Topological States in a One-Dimensional Fermi Gas with Attractive Interactions

Jonathan Ruhman, Erez Berg and Ehud Altman
Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel

We describe a novel topological superfluid state, which forms in a one-dimensional Fermi gas with Rashba-like spin-orbit coupling, a Zeeman field and intrinsic attractive interactions. In spite of total number conservation and the presence of gapless excitations, Majorana-like zero modes appear in this system and can be linked with interfaces between two distinct phases that naturally form at different regions of the harmonic trap. As a result, the low lying collective excitations of the system, including the dipole oscillations and the long-wavelength phonons, are doubly degenerate. While backscattering from point impurities can lead to a splitting of the degeneracies that scales algebraically with the system size, the smooth confining potential can only cause an exponentially small splitting. We show that the topological state can be uniquely probed by a pumping effect induced by a slow sweep of the Zeeman field from a high initial value down to zero field.

Introduction.— Recent experiments with semiconducting nanowires have shown possible signatures of Majorana zero modes [5], the hallmarks of a topological superconducting state, localized at the ends of the wires [1, 2]. The two key ingredients required to realize such topological states are a single particle dispersion affected by spin-orbit coupling and a Zeeman field, and pairing correlations induced by proximity coupling to an s-wave superconductor [3, 4].

Systems of ultracold atoms offer a high degree of controllability, and are therefore attractive as platforms for realizing Majorana zero modes [5]. Effective spin-orbit coupling and Zeeman field can also be generated in systems of ultra-cold atoms confined to one dimension[6–9]. However, in this case it is much more difficult to induce pairing correlations externally. This naturally leads to the following basic question: can intrinsic attractive interactions (generated naturally in atomic systems with Feshbach resonances) lead to a topological phase and Majorana zero modes without externally induced pairing?

If the system was two or three dimensional then attractive interactions, naturally generated in atomic systems with Feshbach resonances, would give rise to a Bardeen-Cooper-Schrieffer (BCS) pairing gap equivalent to that induced by proximity to a bulk superconductor. But this is not the case in the one-dimensional system in question, where long range order superfluid order is impossible. Nevertheless, it was shown in Refs. [10, 11] that proximity coupling of two independent spin orbit coupled wires to a single one-dimensional superconducting wire with quasi-long range pairing correlations would retain a Majorana-like ground state degeneracy. The question remains if a single, isolated wire can sustain similar topological zero modes due to the intrinsic attractive interactions.

In this paper we use an effective field theory to answer this question and characterize the emergent low energy modes. We show that this system can exhibit Majorana-like degeneracies in spite of having no proximity coupling to an external pairing field. The zero modes are associated with interfaces between distinct phases that may form in different regions of the trap due to the spatial variation of the chemical potential. We term ”topological” the phase established where the chemical potential is inside the Zeeman gap. This phase supports gapless single-fermion excitations. In other regions the attractive interactions dominate and generate a gap to single-fermion excitations. The Majorana-like quasi-zero modes occur in a configuration, as illustrated in Fig. 1.a, which includes at least two ”topological” regions. The physical picture and observable consequences of the zero modes in this charge conserving system, which emerge from our exact analysis, are notably different from previous mean field studies [12, 13]. We show how to probe the zero modes and expose their topological origin through a pumping phenomena induced by a quasi-adiabatic sweep of the Zeeman field.

Model — We consider a one dimensional Fermi gas with spin-orbit coupling, a Zeeman field and short ranged attractive interactions described by the following Hamiltonian

$$\mathcal{H} = \int dx \left[\psi_\uparrow^\dagger \left(-\frac{\partial^2}{2m} + V(x) - \mu + \alpha \sigma^z \partial_x - \delta_z \sigma^z \right) \psi_\uparrow + \psi_\downarrow^\dagger \left(-\frac{\partial^2}{2m} + V(x) - \mu + \alpha \sigma^z \partial_x - \delta_z \sigma^z \right) \psi_\downarrow - U \psi_\uparrow^\dagger \psi_\downarrow^\dagger \psi_\downarrow \psi_\uparrow \right].$$

Here ψ_σ annihilates a fermion with spin $\sigma = \uparrow, \downarrow$, $\psi^T = (\psi_\uparrow, \psi_\downarrow)$, m is the particle mass, α the spin-orbit coupling strength, μ the chemical potential, δ_z is an effective Zeeman field, $V(x) = m \omega^2 x^2/2$ is the parabolic trapping potential, and $U > 0$ is the interaction strength.

