Full automorphism groups of association schemes based on attenuated spaces

Wen Liua,b, Kaishun Wanga*

a Sch. Math. Sci. & Lab. Math. Com. Sys., Beijing Normal University, Beijing, 100875, China
b Math. & Inf. Sci. College, Hebei Normal University, Shijiazhuang, 050024, China

Abstract

The set of subspaces with a given dimension in an attenuated space has a structure of a symmetric association scheme, which is a generalization of both Grassmann schemes and bilinear forms schemes. In [K. Wang, J. Guo, F. Li, Association schemes based on attenuated space, European J. Combin. 31 (2010) 297–305], its intersection numbers were computed. In this paper, we determine its full automorphism group.

2010 AMS classification: 05E30

Key words: association scheme; full automorphism group; attenuated space.

1 Introduction

Let \mathbb{F}_q be a finite field with q elements, where q is a prime power. For two non-negative integers n and l, suppose $\mathbb{F}_q^{(n+l)}$ denotes an $(n + l)$-dimensional row vector space over \mathbb{F}_q. The set of all matrices over \mathbb{F}_q of the form

$$\begin{pmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{pmatrix},$$

where T_{11} and T_{22} are nonsingular $n \times n$ and $l \times l$ matrices respectively, forms a group under matrix multiplication, called the singular general linear group of degree $n + l$ over \mathbb{F}_q and denoted by $GL_{n+l,n}(\mathbb{F}_q)$.

Let P be an m-dimensional subspace of $\mathbb{F}_q^{(n+l)}$, denote also by P an $m \times (n + l)$ matrix of rank m whose rows span the subspace P and call the matrix P a matrix representation of the subspace P. The group $GL_{n+l,n}(\mathbb{F}_q)$ acts on $\mathbb{F}_q^{(n+l)}$ by the vector matrix multiplication. This action induces an action on the set of subspaces of $\mathbb{F}_q^{(n+l)}$, i.e., a subspace P is carried by $T \in GL_{n+l,n}(\mathbb{F}_q)$ into the subspace PT. The vector space $\mathbb{F}_q^{(n+l)}$ together with this group action is called the $(n + l)$-dimensional singular linear space over \mathbb{F}_q. This concept was introduced in [10, 11].

For $1 \leq i \leq n + l$, let e_i be the vector in $\mathbb{F}_q^{(n+l)}$ whose i-th coordinate is 1 and all other coordinates are 0. Denote by E the l-dimensional subspace of $\mathbb{F}_q^{(n+l)}$ generated by

*Corresponding author. E-mail address: wangks@bnu.edu.cn
Theorem 1.3 Let X of product $(\mathbb{F}_q(n+l))$. Deng and Li determined the full automorphism group of the bilinear forms scheme \tilde{J}. Wang et al. [10] proved that the configuration hara [7] computed its character table. If l permutation $\bar{\sigma}$ where

$$R_{i,j-i} = \{(P, Q) \in X \times X | \dim(P' \cap Q') = m - i, \dim(P \cap Q) = m - j\},$$

where

$$P = \begin{pmatrix} n & l \\ P' \\ \hline \end{pmatrix}, \quad Q = \begin{pmatrix} n & l \\ Q' \\ Q'' \end{pmatrix}. \tag{1}$$

Wang et al. [10] proved that the configuration

$$\mathcal{X}_m = (X_m, \{R_{i,j-i} \}_{0 \leq i \leq \min\{m,n-m\}, 0 \leq j-i \leq \min\{m-i,j,l\}})$$

is a symmetric association scheme, and computed its intersection numbers. Recently Kurihara [7] computed its character table. If $l = 0$, the scheme \mathcal{X}_m is the Grassmann scheme $J_q(n,m)$; and if $m = n$, the scheme \mathcal{X}_m is the bilinear forms scheme $H_q(n,l)$. We refer readers to [1, 3] for the general theory of association schemes.

