THE POINCARÉ SERIES FOR THE ALGEBRAS OF JOINT INVARIANTS AND COVARIANTS OF n LINEAR FORMS.

NADIA ILASH

Abstract. Explicit formulas for computation of the Poincaré series for the algebras of joint invariants and covariants of n linear forms are found. Also, for these algebras we calculate the degrees and asymptotic behaviours of the degrees.

Keywords: classical invariant theory; invariants; Poincaré series; combinatorics

2010 MSC: 13N15; 13A50; 05A19; 05E40

1. Let V_1 be the complex vector space of linear binary forms endowed with the natural action of the special linear group SL_2. Consider the corresponding action of the group SL_2 on the algebras of polynomial functions $\mathbb{C}[nV_1]$ and $\mathbb{C}[nV_1 \oplus \mathbb{C}^2]$, where $nV_1 := \bigoplus_{i=1}^n V_1$. Denote by $\mathcal{I}_n = \mathbb{C}[nV_1]^{SL_2}$ and by $\mathcal{C}_n = \mathbb{C}[nV_1 \oplus \mathbb{C}^2]^{SL_2}$ the corresponding algebras of invariant polynomial functions. In the language of classical invariant theory the algebras \mathcal{I}_n and \mathcal{C}_n are called the algebra of joint invariants and the algebra of joint covariants for the n linear binary forms respectively. A generating set of the algebra \mathcal{I}_n was conjectured by Nowicki [1]. It had been proved later by different authors, for instance see [2], [3]. The algebras \mathcal{C}_n, \mathcal{I}_n are affine graded algebras under the usual degree:

$$\mathcal{C}_n = (\mathcal{C}_n)_0 + (\mathcal{C}_n)_1 + \cdots + (\mathcal{C}_n)_j + \cdots, \quad \mathcal{I}_n = (\mathcal{I}_n)_0 + (\mathcal{I}_n)_1 + \cdots + (\mathcal{I}_n)_j + \cdots,$$

where each of subspaces $(\mathcal{C}_n)_j$ and $(\mathcal{I}_n)_j$ is finite-dimensional. The formal power series

$$P(\mathcal{C}_n, z) = \sum_{j=0}^{\infty} \dim(\mathcal{C}_n)_j z^j, P(\mathcal{I}_n, z) = \sum_{j=0}^{\infty} \dim(\mathcal{I}_n)_j z^j,$$

are called the Poincaré series of the algebras \mathcal{C}_n and \mathcal{I}_n. In the paper [4] the following expressions for the Poincaré series of those algebras was derived:

$$P(\mathcal{I}_n, z) = \sum_{k=1}^{n} \frac{(-1)^{n-k}(n)_{n-k}}{(k-1)!(n-k)!} \frac{d^{k-1}}{dz^{k-1}} \left(\frac{z}{1-z^2} \right)^{2n-k-1},$$

$$P(\mathcal{C}_n, z) = \sum_{k=1}^{n} \frac{(-1)^{n-k}(n)_{n-k}}{(k-1)!(n-k)!} \frac{d^{k-1}}{dz^{k-1}} \left(\frac{1+z}{1-z^2} \right)^{2n-k-1}.$$
where \((n)_m := n(n+1) \cdots (n+m-1), (n)_0 := 1\) denotes the shifted factorial.

In the present paper those formulas are reduced to the following forms:

\[
\mathcal{P}(\mathcal{I}_n, z) = \frac{N_{n-2}(z^2)}{(1 - z^2)^{2n-3}} \quad \text{and} \quad \mathcal{P}(\mathcal{C}_n, z) = \frac{W_{n-1}(z^2) + nzN_{n-1}(z^2)}{(1 - z^2)^{2n-1}},
\]

where

\[
N_n(z) = \sum_{k=1}^{n} \frac{1}{k} \binom{n-1}{k-1} \binom{n}{k-1} z^{k-1}
\]

denotes the Narayana polynomials and the Narayana polynomials of type B respectively.

Also, the degrees of algebras \(\mathcal{I}_n, \mathcal{C}_n\) and asymptotic behaviors of the degrees are calculated using the explicit expressions for the Poincaré series.

