Understanding the Mechanisms by Which Epigenetic Modifiers Avert Therapy Resistance in Cancer

Anthony Quagliano 1,2, Anilkumar Gopalakrishnapillai 1,2 and Sonali P. Barwe 1,2*

1 Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States, 2 Department of Biological Sciences, University of Delaware, Newark, DE, United States

The development of resistance to anti-cancer therapeutics remains one of the core issues preventing the improvement of survival rates in cancer. Therapy resistance can arise in a multitude of ways, including the accumulation of epigenetic alterations in cancer cells. By remodeling DNA methylation patterns or modifying histone proteins during oncogenesis, cancer cells reorient their epigenomic landscapes in order to aggressively resist anti-cancer therapy. To combat these chemoresistant effects, epigenetic modifiers such as DNA hypomethylating agents, histone deacetylase inhibitors, histone demethylase inhibitors, along with others have been used. While these modifiers have achieved moderate success when used either alone or in combination with one another, the most positive outcomes were achieved when they were used in conjunction with conventional anti-cancer therapies. Epigenome modifying drugs have succeeded in sensitizing cancer cells to anti-cancer therapy via a variety of mechanisms: disrupting pro-survival/anti-apoptotic signaling, restoring cell cycle control and preventing DNA damage repair, suppressing immune system evasion, regulating altered metabolism, disengaging pro-survival microenvironmental interactions and increasing protein expression for targeted therapies. In this review, we explore different mechanisms by which epigenetic modifiers induce sensitivity to anti-cancer therapies and encourage the further identification of the specific genes involved with sensitization to facilitate development of clinical trials.

Keywords: epigenetic aberrations, chemoresistance, mechanism, cancer, epigenetic drugs, epigenetic combination therapies

EPIGENETICS AND CANCER

The term “epigenetics” refers to the study of heritable phenotypic changes that do not involve mutations in DNA sequence (1). These changes are centered around alterations in gene activity and expression; through a variety of processes including DNA methylation and histone modifications (2). DNA methylation is the covalent addition of a methyl group to the C-5 position of DNA cytosine rings by DNA methyltransferases. Gene promoter hypermethylation often results in transcription depletion leading to decreased gene expression (3). Conversely, hypomethylation of ABCB1 promoter resulted in upregulation of ABCB1 protein and acquisition of taxane resistance via efficient drug efflux (4). In exceptional cases, promoter methylation of genes, like TERT gene encoding telomerase reverse transcriptase, leads to increased transcription and protein expression (5). Methylation in gene bodies also affects transcription; demethylation of gene bodies results in a decrease in gene transcription (6). These patterns of DNA methylation are retained during cell division and can persist across generations.
Histones are modified in multiple ways. These modifications alter chromatin structure and affect gene transcription by regulating the access of transcription machinery to DNA. For an excellent review on the different types of histone modifications, refer to Audia and Campbell (7). Enzymes that modify histone proteins also facilitate post-translational modifications in non-histone proteins, thereby affecting gene expression (8, 9). Acetylation of NFκB and methylation of tumor suppressor protein p53 promotes nuclear localization of these proteins and increases transcriptional activity of respective gene targets (10, 11). Due to the prominent role of these proteins in cancer progression and therapy resistance, targeting their post-translational modifications could have therapeutic benefit (12, 13).

Drastic alterations in the epigenetic landscapes occur in cancer cells (14). Aberrant epigenetic patterns function as key drivers in cancer initiation and progression; often a result of the silencing of tumor suppressor genes or induced overexpression of oncogenes (15). Several tumor suppressors, such as RASSF1A and CASP8, are frequently inactivated in multiple cancer subtypes via epigenetic downregulation rather than by genetic mutation. For an excellent review on this specific function in oncogenesis, see Kazanets et al. (16). On the other hand, certain oncogenes, such as c-Myc and insulin-like growth factor receptor 2 (IGF-2) are upregulated by epigenetic mechanisms (17). These epigenetic changes result in global dysregulation of gene expression; thereby solidifying the development of disease states (18). Anomalous epigenetic alterations can also lead to the acquisition of therapy resistance (19, 20). Figure 1 outlines how epigenetic-induced gene expression changes can give rise to multiple mechanisms of therapy resistance.

Efforts to revert these epigenetic changes via the use of epigenome modifying drugs have achieved some success, specifically when used in conjunction with other therapies. While these modifiers are “non-specific” in that they affect gene expression on a global level, their action elicits “specific” effects in malignant cells. This is due to the altered epigenome that is acquired during oncogenesis, highlighted by expression changes in tumor suppressor genes (silenced) and oncogenes (augmented) that are responsible for cancer progression or therapy resistance. Thereby, treatment with epigenetic drugs elicits a “specific” effect on cancerous cells by reverting these unique expression changes. Additionally, sensitivity to epigenetic modifiers can be genomic loci specific, possibly due in part to the three-dimensional chromatin structure (21–23). Thus, epigenetic modifiers possess the unique ability to be effective in a broad category of patients; albeit via altering the expression of a set of genes in a patient- specific manner (24).

In order to better understand the uses and indications of epigenetic modifiers in these combinations, it is necessary to uncover mechanisms of epigenetic drug-induced sensitization to anti-cancer therapy. Below, we summarize the gene expression changes induced by specific epigenetic modifiers (listed in Table 1), and how they have a variety of intracellular/extracellular consequences to potentiate the effectiveness of subsequent anti-cancer therapies.

EPIGENETIC DRUG-INDUCED SENSITIZATION MECHANISMS

Disruption of Pro-survival Signaling

Epigenetic alterations during oncogenesis can dysregulate the expression of growth factor receptors (25). Increased expression of these receptors drives the development of therapy resistance due to the over-activation of their downstream pathways such as PI3K/Akt and subsequent inhibition of cell death (26). While targeted therapies against growth factor receptors have been used to mitigate their effects, the use of such therapies is limited by the rapid development of resistance. Using epigenetic modifiers to control the expression of growth factor receptors is a promising alternative. In breast cancer, dacinostat (HDACi) disrupted epidermal growth factor (EGF)-mediated signaling, which is associated with increased metastasis and cell survival. This was achieved by reducing HER2 (human EGF receptor-2) protein expression via two independent epigenetic mechanisms: first by decreasing HER2 mRNA level independent of alterations in promoter activity and secondly by increasing proteasomal degradation due to dissociation from its chaperone protein HSP90 via enhanced acetylation (27). In breast cancer as well, treatment with lapatinib (HER2/EGFR kinase inhibitor) and entinostat (HDACi) synergistically disrupted Akt signaling and promoted apoptosis (28). Though the mechanism of entinostat and lapatinib synergy is unknown, it is suggested that this effect is due to entinostat inhibiting lapatinib-induced expression of HER3; a HER2 heterodimerizing partner responsible for resistance to HER2 targeted therapies (29).

Hormone-dependent cancers such as breast and prostate respond to anti-hormone therapy by induction of apoptosis (30). Resistance to such therapy is acquired by downregulation of estrogen receptor (ER) or androgen receptor (AR) via epigenetic mechanisms. Thus, epigenetic drugs have been used to induce ER and AR expression to mediate sensitization to endocrine therapy in breast and prostate cancer, respectively (31–33).

Activation of pro-death pathways has been utilized as a therapeutic target to promote apoptosis in malignant cells. The binding of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to its receptors death domain containing receptor (DR) triggers pro-death signaling and induces apoptosis via the caspase cascade (34). Reduced receptor expression is frequently observed in cancer cells resistant to this pathway. Vorinostat (HDACi) sensitized breast cancer cells to TRAIL-induced apoptosis by increasing expression of DR5 (35, 36). Treatment with epigenetic drugs can also lead to hyperactivation of pro-death pathways such as the unfolded protein response (UPR) pathway. UPR is activated to protect cells from endoplasmic reticulum-stress mediated cell death (37). However, when the pathway becomes hyperactivated, this response actually leads to the activation of apoptotic pathways, making it a target in cancer cells. Treatment with methylstat (inhibitor of KDM4B, a lysine-specific histone demethylase) dissociated the UPR-activating initiation factor eIF2α and synergized with PI3K inhibition to hyperactivate UPR gene transcription, culminating in apoptosis (38).
FIGURE 1 | Hallmarks of Epigenetic Alteration-Induced Therapy Resistance Epigenetic dysregulation is a driving force in oncogenesis and the development of therapy resistance. (1) Increased pro-survival signaling (depicted by enhanced phosphorylation and activation of kinases such as Akt) can inhibit the expression of death proteins to promote cancer cell survival. The gene expression of death proteins (shown as transcriptional inhibition at the gene promoter) can also be disrupted, culminating in increased cell survival. (2) Aberrant cell cycling is caused by the over/under-expression of proliferative/checkpoint proteins (blue block with promoter), or increased activation of signaling pathways (shown by increased phosphorylation/activation) related to proliferation. DNA damage repair is augmented by an increased expression of repair proteins and disruption of checkpoint signaling. (3) Aberrant intracellular signaling can also alter cytokine expression and lead to reduced cytotoxic T lymphocyte (CTL) recruitment. Silencing of immune cell antigen targets can also suppress immune targeting of cancer cells (NK, natural killer). Increased expression of PD-L1 (green arrow and blue triangle) on cancer cells can augment the immune checkpoint response, resulting in T cell apoptosis. (4) Increased cellular adhesion within the bone marrow microenvironment (yellow block) in hematologic malignancies activates intracellular signaling pathways that protect malignant cells (blue spheres) from anti-cancer. Epithelial to mesenchymal transition (EMT) dislodges cancer cells (green blocks) from the solid tumor microenvironment and is the first step in metastasis. (5) Irregular cellular metabolism via overactive glucose metabolism leads to the Warburg effect favoring anabolic glycolysis over oxidative phosphorylation, and can render cells resistant to chemotherapeutics or antimetabolites. Resistance mechanisms are not restricted to just one of the categories; often with multiple categories being involved simultaneously.

