The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that modulates the toxic actions of environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Ligand-activated AhR forms a heterodimer with a second protein, aryl hydrocarbon nuclear translocator (Arnt), and binds to Ah response elements (AhREs) in the enhancer regions of AhR-regulated genes such as cytochrome P4501A1 (CYP1A1). An endogenous ligand for this receptor has not yet been identified. Several reports in the literature, however, suggest that AhR regulates proliferation and differentiation of many cell types (2-5).

That AhR plays an important role during development independent of environmental exposure is supported by AhR knockout mice, which exhibited poor survival, loss of body weight, and impaired liver and immune systems (6-9). To date, little information is known about the ontogenetic expression of this receptor. In this study, we examined the temporal expression pattern of AhR and its heterodimer partner, Arnt, during zebrafish development using reverse transcription polymerase chain reaction (RT-PCR). To determine the spatial expression of AhR, we developed an inducible reporter system designed to express green fluorescent protein (GFP) in response to ligand-activated AhR. Several reports in the literature have demonstrated that GFP can be used effectively to describe protein expression in live embryos and juvenile zebrafish (10-12). GFP offers several advantages over other reporter systems in that it is nontoxic and can be detected in living animals without the addition of exogenous substrates (10-12). We used AhR-regulated GFP expression as an in vivo reporter to detect AhR function and to determine whether AhR-regulated GFP expression accurately predicts sites of TCDD-induced dysmorphogenesis during zebrafish development.

Materials and Methods

Chemicals. We obtained TCDD from Cambridge Isotopes Laboratory (Andover, MA). We purchased restriction endonucleases from New England Biolabs (Beverly, MA). Unless specified otherwise, we purchased reagents from commercial sources and used them without further purification.

Zebrafish maintenance. Adult zebrafish were raised and maintained on a 14:10 hr light:dark cycle at 28.5°C and bred in marbled tanks as described by Westerfield (13). We fed fish three times daily with a combination of Freshwater Aquarium Flakes (Ocean Star International, Inc., Hayward, CA) and live brine shrimp (Carolina Biological Supply Co., Burlington, NC). Care and treatment of animals were conducted in accordance with guidelines established by the Tulane University Institutional Animal Care and Use Committee.

RNA preparation. We collected RNA from zebrafish embryos using TRI REAGENT (Molecular Research Center, Inc., Cincinnati, OH). At targeted stages of development, embryos were frozen, rinsed twice in cold tank water, dissolved in 1 mL of TRI REAGENT, and transferred to a Dounce homogenizer (Fisher Scientific, Pittsburgh, PA), previously washed with chloroform. Protective chorions surrounding embryos were broken by 10 strokes in the Dounce homogenizer. Embryos were transferred to RNase-free microcentrifuge tubes, and RNA was isolated according to a protocol supplied by the manufacturer.

RT-PCR. We reverse transcribed 10 µg of total RNA according to manufacturer’s recommendations (Promega, Madison, WI). Briefly, RNA or water, 20 units of RNase inhibitor, and 1 unit RQ1 DNase RNase-free and 20 pmol oligo d(T)16 cooled and cooled on ice for 5 min. Reaction volume was increased to 40 µL containing (final concentrations) 50 mM Tris-HCl (pH 8.3), 75 mM KCl, 8 mM MgCl2, 10 mM DTT, 1 mM each of dATP, dCTP, dGTP, and dTTP, 20 units of RNase inhibitor, and 200 units of M-MLV reverse transcriptase. Reaction was incubated at 42°C for 90 min, 30°C for 10 min, placed on ice, and brought to 100 µL in water. We used PCR to amplify zebrafish AhR and Arnt cDNA sequences. We designed AhR and Arnt primers according to published sequences (14). Primers used included AhR upper, 5’-CCAAGAATTATCCTAGGTCTCATCAG; AhR lower, 5’-CTCCCAGTGACCAGATCGCCTGAGTGC; β-actin upper, 5’-ATCTGGCAACCAACCTTTACAAATG; β-actin lower, 5’-GGGGTGTGAGAAGTTCAACATGAT. We performed PCR reactions in a final volume of
50 µL containing (final concentrations) 10 mM Tris-HCl (pH 9.0), 4.5 mM MgCl₂, 50 mM KC1, 0.1% Triton X-100, 0.5 mM each of dATP, dCTP, dGTP, dTTP, 2.5 units of Taq DNA Polymerase, 6 µL of the reverse transcription reaction described above, and 20 pmol each of CYP1A1 primers. All components except enzyme were heated to 95°C for 2 min and cooled on ice for 5 min. Taq polymerase was added and samples were cycled 40 times through a 1 min 95°C denaturation step, a 1 min 54°C annealing step, and a 1 min 72°C extension step. Cycling was followed by a 5 min final 72°C extension step. Samples were coamplified with primers for the zebrafish β-actin cDNA sequence for the purpose of a loading control.