2. Let us prove several auxiliary combinatorial identities.

Lemma 1. Let \(m, k, s\) be non-negative integers. The generalized Le Jen Shoo identity holds:

\[
\sum_{i=0}^{\min\{k,m\}} \binom{m}{i} \binom{m+2s}{i+s} \binom{k-i+2m+2s}{2m+2s} = \binom{m+k+s}{m+s} \binom{m+k+2s}{m+s}.
\]

Proof. Taking into account

\[
\binom{m}{i} = 0, \text{ for } i > m, \quad \text{and} \quad \binom{k-i+2m+2s}{k-i} = 0, \text{ for } i > k,
\]

we have

\[
\sum_{i=0}^{\infty} \binom{m}{i} \binom{m+2s}{i+s} \binom{k-i+2m+2s}{2m+2s} = \sum_{i=0}^{k} \binom{m}{i} \binom{m+2s}{i+s} \binom{k-i+2m+2s}{2m+2s} + \sum_{i=k+1}^{\infty} \binom{m}{i} \binom{m+2s}{i+s} \binom{k-i+2m+2s}{2m+2s} =
\]

\[
= \sum_{i=0}^{k} \binom{m}{i} \binom{m+2s}{i+s} \binom{k-i+2m+2s}{2m+2s} + \sum_{i=k+1}^{\infty} \binom{m}{i} \binom{m+2s}{i+s} \cdot 0 =
\]

\[
= \sum_{i=0}^{k} \binom{m}{i} \binom{m+2s}{i+s} \binom{k-i+2m+2s}{2m+2s} = \sum_{i=0}^{m} \binom{m}{i} \binom{m+2s}{i+s} \binom{k-i+2m+2s}{2m+2s} + \sum_{i=m+1}^{\infty} \binom{m}{i} \binom{m+2s}{i+s} \binom{k-i+2m+2s}{2m+2s} =
\]

\[
= \sum_{i=0}^{m} \binom{m}{i} \binom{m+2s}{i+s} \binom{k-i+2m+2s}{2m+2s} + \sum_{i=m+1}^{\infty} 0 \cdots \binom{m+2s}{i+s} \binom{k-i+2m+2s}{2m+2s} =
\]

\[
= \sum_{i=0}^{m} \binom{m+2s}{i+s} \binom{k-i+2m+2s}{2m+2s} = \sum_{i=0}^{\min\{k,m\}} \binom{m}{i} \binom{m+2s}{i+s} \binom{k-i+2m+2s}{2m+2s}.
\]
Now the statement follows immediately from following identity, see [5]:

\[
\begin{align*}
(a + c + d + e) \left(\begin{array}{cc} b + c + d + e & a + c \\ a + e & c + e \end{array} \right) &= \sum_i \left(\begin{array}{cc} a + d & b + c \\ i + d & i + c \end{array} \right) \left(\begin{array}{cc} a + b + c + d + e - i & a + b + c + d \\ a + b + c + d & a + b + c + d \end{array} \right),
\end{align*}
\]

if we set \(a = m, b = m + s, c = s, d = 0\) and \(e = k\). □

Lemma 2. Let \(k, n > 1\) be non-negative integers; then

\[
\sum_{i=0}^{\min\{k,n-1\}} (-1)^i \binom{n+i-1}{i} \binom{n+k-2}{k-i} \binom{n+2k-i-1}{2k} = \binom{n+k-1}{k+1} \binom{n-2+k}{k}.
\]

Proof. We have

\[
\begin{align*}
\sum_{i=0}^{\min\{k,n-1\}} (-1)^i \binom{n+i-1}{i} \binom{n+k-2}{k-i} \binom{n+2k-i-1}{2k} &= \sum_{i=0}^{n-1} (-1)^i \binom{n+i-1}{i} \binom{n+k-2}{k-i} \binom{n+2k-i-1}{2k} = \\
&= \sum_{i=0}^{k} (-1)^i \binom{n+i-1}{i} \binom{n+k-2}{k-i} \binom{n+2k-i-1}{2k}.
\end{align*}
\]

Note that

\[
\binom{n+i-1}{i} \binom{n+k-2}{k-i} = \frac{n+i-1}{n-1} \binom{n+k-2}{n-i-2} \binom{n+i-2}{n-2} = \frac{n+i-1}{n-1} \binom{n+k-2}{n-2} \binom{k}{i},
\]

and

\[
\frac{n-1}{k+1} \binom{n+k-1}{k} = \binom{n+k-1}{k+1}.
\]

