Title
Correlation between biomarkers of exposure, effect and potential harm in the urine of electronic cigarette users.

Permalink
https://escholarship.org/uc/item/46x2855m

Journal
BMJ open respiratory research, 7(1)

ISSN
2052-4439

Authors
Sakamaki-Ching, Shane
Williams, Monique
Hua, My
et al.

Publication Date
2020-02-01

DOI
10.1136/bmjresp-2019-000452

Peer reviewed
Correlation Between Biomarkers of Exposure, Effect, and Potential Harm in the Urine of Electronic Cigarette Users

Shane Sakamaki-Ching1 MS; Monique Williams1 PhD, My Hua1 BS; Jun Li2 PhD; Steve M. Bates MS3, Andrew N. Robinson MS3, Timothy W. Lyons PhD3, Maciej L. Goniewicz4 PhD, PharmD and Prue Talbot1 PhD

1Department of Molecular, Cell, and Systems Biology, University of California, Riverside, USA

2Department of Statistics, University of California, Riverside, USA

3Department of Earth and Planetary Sciences, University of California, Riverside, USA

4Roswell Park Comprehensive Cancer Center, Buffalo, USA

Contact Information:

Dr. Prue Talbot
Professor of Cell Biology
Director of the UCR Stem Cell Center and Core
Director of the UCR Microscopy and Imaging Core

900 University Avenue
Department of Molecular, Cell and Systems Biology
University of California
Riverside, CA 92521
951-827-3768 (telephone)
talbot@ucr.edu (email)
no FAX available

Word count: 3239
Keywords: electronic cigarettes, cigarettes, non-smokers, metals, biomarkers

Abstract:

Objectives: To determine if urinary biomarkers of effect and potential harm are elevated in electronic cigarette users compared to non-smokers and if elevation correlates with increased concentrations of metals in urine.

Study Design and Setting: This was a cross-sectional study of biomarkers of exposure, effect, and potential harm in urine from non-smokers (n=20), electronic cigarette users (n=20), and cigarette smokers (n=13). Participant’s screening and urine collection were performed at the Roswell Park Comprehensive Cancer Center and biomarker analysis and metal analysis was performed at the University of California, Riverside.

Results: Metallothionein was significantly elevated in the electronic cigarette group (3761 ± 3932 pg/mg) compared to the non-smokers (1129 ± 1294 pg/mg, p=0.05). 8-OHdG (8-hydroxy-2'-deoxyguanosine) was significantly elevated in electronic cigarette users (442.8 ± 300.7 ng/mg) vs non-smokers (221.6 ± 157.8 ng/mg, p=0.01). 8-isoprostane showed a significant increase in electronic cigarette users (750.8 ± 433 pg/mg) vs non-smokers (411.2 ± 287.4 pg/mg, p=0.03). Linear regression analysis in the electronic cigarette group showed a significant correlation between cotinine and total metal concentration; total metal concentration and metallothionein; cotinine and oxidative DNA damage; and total metal concentration and
oxidative DNA damage. Zinc was significantly elevated in the electronic cigarette users (584.5 ± 826.6 µg/g) compared to non-smokers (413.6 ± 233.7 µg/g, p=0.03). Linear regression analysis showed a significant correlation between urinary zinc concentration and 8-OHdG in the electronic cigarette users.

Conclusions: This study is the first to investigate biomarkers of potential harm and effect in electronic cigarette users and to show a linkage to metal exposure. The biomarker levels in electronic cigarette users were similar to (and not lower than) cigarette smokers. In electronic cigarette users, there was a link to elevated total metal exposure and oxidative DNA damage. Specifically, our results demonstrate that zinc concentration was correlated to oxidative DNA damage.

What is the key question?
• Is increased electronic cigarette usage associated with elevated metal exposure and if such exposure can cause biological harm?

What is the bottom line:
• Biomarkers of exposure (cotinine and metals), effect (metallothionein), and potential harm (8-isoprostane and 8-OHdG) were elevated in electronic cigarette users and were similar to concentrations in cigarette smokers; also increased electronic cigarette usage (as
measured by cotinine) was correlated with elevated urinary metal concentrations, which were correlated with oxidative DNA damage.

Why read on:

- This is one of the first studies to demonstrate a correlation between biological harm and electronic cigarette usage, suggesting the metal constituents (in particular zinc) in electronic cigarette aerosol can cause oxidative DNA damage. Given the recent deaths and pulmonary illnesses related to electronic cigarette usage, it is important for readers to know about the potential health effects related to electronic cigarette usage.

Strengths and Limitations:

- This was a cross-sectional study with gender and age-matched populations to compare urinary biomarker levels and metal concentrations in electronic cigarette users versus cigarette smokers and non-smokers.

- This is the first study to demonstrate electronic cigarette users are exposed to increased concentrations of potentially harmful levels of metals (specifically zinc) that were correlated to elevated oxidative DNA damage.

- This study is based on a relatively small population (n=53) and small number of biomarkers and should be expanded.
In the electronic cigarette and cigarette smoker groups, participants were not all using the same products and had different numbers of puffs/day.

