Deterministic Computations on a PRAM with Static Processor and Memory Faults

Bogdan S. Chlebus † Leszek Gaśieniec ‡ Andrzej Pelc §

Abstract

We consider Parallel Random Access Machine (PRAM) which has some processors and memory cells faulty. The faults considered are static, i.e., once the machine starts to operate, the operational/faulty status of PRAM components does not change. We develop a deterministic simulation of a fully operational PRAM on a similar faulty machine which has constant fractions of faults among processors and memory cells. The simulating PRAM has \(n \) processors and \(m \) memory cells, and simulates a PRAM with \(n \) processors and a constant fraction of \(m \) memory cells. The simulation is in two phases: it starts with preprocessing, which is followed by the simulation proper performed in a step-by-step fashion. Preprocessing is performed in time \(\mathcal{O}((\frac{m}{n} + \log n) \log n) \). The slowdown of a step-by-step part of the simulation is \(\mathcal{O}(\log m) \).
1 Introduction

Computers are prone to hardware failures, and this vulnerability increases with the growth of the number of processing elements in multiprocessor machines. It is a natural problem to investigate how to execute algorithms on machines with some faulty components. The most satisfactory solution is to design a simulation mechanism which is able to adapt automatically any executed program to the encountered pattern of faults.

We present a paradigm of deterministic simulation of parallel algorithms in a synchronous shared-memory environment with faults. The developed simulation is performed on a PRAM with \(n \) processors, some possibly faulty, and \(m \) memory cells, some possibly faulty too. This simulating machine is called a simulator. The simulated machine is a fully operational PRAM with \(n \) processors and a constant fraction of \(m \) memory cells. We assume that there are constant fractions of the number \(n \) of processors and the number \(m \) of memory cells of the simulator which are upper bounds on the number of faulty processors and memory cells, respectively. The distribution of faulty components may be arbitrary, subject only to these bounds on the number of faults.

It is for the first time that a deterministic simulation technique is designed for a PRAM under this model of fault-prone processors and fault-prone shared-memory cells. Note that the ability of a PRAM with some faulty memory cells to perform deterministic and fast computations under the worst-case fault distribution is not obvious. Namely, if the simulation is deterministic then the sequences of memory cells accessed by processors are predetermined until some operational cells are encountered. This implies that some operational processors may never (within the time bounds of the supposed fast simulation) find fault-free memory cells, and hence may never be able to communicate with other processors. To circumvent this obstacle, the developed simulation is designed to rely on a constant fraction of operational processors. In particular, we face the problem how to retrieve the input from the information available to the processors that are active in the simulation. To this end we use the method of information dispersal.

The term “simulation” may be used with various meanings in the realm of distributed or parallel computing. One of them concerns specifications of algorithms in layered systems, in which complex solutions are constructed from simpler primitives; see e.g. [3]. A simulation in this sense requires a precise development of the underlying model of computation. In the context of PRAM algorithms, the term simulation typically denotes a way of interpreting PRAM algorithms, which are written in a syntax allowing direct access to shared memory, in message-passing or distributed-memory environments, see e.g. [22]. This requires developing an implementation of shared-memory access, and the emphasis is on an asymptotic performance of the underlying communication mechanism. The meaning that we are using is closer to the latter one. We show that it is possible to run PRAM algorithms, which have been designed for an ideal fully reliable PRAM, on a PRAM with faults, achieving a moderate slowdown.

Overview of the simulation. The simulation is in two phases: it starts with setting up the machine, which is then followed by a phase in which an arbitrary program is executed in a step-by-step fashion. After preprocessing has been completed, some of the operational processors are identified as suitable to participate in the simulation. Then they are given new identification numbers to be used during simulation. Similarly, some operational memory cells are given new virtual addresses, and there is a mechanism created to access them by these new coordinates. More details are as follows.
Preprocessing:

A constant fraction of n processors organize a constant fraction of m memory cells of the shared memory into data structures to make possible accessing the contents of memory cells of the simulated machine by their addresses in the simulated memory in time $O(\log m)$ per access. First the m memory cells are conceptually partitioned into blocks of size m/n and assigned to all the processors, including the faulty ones. Then each operational processor verifies if it has available at least a certain constant number of operational cells within a certain constant-size range, and if this is the case then it considers itself active. The remaining passive operational processors remain idle since this moment. The active processors organize the memory available to them into a balanced search tree called a memory tree. This tree is sufficient to provide a fast access to virtual memory if concurrent-read primitive is available, like in CREW or CRCW PRAMs. A solution in the case of the EREW variant is more complex: during preprocessing, the processors organize themselves into a balanced binary tree, called processor tree, which is then used to facilitate concurrent access to the virtual memory without concurrent reading. This part of preprocessing is performed in time $O((m/n + \log n) \log n)$.

An input is provided to all the processors in a way which does not depend on the distribution of faults. Each processor, whether operational or not, obtains its part of the input, which is of size of a constant number of memory cells per processor. We use redundancy as a safeguard against some part of the input being lost due to processor or memory faults. The input is provided encoded according to a variant of information dispersal. Active processors communicate with one another and retrieve the whole original input from the information available to them. It takes time $O(\log^2 n)$ to obtain the whole input.

The simulation proper:

A program to execute and data on which it is to be run are provided as input. This program is simulated in a step-by-step fashion. A single active processor simulates $O(1)$ processors of the simulated machine. The crucial part is performing the operation of accessing a shared memory cell, for either reading or writing. The goal is to locate the physical address of a cell in the memory of the simulator, given a virtual address of memory of the simulated machine. In the case of the EREW PRAM, each operation of memory access requires an ad hoc tree of processors, called an organized tree, which is constructed on top of the structure of the processor tree, and which is discarded after the memory-access operation has been completed. The slowdown of the proper part of the simulation is asymptotically the same as the time to perform a single memory-cell access and is $O(\log m)$.

Related work. A lot of research has been done to develop simulation techniques transforming PRAM algorithms, which have been designed to operate in an ideal fault-free synchronous environment, into algorithms that are reliable when run on fault-prone or asynchronous machines. Various approaches are possible, depending on the nature of faults (static versus dynamic, deterministic versus stochastic, fail-stop versus restartable), the efficiency criteria (time versus work), the properties and capabilities of the underlying model (synchronous versus asynchronous, concurrent read
and write versus exclusive read and write), or the types of simulations (randomized versus deterministic). In the static model of failures, a computation starts with some components out of order, and the status of all the components is not changed in the course of an execution. A relatively mild form of dynamic failures is that of processor crashes. Models of failures may also allow delays or restarts of failed processors, such behaviour can be interpreted as a form of asynchrony. Asynchrony in PRAMs makes the model closer to the way actual parallel systems operate ([13, 44]). For results about the PRAM model in its asynchronous version see [2, 14, 20, 23]. As far as the number of faults is concerned, one may require that all but one processors are allowed to fail. To have a meaningful cost measure for such a situation, it is natural to consider \textit{work}, which is sometimes called the \textit{available processor steps} (see [26]). Under this cost measure any operational processor involved in the computation contributes a unit of work for any clock cycle during which it is operational, even if it is idle.

