Ca\(^{2+}\)-Currents in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Effects of Two Different Culture Conditions

Ahmet U. Uzun\(^{1,2}\), Ingra Mannhardt\(^{1,2}\), Kaja Breckwoldt\(^{1,2}\), András Horváth\(^{1,2,3}\), Silke S. Johannsen\(^{2,4}\), Arne Hansen\(^{1,2}\), Thomas Eschenhagen\(^{1,2}\) and Torsten Christ\(^{1,2}\)*

\(^1\)Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; \(^2\)Partner Site Hamburg/Kiel/Lübeck, German Centre for Cardiovascular Research (DZHK), Hamburg, Germany; \(^3\)Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary; \(^4\)Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) provide a unique opportunity to study human heart physiology and pharmacology and repair injured hearts. The suitability of hiPSC-CM critically depends on how closely they share physiological properties of human adult cardiomyocytes (CM). Here we investigated whether a 3D engineered heart tissue (EHT) culture format favors maturation and addressed the L-type Ca\(^{2+}\)-current (I\(_{\text{Ca,L}}\)) as a readout. The results were compared with hiPSC-CM cultured in conventional monolayer (ML) and to our previous data from human adult atrial and ventricular CM obtained when identical patch-clamp protocols were used.

HiPSC-CM were two- to three-fold smaller than adult CM, independently of culture format [capacitance ML 45 ± 1 pF (\(n = 289\)), EHT 45 ± 1 pF (\(n = 460\)), atrial CM 87 ± 3 pF (\(n = 196\)), ventricular CM 126 ± 8 pF (\(n = 50\))]. Only 88% of ML cells showed I\(_{\text{Ca,L}}\), but all EHT. Basal I\(_{\text{Ca,L}}\) density was 10 ± 1 pA/pF (\(n = 207\)) for ML and 12 ± 1 pA/pF (\(n = 361\)) for EHT and was larger than in adult CM [7 ± 1 pA/pF (\(p < 0.05\), \(n = 196\)) for atrial CM and 6 ± 1 pA/pF (\(p < 0.05\), \(n = 47\)) for ventricular CM]. However, ML and EHT showed robust T-type Ca\(^{2+}\)-currents (I\(_{\text{Ca,T}}\)). While (−)-Bay K 8644, that activates I\(_{\text{Ca,L}}\) directly, increased I\(_{\text{Ca,L}}\) to the same extent in ML and EHT, β₁- and β₂-adrenoceptor effects were marginal in ML, but of same size as (−)-Bay K 8644 in EHT. The opposite was true for serotonin receptors. Sensitivity to β₁ and β₂-adrenoceptor stimulation was the same in EHT as in adult CM (−logEC\(_{50}\); 5.9 and 6.1 for norepinephrine (NE) and epinephrine (Epi), respectively), but very low concentrations of Rp-8-Br-cAMPS were sufficient to suppress effects (−logEC\(_{50}\); 5.3 and 5.3 respectively for NE and Epi). Taken together, hiPSC-CM express I\(_{\text{Ca,L}}\) at the same density as human adult CM, but, in contrast, possess robust I\(_{\text{Ca,T}}\). Increased effects of catecholamines in EHT suggest more efficient maturation.

Keywords: human induced pluripotent stem cell-derived cardiomyocytes, L-type Ca\(^{2+}\)-channel, T-type Ca\(^{2+}\)-channel, β-adrenoceptor, 5-hydroxytryptamine, protein kinase A
INTRODUCTION

The L-type Ca\(^{2+}\)-current (I\(_{\text{Ca,L}}\)) is central for cardiac electrophysiology. It contributes to the shape of the cardiac action potential and its regulation plays an important role in cardiac excitability and contractility (Tsien, 1983). L-type Ca\(^{2+}\)-currents are activated upon depolarization while their activity can be increased by catecholamines (Hofmann et al., 2014). Since effects of norepinephrine on action potential precede the effects on tension it is assumed that stimulation of I\(_{\text{Ca,L}}\) is related to inotropy (Reuter, 1974). Therefore, I\(_{\text{Ca,L}}\) is expected to be crucial for adapting heart function to actual needs. T-type Ca\(^{2+}\)-currents are typically found in pacemaking heart cells, but are absent from the working myocardium of many adult mammals including man (Beuckelmann et al., 1991). HiPSC-CM provide a unique opportunity to study human heart electrophysiology in vitro and are believed to offer a model for pharmacological drug development as well as disease modeling (Dick et al., 2010; Hoekstra et al., 2012; Navarrete et al., 2013). Yet, hiPSC-CM display an immature cardiac phenotype, and current efforts are directed toward means to unfold the full potential of these cells by increasing their maturity (Yang et al., 2014). One such strategy could be culture in engineered heart tissue (EHT) under conditions in which hiPSC-CM form a 3-dimensional network and perform auxotonic contraction work against elastic silicone posts (Schaaf et al., 2011). Here we directly compared the biophysics and regulation of Ca\(^{2+}\)-currents in hiPSC-CM cultured either in standard monolayer format (ML) or as EHT and compared the data to our previous data on human adult CM obtained under identical patch-clamp protocols.

MATERIALS AND METHODS

Differentiation of hiPSC-CM and EHT Generation

Undifferentiated hiPSC (kind gift from Alessandra Moretti, Munich, Germany) were expanded in a medium which contains bFGF, TGfß1, Dorsomorphin and Activin A [so called “FTDA” (Frank et al., 2012)], and differentiated in a three step protocol based on growth factors and a small molecule Wnt inhibitor DS07 (kind gift from Dennis Schade, Dortmund, Germany). In brief, confluent undifferentiated cells were dissociated (0.5 mM EDTA; 10 min) and cultivated in spinner flasks (30×10\(^6\) cells/100 ml; 40 rpm) for embryoid body formation overnight (Zweigerdt et al., 2011). Mesodermal differentiation was initiated in embryoid bodies over 3 days in suspension culture with growth factors (BMP-4, activating A, FGF2). Cardiac differentiation was performed either in adhesion or in suspension culture with the Wnt-inhibitor DS07 (Lanier et al., 2012). Cells were cultured in a humidified temperature and gas-controlled incubator (37°C, 5% CO\(_2\), 2% O\(_2\); 21% O\(_2\) for final cardiac differentiation). At day 14 the spontaneous beating hiPSC-CM were dissociated with collagenase type II (Worthington, LS004176; 200 U/ml, 3.5 h) and either cultured in ML or EHT format. For 3-dimensional culture EHT were generated as previously described (Schaaf et al., 2014). EHT as well as ML were cultured in a 37°C, 7% CO\(_2\), 21% O\(_2\) humidified cell culture incubator with a medium consisting of DMEM (Biornchem; F0415), 10% heat-inactivated horse serum (Gibco 26050), 1% penicillin/streptomycin (Gibco 15140), insulin (10 µg/ml; Sigma I9278) and aprotinin (33 µg/ml; Sigma A1153). For further comparability, experiments were performed in parallel from the same batch of cells. After culturing hiPSC-CM in ML and EHT for 28 days cells were isolated with collagenase type II (Worthington, LS004176; 200 U/ml) for 3 h (ML) and 5 h (EHT). In order to support dissociation, trituration was performed after 1.5 and 3 h, respectively. Cells were plated on gelatin-coated (0.1%) glass coverslips for 24–48 h before patch clamp experiments were performed.

