Comparison of Numerical Solvers for Differential Equations for Holonomic Gradient Method in Statistics

N.Takayama, T.Yaguchi, Y.Zhang

August 13, 2023

1 Introduction

Definite integrals with parameters of holonomic functions satisfy holonomic systems of linear partial differential equations. When we restrict parameters to a one dimensional curve, then the system becomes a linear ordinary differential equation (ODE). For example, the definite integral with a parameter t

$$Z(t) = \int_0^{+\infty} \exp(ty - y^3) \, dy$$

satisfies the ODE $(3\partial_t^2 - t)Z(t) = 1$ where $\partial_t = \frac{d}{dt}$ (see [16, Chap 6] as an introductory exposition). We can evaluate the integral by solving the linear ODE numerically. The method of solving the linear ODE is not a high precision method, but it gives values of the integral at several evaluation points at once. This approach to evaluate numerically definite integrals is called the holonomic gradient method (HGM) and it is useful to evaluate several normalizing constants in statistics. See references in [15] or in e.g., [14], [30].

The HGM consists of 3 steps. The first step is to find a linear ODE for the definite integral $Z(t)$ with a parameter t. The 2nd step is to find value of $Z(t)$ and its derivatives at some points of t. The 3rd step is to solve the ODE. We can apply several results in computer algebra and in the theory of special functions of several variables for the first and 2nd steps. Results in numerical integration can be applied to the 2nd step. The HGM is successful for a broad class of distributions and the 3rd step is relatively easy in most of them. When the function $Z(t)$ is the dominant solution (the maximal growth rate solution) for the ODE when $t \to +\infty$ as in the case [14, Theorem 2], the 3rd step can be performed by a simple application of standard numerical solver for ODEs. However, there are some HGM problems for which we encounter difficulties in the 3rd step. The difficulty is that when the function $Z(t)$ is not dominant and we solve the linear ODE in a long interval, the numerical solution might become a false one. We have this difficulty in our analysis of the outage probability of MIMO WiFi systems (see the section 6 and [8]) and in solving an ODE numerically of the expectation of the Euler characteristic of a random manifold (see the section 7 and [30]). In principle, if we give an initial value vector exactly and the time step is sufficiently small, we do not get a false solution. However, these assumptions are not always satisfied in practice.

In this paper, we will discuss and compare methods to solve linear ODE’s in the 3rd step of the HGM. We intend to provide references to the HGM users for choosing numerical solvers of ODE’s for the HGM. We will present methods that work and methods that does not work. Of course, it depends on a given problem.
2 Methods to test

We will compare some methods mainly from a point of view of using for the 3rd step of the HGM\(^1\). In the HGM, the function \(Z(t)\) to evaluate has an integral representation and satisfies an ODE

\[
Lf = b, \quad L = \sum_{k=0}^{r} c_k(t) \partial_t^k, \quad \partial_t = \frac{d}{dt}
\]

where \(b(t)\) is an inhomogeneous term and \(f(t)\) is an unknown function. See, e.g., [8], [14], and papers in [15] as to examples. The differential equation (1) might have a solution \(u\) which dominates \(Z\) at \(+\infty\). In other words, there might be a solution \(u\) such that \(|u/Z| \to \infty\) when \(t \to +\infty\). In such cases, it is not easy to obtain numerical values of \(Z(t)\) globally by solving the ODE even when the almost accurate initial values of \(Z(t), Z'(t), \ldots\) are known. See Examples 1 and 2. We call such case the \textit{unstable HGM problem}. We want to obtain correct values of \(Z\) as large interval of \(t\) as possible.

Here is a list of methods we try.

1. The Runge-Kutta method (see, e.g., [13, Chapter 2]).
2. The implicit Runge-Kutta method (see, e.g., [13, Chapters 2 and 4]).
3. Multi-step methods (see, e.g., [13, Chapters 3 and 5]).
4. The spectral method in the approximation theory (see, e.g., [2], [23], [31], Section 5).
5. Defusing method (filter method): restricting the initial value vector to a sub linear space (see, e.g., Section 3).
6. Sparse interpolations/extrapolations by ODE: solving a generalized boundary value problem by solving a linear equation or by solving an optimization problem (see, e.g., [3], [10] and the Section 4).

We compare these methods by different implementations on different languages: [2], [6], [9], [12], [20], [21], [26], [27], [28], [29]. The robustness for input errors is an important point in our comparison, because initial values or boundary values might be evaluated by Monte-Carlo integrators.

The first 4 approaches are standard. In the HGM, we may be able to evaluate the target function \(Z(t)\) at any point by numerical integration methods. Of course, the value obtained is not always accurate. For example, the accuracy of Monte Carlo integrators are not high. The last two methods of the defusing method and sparse interpolation/extrapolation method by ODE are expected to be used mainly under this situation of the HGM.

The program codes of this paper are obtainable from http://www.math.kobe-u.ac.jp/OpenXM/Math/defusing/ref.html.

3 Defusing method (filter method)

In the HGM, we do not always have an exact initial value vector. We often have the case that the target function (the target integral) have a moderate growth, but the ODE has rapid growth solutions, too. Then, we need to correct the initial value vector so that the rapid growth solution causes a blow-up of the numerical solution by an error of the initial value vector. We will propose a heuristic method, which we will call \textit{defusing method}, to avoid a blow-up of a solution under this situation. Any solution of the ODE can be expressed as a linear combination of basis functions of different growth order. The defusing method removes some basis functions of specified growth

\(^{1}\)Programs of this paper can be obtainable from http://www.math.kobe-u.ac.jp/OpenXM/Math/defusing/ref.html. The folder/program names are given in blue letters. (Ignore the folder names if the folder does not exist.) The letter “-” in the file name may be “_” for some cases.
order to obtain the correct solution. The defusing method is an analogy of filtering some specified frequencies from wave data. This method may be well-known, but we do not find a relevant literature and we describe this method in this section.

In the HGM, we want to evaluate numerically a definite integral with a parameter \(t \) on some interval of \(t \). We put this function \(f(t) \). The HGM gives an algebraic method to find an ordinary differential equation (ODE) for \(F(t) = (f(t), f'(t), f''(t), \ldots, f^{(r-1)}(t))^T \) when \(r \) is the rank of the ODE. We evaluate the integral by Monte-Carlo integration methods or by the saddle point approximation for large \(t \)'s. Since \(F(t) \) satisfies the differential equation, we can apply algorithms (see, e.g., [5], [17]) to find a basis of series solutions at \(t = \infty \). Let \(F_{sj}, j = 1, \ldots, r \) be the basis of series solutions around \(t = \infty \) of the ODE. We denote by \(F_{ij} \) is the \(i \)th component of \(F_{sj} \) and \(F_i \) is the \(i \)th component of \(F \). Any solution of the ODE is written as a linear combination of \(F_{sj} \)'s over \(\mathbb{C} \). We assume

\[
F_{11} > F_{12} > \cdots > F_{1m} > \cdots > F_{1r} > 0
\]

with different growth orders when \(t \to +\infty \). We suppose that

\[
\left| \text{numerical approximation of } F_1(t) \right| / F_{ij}(t) \to 0, \quad t \to +\infty
\] (2)

for \(1 \leq j < m \). See (37) as an example. Under these assumptions, we can conclude that \(F(t) \) is approximated as a linear combination of \(F_{sm}, \ldots, F_{sr} \). The coefficients of the linear combination can be estimated by numerical approximation values of \(f(t) \) for large \(t \)'s. Thus, we can interpolate and extrapolate numerical values of \(F(t) \) around \(t = +\infty \) by a set of fundamental solutions of the ODE. We call this method the defusing method by series solutions around \(t = +\infty \). See the Example 11.

