COVID-19 and dengue coinfection in Latin America: A systematic review

Darwin A. León-Figueroa, Sebastian Abanto-Urbano, Mely Olarte-Durand, Janeth N. Nuñez-Lupaca, Joshuan J. Barboza, D. Katterine Bonilla-Aldana, Robinson A. Yrene-Cubas, and Alfonso J. Rodriguez-Morales

Abstract

Introduction: Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally, becoming a long-lasting pandemic. Dengue is the most common arboviral disease in tropical and subtropical regions worldwide. COVID-19 and dengue coinfections have been reported, associated with worse outcomes with significant morbidity and mortality. Therefore, this study aims to determine the epidemiological situation of COVID-19 and dengue coinfection in Latin America.

Methods: A systematic literature review was performed using PubMed, Scopus, Embase, Web of Science, LILACS, and BVS databases from January 1, 2020, to September 4, 2021. The key search terms used were "dengue" and "COVID-19".

Results: Nineteen published articles were included. The studies were case reports with a detailed description of the coinfection's clinical, laboratory, diagnostic, and treatment features.

Conclusion: Coinfection with SARS-CoV-2 and dengue virus is associated with worse outcomes with significant morbidity and mortality. The similar clinical and laboratory features of each infection are a challenge in accurately diagnosing and treating cases. Establishing an early diagnosis could be the answer to reducing the estimated significant burden of these conditions.

© 2022 The Authors. Published by Elsevier Ltd.

Keywords: Clinical features, coinfection, COVID-19, dengue, Latin America

Original Submission: 21 August 2022; Revised Submission: 18 October 2022; Accepted: 20 October 2022

Article published online: 28 October 2022

1. Introduction

Coronavirus Disease 2019 (COVID-19) is a highly transmissible and pathogenic viral infection [1] caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [2], has become a long-lasting pandemic [3,4]. SARS-CoV-2 belongs to the Coronavirus (CoV) subfamily of the RNA virus family Coronavirinae [5], this was first identified in Wuhan, Hubei province, China, in December 2019 [6].

SARS-CoV-2 is spread by both direct means (droplet and person-to-person transmission) and indirect contact (contaminated objects and airborne transmission) [7]. A person infected
with SARS-CoV-2 develops COVID-19, which presents as a respiratory syndrome [8], characterized mainly by fever, dry cough, fatigue, myalgia, shortness of breath, and diarrhoea [9].

As of June 29, 2022, the World Health Organization (WHO) has reported more than 543 million confirmed cases of COVID-19, including more than 6 million deaths [10]. During this COVID-19 pandemic, the incidence of dengue has increased dramatically worldwide [11]. Annually, an estimated 400 million dengue infections with 22,000 deaths are reported worldwide [12].

Dengue is the world’s most common arboviral infection [13], a non-segmented single-stranded RNA virus belonging to the family Flaviviridae and genus Flavivirus [14]. The virus is transmitted to humans through the bites of infected female mosquitoes, primarily the Aedes aegypti mosquito, but also A. albopictus and A. vittatus [11]. Dengue infection presents many symptoms and signs, including fever, headache, arthromyalgia, retro-orbital pain, and rash [8].

As the world struggles with the impact of the COVID-19 pandemic [15], dengue-endemic regions face the possibility of a double pandemic that could completely overpower health care administrations [16]. Simultaneous outbreaks of dengue and COVID-19, as well as probable cases of overlapping infections, have already begun in Latin America and certain Asian countries [17].

Dengue and COVID-19 share clinical and laboratory characteristics [18,19]. Therefore, specific tests using real-time reverse transcription-polymerase chain reaction (RT-PCR) or enzyme-linked immunosorbent assay (ELISA) are needed to confirm the diagnosis of these diseases [8,20].

Therefore, this study aims to determine the epidemiological situation of COVID-19 and dengue coinfection in Latin America.

2. Materials and methods

2.1. Protocol and registration

This protocol follows the recommendations established by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [21], and it has been reported in the International Prospective Register of Systematic Reviews (PROSPERO) database (CRD42022328445). Since the case reports lack a denominator for any variable that may be included in the meta-analysis, only a descriptive analysis was carried out.

2.2. Eligibility criteria

To evaluate cases of COVID-19 and dengue coinfection in Latin America published, peer-reviewed articles with study designs of

Table 1. Bibliographic search strategy.
Base
PUBMED
TABLE 1. Continued

Base	Search strategy
Maarten [mh] OR "Sint Maarten" [sb] OR "Sint Maarten" [ct] OR "Sint Maarten" [br] OR "San Martin" [ct] OR Trinidad and Tobago [mh] OR Trinidad [sb] OR Tobago [sb] OR Tobago [ct] OR Argentina [mh] OR Argentina [br] OR Argentina [ct] OR Bolivii [mh] OR Bolivii [sb] OR Bolivii [ct] OR Brazil [mh] OR Brazil [sb] OR Brazil [ct] OR Brazil [br] OR Brazil [ct] OR Chile [mh] OR Chile [sb] OR Chile [ct] OR Colombia [mh] OR Colombia [sb] OR Colombia [ct] OR Colombia [br] OR Colombia [ct] OR Ecuador [mh] OR Ecuador [sb] OR Ecuador [ct] OR [en] OR Malagasy [mh] OR Malagasy [sb] OR Malagasy [ct] OR Angola [mh] OR Angola [sb] OR Angola [ct] OR Guinean [mh] OR French Guiana [sb] OR French Guiana [ct] OR Paraguay [mh] OR Paraguay [sb] OR Paraguay [ct] OR Peru [mh] OR Peru [sb] OR Peru [ct] OR Suriname [mh] OR Suriname [sb] OR Suriname [ct] OR Uruguay [mh] OR Uruguay [sb] OR Uruguay [ct] OR Venezuela [mh] OR Venezuela [sb] OR Venezuela [ct]	
#4	AND #2 AND #3

TABLE 1. Continued

Base	Search strategy
Seafood Market Pneumonia Virus* OR 2019-nCoV* OR COVID-19 Virus* OR "19 COVID 19" Virus* OR "SARS Coronavirus 2" OR "Severe Acute Respiratory Syndrome Coronavirus 2" OR AB=(COVID-19 OR COVID 19 OR COVID-19 OR COVID-19 Virus* OR "19 COVID 19" Virus* OR "SARS Coronavirus 2" OR "Severe Acute Respiratory Syndrome Coronavirus 2" OR AB=(COVID-19 OR COVID 19 OR COVID-19 OR COVID-19 Virus* OR "19 COVID 19" Virus* OR "SARS Coronavirus 2" OR "Severe Acute Respiratory Syndrome Coronavirus 2") OR #1 TITLE-ABS-KEY(Dengue OR Venezuela[tiab] OR Venezuela[ot] OR Uruguay[tiab] OR Uruguay[ot] OR Venezuela[tiab] OR Venezuela[ot]) AND #2 TITLE-ABS-KEY(America* OR Latin America* OR Caribbean Region	
#3	TITLE-ABS-KEY(America* OR Latin America* OR Caribbean Region

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). © 2022 The Authors. Published by Elsevier Ltd.
| TABLE 1. Continued |
Base	Search strategy
OR Guadalupe OR Haiti OR "Virgin Islands" OR Virgenes OR Jamaica OR Martinique OR "Puerto Rico" OR "Dominican Republic" OR "Republica Dominicana" OR "San Bartolome" OR "Saint Kitts and Nevis" OR "St. Kitts and Nevis" OR Kitts OR Nevis OR "Saint Vincent and the Grenadines" OR "St. Vincent and the Grenadines" OR Grenadines OR "San Lucas" OR "St. Lucia" OR "Saint Lucia" OR "Sint Maarten" OR "Saint Martin" OR "San Juan" OR Tobago OR Trinidad and Tobago	"severe acute respiratory syndrome coronavirus 2" OR "severe acute respiratory syndrome virus 2" OR "severe acute respiratory syndrome coronavirus 2" OR "severe acute respiratory syndrome 2 virus" OR "severe acute respiratory syndrome 2 virus" OR "severe acute respiratory syndrome coronavirus 2" OR "sever...
A systematic search was carried out in PubMed, Scopus, Embase, Web of Science, LILACS, and BVS. The search terms used were: “Dengue”, “COVID-19”, and “Latin America”. The searches were completed on September 4, 2021, and four investigators independently evaluated the search results (Table 1).