Kanellakis and Shvartsman [26, 27] identified a generic algorithmic problem called \textit{Write-All}: given an array initialized with zeroes, the task is to change the values stored at all the locations in the array. A solution of \textit{Write-All} on a PRAM with faults can be used iteratively to convert any shared-memory computation into a computation resilient to processor failures (see [26, 29, 42]). The \textit{Write-All} problem was studied in a series of papers. For the purpose of giving examples of specific performance bounds in this overview, we consider a special case when both the number of processors and the size of the array are equal, let \(n \) be this number. For deterministic computations which are robust against fail-stop failures, the best known algorithm solving \textit{Write-All} performs work \(O(n \log^2 n / \log \log n) \), it was given in [27]. If restarts may happen then the most efficient known algorithm was proposed by Anderson and Woll [1], it performs work \(O(n^{1+\epsilon}) \), for arbitrary positive \(\epsilon \). This algorithm is based on an extension of the idea of a (binary) \textit{progress tree} proposed first by Buss, Kanellakis, Ragde and Shvartsman [8], it uses \(q \)-ary rather than binary tree, for suitable \(q \). The algorithm is non-constructive in that it relies on families of permutations with certain good properties, which are only known to exist; the best known constructive families with relevant properties are given in [38]. Motivated by the algorithm in [1], Kanellakis and Shvartsman [20] proposed a constructive algorithm. The performance of this algorithms has not been fully analyzed yet, see [9] for a work in this direction. The expected work \(O(n \log n) \) of randomized computations can be achieved even with restarts, as was shown by Martel et al. [34]. A logarithmic-time lower bound for randomized solutions of \textit{Write-All} showed by Martel and Subramoniam [35] is in contrast with the algorithm of constant amortized expected slowdown developed by Kedem et al. in [28], for a stochastic model of faults. Groote et al. [21] gave an algorithm for \textit{Write-All} which is efficient for the practical applications when the size of the array is significantly larger than the number of processors. A similar problem \textit{Do-All} for a faulty message-passing environment has been proposed by Dwork et al. [17]: there are a number of similar and independent tasks which need to be performed in any order.

Chlebus et al. [10] initialized the study of PRAM with memory faults. They considered CRCW PRAM with deterministic memory faults, and designed efficient randomized PRAM simulations for both static and dynamic errors. Indyk [24] studied computations exploiting bit operations and resilient to memory faults. Gąsieniec and Indyk [18] studied PRAM with static memory faults and developed both EREW and CRCW simulations. Our simulation is related to the results obtained in [10, 16, 18, 19, 24]. Two simulations presented in [10] are for the static memory errors: one on the optimal number of \(n / \log n \) processors and with slowdown \(O(\log n) \), the other operating in real time on \(n \log n \) processors. The simulations developed in [10] are randomized, the performance
bounds are expected, and the model is a CRCW PRAM, whereas the simulation presented in this paper is deterministic and applicable to the whole PRAM family, in particular to the weakest EREW PRAM. The preprocessing of the presented deterministic simulation developed in this paper includes building a list of active processors and then a tree-like data structure. If \(m = \Theta(n) \) then no trees are needed, just a list of active processors suffices, as was shown in the conference version of this paper. It has been shown that the list-construction part can be designed to run within time \(O(\log n) \), see \[16, 18\]. Diks and Pelc \[15\] developed algorithms for the EREW PRAM, which are reliable and efficient under a stochastic processor-fault model.

Fault-tolerance of other models of parallel computing has also been studied. We mention briefly some of the models most closely related to this research. Berenbrink et al. \[7\] studied a distributed memory machine with randomly failing memory modules, and presented fast PRAM simulations in this model. Chlebus et al. \[11\] presented randomized simulations of a PRAM on a distributed memory machine with faulty memory cells, under arbitrary distribution of faults in the memory modules. Kontogiannis et al. \[30\] studied simulations of the operational BSP on a BSP with processor faults.

Failure models are often described in terms of adversaries, who are responsible for incurring worst-case scenarios. A situation when the faults are set at the beginning and then do not change is called static, it is the one considered in this paper. A more complex situation is modeled by the oblivious adversarial model, in which the timing of faults is determined before the algorithm starts. The dynamic case, when faults may occur in the course of computations at times decided online by an adversary, are captured by the adaptive adversarial model. If the number of faults is required to be upper bounded by a constant fraction of the total number of given components, then the adversary is said to be linearly bounded, it is the one considered in this paper. Adaptive adversaries, with an upper bound on the number of faults, are in two variants. Weakly-adaptive adversaries designate fault-prone components, of a prescribed number, prior to the start of algorithm and may fail only them in the course of an algorithm, at arbitrary steps. Strongly-adaptive adversaries may decide on faults fully online. The distinction between strongly and weakly adaptive models is meaningful only if algorithms are randomized, because otherwise the adversary can predict the future behaviour of algorithms. The following are examples of applications of these adversarial models found in recent literature. Linearly-bounded adversaries were considered in \[16\] in the context of deterministic broadcasting and fault diagnosis. A stochastic variant of a linearly-bounded adversary controlling processor faults in the BSP model was studied in \[30\]. Weakly-adaptive linearly-bounded adversaries were considered in \[10\] in the context of faulty CRCW PRAM with faulty memory cells.

Information dispersal is a term used for any method to encode a string of bits into \(x \) pieces in such a way that the original string can be retrieved from any \(y \) of the pieces. If the original string consists of \(\ell \) bits, then each of the pieces is to be of size \(\ell/y \). The numbers \(y \leq x \) are parameters, they may be arbitrary positive integers. Known efficient implementations of information dispersal use algebraic methods, often related to the theory of erasure and error-correcting codes. The Rabin’s method \[40\] is based on the properties of the Cauchy matrix \[i,j\] \(\frac{1}{a_i+b_j} \). Probably a conceptually simplest solution is based on the fact that a polynomial of degree \(k \) is uniquely determined by its values at \(k+1 \) points, a similar idea underlies the Reed-Solomon error-correcting codes \[33\]. It has been proposed by Preparata \[39\] and Lyuu \[32\], but has been anticipated much earlier by McEliece and Sarwate \[36\]. An advantage of this approach is that encoding and decoding can be done efficiently by methods based on the Fast Fourier Transform. The paradigm of information dispersal
has been used in routing on faulty networks in a pioneering work of Rabin [40], in cryptography by Shamir [41] and Ben-Or et al. [6], and in PRAM simulation on faulty networks by Aumann and Ben-Or [4]. As far as unreliable PRAMs are concerned, the method of information dispersal has been previously used by Aumann et al. [5] in a context when memory cell values could be unreachable. One can consult a book of Lyuu [32] for an exposition of known implementations of information dispersal, a comprehensive account of its applications in parallel and distributed computing, and an extensive bibliography. We apply the information dispersal method to retrieve the whole input from the parts of input data available to processors active in the simulation. Our approach is that of Reed-Solomon codes, and the exposition is self-contained as far as understanding the basic machinery and complexity estimates is concerned.

The paper is organized as follows. Section 2 deals with the model, and in particular defines precisely the type of faults. In Section 3 the stage of preprocessing is described. Section 4 gives details of the proper part of the simulation.

2 Model of Computation

This section defines the model of computation and discusses the assumptions we make concerning the nature, distribution and number of faults.

The model of computation that we consider in this paper is the Parallel Random-Access Machine (PRAM), see e.g. [25]. PRAM is a formal model that facilitates design and exposition of parallel algorithms. We consider a synchronous variant. The simulator consists of a shared memory of \(m \) memory cells and of \(n \) processors which operate in synchronized steps. Each processor has its own local control and its own local memory. It knows its identification, which is a unique number assigned to it in the range from 1 through \(n \), we refer to it as the physical index of the processor. The shared memory is assumed to consist of individually addressable memory cells. Each processor can access arbitrary locations, either in the shared memory or in its local memory, in a single step. PRAM can be efficiently simulated on distributed-memory machines, see [22, 37, 44] for overviews of PRAM-simulation techniques.

PRAM can be considered as a direct generalization of the sequential model RAM, in the sense that if we select one processor and forget about the remaining ones then the resulting machine is a RAM. Usually RAM is defined as a machine with unlimited amount of memory. However, in the PRAM case, the size of memory can be a factor that determines the speed of computation, because processors may use the shared memory to communicate with one another, and the size of memory limits the bandwidth of such a communication. This issue becomes even more important in the context of a PRAM simulation on a PRAM with possibly faulty memory, because some quantitative assumptions need to be made regarding the distribution of faults. In this paper when we refer to a PRAM then it is always a model with a specific number of processors and a specific size of shared memory, and these parameters denote the total numbers of these components, with some of them possibly faulty.

