The Relation between Serum Endostatin Level and Carotid Atherosclerosis in Healthy Residents of Japan: Results from the Kyushu and Okinawa Population Study (KOPS)

Yoshifumi Kato1,2, Norihiro Furusyo1,2, Yuuki Tanaka1,2, Takatsugu Ueyama1,2, Sho Yamasaki1,2, Masayuki Murata3 and Jun Hayashi3

1Department of Environmental Medicine and Infectious Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
2Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
3Kyushu General Internal Medicine Center, Haradoi Hospital, Fukuoka, Japan

Aim: To examine the association between the serum endostatin levels and subclinical atherosclerosis independent of traditional risk factors in a healthy Japanese population.

Methods: Among 1,057 residents who attended free public physical examinations between 2010 and 2011, we evaluated the data of 648 healthy residents for whom the serum endostatin level and common carotid intima-media thickness (IMT) were successfully measured.

Results: The median endostatin level was 63.7 ng/mL (interquartile ranges: 49.7 – 93.2 ng/mL), and the mean carotid IMT was 0.68 ± 0.12 mm. Residents with above median endostatin had significantly higher carotid IMT than did those with below median endostatin (0.71 ± 0.14 vs. 0.65 ± 0.09 mm, P < 0.001). Multiple linear regression analysis demonstrated that increased serum endostatin is significantly associated with carotid IMT (above vs. below median endostatin level; beta = 0.11, P = 0.03), independent of the known covariates of age, sex, body mass index, drinking and smoking status, systolic blood pressure, diastolic blood pressure, hemoglobin A1c, low density lipoprotein cholesterol, estimated glomerular filtration rate, and log-transformed high sensitive C-reactive protein.

Conclusions: A higher serum endostatin level reflected subclinical atherosclerosis in this Japanese population.

See editorial vol. 24: 1014-1015

Key words: Atherosclerosis, Carotid intima-media thickness, Endostatin, Epidemiology

Copyright©2017 Japan Atherosclerosis Society
This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.
It is also reported that matrix metalloproteinases (MMPs), which generate endostatin from the extracellular matrix, are associated with carotid IMT\(^{11,12}\). Based on these findings, we hypothesized that the serum endostatin levels would be positively associated with carotid IMT. To examine this hypothesis, we analyzed this relationship in a healthy Japanese population.

Subjects and Methods

Study Participants

This study is part of the Kyushu and Okinawa Population Study (KOPS) survey of vascular events associated with lifestyle-related diseases\(^{10,13-15}\). Eligible participants were 1,057 residents who took part in free public physical examinations between 2010 and 2011\(^ {13}\). The following residents were excluded from analysis: 1) 28 because of insufficient data; 2) 44 who did not agree to undergo carotid ultrasonographic measurement; 3) 77 who had a history of cardiovascular disease, malignancy, or a chronic inflammatory disease (collagen disease or inflammatory bowel disease); 4) 260 receiving treatment for hypertension, diabetes, or dyslipidemia. After exclusions, the data of 648 subjects (200 men and 448 women) were available for analysis. The age of the subjects ranged from 24 to 84 years [mean \(\pm\) standard deviation (SD): 56.3 \(\pm\) 10.6 years]. Written informed consent was obtained from each participant prior to the examination. The study was conducted in accordance with the principles of the Helsinki Declaration of 1975, as revised in 2000. Some of the data from the KOPS were published previously\(^{10,13-15}\).

Anthropometric Measurement and Questionnaire

Anthropometric measurements were performed with each subject wearing indoor clothing and without shoes. Body mass index (BMI) was calculated as weight [kg] divided by height [m] squared. Systolic and diastolic blood pressure (SBP and DBP) were measured on the right arm, in the sitting position, with an automated sphygmomanometer (HEM-780, Omron Healthcare, Kyoto, Japan) after a five minute rest. Each subject completed a self-administrated questionnaire to gather information about personal medical history, family medical history, use of drugs, smoking status (current or non-current), and alcohol consumption (habitual or non-habitual). The questionnaire was checked for unfilled or inconsistent answers, first by nurses and again by our staff physicians.

