Functional definitions of parietal areas in human and non-human primates

Guy A. Orban

Department of Neuroscience, University of Parma, Parma, Italy

Establishing homologies between cortical areas in animal models and humans lies at the heart of translational neuroscience, as it demonstrates how knowledge obtained from these models can be applied to the human brain. Here, we review progress in using parallel functional imaging to ascertain homologies between parietal areas of human and non-human primates, species sharing similar behavioural repertoires. The human homologues of several areas along monkey IPS involved in action planning and observation, such as AIP, LIP and CIP, as well as those of opercular areas (SII complex), have been defined. In addition, uniquely human areas, such as the tool-use area in left anterior supramarginal gyrus, have also been identified.

1. Introduction

Following the work of Mountcastle [1], it became generally accepted that the posterior parietal cortex (PPC) is involved in sensorimotor transformations underlying the planning of human actions [2]. The PPC has also been implicated in more cognitive functions, such as attention [3], working and long-term memory [4,5], numerical processing [6] and tool use [7]. One important initial step in characterizing PPC functions is the definition of parietal areas, those building blocks providing the foundation of the functional studies.

Although in exceptional circumstances neuronal activity in human PPC can be accessed directly [8], functional studies of PPC generally rely on imaging (which is limited in spatio-temporal resolution and maps neuronal selectivity only indirectly), using repetition suppression [9], or multivoxel pattern analysis [10]. The limitations of these methods have become apparent [11,12], underscoring the necessity of animal models. Animal models should be appropriate (i.e. share the brain functions under investigation). Non-human primates (NHPs)—who, like humans, use dexterous hands and mobile eyes to explore and interact with the environment—are the most valuable models for PPC. To be useful, however, any knowledge derived from the monkey brain must translate to human brain function. Hence, using the NHP to define human PPC regions requires that homologies between PPC regions be established and uniquely human areas identified.

Monkey single-cell studies have established that LIP, AIP and the parietal reach region encompassing MIP and V6A are involved in planning saccades, grasping and reaching, respectively [13]. However, applying single-cell NHP results directly to human fMRI involves changing both experimental technique and species [14], and often incorrectly assumes that an area is unique in having neurons endowed with a given property. For example, activation by saccades is often considered the signature of LIP [15,16], although single-cell [17] and imaging [18] studies have shown more widespread activation of monkey PPC. Indeed, saccades activate a substantial part of human PPC (figure 1). Such difficulties can be avoided using fMRI in alert monkeys as an intermediate step between human fMRI and NHP single-cell studies. This review builds on such parallel imaging studies.

Establishing homologies between cortical areas in humans and macaque monkeys considers only a very small subset of primates, while ideally one would examine multiple species within this order. The alternative is to consider as many
different properties of the areas under investigation as possible in both species [35]. In NHP, visual cortical areas are defined by four criteria: (i) cyto- and myeloarchitectonics, (ii) anatomical connections with other areas, (iii) retinotopic organization, and (iv) functional properties. We suggest using those criteria to establish cortical homologies, adding area topology—localization with respect to neighbouring areas—as a valuable fifth criterion [35], following the tradition of comparative anatomy. While progress has been made in mapping cyto- and myeloarchitectonic architecture in the human brain, methodologies differ considerably from those classically used in monkeys, thus far preventing systematic comparison. Although diffusion tensor imaging (DTI) [36] was potentially seen as a measure of connectivity between areas, recent comparative studies in the monkey question the value of DTI as a proxy for tract tracing in animals [37]. Thus, the chief criterion for establishing cortical homologies remains assessing retinotopic organization and as many functional properties as possible, both of which can be adequately tested by parallel imaging of macaque and humans. These can be supplemented by topological arguments, and, where possible, by cyto- or myeloarchitectonic data.

Human cerebral hemispheres have 9.2 times the surface area of macaque hemispheres [38,39]. The number of human cortical areas is estimated at 150–200, a 1.3-fold increase over monkeys (130–140 areas per hemisphere), suggesting that new areas have appeared in humans to support typically human behaviour, such as tool use or language. In this review, we concentrate on two sets of parietal areas as candidates for homologous areas: those along the intraparietal sulcus (IPS) and the parietal opercular areas. Conversely, species differences are documented in the inferior parietal lobule (IPL).

