Pediatric Behçet’s disease - clinical aspects and current concepts

Mehmet Yıldız¹, Oya Köker², Amra Adrovic¹, Sezgin Şahin¹, Kenan Barut¹, Özgür Kasapçopur¹

Abstract

Behçet’s Disease was first described by a Turkish dermatologist, Hulusi Behçet, in 1937 as a triple symptom complex; aphthous stomatitis, genital ulcers, and uveitis. Today, in light of current trials and experiments, we know that the disease may have a wider involvement with a multisystemic recurrent course, causing significant morbidity and mortality. However, there are still unanswered questions, particularly about Pediatric Behçet’s Disease. Although several immunological and genetic associations have been demonstrated, the real etiologic mechanism of the disease is unclear. The diagnosis is difficult due to its rarity in childhood, the lack of validation of the diagnostic criteria obtained from adult studies, and the inadequacy of large case-controlled studies. Also, the management is challenging and controversial due to the various geographic distribution of clinical spectrum. New therapeutic options under development in light of pathogenetic hypothesis seem to be promising.

Keywords: Behçet’s disease, epidemiology, classification, treatment, pediatric, juvenile

Introduction

Behçet’s disease (BD) is a chronic inflammatory disease that can affect any type and size of vessel, particularly the veins, and manifests with recurrent oral and/or genital ulcers, accompanied with the involvement of skin, eyes, and joints, as well as the gastrointestinal and central nervous systems. In addition to being classified in the variable-vessel vasculitis category (1), it clinically exhibits autoinflammatory properties, as well as autoimmune effects in the pathophysiology, which render the disease heterogeneous. Although BD is commonly observed in the second or third decades, the initial symptoms occur under the age of 16 years in 4%-26% of the patients (2-4). The diagnosis is difficult due to its rarity in childhood, the lack of validation of the diagnostic criteria obtained from adult studies, and the inadequacy of large case-controlled studies. Further, its management is challenging and controversial due to the various geographic distribution of clinical spectrum. New therapeutic options under development in light of pathogenetic hypothesis seem to be promising.

Definition and classification

Behçet’s disease was first described in 1937 by the Turkish dermatologist Hulusi Behçet, with the triad of oral aphthous ulcers, genital ulcers, and uveitis (5). In addition to involving the mucosa and skin, the disease also has an affinity toward various-sized vessels such as large arteries and veins. Therefore, it is known as a widely distributed vasculitis with the involvement of the central nervous, gastrointestinal, and urogenital systems. In addition to its distinctive characteristic, BD is a complex condition as it may intertwine with various other conditions such as inflammatory bowel disease and immune deficiencies, as well as assume both autoimmune and autoinflammatory characters (2). The term pediatric BD (PEDBD) is used for cases diagnosed during childhood, whereas the term juvenile BD is used for those cases who have manifestations of the disease before the age of 16 years, but the diagnosis is made during adulthood (6).

Earlier, international study groups have developed classifications and diagnostic criteria. In 1969, Mason and Barnes defined oral ulcers, genital ulcers, eye and skin lesions as the major criteria, and the involvement of gastrointestinal, cardiovascular, and central nervous systems or thrombophlebitis, arthritis, and family history as the minor criteria (7). They stated that the presence of three major or two major and two minor
criteria would suggest BD. The most commonly used is the 1990 criteria, defined by the International Study Group (ISG) with collaborations from France, Iran, Japan, Tunisia, Turkey, UK, and USA (Table 1). According to these criteria, the occurrence of oral ulcer(s) as the major criteria and two of the cutaneous and ocular findings would establish the diagnosis with 85% sensitivity and 96% specificity (8). However, the sensitivity is low, particularly in children; while the presence of an oral ulcer is essential for diagnosis, the lack of any mention regarding vascular and neurological involvements may lead to confusion in the diagnosis.

In the year 2014, the International Team for the Revision of the International Criteria for BD (ICBD), with contributions from 27 countries, developed a scoring system and proposed new criteria with higher sensitivity (9). The main differences between these criteria are that not all the criteria are evaluated with equal points and oral aphthae is not a mandatory criterion. Another important change is the addition of vascular manifestations and neurological criterion. Another important change is the equal points and oral aphthae is not a mandatory criterion. Another important change is the equal points and oral aphthae is not a mandatory criterion.

Table 1. Criteria of the International study group for BD (8)

Recurrent Oral Ulceration (Mandatory)	Minor aphthous, major aphthous, or herpetiform ulceration observed by physician or patient, which recurred at least 3 times in one 12-month period
Plus 2 of:	Aphthous ulceration or scarring, observed by physician or patient
Recurrent genital ulceration	Anterior uveitis, posterior uveitis, or cells in vitreous on slit lamp examination; or retinal vasculitis observed by ophthalmologist
Eye lesions	
Skin lesions	Erythema nodosum observed by physician or patient, pseudo folliculitis, or papulopustular lesions; or acneiform nodules observed by physician in post adolescent patients not on corticosteroid treatment
Positive pathergy test	Read by physician at 24-48 h.

Findings applicable only in absence of other clinical explanations.

Table 2. Pediatric criteria for BD (11)

Recurrent oral aphthos	At least three attacks/year
Genital ulceration or aphthos	Typically with scar
Skin involvement	Necrotic folliculitis, acneiform lesions, erythema nodosum
Ocular involvement	Anterior uveitis, posterior uveitis, retinal vasculitis
Neurological signs	With the exception of isolated headaches
Vascular signs	Venous thrombosis, arterial thrombosis, arterial aneurysm

Three or more items are needed for diagnosis.
were investigated. Lehner et al. (18, 19) suggested that there is a cross-reaction between Streptococcus sanguinis and certain body proteins (heat-shock proteins), and this could be the triggering factor. In addition, antibodies against S. sanguinis and S. pyogenes have been reported more frequently in the ones with BD than those in controls (18, 20). Studies have reported that oral and intestinal microbiota may play a role in the pathogenesis of this disease. Oral bacterial diversity in patients with BD has been shown to be less than those in healthy controls (21, 22). It has been shown that cutaneous and systemic disease activation may occur after dental procedures in patients with BD (23). Intestinal microbiota studies have shown a decrease in Roseburia and Subdoligranulum species and an increase in Bifidobacteri species in patients with BD (21, 24, 25). The authors suggested that the effect in butyrate production associated with changes in the intestinal microbiota could trigger immunologic changes (18, 25).