Laboratory Measurements

As part of a free public physical examination, blood samples were collected after an 8 hour overnight fast to determine the serum levels of creatinine, hemoglobin A1c (HbA1c), and low density lipoprotein (LDL) cholesterol. Aliquots of whole blood and fresh plasma and serum samples after separation were stored at 4\(^\circ\)C in refrigerated containers and sent to a commercial laboratory (SRL Inc, Tokyo, Japan). The HbA1c level was measured from a fresh whole blood sample using the immune coherent method (RAPIDIA Auto HbA1c, Fujirebio Diagnostics Inc., Tokyo, Japan), with results expressed as the US National Glycohemoglobin Standardization Program format level (%). The serum level of LDL cholesterol was determined by automated standardized enzymatic analysis (Determiner L LDL-C, Kyowa Medex Co., Ltd, Tokyo, Japan). The serum creatinine level was measured by enzymatic assay. The estimated glomerular filtration rate (eGFR) was calculated using the modification of diet in renal disease study equation modified for Japanese subjects: eGFR (mL/min/1.73 m\(^2\)) = 194 \times \text{age}^{-0.287} \times \text{serum creatinine (mg/dL)}^{-1.094} \times \text{(if woman } \times 0.739)\(^ {10}\). High sensitive C-reactive protein (hs-CRP) was measured by means of particle-enhanced immunonephelometry (N-latex CRP II, Siemens Healthcare Diagnostics K.K., Tokyo, Japan).

All remaining fasting serum samples were immediately frozen and stored at \(-80\)\(^\circ\)C until assayed. The serum endostatin level (range: 16–500 ng/mL) was measured from defrosted samples using a commercially available enzymatic assay kit (R&D Systems Inc., Minneapolis, USA). Assessment of reproducibility testing showed good results, the recovery rate for spiked samples was 91–108%, and there was no influence of interfering substances at normal levels. The intra- and inter-assay coefficients of variation were 5.0% and 6.4%, respectively.

Ultrasonographic Measurement

Carotid IMT was assessed by ultrasound. The subjects were supine with a slight hyperextension and rotation of the neck in the direction opposite the probe. Carotid artery lesions were measured using high resolution B-mode ultrasonography with a 7.5 MHz linear array probe (UF-4300R®, Fukuda Denshi Co., Ltd, Tokyo, Japan) by the well trained physicians of our department. Images were obtained 20 mm proximal to the origin of the carotid bulb at the far wall by the IMT measurement software, Intimascope (Media Cross Co., Ltd, Tokyo, Japan)\(^ {17}\). The mean value of the bilateral average mean-IMT level was used as mean carotid IMT level.

Statistical Analysis

Data are presented as the means \(\pm\) SD or percent-
age. Because the distributions of the serum endostatin and hs-CRP levels were highly skewed, they were log-transformed before the statistical analysis and expressed as the median (interquartile ranges). The univariate associations between carotid IMT and clinical variables were assessed using Pearson’s correlation coefficient analysis (categorical variables were compared with the difference between groups). For comparisons of participants with an above/below median serum endostatin level, unpaired Student’s t-test was used to compare mean values, and the chi-square test was used to evaluate differences in prevalence rates. Analysis of covariance was performed to detect differences between participants with an above/below median serum endostatin level after adjustment for confounding factors. The statistical analysis was performed using SPSS ver.22.0 (SPSS Inc., IBM, Somers, NY). A two-tailed P value of <0.05 was considered statistically significant.

