End points of clinical trials in metastatic castration-resistant prostate cancer: A systematic review

Giuseppe Colloca, Antonella Venturino, Ilaria Governato

Giuseppe Colloca, Antonella Venturino, Division of Medical Oncology, “Giovanni Borea” Hospital, I-18038 Sanremo, Italy
Ilaria Governato, Division of Medical Oncology, Santo Spirito Hospital, 00186 Roma, Italy

Author contributions: Colloca G contributed to the conception and design, acquisition and analysis of data, and preparation of the article; Venturino A contributed to the collection and interpretation of data, critical review and discussion; Governato I contributed to the acquisition and analysis of selected studies and preparation of the article; all authors approved the final version.

Correspondence to: Dr. Giuseppe Colloca, MD, Division of Medical Oncology, “Giovanni Borea” Hospital, Via Giovanni Borea 56, I-18038 Sanremo, Italy. g.colloca@katamil.com
Telephone: +39-184-536403 Fax: +39-184-536390
Received: November 14, 2013 Revised: January 19, 2014
Accepted: March 17, 2014
Published online: June 26, 2014

Abstract

AIM: To review the definition and performance of the commonly used end points in trials of systemic therapies in metastatic castration-resistant prostate cancer patients.

METHODS: A literature search was undertaken on PubMed database to identify studies meeting established criteria, with the aim of selecting randomized clinical trials and study definition and performance of their end points. The end points were grouped into three categories: overall survival (OS), time-to-event end points, and response end points. A special analysis was performed for secondary end points of the studies which documented a benefit in OS in the experimental arm. Finally, publishes analyses for surrogacy of the included end points were also reported.

RESULTS: OS, time-to-event and response end points in 31 selected trials were analyzed. OS was the primary end point in 8 studies, and the secondary end point in 22; the most reported time-to-event end points were composite end points, and the events changed among trials. A response end point was the primary end point in 9 studies, in 3 it was prostate-specific antigen (PSA)-related, in 3 pain-related and in 3 mixed. A response end point was the secondary end point in 19 studies: PSA response and radiologic response were the most frequently used secondary end points in 19 and 11 trials, respectively, while pain response was used in 5 studies.

CONCLUSION: A homogeneous definition of progression in future trials is mandatory. Among response end points, pain-response and PSA-response appear to be the most reliable.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Metastatic castration-resistant prostate cancer; End points; Progression-free survival; Prostate-specific antigen; Chemotherapy; Palliative response

Core tip: The approval in the last decade of new drugs that have increased survival of patients with metastatic castration-resistant prostate cancer (mCRPC) has weakened the role of overall survival (OS) as end point. The prevailing bone-only spread of mCRPC severely limits disease evaluation using the standard criteria of conventional radiology. On the other hand, recent retrospective analyses of prostate-specific antigen response after chemotherapy did not support this measure as a surrogate end point of OS. This lack of reliable surrogate end points is a problem for the conduction of phase II studies which test the activity of new drugs.

Colloca G, Venturino A, Governato I. End points of clinical trials in metastatic castration-resistant prostate cancer: A systematic review. World J Methodol. 2014; 4(2): 123-132 Available from:
INTRODUCTION
Prostate cancer (PC) is the most common malignancy in elderly men and the second leading cause of cancer death in Europe[1]. Death due to PC occurs in the later stages of the disease course in metastatic hormone-sensitive and mainly in metastatic castration-resistant prostate cancer (mCRPC)[2]. The median time from diagnosis of metastasis to death is 5 years[3].

Since 1996 a role for systemic antineoplastic treatment has been recognized, when a clinical trial, for the first time, reported a reduction in disease-related pain in patients undergoing cytotoxic chemotherapy with mitoxantrone and prednisone[4]. Subsequent studies have documented a benefit in overall survival (OS) for patients receiving systemic therapy with docetaxel[5,6], cabazitaxel[7], abiraterone[8], enzalutamide[9] and radium-223[10].

Due to the prevalent bone dissemination of mCRPC, metastatic disease is difficult to measure and to evaluate using the response evaluation criteria in solid tumors (RECIST)[11]. Therefore, the study of surrogate endpoints (SEs) of OS and the development of combined criteria for disease assessment were strongly supported by the prostate specific antigen working group (PSAWG)[12]. However, the prostate specific antigen (PSA)-response after first-line chemotherapy has not received validation as a SE of OS[13]. It lacks prospective validation[14,15], and the analysis of data from the TAX327 study reported wide confidence intervals around the estimate of PSA decline > 30%[16]. Similarly, PSA-response failed to be a SE of OS even after second-line chemotherapy[16].

As a result, the time-to-event measures have attracted the attention of researchers as possible SEs of OS, as they were reported by the Prostate Cancer Working Group 2 (PCWG2) in 2008, and are summarized in Table 1[17]. However, none of these measures, to date, has been validated as a SE of OS. Parallel to the increase in the number of effective drugs for mCRPC and the increase in median OS of patients, in the last decade there has been a rapid evolution of possible end points related to the disease and the patient.

The purpose of this systematic review is to examine the end points of randomized prospective studies of systemic treatments in mCRPC patients.

MATERIALS AND METHODS
A literature search of randomized trials of systemic treatments in patients with mCRPC was undertaken in October 2013. This search was performed on the electronic database PubMed. The criteria used for the search were as follows: “prostate cancer” and (“castration resistant” or “hormone refractory”) or (“chemotherapy” or “docetaxel” or “mitoxantrone” or “cabazitaxel” or “estramustine” or “radium” or “abiraterone” or “enzalutamide” or “prednisone” or “hydrocortisone” or “zoledronate”).