The parabolic trap potential can be thought of as a position dependent chemical potential. We consider filling the system to a point that the chemical potential in the middle of the trap is located above the Zeeman gap and continuously decreases towards the flanks. In the usual case where there is a small proximity induced s-wave pairing field $\Delta < \delta_z$, the spatially dependent chemical potential tunes the system from a trivial state in the middle of the trap to two topological states on the sides.
which further transform to trivial states at the ends of the system (see Fig. 1.a). An alternative way to tune the system between the same two phases, is by varying the ratio of Δ/δ_z, while keeping the chemical potential fixed in the middle of the gap. The topological phase is established in the region where $\Delta/\delta_z < 1$. This way of tuning proves to be a convenient theoretical tool in deriving the universal low energy theory of the system.

Low energy theory.— As a preparatory step consider an infinite homogenous wire described by the Hamiltonian (1) with $\mu = 0$. It is convenient to formulate the long wavelength theory starting from the case with $\delta_z = 0$. Then we have four fermion modes crossing the Fermi energy, R_a and L_a, as shown in Fig. 1.b. $a = 0, 2$ labels the modes at $k = 0$ and $k = \pm 2k_0 \approx \pm 2ma$ respectively. Next, we bosonize the four chiral modes at $k = 0, \pm 2k_0$: $R_a \sim F_a \sqrt{\frac{\pi}{2\delta}} e^{i(\theta_a - \phi_a)}$, $L_a \sim F_a \sqrt{\frac{\pi}{2\delta}} e^{i(\theta_a + \phi_a)}$, where the commutation relations of the Bosonic fields are given by $[\phi_a(x), \theta_b(x')] = i\pi \delta_{ab}\Theta(x-x')$, $F_{0,2}$ are Klein factors to set the Fermionic anti-commutation relations between the modes and ρ_0 is the average density.

The Hamiltonian (1) written in terms of the bosonic fields includes, as usual, a quadratic (Luttinger liquid) part due to the kinetic energy and forward scattering channel of the interaction. On the other hand the Zeeman term and the BCS channel of the attractive interactions give rise to the respective cosine terms $\int dx [g_2 \cos 2\phi_0 + g_1 \cos 2(\theta_0 - \theta_2)]$, with the coefficients $g_i \approx \frac{\rho_0 U}{(2\pi)^2}$ and $g_2 \approx \frac{\rho_0 \delta_z}{2\pi}$ (at weak coupling). Note that the cosine terms affect both of Luttinger liquid modes 0 and 2. However, we can simplify the situation by means of the following canonical transformation:

$$
\phi_+ = \phi_0 + \phi_2 \quad \phi_- = \phi_0
\theta_+ = \theta_2 \quad \theta_- = \theta_0 - \theta_2
$$

In this representation the two modes are decoupled in the low energy limit [14] and the Hamiltonian takes the form

$$
\mathcal{H} = \mathcal{H}_+ + \mathcal{H}_-, \quad \mathcal{H}_+ = \frac{u_+}{2\pi} \int dx \left[K_+(\partial_x \theta_+)^2 + \frac{1}{K_+} (\partial_x \phi_+)^2 \right] \quad (2)
\mathcal{H}_- = \frac{u_-}{2\pi} \int dx \left[K_-(\partial_x \theta_-)^2 + \frac{1}{K_-} (\partial_x \phi_-)^2 \right] - \int dx [g_2 \cos 2\phi_- + g_1 \cos 2\theta_-],
$$

and where u_\pm and K_\pm are the renormalized velocities and Luttinger parameters in the two channels. The Hamiltonian \mathcal{H}_+ describes a single gapless phonon mode corresponding to fluctuations of the total charge $\partial_x \phi_+ = \partial_z (\phi_0 + \phi_2)$. \mathcal{H}_- is generically gapped by the cosine terms; it realizes one of two distinct phases separated by a critical point. Which of the two phases is established depends on which one of the two cosine terms is larger and dominates the physics.

The ‘trivial’ phase is established when the interaction dominates and $\theta_- = 0$ is pinned to 0 or π by the corresponding cosine term. This phase is adiabatically connected to the conventional spin-gapped Luther-Emery liquid, which forms in a one dimensional Fermi gas with spin symmetry and attractive interactions. In our case, the spin symmetry is broken by the Zeeman and spin-orbit couplings. But because the Zeeman field can only change the spin by integer values, while the total spin can be either integer or half integer, it leaves a residual Z_2 fermion
parity symmetry intact. The spin gap of the Luther-Emery liquid thus persists, in our case, as a gap to half-integer spin excitations, which carry the aforementioned Z_2 quantum number.

The phase we term ‘topological’ is formed when the Zeeman field dominates over the interaction and pins the field ϕ_- to 0 or to π, while the field ϕ_+ is strongly fluctuating. In contrast to the trivial phase, here single fermions, or half-integer spin excitations, are gapless.

