Research Article

Hesitant Bipolar-Valued Fuzzy Soft Sets and Their Application in Decision Making

Jin-Ying Wang, Yan-Ping Wang, and Lei Liu

College of Science, Liaoning University of Technology, Jinzhou 121001, Liaoning, China

Correspondence should be addressed to Lei Liu; liuleiill@live.cn

Received 15 May 2020; Revised 21 June 2020; Accepted 22 July 2020; Published 17 August 2020

Guest Editor: Jing Na

Copyright © 2020 Jin-Ying Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As an extension of fuzzy sets, hesitant bipolar-valued fuzzy set is a new mathematical tool for dealing with fuzzy problems, but it still has the problem with the inadequacy of the parametric tools. In order to further improve the accuracy of decision making, a new mixed mathematical model, named hesitant bipolar-valued fuzzy soft set, is constructed by combining hesitant bipolar-valued fuzzy sets with soft sets. Firstly, some related theories of hesitant bipolar-valued fuzzy sets are discussed. Secondly, the concept of hesitant bipolar-valued fuzzy soft set is given, and the algorithms of complement, union, intersection, “AND,” and “OR” are defined. Based on the above algorithms, the corresponding results of operation are analyzed and the relevant properties are discussed. Finally, a multiattributed decision-making method of hesitant bipolar-valued fuzzy soft sets is proposed by using the idea of score function and level soft sets. The effectiveness of the proposed method is illustrated by an example.

1. Introduction

The theory of fuzzy sets was put forward by Zadeh in 1965 [1], and the method of soft sets was presented even later by Molodtsov in 1999 [2]. Fuzzy sets as well as soft sets are complementary and important to deal with vague, imprecise, and uncertain knowledge. The integration of the two theories has become one of the popular research directions. In recent years, some scholars presented fuzzy soft sets and various kinds of extended models [3–11], such as fuzzy soft sets, intuitionistic fuzzy soft sets, interval-valued fuzzy soft sets, interval-valued intuitionistic fuzzy soft sets, hesitant fuzzy soft sets, interval-valued hesitant fuzzy soft sets, and generalized hesitant fuzzy soft sets. The corresponding basic procedures and properties are also discussed. Based on the above results, some scholars made a further study about the uncertainty measures [12–21] and the decision-making methods [22–25] of the extended model. For example, Majumdar and Samanta analyzed and compared the similarities and difference of different measures of the fuzzy soft sets [12]. Based on [12], Liu et al. introduced a novel approach to define the similarity measures and the distance measures between two fuzzy soft sets with different parameter sets [13]. Jiang et al. generalized the uncertainty measures of fuzzy soft set, defined the distance measures between intuitionistic fuzzy soft sets, and provided the entropy between intuitionistic fuzzy soft sets and interval-valued fuzzy soft sets [14]. Based on [14], Muthukumar and Sai Sundara Krishnan proposed a novel similarity measure of intuitionistic fuzzy soft sets [15]. In recent years, some scholars have extended the uncertainty measures of fuzzy soft set to another direction. Beg and Rashid defined the distance measures between any two elements in hesitant fuzzy soft sets [16]. A novel distance measure and similarity measure of hesitant fuzzy soft sets were presented by K. Rezaei and H. Rezaei in [17]. Garg and Arora raised novel distance measures and similarity measures of dual hesitant fuzzy soft sets [18]. The correlation measures of hesitant fuzzy soft sets and interval-valued hesitant fuzzy soft sets were discussed by Das et al. in [19]. Garg and Arora made a further study about the weighted average and geometric operators of dual hesitant fuzzy soft sets [20]. Arora and Garg introduced a novel correlation coefficient measure of dual hesitant fuzzy soft sets [21]. Feng et al. introduced a novel way to fuzzy soft set by the idea of level soft sets [22]. Jiang et al. presented a novel adjustable way for decision-
making problems of intuitionistic fuzzy soft sets [23]. Xiao et al. studied the decision-making problems of interval-valued fuzzy soft sets in uncertain environment [24]. Zhao et al. introduced an innovative multicriteria ranking approach for decision-making problems of intuitionistic fuzzy soft sets [25]. With the continuous development of fuzzy set, soft set, and uncertainty theory, artificial intelligence has received extensive attention around the world. Related control schemes have also achieved fruitful results [26–38]. More detailed research on the uncertainty measures of fuzzy soft sets and other models can provide a reliable mathematical foundation for the development of cybernetics.

Although the research results of the soft set extension model have been very fruitful, the incompatible bipolarity is inevitable in the objective world. Just as an example of a psychology disease-bipolar disorder patient, who has symptoms of mania and depression, the sum of positive and negative symptoms value is more than one, or even both the two symptoms may reach extreme cases simultaneously. In recent years, the integration of bipolar-valued and hesitant fuzzy sets had drawn the attention of many scholars, and good results were obtained. Han put forward the perception of hesitant bipolar-valued fuzzy sets as well as introduced a hesitant bipolar fuzzy decision-making problem method based on TOPSIS [39]. Ullah et al. presented the concept of bipolar-valued hesitant fuzzy sets, and the aggregation operators were applied to deal with the decision-making problems [40]. Mandal and Ranadive proposed the perception of hesitant bipolar-valued fuzzy sets and bipolar-valued hesitant fuzzy sets. Both of them were applied to solve decision-making problems [41]. Wei discussed the decision-making problems of aggregation operators founded on hesitant bipolar-valued fuzzy information [42]. According to the Einstein operational laws, Mahmood et al. made further study about a few aggregation operators for dual hesitant bipolar-valued fuzzy sets and the decision-making problems [44]. Awang et al. presented the perception of hesitant bipolar-valued neutrosophic sets and introduced an original decision-making method based on the novel model [46]. Those models were superior to other fuzzy mathematical tools in describing abilities because of considering the bipolarity and nonuniqueness of the membership degree of an element simultaneously. But like other mathematical tools, it still has the inadequacy problem of the parametric tools. On this basis, the theory of parameters is introduced into the hesitant bipolar-valued fuzzy sets, and the concept of hesitant bipolar-valued fuzzy soft sets is defined. The model is a new mathematical tool for uncertainty problem. It can make up for the inadequacy of the parametric tools. Therefore, the model is more suitable to describe the uncertainty problem.

The rest of this paper is arranged as follows. In Section 2, we retrospect the basic concepts of soft sets and hesitant bipolar-valued fuzzy sets and supplement some correlated knowledge. In Section 3, we put forward the perception of hesitant bipolar-valued fuzzy soft sets and define 2a number of basic procedures. A few corresponding properties are also considered. In Section 4, we propose a multiattribute decision-making approach based on the novel model, and the effectiveness of the proposed methodology is given by practical problems. Finally, the concluding is given.

2. Preliminaries

For convenience, throughout the paper, let U be an initial limited universe set, E be the set of all possible parameters with respect to U, and $D \subseteq E$.

Definition 1 (see [1]). Let $P(U)$ denote the power set of U. A pair (F, D) is called a soft set on U, where F is a mapping given by $F: D \longrightarrow P(U)$.

Definition 2 (see [41]). A hesitant bipolar-valued fuzzy set \mathcal{H} on U is defined as

$$\mathcal{H} = \{ \langle u, h_\mathcal{H}(u) = (h^p_{\mathcal{H}}(u), h^n_{\mathcal{H}}(u)) \rangle \mid u \in U \}$$

where $h^p_{\mathcal{H}}(u)$, known as the hesitant fuzzy positive element, is a set of some values in $[0, 1]$, and $h^n_{\mathcal{H}}(u)$, known as the hesitant fuzzy negative element, is a set of some values in $[-1, 0]$.

