Formalization of risk analysis in software products for calculating the effectiveness of investment projects

K Zhichkin, V Nosov, L Zhichkina, H Aydinov, I Arefiev, T Cherepova and I Kuznetsova

1 Samara State Agrarian University, 2 Uchebnaja Street, Kinel, 446552, Russia
2 K.G. Razumovsky Moscow State University of technologies and management, 73 Zemlyanoy val, Moscow, 109004, Russia
3 Plekhanov Russian University of Economics, 36 Stremyanny lane, Moscow, 117997, Russia
4 Academy of the Investigative Committee of the Russian Federation, 125080, Moscow, Russia

E-mail: zskirill@mail.ru

Abstract. Simulation is the process of transforming real processes in a mathematical form using computer technology. The main type of quantitative risk analysis is the calculation of stability analyzes, among which there is main type - sensitivity analysis (analysis of overall project sustainability). The purpose of the study is to improve the methodology for formalized risk assessment in the simulation of investment projects. It includes the following tasks: - analysis of existing approaches to risk assessment in simulation; - identification of the problems of calculating the level of risk in the simulation models of investment projects; - improvement of existing software products for calculating the effectiveness of investment projects. Sensitivity analysis finds out the reaction of the project to changes in its main parameters. One-way sensitivity analysis, implemented in almost all software products, provides limited information. Therefore, it is proposed to supplement the possibilities of programs by introducing a two-way sensitivity analysis into the structure of the section to study the effect on the result of simultaneous changes in two significant environmental factors. The calculation results will be presented in tabular and graphical form to expand the analysis capabilities. On the graph, by separating the zone with negative values and marking it with a contrasting color, the zone with unacceptable values (which correspond to ineffective design options) is very clearly visible.

1. Introduction
Simulation is the process of transforming real processes in a mathematical form using computer technology [1-6]. Simulation modeling, in contrast to analytical models, not only tries to connect the input variables and the results obtained, but also to reproduce the structure of the processes occurring in the system under study, to determine the internal relationships and their nature [7-12]. All this makes it possible to better understand the system under study, carry out numerical studies of its behavior, and improve the system based on the results obtained.

Simulation modeling has become widespread in the study of the efficiency of investment processes, including in the preparation of business plans. The first investment project simulation model was
developed in 1964 by David Hertz [13-15]. He suggested using a simulation approach to solve the problem of determining the required volume and efficiency of capital investments in conditions of uncertainty. Currently, there are quite a few simulation models built to study investment projects in the pre-investment phase. Large Western industrial and financial corporations create mathematical models for their own development and efficient capital allocation. The means of mathematical modeling are widely used by consulting firms that conduct research on the effectiveness of investment projects on the orders of clients [16-22].

One of the first simulation models that appeared in Russia for the study of investment projects, implemented in the form of a software package for a computer, was the Comfar system (Computer model for feasibility analysis and reporting), developed by UNIDO (United Nations Industrial Development Organization) [23-25]. A significant drawback of the system was that the initial information for the calculations did not correspond to the structure of costing and reporting data at Russian enterprises. As a result, the data presented in the form adopted at domestic enterprises had to be restructured so that they could be used in the Comfar system and the like [26-30]. This procedure is rather laborious and required special training of analysts.

2. Materials and methods
At present in Russia the most common simulation models implemented in the form of software products are: Project Expert, developed by Expert Systems, and Alt-Invest, by Alt-Invest [31-33]. Both software products are very popular in solving problems related to the justification of decisions on investment projects and are the standard in this area. The programs are implemented using various approaches: Alt-Invest is an open-source program, compiled for MS Excel. It allows you to view calculation formulas, so it requires less user training compared to Project Expert, which is a closed program. At the same time, Project Expert has a more powerful analytical apparatus, is more flexible (it is easier to adapt to changes in legislation) [34-38].

