We explore representing the compact subsets of a given represented space by infinite sequences over Plotkin’s T. We show that compact Hausdorff spaces with a proper dyadic subbase admit representations of their compact subsets in such a way that compact sets are essentially underspecified points. We can even ensure that a name of an n-element compact set contains at most n occurrences of \bot.

1 Introduction

In TTE [16], the fundamental computability notion is introduced on either Cantor space $\{0, 1\}^\omega$ or Baire space \mathbb{N}^ω, and then lifted to other spaces of interest via representations. It is well-known that the choice of $\{0, 1\}^\omega$ or \mathbb{N}^ω is inconsequential for the resulting theory, and authors typically choose whatever space works better for a specific purpose. In principle, other spaces can be used as the fundament, too, provided that they have a sufficiently substantial computability theory defined on them. Using the space of regular word functions has been advocated by Kawamura and Cook with computational complexity as the motivation [3]. If one is primarily interested in Quasi-Polish spaces [1], then the Scott domain $P(\omega)$ makes sense as the foundational space, with a computability notion derived from enumeration reducibility (cf. [4]).

Here we consider T^ω as a fundamental space for computation, the space of infinite sequences over Plotkin’s T. Plotkin’s T is the three point space $\{0, 1, \bot\}$ with the topology generated by $\{\{0\}, \{1\}\}$. Thus, \bot plays the role of not yet determined, whereas the values 0 and 1, once attained, will remain unchanged. The use of T^ω (together with IM2 machines) as the basis for a theory of computability has been investigated by the second author in a number of papers [11, 13, 10]. An interesting result is that a computable metric space X admits an injective representation $\delta : \subseteq T^\omega \to X$ such that each $p \in \text{dom}(\delta)$ has at most n occurrences of \bot iff the dimension of X is at most n.

In the present paper we consider T^ω-representations of the space $\mathcal{K}(X)$ of compact subsets of some space X represented over $\{0, 1\}^\omega$. We are particularly interested in matching representations in the following sense:

Definition 1. Consider a representation $\delta : \subseteq \{0, 1\}^\omega \to X$ and a T^ω-representation $\psi : \subseteq T^\omega \to \mathcal{K}(X)$. We say that they *match*, iff:

$$x \in A \iff \forall p \in \psi^{-1}(A) \exists q \in \{0, 1\}^\omega \quad q \succeq p \wedge \delta(q) = x$$

$$\iff \exists p \in \psi^{-1}(A) \exists q \in \{0, 1\}^\omega \quad q \succeq p \wedge \delta(q) = x$$
Here \(\preceq \) denotes the specialization relation on \(T^\omega \supset \{0,1\}^\omega \).

A pair of matching representations essentially means that we can consider compact subsets as underspecified points. This seems like a counterpart to the identification of points in admissible spaces as being equivalent to compact singletons [8][7]. Ideally, we want even more: We would like the names of the compact subsets to be as little underspecified as possible, i.e. containing as few occurrences of \(\bot \) as possible. This in turn will be linked to having little redundancy in how many different \(\delta \)-names for the same point are obtainable from a \(\psi \)-name of a compact set containing the point. We will provide constructions of such matching representations based on the concept of a proper dyadic subbase.

Our constructions were inspired by, and yield a uniform version of, a construction employed to prove [5] Proposition 1.9].

2 Notation and Fundamentals

Background on represented spaces

We briefly recall some fundamental concepts on represented spaces following [2], to which the reader shall also be referred for a more extensive treatment. A represented space is a pair \(X = (X, \delta_X) \) of a set \(X \) and a partial surjection \(\delta_X : \subseteq \{0,1\}^\omega \to X \). A (multivalued) function between represented spaces is a (multivalued) function between the underlying sets. For \(f : X \rightarrow Y \) and \(F : \subseteq \{0,1\}^\omega \to \{0,1\}^\omega \), we call \(F \) a realizer of \(f \) (notation \(F \vdash f \)), iff \(\delta_Y(F(p)) = f(\delta_X(p)) \) for all \(p \in \text{dom}(f\delta_X) \), i.e. if the following diagram commutes:

\[
\begin{array}{ccc}
\{0,1\}^\omega & \xrightarrow{F} & \{0,1\}^\omega \\
\downarrow {\delta_X} & & \downarrow {\delta_Y} \\
X & \xrightarrow{f} & Y
\end{array}
\]

A map between represented spaces is called computable (continuous), iff it has a computable (continuous) realizer. A priori, the notion of a continuous map between represented spaces and a represented space is a (multivalued) function between the underlying sets. For \(X \rightarrow A \) and \(C : \{0,1\}^\omega \to \{0,1\}^\omega \), we immediately obtain a representation of any \(X^\omega \) in form of \(C(X,Y) \) of continuous functions between two given represented spaces \(X, Y \). Then representation is rendering all the expected operations computable, in particular composition and evaluation. We immediately obtain a representation of any \(X^\omega \) in form of \(C(\mathbb{N}, X) \). We can also derive the space \(O(X) \) of open subsets of \(X \) by identifying a set \(U \subseteq X \) with its characteristic function \(C(X,S) \ni \chi_U : X \to S \) mapping \(x \in U \) to \(\top \) and \(x \notin U \) to \(\bot \). The open subsets are the final topology along the representation, and again, the expected operations are computable.