As a matter of convenience, the HBVFE $h_{\mathcal{H}}(u) = (h^p_{\mathcal{H}}(u), h^n_{\mathcal{H}}(u))$ is abbreviated as $h_{\mathcal{H}}(u)$. According to the Einstein operational laws, both of them are applied to solve decision-making problems [41]. Wei discussed the decision-making problems of aggregation operators founded on hesitant bipolar-valued fuzzy information [42]. According to the Einstein operational laws, Mahmood et al. made further study about the aggregation operators and the decision-making problems for bipolar-valued hesitant fuzzy information [43]. Xu and Wei considered the dual hesitant bipolar fuzzy sets and the decision-making problems [44]. Awang et al. presented the perception of hesitant bipolar-valued neutrosophic sets and introduced an original decision-making method based on the novel model [46]. Those models were superior to other fuzzy mathematical tools in describing abilities because of considering the bipolarity and nonuniqueness of the membership degree of an element simultaneously. But like other mathematical tools, it still has the inadequacy problem of the parametric tools. On this basis, the theory of parameters is introduced into the hesitant bipolar-valued fuzzy sets, and the concept of hesitant bipolar-valued fuzzy soft sets is defined. The model is a new mathematical tool for uncertainty problem. It can make up for the inadequacy of the parametric tools. Therefore, the model is more suitable to describe the uncertainty problem.

Theorem 1. Let $h_1 = (h^p_1, h^n_1)$, $h_2 = (h^p_2, h^n_2)$ and $h_3 = (h^p_3, h^n_3)$ be three HBVFEs; then, we have some operational laws, such as
(1) **Involutive:**

\[(h^c_i)^c = h_i,\] \hspace{1cm} (5)

\[h_i^c = \left(\bigcup_{y_i^p \in h_i^c} \{1 - y_i^p\}, \bigcup_{y_i^p \in h_i^c} \{-1 - y_i^N\}\right), \hspace{1cm} (10)\]

from Definition 3; then,

\[(h_i^c)^c = \left(\bigcup_{y_i^p \in h_i^c} \{1 - y_i^p\}, \bigcup_{y_i^p \in h_i^c} \{-1 - y_i^N\}\right)^c\]

\[= \left(\bigcup_{y_i^p \in h_i^c} \{1 - (1 - y_i^p)\}, \bigcup_{y_i^p \in h_i^c} \{-1 - (-1 - y_i^N)\}\right)\]

\[= \left(\bigcup_{y_i^p \in h_i^c} \{y_i^p\}, \bigcup_{y_i^p \in h_i^c} \{-y_i^N\}\right)\]

\[= h_i.\] \hspace{1cm} (11)

(2) **Commutativity:**

\[h_1 \cup h_2 = h_2 \cup h_1,\]
\[h_1 \cap h_2 = h_2 \cap h_1.\] \hspace{1cm} (6)

(3) **Associative:**

\[(h_1 \cup h_2) \cup h_3 = h_1 \cup (h_2 \cup h_3),\]
\[(h_1 \cap h_2) \cap h_3 = h_1 \cap (h_2 \cap h_3).\] \hspace{1cm} (7)

(4) **Distributive:**

\[h_1 \cup (h_2 \cap h_3) = (h_1 \cup h_2) \cap (h_1 \cup h_3),\]
\[h_1 \cap (h_2 \cup h_3) = (h_1 \cap h_2) \cup (h_1 \cap h_3).\] \hspace{1cm} (8)

(5) **De Morgan [4]:**

\[(h_1 \cup h_2)^c = h_1^c \cap h_2^c,\]
\[(h_1 \cap h_2)^c = h_1^c \cup h_2^c.\] \hspace{1cm} (9)

Proof

(1) For a HBVFE \(\tilde{h}_1 = (\tilde{h}_1^p, \tilde{h}_1^N),\) we have

\[(h_1 \cup h_2) \cup h_3 = \left(\bigcup_{y_1^p \in h_1^c} \max\{\max\{y_1^p, y_2^p\}, y_3^p\}, \bigcup_{y_1^p \in h_1^c} \min\{\min\{y_1^N, y_2^N\}, y_3^N\}\right)\]
\[= \left(\bigcup_{y_1^p \in h_1^c} \max\{y_1^p, y_2^p\}, \bigcup_{y_1^p \in h_1^c} \min\{y_1^N, y_2^N\}\right)\]
\[= h_1 \cup (h_2 \cup h_3).\] \hspace{1cm} (13)

Similarly, we can also obtain

\[(h_1 \cap h_2) \cap h_3 = h_1 \cap (h_2 \cap h_3).\] \hspace{1cm} (14)

(2) It can be easily obtained from Definition 3.

(3) For three HBVFEs \(h_1 = (h_1^p, h_1^N), h_2 = (h_2^p, h_2^N),\) and \(h_3 = (h_3^p, h_3^N),\) we have

\[h_1 \cup h_2 = \left(\bigcup_{y_1^p \in h_1^c} \max\{y_1^p, y_2^p\}, \bigcup_{y_1^p \in h_1^c} \min\{y_1^N, y_2^N\}\right),\] \hspace{1cm} (12)

and from Definition 3, we have

\[h_1 \cup (h_2 \cap h_3) = (h_1 \cup h_2) \cap (h_1 \cup h_3),\]
\[h_1 \cap (h_2 \cup h_3) = (h_1 \cap h_2) \cup (h_1 \cap h_3).\] \hspace{1cm} (15)

(4) For three HBVFEs \(h_1, h_2 \) and \(h_3,\) we have

\[h_1 \cap (h_2 \cup h_3) = (h_1 \cap h_2) \cup (h_1 \cap h_3).\] \hspace{1cm} (16)
Similarly, we can also obtain
\[h_1 \cap (h_2 \cup h_3) = (h_1 \cap h_2) \cup (h_1 \cap h_3). \] (16)

Definition 4 (see [41]). Let \(h = (h^P, h^N) \) be a HBVFE and the score function \(\delta(h) \) is defined as

\[\delta(h) = \frac{1}{2} \left(\frac{1}{h^P} \sum_{y \in h^P} y^p - \frac{1}{h^N} \sum_{y \in h^N} y^N \right), \] (17)

where \(l_{h^p} \) and \(l_{h^N} \) are the numbers of the elements in \(h^P \) and \(h^N \), respectively.

Definition 5. Two special hesitant bipolar-valued sets are defined as

1. Empty set:
 \[\emptyset = \{ (u, h_{\emptyset}(u)) \mid u \in U \}, \] where \(h_{\emptyset}(u) = ([0], [0]) \).

2. Full set:
 \[U = \{ (u, h_U(u)) \mid u \in U \}, \] where \(h_U(u) = ([1], [1]) \).

Definition 6. Let \(H_1, H_2 \in HBVFS(U) \) and \(\forall u \in U \); then,

1. If \(\delta(h_{U_1}(u)) \leq \delta(h_{U_2}(u)) \), then \(H_1 \) is called as a hesitant bipolar-valued fuzzy quasisubset of \(H_2 \), denoted by \(H_1 \preceq H_2 \) or \(H_2 \succeq H_1 \).
2. If \(\delta(h_{U_2}(u)) = \delta(h_{U_1}(u)) \), then \(H_1 \) and \(H_2 \) are called hesitant bipolar-valued fuzzy quasiequal, denoted by \(H_1 \equiv H_2 \).
3. If \(h_{U_1}(u) \) and \(h_{U_2}(u) \) have the same elements, then \(H_1 \) and \(H_2 \) are equal, denoted by \(H_1 = H_2 \).

