Health-Related Quality of Life Associated With Pain Health States in Spinal Cord Stimulation for Chronic Neuropathic Pain

Rui V. Duarte, PhD* ‡; Nicole Soliday, MPH†; Angela Leitner, MS‡; Rod S. Taylor, PhD‡§

ABSTRACT

Objectives: A substantial proportion of patients have recently reported pain reduction levels of ≥80% following treatment with Evoked Compound Action Potential (ECAP) spinal cord stimulation (SCS). The additional health-related quality of life (HRQoL) utility gain that can be achieved in this patient group is unclear. The aim of this study is to quantify the HRQoL utility values seen in a remission health state (defined as ≥80% pain reduction) and contrast with more traditional health states of <50% and ≥50% pain relief.

Materials and Methods: Pain intensity assessed using a 100 mm visual analogue scale (VAS) and EQ-5D-5L questionnaires were collected from 204 patients treated with ECAP SCS for chronic back and leg pain and followed up to 12 months. Utility values were derived using EQ-5D-5L responses crosswalked to EQ-5D-3L. Linear regression models adjusted for baseline utility values and patient demographics were used to compare differences in utility values across health states.

Results: Patients in the remission health state (i.e., ≥80% pain reduction) consistently reported statistically significant greater utility values (+0.09 to +0.15, all p < 0.003) compared to patients reporting ≥50% pain relief at 3- and 12-month follow-up for overall, back, and leg VAS pain. The gain in utility values per percent unit of pain reduction was statistically significant at 3- and 12-month follow-up with a mean increase in HRQoL utility score between 0.003 and 0.005 observed for each percent of pain reduction.

Conclusion: Our analyses show that patients in a remission health state report statistically and clinically significant better HRQoL than patients experiencing lesser pain relief.

Keywords: Chronic pain, health states, health-related quality of life, remission, spinal cord stimulation

Conflict of Interest: Rui V. Duarte has received consultancy fees from Medtronic Ltd, Boston Scientific Corp and Saluda Medical. Nicole Soliday and Angela Leitner are employees of Saluda Medical. Rod S. Taylor has received consultancy fees from Medtronic Ltd, Saluda Medical, and Nevro Corp.

INTRODUCTION

Health-related quality of life (HRQoL) is a commonly used outcome measure for clinical trials. The use of HRQoL tools as part of clinical trials allow to obtain health utility values which are used to inform economic evaluations and determine the cost effectiveness of an intervention. Utility values also can be assigned to health states in economic models that consider outcomes of importance for a specific population (1). To date, the health states used to inform model-based economic evaluations of spinal cord stimulation (SCS) have all considered patient experience with optimal (i.e., ≥50%) or suboptimal (i.e., <50%) reduction in pain.

The field of neurostimulation has seen numerous advances in recent years that include new waveforms (e.g., burst (2), high frequency (3), high density) (4), new neural target areas (e.g., dorsal root ganglion) (5), and, most recently, measurement of the neurophysiological response to SCS to confirm stimulation of the intended target within the therapeutic window to modulate neural activity that drives pain inhibition (i.e., Evoked Compound Action Potential [ECAP] SCS, closed-loop) (6). Traditionally, satisfactory pain relief following therapy has been defined as a reduction in pain rating of 30–50% or more. However, more recent clinical trials of SCS have reported a substantial proportion...
of chronic pain patients reporting pain reduction levels of ≥80% (6,7). In contrast to lower levels of pain relief, this group of “high responders” (or “remitters”) have the potential ability to achieve considerably better levels of HRQoL.

However, it remains unclear what the additional extent of HRQoL utility gain might be achieved in this population. Furthermore, the cost effectiveness of newer SCS technologies may be underestimated by not formally including consideration of additional gains in health (and reductions in costs) associated with high responders. In addition, the probabilities of achieving different pain reduction thresholds and associated health state utility values has the potential to affect cost effectiveness estimates of SCS. Empirical research is therefore needed to determine the utility values associated with these pain health states to improve existing SCS economic models.

The aim of this study is to quantify the HRQoL utility values seen in remitters (i.e., ≥80% pain reduction) and contrast this with the values associated with the more traditional health states of <50% and ≥50% pain relief.

