Constrained Reversible System for Navier-Stokes Turbulence
Alice Jaccod, Sergio Chibbaro

To cite this version:
Alice Jaccod, Sergio Chibbaro. Constrained Reversible System for Navier-Stokes Turbulence. Physical Review Letters, 2021, 127 (19), pp.194501. 10.1103/PhysRevLett.127.194501. hal-03448479

HAL Id: hal-03448479
https://hal.sorbonne-universite.fr/hal-03448479
Submitted on 25 Nov 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Constrained Reversible system for Navier-Stokes Turbulence

Alice Jaccod
Sorbonne Université, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris, France

Sergio Chibbaro
Sorbonne Université, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris, France

Following a Gallavotti’s conjecture, stationary states of Navier-Stokes fluids are proposed to be described equivalently by alternative equations besides the NS equation itself. We discuss a model system symmetric under time-reversal based on the Navier-Stokes equations constrained to keep the Enstrophy constant. It is demonstrated through high-resolved numerical experiments that the reversible model evolves to a stationary state which reproduces quite accurately all statistical observables relevant for the physics of turbulence extracted by direct numerical simulations at different Reynolds numbers. The possibility of using reversible models to mimic turbulence dynamics is of practical importance for coarse-grained version of Navier-Stokes equations, as used in Large-eddy simulations. Furthermore, the reversible model appears mathematically simpler, since enstrophy is bounded to be constant for every Reynolds. Finally, the theoretically interest in the context of statistical mechanics is briefly discussed.

Non-equilibrium macroscopic systems are generally described in the framework of irreversible Hydrodynamics [18, 35, 55, 57, 67]. In some cases, the Hydrodynamic level is obtained from the microscopic molecular through coarse-graining [16, 50], and the laws that emerge through the coarse-graining break the fundamental time-reversal symmetry inherent to the microscopic laws [7, 18, 20, 59, 83]. The foremost physical example of irreversible process is given by an incompressible fluid which is described by the Navier-Stokes equations [32, 58, 89]. In this framework, the molecular effects are represented by the viscosity ν that is also responsible for the dissipation of energy, and may lead to a stationary state when energy is injected. In the limit of vanishing viscosity, the fluid becomes turbulent [32, 65], and displays the outstanding feature of “anomaly dissipation”, which means that the mean rate of kinetic energy dissipation $\langle \epsilon \rangle$ remains finite and independent of ν. Thus, the trace of irreversibility is kept through this singular limit [31, 84]. The rigorous explanation of such feature remains an open issue, and is at the basis of the mathematical problem of the existence and smoothness of the Navier-Stokes solution in three dimensions [8, 23, 36]. Furthermore, non-trivial features of irreversibility have been found in Lagrangian statistics [88], and such extreme events have been unveiled that they have been related to possible singularities in Navier-Stokes equations [28, 78]. A problem of such an approach is the asymptotic nature of turbulence, which makes difficult to disentangle in actual experiments Reynolds-number effects from genuine features [45, 49]. An alternative approach was proposed by Gallavotti through the conjecture that the same system can be described by different yet equivalent models, notably for fluids [33]. In particular, phenomenological irreversible macroscopic systems could be described by suitable reversible dissipative models, at least in some respect. This idea was rooted in several developments in statistical physics, and notably in the use of thermostats in Molecular Dynamics simulations [30, 46].

The possibility to use a time-reversible model to obtain turbulent features was pioneered in [80], and then conjectured in a more formal way by Gallavotti [37, 38]. This conjecture has been called of equivalence of dynamical ensemble, to clearly point the analogy with ensembles in equilibrium statistical mechanics [40]. In this framework, in the thermodynamic limit, $N \to \infty$ with $\rho = N/V = \text{const}$, any local observable (i.e. related to a finite region of the phase space) is equal in all canonical ensembles. Following this picture, it has been proposed to replace the constant viscosity with a fluctuating one that would make possible to have a new global invariant for the system. The thermodynamic limit is obtained in the case $1/\nu \to \infty$. Since in this fully turbulent limit, the system is highly chaotic and exhibits a random behaviour, it is plausible to conjecture that it may be described by an invariant distribution, as already postulated by Kolmogorov [51, 52].

