Peccei-Quinn Symmetry and Nucleon Decay in Renormalizable SUSY SO(10)

Shaikh Saad

SUSY 2019, 20 May

K.S. Babu, B. Bajc, S. Saad, JHEP 1810 (2018) 135
K.S. Babu, T. Fukuyama, S. Khan, S. Saad, arXiv:1812.11695 [hep-ph]
Outline of the talk

- Shortcomings of the Standard Model
- Why $SO(10)$ GUT?
- Minimal SUSY $SO(10)$ Model: pros and cons
- New Minimal SUSY $SO(10)$ Model
- SUSY $SO(10)$ Model with Peccei-Quinn Symmetry
- Summary
Shortcomings of the Standard Model

- Yukawa couplings are arbitrary parameters, no correlation.

- No understanding of the observed hierarchies in the charged fermion masses and mixings.

- Strong CP problem: why θ-term is so small?

- Neutrinos are massless.

- Why charge is quantization?

- Many scattered fermion multiplets. Unsightly?

- Observed Baryon asymmetry can not be incorporated.

- No dark matter candidate ...
Why $SO(10)$ GUT?

- Gauge coupling unification can be realized.
- Electric charge quantization is understood.
- Unify all fermions into a single irreducible 16 dimensional multiplet.
- Predicts the existence of right-handed neutrinos.
- Seesaw mechanism is a natural candidate to explain neutrino oscillation data.
- Baryon asymmetry can be explained, as for example via Leptogenesis mechanism.
- Dark matter stability is automatic.
Unification of Matter

- 16 members of a family fit into a spinor of $SO(10)$ GUT

Pati, Salam (1974) – Quark-lepton unification
Georgi, Glashow (1974) – $SU(5)$ unification
Georgi (1975); Fritzsch, Minkowski (1975) – $SO(10)$ unification
Georgi, Quinn, Weinberg (1974) – Gauge coupling unification

Cartan-Weyl weights (Table: Stuart Raby)

	$SU(1)_Y$	$SU(3)_C$	$SU(2)_L$
ν^c	0	++ +	++
e^c	1	++ +	--
u_{red}	$\frac{1}{6}$	+ -- +	+ --
d_{red}		-- + +	-- +
u_{green}	$\frac{2}{3}$	- + -	++ +
d_{green}		+ -- +	-- +
u_{blue}		+ + --	+ --
d_{blue}		+ + --	-- +
ν^c	$\frac{3}{2}$	- ++	++ --
e^c	$\frac{1}{2}$	+ - +	-- +
Unification of Gauge Couplings with SUSY
Minimal SUSY $SO(10)$ model

- $10_H + 126_H + \overline{126}_H + 210_H$.

 C. S. Aulakh, B. Bajc, A. Melfo, G. Senjanovic and F. Vissani, 04

- 26 real parameters

 $= 15$ (Yukawa) + 10 (symmetry breaking sector) + 1 (gauge coupling)

- minimal number of parameters among all SUSY GUTs
Minimal SUSY $SO(10)$ model

- $10_H + 126_H + \overline{126}_H + 210_H$.
- Neutrino and charged fermion masses and mixings are related.
- Natural generation of neutrino masses and mixings through type I and type II seesaw.
- Good fit to fermion masses and mixings with only two symmetric matrices.
- Automatic and exact low energy R-parity conservation leading to a compelling dark matter candidate.
- Connection of the $b-\tau$ unification and large atmospheric mixing angle in type II seesaw.
Constraints from the Higgs sector ruled out such an attractive model, the minimal SUSY $SO(10)$.

