Thermodynamic and Statistical-Mechanical Measures for Characterization of the Burst and Spike Synchronizations of Bursting Neurons

Sang-Yoon Kima,b, Woochang Lima,*

aDepartment of Science Education, Daegu National University of Education, Daegu 705-115, Korea
bResearch Division, LABASIS Corporation, Chunchon, Gangwon-Do 200-702, Korea

Abstract

By varying the noise intensity, we investigate the population synchronization in an inhibitory population of bursting Hindmarsh-Rose neurons. Unlike spiking neurons, bursting neurons show firing patterns with two timescales: a fast spiking timescale and a slow bursting timescale that modulates the spiking activity. Through separation of the fast and slow timescales, we characterize the burst and spike synchronization transitions by using “thermodynamic” order parameters, and quantitatively measure the degree of the burst and spike synchronizations by employing “statistical-mechanical” measures. Population synchronization may be well visualized in the raster plot of neural spikes which can be obtained in experiments. Instantaneous population firing rate, $R(t)$, which is directly obtained from the raster plot of spikes, is a realistic population quantity showing collective behaviors with both the slow and fast timescales. Through frequency filtering, we separate $R(t)$ into $R_b(t)$ (the instantaneous population burst rate (IPBR) describing the bursting behavior) and $R_s(t)$ (the instantaneous population spike rate (IPSR) describing the intraburst spiking behavior).

The time-averaged fluctuations of R_b and R_s play the role of thermodynamic order parameters, O_b and O_s, used for characterizing the burst and spike synchronization transitions, respectively. For more direct visualization of bursting behavior, we consider another raster plot of bursting onset or offset times, from which we can directly obtain the IPBR, $R_b^{(on)}(t)$ or $R_b^{(off)}(t)$, without frequency filtering. Time-averaged fluctuations of $R_b^{(on)}(t)$ and $R_b^{(off)}(t)$ are also shown to play the role of the order parameters, $O_b^{(on)}$ and $O_b^{(off)}$, for the bursting transition. Furthermore, the degree of burst synchronization seen in the raster plot of bursting onset or offset times is well measured in terms of a statistical-mechanical bursting measure M_b, introduced by considering the occupation and the pacing patterns of bursting onset or offset times. Similarly, we also develop...

*Corresponding Author.

Email addresses: sykim@labasis.com (Sang-Yoon Kim), woochanglim@dnue.ac.kr (Woochang Lim)

Preprint submitted to Elsevier May 11, 2014
a statistical-mechanical spiking measure M_s, based on R_s, to make practical characterization of the intraburst spike synchronization. It is thus shown that both thermodynamic order parameters and statistical-mechanical measures are effectively used to characterize the burst and spike synchronizations of bursting neurons.

Keywords: Bursting Neurons, Burst and Spike Synchronizations, Thermodynamic and Statistical-Mechanical Measures

PACS: 87.19.ml, 87.19.lc

1. Introduction

In recent years, brain rhythms which are observed in scalp electroencephalogram and local field potentials have attracted much attention (Buzsáki, 2006). These brain rhythms emerge via synchronization between individual neuronal firings. Synchronization of firing activities may be used for efficient sensory and cognitive processing (e.g., feature integration, selective attention, and memory formation) (Wang, 2010, 2003; Gray, 1994). This kind of neural synchronization is also correlated with pathological rhythms associated with neural diseases such as epilepsy, Parkinson’s disease, and Alzheimer’s disease (Uhlhaas and Singer, 2006; Traub and Whittington, 2010; Kaper et al., 2013). Here, we are interested in characterization of these synchronous brain rhythms.

There are two basic types of neuronal firing activities: spiking and bursting (Izhikevich, 2000). We are concerned about synchronization of bursting neurons. Bursting occurs when neuronal activity alternates, on a slow timescale, between a silent phase and an active (bursting) phase of fast repetitive spikings (Rinzel, 1985, 1987; Coombes and Bressloff, 2003; Izhikevich, 2006, 2007). In neural information transmission, burst input is more likely to have a stronger impact on the postsynaptic neuron than single spike input (Izhikevich, 2004; Krahe and Gabbiani, 2004; Lisman, 1997; Izhikevich et al., 2003). Intrinsically bursting neurons and chattering neurons in the cortex, thalamocortical relay neurons, thalamic reticular neurons, hippocampal pyramidal neurons, Purkinje cells in the cerebellum, pancreatic β-cells, and respiratory neurons in pre-Botzinger complex are representative examples of bursting neurons (Izhikevich, 2006, 2007). These bursting neurons exhibit two different patterns of synchronization due to the slow and fast timescales of bursting activity. Burst synchronization (synchrony on the slow bursting timescale) refers to a temporal coherence between the active phase onset or offset times of bursting neurons, while spike synchronization (synchrony on the fast spike timescale) characterizes a temporal coherence between intraburst spikes fired by bursting neurons in their respective active phases (Rubin, 2007; Omelchenko et al., 2010). Recently, many studies on the burst and spike synchronizations have been made in several aspects (e.g., chaotic phase synchronization, transitions between different states of burst synchronization, effect of network topology, effect on information transmission, suppression of bursting synchronization, and effect of noise and coupling on burst and spike synchronization) (Sun et al., 2011).
In this paper, we investigate the burst and spike synchronizations of bursting neurons by varying the noise intensity D. Population synchronization may be well visualized in the raster plot of neural spikes which can be obtained in experiments. Instantaneous population firing rate (IPFR), $R(t)$, which is directly obtained from the raster plot of spikes, is a realistic collective quantity describing population behaviors in both the computational and the experimental neuroscience (Wang, 2010; Brunel and Hakim, 2008, 1999; Brunel, 2000; Brunel and Wang, 2003; Geisler et al., 2005; Brunel and Hansel, 2006). We note that the experimentally-obtainable $R(t)$ is in contrast to the ensemble-averaged potential X_G which is often used as a population quantity in the computational and theoretical neuroscience, because to directly obtain X_G in real experiments is very difficult. To overcome this difficulty, instead of X_G, we employed $R(t)$ as a population quantity, and developed realistic measures, based on $R(t)$, to make practical characterization of synchronization of spiking neurons in both the computational and the experimental neuroscience (Kim and Lim, 2014). The mean square deviation of $R(t)$ plays the role of an order parameter O used for characterizing synchronization transition of spiking neurons (Manrubia et al., 2004). The order parameter O can be regarded as a “thermodynamic” measure because it concerns just the the macroscopic quantity $R(t)$ without considering any quantitative relation between $R(t)$ and the microscopic individual spikes. Through calculation of O, one can determine the region of noise intensity D where spike synchronization occurs. To quantitatively measure the degree of spike synchronization, a “statistical-mechanical” spiking measure M_s was introduced by taking into consideration both the occupation pattern and the pacing pattern of spikes in the raster plot. Particularly, the pacing degree between spikes was determined in a statistical-mechanical way by quantifying the average contribution of (microscopic) individual spikes to the (macroscopic) IPFR $R(t)$ (Kim and Lim, 2014). Consequently, synchronization of spiking neurons may be well characterized in terms of these realistic thermodynamic and statistical-mechanical measures, O and M_s, based on $R(t)$.

