Cardiovascular Autonomic Neuropathy and Subclinical Cardiovascular Disease in Normoalbuminuric Type 1 Diabetic Patients

Ulrik Madvig Mogensen,1 Tonny Jensen,2 Lars Køber,1 Henning Kelbæk,1 Anne Sophie Mathiesen,2 Ulrik Dixen3 Peter Rossing,4 Jannik Hilsted,2 and Klaus Fuglsang Kofoed1,5

Cardiovascular autonomic neuropathy (CAN) is associated with increased mortality in diabetes. Since CAN often develops in parallel with diabetic nephropathy as a confounder, we aimed to investigate the isolated impact of CAN on cardiovascular disease in normoalbuminuric patients. Fifty-six normoalbuminuric, type 1 diabetic patients were divided into 26 with (+) and 30 without (−) CAN according to tests of their autonomic nerve function. Cardiovascular autonomic neuropathy (CAN) results from damage to the autonomic nerve fibers to the heart, and an early manifestation is a decrease in heart rate variation (HRV) during deep breathing (3). CAN is present in 25% of type 1 diabetic patients but is often overlooked (1,3).

The increased mortality associated with CAN appears to be partly explained by coexistence with other long-term complications of diabetes (4), and since especially nephropathy and CAN generally develop in parallel, the relative contribution of CAN on mortality has been difficult to identify (5). However, some studies have found CAN to be associated with sudden cardiac death (6) and to be an independent predictor of mortality (7,8). Different mechanisms through which CAN may promote mortality have been suggested including silent myocardial ischemia, silent myocardial infarction, impaired respiratory response to hypoxia, intraoperative cardiovascular lability, and fatal arrhythmia due to QT prolongation (2,5,9–11). However, the mechanism remains unclear (12,13).

A noninvasive evaluation of coronary artery stenosis can be performed with high diagnostic accuracy using multislice computed tomography (MSCT) coronary angiography (14). MSCT also allows assessment of coronary artery calcification, which can be quantified as a coronary artery calcium score (CACS). Coronary artery calcium deposit has been shown to be a strong predictor of future cardiovascular events (15–17). Other markers of increased cardiovascular risk have recently been introduced: left ventricular dysfunction evaluated with tissue Doppler imaging (TDI) (18,19), a reduction in nighttime blood pressure drop (20,21), and increased arterial pulse pressure (22) are all independently associated with increased cardiovascular risk.

The aim of this study was to investigate the potential association between CAN and subclinical coronary atherosclerosis in addition to other prognostic markers of cardiovascular disease. For avoidance of the confounding effect of diabetic nephropathy, only patients with normal albumin excretion rates (albuminuria) were included.

RESEARCH DESIGN AND METHODS

Patients with long-lasting type 1 diabetes, persistent normoalbuminuria, and no history or symptoms of cardiac disease (23) were recruited from the outpatient clinic cohort of type 1 diabetic patients at Steno Diabetes Center and the Diabetes Unit, Rigshospitalet. Inclusion criteria were type 1 diabetes according to American Diabetes Association criteria of at least 10 years’ duration, age between 18 and 75 years, and Hba1c < 10%. Exclusion criteria were albuminuria (urinary albumin-to-creatinine ratio > 30 mg/g, elevated S-creatinine > 120 μmol/L), untreated hypertension (> 140/85 mmHg), and electrocardiographic signs or clinical symptoms of heart disease.

In the study population registry of 3,000 type 1 diabetic patients, autonomic testing had previously been performed in 350 patients owing to clinical suspicion of autonomic neuropathy, and 123 of these patients were eligible according to inclusion/exclusion criteria. CAN testing was repeated in all patients included in the current study.

From this group, informed consent to participate in the study was obtained in 60 randomly selected patients during their visit to the outpatient clinic. Patients were divided into two groups according to the outcome of four autonomic function tests: HRV during deep breathing, Valsalva ratio, lying-to-standing test, and blood pressure response to standing up. CAN was defined as two or more abnormal tests (24), and age-normative values were used to define abnormality (25,26). Of the included 60 patients, 26 had CAN, 30 were without CAN, and 4 had inconclusive tests. All patients underwent MSCT and transthoracic echocardiography (TTE). In order to decrease heart rate for optimized image quality, all patients were given 5 mg ivabradine orally on the evening before and on the morning of cardiac
Coronary artery disease evaluated with MSCT was the primary outcome measure. Other parameters were included as confounding factors in the analysis.

All measurements and analysis were performed with the investigator blinded to the CAN status of the patients. The study was conducted in accordance with the Declaration of Helsinki II and approved by the local ethics committee (protocol number H-4-2009-001). All patients gave written informed consent.

