ABCD Arq Bras Cir Dig
2019;32(3):e1460
DOI: /10.1590/0102-672020190001e1460

IMPACTO DO MELD SÓDIO NA LISTA DE ESPERA PARA TRANSPLENTE HEPÁTICO

Impact of MELD sodium on liver transplantation waiting list

Alexandre Coutinho Teixeira de FREITAS
Aline Tatiane RAMPIM
Caroline Popovicz NUNES
Júlio Cezar Uili COELHO

Como citar este artigo: Freitas ACT, RAMPIM AT, Nunes CP, Coelho JCU. Impacto do MELD sódio na lista de espera para transplante hepático. ABCD Arq Bras Cir Dig. 2019;32(3):e1460. DOI: /10.1590/0102-672020190001e1460

ABSTRACT - Background: Serum sodium was incorporated to MELD score for the allocation of liver transplantation in the USA in 2016. Hyponatremia significantly increased the efficacy of the score to predict mortality on the waiting list. Such modification was not adopted in Brazil. Aim: To carry out a simulation using MELD-Na as waiting list ordering criteria in the state of Paraná and to compare to the list ordered according to MELD score. Methods: The study used data of 122 patients waiting for hepatic transplantation and listed at Parana’s Transplantation Central. Two classificatory lists were set up, one with MELD, the current qualifying criteria, and another with MELD-Na. We analyzed the changes on classification comparing these two lists. Results: Among all patients, 95.1% of the participants changed position, 30.3% showed improvement, 64.8% presented worsening and 4.9% maintained their position. There were 19 patients with hyponatremia, of whom 94.7% presented a change of position. One hundred and one patients presented sodium within the normal range and 95% of them presented a change of position: Improved placement was observed in 18.8%, and worsened placement in 76.2%. Two patients presented hypernatremia and both worsened their position. Conclusions: The inclusion of serum sodium caused a great impact in the classification, bringing benefit to patients with hyponatremia.

RESUMO - Racional: Desde 2016 os EUA utilizam o MELD-Na para alocação de enxertos hepáticos, uma vez que o valor da natremia, quando adicionado ao MELD, aumenta a eficácia para prever a mortalidade na lista de espera. Entretanto, tal modificação não foi adotada no Brasil. Objetivo: Realizar uma simulação utilizando o MELD-Na como critério de ordenamento na lista de espera para transplante hepático no estado do Paraná. Métodos: O estudo utilizou os dados cadastrais de 122 inscritos na lista de espera para transplante hepático da Central Estadual de Transplantes do Paraná. Duas listas classificatórias foram montadas, uma utilizando o MELD e outra o MELD-Na. Foram analisadas as alterações na ordem classificatória dos pacientes comparando essas duas listas. Resultados: Entre todos os pacientes, 95,1% mudaram de posição: 30,3% apresentaram melhora, 64,8% apresentaram piora e 4,9% mantiveram a sua posição. Dos 19 pacientes com hiponatremia, 94,7% apresentaram melhora, todos para melhor posição. Dos 101 pacientes com sódio normal 95% apresentaram mudança de posição: em 18,8% houve melhora e em 76,2% houve piora da colocação. Dois pacientes apresentaram hipernatremia e ambos mudaram de posição para pior colocação. Houve diferença significativa entre os diferentes níveis de sódio em relação ao comportamento na lista de espera quando aplicado o MELD-Na. Conclusão: A inclusão do sódio sérico causou grande impacto na classificação, trazendo melhora na posição dos pacientes com hiponatremia.

INTRODUÇÃO

O transplante hepático foi realizado pela primeira vez no início da década de 60 por Thomaz Starz nos Estados Unidos da América, e com o passar dos anos transformou-se no procedimento de escolha para o tratamento de indivíduos portadores de determinadas enfermidades hepáticas terminais como a cirrose. No Brasil, o primeiro transplante foi realizado em 1968, no Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo. Desde então o número de transplantes realizados no país só aumentou. Com isso foi necessária a criação de critérios para organizar a lista de espera dos pacientes aguardando um órgão. Na década de 90, a comunidade transplantadora do Brasil adotou a lista única para todos os pacientes inscritos. Tal lista gerou grandes questionamentos, pois tinha como critério para a distribuição de órgãos a ordem cronológica de entrada na mesma. Modificações foram discutidas ao longo dos anos, sempre com objetivo de assegurar justiça na distribuição dos órgãos. Afinal, embora o transplante de figado salve vidas, os órgãos escassos.