We want to find a numerical solution of the initial value problem of the ordinary differential equation (ODE)

\[
\frac{dF}{dt} = P(t)F \quad (3)
\]

\[
F(t_0) = F_{0, \text{true}}^T \in \mathbb{R}^r
\] (4)

where \(P(t) \) is an \(r \times r \) matrix, \(F(t) \) is a column vector function of size \(r \), and \(F_{0, \text{true}}^T \) is the initial value of \(F \) at \(t = t_0 \). Let us explain a defusing method for the initial value problem. Solving this problem is the final step of the holonomic gradient method (HGM) [15]. We often encounter the following situation in the final step.

Situation 1

1. The initial value has at most 3 digits of accuracy. We denote this initial value \(F_0 \).
2. The property \(|F| \to 0 \) when \(t \to +\infty \) is known, e.g., from a background of the statistics.
3. There exists a solution \(\hat{F} \) of (3) such that \(|\hat{F}| \to +\infty \) or non-zero finite value when \(t \to +\infty \).

Under this situation, the HGM works only for a very short interval of \(t \) because the error of the initial value vector makes the fake solution \(\hat{F} \) dominant and it hides the true solution \(F(t) \). We call this bad behavior of the HGM the instability of the HGM.

Example 1

\[
\frac{d}{dt}F = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}F
\]

The solution space is spanned by \(F^1 = (\exp(-t), 0, 0)^T \), \(F^2 = (0, \exp(-t), 0)^T \), \(F^3 = (1, 1, 1)^T \). The initial value \((1, 0, 0)^T \) at \(t = 0 \) yields the solution \(F_1 \). Add some errors \((1, 10^{-30}, 10^{-30})^T \) to the initial value. Then, we have
We can see the instability.

Example 2

\[
P(t) = \begin{pmatrix} 0 & 1 \\ t & 0 \end{pmatrix}.
\]

This differential equation is obtained from the Airy differential equation

\[
y''(t) - ty(t) = 0
\]

by putting \(F = (y(t), y'(t))^T \). It is well-known that the Airy function

\[
Ai(t) = \frac{1}{\pi} \lim_{b \to +\infty} \int_0^b \cos\left(\frac{s^3}{3} + ts\right) ds
\]

is a solution of the Airy differential equation and

\[
\begin{align*}
Ai(0) &= \frac{1}{3^{2/3}\Gamma(2/3)} = 0.355028053887817 \cdots \\
Ai'(0) &= \frac{1}{3^{1/3}\Gamma(1/3)} = -0.258819403792807 \cdots \\
\lim_{t \to +\infty} Ai(t) &= 0 \\
\lim_{t \to +\infty} Ai'(t) &= 0
\end{align*}
\]

Figure 1 is a graph of Airy \(Ai(x) \) function and Airy \(Bi(x) \) function. The function \(F(t) = (Ai(t), Ai'(t))^T \) satisfies the condition 2 of the Situation 1 of the instability problem.

![Figure 1: Airy Ai(x) and Bi(x) drawn by Mathematica](image)

We can also see that the condition 3 of the Situation 1 holds by applying the theory of singularity of ordinary differential equations (see, e.g., the manual `DEtools/formal_sol` of Maple [19] and its references on the theory, which has a long history). In fact, the general solution of the Airy differential equation is expressed as

\[
C_1 t^{-1/4} \exp \left(-\frac{2}{3} t^{3/2} \right) (1 + O(t^{-3/2}))
\]

\[
+ \ C_2 t^{-1/4} \exp \left(\frac{2}{3} t^{3/2} \right) (1 + O(t^{-3/2}))
\]
when \(t \to +\infty \) where \(C_i \)'s are arbitrary constants.

We note that the high precision evaluation of the Airy function is studied by several methods (see, e.g., [7] and its references). Some mathematical software systems have evaluation functions of the Airy function. For example, \(\texttt{N[AiryAi[10]]} \) gives the value of \(\text{Ai}(10) \) on Mathematica. By utilizing these advanced evaluation methods, we use the Airy differential equation for our test case to check the validity of our heuristic algorithm.

We are going to propose some heuristic methods to avoid the instability problem of the HGM. Numerical schemes such as the Runge-Kutta method obtain a numerical solution by the recurrence

\[
F_{k+1} = Q(k,h)F_k
\]

from \(F_0 \) where \(Q(k,h)^2 \) is an \(r \times r \) matrix determined by a numerical scheme and \(h \) is a small number. The vector \(F_k \) is an approximate value of \(F(t) \) at \(t = t_k = t_0 + kh \).

Example 3 The Euler method assumes \(dF/dt(t) \) is approximated by \((F(t+h) - F(t))/h \) and the scheme of this method is

\[
F_{k+1} = (E + hP(t_k))F_k
\]

where \(E \) is the \(r \times r \) identity matrix.

In case that the initial value vector \(F_0 \) contains an error, the error may generate a blow-up solution \(\tilde{F} \) under the Situation 1 and we cannot obtain the true solution.

Let \(N \) be a suitable natural number and put

\[
Q = Q(N-1,h)Q(N-2,h) \cdots Q(1,h)Q(0,h)
\]

We call \(Q \) the **matrix factorial** of \(Q(k,h) \). The matrix \(Q \) approximates the fundamental solution matrix of the ODE. We assume the eigenvalues of \(Q \) are positive real and distinct to simplify our presentation. The following heuristic algorithm avoids to get the blow-up solution.

Algorithm 1

1. Obtain eigenvalues \(\lambda_1 > \lambda_2 > \cdots > \lambda_r > 0 \) of \(Q \) and the corresponding eigenvectors \(v_1, \ldots, v_r \).

2. Let \(\lambda_m \) be the first non-positive eigenvalue.

3. Express the initial value vector \(F_0 \) containing errors in terms of \(v_i \)'s as

\[
F_0 = f_1v_1 + \cdots + f_rv_r, \quad f_i \in \mathbb{R}
\]

4. Choose a constant \(c \) such that \(F'_0 := c(f_mv_m + \cdots + f_rv_r) \) approximates \(F_0 \).

5. Determine \(F_N = QF'_0 \) with the new initial value vector \(F'_0 \).

We call this algorithm the **defusing method** for initial value problem. This is a heuristic algorithm and the vector \(F'_0 \) gives a better approximation of the initial value vector than \(F_0 \) in several examples and we can avoid the blow-up of the numerical solution.

Example 4 We set \(t_0 = 0, h = 10^{-3}, N = 10 \times 10^3 \) and use the 4-th order Runge-Kutta scheme. We have \(\lambda_1 = 9.708 \times 10^0, v_1 = (-5.097, -159.919)^T \) and \(\lambda_2 = 3.247 \times 10^{-7}, v_2 = (-5.09798, 37.164813649680576037539971418209465086)^T = (a,b) \). Then, \(m = 2 \). We assume the 3 digits accuracy of the value \(\text{Ai}(0) \) as 0.355 and set \(F'_0 = (0.355, 0.355b/a) \). Then, the obtained value \(F_{5000} \) at \(t = 5 \) is \((0.000108088745179140, -0.000246853220440734)\). We have the following accurate value by Mathematica

\footnotetext{It was denoted by \(Q(t_0 + kh, h) \) in the previous section. We denote \(Q(t_0 + kh, h) \) by \(Q(k,h) \) as long as no confusion arises.}
4 Sparse interpolation/extrapolation methods

The methods in this section are standard approximation methods in functional analysis. They are not new and are not named, but they are very useful for unstable HGM problems. It is for this reason that we name methods of this section sparse interpolation/extrapolation methods.

