Mechanistic insights into the regulation of plant phosphate homeostasis by the rice SPX2 – PHR2 complex

Zeyuan Guan1,3, Qunxia Zhang1,3, Zhifei Zhang1,3, Jiaqi Zuo1, Juan Chen1, Ruiwen Liu1, Julie Savarin2, Larissa Broger2, Peng Cheng1, Qiang Wang1, Kai Pei1, Delin Zhang1, Tingting Zou1, Junjie Yan1, Ping Yin1, Michael Hothorn2 & Zhu Liu1

Phosphate (Pi) starvation response (PHR) transcription factors play key roles in plant Pi homeostasis maintenance. They are negatively regulated by stand-alone SPX proteins, cellular receptors for inositol pyrophosphate (PP-InsP) nutrient messengers. How PP-InsP-bound SPX interacts with PHRs is poorly understood. Here, we report crystal structures of the rice SPX2/InsP6/PHR2 complex and of the PHR2 DNA binding (MYB) domain in complex with target DNA at resolutions of 3.1 Å and 2.7 Å, respectively. In the SPX2/InsP6/PHR2 complex, the signalling-active SPX2 assembles into a domain-swapped dimer conformation and binds two copies of PHR2, targeting both its coiled-coil (CC) oligomerisation domain and MYB domain. Our results reveal that the SPX2 senses PP-InsPs to inactivate PHR2 by establishing severe steric clashes with the PHR2 MYB domain, preventing DNA binding, and by disrupting oligomerisation of the PHR2 CC domain, attenuating promoter binding. Our findings rationalize how PP-InsPs activate SPX receptor proteins to target PHR family transcription factors.
Phosphorus is an essential nutrient limiting plant growth, development, and crop productivity1,2. Plants have developed sophisticated signal systems to perceive, uptake, transport, and store phosphate (Pi) for the maintenance of Pi homeostasis3–10. During Pi limitation, a broad range of Pi starvation induced (PSI) genes are expressed in response to the nutrient deficiency11–14. Central regulators responsible for the transcriptional activation of PSI genes are the highly conserved Pi starvation response (PHR) family transcription factors14–19.

Under Pi starvation, rice (Oryza sativa) PHR2 (OsPHR2) binds to a cis-element (PIBS) in the promoter of various PSI genes and up-regulates their transcription, thus optimizing rice Pi acquisition and utilisation20–22. In contrast, under Pi sufficient conditions, an inositol pyrophosphates (PP-InsPs) dependent negative regulator, the stand-alone SPX (SYG1/Pho81/XPR1) protein, binds to OsPHR2 and inactivates its transcriptional activity20,21,23,24 (Supplementary Fig. 1). Despite extensive studies on the rice PHR signalling pathway, how the SPX receptor proteins sense the Pi-level correlated PP-InsPs signal and transduce this signal into transcription repression remains largely unknown.

To reveal this underlying mechanism at molecular level, here we report the crystal structure of the rice SPX2/InsP\textsubscript{6}/PHR2 complex at 3.1 Å resolution, using InsP\textsubscript{6} (phytate acid) as a commercially available surrogate for the bioactive PP-InsP. In the SPX2/InsP\textsubscript{6}/PHR2 complex, the InsP\textsubscript{6} is perceived by a domain-swapped SPX2 dimer. The signalling-active SPX2 dimer binds two copies of PHR2, and each polypeptide of the SPX2 dimer binds to the PHR2 MYB domain and PHR2 CC domain, respectively. Furthermore, we determine the crystal structure of the PHR2 MYB domain in complex with its target DNA at 2.7 Å resolution, to elucidate how the InsP\textsubscript{6}-bound SPX2 association of PHR2 inhibits its DNA binding activity. Structural comparison, biochemical and biophysical analysis show that SPX2 senses the InsP\textsubscript{6} / PP-InsP nutrient messenger to repress the PHR2 transcriptional activity by establishing severe steric clashes with the PHR2 MYB domain, preventing DNA binding, and by disrupting the CC domain oligomerisation motif in PHR2, attenuating its transcriptional activity.

