Endoscopic Removal of a Migrated Coil after Embolization of a Splenic Pseudoaneurysm: A Case Report

Yoo Min Han¹, Jong Yeul Lee², Il Ju Choi², Chan Gyoo Kim², Soo-Jeong Cho², Jun Ho Lee³, Hyun Beom Kim³ and Ji Min Choi¹

¹Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, ²Center for Gastric Cancer and ³Department of Radiology, National Cancer Center, Goyang, Korea

Splenic artery pseudoaneurysms can be caused by pancreatitis, trauma, or operation. Traditionally, the condition has been managed through surgery; however, nowadays, transcatheter arterial embolization is performed safely and effectively. Nevertheless, several complications of pseudoaneurysm embolization have been reported, including coil migration. Herein, we report a case of migration of the coil into the jejunal lumen after transcatheter arterial embolization of a splenic artery pseudoaneurysm. The migrated coil was successfully removed by performing endoscopic intervention.

Key Words: Splenic artery; False aneurysm; Therapeutic embolization; Migration; Endoscopy

INTRODUCTION

Splanchnic artery aneurysms and pseudoaneurysms can develop secondary to congenital, traumatic, and inflammatory pathologies.¹ The splenic artery is the most common artery affected by pseudoaneurysms.² When a pseudoaneurysm ruptures, hemodynamic instability due to bleeding can occur, which is life-threatening. Transcatheter arterial embolization (TAE) is a safe and effective treatment for pseudoaneurysms.³ However, some complications have been reported, such as bleeding, pseudoaneurysm recurrence, and postembolization syndrome.⁴ Coil migration from a visceral artery pseudoaneurysm is a rare complication of TAE.¹

We describe a case of coil migration into the jejunal lumen after the embolization of a splenic pseudoaneurysm, which was successfully removed by means of an endoscopic intervention.

CASE REPORT

A 63-year-old man was found to have advanced gastric cancer on a routine cancer screening examination. Preoperative abdominal computed tomography (CT) was performed, and there was no specific finding besides advanced gastric cancer. He underwent total gastrectomy. The tumor was located at the posterior wall of the high body. The gross type of the tumor was Bormann type II. The size of the tumor was 4.5 × 3.8 × 0.8 cm, and the depth of invasion was at the subserosal level (pT2b). Sixty-six lymph nodes were dissected, and no metastases were observed (pN0). Lymphatic, venous, and perineural invasions were present.

One month after the surgery, he came to the emergency department with complaints of a febrile sense and abdominal pain. An abdominal CT scan was carried out, and a pseudoaneurysm of the splenic artery and a small amount of hemoperitoneum were detected (Fig. 1A). The total gastrectomy performed 1 month ago was thought to be the cause of the pseudoaneurysm. The size of the pseudoaneurysm was 2.7 × 1.9 × 3.6 cm. On the day after admission, a celiac angiography was performed. A large pseudoaneurysm of the splenic artery was observed on angiography (Fig. 1B). Extravasation of the contrast agent was not observed, and there was no evidence of ongoing bleeding or rupture of the pseudoaneurysm. How-
ever, the risk of rupture seemed high, and we decided to per-
form embolization. The splenic artery was selected by using a
microcatheter, and coils (Tornado embolization microcoil;
Cook, Bloomington, IN, USA) were inserted to obliterate the
pseudoaneurysm. The large size of the pseudoaneurysm and
the fast blood flow required the use of 22 coils. After the coils
were placed, splenic angiography was done and successful
embolization of the pseudoaneurysm was confirmed (Fig. 2).
He was discharged without any complication. As a routine
surveillance, an abdominal CT scan was taken 5 months after
the embolization, and it showed no evidence of cancer recur-
rence or any complication associated with embolization.
Nine months after the embolization of the pseudoaneu-
rysm, the patient presented to the emergency department
with epigastric pain. On upper gastrointestinal endoscopy,
several strands of wire were noted at the inferolateral side of
the esophagojejunal anastomosis (Fig. 3). A simple abdomi-
nal radiograph showed that the wires protruding through the
jejunal wall were part of a coil used for pseudoaneurysm em-
bolization (Fig. 4). We tried to cut the wires by using en-
doscissors (FS-5L-1; Olympus, Tokyo, Japan); however, it was
difficult because the wires were thick and stiff. Thus, we tried
to use hot biopsy forceps (Radial Jaw 3; Boston Scientific,
Natick, MA, USA) for cutting the wires, which proved to be
easy and effective. The hot biopsy forceps were used with an
electrosurgical generator (VIO-300D; ERBE Elektromedizin,
Tübingen, Germany) in the Endocut Q mode (effect 2, cut
duration 2, and cut interval 2) (Fig. 5). It took about 1 to 2
seconds to cut each wire, and five wires were cut in total. Re-
sidual thin strands of wires were removed with endoscissors.
There was no immediate complication during and after the
procedure.

Fig. 1. (A) Computed tomography showed a pseudoaneurysm of the splenic artery (arrow) and a splenic infarct. (B) Celiac angiography re-
vealed a pseudoaneurysm of the splenic artery (arrow).

