher in donors [OR 1.25 (95% CI 1.12–1.39)]	Hypertension defined as BP >140 mmHg systolic and/or 90 mmHg diastolic, use of antihypertensive medication or clinical diagnosis.
Kasiske et al. 2020	203	205 matched for age and sex evaluated as if potential kidney donors.	9 years	No difference in clinic or ambulatory BP or in incidence of hypertension. Proportion of nocturnal dipping not different	Multicentre prospective study using 24-h BP monitoring.
Holscher et al. 2019	1295	8233 propensity score matched from cohort non-donor studies	6 years	Higher risk of developing hypertension in donors [adjusted HR 1.19 (95% CI 1.01–1.41)]	Self-reported incidence of hypertension.

BP, blood pressure; OR, odds ratio; SIR, standardized incidence ratios.
the large proportion of donors who have an eGFR in the range of CKD stage 2 remains uncertain and again requires further long-term study, particularly in view of data suggesting abnormalities in cardiac function at this level of eGFR [42, 43].

In the general population, decreases in eGFR over time are also associated with an increase in cardiovascular risk [44, 45]. Also of note is that patients with stable eGFR on repeated measurements also have a markedly attenuated cardiovascular risk [46–48]. In kidney donors, however, the usual decline over time in GFR does not appear to happen [37, 40, 41, 49]. For example, in a prospective study of 203 donors and 205 carefully selected controls, donors did not experience any further decline in iothalamate-measured GFR from 6 months to 9 years post-donation, whereas the GFR in controls declined by an average of 1.26 mL/min/1.73 m² per year [40]. Albuminuria did not increase in donors over this 9-year period either [40]. Similar findings were also observed in a 5-year prospective study of kidney donors using isotopic GFR to measure renal function. In 48 donors studied 5 years post-donation, there had been no further decline in either eGFR or isotonically measured eGFR in donors, whereas the 45 healthy controls had an annual mean reduction in eGFR of 1 ± 2 mL/min/1.73 m² [37].

Although there are many similarities between kidney donors and patients with CKD, there are also important differences (Figure 1). While most will have a sub-normal eGFR and a structural abnormality, it is a subject of contention as to whether kidney donors should or should not be classified, as having CKD with all the implied attendant increases risks to health. The mechanisms underlying the ‘adaptive hyperfiltration’ that occur in the remaining kidney are complex and influenced by several factors including age, sex, race and body size [32, 50]. Furthermore, although there is a decrease in GFR associated with ageing, if and when this process switches from being a physiological one to a pathological one also remains unclear [51–54]. Similarly, it is unclear whether the microalbuminuria observed in a minority of donors has any clinical relevance and should be used to classify donors as having CKD, irrespective of GFR [50]. Essentially, donors develop a reduced GFR and microalbuminuria through a process that does not involve the remaining kidney. The prognostic relevance of these changes, as opposed to patients with CKD acquired through different disease processes, remains to be determined.

In the general population, every 10 mmHg increase in systolic and 5 mmHg increase in diastolic blood pressure is associated with a 1.5-fold increase in death from ischaemic heart disease and stroke [55]. It is well established that blood pressure increases with age [56] and that >80% of patients with CKD have hypertension [57]. Kidney donation could therefore potentially increase the risk of hypertension over time possibly through changes in physiology such as kidney hyperfiltration, changes in vascular tone and activation of the renin–angiotensin–aldosterone system [58]. The data on blood pressure and the development of hypertension in kidney donors are still surprisingly unclear and are subject to profound ‘surveillance’ bias as a result of more contacts with medical services post-donation and more frequent blood pressure measurements [8, 58].

Multiple studies have been published examining the incidence and prevalence of hypertension post-kidney donation. Most are generally small and vary greatly in methodological rigour, blood pressure measurements, duration of follow-up, selection of control group, information presented on pre-donation characteristics and the conclusions they present on whether donation increases blood pressure and future risk of developing hypertension. A meta-analysis and systematic review published in 2006 found 48 studies from 28 countries with a total of 5145 donors followed up for an average of 7 years post-donation [59]. On average, 31% of surviving donors were lost to follow-up, potentially biasing results in either direction. Ten of these studies had healthy volunteers as control subjects. In nine of these studies, the control group appeared to be assembled at the time of donor follow-up evaluation, with only one study following up control participants prospectively. Studies with >5 years of follow-up (range 6–13 years) were reviewed to determine whether increases in blood pressure post-donation were above what could be attributable to normal ageing. For systolic blood pressure, there were four [60–63] studies (157 donors, 128 controls) and for diastolic blood pressure there were five [60–64] studies (196 donors, 161 controls). At approximately 10 years after donation, donors had a 6 mmHg (95% CI 2–11 mmHg) and 5 mmHg (95% CI 1–7 mmHg) increase in systolic and diastolic blood pressure, respectively, compared with controls. Six studies [61, 62, 65–68] examined the risk of developing hypertension

The prognostic relevance of these changes, as opposed to patients with CKD acquired through different disease processes, remains to be determined.
with an average follow-up period ranging from 2 to 13 years in 249 donors and 161 controls. Only one study [66] reported an increased risk of hypertension. There was marked statistical heterogeneity between the studies, so they were not pooled. However, these kinds of studies led to the widespread adoption of the ‘fact’ that kidney donation was associated with higher blood pressures and potentially higher rates of hypertension.

