Epigenetic control of mobile DNA as an interface between experience and genome change

James A. Shapiro*

Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA

Edited by:
Ilaria Negri, University of Turin, Italy

Reviewed by:
Jennifer Copley, Victor Chang Cardiac Research Institute, Australia
Mauro Mandrioli, University of Modena and Reggio Emilia, Italy
*Correspondence:
James A. Shapiro, Department of Biochemistry and Molecular Biology, University of Chicago, GCIS W123B, Biochemistry and Molecular Biology, James A. Shapiro, University of Chicago, IL 60637, USA
e-mail: jsha@uchicago.edu

Mobile DNA in the genome is subject to RNA-targeted epigenetic control. This control regulates the activity of transposons, retrotransposons and genomic proviruses. Many different life history experiences alter the activities of mobile DNA and the expression of genetic loci regulated by nearby insertions. The same experiences induce alterations in epigenetic formatting and lead to trans-generational modifications of genome expression and stability. These observations lead to the hypothesis that epigenetic formatting directed by non-coding RNA provides a molecular interface between life history events and genome alteration.

Keywords: mutation, evolution, natural genetic engineering, mobile DNA, viruses, mobile genetic elements, non-coding RNA

INTRODUCTION

Understanding the functional organization of the genome and its evolutionary history are key goals of modern molecular biology. The task has become more interesting and complex as we learn more the details of cell processes involving the genome. Recent applications of high resolution technologies to genome expression in animals reveal a dynamic four-dimensional interactive control architecture incompatible with prior notions that genomes contain discrete functional segments of DNA (“genes”) (Mercer and Mattick, 2013). This review will focus on the role of epigenetic regulation of viruses and mobile genetic elements as a key interface between the activities of these agents of evolutionary change and inputs from cell and organism life histories. The hypothesis developed as a result of the review is that disruption of epigenetic silencing constitutes a major target for life history activation of cellular functions for genome change. This likely occurs after genome replication, possibly by changes in small non-coding (snc) RNAs, typically on the order of 20–50 nucleotides long.

MOBILE DNA IS A MAJOR AND FUNCTIONALLY SIGNIFICANT COMPONENT OF GENOMES

One of the major surprises to come from the initial sequencing of the human genome was the high abundance of dispersed mobile repeat elements (Consortium, 2001). Today, we estimate that at least two-thirds of our genomes is composed of mobile DNA (De Koning et al., 2011). The human genome is not exceptional in its high content of mobile DNA (http://shapiro.bsd.uchicago.edu/TableII.1.shtml).

We increasingly recognize that viruses contribute to cell genomes (Kokosar and Kordis, 2013). They provide sequences for non-coding ncRNAs (Frias-Lasserre, 2012), sites for transcriptional control (Peaston et al., 2004; Dunn et al., 2005; Maksakova et al., 2006; Conley et al., 2008), and elements important in epigenetic regulation (Brunmeir et al., 2010; Conley and Jordan, 2012). Similar transcriptional and epigenetic regulatory contributions are made by mobile genetic elements (http://shapiro.bsd.uchicago.edu/Table5C-1.MobileElementsFoundtobeExaptedascis-RegulatoryControlSitesinAnimals.html) (Youngson et al., 2005; Kinoshita et al., 2007; Suzuki et al., 2007; Fujimoto et al., 2008; Gehring et al., 2009; Pask et al., 2009; Nakayashiki, 2011).

Mobile DNA is a major source of novel coding information. One mechanism is the process known as “exonization,” when splice signals are utilized in newly inserted DNA segments (http://shapiro.bsd.uchicago.edu/Origin_of_New_Protein_Domains.html). New coding sequences also form by reverse transcription of processed RNAs and genome insertion of the cDNAs, sometimes producing chimeric fusions with existing exons (http://shapiro.bsd.uchicago.edu/Table5B. Reports of retrogenes in plant and animal genomes.html) (Long, 2001; Betrán et al., 2002; Fu et al., 2010).

It is now clear that mobile genetic elements play a key role in establishing and rewiring genomic networks (http://shapiro.bsd.uchicago.edu/Table5C-1.MobileElementsFoundtobeExaptedascis-RegulatoryControlSitesinAnimals.html) (Feschotte, 2008; Lindblad-Toh et al., 2011; Lowe et al., 2011; Testori et al., 2012; Kokosar and Kordis, 2013). Moreover, mobile element proliferation is a key factor in the formation of very large genomes (http://shapiro.bsd.uchicago.edu/Genome_Size.html).

The potential functional importance of distributed mobile DNA in genomes grows rapidly as evidence accumulates for pervasive genome transcription (http://shapiro.bsd.uchicago.edu/PervasiveGenomeTranscription.html) and for the regulatory role of non-coding RNAs (ncRNAs) in genome expression, including the functional juxtaposition of distant genome regions to activate transcription (http://shapiro.bsd.uchicago.edu/NonCodingRNAinGenomeExpression.html). Mobile elements participate in this long-range genomic communication and provide the sequences of many ncRNAs (Kapusta et al., 2013).
CELLS USE RNA-TARGETED EPGENETIC CONTROL TO INHIBIT THE ACTIVITY OF MOBILE DNA

Given the high content of mobile DNA in many genomes, an important question is: what prevents all the mobility systems from destroying genome integrity? In eukaryotic cells, a major control mechanism is sncRNA-directed epigenetic formatting into silent chromatin (Law and Jacobsen, 2010; Castel and Martienssen, 2013).

Both prokaryotes and eukaryotes have systems for capturing fragments from invading DNA molecules and placing the fragments into special loci encoding sncRNAs (Dumesic and Madhani, 2014). In prokaryotes, these loci are called CRISPRs (clustered regularly interspersed palindromic repeats) (http://shapiro.bsd.uchicago.edu/CRISPRs.html) (Marraffini and Sontheimer, 2010; Garrett et al., 2011; Bikard and Marraffini, 2013; Watanabe et al., 2013). The RNA transcripts from CRISPRs are processed into sncRNAs that target cleavage of homologous invading DNA and also inactivation of complementary mRNA (Djordjevic et al., 2012). The details of the RNA processing and interference activities are well-characterized, but the acquisition of DNA fragments is poorly understood. The process must be very rapid, because viral infection yields cells that survive the initial infection with appropriate fragments added to their CRISPR repertoire (Barrangou et al., 2007).

Virtually all eukaryotes investigated, with the notable exception of budding yeast, have mechanisms for sncRNA-directed chromatin silencing. They are based on members of the Argonaute family of sncRNA-processing proteins (http://shapiro.bsd.uchicago.edu/microRNA-directedchromatininsilencing.html). Plants and animals have independently evolved distinct mechanisms of processing the sncRNAs for the Argonaute family systems, but both groups use targeted epigenetic regulatory processes to defend against virus infection (Ding and Voinnet, 2013; Watanabe et al., 2013). The RNA transcripts from CRISPRs are processed into sncRNAs that target cleavage of homologous invading DNA and also inactivation of complementary mRNA (Djordjevic et al., 2012). The details of the RNA processing and interference activities are well-characterized, but the acquisition of DNA fragments is poorly understood. The process must be very rapid, because viral infection yields cells that survive the initial infection with appropriate fragments added to their CRISPR repertoire (Barrangou et al., 2007).

LIFE HISTORY EVENTS DESTABILIZE GENOMES AND ACTIVATE MOBILE DNA

Anyone who has studied real-time genome changes quantitatively knows that mutation frequencies depend upon the treatment of the experimental organism prior to measurement. A wide variety of life history events influence the natural genetic engineering (NGE) functions that generate mutations, especially mobile elements (Table 2; Shapiro, 2011). In some cases, the genome instabilities are large scale and last multiple cell or organismal generations.