Let $\mathcal{X} = (X, \{R_{i,j} \}_{0 \leq i \leq n})$ be an association scheme. If a permutation σ on X induces a permutation $\bar{\sigma}$ on $\{0, 1, \ldots, d\}$ by $\bar{\sigma}(x), \bar{\sigma}(y) \in R_{\bar{\sigma}(i)}$ for $(x, y) \in R_i$, then σ is called an automorphism of \mathcal{X}. The set of all automorphisms of \mathcal{X} becomes a group, called the full automorphism group of \mathcal{X}, denoted by $\text{Aut}(\mathcal{X})$. An automorphism of \mathcal{X} is called an inner automorphism if it induces the identity permutation on $\{0, 1, \ldots, d\}$. Clearly, the set of all inner automorphisms of \mathcal{X} is a normal subgraph of $\text{Aut}(\mathcal{X})$, which is called the inner automorphism group of \mathcal{X}, denoted by $\text{Inn}(\mathcal{X})$.

In 1949, Chow determined the full automorphism group of the Grassmann scheme $J_q(n,m)$.

Theorem 1.1 ([4]) Let $1 < m < n - 1$. Then

$$\text{Aut}(J_q(n,m)) = \begin{cases} \text{PGL}(n, \mathbb{F}_q), & \text{if } n \neq 2m, \\ \text{PGL}(n, \mathbb{F}_q).2, & \text{if } n = 2m. \end{cases}$$

In [5], Fujisaki et al. determined the full automorphism group of the twist Grassmann scheme $J_q(2e+1, e)$. This scheme has the same parameters as $J_q(2e+1, e)$; see [2]. In 1965, Deng and Li determined the full automorphism group of the bilinear forms scheme $H_q(n,l)$.

Theorem 1.2 ([5]) Let n and l be two integers not less than 2. Then

$$\text{Aut}(H_q(n,l)) = \begin{cases} \text{PGL}(n+l, \mathbb{F}_q)_E, & \text{if } n \neq l, \\ \text{PGL}(n+l, \mathbb{F}_q)_E.2, & \text{if } n = l. \end{cases}$$

Observe that \mathcal{X}_1 is an association scheme with two classes. Since one relation graph is $\binom{n}{1}$ copies of the complete graph on q^j vertices, it’s full automorphism group is the wreath product $S_q \wr S_{\binom{n}{1}}$.

Motivated by above results, in this paper we shall determine the full automorphism group of \mathcal{X}_m, and obtain the following result.

Theorem 1.3 Let $1 < m < n - 1$ and $l > 0$. Then $\text{Aut}(\mathcal{X}_m) = \text{PGL}(n+l, \mathbb{F}_q)_E$.

2
2 Proof of Theorem 1.3

In this section we always assume that $1 < m < n - 1$ and $l > 0$. For each integer k with $2 \leq k \leq m$, let $\Gamma^{(k)}$ denote the relation graph $(X_k, R_{1,0})$ of X_k. We first determine the full automorphism group of $\Gamma^{(m)}$, then prove Theorem 1.3.

Note that an m-dimensional subspace P of form (1) in $\mathbb{F}_q^{(n+l)}$ is a vertex of $\Gamma^{(m)}$ if and only if rank(P^t) = m. Therefore, two vertices P, Q of $\Gamma^{(m)}$ are adjacent if and only if their sum $P + Q$ is a subspace of type $(m + 1, 0)$.