The space \(A(X) \) of closed subsets by considering the characteristic function of its complement. In other words, we define \(A(X) \) in such a way that \(C : O(X) \to A(X) \) and \(C : A(X) \to \)}
\(\mathcal{O}(X) \) became computable. We further introduce the space \(\mathcal{K}(X) \) of compact subsets by representing \(A \subseteq X \) via \(\{U \in \mathcal{O}(X) \mid A \subseteq U\} \in \mathcal{O}(\mathcal{O}(X)) \).

A represented space \(X \) is called computably compact, if isEmpty : \(A(X) \to \mathcal{S} \) is computable. It is called computably Hausdorff, iff \(X \times X \to \mathcal{S} \) is computable. A space is computably compact and computably Hausdorff iff both id : \(A(X) \to \mathcal{K}(X) \) and id : \(\mathcal{K}(X) \to A(X) \) are well-defined and computable. As we will be working with (computable) compact Hausdorff spaces, we can freely alternate between treating sets represented as closed or as compact sets in the following.

Introducing \(T^\omega \)-represented spaces

We can consider \(T \) as a represented space (over \(\{0,1\}^\omega \)) via the representation \(\delta_T : \{0,1\}^\omega \to T \) defined by \(\delta_T(0^n) = \bot \), \(\delta_T(p) = 0 \) iff \(\min\{n \in \mathbb{N} \mid p(n) = 1\} \) is even and \(\delta_T(p) = 1 \) iff \(\min\{n \in \mathbb{N} \mid p(n) = 1\} \) is odd. From this representation we derive a representation \(\delta_{T^\omega} \) of \(T^\omega \) in the usual way; and thus have a notion of computability of (multivalued) functions on \(T^\omega \) available. We could alternatively define computability on \(T^\omega \) directly via IM2 machines, but will not do so here for sake of simplicity.

A \(T^\omega \)-representation \(\psi \) of some set \(X \) is just a partial surjection \(\psi : \subseteq T^\omega \to X \), and a \(T^\omega \)-represented space is a set equipped with a \(T^\omega \)-representation of it. As \(\{0,1\}^\omega \subset T^\omega \), we can consider every (ordinary) representation as a special case of a \(T^\omega \)-representation. Conversely, every \(T^\omega \)-representation \(\psi \) induces an ordinary representation \(\psi \circ \delta_{T^\omega} \).

Let \(X, Y \) be \(T^\omega \)-represented spaces. We call a multivalued function \(F : \subseteq T^\omega \Rightarrow T^\omega \) a \(T^\omega \)-realizer of \(f : \subseteq X \Rightarrow Y \) iff \(\emptyset \neq \psi(F(p)) \subseteq \psi(\delta_X(p)) \) for all \(p \in \text{dom}(f \delta_X) \). Unlike the situation for ordinary representations, we also need multivalued realizers here. The reason is that not every computable multivalued function \(F : \subseteq T^\omega \Rightarrow T^\omega \) has a computable choice function\(^1\). Again, we call a (multivalued) function between \(T^\omega \)-represented spaces computable (continuous), iff it has a computable (continuous) \(T^\omega \)-realizer. The following is then straight-forward:

Proposition 2. 1. Let \(X \) and \(Y \) be represented spaces. A multivalued function \(f : \subseteq X \Rightarrow Y \) is computable (continuous) as a function between represented spaces iff it is computable (continuous) as a function between \(T^\omega \)-represented spaces.

2. Let \(X \) and \(Y \) be \(T^\omega \)-represented spaces, and \(\overline{X} \) and \(\overline{Y} \) the induced represented spaces. Then \(f : \subseteq X \Rightarrow Y \) is computable (continuous) iff \(f : \subseteq \overline{X} \Rightarrow \overline{Y} \) is.

Notation

By \(T^* \) we denote the space of finite sequences over \(T \) with known length. We consider \(\iota : T^* \to T^\omega \) mapping \(w \in T^* \) to \(w.\perp^\omega \) as a standard computable map, but point out that the partial inverse of \(\iota \) is not computable. For \(w \in T^* \), we let \(|w| \in \mathbb{N} \) denote its length.

We call the number of digits (i.e., 0 or 1) in a (finite or infinite) bottomed sequence its level. We denote by \(T^*_\{n\} \) the set of level-\(n \) finite bottomed sequences. More generally, for a subset \(A \) of \(T^* \), we denote by \(A\{n\} \) the set of level-\(n \) finite bottomed sequences of \(A \). \(101,1.1,1,1,1, \epsilon \) belong to \(T^* \{3\}, T^* \{2\}, T^* \{1\}, T^* \{0\} \), respectively. Likewise, \(T^\omega \{n\} \) denotes the set of infinite sequences

\(^1\)For example, consider \(G : T^\omega \Rightarrow T^\omega \) defined by \(G(p) = \{0^n\} \) if \(p(0) = \bot \) and \(G(p) = \{0,1\}^\omega \setminus \{0^n\} \) if \(p(0) \neq \bot \).
with \(n \) digits. We further write \(T^*_{\leq n} := \bigcup_{i \leq n} T^*_{(i)} \), \(T^*_{(+)} := \bigcup_{i \in \mathbb{N}} T^*_{(i)} \), \(T^*_{\leq n} := \bigcup_{i \leq n} T^*_{(i)} \) and \(T^*_{(+)} := \bigcup_{i \in \mathbb{N}} T^*_{(i)} \).