Many observations demonstrate responses of the circuits controlling NGE functions to biological and abiotic inputs. It is particularly significant that many such responses occur following exceptional cell interactions with viruses or with other cells, either by infection or by hybridization (Table 2). As we might expect, the introduction of alien DNA or chromatin into a cell often has disruptive effects on genome homeostasis (Shapiro, 2014).

Organisms	sncRNA targets	References
Plants	Transposable elements	Rigal and Mathieu, 2011; Ng et al., 2012; Nuthikattu et al., 2013
Arabidopsis	Retrotransposons	Mrouze et al., 2009; Slottkin, 2010
Rice	Retrotransposons	Tian et al., 2011
Brassica	Retrotransposons	Zhang et al., 2013
Arabidopsis	Transposable elements	Mccue et al., 2012
Maize	Transposable elements	Barber et al., 2012; He et al., 2013
Plants	Viruses and viroids	Navarro et al., 2009; Pantaleo, 2011; Zhu and Guo, 2012; Ramesh et al., 2014
Rice, tobacco and Laodelphax striatellus insect vector	Rice stripe virus	Xu et al., 2012b
Arabidopsis	Geminiviruses	Vanitharani et al., 2005; Raja et al., 2014
Caenorhabditis elegans germ-line	Transposons	Sijen and Plasterk, 2003; Buckley et al., 2012; Lee et al., 2012
Drosophila	Viruses	Van Rij et al., 2006
Drosophila somatic cells	Retrotransposons	Kawamura et al., 2008
Drosophila male germ-line	Retrotransposons	Kalmykova et al., 2005
Drosophila female germ-line	Transposons, retrotransposons and retroviruses	Brennecke et al., 2007, 2008
Drosophila female germ-line	Telomeric retrotransposons	Shpiz et al., 2009
Drosophila gonads	Transposons	Sienski et al., 2012
Drosophila somatic and germ-line cells	Transposons, retrotransposons and retroviruses	Handler et al., 2013
Drosophila tissue culture cells	Transposons	Chung et al., 2008
Shrimp	White spot syndrome DNA virus	Huang and Zhang, 2013; Sabin and Cherry, 2013
Mammalian cells	EMCV and NoV RNA viruses	Maillard et al., 2013
Human tissue culture cells	LINE retrotransposons	Yang and Kazazian, 2006

EPigenetic changes in response to life history events

One of the most active research areas in the second decade of the 21st century is analyzing the impact of life history events on the epigenetic layers of cell regulatory architecture (Table 3) (Chinnusamy and Zhu, 2009a; Vandegehuchte and Janssen,
Table 2 | Life history events that lead to genome destabilization (see also http://shapiro.bsd.uchicago.edu/TableII.8.shtml for earlier references).

Organism	Life history event	Genome instability	References
Plant	Polyploidization	Transposon and retrotransposon activation	Bento et al., 2013
Rice	Introgression from wild rice (Zizania)	Genome-wide variation of all kinds, including transposon reactivation and transgenerational mobile element activation	Wang et al., 2009, 2010, 2013b
Apple	Polyploidization	Aneuploidy	Considine et al., 2012
Brassica	Intergenetic hybridization; genome triplication; allopolyploidization	Retrotransposition; loss of tandem arrays; Homoeologous shuffling and chromosome compensation	Xiong et al., 2011; Fang et al., 2012; Zhang et al., 2013
Wheat, rye	Allopolyploidization	Loss of repetitive and non-coding DNA, including chromosome-specific sequences; transposon and retrotransposon activity	Bento et al., 2008, 2010, 2013; Kraitshtein et al., 2010; Yaakov and Kashkush, 2011b, 2012; Feldman and Levy, 2012; Tomas et al., 2012; Luo et al., 2012; Martis et al., 2013
Sunflower	Polyploidization	Chromosome rearrangements	Lim et al., 2008; Chester et al., 2012
Plants	Polyploidization	Rapid genome reshuffling	Tayale and Parisod, 2013
Plants	Polyploidization	Meiotic and fertilization abnormalities	Grandont et al., 2013
Animals	Polyploidization	Meiotic and fertilization abnormalities	Bogart and Bi, 2013; Choleva and Janko, 2013; Stenberg and Saura, 2013
Squalius albumoides (Cyprinid fish)	Polyploidization	Rapid genome reshuffling; mobile element activity	Collares-Pereira et al., 2013
Arabidopsis	Oilseed rape mosaic virus infection	Increased homologous recombination	Yao et al., 2013
Arabidopsis	Heat shock	Transgenerational ONSEN retrotransposon activation	Matsunaga et al., 2012
Arabidopsis	Volatiles from UV-irradiated Arabidopsis or tobacco plants	Increased homologous recombination	Yao et al., 2011
Arabidopsis	Abiotic stresses (ionizing radiation, heavy metals, chlorine, temperature and water)	Somatic and heritable changes in homologous recombination, strand breakage	Boyko et al., 2010; Rahavi et al., 2011; Yao and Kovalchuk, 2011
Tobacco	Tobacco mosaic virus infection	Increased homologous recombination	Kathiria et al., 2010
Rice	Tissue culture cultivation	Genomic DNA fragment length polymorphisms	Wang et al., 2013a
Rice	Etoposide exposure	Increased transposon activity	Yang et al., 2012
Human	Human papillomavirus (HPV) integration	Extensive rearrangements, often focused on insertion site	Korzeniewski et al., 2011; Akagi et al., 2014

The observed epigenetic responses include alterations to cytosine methylation in DNA (Chinnusamy and Zhu, 2009b), histone modifications in nucleosomes, and snRNAs (Ruiz-Ferrer and Voinnet, 2009; Ng et al., 2012) as well as transgenerational inheritance of complex novel phenotypes (Zucchi et al., 2012), frequently induced by stress (Boyko and Kovalchuk, 2010). The phenomenon of hybrid vigor, or heterosis, is increasingly viewed as an alteration in snRNA-targeted epigenetic formatting stimulated by the encounter of two distinct genome control regimes (Groszmann et al., 2011; Miller et al., 2012; Shivaprasad et al., 2012). Many of the studies demonstrating induced epigenetic modifications also document accompanying genome instabilities and emphasize their evolutionary potential (Madlung and Wendel, 2013). It is noteworthy that many of the same stimuli are involved in both genomic and epigenetic responses in plants (Hegarty et al., 2013) and animals (Arkhipova and Rodriguez, 2013). The common stimuli include infection and symbiosis (Hamon and Cossart, 2008; Bierne et al., 2012; Takahashi, 2014), hybridization and changes in ploidy.

DIRECT INTERACTIONS BETWEEN NGE ACTIVITIES AND EPIGENETIC REGULATORY FUNCTIONS

In addition to disruption of snRNA-targeted inhibition, there is limited but growing evidence that NGE functions acting on DNA molecules interact directly with epigenetic control factors. There is convincing evidence of the connection between NGE and the epigenome in DNA damage repair and retroviral or retrotransposon insertions into chromosomes.

EPIGENETIC INVOLVEMENT IN DNA PROOFREADING AND REPAIR

There are recent reports that a specific histone modification (H3K36me3) primes DNA mismatch repair (Schmidt and Jackson, 2013), that H3K56 acetylation affects mismatch repair (Kadyrova et al., 2013), that hypoacetylation of H3K56 by HDACs 1 and 2 facilitates recruitment of non-homologous end-joining mechanisms.
Table 3 | Life history events that induce epigenetic changes (see also http://shapiro.bsd.uchicago.edu/TableII.10.shtml for earlier references).