Results

Structure of the rice SPX2/InsP\textsubscript{6}/PHR2 complex. To determine the crystal structure of rice SPX2 in complex with rice PHR2 and InsP\textsubscript{6}, we first constructed a PHR2 boundary PHR2\textsubscript{225–362} containing the MYB domain and the CC domain16,25,26. By co-expressing His-tagged PHR2\textsubscript{225–362} with SPX2 following Ni-NTA pull-down assay, we found that the interaction between PHR2\textsubscript{225–362} and SPX2 is InsP\textsubscript{6} dependent (Supplementary Fig. 2), in agreement with previous reports23,27. Initial crystals of the of the SPX2/InsP\textsubscript{6}/PHR2\textsubscript{225–362} ternary complex diffracted only to low resolutions. We next identified poorly conserved loop regions in rice SPX2 (residues 36–69 and 191–280; Supplementary Fig. 3). Deletion of non-conserved insertions represents one promising approach to improve protein stability and crystallizability28. Based on this we expressed an engineered SPX2\textsubscript{1–202/47–59} construct fused to the C-terminus of the macro domain of human histone mH2A1.1\textsubscript{361–366} for carrier-driven crystallization29. The crystal structure of the mH2A1.1\textsubscript{361–366} tagged SPX2\textsubscript{1–202/47–59}/InsP\textsubscript{6}/PHR2\textsubscript{225–362} ternary complex was subsequently determined at 3.1 Å resolution, using InsP\textsubscript{6} (phytate acid) as a commercially available surrogate for the bioactive PP-InsP23,26 (Fig. 1a, Supplementary Fig. 4, and Supplementary Table 1).

In the complex structure, two InsP\textsubscript{6} molecules bind to a SPX2 dimer, and two copies of PHR2 wrap around this dimer. In order to check and assess if the mH2A1.1\textsubscript{181–366} fusion tag and the loop truncations affected the SPX2 structure and its ability to bind PHR2, we performed analytical ultracentrifugation (AUC) of the protein complex used for crystallization and the complex of the full-length SPX2\textsubscript{1–280}/PHR2\textsubscript{225–362} (no mH2A1.1\textsubscript{181–366} tag and no internal-residues deletion), respectively (Supplementary Fig. 5). We found that either the protein complex used for crystallization or the complex of full-length SPX2\textsubscript{1–280} and PHR2\textsubscript{225–362} are both assembled by a 2:2 stoichiometry ratio in solution (Supplementary Fig. 5), consistent with the crystal structure. This indicate that the mH2A1.1\textsubscript{181–366} fusion tag and internal-residues deletion of SPX2 have little impact on the SPX2 structure and its ability to bind PHR2. To further validate the crystal structure, we performed small-angle X-ray scattering (SAXS) analysis. We collected SAXS data of the crystallized construct, the
complex of mH2A1.1\(^{181-366}\)-tagged SPX2\(^{202/\Delta47-59}\) and PHR2\(^{225-362}\). SAXS experiments performed at three different concentrations yielded very similar scattering profiles (Supplementary Fig. 6a). This indicates that the association between mH2A1.1\(^{181-366}\) tagged SPX2\(^{202/\Delta47-59}\) and PHR2\(^{225-362}\) is concentration-independent, and that little protein aggregation occurs. However, the experimental scattering data is significant different from the theoretical scattering profile of the crystal structure (Supplementary Fig. 6a), possibly because we omitted disordered residues in our crystal complex structure from these calculations. Furthermore, the fused mH2A1.1\(^{181-366}\) tag may be oriented differently in solution when compared to its orientation in the crystal lattice, leading to a discrepancy between the theoretical scattering profile and experimental data. We thus removed the mH2A1.1\(^{181-366}\) tag and used the construct of SPX2\(^{202/\text{PHR2}^{225-362}}\) to evaluate just these parts of SPX2\(^{202-202}\) and PHR2\(^{225-362}\) in the mH2A1.1\(^{181-366}\) tagged crystal structure in additional SAXS experiments (Supplementary Fig. 6b, and Methods). We found that the theoretical SAXS profile derived from the crystal structure is consistent with that observed in solution (Supplementary Fig. 6b), indicating that the crystal structure is maintained in solution and that the internal-residues deletion and mH2A1.1\(^{181-366}\) fusion of SPX2 have little impact on its structure and PHR2 association. Taken together, the AUC and SAXS results corroborate the crystal structure of the SPX2\(^{202-202/\Delta47-59}\)\(\text{InsP}_{5}/\text{PHR2}^{225-362}\) complex.