For \(p, q \in T^* \) we write \(p \preceq q \) if \(\forall n \in \mathbb{N} \ (p(n) \neq \bot \Rightarrow p(n) = q(n)) \). We write \(\text{dom}(p) = \{ n \in \mathbb{N} \mid p(n) \neq \bot \} \). By \(p \uparrow q \) we denote that \(\forall n \in \text{dom}(p) \cap \text{dom}(q) \ p(n) = q(n) \). We extend these notions to \(T^* \) along \(\iota \). Note that \(\preceq \) is not a quasiorder on \(T^* \), as e.g. \(0 \preceq 0 \bot \) and \(0 \bot \preceq 0 \). By excluding finite sequences ending in \(\bot \) we obtain canonic representatives of each \(\preceq \)-equivalence class, and more over, turn \(\iota \) into an embedding.

For \(p \in X^\omega \) or \(p \in X^* \), we denote by \(p_{\leq n} \in X^n \) its restriction to first \(n \) components. In the case \(p \in X^* \), we assume that \(n \leq |p| \) in this.

By \(3 \) we denote the set \(\{0, 1, \bot\} \) equipped with the representation \(\delta_3(10^\omega) = 0, \delta_3(110^\omega) = 1 \) and \(\delta_3(1110^\omega) = \bot \). Clearly \(\text{id} : 3 \rightarrow T \) is computable, but \(\text{id} : T \rightarrow 3 \) is not. In the following, we will suppress both \(\iota : T^* \rightarrow T^\omega \) and \(\text{id} : 3 \rightarrow T \) and their combinations in the notation. For example, if we have some function \(f : T^\omega \rightarrow X \), we might speak of the function \(f : 3^* \rightarrow X \) obtained by precomposing with these computable functions without further notice.

3 \(T^\omega \)-representations of pruned trees

For \(w, v \in \{0,1\}^* \), let \(w \sqsubseteq v \) express that \(w \) is a prefix of \(v \). We recall that a (binary) tree is a set \(T \subseteq \{0,1\}^* \) such that \(v \in T \wedge w \sqsubseteq v \) implies \(w \in T \). The elements of a tree are called vertices. By using some standard bijection \(\nu : \mathbb{N} \rightarrow \{0,1\}^* \), we can then represent a tree \(T \) by its characteristic function \(\chi_T \in \{0,1\}^\omega \). We shall denote the space of binary trees by \(T \).

Some \(p \in \{0,1\}^\omega \) is called an infinite path through a tree \(T \) if \(\forall n \in \mathbb{N} \ p_{\leq n} \in T \). The set of infinite paths through \(T \) is denoted by \([T] \). It is well-known that the closed subsets of \(\{0,1\}^\omega \) arise as \([T] \) for some tree in a uniform way. In other words \(T \mapsto [T] : T \rightarrow 3^\omega \) is computable and has a computable multivalued inverse.

A tree is pruned, if \(w \in T \) implies \(\exists v \in T \ w \sqsubset v \). By induction, in a pruned tree every vertex is the prefix of some infinite path through it. Moreover, for any tree \(T \) there is a unique pruned tree \(T_p \) such that \([T] = [T_p] \) – however, \(T_p \) is not computable from \(T \), with the Kleene tree being the canonic counterexample.

Definition 3. We define the \(T^\omega \)-represented space \(PT \) by letting the underlying set be the pruned binary trees, and the \(T^\omega \) representation \(\delta_{PT} : T^\omega \rightarrow PT \) be defined as follows:

\[
\delta_{PT}(p) = T \iff \left((\nu(n) \in T \wedge p(n+1) \neq 1 \rightarrow \nu(n)0 \in T) \wedge (\nu(n) \in T \wedge p(n+1) \neq 0 \rightarrow \nu(n)1 \in T) \wedge (p(0) = \bot \iff T \neq \emptyset) \right)
\]

This means that we use the first symbol in a \(\delta_{PT} \)-name for a tree to indicate whether the tree is empty or not, with \(\bot \) representing non-emptiness. If the tree is non-empty, then clearly \(\varepsilon \in T \). Then for any vertex \(w \) of the tree, the value of \(p(\nu^{-1}(w) + 1) \) indicates whether the left child, the right child or both are part of the tree. This represents precisely the pruned trees, as there the fourth case of neither does not apply.

Theorem 4. The map \(\text{Prune} : T \rightarrow PT \) is computable and has a computable multivalued inverse.
Proof. We compute the pruned tree $T' \in \PT$ from $T \in \mathcal{T}$, we read through T layer by layer (i.e. consider all $w \in T$ with $|w| = n$ at the same). While doing so, we construct a δ_{\PT}-name q of T'. We can assume that initially, $q = \bot^\omega$, and then change entries in q to 0 or 1 as required.

