Drug Interactions of Metformin Involving Drug Transporter Proteins

Naina Mohamed Pakkir Maideen1*, Abdurazak Jumale1, Rajkapoor Balasubramaniam2

1 Dubai Health Authority, Dubai, United Arab Emirates.
2 Department of Pharmacology, Faculty of Medicine, Sebha University, Sebha, Libya.

Abstract
Metformin is a most widely used medication all around the world to treat Type 2 diabetes mellitus. It is also found to be effective against various conditions including, Prediabetes, Gestational diabetes mellitus (GDM), Polycystic Ovarian Syndrome (PCOS), Obesity, Cancer, etc. It is a cationic drug and it depends Organic Cation Transporters (OCTs) and Multidrug and Toxin Extruders (MATEs) mostly for its pharmacokinetics movement. The probability of drug interaction increases with the number of concomitant medications. This article focuses the drug interactions of metformin and most of them are linked to the inhibition of OCTs and MATEs leading to increased plasma metformin concentrations and subsequent elevation of risk of Metformin Associated Lactic Acidosis (MALA). By identifying the drugs inhibiting OCTs and MATEs, the healthcare professionals can predict the drug interactions of metformin.

Introduction
Metformin is a popular drug and is used by millions worldwide to treat various conditions including Type 2 diabetes mellitus, Prediabetes, Gestational diabetes mellitus (GDM), Polycystic Ovarian Syndrome (PCOS), Obesity, Cancer, etc. Metformin is primarily used as a first line drug for the treatment of type 2 diabetes mellitus in overweight patients.1-3 It is postulated that the antihyperglycemic action of Metformin results from decreased hepatic glucose production largely by inhibiting gluconeogenesis4,5 and increased glucose utilization.6 The activation of AMP-activated protein kinase (AMPK) by Metformin is required for the inhibition of hepatic glucose production and induction of skeletal muscle glucose uptake.7

Pharmacokinetic drug interactions of Metformin
Metformin is a cation at physiological pH, as it is a strong base. Hence, the absorption, distribution and excretion of Metformin depend on the transporters such as Organic Cation Transporters (OCTs), Multidrug and Toxin Extruders (MATEs) and Plasma membrane Monoamine Transporter (PMAT).8 The oral absorption and hepatic uptake of Metformin are mediated possibly by Organic cation transporters (OCTs) (OCT1 and OCT3) and renal excretion of Metformin is largely mediated by Metformin transporters such as Multidrug and Toxin Extruders (MATEs) MATE1 and MATE2-k and Organic cation transporter 2 (OCT2).9 Metformin is not metabolized and excreted unchanged in urine10 and the patients with moderate and severe chronic renal impairment (CRI) should not be administered with metformin.11 As Metformin is not metabolized, it is not expected to be involved in many drug–drug interactions (DDIs).

Metformin use is associated to Lactic Acidosis probably due to the accumulation of lactate through the inhibition of hepatic glucose production from lactate molecules.12 The drugs inhibiting the Metformin transporters (MATEs and OCTs) could decrease the elimination of Metformin and increase it’s plasma concentrations leading to elevated risk of Metformin Associated Lactic Acidosis (MALA). Metformin administration should be stopped and urgent medical attention given to the patients developing first signs of MALA such as severe vomiting and diarrhea.13

Interactions with Iodinated Contrast Materials (ICM)
Iodinated Contrast Materials (ICMs) used widely and successfully during many procedures including angiography, urography, etc. Administration of iodinated contrast media (CM) would result in Contrast-induced nephropathy (CIN).14 Hence, the risk of toxic accumulation of Metformin and subsequent Lactic Acidosis may be higher in patients taking Metformin who undergo procedures using iodinated contrast material (ICM). The risk is further increased in patients with renal impairment and it is recommended to stop Metformin while using ICM in patients with renal impairment.15,16

*Corresponding author: Naina Mohamed Pakkir Maideen, Tel: +97142164952, Fax: +97142244302, Email: nmmaideen@dha.gov.ae
©2017 The Authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.
Interactions with acid suppressing agents

H₂ receptor blockers

Cimetidine
Cimetidine is a potent inhibitor of Multidrug and toxin extruder 1 (MATE1) of proximal tubular epithelial cells and it is a broad-spectrum inhibitor of transporters including Organic Cation Transporter 2 (OCT 2). Concomitant use of Metformin and Cimetidine decreases the excretion of Metformin, resulting in increased exposure of Metformin and elevated risk of Metformin Associated Lactic Acidosis (MALA). It is recommended to reduce the dose of Metformin when Cimetidine is co-prescribed.