The conjecture has been directly tested in small 2D systems [38, 42, 72], for the Lorenz model [41, in shell models [10, 11]. Recently, a model obtained by imposing the constraint that turbulent kinetic energy is conserved has been analysed in 3D turbulence with a small number of modes [31]. Parallel tentatives have been made to test the consequences, namely the fluctuation relations in different systems [41, 22, 79, 89]. Yet, a clear demonstration of the validity of the Gallavotti’s conjecture still lacks.

The purpose of the present work is precisely to show to which extent the Gallavotti conjecture is accurate, using high-resolution numerical experiments at different Reynolds numbers. Different equivalent models may in principle be proposed [38], yet considering the physics of Turbulence the reversible model should be related to the dissipation anomaly, where the average rate of dissipation is defined as $\langle \epsilon \rangle \equiv \langle \nu | \Delta u |^2 \rangle = 2 \nu \Omega$, where
\[\Omega = \langle \omega^2 \rangle \] is the enstrophy, expressed in terms of the vorticity \(\omega = \nabla \times \mathbf{u} \). In analogy with statistical mechanics, we consider the irreversible distribution as the canonical ensemble with \(\nu \) corresponding to \(\beta = (k_B T)^{-1} \), and therefore we build the analogous to the microcanonical ensemble taking the enstrophy \(\Omega \) as fixed, and letting \(\nu \) fluctuating.

Giving evidence of the equivalence of reversible and irreversible NS equations, this work makes a first link between turbulent fluids and the general framework for non-equilibrium problems in statistical mechanics, formally based on the chaotic hypothesis. The main difficulty is that the general theory applies only to time-reversible dynamical systems, whereas NS is not. However, our results show that many non-equilibrium systems, and most notably turbulent fluids could be considered in practice as reversible as far as statistical observables are considered, and therefore Gallavotti-Cohen theory could be applied to the correct observables. Moreover, multi-scale approach is crucial to tackle complex systems with decimated models, like in climate and meteorological sciences. In this case, only large-scales can be simulated and small-scales are modelled often in an irreversible dissipative way. The present study aims to give some insights on new possible way to propose reversible models, since it is known that such models may better describe the cascade process. Finally, the conjecture is related to the issue of a rigorous proof of existence of unique solutions of the Navier-Stokes equations. Indeed, the reversible model proposed should admit a smooth solution, since the vorticity remains bounded for any value of the viscosity. While the original mathematical problem would remain open, the conjecture should provide an answer at least from the statistical point of view, since the same statistical results can be obtained with a well-posed set of equations.

We consider here an incompressible fluid, with constant density \(\rho = 1 \), subjected to viscosity and an external forcing term. The motion is described by the NS equation:

\[\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \nabla^2 \mathbf{u} + \mathbf{f} \quad \nabla \cdot \mathbf{u} = 0 \quad (1) \]

where \(\nu \) is the cinematic viscosity, \(p \) the pression and \(\mathbf{f} \) a forcing term which acts at large scales. Clearly, the dissipative term breaks up the symmetry for temporal inversion, i.e the equation is not invariant under the transformation: \(T : t \rightarrow -t; \mathbf{u} \rightarrow -\mathbf{u} \). The corresponding reversible model is obtained replacing the viscosity coefficient \(\nu \) with a time-dependent term which makes the equation invariant under the symmetry \(T \). Imposing the conservation of enstrophy \(\Omega \equiv \int_V |\nabla \times \mathbf{u}|^2 \, dx \), the equation (1) becomes the reversible Navier-Stokes (RNS)

\[\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \alpha[\mathbf{u}] \nabla^2 \mathbf{u} + \mathbf{f} \]

with the fluctuating viscosity defined as

\[\alpha[\mathbf{u}] = \frac{\int_V [\mathbf{g} \cdot \omega + \omega \cdot (\omega \cdot \nabla) \mathbf{u}] \, dx}{\int_V (\nabla \times \omega)^2 \, dx} \quad (2) \]

where the integrals are defined over the whole volume of the fluid \(V \); the vorticity \(\omega = \nabla \times \mathbf{u} \), and \(\mathbf{g} = \nabla \times \mathbf{f} \) are used.

