POSITIVE LAWS ON GENERATORS IN POWERFUL PRO-p GROUPS

CRISTINA ACCIARRI AND GUSTAVO A. FERNÁNDEZ-ALCOBER

ABSTRACT. If G is a finitely generated powerful pro-p group satisfying a certain law $v \equiv 1$, and if G can be generated by a normal subset T of finite width which satisfies a positive law, we prove that G is nilpotent. Furthermore, the nilpotency class of G can be bounded in terms of the prime p, the number of generators of G, the law $v \equiv 1$, the width of T, and the degree of the positive law. The main interest of this result is the application to verbal subgroups: if G is a p-adic analytic pro-p group in which all values of a word w satisfy positive law, and if the verbal subgroup $w(G)$ is powerful, then $w(G)$ is nilpotent.

1. Introduction

If α and β are two group words, we say that a group G satisfies the law $\alpha \equiv \beta$ if every substitution of elements of G by the variables gives the same value for α and for β. If the words α and β are positive, i.e. if they do not involve any inverses of the variables, then we say that $\alpha \equiv \beta$ is a positive law. We can similarly speak about a law holding on a subset T of G, if we only substitute elements of T by the variables. Groups satisfying a positive law have received special attention in the past decade. The main result is due to Burns and Medvedev, who proved in Ref. [2] that a locally graded group G satisfies a positive law if and only if G is nilpotent-by-(locally finite of finite exponent). This applies in particular to residually finite groups.

A similar kind of problem has been considered by Shumyatsky and the second author in Ref. [5]. If G is a finitely generated group and T is a set of generators satisfying a positive law, they ask whether the whole of G will also satisfy a (possibly different) positive law, provided that T is sufficiently large in some sense. In this direction, they obtain a positive answer if T is a normal subset of G which is closed under taking commutators of its elements ($commutator$-$closed$ for short), under the assumption that G satisfies an arbitrary law and is residually-p for some prime p. More precisely, the result is proved for all primes outside a finite set $P(n)$ depending only on the degree n of the law (that is, the maximum of the lengths of α and β).

The result in the previous paragraph can be applied to verbal subgroups $w(G)$ in a group G, where T is considered to be the set G_w of all values of the word w in G. Note that G_w is always a normal subset. Among

Key words and phrases. Positive laws, powerful pro-p groups, verbal subgroups.
other results, Shumyatsky and the second author prove that, if G is a p-adic analytic pro-p group and $p \not\in P(n)$ then, for every word w such that G_w is commutator-closed, a positive law on G_w implies a positive law on the whole of $w(G)$. Now two questions naturally arise: (i) can we get rid of the restriction $p \not\in P(n)$?; (ii) can we get rid of the condition that G_w should be commutator-closed? If we can give a positive answer to both these questions, then the result will hold in p-adic analytic pro-p groups for all primes and for all words.

If G is a p-adic analytic pro-p group, Jaikin-Zapirain has proved (see Theorem 1.3 of Ref. [7]) that the set G_w has finite width for every word w, and then, by Proposition 4.1.2 of Ref. [9], the verbal subgroup $w(G)$ is closed in G. (See Section 2 for the definition of width.) Thus $w(G)$ is again a p-adic analytic pro-p group and, according to Interlude A of Ref. [3], it contains a powerful subgroup of finite index. One of the main results of this paper is the solution of the problem raised in the last paragraph in the case when $w(G)$ itself is powerful.

Theorem 1.1. Let G be a p-adic analytic pro-p group, and let w be any word. If all values of w in G satisfy a positive law and the verbal subgroup $w(G)$ is powerful, then $w(G)$ is nilpotent.

Observe that the conclusion in the previous theorem that $w(G)$ is nilpotent is actually stronger than $w(G)$ satisfying a positive law.

Following the approach of Ref. [5], we obtain Theorem 1.1 from a more general result not involving directly word values. In this case, we work with G a finitely generated powerful pro-p group for an arbitrary prime p, and the set of generators T has to be normal and of finite width, but not necessarily commutator-closed. Recall that, as mentioned above, if G is a p-adic analytic pro-p group, then G_w has finite width for every word w.