The main type of quantitative risk analysis is the calculation of stability analyzes, among which there are four main types: analysis of a three-component indicator (analysis of financial stability); break-even analysis (analysis of the sustainability of production activities); Monte Carlo analysis (probabilistic analysis) and sensitivity analysis (analysis of overall project sustainability) [39-48].

Among the software products for calculating the effectiveness of investment projects that have become widespread in Russia, only the Project Expert program allows you to carry out all the main types of sustainability analysis [49-53].

The purpose of the study is to improve the methodology for formalized risk assessment in the simulation of investment projects. It includes the following tasks: - analysis of existing approaches to risk assessment in simulation; - identification of the problems of calculating the level of risk in the simulation models of investment projects; - improvement of existing software products for calculating the effectiveness of investment projects.

3. Results and discussion
Currently, when studying the behavior of an investment project, a sensitivity analysis is carried out, which shows how the project reacts to a change in its individual parameters. Evaluation of project results is carried out using performance indicators, among which the main ones are: net present value (NPV); profitability index (PI); payback period (PB) and internal rate of return (IRR) [54-61] (figure 1).
Distinguish between univariate and multivariate sensitivity analysis. In the first case, the effect on the result of a change in only one indicator is studied. This is the most common form of sensitivity analysis, which is presented in almost all software products used to evaluate investment projects. In fig. 1 shows the original form of calculating one-way sensitivity analysis, implemented in the Project Expert program. As you can see, the analysis algorithm is well developed: the form is intuitive; the calculation setup is very simple. The result displayed in the form of a report has two forms of presentation: tabular (table 1) and graphical (figure 2).

Figure 1. Calculation of one-way sensitivity analysis in Project Expert v.7.57.

No	Parameters	-20%	-10%	0%	10%	20%
	NPV	1 963 768.91	1 637 962.40	1 321 457.53	1 013 835.03	714 700.45
1	Tax rate	1 757 044.23	1 539 250.88	1 321 457.53	1 013 664.17	815 870.82
2	Investment size	-239 720.92	540 868.30	1 321 457.53	2 102 046.75	2 882 635.97
3	Sales volume	3 732 483.64	-1 205 513.06	1 321 457.53	3 848 428.11	6 375 398.70
4	Direct costs	4 814 220.25	3 067 838.89	1 321 457.53	-424 923.84	-2 171 305.20
5	Total costs	5 693 197.51	1 445 427.52	1 321 457.53	1 978 487.54	1 073 517.55
6	Loan rates	1 459 409.00	1 390 433.26	1 321 457.53	1 252 481.79	1 183 506.05

In a tabular form, you can very clearly see the boundaries of the change in indicators at which the investment project retains its profitability. The wider the boundaries for obtaining positive results (in terms of NPV), the more stable the project is in relation to the negative influence of external and internal factors. Under normal conditions, a sufficient condition for the sustainability of the project is to obtain positive values (by NPV) in the interval from -20% to + 20% of the change in the selected environmental factors.
The graphical form clearly allows you to highlight those environmental factors, the change of which has the greatest impact on the efficiency of the project. These are the indicators, the graph of which deviates to the greatest extent from the basic calculation option. In the example shown in Fig. 2, the most significant factors of the investment project environment are: sales price, direct costs and sales volume. The influence of the rest of the calculation parameters in comparison with the named ones is minimal.

Multivariate sensitivity analysis examines the simultaneous impact of two or more environmental factors on project results. Unfortunately, this form of sensitivity analysis is practically not presented in software products for calculating the effectiveness of investment projects. The only exception is the What is-analysis program, which is part of the Project Expert software package. A big drawback of this software product is the discreteness of the analysis, which makes it difficult to assess the stability in this case. The program specifies the parameters of individual scenarios (for example, a simultaneous decrease in the selling price by 10%, an increase in the loan rate by 5% and an increase in wages by 5%).

In order to determine the sustainability of an investment project by at least two parameters, it is necessary to set up several separate scenarios, carry out a calculation, summarize the data obtained, and, only after that, the results can be analyzed.

