On the automorphism group of tube type real symmetric domains

Fernando De Oliveira

Institut Élie Cartan de Nancy (IECN), Nancy-Université, CNRS, INRIA, Boulevard des Aiguillettes, B.P. 239, 54506 Vandoeuvre-lès-Nancy, France

Abstract
The aim of this note is to explain a generalization to the real case of a well known result on the automorphism group of an unbounded tube type symmetric domain in a complex vector space of finite dimension.

Keywords: Jordan algebra, Jordan triple system, bounded symmetric domain, partial Cayley transform, symmetric cone, tube type domain

1. Introduction

Let \(\mathcal{D} = G/K \) be a (complex) bounded symmetric domain of tube type in a finite dimension complex vector space \(V \). The tangent space at the origin is a positive hermitian Jordan triple system \((V, \{\}) \) and \(V \) is also endowed to a structure of semisimple complex Jordan algebra. Moreover, there exists an euclidian real form \(V^+ \) of the Jordan algebra \(V \) and a Cayley transform \(\gamma \) such that \(\gamma(\mathcal{D}) = T_{\Omega} \), \(T_{\Omega} \) being the tube domain \(T_{\Omega} = \Omega \oplus iV^+ \) where \(\Omega \) means the symmetric cone of invertible squares of \(V^+ \) (see [4]). It is well known (see [1, Theorem X.5.6]) that the automorphism group \(\gamma \circ G \circ \gamma^{-1} \) of \(T_{\Omega} \) is generated by \(H(\Omega), N^+ \) and the inversion map of the Jordan algebra \(V \), where

\[
N^+ = \{ x \mapsto x + iv | v \in V^+ \}, \quad H(\Omega) = \{ g \in \text{GL}(V^+) | g\Omega = \Omega \}.
\]

This result can be generalized to any real bounded symmetric domain of tube type. This work is essentially based on [1] and [4].

Email address: deolivei@iecn.u-nancy.fr ()

Preprint submitted to Elsevier

December 7, 2010
2. Algebraic framework

Let \(V = V^+ \oplus V^- \) be the Cartan decomposition of a real semisimple Jordan algebra \(V \) of finite dimension with Cartan involution \(\star \). That is

\[
V^\pm = \{ x \in V | x^\star = \pm x \}
\]

and the trace form \(\alpha : (x, y) \mapsto \text{Tr}(L(xy)) \) is positive definite on \(V^+ \) and negative definite on \(V^- \), where the \(L(x) \) are the multiplication operators on \(V \). This implies that \(V^+ \) is a semisimple euclidian Jordan algebra. For \(x, y \in V \), define

\[
x \triangleleft y := L(xy^\star) + [L(x), L(y^\star)].
\]

Then a simple calculation shows that \(V \) equipped with the triple product

\[
\{x, y, z\} := x \triangleleft y(z)
\]

is a positive real Jordan triple system, that is \((V, \{\}) \) is a real Jordan triple system and the trace form \(\beta : (x, y) \mapsto \text{Tr}(x \triangleleft y) \) is positive definite on \(V \). Observe that \(\alpha(x, y^\star) = \beta(x, y) \) so if \(f^\star \) means the adjoint operator of \(f \in \text{End}(V) \) with respect to \(\alpha \), then \(f^\star \) means the adjoint of \(f \) with respect to \(\beta \), where \(f^\star \) is define as the conjugation of \(f \) by the Cartan involution \(\star \).

Distinguish the two structures of \(V \) by noting \(V' \) the Jordan triple structure of \(V \).