Human Adult Atrial and Ventricular CM

Adult myocardial tissue was obtained with informed consent from patients undergoing cardiac surgery at the Department of Heart Surgery, Dresden University of Technology. These studies were approved by the Medical Faculty Ethics Committee of Dresden University of Technology (document EK790799). Experiments were performed at the Department of Experimental Pharmacology and Toxicology, Medical Faculty, Dresden University of Technology between 2008 and 2011. Atrial and ventricular CM were isolated and prepared as previously described (Dobrev et al., 2000). Data about atrial CM displayed in Figures 1, 5D (experiments with NE and Epi) were obtained from raw data, used for publication recently (Christ et al., 2014). Data presented in Figures 2, 4, 5D (only experiments with Bay K) are from new experiments done in atrial cells from 6 patients. Patients were in stable sinus rhythm and 61.7 ± 2.7 years old. The majority of patients were treated with acetylsalicylic acid, ACE-inhibitors and β-blockers (for details see Table S1).

Western Blot

For protein extraction 28-day-old EHT were frozen in liquid nitrogen and stored at −80°C. Each EHT was subjected to lysis with 70 µl 1x M-PERTM Mammalian Protein Extraction Reagent (Thermo Scientific) including protease and phosphatase inhibitor (Roche). The tissues were homogenized and supplemented with 1x Laemmlli buffer prior to heating (95°C, 5 min). SDS polyacrylamide gel (8%) was loaded with 3 µl non-failing human heart tissue lysate or 10–20 µl of EHT lysate. After electrophoresis proteins were blotted onto nitrocellulose membrane using the wet blot technique. Membranes were cut, washed with TBS-Tween 0.1%, blocked in 10% in low fat milk powder solution (1–2 h) and immediately transferred for incubation with the primary polyclonal rabbit antibodies against cardiac troponin T (1:1000; Abcam, 45932) and T-type calcium channel (1:100; alomone labs, SCC-021). After washing (TBS-Tween 0.1%, 3 × 10 min) membranes were transferred to anti-rabbit IgG peroxidase-conjugated secondary antibody (1:5000, Sigma, A0545; 1 h, room temperature in 1% low fat milk powder solution). Membranes were washed with TBS-Tween (0.1%, 3 × 15 min and 0.05% 2 × 15 min) and Pierce® ECL.
Western Blotting Substrate (Thermo Scientific) used for band visualization.

Whole-Cell Recording of I_{Ca}

I_{Ca} was measured at $37 ^\circ C$ using the whole-cell configuration of the patch-clamp technique (Axopatch 200B, Axon Instruments, Foster City, CA, USA). ISO 2 software was used for data acquisition and analysis (MFK, Niedernhausen, Germany). Heat-polished pipettes were pulled from borosilicate filamented glass (Hilgenberg, Malsfeld, Germany). Tip resistances were 2.5–5 MΩ, seal resistances were 3–6 GΩ. Cell capacitance (C_m) was calculated from steady-state current during depolarizing ramp pulses (1V/1s) from -40 to -35 mV. Ca^{2+}-currents were elicited by applying test- pulses from -80 to $+10$ mV (0.5 Hz). Extracellular Ca^{2+}-concentration was 2 mM. The cells were investigated in a small perfusion chamber placed on the stage of an inverse microscope. Drugs were applied with a system for rapid solution changes (Cell Micro Controls, Virginia Beach, VA, USA; ALA Scientific Instruments, Long Island, NY, USA; Christ et al., 2004a). In order to avoid contaminating currents, K^+-currents were blocked by replacing K^+ with Cs$^+$ and tetraethylammonium-chloride in the bath solution. The experiments were performed with the following Na$^+$-free bath solution (in mM): Tetraethylammonium-chloride 120, CsCl 10, HEPES 10, $CaCl_2$ 2, MgCl$_2$ 1 and glucose 20 (pH 7.4, adjusted with CsOH). The pipette solution (pH 7.2, adjusted with CsOH) included (in mM): Cesium methanesulfonate 90, CsCl 20, HEPES 10, Mg-ATP 4, Tris-GTP 0.4, EGTA 10, and $CaCl_2$ 3 (Christ et al., 2001). For some experiments (Figures 4A,B) we used the technique of perforated-patch. Amphotericin B was added to the pipette solution in a concentration of 1 µM. Current amplitude was determined as the difference between peak inward current and current at the end of the depolarizing step. Steady-state inactivation curves for I_{Ca} were obtained by plotting the normalized current amplitude at the test potential as a function of the conditioning potential (V_m). A Boltzmann function was fitted to the normalized values: $I/I_{max} = 1/(1 + \exp((V_m - V_{0.5_{inact}})/k_{inact}))$, where $V_{0.5_{inact}}$ and k_{inact} are the voltage of half-maximum inactivation and the slope factor, respectively. Activation curves were calculated from current-voltage relations.