Lemma 2.1 Let P and Q be two vertices as in (1) of $\Gamma^{(m)}$. If dim($P' \cap Q'$) = $m - i$ and dim($P \cap Q$) = $m - j$, then the distance of P and Q

$$\partial(P, Q) = \begin{cases} j, & \text{if } i > 0, \\ j + 1, & \text{if } i = 0. \end{cases}$$

Proof. In the Grassmann graph $J_q(n+l, m)$, two vertices x and y are at distance j if and only if dim($x \cap y$) = $m - j$. Since $\Gamma^{(m)}$ is a subgraph of $J_q(n+l, m)$, by dim($P \cap Q$) = $m - j$
we have $\partial(P, Q) \geq j$. Write $P \cap Q = W = (W', W'')$ and

$$P = \begin{pmatrix} W' & W'' \\ \alpha'_1 & \alpha''_1 \\ \vdots & \vdots \\ \alpha'_{j-i} & \alpha''_{j-i} \\ \delta'_1 & \delta''_1 \\ \vdots & \vdots \\ \delta'_i & \delta''_i \end{pmatrix}, \quad Q = \begin{pmatrix} W' & W'' \\ \alpha'_1 & \beta''_1 \\ \vdots & \vdots \\ \alpha'_{j-i} & \beta''_{j-i} \\ \gamma'_1 & \gamma''_1 \\ \vdots & \vdots \\ \gamma'_i & \gamma''_i \end{pmatrix}.$$

Case 1 $i > 0$. If $j = i$, write

$$P_1 = \begin{pmatrix} W' & W'' \\ \gamma'_1 & \gamma''_1 \\ \delta'_2 & \delta''_2 \\ \vdots & \vdots \\ \delta'_i & \delta''_i \end{pmatrix}, \quad P_2 = \begin{pmatrix} W' & W'' \\ \gamma'_1 & \gamma''_1 \\ \delta'_2 & \delta''_2 \\ \vdots & \vdots \\ \delta'_i & \delta''_i \end{pmatrix}, \quad \ldots, P_{j-1} = \begin{pmatrix} W' & W'' \\ \gamma'_{i-1} & \gamma''_{i-1} \\ \delta'_i & \delta''_i \end{pmatrix},$$

then $(P, P_1, \ldots, P_{j-1}, Q)$ is a path of length j from P to Q. Therefore $\partial(P, Q) = j$.

If $j > i$, write

$$P_1 = \begin{pmatrix} W' & W'' \\ \alpha'_1 & \alpha''_1 \\ \vdots & \vdots \\ \alpha'_{j-i-2} & \alpha''_{j-i-2} \\ \alpha'_{j-i-1} & \alpha''_{j-i-1} \\ \gamma'_1 & \gamma''_1 \\ \delta'_1 & \delta''_1 \\ \vdots & \vdots \\ \delta'_i & \delta''_i \end{pmatrix}, \quad P_2 = \begin{pmatrix} W' & W'' \\ \alpha'_1 & \alpha''_1 \\ \vdots & \vdots \\ \alpha'_{j-i-2} & \alpha''_{j-i-2} \\ \alpha'_{j-i} & \beta''_{j-i} \\ \gamma'_1 & \gamma''_1 \\ \delta'_1 & \delta''_1 \\ \vdots & \vdots \\ \delta'_i & \delta''_i \end{pmatrix}, \quad \ldots, P_{j-i} = \begin{pmatrix} W' & W'' \\ \alpha'_{j-i-1} & \beta''_{j-i-1} \\ \alpha'_{j-i} & \beta''_{j-i} \\ \gamma'_1 & \gamma''_1 \\ \delta'_1 & \delta''_1 \\ \vdots & \vdots \\ \delta'_i & \delta''_i \end{pmatrix},$$

then \((P, P_1, \ldots, P_{j-i}) \) is a path of length \(j-i \). Since \(\dim(P_{j-i} \cap Q') = \dim(P_{j-i} \cap Q) = m-i \), we have \(\partial(P_{j-i}, Q) = i \). It follows that \(\partial(P, Q) = j \).

Case 2 \(i = 0 \).

The neighborhood of \(P \) consists of vertices

\[
R = \left(\begin{array}{cc}
P' & \tilde{P}' \\
\xi' & \tilde{\xi}''
\end{array} \right),
\]

where \(\tilde{P} = \left(\begin{array}{cc}
P' & \tilde{P}' \\
\xi' & \tilde{\xi}''
\end{array} \right) \) is an \((m-1)\)-dimensional subspace of \(P \) and \(\xi' \in \mathbb{F}(n) \setminus P' \).