We solve the ODE (1) of rank r when (approximate) values of $f(t) = Z(t)$ at $t = p_1, p_2, \ldots, p_r$ are known. We call the points (p_i, q_i), $q_i = f(p_i)$ data points. In other words, we want to interpolate or extrapolate values of f from these r values. This is a generalization of the boundary value problems. The number of data points may be more than the rank or less than the rank of the

Note that 3 digits accuracy has been kept for the value Ai(5). On the other hand, we apply the 4th order Runge-Kutta method with $h = 10^{-3}$ for $F_0 = (0.355, -0.259)^T$, which has the accuracy of 3 digits. It gives the value at $t = 5$ as $(-0.147395, -0.322215)$, which is a completely wrong value, and the value at $t = 10$ as $(-102173, -320491)$, which is a blow-up solution.

This heuristic algorithm avoids the blow-up of the numerical solution. Moreover, when the numerical scheme gives a good approximate solution for the exact initial value, we can give an error estimate of the solution by our algorithm. Let $| \cdot |$ be the Euclidean norm.

Lemma 1 Let $F(t)$ be the solution. When $|QF_0^{\text{true}} - F(Nh)| < \delta$ holds, we have

$$|QF_0' - F(Nh)| < |QF_0'| + |F(Nh)| + 2\delta \quad (8)$$

for any $F_0' \in \mathbb{R}^n$.

Proof. It is a consequence of the triangular inequality. In fact, we have

$$|QF_0' - F(Nh)| = |QF_0' - QF_0^{\text{true}} + QF_0^{\text{true}} - F(Nh)|$$

$$\leq |QF_0' - QF_0^{\text{true}}| + |QF_0^{\text{true}} - F(Nh)|$$

$$\leq |QF_0'| + |QF_0^{\text{true}}| + \delta$$

$$\leq |QF_0'| + |F(Nh)| + 2\delta$$

Under the Situation 1, $|F(Nh)|$ is small enough. Then, it follows from the Lemma that $|QF_0'|$ should be small. In this context, we can give an error estimate of our algorithm. However, our numerical experiments present that the algorithm shows a better behavior than this theoretical error estimate. Then, we would like to classify our defusing method as a heuristic method.

Example 5 (Solving Airy differential equation by the defusing method.) (defusing/intro/2023-07-21-airy.rr) Give initial values at $t = -20$ as $F_0 = [-0.17640612707798468959, 0.89286285673647123840]$ (Ai(-20) and Ai$'(-20)$). It keeps 3 digits of accuracy at $t = 5$ even when we start at $t = -20$, but the accuracy is broken at $t = 6$; The defusing method gives the value $1.09 	imes 10^{-5}$ at $t = 6$, but Ai(6) $\sim 9.95 \times 10^{-6}$. The graph in Figure 2 looks nice without a blowing-up, but we have to be careful that it is not accurate. For example, the defusing method gives the value 5.19×10^{-49} at $t = 30$, but Ai(30) $\sim 3.21 \times 10^{-49}$. We need to correct errors at several values of t by different methods of evaluation for this problem. On the other hand, it works more accurately for the function H_α^N. See Example 19. It is a future problem to give a practical error bound of the defusing method.
ODE in the methods B and C in this section. A standard numerical method to find values of f on an interval $[t_s, t_e]$ is as follows. Devide $[t_s, t_e]$ into N intervals. Let t_i be $t_s + hi$ where $h = (t_e - t_s)/N$. We assume that the set of all p_j's are a subset of the set $\{t_i\}$. We denote by f_i the value of $f(t_i)$. We introduce the backward shift operator $\nabla f_i = f_i - f_{i-1}$. Then ∇f_i is approximately equal to $f^{(k)}(t_i)$ or $f^{(k)}(t_{i-1})$ or . . . or $f^{(k)}(t_{i-k})$. For example, when $k = 1$, we have $f(t_i) - f(t_{i-1}) = f'(t_i)h + O(h^2)$ if we make the Taylor expansion of $f(t_{i-1}) = f(t_i - h)$ at $t = t_i$ and $f(t_i) - f(t_{i-1}) = f'(t_{i-1})h + O(h^2)$ if we make the Taylor expansion of $f(t_i) = f(t_{i-1} + h)$ at $t = t_{i-1}$. We have

$$\sum_{k=0}^{r} c_k(t_i) \frac{\nabla^k f_{i+s_k}}{h^k} \sim b(t_i), \quad 0 \leq s_k \leq k.$$ (9)

Here s_i is an integer to choose an approximation of $f^{(k)}(t_i)$. By assuming the left hand side and the right hand side are equal and giving values f_j for $t = p_j, 1 \leq j \leq r$, we have a system of linear equations of the form

$$A \begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f_N \end{pmatrix} = B$$ (10)

where A is a $(N+1) \times (N+1)$ matrix and B is a column vector of length $N+1$. Solving this equation, we obtain approximate values of $f(t_i)$. We call this method the sparse interpolation/extrapolation method A for HGM in this paper.

Example 6 We solve $Lf = 0$. (intro/2021-06-11-sparse-interp.ipynb) $L = (\partial_t - 1)(\partial_t^2 - t) = \partial_t^3 - \partial_t^2 - t\partial_t + t - 1$ on $t \in [-9, 0]$ with $f(-9) = Ai(-9) \sim -0.022137215473414$, $f(-4) = Ai(-4) \sim -0.0702655329492895$, $f(0) = Ai(0) \sim 0.355028053887817$ and $N = 100$. Then, we obtain approximate values of the Airy function $Ai(t)$. The numerical result shows that we do not have a false solution in spite of the factor $\partial_t - 1$.

An alternative method to solve (10) when $b = 0$ is to construct r linearly indendent solutions (fundamental solutions) of (9) and to find coefficients to express the solution of the generalized boundary conditions as the linear combination of the fundamental solutions.

Let us introduce the sparse interpolation/extrapolation method B for HGM. This is also a standard method and using it in the HGM is very useful. We minimize

$$\int_{t_s}^{t_e} |Lf(t) - b(t)|^2 d\mu(t)$$ (11)
where \(d\mu(t) \) is a measure in the \(t \) space. We approximate this integral. A numerical integration for a function \(g \) can be expressed as

\[
I_N(g) = \sum_{j=0}^{N} T_j g(t_j)
\]

(12)

where \(t_0 = t_2 < t_1 < \cdots < t_{N-1} < t_N = t_e \) and \(T_j \in \mathbb{R}_{>0} \). We fix a numerical integration method. For example, the trapezoidal method can be expressed as \(h = \frac{t_N - t_0}{N} \), \(t_i = t_s + hi \), \(T_j = h \) for \(1 \leq j < N \) and \(T_0 = T_N = h/2 \). We approximately expand the solution \(f \) by a given basis functions \(\{e_k(t)\}, k = 0, 1, \ldots, M \) as

\[
f(t) = \sum_{k=0}^{M} f_k e_k(t), \quad f_k \in \mathbb{R}.
\]

(13)

We put \(M + 1 = m \) to be compatible with the variable name in our program. Put this expression into \(Lf = b \). We minimize the following loss function, which is approximately equal to (11),

\[
\ell(\{f_k\}) = \sum_{j=0}^{N} \left| (Lf)(t_j) - b(t_j) \right|^2 T_j
\]

(14)

\[
= \sum_{j=0}^{N} \left| \sqrt{T_j} \sum_{k=0}^{M} f_k (Le_k)(t_j) - \sqrt{T_j} b(t_j) \right|^2
\]

under the constraints\(^3\) at data points

\[
\sum_{k=0}^{M} f_k \cdot e_k(p_i) = q_i, \quad i = 1, 2, \ldots, r.
\]

(15)

This is a least mean square problem under constraints (see, e.g., [22]). Since the loss function (14) is defined by the numerical integration formula (12), we have the following estimate.