Let \(P, Q \) be the quadratic representations of \(V, V' \) respectively, define as

\[
P : x \mapsto (P(x) = 2L(x)^2 - L(x^2)),
\]

\[
Q : x \mapsto (Q(x) : y \mapsto P(x)y^\star).
\]

Let now \(\text{Str}(V), \text{Str}(V') \) be the structure groups and \(\text{Aut}(V), \text{Aut}(V') \) the automorphism groups of \(V \) and \(V' \) respectively, that is to say

\[
\text{Str}(V) := \{ g \in \text{GL}(V) | P(gx) = gP(x)^\star g \},
\]

\[
\text{Aut}(V) := \{ g \in \text{GL}(V) | g(xy) = (gx)(gy) \},
\]

\[
\text{Str}(V') := \{ g \in \text{GL}(V) | Q(gx) = gQ(x)^\star g^\star \},
\]

\[
\text{Aut}(V') := \{ g \in \text{GL}(V) | g\{x, y, z\} = \{gx, gy, gz\} \}.
\]
We see easily that if g is an element of $\text{Str}(V)$ then $\dot{g} = g^{-1}P(ge)$. Also, $\text{Aut}(V)$ is the isotropy group $\text{Str}(V)^e$ of e in $\text{Str}(V)$, and we have

$$\text{Str}(V) = \{ g \in \text{GL}(V) | j \circ g \circ j \in \text{GL}(V) \}$$

(see e.g. [1, Propositions VIII.2.4 and VIII.2.5]). Moreover, if $O(V, \beta)$ means the orthogonal group of V with respect to β, then

$$\text{Aut}(V') = \text{Str}(V') \cap O(V, \beta).$$

Furthermore, a simple computation shows that $\text{Str}(V') = \text{Str}(V)$.

3. Tube type domains and automorphism groups

A result of O. Loos says that there exists a real bounded symmetric domain of tube type \mathcal{D} such that the tangent space at the origin of \mathcal{D} is V' and, the domain \mathcal{D} is equivalent to a unbounded real symmetric domain, the tube T_Ω define as

$$T_\Omega := \Omega \oplus V^-,$$

Ω being the symmetric cone of invertible squares of V^+ (see [4, Theorem 10.8]). The equivalence is given by the partial Cayley transform γ_e, define on

$$\{ x \in V | e - x \text{ is invertible} \}$$

by

$$\gamma_e(x) = (e + x)(e - x)^{-1} = -e + 2(e - x)^{-1},$$

where e means the identity element of the Jordan algebra V. The geodesic symmetry around $0 \in \mathcal{D}$ is $-\text{Id}_V$ and then, the geodesic symmetry around $e = \gamma_e(0) \in T_\Omega$ is the inversion map $j : x \mapsto x^{-1}$ of the algebra V, which means that

$$j \circ \gamma_e = \gamma_e \circ (-\text{Id}_V).$$

The bounded domain \mathcal{D} is homogeneous under the action of a connected semisimple Lie group G without center : $\mathcal{D} = G/K$, K being the isotropy group of 0 in G (see [4, 11.14]). One has that K is the identity component of $\text{Aut}(V')$ (see [4, Lemme 2.11]). Now, we can define the automorphism group L of the tube domain T_Ω as

$$L := \gamma_e \circ G \circ \gamma_e^{-1}.$$
The base point of T_Ω is e so $T_\Omega = L/U$ with $U = \gamma_e \circ K \circ \gamma_e^{-1}$, so U is the isotropy group of e in L.

For $v \in V^-$, let $t_v : x \mapsto x + v$ be the translation by v and define $N^+ := \{t_v | v \in V^-\}$. The translation group N^+ appears as an abelian subgroup of L isomorphic to V^-. Finally, let $G(\Omega)$ be the identity component of the group

$$\{g \in \text{GL}(V) | g\Omega = \Omega, g^* = g\} = \{g \in \text{GL}(V) | g\Omega = \Omega, g^* = g\}.$$

Then $G(\Omega)$ acts naturally on T_Ω as $a + v_- \mapsto ga + gv_-$ and thus we identify $G(\Omega)$ with a subgroup of L.

We shall prove the following theorem.

Theorem 1. The group L is generated by $G(\Omega)$, N^+ and j.

4. Affine transformations of T_Ω

Recall that an element x of the Jordan algebra V is invertible if and only if the operator $P(x)$ is and therefore $x^{-1} = P(x)^{-1}x$.

