Glassy Domain Wall Matter in KH_2PO_4 Crystal: Field-Induced Transition

Jitender Kumar and A.M. Awasthi

Thermodynamics Laboratory, UGC-DAE Consortium for Scientific Research,
University Campus, Khandwa Road, Indore- 452 001, India

Keywords: Ferroelectric KDP Crystal, Domain-Wall Dynamics and Freezing, Glass Fragility, Field-Induced Transition.
PACS Nos.: 77.84.-s, 77.80.Dj, 77.84.Fa, 64.60.Cn, 77.90.+k.

ABSTRACT

We have investigated the domain wall (DW) dielectric response of potassium dihydrogen phosphate (KH_2PO_4) crystal under 0-500V dc-bias electric field. Activated DW-contribution onsets freezing at $T_f(\omega, V)$, some 27K below the ferroelectric T_C; timescale $\tau_f(T, V)$ exhibiting Vogel-Fulcher (VFT) divergence. Sharply distinct low- and high-field behaviors of $T_C(V)$, $\text{DW}-T_g(V)$, $\text{VFT}-T_0(V)$, barrier energy $U_a(V)$, and DW glass-fragility $m(V)$ signify a field-induced transition from randomly-pinned/vitreous to clustered/glass-ceramic phases of domain wall matter. Field-hysteresis ($\varepsilon'_{\text{poled}} > \varepsilon'_{\text{unpoled}}$) observed at high dc-bias indicates coexistent unclustered DW phase, quenched-in during the field-cooling. We construct a paradigm $T-E$ phase diagram depicting the complex glassy patterns of domain wall matter.

* Corresponding Author: amawasthi@csr.res.in
Potassium dihydrogen phosphate KH₂PO₄ (KDP) is an optical material widely used for frequency conversion and optoelectronic switching in laser systems.¹ KDP system has long been investigated for the structural phase transition responsible for its ferroelectricity,² and is a good example of a hydrogen-bonded ferroelectric. In the room temperature structure of KDP, hydrogen ions are statistically distributed over their two equilibrium positions. The two sites are about 0.4Å apart on the O-H-O bond. Below the Curie point, hydrogen in KDP is ordered, with two hydrogen atoms near every PO₄ group. KDP polarizes along the crystallographic c-axis and shows a ferroelectric transition at $T_C = 123K$. The crystal has anomalously high dielectric constant in the temperature range below T_C, compared to the predicted Landau theory roll-off. Below certain temperature $T_f (< T_C)$, permittivity falls back onto its expected phenomenological behavior. The excess ε' over $T_f \leq T \leq T_C$ (the so-called plateau region) is believed to be due to the dynamics of the domain walls (DW’s).³⁻⁶ Abrupt decrease of dielectric permittivity below T_f (DW freezing temperature) is thus attributed to the dynamical arrest of the domain walls.⁶⁻¹⁰ Dielectric constant shows a kink here and imaginary permittivity peaks dispersively.¹⁰⁻¹⁴ Here, we report the effects of DC-bias electric field on the dielectric response and the glassy DW kinetics. We characterize the glass-forming attributes of domain wall matter, as tuned by the applied bias-field. We also examine the effects on the dielectric response under poled (field-cooled, FC) and unpoled (zero field-cooled, ZFC) conditions. This work is useful as domain walls play an important role in the dielectric properties of ferroelectrics.

A suitable crystal was cut to the dimensions of 5.9x5.5mm & 2.2mm thick (along c-axis), and thin coatings of silver paint were deposited on both faces of the sample for proper electrode contact. We used Lakeshore 340 temperature controller,
with the temperature stability better than ±0.02 K, to scan the ferroelectric transition ($T_C = 123$ K) of the sample. For the dielectric measurements, we used the High Performance Frequency Analyzer (Alpha-A) and the High Voltage Booster (HVB) for dc-biasing (both from Novo Control). For the high-field dielectric work we designed/fabricated a dedicated probe for measurements over 350 K to liquid-He range. Here we apply 1 V ac signal to measure the dielectric response of the sample under various DC-bias fields. In our measurements on KDP, we have used the frequency range from 1 Hz to 10 kHz, and the applied dc-bias voltage is selected over 0 to 500 V for all the temperatures. In the zero-field cooled (unpoled) and field-cooled (poled) measurements, we follow the standard protocol.