MATERIALS AND METHODS

Study Design

This study used data from a total of 204 patients from two previously reported studies (EVOKE [NCT02924129] and AVALON [ACTRN12615000713594]) in patients with chronic back and leg pain who received SCS using the Evoke SCS System (Saluda Medical) with follow up at 3- and 12-month postimplant. EVOKE was a multicenter, double-blind, parallel-arm randomized controlled trial (RCT) conducted in 13 centers in the US with 134 patients randomized 1:1 to closed-loop SCS or open-loop (i.e., conventional) SCS (6). AVALON was a multicenter, prospective single-arm study conducted in five centers in Australia with 70 patients screened (7). Both studies were conducted in compliance with ethical and regulatory guidelines and were approved by local ethics committees prior to subject enrolment.

ECAP SCS

In SCS, electrodes are implanted in the epidural space over the dorsal aspect of the spinal cord and connected to a stimulator to deliver electrical stimulus with the goal of producing pain relief and other clinical benefits. SCS therapies, however, are limited in that stimulation occurs without knowledge of whether the intended target is activated or the level of such activation (8). They are further challenged by the constantly changing distance between the electrode and the spinal cord that occurs with both patient involuntary physiological and voluntary movement (9).

These factors may contribute to the variability observed in clinical outcomes (10).

The Evoke System was designed to address these limitations by continuously recording in vivo human spinal cord electrophysiology to confirm modulation of neural activity that drives pain inhibition (11,12). An ECAP is measured for every stimulation pulse delivered, which reflects the type and degree of spinal cord activation elicited by SCS (see Supporting Information Material 1). Thus, the intended target is identified and the therapy delivered is confirmed. The system may operate in fixed-output, open-loop (open-loop) or ECAP-controlled, closed-loop (closed-loop) mode. ECAP measurement is performed in both modes and may be used to determine optimal stimulation settings. In closed-loop mode, the measured ECAP is compared to the target ECAP amplitude and the stimulation current is automatically adjusted to maintain consistent spinal cord activation.

Demographic and Outcome Data

For the present study, we obtained the following individual patient data:

1. Patient demographics: age, gender, duration of pain, previous back surgery;
2. Pain intensity: overall, back, and leg pain visual analog scale (VAS) scores at baseline, 3- and 12-month follow-up;
3. HRQoL: EQ-5D-5L utility scores at baseline, 3- and 12-month follow-up.

Pain intensity was assessed using a 100 mm VAS ranging from 0 (no pain) to 100 (worst possible pain) (13). The VAS is considered a reliable and valid measure of subjective phenomena including chronic pain (13,14). Levels of pain relief were based on the health states currently used in economic models to assess the impact of SCS:

- “No pain relief” (NPR): no pain relief or worsening of pain;
- “Suboptimal pain relief” (SPR): pain relief up to 50%;
- “Optimal pain relief” (OPR): ≥50% pain relief.

In addition, we defined ≥80% pain relief as indicative of “high response” or “remittance” (R) (6,15,16).

HRQoL was derived from participants’ responses to the EQ-5D-5L instrument. The EQ-5D-5L descriptive system is a questionnaire designed to be completed by the patient and comprising five dimensions (mobility, self-care, usual activities, pain/discomfort, and depression/anxiety), where each dimension has five response levels: no problems, slight problems, moderate problems, severe problems, unable to/ extreme problems (17). The respondent is asked to indicate his/her overall health state by selecting the level that corresponds to his/her quality of life for each of the five dimensions. Responses to the EQ-5D-5L were converted into single (utility) indices using a set of weights (tariff) reflecting population preferences for the particular health state. Utility scores were obtained by using the EQ-5D-5L responses crosswalked to the EQ-5D-3L UK value set (18). Results also are presented considering utility scores obtained using the US value set for EQ-5D-5L crosswalk to EQ-5D-3L (see Supporting Information Material 2).

Statistical Analysis

Data on 170 patients provided 99% power at 5% alpha to detect a clinically important difference in EQ-5D utility of 0.10 between pain cut-offs assuming a standard deviation of 0.20 (19).

Probabilities of patients achieving the four different pain reduction thresholds (no pain relief, suboptimal pain relief, optimal pain relief, and remission) and associated HRQoL utility values (means and 95% confidence intervals [CIs]) were estimated at each threshold for EQ-5D data at 3- and 12-month follow-up.