Organism	Life history event	Epigenetic change	References
Plants	Hybridization, polyploidization	sncRNA changes	Ng et al., 2012
Maize	Hybridization	rasRNA variation	Barber et al., 2012
Cotton	Allotetraploidization	Changes in mi- and siRNA content and levels	Pang et al., 2009
Brassica napus	Intertribal hybridization and introgression	Changes in cytosine methylation	Zhang et al., 2013
Wheat	Allopolyploidization	Multigenerational transposon methylation changes	Kraitshtein et al., 2010; Yaakov and Kashkush, 2011a,b
Wheat	Hybridization and polyploidization	Deregulation of sncRNAs	Kenan-Eichler et al., 2011
Solanaceae	Interspecific grafting	DNA methylation changes	Wu et al., 2013
Tobacco	Geminivirus and geminivirus-beta satellite infection	Suppression of DNA methylation-base silencing	Vanitharani et al., 2005; Buchmann et al., 2009; Yang et al., 2011
Tobacco	Tobacco mosaic virus infection	Heritable resistance to viral, bacterial and fungal pathogens	Kathiria et al., 2010
Rice	Drought exposure	Multigenerational DNA methylation changes	Zheng et al., 2013
Rice	Nitrogen deprivation	Heritable stress tolerance	Kou et al., 2011
Rice	Tissue culture cultivation	DNA methylation changes	Fukai et al., 2010; Wang et al., 2013a
Rice	Etoxoside exposure	Multigenerational DNA methylation changes	Yang et al., 2012
Rice	Salt exposure	DNA methylation changes	Karan et al., 2012
Rice	Heavy metal exposure	Multigenerational DNA methylation changes	Ou et al., 2012
Rice	Abiotic stresses	Novel sncRNAs in the inflorescences	Barrera-Figueroa et al., 2012
Pear seeds	Desiccation	DNA methylation changes	Michalak et al., 2013
Arabidopsis	Interspecific hybridization	Polycomb response complex changes	Burkart-Waco et al., 2013
Arabidopsis	Geminivirus (Cabbage leaf curl virus, CaLCuV) infection	Epigenetic silencing	Aregger et al., 2012
Arabidopsis	Stress response	Alteration of Athila family retrotransposon sncRNA	McCue et al., 2012
Arabidopsis	Biotic stresses (bacteria, hormones)	Increased DNA methylation	Down et al., 2012
Arabidopsis	β-amino-butyric acid	Imprinted resistance (multigenational) to Psuedomonas syringae and Hyaloperonospora arabidopsis fungus	Slaughter et al., 2012
Arabidopsis	Salt exposure	DNA methylation, nucleosome composition	Bilichak et al., 2012
Arabidopsis	Hyperosmotic priming	Shortening and fractionation of H3K27me3 islands	Sani et al., 2013
Wild rye	Abiotic stresses	DNA methylation	Yu et al., 2013b
Neptune grass	Cadmium	DNA methylation and chromatin patterning	Greco et al., 2012
Plant and mammalian cells	Cadmium	DNA methylation and histone modification	Wang et al., 2012
Nematode (Caenorhabditis elegans)	Flock house virus expression	Transgenerational resistance transmitted by sncRNAs	Rechavi et al., 2011
Mosquito (Aedes aegypti)	Wolbachia infection	Disruption of cytosine methylation	Ye et al., 2013
Carp	Allotetraploidization	Localized hypermethylation	Xiao et al., 2013
Squalius albomoides (fish)	Polyploidization	Alterations in sncRNA patterns	Inacio et al., 2012
Rats	Exposure to dioxin and endocrine disruptors of F0 generation	Transgenerational inheritance of adult onset diseases and sperm epimutations	Manikkam et al., 2012, 2013
Rats	Vinclozolin fungicide exposure of F0 males	Transgeneration changes to physiology, behavior, metabolic activity, and transcriptome in discrete brain nuclei, altered restraint stress responses	Creus et al., 2012
Pigs	Diet supplementation of F0 with methylating micronutrients	Transgenerational inheritance of extra fat and DNA methylation changes	Braunschweig et al., 2012
Mouse neuronal cells	Short-term hypoxia	DNA methylation changes	Hartley et al., 2013
Humans	High fat diet	DNA methylation changes	Jacobsen et al., 2012
Humans	Early life trauma	DNA methylation changes	Labonte et al., 2012

(Continued)
phosphorylated form (Rogakou et al., 1998; Kinner et al., 2008).

A key feature of genome repair is that H2AX-marked damaged DNA mobilizes to subnuclear “repair centers” where homologous recombination and NHEJ proteins also localize (Lisby and Rothstein, 2005; Plate et al., 2008; Bekker-Jensen and Maitland, 2010). A role for chromatin in mobilization of damaged DNA has been proposed (Seeber et al., 2013), but multiple sources of evidence are lacking.

RETROVIRAL AND RETROTRANSPOSON INTEGRASES

A more extensive case for NG-E-chromatin interactions comes from analysis of retroviral and retrotransposon insertion specificities (Zhang and Mager, 2012). Each type of retrovirus displays a characteristic insertion specificity for its provirus (Leswini et al., 2006). A number of targeting mechanisms involve epigenetic formatting molecules.

In budding yeast, Ty1 retrotransposon integrase contacts an H2A/H2B interface upstream of RNA polymerase III initiation sites (Ball et al., 2012; Bridier-Nahmias and Lesage, 2012; Mularoni et al., 2012). Histone deacetylase Hos2 and Trithorax group protein Set3 stimulate this nucleosome-targeted integration (Mou et al., 2006), and chromatin remodeling factor Isw2p is also implicated (Bachman et al., 2005). In contrast, the Ty5 retrotransposon inserts in silent chromatin, targeted by binding of its integrase to the Sir4 heterochromatin nucleating factor (Xie et al., 2001; Dai et al., 2007; Brady et al., 2008; Baller et al., 2011).

HIV and other lentiviral targeted integration into actively transcribed regions of the genome is associated with transcription-associated histone modifications, including H3 acetylation, H4 acetylation, and H3 K4 methylation, but is disfavored in regions rich in transcription-inhibiting modifications, which include H3K27me3 and DNA CpG methylation (Wang et al., 2007). The specificity results from integrase tethering by the LEDGF/p75 chromatin-binding growth factor (Vanegas et al., 2005; Llano et al., 2006; Ciuffi, 2008; Meehan and Poeschla, 2010; Zheng et al., 2010; Christ and Debyser, 2013). Replacing the LEDGF/p75 domain that interacts with expressed chromatin by the CBX1 domain, which binds histones H3K9me2 or H3K9me3 found in pericentric heterochromatin, targets HIV insertions to silent chromatin regions (Gijbers et al., 2010).

Murine leukemia virus (MuLV) insertion targeting to initiation sites upstream of actively transcribed regions involves integrase interactions with bromodomain proteins BRD2, BRD3, and BRD4 (De Rijck et al., 2013; Gupta et al., 2013; Sharma et al., 2013a). Interestingly, chromatin recognition bromodomain

Table 3 | Continued

Organism	Life History Event	Epigenetic change	References
Humans lymphocytes	Cadmium	DNA hypo-methylation	Hossain et al., 2012
Human liver cells	Epstein-Bar virus (EBV) infection	Hypermethylation of tumor suppressor loci, DNA methylation changes	Leonard et al., 2011; Kaneda et al., 2012; Queen et al., 2013
Gastric epithelium	Helicobacter pylori infection	DNA methylation, histone and snRNA changes	Tian et al., 2013; Rongrui et al., 2014
Schwann cells	Mycobacterium leprae infection	Reprogramming to stem cell-like state	Ding et al., 2010; Alvarez et al., 2013; Chianotti et al., 2013

Nucleosome disassembly is probably necessary for certain repair processes (Linger and Tyler, 2007; Amouroux et al., 2010; Gospodinov and Herceg, 2013), and histone modifications affect damage-induced checkpoint signaling (Chen and Tyler, 2008). Once repair is complete, nucleosome modifications are reversed, and H2AX∼P is eliminated from chromatin (Svetlova et al., 2010). So-called “bystander” cells, which are not subjected to DNA damage but are in the same culture as irradiated cells, also display H2AX phosphorylation (Sokolov et al., 2007; Dickey et al., 2009a, 2011).
protein BRD4 antagonizes HIV provirus reactivation (Zhu et al., 2012).

