autologous activated T-cells in a dose-dependent manner. DISCUSSION/SIGNIFICANCE OF IMPACT: In this cross-sectional study of patients of the UT Southwestern Cutaneous Lupus Registry, we observed differences in the levels of MDSCs among PBMCs of CLE patients Versus healthy controls. CLE patients had significantly higher levels of MDSCs, which could be explained by the presence of an inflammatory state in this group. Furthermore, CLE MDSCs were able to suppress autologous T cells, showing that these cells are functionally patent in CLE blood. Their up-regulation in CLE blood may represent the body's response to limiting disease severity, since most patients had mild disease activity.

2042
CYP2C19*2 and PON1 Q192R polymorphisms are associated with platelet reactivity to clopidogrel in Puerto Rican Hispanics with cardiovascular disease
Dagmar F. H. Suarez, Mariana R. Botton, Stuart A. Scott, Matthew I. Tomey, Kyle Melin, Angel Lopez-Candales, Jessica Y. Renta and Jorge Duconge
Icahn School of Medicine at Mount Sinai

OBJECTIVES/SPECIFIC AIMS: High on-treatment platelet reactivity (HTPR) with clopidogrel imparts an increased risk for ischemic events in adults with coronary artery disease. Although more potent antiplatelet agents are available, clopidogrel remains the most commonly used P2Y12 inhibitor in Puerto Rican patients. Platelet reactivity varies with ethnicity and is influenced by both clinical and genetic variables; however, no clopidogrel pharmacogenetic studies with Puerto Rican patients have been reported. Therefore, we sought to identify clinical and genetic determinants of on-treatment platelet reactivity in a cohort of Puerto Rican patients with cardiovascular disease. METHODS/STUDY POPULATION: We performed a retrospective study of 111 Puerto Rican patients on 75-day maintenance dose of clopidogrel. Patients were allocated into 2 groups: Group I, without HTPR; and Group II, with HTPR. Clinical data was obtained from the medical record. Platelet function was measured ex vivo using the VerifyNow® P2Y12 assay and HTPR was defined as P2Y12 reaction units (PRU) ≥230. Genotyping of CYP2C19, ABCBI, PON1, P2Y12, BAGALT2, CES1, and PEAR1 was performed using Taqman® Genotyping Assays. RESULTS/ANTICIPATED RESULTS: The mean PRU across the cohort was 203 ± 61 PRU (range, 8–324), and 42 (38%) patients had HTPR. One in four individuals carried at least 1 copy of the CYP2C19*2 variant allele. Hematocrit and PON1 p.Q192R variant were inversely correlated with platelet reactivity (p < 0.05). Multiple logistic regression showed that 27% of the total variation in PRU was explained by a history of diabetes mellitus, hematocrit, CYP2C19*2, and PON1 p.Q192R. Body mass index (OR = 1.15; CI: 1.03–1.27), diabetes mellitus (OR = 3.46; CI: 1.05–11.43), hematocrit (OR = 0.75; CI: 0.65–0.87), and CYP2C19*2 (OR = 4.44; CI: 1.21–16.20) were the only independent predictors of HTPR. DISCUSSION/SIGNIFICANCE OF IMPACT: In a representative sample of Puerto Rican patients with cardiovascular disease, diabetes mellitus, hematocrit, CYP2C19*2, and PON1 p.Q192R were associated with on-treatment platelet reactivity. These factors may identify a subset of patients at higher risk for adverse events on clopidogrel in the Hispanic population.

2269
Day-to-day association between alcohol use and physical activity in university students
Scott Graupensperger and Michael B. Evans
Penn State College of Medicine

OBJECTIVES/SPECIFIC AIMS: The goal of the present study was to advance our understanding of how alcohol use may contribute to physical inactivity among university students by investigating this association at a day-to-day level. METHODS/STUDY POPULATION: In total, 57 university students (Mage = 20.27, 54% male) completed daily diary questionnaires using a cellphone application, which prompted them each evening to report minutes of moderate/vigorous physical activity engaged in, and number of alcoholic drinks consumed, as well as intended minutes of physical activity for the following day. Longitudinal mixed-level modeling was used to disentangle within person and between-person effects of alcohol use on physical activity behavior and intentions. Separate models were run to investigate lagged effects of previous day alcohol use. We controlled for sex and age in all models. RESULTS/ANTICIPATED RESULTS: Results indicated that participants’ usual alcohol use (between-person) was not associated with physical activity behavior or intentions. At the within-person level, day-to-day variance in alcohol use was negatively associated with both physical activity behavior (γ = −0.34, p<0.003) and intentions to engage in physical activity the following day (γ = −0.70, p<0.001). The lagged model indicated that previous day alcohol use negatively predicted PA behavior (γ = −0.33, p = 0.004).