Through modulation of the expression of growth factor receptors or augmenting apoptosis-inducing pathways, epigenetic modifiers can disrupt pro-survival signaling in cancer cells as an efficient mechanism of sensitization (Table 2).

Restoration of Cell Cycle Control and Disruption of DNA Damage Repair
Cancer cells often rely on a dysregulated cell cycle for their continued proliferation (83). Epigenetic modifiers can restore tight control of the cell cycle and proliferation by mediating a reversal of dysregulated gene expression as a mechanism to potentiative therapy. Entinostat (HDACi) downregulated the expression of MYC, E2F, and other G2M cell cycle genes to sensitize breast cancer cells to doxorubicin-induced growth arrest, however, how these genes are downregulated is unknown (84). Previously, Lee et al. showed entinostat treatment in breast cancer inhibited Akt signaling (28). Since Akt signaling controls cell cycle (85), it is likely that Akt is involved in entinostat-mediated doxorubicin sensitization. While entinostat alone inhibited the expression of cell cycle proteins, its combination with decitabine (DNMTi) in pancreatic cancer increased expression of p21 to reinstitute cell cycle control and inhibit tumor growth, likely due to increased acetylation of histone H3 and demethylation of the p21 promoter (86).
TABLE 1 | Epigenetic modifiers discussed in this review.

Type	Inhibitor	Effect
DNMTi	Azacitidine	Traps DNMT and prevents its progression along DNA
	Decitabine	Forms a covalent complex with DNMT1 to deplete its activity
	Guadecitabine	- currently unknown -
	Procaine	Prevents the binding of DNMT1 and 3A to DNA
	Zebularine	Traps DNMT and prevents its progression along DNA
HDACi	4-phenylbutyric acid	Pan HDAC inhibitor
	Belinostat	Pan HDAC inhibitor
	Valproic Acid	Pan inhibitor that binds to catalytic center of HDACs
	Dacarbazin	Non-direct pan HDAC inhibitor
	Entinostat	Class 1 HDAC inhibitor
	Givencetab	Class 1 and 2 HDAC inhibitor
	Mocetinostat	Inhibits HDAC 1/2/3/11
	Trichostatin A	Inhibits HDACs 1/3/4/6/10
	Vorinostat	Chelator of zinc ions at active sites of HDACs 1/2/4
	Curcumin	Variable; potent effects of HDAC 1/3/8
	Quercetin	- currently unknown -
HDMi	HCI-2509	Inhibits lysine-specific demethylase 1 (LSD1)
	Iadademstat	Inhibits LSD1
	Pargyline	Inhibits LSD1
	S2101	Inhibits LSD1
	SP2509	Inhibits LSD1
	MC3324	Inhibits LSD1 and lysine-specific demethylase 6A
	DW14800	Inhibits protein arginine N-methyltransferase 5 (PRMT5)
	JIB-04	Pan inhibitor of Jumanji-domain histone demethylases
	Methylstat	Inhibits lysine-specific demethylase 4B
	SGC-0946	Inhibits disruptor of telomeric silencing 1-like (DOT1L)
Other	AZD5153	Inhibits bromodomain-containing protein 4 (BRD4)
	JQ1	Inhibits BRD4
	Ci-Amidite	Inhibits protein-arginine deaminase type-4
	EPZ-6438	Inhibits enhancer of zeste homolog 2
	Ml-463	Inhibits menin (MEN1)
	Ml-503	Inhibits MEN1

Epigenetic modifiers can potentially mitigate the effects of fusion oncoproteins. Gene fusions formed as a result of chromosomal translocations are often responsible for oncogenesis and therapy resistance (87, 88). In Ewing sarcoma, the EWS/Fli1 fusion gene is a key oncogenic driver. Treatment with JIB-04 (pan inhibitor of Jumanji-domain histone demethylases) simultaneously increased expression of cell-cycle inhibitor genes while suppressing expression of proteins that promote cell cycle, possibly through a disruption of EWS/Fli1 fusion gene program (89).

Hyperactive DNA damage repair pathways in cancer cells promote resistance to DNA damaging chemotherapeutics and radiation (90). In neuroblastoma, treatment with vorinostat (HDACi) diminished the expression of Ku-86, a key protein in non-homologous end joining DNA damage repair, to potentiate the anti-neoplastic effects of DNA damaging radiation (91). How vorinostat affects Ku-86 expression requires further study. Expression of DNA damage repair proteins like 53BP1 and RAD51 was also downregulated following treatment with pevonedistat (NEDD8-activating enzyme inhibitor) and belinostat (HDACi) in acute myeloid leukemia (AML). Downregulation of these proteins occurred in response to pevonedistat-mediated inhibition of belinostat-induced NFKB signaling and belinostat-mediated inhibition of pevonedistat-induced Chk1/Wee1 signaling, identifying a reliance of the two drugs on each other to disrupt DNA damage repair (92).

Restoring control of cell cycle progression and diminishing the activation of DNA damage repair pathways is a promising mechanism to improve responses to treatment. Epigenetic modifiers offer a unique route to achieving this objective (Table 3).

Suppress Immune Evasion/Augmenting Immune Responses

The immune system plays a pleiotropic role in cancer progression. Infiltration of immune cells into the tumor microenvironment releases a plethora of cytokines and growth factors that contribute to tumor proliferation, survival, and metastasis. Concurrently, activation of immune cells to target cancer is a promising strategy to utilize the host immune system in the fight against cancer (126). Like other anti-cancer treatments, malignant cells develop a resistance to immunotherapies by evading or suppressing the immune system and its activation via aberrant epigenetics (127, 128). Treatment with epigenetic modifiers has proved successful in augmenting immunotherapy. For a detailed review on this topic, please refer to Gomez et al. (129).

Epigenetic modifiers trigger increased expression of proteins for targeted therapies including immunotherapies. Trichostatin A (HDACi) up-regulated the mRNA and protein levels of both MIC-A and ULBP-2 in glioblastoma, which are recognized by natural killer (NK) cells to increase NK cell-mediated lysis (129). In ovarian and colon cancer, azacitidine (DNMTi) increased the expression of multiple cancer cell-specific antigens. Since these antigens can be recognized by the host immune system, they represent prime targets for immunotherapies (132). The increased expression of cancer antigens also provides ample opportunity for the development of anti-cancer vaccines directing the host immune system to target these antigens. Such advances are currently in their infancy but have the potential for exceptional breakthrough in cancer treatment, especially when combined with epigenetic modifiers.