If at any stage of the computation we find that $q(\nu(w) + 1) = \bot$ and there is some $k \in \mathbb{N}$ such that for all $v \supseteq w0$ with $|v| = k$ we learn that $v \notin T$, then we set $q(\nu^{-1}(w) + 1) := 1$. If $q(\nu^{-1}(w) + 1) = \bot$ and there is some $k \in \mathbb{N}$ such that for all $v \supseteq w1$ with $|v| = k$ we learn that $v \notin T$, then we set $q(\nu^{-1}(w) + 1) := 0$. If we ever find some $k \in \mathbb{N}$ such that $v \notin T$ for all v with $|v| = k$, then we set $q(0) = 0$. Using compactness, it is straightforward to verify that this yields a valid δ_{\PT}-name for T'. Note that moreover, every entry in the resulting name q which is not specified by the definition of δ_{\PT} will be either 0 or 1, but never \bot.

Now let us consider how to compute the multivalued inverse of Prune. We start with some $\delta_{\mathcal{T},\omega}$-name q of a δ_{\PT}-name of some pruned tree T. For $w \in \{0,1\}^*$ and $n \in \mathbb{N}$, let $t_{w,n} := \delta_{\PT}(\delta_{\mathcal{T},\omega}(q_{\leq n}|\omega))(\nu^{-1}(w) + 1)$. Let $s_n := \delta_{\PT}(\delta_{\mathcal{T},\omega}(q_{\leq n}|\omega))(0)$. Note that given q, n, w we can compute $t_{w,n}$ and s_n in $\mathcal{3}$.

We define a tree $T' \in \mathcal{T}$ by setting $v \in T'$ iff $s_{|v|} = \bot \land \forall k < |v| t_{v,k,|v|} = \bot \lor t_{v,k,|v|} = v(k+1)$. This is a tree by monotonicity of the condition (which is in part derived from the monotonicity of s_n and $t_{w,n}$ in n). As $t_{w,n}$ is available, the condition is decidable, and thus the tree is known as an element of \mathcal{T}. It is straightforward to verify that $[T'] = [T]$. \qed

Corollary 5. There is a surjection $t_{\{0,1\}^\omega} : \mathbb{T}^\omega \to \mathcal{A}(\{0,1\}^\omega)$ and a multivalued map $s_{\{0,1\}^\omega} : \mathcal{A}(\{0,1\}^\omega) \Rightarrow \mathbb{T}^\omega$ such that

1. $s_{\{0,1\}^\omega}$ and $t_{\{0,1\}^\omega}$ are computable.
2. $t_{\{0,1\}^\omega} \circ s_{\{0,1\}^\omega} = \text{id}_{\mathcal{A}(\{0,1\}^\omega)}$.
3. If $A \in \mathcal{A}(\{0,1\}^\omega)$ is a finite set, then the cardinality of A is equal to the number of \bot in $s_{\{0,1\}^\omega}(A)$.

Proof. We obtain $t_{\{0,1\}^\omega}$ as $(T \mapsto [T]) \circ (\text{Prune}^{-1}) \circ \delta_{\PT}$, and then s as its multivalued inverse. Property 3 follows from the observation in the proof of Theorem 3 that in names resulting from Prune all non-specified entries are not \bot. In a non-empty set, the first entry is \bot. Every further \bot corresponds to a branching in the tree, which in turn increases the number of points by 1. \qed

Observation 6. Every continuous $f : \mathbb{T}^\omega \to \mathcal{A}(\mathbf{X})$ is monotonic, i.e. $p \preceq q \Rightarrow f(p) \supseteq f(q)$.

Proposition 7. Let \mathbf{X} be uncountable and T_1. Then there is no computable injection $s : \subseteq \mathcal{A}(\mathbf{X}) \to \{p \in \mathbb{T}^\omega \mid |\mathbb{N} \setminus \text{dom}(p)| < \infty\}$ with $\text{dom}(s) = \{A \in \mathcal{A}(\mathbf{X}) \mid |A| \in \{1,2\}\}$.

Proof. For cardinality reasons, there have to be sets $A, B \in \mathcal{A}(\mathbf{X})$ with $|A| = |B| = 1$ such that $s(A)$ and $s(B)$ differ at infinitely many positions. Now consider $s(A \cup B)$: Continuity of s implies that arbitrarily late, $s(A \cup B)$ can change to either $s(A)$ or $s(B)$, i.e. $s(A \cup B)$ is a common lower bound of $s(A)$ and $s(B)$ in the specialization order of \mathbb{T}^ω. But as $s(A)$ and $s(B)$ differ in infinitely many positions, they cannot have a common lower bound in $\{p \in \mathbb{T}^\omega \mid |\mathbb{N} \setminus \text{dom}(p)| < \infty\}$. \qed

Corollary 8. In Corollary 5, we cannot demand $s_{\{0,1\}^\omega}$ to be singlevalued.

We can now prove the restricted case of our main theorem for Cantor space. Note that $t_{\{0,1\}^\omega}$ almost but not quite satisfies the criteria, as names for singletons still contain a \bot.

Theorem 9. There are matching representations of $\{0,1\}^\omega$ and $\mathcal{K}(\{0,1\}^\omega)$.
Proof. We modify \(t_{\{0,1\}^\omega} \) from Corollary 5 to yield a suitable representation \(\psi \) of \(\mathcal{K}(\{0,1\}^\omega) \cong \mathcal{A}(\{0,1\}^\omega) \). Let \(\psi((p,q)) = t_{\{0,1\}^\omega}(\perp q) \) if \(\forall n \in \mathbb{N} \) \(p(n) \neq 1 \) and \(\psi((p,q)) = \emptyset \) if \(\exists n \in \mathbb{N} \) \(p(n) = 1 \). By taking into account the definition of \(\delta_T \) and Corollary 5, this is indeed a representation of \(\mathcal{A}(\{0,1\}^\omega) \) (i.e. induces the correct computability notion of \(\{0,1\}^\omega \)).