Cardiovascular autonomic neuropathy tests. Age-normative values were used to define abnormality in all tests (25,26). HRV was assessed in previously trained patients who were asked to breathe deeply at a rate of six breaths per minute while being monitored on a (50 mm/s) 12-lead electrocardiography. The maximum and minimum heart rates during each breathing cycle were measured, and the mean difference of six cycles was calculated.

The heart rate recovery (HRR) was determined after at least 5 min rest in the supine position, and HRV was determined by calculating the maximal-to-minimal heart rate ratio: the longest R-R interval, measured around the 30th beat after standing up, to the shortest R-R interval, measured around the 15th beat after standing up.

The Valsalva test consisted of forced exhalation into a mouthpiece with a pressure of 40 mmHg for 15 s, and the ratio of the maximum R-R after the maneuver to the minimum R-R during the maneuver was calculated. The test was performed three times, and the mean value of the ratios was used.

Orthostatic hypotension was defined as a decrease in systolic blood pressure (SBP) of 30 mmHg when changing from supine to the upright position. Measurements were taken every minute for at least 5 min.

MSCT. All examinations were performed using a Toshiba Aquilion One 320 Volume scanner (Toshiba Medical Systems, Tokyo, Japan) according to the recommendations of the vendor and analyzed on dedicated software (Vitrea 2; Vital Images).

First, a prospective low-dose calcium scan without contrast enhancement was performed followed by coronary angiography using a prospective protocol. For the calcium score, slices of 3 mm were acquired using prospective electrocardiogram-gated axial scanning (27). We infused 80–100 mL intravenous contrast agent (Visipaque 320; GE Healthcare) (according to body weight) with a flow rate of 5 mL/s, followed by a saline chaser (50 mL). Image acquisition was initiated automatically at a density threshold of 180 Hounsfield units (HU) in the descending aorta. The scan parameters were 320×0.5 mm detector collimation and 100–120 kV tube voltage depending on BMI (threshold 30 kg/m²). Rotation time was between 350 and 375 ms depending on the heart rate. During the rotation, the average reduction in SBP and DBP was determined. The mean difference of six cycles was calculated.

Pulsed-wave Doppler at the apical position was used to record mitral inflow between the tips of the mitral leaflets. Peak velocities of early (E) and atrial (A) transmitral flow velocities and deceleration time of the early transmitral flow were measured, and the E/A ratio was calculated. All valves were examined to exclude significant valvular disease.

With TDI, peak systolic (s’), early diastolic (e’), and late diastolic (a’) velocities were measured in all six mitral annular positions. Ratios of E to e’ and e’ to a’, and e’ to (a’ × s”) (eas index), were calculated as measures of left ventricular filling pressures, diastolic performance, and combined systolic and diastolic performance (19).

Statistical analysis

The results are given as means ± SD, median (range), or n (%) unless otherwise indicated. Analyses were performed with dedicated software (Space labs ABP 92506 report management system). Blood pressure dipping was defined as an average reduction in SBP and DBP ≥10% from day to night (32).

TABLE 1

	−CAN patients	+CAN patients	P
n	30	26	
Male sex	19 (63)	14 (54)	NS
Age (years)	52 ± 7	58 ± 7	0.002
Duration of diabetes (years)	32 ± 10	38 ± 10	0.03
Hba1C (%)	7.8 ± 1.0	8.0 ± 0.9	NS
BMI (kg/m²)	23.9 ± 2.5	25.1 ± 4.0	NS
Urinary albumin/creatinine	5.0 (1–24)	8.0 (3–27)	NS
creatinine clearance (mg/g)			
S-creatinine (µmol/L)	66.5 ± 10	66.1 ± 14	NS
SBP (mmHg)	121 ± 11	122 ± 14	NS
DBP (mmHg)	79 ± 10	74 ± 8	NS
Resting heart rate (bpm)	67 ± 8	71 ± 11	NS
Corrected QT (ms)	412 ± 2.7	416 ± 2.1	NS
Total cholesterol (mmol/L)	4.7 ± 0.7	4.8 ± 0.8	NS
HDL cholesterol (mmol/L)	1.9 ± 0.5	2.1 ± 0.6	NS
LDL cholesterol (mmol/L)	2.5 ± 0.7	2.3 ± 0.5	NS
Triglycerides (mmol/L)	1.0 ± 0.5	1.0 ± 0.4	NS
Retinopathy			
None	20 (67)	17 (65)	NS
Simplex	6 (22)	3 (15)	NS
Proliferative	4 (13)	5 (19)	NS
Anamnestic data			
Current smoker	6 (20)	6 (24)	NS
Familiar disposed	5 (17)	3 (12)	NS
History of hypercholesterolemia	11 (37)	12 (46)	NS
History of hypertension	10 (33)	15 (58)	NS
History of syncope	1 (3)	0 (0)	NS
Cardiovascular medication			
Statins	10 (33)	12 (46)	NS
Aspirin	6 (20)	12 (46)	NS
β-Blocker	6	3 (12)	NS
ACE inhibitor/angiotensin II	11 (37)	16 (64)	NS
Calcium antagonist	4 (13)	5 (20)	NS
Diuretics	5 (17)	9 (35)	NS
Antihypertensive treatment	12 (40)	17 (65)	NS

