RUNX1 mutation and elevated FLT3 gene expression cooperates to induce inferior prognosis in cytogenetically normal acute myeloid leukemia patients

Atia Rehmana, Afia Muhammad Akramb,⇑, Asma Chaudharyb, Nadeem Sheikha, Zawar Hussainb, Walaa F. Alsaniec,d, Rahat Abdul Rehman e, Naiia Hamied, Tayyaba Saleema, Amjad Zafarf, Muhammad Absar e, Zafar Iqbalh, Alaa Alhazmij, Hosam Ali Baeshenk, Zuhair M. Mohammadsalehl, Samina Qamerm,⇑, Samy Sayedn, Ahmed Gaberc,o

a Cell and Molecular Biology Lab (CMBL), Department of Zoology, University of the Punjab, Lahore, Pakistan
b Molecular Biology Lab, University of Education, Township Campus, College Road, Lahore, Pakistan
c Center of Biomedical Sciences Research (CBSR), Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
d Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
e Department of Forensic Science, University of Health Sciences, Lahore, Pakistan
f Department of Oncology, Mayo Hospital, Anarkali Bazar, Lahore, Pakistan
g Microbiology, Pathology & Laboratory Medicine, King Abdulaziz Hospital, Ministry of National Guard-Health Affairs, Saudi Arabia
h Cancer and Medical Genetics, CAMS-A, King Saud Bin Abdulaziz University for Health Sciences & King Abdullah International Medical Research Centre (KAIMRC), King Abdulaziz Medical City, National Guard Health Affairs, Al Ahlia, Saudi Arabia
i Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
j SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
k Department of Orthodontics, Faculty of Dentistry, King Abdulaziz University, P.O. Box 80209, Jeddah 21589, Saudi Arabia
l Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
m Department of Zoology, Government College University, Faisalabad, Pakistan
n Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, Taif 21944, Saudi Arabia
o Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Keywords:
RUNX1
FLT3
Mutations
Prognosis
Acute myeloid leukemia

A R T I C L E I N F O

Article history:
Received 30 May 2021
Revised 2 July 2021
Accepted 4 July 2021
Available online 10 July 2021

Keywords:
RUNX1
FLT3
Mutations
Prognosis
Acute myeloid leukemia

A B S T R A C T

Background: Acute myeloid leukemia (AML) is a bone marrow malignancy having multiple molecular pathways driving its progress. In recent years, the main causes of AML considered all over the world are genetic variations in cancerous cells. The RUNX1 and FLT3 genes are necessary for the normal hematopoiesis and differentiation process of hematopoietic stem cells into mature blood cells, therefore they are the most common targets for point mutations resulting in AML.

Methods: We screened 32 CN-AML patients for FLT3-ITD (by Allele-specific PCR) and RUNX1 mutations (by Sanger sequencing). The FLT3 mRNA expression was assessed in all AML patients and its subgroups. Results: Eight patients (25%) carried RUNX1 mutation (K83E) while three patients (9.37%) were found to have internal tandem duplications in FLT3 gene. The RUNX1 mutation data were correlated with clinical parameters and FLT3 gene expression profile. The RUNX1 mutations were observed to be significantly prevalent in older males. Moreover, RUNX1 and FLT3-mutated patients had lower complete remission rate, event-free survival rate, and lower overall survival rate than patients with wild-type RUNX1 and FLT3 gene. The RUNX1 and FLT3 mutant patients with up-regulated FLT3 gene expression showed even worse prognosis. Bradford Assay showed that protein concentration was down-regulated in RUNX1 and FLT3 mutants in comparison to RUNX1 and FLT3 wild-type groups.

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

https://doi.org/10.1016/j.sjbs.2021.07.012

1319-562X/© 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Acute myeloid leukemia (AML) is a malignant neoplasm of the bone marrow characterized by the clonal expansion of abnormal myeloid progenitor cells having reduced ability to differentiate into mature cells (Shallis et al., 2019). Genetic screening plays a crucial role in defining treatment strategies for acute myeloid leukemia patients by categorizing them into different prognostic groups (Medinger and Passweg, 2017). In recent times, the main causes of AML that have been admitted all over the world are genetic variations in cancerous cells. These chromosomal variations are related to good and bad responses to different treatments and are being used to determine the survival rate of AML patients (Döhner et al., 2015).

