On the Bombieri-Pila Method Over Function Fields

A. Sedunova

June 30, 2015

Abstract

In [1] E. Bombieri and J. Pila introduced a method for bounding the number of integral lattice points that belong to a given arc under several assumptions. In this paper we generalize the Bombieri-Pila method to the case of function fields of genus 0 in one variable. We then apply the result to counting the number of elliptic curves contain in an isomorphism class and with coefficients in a box.

1 Introduction

In [1] E. Bombieri and J. Pila proved that if \(\Gamma \) is a subset of an irreducible algebraic curve of degree \(d \) inside a square of side \(N \), then the number of lattice points on \(\Gamma \) is bounded by \(c(d, \varepsilon) N^{\frac{d}{2} + \varepsilon} \) for any \(\varepsilon > 0 \), where the constant \(c(d, \varepsilon) \) does not depend on \(\Gamma \). There are many analogues of this remarkable result. For example, one can be interested in finding a bound for a number of solutions of \(f(x, y) = 0 \mod p \) with \(x \in I, y \in J \), where \(I \) and \(J \) are short intervals in \(\mathbb{Z}/p\mathbb{Z} \) (see [2] and [3]). Such results are \(p \)-analogues of the Bombieri-Pila bound. (Here we should assume that the lengths of \(I \) and \(J \) are much shorter than \(p \), so that the Weil bound and other standard methods cannot be applied.)

One can go further and look for a function field analogue. Here we work in a finite field \(F_q^n \) modelled as \(F_q[T]/f(T) \) where \(f \) is a fixed irreducible polynomial of degree \(n \) and \(T \) is a formal variable. Then an interval is the set of polynomials of the form \(X + Y = X(T) + Y(T) \), where \(X \in F_q[T] \) is a fixed polynomial and \(Y(T) \) runs through all polynomials of degree bounded by a given natural number. This point of view was used by J. Cilleruelo and I. Shparlinski in [4] for obtaining some bounds on the number of solutions of polynomial congruences modulo a prime with variables in short intervals. The same authors also formulated [4, Problem 9], which is solved here.

Our main goal is to prove

Theorem 1 Let \(C \) be an irreducible algebraic curve of degree \(d \) over \(F_q[T] \), \(q \) is a prime power. Define \(S \) as the set of points on \(C \) inside \(I^2 \), where \(I \) is a set of polynomials \(X \in F_q[T] \) with \(\deg X \leq n \) and \(|I| = q^{n+1} \). Then

\[
|S| \ll_{d, \varepsilon} |I|^{\frac{d}{2} + \varepsilon}.
\]

One can pose a question: why can we not just follow the Bombieri-Pila approach in order to get Theorem 1? Unfortunately, in this case we will cross some difficulties in getting Lemma 2 of [1], since we do not have the necessary analogue of the mean value theorem in function fields (see [5], Lemma 1). There seem to be at least two plausible ways to avoid this difficulty. The first one consists in getting a function field variant of Theorem 4 in Heath-Brown’s article [6]. The second one, which we will follow here, is to adapt the method of Helfgott-Venkatesh [7].

We will need analogues of Propositions 3.1 and 3.2 of [7]. Combining and developing the original ideas of [1] together with an adaptation of some results of [7] will lead us to our main result.

After that we will use Theorem 1 to get some applications, such as a calculation of the number of isomorphism classes which are represented by elliptic curves \(E_{a,b} \) parametrized by coefficients \(a, b \in F_q[T] \) lying in a small box, say, \(I^2 \). Using this result one can calculate the number of elliptic curves lying in a given isomorphism class with coefficients lying in a small box. To proceed we will work with ideas proposed in [3].
2 Auxiliary statements

Let X and Y be variables with values in $\mathbb{F}_q[T]$, i.e. their values are of the form $X = X(T) = a_0 + a_1T + \ldots + a_nT^n$, $Y = Y(T) = b_0 + b_1T + \ldots + b_mT^m$, where T is a placeholder, $a_i, b_j \in \mathbb{F}_q$, $i = 0, \ldots, \deg X = n$, $j = 0, \ldots, \deg Y = m$. For $X \in \mathbb{F}_q[T]$ we denote by $|X|$ its norm: $|X| = q^{\deg X}$.