Definition 7. Let \(H_1, H_2 \in HBVFS(U) \); then,

1. Complement:
 \[H_1^C = \{ (u, h_{C_{H_1}}(u)) \mid u \in U \} \] where \(h_{C_{H_1}} = h_{H_1}^C \).
2. Union:
 \[H_1 \cup H_2 = \{ (u, h_{U_{H_1}(u)}(u)) \mid u \in U \}, \] where \(h_{U_{H_1}(u)} = h_{H_1} \cup h_{H_2} \).
3. Intersection:
 \[H_1 \cap H_2 = \{ (u, h_{I_{H_1}(u)}(u)) \mid u \in U \}, \] where \(h_{I_{H_1}(u)} = h_{H_1} \cap h_{H_2} \).

Theorem 2. Let \(H_1, H_2, H_3 \in HBVFS(U) \); then, we have some operational laws, such as

1. \((H_1^C)^C = H_1 \).
2. \(H_1 \cup H_2 = H_2 \cup H_1 \).
3. \(H_1 \cap H_2 = H_2 \cap H_1 \).
4. \(H_1 \cap H_2 \) is a hesitant bipolar-valued fuzzy soft set.
5. \(H_1 \cup H_2 \) is a hesitant bipolar-valued fuzzy soft set.

Proof. It can be easily obtained from Theorem 1 and Definition 7. Thus, it is omitted here.

Theorem 3. Let \(H_1, H_2 \in HBVFS(U) \); then, we have

1. \(H_1 \cup H_2 \in HBVFS(U) \).
2. \(H_1 \cap H_2 \in HBVFS(U) \).

Proof.

1. From Definitions 3 and 7, we have
 \[\delta(h_{U_{H_1}(u)}) \leq \delta(h_{U_{H_2}(u)}) \leq \delta(h_{U_{H_1 \cap H_2}(u)}). \] (23)

Then, together with Definition 6, one has
 \[H_1 \cup H_2 \in HBVFS(U), \] (24)
 \[H_1 \cap H_2 \in HBVFS(U). \]

2. It is similar to the proof of Conclusion 1.

3. Hesitant Bipolar-Valued Fuzzy Soft Sets and Operation Properties

In this section, we propose the concept of hesitant bipolar-valued fuzzy soft sets as well as some basic operations.

Definition 8. A pair \((\mathcal{J}, D) \) is called as a hesitant bipolar-valued fuzzy soft set on \(U \), where \(\mathcal{J} \) is a mapping given by \(\mathcal{J}: D \rightarrow HBVFS(U) \) and

\[\mathcal{J}(e) = \{ (u, h_{\mathcal{J}(e)}(u)) \mid u \in U \}, \] (25)

for all \(e \in D \).

We will use the notation \(HBVFSS(U) \) to denote all hesitant bipolar-valued fuzzy soft sets on \(U \).

Note:

1. If \(D \) has only one value, that is \(D = \{ e \} \), then \((\mathcal{J}, D) \) degenerates into a hesitant bipolar-valued fuzzy set.
2. If \(h^P_{\mathcal{J}(e)} \) and \(h^N_{\mathcal{J}(e)} \) have only one value, that is \(h^P_{\mathcal{J}(e)} = \mu^P \) and \(h^N_{\mathcal{J}(e)} = \mu^N \), then \((\mathcal{J}, D) \) degenerates into a bipolar-valued fuzzy soft set.
3. If the bipolarity is not considered, that is, \(h^1_{\mathcal{J}(e)} = h^0_{\mathcal{J}(e)} \), then \((\mathcal{J}, D) \) degenerates into a hesitant fuzzy soft set.

Example 1. Let \(U = \{ u_1, u_2, u_3 \} \) be the set of houses, and \(D \subseteq E \), where \(D = \{ \varepsilon_1, \varepsilon_2, \varepsilon_3 \} = \{ \text{location; price; surrounding} \} \).
Definition 9. Let \((\mathcal{J}, D_1), (\mathcal{K}, D_2) \in \text{HBVFSS}(U) \) and \(D_1, D_2 \in \mathcal{E} \), \((\mathcal{J}, D_1) \) is called as a hesitant bipolar-valued fuzzy soft subset of \((\mathcal{K}, D_2) \), if \(D_1 \subseteq D_2 \) and \(\mathcal{J}(e) \subseteq \mathcal{K}(e) \) for \(\forall e \in D_1 \).

Then, \((\mathcal{J}, D_1) \in \text{HBVFSS}(U) \).

Example 2. Let \((\mathcal{J}, D_1) \in \text{HBVFSS}(U) \); it is defined as that in Example 1. Let \(D_2 = [\varepsilon_1, \varepsilon_2] = \{\text{location}; \text{price}\} \) and \((\mathcal{K}, D_2) \in \text{HBVFSS}(U) \); it is defined as

\[
\mathcal{K}(e) = \left\{ (u_1, ([0.3, 0.4, 0.6], [-0.5, -0.3])), (u_2, ([0.1, 0.3], [-0.2, -0.5])), (u_3, ([0.6, 0.8], [-0.3, -0.4])) \right\}.
\]

Hence, we can conclude \((\mathcal{K}, D_2) \subseteq (\mathcal{J}, D_1) \).

Definition 10. Let \((\mathcal{J}, D_1), (\mathcal{K}, D_2) \in \text{HBVFSS}(U) \); then,

1. If \((\mathcal{J}, D_1) \subseteq (\mathcal{K}, D_2) \) and \((\mathcal{K}, D_2) \subseteq (\mathcal{J}, D_1) \), then \((\mathcal{J}, D_1) = (\mathcal{K}, D_2) \) holds; conversely, if \((\mathcal{J}, D_1) \subseteq (\mathcal{K}, D_2) \) holds, then \((\mathcal{K}, D_2) \subseteq (\mathcal{J}, D_1) \) may not hold. For example, let \(U = \{u\} \) and \(D_1 = D_2 = \{e\}, \mathcal{J}(e) = \{u, ([0.5, 0.6], [-0.3, -0.4])\}, \mathcal{K}(e) = \{u, ([0.6, 0.7], [-0.2, -0.3])\} \). We can obtain \(\delta(h_{\mathcal{J}(e)}(u_1)) = 0.45 \neq \delta(h_{\mathcal{K}(e)}(u_1)) \), which implies \((\mathcal{J}, D_1) \not\subseteq (\mathcal{K}, D_2) \), but \((\mathcal{K}, D_2) \not\subseteq (\mathcal{J}, D_1) \).

2. If \(D_1 = D_2 = \{e\} \), then \((\mathcal{J}, D_1) \) and \((\mathcal{K}, D_2) \) are equal.

Definition 11. Let \((\mathcal{J}, D) \in \text{HBVFSS}(U) \) and \(u \in U \) be two special hesitant bipolar-valued fuzzy soft sets, which are defined as

1. \((\mathcal{J}, D) \) is called as an empty set, if \(\mathcal{J}(e) = \emptyset \) for \(\forall e \in D \), denoted by \(\emptyset(D) \).
2. \((\mathcal{J}, D) \) is called as a full set, if \(\mathcal{J}(e) = U \) for \(\forall e \in D \), denoted by \(U(D) \).