The RUNX1 gene is a Runt-related transcription factor that has multiple names i.e. core-binding factor subunit α-2(CBFA2) or PEB-P2αB and AML1 protein. The AML1 protein unites to a core sequence TGTGGNNN (NNN can be either TTT or TCA) to form a heterodimeric complex with CBFIβ, this complex helps in the binding of RUNX1 protein with DNA to enhance transcription of other genes. The RUNX1 gene consists of three major domains i.e. 1st is the Run homology domain (RHD), 2nd is the transcription activation domain (TAD) and 3rd is the suppression domain. The RHD domain is vital for heterodimerization with the CBFI β subunit and the DNA binding. While the TAD domain is important for interaction with transcription coactivators. Recently, the function of the RUNX1 gene has been analyzed which showed its contribution as a positive regulator of other genes that help in cell adhesion and migration. The main causes of impaired hematopoietic differentiation are mutations in transcription factors or coactivators (Döhner et al., 2015).

The RUNX1 is associated indirectly with FMS like tyrosine kinase gene (FLT3), belongs to class III tyrosine kinase receptor family, which encodes a protein having 993 amino acids in humans. This protein is comprised of a juxtamembrane (JM) dimerization domain, an extracellular ligand-binding domain, a transmembrane domain as well as a cytoplasmic domain which has a split tyrosine kinase motif (Markovic et al., 2005). The FLT3 protein is a type of receptor tyrosine kinase which showed its expression on early hematopoietic precursor cells and contributes to the survival and differentiation of stem cells (Murphy et al., 2003). The internal tandem duplication (ITD) in the FLT3 gene is the major type of FLT3 mutation which helps in FLT3 protein’s constitutive phosphorylation thus disturbing the normal process of hematopoiesis leading to leukemogenesis (Choudhary et al., 2005). The internal tandem duplication arises due to the duplication of the juxtamembrane domain’s fragment which is a coding region encoded by FLT3 exons 14 and 15. The Juxtamembrane domain played a crucial role in the autoinhibition of the kinase (Schlenk et al., 2008; Mrózek et al., 2007). Accordingly, the current study was intended to assess the prognosis of RUNX1 gene mutations in AML patients and to assess the FLT3 gene expression and internal tandem duplication (ITD) mutation in acute myeloid leukemia (AML) patients and its clinical implications.
Total mRNAs were extracted from 32 AML patients with the help of TRIzol reagent. The Nanodrop UV/VIS Spectrophotometer was used to check the integrity of isolated mRNA, then the cDNA Synthesis kit was used to reverse-transcribe RNA to cDNA. The Nanodrop UV/VIS Spectrophotometer was used to check the integrity of isolated mRNA, then the cDNA was used to check the integrity of isolated mRNA, then the cDNA Synthesis kit was used to reverse-transcribe RNA to cDNA. The Nanodrop UV/VIS Spectrophotometer was used to check the integrity of isolated mRNA, then the cDNA Synthesis kit was used to reverse-transcribe RNA to cDNA.

2.3. Analysis of ITDs and expression of FLT3 gene employing Allele-specific polymerase chain reaction (ASPCR)

The GAPDH gene was used to make sure the equal loading of the sample by using the previously reported primers i.e. F: 5’- CTAACGTGACCTCATTCCATC -3’ and R: 5’- CTACGTGACCTCATTCCATC -3’. Double bands have appeared on the gel for samples that were positive with FLT3-ITD while a single band was noticed for samples that were negative for this. To find the expression of the FLT3 gene in all AML patients (both mutants and non-mutants), the gel was further analyzed using different software i.e. ImageJ and GraphPad Prism 5.

2.4. Serology and protein quantification

The Control (10) and AML blood samples (32) were centrifuged at 5000 rpm for 7 min to separate the serum from the samples. Serum protein concentration in control and AML samples was estimated by Bradford assay as described previously (Bradford, 1976).