The search was restricted to randomized prospective studies published from September 1993 to September 2013. Editorials, commentaries, letters, academic papers and abstracts were excluded, reviews were considered for references, but were not included in the final analysis, as well as other non-randomized studies. The participants were adult patients with a diagnosis of mCRPC who received systemic treatment, hormonal, cytotoxic or radiometabolic. A first selection of eligible studies from PubMed was performed independently by two authors (Colloca G and Governato I), who selected, by title and abstract, randomized studies that included patients with mCRPC and reported the analysis of one or more end points. Candidate articles were then selected for eventual inclusion in the review. Further literature was identified from the references lists of these articles. Differences of opinion were resolved by discussion or by the third reviewer (Venturino A).

This was followed by a further analysis of the selected articles, and only those that examined OS and at least one end point were included in the final analysis. The end points were grouped into three categories: overall survival, time-to-event end points, and response end points. Results of clinical trials and analyses for surrogacy of the included end points were discussed. A special analysis was performed for secondary end points in the 6 studies that documented a benefit in OS in the experimental arm. When the final report of a study did not supply adequate data on the secondary end points, further details were sought in the original protocol of the study, sometimes provided as an appendix on the journal’s website, or from abstracts, comments and revisions, available at other websites.

RESULTS
From 1819 reports in PubMed, and subsequent evaluation of the reference lists of selected papers, 69 candidate articles were identified.

Following analysis and selection of manuscripts, 41 eligible articles were identified, which referred to the results of 31 prospective randomized studies. These studies were included in the analysis.

OS
OS was the primary end point in 14 trials, as summarized in Table 2. OS was reported as a secondary end point in 17 studies. OS was uniquely defined as the time from randomization to death from any cause. All six studies that changed the standard of care of mCPRC patients had OS as the primary end point.

Time-to-event end points
A time-to-event end point was the primary end point in 8 studies, as shown in Table 3. Only two studies reported a
significant benefit in the experimental arm, documenting the effect of treatment with mitoxantrone or vinorelbine in patients with mCRPC; the USOR study documented a time-to-treatment failure (TTTF) of 8.1 mo vs 4.1 mo for the mitoxantrone and prednisone arm vs prednisone alone [28]; another study reported a significantly higher progression-free survival (PFS) of 3.7 mo vs 2.8 mo for the combination of vinorelbine plus hydrocortisone vs the hydrocortisone arm [29].

Time-to-progression (TTP) was the primary end point in 3 studies, PFS in 2, TTTF in 2, and time-to-subjective-progression in another trial. The definition of events related to progression varied between trials. In the EORTC trial, TTP was evaluated relative to the best condition, observed at the start of treatment or obtained during treatment; this occurred if patients had an increase in pain score by at least one level, increase in the daily analgesic dose by at least 25%, the need for additional pain treatment, and WHO performance status deterioration by at least one level [27]. In the Sipuleucel-T study, TTP was defined as progressive disease on serial radiographic imaging tests, new cancer-related pain associated with a radiographic anatomic correlation, or other clinical events consistent with progression (spinal cord compression, nerve root compression, pathologic fracture) [30]. In the Atrasentan trial, TTP was determined according to radiographic (different criteria to define progression of bone lesions and soft-tissue lesions) and clinical measures (metastatic pain, skeletal-related events, requirement of a new intervention) [31]. PFS was also a composite end point in the vinorelbine trial, in which it was defined as the time from randomization until progression or death, last news or initiation of a new therapy; the event of progression was the first among radiologic, serologic or pain-related events [29]. PFS in the PROSTVAC trial was related to radiologic progression by RECIST criteria or to the appearance of at least two new lesions on a bone scan, even if patients who developed clinical signs or symptoms of progression, but who did not meet the radiologic criteria were also considered to have progressed at the discretion of the investigator [15]. TTTF was the primary end point in two positive trials: in the USOR trial it was an aggregate end point, defined as the interval between the start of treatment and occurrence of progressive disease, removal from study or initiation of other antitumor therapy; in this study, progressive disease was radiologic only, by RECIST criteria [28]; the PROSTv study used a different definition of TTTF, calculated from randomization to first disease progression (PSA or measurable), unacceptable toxic effects, death or discontinuation of therapy for any reason [33].

Time-to-event end points were reported as secondary end points in 22 studies. In Table 4 these studies are grouped according to the event that defined the measure. The events most often used to define the end point were radiologic progression and PSA progression, in 7 and 6 studies, respectively, although 9 studies used a composite end point of progression. A “subjective” progression was the primary end point in the DAPROCA 9002 study [29], and was defined as an increase in a score including can-

| Table 1 Prostate cancer working group-2 suggested outcome measures for metastatic castration-resistant prostate cancer trials |
|-------------------------------|--|
| **Progression criteria** | **Outcome measure** |
| PSA | A favorable effect on PSA may be delayed for 12 wk or more, even for a cytotoxic drug |
| Bone metastases | The appearance of ≥ 2 new lesions, and, for the first reassessment only, the first radiologic scan performed 6 or more weeks later that shows a minimum of 2 or more additional new lesions. The date of progression is the date of the first scan showing the changes |
| Soft tissue lesions | RECISt criteria, with the additional requirement that progression at first assessment is confirmed by a second scan 6 or more weeks later. For some treatments, a lesion may increase in size before it decreases |
| Symptoms | Consider independently of other outcome measures. Document pain/analgnesia at entry and measure repeatedly at 3- to 4-wk intervals. Ignore early changes (≤ 12 wk) in pain or HRQOL in the absence of compelling evidence of disease progression. |

PFS: Prostate-specific antigen; **RECIST**: Response evaluation criteria in solid tumors; **HRQOL**: Health-related quality of life.
Disease progression has had a very variable definition in studies of mCRPC. In the SWOG 99-16, progression was defined as the occurrence of a 50% increase or an increase of 10 cm² in the sum of measurements of metastatic lesions over the sum at baseline, reappearance of any lesion that had disappeared, appearance of any new lesion or death. A more recent study, the SPARC study, calculated PFS as the time from randomization to the first occurrence of tumor progression, skeletal-related events, symptomatic progression, or death from any cause, while the definition in the TROPIC study also included PSA progression. Finally, progression has very often been defined by mixed criteria, either as a radiographic event according to RECIST criteria or scintigraphic progression, often the appearance of two or more new lesions on a bone scan, or as clinical progression or serological progression, and the first of these events is considered as the decisive event to define the date of progression.