In the SPX2/InsP\(_5\)/PHR2 complex, the SPX2 dimer obtains a domain-swapped conformation, in which the N-terminal domain of one SPX2 protomer interacts with the C-terminal domain of the other SPX2 protomer, forming an intertwined dimer (Fig. 1b). Specifically, the domain swap involves helices a1 and a2 (NTD) from one protomer and helices a4 and a5 (CTD) from another protomer, which are bridged by two antiparallel extended helices a3 from these two protomers. We validated this domain-swapped dimeric conformation in solution by thiol-directed chemical crosslinking (Supplementary Fig. 7). For this validation, we introduced a cysteine mutation into SPX2 (K106C), which is spatially adjacent to the endogenous cysteine (C182) in another protomer (Supplementary Fig. 7a). The distance between K106C and C182 in the SPX2 dimer would allow them to be cross-linked by 1,2-Ethanediyl Bismethanethiosulfonate (M\(_2\)M). Consistent with this, the SPX2 in the SPX2/InsP\(_5\)/PHR2 complex was cross-linked by migrating with higher mass than SPX2 monomer in the SDS-PAGE gel, and the cross-linked SPX2 can be reversibly reduced by dithiothreitol (DTT) (Supplementary Fig. 7b). Neither the wild-type SPX2, possesses the endogenous C182, nor the K106C/K182S double mutant can be cross-linked (Supplementary Fig. 7b). These data indicate that the crosslinking between K106C and C182 is specific, and the domain-swapped conformation of SPX2 dimer in the SPX2/InsP\(_5\)/PHR2 complex is maintained in solution.

To further validate the domain-swapped SPX2 dimer in the SPX2/InsP\(_5\)/PHR2 complex and to confirm that the crosslinking occurred between two distinct SPX2 molecules, we encoded the K106C and C182S mutation on two separate SPX2 for chemical crosslinking (Supplementary Fig. 8). We co-expressed SPX2, flag-tagged SPX2 and His-tagged PHR2 in E. coli (Supplementary Fig. 8a, and Methods). In the presence of InsP\(_5\), three types of SPX2/InsP\(_5\)/PHR2 complex should be formed, including the PHR2 in complex with two kinds of homo SPX2 dimers (SPX2/SPX2 dimer and SPX2-flag/SPX2-flag dimer) and a hetero SPX2 dimer (SPX2-flag/SPX2 dimer). Following by Ni-NTA pull-down and flag pull-down, PHR2 in complex with SPX2-flag/SPX2-flag homodimer and SPX2-flag/SPX2 heterodimer would be co-eluted (Supplementary Fig. 8a). Using flag pull-down, the SPX2 was co-eluted with SPX2-flag and PHR2-His (Supplementary Fig. 8b, line 2 and 3). This indicates that the SPX2 dimerizes with SPX2-flag to bind PHR2-His. By introducing K106C and C182S mutation on the two separate SPX2 protomers (SPX2 and SPX2-flag), we performed crosslinking experiments on the mixture of SPX2-flag/SPX2-flag homodimer and SPX2-flag/SPX2 heterodimer (Supplementary Fig. 8b). Consistent with the domain-swapped conformation of SPX2 dimer, neither crosslinking occurred within SPX2-flag/SPX2-flag homodimer and SPX2-flag/SPX2 heterodimer (Supplementary Fig. 8b, line 2 and 3), nor within SPX2\(^{202-202}\) flag/SPX2\(^{202-202}\) flag homodimer and SPX2\(^{202-202}\) flag/SPX2\(^{202-202}\) heterodimer (Supplementary Fig. 8b, line 4 and 5). In addition, the crosslinking was predictably occurring within the SPX2\(^{202-202}\) flag/SPX2\(^{202-202}\) heterodimer (Supplementary Fig. 8b, line 6 and 7), or within the SPX2\(^{202-202}\) flag/SPX2\(^{202-202}\) flag homodimer (Supplementary Fig. 8b, line 10 and 11). And, the crosslinking was mostly occurred within both the SPX2\(^{202-202}\) flag/SPX2\(^{202-202}\) flag homodimer and SPX2\(^{202-202}\) flag/SPX2 heterodimer (Supplementary Fig. 8b, line 8 and 9). Collectively, these results validate the domain-swapped conformation of SPX2 dimer in the complex of SPX2/InsP\(_5\)/PHR2.