So we prove that

\[
\sum_{i=0}^{k} (-1)^i(n-1+i) \binom{k}{i} \binom{n+2k-i-1}{2k} = \binom{n+k-1}{k+1}.
\]

Let us put \(S_1 = \sum_{i=0}^{k} (-1)^i(n-1+i) \binom{k}{i} \binom{n+2k-i-1}{2k}\). We have:

\[
S_1 = (n-1) \sum_{i=0}^{k} (-1)^i \binom{k}{i} \binom{n+2k-i-1}{2k} + \sum_{i=0}^{k} (-1)^i \binom{k}{i} \binom{n+2k-i-1}{2k}.
\]

Using the following identity, see [6], p.8

\[
\sum_i (-1)^i \binom{n-i}{p-i} \binom{p}{i} = \binom{n-p}{m},
\]
we get:

\[S_1 = (n - 1) \binom{n + k - 1}{k} - k \sum_{i=1}^{k} (-1)^{i-1} \binom{k - 1}{i-1} \binom{n + 2k - (i - 1) - 2}{2k} = \]

\[= (n - 1) \binom{n + k - 1}{k} - k \sum_{i=0}^{k-1} (-1)^i \binom{k - 1}{i} \binom{n + 2k - 2 - i}{n - 2 - i} = \]

\[= (n - 1) \binom{n + k - 1}{k} - k \binom{n + k - 1}{n - 2} = \]

\[= (n - 1) \left(\frac{(n + k - 1)!}{k!(n - 1)!} - \frac{(n + k - 1)!k}{(k + 1)!(n - 1)!} \right) = \frac{n - 1}{k + 1} \binom{n + k - 1}{n - 2} = \binom{n + k - 1}{k + 1}. \]

This concludes the proof. \(\square \)

Substituting \(m = n - 3 \) and \(s = 1 \) into Lemma 1, we obtain:

\[\sum_i \binom{n - 3}{i} \binom{n - 1}{i + 1} \binom{2n + k - i - 4}{k - i} = \binom{n + k - 1}{n - 2} \binom{n - 2 + k}{n - 2}. \]

Multiplying both sides by \(\frac{1}{n - 1}, (n > 2) \) and using Lemma 2, we get:

\[\sum_{i=0}^{\min\{k, n-1\}} (-1)^i \binom{n + i - 1}{i} \binom{n + k - 2}{k - i} \binom{n + 2k - i - 1}{2k} = \]

\[= \sum_{i=0}^{\min\{k, n-3\}} \binom{n - 3}{i} \binom{n - 2}{i} \binom{2n + k - i - 4}{k - i} \frac{1}{i + 1}. \]

3. We use the derived above combinatorial identities to simplify expressions for the Poincaré series \(P(I_n, z) \) and \(P(C_n, z) \) from [1].

Theorem 1. The following formulas hold:

\((i)\) \[P(I_n, z) = \sum_{k=1}^{n-2} \frac{1}{k} \binom{n - 3}{k - 1} \binom{n - 2}{k - 1} z^{2k-2} \]

\[\frac{1}{(1 - z^2)^{2n-3}} \]

\((ii) \) \[P(C_n, z) = \sum_{k=0}^{n-1} \binom{n - 1}{k} z^{2k} + \sum_{k=0}^{n-2} \binom{n - 2}{k} \binom{n}{k + 1} z^{2k+1} \]

\[\frac{1}{(1 - z^2)^{2n-1}}. \]

Proof. (i) Let us expand function

\[\sum_{k=1}^{n} \frac{(-1)^{n-k}(n)_{n-k}}{(k - 1)! (n-k)!} d^{k-1} \frac{dz}{(1 - z^2)^{2n-k-1}} \left(\frac{z}{1 - z^2} \right)^{2n-k-1}, \]
into the Taylor series about \(z \). We have

\[
P(I_n, z) = \sum_{k=1}^{n} \frac{(-1)^{n-k}(n)_{n-k}}{(k-1)! (n-k)!} \frac{d^{k-1}}{dz^{k-1}} \left(z^{2n-k-1} \sum_{i=0}^{\infty} \frac{(2n-k+i-2)}{i} z^{2i} \right) =
\]

\[
= \sum_{k=1}^{n} \frac{(-1)^{n-k}(n)_{n-k}}{(k-1)! (n-k)!} \frac{d^{k-1}}{dz^{k-1}} \left(\sum_{i=0}^{\infty} \frac{(2n-k+i-2)}{i} z^{2i+2n-k-1} \right) =
\]

\[
= \sum_{k=1}^{n} \frac{(-1)^{n-k}(n)_{n-k}}{(k-1)! (n-k)!} \sum_{i=0}^{\infty} \frac{(2n-k+i-2)}{i} \frac{(2i+2n-k-1)!}{(2i+2n-2k)!} z^{2i+2n-2k}.
\]