Results

Clinical Characteristics

The median endostatin level was 63.7 ng/mL (interquartile range: 49.7–93.2 ng/mL) and the mean endostatin level was 72.2 ng/mL. (Fig. 1). The clinical characteristics of the subjects with above (≥ 63.7 ng/mL) and below (<63.7 ng/mL) median endostatin levels are presented in Table 1. Subjects with above median endostatin had significantly higher carotid IMT than those with below median endostatin (0.71 ± 0.14 vs. 0.65 ± 0.09 mm, P<0.001). Age, sex, habitual drinking, SBP, DBP, HbA1c, LDL cholesterol level, and eGFR were also significantly different between the participants with above and below median endostatin levels.

Association between Endostatin and Carotid Atherosclerosis

Univariate analysis determined that age (r=0.38, P<0.001), BMI (r=0.10, P=0.008), HbA1c (r=0.18, P<0.001), and eGFR (r=−0.11, P=0.003) were associated with mean carotid IMT. The mean value of carotid IMT was significantly higher for men (0.73 vs. 0.65 mm, P<0.001), habitual drinkers than sometime or non-drinkers (0.73 vs. 0.67 mm, P<0.001), and current smokers than past or non-smokers (0.70 vs. 0.67 mm, P=0.04). The log-transformed endostatin level was also significantly associated with carotid IMT (r=0.26, P<0.001). In contrast, SBP, DBP, LDL cholesterol, and log-transformed hs-CRP were not significantly associated with carotid IMT. The log-transformed serum endostatin level was not significantly correlated to carotid IMT in multiple linear regression adjusted for the known covariates of age, sex, BMI, drinking status, smoking status, SBP, DBP, HbA1c, LDL cholesterol, eGFR, and log-transformed hs-CRP (Table 2: Model 1). However, in multivariate analysis with categorized serum endostatin [above (≥ 63.7 ng/mL) vs. below (<63.7 ng/mL) median serum endostatin level], above median serum endostatin was independently associated with carotid

Fig. 1. Distribution of the serum endostatin level of 648 healthy Japanese subjects.
The main findings of the present study are that a high serum endostatin level was significantly associated with carotid IMT in this healthy population, but that traditional risk factors for atherosclerosis, such as blood pressure, blood glucose, and blood lipids, were not. To the best of our knowledge, this is the first study to show an association between the circulating endostatin level and subclinical atherosclerosis in healthy individuals with low cardiovascular risk.

Table 1. Clinical characteristics by serum endostatin level

Variable	Below median endostatin (<63.7 ng/mL, n=324)	Above median endostatin (≥63.7 ng/mL, n=324)	P value
Serum endostatin (ng/mL)	49.7 (43.1-56.3)	93.2 (77.1-110.2)	<0.001
Age (years)	52.4±9.3	60.1±10.4	<0.001
Man, n (%)	78 (24.1)	122 (37.7)	<0.001
Body mass index (kg/m²)	22.5±3.2	22.5±2.9	0.997
Habitual drinker, n (%)	42 (13.0)	80 (24.7)	<0.001
Current smoker, n (%)	41 (12.8)	33 (10.2)	0.324
Systolic blood pressure (mmHg)	127.4±18.7	122.4±17.0	0.004
Diastolic blood pressure (mmHg)	75.9±12.7	73.4±11.9	0.035
HbA1c (%)	5.4±0.5	5.5±0.4	<0.001
LDL-cholesterol (mmol/L)	3.2±0.8	3.1±0.8	0.009
eGFR (ml/min/1.73 m²)	82.3±15.2	74.6±13.3	<0.001
hs-CRP (mg/L)	0.26 (0.11-0.58)	0.28 (0.13-0.64)	0.089
Carotid IMT (mm)	0.65±0.09	0.71±0.14	<0.001

Data are presented as the mean ± standard deviation, median (interquartile ranges), or number of subjects (percent) for categorical variables. Overall P values were calculated by unpaired t-test or chi-square test.