One can drive a transition between the two phases by changing the value of the Zeeman coupling while keeping the chemical potential fixed (say at $\mu = 0$). Alternatively, changing the chemical potential while keeping the Zeeman field fixed will have the same effect. Specifically, tuning the chemical potential away from $\mu = 0$ moves the putative inner Fermi points away from $\theta = 0$, thereby making the Zeeman coupling less relevant.

Weak attractive interactions the transition from the topological to the trivial phase is expected to occur approximately when the chemical potential goes above or below the Zeeman gap in the single particle dispersion.

Zero modes.— We now turn to discuss an inhomogeneous system with spatial interfaces between the different phases discussed above. Such a situation occurs naturally in the harmonic trap potential as illustrated in Fig. 1a. First, we discuss the ground state degeneracies expected to occur in such configurations based only on the properties of the low energy theory (2) and (3). Back-scattering terms, which are present due to the absence of translational invariance, will be discussed later.

Within the trivial regions, the θ_- field is pinned to either 0 or π. The two possible values of θ_- do not correspond to physically different states, however, since the value of θ_- does not correspond to a physical observable. In terms of the fermion densities, θ_- can be written as

$$\theta_-(x) = \pi \int_{-\infty}^{x} dx' \left(R_0^1 R_0 - L_0^1 L_0 - R_2^1 R_2 + L_2^1 L_2 \right)$$

$$\equiv \pi \int_{-\infty}^{x} dx' [n^+_L(x) - n^-_L(x)],$$

i.e. it is related to the total spin to the left of point x. Hence, only the differences between two points $\theta_-(x_1) - \theta_-(x_2)$ is a physical quantity, independent of an arbitrary number of spins added at $-\infty$. Moreover, since the total spin is conserved only up to an integer value, the physical observable that can distinguish different ground states is the two point correlation function $P_{1,2} = \langle \cos(\theta_-(x_2) - \theta_-(x_1)) \rangle$. In a single region of the trivial phase the field θ_- is pinned uniformly, and this correlation function is always unity.

If there are multiple trivial regions separated by topological regions (as in Fig. 1), then there can be multiple configurations of $\theta_-(j)$ (defined in the trivial regions j), which represent physically distinct ground states. These states can be labeled by the values of the spin-parity on each of the topological regions: $P_{j,j+1} \equiv \langle \cos(\theta_-(j+1) - \theta_-(j)) \rangle = \pm 1$. Note that a configuration with $P_{j,j+1} = -1$ requires the phase θ_- to twist by π inside the topological region between x_j and x_{j+1}. Such a twist incurs an energy cost that is exponentially small in the size of the region, because the phase θ_- has vanishing stiffness in the topological phase. Hence the different configurations of $P_{j,j+1}$ indeed represent zero modes up to the exponential splitting. Moreover the ground state degeneracy scales with the number of interfaces, I, as $2^{I/2}$, as expected from Majorana zero modes. In the supplementary material a direct mapping to Majorana fermions is derived by re-fermionizing the low energy theory.

It is important to realize, however, that the exact number of ground states is $2^{I/2}/2$, a factor of half smaller than for usual Majorana zero modes. The lost zero mode is the one that corresponds to the total parity of the system. States that differ in the total parity $P = \langle \cos[\pi(N_\uparrow \uparrow - N_\downarrow \downarrow)] \rangle$ must also differ in the total number $N = N_\uparrow + N_\downarrow$. In a charge conserving system changing N by one (equivalently, twisting the field ϕ_+ by π across the whole system) incurs an energy cost of $1/(\kappa L)$, where $\kappa^{-1} = u_+/K_+$ is the compressibility. Hence the putative zero mode is indistinguishable from usual phonons in this case. There is no topological degeneracy in a configuration with a single topological region. This is an essential difference, also pointed out in Refs. [10, 11], between a charge conserving system and one with proximity coupling to a superconductor.

Back-scattering.— The spatial potential variations, which give rise to interfaces, may also lead to scattering between the four modes near the Fermi surface. Of the different processes, only scattering which involve k_0 momentum transfer, i.e. $H_{bs} \sim e^{i2k_0 x} V_{2k_0} R_0^1 L_0 + e^{-i2k_0 x} V_{2k_0} L_0^1 R_0 + H.c.$, can be potentially harmful to the topological degeneracy discussed above.

