A paradoxical synergism between Resveratrol and copper (II) with respect to degradation of DNA and RNA [version 1; peer review: 1 approved with reservations]

Siddharth Subramaniam, Iqbal Vohra, Aishwarya Iyer, Naveen K Nair, Indraneel Mittra

Abstract
Resveratrol (R), a plant polyphenol, is known to reduce Cu (II) to Cu (I) generating reactive oxygen species that can cleave plasmid DNA. Here we report a surprising observation of a paradoxical synergistic effect between R and Cu whereby plasmid DNA cleaving / degrading activity of R-Cu increased progressively as the ratio of R to Cu was increased i.e., the concentration of Cu was successively reduced with respect to a fixed concentration R. Whereas cleavage of plasmid DNA occurred at low molar ratios of R to Cu, at higher ratios, complete degradation of DNA was achieved. By further increasing the ratio, whereby the concentration of Cu was reduced to very low levels, the DNA degrading activity of R-Cu was lost. This paradoxical synergistic effect is also seen with respect to eukaryotic genomic DNA and RNA. Since R-Cu may have anti-cancer and anti-viral activities, our findings may not only help to improve the therapeutic efficacy of R-Cu but also reduce its toxic side effects with the use of low concentration of Cu.

Keywords
Resveratrol, copper, pro-oxidant activity, plasmid DNA cleavage, plasmid DNA degradation, eukaryotic DNA degradation, RNA degradation
Introduction
Resveratrol (R) is a poly-phenolic stilbenoid naturally present in the skin of red grapes and other fruits and berries, peanuts and also in the roots of Japanese knotweed. R has been shown to have multiple health benefits that include life extension, cancer prevention, cardio-protection, neuro-protection and anti-diabetic, anti-inflammatory and anti-viral activities. These actions are thought to be mediated through its intrinsic anti-oxidant properties and the ability of R to activate SIRT1. However most of the positive effects exhibited by R could not be replicated in clinical trials possibly because of its low bio-availability.

Copper (Cu) is an essential micronutrient, and because of its role as a metal co-factor, has the ability to generate reactive oxygen species (ROS), viz., \(\text{O}_2^- \) and \('\text{HO radicals}\). Fukuhara and Miyata were first to show that R can act as a pro-oxidant in the presence of Cu and cause oxidative DNA cleavage in a pBR322 plasmid assay. R forms a complex with Cu (II), leading to its reduction to Cu (I) with concomitant production of ROS which is responsible for DNA scission. Resveratrol-copper (R-Cu) was shown to be active in biological systems as evidenced by its ability to inactivate bacteriophages and to cause fragmentation of DNA of human lymphocytes \(\text{in vitro} \). These findings have led to the proposal that R-Cu could be used in the prevention and treatment of cancer.

The above studies have used variable molar ratios of R:Cu which have usually been of the order of 1:1 to 2:1. Here we report a surprising observation that DNA and RNA cleaving and/or degrading activity of R-Cu increases as the ratio of R to Cu is sequentially increased (i.e., the concentration of Cu is sequentially decreased with respect to a fixed concentration of R). The activity was lost when the Cu concentration was reduced to very low levels.

Methods
Isolation of DNA and RNA

Isolation of plasmid pTRIPZ DNA. Isolation of plasmid pTRIPZ DNA was performed using HiPurA plasmid DNA miniprep purification spin kit (Hi-Media) as per manufacturer’s instructions. Briefly, the transformed bacterial culture (\(\text{Escherichia coli} \) DH\(\alpha \) containing plasmid pTRIPZ, Invitrogen, USA) was harvested, lysed and centrifuged. The pellet obtained was applied to a silica column containing plasmid DNA to the silica column. Washing for removal of contaminants was followed by elution of plasmid DNA in DNA binding buffer.

Eukaryotic genomic DNA. Jurkat (human lymphoblastic leukemia) cells were used for isolation of genomic DNA. Cells were procured from American Type Culture Collection and were grown in RPMI 1640 (GIBCO By Life technologies Cat No.23400-21) with 10% FBS (GIBCO By life technologies Cat No.26140-079). The Wizard® Genomic DNA purification kit (Promega) was employed for isolation of DNA. Jurkat cells (\(2 \times 10^6 \)) were harvested and given three PBS washes followed by treatment with nuclei lysis solution. Genomic DNA was isolated as per manufacturer’s protocol.