FIGURE 1 | Cell size and Ca^{2+}-currents in human CM. (A) Frequency distribution of cell capacitance in CM from conventional monolayer culture (ML), EHT and from human adult atrial and ventricular CM expressed as kernel density (details see methods). Dotted lines indicate mean values (compare Table S2). (B) Ca^{2+}-current amplitudes (measured at $+10$ mV) vs. cell capacitance, dotted lines indicate linear regression fit (compare Table S3). Cells without I_{Ca} were not plotted. Same n-numbers as in 1C. (C) Frequency distribution of Ca^{2+}-currents in human CM. Ca^{2+}-currents are expressed as current densities, measured 3.5 min after membrane rupture (test- pulse potential $+10$ mV, for detailed analysis compare Table S4). (D) Mean values for absolute peak Ca^{2+}-currents vs. cell capacitance. Please note that error bars may be smaller than symbols. Same n-numbers as in 1C. N/N indicates number of cells vs. number of isolation for ML and EHT and number of cells/number patients for atrial and ventricular CM.
FIGURE 2 | Voltage dependency of current activation, steady state inactivation and inactivation during a test-pulse. (A) IV-curves for ML, EHT, and atrial CM. Currents are normalized to its individual maximum. (B) Activation curves for I_{Ca}. Conductances were calculated from individual IV-curves. (C) Steady state inactivation curves for T-type Ca^{2+}-channels (at −30 mV, left) and for L-type (at +10 mV, right). (D) Western blot with antibodies against CaV 3.1 and cardiac troponin T (cTnT; loading control) in human adult left ventricle (LV) and engineered heart tissue (EHT). (E–H) Time-dependent inactivation of Ca^{2+}-currents. (E) Original tracings of I_{Ca} during initial inactivation phase at different test pulse potentials in hiPSC-CM (For pulse protocol, compare inset in (B). Numbers next to the arrows indicate respective test pulse potential, for clarity some steps were omitted). (F) \(\tau \)-values for the fast and slow inactivation phase and respective current amplitudes obtained by curve fitting at different test-pulse potentials A and B. Please note that in human atrial CM no Ca^{2+}-currents could be recorded at V_{m} < −10 mV. For details see Table S5. N/N indicates number of cells vs. number of isolation for ML and EHT and number of cells/number patients for atrial CM.
(IV-curves) using the equation \(G = \frac{I}{V_m - E_{rev}} \), where \(G \) and \(I \) are peak \(Ca^{2+} \)-conductance and current at the test potential \(V_m \), respectively. The apparent reversal potential \(E_{rev} \) was obtained by linear regression of four data points close to \(E_{rev} \). The relation between normalized peak conductance \(G/G_{max} \) and membrane potential \(V_m \) could be described by a bi-exponential Boltzmann equation: \(Y = A/(1 + \exp((V_{0.5}\text{actA} - V_m)/k_{actA})) + B/(1 + \exp((V_{0.5}\text{actB} - V_m)/k_{actB})) \), where \(V_{0.5}\text{act} \) is the voltage at half-maximum activation and \(k_{act} \) is the slope factor.

Drugs

All drugs and chemicals were obtained from Sigma (St. Louis, Missouri, USA), except for Rp-8-Br-cAMPS, which was obtained from Calbiochem (Merck, Darmstadt, Germany) and (−)-Bay K 8644 from Tocris (Tocris Bioscience, Bristol, United Kingdom).

Statistics

Results are presented as mean ± SEM. Curve fitting was performed by using the GraphPad Prism Software Version 5.02 (GraphPad Software, San Diego, CA, USA). Statistical differences were evaluated by using the Student’s t-test (paired or unpaired) or repeated measures ANOVA, where appropriate. A value of \(p < 0.05 \) was considered to be statistically significant. Analyses of frequency distribution (Figures 1A,C) were performed using R (ver. 3.1.1) (R Core Team, 2013). Please note that the statistical term “Kernel density estimation” is used in Figure 1. In the first place, a “kernel” is defined as a probability density function which must possess particular properties. These are that it must be even, non-negative, real-valued and its definite integral over its support set must equal to 1. So “kernel density estimation” is a method which is non-parametric and enables to estimate the probability density function of a random variable (http://scikit-learn.org/stable/modules/density.html).

RESULTS

Cell Size and Current Density

HiPSC-CM were consistently reported to be smaller than adult CM. We could confirm this finding under our cell culture conditions. When we plotted individual cell capacitance as an electrophysiological correlate of cell size in hiPSC-CM and human adult CM, we found substantial overlap between hiPSC-CM and adult CM. We could confirm this finding under our cell culture conditions. When we plotted individual cell capacitance as an electrophysiological correlate of cell size in hiPSC-CM and adult CM, we found substantial overlap between hiPSC-CM and adult CM. In human adult CM, \(I_{Ca} \) is peak \(Ca^{2+} \)-current and \(E_{rev} \) is the membrane potential at which the current crosses zero. Since the selectivity of mibefradil is moderate compared to the

Voltage-Dependency of Activation, Steady State Inactivation and Inactivation Kinetics of \(I_{Ca} \)

hiPSC-CM Possess Both Low-Voltage- and High-Voltage Activated \(I_{Ca} \) (Figures 2A–C)

Next we measured voltage-dependent activation of \(I_{Ca} \) in hiPSC-CM and adult CM. In human adult CM, \(Ca^{2+} \)-currents activated at test pulse potentials above −30 mV. In contrast, hiPSC-CM showed robust \(Ca^{2+} \)-currents at much more negative test pulse potentials (starting already at −50 mV) giving a typical “shoulder” (Nemtsas et al., 2010). To get exact values for voltage-dependency we constructed activation curves and fitted a bi-exponential Boltzmann function to the data points. About 11–13% of total \(Ca^{2+} \)-conductivity consisted of T-type \(Ca^{2+} \)-current (\(I_{Ca,T} \)) with activation voltage not different between ML and EHT. Steady state inactivation curves in hiPSC-CM also differed from adult CM (Mewes and Ravens, 1994; Christ et al., 2004b). Low-voltage activated \(I_{Ca} \) inactivated at more negative potentials. The data are compatible with the expression of functional T-type \(Ca^{2+} \)-channels in hiPSC-CM. Accordingly, Western blots with an antibody against Cav3.1 showed single bands at ∼270 kDa in both hiPSC-CM and a non-failing human heart sample, providing evidence for the presence of T-type \(Ca^{2+} \)-channels in hiPSC-CM (Figure 2D).

Time-Dependent Inactivation of \(I_{Ca} \) (Figures 2E–H)

Total \(Ca^{2+} \)-influx critically depends not only on voltage-dependency of activation and resulting peak current amplitude but also on time-dependent inactivation at different membrane potentials. Therefore, we fitted \(Ca^{2+} \)-current decay. As shown previously in human adult CM (Christ et al., 2004b), \(Ca^{2+} \)-current inactivation could be fitted at positive potentials with two time constants: \(\tau_{fast} \) of ∼4 ms and \(\tau_{slow} \) of ∼50 ms. Like in human adult CM, the quickly inactivating component of \(I_{Ca} \) was larger than the slowly inactivating component. In summary we found the same biophysical properties of L-type \(Ca^{2+} \)-currents as in adult CM.