DISCUSSION/SIGNIFICANCE OF IMPACT: Previous studies have largely been constrained to cross-sectional designs, and have surmised that there exists a positive association between alcohol use and physical activity due to trait-level differences between university students. We advance this literature by using ecological momentary assessment to investigate the within-person effects of alcohol use on physical activity at a day-to-day level while controlling for between-person variance. Contrary to existing literature, we found that on days when students consumed relatively more alcohol than they typically report, they: (a) report fewer minutes of physical activity on the same day, (b) plan to engage in relatively less physical activity on the subsequent day, and (c) engage in less physical activity on the subsequent day. By advancing our understanding of how alcohol use may curtail other health behaviors such as physical activity, we inform interventions that aim to target these behaviors in conjunction, or as part of a multiple behavior change intervention.

2327
Decoding/encoding somatosensation from the hand area of the human primary somatosensory (SI) cortex for a closed-loop motor/sensory brain-machine interface (BMI)
Brian Lee, Richard Andersen, Helena Chui and William Mack
University of Southern California

OBJECTIVES/SPECIFIC AIMS: A brain-machine interface (BMI) is a device implanted into the brain of a paralyzed or injured patient to control an assistive device, such as a cursor on a computer screen, a motorized wheelchair, or a robotic limb. We hypothesize we can utilize electrical stimulation of subdural electrocorticography (ECoG) electrodes as a method of generating the percepts of somatosensation such as vibration, temperature, or proprioception. METHODS/STUDY POPULATION: There will be 10 subjects, who are informed, willing, and consented epilepsy patients undergoing initial surgery for placement of subdural ECoG electrodes in the brain for seizure monitoring, ECoG will be used as a platform for recording high-resolution local field potentials during real-touch behavioral tasks. In addition, ECoG will also be used to electrically stimulate the human cerebral cortex in order to map and understand how varying stimulation parameters produce perceptions of sensation. RESULTS/ANTICIPATED RESULTS: To determine how tactile and proprioceptive signals are integrated in S1, we will perform spectral analysis of the broadband local field potentials to look for increased power in specific frequency bands in the ECoG recordings while touching or moving the hand. To explore generating artificial sensation, the subject will be asked to perform a variety of tasks with and without the aid of stimulation. We anticipate the subject’s performance will be enhanced with the addition of artificial sensation. DISCUSSION/SIGNIFICANCE OF IMPACT: Many patients might benefit from a BMI, such as those with stroke, amputation, spinal cord injury, or brain trauma. The current generation of BMI devices are guided by visual feedback alone. However, without somatosensory feedback, even the most basic limb movements are difficult to perform in a fluid and natural manner. The results from this project will be crucial to developing a closed loop motor/sensory BMI.

2564
Designing for dissemination: Characteristics of Clinical and Translational Science Award (CTSA) hubs as adopters of clinical and translational science innovation
Elaine H. Morrato1, Lindsay Lennox2 and Anne Schuster1
1 Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; 2 Department of Communication, University of Colorado, Denver, CO, USA