2. Similarities along the intraparietal sulcus

We have described five regions along human IPS whose homology is becoming clear (figure 1). Because activation studies mainly yield local maxima (LM), these areas were defined [40] as confidence ellipses surrounding these maxima (figure 1a,b). The four caudal ellipses representing motion-responsive regions [41] follow the dorsal/posterior bank of the IPS: the dorsal IPS anterior (DIPSA), dorsal IPS medial (DIPSM), parieto-occipital IPS (POIPS) and ventral IPS (VIPS), rostrally to caudally. Rostral to DIPSA, we described the putative homologue of AIP (phAIP) from maxima of motor

![Figure 1. Human PPC areas hypothetically homologous to areas in the lateral bank of monkey IPS. (a,b) Confidence ellipses of five areas (brown, phAIP; pink, DIPSA; green, DIPSM; dark blue, POIPS; light blue, VIPS) in posterior parts of (a) left and (b) right flattened hemispheres (folded view in inset). (c,d) Parietal areas in (c) monkey and (d) human relative to V1–3, V6, retrosplenial cortex (RSC), transverse occipital sulcus (TOS) area and possible monkey counterparts (mRSC, mTOS); modified from Vanduffel et al. [18]. LOP is synonymous with CIP; IPS, intraparietal sulcus; CS, central sulcus. Symbols in (a)—local maxima (LM) for grasping: circle: [19]; squares: [20] (yellow), [21] (red), [22] (black), [23] (green), [24] (pink); visuo-tactile: [25] (brown); and 3D hand orientation: [26] (blue). In (b)—stars: LM of human LIP using spatial attention (orange, [27]) or saccades (blue, [28]); diamonds: other saccade LM: [15] (light and dark green), [29] (orange and red), [16] (black) and [28] (light blue); triangles: proposed human VIP: [30] (yellow), [31] (red), [32] (pink), [33] (green), [34] (blue), [16] (brown). Last two LM: visuo-tactile, others optic flow. Putative VIP LM stretch over 40 mm in medio-lateral direction, putative LIP LM over 40 mm in rostro-caudal direction, preventing the computation of useful confidence ellipses.](http://rspb.royalsocietypublishing.org/Downloaded_from_http://rspb.royalsocietypublishing.org/)
activation during grasping and multimodal activations
(see legend, figure 1). These latter LM clusters very well, allowing
computation of a confidence ellipse (figure 1a), unlike
activations by saccades identifying LIP, or activations by
visuo-tactile convergence or optic flow, identifying VIP
(figure 1b). We propose (table 1) that phAIP and DIPSA corre-
spond to anterior (motor), and posterior (visual) parts of
monkey AIP, respectively [18,42], while DIPSM corresponds
to anterior LIP and VIPS to monkey CIP (figure 1). These
areas are discussed together, stressing topological relationships.
Note that AIP–CIP are located along the lateral/ventral bank of
monkey IPS, DIPSA-VIPS along the dorsal/medial bank
of human IPS, in agreement with Grefkes & Fink [43]. In both
species, these regions lie rostral to the V6 and V3A complexes.
The homology of POIPS is less clear: it probably corresponds to
an area on the medial bank of monkey IPS rostral to V6/V6A.

As stated, establishing a homology necessitates examining
as many functional characteristics as possible. Indeed, the
property initially considered, sensitivity to three-dimensional
(3D) structure from motion (SFM) using random line stimuli,
revealed marked differences between human and monkey
PPC [44]. In many other respects, however, the lateral bank
of monkey IPS and dorsal bank of human IPS are functionally
similar [45,46]. Rostrally to caudally, three regions emerge
along the banks of IPS in both species: a rostral 3D shape-
from-disparity (SFD)-sensitive region (red in figure 2a,c), a
mid-region with sensitivity to disparity but not 3D SFD
(yellow), and a caudal region with mixed sensitivities for 3D
SFD and simple disparity (orange/red). The rostral region
corresponded to a single, large two-dimensional (2D) shape-
sensitive region encompassing posterior AIP and anterior
LIP, and to two 2D shape-sensitive regions, DIPSA and
DIPSM in humans. The caudal region, also 2D shape-sensitive,
corresponded to CIP in monkeys and VIPS in humans
(figure 2b,d). In both species, saccade sensitivities differen-
tiated two components in the rostral region: anterior LIP/