Data are means ± SD, median (range), or n (%) unless otherwise indicated.
Ambulatory 24-h electrocardiography. Ambulatory electrocardiography recordings were obtained with a 12-lead Rozinn RZ153+. The electrocardiography recordings were analyzed with dedicated software and reviewed by highly trained observers. Time domain analysis was performed in order to verify the difference in autonomic function in patients with CAN (26,33). Measures included SD of R-R intervals during a 22-h period, SD of the average R-R interval in all 5-min recordings, and mean of the SD of all filtered R-R intervals for all 5-min segments over 22 h.

Statistics. All analyses were performed with SAS 9.2 (SAS Institute, Cary, NC). The χ^2 or Fisher exact test was used for dichotomous variables and the Wilcoxon rank-sum test for continuous variables. Dichotomous variables are listed as percentages. Data of continuous variables are presented as median (range).

A multivariable logistic regression model was created with CAN status as the dependent variable and including sex, age, diabetes duration, HbA1C, total cholesterol, and smoking as variables considered important to coronary artery disease, and the corresponding P values for the independent association of CAN with a given variable are presented in all tables. Univariate linear regression models were created to identify independent predictors of increased calcium score, and these variables were included stepwise in a multiple logistic regression model.

To further compare groups of similar age, we performed a sensitivity analysis on 22 patients in each group. Excluded from this analysis were the four oldest patients with CAN (+CAN) and the eight youngest without CAN (−CAN) to obtain 22 matched pairs.

RESULTS

Patient characteristics. Patients +CAN had a higher mean age and longer diabetes duration compared with patients −CAN (Table 1). The proportions of all other cardiovascular risk factors and recorded diabetes complications were similar in the two groups.

Whereas +CAN tended to be associated with higher levels of high-sensitivity C-reactive protein than −CAN (median 1.1 mg/L [range 0.2–13] vs. 0.7 mg/L [0.4–14.4], respectively, $P = 0.06$), levels of NTproBNP and cystatin C were similar in +CAN and −CAN patients (10.3 μmol/L [6.1–28.9] vs. 18.6 μmol/L [7.8–56.5], $P = 0.18$, and 0.64 mg/L [0.5–0.72] vs. 0.67 mg/L [0.45–1.2], $P = 0.16$, respectively). Peripheral vibration threshold was significantly higher in patients +CAN compared with that in patients −CAN (23 V [8–50] vs. 17 V [6–35], $P < 0.01$).

MSCT. The mean CACS was significantly higher in +CAN than in −CAN patients (Table 2). Categories of increasing CACS according to CAN status are illustrated in Fig. 1A. The proportions of patients having a CACS ≥ 400 were significantly higher in patients +CAN than in those −CAN. While nine patients +CAN were found in categories of CACS >400, the highest CACS in −CAN was 312. Furthermore, a CACS <10 was less common in patients +CAN than in patients −CAN.

With use of the CACS of each individual patient to find the corresponding percentile in a background population according to age and sex, the median percentile was significantly higher in patients +CAN compared with that in patients −CAN (median 92 [range 0–99] vs. 39 [0–98], respectively, $P = 0.0205$). Similarly, the proportion of patients with a CACS above the 95th percentile according to age

| Table 2: Multislice computed tomography calcium scoring |
|----------------------------------|----------------|---------|---------|
	−CAN patients	+CAN patients	P
n	30	26	
CACS	5 (0–312)	197 (0–5,552)	0.0012
Total mass	1.4 (0–64.2)	37.7 (0–1,193)	0.0009
Multiple regression P		0.016	

Data are median (range).

FIG. 1. MSCT findings. A: CACS in +CAN and −CAN patients. B: Number of coronary plaques per patient according to CAN status. C: Prevalence of coronary stenosis of increasing severity according to CAN status. *$P < 0.05$.**
and sex was significantly higher in patients +CAN compared with −CAN (13 [72%] vs. 5 [17%], P = 0.0077).

Coronary computed tomography angiography revealed focal coronary plaques in 38 (69%) patients. Obstructive lesions were found in 9 (16%) and occlusions in 1 (2%) patient.

Patients +CAN had a higher median number of plaque lesions than −CAN patients (three vs. one, respectively, P = 0.039) and a higher proportion of patients with more than seven plaque lesions (Fig. 1B) in univariate analysis. However, the prevalence of obstructive stenosis was not significantly higher (Fig. 1C).