Genetic

The genetic component of BD is one of the most frequently discussed subjects. The most important genetic predisposition factor associated with BD is human leukocyte antigen (HLA) B5 and its sub-allele HLA-B51. Menthon et al. (26) reported that individuals carrying the HLA-B5/B51 gene were 5.78 times more at risk of developing BD. HLA-B51 positivity is more common in males, genital ulcers, ocular involvement, and skin findings are reported more frequently in individuals carrying this allele (27, 28). HLA-B51 positivity has been reported between 50% and 72% of BD patients. This rate is reported to be 10%-15% in the healthy population (2, 26, 27). Due to its high incidence in the healthy population, the diagnostic value of HLA-B51 positivity is controversial and it is widely considered that it should be accepted as a supportive finding only in the presence of appropriate clinical findings.

Genetic associations between BD and various non-HLA genes, such as ERAP1, IL23 receptor (IL-23R), IL-23R/IL-12RB2, IL-10, and STAT4, have been identified with genome-wide association studies (GWAS) (18, 29, 30).

ERAP-1 is an amino peptidase expressed by the endoplasmic reticulum and is involved in the delivery of peptides to effector cells via MHC-1 molecules. If the folding required for HLA molecules to interact with the peptides is unsuitable (misfolding), inflammation may be triggered through the IL23/IL17 pathway (31, 32). It has been reported that ERAP-1 has an epistatic interaction with HLA-B51 (33). The homozygosity of ERAP1 pArg725Gln (rs7482078) has been reported to increase the BD risk by 3.78 times in HLA-B51-positive patients and 1.48 times in HLA-B51-negative patients (33). Certain ERAP1 polymorphisms have also been associated with ankylosing spondylitis and psoriatic arthritis (34-36). The misfolding of HLA-B27 in patients with ankylosing spondylitis and HLA-C*0602 in patients with psoriatic arthritis has been shown to activate the IL23/IL17 axis (31, 32). These findings are also one of the mainstays of the MHC-1-opathy concept, which suggests that BD and spondyloarthropathies such as ankylosing spondylitis and psoriatic arthritis have similar immunopathogenic bases (37).

Mutations in the FUT2 gene encoding the fucosyltransferase enzyme have been reported in the intestinal and oral epithelial cells of patients with BD. This enzyme plays an important role in bacterial symbiosis and barrier formation against pathogenic bacteria in the intestine. This mutation in patients with BD is another important support for the presence of bacterial triggering factors (21, 38, 39).

In their studies evaluating the role of epigenetic mechanisms in BD, Alipour et al. (40) emphasized the roles of DNA methylation, histone modification, and microRNAs. "Unusual" methylation in genes regulating the cytoskeletal dynamics has been shown to be effective in the pathogenesis of BD (40, 41). Further, in the recent years, many publications have shown the effects of cellular noncoding RNAs and certain specific microRNAs on immunity. In particular, changes in miR-182, miR155, miR638, and miR-4488 expressions have been shown in BD patients (42-44).

Table 3. Comparison of various pediatric BD cohorts

	Kone-Paut et al.(11)	Shahram et al.(14)	Karinaoglu et al. (3)	Gallizzi et al. (4)	Atmaca et al.(69)
Number	156	204	83	110	110
Age of first symptom (years)	7.8 ±4.3	10.5±3.4	12.2±3.5	8.3±	11.6±3.4
Oral Aphthosis (%)	100	91.7	86	94.5	100
Genital Ulcers (%)	55.1	42.2	81.9	33.6	82.7
Cutaneous Signs (%)	66.6	51.5	51.8*	39.6	37.3*
Pathergy Positivity (%)	N/A	57	37.3	14.5	45.5
Ocular Sign (%)	45.5	66.2	34.7	43.6	61.8
Joint Involvement (%)	41	30.9	39.8	42.7	22.7
Gastrointestinal Involvement (%)	29.4	5.9	4.8	42.7	N/S
Neurological Involvement (%)	59.6	4.4	7.2	N/S	3.6
Vascular Involvement (%)	14.7	6.4	7.2	1.8	3.6
Family History (%)	24.4	9.9	19	12	12.3

Only erythema nodosum
Immunological background

Behçet’s disease has features that overlap with both autoimmune diseases and autoinflammatory diseases. The presence of recurrent and unprovoked episodes of inflammation and increased IL-1B levels in active patients were consistent with autoimmune diseases; however, the proven association with HLA-B51 and the activation of adaptive immunity are similar to autoimmune diseases (21, 45).

T lymphocytes are the main lymphocytes in the pathogenesis of BD. T lymphocytes have been shown to activate and produce inflammatory cytokines in patients. In particular, the roles of T-cell subgroups, such as γδ T cells, cytotoxic T cells, Th1, and Th17, have been emphasized in the pathogenesis of the disease (17, 46-48). Increased γδ T cells and Th17 cells and decreased T regulator (Treg) cells have been reported in the sera of BD patients (48-51).