Certain retrotransposons are specifically targeted to centromeres (Wolfrubger et al., 2009; Birchler and Presting, 2012; Tsukahara et al., 2012; Sharma et al., 2013b), which have a special chromatin configuration characterized by centromeric versions of H3 (Henikoff and Dalal, 2005; Vos et al., 2006; Partridge, 2008; Zhang et al., 2008a). Centromeric retrotransposons in rice are highly associated with H3K9me2, a hallmark for heterochromatin (Neumann et al., 2007). Some centromeric retrotransposons encode integrase proteins with histone-binding chromodomains at their carboxy-termini (Neumann et al., 2011). Chromodomains recognize lysine methylation (Blus et al., 2011; Yap and Zhou, 2011; Eisenberg, 2012).

It is probably not coincidental that the most widely distributed group of retrotransposons among all eukaryotic clades are the “chromoviruses,” which are so named because they have chromodomains in their integrase proteins (Gorinsek et al., 2004; Kordis, 2005; Novikov et al., 2012; Weber et al., 2013). A chromodomain has been reported to target fungal chromovirus MAGGY insertions to heterochromatin marked by H3K9me2/methyl (Gao et al., 2008). An integrase chromodomain also participates in activator protein-targeted insertion of fusion yeast retrotransposon TFI upstream of RNA polymerase II transcription start sites (Hizi and Levin, 2005; Chatterjee et al., 2009).

DNA TRANSPONSONS
In contrast with many transposons that interact with nucleosomes, the DNA transposon Hermes inserts preferentially in budding yeast into nucleosome-free regions of the genome (Gangadharan et al., 2010). The widely used P element DNA transposons in Drosophila show targeting (called “P element homing”) by incorporating binding sites for various regulatory factors, including chromatin insulators (Bender and Hudson, 2000; Fujioka et al., 2009) and Polycomb group response elements (Kassis, 2002; Cheng et al., 2012).

EPIGENETIC REFORMATTING AFTER DNA REPLICATION AND ncRNAs AS POTENTIAL AGENTS FOR TRANSMITTING EXPERIENCE TO THE GENOME
While the evidence is increasingly abundant for effects of different life history events on epigenetic states in particular, it is far from clear how those effects occur (Lim and Brunet, 2013). We know very little about the connections between cell sensors and epigenetic reformatting complexes (Erdel et al., 2011; Narlikar et al., 2013). Deciphering those connections is currently an important research goal.

DNA replication provides a key decision point for maintaining or changing chromatin configurations (Poot et al., 2005; Liu and Gong, 2011; Mermod et al., 2011). The replication apparatus must disassemble chromatin for polymerization and then reassemble chromatin once replication is complete. Replication takes place only in dividing cells, and transgenerational inheritance of epigenetic states must involve the proliferating cells that give rise to gametes. Transfer of outside information from somatic tissues to the germline has been reported in mammals (Sharma, 2013; Skinner et al., 2013). And epigenetic windows of susceptibility to environmental insults have been suggested during sperm development (Soubry et al., 2014). Since there is no segregated germ line in plants and eukaryotic microbes, the same cells that experience environmental inputs can also be the progenitors of gametes.

A number of different factors have been found or hypothesized to participate in post-replication chromatin restoration: histone chaperones (Budhavarapu et al., 2013), RNA editing and snRNAs (Savva et al., 2013), chromatin remodeler SMARCAD1 (Mermoud et al., 2011), chromatin assembly factor 1 (Huang and Jiao, 2012), histone chaperon FACT (Winkler and Lugger, 2011) and Swi/Snf complexes (Neves-Costa and Varga-Weisz, 2006; Ryan and Owen-Hughes, 2011; Zhu et al., 2013), and ISWI complexes (Erdel and Rippe, 2011).

One frequently overlooked feature of post-replication reestablishment of epigenetic formatting is where in the nucleus it might occur. Replication takes place in specialized “replication factories” (Vago et al., 2009; Guilhou et al., 2010). Does chromatin reestablishment occur in the same location or does it involve migration of newly replicated DNA segments to distinct subnuclear “chromatin factories,” like the ones that exist in the nucleolus for heterochromatin formation on rRNA-encoding DNA (Guett and Santoro, 2012)? If so, such post-replication relocalization would be guided by the nucleoskeleton and IncRNAs (Merce and Mattick, 2013; Mercer et al., 2013) and might present an attractive target for stress response and sensory input signaling (Weiner et al., 2012).

It is notable that changes to ncRNAs are frequently cited with regard to the impact of life history events on the genome (Sunkar et al., 2007; Khraiwesh et al., 2012; Lelandais-Briere et al., 2012; Nakaminami et al., 2012; Amaral et al., 2013). In the plant literature, there is documentation of numerous ncRNA changes in response to particular biotic and abiotic stress regimes (Table 4).

A number of observations about resistance to biotic and abiotic stresses are consistent with a key role for ncRNA changes in life history responses. Several viruses encode siRNA suppressors to overcome host defenses (Jiang et al., 2012; Omarov and Schlothof, 2012; Guo and Lu, 2013). Transgenic constructs encoding constitutive miRNA expression can lead to salt and drought tolerance in creeping bentgrass (Zhou et al., 2013), to immunity against blast fungus in rice (Li et al., 2014), and in Arabidopsis to greater salt and alkalinity sensitivity (Gao et al., 2011). Acquired aphid resistance in Arabidopsis involves snRNA changes (Kettles et al., 2013), and most acquired stress resistances in plants display transgenerational epigenetic inheritance (Holeski et al., 2012; Luna and Ton, 2012; Slaughter et al., 2012).

SPECULATIVE CONCLUSIONS ABOUT AN EPIGENETIC INTERFACE BETWEEN EXPERIENCE AND GENOME CHANGE
Mobile DNA and other NGE functions are the key agents for adaptively significant changes in genome organization and DNA sequences. The data reviewed and tabulated above establish the importance of RNA-directed chromatin formatting in the regulation and operation of mobile elements, viruses and DNA repair.
functions. In addition, there is a remarkable correlation between the life history events that activate NGE functions to destabilize genomes and those that lead to alteration of chromatin states and DNA methylation patterns.

The preceding observations lead to the plausible hypothesis that epigenetic regulation serves as a key interface between organismal life history and the agents that restructure genomic DNA. This hypothesis is supported by the limited number of cases where empirical observations have established direct molecular connections between NGE functions and components of the epigenetic control system: histones, nucleosomes, and chromatin reformatting complexes.

If, as I expect, further research bolsters the epigenome-NGE correlations and connections documented above, then we need to ask: what components(s) of the epigenetic control apparatus communicate information about experience to NGE operators? We do not know the answer to this fundamental question. However, the data reported in Table 4 indicate that ncRNAs are good candidates for key intermediates in the experience-genome signal transduction process. If this is so, then ncRNAs are logical molecular targets for modulating genome change toward potentially adaptive outcomes. Let us hope that research aimed at examining this proposal deepens our understanding of how life history impacts both epigenetic and genome change operations (Tables 2–4), whether or not my speculation ultimately proves to be correct.

