Ferromagnetic transition temperature enhancement in (Ga,Mn)As semiconductor by carbon co-doping

T. Jungwirth, 1, 2 J. Mašek, 3 Jairo Sinova, 1, 4 and A.H. MacDonald 1

1 University of Texas at Austin, Physics Department, 1 University Station C1600, Austin, TX 78712-0264
2 Institute of Physics ASCR, Cukrovarnická 10, 162 53 Praha 6, Czech Republic
3 Institute of Physics ASCR, Na Slovance 2, 182 21 Praha 8, Czech Republic
4 Department of Physics, Texas A&M University, College Station, TX 77843-4242

(Dated: January 3, 2022)

We present a theoretical study of (Ga,Mn)(As,C) diluted magnetic semiconductors with high C acceptor density that combines insights from phenomenological model and microscopic approaches. A tight-binding coherent potential approximation is used to describe the electronic structure in the presence of MnAs and CAs impurities. We find only a small effect of C on the distribution and coherence of electronic states close to the top of the valence band and on the coupling between Mn moments, even at doping levels of several per cent. These results justify applying the model of ferromagnetic Mn-Mn coupling mediated by itinerant holes in the valence band also to C doped samples. The increase of ferromagnetic transition temperature due to the presence of C acceptors is illustrated by calculations that use the \(\mathbf{k} \cdot \mathbf{p} \) Kohn-Luttinger description of the GaAs valence band and assume systems where Mn local moment and itinerant hole densities can be varied independently.

Prospects for new device functionalities in all-semiconductor spin-electronic structures rely on the realization of a ferromagnetic semiconductor operating at room temperature. An important milestone in this material research was the discovery five years ago 1 of ferromagnetism in Mn-doped GaAs 2 with the Curie temperature \(T_c = 110 \text{ K} \). In the Ga\(_{1-x}\)Mn\(_x\)As diluted magnetic semiconductor (DMS) with \(x \approx 1 - 10\% \), Mn substituting for Ga provides a local moment \(S = 5/2 \) and a delocalized hole 3. Ferromagnetic coupling between Mn moments is mediated by the itinerant holes via a kinetic-exchange interaction 4. Recent progress in low-temperature MBE growth and post-growth annealing techniques has led to the increase of the transition temperature in (Ga,Mn)As DMS’s by nearly 50 K 5. This success is attributed to a smaller concentration of carrier and moment compensating defects, especially interstitial Mn, in the optimally annealed samples 6. The latest observations are consistent with an approximately linear dependence of \(T_c \) on \(x \) and hole Fermi wavevector predicted by theory 7, 8, 9.

In this paper we address theoretically the possibility of increasing \(T_c \) in (Ga,Mn)As DMS’s by a non-magnetic acceptor co-doping, namely by introducing substitutional C\(_n\) impurities. Our work is partly motivated by a recent experimental observation of a marked enhancement of the Curie temperature in Mn-implanted GaAs:C samples compared to the Mn-implanted undoped GaAs layers 10. After briefly discussing the different effects of C\(_n\) and Be\(_{Ga}\) 11 acceptors on substitutional Mn incorporation in (Ga,Mn)As DMS’s, we focus on two key issues related to high-density carbon doping: (i) The effect of C impurities on the density of states in the semiconductor valence band is assessed using the tight-binding/coherent-potential-approximation (TB/CPA) description of the disordered semiconductor. (ii) The strength of the hole-mediated ferromagnetic Mn-Mn coupling is compared for systems with and without C co-doping using the TB/CPA results and \(T_c \) is then estimated from a model that combines the \(\mathbf{k} \cdot \mathbf{p} \) Kohn-Luttinger description of the GaAs valence bands and a mean-field treatment of the kinetic-exchange coupling between Mn local moments and the band-holes.