Table 2. Two-way sensitivity analysis. Tabular form, rubles.

Sales volume	-20%	-10%	0%	10%	20%
Direct costs	-20% 2554489.27	-10% 3684354.8	0% 4814220.25	10% 5944085.75	20% 7073951.24
	-10% 1157384.17	-10% 2112611.5	0% 3067838.89	10% 4023066.25	20% 4978293.61
	0% -239720.92	0% -424923.84	0% -1636826	0% -1030875	0% -826978.33
	10% -1636826	10% -1030875	10% -424923.84	10% -181027.25	10% 786978.33
	20% -3033931.1	20% -2602618	20% -2171305.2	20% -1739992.25	20% -1308679.3

Figure 2. One-way sensitivity analysis (NPV). Graphic form, rubles.
To increase the degree of automation of the process of conducting multivariate sensitivity analysis, reduce labor costs, and increase the visibility of the results obtained, it is proposed to supplement the structure of the Project Expert program with the possibility of conducting a two-factor sensitivity analysis in tabular and graphical forms (table 2, figure 3).

The analysis is proposed to be carried out according to the following scheme: at the first stage, using a one-way sensitivity analysis, it is necessary to select the project factors that most affect the result. In our example, these are three factors. At the second stage, it is necessary to calculate the results of the pairwise influence of the selected parameters on the results and present them in the form of a table and graph.

The table presents the numerical results of the two-way sensitivity analysis. On the graph, by separating the zone with negative values and marking it with a contrasting color, the zone with unacceptable values (which correspond to ineffective design options) is very clearly visible. For example, these are almost all cases of a decrease in sales volume below 10% of the planned level.

4. Conclusion
A quantitative risk assessment is one of the most important elements in assessing the effectiveness of an investment project. Therefore, it is very important to improve the methodology of formalized risk assessment. Among the main tools is sensitivity analysis to find out the reaction of the project to changes in its main parameters. One-way sensitivity analysis, implemented in almost all software products, provides limited information. Therefore, it is proposed to supplement the possibilities of programs by introducing a two-factor sensitivity analysis into the structure of the section to study the effect on the result of simultaneous changes in two significant environmental factors. The calculation results will be presented in tabular and graphical form to expand the analysis capabilities.

References
[1] Zeinalnezhad M, Chofreh A G, Goni F A, Hashemi L S and Klemes J J 2021 A hybrid risk analysis model for wind farms using Coloured Petri Nets and interpretive structural
modelling. *Energy* **22915** 120696

[2] Zhichkin K, Nosov V, Zhichkina L, Tarakanov A, Zhenzhebir V and Sterlikov F 2020 Formalized model of agricultural insurance development strategy as an element of industry management digitalization. *IOP Conference Series: Materials Science and Engineering* **941** 012025

[3] Liu L, Liu X and Liu G 2018 The risk management of perishable supply chain based on coloured Petri Net modeling. *Information Processing in Agriculture* **5** (1) 47-59

[4] Zhichkin K, Nosov V, Zhichkina L, Panchenko V, Zueva E and Vorob’eva D 2020 Modelling of state support for biodiesel production. *E3S Web of Conferences* **203** 05022

[5] Nikitina M A, Nikitin I A, Semenkina N G, Zavalishin I V and Goncharov A V 2018 Application of the hierarchy analysis method at the foodstuffs quality evaluation. *International Journal of Advanced Computer Science and Applications* **9** (5) 51-59

[6] Zhou J and Reniers G 2020 Modelling and application of risk assessment considering veto factors using fuzzy Petri nets. *Journal of Loss Prevention in the Process Industries* **67** 104216

[7] Gheibi M, Karrabi M and Eftekhari M 2019 Designing a smart risk analysis method for gas chlorination units of water treatment plants with combination of Failure Mode Effects Analysis, Shannon Entropy, and Petri Net Modeling. *Ecotoxicology and Environmental Safety* **171** 600-608