B. Bajc, A. Melfo, G. Senjanovic and F. Vissani, 05;

S. Bertolini, T. Schwetz and M. Malinsky, 06
Minimal SUSY $SO(10)$: Solutions

A) $10_H + 126_H + \overline{126}_H + 210_H + 120_H$.

$$\mathcal{L}_{yuk} = 16_F^T (Y_{10} 10_H + Y_{126} \overline{126}_H + Y_{120} 120_H) 16_F$$

B. Dutta, Y. Mimura and R. N. Mohapatra, 04;
C. S. Aulakh, I. Garg and C. K. Khosa, 13;
R. N. Mohapatra and M. Severson, 18

$\Rightarrow 6 + 17 + 26$ real parameters

B) $10_H + 126_H + \overline{126}_H + 210_H + 54_H$.

New Minimal SUSY $SO(10)$? (Yukawa sector unaltered)

Babu, Bajc, Saad, JHEP 1810 (2018) 135

$\Rightarrow 0 + 11 + 26$ real parameters
Yukawa Sector of SUSY $SO(10)$

\[16 \times 16 = 10_s + 120_a + 126_s \]

\[
W_{Yukawa}^{SO(10)} = 16_F^T(Y_{10}^{10H} + Y_{126}^{126H})16_F.
\]

K. S. Babu, R. Mohapatra, 92

\[
M_U = v_u^{10} Y_{10} + v_u^{126} Y_{126} \\
M_D = v_d^{10} Y_{10} + v_d^{126} Y_{126} \\
M_E = v_d^{10} Y_{10} - 3v_d^{126} Y_{126} \\
M_{\nu_D} = v_u^{10} Y_{10} - 3v_u^{126} Y_{126} \\
M_R = Y_{126} V_R
\]

\[
Y_{10} = \begin{pmatrix} a_1 & 0 & 0 \\ a_2 & 0 \\ a_3 \end{pmatrix} \\
Y_{126} = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{22} & b_{23} & b_{33} \end{pmatrix}
\]
12 parameters plus 7 phases to fit 18 observed quantities
This setup fits all observables quite well
Large neutrino mixings coexist with small quark mixings
θ_{13} prediction turned out to be correct

Babu, Mohapatra (1993); Bajc, Senjanovic, Vissani (2001); (2003); Fukuyama, Okada (2002); Goh, Mohapatra, Ng (2003); Bajc, Melfo, Senjanovic, Vissani (2004); Bertolini, Malinsky, Schwetz (2006); Babu, Macesanu (2005); Dutta, Mimura, Mohapatra (2007); Aulakh et al (2004); Bajc, Dorsner, Nemevsek (2009); Joshipura, Patel (2011); Dueck, Rodejohann (2013); Babu, Bajc, Saad (2018)
Strongly Hierarchical Charged Fermion Masses

- **up-type quarks**
 - $m_u \sim 6.5 \times 10^{-6}$
 - $m_c \sim 3.3 \times 10^{-3}$
 - $m_t \sim 1$

- **down-type quarks**
 - $m_d \sim 1.5 \times 10^{-5}$
 - $m_s \sim 3 \times 10^{-4}$
 - $m_b \sim 1.5 \times 10^{-2}$

- **charged leptons**
 - $m_e \sim 3 \times 10^{-6}$
 - $m_\mu \sim 6 \times 10^{-4}$
 - $m_\tau \sim 1 \times 10^{-2}$

(in the unit of m_t)
Mixing matrices and Neutrino mass differences

\[V_{\text{CKM}} \sim \begin{bmatrix} 0.976 & 0.22 & 0.004 \\ -0.22 & 0.98 & 0.04 \\ 0.007 & -0.04 & 1 \end{bmatrix} \]

\[U_{\text{PMNS}} \sim \begin{bmatrix} 0.85 & -0.54 & 0.16 \\ 0.33 & 0.62 & -0.72 \\ -0.40 & -0.59 & -0.70 \end{bmatrix} \]

Quark mixing angles are small and Leptonic mixing angles are large

- **neutrinos** (assuming normal hierarchy)

\[\Delta m^2_{\text{sol}} \sim 7.5 \times 10^{-5} \text{eV}^2 ; \ m_2 \sim 8.5 \times 10^{-12} \text{GeV} \]

\[\Delta m^2_{\text{atm}} \sim 2.5 \times 10^{-3} \text{eV}^2 ; \ m_3 \sim 5 \times 10^{-11} \text{GeV} \]

