Pyrrolidinedithiocarbamic Acid Ammonium Salt Inhibits Apoptosis and Phenotypic Transformation of Co-Culture of Myeloma Cells and Renal Tubular Epithelial Cells by Reducing the Secretion of Light Chain Protein

Xiaoyan YU¹, *Jie BAO², Xinyu CUI³, Fengxia DU³, Yuefei WANG⁴, Lili BI², Jun SUN², Ling LI²

¹. Department of Nephrology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar161000, P.R. China
². Department of Hematopathology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar161000, P.R. China
³. Department of Pathogenic Biology, Qiqihar Medical University, Qiqihar161006, P.R. China
⁴. Department of Physiology, Qiqihar Medical University, Qiqihar161006, P.R. China

*Corresponding Author: Email: yuxiaoyan0109@126.com

(Received 14 May 2020; accepted 11 Jul 2020)

Abstract
Background: We investigate the effects of NFκB inhibitor pyrrolidinedithiocarbamic acid ammonium salt (PDTC) on the viability, apoptosis and cell phenotype of HK-2 cells in the co-culture system of myeloma cells in renal tubular epithelial cells.

Methods: This study was performed in Qiqihar Medical University, Qiqihar, China from Jun 2018 to Jan 2019. RPMI-8226 cells and HK-2 cells were inoculated in the co-culture chamber and cultured to establish the co-culture system. An immunoturbidimetric assay was performed to detect κ light chain and λ light chain in RPMI-8226 cells. The effect of PDTC on the secretion of κ light chain and λ light chain of RPMI-8226 cells was detected by immunoturbidimetry and the ratio was calculated.

Results: PDTC significantly increased the viability of HK-2 cells. PDTC reduced the apoptosis of renal tubular epithelial cells. After PDTC treatment, the expression of cell surface marker E-cadherin decreased, and the expression of α-SMA increased, which induced the renal interstitial fibrosis. The secretion of κ light chain and λ light chain of RPMI-8226 cells was significantly decreased after the addition of PDTC, but the ratio was not changed.

Conclusion: PDTC can inhibit the cell activity, promote apoptosis, and reduce the secretion of κ light chain and λ light chain through inhibiting the NF-κB pathway activation of myeloma cell RPMI-8226.

Keywords: Myeloma nephropathy; Renal tubular epithelial cells; Light chain protein

Introduction

Multiple myeloma (MM) is a hematological malignancy that often occurs in the elderly. About 20%-40% patients with MM had different degrees of kidney damage when they were first diagnosed (1). When MM occurs, however, synthesis of both light and heavy chains are accelerated, resulting in a large amount of light chain proteins remaining in the blood system (2). The proximal renal tubules’ scavenging ability to remove unused light chain proteins is thus overwhelmed,
forcing extra light chain proteins to enter into the distal tubules and form a large number of casts. Cast formation in the renal tubules increases the tubular pressure, and reduces the glomerular filtration rate, making it even more difficult to scavenge the extra light chain proteins. While the concentration of light chain proteins keeps increasing, a vicious circle is formed, leading to and further aggravating kidney damage (3).

According to a study (4), the cell viability of HK-2 cells treated with different MM cell lines was significantly decreased, and the apoptosis was significantly increased. It was reported that the light chain obtained in patients with end stage renal disease could enter HK-2 cells to produce sufficient amount of hydrogen peroxide to stimulate the production of monocyte chemoattractant protein-1 (MCP-1), while MCP-1 is a key chemokine for proximal tubule activation (5).

In addition to symptomatic supportive therapy and renal replacement therapy, anti-myeloma medications such as thalidomide, lenalidomide and bortezomib are often used in the treatment of myeloma nephropathy (6, 7). These medications are less effective (8) and have many side effects and drug resistance (9), in some refractory MM because they have no targets with specificity, leading to MM chemotherapy failure and recurrence. Increased activity of NF-κB was observed in myeloma cell lines and fresh bone marrow mononuclear cells from patients with myeloma, compared to normal bone marrow mononuclear cells (10), which may be related to the mutations of NF-κB (11), genetic polymorphisms (12), intercellular contact (6), and receptors capable of activating NF-κB which only exist in malignant plasma cells (13). NF-κB can play an anti-apoptotic role by up-regulating interleukin-1, interleukin-2, macrophage colony-stimulating factor and other anti-apoptotic factors (14). It has been found that α-terpineol can inhibit the proliferation of MM cell line RPMI-8226 by inhibiting NFκB (15).