An important issue for hole co-doping in (Ga,Mn)As DMS’s is the change of the substitutional Mn\(_{Ga}\) formation energy caused by the presence of additional non-magnetic acceptors. Although the formation energy is, strictly speaking, an equilibrium characteristic we assume that the basic features of its compositional dependence are reflected also in the dynamics of the non-equilibrium growth of the co-doped materials. A systematic ab-initio study of the formation energies is beyond the scope of this short paper and will be discussed elsewhere. Here we present a qualitative analysis based on the TB/CPA calculations, described in more detail below. Our results suggest that Be acceptors substituting for the same element as Mn, i.e. for Ga, lead to a strong enhancement of the Mn\(_{Ga}\) formation energy. At the same time, the formation energy of interstitial Mn is suppressed and, hence, an increasing fraction of Mn is incorporated in the form of interstitial donors or electrically neutral Mn\(_{As}\) or Mn clusters. This scenario, which leads to a decrease rather than an increase of \(T_c \), has recently been established by extensive experimental studies of Be co-doped (Ga,Mn)As samples 12.

The TB/CPA calculations indicate that C acceptors...
lead to a much weaker increase of the Mn$_{Ga}$ formation energy. We surmise that this property stems from the anomalous nature of C$_{As}$ which acts as an acceptor, yet has a larger Pauling’s electro-negativity than As. The difference between the effects of Be$_{Ga}$ and C$_{As}$ impurities on Mn$_{Ga}$ incorporation is further enhanced at high doping levels where the competition of Be and Mn for the same lattice site starts to play a role.

The above qualitative analysis of formation energies suggests that C$_{As}$ co-doping is favorable for achieving high Curie temperatures. Unlike typical acceptors, however, C has a very different atomic size and, as already mentioned, a large electro-negativity compared to the atom it substitutes for. The crucial question, addressed in the following paragraphs, is then to what extent doping by several per cent of C$_{As}$ changes the semiconductor band structure and whether the model of shallow acceptor carrier-induced ferromagnetism still applies in (Ga,Mn)$_{(As,C)}$.

Our calculations of the electronic structure of GaAs in the presence of Mn$_{Ga}$ and C$_{As}$ impurities are done using the tight-binding version of the coherent potential approximation (see e.g. Ref. [14]). The CPA, in contrast to supercell calculations, is well-suited for the mixed crystals with low concentrations of randomly distributed impurities. It provides estimates of a configurationally averaged density of states (DOS) and related quantities. The configurational averaging restores full translational symmetry of the lattice and makes it possible to decompose the DOS into contributions from specific points in the Brillouin zone. The spectral density $A(k,E)$ then includes a detailed information about the dispersion of the electronic states in the reciprocal space. In addition, the width of the peaks of $A(k,E)$ defines the scattering rate of the band electrons in various parts of the Brillouin zone due to the impurities.

The parameterization of the TB Hamiltonian provides a correct band gap for the pure GaAs crystal [15] and an appropriate exchange splitting of the Mn d-states. Local changes of the crystal potential at both Mn and C impurities, represented by shifted atomic levels, are estimated using Ref. [16]. Long-range tails of the impurity potentials, which become less important with increasing level of doping, are neglected. (Note, that the Thomas-Fermi screening length is only 3-5 Å for typical carrier densities [17], i.e., comparable to the lattice constant.) Also lattice relaxation effects are neglected within the CPA. This is well justified for Mn$_{Ga}$ impurities [18, 19] but becomes a more important issue in the case of C$_{As}$ impurities. Previous density-functional studies found a -0.6% relative change of the GaAs lattice constant in a 64-atom supercell with a single C$_{As}$ impurity [20]. Although the lattice relaxation around C$_{As}$ may change our results quantitatively, we expect that the dominant effects on the band structure and on the spectral broadening arise from the different atomic levels of C compared to As which is readily accounted for in the TB scheme.

In Fig. [1] we plot the spin-polarized DOS in Ga$_{1-x}$Mn$_x$As$_{1-y}$C$_y$ with $x = y = 4\%$ together with local DOS on host (As) and impurity (C$_{As}$) atoms. Despite the remarkable difference between the atomic levels of As and C, $\Delta \varepsilon_p \approx -1$ eV, the local DOS on C$_{As}$ sites (thin full line) near the valence band edge does not differ much from the local DOS on the As sites (dashed line). (A still larger full width of the valence band than $\Delta \varepsilon_p$ may partly explain this result.) Similarly, the total DOS (thick full line) is only weakly affected by the presence of C in this spectral region. In particular, the spin-splitting 0.26 eV of the valence band edge, directly related to the kinetic-exchange parameter J_{pd}, is nearly the same in systems with and without C$_{As}$ impurities. The shaded region in Fig. [1] shows the DOS of Mn d-states peaked near the energy of -4 eV which is consistent with results in C free (Ga,Mn)As.

