Data Article

Characterisation data of simple sequence repeats of phages closely related to T7M

Tiao-Yin Lin

Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsin Chu, Taiwan

A B S T R A C T

Coliphages T7M and T3, Yersinia phage ϕYeO3-12, and Salmonella phage ϕSG-JL2 share high homology in genomic sequences. Simple sequence repeats (SSRs) are found in their genomes and variations of SSRs among these phages are observed. Analyses on regions of sequences in T7M and T3 genomes that are likely derived from phage recombination, as well as the counterparts in ϕYeO3-12 and ϕSG-JL2, have been discussed by Lin in “Simple sequence repeat variations expedite phage divergence: mechanisms of indels and gene mutations” [1]. These regions are referred to as recombinant regions. The focus here is on SSRs in the whole genome and regions of sequences outside the recombinant regions, referred to as non-recombinant regions. This article provides SSR counts, relative abundance, relative density, and GC contents in the complete genome and non-recombinant regions of these phages. SSR period sizes and motifs in the non-recombinant regions of phage genomes are plotted. Genomic sequence changes between T7M and T3 due to insertions, deletions, and substitutions are also illustrated. SSRs and nearby sequences of T7M in the non-recombinant regions are compared to the sequences of ϕYeO3-12 and ϕSG-JL2 in the corresponding positions. The sequence variations of SSRs due to vertical evolution are classified into four categories and tabulated: (1) insertion/deletion of SSR units,
(2) expansion/contraction of SSRs without alteration of genome length, (3) changes of repeat motifs, and (4) generation/loss of repeats.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Biology
More specific subject area	Genome evolution and sequence mutations
Type of data	Figure, tables
How data was acquired	Analysis of genomic sequences
Data format	Analyzed
Experimental factors	Genome sequences were retrieved from NCBI for analysis.
Experimental features	Software (ClustalW, IMEx) and manual analysis of the sequences, manual characterization and analysis
Data source location	National Chiao Tung University, Hsinchu, Taiwan
Data accessibility	Data are within this article.

Value of the data

- Revealing different types of sequence changes of SSRs by vertical evolution of genomes.
- Detailed SSR distributions may aid in identifying broader patterns of phage evolution.
- Provides a guideline for classification of SSR variations in genome comparisons.
- Variations of SSRs in phages may be applied to phage typing.
- Assists researchers studying T7M, T3, φYeO3-12, and φSG-JL2 related phages in making sequence comparisons.

1. Data

Fig. 1 plots the distribution of SSR period sizes and motifs in the non-recombinant regions of the genomes of phages T7M, T3, φYeO3-12, and φSG-JL2. Table 1 illustrates differences in genomic sequences between T7M and T3. Tables 2 and 3 provide SSR counts, relative abundance, relative density, and GC contents in the complete genomes and non-recombinant regions for T7M, T3, φYeO3-12, and φSG-JL2. The four classes of SSR variations, (1) insertion/deletion of SSR units, (2) expansion/contraction of SSRs without alteration of genome length, (3) changes of repeat motifs, and (4) generation/loss of repeats, in T7M non-recombinant regions relative to counterpart regions of φYeO3-12 and φSG-JL2 are tabulated in Tables 4–9.

2. Experimental design, materials and methods

2.1. Genome sequences and recombinant regions

The genome sequence of T7M is in NCBI under the accession number GenBank: JX421753 [1]. Genome sequences of φYeO3-12, φSG-JL2, and T3 are acquired from GenBank accession numbers
Table 1: Difference in genomic sequences between T7M and T3.

T7M nt	T7M→T3 change	Location	Amino acid change\(^a\)
26–27	Insertion of C	Terminal repeat	
9606-9607	Deletion of CG	Gene 3	GVRKV → CTQGR
9627	Deletion of G	Gene 3	
9971	Deletion of G	Gene 3	WL → GV
9975-9976	Insertion of G	Gene 3	
22153	C→T	Gene 10B	T → I
22171	C→T	Gene 10B	T → I
23105	G→A	Gene 12	A → T
23156	C→A	Gene 12	L → I
24245	A→G	Gene 12	N → D
24659	G→A	Gene 12	G → R
25496-25497	Insertion of AGGGGGG	Between φ13 and gene I3	
37998-37999	Insertion of C	Terminal repeat	

\(^a\) Change from T7M to T3 is shown by single letter codes of amino acids.