Isolation of eukaryotic RNA. Jurkat cells at the exponential phase of growth (approximately \(5 \times 10^9 \)) were washed thrice in PBS and RNA was isolated using Trizol® reagent (Life Technologies, Carlsbad, CA, USA) as per manufacturer’s protocol.

Preparation of Resveratrol-Cu and gel electrophoresis
Plasmid pTRIPZ DNA (500ng), eukaryotic genomic DNA (500ng) and eukaryotic RNA (2μg) were suspended in Tris-EDTA buffer. R-Cu was dissolved in 20 μl of following solvents: 50% ethanol; 50% acetonitrile; 3mM NaOH or distilled water in varying molar ratios of R to Cu as indicated in the text and incubated with plasmid or genomic DNA and eukaryotic RNA at 37°C for 1hr. After incubation, the different DNA samples were electrophoresed on a 1% agarose gel using a horizontal electrophoresis unit (Hoefer) at a constant voltage of 100V. In case of eukaryotic RNA, the mixtures after incubation were subjected to 0.8% agarose gel electrophoresis at 75 volts for 90 minutes. The gel-documentation system, EC-3 Imaging system from UVP (Ultra Violet Products, USA) was used to record the images.

Observation
We observed that when we increased the ratio of R to Cu (by reducing the concentration of Cu with respect to a fixed concentration of R) there was an enhancement of cleavage/degradation of plasmid DNA (Figure 1–Figure 4). This phenomenon was dependent on the starting concentration of R-Cu. For example, cleavage of supercoiled plasmid DNA was observed at a starting concentration of 100μM at molar ratios of 1:1 and 1:0.2 (lanes 5 and 6; Figure 1). However, with successive increases in starting concentration of R-Cu to 500μM, 1mM and 5mM, DNA cleaving activity was progressively enhanced such that complete cleavage was achieved at successively higher ratios of R to Cu (i.e., with decreasing Cu concentration) (Figure 2–Figure 4). At high starting concentrations viz., 1mM and 5mM, degradation rather than cleavage of DNA was observed. These data indicated that the DNA cleaving/degrading activity of R-Cu increases as the ratio of R to Cu is successively increased thereby suggesting the existence of a paradoxical synergistic relationship between R and Cu with respect to DNA cleavage/degradation. The data also show that the extent of cleavage/degradation is positively correlated with the starting concentrations of R and Cu. Figure 5 and Figure 6, in which genomic DNA and RNA respectively were used (starting molar ratio of R to Cu of 5mM:5mM), a similar synergistic pattern was observed.

The above experiments were done in 50% ethanol (Figure 1–Figure 4). A similar synergism was also observed when experiments were done using other solvents, namely, 50% acetonitrile (Figure 7), 3mM NaOH (Figure 8) and water (Figure 9) confirming the robust nature of this synergistic phenomenon.
Figure 1. Increasing cleavage/degradation of plasmid DNA by R-Cu in the presence of decreasing concentrations of Cu. Starting concentration R 100µM : Cu 100µM. Reaction performed in 50% ethanol.

Figure 2. Increasing cleavage/degradation of plasmid DNA by R-Cu in the presence of decreasing concentrations of Cu. Starting concentration R 500µM : Cu 500µM. Reaction performed in 50% ethanol.
Figure 3. Increasing cleavage/degradation of plasmid DNA by R-Cu in the presence of decreasing concentrations of Cu. Starting concentration R 1mM : Cu 1mM. Reaction performed in 50% ethanol.