The group $G(\Omega)$ acts transitively on the cone Ω. Indeed, let $x \in V^+$ be an invertible element. Since $P(x)^* = P(x^*) = P(x)$, the restriction to V^+ of $P(x)$ is in $\text{GL}(V^+)$. We have also $P(x)e = x^2 \in \Omega$ and so $P(x)\Omega$ is the connected component of x^2 in the group $(V^+)^\times$ of invertible elements of V^+, none other than Ω. Hence

$$\Omega = \{x^2 | x \in (V^+)^\times\} = \{P(x)e | x \in (V^+)^\times\} \subset G(\Omega)e \subset \Omega.$$

For very good and complete explanations on euclidian Jordan algebras and symmetric cones, see [1].

Lemma 1. We have the decomposition

$$L = N^+ G(\Omega) U.$$

Proof. Let $g \in L$ and $x = g \cdot e := x + y \in \Omega \oplus V^-$. Then there exists $h \in G(\Omega)$ such that $x = he$ and thus we have

$$x = t_y \circ h(e).$$
The transformation $g' := h^{-1} \circ t_y^{-1} \circ g$ of T_Ω satisfies $g'(e) = e$, that is to say $g' \in U$ and

$$g = t_y \circ h \circ g'$$

is the desired decomposition. \(\square\)

The next step is the characterization of the group of affine transformations of T_Ω, which is the key of the proof of the theorem 1.

According to [4, Proposition 2.2], the group K is the normalizer of $-\text{Id}_V$ in G, therefore U is the normalizer of j in L:

$$U = \{ g \in L | j \circ g \circ j = g \}.$$

By consequence,

$$U \cap \text{GL}(V) \subset \text{Str}(V)^e = \text{Aut}(V)$$

so if $g \in U \cap \text{GL}(V)$ then $t'g = g^{-1}$. Let $g = \gamma_e \circ k \circ \gamma_e^{-1} \in U$ with $k \in K$. We have

$$g^* = (\gamma_e \circ k \circ \gamma_e^{-1})* = \gamma_e^* \circ k^* \circ \gamma_e^*^{-1}$$

$$= \gamma_e \circ t'k^{-1} \circ \gamma_e^{-1}$$

$$= \gamma_e \circ k \circ P(k^{-1}e) \circ \gamma_e^{-1}.$$

By linearity of g, we get

$$0 = g(0) = \gamma_e k \gamma_e^{-1}(0)$$

thus

$$\gamma_e^{-1}(0) = k \gamma_e^{-1}(0).$$

Since $\gamma_e^{-1}(0) = e$, we obtain $ke = e$ and $g^* = g$. Besides, a linear element g of U satisfies $t'g^*^{-1} = g$ and $ge = e$, which implies

$$U \cap \text{GL}(V) \subset \text{Aut}(V')^e,$$

$\text{Aut}(V')^e$ being the isotropy group of e in $\text{Aut}(V')$. Observe that

$$\text{Aut}(V')^e = \text{Aut}(V) \cap O(V, \beta) = \{ g \in \text{Aut}(V) | g^* = g \}.$$

Conversely, we have $\text{Aut}(V')^e \subset \text{Aut}(V)$ thus any element g of $\text{Aut}(V')^e$ verifies $\gamma_e \circ g \circ \gamma_e^{-1}$, which means

$$\text{Aut}(V')^e = \gamma_e \circ \text{Aut}(V')^e \circ \gamma_e^{-1} \subset U.$$
After all, we get

\[U \cap \text{GL}(V) = \text{Aut}(V')e. \]

Moreover, one has \(\text{Aut}(V')e = G(\Omega)e \), \(G(\Omega)e \) being the isotropy group of \(e \) in \(G(\Omega) \). Indeed, \(G(\Omega)e \subset U \cap \text{GL}(V) = \text{Aut}(V')e \) and conversely, for \(g \in \text{Aut}(V') \subset \text{Aut}(V) \) and \(x \in \Omega \) (\(x = y^2 \) for some \(y \in (V^+)^* \)), we have

\[gx = g(y^2) = (gy)^2 \in \Omega \]

thus \(\text{Aut}(V')e \subset G(\Omega)e \). We just proved the following lemma:

Lemma 2. The following equalities hold:
\[
U \cap \text{GL}(V) = \text{Aut}(V')e = G(\Omega)e.
\]

We can now give the main result of this section:

Proposition 1. Let \(M \in \text{GL}(V) \) and \(v \in V \). Then the affine transformation \(x \mapsto Mx + v \) belongs to \(L \) if and only if \(M \in G(\Omega) \) and \(v \in V^- \). In particular, the connected component of the identity of the affine transformations group of \(T_\Omega \) is the semi-direct product \(G(\Omega) \ltimes N^+ \).

Proof. The part ‘if’ of the equivalence is obvious. For the converse, suppose that \(x \mapsto Mx + v \) belongs to \(L \) and first show that \(M \in G(\Omega) \). According to 1, exists \(v \in V^- \), \(h \in G(\Omega) \) and \(g \in U \) such that \(M = t_v \circ h \circ g = h \circ t_{h^{-1}v} \circ g \). By linearity of \(h^{-1} \circ M \), the map \(g \) is an affine transformation which can be written \(x \mapsto g'x + u \) with \(g' \in \text{GL}(V) \) and \(u \in V^- \). First, we note that the equality \(ge = e \) implies \(g'e = e - u \in T_\Omega \). Now, we know that we have \(g = ggj \), thus for every \(\varepsilon > 0 \) one has

\[\varepsilon g'e + u = g(\varepsilon e) = ggj(\varepsilon e) = \varepsilon(g'e + \varepsilon u)^{-1}. \]

By continuity of these maps, we get \(u = 0 \). Hence \(g \in \text{GL}(V) \) and 2 gives \(M \in G(\Omega) \). It remains to prove that \(v \) is in \(V^- \). The inverse map \(x \mapsto M^{-1}x - M^{-1}v \) of \(x \mapsto Mx + v \) is also in \(L \) and for \(\varepsilon > 0 \),

\[M(\varepsilon e) + v \in T_\Omega. \]
We obtain \(v \in \overline{T_0} = \overline{\Omega} \oplus V^- \) through continuity of \(M \). Let \(p_{V^+} \) be the projection operator on \(V^+ \). Then \(p_{V^+}(v) \in \overline{\Omega} \) and also \(p_{V^+}(-M^{-1}v) \in \overline{\Omega} \). But \(M = M^* \) thus \(p_{V^+}(-M^{-1}v) = -M^{-1}p_{V^+}(v) \). Moreover, since \(M \) stabilizes \(\overline{\Omega} \), we get \(-p_{V^+}(v) \in \overline{\Omega} \) and hence \(p_{V^+}(v) = 0 \), that is \(v \in V^- \). \(\square \)

5. Proof of the theorem

For the sequel, we need some additional elements. Let

\[
\Sigma := \{ x \in V | x \text{ is invertible and } x^{-1} = x^* \};
\]

\(\Sigma \) is not empty because it contains the orbit \(Ke \). Indeed, for \(k \in K \), \(ke \) is invertible and we have

\[
(k e)^{-1} = k^{-1} e = k^* e = (k e)^*.
\]

The set \(\Sigma \) corresponds in \(V' \) to the set of maximal tripotents (see [4, 11.10]). For \(x \in \Sigma \) we define \(S_x = K x ; S_x \) is the connected component of \(x \) in \(\Sigma \).

Lemma 3. We have

\[
\gamma_e^{-1}(V^-) = \{ x \in \Sigma | e - x \text{ is invertible} \} \subset S_{-e}.
\]

In particular, \(\gamma_e^{-1}(V^-) \) is a nonempty open connected set, dense in \(S_{-e} \).