If \(W \subseteq P \), then \(\dim(R \cap Q) = m - j \) and \(\dim\left(\left(\begin{array}{cc}
P' & \tilde{P}' \\
\xi' & \tilde{\xi}''
\end{array} \right) \cap Q' \right) = m - 1 \). By Case 1, one gets \(\partial(R, Q) = j \). If \(W \not\subseteq \tilde{P} \), similarly we have \(\partial(R, Q) = j + 1 \). Hence, \(\partial(P, Q) = j + 1 \). \(\Box \)

Next we shall study the first and second subconstituents of \(\Gamma^{(m)} \). Lemma 2.1 in [10] implies that \(PTL(n + l, \mathbb{F}_q) \) acts transitively on each \(R_{i,j} \), in particular the graph \(\Gamma^{(m)} \) is vertex-transitive. So we only need to consider the subconstituents with respect to the vertex

\[
M = \left(\begin{array}{ccc}
m & n - m & l \\
I & 0 & 0 \end{array} \right) = \left(\begin{array}{ccc}
M' & M'' \end{array} \right).
\]

Let \(\Gamma_{i,j-1}(M) \) be the set of vertices \(P \) of \(\Gamma^{(m)} \) satisfying \((M, P) \in R_{i,j-1} \). By Lemma 2.2, the second subconstituent \(\Gamma_2(M) \) has a partition

\[
\Gamma_{0,1}(M) \cup \Gamma_{1,1}(M) \cup \Gamma_{2,0}(M).
\]

For simplicity, write

\[
P(U; \alpha, \beta, \gamma) = \left(\begin{array}{ccc}
m & n - m & l \\
U & 0 & 0 \end{array} \right) \alpha \beta \gamma t,
\]

\[
P(U; \alpha_1, \beta_1, \gamma_1; \alpha_2, \beta_2, \gamma_2) = \left(\begin{array}{ccc}
m & n - m & l \\
U & 0 & 0 \end{array} \right) \alpha_1 \beta_1 \gamma_1 \alpha_2 \beta_2 \gamma_2 t,
\]

where \(\operatorname{rank}(U) = t \), \(\operatorname{rank}(\beta \gamma) = 1 \) and \(\operatorname{rank}\left(\begin{array}{cc}
\beta_1 & \gamma_1 \\
\beta_2 & \gamma_2
\end{array} \right) = 2 \). Then

\[
\Gamma_1(M) = \{ P(W; \alpha, \beta, \gamma) \mid \operatorname{rank}(W) = m - 1, \beta \neq 0 \},
\]
\[
\Gamma_{0,1}(M) = \{ P(W; \alpha, 0, \gamma) \mid \operatorname{rank}(W) = m - 1, \alpha \notin W, \gamma \neq 0 \},
\]
\[
\Gamma_{1,1}(M) = \{ P(U; \alpha_1, \beta_1, \gamma_1; \alpha_2, 0, \gamma_2) \mid \operatorname{rank}(U) = m - 2, \alpha_2 \notin U, \beta_1 \neq 0, \gamma_2 \neq 0 \},
\]
\[
\Gamma_{2,0}(M) = \{ P(U; \alpha_1, \beta_1, \gamma_1; \alpha_2, \beta_2, \gamma_2) \mid \operatorname{rank}(U) = m - 2, \operatorname{rank} \left(\begin{array}{c}
\beta_1 \\
\beta_2
\end{array} \right) = 2 \}.
\]

Lemma 2.2 ([4] Corollary 1.9) Let \(0 \leq k \leq m \leq n \). Then the number of \(m \)-dimensional subspaces containing a given \(k \)-dimensional subspace in \(\mathbb{F}^n \) is equal to \(\left[\frac{n-k}{m-k} \right] \).