Definition 12. Let \((\mathcal{J}, D) \in \text{HBVFSS}(U) \), and \((\mathcal{J}', D) \) is called as the complementary set of the \((\mathcal{J}, D) \), denoted by \((\mathcal{J}, D)' \), where \(\mathcal{J}': D \rightarrow \text{HBVFS}(U) \) and \(\mathcal{J}'(e) = (\mathcal{J}(e))' \) for \(\forall e \in D \).
Example 3. Let \((\overline{K}, D_2) \in \text{HBVFSS}(U)\); it is defined as that in Example 2; we obtain \((\overline{K}, D_2)'\) as follows:

\[
\overline{K}'(\varepsilon_1) = \{ \langle u_1, ([0.4, 0.6, 0.7], [-0.3, -0.5]) \rangle, \langle u_2, ([0.7, 0.9], [-0.6, -0.8]) \rangle, \langle u_3, ([0.2, 0.4], [-0.3, -0.7]) \rangle \}\,
\]
\[
\overline{K}'(\varepsilon_2) = \{ \langle u_1, ([0.4, 0.6], [-0.7, -0.8]) \rangle, \langle u_2, ([0.7, -0.4, -0.5, -0.8]) \rangle, \langle u_3, ([0.5, 0.6], [-0.6, -0.7]) \rangle \}\.
\]

(31)

Theorem 4. Let \((\overline{J}, D), (\overline{U}, D) \in \text{HBVFSS}(U)\); then,

1. \((\overline{J}, D)' = (\overline{U}, D)\).
2. \((\overline{U}, D)' = (\overline{J}, D)\).

Proof. It can be easily obtained from Definition 12. \(\square\)

Definition 13. Let \((\overline{J}, D_1), (\overline{K}, D_2) \in \text{HBVFSS}(U)\); if \(D = D_1 \cup D_2\) and \(\forall \varepsilon \in D\),

\[\overline{J}(\varepsilon) = \begin{cases}
\overline{J}(\varepsilon), & \text{if } \varepsilon \in D_1 - D_2, \\
\overline{K}(\varepsilon), & \text{if } \varepsilon \in D_2 - D_1, \\
\overline{J}(\varepsilon) \cap \overline{K}(\varepsilon), & \text{if } \varepsilon \in D_1 \cap D_2.
\end{cases}\]

(32)

Then, \((\overline{J}, D)\) is called as the union of \((\overline{J}, D_1)\) and \((\overline{K}, D_2)\), denoted by

\[(\overline{J}, D_1) \cup (\overline{K}, D_2) = (\overline{J}, D)\]

(33)

Example 4. Let \(U = \{u_1, u_2, u_3\}\) be the set of houses, and \(D_1, D_2 \subseteq E\), where \(D_1 = \{\varepsilon_1, \varepsilon_2\} = \{\text{location, surrounding environment}\}\) and \(D_2 = \{\varepsilon_1, \varepsilon_3\} = \{\text{location, price}\}\). Let \((\overline{J}, D_1) \in \text{HBVFSS}(U)\); it is defined as

\[
\overline{J}(\varepsilon_1) = \{ \langle u_1, ([0.7, 0.8], [-0.6, -0.8]) \rangle, \langle u_2, ([0.3, 0.4, 0.6], [-0.7]) \rangle, \langle u_3, ([0.6, 0.7], [-0.5, -0.6, -0.8]) \rangle \},
\]
\[
\overline{J}(\varepsilon_3) = \{ \langle u_1, ([0.3, 0.4], [-0.6, -0.7]) \rangle, \langle u_2, ([0.6, 0.7, 0.9], [-0.4, -0.5]) \rangle, \langle u_3, ([0.8], [-0.4, -0.6, -0.7]) \rangle \}.
\]

(34)

Let \((\overline{K}, D_2) \in \text{HBVFSS}(U)\); it is defined as that in Example 2; then, \((\overline{J}, D_1) \cup (\overline{K}, D_2) = (\overline{J}, D)\), where \(D = \{\varepsilon_1, \varepsilon_2, \varepsilon_3\}\) and

\[
\overline{K}(\varepsilon_1) = \{ \langle u_1, ([0.7, 0.8], [-0.6, -0.7, -0.8]) \rangle, \langle u_2, ([0.3, 0.4, 0.6], [-0.7]) \rangle, \langle u_3, ([0.6, 0.7, 0.8], [-0.5, -0.6, -0.7, -0.8]) \rangle \},
\]
\[
\overline{K}(\varepsilon_3) = \{ \langle u_1, ([0.4, 0.6], [-0.2, -0.3]) \rangle, \langle u_2, ([0.3], [-0.2, -0.5, -0.6]) \rangle, \langle u_3, ([0.4, 0.5], [-0.3, -0.4]) \rangle \},
\]
\[
\overline{K}(\varepsilon_3) = \{ \langle u_1, ([0.3, 0.4], [-0.6, -0.7]) \rangle, \langle u_2, ([0.6, 0.7, 0.9], [-0.4, -0.5]) \rangle, \langle u_3, ([0.8], [-0.4, -0.6, -0.7]) \rangle \}.
\]

(35)

Definition 14. Let \((\overline{J}, D_1), (\overline{K}, D_2) \in \text{HBVFSS}(U)\); if \(D = D_1 \cap D_2\) and \(\forall \varepsilon \in D\),

\[
\overline{J}(\varepsilon) \cap \overline{K}(\varepsilon).
\]

(36)

Then, \((\overline{J}, D)\) is called as the intersection of \((\overline{J}, D_1)\) and \((\overline{K}, D_2)\), denoted by

\[(\overline{J}, D_1) \cap (\overline{K}, D_2) = (\overline{J}, D)\]

(37)

Example 5. Let \((\overline{J}, D_1), (\overline{K}, D_2) \in \text{HBVFSS}(U)\); it is defined as that in Example 4; then,

\[(\overline{J}, D_1) \cap (\overline{K}, D_2) = (\overline{J}, D)\],

where \(D = \{\varepsilon_1\}\) and

(38)
Proof. It can be obtained from Definitions 12–14.

Theorem 6. Let \((\bar{J}, D_1) \in HBVFSS(U)\); then,

1. \((\bar{\bar{J}}, D) \cup (\bar{J}, D_1) = (\bar{J}, D_1)\) iff \(D \subseteq D_1\).
2. \((\bar{\bar{J}}, D) \cap (\bar{J}, D_1) = (\bar{\bar{J}}, D_1)\) iff \(D \subseteq D_1\).
3. \((\bar{\bar{J}}, D) \cap (\bar{J}, D_1) = (\bar{\bar{J}}, D \cap D_1)\).
4. \((\bar{\bar{J}}, D) \cap (\bar{J}, D_1) = (\bar{J}, D \cap D_1)\).

Proof. It can be easily proved from Definitions 12–14.

Theorem 7. Let \((\bar{J}, D), (\bar{K}, D) \in HBVFSS(U)\); then,

1. \(((\bar{J}, D) \cup (\bar{K}, D))^c = (\bar{J}, D)^c \cap (\bar{K}, D)^c\).
2. \(((\bar{J}, D) \cap (\bar{K}, D))^c = (\bar{J}, D)^c \cup (\bar{K}, D)^c\).