[8] Hellel E K, Hamaci S and Ziani R 2018 Modelling and reliability analysis of multi-source renewable energy systems using deterministic and stochastic Petri net. *Open Autom Contr Syst J* **10** 25-40

[9] Aloini D, Dulmin R and Mininno V 2012 Modelling and assessing ERP project risks: A Petri Net approach. *European Journal of Operational Research* **220** (2) 484-495

[10] Chofreh A G, Goni F A, Klemeš J J, Malik M N and Khan H H 2020 Development of guidelines for the implementation of sustainable enterprise resource planning systems. *Journal of Cleaner Production* **244** 118655

[11] Gatzert N and Kosub T 2016 Risks and risk management of renewable energy projects: The case of onshore and offshore wind parks. *Renewable and Sustainable Energy Reviews* **60** 982-998

[12] Angelopoulos D, Doukas H, Psarras J and Stamtsis G 2017 Risk-based analysis and policy implications for renewable energy investments in Greece. *Energy Policy* **105** 512-523

[13] Li C-B, Lu G-S and Wu S 2013 The investment risk analysis of wind power project in China. *Renewable Energy* **50** 481-487

[14] Guo Y, Meng X, Wang D, Meng T, Liu S and He R 2016 Comprehensive risk evaluation of long-distance oil and gas transportation pipelines using a fuzzy Petri net model. *Journal of Natural Gas Science and Engineering* **33** 18-29

[15] Gholamzadeh Chofreh A, Goni F A, Ismail S, Mohamed Shaharoun A, Klemeš J J and Zeinalnehzad M 2016 A master plan for the implementation of sustainable enterprise resource planning systems (part I): concept and methodology. *Journal of Cleaner Production Part B* **136** 176-182

[16] Tryhuba A, Hutsl T, Glowacki S, Tryhuba I, Tabor S, Kwasniewski D, Sorokin D and Yermakov S 2021 Forecasting quantitative risk indicators of investors in projects of hydrogen production from agricultural raw materials. *Processes* **9** (2) 258

[17] Sborshikov S, Vvedenskiy R and Markova I 2021 The application of simulation modelling in making operational decisions in construction. *IOP Conference Series: Materials Science and Engineering* **1030** 012106

[18] Ari I and Koc M 2021 Towards sustainable financing models: A proof-of-concept for a waqf-based alternative financing model for renewable energy investments. *Borsa Istanbul Review*

[19] Zhichkin K A, Starikov P V, Zhichkina L N, Mamaev O A, Artemova E I and Levoshkina N A 2020 The applied software role in the training of economic specialties students. *Journal of...*
[20] Abar S, Theodoropoulos G K, Lemarinier P and O’Hare G M P 2017 Agent Based Modelling and Simulation tools: A review of the state-of-art software. Computer Science Review 24 13-33

[21] Ari I and Koc M 2018 Sustainable financing for sustainable development: Understanding the interrelations between public investment and sovereign debt. Sustainability (Switzerland) 10 (11) 3901

[22] Ari I and Koc M 2019 Sustainable financing for sustainable development: Agent-based modeling of alternative financing models for clean energy investments. Sustainability (Switzerland) 11 1967

[23] Zhichkin K, Nosov V and Zhichkina L 2021 The production costs calculation automation for planning the crops production parameters. CEUR Workshop Proceedings 2843 20

[24] Çizakça M 2014 Risk sharing and risk shifting: An historical perspective. Borsa Istanbul Review 14 (4) 191-195

[25] Esty B C 2004 Why study large projects? An introduction to research on project finance. European Financial Management 10 (2) 213-224

[26] Samokhvalov Y 2021 Risk assessment of innovative projects based on fuzzy modeling. Advances in Intelligent Systems and Computing 1246 AISC 265–281

[27] Deptula A M and Knosala R 2015 Risk assessment of the innovative projects implementation. Management and Production Engineering Review 6 (15-25)

[28] Kim Y-J 2017 Monte Carlo vs. fuzzy Monte Carlo simulation for uncertainty and global sensitivity analysis. Sustainability (Switzerland) 9 (4) 539