It is important to point out that the substitution of C also has a very small effect on the line-width of $A(k,E)$ for the states close to top of the valence band, i.e., electron scattering on C impurities does not disturb substantially the coherence of the Bloch states. This, together with an unchanged value of J_{pd}, implies that the additional disorder due to the co-doping with C should not have any marked effect on the carrier mediated coupling between Mn moments. We check this more explicitly using the compatibility of the CPA with the Weiss mean-field theory. The strength of the Mn-Mn coupling is characterized by the energy cost of flipping one Mn$_{Ga}$ moment, which can be calculated for a given chemical composition [21]. In Fig. [2] we plot this quantity as a function of the hole density, ρ, for $x = y = 4\%$ (solid line), and $x = 4\%$ and $y = 0$ (dashed line) samples. The hole density is varied in the calculations independently of x and y, i.e., we assume implicitly a compensation whenever p is smaller than the total density of Mn$_{Ga}$ and C$_{As}$ acceptors. The curves are nearly identical for systems with and without C, as anticipated above. This means that, for a given hole concentration, the exchange coupling is quite insensitive to the large amount of the additional C$_{As}$ defects. We conclude our TB/CPA considerations by stating that, as in the Mn$_{Ga}$ acceptor case, the main effect of C$_{As}$ doping is a downward shift of Fermi energy with respect to the band edge, i.e., an increase of the number of holes in the valence band. In the following paragraphs we discuss prospects for ferromagnetic transition temperature enhancement by adding extra holes into the DMS valence band.

We use a model in which the itinerant holes are described by the GaAs host bands and the coupling to the local moments by a phenomenological constant J_{pd} [5, 22]. This theory has been successful in describing semiquantitatively many non-trivial thermodynamic and transport properties of (Ga,Mn)As DMS’s [8, 14, 23, 24, 25, 26, 27]. In the simplest, virtual-
crystal mean-field version of the model, that assumes ferromagnetic indirect coupling between Mn ions, the energy to flip the Mn\(_{Ga}\) moment is proportional to the effective field \(H_{eff} = J_{pd}(s)\). Here \((s)\) is the mean spin-polarization density of the itinerant holes which increases with the hole density. This result is consistent with our TB/CPA calculations, shown in Fig. 2 for hole densities not too much larger than the Mn\(_{Ga}\) density. Recall that the concentration of the substitutional Mn ions is given by \(N_{Mn} = 4x/a^2_c\) where \(a_c\) is the GaAs lattice constant (\(N_{Mn} = 0.88\) nm\(^{-3}\) for \(x = 4\%\), e.g.). For \(p > N_{Mn}\), RKKY oscillations of the Mn-Mn coupling start to play a role and the increasing number of antiferromagnetically coupled Mn moments leads to a saturation or even to a suppression of \(T_c\), as seen in Fig. 2 for \(p > 1.3\) nm\(^{-3}\). The mean-field theory that allows only for collinear ferromagnetic states is therefore likely to break down in this high hole-density region. Note also that for high \(N_{Mn}\) and low \(p\), the direct antiferromagnetic Mn-Mn interaction takes over, as suggested by negative Weiss exchange-field values in Fig. 2 which sets another limit on the validity of the simple mean-field model. This low hole-density region is, however, not important for the high-\(T_c\) (Ga,Mn)(As,C) DMS’s we focus on in this paper.

We will use now the mean-field model to estimate the Curie temperature as a function of the Mn\(_{Ga}\) local moment density and of the density of itinerant holes that can be varied independently. We emphasize that hole doping due to C is relevant also for systems with \(p < N_{Mn}\) since most of the experimental (Ga,Mn)As samples show some level of compensation, usually caused by interstitial Mn defects. In the calculations, the GaAs host band-structure is obtained from the \(k\cdot p\), Kohn-Luttinger model [23]. We neglect the \(\sim 10-20\%\) suppression of \(T_c\) due to spin-wave fluctuations since the effect is compensated, to a large extent, by hole-hole exchange enhancement of \(T_c\) [10], also neglected in the present calculations. Details of the model are described elsewhere [3, 8, 10, 23], here we recall only the general \(T_c\) expression we use:

\[
k_B T_c = \frac{N_{Mn} S(S + 1)}{3} \frac{J_{pd}^2 \chi}{(g\mu_B)^2},
\]

(1)

where \(\chi\) is the band-hole magnetic susceptibility which is roughly proportional to \(p^{1/3}\).