Neutrino mass spectrum shows mild hierarchy
Best Fit Values

Masses (in GeV) and Mixing parameters	Inputs (at $\mu = M_{\text{GUT}}$)	Fitted values (at $\mu = M_{\text{GUT}}$)	pulls		
$m_u/10^{-3}$	0.450 ± 0.139	0.454	0.028		
m_c	0.248 ± 0.007	0.245	0.175		
m_t	84.53 ± 0.84	84.49	-0.057		
$m_d/10^{-3}$	0.951 ± 0.19	0.585	-1.92		
$m_s/10^{-3}$	18.07 ± 0.97	18.46	0.409		
m_b	0.961 ± 0.009	0.961	0.048		
$m_e/10^{-3}$	0.379457	0.379468	0.002		
$m_\mu/10^{-3}$	80.1068	80.0416	-0.081		
m_τ	1.36781	1.36799	0.012		
$	V_{us}	/10^{-2}$	22.54 ± 0.06	22.54	0.057
$	V_{cb}	/10^{-2}$	4.14 ± 0.06	4.14	0.013
$	V_{ub}	/10^{-2}$	0.358 ± 0.012	0.358	0.020
δ_{CKM}	1.208 ± 0.054	1.222	0.265		
$\Delta m^2_{\text{sol}}/10^{-5}(\text{eV}^2)$	8.679 ± 0.218	8.683	0.019		
$\Delta m^2_{\text{atm}}/10^{-3}(\text{eV}^2)$	2.929 ± 0.046	2.929	-0.011		
$\sin^2 \theta_{12}^{\text{PMNS}}$	0.3219 ± 0.017	0.3204	-0.029		
$\sin^2 \theta_{23}^{\text{PMNS}}$	0.431 ± 0.019	0.4281	-0.0148		
$\sin^2 \theta_{13}^{\text{PMNS}}$	0.0216 ± 0.00082	0.02148	-0.145		

Total $\chi^2 = 4$

Babu, Bajc, Saad, JHEP 1810 (2018) 135
Best Fit Predictions

Quantity	Predicted Value
$\{m_1, m_2, m_3\}$ (in eV)	$\{3.32 \times 10^{-3}, 9.89 \times 10^{-3}, 5.42 \times 10^{-2}\}$
$\{\delta_{PMNS}, \alpha_{21}^{PMNS}, \alpha_{31}^{PMNS}\}$	$\{17.0^\circ, 344.13^\circ, 337.45^\circ\}$
$\{m_{\cos}, m_{\beta}, m_{\beta\beta}\}$ (in eV)	$\{6.74 \times 10^{-2}, 6.47 \times 10^{-3}, 6.11 \times 10^{-3}\}$
$\{M_1, M_2, M_3\}$ (in GeV)	$\{1.29 \times 10^{10}, 6.25 \times 10^{11}, 4.13 \times 10^{12}\}$

Babu, Bajc, Saad, JHEP 1810 (2018) 135
$d = 5$ Proton Decay

- $\tau(p \rightarrow \bar{\nu}K^+) > 5.9 \times 10^{33} \text{ yrs.}$

(4 such diagrams)

- $m_S \geq 100 \text{ TeV}$

Babu, Bajc, Saad, JHEP 1810 (2018) 135
GUTs solve almost all problems!