Absence of elevated CACS did not exclude obstructive stenosis, as three patients had coronary atherosclerosis with a CACS of zero. Two of these patients had minimal plaques (<25%), but one patient (+CAN) had a 70–99% noncalcified stenosis.

Echocardiography. All patients had a normal left ventricular ejection fraction. CAN status had no significant impact on left ventricular systolic function as measured by conventional echocardiography, but TDI measures of longitudinal systolic function (s’) were significantly lower in +CAN than in −CAN (Table 3).

TDI measures of left ventricular diastolic function indicated higher filling pressures (E-to-e’ ratio) and impaired diastolic performance according to both e’ and e’-to-a’ ratio in +CAN compared with −CAN, whereas the eas index was not significantly different in the two groups (Table 3).

Ambulatory blood pressure measurements. Patients +CAN had higher SBP and lower DBP but mean arterial blood pressure similar to that in −CAN patients. Accordingly, the pulse pressure was significantly higher in patients +CAN compared with that in −CAN patients (Table 4).

The nocturnal drop in blood pressure was lower in +CAN patients compared with that in −CAN patients with respect to both SBP and DBP. The number of patients with abnormal dipping was significantly higher in +CAN patients compared with −CAN patients.

Ambulatory electrocardiography. Mean 24-h heart rate was independent of CAN status, but the maximal increase and decrease in heart rate were lower in +CAN compared with −CAN patients (Table 4).

The total number of ventricular extrasystoles (VES) was significantly higher in +CAN compared with −CAN patients. The majority of the VES were isolated, and the overall prevalence of consecutive VES was low and without difference between the groups. The number of patients having >30 VES/h, which has been defined as frequent (32), were not significantly higher in +CAN than in the −CAN patients.

In the time domain analysis of HRV patients +CAN compared with −CAN had significantly lower SD of R-R intervals during a 22-h period (median 99 [range 47–185] vs. 152 [99–208], P = 0.0005) as well as SD of the average R-R interval in all 5-min recordings and mean of the SD of all filtered R-R intervals for all 5-min segments over 22 h (data not shown).

Statistical analysis. Variables independently associated with increased CACS from univariate analysis were DBP, pulse pressure, and measures of diastolic function (E-to-e’, ratio, interventricular septum diameter [IVSD], E, A, and left atrial volume). When all significant variables were included stepwise in a multiple logistic regression model, CAN remained an independent predictor of CACS (P = 0.0009) together with age (P = 0.0136), diabetes duration (P = 0.0010), and daytime DBP (P = 0.0269). Including BMI, pulse pressure, and/or urine albumin excretion in the model did not change the significance of any of the presented results.

Sensitivity analysis. A sensitivity analysis of 22 matched patient pairs (+CAN and −CAN) is presented in Table 5. In this analysis, there was no significant difference in age, sex, diabetes duration, HbA1C, or other cardiovascular risk factors between +CAN and −CAN patients. In this subset of patients, results regarding CACS, echocardiography, ambulatory blood pressure, and Holter monitoring did not differ from those of the entire study population (Table 5).

Coexistence of CAN and markers of increased cardiovascular risk. A higher proportion of patients +CAN had markers associated with increased cardiovascular mortality, including a CACS ≥400 (hazard ratio 2.99–3.24 for mortality [15]), abnormal dipping (2.16 for mortality [21]), a pulse pressure ≥62 mmHg (1.8 for mortality [34]), and a trend toward a higher proportion of patients with coronary artery stenosis ≥50% (41 for a composite end point of death, nonfatal myocardial infarction, and revascularization [35]) (Fig. 2).

DISCUSSION

The current study demonstrates an association between the presence of CAN and several distinct signs of subclinical cardiovascular disease in type 1 diabetic patients with normal urinary albumin excretion rate. Patients with CAN were characterized by increased coronary calcium deposit,
impaired left ventricular function, increased arterial pulse pressure, a higher prevalence of nondipping, and increased ventricular ectopia compared with patients without CAN.

Long-term type 1 diabetes carries an excess cardiovascular mortality (36), and nephropathy is a major contributing factor (37,38). Thus, even in asymptomatic patients a greater atherosclerotic plaque burden was demonstrated by magnetic resonance imaging in diabetic patients with albuminuria compared with patients with normal albumin excretion rate (39).

CAN has also been associated with high cardiovascular mortality (2). However, since nephropathy and CAN generally develop in parallel in type 1 diabetic patients, the relative contribution of CAN to cardiovascular disease has been difficult to identify (5). In an attempt to overcome this important confounder, the present CAN population was identified in a subset of type 1 diabetic patients characterized by long duration of diabetes yet with absence of nephropathy (i.e., normal albumin excretion rate).