Substituting \(j = n - k \), we have:

\[
P(I_n, z) = \sum_{j=0}^{n-1} \frac{(-1)^{j}(n)_{j}}{(n-j-1)! j!} \sum_{i=0}^{\infty} \frac{(n+j+i-2)}{i} \frac{(2i+n+j-1)!}{(2i+2j)!} z^{2i+2j} =
\]

\[
= \sum_{j=0}^{n-1} \frac{(-1)^{j}(n+j-1)!}{(n-j-1)! j!(n-1)!} \sum_{i=0}^{\infty} \frac{(n+i+j-2)}{i} \frac{(n+2i+2j-j-1)!}{(2i+2j)!} z^{2i+2j} =
\]

\[
= \sum_{j=0}^{n-1} (-1)^{j} \frac{(n+j-1)!}{j!(n-1)!} \sum_{i=0}^{\infty} \frac{(n+i+j-2)}{i} \frac{(2i+n+j-1)!}{(2i+2j)!} z^{2i+2j} =
\]

\[
= \sum_{k=0}^{\infty} \sum_{i=0}^{\min\{k,n-1\}} (-1)^{i} \binom{n+i-1}{i} \binom{n+k-2}{k-i} \binom{n+2k-i-1}{2k} z^{2k}.
\]

Using (1), we get:

\[
P(I_n, z) = \sum_{k=0}^{\infty} \sum_{i=0}^{\min\{k,n-3\}} \binom{n-3}{i} \binom{n-2}{i} \binom{2n+k-i-4}{k-i} \frac{1}{i+1} z^{2k} =
\]

\[
= \sum_{k=0}^{n-3} \binom{n-3}{k} \binom{n-2}{k} \frac{z^{2k}}{k+1} + \sum_{i=0}^{\infty} \binom{(2n-3)+i-1}{i} z^{2i}.
\]

Note that

\[
\frac{1}{(1-z^2)^{2n-3}} = \sum_{i=0}^{\infty} \binom{2n-4+i}{i} z^{2i}.
\]

This completes the proof.

(ii) Denote by

\[
A_n(z) = \sum_{k=1}^{n} \frac{(-1)^{n-k}(n)_{n-k}}{(k-1)! (n-k)!} \frac{d^{k-1}}{dz^{k-1}} \left(\frac{z^{2n-k-1}}{(1-z^2)^{2n-k}} \right),
\]
and let $B_n(z) = \mathcal{P}(C_n, z) - A_n(z)$. Reasoning as in the proof of (i), we have

$$A_n(z) = \sum_{k=0}^{\infty} \min\{k, n-1\} \sum_{i=0}^{n-k} \frac{(-1)^i}{i!} \binom{n+i-1}{i} \binom{n+k-1}{k-i} \binom{n+2k-i-1}{2k} z^{2k} = \sum_{k=0}^{\infty} \binom{n+k-1}{k} z^{2k} \sum_{i=0}^{\min\{k, n-1\}} (-1)^i \binom{k}{i} \binom{n+2k-i-1}{2k} \sum_{k=0}^{\infty} \binom{n+k-1}{k} z^{2k} - \sum_{k=0}^{\infty} \binom{n+k-1}{k} z^{2k}.$$

By using the Le Jen Shoo’s identity, we get:

$$A_n(z) = \sum_{k=0}^{\infty} \frac{(n-1)^2}{z^{2k}} \sum_{i=0}^{\infty} \binom{n-i}{i} \binom{2n+k-i-2}{k-i} z^{2k} = \sum_{k=0}^{\infty} \frac{(n-1)^2 z^{2k}}{(1-z^2)^{2n-1}}.$$