Lemma 2 The norm \(\int_{t_0}^{t_e} |Lf(t) - b(t)|^2 d\mu(t) \) is bounded by \(\ell(\{f_k\}) + e_N(|Lf - b|^2) \) where \(e_N(|Lf - b|^2) \) is the error of the numerical integration method.

Solvers of the least mean square problem output the value of the loss function, then we can estimate the \(L^2 \) norm of \(Lf - b \) by this Lemma.

We can also consider a least mean square problem with no constraints by the loss function

\[
\hat{\ell}(\{f_k\}) = \alpha \ell(\{f_k\}) + \beta \sum_{i=1}^{r} \left(\sum_{k=0}^{M} f_k \cdot e_k(p_i) - q_i \right)^2 + \gamma \sum_{i=0}^{N} f_i^2.
\]

(16)

Here \(\alpha, \beta, \gamma \) are hyperparameters for the optimization. In particular, \(\gamma > 0 \) is used to avoid an overfitting.

Example 7 We solve the differential equation of Example 6. The method B does not work well on the interval \([-9,0]\) because of the oscillation of the solution, but it works on a smaller interval \([-4,0]\). We use Chebyshev polynomials on \([-4,0]\) up to degree 9 as basis functions and \(h = 0.01 \). Data points are \([-4, -0.0702655329492895], [-3, -0.37881429], [-2, 0.22740743].\)

(intro/sib-intro.py) (asir-tmp/sib-intro.rr, trybintro3())

This method works well for some problems which are hard. See the Example 16 as to an application of this method to a 4th order ODE. An application of this method to a problem on random matrices is given in Example 20.

\(^3\)If data are given in derivative values of \(f \), these constraints become relations among \(q_i \)'s.
Let us introduce the sparse interpolation/extrapolation method C for HGM. We use the basis functions \(e_j(t) \) as in the method C. We construct an \(m \times m \) symmetric matrix \(S \) of which \((i, j)\) element is
\[
\int_{t_s}^{t_e} (Le_i(t))(Le_j(t))d\mu(t)
\]
Let \(F \) be the column vector of length \(m = M + 1 \): \(F = (f_0, f_1, \ldots, f_M)^T \). Then, we have
\[
\int_{t_s}^{t_e} \left(L \sum_{j=0}^{M} f_j e_j(t) \right)^2 d\mu(t) = F^T S F.
\]
It follows from this identity that when \(\sum_{j=0}^{M} f_j e_j(t) \) is an approximate solution of \(Lf = 0 \), we may expect the value of the quadratic form \(F^T S F \) is small. Let \((p_k, q_k)\)'s be given data points of \((t, f(t))\). The method C finds the vector \(F \) by solving the quadratic programming problem of minimizing
\[
F^T S F + \sum_{k=1}^{r} \left(\sum_{j=0}^{M} f_j e_j(p_k) - q_k \right)^2
\]
\[
= F^T S F + \sum_{k=1}^{r} (F^T S_k^2 F - 2q_k S_k F + q_k^2)
\]
\[
= F^T S F + F^T (P_e^T P_e) F - 2F^T Q + Q^T Q
\]
where \(S_k = \text{diag}(e_0(p_k), \ldots, e_M(p_k)) \) and
\[
P_e = \begin{pmatrix}
e_0(p_1) & \cdots & e_M(p_1) \\
e_0(p_2) & \cdots & e_M(p_2) \\
\vdots & \ddots & \vdots \\
e_0(p_r) & \cdots & e_M(p_r)
\end{pmatrix}, \quad Q = (q_1, \ldots, q_r)^T
\]
Or, we may solve the quadratic programming problem of minimizing \(F^T S F \) under the constraints
\[
\sum_{j=0}^{M} f_j e_j(p_k) - q_k = 0, \quad k = 1, \ldots, r.
\]
The method C can also solve the problem of Example 7. (intro/sic-intro.py) (asir-tmp/sic-intro.rr, trycintro3())

5 The Chebyshev function method

The approximation by Chebyshev functions is known to be very good. We briefly overview the Chebyshev function methods for ODE's and show that it falls in the framework of sparse interpolation/extrapolation methods. A comprehensive reference on the method is the book by Trefethen [31]. A nice package chebfun [6] for Matlab has been developed, see also https://en.wikipedia.org/wiki/Chebfun. The chebfun project was initiated in 2002 by Lloyd N. Trefethen and his student Zachary Battles.

A different solver with validation and Chebyshev functions is proposed in [4]. The advantage of the method is that matrices in the solver are banded and validation is given. We will test this method for the HGM in a next paper.

The \(n \)-th Chebyshev function (polynomial) is
\[
T_n(x) = \cos(n\theta), \quad x = \cos \theta
\]
The extreme points of the curve \(y = T_n(x) \) in \([-1, 1]\), which we mean points that take the values \(y = 1 \) or \(y = -1 \), are called \(n+1 \) Chebyshev points (of the second kind) of \(T_n \). For example, \(T_2(x) = 2x^2 - 1 \) and the Chebyshev points are \((-1, 0, 1)\).

Let \(f(x) \) be a function. Fix the set of Chebyshev points for \(T_n(x) \). Let the value of \(f \) at Chebyshev point \(x_j \) be \(f_j \). The (degree \(n \)) Chebyshev interpolant is

\[
p(x) = \sum_{j=0}^{n} \frac{(-1)^j f_j}{x - x_j} \left/ \sum_{j=0}^{n} \frac{(-1)^j}{x - x_j} \right.
\]

(24)

The primes on the summation signs signify that the terms \(j = 0 \) and \(j = n \) are multiplied by 1/2. It takes the value \(p(x_j) = f_j \) and \(p(x) \) agrees with the Lagrange interpolation polynomial for \((x_j, f_j)\)’s. See, e.g., [31, Th 5.1].

Theorem 1 (Bernstein 1911, 1912. See, e.g., Th 8.2, Th 8.3 in [31]) If \(f \) is analytic on \([-1, 1]\), its Chebyshev coefficients \(a_k \) decrease geometrically. If \(f \) is analytic and \(|f| \leq M \) in the Bernstein \(\rho \)-ellipse about \([-1, 1]\), then \(|a_k| < 2M\rho^{-k} \). The degree \(n \) Chebyshev interpolant has accuracy \(O(M\rho^{-n}) \) by the sup norm.

Here, \(a_k \) is defined by \(a_k = \frac{2}{\pi} \int_1^{-1} \frac{f(x)T_k(x)}{\sqrt{1-x^2}} \, dx \) and satisfies \(f = \sum_{k=0}^{\infty} a_k T_k(x) \) when \(f \) is Lipschitz continuous. The Bernstein \(\rho \)-ellipse is defined as follows. Consider the radius \(\rho \) circle in the \(z \)-plane. Map it by \(x = (z + z^{-1})/2 \) and then we obtain the \(\rho \)-ellipse. Its foci is at \(-1 \) and \(1 \). \(\rho \) is the sum of semi-major and semi-minor axes.

Chapter 16 of [31] shows that Chebyshev interpolants are often as good as the best approximation in practice.

Let us proceed on explaining briefly a method of solving ODE’s with Chebyshev functions and the implementation of chebfun [6]. The point is an approximation of differential operators in terms of Chebyshev friendly matrices.

Let \(X = \{X_0, X_1, \ldots, X_{n-1}\} \) be the set of the \(n \) Chebyshev points (of the second kind) for the Chebyshev function \(T_{n-1} \). The \(i \)-th element of \(X \) \((0 \leq i < n)\) is given as

\[
\cos \left(\frac{n - i - 1}{n - 1} \right).
\]

(25)

We denote by \(t \) the independent variable for ODE’s instead of \(x \). We denote by \(\ell_j(X; t) \) the \(j \)-th polynomial of the Lagrange interpolation for \(X \). We have \(\ell_j(X; X_j) = 1 \) and \(\ell_j(X; X_i) = 0 \) when \(i \neq j \).