ACKNOWLEDGMENTS

The author is grateful to the editors for the invitation to contribute to this special issue and for the opportunity to comment on the relationship between life history and genome change.

REFERENCES

Abel, D., Horiejsi, Z., Wichens, N., Polo, S. E., Garcia-Wilson, E., Abel, I., et al. (2009). Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. *Science* 325, 1240–1243. doi: 10.1126/science.1177321

Akagi, K., Li, J., Broutian, T. R., Padilla-Nash, H., Xiao, W., Jiang, B., et al. (2014). Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. *Genome Res.* 24, 185–199. doi: 10.1101/gr.164806.113

Altaf, M., Auger, A., Covic, M., and Cote, J. (2009). Connection between histone H2A variants and chromatin remodeling complexes. *Biochem. Cell Biol.* 87, 35–50. doi: 10.1139/O08-140

Alvarez, M. C., Santos, J. C., Maniezzo, N., Ladeira, M. S., Da Silva, A. L., Scaletsky, I. C., et al. (2013). MGMT and MLH1 methylation in Helicobacter pylori-infected children and adults. *World J. Gastroenterol.* 19, 3043–3051. doi: 10.3748/wjg.v19.i20.3043

Amaral, P. P., Dinger, M. E., and Mattick, J. S. (2013). Non-coding RNAs in homeostasis, disease and stress responses: an evolutionary perspective. *Brief. Funct. Genomics* 12, 254–278. doi: 10.1093/bfgp/elt016

Amouroux, R., Campalans, A., Epe, B., and Radicella, J. P. (2010). Oxidative stress triggers the preferential assembly of base excision repair complexes on open chromatin regions. *Nucleic Acids Res.* 38, 2878–2890. doi: 10.1093/nar/gkp1247

Aregger, M., Borah, B. K., Seguin, J., Rajeswaran, R., Guhaea, E. G., Zvereva, A. S., et al. (2012). Primary and secondary siRNAs in geminivirus-induced gene silencing. *PLoS Pathog.* 8:e1002941. doi: 10.1371/journal.ppat.1002941

Table 4 | Changes in non-coding RNAs in response to life history events.

Stress or input	Organism(s)	References
Salt	Multiple plants	Ding et al., 2009; Qin et al., 2011; Macovei and Tuteja, 2012; Carnavale
Drought	Multiple plants	Bottino et al., 2013; Li et al., 2013; Ren et al., 2013; Zhuang et al., 2014
Waterlogging	Maize, poplar	Zhang et al., 2008b; Liu et al., 2012; Ren et al., 2012; Zhai et al., 2013
Cold stress	Wheat	Tang et al., 2012
Aluminum	Soybeans	Chen et al., 2012a; Zeng et al., 2012
Cadmium	Radish	Xu et al., 2013
Boron	Barley	Ozhuner et al., 2013
ethylene	*Medicago truncatula*	Chen et al., 2012b
Ozone	*Arabidopsis*	Iyer et al., 2012
Hypoxia	*Arabidopsis*	Moldovan et al., 2010
Low phosphorous	Maize	Zhang et al., 2012
Low nitrate	Maize	Xu et al., 2011
Sulfur deprivation	*Chlamydomonas reinhardtii*	Shu and Hu, 2012
Abiotic stresses	Multiple plants	Kulcheski et al., 2011; Li et al., 2011b; Barrera-Figueroa et al., 2012; Sun et al., 2012; Zhai et al., 2013; Ballen-Taborda et al., 2013
Physiological stressors and invasive plant infection	Rice blast fungus, *Magnaporthe oryzae*	Raman et al., 2013
Virus infection	Multiple plants, rice	Du et al., 2011; Sha et al., 2014
Viral and bacterial infections	Multiple plants, cassava (*Xanthomonas infection*)	Perez-Quintero et al., 2012; Zvereva and Pooggin, 2012; Pelaez and Sanchez, 2013; Quintero et al., 2013
Bacterial/phytoplasma infection	Multiple plants, lime trees	Zhang et al., 2011; Ehya et al., 2013
Powdery mildew infection	Wheat	(Xin et al., 2011) miRNAs (Xin et al., 2010)
Verticillium wilt infection	Cotton, eggplant	Yin et al., 2012; Yang et al., 2013
Arkhipova, I. R., and Rodríguez, F. (2013). Genetic and epigenetic changes involving (retro)transposons in animal hybrids and polybodies. Cytogenet. Genome Res. 140, 295–311. doi: 10.1159/000352069

Bachman, N., Gelbart, M. E., Tsukiyama, T., and Boeke, J. D. (2005). TFIIIB subunit Bdp1 is required for periodic integration of the Ty1 retrotransposon and targeting of Its2p to S. cerevisiae tDNAs. Genes Dev. 19, 955–964. doi: 10.1101/gad.1299105

Ballen-Taborda, C., Plata, G., Ayling, S., Rodriguez-Zapata, F., Becerra Lopez-Lavalle, L. A., Duitama, J., et al. (2013). Identification of cassava MicroRNAs under abiotic stress. Int. J. Genomics 2013, 857896. doi: 10.1155/2013/857896

Baller, J. A., Gao, J., Stamenova, R., Curcio, M. J., and Voytas, D. F. (2012). Nucleosomal surface defines an integration hotspot for the Saccharomyces cerevisiae Ty1 retrotransposon. Genome Res. 22, 704–713. doi: 10.1101/gr.129585.111

Baller, J. A., Gao, J., and Voytas, D. F. (2011). Access to DNA establishes a secondary target site bias for the yeast retrotransposon Ty1. Proc. Natl. Acad. Sci. U.S.A. 108, 20351–20356. doi: 10.1073/pnas.1103655108

Barber, W. T., Zhang, W., Win, H., Varala, K. K., Dorweiler, J. E., Hudson, M. E., et al. (2012). Repeat associated small RNAs vary among parents and following hybridization in maize. Proc. Natl. Acad. Sci. U.S.A. 109, 10444–10449. doi: 10.1073/pnas.1202073109

Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712. doi: 10.1126/science.1138140

Barrera-Figueroa, B. E., Gao, L., Diop, N. N., Wu, Z., Ehlers, J. D., Roberts, P. A., et al. (2011). Identification and comparative analysis of drought- associated microRNAs in two cowpea genotypes. BMC Plant Biol. 11:127. doi: 10.1186/1471-2229-11-127

Boyko, A., and Kovalchuk, I. (2010). Transgenerational response to stress in Arabidopsis thaliana. Plant Signal. Behav. 5, 995–998. doi: 10.1371/journal.pone.0009514

Bradly, T. L., Schmidt, C. L., and Voytas, D. F. (2008). Targeting integration of the Saccharomyces Ty5 retrotransposon. Methods Mol. Biol. 435, 153–163. doi: 10.1007/978-1-59745-232-8_11

Braunschweig, M., Jaganathan, V., Gutzwiller, A., and Bee, G. (2012). Investigations on transgenerational epigenetic response down the male line in F2 pigs. PLoS ONE 7:e30583. doi: 10.1371/journal.pone.0030583

Brennecke, J., Aravin, A. A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., et al. (2007). Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103. doi: 10.1016/j.cell.2007.01.043

Brennecke, J., Malone, C. D., Aravin, A. A., Sachidanandam, R., Stark, A., and Hannon, G. J. (2008). An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322, 1387–1392. doi: 10.1126/science.1165171