Theorem 1.2. Let G be a powerful d-generator pro-p group which satisfies a certain law $v \equiv 1$. Suppose that G can be generated by a normal subset T of width m that satisfies a positive law of degree n. Then G is nilpotent of bounded class.

Here, and in the remainder of the paper, when we say that a certain invariant of a group is bounded, we mean that it is bounded above by a function of the parameters appearing in the statement of the corresponding result. Thus, in Theorem 1.2 the nilpotency class of G is bounded in terms of the prime p, the number d of generators of G, the law $v \equiv 1$, the width m of T, and the degree n of the positive law. If we want to make explicit the set S of parameters in terms of which a certain quantity is bounded, then we will use the expression ‘S-bounded’.

We want to remark that, contrary to what happens in Theorem 1.2, we cannot guarantee that the nilpotency class of $w(G)$ is bounded in Theorem
The reason is that we are using the above-mentioned result of Jaikin-Zapirain, which provides the finite width of G_w, but not bounded width for that set.

2. The action on abelian normal sections

Our first step is to translate the positive law on the normal generating set T into a condition about the action of the elements of T on the abelian normal sections of G. More precisely, we have the following consequence of Lemma 2.1 in Ref. [5]. (Let $f(X)$ be the product of the polynomials $f_1(X)$ and $f_{-1}(X)$ in the statement of that lemma.)

Lemma 2.1. Let T be a normal subset of a group G, and assume that T satisfies a positive law of degree n. Then there exists a monic polynomial $f(X) \in \mathbb{Z}[X]$ of degree $2n$, depending only on the given positive law, which satisfies the following property: if A is an abelian normal section of G, then $f(t)$, viewed as an endomorphism of A, is trivial for every $t \in T \cup T^{-1}$.

If T is a subset of a group G, we say that T has finite width if there exists a positive integer m such that every element of the subgroup $\langle T \rangle$ can be expressed as a product of no more than m elements of $T \cup T^{-1}$. The smallest possible value of m is then called the width of T.

In our next theorem, we show how some properties of the generating set T of G are hereditary for the natural generating set of $\gamma_k(G)$ which can be constructed from T. For simplicity, if $A = K/L$ is a normal section of a group G, we say that two elements $g, h \in G$ commute modulo A if gL and hL commute modulo A (or, equivalently, if g and h commute modulo K).

Theorem 2.2. Let G be a d-generator finite p-group, and let T be a normal generating set of G. Then $T_{k} = \{[t_1, \ldots, t_k] \mid t_i \in T\}$ is a normal generating set of $\gamma_k(G)$, and furthermore:

(i) If T has finite width m, then the width of T_k is at most $md^{(k-1)}$.

(ii) If T satisfies a positive law of degree n, then there exists a monic polynomial $h(X) \in \mathbb{Z}[X]$ of n-bounded degree such that $h(t_k)$ annihilates $\gamma_{k+1}(G)/\gamma_{k+1}(G)'$ for every $t_k \in T_k \cup T_k^{-1}$.

Proof. Of course, T_k is a normal subset of G, and the proof that T_k generates $\gamma_k(G)$ is routine.

(i) We argue by induction on k. The result is obvious for $k = 1$, so we assume next that $k \geq 2$. By the Burnside Basis Theorem, we can choose $t_1, \ldots, t_d \in T$ such that $G = \langle t_1, \ldots, t_d \rangle$. If y is an arbitrary element of $\gamma_k(G)$, we can write

(1) $y = [g_1, t_1] \cdots [g_d, t_d]$, for some $g_i \in \gamma_{k-1}(G)$,

by using Proposition 1.2.7 of Ref. [9]. Now, if g is an arbitrary element of $\gamma_{k-1}(G)$, then by the induction hypothesis, we have $g = u_1 \cdots u_s$ for some
$u_i \in T_{k-1} \cup T_{k-1}^{-1}$, where $s \leq md^{k-2}$. Then, for every $t \in T$, we have

$$[g, t] = [u_1, t]^{u_2 \cdots u_s} \cdots [u_{s-1}, t]^{u_s} u[t, t].$$

If $u_i \in T_{k-1}$, then $[u_i, t] \in T_k$; on the other hand, if $u_i \in T_{k-1}^{-1}$ then

$$[u_i, t] = ([u_i^{-1}, t]^{u_i})^{-1}$$

is an element of T_k^{-1}. Thus $[g, t]$ is a product of at most s elements of $T_k \cup T_{k-1}^{-1}$, and it follows from (1) that y is a product of no more than ds elements of $T_k \cup T_{k-1}^{-1}$. This completes the proof of (i).

