Disseminated Cryptococcosis with Marked Eosinophilia in a Postpartum Woman

Tetsuya Yokoyama, Masako Kadowaki, Makoto Yoshida, Kunihiro Suzuki, Masashi Komori and Tomoaki Iwanaga

Abstract:
Disseminated cryptococcosis usually develops in immunosuppressed patients. A 33-year-old postpartum woman developed disseminated cryptococcosis with marked eosinophilia. She presented with a cough and a week-long fever. A computed tomography scan showed multiple pulmonary nodules randomly distributed. Eosinophils were observed to have increased in number in both her peripheral blood and bronchoalveolar lavage fluid. A transbronchial lung biopsy and cerebrospinal fluid specimens revealed findings consistent with cryptococcal infection. Disseminated cryptococcosis can present with marked eosinophilia of the peripheral blood and lung tissues. Additionally, the postpartum immune status may sometimes be involved in the development of opportunistic infections in previously healthy women.

Key words: Cryptococcus neoformans, eosinophilia, immune reconstitution inflammatory syndrome, postpartum period

(Intern Med 57: 135-139, 2018)
(DOI: 10.2169/internalmedicine.9247-17)

Introduction
Cryptococcosis usually manifests as localized infections of the lung or skin - sometimes of the central nervous system in a disseminated form - usually in immunosuppressed hosts. Peripheral blood and pulmonary eosinophilia associated with cryptococcosis is an uncommon manifestation. Additionally, the occurrence of cryptococcosis during the postpartum period suggests instability of the immune system. We herein report a case of disseminated cryptococcosis with marked eosinophilia in a postpartum woman.

Case Report
A healthy 33-year-old woman, who had delivered a child five months earlier, visited a clinic with a cough, wheezing, and a week-long fever. As she had hypereosinophilia in her peripheral blood and a computed tomography (CT) scan indicated multiple pulmonary nodules, she was admitted to our hospital for further evaluation. She did not look critically ill and had neither any appreciable disease, atopic disposition, or history of animal exposure. Her heart and respiratory sounds were normal. The superficial lymph nodes were not palpable. Cutaneous involvement was not identified. A blood examination revealed significant eosinophilia (17,887 cells/mm3) and a modest elevation of C-reactive protein (Table 1). Chest X-rays showed multiple nodular opacities in the bilateral lung fields. Chest CT showed diffuse and randomly distributed small pulmonary nodules (Figure a and b).

We performed bronchoscopy. The cell numbers in bronchoalveolar lavage (BAL) fluids were significantly increased (14.66x105 cells/mL) with a high proportion of eosinophils (89%). No evidence of Mycobacterium tuberculosis or any malignant neoplasms was found in the BAL fluids and transbronchial lung biopsy specimens, respectively. Biopsy specimens showed the aggregation of eosinophils within alveolar spaces, and Grocott’s silver stain identified yeast-like fungus bodies (Figure c). A progressively worsening headache appeared after admission; therefore, we performed a lumbar puncture. A cerebrospinal fluid (CSF) analysis is shown in Table 2. The number of cells increased, with a predominance of eosinophils. India ink stain showed yeast-
Table 1. Laboratory Findings on Admission.

Test	Value
White blood cells	26,500 cells/mm³
Neutrophils	21.0 %
Lymphocytes	11.0 %
Eosinophils	67.5 %
Hemoglobin	12.5 g/dL
Platelets	21.9x10⁴ cells/mm³
Total protein	7.2 g/dL
Albumin	3.6 g/dL
Total bilirubin	0.5 mg/dL
Aspartate aminotransferase	10 IU/L
Alanine aminotransferase	12 IU/L
Lactate dehydrogenase	247 IU/L
Alkaline phosphatase	329 IU/L
γ-glutamyl transpeptidase	11 IU/L
Creatine kinase	40 IU/L
Blood urea nitrogen	7 mg/dL
Creatinine	0.58 mg/dL
Uric acid	4.7 mg/dL
Sodium	142 mEq/L
Potassium	4.1 mEq/L
Chloride	106 mEq/L
Calcium	9.2 mg/dL
Glucose	85 mg/dL
Hemoglobin A1c	5.1 %
C-reactive protein	1.15 mg/dL
Immunoglobulin G	1,683 mg/dL
Immunoglobulin A	232 mg/dL
Immunoglobulin M	176 mg/dL
Immunoglobulin E	1,943 IU/mL