This study explored the effects of pyrrolidinedithiocarbamic acid ammonium salt (PDTC), a specific inhibitor of NFκB, on a series of biological functions of myeloma cells and renal tubular epithelial cells in a co-culture system in order to provide a reference to clinical treatment of MM nephropathy by targeting NF-κB.

Materials and Methods

Materials and reagents

The materials and reagents used in this study were purchased from commercial sources: human proximal tubular epithelial cell line HK-2 and human myeloma cell line RPMI-8226 were purchased from ATCC cell bank; fetal bovine serum (FBS), DMEM cell culture medium, and PRIM1640 cell culture medium were purchased from Gibco; NF-κB inhibitor PDTC was purchased from Selleck (catalog #: S3633); MTT cell proliferation and cytotoxicity assay kit (catalog #: C0009), caspase-3 activity assay kit (catalog #: C1115) and BCA kit (catalog #: P0009) were purchased from Beyotime Biotechnology Co., Ltd.; 6-well plate, 24-well plate and co-culture chamber (0.4 µm pore size) were purchased from BD; dimethyl sulfoxide (DMSO) was purchased from sigma; apoptosis assay kit was purchased from Sungene Biotech Co. Ltd. (catalog #: AO2001-02P-H); caspase-3 (catalog #: 9662), B cell lymphoma 2 (bcl-2, catalog #: 2872), B cell lymphoma 2 associated X protein (Bax, catalog #: 2774), E-cadherin (catalog #: 3195), α-smooth muscle actin (α-SMA, catalog #: 19245), and IxBz (catalog #: 4812) were purchased from CST; internal reference GAPDH (catalog #: 10494-1-AP) and horseradish peroxidase (HRP)-labeled secondary antibody (catalog #: SA00001-2) were purchased from ProteinTech Group Inc. Immunoturbidimetric assay was performed on a Beckman Array 360 automatic protein analyzer (Beckman, USA). Consumable reagents such as diluents, standards, buffers, etc. were all purchased from Beckman. A 10 mM stock solution of DMSO was prepared.

Cell cultures

HK-2 and RPMI-8226 cells were cultured respectively in DMEM and PRIM1640 media supplemented with 10% FBS. The cell cultures were maintained at 37 °C in a humidified incubator.
supplied with 5% CO₂. The media were changed every 2 days. Cells were passaged when reaching 80% confluency.

Establishment and grouping of co-culture system of myeloma cells and renal tubular epithelial cells

A co-culture system was established by seeding RPMI-8226 cells at 1×10⁵ cells per well in the upper chamber of a 6-well transwell and seeding HK-2 cells at 3×10⁵ cells per well in the lower chamber. The cells were divided into HK-2 alone culture group, HK-2 alone + PDTC culture group, RPMI-8226/HK-2 co-culture group, and RPMI-8226/HK-2 + PDTC co-culture group. For all the 4 groups, after 24 h of incubation, supernatant in the lower chamber was aspirated, and an equal amount of the medium was added to the upper chamber for each corresponding amount of the medium was added to the upper chamber for the HK-2 alone culture group and the RPMI-8226/HK-2 co-culture group. For the HK-2 alone + PDTC culture group and RPMI-8226/HK-2 + PDTC co-culture group, DMEM medium containing a final concentration of 25 µM PDTC was added to the upper chamber. Viability of the HK-2 cells in the lower chamber was measured after incubation for 24 h. The assay protocol was described below. MTT solution (5 mg/mL) was added to the plate, followed by incubation at 37 °C for 4 h. Then the culture solution was carefully aspirated, and 150 µL of DMSO was added. After shaking in the dark at room temperature for 10 min, absorbance of each well was measured using a microplate reader at 450 nm. Cell viability was calculated using formula: cell viability = (experimental well OD value – blank well OD value) / (control well OD value – blank well OD value) × 100%. IC₅₀ was calculated with GraphPad Prism software and was used as the drug concentration in the co-culture systems.

Immunoturbidimetric assay for light chain proteins

Concentrations of κ light chain and λ light chain in the RPMI-8226/HK-2 co-culture group and RPMI-8226/HK-2 + PDTC co-culture group were measured by scatter immunoturbidimetric assay using a Beckman Array 360 protein analyzer in accordance with the manufacturer’s manual. The ratio of κ light chain to λ light chain κ/λ was calculated.