However, a subsequent meta-analysis and systematic review published in 2018 [23] examined observational studies of live kidney donors with a minimum of 1-year follow-up post-donation that provided a comparison group of control subjects that had not donated a kidney. Six studies, published between 2007 and 2016, were included in the meta-analysis for systolic and diastolic blood pressure [9, 36, 69–72] with a total of 712 donors and 830 controls. There was no difference in systolic blood pressure between donors and controls, with a standardized mean difference of 0.14 (95% CI −0.10 to 0.40) mmHg. Donors have a slightly higher diastolic blood pressure, with a standardized mean difference of 0.17 (95% CI 0.03–0.34) mmHg. Four studies examined the incidence of hypertension with a total of 1726 donors and 6949 controls and a follow-up period of 6 to 10 years [8, 9, 24, 71]. There was no increased risk observed for donors developing hypertension with a pooled adjusted relative risk of 1.06 (95% CI 0.46–2.34). The authors of this meta-analysis suggested that the different result they reported compared with the earlier systematic review [59] could be explained by better selection and matching of donor and control groups in these more recent and better quality studies [23].

Several further studies have been published since the publication of this second meta-analysis in 2018. Key studies published after 2018 are summarized in Table 2 and report varying results. Some have reported a higher incidence of hypertension compared with controls [17, 39, 41]. Munch et al. [19] reported no difference in the incidence of hypertension between donors selected from the general population but a higher incidence when compared with a control group selected from blood donors, once again highlighting the importance of donor group selection in these type of studies. Krishan et al. [14] reported that donors had a higher risk of developing hypertension than controls at 5 years but not at 10 years. Janki et al. [15] in a study from the Netherlands on 761 donors and 1522 propensity score-matched controls from general population cohort studies and a median follow-up period of 8 years found a lower incidence of hypertension in donors. Three studies are perhaps worthy of special mention [37, 38, 40]. All three of these studies recruited controls that had passed the selection criteria for donation except for those that required exposure to radiation. They also performed 24-h ambulatory blood pressure measurements providing a gold standard for the measurement of blood pressure and the diagnosis of hypertension. After 1 [38], 5 [37] and 9 [40] years of follow-up, none of these studies found any difference in 24-h systolic or diastolic blood pressure, nor in the incidence of hypertension.

Given the close interrelationship between CKD and blood pressure, it is perhaps surprising that a reduction in GFR post-nephrectomy is not more clearly observed in donors. However, as already discussed earlier, it is still not clear that a reduction in GFR that occurs through a non-pathological process is in fact really CKD. Blood pressure rises in CKD are thought to be caused by a number of processes including sympathetic nervous system overactivity, increased intracallear calcium, sodium retention, reversal of hypoxia-driven vasodilatation and activation of the renin–angiotensin–aldosterone system [73]. It is not established whether these processes occur as a consequence of kidney donation though at least one study showed no evidence of renin–angiotensin system activation in donors [36]. Interestingly, patients with renal cancer treated by partial nephrectomy have higher blood pressures, an increased risk of cardiovascular disease and no evidence of increased survival compared with those treated by radical nephrectomy in some, but not all, observational studies, and in the only randomized controlled trial to date [74–78]. This was despite patients treated with partial nephrectomy having higher GFR postoperatively, suggesting that the presence of damaged renal parenchyma may be driving the hypertension rather than the reduction in GFR per se.

For now, the available evidence suggests that any potential increase in blood pressure after kidney donation is likely to be small. High-quality, prospective long-term studies of blood pressure in kidney donors are expensive and difficult to perform. There are significant obstacles with respect to finding appropriate controls and the requirement for periods of observation of decades. Furthermore, live donor transplants are often carried out in large hospital centres involving long travelling times. In Korea, for example, just 11% of patients were followed up despite over 80% of kidney transplantation in that country involving live donors [79]. Nevertheless, these barriers need to be overcome so that potential donors have the information they require.

ARTERIAL STIFFNESS

A highly distensible aorta and arterial system buffer the oscillatory changes in blood pressure that result from intermittent ventricular ejection, ensuring that most tissues receive near steady flow with no exposure to peak systolic pressures [80, 81]. Aortic and large arterial stiffness increases with age and exposure to risk factors including high blood pressure, diabetes and CKD [80–84]. While multiple studies have shown an association between decreasing renal function, even within the normal range, and increased arterial stiffness [82–85], there still remains some controversy about whether arterial stiffness is increased in CKD independently of blood pressure and other comorbidities [86, 87].