Introduction:
Cigarette smoking causes more than 480,000 deaths annually in the United States and is the leading cause of preventable death\(^1\). Electronic cigarettes, which grew in usage over 900% between 2011-2015, do not burn tobacco and may be a safer product\(^2\). However, there are limited scientific data to prove that electronic cigarettes are actually less harmful than combustible tobacco products, although they may be harmful in different ways. To the contrary, some previous research has demonstrated that electronic cigarette aerosols contain potentially harmful chemicals, such as acrolein; formaldehyde and benzene\(^3\); cytotoxic flavor chemicals, such as diacetyl and cinnamaldehyde\(^4,5\); metals and ultrafine particles including tin, chromium and nickel nanoparticles\(^6,7\); and free radicals\(^8\). Moreover, some electronic cigarette refill fluids and aerosols showed cytotoxicity when tested in vitro\(^9,10\), an effect that has been linked to metals in the refill-fluid\(^6\). An in vitro study demonstrated that isolated human alveolar macrophages exposed to electronic cigarette vapour induces inflammation and reduces phagocytosis leaving the patient more susceptible to pulmonary infections\(^11\). Moreover, recent case reports have attributed electronic cigarette use to several adverse health effects, such as respiratory diseases\(^12\), increased risk
for cardiovascular disease, and impaired wound healing after surgery. Several previous studies on electronic cigarettes have evaluated biomarkers of exposure in blood, urine, and saliva, but none has yet examined and quantified biomarkers of effect and potential harm in relation to metals in electronic cigarette users.

This study compares urinary biomarkers of exposure, effect, and potential harm in non-smokers, conventional cigarette smokers, and electronic cigarette users and accounts for the effect of gender and age on biomarker expression. Based on the above studies, we hypothesized that there would be an increase in the level of biomarkers of effect and potential harm in electronic cigarette users compared to non-smokers and a decrease compared to cigarette smokers. The urinary biomarker of effect, metallothionein, is a protein that responds to and protects against metal toxicity and free radical stress. Urinary biomarkers of potential harm were two markers of oxidative stress: (1) 8-isoprostane, a prostaglandin formed by fatty acid peroxidation, and (2) 8-OHdG, a product of DNA oxidation. Urinary biomarkers of exposure were: (1) cotinine, a nicotine metabolite to measure smoking or vaping usage, and (2) total concentration of 11 urinary metals, which are present in electronic cigarette aerosol and are known to associate with metallothionein. Regression analyses were performed to identify relationships between biomarkers of exposure (cotinine and metals), effect (metallothionein), and potential harm (8-OHdG). To isolate the observed oxidative effects to a specific metal, regression analyses were performed...
performed between the urinary concentrations of individual metals and 8-OHdG.

Materials and Methods

Subjects: The urine samples were from participants who were non-smokers, cigarette smokers, and electronic cigarette users. Participants were recruited through local media and flyers posted in various locations around the Buffalo, New York area. Potential participants were provided with a brief description of the study and had an opportunity to ask questions about the study procedures. All potential participants were screened over the phone for inclusion and exclusion criteria. The exclusion criteria included concurrent use of smokeless tobacco, pipes, or cigars; alcohol or illicit drug dependence within the past six months or current illicit drug use (including marijuana; self-reported); psychiatric illness; and use of Nicotine Replacement Therapy (NRT). Information about medication and vitamins/antioxidants/metal usage was not collected. All eligible subjects who had been asked to come to the clinic for screening were given an informed consent form to read and sign. Copies of the signed consent forms were given to the research subject and were also stored in a secure location, along with the participant’s research chart. Informed written consent was obtained from each participant prior to their participation. Eligible participants were then asked to come to Roswell Park Comprehensive Cancer Center for a one-time visit, which lasted approximately 1 hour. Spot urine samples were collected during this on-site
A total of 53 participants were gender and age matched and selected for biomarker analysis. Because age may affect the basal expression level of biomarkers, the subjects were separated into those ≤40 years old and ≥41 years old, with the groups containing 23 and 30 samples, respectively. Out of these age-separated samples, participants were selected from the non-smoker, cigarette smoker, and electronic cigarette user groups. Each group had approximately equal male and female samples. Using a one-way ANOVA and a Tukey’s multiple comparison test, there were no significant differences in the ages of the younger participants or in the ages of the older participants; however, the ages of the younger and older groups were significantly different from each other. There were negligible levels of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in the non-smokers (2.8 ± 6.3 pg/mg of creatinine) and electronic cigarette users (13.3 ± 18.6 pg/mg of creatinine) indicative of no tobacco use, in contrast to the cigarette smokers (105.7 ± 87.4 pg/mg of creatinine) who had significantly elevated NNAL (Supplementary Figure 1). In the non-smokers, no samples had levels of cotinine ≥1.0 ng/mg (Supplementary Figure 2), confirming smoking abstinence. The demographics of the 53 participants who provided urine samples were organized by age, gender, and smoking group (Table 1).
Table 1. Demographics of the 53 participants included in this study separated by smoking group, age, and gender. All smoking groups were gender and age matched.

Sample ID	Sex	Age	Average
33B	Male	23	
07B	Male	25	
38B	Male	29	
21B	Male	37	30.8 ± 7.4
16B	Male	40	
06B	Female	27	
09B	Female	32	
42B	Female	33	
45B	Female	33	
44B	Female	38	32.6 ± 3.9

Sample ID	Sex	Age	Average
13B	Male	42	
27B	Male	46	
26B	Male	58	
34B	Male	58	
43B	Male	66	54 ± 9.8
41B	Female	41	
04B	Female	46	
28B	Female	52	
29B	Female	59	
35B	Female	61	51.8 ± 8.5

Biospecimen Collection: Spot urine samples were collected from participants in a previous study\(^6\), and cotinine, NNAL, and creatinine concentrations were determined at the Center for Disease Control (CDC) and the Roswell Park Comprehensive Cancer Center (RPCCC), respectively.
Aliquots of 45 ml of fresh urine samples were transferred to 50-ml Falcon tube then centrifuged and immediately frozen at -20°C and stored at the RPCCC laboratory. Prior to shipping, samples were thawed, and 1.5 ml aliquots were transferred to smaller tubes and shipped frozen to University of California, Riverside (UCR) for biomarker analysis. The biomarker study was approved under IRB protocol HS-12-023 from UCR.