(ii) Set $A = \gamma_{k+1}(G)/\gamma_{k+1}(G)'$. By Lemma 2.3, there exists a monic polynomial $f(X) \in \mathbb{Z}[X]$ of degree $2n$ such that $f(t)$ annihilates A for every $t \in T \cup T^{-1}$.

Let I be the ideal of $\mathbb{Z}[X_1, X_2]$ generated by $f(X_1)$ and $f(X_2)$. Since f is monic, the quotient ring $R = \mathbb{Z}[X_1, X_2]/I$ is a finitely generated \mathbb{Z}-module, generated by the images of the monomials $X_1^i X_2^j$ with $0 \leq i, j \leq 2n - 1$. By Theorem 5.3 in Chapter VIII of Ref. [6], R is integral over \mathbb{Z}. In particular, there exists a monic polynomial $h(X) \in \mathbb{Z}[X]$ such that $h(X_1 X_2) \in I$. Also, by examining the proof of that result in Ref. [6], it is clear that the degree of $h(X)$ is at most $(2n)^2$.

Now, let $[u, t]$ be an arbitrary element of T_k, where $u \in T_{k-1}$ and $t \in T$. Since $(t^u)^{-1}$ and t commute modulo A, these elements define commuting endomorphisms of A, and hence we can define a ring homomorphism

$$\varphi : \mathbb{Z}[X_1, X_2] \to \text{End}(A)$$

such that

$$X_1 \mapsto (t^u)^{-1},$$

$$X_2 \mapsto t.$$

Since $f((t^u)^{-1})$ and $f(t)$ are both the null endomorphism of A, it follows that $f(X_1)$ and $f(X_2)$ are contained in the kernel of φ, and so the same holds for the ideal I. Hence $h(X_1 X_2) \in \ker \varphi$, which means that $h([u, t])$ is the null endomorphism of A.

We can similarly prove that $h([t, u]) = 0$ in $\text{End}(A)$, by defining $\psi : \mathbb{Z}[X_1, X_2] \to \text{End}(A)$ via the assignments $X_1 \mapsto t^{-1}$ and $X_2 \mapsto t^u$. Thus $h(t_k)$ annihilates A for every $t_k \in T_k \cup T_k^{-1}$. \hspace{1cm} \Box

Finally, for a certain k, we are able to get an Engel action of all k-th powers of the elements of G on some abelian normal sections of G.

Theorem 2.3. Let G be a finite p-group generated by a normal subset T which has width m. Suppose that A is an abelian normal section of G such that the elements of T commute pairwise modulo A, and that for some monic polynomial $f(X) \in \mathbb{Z}[X]$, $f(t)$ annihilates A for all $t \in T \cup T^{-1}$. Then:

(i) There exists an (m, f)-bounded integer r such that $[A, r, g] \leq A^p$ for every $g \in G$.

(ii) There exist (m, f)-bounded integers n and k such that $[A, n, g^k] = 1$ for every $g \in G$.
Proof. The first part of the proof is similar to the proof of (ii) in the last theorem. Let us write n for the degree of $f(X)$. Consider the quotient ring $R = \mathbb{Z}[X_1, \ldots, X_m]/I$, where I is the ideal generated by the polynomials $f(X_1), \ldots, f(X_m)$. Then R is integral over \mathbb{Z}, and there exists a monic polynomial $h(X) \in \mathbb{Z}[X]$ of degree at most n^m such that $h(X_1 \ldots X_m) \in I$. Now let g be an arbitrary element of G. Since T generates G and has width m, we can write $g = t_1 \ldots t_m$ for some $t_i \in T \cup T^{-1}$. The map $X_1 \mapsto t_1, \ldots, X_m \mapsto t_m$ extends to a ring homomorphism $\varphi : \mathbb{Z}[X_1, \ldots, X_m] \rightarrow \text{End}(A)$, since the elements of T commute pairwise modulo A. Since $f(t_1) = \cdots = f(t_m) = 0$, it follows that $I \subseteq \ker \varphi$. Consequently,