While the stationary states of NS define a nonequilibrium ensemble \(\mathcal{E}_\nu \), RNS equation will generate stationary states that form a collection of new reversible viscosity ensemble \(\mathcal{E}_\Omega \). Denoting \(\langle \nu \rangle, \langle \Omega \rangle \) the averages over the two corresponding distributions, the content of the Gallavotti’s Conjecture of equivalence is the following: for small enough \(\nu \), it can be expected that the system is highly chaotic and \(\alpha(x) \) fluctuates wildly leading to a multi-scale or homogenisation phenomenon, that is a large class of observables have the same statistics in the two ensembles, provided that \(\langle \alpha \rangle \Omega = \nu \) or equivalently \(\langle \Omega \rangle \nu = \Omega \). Some details more about the theory are given in the Supplemental Material.

We perform numerical simulations of the 3D NS and the 3D RNS Eqs. by using the code Basilisk. The velocity field \(\mathbf{u} \) is solved inside a cubic domain of side \(2\pi \), and is prescribed to be triply-periodic. The NS runs are initiated from the Taylor-Green velocity field; the Reynolds runs are initiated from the final velocity field of the corresponding NS run. In both cases, we inject energy in the system by using the Taylor-Green forcing. The results are independent from the choice of the initial and forcing conditions, provided forcing is at large scales, and it has been verified that numerical dissipation is negligible. Furthermore, we have verified that the RNS generates the same dynamics even if initialised with the Taylor-Green velocity and not a steady NS field. As usual in isotropic turbulence, we characterise the flow by using the dimensionless Reynolds number based on the Taylor length. We use \(R_\lambda = u_{rms}/\nu/\lambda \) as the Reynolds number in the reversible model \(\lambda \) or \(\nu \); where \(\langle \alpha \rangle \lambda = u_{rms}/\nu/\lambda \) is the mean value of the fluctuating viscosity. We have performed three NS simulations at \(R_\lambda = 30, 100, 300 \), using the same initial conditions for the velocity field but varying the viscosity coefficient. All simulations are carried out so that the smallest scale \(\eta \) is very well resolved (\(\Delta x/\eta \lesssim 1 \) in all cases), and the corresponding number of points used are \(N = 256, 512, 1024 \). More numerical details are given in the Supplementary Material.

In figure 1 the phenomenology of both models is illustrated by displaying the dynamics of the dissipation-rate and of the Enstrophy at different Reynolds numbers. It is seen from Fig. 1 that the reversible model at high Reynolds numbers shows wild fluctuations in \(\varepsilon = 2\alpha \Omega \) because of the behaviour of the fluctuating viscosity \(\alpha \). At more moderate Reynolds the behaviour is practically indistinguishable between NS and RNS. It is worth noting some sporadic negative events in dissipation at high
Reynolds, meaning that there is sometime injection of energy by viscosity. The first prediction of the conjecture is the reciprocity property which states that if enstrophy is taken fixed $\Omega_{RNS} = \langle \Omega \rangle_{NS}$, then $\nu = \langle \alpha \rangle$. This is a prerequisite for the conjecture of equivalence. In Fig. 1, it is shown that this is true within the numerical errors (about 1%) at all Reynolds. From a more qualitative point of view, Fig 1c shows that also the geometrical features of the turbulent flow are practically indistinguishable in the reversible and irreversible dynamics. The stringent test of the conjecture is about the equivalence of statistical properties of local observables (where locality is intended in momentum space). Since dissipation takes place at small scales, the observables are local if they reside at large scale only. We compare in Fig. 2, the second and fourth statistical moment of the velocity field. We have computed them both from the whole field, that is containing all the wave-modes, and from the large scales only. While the instantaneous value wildly oscillate, the mean values converge rapidly to the irreversible value.

Key for the dynamic of turbulence are the two-point statistical observables. We show both velocity time-correlation and one-dimensional Energy spectrum in Fig. 2. An excellent agreement between irreversible and reversible models is found at all scales. The analysis of the one-point PDF is consistent with these results (see Supplemental).