[29] Mitropoulos L K, Prevedourovs P D, Yu X and Nathannail E G 2017 A Fuzzy and a Monte Carlo simulation approach to assess sustainability and rank vehicles in urban environment. Transportation Research Procedia 24 296-303

[30] Sadeghi N, Fayek A R and Pedrycz W 2010 Fuzzy Monte Carlo simulation and risk assessment in construction. Computer-Aided Civil and Infrastructure Engineering 25 (4) 238-252

[31] Tah J H M and Carr V 2000 A proposal for construction project risk assessment using fuzzy logic. Construction Management and Economics 18 (4) 491-500

[32] Dheskali E, Koutinas A A and Kookos I K 2020 Risk assessment modeling of bio-based chemicals economics based on Monte-Carlo simulations. Chemical Engineering Research and Design 163 273–280

[33] Abbati de Assis C, Gonzalez R, Kelley S, Jameel H, Bilek T, Daystar J, Handfield R, (...) and Singh D 2017 Risk management consideration in the bioeconomy. Biofuels, Bioproducts and Biorefining 11 (3) 549-566

[34] Zhichkin K A, Nosov V V, Zhichkina L N, Pavlyukova A V and Korobova L N 2021 Modeling the production activity of personal subsidiary plots in the regional food security system. IOP Conference Series: Earth and Environmental Science 659 012005

[35] Karpov V I, Portnov N M, Nikitin I A, Sidorenko Y I, Zavalishin I V, Petrov S M, Podgornova N M, Sidorenko M Y and Shterman S V 2019 Automated Methodology for OptimizingMenus in Personalized Nutrition. International Journal of Advanced Computer Science and Applications 10 (11) 317-322

[36] Dheskali E, Koutinas A A and Kookos I K 2020 A simple and efficient model for calculating fixed capital investment and utilities consumption of large-scale biotransformation processes. Biochemical Engineering Journal 154 107462

[37] Gunukula S, Keeling P L and Anex R 2016 Risk advantages of platform technologies for biorenewable chemical production. Chemical Engineering Research and Design 107 24-33

[38] Ioannidou S M, Pateraki C, Ladakis D, Papapostolou H, Tsakona M, Vlysidis A, Kookos I K, (...) and Koutinas A 2020 Sustainable production of bio-based chemicals and polymers via integrated biomass refining and bioprocessing in a circular bioeconomy context. Bioresource Technology 307 123093
[39] Mirkouei A, Haapala K R, Sessions J and Murthy G S 2017 A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains. *Renewable and Sustainable Energy Reviews* **67** 15-35

[40] Sacramento-Rivero J C, Navarro-Pineda F and Vilchiz-Bravo L E 2016 Evaluating the sustainability of biorefineries at the conceptual design stage. *Chemical Engineering Research and Design* **107** 167-180

[41] Abdulazeez M, Rabines J, Siddiqui A, Bukhamsin K and Asiri R 2020 A stochastic approach to economic modeling of unconventional resource play. *International Petroleum Technology Conference 2020, IPTC 2020*

[42] Zhichkin K, Nosov V and Zhichkina L 2021 The Express Method for Assessing the Degraded Lands Reclamation Costs. *Lecture Notes in Civil Engineering* **130** 483-492

[43] Ivanova V N, Nikitin I A, Zhuchenko N A, Nikitina M A,Sidorenko Y I, Karpov V I and Zavalishin I A 2019 Clustering of multidimensional objects in the formation of personalized diets. *International Journal of Advanced Computer Science and Applications* **10** (2) 45-50

[44] Zeng W and Koutny M 2019 Modelling and analysis of corporate efficiency and productivity loss associated with enterprise information security technologies. *Journal of Information Security and Applications* **49**

[45] Riepina I, Hrybinenko O, Parieva N, Parieva O, Savenko I and Durbalova N 2019 Quantity assessment of the risk of investment projects. *International Journal of Recent Technology and Engineering* **8** (3) 7256–7260