The corresponding representation \(\delta \) of \(\{0,1\}^\omega \) is defined as follows: \(\delta((0^\omega,q)) = p \) iff \(\forall n \in \mathbb{N} \) \(q(\nu^{-1}(p \leq n)) = p(n + 1) \). It is easy to verify that \((\{0,1\}^\omega, \text{id}) \cong (\{0,1\}^\omega, \delta) \).

\[\square \]

4 Proper dyadic subbases

In order to obtain a result akin to Theorem 9 for a large class of spaces, we will utilize the notion of a proper dyadic subbase. These were introduced in [11], and further studied in [6, 14, 13, 12].

The original motivation was to generalize the role of the binary and signed binary representations of real number: A proper dyadic subbase induces both (1) a “tiling” coding generalizes the binary expansion and (2) “covering” coding (which forms an admissible representation) generalizing the signed binary expansion.

The definition of a (not necessarily proper) dyadic subbase was changed in [13] compared to the previous literature. Here, we adopt the definition from [13].

Definition 10. A dyadic subbase of a represented space \(X \) is a map \(S : \mathbb{N} \times \{0,1\} \to \mathcal{O}(X) \) such that the image is a subbase of \(X \) and \(S(n,0) \cap S(n,1) = \emptyset \) for every \(n \in \mathbb{N} \).

We write \(S_{n,i} \) for \(S(n,i) \) and \(S_{n,\perp} = X \setminus (S_{n,0} \cup S_{n,1}) \). A dyadic subbase \(S \) defines a (continuous) map \(\varphi_S \) from \(X \) to \(\mathbb{T}^\omega \) as follows.

\[
\varphi_S(x)(n) = \begin{cases}
0 & (x \in S_{n,0}), \\
1 & (x \in S_{n,1}), \\
\perp & (x \in S_{n,\perp}).
\end{cases}
\]

That the image of \(S \) is a subbase ensures that \(\varphi_S \) even is a topological embedding. We call a dyadic subbase computable, if the map \(S : \mathbb{N} \times \{0,1\} \to \mathcal{O}(X) \) is computable (which implies \(\varphi_S \) to be computable), and moreover, \(\varphi_{S^{-1}} \) is computable, too. This corresponds to the basis induced by the subbasis to be an effective countable basis in the sense of [2] Definition 11.

For a dyadic subbase \(S \) and \(p \in \mathbb{T}^\omega \), define

\[
S(p) = \bigcap_{k \in \text{dom}(p)} S_{k,p(k)}; \\
\tilde{S}(p) = \bigcap_{k \in \text{dom}(p)} (X \setminus S_{k,1-p(k)}) = \bigcap_{k \in \text{dom}(p)} (S_{k,p(k)} \cup S_{k,\perp}).
\]

\(\{S(e) \mid e \in \mathbb{T}^\omega \} \) is the base of \(X \) generated by the subbase \(S \). We have

\[
x \in S(p) \iff \varphi_S(x)(k) = p(k) \text{ for } k \in \text{dom}(p) \iff \varphi_S(x) \supseteq p, \\
x \in \tilde{S}(p) \iff \varphi_S(x)(k) \subseteq p(k) \text{ for } k \in \text{dom}(p) \iff \varphi_S(x) \uparrow p.
\]

These equations show that \(S \) and \(\tilde{S} \) are order-theoretic notion in \(\mathbb{T}^\omega \).

Definition 11. We say that a dyadic subbase \(S \) is proper if \(\text{cl}S(e) = \tilde{S}(e) \) for every \(e \in \mathbb{T}^\omega \).
As a special case, if S is a proper dyadic subbase, $S_{n,0}$ and $S_{n,1}$ are regular open sets which are exteriors of each other. That is, $S_{n,\perp}$ is the common boundary between them and $\text{cl} S_{n,i} = S_{n,i} \cup S_{n,\perp}$.

The equivalences (3) and (4) show that a sequence $\varphi_S(x)$ not only contains information on the basic open sets x belongs to, but also information on the basic open sets to whose closure x belongs.

Proposition 12. Let $(S_{n,i})_{(n,i) \in \mathbb{N} \times \{0,1\}}$ be a computable dyadic subbase of X. Then $p \mapsto S(p) : 3^* \rightarrow \mathcal{O}(X)$ and $p \mapsto \overline{S}(p) : T^* \rightarrow \mathcal{A}(X)$ are computable.

Proof. This follows immediately from the definition of $S(p)$ and $\overline{S}(p)$ together with the observation that finite intersection $\cap : (\mathcal{O}(X))^* \rightarrow \mathcal{O}(X)$, countable intersection $\bigcap : \mathcal{A}(X)^* \rightarrow \mathcal{A}(X)$ and complement $^C : \mathcal{O}(X) \rightarrow \mathcal{A}(X)$ are computable (eg [7]). \qed

Corollary 13. Let $(S_{n,i})_{(n,i) \in \mathbb{N} \times \{0,1\}}$ be a proper computable dyadic subbase of X. Then $p \mapsto \overline{S}(p) : 3^* \rightarrow (\mathcal{A}(X) \wedge V(X))$ is computable.