Rice SPX2 is a stand-alone SPX protein, and a 3-dimensional structural homology search with the program DALI\(^{129}\) revealed that its dimeric conformation has not been previously observed with other SPX domain structures\(^{23,30}\) (Fig. 1c, d). SPX domain-containing proteins for which ligand-bound structures are available, such as Chaetomium Thermophilum glycerophosphodiester phosphodiesterase 1 (SPXCtGde1) or Vacular transporter chaperone 4 (SPX\(^{CIV_Gcy}\))\(_4\), InsP\(_5\) binds the monomeric SPX domain in a 1:1 stoichiometry ratio (Fig. 1c). In these previous structures, core helices a3 and a4 bridge helices a1, a2, a5 and a6, stabilizing a monomeric fold, and InsP\(_5\) mainly interacts with helices a2 and a4. In contrast, in our rice SPX2/InsP\(_5\)/PHR2 complex, SPX2 adopts a domain-swapped dimer conformation and coordinates two InsP\(_5\) molecules in a 2:2 stoichiometry ratio. The helix a2 of one protomer and the helix a3 of another protomer form the basic binding surface for InsP\(_5\)/PP-InsPs.

Recognition of InsP\(_5\) by the domain-swapped SPX2 dimer in the SPX2/InsP\(_5\)/PHR2 complex. To assess the recognition of inositol pyrophosphate signal by the domain-swapped rice SPX2 dimer, we performed extensive mutational analyses of the InsP\(_5\) / PP-InsP binding site. We co-expressed 8×His-tagged PHR2\(^{225-362}\) and untagged wild-type vs. mutant full-length SPX2 (comprising residues 1-280) and assessed their interaction in Ni-NTA pull-downs in vitro (see Methods). InsP\(_5\) binds to a positively charged surface by a set of highly conserved residues in SPX proteins\(^{23}\) (Fig. 2a, b; Supplementary Figs. 3 and 9). The binding surface in rice SPX2 is formed by the basic residues K26, K29 and R31 from protomer A, and K143, K146, K147 and K150 from protomer B of the SPX2 dimer. The highly conserved Y25 and L28 also contribute the binding surface. Consequently, the InsP\(_5\) binding dependent SPX2 – PHR2 association was strongly reduced or abolished by the Y25F, Y25A, L28A, K29A, or K143A/ K147A substitutions of SPX2 (Fig. 2c), indicating that these mutations have perturbed the sensing of InsP\(_5\) by SPX2. Single amino-acid substitutions in the SPX basic binding surface had little effect on SPX2 – PHR2 association (Fig. 2c). The area of the positively charged accessible surface for InsP\(_5\) binding is larger that the shape of negatively charged InsP\(_5\) (Fig. 2b), suggesting that, like previously shown for other SPX domains, PP-InsPs such as InsP\(_7\) or InsP\(_8\) may represent the bona fide Pi signalling molecule recognized / sensed by rice SPX\(^{23,27,31}\).

Our crystal structure and solution-based structural characterization reveal a domain-swapped SPX2 dimer in the rice SPX2/
InsP₆/PHR2 complex, we next assessed the role of the SPX2 dimer interface in PHR2 binding. The intertwined dimer is mainly stabilized by hydrophobic and paired electrostatic interactions between the two anti-parallel helices α₃. The hydrophobic network encompasses W18, F84, F87 and F88 from one protomer, and L129, L130, Y133 and N137 from another protomer (Fig. 2d). Substitutions of key residues in the network disrupted the PHR2–SPX2 complex in vitro, whereas a substitution outside the hydrophobic network, R19A, had little impact on PHR2–SPX2 complex association (Fig. 2d, e). The paired electrostatic interactions involve R105, E112 and E119 from one protomer, and E119, E112 and R105 from another protomer (Fig. 2d). Charge reversal mutation of these residues (R105E, E112R, and E119R) in the SPX2 dimer, that breaks paired electrostatic interactions, also abolished the binding of PHR2 (Fig. 2d, e). These residues contributing to SPX2 dimerization are well conserved in the stand-alone SPX proteins (Supplementary Fig. 3), supporting their importance in the dimerization of SPX proteins for the binding of PHR transcription factors.