$$h(g) = h(t_1 \ldots t_m) = \varphi(h(X_1 \ldots X_m)) = 0.$$

Thus we have found a monic polynomial $h(X) \in \mathbb{Z}[X]$ such that $h(g)$ annihilates A for all $g \in G$. Note that the polynomial $h(X)$ only depends on $f(X)$ and m, but not on the particular element g or on the section A.

(i) Since G is a finite p-group, we have $[A_c G] = 1$ for some c. Let $(X - 1)^r$ be the greatest common divisor of $(X - 1)^c$ and $h(X)$, when these polynomials are considered in $\mathbb{F}_p[X]$. Since $r \leq \deg h$, it follows that r is $\{m, f\}$-bounded. By Bézout’s identity, we can write

$$(X - 1)^r = p(X)(X - 1)^c + q(X)h(X),$$

for some $p(X), q(X) \in \mathbb{F}_p[X]$. If we consider an element $g \in G$, and substitute g for X in the previous expression, then, as endomorphisms of the \mathbb{F}_p-vector space A/A^p, we get $(g - 1)^r = 0$. This means that $[A, r g] \leq A^p$, as desired.

(ii) Let J be the ideal of $\mathbb{Z}[X]$ generated by all polynomials $h(X^i)$ with $i \geq 1$. Then, if $j(X) \in J$, it follows that $j(g) = 0$ for every $g \in G$. By Lemma 3.3 of Ref. [10], there exist positive integers q, k and ℓ such that

$$qX^\ell(X^k - 1)^\ell \in J,$$

where q, k, ℓ depend only on $h(X)$, so only on $f(X)$ and m. Then

$$A^{qg^\ell}(g^k - 1)^\ell = 1,$$

for every $g \in G$.

If p^s is the largest power of p which divides q, then $A^q = A^{p^s}$, since A is a finite p-group. Also, we have $A^q = A$. Hence

$$A^{p^s}(g^k - 1)^\ell = 1$$

or, what is the same,

$$[A^{p^s}, g^k, \ldots, g^k] = 1$$

for every $g \in G$.

Now, it follows from part (i) that

$$[A^{p^s}, g] \leq A^{p^{i+1}}, \text{ for every } i \geq 0, \text{ and for every } g \in G.$$

This, together with (2), shows that

$$[A, n g^k] = 1,$$

for all $g \in G$.
where $n = sr + \ell$.

3. Proof of the Main Theorems

We will begin by proving Theorem 1.2. In order to show that the powerful pro-p group G is nilpotent, we will rely on the following two lemmas. The first one is a classical result of Philip Hall (see, for example, Theorem 3.26 of Ref. [8]), and the other one says that for a finitely generated powerful pro-p group ‘nilpotent-by-finite’ is the same as ‘nilpotent’.

Lemma 3.1. Let G be a group, and let N be a normal subgroup of G. If N is nilpotent of class k and G/N' is nilpotent of class c, then G is nilpotent of $\{k, c\}$-bounded class.

Lemma 3.2. Let G be a finitely generated powerful pro-p group. If G has a normal subgroup N of finite index which is nilpotent of class c, then G itself is nilpotent of $\{c, e\}$-bounded class, where e is the exponent of G/N.

Proof. We prove the result for $p > 2$. For $p = 2$, the same proof applies with some little changes. It follows from the hypotheses that G^e is nilpotent of class at most c. By Proposition 3.2 and Corollary 3.5 in Ref. [1], we get

$$[G^{e+1}, \ldots, G] = [G, e+1, \ldots, G] = [G, e+1, G^e] = 1.$$ (3)

On the other hand, since G is powerful, we have $\gamma_{i+1}(G) \leq G^{p^i}$ for all $i \geq 1$. As a consequence, for some $\{c, e\}$-bounded integer k we have $\gamma_{k+1}(G) \leq G^{e+1}$. This, together with (3), shows that G is nilpotent of class at most $k + c$, and we are done.