The main purpose of our work is to characterize the burst and spike synchronizations of bursting neurons by extending the realistic thermodynamic and statistical-mechanical measures of spiking neurons (Kim and Lim, 2014) to the case of bursting neurons. We separate the slow and fast timescales of the bursting activity via frequency filtering, and decompose the IPFR $R(t)$ into $R_b(t)$ (the instantaneous population burst rate (IPBR) describing the bursting behavior) and $R_s(t)$ (the instantaneous population spike rate (IPSR) describing the intraburst spiking behavior). Then, the mean square deviations of R_b and R_s play the role of thermodynamic order parameters, O_b and O_s, used for characterization of the burst and spike synchronization transitions, respectively. We also consider another raster plot of active phase (bursting) onset or offset times for more direct visualization of bursting behavior. From this type of raster plot,
we can directly obtain the IPBR, $R_b^{(on)}(t)$ or $R_b^{(off)}(t)$, without frequency filtering. It is shown that the time-averaged fluctuations of $R_b^{(on)}(t)$ and $R_b^{(off)}(t)$ also play the role of the order parameters, $O_b^{(on)}$ and $O_b^{(off)}$, for the bursting transition. Moreover, the degree of burst synchronization seen in the raster plot of active phase onset or offset times may be well measured in terms of a statistical-mechanical bursting measure M_b, introduced by considering the occupation and the pacing patterns of active phase onset or offset times in the raster plot. In a similar way, we also develop a statistical-mechanical spiking measure M_s, based on R_s, to quantitatively measure the degree of the intraburst spike synchronization. As a result, through separation of the slow bursting and fast spiking timescales, burst synchronization may be well characterized in terms of both thermodynamic order parameters (O_b, $O_b^{(on)}$ and $O_b^{(off)}$) and a statistical-mechanical bursting measure (M_b), while characterization of intraburst spike synchronization can be made well by using a thermodynamic order parameter (O_s) and a statistical-mechanical spiking measure (M_s). To our knowledge, no measures characterizing intraburst spike synchronization of bursting neurons seem to be introduced previously. Hence, O_s and M_s are new realistic measures characterizing the intraburst spike synchronization. For the case of burst synchronization, our thermodynamic order parameters (O_b, $O_b^{(on)}$ and $O_b^{(off)}$) and a statistical-mechanical bursting measure (M_b) are also in contrast to the conventional measures such as the normalized order parameter χ (Golomb, 2007; Hansel and Mato, 2003; Golomb and Rinzel, 1994; Golomb et al., 2006) and the burst phase order parameter r (Ivanchenko et al., 2004; Sun et al., 2011; Yu et al., 2011; Kuramoto, 1984; Strogatz, 2000). The normalized order parameter χ is given through dividing the order parameter (i.e., the time-averaged fluctuation of the ensemble-averaged potential X_G) by the average of time-averaged fluctuations of individual potentials. Our bursting order parameters, based on experimentally-obtainable IPBRs, are realistic ones when compared to χ, based on X_G, because X_G is very difficult to obtain in experiments. Furthermore, since X_G shows both the bursting and spiking activities, χ plays the role of an order parameter for the “whole” synchronization (including both the burst and spike synchronizations) of bursting neurons, which is in contrast to our bursting order parameters characterizing just the burst synchronization. On the other hand, the burst phase order parameter r is a “microscopic” measure quantifying the degree of coherence between (microscopic) individual burst phases, in contrast to our statistical-mechanical bursting measure M_b which denotes an average of contributions of microscopic individual bursts to the macroscopic IPBR. In a statistical-mechanical sense, our realistic bursting measure M_b supplements the conventional microscopic burst phase order parameter r for characterization of burst synchronization.

This paper is organized as follows. In Sec. 2 we describe an inhibitory population of bursting Hindmarsh-Rose (HR) neurons. In Sec. 3 through separation of the slow and fast timescales, we develop realistic thermodynamic order parameters and statistical-mechanical measures, based on IPBR and IPSR, which are applicable in both the computational and experimental neuroscience. Their
usefulness for characterization of the burst and spike synchronization is shown in explicit examples of bursting HR neurons. Through calculation of the thermodynamic bursting and spiking order parameters, we determine the range of noise intensity where the burst and spike synchronizations occur, respectively. In synchronized regions of noise intensity, we also measure the degree of the burst and spike synchronizations in terms of statistical-mechanical bursting and spiking measures, respectively. It is thus shown that these thermodynamic order parameters and statistical-mechanical measures are effectively used to characterize the burst and spike synchronizations of bursting neurons. Finally, a summary is given in Section 4.

2. Inhibitory Population of Bursting Hindmarsh-Rose Neurons

We consider an inhibitory population of globally-coupled bursting neurons. As an element in our coupled neural system, we choose the representative bursting HR neuron model which was originally introduced to describe the time evolution of the membrane potential for the pond snails \cite{Hindmarsh1982, Hindmarsh1984, Rose1985}. The population dynamics in this neural network is governed by the following set of ordinary differential equations:

\begin{align}
\frac{dx_i}{dt} &= y_i - ax_i^3 + bx_i^2 - z_i + I_{DC} + D\xi_i - I_{syn,i}, \\
\frac{dy_i}{dt} &= c - dx_i^2 - y_i, \\
\frac{dz_i}{dt} &= r[s(x_i - x_o) - z_i], \\
\frac{dg_i}{dt} &= \alpha g_\infty(x_i)(1 - g_i) - \beta g_i, \quad i = 1, \cdots, N,
\end{align}

where

\begin{align}
I_{syn,i} &= \frac{J}{N-1} \sum_{j(\neq i)}^N g_j(t)(x_i - X_{syn}), \\
g_\infty(x_i) &= 1/[1 + e^{-(x_i - x_*)\delta}].
\end{align}

Here, the state of the ith neuron at a time t (measured in units of milliseconds) is characterized by four state variables: the fast membrane potential x_i, the fast recovery current y_i, the slow adaptation current z_i, and the synaptic gate variable g_i denoting the fraction of open synaptic ion channels. The parameters in the single HR neuron are taken as $a = 1.0, b = 3.0, c = 1.0, d = 5.0, r = 0.001, s = 4.0, x_o = -1.6$ \cite{Longtin1997}.

Each bursting HR neuron is stimulated by using the common DC current I_{DC} and an independent Gaussian white noise ξ_i [see the 5th and the 6th terms in Eq. (1)] satisfying $\langle \xi_i(t) \rangle = 0$ and $\langle \xi_i(t)\xi_j(t') \rangle = \delta_{ij}\delta(t - t')$, where $\langle \cdots \rangle$ denotes the ensemble average. The noise ξ is a parametric one that randomly perturbs the strength of the applied current I_{DC}, and its intensity is controlled
by using the parameter D. As I_{DC} passes a threshold $I_{DC}^{*} (\approx 1.26)$ in the absence of noise, each single HR neuron exhibits a transition from a resting state [Fig. 1(a)] to a bursting state [Fig. 1(b)]. As shown in Fig. 1(c), bursting activity [alternating between a silent phase and an active (bursting) phase of fast repetitive spikings] occurs on a hedgehog-like attractor [the body (spines) of the hedgehog-like attractor corresponds to the silent (active) phase]. Here, we consider the suprathreshold case of $I_{DC} = 1.3$ where each HR neuron exhibits spontaneous bursting activity without noise.

The last term in Eq. (1) represents the synaptic coupling of the network. $I_{syn,i}$ of Eq. (5) represents a synaptic current injected into the ith neuron. Here the coupling strength is controlled by the parameter J and X_{syn} is the synaptic reversal potential. Here, we use $X_{syn} = -2$ for the inhibitory synapse. The synaptic gate variable g obeys the 1st order kinetics of Eq. (4) (Golomb and Rinzel, 1994; Wang and Buzsáki, 1996). Here, the normalized concentration of synaptic transmitters, activating the synapse, is assumed to be an instantaneous sigmoidal function of the membrane potential with a threshold x^{*} in Eq. (6), where we set $x^{*} = 0$ and $\delta = 30$ (Liang et al., 2009). The transmitter release occurs only when the neuron emits a spike (i.e., its potential x is larger than x^{*}).

For the inhibitory GABAergic synapse (involving the GABA$_{A}$ receptors), the synaptic channel opening rate, corresponding to the inverse of the synaptic rise time τ_{r}, is $\alpha = 10 \text{ ms}^{-1}$, and the synaptic closing rate β, which is the inverse of the synaptic decay time τ_{d}, is $\beta = 0.1 \text{ ms}^{-1}$ (Börgers and Kopell, 2003, 2005). Hence, I_{syn} rises fast and decays slowly.

Numerical integration of Eqs. (1)-(4) is done using the Heun method (San Miguel and Toral, 2000) (with the time step $\Delta t = 0.01$ ms). For each realization of the stochastic process, we choose a random initial point $[x_{i}(0), y_{i}(0), z_{i}(0), g_{i}(0)]$ for the ith ($i = 1, \ldots, N$) neuron with uniform probability in the range of $x_{i}(0) \in (-2, 2)$, $y_{i}(0) \in (-16, 0)$, $z_{i}(0) \in (1.1, 1.4)$, and $g_{i}(0) \in (0, 1)$.

Figure 1: Single bursting HR neuron. Time series of the fast membrane potential x for (a) $I_{DC} = 1.2$ and (b) $I_{DC} = 1.3$. (c) Projection of the phase flow onto the $x - z$ plane for $I_{DC} = 1.3$.
3. Characterization of The Burst and Spike Synchronizations in An Inhibitory Population of Bursting HR Neurons

In this section, we study the burst and spike synchronizations of bursting neurons. Through separation of the slow bursting timescale and the fast spiking timescale, we develop realistic thermodynamic order parameters and statistical-mechanical measures, based on IPBR and IPSR, and show their usefulness for characterization of the burst and spike synchronizations in explicit examples.

