Comparison of six genomic DNA extraction methods for molecular downstream applications of apple tree (*Malus X domestica*)

Barbara Pipan1,2*, Maša Zupančič1, Eva Blatnik1, Peter Dolničar1 and Vladimir Meglič1

Abstract: Extraction of high quality DNA is crucial for any molecular genetic analysis. However, it is difficult to be obtained from problematic plant tissue, high in phenolic compounds, such as apple leaves. Despite the variety of commercially available kits for DNA isolation, no study has been done so far evaluating their potential for apple tree. We have tested six different kits and compared their performance on five to ten samples of apple tree (*Malus X domestica*) leaves. Genomic DNA was extracted following manufacturers’ protocols and amplified by touchdown PCR using 12 different SSR markers. The quality of DNA and PCR products was proven on agarose gel; additionally, DNA concentrations were measured using fluorimeter. Results showed high level of variation for concentrations and DNA purities; the highest yield (more than 512 ng/µL) was obtained with E.Z.N.A. SP Plant DNA Kit (Omega bio-tek), although DNA was not absolutely pure. The highest DNA sample purity was obtained using the DNeasy Plant Pro Kit (Qiagen); however, it resulted in the lowest DNA concentration (13 ng/µL). Despite big differences in DNA yields, all kits performed well for further PCR amplification. We conclude that choosing suitable method for DNA extraction of the

ABOUT THE AUTHOR

Our research group is active in the fields of environmental genetics, trait-associated molecular marker studies, plant breeding, new NGS based applications and molecular biology studies in general. The research team belongs to the Genetics laboratory at Agricultural institute of Slovenia, led by Barbara Pipan, the corresponding author of this study. Group collaborates with common bean, potato and buckwheat breeding programmes and facilitates application of molecular markers to the breeding processes and as well performs genetic diversity and population genetics studies of agronomically important plant species. There are different kinds of tissues from agronomically important plants (common bean, potato, buckwheat, wheat, grapevine, brassicas, blueberries, sweet potato, amarbelia, clovers, dandelion...) analysed in our laboratory. Therefore, there is a need to have well optimised and effective DNA extraction methods with good yields of pure DNA for further applications. This study supplied basic information related to quick and effective plant DNA extraction methods.

PUBLIC INTEREST STATEMENT

The process of DNA isolation represents a basic step for genetic research since all of the molecular analyses require quality DNA. In our research, we have often met with problematic samples that require additional optimisation of protocols and methods. Plant samples, for instance, contain high concentrations of organic compounds that can hinder further analysis. Many manufacturers are producing a number of commercial kits addressing problematic samples. The goal of our study was to test six different DNA extraction kits from four different manufacturers using apple tree leaves. We have compared the quality of isolated DNA, its purity and performance in the polymerase chain reaction. We have observed different concentrations and DNA purity between kits used, although no correlation was observed. All kits resulted in a sufficient DNA quality for successful polymerase chain reaction. We conclude that commercial kits differ in produced yield and purity of DNA; therefore, optimisation for specific plant species is required beforehand.
particular sample plays a big role for the quality of DNA and its downstream applications. Extraction with DNeasy Plant Pro Kit (Qiagen) was the most efficient, as it resulted in the purest DNA. Despite its relatively low DNA yield, concentrations were still high enough for further PCR amplification. Obtained results indicate the optimal DNA extraction method used for problematic plant species in molecular studies.

Subjects: Environment & Agriculture; Bioscience; Food Science & Technology

Keywords: Malus X domestica; DNA extraction; PCR amplification; simple sequence repeat primers; problematic plant tissues

1. Introduction

Apple (*Malus X domestica* Brkh.) with its numerous varieties is one of the most widely cultivated fruit species worldwide (Kikuchi, Kasajima, & Morita et al., 2017). Since molecular marker technology is evolving into a more and more valuable tool for creation of new plant cultivars (Dayteg, Tuvesson, Merker, Jahoor, & Kolodinska-Brantestam, 2007), it is important to provide good quality, high-yield DNA and a consistent methods for its extraction. The reliable DNA sample is a basis for further molecular genetic analyses (Abdel Latif & Osman, 2017), for instance, PCR and real-time PCR analysis, Southern blotting, restriction enzyme digestion and other genotyping procedures.

