A new activity model for Fe–Mg–Al biotites: II—Applications in the K₂O–FeO–MgO–Al₂O₃–SiO₂–H₂O (KFMASH) system

Edgar Dachs¹ · Stan Roozen² · Artur Benisek¹

Received: 30 July 2020 / Accepted: 29 December 2020 / Published online: 4 March 2021
© The Author(s) 2021

Abstract

The new biotite activity model and standard-state thermodynamic properties of Ann, Phl, and Eas presented in part-I were used to make pseudosections of bulk compositions representing experimental Fe–Mg exchange equilibria and (model) pelitic bulk rock compositions in the system K₂O–FeO–MgO–Al₂O₃–SiO₂–H₂O (KFMASH), using mainly the software Perple_X. These pseudosection calculations (termed ‘our calculation(s)’ in the following) were compared to analogous ones performed with the solution model of biotite and thermodynamic data cited in White et al. (J Metamorph Geol 32:261–286, 2014, 10.1111/jmg.12071), termed ‘W14 calculation’. Our calculations with the experimental bulk composition used by Zhou (Ti–Mg–Fe biotites: formation, substitution, and thermodynamic properties at 650 to 900 °C and 1.1 Kb with fO₂ defined by the CH₄–graphite buffer. PhD thesis, State University of New York, 1994) in his experimental study of the Fe–Mg exchange between biotite (Bt) and olivine (Ol) confirm that biotite had no or only minimal octahedral Al (AlVI) in these experiments. The experimental data of Ferry and Spear (—FS78, Contrib Mineral Petrol 66:113–117, 1978, 10.1007/BF00372150) on the Fe–Mg distribution between biotite and garnet (Grt) are well reproduced by our calculations. The computed composition of biotite (X_{Fe}) in equilibrium with garnet of Alm₉₀Py₁₀ composition and the resulting lnK_D values as a function of temperature are in good agreement with the experimental brackets. An analogous W14 calculation on the same Fe-rich bulk composition predicts too high X_{Fe} in order of 0.1 mol fraction. The AlVI contents of biotite of about 0.3–0.45 apfu, as measured by Gessman et al. (Am Mineral 82:1225–1240, 1997, 10.2138/am-1997-11-1218) in similar biotite–garnet exchange experiments performed with Alm₈₀Py₂₀ and Alm₇₀Py₃₀ garnets, are well reproduced by our, as well as by W14 calculations. The extent of Tschermak substitution in biotite in the FS78 experiments, which had Fe-richer bulk compositions, has not been measured. Comparing the FS78 biotites with the ones from Gessman et al. (Am Mineral 82:1225–1240, 1997, 10.2138/am-1997-11-1218), it is very likely that the biotites reported in FS78 contained AlVI in the same order of ca. 0.3–0.4 apfu. A T–X_{Fe} (= molar FeO/(FeO + MgO) pseudosection demonstrates the bulk composition dependence of lnK_D of the Mg/Fe-Grt–Bt exchange reaction in high-variance fields. Further comparisons, demonstrating the application of the new biotite solution model in the KFMASH system, are presented in pseudosections constructed for an average model pelite, as well as for a natural high-T/low-P and a natural high-P metapelite. The pseudosections show that biotite according to our biotite model breaks down at lower temperatures and pressures than predicted from the W14 biotite model in the KFMASH system. This means that KFMASH biotite can break down before the wet solidus is reached, which can explain the existence of dry high-T/low-P metapelites. At higher pressures, biotite according to our calculations breaks down at lower pressures than computed with the W14 biotite model. Before biotite breaks down, however, its AlVI content based on our calculations could potentially be used for pseudosection barometry, similarly as the Si-in-phengite barometer. These trends need to be confirmed by a future extension of our model which incorporates Ti, Fe³⁺ and a di–tri-octahedral substitution.

Keywords Biotite · Activity model · Solution model · Annite · Phlogopite · Standard enthalpy of formation · KFMASH · Pseudosection modeling
Introduction

In part-I, a new KFMASH activity model was presented for biotite, an important rock-forming mineral. Mixing parameters and standard-state properties were derived through an integrated approach combining results from relaxation calorimetry, from powder XRD and line-broadening in powder absorption infrared (IR) spectra of well-characterized biotites with the thermodynamic analysis of existing phase-equilibrium data, complemented by density functional theory (DFT) calculations.

The aim of this part-II is to demonstrate the impact of this new biotite model on computed phase relations in the KFMASH system and comparing these phase relationships with those obtained with the biotite solution model of White et al. (2014).

Computational methods

As a general remark, we use in all applications the activity–composition (a–X) relations for biotite as outlined in part-I with mixing properties given in Table 8 and standard-state thermodynamic properties for annite (Ann), phlogopite (Phl), and eastonite (Eas) given in Table 9 of the companion paper. For alternative versions of our biotite model with symmetric \(W_{\text{AnnPhl}}^G \) and symmetric/asymmetric \(W_{\text{AnnPhl}}^G \) obtained from thermodynamic analysis of the olivine–biotite exchange equilibrium using a \(W_{\text{FaFo}}^G \) of 10 kJ/mol instead of 5 kJ/mol (one-site), we used the modified thermodynamic parameters as given in the discussion section of part-I (in the first paragraph entitled ‘standard enthalpy of formation values of biotite endmembers’). All other thermodynamic properties are those from the endmember database of Holland and Powell (2011), version ‘ds62’, and the a–X relationships of White et al. (2014) for solid solutions. These solid solutions were calibrated specifically for metapelitic rocks. For certain pseudosections, we used, in addition to the solid solutions mentioned in White et al. (2014), the talc model of Holland and Powell (1998) and the olivine model of Holland and Powell (2011) with the \(W_{\text{FaFo}}^G \) corrected to 5 kJ/mol (one-site). We compare the phase diagram calculations using our biotite model to predictions made with the biotite model included in the Theriak-D to predictions made with Perple_X suite of programs version 6.9.0. We used the program vertex for making pseudosections (Connolly 2005, 2009) using the bulk compositions, as given in Table 1. The equation of state for \(\text{H}_2\text{O} \) was that of Pitzer and Sterner (1995). In our calculations, the thermodynamic data file was \(\text{hp62ver.dat} \) with data for the biotite endmembers annite, phlogopite, and eastonite substituted by corresponding ones from Table 9 of part-I. This dataset in Perple_X format is given in Supplementary Table S1. In a W14 calculation, the original annite, phlogopite, and eastonite data from \(\text{hp62ver.dat} \) were used. The biotite activity model presented in part-I was coded for Perple_X and incorporated in solution_model.dat named Bio(D). It is also given in Supplementary Table S1.

Mineral–chemical quantities like \(\text{AlVI} \) or mole fraction \(X_{\text{Fe}} = \frac{\text{Fe}}{\text{Fe} + \text{Mg}} \) in biotite and in other minerals were computed with the Perple_X program werami and appear as isopleths in the various pseudosections. The \(\ln K_D \) for the garnet–biotite Fe–Mg exchange reaction (Figs. 3, 4, 5, 9) and contours of \(\ln K_D \) (Fig. 8) were computed by self-written Mathematica functions processing data files containing \(X_{\text{Fe}} \) and \(X_{\text{Mg}} \) of biotite and garnet as a function of temperature and/or pressure/bulk composition, produced with werami.

Supplementary calculations were done with Theriak (de Capitani and Brown 1987; de Capitani and Petrakakis 2010) in case of the garnet–biotite Mg/Fe exchange reaction (Table 2) using the Theriak version 09. 03. 2019 and the database tcds62c. The new standard-state data, and our new biotite activity model in Theriak readable format, are given in Supplementary Table S2. Mineral abbreviations used in the text and figures are according to Whitney and Evans (2010).

Applications of the new biotite activity model in the KFMASH system

Experimental Fe–Mg exchange equilibria involving biotite

Notice that the experimental olivine–biotite equilibrium was used for the calibration of our model. In contrast, biotite–orthopyroxene, biotite–garnet, and biotite–garnet–cordierite equilibria were not and could, therefore, be used for validation purposes.