Linear regression models were used to compare the differences in utility values across the pain reduction threshold. Given the observational nature of these analyses, models were adjusted for baseline utility values, patient age, gender, duration of pain, and previous back operation history. A secondary regression analysis was undertaken using pain reduction as a continuous variable. All
models were run separately for EQ-5D utilities at 3- and 12-month follow-up data and for overall, leg, and back pain.

All data analyses were undertaken using STATA v16.0.

RESULTS

Between August 2015 and September 2016 (AVALON case series, $n = 70$) and January 2017 and January 2018 (EVOKE RCT, $n = 134$), a total of 204 patients were enrolled in the respective studies (Fig. 1). The 12-month follow-up assessment was completed by a total of 146 patients across both studies.

Participants in the studies had an average age of 55.6 years and relatively equal representation by sex, with a mean overall VAS pain of 81.3 and primarily a failed back surgery syndrome diagnosis (Table 1). The mean utility value with EQ-5D at baseline was 0.33.

At 3- and 12-month follow-up more than half of the patients experienced ≥80% pain relief (i.e., remission) for overall, back, and leg pain (Table 2). Optimal pain relief (i.e., ≥50% and <80%) was experienced by approximately a quarter of patients across the types of pain and follow-ups. Suboptimal pain relief (i.e., <50%) was achieved by between 11% and 21% of patients across the types of pain and follow-ups. Only a small number of patients (i.e., between 1% and 3%) did not obtain some degree of pain relief.

The mean (SD) utility values derived from the EQ-5D were 0.67 (0.20) at 3-month follow-up 0.65 (0.22) at 12-month follow-up. Comparison of utility values derived from the EQ-5D between NPR and SPR health states shows no statistically significant
The HRQoL utility when compared with the more traditional level of 50% pain relief. We found a mean gain +0.09 to +0.15 on EQ-5D utility associated with the remission health state compared to ≥50% pain relief. This gain was both statistically significant and clinically important (i.e., >0.074) (20). The data and HRQoL utility values were derived from studies with ECAP SCS. Future studies of SCS in particular and other chronic pain treatments in general need to evaluate if similar utility gains are obtained for these health states mainly the remission health state.

The health states considered for this study reflect those used in previous economic models to assess the cost-effectiveness of SCS. The mean index score observed at baseline (i.e., 0.33) corresponds to that previously reported for patients with severe chronic pain with neuropathic characteristics (21). The HRQoL utility values for differences for overall and back pain at 3- or 12-month follow-up (Table 3). A statistically significant difference is observed for NPR versus SPR for leg VAS pain at 12-month follow-up. Comparison of SPR versus OPR health states shows statistically significant greater utility scores for OPR health state at 3- and 12-month follow-up for overall and back VAS pain and at 12 months only for leg VAS pain. Patients in the R health state consistently reported statistically significant greater utility values than patients in the OPR health state at 3- and 12-month follow-up for overall, back, and leg VAS pain.

The gain in utility values per percent unit of pain reduction was statistically significant at 3- and 12-month follow-up for overall, back, and leg VAS pain (Table 4). A mean increase in HRQoL utility score between 0.003 and 0.005 is observed for each percent of pain reduction experienced in overall, back, or leg VAS pain. The r^2, which explains the variance in utility score due to pain relief observed, ranged from 0.25 (leg VAS pain at 3 months) to 0.42 (back VAS pain at 12 months).

Positive correlation coefficients between EQ-5D-5L utility values and pain reduction in overall VAS pain were 0.667 and 0.550 at 3-month follow-up (Fig. 2) and 12-month follow-up (Fig. 3), respectively. Similar correlation coefficient values were observed for back (0.613, 0.604) and leg (0.654, 0.500) VAS pain at 3- and 12-month follow-up, respectively.

Utility values derived from the EQ-5D-5L responses crosswalked to EQ-5D-3L US value set show greater index scores for all the different health states (Supporting Information Material 2). Differences between health states observed using the US value set are consistent with the results based on the UK value set.