We see that

$$B_n(z) = \sum_{k=0}^{\infty} \frac{(-1)^{n-k}}{(k-1)! (n-k)!} d^{k-1} \left(\frac{z^{2n-k}}{(1-z^2)^{2n-k}} \right) = \sum_{k=0}^{\infty} \frac{(-1)^i}{i!} \binom{n+i-1}{i} \binom{n+k-1}{k-i} \binom{n+2k-i-1}{2k+1} z^{2k+1} = \sum_{k=0}^{\infty} \binom{n+k-1}{k} z^{2k+1} \sum_{i=0}^{\min\{k, n-1\}} (-1)^i \binom{k}{i} \binom{n+2k-i-1}{n-1-i} = \sum_{k=0}^{\infty} \binom{n+k-1}{n-1} \binom{n}{n-1} z^{2k+1}.$$

Using lema 1 ($m = n-2, s = 1$), we have:

$$B_n(z) = \sum_{k=0}^{\infty} \frac{(-1)^{n-k}}{(k-1)! (n-k)!} d^{k-1} \left(\frac{z^{2n-k}}{(1-z^2)^{2n-k}} \right) = \sum_{k=0}^{\infty} \binom{n+k-1}{k} z^{2k+1} \sum_{i=0}^{\min\{k, n-1\}} (-1)^i \binom{k}{i} \binom{n+2k-i-1}{n-1-i} = \sum_{k=0}^{\infty} \binom{n+k-1}{n-1} \binom{n}{n-1} z^{2k+1}.$$

Thus

$$\mathcal{P}(C_n, z) = A_n(z) + B_n(z) = \frac{\sum_{k=0}^{n-1} \binom{n-1}{k}^2 z^{2k} + \sum_{k=0}^{n-2} \binom{n-2}{k} \binom{n}{k+1} z^{2k+1}}{(1-z^2)^{2n-1}}.$$

Let us rewrite the expressions in terms of the Narayana polynomials $N_n(z)$ and the Narayana polynomials of type B $W_n(z)$ where

$$N_n(z) = \sum_{k=1}^{n} \frac{1}{k} \binom{n-1}{k-1} \binom{n}{k-1} z^{k-1} \text{ and } W_n(z) = \sum_{k=0}^{n} \binom{n}{k}^2 z^k.$$
We get

\[P(I_n, z) = \frac{N_{n-2}(z^2)}{(1-z^2)^{2n-3}} \quad \text{and} \quad P(C_n, z) = \frac{W_{n-1}(z^2) + nzN_{n-1}(z^2)}{(1-z^2)^{2n-1}}. \]

4. The transcendence degrees over \(\mathbb{C} \) for the algebras \(I_n, C_n \) is equal to order of the pole for \(P(I_n, z), P(C_n, z) \) respectively, see [8]. Note that for all \(n N_n(1) \neq 0 \) and \(W_n(1) \neq 0 \). These arguments proves

Theorem 2. The following formulas hold

\begin{align*}
(i) & \quad \text{tr deg}_C I_n = 2n - 3, \\
(ii) & \quad \text{tr deg}_C C_n = 2n - 1.
\end{align*}

Let \(R = R_0 \oplus R_1 \oplus \cdots \) be a finitely generated graded complex algebra, \(R_0 = \mathbb{C} \). Denote by

\[P(R, z) = \sum_{j=0}^{\infty} \dim R_j z^j, \]

its Poincaré series. Letting \(r \) be the transcendence degree of the quotient field of \(R \) over \(\mathbb{C} \), the number

\[\deg(R) := \lim_{z \to 1} (1-z)^r P(R, z), \]

is called the degree of the algebra \(R \). The first two terms of the Laurent series expansion of \(P(R, z) \) at the point \(z = 1 \) have the following form

\[P(R, z) = \frac{\deg(R)}{(1-z)^r} + \frac{\psi(R)}{(1-z)^{r-1}} + \cdots \]

The numbers \(\deg(R), \psi(R) \) are important characteristics of the algebra \(R \). For instance, if \(R \) is an algebra of invariants of a finite group \(G \) then \(\deg(R)^{-1} \) is order of the group \(G \) and \(2 \frac{\psi(R)}{\deg(R)} \) is the number of pseudo-reflections in \(G \), see [7].

We know explicit forms for the Poincaré series for the algebras of joint invariants and covariants of \(n \) linear forms. Thus we can prove the following statement.