Em 2006, o Ministério da Saúde publicou a Portaria número 1.160, que modificou...
os critérios de distribuição de figado proveniente de doadores cadáverícos para transplante, implantando o sistema MELD (Model for End-stage Liver Disease) para receptores adultos e o sistema PELD (Pediatric End-stage Liver Disease) para receptores pediátricos. Trata-se de um modelo matemático que estima o risco de mortalidade de um portador de doença hepática terminal com base nos seguintes exames laboratoriais: bilirrubina total, creatinina e INR. Esse modelo foi previamente desenvolvido para predizer a sobrevivência de pacientes com cirrose submetidos ao procedimento de desvio portossistêmico intra-hepático transjugular (TIPS); porém, estudos comprovaram que ele poderia ser usado como uma ferramenta confiável para avaliar a sobrevivência em pacientes com doença hepática crônica e outras doenças. De uma maneira geral, o MELD apresenta duas importantes vantagens na busca pela melhor alocação hepática. Primeiro, utiliza apenas variáveis objetivas, específicas ao paciente e que não requerem interpretação do observador. Segundo, estima o risco de mortalidade, um parâmetro importante para definir a necessidade de um transplante.

Apesar da utilidade do MELD, estudos mostraram que esse escore pode não refletir com precisão o risco de morte em alguns grupos de pacientes, como por exemplo, os portadores de hiponatremia. Ela é um importante fator preditor de mortalidade nos pacientes listados para transplante de figado. Trata-se de um evento frequente em pacientes cirróticos com ascite. O sódio sérico teve valor médio de 0,92 mEq/l, com 16% e a cirrose por doença hepática crônica e outras doenças.

Análise estatística
As associações entre os grupos foram caracterizadas recorrendo à estatística inferencial, por meio do teste de independência em tabela cruzada, utilizando o teste de Fisher. O teste de intervalos de confiança (IC) foi feita utilizando o teste T. A análise de amostras pareadas foram feitas utilizando o Teste de Wilcoxon. E as correlações entre os critérios e as mudanças de posições foram avaliadas pelo teste de correlação de Spearman.

Um total de 122 pacientes foi incluído no estudo. As características clínicas e os dados demográficos estão demonstrados na Tabela 1. A média de idade foi de 51,6 anos (18-68). Dos 122 pacientes, 81 eram homens e 41 mulheres. Em relação ao tipo sanguíneo, 62 pacientes eram do tipo A, nove do tipo B e 51 do tipo O. No Brasil, entretanto, essa mudança ainda não foi implementada, continuando a utilizar o MELD como critério classificatório.

O objetivo desse estudo foi realizar uma simulação utilizando o MELD-Na como critério de ordenamento na lista de espera para transplante de figado no estado do Paraná, Brasil, e dessa forma avaliar o impacto na classificação em relação aos pacientes ordenados de acordo com o MELD.

MÉTODOS
Este estudo foi aprovado pelo Comitê de Ética em Pesquisa do Setor de Ciências da Saúde da Universidade Federal do Paraná e pelo Comitê de Ética em Pesquisa da Secretaria de Estado da Saúde do Paraná (Número 2.199.554).

Foram utilizados os dados cadastrais dos pacientes que estão na lista de espera para transplante hepático na Central Estadual de Transplantes do Paraná. As informações de interesse da pesquisa foram coletadas de maneira padronizada no cadastro dos integrantes da lista, não sendo necessária a coleta de nenhum dado que já não estivesse disponível no cadastro. As informações coletadas foram: tipo sanguíneo; idade; gênero; etiologia da cirrose; data de inscrição na lista de espera; bilirrubina total; RNI; creatinina e sódio sérico. O sódio sérico foi realizado no dia 30 de setembro de 2017 através do Sistema Informatizado de Gerenciamento, cujo acesso foi liberado pela Central Estadual de Transplantes do Paraná. Os pacientes não foram identificados pelo nome, mas sim pela posição na lista de espera para cada tipo sanguíneo que é definida utilizando como critério o MELD associado ao tempo de inscrição na lista.