Proof. As $w \mapsto w \perp \omega : 3^* \rightarrow T^\omega$ is computable, we obtain $p \mapsto \overline{S}(p) : T^* \rightarrow \mathcal{A}(X)$ from Proposition 12. By definition of proper dyadic subbase, $\overline{S}(p) = \text{cl} S(p)$ for $p \in T^*$, and $\text{cl} : \mathcal{O}(X) \rightarrow V(X)$ is computable (eg [7]). We thus obtain $p \mapsto \overline{S}(p) : T^* \rightarrow V(X)$. \qed

Definition 14. For a dyadic subbase S of a space X, $p \in T^\omega$ and $n \in \mathbb{N}$, we define $S^n_{ex}(p) \subseteq X$ and $\overline{S}^n_{ex}(p) \subseteq X$ as follows.

$$S^n_{ex}(p) = \bigcap_{k<n} S_{k,p(k)},$$

$$\overline{S}^n_{ex}(p) = \bigcap_{k<n} \text{cl} S_{k,p(k)}.$$

Note that $\text{cl} S_{n,\perp} = S_{n,\perp}$. For $e \in T^*$, we define $S^n_{ex}(e) = S^n_{ex}^{\lceil e \rceil}(e)$ and $\overline{S}^n_{ex}(e) = \overline{S}^n_{ex}^{\lceil e \rceil}(e)$. We have

$$x \in S^n_{ex}(e) \iff \varphi_S(x)|_{\leq n} = e, \quad (5)$$

$$x \in \overline{S}^n_{ex}(e) \iff \varphi_S(x)|_{\leq n} \leq e. \quad (6)$$

The sets $S^n_{ex}(p)$ may fail to be either open or closed, but are guaranteed to be Δ^0_2. While each $\overline{S}^n_{ex}(p)$ is a closed set, this does not yield an effective statement in general: The sets $\text{cl} S_{k,0}$, $\text{cl} S_{k,1}$ will be available as elements of $V(X)$, whereas $S_{n,\perp}$ is available as an element of $\mathcal{A}(X)$. Moreover, finite intersection is not a continuous operation on $V(X)$. However, if S is proper, then $\text{cl} S_{k,0} = S^0_{k,0}$ and $\text{cl} S_{k,1} = S^0_{k,1} = S_{k,0}^1$ -- i.e. all component sets of $S^n_{ex}(p)$ are available as elements of $\mathcal{A}(X)$, and this space is effectively closed under intersection. We thus find:

Observation 15. Let S be a proper computable dyadic subbase of X. Then $S_{ex} : \mathbb{N} \times 3^\omega \rightarrow \mathcal{A}(X)$ is computable.

Definition 16. Let S be a dyadic subbase of a space X. We define the poset $\widehat{K}_S \subseteq T^*$ as:

$$\widehat{K}_S = \{p|m \mid \exists x \in X \varphi_S(x) \leq p, m \in \mathbb{N}\} = \{e \in T^* \mid \overline{S}_{ex}(e) \neq \emptyset\}$$
We say that $e \in T^*$ is an immediate successor of $d \in T^*$ if $d \prec e$ and there is no element f such that $d \prec f \prec e$. A subset $L \subseteq T^*$ is called finitely branching if each $d \in L$ has only finitely many immediate successors $e \in L$.

Theorem 17. (Proposition 5.10 and Theorem 6.5 of [14]) If S is a proper dyadic subbase of a compact Hausdorff space X, then \hat{K}_S is a finitely branching poset.

Recall that we identify $e \in T^*$ with $e\downarrow^n$ for the purpose of defining $\hat{S}_e^n(e)$ for $n > |e|$. That \hat{K}_S is finitely branching is equivalent to saying that for every e, there is n such that $\hat{S}_e^n(e) = \emptyset$.

Lemma 18. Let S be a proper computable dyadic subbase of computably compact X. There is a decidable set $H \subseteq 3^\omega$ and a computable function $g : \mathbb{N} \to \mathbb{N}$ such that\(^2\):

1. $\hat{K}_S \subseteq H$
2. $H_{(n)} \subseteq T^{\leq g(n)}$

Proof. We define and compute the set H which contains \hat{K}_S by inductively finding $H_{(n)} \subseteq T^{\leq g(n)}$. Let $g(0) = 0$ and $H_{(0)} = \{\varepsilon\}$. Suppose that $H_{(n)}$ is defined. For each element $d \in H_{(n)}$, we perform the following procedure.

By dove-tailing, search for some $k_d \in \mathbb{N}$ such $\hat{S}_d^{k_d}(d)$ is empty. By Theorem 17, \hat{K}_S is finitely-branching, hence such a k_d exists. We can recognize a suitable k_d by Observation 15 together with computable compactness of X.

Then, set $g(n+1)$ to be $\max\{k_d \mid d \in H_{(n)}\}+1$ and $H_{(n+1)} = \{d \in T^{\leq g(n)} \mid |d| \leq g(n+1)\}$. \hfill \Box

5 Main result

We can now present and prove our main results. This will take the form of three theorems, each focusing on different aspects but sharing an underlying construction in the proof.