Treatment failure has been reported as a composite outcome, which usually includes the first event in the progression of disease, the occurrence of unacceptable toxicity, patient refusal to continue therapy, removal from the study or the beginning of another antineoplastic treatment. Time to treatment failure was reported as the primary end point in 2 trials.

Response end points
A response end point was the primary end point in 9 studies, as summarized in Table 5 and 6. The end point was a palliative response in three studies, a PSA-response in 2, a double response (PSA and radiologic) in one, and a mixed response in the other 3 trials. Only two studies showed a positive result in the experimental arm: the ECOG 3882 study reported a higher mixed response rate, 63% vs 27% for diethylstilbestrol plus doxorubicin, and the CALGB 9583 trial documented a higher mixed response rate after antiandrogen withdrawal in the ketoconazole plus hydrocortisone arm.

The CALGB 9181 study provided a mixed response

Table 2 Characteristics of randomized clinical trials including overall survival as the primary end point after first-line and/or second-line medical treatment of metastatic castration-resistant prostate cancer

Trial	Arms	No. pts	Publication year	Main conclusion	Median OS
LSG Trial	LIA	160	1998	After adjustment for baseline prognostic factors, HR for OS favored the first arm	10.3 mo
CALGB 9182	CPA	161	1999	Better PSA-RR and PFS in the first arm	12.3 mo
HOG/FNC Trial	VBL	95	1999	Better PSA-RR and PFS in the first arm	11.9 mo
SWOG 9916	DOC	338	2004	Longer OS in the first arm	17.5 mo
TAX327	MXN	337	2004	DOC-based chemotherapy is the new standard first-line treatment of mCRPC	16.5 mo
3SPARC	SPT	635	2009	Better PSA-RR in the first arm	61.3 wk
IMPACT	Placebo	315	2010	Similar results	61.4 wk
3COU-AA-301	ABI	797	2011	ABI hormonal therapy is effective in mCRPC progressing to DOX	14.8 mo
ASCENT-2	Placebo	398	2011	ABI + PDN	10.9 mo
CALGB 90401	Placebo	477	2011	DN101 is inferior to PDN	17.8 mo
CALGB 90401	Placebo	476	2012	Better PSA-RR and PFS in the first arm	20.2 mo
AFFIRM	ENZ	900	2012	ENZ hormonal therapy is effective in mCRPC progressing to DOX	18.4 mo
ENTHUSE M1C	Placebo	399	2013	ENZ + ZBT	13.6 mo
3ALSYMPCA	Radium-223	614	2013	Radium-223 effective in mCRPC with painful bone metastases	14.9 mo

Note: The study was reported as the primary end point in 2 trials.

*Statistically significant difference; †Trial of second-line medical treatment; ‡Trial of first or second-line medical treatment.
end point, which included the classic radiological criteria, when applicable, PSA response and bone scan evaluation, but the latter was used only to define progression\(^1\). Two distinct response end points, radiologic response and PSA response, were the primary end points in the INT 0159 study\(^2\). In the ECOG 3882 trial, all patients were periodically evaluated by bone scan, serum acid phosphatase, and clinical status. There were reported internal criteria in the study to define the scintigraphic response and the serological response of acid phosphatase; a clinical response derived from the reduction of a point from baseline on the ECOG scale, an increase of 5\% in weight, or an increase in hemoglobin of 2 g for at least 3 mo. In this study a scale of priorities was formalized to define progression: in patients with radiologically measurable disease, RECIST criteria were applied, and only in the case of radiologic stability a worsening of bone scintigraphy or of clinical status were sufficient criteria for assigning progression\(^3\). In the CALGB 9583 study, patients with measurable disease were considered responsive only if they reported a reduction of at least 50\% in the sum of the products of the target lesions, but this was associated with a reduction in baseline PSA of 75\% and confirmed after 2 wk\(^4\).

Response end points were also used as secondary end points in 19 studies, as reported in Table 7. PSA response

Table 3 Characteristics of randomized clinical trials including time-to-event measures as the primary end point after first line medical treatment of metastatic castration-resistant prostate cancer

Trial	Arms	No. pts	Publication year	End point	Result (mo)
DAPROCA 9002\(^5\)	ESM Placebo	61	1997	TTSP	2.2
EORTC\(^6\)	FLT PDN	100	2001	TTP	2.3
USOR\(^7\)	MXN + PDN PDN	56	2002	TTF	8.1\(^1\)
Vinorelbine Trial\(^8\)	VNR HDC	206	2004	PFS	3.7\(^2\)
UCSF\(^9\)	SIP-T Placebo	82	2006	TTP	11.7
Atrasentan Trial\(^10\)	ATR Placebo	408	2007	TTP HR = 0.89	
PROSTVAC\(^11\)	PROSTVAC Placebo	82	2010	PFS	3.8
PROSTY\(^12\)	DOC three-weekly Placebo	184	2013	TTP	4.9
	DOC two-weekly				5.6\(^3\)

\(^1\)Statistically significant difference. ATR: Atrasentan; DOC: Docetaxel; ESM: Estramustine; FLT: Flutamide; HDC: Hydrocortisone; HR: Hazard ratio; MXN: Mitoxantrone; PDN: Prednisone; PFS: Progression-free survival; PROSTVAC: Vaccinia-PSA-TRICOM and Fowlpoc-PSA-TRICOM; SIP-T: Sipuleucel-T; TTP: Time to progression; TTSP: Time to treatment failure; VNR: Vinorelbine.