Even more important is the scale-by-scale flux of energy, which describes the cascade of energy. We compute the scale-by-scale flux from the coarse-graining of the Navier-Stokes equation as

$$\Pi_\ell(x) \equiv - \left(\frac{\partial \tau_{ij}}{\partial x_j} \right) \tau_{ij} , \text{ with } (\tau_\ell)_{ij} = \langle u_i u_j \rangle_\ell - \langle \pi_\ell \rangle_\ell \langle \tau \rangle_j ,$$

(3)

where the dynamic velocity field u is spatially (low-pass) filtered over a scale ℓ to obtained a filtered value: $\mathbf{u}_\ell(x) = \int d\mathbf{r} G_\ell(\mathbf{r}) \mathbf{u}(x + \mathbf{r})$ where G_ℓ is a smooth filtering function, spatially localized and such that $G_\ell(\mathbf{r}) = \ell^{-3} G(\mathbf{r}/\ell)$ and G satisfies $\int d\mathbf{r} G(\mathbf{r}) = 1$, and $\int d\mathbf{r} |\mathbf{r}|^2 G(\mathbf{r}) = \mathcal{O}(1)$. The results of the flux for the different numerical experiments are displayed in Fig 3 up to scale $\ell = 2\pi/256$. The global behaviour is the same as obtained in analogous pseudo-spectral simulations \[2, 19\], but what is important is that the fluxes of the reversible and irreversible model are the same at all scales, and at all R_λ. A small discrepancy is present at $R_\lambda = 300$ in the inertial range, which is probably due to different statistical convergence. These results show unambiguously that the mechanics of turbulence is the same with both irreversible and reversible model. To complete the analysis, we have considered the higher-order structure functions $S_p(r) = \langle |u(x + r) - u(x)|^p \rangle$ and their scaling exponents $S_p(r) \sim r^\nu$, which are the relevant observables for intermittency \[3, 12, 32, 68\]. Although these kinds of observables are not included in the conjecture, the agreement displayed in Fig. 3 is striking. Interestingly, our DNS results are in remarkable agreement with those obtained with shell models \[27\].

Finally, we analyse the statistics of the time-fluctuating viscosity α, shown in Fig. 4. With respect to the equivalence conjecture, the sole crucial feature is that $\langle \alpha \rangle = \nu$, as shown in Fig. 1. The statistics of α are interesting per se in connection with the symmetry of fluctuations given by the Fluctuation relations for time-reversible dynamical systems \[57, 62\]. Indeed, α is related to the entropy production in the time-reversible model \[88\]. We plot the PDF of α computed using formula (2) during the reversible dynamics as well as that computed in the
irreversible one at different Reynolds numbers. In the reversible dynamics, \(\alpha \) fluctuates around the “canonical” value \(\nu \), and the variance increases with the Reynolds number. At low and moderate Reynolds numbers no negative event is recorded. Instead some are found at \(R_\lambda = 300 \), when distribution turns out to be much more flatter. As discussed in recent works \cite{11, 81}, the limit \(R_\lambda \to \infty \) and \(N \to \infty \) is singular and the different behaviour of the PDF reflects that. Furthermore, our results show that in the cascade regime analysed here, it is difficult to observe extreme events on a reasonable observation-time, notably at small \(R_\lambda \). As expected for

the 3D case \cite{35}, the statistics of \(\alpha \) of the reversible and irreversible dynamics are qualitatively different. The entropy production should be the same in both dynamical ensembles, but in fact \(\alpha \) is related to entropy only in the reversible model, whereas it bears no connection with it in the irreversible one. Our results confirm this picture with \(\alpha \) fluctuating little in the irreversible model and not around \(\nu \), as found for the reversible model.

Conclusions We have shown through high-resolved numerical simulations that the Gallavotti’s conjecture of dynamical ensemble equivalence is correct. We observe that no matter the Reynolds number, provided sufficient resolution is kept, not only the basic requirements of the conjecture are fulfilled, but all the relevant statistical observables are found indistinguishable in the irreversible and reversible dynamical system. Furthermore, the scale-by-scale analysis of the kinetic energy flux shows negligible difference between the two models up to the dissipation range, far beyond the original formal conjecture proposition. Wild fluctuations of the reversible viscosity are encountered and at high-Re numbers, even neg-
Our results give empirical evidence that the chaotic hypothesis from which the conjecture is originally derived can be considered morally applicable to turbulent fluids. That means in turn that non-equilibrium statistical mechanics, and notably fluctuation relations should apply in some sense also to turbulent fluids. Furthermore, it is shown that turbulence is unaffected by the precise mechanism of dissipation. This corroborates the idea that scales larger than the forcing are governed by Euler, as recently proposed. On the other hand, it paves the way to the use of whatever phenomenological model in coarse-grained approaches, provided the correct amount of average rate of dissipation is enforced. Some issues remain to be answered, while the reversible dynamical systems for turbulence. Inversion properties of particle trajectories in highly turbulent flows. Physical Review Letters, 100(25):254504, 2008.