OBJECTIVES/SPECIFIC AIMS: The Clinical and Translational Science Award (CTSA) program is a national consortium of 50+ academic medical research centers charged with accelerating the translation of clinical research. In 2017, the NIH National Center for Advancing Translational Sciences anticipates total CTSA program funding of over $500M. The consortium’s hub-and-spoke structure makes it a natural dissemination network, and the newest funding announcement makes dissemination of innovation across the consortium an explicit goal, but characteristics of CTSA hubs as adopters and transmitters of innovation are unknown. METHODS/STUDY POPULATION: A content analysis was conducted using data from CTSA hub Web sites (n = 64) and a structured coding taxonomy based on 6 constructs drawn from literature about diffusion of innovation in service organizations (Greenhalgh et al., 2004): dissemination priority, institutional complexity, communication infrastructure,
support for dissemination/implementation functions, cross-institutional collabora-
tion/networking, and leadership composition. RESULTS/ANTICIPATED
RESULTS: In total, 32% of hubs will rest under the new PARR in the next few
years, providing an incentive to demonstrate dissemination capacity (although
hubs will likely lag in operationalizing these activities until they are funded).
A third of hubs (34%) represent more than one academic/research institution, and
almost 80% of hubs have more than one clinical affiliate. To accommodate these
different levels of institutional complexity, broad diffusion will require multi-
modal, ecologically adaptive dissemination efforts. Only 25% of hubs have capacity to
undertake additional dissemination activities, and only 27% provide formal D&I
support, suggesting that additional capacity/support will be needed to
 operationalize the CTSA dissemination mission. In total, 30% of hubs participate
in cross-institutional collaboration/networking, so many may not have existing
norms/tools supporting inter-institutional collaboration, but 77% include learning
from outside the School of Medicine, facilitating effective interin-
stitutional dissemination. DISCUSSION/SIGNIFICANCE OF IMPACT: Under-
standing more about CTSA hubs as both adopters and transmitters of
innovation can facilitate strategic use of these sites as a built-in dissemination
network to amplify the reach and impact of clinical innovation and improve
population health. Based on this initial analysis, the CTSA network does not
appear to be fully primed for broad, rapid dissemination of innovation across its
sites. In-depth interviews are being conducted to investigate CTSA hubs’
perceptions of their dissemination capacity and roles as adopters and
transmitters of innovation.

Determining if intestinal commensal bacteria
enhance the frequency of reassortment of an enteric,
segmented virus, reovirus
Matthew Lanahan, Andrea Erickson1 and Julie Pfeiffer1
1 Department of Molecular Microbiology, University of Texas
Southwestern Medical Center, Dallas, TX, USA

OBJECTIVES/SPECIFIC AIMS: The overall goal is to determine if intestinal
commensal bacteria play a role in enteric virus evolution. We will use reovirus,
an enteric segmented virus, to investigate specific goals. First, we will determine if
specific bacterial species enhance the coinfection frequency of 2 separate strains of
reovirus. Second, we will determine if the presence/absence of different bacterial
species in the microbiota of mice results in different reovirus reassortment frequen-
cies. Finally, we will discover if reovirus reassortment is present in human populations.

METHODS/STUDY POPULATION: My first goal is to determine if specific bacterial
species enhance the coinfection frequency of 2 strains of reovirus. In our lab, we have a
panel of commensal intestinal bacterial strains, as well as a number of lab adapted
bacterial strains. We will use this panel of bacteria to determine if reovirus binds to
different species of bacteria using a binding assay involving radioabeled virus.
Additionally, we will determine if specific species of bacteria alter the coinfection
frequency through a flow cytometry based assay. This will involve mixing virus with
bacteria, infecting cells in culture, and staining for reovirus proteins for flow
cytometry. Our second goal is to determine if specific bacteria promote reassortment
of reovirus in a mouse model of infection. To do this, we will use gnotobiotic
techniques to create mice harboring different intestinal bacteria populations. Mice will
be infected with 2 strains of reovirus, and then feces and organs will be collected.
Progeny virus will be subjected to a plaque assay on 2 different types of cells. The
first type of cells will be normal cells in culture in which all viable viruses will form plaques.
The second will be a cell line that stably expresses sRNAs against specific reovirus
segments in which only specific reassortants will form plaques. These 2 plaque assays
will be used to quantify the total number of viruses present and the total number of
reassortant viruses present. Additionally, SDS-PAGE and RT-PCR will be used to
confirm reassortants. Our third goal is to determine if reovirus reassortant is present in
infected humans. To do this, I will obtain feces from reovirus-infected children
and isolate reovirus. One specific reovirus reassortant is known to propagate in double-
infected mice. I will use the plaque assay technique to determine if this reassortant is
also present in humans. To determine if other reassortants are present, I will
use RT-PCR and SDS-PAGE. RESULTS/ANTICIPATED RESULTS: Based on
previous studies with other enteric viruses, we suspect that specific bacterial
species bind reovirus strains with different efficiencies. It is likely that a
number of bacterial species will promote coinfection. The bacterial strains
that bind both reovirus strains at a high efficiency will likely enhance
coinfection by the greatest amount. It is likely that mice harboring different
bacterial populations will produce different reovirus reassortment frequen-
cies. We predict that bacteria that enhance reovirus coinfection in vitro
should also enhance reovirus reassortment in our mouse model. Therefore,
mice specifically lacking bacteria that promote coinfection should have
significantly lower frequencies of reassortment. It will be important to
control for the overall amount of replication within mice with different
microbiotas, as this will affect the basal reassortment frequency. We suspect
that reovirus reassortants are present in humans. Work done both in vitro
and in mouse models indicates that reassortment happens at high frequencies.
Additionally, one specific reassortant commonly propagates in mice due to an
enhanced cellular attachment phenotype. Therefore, we predict that this
reassortant also commonly emerges after coinfection and reassortment in
humans. DISCUSSION/SIGNIFICANCE OF IMPACT: Segmented viruses,
such as influenza and rotavirus, are important human pathogens. Viral
reassortment poses a unique threat to humans, as it enables new viruses to
emerge and cause pandemics or epidemics. However, little is known about
what factors promote viral reassortment. This study will provide insight into
a novel mechanism of segmented virus evolution.