In non-small cell lung cancer, azacitidine (DNMTi) and givinostat (HDACi) induced Type I interferon signaling through transcriptional downregulation of MYC to increase the
Malignancy	Drug(s)	Gene/Protein	Mechanism	References
Bladder carcinoma	Decitabine	HOXA9	Restores expression	(39)
Glialoblastoma	Decitabine	TP53 and CDKN1A	Restores expression	(40)
Gastric/esophageal adenocarcinoma	Azacitidine	HPP1	Restores expression	(42)
Renal cell carcinoma	Decitabine	RASSF1A	Restores expression	(43)
Renal cell carcinoma	Decitabine or 4-phenylbutyric acid	Restores expression	Restores expression	(44)
ALL	Azacitidine	DCK	Restores expression	(45)
ALL	Azacitidine	AHR	Restores expression	(49)
AML	Azacitidine	SHP-1	Increases expression	(47)
Chronic myeloid leukemia	Azacitidine	PRG2	Increases expression	(48)
Cholangiocarcinoma	Guadecitabine	CDKN2A, RASSF1A, SEMA3B	Increases expression	(49)
Hepatocellular carcinoma	Decitabine	SULF1	Restores expression	(50)
Breast cancer	Dacinesitol	HER2	Downregulates expression at mRNA and protein level	(27)
Small cell lung carcinoma	Decitabine/Valproic Acid	CASP8	Restores expression	(51)
Small cell lung cancer	Iadademstat	NOTCH1	Restores expression	(52)
Diffuse large B Cell lymphoma	Panobinostat	NOXA	Increases expression	(53)
Prostate	Trichostatin A	ATF3/4	Increases expression	(54)
Prostate	Azacitidine	GST	Restores expression	(55)
Prostate	Azacitidine	miR-34a	Restores expression	(56)
Tongue squamous cell carcinoma	Trichostatin A	miR-375	Increases expression	(57)
Solid tumors	Mocetinostat	miR-203	Restores expression	(58)
Ovarian	Zebularine	RASSF1A, ARHI, BLU	Restores expression	(59)
Bladder	Trichostatin A	CXXOR	Increases expression	(60)
Breast	Vorinostat	DR4/DR5	Increases expression	(61)
Breast	Vorinostat	DR5	Increases expression	(62)
T-cell leukemia	HDACi	TRAIL-R2, c-FLIP, and Apaf-1	Increases expression	(63)
Breast	Entinostat	EF6a and CYP19A1	Increases expression	(64)
Breast	Vorinostat	EF6a	Increases expression	(65)
Prostate	Quercetin/Curcumin	AR	Increases expression	(66)
ALL	Vorinostat	BCR-ABL	Decreases expression	(67)
T-cell ALL	Dacinesitol	c-FLIP	Decreases expression along with increasing DR4/5 expression to sensitize to Apo2L/TRAIL-induced apoptosis	(68)
Chronic myeloid leukemia	Dacinesitol	BCR-ABL	Decreases expression	(69)
AML	Dacinesitol	FLT-3	Decreases expression and activity	(60)
Mixed lineage leukemia	MI-463/Mi-503	HOXA9	Decreases expression	(61)
MLL	Azacitidine	TERT	Decreases expression	(62)
Hepatocellular carcinoma	Guadecitabine	WNT/EFGR/IGF	Decreases expression of pathway associated genes	(63)
Non-small cell lung carcinoma	Panobinostat	TAZ	Decreases transcription and its targets (EGFR and EGFR ligand)	(64)
Multiple myeloma	EPZ-5676/SGC-0946	IRF4	Decreases expression	(65)
Hematologic	Vorinostat	JAK	Decreases expression	(66)
Breast	Entinostat	Akt	Inhibits phosphorylation	(67)
Breast	Methylstat	eIF2β	Increases dissociation from KDM4B leading to increased phosphorylation by ERK and transcription of unfolded protein response genes	(68)
Breast	MC3324	ERα	Inhibits signaling	(69)
Breast	Cl-amidine	Akt/mTOR	Inhibits signaling, leading to increased nuclear accumulation of p53	(70)
Colon	Decitabine	Akt	Inhibits signaling	(71)
Colon	Cl-amidine	p53	Increases transcripions of targets, including miR-16	(72)
Retinoblastoma	Vorinostat	NfκB	Inhibits signaling and increases p53 expression	(73)
Gynecologic	Panobinostat	Mutant TP53	Decreases protein expression	(74)
Gynecologic	SP2509	p62	Stabilizes protein expression	(75)
AML	Panobinostat	Akt/NFκB	Inhibits signaling to increase p53-mediated cell death	(76)
Non-small cell lung carcinoma	Panobinostat	EGFR	Inhibits signaling	(77)
Ovarian	S2101	Akt	Inhibits phosphorylation	(78)
Prostate	Azacitidine	Akt	Inhibits phosphorylation	(79)
TABLE 3 | Restoration of cell cycle control and disruption of DNA damage repair by epigenetic modifiers.

Malignancy	Drug(s)	Target Gene/Protein	Mechanism	References
Breast	Ci-amidine	CDKN1A and GADD45A	Increases expression to inhibit cell cycle	(93)
Breast	Decitabine/Trichostatin A	MSH2	Restores expression	(94)
Colorectal	AZD5153	c-Myc/Wee1	Reduces expression	(95)
Gastric	Procaine	CDKN2A and RARβ	Restores expression	(96)
Acute leukemia	Decitabine	CDKN2A	Restores expression	(97)
Non-small cell lung carcinoma	Trichostatin A	CDKN1A	Increases expression to mediate G1 arrest	(98)
Non-small cell lung carcinoma	Azacitidine	MGMT	Restores expression	(99)
Diffuse large B cell lymphoma	Decitabine	SMAD1	Restores expression	(100)
MDS/Chronic myeloid leukemia	Decitabine	CDKN2B	Restores expression	(101)
Multiple myeloma	Azacitidine/EPZ-6438	SMAD3	Restores expression	(102)
Ovarian/Colon	Decitabine	MLH1	Restores expression	(103)
Pancreatic	Decitabine/Vorinostat	CDKN1A	Increases expression to mediate G1 arrest	(104)
Pancreatic	Azacitidine	SST and SSTR2	Restores expression	(105)
Multiple	HDACi	SLFN1	Restores expression	(106)
Solid tumors	Azacitidine/HDACi	Genes related to ionizing radiation	Increases expression for radiosensitivity	(107)
Bladder	Panobinostat	MRE11	Reduces expression to increase radiosensitivity	(108)
Neuroblastoma	Vorinostat	Ku-86	Reduces expression to disrupt DNA damage repair	(109)
Neuroblastoma	Panobinostat	Chk1	Reduces expression and signaling to disrupt DNA damage repair	(110)
Breast	Entinostat	MYC, E2F, and G2M cell cycle genes	Reduces expression to induce G2M cell cycle arrest	(111)
Non-small cell lung carcinoma	Belinostat	ERCC1	Decreases expression to disrupt DNA damage repair	(112)
Lung adenocarcinoma	HCl-2509	PLK1	Decreases expression and target genes	(113)
Non-Hodgkin's Lymphoma	Belinostat	c-Myc	Decreases expression to increase DNA damage	(114)
Ovarian	Panobinostat	RAD51	Decreases expression to increase PARP inhibition	(115)
Pancreatic	JQ1	c-Myc	Decreases expression to increase radiosensitivity	(116)
Testicular	Guadecitabine	p53	Increases activation and target gene expression	(117)
Breast	Valproic Acid	γ-H2AX and H5S10p	Increases and decreases retention, respectively	(118)
Breast/Ovarian	Guadecitabine	PARP	Increases “trapping” by PARP inhibitors	(119)
Ewing Sarcoma	JIB-04		Disrupts EWS/Fli1 oncogeneic program to increase DNA damage	(120)
AML	Belinostat	Chk1/Wee1	Inhibits signaling to disrupt DNA damage response	(121)
Chronic myeloid leukemia	Decitabine/Vorinostat	p53	Increases cell death through p53-dependent pathway and p21	(122)
AML	Azacitidine/Panobinostat	p53 signaling	Induced remission in patient-derived xenograft models	(123)
AML	Panobinostat	Chk1/Wee1	Decreases signaling to disrupt DNA damage response	(124)
AML	Trichostatin A	γH2A.X	Accumulates to enhance radiosensitivity	(125)
Non-small cell lung carcinoma	Decitabine/Trichostatin A	miRNAs	Enhances DNA damage by dysregulating expression	(126)
Non-small cell lung carcinoma	Panobinostat	p53/p21 and Chk1	Increases expression of p53-dependent pathway and decreased Chk1 signaling	(127)
Ovarian	Guadecitabine	DNA repair genes	Alters expression to disrupt DNA damage repair	(128)
Solid tumors	DNMTi/HDACi		Reduces chromatin condensation to increase DNA damage following chemotherapy	(129)

expression of the T cell chemoattractant CCL5, thereby reversing tumor immune evasion by promoting T cell infiltration. This combination also shifted host T cells from exhausted states (characterized by loss of effector function due to prolonged antigen stimulation) to memory and effector states [capable of durable responses to immune checkpoint blockades] via activation of associated genes (133)].

Cancer cells exploit the “immune checkpoint” function to evade the immune system (134) by expression of programmed cell death-1 (PD-1) or anti–cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) resulting in increased apoptosis of T cells. Immune checkpoint blockers such as nivolumab (monoclonal antibody blocking PD-1) and ipilimumab (monoclonal antibody blocking CTLA-4) have emerged as an attractive mechanism to
decrease immune system evasion and tumor cell survival. Coadministration of azacitidine (DNMTi) and entinostat (HDACi) alongside immune checkpoint blockers improved treatment outcome in a preclinical metastatic cancer model via their inhibitory action on the myeloid derived suppressor cells within the tumor microenvironment (135).

Exploitation of the immune system to successfully diminish tumor burden is a promising avenue of improving anti-cancer therapy. The use of epigenetic modifiers offers a distinctive method to potentiate these therapies (Table 4).