Strong CP problem?
Strong CP problem

- QCD allows a **CP violating** flavor singlet interaction

\[\mathcal{L} \supset -\frac{\theta_{QCD}}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a\mu\nu} + \bar{q}Mq \]

- QCD interactions appear to conserve CP symmetry

\[\bar{\theta} = \theta_{QCD} + \text{ArgDet}(M) \]

- \(\bar{\theta}\) contributes to **neutron EDM**

\[d_n \sim 10^{-16} \text{ e-cm} \Rightarrow \bar{\theta} < 10^{-10} \]

- Why is a dimensionless parameters of theory so small?
An elegant solution is the Peccei-Quinn mechanism

\(\bar{\theta} \) is promoted to a dynamical field

Assumes a global \(U(1) \) symmetry that has a QCD anomaly. This \(U(1) \) is broken spontaneously by a scalar field at a scale \(f_a \sim 10^{12} \text{ GeV} \) leading to massless axion

Minimization with respect to \(a \) sets \(\bar{\theta} = 0 \)
SUSY $SO(10) \times U(1)_{PQ}$

- $10_H + 126_H + \overline{126}_H + 210_H + 54_H + 10'_H$.

Babu, Bajc, Saad arXiv: 1812.11695 [hep-ph]
SUSY $SO(10) \times U(1)_{PQ}$

Fields	16_{Fi}	210_H	54_H	126_H	126_H	10_H	$10'_H$	S_1	S_2	S_3
$U(1)_{PQ}$	-1	0	0	-2	+2	+2	-2	-8	+8	+4

- **Singlet sector breaks PQ symmetry in SUSY limit:**

 \[
 W_S = M_S S_1 S_2 + \kappa S_1 S_3^2
 \]

 In SUSY limit, S_3 is undetermined, but it gets fixed once SUSY breaking is included.

Babu, Bajc, Saad arXiv: 1812.11695 [hep-ph]
Symmetry Breaking Chain

\[SO(10) \times U(1)_{\text{PQ}} \]

\[
\langle 54_H \rangle, \langle 210_H \rangle \quad \rightarrow \quad SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L} \times U(1)_{\text{PQ}}
\]

\[
\langle 126_H \rangle, \langle 126_H \rangle, \langle S_i \rangle \quad \rightarrow \quad SU(3)_c \times SU(2)_L \times U(1)_Y
\]

\[
\langle 10_H \rangle, \langle 10'_H \rangle \quad \rightarrow \quad SU(3)_c \times U(1)_{\text{em}}
\]

Babu, Bajc, Saad arXiv: 1812.11695 [hep-ph]
Superpotential

Symmetry breaking sector:

\[
W^{PQ}_{SO(10)} = \frac{1}{2} m_{1} 120^{2} H + m_{2} 126_{H} 126_{H} + m_{3}' 10_{H} 10'_{H} + \frac{1}{2} m_{5} 54^{2}_{H} \\
+ \lambda_{1} 120^{3}_{H} + \lambda_{2} 210_{H} 126_{H} 126_{H} + \lambda_{3} 126_{H} 10_{H} 210_{H} \\
+ \lambda_{4}' 126_{H} 10'_{H} 210_{H} + \lambda_{8} 54^{3}_{H} + \lambda_{10} 54_{H} 210^{2}_{H} + \lambda_{13}' 54_{H} 10_{H} 10'_{H} \\
+ \frac{1}{2} \lambda_{5}' 10'_{H}^{2} S_{3}
\]

Minimal Yukawa sector preserved under PQ:

\[
W^{Yuk PQ}_{SO(10)} = 16^{T} (Y_{10} 10_{H} + Y_{126} 126_{H}) 16
\]
$SU(2)_L$ doublet Higgs mass matrix

$$
\begin{pmatrix}
H_d & \bar{\Delta}_d & \Delta_d & \Phi_d & H'_d
\end{pmatrix}
\mathcal{M}_D
\begin{pmatrix}
H_u \\
\Delta_u \\
\bar{\Delta}_u \\
\Phi_u \\
H'_u
\end{pmatrix}
$$