TABLE 1. Continued

Base	Search strategy
‘guaya’/exp OR ‘guaya’ OR ‘guaya, british’ OR ‘french guiana’/exp OR ‘french guiana’ OR ‘french guiana’ OR ‘guiana, french’ OR ‘french guiana’ OR ‘guianese’/exp OR ‘guiana, french’ OR ‘french guiana’	
#1 (Dengue) OR (“Breakbone Fever”) OR (“Break-Bone Fever”) OR (“Break Bone Fever”)	
#2 (COVID-19) OR (“COVID-19”) OR (COVID19) OR (Covid) OR (“2019-nCoV Infection”) OR (“2019-nCoV Infection”)	
#3 (Coronavirus Disease-19) OR (“SARS-CoV-2 Infection”) OR (“SARS-CoV-2 Infection”) OR (“SARS-CoV-2 Infection”) OR (“COVID-19 Pandemic”) OR (“COVID-19 Pandemic”) OR (“SARS-CoV-2”) OR (“SARS-CoV-2”) OR (“SARS-CoV-2”) OR (“SARS-CoV-2”)	
#4 #1 AND #2 AND #3	
NMNI León-Figueroa et al.	}

2.4. Study selection

Two researchers (DALF, JBM) created a database based on the electronic searches, managed it with the appropriate management software (EndNote), and removed duplicates. Then, through Rayyan QCRI (https://rayyan.qcri.org/) [22], two researchers (MOD, JNNL) carried out the screening process, analyzing the titles and abstracts provided by the search independently, choosing those that appeared to meet the inclusion criteria and, if necessary, evaluating the full text. In case of disagreement, the investigators will discuss until a consensus is reached; in case of dispute, a third investigator will be invited to the discussion to help resolve it.

The peer-review authors (SAU, RAYC, AJRM) reviewed the full-text reports and analyzed the inclusion criteria to reach a decision.

2.5. Outcomes

The primary outcome was to determine the epidemiological situation of COVID-19 and dengue coinfection.

2.6. Data collection process and data items

Four investigators independently extracted data from the selected studies in a Microsoft Excel spreadsheet. The following data were extracted from the selected studies: title, authors, year of publication, study design, country, inclusion and exclusion criteria, number of cases/participants, age, sex, comorbidities, symptoms and physical examination findings, method of diagnosis of COVID-19, method of diagnosis of dengue infection, initial diagnosis, delay in diagnosis of coinfection, laboratory findings, findings on imaging studies and other relevant results, need for hospitalization, need for ICU, treatment, clinical outcome (e.g., death), and follow-up. A fifth investigator checked the list of articles and data extractions to ensure that there were no duplicate articles or duplicate information and resolved discrepancies about study inclusion.

3. Results

3.1. Study selection

A total of 689 articles were retrieved using the search strategy. The selection strategy is shown in the prism flow chart (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) (Fig. 1) [21]. After the removal of duplicates, 406 articles were screened by the reviewers. After filtering the titles and reading the abstracts, 66 articles were selected for full-text reading, and 19 were considered eligible for inclusion in this systematic review [23-41].

© 2022 The Authors. Published by Elsevier Ltd, NMNI, 49-50, 101041

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).
3.2. Study characteristics
The main characteristics of the articles included in this review are summarized in Table 2 and Table 3. Our review included 19 studies that were published between January 1, 2020, and August 30, 2021 [23–41]. The studies (n = 19) reported case reports with a detailed description of the clinical and health outcome (Tables 2 and 3). These studies also described the laboratory findings and treatment of COVID-19 and dengue co-infection (Table 4 and Table 5). A total of 152 cases of coinfections were reported in six countries: Brazil (n = 78) [23,26,27,31,34,35,39,40], Mexico (n = 1) [24], Colombia (n = 5) [25,30,32], Argentina (n = 16) [28,33,37,41], Peru (n = 51) [29,38] and Ecuador (n = 1) [36] (Tables 2 and 3). Brazil reported the highest number of coinfection cases, followed by Peru (Fig. 2). Most of the coinfection was in adults. In terms of diagnosis, PCR (n = 12) [23,24,27,30,32,34,37,41], IgM (n = 97) [25,26,28,31,33,35,36,38–40], IgG (n = 43) [25,26,31,32,34,38], seroconversion (n = 2) [30,37] and NS1 (n = 48) [28,29,31,33–35,37,38] were used for dengue diagnosis, while PCR (n = 105) [23–28,30–32,34–39,41], IgM (n = 92) [23,27,29,36,38,39] and IgG (n = 66) [23,27,29,36,38,40] were used for COVID-19 (Tables 2 and 3).

3.3. Demographical characteristics and comorbidities
Most coinfections were reported in adults aged 24 to 79 [23–41]; the youngest patient was a 13-year-old boy [29]. Approximately twice as many men as women were reported to be coinfected (Male: Female: 2:1) [23–41]. The most frequent comorbidities in coinfected patients were hypertension, obesity, and diabetes [25,31,32,34,35,37,38] (Tables 4 and 5).

3.4. Clinical manifestations and laboratory findings
The medical records of 152 cases were extracted [23–41]. Fever and dyspnea were the most frequent findings...
TABLE 2. Main individual characteristics of the studies included.

