Asymptomatic ileal adenocarcinoma in the setting of undiagnosed Crohn’s disease

Vikram B Reddy, Harold Aslanian, Namsoo Suh, Walter E Longo

INTRODUCTION

The incidence of inflammatory bowel disease (IBD) is increasing with rates of around 6/100,000 for Crohn’s disease with a marked rise in the age group between twenty to forty years[1]. Small bowel carcinomas are uncommon representing less than 5% of all gastrointestinal malignancies[2-7]. Prognosis is unfavorable with 1 and 2 year survival of 30%-60%, depending on the stage of the cancer[8-12]. Crohn’s disease has been associated with an elevated risk for the development of small bowel adenocarcinoma[9,13-20] and chronic inflammation is implicated in this neoplastic progression[21]. Although most adenocarcinomas arise in the duodenum, those associated with Crohn’s disease generally occur in the ileum 20 years or more after the onset of Crohn’s disease[9,11,12]. In most cases, detection of small bowel carcinoma associated with Crohn’s disease is at operation for other reasons or due to obstructive symptoms[22-25].

Neither the risk factors nor screening for early diagnosis of small bowel adenocarcinoma in patients with Crohn’s disease have been established. Here we report on an asymptomatic patient in which routine screening colonoscopy was diagnosed with adenocarcinoma of the terminal ileum which eventually led to the establishment of his Crohn’s disease.

CASE REPORT

A 53-year old previously healthy male underwent a screening colonoscopy for detection of a potential colorectal neoplasm. The terminal ileum was intubated and a mass was noted. Examination of the colon was normal. The biopsy of the ileal mass was consistent with an adenocarcinoma arising from the terminal ileum. His father who had never been previously ill from gastrointestinal disease died of natural causes, but was found to have Crohn’s disease postmortem. The patient underwent exploratory laparotomy and a right hemicolectomy with a 30 cm section of terminal ileum in continuity. Findings were consistent with ileal adenocarcinoma in the setting of Crohn’s disease. The patient made an uneventful recovery. The pathology was stage 1 adenocarcinoma. This is a unique case in that on a screening colonoscopy, a favorable ileal adenocarcinoma was discovered in the setting of asymptomatic, undiagnosed ileal Crohn’s disease in a patient whose father had Crohn’s disease diagnosed postmortem.

© 2008 The WJG Press. All rights reserved.

Key words: Ileal adenocarcinoma; Crohn’s disease; Colonoscopy
of his abdomen and pelvis with both oral and intravenous contrast which revealed a thickened and spiculated wall of the terminal ileum with fistulization from the terminal ileum to the cecum (Figure 1). Given these findings, he was taken to the operating room for exploration.

On exploration, he was found to have a dense inflammatory mass in the right lower quadrant with multiple adhesions to the abdominal wall and bladder. Further exploration revealed a mass in the terminal ileum with dense adhesions involving the terminal ileum and cecum. Given these findings, a right hemicolectomy with a concomitant terminal ileal resection was performed. The surgical specimen consisted of a 20 cm segment of the cecum and a 53 cm segment of the terminal ileum with pericolic fat averaging 9 cm in diameter.

Macroscopic examination revealed Crohn’s disease involving the distal most segment of the terminal ileum with a stricture adjacent to the ileocecal valve (Figure 2A). Adjacent to the stricture was a 3 cm polyp, sections of which revealed a white spiculated area that extended into the underlying fat (Figure 2B).

Histopathological examination in the area of the stricture revealed areas of chronic inflammatory change with marked architectural distortion and extensive pseudo-pyloric metaplasia in the mucosa. Extensive transmural lymphoid aggregates, muscular hypertrophy, neural hyperplasia, and submucosal fibrosis, compatible with Crohn’s disease were also noted (Figure 3). In many areas, the mucosa was sitting directly in contact with the muscularis propria without any intervening submucosa. In the background of this inflammation, areas of low and high grade dysplasia were identified. Scattered glands were seen infiltrating into the markedly hypertrophic and disorganized muscularis mucosa. Isolated tumor glands were also seen in the submucosa and as discussed above, in some areas, there were hardly any intervening submucosa with the tumor glands infiltrating the muscularis propria (Figure 4). The size of the tumor was difficult to estimate, as grossly no obvious mass was identified. However, from microscopic sections, it was estimated that the intramucosal carcinoma extended over a 2.0 cm area. The staging of this tumor was also difficult due to complex architecture and histological changes in the bowel wall. However, due to the presence
of occasional tumor glands in the muscularis propria, it was staged as pT2. Twenty-nine lymph nodes were harvested and all were negative for carcinoma. The patient recovered well from surgery.