Lemma 2.3 (i) Let \(P(W; \alpha, 0, \gamma) \in \Gamma_{0,1}(M) \) and \(P(W'; \alpha', \beta', \gamma') \in \Gamma_1(M) \). Then the two vertices are adjacent in \(\Gamma^{(m)} \) if and only if \(W = W' \). In particular, each vertex in \(\Gamma_{0,1}(M) \) has \(q^l + 1 \left[\frac{n-m}{1} \right] \) neighbors in \(\Gamma_1(M) \);

(ii) Each vertex in \(\Gamma_{1,1}(M) \) has \(q^2 \) neighbors in \(\Gamma_1(M) \);

(iii) Each vertex in \(\Gamma_{2,0}(M) \) has \((q+1)^2 \) neighbors in \(\Gamma_1(M) \).
Proof. (i) Suppose \(P(W; \alpha, 0, \gamma) \) is adjacent to \(P(W'; \alpha', \beta', \gamma') \). If \(W \neq W' \), by \(\beta' \neq 0 \) and \(\gamma \neq 0 \) the dimension of \(P(W; \alpha, 0, \gamma) + P(W'; \alpha', \beta', \gamma') \) is \(m + 2 \), a contradiction. The converse is immediate from \(\alpha \notin W \) and \(\beta' \neq 0 \). Therefore, the first statement is valid.

Since \(P(W; \alpha', \beta', \gamma') \) is of type \((m, 0)\), the rank of \(\begin{pmatrix} W & 0 \\ \alpha' & \beta' \end{pmatrix} \) is \(m \). By Lemma 2.2 the subspace \(\begin{pmatrix} W & 0 \\ \alpha' & \beta' \end{pmatrix} \) with \(\beta' \neq 0 \) has \(q^\left[\frac{n-m}1\right] \) choices. For a given subspace \(\begin{pmatrix} W & 0 \\ \alpha' & \beta' \end{pmatrix} \), there are \(q \) choices for \(\gamma' \). Hence, (i) holds.

(ii) Given a vertex \(P(U; \alpha_1, \beta_1, \gamma_1; \alpha_2, 0, \gamma_2) \in \Gamma_{1,1}(M) \). We claim that this vertex is adjacent to \(P(W; \alpha, \beta, \gamma) \in \Gamma_1(M) \) if and only if \(U \subseteq W \) and \(P(W; \alpha_1, \beta_1, \gamma_1; \alpha_2, 0, \gamma_2) \) is a subspace of type \((m + 1, 0)\) containing \(P(W; \alpha, \beta, \gamma) \). Suppose \(P(W; \alpha, \beta, \gamma) \) is adjacent to \(P(U; \alpha_1, \beta_1, \gamma_1; \alpha_2, 0, \gamma_2) \). If \(U \not\subseteq W \), by \(\beta_1 \neq 0 \) and \(\gamma_2 \neq 0 \), the dimension of \(P(W; \alpha, \beta, \gamma) + P(U; \alpha_1, \beta_1, \gamma_1; \alpha_2, 0, \gamma_2) \) is at least \(m + 2 \), a contradiction. It follows that \(U \subseteq W \). Then \(P(W; \alpha, \beta, \gamma) + P(U; \alpha_1, \beta_1, \gamma_1; \alpha_2, 0, \gamma_2) = P(W; \alpha, \beta, \gamma) + P(U; \alpha_1, \beta_1, \gamma_1; \alpha_2, 0, \gamma_2) \) and so \(P(W; \alpha_1, \beta_1, \gamma_1; \alpha_2, 0, \gamma_2) \) is a subspace of type \((m + 1, 0)\) containing \(P(W; \alpha, \beta, \gamma) \). The converse is immediate. Hence, our claim is valid.