Pharmacological Block of \(I_{Ca} \)

Nifedipine Does not Completely Block \(I_{Ca} \) in hiPSC-CM (Figure 3)

To further evaluate the hypothesis that \(I_{Ca} \) in hiPSC-CM contains \(I_{Ca,T} \) we applied pharmacological blockers. We used nifedipine to block L-type and mibefradil to block T-type \(Ca^{2+} \)-currents. Since the selectivity of mibefradil is moderate compared to the
selectivity of nifedipine, cells were exposed first to nifedipine and mibefradil was added on top (Figures 3E,F). Exposure to high concentrations of nifedipine (10 µM) did not block Ca^{2+}-currents completely (Figure 3). Scrutinizing IV-curves in the presence of nifedipine revealed that a large amount of the remaining current measured at +10 mV should mainly result from T-type Ca^{2+}-currents. In line with this assumption, mibefradil blocked the nifedipine-insensitive current at +10 mV. The data suggest that a substantial amount of Ca^{2+}-currents at +10 mV relates to I_{Ca-T}, both in ML and EHT. This interpretation is complicated by the so-called slip-mode

![Figure 3](https://example.com/figure3.png)
conduction in which, in a Na^+-free environment, the Na^+-channel can also conduct Ca^{2+} ions, thereby mimicking $\text{I}_{\text{Ca},T}$ (Mitra and Morad, 1986; Heubach et al., 2000). Since mibefradil not only blocks $\text{I}_{\text{Ca},T}$ but also slip-mode conduction (Heubach et al., 2000) we employed tetrodotoxin (TTX; 30 μM). However, the Ca^{2+}-currents at low test pulse potentials were insensitive to TTX, confirming the assumption of $\text{I}_{\text{Ca},T}$. Furthermore, $\text{I}_{\text{Ca},L}$ was also insensitive to TTX (Figure S1).

Run-Down and Activation of $\text{I}_{\text{Ca},L}$ by $(-)$-Bay K 8644

Ca^{2+}-currents in adult CM typically decrease over time, often with an initial rapid phase and stabilization over time even when the technique of perforated-patch was used. In hiPSC-CM we could not reach stable current densities in the time frame of 5 min. Since hiPSC-CM were found extraordinary fragile compared to human adult cardiomyocytes, we looked for a compromise. Therefore, we decided to measure basal current characteristics already 3.5 min after membrane rupture. In order to evaluate whether L-type Ca^{2+}-currents in hiPSC-CM share the typical response to a Ca^{2+}-channel opener we employed the dihydropyridine derivative $(-)$-Bay K 8644. The $(-)$-enantiomer was used as the $(+)$-enantiomer blocks $\text{I}_{\text{Ca},L}$ and may thereby impair the maximal drug response (Ravens and Schoepper, 1990; Ji et al., 2014). High concentrations of $(-)$-Bay K 8644 (10 μM) increased Ca^{2+}-currents in ML, EHT and adult atrial CM by 57.0, 29.9, and 91.1%, respectively (Figure 4D). The effect size did not differ between ML and EHT when expressed as delta values (increase by 4.8 and 4.7 pA/pF, respectively).

Activation of $\text{I}_{\text{Ca},L}$ by Catecholamines

Both β_1- and β_2-AR Stimulation Increase Currents in hiPSC-CM

In the human heart $\text{I}_{\text{Ca},L}$ is under regulation by β_1- and β_2-AR. To activate β_1-AR we used norepinephrine (NE) in the presence of the selective β_2-AR antagonist ICI118,551 (50 nM) and to activate β_2-AR epinephrine (Epi) in the presence of the β_1-AR antagonist CGP 20712A (300 nM; Kaumann et al., 1989). To assess maximum effects we used first very high concentrations of NE and Epi (100 μM each) and compared effect size to direct activation by $(-)$-Bay K 8644 (See Run-down and activation of $\text{I}_{\text{Ca},L}$ by $(-)$-Bay K 8644). Activation of β_1- and β_2-AR increased...
ICa,L in both ML and in EHT. The onset of the effect was as fast as in adult CM which is within ~20 s (Christ et al., 2006). The effect of β1 AR equaled that of β2 AR stimulation in ML, EHT, and adult atrial CM. However, while β1- and β2-AR effects matched that of (−)-Bay K 8644 in EHT and atrial CM (Figures 5C,D), they were much lower in ML (Figure 5B). Of note, even in EHT the absolute increases induced by catecholamines or (−)-Bay K 8644 were smaller than in adult CM. One explanation might be that L-type Ca2+-currents in hiPSC-CM are already high at baseline and cannot be increased any further. However, when plotted against each other, larger basal current densities were associated with larger current increases (Figure S2), arguing against this hypothesis. Steeper linear regression curves in adult CM than in both hiPSC-CM groups also indicate that the smaller ICa,L responses in hiPSC-CM are not related to basal properties.

Catecholamine Sensitivity

Sensitivity in hiPSC-CM is not Different From Adult CM (Figure 6)

Increases in ICa,L by high concentrations of catecholamines were smaller in EHT than in adult CM. Either maximum effects could be diminished or sensitivity is so low that even 100 µM did not induce maximum effects. Therefore, we have measured concentration-response curves for increase of ICa,L by β1- and β2-AR stimulation in EHT. Due to small effect size we refrained from doing so in ML. To avoid complications because of run-down and desensitization of receptors catecholamines were applied in a non-cumulative manner. The threshold concentration for both NE- and Epi-induced increases in ICa,L was 100 nM and calculated −log EC50 values amounted to 5.9 and 6.1, respectively (Figures 6C,D). These values do not differ from those determined in human adult ventricular CM and adult atrial CM (Christ et al., 2014).

CAMP-Dependency of ICa,L-Increase due to β1- and β2-AR Stimulation

β1- and β2-AR-Mediated Increases can be Suppressed by Much Lower Concentrations of Rp-8-Br-cAMPS than in Adult CM (Figure 7)

Patch-clamp experiments in isolated cells give the unique opportunity to intracellularly apply inhibitors of signal transduction. In order to estimate cAMP levels relevant for ICa,L activation we employed Rp-8-Br-cAMPS, a compound competitively inhibiting the effects of native cAMP on PKA (Figure 7). We measured effects of different concentrations of Rp-8-Br-cAMPS on basal currents and currents activated by maximum concentrations of catecholamines (100 µM). Since Ca2+-current increases by catecholamines in ML were small and hardly detectable in many experiments, we restricted the analysis to EHT. The presence of Rp-8-Br-cAMPS in the patch pipette did not decrease basal currents (data not shown). Both β1- and β2-AR mediated increases in EHT could be suppressed concentration-dependently with calculated −logEC50 values of

![Figure 5](https://example.com/figure5.png)
FIGURE 5 | Catecholamine effects vs. direct activation of ICa,L. (A) Time course of ICa,L upon exposure to norepinephrine (NE, 100 µM) in a CM from EHT. Original tracings taken at time points indicated as a and b. (B-D) Mean delta values for the increase in ICa,L expressed as current densities upon stimulation of β1-AR with NE (100 µM), β2-AR with epinephrine (Epi, 100 µM) in the presence of the respective β-AR antagonist. Results from ML (B), EHT (C), and atrial CM (D). Data for (−)-Bay K 8644 were taken from Figure 4 and given as delta values for comparison. # indicates significance vs. (−)-Bay K 8644. Please note different y axis scaling in D! N/N indicates number of cells vs. number of isolation for ML and EHT and number of cells/number patients for atrial CM.
5.3 (Figures 7C,D). Compared to previous data from human adult atrial CM (Christ et al., 2014), \(\log E_{50} \) values were 20 times lower in EHT.