HbA1c: hemoglobin A1c, LDL: low density lipoprotein, eGFR: estimated glomerular filtration rate, hs-CRP: high sensitive C-reactive protein, IMT: intima-media thickness

Table 2. Multiple linear regression analysis of the association between carotid IMT and serum endostatin

Variable	Beta	P-value
Model 1 *		
Age (years)	0.27	<0.001
Sex (woman=0, man=1)	0.20	<0.001
Body mass index (kg/m²)	-0.01	0.894
Log-transformed serum endostatin	0.09	0.107
Model 2 *		
Age (years)	0.26	<0.001
Sex (woman=0, man=1)	0.20	<0.001
Body mass index (kg/m²)	-0.01	0.891
High vs. low serum endostatin group (below median = 0, above median = 1)	0.11	0.029

Beta coefficient and P-value by multiple linear regression.

*Adjusted for drinking status, smoking status, systolic BP, diastolic BP, HbA1c, LDL-cholesterol, eGFR, and log-transformed hs-CRP.

IMT (Table 2: Model 2), but SBP, HbA1c, and LDL cholesterol were not.

In addition, we evaluated the carotid IMT levels of participants with above (≥63.7 ng/mL) and below (<63.7 ng/mL) median endostatin levels (Fig. 2). Even after adjustment for the known covariates age, sex, BMI, drinking and smoking status, SBP, DBP, HbA1c, LDL cholesterol, eGFR, and log-transformed hs-CRP, the participants with above median endostatin had a higher mean carotid IMT level than did those with below median endostatin (0.67 vs. 0.64 mm, P=0.029).
In our study, the serum endostatin level was associated with subclinical atherosclerosis. Over the past few years, several studies have reported that elevation of the circulating endostatin level is an independent predictor of cardiovascular mortality, recurrence of cerebrovascular disease, and the incidence of CKD. Furthermore, it has been reported that serum endostatin is elevated in patients with acute myocardial infarction or CKD and that it is associated with endothelial function, urinary albumin, and left ventricular mass. The results of our study are in accordance with these results. Moreover, because the average age of our participants was 56.7 years and patients with a past history of atherosclerotic disease or who were taking antihypertensive, lipid-lowering, or glucose lowering drugs were excluded, our results also suggest that the serum endostatin level is associated with atherosclerotic diseases of otherwise healthy individuals.

It is known that hypertension, diabetes, and dyslipidemia are traditional risk factors for atherosclerosis. However, in this study, blood pressure, blood glucose, and blood lipids were not independently associated with carotid atherosclerotic change after casting serum endostatin into a multivariate analysis. We had hypothesized that serum endostatin would be more strongly related to early atherosclerotic change than these traditional risks. In addition, because blood pressure, glucose metabolism, and lipid metabolism were almost normal in the population studied, the influence of these traditional risk factors on atherosclerosis might not be strong. Although whether or not traditional risk factors related to atherosclerosis are independently associated with serum endostatin in patients with high cardiovascular risk has not been studied, the impact of serum endostatin on atherosclerosis of patients with cardiovascular risk may be relatively small.

The direct mechanisms related to the serum endostatin level and carotid atherosclerotic changes remain unclear. Endostatin is cleaved from collagen XVIII by proteinases such as MMP-3, -7, -9, -13, -14, and -20, elastase, and cathepsin L. It has also been reported that specific serum MMPs are secreted by foam cells in atherosclerosis lesions and that they are positively associated with carotid IMT. MMP-9 is a key mediator in the development and progression of atherosclerosis. On the basis of these findings, it is pos-
sible that circulating endostatin is elevated in atherosclerosis by degradation of the extracellular matrix through the above proteinases, which would make it a useful marker of atherosclerosis. Although the serum CRP level is also said to predict future cardiovascular events, the association between subclinical atherosclerosis, including carotid IMT and CRP or other markers of inflammation, were not established in multivariate analysis after adjusting for traditional risk factors or BMI. Furthermore, we found no independent correlation of log-transformed endostatin to carotid IMT in multiple linear regression analysis; thus, serum endostatin may be related to atherosclerosis beyond a certain cut-off point, but not with a linear correlation. Beta error is also possible because the study design for such a low risk group may require a higher number of residents; thus a larger-scale examination will be necessary. On the other hand, endostatin is known to be a potent endogenous angiogenesis inhibitor, and high-dose endostatin treatment can prevent the progression of atherosclerosis. Further studies are required to assess the causal associations between circulating endostatin and atherosclerosis.