DISCUSSION

This study shows that the improvement in HRQoL utility of people with chronic pain is directly associated with their level of pain relief. Our results confirm that a “high response” or “remission” health state (i.e., ≥80% pain relief) is associated with greater HRQoL utility when compared with the more traditional level of ≥50% pain relief. The gain in utility associated with the remission health state compared to ≥50% pain relief. This gain was both statistically significant and clinically important (i.e., >0.074) (20). The data and HRQoL utility values were derived from studies with ECAP SCS. Future studies of SCS in particular and other chronic pain treatments in general need to evaluate if similar utility gains are obtained for these health states mainly the remission health state.

The health states considered for this study reflect those used in previous economic models to assess the cost-effectiveness of SCS. The mean index score observed at baseline (i.e., 0.33) corresponds to that previously reported for patients with severe chronic pain with neuropathic characteristics (21). The HRQoL utility values for

Table 2. Level of Pain Relief by Health States at 3- and 12-Month Follow-Up.

Health State	Overall pain n/N (%)	Back pain n/N (%)	Leg pain n/N (%)			
	3-month	12-month	3-month	12-month	3-month	12-month
No pain relief	2 (1%)	2 (1%)	2 (1%)	4 (3%)	4 (3%)	3 (2%)
Suboptimal pain	28 (18%)	19 (13%)	33 (21%)	24 (17%)	17 (11%)	18 (13%)
Optimal pain	44 (28%)	44 (30%)	38 (25%)	39 (27%)	32 (22%)	32 (23%)
Remission	82 (53%)	81 (55%)	82 (53%)	78 (54%)	95 (64%)	85 (62%)
Total	156	146	155	145	148	138

Table 3. Levels of EQ-5D Utility (UK Values) by Health State at 3- and 12-Month Follow-Up.

Health State	Mean utility score (95% CI)	Comparison of health states	Mean utility score (95% CI)	Comparison of health states
	3-month contrasts	p value*	12-months contrasts	p value*
Overall VAS pain				
No pain relief	0.42 (0.19–2.28)	-	0.14 (0.19–2.20)	-
Suboptimal pain	0.50 (0.42–0.58)	NPR vs. SPR	0.425	NPR vs. SPR
Optimal pain	0.63 (0.57–0.68)	SPR vs. OPR	0.004	SPR vs. OPR
Remission (R)	0.77 (0.73–0.80)	OPR vs. R	<0.0001	OPR vs. R
Back VAS pain				
No pain relief	0.42 (0.22–2.32)	-	0.32 (0.20–0.44)	-
Suboptimal pain	0.52 (0.44–0.59)	NPR vs. SPR	0.395	NPR vs. SPR
Optimal pain	0.62 (0.57–0.68)	SPR vs. OPR	0.002	SPR vs. OPR
Remission (R)	0.77 (0.73–0.80)	OPR vs. R	<0.0001	OPR vs. R
Leg VAS pain				
No pain relief	0.37 (0.07–0.67)	-	0.08 (0.25–0.41)	-
Suboptimal pain	0.49 (0.35–0.64)	NPR vs. SPR	0.484	NPR vs. SPR
Optimal pain	0.63 (0.57–0.69)	SPR vs. OPR	0.343	SPR vs. OPR
Remission (R)	0.74 (0.70–0.77)	OPR vs. R	<0.003	OPR vs. R

*Adjusted for baseline EQ-5D utility score, age, gender, pain duration, previous back surgery. CIs, confidence intervals; VAS, visual analog scale.
the optimal pain relief health state observed in this study are in line with previously reported utility values employed in economic models of SCS, that is, 0.60 (22–24). However, the index scores observed in this study for the no pain relief health state ranged from 0.08 (leg VAS pain at 12-month follow-up) to 0.42 (overall and back VAS pain at 3-month follow-up). While the value of 0.08 is in line with index scores previously reported (i.e., 0.17), the value of 0.42 is substantially greater. This variance is likely due to the very limited number of patients (<5%) that did not experience any pain relief in this study as all patients received SCS. Previous assessments of HRQoL associated with health states include patients receiving usual care, hence likely to have a larger proportion of patients with no perceived pain reduction (25).