5-HT-Effects on \(I_{Ca} \)

5-HT Increases \(I_{Ca} \) in hiPSC-CM Less Than in Atrial CM (Figure 8)

Serotonin (5-HT) exerts positive inotropic effects in ventricular preparations from newborn, but not adult pigs (Jahnel et al., 1992; Schoemaker et al., 1992). In contrast, 5-HT-inotropy persists in atrial preparations from pigs (and even humans; Christ et al., 2014). The lack of positive inotropy in human ventricle could be related to the inability of 5-HT to increase \(I_{Ca} \), albeit evidence is based on very preliminary data (Jahnel et al., 1992). We therefore evaluated the effect of 5-HT (100 µM) on \(I_{Ca} \)-currents in hiPSC-CM, indicative of an immature and/or atrial-like phenotype (Figure 8). First we confirmed the failure of 5-HT to raise \(I_{Ca} \) in human ventricular CM in a larger number of cells. In atrial CM 5-HT-evoked increases were similar compared to direct \(Ca^{2+} \)-channel activation by (−)-Bay K 8644. HiPSC-CM showed increases in \(I_{Ca} \) (Figure 8C), but at much smaller size than in atrial CM. While increases in ML cells accounted to 60% of (−)-Bay K 8644-effects, they amounted to only 20% in EHT, indicating more advanced maturation or ventricular differentiation.

DISCUSSION

Here we evaluated whether \(Ca^{2+} \)-channels in hiPSC-CM share typical properties and regulatory mechanisms of \(Ca^{2+} \)-channels in human adult CM and whether advanced culture conditions in EHT favor maturation. We found many similarities but also distinct differences between hiPSC-CM and adult human CM: (I) Basal \(I_{Ca,L} \) density was not smaller in hiPSC-CM than in adult CM. (II) HiPSC-CM, other than adult human CM, express T-type \(Ca^{2+} \)-currents and the necessary pore forming α-subunit (Figure 2D). (III) Voltage-dependency of activation, steady state inactivation and inactivation kinetics of \(I_{Ca,L} \) in hiPSC-CM were not different from those found in adult CM (IV) \(I_{Ca,L} \) in hiPSC-CM was increased upon \(\beta_1 \)- and \(\beta_2 \)-AR stimulation with the same sensitivity as in adult human CM, but maximum effect size was smaller. (V) Catecholamine-induced increases of \(I_{Ca,L} \)
in hiPSC-CM were PKA-dependent, but the amount of cAMP related to Ca2+ increase was less.

Cell Size

Smaller than normal mean cell size is considered as one of the hallmarks of hiPSC-CM (Yang et al., 2014). Mean cell size in hiPSC-CM as determined by cell capacitance in a large number of cells was approximately two-fold and three-fold smaller than atrial and ventricular CM, respectively (45.2 vs. 86.7 and 125.7 pF). While the data principally confirm previous conclusions (Yang et al., 2014), absolute values were almost three-fold higher in our hiPSC-CM (45.2 vs. 17.5 pF). The reasons are not clear, but may be related to different differentiation and culture protocols. Of note, cell capacitance/size showed substantial overlap between hiPSC-CM and adult atrial and even ventricular CM, indicating that at least some hiPSC-CM reach an adult-like size. Identical values in ML and EHT imply that the EHT-format did not have favorable effects on this parameter of CM maturity. Small size represents technical limitations in patch-clamp as discussed by Wilson et al. (2011). However, analyzing cell size and Ca2+-currents revealed a rather monotonic frequency distribution and Ca2+-currents showed linear dependency on cell size also in the low cell size range. Therefore, we believe that the relatively small cell size of hiPSC-CM is not a major obstacle for the measurement of large membrane currents such as Ca2+-currents.

Ca2+-Current Density in hiPSC-CM

Few studies measured Ca2+-currents in hiPSC-CM and reported current densities of 3.3–17.1 pA/pF (Ma et al., 2011; Yazawa et al., 2011). Keeping in mind that results are hardly comparable due to different methodology, we compared our measurements from hiPSC-CM to previous data on human adult atrial as well as ventricular CM under identical experimental conditions. I\textsubscript{Ca,L} was undetectable in 10% of cells isolated from conventional ML, indicating either a very low level of cardiac differentiation or a by-chance picking of a non-cardiac cell, present in our differentiation protocol at ~10–15%. In contrast, all cells from EHT showed robust Ca2+-currents. Absolute Ca2+-current amplitudes in hiPSC-CM did not differ significantly from adult atrial and ventricular CM, but, at smaller mean cell size, mean current density tended to be larger in hiPSC-CM (9.9–12.2 vs. 5.7–7.1 pA/pF), giving a potentially wrong impression of basal “overactivity” of Ca2+-currents in hiPSC-CM.

Biophysical and Pharmacological Properties of I\textsubscript{Ca}

Low-Voltage Activated I\textsubscript{Ca}: I\textsubscript{Ca,T} or I\textsubscript{Ca,TTX}?

The contribution of Ca2+-currents to depolarization and to transsarcolemmal Ca2+-influx depends on the voltage-dependency of every individual Ca2+-channel type expressed and their relative amplitude. Our data in hiPSC-CM showed
Figure 8 | Effects of serotonin on ICa. (A,B) Time course of ICa upon exposure to serotonin (5-HT, 100 μM) in ML (A) and EHT (B). Original tracings taken at time points indicated as a and b. (C) Mean values for the increase in ICaL expressed as delta (∆) current densities in ML, EHT, atrial and ventricular CM. Please note negative values for ventricular cells indicate spontaneous rundown not different from time-matched controls (data not shown). (D) Mean values for the 5-HT-induced increases in ICaL in ML, EHT, and atrial CM (taken from Figure 8C) expressed as percentage of response to (∆)Bay K 8644 (calculated from Figure 5). Increase in percent not calculated for ventricular CM. * indicates significance vs. atrial and # vs. ML respectively. N/N indicates number of cells vs. number of isolation for ML and EHT and number of cells/number patients for atrial and ventricular CM.

