Endoscopic biopsy of brain tumors: Does the technique matter?

Waleed A. Azab, Khurram Nasim, Abdelaziz Chelghoum, Aslam Parwez, Waleed Salaheddin

Neurosurgery Department, Ibn Sina Hospital, Kuwait City, Kuwait

E‑mail: *Waleed A. Azab - waledazab@hotmail.com, Khurram Nasim - neurosurgeon88@gmail.com, Abdelaziz Chelghoum - chelghoum.abdelaziz@gmail.com, Aslam Parwez - dr.parwez.ns@gmail.com, Waleed Salaheddin - drwaled_salah@yahoo.com

*Corresponding Author

Received: 03 July 14 Accepted: 20 September 14 Published: 12 November 14

Abstract

Background: Endoscopic biopsy of brain tumors is an important part of the armamentarium of management of intra- and periventricular tumors that is generally considered an acceptable and, in some situations, a preferred method for tissue sampling. The diagnostic yield of the procedure has been variably reported. Technical aspects of the procedure should undoubtedly reflect on its success rate and accuracy. Such impact on diagnostic yield of endoscopic brain biopsy is infrequently discussed in the literature.

Methods: A search of the medical literature was conducted for publications on endoscopic brain biopsy. These reports were analyzed regarding the various technical aspects.

Results: In the 43 publications analyzed, lenscopes were exclusively used in 22 reports and a tissue diagnosis was possible in 362 out of 387 endoscopic biopsies with a diagnostic yield of 93.54%. Only fiberscopes were used in 8 reports and a tissue diagnosis was possible in 100 out of 132 endoscopic biopsies with a diagnostic yield of 75.76%. The diagnostic yield in the mixed and unspecified groups was 88.95 and 88.04%, respectively. Very few details on the histopathological methods and tumor molecular genetics could be found.

Conclusion: Endoscopic biopsy of brain tumors has a higher diagnostic yield when lenscopes are used. Neuronavigation seems to add to the diagnostic accuracy of the procedure. Studies detailing molecular genetic features of biopsied tumors are necessary in the future.

Key Words: Biopsy, brain, endoscopic, fiberscope, flexible, intraventricular, lenscopes, periventricular, rigid, tumor

INTRODUCTION

Fukushima was the first to introduce endoscopic brain biopsy in 1973 using a flexible fiberoptic ventriculofiberscope. Five years later, he reported a series of 21 endoscopic biopsies for intraventricular tumors, of which a correct histopathological diagnosis was achieved in 11 patients. Currently, the procedure is an important part of the armamentarium of management of intra- and periventricular tumors that is generally considered an acceptable and, in some situations, a preferred method for tissue sampling. Notwithstanding this, the diagnostic yield of endoscopic brain tumor biopsy has been variably reported.
technical aspects of the procedure undoubtedly reflect on its success rate and accuracy, a review of the literature was conducted in order to shed light on the technical aspects of endoscopic biopsy of brain tumors as they pertain to the diagnostic yield of the procedure.

MATERIALS AND METHODS

A search of the English literature was conducted and 43 reports were retrieved from 1990 to July 2013 [Table 1]. The following technical aspects were evaluated in each study: Type of endoscopes used, use of stereotactic guidance, and histopathological methods utilized for diagnosis.

Regarding the type of endoscopes used, the published studies were subdivided into four groups according to the use of lenscopes versus fiberscopes [Tables 1 and 2]. These four groups included: (1) Lenscopes only, (2) fiberscopes only, (3) mixed group, where both types were used without specification of the diagnostic yield for either type, and (4) unspecified group, where the type of endoscope was not reported by the authors. The diagnostic yield in each group was then calculated as the percentage of biopsies leading to a histological diagnosis to the total number of biopsies performed. When both types of endoscopes were used in one report, results were considered to belong to either the lenscopes or the fiberscope group only if the authors specified the diagnostic yield according to the type of the endoscope used. Unfortunately, a specific diagnostic yield based on the type of endoscopic device was rarely reported in these mixed studies.[15,17,29,34,36]

RESULTS

The results of the study are presented in Tables 1-3 and Figure 1.

In the 43 reports analyzed, lenscopes were exclusively used in 22 reports and a tissue diagnosis was possible in 362 out of 387 endoscopic biopsies with a diagnostic yield of 93.54%. Only fiberscopes were used in 8 reports and a tissue diagnosis was possible in 100 out of 132 endoscopic biopsies with a diagnostic yield of 75.76%. The diagnostic yield in the mixed and unspecified groups was 88.95 and 88.04%, respectively [Table 2 and Figure 1].