Ranitidine
Ranitidine is a potential inhibitor of Multidrug and Toxin Extruder 1 (MATE1) and hence the renal clearance of Metformin decreased.

Famotidine
Famotidine may be suitable H₂ blocker in patients taking Metformin, as it is a selective inhibitor of MATE1 and increasing the therapeutic efficacy of Metformin by significantly increasing the estimated bioavailability of Metformin. In addition, Famotidine enhances the renal clearance of Metformin compared to Cimetidine or Ranitidine which decrease its elimination.

Proton pump inhibitors
Proton pump inhibitors may inhibit Multidrug and toxin extruder (MATE) and OCT2 transporters and increase plasma metformin exposure. It is recommended to monitor the concomitant use of Proton pump inhibitors with Metformin. The risk of Vitamin B12 deficiency was found to be elevated by the combination of Proton pump inhibitors or H₂ receptor blockers and Metformin. The malabsorption of vitamin B12 promoted by additive effects of Proton pump inhibitors or H₂ receptor blockers and Metformin. Concomitant use of these drugs should be monitored for the consequences such as peripheral neuropathy and megaloblastic anemia. It is recommended for Vitamin B12 replacement in patients taking Metformin and PPIs/ H₂ receptor blockers to prevent cobalamin deficiency.

Interaction with Antimicrobials

Trimethoprim
Trimethoprim inhibits Metformin elimination moderately through the inhibition of OCTs and MATEs, but the co-administration of both the drugs should be carried out carefully in patients with renal dysfunction or patients taking higher doses of Metformin.

Cephalexin
Cephalexin is a zwitterionic substrate of MATE1 and it reduces the elimination of Metformin resulting in accumulation.

Rifampin
Hepatic uptake of Metformin might be elevated by the administration of Rifampin due to increased expression of OCT1.

Dolutegravir
Dolutegravir is used as the first-line antiretroviral agent in the treatment of HIV infection and it is an inhibitor of both OCT2 and MATE1 transporters within the renal tubules. Concomitant use of Dolutegravir and Metformin may result in increased adverse effects of Metformin such as hypoglycemia and GI intolerance caused by increased plasma concentrations of Metformin occurred due to the inhibition of OCT2 and MATE1 transporters. Prescribers may adjust the Metformin dose to prevent intolerable ADRs while prescribing Dolutegravir and Metformin concurrently.

Pyrimethamine
Pyrimethamine is an antiparasitic drug and is used to treat toxoplasmosis and cystoisosporiasis. Pyrimethamine is an inhibitor of both OCT2 and MATE transporters. Co-administration of Pyrimethamine with Metformin results in elevated plasma concentrations due to decreased renal clearance of Metformin induced by the inhibition of OCT2 and MATE transporters by Pyrimethamine.

Interaction with Ranolazine
Ranolazine is approved to treat chronic angina. Ranolazine blocks sodium channel of pancreatic α cells and decreases electrical activity to inhibit glucagon release. The plasma concentrations of Metformin may be elevated by the co-administration of Ranolazine which may decrease the Metformin elimination through the inhibition of OCT2 transporter. This interaction is dose dependent and it is recommended that the daily dose of Metformin should not exceed 1700 mg in patients taking Ranolazine 1000 mg two times daily.

Interaction with Anticancer Drugs

Vandetanib
Vandetanib is used in the treatment of medullary thyroid cancer. Vandetanib is a potent inhibitor of MATE1 and MATE2K transporters and its co-administration with Metformin may result in increased plasma concentrations of Metformin due to decreased elimination as it is the substrate of MATE1 and MATE2K transporters. The patients receiving the combination of Vandetanib and Metformin should be monitored carefully for Metformin toxicity.