When \(f(t) \) is a polynomial of degree \(n - 1 \), we have

\[
f(t) = \sum_{j=0}^{n-1} \ell_j(X; t) f_j
\]

(26)

by putting \(f_j = f(X_j) \).

Now, let \(Y \) be the set of the \((n - m) \) Chebyshev points for \(T_{n-m-1} \) where \(m \geq 0 \). We approximate \(f(t) \) by the values at \(Y \), which is called “down-sampling” in [11]. Since we have

\[
f^{(m)}(t) = \sum_{j=0}^{n-1} \ell_j^{(m)}(X; t) f_j
\]

(27)

and it is a polynomial of degree \(n - m - 1 \), we have

\[
f^{(m)}(t) = \sum_{k=0}^{n-m-1} \ell_k(Y; t) \left(\sum_{j=0}^{n-1} \ell_j^{(m)}(X; Y_k) f_j \right)
\]

(28)

\[
= \sum_{j=0}^{n-1} \left(\sum_{k=0}^{n-m-1} \ell_k(Y; t) \ell_j^{(m)}(X; Y_k) \right) f_j
\]

(29)
Definition 1 The \((n - m) \times n\) matrix with \((i, j)\) entries
\[
\sum_{k=0}^{n-m-1} \ell_k(Y; Y_i) \ell_j^{(s)}(X; Y_k)
\]
is denoted by \(M(n - m, n; s)\).

For \(s \leq m\), the \(s\)-th derivative value of \(f(t)\) at \(Y_i\) is \((i\text{-th row of } M(n - m, n; s)) \cdot (f_0, \ldots, f_{n-1})^T\).

Then, the matrix can be used to approximate \(\frac{df}{dt}\). The ODE
\[
\sum_{i=0}^{r} c_i(t) \frac{df}{dt} = 0
\]
is approximately translated into the linear equation
\[
\left(\sum_{i=0}^{r} \text{diag}(c_i(Y_0), c_i(Y_1), \ldots, c_i(Y_{n-r-1})) M(n - r, n; i) \right) (f_0, f_1, \ldots, f_{n-1})^T = 0
\]
in the chebfun system where \(Y\) is the \(n - r\) Chebyshev points for \(T_{n-r-1}\). In the chebfun system, the matrix \(M(n - m, n; s)\) is obtained by the function \text{diffmat}(n-m,n,s). The solution \(f(t)\) is recovered by the Chebyshev interpolant (24) from \(f_j\)'s.

The system of linear equations (31) is used in the Chebyshev function method.

Example 8 The Airy equation
\[
f'' - tf = 0
\]
is solved by solving a linear equation derived by \(M(n - 2, n; 2)\) and \(M(n - 2, n; 0)\) with two boundary conditions. Symbolically, we solve
\[
(M(n - 2, n; 2) - \text{diag}(Y)) M(n - 2, n; 0) F = 0
\]
where \(F = (f_0, f_1, \ldots, f_{n-1})^T\) with giving, e.g., values of \(f_0\) and \(f_{n-1}\).

See https://www.chebfun.org/examples/ode-linear/SpectralDisc.html.

Figure 3: Solving the Airy differential equation by chebfun

Example 9 Initial value problem for Airy \(\text{Ai}(t)\). (defusing/intro/y2023_07_16_airy_initial_value.m)
We give the initial value at \(t = -20\) as \(\text{Ai}(-20) \approx -0.176406127077984689590192292219\) and \(\text{Ai}'(-20) \approx 0.89286285673647123839840934114\). These values are evaluated by Mathematica. Chebfun gives reasonable values upto \(t = 9\), but divergent values appear when \(t\) is larger than 9. See the left graph of Figure 3.

Example 10 Boundary value problem for Airy \(\text{Ai}(t)\). (defusing/intro/y2023_07_16_airy_boundary_value.m)
We give the boundary value at \(t = -20\) and \(t = 11\) as \(\text{Ai}(-20) \approx -0.176406127077984689590192292219\) and \(\text{Ai}(-11) \approx 4.22627586496035959129883345080 \times 10^{-12}\). Divergent values do not appear. See the right graph of Figure 3.
As we have seen in two examples, the Chebyshev function method (solving boundary value problem) proposed and implemented in [11] works well, but solving the initial value problem is affected by numerical error.

Finally, we note that the Chebyshev function method can be regarded as a special case of the sparse interpolation/extrapolation method B. In fact, the numerical integration scheme of the Chebyshev quadrature is

\[
\int_{-1}^{1} \sqrt{1-t^2}g(t)dt \sim \sum_{i=1}^{k-1} T_i g(Y_i) \quad (33)
\]

where \(Y \) is the set of the Chebyshev points (25) for \(T_k \) and the weight \(T_i \) is

\[
T_i = \frac{\pi}{k} \sin \left(\frac{i}{k} \pi \right)
\]

Put \(g(t) = |Lf|^2 \) and \(d\mu(t) = \sqrt{1-t^2}dt \). Since the left hand side of (31) are values at the set of Chebyshev points \(Y \), assuming it is equal to the zero vector is equivalent to that the integral by the Chebyshev quadrature over \(Y \) is equal to zero.

6 Tests of the methods to the function \(H^k_n \)

Let \(n \) and \(k \) be positive integers. We define the function \(H^k_n(x, y) \) by

\[
H^k_n(x, y) = \int_0^x t^k \exp(-t) F_1(: n; yt) dt
\]

\[
= \frac{\Gamma(n)}{\sqrt{\pi} \Gamma(n-1/2)} \int_{D(x)} t^k(1-s^2)^{n-3/2} \exp(-t-2s\sqrt{yt}) dtds \quad (35)
\]

where \(D(x) = \{(t, s) \in [0, x] \times [-1, 1]\} \)

This function appears in studies of the outage probability of MIMO WiFi systems (see, e.g., [8]). We will compare the methods in the section 2 for this function on several systems. The function satisfies the following system of linear partial differential equations.

Proposition 1 ([8])

1. The function \(u = H^k_n(x, y) \) satisfies

\[
\{\theta_y(\theta_y + n - 1) + y(\theta_x - \theta_y - k - 1)\} \cdot u = 0,
\]

\[
(\theta_x - \theta_y - k - 1 + x) \theta_x \cdot u = 0.
\]

where \(\theta_x = x \frac{\partial}{\partial x}, \theta_y = y \frac{\partial}{\partial y} \). The holonomic rank of this system is 4.

2. The function \(u \) is a solution of the following ODE with respect to \(y \).

\[
y^2 \partial_y^4 + (-y + 2n + 2)y \partial_y^3 + (-yx + (-k - n - 3)y + n(n+1)) \partial_y^2 + ((y - n)x - n(k+2)) \partial_y + (k+1)x
\]

\[(36)\]

(\text{Prog_paper/19-a19-n-pf.rr})

When \(y \to +\infty \), solutions of the system has the following asymptotic behavior. It is shown by the \text{DEtools[formal_sol]} function of Maple [19]. (Hkn/a4-f2.ml)

\[
h_1 = (xy)^{-1/2(1/2+n)} \exp(-2(xy)^{1/2})(1 + O(1/y^{1/2})),
\]

\[
h_2 = y^{-k-1}(1 + O(1/y)),
\]

\[
h_3 = (xy)^{-1/2(1/2+n)} \exp(2(xy)^{1/2})(1 + O(1/y^{1/2})),
\]

\[
h_4 = y^{1-n+k} \exp(y)(1 + O(1/y)),
\]

12
Which is the asymptotic behavior of the function $H_n^k(x, y)$ when x is fixed? We compare the value of h_3 and the value by a numerical integration in Mathematica. The integration by Mathematica is done as follows.

```plaintext
---> hh[k,n,x,y]:=NIntegrate[t^k*Exp[-t]*HypergeometricPFQ[{1}, {n}, t*y],{t,0,x}];
---> hh[10,1,1,1000]
```

y	Ratio
1000	7.36595030875893e-452
2000	2.64621603289928e-881
3000	2.67723893601667e-1311

where

$$\text{Ratio} = \left(\frac{H_{10}^1(1/2, y)}{y^{1-n+k}\exp(y)}\right).$$

This computational experiments suggest that H_n^k is expressed by h_1, h_2, h_3 without the dominant component h_4 as explained in (2).