O cálculo do MELD foi realizado através da fórmula «MELD = 10 * ((0,957 * ln [Creatinina]) + (0,378 * ln [Bilirrubina]) + (1,12 * ln [RNI])] + 6.43". O cálculo do MELD-Na através da fórmula "MELD-Na = MELD + 1.32 x (137 - Na) - [0,033 x MELD x (137 - Na)]", considerando a correção do valor do sódio sérico para a faixa de 125-137 mEq/l, conforme critérios determinados pela UNOS (United Network for Organ Sharing). Base nos valores de MELD e do MELD-Na foram montadas duas listas classificatórias distintas para cada tipo sanguíneo (A, B, O e AB). Na necessidade de desempate, eles foram feitos a partir do tempo em lista de espera. Com base nessas duas listas foi analisada a posição do paciente na lista classificatória utilizando-se o MELD-Na em relação à sua posição na lista classificatória utilizando-se o MELD. Nessa avaliação foi registrado o desempate, o tempo de inscrição na lista e a posição. A mudança de posição na lista de espera em cada tipo sanguíneo também foi avaliada dividindo-se os pacientes em três grupos de acordo com o nível do sódio sérico: hiponatremia, sódio sérico normal e hiperonatremia.

RESULTADOS
Um total de 122 pacientes foi incluído no estudo. As características clínicas e os dados demográficos estão demonstrados na Tabela 1. A média de idade foi de 51,6 anos (18-68). Dos 122 pacientes, 81 eram homens e 41 mulheres. Em relação ao tipo sanguíneo, 62 pacientes eram do tipo A, nove do tipo B e 51 do tipo O. A média do tempo de inscrição na lista de espera foi de 185 dias (1-647). Trinta e cinco por cento possuíam o álcool como causa de sua doença, 21% tinham as hepatites virais como causa. A cirrose criptogénica foi a terceira mais frequente, com 16% e a cirrose por doença hepática gordurosa ficou em quarto lugar, com 6%.

Com relação aos exames laboratoriais, a creatinina sérica média foi de 0,92 mg/dl; a bilirrubina total média foi de 2,96 mg/dl e o RNI médio foi de 1,5. O sódio sérico teve valor médio de 137,88 mEq/l (121-146).

TABELA 1 - Características clínicas e dados demográficos

Pacientes	n/Média	Desvio-padrão/%	
122			
Idade	51,6	10,38	
Gênero	Masculino:Feminino	81:41	66,4%/33,6%
Causa da doença			
Alcoólica	43	35,25%	
Hepatite viral	25	21,31%	
Criptogênica	20	16,4%	
Doença gordurosa	8	6,56%	
Autoimmune	6	4,92%	
Outras	19	15,58%	

O valor médio do MELD foi de 15,09, e do MELD-Na foi de 14,10.
de 16,01. A diferença entre os valores de MELD e MELD-Na estão descritos na Figura 1, sendo que a variação média foi de 0,93. Entre os pacientes com hiponatremia (Na<135 mEq/l) a variação média foi de 4,1 (2-10).

FIGURA 1 - Diferenças entre o valor do MELD e do MELD-Na

Na avaliação geral de todos os 122 pacientes em que se aplicou o MELD-Na, seis (4,9%) permaneceram na mesma posição na lista de espera, 79 (64,8%) apresentaram posição pior na lista e 37 (30,3%) posição melhor (Figura 2). Houve diferença estatística entre as duas listas (p=0,02).

FIGURA 2 - Variação da posição em lista de espera de acordo com o MELD-Na

No tipo sanguíneo A, 30,60% dos pacientes apresentaram melhora da posição na lista de espera, com variação média de 12,42 posições, sendo a maior variação de 38 posições. Além disso, 69,4% apresentaram piora da posição, variação média de 5,49 posições, sendo a maior variação de 11 posições. No tipo B, 33,33% melhoraram a posição, com variação média de três posições; 66,67% pioraram a posição, com variação média de 1,5 posições. No tipo O, 33,33 % melhoraram a posição, com variação média de 9,64 posições, sendo a maior variação de 43 posições; 66,67% pioraram, com variação média de 4,82 posições.