Define "an interval" I as the set of polynomials on a formal variable T of the form $X(T) + Y(T)$, where $X(T)$ is a fixed polynomial and $Y(T)$ runs through all polynomials of degree less or equal than a given integer.

In what follows C is an irreducible algebraic curve of degree d over $\mathbb{F}_q[T]$, which is described by $F(X,Y) = 0$, $F(X,Y) \in (\mathbb{F}_q[T])[X,Y]$. Write S for the set of points on C inside I^2.

For any $F(X,Y) \in (\mathbb{F}_q[T])[X,Y]$ we write $\deg_X F$ and $\deg_T F$ to denote the degree of a polynomial F with respect to X and T respectively. We also use the standard notation $\deg F(X,Y)$ for the degree of $F(X,Y)$ as a polynomial in X and Y.

Let W be a set consisting of finitely many linearly independent polynomials $F \in (\mathbb{F}_q[T])[X,Y]$ including the constant polynomial 1. Write d_W for the total degree of all elements of W. Assume that the elements of W separate, meaning that $\forall (X_1,Y_1), (X_2,Y_2) \in (\mathbb{F}_q[T])^2$ there is an $F \in W$ such that $F(X_1,Y_1) \neq F(X_2,Y_2)$. We define a W-curve to be an affine algebraic curve described by an equation $G(X,Y) = 0$, where all the monomials of G belong to W.

During the proof of Theorem 1 we will use the following choice of W:

Example 1 Define $W = W_{d,M}$ as

$$W = \{X^iY^j\mid i \leq d, j \leq M\},$$

where d and M are given numbers. Then $|W| = (d+1)(M+1)$, $d_W = (d+1)(M+1)^{d+M+1}$. The W-curves are plane curves of degree less or equal than d and M in X and Y respectively.

This choice is taken straight from the work of Bombieri and Pila [1].

Lemma 1 Let C be an irreducible algebraic curve of degree d over $\mathbb{F}_q[T]$ and let S be the set of points on C inside I^2. Suppose that the number of residues $\{(X,Y)\mod f, X,Y \in S\}$ is at most $\alpha |f|$ for some fixed $\alpha > 0$ and for every irreducible polynomial $f \in \mathbb{F}_q[T]$. Assume that W is chosen in a way that any W-curve contains at most constant number C of elements of S. Then the following holds

$$|S| \ll_W |I|^{\frac{2\alpha d}{\log q} + \alpha + O(C)}$$

where $\omega = |W|$.

Proof. We are going to prove it in the spirit of [7] Proposition 3.1. Write $P = (X,Y)$ for a point in $(\mathbb{F}_q[T])^2$ with coordinates $X,Y \in \mathbb{F}_q[T]$. Fixing an arbitrary ordering F_1,F_2,\ldots,F_ω for the elements of W, we define a function

$$W : (\mathbb{F}_q[T])^2^\omega \rightarrow \mathbb{F}_q[T]$$

by

$$W(P_1,\ldots,P_\omega) = \det(F_i(P_j))_{1 \leq i,j \leq \omega}.$$

Let P denote an ensemble of points in S: $P = (P_1,\ldots,P_\omega)$, $P_i = (X_i,Y_i) \in S$. We say that P is admissible if $W(P) = W(P_1,\ldots,P_\omega) \neq 0$ (where 0 stands for zero polynomial in $\mathbb{F}_q[T]$). Define

$$\Delta = \prod_P |W(P)|,$$

where $*$ means that we take the operation over all admissible P.

By the definition of d_W we have

$$|W(P)| \ll_W |I|^{d_W}$$

for every $P \in S^\omega$. Taking $\log \Delta$ and applying the expression above gives

$$\frac{\log \Delta}{|S|^\omega} = \sum_P \frac{\log |W(P)|}{|S|^\omega} \leq d_W \log |I| + O_W(1).$$

(2.1)
Fix any irreducible polynomial f with $|f| \leq N$, where N is to be set at the end. Then for every point $P \in (\mathbb{F}_q[T])^2$ let ρ_P be the fraction of points in S that reduce to $P \mod f$. For each P let $\kappa(P) \in \{0, 1, \ldots, \omega - 1\}$ be defined in a way that $\omega - \kappa(P)$ is the number of distinct points among the points $P_i \mod f$. Then one can state

$$\text{ord}_f \Delta \geq \sum_{P}^* \kappa(P) = \sum_{P} \kappa(P) - \sum_{P} \kappa(P),$$

where the first sum on the right hand side is taken over all P and the second one is the sum over all inadmissible ensembles P.