Fig. 3 shows constant-\(T_c\) curves calculated for critical temperatures ranging from 50 K to room-temperature. The dashed line corresponds to \(p = N_{Mn}\) and also indicates approximately the onset of RKKY oscillation effects on \(T_c\). Note that the simple mean-field theory used to calculate the constant-\(T_c\) curves is expected to break down above the dotted-dashed line where the large number of antiferromagnetically RKKY-coupled Mn moments might lead to a decrease rather than increase of \(T_c\) with increasing hole density.

Fig. 3 suggests that a substantial enhancement of the ferromagnetic transition temperature may be expected in hole co-doped samples with high Mn moment concentration. Assuming, e.g., \(x = 10\%\), an increase of the hole density from \(p \approx 0.1\) nm\(^{-3}\) to \(p \approx 0.7\) nm\(^{-3}\) leads to an increase of the theoretical \(T_c\) from 50 K to 300 K. For smaller \(x\), a larger \(\Delta p\) is needed to enhance \(T_c\) by the same amount. Recent experiments have demonstrated that good quality (Ga,Mn)As DMS’s can be grown with \(x\) reaching 8\% [24]. Based on the curves in Fig. 3 and our TB/CPA results we conclude, that (Ga,Mn)As DMS’s co-doped with several per cent of C should not be overlooked among potential candidates for a room-temperature ferromagnetic semiconductor.

We acknowledge fruitful discussions with Cammy Abernathy, Miroslav Cukr, Vít Novák, and Dan Park.

FIG. 1: TB/CPA density of states in Ga\(_{1-x}\)Mn\(_x\)As\(_{1-y}\)C\(_y\) DMS with \(x = y = 4\%\). Total DOS (thick full line), local DOS on host As (thin dashed line) and impurity C\(_{As}\) (thin full line) atoms, and the DOS of Mn d-states are plotted as a function of energy, measured from the Fermi level.

FIG. 2: Energy cost of flipping one Mn\(_{Ga}\) moment, obtained from the TB/CPA spectra, is plotted as a function of the hole density for \(x = y = 4\%\) (solid line), and \(x = 4\%\) and \(y = 0\) (dashed line).

FIG. 3: Constant-\(T_c\) curves calculated for critical temperatures ranging from 50 K to room-temperature. The dashed line corresponds to \(p = N_{Mn}\) and also indicates approximately the onset of RKKY oscillation effects on \(T_c\). Note that the simple mean-field theory used to calculate the constant-\(T_c\) curves is expected to break down above the dotted-dashed line where the large number of antiferromagnetically RKKY-coupled Mn moments might lead to a decrease rather than increase of \(T_c\) with increasing hole density.
This work was supported in part by the Welch Foundation, DOE under grant DE-FG03-02ER45958, the Grant Agency of ASCR under grant A1010214, and the Grant Agency of the Czech Republic under grant 202/02/0912.