Table 4 Disease-progression-related events used to define secondary end points in randomized trials of metastatic castration-resistant prostate cancer

Progression event	Trial number	Ref.
Clinical	2	[26,34]
Pain	2	[29,35]
Skeletal-related events	4	[8-10,23]
Radiological	7	[6,8,9,22,24,25,36]
Prostate-specific antigen	6	[8-10,24,25,31]
Alkaline phosphatase	2	[10,31]
Mixed	9	[7,19,20,21,28,33,37-39]

Table 5 Characteristics of randomized clinical trials including radiologic or serological response measures as the primary end point after first line medical treatment of metastatic castration-resistant prostate cancer

Trial	Arms	No. pts	Publication year	Response-related outcome	Response rate (%)
CALGB 9181\(^13\)	MA 160 mg/die MA 640 mg/die	73 76	2000	MRR	3\% 3\%
INT 0159\(^14\)	SUR 3.1 SUR 5.3 SUR 7.6	128 124 120	2002 2002 2002	RRR 28\%/7\% 28\%/7\% 34%/15\%	
ECOG 3882\(^15\)	DOXO + DES DOXO DOXO + KET + HDC	74 76 128	2003 2003 2004	MRR 63\% 27\% 27\%	
CALGB 9583\(^16\)	DOC + PDN + ESM DOC + PDN	69 71 128	2008 2008 2004	PSA-RR 41\% 25\% 64\% 64\%	
Belgian Trial\(^17\)	DOXO + AWD + KET + HDC DOXO + AWD + KET + HDC	132 132	2008 2008	MRR 11\% 11\%	
NHS Trial\(^18\)	DEX + ASP + DEX DEX + ASP	136 133	2004 2014	PSA-RR 25\% 68\%	

\(^3\)Statistically significant difference. ASP: Aspirin; AWD: Anti-androgen withdrawal; DEX: Dexylthiobistrol; DES: Diethylstilbestrol; DOXO: Docxorubicin; ESM: Estramustine; HDC: Hydrocortisone; KET: Ketoconazole; MA: Medroxyprogesterone acetate; MRR: Mixed response rate; PDN: Prednisone; PSA-RR: Prostate-specific antigen response rate; RRR: Radiologic response rate; SUR: Suramine.

Table 6 Characteristics of randomized clinical trials including clinical response measures as the primary end point after first line medical treatment of metastatic castration-resistant prostate cancer

Trial	Arms	No. pts	Publication year	PRO measure	Palliative response rate (%)
Canadian Trial\(^19\)	MXN + PDN PDN	80 81	1996 2000	Palliative response (moore)	29\% 12
SIG-I Trial\(^20\)	SUR + HDC Placebo + HDC	228 230	2000 2000	Palliative response (BPI + analogies)	43\% 28
NCIC PRO\(^21\)	MXN + PDN + CLD MXN + PDN + Placebo	104 105	2005 2005	Palliative response (moore)	46 39

\(^3\)Statistically significant difference. BPI: Brief pain inventory; CLD: Codeine; DOC: Doxorubicin; ESM: Estramustine; HDC: Hydrocortisone; MA: Medroxyprogesterone acetate; MO: Mornexone; PRO: Patient-reported outcome; SUR: Survane.
and radiologic response were the most commonly used secondary end points in 19 and 11 trials, respectively, while pain response was used in 5 studies.

Even though surrogacy has not been validated in prospective studies, more recent studies have continued to report the prostate-specific antigen response rate (PSA-RR) only as a primary end point, defining it as a reduction $>50\%$, as recommended by the previous PSAWG criteria.\[38,39,41\]

Other response measures were derived from the assessment of disease-related symptoms, such as pain or fatigue, and other patient-related outcomes. Table 6 summarizes the three studies in which the primary end point was clinical and correlated with the response. Although these studies were published between 1996 and 2003, even recent studies have evaluated clinical outcomes, largely related to the patient, as secondary end points, better defining their thresholds of response. In the Canadian study, the TAX 327, SWOG 99-16, SPARC, TROPIC, and NCIC PR06, the palliative response was defined as a 2-point decrease in pain as assessed by a 6-point scale, patient-reported present pain intensity (PPI), without an increase in analgesic medication, and maintained for two consecutive evaluations at least 3 wk apart; pain progression required an increase in the weekly average PPI score of ≥ 2 points from nadir for ≥ 2 consecutive wk or a more than 25% increase from baseline in the weekly average analgesic score for ≥ 2 consecutive weeks. In the studies COU-AA-301, AFFIRM, and SIG-1\[37\] intended for pain palliation, a 30% decrease in the brief pain inventory-short form (BPI-SF) score in the absence of an increase in analgesic usage, while pain progression was an increase of $>30\%$ in the worst pain in the past 24 h on the BFI observed on two consecutive evaluations 4 wk apart without a decrease in analgesic usage score, or an increase in analgesic usage score $>30\%$ observed at 2 consecutive evaluations 4 wk apart; the timing of pain response assessment was reported at week 13 in the AFFIRM trial. Other secondary end points were often protocol-dependent and included the Newling palliative response in the LSG trial, with measures of pain and analgesic usage scales, the subjective response in the EORTC trial, with pain and performance status scores, or the subjective response in the DAPROCA 9002 trial, including pain, analgesics use, steroids, radiotherapy and performance status, and finally the clinical response in the ECOG 3882 study, which collected performance status, pain, analgesic, hemoglobin and body weight scores. Pain response was confirmed as highly predictive of outcome in patients with mCRPC, but was weaker than the PSA decline $>30\%$ as a possible SE of OS\[44\].