Ca2+-currents activating at low and high voltage, suggesting contribution of T-type to total Ca2+-influx over the physiological voltage range. Several observations support this hypothesis. Besides the typical voltage for half-maximum activation between 32 and 37 mV (Hansen et al., 2004), western blots from hiPSC-CM showed a robust signal for CaV3.1, the ion channel subunit carrying ICa,T (Hansen et al., 2004). The highly specific L-type blocker nifedipine reduced total ICa only by ~80% and the remainder was sensitive to the non-selective ICa blocker mibefradil. However, measuring Ca2+-currents at low voltages can raise complications since Na+-channels in the absence of Na+-can conduct Ca2+ to some extent (slip-mode conduction) and thereby give a wrong impression of ICa,T (Mitra and Morad, 1986). Even worse, slip-mode conduction is at least in part sensitive to mibefradil (Heubach et al., 2000). In order to discriminate whether currents we measured at low voltages may represent an artifact or not, we employed tetrodotoxin (TTX; Lemaire et al., 1995). Thirty microliter of TTX is expected to block slip-mode conduction completely, but does not affect ICa,T (Mitra and Morad, 1986; Heubach et al., 2000). In our experiments Ca2+-currents at low voltage were completely insensitive to TTX, providing further evidence for the existence of functional T-type Ca2+-channels in ML and EHT (Figure S1). Unexpectedly, in contrast to many classic pharmacological studies, ICa,T was reported to be sensitive to high concentrations of TTX (>30 μM). However, results were obtained in canine cardiomyocytes only (Hegyi et al., 2012). There are no data on human cardiomyocytes.

ICa,T in hiPSC-CM

The finding of T-type Ca2+-currents in hiPSC-CM is important. Former studies characterizing Ca2+-currents in hiPSC-CM did either not support the existence of T-type Ca2+-currents (Ma et al., 2011) or did not address this question (Yazawa et al., 2011). T-type currents were found in ventricular CM from fishes (Maylie and Morad, 1995; Nemtsas et al., 2010), dogs, guinea pig and sinoatrial node cells from rabbit (Mitra and Morad, 1986; Hagivara et al., 1988; Hirano et al., 1989). In human adult atrial and ventricular myocardium, T-type Ca2+-currents were consistently absent (Beuckelmann et al., 1991; Ouadid et al., 1991; Li and Nattel, 1997; Bosch et al., 1999). Data about T-type Ca2+-channel in development of human heart are understandably rare. Qu and Boutjdir (2001) found a decline of T-type Ca2+-channel mRNA expression by RT-PCR in fetal ventricular tissue over time of development. Kawano and DeHaan (1989, 1990) found large T-type Ca2+-channel amplitudes in chicken embryos, but no
change over time. T-type Ca\(^{2+}\)-currents in rat atrial CM dropped only slightly during postnatal development (Xu and Best, 1992). Therefore, it remains unclear whether \(I_{\text{Ca,T}}\) is an indicator of cardiac myocyte immaturity (Ono and Iijima, 2010). While the role of \(I_{\text{Ca,T}}\) in pacemaking is established (Marger et al., 2011; Mesirca et al., 2014), its relevance in the working myocardium is less clear. Effects of \(\beta\)-AR stimulation seem to be species-dependent, with stimulation in dog and guinea pig ventricular CM (Mitra and Morad, 1986; Tseng and Boydien, 1991), but no effects in shark (Maylie and Morad, 1995). In our cells the T-type Ca\(^{2+}\)-current was insensitive to \(\beta\)-AR stimulation (Figure S3). Taken together, the coexistence of T-type and L-type Ca\(^{2+}\)-channels in hiPSC-CM suggests a permanent inward current at low potentials. Such a current very likely contributes to the (abnormal) pacemaking in these cells. Further studies have to clarify the long-term functional relevance of \(I_{\text{Ca,T}}\) in hiPSC-CM.

L-Type Ca\(^{2+}\)-Currents in hiPSC-CM Show Classic Pharmacological Properties: (--) Bay K 8644

In cellular electrophysiological individual membrane currents were frequently identified by selective blockers. \(I_{\text{Ca,L}}\) cannot only be blocked but also be activated, for example by (--) Bay K 8644 (Schrammm et al., 1983). Because the compound circumvents activation via intracellular signaling cascades it is often used to estimate maximum activity of L-type Ca\(^{2+}\)-channels (Ouaddid et al., 1991). Accordingly, Ji et al. (2014) employed the agent recently in commercially available hiPSC-CM (Cor.4U, Axiogenesis, iCell, Cellular Dynamics International) and could detect increases in currents only when Ba\(^{2+}\) was used as charge carrier (eliminating Ca\(^{2+}\)-dependent inactivation of Ca\(^{2+}\)-channels) and cells were held at low potentials to increase the affinity of (--) Bay K 8644. In contrast, (--) Bay K 8644 robustly increased \(I_{\text{Ca,L}}\) both in ML and EHT in our hands. The discrepancy could be due to differences in the experimental protocol. For example, application of (--) Bay K 8644 early after patch rupture may interfere with the initial fast rundown phase. More likely, however, the discrepant results with (--) Bay K 8644 indicate a different biology of Ca\(^{2+}\)-channels in cells from Cor.4U and iCell compared to our hiPSC-CM. Since we found (--) Bay K 8644 effect sizes to be independent from culture condition (EHT vs. ML), differences in the differentiation protocol [e.g., growth factor-based (Burridge et al., 2012)] vs. small molecule-based (Burridge et al., 2014) may be more likely underlying. Head-to-head investigations are needed to clarify this issue.

Catecholamine Responses are Smaller in ML than in EHT

In human (in contrast to rat and mouse) adult myocardium activation of \(\beta_1\)- and \(\beta_2\)-AR increases \(I_{\text{Ca,L}}\) to the same extent (Christ et al., 2014). Absolute current increase depends on temperature (Christ et al., 2011). We could confirm both findings for hiPSC-CM (Figure S4). Culture conditions had a main impact on catecholamine responses. While catecholamine effects equaled that of (--) Bay K 8644 in EHT, effects in ML were clearly smaller. Both hiPSC-CM responses were smaller than in adult atrial or ventricular CM. It should be noted, that effect size is smaller in ventricles compared to atria. The differences are not due to higher baseline current density, because current density was positively associated with the \(\beta\)-AR response in all preparations. The sensitivity for activation of \(\beta_1\)-AR by NE and \(\beta_2\)-AR by Epi was identical to adult ventricular CM (this study) and adult atrial CM (Christ et al., 2014). Smaller maximum effect size but preserved sensitivity could indicate proper AR function but reduced ability of adenylate cyclase to generate cAMP. In order to estimate the amount of cAMP activating \(I_{\text{Ca,L}}\), we measured maximum effects in the presence of different concentrations of Rp-8-Br-cAMPS, which inhibits binding of cAMP to PKA competitively (Van Haastert et al., 1984). As shown before for human adult CM (Christ et al., 2014), basal current activity was independent from PKA activity, but catecholamine effects were concentration-dependently suppressed. The observation that 20 times less Rp-8-Br-cAMPS was sufficient to inhibit catecholamine-induced effects in EHT than in adult atrial CM (Christ et al., 2014), indicates that the small \(\beta\)-AR-effect on \(I_{\text{Ca,L}}\) in EHT could be related to lower \(\beta\)-AR-induced cAMP-generation by an immature \(\beta\)-AR/Gs-protein/adenylyl cyclase signaling complex.