For strictly increasing $f : \mathbb{N} \to \mathbb{N}$, let $X^{f(\cdot)} := \bigcup_{n \in \mathbb{N}} X^{f(n)}$. We call $T \subseteq \{0,1\}^{f(\cdot)}$ an f-tree, if it is closed under taking prefixes. For computable f, there is a straight-forward representation of the f-trees, and moreover, from an f-tree T we can compute a tree T' such that $T = T' \cap \{0,1\}^{f(\cdot)}$.

Theorem 19. Let X be a computably compact Hausdorff space admitting a proper computable dyadic subbase. Then there is a computable strictly increasing $f : \mathbb{N} \to \mathbb{N}$ and a computable $R : \{0,1\}^{f(\cdot)} \to O(X)$, $\overline{R} : \{0,1\}^{f(\cdot)} \to A(X)$ with the following properties:

1. $R(\varepsilon) = X$.
2. For $w \in \{0,1\}^{f(n)}$, $R(w) = \bigcup_{v \subseteq 2_{f(n+1)} \downarrow w \subseteq v} R(v)$.
3. c$R(w) = \overline{R}(w)$.
4. $(R(w))_{w \in \{0,1\}^{f(\cdot)}}$ is an effective countable basis of X.
5. There is a computable $I : \{0,1\}^{f(\cdot)} \times \{0,1\}^{f(\cdot)} \to \{\emptyset\} \cup \{0,1\}^{f(\cdot)}$ such that if $I(w,v) = \emptyset$, then $R(w) \cap R(v) = \emptyset$, and else $w \subseteq I(w,v)$ and $R(w) \cap R(v) = R(I(w,v))$.
6. There is a computable $E : \{0,1\}^{f(\cdot)} \times \{0,1\}^{f(\cdot)} \to \{0,1\}$ such that $E(w,v) = 1 \Rightarrow R(w) = R(v)$.

\(^2\)Recall the convention that $\text{id} : 3^* \to T^*$ is not written explicitly in order to make sense of the following statements.
7. \(\forall x \neq y \in X \) \(\exists n \in \mathbb{N} \) \(\forall w, v \in \{0,1\}^{f(n)} \) \((x, y \in \overline{R}(w) \land x, y \in \overline{R}(v) \Rightarrow E(w, v) = 1) \).

Proof. We start with the set \(H \) and the function \(g \) provided by Lemma \[13\]. From them, we can easily obtain computable \(f \) and computable \(r : \{0,1\}^{f(s)} \rightarrow 3^* \) such that \(r(\{0,1\}^{f(n)}) = H(n) \), and \(w \subseteq v \Rightarrow r(w) \leq r(v) \) and \(r(w) \leq x \Rightarrow \exists v \supseteq w \ \forall r(v) = x \). From \(r \) we then derive \(R \) and \(\overline{R} \) by setting \(R(w) = S(r(w)) \) and \(\overline{R}(w) = S(r(w)) \).

Property (1) follows directly from the definition, Property (3) follows from the subbase being proper. Both (2) and (4) are a consequence of \(\hat{K}_S \subseteq H \).

For Property (5), note that if \(S(w) \cap S(v) \neq \emptyset \), then \(w \uparrow v \), and if \(w \sqcup v \) denotes the least upper bound, then \(S(w) \cap S(v) = S(w \sqcup v) \). The function \(I \) can be derived by following the construction of \(r \), by ensuring that \(r(I(w, v)) = r(w) \cup r(v) \) wherever the latter exists.

The function \(E \) from property (6) is defined by \(E(w, v) = 1 \) iff \(r(w) = r(v) \). Property (7) then follows from \(S \) being a subbase of a Hausdorff space. \(\square \)

Theorem 20. Let \(X \) be a computably compact Hausdorff space admitting a proper computable dyadic subbase. There is a surjection \(t_X : T^\omega \rightarrow \mathcal{A}(X) \) and a multivalued map \(s_X : \mathcal{A}(X) \Rightarrow T^\omega \) such that

1. \(s_X \) and \(t_X \) are computable.
2. \(t_X \circ s_X = \text{id}_{\mathcal{A}(X)} \).
3. If \(A \in \mathcal{A}(X) \) is a finite set, then the cardinality of \(A \) is equal to the number of \(\bot \) in \(s_X(A) \).

Proof. We define the maps as having type \(t_X : PT \rightarrow \mathcal{A}(X) \) and \(s_X : \mathcal{A}(X) \Rightarrow PT \) instead, and then compose with \(\delta_{PT} \) and \(\delta_{PT}^{-1} \). Our construction uses the maps \(f, I, E, R \) and \(\overline{R} \) from Theorem \[19\].

We define \(t_X(T) = \bigcap_{n \in \mathbb{N}} \bigcup_{w \in T \cap \{0,1\}^{f(n)}} \overline{R}(w) \). As \(\mathcal{A}(X) \) is effectively closed under finite unions and countable intersections, and since \(w \notin T \) is recognizable, this does define a computable function.

Then \(s_X(A) \) is defined by a sequence \(T_0, T_1, \ldots \), where each \(T_i \subseteq \{0,1\}^{f(g(i))} \) for some computable function \(g \) such that \(\forall w \in T_{i+1} \exists v \in T_i \ v \subseteq w \). This sequences induces some tree \(T \in \mathcal{T} \), and \(s_X(A) \) then is Prune(\(T \)) \in PT following Theorem \[14\].