The PRAM model has variants categorized according to the semantics of concurrent access of processors to the shared memory (25). The weakest exclusive-read exclusive-write (EREW) allows only at most one processor to read or write to any location in the shared memory during each step. For the EREW PRAM, violating the exclusivity restrictions results in a runtime error. The concurrent-read exclusive-write (CREW) allows many processors to read from the same location
in the shared memory at the same time, but simultaneous writes are not allowed. The strongest concurrent-read concurrent-write (CRCW) allows for simultaneous reads and writes by many processors to the same locations in the shared memory. In this paper we develop a universal simulation method that can be applied to any variant of a PRAM with faults. The simulated machine is of the same kind as the simulator, that is, EREW, CREW or CRCW, respectively. Our exposition concentrates on the case of EREW PRAM, which is most restrictive and hence requires more effort than the other variants.

We study such a PRAM in which some among processors and some among shared memory cells may be faulty at the moment when computation starts. The kinds of faults we are interested in are usually called deterministic and static. Here deterministic means that there are no stochastic assumptions concerning the distribution of faults, and that the performance of the simulation is measured according to the worst case, that is, with respect to the worst possible distribution of faults. The term static means that the faulty/operational status of error-prone components remains the same in the course of a computation as it was when the simulation started. Processor faults are of the fail-stop kind, i.e., faulty processors do not perform any action during the computation. Each processor has a local storage with a constant number of memory cells, which we assume to be sufficiently large for the purpose of the given deterministic simulation. Local memories are assumed not to be faulty. An important property of the model is the capability of processors to recognize faulty cells in shared memory. Namely, whenever a processor attempts to access a memory cell then it is immediately notified by hardware whether the cell is operational or not. During the setup phase, each shared memory cell of the simulated machine is assigned a shared memory cell of the simulator, for the purpose of storing its contents. Hence the memory cells of the simulated machine are exactly as those of the simulator, in terms of the number of bits they can store.

We assume that at least a certain constant fraction of \(n \) processors and at least a certain constant fraction of \(m \) memory cells are operational. If we are to be able to cope with an arbitrary location of faults by a simulation which is both deterministic and based on a fixed initial assignment of blocks of memory to processors, then additional assumptions about the number of faults are needed. To see this, consider a PRAM with \(n \) processors and \(n \) memory cells, such that up to half of the processors and up to half of memory cells may fail; then, for any fixed assignment of cells to processors, it might happen that the operational processors are assigned to exactly the faulty cells. We make suitable assumptions concerning the numbers of faults to avoid such a situation.

We assume that there are two constants \(0 < f_s < 1 \) and \(0 < f_p < 1 \) such that the number of faulty processors is at most \(f_p n \), and the number of faulty memory cells is at most \(f_s m \). An additional assumption about \(f_p \) and \(f_s \) is that \(f_p + f_s < 1 \). A contiguous segment of memory cells is an \(\alpha, \beta \)-good segment, for integers \(\alpha \geq \beta > 1 \), if it is of size at most \(\alpha \), it begins and ends at operational cells, and contains exactly \(\beta \) operational memory cells. An \(\alpha, \beta \)-good segment is uniquely specified by the address of its first operational cell, we call it this segment’s address. The shared memory is conceptually partitioned into \(n \) contiguous segments of memory cells of size \(\lfloor \frac{m}{n} \rfloor \), called blocks. The \(i \)th block is assigned to the \(i \)th processor. A processor is \(\alpha, \beta \)-active if it is both operational and its assigned block contains at least one \(\alpha, \beta \)-good segment, otherwise it is said to be \(\alpha, \beta \)-dormant. The block assigned to an active processor is also called active.

\(\alpha, \beta \)-good segments are used as records to store information. The memory is organized into data structures during the setup phase of simulation. Number \(\beta \) is required to be large enough so that an \(\alpha, \beta \)-good segment has sufficient space to store all the pointers needed. The size of number \(\beta \) is
determined implicitly by the simulation mechanism, as described in Sections 3 and 4. From now on we assume β to be a sufficiently large fixed constant. Parameter α depends on all the constants f_p, f_s and β.

Lemma 1 For any constants $f_p > 0$, $f_s > 0$, such that $f_p + f_s < 1$, and integer $\beta > 1$, there is an integer $\alpha \geq \beta$ such that if a faulty PRAM with n processors has at least $m \geq \alpha n$ shared memory cells then the number of α-β-active processors is at least $n \frac{1 - (f_p + f_s)}{2}$.

Proof: The assumption $m \geq \alpha n$ guarantees that each processor has assigned at least α shared memory cells. Let us consider an arbitrary pair $\alpha \geq \beta$, and let d be the corresponding number of α-β-dormant processors. At most $f_p n$ processors are faulty. If an operational processor is α-β-dormant then each segment of size α in its memory contains at least $\alpha - \beta + 1$ faulty cells. Hence the total number x of faulty memory cells satisfies the inequalities

\[(d - f_p n) \left\lfloor \frac{m}{n} \right\rfloor \frac{\alpha - \beta + 1}{\alpha} \leq x \leq f_s m .\]

By removing the floor function we obtain a weaker inequality

\[(d - f_p n) \left(\frac{m}{n} - 1 \right) \frac{\alpha - \beta + 1}{\alpha} \leq f_s m .\]

Multiplying both sides by $\frac{\alpha}{\alpha - \beta + 1} \frac{n}{m - n}$ and rearranging yields the inequality

\[d \leq n \left(f_p + f_s \frac{\alpha}{\alpha - \beta + 1} \frac{m}{m - n} \right).\]

Since both $\frac{\alpha}{\alpha - \beta + 1}$ and $\frac{m}{m - n}$ approach 1 as α grows to infinity, and $f_p + f_s < 1$, the following inequality

\[f_p + f_s \frac{\alpha}{\alpha - \beta + 1} \frac{m}{m - n} < \frac{1}{2} (f_p + f_s + 1)\]

holds for sufficiently large α. Then the number of α-β-active processors is at least

\[n \left(1 - \frac{f_p + f_s + 1}{2} \right) = n \frac{1 - (f_p + f_s)}{2},\]

which is the estimate we seek. \square

α-β-good segments in a block can be located by a greedy procedure which scans consecutive cells of the block, and, as soon as β operational cells are found in a range of at most α cells, it designates them as a separate α-β-good segment (see the description of Stage 1 of the preprocessing in Section 4). This is done in each block separately. From now on, when referring to α-β-good segments, we consider them as produced in this way.

Lemma 2 If the inequality $\alpha > \frac{\beta - 1}{1 - f_s}$ holds then there is a constant $\delta > 0$, which depends on f_s, α and β, such that the total number of α-β-good segments in all the blocks is at least δm.