Figure 1a shows the real permittivity (ε') vs. temperature at one of the probed frequencies for a number of applied dc-bias fields, with clear paraelectric (PE, tetragonal) to ferroelectric (FE, orthorhombic) transition at (zero-field) $T_C = 123$ K. The dielectric constant is slightly lower for higher frequencies, and is well-matched with the earlier reports.\(^{15-16}\) Rather high ε' value (vis-à-vis its phenomenological expectation) below T_C reflects the additional (domain-wall) contribution, that reduces with the applied bias field E_{dc}, mainly due to the enhanced DW-pinning.\(^{16}\) Glassy α-relaxation of DW’s shows up in ε'' (fig.1b); their (dispersive) maxima at T_f (< 100 K, obtained as the peak-temperature) mark the freezing-onset of the activated DW dynamics.\(^7\) Another sub-T_C ε''-peak\(^{16-17}\) is observed, whose peak-maximum frequency $\omega_{pin}(V, 120$ K) we identify with a metric of the DW pinning-frequency ω_{pin}^{DW}.

At a selected temperature 120 K [$< T_C(500$ V)], to cover the DW-character at all the bias-fields, fig.1b top-inset displays mild-to-steep changeover in E_{dc}-dependence of the electro-capacitance $\{\varepsilon'(V)/\varepsilon'(0)-1\}$ at 10 kHz frequency (found similar at all frequencies). Moreover, in fig.1b bottom-inset, the 120K loss-spectra (peak-fitted) at
various E_{dc}’s show a turnaround in the “DW pinning-frequency” $\omega_n(V, 120K) \approx \omega_{DW}^{\text{pin}}$, with ω_n obtained from the 120K peak-maxima.17 These unmodelled-results signify a critical $V_{cr} = 150V$ ($E_{cr} \approx 70kV/m$), separating different DW-configurations. While up to V_{cr}, increased local-pinning of the DWs is witnessed as expected, over the ($\leq T_C(E)$, $\geq E_{cr}$) regime DW’s organize into finite correlation-length clusters (DWC).16 Besides heralding a demise of the individual DW-contribution to the complex permittivity, the DWC manifest low-energy collective excitations. Decreasing “pinning-frequency” and the stronger E_{dc}-dependent electro-capacitance amply evidence this qualitative change in the DW degrees of freedom. Now, the translational motion typical of individual DW gives way to the overdamped dynamics of bulkier DWC; one expects their dissipative rocking/vibratory/breathing-modes response to contribute to the ac-permittivity. Immediately below T_C, highly-suppressed contribution to ϵ' and spectrally-broader loss-peak at reduced ‘pinning’ frequency now characterize the dominantly relaxational-attribute of the DWC, determined by their size-scale.

We now investigate the effects of the dc-bias field on the DW-relaxation freezing process. This is clearly shown in ϵ'' to be of kinetic nature; on increasing the applied E_{dc}, the loss-peak temperature (T_f) shifts downwards (fig.2). Insets show the “peak-contributions” ϵ'_{DW} of domain-walls to the real permittivity ϵ', obtained by subtracting a supposedly ‘domains-only’ background (polynomial-interpolated by joining the measured ϵ'-data, at $< T_C$ and that $<< T_f$). Notice the continued dispersion in ϵ'_{DW} right up to $V_{dc} = 500V$.

DW-freezing kinetics is analyzed in terms of $\tau(T, V)$, read off the $\epsilon''_r(\omega, T)$ loss-peak maxima. The Arrot-plot iso-potentials of $\ln(\tau)$ vs. $1/T$ are shown in fig.3. The
DW relaxation comes across as the stretched-exponential type; the effective times associated with the process fit the Vogel-Fulcher behavior.18-19

\[\tau = \tau_0 \exp \left(\frac{U_a}{T - T_0} \right) \]