[1] A. Alexakis and L. Biferale. Cascades and transitions in turbulent flows. Physics Reports, 767:1–101, 2018.
[2] A. Alexakis and S. Chibbaro. On the local energy flux of turbulent flows. Phys. Rev. Fluids, 5:094604, 2020.
[3] A. Arneodo, R. Benzi, J. Berg, L. Biferale, E. Bodenschatz, A. Busse, E. Calzavarini, B. Castaing, M. Cencini, L. Chevillard, et al. Universal intermittent properties of particle trajectories in highly turbulent flows. Physical Review Letters, 100(25):254504, 2008.
[4] M. Bandi, S. G. Chumakov, and C. Connaughton. Probability distribution of power fluctuations in turbulence. Physical Review E, 79(1):016309, 2009.
[5] R. Benzi, L. Biferale, R. Fisher, D. Lamb, and F. Toschi. Inertial range eulerian and lagrangian statistics from numerical simulations of isotropic turbulence. Journal of Fluid Mechanics, 653:221–244, 2010.
[6] R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Masoaioli, and S. Succi. Extended self-similarity in turbulent flows. Physical Review E, 48(1):R29, 1993.
[7] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim. Macrophysical and accurate measurements of intermittency. Reviews of Modern Physics, 87(2):593, 2015.
[8] A. Bertozzi and A. Majda. Vorticity and the Mathematical Theory of Incompressible Fluid Flow. Cambridge Press, Cambridge, 2002.
[9] L. Biferale, F. Bonaccorso, M. Buzzicotti, and K. P. Iyer. Self-similar subgrid-scale models for inertial range turbulence and accurate measurements of intermittency. Physical Review Letters, 123(1):014503, 2019.
[10] L. Biferale, M. Cencini, M. De Pietro, G. Gallavotti, and V. Lucarini. Equivalence of nonequilibrium ensembles in turbulence models. Physical Review E, 98(1):012202, 2018.
[11] L. Biferale, D. Pierotti, and A. Vulpiani. Time-reversible dynamical systems for turbulence. Journal of Physics A: Mathematical and General, 31(1):21, 1998.
[12] L. Biferale and I. Procaccia. Anisotropy in turbulent flows and in turbulent transport. Physics Reports, 414(2-3):43–164, 2005.
[13] R. Bowen and D. Ruelle. The ergodic theory of axiom a flows. Inventiones Mathematicae, 29:181–205, 1975.
[14] M. E. Brachet, D. Meiron, S. Orszag, B. Nickel, R. Morf, and U. Frisch. The taylor-green vortex and fully developed turbulence. Journal of Statistical Physics, 34(5-6):1049–1063, 1984.
[15] M. E. Brachet, D. I. Meiron, S. A. Orszag, B. Nickel, R. H. Morf, and U. Frisch. Small-scale structure of the taylor–green vortex. Journal of Fluid Mechanics, 130:411–452, 1983.
[16] P. Castiglione, M. Falcioni, A. Lesne, and A. Vulpiani. Chaos and Coarse Graining in Statistical Mechanics. Cambridge University Press, Cambridge, UK, 2008.
[17] A. Castillo-Castellanos, A. Sergent, B. Podvin, and M. Rossi. Cessation and reversals of large-scale structures in square rayleigh–bénard cells. Journal of Fluid Mechanics, 877:922–954, 2019.
[18] C. Cercignani. The Boltzmann Equation. Springer, 1988.
[19] Q. Chen, S. Chen, and G. L. Eyink. The joint cascade of energy and helicity in three-dimensional turbulence. Physics of Fluids, 15(2):361–374, 2003.
[65] A. S. Monin and A. M. Yaglom. *Statistical Fluid Mechanics*. MIT Press, Cambridge, Mass, 1975.