Tulunay et al. (52) showed increased Janus kinase (JAK)/signal transducer and activator of transcription signal in the sera of patients with BD and correlated this increased signal intensity with the IL-2, IL-6, IL-17, IL-23, and INF-α levels from Th1 and Th17 cells. Another study reported increased levels of IL-21 in the serum of patients. IL-21 has a role in Th17 differentiation and can modulate Th1 and Treg cells (51). Th17 induces a neutrophil-mediated inflammatory response (17, 53). Another cytokine that plays an important role in the pathogenesis of the disease is IL-8, which is released from T lymphocytes; this cytokine is one of the main cytokines involved in leukocyte activation. Increased levels of IL-8 have been reported in the serum of patients with BD, and IL-8 levels have been shown to be correlated with the disease activity (54).

Epidemiology

The prevalence of BD varies worldwide. The disease is particularly common in communities around the Silk Road, extending from eastern Asia to the Mediterranean basin between 30 and 45 meridians (55) (Figure 1). However, due to the increasing awareness of this disease, it is better understood that this disease does not only belong to this geography and there is an increasing incidence of case reports from all over the world. In a meta-analysis in which Mal- dini and his colleagues evaluated the pooled prevalence of BD, the prevalence of this disease was reported to be 10.3/100000 globally, 119/100000 for Turkey, 31.8/100000 for the Middle East, 4.5/100000 for Asia, 3.3/100000 for Europe, and 3.8/100000 for North America (56, 57). The prevalence of this disease during childhood is unknown. In 4%-26% of the patients, it was reported that this disease started in the pediatric age (2-4).

In particular, studies involving immigrant communities in Western countries have shown that apart from the country of residence, ethnicity is also an important factor affecting the prevalence of this disease. The prevalence of BD was found to be higher in North African and Asian individuals living in Paris than those in Europe- an people, and this prevalence was indepen- dent of the age at which the patients migrated (58). In studies conducted in Germany and the Netherlands, the prevalence of BD among immi- grants is lower than the reported frequency for the origin of immigrants, but higher than those in the German and Dutch populations (21, 59, 60).

Several studies have shown that the frequency of clinical findings of BD varies according to geographical regions. It has been reported that the involvement of the gastrointestinal system is more frequent and vascular findings and oc- cular involvement are less common in patients with Northern European origin than patients in endemic areas (21, 61, 62). In a recent PEDBD cohort, higher frequencies of articular findings, gastrointestinal involvement, and neurological symptoms were reported in European patients. In addition, necrotic folliculitis, acneiform le- sions, and pseudofolliculitis were commonly detected in non-European patients (11).

PEDBD is seen equally in both the sexes, but the frequency of clinical findings varies be- tween the genders. Severe uveitis and vascular diseases are more common in boys, while gen- ital aphthae and erythema nodosum are more common in girls (6, 63, 64).

Clinical manifestations

BD is characterized by relapses and remis- sions. The distribution of clinical signs differs according to age, sex, and ethnic background. Mucocutaneous signs, as well as eye and joint involvement, are seen in the early stages, whereas the involvement of the gastrointesti- nal system, central nervous system, and large vessels often occur late in the course (65). The settlement of the clinical picture may take years after the occurrence of the initial symp- toms, which may be even longer in childhood BD. The symptoms often limit themselves with a recurrent episodic course. However, ocular involvement is one of the most common caus- es of morbidity and may progress to blindness (66, 67). Neurological involvement, large-vessel involvement, and gastrointestinal involvement may be life-threatening (67). The risk of complica- tions and mortality are greater in males at ages younger than 25 years (68). Geographic variability of the clinical symptoms is a prom- inent and challenging characteristic of this illness. There are no laboratory findings that demonstrate a good correlation with the clinical findings. The clinical criteria constitute the basis for classification and diagnosis. Clinical findings of various PEDBD cohorts are shown in Table 3 and Figure 2.

Mucocutaneous lesions

Recurrent mucocutaneous lesions mostly oc- cur during the initial phase of this disease. Oral ulcers are the most common type of mucocu- taneous lesions, seen in 96%-100% of the pa- tients (2, 3, 64, 69, 70). They can emerge years before other signs. Recurrent oral ulceration is generally nonspecific, and a differential di- agnosis includes numerous conditions such as herpes simplex virus, inflammatory bowel disease, celiac disease, nutritional deficiencies,
Yıldız et al. Pediatric Behçet's disease

PFAPA, AIDS, and SLE (71). Morphological distinction is often impossible. Therefore, in the absence of other components, diagnosing BD is very difficult. The oral ulcerations in BD may occur as painful circular lesions with sharp and erythematous borders, located around the tongue or on the oropharyngeal and buccal mucosas (71, 72). Although the lesions tend to be widespread and multiple, they may be single and appear to be herpetiform or necrotic (71). The average healing time is 10 days, with some lesions persisting for weeks. Lesions heal without scarring. Main and Chamberlain reported that an increased number of ulcers, concurrent variations in size from herpetiform to major aphthous, diffuse erythematous surroundings, and involvements of soft palate and oropharynx may be useful to recognize the oral ulcers of BD (72). Several studies have investigated the effects of environmental changes on the recurrence of oral ulcers. In the questionnaire-based study from Turkey, patients reported stress and fatigue as the most common triggering factors (73). Further, several publications have reported that nutrients from eggs, plants, nuts, tomatoes, and hot peppers, as well as seasonal changes (particularly winter and autumn), are triggering factors for oral ulcers (74, 75).

Genital ulcers occur in 57%-93% of the patients (71, 76). Frequently affected sites are the scrotum in males and labia major and minor in females (76). Perineal and perianal areas may also be involved (6). Although genital ulcers morphologically resemble oral ulcers, they may be deeper and have irregular borders, often healing with scarring. Kitaichi et al. (77) advocated that genital ulcers are less common in children. In a study involving 110 children diagnosed with BD, Atmaca et al. (69) supported this data. Krause et al. (70) compared juvenile- and adult-onset BD patients; they found that in contrast to other mucocutaneous findings, genital ulcers were less common in children (30/34 vs. 6/19). Although genital ulcers are less common than adults, the analysis of BD patients under the age of 16 years from various geographical areas revealed that genital ulcers were still the second-most-common finding after oral ulcers, with a frequency between 55% and 83% (3, 11, 64, 69, 70).