We start with \(T_0 = \varepsilon \), and maintain throughout the process that \(A \subseteq \bigcup_{w \in T_i} R(w) \). We search for (in a dove-tailing way) finite coverings \(A \subseteq \bigcup_{w \in W} R(w) \). As \(X \) is computably compact, we will find each such covering eventually - and there are infinitely many such coverings. If we do find a new covering \(W \), then we consider \(T_i \oplus W := \{I(v, w) \mid v \in T_i \land w \in W \land I(v, w) \neq \emptyset \} \). By definition of \(I \), this ensures that \((\bigcup_{w \in T_j} R(w)) \cap (\bigcup_{w \in W} R(w)) = \bigcup_{w \in T_j \oplus W} R(w) \). We then choose \(g(i + 1) \) sufficiently big, and set \(T_{i+1} := \{w \in 2^{f(g(i+1))} \mid \exists v \in (T_i \oplus W) \ v \subseteq w \} \) after removal of duplicates. With duplicates we mean \(w \neq v \) such that \(E(w, v) = 1 \).

In addition, we search for \(w \in T_j \) such that \(\overline{R}(w) = \emptyset \), which we can identify due to the computable compactness of \(X \). If we find such an entry in stage \(i \) we set \(T_{i+1} = \{v \in T_i \mid w \not\subseteq v \} \) and \(g(i+1) = g(i) \).

This procedure ensures that \(\bigcap_{n \in \mathbb{N}} \bigcup_{w \in s_X(A) \cap \{0,1\}^{f(n)}} R(w) \) is equal to the intersection of all finite basic open coverings of \(A \). In a compact Hausdorff space, this in turn implies \(t_X(s_X(A)) = A \).

The remaining claim follows from the observation that if \(|A| = k \), then any \(T \in s_X(A) \) will have \(k \) paths, together with the reasoning used in Corollary \[5\]. This observation follows as
follows: Every infinite path through T induces a non-empty compact set (for if it were empty, already all but finitely many prefixes along the path would be mapped to the empty set, but these get removed). Two different paths cannot contain the same point by Property 4 in Theorem 19 together with the fact we are removing duplicate labels in the construction of T.

Theorem 21. Let X be a computably admissible computably compact Hausdorff space admitting a proper computable dyadic subbase. There are matching representations of X and $K(X)$.

Proof. We can modify t_X from Theorem 20 in the same way as Theorem 9 was obtained from Corollary 5.

Acknowledgements

This work benefited from the Marie Curie International Research Staff Exchange Scheme *Computable Analysis*, PIRSES-GA-2011- 294962, the ERC InVest project, the JSPS Core-to-Core Program (A. Advanced research Networks) and JSPS KAKENHI Grant Number 15K00015.

References

[1] Matthew de Brecht (2013): *Quasi-Polish spaces*. Annals of Pure and Applied Logic 164(3), pp. 354–381.

[2] Vassilios Gregoriades, Tamás Kispéter & Arno Pauly (2014). *A comparison of concepts from computable analysis and effective descriptive set theory*. arXiv:1401.3325.

[3] Akitoshi Kawamura & Stephen Cook (2012): *Complexity theory for operators in analysis*. ACM Transactions on Computation Theory 4(2).

[4] Takayuki Kihara & Arno Pauly (2014). *Point degree spectra of represented spaces*. arXiv:1405.6866.

[5] Stéphane Le Roux & Arno Pauly (2015): *Finite choice, convex choice and finding roots*. Logical Methods in Computer Science Available at http://arxiv.org/abs/1302.0380.

[6] Haruo Ohta, Hideki Tsuiki & Syuji Yamada (2011): *Independent subbases and non-redundant codings of separable metrizable spaces*. Topology and its applications 158, pp. 1–14.

[7] Arno Pauly (201X): *On the topological aspects of the theory of represented spaces*. Computability Accepted for publication, available at http://arxiv.org/abs/1204.3763.

[8] Matthias Schröder (2002): *Admissible Representations for Continuous Computations*. Ph.D. thesis, FernUniversität Hagen.

[9] Matthias Schröder (2002): *Extended admissibility*. Theoretical Computer Science 284(2), pp. 519–538.

[10] Hideki Tsuiki (2004): *Compact metric spaces as minimal-limit sets in domains of bottomed sequences*. Mathematical Structures in Computer Science 14, pp. 853–878.

[11] Hideki Tsuiki (2004): *Dyadic subbases and efficiency properties of the induced $\{0,1,\bot\}^\omega$-representations*. Topology Proceedings 28(2), pp. 673–687.

[12] Yasuyuki Tsukamoto (2016): *Strongly proper dyadic subbases and their domain theoretical properties*. Ph.D. thesis, Graduate School of Human and Environmental Studies, Kyoto University.

[13] Yasuyuki Tsukamoto & Hideki Tsuiki (to appear): *Properties of domain representations of spaces through dyadic subbases*. Mathematical Structures in Computer Science.
[14] Hideki Tsuki & Yasuyuki Tsukamoyo (2015): Domain Representations Induced by Dyadic Subbases. Logical Methods in Computer Science 11(1).

[15] Klaus Weihrauch (1985): Type 2 Recursion Theory. Theoretical Computer Science 38, pp. 17–33.

[16] Klaus Weihrauch (2000): Computable Analysis. Springer-Verlag.