Data Article

Data on specificity of $[^{18}F]$GE180 uptake for TSPO expression in rodent brain and myocardium

Maximilian Deussing, Tanja Blume, Lena Vomacka, Christoph Mahler, Carola Focke, Andrei Todica, Marcus Unterrainer, Nathalie L. Albert, Simon Lindner, Barbara von Ungern-Sternberg, Karlheinz Baumann, Andreas Zwerger, Peter Bartenstein, Jochen Herm, Axel Rominger, Matthias Brendel

ARTICLE INFO

Article history:
Received 5 October 2017
Received in revised form 19 January 2018
Accepted 30 April 2018
Available online 5 May 2018

ABSTRACT

Data in this article show radioligand uptake (to gamma counter and positron-emission-tomography) as well as polymerase chain reaction analyses of 18 kDa translocator protein (TSPO) quantification. We confirmed specificity of $[^{18}F]$GE180 binding of rodent brain and myocardium by blocking experiments with prior application of non-radioactive GE180, using dynamic in vivo positron-emission-tomography and ex vivo gamma counter measurements.

DOI of original article: https://doi.org/10.1016/j.neuroimage.2017.10.006
* Corresponding author.
E-mail address: matthias.brendel@med.uni-muenchen.de (M. Brendel).
Expression of TSPO was compared between rodent brain and myocardium by quantitative polymerase chain reaction. © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Nuclear Medicine
More specific subject area	Preclinical PET imaging of neuroinflammation
Type of data	PET images, blocking plots, correlation plots
How data was acquired	$[^{18}F]$GE180 TSPO PET, gamma counter, TSPO qPCR
Data format	Quantification of PET and tissue samples, Listmode, NIFTI
Experimental factors	C57Bl6 mice, cold GE180, $[^{18}F]$GE180, Analysis of TSPO expression
Experimental features	TSPO PET, TSPO qPCR
Data source location	Department of Nuclear Medicine, Munich, Germany
Data accessibility	The data is provided within this article

Value of the data

- Blocking by pretreatment with non-radioactive GE180 for quantification of specific $[^{18}F]$GE180 TSPO binding in rodent brain and myocardium to positron-emission-tomography.
- Regional analysis for characterization of $[^{18}F]$GE180 binding specificity in different areas of the rodent brain.
- Data provide information about the physiological relationship between specific 18 kDa translocator protein (TSPO) tracer signal in normal rodent brain and myocardium.
- Quantitative polymerase chain reaction gives additional information about the relative magnitudes of TSPO expression in brain and myocardium.

1. Data

We observed that the myocardium presents a potential extra-cerebral reference region for $[^{18}F]$GE180 TSPO positron-emission-tomography quantitation [1]. The following data provide additional information about the association and specificity of brain and myocardium TSPO tracer binding, as obtained by blocking experiments (Fig. 1, Fig. 2). Furthermore, we performed quantitative polymerase chain reaction for assessment of TSPO gene expression in brain and myocardium, independent of tracer-based measurements (Fig. 3).

2. Experimental design, materials and methods

2.1. Radiochemistry

Radiosynthesis of $[^{18}F]$GE180 was performed as previously described [3], with slight modifications [4], in a procedure yielding radiochemical purity $> 98\%$, and specific activity of $1400 \pm 500 \text{ GBq/\mu mol}$ at end of synthesis. For blocking, non-radioactive GE180 was used at a mass concentration ratio of 1000:1 compared to the radiolabeled ligand.
2.2. Gamma counter analysis

We performed blocking experiments with excess non-radioactive tracer for quantification of specific 18F$\text{GE}180$ binding components in the rodent brain and myocardium. A total of twelve female C57Bl6 mice were analyzed at the age of seven months. Isoflurane anesthesia (1.5% in 2–4 l/min O$_2$)
was maintained during the experimental procedure, and mice were finally killed by cervical decapitation at 107 min post injection, while in a state of deep narcosis. Five mice received an injection of 14.7 ± 2.2 MBq $[^{18}{\text{F}}]{\text{GE180}}$ into the tail vein (150 µl saline). Seven mice received an injection of excess non-radioactive GE180 (1000:1) prior to injection of 14.5 ± 2.1 MBq $[^{18}{\text{F}}]{\text{GE180}}$ (in 150 µl saline) to a tail vein. Brain and myocardium tissues were quickly removed, and radioactivity concentration was measured in a gamma counter (Cobra Quantum 5002, Packard) with decay-correction to time of tracer injection [5].

2.3. Positron-emission-tomography acquisition and analysis

A subset of mice ($N = 5$ with blocking and $N = 3$ without blocking) was placed in the tomograph (Siemens Inveon DPET) immediately after injection of $[^{18}{\text{F}}]{\text{GE180}}$, whereupon we began a 90 min dynamic emission recording as described previously [6]. A 15 min transmission scan was then obtained using a rotating $[^{57}\text{Co}]$ point source. The image reconstruction procedure consisted of three-dimensional ordered subset expectation maximization with four iterations and twelve subsets followed by a maximum a posteriori algorithm with 32 iterations. Framing was 3×60 s, 6×180 s, 9×300 s, 3×600 s. Scatter and attenuation correction were performed and a decay correction for $[^{18}\text{F}]$ was applied. With a zoom factor of 1.0 and a $128 \times 128 \times 159$ matrix, a final voxel dimension of $0.78 \times 0.78 \times 0.80$ mm was obtained.