Structural basis for PHR2 targeting and mechanism for PHR2 inactivation by PP-InsP₆-bound SPX2. We next assessed the interaction interface between SPX2 and PHR2 in vitro pull-down assays. Two copies of PHR2 are wrapped around the domain-swapped SPX2 dimer (Fig. 3a). The MYB domain and CC domain of PHR2 mainly interacts with the helix α₃ of protomer A, and helices α₃ and α₅ of the protomer B in the SPX2 dimer, respectively. Residues R250, E257, H294, K297, Y298 and R302 in the

Fig. 2 The recognition of InsP₆ by the domain-swapped rice SPX2 dimer in the SPX2/InsP₆/PHR2 complex. a Binding surface of InsP₆ in the SPX2 dimer. b The electrostatic surface of the InsP₆ binding surface, colored in terms of electrostatic potential, and displayed in a scale from red (−5 kT/e) to blue (+5 kT/e). c Co-expression coupled Ni-NTA pull-down assess the InsP₆-binding dependent SPX2–PHR2 association. Experiments were independently repeated three times with similar results. d Interface of the SPX2 dimer. PHR2 has been omitted for clarity. e Co-expression coupled Ni-NTA pull-down assess the SPX2 dimerization for SPX2/PHR2 association. Experiments were independently repeated three times with similar results. For the pull-down assay, different mutated versions of the full length SPX2₁⁻⁻²⁸⁰ and His-tagged PHR2₂²²⁻⁻³⁶² were co-expressed in the presence of 1 mM InsP₆.
MYB domain, and E92, E93, K100, E101 and E104 in the helix α3 of SPX2 protomer A, mediate the PHR2MYB – SPX2 association. The interaction between the CC domain and SPX2 is stabilized by residues Q345, K346, H349, E353 and R356 in the CC domain and H124, E131, T172, Y176, E183 and D187 in the helices α3 and α5 of SPX2 protomer B (Fig. 3a). Consistent with this, mutations of these key interacting residues in the PHR2MYB – SPX2 interface or in the PHR2CC – SPX2 interface disrupted the association of SPX2 and PHR2 (Fig. 3b, c). We also validated these interactions by in vitro pull-down analysis using rice SPX4, a homolog of rice SPX2 (Supplementary Fig. 10).

To gain insights into how rice SPX2 reduces the DNA binding ability of PHR2, we determined the structure of the PHR2 MYB domain in complex with P1BS motif at 2.7 Å resolution (Fig. 4a and Supplementary Table 1). It turns out that two MYB molecules are coordinated into the major groove of the imperfect palindromic DNA mainly through helices α3. The P1BS recognition by MYB is mediated by the interaction between the residues K292, S293 and Q296 in MYB and the nucleotides G7, A9, A11, G4', A6' and A8' in P1BS (Fig. 4b). Electrophoretic mobility shift assay (EMSA) results revealed that alanine substitution of these residues attenuated the DNA binding ability of PHR2, and the charge reversal mutation of K292 abolished this interaction (Supplementary Fig. 11a). The structure of rice MYB/P1BS complex is consistent with classical binding models32, and is similar to the reported structure of the Arabidopsis PHR1 (AtPHR1) MYB in complex with P1BS (Supplementary Fig. 11b)25.

The structures of SPX2/InsP6/PHR2 complex and MYB/DNA complex provide a framework for understanding how SPX2 senses the PP-InsP signal and transduces this signal into transcription inhibition. Superposing the two complex structures using the MYB domains as a reference, the position of SPX2 molecules heavily overlapped with the DNA position in the MYB/DNA complex, indicating that the binding of InsP6-bound SPX2 to PHR2 would produce severe steric clashes and thus preventing DNA binding (Fig. 4c). It has been previously established that the CC domain of PHRs enables oligomerisation of the transcription factor critical for DNA binding17,26. In line with this, EMSA results showed that the DNA binding ability of PHR2MYB-CC is stronger than PHR MYB (Supplementary Fig. 11c). Our recently study indicated that mutation of K325, H328 and R335 at the surface of Arabidopsis PHR1 CC domain disrupted its interaction with Arabidopsis SPX receptors, and led...
to constitutive Pi starvation responses in Arabidopsis26, whereas the mutation of R318 or R340 produced no effect26. Mechanistically, our structure shows that these homologous residues K346, H349 and R356 in OsPHR2 (corresponding to K325, H328, and R335 in AtPHR1) interact with OsSPX2, whereas R339 and R361 (corresponding to R318 and R340 in AtPHR1) do not contribute to the formation of the signalling complex (Fig. 3a, c and Fig. 4d).