The speed at which the pressure wave travels down an artery is inversely related to its distensibility, that is, the stiffer the vessel the faster the pulse wave velocity (PWV) [80, 81]. Carotid-femoral or aortic PWV is currently considered the ‘gold-standard’ measurement of arterial stiffness [88, 89]. Increased aortic PWV has been shown to be associated with all-cause and cardiovascular mortality in the general population and elderly, diabetic and hypertensive patients, as well as in patients with CKD, including those on dialysis and kidney transplant recipients [90–100].

In a cross-sectional study, aortic PWV was increased in 101 donors (12.0 ± 2.0 m/s) compared with 134 healthy volunteers (8.5 ± 1.5 m/s; P < 0.001) [101]. In an uncontrolled study of 45 donors, there was no difference in aortic PWV 12 months after donation (7.2 ± 1.3 m/s versus 6.8 ± 1.1 m/s; P = 0.74) [102]. Similar results were observed in another uncontrolled study of 21 donors at 12 months [103]. In a prospective controlled study, aortic distensibility, measured using magnetic resonance imaging, was slightly reduced in 45 donors compared with 40 controls [difference in change between groups −0.57 (95% CI −1.09 to −0.06 × 10−3 mmHg−1); P = 0.03] at 12 months post-nephrectomy [36]. However, in a subgroup of this cohort with 42 donors and 42 controls that reattended 5 years after kidney donation, aortic PWV had increased in both groups over time, but there were no detectable differences between groups at 5 years [−0.24 (95% CI −0.69 to 0.21 m/s)] [37]. These 5-year results are consistent with the findings of an American study of 205 donors and 203 controls followed up for 9 years. In a subset of 100 donors and 113
controls, there was no difference in PWV between groups over this period [PWV at 9 years: donors 7.69 (95% CI 7.28–8.10 m/s); controls 7.90 (95% CI 7.44–8.36 m/s)] [40]. It has been estimated that the required sample size to adequately power a study to determine a 0.4 m/s change in PWV is >350 patients per group [104]. There are no studies of this size. It is therefore perhaps not unsurprising that the literature is inconsistent. However, recent work has provided some information. The EARNEST (Effect of A Reduction in glomerular filtration rate after NEphrectomy on arterial STiffness and central hemodynamics) study had a prospective, UK, multicentre, controlled, longitudinal design [38, 104]. It had the ambitious aim of recruiting 400 donors and controls, but was eventually terminated with 469 subject recruited and 306 (168 donors and 138 controls) followed up at 12 months. Overall, the study provided no evidence of prognostically important changes in arterial stiffness at 12 months after kidney donation but did suggest a need for further longer term detailed studies. These are expensive and difficult to perform so that further data on arterial stiffness in kidney donors may be slow to accumulate [105, 106].

In summary, the effects of kidney donation on arterial function are still uncertain and at an early stage of investigation. The few data available are limited in size and/or duration of follow up but have shown no clear signal of major adverse effects of kidney donation on arterial stiffness although larger and longer-term studies are required.

URAEMIC CARDIOMYOPATHY

The term uraemic cardiomyopathy was coined in the 1980s with reports of frequent abnormalities in cardiac function and structure in patients with CKD/ESKD: namely increased left ventricular (LV) mass and left ventricular hypertrophy (LVH); diastolic and systolic dysfunction; together with, often extreme myocardial fibrosis on histology [107–114]. However, LV hypertrophy had been noted in conjunction with kidney disease as early as 1827 by Richard Bright at Guys Hospital in London [115]. The aetiology of uraemic cardiomyopathy is likely to be multifactorial and include pressure and volume overload, anaemia, increased oxidative stress and activation of the renin–angiotensin–aldosterone system, as well as elevated concentrations of cardiotoxic steroids, uric acid, parathyroid hormone, fibroblast growth factor-23 (FGF-23) and other uraemic toxins [112, 113, 116, 117]. Many of these factors including uric acid, parathyroid hormone and FGF-23 increase post-kidney donation [36, 40, 118]. The severity of uraemic cardiomyopathy as measured by LV mass is a powerful predictor of cardiovascular mortality [119–131]. Uraemic cardiomyopathy probably not only is present in almost all patients with ESKD on dialysis, but also appears to present to a lesser degree in patients with milder forms of CKD [109–111]. Studies of subjects with stage 2 and 3 CKD have reported a high frequency of cardiac abnormalities consistent with uraemic cardiomyopathy [43, 111, 116].

As uraemic cardiomyopathy appears to begin early in patients with CKD, it might be expected that some features might be present in kidney donors, particularly those with lower post-donation renal function. Until recently, data were restricted to a few small, cross-sectional or uncontrolled studies that reported conflicting results after kidney donation. A small cross-sectional echocardiographic and cardiac magnetic resonance imaging (CMR) study of 15 Italian donors compared with age- and sex-matched healthy controls from the USA at a median of 8.4 years (minimum of 5 years) from donation found that most measures of LV geometry and function were not different in donors and controls, but donors did exhibit abnormalities of LV apical rotation and torsion [132]. In an uncontrolled study of 23 kidney donors using CMR, LV mass increased at 12 months without change in office blood pressure [133]. By contrast, a two-dimensional speckle tracking echocardiographic study of 30 kidney donors at baseline and 12 months after donation found no significant differences in left or right ventricular function [134].