By Lemma 2.2 the number of \((m - 1)\)-subspaces \(W \) in \(\mathbb{F}^{(m)} \) containing \(U \) is \(q + 1 \). Observe that \(P(W; \alpha_1, \beta_1, \gamma_1; \alpha_2, 0, \gamma_2) \) is of type \((m + 1, 0)\) if and only if \(W \neq \begin{pmatrix} U \\ \alpha_2 \end{pmatrix} \). Then \(W \) has \(q \) choices. For a fixed \(W \), by Lemma 2.2 again \(P(W; \alpha, \beta, \gamma) \) has \(q \) choices. Therefore, (ii) holds.

The proof of (iii) is similar to that of (ii), and will be omitted.

For a subspace \(W \) of type \((m - 1, 0)\) in \(\mathbb{F}_q^{(n+l)} \), let \(C(W) \) be the set of all vertices of \(\Gamma^{(m)} \) containing \(W \). For convenience we denote by \(\Delta \) the induced subgraph of \(\Gamma \) on \(\Gamma^{(m)} \).

Lemma 2.4 Let \(W \) be a subspace of type \((m - 1, 0)\) in \(\mathbb{F}_q^{(n+l)} \). Then \(C(W) \) is isomorphic to the complete multipartite graph \(K^{(n-m+1)}(q^l) \).

Proof. Let \(W = \begin{pmatrix} W' & W'' \end{pmatrix} \). Then \(C(W) \) consists of vertices

\[
\begin{pmatrix}
W' & W'' \\
\alpha' & \alpha''
\end{pmatrix},
\]

where \(\text{rank} \left(\begin{pmatrix} W' \\ \alpha' \end{pmatrix} \right) = m \). By Lemma 2.2 the number of \(m \)-dimensional subspaces \(\begin{pmatrix} W' \\ \alpha' \end{pmatrix} \) in \(\mathbb{F}_q^{(n)} \) is \(\left[\frac{n-m+1}1\right] \). Since \(\alpha'' \) has \(q^l \) choices, the subgraph \(C(W) \) has \(q^l \left[\frac{n-m+1}1\right] \) vertices.

For a given \(m \)-dimensional subspace \(\begin{pmatrix} W' \\ \alpha' \end{pmatrix} \) in \(\mathbb{F}_q^{(n)} \), the vertices of form (2) form an independent set with \(q^l \) vertices. Note that all these independent sets form a partition of \(C(W) \). Since each vertex in an independent set is adjacent to any vertex in the remaining independent sets, the desired result follows.

Lemma 2.5 If an induced subgraph \(\Delta \) of \(\Gamma^{(m)} \) is isomorphic to \(K^{(n-m+1)}(q^l) \), then \(\Delta \) is a subgraph \(C(W) \), where \(W \) is a subspace of type \((m - 1, 0)\) in \(\mathbb{F}_q^{(n+l)} \).

Proof. Since \(\Gamma^{(m)} \) is vertex-transitive, we may assume that \(\Delta \) contains \(M \). Pick \(X \in \Delta \cap \Gamma_1(M) \), and write \(M \cap X = W \). Then

\[
W = \begin{pmatrix} W' & 0 & 0 \\
\alpha' & \beta' & \gamma'
\end{pmatrix}, \quad X = P(W'; \alpha', \beta', \gamma').
\]
Now we shall show that $\Delta = C(W)$. Suppose $\Delta \cap (\Gamma_{1,1}(M) \cup \Gamma_{2,0}(M)) \neq \emptyset$. Pick a vertex P from this set. Then the vertices P and M have $q^{i+1\lfloor \frac{n-m}{i}\rfloor}$ common neighbors in Δ, a contradiction to Lemma 2.3 (ii), (iii). So $\Delta \cap \Gamma_{0,1}(M) \neq \emptyset$. Pick a vertex $P(W''; a', 0, \gamma') \in \Delta \cap \Gamma_{0,1}(M)$. Since Δ is a complete multipartite graph, the vertices X and $P(W''; a', 0, \gamma')$ are adjacent. By Lemma 2.3 (i), one gets $W' = W''$. It follows that $\Delta \cap \Gamma_{0,1}(M) \subseteq C(W)$. Similarly, we have $\Delta \cap \Gamma_1(M) \subseteq C(W)$. Hence, $\Delta \subseteq C(W)$. By Lemma 2.4 the subgraphs Δ and $C(W)$ have the same number of vertices, so $\Delta = C(W)$.