DISCUSSION

Endoscopic biopsy of brain tumors is currently regarded an effective tool that is sometimes indispensable in establishing tissue diagnosis and tailoring further treatment [Figures 2-4]. Using the procedure for lesions within the ventricular system or in its vicinity offers direct visualization of the intraventricular anatomy and enables precise sampling of areas of the lesion that are highly likely to be pathologically representative, a feature that has been found to improve diagnostic accuracy. Additionally, biopsies from areas with an overlying blood vessel can be avoided, and areas with high vascularity can be coagulated to reduce bleeding during the procedure.[25]

The literature is currently replete with reports of endoscopic brain biopsies in which success rates range from as low as 61% up to 100%.[2-4,7,9,18,19,20,23,26,33,41,43,48,50] Analysis of the published reports retrieved a total of 1927 endoscopic brain biopsies in which the procedure led to a diagnostic information in 1735 cases, a collective diagnostic yield of 90.04% [Table 2]. In 2008, Fiorindi and Longatti calculated a collective success rate of 88% in 206 endoscopic brain biopsies compiled from eight published series.[11] In the largest two series published so far, Constantini et al.[3] reported diagnostic yield of 90.4% in 691 biopsies and Hayashi et al.[15] reported a diagnostic yield of 89.7% in 293 procedures.

From the technical point of view, one of the drawbacks inherent to neuroendoscopes of today’s technology is...
Table 1: Overview of the literature on the diagnostic yield of endoscopic biopsy detailing types of endoscopic equipment and the histopathological methods reported

Endoscopic equipment	No. of biopsies*	Tumor location	Diagnostic yield (%)	Histopathological exam used
Tanei et al. (2012)	Lenscope navigation 6	Intraparenchymal	100	NA
Domínguez-Páez et al. (2011)	Lenscope 28	Intra- and/or periventricular	89	NA
Tsuda et al. (2011)	Lenscope Navigation 9	Intraparenchymal	100	NA
Morgenstern et al. (2011)	Lenscope 15	Pineal region	86.67	NA
Chibbaro et al. (2012)	Lenscope navigation 8	Pineal region	100	NA
Song et al. (2010) (Jkns)	Lenscope navigation 5	Intra- and/or periventricular	100	NA
Song et al. (2010) (Ch.N.S)	Lenscope 49	Intra- and/or periventricular	95.9	NA
Akai et al. (2010)	Lenscope navigation 3	Intraparenchymal	100	GFAP
Al-Tamimi et al. (2008)	Lenscope 8	Pineal region	75	NA
Kim et al. (2004)	Lenscope navigation 5	Pineal region	100	NA
Kim et al. (2013)	Lenscope navigation 23	Suprasellar (around 3rd ventricle)	95.7	NA
Wong et al. (2011)	Lenscope 25	Pineal region	84.0	NA
Naftel et al. (2011)	Lenscope navigation 20	Intraventricular	90	NA
Tirakotai et al. (2007)	Lenscope Frame-based, frameless stereotaxy 29	Peri- and intraventricular	100	NA
Prat and Galeano (2009)	Lenscope navigation 22	Intraventricular	100	NA
Yurtseven et al. (2003)	Lenscope 18	Peri- and intraventricular	100	NA
Wellons et al. (2004)	Lenscope 7	Third ventricular	100	NA
Robinson and Cohen (1997)	Lenscope 3	Pineal region	100	NA
Najjar et al. (2010)	Lenscope 8	Intraventricular	100	NA
Roopesh Kumar et al. (2007)	Lenscope navigation 24	Posterior 3rd ventricle	100	NA
Luther et al. (2006)	Lenscope 6	Pineal region and suprasellar	83	NA
Nagahisa et al. (2013)	Lenscope navigation 21	Intraventricular	100	H/E, Olig2, CGH
Depreitere et al. (2007)**	Lenscope fiberscope 31 (+1 case not operated, excluded)	Intraventricular	Total 69 Lenscope 19/25 = 76 Flex 3/7 = 43	NA
Ahn and Goumnerova (2010)**	Lenscope fiberscope 33	Intra- and/or periventricular	Total 23/33 = 70 Rigid 17/21 = 81.0 Flexible 5/11 = 45.5	NA
Fiorindi and Longatti (2008)	Fiberscope 23	Intra- and/or periventricular	82.6	NA
Endo et al. (2009)	Fiberscope 1	Pineal region	100	CD20, CD79α, CD3
Gangemi et al. (2001)	Fiberscope 5	Pineal region	100	NA
Shono et al. (2007)	Fiberscope 12	Third ventricle	100	H/E Immunostaining
Oka et al. (1994)	Fiberscope 12	Intraventricular	100	NA
O’Brien et al. (2006)	Fiberscope 33	Intra- and/or periventricular	76	NA
Ferrer et al. (1997)	Fiberscope 4	Pineal region	75	H/E
Macarthur et al. (2002)	Fiberscope 28	Intra- and/or periventricular	61	NA
Mohanty et al. (2010)	Lenscope fiberscope 87	Intra- and/or periventricular	83	NA
Oppido et al. (2011)	Lenscope fiberscope 60	Intra- and/or periventricular	90	NA
Hayashi et al. (2011)	Lenscope fiberscope 691	Intra- and/or periventricular	89.7	NA
Souweidane et al. (2000)	Lenscope fiberscope 12	Third ventricle	92	NA
Yamini et al. (2004)	Lenscope fiberscope 6	Pineal region	66.67	NA
Pople et al. (2001)	Lenscope fiberscope 34	Pineal region	94	NA
Notably, however, no prospective group with endoscopic biopsy alone, 77.42%; and with tumor irrigation fluid along with biopsy, 93.55%