Authors	Year	Design	Country	Participants (N)	Age (Years)	Sex	Diagnosis method	Serotype of dengue	Hospitalization (days)	Outcome
Braatz M et al. [23]	2021	Case series	Brazil	1	16	F	IgM, IgG, and PCR SARS-CoV-2 positive	PCR positive	NR	Discharged after 21 days of hospitalization
Reyes J et al. [24]	2021	Case report	Mexico	1	42	F	PCR SARS-CoV-2 positive	PCR positive	DENV-1 18	Discharged on day 24 after the onset of symptoms
Agudelo R et al. [25]	2021	Case report	Colombia	2	24	F	PCR SARS-CoV-2 positive	IgM and IgG positive	DENV-1 6	She was discharged after six days of hospitalization Died
Bicudo N et al. [26]	2020	Case report	Brazil	1	56	F	PCR SARS-CoV-2 positive	IgM/IgG positive	DENV-1 6	Discharged after 6 days.
Lopes R [27]	2020	Case report	Brazil	1	39	M	IgM, IgG, and PCR SARS-CoV-2 positive	PCR positive	DENV-1 NR	Clinical improvement
Salvo C et al. [28]	2020	Case report	Argentina	1	43	M	PCR SARS-CoV-2 positive	IgM and NS1 positive	NR	Discharged.
Nakandakari et al. [29]	2021	Case report	Peru	1	13	F	IgM and IgG positive	NEI, IgM and IgG positive	NR	Discharged after five days
Rosso et al. [30]	2021	Cross-sectional	Colombia	2	NR	NR	PCR SARS-CoV-2 positive	PCR positive	DENV-1 - 4	NR
Estevoie et al. [31]	2020	Case report	Brazil	1	60	F	PCR SARS-CoV-2 positive	NEI, IgM and IgG positive	NR	Died after five days
Villamil-Gomez WE et al. [32]	2021	Case report	Colombia	1	52	M	PCR SARS-CoV-2 positive	NEI, IgG, IgM and PCR positive	DENV-2 7	Discharged, after 7 days
Radisic M et al. [33]	2020	Case report	Argentina	1	25	M	PCR SARS-CoV-2 positive	IgM and NS1 positive	NR	He turned afebrile and was discharged one week after diagnosis. Gradually improved over five days
Rosso M et al. [34]	2021	Case report	Argentina	1	57	F	PCR SARS-CoV-2 positive	PCR positive	NR	NR
Quintal K et al. [35]	2021	Case report	Brazil	2	53	F	PCR SARS-CoV-2 positive	NEI, IgG, IgM and PCR positive	DENV-1 NR	NR
Schulte H et al. [36]	2021	Retrospective cohort	Brazil	13	NR	NR	PCR SARS-CoV-2 positive	NEI positive	NR	Discharged after seven days.
					NR	NR	PCR SARS-CoV-2 positive	IgM positive	NR	Discharged after four days.
					NR	NR	PCR SARS-CoV-2 positive	IgM positive	NR	NR
					NR	NR	PCR SARS-CoV-2 positive	IgM positive	NR	NR
					NR	NR	PCR SARS-CoV-2 positive	IgM positive	NR	NR
					NR	NR	PCR SARS-CoV-2 positive	IgM positive	NR	NR
					NR	NR	PCR SARS-CoV-2 positive	IgM positive	NR	NR
					NR	NR	PCR SARS-CoV-2 positive	IgM positive	NR	NR
					NR	NR	PCR SARS-CoV-2 positive	IgM positive	NR	NR
					NR	NR	PCR SARS-CoV-2 positive	IgM positive	NR	NR
					NR	NR	PCR SARS-CoV-2 positive	IgM positive	NR	NR
Valdés J et al. [37]	2020	Case report	Ecuador	1	50	M	IgG, IgM and PCR SARS-CoV-2 positive	PCR positive	NR	Discharged for 26 days

PCR: Polymerase Chain Reaction.
NR: No report.
M/F: Male/Female.
DENV 1-4: dengue virus serotype 1 and 4.
NS1: nonstructural protein 1.
Other clinical manifestations were odynophagia, adynamia, myalgia, arthralgia, vomiting, and diarrhoea (Tables 4 and 5).

The most frequently reported laboratory findings were thrombocytopenia, leukopenia, high C-reactive protein, and leukocytosis [23–26,28,29,31–39,41]. Other less frequently reported laboratory findings were elevated D-dimer, lymphopenia, reduced haemoglobin, elevated serum aspartate aminotransferase and alanine aminotransferase, monocytosis, and high erythrocyte sedimentation rate (Tables 4 and 5).

3.5. Imaging, complications, and outcomes

Chest x-ray and CT images are reported with the following characteristics: Diffuse focal opacities in both lung fields, consistent with the ground glass pattern [26,29,32,36,37,39]; Two studies report signs of pulmonary venous hypertension, confirmed acute pulmonary thromboembolism of multiple bilateral lobular and bilateral segmental branches [25,31].

It was reported in the selected studies that the patients after clinical improvement [27,28,33,35,36,41] were discharged 1 to 24 days after the start of the symptoms with 18 days of hospitalization [24]. I case at six days of hospitalization [26]. I case at seven days of hospitalization [29]. I case at five days of diagnosis and 5 of hospitalization [29]. I case at 21 days of hospitalization and discharged afterwards [23]. 2 cases 6 days after hospitalization [25]. Finally, patients who died at five days [31] are reported, 14 of 28 patients who died [38] and one case died at 63 days post-hospitalization (Tables 4 and 5).

4. Discussion

As is well known, dengue is the most important arboviral disease in terms of morbidity and mortality worldwide, especially in highly endemic areas of Latin America and South-East Asia. However, its diagnosis may be challenging as it may overlap clinically with many other febrile syndrome causes since 2020, including COVID-19.

In the present systematic review, our main objective was to determine the epidemiological situation of cases of COVID-19 and dengue coinfection in Latin America. Knowledge of the clinical and laboratory characteristics of SARS-CoV-2 and dengue virus coinfection is essential for correct diagnosis and patient management [42].

SARS-CoV-2 and dengue virus (DENV) have different entry points, but both diseases cause a systemic infection and share several clinical signs, including fever, headache, myalgia, and gastrointestinal problems [43]. While severe COVID-19 is characterized by the development of micro and macrothrombi, dengue is typically associated with a predisposition to bleed [44]. In addition to the initial clinical presentation similarities, there are also commonalities between the two conditions.

Table 3. Main results of COVID-19 and dengue coinfection studies included.

Authors	Year	Design	Country	Cases (N)	Age (Years) Median (IQR)	Sex	Diagnosis method	COVID-19 N (%)	Serotype of dengue N (%)	Hospitalization (days) Median (IQR)	Outcome N (%)	
Carosella L et al. [37]	2021	Retrospective analysis	Argentina	13	37 (29-50)	Male: 7 (54.0) Female: 6 (46.0)	SARS-CoV-2 IgG +: 39 (78.0) SARS-CoV-2 IgM +: 4 (8.0)	Real-time-PCR SARS-CoV-2 +: 13 (100.0)	NS1 DENV +: 3 (61.5) RT - PCR +: 4 (30.8) Seroconversion: 1 (7.7)	12.0 (10.0 - 14.0)	Death: 0 (0.0) Discharged: 13 (100.0)	
Mejía J et al. [38]	2021	Retrospective analysis	Peru	50	55.5 (40.5 - 65)	Male: 39 (78.0) Female: 11 (22)	SARS-CoV-2 IgG +: 39 (78.0) SARS-CoV-2 IgM +: 4 (8.0)	Real-time-PCR SARS-CoV-2 +: 4 (8.0)	NS1 DENV +: 3 (60.0) DENV IgM +: 19 (38.0) DENV IgM/IgG +: 1 (2.0)	NR	NR	Death: 14 (28.0) Discharged: 36 (72.0)
Soares I et al. [39]	2021	Retrospective cohort	Brazil	43	NR	NR	RT-PCR SARS-CoV-2 +: 43 (100.0)	DENV IgM +: 43 (100.0)	NR	NR	NR	
Stringari I L et al. [40]	2021	Retrospective cohort	Brazil	2	55.5 ± 6.36	Female: 2 (100.0)	DENV IgM/IgG +: 2 (100.0)	Real-time-PCR SARS-CoV-2 +: 2 (100.0)	DENV IgM and IgG: 2 (100.0)	NR	NR	NR
Rosso et al. [30]	Cross-sectional	Colombia	2	NR	NR	RT-PCR SARS-CoV-2 +: 2 (100.0)	DENV IgM/IgG +: 2 (100.0)	Real-time-PCR SARS-CoV-2 +: 2 (100.0)	DENV IgM and IgG: 2 (100.0)	NR	NR	NR
Schulte H et al. [31]	2021	RETROSPECTIVE	Brazil	13	27 - 79	Male: 6 (46.2) Female: 7 (53.8)	RT-PCR SARS-CoV-2 +: 13 (100.0)	NS1 DENV +: 6 (46.2) DENV IgM/IgG +: 1 (53.8)	12.0 (10.0 - 14.0)	Clinical improvement: 13 (100.0)	Death: 0 (0.0)	

*Patients with less than five days of symptoms.