There are some limitations to this study. First, the cross-sectional observational design makes it difficult to draw concrete inferences regarding causality between the serum endostatin level and atherosclerosis. Second, all of the subjects of our study were Japanese. Third, non-traditional risk factors associated with carotid IMT, such as thyroid function and monokine induced by gamma interferon, were not explored in the present study. Finally, we used the results of a single time measurement for our evaluation of serum endostatin. In spite of these limitations, this study is the first to show an association between the serum endostatin level and atherosclerosis in residents with low cardiovascular risk, based on findings from a large-scale study of a healthy population. We believe that our findings will contribute to the clarification of the usefulness of serum endostatin measurement in the management of cardiovascular diseases in such populations.

We found that the serum endostatin level is independently associated with subclinical atherosclerosis in a Japanese population. Our results indicate that a high circulating endostatin level reflects early atherosclerotic change. Future, longitudinal studies will be necessary to assess the clinical usefulness of the circulating endostatin level as an indicator of future atherosclerotic disease in otherwise healthy populations.

Financial Support

This study was funded by the Japan Multi-institutional Collaborative Cohort Study (J-MICC Study), Grants-in-Aid for Scientific Research on Priority Areas of Cancer [No. 17015018] and Innovative Areas [No. 221S0001] and by Grants-in-Aid for Scientific Research (A) [JSPS KAKENHI Grant Number JP 16H06277] from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

Research design: Y Kato and N Furusyo
Data analysis: Y Kato and N Furusyo
Collection and assembly of data: Y Kato, Y Tanaka, T Ueyama, S Yamasaki, M Masayuki, and J Hayashi
Wrote or contributed to the writing of the manuscript: Y Kato and N Furusyo
Final approval of the article: N Furusyo

Acknowledgement

We are grateful to Drs. Mosaburo Kainuma, Eiichi Ogawa, Kazuhiro Toyoda, Hiroaki Ikezaki, Takeo Hayashi, Takeshi Ihara, Hiroaki Ikezaki, Takeo Hayashi, Takeshi Ihara, Koji Takayama, Fujiko Mutsu-moto-Kaseida, Kazuya Ura, Ayaka Komori, Eri Kumade and Masaru Sakiyama from our department for their assistance.