We consider an inhibitory population of N globally-coupled bursting HR neurons for $I_{DC} = 1.3$ and set the coupling strength as $J = 0.3$. By varying the noise intensity D, we investigate the population synchronization of bursting HR neurons. In computational neuroscience, an ensemble-averaged global potential,

$$X_G(t) = \frac{1}{N} \sum_{i=1}^{N} x_i(t),$$

is often used for describing emergence of population synchronization. Throughout this study, we consider the population behaviors after the transient time of 2×10^{3} ms. Figure 2(a) shows an oscillating global potential X_G for a synchronous case of $D = 0$. For comparison, an individual potential x_1 of the 1st HR neuron is also shown in Fig. 2(a). In contrast to X_G, each HR neuron fires sparse burstings about once per three global cycles of X_G. An active phase of the bursting activity begins at a bursting onset time and ends at a bursting offset time. At the bursting onset (offset) time, each individual potential x_i of the ith bursting neuron passes the threshold of $x^*_b = -1$ from below (above); the 1st bursting onset (offset) time of the 1st neuron (after the transient time) is denoted by the solid (open) circle in Fig. 2(a). Although the global potential X_G is an important population-averaged quantity to describe synchronization in computational neuroscience, it is practically difficult to directly obtain X_G in real experiments. To overcome this difficulty, instead of X_G, we use the IPFR which is an experimentally-obtainable population quantity used in both the experimental and the computational neuroscience (Wang, 2010; Brunel and Hakim, 2008; 1999; Brunel, 2000; Brunel and Wang, 2003; Geisler et al., 2005; Brunel and Hansel, 2006). The IPFR is obtained from the raster plot of neural spikes which is a collection of spike trains of individual neurons. Such raster plots of spikes, where population synchronization may be well visualized, are fundamental data in experimental neuroscience. As examples of population states, Figs. 2(b1), 2(b5) show the raster plots of neural spikes for various values of noise intensity D: synchronized bursting states for $D = 0$, 0.01, 0.04, and 0.06, and unsynchronized bursting state for $D = 0.08$. To obtain a smooth IPFR from the raster plot of spikes, we employ the kernel density estimation (kernel smoother) (Shimazaki and Shinomoto, 2010). Each spike in the raster plot is convoluted (or blurred) with a kernel function $K_h(t)$ to obtain a smooth estimate of IPFR, $R(t)$:

$$R(t) = \frac{1}{N} \sum_{i=1}^{N} \sum_{s=1}^{n_i} K_h(t - t_i^{(s)}),$$

(8)
Figure 2: Population bursting states for various values of D in an inhibitory ensemble of $N (=10^5)$ globally-coupled bursting HR neurons for $I_{DC} = 1.3$ and $J = 0.3$. Synchronized bursting states for $D = 0, 0.01, 0.04$, and 0.06, and unsynchronized bursting state for $D = 0.08$.

(a) Time series of the ensemble-averaged global potential X_G and time series of the individual potential x_1 of the 1st neuron for $D = 0$. The dotted horizontal line ($x^*_G = -1$) represents the bursting threshold (the solid and open circles denote the active phase onset and offset times, respectively), while the dashed horizontal line ($x^*_1 = 0$) represents the spiking threshold within the active phase. Raster plots of neural spikes for (b1)-(b5), time series of IPFR kernel estimate $R(t)$ for (c1)-(c5), time series of low-pass filtered IPBR $R_b(t)$ (cut-off frequency=10 Hz) for (d1)-(d5), raster plots of active phase (bursting) onset times for (e1)-(e5), raster plots of active phase (bursting) offset times for (f1)-(f5), time series of IPBR kernel estimate $R_b^{on}(t)$ for (g1)-(g5), and time series of IPBR kernel estimate $R_b^{off}(t)$ for (h1)-(h5). The bandwidth h of the Gaussian kernel function is 1 ms for the IPFR kernel estimate $R(t)$ and 50 ms for the IPBR kernel estimates $R_b^{on}(t)$ and $R_b^{off}(t)$.
where $t_s^{(i)}$ is the sth spiking time of the ith neuron, n_i is the total number of spikes for the ith neuron, and we use a Gaussian kernel function of band width h:

$$K_h(t) = \frac{1}{\sqrt{2\pi h}} e^{-t^2/2h^2}, \quad -\infty < t < \infty.$$ \hspace{1cm} (9)

Figures 2(c1)-2(c5) show smooth IPFR kernel estimates $R(t)$ of band width $h = 1$ ms. For $D = 0$, clear intraburst “bands,” each of which is composed of “stripes” of spikes, appear successively at nearly regular time intervals [see Fig. 2(b1)]; a magnification of the first intraburst band is given in Fig. 3(a1). For this case of $D = 0$, in addition to burst synchronization [synchrony on the slow bursting timescale $\tau_b (\approx 215$ ms)], spike synchronization [synchrony on the fast spike timescale $\tau_s (\approx 14.6$ ms)] occurs in each intraburst band.

As a result of this complete synchronization, the IPFR kernel estimate $R(t)$ exhibits a bursting activity [i.e., fast spikes appear on a slow wave in $R(t)$], as shown in Fig. 2(c1). However, as D is increased, loss of spike synchronization begins to occur in each intraburst band due to a smearing of spiking stripes. As an example, see the case of $D = 0.01$ where the raster plot of spikes and the IPFR kernel estimate $R(t)$ are given in Figs. 2(b2) and 2(c2), respectively. Smearing of the spiking stripes is well seen in the magnified first intraburst band of Fig. 3(a3). Hence, the amplitude of $R(t)$ decreases, as shown in Fig. 2(c2).

As D is further increased and passes a spiking noise threshold $D_s^* (\approx 0.032)$, complete loss of spike synchronization occurs in each intraburst band (i.e., spikes become incoherent within each intraburst band). Consequently, only the burst synchronization (without spike synchronization) occurs [e.g., see the case of $D = 0.04$ in Figs. 2(b3) and 2(c3)]. For this case, $R(t)$ shows a slow-wave oscillation without spikes. With increasing D, such “incoherent” intraburst bands become more and more smeared, and thus the degree of burst synchronization decreases [e.g., see Figs. 2(b4) and 2(c4) for $D = 0.06$]. Consequently, the amplitude of $R(t)$ is further decreased. With further increase in D, incoherent intraburst bands begin to overlap, which eventually results in the complete loss of burst synchronization when passing a bursting noise threshold $D_b^* (\approx 0.068)$. In this way, completely unsynchronized states with nearly stationary $R(t)$ appear, as shown in Figs. 2(b5) and 2(c5) for $D = 0.08$.

We note that the IPFR kernel estimate $R(t)$ is a population quantity describing the “whole” combined collective behaviors (including both the burst and spike synchronizations) of bursting neurons. For more clear investigation of population synchronization, we separate the slow bursting timescale and the fast spiking timescale via frequency filtering, and decompose the IPFR kernel estimate $R(t)$ into the IPBR $R_b(t)$ and the IPSR $R_s(t)$. Through low-pass filtering of $R(t)$ with cut-off frequency of 10 Hz, we obtain the regularly-oscillating IPBR $R_b(t)$ (containing only the bursting behavior without spiking) in Figs. 2(d1)-2(d5). As D is increased, the amplitude of $R_b(t)$ decreases gradually, and eventually $R_b(t)$ becomes nearly stationary when passing the bursting noise threshold D_b^*. For more direct visualization of bursting behavior, we consider another raster plot of bursting onset or offset times, from which we can
directly obtain the IPBR kernel estimate of band width \(h = 50 \) ms, \(R^{(on)}_b(t) \) or \(R^{(off)}_b(t) \), without frequency filtering. Figures 2(e1)-2(e5) show the raster plots of the bursting onset times, while the raster plots of the bursting offset times are shown in Figs. 2(f1)-2(f5). From these raster plots of the bursting onset (offset) times, we obtain smooth IPBR kernel estimates, \(R^{(on)}_b(t) \) \(R^{(off)}_b(t) \) in Figs. 2(g1) and 2(h5). For \(D = 0 \), clear bursting “stripes” [composed of bursting onset (offset) times and indicating burst synchronization] are formed in these raster plots; the bursting onset and offset stripes are time-shifted [see Figs. 2(e1) and 2(f1)]. The corresponding IPBR kernel estimates, \(R^{(on)}_b(t) \) and \(R^{(off)}_b(t) \), for \(D = 0 \) show regular oscillations with the same population bursting frequency \(f_b (\approx 4.7 \) Hz), as shown in Figs. 2(g1) and 2(h1), although they are phase-shifted. As \(D \) is increased, the bursting stripes in the raster plots become smeared and begin to overlap, and thus the degree of the burst synchronization decreases. Consequently, the amplitudes of both \(R^{(on)}_b(t) \) and \(R^{(off)}_b(t) \) decrease gradually (e.g., see the cases of \(D = 0.01, 0.04, \) and \(0.06 \)). Eventually, when passing the bursting noise threshold \(D^*_b \), bursting onset and offset times become completely scattered in the raster plots, and the corresponding IPBR kernel estimates, \(R^{(on)}_b(t) \) and \(R^{(off)}_b(t) \), become nearly stationary, as shown in Figs. 2(g5) and 2(h5) for \(D = 0.08 \).