Plasmid construction. We constructed two AHR-regulated reporter plasmids, p1A1Luc and p1A1GFP, by fusing a portion of the 5′ regulatory region (−1612/+292) of the AHR-regulated gene CYP1A1 to the cDNA sequences of firefly luciferase and jellyfish GFP, respectively. This region was previously shown to be regulated by active AHR (15–19). We excised a 1904 base pair fragment from the pHCM 7.6 plasmid a generous gift of Y. Fuji-Kuriyama, Sendai, Japan) by PvuI digestion, inserted it into the Smal site of Bluescript (SK+) vector (Stratagene, La Jolla, CA), and designated it pBU1A1. This portion of the CYP1A1 5′ regulatory region is AHR responsive and contains the promoter exon one as well as at least three functional AhREs (15–19). We excised this fragment from pBU1A1 by SacI-Xhol digestion and subcloned it into the pG3-L3-Base Vector (Promega) upstream of the luciferase cDNA sequence to generate p1A1Luc. We excised the 5′ regulatory region from pBU1A1 by SacI-PstI digestion and subcloned it into the corresponding sites of pEGFP-1 (Clontech, Palo Alto, CA) to generate p1A1GFP.

Zebrafish liver cell culture. P. Collodi (Purdue University, West Lafayette, IN) provided adult zebrafish liver cells (ZFL). We cultivated the cells in ZFL medium consisting of Liebowitz L-15, Dulbecco’s Modified Eagles Medium (DMEM), and Ham’s F12 (50:50:15) supplemented with 10 mg/mL insulin, 5% fetal bovine serum (HyClone, Salt Lake City, UT), and 0.1% trouts serum (East Coast Biologics, Inc., New Berwick, Salt Lake City, UT). We used wt adults to harvest eggs.

Temporal expression of AhR in developing zebrafish. Understanding the role of AhR during development has been limited by the lack of information about the spatio-temporal expression patterns of AhR transcriptional machinery. Difficulties associated with defining AhR and Arnt expression are related partly to limitations posed by mammalian systems, which include the difficulty of reproducible staging and limiting numbers of embryos (25). Thus zebrafish provide distinct advantages over other systems in the availability and transparency of eggs.

It was first important to determine whether AhR and Arnt were expressed during development. Because AhR is present in low abundance (5,000–33,000 molecules/cell), RT-PCR was used to amplify AhR mRNA (26). Primers were designed based on a portion of published zebrafish AHR cDNA sequences (14). We isolated RNA from unfertilized eggs and embryos at several stages during development. We detected AhR mRNA at low levels in the unfertilized egg and in the embryo at 1 and 2 hr after fertilization (data not shown). At 4 hr after fertilization, mRNA levels increased (Figure 1), correlating with the estimated onset of zygotic transcription (27,28). We detected AHR mRNA at all stages examined (4, 12, 24, 28, 33, 48, and 120 hr after fertilization), although levels appeared to fluctuate, suggesting that this gene is regulated during development.

Results and Discussion.

Temporal expression of AhR mRNA during zebrafish development, assessed using RT-PCR. RNA was isolated from embryos at several stages of development, reverse transcribed, and amplified using primers designed using a published sequence for zebrafish Ahr cDNA (14). Samples were coamplified with primers for zebrafish β-actin, used as a loading control.