Skin involvement is seen in 38%-99% of the patients (76). The mean age of occurrence is 13 years (6). Skin lesions may occur as erythema nodosum-like lesions, papulopustular lesions, folliculitis, superficial thrombophlebitis, and cutaneous vasculitic lesions. Histologically, skin lesions are characterized by vasculitis and thrombosis. Early phases demonstrate leukoclastic vasculitis, and late phases show a predominance of lymphocytes. Acne-like lesions, in contrast to adolescent acne, are more common in the face, extremities, and the trunk (71).

The pathergy test consists of an intradermal puncture on the skin with a 20-gauge or smaller needle, 5 mm obliquely into the patient's flexor aspect of the avascular forearm skin under sterile conditions. It is considered positive when an indurated erythematous small papule or pustule forms within 48 h. The test is a nonspecific hypersensitivity response of the skin against trauma. However, it is not related to the involvement of a specific organ or disease activity. It is a warning sign in BD; however, it is not pathognomonic. The test positivity ranges between 40% and 80% due to geography- and population-based differences (69). Therefore, it has not been included in the newly proposed PEBDB classification criteria (11).

Musculoskeletal involvement

Articular symptoms are seen in 45%-60% of adults (71) and 20%-40% of children (2). They may occur during the initial phase (16.5%) (71). The knee and ankle are the most commonly involved joints; the elbow and wrist may be affected, too. The condition is nonscoring and does not cause any deformity. On the basis of the two studies with the same number of patients with BD, joint involvement was seen in 42.7% of the patients in Gallizzi et al. (4) cohort and 20.7% in Atmaca et al. (69) cohort. According to the PEBDB study, joint complaints were positive in 50% (78/156) of the patients diagnosed certainly with BD. The axial involvement rate was 16.67% (26/156), and the peripheral arthritis rate was 47.44% (74/156) (11). Enthesopathy may be seen, while sacroiliac involvement is rare, and there is a weak association with HLA-B27. PEBDB study reported an association with HLA-B27 spondyloarthropathy (2%) (11).

Eye involvement

The eye is one of the most commonly involved organs, being affected in 30%-70% of the cases, and it is the most significant cause of morbidity (71). It often occurs 2-3 years after the onset of the disease; however, in 10%-20% of the patients, it is present from the onset (78). Studies that have compared eye involvement in BD in children versus adults have found controversial results. Certain studies have reported that pediatric eye involvement occurs less commonly and at a later phase (6). It has also been reported that BD is not a common cause of pediatric uveitis, even in countries with a high prevalence of this disease (77). Some others have reported that eye involvement may be more common in children (79, 80). In a cohort of 110 patients from 16 Italian pediatric rheumatologic centers, Gallizzi et al. (4) found that eye involvement was the second-most common (43.6%) clinical finding after oral ulcers. In a cohort of Iranian patients with BD who have been diagnosed in childhood, ocular involvement was more frequent (62%) and more severe as compared to those in the other reports (14).

Krause et al. (70) advocated that frequency and morbidity were not associated with age. Atmaca et al. (69) found that the eye involvement rates were similar between children and adults (30.9% and 29.1%, respectively). Koné-Paut et al. (6) reported that eye involvement in children was less frequent than adults; however, they had a worse prognosis, particularly in males.

Patients may present with blurred vision, photophobia, redness, epiphora, and periorbital pain (81). Typically, it is a chronic, bilateral non-granulomatous inflammatory condition that shows flare-ups and can present with panuveitis by the involvement of the anterior or posterior segments or both (65, 71). Anterior uveitis with hypopyon, where the inflammatory exudate forms a visible layer in the anterior chamber, is a significant sign of the disease (71). Lakhmani et al. (82) reported that hypopyon is a rare finding, and Atmaca et al. (69) found a 9% incidence in a larger series of patients. In addition to smooth-layered hypopyon, superficial retinal infiltrate with retinal hemorrhages and branch retinal vein occlusion with vitreous haze are important indications in differential diagnoses (83). Iridocyclitis, keratitis, episcleritis, scleritis, vitritis, vitreous hemorrhage, optic neuritis, cataract, glaucoma, and retinal detachment can be other manifestations of eye involvement in BD. Newer and more intense treatment strategies in the recent years have improved the prognosis process and enabled a decreased risk of vision loss when compared with the situation in the 1990s (84, 85).

Neurological involvement

Neurological involvement is seen in 5.3%-59% of adults (86-89) and 3.6%-36% of pediatric patients (3, 4, 6, 69, 90). Manifestations usually present during puberty; however, earlier emergence is also possible (91). BD predominantly involves the central nervous system, whereas the peripheral nervous system is rarely affected (89). Parenchymal lesions are distributed in the brain stem, spinal cord, basal ganglia, and cerebral white matter, and they lead to the clinical picture of the Neuro-BD (88). This clinical con-
Vascular involvement

The rate of vascular involvement ranges within 5%-40% of adults (92-94) and 1.8%-21% of children (3, 4, 6, 69, 90), depending on the source-reference center. Venous involvement, presenting with superficial or deep vein thrombosis in the lower extremities, is the most common type of vascular involvement. Superficial thrombophlebitis appears as a sensitive erythematous elevation, which is transient and migratory. Deep vein thrombosis can be seen in various sites, particularly in bigger vessels including iliofemoral, superior or inferior vena cava, or on unusual localizations such as dural sinus thrombosis (headache, papilledema, intracranial hypertension), hepatic veins (Budd-Chiari syndrome), or inferior vena cava with pulmonary aneurysms (Hughes-Stovin syndrome) (95).