Biotite—olivine

The experimental data of Zhou (1994) on the Fe–Mg exchange between biotite and olivine have been used in
Fig. 1 Roozeboom plot of the experimental data of Zhou (1994) on the Fe–Mg exchange between biotite and olivine ($P = 1.1$ kbar) in terms of $X_{Fe\text{Ol}}$ vs. $X_{Fe\text{Bt}}$ at $T = 800$ °C (a) and $T = 700$ °C (b). Starting compositions are shown as black dots, which are connected to the final compositions (red dots) with a line. Recalculated curve using the biotite activity model and thermodynamic data from this study (Tables 7, 8 of part-1) is shown in red, and for comparison in blue using the thermodynamic data and activity models cited in White et al. (2014)—$W14$.

a

Bt - Ol

$T = 800$ °C

b

Bt - Ol

$T = 700$ °C

$P = 1.1$ kbar
part-I, combined with other experimental data to calibrate Fe–Mg biotite mixing properties and to derive enthalpy of formation values for annite, phlogopite, and eastonite. They are presented in Fig. 1a, b, together with recalculated our-study Roozeboom plots, made using the program Mathematica®, based on the reaction:

\[
\frac{1}{2} \text{Forsterite} + \frac{1}{2} \text{Annite} = \frac{1}{2} \text{Fayalite} + \frac{1}{3} \text{Phlogopite},
\]

(1)

and compared to a W14 calculation (details of the experimental setup, starting materials, and biotite composition were given in part-I). Although our-study and W14 Roozeboom plots were calculated using considerably different biotite activity models and thermodynamic data for annite and phlogopite, the computed \(X_{Fe}^{\text{Ol}}\) vs. \(X_{Fe}^{\text{Bt}}\) curves are quite similar, satisfying the compositional brackets within error (Fig. 1a at 800 °C, b at 700 °C), the other isothermal Roozeboom plots are given in Supplementary Fig. S1). The only exception is at Fe-rich conditions, where our calculation predicts a somewhat lower \(X_{Fe}^{\text{Bt}}\) in better agreement with the experimental record. This is, of course, not surprising, as Zhou’s data have been used in part-I to calibrate Fe–Mg biotite mixing properties based on the assumption that these experiments indeed represent equilibrium Fe–Mg distributions between olivine and biotite.

Zhou (1994) used biotite:olivine weight ratios of 1:1, 2:1, or 1:2 in his experiments; however, it is not clear from his tables which ratio was used in which run. We constructed an appropriate bulk composition for his experiments at 800 °C, given in Table 1, by combining an olivine with \(X_{Fe}^{\text{Ol}}=0.5\) with an Fe–Mg biotite with molar Si:Al = 3:1 and \(X_{Fe}^{\text{Bt}}=0.3\), which is the equilibrium composition of biotite co-existing with olivine at this temperature (Fig. 1a). The resulting \(P-T\) pseudosection (not shown), computed with Perple_X and our biotite model, shows biotite + olivine + kalsilite as stable phases in roughly equal molar amounts above 730 °C up to 900 °C (at \(P=1.1\) kbar). The predicted \(Al^{VI}\) level in biotite is zero confirming the in part-I discussed evidence of no Tschermak components in biotites in the exchange experiments of Zhou (1994). The use of the olivine–biotite exchange reaction to calibrate the Fe–Mg part of the model has a considerable benefit compared to, e.g., the garnet–biotite exchange experiments, where the Mg–Fe interaction in biotite is affected by a considerable amount of octahedral Al (see below).

![Fig. 2 Roozeboom plot of the experimental data of Fonarev and Konilov (1986) on the Fe–Mg exchange between biotite and orthopyroxene (\(P=4.9\) kbar) in terms of \(X_{Fe}^{\text{Opx}}\) vs. \(X_{Fe}^{\text{Bt}}\) at \(T=700\) °C. Starting compositions are shown as black dots, connected to the final compositions (red dots) with a line. The recalculated curve resulting from this study is shown in red and in blue from a W14 calculation](image-url)
Table 1 Bulk compositions (molar) used in the construction of pseudosections with Perple_X and in the calculation of mineral–chemical data given in Table 2

Bulk molar	SiO₂	Al₂O₃	FeO	MgO	K₂O	X₉Fe	References	Solution models considered in Perple_X calculation
Bt:Ol = 1:1 molar	41.67	8.33	15.83	25.83	8.33	0.38	[1]	Bt, Ol, Opx, Grt, Ph, Crd, St, Spl, Ctd, Chl
Alm90–Ann50	42.857	14.143	38.229	4.629	0.143	0.892	[2]	Table 1, Figs. 3, 4
Alm90–Ann75	42.857	14.143	38.443	4.414	0.143	0.897	[2]	Table 1
Alm90–Ann100	42.857	14.143	38.657	4.200	0.143	0.902	[2]	Table 1
Alm80–Ann40	42.857	13.929	33.429	9.429	0.357	0.780	[3]	Figures 4, 5
Alm70–Ann25	42.857	13.929	29.036	13.821	0.357	0.678	[3]	Figures 4, 5
T–X pseudosection	42.857	14.143	21.429–42.857	21.429–0.000	0.143	0.5–1.0	[2]	Table 1
T–X pseudosection	42.857	14.143	25.714–42.857	17.143–0.000	0.143	0.6–1.0	Figures 7, 8	
Alm80–Ann40	42.857	13.929	33.429	9.429	0.357	0.780	[3]	Figures 4, 5
Alm70–Ann25	42.857	13.929	29.036	13.821	0.357	0.678	[3]	Figures 4, 5
T–X pseudosection	42.857	14.143	21.429–42.857	21.429–0.000	0.143	0.5–1.0	Table 1, Figs. 3, 4	
Average metapelite	68.76	9.87	7.64	4.01	3.16	0.66	[5]	Figure 10
T–X pseudosection	42.857	14.143	25.714–42.857	17.143–0.000	0.143	0.6–1.0	Figures 7, 8	
T–X pseudosection	42.857	14.143	25.714–42.857	17.143–0.000	0.143	0.6–1.0	Figures 7, 8	
High-grade metapelite	57.48	19.86	14.36	6.19	2.11	0.70	[6]	Figure 13
High-P metapelite	34.29	29.97	23.32	12.41	0.56	[7]	Figure 14	

a[1] Zhou (1994); [2] Ferry and Spear (1978); [3] Gessmann et al. (1997); [4] Perchuk and Lavrent’eva (1983, Table 2); [5] White et al. (2014, Table 2); [6] Pitra and de Waal (2001, Table 1), sample X567, cited in Tajčmanova et al. (2009, their Fig. 2); [7] Wei and Powell (2003, sample M4)

bBt biotite, Ol olivine, Opx orthopyroxene, Grt garnet, Ph phengite (white mica), Crd cordierite, St staurolite, Spl spinel, Ctd chloritoid, Chl chlorite, Tlc talc, Carp carpholite. Bt was Bt (D) in case of our calculation, or Bi (W) for a W14 calculation, other models were Gt (D), Opx (D), Opx (W), Mica (W), St (W), Chl (W), Melt (W), and (W) model set from White et al. (2014), O (HP) from Holland and Powell (2011), Spl (WPC) from White et al. (2002), Tlc (ideal), and Carp (ideal). Besides solution models the following endmembers were considered: and (andalusite), sil (sillimanite), ky (kyanite), sa (sanidine), and qz (quartz). Solid solutions start with a capital letter, and pure phases are written in lowercase. Unless stated otherwise, the calculations where done under water-saturated conditions

cMolar Grt:Bt ratio was 98:2, Fe/(Fe + Mg) in garnet in these experiments thus remained (nearly) unchanged due to garnet’s large modal amount. Ann50 = Ann50Phl50, Ann75 = Ann75Phl25, Ann100 = Ann100Phl0, Alm90 = Alm90Py10, Alm80 = Alm80Py20, Alm70 = Alm80Py30

dWeight Grt:Bt ratio was 95:5 in these experiments

eSuprasolidus conditions modeled with a fixed bulk H₂O content of 6.56 mol%, which was the water content which replicated the wet solidus calculated under water-saturated conditions

fSuprasolidus conditions modeled with a fixed bulk H₂O content of 7.00 mol%, which was the water content which replicated the wet solidus calculated under water-saturated conditions

gCalculated under quartz saturated conditions
Biotite–orthopyroxene

The calculation of the Fe–Mg distribution between biotite and orthopyroxene and comparison with experimentally determined distribution coefficients (K_{DS}) constitutes an independent test on the validity of biotite properties derived in the companion paper. This exchange, given by the reaction:

\[
\text{Annite} + 3/2 \text{Enstatite} = \text{Phlogopite} + 3/2 \text{Ferrosilite}, \quad (2)
\]

which was experimentally studied by Fonarev and Konilov (1986) at $P = 4.9$ kbar, T's of 700, 750, and 800 °C and log$_{10}$f$_{O_2}$ conditions dictated by the quartz–fayalite–magnetite (QFM) oxygen fugacity (f_{O_2}) buffer. Whereas biotite from the run products was found to be homogeneous, orthopyroxene was notably inhomogeneous, comprising unreacted starting compositions, intermediate metastable, and evolved possible equilibrium compositions. Fonarev and Konilov (1986) applied a complex statistical treatment to the whole set of their experimental data to establish equilibrium relations and to define mineral compositions that likely represent equilibrium. If their experiments indeed successfully bracketed equilibrium Fe–Mg distributions remains an open question. Their data at $T = 700$ °C are shown in Fig. 2 including calculated distribution curves based on our and W14 calculations. Both types of calculations represent the experimental data within error. For a given X_{Fe}^{Opx}, however, our biotite model yields a 0.05–0.1 lower mole fraction X_{Fe}^{Bt}. This also holds for the other isothermal Roozeboom plots in the Supplementary Materials.