The mean utility score observed for the remission health state ranged between 0.72 and 0.74 at 12-month follow-up, only slightly lower than the mean utility score of 0.79 reported for a UK general population (21). The proportion of patients reporting ≥80% pain relief at 12-month follow-up ranged from 54% to 62%. Closed-loop SCS was associated with 15–19% higher remission rates compared to open-loop SCS at 3- and 12-month follow-up, respectively (6). The proportion of patients with ≥80% pain relief was first reported in the 2007 PROCESS trial comparing SCS using traditional parameters to conventional medical management where 22% of SCS subjects achieved this level of VAS leg pain relief at 6 months (19). A recent retrospective analysis found 22% of patients with SCS using traditional parameters had >80% pain relief on the Numeric Rating Scale (NRS) at 12-month follow-up (20% of patients with NRS = 0) (15). Another retrospective analysis examined remission defined as a VAS back pain score ≤3.0 cm for at least 6 months and reported 55% of patients with high frequency SCS in remission at 24-month follow-up (16). The same study observed that a subject in remission at 12 months was 8.1 times more likely to be in remission at 24 months than a patient who was not (odds ratio = 8.1, 95% CI = 3.7–17.4). As was observed with ECAP SCS in the current study, higher remission rates have been observed with newer SCS models and thus it is important to consider this in economic models of cost effectiveness for these new technologies.

The utility scores for the different health states varied considering the use of EQ-5D UK or US value set. The instrument and value set used to derive utility scores should be clearly reported. As previously reported, the choice between EQ-5D and other HRQoL tools such as the SF-6D can result in large differences in the estimation of utility scores for chronic pain (21). Previous studies have reported differences between EQ-5D specific country tariffs among type 2 diabetes patients (26), Crohn’s disease (27), or

Table 4. Levels of EQ-5D Utility (UK Values) at 3- and 12-Month Follow-Up by Pain Relief as a Continuous Variable.
Mean change in utility per percent unit of pain relief change
Univariable analysis
Mean
3-month Overall pain
Back pain
Leg pain
12-month Overall pain
Back pain
Leg pain

*Adjusted for baseline EQ-5D utility score, age, gender, pain duration, previous back surgery.

Figure 2. Univariable relationship between EQ-5D utility (UK values) at 3-month follow-up versus percent overall pain relief. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. Univariable relationship between EQ-5D utility (UK values) at 12-month follow-up versus percent overall pain relief. [Color figure can be viewed at wileyonlinelibrary.com]
general population (28) but not for patients with HIV (29). There is
evidence that SF-6D preference weights differ between countries.
Comparisons between SF-6D value sets for UK and US (30), Hong
Kong (31), Japan (32), and Portugal (33) suggest important differ-
ences in valuation. Utility scores derived from different instru-
ments or considering different countries preference weights
should not be used interchangeably with risk of impacting
funding decisions.

It is unclear how the differences between the utility scores
derived from EQ-5D value sets would impact an economic evalua-
tion. Since the utility values are applied to both treatments and
their comparators, to some extent the differences may be even
including the incremental gain associated with an intervention
(34). While several model-based economic evaluations of SCS
have been published (35), the impact of using different value sets
and adding a remission health state needs to be further
investigated.

Strengths and Weaknesses

We believe this to be the first empirical study to analyze and
quantify the impact of remission on HRQoL. Analyses conducted
considered index scores derived from the EQ-5D employing pref-
erence weights for both the UK and US. Our findings were consis-
tent across pain locations and follow-up timings. Our study
population is reflective of other trial populations that included
people with chronic pain.

However, we recognize that there are potential limitations. First,
as this was an observational comparison of utility values across
pain relief states, our findings may be subject to confounding and
selection bias. However, we sought to minimize such bias by
undertaking multivariable analysis adjusting for key patient demo-
graphics and baseline utility scores that may differ across health
states. Second, the minimally clinical important difference for the
EQ-5D has been reported to be 0.074 (20). We used a conserva-
tive approach to determine the sample size required for this study
by using a difference of 0.1 between pain thresholds; a larger dif-
ference than that observed specifically for people with chronic
pain with neuropathic characteristics (i.e., 0.09 mean difference
between mild and moderate neuropathic pain) (21). Although the
number of patients included in the study were sufficient to detect
an important difference in HRQoL utility scores, the number of
patients with no pain relief were insufficient to produce reliable
findings for the no pain relief health state. We would therefore
recommend that researchers continue to use existing utility
values for the no pain relief state. Third, other definitions of remis-
ion have been proposed such as maintenance of a VAS pain
score ≤ 3.0 cm for at least 6 months (16). However, in order to
inform future economic evaluations of SCS, we specifically choose a
definition based on percentage of pain relief as this aligns with
the structure of existing models. Finally, the EVOKE and AVALON
trials used strict eligibility criteria. It is important to evaluate if the
results presented within this study are observed in routine clinical
practice.