Proof: For each operational cell w, consider the contiguous segment I_w of α cells starting at w. If I_w contains at least β operational cells then w belongs to an α-β-good segment. If w does not belong to any α-β-good segment then I_w contains at least $\alpha - 1 - (\beta - 2) = \alpha - \beta + 1$ faulty cells, we
say that these faulty cells are \textit{bound} to \(w \). A faulty cell can be bound to at most \(\beta - 1 \) operational cells, because otherwise these operational cells would be within a segment of size at most \(\alpha \). It follows that the number of faulty cells per each operational one that is not in a \(\alpha \)-\(\beta \)-good segment, is at least \(\frac{\alpha - \beta + 1}{\beta - 1} \). Let \(A \) be the number of operational cells that do not belong to \(\alpha \)-\(\beta \)-good segments. The total number of faulty cells is at least \(A \frac{\alpha - \beta + 1}{\beta - 1} \). We have

\begin{equation}
A \leq \frac{\beta - 1}{\alpha - \beta + 1} f_s m ,
\end{equation}

because otherwise the total number of faulty cells would be at least

\begin{equation}
A \frac{\alpha - \beta + 1}{\beta - 1} > f_s m .
\end{equation}

Since the total number of operational cells is at least \((1 - f_s)m\), we obtain that the number of operational cells in \(\alpha \)-\(\beta \)-good segments is at least \((1 - f_s - \frac{\beta - 1}{\alpha - \beta + 1} f_s)m\). One can check directly that if \(\alpha > \frac{\beta - 1}{1 - f_s} \) then the following inequality holds:

\begin{equation}
1 - f_s - \frac{\beta - 1}{\alpha - \beta + 1} f_s > 0 .
\end{equation}

Hence if \(\alpha > \frac{\beta - 1}{1 - f_s} \) then the number of \(\alpha \)-\(\beta \)-good segments is at least \(\delta m \), where

\begin{equation}
\delta = \frac{1}{\alpha} \left[1 - \left(\frac{\beta - 1}{\alpha - \beta + 1} \right) f_s \right] ,
\end{equation}

as was to be shown.

Our simulation is defined for faulty PRAMs in which the numbers of processors, memory cells and allowed faults satisfy certain dependencies, defined by parameters fixed as constants, we call such PRAMs normal. A precise definition is as follows:

Let \(f_p > 0 \) and \(f_s > 0 \) be two constants such that additionally \(f_p + f_s < 1 \). Let \(\beta > 1 \) be an integer constant, its value needs to be sufficiently large to make the simulation mechanism work as described in detail in the following sections. Let \(\alpha > \max\{\beta, \frac{\beta - 1}{1 - f_s}\} \) be sufficiently large, such that the conclusion of Lemma 1 holds. Let \(\delta \) be the number proved to exist in Lemma 2. A faulty PRAM with \(n \) processors and \(m \) shared memory cells is said to be \textit{normal} if it has the following properties:

1. The number \(m \) satisfies the inequality \(m \geq \max\{\alpha n, 1/\delta\} \).
2. The number of faulty processors is at most \(f_p n \).
3. The number of faulty memory cells is at most \(f_s m \).

From now on, when referring to a faulty PRAM, we mean a specific normal PRAM, with all the values \(f_p, f_s, \alpha, \beta \) fixed. In view of Lemmas 1 and 2, normal PRAMs have at least a constant fraction of \(n \) of active processors and at least a constant fraction of \(m \) of good segments. The simulation we develop is for a normal PRAM, and the numeric values of the constants \(f_p, f_s, \alpha, \beta \) are used in the simulation. They are assumed to be a part of code of the simulating algorithm that is run by each processor, in particular they are known by the processors. In the following sections
we consider the constants α and β as fixed and write shortly *good, active* and *dormant*, instead of long-winded phrases $\alpha\beta$-good, $\alpha\beta$-active, and $\alpha\beta$-dormant, respectively.

The details of input/output operations for a PRAM have never been much discussed, due mainly to the fact that the model ignores the real costs of communication between processors and memory modules. Usually it is simply assumed that the input has been stored, prior to the start of a computation, either in the processors' local memories or in the shared memory. Our approach is that the input is provided directly to the processors, since the shared memory is not reliable. It would be hardly acceptable to assume that input operations start *after* the preprocessing phase has been completed. In practice that would require a very flexible and complicated input hardware, since categorizing of processors into active and dormant is done during preprocessing, and a processor may stay idle during the computation either if it is faulty or its assigned segment of shared memory cells does not contain sufficiently many fault-free elements. We assume that the input is provided uniformly to all the processors, whether faulty or not, *before* preprocessing begins. Then operational processors store it in their local memories, and preprocessing starts.

3 Preprocessing

This section deals with setting up a machine for the proper part of simulation. We begin with a description of what preprocessing achieves.

Consider a normal faulty PRAM with n processors and m memory cells. After it has completed preprocessing, the simulated machine has a range from 1 through m' of shared memory addresses available for computation, where m' is a constant fraction of m, which depends on all the constants involved in the definition of a normal PRAM. We refer to these addresses as *virtual* ones. The physical cells storing the contents of virtual cells are scattered throughout the active blocks of memory. To have a small overhead of simulation, in terms of the time needed to locate physical addresses of the memory cells assigned to given virtual addresses, both active processors and good segments are organized as balanced binary trees.

1. **Processors**: Each operational processor knows if it is active or not. All the active processors are ordered by their physical indices, and each processor knows its rank in this ordering. We refer to the ith active processor as P_i. The number i is said to be the *active index* of processor P_i, and also the active index of its assigned block. The active index should be distinguished from the corresponding physical one. Active processors are organized into a complete binary tree. This is done by storing pointers at memory cells designated for this purpose by the processors.

2. **Memory**: Each active block has a list of disjoint good segments. The first among them, that is, with the smallest physical address, is called the *contact segment*, and its address is the *contact address* of this block. The remaining good segments are *regular* ones. Each operational memory cell of a good segment has a purpose assigned to it, which may depend on the kind of the segment. The role of a cell may be either *structural*, when it stores information about the organization of memory of the simulator, for instance a pointer value in a data structure, or it may provide virtual storage, when it stores the content of some shared memory address of the simulated machine. The specification of simulation we give determines implicitly how many structural cells are required in a good segment, and what they are to store, the remaining operational cells can be used for virtual storage. We require the parameter β to be so large that each good segment has at least one operational cell apart from the structural ones.
Stage 1: Each operational processor verifies if it is active: it scans its block looking for good segments, and organizes them in a list.

Stage 2: Each active processor converts its list of good segments into a temporary tree.

Stage 3: The active processors organize their active blocks into a list.

Stage 4: The active processors convert the list of active blocks into a block tree.

Stage 5: The active processors construct a processor tree from the list of active blocks.

Stage 6: The active processors construct a memory tree.

Stage 7: A subset of the active processors run a decoding algorithm to retrieve the input.

Figure 1: Preprocessing in its seven main stages.

All good segments are organized as a complete binary tree called the memory tree. The in-ordering of segments in the memory tree is the same as the ordering by their physical addresses, that is, the addresses of nodes in the left/right subtree of any node are smaller/larger than the address of this node.

All the contact segments are organized as a doubly-linked list. Since there is a one-to-one correspondence between these segments and both the active processors and active blocks, this list may be considered as both a list of active processors and of such blocks. The ordering of this list is exactly the same as that of the active processors by their indices.

Each contact segment has a designated pair of records, which are used to build a complete binary tree, called the processor tree. The structure of the tree is such that typically one of the records is a leaf of this tree, the other one is an internal node. The ordering of the leaves of the processor tree according to the in-ordering is the same as their ordering by the indices of the corresponding processors.

We start a description of preprocessing by summarizing it as a sequence of stages on Figure 1. Some of the terms used in this summary are defined later on in a detailed presentation of the stages.

After Stage 6, both the block tree and all the temporary trees are obsolete and may be discarded. Next we discuss each stage in detail:

Stage 1: Each operational processor verifies if it is active.

To this end, it scans its assigned block of memory looking for good segments. As it moves through consecutive cells, it attempts to read each of them, checking to see if they are operational. It also remembers the number of operational cells among the last α cells, not assigned to the previous good segments. Every time β such cells are found, a new segment is added to the list of good segments, the first operational cell in a good segment storing the address of the next good segment, if any. If no good segment is found then all the operational cells in a block are set to blank (all bits set to 0), otherwise the first such segment is the contact one, and its first cell stores a pointer to the next good segment if it exists, or the null value if no such segment exists. In any case the value stored is distinct from the blank value. If at least one good segment is found then
the processor considers itself active, otherwise it is dormant.