Note that we could have written the previous lemma under the apparently weaker assumption that the exponent of G/N is finite, rather than N being of finite index in G. However, if G is a finitely generated powerful pro-p group, these two conditions are equivalent: if $\exp G/N = p^k$, then G^{p^k} is contained in N, and then by Theorem 3.6 of Ref. [3], we have $|G : N| \leq |G : G^{p^k}| \leq p^{kd}$, where d is the minimum number of generators of G as a topological group. (In fact, the assumption that G should be powerful is not necessary for this equivalence, since $|G : G^{p^k}|$ is finite for every finitely generated pro-p group. But this is a much deeper result, which needs Zelmanov’s positive solution of the Restricted Burnside Problem.)

We also need the following result of Black (see Corollary 2 in Ref. [1]).

Theorem 3.3. Let G be a finite group of rank r satisfying a law $v \equiv 1$. Then, there exists an $\{r, v\}$-bounded number k such that $\gamma_k((G^{kl})') = 1$. In particular, if G is soluble, then the derived length of G is $\{r, v\}$-bounded.

Note that the positive solution to the Restricted Burnside Problem is needed for the conclusion in the soluble case: thus we know that the quotient G/G^{kl} has bounded order, and so also bounded derived length.
We can now proceed to the proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose that the result is known for G a finite p-group, so that all finite p-groups satisfying the conditions of the theorem have nilpotency class at most c, for some bounded number c. Now if G is a pro-p group as in the statement of the theorem, and N is an arbitrary open normal subgroup of G, it follows that $\gamma_{c+1}(G) \leq N$. Thus necessarily $\gamma_{c+1}(G) = 1$ and the result is valid also for pro-p groups.

Hence we may assume that G is a d-generator finite powerful p-group. By Theorem 11.18 of Ref. 8, it follows that G has rank d, i.e. that every subgroup of G can be generated by d elements. Since G satisfies the law $v \equiv 1$, by Theorem 3.3 we have $G^{(s)} = 1$ for some bounded number s. We argue by induction on s.

If $s \leq 2$, i.e. if G is metabelian, then the elements of T commute pairwise modulo G'. Choose generators g_1, \ldots, g_d of G. By Lemma 2.3 and Theorem 2.2 since T satisfies a positive law, we know that there exist bounded numbers n and k such that $[G', g_i^k] = 1$ for all $i = 1, \ldots, d$. As a consequence, the subgroups (g_i^k, G') have bounded nilpotency class. Thus $G^k G' = \langle g_1^k, \ldots, g_d^k, G' \rangle$ is the product of d normal subgroups of bounded class, and so has bounded class itself. Since $|G : G^k G'| \leq k^d$, it follows from Lemma 3.2 that G has bounded nilpotency class. This concludes the proof in the metabelian case.

Assume now that $s \geq 3$. We claim that the nilpotency class of $G/\gamma_{k+1}(G)'$ is bounded for all $k \geq 1$ (here, we must also take k into account for the bound). The result is true for $k = 1$, according to the last paragraph. Now we argue by induction on k. By Theorem 2.2 T_k is a normal set of generators of $\gamma_k(G)$ of bounded width. Also, the elements of T_k commute pairwise modulo $\gamma_{k+1}(G)$. On the other hand, by (ii) of Theorem 2.2 there exists a monic polynomial $h(X) \in \mathbb{Z}[X]$ such that $h(t_k)$ annihilates the abelian normal section $A = \gamma_{k+1}(G)/\gamma_{k+1}(G)'$ for every $t_k \in T_k$. Thus we may argue as in the metabelian case above with the group $Q = \gamma_k(G)/\gamma_{k+1}(G)'$ and deduce that Q has bounded nilpotency class. Since $G/\gamma_k(G)'$ has also bounded class by the induction hypothesis, the claim follows from Lemma 3.1.