Effect of PDTC on apoptosis of renal tubular epithelial cells by flow cytometry

For all the 4 groups, after 24 h of incubation, supernatant in the lower chamber was aspirated, and cells were digested with trypsin. The cells were rinsed with PBS, followed by centrifugation at 1200 rpm to remove the supernatant. 1 mL of
1× binding buffer was added to the cells. The supernatant was aspirated after centrifugation at 1200 rpm. The cells were re-suspended in 1x binding buffer to get a concentration of 1x10^6 cells/mL. To 100 μL of the cell suspension in each group was added 5 μL of Annexin V-FITC. After mixing, the mixture was incubated at room temperature for 10 min in the dark, followed by adding 5 μL of PI solution. After mixing, the mixture was incubated at room temperature for 5 min in the dark. PBS was added to get a total volume of 500 μL. After mixing, the mixture was subjected to flow cytometry. Apoptotic rate was sum of the early apoptotic rate (lower right quadrant) and the late apoptotic rate (upper right quadrant).

Total cell protein extraction and western blotting

Cells were harvested after centrifugation at 3000 rpm following tryptic digestion. Appropriate amounts of RIPA lysate and protease inhibitor were added, followed by ultrasound on ice for 5 min. After complete lysis, the mixture was centrifuged at 12000 g for 15 min in a low temperature centrifuge. The supernatant was collected, and 10 μL was used for total protein concentration measurement using BCA assay. To the remaining supernatant was added 5× loading buffer, followed by heating at 100 °C for 10 min. Equal amounts of total proteins for the 4 groups were loaded on gels containing 5% stacking gel and 10% separation gel for electrophoretic analysis. The gels were run at a constant voltage of 80 V until bromophenol blue entered the stacking gel with minimal distortion of the bands, when the voltage was changed to 120 V until the target bands were separated. The protein bands were transferred from gel to PVDF membrane by wet transfer method under a constant current of 275 mA for 80 min. After the membrane was blocked in TBST buffer supplemented with 5% milk at room temperature for 2 h, corresponding diluted primary antibody (dilution factor: 1:1000) was added. For cells in the upper chamber, levels of IκB protein were measured to assess the NF-κB pathway activation. For cells in the lower chamber, levels of caspase-3, bcl-2, Bax, E-cadherin, and α-SMA were measured. The membrane was incubated at 4 °C overnight within the corresponding primary antibody. After washing, the secondary antibody supplemented with 2% milk was added, followed by incubation at room temperature for 1 h. After development, the image was analyzed using Image J software for gray values of the bands. GAPDH was used as an internal reference. The ratio of the gray value of the target protein to the gray value of GAPDH was regarded as the expression level of that protein.

Caspase-3 Activity Assay

Caspase3 activity detection kit was used. pNA standard curve was measured, and then 100 ul cell lysate was added to every 2×10^6 cells after treatment, and the supernatant was taken after ultrasonic lysis. Forty ul of buffer solution, 10 ul of Ac-DEVD-pNA (2 mM) and 50 ul of sample to be tested were added into the 96-well plate, and a blank control group was set to exclude the background absorption value. The mixture was incubated at 37 °C for 2 h, and OD value of the sample was detected with a microplate analyzer at the wavelength of 405 nm. The standard curve was used to calculate how much pNA was catalyzed in the sample, which was expressed as multiple of the control group.

Statistical Analysis

The SPSS 20 (Chicago, IL, USA) software was used for statistical analysis. Data were expressed as mean ± standard deviation. The paired t test was used for comparison between groups. A difference was statistically significant when P<0.05. Each test was repeated more than three times.

Results

Effect of NF-κB inhibitor PDTC on the activity of HK-2 in co-culture system

As shown in Fig. 1a, PDTC had a dose- and time-dependence on the inhibition of RPMI-8226 cell. The half-inhibition concentrations (IC50s) of PDTC calculated by software were 25.59 μM and 3.03μM, respectively, for 24 h and
48 h. The concentration of 25 μM was thus chosen for subsequent experiments.

As shown in Fig. 1b, the activity of HK-2 cells in co-culture system was significantly decreased after the co-culture with RPMI-8226 (P<0.05), but activity of HK-2 cells was significantly increased after the addition of PDTC in co-culture system.