A number of commercial kits for DNA extraction are available in the market nowadays, differing in isolation technology, sample type and amount; time needed per run, elution volume, DNA yield and potential downstream applications. Most commonly these kits are based on solid-phase nucleic acid purification (Tan & Yiap, 2018) and performed by using a spin column, operated under centrifugal force (Gjerse, Hoang, & Hornby, 2009). That results in a fast and efficient DNA purification in comparison to the conventional methods, such as CTAB or SDS method (Tan & Yiap, 2018).

However, plant samples usually contain high amounts of secondary metabolites whose content varies between species. Different commercial kits or DNA extraction methods will thus give different results when used with different plant species or tissues for further SSR applications (Derlink et al., 2014; Maras, Pipan, & Šuštar Vozlič et al., 2015; Pipan, Šuštar Vozlič, & Meglič, 2013; Pipan, Žnidarčič, & Kunstelj et al., 2017; Pipan, Žnidarčič, & Meglič, 2017; Rusjan, Pelengi, & Pipan et al., 2015; Sinkovič, Pipan, & Meglič et al., 2017); therefore, the extraction methods need to be optimised for each material to ensure the best possible outcome (Sahu, Thangaraj, & Kathiresan, 2012). Apple leaves contain various polyphenolic compounds, such as flavonoids (Mikulic Petkovsek, Slatnar, Stampar, & Veberic, 2010), phenolic acids and hydroxycinnamic acids (Liaudanskas, Viškelis, & Raudonis et al., 2014; Mikulic Petkovsek et al., 2010). Phenolic compounds bind irreversibly to nucleic acids, making them resistant to different modifying enzymes (Manoj, Tushar, & Sushama, 2007). This can lead to DNA degradation, contamination and low yield (Azmat, Khan, & Cheema et al., 2012) and therefore interfere with its use in various types of analyses (Souza, Muller, & Brandão et al., 2012).

Despite the abundance of commercial kits available in the market, no thorough study has been performed so far focusing on optimising DNA extraction protocol for apple tree (*Malus X domestica*). The aim of this study was to evaluate six comparable and commercially available kits for DNA extraction from problematic apple tree tissue based on DNA yield and suitability of extracted DNA for further molecular applications.

2. Materials and methods

2.1. Plant material

DNA was extracted from young frozen (−20°C) leaves of apple tree (*Malus X domestica*). The amount of tissue used was as stated in instructions for a particular kit (40–90 mg). Five to eight samples from the same accession were used for DNA isolation.
2.2. DNA isolation kits
DNA isolation was performed using six comparable genomic DNA isolation kits for plant tissues from four different manufacturers (Table 1). All kits use spin columns operated under centrifugal force.

2.3. Homogenisation
Homogenisation was performed using Retsch TissueLyser (Qiagen). For kits 1–5, Mixer Mill MM 400 Adapter Set 2 × 5 (Retsch) was used. Two stainless steel beads, lysis buffer, RNase and proteinase (if included in the kit) were added to the starting material before grinding. Samples were mixed with vortex and homogenised at frequency 30 /s for 5 min. When material was not completely homogenised above step was repeated two (kit 3) or three times (kit 1). For kit 6, homogenisation was performed using TissueLyser Adapter Set 2 × 24 (Qiagen) as described by the kit protocol. Prior to homogenisation, 450 µL of Solution CD1 and 50 µL of Solution PS were added as suggested for samples high in phenolic compounds.

2.4. DNA extraction
DNA extraction was performed following manufacturers’ instructions for each kit. If not stated differently, volume of elution buffer used was 70 µL. For Kit 1, samples were incubated for 5 min after adding elution buffer. For Kit 3, duration of starting incubation at 65°C was increased to 30 min; five samples were treated with Lysis Buffer PL1 and five samples with Lysis Buffer PL2. For Kit 4, starting incubation at 65°C was 50 min long. Lysozyme and RNase A (marked as optional in the protocol and not included in the kit) were not added. Elution step was repeated two times, each time with 70 µL of elution buffer. For Kit 5, Buffer P3 was added before homogenisation due to analyst’s mistake. For Kit 6, 250 µL of Solution CD2 was added, following the recommendations for problematic samples.