Tyrosine kinase inhibitors
Tyrosine kinase inhibitors such as Imatinib,Nilotinib, Gefitinib, and Erlotinib may reduce the elimination of Metformin by inhibiting OCTs and MATEs transporters, at clinically relevant concentrations.
Interaction with Beta adrenergic blockers

Atenolol
The plasma concentration of Metformin may be elevated due to reduced elimination induced by Atenolol as it reduces the renal blood flow and inhibits OCT2 competitively.44

Metoprolol
The plasma concentration of Metformin can be decreased by Metoprolol by increasing the hepatic uptake of Metformin through the induction of OCT1, increasing the renal uptake of Metformin by reducing the expression of MATE1 and increasing the uptake of Metformin in thigh muscle through the induction of OCT3.45

Conclusion
Most of the possible drug interactions of Metformin occur through the inhibition of OCTs and MATEs as it is not metabolized and excreted through urine as such. Iodinated Contrast Materials (ICMs) and the drugs such as Cimetidine, Ranitidine, Proton Pump Inhibitors (PPIs), Trimethoprim, Cephalexin, Dolutegravir, Iodinated Contrast Materials (ICMs)

Ethical Issues
Not applicable.

Conflict of Interest
Authors declare no conflict of interest in this study.

References
1. Maruthur NM, Tseng E, Hutfless S, Wilson LM, Suarez-Cuervo C, Berger Z, et al. Diabetes Medications as Monotherapy or Metformin-Based Combination Therapy for Type 2 Diabetes: A Systematic Review and Meta-analysis. Ann Intern Med 2016;164(11):740-51. doi: 10.7326/M15-2650
2. Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V, et al. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 2006;49(2):289-97. doi: 10.1007/s00125-005-0097-z
3. Musi N, Hirshman MF, Nyygren J, Svanfeldt M, Bavenholm P, Rooyackers O, et al. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 2002;51(7):2074-81. doi: 10.2337/diabetes.51.7.2074
4. Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 2000;49(12):2063-9. doi: 10.2337/diabetes.49.12.2063
5. Kirpichnikov D, McFarlane SI, Sowers JR. Metformin: an update. Ann Intern Med 2002;137(1):25-33. doi: 10.7326/0003-4819-137-1-200207020-00009
6. Bailey CJ, Wilcock C, Day C. Effect of metformin on glucose metabolism in the splanchic bed. Br J Pharmacol 1992;105(4):1009-13. doi: 10.1111/j.1476-5381.1992.tb09093.x
7. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fen Yok-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001;108(8):1167-74. doi: 10.1172/JCI13505
8. Stage TB, Brøsen K, Christensen MM. A comprehensive review of drug-drug interactions with metformin. Clin Pharmacokinet 2015;54(8):811-24. doi: 10.1007/s40262-015-0270-6
9. Gong L, Goswami S, Giacomini KM, Altman RB, Klein TE. Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics 2012;22(11):820-7. doi: 10.1097/FPC.0b013e3283559b22
10. Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet 2011;50(2):81-98. doi: 10.2165/11534750-00000000-00000
11. Sambol NC, Chiang J, Lin ET, Goodman AM, Liu CY, Benet LZ, et al. Kidney function and age are both predictors of pharmacokinetics of metformin. J Clin Pharmacol 1995;35(11):1094-102. doi: 10.1002/j.1552-4604.1995.tb04033.x
12. Hermann LS, Melander A. Biguanides: basic aspects and clinical uses. In: Alberti KGMM, DeFronzo RA, Keen H, Zimmet P, editors. International textbook of diabetes. Vol. 1. Chichester, England: John Wiley; 1992. PP. 773-95.
13. Duong JK, Furlong TJ, Roberts DM, Graham GG, Greenfield JR, Williams KM, et al. The role of metformin in metformin-associated lactic acidosis (MALA): case series and formulation of a model of pathogenesis. Drug Saf 2013;36(9):733-46. doi: 10.1007/s40264-013-0038-6
14. Mamousakis C, Tsarouhas K, Fragiakoulaki I, Heretis I, Wilks MF, Spandidos DA, et al. Contrast-induced nephropathy: Basic concepts, pathophysiologic implications and prevention strategies. Pharmacol Ther 2017. doi: 10.1016/j.pharmthera.2017.06.009
15. Gomez Herrero H, De Arriba Villamor C, Buldain Parra M, Arraiza Sarasa M. Nephrotoxicity due to iodine contrasts in computerized tomography studies
of diabetic outpatients on metformin. An Sist Sanit Navar 2013;36(2):197-201.