From now on, all the computations are performed by active processors only, the dormant processors remaining completely idle.

Stage 2: All the regular segments in every active block are arranged in a binary-search tree of height logarithmic in its size.

The obtained tree is called this block’s *temporary tree*. This is also done sequentially in each block by the processor assigned to the block. The in-ordering of regular segments in the temporary tree is the same as their ordering by their physical addresses. The total size of all the virtual storage in a block of the segments with smaller addresses than a given segment is this segment’s *local offset*. A regular segment stores the following in its structural cells: the offset and pointers to the children. The local offsets can be computed and stored at each good segment in the list while it is constructed.

A list of regular good segments is converted into a temporary tree by the following *conversion procedure* that will be used also in future considerations. It is partitioned into phases, and can be performed either sequentially or in parallel, depending on the number of available processors. During this operation the list may be considered as storing trees, an item being a root of such a tree. In the beginning the trees are just single nodes. A phase is performed as follows. The list is partitioned into consecutive quadruples of nodes. Consider one of them. It consists of tree T_1 followed by a single node v_1, followed by tree T_2, followed by a single node v_2, some possibly missing at the end of the list. The tree T_1 becomes the left child of v_1 and tree T_2 the right one, then they are removed from the list, so that the tree with root v_1 is immediately followed by v_2. This is depicted in Figure 3.

After a number of phases, which is logarithmic in the length of the list, just a single tree remains, also of depth logarithmic in the length of the list. This tree is the output of conversion. In general, the time of conversion performed by just one processor is proportional to the length of the input.
list, and if there is a processor assigned to each item in the list then the task can be completed in time logarithmic in the length of the list. In the case of a temporary tree, its depth is $O(\log(m/n))$, and it is obtained in time $O(m/n)$.

Stage 3: A list of active blocks is built.

This list consists of contact segments. We use the following definitions. A set S of processors is *large* if it contains at least $\frac{1}{2}(1 - f_p - f_s)|S|$ active elements, where $|S|$ denotes the size of S. A *partition tree* (PT in short) is a full binary tree with nodes labeled by intervals of integers. The root is labeled by $[1,n]$. If a node v is labeled by $[a,b]$ and $b > a + 1$ then v is an internal node, its left child is labeled by $[a,\lfloor(a + b - 1)/2\rfloor]$ and the right child is labeled by $\lceil(a + b)/2\rceil, b]$. Leaves are labeled by intervals of unit length. A processor with physical index i is *associated* with node v if i belongs to the label of v. The processors associated with a node of tree PT are referred to as the *group* of this node. A node is *large* if its group is large. An active processor may *check* another processor p for being active, p being operational or not. This is done by scanning the block assigned to p and attempting to read each consecutive cell, until the information that the block is active is found. This information is in the first operational non-blank cell in the block, which also happens to be this block’s contact address.

The algorithm building the list works in phases corresponding to the levels of tree PT. During a phase, processors are partitioned into groups associated with nodes at the corresponding level of the tree. A group is either busy or not. If a group is *busy* then:

1. Each processor in the group is aware of this.
2. The active processors in the group are organized in a list, and each element of the list knows its *rank*, that is, the distance from the head of the list.
3. Each element knows the number of elements in the list.

Groups correspond to leaves of PT during the first phase of the algorithm. Processors in each such a group check each other, and if the group is large then the processors arrange themselves in a list, compute ranks and the group becomes busy. In general, once a phase has been completed, the computation proceeds to the next one, corresponding to the next level of PT towards the root. Let us consider such a phase, it consists of three parts. During the first part, the busy groups corresponding to nodes being left children perform computations, while the other groups pause. The busy groups corresponding to right children perform computations in the second part, but only if their left-sibling group was idle during part one. Consider the first part. Each processor in a busy group G_1 is assigned a set of processors in the sibling group G_2 as follows. The processors in G_2 are partitioned into as many subsets as there are active elements in G_1, the sizes of subsets are constant (G_1 is large) and differ by at most one. The active processor with rank k in the list in G_1 is assigned the kth subset of group G_2. Each active processor of G_1 checks on the assigned subset and adds all its active blocks to the list. This completes part one. The second part is similar, but the roles between sibling groups are reversed. For each pair of sibling groups, if at least one of the groups is busy then after part two all the active processors in these groups are connected in a combined list. This list is processed during the third part. The ranks and the size of the list are computed and broadcast to all the elements of the list by the procedure of pointer jumping (see [25]). If the size of the list is big enough for the group of the parent node to become large then the group of the parent node becomes busy in the next phase. To synchronize the process, we need
to control the duration of the first two parts of a phase, when the processors check on the assigned elements of sibling groups. This time period can be bounded by a common constant since all the busy groups are large.

Lemma 3 It takes time $O\left(\log n \left(\frac{m}{n} + \log n\right)\right)$ to produce a list connecting all the active blocks.

Proof: Note that the root of PT is large by Lemma 1 and if a node of PT is large then one of its children is large. Therefore there is a large leaf in PT such that the path from it to the root contains only large nodes. This means that there is at least one busy group in each phase, and the correctness follows by induction on the height of PT.

The number of phases is $O(\log n)$. The first two parts of a phase take time $O(m/n)$ each, the third one takes time proportional to the logarithm of the size of the list, which is $O(\log n)$.

Stage 4: The active blocks are organized as a binary-search tree of logarithmic height.

This tree is called the block tree. The in-ordering of active blocks in this tree, by their active indices, is to be the same as their ordering by physical addresses. The total size of virtual storage in all the blocks with active indices smaller than a given active block is called this block’s *global offset*. All the information about a block as a node in the block tree is stored in the contact segment of this block. Namely, this segment stores the following in its structural cells: the global offset, pointers to the children and to the parent in the block tree, and a pointer to the root of the temporary tree. A pointer to an active block is meant to be the address of the contact segment of this block. The processors have already been organized into a list of contact segments. The conversion procedure is applied to this list, it takes $O(\log n)$ steps. Then the global offsets of the nodes in the obtained tree are computed. This is done in two sweeps through the levels of the tree. The first one proceeds from the leaves towards the root. After it is finished then each node knows the size of virtual memory in all of its descendants. The offsets are computed during the second sweep starting at the root and going towards the leaves: a node needs to know the offset of its parent, and the size of the virtual memory in the subtree of its left sibling, if there is any.

Stage 5: A tree of processors is built.

This tree is called simply the processor tree. We may assume that the number of active processors is a power of 2, otherwise only 2^k active processors are considered, where the number k is the largest one such that 2^k is upper bounded by the number of active processors. Every active processor has a number of cells in its contact segment assigned for the purpose of building the tree. They are organized as two records of size suitable to store all the information of a node, each is said to be owned by the processor. One of them is designated to be a leaf in the tree, the other to be an internal node. When this stage starts then all the records to be internal nodes are initialized to nil values. Each of them is called spare while holding such a value. Since the list of contact segments has already been built, this also yields a list structure of the records assigned to be leaves. Inductively, this list may be interpreted as having the following properties: (i) it connects trees, (ii) the root of each tree in the list has a spare record. Initially the trees are just singleton nodes. The list is contracted in phases as follows. The current list is partitioned into pairs of consecutive trees. If T_1 and T_2 are such a pair then the spare record of T_1 becomes the root of a new tree that replaces both T_1 and T_2 in the list, it has T_1 as the left subtree and T_2 as the right one. The spare record of T_2 becomes the spare one of the new tree. This is performed for each such pair in parallel, which results in contracting the length of the list by half. After k phases a single tree is obtained, which is the processor tree.
Stage 6: A memory tree is constructed.