We are going to proceed in two steps. First, we will calculate the sum over all P as a random variable with uniform distribution.

Then the expected value of the number of distinct points among the $P \mod f$ is equal to

$$\frac{\sum_P (\omega - \kappa(P))}{|S|^\omega} = \mathbb{E} \left(\sum_P Y_P \right).$$

Further,

$$\mathbb{E} \left(\sum_P Y_P \right) = \sum_P \mathbb{E}(Y_P) = \sum_P \mathbb{P}(\exists P_i | P_i \equiv P \mod f) = \sum_P (1 - \mathbb{P}(\forall P_i | P_i \equiv P \mod f))$$

$$= \sum_P (1 - \mathbb{P}(\forall P_i | P_i \not\equiv P \mod f)) = \sum_P \left(1 - \prod_i \mathbb{P}(P_i \not\equiv P \mod f) \right) = \sum_P \left(1 - \prod_i (1 - \rho_P) \right)$$

$$= \sum_P (1 - (1 - \rho_P)^\omega).$$

In the admissible case of P we have either at least two points $P_i = P_j$ among the entries of P or at least two points $P_i = P_j \mod f$, $P_i, P_j \in P$, $P_i \neq P_j$. The number of pairs P_i, P_j that satisfy the first possibility can be easily bounded by $O(|S|^{\omega - 1})$ and for the latter case we permute the entries of our matrix in order to have

$$\det(F(P_i))_{1 \leq i, j \leq l} \neq 0$$

of a maximal possible size l and then apply the fact that any W-curve contains at most constant number of elements of S.

Let us start with the sum over all $P \in S^\omega$. Consider P as a random variable with uniform distribution. Then the expected value of the number of distinct points among the $P \mod f$ is equal to

$$\frac{\sum_P (\omega - \kappa(P))}{|S|^\omega} = \mathbb{E} \left(\sum_P Y_P \right).$$

Further,

$$\mathbb{E} \left(\sum_P Y_P \right) = \sum_P \mathbb{E}(Y_P) = \sum_P \mathbb{P}(\exists P_i | P_i \equiv P \mod f) = \sum_P (1 - \mathbb{P}(\forall P_i | P_i \equiv P \mod f))$$

$$= \sum_P (1 - \mathbb{P}(\forall P_i | P_i \not\equiv P \mod f)) = \sum_P \left(1 - \prod_i \mathbb{P}(P_i \not\equiv P \mod f) \right) = \sum_P \left(1 - \prod_i (1 - \rho_P) \right)$$

$$= \sum_P (1 - (1 - \rho_P)^\omega).$$

We then have

$$\frac{\sum_P (\omega - \kappa(P))}{|S|^\omega} = \sum_P (1 - (1 - \rho_P)^\omega).$$

Next

$$\frac{\sum_P \kappa(P)}{|S|^\omega} - \frac{\sum_P \omega}{|S|^\omega} - \sum_P (1 - (1 - \rho_P)^\omega) = \sum_P ((1 - \rho_P)^\omega + \omega \rho_P - 1).$$

Since

$$(1 - \rho_P)^\omega + \omega \rho_P - 1 = 1 - \omega \rho_P + \left(\frac{\omega}{2} \right) \rho_P^2 + \ldots + (-1)^\omega \left(\frac{\omega}{\omega} \right) \rho_P^\omega + \omega \rho_P - 1 = \rho_P^\omega \left(\left(\frac{\omega}{2} \right) - o_{C, \omega}(1) \right),$$

then

$$\frac{\sum_P \kappa(P)}{|S|^\omega} = \frac{\omega (\omega - 1)}{2} \sum_P \rho_P^\omega - o_{C, \omega} \left(\sum_P \rho_P^\omega \right).$$

Now let us bound the sum over all inadmissible P. Consider the set of such P with $\kappa(P) > 0$. Then one of the followings is true:
1. There exist i and j, such that $P_i = P_j$;