Fig. 1. The distribution of SSR period sizes and motifs in the non-recombinant regions of phage genomes. SSRs in the non-recombinant regions of T7M and T3 as well as the counterparts in κYeO3-12 and κSG-JL2 are compared. (A) Counts of mono- to hexanucleotide SSRs. (B) Mononucleotide motifs. (C) Dinucleotide motifs. (D) Trinucleotide motifs. T7M, black; κYeO3-12, red; κSG-JL2, green; T3, yellow.
Table 2
SSR counts, relative abundance, and relative density in the complete genome and non-recombinant regions.

	Size bp	SSR count	RA \(^{-1}\) kb \(^{a}\)	RD \(^{-1}\) bp/kb	Size bp	SSR count	RA \(^{-1}\) kb \(^{a}\)	RD \(^{-1}\) bp/kb
T7M	38202	192	5.0	39.7	25664	119	4.6	37.4
ϕYeO3-12	39600	207	5.2	40.8	26813	147	5.5	43.5
ϕSG-JL2	38815	195	5.0	39.3	26335	135	5.1	40.3
T3	38208	192	5.0	39.9	25670	119	4.6	37.6

\(^{a}\) Relative abundance: number of SSRs present in per kb of sequence.
\(^{b}\) Relative density: the total length (bp) contributed by SSRs per kb of sequence.
\(^{c}\) Excluding the two recombination regions in T7M and T3, and the counterpart regions in ϕYeO3-12 and ϕSG-JL2.

Table 3
Nucleotide compositions and GC contents of genomic sequences and SSRs in the complete genome versus non-recombinant regions\(^{d}\) of phages.

	T7M	ϕYeO3-12	ϕSG-JL2	T3
% in complete genomic sequence				
A	26.4	26.2	26.0	26.4
T	23.7	23.2	23.2	23.7
G	26.5	27.0	27.0	26.5
C	23.4	23.6	23.8	23.4
GC	49.9	50.6	50.9	49.9
% in SSRs				
A	23.5 (-2.9)	25.2 (-1.0)	22.6 (-3.4)	23.4 (-3.0)
T	24.6 (1.0)	22.1 (-1.1)	23.8 (0.6)	24.5 (0.9)
G	26.0 (-0.5)	27.0 (0.0)	27.1 (0.1)	26.2 (-0.3)
C	25.8 (2.4)	25.7 (2.1)	26.5 (2.7)	25.9 (2.5)
GC	51.8 (1.9)	52.7 (2.2)	53.6 (2.8)	52.0 (2.1)
% in non-recombinant regions\(^{d}\)				
A	26.1	26.2	26.2	26.1
T	23.5	23.3	23.2	23.5
G	26.6	26.6	26.8	26.6
C	23.8	23.9	23.9	23.8
GC	50.4	50.5	50.6	50.4
% in SSRs				
A	22.8 (-3.3)	25.6 (-0.7)	22.0 (-4.2)	22.7 (-3.4)
T	24.6 (1.1)	22.0 (-1.3)	23.0 (-0.2)	24.5 (1.0)
G	25.7 (-1.0)	25.5 (-1.1)	27.7 (1.0)	25.9 (-0.7)
C	26.9 (3.1)	26.9 (3.1)	27.3 (3.5)	26.9 (3.2)
GC	52.6 (2.1)	52.4 (2.0)	55.0 (4.4)	52.9 (2.4)

Only the sequences of sense strands are considered. The number in parenthesis indicates the percent change compared to the complete genomes or the non-recombinant regions of genomes.
\(^{d}\) Excluding the two recombination regions in T7M and T3, and the counterpart regions in ϕYeO3-12 and ϕSG-JL2.
Table 4
Indels of SSR repeat units in the non-recombinant regions of T7M and counterparts in φYeO3-12 and φSG-JL2.