Example 11 We approximate $H_{10}^1(1, y)$ by h_3 of the asymptotic series terms truncated by $O(y^{-3})$.

Let y_s be a sufficiently large number. We determine the constant C_s by setting $H_{10}^1(1, y_s)/h_3(y_s) = C_s$ and use $C_s h_3(y)$ as an approximation of $H_{10}^1(1, y)$ (a naive method). Then we have the following data of relative errors $r_e(y) = \frac{C_s h_3(y) - H_{10}^1(1, y)}{H_{10}^1(1, y)}$.

y_s	$r_e(y_s + 10)$	$r_e(y_s + 90)$
10^2	0.0763	0.259
10^4	5.7×10^{-10}	5.09×10^{-9}

The data tells that the naive method works well near $y = 10^4$, but we need to use other methods near $y = 10^2$. The sparse interpolation/extrapolation method B in the Example 16 is a more refined variation of this method.

Let us apply methods presented in the Section 2 to evaluate $H_{10}^1(1, y)$.

Example 12 We apply the implicit Runge-Kutta method to $H_{10}^1(1, y)$ which is a solution of the ODE (36). We translate the ODE into a system of ODE for U by $U = (u, u', u'', u''')^T$ and derive an ODE for $F = U \exp(-y) y^{-(1-n+k)}$. This is the Gauge transformation by the exponential part of h_4 so that the solutions keep bounded values. Then, the column vector function F satisfies $F' = PF$ where

$$P = \begin{pmatrix}
\frac{y^{-k+n-1}}{y} & 1 & 0 & 0 \\
0 & \frac{y^{-k+n-1}}{y} & 1 & 0 \\
0 & \frac{y^{-k+n-1}}{y} & 1 & 0 \\
\frac{(-k-1)x}{y^2} & \frac{(-y+n)x+nk+2n}{y^2} & \frac{ux+(k+n+3)y-n^2-n}{y^2} & \frac{-k-n-3}{y}
\end{pmatrix}.$$ (38)

The following data is obtained by the implicit Runge-Kutta method (Gauss method of order 10, [13, IV.5]) implemented in Mathematica. The Figure 4 presents the value of $\log H_{10}^1(1, y)$ (the almost straight graph), the value by the implicit Runge-Kutta method, and the value by NDSolve with the ExplicitRungeKutta option (the graph of yellow green). The initial value vector is evaluated at $y = 1$ by the numerical integration with the accuracy about 16 digits and the initial step size is 10^{-3}. The implicit Runge-Kutta method works up to about $y = 25$. This interval $[1, 25]$ is larger than the valid interval $[1, 4.5]$ of the ExplicitRungeKutta method of NDSolve.

When we can obtain exact initial values by the numerical integration (e.g., of (34)), it will be a good strategy to extrapolate the values in a short interval by solving the ODE by the implicit

4The quality of HypergeometricPFQ of mathematica is extremely high. However, the method to evaluate hypergeometric functions in Mathematica is still a black box. It is not easy to give a numerical evaluator of hypergeometric functions which matches to Mathematica in all ranges of parameters and independent variables.
Figure 4: The Runge-Kutta (yellow green), the implicit Runge-Kutta method (blue) starting at $y = 1$, the exact value (orca).

Figure 5: The implicit Runge-Kutta method starting at $y = 100$ vs the exact value. The right graph is the relative error $(H_r - H)/H$ where H is the exact value and H_r is the value by the implicit Runge-Kutta method.

Runge-Kutta method. The Figure 5 describes the value of $\log H_{10}^1(1, y)$ and the value by the implicit Runge-Kutta method on the interval $[100, 150]$. The initial value vector is evaluated at $y = 100$ by the numerical integration with the accuracy about 16 digits and the initial step size is 10^{-3}. It works up to about $y = 130$.

We note that the implicit Runge-Kutta method is used in a large scale computation with the spectral deferred correction (SDC), see, e.g., [32], [24]. It is a method to accelerate the implicit Runge-Kutta method by making a preconditioning to iteration schemes for solving algebraic equations of the implicit method. We do not need this method for our relatively small rank ODE’s in this paper. However, it will be useful for solving high rank ODE’s in HGM. (numht3/pySDC/airy_playground.py, Airy_implicit.py)

Example 13 The spectral method in the approximation theory is a powerful method and we applied the ApproxFun package [2] implemented in Julia for solving the ODE (36). The outputs are remarkable. We solve the ODE on $[1, 40]$ with the initial value at $y = 1$ as $(u, u', u'', u''')(1) = (0.07810139136088563, 0.05096276584900834, 0.02050273784371611, 0.005887855153702640)$ where $u(y) = H_{10}^1(1, y)$. (Julia/hkn4i.jl) Then, the output value at $y = 40$ is 815.0105773587113 upto 11 digits. It is also powerful to solve boundary value problems. We give the boundary values $(u(1), u(1.1), u(39.9), u(40)) = (0.0781014, 0.0833012, 803.121, 815.011)$, which is less accurate than the previous example. (Julia/hkn4b.jl) Then, the output value at $y = 20$ is 27.021711397385513, which agrees with the value of numerical integration by Mathematica 27.021701160033859079 upto 6 digits. Note that we only give the boundary values in 6 digits accuracy. Although it works remarkably with a proper setting, we have had some troubles. For example, when we input the ODE (36) $\times y^2$, the program returns NaN. Another example is that it did not work for a first order system obtained from (36). (Julia/hkn3b.jl)
Figure 6: Solving by the sparse interpolation

A

Figure 7: Solving the boundary value problem with random errors

Example 14 We can try several solvers of ODE by \texttt{solve_ivp} on scipy/python [27]. (Hkn/2021-06-02-hkn.ipynb) We solve the initial value problem of (38) on \(y \in [1, 30] \) with the absolute tolerance 0 and relative tolerance \(10^{-3} \). Note that the default values of the absolute and relative tolerances does not work well. Here is a table of \(y \)'s for which the relative error becomes more than 0.3. Refer to [27] on details on the following methods. (Hkn/2021-06-08-hkn-rerr2.ipynb)

Method	Failure y (relative error > 0.3)
RK45	21.5
Radau(Implicit Runge-Kutta)	26.1
BDF	16.8
LSODA(Adams/BDF on ODEPACK)	20.0

We can also try the deSolve package in R [9]. Some codes are common (e.g., FOTRAN package ODEPACK) with the python package and results are analogous with above. (Hkn/hkn.r)

