INEQUALITIES FOR A NUMBER OF DIFFERENT TYPES OF CONVEXITY

Merve Avci Ardic

Abstract. Some inequalities for different types of convexity are established.

1. Introduction

In this section, some definitions of different types of convexity will be reminded.

In [1], Hudzik and Maligranda considered among others the class of functions which are s-convex in the second sense.

Definition 1. A function $f : \mathbb{R}^+ \to \mathbb{R}$, where $\mathbb{R}^+ = [0, \infty)$, is said to be s-convex in the second sense if

$$f(\alpha u + \beta v) \leq \alpha^s f(u) + \beta^s f(v)$$

for all $u, v \in [0, \infty)$, $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$ and s fixed in $(0, 1]$. This class of s-convex functions in the second sense is usually denoted by K^2_s.

s-convexity reduces the ordinary convexity of functions defined on $[0, \infty)$ for $s = 1$.

For some information about convexity and s-convexity it is possible to refer to [1]-[7].

Definition 2. [8] A function $f : I \to \mathbb{R}$ is said to be quasi-convex if for all $x, y \in I$ and all $\alpha \in [0, 1], f(\alpha x + (1 - \alpha)y) \leq \max(f(x), f(y))$.

Godunova and Levin introduced the following concept in the paper [9].

Definition 3. A function $f : I \to \mathbb{R}$ is said to be belong to the class $Q(I)$ if it is nonnegative and for all $x, y \in I$ and $\lambda \in (0, 1)$, satisfies the inequality

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda) f(y).$$

Definition 4. [10] A function $f : I \to \mathbb{R}$ is said to be belong to the class $P(I)$ if it is nonnegative and for all $x, y \in I$ and $\lambda \in [0, 1)$, satisfies the following inequality

$$f(\lambda x + (1 - \lambda)y) \leq f(x) + f(y).$$

1991 Mathematics Subject Classification. 26D10; 26D15.
Key words and phrases. s-convex function, convex function, quasi-convex function, P-function, Q(I) class function.
The results are obtained via following lemma.

Lemma 1. Let \(f : [a, b] \rightarrow \mathbb{R} \) be a continuous function on \([a, b]\) such that \(f \in L[a, b] \) with \(a < b \). For some fixed \(p, q > 0 \), followig equality holds:

\[
\int_a^b (x - a)^p (b - x)^q f(x) f(a + b - x) \, dx = (b - a)^{p+q+1} \int_0^1 (1 - t)^p t^q f(ta + (1 - t)b) f((1 - t)a + tb) \, dt.
\]

Proof. Changing the variable \(x = ta + (1 - t)b \) and simple calculations proceed the required result. \(\square \)

Theorem 1. Let \(f : [a, b] \subset [0, \infty) \rightarrow \mathbb{R}^+ \) be a continuous function on \([a, b]\) such that \(f \in L[a, b] \) with \(\theta \leq a < b < \infty \). If \(f \) is \(s \)-convex in the second sense, for some fixed \(p, q > 0 \) and \(s \in (0, 1] \) the following inequality holds

\[
\begin{align*}
\int_a^b (x - a)^p (b - x)^q f(x) f(a + b - x) \, dx & \leq \frac{(b - a)^{p+q+1}}{2} \left\{ (f^2(a) + f^2(b)) \left[\beta(p + 1, 2s + q + 1) + \beta(q + 1, 2s + p + 1) \right] \right. \\
& \quad + 4f(a)f(b)\beta(p + s + 1, q + s + 1) \right\}
\end{align*}
\]

where \(\beta(m, n) = \int_0^1 t^{m-1}(1 - t)^{n-1} \, dt \), \(m, n > 0 \) is the Euler Beta function.

Proof. Using the inequality \(cd \leq \frac{1}{2}[c^2 + d^2] \) \(c, d \in \mathbb{R}^+ \) in the right hand side in Lemma II we obtain

\[
\begin{align*}
\int_a^b (x - a)^p (b - x)^q f(x) f(a + b - x) \, dx & \leq \frac{(b - a)^{p+q+1}}{2} \int_0^1 (1 - t)^p t^q \left\{ [f(ta + (1 - t) b)]^2 + [f((1 - t)a + tb)]^2 \right\} dt.
\end{align*}
\]