2.5. PCR amplification
Extracted DNA samples were used as a template for amplification by 12 different species-specific SSR markers (Gianfranceschi, Seglias, Tarchini, Komjanc, & Gessler, 1998; Guilford et al., 1997; Hokanson, Szewc-McFadden, & Lamboy et al., 1998, Liebhard et al., 2002), listed in Table 2. PCR reaction mixture was prepared as described by Pipan et al. (2017, 2017), containing 1 µL of template DNA. The forward primer of each SSR marker was appended with 18 bp tail sequence 5’-TGTAAAACGACGGCCAGT-3’ (M13 (−21) as described by Schuelke (2000). Additionally, two non-template controls (N) were included. Amplification reactions were carried out using Veriti™ 96-Well Thermal Cycler (Applied Biosystems) and SureCycler 8800 Thermal Cycler (Agilent

Kit no.	Commercial name	Manufacturer	Amount of starting material [mg]	Number of samples
1	E.Z.N.A. SP Plant DNA Kit	Omega Bio-tek	80–90	5
2	E.Z.N.A. Plant DNA DS Mini Kit	Omega Bio-tek	40–50	5
3a	NucleoSpin Plant II — Lysis Buffer PL1	Macherey-Nagel	80	5
3b	NucleoSpin Plant II — Lysis Buffer PL2	Macherey-Nagel	80	5
4	Invisorb Spin Plant Mini Kit	Strateg Biomedical AG	80	5
5	DNeasy Plant Mini Kit	Qiagen	80	5
6	DNeasy Plant Pro Kit	Qiagen	50	8
Technologies) with two touchdown PCR protocols; protocol 1 as described by Pipan et al. (2013) and protocol 2 as described by Pipan et al. (2017, 2017).

2.6. Visualisation and DNA quantification

Quality of DNA bands was checked on agarose gel with 0.5X Tris-borate-EDTA (TBE), stained with ethidium bromide. Obtained DNA samples were run on 2% agarose gel at 100V for 45 min. 5–6 µL of each sample and 3–5 µL of loading buffer (XC+BB, Thermo Scientific) were used alongside with GeneRuler 1 kb DNA Ladder (Fermentas). PCR products were separated on 1.4% agarose gel at 90V for 90 min, samples containing 4 µL of each product and 6 µL of loading buffer (XC+BB, Thermo Scientific). Size of products was assessed using GeneRuler 100 bp DNA Ladder (Thermo Scientific). Gels were visualised under UV light using GeneGenius Gel Imaging System (Syngene). DNA concentrations of extracted samples were measured using Qubit 3.0 fluorometer with dsDNA Broad Range Assay Kit (Thermo Scientific).

3. Results and discussion

The goal of our study was to evaluate and compare different commercially available kits for DNA extraction from apple plant tissue (Malus X domestica), which can be difficult to isolate due to its high levels of phenolic compounds. All of the kits used in the study (Table 1) are based on silica membranes, combined with spin column technology. They contain six to eight buffers and reagents with comparable functions during the extraction; cell lysis, DNA binding, washing of the membrane and DNA elution. They do, however, differ in the presence of RNase (not included in Kit 4) and proteinase (included only in Kits 2 and 4). Regarding convenience of the protocols used, it is worth mentioning that Kits 3 and 4 require