Table 2: Segregation of diagnostic yield of biopsy by the type of endoscopic equipment used in 43 literature reports

Equipment	No. of Biopsies*	Tumor Location	Diagnostic Yield (%)	Histopathological Exam	
Kinfe et al. (2010)	Lenscope fiberscope	17	Periventricular	100	NA
Jingui et al. (2013)	Lenscope fiberscope	11	Pituitary stalk	100	NA
Husain et al. (2010)***	Unspecified	178	Multiple	80.3	GFAP, NSE, synaptophysin, EMA, desmin, cytokeratins S-100, LCA, PCR
Constantini et al. (2013)	Unspecified	293	Intra- and/or periventricular	90.4	NA
Petroinici et al. (2013)	Unspecified	14	Pineal region	92.8	NA

Table 3: Diagnostic yield of endoscopic biopsy using lenscope endoscope with and without navigation

No. of reports	Total	Lenscope	Fiberscope	Mixed	Unspecified
Number of reports	43	23	9 (8 + 1/2 + 1/2)*	8	3
Performance of biopsies	1927	387*	132	923	485
Successful biopsies	1735	362	100	821	427
Diagnostic yield (%)	90.04	93.54	75.76	88.95	88.04

Ahn and Goumnerova (2010) and Depreitere et al. (2007) used fiberscopes and lenscopes and segregated diagnostic yield for each. *Number of biopsies taken from each report.

Table 3: Diagnostic yield of endoscopic biopsy using lenscope endoscope with and without navigation

With navigation	Without navigation	
Performed biopsies	151	191
Successful biopsies	148	177
Diagnostic yield (%)	98	92.67

It is evident from literature analysis that using stereotactic guidance resulted in higher chances of obtaining a pathologically diagnostic material. The success rate for neuronavigation-guided endoscopic biopsy was 98% versus 92.67% when lenscopes were used alone. It is of note that although intraventricular anatomical structures would normally serve as the anatomical landmarks which give the neurosurgeon a spatial orientation, navigated endoscopy would be very important in cases with small or distorted ventricles, posterior third ventricular and periventricular tumors.
Although the objective of this review was not to investigate all variables related to the diagnostic accuracy of endoscopic brain biopsy, it is important to point out that tumor location seems to play a role in the success rate of the biopsy. Ahn and Goumnerova reported success rates of 100%, 87.5%, 57%, and 25% for lateral ventricular, pineal region, thalamic, and tectal plate lesions, respectively. High failure rates for superior vermian biopsies and posterior fossa tumors have also been reported. Such suboptimal success rates can probably be ascribed to difficulty of access to some areas. More importantly, the pathological approach to endoscopic brain tumor biopsy has not previously been detailed. In none of the studies did the authors refer to uncertainties expressed by the pathologist regarding the final diagnosis, which may partly explain the variations in biopsy success rates. Upon reviewing the literature, it was noticed that the histopathological diagnostic methods are seldom discussed and always overlooked, especially with respect to the molecular and immunohistochemical features of brain tumors. Except for one study by Husain et al. published in 2010, only very few studies with scarce information or single case reports are available.