Selection of Biomarkers: Biomarkers were selected by studying previous literature pertaining to urinary biomarkers in smokers\(^21,22,23,24,25\). The selection criteria for our panel of urinary biomarkers was based on our goal to analyze metal exposure and oxidative stress (Table 2). To evaluate exposure, cotinine and metals were measured in urine samples. Metallothionein, which increases when metal exposure is elevated, was used as a biomarker of effect. Conventional cigarettes and electronic cigarettes generate free radicals that cause cellular oxidative stress\(^8,26,27\). Therefore, oxidative damage was evaluated in the three study groups by measuring urinary 8-isoprostane (a biomarker of lipid peroxidation) and 8-OHdG (a biomarker of DNA oxidation). Cigarette smoke and electronic cigarette aerosols contain a mixture of metals\(^6,7,28\) that could lead to an increased production of metallothionein (a metal exposure and ROS scavenging biomarker), which is a cysteine-rich protein that functions in metal binding\(^25\). All selected biomarkers described above have been shown to be specifically associated with clinically relevant outcomes and diseases (Table 2).
Table 2. Clinical diseases associated with biomarkers measured in this study.

Biomarker Type	Associated Diseases	References
Exposure	Selenium: Nausea, vomiting, "garlic breath", nail loss, hair loss, cardiovascular disease, cardiac arrest, cancer	MacFarquhar 2010, See 2006, Rayman 2012
	Zinc: Nausea, vomiting, epigastric pain, fatigue, hypertension, hemotoxicity, bronchospasms, hepatotoxicity, neurotoxicity, cancer	Fosmire 1990, Nriagu 2007
	Metallothionein: Cancer, cardiomyopathy, oxidative stress, heavy metal toxicity	Eckschlager 2009, Zhou 2008, Ruttkay-Nedecky 2013, Klaassen 2009
	Potential Harm: 8-OHdG: Cancer, cardiovascular disease, neurodegenerative diseases	Kroese 2014, Valavanidis 2009, Kim 2015
	8-Isoprostane: Coronary artery disease, atherosclerosis, interstitial lung disease, non-small cell lung cancer, breast cancer	Vassalle 2004, Morrow 2005, Montuschi 1998, Stathopoulos 2014, Rossner Jr 2006

Urinary Creatinine Concentrations: Spot urine samples were used since biomarkers would not necessarily be stable in samples collected over 24 hours. Because spot urine samples were used, it was necessary to normalize the data to creatinine, which is relatively stable in concentration over time. Creatinine concentrations in urine were analyzed at the RPCCC clinical
laboratory in Buffalo. There were no significant differences in creatinine concentrations in relation to gender or age (Supplementary Figure 3).

Biomarker of Exposure (Cotinine, NNAL and Metal Concentration)

Analysis: Cotinine and NNAL were measured using previously published29,30 and fully validated methods. Eleven elements/metals (antimony, cadmium, copper, indium, lead, nickel, rubidium, selenium, silver, titanium, and zinc) in urine samples were measured by inductively coupled mass spectrometry (ICP-MS) and used to calculate total urinary metal concentration. The 11 metals were selected for analysis because they have all been identified in electronic cigarette aerosols and are known to associate with metallothionein. There was no significant elevation of the total 11 metals in the smoking groups, though it is slightly elevated in the electronic cigarette group (Supplementary Figure 4). Details of metal analysis are given in the Supplementary Information.

Biomarkers of Effect and Potential Harm Analysis Using ELISA: Each ELISA kit was quality tested for accuracy and reproducibility using urine samples collected in house. Samples were tested in duplicate on three different days, and the biomarker concentration was normalized to creatinine. A range of sample dilutions was tested to determine the optimal dilution for quantification of each biomarker from the kits’ standard curves. For all ELISA kits, the coefficient of variation for the three independent
experiments was ≤15%, except for metallothionein, which was ≤20%. Any urine sample with a biomarker concentration outside the lowest or highest limit of quantification was excluded for statistical analysis. In all subsequent ELISA analyses, biomarkers were run in duplicate wells for each urine sample.

Following a 1:4 dilution in buffer, urine samples were analyzed to determine 8-isoprostane concentration using the Urinary 8-Isoprostane ELISA kit (Detroit R&D, MI, USA). The concentration of 8-OHdG was determined using a DNA Damage (8-OHdG) ELISA Kit (Stress Marq Biosciences, Victoria, Canada), following a 1:20 dilution. Urine samples were analyzed for metallothionein using a Human Metallothionein ELISA Kit (LifeSpan BioSciences, WA, USA), following a 1:20 or 1:40 dilution in sample diluent.