Bridier-Nahmias, A., and Lesage, P. (2012). Two large-scale analyses of Ty1 LTR- retrotransposons de novo insertion events indicate that Ty1 targets nucleosomal DNA near the H2A/H2B interface. Mol. DNA 3:22. doi: 10.1186/1756-8935-3-22

Buckley, B. A., Burkhart, K. B., Gu, S. G., Spracklin, G., Kershner, A., Fritz, H., et al. (2012). A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 489, 447–451. doi: 10.1038/nature1332

Budhavarapu, V. N., Chavez, M., and Tyler, J. K. (2013). How is epigenetic information maintained through DNA replication? Epigenetics Chromatin 6:32. doi: 10.1186/1756-8935-6-32

Buckart-Waco, D., Ngo, K., Dilkkes, B., Josefsen, C., and Comai, L. (2013). Early disruption of maternal-zygotic interaction and activation of defense-like responses in Arabidopsis interspecific crosses. Plant Cell 25, 2037–2055. doi: 10.1105/tpc.112.108258

Carnavale Bottino, M., Rosario, S., Gratilov, C., Thiebaut, E., Rojas, C. A., Farrinelli, L., et al. (2013). High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. PLoS ONE 8:e59923. doi: 10.1371/journal.pone.0059923

Castel, S. E., and Martienssen, R. A. (2013). RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. 14, 100–112. doi: 10.1038/nrg3355

Chatterjee, A. G., Leem, Y. E., Kelly, F. D., and Levin, H. L. (2009). The chromodomain of TIF1 integrase promotes binding to cDNA and mediates target site selection. J. Virol. 83, 2675–2685. doi: 10.1128/JVI.01588-08

Chen, C. C., and Tyler, J. (2008). Chromatin reassembly signals the end of DNA replication? Cell Cycle 7, 3792–3797. doi: 10.4161/cc.7.24.7188

Chen, L., Wang, T., Zhao, M., Tian, Q., and Zhang, W. H. (2012a). Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Planta 235, 375–386. doi: 10.1007/s00425-011-1514-9

Chen, L., Wang, T., Zhao, M., and Zhang, W. (2012b). Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at whole genome scale. Plant Sci. 184, 14–19. doi: 10.1016/j.plantsci.2011.11.007

Chen, W. T., Alpert, A., Leiter, C., Gong, F., Jackson, S. P., and Miller, K. M. (2013). Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale. BMC Plant Biol. 12:132. doi: 10.1186/1471-2229-12-132

Chen, W. T., Alpert, A., Leiter, C., Gong, F., Jackson, S. P., and Miller, K. M. (2013). Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale. BMC Plant Biol. 12:132. doi: 10.1186/1471-2229-12-132

Chen, W. T., Alpert, A., Leiter, C., Gong, F., Jackson, S. P., and Miller, K. M. (2013). Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale. BMC Plant Biol. 12:132. doi: 10.1186/1471-2229-12-132

Chen, L., Wang, T., Zhao, M., Tian, Q., and Zhang, W. H. (2012a). Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Planta 235, 375–386. doi: 10.1007/s00425-011-1514-9

Chen, L., Wang, T., Zhao, M., and Zhang, W. (2012b). Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at whole genome scale. Plant Sci. 184, 14–19. doi: 10.1016/j.plantsci.2011.11.007

Chen, W. T., Alpert, A., Leiter, C., Gong, F., Jackson, S. P., and Miller, K. M. (2013). Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale. BMC Plant Biol. 12:132. doi: 10.1186/1471-2229-12-132
Chiarotti, L., Angrisano, T., Keller, S., Florio, E., Affinito, O., Pallante, P., et al. (2013). Epigenetic modifications induced by *Helicobacter pylori* infection through a direct microbe-gastric epithelial cells cross-talk. *Med. Microbiol. Immunol.* 202, 327–337. doi: 10.1007/s00281-013-0301-6

Chinnusamy, V., and Zhu, J. K. (2009a). Epigenetic regulation of stress responses in plants. *Curr. Opin. Plant Biol.* 12, 133–139. doi: 10.1016/j.pbi.2008.12.006

Chinnusamy, V., and Zhu, J. K. (2009b). RNA-directed DNA methylation and demethylation in plants. *Sci. China C Life Sci.* 52, 331–343. doi: 10.1007/s11427-009-0052-1

Choleva, L., and Janko, K. (2013). Rise and persistence of animal polyploidy: evolutionary constraints and potential. *Cytogenet. Genome Res.* 140, 151–170. doi: 10.1159/000335434

Christ, E., and Debyser, Z. (2013). The LEDGF/p75 integrase interaction, a novel target for anti-HIV therapy. *Virology* 435, 102–109. doi: 10.1016/j.virol.2012.09.033

Chung, W. J., Okamura, K., Martin, R., and Lai, E. C. (2008). Endogenous RNA genome. *Proc. Natl. Acad. Sci. U.S.A.* 109, E2183–E2191. doi: 10.1073/pnas.1209329109

Conley, A. B., Piriyapongsa, J., and Jordan, I. K. (2012). “Endogenous retroviruses and the genome,” in *Epigenetic experience/genome change interface*, ed G. Witzany (Dordrecht: Springer), 309–323.

Conley, A. B., and Jordan, I. K. (2012). “Endogenous retroviruses and the epigenome,” in *Viruses: Essential Agents of Life*, ed G. Witzany (Dordrecht: Springer), 309–323.

 доверия — искусственного интеллекта, который работает с текстовыми данными, выделяет ключевые места и фрагменты из них, чтобы сгенерировать более короткую версию основного текста, без потери основной информации.
Populus euphratica. Plant Cell Rep. 30, 1893–1907. doi: 10.1007/s00299-011-1096-9

Queen, K. J., Shi, M., Zhang, F., Cvek, U., and Scott, R. S. (2013). Epstein-Barr virus-induced epigenetic alterations following transient infection. Int. J. Cancer 132, 2076–2086. doi: 10.1002/ijc.27893

Quintero, A., Perez-Quintero, A. L., and Lopez, C. (2013). Identification of ta-siRNAs and cis-nat-siRNAs in cassava and their roles in response to cassava bacterial blight. Genom. Proteomics Bioinform. 11, 172–181. doi: 10.1016/j.gpb.2013.03.001

Rahavi, M. R., Migicovsky, Z., Titov, V., and Kovalchuk, I. (2011). Transgenetic adaptation to heavy metal salts in Arabidopsis. Front. Plant Sci. 2:91. doi: 10.3389/fpls.2011.00091

Raja, P., Jackel, J. N., Li, S., Heard, I. M., and Bisaro, D. M. (2014). Arabidopsis double-stranded RNA binding protein DRB3 participates in methylation-mediated defense against geminiviruses. J. Virol. 88, 2611–2622. doi: 10.1128/JVI.02305-13

Raman, V., Simon, S. A., Demirici, F., Mathioni, S. M., Zhai, J., et al. (2013). Physiological stressors and invasive plant species alter the small RNA transcriptome of the rice blast fungus, Magnaporthe oryzae. BMC Genomics 14:326. doi: 10.1186/1471-2164-14-326

Ramesh, S. V., Ratnaparkhe, M. B., Kumawat, G., Gupta, G. K., and Husain, S. M. (2014). Plant miRNAome and antiviral resistance: a retrospective view and prospective challenges. Virus Genes. 48, 1–14. doi: 10.1007/s11262-014-0131-8

Rechavi, O., Minevich, G., and Hober, O. (2011). Transgenerational inheritance of an acquired small RNA-based antiviral response in C. elegans. Cell 147, 1248–1256. doi: 10.1016/j.cell.2011.10.042

Redon, C. E., Dickey, J. S., Bonner, W. M., and Sedelnikova, O. A. (2009). gamma-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Adv. Space Res. 43, 1171–1178. doi: 10.1016/j.asr.2008.10.011