Molecular subtyping of brain tumors is becoming increasingly recognized as a valuable tool with diagnostic, prognostic, and therapeutic significance. For instance, the inactivating abnormalities of hSNF5/INI1/
SMARCB1/BAF47 tumor suppressor gene on chromosome 22q11.2 allowed segregating atypical teratoid rhabdoid tumors (ATRTs) from potential mimickers, and the fusion between KIAA1549 and BRAF oncogene specific to pilocytic astrocytomas is becoming an area for potential novel treatments.

To date, almost all assessments of successful endoscopic biopsy have been based upon conventional histopathological criteria. To the best of our knowledge, only one report on endoscopic biopsy of brain tumors has documented the immunohistochemical characteristics and in none of the studies have the molecular subtypes of tumors been reported. As some of these advanced pathology assays are dependent to a degree on the volume of tissue and the method of tissue processing, the technique of sampling and the equipment utilized may have an impact on the ability to obtain such increasingly important pathologic information. Prospective studies comparing the different contemporary endoscopic techniques as they relate to the molecular subtyping of brain tumors may help guide the surgeons’ selection of biopsy technique.

CONCLUSION

Endoscopic biopsy of brain tumors has a higher diagnostic yield when lensscopes are used. Neuronavigation seems to add to the diagnostic accuracy of the procedure. Studies detailing molecular genetic features of biopsied tumors are necessary in the future.