First the active processors are dispersed among good segments in a balanced way, that is, they locate such segments that the distance, measured in terms of offsets, between any two consecutive ones is the same, and is \(\Theta(m/n) \). This is achieved as follows. A copy of the list of processors is first made, by way of making copies of the contents of the relevant cells in the contact segments of each processor. It is then dispatched towards the leaves of the block trees, starting from the root. While on its way, this list may be partitioned into smaller lists, they are called traveling lists. These lists travel in a binary-search fashion, and when a leaf of the block tree is encountered then they continue their way through the respective temporary tree. Let \(L \) be such a list, and let it be at node \(v \) of either the block tree or a temporary tree. The processor \(P \) at the head of \(L \) reads the offsets of both \(v \) and its left child, and calculates the smallest virtual address in the right child of \(v \). This information is then broadcast to all the processors on list \(L \) by pointer jumping, in time proportional to the logarithm of the size of the list. If a processor in the list is the first one with its address in the right subtree of \(v \) then it cuts itself from the predecessor, if any, and becomes the head of a new list consisting of the processors that follow it in the original list. This new list moves down to the right child of \(v \), the remaining shortened one goes to the left child. Eventually the traveling lists become single nodes which traverse either the block tree or temporary trees in a binary-search fashion.

The second part of this stage starts from the processors dispersed among the items of the list of good segments in a balanced way, the first processor at the first node of the list. The good segments between that of processor \(P_i \) and that of processor \(P_{i+1} \) are treated as the portion of segments assigned to processor \(P_i \). The sizes of such portions are \(2^r \), for some \(2^r = \Theta(m/n) \). Every active processor can be assumed to know the number \(r \). Each processor organizes \(2^r \) cells of its initial portion of good segments into a complete binary-search tree. The list of active processors yields a list of these trees. We apply the conversion procedure and obtain a complete binary-search tree, and this is the memory tree.

Lemma 4 It takes \(O(\log n \log m) \) steps to build the memory tree.

Proof: Each partitioning of a traveling list takes \(O(\log n) \) steps. The length of the path from the root of the block tree to a leaf of a temporary tree in a block is \(O(\log m) \). \(\square \)

Stage 7: A decoding algorithm is run.

By Lemma 4 the number of active processors is at least \(\gamma n \), where \(\gamma = \frac{1 - (f_p + f_3)}{2} \). All of them are arranged in a list corresponding to the list of blocks. We want to provide the first \(\gamma n \) processors in this list with the whole input distributed among all \(n \) processors, active or not. To this end we use a variant of information dispersal method, based on an idea similar to that underlying the Reed-Solomon error-correcting codes (32, 39). The original input is first partitioned into \(\gamma n \) input strings \(u_1, \ldots, u_{\gamma n} \), each comprised of some \(t \) bits. These input strings will be interpreted as elements of the finite field \(F = GF(2^t) \). We take the smallest \(t \) such that the inequality \(2^t > \gamma n \) holds. We assume that the input is encoded as a sequence of \(n \) packets \(\langle 1, v_1 \rangle, \langle 3, v_2 \rangle, \ldots, \langle n, v_n \rangle \), and packet \(\langle i, v_i \rangle \) is delivered to the processor with the physical index \(i \), faulty or not. Each packet \(\langle i, v_i \rangle \) is a pair of identifier \(i \) and value \(v_i \). The values \(v_i \) are sequences of \(t \) bits each, they are interpreted as elements of field \(F \), with the arithmetic of operations on them defined as in \(F \). The values satisfy \(v_i = g(\omega^i) \), where the following holds:
1. \(\omega \) is a primitive element of \(\mathbb{F} \);

2. \(g(x) \) is the following polynomial in \(\mathbb{F}[x] \):

\[
g(x) = u_1 + u_2x + \ldots + u_{\gamma n}x^{\gamma n-1}.
\]

Note that in order to encode the input we need to evaluate a polynomial at a subset of \(\mathbb{F} \) of size \(\Theta(2^t) \). The task of encoding is equivalent to computing the Discrete Fourier Transform and can be implemented efficiently by the FFT algorithm. Suppose that \(\langle i_1, v_{i_1} \rangle, \ldots, \langle i_{\gamma n}, v_{i_{\gamma n}} \rangle \) are the input packets stored by the initial segment of \(\gamma n \) active processors in the list (in any order). This gives \(\gamma n \) values at distinct points, which are determined by the identifiers of packets of a polynomial of degree \(\gamma n - 1 \). The task of retrieving the input \(u_1, \ldots, u_{\gamma n} \) is equivalent to obtaining the coefficients of a polynomial from its values, that is, to interpolating the polynomial. There is an algorithm for this problem that runs in time \(O(\log^3 n) \) on an EREW PRAM with \(n \) processors (see [25] and the references therein). The algorithm computes the Lagrange interpolation formula and is reduced to polynomial evaluation at \(O(n) \) points and then to the FFT algorithm. This algorithm specialized to our problem can be implemented to run faster, even on the butterfly (see [31] for the description and properties of the butterfly). By a normal butterfly algorithm we mean an algorithm in which a step of computation is performed by the nodes on one level, and the consecutive levels are used in a cyclic fashion.

Lemma 5 Decoding of the whole input from \(\gamma n \) packet values can be performed on the \(O(\log n) \)-dimensional butterfly in time \(O(\log^2 n) \) by a normal algorithm.

Proof: A general interpolation algorithm resorts to an algorithm of evaluating a polynomial at \(O(n) \) points, which runs in time \(O(\log^2 n) \). This algorithm is replaced by an algorithm to evaluate polynomials at the powers of a primitive element of a finite field. Note that we need to evaluate the polynomials at some bounded fraction of all the elements of the field, which can be performed in time \(O(\log n) \) by the FFT algorithm; in this way we gain a \(\log n \)-factor. The communication of processors is that needed for the FFT algorithm and of a full-binary-tree pattern, and can be implemented on the butterfly as a normal algorithm. \(\square \)

We can adapt this algorithm, due to the following:

Lemma 6 A normal butterfly algorithm can be implemented on a list of active processors with delay \(O(1) \), provided the size of the list is at least equal to the number of nodes in one level of the butterfly.

Proof: We need a two-directional cyclic list of length equal exactly to the size of a level of the butterfly, but this has been taken care of during preprocessing. Each processor simulates a row of the butterfly. The connections to other rows can be obtained dynamically by pointer jumping along the links of the list of active processors. A processor chooses the particular link depending on the bit representation of the row number. \(\square \)

Lemma 7 The input available to the active processors can be retrieved in time \(O(\log^2 n) \) on an EREW PRAM.

Proof: Time evaluation of Stage 7 follows from Lemmas 5 and 6. \(\square \)
Theorem 1 The preprocessing performed by a normal PRAM with \(n \) processors and \(m \) memory cells takes time \(O\left(\log n \left(\frac{m}{n} + \log n \right) \right) \).

Proof: Stage 1 takes time \(O(m/n) \). The time needed to perform Stage 2 is proportional to the number of nodes in temporary trees, which is \(O(m/n) \). Lemma \ref{lem:stage2} gives the bound on the time to perform Stage 3, which dominates the time bound of the preprocessing. Both Stage 4 and Stage 5 take time \(O(\log n) \). By Lemma \ref{lem:stage4}, Stage 6 takes time \(O(\log n \log m) = O(\log n (\log \frac{m}{n} + \log n)) \). The input is retrieved in time \(O(\log^2 n) \) per \(O(1) \) memory cells for each processor by Lemma \ref{lem:input}. \(\square \)

4 Simulation Proper

In this section we explain a method to simulate any program of a fully reliable PRAM on the same variant (EREW,CREW,CRCW, respectively) as the simulator, when the simulator may have faulty components. Its slowdown is \(O(\log m) \) per simulated step, this overhead is asymptotically equal to the time needed to locate a physical address of a memory cell given its virtual address.