These terms have a simple interpretation when expressed in terms of the bosonic fields. The wire can then be viewed as a thin superconducting strip, and the backscattering corresponds to tunneling of an $hc/2e$ vortex across it. A second order process involving a vortex tunneling across the parts of the wire on the two sides of a topological segment is equivalent to a vortex encircling that region (see also Ref. [10]). Such a process cannot change the fermion parity of the topological segment, but it acquires a sign which depends on the fermion parity there. This leads to a splitting of the degeneracy proportional to the magnitude of the second order process. Because the process involves excitation of the symmetric (charge) sector, the splitting is proportional to the charge correlations between the two scattering points $\langle \exp[i(\phi_+(x_1) - \phi_+(x_2)) \rangle$, i.e. $\Delta E \sim u_+^{-1} V_{bs}(x_1) V_{bs}(x_2)|x_1 - x_2|^{-K_+/4}$.

We are particularly interested in the backscattering produced by the smooth potential variation in a harmonic trap. We anticipate that in this case the backscattering matrix elements V_{bs}, induced by the potential gradient,
The total system length is inversely proportional to the trap width \(\delta \). When \(\delta \) changes with the changing field as sketched in Fig. 2. On one side of this region there is always strong backscattering. The topological degeneracy is then lifted by backscattering from the point \(x_0 \) at the edge of the cloud. The topological degeneracy is first established after the entire system in the trivial phase with a gap to single particle excitations. This process can lead to a rather surprising final state with clear topological origin.

The topological degeneracy is first established after the trivial segment is nucleated in the middle of the trap at stage (b). This stage is described by creation of a pair of Majorana zero modes at the newly formed interfaces 2 and 3. Because they are created from the vacuum these topological regions shrink and vanish. In the case of odd total particle number this process will always end up creating a single fermion quasiparticle (originating from the odd parity state of either the left or right topological region) above the parity gap of the trivial state. This is expected and does not rely on the topological properties of the intermediate phases. On the other hand, if the total number is even, then we have 50% chance to end up with a pair of quasi-particles above the gap. Here there is a surprise in the apparent contradiction with naive approach.

Probing - We propose to detect the topological state through a pumping effect induced by a slow variation of the Zeeman field, starting from a very high value down to zero. The configuration of segments in the trap slowly changes with the changing field as sketched in Fig. 2. (a) When \(\delta \gtrsim \epsilon_0 \) the entire trap is in the ‘topological’ phase. As the field is reduced, trivial segments form at the two wings of the trap and expand inward. (b) A trivial segment is nucleated in the center and starts to expand while the two topological segments shrink. (c) The topological segments eventually vanish leaving the entire system in the trivial phase with a gap to single particle excitations. This process can lead to a rather surprising final state with clear topological origin.
plication of the adiabatic which would suggest that we should end up in the ground state. When probing an ensemble of systems we expect half of them to have even particle number and half odd. Therefore the average energy quasi-particles created in a sweep is Δ (where Δ is the parity gap) in contrast with the naive expectation of $\Delta/2$. We expect this scheme to work even at finite temperature as long as the final temperature $T_f \ll \Delta$ because the topological degeneracy persists to the low lying collective excitations.

Conclusions – We predicted that an ultra-cold Fermi gas with Rashba-like spin orbit coupling in a one dimensional harmonic trap, a Zeeman field and intrinsic attractive interactions will form a novel topological state. Majorana zero modes are associated with interfaces between topological and trivial phases in the trap which form in different regions due to spatial modulation of the potential. One important difference of the charge conserving system from one that is proximity coupled to a superconductor is that in the former case there is no degeneracy associated with a single topological segment; at least two are needed for a non-trivial degeneracy. We have proposed a simple pumping scheme that would detect the degeneracy and expose its topological origin.

Acknowledgements – We thank Benjamin Lev, Sylvain Nascimbene, Xiao-Liang Qi, Jonathan Schattner and Yuval Oreg for helpful discussions. EA and EB thank the Aspen center for physics under NSF Grant #1066293 for hospitality. This research was supported in part by the ERC synergy grant UQUAM (EA and JR), the ISF (EA and EB) the Minerva Foundation (EA and EB).

