AN INEQUALITY FOR THE MAXIMUM CURVATURE THROUGH A GEOMETRIC FLOW

KONSTANTIN PANKRASHKIN

Abstract. We provide a new proof of the following inequality: the maximum curvature k_{max} and the enclosed area A of a smooth Jordan curve satisfy $k_{\text{max}} \geq \sqrt{\pi/A}$. The feature of our proof is the use of the curve shortening flow.

This is a preliminary version. The final version will appear in Archiv der Mathematik published by Birkhäuser (http://www.springer.com/birkhauser/mathematics/journal/13).

The aim of the present note is to give a new proof for the following inequality: if $\gamma \subset \mathbb{R}^2$ is a smooth Jordan curve, then

$$k_{\text{max}} \geq \sqrt{\pi/A},$$

where k_{max} is the maximum curvature and A is the enclosed area, and the equality holds iff γ is a circle. We remark that here and later on we work with the signed curvature, in particular, the curvature is non-negative iff the curve is convex. The inequality (1) follows from a result by Pestov-Ionin on inscribed disks [7]: If the curve of a smooth Jordan curve does not exceed some positive $\kappa > 0$, then the interior of the curve contains a disk of radius $1/\kappa$. Hence, the comparison of the areas gives $\pi/\kappa^2 \leq A$, and (1) is obtained for $\kappa = k_{\text{max}}$. The original work [7] is hardly available, and a complete proof can be found e.g. in [5, Proposition 2.1]. We are going to show that the inequality (1) can be alternatively deduced from the properties of the curve shortening flow [3, 4]. The use of geometric flows for isoperimetric inequalities is a well established machinery, see e.g. [9, 8], but the link to the inequality (1) seems to be new. We also mention that Eq. (1) plays a role for Faber-Krahn-type inequalities for some eigenvalue problems [6]. Our proof naturally splits in several parts.

A. Uniqueness. We remark first that if the inequality (1) is proved, then one may show in a standard way that the equality holds only for the circles, see e.g. [6, Proposition 7]; we include the argument for the sake of completeness. By contradiction, assume that one has the equality in (1) for some γ different from a circle. At some point of γ the curvature is strictly smaller than k_{max}, and by a small local deformation of γ near such a point we may construct a new smooth Jordan curve γ' having the same maximum curvature k_{max}' but enclosing a strictly smaller area A', which gives $k_{\text{max}}' < \sqrt{\pi/A'}$ and contradicts (1).

B. The inequality holds for the star-shaped curves. It is elementary to show (1) for star-shaped curves, cf. e.g. [6, Proposition 7], and we include the proof for convenience. Assume that γ is star-shaped with respect to the origin and denote by ℓ its length. Let $\Gamma: \mathbb{R}/\ell \mathbb{Z} \to \gamma \subset \mathbb{R}^2$ be a properly oriented arc-length parametrization, then the Frenet formula $\Gamma'' = -kn$, where k is the curvature and n is the outer unit normal, and the integration by parts give

$$\int_0^\ell k \Gamma \cdot n \, ds = -\int_0^\ell \Gamma \cdot \Gamma'' \, ds = \int_0^\ell \|\Gamma''\|^2 \, ds = \ell.$$

As γ is star-shaped, we have $\Gamma \cdot n \geq 0$ and

$$\ell = \int_0^\ell k \Gamma \cdot n \, ds \leq k_{\text{max}} \int_0^\ell \Gamma \cdot n \, ds = k_{\text{max}} \int_\gamma x_1 \, dx_2 - x_2 \, dx_1 = 2k_{\text{max}}A,$$

and (1) follows from the classical isoperimetric inequality $\ell^2 \geq 4\pi A$, see e.g. [2, §2.10].

C. Some properties of the flow by curvature. The study of general curves will be reduced to the star-shaped ones using the flow by curvature (also called the curve shortening flow). Denote $\mathbb{T} := \mathbb{R}/\mathbb{Z}$ and let $C(\cdot, 0): \mathbb{T} \to \mathbb{R}^2$ be a smooth embedded curve. By [4, Main theorem and introduction], there exist $T > 0$ and $C : \mathbb{T} \times [0, T) \to \mathbb{R}^2$ such that, for any t, $C(\cdot, t)$ is a smooth embedded curve and

$$\frac{\partial C(x, t)}{\partial t} = -k(x, t)n(x, t),$$

where $n(x, t)$ and $k(x, t)$ are respectively the outer unit normal and the curvature of the curve $C(\cdot, t)$ at the point $C(x, t)$, and the limiting shape is a round point, with convergence in C^∞ norm, and, in particular, there exists

1991 Mathematics Subject Classification. 53A04, 53C44, 35B50.

Key words and phrases. Maximum curvature, curve shortening flow, maximum principle, isoperimetric inequality.
\(\tau \in [0, T) \) such that \(C(\cdot, t) \) is convex for \(t \in [\tau, T) \). We remark that a compact proof can be found in [1]. The following properties will be used, see Section 1 in [4]: the area \(A(t) \) enclosed by the curve \(C(\cdot, t) \) is

\[A(t) = A(0) - 2\pi t, \]

hence, \(T = A(0)/(2\pi) \), and the curvature satisfies

\[\frac{\partial k}{\partial t} = \frac{\partial^2 k}{\partial s^2} + k^3, \]

where \(\partial/\partial s \) means the derivative with respect to the arc-length on \(C(\cdot, t) \).