5-HT Increases \(I_{\text{Ca,L}}\) in hiPSC-CM: Indicator for Immaturity or Just Atrial-Like Phenotype?

Expression of 5-HT-receptor transcripts (RT-PCR) is higher during fetal development, and increased expression of 5-HT-receptors in adult myocardium under pathological conditions is interpreted as fetal (Brattelid et al., 2012). Data for \(I_{\text{Ca,L}}\)-reponses to 5-HT from fetal heart cells are lacking. In human adult heart 5-HT responses are restricted to atrium (Kaufmann et al., 1990; Ouaddid et al., 1992). 5-HT effects on \(I_{\text{Ca,L}}\) in hiPSC-CM indicate an atrial and/or immature phenotype. Smaller 5-HT-effects together with larger catecholamine effects indicate that EHT favor functional maturation compared to standard ML.

CONCLUSIONS

In hiPSC-CM from both ML and EHT we found \(I_{\text{Ca,L}}\) not smaller than in human adult CM. Basal current densities as well as current increases to (--) Bay K 8644 did not differ between ML and EHT. However, only hiPSC-CM from EHT showed robust catecholamine responses, suggesting maturation of the \(\beta\)-AR/Gs-protein/adenylyl cyclase signaling complex.

LIMITATIONS

We used ventricular CM obtained from patients with end-stage heart-failure only. \(I_{\text{Ca,L}}\) responses are reported to be reduced in heart failure by Chen et al. (2002), whereas Mewes et al. (Mewes and Ravens, 1994) demonstrated unchanged responses. In both studies basal currents were not affected (Mewes and Ravens, 1994; Chen, 2002). HiPSC-CM lose their rod-shaped appearance during digestion very quickly. Freshly isolated hiPSC-CM do
not adhere to the bottom of a recording chamber even if coated. We are sorry to report that we have failed to handle freshly isolated hiPSC-CM in electrophysiological experiments. Re-culturing hiPSC-CM from EHT in monolayer format could reverse some effects of EHT culture.

AUTHOR CONTRIBUTIONS

AU, AHo, IM, and KB performed research. AU, AHo, AHa, TE, and TC planned experiments. AU, IM, KB, and SJ analyzed results. AU, TE, and TC wrote the manuscript. All authors approved the final version of the manuscript.

FUNDING

The work was supported by the Graduate School of Cardiovascular Research Centre, Hamburg, the German Centre for Cardiovascular Research (DZHK) and the German Ministry of Education and Research (BMBF), the German Research Foundation (DFG Es 88/12-1) and the European Research Council (ERC AG IndivuHeart).

REFERENCES

Beuckelmann, D. J., Näbauer, M., and Erdmann, E. (1991). Characteristics of calcium-current in isolated human ventricular myocytes from patients with terminal heart failure. J. Mol. Cell. Cardiol. 23, 929–937. doi: 10.1006/jmcc.2002-2828(91)90135-9

Bosch, R. F., Zeng, X., Grammer, J. B., et al. (2004b). An aqueous extract of the marine sponge Ectyoplasia ferox stimulates L-type Ca$^{2+}$-current by direct interaction with the Cav1.2 subunit. Naunyn Schmiedebergs. Arch. Pharmacol. 370, 474–483. doi: 10.1007/s00210-004-0996-4

Dick, E., Rajamohanan, D., Ronksley, J., and Denning, C. (2010). Evaluating the utility of cardiomyocytes from human pluripotent stem cells for drug screening. Biochem. Soc. Trans. 38, 1037–1045. doi: 10.1042/BST0381037

Hansen, J., Chen, R., Larsen, J., Chu, P., James, D., Weis, K., et al. (2004). Calcium channel γ6 subunits are unique modulators of low voltage-activated (Cav3.1) calcium current. J. Mol. Cell. Cardiol. 37, 1147–1158. doi: 10.1016/j.yjmcc.2004.08.005

Hegyi, B., Bárándi, L., Komáromi, I., Papp, F., Horváth, B., Magyar, J., et al. (2012). Tetrodotoxin blocks L-type Ca$^{2+}$ channels in canine ventricular cardiomyocytes. Pflügers Arch. Eur. J. Physiol. 464, 167–174. doi: 10.1007/s00424-012-1114-y

Heubach, J. F., Köhler, A., Wettwer, E., and Ravens, U. (2000). T-Type and tetrodotoxin-sensitive Ca$^{2+}$$\gamma^\omega$ currents coexist in guinea pig ventricular myocytes and are both blocked by mibebradil. Circ. Res. 86, 628–635. doi: 10.1161/01.RES.86.6.628

Hirano, Y., Fozzard, H. A., and January, C. T. (1989). Characteristics of L- and T-Type Ca$^{2+}$-currents in canine Purkinje cells. Am. J. Physiol. 256, H1478–H1492.

ACKNOWLEDGMENTS

The authors thank the heart surgeons of Carl Gustav Carus Hospital Dresden, Germany for supply of myocardial tissue, Trautlinde Thurm for cell isolation and Annette Häntzschel (Department of Experimental Pharmacology and Toxicology, Medical Faculty, Dresden University of Technology) for support in experiments, Dr. Susanne Kaemmerer (Rudolf-Boehm-Institut, Institut für Pharmakologie and Toxikologie, Universität Leipzig, Germany) for help with bi-exponential Boltzmann fits. The authors are most grateful to the members of the hiPSC-CM working group, Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, to Dzemal Ismaili for help in experimental work and Klaus-Dieter Söhren for continuous support.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fphar.2016.00300

Christ, T., Wettwer, E., Dobrev, D., Adolph, E., Knaut, M., Wallukat, G., et al. (2001). Autoantibodies against the betal adrenoceptor from patients with dilated cardiomyopathy prolong action potential duration and enhance contractility in isolated cardiomyocytes. J. Mol. Cell. Cardiol. 33, 1515–1525. doi: 10.1006/jmcc.2001.1414