CACS was markedly higher in patients +CAN, with a median CACS of 196 compared with a median CACS of 5 in patients −CAN. With use of MESA data as reference (29,30), 72% of patients +CAN had CACS similar to that in subjects in the upper 95th percentile according to age and sex, whereas this was only the case for 17% of patients −CAN. Likewise, the estimated arterial age for a person with CACS of 5 is 52 years (95% CI 48–56 years) (30,44), in agreement with the median age of patients −CAN. By contrast, a CACS of 196 corresponds to an estimated arterial age of 77 years (75–80), which is almost 20 years more than the actual median age of patients +CAN.

Despite a higher CACS among +CAN patients, computed tomography angiography did not reveal significant differences in the prevalence of obstructive stenoses. It could be speculated whether the increased calcification without increased luminal coronary plaque burden is due to a different localization of the calcified area relative to the intima and media. Surgical sympathectomy leads to arterial media calcification, a condition frequently found in the lower extremities in patients with diabetic neuropathy (45), and it has been suggested that arterial media calcification could be the result of autonomic denervation (40,46).

Sympathetic denervation may cause dedifferentiation of vascular smooth muscle cells, and these alterations are associated with extracellular matrix production and migration to the intima—changes that are seen in atherosclerosis (40,47). Another suggested mechanism of how CAN could result in increased calcification is through loss of neuropeptides, involving biochemical pathways similar to those observed in studies on calcification processes in bone metabolism (46).

Data from the current study could be interpreted as supportive of the concept of increased media sclerosis.

TABLE 4

Twenty-four-hour blood pressure and Holter measurements

	−CAN patients	+CAN patients	P	Multiple regression P
Blood pressure measurements				
Daytime SBP (mmHg)	124 ± 9	130 ± 11	0.031	NS
Daytime DBP (mmHg)	76 ± 6	72 ± 8	0.024	NS
Daytime pulse pressure (mmHg)	48 ± 7	58 ± 10	<0.0001	0.002
Daytime heart rate (bpm)	75 ± 11	74 ± 12	NS	NS
Nighttime SBP (mmHg)	111 ± 10	122 ± 10	<0.0001	<0.0001
Nighttime DBP (mmHg)	66 ± 6	65 ± 7	NS	NS
Nighttime pulse pressure (mmHg)	45 ± 7	58 ± 9	<0.0001	<0.0001
Nighttime heart rate (bpm)	64 ± 10	68 ± 12	NS	NS
Dipping				
SBP dip (%)	10.4 (–0.8 to 20)	4.6 (–11 to 19)	0.007	NS
DBP dip (%)	13.7 (0-24)	9.1 (–8 to 23)	0.055	NS
Average blood pressure dip (%)	13.0 (1-21)	7.0 (–9 to 20)	0.029	0.19
Number of nondippers	11 (37)	19 (73)	0.008	0.018
Pulse pressure dip (%)	5.1 (–6 to 25)	0 (–26 to 20)	0.042	0.03
Heart rate dip (%)	10.0 (–3 to 26)	7.5 (–1 to 13)	0.002	0.005
Heart rate (bpm)				
Maximal heart rate	132 ± 18	116 ± 15	0.001	0.008
Minimal heart rate	48 ± 6	56 ± 11	0.002	0.006
Average heart rate	74 ± 11	73 ± 12	NS	NS
Extrasystoles				
Total number of VES	4 (0–1,649)	18 (0–5,501)	0.025	0.012
Isolated VES	4 (0–1,625)	11 (0–3,505)	0.026	0.014

Data are means ± SD, median (range), or n (%) unless otherwise indicated.
However, the relationship between CACS and luminal stenoses is known to be only modest (48), and a nonsignificant difference in the prevalence of stenoses does not necessarily imply that the calcification is differently located in the arterial wall. Furthermore, the existence of media sclerosis has been questioned (49).

Regardless of the location of the calcification, the difference in CACS could be caused by other confounding variables. The findings of analysis of 22 patients with and without CAN of comparable mean age and diabetes duration are presented in Table 5.