Theorem 3. The degrees of the algebras of joint invariants and covariants of \(n \) linear forms are equal to

\begin{align*}
(i) & \quad \deg(P(I_n, z)) = \frac{N_n(z^2)}{2^{2n-3}} = \frac{(2n-4)}{(n-2)2^{2n-3}}, \\
(ii) & \quad \deg(P(C_n, z)) = \frac{W_{n-1}(z^2)}{2^{2n-2}}.
\end{align*}
Proof. (i) Using Theorem 1 and Theorem 2, we have:

\[
\deg(\mathcal{I}_n) = \lim_{z \to 1} (1-z)^{2n-3} \mathcal{P}(\mathcal{I}_n, z) = \lim_{z \to 1} (1-z)^{2n-3} \frac{\sum_{k=1}^{n-2} \frac{1}{k} \binom{n-3}{k-1} \binom{n-2}{k-1} z^{2k-2}}{(1-z^2)^{2n-3}} = \frac{N_{n-2}(1)}{2^{2n-3}}
\]

Note that the number \(N_{n-2}(1)\) equal to the Catalan numbers, see [10]. It now follows that

\[
\deg(\mathcal{I}_n) = \frac{\binom{2n-4}{n-2}}{(n-1)2^{2n-3}}
\]

(ii) We have

\[
\deg(\mathcal{C}_n) = \lim_{z \to 1} (1-z)^{2n-1} \mathcal{P}(\mathcal{C}_n, z) = \lim_{z \to 1} (1-z)^{2n-1} \frac{\sum_{k=0}^{n-1} \binom{n-1}{k} z^{2k} + \sum_{k=0}^{n-2} \binom{n-2}{k} \binom{n}{k+1} z^{2k+1}}{(1-z^2)^{2n-1}} = \frac{\binom{2n-2}{n-1} + nN_{n-1}(1)}{2^{2n-1}} = \frac{\binom{2n-2}{n-1}}{2^{2n-2}}
\]

Note that asymptotically, the Catalan numbers grow as

\[
C_n = \frac{1}{n+1} \binom{2n}{n} \sim \frac{4^n}{n^{3/2} \sqrt{\pi}}.
\]

It is easy to calculate asymptotic behaviours of the degrees of the algebras \(\mathcal{I}_n\) i \(\mathcal{C}_n\):

Corollary 1. Asymptotic behaviours of the degrees of the algebras of joint invariants and covariants of \(n\) linear forms as \(n \to \infty\) are follows

\[
\deg(\mathcal{I}_n) \sim \frac{1}{2 \sqrt{\pi n^3}} \quad \text{and} \quad \deg(\mathcal{C}_n) \sim \frac{1}{\sqrt{\pi n}}.
\]

References

[1] Nowicki A., Polynomial Derivation and their Ring of Constants. Universytet Mikolaya Kopernika, Torun, 1994.

[2] Drensky V., Makar-Limanov L., The Conjecture of Nowicki on Weitzenböck derivations of polynomial algebras. J. Algebra and Its Applications, 8, 1 (2009) 41–51.

[3] Bedratyuk L., A note about the Nowicki conjecture on Weitzenböck derivations Serdica Math. J., 2009, V.35, №3, P.311–316.

[4] Bedratyuk L., Weitzenböck derivations and the classical invariant theory, I: Poincaré series, Serdica Math. J., 2010, V.36, №2, P.99–120.
[5] Székely L., Common origin of cubic binomial identities; a generalization of Surányi’s proof on Le Jen Shoo’s formula, Journal of combinatorial theory, 1985, A 40, P.171–174.

[6] Riordan J., Combinatorial Identities. Robert E. Krieger Publishing company Huntington, New York, 1979.

[7] Benson D., Polynomial invariants of finite groups, London Mathematical Society Lecture Note Series. 190., Cambridge University Press, (1993), 118 p.

[8] Springer, T., Invariant theory. Lecture Notes in Mathematics. 585., Springer-Verlag. (1977), 111 p.

[9] Bedratyuk L., Ilash N., The degree of the algebra of covariants of a binary form. Journal of Com- mutative Algebra, 2015, to appear.

[10] MacMahon P.A., Combinatorial Analysis, Vols. 1 and 2, Cambridge University Press (1915, 1916).

Department of Programming, Computer and Telecommunication Systems, Khmelnytskyi National University, Khmelnytskyi, Instytuttska, 11, 29016, Ukraine

E-mail address: ilashnadya@yandex.ua