A UK prospective, controlled study of myocardial structure and function in kidney donors has provided 1- and 5-year data. In 68 donors and 56 equally healthy controls (many of whom were worked up for donation but did not donate), with a blinded endpoint analysis at 12 months, there was an increase in LV mass measured by CMR in donors but not controls [36]. Global circumferential strain was also decreased, indicating early changes in systolic dysfunction. There was no change in blood pressure measured by 24-h ambulatory monitoring and no association between change in LV mass and changes in blood pressure. However, at 5 years post-donation, 50 donors and 45 controls from the original cohort were restudied using CMR imaging [37]. In this subgroup, the increase in LV mass at 1-year post-donation was still observed. However, the change in LV mass in kidney donors at 5 years was not different from healthy controls [0.40 (95% CI 4.68–4.49 g)]. There were no significant differences in the changes in LV or left atrial volumes, LV geometry, global longitudinal strain or global circumferential strain at 5 years [37]. Furthermore, at 5 years, there were no differences between donors and controls in surrogate CMR markers of LV fibrosis (T1 mapping and late gadolinium enhancement) [37]. There was an increase in high-sensitivity C-reactive protein, high-sensitivity troponin T and vitamin D over time in both donors and controls. At 12 months, the prevalence of detectable troponin T was greater in donors than controls; at 5 years, the prevalence had increased in both groups, reducing the between-group difference [37].

There are several potential explanations for the different findings at 1 year and 5 years in kidney donors compared with controls. Effects due to random chance given the relatively low numbers of participants is certainly one possibility. Another possibility is the narrowing in the difference in renal function between donors and controls 1–5 years post-donation. Whereas in donors the mean GFR increased by 2 ml/min/1.73 m2 over this period, the GFR in controls declined by 1 ml/min/1.73 m2 per year. Given the strong association between GFR and LV mass in observational studies [125, 131, 135], a reduced difference in GFR between donors and controls would be expected to be associated with a reduced difference in LV mass. Furthermore, other factors associated with increased LV mass such as anaemia, increased erythropoietin and C-reactive protein levels are seldom present after 12 months in donors [136].

Coronary microvascular dysfunction, as measured by coronary flow reserve velocity, is highly prevalent in patients with CKD and is associated with an adverse prognosis [137]. It is also thought to be a contributor to the development of uraemic cardiomyopathy [137]. In a small cross-sectional study of 23 donors with a median of 30 months post-donation and 25 closely matched controls, donors were found to have significantly lower coronary flow reserve velocity than controls [138]. These findings need to be replicated in larger, prospective, longitudinal studies.

In summary, there are few studies investigating cardiac structural and functional change after kidney donation. The studies that do exist have small sample sizes and have provided conflicting results. Current evidence suggests that although kidney donation may result in small changes in cardiac structure and function within 1 year, these do not appear to be sustained.
in the longer term. Well-controlled and much longer follow-up studies with serial cardiac investigations are required.

CONCLUSION

Ronald never had any regrets about donating a kidney to his brother. Then, as now, live donor kidney donation offers patients with ESKD the best chance of long-term, dialysis-free survival [58, 139]. Donors get no direct reward for their efforts. However, well before donation, potential donors need, and indeed deserve, to have good quality information on the future risks to their overall health, quality of life and potential impact on life expectancy. Given the close relationship between cardiovascular disease and CKD, information on future risks of cardiovascular disease and hypertension are particularly relevant. This is especially true given the ongoing relaxation of selection criteria, as a direct consequence of the increasing demand for kidney transplants, to include donors with metabolic syndrome, diabetes and hypertension [140–143]. As this review highlights, the evidence required is still sadly lacking. It is therefore perhaps not surprising that there is a large variation in how often (from always to never) different long-term risks are discussed with potential donors [144].

Long-term (at the very least 20 years) prospective studies and registries, with appropriate healthy control groups, with adequate representation of different racial groups and comorbidities, are required so that donation-attributable risks can be calculated as required [140]. It is perhaps a comforting thought that there is increasing evidence that altruism and volunteering is associated with longer life expectancy and reduced health-care use [145–147]. However, given that their actions benefit not only the recipient but also the much wider society as a whole, live donors deserve much more than just wishful thinking. Considering the current uncertainty over the risks involved with kidney donation, transplanting centres should develop a long-term relationship with donors allowing close follow-up of all factors related to cardiovascular risk. For the moment, it seems reasonable to provide counselling, monitoring and treatment of modifiable cardiovascular risk factors, and reassurance that although the evidence base is imperfect, no study has provided robust evidence of increased risk of cardiovascular death or disease.