[1] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. a. M. Bakkers, and L. P. Kouwenhoven, Science (New York, N.Y.) **336**, 1003 (2012).
[2] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Nature Physics **8**, 887 (2012).
[3] Y. Oreg, G. Refael, and F. von Oppen, Physical Review Letters **105**, 177002 (2010).
[4] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Physical Review Letters **105**, 077001 (2010).
[5] L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, Phys. Rev. Lett. **106**, 220402 (2011).
[6] Y.-J. Lin, K. Jiménez-García, and I. B. Spielman, Nature **471**, 83 (2011).
[7] L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Physical Review Letters **109**, 095302 (2012).
[8] P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Phys. Rev. Lett. **109**, 095301 (2012).
[9] X. Cui, B. Lian, T.-L. Ho, B. L. Lev, and H. Zhai, Phys. Rev. A **88**, 011601 (2013).
[10] L. Fidkowski, R. M. Lutchyn, C. Nayak, and M. P. A. Fisher, Physical Review B **84**, 195436 (2011).
[11] J. D. Sau, B. I. Halperin, K. Flensberg, and S. Das Sarma, Physical Review B **84**, 144509 (2011).
[12] R. Wei and E. J. Mueller, Physical Review A **86**, 063604 (2012).
[13] X.-J. Liu and H. Hu, Physical Review A **85**, 033622 (2012).
[14] Linear coupling terms $\partial_x \theta_- \partial_x \theta_+$ and $\partial_x \phi_- \partial_x \phi_+$ generated by the canonical transformation are irrelevant in the long wavelength limit because the mode (θ_-, ϕ_-) gapped (except at a critical point).
[15] M. V. Berry and K. E. Mount, Reps. Prog. Phys **35**, 315 (1972).
[16] C. L. Kane and M. P. A. Fisher, Phys. Rev. B **46**, 15233 (1992).
[17] P. Lecheminant, Nuclear Physics B **639**, 502 (2002).
[18] M. Sitte, A. Rosch, J. S. Meyer, K. A. Matveev, and M. Garst, Physical Review Letters **102**, 176404 (2009).
Supplementary Information

Fermionization of the double sine-Gordon model and Majorana edge modes in the parabolic trap

The low energy effective theory which describes the two possible phases of the superfluid in the trap and the critical point between them can be written in terms of Majorana fermions through reformionization of the double sine-Gordon model (Eq. (3) in the main text) in a rather standard way (see e.g. [17]). We define the Majorana fermions:

\[\xi_R \sim \sqrt{\frac{\rho_0}{\pi}} \cos (\theta_- + \phi_-) \quad ; \quad \xi_L \sim \sqrt{\frac{\rho_0}{\pi}} \sin (\theta_- + \phi_-) \]

\[\eta_R \sim \sqrt{\frac{\rho_0}{\pi}} \sin (\theta_- - \phi_-) \quad ; \quad \eta_L \sim \sqrt{\frac{\rho_0}{\pi}} \cos (\theta_- + \phi_-). \]

The two Majorana species \(\xi \) and \(\eta \) acquire the quadratic mass terms \(-i\Delta + \eta L \eta_R - i\Delta - \xi L \xi_R\), where \(\Delta \equiv \Delta \pm \delta \) and \(\Delta \equiv \rho_0 U/\pi \). Hence, by varying the effective Zeeman field \(\delta \) we tune the pair of lower energy Majorana modes \(\xi^T = (\xi_L, \xi_R) \) through a critical point at which their gap changes sign. The second pair of Majorana modes retains a higher gap throughout, which makes the quartic interaction between the four Majorana species highly irrelevant and allows to safely integrate out the fields \(\eta_{L,R} \). This leads to a low energy Hamiltonian of the form:

\[H_+ = \frac{u}{2\pi} \int dx \left[K_+(\partial_x \theta_+)^2 + \frac{1}{K_+} (\partial_x \phi_+)^2 \right] \]

\[H_- = \frac{1}{2} \int dx \xi^T \left[v(-i\partial_x) \tau^2 + \Delta_- \tau^y \right] \xi \]

\[H_{++} = i\lambda \int dx \partial_x \phi \xi_R \xi_L \]

This theory describes a transition between two different pairing phases in the fermion sector as the gap \(\Delta_- \) changes sign. The coupling term \(\lambda \) can affect the critical point in an interesting way [18], but it cannot change the two phases where the Majorana modes are gapped. We note that this coupling is not obtained directly from the refermionization applied above, but is rather generated at higher order upon integrating out the higher energy modes. Hence the coupling constant \(\lambda \) is aproiori small.

We now consider the parabolic trap potential \(V(x) = \frac{1}{2} m \Omega^2 x^2 \), where \(m \) is the bare mass and \(\mu > \delta \), so that the chemical potential in the center of the trap is located above Zeeman gap. Within a local density approximation, we can think of the external potential as giving rise to a local chemical potential \(\mu(x) = \mu - V(x) \), where of course the true electrochemical potential is constant along the trap. Decreasing the local chemical potential can be viewed instead as a modulation of the effective Zeeman field \(\delta \) (in a constant chemical potential, as it becomes gradually less effective in polarizing the spin. The effective value of the Zeeman field is determined by the expectation value of the Zeeman energy of particles at the fermi energy. Using the single particle dispersion and assuming that throughout the region of interest \(V(x) \ll \epsilon_F \approx mc^2/2 \), the effective Zeeman field is given by

\[\tilde{\delta}(x) \equiv \delta(\sigma^z) \approx \delta \left[1 - \left(\frac{V(x) - \mu}{\delta z} \right)^2 \right] \]

Note that in this expression we have assumed that \(\Delta \) is sufficiently large such that \(V(x) \) at the position of the bound state is small compared to the full Zeeman gap \(\delta \), the accurate expressions are found in Ref.[12].