Unlike PSA response and pain response, response using quality of life (QoL) scores did not correlate with OS in the TAX327 trial. This study evaluated a QoL-response using the FACT-P questionnaire: a maximum score of 156 points indicated the highest level of QoL measured by FACT-P, and QoL improvement was defined by $\geq 10\%$ (16 points) increase maintained for at least 3 wk; inversely, a decrease of 16 points was considered a deterioration in QoL. Among patients enrolled in the trial an impairment of QoL was detected in 92% of patients with pain and in 75% of those without pain, suggesting that disease-related symptoms other than pain contribute to QoL. The complexity of the clinical situation is underlined by the fact that patients with minimal symptoms at the beginning of chemotherapy in the weekly docetaxel arm most likely had an initial worsening of QoL scores. Therefore, it was not surprising that different from pain-response and PSA-response, QoL-response did not predict OS\[45\].

Few studies have defined the role of other symptoms. Of these the most common is fatigue. In the COU-AA-301 trial, an analysis of a patient-reported questionnaire, the BFI, was performed. After a baseline assessment of the fatigue score distribution, some clinically significant changes in fatigue intensity and fatigue interference were defined. It appeared that in the abiraterone plus prednisone arm more patients experienced an improvement in fatigue intensity and fatigue interference and a delay in the progression of both.\[46\]

DISCUSSION

PCWG2 recommended that, when possible, all assessments of the disease are carried out at the same time interval. In addition to PSA changes, it is important to confirm the post-treatment changes in the measurable target lesions, those of the radionuclide bone scan, and those of symptoms. Following the results of studies on immunotherapy and targeted therapy in mCRPC the opportunity of an appropriate definition of different end points was discussed, and these were defined according to the different drugs and their mechanisms of action. It was proposed that the assessment of cytotoxic and non-cytotoxic therapies is performed in a different way, as cytotoxic chemotherapy and hormonal therapy produce a reduction in PSA and a regression of target lesions, while measures of early response to treatment would not show the effect of immunotherapy and some targeted therapies. In our opinion, although it is difficult to obtain evidence of a surrogate end point according to the criteria of Prentice, it is nevertheless appropriate that the search for new SEs should avoid further fragmentation related to the different treatment options.

Table 7 Disease-control/response related events used to define secondary end points in randomized trials of metastatic castration-resistant prostate cancer

Progression event	Trial number	Ref.
Clinical	1	[27]
Pain	5	[7,9,18,21]
Radiological	11	[4,5,7,19,20,21,24,26,28,37,38]
Prostate-specific antigen	19	[4,5,7,8,19,22,24,25,27-29,33,35,37,38,40,41]
Alkaline phosphatase	1	[10]
Immunity	1	[32]
Potential biases in the present review could be due to the fact that we restricted the included studies to randomized clinical trials; these trials define the best level of evidence available, but this restriction could have excluded many other possible secondary end points. It is also possible that the population in the included studies was heterogeneous: this is because in some studies a second-line treatment was assessed, while in others patients with serologic progression only, with an early stage of mCRPC, were enrolled. Finally, the possibility of publication bias, i.e., studies that did not find the treatment to be effective may not have been published.

To date, none of the end points studied in mCRPC has sufficient evidence to be considered a valid SE of OS. However, many end points have been well standardized and may allow us to better compare the results between studies. Following the recommendations of PCWG2, the time-to-event end points have received increasing attention compared to the response end points.

PFS is usually defined as the time from randomization to the first event in clinical, radiological or biochemical progression or death. PFS has been debated as a SE of OS in studies of mCRPC. The serological progression was the first event in disease progression in 60% of cases, bone progression in 18%, radiological progression in 7%, and death was the first event in 15%. Therefore, in phase-2 studies a PSA-related and time-to-event end point appears to be more practical than any other response end point, and may allow easier comparison of the results between studies with respect to the progression end points. Some preliminary information on PSA kinetics measures, as a growth rate constant, suggest that new measures related to PSA could better predict OS regardless of the type of medical therapy, and promises to overcome many of the limitations of PSA response/progression as defined by PCWG2.

On the other hand, clinical research on patient-reported instruments is producing encouraging results and the use of patient-reported outcomes (PROs) in clinical trials is recommended. PRO is any outcome based on patient assessment for secondary therapy.

In conclusion, given the failure of all end points to act as surrogates for OS in the mCRPC setting, defining new PSA-related and patient-related end points and standardizing them remain the most important goal of clinical research. To accomplish this, additional retrospective assessments of recent prospective studies with the aim to test new parameters related to PSA-kinetics and to extrapolate other scores from QoL questionnaires can help identify new end points as surrogates.

COMMENTS

Background

The prevalent bone-only dissemination of metastatic castration-resistant prostate cancer (mCRPC), limits the application of commonly used radiologic criteria of progression and response in the assessment of new drugs. Prostate-specific antigen (PSA)-related criteria of response/progression are not effective surrogate end points of overall survival and failed to predict the efficacy of immunotherapy and of some targeted therapies.

Innovations and breakthroughs

In this review article the authors report how the end points of randomized trials of mCRPC change with the introduction of new drugs and with the improvement of disease-related symptoms and overall survival. They identify two future key areas in the field of end point research of mCRPC, PSA kinetics and patient-reported outcomes.

Applications

To date, phase-2 trials of new anticancer drugs in mCRPC patients require a PSA-related and time-to-event end point. However, new end points should be tested prospectively.

Peer review

This manuscript aims to systematically review the end points of 31 prospective clinical trials of medical therapies and/or radionuclides treatments in hormonally-refractory prostate cancer.