CONFLICT OF INTEREST STATEMENT

None declared.

REFERENCES

1. Merrill JP, Murray JE, Harrison JH et al. Successful homotransplantation of the human kidney between identical twins. J Am Med Assoc 1956; 160: 277–282
2. Kasiske BL, Asrani SK, Dew MA et al. The living donor collective: a scientific registry for living donors. Am J Transplant 2017; 17: 3040–3048
3. Woodruff MF. Ethical problems in organ transplantation. Br Med J 1964; 1: 1457–1460
4. Kreis H. Why living related donors should not be used whenever possible. Transplant Proc 1985; 17: 1510–1514
5. Starzl TE. Living donors: con. Transplant Proc 1987; 19: 174–175
6. Spital A. Ethical and policy issues in altruistic living and cadaveric organ donation. Clin Transplant 1997; 11: 77–87
7. Fehman-Ekholm I, Elander CG, Stenbeck M et al. Kidney donors live longer. Transplantation 1997; 64: 976–978
8. Garg AX, Prasad GV, Thiessen-Philbrook HR et al. Cardiovascular disease and hypertension risk in living kidney donors: an analysis of health administrative data in Ontario, Canada. Transplantation 2008; 86: 399–406
9. Ibrahim HN, Foley R, Tan L et al. Long-term consequences of kidney donation. N Engl J Med 2009; 360: 459–469
10. Reese PP, Bloom RD, Feldman HI et al. Mortality and cardiovascular disease among older live kidney donors. Am J Transplant 2014; 14: 1853–1861
11. Kim Y, Yu MY, Yoo KD et al. Long-term mortality risks among living kidney donors in Korea. Am J Kidney Dis 2020; 75: 919–925
12. Garg AX, Meirmambayeva A, Huang A et al. Cardiovascular disease in kidney donors: matched cohort study. BMJ 2012; 344: e1203
13. Segev DL, Muzzaale AD, Caffo BS et al. Perioperative mortality and long-term survival following live kidney donation. JAMA 2010; 303: 959–966
14. Krishnan N, Mumford L, Lipkin G et al. Comparison of medium-term outcomes of living kidney donors with longitudinal healthy control in the United Kingdom. Transplantation 2020; 104: e65–e74
15. Janki S, Dehghan A, van de Wetering J et al. Long-term prognosis after kidney donation: a propensity score matched comparison of living donors and non-donors from two population cohorts. Eur J Epidemiol 2020; 35: 699–707
16. De La Mata NL, Clayton PA, Kelly PJ et al. Survival in living kidney donors: an Australian and New Zealand cohort study using data linkage. Transplant Direct 2020; 6: e533
17. Chaudry M, Cislason GH, Fosbol EL et al. Hypertension, cardiovascular disease and cause of death in Danish living kidney donors: matched cohort study. BMJ Open 2020; 10: e041122
18. Berger JC, Muzzaale AD, James N et al. Living kidney donors ages 70 and older: recipient and donor outcomes. Clin J Am Soc Nephrol 2011; 6: 2887–2893
19. Munch P, Christiansen CF, Birn H et al. Is the risk of cardiovascular disease increased in living kidney donors? A Danish population-based cohort study. Am J Transplant 2021; 21: 1857–1865
20. Mjoen G, Hallan S, Hartmann A et al. Long-term risks for kidney donors. Kidney Int 2014; 86: 162–167
21. Kaplan B, Ilahe A. Quantifying risk of kidney donation: the truth is not out there (yet). Am J Transplant 2014; 14: 1715–1716
22. Kilberd BA, Tennankore KK. Lifetime risks of kidney donation: a medical decision analysis. BMJ Open 2017; 7: e016490
23. O’Keeffe LM, Ramond A, Oliver-Williams C et al. Mid- and long-term health risks in living kidney donors: a systematic review and meta-analysis. Ann Intern Med 2018; 168: 276–284
24. Rizvi SA, Zafar MN, Jawad F et al. Long-term safety of living kidney donation in an emerging economy. Transplantation 2016; 100: 1294–1293
25. Go AS, Chertow GM, Fan D et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004; 351: 1296–1305
26. van der Velde M, Matsushita K, Coresh J et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int 2011; 79: 1341–1352
27. Matsushita K, van der Velde M, Astor BC et al. Association of estimated glomerular filtration rate and albuminuria with
all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010; 375: 2073–2081

28. Matsushita K, Coresh J, Sang Y et al. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol 2015; 3: 514–525

29. Brantsma AH, Bakker SJ, Hillege HL et al. Cardiovascular and renal outcome in subjects with K/DQDI stage 1-3 chronic kidney disease: the importance of urinary albumin excretion. Nephrol Dial Transplant 2008; 23: 3851–3858

30. Peralta CA, Shlipak MG, Judd S et al. Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality. JAMA 2011; 305: 1545–1552