*Patients with symptoms more significant than five days.

‡Positive. DENV 1-4: dengue virus serotype 1 and 4; NS1: nonstructural protein 1; Real-time-PCR: real-time polymerase chain reaction; RT-PCR: reverse transcription-polymerase chain reaction; Seroconversion: persistence of positive anti-DENV antibodies 24 days after onset of symptoms.
Table 4. Detailed individual characteristics of the studies included considering treatment, clinical, and laboratory findings.

Authors	Case Comorbidities	Symptoms and findings in physical examination	Laboratory findings	Treatment
Braatz M, et al. [23]	No comorbidities	Paresthesia, progressive difficulty in walking, acute paraparesis, hypoaesthesia	Protein (28.5 mg/dL), glucose (61 mg/dL)	Aclizovir for 14 days, intravenous human immunoglobin for five days
Reyes J, et al. [24]	No comorbidities	Fever, headache, diarrhoea, chest pain, chills, odynophagia, myalgia, arthralgia, malaise, pruritus, low back pain, nausea, loss of appetite, sweating, 97% oxygen saturation; pulse, 88 beats per minute; respiratory rate, 20 breaths per minute; blood pressure, 130/90 mmHg; vomiting, nausea, hypoaesthesia in the face, pectoral rash and erythema	Day 7: lymphocytes (32.2%), monocyte count (0.2x10^9/µL), monocyte ratio (8.3%), granulocyte count (1.4x10^9/µL), granulocyte ratio (39.6%), red blood cells (4.83x10^12/µL), Hemoglobin (16 g/dL), Hematocrit (43.6%), MCV (87.5 fL), MCH (22.7 p), MCHC (0.474 g/dL), RDW-CV (12.3%), RDW-SD (40.2 fL), mean platelet volume (12.2 fl), platelet criterion (0.173%) and platelet distribution width (16.5%)	Azithromycin, ibuprofen for four days and ivmeprednisone for five days
Bicudo N, et al. [26]	No comorbidities	Fever, odynophagia, adynamia, myalgia, arthralgia, vomiting and diarrhoea	Day 1: lymphocytes (48.1%), monocyte count (0.2x10^9), monocyte ratio (7.6%), granulocyte count (1.4 x10^9), granulocyte ratio (44.3%), red blood cells (5.09 x 10^12/µL), hemoglobin (16.8 g/dL), hematocrit (44.7%), MCV (87.7 fL), MCH (32.9 p), MCHC (37.6 g/dL), RDW-CV (12.2%), RDW-SD (39.3 fL), mean platelet volume (12.3 fl), platelet criterion (0.147%) and platelet distribution width (16.4%)	Azithromycin, itopride, for four days and ivmeprednisone for five days
Lopes R, et al. [27]	No comorbidities	Fever, myalgia, diarrhoea, ageusia, mild dyspnea	Leukopenia, lymphopenia, thrombocytopenia, and elevated transaminases	Chloroquine, azithromycin, anticoagulation and D-emerger
Salvo C, et al. [28]	HIV infection	Fever, generalized body pain, dry cough	Leucopenia, HIV viral load (6400 copies per mm^3), CD4 count 341 cells per mm^3, leukopenia (5.1 [10^9/L]), neutropenia (20.5%), lymphocytosis (0.5%), severe thrombocytopenia (17 [10^9/L]), hemocencentration 4.9%, elevated C-reactive protein (12.5), elevated Aspartate aminotransferase (728 U/L), elevated Glutamate Aminotransferase (215 U/L)	Painkillers, antipyretics, 0.9% sodium chloride three cc/g/hour, Ceftaxime intravenous in 1 gr/d 2 h, Dexamethasone intravenous 4 mg at 8 am and 4 pm, Oxygen therapy high-flow nasal cannula (HFNC) at 2 L/min, Fluid therapy was increased at 5 cc/kg/hour, ceftaxime was increased to 80 mg/kg/day, HFNC was progressively withdrawn
Nakandakari et al. [27]	No comorbidities	Recurrent fever, general malaise, abundant gingival bleeding, low intramural bleeding, respiratory rate 20 breaths/minute, mean arterial pressure 73.3, saturation 98% with HFNC at 2 L/min, generalized skin rash, features of old bleeding from the oral cavity, decreased vesicular murmur in the lower 2/3 of both hemithorax, pain at superficial and deep palpation in epigastrium, lower extremities skin rash type "white islands in a sea of red."	Leukopenia, myalgia, arthralgia, vomiting and diarrhoea	Painkillers, antipyretics, 0.9% sodium chloride three cc/g/hour, Ceftaxime intravenous in 1 gr/d 2 h, Dexamethasone intravenous 4 mg at 8 am and 4 pm, Oxygen therapy high-flow nasal cannula (HFNC) at 2 L/min, Fluid therapy was increased at 5 cc/kg/hour, ceftaxime was increased to 80 mg/kg/day, HFNC was progressively withdrawn