As is well known, a conventional order parameter, based on the ensemble-
averaged global potential X_G, is often used for describing transition from asynchrony to synchrony in computational neuroscience (Golomb, 2007; Hansel and Mato, 2003; Golomb and Rinzel, 1994; Golomb et al., 2006). Here, instead of X_G, we use an experimentally-obtainable IPBR $R_b(t)$ (which is obtained from the IPFR kernel estimate $R(t)$ via low-pass filtering), and develop a realistic bursting order parameter for the bursting transition, which may be applicable in both the computational and the experimental neuroscience. The mean square deviation of $R_b(t)$,

\[\mathcal{O}_b \equiv \langle R_b(t) - \overline{R}_b(t) \rangle^2, \]

plays the role of a bursting order parameter \mathcal{O}_b, where the overbar represents the time average. The order parameter \mathcal{O}_b may be regarded as a thermodynamic measure because it concerns just the macroscopic IPBR $R_b(t)$ without any consideration between $R_b(t)$ and microscopic individual burstings. Here, we discard the first time steps of a trajectory as transients for 2×10^3 ms, and then we compute \mathcal{O}_b by following the trajectory for 3×10^4 ms. In the thermodynamic limit of $N \to \infty$, the bursting order parameter \mathcal{O}_b approaches a non-zero (zero) limit value for the synchronized (unsynchronized) bursting state. Figure 3(a) shows plots of the order parameter \mathcal{O}_b versus D. For $D < D_b^*$ (≈ 0.068), synchronized bursting states exist because the values of \mathcal{O}_b become saturated to non-zero limit values. As D passes the bursting noise threshold D_b^*, the bursting order parameter \mathcal{O}_b tends to zero as $N \to \infty$, and hence a transition to unsynchronized bursting states occurs because the noise spoils the burst synchronization. In addition to $R_b(t)$, we also employ another IPBR kernel estimates, $R_b^{(on)}(t)$ and $R_b^{(off)}(t)$, (which are directly obtained from the raster plots of bursting onset and offset times), and introduce realistic bursting order parameters, $\mathcal{O}_b^{(on)}$ and $\mathcal{O}_b^{(off)}$:

\[\mathcal{O}_b^{(on)} \equiv \langle R_b^{(on)}(t) - \overline{R}_b^{(on)}(t) \rangle^2 \text{ and } \mathcal{O}_b^{(off)} \equiv \langle R_b^{(off)}(t) - \overline{R}_b^{(off)}(t) \rangle^2. \]

Figures 3(b) and 3(c) show plots of the bursting order parameters $\mathcal{O}_b^{(on)}$ and $\mathcal{O}_b^{(off)}$ versus D, respectively. Like the case of \mathcal{O}_b, when passing the same bursting noise threshold D_b^*, the bursting order parameters $\mathcal{O}_b^{(on)}$ and $\mathcal{O}_b^{(off)}$ go to zero as $N \to \infty$, and hence a transition to burst unsynchronization occurs. In this way, the bursting transition may be well described in terms of the three realistic bursting order parameters, \mathcal{O}_b, $\mathcal{O}_b^{(on)}$ and $\mathcal{O}_b^{(off)}$.

We also characterize the burst synchronization in terms of a realistic statistical-mechanical bursting measure M_b, based on the IPBR kernel estimates $R_b^{(on)}(t)$ and $R_b^{(off)}(t)$. Previously, a statistical-mechanical spiking measure, based on the ensemble-averaged global potential X_G, was developed for characterization of spike synchronization of spiking neurons (Lim and Kim, 2011). However, the spiking measure, based on X_G, is practically inapplicable to the case of experimental neuroscience because to obtain X_G in experiments is difficult. Hence, instead of X_G, we used the experimentally-obtainable IPSR kernel estimate, and developed a refined version of statistical-mechanical spiking measure, based
Figure 4: Realistic statistical-mechanical bursting measures, based on the IPBR kernel estimates, $R_{b}^{(on)}(t)$ and $R_{b}^{(off)}(t)$, in an inhibitory population of $N = 10^3$ globally-coupled bursting HR neurons for $I_{DC} = 1.3$ and $J = 0.3$ in the case of $D = 0$. (a1) Raster plot of active phase (bursting) onset times, (a2) time series of the IPBR kernel estimate $R_{b}^{(on)}(t)$, and (a3) the global bursting phase $\Phi_{b}^{(on)}(t)$. (b1) Raster plot of active phase (bursting) offset times, (b2) time series of the IPBR kernel estimate $R_{b}^{(off)}(t)$, and (b3) the global bursting phase $\Phi_{b}^{(off)}(t)$. In (a2)-(a3) and (b2)-(b3), vertical dashed and dotted lines represent the times at which local minima and maxima (denoted by open and solid circles) of $R_{b}^{(on)}(t)$ and $R_{b}^{(off)}(t)$ occur, respectively, and $G_{i}^{(b, on)}$ [$G_{i}^{(b, off)}$] ($i = 1, 2$) denotes the ith global bursting onset (offset) cycle. Plots of (c1) [(c2)] $O_{i}^{(b, on)}$ [$O_{i}^{(b, off)}$] (occupation degree of bursting onset (offset) times in the ith global bursting onset (offset) cycle), (d1) [(d2)] $P_{i}^{(b, on)}$ [$P_{i}^{(b, off)}$] (pacing degree of bursting onset (offset) times in the ith global bursting onset (offset) cycle), and (e1) [(e2)] $M_{i}^{(b, on)}$ [$M_{i}^{(b, off)}$] (bursting measure in the ith global bursting onset (offset) cycle).
on the IPSR, to characterize spike synchronization of spiking neurons in both the experimental and the computational neuroscience (Kim and Lim, 2014). Here, we extend the realistic statistical-mechanical measure of spiking neurons (based on the IPSR) to the case of bursting neurons for characterizing the burst synchronization. As shown in Figs. 2(e1)(f1)-2(e5)(f5), burst synchronization may be well visualized in the raster plots of bursting onset (offset) times. For the synchronous bursting case, bursting stripes (composed of bursting onset (offset) times and indicating population burst synchronization) appear in the raster plots. As an example, we consider a synchronous bursting case of $D = 0$.

The raster plot in Fig. 4(a1) is composed of partially-occupied and smeared stripes of bursting onset times. To measure the degree of the burst synchronization seen in the raster plot, we develop a statistical-mechanical bursting measure $M_{b}^{(on)}$, based on $R_{b}^{(on)}(t)$, by considering the occupation pattern and the pacing pattern of the bursting onset times in the bursting stripes. The bursting measure $M_{i}^{(b, on)}$ of the ith bursting stripe is defined by the product of the occupation degree $O_{i}^{(b, on)}$ of bursting onset times (representing the density of the ith bursting stripe) and the pacing degree $P_{i}^{(b, on)}$ of bursting onset times (denoting the smearing of the ith bursting stripe):

$$M_{i}^{(b, on)} = O_{i}^{(b, on)} \cdot P_{i}^{(b, on)}.$$ \hspace{1cm} (12)

The occupation degree $O_{i}^{(b, on)}$ of bursting onset times in the ith bursting stripe is given by the fraction of HR neurons which fire burstings:

$$O_{i}^{(b, on)} = \frac{N_{i}^{(b)}}{N},$$ \hspace{1cm} (13)

where $N_{i}^{(b)}$ is the number of HR neurons which fire burstings in the ith bursting stripe. For the full occupation $O_{i}^{(b, on)} = 1$, while for the partial occupation $O_{i}^{(b, on)} < 1$. The pacing degree $P_{i}^{(b, on)}$ of bursting onset times in the ith bursting stripe can be determined in a statistical-mechanical way by taking into account their contributions to the macroscopic IPBR kernel estimate $R_{b}^{(on)}(t)$. Figure 4(a2) shows a time series of the IPBR kernel estimate $R_{b}^{(on)}(t)$ for $D = 0$; local maxima and minima are denoted by solid and open circles, respectively. Obviously, central maxima of $R_{b}^{(on)}(t)$ between neighboring left and right minima of $R_{b}^{(on)}(t)$ coincide with centers of bursting stripes in the raster plot. The global bursting cycle starting from the left minimum of $R_{b}^{(on)}(t)$ which appears first after the transient time ($= 2 \times 10^3$ ms) is regarded as the 1st one, which is denoted by $G_{1}^{(b, on)}$. The 2nd global bursting cycle $G_{2}^{(b, on)}$ begins from the next following right minimum of $G_{1}^{(b, on)}$, and so on. (The 1st global bursting cycle $G_{1}^{(b, on)}$ corresponds to the 2nd bursting stripe in Fig. 2(e1) because the minimum of the global bursting cycle, corresponding to the 1st bursting stripe in Fig. 2(e1), lies for $t < 2 \times 10^3$ ms.) Then, we introduce an instantaneous global bursting phase $\Phi_{b}^{(on)}(t)$ of $R_{b}^{(on)}(t)$ via linear interpolation in the two successive subregions forming a global bursting cycle (Freund et al., 2003), as shown
in Fig. 4(a3). The global bursting phase $\Phi_{b}^{(on)}(t)$ between the left minimum (corresponding to the beginning point of the ith global bursting cycle) and the central maximum is given by:

$$\Phi_{b}^{(on)}(t) = 2\pi(i - 3/2) + \pi \left(\frac{t - t_{i}^{(on,min)}}{t_{i}^{(on,max)} - t_{i}^{(on,min)}} \right)$$ \hspace{1cm} (14)$$

for $t_{i}^{(on,min)} \leq t < t_{i}^{(on,max)} \mand i = 1, 2, 3, \ldots$

and $\Phi_{b}^{(on)}(t)$ between the central maximum and the right minimum (corresponding to the beginning point of the $(i+1)$th global bursting cycle) is given by:

$$\Phi_{b}^{(on)}(t) = 2\pi(i - 1) + \pi \left(\frac{t - t_{i+1}^{(on,max)}}{t_{i+1}^{(on,max)} - t_{i}^{(on,max)}} \right)$$ \hspace{1cm} (15)$$

where $t_{i}^{(on,min)}$ is the beginning time of the ith global bursting cycle (i.e., the time at which the left minimum of $R_{b}^{(on)}(t)$ appears in the ith global bursting cycle) and $t_{i}^{(on,max)}$ is the time at which the maximum of $R_{b}^{(on)}(t)$ appears in the ith global bursting cycle. Then, the contribution of the kth microscopic bursting onset time in the ith bursting stripe occurring at the time $t_{k}^{(b,on)}$ to $R_{b}^{(on)}(t)$ is given by $\cos \Phi_{k}$, where Φ_{k} is the global bursting phase at the kth bursting onset time [i.e., $\Phi_{k} = \Phi(t_{k}^{(b,on)})$]. A microscopic bursting onset time makes the most constructive (in-phase) contribution to $R_{b}^{(on)}(t)$ when the corresponding global phase Φ_{k} is $2\pi n \mand n = 0, 1, 2, \ldots$, while it makes the most destructive (anti-phase) contribution to $R_{b}^{(on)}(t)$ when Φ_{k} is $2\pi(n - 1/2)$. By averaging the contributions of all microscopic bursting onset times in the ith stripe to $R_{b}^{(on)}(t)$, we obtain the pacing degree of spikes in the ith stripe:

$$P_{i}^{(b,on)} = \frac{1}{B_{i}^{(on)}} \sum_{k=1}^{B_{i}^{(on)}} \cos \Phi_{k},$$ \hspace{1cm} (16)$$

where $B_{i}^{(on)}$ is the total number of microscopic bursting onset times in the ith bursting stripe. By averaging $M_{i}^{(b,on)}$ of Eq. (12) over a sufficiently large number N_{b} of bursting stripes, we obtain the realistic statistical-mechanical bursting measure $M_{b}^{(on)}$, based on the IPSR kernel estimate $R_{b}^{(on)}(t)$:

$$M_{b}^{(on)} = \frac{1}{N_{b}} \sum_{i=1}^{N_{b}} M_{i}^{(b,on)}.$$ \hspace{1cm} (17)$$

For $D = 0$ we follow 500 bursting stripes and get $O_{i}^{(b,on)}$, $P_{i}^{(b,on)}$, and $M_{i}^{(b,on)}$ in each ith bursting stripe, which are shown in Figs. [4]c1), [4]d1), and [4]e1), respectively. Due to sparse burstings of individual HR neurons, the average occupation
Figure 5: Characterization of synchronized bursting states in terms of the realistic statistical-mechanical bursting measure M_b, based on the IPBR kernel estimates $R^{(on)}_b(t)$ and $R^{(off)}_b(t)$ in an inhibitory population of $N (= 10^3)$ globally-coupled bursting HR neurons for $I_{DC} = 1.3$ and $J = 0.3$. (a) Plot of O_b (average occupation degree of burstings) versus D. (b) Plot of P_b (average pacing degree of burstings) versus D. (c) Plot of M_b (realistic statistical-mechanical bursting measure) versus D. To obtain O_b, P_b, and M_b in (a)-(c), we follow 500 global bursting cycles for each D.

The degree $O^{(on)}_b (=\langle O^{(b, on)}_i \rangle_b \simeq 0.33)$, where $\langle \cdots \rangle_b$ denotes the average over bursting stripes, is small. Hence, only a fraction (about 1/3) of the total HR neurons fire burstings in each bursting stripe. On the other hand, the average pacing degree $P^{(on)}_b (=\langle P^{(b, on)}_i \rangle_b \simeq 0.94)$ is large in contrast to $O^{(on)}_b$. Consequently, the realistic statistical-mechanical bursting measure $M^{(on)}_b (=\langle M^{(b, on)}_i \rangle_b)$, representing the burst synchronization seen in the raster plot of bursting onset times, is 0.31. The main reason for the low degree of burst synchronization is mainly due to partial occupation. In this way, the realistic statistical-mechanical bursting measure $M^{(on)}_b$ can be used effectively for characterization of burst synchronization because $M^{(on)}_b$ concerns not only the pacing degree, but also the occupation degree of bursting onset times in the bursting stripes of the raster plot.

In addition to the above case of bursting onset times, we also consider population burst synchronization between the bursting offset times. Figures 5(b1) and 5(c1) show the raster plot composed of two stripes of bursting offset times and the corresponding IPBR $R^{(off)}_b$ for $D = 0$, respectively; the 1st and 2nd global bursting cycles, $G^{(b, off)}_1$ and $G^{(b, off)}_2$, are shown. Since the 1st global cycle of offset times, $G^{(b, off)}_1$, follows the 1st global cycle of onset times, $G^{(b, on)}_1$, it is clear that the realistic statistical-mechanical bursting measures $M^{(on)}_b$ and $M^{(off)}_b$ are well synchronized.
the 1st bursting stripe in Fig. 4(b1) corresponds to the 2nd bursting stripe in Fig. 2(f1). Then, as in the case of \(\Phi_{b}^{(on)}(t) \), one can introduce an instantaneous global bursting phase \(\Phi_{b}^{(off)}(t) \) of \(R_{b}^{(off)}(t) \) via linear interpolation in the two successive subregions forming a global bursting cycle [see Fig. 4(b3)] (Freund et al., 2003). Similarly to the case of bursting onset times, we measure the degree of the burst synchronization seen in the raster plot of bursting offset times in terms of a statistical-mechanical bursting measure \(M_{b}^{(off)} \), based on \(R_{b}^{(off)}(t) \), by considering the occupation pattern and the pacing pattern of the bursting offset times in the bursting stripes. The bursting measure \(M_{i}^{(b,off)} \) in the \(i \)th bursting stripe also is defined by the product of the occupation degree \(O_{i}^{(b,off)} \) of bursting offset times and the pacing degree \(P_{i}^{(b,off)} \) of bursting offset times in the \(i \)th bursting stripe. We also follow 500 bursting stripes and get \(O_{i}^{(b,off)}, P_{i}^{(b,off)}, \) and \(M_{i}^{(b,off)} \) in each \(i \)th bursting stripe for \(D = 0 \), which are shown in Figs. 4(c2), 4(d2), and 4(e2), respectively. For this case of bursting offset times, \(O_{b}^{(off)} = \langle O_{b}^{(b,off)} \rangle_{b} \simeq 0.33, P_{b}^{(off)} = \langle P_{b}^{(b,off)} \rangle_{b} \simeq 0.92, \) and \(M_{b}^{(off)} = \langle M_{b}^{(b,off)} \rangle_{b} \simeq 0.30. \) The pacing degree of onset times \(P_{b}^{(on)} \simeq 0.94 \) is a little larger than the pacing degree of the offset times \(P_{b}^{(off)} \), although the occupation degrees \(\langle 0.33 \rangle \) of the onset and the offset times are the same. We take into consideration both cases of the onset and offset times equally and define the average occupation degree \(O_{b} \), the average pacing degree \(P_{b} \), and the statistical-mechanical bursting measure \(M_{b} \) as follows:

\[
O_{b} = \frac{O_{b}^{(on)} + O_{b}^{(off)}}{2}, \quad P_{b} = \frac{P_{b}^{(on)} + P_{b}^{(off)}}{2}, \quad M_{b} = \frac{M_{b}^{(on)} + M_{b}^{(off)}}{2}. \tag{18}
\]