Dentre os pacientes que apresentaram alteração entre valores obtidos empregando o MELD e o MELD-Na, que representam 37,7% da amostra total, 80,4% apresentaram melhora na posição, 2,2% mantiveram a posição e 17,4% apresentaram piora. A média de variação da posição foi 8,4 posições para melhor, sendo que em média houve o ganho de 2,46 posições para cada ponto somado ao MELD inicial. Observando a metade da população com menor MELD inicial a média foi de melhora de 11,26 posições, neles houve em média o ganho de 3,42 posições para cada um ponto somado ao MELD pela introdução do sódio sérico na fórmula. Já na metade com maiores escores MELD no início a variação média foi de 5,56 posições positivas, sendo que cada ganho de um ponto no MELD representou em média o ganho de 1,25 posições. Houve correlação significativa entre MELD e variação de posições e também entre MELD e a razão variação de posições/ponto (p<0,01).

A Figura 3 demonstra as modificações na lista de espera de acordo com o sódio sérico. Houve diferença significativa entre os diferentes níveis de sódio em relação ao comportamento na lista de espera quando aplicado o MELD-Na (p<0,01). Foram no total 19 pacientes com hiponatremia (<135 mEq/l), representando 15,6% do total. Deles, 94,7% apresentaram mudança de posição (p<0,01), sendo que em todos houve melhora de posição, com variação média de 16,42 posições (IC 95% [10,4; 22,4]). Cento e um pacientes apresentaram sódio dentro da faixa de normalidade (135-145 mEq/l), representando 82,8% do total. Deles, 95% apresentaram mudança de posição: em 18,8% houve melhora da colocação (p<0,01), com variação média de 4,48 posições (IC 95% [3; 6,5]), e em 76,23% houve piora da colocação (p<0,01), com variação média de 5,15 posições (IC 95% [-5,9; -4,4]). Dois pacientes apresentaram hipernatremia (>145 mEq/l), representando 1,6% do total. Deles, 100% mudaram de posição (p<0,05), sendo que em 100% houve piora da colocação, com variação média de três posições (IC 95% [-22,4; 28,4]).

FIGURA 3 - Mudança na posição na lista de espera de acordo com o nível de sódio sérico

DISCUSSÃO

Os órgãos para transplante são considerados um recurso limitado. Atualmente existe busca constante por um critério que garanta a melhor forma para sua distribuição. Diversos estudos mostraram que o sódio sérico, quando incorporado ao cálculo do MELD, aumentou significativamente a eficácia da pontuação para prever a mortalidade na lista de espera para transplante hepático4,6,16. Um estudo realizado com 6769 pacientes demonstrou que 7% das mortes que ocorreram na lista de espera poderiam ser evitadas se o MELD-Na tivesse sido usado em substituição ao MELD11. Com base nos diversos estudos da literatura, a UNOS (United Network for Organ Sharing) aprovou a política de incorporação de sódio sérico no cálculo da pontuação do MELD para alocação de transplante hepático, mudança que entrou em prática em janeiro de 2016 nos Estados Unidos da América16. O modelo definido pelo
A incorporação do sódio sérico ao escore MELD para fins de alocação de fígado causou grande impacto na lista de espera. Existe dependência significativa entre os diferentes níveis de sódio no sangue em relação ao comportamento na lista de espera aplicando o MELD-Na, sendo que existe correlação direta entre a hiponatremia e a melhora da posição na lista. A média do escore MELD encontrada foi de 15,09 e média de sódio sérico de 137,88 mEq/l, valores muito próximos aos encontrados em um estudo conduzido por Kim et al em 2008, que encontrou média do escore MELD de 15, e a média do valor do sódio, de 137 mEq/l. Com relação a porcentagem de pacientes com hiponatremia (Na < 135 mEq/l), obtivemos uma taxa de 15,6% do total dos pacientes, valor dentro da faixa de valores descritos pela literatura de 8-31%. Além disso, foi observado que a maioria dos pacientes apresentava valores de sódio maiores do que 137 mEq/l, sendo que nestes, o valor do MELD-Na foi idêntico ao do MELD; tal situação era esperada tendo em vista que a fórmula utilizada para cálculo do MELD-Na não tem como objetivo prejudicar pacientes com sódio sérico acima desse valor, sendo que valores de sódio sérico superiores são ajustados para 137 mEq/l que resulta em um MELD idêntico ao MELD-Na. Dos pacientes avaliados, apenas 37,7% apresentaram mudança no valor da pontuação entre os escores MELD e MELD-Na. Tal situação foi prevista por Biggins et al, que afirmou que uma vez que o escore MELD-Na difere substancialmente do escore MELD apenas para pacientes com hiponatremia, a proporção de candidatos ao transplante de figado que seriam afetados pelo uso desse escore combinado seria modesta. De fato, a proporção de candidatos ao transplante afetada pela adoção do sódio sérico ao cálculo seria pequena, mas, nesses pacientes, a magnitude da diferença entre o MELD-Na e o MELD seria grande o suficiente para fazer uma real diferença na probabilidade de o paciente receber enxerto. Por exemplo, nesse estudo um dos participantes variou 38 posições, indo da 39ª posição para a 1ª posição, na lista do tipo sanguíneo A, tal variação importante se deu porque possuía um MELD-Na de 25, 10 pontos acima do MELD que era de 15. Isso é relevante, pois apesar de não afetar todos os pacientes, está descrito na literatura que o MELD-Na tem melhor valor preditivo para risco de morte em pacientes mais doentes.