Biotite–garnet

The biotite–garnet exchange reaction constitutes yet another independent test on the validity of biotite properties derived in the companion paper. The experiments of Ferry and Spear (1978) Using synthetic starting materials, Ferry and Spear (1978–FS78) undertook the first experimental study of the partitioning of Fe and Mg between biotite and garnet, given by the reaction:

\[
\text{Phlogopite} + \text{Almandine} = \text{Annite} + \text{Pyrope}, \quad (3)
\]

at $P = 2.07$ kbar, T's between 550 and 800 °C (spaced in ~50 °C intervals) and oxygen fugacity buffered by the graphite–methane buffer. Because their exchange experiments were conducted with a very high molar garnet:biotite ratio (98:2), garnet composition (Alm$_{90}$Py$_{10}$ and Alm$_{80}$Py$_{20}$) remained unchanged during the experiments, which was also proven by microprobe analysis from the run products. Equilibrium was demonstrated by performing two experiments at each T, in which starting biotite had either a more Mg-rich or a more Fe-rich composition than biotite in equilibrium with garnet at this T (X_{Fe}^{Bt} in these starting biotites was 0.25, 0.5, 0.75, or 1.0). After the experiment, run products were dispersed on polished diamond surfaces, and biotite compositions were measured with a microprobe using a linear relationship between Fe and Mg X-ray intensities and concentrations (see FS78 for more details). Thus, only the Fe and Mg contents of reacted biotite grains were measured, whereas there is no information on the content of possible AlVI in biotite. Six compositional brackets were determined in such a way by FS78 through experiments with Alm$_{90}$Py$_{10}$ garnet. The equilibrated biotites were found to differ not more than 0.04 in their final X_{Fe}^{Bt} mole fractions (FS78 give an accuracy of ± 0.01 for X_{Fe}^{Bt}). As a result of increasing experimental temperatures from 550 to 800 °C, their X_{Fe}^{Bt} rose from values around 0.61–0.75, which is a change of ca. 0.15 in mole fraction X_{Fe}^{Bt} for this temperature interval of 250 °C. Two wider brackets were obtained by FS78 in experiments using Alm$_{80}$Py$_{20}$.

We have reconstructed bulk compositions for the FS78 experiments, based on the molar 98.2 garnet:biotite ratio they have used (Alm90–Ann50, Alm90–Ann75, and Alm90–Ann100, Table 1) and have calculated the equilibrium compositions of biotite and garnet at the experimental temperatures and a pressure of 2.07 kbar using Perple_X and Theriak software and our and W14 biotite thermodynamic data and solution models (note that for garnet W$_{AlmPy} = 2.5$ kJ/mol in all calculations). The results are given in Table 2 and are plotted in Fig. 3 for the case of bulk composition Alm90–Ann50. From Fig. 3a, which shows X_{Fe}^{Bt} and AlVI in biotite as a function of temperature, it can be seen that the our calculations reproduce the experimentally determined X_{Fe}^{Bt} of FS78 well within error. The W14 calculation fails to do so, it predicts a ca. 0.1 mol fraction too large X_{Fe}^{Bt}. As a consequence, lnK^{D}_{W14}, where $K^{D}_{W14} = (Mg/Fe)^{Grt}/(Mg/Fe)^{Bt}$, is consistent with all FS78 experimental lnK^{D}_{W14}-brackets, whereas lnK^{D}_{W14} is systematically lower outside the 2σ error range of the data (Fig. 3b). Both biotite models indicate an AlVI content in biotite in the order of 0.2–0.4 apfu. However, AlVI is predicted to decrease with T by our calculation and to increase with T by a W14 calculation (note that computed AlVI corresponds to the Tschermak substitution-balanced octahedral Al, i.e., Al$^{VI} = Al^{IV}$.-1).

The volume % garnet and biotite computed by Perple_X and Theriak for the experimental bulk compositions are quite similar. They amount to 1.4–2.7 vol% biotite and 96.5–96.9 vol% garnet. Additional phases predicted to be stable with biotite + garnet are orthopyroxene, olivine, quartz, and sanidine/spinel in the high-T runs. If present indeed, they were undetectable due to their predicted small amounts < 1 vol% (Table 2).
The experiments of Gessmann et al. (1997—G97) extended the FS78 work to more Mg-rich bulk compositions, by conducting the same type of exchange experiments (high garnet:biotite weight ratio of 95:5) with Alm80Py20 and Alm70Py30 garnet starting compositions, XFeBt starting compositions of 0.25, 0.4, 0.5, and 0.65, at the same pressure of P = 2.07 kbar and T’s ranging between 600 and 800 °C. They characterized garnet and biotite in their run products more comprehensively than FS78 by not only tabulating XFeBt, but also its AlVI content and XFeGrt. Similar to FS78, garnet composition remained nearly unchanged to within 0.02 mol fraction after the conclusion of an exchange experiment. The composition of biotite in G97 experiments in terms of XFeBt, equilibrated with either Alm80Py20 or Alm70Py30 garnets, is shown in Fig. 4a as a function of temperature. For comparison, the FS78 data from Table 1 are also plotted. As discussed by G97, their high-T Alm80Py30 data bear inconsistencies, which is obvious from the fact that, e.g., at 800 °C, XFeBt is larger than that of biotite equilibrated with Alm80Py20. At a given T, XFeBt in equilibrium

Table 2: Compositions of KFMASH-biotite and -garnet computed with the software Perple_X (Connolly 2005, 2009—Perp) and Thermak-Domino (de Capitani and Brown 1987—TD) for bulk compositions used by Ferry and Spear (1978—FS78) in their experimental study of the Fe/Mg exchange between garnet and biotite at P = 2.07 kbar (molar garnet/biotite ratio was 98/2, and garnet Fe/Mg ratio was 9/1 in the experiments and assumed to remained unchanged).

T [°C]	Software	Bulk	Biotite	Garnet	lnK\textsubscript{D}	Vol%									
		FS78	This study	W14	W14	FS78	This study	W14	W14	Biotite	Garnet	Other			
550	Perp	Ann75	0.620	0.615	0.704	0.346	0.177	0.904	0.902	– 1.741	– 1.773	– 1.347	2.6	96.5	Opx(0.9)
TD			0.609	0.700	0.345	0.162	0.903	0.902	– 1.786	– 1.370	2.6	96.5	Oli(0.7)qz(0.2)		
550	Perp	Ann50	0.587	0.603	0.691	0.350	0.182	0.899	0.897	– 1.811	– 1.766	– 1.357	2.6	96.5	Opx(0.9)
TD			0.597	0.685	0.345	0.166	0.898	0.897	– 1.783	– 1.385	2.6	96.5	Oli(0.7)qz(0.2)		
599	Perp	Ann75	0.645	0.646	0.734	0.318	0.192	0.903	0.901	– 1.623	– 1.626	– 1.193	2.6	96.5	Opx(0.9)
TD			0.643	0.729	0.327	0.179	0.902	0.901	– 1.633	– 1.219	2.6	96.8	Oli(0.5)qz(0.1)		

The lnK\textsubscript{D} of this exchange as well as computed volume % of minerals are given. In the calculations, the KFMASH-biotite activity model and thermodynamic standard-state data of annite, phlogopite, and eastonite of this study (part-I) were used. The activity model for KFMASH-garnet and all other thermodynamic data were those cited in White et al. (2014—W14). Analogous calculations with all thermodynamic data and activity models according to W14, are listed for comparison. The relevant T-X pseudosections are shown in Figs. 6, 7 and 8.