2.5. Statistical analysis

GraphPad Prism 5 and 9 were used for statistical analysis. For the comparison of different variables of the mutant and non-mutant groups, Fisher’s exact test was performed. Kaplan-Meier survival analysis was used to calculate OS and EFS and compared with the use of the 2-sided log-rank test. The OS was defined as the time duration from the time of AML diagnosis to the last follow-up/death. The EFS was the period from the time of AML diagnosis to failure of treatment/relapse/last follow-up/death. The level of significance was established at P < 0.05.

3. Results

3.1. Analysis of RUNX1 gene mutation

Sanger sequencing results of the RUNX1 gene (NM_001001890.3) exon 3, were aligned with the reference sequence to identify mutations in a particular exon. Results were analyzed with the help of Bioedit 7.2 software. In the present study, eight (25%) AML patients were observed to harbor the same heterozygous mutation K83E (rs121912498) at 247 nucleotide which changes Lysine amino acid into Glutamic acid. All samples of the control group had wild-type alleles (Fig. 1).

3.1.1. Correlation of RUNX1 mutation with clinical characteristics

The RUNX1 mutation was found to be associated with the male gender (P = 0.034) as compared to wild-type RUNX1. The RUNX1 mutants had higher median age (68.3 years) in comparison to the non-mutant group (54 years) (P = 0.009). A strong association of RUNX1 mutation was observed with high age (P = 0.009), elevated level of lactate dehydrogenase (LDH) (P = 0.012), and non-significant lower white blood cell count (P = 0.09) as compared to the non-mutant group. Patients harboring RUNX1 mutation had higher bone marrow blasts in contrast to non-mutants (68.6% vs 55.7%; P = 0.036) (Table 2).

3.1.2. Percentage of RUNX1 mutations in different FAB subtypes

The RUNX1 mutations were found in three AML patients having M0 FAB subtype (3 of 32; 9.4%) followed by M1 and M2 (2 of 32; 6.3% for both types) and M4 FAB subtype (1 of 32; 3.1%).

3.1.3. Effect of RUNX1 mutation on the prognosis of AML patients

The Kaplan-Meier analysis showed RUNX1 mutation to be a negative predictor of EFS (P = 0.00322) and OS (P = 0.0367). The EFS and OS rates were 34.3% and 58.3% respectively for RUNX1 mutant patients while it was 30.3% (EFS) and 65.1% (OS) for non-mutant patients (Fig. 2).

3.2. Analysis of Allele-specific polymerase chain reaction (ASPCR) and expression of FLT3 gene

To detect the presence of FLT3-ITD, Allele-Specific Polymerase Chain Reaction (ASPCR) technique was used. The FLT3-ITD was found in three samples (A19, A27, A30) (9.37%) having FAB-M2 subtype and the Kaplan-Meier analysis showed FLT3-ITD to be a negative predictor of EFS (P = 0.00322) and OS (P = 0.02035). The EFS and OS rates were 34.3% and 58.3% respectively for FLT3-ITD positive patients while it was 30.3% (EFS) and 65.1% (OS) for non-mutant patients (Fig. 3).

4847
subtype and observed to be associated with high leucocyte count (>400 × 10³/µl) and high blast cells (>70%) count (Fig. 3).

The gene expression analysis showed highly significant up-regulation in FLT3 of all AML samples [FLT3-wildtype (0.316 ± 0.05 folds) and FLT3-mutants (0.368 ± 0.03 folds)] in contrast of control group (P = 0.0001). The rate of complete remission (CR) was found to be inferior in FLT3-ITD positive AML patients than patients without this mutation (P = 0.013). The AML patients with wild-type FLT3 had lower CR rate (28.5%) as they were observed to have higher FLT3 expression while the CR rate was 85% in patients showing low FLT3 expression. Follow-up showed a decreased level of FLT3 in AML patients when they achieve complete remission (Fig. 3).

The FLT3 gene expression analysis showed significant elevation in RUNX1 mutants as compared to non-mutant patients [RUNX1- wild-type (0.659 ± 0.03 folds) and RUNX1-mutants (0.825 ± 0.02 folds)]. The complete remission (CR) rate was worse in RUNX1 mutant patients having higher FLT3 expression than in RUNX1 mutant patients with comparatively low levels of FLT3 gene expression (P = 0.043). Detection of FLT3-ITD and quantification of FLT3 mRNA expression level in AML patients may serve as an indicator to assess the efficiency of therapy, predict treatment outcome, and examine minimal residual disease (Fig. 3).