Statistical Analysis: Two urine samples from the electronic cigarette group had abnormally high creatinine concentrations (≥3 mg/mL) as detected by a statistical outlier test and were removed from further analysis. For each urine sample, the biomarker concentration was normalized to its respective creatinine concentration. Because the normalized biomarker concentration data were not normally distributed, a Box-Cox transformation was performed after which a 3-way ANOVA was applied in MiniTab 17.0 (MiniTab Inc, PA, USA) using gender, age, and smoking group as factors. Outliers were removed if they had a large standardized residual (≥2.0 or ≤-2.0). In all the 3-way ANOVA models, the 2-way and 3-way interactions were not significant,
and our final model included age, gender, and smoking group. Post-hoc tests were used to compare different age groups, gender groups, and smoking groups. When the smoking group was analyzed independently (disregarding gender and age), a Dunnett’s post-hoc test was used with the electronic cigarette group as the main comparison group, and the comparisons were electronic cigarette users vs. non-smokers and electronic cigarette users vs. cigarette smokers. All linear correlation analyses were performed using the Linear Regression Analysis (R^2 and p-value reported) in PRISM 7.0 (GraphPad, CA, USA). All graphs reported in this manuscript were made in PRISM 7.0.

Patient and Public Involvement: No patients were involved in the research planning or design, nor were they involved in any aspect of the study besides urine collection. There are no plans to directly disseminate the results of the research to study participants. The dissemination of results will be achieved through publication or press release.

Results

Biomarker of Effect

Metallothionein, a biomarker of effect (due to metal and reactive oxygen species exposure), in the electronic cigarette group (3761 ± 3932 pg/mg) was significantly elevated when compared to the non-smokers group (1129 ± 1294 pg/mg, p=0.05), and these concentrations were similar to the
cigarette smokers group (4096 ± 4320 pg/mg, p=0.95) (Figure 1A). There were no differences in age or gender.

Biomarkers of Potential Harm (Oxidative Stress)

A significant elevation in urinary levels of the biomarker of DNA oxidation, 8-OHdG, occurred in electronic cigarette users (442.8 ± 300.7 ng/mg) vs. non-smokers (221.6 ± 157.8 ng/mg, p=0.01) (Figure 1B). There was no significant difference between electronic cigarette users (442.8 ± 300.7 ng/mg) and cigarette smokers (388 ± 235 ng/mg, p=0.75). Age affected 8-OHdG levels; those ≥41 years old (413.4 ± 256.4 ng/mg) had significantly elevated 8-OHdG compared to those ≤40 years (241.2 ± 214.1 ng/mg, p=0.02) (Figure 1C). There was no effect on gender.

The lipid peroxidation biomarker, 8-isoprostane, showed a significant increase in electronic cigarette users (750.8 ± 433 pg/mg) vs. non-smokers (411.2 ± 287.4 pg/mg, p=0.03) (Figure 1D). There was no significant difference between electronic cigarette users (750.8 ± 433 pg/mg) and cigarette smokers (784.2 ± 546.1 pg/mg, p = 0.96). Moreover, the ≥41-year-old population (777.6 ± 481.5 pg/mg) was significantly elevated in 8-isoprostane compared to those ≤40 years (392.6 ± 246.9 pg/mg, p=0.002) (Figure 1E). In addition, 8-isoprostane was significantly elevated in females (741.8 ± 489.3 pg/mg) vs. males (484.9 ± 345, p=0.04) (Figure 1F).

Biomarkers of Exposure are Correlated with Oxidative DNA Damage in E-Cigarette Users
Results of linear regression analyses performed on the non-smokers, cigarette smokers, and electronic cigarette users are presented in Fig 2 for the following correlations: (1) cotinine and total metal concentration (Fig 2A-C), (2) total metal concentration and metallothionein (Fig 2D-F), (3) cotinine and 8-OHdG (Fig 2G-I), and (4) total metal concentration and 8-OHdG (Fig 2J-L). There were no significant correlations in the non-smokers (Fig 2A, D, G, and J). In the cigarette smokers group, only total metal concentration and 8-OHdG were significant (Fig 2K, p=0.0003). In the electronic cigarette users group, all linear regression analyses were significant: cotinine and total metal concentration (Fig 2C, p=0.02), total metal concentration and metallothionein (Fig 2F, p=0.04), cotinine and 8-OHdG (Fig 2I, p = 0.02), and total metal concentration and 8-OHdG (Fig 2L, p = 0.007).

Selenium and Zinc were Elevated in Electronic Cigarette Users

Two of the 11 metals that were analyzed were significantly elevated in the electronic cigarette group. Selenium concentrations (Fig 3A) were significantly elevated in the electronic cigarette users (54 ± 20.6 µg/g) compared to non-smokers (41.8 ± 14.1 µg/g, p=0.04) and cigarette smokers (39.7 ± 17.3 µg/g, p=0.05). Zinc concentrations (Fig 3B) were significantly elevated in electronic cigarette users (584.5 ± 826.6 µg/g) compared to non-smokers (413.6 ± 233.7 µg/g, p=0.03). Zinc in the electronic cigarette users
was not significantly elevated when compared to cigarette smokers (470.7 ± 223.6 µg/g, p=0.17).

Zinc was Correlated with Oxidative DNA Damage in Electronic Cigarette Users

Regression analysis were performed to compare urinary concentrations of selenium and zinc to 8-OHdG in the non-smokers, cigarette smokers, or electronic cigarette users (Fig 4). There were no significant correlations for selenium versus 8-OHdG (Fig 4A-C). In the electronic cigarette users only, zinc was significantly correlated to 8-OHdG (p=0.0066) (Fig 4F) In non-smokers and cigarette smokers, zinc was not correlated to 8-OHdG (Fig 4A, B).