2. There exist i and j, such that $P_i \equiv P_j \pmod{f}$, but $P_i \neq P_j$.

The total number of inadmissible P, such that the first condition above holds is equal to $O(\lvert S \rvert^{\omega-1})$. Let us estimate this number for the second case. Permute the entries in such a way that $i = 1$, $j = 2$ and $F_1 = 1$, $F_2(P_1) \neq F_2(P_1)$ (this is possible since we have assumed that the elements of W separate points and W contains 1). Then for $l = 2$

$$\det(F_i(P_j))_{1 \leq i,j \leq l} \neq 0.$$

Choose the maximal l, such that the above statement still holds. Then P_{l+1} lies on a W curve determined by P_1, P_2, \ldots, P_l. As we demanded, the number of possible values for P_{l+1} is bounded above by a constant. Then the number of inadmissible P, such that the second case takes place is equal to

$$O_\omega(|S|^{\omega-3}\delta),$$

where δ is the number of pairs $(Q_1, Q_2) \in S^2$ that reduce to the same point mod f. By the definition of ρ_P we have

$$\delta = |S|^2 \sum_P \rho_P^2.$$

Summing two results we see that there are at most

$$O_\omega\left(|S|^{\omega-1} + |S|^{\omega-3}\delta\right) = O_\omega\left(|S|^{\omega-1}\left(1 + \sum_P \rho_P^2\right)\right) = |S|^{\omega} O_\omega\left(|S|^{-1}\left(1 + \sum_P \rho_P^2\right)\right)$$

(2.4)

inadmissible P with $\kappa(P) > 0$. Putting (2.3) and (2.4) into (2.2) we have

$$\frac{\text{ord}_f \Delta}{|S|^{\omega}} \geq \sum_P \frac{\kappa(P) - \sum_P \kappa(P)}{|S|^{\omega}} \geq \left(\frac{\omega(\omega - 1)}{2} - o_{C,\omega}(1)\right) \sum_P \rho_P^2 - O_\omega\left(|S|^{-1}\left(1 + \sum_P \rho_P^2\right)\right).$$

Using Cauchy’s inequality

$$\sum_P \rho_P^2 \geq \frac{1}{\alpha|f|} \left(\sum_P \rho_P\right)^2 = \frac{1}{\alpha|f|}$$

one can state

$$\frac{\text{ord}_f \Delta}{|S|^{\omega}} \geq \left(\frac{\omega(\omega - 1)}{2} - o_{C,\omega}(1)\right) \frac{1}{\alpha|f|} - O_{\omega,\alpha,|f|}\left(|S|^{-1}\right).$$

Multiply the equation above by $\log |f|$ and sum over all $|f| \leq N$:

$$\sum_{|f| \leq N} \log |f| \left(\frac{\omega(\omega - 1)}{2} - o_{C,\omega}(1)\right) \frac{1}{\alpha|f|} + O_{\omega,\alpha} \left(|S|^{-1} \sum_{|f| \leq N} \log |f|\right) \leq \frac{\log \Delta}{|S|^{\omega}}.$$ (2.5)

As we know from (2.1)

$$\frac{\log \Delta}{|S|^{\omega}} \leq d_W \log |f| + O_W(1).$$

Applying this estimate to (2.5) gives

$$\frac{\omega(\omega - 1)}{2\alpha} \sum_{|f| \leq N} \frac{\log |f|}{|f|} + O_{\omega,\alpha} \left(|S|^{-1} \sum_{|f| \leq N} \log |f|\right) - o_{C,\omega,\alpha} \left(\sum_{|f| \leq N} \frac{\log |f|}{|f|}\right) \leq d_W \log |f| + O_W(1).$$

Taking $N = |S|$ we end with

$$|S| \ll_{\omega, W} \left|f\right|^{\frac{2d_W}{2\omega}} + o_{\omega, C}(1).$$

\square
Lemma 2 Let C be an irreducible algebraic curve of degree d over $\mathbb{F}_q[T]$ which is defined by $F(X, Y) = 0$. There exists a linear transformation $$(X, Y) \rightarrow (X', Y')$$ such that $\deg_X F(X', Y') = d$.