Table 2

Clinical parameters of Acute Myeloid Leukemia patients included in present study (n = 32) (*=P < 0.05, **= P < 0.01).

Parameters	Patients with wild-type RUNX1	Patients with RUNX1 mutation	P-value
No. of patients	24	8	–
Mean age, years (range)	52 (25–82)	65 (32–79)	0.009*
Male gender, n(%)	19 (59%)	7 (87.5%)	0.034*
Hemoglobin (g/dl), mean (range)	8.9 (5.3–14)	8.5 (4.7–11.5)	0.87
Platelets (>10⁹/µl), mean (range)	48 (1–700)	37.6(8–1053)	0.93
TLC (>10⁹/µl), mean (range)	35.4 (1.9 to 420)	12.5 (0.3 to 201)	0.09
LDH (U/L), mean (range)	456 (176–890)	620 (150–2987)	0.012**

3.2.1. Effect of FLT3-ITD mutation on the prognosis of AML patients

Kaplan-Meier estimates were calculated to show the poor prognosis of FLT3-ITDs on overall survival of AML patients which showed FL-ITD as a strong negative predictor of EFS (P < 0.0001) and OS (P < 0.03). The 2-year EFS and OS rates for FLT3 mutated patients were 33.3%, and 66.7% respectively while it was 31.1% (EFS) and 72.5% (OS) for patients with wild-type FLT3 (Fig. 4).

3.3. Serum protein quantification through Bradford assay

All AML samples were observed to have a very low concentration of protein as compared to healthy individuals (P = 0.0004).
The RUNX1 and FLT3 mutant and non-mutant groups had very low protein concentration in contrast to the healthy individual’s group (\(P < 0.0001\) and \(P = 0.0092\) respectively). Protein concentration was down-regulated in RUNX1 and FLT3 mutants in comparison of RUNX1 and FLT3 wild-type groups but this decrease was not up significant level (Fig. 5 & Table 3).

Fig. 4. Effect of FLT-ITD mutation on prognosis of AML patients. Kaplan-Meier estimates showed low (a) Overall survival, (b) Event free survival in FLT3 mutants as compared to non-mutants.

Fig. 5. (a) Highly significant down-regulation of Serum protein conc. (\(\mu g/ml\)) in Acute Myeloid Leukemia patients in comparison of control group (\(*=P < 0.05\), **=\(P < 0.01\) and ***=\(P < 0.001\)), (b) Highly significant down-regulation of serum protein conc. (\(\mu g/ml\)) in RUNX1 wild-type and RUNX1 mutant patients in comparison of control group (\(*=P < 0.05\), **=\(P < 0.01\) and ***=\(P < 0.001\)) and (c) Highly significant down-regulation of serum protein conc. (\(\mu g/ml\)) in FLT3 wild-type and FLT3 mutant patients in comparison of control group (\(*=P < 0.05\), **=\(P < 0.01\) and ***=\(P < 0.001\)).
4. Discussion

In our study including homogeneous and uniformly treated CN-AML patients, RUNX1 mutation was found in 25% of patients higher than the frequency reported previously (Gaidzik et al., 2011; Tang et al., 2009) who only studied patients below the age of 60 years. The RUNX1 mutations were found to be associated with the male gender which is in the harmony with prior studies indicating its highest ratio in male AML patients having the FAB-M0 subtype (Mendler et al., 2012). Three patients (9.37%) were found to harbor ITDs in the FLT3 gene having the FAB-M2 subtype. Among FAB subtypes, FLT3 mutations were more commonly reported within the M2, M3 subtypes (Schnittger et al., 2000). The overall frequency of FLT3 mutations in our study (9.37%) was less than the previous studies (Levis and Small, 2003; Stirwalt and Radich 2003) which might be attributed to the small sample size of our study. In our cohort, FLT3-ITD and RUNX1 mutations were mutually exclusive as two FLT3-ITD positive patients were also RUNX1 mutants (Gaidzik et al. 2011; Schnittger et al., 2011; Tang et al., 2009). One AML patient who did not harbor FLT3-ITD at diagnosis has been found to acquire it at the time of relapse raising the significance of evaluating ITDs in the FLT3 gene early.