Marker name	Forward sequence	Reverse sequence	Expected product length [bp]	Reference of sequence	PCR protocol
02b1	ccc tga tga caa	atg ggt tgt atg	238	Guilford et al. (1997)	1
	gat gca tga	ccc tgt ga			
0Sg8	cgg cca tgc att	gga tca atg cac	121	Guilford et al. (1997)	2
	atc tta ctc tt	tga aat aca cg			
GD96	cgg cgg aca gca	ggc agc cctcta	152–197	Hokanson et al. (1998)	1
	atc acc t	tgg ttc cag a			
GD147	ggc agc cctcta	aaa ccc tctctgtc	124–156	Hokanson et al. (1998)	2
	tga ttc cag a	tct gtt cgt tctg			
CH01h01	gaa aga ctt gca	gga gtt tgt ttg	114–134	Gianfranceschi et al. (1998)	2
	gtg gga gc	aga agg tt			
CH01c06	ttc ccc atc atc	aaa ctg aag cca	146–188	Liebhard et al. (2002)	1
	gat ctc ttc tc	tga agg c			
CH01d09	ggc atc tga aca	ccc ttc att ccc	134–172	Liebhard et al. (2002)	1
	gaa tgt gc	tcc ttc cag tgtc			
CH01f12	ctc ctc caa gct	gca aaaa acc aca	145–162	Liebhard et al. (2002)	1
	tca acc ac	aca ggc ata ac			
CH02b10	cca gga aat cat	cca gtg ctc	121–159	Gianfranceschi et al. (1998)	1
	cca gac aa	cgg gat tgt tcg			
CH02c02a	ctt cca gtt cag	tag gcc aca ctt	129–176	Liebhard et al. (2002)	1
	cat cca gac aa	gct ggt c			
CH03g04	atg tcc aat gta	tgt aag atg gcc	122–144	Liebhard et al. (2002)	1
	gac acg caa c	tta cct tgt tgc			
CH03g07	oat aag cat tca	tgt ttc caa atc	119–181	Liebhard et al. (2002)	1
	aag caa tcc g	gag ttt cgt t			

Table 2. SSR primers used for PCR amplification of DNA extracted from Malus X domestica (Gianfranceschi et al., 1998; Guilford et al., 1997; Hokanson et al., 1998; Liebhard et al., 2002). PCR protocols: 1—Pipan et al. (2013), 2—Pipan et al. (2017).
transferring all of the homogenised material into a column at the beginning of the extraction. This step is rather time consuming yielding thick lysate, difficult to transfer without losing some of the material.

According to the visual appearance of obtained DNA solutions, all impurities were successfully removed; solutions transparent without any yellowish or dark contaminants indicating the absence of phenolic compounds (Souza et al., 2012). Electrophoresis of DNA samples showed significant differences in their purity and levels of degradation (Figure 1). Some of the obtained DNA exhibited very high purity (Kit 6), while presence of smears in others indicated presence of short genetic material fragments (Kits 1 and 4). This could be caused by either degradation of DNA or by the presence of RNA fragments due to the insufficient RNase activity or its absence in the kit. Observed smearing in the samples extracted using Kit 2 and 3, was probably a consequence of a very high DNA concentration.

The measurements of DNA concentrations ranged from 0.9 ng/µL (Kit 5) to over 1000 ng/µL (Kit 1 and 2) (Table 3). The highest concentration on average (more than 512.9 ng/µL) was observed for samples extracted using Kit 1, whereas Kit 6 yielded the lowest average concentrations (13 ng/µL). Overall, the highest measured yield was more than 1000 times higher than the lowest one, proving differences between protocols to be really significant.

Figure 1. Electrophoresis of total genomic DNA of Malus X domestica on 2% agarose gel.