Modulation of Microenvironmental Interactions

Cellular and extracellular matrix interactions within the tumor microenvironment are crucial for cancer development and progression. Epigenetic dysregulation in cancer is known to control adhesion through a variety of mechanisms (141–143). Thus, the use of epigenetic modifiers could provide a way to mollify these alterations. In solid tumors, disengagement from the microenvironment has severe consequences for the patient, as it is the first step in metastasis (144). Therefore, increasing cell adhesion proves beneficial to localize the tumor to the primary site.

In a majority of solid tumors, carcinomas arise from epithelial cells undergoing epithelial to mesenchymal transition (EMT), which causes loss of epithelial polarity/adhesion and increased migratory/invasiveness potential (145). Following EMT, cancer cells acquire stem-cell like properties and a higher rate of metastasis (146). EMT is controlled by multiple epigenetic mechanisms, including DNA methylation and histone modifications (147). The expression of the classical cell adhesion molecule and EMT suppressor E-cadherin is downregulated as it is the first step in metastasis (144). The expression of the classical cell adhesion molecule and EMT suppressor E-cadherin is downregulated as it is the first step in metastasis (144). Therefore, increasing cell adhesion proves beneficial to localize the tumor to the primary site.

Modulation of Microenvironmental Interactions

The role of microenvironmental interactions and their effect on cancer progression has been well-defined, however, the use of epigenetic modifiers to attenuate these effects has not been exploited. More studies across all cancer subtypes are necessary to fully exploit the potential of epigenetic modifiers in cancer treatment.

Malignancy	Drug(s)	Gene/Protein	Mechanism	References
Osteosarcoma	Entinostat	MIC-A and MIC-B	Increases expression to increase NK cell-mediated cytotoxicity	(136)
Glioblastoma	Trichostatin A	MIC-A and ULBP-2	Increases expression to increase NK cell-mediated death	(133)
Colon	Decitabine/Vorinostat	Fas	Increases expression to sensitize to FasL-induced apoptosis and improve CTL adoptive transfer immunotherapy	(137)
Melanoma	Vorinostat	DRS	Increases expression to overcome immune resistance	(138)
Melanoma	Dacinostat	MHC and tumor antigen	Increases expression to improve functional activity of lymphocytes	(139)
Renal cell carcinoma /Prostate	Entinostat	STAT3	Increases acetylation to improve immunotherapy	(131)
Non-small cell lung carcinoma	Azacitidine/Givinostat	MYC	Inhibits signaling to reverse immune evasion	(133)
Ovarian	Azacitidine	Type I interferon	Activates signaling to reduce immunosuppression	(140)
Colon/Ovarian	Azacitidine	Cancer antigens	Vaccines	(132)
AML	Azacitidine	PD-1, PD-L1, and CTLA-4	Nivolumab and Ipilimumab	NCT02897720
to achieve a greater understanding of how microenvironmental interactions can be modulated by epigenetic therapy.

Reprogramming of Cellular Metabolism

Through a variety of genetic and epigenetic mechanisms, metabolic reprogramming can render cancer cells resistant to chemotherapeutics (160–162). These changes can often result as a compensatory mechanism in response to the exposure of certain chemotherapeutics (162). Therefore, targeting aberrant cellular metabolism is a promising method of circumventing therapy resistance.

Due to the epigenetic regulation involved with aberrant metabolism, epigenetic modifiers could prove highly successful in mitigating the resultant chemoresistant effects. Treatment with entinostat (HDACi) combined with cisplatin upregulated the gene expression of thioredoxin-interacting protein (TXNIP), which inhibited the cellular uptake of glucose and increased DNA damage (163). This occurred via an increase in TXNIP promoter activity, however, this increase was only achievable with the two drugs in combination. In AML, treatment with the DNMTi azacitidine combined with the Bcl-2 inhibitor venetoclax disrupted cellular metabolism by decreasing glutathione levels, thereby diminishing electron transport chain complex II activity and oxidative phosphorylation (164).

Epigenetic modifiers can also augment the effectiveness of established antimetabolites like pemetrexed, which targets enzymes like thymidylate synthase (TI) catalyzing purine and pyrimidine synthesis. TI expression can be augmented post treatment with pemetrexed, thus leading to resistance (165). In non-small cell lung cancer, pemetrexed treatment followed by givinostat (HDACi) downregulated the mRNA and protein expression of TI, thereby overcoming therapy resistance and resulting in a synergistic increase in cell death (166).

While there has been strong evidence of the role played by epigenetic-induced metabolic changes in cancer cells in promoting therapy resistance, the study of how epigenetic modifiers can mitigate these effects has yet to be explored in depth. More examination into these effects is required in order to better overcome resistance to therapies.

Opportunities for Development of Rational Combinations With Epigenetic Therapy

The impact of epigenetic modifiers on global gene expression results in modulation of several genes, both promoting and inhibiting therapy resistance, thereby necessitating and offering opportunity to combine with targeted therapies. This is exemplified by a study in ovarian cancer that identified overexpression of CD146, a cell surface marker involved in tumor dissemination, following treatment with vorinostat (HDACi). This increased expression was exploited by combining vorinostat with anti-CD146 monoclonal antibody treatment to synergistically induce cell death via inhibition of CD146-mediated Akt signaling (167). Vorinostat (HDACi) along with decitabine (DNMTi) was also observed to significantly increase the expression of the tyrosine kinase AXL in AML. This led to the identification of a novel triple therapy with the AXL inhibitor BGB324 facilitating synergistic activation of cell death (168). Therefore, mechanistic understanding of epigenetic drug action is essential for developing rational combinations with targeted therapies.

NEED FOR CLINICAL TRIALS

The use of epigenetic modifiers is a robust method for improving treatment efficacy in cancer. Through a variety of mechanisms, epigenetic therapy has the potential to augment the effectiveness of cancer treatments to improve overall survival in patients. In many of the examples presented above, a combination of epigenetic modifiers was used to induce specific changes that potentiate the effects of anti-cancer therapeutics in cancer cells. However, despite a plethora of clinical trials involving the use of epigenetic modifiers, very few have focused on the use of a combination of epigenetic modifiers along with anti-cancer therapy (Table 5). The combination therapies identified in this review underline the need and provide the basis for the development of future clinical trials to study their effectiveness.

Additionally, it is worth mentioning that not only the use of epigenetic modifiers (either alone or in combination with one another) in conjunction with chemotherapeutics should

Malignancy	Epigenetic Modifiers	Other Therapeutics	NCT Identifier
ALL	Decitabine/ Vorinostat	Vincristine/ Dexamethasone/ Mitoxantrone/ Pegaspargase/ Methotrexate	01483690
AML	Azacitidine/ Vorinostat	Gemtuzumab	00895934
AML	Azacitidine/ Valproic Acid	All-trans retinoic acid/ Hydroxyurea	01369368
AML/MDS	Azacitidine/ Valproic Acid	All-trans retinoic acid	00339196
Breast	Decitabine/ Panobinostat	Tamoxifen	01194908
Lymphoma	Azacitidine/ Vorinostat	Gemcitabine/Busulfan/ Melphalan/ Dexamethasone/ Caphosol/Glutamine/ Pyridoxine/Rituximab	01983969
MDS	Azacitidine/ Valproic Acid	All-trans retinoic acid	00326170
MDS	Decitabine/ Vorinostat	CD3-CD19- NK cell infusion	01593670
MDS	Azacitidine/ Valproic Acid	All-trans retinoic acid	00439673
Melanoma	Decitabine/ Panobinostat	Temozolomide	00925132
Non-small cell lung cancer	Azacitidine/ Entinostat	Docetaxel/ Gemcitabine/irinotecan	01935947
Non-small cell lung cancer	Azacitidine/ Entinostat	Nivolumab	01928576
be studied, but the protocols in which they are administered should be considered as well. Simultaneous exposures have been shown to have an inhibitory effect on cell viability compared to sequential treatment (169). Additionally, a study of the use of azacitidine and panobinostat in B-ALL identified that following treatment in mice; leukemic cells were mobilized from the bone marrow into the peripheral blood. This mobilization was responsible for the improved efficacy of subsequent chemotherapy treatment, thus suggesting that staggering the treatments had a significant effect (170). More study on this effect as well as its potential in other cancer subtypes must be performed to exploit the efficacy of epigenetic treatments.

CONCLUSIONS

Aberrant epigenetics is responsible for the development and progression of several cancers. These alterations can be the driving forces of therapy resistance and survival. Treatment with epigenetic modifiers offers a unique route to diminishing these effects and re-sensitizing cancer cells to traditional therapies. While there have been some clinical trials studying the efficacy of epigenetic modifiers in cancer, more studies focusing on identifying specific gene targets are required, particularly with a combination of epigenetic modifiers in conjunction with other therapies. By precisely identifying sensitization biomarkers, epigenetic/chemotherapeutic/immunotherapeutic combination therapies can achieve greater translational success (171). Follow-up studies using comprehensive analyses like RNAseq, global methylation, and chromatin immunoprecipitation-Seq are required to identify pathways of sensitization.