We have previously reported that the residues L319, I333 and L337 in AtPHR1 stabilize the CC oligomer required for DNA/promoter binding26. Our complex structure now uncovers the mechanism by which rice SPX2 disassembles PHR2 CC oligomers.
Fig. 4 The mechanism of transcriptional repression of rice PHR2 by the InsP₆-bound SPX2 binding. a The structure of PHR2 MYB domain in complex with DNA. The PIBS motif is highlighted in gray shading. b The interface between the MYB domain and PIBS motif. c Structure superposition of MYB/DNA complex and SPX2/InsP₆/PHR2 complex. They are aligned by superposing the MYB protomer A or B of MYB/DNA structure with the MYB domain of PHR2 protomer A or B in the SPX2/InsP₆/PHR2 complex, respectively. The two MYB molecules and DNA in the MYB/DNA complex are colored in yellow cartoon, green cartoon and gray surface representation, respectively. Steric clashes of PHR2 preventing DNA binding are illustrated in the middle model. d Structural basis for InsP₆-bound SPX2 disassembles the dimerization of PHR2 CC domain. Residues responsible for SPX2 binding and CC dimerization are highlighted in magenta and blue, respectively. No-interacting residues are colored in black. e A model illustration for the transcription inhibition of PHR2 by InsP₆/PP-InsPs.

and impairs DNA binding. Specifically, SPX2 blocks the assembly of PHR2 CC oligomers by exposing hydrophobic residues normally contributing to the stabilization of the coiled-coil structure (including L340, L354 and L358 that correspond to the previously characterized L319, I333 and L337 in AtPHR1) (Fig. 4d). Collectively, by forming the SPX2/InsP₆/PHR2 complex, a domain-swapped SPX2 dimer senses InsP₆/PP-InsP nutrient messengers to repress the PHR2 transcriptional activity by two distinct mechanisms: 1) The association of the InsP₆-bound SPX2 establishes severe steric clashes with the MYB domain, preventing DNA binding 2) Disruption of the CC domain oligomerisation motif in PHR2 attenuates its transcriptional activity (Fig. 4c, d).

Discussion

The dynamic interactions between PP-InsP nutrient messengers, SPX receptor proteins, PHR family transcription factors and corresponding PSI genes are the master regulation network in plant Pi homeostasis maintenance and also in plant – microorganism communication. Here we have determined the crystal structures of the PP-InsP₆-bound rice SPX2 in complex with PHR2 and of the PHR2 MYB domain in complex with its target DNA. In the SPX2/InsP₆/PHR2 complex, the signalling-active SPX2 assembles into a domain-swapped dimer conformation to bind two copies of PHR2. Although the binding surface of PP-InsP is highly conserved in SPX receptor proteins, the conformation of SPX2 in our SPX2/InsP₆/PHR2 complex structure clearly differs from the crystal structures of the PP-InsP₆-bound form will be needed to assess the functional significance of the different conformations and oligomeric states. Altogether, our structural characterizations and biochemical analysis allow us to propose a molecular model for the transcription inhibition of PHR2 by InsP₆/PP-InsP (Fig. 4e). Our structure clearly defines that in the case of PHR – SPX interactions, PP-InsPs do not act as “intermolecular glue” promoting the association of the signalling complex. Instead, in the rice SPX2/InsP₆/PHR2 complex, the signalling-active SPX2 assembles into a domain-swapped dimer conformation that targets two PHR2 monomers forming a 2:2:2 complex. Upon the binding of signalling-active SPX2, the PHR2 CC domain cannot longer oligomerise and the PHR2 MYB domain is inaccessible to DNA binding, leading to PHR2 inactivation. Our work and reported studies collectively uncover the molecular mechanism of plant phosphate homeostasis and provide a framework for the rational engineering of crops with improved Pi use efficiency.

Methods

Molecular cloning. The codon-optimized complementary DNA of full length SPXs and PHR2 were synthesized. Gibson Assembly method was used for cloning constructing. PHR2 was subcloned into a pET21B (Novagen) vector with a C-terminal hexaHis tag, using restriction endonucleases NdeI and XhoI. OsSPX1, OsSPX4, AtSPX2 and AtSPX4 was constructed with a 6xHis tag and a caspase drICE protease cleavage site at the N-terminus, and was subcloned into a pET15D vector using restriction endonucleases NdeI and XhoI, respectively. OsSPX2 was cloned into a pBAD75 vector without any tag using restriction endonucleases NdeI and EcoRI. The site-specific mutations were introduced into PHR2 or SPX genes by overlap PCR. All the constructs were verified by DNA sequencing. Sequences of all relevant oligonucleotide primers are summarized in Supplementary Table 2.