By increasing the noise intensity \(D \), we follow 500 bursting stripes and characterize burst synchronization in terms of \(O_{b} \) (average occupation degree), \(P_{b} \) (average pacing degree), and \(M_{b} \) (statistical-mechanical bursting measure) for 15 values of \(D \) in the whole region of burst synchronization \(|0 \leq D < D_{b}^{*} (\simeq 0.068)| \), and the results are shown in Figs. 5(a)-5(c). As \(D \) is increased, the average occupation degree \(O_{b} \) (denoting the average density of bursting stripes in the raster plot) decreases very slowly around \(O_{b} \simeq 0.32 \), because a little tendency for noise-induced skipping of burstings in individual HR neurons occurs (Golomb and Rinzel, 1994). On the other hand, with increasing \(D \), the average pacing degree \(P_{b} \) (representing the average smearing of the bursting stripes in the raster plot) decreases rapidly due to destructive role of noise spoiling burst synchronization. The statistical-mechanical bursting measure \(M_{b} \) also makes a rapid decrease because of a rapid drop in \(P_{b} \). Both \(P_{b} \) and \(M_{b} \) show quadratic decreases because they are well fitted with quadratic functions: \(P_{b} \simeq -254.18 \, D^{2} + 4.35 \, D + 0.93 \) and \(M_{b} \simeq -73.26 \, D^{2} + 1.26 \, D + 0.31. \) In this way, we characterize burst synchronization in terms of the realistic statistical-mechanical bursting measure \(M_{b} \) in the whole synchronized region, and find that \(M_{b} \) reflects the degree of burst synchronization seen in the raster plot of onset and offset times very well.

From now on, we investigate the intraburst spike synchronization of burst-
Figure 6: Population intraburst spiking states for various values of D in an inhibitory ensemble of N globally-coupled bursting HR neurons for $I_{DC} = 1.3$ and $J = 0.3$: synchronized spiking states for $D = 0, 0.005, 0.01$, and 0.02, and unsynchronized spiking states for $D = 0.04$ and 0.08. $N = 10^3$ except for the case of (d). Raster plots of neural spikes for (a1)-(a6), time series of IPFR kernel estimate $R(t)$ for (b1)-(b6), and time series of band-pass filtered IPSR $R_s(t)$ [lower and higher cut-off frequencies of 30 Hz (high-pass filter) and 90 Hz (low-pass filter)] for (c1)-(c6) in the 1st global bursting cycle of the IPBR $R_b(t)$ (after the transient time of 2×10^3 ms) for each D. Intraburst spiking transition: (d) plots of realistic thermodynamic spiking order parameters O_s [based on $R_s(t)$] versus D.

Inhibiting HR neurons by varying the noise intensity D. Figures 6(a1)-6(a6) and Figures 6(b1)-6(b6) show the raster plots of intraburst spikes and the corresponding IPFR kernel estimates $R(t)$ during the 1st global bursting cycle of the IPBR $R_b(t)$, respectively for various values of D: synchronized spiking states for $D = 0, 0.005, 0.01$, and 0.02, and unsynchronized spiking states for $D = 0.04$ and 0.08. As mentioned above, $R(t)$ exhibits the whole combined population behaviors including the burst and spike synchronizations with both the slow bursting and the fast spiking timescales. Hence, through band-pass filtering of $R(t)$ [with the lower and the higher cut-off frequencies of 30 Hz (high-pass filter) and 90 Hz (low-pass filter)], we obtain the IPSRs $R_s(t)$, which are shown in Figs. 6(c1)-6(c6). Then, the intraburst spike synchronization may be well described in terms of the IPSR $R_s(t)$. For $D = 0$, clear 8 spiking stripes (composed
of spikes and indicating population spike synchronization) appear in the intraburst band of the 1st global bursting cycle of the IPBR $R_b(t)$ [see Fig. 6(a1)], and the IPFR kernel estimate $R(t)$ exhibits a bursting activity [i.e., fast spikes appear on a slow wave in $R(t)$] due to the complete synchronization (including both the burst and spike synchronizations), as shown in Fig. 6(b1). However, the band-pass filtered IPSR $R_s(t)$ shows only the fast spiking oscillations (without a slow wave) with the population spiking frequency $f_s (\simeq 68.5 \text{ Hz})$ [see Fig. 6(c1)]. As D is increased, spiking stripes in the intraburst band become more and more smeared (e.g., see the cases of $D = 0.005, 0.01, \text{ and } 0.02$). As a result, the amplitude of the IPSR $R_s(t)$ decreases due to loss of spike synchronization. Eventually, when passing the spiking noise threshold $D_s^* (\simeq 0.032)$, spikes become completely scattered within the intraburst band (i.e., intraburst spikes become completely incoherent), and hence complete loss of spike synchronization occurs in the intraburst band. As an example, see the case of $D = 0.04$.

For this case, the IPSR $R_s(t)$ becomes nearly stationary, while the IPFR kernel estimate $R(t)$ shows a slow-wave oscillation (without spikes) due to the burst synchronization. Thus, for $D > D_s^*$ only the burst synchronization may occur. With further increase in D, the incoherent intraburst band expands, fills the whole region of the global bursting cycle, and overlaps with a nearest intraburst band. Consequently, complete loss of burst synchronization also occurs when passing the bursting noise threshold $D_b^* (\simeq 0.068)$. Thus, for $D > D_b^*$ completely unsynchronized states with nearly stationary $R(t)$ appear (e.g., see the case of $D = 0.08$).

For characterization of the intraburst spiking transition, we employ the experimentally-obtainable IPSR $R_s(t)$ (which is obtained from the IPFR kernel estimate $R(t)$ via band-pass filtering), and develop a realistic spiking order parameter O_s, which may be applicable in both the computational and the experimental neuroscience. The mean square deviation of $R_s(t)$ in the ith global bursting cycle,

$$O_s^{(i)} = \frac{(R_s(t) - \bar{R}_s(t))^2}{N_b},$$

plays the role of a spiking order parameter $O_s^{(i)}$ in the ith global bursting cycle of the IPBR $R_b(t)$. By averaging $O_s^{(i)}$ over a sufficiently large number N_b of global bursting cycles, we obtain the realistic thermodynamic spiking order parameter:

$$O_s = \frac{1}{N_b} \sum_{i=1}^{N_b} O_s^{(i)}.$$
Figure 7: Realistic statistical-mechanical intraburst spiking measure in an inhibitory population of \(N (=10^3) \) globally-coupled bursting HR neurons for \(I_{DC} = 1.3 \) and \(J = 0.3 \). For \(D = 0 \), (a1) a magnified raster plot of neural spikes, (a2) time series of the IPSR \(R_i(t) \), and (a3) time series of the global spiking phase \(\Phi_s(t) \) in the 1st global bursting cycle of \(R_i(t) \) \([t_1^{(b)} (=2022\text{ms}) < t < t_2^{(b)} (=2238\text{ms})]\) in Fig. 2(d1). The intraburst “band” \([t_1^{(b,off)} (=2059\text{ms}) < t < t_2^{(b,off)} (=2190\text{ms})]\) in (a1), corresponding to the 1st global active phase, is composed of 8 stripes of spikes; \(t_1^{(b,off)} \) (maximum of \(R_{i}^{(off)}(t) \) within the 1st global bursting cycle) is the global active phase onset time, and \(t_2^{(b,off)} \) (maximum of \(R_{i}^{(off)}(t) \) within the 1st global bursting cycle) is the global active phase offset time. In the intraburst band, the maxima (minima) of \(R_i(t) \) are denoted by solid (open) circles, and 8 spiking cycles \(G_{1,j}^{(a)} \) \((j = 1,...,8)\) exist in the 1st global bursting cycle. For \(D = 0 \), (b1) plot of \(G_{1,j}^{(a)} \) (occupation degree of spikes), (b2) plot of \(P_{1,j}^{(a)} \) (pacing degree of spikes), and (b3) \(M_{1,j}^{(a)} \) (spiking measure) in the 1st global bursting cycle of \(R_i(t) \) versus \(j \).