Since \(f \) is \(s \)-convex in the second sense, we can write

\[
\begin{align*}
\int_a^b (x - a)^p (b - x)^q f(x) f(a + b - x) \, dx & \leq \frac{(b - a)^{p+q+1}}{2} \int_0^1 (1 - t)^p t^q \left\{ [t^s f(a) + (1 - t)^s f(b)]^2 + [(1 - t)^s f(a) + t^s f(b)]^2 \right\} dt \\
& = \frac{(b - a)^{p+q+1}}{2} \int_0^1 (1 - t)^p t^q \left\{ (f^2(a) + f^2(b)) \left[t^{2s} + (1 - t)^{2s} \right] + 4t^s(1 - t)^s f(a) f(b) \right\} \\
& = \frac{(b - a)^{p+q+1}}{2} \left\{ (f^2(a) + f^2(b)) \left[\int_0^1 (1 - t)^p t^q + 2s dt + \int_0^1 (1 - t)^{p+2s} t^q dt \right] \\
& + 4f(a)f(b) \int_0^1 t^{s+s}(1 - t)^{p+s} dt \right\}.
\end{align*}
\]

If we use the following equalities above we get the required result:

\[
\int_0^1 (1 - t)^p t^{q+2s} dt = \beta(p + 1, 2s + q + 1),
\]
\[
\int_0^1 (1-t)^{p+2s} t^q dt = \beta(q + 1, 2s + p + 1)
\]

and
\[
\int_0^1 t^{q+s} (1-t)^{p+s} dt = \beta(p + s + 1, q + s + 1).
\]

\[\square\]

Corollary 1. In Theorem 1, if we choose \(p = q \) following inequality holds:
\[
\int_a^b (x-a)^p (b-x)^p f(x) f(a + b - x) dx
\leq \frac{(b - a)^{2p+1}}{2} \left\{ (f^2(a) + f^2(b)) \left[\beta(p + 1, 2s + p + 1) + \beta(p + 1, 2s + p + 1) \right] + 4f(a)f(b)\beta(p + s + 1, p + s + 1) \right\}.
\]

Corollary 2. In Theorem 1, if \(f \) is symmetric function, \(f(x) = f(a + b - x) \), following inequality holds:
\[
\int_a^b (x-a)^p (b-x)^q f^2(x) dx
\leq \frac{(b - a)^{p+q+1}}{2} \left\{ (f^2(a) + f^2(b)) \left[\beta(p + 1, q + 3) + \beta(q + 1, p + 3) \right] + 4f(a)f(b)\beta(p + 2, q + 2) \right\}
\]

for convex functions.

Corollary 3. In Theorem 1, if we choose \(s = 1 \) following inequality holds
\[
\int_a^b (x-a)^p (b-x)^q f(x) f(a + b - x) dx
\leq \frac{(b - a)^{p+q+1}}{2} \left\{ (f^2(a) + f^2(b)) \left[\beta(p + 1, q + 3) + \beta(q + 1, p + 3) \right] + 2f(a)f(b)\beta(p + 1, p + 3) \right\}
\]

for convex functions.

Corollary 4. In Corollary 3, if we choose \(p = q \) and \(f(x) = f(a + b - x) \), we obtain the following inequalities respectively
\[
\int_a^b (x-a)^p (b-x)^p f(x) f(a + b - x) dx
\leq (b - a)^{2p+1} \left\{ (f^2(a) + f^2(b)) \beta(p + 1, p + 3) + 2f(a)f(b)\beta(p + 1, p + 3) \right\}
\]

and
\[
\int_a^b (x-a)^p (b-x)^q f^2(x) dx
\leq \frac{(b - a)^{p+q+1}}{2} \left\{ (f^2(a) + f^2(b)) \left[\beta(p + 1, q + 3) + \beta(q + 1, p + 3) \right] + 4f(a)f(b)\beta(p + 2, q + 2) \right\}
\]

for convex functions.

Following results are about quasi-convex functions.
Theorem 2. Let \(f : [a, b] \subset [0, \infty) \to \mathbb{R}^+ \) be a continuous function on \([a, b]\) such that \(f \in L[a, b] \) with \(0 \leq a < b < \infty \). If \(f \) is quasi-convex, for some fixed \(p, q > 0 \) the following inequality holds
\[
\int_a^b (x-a)^p (b-x)^q f(x)f(a+b-x)dx
\leq (b-a)^{p+q+1} (\max \{ f(a), f(b) \})^2 \beta(p+1, q+1)
\]
where \(\beta \) is the Euler Beta function.