Here, \(T_0 \) is the Vogel-Fulcher temperature (\(\approx T_K \), the Kauzmann temperature20) and \(U_a = DT_0 \) is the barrier-energy for thermally activated process (\(\equiv k_B DT_0 \) in Joules). \(D \) is identified as the glass strength21-23 (a strong glass retains its glassy character over time and/or against external influence). While \(T_0(V) (~ 89\text{K}) \) mildly humps (reported \(T_0(0) \sim 70\text{K} \)),16 unusually low \(U_a (~10\text{K} << T_g) \) here is much susceptible to the applied dc-bias field (main inset). Here, we could fit the low- and high-field activation energies to different logarithmic dependences \[U_a = A - B \ln(E_{dc} + C) \]; the sharp break in behavior being explicit in the lin-log plot (sub-inset). The two fits sharply “switchover” at \(E_{cr} = 150\text{KV}/2.2\text{m} \) (meant as the critical voltage of \(V_{cr} = 150\text{V} \) across 2.2mm-thick specimen), precisely identified earlier as marking the steeper drop-down in \(\varepsilon'(V, 120\text{K}) \) and the turnaround of \(\varepsilon''(V, 120\text{K}) \)-peak-frequency vs. \(E_{dc} \). We assert these dramatic manifestations as but consequent to the transition-point status of \(E_{cr} \).

Furthermore, the timescale-divergence of 180°-DWs is unlike the polar nanoregions (PNR) in relaxors, as both the \(\varepsilon'_{\text{DW}} \) and \(\varepsilon'' \) peak-contributions (fig.2) are dispersive up to the highest bias-fields used. Contrarily, the relaxor PNR’s merge under high dc-field to give rise to robust (non-dispersive/lossless) long-range ferroelectricity.24-25

For a comparative/unified study of domain-wall-matter in ferroelectrics, a paradigm template emerges from the rich features manifested here. To this end, we show in fig.4 a DW phase diagram construction, as observed in the KDP crystal. With a discontinuity at \(E_{cr} \), the FE-\(T_C(V) \) marks the emergence of domain-wall-matter (DWM). Compared to \(T_g (\approx T_f \) at low \(\omega \)s) with relatively ‘large’ drop (mainly above
E_{cr}), the close-by T_0 with a hump-structure serves as the non-trivial demise-phase-boundary for the DWM. Bias-field squeezing the narrow sluggish-DW window (inset, left-scale) explores this very rare critical glass-regime; inflexion point at E_{cr} delineating the two DW-phases. The locally-pinned (clustered) DW-regimes are evident in the rise (fall) of $\omega_m(V, 120K) \approx \omega_{DW}^{in}$ below (above) E_{cr} (inset, right-scale).

The kinetic glass-fragility23, 26-27 $m = \frac{d \log \tau}{d (T_g/T)} \bigg|_{T=T_g} = \left(\frac{D}{\ln 10} \right) \times \left(\frac{T_0}{T_g} \right) \times \left(1 - \frac{T_0}{T_g} \right)^{-2}$ (main panel, right-axis) combines a thinning sluggish-zone-width [(T$_g$-T$_0$) \rightarrow 0 favoring the fragility-increase23] with rather low & steeper-falling energy-barrier (U_a=DT$_0$ \ll T$_g$) in slightly raising the DW-vitreousity up to E_{cr}. Further up however, DW-clustering phenomenon (c.f., micro-crystallization) reverts this trend; the DW-matter acquires a rather fragile ($m \rightarrow$ 600) glass-former (GF) attribute under high bias-fields. By all accounts, the critical E_{cr} \approx 70kV/m registers a transition from randomly-pinned (rather strong GF) to clustered (super-fragile GF) phase of DWM.

To further explore the nature of field-induced phase transition (FIPT) of DWM, we compare (fig.5) our in-field (500V) warm-up permittivity data obtained in unpoled (zero-field-cooled, ε'_{ZFCW}) and poled (field-cooled, ε'_{FCW}) runs, against the virgin (zero-field-cooled and zero-field-warmed ε'_{virgin}) data background. In close view, below $T_C(V)$ down to a temperature $T_{cl}(V, \omega)$, the two in-field permittivity data are found the same to within the noise level, suggesting T_{cl} as the “clustering” temperature. Further, we confirm the splitting ($\varepsilon'_{virgin} > \varepsilon'_{FCW} > \varepsilon'_{ZFCW}$) over $T_j(V, \omega) \leq T \leq T_{cl}(V, \omega)$ at all frequencies (fig.5b inset). Higher permittivity in the poled case here is compelled by a kinetic-coexistence (frequency-dependent split $[\varepsilon'_{FCW} - \varepsilon'_{ZFCW}]$, fig.5b inset, with $T_{cl}^{lo-\omega} < T_{cl}^{hi-\omega}$) of clustered
(stable/transformed) and pinned (metastable/field-quenched) DW phases. We invoke the resemblance of this “field-hysteresis” in permittivity with that of the order-parameter (e.g., magnetization) in the disorder-broadened first-order phase transition (FOPT, e.g., in magnetism). Therefore, in the present case the split may be a signature of the first-order character of the field-induced phase transition (FIPT).