© 2022 The Authors. Published by Elsevier Ltd. NMNI, 49-50, 101041
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Authors	Case Comorbidities	Symptoms and findings in physical examination	Laboratory findings	Treatment	
Villamil-Gomez WE et al.	Obesity	Flu-like symptoms, worsening fever, chills, pruritus, temperature 41°C, blood pressure 110/70 mmHg, heart rate 100 bpm, respiratory frequency 40 bpm, oxygen saturation 90-92%, BMI 31.7 kg/m², bilateral crickles extending to both mid pulmonary fields, arthralgia, myalgia, dorso-lumbar pain, asthenia, adynamia, dyspnea, dry cough, rosellow form maculopapular rash, scarlatiniform-like rash, "white islands in a red sea". Oral mucosa, hand and feet are not involved.	Increased TTPs 30.5 s, increased D Dimer 5.84 μg/ml, increased CRP 416 U/L, increased PO2 170.2 mmHg, increased lactate 2.7 mmol/L, decreased HCO3 18 mmHg, decreased Ph 7.22, decreased excess base -9.4 mmol/L, leucocytosis 40000 cells/L, increased C-reactive protein 7 mg/L, thrombocytopenia 120000 cells/L, increased LDH 700 IU/L, increased ferritin 650 mg/dL, increased D-dimer 5.175 mg/mL, increased troponin 0.8 mg/mL, increased AST 55 IU/L, increased ALT 40 IU/L	Ceftriaxone, enoxaparin 1.5 mg/kg, methylprednisolone, ipratropium bromide, isotonic crystalloid 10 mL/kg, and continuous oxygen support. Continuous Passive Airway Pressure.	
Radics M et al. [31]	No comorbidities	Astenia, headache, joint, muscle pain, fever, sore throat, heart rate: 112 per minute, respiratory rate 20 bp, oxygen saturation: 98%, temperature: 38 °C.	Red blood cell concentration (hematocrit 46.3%), thrombocytopenia (platelet count 147,000/mm³), high C reactive protein (18.2 mg/L), elevated serum aspartate aminotransferase and alanine aminotransferase (92 U/L and 67 U/L, respectively)	Hemoglobin 10 g/dL, leukocytosis 102000/mL, CRP 5 mg/L, and elevated AST/GOT (75 U/L) and ALT/GPT (75 U/L)	Oral analgesics, antipyretics, intravenous hydration after malaise and persistent vomiting
Rosso M et al. [41]	Tobacco use and chronic obstructive pulmonary disease	Diarrhoea, abdominal pain, headache, retro-orbital pain, aching joints, dyspnea, subfever, pruritic rash, unspesific thoracic pain; physical examination revealed: a non-blanching, generalized rash with scattered petechia predomnantly on the extremities, upper trunk and abdomen.	Biocmarkers: normal, acute phase reactants: normal, thrombocytopenia	Treated symptomatically	
Quental K et al. [34]	No comorbidities	High fever, chills, severe headaches, muscle pain, arthralgia, malaise and persistent vomiting during treatment	Thrombocytopenia (135,000/mm³), high CRP levels (35 mg/L), and elevated AST/GOT (75 IU/L) and ALT/GPT (75 IU/L)	Oral analgesics, antipyretics, intravenous hydration after malaise and persistent vomiting	
Schulte H et al. [33]	Diabetes and hypertension No comorbidities	Fever, myalgia, ecchymosis dyspnea (SpO2 = 95%)	Platelet (84000/U/L), Lymphocyte (2982/U/L)	Analgesics	
		Fever, dry cough, dyspnea, myalgia (SpO2 = 95%)	Platelet (93000/U/L), Lymphocyte (730/U/L)	Analgesics, hydration with 0.9% saline, amoxicillin-clavulinate, prophylaxis for thrombosis with compression stockings	
		Dyspna (SpO2 = 91%)	Platelet (169000/U/L), Lymphocyte (2627/U/L)	Analgesics, enoxaparin 40 mg/day	Analgesics, prednisone dosage increased from 5 to 15 mg for five days
		Myalgia, ecchymosis dyspnea (SpO2 = 91%)	Platelet (110000/U/L), Lymphocyte (3254/U/L)	Analgesics	
		Retro-orbital pain, arthralgia, myalgia (SpO2 = 93%)	Platelet (94000/U/L), Lymphocyte (1500/U/L)	Hydroxylchloroquine 400 mg twice a day for 1 day, chloroquine 450 mg for 1 day, enoxaparin 40 mg/day for 2 weeks, azithromycin 500 mg/ day for five days, ceftriaxone 2g/day for five days	
		Fever	Treated symptomatically		
		Dry cough, sore throat, Myalgia, nasal congestion, dyspnea, fatigue, diaphoresis (SpO2 = 93%)	Platelet (191000/U/L), Lymphocyte (2200/U/L)	Analgesics, hydration with 0.9% saline, Azithromycin 500 mg for two days, self-medication with ivmecins 6 mg/kg	Analgesics, prednisone 20 mg for five days, hydration with 0.9% saline
		Retro-orbital pain, myalgia, fever, anoxia, diaphoresis (SpO2 = 93%)	Platelet (180000/U/L), Lymphocyte (1561/U/L)	Analgesics	
		Fever, dry cough, sore throat, nasal congestion, diaphoresis, anoxia, agueus, pruritus (SpO2 = 93%)	Platelet (196000/U/L), Lymphocyte (1500/U/L)	Analgesics, prednisone 20 mg for five days, hydration with 0.9% saline	
		Pituitary tumour and hypopituitarism No comorbidities	Platelet (50000/U/L), Lymphocyte (3100/U/L)	Analgesics, prednisone dosage increased from 5 to 20 mg for seven days	Azithromycin 500 mg for five days, prednisone dosage increased from 5 to 20 mg for seven days
		Myalgia (SpO2 = 93%)	Platelet (169000/U/L), Lymphocyte (2237/U/L)	None	
		Fever, myalgia dyspnea, dehydration, elevated serum ferritin, transaminase, lactate dehydrogenase, elevated serum ferritin, transaminases, lactate dehydrogenase and leukocytosis with neutrophilia (89.3%) and lymphocytosis (6.5%)	Platelet (87000/U/L), Lymphocyte (1450/U/L)	Corticoids, azithromycin 500 mg, oxygen in the first two days, Paracetamol, fluids, physical antipyretic measures, amoxicillin plus clavulanic acid	

© 2022 The Authors. Published by Elsevier Ltd. NMNI. 49-50. 101041
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
including endothelial dysfunction, cytokine storms, risk factors for the development of severe illness, and multi-organ failure. Both infections are characterized by a proinflammatory immune response and a delayed and impaired type I IFN response [45]. COVID-19 and Dengue share common pathogenic routes that have been explored in recent publications [46].

Latin America has been severely affected since the beginning of the pandemic. Endemic infectious diseases such as dengue, coupled with economic and public health disparities, increased the challenge of overcoming a simultaneous pandemic [47]. This review found that tropical countries reported COVID-19 and dengue coinfection with different clinical conditions. In Ecuador [48], Peru [49], Colombia [50], and Brazil [19], among others in the region, circulation of both diseases has been reported with a potential underreporting of dengue due to the prioritization of COVID-19 control with greater emphasis on the first waves.

In this sense, the strict COVID-19 protection measures were associated with a decreased risk of dengue incidence, so coinfection reporting could be lower, especially in countries where dengue is endemic [51]. In our review, myalgia and fever were the most common symptoms, while thrombocytopenia was the most reported laboratory finding. However, it is challenging to distinguish febrile dengue fever from COVID-19 as they share clinical and laboratory findings [52]. So, then, in endemic zones, as well as in patients returning from dengue-endemic areas, this arboviral disease should be not only a differential diagnosis with COVID-19 but also coinfection is a possibility that should be carefully assessed, especially in patients with risk factors, that may contribute in the evolution to severe disease, associated with both viral infections, that may progress and require management at the intensive care unit, and even lead to death.

In addition, we found heterogeneous diagnostic methods for dengue, which could intervene in an accurate diagnosis of co-infection from the onset of symptoms. Diagnostic suspicion of coinfection is sometimes made several days after the first day of admission [53]. Identification of travel to endemic areas, contact with infected family members, and clinical progression provides medical personnel with increased suspicion. However, the lack of molecular diagnosis and dengue overlap make accurate coinfection diagnosis difficult [54]. Ideally, both infections should be laboratory diagnosed by RT-PCR, or at least with antigen detection tests, as antibody-based tests may yield false-positive results due to cross-reactivity.

Mortality from dengue is known to be lower than from COVID-19. However, this review found that hospitalization was necessary for most patients. At the same time, a case report in Colombia [25] and a retrospective study in Peru [38] reported the death of one and fourteen patients, respectively, and other deaths are now sporadically associated with this coinfection. That could be attributed to the high prevalence of pulmonary, cardiovascular, and chronic renal diseases, which have been extensively discussed in previous literature, especially in COVID-19 [55].