Proof. Using the inequality \(cd \leq \frac{1}{2}[c^2 + d^2] \) \(c, d \in \mathbb{R}^+ \) in the right hand side in Lemma 1 and quasi convexity of \(f \), we obtain
\[
\int_a^b (x-a)^p (b-x)^q f(x)f(a+b-x)dx
\leq \frac{(b-a)^{p+q+1}}{2} \int_0^1 (1-t)^p t^q \left\{ |f((1-t)a + tb)|^{(1-t)b} + |f((1-t) \beta(p+1, q+1)\}
ight\} dt.
\]
\[
\leq (b-a)^{p+q+1} (\max \{ f(a), f(b) \})^2 \int_0^1 (1-t)^p t^q dt.
\]
The proof is completed. \(\square \)

Corollary 5. In Theorem 2

- If \(f \) is increasing, the following inequality holds
 \[
 \int_a^b (x-a)^p (b-x)^q f(x)f(a+b-x)dx
 \leq (b-a)^{p+q+1} f^2(b) \beta(p+1, q+1).
 \]

- If \(f \) is decreasing, the following inequality holds
 \[
 \int_a^b (x-a)^p (b-x)^q f(x)f(a+b-x)dx
 \leq (b-a)^{p+q+1} f^2(a) \beta(p+1, q+1).
 \]

Following result is about \(P \)-convexity.

Theorem 3. Let \(f : [a, b] \subset [0, \infty) \to \mathbb{R} \) be a continuous function on \([a, b]\) such that \(f \in L[a, b] \) with \(0 \leq a < b < \infty \). If \(f \) is \(P \)-convex, for some fixed \(p, q > 0 \) the following inequality holds
\[
\int_a^b (x-a)^p (b-x)^q f(x)f(a+b-x)dx
\leq (b-a)^{p+q+1} (f(a) + f(b))^2 \beta(p+1, q+1)
\]
where \(\beta \) is the Euler Beta function.

Proof. Using the inequality \(cd \leq \frac{1}{2}[c^2 + d^2] \) \(c, d \in \mathbb{R}^+ \) in the right hand side in Lemma 1 \(P \)-convexity of \(f \) and the definition of \(\beta \) function, we get the desired result. \(\square \)

The last theorem is for \(Q(I) \) class functions.
Theorem 4. Let \(f : [a, b] \subset [0, \infty) \to \mathbb{R} \) be a continuous function on \([a, b]\) such that \(f \in L[a, b] \) with \(0 \leq a < b < \infty \). If \(f \) belongs to \(Q(I) \) class, the following inequality holds

\[
\int_a^b (x-a)^p (b-x)^q f(x)f(a+b-x)dx \\
\leq \frac{(b-a)^{p+q+1}}{2} \big\{ \left[f^2(a) + f^2(b) \right] (\beta(p+1, q-1) + \beta(p-1, q+1)) \\
+ 4f(a)f(b)\beta(p, q) \big\}
\]

for some fixed \(p, q > 1 \) and \(t \in (0, 1) \).

Proof. Using the inequality \(cd \leq \frac{1}{2} [c^2 + d^2] \) \(c, d \in \mathbb{R}^+ \) in the right hand side in Lemma 1, we obtain

\[
\int_a^b (x-a)^p (b-x)^q f(x)f(a+b-x)dx \\
\leq \frac{(b-a)^{p+q+1}}{2} \int_0^1 (1-t)^p t^q \left\{ \left[f(ta+(1-t)b) \right]^2 + \left[f((1-t)a+tb) \right]^2 \right\} dt.
\]

Since \(f \) belongs to \(Q(I) \), we can write

\[
\int_a^b (x-a)^p (b-x)^q f(x)f(a+b-x)dx \\
\leq \frac{(b-a)^{p+q+1}}{2} \int_0^1 (1-t)^p t^q \left\{ \left[\frac{f(a)}{t} + \frac{f(b)}{1-t} \right]^2 + \left[\frac{f(a)}{1-t} + \frac{f(b)}{t} \right]^2 \right\} dt
\]

\[
= \frac{(b-a)^{p+q+1}}{2} \left\{ \left[f^2(a) + f^2(b) \right] \left(\int_0^1 (1-t)^p t^{q-2} dt + \int_0^1 (1-t)^{p-2} t^q dt \right) + 4f(a)f(b) \int_0^1 (1-t)^{p-1} t^{q-1} dt \right\}.
\]