D. Proof of (1) for general curves. By using a suitable scaling we may assume that \(A = \pi \), then the sought inequality becomes \(k_{\text{max}} \geq 1 \). By contradiction, assume that for some \(\gamma \) we have

\[k_{\text{max}} < 1 \]

and construct a family \(C(\cdot, t), t \in [0, 1/2) \), of curves evolving by curvature as in the part C with \(C(\cdot, 0) = \gamma \). By (2), the curve \(C(\cdot, t) \) encloses the area \(\pi(1 - 2t) \), hence, the enlarged curves

\[\Sigma(t) := \frac{1}{\sqrt{1 - 2t}} C(\cdot, t) \]

enclose the constant area \(\pi \), and the curvature \(K \) on \(\Sigma(\cdot, t) \) is \(K = \sqrt{1 - 2t} k \). Using the equality (3) we arrive at

\[\frac{\partial K}{\partial t} = \sqrt{1 - 2t} \frac{\partial^2 k}{\partial s^2} - \frac{1}{1 - 2t} K(1 - K^2). \]

By (4), there is \(M \in (0, 1) \) with \(K(x, 0) < M \) for all \(x \in T \). Let us show that

\[K(x, t) < M < 1 \]

for all \((x, t) \). Assume by contradiction that the inequality (6) is false, then there exists a minimal value \(t_* \in (0, 1/2) \) for which one can find \(x_* \in T \) with \(K(x_*, t_*) = M \), and then \(x_* \) is a maximum of \(K(\cdot, t_*) \). As a consequence it is also a maximum of \(k(\cdot, t_*) \), in particular, \(\partial^2 k/\partial s^2(x_*, t_*) \leq 0 \), and the equality (5) gives

\[\frac{\partial K}{\partial t}(x_*, t_*) \leq -\frac{1}{1 - 2t_*} M(1 - M^2) < 0. \]

It follows that for small positive \(\varepsilon \) one has \(K(x_*, t_* - \varepsilon) > M \), which contradicts the above choice of \(t_* \). Hence, the claim (6) holds. On the other hand, by part C, for some \(\tau > 0 \) the curve \(\Sigma(\cdot, \tau) \) is convex, and, by part B, for some \(x \in T \) we have \(K(x, \tau) \geq 1 \), which contradicts the inequality (6). Therefore, the condition (4) cannot be satisfied.

Acknowledgments

The research was partially supported by ANR NOSEVOL (2011 BS01019 01) and GDR CNRS 2279 DynQua. The author thanks Yurii Nikonorov for bringing reference [7] to the attention.

References

[1] B. Andrews, P. Bryan: Curvature bound for curve shortening flow via distance comparison and a direct proof of Grayson’s theorem. J. reine angew. Math. 653 (2011) 179–187.
[2] Yu. D. Burago, V. A. Zalgaller: Geometric inequalities. Vol. 285 of Grundlehren der mathematischen Wissenschaften, Springer, New York, 1988.
[3] M. Gage, R. S. Hamilton: The heat equation shrinking convex plane curves. J. Differential Geom. 23 (1986) 69–96.
[4] M. A. Grayson: The heat equation shrinks embedded plane curves to round points. J. Differential Geom. 26 (1987) 285–314.
[5] R. Howard, A. Treibergs: A reverse isoperimetric inequality, stability and extremal theorems for plane curves with bounded curvature. Rocky Mountain J. Math. 25 (1995) 635–648.
[6] K. Pankrashkin, N. Popoff: Mean curvature bounds and eigenvalues of Robin Laplacians. To appear in Calc. Var. PDE. Preprint arXiv:1407.3087 (2014).
[7] G. Pestov, V. Ionin: On the largest possible circle imbedded in a given closed curve. Dokl. Akad. Nauk SSSR 127 (1959) 1170–1172 (in Russian).
[8] M. Ritoré, C. Sinestrari, V. Miquel, J. Porti (Eds.): Mean curvature flow and isoperimetric inequalities. Vol. VIII of Advanced courses in mathematics, CRM Barcelona. Birkhäuser, Basel, 2010.
[9] P. Topping: Mean curvature flow and geometric inequalities. J. reine angew. Math. 503 (1998) 47–61.

Laboratoire de Mathématiques (UMR 8628 du CNRS), Université Paris-Sud, Bâtiment 425, 91405 Orsay Cedex, France E-mail address: konstantin.pankrashkin@math.u-psud.fr