It is also imperative to include analyses of non-coding regions of the DNA, such as miRNA. While epigenetic alterations during oncogenesis directly affect the transcription of coding genes, these variations can have an effect on the expression of miRNAs (172, 173), which are non-coding RNAs that function in RNA silencing and post-transcriptional regulation of gene expression. miRNAs can mediate either tumor suppressive or oncogenic effects depending on their gene target (174). Examination of alterations in miRNA expression following treatment with epigenetic modifiers could identify additional sensitization mechanisms and therapeutic markers.

Studies investigating the development of inhibitors of atypical histone modifications, such as citrullination, phosphorylation, sumoylation, ubiquitinylation, and ribosylation; are needed because these modifications are also known to regulate gene transcription and contribute to cancer progression (175–178). The mechanisms outlined in this review offer not only a rationale for successful combinations and mechanisms, but also identify indications for their use in specific patients based on the markers being modulated, in line with the advancements in personalized medicine. Further studies on the mechanisms of epigenetic modifier action in cancer are needed to identify markers that can detect and predict clinical response.

AUTHOR CONTRIBUTIONS

AQ wrote the draft manuscript and generated figures and tables. AG and SB edited the manuscript. All authors approved the final version of the manuscript.

FUNDING

This work was supported by Andrew McDonough B+ Foundation.

REFERENCES

1. Dupont C, Armant DR, Brenner CA. Epigenetics: definition, mechanisms and clinical perspective. *Semin Reprod Med.* (2009) 27:351–7. doi: 10.1055/s-0029-1237423
2. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. *Genes Dev.* (2009) 23:781–3. doi: 10.1101/gad.1787609
3. Jin B, Li Y, Robertson KD. DNA methylation: superior or subordinate in the epigenetic hierarchy? *Genes Cancer.* (2011) 2:607–17. doi: 10.1177/1947601910393957
4. Sumarpo A, Ito K, Saiki Y, Ishizawa K, Wang R, Chen N, et al. Genetic and epigenetic ablations of ABCB1 synergistically boost the acquisition of taxane resistance in esophageal squamous cancer cells. *Biochem Biophys Res Commun.* (2020) 526:586–91. doi: 10.1016/j.bbrc.2020.03.114
5. Lee DD, Leao R, Komosa M, Gallo M, Zhang CH, Lipman T, et al. DNA hypermethylation within TERT promoter upregulates TERT expression in cancer. *J Clin Invest.* (2019) 129:1801. doi: 10.1172/JCI128527
6. Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. *Cancer Cell.* (2014) 26:577–90. doi: 10.1016/j.ccell.2014.07.028
7. Audia JE, Campbell RM. Histone modifications and cancer. *Cold Spring Harb Perspect Biol.* (2016) 8:a019521. doi: 10.1101/cshperspect.a019521
8. Das C, Kundu TK. Transcriptional regulation by the acetylation of nonhistone proteins in humans – a new target for therapeutics. *IUBMB Life.* (2005) 57:137–49. doi: 10.1080/152165405009009629
9. Narita T, Weinert BT, Choudhary C. Functions and mechanisms of non-histone protein acetylation. *Nat Rev Mol Cell Biol.* (2019) 20:156–74. doi: 10.1038/s41580-018-0081-3
10. Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, et al. p53 is regulated by the lysine demethylase LSD1. *Nature.* (2007) 449:105–8. doi: 10.1038/nature06092
11. Park J, Lee JH, La M, Jang MJ, Chae GW, Kim SB, et al. Inhibition of NF-kappaB acetylation and its transcriptional activity by Daxx. *J Mol Biol.* (2007) 368:388–97. doi: 10.1016/j.jmb.2007.02.047
12. Scoumanne A, Chen X. Protein methylation: a new mechanism of p53 tumor suppressor regulation. *Histol Histopathol.* (2008) 23:1143–9. doi: 10.14670/HH-23.1143
13. Sung B, Pandey MK, Ahn KS, Yi T, Chaturvedi MM, Liu M, et al. Anacardaic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis. *Blood.* (2008) 111:4880–91. doi: 10.1182/blood-2007-10-117994
14. You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? *Cancer Cell.* (2012) 22:9–20. doi: 10.1016/j.cccr.2012.06.008
15. Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications. *Nat Rev Cancer*. (2011) 11:726–34. doi: 10.1038/nrc3130

16. Kazanets A, Shorstova T, Hilmi K, Marques M, Witcher M. Epigenetic silencing of tumor suppressor genes: paradigms, puzzles, and potential. *Biochim Biophys Acta*. (2016) 1865:275–88. doi: 10.1016/j.bchb.2016.04.001

17. Kanwal R, Gupta S. Epigenetic modifications in cancer. *Clin Genet*. (2012) 81:303–11. doi: 10.1111/j.1399-0004.2011.01809.x

18. Hasler MR, Egger G. Epigenomics of cancer - emerging new concepts. *Biochimie*. (2012) 94:2219–30. doi: 10.1016/j.biochi.2012.05.007

19. Crea F, Danesi R, Farrar WL. Cancer stem cell epigenetics and chemoresistance. *Epigenomics*. (2009) 1:63–79. doi: 10.2217/eip.09.9

20. Zeller C, Brown R. Therapeutic modulation of epigenetic drivers of drug resistance in ovarian cancer. *Ther Adv Med Oncol*. (2010) 2:219–29. doi: 10.1177/1758834010375759

21. Farhy C, Hariharan S, Ylanko J, Orozco L, Zeng FY, Pass I, et al. Improving drug discovery using image-based multiparametric analysis of the epigenetic landscape. *Elife*. (2019) 8:e49683. doi: 10.7554/elife.49683.sa2

22. Achatinger-Kawecka J, Valdes-Mora F, Luu PL, Giles KA, Caldon CE, Qu W, et al. Loci specific epigenetic drug sensitivity. *Nat Commun*. (2020) 11:320. doi: 10.1038/s41467-019-14098-x

23. Zhang T, Pilkó A, Wollman R. Loci specific epigenetic drug sensitivity. *Nucleic Acids Res*. (2020) 48:4797–910. doi: 10.1093/nar/gkaa210

24. Jones PA, Issa JP, Baylin S. Targeting the cancer epigenome for therapy. *Nat Rev Genet*. (2016) 17:630–41. doi: 10.1038/nrg.2016.93

25. Tsah S, Chowdhury E. Growth factor receptors: promising drug targets in cancer. *J Cancer Metastat Treat*. (2015) 1:190. doi: 10.4103/2394-4722.163151

26. Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: a unifying biology of sex steroid-induced apoptosis in prostate and breast cancers. *Carcinogenesis*. (2011) 32:1450–8. doi: 10.1093/carcin/bgr135

27. Hassler MR, Egger G. Epigenomics of cancer - emerging new concepts. *Biochimie*. (2012) 94:2219–30. doi: 10.1016/j.biochi.2012.05.007

28. Schneider BJ, Shah MA, Klete K, Ocean A, Popa E, Altorki N, et al. Phase I study of epigenetic priming with azacitidine prior to standard neoadjuvant chemotherapy for patients with resectable gastric and esophageal adenocarcinoma: evidence of tumor hypomethylation as an indicator of major histopathologic response. *Clin Cancer Res*. (2017) 23:2673–80. doi: 10.1158/1078-0432.CCR-16-1896

29. Reu FJ, Leaman DW, Maitra RR, Bae SL, Cherkassky L, Fox MW, et al. Expression of RASSFIA, an epigenetically silenced tumor suppressor, overcomes resistance to apoptosis induction by interferons. *Cancer Res*. (2006) 66:2785–93. doi: 10.1158/0008-5472.CAN-05-2303

30. Wu W, Wu K, Li M, Bao L, Shen X, Li S, et al. Upregulation of microRNA-492 induced by epigenetic drug treatment inhibits the malignant phenotype of clear cell renal cell carcinoma in vitro. *Mol Med Rep*. (2015) 12:1413–20. doi: 10.3892/mmr.2015.3550

31. Aparisi VI, Mecum RA, Nyce J, Steele DA, Holcenberg JS. Pharmacodynamic and DNA methylation studies of high-dose 1-beta-D-arabinofuranosyl cytosine before and after in vivo 5-azacytidine treatment in pediatric patients with refractory acute lymphocytic leukemia. *Cancer Chemother Pharmacol*. (1989) 24:203–10. doi: 10.1007/BF00257619

32. Al-Jamal HA, Mat Jusoh SA, Hassan R, Johan MF. Enhancing SHP-1 expression with 5-azacytidine may inhibit STAT3 activation and confer sensitivity in leukaemia (CEP-701)-resistant FLT3-ITD positive acute myeloid leukemia. *BMC Cancer*. (2015) 15:869. doi: 10.1186/s12885-015-1695-x