Discussion:

Consistent with our hypothesis, our study shows for the first time that biomarkers of effect and potential harm were elevated in the urine of the electronic cigarette users compared to non-smokers. Moreover, in electronic cigarette users, the levels of biomarkers of effect and potential harm were positively correlated with biomarkers of exposure to nicotine and metals. Importantly, electronic cigarette participants in our study did not report using other tobacco products and were not dual users of electronic cigarettes and conventional cigarettes. Before entering our study, all electronic cigarette users who were previous cigarette smokers had abstained from
smoking cigarettes for a minimum of six months, and abstinence was confirmed by undetectable NNAL (Supplemental Fig 1). Previous literature has shown that abstinence from cigarette smoking was concurrently linked to a decrease in levels of 8-isoprostane and 8-OHdG, which returned to non-smokers levels\(^3\). Taken together, the above information supports the conclusion that the elevation of 8-isoprostane and 8-OHdG in urine was associated with electronic cigarette use specifically. Surprisingly, we did not find a significant reduction in biomarkers of effect and potential harm between electronic cigarette users and cigarette smokers. This observation may be explained by the fact that electronic and conventional cigarettes and their aerosols have anatomical, chemical, and particulate differences, which may contribute to physiological harm in separate ways.

Cigarette smoke and electronic cigarette aerosol contain a mixture of metals and free radicals\(^6,7,8,28,32\) that could be contributing to the oxidative harm in our participants. The metals in electronic cigarette aerosols come mainly from the metal components in the atomizer and the e-fluid that is heated in the atomizer\(^7,33\). Metal concentration in urine was positively correlated with cotinine concentration, indicating that metals were elevated with increased aerosol exposure.

Metal increase in urine is further supported by the observed elevation in metallothionein, which acts as a heavy metal-binding protein and also protects cells from oxidative stress by scavenging ROS\(^25\). Metallothionein normally binds physiological metals, such as zinc and copper, but can also
bind xenobiotic heavy metals such as cadmium, silver and arsenic25,34 that are present in cigarette smoke35 and electronic cigarette aerosols7.

Metallothionein can also associate with at least 20 different elements/metals19,20, and 11 of these have been found in cigarette smoke28,36 or e-cigarette aerosol6,7,18 and were present in the urine of our participants.

The increase in metallothionein in the electronic cigarette user group was positively correlated with increasing metal concentration in their urine and was likely a response to metals inhaled by the electronic cigarette users. In cigarette smokers, metallothionein was not significantly correlated with increasing metal concentration, suggesting other factors such as ROS may be contributing to its activation. Also, cigarette smoke can have a different composition of metals than e-cigarette aerosol6,7,18,28,36, which were not selected for in our 11 metal analysis, and therefore the total metal concentration in smokers was not correlated to cotinine concentration.

Elevation of toxic metals can induce oxidative stress37,38. In the electronic cigarette group, there was a significant correlation between total metals and oxidative DNA damage. A similar correlation was observed for the cigarette smokers. Lipid oxidation was not significantly correlated with metal concentration in either the electronic cigarette or cigarette smokers groups. There are multiple isoprostanes and isoprostane metabolites formed in-vivo during oxidative conditions39, and we measured only 8-isoprostane, which may account for the lack of correlation between lipid oxidation and metal concentration. In contrast, during DNA oxidation the guanine residue is
highly oxidized compared to the other nucleic bases, leading to the
formation of a single DNA oxidation product (8-OHdG), which makes
correlation to oxidative stress straightforward.

Both zinc and selenium, which were significantly elevated in the
electronic cigarette user group, are present in electronic cigarette aerosols,
usually higher concentrations than most other elements6,7. However, only
zinc concentration was correlated with oxidative DNA damage in the
electronic cigarette group. While zinc is required for normal human health,
its elevation above normal levels has been associated with oxidative stress40.

Our data provide the first evidence that electronic cigarette usage increases
the risk of zinc exposure, which in turn causes oxidative DNA damage in humans. Selenium is also a required trace element that can cause harm
when elevated41. While its elevation in electronic cigarette users was not
linked to increased oxidative stress, future work may find that it has other
adverse health effects.

Oxidative damage can lead to gradual harm of all organ systems42 and
if left unchecked can culminate in diseases such as atherosclerosis, coronary
heart disease, pulmonary fibrosis, acute lymphoblastic leukemia, and lung
cancer43. Of particular concern, increases in both 8-isoprostane and 8-OHdG
were significantly greater in the older populations, suggesting that
conventional cigarette users who give up smoking and switched to electronic
cigarettes may be at greater risk for oxidative damage than young people
who have not smoked previously. In the case of 8-isoprostane, females were
more affected than males, suggesting that women should not be encouraged by physicians to use electronic cigarettes, especially when pregnant. There were no significant differences in the elevated concentrations of oxidative harm biomarkers between electronic cigarette users and cigarette smokers, suggesting their organ systems are exposed to similar levels of oxidative damage.

Conclusions:

Our data show for the first time that electronic cigarette use, which correlates with metal intake, leads to an elevation in metallothionein in the urine. The usage of e-cigarettes causes an increase in oxidative stress as measured by 8-OHdG and 8-isoprostane. E-cigarette users were exposed to elevated levels of selenium and zinc. The intake of metals (specifically zinc) is further correlated with increased oxidative damage to DNA. These data indicate that electronic cigarette use is not harm free and that prolonged use with elevation of oxidative stress may lead to disease progression. Given these observations, physicians should use caution in recommending the use of electronic cigarettes to their patients and should be alert to possible adverse health outcomes associated with electronic cigarette use. The biomarkers used in this study may be valuable in clinical practice when evaluating the health of electronic cigarette users.
1 References

2 1. U.S. Department of Health and Human Services. The Health Consequences of Smoking—50 Years of Progress. A Report of the Surgeon General. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2011. United States Surgeon General. The Health Consequences of Smoking -- 50 Years of progress: A Report of the Surgeon General: (510072014-001). 2014. doi:10.1037/e510072014-001

3 2. U.S. Department of Health and Human Services. E-Cigarette Use Among Youth and Young Adults. A Report of the Surgeon General. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2016.