T7M nt	Sequence in phage		
	T7M	φYeO3-12	φSG-JL2
26	CCCCCCC	CCCCCC-	CCCCCC-
25497	GGGGGGGGG	————GGGG	————GGGG
37998	CCCCCCC	CCCCCC-	CCCCCC-

T7M nt	Sequence in phage		
	T7M	φYeO3-12	φSG-JL2
26	CCCCCCC	CCCCCC-	CCCCCC-
7704	ACACACAC	ACACAC-	ACACAC-
25497	GGGGGGGGG	————GGGG	————GGGG
37998	CCCCCCC	CCCCCC-	CCCCCC-

Table 5
Repeat expansion/contraction without alteration of sequence length in the T7M non-recombinant regions and counterparts of φYeO3-12 and φSG-JL2.

T7M nt	Sequence in phage		
	T7M	φYeO3-12	φSG-JL2
8183	TCACACACGG	TCTCACACTG	CTTATGATGATGG
10777	GCTGTCTG	GCCTGTGT	CTAATGATGATGG
17930	CACACACACCA	CACCGACCAACA	CACCGACCAACA
26004	GGGCCGGG	GCCCGGAG	GCCCGGAG

T7M nt	Sequence in phage		
	T7M	φYeO3-12	φSG-JL2
8183-8192	TCACTCACCA	TCTCACACTC	CTTATGATGATGG
8525-8530	GCCGGGG	GCCTGTGT	CTAATGATGATGG
11576-11584	GTGTCGTCG	GTGGGTGGCG	CTAATGATGATGG
17930-17940	CACCACCCCA	CACCGACCAACA	CACCGACCAACA
26004-26010	GGGGGGGG	GCCCGGAG	GCCCGGAG

Repeat unit is underlined.

Table 6
Repeat motif changes in the non-recombinant regions of T7M compared to counterpart regions of φYeO3-12.

T7M nt	T7M	φYeO3-12
1930	ACCGACAGCACGGG	ACCGACAGCACGGG
4125	GTATACATC	GTATACATC
5919	CAACGAAATGAAATC	CAACGAAATGAAATC
6218	CTCTGTAGATGG	CTCTGTAGATGG
8178	CTACTCACCA	CTACTCACCA
11627	CCTTCCCTCCTCA	CCTTCCCTCCTCA
12316	GAGAGGAGGAGGAGGA	GAGAGGAGGAGGAGGA
12700	AACGACAGCACAGC	AACGACAGCACAGC
17742	GACATACATAG	GACATACATAG
19669	TGCTGCTGCCCA	TGCTGCTGCCCA
20456	TGGCTGCTCTGTG	TGGCTGCTCTGTG
21313	CGGCTGCTCGTGG	CGGCTGCTCGTGG
24066	ACCATACCTCTTCATCGT	ACCATACCTCTTCATCGT
24935	AAGGATAGGTA	AAGGATAGGTA
26592	TCCGGGGGAGAA	TCCGGGGGAGAA

SSRs and surrounding sequences are listed. Repeats in φYeO3-12 that have at least 3 copies for a mononucleotide or 2 copies for longer repeat periods, but different motifs from those in T7M, are considered. The repeat units with differing motifs between the two phages are underlined.
GenBank: AJ251805 [2], GenBank: NC_010807 [3], and GenBank: AJ318471 [4], respectively. Sequences were aligned by ClustalW [5], and differences between phages are compared. The T7M sequence nt 13245-16687 and 26695-35789 align to T3 nt 13243-16685 and 26700-35794, respectively, and likely arise from a recombination between a φYeO3-12-like phage and a T7-like phage, as suggested for T3 [4]. These regions and the counterparts in φYeO3-12 and φSG-JL2 are referred to as recombinant regions, and the rest of the genomes are referred to as non-recombinant regions [1].

Table 7

SSR generation in the non-recombinant regions of T7M compared to counterpart regions of φYeO3-12.