X\textsubscript{Fe} = Fe/(Fe + Mg); AlVI = octahedral Al (apfu, 12 oxygen formula)

bBulk compositions are given in Table 1

bOpx orthopyroxene, qz quartz, Ol olivine, sa sanidine, Spl spinel

\(X_{Fe}^{Bt}\) = Fe/(Fe + Mg); \(Al^{VI}\) = octahedral Al (apfu, 12 oxygen formula)

\(X_{Fe}^{Bt}\) = Fe/(Fe + Mg); \(Al^{VI}\) = octahedral Al (apfu, 12 oxygen formula)

\(X_{Fe}^{Bt}\) = Fe/(Fe + Mg); \(Al^{VI}\) = octahedral Al (apfu, 12 oxygen formula)

\(X_{Fe}^{Bt}\) = Fe/(Fe + Mg); \(Al^{VI}\) = octahedral Al (apfu, 12 oxygen formula)

\(X_{Fe}^{Bt}\) = Fe/(Fe + Mg); \(Al^{VI}\) = octahedral Al (apfu, 12 oxygen formula)

\(X_{Fe}^{Bt}\) = Fe/(Fe + Mg); \(Al^{VI}\) = octahedral Al (apfu, 12 oxygen formula)

\(X_{Fe}^{Bt}\) = Fe/(Fe + Mg); \(Al^{VI}\) = octahedral Al (apfu, 12 oxygen formula)

\(X_{Fe}^{Bt}\) = Fe/(Fe + Mg); \(Al^{VI}\) = octahedral Al (apfu, 12 oxygen formula)

\(X_{Fe}^{Bt}\) = Fe/(Fe + Mg); \(Al^{VI}\) = octahedral Al (apfu, 12 oxygen formula)

\(X_{Fe}^{Bt}\) = Fe/(Fe + Mg); \(Al^{VI}\) = octahedral Al (apfu, 12 oxygen formula)
with Alm₃₀Py₃₀ should be, however, systematically lower compared to X_{Fe}^{Bt} in equilibrium with Alm₈₀Py₂₀ (see G97 for further discussion and possible explanations for the deviation of their high-T Alm₇₀Py₃₀ runs). The Al^{VI} content of biotite is shown in Fig. 4a (lower part), and experimental lnK_D values of G97, and FS78 for exchange reaction (3) are plotted in Fig. 4b as a function of temperature. The experimental record shows that lnK_D gets less negative, i.e., K_D increases with increasing bulk-X_{Mg} content.

Similar as in the case of FS78 described above, bulk compositions were computed for the G97 experiments (Alm₈₀–Ann₄₀ and Alm₇₀–Ann₂₅, Table 1) and phase relationships determined with Perple_X using our and W14 calculations. The predicted mineral compositions and lnK_D from our calculation are shown as curves in Fig. 4 to allow a comparison to the experimental values, those for the W14 calculation in Fig. 5. In both figures, the results from Alm₉₀–Ann₅₀ (bulk in FS78 experiments) are also included.

The following features are noticeable from the results of our calculations: For bulk Alm₈₀–Ann₄₀, X_{Fe}^{Bt} is larger by ca. 0.05 mol fractions than most experimental values, and for Alm₇₀–Ann₂₅, the agreement is good (except for the high-T data as mentioned above, Fig. 4a). The predicted Al^{VI} content in biotite matches the measured ones above 700 °C and is somewhat larger at lower Ts. It decreases slightly with
Fig. 4 a X_{Fe}^{Bi} in equilibrium with garnet of Alm90Py10 composition (red; Ferry and Spear 1978, FS78), or of Alm80Py20 (blue) and Alm70Py30 composition (dark yellow; Gessmann et al. 1997, G97), i.e., color codes indicate subsequent lower X_{Mg} bulk compositions, as a function of temperature. Corresponding experimental lnK_{Ds} are shown in b with error bars (2σ) for the Alm70Py30 experiments. The $AlVI$ content of biotite, measured by G97 in their Alm80Py20 and Alm70Py30 experiments with a microprobe, is shown as black dots in the lower part of a. Solid lines are *Perple_X*-computed X_{Fe}^{Bi}, $AlVI$, or lnK_{Ds} from our calculations using bulk compositions of experiments, as given in Table 1. The colors of the lines indicate to which experimental data the fit corresponds to
Fig. 5 Same caption as in Fig. 4, except that solid lines represent W14 calculations.

(a)

\(X_{\text{Bio}} \) vs. \(T \) (°C) for Bt - Grt at \(P = 2.07 \text{ kbar} \) with lines representing W14 calculations.

(b)

\(\ln K_D \) vs. \(T \) (°C) for Bt - Grt at \(P = 2.07 \text{ kbar} \) with lines representing W14 calculations.
rising temperatures and increases with increasing X_{Mg} of the bulk composition, i.e., experiments with Alm70 have higher Al^{VI} than experiments with Alm80. Computed $\ln K_D^{\text{this study}}$ values agree within error with experimental ones for bulk Alm80–Ann40, whereas for bulk Alm70–Ann25, this is only the case at 600 $^\circ$C. A slight dependence of $\ln K_D^{\text{this study}}$ on bulk composition is visible in the form that it gets less negative (i.e., K_D increases with increasing bulk X_{Mg}).

The most obvious differences of $W14$-calculated to experimental mineral–chemical data of biotite (Fig. 5) are the following: The agreement of X_{Fe}^{Bt} with experimental values is good only for bulk Alm70–Ann25 (Fig. 5a), but gets increasingly poor for Alm80–Ann40 and especially for Alm90–Ann50 (FS78 experiments, as already discussed above). The same applies accordingly for $\ln K_D^{W14}$, and its dependence on bulk-X_{Mg} is the reverse of that noticed above for our calculations (Fig. 5b). The predicted Al^{VI} content is in good agreement with the measured ones.

Fig. 6 $T-X_{FeO/(FeO+MgO)}$ pseudosection computed at $P=2.07$ kbar with Perple_X ($this\ study$ calculation) in the KFMASH system, H_2O in excess, bulk given in Table 1), relevant to illustrate phase relations in the Fe–Mg exchange experiments between biotite and garnet of Ferry and Spear (1978, FS78) and Gessmann et al. (1997, G97). Purple vertical lines indicate the experimental bulk compositions. Note that cordierite bearing assemblages would be stable in G97 bulks. The color of phase assemblage fields indicates the thermodynamic variance of the equilibria. White = divariant fields, light gray = trivariant, and dark gray = quadrivariant. Adjacent fields always differ by at least one phase. In other words, adjacent fields always differ in their variance by one degree of freedom. Therefore, adjacent fields, which have the same color, have thin fields in between them containing both phases which differ in the adjacent fields. For example, in the case of adjacent divariant fields, a univariant reaction line separated the two fields. Fields separated by a point differ by two phases. These phase diagram rules apply for all subsequent pseudosections (Figs. 7, 8, 10, 11, 13, 14)
amphibole), with molar $X_{Fe}^{bulk} = FeO/(FeO + MgO)$ ranging between 0.5 and 1.0 and temperatures from 550 to 800 °C to illustrate computed phase relations relevant for the FS78 and G97 exchange experiments (X_{Fe}^{bulk} in FS78 and G97 is shown as vertical purple lines). The pseudosection shows that FS78 experimented in a range where biotite + garnet are stable at most T’s co-existing with orthopyroxene (in small amounts < 1 vol%, Table 2). At lowest T, chlorite (Chl) and T_{G97} that orthopyroxene needles appear in their high-variance 3-phase garnet + biotite + orthopyroxene field, where vol% orthopyroxene is very low (< 1 vol%) and thus not reported—the computed vol% of cordierite + sillimanite + sanidine + quartz is metastable with respect to cordierite + sanidine.

If cordierite, chlorite, staurolite, and orthoamphibole are excluded, a T-X_{Fe}^{bulk} pseudosection results as shown in Fig. 7a (our calculation). The biotite + garnet + orthopyroxene field extends to lower bulk-X_{Mg}, covering now also G97 experiments with Alm80Py20 (bulk Alm80–Ann40 in Table 1). For bulk Alm70–Ann25, low-variance 5-phase assemblages are predicted with garnet + biotite + orthopyroxene ± additional spinel, andalusite, or quartz. Noteworthy, biotite is not stable for this bulk composition at 800 °C, which might explain the deviation of experimental high-T lnK_D values from the lnK_D vs. T trend as defined by the lower temperature experimental data (Fig. 5b, G97, their Fig. 11). Compared to the high-variance 3-phase garnet + biotite + orthopyroxene field, where vol% orthopyroxene is very low (< 1 vol%) and thus experimentally not detectable, the amount of orthopyroxene for the Alm70–Ann25 bulk composition is much larger (20–40 vol%), which is consistent with the observation of G97 that orthopyroxene needles appear in their high-T runs for this bulk composition.

Isopleths for X_{Fe}^{Bi} and AlVI in biotite are also plotted in the T-X_{Fe}^{bulk} pseudosection of Fig. 7a. X_{Fe}^{Bi} isopleths are relatively steep, so that, as observed in the FS78 experiments, X_{Fe}^{Bi} increases by only ~0.13 mol fractions over the whole temperature range from 550 to 800 °C. The mole fractions X_{Fe}^{Bi} as measured in the FS78 experiments are indicated as purple numbers next to the purple vertical line, which indicates the bulk composition of the experiments. These X_{Fe}^{Bi} are the mean of the equilibrium brackets of FS78 (exact experimental X_{Fe}^{Bi} values are also mentioned in Table 2). Comparison of the calculated X_{Fe}^{Bi} isopleths with these experimental values provides a direct test for internal consistency with the FS78 experiments. Figure 7a shows the near perfect agreement of our calculation in terms of X_{Fe}^{Bi}.