Figure. (a, b) Chest computed tomography images show many small pulmonary nodules and a few bilateral pleural effusions. The nodules are randomly distributed and on the pleura (white arrow), which suggests that they are distributed with a hematogenous spread. Cryptococcus sp. is detected from cerebrospinal fluid and lung tissue specimens. (c) A lung biopsy specimen shows many yeast-like cells. They are positive for Grocott’s silver stain. (d) India ink stain reveals capsules of yeast-like fungus bodies in cerebrospinal fluid specimens (magnification: ×1,000).

Table 2. Cerebrospinal Fluid Analysis.

Test	Value
Opening pressure	46 cm H₂O
Cell counts	84 cells/mm³
Neutrophils	+/-
Lymphocytes	1+
Eosinophils	2+
Protein	32.3 mg/dL
Glucose	49 mg/dL

like fungus bodies in the CSF (Figure d). Cryptococcal antigen titers from serum and CSF were 1:8 and 1:256, respectively. Cryptococcus neoformans var. neoformans was then isolated from the CSF and urine. Finally, we diagnosed the patient to have disseminated cryptococcosis.

We confirmed that she was not immunosuppressed. Idiopathic CD4+ T lymphocytopenia was unlikely because her peripheral lymphocyte number was normal and the proportion of CD4+ cells was 52.1%. Anti-interferon-γ autoantibody-induced cellular immunodeficiency was ex-
eral blood eosinophilia in cryptococcal disease is a more frequent antifungal treatment. Fortunately, she recovered with subsequent antifungal treatment.

Discussion

We discovered two important clinical issues based on the findings of this rare case. First, disseminated cryptococcosis can present with marked eosinophilia of peripheral blood and lung tissues. Eosinophilia is uncommon in cryptococcal infection. Although the mechanism underlying eosinophilia has not yet been fully elucidated, some basic research reports an allergic reaction to C. neoformans. The intratracheal injection of C. neoformans induced inflammatory cells, including eosinophils, in rodents (1). A recent study demonstrated that a C. neoformans infection induced pulmonary IL-33 production with the accumulation of type 2 innate inflammatory cells, in which IL-33 activates the pathogen. A review of cryptococcosis in the postpartum period without HIV infection is shown in Table 3. The time of onset after delivery was mostly within the range of one week to half a year (median: two months). The pathogens were one case each of C. gattii and C. lauren-
tii (18, 23), and the others were C. neoformans.

Marked eosinophilia with Th1 predominance could be inconsistent because Th2 cytokines induce eosinophil differentiation. Our patient developed cryptococcosis as late as five months after delivery, when the Th1 predominance might have been restored. In addition, excessive Th2 responses could be triggered by cryptococcal antigens while reconstituting immunity is unstable. Because disseminated C. neo-
formans infection is fairly uncommon in immunocompetent patients, we diagnosed the present case to have postpartum IRIS.

In conclusion, we herein reported a case presenting with disseminated cryptococcosis as postpartum IRIS with marked eosinophilia for the first time. This is a fairly rare case; however, it implies a protective role of eosinophilia and recognizes postpartum immune system instability. In fu-

Table 3. Review of Cryptococcosis with Eosinophilia in Adolescents and Adults.