Proof

1. Let \((\bar{J}, D) \cup (\bar{K}, D) = (\bar{P}, D)\), where

\[
\bar{P}(\epsilon) = \bar{J}(\epsilon) \cup \bar{K}(\epsilon), \quad \text{for } \forall \epsilon \in D,
\]

and

\[
((\bar{J}, D) \cup (\bar{K}, D))^c = (\bar{P}, D)^c = (\bar{P}^c, D),
\]

where

\[
\bar{P}^c(\epsilon) = \bar{J}(\epsilon)^c \cup \bar{K}(\epsilon)^c = \bar{J}(\epsilon)^c \cap \bar{K}(\epsilon)^c, \quad \text{for } \forall \epsilon \in D.
\]

Let

\[
\bar{Q}(\epsilon) = \bar{J}(\epsilon)^c \cap \bar{K}(\epsilon)^c, \quad \text{for } \forall \epsilon \in D.
\]

Thus, one has \(\bar{P}^c(\epsilon) = \bar{Q}(\epsilon)\) and \((\bar{P}^c, D) = (\bar{\bar{Q}}, \bar{D})\).

Further, it yields

\[
((\bar{J}, D) \cup (\bar{K}, D))^c = (\bar{\bar{J}}, D)^c \cap (\bar{\bar{K}}, D)^c.
\]

(2) It is similar to the proof of conclusion 1.

Theorem 8. Let \((\bar{J}, D_1), (\bar{K}, D_2) \in HBVFSS(U)\); then,

1. \(((\bar{J}, D_1) \cup (\bar{K}, D_2))^c \subseteq (\bar{J}, D_1)^c \cup (\bar{K}, D_2)^c\).
2. \(((\bar{J}, D_1) \cap (\bar{K}, D_2))^c \supseteq (\bar{J}, D_1)^c \cap (\bar{K}, D_2)^c\).
3. \(((\bar{J}, D_1) \cup (\bar{K}, D_2))^c \supseteq (\bar{J}, D_1)^c \cap (\bar{K}, D_2)^c\).
4. \(((\bar{J}, D_1) \cap (\bar{K}, D_2))^c \subseteq (\bar{J}, D_1)^c \cup (\bar{K}, D_2)^c\).

Proof

1. Let \(((\bar{J}, D_1) \cup (\bar{K}, D_2))^c = (\bar{P}, D_3)\), where \(D_3 = D_1 \cup D_2, \forall \epsilon \in D_3\), and

\[
\bar{P}(\epsilon) = \begin{cases}
\bar{J}(\epsilon), & \text{if } \epsilon \in D_1 - D_2, \\
\bar{K}(\epsilon), & \text{if } \epsilon \in D_2 - D_1,
\end{cases}
\]

Then, it obtains

\[
((\bar{J}, D_1) \cup (\bar{K}, D_2))^c = (\bar{P}, D_3)^c = (\bar{P}^c, D_3),
\]

and \(\forall \epsilon \in D_3\); one has

\[
\bar{P}^c(\epsilon) = \begin{cases}
\bar{J}(\epsilon)^c, & \text{if } \epsilon \in D_1 - D_2, \\
\bar{K}(\epsilon)^c, & \text{if } \epsilon \in D_2 - D_1.
\end{cases}
\]

Let

\[
((\bar{J}, D_1) \cup (\bar{K}, D_2))^c = (\bar{J}, D_1)^c \cup (\bar{K}, D_2)^c = (\bar{Q}, D_4),
\]

where \(D_4 = D_1 \cup D_2, \forall \epsilon \in D_4\), and

\[
\bar{Q}(\epsilon) = \begin{cases}
\bar{J}(\epsilon)^c, & \text{if } \epsilon \in D_1 - D_2, \\
\bar{K}(\epsilon)^c, & \text{if } \epsilon \in D_2 - D_1.
\end{cases}
\]

From Theorem 3, we can obtain

\[(\bar{J}, D_1)^c \cup (\bar{K}, D_2)^c = (\bar{J}, D_1)^c \cup (\bar{K}, D_2)^c. \]

Thus, we obtain

\[D_3 = D_4 = D_1 \cup D_2, \]

\[\bar{P}^c(\epsilon) \subseteq \bar{Q}(\epsilon), \quad \forall \epsilon \in D_1 \cup D_2. \]

Then, together with Definition 9, we have

\[
((\bar{J}, D_1) \cup (\bar{K}, D_2))^c \subseteq (\bar{J}, D_1)^c \cup (\bar{K}, D_2)^c.
\]

Similarly, we can also prove (2)–(4).

Definition 15. Let \((\bar{J}, D_1), (\bar{K}, D_2) \in HBVFSS(U)\); \((\bar{J}, D_1) \cup (\bar{K}, D_2)\) and \((\bar{J}, D_1) \cap (\bar{K}, D_2)\) are defined as \((\bar{\bar{J}}, D_1 \times D_2)\), where

\[
\bar{\bar{J}}(\xi, \eta) = \bar{J}(\xi) \cup \bar{K}(\eta), \quad \forall (\xi, \eta) \in D_1 \times D_2,
\]

and \(\bar{\bar{J}}\) is a mapping given by \(\bar{\bar{J}}: D_1 \times D_2 \rightarrow HBVFSS(U)\).

In this case, define \((\bar{\bar{J}}, D_1) \cap (\bar{K}, D_2)\).

Example 6. Let \((\bar{J}, D_1), (\bar{K}, D_2) \in HBVFSS(U)\). They are defined in Example 4; then, one gets

\[
(\bar{J}, D_1 \cap (\bar{K}, D_2)) = (\bar{J}, D_1 \times D_2),
\]

where
Definition 16. Let \((\mathfrak{J}, D_1), (\mathfrak{K}, D_2)\) ∈ HBVFSS(U).

\((\mathfrak{J}, D_1)\) or \((\mathfrak{K}, D_2)\) is defined as \((\mathfrak{J}, D_1 \times D_2)\), where
\[
\mathfrak{L}(\xi, \eta) = \mathfrak{J}(\xi) \cup \mathfrak{K}(\eta), \quad \text{for } (\xi, \eta) \in D_1 \times D_2,
\]
and \(\mathfrak{L}\) is a mapping given by \(\mathfrak{L}: D_1 \times D_2 \rightarrow HBVFSS(U)\).

In this case, define \((\mathfrak{J}, D_1) \vee (\mathfrak{K}, D_2)\).