Lemma 2.6 $\text{Aut}(\Gamma^m) = \text{PGL}(n+l, \mathbb{F}_q)E$.

Proof. We first prove that the result holds for $m = 2$. Pick any automorphism τ of $\Gamma^{(2)}$. Then τ is a permutation on the set of lines and permutes the points of the attenuated space $A_q(n,l)$. By Deng and Li’s result in [3], the automorphism τ can be extended to a collineation fixing E of the projective space $PG(n+l, \mathbb{F}_q)$. By the fundamental theorem of the projective geometry [3, Theorem 2.23], we have $\tau \in \text{PGL}(n+l, \mathbb{F}_q)E$. Thus $\text{Aut}(\Gamma^{(2)}) \subseteq \text{PGL}(n+l, \mathbb{F}_q)E$.

On the other hand, $\text{PGL}(n+l, \mathbb{F}_q)E \leq \text{Aut}(\Gamma^{(2)})$. Hence, $\text{Aut}(\Gamma^{(2)}) = \text{PGL}(n+l, \mathbb{F}_q)E$.

Now let $m \geq 3$ and σ_m be an automorphism of the graph Γ^m. By Lemmas 2.3 and 2.5 the automorphism σ_m induces a permutation on the set $\{C(W) \mid W \in X_{m-1}\}$, and further induces a permutation σ_{m-1} on X_{m-1}. For any two adjacent vertices W_{m-1}, W'_{m-1} of $\Gamma^{(m-1)}$, we have $C(W_{m-1}) \cap C(W'_{m-1}) \neq \emptyset$. Therefore $\sigma_{m}(C(W_{m-1}) \cap C(W'_{m-1})) = C(\sigma_{m-1}(W_{m-1})) \cap C(\sigma_{m-1}(W'_{m-1})) \neq \emptyset$, which implies that the two vertices $\sigma_{m-1}(W_{m-1})$ and $\sigma_{m-1}(W'_{m-1})$ are adjacent in $\Gamma^{(m-1)}$. Hence, $\sigma_{m-1} \in \text{Aut}(\Gamma^{(m-1)})$.

By induction, for each $3 \leq k \leq m$, the map $f_k : \sigma_k \mapsto \sigma_{k-1}$ is a homomorphism from $\text{Aut}(\Gamma^{(k)})$ to $\text{Aut}(\Gamma^{(k-1)})$. We claim that f_k is injective. Suppose $\sigma_{k-1} = i$, the identity permutation on X_{k-1}. For each vertex W_k of $\Gamma^{(k)}$, there exist two vertices W_{k-1} and W'_{k-1} of $\Gamma^{(k-1)}$ such that $W_k = W_{k-1} + W'_{k-1}$. Since $\{W_k\} = C(W_{k-1}) \cap C(W'_{k-1})$, we have $\{\sigma_k(W_k)\} = C(\sigma_{k-1}(W_{k-1})) \cap C(\sigma_{k-1}(W'_{k-1})) = \{W_k\}$. Hence our claim is valid. It follows that $|\text{Aut}(\Gamma^m)| \leq |\text{Aut}(\Gamma^{(2)})|$. Since $\text{PGL}(n+l, \mathbb{F}_q)E$ is a subgroup of $\text{Aut}(\Gamma^m)$, the desired result follows.

Proof of Theorem 1.3. The fact that $\text{PGL}(n+l, \mathbb{F}_q)E$ acts transitively on each $R_{i,j-i}$ implies $\text{Im}(\mathbb{X}_m) = \text{Aut}(\Gamma^m)$. In order to show our result, it suffices to prove that all valencies $n_{i,j-i}$’s of \mathbb{X}_m are pairwise distinct.