There exists a considerable debate on the likely AlVI content of biotite in FS78 experiments (see Holdaway 2000, and discussion therein). FS78 themselves suppose that approximately 6% of octahedral cations in their synthetic Ann100 could be Al. The AlVI isopleths have a negative slope in the garnet + biotite + orthopyroxene 3-phase field, and AlVI is predicted to decrease with increasing T for a given bulk composition. This means that FS78 biotites were very likely (a) not as Al-rich as those analyzed by G97, (b) not AlVI-free nor contained only minor AlVI, as assumed in various works analyzing the garnet–biotite exchange data (e.g., Kleemann and Reinhardt 1994; Powell and Holland 1999; Holdaway 2000), but incorporated octahedral Al in the order of 0.25–0.35 apfu (Fig. 4a, Table 1). This conclusion holds also based on a W14 calculation for which the predicted AlVI level would be around 0.2 apfu for FS78 biotites (Fig. 5a, Table 1).

We have also calculated the equivalent pseudosection of Fig. 7a with an alternative version of our biotite model, which uses a single symmetric interaction parameter to describe the enthalpy of mixing behavior along the Ann–Phl binary instead of two interaction parameters as in our original asymmetric model. As shown in part-I, assuming a symmetric interaction parameter in the single inversion least-squares procedure to derive calibrated parameters for our biotite model also leads to changes in $\Delta H_{f,Ann}$, the pseudosection calculated with this $\Delta H_{f,Ann} = -5136.7 \pm 2.1$ kJ/mol and $W_{AnnPhl} = 9.3 \pm 1.8$ kJ/mol (3-site cation basis) is shown in Fig. 7b and indicates that a symmetric model has X_{Fe}^{Bi} isopleths, which disagree with the experimental X_{Fe}^{Bi} in the order of 0.1 molar fraction. To achieve consistency with the experimental data of FS78 on the Fe–Mg distribution between biotite and garnet, one needs to apply a rather unrealistically large non-ideality for Fe–Mg mixing in garnet ($W_{Fe}^{G} = 12$ kJ/mol, 3-site cation basis). Therefore, this symmetric model is not internally consistent with FS78 and not further considered in this paper.

We have used a $W_{Fe}^{G} = 5$ kJ/mol (one-site basis) in our single inversion least-squares procedure to derive parameters for biotite from the thermodynamic analysis of the biotite–olivine Fe–Mg exchange data of Zhou (1994). However, the studies of Sack (1980) and Sack and Ghiorso (1989) point to a larger Fe–Mg non-ideality in olivine of $W_{Fe}^{G} = 10$ kJ/mol (one-site basis). In part-I, we have used this mixing parameter of olivine to derive two alternate biotite models, one with symmetric and the other with asymmetric Fe–Mg mixing in biotite. The symmetric model has a $W_{PhlAnn,sym} = 26.0 \pm 1.7$ kJ/mol and an associated different $\Delta H_{f,Ann} = -5142.7 \pm 2.1$ kJ/mol. For the asymmetric
case, $W^{G}_{\text{PhiAnn}} = 0.9 \pm 6.1$ kJ/mol, $W^{G}_{\text{AnnPhi}} = 36.4 \pm 2.4$ kJ/mol, and the associated $\Delta H^{f}_{\text{Ann}} = -5136.2 \pm 1.7$ kJ/mol.

Figure 7c, d shows the pseudosections, equivalent to Fig. 7a, computed with these alternate biotite models (calibrated with $W^{G}_{\text{FoFa}} = 10$ kJ/mol, one-site basis). The X_{Fe} isopleths of both these models show considerable disagreement with the experimental X_{Fe} and are therefore not considered to be consistent with the FS78 experiments. Even when one changes W^{G} and W_{14} calculation, no agreement closer than 0.1 molar fraction to the experimental value can be found. These biotite models, based on W^{G}_{FoFa} around 10 kJ/mol, are thus not further considered in this paper.

Finally, we compared our biotite model with the W14 biotite model. The dependence of $\ln K_D$ of the garnet–biotite Fe–Mg exchange reaction (Eq. 3) on bulk composition is shown in Fig. 8, which is the same T-X_{Fe} pseudosection as drawn in Fig. 7a, but with contours of $\ln K_D$, computed for both cases of an our and a W14 calculation. In the low-variance fields, $\ln K_D$ is constant as a function of bulk composition and only temperature-dependent ($X_{\text{Fe}}^{\text{bulk}} < 0.75$). In the high-variance fields toward more Fe-rich bulk compositions, $\ln K_D$ contours become increasingly convex in case of our calculations which means that $\ln K_D$ values get less negative with increasing bulk X_{Mg} at constant temperature, in accordance with the experimental evidence. For the FS78 bulk composition, the experimentally determined $\ln K_D$ values of FS78 (Table 2, Fig. 3b) can be directly read from the $\ln K_D$ isopleths in Fig. 8. From the computed bulk composition dependence of $\ln K_D$, which can be seen in Fig. 8, it is also clear that the calibration of FS78 will overestimate temperatures when applied to more Mg-rich bulks compared to the experimental one when such a bulk compositional effect is not considered. A $\ln K_D$ of ~1.4, for example, means a temperature of ca. 675 °C for the FS78 bulk composition (at 2.07 kbar), but corresponds to a by ca. 23 °C lower temperature when bulk X_{Mg} increases by ca. 0.1 mol fractions (Fig. 8). It is thus not surprising that it was noted in the literature that the FS78 calibration appears to overestimate metamorphic temperatures (e.g., Chipera and Perkins 1988; Kleemann and Reinhardt 1994). The effect of retrograde net transfer equilibria on garnet–biotite geothermometry could also play a role, but was not considered in these papers.

The $\ln K_D$ isopleths from a W14 calculation are nearly similar to those obtained from our calculations in the low-variance fields at $X_{\text{Fe}}^{\text{bulk}} < 0.75$. At more Fe-rich bulk compositions, however, $\ln K_D^{W14}$ contours take a concave form and predict $\ln K_D$’s inconsistent with the experimental data of FS78 and the bulk composition dependence of the distribution coefficient (Fig. 4b).

The experiments of Perchuk and Lavrent’eva (1983) Perchuk and Lavrent’eva (1983—PL83) studied the Fe–Mg exchange equilibria between cordierite, garnet, and biotite experimentally using mostly natural starting materials at $P = 6$ kbar and T’s from 575 to 950 °C and f_{O2} as defined by the Nickel–Nickel-oxide buffer. The large number of experiments over a wide range of Fe–Mg mineral compositions ($X_{\text{Mg}}^{\text{Gr}} = 0.05–0.76$, $X_{\text{Mg}}^{\text{Bt}} = 0.22–0.83$) is a major benefit of their work. A drawback is, however, that their natural run products, with grain sizes of up to 300 µm, were strongly zoned. Equilibrium between biotite and garnet was approached by experiments with starting compositions on opposite sides of the Fe–Mg distribution curve, and the most shifted compositions were assumed to represent equilibrium values (see PL83 for more details on their method to estimate equilibrium compositions). A further complication in their experiments is the fact the natural minerals used for the study contained CaO and MnO in the order of up to 4 wt% in the case of garnet and TiO$_2$ (1–2 wt%) in the case of biotite. The Al content of equilibrated biotites were not measured by PL83, but were so at a later stage by Aranovich et al. (1989) for a subset of the PL83 biotites (their Table 2, 27 data). The Al level in these biotites is rather uniform, with AlIV in the range 0.32–0.42 apfu (Fig. 9b). The resulting $\ln K_D$ of the garnet–biotite equilibrium is plotted as a function of temperature in Fig. 9a, including 2σ-error bars, calculated based on the assumption that measured mole fractions of garnet and biotite have a 2σ-error of 0.02.