Table 1. Proposed homologies of IPS regions.

monkey area	human area(s)	criteria
AIP	phAIP + vDIPSA	6/8 functional tests of table 2
anterior LIP	DIPSM	8/9 functional tests of table 2
VIP	dDIPSA	visuo-tactile sensitivity
		optic flow sensitivity
		intrusion-into-peripersonal-
		space sensitivity
		numerosity selectivity size
		selectivity
		topological relationships
CIP	VIPS (V7/V7A)	retinotopy
		3D shape-from-disparity
		sensitivity
		2D shape sensitivity
		topological relationships

Figure 2. Parallel imaging of 2D and 3D shape sensitivity: (a,b) lateral bank of left monkey IPS (from [45]) (a) 3D shape-from-disparity, (b) 2D shape sensitivity;
(c–e) left human IPS (from [46])—(c) 3D shape-from-disparity; (d) 2D shape sensitivity; (e) saccade sensitivity (dark hatching); colours: see text. In (a,b) white
dotted lines indicate the AIP/LIP borders derived from the saccade-related activation.
Table 2. Criteria for homology of DIPSM and anterior LIP.

criterion	anterior LIP	DIPSM
central representation\(^a\)	+	+
motion sensitivity\(^b\)	+	+
2D shape sensitivity	+	+
3D shape from disparity (random lines) sensitivity	+	+
3D shape from disparity (surfaces) sensitivity	+	+
3D shape from motion sensitivity	–	+
saccade sensitivity\(^c\)	+	+
observed-action sensitivity	+	+
topological sequence for 2D shape and disparity	+	+

\(^a\)Not tested in AIP.
\(^b\)Fails in AIP.
\(^c\)Absent in both AIP and DIPSA.

progressive than parallel imaging in humans and NHP. The operation of the human brain.

Initially, only phAIP was considered homologous to monkey AIP, but this was based upon motor response during grasping and somato-sensory convergence, characteristics of rostral AIP. This supports phAIP plus DIPSA being the human counterpart of monkey AIP. The devotion of such a large region to planning hand actions is consistent with their importance in the human motor repertoire. The homology of phAIP/DIPSA with monkey AIP is further supported by action-observation studies in both species. For instance, Pani et al. [51] and Maeda et al. [52] showed that OP1 and OP4 correspond to monkey S2 and PV (figure 5a). Using somatotopic mapping with fMRI, Eickhoff et al. [75] provided evidence that OP1 and OP4 correspond to monkey S2 and PV (figure 5b). They suggested that OP3 corresponds to the third somatotopic map in the monkey area VS and speculated that remaining OP2 might be vestibular in nature. Recently, we have begun using stereo EEG, intracerebral recordings of local field potentials in epileptic patients, to complement our fMRI studies. Recording from many patients, constructing lead locations and warping hemispheres to a template has allowed us to reconstruct four-dimensional maps of human cortex, combining millimetre spatial localization with millisecond time resolution, in response to median nerve stimulation [76]. This study has shown that OP2 processes somato-sensory information as much as OP1 or OP4. Hence further work is needed to understand the homology of area VS, as some monkeys have two VS areas [77], but the evidence relating OP1 and OP4 to S2 and PV is rather convincing.

Recently, we [54] have shown that OP1, and neighbouring PFop, are activated by the observation of skin-displacing
actions, such as rubbing or scratching (figure 5d). Control tests indicated that this activation reflects the dynamic nature of the actions observed, not the viewing of tactile contact. The co-activation of OP1 and PFop (figure 5e) was reminiscent of the robust projections between monkey S2 and PF [78], whereby PF provides output to OP1 (human S2), complementing OP4 (human PV) in this role. In fact, we have suggested [54] that OP1 and PFop contributions to the observed-action activation may correspond to the sensory and motor parts, respectively, of the transformation underlying planning of skin-displacing action, resembling the respective roles of posterior and anterior AIP.