Arterial involvement is seen in 3%-12% of the patients (95, 96). However, when asymptomatic cases diagnosed during autopsy are taken into consideration, it may rise up to 33% (95). Pulmonary artery aneurysm is the most common cause of morbidity and mortality. Although arterial aneurysm is an expected consequence, occlusion or stenosis of the aorta, femoral, and pulmonary vessels may occur (96). Pulmonary embolism is not expected. Male sex and young age are the risk factors for vascular complications (68, 93).

In the study by Seyahi et al. (65), vascular involvement was seen in 15% (17/61) of the patients, all of whom were males. Large-vessel involvement was seen in the form of pulmonary artery aneurysm (4/17, 24%), vena cava thrombosis (3/17, 18%), Budd-Chiari syndrome (1/17, 6%), deep vein thrombosis of the lower extremities (6/17, 35%), and superficial vein thrombosis (3/17, 18%).

Gastrointestinal involvement

Gastrointestinal system involvement differs between various populations. The lowest frequencies have been reported in Turkey (2.8%), India (3.4%), and Saudi Arabia (4%); moderate frequencies in China (10%) and Taiwan (32%); and the highest frequencies in the United Kingdom (38%-53%) and Japan (50%-60%) (97). Intestinal involvement was reported to be more common in juvenile patients as compared to adults (65, 70). In the juvenile cohort of Krause et al. (70), the gastrointestinal symptom frequency was 36.8%. Studies performed involving the same age group and different populations revealed frequencies between 4.8% and 14.0% (3, 6, 90). The gastrointestinal symptoms emerge 4.5-6 years after the onset of oral ulcers (98). The most common symptoms include abdominal pain, nausea, vomiting, dyspepsia, diarrhea, and gastrointestinal bleeding (71). Mucosal inflammation and ulcers can occur throughout the gastrointestinal tract, more frequently in the ileocecal region, less frequently in the colon, and sparing the rectum. Endoscopic and colonoscopic examinations are important to differentiate this illness from Crohn’s disease. A study of 235 patients with Crohn's disease and intestinal BD revealed that round ulcer, focal single/focal multiple distribution of ulceration, fewer than six ulcers, absence of cobblestone appearance, or aphthous lesions were the most predictive symptoms of BD on colonoscopy in a multivariate analysis (99).

Another form, presenting with mesenteric artery involvement and leading to intestinal ischemia and infarction, is also present (97). Budd-Chiari syndrome is rare, but a serious and mortal condition. Twenty out of 43 patients (47%) diagnosed with disease-related Budd-Chiari syndrome died at the end of a 10-month follow-up period (IQR: 5-33) (100).

Management

BD is a multisystemic illness, with symptoms depending on the age, sex, and ethnic origin. The first step in the approach to this heterogeneous disease is to determine the treatment goals. The primary goals should be to manage the inflammatory flare-ups, which are the typical characteristic of this disease, as well as prevent irreversible organ damage (101). The type of the involved organ and level of damage, as well as the patient’s age, sex, and treatment preferences should be taken into consideration. Since this disease affects different systems, the treatment certainly requires a multidisciplinary approach. Newer treatment recommendations have been proposed in the light of this approach (102).
and followed-up for two years. Patients on azathioprine had fewer episodes of new or recurrent eye diseases. It was also associated with less frequent oral and genital ulcers and arthritis (108). In a study involving 157 consecutive patients treated with azathioprine for severe uveitis (active posterior uveitis or panuveitis) due to BD, 51.6% were complete responders and 41.4% were partial responders (109). Azathioprine therapy may also be the preferable treatment regimen for patients with gastrointestinal and neurological involvements. Systemic glucocorticoids are recommended to be used in combination with azathioprine or other systemic immunosuppressives (101, 102).

Cyclosporine A

Cyclosporine A is an effective option for severe ocular manifestations as well as refractory mucocutaneous lesions (103). It is currently recommended at a dose of 3 to 5 mg/kg/day due to its side-effects of hypertension, renal failure, and neurological problems (81, 110). Because of its neurotoxicity, cyclosporine is not recommended in patients suffering from neurological diseases (111). In a randomized trial involving 96 patients, cyclosporine (10 mg/kg per day in divided doses) was more effective than colchicine in the management of oral and genital ulcers as well as other skin lesions (112).

Cyclophosphamide

Cyclophosphamide is used for life-threatening conditions such as PAI, Budd-Chiari syndrome, peripheral arterial aneurysms/occlusions, and parenchymal neurological involvement in patients with BD (102, 105). These manifestations should be managed with aggressive medical treatment; high-dose glucocorticoids and monthly cyclophosphamide pulses followed by maintenance therapy with azathioprine should be initiated (102). Cyclophosphamide orally (2 mg/kg/day) or intravenously (750 to 1 g/m² every 4 weeks) can also be used.

Antitumor necrosis factor (Anti-TNF) (Etanercept, Infliximab, and Adalimumab)

TNF-blocking agents (anti-TNF), such as infliximab, etanercept, and adalimumab, have been reported to show an important therapeutic advance for patients with severe disease and resistant to standard immunosuppressive regimens, as well as for those patients with contraindications or intolerance to such treatments (102, 105). These biological agents are found to be very useful in controlling symptoms and recurrences, as well as significantly decreasing the required daily dose of corticosteroids (107, 113). Anti-TNF-α agents, particularly infliximab, have been reported to be very effective in the treatment of intraocular inflammation associated with BD (113-115). A multicenter observational study including 164 patients with BD-related uveitis who were treated with infliximab (5 mg/kg/infusion) for more than one year concluded that infliximab significantly reduced the frequency of ocular attacks and improved visual acuity (115). Uveitis relapsed in 59.1% of all the patients after initiating treatment with infliximab. However, 90% of relapses were controlled by increasing the doses of topical corticosteroids and shortening the interval of infliximab infusion (115). In a multicenter retrospective study involving 40 select patients, adalimumab has been found to be highly effective and safe for the treatment of BD-related uveitis, providing long-term control over ocular inflammation (116).