In their experiments conducted at 700 °C, PL83 used a weight ratio of biotite:garnet:cordierite = 2:1:1. From the data given in Tables 2 and 6 on the chemistry of starting materials, we have constructed a bulk composition that should represent at least part of their numerous 700 °C runs. With an $X_{\text{Fe}}^{\text{bulk}} = 0.4$, it is more Fe-poor than the exchange experiments of FS78 and G97 (Table 1). At $P = 6$ kbar, the computed P–T pseudosection our calculation with PerpleX, excluding chlorite, staurolite, orthoamphibole and chloritoid) shows a garnet–biotite–cordierite 3-phase field between 660 and 800 °C. Additionally, minor amounts of spinel and quartz (<1 vol%) are predicted at higher and lower T’s, respectively, indicating that the experimentally studied garnet + biotite + cordierite assemblage is stable at the P–T conditions applied by PL83. The predicted AlIV content of biotite in the biotite–garnet–cordierite assemblage from our calculations is in good agreement with the measured values up to 800 °C and somewhat lower for the highest temperature data (Fig. 9b). Modeled $\ln K_D$ for both our and a W14 calculation is very similar when plotted against temperature (Fig. 9a). The $\ln K_D$ vs. T slope is, however, flatter than the experimental trend, so that agreement with the experimental K_D’s is poor above ~800 °C. We also tested another bulk composition, namely that in the 900 °C runs of PL83, where the biotite:garnet:cordierite weight ratio was 3:1:1 and found the same result, i.e., their highest-T brackets could not be reproduced by our nor by a W14 calculation.
Pseudosection of an average metapelite

White et al. (2014) have constructed a P–T pseudosection for an average metapelite bulk composition in the KFMASH system. We have adopted their model pelite bulk composition (Table 1) and compared the P–T pseudosection resulting from our with an analogous W14 calculation in Fig. 10a, b (see also W14, their Fig. 4). As already outlined above, the difference in topologies is thus merely the effect of using our biotite activity model (Table 8, part-I), as well as thermodynamic data of biotite endmembers from part-I (Table 9), all other data being the same. Generally, the change in topology is not very pronounced. Noteworthy is that high-pressure stability fields are shifted to somewhat lower
pressures based on our calculations (e.g., chlorite + phengite + quartz, biotite + garnet + phengite + quartz) and the high-temperature fields (e.g., cordierite + biotite + sodalite + quartz, biotite + sanidine + sillimanite + quartz) to lower temperatures. This makes the low-variance fields larger. Low-variance fields are good for thermobarometry, as the chemical potentials of the chemical components are fixed by the presence of the many co-existing phases. This means that the current biotite model can be used to more precisely estimate pressures and temperatures over a more extensive \(P, T \) range. Using the same model petite composition, we also made a \(T-X_{Fe} \) pseudosection (our calculation at \(P = 6 \) kbar, Fig. 11a). Low-variance fields involving garnet come in at \(X_{Fe}^{bulk} \) of ca. 0.6–0.7 above ~570 °C, whereas more Fe-rich bulks (\(X_{Fe} \) around 0.8–0.9) are required to stabilize these assemblages according to a \(W14 \) calculation (Fig. 11b). Note that \(Al^{VI} \) isopleths all become flat in the \(T-X \) pseudosection in the low-variance fields showing their independence on bulk composition. Considering isopleths of the \(Al^{VI} \) content in biotite from our biotite model (note that \(Al^{VI} = Al^{IV} - 1 \)), these show an exponential drop at very Mg-rich compositions as a function of \(X_{Fe}^{bulk} \) in the range 0–0.2), i.e., \(Al^{VI} \) is extremely bulk \(X_{Fe} \) dependent, merging into flat, slightly negative slopes toward more Fe-rich bulks (with \(X_{Fe}^{bulk} > ca. 0.4 \)). The isopleths of \(Al^{VI} \) increase with \(T \) toward higher metamorphic grades (temperature), this difference of ca. 0.2 \(Al^{VI} \) apfu between \(W14 \) and in this study computed \(Al^{VI} \) decreases. A remarkable feature of almost all of the 450 natural biotites from Maine (and probably for metamorphic biotite in general) is the fact that these contain appreciable amounts of excess \(Al^{VI} \), i.e., \(Al^{VI} \) in excess to that balanced by the Tschermaks substitution (Fig. 12, blue dots). The data for this excess \(Al^{VI} \) cluster around 0.1–0.25 apfu at roughly 1:1 Fe:Mg ratios, and its values seem to increase in Mg-rich bulk compositions. It is obvious from Fig. 12 that biotite activity models should account for this presence of excess \(Al^{VI} \) by introducing, e.g., a muscovite- or a K-vacancy component. We will do this in a forthcoming paper that presents a comprehensive biotite activity model extending that of this study to include excess \(Al^{VI} \), Ti, and Fe\(^{3+} \) biotite endmembers.
Pseudosections of natural rocks in the KFMASH system

In this section, we use our KFMASH-biotite model to model two natural rocks, one who has experienced high-T, low-P conditions, and another one that has experienced high-P, low-T conditions. These two rocks have been modeled in the past in the KFMASH system using the predecessors of the $W14$ biotite model, i.e., the high-T, low-P rock by Pitra and de Waal (2001) and Tajčmanová et al. (2009) and the high-P, low-T rock by Wei and Powell (2003). These examples, therefore, merely show how the relationships between phases change with our model compared to the $W14$ biotite model in the KFMASH system. They cannot be used for validation of our biotite model, because the addition of Fe$^{2+}$, Ti, di–tri-octahedral Al substitutions will modify the results and will increase the number of phases in the mineral assemblage. As mentioned above, this extended chemical system will be explored in a forthcoming paper. Therefore, the results discussed in this paragraph should be seen as resulting from a model in progress.

Pseudosection of a high-T-low-P metapelite

Pitra and de Waal (2001) (PdW) studied phase relations in high-T, low-P metapelites enclosed in granites of the Bushveld Complex using the simplified KFMASH system. They described an early paragenesis with andalusite (chiastolitic) + cordierite + biotite + quartz ± garnet recording P–T conditions of 550–600 °C and 2 kbar as was calculated by KFMASH pseudosection thermobarometry. This assemblage was transformed into a peak paragenesis containing garnet + sanidine + cordierite + biotite ± quartz and subsequently into spinel–cordierite symplectites (replacing earlier chiastolitic and) in a 2nd high-T event. This peak event was estimated to have occurred at 750–800 °C, again, based on the interpretation of KFMASH pseudosections in their original study. This heating event is attributed to the emplacement of nearby dry and hot A-type granites.
According to PdW, AlVI in biotite should range between 0.31 and 0.52 in the sanidine + cordierite + biotite + quartz (± garnet) stability fields. Tajčmanova et al. (2009) recalculated in their Fig. 2a KFMASH P–T pseudosection for sample X567 of PdW. Because they found that AlVI (= X_{Al}^{VI}) in biotite was too high in these fields compared to that expected, they changed the enthalpy of the Fe–Mg ordering reaction 2/3 phlogopite + 1/3 annite = ordered Fe–Mg biotite (Obi, see part-I) to −6.8 kJ/mol to achieve a better agreement with the natural observations. Here, we demonstrate that such a change in the ordering enthalpy, which they had used as a fitting parameter, is not necessary and that the observations are readily explained by either our new model or the W14 model which both use an enthalpy of ordering of −2 kJ/mol.

Performing our and W14 calculations to sample X567 under water-saturated conditions (bulk given in Table 1) yields the P–T pseudosections shown in Fig. 13a, b. Both are consistent with the petrographic evidence of the first low-T metamorphic event, i.e., show a stability field for the early paragenesis (andalusite + cordierite + biotite + quartz ± garnet) followed by biotite + cordierite + sanidine + quartz with rising temperatures. However, in the W14 calculation, the wet solidus is already reached before the peak metamorphic assemblages could be established, i.e., garnet + cordierite + biotite + sanidine and finally cordierite + spinel parageneses at the highest T. In contrast, in our calculation, biotite breaks down at lower T (blue line in Fig. 13a). As biotite is no longer part of the assemblage, the melting temperature of the remaining mostly ‘dry’ minerals at water-saturated conditions is increased, and melt forms at about 50° higher. Because of this, the garnet + cordierite + biotite + sanidine and finally cordierite + spinel parageneses are established without any melt involvement. This example shows that the choice of biotite model in the KFMASH system can have a large effect on when partial melting would take place.