Our study shows that RUNX1 and FLT3 mutations are a significant indicator of poor prognosis in both younger and older CN-AML patients. Our data are in harmony with previously published data as it showed that FLT3-ITD mutation is found to be associated with the high relapse rate, shorter OS, and EFS in CN-AML patients who harbor the aforementioned anomaly as compared to the patients having wild-type FLT3. The FLT3-ITD is found to be associated with high leukocyte count (>400 × 10^3/μl) and high blast cell (>70%) count as mentioned previously (Xu et al., 2012). The patients having RUNX1 mutation were observed to show poor response to intensive induction therapy and only three RUNX1 mutated patients (37.5%) were able to get CR but 2 RUNX1 mutated patients who achieved CR died within 7.5 months after getting relapse phase confirming other findings who report RUNX1 mutation to be associated with shorter EFS and OS in CN-AML patients (Tang et al., 2009).

The gene expression analysis showed highly significant up-regulation in the FLT3 level in all AML samples specifically in RUNX1 mutated patients. Previously, it had been shown that highFLT3 expression and FLT3-ITD is associated with poor outcome of AML patients exhibiting their essential function in the differentiation block (Radomska et al., 2006; Zheng and Small, 2005). But it has been confirmed by earlier studies that high expression of FLT3 is alone not sufficient to induce leukemogenesis (Reckzeh et al., 2012). However, the expression of RUNX1 protein is influenced by FLT3 expression and FLT-ITD by the FLT3 signaling pathway. It means elevated FLT3 level and disturbed RUNX1 protein level together synergize to cause AML. High FLT3 protein levels might further induce alteration in RUNX1 protein level by several different mechanisms. Previously, it has been shown that FLT3 signaling affects the RUNX1 protein level by the process of phosphorylation indicate that high expression of FLT3 elevates gene expression of RUNX1 directly (Cauchy et al., 2015).

The variations and mutations in amino acids are genetic causes of human diseases. Mutations can affect stability and protein folding (Alfalah et al., 2009; Ode et al., 2007; Koukouritaki et al., 2007), protein function (Yamada et al., 2006), and interactions of one protein with the others (Jones et al., 2007; Ung et al., 2006), as well as protein expression and subcellular localization (Krumholz et al., 2006; Tiede et al., 2006). Mutations in proteins have an important role in the onset and development of cancer (Hanahan and Weinberg, 2000). By changing a gene’s instructions to make a protein, a mutation can cause the protein to malfunction or to be missing entirely. The protein function can be affected by the direct impact of a mutation on a protein. These consist of a change in the interaction of the protein with other biomolecules, like other proteins or DNA or RNA or lipids, or change in the interaction with ligands i.e. enzyme substrates. Also, the variations in protein stability, e.g. destabilization leading to higher degradation rates changed protein concentration are the possible effects of gene mutations (Reva et al., 2011). We observed low serum protein concentration in our both mutant groups (RUNX1 and FLT3 mutant groups) in comparison with non-mutant AML subjects. This might indicate the mutational impact on overall serum protein concentration.

5. Conclusion

At present no sufficient data exist stating correlation of RUNX1 and FLT3 mutations with up-regulated FLT3 gene expression in Pakistani AML patients. Summarizing the finding of this investigation, we give further confirmation of the poor prognosis of RUNX1 and FLT3-ITD mutations in uniformly treated CN-AML patients. Our results will give insight in defining alternative treatment strategies for AML patients having RUNX1 mutations and up-regulated FLT3 gene expression. Our study also showed the significance of FLT3-ITD assessment in all relapsed AML patients as one patient who did not have FLT3 mutation at the time of diagnosis has been found to acquire it during relapse. Early identification of FLT3-ITD might thus be helpful for this group of patients to overcome poor prognosis.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

The financial aid provided by the Higher Education Commission (HEC) of Pakistan, grant number 9727/Punjab/NRPU/R&D/HEC/2017 for this work is highly credited. We acknowledge the facilities provided by the Molecular biology lab, University of the Education, Township Campus, College Road, Lahore and Cell and Molecular Biology Lab, University of the Punjab, Quaid-i-Azam Campus, Lahore. The authors appreciate Taif University Research-
ers Supporting Project number (TURSP2020/53), Taif University, Taif, Saudi Arabia.