Proof. Let \(x \in \gamma_e^{-1}(V^-) \), \(x = e - 2(v + e)^{-1} = (v - e)(v + e)^{-1} \) for some \(v \in V^- \). Then \(x \) and \(e - x \) are invertible elements and

\[
x^{-1} = (v + e)(v - e)^{-1} = -(v + e)(e - v)^{-1}
\]

\[
= (v - e)^*[(v + e)^{-1}]^* = x^*.
\]

Conversely, let \(x \in \Sigma \) be such that \(e - x \) is invertible. Then

\[
\gamma_e(x)^* = \gamma_e(x^*) = -e + 2(e - x^*)^{-1}
\]

\[
= -e + 2(e - x^{-1})^{-1} = -e - 2x(e - x)^{-1}
\]

\[
= -\gamma_e(x)
\]
and hence \(\gamma_e(x) \in V^- \). We get
\[
\gamma_e^{-1}(V^-) = \{ x \in \Sigma | \det(e - x) \neq 0 \}
\]
where \(\det \) means the determinant function of \(V \). The map \(\det \) is polynomial so is continuous and thus, \(\gamma_e^{-1}(V^-) \) is an open set in \(\Sigma \). The open set \(\gamma_e^{-1}(V^-) \) is also connected because \(V^- \) is connected and the map \(\gamma_e^{-1} \) is continuous on \(V^- \). Finally, \(\gamma_e^{-1}(V^-) \) contains \(-e\) thus it is included in \(S_{-e} \).

We define now a binary relation \(\triangledown \) on \(V \) called transversality relation, as
\[
x \triangledown y \iff \det(x - y) \neq 0.
\]

For \(x \in \Sigma \), we define also \(x_\triangledown := \{ y \in \Sigma | x \triangledown y \} \). From 3, \(e_\triangledown = \gamma_e^{-1}(V^-) \subset S_{-e} \).

If \(x = ke \in S_e = Ke \) then for all \(y \in \Sigma \),
\[
\det(x - y) \neq 0 \iff \det(e - k^{-1}y) \neq 0 \iff k^{-1}y \in \gamma_e^{-1}(V^-)
\]
and hence
\[
x_\triangledown = k\gamma_e^{-1}(V^-) \subset S_{-x} = S_{-e}
\]
is an open connected set, dense in \(S_{-e} \). Consequently, for all \(x, y \) in \(S_e \) we have \(x_\triangledown \cap y_\triangledown \neq \emptyset \).

Lemma 4. For all \(x, y \) in \(S_e \), exists \(k \in K \) satisfying \(-kx \triangledown e \) and \(-ky \triangledown e \).

Proof. We deduce from the above that for all \(x, y \in S_e \), exists \(z \in S_{-e} \) such that \(x \triangledown z \) and \(y \triangledown z \). We can also choose \(k \in K \) such that \(kz = -e \). The elements \(-kx \) and \(-ky \) are thus transverse to \(e \). \(\square \)

Proposition 2. Let \(g \in U \) and \(h := \gamma_e^{-1}g\gamma_e \in K \). If \(h^{-1}e \triangledown e \) then \(g \in N^+G(\Omega)N^+ \).

Proof. From 3, the condition \(\det(e - h^{-1}e) \neq 0 \) ensures the existence of an element \(v \) of \(V^- \) verifying \(h^{-1}e = \gamma_e^{-1}(v) \). Let \(x \in T_\Omega \). Then
\[
g(x) = \gamma_e(h\gamma_e^{-1}(x)) = -e + 2(e - h\gamma_e^{-1}(x))^{-1} = -e + 2(h(\gamma_e^{-1}(v) - \gamma_e^{-1}(x)))^{-1}.
\]
But \(h \) belongs to \(K \) so
\[
(h(\gamma_e^{-1}(v) - \gamma_e^{-1}(x)))^{-1} = \, \! \! 'h^{-1}(\gamma_e^{-1}(v) - \gamma_e^{-1}(x))^{-1}
= h^*(\gamma_e^{-1}(v) - \gamma_e^{-1}(x))^{-1}.
\]
Thus
\[
g(x) = -e + 2h^*(\gamma_e^{-1}(v) - \gamma_e^{-1}(x))^{-1}
= -e - h^*((e + v)^{-1} - (e + x)^{-1})^{-1}.
\]