Figure 1. Temporal expression of AhR mRNA during zebrafish development, assessed using RT-PCR. Seventy percent of embryos were injected with reporter constructs p1A1Luc and p1A1GFP, were coamplified with primers for the zebrafish β-actin, used as a loading control.
AhR-mediated GFP expression in developing zebrafish. We constructed a second AhR-dependent reporter plasmid for injection into zebrafish embryos. We fused the identical 1905 base pair 5′ regulatory region of the human CYP1A1 gene to the cDNA sequence encoding GFP (Figure 2). This construct was linearized by digestion with PvuII and microinjected into zebrafish embryos at the one-cell stage as described by Westerfield (13). Embryos were immediately exposed to DMSO (0.01%) or TCDD (10 nM) for 24 or 72 hr. Zebrafish were dechorionated and examined by fluorescence microscopy. We observed no GFP expression in DMSO-exposed injected fish, whereas approximately 43% of injected embryos exposed to TCDD exhibited GFP expression. We observed GFP expression most consistently in the eye and nose and along the vertebrae of TCDD-exposed developing zebrafish (24 and 48 hr after fertilization; Figure 4).

GFP expression pattern correlates with sites of TCDD-induced toxicity. Numerous reports (31–35) have demonstrated that TCDD exposure causes gross morphologic abnormalities during development. Although the mechanisms underlying TCDD-induced toxicity are not understood, evidence derived from AhR knockout mice has confirmed that toxicity is mediated via AhR (6–8). We were interested to determine whether patterns of AhR-dependent GFP expression in transgenic zebrafish correlated with sites of toxicity in developing zebrafish. We exposed wild-type zebrafish to DMSO (0.01%) or TCDD (10 nM) for 5 days after fertilization and examined them for gross morphologic differences. We observed diverse toxicity, including a lack of eyes and a range of vertebral abnormalities (Figure 5). These data suggest that AhR-regulated GFP expression accurately predicts sites of TCDD-induced toxicity and may provide a novel method for examining the physiologic function of AhR. A recent study (36) has demonstrated that AhR plays an important role in regulating development of vascular structures in murine embryos through transcriptional regulation of as yet unidentified genes by the AhR. The AhR-regulated GFP expression system described here could be a useful tool to elaborate the molecular mechanism by which AhR regulates important developmental genes in vascular tissues.

Conclusions

In this report, we used zebrafish as a model to investigate the spatio-temporal expression pattern of AhR during development. AhR mRNA was detected by RT-PCR in unfertilized eggs and in embryos at 1 and 2 hr after fertilization, suggesting the presence of maternal transcript. AhR mRNA levels increased dramatically at 4 hr after fertilization and appeared to be regulated throughout development, suggesting that this gene has an important and specific functions during development. We used the 5′ regulatory region of the human CYP1A1 gene, an
AhR-regulated gene, to construct two reporter plasmids, p1A1Luc and p1A1GFP, that express luciferase and GFP, respectively. By transiently transfecting the luciferase construct into zebrafish liver cells, we showed that this regulatory region was functional in the zebrafish system and was induced in response to TCD, a potent AhR ligand. Microinjection of p1A1GFP into single-cell zebrafish embryos produced GFP expression after exposure to TCD but not the vehicle control (DMSO). We observed GFP expression up to at least 48 hr, after which the onset of pigmentation limited observation of GFP expression. We detected GFP expression in the eye, nose, and vertebrae, suggesting that AhR may play an important physiologic role in the development of these structures. These data are in agreement with those of other laboratories (36), which showed a role for AhR as a regulator of vascular structures in mice. Activation of AhR indicated that TCD-induced toxicity targeted morphologic development of the vertebrae and cranio-facial structures including the eye. AhR-regulated GFP expression, therefore, appears to be an accurate predictor of TCD-induced toxicity and may provide important information about the normal physiologic function of this receptor. Expression of AhR-regulated reporter groups could be used as an assay system to elucidate functions of potential natural ligands for AhR and may be a powerful tool to elaborate physiologic as well as toxicologic functions of AhR during development. Further, it is possible that specific receptor-regulated GFP expression systems could be useful transgenic biosensor systems to detect xenobiotic toxicants in the environment.