Proof. We can assume $\deg_X F(X, Y) < d$, otherwise we are done. Any polynomial of the form $F(X, Y) \in (\mathbb{F}_q[T])[X, Y]$ can be written as $$F(X, Y) = \sum_{i \in J_1, j \in J_2} F_{ij} X^i Y^j,$$ where $J_1, J_2 \subset \{0, 1, \ldots, d\}$, $F_{ij} \in \mathbb{F}_q$ and $$\max_{i \in J_1} (i + j) = \deg F = d, \quad \max_{i \in J_1} i = \deg_X F < d.$$ Consider a linear transformation $$(X, Y) \rightarrow (X', Y')$$ such that $(X, Y) = (AX' + BY', CX' + DY')$, where $A, B, C, D \in \mathbb{F}_q[T]$ with $AD - BC \neq 0$. Changing the variables $(X, Y) \rightarrow (X', Y')$ we obtain $$F(X, Y) = \sum_{i \in J_1, j \in J_2} F_{ij} (AX' + BY')^i (CX' + DY')^j.$$ In new variables (X', Y') we have $$\deg_{X'} F = \max_{i \in J_1, j \in J_2} (i + j),$$ which is equal to d, since $\max_{i \in J_1, j \in J_2} (i + j) = \deg F = d$. \hfill \Box

3 Proof of the theorem

We start with an interpolation argument, which is used for a similar goal in [5]. Let again $F \in (\mathbb{F}_q[T])[X, Y]$ be written in a form $$F(X, Y) = \sum_{i \in J_1, j \in J_2} F_{ij} X^i Y^j,$$ where $J_1, J_2 \subset \{0, 1, \ldots, d\}$, $F_{ij} \in \mathbb{F}_q$. We are counting the number of distinct lattice points $P = (X, Y) \in I^2 \cap C$. If we have less than $r(d) = d^2 + 1$ such points, then we are done. Suppose that we have at least $r(d)$ points: $P_i = (X_i, Y_i) \in C \cap F^1, i = 1, \ldots, r(d)$ with $F(P_i) = 0$. Denote by $n(d) = \frac{1}{2}(d + 1)(d + 2)$ the number of monomials of degree less or equal than d. Consider $n(d) \times r(d)$ matrix A, whose i-th row consists of the monomials of degree d in the variables X_i, Y_i. Let $\vec{b} \in \mathbb{F}_q^{n(d)}$ be a vector, whose entries are the corresponding coefficients F_{ij} of $F(X, Y)$. For such a vector \vec{b} we have an equation $$A \vec{b} = \vec{0}.$$ Since $\vec{b} \neq \vec{0}$, then the matrix A has a rank less than or equal to $n(d) - 1$. Thus there is a solution $\vec{g} \neq \vec{0}$, where \vec{g} is constructed out of the minors of A with $|\vec{g}| \ll_d |I|^{dn(d)}$. Let $G \in (\mathbb{F}_q[T])[X, Y]$ be the form of degree d corresponding to the vector \vec{g}. Then $G(X, Y)$ and $F(X, Y)$ share $r(d)$ zeros (points P_i).

By Bézout’s theorem it is possible only if G is a multiple of F. Since F is irreducible, then G is also irreducible and defines the same curve C. Let us work with G instead of F.

We are going to proceed in two steps:
1. If \(\deg_X G < d \), then by Lemma 2 we can change variables so that \(\deg_X G = d \). If not, then proceed to the next step.

2. Using Weil bounds we obtain
\[
| \{(X, Y) \in (\mathbb{F}_q[T])^2 : G(X, Y) = 0 \mod f \}| = |f| + O_d(\sqrt{|f|}).
\]

Further, for every \(\varepsilon > 0 \) and for every irreducible polynomial \(f \in \mathbb{F}_q[T] \) with the condition \(|f| \geq c(\varepsilon) \) the set \(S \) intersects at most \((1 + \frac{\varepsilon}{2}) |f| \) residue classes \(\mod f \) (here \(c(\varepsilon) \) is a constant that depends only on \(\varepsilon \)). Applying Lemma 1 with \(\alpha = 1 + \frac{\varepsilon}{2} \) and \(\mathcal{W} \) from Example 1 we obtain
\[
|S| \ll_{\varepsilon, \mathcal{W}} |I|^{\frac{1}{2} \left(1+\frac{\varepsilon}{2}\right) + o_{\varepsilon, c}(1)} + o_{\varepsilon, c}(1).
\]