Example 15 We apply the sparse interpolation/extrapolation method A. In other words, we solve a generalized boundary value problem of the ODE (36) on \(y \in [10^4, 10^4 + 40] \). (Hkn/hkn-10-1-10000si-random.py) We give generalized boundary values of \(u(y) = H_{n,k}(1, y) \times 10^{-80} \) at \(p_1 = 10^4, p_2 = 10^4 + 1333h, p_3 = 10^4 + 2000h, p_4 = 10^4 + 4000h = 10^4 + 40 \) where \(h = 0.01 \). We approximate derivatives as

\[
\begin{align*}
 u^{(1)}(y) &= \frac{1}{h}(u(y) - u(y - h)) \\
 u^{(2)}(y) &= \frac{1}{h^2}(u(y + h) - 2u(y) + u(y - h)) \\
 u^{(3)}(y) &= \frac{1}{h^3}(u(y + h) - 3u(y) + 3u(y - h) - u(y - 2h)) \\
 u^{(4)}(y) &= \frac{1}{h^4}(u(y + 2h) - 4u(y + h) + 6u(y) - 4u(y - h) + u(y - 2h))
\end{align*}
\]

and solve the linear equation (10). The linear equation is solved by the function \texttt{linsolv} in the scipy package [26]. The condition number of the matrix \(A \) becomes about \(2.6 \times 10^{13} \). We give random errors by assuming the significant digits of the given boundary values are 3. The Figure 6 is a graph of the solutions of 30 tries of random errors. It works well. We note that the robustness with respect to random errors depends on a choice of \(p_i \)'s. (Hkn/hkn-10-1-10000bv-random.py) For example, we change \(p_2 \) to \(p_1 + h \) and \(p_3 \) to \(p_4 - h \). This stands for solving the boundary value problem with the boundary values of \(f \) and \(f' \) at the boundary \(p_1 \) and \(p_4 \). We solve the linear equation with random errors. We can see that errors are magnified in middle from the Figure 7.

Although the boundary value problem with exact boundary values of \(H_{n,k}(1, y) \) and its first derivatives can be solved nicely on \([1, 40]\), application of this method on \([1, 40]\) with internal

\footnote{\texttt{atol}=0, \texttt{rtol}=1e-3}
reference points is not good. (Hkn/hkn-10-1-1-40-si.py, Hkn/2021-06-11-sparse-interp.ipynb) We take the four points as $1, 13.99675, 20.5, 40$ and $h = 0.00975$ and apply the method. It has an unacceptable relative error 33.23 in the interval $[1, 6]$, but the relative error becomes acceptable smaller errors out of this interval. (Hkn/2021-06-09-riccati-Hkn-rtol.ipynb) A clever method to solve boundary value problems is to use the Riccati transformation [10, p.1059] (see also [1, p.149]). We implemented this method with `solve_ivp` on scipy/python. It works for a small interval, e.g., $y \in [1, 2]$. But, it fails on $y \in [1, 10]$. The numerical solution of the associated Riccati equation increases from 0 to -1×10^{65} by the Runge-Kutta method (`method=RK4` with `rtol=1e-13, atol=1e-10`) and the backward equation cannot be solved because of the overflow. We tried on a smaller interval $[1, 3]$ with the Adams/BDF method (`method=LSODA`). Evaluation of the Riccati equation did not stop in 8 minutes on the google colaboratory.

Example 16 We apply the sparse interpolation/extrapolation method B explained in Section 4. By utilizing the local asymptotic solution expansion at the infinity of the ODE (36), we use the set of the 4 functions

$$e_j(t) = t^{-3/4} \exp(2t^{1/2}) t^{-j/2}, \quad j = 0, 1, 2, 3, \quad t = y$$

as the basis for (13). We will approximate the solution on $[t_s, t_e]$. The p_i’s in the constraint (15) are

$$p_0 = t_s, p_1 = t_s + 5, p_2 = t_s + 10, \ldots, p_k = t_e - 1.$$

We do not use the constraint and add the difference of the approximate value and the true value to the the loss function as

$$\sum_{j=0}^{k} ((\text{approximate value at } p_j) - H_1^{10}(1, p_j))^2$$

We expect that this basis will give a good approximation when t_s and t_e are large. In fact, when $[t_s, t_e] = [1, 40]$, the maximum of the relative error is 5.47 by our implementation on `least_squares` in scipy/python. On the other hand, this basis gives a good approximation on $[20, 20 + 40]$ and $[10^4, 10^4 + 40]$. We give random errors to the value of $q_j = H_1^{10}(1, p_j)$ as $q_j \times (1 + O(10^{-3}))$. It is also robust to these random errors. (Hkn/hkn-10-1-10000sib-random.py Hkn/hkn-10-1-20-60sib-random.py)

$[t_s, t_e]$	$[20, 60]$	$[10^4, 10^4 + 40]$
max of relative errors with exact q_j	6.21×10^{-3}	2.67×10^{-12}
max of relative errors with 30 random errors	1.39×10^{-2}	4.07×10^{-3}
Example 17 (Boundary value problem for $H^k_n(x, y)$ for $x = 1$ and $y \in [10^8, 10^8 + 2 \times 10^5]$.)

We give the boundary values of $H^k_1(1, y)$ and $\frac{\partial H^k_1}{\partial y}(1, y)$ at $y = 10^8$ and $y = 10^8 + 2 \times 10^5$. We apply the chebfun package for this boundary value problem. (defusing/Hkn/y2023_07_25_hkn_valid10power8.m)

See Figure 8. To check the accuracy, we compare the values by the chebfun package and by the numerical integration by Mathematica at $y = 10^8 + 200$. The chebfun package keeps 4 digits accuracy at the point and the ODE is solved in 1.66s\(^6\). On the otherhand, the numerical integration by Mathematica (2022) (defusing/Hkn/2023-07-09-hkn-int.m) took 23.58s\(^7\).

If we want to use values by the Monte-Carlo integration, the robustness of the sparse interpolation for boundary values with numerical errors is necessary.

Example 18 (Robustness of the Chebyshev function method.) We solve the boundary value problem for $H^k_1(1, y)$ on $[10^4, 10^4 + 40]$. We perturb the boundary values so that they keep about 3 digits accuracy. (defusing/Hkn/y2023_07_27_hkn_10power4_robustness.m) Figure 9 is a graph of 10 such solutions.

We use a gauge transformed equation to test methods other than Chebyshev function method. The chebfun system does not work well for the transformed equation. Multiplication by the transformation seems to give some numerical errors.

In summary, we should use the implicit Runge-Kutta method or the sparse interpolation/extrapolation method A when t_s and t_e are small and use the sparse interpolation/extrapolation method B or the Chebyshev function method when they become large for the problem H^k_n. An alternative choice when t_s and t_e are relatively small will be the following defusing method.

Example 19 We implement the defusing method in tk_ode_by_mpfr.rr\(^8\) for the Risa/Asir [25]. It generates C codes utilizing the MPFR [21] for bigfloat and the GSL [12] for eigenvalues and eigenvectors. We apply the defusing method for initial value problem to $H^k_1(1, y)$ which is a solution of the ODE (36). We use the step size $h = 10^{-3}$ and the bigfloat of 30 digits of accuracy. (Hkn/defusing/tmp-test.c, tmp-proj.c) (Generated by asir-tmp/tk-ode-assert.rr, tk-ode-assert.hkn1(), tk-ode-assert.hkn2()) The Figure 10 shows that the adaptive Runge-Kutta method of GSL [12] fails before y becomes 30. (Hkn/defusing/a26-y.c) The Figure 11 presents the relative error of values by the defusing method and exact values. It shows that the defusing method works even when $y = 10^3$.