REFERENCES AND NOTES

1. Whitlock JP | J r. Induction of cytochrome P450A1A. Annu Rev Pharmacol Toxicol 39:103–125 (1999).
2. Ricci MS, Toscano DG, Mattingly CJ, Toscano WA Jr. Reversible modulation of Ah receptor action by 17β-estradiol in cultured human endothelial cells. J Biol Chem 274:3430–3438 (1999).
3. Choi EJ, Toscano DG, Ryan JA, Riedl N, Toscano WA Jr. Dioxin induces transforming growth factor-α in human keratinocytes. J Biol Chem 266:9591–9597 (1991).
4. Gaido KW, Maness SC, Leonard LS, Greenlee WF. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-dependent regulation of transforming growth factors-α and β1 expression in a keratinocyte cell line involves both transcriptional and post-transcriptional control. J Biol Chem 267:24591–24595 (1992).
5. Lorick K, Toscano DG, Toscano WA Jr. 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters retinoic acid receptor function in human keratinocytes. J Biol Chem 274:3430–3438 (1999).
6. Fernandez-Salguero P, Pineau T, Hilbert DM, McPhail T, Lee SS, Kimura S, Nebert DW, Rudikoff S, Ward JM, Gonzalez FJ. Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science 268:722–726 (1995).
7. Fernandez-Salguero P, Hilbert DM, Rudikoff S, Ward JM, Gonzalez FJ. Aryl-hydrocarbon receptor-deficient mice are resistant to TCD-induced toxicity. Toxicol Appl Pharmacol 140:173–179 (1996).

Figure 5. TCD-induced dysmorphogenesis in developing zebrafish. Wild-type zebrafish embryos were exposed to DMSO (0.01%) or TCD (10 nM) for the first 24 hr of development. Following incubation for 24 hr, embryos were rinsed and reared in fresh water. Embryos were observed daily for morphologic aberrations. Fish shown are 5 days after fertilization. (A) Control zebrafish. (B) TCD-exposed zebrafish lacking eyes. (C) TCD-exposed zebrafish exhibiting contorted tail and swollen yolk sac. (D) TCD-exposed zebrafish lacking eyes and exhibiting contorted tail and swollen yolk sac.