Implications for Practice

The findings of this study have important implications for
future cost-effectiveness analyses and reporting of clinical trials in
the field of chronic pain. Reflective of technological innovations in
the therapy, a number of recent SCS clinical trials have reported
increased proportion of patients reporting higher rates of pain
relief. The EVOKE and AVALON trials (data used in this analysis)
have reported 56% and 54%, respectively, of participants with
closed-loop therapy experiencing ≥80% pain relief at 12-month
follow-up (6,7). Based on our findings, we would recommend that
economic models of chronic pain be updated to include the
remission health state. By doing so, future economic evaluations
will more appropriately capture the health gains and cost-
effectiveness of interventions.

Health states based on levels of pain relief also align with
IMMPACT recommendations for studies of chronic pain
populations to report the proportions of patients achieving mod-
erate clinically important changes (i.e., ≥30%) and substantial clin-
ically important changes (i.e., ≥50%) (36). We propose that future
studies also report the proportion of patients in remission, that is,
reporting ≥80% pain relief.

In conclusion, this study shows that the improvement in HRQoL
utility of people with chronic pain treated with ECP AVALON is
directly associated with their level of pain relief. Patients in a
remission health state defined as ≥80% pain relief report statisti-
cally and clinically significant better HRQoL when compared with
more traditional levels of pain relief of ≥50%. Based on our find-
ings, we would recommend that future clinical trials consistently
include the reporting of participants who experience ≥80% pain
relief and that economic models of chronic pain be updated to
include the remission health state.

Authorship Statement

Rod S. Taylor conceptualized the study. Rui V. Duarte and Rod
S. Taylor designed the study. Nicole Soliday and Angela Leitner
provided the anonymized individual patient data. Rui V. Duarte
and Rod S. Taylor conducted the analysis and interpretation of
the data. Rui V. Duarte and Rod S. Taylor wrote the first draft of
the manuscript. All authors contributed to drafts of the manu-
script and approved the final version of the manuscript.

How to Cite this Article:

Duarte R.V., Soliday N., Leitner A., Taylor R.S. 2021. Health-
Related Quality of Life Associated With Pain Health States
in Spinal Cord Stimulation for Chronic Neuropathic Pain.
Neuromodulation 2021; 24: 142–149

REFERENCES

1. Wolowacz SE, Briggs A, Belzzeroff V et al. Estimating health-state utility for eco-
nomic models in clinical studies: an ISPOR good research practices task force
report. Value Health 2016;19:704–719.
2. Deer T, Slavin KV, Amirdelfan K et al. Success using neuromodulation with BURST
(SUNBURST) study: results from a prospective, randomized controlled trial using
a novel burst waveform. Neuromodulation 2018;21:56–66.
3. Kapural L, Yu C, Doust MW et al. Novel 10-kHz high-frequency therapy (HF10
therapy) is superior to traditional low-frequency spinal cord stimulation for the
treatment of chronic back and leg pain: the SENZA-RCT randomized controlled trial.
Anesthesiology 2015;123:851–860.
4. Sweet J, Badjatiya A, Tan D, Miller J. Paresthesia-free high-density spinal cord
stimulation for postlaminctomy syndrome in a prescreened population: a pro-
spective case series. Neuromodulation 2016;19:260–267.
5. Deer TR, Levy RM, Kramer J et al. Dorsal root ganglion stimulation yielded
higher treatment success rate for complex regional pain syndrome and
148