The gap in the Majorana sector of the low energy theory [Eq. (7)] is determined by the difference between the pairing interaction and the effective Zeeman field \(\Delta_- = \Delta - \delta_2(x) \). The points in the trap where this function changes sign can now be given in terms of the bare Zeeman field and pairing interaction (The number conserving interaction \(\Delta \) appears as a pairing field in the anti-symmetric, i.e. relative mode, sector):

\[x_{1,2} = -\sqrt{\frac{2\delta_2}{m}} \left[\frac{\mu}{\delta z} \pm \sqrt{1 - \frac{\Delta}{\delta z}} \right]^{1/2} \frac{1}{\Omega} \]

\[x_{3,4} = \sqrt{\frac{2\delta_2}{m}} \left[\frac{\mu}{\delta z} \pm \sqrt{1 - \frac{\Delta}{\delta z}} \right]^{1/2} \frac{1}{\Omega}. \]
This result is consistent with that derived using a mean field (Bogoliubov-deGennes) treatment of the Fermi gas in a trap in Ref.[12].

To obtain the explicit form of the zero mode wave function we linearize \(\Delta_-(x) \) around the four points \(x_1 \ldots x_4 \):
\[
\Delta_-(x) \approx \pm v(x - x_j)/d_j^2 ,
\]
with
\[
d_j^2 = \frac{v}{2m \sqrt{1 - \frac{\Delta_0}{\Omega^2 |x_j|}}} .
\]

Using this gap function we get solution of the BdG equations near to the points where the gap changes sign is given by
\[
\chi_j(x) \sim \exp \left(\frac{1}{v} \int_0^x dx' \Delta_-(x' - x_j) \right) \approx \left(\frac{1}{\pi d_j} \right)^{1/4} e^{-\left(\frac{x-x_j}{2d_j} \right)^2} .
\] (12)

We see that the Majorana interface modes are localized on the length \(d \propto \sqrt{\Omega} \propto 1/\sqrt{\Omega} \). Hence the two interface modes become increasingly better defined as we take the limit of a larger trap \(\Omega \to 0 \). The bound state operator \(\gamma_i \) and the gapped modes orthogonal to it \(\tilde{\gamma}_i \) are given by the transformation
\[
\left(\begin{array}{c}
\gamma_j \\
\tilde{\gamma}_j
\end{array} \right) = \int dx \chi_j(x) \left(\begin{array}{cc}
1 & \eta_j \\
-\eta_j & 1
\end{array} \right) \left(\begin{array}{c}
\xi_R(x) \\
\xi_L(x)
\end{array} \right)
\]
(13)
where \(\eta_j = \pm 1 \) for the states at the opposite ends \(j = 1,2 \) and \(j = 3,4 \).

Ground state energy splitting due to 2\(k_0 \)-backscattering

In this section we discuss the ground-state energy splitting due to backscattering with \(2k_0 \) momentum transfer from local impurities in the potential. Such backscattering is described by the Hamiltonian
\[
\mathcal{H}_{2k_0}(x) = V_{2k_0} e^{i2k_0 x} R_0^\dagger L_0 + \tilde{V}_{2k_0} e^{i2k_0 x} R_0^\dagger L_2 + \text{H.c.}
\]

In terms of the bosonic fields
\[
R_0(x) \approx F_0 \sqrt{\frac{\rho_0}{2\pi}} e^{i[\theta_-(x) + \theta_+(x) + \phi_-(x)]} ; \quad L_0(x) \approx F_0 \sqrt{\frac{\rho_0}{2\pi}} e^{i[\theta_-(x) + \theta_+(x) + \phi_-(x)]}
\]
\[
R_2(x) \approx F_2 \sqrt{\frac{\rho_0}{2\pi}} e^{i[\theta_+(x) - \phi_+(x) + \phi_-(x)]} ; \quad L_2(x) \approx F_2 \sqrt{\frac{\rho_0}{2\pi}} e^{i[\theta_+(x) + \phi_+(x) - \phi_-(x)]}
\]

this Hamiltonian assumes the form
\[
\mathcal{H}_{2k_0}(x) = IF_2 F_0 e^{i2k_0} \cos(\theta_-(x) + \varphi) \cos(\phi_+(x) + 2k_0 x)
\]
(14)
where \(\varphi \) is the phase between \(V_{2k_0} \) and \(\tilde{V}_{2k_0} \) and \(F_0, F_2 \) are sermonic Klein factors. The backscattering perturbation (14) thus couples the spin-parity operator \(\cos \theta_-(x) \) to an operator which generates \(\pi \) phase slips in the phase \(\theta_+ \). Therefore, this perturbation is irrelevant in the topological regions where the parity operator is disordered. However, as explained in the main text, in the trivial regions it may have a more harmful effect.