References

Alfaiah, M., Keiser, M., Leeb, T., Zimmer, K., Naim, H.Y., 2009. Compound heterozygous mutations affect protein folding and function in patients with congenital sucrose-isomalilase deficiency. Gastroenterology 136 (3), 883–892.

Asad, S., Ijaz, B., Ahmad, W., Kausar, H., Sarwar, M.T., Gul, S., Shahid, I., Khan, M.K., Hassan, S., 2012. Development of persistent HCV genotype 3a infection cell culture model in hu-h 7 cell. Virol. J. 9 (1), 1–6.

Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1-2), 248–254.

Burnett, C., Licinio, M.A., Gaspar, P.C., Ferreira, A.S., Reis, M.L., Moraes, A.C.R.d., Sincero, T.C.M., Santos-Silva, M.C., 2017. Analysis of the presence of FLT3 gene mutation and association with prognostic factors in adult and pediatric acute leukemia patients. Brazilian J. Pharmacuc. Sci. 53 (2). https://doi.org/10.1590/s2175-97902017000216105.

Cauchi, P., James, S., Zacarias-Cabeza, J., Prasinska, A., Imperato, M., Assi, S., Piper, J., Canestraoro, M., Hoogenkamp, M., Raghavan, M., Loke, J., Alksi, S., Cikie, S., Richards, S., Westhead, D., Griffiths, M., Ott, S., Bosnig, C., Cockrell, P., 2015. Chronic FLT3-ITD signaling in acute myeloid leukemia is connected to a specific chromatin signature. Cell reports. 12 (5), 821–836.

Choudhary, C., Schwabie, J., Brandts, C., Tickenbos, L., Sargin, B., Kindler, T., Fischer, T., Sberdell, W.E., Muller-Tidow, C., Serve, H., 2005. AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood. 106 (1), 265-273.

Döhner, H., Weisflog, D.J., Bloomfield, C.D., 2015. Acute myeloid leukemia. New England J. Med. 373 (12), 1136–1152.

Gaidzik, V.I., Bullinger, L., Schlenk, R.F., Zimmermann, A., Röck, J., Paschka, P., Corbacioglu, A., Krauter, J., Schlegelerber, B., Ganser, A., Spith, D., Kündgen, A., Schmidt-Wolf, I.G.H., Götzé, K., Nachachaur, D., Pfeurenschuh, M., Horst, H.A., Döhner, H., Döhner, K., 2011. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J. Clin. Oncol. 29 (10), 1364–1372.

Hanahan, D., Weinberg, R.A., 2000. The hallmarks of cancer. Cell 100 (1), 57–70.

Jones, R., Ruas, M., Gregory, F., Moulin, S., Manoukian, S., Rowe, J., Brookes, J., Sartor, R., Fline, B., Mihatsch, M.J., Buechner, T., Haferlach, T., 2011. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 358 (18), 1909–1918.

Shallis, R.M., Wang, R., Davidoff, A., Ma, X., Zeidan, A.M., 2019. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev. 36 (7), 80–87.

Stirewalt, D.L., Radich, J.P., 2003. The role of FLT3 in haematopoietic malignancies. Nat. Rev. Cancer 3 (9), 650–665.

Tiede, S., Cantz, M., Spranger, J., Bräulke, T., 2006. Missense mutation in the N-acetylglucosamine-1-phosphotransferase gene (GPTA) in a patient with mucolipidosis II induces changes in the size and cellular distribution of GPTNA. Hum. Mutat. 27 (8), 830–831.

Zheng, R., Small, D., 2005. Mutant FLT3 signaling contributes to a block in myeloid differentiation. Leukemia & lymphoma. 46 (12), 1679–1687.