DNA was extracted with the following commercial kits: 1—E.Z.N.A. SP Plant DNA Kit (Omega Bio-tek), 2—E.Z.N.A. Plant DNA DS Mini Kit (Omega Bio-tek), 3—NucleoSpin Plant II (Macherey-Nagel); 3a—Lysis Buffer PL1, 3b—Lysis Buffer PL2, 4—Invisorb Spin Plant Mini Kit (Stratec Biomedical AG), 5—DNeasy Plant Mini Kit (Qiagen), 6—DNeasy Plant Pro Kit (Qiagen). Lines a–h—DNA samples, line L—1 kb DNA Ladder.
Agarose electrophoresis of PCR products is depicted in Figure 2. For evaluation of PCR efficiency, amplification ratio (Table 3) was calculated by dividing the number of successfully amplified samples with total number of samples. The amplification ratio for Kits 2–6 ranged between 78% and 98%, while amplification ratio for Kit 1 was 47%. There was no clear correlation between DNA concentration, purity and performance of polymerase chain reaction. Generally, the highest amplification ratio was achieved with Kits 3 and 4 with a relatively high DNA concentration (Table 3). On the other hand Kit 1 had the highest average concentration but the lowest amplification ratio. This might be caused by a too high amount of DNA template, which could consequently increase the amount of potential PCR inhibitors, or by higher DNA fragmentation extracted using Kit 1 (Figure 1). However, Kit 4 showed even higher levels of fragmentation combined with lower DNA concentration when compared to Kit 1, and yet amplification was in many cases more efficient with Kit 4 than with Kit 1. There are many factors apart from quality and amount of DNA template we should consider, when evaluating PCR efficiency, such as contamination of reaction mixture, efficiency of a thermal cycler, optimisation of temperature profiles, quality of reagents and suitability of primers (Degen, Deufel, & Eisel et al., 2006). The DNA yield from all four kits was sufficient to perform a successful PCR amplification despite big differences in concentrations and purity.

Ideally, a DNA isolation protocol should be quick, efficient, safe and easy to perform, and yielding sufficient levels of high-quality DNA suitable for application in molecular analysis (Biteau et al., 2012). Conventional methods like CTAB are often time consuming and require use of toxic substances (Karaoslan, Akel, & Ünlü et al., 2014). Compared to those, commercial DNA isolation kits have advantages of limited and smaller amounts of chemical use, practical methodology, shorter isolation steps and faster achievement of results (Akkurt, 2012). On the other hand, costs of commercial kits are high and in a few studies DNA yields were found to be lower than those obtained with conventional methods (Akkurt, 2012; Sousa, Gomes, & Lopes et al., 2014; Stefanova, Taseva, Georgieva, Gotcheva, & Angelov, 2013).

Table 3. DNA concentrations and PCR amplification ratios from samples of *Malus X domestica*, extracted with different commercial kits. 1—E.Z.N.A. SP plant DNA kit (Omega Bio-tek), 2—E.Z.N.A. Plant DNA DS mini kit (Omega Bio-tek), 3—NucleoSpin plant II (Macherey-Nagel); 3a—lysis buffer PL1, 3b—lysis buffer PL2, 4—Invisorb spin plant mini kit (Stratec Biomedical AG), 5—DNeasy plant mini kit (Qiagen), 6—DNeasy plant pro kit (Qiagen). Concentrations were measured on Qubit 3.0 fluorometer with dsDNA broad range assay Kit (Thermo Scientific) with a range from 2 to 1000 ng/µL, therefore concentrations exceeding this were not precisely determined. Amplification ratio was calculated by dividing the number of samples, successfully amplified during reaction, with number of all samples, taking into account 12 SSR markers used in the study. Average DNA concentration and amplification ratio is based on five (kits 1–5) or eight samples (kit 6).

DNA isolation kit	Min	Max	Average	Amplification ratio
1	10.7	>1000	>512.9	47%
2	92.8	>1000	>503.2	88%
3a	19.2	81.2	61.3	98%
3b	95.6	232.0	138.7	95%
4	48.0	74.4	63.4	95%
5	0.9	75.6	19.5	78%
6	10.7	>1000	13.0	92%

4. Conclusions
In our comparative study using apple tree leaves for DNA extraction, all four tested kits gave sufficient quality and quantity of DNA to be used for further SSR analyses. DNeasy Plant Pro Kit (Qiagen) produced the purest product and had the lowest level of DNA degradation and contamination. However, to perform PCR only, relatively small quantities of DNA are required. For other
Figure 2. PCR amplification of 12 SSR markers from Malus × domestica. Products were run on 1.4% agarose gel.