4. Species differences in the inferior parietal lobule

Warping monkey cortex to its human counterpart, then performing cluster analysis of the resting-state networks of the two species, Mantini et al. [60] found three human networks with no functional or topological monkey counterparts. Two of these evolutionarily novel networks were lateralized, but both included a common IPL region (figure 3d). This novel IPL region overlapped with hIPS, implicated in numerical processing [6] and with anatomical regions undergoing intense evolutionary expansion in humans [79]. Although the hIPS region has been associated with monkey VIP [80], recent data indicate that numerosity and size maps [56,57], consisting of voxels tuned to small numerosities or size, like VIP neurons [65], are located dorsal to hIPS, overlapping the proposed homologue of VIP (figure 3b). Hence, I suggest that human PPC hosts two numerosity processing regions separated by phAIP/vDIPSA: one common with the monkey in dDIPSA, supporting subitizing, and another specifically human, in hIPS, supporting counting.

Another functionally defined region exemplifying cortical expansion in human IPL is the left anterior supramarginal (aSMG) tool-use region (figure 3d) [61,62]. This region responds specifically to observation of tool actions, but not hand actions with similar goals, unlike phAIP, which responds to either. Videos used to define aSMG yielded no such specific IPL activation in monkeys, even after extensive training using pliers or rake, the tools featuring in those videos [61]. This aSMG region corresponds precisely to a region active when humans use tools [63]. We have suggested that this region, corresponding to cytoarchitectonic PFr [74], is a typically human area, underlying the development of tool use in humans [81]. Most likely, the use and creation of tools, technology, is based on the interaction of this area with several others in PPC and temporal lobe [82].
It is unlikely, despite its expansion, that all human IPL is evolutionary novel. For example, it has been recently shown that a region in monkey PG connected to the hippocampus is activated by the retrieval of the first of several previously seen items [5], very much like the human angular gyrus [83].

5. Discussion and conclusion
The studies reviewed here have begun to illuminate challenging questions concerning homologies of macaque and human parietal regions, and many objectives defined a decade ago [35] have now been met. Critical elements were parallel imaging in these two species and employing multiple functional criteria, revealing a substantial number of homologous PPC areas. This approach resolves the translational question of how knowledge accumulated through invasive experiments in macaques can be applied to humans, where investigations are more limited for ethical reasons. Monkey single-cell studies can thus provide particularly valuable information about neuronal mechanisms underlying human behavioural competences. For example, the homology between phAIP/vDIPSA and monkey AIP implies that the canonical and mirror neurons observed in single-cell studies [49, 52] also exist in this human area.

The studies also suggest two avenues for further progress. One is to leverage the topological relationships between areas, which are generally retained across species. A set of homologous regions, once identified, can provide a seed for extending functional correspondences, and ultimately homology, to neighbouring regions. For example, regions dorsal to DIPSM are involved in the execution and observation of reaching [84], suggesting homology with macaque MIP and V6A in the medial bank of IPS, befitting topological relationships in both species. Second, some studies reviewed here suggest action observation can serve as proxy for action planning and execution. This may circumvent the limitations on the range of sensorimotor transformations observable in a monkey sitting in a chair with its head fixed, or in human subjects lying supine in a scanner (largely grasping, reaching and saccades). Moreover, videos are easily shown to both monkeys and humans, facilitating attribution of sensorimotor transformations to discrete PPC regions and establishing homologies.
Finally, taking a broader perspective, the few PPC regions present in rodents [85] are probably involved in locomotion and coarse use of the forepaws. These areas probably correspond to the medial wall of primate PPC, though they surely have undergone substantial modification to accommodate the navigational needs [86] of primates, especially bipedal humans. NHP Brodmann areas 5 and 7 have been added to those ancestral PPC regions in a medial-to-lateral direction for the sophisticated control of mobile eyes and dexterous hands. This medio-lateral trend was further amplified in humans with the expansion of IPL, generating areas 39 and 40, to control vocal and other communication as well as the use of artefacts, extending the potential of biological effectors.

Competing interests. I declare I have no competing interests.

Funding. This study was supported by ERC Parietalaction.