Fig. 2. (A) Embolization of the pseudoaneurysm was done by using coils. (B) Angiography after coil embolization revealed total occlusion of
the pseudoaneurysm. (C) Simple abdominal radiograph taken just after embolization showed the multiple coils (arrow) placed within the
pseudoaneurysm and splenic artery.
The patient was discharged from the hospital without epigastric pain and remained asymptomatic. He was followed up with upper gastrointestinal endoscopy 3 months after the endoscopic coil removal, and annually thereafter. Abdominal CT scans were performed every 6 months. There had been no symptom or complication related to the coil during the 2-year follow-up period.

DISCUSSION

Splanchnic artery aneurysms and pseudoaneurysms are uncommon; however, incidental detection of such cases has been increasing in recent decades. It is important to recognize splanchnic artery aneurysms and pseudoaneurysms because their risk of rupture is up to 25%, and if ruptured, the mortality rate is between 25% and 75%. The artery most commonly affected by pseudoaneurysms is the splenic ar-

Fig. 3. Endoscopy showed several strands of wire protruding through the jejunal lumen below the esophagojejunal anastomosis.

Fig. 4. A migrated coil (arrow) was seen on simple abdominal radiograph.

Fig. 5. (A) The wires were nearly removed by using hot biopsy forceps with an electrosurgical generator. (B) Simple abdominal radiograph showed the removed wires (arrow) protruding through the jejunal wall.
Endoscopic Removal of a Migrated Coil

Endoscopic removal of a migrated coil from a visceral artery is a rare complication of endovascular management of a pseudoaneurysm. According to a cumulative review of the literature, there are only 10 reports documenting the migration of endovascular coils from visceral arteries (Table 1). In two cases, the coils migrated from the splenic artery, one into the stomach and the other into the rectum. In the former case, the splenic pseudoaneurysm resulting from chronic pancreatitis bled into a pseudocyst, and steel-wire coils were placed inside the aneurysm cavity. Several weeks later, some of the coils dislodged through a gastropseudocystic fistula, and open surgery was performed to remove the coils, pseudocyst, and fistula. In the latter case, the patient underwent embolization of a splenic artery pseudoaneurysm caused by chronic pancreatitis. After 3 weeks of intervention, two coils were passed through the rectum. No fistula was found on imaging studies, and it was postulated that the coils passed through a preexisting enteric fistula. As the migrating coils had already passed, no further management was performed.

There are few reports about the risk factors associated with coil migration. Techniques associated with embolization and the presence of collaterals are assumed to influence the migration of coils. To reduce the chance of coil migration, occluding the normal portion of the splenic artery, both distal and proximal to the pseudoaneurysm, is preferred over filling the inside of a pseudoaneurysm. By occluding both sides of the artery, backflow from collateral circulation could be prevented. In our case, the radiologists tried to occlude both the

Author	Age/sex	Underlying disease	Affecting vessel	Site of coil migration	Symptoms	Treatment
Present study	63/M	Advanced gastric cancer	Splenic artery	Jejunum	Epigastric soreness	Endoscopic removal
Skipworth et al.1	55/M	Chronic pancreatitis	Gastroduodenal artery	Gastric pylorus	None	Nasojejunal feeding and future surgery
Takahashi et al.10	59/M	Chronic pancreatitis	Splenic artery	None	None	Open surgery
Shah et al.11	65/M	Chronic pancreatitis	Splenic artery	CBD	Hematemesis	Percutaneous cholangioscopic extraction
Turaga et al.12	82/F	Cholecystectomy	Gastric body	CBD	Laboratory abnormality	Endoscopic extraction
Dinter et al.13	65/M	Gastric ulcer bleeding	Splenic artery	CBD	CBD	Open CBD exploration
Ozkan et al.14	58/M	Chronic pancreatitis	Hepatic artery	CBD	Laboratory abnormality	Endoscopic extraction
Reed et al.15	50/F	Percutaneous nephrolithotomy	CBD	CBD	Laboratory abnormality	Endoscopic extraction
Van Steenbergen et al.16	72/M	Liver transplantation	CBD	CBD	Laboratory abnormality	Endoscopic extraction
Kao et al.17	65/F	Liver transplantation	CBD	CBD	Laboratory abnormality	Endoscopic extraction
Akaibara et al.18	55/F	Liver transplantation	CBD	CBD	Laboratory abnormality	Endoscopic extraction

M, male; RUQ, right upper quadrant; F, female; CBD, common bile duct; UV, ureterovesical.
afferent and efferent arteries; however, the blood flow was so fast that some of the coils migrated into the pseudoaneurysm. This may be the reason why the coil migration occurred.