Example 7. Let \((\mathfrak{J}, D_1), (\mathfrak{K}, D_2)\) ∈ HBVFSS(U). They are defined as those in Example 4; then, it leads to
\[
(\mathfrak{J}, D_1) \vee (\mathfrak{K}, D_2) = (\mathfrak{L}, D_1 \times D_2),
\]
where
\[
\begin{align*}
(\mathfrak{J}, D_1) \vee (\mathfrak{K}, D_2) &= (\mathfrak{L}, D_1 \times D_2), \\
(\mathfrak{J}, D_1) \wedge (\mathfrak{K}, D_2) &= (\mathfrak{L}, D_1 \times D_2),
\end{align*}
\]

Theorem 9. Let \((\mathfrak{J}, D_1), (\mathfrak{K}, D_2)\) ∈ HBVFSS(U); then,
\[
(1) \ ((\mathfrak{J}, D_1) \wedge (\mathfrak{K}, D_2))^c = (\mathfrak{J}, D_1)^c \vee (\mathfrak{K}, D_2)^c. \\
(2) \ ((\mathfrak{J}, D_1) \vee (\mathfrak{K}, D_2))^c = (\mathfrak{J}, D_1)^c \wedge (\mathfrak{K}, D_2)^c.
\]

Proof. (1) Let \((\mathfrak{J}, D_1) \wedge (\mathfrak{K}, D_2) = (\mathfrak{P}, D_1 \times D_2)\); then,
\[
(\mathfrak{J}, D_1) \wedge (\mathfrak{K}, D_2) = (\mathfrak{P}, D_1 \times D_2).
\]

Again let
\[
(\mathfrak{J}, D_1)^c \vee (\mathfrak{K}, D_2)^c = (\mathfrak{J}, D_1)^c \vee (\mathfrak{K}, D_2)^c = (\mathfrak{Q}, D_1 \times D_2).
\]

Thus, it gets
\[
\mathfrak{P}^c(\xi, \eta) = (\mathfrak{J}(\xi) \cup \mathfrak{K}(\eta))^c = (\mathfrak{J}, D_1)^c \vee (\mathfrak{K}, D_2)^c = (\mathfrak{Q}, D_1 \times D_2).
\]

Theorem 10. Let \((\mathfrak{J}, D_1), (\mathfrak{K}, D_2), (\mathfrak{L}, D_3)\) ∈ HBVFSS(U); then,
\[
(\mathfrak{J}, D_1) \wedge (\mathfrak{K}, D_2) = (\mathfrak{L}, D_1 \times D_2).
\]
D_2 = D_3 = D_1 \times D_2 \times D_3, \quad (67)
\bar{Q}((\xi, \eta, \zeta)) = \bar{N}((\xi, \eta, \zeta)), \quad \forall (\xi, \eta, \zeta) \in D_2 = D_3.

Hence, it has
\[(\bar{Q}, D_2) = (\bar{N}, D_2), \quad (68)\]
that is,
\[(\bar{J}, D_1) \mathcal{N}(\bar{J}, D_2) \mathcal{N}(\bar{L}, D_2)) = (\bar{J}, D_1) \mathcal{N}(\bar{J}, D_2) \mathcal{N}(\bar{L}, D_2). \quad (69)\]

4. Hesitant Bipolar-Valued Fuzzy Soft Sets in Decision-Making Problems

In order to conveniently describe the content, throughout this section, let \(U = \{u_1, u_2, \ldots, u_n\} \), \(D = \{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_m\} \), and \((\bar{J}, D) \in \text{HBVFSS}(U)\).

Definition 17. The fuzzy soft set \((\bar{J}, D)\) is called as the score matrix of the hesitant bipolar-valued fuzzy soft set \((\bar{J}, D)\), where the membership degree of each element of the fuzzy set \(J_{\bar{g}}(\varepsilon_i)\) is the score function of each element of the hesitant bipolar-valued fuzzy set \(J(\varepsilon_i)(i = 1, 2, \ldots, m)\).

Definition 18 (see [22]). Let \((F, D)\) be a fuzzy soft set on \(U\) and \(\delta(D) = \{\delta(\varepsilon_1), \delta(\varepsilon_2), \ldots, \delta(\varepsilon_m)\}\) be threshold vector on \(D\); the \(\delta(D)\)-level soft set is defined as \((F_{\bar{g}}, D)\), where \(F_{\bar{g}}(\varepsilon) = \{u_j \in U : \mu_{F(\varepsilon)}(u_j) \geq \delta(\varepsilon), \forall \varepsilon \in D\}\).

In Definition 18, by using different selection methods of attribute threshold, we may obtain different level soft sets. In [22], we can find some different selection methods of threshold such as maximum, minimum, and average. We determine the threshold with the method of average in this study, that is,
\[\delta(\varepsilon) = \frac{1}{n} \sum_{j=1}^{n} \mu_{F(\varepsilon)}(u_j) \quad \forall \varepsilon \in D. \quad (70)\]

Next, a multiattribute decision-making approach for hesitant bipolar-valued fuzzy soft sets is given. This approach demonstrates that hesitant bipolar-valued fuzzy soft sets can be converted into simpler fuzzy soft sets by considering the score matrix. At the same time, the fuzzy soft set is converted into a classic soft set, and each attribute is set to be a threshold according to soft sets; then, the optimal plan can be acquired by calculating the choice value of plan correspondingly (Algorithm 1).

Algorithm 1: Multiattribute decision making of HBVFSS.

Step 1 Input \((\bar{J}, D)\).
Step 2 Calculate the score matrix \((\bar{J}_{\bar{g}}, D)\) corresponding to \((\bar{J}, D)\).
Step 3 Calculating the average value assigned to each parameter, the threshold vector \(\delta(D)\) can be obtained.
Step 4 According to the threshold vector, calculate the average-level soft set \((\bar{J}_{\bar{g}}, D)\) and the choice value \(\bar{\varepsilon}\) of every alternative.
Step 5 Rank the objects in accordance with \(\bar{\varepsilon}\) and then select the optimal decision as \(u_k\) if \(\bar{\varepsilon}_k = \max \bar{\varepsilon}\).
Step 6 If the value of \(k\) is not the one in the previous step, then any one of \(u_k\) can be chosen for the optimal decision making.

Example 8. There are three members in Mr. Zhang’s family; they want to buy a house, and they decide to choose one of the five houses after preliminary screening, \(U = \{u_1, u_2, \ldots, u_5\}\). The evaluation of the house is represented by five indicators in the hesitant bipolar-valued fuzzy soft set \((\bar{J}, D)\), where \(D = \{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_5\} = \{\text{location}; \text{price}; \text{surrounding environment}; \text{building structure}; \text{property management}\}\). It is shown in Table 1. Let us help them to make the optimal decision by using the above algorithm.

Calculate the score matrix \((\bar{J}_{\bar{g}}, D)\) corresponding to \((\bar{J}, D)\), which is shown in Table 2.

Calculate the average value assigned to each parameter, that is,
\[\delta(\varepsilon_1) = \frac{1}{5} \sum_{j=1}^{5} \mu_{\varepsilon_1}(u_j) = 0.4533, \quad (71)\]
\[\delta(\varepsilon_2) = \frac{1}{5} \sum_{j=1}^{5} \mu_{\varepsilon_2}(u_j) = 0.4650, \quad \delta(\varepsilon_3) = \frac{1}{5} \sum_{j=1}^{5} \mu_{\varepsilon_3}(u_j) = 0.4200, \quad \delta(\varepsilon_4) = \frac{1}{5} \sum_{j=1}^{5} \mu_{\varepsilon_4}(u_j) = 0.4217, \quad \delta(\varepsilon_5) = \frac{1}{5} \sum_{j=1}^{5} \mu_{\varepsilon_5}(u_j) = 0.4267. \]

Then, we obtain the threshold vector as
\[\delta(D) = \{\delta(\varepsilon_1), \delta(\varepsilon_2), \delta(\varepsilon_3), \delta(\varepsilon_4), \delta(\varepsilon_5)\} = \{0.4533, 0.4650, 0.4200, 0.4217, 0.4267\}. \quad (72)\]

Calculate the average-level soft set \((\bar{J}_{\bar{g}}, D)\) and the value of \(\bar{\varepsilon}\), which is shown in Table 3.

Ranking all the houses in accordance with the choice value \(\bar{\varepsilon}\), we can easily see \(u_4 > u_5 > u_2 > u_3 = u_1\). Thus, select the optimal decision as \(u_4\).