7 Tests of some methods to the function $E[\chi(M_t)]$

We consider the integral studied in [30]

$E[\chi(M_t)] = \int F(s_1, s_2, m_{11}, m_{21}, m_{22}; t)$

\(^6\)Apple M1, 2020, Matlab 2022b
\(^7\)AMD EPYC 7552 48-Core Processor, 1499.534MHz
\(^8\)http://www.math.kobe-u.ac.jp/OpenXM/Current/doc/asir-contrib/ja/tk_ode_by_mpfr-html/tk_ode_by_mpfr-ja.html (in Japanese).
Let \(p_i = 3.8 + i/1000, \ i = 0, 1, \ldots, 9. \) The values \(q_i \) at \(p_i \) are
\[
[0.067160, 0.065485, 0.064792, 0.063315, 0.061814, \\
0.060477, 0.059611, 0.058257, 0.056047, 0.055971]
\] (44)

This constant is chosen so that the maximal absolute value of the coefficients of \(f_k \)'s in (14) of the sparse interpolation/extrapolation method B is 1 in Example 20.
by a Monte-Carlo simulation. \((p_i, q_i) \)’s are data points for the sparse extrapolation method B. We divide the interval \([t_s, t_e] = [3.8, 4.0]\) into 200 segments and use the trapezoidal formula for \(\ell(f) \). The optimal solution

\[
[f_0, f_1, \ldots, f_{29}] = [0.060145405402867516, -1.20074804549872, 9.438660716835336, -29.022737131194667, -46.606911486598264, 587.9594544508735, \ldots]
\]

can be found in about 18 seconds \(^{10}\) by \texttt{least_squares} of the scipy package [28] on python. The value of the loss function \(\tilde{\ell} \) is equal to \(3.85 \times 10^{-7}\). The integral

\[
\int_{t_s}^{t_e} (LF_{29})^2 dt \text{ where } F_{29}(t) = \sum_{j=0}^{29} f_j e_j(t)
\]

is equal to \(2.58 \times 10^{-4}\) and \(|F_{29}(p_i) - q_i| < 3.18 \times 10^{-4}\) for all \(i\). The left graph of Figure 12 is the graph of \(F_{29}(t)\) and dots are approximate values of \(E(\chi(M_t))\) by the Monte-Carlo simulation. The data points are marked with ‘x’. The right graph of Figure 12 is the relative error of the values of \(F_{29}\) and the values by the simulation. Although the relative error is rather large, we disagree that the method is useless. For example, we have \(F_{29}(3.935) = 0.00241\), then we can conclude the value of \(t\) satisfying \(f(t) = 0.001\) may be found in the domain \(t > 3.935\) assuming that the relative error is less than 1.4.

Example 21 (\texttt{ec/tryb5/yi5b-random.py}) We give relative errors less than \(10^{-3}\) for \(q_k\) of the data points \((p_k, q_k)\). We use the same scheme as Example 20. We execute 30 tries and obtain the results in Figure 13. Relative errors may be more than 40 at far points from the data points. We conclude that we should give accurate values of data points to extrapolate by the sparse extrapolation method B for this problem.

We expected that the sparse interpolation/extrapolation method C works for this problem, too. However, it does not seem to work well in real implementations on the double arithmetic.

\(^{10}\)Debian 10.2 with Intel(R) Xeon(R) CPU E5-4650 2.70GHz
In fact, the cvxopt package [29] in python returns ArithmeticError: 5 in our implementation of the method C. (*ec/tryb6/2021-07-14-tryc6-tmpb-modifed.py*) We expect that an implementation of the quadratic programming with the bigfloat will solve this problem.

Acknowledgments. The first and the second authors are supported by the JST CREST Grant Number JP19209317. The first author is supported by the JSPS KAKENHI Grant Number 21K03270. The third author is supported by XJTLU Research Development Funding RDF-20-01-12, NSFC Young Scientist Fund No. 12101506, and Natural Science Foundation of the Jiangsu Higher Education Institutions of China Programme-General Programme No. 21KJB110032.

References

1. F. S. Acton, Numerical Methods that Work, 1990, Mathematical Association of America.
2. ApproxFun.jl, Julia package for function approximation, https://github.com/JuliaApproximation/ApproxFun.jl, https://juliaapproximation.github.io/ApproxFun.jl/latest/.
3. U.M.Ascher , R.M.M.Matteij, R.D.Russel, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, 1987, SIAM.
4. F.Bréhard, N.Brisebarre, M.Joldes, Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations, ACM Transactions on Mathematical Software, 44 (2018), 1-42. https://doi.org/10.1145/3208103
5. M. Barkatou, An algorithm to Compute the Exponential Part of a Formal Fundamental Matrix Solution of a Linear Differential System, Applicable Algebra in Engineering, Communication, and Computing 8 (1997), 1–23.
6. chebfun for Matlab, https://chebfun.org
7. S. Chevillard, M. Mezzarobba, Multiple-precision evaluation of the Airy Ai function with reduced cancellation, arxiv:1212.4731.
8. F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu, Holonomic Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a Complex Noncentral Wishart Matrix. https://arxiv.org/abs/1707.02564
9. DeSolve (R-package), Solvers for Initial Value Problems of Differential Equations, http://desolve.r-forge.r-project.org/
10. L. Dieci, M. Osborne, R. Russell, A Riccati Transformation Method for Solving Linear BFPs I, SIAM Journal on Numerical Analysis 25 (1988), 1055–1073.
11. T.A.Driscoll, N.Hale, Rectangular spectral collocation, IMA Journal of Numerical Analysis, 36 (2016), 108–132 https://doi.org/10.1093/imanum/dru062(2016)
12. GSL, GNU scientific library, https://www.gnu.org/software/gsl/
13. E.Hailer, S.P.Norsett, G.Wanner, Solving Ordinary Differential Equations I, II. Springer, 1993.
14. H.Hashiguchi, Y.Numata, N.Takayama, A.Takemura, Holonomic gradient method for the distribution function of the largest root of a Wishart matrix, Journal of Multivariate Analysis, 117, (2013) 296-312.
15. References for HGM, http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/ref-hgm.html
[16] T. Hibi and et al, Gröbner Bases: Statistics and Software Systems, 2013, Springer

[17] M. van Hoeij, Formal Solutions and Factorization of Differential Operators with Power Series Coefficients, Journal of Symbolic Computation 24 (1997), 1–30.

[18] M. Joldes, Validated Numerics: Algorithms and Practical Applications in Aerospace, Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation, 2022, 1–2. https://doi.org/10.1145/3476446.3535505

[19] DEtools in Maple, https://www.maplesoft.com/support/help/maple/view.aspx?path=DEtools

[20] NDSolve in Mathematica, https://reference.wolfram.com/language/tutorial/NDSolveImplicitRungeKutta.html.

[21] The GNU MPFR library, https://www.mpfr.org/

[22] J. Nocedal, S. Wright, Numerical Optimization, 2006, Springer.

[23] S. Olver, A. Townsend, A fast and well-conditioned spectral method, SIAM Review 55 (2013), 462–489.

[24] pySDC project, a Python implementation of the spectral deferred correction, https://parallel-in-time.org/pySDC/

[25] Risa/Asir, a Computer algebra system, http://www.openxm.org

[26] scipy.linalg.solve
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve.html#scipy.linalg.solve

[27] scipy.integrate.solve_ivp,
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

[28] scipy.optimize.least_squares,
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html

[29] cvxopt.solver.qp,
https://cvxopt.org/userguide/coneprog.html#quadratic-programming

[30] N. Takayama, L. Jiu, S. Kuriki, Y. Zhang, Computations of the Expected Euler Characteristic for the Largest Eigenvalue of a Real Wishart Matrix, Journal of Multivariate Analysis 179 (2020), 104642.

[31] L. N. Trefethen, Approximation Theory and Approximation Practice, 2020, SIAM.

[32] M. Winkel, R. Speck, D. Ruprecht, A high-order Boris integrator, Journal of Computational Physics 295 (2015), 456–474.