In the W14 (and PdW) calculation, the peak assemblages are metastable with respect to melt. Large-scale melting would form leucosomes, and these were not observed by PdW. Suprasolidus relationships resulting from the W14
Fig. 10 P–T pseudosection in the KFMASH system for an ‘average metapelite’ (Table 1) resulting from a our calculation, compared to b a W14 calculation (White et al. 2014, their Fig. 4). Subsolidus equilibria are calculated under water-saturated conditions, while suprasolidus equilibria were calculated with a fixed bulk H_2O of 6.65 mol%
Fig. 11 T-$X_{\text{FeO/(FeO+MgO)}}$ pseudosection in the KFMASH system for the ‘average metapelite’ shown in Fig. 11 under water-saturated conditions. Iso-pleths are Al^{VI} (apfu) in biotite. a is based on our calculation; b on a W14 calculation
calculation using 7 wt% H₂O (the amount that was needed to replicate wet solidus) gives unrealistic estimates between 5 and 10 vol% melt for the garnet–cordierite–biotite–sanidine–melt assemblages (Fig. 13b). Therefore, the W14 (and PdW) calculation requires a lowering of the H₂O activity to get to the right-phase assemblages. Dry conditions were also inferred by PdW due to the preservation of contrasting parageneses, by the presence of symplectites (rapid nucleation, slow growth), and by the absence of fibrous sill. To simulate dry conditions, a log₁₀(аH₂O)-T pseudosection was constructed (Fig. 13a) at 2.6 kbar (the peak P inferred by PdW) using our calculations and at 3.2 kbar using a W14 calculation. The purple isobaric lines in the pseudosection in Fig. 13b and the one in the log₁₀(аH₂O)-T pseudosection below are the same states at their respective pressure and water-saturated conditions with an H₂O activity of 1 (log₁₀(1) = 0). As is well known, the lowering of water activity (a) decreases the T of dehydration reactions and (b) increases the T of melting reactions. However, the magnitude of these effects does depend on the details of both biotite solution models as shown by the log₁₀(аH₂O)-T pseudosection.

PdW report that biotite in the garnet–cordierite–biotite–sanidine–melt assemblages has X_{Fe}^{Bi} = 0.75–0.81, X_{Fe}^{Crd} = 0.64–0.69 and X_{Fe}^{Grt} = 0.90–0.92. The microprobe analysis of matrix biotite from sample X567 gives Al^{VI} = 0.48 apfu and X_{Fe}^{Bi} = 0.78 (PdW, Table 2). In both the P–T and log₁₀(аH₂O)-T plots of Fig. 13a, the Al^{VI} isopleths of biotite are given. At 2.6 kbar, T = 667 °C, and log(аH₂O) = −0.33, the computed compositions (X_{Fe}^{Bi} = 0.73, Al^{VI} = 0.43 apfu, X_{Fe}^{Crd} = 0.65, X_{Fe}^{Grt} = 0.92) come nearest to the observed ones and only X_{Fe}^{Bi} and Al^{VI} are lower by ca. 0.02 and 0.04 mol fractions compared to measured compositions, respectively.

The W14 calculations show that under lower water activities, the solidus is moved to higher temperatures, and the garnet–cordierite–biotite–sanidine and finally cordierite + spinel parageneses form before melting occurs. For a W14 calculation, the best agreement with mineral-chemical data for sample X567 is obtained at a higher pressure of 3.2 kbar, T = 727 °C, and log(аH₂O) = −0.1: X_{Fe}^{Bi} = 0.80, Al^{VI} = 0.40 apfu, X_{Fe}^{Crd} = 0.65, and X_{Fe}^{Grt} = 0.9.

At this moment, we have no means to say which of the models performs better as we have only worked in the simplified pelitic KFMASH system and tried to apply this to a chemical complex natural system. Validation of either model is not possible. However, the example does clearly show how the biotite model parameters of either model can result in quite different P–T-ah₂O pathways the rock could have undertaken. A typical question for many high-T, low-P studies is if dry conditions were reached before (partial) melting takes place, i.e., if water-saturated conditions prevailed, as is often assumed for prograde metamorphism. The earlier breakdown of biotite, which was also demonstrated by the model pelite system in KFMASH from the last paragraph, as shown by this example will influence at which temperature partial melting will start. It shows that biotite influences when dry conditions are reached as no dehydration is expected after the biotite-out curve. This example, therefore, shows that the important role biotite has in solving this question. Our new biotite model predicts, in the KFMASH system, in contrast to the W14 model, that biotite breaks down at lower temperatures before partial melting starts, which would move the (now dry) solidus to higher temperatures.

Figure 12: Plot of octahedral Al of biotite as a function of its X_{Mg} = Mg/(Mg + Fe) content for 450 biotites from low- to high-grade metapelitic samples from northwest Maine. Al^{VI} is the total octahedral Al (black); Al^{IV}–1 is the Tschermak substitution-balanced octahedral Al (red), and excess Al^{VI} is the difference between the two (blue, all in apfu). Solid red lines define a band of tetrahedral rotation angles between 7° and 9°, respectively (Benisek et al. 1999). The extent of the Tschermak substitution in natural biotites seems to concentrate in this field. See text for further discussion.
It cannot be repeated enough that the results from this paragraph are for the KFMASH system only. The addition of Fe$^{3+}$, Ti, di–tri-octahedral Al substitutions could potentially modify these results.

Pseudosection for a high-P low-T metapelite

As an example of our calculations on a high-P, low-T metapelite, we show phase relations for a garnet–phengite–biotite gneiss (sample M4, from the Dabie Shan area, central China), studied by Wei and Powell (2003), their Fig. 10 in Fig. 14a and compare it to an analogous W14 computation (Fig. 14b) in the KFMASH system. Both P–T pseudosections, constructed with the KFMASH bulk composition, estimated by WP03 for sample M4 (Table 1) appear almost identical concerning the distribution of stability fields of the mineral assemblages. The biotite-out (blue) line in our calculation occurs at about 1–2 kbar lower pressures. With regard to biotite, in KFMASH, isopleths of AlVI show decreasing values with increasing pressure in both types of calculations. The parallelism between the Si content of phengite, a known barometer (Wei and Powell 2003), and biotite’s AlVI content in biotite is striking and raises the hypothesis that AlVI is a pressure indicator in KFMASH, especially in low-variance assemblages, such as garnet–chlorite–biotite–phengite–quartz, where it becomes independent of bulk composition, as many of the compositional degrees of freedom are fixed by the mineral assemblage. However,
before we can make any generalizations and before we start testing the hypothesis that AlVI is a pressure indicator also in more complex chemical systems, we first need to extend our biotite model to incorporate Ti, Fe³⁺, and the di–tri-octahedral substitution.

Conclusions

The application of our new biotite activity model and standard-state thermodynamic properties of Ann, Phl, and Eas presented in part-I to experimental phase equilibria and natural pelitic rocks, using mainly the software Perple_X, allows the following conclusions to be drawn:

- Biotite in the experimental Fe–Mg exchange data between biotite and olivine (Zhou 1994) had no or only minimal AlVI, which is confirmed by pseudosection calculations with the experimental bulk composition. To extract, e.g., annites’ standard enthalpy of formation value, Zhou’s data are superior to existing biotite–orthopyroxene or biotite–garnet exchange data, because the extent of Tschermak substitution in biotite in the latter is not negligible.

- The Fe–Mg distribution between biotite–garnet, biotite–garnet–cordierite, and biotite–orthopyroxene are independent tests of the validity of our calculations presented herein. The biotite–orthopyroxene and Fe–Mg exchange equilibria between cordierite, garnet, and biotite are reasonable modeled by either our and W14 biotite models. However, the new biotite a–X relations in combination with the new enthalpy of formation value of biotite end-members, as derived in part-I (Tables 7, 8), unlike the W14 biotite, successfully reproduce the FS78 experimental data. The resulting $\ln K_D$ values as a function of temperature are in good agreement with the experimental brackets of FS78s bulk composition of Alm90Py10 experiments (Figs. 3, 7, 8). The alternate biotite models, calibrated with symmetric W^G_{PhlAnn} and/or models that used W^G_{Fofa} around 10 kJ/mol (one-site basis) in the thermodynamic analysis of olivine–biotite Fe–Mg exchange data from Zhou (1994) to derive W^G_{PhlAnn} are not compatible with FS78 experiments.

- Our calculations pertinent to the garnet–biotite reaction with more Mg-rich bulk compositions yield less negative $\ln K_D$’s in accordance with experimental evidence [experiments of Gessman et al. (1997), with Alm30Py20 and Alm30Py30 as exchange partner of biotite, Fig. 4]. W14 calculations show the opposite trend (Fig. 5). The dependence of $\ln K_D$ on bulk-XMg is shown in a T–XMg pseudosection, which makes clear that the calibration of FS78 only applies to Fe-rich bulk compositions as used in the experiments and will yield too high temperatures when applied to more Mg-rich bulks far outside the experimental range.

- The predicted AlVI contents for our as well as W14 calculations in biotite for G97 experimental bulk compositions ranges between ca. 0.3 and 0.45 apfu and are both in good agreement with measured values of G97 (microprobe data). Analogous computations for the somewhat Fe-richer FS78 bulk compositions indicate that also biotite in the FS78 exchange experiments contained AlVI in the same order of ca. 0.3–0.4 apfu. Various speculations and assumptions on the extent of the Tschermak substitution in FS78 biotites (e.g., Holdaway 2000) can now be refuted based on this computational evidence. This is further supported by calculations with a more Mg-rich bulk composition as was used by PL83 in part of their biotite–garnet–cordierite Fe–Mg exchange experiments ($X_{\text{Mg}}^\text{bulk} = 0.4$). The predicted Al content of biotite is also in accordance with the measured one in this case for both our and W14 calculations (Fig. 9).