Effect of PDTC on apoptosis and cell phenotype transformation of HK-2 cells in co-culture system

Compared with the single culture group, the apoptosis rates of HK-2 cells and RPMI-8226 cells in co-culture group were significantly increased (P<0.05); compared with the co-culture group, the apoptosis rate of HK-2 cells in co-culture + PDTC group significantly decreased (P<0.05) (Fig. 2). Compared with single HK-2 cell culture group, the activity of caspase3 in HK-2 cells in co-culture system was significantly increased, and the ratio of bcl2 to bax was significantly decreased (P<0.05). Compared with the co-culture group, the activity of caspase3 in HK-2 cells decreased significantly after the addition of PDTC in the co-culture system, and the ratio of bcl2 to bax was significantly increased (P<0.05). The E-cadherin on the surface of HK-2 cells decreased significantly after the PDTC treatment in the co-culture group, and α-SMA increased significantly (P<0.05). PDTC could induce morphological changes of renal epithelial cells and produce renal interstitial fibrosis.

Effect of PDTC on secretion of light chain proteins in myeloma cells

As shown in Table 1, levels of both κ light chain and λ light chain were reduced in the presence of 25 μM PDTC for 24 h. The differences were 8.30±1.39 and 0.91±0.35, respectively, and both were statistically significant (P<0.05).
Fig. 2: Effect of PDTC on apoptosis of renal tubular epithelial cells HK-2 in each group
A. Flow cytometry detects typical scatter plots of apoptosis in single culture group, single culture+PDTC group, co-culture group, co-culture+PDTC group. After the cells of all four groups were cultured for 24 h, Annexin V- FITC method showed that the apoptosis rate was the sum of early apoptosis (lower right quadrant) and late apoptosis (upper right quadrant). B. The histogram of the apoptosis rate of single culture group, single culture+PDTC group, co-culture group, co-culture+PDTC group
*P<0.05 compared with the single culture group; #P<0.05 compared with the co-culture group

Table 1: Effect of PDTC on κ light chain level, λ light chain level and their ratio κ/λ in myeloma cells

Group	κ light chain level	λ light chain level	κ/λ
RPMI-8226/HK-2 co-culture group	16.45±1.62	1.70±0.23	9.85±2.02
RPMI-8226/HK-2 + PDTC co-culture group	7.92±1.04*	0.77±0.15*	10.67±2.72

*P<0.05, compared with RPMI-8226/HK-2 co-culture group

Fig. 3: Western blot analyses of related proteins
a, b apoptosis-associated proteins; c, d cell surface marker proteins
*P<0.05 compared with the co-culture group
Discussion

In the United States, MM has become the second most common blood cancer (16). It is characterized by Bence Jones protein (BJP). It can freely pass through the glomerular filtration membrane due to its small molecular weight. It was believed that kidney damage due to BJP was associated with BJP’s catalytic activities (17-19). Therefore, it was postulated that inhibition of BJP’s catalytic activities would attenuate BJP-mediated apoptosis (20). K light chain protein can enter the nucleus and activate lysosomes, and eventually leading to apoptosis (21). In this study, HK-2 were co-cultured with RPMI-8662. It was found that the light chain proteins produced by myeloma cells can mediate apoptosis of HK-2. The underlying mechanism may be related to the catalytic activity of light chain proteins.

Available at: http://ijph.tums.ac.ir
Light chain proteins in urine can cause damage to renal tubular epithelial cells, thereby aggravating renal interstitial lesions (22). Damaged tubular epithelial cells secrete large amounts of profibrotic factors, which promote fibrosis formation (23). In this process, damaged tubular epithelial cells promote expression of key genes such as α-SMA and snail (24, 25). In this study, the E-cadherin was down regulated, while the interstitial cell surface marker α-SMA was up-regulated when HK-2 cells were co-cultured with RPMI-8226 cells. This finding indicated that light chain proteins could mediate cell phenotype transformation.

In the culture medium of RPMI-8226 cells, there was only one factor secreted by cells, lacking the signal molecule produced by the communication between the two cells.

Conclusion

PDTC inhibited activation of the NF-κB pathway in RPMI-8226 cells, leading to increased apoptosis, reduced secretion of light chain proteins, and decreased effect on apoptosis and cell phenotype transformation of HK-2 renal tubular epithelial cells.

Ethical considerations

Ethical issues (Including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, redundancy, etc.) have been completely observed by the authors.

Acknowledgements

This study was approved by Qiqihar Science and Technology Guidance Project (SFZD-2017015).