Acknowledgements. The author is indebted to W. Vanduffel, G. Rizzolatti, G. Luppino, K. Nelissen, J. B. Durand, P. Avanzini, R. Abdollahi, R. Peeters, J. Jastorff and S. Ferri for the collaboration in the studies reviewed here. He is also thankful to S. Raiguel for comments on an earlier version of the manuscript and to S. Ferri for help with the figures.

References

1. Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C. 1975 Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J. Neurophysiol. 38, 871–908.

2. Andersen RA, Buneo CA. 2002 Intentional maps in posterior parietal cortex. Annu. Rev. Neurosci. 25, 189–220. (doi:10.1146/annurev.neuro.25.112701.142922)

3. Wojciulik E, Kanwisher N. 1999 The generality of parietal involvement in visual attention. Neuron 23, 747–764. (doi:10.1016/S0896-6273(01)80033-7)

4. Gnadt JW, Andersen RA. 1988 Memory related motor planning activity in posterior parietal cortex of macaque. Exp. Brain Res. 70, 216–220.

5. Miyamoto K, Osada T, Adachi Y, Matsu T, Kimura HM, Miyashita Y. 2013 Functional differentiation of memory retrieval network in macaque posterior parietal cortex. Neuron 77, 787–799. (doi:10.1016/j.neuron.2012.12.019)

6. Dehaene S, Piazza M, Pinel P, Cohen L. 2003 Three parietal circuits for number processing. Cogn. Neuropsychol. 20, 487–506. (doi:10.1080/02643290244000239)

7. Goldenberg G, Spatt J. 2009 The neural basis of tool use. Brain 132, 1645–1655. (doi:10.1093/brain/awp080)

8. Aflalo T et al. 2015 Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science 348, 906–910. (doi:10.1126/science.aaa5417)

9. Grill-Spector K, Malach R. 2001 fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol. (Amst.) 107, 293–321. (doi:10.1016/S0001-6918(01)00019-1)

10. Kamitani Y, Tong F. 2005 Decoding the visual and subjective contents of the human brain. Nat. Neurosci. 8, 679–685. (doi:10.1038/nrn1444)

11. Sawamura H, Orban GA, Vogels R. 2006 Selectivity of neuronal adaptation does not match response selectivity: a single-cell study of the FMRI adaptation paradigm. Neuron 49, 307–318. (doi:10.1016/j.neuron.2005.11.028)

12. Bulte J, De Smidt B, Op de Beeck HP. 2015 Visual number beats abstract numerical magnitude: format-dependent representation of Arabic digits and dot patterns in human parietal cortex. J Cogn. Neurosci. 27, 1376–1387. (doi:10.1162/jocn_a_00787)

13. Andersen RA, Buneo CA. 2002 Intentional maps in posterior parietal cortex. Annu. Rev. Neurosci. 25, 189–220. (doi:10.1146/annurev.neuro.25.112701.142922)
14. Orban GA. 2002 Functional MRI in the awake monkey: the missing link. J. Cogn. Neurosci. 14, 965 – 969. (doi:10.1162/089892902760191171)

15. Simon O, Mangin JF, Cohen L, Le Bihan D, Dehaene S. 2002 Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron 33, 473 – 487. (doi:10.1016/S0896-6273(02)00575-5)

16. Eger E, Pinel P, Dehaene S, Kleinschmidt A. 2015 Spatially invariant coding of numerical information in functionally defined subregions of human parietal cortex. Cereb. Cortex 25, 1319 – 1329. (doi:10.1093/cercor/bht123)

17. de Lafuente V, Jazayeri M, Shadlen MN. 2015 Representation of accumulative evidence for a decision in two parietal areas. J. Neurosci. 35, 4306 – 4318. (doi:10.1523/jneurosci.2451-14.2015)

18. Vanduffel W, Zhu Q, Orban GA. 2014 Monkey cortex through fMRI glasses. Neuron 83, 533 – 550. (doi:10.1016/j.neuron.2014.07.015)

19. Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund H. 1999 A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur. J. Neurosci. 11, 3276 – 3286. (doi:10.1046/j.1460-9568.1999.00753.x)