DNA was extracted with the following commercial kits: 1—E.Z.N.A. SP Plant DNA Kit (Omega Bio-tek), 2—E.Z.N.A. Plant DNA DS Mini Kit (Omega Bio-tek), 3—NucleoSpin Plant II (Macherey-Nagel); 3a—Lysis Buffer PL1, 3b—Lysis Buffer PL2, 4—Invisorb Spin Plant Mini Kit (Stratagene Biomedical AG), 5—DNeasy Plant Mini Kit (Qiagen), 6—DNeasy Plant Pro Kit (Qiagen). Lines a–h—DNA samples, line L—100 bp DNA Ladder, line N—non template control. Markers: A—02b1 (Guliford et al., 1997), B—05g8 (Guliford et al., 1997), C—GD96 (Hokanson et al., 1998), D—GD147 (Hokanson et al., 1998), E—CH01h01 (Gianfranceschi et al., 1998), F—CH01c06 (Liebhard et al., 2002), G—CH01d09 (Liebhard et al., 2002), H—CH01f12 (Liebhard et al., 2002), I—CH01b10 (Gianfranceschi et al., 1998), J—CH02c02a (Liebhard et al., 2002), K—CH03g04 (Liebhard et al., 2002), L—CH03g07 (Liebhard et al., 2002).
Figure 2. PCR amplification of 12 SSR markers from *Malus X domestica*. Products were run on 1.4% agarose gel.

DNA was extracted with the following commercial kits: 1—E.Z.N.A. SP Plant DNA Kit (Omega Bio-tek), 2—E.Z.N.A. Plant DNA DS Mini Kit (Omega Bio-tek), 3—NucleoSpin Plant II (Macherey-Nagel); 3a—Lysis Buffer PL1, 3b—Lysis Buffer PL2, 4—Invisorb Spin Plant Mini Kit (Stratec Biomedical AG), 5—DNeasy Plant Mini Kit (Qiagen), 6—DNeasy Plant Pro Kit (Qiagen). Lines a–h—DNA samples, line L—100 bp DNA Ladder, line N—non template control. Markers: A—02b1 (Gulford et al., 1997), B—05g8 (Gulford et al., 1997), C—GD96 (Hokanson et al., 1998), D—GD147 (Hokanson et al., 1998), E—CH01h01 (Gianfranceschi et al., 1998), F—CH01e06 (Liebhard et al., 2002), G—CH01d09 (Liebhard et al., 2002), H—CH01f12 (Liebhard et al., 2002), I—CH01b10 (Gianfranceschi et al., 1998), J—CH02c02a (Liebhard et al., 2002), K—CH03g04 (Liebhard et al., 2002), L—CH03g07 (Liebhard et al., 2002).
downstream applications, such as Southern blot analysis that needs larger quantities of non-degraded DNA (Bitencourt, Roratto, Bartholomei-Santos, & Santos, 2007), required DNA quantity needs to be decided before selecting the most suitable DNA extraction method. Based on our results, kits used should be suitable as well for preparation of material to be used for the next-generation sequencing-based application. Moreover, required time and cost of a particular kit should not be ignored, especially when dealing with a big number of samples.

Funding
This work was supported by the Slovenian Research Agency [grant number P4-0072], [grant number V4-1618].

Competing interests
The authors declares no competing interests.

Author details
Barbara Pipan1
E-mail: barbara.pipan@kis.si
Masa Zupančič2
E-mail: masa.zupancic@kis.si
Eva Blatnik2
E-mail: eva.blatnik@kis.si
Peter Dolničar1
E-mail: peter.dolnicar@kis.si
Vladimir Meglič1
E-mail: vladimir.meglic@kis.si

1 Crop Science Department, Agricultural Institute of Slovenia, Ljubljana, Slovenia.

Citation information
Cite this article as: Comparison of six genomic DNA extraction methods for molecular downstream applications of apple tree (Malus X domestica), Barbara Pipan, Masa Zupančič, Eva Blatnik, Peter Dolničar & Vladimir Meglič, Cogent Food & Agriculture (2018), 4: 1540094.