Using the following Hua identity (see e.g. [1, Exercice 5, Chapitre II])
\[
a^{-1} - b^{-1} = (a + P(a)(b - a)^{-1}
\]
with \(a = e + v \) and \(b = e + x \), we get
\[
g(x) = -e - h^*(e + v + P(e + v)(x - v)^{-1})
= -e - h^*(e + v) - h^*P(e + v)(x - v)^{-1}
= -h^*P(e + v)(j \circ t_v(x)) - e - h^*(e + v).
\]

The proposition 1 gives \(g \circ t_v \circ j \in N^+G(\Omega) \) and hence \(g \in N^+G(\Omega)jN^+ \). \(\square \)

We now have all the elements to prove the theorem 1, we recall :

Theorem. The group \(L \) is generated by \(G(\Omega), N^+ \) and \(j \).

Proof. Using 2, it suffices to prove that every element \(g \in U \) such that
\[\det(e - h^{-1}e) = 0\]
is generated by \(N^+, G(\Omega) \) and \(j \), where \(h = \gamma_e^{-1}g\gamma_e \in K \).

Let \(g \) be such an element. From 4, we can find \(k \in K \) satisfying
\[\det(e + k^{-1}h^{-1}e) \neq 0 \quad \text{and} \quad \det(e + k^{-1}e) \neq 0.\]

By 2 we get already \(\tilde{g} := \gamma_e \circ (-k) \circ \gamma_e^{-1} = \gamma_e \circ k \circ \gamma_e^{-1} \circ j \) is generated by \(N^+, G(\Omega) \) and \(j \). Exists also \(v \in V^\circ \) verifying \((-hk)^{-1}e = \gamma_e^{-1}(v)\). Let now \(x \in T_{\Omega} \). One has
\[
g(x) = \gamma_e(h\gamma_e^{-1}(x)) = -e + 2(e - h\gamma_e^{-1}(x))^{-1}
= -e + 2(-hk\gamma_e^{-1}(v) - h\gamma_e^{-1}(x))^{-1}
= -e + 2(-hk(\gamma_e^{-1}(v) + k^{-1}\gamma_e^{-1}(x)))^{-1}
= -e - 2h^*k^*(\gamma_e^{-1}(v) + k^{-1}\gamma_e^{-1}(x))^{-1}
= -e - 2h^*k^*(\gamma_e^{-1}(v) - \gamma_e^{-1}\tilde{g}^{-1}(x))^{-1}.\]
Repeating the calculus of the proof of 2, we obtain that $g \circ \tilde{g}$ belongs to $N^+G(\Omega)N^+$ and hence g is generated by N^+, $G(\Omega)$ and \tilde{g}.

6. Relation between \textit{Str}(V) and $G(\Omega)$

If $V^− = \{0\}$, that is if $V = V^+$ is an euclidian Jordan algebra, then $T_\Omega = \Omega$. Also the condition $g^* = g$ for $g \in \text{GL}(V)$ is empty. This implies that $G(\Omega) = \{g \in \text{GL}(V^+)\mid g\Omega = \Omega\}$ and

$$\{g \in \text{Str}(V)\mid g^* = g\} = \text{Str}(V^+) = \pm G(\Omega)$$

by [1, Proposition VIII.2.8].