$$
\mathcal{M}_D =
\begin{pmatrix}
0 & \frac{\lambda_3 \Phi_2}{\sqrt{10}} - \frac{\lambda_3 \Phi_3}{2\sqrt{5}} & 0 & 0 & m_3' + \sqrt{3/5} \lambda_1 E \\
0 & \frac{\lambda_2 \Phi_2}{\sqrt{10}} - \frac{\lambda_2 \Phi_3}{2\sqrt{5}} & m_2 + \frac{\lambda_2 \Phi_2}{15\sqrt{2}} + \frac{\lambda_2 \Phi_3}{30} & 0 & \frac{\lambda_2 \bar{\nu}_R}{10} \lambda_1 E \\
\frac{-\lambda_3 \Phi_2}{\sqrt{10} - \frac{\lambda_3 \nu_R}{\sqrt{5}}} & 0 & m_2 + \frac{\lambda_2 \Phi_2}{15\sqrt{2}} + \frac{\lambda_2 \Phi_3}{30} & \frac{\lambda_2 \bar{\nu}_R}{10} \lambda_1 E & 0 \\
m_3' + \sqrt{3/5} \lambda_1 E & 0 & \frac{-\lambda_3 \Phi_2}{\sqrt{10} - \frac{\lambda_3 \nu_R}{\sqrt{5}}} & \frac{\lambda_4 \Phi_2}{\sqrt{10}} - \frac{\lambda_4 \Phi_3}{2\sqrt{5}} & \lambda_5 S_3
\end{pmatrix}
$$

$\langle S_3 \rangle \ll M_{GUT}$:

$$
W_D^{mass} = (H'_d \quad \Delta_d \quad \Phi_d) \mathcal{M}_{D1} (H_u \quad \bar{\Delta}_u \quad \Phi_u)^T + (H_d \quad \bar{\Delta}_d) \mathcal{M}_{DII} (H'_u \quad \Delta_u)^T + \lambda'_5 H'_d H'_u \langle S_3 \rangle.
$$

An extra pair of doublet has mass of order PQ scale $\sim 10^{12}$ GeV

Babu, Bajc, Saad arXiv: 1812.11695 [hep-ph]
SU(3)_C triplet Higgs mass matrix

\[
\begin{pmatrix}
H_C & \Delta_C & \Delta_C' & \Phi_C & H'_C
\end{pmatrix}\begin{pmatrix}
M_T
\end{pmatrix}
\]

\[
M_T = \begin{pmatrix}
0 & \frac{\lambda_3 \Phi_2}{\sqrt{30}} - \frac{\lambda_1 \Phi_1}{\sqrt{10}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\frac{-\lambda_1 \Phi_1}{\sqrt{10}} - \frac{\lambda_1 \Phi_2}{\sqrt{30}} & m_2 & 0 & \frac{\lambda_2 \Phi_3}{15 \sqrt{2}} + \frac{\lambda_3 \Phi_2}{30 \sqrt{2}} & m_1 + \frac{-\lambda_2 \Phi_R}{10 \sqrt{3}} + \frac{\lambda_2 \Phi_R}{5 \sqrt{6}} \\
-\sqrt{\frac{2}{15}} \lambda_3 \Phi_3 & \frac{-\lambda_2 \Phi_R}{10 \sqrt{3}} - \frac{\lambda_2 \Phi_R}{5 \sqrt{6}} & m_2 & 0 & \frac{\lambda_1 \Phi_1}{\sqrt{6}} + \frac{\lambda_2 \Phi_2}{3 \sqrt{2}} + \frac{2}{3} \lambda_1 \Phi_3 + \frac{1}{2 \sqrt{15}} \lambda_10 E \\
m' - \frac{2}{\sqrt{15}} \lambda_13 E & \frac{-\lambda_1 \Phi_1}{\sqrt{10}} - \frac{\lambda_4 \Phi_2}{\sqrt{30}} & -\sqrt{\frac{2}{15}} \lambda_4 \Phi_3 & \frac{\lambda_4 \Phi_R}{\sqrt{6}} & \lambda'_5 \langle S_3 \rangle
\end{pmatrix}
\]

- Contains the same parameters as the doublet matrix
- Must be heavy \(\sim M_{GUT} \)