The above examples not only consider the bipolarity and nonuniqueness of element membership but also solve the problem of insufficient parameter chemical tools. The conclusion is in line with objective reality and shows the superiority of the proposed algorithm.
Table 1: Hesitant bipolar-valued fuzzy soft set.

	ϵ_1	ϵ_2	ϵ_3	ϵ_4	ϵ_5
μ_1	([0.6,0.5,0.4], [-0.3,-0.4,-0.5])	([0.9,0.8,0.6], [-0.3,-0.4])	([0.8,0.7,0.4], [-0.3,-0.4])	([0.7,0.6], [-0.2,-0.4,-0.6])	([0.6,0.5,0.4], [-0.2,-0.3,-0.6])
μ_2	([0.8,0.6], [-0.2,-0.3,-0.6])	([0.7,0.6,0.5], [-0.1,-0.3])	([0.4,0.3], [-0.3,-0.4,-0.6])	([0.6,0.4,0.3], [-0.1,-0.2])	([0.9,0.7], [-0.1,-0.3,-0.4])
μ_3	([0.6,0.4,0.3], [-0.1,-0.3,-0.6])	([0.8,0.7,0.6], [-0.1,-0.3])	([0.6,0.4,0.3], [-0.2,-0.4])	([0.6,0.2], [-0.2,-0.4,-0.7])	([0.8,0.6,0.5], [-0.1,-0.4])
μ_4	([0.9,0.7,0.6], [-0.1,-0.2])	([0.6,0.3], [-0.1,-0.2,-0.3])	([0.7,0.6,0.3], [-0.1,-0.2])	([0.8,0.6,0.5], [-0.3,-0.4])	([0.6,0.4,0.3], [-0.1,-0.2,-0.4])
μ_5	([0.7,0.6,0.4], [-0.3,-0.4])	([0.9,0.8], [-0.1,-0.3,-0.6])	([0.8,0.7,0.5], [-0.3,-0.4])	([0.7,0.4,0.3], [-0.2,-0.3,-0.4])	([0.3,0.2], [-0.3,-0.6,-0.7])
Table 2: Score matrix.

	e_1	e_2	e_3	e_4	e_5
u_1	0.4500	0.5583	0.4917	0.5250	0.4333
u_2	0.5333	0.4000	0.3917	0.2917	0.5333
u_3	0.3833	0.4500	0.3667	0.4167	0.4417
u_4	0.4417	0.3250	0.3417	0.4917	0.3333
u_5	0.4583	0.5917	0.5083	0.3833	0.3917

Table 3: Average-level soft set and choice value.

	e_1	e_2	e_3	e_4	e_5
u_1	1	1	1	1	4
u_2	1	0	0	0	1
u_3	0	0	0	0	1
u_4	0	0	0	1	0
u_5	1	1	1	0	3

5. Conclusion

In this paper, the theory of hesitant bipolar-valued fuzzy soft sets is firstly proposed based on soft sets and hesitant bipolar-valued fuzzy sets. Then, some basic operations and corresponding properties are defined. A multiattribute decision-making approach for hesitant bipolar-valued fuzzy soft sets is proposed. By using the thought of score function and level soft set, the hesitant bipolar-valued fuzzy soft set is converted into a fuzzy soft set. Since the fuzzy soft set is transformed into a classic soft set, the optimal decision making is obtained. The method not only considers the bipolarity and nonuniqueness of element membership but also solves the insufficient parameterization problem. Finally, a practical problem is solved to demonstrate the capability of the proposed method. Our future work is to study the parameterization reduction or the uncertainty measurement of hesitant bipolar-valued fuzzy soft sets, such as distance, similarity, and entropy, in which a new multiattribute decision-making method will be constructed.

Data Availability

The simulation data used to support the findings of the study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported in part by the National Natural Science Foundation of China under grant no. 61803190 and in part by the Liaoning Provincial Education Department Fund (Jjl201915403).

References

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965.

[2] D. Molodtsov, “Soft set theory-first results,” Computers & Mathematics with Applications, vol. 37, no. 4-5, pp. 19–31, 1999.

[3] P. K. Maji, R. Biswas, and A. Roy, “Fuzzy soft sets,” Journal of Fuzzy Mathematics, vol. 9, no. 3, pp. 589–602, 2001.

[4] P. K. Maji, R. Biswas, and A. Roy, “Intuitionistic fuzzy soft sets,” Journal of Fuzzy Mathematics, vol. 9, no. 3, pp. 677–692, 2001.

[5] X. Yang, T. Y. Lin, J. Yang, Y. Li, and D. Yu, “Combination of interval-valued fuzzy set and soft set,” Computers & Mathematics with Applications, vol. 58, no. 3, pp. 521–527, 2009.

[6] Y. Jiang, Y. Tang, Q. Chen, H. Liu, and J. Tang, “Interval-valued intuitionistic fuzzy soft sets and their properties,” Computers & Mathematics with Applications, vol. 60, no. 3, pp. 906–918, 2010.

[7] K. V. Babitha and J. J. Sunil, “Hesitant fuzzy soft sets,” Journal of New Results in Science, vol. 2, no. 3, pp. 98–107, 2013.

[8] F. Wang, X. Li, and X. Chen, “Hesitant fuzzy soft set and its applications in multicriteria decision making,” Journal of Applied Mathematics, vol. 2014, Article ID 645785, 10 pages, 2014.

[9] X. Peng and Y. Yang, “Interval-valued hesitant fuzzy soft sets and their application in decision making,” Fundamenta Informaticae, vol. 141, no. 1, pp. 71–93, 2015.

[10] H. Zhang, L. Xiong, and W. Ma, “On interval-valued hesitant fuzzy soft sets,” Mathematical Problems in Engineering, vol. 2015, no. 3, Article ID 254764, 17 pages, 2015.

[11] C. Li, D. Li, and J. Jin, “Generalized hesitant fuzzy soft sets and its application to decision making,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 33, no. 12, Article ID 1950019, 2019.

[12] P. Majumdar and S. K. Samanta, “On similarity measures of fuzzy soft sets,” International Journal of Advance in Soft Computing and Its Application, vol. 3, no. 2, pp. 1–8, 2011.

[13] Y. Y. Liu, K. Y. Qin, and L. Wang, “On similarity measures and distance measures of fuzzy soft sets,” Chinese Quarterly Journal of Mathematics, vol. 30, no. 3, pp. 349–357, 2015.

[14] Y. Jiang, Y. Tang, H. Liu, and Z. Chen, “Entropy on intuitionistic fuzzy soft sets and on interval-valued fuzzy soft sets,” Information Sciences, vol. 240, pp. 95–114, 2013.

[15] P. Muthukumar and G. Sai Sundara Krishnan, “A similarity measure of intuitionistic fuzzy soft sets and its application in medical diagnosis,” Applied Soft Computing, vol. 41, pp. 148–156, 2016.

[16] I. Beg and T. Rashid, “Ideal solutions for hesitant fuzzy soft sets,” Journal of Intelligent & Fuzzy Systems, vol. 30, no. 1, pp. 143–150, 2016.

[17] K. Rezaei and H. Rezaei, “New distance and similarity measures for hesitant fuzzy soft sets,” Iranian Journal of Fuzzy Systems, vol. 16, no. 6, pp. 159–176, 2019.