We choose \(M \) to be large enough and end with
\[
|S| \ll_{\varepsilon, \mathcal{W}} |I|^{\frac{1}{2} + \frac{2\varepsilon}{3} + o_{\varepsilon, c}(1)}.
\]

4 An application to counting elliptic curves

In this section we are going to proceed with counting the number of elliptic curves \(E_{a,b} \) with coefficients \(a, b \) in a small box that lie in the same isomorphic classes. This is basically the generalization of several statements presented in [3]. Doing this we have an opportunity to apply Theorem 1 and also to show that some results for number fields can be also adapted to function fields.

Let \(I \) stand again for an interval of polynomials of the form \(X(T) + Y(T) \), where \(X(T) \in \mathbb{F}_q[T] \) is a fixed polynomial and \(Y(T) \in \mathbb{F}_q[T] \) runs through all polynomials of degree less or equal than \(d \). The coefficients of \(X \) and \(Y \) belong to \(\mathbb{F}_q \) just as in section 2.

For a prime power \(q \) we consider a family of elliptic curves \(E_{a,b} \)
\[E_{a,b} : Y^2 = X^3 + aX + b, \]
where \(X \) and \(Y \) belong to \(\mathbb{F}_q[T] \) as before and \(a, b \) are some coefficients from \(\mathbb{F}_q[T] \) with the property that \(4a^3 + 27b^2 \neq 0 \). As in the number field case we say that two curves \(E_{a,b} \) and \(E_{c,d} \) are isomorphic if
\[at^4 \equiv c(\mod f) \quad \text{and} \quad bt^6 \equiv d \ (\mod f). \]

The existence of an isomorphism between \(E_{a,b} \) and \(E_{c,d} \) implies that
\[a^3d^2 \equiv b^3c^2 \ (\mod f) \quad (4.1) \]
for some \(f \in \mathbb{F}_q[T] \). We denote by \(N(I^2) \) the number of solutions to (4.1) with \((a, b), (c, d) \in I^2 \). Then for \(\lambda \in \mathbb{F}_q[T] \) we write \(N_\lambda(I^2) \) for the number of solutions to the congruence
\[a^3 \equiv \lambda b^2 \ (\mod f), \quad (a, b) \in I^2. \]

We are going to give an upper bound on \(N_\lambda(I^2) \) that implies upper bounds for the number of elliptic curves \(E_{a,b} \) with coefficients \(a, b \in I \) that lie in the same isomorphic classes.

For a polynomial \(X \in \mathbb{F}_q[T] \) and an irreducible polynomial \(f \in \mathbb{F}_q[T] \) we use \(\{X\}_f \) to denote
\[\{X\}_f = \min_{Y \in \mathbb{F}_q[T]} |X - fY| = \min_{Y \in \mathbb{F}_q[T]} q^{\deg(X-Y)}. \]

From Dirichlet pigeon-hole principle we obtain

Lemma 3 For real numbers \(T_1, \ldots, T_s \) with \(1 \leq T_1, \ldots, T_s \leq |f|, T_1 \cdots T_s \geq |f|^{s-1} \) and any polynomials \(X_1, \ldots, X_s \in \mathbb{F}_q[T] \) there exists a polynomial \(t \in \mathbb{F}_q[T] \) such that \(t \) is not a multiple of \(f \) and
\[\{X_i t\}_f \ll T_i, \quad i = 1, \ldots, s. \]

Now we can give a good bound for \(N_\lambda(I^2) \):
Theorem 2 Let I be an interval of polynomials of degree less or equal than d with coefficients in \(\mathbb{F}_q \) and the length of I is \(|I| = q^d \). For any irreducible polynomial \(f \in \mathbb{F}_q[T] \) such that \(1 \leq |I| \leq |f|^{\frac{1}{2}} \) and for any \(\lambda \in \mathbb{F}_q[T] \) we have

\[N_\lambda(I^2) \leq |I|^{\frac{1}{2}+o(1)}. \]