DISCUSSION

A thorough search of the worldwide literature has revealed that the case presented here is the first ever of a patient with ileal adenocarcinoma as the first manifestation of Crohn’s disease in an otherwise asymptomatic patient. There are, however, other reports of ileal adenocarcinoma as the first manifestation of Crohn’s disease in patients with vague abdominal complaints[11-13].

In 1956, Ginzburg et al first described carcinoma as a rare complication of small bowel Crohn’s disease[14]. To date, several cases of small bowel carcinoma in Crohn’s disease have been reported[15]. The most common small bowel carcinoma is adenocarcinoma, and risk factors include long-standing disease, surgically bypassed loops, male sex, onset of disease before the age of 30 years, and associated chronic active disease with strictures and fistulas[11,15-17]. Munkholm et al reported an incidence of 0.54% of small bowel cancer in Crohn’s disease compared to an expected rate of 0.04% (P = 0.0001)[18]. In a later study, the same group reported a more than 60-fold increased risk of small bowel adenocarcinoma independent of age and sex in patients with Crohn’s disease[19]. The lifetime prevalence of small bowel adenocarcinoma in patients with Crohn’s disease is 1%-3%[20]. The combination of genetic susceptibility, mechanical irritation and surgery has been suggested as possible etiologies for this elevated risk in Crohn’s disease. Small bowel carcinomas are also mostly localized to strictures[21,22,23]. Immunosuppression has also been implicated[24].

These occult carcinomas pose a challenge to conventional diagnostic investigations such as upper or lower gastrointestinal endoscopy and small bowel series. CT has now emerged as the imaging modality of choice[25-27]. Magnetic resonance imaging (MRI)[28], double-contrast enteroclysis[29], and video wireless capsule endoscopy[30,31] have also been promising.

Survival rates for small bowel malignancies are much worse than for large bowel cancers with a mean survival of 6 mo as compared to 65 mo for the latter[32]. Mortality rates range from 30%-60% depending on the stage of the carcinoma[33-35]. Poor prognostic factors include positive resection margins, extramural venous spread, lymph node metastases, poor tumor differentiation, depth of tumor, and a history of Crohn’s disease[36]. Only small studies have evaluated adjuvant therapy for small bowel adenocarcinoma[37,38]. These studies are not in patients with Crohn’s disease and randomized controlled trials are definitely needed.

We report a patient with ileal adenocarcinoma as the first manifestation of Crohn’s disease. The patient had no symptoms of Crohn’s disease and had only a family history of Crohn’s disease. This case report, as well as others discussed above, highlight the need for a higher index of suspicion in screening for Crohn’s disease and initiating a regular follow-up with ileocolonoscopy.