- Low variance fields in KFMASH pseudosection for an average metapelitic rock (Fig. 10) are shifted by ca. 50 K to lower T’s at high-T, low-P conditions and to lower P at higher P conditions as a result of the new biotite activity model and annite standard state properties. The relative increase of low-variance fields over high-variance fields containing biotite shows its increased potential for (pseudosection) thermobarometry, as, in these fields, the exchange relationships between the phases are mainly dependent on P, T and not on the bulk composition.

- As shown for the Maine biotites (Fig. 12), Tschermak substitution-balanced octahedral Al (i.e., AlIV − 1) in natural biotites increases slightly with increasing X_{Fe}^Bt, a trend already noted by Benisek et al. (1999). This trend and the amount of this ‘Tschermak’–AlVI are correctly predicted for an average pelite bulk composition using the new biotite activity model and annite standard state properties (Fig. 11). It seems to be related to the fact that tetrahedral rotation angles between 7° and 9° are energetically favored in the biotite structure.

- The upper thermal stability of biotite is reduced using our biotite model in KFMASH. This means that biotite can already break down before the wet solidus is reached. Partial melting would then depend on the dry solidus, which occurs at higher temperatures. It is often assumed that biotite dehydration reactions occur until the wet solidus is reached and, therefore, that water-saturated conditions can be assumed in the prograde path. Our biotite model questions that assumption in the KFMASH system.

- The upper pressure stability of biotite is reduced resulting from our calculations. Biotite AlVI shows some potential as a barometer in the KFMASH system, especially in low-variance assemblages.
Fig. 14 P–T pseudosection in the KFMASH system for a high-pressure metapelite (sample M4), studied by Wei and Powell (2003), resulting from our calculation, compared to a W14 calculation. The phase equilibria are calculated assuming water and quartz saturated conditions (i.e., the activity of water and quartz are set to 1). A blue line indicates the breakdown of biotite. The red line is the wet solidus. Black broken lines show the AlVI (apfu) in biotite. Colored lines show the Si-in-phengite (white mica), which has been used as a barometer in earlier studies (e.g., Wei and Powell 2003)
• There is a high need to extend the current model to incorporate Ti, Fe$^{3+}$, and the di–tri-octahedral substitution to see if the relationships that we have found for our natural rocks in the KFMASH system hold in more complex chemical systems.

Supplementary Information The online version contains supplemental material available at https://doi.org/10.1007/s00410-020-01771-4.

Funding Open Access funding provided by Paris Lodron University of Salzburg. The funding was received by Austrian Science Fund (Grant no. P28724).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aranovich LY, Lavrent’eva IV, Kosyakova NA (1988) Calibration of the biotite-garnet and biotite-orthopyroxene geothermometers corrected for the variable Al level in biotite. Geokhimiya 5:668–676
Aranovich LY, Podlesskii KK (1989) Geothermobarometry of high-grade metapelites: simultaneously operating reactions. Geological Society, London, Special Publications 43(1):45–61
Benisek A, Dachs E, Cemic L (1999) Heat capacities of Tschermak biotite. Contrib Mineral Petrol 135:53–61. https://doi.org/10.1007/s004100050497
Berman RG, Aranovich LY, Rancourt DG, Mercier PHJ (2007) Reversed phase equilibrium constraints on the stability of Mg–Fe–Al biotite. Am Mineral 92:139–150. https://doi.org/10.2138/am.2007.2051
Chipera SJ, Perkins D (1988) Evaluation of biotite–garnet–geothermometers: application to the English River subprovince, Ontario. Contrib Mineral Petrol 98:40–48. https://doi.org/10.1007/BF00371908
Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541. https://doi.org/10.1016/j.epsl.2005.04.033
Connolly JAD (2009) The geodynamic equation of state: what and how. Geochem Geophys Geosyst. https://doi.org/10.1029/2009GC002540
de Capitani C, Brown TH (1987) The computation of chemical equilibria in complex systems containing non-ideal solutions. Geochem Cosmochim Acta 51:2639–2652. https://doi.org/10.1016/0016-7037(87)90145-1

de Capitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theraik/Donino software. Am Mineral 95:1006–1016. https://doi.org/10.2138/am.2010.3354
Ferry JM, Spear FS (1978) Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib Mineral Petrol 66:113–117. https://doi.org/10.1007/BF00372150
Fonarev VI, Konilov AN (1986) Experimental study of Fe–Mg distribution between biotite and orthopyroxene at P = 490 MPa. Contrib Mineral Petrol 93:227–235. https://doi.org/10.1007/BF00371325
Foster MD (1960) Interpretation of the composition of trioctahedral micas. US Geol Surv Prof Pap B 354:1–49. https://doi.org/10.3133/pp354B
Gessmann CK, Spiering B, Raith M (1997) Experimental study of the Fe–Mg exchange between garnet and biotite; constraints on the mixing behavior and analysis of the cation-exchange mechanisms. Am Mineral 82:1225–1240. https://doi.org/10.2138/am-1997-11-1218
Guidotti CV, Cheney JT, Conatore PD (1975) Interrelationship between Mg/Fe ratio and octahedral Al content in biotite. Am Mineral 60:849–853
Holdaway MJ (2000) Application of new experimental and garnet Margules data to the garnet–biotite geothermometer. Am Mineral 85:881–892. https://doi.org/10.2138/am-2000-0701
Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic database for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.x
Kleemann U, Reinhardt J (1994) Garnet–biotite thermometry revisited: the effect of AlVI and Ti in biotite. Eur J Mineral 6:925–942. https://doi.org/10.1127/ejm/6/6/0925
Perchuk LL, Lavrent’eva IV (1983) Experimental investigation of exchange equilibria in the system cordierite–garnet–biotite. In: Saxena SK (ed) Kinetics and equilibrium in mineral reactions. Springer, New York, pp 199–239. https://doi.org/10.1007/978-1-4612-5587-1_7
Pitra P, de Waal SA (2001) High-temperature, low-pressure metamorphism of high pressure metapelites: simultaneously operating reactions. Geological Society, London, Special Publications 43(1):45–61
Powell R, Holland TJB (1999) Relating formulations of the thermodynamics of mineral solid solutions: activity modeling of pyroxenes, amphiboles, and micas. Am Mineral 84:1–14. https://doi.org/10.2138/am-1999-1-201
Robinson PR, Hollocher KT, Tracy RJ, Dietsch CW (1982) High grade Acadian regional metamorphism in south-central Massachusetts. In: Joesten R, Quarrier S (eds) NEIGC 74th Annual Meeting. Storrs, Connecticut, pp 289–340
Sack RO (1980) Some constraints on the thermodynamic mixing properties of Fe–Mg orthopyroxenes and olivines. Contrib Mineral Petrol 71:257–269. https://doi.org/10.1007/BF00371667
Sack RO, Ghiorso MS (1989) Importance of considerations of mixing properties in establishing an internally consistent thermodynamic database: thermochemistry of minerals in the system Mg$_2$SiO$_4$–Fe$_2$SiO$_4$–SiO$_2$. Contrib Mineral Petrol 102:41–68. https://doi.org/10.1007/BF01160190
Tajčmanová L, Connolly JAD, Cesare B (2009) A thermodynamic model for titanium and ferric iron solution in biotite. J Metamorph Geol 27:153–165. https://doi.org/10.1111/j.1525-1314.2009.00812.x
Wei C, Powell R (2003) Phase relations in high-pressure metapelites in the system KFMASH (K$_2$O–FeO–MgO–Al$_2$O$_3$–SiO$_2$–H$_2$O) with...
application to natural rocks. Contrib Mineral Petrol 145:301–315. https://doi.org/10.1007/s00410-003-0454-1

White RW, Powell R, Clarke GL (2002) The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K₂O–FeO–MgO–Al₂O₃–SiO₂–H₂O–TiO₂–Fe₂O₃. J Metamorph Geol 20:41–55. https://doi.org/10.1046/j.0263-4929.2001.00349.x

White RW, Powell R, Holland TJB (2014) New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286. https://doi.org/10.1111/jmg.12071

Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Miner 95:185–187. https://doi.org/10.2138/am.2010.3371

Zhou F (1994) Ti–Mg–Fe biotites: formation, substitution, and thermodynamic properties at 650 to 900 °C and 1.1 Kbp with fO₂ defined by the CH₄–graphite buffer. PhD thesis, State University of New York

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Edgar Dachs¹ · Stan Roozen² · Artur Benisek¹

¹ Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringerstrasse 2a, 5020 Salzburg, Austria

² Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, QC H3A 2A7, Canada