Proof. We have to estimate the number of solutions to

\[(X + X_0)^3 \equiv \lambda(X_0 + Y)^2 \pmod{f}. \]

This congruence is equivalent to

\[X^3 + 3X^2X_0 + 3X_0^2X_0 - \lambda Y^2 - 2\lambda X_0 Y \equiv \lambda X_0^3 - X_0^3 \pmod{f}. \] (4.2)

For any \(T \leq q^{\frac{1}{2}}/|I|^{\frac{1}{2}} \) we can apply Lemma 3 to

\[X_1 = 1, \ X_2 = 3X_0, \ X_3 = 3X_0^2, \ X_4 = -\lambda, \ X_5 = -2\lambda X_0 \]

and

\[T_1 = T^4|I|^2, \ T_2 = T_4 = \frac{|f|}{T|I|}, \ T_3 = T_5 = \frac{|f|}{T} \]

and find that there exists \(t \) with \(|t| \leq T^4|I|^2 \) such that

\[\{3X_0t\}_f \leq \frac{|f|}{T|I|}, \ \{3X_0^2t\}_f \leq \frac{|f|}{T}, \ \{\lambda t\}_f \leq \frac{q}{T|I|}, \ \{2\lambda X_0 t\}_f \leq \frac{|f|}{T}. \]

For \(i = 1, \ldots, 5 \) denote by \(f_i \) a polynomial which satisfies \(f_i = X_i t \). Then multiply (4.2) by \(t \) leads us to the equality

\[f_1X^3 + f_2X^2 + f_3X + f_4Y^2 + f_5Y + f_6 = |f|Z, \] (4.3)

where

\[|f_1| \leq T^4|I|^2, \ |f_2|, |f_4| \leq \frac{|f|}{T|I|}, \ |f_3|, |f_5| \leq \frac{|f|}{T}, \ |f_6| \leq \frac{|f|}{2}. \]

Since for \(X, Y \in I \) we have \(|X|, |Y| \leq |I| \), then the left hand side of (4.3) is bounded above by \(T^4|I|^5 + \frac{4|I||I|^3}{|I|^2} + \frac{|I|^3}{2}. \) Thus

\[|Z| \ll \frac{T^4|I|^5}{|f|} + \frac{4|I|^3}{|f|} + 1. \]

Choosing \(T \approx \frac{|f|^{\frac{1}{2}}}{|I|^{\frac{1}{2}}} \) and applying the condition \(1 \leq |I| \leq |f|^{\frac{1}{2}} \) we end with the bound

\[|Z| \ll \frac{|f|^{\frac{1}{2}}}{q^{\frac{1}{2}}} + 1 \ll 1. \]

Application of Theorem 2 to the family of curves \(E_{x^2,x^3} \) with \(|x| \leq |I|^{\frac{1}{2}} \) shows that the result of Theorem 2 can not be improved. Thus in general we are not able to get any bound stronger than \(N_\lambda(I^2) = O(|I|^{\frac{1}{2}}). \)

References

[1] E. Bombieri, J. Pila, The number of integral points on arcs and ovals, Duke Mathematical Journal 59 (1989), 2, 337–357.

[2] M. Chang, J. Cilleruelo, M. Garaev, J. Hernández, I. Shparlinski, A. Zumalácarregui, Points on curves in small boxes and applications, Michigan Mathematical Journal 63 (2014), 503–534.

[3] J. Cilleruelo, I. Shparlinski, A. Zumalácarregui, Isomorphism classes of elliptic curves over a finite field in some thin families, Math. Res. Lett. 19 (2012), 2, 1–9.
[4] J. Cilleruelo, I. Shparlinski, *Concentration of points on curves in finite fields*, Monatsh Math (2013), 171, 315–327.

[5] H.P.F. Swinnerton-Dyer, *The number of lattice points on a convex curve*, J. Number Theory 6 (1974), 128–135.

[6] D.R. Heath-Brown, *The Density of rational points on curves and surfaces*, Ann. of Math. (2), Vol. 155 (2002), no. 2, 553–598.

[7] H.A. Helfgott, A. Venkatesh, *How small must ill-distributed sets be?*, Analytic number theory. Essays in honour of Klaus Roth. Cambridge University Press 2009, 224–234.