Christ, T., Wüst, M., Matthes, J., Jänchen, M., Jürgens, S., Herzig, S., et al. (2004b). An aqueous extract of the marine sponge Ectyoplasia ferox stimulates L-type Ca$^{2+}$-current by direct interaction with the Cav1.2 subunit. Naunyn Schmiedebergs. Arch. Pharmacol. 370, 474–483. doi: 10.1007/s00210-004-0996-4
Hoekstra, M., Mummery, C. L., Wälde, A. M. M., Bezzina, C. R., and Verkerk, A. O. (2012). Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias. Front. Physiol. 3:346. doi: 10.3389/fphys.2012.00346

Hofmann, F., Flockerzi, V., Kahl, S., and Wegener, J. W. (2014). L-type CaV1.2 calcium channels from in vitro findings to in vivo function. Physiol. Rev. 94, 303–326. doi: 10.1152/physrev.00016.2013

Jahnel, U., Rupp, J., Ertl, R., and Nawrath, H. (1992). Positive inotropic response to 5-HT in human atrial but not in ventricular heart muscle. Naunyn Schmiedebergs. Arch. Pharmacol. 346, 482–485. doi: 10.1007/BF00169000

Ji, J., Kang, J., and Rampe, D. (2014). L-type Ca2+ channel responses to Bay K 8644 in stem cell-derived cardiomyocytes are unusually dependent on holding potential and charge carrier. Assay Drug Dev. Technol. 12, 352–360. doi: 10.1089/adt.2014.596

Kaumann, A. J., Hall, J. A., Murray, K. J., Wells, F. C., and Brown, M. J. (1989). A comparison of the effects of adrenaline and noradrenaline on human heart: the role of beta 1- and beta 2-adrenoceptors in the stimulation of adenylate cyclase and contractile force. Eur. Heart J. 10(Suppl. B), 29–37.

Kaumann, A. J., Sanders, L., Brown, M. A., Murray, K. J., and Brown, M. J. (1990). A 5-hydroxytryptamine receptor in human atrium. Br. J. Pharmacol. 100, 879–883. doi: 10.1111/j.1368-5384.1990.tb14108.x

Kawano, S., and DeHaan, R. L. (1989). Low-threshold current is major calcium current in chick ventricle cells. Am. J. Physiol. 256, H1505–H1508.

Kawano, S., and DeHaan, R. L. (1990). Analysis of the T-type calcium channel in embryonic chick ventricular myocytes. J. Membr. Biol. 116, 9–17. doi: 10.1007/BF00471767

Lanier, M., Schade, D., Willems, E., Tsuda, M., Spiering, S., Kalisiak, J., et al. (2012). Wnt inhibition correlates with human embryonic stem cell cardiomyogenesis: a structure-activity relationship study based on inhibitors for the Wnt response. J. Med. Chem. 55, 697–709. doi: 10.1021/jm2010223

Lemaire, S., Piot, C., Seguin, J., Nargeot, J., and Richard, S. (1995). Tetrodotoxin-sensitive Ca2+ and Ba2+ currents in human atrial cells. Recept. Channels 3, 71–81.

Li, G. R., and Nattel, S. (1997). Properties of human atrial ICa at physiological temperatures and relevance to action potential. Am. J. Physiol. 272, H227–H235.

Ma, J., Guo, L., Fiene, S. J., Anson, B. D., Thomson, J. A., Kemp, T. J., et al. (2011). High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. AJP Hear. Circ. Physiol. 301, H2006–H2017. doi: 10.1152/ajpheart.00694.2011

Marger, L., Mescira, P., Alig, J., Torrente, A., Düb, S., Engeland, B., et al. (2011). Functional roles of Ca v1.3, Ca v3.1 and HCN channels in automaticity of mouse atrioventricular cells. Channels 5, 251–261. doi: 10.4161/chann.5.3.15235

Moyle, J., and Morad, M. (1995). Evaluation of T- and L-type Ca2+ currents in shark ventricular myocytes. Am. J. Physiol. 269, H1695–H1703.

Mescira, P., Torrente, A. G., and Mangoni, M. E. (2014). T-type channels in the sino-atrial and atrioventricular pacemaker mechanism. Pflugers Arch. Eur. J. Physiol. 466, 791–799. doi: 10.1007/s00424-014-1482-6

Mewes, T., and Ravens, U. (1994). L-type calcium currents of human myocytes in embryonic chick ventricle. Naunyn Schmiedebergs. Arch. Pharmacol. 346, 486–489. doi: 10.1007/BF00169001

Schramm, M., Thomas, G., Towart, R., and Franckowiak, G. (1983). Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature 303, 535–537. doi: 10.1038/303535a0

Tseng, G. N., and Boyden, P. A. (1991). Different effects of intracellular Ca2+ and protein kinase C on cardiac T and L Ca currents. Am. J. Physiol. 261, H364–H379.

Tsiem, R. W. (1983). Calcium channels in excitable cells membrane. Annu. Rev. Physiol. 45, 341–358. doi: 10.1146/annurev.ph.45.030183.002013

Van Haaster, P. J. M., Van Driel, R., and Jastorf, B. (1984). Competitive cAMP antagonists for cAMP-receptor proteins. J. Biol. Chem. 259, 10020–10024.

Wilson, J. R., Clark, R. B., Banderali, U., and Giles, W. R. (2011). Measurement of the membrane potential in small cells using patch clamp methods. Channels 5, 530–537. doi: 10.1016/j.channex.2011.06.17484

Xu, X., and Best, P. M. (1992). Postnatal changes in T-type calcium current density in rat atrial myocytes. J. Physiol. 454, 657–672. doi: 10.1113/jphysiol.1992.sp019285

Yang, X., Pabon, L., and Murry, C. E. (2014). Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res. 114, 511–523. doi: 10.1161/CIRCRESAHA.113.300558

Yazawa, M., Hsueh, B., Jia, X., Pasca, A. M., Bernstein, J. A., Hallmayer, J., et al. (2011). Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471, 230–234. doi: 10.1038/nature09855

Zweigert, R., Olmer, R., Singh, H., Haverich, A., and Martin, U. (2011). Scalable expansion of human pluripotent stem cells in suspension culture. Nat. Protoc. 6, 689–700. doi: 10.1038/nprot.2011.318

Conflict of Interest Statement: We hereby confirm that any and all potential conflicts of interest have been fully and properly disclosed in the manuscript as outlined. IM, AH, and TE are co-founder of EHT Technologies GmbH, Hamburg. The other authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Uzun, Mannhardt, Breckwoldt, Horváth, Johannsen, Hansen, Eschenhagen and Christ. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.