Table 5

Clinical and laboratory variables	Patients without CAN	Patients with CAN	P	Multiple regression P
Male sex	14 (64)	11 (50)	NS	
Age (years)	54 ± 6	56 ± 6	NS	
Duration of diabetes (years)	35 ± 9	38 ± 10	NS	
HbA1C (%)	7.9 ± 1	8.2 ± 0.9	NS	
BMI (kg/m²)	24 ± 3	25 ± 4	NS	
Urinary albumin/creatinine clearance (mg/g)	5 (1–24)	9.5 (3–27)	NS	
S-creatinine (μmol/L)	64 ± 10	64 ± 14	NS	
SBP (mmHg)	121 ± 10	121 ± 14	NS	
Total cholesterol (mmol/L)	4.6 ± 0.7	4.9 ± 0.7	NS	
Current smoker	4 (18)	6 (29)	NS	
MSCT: CACS score	18 (0–312)	176 (0–5,552)	0.032	0.019
EF (%)	64 ± 6	62 ± 6	NS	
e’ (cm/s)	9.7 (8–12)	7.9 (5–11)	0.006	0.001
E-to-e’ ratio (cm/s)	9.0 (6–12)	10.1 (7–24)	0.045	0.03
a’ (cm/s)	9.4 (8–12)	9.8 (7–13)	NS	
e’-to-a’ ratio	1.01 (0.7–1.4)	0.96 (0.4–1.2)	0.021	0.001
s’ (cm/s)	8.0 (6–16)	6.7 (6–11)	0.029	0.004
24-h Holter: total number of VES	3 (0–1,649)	13 (0–5,591)	0.06	0.033
Daytime SBP (mmHg)	124 ± 9	130 ± 9	0.027	0.039
Nighttime SBP (mmHg)	110 ± 10	123 ± 9	<0.001	<0.001
Average blood pressure dip (%)	14 (1–21)	7 (9 to 20)	0.037	0.14
Number of nondippers	8 (36)	16 (73)	0.015	0.027
Average pulse pressure (mmHg)	47 ± 8	58 ± 9	<0.0001	<0.0001

Data are means ± SD, n (%), or median (range) unless otherwise indicated. EF, ejection fraction.

FIG. 2

The proportions of patients with different markers associated with increased cardiovascular risk according to CAN status.
factors. Many cardiovascular parameters are interrelated, and associations could merely reflect that these conditions share common risk factors.

The presence of CAN was associated with a decreased systolic and diastolic function of the left ventricle. We found a decrease in s’ of approximately 1 cm/s in patients +CAN compared with patients −CAN. A similar decrease in s’ in a study of the background population corresponded to a hazard ratio of 1.35 for 5-year mortality (19), suggesting that the observed left ventricular dysfunction might have prognostic importance. Several echocardiographic measures of diastolic function were univariately associated with CACS. Blood pressure variables are other factors associated with CAN, CACS, and left ventricular function. However, CAN remained independently associated with CACS, even when these variables were included in multivariable models.

An association between CAN and nondipping has been attributed to impaired vagal activity during nighttime in patients with CAN (50). In the current study, nondipping was more prevalent in patients with CAN, but it was not an isolated phenomenon in these patients, since 37% of patients without CAN were also nondippers. Likewise, a recent study did not find CAN to be the main causal factor for nondipping in type 1 diabetes (51). Nonetheless, blood pressure levels at night were significantly higher in +CAN compared with patients −CAN, suggesting a relationship between CAN and nocturnal blood pressure regulation.

CAN was also found to be associated with increased pulse pressure. In addition to being associated with increased cardiovascular risk, arterial pulse pressure is considered an indirect marker of arterial stiffness (22). With use of other methods, arterial stiffness has been shown to contribute to left ventricular diastolic dysfunction (52) and has been suggested as a link between CAN and cardiovascular disease (53).

We did not observe a significant difference in mean corrected QT or in the prevalence of QTc prolongation. Very few studies have reported on ventricular ectopia associated with CAN. We found no signs of pathological arrhythmias, but CAN was associated with an increased number of isolated premature ventricular beats.

Though interrelationships are difficult to exclude, CAN remained independently associated with CACS even when differences in cardiovascular parameters were adjusted for in multivariable analysis and sensitivity analysis was applied, and CAN was found to be associated with markers of increased cardiovascular risk (Fig. 2).

This study had limitations. First, owing to stringent inclusion criteria and since autonomic dysfunction is a rare isolated complication in long-term diabetes (10), it was only possible to match patients for age, sex, and diabetes duration in a limited number of patients, and several of the variables measured are age dependent. However, both multivariable logistic regression models and sensitivity analysis of smaller groups of patients with no differences in demographics and cardiovascular risk factors were performed. In these analyses, all reported findings remained similar and significant. Second, investigations were only carried out on diabetic patients; reference values on the different measurements from a non-diabetic control group were therefore not available. Third, we did not have information on HRV on all patients in our registry. Many patients had HRV measured in previous studies, but some of the patients had HRV measured owing to clinical suspicion of CAN. We cannot exclude having captured a particular subgroup of patients being free of long-term diabetes complications not similar to the most common phenotype of diabetic patients, and our findings can only to a limited extent be extrapolated to the entire diabetic population.

In the analysis of ambulatory blood pressure measurements, a fixed method was used and not diary time. This could potentially have biased the results if differences in the sleep patterns between the two groups exist.