For \(D = 0 \), (c1) plot of \(G_{1,i}^{(a)} \) (occupation degree of spikes), (c2) plot of \(P_{1,i}^{(a)} \) (pacing degree of spikes), and (c3) \(M_{1,i}^{(a)} \) (spiking measure) in the 1st global bursting cycle versus \(i \). Characterization of intraburst spiking states: (d1) plot of \(\langle O_s \rangle_r \) (average occupation degree of spikes), (d2) plot of \(\langle P_s \rangle_r \) (average pacing degree of spikes), and (d3) plot of \(\langle M_s \rangle_r \) (average statistical-mechanical intraburst spiking measure) versus \(D \). For each \(D \), we follow 100 bursting cycles in each realization, and obtain \(\langle O_s \rangle_r, \langle P_s \rangle_r, \) and \(\langle M_s \rangle_r \) via average over 20 realizations.
We also characterize the spike synchronization in terms of a realistic statistical-mechanical spiking measure \(M_s \), based on the IPSR \(R_s(t) \). As shown in Figs. 6(a1)-6(a6), spike synchronization may be well visualized in the raster plot of spikes. For the synchronous spiking case, spiking stripes (composed of spikes and indicating population spike synchronization) appear in the intraburst band of the raster plot. As an example, we consider a synchronous spiking case of \(D = 0 \). Figures 7(a1) and 7(a2) show a magnified raster plot of neural spikes and the IPSR \(R_s(t) \), corresponding to the 1st global bursting cycle of the IPBR \(R_b(t) \) \([t_1^{(b)} (= 2022\text{ms}) < t < t_2^{(b)} (= 2238\text{ms})]\) shown in Fig. 2(d1). The intraburst band in Fig. 7(a2) [a region bounded by the vertical dotted lines: \(t_1^{(b,\text{on})} (= 2059\text{ms}) < t < t_2^{(b,\text{off})} (= 2190\text{ms})\)], corresponding to the 1st global active phase, is composed of 8 stripes of spikes; \(t_1^{(b,\text{on})} \) (maximum of \(R_b^{(on)}(t) \) within the 1st global bursting cycle) is the global active phase onset time, and \(t_1^{(b,\text{off})} \) (maximum of \(R_b^{(off)}(t) \) within the 1st global bursting cycle) is the global active phase offset time. In the intraburst band, the maxima (minima) of \(R_s(t) \) are denoted by solid (open) circles, and 8 global spiking cycles \(G_{1,j}^{(s)} \) \((j = 1, \ldots, 8)\) exist in the 1st global bursting cycle of \(R_b(t) \). For \(1 < j < 8 \), each \(j \)-th global spiking cycle \(G_{1,j}^{(s)} \), containing the \(j \)-th maximum of \(R_s(t) \), begins at the left nearest-neighboring minimum of \(R_s(t) \) and ends at the right nearest-neighboring minimum of \(R_s(t) \), while for both extreme cases of \(j = 1 \) and 8, \(G_{1,1}^{(s)} \) begins at \(t_1^{(b)} \) [the beginning time of the 1st global bursting cycle of \(R_b(t) \)] and \(G_{1,8}^{(s)} \) ends at \(t_2^{(b)} \) [the ending time of the 1st global bursting cycle of \(R_b(t) \)]. Then, as in the case of the global bursting phase, one can introduce an instantaneous global spiking phase \(\Phi_s(t) \) of \(R_s(t) \) via linear interpolation in the two successive subregions (the left subregion joining the left beginning point and the central maximum and the right subregion joining the central maximum and the right ending point) forming a global spiking cycle [see Fig. 7(a3)] (Freund et al., 2003). Similarly to the case of burst synchronization, we measure the degree of the intraburst spike synchronization seen in the raster plot in terms of a statistical-mechanical spiking measure, based on \(R_s(t) \), by considering the occupation pattern and the pacing pattern of spikes in the global spiking cycles. The spiking measure \(M_{1,j}^{(s)} \) of the \(j \)-th global spiking cycle in the 1st global bursting cycle is defined by the product of the occupation degree \(O_{1,j}^{(s)} \) of spikes (representing the density of spikes in the \(j \)-th global spiking cycle) and the pacing degree \(P_{1,j}^{(s)} \) of spikes (denoting the smearing of spikes in the \(j \)-th global spiking cycle). Figures 7(b1)-7(b3) show the plots of \(O_{1,j}^{(s)} \), \(P_{1,j}^{(s)} \), and \(M_{1,j}^{(s)} \), respectively. For the 1st global bursting cycle, the spiking-averaged occupation degree \(O_1^{(s)} \) \((=\langle O_{1,j}^{(s)} \rangle_s) \simeq 0.25 \), the spiking-averaged pacing degree \(P_1^{(s)} \) \((=\langle P_{1,j}^{(s)} \rangle_s) \simeq 0.56 \), and the spiking-averaged statistical-mechanical spiking measure \(M_1^{(s)} \) \((=\langle M_{1,j}^{(s)} \rangle_s) \simeq 0.14 \), where \(\langle \cdots \rangle_s \) represents the average over the spiking cycles. We also follow 500 bursting cycles and get \(O_1^{(s)} \), \(P_1^{(s)} \), and \(M_1^{(s)} \) in each \(i \)-th global bursting cycle for \(D = 0 \), which are shown in Figs. 7(c1), 7(c2), and 7(c3), respectively. Then,
of the statistical-mechanical bursting measure \(M \), the statistical-mechanical spiking measure \(M \) respectively. As \(D \) is increased, the average occupation degree \(O_b \) decreases very rapidly because of a rapid drop in \(O_b \). We increase the noise intensity \(D \) and obtain \(O_s \), \(P_s \), and \(M_s \). However, as will be seen below, with increasing \(D \), \(P_s \) decreases very rapidly in an exponential way, in contrast to the bursting case. Hence, for more accurate results, we repeat the process to get \(O_s \), \(P_s \), and \(M_s \) for multiple realizations. Thus, we obtain \(\langle O_s \rangle_r \) (average occupation degree of spikes in the global spiking cycles), \(\langle P_s \rangle_r \) (average pacing degree of spikes in the global spiking cycles), and \(\langle M_s \rangle_r \) (average statistical-mechanical spiking measure in the global spiking cycles) through average over all realizations. For each realization, we follow 100 bursting cycles, and obtain \(\langle O_s \rangle_r \), \(\langle P_s \rangle_r \), and \(\langle M_s \rangle_r \) via average over 20 realizations. Through these multiple-realization simulations, we characterize intraburst spike synchronization in terms of \(\langle O_s \rangle_r \), \(\langle P_s \rangle_r \), and \(\langle M_s \rangle_r \) for 8 values of \(D \) in the whole region of spike synchronization \([0 \leq D < D^*_b (\simeq 0.032)] \), which are shown in Figs. 7(d1)-(d3), respectively. As \(D \) is increased, the average occupation degree \(\langle O_s \rangle_r \) decreases very slowly around \(\langle O_s \rangle_r \sim 0.24 \) due to a little tendency for noise-induced subtracting of spikes in individual HR neurons, while the average pacing degree \(\langle P_s \rangle_r \) decreases very rapidly due to destructive role of noise spoiling spike synchronization. The average statistical-mechanical spiking measure \(\langle M_s \rangle_r \) also makes a rapid decrease because of a rapid drop in \(\langle P_s \rangle_r \). Both \(\langle P_s \rangle_r \) and \(\langle M_s \rangle_r \) exhibit exponential decreases because they are well fitted with exponential functions: \(\langle P_s \rangle_r \simeq 0.58 e^{-0.75 D - 0.019} \) and \(\langle M_s \rangle_r \simeq 0.15 e^{-0.05 D - 0.005} \). In this way, we characterize intraburst spike synchronization in terms of the realistic average statistical-mechanical spiking measure \(\langle M_s \rangle_r \) in the whole synchronized region, and find that \(\langle M_s \rangle_r \) reflects the degree of intraburst spike synchronization seen in the raster plot very well. Finally, we note that the exponential loss of spike synchronization is much faster than the quadratic loss of the burst synchronization. As a result, the break-up of the spike synchronization occurs first at the spiking noise threshold \(D^*_b \simeq 0.032 \), and then the burst synchronization disappears at the bursting noise threshold \(D^*_b \simeq 0.068 \).

4. Summary

We have investigated the burst and spike synchronizations of bursting HR neurons by varying the noise intensity. Population synchronization may be well visualized in the raster plot of neural spikes which may be obtained in experi-
ments. The IPFR kernel estimate $R(t)$, which is obtained from the raster plot of spikes, is a realistic population quantity showing collective behaviors (including the burst and spike synchronizations) with both the slow and fast timescales. We separate the slow bursting and the fast spiking timescales via frequency filtering, and decompose the IPFR kernel estimate $R(t)$ into the IPBR $R_b(t)$ and the IPSR $R_s(t)$. Based on $R_b(t)$ and $R_s(t)$, we have developed thermodynamic bursting and spiking order parameters \mathcal{O}_b and \mathcal{O}_s for characterizing the burst and spike synchronization transitions. The ranges of noise intensity for which the burst and spike synchronizations occur have thus been determined through calculations of \mathcal{O}_b and \mathcal{O}_s, respectively. For more direct visualization of bursting behavior, we consider another raster plot of active phase (bursting) onset or offset times, from which we can directly obtain the IPBR kernel estimate, $R_b^{(on)}(t)$ or $R_b^{(off)}(t)$, without frequency filtering. Based on $R_b^{(on)}(t)$ and $R_b^{(off)}(t)$, we have also developed another thermodynamic order parameters, $\mathcal{O}_b^{(on)}$ and $\mathcal{O}_b^{(off)}$, for the burst transition. Furthermore, the degree of burst synchronization seen in the raster plot of active phase onset or offset times has been well measured in terms of a statistical-mechanical bursting measure M_b, introduced by considering the occupation and the pacing patterns of active phase onset or offset times in the raster plot. Similarly, we have also developed a statistical-mechanical spiking measure M_s, based on $R_s(t)$, and measured the degree of the intraburst spike synchronization well. Consequently, we have shown in explicit examples that these thermodynamic order parameters and statistical-mechanical measures are effectively used to characterize the burst and spike synchronizations of bursting neurons.