20. Begliomini C, Wall MB, Smith AT, Castiello U. 2007 Differential cortical activity for precision and whole-hand visually guided grasping in humans. Eur. J. Neurosci. 25, 1245 – 1252. (doi:10.1111/j.1460-9568.2007.05365.x)

21. Culham JC, Danckert SL, DeSouza JF, Gati JS, Menon RS, Goodale MA. 2003 Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp. Brain Res. 153, 180 – 189. (doi:10.1007/s00221-003-1591-5)

22. Cavina-Pratesi C, Goodale MA, Culham JC. 2007 fMRI reveals a dissociation between grasping and perceiving the size of real 3D objects. PLoS ONE 2, e242. (doi:10.1371/journal.pone.0000424)

23. Frey SH, Vinton D, Norlund R, Grafton ST. 2005 Cortical topography of human anterior intra-parietal cortex active during visually guided grasping. Brain Res. Cogn. Brain Res. 23, 397 – 405. (doi:10.1016/j.cogbrainres.2004.11.010)

24. Knölker C, Cavina-Pratesi C, Goodman DA, Culham JC. 2007 What does the brain do when you fake it? An fMRI study of pantomimed and real grasping. J. Neurophysiol. 97, 2410 – 2422. (doi:10.1152/jn.00778.2006)

25. Jäncke L, Kleinschmidt A, Mirazzade S, Shah NJ, Freund HJ. 2001 The role of the inferior parietal cortex in linking the tactile perception and manual construction of object shapes. Cereb. Cortex 11, 111 – 121. (doi:10.1093/cercor/11.1.121)

26. Shikata E, Hamazi F, Glauche V, Koch M, Weiller C, Binkofski F, Buchel C. 2003 Functional properties and interaction of the anterior and posterior intraparietal areas in humans. Eur. J. Neurosci. 17, 1105 – 1110. (doi:10.1046/j.1460-9586.2003.02540.x)

27. Sereno MI, Pitzalis S, Martinoia A. 2001 Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294, 1350 – 1354. (doi:10.1126/science.1063695)

28. Koyama M, Hasegawa I, Osada T, Adachi Y, Nakahara K, Miyashita Y. 2004 Functional magnetic resonance imaging of macaque monkeys performing visually guided saccade tasks: comparison of cortical eye fields with humans. Neuron 41, 795 – 807. (doi:10.1016/S0896-6273(04)00047-9)

29. Hagler Jr DJ, Recke L, Sereno MI. 2007 Parietal and superior frontal visuospatial maps activated by pointing and saccades. Neuroimage 35, 1562 – 1577. (doi:10.1016/j.neuroimage.2007.01.033)

30. Peuskens H, Sunaert S, Dupont P, Van Hecke P, Orban GA. 2001 Human brain regions involved in heading estimation. J. Cereb. Cortex 21, 2451 – 2461.

31. Bartels A, Zeki S, Logothetis NK. 2008 Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. Cereb. Cortex 18, 705 – 717. (doi:10.1093/cercor/bhm107)

32. Cardin V, Smith AT. 2010 Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cereb. Cortex 20, 1964 – 1973. (doi:10.1093/cercor/bhp268)

33. Bremmer F, Schlack A, Shah NJ, Zaffris D, Kubicsh M, Hoffmann K, Zilles K, Fink GR. 2001 Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalences between humans and monkeys. Neuron 29, 287 – 296. (doi:10.1016/S0896-6273(01)00198-2)

34. Sereno MI, Huang R-S. 2006 A human parietal face area contains aligned head-centered visual and tactile maps. Nat. Neurosci. 9, 1337 – 1341. (doi:10.1038/nn1777)

35. Orban GA, Van Essen D, Vanduffel W. 2004 Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn. Sci. 8, 315 – 324. (doi:10.1016/j.tics.2004.05.009)

36. Dougherty RF, Ben-Shachar M, Deutsch G, Potanina P, Bammur R, Wandell BA. 2005 Occipital-cortical pathways in children: validation and atlas development. Ann. NY Acad. Sci. 1064, 98 – 112. (doi:10.1196/annals.1340.017)

37. Reveley C, Seth AK, Pierpaoli C, Silva AC, Yu D, Zeki S. 2008 Comparative mapping of higher visual areas in monkeys and humans. Cereb. Cortex 18, 1094 – 1111. (doi:10.1093/cercor/bhm146)