Age/Sex	Eosinophil (cells/mm³)	Site of infection	Underlying disease	Treatment	Outcome	Reference
23 M	42,559	Disseminated	Sarcoïdosis	AMPH-B+5-FC+MCZ	Recovered	4
16 F	10,500	Disseminated	Nothing	AMPH-B	Recovered	5
64 F	3,400	Disseminated	Unknown	AMPH-B+5-FC+FLCZ	Recovered	6
23 M	27,750	Disseminated	Nothing	AMPH-B+5-FC	Recovered	7
22 F	16,811	Disseminated	Nothing	AMPH-B+5-FC	Recovered	8
61 M	6,252	Lung	Cancer	FLCZ	Recovered	9
28 M	6,000	Lung	Nothing	L-AMB+5-FC	Recovered	10
33 F	17,887	Disseminated	Nothing	L-AMB+FLCZ	Recovered	Present case

M: male; F: female; AMPH-B: amphotericin B, 5-FC: flucytosine, MCZ: miconazole, FLCZ: fluconazole, L-AMB: liposomal amphotericin B
ture studies, it is necessary to elucidate the precise mechanism and function of eosinophil aggregation in response to cryptococcal infection, and the risk factors and precautions that need to be taken to prevent the onset of postpartum IRIS.

The authors state that they have no Conflict of Interest (COI).

Acknowledgement

We thank Dr. Hiroshi Iwasaki (Department of Pathology, Fukuoka University School of Medicine, Fukuoka, Japan) for pathological support, Dr. Takuro Sakagami (Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan) for anti-IFN-γ autoantibody screening, and Dr. Keiji Nakamura and his colleagues (Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan) for performing the subsequent therapy.

References

1. Goldman D, Lee SC, Casadevall A. Pathogenesis of pulmonary Cryptococcus neoformans infection in the rat. Infect Immun 62: 4755-4761, 1994.
2. Flaczyk A, Duerr CU, Shourian M, Lafferty EI, Fritz JH, Qureshi ST. IL-33 signaling regulates innate and adaptive immunity to Cryptococcus neoformans. J Immunol 191: 2503-2513, 2013.
3. Klein Wolterink RG, Kleinjan A, van Nimwegen M, et al. Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur J Immunol 42: 1106-1116, 2012.
4. Tanaka H, Urase F, Hasegawa H, Tsubaki K, Irimajiri K, Horiuchi K. Sarcoïdosis with severe eosinophilia due to cryptococcosis infection. Rinsho Ketsueki (Jpn J Clin Hamatol) 39: 557-561, 1998 (in Japanese).
5. Memon SB, Memon AM, Faisal S, Kapadia N, Soomro IN. Cryptococcus-diversity of clinical presentation. J Pak Med Assoc 51: 337-339, 2001.
6. Grosse P, Schulz J, Schmierer K. Diagnostic pitfalls in eosinophilic cryptococcal meningoencephalitis. Lancet Neurol 2: 512, 2003.
7. Yamaguchi H, Komase Y, Ikehara M, Yamamoto T, Shinagawa T. Disseminated cryptococcal infection with eosinophilia in a healthy person. J Infect Chemother 14: 319-324, 2008.
8. Pfeffer PE, Sen A, Das S, et al. Eosinophilia, meningitis and pulmonary nodule in a young woman. Thorax 65: 1066, 2010.
9. Kishida N, Okinaka K, Fujita T, Gu Y, Ohmagari N. Non disseminated pulmonary cryptococcosis with very marked eosinophilia in solid-organ cancer. Kansenshogaku Zasshi (J Jpn Assoc Infect Dis) 84: 397-401, 2010 (in Japanese, Abstract in English).
10. Bassetti M, Mikulski M, Nico E, Viscoli C. Pulmonary cryptococcosis with severe eosinophilia in an immunocompetent patient. J Chemother 22: 366-367, 2010.
11. Garro AP, Chiapello LS, Baronetti IL, Masih DT. Rat eosinophils stimulate the expansion of Cryptococcus neoformans-specific CD4 (+) and CD8(+) T cells with a T-helper 1 profile. Immunology 132: 174-187, 2011.
12. Luo FL, Tao YH, Wang YM, Li H. Clinical study of 23 pediatric patients with cryptococcosis. Eur Rev Med Pharmacol Sci 19: 3801-3810, 2015.
13. Singh N, Perfect JR. Immune reconstitution syndrome and exacerbation of infections after pregnancy. Clin Infect Dis 45: 1192-1199, 2007.
14. Shelburne SA 3rd, Hamill RJ, Rodriguez-Barradas MC, et al. Immune reconstitution inflammatory syndrome: emergence of a unique syndrome during highly active antiretroviral therapy. Medicine (Baltimore) 81: 213-227, 2002.
15. Shelburne SA, Visnegarwala F, Darcourt J, et al. Incidence and risk factors for immune reconstitution inflammatory syndrome during highly active antiretroviral therapy. AIDS 19: 399-406, 2005.
16. Nakamura H, Kashiwabara K, Fukai Y, Sembah H. Clinical evaluation of diagnosis and treatment in three cases of primary pulmonary cryptococcosis. Nihon Kyobu Shinkan Gakkai Zasshi (Jpn J Thorac Dis) 31: 1257-1261, 1993 (in Japanese, Abstract in English).
17. LaGatta MA, Jordan C, Khan W, Toomey J. Isolated pulmonary cryptococcosis in pregnancy. Obstet Gynecol 92: 682-684, 1998.
18. Einsiedel L, Gordon DL, Dyer JR. Paradoxical inflammatory reaction during treatment of Cryptococcus neoformans var. gattii meningitis in an HIV-seronegative woman. Clin Infect Dis 39: e78-e82, 2004.
19. Nakamura S, Izuimikawa K, Seki M, et al. Pulmonary cryptococcosis in late pregnancy and review of published literature. Mycopathologia 167: 125-131, 2009.
20. Asadi Gharabaghi M, Allameh SF. Primary pulmonary cryptococcosis. BMJ Case Rep: 2014.
21. Hagan JE, Dias JS, Villasboas-Bisneto JC, Falcão MB, Ko Al, Ribeiro GS. Puerperal brain cryptococcoma in an HIV-negative woman successfully treated with fluconazole: a case report. Rev Soc Bras Med Trop 47: 254-256, 2014.
22. Kaplan A, Berntson DG, Ferrieri P. Postpartum cryptococcal pulmonary lesion incidentally discovered during a pulmonary-