The simulation relies on the results of preprocessing, as described in the preceding section. The preprocessing terminates with an initial segment of active processors storing the input. The input given to the simulator consists of a program \(P \) to execute and data \(D \) which are to be input for \(P \).

We start with a general scheme of the simulation. The simulation proper starts with the active processors writing \(P \) and \(D \) into a contiguous initial segment of the virtual shared memory to make it available to all the simulated processors. Then \(P \) is executed step by step. Each of the active processors simulates \(O(1) \) processors. Active processors have their local memories partitioned into regions. One region is needed for the purpose of running the simulating algorithm, the remaining ones are used as local memories of the simulated processors. Each simulated processor needs only to perform specific machine instructions that are known to the respective active processor of the simulator. This means in particular that there are no additional local-memory requirements of the simulated processors except for those required by \(P \). We assume that local memories of processors of the simulating normal PRAM machine are sufficiently large to simulate \(n \) processors in total. Moreover we assume that the repertoire of machine instructions of the simulator and the simulated machine are exactly the same. Hence all the machine instructions, with the exception of a shared memory access, can be performed by the simulator in constant time.

What remains to be explained is how an access to the virtual shared memory is implemented. Let us consider a single instance of access, and assume that each active processor already knows the virtual address to find, if any. If the simulator is either a CREW or a CRCW PRAM then the respective physical address can be found with the help of only the memory tree. To this end, each active processor traverses this tree in a binary-search manner until eventually it reaches a leaf with the address. The traversal requires a concurrent-read capability, since all the active processors start from reading the contents of the root of the memory tree, and then a number of them may read simultaneously the contents of other nodes of the tree. Care needs to be taken to have all the actual operations of reading/writing to virtual address performed in the same time step on the memory cells storing the contents of the virtual cells, to preserve the semantics of concurrent access of the simulator. This is easy since the memory tree is perfectly balanced, so the times to locate any leaves are the same. The total time of an operation of reading/writing to a virtual memory
cell is of the order of the height of the memory tree, which is $O(\log m)$.

In what follows we present a solution in the case of the EREW PRAM. The search for physical addresses is in two stages: construction which is followed by traversal. During a construction stage the active processors are arranged in a special tree that we call organized. During a traversal, the root of the organized tree descends down the memory tree, starting from its root, and in the process the tree disintegrates into smaller trees. These trees keep moving down the memory tree and splitting into smaller ones until eventually single nodes/processors remain. This way of traversal of the memory tree guarantees that no concurrent-reading is ever performed until the leaves are reached. An organized tree has the property that each of its subtrees is also organized. The structure of an organized tree is such that the traversal is fairly direct. This structure is implicitly determined by the way in which the tree is to be used to locate virtual addresses in the memory tree.

Each active processor is associated with one leaf of an organized tree, and with at most one internal node. We say that the processor owns these nodes, similarly as in the description of Stage 5 of preprocessing. More precisely, all except for one processors owning the leaves also own one internal node. The one spare node is known by the processor owning the root, this knowledge is used during construction. An internal node v stores both the smallest and the largest among the virtual addresses of the processors at the leaves of the subtree rooted at v, we call them leftmost and rightmost addresses of v. The operation of construction is performed repeatedly for each operation of virtual memory access. The current organized tree is discarded after a traversal has been completed.

Stage of traversal. Organized trees traverse the memory tree in a binary-search fashion. Consider such a tree T during traversal, which is at a node v of the memory tree. The processor that owns the root of T can decide in constant time if the tree splits here or not. In the former case it moves down the tree to one of the children of v. This happens if all the virtual addresses searched by the processors of T are in one of the subtrees of node v. Otherwise the tree is split: the left subtree of T heads for the left child of v and the right one for the other child. The root of T is discarded.

It is the structure of T which makes it possible to make this decision in a constant time and to guarantee correctness. If v is a node of an organized tree then the leftmost addresses (or the rightmost ones) of the children of v determine the level of the memory tree at which the tree with root at v will split while traversing the memory tree to carry the processors at their leaves to their virtual addresses. This level can be computed in constant time because the memory tree is perfectly balanced.

Stage of construction. The following is a detailed recipe how to construct an organized tree for a given memory access operation. The active processors start from the leaves of the processor tree and move towards the root. The computation proceeds in phases corresponding to the levels of this tree. A phase starts with organized trees associated with all the nodes on a level of the processor tree. Every two trees associated with siblings are merged into one tree which is then moved to the parent.

We need to define one more notion, that of the binary path of an organized tree T. If T is a single node, that is, a single processor, then let v denote the node of the memory tree storing the virtual address needed by the processor. Otherwise let v be the node of the memory tree where tree T splits for the first time while traversing the memory tree. The path from the root of the memory tree down to v can be encoded in binary: start with an empty sequence, then traverse the
Figure 3: Merging organized trees, as in Case 3. Dotted lines indicate that the tree rooted at x and tree C still need to be merged recursively.

A procedure to merge two organized trees T_1 and T_2 is defined recursively as follows. Let r_1 and r_2 be the binary paths of T_1 and T_2, respectively. The spare record of T_1 is designated as the root, and the spare record of T_2 is designated as the spare record of the merged tree.

Case 1: None among r_1 and r_2 is a prefix of the other.

Trees T_1 and T_2 are made children of the root in such order that the binary path of the left subtree precedes the binary path of the right one.

Case 2: Paths r_1 and r_2 are equal.

The left subtrees of T_1 and T_2 are merged recursively and then attached as the left subtree of the root, similarly the right subtrees.

Case 3: One of the paths r_1 and r_2 is a proper prefix of the other.

Suppose that r_1 is a prefix of r_2, and also that the first symbol after prefix r_1 in r_2 is 0, the
other cases are symmetric. The right subtree of T_2 becomes the right subtree of the root. The root of T_2 is made the left child of the new root. The left subtree of the root is obtained by merging T_1 with the left subtree of T_2. This is depicted in Figure 3.

This recursive procedure is performed by going from the root towards the leaves, taking time $O(1)$ at each level. Note that it can be executed in a pipelined fashion: once roots have rearranged links and a new root knows its children, the root of the merged tree can be moved up to the parent in the processor tree. The delay is $O(1)$ because each active processor serves at most two nodes in both the organized and the processor trees.

Theorem 2 The memory access for a single step can be performed in time $O(\log m)$.

Proof: The cases of CREW and CRCW PRAMs have been explained before, we need to consider only the EREW PRAM and the solution by way of organized trees. Merging all of the trees would take time $O(\log^2 m)$ if performed without pipelining, which saves a factor of $O(\log m)$. The actual traversal of the memory tree takes time $O(\log m)$. Hence an organized tree can be built in time $O(\log m)$. The task of locating virtual addresses is performed in a binary search fashion and takes also time $O(\log m)$.

Acknowledgement. The authors thank Krzysztof Diks for discussions of the related fault-tolerance issues, and to Piotr Indyk for sharing his insights on the Discrete Fourier Transform and information dispersal.

References

[1] Richard J. Anderson and Heather Woll. Algorithms for the certified Write-All problem. *SIAM Journal on Computing*, 26(5):1277–1283, 1997.

[2] James Aspnes and Maurice Herlihy. Wait-free data structures in the asynchronous PRAM model. In *Proceedings of the 2nd Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA)*, pages 340–349, 1990.

[3] Hagit Attiya and Jennifer Welch. *Distributed Computing: Fundamentals, Simulations, and Advanced Topics*. Wiley, second edition, 2004.