REFERENCES

1. Ebkom A. The epidemiology of IBD: a lot of data but little knowledge. How shall we proceed? Inflamm Bowel Dis 2004; 10 Suppl 1: S32-S34
2. Wilson JM, Melvin DB, Gray GF, Thorbjarnarson B. Primary malignancies of the small bowel: a report of 96 cases and review of the literature. Ann Surg 1974; 180: 175-179
3. Mittal VK, Bodzin JH. Primary malignant tumors of the small bowel. Am J Surg 1980; 140: 396-399
4. Lowenfels AB. Why are small-bowel tumours so rare? Lancet 1973; 1: 24-26
5. Cooper MJ, Williamson RC. Enteric adenoma and adenocarcinoma. World J Surg 1985; 9: 914-920
6. Barclay TH, Schapira DV. Malignant tumors of the small intestine. Cancer 1983; 51: 878-881
7. Veyrieres M, Ballett P, Hay JM, Foubillot JL, Julien M. Factors influencing long-term survival in 100 cases of small intestine primary adenocarcinoma. Am J Surg 1997; 173: 237-239
8. Solem CA, Harnsens WZ, Zinsmeister AR, Loftus EV Jr. Small intestinal adenocarcinoma in Crohn’s disease: a case-control study. Inflamm Bowel Dis 2004; 10: 32-35
9. Michelassi F, Testa G, Pomidor WJ, Lashner BA, Block GE. Adenocarcinoma complicating Crohn’s disease. Dis Colon Rectum 1993; 36: 654-661
10. Dabaja BS, Suki D, Pro B, Bonnen M, Ajani J. Adenocarcinoma of the small bowel: presentation, prognostic factors, and outcome of 217 patients. Cancer 2004; 101: 518-526
11. Ribeiro MB, Greenstein AJ, Heimann TM, Yamazaki Y, Aufses AH Jr. Adenocarcinoma of the small intestine in Crohn’s disease. Surg Gynecol Obstet 1991; 173: 343-349
12. Hawker PC, Syne SN, Thompson H, Allan RN. Adenocarcinoma of the small intestine complicating Crohn’s disease. Gut 1982; 23: 188-193
13. Nesbit RR Jr, Elbadawi NA, Morton JH, Cooper RA Jr. Carcinoma of the small bowel. A complication of regional enteritis. Cancer 1976; 37: 2948-2959
14. Beachley MC, Lebel A, Lankau CA Jr, Rothman D, Baldi A. Carcinoma of the small intestine in chronic regional enteritis. Am J Dig Dis 1973; 18: 1095-1098
15. Frank JD, Shorey BA. Adenocarcinoma of the small bowel as a complication of Crohn’s disease. Gut 1973; 14: 120-124
16. Bernstein CN, Blanchard KJ, Klier Wer E, Wajda A. Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer 2001; 91: 854-862
17. Torres C, Antoniolli D, Odze RD. Polyoid dysplasia and adenomas in inflammatory bowel disease: a clinical, pathologic, and follow-up study of 89 polyps from 59 patients. Am J Surg Pathol 1998; 22: 275-284
18. Munkholm P. Review article: the incidence and prevalence of colorectal cancer in inflammatory bowel disease. Aliment Pharmacol Ther 2003; 18 Suppl 2: 1-5
19. Langholz E, Munkholm P, Davidsen M, Binder V. Colorectal cancer risk and mortality in patients with ulcerative colitis. Gastroenterology 1992; 103: 1444-1451
20. Sachar DB. Cancer in Crohn’s disease: dispelling the myths. Gut 1994; 35: 1507-1508
21. Jess T, Loftus EV Jr, Vilayos FS, Harnsens WZ, Zinsmeister AR, Smyk TC, Schleck CD, Tremaine WJ, Melton LJ 3rd, Munkholm P, Sandborn WJ. Risk of intestinal cancer in inflammatory bowel disease: a population-based study from olmsted county, Minnesota. Gastroenterology 2006; 130: 1039-1046
22. Marchetti F, Fazio VW, Ozuner G. Adenocarcinoma arising from a strictureplasty site in Crohn’s disease. Report of a case. Dis Colon Rectum 1996; 39: 1315-1321
23. Senay E, Sachar DB, Keohane M, Greenstein AJ. Small
bowel carcinoma in Crohn’s disease. Distinguishing features and risk factors. Cancer 1989; 63: 360-363
24 Cooper DJ, Weinstein MA, Korelitz BI. Complications of Crohn’s disease predisposing to dysplasia and cancer of the intestinal tract: considerations of a surveillance program. J Clin Gastroenterol 1984; 6: 217-224
25 Bachwich DR, Lichtenstein GR, Traber PG. Cancer in inflammatory bowel disease. Mod Clin North Am 1994; 78: 1399-1412
26 Christodoulou D, Skopelitou AS, Katsanos KH, Katsios C, Agnantis N, Price A, Kappas A, Tsigas D. Small bowel adenocarcinoma presenting as a first manifestation of Crohn’s disease: report of a case, and a literature review. Eur J Gastroenterol Hepatol 2002; 14: 805-810