Ren, Y., Chen, L., Zhang, Y., Kang, X., Zhang, Z., and Wang, Y. (2012). Identification of novel and conserved Populus tomentosa microRNAs as components of a response to water stress. Funct. Integr. Genomics 12, 327–339. doi: 10.1007/s10142-012-0277-6

Ren, Y., Chen, L., Zhang, Y., Kang, X., Zhang, Z., and Wang, Y. (2013). Identification and characterization of salt-responsive microRNAs in Populus tomentosa by high-throughput sequencing. Biochimie 95, 743–750. doi: 10.1016/j.biochi.2012.10.025

Rigal, M., and Mathieu, O. (2011). A “mille-feuille” of silencing: epigenetic cassettes for any occasion. EMBO J. 30, 2738–2748. doi: 10.1038/emboj.2011.458

Ripoll, M., and Carbonell, M. (2015). RNA editing regulates transposon-mediated heterochromatic gene silencing. Nat. Commun. 6:2745. doi: 10.1038/ncomms7345

Schmidt, C. K., and Jackson, S. P. (2013). On your mark, get set(D2) go! H3K36me3 primes DNA mismatch repair. Cell 153, 513–515. doi: 10.1016/j.cell.2013.04.018

Seeger, A., Hauer, M., and Gasser, S. M. (2013). Nucleosome remodelers in double-strand break repair. Curr. Opin. Genet. Dev. 23, 174–184. doi: 10.1016/j.gde.2012.12.008

Sha, A., Zhao, J., Yin, K., Tang, Y., Wang, Y., Wei, X., et al. (2014). Virus-based microRNA silencing in plants. Plant Physiol. 164, 36–47. doi: 10.1104/pp.113.231100

Shapiro, J. A. (2011). Evolution: a View from the 21st Century. Upper Saddle River, NJ: FT Press Science.

Shapiro, J. A. (2014). The physiology of the Read-Write (RW) genome. J. Physiol. (in press).

Sharma, A. (2013). Transgenerational epigenetic inheritance: focus on soma to germline information transfer. Prog. Biophys. Mol. Biol. 113, 439–446. doi: 10.1016/j.pbiomolbio.2012.12.003

Sharma, A., Larue, R. C., Plumb, M. R., Malani, N., Male, F., Slaughter, P., et al. (2013a). BET proteins promote efficient murine leukemia virus integration at transcription start sites. Proc. Natl. Acad. Sci. U.S.A. 110, 12036–12041. doi: 10.1073/pnas.1307157110

Sharma, A., Wolfgang, T. K., and Presting, G. G. (2013b). Tandem repeats derived from centromeric retrotransposons. BMC Genomics 14:142. doi: 10.1186/1471-2164-14-142

Shi, L., and Oberdoerffer, P. (2012). Chromatin dynamics in DNA double-strand break repair. Biochem. Biophys. Acta 1819, 811–819. doi: 10.1016/j.bbagrm.2012.01.002

Shivaprasad, P. V., Dunn, R. M., Santos, B. A., Bassett, A., and Baulcombe, D. C. (2012). Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J. 31, 257–266. doi: 10.1038/emboj.2011.458

Shpiz, S., Kwon, D., Rozovsky, Y., and Kalmymkova, A. (2009). rasiRNA pathway controls antisense expression of Drosophila telomeric retrotransposons in the nucleus. Nucleic Acids Res. 37, 268–278. doi: 10.1093/nar/gkn960

Shu, L., and Hu, Z. (2012). Characterization and differential expression of microRNAs eluted by sulfur deprivation in Chlamydomonas reinhardtii. BMC Genomics 13:108. doi: 10.1186/1471-2164-13-108

Shuai, P., Liang, D., Zhang, Z., Yin, W., and Xia, X. (2013). Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis. BMC Genomics 14:233. doi: 10.1186/1471-2164-14-233

Sienski, G., Donertas, D., and Brenneman, J. (2012). Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell 151, 964–980. doi: 10.1016/j.cell.2012.10.040

Sijen, T., and Plasterk, R. H. (2003). Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426, 310–314. doi: 10.1038/nature02107

Skinner, M. K., Haque, C. G., Nilsson, E., Bhardari, M., and Maccarey, J. R. (2013). Environmentally induced transgenerational epigenetic reprogramming of primate germ cells and the subsequent germ line. PLoS ONE 8:e66318. doi: 10.1371/journal.pone.0066318

Slaughter, A., Daniel, X., Flors, V., Luna, E., Hohn, B., and Mauch-Mani, B. (2012). Descendants of primed Arabidopsis plants exhibit resistance to biotic stress mediated by intercellular communication. Plant Physiol. 158, 835–843. doi: 10.1104/pp.111.191593

Slotkin, R. K. (2010). The epigenetic control of the Athila family of retrotransposons in Arabidopsis. Epigenetics 5, 483–490. doi: 10.4161/epi.5.6.12119

Sokolov, M. V., Dickey, J. S., Bonner, W. M., and Sedelnikova, O. A. (2007). gamma-H2AX in bystander cells: not just a radiation-triggered event, a cellular response to stress mediated by intercellular communication. Cell Cycle 6, 2210–2212. doi: 10.4161/cc.6.18.4682

Soubry, A., Hoyo, C., Jirile, R. L., and Murphy, S. K. (2014). A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. Bioessays 36, 359–371. doi: 10.1002/bies.201300113

Stenberg, P., and Saura, A. (2013). Meiosis and its deviations in polyploid animals. Cytogenet. Genome Res. 140, 185–203. doi: 10.1159/000351731
Vos, L. J., Famulski, J. K., and Chan, G. K. (2006). How to build a centromere: from Vanegas, M., Llano, M., Delgado, S., Thompson, D., Peretz, M., and Poeschla, E. Vandegehuchte, M. B., and Janssen, C. R. (2013). Epigenetics in an ecotoxicologic- VanRij, R. P., Saleh, M. C., Berry, B., Foo, C., Houl, A., Antoniewski, C., Van Attikum, H., and Gasser, S. M. (2005). ATP-dependent chromatin remod- Vago, R., Leva, V., Biamonti, G., and Montecucco, A. (2009). DNA ligase I and Nbs1 Tian, Z., Yu, Y., Lin, F., Sanmiguel, P. J., Wing, R. A., Mccouch, S. R., et al. (2011). Tayale, A., and Parisod, C. (2013). Natural pathways to polyploidy in plants and Shapiro Epigenetic experience/genome change interface
Xiong, Z., Gaeta, R. T., and Pires, J. C. (2011). Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc. Natl. Acad. Sci. U.S.A. 108, 7908–7913. doi: 10.1073/pnas.1014130108

Xu, L., Wang, Y., Zhai, L., Xu, Y., Wang, L., Zha, X., et al. (2013). Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots. J. Exp. Bot. 64, 4271–4287. doi: 10.1093/jxb/ert1240

Xu, Y., Ayrapetov, M. K., Xu, C., Gursoy-Yuzugullu, O., Hu, Y., and Price, B. D. (2012a). Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair. Mol. Cell. 48, 723–733. doi: 10.1016/j.molcel.2012.09.026

Xu, Y., Huang, L., Fu, S., Wu, i, and Zhou, X. (2012b). Population diversity of rice stripe virus-derived siRNAs in three different hosts and RNAi-based antiviral immunity in Laoedphaga striatellus. PLoS ONE 7:e46238. doi: 10.1371/journal.pone.0046238

Xu, Y., and Price, B. D. (2011). Chromatin dynamics and the repair of DNA double strand breaks. Cell Cycle 10, 261–267. doi: 10.4161/cc.10.2.14543