Protein expression and purification. For the preparation of rice SPX2/PHR2 complex, the SPX2 and PHR2, or the particular boundary and mutants, were co-expressed in E. coli strain BL21(DE3) using Lysogeny broth (LB) medium. The cells were induced with 0.2 mM isopropyl-β-D-thiogalactoside (IPTG) and 1 mM InsP₆ at 16 °C for 12 h. Harvested cells were lysed by a high-pressure cell disruptor in a buffer containing 25 mM Tris–HCl pH 8.0,150 mM NaCl, 1 mM InsP₆. Target protein was collected from the supernatant and purified over Ni²⁺ affinity resin.
and HiTrap Heparin column used in tandem. 1 mM InsP₆ was present during all the purification processes. The protein was further purified into homogeneity by gel-filtration chromatography (Superdex 200 Increase 10/300 GL, GE Healthcare) in a buffer containing 25 mM Tris–HCl pH 8.0, 150 mM NaCl, 5 mM DTT and 1 mM InsP₆. Target fractions were collected for biochemistry experiments and supplied with 10 mM InsP₆ for crystallization.

Thiol-directed chemical crosslinking. To perform the thiol-directed chemical crosslinking (Supplementary Fig. 7b), the complex of SPX21–280/PHR2225–362, SPX21–280_K106C/PHR2225–362 and SPX21–280_K106C/PHR2225–362 was prepared in a buffer containing 25 mM Tris–HCl pH 8.0, 150 mM NaCl and 1 mM InsP₆, respectively. About 30 μM complex protein was incubated with 200 μM M2M (1,2-ethanediyl bismethanethiosulfonate) at room temperature for 30 min. The reaction mixture was analyzed by SDS-PAGE and Coomassie Blue staining in the condition of 100 mM DTT, or not.

In vitro pull-down assay of rice SPX4 and PHR2. We have tried various expression systems, such as E. coli, insects, or mammalian cells, to express the full-length rice SPX2 (comprising residues 1–280) alone, but no soluble SPX2 protein was obtained. Therefore, we applied a co-expression coupled Ni-NTA pull-down strategy to indirectly assess the recognition of InsP₆, binding dependent SPX2 – PHR2 association (Supplementary Fig. 2). In this system, tag SPX2 was co-expressed with 8 × His-tagged PHR2, and then super-natant of the lysed cells was incubated with Ni-NTA beads (Bio-Rad). The bound proteins, the His-tagged PHR2 and interacting SPX2 were co-eluted by imidazole.

Data collection and structure determination. X-ray diffraction datasets of mH2A1.1181 tagged SPX21–202/PHR2225–362 complex and MYB-DNA complex were collected at the Shanghai Synchrotron Radiation Facility (SSRF) on beamline BL17U1 and BL19U1. The data were integrated and processed with the HKL2000 program suite or in XDS package. Further data processing was carried out using CCP4 suite. Crystals structures of the mH2A1.1181 tagged SPX21–202/PHR2225–362 complex and MYB/DNA complex were determined at 3.1 Å and 2.7 Å resolution, respectively. The structure of MYB/DNA was solved by molecular replacement with the MYB of PHR2 as search template. Using the resolved MYB domain and the human histone mH2A1.1 (PDB ID 1ZR3) as search the models, we determined the structure of mH2A1.1181 tagged SPX21–202/PHR2225–362 complex through molecular replacement by the program PHASER. All the structures were iteratively built with COOT and refined using PHENIX program.

Analytical ultracentrifugation (AUC). The AUC experiment was performed in a Beckman Coulter XL-1 analytical ultracentrifuge using two-channel centerpieces. Complex of SPX21–280/PHR2225–362 and mH2A1.1181 tagged SPX21–202/PHR2225–362 was prepared in a solution of 25 mM Tris–HCl pH 8.0, 1 mM InsP₆, and 150 mM NaCl, respectively. OsSPX21–202/PHR2225–362 was prepared in a solution of 25 mM Tris–HCl pH 8.0 and with or without 1 mM InsP₆. Data was collected via absorbance detection at 18 °C for protein at a concentration of 0.7 mg ml⁻¹ and rotor speed of 147,420 g. The SV-AUC data were globally analyzed using the SEDFIT program and fitted to a continuous c(s) distribution model to determine the molecular weight.
imidazole and 1 mM InsP$_6$. The input protein and eluted fractions were analyzed by SDS-PAGE and Coomassie Blue staining.