Now that the claim is proved, the result easily follows. Indeed, since $G/G^{(s-1)}$ has bounded class by induction, there exists a bounded integer ℓ such that $\gamma_{\ell+1}(G) \leq G^{(s-1)}$. Hence $\gamma_{\ell+1}(G)' = 1$, and G has bounded class by the previous claim.

Now Theorem 1.1 follows readily from Theorem 1.2.

Proof of Theorem 1.1. As already mentioned, the set G_w of all values of w in G is a normal subset of G, and in particular of $w(G)$. Also, by Theorem 1.3 of Ref. 7, G_w has finite width, say m.

Let $\alpha \equiv \beta$ be the positive law satisfied by the set G_w, and suppose that the number of variables used in the law $\alpha \equiv \beta$ and in the word w is k and
ℓ, respectively. Now, consider kl arbitrary elements \(g_1, \ldots, g_{kl} \) of \(G \). Since the \(k \) elements \(w(g_1, \ldots, g_\ell), \ldots, w(g_{(k-1)\ell+1}, \ldots, g_{k\ell}) \) satisfy the law \(\alpha \equiv \beta \), it follows that

\[
\alpha(w(g_1, \ldots, g_\ell), \ldots, w(g_{(k-1)\ell+1}, \ldots, g_{k\ell})) = \\
\beta(w(g_1, \ldots, g_\ell), \ldots, w(g_{(k-1)\ell+1}, \ldots, g_{k\ell})).
\]

This means that the group \(G \) satisfies a law \(v \equiv 1 \), where \(v \) is a word which depends only on \(w \) and on the positive law \(\alpha \equiv \beta \). In particular, the law \(v \equiv 1 \) is also satisfied by \(w(G) \).

Now, we can apply directly Theorem 1.2 to the group \(w(G) \) and the generating set \(G_w \), in order to conclude that \(w(G) \) is nilpotent. \(\square \)

Acknowledgments

The authors are supported by the Spanish Government, grant MTM2008-06680-C02-02, partly with FEDER funds, and by the Department of Education, Universities and Research of the Basque Government, grants IT-252-07 and IT-460-10. The second author is also supported by a grant of the University of L’Aquila.

References

[1] S. Black, ‘A finitary Tits alternative’, Arch. Math. 72 (1999), 86–91.
[2] R.G. Burns and Yu. Medvedev, ‘Group laws implying virtual nilpotence’, J. Austral. Math. Soc. 74 (2003), 295–312.
[3] J.D. Dixon, M.P.F. du Sautoy, A. Mann, and D. Segal, Analytic Pro-p Groups, second edition, Cambridge Studies in Advanced Mathematics 61 (Cambridge University Press, 1999).
[4] G.A. Fernández-Alcober, J. González-Sánchez, and A. Jaikin-Zapirain, ‘Omega subgroups of pro-p groups’, Israel J. Math. 166 (2008), 393–412.
[5] G.A. Fernández-Alcober and P. Shumyatsky, ‘Positive laws on word values in residually-p groups’, preprint.
[6] T.W. Hungerford, Algebra (Springer-Verlag, 1974).
[7] A. Jaikin-Zapirain, ‘On the verbal width of finitely generated pro-p groups’, Revista Matemática Iberoamericana 24 (2008), 617–630.
[8] E.I. Khukhro, p-Automorphisms of Finite p-Groups, LMS Lect. Notes, Vol. 246 (Cambridge University Press, 1998).
[9] D. Segal, Words: Notes on Verbal Width in Groups, LMS Lect. Notes, Vol. 361 (Cambridge University Press, 2009).
[10] J.F. Semple and A. Shalev, ‘Combinatorial conditions in residually finite groups I’, J. Algebra 157 (1993), no. 1, 43–50.

Cristina Acciarri, Dipartimento di Matematica Pura ed Applicata, Università degli Studi dell’Aquila, I-67010 Coppito, L’Aquila (Italy)

E-mail address: acciarricristina@yahoo.it

Gustavo A. Fernández-Alcober, Matematika Saila, Euskal Herriko Unibertsitatea, 48080 Bilbao (Spain)

E-mail address: gustavo.fernandez@ehu.es