T7M nt	T7M	φYeO3-12
1857	GACCGACC	GGATGAAC
7220	GTGACTGAA	ACGATGCA
9237	CAAGACAAGAA	CCAAGATAAGAA
9965	AGTGGCGTGGCT	GGTGGAGTGGCT
10159	GGTGGTGTCG	GGTGGTTCAG
11016	TCTGGTCCTGGTAG	TCTGGTCCTGGCGT
11576	GTGGTGTCGTG	GGGAGCCG
19278	AATTCAATTCG	AACTGCAATTGC
20211	GGGATGGCG	GAGCCGCG
20350	TCAGTCTCAGG	TCTGGTCCAG
25654	GATGGCTGTC	GCTGTGTTCGG
25892	GTCAATTCATT	GTCAATTTCACA
26016	CAGACAGA	CAGACAGA
36359	CCGACAAAC	TCAACCCAA
37140	GCGTTAGCCGTAG	GCGTTAGCCATTG

The newly generated repeat unit in T7M is underlined. The repeat sequence displays at least 3 iterations of a mononucleotide repeat unit or 2 contiguous iterations of a di- to hexanucleotide repeat unit. Repeat sequences in φYeO3-12 that are also present in T7M are not considered.

* The sequence has a newly generated GGT repeat in addition to a motif change CTGGT, and both are underlined in this table.

Table 8

Repeat motif changes in the non-recombinant regions of T7M compared to counterpart regions of φSG-JL2.

T7M nt	T7M	φSG-JL2
4125	GTATCTATC	GTGTCTACC
5088	AGCTGGCTGCTGCTG	AGCTGGCTAGCTGCTG
11627	CTCTGGCCTGTCGA	CGTGGCTGCTCA
12316	GACACAGGACAGGAGAGA	GAAGACGAGGAGAGA
17593	CGATGACGACAGACAGAGA	CGATGACGACAGAGA
17742	GACATAACATACT	GTCATACATACT
19669	TGCTGCTGCTCAG	TGAGCAGAGC
20456	CTGGCCTGCTGCTG	CGGTGGGTGCTG
21313	CTGGCCTGCTGCTGCTG	CTGGCCTGCTGCTG
24066	ACCCATACCTCTTTCT	ACCCATACCTCTTTCT
24935	AAGGGTAAAGGT	AAGGGTAAAGGT
26592	TCCGGGGA	TCAAAGGTA
37648	TACTACTCTCT	TACTACTCTCT

SSRs and surrounding sequences are listed. Repeats in φSG-JL2 that have at least 3 copies for a mononucleotide or 2 copies for longer repeat periods, but different motifs from those in T7M, are considered. The repeat units with differing motifs between the two phages are underlined.
2.2. Simple sequence repeats

Simple sequence repeats were searched in phage genomes or non-recombinant regions by IMEx [6]. Unless otherwise specified, the minimum repeat units for mono- to hexanucleotide were 5, 3, 3, 2, 2, 2. Repeats sequences were not standardized.

Acknowledgements

The author thanks JCH for editing the manuscript.

Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.06.035.

References

[1] T.Y. Lin, Simple sequence repeat variations expedite phage divergence: mechanisms of indels and gene mutations, Mutat. Res. / Fundam. Mol. Mech. Mutagen. 789 (2016) 48–56.
[2] M.I. Pajunen, S.J. Kiljunen, M.E. Soderholm, M. Skurnik, Complete genomic sequence of the lytic bacteriophage phiYeO3-12 of Yersinia enterocolitica serotype O:3, J. Bacteriol. 183 (2001) 1928–1937.
[3] H.J. Kwon, S.H. Cho, T.E. Kim, Y.J. Won, J. Jeong, S.C. Park, J.H. Kim, H.S. Yoo, Y.H. Park, S.J. Kim, Characterization of a T7-like lytic bacteriophage (phiSG-JL2) of Salmonella enterica serovar gallinarum biovar gallinarum, Appl. Environ. Microbiol. 74 (2008) 6970–6979.

[4] M.I. Pajunen, M.R. Elizondo, M. Skurnik, J. Kieleczawa, I.J. Molineux, Complete nucleotide sequence and likely recombination origin of bacteriophage T3, J. Mol. Biol. 319 (2002) 1115–1132.

[5] D.G. Higgins, J.D. Thompson, T.J. Gibson, Using CLUSTAL for multiple sequence alignments, Methods Enzymol. 266 (1996) 383–402.

[6] S.B. Mudunuri, H.A. Nagarajaram, IMEx: imperfect microsatellite extractor, Bioinformatics 23 (2007) 1181–1187.