8. Mimura J, Yamashita K, Nakamura K, Morita M, Takagi TN, Nakao K, Emi M, Sogawa K, Yasuda M, Katsumi S, et al. Loss of teratogenic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking the Ah (dioxin) receptor. Genes Cells 2:645–654 (1997).
9. Schmidt JV, Su GH, Reddy JK, Schilling TF. Stages of embryonic development of the zebrafish. Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. Dev Biol 171:123–129 (1995).
10. Amsterdam A, Lin S, Hopkins N. The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. Dev Biol 171:123–129 (1995).
11. Amsterdam A, Lin S, Mos LLG, Hopkins N. Requirements for green fluorescent protein detection in transgenic zebrafish embryos. Genes Cells 13:99–103 (1996).
12. Peters J M, Narotsky MG, Elizondo G, Fernandez-Salguero PM, Gonzalez FJ, Abbott BD. Amelioration of TCD-induced teratogenesis by aryl hydrocarbon receptor (AhR)-null mice. Toxicol Sci 47:86–92 (1999).
13. Westerfield M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio). Eugene, OR: University of Oregon Press, 1993.
14. Wang W-D, Chen Y-M, Hu C-H. Detection of Ah receptor and Ah receptor nuclear translocator mRNAs in the oocytes and developing embryos of zebrafish (Danio rerio). Fish Physiol Biochem 16:49–57 (1998).
15. Hines RM, Mathis JM, Jabob CS. Identification of multiple regulatory elements on the human cytochrome P450A1A gene. Carcinogenesis 9:1599–1605 (1988).
16. Kawajiri K, Watanabe J, Gohb O, Tagashira Y, Sogawa K, Fuji-Kuriyama Y. Structure and drug inducibility of the human cytochrome P450 gene. Eur J Biochem 159:219–225 (1988).
17. Quattrrochi LC, Penderitri UR, Okino ST, Potenza C, Tukey RH. Human cytochrome P450 4M4 and gene: part of a multigene family that contains Alu Sequences in its mRNA. Proc Natl Acad Sci USA 83:6732–6735 (1986).
18. Ko HP, Okino ST, Ma Q, Whitlock JP | J r. Dioxin-induced CYP1A1 transcription in vivo: the aromatic hydrocarbon receptor mediates transactivation, enhancer-promoter communication, and changes in chromatin structure. Mol Cell Biol 16:430–436 (1996).
19. Ko HP, Okino ST, Ma Q, Whitlock JP | J r. Transactivation domains facilitate promoter occupancy for the dioxin-inducible CYP1A1 gene in vivo. Mol Cell Biol 17:3491–3504 (1997).
20. Collodi P, Kamei Y, Ernst T, Mattardy J, Patterson DJ r, Needham LL. Serum polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans among people eating contaminated home-produced eggs and beef. Environ Health Perspect 108:13–19 (1999).
21. Peterson GL. A simplification of the protein assay method of Lowry et al. which is generally more applicable. Anal Biochem 83:346–356 (1977).
22. Stuart GW, Mckurray J J, Westerfield M, Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103:403–412 (1988).
23. Culp P, Nusslein-Volhard C, Hopkins N. High-frequency germ-line transmission of plasmid DNA sequences injected into fertilized zebrafish eggs. Proc Natl Acad Sci USA 88:7953–7957 (1991).
24. Culp P, Nusslein-Volhard C, Hopkins N. High-frequency germ-line transmission of plasmid DNA sequences injected into early zebrafish embryos. Proc Natl Acad Sci USA 88:7953–7957 (1991).
25. juchau MR, Chen H. Developmental enzymology: xenobiotic biotransformation. In: Handbook of Developmental Neurotoxicology (Slikker W Jr, Slikker W Jr, ed). San Diego, CA: Academic Press, Inc., 1998;321–337.
26. Poellinger L. Mechanism of signal transduction by the basic helix-loop-helix dioxin receptor. In: Inducible Gene Expression, Vol 1 (Baeuerle PA, ed). Boston, MA: Academic Press, Inc., 1998;159:219–225.
cytochrome P450 genes. Xenobiotica 19:1149–1160 (1989).
31. Gray LE, Ostby JS. In utero 2,3,7,8-tetrachlorodibenzo-p-di
oxin (TCDD) alters reproductive morphology and func
tion in female rat offspring. Toxicol Appl Pharmacol 131:285–294 (1995).
32. Gray LE Jr, Kelce WR, Monosson E, Ostby J S, Birnbaum LS. Exposure to TCDD during development permanently alters reproductive function in male Long Evans rats and hamsters: reduced ejaculated and epididymal sperm numbers and sex accessory gland weights in offspring with normal androgenic status. Toxicol Appl Pharmacol 131:108–118 (1995).
33. Henry TR, Spitsbergen J M, Hornung M W, Abnet CC, Peterson RE. Early life stage toxicity of 2,3,7,8-TCDD in zebra fish (Danio rerio). Toxicol Appl Pharmacol 142:56–68 (1997).
34. Spitsbergen J M , Walker M K, Olson J R, Peterson RE. Pathologic alterations in early life stages of Lake Trout, Salvelinus namaycush, exposed to TCDD as fertilized eggs. Aquat Toxicol 19:41–72 (1991).
35. Walker M K, Pollenz RS, Smith SM. Expression of aryl hydrocarbon receptor (AhR) and AhR nuclear transloca
tor during chick cardiogenesis is consistent with 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced heart defects. Toxicol Appl Pharmacol 143:407–419 (1997).
36. Lahvis GP, Lindell SL, Thomas RS, McCuskey RS, Murphy C, Glover E, Bentz M, Southard J, Bradfield CA. Portosystemic shunting and persistent fetal vascular structures in aryl hydrocarbon receptor-deficient mice. Proc Natl Acad Sci USA 97:10442–10447 (2000).