4 3. Goniewicz ML, Knysak J, Gawron M, et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tobacco Control. 2014;23(2):133-139. doi:10.1136/tobaccocontrol-2012-050859

5 4. Behar RZ, Davis B, Wang Y, Bahl V, Lin S, Talbot P. Identification of toxicants in cinnamon-flavored electronic cigarette refill fluids. Toxicology in Vitro. 2014;28(2):198-208. doi:10.1016/j.tiv.2013.10.006

6 5. Behar RZ, Luo W, Lin SC, et al. Distribution, quantification and toxicity of cinnamaldehyde in electronic cigarette refill fluids and aerosols. Tobacco Control. 2016;25(Suppl 2):ii94-ii102. doi:10.1136/tobaccocontrol-2016-053224

7 6. Williams M, Villarreal A, Bozhilov K, Lin S, Talbot P. Metal and Silicate Particles Including Nanoparticles Are Present in Electronic Cigarette Cartomizer Fluid and Aerosol. PLoS ONE. 2013;8(3):e57987. doi:10.1371/journal.pone.0057987

8 7. Williams M, Bozhilov K, Ghai S, Talbot P. Elements including metals in the atomizer and aerosol of disposable electronic cigarettes and electronic hookahs. PLoS ONE. 2017;12(4):e0175430. doi:10.1371/journal.pone.0175430

9 8. Goel R, Durand E, Trushin N, et al. Highly Reactive Free Radicals in Electronic Cigarette Aerosols. Chemical Research in Toxicology. 2015;28(9):1675-1677. doi:10.1021/acs.chemrestox.5b00220

10 9. Bahl V, Lin S, Xu N, Davis B, Wang Y, Talbot P. Comparison of electronic cigarette refill fluid cytotoxicity using embryonic and adult models. Reproductive Toxicology. 2012;34(4):529-537. doi:10.1016/j.reprotox.2012.08.001
10. Behar RZ, Wang Y, Talbot P. Comparing the cytotoxicity of electronic cigarette fluids, aerosols and solvents. *Tobacco Control*. June 2017: tobaccocontrol-2016-053472. doi:10.1136/tobaccocontrol-2016-053472

11. Scott A, Lugg ST, Aldridge K, et al. Pro-inflammatory effects of e-cigarette vapour condensate on human alveolar macrophages. *Thorax*. August 2018: thoraxjnl-2018-211663. doi:10.1136/thoraxjnl-2018-211663

12. Hua M, Talbot P. Potential health effects of electronic cigarettes: A systematic review of case reports. *Prev Med Rep*. 2016;4:169-178. doi:10.1016/j.pmedr.2016.06.002

13. Moheimani RS, Bhetraratana M, Yin F, et al. Increased Cardiac Sympathetic Activity and Oxidative Stress in Habitual Electronic Cigarette Users: Implications for Cardiovascular Risk. *JAMA Cardiol*. 2017;2(3):278-284. doi:10.1001/jamacardio.2016.5303

14. Fracol M, Dorfman R, Janes L, et al. The Surgical Impact of E-Cigarettes: A Case Report and Review of the Current Literature. *Arch Plast Surg*. 2017;44(6):477-481. doi:10.5999/aps.2017.00087

15. Chang CM, Edwards SH, Arab A, Valle-Pinero AYD, Yang L, Hatsukami DK. Biomarkers of Tobacco Exposure: Summary of an FDA-Sponsored Public Workshop. *Cancer Epidemiol Biomarkers Prev*. 2017;26(3):291-302. doi:10.1158/1055-9965.EPI-16-0675

16. Shahab L, Goniewicz ML, Blount BC, et al. Nicotine, Carcinogen, and Toxin Exposure in Long-Term E-Cigarette and Nicotine Replacement Therapy Users: A Cross-sectional Study. *Annals of Internal Medicine*. 2017;166(6):390. doi:10.7326/M16-1107

17. Goniewicz ML, Smith DM, Edwards KC, et al. Comparison of Nicotine and Toxicant Exposure in Users of Electronic Cigarettes and Combustible Cigarettes: Findings from the Population Assessment of Tobacco and Health Study. *JAMA Network Open*. In press.

18. Gaur S, Agnihotri R. Health Effects of Trace Metals in Electronic Cigarette Aerosols—a Systematic Review. *Biol Trace Elem Res*. July 2018:1-21. doi:10.1007/s12011-018-1423-x31.