Lane	Absolute quantity of R	Absolute quantity of Cu	R/Cu molar ratio
1	1kb marker	--	--
2	Plasmid DNA (500ng)	--	--
3	Plasmid DNA (500ng) + R	4.56 g	--
4	Plasmid DNA (500ng) + Cu	--	4.98 g
5	Plasmid DNA (500ng) + R-Cu	4.56 g	4.98 g
6	Plasmid DNA (500ng) + R-Cu	4.56 g	0.996 g
7	Plasmid DNA (500ng) + R-Cu	4.56 g	0.498 g
8	Plasmid DNA (500ng) + R-Cu	4.56 g	0.996 g
9	Plasmid DNA (500ng) + R-Cu	4.56 g	0.0498 g
10	Plasmid DNA (500ng) + R-Cu	4.56 g	0.00996 g
11	Plasmid DNA (500ng) + R-Cu	4.56 g	0.00996 g
12	Plasmid DNA (500ng) + R-Cu	4.56 g	1.0002

Figure 4. Increasing cleavage/degradation of plasmid DNA by R-Cu in the presence of decreasing concentrations of Cu. Starting concentration R 5mM : Cu 5mM. Reaction performed in 50% ethanol.

Lane	Absolute quantity of R	Absolute quantity of Cu	R/Cu molar ratio
1	1kb marker	--	--
2	Plasmid DNA (500ng)	--	--
3	Plasmid DNA (500ng) + R	22.8 g	--
4	Plasmid DNA (500ng) + Cu	--	24.9 g
5	Plasmid DNA (500ng) + R-Cu	22.8 g	24.9 g
6	Plasmid DNA (500ng) + R-Cu	22.8 g	4.98 g
7	Plasmid DNA (500ng) + R-Cu	22.8 g	2.49 g
8	Plasmid DNA (500ng) + R-Cu	22.8 g	0.498 g
9	Plasmid DNA (500ng) + R-Cu	22.8 g	0.249 g
10	Plasmid DNA (500ng) + R-Cu	22.8 g	0.0498 g
11	Plasmid DNA (500ng) + R-Cu	22.8 g	0.0249 g
12	Plasmid DNA (500ng) + R-Cu	22.8 g	1.0002
Figure 5. Increasing cleavage/degradation of eukaryotic genomic DNA by R-Cu in the presence of decreasing concentrations of Cu. Starting concentration R 5mM:Cu 5mM. The reactions were performed in 50% ethanol.

Lane	1kb marker	Absolute quantity of R	Absolute quantity of Cu	R/Cu molar ratio
1				
2	Genomic DNA (500ng)			
3	Genomic DNA (500ng) + R	22.8 g		
4	Genomic DNA (500ng) + Cu		24.9 g	
5	Genomic DNA (500ng) + R -Cu	22.8 g	24.9 g	1:1
6	Genomic DNA (500ng) + R -Cu	22.8 g	4.98 g	1:0.2
7	Genomic DNA (500ng) + R -Cu	22.8 g	2.49 g	1:0.1
8	Genomic DNA (500ng) + R -Cu	22.8 g	0.498 g	1:0.002
9	Genomic DNA (500ng) + R -Cu	22.8 g	0.0249 g	1:0.001
10	Genomic DNA (500ng) + R -Cu	22.8 g	0.00498 g	1:0.0002

Figure 6. Increasing cleavage/degradation of eukaryotic RNA by R-Cu in the presence of decreasing concentrations of Cu. Starting concentration R 5mM:Cu 5mM. Reactions were performed in 50% ethanol.

Lane	1kb marker	Absolute quantity of R	Absolute quantity of Cu	R/Cu molar ratio
1				
2	RNA (2μg)			
3	RNA (2μg) + R	22.8 g		
4	RNA (2μg) + Cu		24.9 g	
5	RNA (2μg) + R -Cu	22.8 g	24.9 g	1:1
6	RNA (2μg) + R -Cu	22.8 g	4.98 g	1:0.2
7	RNA (2μg) + R -Cu	22.8 g	2.49 g	1:0.1
8	RNA (2μg) + R -Cu	22.8 g	0.498 g	1:0.002
9	RNA (2μg) + R -Cu	22.8 g	0.0249 g	1:0.001
10	RNA (2μg) + R -Cu	22.8 g	0.00498 g	1:0.0002

Page 6 of 12
Figure 7. Increasing cleavage/degradation of plasmid DNA by R-Cu in the presence of decreasing concentrations of Cu in different solvents. Reactions were performed in 50% Acetonitrile.