33. Al-Jamal HAN, Johan MF, Mat Jusoh SA, Ismail I, Wan Taib WR. Re-expression of bone marrow proteoglycan-2 by 5-azacytidine is associated with STAT3 inactivation and sensitivity response to imatinib in resistant CML cells. *Asian Pac J Cancer Prev*. (2018) 19:1585–90. doi: 10.22034/APJCP.2018.19.1585

34. Surriga O, Schwartz GK. Abstract 2940: chemosensitization of cholangiocarcinoma by guadecitabine. *Cancer Res*. (2018) 78:2940. doi: 10.1158/1538-7445.AM2018-2940

35. Shire A, Lomberk G, Lai JP, Zou H, Tsuchiya N, Aderca I, et al. Restoration of epigenetically silenced SULF1 expression by 5-azacytidine treatment and a TRAIL receptor agonist. *Proc Natl Acad Sci USA*. (2008) 105:11317–22. doi: 10.1073/pnas.0808168105

36. Fenster SR, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications. *Nat Rev Cancer*. (2011) 11:726–34. doi: 10.1038/nrc3130

37. Kazanets A, Shorstova T, Hilmi K, Marques M, Witcher M. Epigenetic silencing of tumor suppressor genes: paradigms, puzzles, and potential. *Biochim Biophys Acta*. (2016) 1865:275–88. doi: 10.1016/j.bchb.2016.04.001

38. von Karstedt S, Montinaro A, Walczak H. Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. *Nat Rev Cancer*. (2017) 17:352–66. doi: 10.1038/nrc5728

39. Butler LM, Liapis V, Bouralexis S, Welldon K, Hay S, Thai L, et al. The histone deacetylase inhibitor, suberoylanilide hydroxamic acid, overcomes resistance of human cancer cells to Apo2L/TRAIL. *Int J Cancer*. (2006) 119:944–54. doi: 10.1002/jic.21939

40. Frew AJ, Lindemann RK, Martin BP, Clarke CJ, Sharkey J, Anthony DA, et al. Combination therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor agonist. *Proc Natl Acad Sci USA*. (2008) 105:11317–22. doi: 10.1073/pnas.0808168105

41. Fenster SR, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications. *Nat Rev Cancer*. (2011) 11:726–34. doi: 10.1038/nrc3130

42. Kazanets A, Shorstova T, Hilmi K, Marques M, Witcher M. Epigenetic silencing of tumor suppressor genes: paradigms, puzzles, and potential. *Biochim Biophys Acta*. (2016) 1865:275–88. doi: 10.1016/j.bchb.2016.04.001

43. Kazanets A, Shorstova T, Hilmi K, Marques M, Witcher M. Epigenetic silencing of tumor suppressor genes: paradigms, puzzles, and potential. *Biochim Biophys Acta*. (2016) 1865:275–88. doi: 10.1016/j.bchb.2016.04.001

44. Kazanets A, Shorstova T, Hilmi K, Marques M, Witcher M. Epigenetic silencing of tumor suppressor genes: paradigms, puzzles, and potential. *Biochim Biophys Acta*. (2016) 1865:275–88. doi: 10.1016/j.bchb.2016.04.001
53. Liu Y, Mondello P, Erazo T, Tannan NB, Asgari Z, de Stanchina E, et al. NOXA genetic amplification or pharmacologic induction primes lymphoma cells to BCL2 inhibitor-induced cell death. *Proc Natl Acad Sci USA.* (2018) 115:20304–9. doi:10.1073/pnas.1806928115

54. Xu Q, Liu X, Zhu S, Hu X, Niu H, Zhang X, et al. Hyper-acetylation contributes to the sensitivity of chemoresistant prostate cancer cells to histone deacetylase inhibitor Trichostatin A. *J Cell Mol Med.* (2018) 22:1909–22. doi:10.1111/jcmm.13475

55. Sabatino MA, Geroni C, Ganzinelli M, Ceruti R, Broggini M. Zebularine partially reverses GST methylation in prostate cancer cells and restores sensitivity to the DNA minor groove binder brotaxillic. *Epigeneics.* (2013) 8:656–65. doi:10.4161/epl.24916

56. Meidhof S, Brabletz S, Lehmann W, Preca BT, Mock K, Ruh M, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. *EMBO Mol Med.* (2015) 7:831–47. doi:10.1002/emmm.201404396

57. Jia L, Zhang S, Huang Y, Zheng Y, Gan Y. Trichostatin A increases radiosensitization of tongue squamous cell carcinoma via miR375. *Oncol Rep.* (2017) 37:305–12. doi:10.3892/or.2016.5261

58. Meidhof S, Brabletz S, Lehmann W, Preca BT, Mock K, Ruh M, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. *EMBO Mol Med.* (2015) 7:831–47. doi:10.1002/emmm.201404396

59. Balch C, Yan P, Craft T, Young S, Skalnik DG, Huang TH, et al. Antimitogenic and chemosensitizing effects of the methylation inhibitor zebularine in ovarian cancer. *Mol Cancer Ther.* (2005) 4:1505–14. doi:10.1158/1535-7163.MCT-05-0216

60. El-Zawahry A, Lu P, White SJ, Voelkel-Johnson C. In vitro efficacy of AdTRAIL gene therapy of bladder cancer is enhanced by trichostatin A- sensitization. *Cancer Gene Ther.* (2006) 13:281–9. doi:10.1038/sj.cgt.7700905

61. Morales JC, Ruiz-Magana MJ, Carranza D, Ortiz-Ferron G, Ruiz-Ruiz

62. Okabe S, Tauchi T, Kimura S, Maekawa T, Ohyashiki K. The analysis of miR-34a silencing of miR-34a enhances chemoresistance by directly upregulating ATG4B-induced autophagy through AMPK/mTOR pathway in prostate cancer. *Oncol Rep.* (2016) 35:64–72. doi:10.3892/or.2015.3331

63. Guo F, Sigua C, Tao J, Li Y, Bali P, George P, Li Y, et al. Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. *Cancer Res.* (2004) 64:2580–9. doi:10.1158/0008-5472.CAN-03-2629

64. Nilmanapalli R, Fuino L, Bali P, Gasparetto M, Gloczak M, Tao J, et al. Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or -refractory chronic myelogenous leukemia-blast crisis cells. *Cancer Res.* (2003) 63:5216–35.

65. Bali P, George P, Cohen P, Tao J, Guo F, Sigua C, et al. Superior activity of the combination of histone deacetylase inhibitor LAQ824 and the FLT-3 kinase inhibitor PKC412 against human acute myelogenous leukemia cells with mutant FLT3. *Clin Cancer Res.* (2004) 10:4991–7. doi:10.1158/1078-0432.CCR-04-0210

66. Wu Y, Doepner M, Hojnacki T, Feng Z, Katona BW, He X, et al. Disruption of the menin-MLL interaction triggers menin protein degradation via proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or -refractory chronic myelogenous leukemia-blast crisis cells. *Cancer Res.* (2003) 63:5216–35.

67. Wang L, Syn NL, Subhash VV, Any Y, Thuya WL, Cheow ESH, et al. Pan-HDAC inhibition by panobinostat mediates chemosensitization to carboplatin in non-small cell lung cancer via attenuation of EGFR signaling. *Cancer Lett.* (2018) 417:152–60. doi:10.1016/j.canlet.2017.12.030