[18] H. Garg and R. Arora, “Distance and similarity measures for dual hesitant fuzzy soft sets and their applications in multicriteria decision making problem,” International Journal for Uncertainty Quantification, vol. 7, no. 3, pp. 229–248, 2017.

[19] S. Das, D. Malakar, S. Kar, and T. Pal, “Correlation measure of hesitant fuzzy soft sets and their application in decision making,” Neural Computing and Applications, vol. 31, no. 4, pp. 1023–1039, 2019.

[20] H. Garg and R. Arora, “Dual hesitant fuzzy soft aggregation operators and their application in decision-making,” Cognitive Computation, vol. 10, no. 5, pp. 769–789, 2018.

[21] R. Arora and H. Garg, “A robust correlation coefficient measure of dual hesitant fuzzy soft sets and their application
in decision making,” *Engineering Applications of Artificial Intelligence*, vol. 72, pp. 80–92, 2018.

[22] F. Feng, Y. B. Jun, X. Liu, and L. Li, “An adjustable approach to fuzzy soft set based decision making,” *Journal of Computational and Applied Mathematics*, vol. 234, no. 1, pp. 10–20, 2010.

[23] Y. Jiang, Y. Tang, and Q. Chen, “An adjustable approach to intuitionistic fuzzy soft sets based decision making,” *Applied Mathematics Modelling*, vol. 35, no. 2, pp. 824–836, 2011.

[24] Z. Xiao, W. Chen, and L. Li, “A method based on interval-valued fuzzy soft set for multi-attribute group decision-making problems under uncertain environment,” *Knowledge and Information Systems*, vol. 34, no. 3, pp. 653–669, 2013.

[25] H. Zhao, W. Ma, and B. Sun, “A novel decision making approach based on intuitionistic fuzzy soft sets,” *International Journal of Machine Learning and Cybernetics*, vol. 8, no. 4, pp. 1107–1117, 2017.

[26] S. B. Wang, J. Na, and Y. S. Xing, “Adaptive optimal parameter estimation and control of servo mechanisms: theory and experiments,” *IEEE Transactions on Industrial Electronics*, p. 1, 2020.

[27] S. B. Wang and J. Na, “Parameter estimation and adaptive control for servo mechanisms with friction compensation,” *IEEE Transactions on Industrial Informatics*, p. 1, 2020.

[28] S. B. Wang, L. Tao, Q. Chen, J. Na, and X. Ren, “USDE-based sliding mode control for servo mechanisms with unknown system dynamics,” *IEEE/ASME Transactions on Mechatronics*, vol. 25, no. 2, pp. 1056–1066, 2020.

[29] Q. Chen, H. H. Shi, and M. X. Sun, “Echo state network based backstepping adaptive iterative learning control for strict-feedback systems: an error-tracking approach,” *IEEE Transactions on Systems*, vol. 50, no. 7, pp. 3009–3022, 2020.

[30] J. Na, A. S. Chen, Y. B. Huang et al., “Air-fuel ratio control of internal combustion engines with unknown dynamics estimator: theory and experiments,” *IEEE Transactions on Control Systems Technology*, 2020, In press.

[31] L. Liu, Y. J. Liu, D. P. Li, S. Tong, and Z. Wang, “Barrier Lyapunov function based adaptive fuzzy FTC for switched systems and its applications to resistance inductance capacitance circuit system,” *IEEE Transactions on Cybernetics*, vol. 50, no. 8, pp. 3491–3502, 2020.

[32] Y.-J. Liu, Z. Geng, S. Tong, C. L. P. Chen, and L. Liu, “Adaptive neural network control for active suspension systems with time-varying vertical displacement and speed constraints,” *IEEE Transactions on Industrial Electronics*, vol. 66, no. 12, pp. 9458–9466, 2019.

[33] L. Liu, Y. J. Liu, A. Chen, S. C. Tong, and P. Chen, “Integral barrier Lyapunov function based adaptive control for switched nonlinear systems,” *Science China Information Sciences*, vol. 63, no. 3, Article ID 132203, 2020.

[34] L. Tang, D. Ma, and J. Zhao, “Adaptive neural control for switched non-linear systems with multiple tracking error constraints,” *IET Signal Processing*, vol. 13, no. 3, pp. 330–337, 2019.

[35] R. Wang, Q. Y. Sun, P. J. Zhang, Y. Gui, D. Qin, and P. Wang, “Reduced-order transfer function model of the droop-controlled inverter via Jordan continued-fraction expansion,” *IEEE Transactions on Energy Conversion*, p. 1, 2020.

[36] R. Wang, Q. Y. Sun, D. Z. Ma, and X. Hu, “Line impedance cooperative stability region identification method for grid-tied inverters under weak grids,” *IEEE Transactions on Smart Grid*, vol. 11, no. 4, pp. 2856–2866, 2020.

[37] Y. Zhu and W. X. Zheng, “Multiple Lyapunov functions analysis approach for discrete-time-switched piecewise-affine systems under dwell-time constraints,” *IEEE Transactions on Automatic Control*, vol. 65, no. 5, pp. 2177–2184, 2020.

[38] Y. Zhu, W. X. Zheng, and D. Zhou, “Quasi-synchronization of discrete-time Lu’s-type switched systems with parameter mismatches and relaxed PDT constraints,” *IEEE Transactions on Cybernetics*, vol. 50, no. 5, pp. 2026–2037, 2020.

[39] Y. Han, Q. Luo, and S. Chen, “Hesitant bipolar fuzzy set and its application in decision making,” *Fuzzy Systems and Data Mining*, vol. 293, pp. 115–120, 2016.

[40] K. Ullah, T. Mahmood, N. Jan, S. Broumi, and Q. Khan, “On bipolar-valued hesitant fuzzy sets and their applications in multi-attribute decision making,” *The Nucleus*, vol. 55, no. 2, pp. 93–101, 2018.

[41] P. Mandal and A. S. Ranadive, “Hesitant bipolar-valued fuzzy sets and bipolar-valued hesitant fuzzy sets and their applications in multi-attribute group decision making,” *Granular Computing*, vol. 4, no. 3, pp. 559–583, 2019.

[42] G. Wei, F. E. Alsaadi, T. Hayat, and A. Alsaedi, “Hesitant bipolar fuzzy aggregation operators in multiple attribute decision making,” *Journal of Intelligent & Fuzzy Systems*, vol. 33, no. 2, pp. 1119–1128, 2017.

[43] T. Mahmood, K. Ullah, M. Ullah, N. Jan, I. Deli, and Q. Khan, “Some aggregation operators for bipolar-valued hesitant fuzzy information based on Einstein operational laws,” *Journal of Engineering and Applied Sciences*, vol. 36, no. 2, pp. 63–72, 2017.

[44] X.-R. Xu and G.-W. Wei, “Dual hesitant bipolar fuzzy aggregation operators in multiple attribute decision making,” *International Journal of Knowledge-Based and Intelligent Engineering Systems*, vol. 21, no. 3, pp. 155–164, 2017.

[45] H. Gao, M. Lu, and Y. Wei, “Dual hesitant bipolar fuzzy Hamacher aggregation operators and their applications to multiple attribute decision making,” *Journal of Intelligent & Fuzzy Systems*, vol. 37, no. 4, pp. 5755–5766, 2019.

[46] A. Awang, M. Ali, and L. Abdullah, “Hesitant bipolar-valued neutrosophic set: formulation, theory and application,” *IEEE Access*, vol. 7, pp. 176099–176114, 2019.