Development and validation of a translational rat
model of neonatal abstinence syndrome
Lisa Brens1, Bryce A. Griffin1, Caitlin Caperton1, Lauren Russell1, Christian Cabanlong1, Cathryn Wilson1, Kyle Urqhart1, Brad Martin1, Amy L. Patton1, Alexander W. Alund1, S. Michael Owens2, William E. Fantegrossi3 and Jeffery H. Moran1
1 PinPoint Testing, LLC and University of Arkansas for Medical
Sciences; 2 University of Arkansas Translational Research Institute

OBJECTIVES/SPECIFIC AIMS: Rodent models can be used to study neonatal
abstinence syndrome (NAS), but the applicability of findings from the models to
NAS in humans is not well understood. The objective of this study was to
develop a rat model of norbuprenorphine-induced NAS and validate its
translational value by comparing blood concentrations in the norbuprenorphine-treated
pregnant rat to those previously reported in
pregnant women undergoing buprenorphine treatment. METHODS/STUDY
POPULATION: Pregnant Long-Evans rats were implanted with 14-day osmotic
minipumps containing vehicle, morphine (positive control), or norbuprenorphine
(0.3–3 mg/kg/d) on gestation day 9. Within 12 hours of delivery, pups were tested for
spontaneous or precipitated opioid withdrawal by injecting them with saline
(10 mL/kg, i.p.) or naltraxene (1 or 10 mg/kg, i.p.), respectively, and observing
them for well-validated neonatal withdrawal signs. Blood was sampled via
indwelling jugular catheters from a subset of norbuprenorphine-treated dams on
gestation day 8, 10, 13, 17, and 20. Norbuprenorphine concentrations in whole
blood samples were quantified using LC/MS/MS. RESULTS/ANTICIPATED
RESULTS: Blood concentrations of norbuprenorphine in rats exposed to 1–
3 mg/kg/d of norbuprenorphine were similar to levels previously reported in
pregnant women undergoing buprenorphine treatment. Pups born to dams
treated with these doses exhibited robust withdrawal signs. Blood concentrations
of norbuprenorphine decreased across gestation, which is similar to previous
reports in humans. DISCUSSION/SIGNIFICANCE OF IMPACT: These results
suggest that dosing dams with 1–3 mg/kg/day norbuprenorphine produces
maternal blood concentrations and withdrawal severity similar to those
previously reported in humans. This provides evidence that, at these doses,
this model is useful for testing hypotheses about norbuprenorphine that are
applicable to NAS in humans.

Development of human cell-based screening assays to
detect subject-specific drug-response variability
Francesca Stiltiano, Joshua Mayourian, Jaydev Dave, Jean-Sébastien
Hulot and Roger J. Hajjar
Icahn School of Medicine at Mount Sinai

OBJECTIVES/SPECIFIC AIMS: The goals of this study are to develop a human-
based screening assay for testing individual drug reactions and investigate the
mechanism underlying susceptibility to develop dLQT. METHODS/STUDY
POPULATION: We derived iPS-CMs from 10 subjects with a high sensitivity
to Sotalol (high-S group) and 10 subjects with no changes in QT interval after
administration of the same drug (low-S group). Multielectrode array (MEA) was
used to measure field potential duration, a surrogate to the QT interval in the
electrocardiogram, in iPS-CMs under basal conditions and in response to
increasing concentrations of Sotalol. Transcriptomic profiling of iPS-CMs
from high-S Versus low-S groups was performed using RNA-sequencing.
A parameter sensitivity analysis was performed on the Paci et al. iPS-CM
mathematical model to further support the lead hits identified via RNA-
sequencing. RESULTS/ANTICIPATED RESULTS: Cardiac differentiation
resulted in the generation of iPS-CMs with appropriate cardiac channel