Figure 8. Increasing cleavage/degradation of plasmid DNA by R-Cu in the presence of decreasing concentrations of Cu in different solvents. Reactions were performed in 3mM NaOH.
Discussion
Spectroscopic studies using an analogue of Resveratrol, namely Piceatannol (3,3',4,5'-tetrahydroxy-trans-stilbene; Pice), have shown that Pice-Cu(II) induced DNA cleavage involves the Haber Weiss and Fenton reactions\(^1\). DNA cleavage is a result of hydroxyl radical formation and the Cu (II) to Cu (I) redox cycle generated ROS production\(^1\). Our experiments using R-Cu reported here suggest that the Cu (II) – mediated oxidation of R is in a catalytic mode via Cu (II) – Cu (I) redox cycling; Cu (II) acts as a catalyst with an optimum dosage depending on the starting concentration of R-Cu. However, our unexpected finding of increasing DNA and RNA cleavage/degradation with decreasing concentration of Cu remains currently unexplained and requires further investigation.

Since R-Cu may have anti-cancer and anti-viral activities\(^8,14\), our finding may not only help to improve the therapeutic efficacy of R-Cu but also reduce its toxic side effects with the use of low concentration of Cu.

Author contributions
SS, IV and AI performed the experiments and interpreted the results. NKN wrote the manuscript. IM designed the experiments, interpreted the results and wrote the manuscript. All authors have seen and agreed to the final content of the manuscript.

Competing interests
No competing interests were disclosed.

Grant information
This study was supported by the Department of Atomic Energy, Government of India, through its grant CTCTMC to Tata Memorial Centre awarded to IM.

I confirm that the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
References

1. Burns J, Yokota T, Ashihara H, et al.: Plant foods and herbal sources of resveratrol. J Agric Food Chem. 2002; 50(11): 3337–3040. PubMed Abstract | Publisher Full Text

2. Hector KL, Lagisz M, Nakagawa S: The effect of resveratrol on longevity across species: a meta-analysis. BioLett. 2012; 8(5): 790–793. PubMed Abstract | Publisher Full Text | Free Full Text

3. Suh DH, Kim Mi-K, Kim HS, et al.: Cancer-specific Therapeutic Potential of Resveratrol: Metabolic Approach against Hallmarks of Cancer. J FFHD. 2013; 3(8): 352–343. Reference Source

4. Pollack RM, Crandall JP: Resveratrol: therapeutic potential for improving cardiometabolic health. Am J Hypertens. 2013; 26(11): 1260–1268. PubMed Abstract | Publisher Full Text

5. Menard C, Bastianetto S, Quirion R: Neuroprotective effects of resveratrol and epigallocatechin gallate polyphenols are mediated by the activation of protein kinase C gamma. Front Cell Neurosci. 2013; 7: 281. PubMed Abstract | Publisher Full Text | Free Full Text

6. Bhatt JK, Thomas S, Nanjan MJ: Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr Res. 2012; 32(7): 537–541. PubMed Abstract | Publisher Full Text

7. Das S, Das DK: Anti-inflammatory responses of resveratrol. Inflamm Allergy Drug Targets. 2007; 6(3): 168–173. PubMed Abstract | Publisher Full Text

8. Ahmed A, Farhan Asad S, Singh S, et al.: DNA breakage by resveratrol and Cu(ll): reaction mechanism and bacteriophage inactivation. Cancer Lett. 2000; 154(1): 29–37. PubMed Abstract | Publisher Full Text

9. Leonard SS, Xia C, Jiang BH, et al.: Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem Biophys Res Commun. 2003; 309(4): 1017–1026. PubMed Abstract | Publisher Full Text

10. Gusman J, Malone H, Atlasi G: A reappraisal of the potential chemopreventive and chemotherapeutic properties of resveratrol. Carcinogenesis. 2001; 22(8): 1111–1117. PubMed Abstract | Publisher Full Text

11. Lagouge M, Argmann C, Gerhart-Hines Z, et al.: Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006; 127(6): 1109–1122. PubMed Abstract | Publisher Full Text

12. Ponzo V, Sodari L, Bo S: Resveratrol: a supplementation for men or for mice? J Transl Med. 2014; 12: 158. PubMed Abstract | Publisher Full Text | Free Full Text

13. Walle T, Hsieh F, DeLegge MH, et al.: High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos. 2004; 32(12): 1377–1382. PubMed Abstract | Publisher Full Text