38. Ferri S, Rizzolatti G, Orban GA. 2015 The observation circuits in the macaque monkey cortex. Neuron 83, 137–150. (doi:10.1016/j.neuron.2015.03.023)

39. Van Dromme ICL, Vanduffel W, Janssen P. 2015 The relation between functional magnetic resonance imaging activations and singles-cell selectivity in the macaque intraparietal sulcus. Neuroimage 113, 86 – 100. (doi:10.1016/j.neuroimage.2015.03.023)

40. Borra E, Belmilah A, Calzavara R, Gerbella M, Murata A, Rozzi S, Luppino G. 2008 Cortical connections of the macaque anterior intraparietal (AIP) area. Cereb. Cortex 18, 1094 – 1111. (doi:10.1093/cercor/bhm146)

41. Murata A, Gallese V, Luppino G, Kaseda M, Sakata H. 2000 Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J. Neurophysiol. 83, 2580 – 2601.

42. Nellesen K, Borra E, Gerbella M, Rozzi S, Luppino G, Vanduffel W, Rizzolatti G, Orban GA. 2011 Action observation circuits in the macaque monkey cortex. J. Neurosci. 31, 3743 – 3756. (doi:10.1523/JNEUROSCI.4803-10.2011)

43. Paní P, Theys T, Romero MC, Janssen P. 2014 Grasping execution and grasping observation activity of single neurons in the macaque anterior intraparietal area. J. Cogn. Neurosci. 26, 2342 – 2355. (doi:10.1162/jocn_a_00647)

44. Maeda K, Ishida H, Nakajima K, Inase M, Murata A. 2015 Functional properties of parietal hand manipulation-related neurons and mirror neurons responding to vision of own hand action. J. Cogn. Neurosci. 27, 560 – 572. (doi:10.1162/jocn_a_00742)

45. Abdollahi RO, Jastorff J, Orban GA. 2013 Common and segregated processing of observed actions in human SPL. Cereb. Cortex 23, 2734 – 2753. (doi:10.1093/cercor/bhs264)

46. Ferri S, Rizzolatti G, Orban GA. 2015 The organization of the posterior parietal cortex devoted
to upper limb actions: an fMRI study. Hum. Brain Mapp. 36, 3845 – 3866. (doi:10.1002/hbm.22882)

55. Konen CS, Mucznik REB, Montoya JA, Kastner S. 2013 Functional organization of human posterior parietal cortex: grasping- and reaching-related activations relative to topographically organized cortex. J. Neurophysiol. 109, 2897 – 2908. (doi:10.1152/jn.00657.2012)

56. Harvey BM, Klein BP, Petridou N, Dumoulin SO. 2013 Topographic representation of numerosity in the human parietal cortex. Science 341, 1123 – 1126. (doi:10.1126/science.1239052)

57. Harvey BM, Fracasso A, Petridou N, Dumoulin SO. 2015 Topographic representations of object size and relationships with numerosity reveal generalized quantity processing in human parietal cortex. Proc. Natl Acad. Sci. USA 112, 13 523 – 13 530. (doi:10.1073/pnas.1515414112)

58. Holst DJ, Cassidy BS, Yue X, Rauch SL, Boeke EA, Konen CS, Mruczek REB, Montoya JL, Kastner S. 2013 Common and uniquely human features. representation of tool use in humans and monkeys: J. Cogn. Neurosci. 22, 83 – 96. (doi:10.1162/jocn.2009.21185)

59. Nieder A, Miller Ek. 2004 A parieto-frontal network for visual numerical information in the monkey. Proc. Natl Acad. Sci. USA 101, 7457 – 7462. (doi:10.1073/pnas.0402239101)

60. Tudosuciu O, Nieder A. 2007 Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex. Proc. Natl Acad. Sci. USA 104, 14 513 – 15 518. (doi:10.1073/pnas.0705495104)

61. Abdollahi RD, Kolster H, Glasser MF, Robinson EC, Coalsin TS, Dierker D, Jenkins M, Van Essen DC, Orban GA. 2014 Correspondences between retinotopic areas and myelin maps in human visual cortex. Neuroimage 99, 509 – 524. (doi:10.1016/j.neuroimage.2014.06.042)