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2013057789).

References

Batista CAS, Batista AM, de Pontes JAC, Viana RL, Lopes SR. Chaotic phase synchronization in scale-free networks of bursting neurons. Phys Rev E 2007;76:016218.

Batista CAS, Lameu EL, Batista AM, Lopes SR, Pereira T, Zamora-Lopez G, Kurths J, Viana RL. Phase synchronization of bursting neurons in clustered small-world networks. Phys Rev E 2012;86:016211.

Börchers C, Kopell N. Synchronization in network of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput 2003;15:509-38.
Börgers C, Kopell N. Effects of noisy drive on rhythms in networks of excitatory and inhibitory neurons. Neural Comput 2005;17:557-608.

Brunel N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 2000;8:183-208.

Brunel N, Hakim V. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput 1999;11:1621-71.

Brunel N, Hakim V. Sparsely synchronized neuronal oscillations. Chaos 2008;18:015113.

Brunel N, Hansel D. How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Neural Comput 2006;18:1066-110.

Brunel N, Wang XJ. What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 2003;90:415-30.

Buzsáki G. Rhythms of the Brain. New York: Oxford University Press; 2006.

Coombes S, Bressloff PC, editors. Bursting: The Genesis of Rhythm in the Nervous System. Singapore: World Scientific; 2005.

Dhamala M, Jirsa V, Ding M. Transitions to synchrony in coupled bursting neurons. Phys Rev Lett. 2004;92:028101.

Freund J, Schimansky-Geier L, Hänggi P. Freund J, Schimansky-Geier L, Hänggi P. Frequency and phase synchronization in stochastic systems. Chaos 2003;13:225-38.

Geisler C, Brunel N, Wang XJ. The contribution of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. J Neurophysiol 2005;94:4344-61.

Golomb D. Neuronal synchrony measures. Scholarpedia 2007;2(1):1347.

Golomb D, Rinzel J. Clustering in globally coupled inhibitory neurons. Physica D 1994;72:259-82.

Golomb D, Shedmi A, Curtu R, Ermentrout GB. Persistent synchronized bursting activity in cortical tissues with low magnesium concentration: a modeling study. J Neurophysiol 2006;95:1049-67.

Gray CM. Synchronous oscillations in neuronal systems: Mechanisms and functions. J Comput Neurosci 1994;1:11-38.

Hansel D, Mato G. Asynchronous states and the emergence of synchrony in large networks of interacting excitatory and inhibitory neurons. Neural Comput 2003;15:1-56.
Hindmarsh JL, Rose RM. A model of the nerve impulse using two first-order differential equations. Nature 1982;296:162-4.

Hindmarsh JL, Rose RM. A model of neuronal bursting using three coupled first order differential equations. Proc R Soc London, Ser. B 1984;221:87-102.

Ivanchenko MV, Osipov GV, Shalfeev VD, Kurths J. Phase synchronization in ensembles of bursting oscillators. Phys Rev Lett 2004;93:134101.

Izhikevich EM. Neural excitability, spiking, and bursting. Int J Bif Chaos 2000;10:1171-266.

Izhikevich EM. Which model to use for cortical spiking neurons? IEEE Trans Neural Networks 2004;15:1063-70.

Izhikevich EM. Bursting. Scholarpedia 2006;1(3):1300.

Izhikevich EM. Dynamical Systems in Neuroscience. Cambridge: MIT Press; 2007.

Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC. Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci 2003;26:161-7.

Kaper TJ, Kramer MA, Rotstein HG. Introduction to focus issue: rhythms and dynamic transitions in neurological disease: modeling, computation, and experiment. Chaos 2013;23:046001.

Kim SY, Lim W. Coupling-induced population synchronization in an excitatory population of subthreshold Izhikevich neurons. Cognitive Neurodynamics 2013;7:495-503.

Kim SY, Lim W. Realistic thermodynamic and statistical-mechanical measures for neural synchronization. J Neurosci Methods 2014;226:161-70.

Kim SY, Kim Y, Hong DG, Kim J, Lim W. Stochastic bursting synchronization in a population of subthreshold Izhikevich neurons. J Korean Phys Soc 2012;60:1441-7.

Krahe R, Gabbian F. Burst firing in sensory system. Nature Rev. Neurosci. 2004;5:13-23.

Kuramoto Y. Chemical Oscillations, Waves, and Turbulence. Berlin: Springer; 1984.

Lameu EL, Batista CAS, Batista AM, Larosz K, Viana RL, Lopes SR, Kurths J. Suppression of bursting synchronization in clustered scale-free (rich-club) neural networks. Chaos 2012;22:043149.

Liang X, Tang M, Dhamala M, Liu Z. Phase synchronization of inhibitory bursting neurons induced by distributed time delays in chemical coupling. Phys Rev E 2009;80:066202.
Lim W, Kim SY. Statistical-mechanical measure of stochastic spiking coherence in a population of inhibitory subthreshold neuron. J Comput Neurosci 2011;31:667-77.

Lisman J. Bursts as a unit of neural information: making unreliable synapse reliable. Trends Neurosci 1997;20:38-43.

Longtin A. Autonomous stochastic resonance in bursting neurons. Phys Rev E 1997;55:868-76.

Manrubia SC, Mikhailov AS, Zanette DH. Emergence of Dynamical Order. Singapore: World Scientific; 2004.

Omelchenko I, Rosenblum M, Pikovsky A. Synchronization of slow-fast systems. Eur Phys J 2010;191:3-14.

Pereira T, Baptista M, Kurths J. Multi-time-scale synchronization and information processing in bursting neuron networks. Eur Phys J Spec Top 2007;146:155-68.

Rinzel J. Bursting oscillations in an excitable membrane model. In: Sleeman BD, Jarvis RJ, editors. Ordinary and Partial Differential Equations. Proceedings of the 8th Dundee Conference. Lecture Notes in Mathematics, 1151. Berlin: Springer; 1985, p.304-16.

Rinzel J. A formal classification of bursting mechanisms in excitable systems. In: Teramoto E, Yamaguti M, editors. Mathematical Topics in Population Biology, Morphogenesis, and Neurosciences, vol. 71 of Lecture Notes in Biomathematics. Berlin: Springer-Verlag; 1987.

Rose RM, Hindmarsh JL. A model of a thalamic neuron. Proc R Soc London Ser B 1985;225:161-93.

Rubin JE. Burst synchronization. Scholarpedia 2007;2(10):1666.

San Miguel M, Toral R. In: Martinez J, Tiemann R, Tirapegui E, editors. Instabilities and Nonequilibrium Structures VI. Dordrecht: Kluwer Academic Publisher; 2000, p.35.

Shi X, Lu Q. Firing patterns and complete synchronization of coupled Hindmarsh-Rose neurons. Chin Phys 2005;14:77-85.

Shi X, Lu Q. Burst synchronization of electrically and chemically coupled map-based neurons. Physica A 2009;388:2410-9.

Shimazaki H, Shinomoto S. Kernel band width optimization in spike rate estimation. J Comput Neurosci 2010;29:171-82.

Strogatz SH. From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators. Physica D 2000;143:1-20.
Sun X, Lei J, Perc M, Kurths J, Chen G. Burst synchronization transitions in a neuronal network of subnetworks. Chaos 2011;21:016110.

Tanaka G, Ibarz B, Sanjuan MA, Aihara K. Synchronization and propagation of bursts in networks of coupled map neurons. Chaos 2006;16:013113.

Traub RD, Whittington MA. Cortical Oscillations in Health and Diseases. New York: Oxford University Press; 2010.

Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 2006;52:155-68.

van Vreeswijk C, Hansel D. Patterns of synchrony in neural networks with adaptation. Neural Comput 2001;13:959-92.

Wang XJ. In: Nadel L, editor. Encyclopedia of Cognitive Science. London: MacMillan; 2003, p.272-80.

Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 2010;90:1195-268.

Wang XJ, Buzsáki G. Gamma oscillations by synaptic inhibition in a hippocampal interneuronal network. J Neurosci 1996;16:6402-13.

Yu H, Wang J, Deng B, Wei X, Wong YK, Chan WL, Tsang KM, Yu Z. Chaotic phase synchronization in small world networks of bursting neurons. Chaos 2011; 21:013127.