In conclusion, our dielectric study of KDP crystal below FE-T_C reveals that glassy domain-wall-matter (DWM) is sizescale-organized under high dc-bias-fields. Vogel-Fulcher kinetics of domain-wall freezing (α-relaxation loss-peak at T_β) provides mildly E_{dc}-variant (humped) VFT-temperature ($T_0 \sim 90$K) and unusually smaller (vis-à-vis both T_0 and T_β) activation energy U_α (~10K), that starkly delineates the low- & high-field regimes as well. At high bias-fields, anomalous downshift in a metric of DW-pinning-frequency, non-trivial changeover of sub-T_C electro-capacitance, and contraction of sluggish-DW T-regime are all traceable to the clustering of the domain walls. Higher poled-permittivity (vs. unpoled one) obtained is compatible with the coexistence of pinned (metastable/field-quenched) and clustered DWM phases. Our T-E phase diagram correlates abrupt changes across an $E_{cr} \sim 70$Kv/m in $T_C(V)$, $T_g(V)$, $T_0(V)$, $U_\alpha(V)$, and glass-fragility $m(V)$ parameters, characterizing the mobile/sluggish (above/below T_g) states of DWM. Our maiden findings mandate a field-induced transition between locally-pinned (rather strong glass-former) and clustered (super-fragile glass-former) phases of domain-wall-matter.

Acknowledgements

We thankfully acknowledge receiving the KDP crystals from Raja Ramanna Center for Advanced Technology, Indore. J.K. appreciates help provided by S.
Bhardwaj to modify the dielectric probe for high-voltage applications. Dr. P. Chaddah is thanked for discussions on FOPT and for his scientific support and encouragement.

References

1. L.N. Rashkovich, *KDP-Family Single Crystals* (Adam Hilger, Bristol, 1991).

2. M.E. Lines and A.M. Glass, *Principles and Applications of Ferroelectrics and Related Materials* (Clarendon Press, Oxford, 1977).

3. V.N. Fedosov and A.S. Sidorkin, Sov. Phys. Solid State 19, 1359 (1977).

4. H.M. Barkla and D.M. Finlayson, Philos. Mag. 44, 109 (1953).

5. J. Bornarel, Ferroelectrics 71, 255 (1987).

6. K. Kuramoto, J. Phys. Soc. Japan 56, 1859 (1987).

7. E. Nakamura, Ferroelectrics. 135, 237 (1992).

8. J. Bornarel, J. Appl. Phys. 43, 845 (1972).

9. K. Hayashi, K. Deguchi, and E. Nakamura, J. Phys. Soc. Japan 51, 3594 (1988).

10. E. Nakamura and K. Kuramoto, J. Phys. Soc. Japan 51, 2182 (1988).

11. L.N. Kamysheva and S.N. Drozhdin, Ferroelectrics 71, 281 (1987).

12. E. Nakamura, K. Kuramoto, K. Deguchi, and K. Hayashi, Ferroelectrics 98, 51 (1989).

13. J. Bornarel and B. Torche, Ferroelectrics 132, 273 (1992).

14. E. Nakamura, K. Deguchi, K. Kuaramoto, I. Hirata, T. Ozaki, and J. Ogami, Ferroelectrics 140, 157 (1993).

15. B.-G. Kim and J.-J. Kim, Phys. Rev. B 59, 13509 (1999).

16. Y.N. Huang, X. Li, Y. Ding, Y.N. Wang, H.M. Shen, Z.F. Zheng, C.S. Fang, S.H. Zhuo, and P.C.W. Fung, Phys. Rev. B. 55, 16159 (1997).

17. Y.N. Huang, Y.N. Wang, and H.M. Shen, Phys. Rev. B. 46, 3290 (1992).

18. H. Vogel, Z. Phys. 22, 245 (1921).

19. G.S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925).

20. R. Richert and C.A. Angell, J. Chem. Phys. 108, 9016 (1998); L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).
21. C.A. Angell, J. Non-Cryst. Solids 131-133, 13 (1991).