Babu, Bajc, Saad arXiv: 1812.11695 [hep-ph]
Suppressing $d = 5$ Proton Decay

PQ-symmetry: 10^2_H direct mass terms are not allowed
Suppression mechanism

\[W_5 \sim \frac{\lambda'_5 \langle S_3 \rangle}{M_T} \left(\frac{QQQL}{M_T} + \frac{u^c e^c u^c d^c}{M_T} \right). \]
Suppression via PQ-scale, $M_{PQ} \sim 10^{12}$ GeV

- Suppression factor: $(M_{PQ}/M_{GUT})^2 \sim 10^{-8}$

- $SO(10)$ without PQ: $\tau_p \sim 10^{25} - 10^{26}$ yrs. ($m_S \sim$ TeV)

- $SO(10)$ with PQ: $\tau_p \sim 10^{33} - 10^{34}$ yrs. ($m_S \sim$ TeV)

Babu, Bajc, Saad arXiv: 1812.11695 [hep-ph]
Allowed SUSY Scalar Masses

Minimum SUSY scalar mass allowed by proton decay (with Wino mass fixed at 1 TeV)

Babu, Bajc, Saad arXiv: 1812.11695 [hep-ph]
MSSM gauge coupling unification does not hold

\[\phi = (6,1,1/3) + \text{c.c.} \]

\[M_{\Phi} = 2.76 \times 10^{15} \text{ GeV} \]

\[M_{\text{GUT}} = 1.65 \times 10^{16} \text{ GeV} \]

\[\alpha^{-1}(\text{GUT}) = 24.3 \]

\[\alpha_1^{-1} \]

\[\alpha_2^{-1} \]

\[\alpha_3^{-1} \]

\[\mu \text{ GeV} \]

Babu, Bajc, Saad arXiv: 1812.11695 [hep-ph]
Gauge boson mediated $d = 6$ proton decay

Multiplet, ϕ	Running coefficient (b_1, b_2, b_3)	M_ϕ	M_{GUT}	α_{GUT}^{-1}	$\tau_p(p \to e^+\pi^0)$ in yrs
$(6, 1, \frac{1}{3}) + c.c.$	$(\frac{4}{5}, 0, 5)$	2.76×10^{15} GeV	1.65×10^{16}	24.3	7.39×10^{35}
$(6, 1, -\frac{2}{3}) + c.c.$	$(\frac{16}{5}, 0, 5)$	2.76×10^{15} GeV	9.92×10^{15}	24.46	9.78×10^{34}
$(6, 1, \frac{4}{3}) + c.c.$	$(\frac{64}{5}, 0, 5)$	2.75×10^{15} GeV	5.0×10^{15}	24.68	6.42×10^{33}

- **Experimental bound:** $\tau_p > 1.6 \times 10^{34}$ yrs for $p \to e^+\pi^0$

p decay modes	Branching ratio
$p \to \bar{\nu}\pi^+$	52.5%
$p \to e^+\pi^0$	40.9%
$p \to \mu^+K^0$	4.42%
$p \to \mu^+\pi^0$	1.14%
$p \to \bar{\nu}K^+$	0.69%
$p \to e^+K^0$	0.23%
$p \to e^+\eta$	0.04%
$p \to \mu^+\eta$	0.001%
Lepton Flavor Violation

- RGE running from GUT scale to ν_R scale induces LFV
- Dirac and Majorana masses of neutrinos are all determined
- $\mu \to e\gamma$ is the most prominent process

Limits the sfermion masses

Babu, Bajc, Saad arXiv: 1812.11695 [hep-ph]
Conclusions

- **PQ symmetry successfully implemented**
- **PQ symmetry** allows \sim TeV scale SUSY scalar masses
- **Minimal Yukawa** sector of $SO(10)$ is rather **predictive and works quite well**
- Both $d = 5$ and $d = 6$ proton decay rates near current limits
- Proton decay branching ratios may **test** such high scale theories
- $\mu \rightarrow e\gamma$ is close to current experimental limit

THANK YOU!