Ademais, foi possível observar que entre os pacientes que tiveram diferença na pontuação com a incorporação do sódio sérico, os pacientes com maior MELD tiveram menor impacto na variação de posição pela mudança de pontuação. Observando a metade da população com menor MELD inicial, houve, em média, um ganho de 3,42 posições para cada um ponto de aumento no MELD; já na metade com os maiores MELDs, cada ganho de um ponto representou em média o ganho de 1,25 posições. De forma similar, Biggins et al encontrou que para pacientes com MELD elevado, o efeito da hiponatremia foi mínimo, ou seja, o efeito da hiponatremia diminui gradualmente à medida que o escore MELD aumenta. Entretanto, para pacientes com MELD de valores intermediários e baixos, o efeito do sódio poderia ser substancial.

A adoção do MELD-Na, priorizando e transplantando mais precocemente os pacientes mais graves, também traz importante impacto financeiro. Diversos estudos demonstraram que o aumento da gravidade da doença hepática predispõe a um elevado número de hospitalizações e procedimentos de alto custo, antes de se realizar o transplante.

O desenho do presente estudo foi observacional e transversal. A coleta dos dados foi feita em um único dia, podendo ter resultado em viés devido à seleção dos pacientes. Entretanto, esse desenho de estudo foi visto como ideal para a simulação de situação real de implementação de um novo critério de seleção na lista de espera. É importante ressaltar que o sódio sérico pode sofrer interferência de fatores externos, como o uso de diuréticos ou de soluções hipotônicas. No entanto, as demais exames laboratoriais utilizados no cálculo do MELD também podem ser afetados por fatores externos. Neste estudo foi abordada somente uma maneira de adicionar o sódio sérico ao cálculo do MELD. Existem outras fórmulas que fazem a incorporação desse parâmetro ao MELD. Contudo, o objetivo deste estudo foi avaliar o impacto da adoção do mesmo critério utilizado atualmente nos EUA, e que tem sido mostrado efetivo na redução da mortalidade em lista.

Sugerem-se novos estudos que analisem o impacto da adoção do MELD-Na como critério classificatório no Brasil de maneira longitudinal, além de estudos que avaliem outras maneiras de incorporação do sódio sérico ao MELD e outros sobre o impacto na mortalidade e na lista de espera. O objetivo é encontrar o melhor critério para alocação de fígados em nosso país, diminuindo a mortalidade na lista de espera.

CONCLUSÃO

A incorporação do sódio sérico ao escore MELD para fins de alocação de fígado causou grande impacto na lista de espera. Existe dependência significativa entre os diferentes níveis de sódio no sangue e o comportamento na lista de espera aplicando o MELD-sódio com correlação direta entre a hiponatremia e a melhora da posição na lista de espera.
1. Angeli P, Wong F, Watson H, Ginès P; CAPPS Investigators. Hyponatremia in cirrhosis: Results of a patient population survey. Hepatology. 2006 Dec;44:1535-1542.

2. Arbol L, Monescillo A, Jimenéz W, Garcia-Plaza A, Arroyo V, Rodés J. Paracentesis-induced circulatory dysfunction: Mechanism and effect on hepatic hemodynamics in cirrhosis. Gastroenterology. 1997 Aug;113:579-586.

3. Biggins SW, Rodriguez HJ, Bacchetti P, Bass NM, Roberts JP, Terrault AT. Serum sodium predicts mortality in patients listed for liver transplantation. Hepatology. 2005 Jan;41(1):32-9.

4. Biggins SW, Kim WR, Terrault NA, Saab S, Balan V, Schiano T, et al. Evidence-Based Incorporation of Serum Sodium Concentration Into MELD. Gastroenterology. 2006 May;130(6):1652-60.