16. Thomsen HS, Morcos SK. Contrast media and metformin: guidelines to diminish the risk of lactic acidosis in non-insulin-dependent diabetes after administration of contrast media. Eur Radiol 1999;9(4):738-40. doi: 10.1007/s00330050746

17. Lepist EI, Ray AS. Renal Transporter-Mediated Drug-Drug Interactions: Are They Clinically Relevant? J Clin Pharmacol 2016;56(S7):S73-81. doi: 10.1002/jcph.735

18. Ito S, Kusuhara H, Yokochi M, Toyoshima J, Inoue K, Yuasa H, et al. Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug-drug interactions caused by cimetidine in the kidney. J Clin Pharmacol Exp Ther 2012;340(2):393-403. doi: 10.1124/jpet.111.184986

19. Seo JH, Lee DY, Hong CW, Lee IH, Ahn KS, Kang GW. Severe lactic acidosis and acute pancreatitis associated with cimetidine in a patient with type 2 diabetes mellitus taking metformin. Intern Med 2013;52(19):2245-8. doi: 10.2169/internalmedicine.52.0697

20. Boehm KM, Gunaga S. Cimetidine-induced lactic acidosis and acute pancreatitis. South Med J 2010;103(8):849. doi: 10.1097/SMJ.0b013e3181e6363b

21. Somogyi A, Stockley C, Keal J, Rolan P, Bochner F. Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol 1987;23(5):545-51. doi: 10.1111/j.1365-2125.1987.tb03090.x

22. Cho SK, Chung JY. The MATE1 rs2289669 polymorphism affects the renal clearance of metformin following ranitidine treatment. Int J Clin Pharmacol Ther 2016;54(4):253-62. doi: 10.5414/CP202473

23. Hibma JE, Zur AA, Castro RA, Wittwer MB, Keizier RJ, Yee SW, et al. The Effect of Famotidine, a MATE1-Selective Inhibitor, on the Pharmacokinetics and Pharmacodynamics of Metformin. Clin Pharmacokinet 2016;55(6):711-21. doi: 10.1007/s40262-015-0346-3

24. Kim A, Chung I, Yoon SH, Yu KS, Lim KS, Cho JY, et al. Effects of proton pump inhibitors on metformin pharmacokinetics and pharmacodynamics. Drug Metab Dispos 2014;42(7):1174-9. doi: 10.1124/dmd.113.055616

25. Ding Y, Jia Y, Song Y, Lu C, Li Y, Chen M, et al. The effect of lansoprazole, an OCT inhibitor, on metformin pharmacokinetics in healthy subjects. Eur J Clin Pharmacol 2014;70(2):141-6. doi: 10.1007/s00228-013-1604-7

26. Damião CP, Rodrigues AO, Pinheiro MF, Cruz Filho RA, Cardoso GP, Taboada GF, et al. Prevalence of vitamin B12 deficiency in type 2 diabetic patients using metformin: a cross-sectional study. Sao Paulo Med J 2016;134(6):473-9. doi: 10.1590/1516-3180.2015.0138211

27. Zdilla MJ. Metformin with either histamine h2-receptor antagonists or proton pump inhibitors: a polypharmacy recipe for neuropathy via vitamin B12 depletion. Clin Diabetes 2015;33(2):90-5. doi: 10.2337/diaclin.33.2.90

28. Long AN, Atwell CL, Yoo W, Solomon SS. Vitamin B12 deficiency associated with concomitant metformin and proton pump inhibitor use. Diabetes Care 2012;35(12):e84. doi: 10.2337/dc12-0980

29. Purchiaioni F, Galli G, Annibale B. Metformin plus proton pump inhibitors therapy: the cobalamin deficiency challenge. Eur Rev Med Pharmacal Sci 2015;19(13):2501-2.

30. Grün B, Kiessling MK, Burhenne J, Riedel KD, Weiss J, Rauch G, et al. Trimethoprim-metformin interaction and its genetic modulation by OCT2 and MATE1 transporters. Br J Clin Pharmacol 2013;76(5):787-96. doi: 10.1111/bcp.12079

31. Motohashi H, Inui K. Organic cation transporter OCTs (SLC22) and MATEs (SLC47) in the human kidney. AAPS J 2013;15(2):581-8. doi: 10.1208/s12248-013-9465-7

32. Jayasagar G, Krishna Kumar M, Chandrasekhar K, Madhusudan Rao C, Madhusudan Rao Y. Effect of cephalexin on the pharmacokinetics of metformin in healthy human volunteers. Drug Metabol Drug Interact 2002;19(1):41-8. doi: 10.1515/DMDLI.2002.19.1.41