Electrophoretic mobility shift assay (EMSA). FAM-labeled primers were used to generate the DNA fragment (5'-AGGCTGAAATAGTGAACGATAATGGC-3', R5-CTAAGCATATCTTGGATCAGCATT-3'). The DNA fragment was annealed by heating to 95 °C for 5 min and gradually cooled to 25 °C. The FAM-labeled DNA (10 nM) was incubated with 0.3375, 0.45, 0.6, and 0.8 μM PHR2 proteins at 4 °C for 30 min, in a buffer of 25 mM Tris–HCl pH 8.0, 150 mM NaCl, 5 mM DTT, 10% glycerol, and 200 ng ml$^{-1}$ Heparin. The reactions were resolved on 8% native acrylamide gels (37:51:acrylamide-acrylamide) in 0.5 × Tris–Boric acid buffer at 150 V for about 3 h. Images of the gels were obtained using FLA5100 (Typhoon, Fuji, Japan).

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

Atomic coordinates of rice SPX2/InsP$_6$/PHR2 and PHR2-MYB/DNA complex have been deposited in the Protein Data Bank (PDB) under accession number 7DJY and 7D3T, respectively. Source data are provided with this paper.

Received: 23 June 2021; Accepted: 3 March 2022; Published online: 24 March 2022

References

1. Oldroyd, G. E. D. & Leyser, O. A plant’s diet, surviving in a variable nutrient environment. Science 368 (2020).
2. Gong, Z. Z. et al. Plant abiotic stress response and nutrient use efficiency. Sci. China-Life Sci. 65, 635–674 (2020).
3. Raghothama, K. G. Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 665–693 (1999).
4. Vance, C. P.,Uhde-Stone, C. & Allan, D. L. Phosphorus nutrition: improving low-phosphate tolerance in crops. Annu. Rev. Plant Biol. 60, 205–232 (2013).
5. Lopez-Arredondo, D. L., Leyva-Gonzalez, M. A., Gonzalez-Morales, S. L., Lopez-Bucio, J. & Herrera-Estrella, L. Phosphate nutrition: Improving low-phosphate tolerance in crops. Annu. Rev. Plant Biol. 60, 95–124 (2019).
6. Ram, B. K., Chen, J. Y., Yan, Y. & Lucas, W. J. The Mybpho signal in Arabidopsis. J. Biol. Chem. 286, 2780–2788 (2001).
7. Zhou, J. et al. OsPHR2 is involved in phosphate-starvation signaling and homeostasis by inositol pyrophosphate kinases/phosphatases. Plant Cell 213, 1239–1253 (2017).
8. Dubos, C. et al. MYB transcription factors in Arabidopsis. Trends Plant Sci. 15, 573–581 (2010).
9. Zou, J. et al. Mechanism of phosphate sensing and signaling revealed by rice SPX1-PHR2 complex structure. Nat. Commun. 12, 7040 (2021).
10. Desmarini, D. et al. IP7-SPX Domain interaction controls fungal virulence by stabilizing phosphate signaling machinery. mBio 11, e01920-2020 (2020).
11. Wang, Q. S. et al. The macromolecular crystallographic structure determination of SRF. Acta Crystallogr. D. Biol. Crystallogr. 62, 12–17 (2015).
12. Wang, Q. S. et al. Upgrade of macromolecular crystallographic beamline BL14U1 at SSRF. Nat. Sci. Tech. 29, 68 (2018).
13. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–336 (1997).
14. Dijkstra, L. et al. Two bifunctional inositol pyrophosphate kinases/phosphatases control plant phosphate homeostasis. Life Sci. (2019).
D.L.Z., T.T.Z., J.J.Y., and P.Y. performed biochemistry experiments and analyzed data. Z.L., and M.H. wrote the manuscript with support from all authors.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-29275-8.

Correspondence and requests for materials should be addressed to Zhu Liu.

Peer review information Nature Communications thanks Aiwu Dong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, and indicate if changes were made.

© The Author(s) 2022