5. Conclusions

Coinfection with SARS-CoV-2 and dengue virus is associated with worse outcomes with significant morbidity and mortality, although further studies should assess this in more detail [8,42]. The similar clinical and laboratory features of each infection are a challenge in accurately diagnosing and treating cases. Establishing an early diagnosis could be the answer to reducing the estimated significant burden of these conditions.

6. Recommendations

Diagnosing co-infection between dengue and COVID-19 can be difficult because the symptoms of dengue are nonspecific and may coincide with those of covid-19 or other diseases. Public education campaigns are very important because patients who know the main symptoms of the disease will be able to go to health centers for early diagnosis. Eradication of Aedes aegypti, effective solid waste disposal, and the development of water storage technologies are the best ways to stop the spread of the dengue virus [56].

In addition, it is recommended to develop care procedures for the clinical management of patients in endemic areas, including dengue and COVID-19 testing for all patients with reported fever. Finally, increase funding to combat endemic infectious diseases. It is important to have a fixed budget for

© 2022 The Authors. Published by Elsevier Ltd. NMNI, 49-50, 101041

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

TABLE 4. Continued

Authors	Case Comorbidities	Symptoms and findings in physical examination	Laboratory findings	Treatment	
León-Figueroa et al.			Oxygen saturation: 80%, moderate epistaxis, intense melenas, liquid diarrhoea, cough		

NR: No report.
Table 5. Detailed group characteristics of the studies included considering treatment, clinical and laboratory findings

Authors	Comorbidities N (%)	Symptoms and findings in physical examination N (%)	Laboratory findings Mean (SD)	Treatment N (%)
Carcella et al. [37]	Obesity: 3 (23.0) - Chronic obstructive pulmonary disease: 2 (15.3) - Hypertension: 2 (15.3) - Smoking: 2 (15.3) - Diabetes: 1 (7.7) - Cirrhosis: 1 (7.7)	- Fever: 13 (100.0) - Headache: 8 (61.5) - Myalgia: 7 (53.8) - Cough: 3 (23.1) - Rash: 3 (23.1) - Chills: 3 (23.1) - Dyspnea: 2 (15.3) - Diaphoresis: 2 (15.3) - Nasal congestion: 2 (15.3) - Arthralgia: 1 (7.7) - Myalgia: 1 (7.7) - Dysgeusia: 1 (7.7) - Paresthesia: 1 (7.7) - Dysuria: 1 (7.7) - Uterine bleeding: 1 (7.7)	- Hematocrit (%): 44 (41.0) - Hemoglobin (g/dL): 14.1 (14.0) - Leukocytes (1 × 10³ cells/μL): 4.3 (8.9) - Leukopenia (<4 × 10³ cells/μL): 4 (31.0) - Lympohocyte count (<1 × 10³ cells/μL): 0.81 (2.6) - Lymphopenia (<1.5 × 10³ cells/μL): 12 (92.0) - Platelets (1 × 10⁹/μL): 172 (156.0) - Platelets (1 × 150 × 10³/μL): 6 (46.0) - Platelets (1 × 100 × 10³/μL): 3 (23.0) - Abnormal AST level: 3 (23.0) - Abnormal ALT level: 6 (46.0)	- Lopinavir/ritonavir: 3 (23.1) - Hydroxychloroquine: 1 (7.7) - Antimicrobial drug therapy: 6 (46.1)
Mejía J et al. [38]	High blood pressure: 16 (22.0) - Type 2 diabetes mellitus: 13 (24.0) - Chronic kidney failure: 7 (14.0) - Obesity: 6 (12.0) - Cancer: 4 (8.0) - Asthma: 4 (8.0) - Pulmonary fibrosis: 2 (4.0)	- Fever: 26 (52.0) - Chills: 2 (4.0) - Hypothermia: 1 (2.0) - Asthma: 1 (2.0) - Diaphoresis: 8 (16.0) - Hypertension: 7 (14.0) - Myalgia: 5 (10.0) - General weakness: 2 (4.0) - Low back pain: 2 (4.0) - Gastrointestinal manifestations	- Thrombocytopenia: 30 (60.0)	- Hematocrit concentration: 24 (48.0)
Soares I et al. [39]	NR	NR	NR	NR
Stringari et al. [40]	NR	NR	NR	NR
Rosso et al. [36]	NR	NR	NR	NR
Schultheis et al. [35]	Diabetes: 2 (15.4) - Hypoglycemia: 2 (15.4) - Pregnancy: 2 (15.4) - Gestational diabetes: 1 (7.7) - Hypertension: 1 (7.7) - Adrenal insufficiency: 1 (7.7) - Pituitary tumor: 1 (7.7) - Chronic gastritis: 1 (7.7) - Depression: 1 (7.7)	- Fever: 7 (53.9) - Myalgia: 10 (76.9) - Dry cough: 3 (23.1) - Ecchymosis: 2 (15.4) - Dyspnea: 7 (53.9) - Retro-orbital pain: 2 (15.4) - Arthralgia: 1 (7.7) - Sore throat: 2 (15.4) - Nasal congestion: 2 (15.4) - Diaphoresis: 2 (15.4)	- Leucocytes (5): 6.74 (2.88) - Neutrophils (1 × 10³/μL): 4.5 (2.9) - Lymphocytes (1 × 10³/μL): 1.5 (6.6) - Monocytes (1 × 10³/μL): 0.42 (2.00) - Hemoglobin (g/100 mL): 14.16 (1.53) - Platelets (1 × 10⁹/μL): 224.76 (73.61) - AST (UI/L): 43.81 (25.57) - ALT (UI/L): 54.62 (54.26) - Urea (mg/100 mL): 37.63 (22.74) - Creatinine (mg/100 mL): 1.84 (5.65) - CK (UI/L): 139.55 (19.54) - LDH (UI/L): 545.02 (508.59) - Glucose (mg/100 mL): 172.5 (124.44)	- Lopinavir/ritonavir: 3 (23.1) - Hydroxychloroquine: 1 (7.7) - Chloroquine: 1 (7.7) - Ivermectin: 1 (7.7) - Self-medication with ivermectin: 2 (15.4) - Oxygen in the first 2 days: 1 (7.7) - No treatment: 1 (7.7)

NR: No report.

† Frequency (percentage).
dengue treatment and to ensure that district authorities use these funds effectively [57].

Funding

This research received no external funding.

Institutional review board statement

Not applicable.

Informed consent statement

Not applicable.

Data availability statement

This section provides details regarding where data supporting reported results can be found, including links to publicly archived datasets analyzed or generated during the study.

Declaration of competing interest

The authors declare no conflict of interest.
Acknowledgements

Many thanks to Carlos S. Mamani-Garcia and Dayanne S. Salas-Idme, for their support in the initial versions of the research work.

References

[1] Sherleen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res 2020;24:91. https://doi.org/10.1016/J.JARE.2020.03.005.

[2] Tsang HF, Wing L, Chan C, Chi W, Cho S, Chi A, et al. An update on COVID-19 pandemic: the epidemiology, pathogenesis, prevention and treatment strategies. Expert Rev Anti Infect Ther 2021;19:877–88. https://doi.org/10.1080/14787210.2021.1863146.