No treatment strategy has been established for migrated coils. According to previous case reports, some coils were removed surgically or were spontaneously passed. Others, in the case of coils migrating into the common bile duct, were eliminated by using percutaneous or endoscopic cholangiography. What is special in our case is that the migrated coil was successfully removed by endoscopic intervention. To our knowledge, endoscopic removal of a migrated coil from the bowel lumen has not been described before. First, we tried to cut the wires with endoscissors, but it was unsuccessful. Before this case, we already had experience in the endoscopic removal of complicated suture materials at the anastomosis site by using hot biopsy forceps. Therefore, we used hot biopsy forceps for cutting the wires. The wires were cut easily without complication. Endoscopic removal seems to have many advantages over surgical treatment: it is less invasive and more cost-effective because not only is the procedure itself possibly less expensive but also the length of hospital stay might be shorter than with operation. The procedure might also be less painful for the patient than surgery. However, careful evaluation should be performed for the presence of conditions requiring surgery such as a fistula, perforation, and pseudocyst before choosing the treatment modality. Our patient had no relevant condition requiring surgery and was successfully treated with endoscopic intervention. He was followed up for 15 months after coil removal without complication.

In summary, we report a case of coil migration into the jejunal lumen after TAE of a splenic artery pseudoaneurysm. This case shows the feasibility of successful coil removal by means of endoscopic intervention.

Conflicts of Interest

The authors have no financial conflicts of interest.

REFERENCES

1. Skipworth JR, Morkane C, Raptis DA, et al. Coil migration: a rare complication of endovascular exclusion of visceral artery pseudoaneurysms and aneurysms. Ann R Coll Surg Engl 2011;93:e19-e23.
2. Tessier DJ, Stone WM, Fowl RJ, et al. Clinical features and management of splenic artery pseudoaneurysms: case series and cumulative review of literature. J Vasc Surg 2003;38:969-974.
3. Gómez J, Nicolás N, Devière J, et al. Transcatheter embolization of pseudoaneurysms complicating pancreaticitis. Cardiovasc Interv Radiol 1997;20:435-440.
4. Gaba RC, Katz JR, Parvinian A, et al. Splenic artery embolization: a single center experience on the safety, efficacy, and clinical outcomes. Diagn Interv Radiol 2013;19:49-55.
5. Ruokko O, Sendenmaa K, Amundsen S, Bjerke-Larsen T, Jensen D. The diagnosis and management of splanchic artery aneurysms. Scand J Gastroenterol 1996;31:737-743.
6. Pasha SF, Gloviczki P, Stanton AW, Kamath PS. Splanchic artery aneurysms. Mayo Clin Proc 2007;82:472-479.
7. McDermott VG, Shlansky-Goldberg R, Cope DC. Endovascular management of splenic artery aneurysms and pseudoaneurysms. Cardiovasc Interv Radiol 1994;17:179-184.
8. Loffroy R, Guiri B, Cecuelle JP, et al. Transcatheter arterial embolization of splenic artery aneurysms and pseudoaneurysms: short- and long-term results. Ann Vasc Surg 2008;22:618-626.
9. Venkatesh SK, Kumar S, Bajaj SS, Phadke RV, Kathuria MK, Gujar RB. Endovascular management of pseudoaneurysms of the splenic artery: experience with six patients. Australas Radiol 2005;49:283-288.
10. Takahashi T, Shimada K, Kobayashi N, Nakita A. Migration of steel wire coils into the stomach after transcatheter arterial embolization for a bleeding splenic artery pseudoaneurysm: report of a case. Surg Today 2001;31:458-462.
11. Shah NA, Akingbode A, Haldipur N, Mackinlay JY, Jacob G. Embolization coils migrating and being passed per rectum after embolization of a splenic artery pseudoaneurysm, “the migrating coil”: a case report. Cardiovasc Intervent Radiol 2007;30:1259-1262.
12. Turaga KK, Amrulak B, Davis RE, Youssef K, Richards A, Fitzgibbons RJ Jr. Cholangitis after coil embolization of an iatrogenic hepatic artery pseudoaneurysm: an unusual case report. Surg Laparosc Endosc Percutan Tech 2006;16:36-38.
13. Dinter DJ, Resin M, Kaehle G, Neff W. Fatal coil migration into the stomach 10 years after endovascular celiac aneurysm repair. J Vasc Interv Radiol 2007;18:117-120.
14. Ozkan OS, Walser EM, Akinci D, Nealon W, Goodacre B, Guglielmi detachable coil erosion into the common bile duct after embolization of an iatrogenic hepatic artery pseudoaneurysm. J Vasc Interv Radiol 2002;13:935-938.
15. Reed A, Suri R, Marcovich R. Passage of embolization coil through urinary collecting system one year after embolization. Urology 2007;70:1222.e17-1222.e18.
16. Van Steenbergen W, Lecluyse K, Phadke RV, Kathuria MK, Gujrati RB. Endovascular management of pseudoaneurysms of the splenic artery: experience with six patients. Australas Radiol 2005;49:283-288.
17. Kao WY, Chiou YY, Chen TS. Coil migration into the common bile duct after embolization of an iatrogenic hepatic artery pseudoaneurysm. Cardiovasc Intervent Radiol 1994;17:179-184.
18. al-Hamid HS, Saeed MA, Alamimi AR, O’Hall WA, Khankan AA, Al-Rafai IH. Endoscopic extraction of vascular embolization coils that have migrated into the biliary tract in a liver transplant recipient. Dig Endosc 2012;24:462-465.