Table 4. Review of Cryptococcosis in the Postpartum Period without HIV Infection.

Age	Time after delivery	Site of infection	Underlying disease	Treatment	Outcome	Reference
30	6 weeks	Lung	Nothing	MCZ+FLCZ	Recovered	16
28	3 weeks	Lung	Nothing	FLCZ	Recovered	17
18	5 days	Disseminated	Nothing	AMPH-B+5-FC	Recovered	18
29	4 months	Lung	Nothing	FLCZ+5-FC	Recovered	19
25	2 months	Lung	Nothing	FLCZ	Recovered	20
25	1 week	Brain	Nothing	FLCZ	Recovered	21
28	1 month	Lung	Nothing	Resection	Recovered	22
30	2 months	Disseminated	Nothing	AMPH-B	Dead	23
33	5 months	Disseminated	Nothing	L-AMB+FLCZ	Recovered	Present case

MCZ: miconazole, FLCZ: flucloxacalone, AMPH-B: amphotericin B, 5-FC: flucytosine, L-AMB: liposomal amphotericin B
embolism evaluation of a 28-year-old caucasian woman. Lab Med
46: 69-73, 2015.

23. Mittal N, Vatsa S, Minz A. Fatal meningitis by Cryptococcus laurentii in a post-partum woman: a manifestation of immune re-
constitution inflammatory syndrome. Indian J Med Microbiol 33:
590-593, 2015.

The Internal Medicine is an Open Access article distributed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To
view the details of this license, please visit (https://creativecommons.org/licenses/
by-nc-nd/4.0/).

© 2018 The Japanese Society of Internal Medicine
Intern Med 57: 135-139, 2018