[1] H. Ohno, Science 281, 951 (1998).
[2] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996); J. De Boeck, R. Oesterholt, H. Bender, A. Van Esch, C. Bruynseraede, C. Van Hoof, and G. Borghs, J. Magn. Magn. Mater. 156, 148 (1996).
[3] J. König, J. Schliemann, T. Jungwirth, and A.H. MacDonald, in Electronic Structure and Magnetism of Complex Materials, edited by D.J. Singh and D.A. Papaconstantopoulos (Springer Verlag, Berlin 2003) and citations therein.
[4] T.C. Schulthess, Bull. Am. Phys. Soc. 2003, March Meeting, K30-1; P.H. Dederichs, K. Sato, H. Katayama-Yoshida, J. Kudrnovský, ibid, S24-5.
[5] T. Dietl, "Diluted Magnetic Semiconductors" in Handbook of Semiconductors, Vol. 3B", (North-Holland, New York), (1994); T. Dietl, A. Haury and Y. Merle d’Aubigné, Phys. Rev. B 55, R3347 (1997).
[6] K.W. Edmonds, K.Y. Wang, R.P. Campion, A.C. Neuman, N.R.S. Farley, B.L. Gallagher, and C.T. Foxon, Appl. Phys. Lett. 81, 4991 (2002); K. C. Ku, S. J. Potashnik, R. F. Wang, M. J. Seong, E. Johnston-Halperin, R. C. Meyers, S. H. Chun, A. Mascarenhas, A. C. Gossard, D. D. Awschalom, P. Schiffer, and N. Samarth, Appl. Phys. Lett. 82, 2302 (2002); K.W. Edmonds, K.Y. Wang, R.P. Campion, N.R.S. Farley, B.L. Gallagher, C.T. Foxon, and M. Sawicki, to be published.
[7] K. M. Yu, W. Walukiewicz, T. Wojtowicz, I. Kuryliszyn, X. Liu, Y. Sasaki, and J. K. Furdyna, Phys. Rev. B 66, 201303 (2002).
[8] T. Jungwirth, W.A. Atkinson, B.H. Lee, and A.H. MacDonald, Phys. Rev. B 59, 9818 (1999).
[9] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
[10] T. Jungwirth, J. König, J. Sinova, J. Kučera, and A.H. MacDonald, Phys. Rev. B 66, 012402 (2002).
[11] Y.D. Park, J.D. Lim, K.S. Suh, S.B. Shim, J.S. Lee, C.R. Abernathy, S.J. Pearton, Y.S. Kim, Z.G. Kim, and R.G. Wilson, to be published.
[12] K. M. Yu, W. Walukiewicz, T. Wojtowicz, W.L. Lim, X. Liu, U. Bindley, M. Dobrowolska, and J. K. Furdyna, preprint cond-mat/0303217.
[13] J. Mašek, I. Turek, V. Drchal, J. Kudrnovský, and F. Máca, to be published.
[14] J. Mašek, B. Velický, V. Janiš, J. Phys. C 20, 59 (1987).
[15] D. N. Talwar, C. S. Ting, Phys. Rev. B 25, 2600 (1982).
[16] W. Harrison, Electronic Structure and the Properties of Solid (Freeman, San Francisco, 1980).
[17] T. Jungwirth, M. Abolfath, Jairo Sinova, J. Kučera, and A.H. MacDonald, Appl. Phys. Lett. 81, 4029 (2002); M.P. López-Sancho and L. Brey, cond-mat/0302237.
[18] S. Mirbt, B. Sanzyl, and P. Mähl, J. Phys.: Condens. Matter 14, 30 130 (2002).
[19] J. Mašek, J. Kudrnovský, and F. Máca, Phys. Rev. B 67, 153203 (2003).
[20] C.D. Latham, R. Jones, S. Öberg, and P.R. Briddon, Phys. Rev. B 63, 155202 (2001).
[21] J. Mašek, Solid State Comm. 78, 351 (1991).
[22] H. Ohno, J. Magn. Magn. Mater, 200, 110 (1999); J. Okabayashi, A. Kimura, O. Rader, T. Mizokawa, A. Fujimori, T. Hayashi, and M. Tanaka, Phys. Rev. B 58, R4211 (1998).
[23] T. Dietl, H. Ohno, F. Matsukura, Phys. Rev. B 63, 195205 (2001); M. Abolfath, T. Jungwirth, J. Bruin, and A.H. MacDonald, Phys. Rev. B 63, 054418 (2001).
[24] T. Dietl, J. König, and A. H. MacDonald, Phys. Rev. B 64, 241201 (2001).
[25] T. Jungwirth, Q. Niu, and A.H. MacDonald, Phys. Rev. Lett. 88, 207208 (2002).
[26] T. Jungwirth, Jairo Sinova, K.Y. Wang, K. W. Edmonds, R.P. Campion, B.L. Gallagher, C.T. Foxon, Q. Niu, A.H. MacDonald, preprint cond-mat/0302060.
[27] Jairo Sinova, T. Jungwirth, S.- R. Eric Yang, J. Kucera, and A.H. MacDonald, Phys. Rev. B 66, 041202 (2002).