68. Kuang Y, El-Khoueiry A, Taverna P, Ljungman M, Neamati N. Guadecitabine (2′-deoxy-5-aza-2′-deoxycytidine decrease cell proliferation, induce cell death and delay the
growth of MiaPaCa2 pancreatic cancer cells in vivo. Int J Oncol. (2015) 46:2223–30. doi: 10.3892/ijo.2015.2894
87. Robbin TP, Smith A, McKinsey E, Reaves L, Jedlicka P, Ford HL. EWS/FLI1 regulates EYA3 in Ewing sarcoma via modulation of miRNA-708, resulting in increased cell survival and chemoresistance. Mol Cancer Res. (2012) 10:1998–1008. doi: 10.1158/1541-7786.MCR-12-0086
88. Knott MML, Holting TLB, Ohmura S, Kirchner T, Cidre-Aranaz F, Grunewald TGP. Targeting the undruggable: exploiting neomorphic features of fusion oncoproteins in childhood sarcomas for innovative therapies. Cancer Metastasis Rev. (2019) 38:625–42. doi: 10.1007/s10555-019-09839-9
89. Fuller M, Klein M, Schmidt E, Rohde C, Gollner S, Schulze I, et al. 5-Aza-2'-deoxycytidine of leukaemia cells with MLL abnormalities to induction of differentiation by all-trans retinoic acid and 1alpha,25-dihydroxyvitamin D3. Br J Haematol. (2001) 112:315–26. doi: 10.1046/j.1365-2141.2001.02523.x
90. Wohlschlapfhey NK, Weisberg E, Gilchrist D, Bueno R, Sugarbaker DJ, Jakhli MT. Effectiveness of trichostatin A as a potential candidate for anticancer therapy in non-small-cell lung cancer. Ann Thorac Surg. (2006) 81:1034–42. doi: 10.1016/j.athoracsur.2005.06.059
91. Nitsu N, Hayashi Y, Sugita K, Homma Y. Sensitization by 5-aza-2’-deoxycytidine of leukemia cells with MLL abnormalities to induction of differentiation by all-trans retinoic acid and 1alpha,25-dihydroxyvitamin D3. Br J Haematol. (2001) 112:315–26. doi: 10.1046/j.1365-2141.2001.02523.x
92. Zhou L, Chen S, Zhang Y, Kmieciak M, Leng Y, Li L, et al. The NAE inhibitor pevonedistat interacts with the HDAC inhibitor belinostat to target AML cells by disrupting the DDR. Blood. (2016) 127:2219–30. doi: 10.1182/blood-2015-06-653717
93. McElwee JL, Mohanan S, Griffith OL, Breuer HC, Anguish LJ, Cherrington BD, et al. Identification of PAD2 as a potential breast cancer biomarker and therapeutic target. BMC Cancer. (2012) 12:500. doi: 10.1186/1471-2407-12-500
94. McElwee JL, Mohanan S, Griffith OL, Breuer HC, Anguish LJ, Cherrington BD, et al. Identification of PAD2 as a potential breast cancer biomarker and therapeutic target. BMC Cancer. (2012) 12:500. doi: 10.1186/1471-2407-12-500
95. Li YC, Wang Y, Li DD, Zhang Y, Zhao TC, Li CF. Procaine is a specific DNA methylation inhibitor with anti-tumor effect for human gastric cancer. J Biochem. (2018) 119:2440–9. doi: 10.1002/jcb.26407
96. Nitsu N, Hayashi Y, Sugita K, Homma Y. Sensitization by 5-aza-2’-deoxycytidine of leukemia cells with MLL abnormalities to induction of differentiation by all-trans retinoic acid and 1alpha,25-dihydroxyvitamin D3. Br J Haematol. (2001) 112:315–26. doi: 10.1046/j.1365-2141.2001.02523.x
97. Wohlschlapfhey NK, Weisberg E, Gilchrist D, Bueno R, Sugarbaker DJ, Jakhli MT. Effectiveness of trichostatin A as a potential candidate for anticancer therapy in non-small-cell lung cancer. Ann Thorac Surg. (2006) 81:1034–42. doi: 10.1016/j.athoracsur.2005.06.059
98. Fuller M, Klein M, Schmidt E, Rohde C, Gollner S, Schulze I, et al. 5-Aza-2’-deoxycytidine enhances efficacy of multiple chemotherapy drugs in AML and lung cancer with modulation of CpG methylation. Int J Oncol. (2015) 46:1192–204. doi: 10.3892/ijo.2014.2792
99. Clozel T, Yang S, Elstrom RL, Tam W, Martin P, Kormaksson M, et al. Mechanism-based epigenetic chemosensitization therapy of diffuse large B-cell lymphoma. Cancer Discov. (2013) 3:1002–19. doi: 10.1158/2159-8290.CD-12-0157
100. Kantarjian H, Murai J, Trepel JB, Bates SE, Rajapakse VN, et al. Overcoming resistance to DNA-targeted agents by epigenetic activation of Slfn1 (SLEN1) expression with class i histone deacetylases inhibitors. Mol Cancer Res. (2012) 10:1158-1168. doi: 10.1158/1541-7786.MCR-12-0086
101. Kantarjian H, Murai J, Trepel JB, Bates SE, Rajapakse VN, et al. Overcoming resistance to DNA-targeted agents by epigenetic activation of Slfn1 (SLEN1) expression with class i histone deacetylases inhibitors. Mol Cancer Res. (2012) 10:1158-1168. doi: 10.1158/1541-7786.MCR-12-0086
102. Dimopoulos K, Sogaard Helbo A, Fibiger Munch-Petersen H, Sjo L, Christensen J, Sommer Kristensen L, et al. Dual inhibition of DNMTs and EZH2 can overcome both intrinsic and acquired resistance of myeloma cells to IMiDs in a clonal-independent manner. Mol Oncol. (2018) 12:180–95. doi: 10.1016/j.molonc.2017.11.015
103. Plumb JA, Strathdee G, Shadden J, Kaye SB, Brown R. Reversal of drug resistance in human tumor xenografts by 2’-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res. (2000) 60:6039–44.
targets for lung cancer chemotherapy. Cancer Lett. (2015) 16:1056–70. doi: 10.1016/j.canlet.2015.10.020

122. Greve G, Schiffmann I, Pfeiffer D, Pantic M, Schuler J, Lubbert M. The pan-HDAC inhibitor panobinostat acts as a sensitizer for erlotinib activity in EGER-mutated and -wildtype non-small cell lung cancer cells. BMC Cancer. (2015) 15:947. doi: 10.1186/s12885-015-1967-5

123. Fang F, Cardenas H, Huang H, Jiang G, Perkins SM, Zhang C, et al. Genomic and Epigenomic signatures in ovarian cancer associated with resensitization to platinum drugs. Cancer Res. (2018) 78:631–44. doi: 10.1158/0008-5472.CAN-17-1492

124. Oza AM, Matulonis UA, Alvarez Secord A, Nemunaitis J, Roman R, et al. The pan-HDAC inhibitor trichostatin A promotes apoptosis cytotoxicity against osteosarcoma cells and osteosarcoma lung metastasis. Cancer Biol Ther. (2010) 9:286. doi: 10.4026/cbth.2010.036

125. Li J, Hao D, Wang L, Wang H, Wang Y, Zhao Z, et al. Epigenetic targeting drugs potentiate chemotherapeutic effects in solid tumor therapy. Sci Rep. (2017) 7:4035. doi: 10.1038/s41598-017-04406-0

126. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. (2018) 32:1267–84. doi: 10.1101/gad.314617.118

127. Sylvestre M, Tarte K, Roulois D. Epigenetic mechanisms driving tumor supportive microenvironment differentiation and function: a role in cancer therapy? Epigenomics. (2020) 12:157–69. doi: 10.2217/epi-2019-01615

128. Xiao Q, Nobre A, Pinede P, Bersancio-Guerrero MA, Alba E, Cobo M, et al. Genetic and epigenetic biomarkers of immune checkpoint blockade response. J Clin Med. (2020) 9:286. doi: 10.3390/jcm9010286

129. Gomez S, Tabernacci T, Kobrya J, Roberts P, Chiappinelli KB. Combining epigenetic and immune therapy to overcome cancer resistance. Semin. Cancer Biol. (2019). doi: 10.1016/j.semcancer.2019.12.019. [Epub ahead of print].

130. Horng E, Podlech O, Plichta M, Schuler J, Lubbert M. The histone deacetylase inhibitor trichostatin A promotes apoptosis and antitumor immunity in glioblastoma cells. Anticancer Res. (2013) 33:1351–60.

131. Shen L, Ciesielaki M, Ramakrishnan S, Miles KM, Ellis L, Sotomayor P, et al. Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models. PLoS ONE. (2012) 7:e30815. doi: 10.1371/journal.pone.0030815

132. Siebenkas C, Chiappinelli KB, Guzzetta AA, Sharma A, Jeschke J, Vatapalli Jazirehi AR, Kurdistani SK, Economou JS. Histone deacetylase inhibitor sensitizes apoptosis-resistant melanomas to cytotoxic human T lymphocytes through regulation of TRAIL/DR5 pathway. J Immunol. (2014) 192:3981–9. doi: 10.4049/jimmunol.1302532

133. Vo DD, Prins RM, Begley JL, Donahue TR, Morris LF, Bruhn KW, et al. Enhanced antitumor activity induced by adoptive T-cell transfer and adjucitive use of the histone deacetylase inhibitor LAQ824. Cancer Res. (2009) 69:8693–9. doi: 10.1158/0008-5472.CAN-09-1456

134. Stone ML, Chiappinelli KB, Li H, Murphy LM, Travers ME, Topper MJ, et al. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc Natl Acad Sci USA. (2017) 114:E10981–9. doi: 10.1073/pnas.1712511114

135. Katto J, Mahlknecht U. Epigenetic regulation of cellular adhesion in cancer. Carcinogenesis. (2011) 32:1414–8. doi: 10.1093/carcin/bgr120

136. Dreger H, Ludwig A, Weller A, Stangl V, Baumann G, Meiners S, et al. Epigenetic regulation of cell adhesion and communication by enhancer of zeste homolog 2 in human endothelial cells. Hypertension. (2012) 60:1176–83. doi: 10.1161/HYPERTENSIONAHA.112.191098

137. Furukawa Y, Kikuchi J. Epigenetic regulation of cell adhesion-mediated drug resistance acquisition in multiple myeloma. Rinsho Keiseiuku. (2016) 57:546–55.