31. Boner G, Shelp WD, Newton M et al. Factors influencing the increase in glomerular filtration rate in the remaining kidney of transplant donors. Am J Med 1973: 55: 169–174

32. Edgren J, Laasonen L, Kock B et al. Kidney function and compensatory growth of the kidney in living kidney donors. scand J Urol Nephrol 1976; 10: 134–136

33. Velosa JA, Opprd KD, Schroder DB. Effect of age, sex, and glomerular filtration rate on renal function outcome of living kidney donors. Transplantation 1995; 60: 1618–1621

34. Saxena AB, Myers BD, Derby G et al. Adaptive hyperfiltration in the aging kidney after contralateral nephrectomy. Am J Physiol Renal Physiol 2006; 291: F629–F634

35. Poggio ED, Braun WE, Davis C. The science of stewardship: due diligence for kidney donors and kidney function in living kidney donation—evaluation, determinants, and implications for outcomes. Clin J Am Soc Nephrol 2009; 4: 1677–1684

36. Moody WE, Ferro CJ, Edwards NC et al. Cardiovascular effects of unilateral nephrectomy in living kidney donors. Hypertension 2016; 67: 368–377

37. Price AM, Moody WE, Stoll VM et al. Cardiovascular effects of unilateral nephrectomy in living kidney donors at 5 years. Hypertension 2021; 77: 1273–1284

38. Price AM, Greenhall GH, Moody WE et al. Changes in blood pressure and arterial hemodynamics following living kidney donation. Clin J Am Soc Nephrol 2020; 15: 1330–1339

39. Haugen AJ, Hallan S, Langberg NE et al. Increased long-term risk for hypertension in kidney donors—a retrospective cohort study. Transpl Int 2020; 33: 536–543

40. Kasiske BL, Anderson-Haag TL, Duprez DA et al. A prospective controlled study of metabolic and physiologic effects of kidney donation suggests that donors retain stable kidney function over the first nine years. Kidney Int 2020; 98: 168–175

41. Holscher CM, Haugen CE, Jackson KR et al. Self-reported incident hypertension and long-term kidney function in living kidney donors compared with healthy nondonors. Clin J Am Soc Nephrol 2019; 14: 1493–1499

42. Edwards NC, Ferro CJ, Townend JN et al. Aortic distensibility and arterial-ventricular coupling in early chronic kidney disease: a pattern resembling heart failure with preserved ejection fraction. Heart 2008; 94: 1038–1043

43. Edwards NC, Hirth A, Ferro CJ et al. Subclinical abnormalities of left ventricular myocardial deformation in early-stage chronic kidney disease: the precursor of uremic cardiomyopathy? J Am Soc Echocardiogr 2008; 21: 1293–1298

44. Turin TC, Coresh J, Tonelli M et al. One-year change in kidney function is associated with an increased mortality risk. Am J Nephrol 2012; 36: 41–49

45. Matsushita K, Selvin E, Bash LD et al. Change in estimated GFR associates with coronary heart disease and mortality. J Am Soc Nephrol 2009; 20: 2617–2624

46. O’Hare AM, Bertenthal D, Covinsky KE et al. Mortality risk stratification in chronic kidney disease: one size for all ages? J Am Soc Nephrol 2006; 17: 846–853

47. Bauer C, Melamed ML, Hostetter TH. Staging of chronic kidney disease: time for a course correction. J Am Soc Nephrol 2008; 19: 844–846

48. Glassock RJ, Winears C. Screening for CKD with eGFR: doubts and dangers. Clin J Am Soc Nephrol 2008; 3: 1563–1568

49. Lam NN, Lloyd A, Lentine KL et al. Changes in kidney function following donor nephrectomy. Kidney Int 2020; 98: 176–186

50. Srinivas TR, Poggio ED. Do living kidney donors have CKD? Adv Chronic Kidney Dis 2012; 19: 229–236

51. Davies DF, Shock NW. Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. J Clin Invest 1950; 29: 496–507

52. Pehrman-Ekholm I, Skeppholm L. Renal function in the elderly (~70 years old) measured by means of iohexol clearance, serum creatinine, serum urea and estimated clearance. Scand J Urol Nephrol 2004; 38: 73–77

53. Zhou XJ, Rakheja D, Yu X et al. The aging kidney. Kidney Int 2008; 74: 710–720

54. Glassock RJ, Winears C. Ageing and the glomerular filtration rate: truths and consequences. Trans Am Clin Climatol Assoc 2009; 120: 419–428

55. Lewington S, Clarke R, Qizilbash N et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–1913

56. Vasan RS, Beiser A, Seshadri S et al. Residual lifetime risk for developing hypertension in middle-aged women and men: The Framingham Heart Study. JAMA 2002; 287: 1003–1010

57. Jager KJ, Kovesdy C, Langham R et al. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Nephrol Dial Transplant 2019; 34: 1803–1805

58. Lentine KL, Segev DL. Understanding and communicating medical risks for living kidney donors: a matter of perspective. J Am Soc Nephrol 2017; 28: 12–24