[3] Rodríguez-Morales AJ, León-Figueroa DA, Romani L, McHugh TD, Leblebicicolu H. Vaccination of children against COVID-19: the experience in Latin America. Ann Clin Microbiol Antimicrob 2022;21:1–5. https://doi.org/10.1186/s12919-022-00505-7/FIGURES/1.

[4] Li J, Huang DQ, Zou B, Yang H, Hui WZ, Rui F, et al. Epidemiology of COVID-19: a systematic review and meta-analysis of clinical characteristics, risk factors and outcomes. J Med Virol 2021;93:1449–58. https://doi.org/10.1002/JMV.26424.

[5] Platto S, Wang Y, Zhou J, Carafoli E. History of the COVID-19 pandemic: origin, explosion, worldwide spreading. Biochem Biophys Res Commun 2021;538:14–23. https://doi.org/10.1016/J.BBRC.2020.10.087.

[6] Morens DM, BREMEN JG, Calisher CH, Doherty PC, Hahn BH, Keusch GT, et al. The origin of COVID-19 and why it matters. Am J Trop Med Hyg 2020;103:955. https://doi.org/10.4269/AJTMH.20-0849.

[7] Loafi M, Hamblin MR, Rezaei N. COVID-19: transmission, prevention, and potential therapeutic opportunities. Clin Chin Acta 2020;508:254–66. https://doi.org/10.1016/J.CCA.2020.05.044.

[8] Tshetshet N, Clements ACA, Gray DJ, Adhikary RK, Wangdi K. Clinical features and outcomes of COVID-19 and dengue co-infection: a systematic review. BMC Infect Dis 2021;21 https://doi.org/10.1186/S12879-021-06409-9.

[9] Hemmer CJ, Geerdes-Fenge HF, Reisinger EC. [COVID-19: epidemiology and clinical facts]. Radiologie 2020;60:893–8. https://doi.org/10.1007/S00117-020-00741-Y.

[10] WHO Coronavirus (COVID-19) dashboard | WHO Coronavirus (COVID-19) dashboard with vaccination data n.d. https://covid19.who.int/MapFilter?cases (accessed May 24, 2022).

[11] Dengue and severe dengue n.d. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue?accessed (May 24, 2022).

[12] Roy SK, Bhattacharjee S. Dengue virus: epidemiology, biology, and disease aetiology. Can J Microbiol 2021;67:687–702. https://doi.org/10.1139/CJM-2020-0572.

[13] Raafat N, Blacksell SD, Maude RJ. A review of dengue diagnostics and implications for surveillance and control. Trans R Soc Trop Med Hyg 2019;113:635. https://doi.org/10.1093/TRSTMH/TRZ068.

[14] Jayarajah U, Lahiru M, de Zoya I, Seneviratne SL. Dengue infections and the surgical patient. Am J Trop Med Hyg 2021;104:52. https://doi.org/10.4269/ajtmh.20-0983.

[15] Harapan H, Ryan M, Yohan B, Abidin RS, Nainu F, Rakib A, et al. Covid-19 and dengue: double punches for dengue-endemic countries in Asia. Rev Med Virol 2021;31:1. https://doi.org/10.1002/RMV.22161.

[16] Ridwan R. COVID-19 and dengue: a deadly duo. Trop Doc 2020;50:270–2. https://doi.org/10.17117/0049475520936874.

[17] Panda PK, Sharawat IK. COVID-19 and dengue infection: a curse in an overburdened healthcare system. Trop Doc 2021;51:106–9. https://doi.org/10.1177/0049475520975594.

[18] Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395:507–13. https://doi.org/10.1016/S0140-6736(20)30211-7.

[19] Lorenz C, Azevedo TS, Chiaravalloti-Neto F. COVID-19 and dengue fever: a dangerous combination for the health system in Brazil. Travel Med Infect Dis 2020;35:101659. https://doi.org/10.1016/J.TMID.2020.101659.

[20] El-Qushayri AE, Kamel AMA, Reda A, Ghozy S. Does dengue and COVID-19 co-infection have worse outcomes? A systematic review of current evidence. Rev Med Virol 2022. https://doi.org/10.1002/RMV.2339.

[21] Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372. https://doi.org/10.1136/BMJ.N71.

[22] Ouzzani M, Hammody H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev 2016;5. https://doi.org/10.1186/S13643-016-0384-4.

[23] Krueger MB, Montenegro RC, de Araújo Coimbra PP, de Queiroz Lemos L, Fiorenza RM, da Silva Fernandes CJ, et al. A wide spectrum of neurological manifestations in pediatrics patients with the COVID-19 infection: a case series. J Neurovirol 2021;27:782–6. https://doi.org/10.1007/S13365-021-01004-9.

[24] Reyes-Ruiz JM, Campuzano-Vences R, Osuma-Ramos JF, de Jesus-Gonzalez LA, Pérez-Méndez MJ, González-Gonzáez C, et al. Case report: extrapulmonary manifestations of COVID-19 and dengue co-infection. Am J Trop Med Hyg 2021;105:363–97. https://doi.org/10.4269/AJTMH.21-0177.

[25] Agudelo Rojas OL, Tello-Cajiao ME, Rosso F. Challenges of dengue and coronavirus disease 2019 coinfection: two case reports. J Med Case Rep 2021;15: https://doi.org/10.1186/S12366-021-02973-5.

[26] Bicudo N, Bicudo E, Costa JD, Castro JALP, Barba GB. Co-infection of SARS-CoV-2 and dengue virus: a clinical challenge. Braz J Infect Dis 2020;24:452–4. https://doi.org/10.1016/J.BJID.2020.07.008.

[27] Pontes RL, de Brito BB, da Silva FAF, Figueredo MS, Correia TML, Teixeira AF, et al. Coinfection by SARS-CoV-2 and dengue virus in a dual viral circulation setting. Travel Med Infect Dis 2020;23 https://doi.org/10.1016/J.TMID.2020.101862.

[28] Salvo CP, di Lella N, López FS, Hugo J, Zito JG, Valela A. [Dengue and SARS-CoV-2 coinfection in an HIV positive patient]. Medicina (B Aires) 2020;80(Suppl. 6):94–6.

[29] Nakandakari Gomez MD, Marin-Macedo H, Seminario-Vilca R. Dengue with signs of alarm and Leptospirosis in a pediatric patient with COVID-19. Revista de La Facultad de Medicina Humana 2021;21:24. https://doi.org/10.25176/RFHv21i2.3459.

[30] Rosso F, Parra-Lara LG, Agudelo-Rojas OL, Martinez-Ruiz DM. Differentiating dengue from COVID-19: comparison of cases in Colombia. Am J Trop Med Hyg 2021;105:745–50. https://doi.org/10.4269/AJTMH.20-0912.

[31] Estofolote CF, Machado LF, Zini N, Luckemeyer GD, Moraes MM, dos Santos TML, et al. Presentation of fatal stroke due to SARS-CoV-2 and dengue virus co-infection: a case from North Caribbean Colombia. Travel Med Infect Dis 2021;43 https://doi.org/10.1016/J.TMID.2021.102096.

[32] Radacic MV, Piro MA, Mori I, Rotryng F, Santamaria JF. SARS-CoV-2 and dengue virus Co-infection. A case report. Infec Med 2020;28:416–9.
[34] Quental KN, Leite AL, Feitosa A do NA, Oliveira ZNPde, Tavares Lv de S, Tavares WG de S, et al. SARS-CoV-2 co-infection with dengue virus in Brazil: a potential case of viral transmission by a health care provider to household members. Travel Med Infect Dis 2021;40. https://doi.org/10.1016/j.tmaid.2021.101975.