5. Biggins SW. Use of serum sodium for liver transplant graft allocation: A decade in the making, now is it ready for primetime? Liver Transpl. 2015 Jan;21(3):279-281.

6. Borroni G, Maggi A, Sangiovanni A, Cazzaniga M, Salerno F. Clinical relevance of hyponatraemia for the hospital outcome of cirrhotic patients. Dig Liver Dis. 2000 Oct;32(7):605-10.

7. Ferraz-Neto B. Transplante de fígado no Brasil e suas recentes mudanças. Rev. Fac. Méd. Sorocaba. 2000;3(1):26-27.

8. Fonseca-Neto OCLD, Amorim AG, Rabelo P, Lima HCS, Melo PSV, Lacerda CM. Upper midline incision in recipients of deceased-donors liver transplantation. Arq Bras Cir Dig. 2018 Aug 16;31(3):e1389. doi: 10.1590/0102-672020180001e1389.

9. Heuman DM, Abou-Assi SG, Habib A, Williams LM, Stravitzi RT, Sanyal AJ, et al. Persistent ascites and low serum sodium identify patients with cirrhosis and low MELD scores who are at high risk for early death. Hepatology. 2004 Oct;40(4):802-10.

10. Kaushal JP, Wiesner RH. Changing prioritization for transplantation: MELD-na, hepatocellular carcinoma exceptions, and more. Curr Opin Organ Transplant. 2016 Apr;21(2):120-6.

11. Kim WR, Biggins SW, Kremers WK, Wiesner RH, Kamath PS, Benson JT, et al. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med. 2008 Sep 4;359(10):1018-26.

12. Meirelles Junior RF, Salvalaggio P, Rezende MB, Evangelista JA, Guimarães ER, Filho RM. Liver transplantation: History, outcomes and perspectives. Einstein (São Paulo). 2015 Jan-Mar;13(1):149-52.

13. Ministério da Saúde (Brasil). Portaria nº. 2600, de 21 de outubro de 2009. Aprova o Regulamento Técnico do Sistema Nacional de Transplantes. Diário Oficial da União. 30 out 2009: seção 1:77-118.

14. Moraes ACO, Fonseca-Neto OCLD. The use of MELD score (Model for end-stage liver disease) and derivatives in cardiac transplantation. Arq Bras Cir Dig. 2018;31(2):e1370. doi:10.1590/0102-672020180001e1370.

15. Naçif LS, Paraíso RA, Paraguassú-Verzuzo DC, Matsuda A, Alves VAF, Carilho FI, Farias AQ, et al. Higher values in liver elastography and MELD score are mortality predictors on liver transplant waiting list. Arq Bras Cir Dig. 2018 Jun 21;31(1):e1360. doi:10.1590/0102-672020180001e1360.

16. Ruf AE, Kremers WK, Chavez LL, Dascalci VI, Podesta LG, Villamil FG. Addition of serum sodium into the MELD score predicts waiting list mortality better than MELD alone. Liver Transpl. 2005 May;11(3):336-43.

17. Sharma P, Schaubel DE, Goodrich NP, Merion RM. Serum sodium and the survival benefit of liver transplantation. Liver Transpl. 2015 Mar;21(3):308-313. doi:10.1002/lt.24063.

18. Turri JAO, Decimoni TC, Ferreira LA, Diniz MA, Haddad LBP, Campolina AG. MELD score increases the overall cost on the waiting list for liver transplantation: a micro-costing analysis based study. Arq Gastroenterol. 2017 Jul-Sept;54(3):238-245.

19. United Network for Organ Sharing. OPTN/UNOS Liver and Intestinal Organ Transplantation Committee. Report to the board of directors. Richmond, Virginia. 2014 Jun. Available from: https://optn.transplant.hrsa.gov/media/1834/liver_boardreport_20140702.pdf.

20. Washburn WK, Pollock BH, Nichols L, Speeg KV, Halff G. Impact of recipient MELD score on resource utilization. Am J Transplant. 2006 Oct;6(10):2449-54.

21. Wiesner RH, McDiarmid SV, Kamath PS, Edwards EB, Malinchoc M, Kremers WK, et al. MELD and PELD: application of survival models to liver allocation. Liver Transpl. 2001 Jul;7(7):567-80.