59. Boudville N, Prasad GV, Knoll G et al. Meta-analysis: risk for hypertension in living kidney donors. Ann Intern Med 2006; 145: 185–196

60. Talseth T, Fauchald P, Skrede S et al. Long-term blood pressure and renal function in kidney donors. Kidney Int 1986; 29: 1072–1076

61. Williams SL, Oler J, Jorkasky DK. Long-term renal function in kidney donors: a comparison of donors and their siblings. Ann Intern Med 1986; 105: 1–8

62. Najarian JS, Chavers BM, McHugh LE et al. 20 years or more of follow-up of living kidney donors. Lancet 1992; 340: 807–810

63. Undurraga A, Roessler E, Arcos O et al. Long-term follow-up of renal donors. Transplant Proc 1998; 30: 2283–2285

64. O’Donnell D, Seggie J, Levinson I et al. Renal function after nephrectomy for donor organs. S Afr Med J 1986; 69: 177–179

65. Miller RJ, Suthanthiran M, Riggo RR et al. Impact of renal donation. Long-term clinical and biochemical follow-up of living donors in a single center. Am J Med 1985; 79: 201–208
Risk for subsequent hypertension and cardiovascular disease after living kidney donation | 655

propensity and markers of vascular stiffness. Transpl Int 2015; 28: 1074–1080

104. Moody WE, Tomlinson LA, Ferro CJ et al. Effect of A Reduction in glomerular filtration rate after Nephrectomy on arterial Stiffness and central hemodynamics: rationale and design of the EARNEST study. Am Heart J 2014; 167: 141–149 e142

105. Peixoto AJ. Arterial mechanics following living kidney donation. Clin J Am Soc Nephrol 2015; 10: 1237–1239

106. Dahle DO, Mjoen G. The salutary blood pressure of a solitary kidney. Am J Hypertens 2020; 33: 218–219

107. Mall G, Huther W, Schneider J et al. Diffuse intermyocardiac fibrosis in uremic patients. Nephrol Dial Transplant 1990; 5: 39–44

108. Aoki J, Ikari Y, Nakajima H et al. Clinical and pathologic characteristics of diluted cardiomyopathy in hemodialysis patients. Kidney Int 2005; 67: 333–340

109. Mark FB, Johnston N, Groening BA et al. Redefinition of uremic cardiomyopathy by contrast-enhanced cardiac magnetic resonance imaging. Kidney Int 2006; 69: 1839–1845

110. Rutherford E, Talle MA, Mangion K et al. Defining myocardial tissue abnormalities in end-stage renal failure with cardiac magnetic resonance imaging using native T1 mapping. Kidney Int 2016; 90: 845–852

111. Hayer MK, Price AM, Liu B et al. Diffuse myocardial interstitial fibrosis and dysfunction in early chronic kidney disease. Am J Cardiol 2018; 121: 656–660

112. Wang X, Shapiro JI. Evolving concepts in the pathogenesis of uremic cardiomyopathy. Nat Rev Nephrol 2019; 15: 159–175

113. Law JP, Price AM, Pickup L et al. Clinical potential of targeting fibroblast growth factor-23 and alphaKlotho in the treatment of uremic cardiomyopathy. J Am Heart Assoc 2020; 9: e016041

114. Agarwal R, Song RJ, Vasan RS et al. Left ventricular mass and incident chronic kidney disease. Hypertension 2020; 75: 702–706

115. Ferro CJ, Steeds RP, Townend JN. Hypertension, arterial haemodynamics and left ventricular disease: historical observations. QJM 2012; 105: 709–716

116. Edwards NC, Moody WE, Chue CD et al. Defining the natural history of uremic cardiomyopathy in chronic kidney disease: the role of cardiovascular magnetic resonance. JACC Cardiovasc Imaging 2014; 7: 703–714

117. Pickup LC, Law JP, Radhakrishnan A et al. Changes in left ventricular structure and function associated with renal transplantation: a systematic review and meta-analysis. ESC Heart Fail 2021; 8: 2045–2057

118. Hiemstra TF, Smith JC, Lim K et al. Effect of kidney donation on bone mineral metabolism. PLoS One 2020; 15: e0235082

119. Levy D, Garrison RJ, Savage DD et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990; 322: 1561–1566

120. Foley RN, Parfrey PS, Harnett JD et al. The prognostic importance of left ventricular geometry in uremic cardiomyopathy. J Am Soc Nephrol 1995; 5: 2024–2031

121. Parfrey PS, Foley RN, Harnett JD et al. Outcome and risk factors for left ventricular disorders in chronic uremia. Nephrol Dial Transplant 1996; 11: 1277–1285

122. Schillaci G, Verdechcia P, Porcellati C et al. Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertension 2000; 35: 580–586

123. London GM, Pannier B, Guerin AP et al. Alterations of left ventricular hypertrophy in and survival of patients receiving hemodialysis: follow-up of an interventional study. J Am Soc Nephrol 2001; 12: 2759–2767