REFERENCES

1. Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 2010; 46: 765-781 [PMID: 2016997]
2. Scher HI, Heller G. Clinical states in prostate cancer: toward a dynamic model of disease progression. Urology 2000; 55: 323-327 [PMID: 10699601 DOI: 10.1016/S0090-4295(99)00471-9]
3. Simmons MN, Stephenson AJ, Klein EA. Natural history of biochemical recurrence after radical prostatectomy: risk assessment for secondary therapy. Eur Urol 2007; 51: 1175-1184 [PMID: 17240528 DOI: 10.1016/j.eururo.2007.01.015]
4. Tannock IF, Osoba D, Stockler MR, Ernst DS, Neville AJ, Moore MJ, Armitage GR, Wilson JJ, Venner PM, Coppin CM, Murphy KC. Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a Canadian randomized trial with palliative end points. J Clin Oncol 1996; 14: 1756-1764 [PMID: 8652643]
5. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, Oudard S, Théodore C, James ND, Turesson I, Rosenthal MA, Eisenberger MA. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004; 351: 1502-1512 [PMID: 15470213 DOI: 10.1056/NEJMoa040720]
Colloca G et al. End points of mCRPC trials

6 Petrylk DP, Tangen CM, Hussain MH, Lara PN, Jones JA, Taplin ME, Burch PA, Berry D, Moinpour C, Kohli M, Benson MC, Small EJ, Raghavan D, Crawford ED. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 2004; 351: 1513-1520 [PMID: 15470214 DOI: 10.1056/NEJ-M041318]

7 de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, Gravis G, Bodirogi I, Mackenzie MJ, Shen L, Roessner M, Gupta S, Sartor AO. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 2010; 376: 1147-1154 [PMID: 20889902 DOI: 10.1016/S0140-6736(10)61389-X]

8 de Bono JS, Logothetis CJ, Molina A, Fizzi H, Korth S, Chu L, Chi KN, Jones RJ, Goodman OB, Saad F, Stafithur JN, Mainwaring P, Harland S, Flag IW, Hutson TE, Cheng T, Patterson H, Hainsworth JD, Ryan CJ, Sternberg CN, Elslard SL, Fléchon A, Saleh M, Scholz M, Efstathiou E, Zivi A, Bianchini D, Lioriot Y, Chieffi N, Kheoh T, Haqq CM, Scher HI. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011; 364: 1995-2005 [PMID: 21612468 DOI: 10.1056/NEJMoa1104168]

9 Scher HI, Fizzi K, Saad F, Taplin ME, Sternberg CN, Miller K, de Wit R, Mulders P, Chi KN, Shen NS, Armstrong AJ, Flagg TW, Fléchon A, Mainwaring P, Fleming M, Hainsworth JD, Hirmand M, Selby B, Seely L, de Bono JS. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012; 367: 1187-1197 [PMID: 22894553 DOI: 10.1056/NEJMoai2107506]

10 Parker C, Nilsson S, Heinrich D, Helle SL, O’Sullivan JM, Fossa SD, Chodacki A, Wiechno L, Logue J, Seke M, Wmiddark A, Johannesson DS, Hoskin P, Bottomley D, James ND, Solberg A, Syndikus I, Klimmint J, Wedel S, Boehner S, Dall’Oglio M, Fränzén L, Coleman R, Vogelzang NJ, O’Bryan-Tear CG, Staudacher K, Garcia-Vargas J, Shan M, Bruland OS, Sartor O. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 2013; 369: 213-223 [PMID: 23636350 DOI: 10.1056/NEJMoa1213755]

11 Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeek M, van Oosterom AT, Christian MC, Gwyther SG. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000; 92: 205-216 [PMID: 10565437 DOI: 10.1093/jnci/92.3.205]

12 Bubley GJ, Carducci M, Dahut W, Dawson N, Daliani D, Eisenberger MA, Figg WD, Freidlin B, Halabi S, Hudes G, Hussain M, Kaplan R, Myers C, Oh W, Petrylak DP, Reed E, Roth B, Sartor O, Scher H, Simons J, Sinibaldi V, Small EJ, Smith MR, Trump DL, Wisting G. Eligibility and response guidelines for phase II clinical trials in androgen-independent prostate cancer: recommendations from the Prostate-Specific Antigen Working Group. J Clin Oncol 1999; 17: 3461-3467 [PMID: 10550143]

13 Colloca G. Prostate-specific antigen kinetics as a surrogate endpoint in clinical trials of metastatic castration-resistant prostate cancer: a review. Cancer Treat Rev 2012; 38: 1020-1026 [PMID: 22503500 DOI: 10.1016/j.ctrv.2012.03.008]

14 Armstrong AJ, Garrett-Mayeuer E, Ou Yang YC, Carducci MA, Tannock I, de Wit R, Eisenberger M. Prostate-specific antigen and pain surrogacy analysis in metastatic hormone-refractory prostate cancer. J Clin Oncol 2007; 25: 3965-3970 [PMID: 17761981 DOI: 10.1200/JCO.2007.11.4769]

15 Petrylak DP, Ankerst DP, Jiang CS, Tangen CM, Hussain MH, Lara PN, Jones JA, Taplin ME, Burch PA, Kohli M, Benson MC, Small EJ, Raghavan D, Crawford ED. Evaluation of prostate-specific antigen declines for surrogacy in patients treated on SWOG 99-16. J Natl Cancer Inst 2006; 98: 516-521 [PMID: 16622120 DOI: 10.1093/jnci/djl219]

16 Halabi S, Armstrong AJ, Sartor O, de Bono J, Kaplan E, Lin CY, Solomon NC, Small EJ. Prostate-specific antigen changes as surrogate for overall survival in men with metastatic castration-resistant prostate cancer treated with second-line chemotherapy. J Clin Oncol 2013; 31: 3944-3950 [PMID: 24101043 DOI: 10.1200/JCO.2013.50.3201]

17 Scher HI, Halabi S, Tannock I, Morris M, Sternberg CN, Carducci MA, Eisenberger MA, Higano C, Bubley GJ, Dreicer R, Petrylak D, Kantoff P, Basch E, Kelly WK, Figg WD, Small EJ, Beer TM, Wilding G, Martin A, Hussain M. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol 2008; 26: 1148-1159 [PMID: 18309951 DOI: 10.1200/JCO.2007.12.4487]