causalgia at 3 and 12 months: a randomized comparative trial. Pain 2017;158: 669–681.
6. Meekhail N, Levy RM, Deer TR et al. Long-term safety and efficacy of closed-loop spinal cord stimulation to treat chronic back and leg pain (Evoke): a double-blind, randomised, controlled trial. Lancet Neurol 2020;19:123–134.
7. Russo M, Brooker C, Cousins MJ et al. Sustained long-term outcomes with closed-loop spinal cord stimulation: 12-month results of the prospective, multi-center, open-label Avalon study. Neuromodulation 2020; E-pub ahead of print.
8. Levy RM. The need for mechanism-based medicine in neuromodulation. Neuromodulation 2012;15:273–279.
9. Holsheimer J. Effectiveness of spinal cord stimulation in the management of chronic pain: analysis of technical drawbacks and solutions. Neuromodulation 1997; 40:990–996.
10. Zhang TC, Janik JJ, Grill WM. Mechanisms and models of spinal cord stimulation for the treatment of neuropathic pain. Brain Res Rev 2014;1569:19–31.
11. Parker JL, Karantonis DM, Single PS et al. Electrically evoked compound action potentials recorded from the sheep spinal cord. Neuromodulation 2013;16:295–303.
12. Parker JL, Karantonis DM, Single PS, Obradovic M, Cousins MJ. Compound action potentials recorded in the human spinal cord during neurostimulation for pain relief. J Neurol Sci 2017;380:172–178.
13. Price DD, McGrath PA, Rahman K et al. Sustained long-term outcomes with closed-loop spinal cord stimulation. PLoS One 2015;10:e0137526.
14. McCormack HM, Horne DJ, Sheather S. Clinical applications of visual analogue scales: a critical review. Psychol Med 1988;18:1007–1019.
15. Khan H, Pillitis JG, Prusk J, Smith H, McCallum SE. Pain remission at one-year follow-up with spinal cord stimulation. Neuromodulation 2018;21:101–105.
16. Amiredfian K, Gliner BE, Kapural L et al. A proposed definition of remission from chronic pain, based on retrospective evaluation of 24-month outcomes with spinal cord stimulation. Postgrad Med 2019;131:278–286.
17. Herdman M, Gudex C, Lloyd A et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res 2011;20: 1727–1736.
18. van Hout B, Janssen MF, Feng YS et al. Interim scoring for the EQ-5D-5L: mapping the EQ-5D-5L to EQ-5D-3L value sets. Value Health 2012;15:708–715.
19. Kumar K, Taylor RS, Jacques L et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain 2007;132:179–188.
20. Walters SJ, Brazier JE. Comparison of the minimally important difference for two health state utility measures: EQ-5D and SF-6D. Qual Life Res 2005;14: 1523–1532.
21. Torrance N, Lawson KD, Afolabi E et al. Estimating the burden of disease in chronic pain with and without neuropathic characteristics: does the choice between the EQ-5D and SF-6D matter? Pain 2014;155:1996–2004.
22. Simpson EL, Duanes A, Holmes MW, Papaioannou D, Chilcott J. Spinal cord stimulation for chronic pain of neuropathic or ischaemic origin: systematic review and economic evaluation. Health Technol Assess 2009;13:i–x.
23. Taylor RS, Ryan J, O’Donnell R, Eldabe S, Kumar K, North RB. The cost-effectiveness of spinal cord stimulation in the treatment of failed back surgery syndrome. Clin Cost Effectiveness 2010;2:463–469.
24. Annemans L, Van Buyen JP, Smith T, Al-Kaissy A. Cost effectiveness of a novel 10 kHz high-frequency spinal cord stimulation system in patients with failed back surgery syndrome (FBSS). J Long Term Eff Med Implants 2014;24:173–183.
25. Manca A, Kumar K, Taylor RS et al. Quality of life, resource consumption and costs of spinal cord stimulation versus conventional medical management in neuropathic pain patients with failed back surgery syndrome (PROCESS trial). Eur J Pain 2008;12:1047–1058.
26. Kiadaliri AA, Eliasson B, Gerdtham UG. Does the choice of EQ-5D tariff matter? A comparison of the Swedish EQ-5D-3L index score with US, UK, Germany and Denmark among type 2 diabetes patients. Health Qual Life Outcomes 2015;13:145.
27. Mozzi A, Meraviglia M, Lazzaro C, Tornatore V, Belfiglio M, Fattore G. A comparison of EuroQol 5-dimension health-related utilities using Italian, UK, and US preference weights in a patient sample. Clinicoecon Outcomes Res 2016;8: 267–274.
28. Gerlinger C, Bamber L, Leverkus F et al. Comparing the EQ-5D-5L utility index based on value sets of different countries: Impact on the interpretation of clinical study results. BMC Res Notes 2019;12:18.
29. Huang IC, Willke RJ, Atkinson MJ, Lenderking WR, Frangakis C, Wu AW. Value sets in the United States: US preference weights in a patient sample. Clinicoecon Outcomes Res 2014;6:1019.
30. Craig BM, Pickard AS, Stolk E, Brazier JE. US valuation of the SF-6D. Value Health 2011;14:1065–1073.
31. Kharroubi SA, Brazier JE, McGhee S. A comparison of Hong Kong and United Kingdom SF-6D health state valuations using a non-parametric Bayesian method. Value Health 2014;17:397–405.
32. Kharroubi SA. A comparison of Japan and U.K. SF-6D health-state valuations using a non-parametric Bayesian method. Appl Health Econ Health Policy 2015;13:409–420.
33. Donnell R, Eldabe S, Kumar K, North RB. The validation of visual analogue scales: a critical review. Pain Med 2008;9:i, iii–ix.
34. Mulhern B, Feng Y, Shah K et al. Comparing the UKEQ-5D-3L and English EQ-5D-3L valuations: a study of SF-6D health state valuations. Value Health 2013;16:662–668.
35. Niyomsri S, Duarte RV, Eldabe S et al. A systematic review of economic evaluations reporting the cost-effectiveness of spinal cord stimulation. Value Health 2020;23:656–665.
36. Dworkin RH, Turk DC, Wyrwich KW et al. Interpreting the clinical importance of treatment outcomes in chronic pain clinical trials: IMMPACT recommendations. J Pain 2008;9:105–121.