19. Chen CL, Whanger PD. Interaction of selenium and arsenic with metallothionein: Effect of vitamin B12. *Journal of Inorganic Biochemistry*. 1994;54(4):267-276. doi:10.1016/0162-0134(94)80032-4

20. Nielson KB, Atkin CL, Winge DR. Distinct metal-binding configurations in metallothionein. *J Biol Chem*. 1985;260(9):5342-5350.
21. Kimura Shingo, Yamauchi Hiroshi, Hibino Yuri, Iwamoto Mieko, Sera Koichiro, Ogino Keiki. Evaluation of Urinary 8-Hydroxydeoxyguanine in Healthy Japanese People. Basic & Clinical Pharmacology & Toxicology. 2006;98(5):496-502. doi:10.1111/j.1742-7843.2006.pto_217.x

22. Mizushima Y, Kan S, Yoshida S, Sasaki S, Aoyama S, Nishida T. Changes in urinary levels of 8-hydroxy-2′-deoxyguanosine due to aging and smoking. Geriatrics & Gerontology International. 2001;1(1-2):52-55. doi:10.1046/j.1444-1586.2001.00009.x

23. Yan W, Byrd GD, Ogden MW. Quantitation of isoprostane isomers in human urine from smokers and nonsmokers by LC-MS/MS. J Lipid Res. 2007;48(7):1607-1617. doi:10.1194/jlr.M700097-JLR200

24. Swierzcek S, Abuknesha RA, Chivers I, Baranovska I, Cunningham P, Price RG. Enzyme-immunoassay for the determination of metallothionein in human urine: application to environmental monitoring. Biomarkers.2004;9(4-5):331-340. doi:10.1080/13547500400018281

25. Ruttkay-Nedecky B, Nejdl L, Gumulec J, et al. The Role of Metallothionein in Oxidative Stress. Int J Mol Sci. 2013;14(3):6044-6066. doi:10.3390/ijms14036044

26. Valavanidis A, Vlachogianni T, Fiotakis K. Tobacco Smoke: Involvement of Reactive Oxygen Species and Stable Free Radicals in Mechanisms of Oxidative Damage, Carcinogenesis and Synergistic Effects with Other Respirable Particles. Int J Environ Res Public Health. 2009;6(2):445-462. doi:10.3390/ijerph6020445

27. Kim J-Y, Lee J-W, Youn Y-J, et al. Urinary Levels of 8-Iso-Prostaglandin F2α and 8-Hydroxydeoxyguanaine as Markers of Oxidative Stress in Patients With Coronary Artery Disease. Korean Circ J. 2012;42(9):614-617. doi:10.4070/kcj.2012.42.9.614

28. Bernhard D, Rossmann A, Wick G. Metals in cigarette smoke. IUBMB Life (International Union of Biochemistry and Molecular Biology: Life). 2005;57(12):805-809. doi:10.1080/15216540500459667

29. Wei B, Feng J, Rehmani IJ, et al. A high-throughput robotic sample preparation system and HPLC-MS/MS for measuring urinary anatabine, anabasine, nicotine and major nicotine metabolites. Clinica Chimica Acta. 2014;436:290-297. doi:10.1016/j.cca.2014.06.0125.

30. Xia B, Xia Y, Wong J, et al. Quantitative analysis of five tobacco-specific N-nitrosamines in urine by liquid chromatography-atmospheric pressure ionization tandem mass spectrometry. Biomedical Chromatography. 2014;28(3):375-384. doi:10.1002/bmc.3031
31. Morita H, Ikeda H, Haramaki N, Eguchi H, Imaizumi T. Only two-week smoking cessation improves platelet aggregability and intraplatelet redox imbalance of long-term smokers. *Journal of the American College of Cardiology*. 2005;45(4):589-594. doi:10.1016/j.jacc.2004.10.061

32. Goel R, Bitzer Z, Reilly SM, et al. Variation in Free Radical Yields from U.S. Marketed Cigarettes. *Chemical Research in Toxicology*. 2017;30(4):1038-1045. doi:10.1021/acs.chemrestox.6b00359

33. Olmedo P, Goessler W, Tanda S, et al. Metal Concentrations in e-Cigarette Liquid and Aerosol Samples: The Contribution of Metallic Coils. *Environmental Health Perspectives*. 2018;126(02). doi:10.1289/EHP2175

34. Mocchegiani E, Malavolta M, Muti E, et al. Zinc, Metallothioneins and Longevity: Interrelationships with Niacin and Selenium. *Current Pharmaceutical Design*. 2008; 14(26):2179-2732. doi: 10.2174/138161208786264188

35. Pappas RS, Fresquez MR, Martone N, Watson CH. Toxic Metal Concentrations in Mainstream Smoke from Cigarettes Available in the USA. *J Anal Toxicol*. 2014;38(4):204-211. doi:10.1093/jat/bku013

36. Abd El-Samad M, Hanafi HA. Analysis of toxic heavy metals in cigarettes by Instrumental Neutron Activation Analysis. *Journal of Taibah University for Science*. 2017;11(5):822-829. doi:10.1016/j.jtusci.2017.01.007

37. Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic Metals and Oxidative Stress Part I: Mechanisms Involved in Metal Induced Oxidative Damage. *Curr Top Med Chem*. 2001;1(6):529-39. doi: 10.2174/1568026013394831

38. Valko M, Morris M, Cronin TD. Metals, Toxicity and Oxidative Stress. *Curr Med Chem*. 2005;12(10):1161-208. doi:10.2174/0929867053764635

39. Milne GL, Yin H, Hardy KD, Davies SS, Roberts LJ. Isoprostane Generation and Function. *Chem Rev*. 2011;111(10):5973-5996. doi:10.1021/cr200160h

40. McCord MC, Aizenman E. The role of intracellular zinc release in aging, oxidative stress, and Alzheimer’s disease. *Front Aging Neurosci* 2014;6. doi:10.3389/fnagi.2014.00077

41. Vinceti M, Wei ET, Malagoli C, Bergomi M, Vivoli G. Adverse health effects of selenium in humans. *Rev Environ Health*. 2001;16(4):233-251.