By [10] we have

$$n_{i,j-i} = q^{a^2 + il + \frac{i(i+1)(j-i)}{2}} \frac{n-m}{i} \frac{m-m}{j} \frac{m-i}{j-i} \prod_{s=l-(j-i)+1}^{l} (q^s - 1).$$

Suppose $n_{a,b} = n_{a',b'}$. Since q is a prime power, we obtain

$$a^2 + al + \frac{(b-a)(b-a-1)}{2} = a'^2 + a'l + \frac{(b'-a')(b'-a'-1)}{2}.$$ \hspace{1cm} (3)

$$\prod_{s=(b-a)+1}^{l} (q^s - 1) = \prod_{s=(b'-a')+1}^{l} (q^s - 1).$$ \hspace{1cm} (4)

Simplifying (3), we have

$$2(a-a')(a+a'+l) = ((b'-a')-(b-a))(b'-a'+b-a-1).$$ \hspace{1cm} (5)
Let

\[f_{i,j}(x) = \prod_{s=1}^{i} (x^s - 1)^2 \prod_{s=1}^{j-i} (x^s - 1). \]

\[g_{i,j}(x) = \prod_{s=n-m-i+1}^{n-m} (x^s - 1) \prod_{s=m-i+1}^{m} (x^s - 1) \prod_{s=m-j+1}^{m-i} (x^s - 1) \prod_{s=l-j+i+1}^{l} (x^s - 1). \]

The equality (4) implies that

\[f_{a,b}(x) g_{a',b'}(x) = f_{a',b'}(x) g_{a,b}(x) \]

for all prime powers \(q \), so \(f_{a,b}(x) g_{a',b'}(x) = f_{a',b'}(x) g_{a,b}(x) \). Since 1 is a root with multiplicity \(2a + (b - a) + 2a' + 2(b' - a') \) of \(f_{a,b}(x) g_{a',b'}(x) \) and 1 is a root with multiplicity \(2a + 2(b - a) + 2a' + (b' - a') \) of \(f_{a',b'}(x) g_{a,b}(x) \), we obtain \(b' - a' = b - a \). By (5) one gets \(a' = a \), and so \(b' = b \). Hence the desired result follows.

\[\blacksquare \]

Acknowledgement

W. Liu’s research is supported by NSFC(11171089, 11271004). K. Wang’s research is supported by NSFC(11271047), SRFDP and the Fundamental Research Funds for the Central University of China.

References

[1] E. Bannai, T. Ito, Algebraic Combinatorics I, Association schemes, The Benjamins/Cummings Company, Inc., 1984.

[2] E.R. van Dam, J.H. Koolen, A new family of distance-regular graphs with unbounded diameter, Invent. Math. 162 (2005) 189–193.

[3] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, Heidelberg, 1989.

[4] W. Chow, On the geometry of algebraic homogeneous spaces, Ann. Math. 50 (1949) 32–67.

[5] S. Deng, Q. Li, On the affine geometry of algebraic homogeneous spaces, Acta Math. Sinica. 15 (1965) 651–663.

[6] T. Fujisaki, J.H. Koolen, M. Tagami, Some properties of the twisted Grassmann graphs, Innov. Incidence Geom. 3 (2006) 81–87.

[7] H. Kurihara, Character tables of association schemes based on attenuated spaces, arXiv:1101.3455, 2011.

[8] Z. Wan, Geometry of Matrices, World Scientific, Singapore, 1996.

[9] Z. Wan, Geometry of Classical Groups over Finite Fields, Science Press, Beijing, New York, 2002.

[10] K. Wang, J. Guo, F. Li, Association schemes based on attenuated space, European J. Combin. 31 (2010) 297–305.

[11] K. Wang, J. Guo, F. Li, Singular linear space and its application, Finite Fields Appl. 17 (2011) 395–406.