[4] Yonatan Aumann and Michael Ben-Or. Asymptotically optimal PRAM emulation on faulty hypercubes. In *Proceedings of the 32nd Annual Symposium on Foundations of Computer Science (FOCS)*, pages 440–446, 1991.

[5] Yonatan Aumann, Zvi M. Kedem, Krishna V. Palem, and Michael O. Rabin. Highly efficient asynchronous execution of large-grained parallel programs. In *Proceedings of the 34th Annual Symposium on Foundations of Computer Science (FOCS)*, pages 271–280, 1993.

[6] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed computation. In *Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC)*, pages 1–10, 1988.
[7] Petra Berenbrink, Friedhelm Meyer auf der Heide, and Volker Stemann. Fault-tolerant shared memory simulations. In *Proceedings of the 13th Annual Symposium on Theoretical Aspects of Computer Science (STACS)*, volume 1046 of *Lecture Notes in Computer Science*, pages 181–192. Springer, 1996.

[8] Jonathan F. Buss, Paris C. Kanellakis, Prabhakar Ragde, and Alexander A. Shvartsman. Parallel algorithms with processor failures and delays. *Journal of Algorithms*, 20(1):45–86, 1996.

[9] Bogdan S. Chlebus, Stefan Dobrev, Dariusz R. Kowalski, Grzegorz Malewicz, Alexander A. Shvartsman, and Imrich Vrt’o. Towards practical deterministic write-all algorithms. In *Proceedings of the 13th ACM Symposium on Parallel Algorithms and Architectures (SPAA)*, pages 271–280. ACM, 2001.

[10] Bogdan S. Chlebus, Anna Gambin, and Piotr Indyk. PRAM computations resilient to memory faults. In *Proceedings of the 2nd European Symposium on Algorithms (ESA)*, volume 855 of *Lecture Notes in Computer Science*, pages 401–412. Springer, 1994.

[11] Bogdan S. Chlebus, Anna Gambin, and Piotr Indyk. Shared-memory simulations on a faulty-memory DMM. In *Proceedings of the 23rd International Colloquium on Automata, Languages and Programming (ICALP)*, volume 1099 of *Lecture Notes in Computer Science*, pages 586–597. Springer, 1996.

[12] Bogdan S. Chlebus, Leszek Gąsieniec, and Andrzej Pelc. Fast deterministic simulation of computations on faulty parallel machines. In *Proceedings of the Third Annual European Symposium on Algorithms (ESA)*, volume 979 of *Lecture Notes in Computer Science*, pages 89–101. Springer, 1995.

[13] Bogdan S. Chlebus, Leszek Gąsieniec, and Andrzej Pelc. Deterministic computations on a PRAM with static processor and memory faults. *Fundamenta Informaticae*, 55(3-4):285–306, 2003.

[14] Richard Cole and Ofer Zajicek. The APRAM: Incorporating asynchrony into the PRAM model. In *Proceedings of the ACM Symposium on Parallel Algorithms and Architectures (SPAA)*, pages 169–178, 1989.

[15] Krzysztof Diks and Andrzej Pelc. Reliable computations on faulty EREW PRAM. *Theoretical Computer Science*, 164(1&2):107–122, 1996.

[16] Krzysztof Diks and Andrzej Pelc. Optimal adaptive broadcasting with a bounded fraction of faulty nodes. *Algorithmica*, 28(1):37–50, 2000.

[17] Cynthia Dwork, Joseph Y. Halpern, and Orli Waarts. Performing work efficiently in the presence of faults. *SIAM Journal of Computing*, 27(5):1457–1491, 1998.

[18] Leszek Gąsieniec and Piotr Indyk. Efficient parallel computing with memory faults. In *Proceedings of the 11th International Symposium on Fundamentals of Computation Theory (FCT)*, volume 1279 of *Lecture Notes in Computer Science*, pages 188–197. Springer, 1997.

[19] Leszek Gąsieniec and Andrzej Pelc. Adaptive broadcasting with faulty nodes. *Parallel Computing*, 22(6):903–912, 1996.
[20] Phillip B. Gibbons. A more practical PRAM model. In Proceedings of the ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 158–168, 1989.

[21] Jan Friso Groote, Wim H. Hesselink, Sjouke Mauw, and Rogier Vermeulen. An algorithm for the asynchronous Write-All problem based on process collision. Distributed Computing, 14(2):75–81, 2001.

[22] Tim J. Harris. A survey of PRAM simulation techniques. ACM Computing Surveys, 26(2):187–206, 1994.

[23] Maurice Herlihy. Impossibility results for asynchronous PRAM. In Proceedings of the 3rd Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 327–336, 1991.

[24] Piotr Indyk. On word-level parallelism in fault-tolerant computing. In Proceedings of the 13th Annual Symposium on Theoretical Aspects of Computer Science (STACS), volume 1046 of Lecture Notes in Computer Science, pages 193–204. Springer, 1996.

[25] Joseph JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[26] Paris C. Kanellakis and Alex A. Shvartsman. Fault-Tolerant Parallel Computation. Kluwer Academic Publishers, 1997.

[27] Paris C. Kanellakis and Alexander A. Shvartsman. Efficient parallel algorithms can be made robust. Distributed Computing, 5(4):201–217, 1992.

[28] Zvi M. Kedem, Krishna V. Palem, A. Raghunathan, and Paul G. Spirakis. Combining tentative and definite executions for very fast dependable parallel computing. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing (STOC), pages 381–390, 1991.

[29] Zvi M. Kedem, Krishna V. Palem, and Paul G. Spirakis. Efficient robust parallel computations. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing (STOC), pages 138–148, 1990.

[30] Spyros C. Kontogiannis, Grammati E. Pantziou, Paul G. Spirakis, and Moti Yung. Robust parallel computations through randomization. Theory of Computing Systems, 33(5/6):427–464, 2000.

[31] Frank Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, 1992.

[32] Yuh-Dauh Lyuu. Information Dispersal and Parallel Computation. Cambridge University Press, 1993.

[33] Florence J. MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting Codes. North-Holland, 1977.

[34] Charles U. Martel, Arvin Park, and Ramesh Subramonian. Work-optimal asynchronous algorithms for shared memory parallel computers. SIAM Journal on Comput., 21(6):1070–1099, 1992.

22
[35] Charles U. Martel and Ramesh Subramonian. On the complexity of certified Write-All algorithms. *Journal of Algorithms*, 16(3):361–387, 1994.

[36] Robert J. McEliece and Dilip V. Sarwate. On sharing secrets and Reed-Solomon codes. *Communications of the ACM*, 24(9):583–584, 1981.

[37] Friedhelm Meyer auf der Heide. Hashing strategies for simulating shared memory on distributed memory machines. In *Proceedings of the First Heinz Nixdorf Symposium on Parallel Architectures and Their Efficient Use*, volume 678 of *Lecture Notes in Computer Science*, pages 20–29. Springer, 1992.

[38] Joseph Naor and Ron M. Roth. Constructions of permutation arrays for certain scheduling cost measures. *Random Structures and Algorithms*, 6(1):39–50, 1995.

[39] Franco P. Preparata. Holographic dispersal and recovery of information. *IEEE Transactions on Information Theory*, 35(5):1123–1124, 1989.

[40] Michael O. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance. *Journal of the ACM*, 36(2):335–348, 1989.

[41] Adi Shamir. How to share a secret. *Communications of the ACM*, 22(11):612–613, 1979.

[42] Alexander A. Shvartsman. Achieving optimal CRCW PRAM fault-tolerance. *Information Processing Letters*, 39(2):59–66, 1991.

[43] Leslie G. Valiant. A bridging model for parallel computation. *Communications of the ACM*, 33(8):103–111, 1990.

[44] Leslie G. Valiant. General purpose parallel architectures. In Jan van Leeuwen, editor, *Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity*, pages 943–972. Elsevier, 1990.