[46] Danylyshyn B, Bondarenko S, Malanchuk M, Kucherenko K, Pylippiv V and Usachenko O 2019 Method of real options in managing investment projects. *International Journal of Innovative Technology and Exploring Engineering* **8** (10) 2696-2699

[47] Filyppova S, Bashynska I, Kholod B, Prodanova L, Ivanchenkova L and Ivanchenkov V 2019 Risk management through systematization: Risk management culture. *International Journal of Recent Technology and Engineering* **8** (3) 6047-6052

[48] Berezhina N A, Artemov A V, Nikitin I A and Budnik A A 2019 The method of computer-aided design of a bread composition with regard to biomedical requirements. *International Journal of Advanced Computer Science and Applications* **10** (5) 137-143

[49] Flaksman A S, Mozgovoy A I, Lopatkin D S, Dikikh V A, Shamsov I S, Romanova J A, Morkovkin D E and Bovtrikova E V 2021 Prospects for the development of alternative energy sources in the world energy. *IOP Conference Series: Earth and Environmental Science* **723** 052040

[50] Yakovlev A Y 2020 State agricultural companies in Russia: characteristic and legal status. *IOP Conference Series: Earth and Environmental Science* **548** 022101

[51] Degtyareva V V, Sozaeva D A and Dong Z 2021 The Era of Digitalization: Philosophical, Social, and Managerial Factors. Studies in Systems, Decision and Control **314** 1691–1700

[52] Lyapina S Y, Degtyareva V V and Tarasova V N 2021 Intelligent Technologies for Knowledge Management at a Modern Company Lecture Notes in Networks and Systems **161** LNNS 459–469

[53] Ermakova A, Oznobihina L and Avilova T 2020 Analysis of the current state and features of natural resource potential management. *E3S Web of Conferences* **157** 3005

[54] Zimnukhova D I, Zubkova G A, Morkovkin D E, Stroev P V and Gibadullin A A 2019 Management and development of digital technologies in the electric power industry of Russia. *Journal of Physics: Conference Series* **1399** 033097

[55] Istomin E P, Burllov V G, Abramov V M, Sokolov A G and Beneko S I 2019 Decision support model within environmental economics. *International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 19** (5.3) 139-145

[56] Gibadullin A A, Sadriddinov M I, Kurbonova Z M, Shedko Yu N and Shamraeva V V 2020 Assessment of factors ensuring sustainable development of the electric power industry in the
context of transition to renewable energy sources of the national economy. *IOP Conference Series: Earth and Environmental Science* **421** 032051

[57] Popova A, Abramov V, Popov N, Istomin E, Sokolov A and Levina, A. 2019 Blockchain and big data technologies within geo-information support for arctic projects. *Proceedings of the 33rd International Business Information Management Association Conference, IBIMA 2019: Education Excellence and Innovation Management through Vision 2020* 2020 8575-8579

[58] Provodina E V, Krasovskaya O Y, Gerasimova T A, Predeus Y V and Tserpento D P 2020 Features of the formation of environmental protection mechanisms during the operation of objects of the electric power complex. *IOP Conference Series: Materials Science and Engineering* **976**(1) 012018

[59] Sadriddinov M I, Mezina T V, Morkovkin D E, Romanova Ju A and Gibadullin A A 2020 Assessment of technological development and economic sustainability of domestic industry in modern conditions. *IOP Conference Series: Materials Science and Engineering* **734** 012051

[60] Kolokolov Yu and Monovskaya A 2019 Guess-work and reasonings on centennial evolution of surface air temperature in Russia. Part V: Stability Margin Towards Emergency *Int. J. of Bifurcation and Chaos* **29** 1930013

[61] Khayrzoda S, Morkovkin D, Gibadullin A, Elina O and Elena K 2020 Assessment of the innovative development of agriculture in Russia. *E3S Web of Conferences* **176** 05007