Let now D be a complex bounded symmetric domain of tube type as in the section 1. It is the particular case where $V^− = iV^+$, that is to say when the domain D is considered as real. The condition $g^* = g$ for $g \in \text{GL}(V)$ is equivalent to the existence of a unique $\tilde{g} \in \text{GL}(V^+)$ satisfying $g(u + iv) = \tilde{g}u + i\tilde{g}v$ for all $u, v \in V^+$. Then

$$\{g \in \text{Str}(V)\mid g^* = g\} = \{g \in \text{GL}(V)\mid g^* = g \text{ and } \tilde{g} \in \text{Str}(V^+)\} \cong \text{Str}(V^+)$$

and

$$G(\Omega) = \{g \in \text{GL}(V)\mid g^* = g \text{ and } \tilde{g} \in H(\Omega)\} \cong H(\Omega).$$

Using the identity $\text{Str}(V^+) = \pm H(\Omega)$, we have hence again

$$\{g \in \text{Str}(V)\mid g^* = g\} = \pm G(\Omega).$$

In fact, the last equality is always true.

Lemma 5. An element x of V^+ belongs to $\Omega \cup (−\Omega)$ if and only if $P(x)$ is positive definite.

Proof. Let $x \in \Omega \cup (−\Omega)$; $x = \pm y^2$ for some $y \in (V^+)^*$ and thus

$$P(x) = P(\pm P(y)e) = P(y)^2$$

is positive definite. Conversely, let $x \in V^+$ be such that $P(x)$ is positive definite. First, $P(x)^* = P(x)$ so the restriction to V^+ of $P(x)$ (ever noted
$P(x)$ belongs to $\text{GL}(V^+)$. Moreover, exists a Jordan frame $\{c_j\}$ of V^+ and real numbers $\{\lambda_j\}$ such that $x = \sum_j \lambda_j c_j$. If $V^+ = \sum_{i,j} V^+_{ij}$ means the Peirce decomposition of V^+ with respect to $\{c_j\}$, then $P(x)$ is $\lambda_i \lambda_j$ on V^+_{ij}. The positivity condition prove that $\lambda_i \lambda_j > 0$ for all i, j. Consequently, $\lambda_i > 0$ or $\lambda_i < 0$ for all i and hence $x \in \Omega \cup (-\Omega)$.

Proposition 3. The following equality holds:

$$\{g \in \text{Str}(V) | g^* = g\} = \pm G(\Omega).$$

Proof. Let $g \in \text{Str}(V)$ be such that $g^* = g$ and let $x \in \Omega$. Then $gx \in V^+$ and

$$P(gx) = gP(x)^t g$$

is positive definite. From 5 we get $gx \in \Omega \cup (-\Omega)$. Since Ω is connected, we find $g\Omega \subset \Omega$ or $g\Omega \subset -\Omega$. It is the same for g^{-1} so $g\Omega = \Omega$ or $g\Omega = -\Omega$. Therefore,

$$\{g \in \text{Str}(V) | g^* = g\} \subset \pm G(\Omega).$$

Let now $g \in G(\Omega)$. We can find $y \in (V^+)^\times$ such that $ge = P(y)e$ and thus $P(y)^{-1} g \in G(\Omega)^e$. So we write $g = P(y)k$ with $y \in (V^+)^\times$ and $k \in G(\Omega)^e$. As $P(y) \in \text{Str}(V)$ verifying $P(y)^* = P(y)$ and since $G(\Omega)^e = \text{Aut}(V) \cap O(V, \beta) \subset \{g \in \text{Str}(V) | g^* = g\}$, we get $G(\Omega) \subset \{g \in \text{Str}(V) | g^* = g\}$. Observing that $-\text{Id}_V \in \{g \in \text{Str}(V) | g^* = g\}$, we obtain the result.

References

[1] J. Faraut and A. Korányi, *Analysis on symmetric cones*, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1994.

[2] J. Faraut, S. Kaneyuki, A. Korányi, Q.-k. Lu, and G. Roos, *Analysis and Geometry on Complex Homogeneous Domains*, Progress in Mathematics, Birkhäuser, Boston-Basel-Berlin, 2000.

[3] O. Loos, *Jordan Triple Systems, R-spaces, and Bounded Symmetric Domains*, Bull. Amer. Math. Soc. 77 (1971), no. 4, p.558–561.

[4] --------, *Bounded symmetric domains and Jordan pairs*, Mathematical Lectures, University of California at Irvine, 1977.