REFERENCES

1. Ahn ES, Goumnerova L. Endoscopic biopsy of brain tumors in children: Diagnostic success and utility in guiding treatment strategies. J Neurosurg Pediatr 2010;5:255-62.
2. Akai T, Shiraga S, Sasagawa Y, Okamoto K, Tachibana O, Lizuka H. Intra-parenchymal tumor biopsy using neuroendoscopy with navigation. Minim Invasive Neurosurg 2008;51:83-6.
3. Al-Tamimi YZ, Bhargava D, Surash S, Ramirez RE, Novego F, Crimmins DW, et al. Endoscopic biopsy during third ventriculostomy in paediatric pineal region tumours. Childs Nerv Syst 2008;24:1323-6.
4. Chibbaro S, Di Rocco F, Makiiese O, Reiss A, Poczos P, Mirone G, et al. Neuroendoscopic management of posterior third ventricle and pineal region tumors: Technique, limitation, and possible complication avoidance. Neurosurg Rev 2012;35:331-8.
5. Constantin S, Mohanty A, Zymburg S, Cavalheiro S, Mallucci C, Hellwig D, et al. Safety and diagnostic accuracy of neuroendoscopic biopsies: An international multicenter study. J Neurosurg Pediatr 2013;11:704-9.
6. Depreitere B, Dasi N, Rutka J, Dirks P, Drake J. Endoscopic biopsy for intraventricular tumors in children. J Neurosurg 2007;106 (5 Suppl):340-6.
7. Domínguez-Páez M, Puch-Ramírez M, Rodríguez-Barceló S, Medina-Imbroda JM, Romero-Moreno L, Ibáñez-Botella G, et al. Neuroendoscopic biopsy. Experience in 31 patients and literature review. Neurocirugia (Astur) 2011;22:419-27.
8. Edgar MA, Rosenblum MK. The differential diagnosis of central nervous system tumors: A critical examination of some recent immunohistochemical applications. Arch Pathol Lab Med 2008;132:500-9.
9. Endo H, Fujimura M, Kumabe T, Kanamori M, Watanabe M, Tominaga T. Application of high-definition flexible neuroendoscopic system to the treatment of primary pineal malignant B-cell lymphoma. Surg Neurol 2009;71:344-8.
10. Ferrer E, Santamarta D, Garcia-Fructuoso G, Caral L, Rumia J. Neuroendoscopic management of pineal region tumours. Acta Neurochir (Wien) 1997;139:12-20.
11. Fiorindi A, Longatti P. A restricted neuroendoscopic approach for pathological diagnosis of intraventricular and paraventricular tumors. Acta Neurochir (Wien) 2008;150:1235-9.
12. Fukushima T, Ishijima B, Hirakawa K, Nakamura N, Sano K. Ventriculofiberscope: A new technique for endoscopic diagnosis and operation. J Neurosurg 1973;38:251-6.
13. Fukushima T. Endoscopic biopsy of intraventricular tumors with the use of a ventriculofiberscope. Neurosurgery 1978;2:110-3.
14. Gangemi M, Masiurif, Colella G, Buonomassa S. Endoscopic surgery for pineal region tumors. Minim Invasive Neurosurg 2001;44:70-3.
15. Hayashi N, Mura H, Ishihara S, Kitamura T, Miki T, Miwa T, et al. Nationwide investigation of the current status of therapeutic neuroendoscopy for ventricular and paraventricular tumors in Japan. J Neurosurg 2011;115:1147-57.
16. Husain N, Kumari M, Husain M. Tumor irrigation fluid enhances diagnostic efficacy in endoscopic biopsies of intracranial space-occupying lesions. Acta Neurochir (Wien) 2010;152:111-7.
17. Jingui S, Nishiyama K, Yoshimura J, Yoneoka Y, Harada A, Sano M, et al. Endoscopic biopsies of lesions associated with a thickened pituitary stalk. Acta Neurochir (Wien) 2013;155:19-24.
18. Jones DT, Gronych J, Lichter PW, Vitto O, Pfister SM. MAPK pathway activation in pilocytic astrocytoma. Cell Mol Life Sci 2012;69:1799-811.
19. Kim KY, Jung S, Moon KS, Jung Y, Kang SS. Neuro-navigation-guided endoscopic surgery for pineal tumors with hydrocephalus. Minim Invasive Neurosurg 2004;47:365-8.
20. Kim K, Yeon JY, Seal HJ, Shin HJ. Transventricular endoscopic biopsy of suprasellar tumors: A pediatric case series. Childs Nerv Syst 2013;29:1285-91.
21. Kinfe TM, Capelle HH, Mirzayaz MJ, Boschert J, Weigel R, Krauss JK. Stereotactic versus endoscopic surgery in periventricular lesions. Acta Neurochir (Wien) 2011;153:517-26.
22. Leary SE, Olson JM. The molecular classification of medulloblastoma: Driving the next generation clinical trials. Curr Opin Pediatr 2012;24:33-9.
23. Luther N, Edgar MA, Dunkel IJ, Souweidane MM. Correlation of endoscopic biopsy with tumor marker status in primary intracranial germ cell tumors. J Neurooncol 2006;79:45-50.
24. Macartthur DC, Buxton N, Punt J, Vlooberghs M, Robertson IJ. The role of neuroendoscopy in the management of brain tumors. Br J Neurosurg 2002;16:465-70.
25. Mohanty A, Santosh V, Devi BJ, Sivas R, Biswas A. Efficacy of simultaneous single-trajectory endoscopic tumor biopsy and endoscopic cerebrospinal fluid diversion procedures in intra- and paraventricular tumors. Neurosurg Focus 2011;30:E4.
26. Morgenstern PF, Osbun N, Schwartz TH, Greenfield JP, Tsiroujis AJ, Souweidane MM. Pineal region tumors: An optimal approach for simultaneous endoscopic third ventriculostomy and biopsy. Neurosurg Focus 2011;30:E3.
27. Mueller W, Schneider GH, Hoffmann KT, Zscherederlein R, von Deimling A. Granulomatous tissue response in germinoma, a diagnostic pitfall in endoscopic biopsy. Neuropathology 2007;27:127-32.
28. Naftef RP, Shannon CN, Reed GT, Martin R, Blount JP, Tubbs RS, et al. Small-ventricle neuroendoscopy for pediatric brain tumor management. J Neurosurgery Pediatr 2011;7:104-10.
29. Nagahisa S, Watabe T, Sasaki H, Nishiyama Y, Hayashi T, Hasegawa M, et al. Endoscopic biopsy of lesions associated with a thickened pituitary stalk. Acta Neurochir (Wien) 2011;153:517-26.
30. Nageswara Rao AA, Packer RJ. Impact of molecular biology studies on the management of intraventricular lesions: Preliminary experience in the Middle East. Clin Neurol Neurosurg 2011;113:1147-57.
31. Najjar MW, Azzam NI, Baghdadi TS, Turkmani AH, Skaf G. Endoscopy in the management of intra-ventricular lesions. Clin Neurol Neurosurg 2010;112:17-22.
32. O’Brien DF, Hayhurst C, Pizer B, Mallucci CL. Outcomes in patients undergoing single-trajectory endoscopic third ventriculostomy and endoscopic biopsy for midline tumors presenting with obstructive hydrocephalus. J Neurosurg 2006;105 (3 Suppl):219-26.
33. Oka K, Yamamoto M, Nagasaka S, Tomonaga M. Endoneurosurgical treatment of
for hydrocephalus caused by intraventricular tumors. Childs Nerv Syst 1994;10:162-6.