In the comparison between CACS and individual reference values from the MESA study, diabetes duration was a parameter that could not be accounted for. The longer diabetes duration in +CAN patients must be remembered when evaluating these data.

Con Founding effects from differences in antihypertensive treatment and use of diuretics cannot be excluded, even though the differences were nonsignificant in demographics.

In conclusion, CAN was associated with several distinct signs of subclinical cardiovascular disease in type 1 diabetic patients with normoalbuminuria. These included increased coronary calcium deposit, subtle impairment of left ventricle systolic and diastolic function, increased arterial pulse pressure, a higher prevalence of nondipping, and marginally increased ventricular ectopia, and CAN was independently associated with CACS even with adjustment for confounding factors.

ACKNOWLEDGMENTS

This study was supported by a grant from Arvid Nilsson’s Foundation. The MSCT Cardiac Research Unit, Rigshospitalet, is supported by a grant from the A.P. Møller og Hustru Chastine McKinney Møllers Fond til almene Formaal.

U.M.M. was supported by a scholarship from Novo Nordisk. No other potential conflicts of interest relevant to this article were reported.

U.M.M. researched data and wrote the manuscript. T.J. included patients, contributed to discussion, and reviewed the manuscript. L.K. researched data and reviewed the manuscript. H.K. reviewed the manuscript. A.S.M. screened patients. U.D. and P.R. reviewed the manuscript. J.H. contributed to discussion and reviewed the manuscript. K.F.K. researched data and reviewed the manuscript. U.M.M. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Parts of this study were presented in abstract form at the European Society of Cardiology Congress 2011, Paris, France, 27–31 August 2011, and at the 47th European Association for the Study of Diabetes Annual Meeting, Lisbon, Portugal, 12–16 September 2011.

The authors thank Tina Bock-Pedersen, MSCT Cardiac Research Unit, Rigshospitalet, for excellent technical assistance.

REFERENCES

1. Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation 2007;115:387–397
2. Maser RE, Mitchell BD, Vinik AI, Freeman R. The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care 2003;26:1805–1901
3. Ziegler D. Diabetic cardiovascular autonomic neuropathy: prognosis, diagnosis and treatment. Diabetes Metab Rev 1994;10:339–383
4. Orchard TJ, Lloyd CE, Maser RE, Kuller LH. Why does diabetic autonomic neuropathy predict IDDM mortality? An analysis from the Pittsburgh
Epidemiology of Diabetes Complications Study. Diabetes Res Clin Pract 1996;34(Suppl.):S165–S171

Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care 2003;26:1555–1579

Rothmund LW, Ziegler D, Janke K, Haastert B, Gries FA. Mortality in diabetic patients with cardiovascular autonomic neuropathy. Diabet Med 1993;10:820–824

Wirta O, Pasternak A, Mustonen J, Laippala P. Renal and cardiovascular predictors of 9-year total and sudden cardiac mortality in non-insulin-dependent diabetic subjects. Nephrol Dial Transplant 1997;12:20–2017

Astrup AS, Tarnow L, Rossing P, Hansen BV, Hilsted J, Parving HH. Cardiac autonomic neuropathy predicts cardiovascular mortality and mortality in type 1 diabetic patients with diabetic nephropathy. Diabetes Care 2006;29:334–339

Lykke JA, Tarnow L, Parving HH, Hilsted J. A combined abnormality in heart rate variation and QT corrected interval is a strong predictor of cardiovascular death in type 1 diabetes. Scand J Clin Lab Invest 2008;68:554–560

Bellavere F, Ferri M, Guarini L, et al. Prolonged QT period in diabetic autonomic neuropathy: a possible role in sudden cardiac death? Br Heart J 1998;59:379–383

Rossing P, Breme L, Major-Pedersen A, et al. Prolonged QTc interval predicts mortality in patients with Type 1 diabetes mellitus. Diabetes Med 2001;18:199–205

Suarez GA, Clark VM, Norell JE, et al. Sudden cardiac death in diabetes mellitus: risk factors in the Rochester diabetic neuropathy study. J Neurol Neurosurg Psychiatry 2005;76:240–245

Aalnslien KE. Silent coronary artery disease in diabetes—a feature of autonomic neuropathy or accelerated atherosclerosis? Diabetologia 2001;44:239–246

Miller JM, Rochette CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 2008;359:2324–2336

Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 2003;228:826–833

Taylor AJ, Bindeman J, Feuerstein I, Cao F, Brazaitis M, O’Malley PG. Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. PLoS One 2011;6:e15524

Raggi P, Shaw LJ, Berman DS, Callister TQ. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol 2004;43:1663–1669

Wang M, Yip GW, Wang AT, et al. Peak early diastolic mitral annulus velocity by tissue Doppler imaging adds independent and incremental prognostic value. J Am Coll Cardiol 2004;44:829–836