18 Debruyne FJ, Murray R, Frayet Y, Johansson JE, Tyrrell C, Boccardo F, Denis L, Marberger JM, Brune D, Rassweller J, Vangeuengden T, Brynueyls J, Janssens M, De Porre P. Liaroze—a novel treatment approach for advanced prostate cancer: results of a large randomized trial versus cyproterone acetate. Liaroze Study Group. Urology 1998; 52: 72-81 [PMID: 9671874 DOI: 10.1001/0009-0425:98:01019-0]

19 Kantoff PW, Halabi S, Conaway M, Picus J, Kirshner J, Hars V, Trump D, Winer EP, Vogelzang NJ. Hydrocortisone with or without mitoxantrone in men with hormone-refractory prostate cancer: results of a large randomized trial versus cyproterone acetate. Liaroze Study Group. Urology 1998; 52: 72-81 [PMID: 9671874 DOI: 10.1001/0009-0425:98:01019-0]

20 Sternberg CN, Petrylak DP, Sartor O, Wijtes JA, Demkow T, Ferrero JM, Eymard JC, Falcon S, Cabale F, James N, Boandro I, Harper P, Wiruth M, Berry W, Petrone ME, McKeen TJ, Noursalehi M, George M, Rozenweg M. Multinational, double-blind, phase III trial of prednisone and either saphralatin or placebo in patients with castration-refractory prostate cancer progressing after prior chemotherapy: the SPARC trial. J Clin Oncol 2009; 27: 5431-5438 [PMID: 19805692 DOI: 10.1200/JCO.2008.20.1228]

21 Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Pennon DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Yu X, Frohlich MW, Schellhammer PF. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363: 411-422 [PMID: 20818862 DOI: 10.1056/NEJ-Maol01001294]

22 Scher HI, Jia X, Chi K, de Wit R, Berry WR, Albers P, Henick B, Waterhouse D, Ruether DJ, Rosen PJ, Meluch AA, Nordquist LT, Venner PM, Heidenreich A, Chu L, Heller G. Randomized, open-label phase III trial of docetaxel plus high-dose calcitriol versus docetaxel plus prednisone for patients with castration-resistant prostate cancer. J Clin Oncol 2011; 29: 2191-2198 [PMID: 21483004 DOI: 10.1200/JCO.2010.32.8815]

23 Kelly WK, Halabi S, Carducci M, George D, Mahoney JF, Sadler WM, Morris M, Kantoff P, Monk JP, Kaplan E, Vogelzang NJ, Small EJ. Randomized, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J Clin Oncol 2010; 28: 5431-5438 [PMID: 20818862 DOI: 10.1056/NEJ-Maol01001294]

24 Fizzi KS, Higano CS, Nelson JB, Gleave M, Miller K, Morris T, Nathan FE, McIntosh S, Pemberton K, Moul JW. Phase III, randomized, placebo-controlled study of docetaxel in combination with zibotentan in patients with metastatic castration-
resistant prostate cancer. J Clin Oncol 2013; 31: 1740-1747

[PMID: 23569308 DOI: 10.1200/JCO.2012.46.4149]

26 Iversen P, Rasmussen F, Asmussen C, Christensen IJ, Eickhoff J, Klarskov P, Larsen E, Mogensen P, Monniesen S, Rosenkilde P. Estramustine phosphate versus placebo as second line treatment after orchietomy in patients with metastatic prostate cancer: DAPROCA study 9002. Danish Prostatic Cancer Group. J Urol 1997; 157: 929-934 [PMID: 9072602 DOI: 10.1016/S0022-5347(01)65086-9]

27 Fossa SD, Søe PH, Brausi M, Horenblads S, Hall RR, Hetherington JW, Aaronson N, de Prijck L L. Flutamide versus prednisone in patients with prostate cancer symptomatically progressing after androgen-ablation therapy: a phase III study of the European organization for research and treatment of cancer genitourinary group. J Clin Oncol 2001; 19: 62-71 [PMID: 11134196]

28 Berry W, Dakhil S, Modiano M, Gregurich M, Asmar L. Phase III study of mitoxantrone plus low dose prednisone versus low dose prednisone alone in patients with asymptomatic hormone refractory prostate cancer. J Urol 2002; 168: 2439-2443 [PMID: 12441935 DOI: 10.1016/S0022-5347(05)64163-8]

29 Abratt RP, Brune D, Dimopoulos MA, Kliment J, Breza J, Selvaggi FP, Beuzecoc P, Demkov T, Oudard S. Randomised phase III study of intravenous vinorelbine plus hormone therapy versus hormone therapy alone in hormone-refractory prostate cancer. Ann Oncol 2004; 15: 1613-1621 [PMID: 15520661 DOI: 10.1093/annonc/mdh429]

30 Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, Verjee SB, Jones LA, Hershberg RM, Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 2006; 24: 3089-3094 [PMID: 16809734 DOI: 10.1200/JCO.2005.04.3252]

31 Carducci MA, Saad F, Abrahamssson PA, Dearrnaley DP, Schultman CC, North SA, Sleep DJ, Isaacs JD, Nelson JB. A phase 3 randomized controlled trial of the efficacy and safety of atranstat in men with metastatic hormone-refractory prostate cancer. Cancer 2007; 110: 1959-1966 [PMID: 17886253]

32 Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, Manson K, Fanicali DL, Laus R, Schlom J, Dahut WL, Arlen PM, Gulley JL, Godfrey WR. Overall survival analysis of a phase II randomized controlled trial of the efficacy and safety of sipuleucel-T in men with metastatic, asymptomatic hormone-refractory prostate cancer. J Clin Oncol 2010; 28: 1099-1105 [PMID: 20100959 DOI: 10.1200/JCO.2009.25.0597]

33 Kellokumpu-Lehtinen PL, Harmenberg U, Joensuu T, Horenblas S, Hall RR, Hetherton JW, Aaronson N, de Prijck L L. Flutamide versus prednisone and clodronate versus mitoxantrone/prednisone and clodronate in metastatic hormone-refractory prostate cancer. J Clin Oncol 2001; 19: 1400-1405 [PMID: 11735891]