Summations of the dynamic emission datasets were manually co-registered to a magnetic resonance imaging mouse atlas [2] by a rigid-body transformation using the PMOD fusion tool (V3.5, PMOD Technologies Ltd.), after blinding the reader to the mouse status (blocked/unblocked). In the second step, a reader-independent automatic re-registration to tracer-specific templates was performed, as reported previously [7]. Initial manual positron-emission-tomography to magnetic resonance imaging atlas images were normalized by non-linear brain normalization to the template using the PMOD brain normalization tool (equal modality; smoothing by 0.6 mm; nonlinear warping; 16 iterations; frequency cutoff 3; regularization 1.0; no thresholding). The concatenation of both transformations was then applied to positron-emission-tomography frames in the native space, to obtain optimal resampling with a minimum of interpolation. The whole brain $[^{18}\text{F}]$GE180 concentration (standardized uptake value; SUV) was measured in a volume-of-interest defined by the magnetic resonance imaging template. The volume-of-interest, comprising 525 mm3, included the entire cerebrum, cerebellum, brainstem and olfactory bulb. The 60–90 min image frames were used to calculate voxel-wise percentages of specific $[^{18}\text{F}]$GE180 binding throughout the rodent brain.
3. Quantitative TSPO polymerase chain reaction

3.1. RNA isolation and reverse transcription

Brain and heart tissue from adult mice was immediately frozen to \(-80^\circ\mathrm{C}\) in liquid nitrogen after resection. Tissue was lysed with QiAazol Lysis Reagent (Quiagen) and homogenized. The InviTrap\textregistered Spin Universal RNA Mini Kit (Stratec) was used to isolate RNA and to separate it from contaminating DNA. RNA concentration was measured with NanoDrop™ 2000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Extracted RNA was assessed based on spectral data and purity ratios (A260/A280). Reverse transcription from 50 \(\mu\text{L}\) of 50 ng/\(\mu\text{L}\) RNA was performed by incubating with 4 \(\mu\text{L}\) 25x dNTPs, 10 \(\mu\text{L}\) 10x random primers, 5 \(\mu\text{L}\) MultiScribe™ Reverse Transcriptase 50 U/\(\mu\text{L}\), 21 \(\mu\text{L}\) Nuclease-free H2O for 10 min at 25 \(^\circ\text{C}\), then 120 min at 37 \(^\circ\text{C}\). The transcription was terminated by incubating at 85 \(^\circ\text{C}\) for 5 min.

3.2. Real-time polymerase chain reaction

TSPO mRNA expression was measured using a CFX connect optics module RT-System (BioRad, Hercules, CA, USA). cDNA template 9 \(\mu\text{L}\) was added to 20 \(\times\) TaqMan™ Gene Expression Assay Mm00437828_m1 1 \(\mu\text{L}\) and 2x TaqMan™ Gene Expression Master Mix 10 \(\mu\text{L}\). Thermal cycling conditions were 2 min at 50 \(^\circ\text{C}\) and 10 min at 95 \(^\circ\text{C}\), followed by 40 cycles at 98 \(^\circ\text{C}\) for 15 s and at 60 \(^\circ\text{C}\) for 1 min. To test specificity of the polymerase chain reaction product a melt curve analysis was performed. TSPO expression was normalized to the housekeeping genes Actin-beta and glyceraldehyde 3-phosphate dehydrogenase expression was used for comparative quantification.

Acknowledgements

This paper originated from the doctoral thesis of Maximilian Deussing. We thank Karin Bormann-Giglmaier, Rosel Oos, and Lena Schödel for excellent technical assistance. We note manuscript editing by Inglewood Biomedical Editing. GE made available the GE-180 cassettes through an early access model.

Transparency document. Supplementary material

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.04.133.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.04.133.

References

[1] M. Deussing, T. Blume, L. Vomacka, C. Mahler, C. Focke, A. Todica, M. Unterrainer, N.L. Albert, S. Lindner, B. von Ungern-Sternberg, K. Baumann, A. Zwergal, P. Bartenstein, J. Herms, A. Rominger, M. Brendel, Coupling between physiological TSPO expression in brain and myocardium allows stabilization of late-phase cerebral \([18F]GE180\) PET quantification., Neuroimage 15 (165) (2018) 83–91. http://dx.doi.org/10.1016/j.neuroimage.2017.10.006, Epub 2017 Oct 5..

[2] A. Dorr, J.G. Sled, N. Kabani, Three-dimensional cerebral vasculature of the CBA mouse brain: a magnetic resonance imaging and micro computed tomography study, Neuroimage 35 (4) (2007) 1409–1423.

[3] T. Wickstrom, et al., The development of an automated and GMP compliant FASTlab synthesis of \([18F]GE-180\); a radiotracer for imaging translocator protein (TSPO), J. Label. Compd. Radiopharm. 57 (1) (2014) 42–48.
M. Brendel, et al., Glial activation and glucose metabolism in a transgenic amyloid mouse model: a triple tracer PET study, J. Nucl. Med. (2016).

M. Brendel, et al., Impact of partial volume effect correction on cerebral beta-amyloid imaging in APP-Swe mice using [(18) F]-florbetaben PET, NeuroImage 84 (2014) 843–853.

M. Brendel, et al., Glial activation and glucose metabolism in a transgenic amyloid mouse model: a triple-tracer PET study, J. Nucl. Med. 57 (6) (2016) 954–960.

F. Overhoff, et al., Automated spatial brain normalization and hindbrain white matter reference tissue give improved [(18) F]-florbetaben PET quantitation in alzheimer’s model mice, Front. Neurosci. 10 (2016) 45.