27 Mohan IV, Kurian KM, Howd A. Crohn’s disease presenting as adenocarcinoma of the small bowel. Eur J Gastroenterol Hepatol 1998; 10: 431-432
28 Ginzburg L, Schneider KM, Dreizin DH, Levinson C. Carcinoma of the jejunum occurring in a case of regional enteritis. Surgery 1956; 39: 347-351
29 Koga H, Aoyagi K, Hizawa K, Iida M, Jo Y, Yao T, Oohata Y, Mibu R, Fujishima M. Rapidly and infiltratively growing Crohn’s carcinoma of the small bowel: serial radiologic findings and a review of the literature. Clin Imaging 1999; 23: 298-301
30 Munkholm P, Langholz E, Davidsen M, Binder V. Intestinal cancer risk and mortality in patients with Crohn’s disease. Gastroenterology 1993; 105: 1716-1723
31 Bernstein D, Rogers A. Malignancy in Crohn’s disease. Am J Gastroenterol 1996; 91: 434-440
32 Lashner BA. Risk factors for small bowel cancer in Crohn’s disease. Dig Dis Sci 1992; 37: 1179-1184
33 Jess T, Winther KV, Munkholm P, Langholz E, Binder V. Intestinal and extra-intestinal cancer in Crohn’s disease: follow-up of a population-based cohort in Copenhagen County, Denmark. Aliment Pharmacol Ther 2004; 19: 287-293
34 Kaerlev L, Teglbjaerg PS, Sabroe S, Kolstad HA, Ahrens W, Eriksson M, Guenel P, Hardell L, Launoy G, Merler E, Merletti F, Stang A. Medical risk factors for small-bowel adenocarcinoma with focus on Crohn disease: a European population-based case-control study. Scand J Gastroenterol 2001; 36: 641-646
35 Partridge SK, Hodin RA. Small bowel adenocarcinoma at a strictureplasty site in a patient with Crohn’s disease: report of a case. Dis Colon Rectum 2004; 47: 778-781
36 Barwood N, Pлетел C. Case report: adenocarcinoma arising in a Crohn’s stricture of the jejunum. J Gastroenterol Hepatol 1999; 14: 1132-1134
37 Furukawa A, Saotome T, Yamasaki M, Maeda K, Nitta N, Takahashi M, Tsujikawa T, Fujiyama Y, Murata K, Sakamoto T. Cross-sectional imaging in Crohn disease. Radiographics 2004; 24: 689-702
38 Horton KM, Fishman EK. Multidetector-row computed tomography and 3-dimensional computed tomography imaging of small bowel neoplasms: current concept in diagnosis. J Comput Assist Tomogr 2004; 28: 106-116
39 Buckley JA, Siegelman SS, Jones B, Fishman EK. The accuracy of CT staging of small bowel adenocarcinoma: CT/pathologic correlation. J Comput Assist Tomogr 1997; 21: 986-991
40 Chen S, Harisinghani MG, Wittenberg J. Small bowel CT fat density target sign in chronic radiation enteritis. Australas Radiol 2003; 47: 450-452
41 Schreyer AG, Geissler A, Albrich H, Scholmerich J, Feuerbach S, Rogler G, Volk M, Herfarth H. Abdominal MRI after enteroclysis or with oral contrast in patients with suspected or proven Crohn’s disease. Clin Gastroenterol Hepatol 2004; 2: 491-497
42 Zhan J, Xia ZS, Zhong YQ, Zhang SN, Wang LY, Shu H, Zhu ZH. Clinical analysis of primary small intestinal disease: A report of 309 cases. World J Gastroenterol 2004; 10: 2585-2587
43 Voderholzer WA, Ornter M, Rogalla P, Beinholzl J, Lochs H. Diagnostic yield of wireless capsule enteroscopy in comparison with computed tomography enteroclysis. Endoscopy 2003; 35: 1009-1014
44 Jungles SL. Video wireless capsule enteroscopy: a diagnostic tool for early Crohn’s disease. Gastroenterol Nurs 2004; 27: 170-175
45 Abrahams NA, Halverson A, Fazio WV, Rybicki LA, Goldblum JR. Adenocarcinoma of the small bowel: a study of 37 cases with emphasis on histologic prognostic factors. Dis Colon Rectum 2002; 45: 1496-1502
46 Jigyasu D, Bedikian AY, Stroehlein JR. Chemotherapy for primary adenocarcinoma of the small bowel. Cancer 1984; 53: 23-25
47 Polyzos A, Kouraklis G, Giannopoulos A, Bramis J, Delladetsima JK, Sifakis PP. Irinotecan as salvage chemotherapy for advanced small bowel adenocarcinoma: a series of three patients. J Chemother 2003; 15: 503-506

S- Editor Liu JN L- Editor Rippe RA E- Editor Ma WH