42. Ogura S, Shimosawa T. Oxidative Stress and Organ Damages. *Current Hypertension Reports*. 2014;16(8). doi:10.1007/s11906-014-0452-x
Rahman T, Hosen I, Islam MMT, Shekhar HU. Oxidative stress and human health. *Advances in Bioscience and Biotechnology*. 2012;03(07):997-1019. doi:10.4236/abb.2012.327123

Footnotes:

Contributors: SSC, CH, MG, PT were responsible for the study concept and design. SSC, MW and ANR performed the experiments for data collection. MG collected and shipped the urine samples to our lab. JL acted as a statistician. SMB helped design the use of the ICP-MS in TWL’s lab and the analysis of the metal data. SSC, MW, CH, JL, MG, PT drafted the manuscript, and all authors read and provided comments on the manuscript. SSC, MW, and PT reviewed the data and take responsibility for the integrity and accuracy of the data. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted. SSC and PT are the guarantors.

Funding: This study was supported by the National Institute on Drug Abuse and the National Cancer Institute of the National Institutes of Health (awards R01DA037446 and P30 CA016056, respectively) and FDA Center for Tobacco Products (CTP) and by an award from the Roswell Park Alliance Foundation.
The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Disclosures: Dr. Goniewicz reports grants from Pfizer (2011 GRAND [Global Research Awards for Nicotine Dependence] recipient) and personal fees from Johnson & Johnson (as a member of the advisory board) outside the submitted work. Authors not named here have disclosed no conflicts of interest.

Ethics Approval: The study was approved by Roswell Park Comprehensive Cancer Center IRB (protocol number I 247313). The biomarker measurement study was approved under IRB protocol HS-12-023 from UCR.

Data Sharing: No additional data are available.

Transparency: The study guarantors affirm that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

Figure Legends
Figure 1. Urinary metallothionein (pg/mg of creatinine), 8-OHdG (ng/mg of creatinine), 8-isoprostane (pg/mg of creatinine), are significantly elevated in e-cigarette users compared to non-smokers. A. Metallothionein levels among the different smoking groups. B. 8-OHdG concentration in the different smoking groups. C. 8-OHdG concentration in the younger and older populations. D. 8-isoprostane levels among the different smoking groups. E. 8-isoprostane levels in the younger and older populations. F. 8-isoprostane levels in males and females. Bars are the means and standard deviations for each group. * p = < 0.05; ** p = <0.01.

Figure 2. Correlation between total metals and cotinine, metallothionein and total metals, 8-OHdG and cotinine, and 8-OHdG and total metals in urine. A-C. Linear regression analysis comparing total metal (µg/g of creatinine) and cotinine concentration (ng/mg of creatinine) in urine of the non-smokers, cigarette smokers, and e-cigarette user groups. D-F. Linear regression analysis comparing metallothionein concentration (pg/mg of creatinine) and total metal concentration (µg/g of creatinine) in urine in the non-smokers, cigarette smokers, and e-cigarette users groups. G-I. Linear regression analysis comparing 8-OHdG (ng/mg of creatinine) and cotinine (ng/mg of creatinine) concentration in urine of the non-smokers, cigarette smokers, and electronic cigarette user groups. J-L. Linear
regression analysis comparing 8-OHdG (ng/mg of creatinine) and total metal
(µg/g of creatinine) concentration in urine of the non-smokers, cigarette
smokers, and electronic cigarette user groups. N/A = not applicable since
levels of cotinine in non-smokers was negligible.

Figure 3. Urinary selenium (µg/g of creatinine) and zinc (µg/g of
creatinine) concentrations are significantly increased in the
electronic cigarette users. A. Selenium concentrations in the different
smoking groups. B. Zinc concentrations in the different smoking groups. Bars
are the means and standard deviations for each group. * p = < 0.05.

Figure 4. Zinc concentrations (µg/g of creatinine) are significantly
correlated to oxidative DNA damage in the electronic cigarette
users. A-C. Linear regression analysis comparing selenium (µg/g) of
creatinine and 8-OHdG (ng/mg of creatinine) in urine of the non-smokers,
cigarette smokers, and e-cigarette user groups. D-F. Linear regression
analysis comparing zinc (µg/g of creatinine) and 8-OHdG (ng/mg of
creatinine) in urine in the non-smokers, cigarette smokers, and e-cigarette
users groups.

Supplementary Figure 1. NNAL concentration (pg/mg of creatinine)
among the different smoking groups. Significant elevation of NNAL (a
biomarker of tobacco exposure) was seen in the cigarette smokers. Bars are
the means and standard deviations for each group. * p = < 0.05; **** p = < 0.0001.

** Supplementary Figure 2. Cotinine concentration (ng/mg of creatinine) in the different smoking groups.** Cotinine concentration is elevated in the cigarette smokers and e-cigarette users compared to non-smokers. There is no difference between the cigarette smokers and e-cigarette users. Bars are the means and standard deviations for each group. ** p = < 0.01; **** p = < 0.0001.

** Supplementary Figure 3. Urinary creatinine concentration (mg/mL) in different genders and age populations.** A. Creatinine concentrations in males and females. B. Creatinine concentrations in the younger and older population. There were no significant differences between genders or age groups. Bars are the means and standard deviations for each group.

** Supplementary Figure 4. The total concentration of 11 metals (µg/g of creatinine) in each smoking group.** There were no significant differences in the total metals concentrations in any of the smoking groups. Bars are the means and standard deviations for each group.