Anti-TNF agents are recommended in severe nervous system involvements as the first line or in refractory patients (102). They could be considered in cases of refractory venous thrombosis or arterial involvement (102). In a large retrospective study, it was shown that adalimumab-based regimens were more effective and rapid than disease-modifying antirheumatic drugs in inducing the resolution of venous thrombosis in BS patients, allowing the reduction of steroid exposure (117). Infliximab and adalimumab were also found to be well tolerated and effective therapy strategies for patients with moderate-to-severe intestinal BD (118).

Interferon α (IFN-α)

IFN-α is a naturally occurring cytokine that has immunomodulatory properties. In a systematic review of 32 original articles and four select abstracts including 338 patients treated with IFN-α-2a or IFN-α-2b, partial remissions have been recorded in patients with mucocutaneous symptoms (119). IFN-α has been found to be effective in resistant posterior uveitis, providing long-term remissions with the preservation of visual acuity (119).

Other treatment options

Biological and nonbiological agents such as anakinra, canakinumab, tocilizumab, ustekinumab, secukinumab, apremilast, and mycophenolate mofetil have been applied for the mucocutaneous lesions and refractory organ manifestations of BD, but controlled evidence is not available until now (120-125). Further studies are needed to better understand their efficiency and prove their safety.

Conclusion

BD is a rare but complex disease occurring in childhood, requiring a multidisciplinary approach in collaboration with pediatricians, rheumatologists, dermatologists, ophthalmologists, neurologists, gastroenterologists, and other specialists, when necessary. Multicenter, placebo-controlled, standardized studies that involve large patient series, utilize clinical scores, and have long-term follow-up are needed to better understand the nature of this disease. New therapeutic options under development in the light of pathogenetic hypothesis can be promising.

References

1. Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum 2013; 65: 1-11. [CrossRef]
2. Kone-Paut I. Behcet’s disease in children, an overview. Pediatr Rheumatol Online J 2016; 14: 10. [CrossRef]
3. Karincaoglu Y, Borlu M, Toker SC, Akman A, Onder M, Gunasti S, et al. Demographic and clinical properties of juvenile-onset Behcet’s disease: A controlled multicenter study. J Am Acad Dermatol 2008; 58: 579-84. [CrossRef]
4. Gallizzri R, Pidone C, Cantarini L, Finetti M, Cattalini M, Filocamo G, et al. A national cohort study on pediatric Behcet’s disease: cross-sectional data from an Italian registry. Pediatr Rheumatol Online J 2017; 15: 84. [CrossRef]
5. Behcet H. Uber rezidivierende, aphthose, durchein Virus verursachte Gaschwüre am Mund, am Auge und an den Genitalien. Dermat Wochenschr 1937; 105: 1152-7.
6. Kone-Paut I, Yurdakul S, Bahabari SA, Shafaei N, Ozen S, Ozdogan H, et al. Clinical features of Behcet’s disease in children: An international collaborative study of 86 cases. J Pediatri 1998; 132: 721-5. [CrossRef]
7. Mason RM, Barnes CG. Behcet’s syndrome with arthritis. Ann Rheum Dis 1969; 28: 95-103. [CrossRef]
8. Criteria for diagnosis of Behcet’s disease. International Study Group for Behcet’s Disease. Lancet 1990; 335: 1078-80.
9. The International Criteria for Behcet’s Disease (ICBD): a collaborative study of 27 countries on the sensitivity and specificity of the new criteria. J Eur Acad Dermatol Venereol 2014; 28: 338-47. [CrossRef]
26. De Menthon M, LaValley MP, Maldini C, Guillemin L, Mahr A. HLA-B51/BS and the risk of Behçet's disease: A systematic review and meta-analysis of case-control genetic association studies. Arthritis Care Res 2009; 61: 1287-96. [CrossRef]

27. Bodis G, Toth V, Schwartz A. Role of human leukocyte antigens (HLA) in autoimmune diseases. Methods Mol Biol 2018; 1802: 11-29. [CrossRef]

28. Maldini C, LaValley MP, Cheminant M, de men Thoron M, Mahr A. Relationships of HLA-B51 or B5 genotype with Behçet's disease clinical characteristics: Systematic review and meta-analyses of observational studies. Rheumatology 2012; 51: 887-900. [CrossRef]

29. Hou S, Yang Z, Du L, Jiang Z, Shu Q, Chen Y, et al. Identification of a susceptibility locus in STAT4 for Behçet’s disease in Han Chinese in a genome-wide association study. Arthritis Rheum 2012; 64: 4104-13. [CrossRef]

30. Salamaninejad A, Gohwari A, Hosseini S, Aslani S, Yousefi M, Bahrami T, et al. Genetics and immunodysfunction underlying Behçet’s disease and immunomodulant treatment approaches. J Immunotoxicol 2017; 14: 137-51. [CrossRef]

31. Ozen S, Erolgu FK. Pediatric-onset Behçet disease. Current Opinion in Rheumatology 2013; 25: 636-42. [CrossRef]

32. Delany ML, Turner MJ, Klenk EL, Smith JA, Sowders DP, Colbert RA. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum 2009; 60: 2633-43. [CrossRef]

33. Kiryo Y, Bertisas G, Ishigatsubo Y, Mizuki N, Tugral-Tutkun I, Seyahi E, et al. Genome-wide association analysis identifies new susceptibility loci for Behçet’s disease and epistasis between HLA-B*51 and ERAP1. Nat Genet 2013; 45: 202-7. [CrossRef]

34. Ombrello MJ, Kastner DL, Remmers EF. Endoplasmic reticulum-associated-amoeno-peptidase 1 and rheumatoid disease: Genetics. Curr Opin Rheumatol 2015; 27: 349-56. [CrossRef]