References
Abdel-Latif, A., & Osman, G. (2017). Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. Plant Methods, 13(1), 1. doi:10.1186/s13007-016-0152-4

Ak Kurt, M. (2012). Comparison between modified DNA extraction protocols and commercial isolation kits in grapevine (Vitis vinifera L.). Genetics and Molecular Research : GMR, 11(3), 2343–2351. doi:10.4238/2012.August.13.8

Azmat, M. A., Khan, I. A., Cheema, H. M. N., et al. (2012). Extraction of DNA suitable for PCR applications from mature leaves of Mangifera indica L. Journal Zhejiang Univ-Sci B (Biomed Biotechnol), 13(4), 239–243. doi:10.1007/s11438-011-3980-1

Biteau, F., Nisse, E., Hehn, A., Miguel, S., Hannewald, P., & Bourgaud, F. (2012). A rapid and efficient method for isolating high quality DNA from leaves of carnivorous plants of the Drosophila genus. Molecular Biotechnology, 51, 247–253. doi:10.1007/s12033-011-9462-y

Bitencourt, J. V. T., Roratto, P. A., Bartholomei-Santos, M. L., & Santos, S. (2007). Comparison of different methodologies for DNA extraction from Aegla longirostris. Brazilian Archives Biological Technological, 50(6), 989-994. doi:10.1590/S1516-89132007000700010

Daytse, C., Tuveson, S., Merker, A., Jahoar, A., & Kolodinska-Brentestam, A. (2007). Automation of DNA marker analysis for molecular breeding in crops: Practical experience of a plant breeding company. Plant Breeding, 126, 410–415. doi:10.1111/j.1439-0480.2007.01264.x

Degern, H. J., Deufel, A., Eisel, D., Grunewald-Janho, S., & Keese, J. (2008). PCR applications manual (3rd ed.). Mannheim: Roche Diagnostics GmbH.

Derlink, M., Pipan, B., Pavlovič, P., Jones, L. E., Meglič, V., Symonsdon, W. O. C., & Virant-Doberlet, M. (2014). Characterization of eleven polymorphic microsatellite markers for leafhoppers of the genus Aphrodes (Hemiptera: Cicadellidae). Conservation Genetics Resources, 6(4), 933–935. doi:10.1007/s12686-014-0245-1

Gianfranceschi, L., Seglias, N., Tarchini, R., Komjanc, M., & Gessler, C. (1998). Simple sequence repeats for the genetic analysis of apple. TAG Theoretical and Applied Genetics, 96(8), 1069–1076. doi:10.1007/s001220050841

Gjerse, D. T., Hoang, L., & Hornby, D. (2009). RNA purification and analysis: Sample preparation, extraction, chromatography (1st ed.). Weinheim, Germany: Wiley-VCH.

Guiflard, P., Prakash, S., Zhu, J., Rikkerink, E., Gardiner, S., Bassett, H., & Forster, R. (1997). Microsatellites in Malus X domestica (apple): Abundance, polymorphism and cultivar identification. TAG Theoretical and Applied Genetics, 94(2), 249–254. doi:10.1007/s001220050407

Hokanson, S., Szewc-McFadden, A., Lamboy, W., et al. (1998). Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus X domestica Borkh. Core subset collection. Theoretical and Applied Genetics, 97, 671–683. doi:10.1007/s001220050943

Karaaslan, Ç., Akel, H., & Ünlü, S. (2014). Comparison of six commercial DNA extraction kits for DNA extraction from wheat. Hacettepe Journal Biological Chemical, 42(3), 395–400.

Kikuchi, T., Kasajima, I., Morita, M., et al. (2017). Practical DNA markers to estimate apple (Malus X domestica Borkh.) skin color, ethylene production and pathogen resistance. Journal Horticultural, 4(4), 211. doi:10.4172/2376-0354.1000211

Lioudanskas, M., Viskelis, P., Raudonis, R., et al. (2016). Phenolic composition and antioxidant activity of Malus domestica leaves. The Sciences World Journal, 2014, 1–10. Retrieved May 23, 2018, from [10 p]. doi:10.11545/2015/306217

Liebhard, R., Gianfranceschi, L., Kollier, B., Ryder, C. D., Tarchini, R., Van De Weg, E., & Gessler, C. (2002). Development and characterisation of 140 new microsatellites in apple (Malus X domestica Borkh.). Molecular Breeding, 10(4), 217–241. doi:10.1023/A:1020525906332

Manoj, K., Tushar, B., & Sushama, C. (2007). Isolation and purification of genomic DNA from black plum (Eugenia jambolana Lam.) for analytical applications. International Journal Biotechnology Biochemical, 3(1), 49–55

Maras, M., Pipan, B., Suštar Vozlič, J., Todorović, V., Burić, G., Vasić, M., ... Meglič, V. (2015). Examination of genetic diversity of common bean from the Western Balkans. Journal of the American Society for Horticultural Science. American Society for Horticultural Science, 140(4), 308–316.