References

1) Seppinen L, Pihlajaniemi T. The multiple functions of collagen XVIII in development and disease. Matrix Biol. 2011; 30: 83-92
2) O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997; 88: 277-285
3) Skovseth DK, Veuger MJ, Sorensen DR, De Angelis PM, Haraldsen G. Endostatin dramatically inhibits endothelial cell migration, vascular morphogenesis, and perivascular cell recruitment in vivo. Blood. 2005; 105: 1044-1051. Erratum in: Blood. 2009; 114: 227
4) Arenillas JF, Alvarez-Sabín J, Montaner J, Rosell A, Molina CA, Rovira A, Ribó M, Sánchez E, Quintana M. Angiogenesis in symptomatic intracranial atherosclerosis: predominance of the inhibitor endostatin is related to a greater extent and risk of recurrence. Stroke. 2005; 36: 92-97
5) Wątorek E, Paprocka M, Duś D, Kopćeć W, Klinger M. Endostatin and vascular endothelial growth factor: potential regulators of endothelial progenitor cell number in chronic kidney disease. Pol Arch Med Wewn. 2011; 121: 296-301
6) Carlsson AC, Ruge T, Sundström J, Ingelsson E, Larsson A, Lind L, Arnlöv J. Association between circulating endostatin, hypertension duration, and hypertensive target-organ damage. Hypertension. 2013; 62: 1146-1151
7) Arnlöv J, Ruge T, Ingelsson E, Larsson A, Sundström J, Lind L. Serum endostatin and risk of mortality in the elderly: findings from 2 community-based cohorts. Arterioscler Thromb Vasc Biol. 2013; 33: 2689-2695
8) Nezu T, Hosomi N, Aoki S, Matsumoto M. Carotid Intima-Media Thickness for Atherosclerosis. J Atheroscler Thromb. 2016; 23: 18-31
9) Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 2007; 115: 459-467
10) Shimizu M, Furusyo N, Mitsumoto F, Takayama K, Ura K, Hiramine K, Ikekaki H, Ibara T, Mukae H, Ogawa E, Toyoda K, Kainuma M, Murata M, Hayashi J. Subclinical carotid atherosclerosis and triglycerides predict the incidence of chronic kidney disease in the Japanese general population: results from the Kyushu and Okinawa Population Study (KOPS). Atherosclerosis. 2015; 238: 207-212
11) Gauhatz JW, Ballantyne CM, Wasserman BA, He M, Chambless LE, Boerwinkle E, Hoogeveen RC. Association of circulating matrix metalloproteins with carotid artery characteristics: the Atherosclerosis Risk in Communities Carotid MRI Study. Arterioscler Thromb Vasc Biol. 2010; 30: 1034-1042
12) Söder PO, Meurman JH, Jogestrand T, Nowak J, Söder B. Matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 in blood as markers for early atherosclerosis in subjects with chronic periodontitis. J Periodontal Res. 2009; 44: 452-458
13) Ikekaki H, Furusyo N, Okada K, Ibara T, Hayashi T, Ogawa E, Kainuma M, Murata M, Hayashi J. The utility of urinary myo-inositol as a marker of glucose intolerance. Diabetes Res Clin Pract. 2011; 54: 3028-3036
14) Shimizu M, Furusyo N, Tanaka Y, Kato Y, Mitsumoto-Kaseida F, Takayama K, Ura K, Hiramine S, Hayashi T, Ikekaki H, Ibara T, Mukae H, Ogawa E, Toyoda K, Kainuma M, Murata M, Hayashi J. The relation of postprandial plasma glucose and serum endostatin to the urinary albumin excretion of residents with prediabetes: results from the Kyushu and Okinawa Population Study (KOPS). Int Urol Nephrol. 2016; 48: 851-857
15) Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A; Collaborators developing the Japanese equation for estimated GFR. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009; 53: 982-992
16) Yanase T, Nasu S, Mukuta Y, Shimizu Y, Nishihara T, Okabe T, Nomura M, Inoguchi T, Nawata H. Evaluation of a new carotid intima-media thickness measurement by B-mode ultrasonography using an innovative measure-ment software, intimascope. Am J Hypertens. 2006; 19: 1206-1212
17) Qin G, Luo L, Lv L, Xiao Y, Tu J, Tao L, Wu J, Tang X, Pan W. Decision tree analysis of traditional risk factors of carotid atherosclerosis and a cutpoint-based prevention strategy. PLoS One. 2014; 9: e111769