34. Oppido PA, Fiorindi A, Benvenuti L, Cattani F, Cipri S, Gangemi M, et al. Neuroendoscopic biopsy of ventricular tumors: A multicentric experience. Neurosurg Focus 2011;30:E2.

35. Pettorini BL, Al-Mahfoud R, Jenkinson MD, Avula S, Pizer B, Malucci C. Surgical pathway and management of pineal region tumours in children. Childs Nerv Syst 2013;29:433-9.

36. Pople IK, Athanasiou TC, Sandeman DR, Coalham HB. The role of endoscopic biopsy and third ventriculostomy in the management of pineal region tumours. Br J Neurosurg 2001;15:305-11.

37. Prat R, Galeano I. Endoscopic biopsy of foramen of Monro and third ventricle lesions guided by frameless neuronavigation: Usefulness and limitations. Clin Neurol Neurosurg 2009;111:579-82.

38. Robinson S, Cohen AR. The role of neuroendoscopy in the treatment of pineal region tumors. Surg Neurol 1997;48:360-5.

39. Roopesh Kumar SV, Mohanty A, Santosh V, Satish S, Devi BI, Prabharaj SS, et al. Endoscopic options in management of posterior third ventricular tumors. Childs Nerv Syst 2007;23:1135-45.

40. Schwalbe EC, Lindsey JC, Straughton D, Hogg TL, Cole M, Megahed H, et al. Rapid diagnosis of medulloblastoma molecular subgroups. Clin Cancer Res 2011;17:1883-94.

41. Shono T, Natori Y, Morioka T, Torisu R, Miyauchi M, Nagata S, et al. Results of a long-term follow-up after neuroendoscopic biopsy procedure and third ventriculostomy in patients with intracranial germinomas. J Neurosurg 2007;107 (3 Suppl):S193-8.

42. Song JH, Kong DS, Seol HJ, Shin HJ. Transventricular biopsy of brain tumor without hydrocephalus using neuroendoscopy with navigation. J Korean Neurosurg Soc 2010;47:415-9.

43. Song JH, Kong DS, Shin HJ. Feasibility of neuroendoscopic biopsy of pediatric brain tumors. Childs Nerv Syst 2010;26:1593-8.

44. Souweidane MM, Sandberg DI, Bilsky MH, Gutin PH. Endoscopic biopsy for tumors of the third ventricle. Pediatr Neurosurg 2000;33:132-7.

45. Tanei T, Nakahara N, Takebayashi S, Hirano M, Nagatani T, Nishihata T, et al. Endoscopic biopsy for lesions located in the parenchyma of the brain: Preoperative planning based on stereotactic methods. Technical note. Neurol Med Chir (Tokyo) 2012;52:617-21.

46. Tiraokai W, Hellwig D, Bertalanffy H, Riegel T. The role of neuroendoscopy in the management of solid or solid-cystic intra- and periventricular tumours. Childs Nerv Syst 2007;23:653-8.

47. Tsuda K, Ishikawa E, Zaboronok A, Nakai K, Yamamoto T, Sakamoto N, et al. Navigation-guided endoscopic biopsy for intraparenchymal brain tumor. Neurol Med Chir (Tokyo) 2011;51:694-700.

48. Wellons JC 3rd, Reddy AT, Tubbs RS, Abdullatif H, Oakes WJ, Blount JP, et al. Neuroendoscopic findings in patients with intracranial germinomas correlating with diabetes insipidus. J Neurosurg 2004;100 (5 Suppl Pediatrics): 430-6.

49. Wong TT, Chen HH, Liang ML, Yen YS, Chang FC. Neuroendoscopy in the management of pineal tumors. Childs Nerv Syst 2011;27:949-59.

50. Yamin S, Refai D, Rubin CM, Frim DM. Initial endoscopic management of pineal region tumors and associated hydrocephalus: Clinical series and literature review. J Neurosurg 2004;100 (5 Suppl Pediatrics): 5437-41.

51. Yurtseven T, Erşahin Y, Demirtaş E, Muduer S. Neuroendoscopic biopsy for intraventricular tumors. Minim Invasive Neurosurg 2003;46:293-9.