14. Li Y, Kuppusamy P, Zweier JL, et al.: ESR evidence for the generation of reactive oxygen species from the copper-mediated oxidation of the benzene metabolite, hydroquinone: role in DNA damage. Chem Biol Interact. 1995; 94(2): 101–120. PubMed Abstract | Publisher Full Text

15. Fukuhara K, Miyata N: Resveratrol as a new type of DNA-cleaving agent. Bioorg Med Chem Lett. 1998; 8(22): 3187–3192. PubMed Abstract | Publisher Full Text

16. Fukuhara K, Nagakawa M, Nakashima I, et al.: Structural basis for DNA-cleaving activity of resveratrol in the presence of Cu(ll). Bioorg Med Chem. 2006; 14(5): 1437–1443. PubMed Abstract | Publisher Full Text

17. Azmi AS, Bhat SH, Hadi SM: Resveratrol-Cu(ll) induced DNA breakage in human peripheral lymphocytes: implications for anticancer properties. FEBS Lett. 2005; 579(14): 3131–3135. PubMed Abstract | Publisher Full Text

18. Hadi SM, Ullah MF, Azmi AS, et al.: Resveratrol mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for chemoprevention of cancer. Pharm Res. 2010; 27(6): 979–988. PubMed Abstract | Publisher Full Text

19. Li Z, Yang X, Dong S, et al.: DNA breakage induced by piceatannol and copper (ll): Mechanism and anticancer properties. Oncol Lett. 2012; 3(3): 1087–1094. PubMed Abstract | Publisher Full Text | Free Full Text
Renata Cozzi
Department of Science, Roma Tre University, Rome, Italy

The topic of this paper is very important and has interesting implications for the purpose of using resveratrol as chemopreventive agent. In fact the authors rightly refer to the paper by Azmi et al. where the problem of the potential breaking activity of resveratrol in human lymphocytes is addressed.

However in my opinion the interpretation of the results of this manuscript is not always supported by the data presented.

Referring to figures from 1 to 4 the authors state: “with successive increases in starting concentration of R-Cu to 500μM, 1mM and 5mM, DNA cleaving activity was progressively enhanced such that complete cleavage was achieved at successively higher ratios of R to Cu”. This is partially true in the sense that starting from the ratio R-Cu 1:1 the cleavage of supercoiled increases until 1:0.01 with the highest dose of resveratrol (5mM). At lower ratios no cleavage/degradation is observed. In other word it seems that the cleaving activity is due to resveratrol concentration increase rather than the ratio R-Cu.

In fact the authors confirm this reading of the results (“The data also show that the extent of cleavage/degradation is positively correlated with the starting concentrations of R and Cu”) but suggest also “the existence of a paradoxical synergistic relationship” (even in the title) that is not at all supported by the data. The word “synergism” does not seem appropriate.

As far as eukaryotic genomic DNA a similar behavior is showed: the cleavage/degradation of DNA is evident from ratio 1:0.2 to 1:0.002, not at lower ratios.

I suggest:
1. To use (certainly in the title and throughout the text) a less demanding word than “synergism”. Furthermore a synergistic effect would require also a statistical evaluation.

2. To provide an explanation and/or an interpretative hypothesis about the showed effect
present only in the middle ratios.

3. To provide a more accurate description of figure 7, 8 and specially 9.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 14 Jan 2016

Indraneel Mittra, Tata Memorial Centre, Kharghar, India

1. As suggested by the Reviewer, we have replaced the word "synergism" with "relationship" in the title and throughout the paper.

2. As mentioned in the 'discussion' section, we are unable to provide any explanation for this paradoxical relationship between Resveratrol and copper. This is the reason why we have submitted the manuscript under "Observation" section of the Journal which stipulates "We welcome Observation Articles describing a novel observation that may be unexpected, and possibly currently without explanation". We would be delighted if the Referee could provide us some clues.

3. We have now provided an accurate descriptions of Figures 7, 8 and 9.

In order for the reader to easily grasp our findings depicted in multiple gel pictures, we have provided a 'summary table' of all the gel figures in a tabular format (Table) which reflects the paradoxical relationship between R and Cu more clearly.

We trust that we have satisfactorily responded to all the suggestions of the referee and hope that she would now find the paper worthy of approval.

Competing Interests: No competing interests were disclosed.
The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com