22. Disorder Effects on Relaxational Processes, Eds. R. Richert and A. Blumen, (Springer-Verlag, Berlin, 1994).

23. R. Böhmer, K.L. Ngai, C.A. Angell, and D.J. Plazek, J. Chem. Phys. 99, 4201 (1993).

24. Z.-G. Ye and H. Schmid, Ferroelectrics 145, 83 (1993).

25. N. Novak, R. Pirc, M. Wencka, and Z. Kutnjak, Phys. Rev. Lett. 109, 037601 (2012).

26. C.A. Angell in Relaxation in Complex Systems, Eds. K.L. Ngai and G.B. Wright, US Department of Commerce, Springfield, MA, p3 (1985).

27. R. Böhmer and C. A. Angell, Phys. Rev. B. 45, 10091 (1992).

28. Y. Imry and M. Wortis, Phys. Rev. B 19, 3580 (1979); P.C. Chaikin and T. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 1995); S.B. Roy, J. Phys.: Condens. Matter 25, 183201 (2013).
Figure Captions

Figure 1. Real (a) and imaginary (b) parts of permittivity vs. temperature for the KDP single crystal investigated at various dc-bias electric fields ($V_{dc} = 0-500V$). The field-variations in ε' and in T_C are most clearly visible at 1Hz. On the other hand, the two sets of relaxation peaks (around T_f and just below T_C) are most distinct/separate in the ε'' at 1kHz. The slowly decreasing plateau in ε' below T_C reflects the excess contribution due to the domain walls (DW's), whose freezing is marked by the field-dependent relaxation peaks in ε'' about $T_f \sim 96K$. Inset in (a) shows the systematic decrease in $T_C(V)$ and $\varepsilon'(T_C')$. Insets in (b) show the electro-capacitance (10kHz) and the relaxation-spectra [both at $120K < T_C^{500V}$]; respectively depicting steeper drop-down (upper inset) and turnback of the peak-frequency (lower inset) beyond a $V_{cr} = 150V (\equiv E_{cr} \sim 70kV/m)$. Bias-field is in units of Volts per 2.2mm-thick specimen.

Figure 2. Dispersion of the glass-relaxation peak (\varepsilon') at (a) zero dc-bias field and at (b) $V_{dc} = 500V (\equiv E_{dc} \sim 225kV/m)$. Estimates of the corresponding ε'_{DW} -contributions are shown in the insets, obtained by subtracting a (polynomial-fitted) supposed Landau phenomenological background from the measured ε'.

Figure 3. Arrot-plot iso-potentials ($ln\tau$ vs. T^{-1}) of the glass-relaxation time in the DW freezing regime. Inset shows the barrier activation energy vs. the applied field, obtained from the Vogel-Fulcher fits to the main panel curves. The lin-log plot (sub-inset) sharply delineates at $V_{cr} = 150V (\equiv E_{cr} \sim 70kV/m)$, the two different logarithmic dependences found for $U_d(E_{dc})$ in the low- and high-field regimes. The Vogel-Fulcher temperature $T_0 \sim 89K$ is found as nominally E_{dc}-dependent (see fig.4). Bias-field is in units of Volts per 2.2mm-thick specimen.
Figure 4. Paradigmatic phase diagram construction collates the various kinetically-active and dormant regimes of glassy domain wall matter (DWM) and their phase-boundaries. Inset emphasizes the special bias-field ($E_{cr} \sim 70\text{kV/m}$) as separating the locally-pinned and micro-clustered phases of DWM. Overwhelming evidence here from both measured and derived results clearly mandates a field-induced order-disorder transition at E_{cr} between phases of DWM; having distinct glass-fragility characters referred to their locally-pinned-disorder vs. clustered-organization. Bias-field is in units of Volts per 2.2mm-thick specimen.

Figure 5. Comparison of the (500V) unpoled (zero-field-cooled, ZFC), poled (field-cooled, FC), and the virgin (0V) permittivity, all taken during the warm-up. Noticeably, poled and unpoled data are split over $T_f(V, \omega) \leq T \leq T_{cl}(V, \omega)$; the clustered-phase emerges only at a temperature $T_{cl}(V) < T_C(V)$ in the poled case, and also seems to disappear above $T_{cl}(V)$ in the unpoled case. Split of the two in-field permittivity-data is due to the larger differential contribution of the quenched-in metastable pinned-phase (data below E_{cr} in fig.1b upper inset), coexistent with the (balance/unquenched and transformed) stable clustered phase of domain wall matter.