62. Lewis JW, Van Essen DC. 2000 Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J. Comp. Neurol. 428, 79 – 111. (doi:10.1002/1096-9861(20001204)428:1<79:AID-CNE7>3.0.CO;2-Q)

63. Arcaro MJ, Pinski MA, Li X, Kastner S. 2011 Visuotopic organization of macaque posterior parietal cortex: a functional magnetic resonance imaging study. J. Neurosci. 31, 2064 – 2078. (doi:10.1523/JNEUROSCI.3334-10.2011)

64. Press WA, Brewer AA, Dougherty RF, Wade AR, Wandell BA. 2001 Visual areas and spatial summation in human visual cortex. Vis. Res. 41, 1321 – 1332. (doi:10.1016/S0011-160X(01)00074-8)

65. Kolster H, Peeters R, Orban GA. 2011 Ten retinotopically organized areas in human parietal cortex. In Program 851.10 Neuroscience meeting planner. Society for Neuroscience: Washington, DC.

66. Tsao DY et al. 2003 Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. Neuron 39, 555 – 568. (doi:10.1016/S0896-6756(03)00459-8)

67. Eickhoff SB, Schleicher A, Zilles K, Amunts K. 2006 The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cereb. Cortex 16, 254 – 267. (doi:10.1093/cercor/bhi105)

68. Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K. 2006 The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33, 430 – 448. (doi:10.1016/j.neuroimage.2006.06.054)

69. Eickhoff SB, Greisels C, Zilles K, Fink G. 2007 The somatotopic organization of cytoarchitectonic areas on the human parietal operculum. Cereb. Cortex 17, 1800 – 1811. (doi:10.1093/cercor/bhh090)

70. Avanzini P et al. In press. Four dimensional maps of the human somatosensory system. Proc. Natl Acad. Sci. USA.

71. Coq JD, Qi H, Collins CE, Kaas JH. 2004 Anatomical and functional organization of somatosensory areas of the lateral fissure of the New World titi monkey (Callicebus moloch). J. Comp. Neurol. 476, 363 – 387. (doi:10.1002/cne.20237)

72. Dibbrow E, Litinas E, Recanzone GH, Padberg J, Krubitzer L. 2003 Cortical connections of the second somatosensory area and the parietal ventral area in macaque monkeys. J. Comp. Neurol. 462, 382 – 399. (doi:10.1002/cne.10731)

73. Van Essen DC, Dierker DL. 2007 Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56, 209 – 225. (doi:10.1016/j.neuron.2007.04.015)

74. Nieder A, Dehaene S. 2009 Representation of number in the brain. Annu. Rev. Neurosci. 32, 185 – 208. (doi:10.1146/annurev.neuro.051508.135530)

75. Osiurak F, Jamy C, Le Gall D. 2010 Grasping the affordances, understanding the reasoning: toward a dialectical theory of human tool use. Psychol. Rev. 117, 517 – 540. (doi:10.1037/a0019004)

76. Orban GA, Caruana F. 2014 The neural basis of human tool use. Front. Psychol. 5, 310.

77. Yanelinas AP, Otten LJ, Shaw KN, Rugg MD. 2005 Separating the brain regions involved in recollection and familiarity in recognition memory. J. Neurosci. 25, 3002 – 3008. (doi:10.1523/JNEUROSCI.5295-04.2005)

78. Fillimon F, Nelson JD, Hagler DJ, Sereno MI. 2007 Human cortical representations for reaching: mirror neurons for execution, observation, and imagery. Neuroimage 37, 1315 – 1328. (doi:10.1016/j.neuroimage.2007.06.008)

79. Reep RL, Chandler HC, King V, Convin JV. 1994 Rat posterior parietal cortex: topography of corticocortical and thalamic connections. Exp. Brain Res. 100, 67 – 84. (doi:10.1007/BF0079-6123(08)00770-0)

80. Krakow DJ, Saleem KS, Baker CI, Mishkin M. 2011 A new neural framework for visuospatial processing. Nat. Rev. Neurosci. 12, 217 – 230. (doi:10.1038/nrn3008)