Mikulić Petkovsek, M., Slatnar, A., Stampar, F., & Veberic, R. (2010). The influence of organic/integrated production on the content of phenolic...
compounds in apple leaves and fruits in four different varieties over a 2-year period. *Journal of the Science of Food and Agriculture*, 90, 2366–2378. doi:10.1002/jsfa.v90:14

Pipan, B., Šuštar Vozilč, J., & Meglič, V. (2013). Genetic differentiation among sexually compatible relatives of *Brassica napus* L. *Genetika*, 45(2), 309–327. doi:10.2298/GENSR1302309P

Pipan, B., Žnidarčič, D., Kunstelj, N., & Meglič, V. (2017). Genetic evaluation of sweetpotato accessions introduced to the central European area. *Journal of Agricultural Sciences Technological*, 19(5), 1139–1150.

Pipan, B., Žnidarčič, D., & Meglič, V. (2017). Evaluation of genetic diversity of sweet potato (*Ipomoea batatas* (L.) Lam.) on different ploidy levels applying two capillary platforms. *The Journal of Horticultural Science and Biotechnology*, 92(2), 192–198. doi:10.1080/14620316.2016.1249963

Rusjan, D., Pelengi, R., Pipan, B., Or, E., Javornik, B., & Štajner, N. (2015). Israeli germplasm: Phenotyping and genotyping of native grapevines (*Vitis vinifera* L.). *Vitis*, 54(Special Issue), 87–89.

Sahu, S. K., Thangaraj, M., & Kathiresan, K. (2012). DNA extraction protocol for plants with high levels of secondary metabolites and polysaccharides without using liquid nitrogen and phenol. *ISRN Molecular Biology*, 2012, 1–6. Retrieved May 23, 2018, from [6 p]. doi:10.5402/2012/205049

Schuelke, M. (2000). An economic method for the fluorescent labeling of PCR fragments. *Nature Biotechnology*, 18(2), 233–234. doi:10.1038/72708

Sinkovič, L., Pipan, B., Meglič, V., Kunstelj, N., Nečemer, M., Zlatić, E., & Žnidarčič, D. (2017). Genetic differentiation of Slovenian sweet potato varieties (*Ipomoea batatas*) and effect of different growing media on their agronomic and nutritional traits. *Italian Journal of Agronomy*, 12(6), 350–356.

Sousa, C. C., Gomes, S. O., Lopes, A. C. A., et al. (2014). Short communication comparison of methods to isolate DNA from *Caesalpinia ferrea*. *Genetics and Molecular Research: GMR*, 13(2), 4486–4493. doi:10.4238/2014.June.16.7

Souza, H. A. V., Muller, L. A. C., Brandão, R. L., et al. (2012). Isolation of high quality and polysaccharide-free DNA from leaves of *Dimorphandra mollis* (Leguminosae), a tree from the Brazilian Cerrado. *Genetics and Molecular Research: GMR*, 11(1), 756–764. doi:10.4238/2012.March.22.6

Stefanova, P., Taseva, M., Georgieva, T., Gotcheva, V., & Angelov, A. (2013). A modified CTAB method for DNA extraction from soybean and meat products. *Biotechnology & Biotechnological Equipment*, 27(3), 3803–3810. doi:10.5504/BBEQ.2013.0026

Tan, S. C., & Yiap, B. C. (2009). DNA, RNA, and protein extraction: The past and the present. *Journal of Biomedicine & Biotechnology*. Retrieved May 23, 2018, from [10 p]. doi:10.1155/2009/574398