 depending on the value of \(K_+ \) it can give rise to two distinct behaviors: (i) For \(K_+ < 4 \) the perturbation, (14) is a relevant and thus effectively disconnects the two sides of the gas at the longest scales [16]. If there is a distribution of such scatterers they will eventually separate all topological regions into isolated islands, which will give rise to a ground state energy splitting given by the charging energy associated by transferring particles between the islands. In this case the ground state energy splitting will generally scale as \(1/L \). (ii) For \(K_+ > 4 \) the scatterer becomes a weak-link through which vortices can tunnel across and cause \(\pi \) phase slips in the superconducting phase \(\theta_+ \). The process in which a vortex encircles a given topological region is sensitive to the spin-parity in the region and thus splits the ground state degeneracy without modifying the spin-parity. To encircle the topological region the vortex must penetrate through the wire at two points located in the two trivial regions surrounding the topological one, and therefore this effect appears only at second order when there at least two scattering centers.

To see this we consider two scattering centers of the form (14) located at two points \(x_1 \) and \(x_2 \) surrounding a given topological region
\[
\mathcal{H}_{bs} = \mathcal{H}_{2k_0}(x_1) + \mathcal{H}_{2k_0}(x_2)
\]
By second order perturbation theory these terms give rise to a splitting

$$
\delta E_{(2)}(P_{12}) = \frac{1}{\Lambda} \approx A + B \langle \cos \theta_-(x_1) \cos \theta_-(x_2) \rangle \langle \cos \phi_+(x_1) \cos \phi_+(x_2) \rangle = A + B P_{12} \left(\frac{1}{\rho_0|\rho_0|} \right)^{\frac{\gamma_3}{2}}
$$

where

$$
A = |g_{2k_0}(x_1)|^2 + |g_{2k_0}(x_2)|^2, \quad B = 2\text{Re}[g_{2k_0}(x_1)g_{2k_0}(x_2)] \cos 2k_0x \cos \varphi \quad \text{and} \quad P_{12} \quad \text{is \ the \ parity \ in \ the \ topological \ region \ between \ }x_1 \text{ \ and } x_2.
$$

Therefore the splitting between the two parity states is given by

$$
\Delta E = \delta E_{(2)}(1) - \delta E_{(2)}(-1) = 2B \left(\frac{1}{\rho_0|\rho_0|} \right)^{\frac{\gamma_3}{2}}
$$

Thus, this splitting is parametrically separated from the phonon excited states which scale as $1/L$. It is also important to point out that if one of the points x_1 or x_2 is located at the boundary with the vacuum where ϕ_+ is pinned the exponent will be modified to $K_+/4$.

2k_0-backscattering in the parabolic trap potential

In this section we consider the 2k_0-backscattering induced by the harmonic trap in the absence of any other impurity potential. We first assess the strength of the backscattering analytically by mapping the Hamiltonian of a free particle propagating in the harmonic potential to a Landau-Zener sweep through the Zeeman gap. We then supplement this estimate with a numerical calculation.

As mentioned in the main text, the only points where the backscattering is potentially large enough to make a notable effect are the classical turning points where the group velocity goes to zero. In the case of Rashba dispersion there are two types of classical turning points. The first type occur at the very ends of the trap, at the interface with the vacuum. Since this type leads to backscattering only at the very ends of the wire it can not give rise to an energy splitting by Eq. (16). The other type of turning points occur when the velocity of the inner modes R_0, L_0 goes to zero while the outer modes R_2, L_2 stay deep in the adiabatic limit. These are nothing but the interfaces between the topological and trivial regions in the trap.

To study the backscattering near such a turning point located at $x = x_j$ we linearize the potential $V(x) \approx V(x_j) + r (x - x_j) + \ldots$, which leads to the Hamiltonian

$$
\mathcal{H}_0 = \frac{\hat{p}^2}{2m} - \alpha p \sigma^x - \delta_z \sigma^z + r (x - x_j),
$$

where $r = m\Omega^2 x_j$. It is in convenient to use a gauge transformation

$$
V \rightarrow \hat{V} = V - \partial_f f = 0 \quad ; \quad A \rightarrow \hat{A} = \partial_f f = r t
$$

where $f = r (x - x_j) t$ and A is the vector potential. This leads to a translationally invariant Hamiltonian

$$
\mathcal{H}_0 = \frac{(p - rt)^2}{2m} - \alpha (p - rt) \sigma^x - \delta_z \sigma^z
$$