33. Cho SK, Yoon JS, Lee MG, Lee DH, Lim LA, Park K, et al. Rifampin enhances the glucose-lowering effect of metformin and increases OCT1 mRNA levels in healthy participants. Clin Pharmacol Ther 2011;89(3):416-21. doi: 10.1038/clpt.2010.266

34. Song IH, Zong J, Borland J, Jerva F, Wynne B, Zamek-Gliszczynski MJ, et al. The effect of dolutegravir on the pharmacokinetics of metformin in healthy subjects. J Acquir Immune Defic Syndr 2016;72(4):400-7. doi: 10.1097/QAI.0000000000000983

35. Gervasoni C, Minisci D, Clementi E, Rizzardini G, Cattaneo D. How Relevant is the Interaction Between Dolutegravir and Metformin in Real Life? J Acquir Immune Defic Syndr 2017;75(1):e24-6. doi: 10.1097/QAI.0000000000001292

36. Zong J, Borland J, Jerva F, Wynne B, Choukour M, Song I. The effect of dolutegravir on the pharmacokinetics of metformin in healthy subjects. J Int AIDS Soc 2014;17(4 Suppl 3):19584. doi: 10.7448/IAS.17.4.19584

37. Burt HJ, Neuhoff S, Almond L, Gaohua L, Harwood JD, et al. Metformin and cimetidine: Physiologically based pharmacokinetic modelling to investigate transporter mediated drug-drug interactions. Eur J Pharm Sci 2016;88:70-82. doi: 10.1016/j.ejps.2016.03.020

38. Kusuhara H, Ito S, Kumagai Y, Jiang M, Shiroshita T, Moriyama Y, et al. Effects of a MATE protein inhibitor, PF-06447082, on the disposition of metformin in BeWo and Caco-2 cells. Eur J Pharm Sci 2013;50(3):410-20. doi: 10.1016/j.ejps.2012.11.050

504 Advanced Pharmaceutical Bulletin, 2017, 7(4), 501-505
inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther 2011;89(6):837-44. doi: 10.1038/clpt.2011.36

39. Dhall AK, Yang M, Ning Y, Kahlig KM, Krause M, Rajamani S, et al. Blockade of Na+ channels in pancreatic α-cells has antidiabetic effects. Diabetes 2014;63(10):3545-56. doi: 10.2337/db13-0714

40. Zack J, Berg J, Juan A, Pannacciulli N, Allard M, Gottwald M, et al. Pharmacokinetic drug-drug interaction study of ranolazine and metformin in subjects with type 2 diabetes mellitus. Clin Pharmacol Drug Dev 2015;4(2):121-9. doi: 10.1002/cpdd.174

41. Shen H, Yang Z, Zhao W, Zhang Y, Rodrigues AD. Assessment of vandetanib as an inhibitor of various human renal transporters: inhibition of multidrug and toxin extrusion as a possible mechanism leading to decreased cisplatin and creatinine clearance. Drug Metab Dispos 2013;41(12):2095-103. doi: 10.1124/dmd.113.053215

42. Johansson S, Read J, Oliver S, Steinberg M, Li Y, Lisbon E, et al. Pharmacokinetic evaluations of the co-administrations of vandetanib and metformin, digoxin, midazolam, omeprazole or ranitidine. Clin Pharmacokinet 2014;53(9):837-47. doi: 10.1007/s40262-014-0161-2

43. Minematsu T, Giacomini KM. Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins. Mol Cancer Ther 2011;10(3):531-9. doi: 10.1158/1535-7163.MCT-10-0731

44. Ren J, Zhou Y, Zhang G, Zhou L, Zhao J, Wei Y, et al. Role of age-related decrease of renal organic cation transporter 2 in the effect of atenolol on renal excretion of metformin in rats. Eur J Drug Metab Pharmacokinet 2015;40(3):349-54. doi: 10.1007/s13318-014-0214-9

45. Ma YR, Shi AX, Qin HY, Zhang T, Wu YF, Zhang GQ, et al. Metoprolol decreases the plasma exposure of metformin via the induction of liver, kidney and muscle uptake in rats. Biopharm Drug Dispos 2016;37(9):511-21. doi: 10.1002/bdd.2041