Xu, Z., Zhong, S., Li, W., Rothstein, S. J., Zhang, S., et al. (2011). DNA double strand breaks. Mol. Cell. 48, 723–733. doi: 10.1016/j.molcel.2012.09.026

Yang, X., Xie, Y., Raja, P., Li, S., Wolf, J. N., Shen, Q., et al. (2011). Suppression of new formed allohexaploid wheat species. Mol. Genet. Genomics 287, 215–230. doi: 10.1007/s00438-010-0654-5

Yang, X., Yu, Y., Jiang, L., Lin, X., Zhang, C., Ou, X., et al. (2012). Changes in homologous recombination frequency, point mutation frequency and the time for virus replication. Front. Plant Sci. 3:361. doi: 10.3389/fpls.2013.00361

Yang, L., Jue, D., Li, W., Zhang, R., Chen, M., and Yang, Q. (2013). Identification of mPing by the topoisomerase II inhibitor, etoposide, in rice. BMC Plant Biol. 13, 207. doi: 10.1186/1471-2229-13-207

Yao, Y., and Kovalchuk, I. (2011). Abiotic stress leads to somatic and heritable changes in homologous recombination frequency, point mutation frequency and microsatellite stability in Arabidopsis plants. Mutat. Res. 707, 61–66. doi: 10.1016/j.mrfmmm.2010.12.013

Yao, Y., Katricha, P., and Kovalchuk, I. (2013). A systemic increase in the recombination frequency upon local infection of Arabidopsis thaliana plants with oilseed rape mosaic virus depends on plant age, the initial inoculum concentration and the time for virus replication. Front. Plant Sci. 4:616. doi: 10.3389/fps.2013.00601

Ye, Y. H., Woolfitt, M., Huttley, G. A., Rances, E., Caragata, E. P., Popovic, J., et al. (2013). Infection with a virulent strain of the bacterial pathogen causes widespread of cytosine methylation in the mosquito. PLoS ONE 8:e66482. doi: 10.1371/journal.pone.0066482

Yin, Z., Li, Y., Han, X., and Shen, F. (2012). Genome-wide profiling of miRNAs and other small non-coding RNAs in the Verticillium dahliae-inoculated cotton roots. PLoS ONE 7:e35765. doi: 10.1371/journal.pone.0035765

You, S., Teng, Y., Waters, R., and Reed, S. H. (2011). Howchromatin is remodelled during DNA repair of UV-induced DNA damage in Saccharomyces cerevisiae. PLoS Genet. 7:e1002124. doi: 10.1371/journal.pgen.1002124

Yu, Y., Yang, X., Wang, H., Shi, F., Liu, Y., Liu, J., et al. (2013b). Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses. PLoS ONE 8:e55772. doi: 10.1371/journal.pone.0055772

Zeng, Q. Y., Yang, C. Y., Ma, Q. B., Li, X. P., Dong, W. W., and Nian, H. (2012). Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biol. 12:182. doi: 10.1186/1471-2229-12-182

Zhang, L., Liu, Z., Zou, X., Jiang, Y., Qiu, F., Zheng, Y., et al. (2013). Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings. Physiol. Plant. 147, 181–193. doi: 10.1111/j.1399-3054.2012.01653.x

Zhan, X., Wang, B., Li, H., Liu, R., Kalia, R. K., Zhu, J. K., et al. (2012). Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. Proc. Natl. Acad. Sci. U.S.A. 109, 18198–18203. doi: 10.1073/pnas.1216199109

Zhang, W., Gao, S., Zhou, X., Chellappan, P., Chen, Z., Zhou, X., et al. (2011). Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol. Biol. 75, 93–105. doi: 10.1007/s11103-010-9710-8

Zhang, W., Lee, H. R., Koo, D. H., and Jiang, I. (2008a). Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. Plant Cell 20, 25–34. doi: 10.1105/tpc.107.057083

Zhang, X., Ge, X., Shao, Y., Sun, G., and Li, Z. (2013). Genomic change, retrotransposon mobilization and extensive cytosine methylation alteration in Brussica napus introgressions from two intertrivial hybridizations. PLoS ONE 8:e56346. doi: 10.1371/journal.pone.0056346

Zhang, X., and Mager, D. L. (2012). Gene properties and chromatin state influence the accumulation of transposable elements in genes. PLoS ONE 7:e30158. doi: 10.1371/journal.pone.0030158

Zhang, Z., Lin, H., Shen, Y., Gao, I., Xiang, K., Liu, L., et al. (2012). Cloning and characterization of miRNAs from maize seedling roots under low phosphorus stress. Mol. Biol. Rep. 39, 8137–8146. doi: 10.1007/s11033-012-1661-5

Zhang, Z., Wei, L., Zou, X., Tao, Y., Liu, Z., and Zheng, Y. (2008b). Submergence-responsive MicroRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Ann. Bot. 102, 509–519. doi: 10.1093/abo/mcn129

Zheng, X., Chen, L., Li, M., Lou, Q., Xia, H., Wang, P., et al. (2013). Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance. PLoS ONE 8:e80253. doi: 10.1371/journal.pone.0080253

Zhang, Y., Ao, Z., Jayappa, K. D., and Yao, X. (2010). Characterization of the HIV-1 integrase chromatin- and LEDGF/p75-binding abilities by mutagenic analysis within the catalytic core domain of integrase. Virol. J. 7:68. doi: 10.1186/1743-422x-7-68

Zhou, M., Li, D., Li, Z., Hu, Q., Yang, C., Zhu, L., et al. (2013). Constitutive expression of a mSil19 gene alters plant development and enhances salt and drought tolerance in transgenic cestiberg plant. Plant Physiol. 161, 1375–1391. doi: 10.1104/pp.112.208702

Zhu, H., and Guo, H. (2012). The role of virus-derived small interfering RNAs in RNA silencing in plants. Sci. China Life Sci. 55, 119–125. doi: 10.1007/s11427-012-4281-3
Shapiro J. A. (2012). Epigenetic control of mobile DNA as an interface between experience and genome change. Front. Genet. 5:87. doi: 10.3389/fgene.2014.00087

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 27 February 2014; accepted: 01 April 2014; published online: 25 April 2014.

Citation: Shapiro J.A. (2014) Epigenetic control of mobile DNA as an interface between experience and genome change. Front. Genet. 5:87. doi: 10.3389/fgene.2014.00087

This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Genetics.

Copyright © 2014 Shapiro. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Zhu, J., Gaiha, G. D., John, S. P., Pertel, T., Chin, C. R., Gao, G., et al. (2012). Reactivation of latent HIV-1 by inhibition of BRD4. Cell Rep. 2, 807–816. doi: 10.1016/j.celrep.2012.09.008

Zhu, Y., Rowley, M. J., Bohmdorfer, G., and Wierzbicki, A. T. (2013). A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing. Mol. Cell 49, 298–309. doi: 10.1016/j.molcel.2012.11.011

Zhuang, Y., Zhou, X. H., and Liu, J. (2014). Conserved miRNAs and their response to salt stress in wild Eggplant Solanum linnaeanum roots. Int. J. Mol. Sci. 15, 839–849. doi: 10.3390/ijms15010839

Zucchi, F. C., Yao, Y., and Metz, G. A. (2012). The secret language of destiny: stress imprinting and transgenerational origins of disease. Front. Genet. 3:96. doi: 10.3389/fgene.2012.00096

Zvereva, A. S., and Pooggin, M. M. (2012). Silencing and innate immunity in plant defense against viral and non-viral pathogens. Viruses 4, 2578–2597. doi: 10.3390/v4112578