In this representation it becomes clear that the spin-orbit coupling transforms the acceleration of the momentum states due to the linear potential into a linear sweep through an avoided crossing of magnitude δ_z with a rate of αr. In this case there are two distinct backscattering processes that may occur. Either the state of the particle follows adiabatically and backscatters within the same dispersion branch (see the left panel of Fig. 3) or it undergoes a Landau-Zener transition between the branches (right panel of Fig. 3). The latter process is exactly the 2k_0-backscattering and therefore it is bound from above by the Landau-Zener probability

$$
P_{LZ} \propto \exp \left[\frac{-2\pi \delta_z^2}{\alpha r} \right]
$$

where $r \propto \Omega \propto L^{-1}$.

Let us consider for example the backscattering at the inner turning points x_2 and x_3 illustrated in Fig.1.a of the main text. In the limit of $\delta_z \gg \rho_0 U$ the sweep rate is given by $\alpha r \approx \alpha \Omega \sqrt{2m(\mu - \delta_z)} = 2\Omega \sqrt{\epsilon_0(\mu - \delta_z)}$, where $\epsilon_0 \equiv m a^2/2$ (see Eq. 10 and Eq. 11). Therefore overall the 2k_0-backscattering probability is estimated by

$$
P_{LZ} \sim \exp \left[-\pi \sqrt{\frac{\delta_z^2}{\epsilon_0(\mu - \delta_z)}} \right].
$$
Adiabatic back-scattering in the linear potential

2\(k_0\) back-scattering – includes a Landau-Zener transition between the two dispersion branches

FIG. 3. The linear potential accelerates the momentum states linearly in time. Starting in an initial state in the inner branch the particle can either be backscattered adiabatically to negative momenta on the same branch (right) or undergo a Landau-Zener transition through the avoided crossing at \(k = 0\) set by the Zeeman gap.

FIG. 4. The interband reflection coefficient \(|r_{20}|\) as a function of the slope parameter \(a\) for \(\delta_z = 0.25 \epsilon_0, V_0 = 0.2 \epsilon_0, \mu = 0.35 \epsilon_0\) and where we set \(\epsilon_0 = m_\alpha^2/2 = 1\) and \(k_0 = m\alpha = 1\).

We now turn to estimate the backscattering by calculating the scattering matrix due to the barrier potential

\[V(x) = \frac{V_0}{2} \left[\tanh \left(\frac{x}{2a} \right) + 1 \right]. \]

In this potential the inner modes incur a classical turning point at \(x = 0\) where the slope of the potential is \(V'(x_j) = \frac{\dot{V}_0}{4a}\). We seek a solution of the Schrodinger equation in terms of the scattering state

\[
\Psi(x) = \begin{cases}
 u(k_{F,2}) e^{ik_{F,2} x} + r_{22} u(-k_{F,2}) e^{-ik_{F,2} x} + v(-k_{F,0}) e^{-i\tilde{k}_{F,0} x}, & x \to -\infty \\
 t_{22} u(k_{F,2}) e^{i\tilde{k}_{F,2} x}, & x \to \infty
\end{cases}
\]

where \(k_{F,a}(\mu) = k_0 \left[2 + \frac{\mu}{\epsilon_0} \pm \sqrt{4 + 4\frac{\mu}{\epsilon_0} + \frac{\delta_z^2}{\epsilon_0^2}} \right]^{1/2}\) are the Fermi momenta at \(x \to -\infty\), \(\tilde{k}_{F,2} \equiv k_{F,2}(\mu - V_0)\) is the Fermi momentum of mode \(a = 2\) at \(x \to \infty\), \(\epsilon_0 \equiv m_\alpha^2/2\) and \(k_0 = m\alpha\). \(u(k)\) and \(v(k)\) are the spinors of the lower and upper helical dispersion branches, respectively.

The wave-function (19) describes a scattering state with a particle belonging to mode \(a = 2\) approaching the barrier from the right and scattering into all possible out-going states. The \(2k_0\)-backscattering amplitude is given by the reflection coefficient to band \(a = 0\), i.e. \(r_{20}\). In Fig. 4 we plot the magnitude of the interband reflection coefficient \(|r_{20}|\) as a function of \(a\) for \(\delta_z = 0.25 \epsilon_0, V_0 = 0.2 \epsilon_0, \mu = 0.35 \epsilon_0\) and where we set \(\epsilon_0 = m_\alpha^2/2 = 1\) and \(k_0 = m\alpha = 1\). The figure shows clear exponential decay in the inverse slope in agreement with the Landau-Zener argument.