[66] http://basilisk.fr.

[67] L. Onsager. Reciprocal relations in irreversible processes. i. *Physical review*, 37(4):405, 1931.

[68] G. Paladin and A. Vulpiani. Anomalous scaling laws in multifractal objects. *Physics Reports*, 156(4):147–225, 1987.

[69] S. B. Pope. *Turbulent Flows*. Cambridge University Press, Cambridge, UK, 2000.

[70] S. Popinet. Gerris: a tree-based adaptive solver for the incompressible euler equations in complex geometries. *Journal of Computational Physics*, 190(2):572–600, 2003.

[71] S. Popinet. An accurate adaptive solver for surface-tension-driven interfacial flows. *Journal of Computational Physics*, 228(16):5838–5866, 2009.

[72] L. Rondoni and E. Segre. Fluctuations in two-dimensional reversibly damped turbulence. *Nonlinearity*, 12(6):1471, 1999.

[73] D. Ruelle. *Chaotic evolution and strange attractors*, volume 1. Cambridge University Press, 1989.

[74] D. Ruelle. *Turbulence, strange attractors, and chaos*, volume 16. World Scientific, 1995.

[75] D. P. Ruelle. Hydrodynamic turbulence as a problem in nonequilibrium statistical mechanics. *Proceedings of the National Academy of Sciences*, 109(50):20344–20346, 2012.

[76] P. Sagaut. *Large eddy simulation for incompressible flows: an introduction*. Springer Verlag, 2006.

[77] E. Sánchez-Palencia. *Non-homogeneous media and vibration theory*. Springer-Verlag, 1980.

[78] E.-W. Saw, D. Kuzzay, D. Faranda, A. Guittonneau, F. Daviaud, C. Wiertel-Gasquet, V. Padilla, and B. Dubrulle. Experimental characterization of extreme events of inertial dissipation in a turbulent swirling flow. *Nature communications*, 7(1):1–8, 2016.

[79] X.-D. Shang, P. Tong, and K.-Q. Xia. Test of steady-state fluctuation theorem in turbulent rayleigh-bénard convection. *Physical Review E*, 72(1):015301, 2005.

[80] Z.-S. She and E. Jackson. Constrained euler system for navier-stokes turbulence. *Physical Review Letters*, 70(9):1255, 1993.

[81] V. Shukla, B. Dubrulle, S. Nazarenko, G. Krstulovic, and S. Thalabard. Phase transition in time-reversible navier-stokes equations. *Physical Review E*, 100(4):043104, 2019.

[82] Y. G. Sinai. Markov partitions and c-diffeomorphisms. *Functional Analysis and its applications*, 2(1):61–82, 1968.

[83] H. Spohn. *Large scale dynamics of interacting particles*. Springer Science & Business Media, 2012.

[84] K. R. Sreenivasan and R. Antonia. The phenomenology of small-scale turbulence. *Annual review of fluid mechanics*, 29(1):435–472, 1997.

[85] R. Temam. *Navier-Stokes equations: theory and numerical analysis*, volume 343. American Mathematical Soc., 2001.

[86] V. Valori, A. Innocenti, B. Dubrulle, and S. Chibbaro. Weak formulation and scaling properties of energy fluxes in three-dimensional numerical turbulent rayleigh–bénard convection. *Journal of Fluid Mechanics*, 885, 2020.

[87] A. van Hooft, C. van Heerwaarden, S. Popinet, S. de Roode, B. van de Wiel, et al. Adaptive Grid Refinement for Atmospheric Boundary Layer Simulations. In *EGU General Assembly Conference Abstracts*, volume 19, page 7784, 2017.

[88] H. Xu, A. Pumir, G. Falkovich, E. Bodenschatz, M. Shats, H. Xia, N. Francois, and G. Boffetta. Flight–crash events in turbulence. *Proceedings of the National Academy of Sciences*, 111(21):7558–7563, 2014.

[89] F. Zonta and S. Chibbaro. Entropy production and fluctuation relation in turbulent thermal convection. *EPL (Europhysics Letters)*, 114(5):50011, 2016.

[90] See Supplemental Material at [URL] for further details and including relevant Refs. [5, 13, 17, 21, 33, 44, 56, 70, 71, 82, 83, 87].