[35] Schulte HL, Brito-Sousa JD, Lacerda MVG, Naves LA, de Gois, et al. Co-infection with SARS-CoV-2 and dengue virus: a series of cases from the Federal District, Midwestern Brazil. BMC Infect Dis 2021;21. https://doi.org/10.1186/S12879-021-06456-2.

[36] Valdés González JL, Valdés González EM, Solis Cartas U, Sigcho Romero SF. Dengue, COVID-19 and gout, an uncommon association. Revista Cubana de Reumatología 2020;22.

[37] Carosella LM, Pryanuka D, Marananza A, Barcan L, Cuini R, Freuler C, et al. Characteristics of patients co-infected with severe acute respiratory syndrome coronavirus 2 and dengue virus, Buenos Aires, Argentina, March-June 2020. Emerg Infect Dis 2021;27. https://doi.org/10.3201/EID2702.203449.

[38] Mejía-Parra JL, Aguilar-Martinez S, Fernández-Mogollón JL, Luna C, Bonilla-Aldana DK, Rodríguez-Morales AJ, et al. Characteristics of patients co-infected with severe acute respiratory syndrome coronavirus 2 and dengue virus, labeypeque, Peru, May-August 2020: a retrospective analysis. Travel Med Infect Dis 2021;43. https://doi.org/10.1016/j.tmaid.2021.102132.

[39] Teotônio IMSN, de Carvalho JL, Castro LC, Nitz N, Hagtström L, Rios GG, et al. Clinical and biochemical parameters of COVID-19 patients with prior or active dengue fever. Acta Trop 2021;214. https://doi.org/10.1016/j.actatropica.2020.105782.

[40] Stringari LL, de Souza MN, de Medeiros Junior NF, Goulart JP, Giuberti C, Dietze R, et al. Covert cases of severe acute respiratory syndrome coronavirus 2: an obscure but present danger in regions endemic for dengue and chikungunya viruses. PLoS One 2021;16. https://doi.org/10.1371/journal.pone.0244937.

[41] Rosso Mv, Clement T, Quiróga CAF, García S, Mulinaris EO, SARS-CoV-2 and dengue virus coinfection involving the skin of an Argentinian female. Int J Womens Dermatol 2021;7:824–5. https://doi.org/10.1016/j.jiwdvd.2021.03.004.

[42] El-Qushayri AE, Kamel AMA, Reda A, Ghogyo S. Does dengue and COVID-19 co-infection have worse outcomes? A systematic review of current evidence. Rev Med Virol 2022. https://doi.org/10.1002/rmv.2339.

[43] Khatri G, Hasan MM, Shaikh S, Mir SL, Sahito AM, Priya, et al. The simultaneous crises of dengue and COVID-19 in Pakistan: a double hazard for the country’s deiliated healthcare system. Trop Med Health 2022;50:1–5. https://doi.org/10.1186/s41186-022-00410-x. METRICS.

[44] El-Qushayri AE, Kamel AMA, Reda A, Ghogyo S. Does dengue and COVID-19 co-infection have worse outcomes? A systematic review of current evidence. Rev Med Virol 2022;32. https://doi.org/10.1002/rmv.2339.

[45] Malavíge GN, Jeewandara C, Ogg GS. Dengue and COVID-19: two sides of the same coin. J Biomed Sci 2022;29. https://doi.org/10.1186/s12929-022-00833-y.

[46] Harapan H, Ryan M, Yohan B, Abidin RS, Nainu F, Rakib A, et al. Covid-19 and dengue: double punches for dengue-endemic countries in Asia. Rev Med Virol 2021;31:e2161. https://doi.org/10.1002/rmv.2161.

[47] Nacher M, Douine M, Gaillot M, Flament C, Rouxset D, Rousseau C, et al. Simultaneous dengue and COVID-19 epidemics: difficult days ahead? PLoS Negl Trop Dis 2020;14:1–8. https://doi.org/10.1371/journal.pntd.0004826.

[48] Navarro JC, Arrivillaga-Henríquez J, Salazar-Loor J, Rodríguez-Morales AJ. COVID-19 and dengue, co-epidemics in Ecuador and other countries in Latin America: pushing strained health care systems over the edge. Travel Med Infect Dis 2020;37. https://doi.org/10.1016/j.tmaid.2020.101656.

[49] Plascencia-Dueñas R, Falloch-Rojas VE, Rodríguez-Morales AJ. Impact of the COVID-19 pandemic on the incidence of dengue fever in Peru. J Med Virol 2022;94:393–8. https://doi.org/10.1002/jmv.27298.

[50] Cardona-Ospina JA, Arteaga-Livias K, Villamí-Gómez WE, Pérez-Díaz CE, Katterine Bonilla-Aldana D, Mondragon-Cardona Á, et al. Dengue and COVID-19, overlapping epidemics? An analysis from Colombia. J Med Virol 2021;93:522–7. https://doi.org/10.1002/jmv.26194.

[51] Chen Y, Li N, Lourenço J, Wang L, Cazelles B, Dong L, et al. Measuring the effects of COVID-19-related disruption on dengue transmission in southeast Asia and Latin America: a statistical modelling study. Lancet Infect Dis 2022;22:657–67. https://doi.org/10.1016/S1473-3099(22)00225-1.

[52] da Rosa Mesquita R, Francelino Silva Junior LC, Santos Santana FM, Farias de Oliveira T, Campos Alcântara R, Monteiro Arnozo G, et al. Clinical manifestations of COVID-19 in the general population: systematic review. Wien Klin Wochenschr 2021;133:377–82. https://doi.org/10.1007/s00508-020-01760-4.

[53] Feldman C, Anderson R. The role of co-infections and secondary infections in patients with COVID-19. Pneumonia, vol. 13 (Nathan); 2021. https://doi.org/10.1186/s41479-021-00083-w.

[54] Ramos-Castañeda J, Barreto dos Santos F, Martinez-Vega R, Galván de Araujo JM, Joint G, Sarti E. Dengue in Latin America: systematic review of molecular epidemiological trends. PLoS Negl Trop Dis 2017;11. https://doi.org/10.1371/journal.pntd.0005224.

[55] Macias AE, Wernerck GL, Castro R, Mascarilas C, Coudeville L, Morley D, et al. Mortality among hospitalized dengue patients with comorbidities in Brazil, Colombia, and Ecuador. Am J Trop Med Hyg 2021;105:102–9. https://doi.org/10.4269/ajtmh.20-1163.

[56] Hasan MM, Hernández-Yépez PJ, de los Angeles Rivera-Cabrera M, Sarkar A, dos Santos Costa AC, Essar MY. Concurrent epidemics of dengue and COVID-19 in Peru: which way forward? The Lancet Regional Health - Americas 2022;12:100277. https://doi.org/10.1016/j.lrha.2022.100277.

[57] Plascencia-Dueñas R, Falloch-Rojas VE, Rodríguez-Morales AJ. Impact of the COVID-19 pandemic on the incidence of dengue fever in Peru. J Med Virol 2022;94:393–8. https://doi.org/10.1002/jmv.27298.