35. Evans DM, Spencer CCA, Pointon JJ, Su Z, Harvey D, Kochan G, et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet 2011; 43: 761-7. [CrossRef]

36. Analysis G, Consortium P, Trust W, Control C, Strange A, Capon F, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet 2010; 42: 985-90. [CrossRef]

37. McGonagle D, Aydin SZ, Gul A, Mah A, Direkse-klin E. ‘HMC-1-lipathy’-unified concept for spondyloarthritis and Behçet’s disease. Nat Rev Rheumatol 2015; 11: 731-40. [CrossRef]

38. Xavier JM, Shahram F, Sousa J, Davatchi F, Matis M, Abdollahi BS, et al. FUT2: Filling the gap between HLA-B27 and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum 2009; 60: 2633-43. [CrossRef]

39. Goto Y, Uematsu S, Kiyono H. Epithelial glycosylation in gut homeostasis and inflammation. Nat Immunol 2015; 16: 107-17. [CrossRef]

40. Goto Y, Uematsu S, Kiyono H. Epithelial glycosylation in gut homeostasis and inflammation. Nat Immunol 2015; 16: 107-17. [CrossRef]

41. Hughes T, Ture-Ozdemir F, Alibaz-Oner F, Coit P, Direskeneli H, Sawalha AH. Epigenome-wide scan identifies a treatment-responsive pattern of altered dna methylation among cytoskeletal remodeling genes in monocytes and cd4+ t cells from patients with behçet’s disease. Arthritis Rheumatol 2014; 66: 1648-58. [CrossRef]

42. Yu H, Liu Y, Bai L, Kijjstra A, Yang P. Predisposition to Behçet’s disease and VKH syndrome by genetic variants of mir-182. J Mol Med 2014; 92: 961-7. [CrossRef]

43. Zhou Q, Xiao X, Wang C, Zhang X, Li F, Zhou Y, et al. Decreased microRNA-155 expression in ocular Behçet’s disease but not in Vogt Koyanagi Harada syndrome. Investigative Ophthalmol Vis Sci 2012; 53: 5665-74. [CrossRef]

44. Woo MY, Yun SJ, Cho O, Kim K, Lee ES, Park S. MicroRNAs differentially expressed in Behçet disease are involved in interleukin-6 production. J Immunol 2016; 197: 171-24. [CrossRef]

45. Tong B, Li X, Xiao J, Su G. Immunopathogenesis of Behçet’s Disease. Front Immunol 2019; 10: 665. [CrossRef]

46. Pay S, Simşek Y, Erdem H, Dinç A. Immunopathogenesis of Behçet’s disease with special emphasis on the possible role of antigen presenting cells. Rheumatol Int 2007; 27: 417-24. [CrossRef]

47. Pinetón de Chambrun M, Wechsler B, Geri G, Cacoub P, Saadoun D. New insights into the pathogenesis of Behçet’s disease. Autoimmun Rev 2012; 11: 687-98. [CrossRef]

48. Freysdottir J, Hussain L, Farmer I, Lau SH, Fortune D. Diversity of γδ T cells in patients with Behçet’s disease is indicative of polyclonal activation. Oral Dis 2006; 12: 271-7. [CrossRef]

49. Van Hagen PM, Hooijkaas H, Vd Beemd MWM, Verjans G, Baarsma GS. T-γδ Receptor Restriction in Peripheral Lymphocytes of Patients with Behçet’s Disease. In: 2006. p. 267-8. [CrossRef]

50. Hamzaouï K, Hamzaouï A, France D, Hanim A, Ayed K, Chabbourou A, et al. Phenotype and functional profile of T cells expressing γδ receptor from patients with active Behçet’s disease. J Rheumatol 1994; 21: 2301-6. [CrossRef]

51. Geri G, Lermer B, Rosenzwag M, Wechsler B, Touzot M, Seihlein D, et al. Critical role of IL-21 in modulating TH17 and regulatory T cells in Behçet disease. J Allergy Clin Immunol 2011; 128: 655-64. [CrossRef]

52. Tulunay A, Dozmorov MG, Ture-Ozdemir F, Yilmaz V, Eksioglu-Demiralp E, Alibaz-Oner F, et al. Activation of the JAK/STAT pathway in Behçet’s disease. Genes Immun 2015; 16: 170-5. [CrossRef]

53. Direskeneli H, Fujita H, Akdis CA. Regulation of T H 17 and regulatory T cells in patients with Behçet disease. J Allergy Clin Immunol 2011; 128: 665-6. [CrossRef]

54. Zouboulis KC, Katsanontis J, Ketteler R, Teudtr R, Kaklamani E, Homemann S, et al. Adamantia-des-Behçet’s disease. Interleukin-8 is increased in serum of patients with active oral and neurological manifestations and is secreted by small vessel endothelial cells. Arch Dermatol Res 2000; 292: 279-84. [CrossRef]

55. Verity DH, Marr JE, Ohno S, Wallace GR, Stanford MR. Behçet’s disease, the Silk Road and...
102. Hatemi G, Christensen R, Bang D, Bodaghi B, Celik AF, Fortune F; et al. 2018 update of the EULAR recommendations for the management of Behcet’s syndrome. Ann Rheum Dis 2018; 77: 808-18. [CrossRef]

103. Leccese P, Ozguler Y, Christensen R, Esatoglu SN, Bang D, Bodaghi B, et al. Management of skin, mucosa and joint involvement of Behcet’s syndrome: A systematic review for update of the EULAR recommendations for the management of Behcet’s syndrome. Semin Arthritis Rheum 2019; 48: 752-62. [CrossRef]