34 Machiels JP, Mazzeo F, Clausse M, Filleul B, Marcelis L, Honhon B, D’Hondt L, Dophcie C, Verschaave V, Duck L, Verhoeven D, Jousten P, Bonny MA, Mosxon AM, Tombal B, Kerger J. Prospective randomized study comparing docetaxel, estramustine, and prednisone with docetaxel and prednisone in metastatic hormone-refractory prostate cancer. J Clin Oncol 2008; 26: 5261-5268 [PMID: 18794543 DOI: 10.1200/JCO.2008;16.9534]

35 Shamash J, Powles T, Sarker SJ, Protheroe A, Mithal N, Mills R, Bear R, Wilson P, Trantner N, O’Brien N, McFaul S, Oliver T. A multi-centre randomised phase III trial of Dexamethasone plus Vemustine and diethylstilbestrol in castration-resistant prostate cancer: immediate vs deferred Diethylstilbestrol. Br J Cancer 2011; 104: 620-628 [PMID: 21285990 DOI: 10.1038/bjc.2011.7]

36 Dawson NA, Conaway M, Halabi S, Winer EP, Small E, Lake D, Vogelzang NJ. A randomized study comparing standard versus moderately high dose megestrol acetate for patients with advanced prostate carcinoma: cancer and leukaemia group B study 9181. Cancer 2000; 88: 825-834 [PMID: 10679652 DOI: 10.1002/(SICI)1097-0142(20000201)88:1<825::AID-CAN21>3.0.CO;2-M]

37 Small EJ, Halabi S, Dawson NA, Stadler WM, Rini BI, Picus J, Gable P, Torti FM, Kaplan E, Vogelzang NJ. Antiandrogen withdrawal alone or in combination with ketoconazole in androgen-independent prostate cancer patients: a phase III trial (CALGB 9883). J Clin Oncol 2004; 22: 1025-1033 [PMID: 15020604 DOI: 10.1200/JCO.2004.06.037]

38 Berry DL, Moinpour CM, Jiang CS, Ankerst DP, Petrylak DP, Vinson LV, Lara PN, Jones S, Taplin ME, Burch PA, Hussain MH, Crawford ED. Quality of life and pain in advanced stage prostate cancer: results of a Southwest Oncology Group randomized trial comparing docetaxel and estramustine to mitoxantrone and prednisone in metastatic castration-resistant prostate cancer. J Clin Oncol 2006; 24: 2828-2835 [PMID: 16782621 DOI: 10.1200/JCO.2005.04.8207]

39 Moore MJ, Osoba D, Murphy K, Tannock IF, Armitage A, Findlay B, Coppin C, Neville A, Venner P, Wilson J. Use of palliative end points to evaluate the effects of mitoxantrone and low-dose prednisone in patients with hormonally resistant prostate cancer. J Clin Oncol 1994; 12: 689-694 [PMID: 7512127]

40 Halabi S, Vogelzang NJ, Kornblith AB, Ou SS, Kantoff PW, Dawson NA, Small EJ. Pain predicts overall survival in men with metastatic castration-refractory prostate cancer. J Clin Oncol 2008; 26: 2544-2549 [PMID: 18487572 DOI: 10.1200/JCO.2007.15.0367]

41 Berthold DR, Pond GR, Roessner M, de Wit R, Eisenberger M, Tannock IA. Treatment of hormone-refractory prostate cancer with docetaxel or mitoxantrone: relationships between prostate-specific antigen, pain, and quality of life response and survival in the TAX-327 study. Clin Cancer Res 2008; 14: 2763-2767 [PMID: 18451243 DOI: 10.1186/1078-0432-CCR-07-0944]

42 Sternberg CN, Molina A, North S, Mainwaring P, Fizazi K, Hao Y, Rothman M, Gagnon DD, Kheoh T, Haqq CM, Cleeland C, de Bono JS, Scher HI. Effect of abiraterone acetate on fatigue in patients with metastatic castration-resistant prostate cancer after docetaxel chemotherapy. Ann Oncol
Colloca G et al. End points of mCRPC trials

2013; 24: 1017-1025 [PMID: 23152362 DOI: 10.1093/annonc/mds585]

Stein WD, Gulley JL, Schlom J, Madan RA, Dahut W, Figg WD, Ning YM, Arlen PM, Price D, Bates SE, Fojo T. Tumor regression and growth rates determined in five intramural NCI prostate cancer trials: the growth rate constant as an indicator of therapeutic efficacy. *Clin Cancer Res* 2011; 17: 907-917 [PMID: 21106727 DOI: 10.1158/1078-0432.CCR-10-1762]

United States Department of Health and Human Services FDA Center for Drug Evaluation and Research, United States Department of Health and Human Services FDA Center for Biologics Evaluation and Research, United States Department of Health and Human Services FDA Center for Devices and Radiological Health. Guidance for industry: patient-reported outcome measures: use in medical product development to support labeling claims: draft guidance. *Health Qual Life Outcomes* 2006; 4: 79 [PMID: 17034633 DOI: 10.1186/1477-7525-4-79]

Gotay CC, Kawamoto CT, Bottomley A, Efficace F. The prognostic significance of patient-reported outcomes in cancer clinical trials. *J Clin Oncol* 2008; 26: 1355-1363 [PMID: 18227528 DOI: 10.1200/JCO.2007.13.3439]

Colloca G, Colloca P. Health-related quality of life assessment in prospective trials of systemic cytotoxic chemotherapy for metastatic castration-resistant prostate cancer: which instrument we need? *Med Oncol* 2011; 28: 519-527 [PMID: 20354822 DOI: 10.1007/s12032-010-9495-2]

P- Reviewer: Das UN, Msaouel P, Liu YY S- Editor: Gou SX L- Editor: Webster JR E- Editor: Wu HL