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. Kastritis E, Terpos E, Dimopoulos MA (2013). Current treatments for renal failure due to multiple myeloma. *Expert Opin Pharmacother*, 14(11): 1477-95.
2. Bilyy R, Tomin A, Mahorivska I, et al (2011). Antibody-mediated sialidase activity in blood serum of patients with multiple myeloma. *J Mol Recognit*, 24(4): 576-84.
3. Ying WZ, Sanders PW (2001). Mapping the binding domain of immunoglobulin light chains for Tamm-Horsfall protein. *Am J Pathol*, 158(5): 1859-66.
4. Zhao A, Kong F, Liu CJ, et al (2017). Tumor Cell-Derived Microvesicles Induced Not Epithelial-Mesenchymal Transition but Apoptosis in Human Proximal Tubular (HK-2) Cells: Implications for Renal Impairment in Multiple Myeloma. Int J Mol Sci, 18(5): 11239-45.

5. Wang PX, Sanders PW (2007). Immunoglobulin light chains generate hydrogen peroxide. J Am Soc Nephrol, 18(4): 1239-45.

6. Li ZW, Chen H, Campbell RA, et al (2008). NF-kappaB in the pathogenesis and treatment of multiple myeloma. Curr Opin Hematol, 15(4): 391-9.

7. Hideshima T, Chauhan D, Richardson P, et al (2002). NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem, 277(19): 16639-47.

8. Kumar SK, Lee JH, Lahuerta JJ, et al (2012). Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia, 26(1): 149-57.

9. Rumpold H, Salvador C, Wolf AM, et al (2007). Knockdown of PgP resensitizes leukemic cells to proteasome inhibitors. Biochim Biophys Acta, 1761(2): 549-54.

10. Adams J (2004). The development of proteasome inhibitors as anticancer drugs. Cancer Cell, 5(5): 417-21.

11. Annunziata CM, Davis RE, Demchenko Y, et al (2007). Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell, 12(2): 115-30.

12. Parker KM, Ma MH, Manyak S, et al (2002). Identification of polymorphisms of the IkappaB(alpha) gene associated with an increased risk of multiple myeloma. Cancer Genet Cytogenet, 137(1): 43-8.

13. Bahlis NJ, King AM, Kolonias D, et al (2007). CD28-mediated regulation of multiple myeloma cell proliferation and survival. Blood, 109(11): 5002-10.

14. Anto RJ, Mukhopadhyay A, Shishodia S, et al (2002). Cigarette smoke condensate activates nuclear transcription factor-kappaB through phosphorylation and degradation of IkappaB(alpha): correlation with induction of cyclooxygenase-2. Carcinogenesis, 23(9): 1511-8.

15. Hassan SB, Gali-Muhtasib H, Göransson H, et al (2010). Alpha terpineol: a potential anticancer agent which acts through suppressing NF-kappaB signalling. Anticancer Res, 30(6): 1911-9.

16. Rajkumar SV, Dimopoulos MA, Palumbo A, et al (2014). International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol, 15(12): e538-48.

17. Paul S, Li L, Kalaga R, et al (1995). Natural catalytic antibodies: peptide-hydrolyzing activities of Bence Jones proteins and VL fragment. J Biol Chem, 270(25): 15257-61.

18. Matsuura K, Sinohara H (1996). Catalytic cleavage of vasopressin by human Bence Jones proteins at the arginylglycinamide bond. Biol Chem, 377(9): 587-9.

19. Shuster AM, Gololobov GV, Kvashuk OA, et al (1992). DNA hydrolyzing autoantibodies. Science, 256(5057): 665-7.

20. Matsuura K, Sinohara H (1996). Catalytic cleavage of vasopressin by human Bence Jones proteins at the arginylglycinamide bond. Biol Chem, 377(9): 587-9.

21. Sanders PW, Herrera GA, Galla JH (1987). Human Bence Jones protein toxicity in rat proximal tubule epithelium in vivo. Kidney Int, 32(6): 851-61.

22. Siezenga MA, van der Geest RN, Mallat MJ, et al (2010). Urinary properdin excretion is increased in human patients with primary systemic amyloidosis. Nephrol Dial Transplant, 25(4): 1157-1161.

23. Liu Y (2011). Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol, 7(12): 684-96.

24. Grande MT, Sánchez-Laorden B, López-Blau C, et al (2016). Erratum: Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med, 22(2): 217.

25. Lovisa S, LeBlue VS, Tampe B, et al (2015). Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med, 21(9): 998-1009.