18) Ruge T, Carlsson AC, Larsson TE, Carrero JJ, Larsson A, Lind L, Arnlöv J. Endostatin level is associated with kidney injury in the elderly: findings from two community-based cohorts. Am J Nephrol. 2014; 40: 417-424
19) Seko Y, Fukuda S, Nagai R. Serum levels of endostatin, vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) in patients with acute myocardial infarction undergoing early reperfusion therapy. Clin Sci (Lond). 2004; 106: 439-442
20) Chen J, Hamm LL, Kleinepeter MA, Husserl F, Khan IE, Chen CS, Liu Y, Mills KT, He C, Rifai N, Simon EE, He J. Elevated plasma levels of endostatin are associated with chronic kidney disease. Am J Nephrol. 2012; 35: 335-340
21) Wen W, Moses MA, Wiederschien D, Arbiser JL, Folkmana M, The generation of endostatin is mediated by elastase. Cancer Res. 1999; 59: 6052-6056
22) Felbor U, Dreier L, Bryant RA, Ploegh HL, Olsen BR, Mothes W. Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J. 2000; 19: 1187-1194
23) Ferreras M, Felbor U, Lenhard T, Olsen BR, Delaissé J. Generation and degradation of human endostatin proteins by various proteases. FEBS Lett. 2000; 486: 247-251
24) Chang JH, Javier JA, Chang GY, Oliveira HB, Azar DT. Functional characterization of neostatins, the MMP-derived, enzymatic cleavage products of type XVIII collagen. FEBS Lett. 2005; 579: 3601-3606
25) Heljasvaara R, Nyberg P, Luostarinen J, Parikka M, Heikila P, Rehn M, Sorsa T, Salo P, Pihlajaniemi T. Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases. Exp Cell Res. 2005; 307: 292-304
26) Mao W, Kong J, Dai J, Huang ZQ, Wang DZ, Ni GB, Chen ML. Evaluation of recombinant endostatin in the treatment of atherosclerotic plaques and neovascularization in rabbits. J Zhejiang Univ Sci B. 2010; 11: 599-607
27) Ma Y, Yabluchanskiy A, Hall ME, Lindsey ML. Using plasma matrix metalloproteinase-9 and monocyte chemotactic protein-1 to predict future cardiovascular events in subjects with carotid atherosclerosis. Atherosclerosis. 2014; 232: 231-233
28) Nagasawa SY, Ohkubo T, Masaki K, Barinas-Mitchell E, Miura K, Seto T, El-Saed A, Kadowaki T, Willcox BJ, Edmondowicz D, Kadota A, Evans RW, Kadowaki S, Fujiyoshi A, Hisamatsu T, Bertolet MH, Okamura T, Miura K, Seto T, Okamura T, Uchida H, Uemura Y, Kadowaki T, Willcox BJ. Associations between Inflammatory Markers and Subclinical Atherosclerosis in Middle-aged White, Japanese-American and Japanese Men: The JUNP Study Group. Associations between Inflammatory Markers and Subclinical Atherosclerosis in Middle-aged White, Japanese-American and Japanese Men: The JUNP Study Group. Arterioscler Thromb Vasc Biol. 2013; 33: 2689-2695
29) Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A; Collaborators developing the Japanese equation for estimated GFR. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009; 53: 982-992
30) Moulton KS, Keller E, Konerding MA, Flynn E, Palinski W, Folkman J. Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation. 1999; 99: 1726-1732
31) Greene AK, Kim S, Rogers GF, Fishman SJ, Olsen BR, Mulliken JB. Risk of vascular anomalies with Down syndrome. Pediatrics. 2008; 121: e135-e140
32) Xu X, Mao W, Chai Y, Dai J, Chen Q, Wang L, Zhuang Q, Pan Y, Chen M, Ni G, Huang Z. Angiogenesis Inhibitor, Endostar, Prevents Vasa Vasorum Neovascularization in a Swine Atherosclerosis Model. J Atheroscler Thromb. 2015; 22: 1100-1112
33) Yu HT, Lee J, Shin EC, Park S. Significant Association between Serum Monokine Induced by Gamma Interferon and Carotid Intima Media Thickness. J Atheroscler Thromb. 2015; 22: 816-822
34) Zhou Y, Zhao L, Wang T, Hong J, Zhang J, Xu B, Huang X, Xu M, Bi Y. Free Triiodothyronine Concentrations are Inversely Associated with Elevated Carotid Intima-Media Thickness in Middle-Aged and Elderly Chinese Population. J Atheroscler Thromb. 2016; 23: 216-224