124. Zoccali C, Benedetto FA, Mallamaci F et al. Prognostic impact of the indexation of left ventricular mass in patients undergoing dialysis. J Am Soc Nephrol 2001; 12: 2768–2774

125. Verdecchia P, Angeli F, Borgioni C et al. Changes in cardiovascular risk by reduction of left ventricular mass in hypertension: a meta-analysis. Am J Hypertens 2003; 16: 895–899

126. Zoccali C, Benedetto FA, Mallamaci F et al. Left ventricular mass monitoring in the follow-up of dialysis patients: prognostic value of left ventricular hypertrophy progression. Kidney Int 2004; 65: 1492–1498

127. Zoccali C, Benedetto FA, Mallamaci F et al. Prognostic value of echocardiographic indicators of left ventricular systolic function in asymptomatic dialysis patients. J Am Soc Nephrol 2004; 15: 1029–1037

128. Boner G, Cooper ME, McCarron K et al. Adverse effects of left ventricular hypertrophy in the reduction of endpoints in NIDDM with the angiotensin II antagonist losartan (RENAAL) study. Diabetologia 2005; 48: 1980–1987

129. Weiner DE, Tighiouart H, Vlagopoulos PT et al. Effects of anemia and left ventricular hypertrophy on cardiovascular disease in patients with chronic kidney disease. J Am Soc Nephrol 2005; 16: 1803–1810

130. Foley RN, Curtis BM, Randell EW et al. Left ventricular hypertrophy in new hemodialysis patients without symptomatic cardiac disease. Clin J Am Soc Nephrol 2010; 5: 805–813

131. Bouzas-Mosquera A, Broullon FJ, Alvarez-Garcia N et al. Association of left ventricular mass with all-cause mortality, myocardial infarction and stroke. PLoS One 2012; 7: e45570

132. Bellavia D, Cataliotti A, Clemenza F et al. Long-term structural and functional myocardial adaptations in healthy living kidney donors: a pilot study. PLoS One 2015; 10: e0142103

133. Altman U, Boger CA, Farkas S et al. Effects of reduced kidney function because of living kidney donation on left ventricular mass. Hypertension 2017; 69: 297–303

134. Hiewing B, Dreger H, Knebel F et al. Midterm echocardiographic follow-up of cardiac function after living kidney donation. Clin Nephrol 2015; 83: 253–261

135. Chen SC, Chang JM, Liu WC et al. Stepwise increases in left ventricular mass index and decreases in left ventricular ejection fraction correspond with the stages of chronic kidney disease in diabetes patients. Exp Diabetes Res 2012; 2012: 789325

136. Hampel DJ, Pratschke J, May G et al. Living kidney donation: anemia and inflammation in the early postoperative period. Transplant Proc 2006; 38: 661–663

137. Radhakrishnan A, Pickup LC, Price AM et al. Coronary microvascular dysfunction: a key step in the development of uremic cardiomyopathy? Heart 2019; 105: 1302–1309

138. Radhakrishnan A, Price AM, Pickup LC et al. Coronary flow velocity reserve and inflammatory markers in living kidney donors. Int J Cardiol 2020; 320: 141–147

139. LaPointe Rudow D, Hays R, Baliga P et al. Consensus conference on best practices in live kidney donation: recommendations to optimize education, access, and care. Am J Transplant 2015; 15: 914–922
140. Niemi M, Mandelbrot DA. The outcomes of living kidney donation from medically complex donors: implications for the donor and the recipient. Curr Transplant Rep 2014; 1: 1–9
141. Rastogi A, Yuan S, Arman F et al. Blood pressure and living kidney donors: a clinical perspective. Transplant Direct 2019; 5: e488
142. Martin-Alemany G, Perez-Navarro M, Rosas-Herrera A et al. Changes in cardiometabolic risk factors and metabolic syndrome over time in living kidney donors: a retrospective cohort study. Nutr Hosp 2021; 38: 1002–1008
143. Yoshinaga K, Araki M, Wada K et al. Feasible kidney donation with living marginal donors, including diabetes mellitus. Immun Inflamm Dis 2021; 9: 1061–1068
144. Mjoen G, Maggiore U, Kessaris N et al. Long-term risks after kidney donation: how do we inform potential donors? A survey from DESCARTES and EKITA transplantation working groups. Nephrol Dial Transplant 2021; 36: 1742–1753
145. Konrath S, Fuhrel-Forbis A, Lou A et al. Motives for volunteering are associated with mortality risk in older adults. Health Psychol 2012; 31: 87–96
146. Kim ES, Konrath SH. Volunteering is prospectively associated with health care use among older adults. Soc Sci Med 2016; 149: 122–129
147. Kim ES, Whillans AV, Lee MT et al. Volunteering and subsequent health and well-being in older adults: an outcome-wide longitudinal approach. Am J Prev Med 2020; 59: 176–186