Mogelvang R, Sogaard P, Pedersen SA, et al. Cardiac dysfunction assessed by echocardiographic tissue Doppler imaging is an independent predictor of mortality in the general population. Circulation 2009;119:2679–2685

Sturrock ND, George E, Pound N, Stevenson J, Peck GM, Sowter H. Non-dipping circadian blood pressure and renal impairment are associated with increased mortality in diabetes mellitus. Diabet Med 2000;17:360–364

Kikuchi T, Hozawa A, Yamaguchi J, et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J Hypertens 2002;20:2183–2189

Ronnback M, Fagerud J, Forshblom C, Pettersson-Fernholm K, Reunanen A, Groop PH, Finnish Diabetic Nephropathy (FinnDiame) Study Group. Altered association of heart-rate variability with cardiovascular risk factors and mortality in type 1 diabetes mellitus. Report of the National Heart, Lung, and Blood Institute-International Diabetes Institute-National Diabetes and Diabetes Research and Development Group on Cardiovascular Complications of Type 1 Diabetes Mellitus. Report of the National Heart, Lung, and Blood Institute-National Diabetes and Diabetes Research and Development Group on Cardiovascular Complications of Type 1 Diabetes Mellitus. Circulation 2005;111:3489–3493

Kim WY, Astrup AS, Stuber M, et al. Subclinical coronary and aortic atherosclerosis detected by magnetic resonance imaging in type 1 diabetes with and without diabetic nephropathy. Circulation 2007;115:228–235

Colhoun HM, Francis DP, Rubens MB, Underwood SR, Fuller JH. The association of heart-rate variability with cardiovascular risk factors and coronary artery calcification: a study in type 1 diabetic patients and the general population. Diabetes Care 2001;24:1108–1114

Thilo C, Sandi E, Knezević A, et al. Coronary artery calcification in long-term type 1 diabetic patients—a study with multi slice spiral computed tomography. Exp Clin Endocrinol Diabetes 2004;112:561–565

Rodrigues TC, Ehrlich J, Hunter CM, Kinney GL, Revers M, Snell-Bergeon JK. Reduced heart rate variability predicts progression of coronary artery calcification in adults with type 1 diabetes and controls without diabetes. Diabetes Technol Ther 2010;12:963–969

Moon SS, Choi YK, Seo HA, et al. Relationship between cardiovascular autonomic neuropathy and coronary artery calcium in patients with type 2 diabetes. Endocr J 2010;57:445–454

McClelland RL, Nasir K, Budoff M, Blumenthal RS, Kronmal RA. Arterial age as a function of coronary artery calcium (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am J Cardiol 2009;103:59–63

Goebel FD, Fussell HS, Mönckeberg’s sclerosis after sympathetic denervation in diabetic and non-diabetic subjects. Diabetologia 1983;24:576–590
46. Jeffcoate WJ, Rasmussen LM, Hofbauer LC, Game FL. Medial arterial calcification in diabetes and its relationship to neuropathy. Diabetologia 2009;52:2478–2488
47. Kacem K, Bonvento G, Seylaz J. Effect of sympathectomy on the phenotype of smooth muscle cells of middle cerebral and ear arteries of hyperlipidaemic rabbits. Histochem J 1997;29:279–286
48. Sangiorgi G, Rumberger JA, Severson A, et al. Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using non-decalcifying methodology. J Am Coll Cardiol 1998;31:126–133
49. Micheletti RG, Fishbein GA, Currier JS, Fishbein MC. Mönckeberg sclerosis revisited: a clarification of the histologic definition of Mönckeberg sclerosis. Arch Pathol Lab Med 2008;132:43–47
50. Bernardi L, Ricordi L, Lazzari P, et al. Impaired circadian modulation of sympathovagal activity in diabetes. A possible explanation for altered temporal onset of cardiovascular disease. Circulation 1992;86:1443–1452
51. Cabezas-Cerrato J, Hermida RC, Cabezas-Agricola JM, Ayala DE. Cardiac autonomic neuropathy, estimated cardiovascular risk, and circadian blood pressure pattern in diabetes mellitus. Chronobiol Int 2009;26:942–957
52. Abhayaratna WP, Barnes ME, O'Rourke MF, et al. Relation of arterial stiffness to left ventricular diastolic function and cardiovascular risk prediction in patients > or =65 years of age. Am J Cardiol 2006;98:1387–1392
53. Prince CT, Secrest AM, Mackey RH, Arena VC, Kingsley LA, Orchard TJ. Cardiovascular autonomic neuropathy, HDL cholesterol, and smoking correlate with arterial stiffness markers determined 18 years later in type 1 diabetes. Diabetes Care 2010;33:652–657