104. Majumder PD, Biswas J. Pediatric uveitis: An update. Oman J Ophthalmol 2013; 6: 140-50. [CrossRef]

105. Esatoglu SN, Hatemi G. Update on the treatment of Behcet’s syndrome. Intern Emerg Med 2019. [CrossRef]

106. Yurdakul S, Mat C, Tuzun Y, Ozyazgan Y, Ha,myuryutan V, Uysal O, et al. A double-blind trial of colchicine in Behcet’s syndrome. Arthritis Rheum 2001; 44: 2686-92. [CrossRef]

107. Jabs DA, Rosenbaum JT, Foster CS, Holland GN, Jaffe GJ, Louie JS, et al. Guidelines for the use of immunosuppressive drugs in patients with ocular inflammatory disorders: recommendations of an expert panel. Am J Ophthalmol 2000; 130: 492-513. [CrossRef]

108. Yazici H, Pazarli H, Barnes CG, Tuzun Y, Ozyazgan Y, Silman A, et al. A controlled trial of azathioprine in Behcet’s syndrome. N Engl J Med 1990; 322: 281-5. [CrossRef]

109. Saadoun D, Wechsler B, Terrada C, Hajage D, Le Thi Huong D, Resche-Rigon M, et al. Azathioprine in severe uveitis of Behcet’s disease. Arthritis Care Res 2010; 62: 1733-8. [CrossRef]

110. Sajjadi H, Soheilian M, Ahmadieh H, Hassanein K, Parvin M, Azarmina M, et al. Low dose cyclosporin-A therapy in Behcet’s disease. J Ocul Pharmacol 1994; 10: 553-60. [CrossRef]

111. Kotake S, Higashi K, Yoshikawa K, Sasamoto Y, Okamoto T, Matsuda H. Central nervous system symptoms in patients with Behcet disease receiving cyclosporine therapy. Ophthalmology 1999; 106: 586-9. [CrossRef]

112. Masuda K, Nakajima A, Urayama A, Nakae K, Kogure M, Inaba G. Double-masked trial of cyclosporin versus colchicine and long-term open study of cyclosporin in Behcet’s disease. Lancet 1989; 1: 1093-6. [CrossRef]

113. Arida A, Fragiadaki K, Giavi E, Sfikakis PP. Anti-TNF agents for Behcet’s disease: analysis of published data on 369 patients. Semin Arthritis Rheum 2011; 41: 61-70. [CrossRef]

114. Tugal-Tutkun I, Mudun A, Urgancioglu M, Kamali S, Kasapoglu E, Inanc M, et al. Efficacy of infliximab in the treatment of uveitis that is resistant to treatment with the combination of azathioprine, cyclosporine, and corticosteroids in Behcet’s disease: an open-label trial. Arthritis Rheum 2005; 52: 2478-84. [CrossRef]

115. Takeuchi M, Kezuka T, Sugita S, Keino H, Namba K, Kaburaki T, et al. Evaluation of the long-term efficacy and safety of infliximab treatment for uveitis in Behcet’s disease: a multicenter study. Ophthalmology 2014; 121: 1877-84. [CrossRef]

116. Fabiani C, Vitale A, Emmi G, Vannozzi L, Lopalco G, Guerriero S, et al. Efficacy and safety of adalimumab in Behcet’s disease-related uveitis: a multicenter retrospective observational study. Clin Rheumatol 2017; 36: 183-9. [CrossRef]

117. Emmi G, Vitale A, Silvestri E, Boddi M, Becatti M, Fionillo C, et al. Adalimumab-Based Treatment Versus Disease-Modifying Antirheumatic Drugs for Venous Thrombosis in Behcet’s Syndrome: A Retrospective Study of Seventy Patients With Vascular Involvement. Arthritis Rheumatol 2018; 70: 1500-7. [CrossRef]

118. Hatemi I, Esatoglu SN, Hatemi G, Erzin Y, Yazici H, Celik AF. Characteristics, Treatment, and Long-Term Outcome of Gastrointestinal Involvement in Behcet’s Syndrome: A Strobe-Compliant Observational Study From a Dedicated Multi-disciplinary Center. Medicine 2016; 95: e3348. [CrossRef]

119. Kotter I, Gunaydin L, Zierhut M, Stuibiger N. The use of interferon alpha in Behcet disease: review of the literature. Semin Arthritis Rheum 2004; 33: 320-35. [CrossRef]

120. Vitale A, Rigante D, Lopalco G, Emmi G, Bianco MT, Galeazzi M, et al. New therapeutic solutions for Behcet’s syndrome. Expert Opin Investig Drugs 2016; 25: 827-40. [CrossRef]

121. Botsios C, Sfriso P, Furlan A, Punzi L, Dinarello CA. Resistant Behcet disease responsive to anakinra. Ann Intern Med 2008; 149: 284-6. [CrossRef]

122. Ugurlu S, Ucar D, Seyahi E, Hatemi G, Yurdakul S. Canakinumab in a patient with juvenile Behcet’s syndrome with refractory eye disease. Ann Rheum Dis 2012; 71: 1589-91. [CrossRef]

123. Chen J, Chen S, He J. A case of refractory intestinal Behcet’s disease treated with tocilizumab, a humanised anti-interleukin-6 receptor antibody. Clinical and experimental rheumatology 2017; 35(Suppl 108): 116-8. [CrossRef]

124. Baerveldt EM, Kappen JH, Thio HB, van Laar JA, van Hagen PM, Prens EP. Successful long-term triple disease control by ustekinumab in a patient with Behcet’s disease, psoriasis and hidradenitis suppurativa. Ann Rheum Dis 2013; 72: 626-7. [CrossRef]

125. Hatemi G, Melikoglu M, Tunc R, Korkmaz C, Turgut Ozturk B, Mat C, et al. Apremilast for Behcet’s syndrome—a phase 2, placebo-controlled study. N Engl J Med 2015; 372: 1510-8. [CrossRef]