138. Emon B, Bauer J, Jain Y, Jung B, Saif T. Biophysics of tumor microenvironment and cancer metastasis - a mini review. Comput Struct Biotechnol J. (2018) 16:279–87. doi: 10.1016/j.csbj.2018.07.003

139. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. (2009) 119:1420–8. doi: 10.1172/JCI39104

140. Pal M, Chen H, Lee BH, Lee JYH, Yip YS, Tan NS, et al. Epithelial-mesenchymal transition of cancer cells using bioengineered hybrid scaffold composed of hydrogel/3D-fibrous framework. Sci Rep. (2019) 9:8997. doi: 10.1038/s41598-019-45384-9

141. O’Leary K, Shia A, Schmid P. Epigenetic regulation of EMT in non-small cell lung cancer. Curr Cancer Drug Targets. (2018) 18:89–96. doi: 10.2174/15680066761020126556

142. Shargh SA, Sakizli M, Khalaj V, Movafaghi A, Yazdi H, Haghighatou E, et al. Downregulation of E-cadherin expression in breast cancer by promoter hypermethylation and its relation with progression and prognosis of tumor. Med Oncol. (2014) 31:250. doi: 10.1007/s12032-014-0250-y

143. Battle E, Sancho E, Frangi C, Dominguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. (2000) 2:84–9. doi: 10.1038/35000034

144. Lin T, Ponn A, Hu X, Law BK, Lu J. Requirement of the histone demethylase LSD1 in Snail-mediated transcriptional repression during epithelial-mesenchymal transition. Oncogene. (2010) 29:4896–904. doi: 10.1038/onc.2010.234

145. Boulding T, McCuaig RD, Tan A, Hardy K, Wu F, Dunn J, et al. LSD1 activation promotes inducible EMT programs and modulates the tumour microenvironment in breast cancer. Sci Rep. (2018) 8:73. doi: 10.1038/s41598-017-17913-x

146. Lee C, Jeong H, Bae Y, Shin K, Kang S, Kim H, et al. Targeting of M2-like tumor-associated macrophages with a melittin-based pro-apoptotic peptide. J Immunother Cancer. (2019) 7:417. doi: 10.1186/s41598-019-0610-4

147. Lu L, Chen Z, Lin X, Tian L, Su Q, An P, et al. Inhibition of BRD4 suppresses the malignancy of breast cancer cells via regulation of Snail. Cell Death Differ. (2020) 27:255–68. doi: 10.1038/s41418-019-0353-2

148. Barwe SP, Quagliao A, Gopalakrishnapillai A. Eviction from the sanctuary: development of targeted therapy against cell adhesion molecules in acute lymphoblastic leukemia. Semin Oncol. (2017) 44:101–12. doi: 10.1055/s-0043-167502

149. Quagliao A, Gopalakrishnapillai A, Barwe SP. Epigenetic drug combination overcomes osteoblast-induced chemoprotection in pediatric acute lymphoid leukemia. Leuk Res. (2017) 56:36–43. doi: 10.1016/j.leukres.2017.01.030

150. Quagliao A, Gopalakrishnapillai A, Kolb EA, Barwe S. Epigenetic drug combination overcomes bone marrow microenvironment-induced chemoprotection in pediatric acute lymphoblastic leukemia via modulation of CD81. Blood. (2018) 132:3957. doi: 10.1182/blood.2018-99-120275

151. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Oncol. (2019) 13:1857. doi: 10.1016/j.molonc.2019.01.003

152. Macedo-Silva C, Miranda-Goncalves V, Henrique R, Jeronimo C, Bravo I. The critical role of hypoxic microenvironment and epigenetic

Epigenetic Sensitization Mechanisms in Cancer

Quagliao et al.

Frontiers in Oncology | www.frontiersin.org

13 June 2020 | Volume 10 | Article 992
deregulation in esophageal cancer radioresistance. *Genes.* (2019) 10:927. doi: 10.3390/genes1010927

160. Miranda-Goncalves V, Lameirinhas A, Henrique R, Jeronimo C. Metabolism and epigenetic interplay in cancer: regulation and putative therapeutic targets. *Front Genet.* (2018) 9:427. doi: 10.3389/fgene.2018.00427

161. Marengo B, Garbarino O, Speciale A, Monteleone L, Traverso N, Domenicotti C. MYC expression and metabolic redox changes in cancer cells: a synergy able to induce chemoresistance. *Oxid Med Cell Longev.* (2019) 2019:7346492. doi: 10.1155/2019/7346492

162. Desbats MA, Giacomini I, Prayer-Galetti T, Montopoli M. Metabolic plasticity in chemotherapy resistance. *Front Oncol.* (2020) 10:281. doi: 10.3389/fonc.2020.00281

163. Feingold PL, Surman DR, Brown K, Xu Y, McDuffie LA, Shukla V, et al. Induction of thioredoxin-interacting protein by a histone deacetylase inhibitor, entinostat, is associated with DNA damage and apoptosis in esophageal adenocarcinoma. *Mol Cancer Ther.* (2018) 17:2013–23. doi: 10.1158/1535-7163.MCT-17-1240

164. Polleyea DA, Stevens BM, Jones CL, Winters A, Pei S, Minhajuddin M, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. *Nat Med.* (2018) 24:1859–66. doi: 10.1038/s41591-018-0233-1

165. Takezawa K, Okamoto I, Okamoto W, Takeda M, Sakai K, Tsukiyama S, et al. Thymidylate synthase as a determinant of pemetrexed sensitivity in non-small cell lung cancer. *Br J Cancer.* (2011) 104:1594–601. doi: 10.1038/bjc.2011.129

166. Del Bufalo D, Desideri M, De Luca T, Di Martile M, Gabellini C, Monaca E, et al. Histone deacetylase inhibition synergistically enhances pemetrexed cytotoxicity through induction of apoptosis and autophagy in non-small cell lung cancer. *Mol Cancer.* (2014) 13:230. doi: 10.1186/1476-4598-13-230

167. Ma X, Wang J, Liu J, Mo Q, Yan X, Ma D, et al. Targeting CD146 in combination with vorinostat for the treatment of ovarian cancer cells. *Oncol Lett.* (2017) 13:1681–7. doi: 10.3892/ol.2017.5630

168. Young CS, Clarke KM, Kettyle LM, Thompson A, Mills KI. Decitabine-Vorinostat combination treatment in acute myeloid leukemia activates pathways with potential for novel triple therapy. *Oncotarget.* (2017) 8:51429–46. doi: 10.18632/oncotarget.18009

169. Leonard SM, Perry T, Woodman CB, Kearns P. Sequential treatment with cytarabine and decitabine has an increased anti-leukemia effect compared to cytarabine alone in xenograft models of childhood acute myeloid leukemia. *PLoS ONE.* (2014) 9:e87475. doi: 10.1371/journal.pone.0087475

170. Quagliano A, Gopalakrishnapillai A, Kolb EA, Barwe S. Modulation of CD81 by epigenetic drug combination sensitizes acute lymphoblastic leukemia via decreased BTK signaling. *Blood.* (2019) 134:2628. doi: 10.1182/blood-2019-129198

171. Berdasco M, Esteller M. Clinical epigenetics: seizing opportunities for translation. *Nat Rev Genet.* (2019) 20:109–27. doi: 10.1038/s41576-018-0074-2

172. Chuang JC, Jones PA. Epigenetics and microRNAs. *Pediatr Res.* (2007) 61:24–9R. doi: 10.1203/pdr.0b013e3180457684

173. Tomasetti M, Gaetani S, Monaco F, Neuzil J, Santarelli L. Epigenetic regulation of miRNA expression in malignant mesothelioma: miRNAs as biomarkers of early diagnosis and therapy. *Front Oncol.* (2019) 9:1293. doi: 10.3389/fonc.2019.01293

174. Bartel DP. MicroRNAs: target recognition and regulatory functions. *Cell.* (2009) 136:215–33. doi: 10.1016/j.cell.2009.03.002

175. Shiyo Y, Eiserman RN. Histone sumoylation is associated with transcriptional repression. *Proc Natl Acad Sci USA.* (2003) 100:13225–30. doi: 10.1073/pnas.1735528100

176. Martinez-Zamudio R, Ha HC. Histone ADP-ribosylation facilitates gene transcription by directly remodeling nucleosomes. *Mol Cell Biol.* (2012) 32:490–502. doi: 10.1128/MCB.06667-11

177. Rossetto D, Arvakumov N, Cote J. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. *Epigenetics.* (2012) 7:1098–108. doi: 10.4161/epi.21975

178. Jeusset LM, McManus KJ. Developing targeted therapies that exploit aberrant histone ubiquitination in cancer. *Cells.* (2019) 8:165. doi: 10.3390/cells8020165

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.