If we use the following equalities above we get the required result:

\[
\int_0^1 (1-t)^p t^{q-2} dt = \beta(p+1, q-1),
\]

\[
\int_0^1 (1-t)^{p-2} t^q dt = \beta(p-1, q+1)
\]

and

\[
\int_0^1 (1-t)^{p-1} t^{q-1} dt = \beta(p, q).
\]

\(\square \)

Corollary 6. In Theorem 4 if \(f(a) = f(b) \) the following inequality holds

\[
\int_a^b (x-a)^p (b-x)^q f(x)f(a+b-x)dx \\
\leq \frac{(b-a)^{p+q+1}}{2} \left\{ \beta(p+1, q-1) + 2\beta(p, q) + \beta(p-1, q+1) \right\}
\]

where \(p, q > 1 \) and \(\beta \) is Euler beta function.

Remark 1. One may get some results for other types of convexity via Lemma 1.
References

[1] H. Hudzik, L. Maligranda, Some remarks on $s-$convex functions, Aequationes Math. 48 (1994) 100–111.
[2] H. Kavurmaci, M. Avci and M. E. Özdemir, New inequalities of Hermite-Hadamard type for convex functions with applications, Journal of Inequalities and Applications, 2011, 2011:86.
[3] M. Özdemir, H. Kavurmaci, A. Akdemir and M. Avci, Inequalities for convex and $s-$convex functions on $\Delta = [a, b] \times [c, d]$, Journal of Inequalities and Applications, 2012, 2012:20.
[4] M. W. Alomari, M. E. Özdemir and H. Kavurmaci, On companion of Ostrowski inequality for mappings whose first derivatives absolute value are convex with applications, Miskolc Mathematical Notes, Vol. 13 (2012), No. 2, pp. 233-248.
[5] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are $s-$convex in the second sense via fractional integrals, Computers and Mathematics with Applications, 63 (2012), 1147-1154.
[6] S.S. Dragomir and S. Fitzpatrick, The Hadamard’s inequality for s-convex functions in the second sense, Demonstratio Math. 32 (4) (1999) 687–696.
[7] B.-Y. Xi and F. Qi, Some Hermite-Hadamard type inequalities for differentiable convex functions and applications, Hacettepe Journal of Mathematics and Statistics, Vol. 42 (3) (2013), 243-257.
[8] J.E. Pečari´c, F. Proschan and Y.L. Tong, Convex Functions, Partial Orderings, and Statisitical Applications, Academic Press, Inc, Boston/London, 1992.
[9] E.K. Godunova and V.I. Levin, Nersavenstra dlja funkcii širokogo klassa soderžazačegovpuklye, monotonnye i nekotorye drugie vidy funkii, VyučislitelMat. i Mt. Fiz., Mežvuzov Sb. Nauč. Trudov. MGPI, Moscow, (1985), 138–142.
[10] S.S. Dragomir, C.E.M. Pearce, Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
[11] B.-Y. Xi, S.-H. Wang and F. Qi, Some inequalities of Hermite-Hadamard type for functions whose 3rd derivatives are $P-$convex, Applied Mathematics, 2012, 3, 1898-1902.
[12] M. Alomari and S. Hussain, Two Inequalities of Simpson Type for Quasi-Convex Functions and Applications, Applied Mathematics E-Notes, Vol. 11, 2011, pp. 110-117.
[13] M. S. Moslehian and M. Kian, Jensen type inequalities for $Q-$class functions, Bull. Aust. Math. Soc. 85 (2012), 128–142.
[14] D. Mitrinović and J. Pečarić, ‘Note on a class of functions of Godunova and Levin’, C. R. Math. Rep. Acad. Sci. Can. 12 (1990), 33–36.
[15] S. S. Dragomir and C. E. M. Pearce, ‘On Jensen’s inequality for a class of functions of Godunova and Levin’, Period. Math. Hungar. 33(2) (1996), 93–100.
[16] W. Liu, New integral inequalities via $(\alpha, m)-$convexity and quasi–convexity, Hacettepe Journal of Mathematics and Statistics, Volume 42 (3) (2013), 289-297.
[17] M. Alomari, M. Darus and U. S. Kirmaci, Refinements of Hadamard-type inequalities for quasi–convex functions with applications to trapezoidal formula and to special means, Computers and Mathematics with Applications 59 (2010) 225 232.

Adiyaman University, Faculty of Science and Arts, Department of Mathematics, 02040, Adiyaman
E-mail address: mavci@adiyaman.edu.tr