SUPPORTING INFORMATION
Additional supporting information may be found online in the supporting information tab for this article.

COMMENTS
This is an interesting piece of work that clearly demonstrates the link between improvements in Health-related Quality of Life (HRQoL) and its association with the level of pain relief. These facts will be of interest to patients and healthcare, commissioners and clinicians alike.

Sam Eldabe, MBBS
Middlesbrough, United Kingdom

This manuscript uses the combined population of subjects recruited to two clinical trials in Australia and USA and looks at the relationship between responder rates as judged by pain score percentage change with that of the EQSD-5L, a measure of Health related quality of life. We are used to looking at responder rates of 30 or 50% pain reduction but since more than half of the subjects treated in these trials achieved 80% reduction, it is important to see if the correlation between responder rate and utility score continues. The authors opine that future studies should report those patients with greater than 80% pain reduction and that economic models providing the cost effectiveness data be upgraded. The added utility score difference can have a profound influence on the cost effectiveness of the newer generation of SCS therapies.

Simon Thomson, MBBS
Basildon, Essex United Kingdom

The result of this study is not surprising to me - more pain relief leads to more quality of life improvement. Intrinsically, this seems likely to me until such time as the quality of life has approximated the normal population. I am unsure at this time what is the best definition of remission/remitter status. Is it VAS<3 as promoted by Amiredfian et al, or is it >80% pain reduction from baseline? I think the jury is out on that one and we need more nuanced studies to answer that question. Probably both are valid if I have a stab at it.

Figure 3 is instructional. Setting aside one outlier at 30% pain relief, one needs a minimum of 60% pain relief to see a Utility Score of 0.75 or greater. It is not all about percentage pain relief - 2/3ths of the remission (>80% pain relief) group had a Utility Score less than 0.75. So more factors are at play here. I would posit that extended walking distance, full wean from opioids and minimal device interaction/attention time are additional factors that play into a very high quality of life outcome. I believe we need to understand the significant components that go into a high quality of life score and then tune our therapies to deliver those outcomes. Only then can we say we have truly gone beyond the VAS in our delivery of care. This is not a dry, dusty and pointless field of esoteric research. It is a rich vein of understanding.
how we can connect meaningfully with our patients and improve their lives holistically. I echo the authors' call for additional outcome states to be added to the literature above and beyond >50% pain relief.

Marc Russo, MBBS
Broadmeadow, NSW Australia

This study used data of patients from two previously reported studies in patients with back and leg pain who received an ECAP SCS system. The study demonstrated that patients in a remission state (pain relief >80%) reported statistically and clinically significant better health-related quality of life (HRQoL).

Michael E. Harned, MD
Lexington, KY USA