Editorial

Cementless fixation in total hip arthroplasty (THA) is currently the technique of choice in many Countries, such as North America, Australia and southern region of Europe [1,2]. Although conventional uncemented stems showed excellent results in the long term [3,4], they could be associated with reduction of the trochanteric bone stock and thigh pain. Moreover, the revision of conventional cementless stems can be technically demanding and lead to significant bone loss after the removal.

Over the last decade, several implants with conservative designs have been produced, and some authors advocated their use particularly in young patients with high-activity recreational interests [5,6]. All designs aim to preserve the bone in the trochanteric region, achieve a more physiological loading in the proximal femur to reduce the risk of stress shielding, and avoid a long stem into the diaphysis preventing impingement with the femoral cortex and thigh pain [7,8]. Finally, they aim to provide a proper primary stability, despite less invasive design. In a biomechanical study [9], a shortened tapered stem demonstrated a comparable rotational stability to conventional uncemented stem, even though the reduced longitudinal length and trochanteric shoulder. However, the bone-implant flexibility with short stems varies according with the design of the prosthesis. The GTS™ stem demonstrated a good bone-implant flexibility as reported with the CLS® stem [9]. On the other hand, the Fitmore® stem demonstrated to act more rigidly during the bending of the femoral shaft when compared with the CLS® stem [10].

The term “short stem” is misleading, because it is currently referred to stems less invasive when compared with conventional uncemented stem, but deeply different in terms of design, biomechanics, and bearing. McTighe et al. [11] proposed the term “short” for stems that do not extend below the metaphyseal region of the proximal femur. In this respect, they proposed three types of stems: 1) metaphyseal stabilized; 2) neck stabilized; 3) head stabilized (resurfacing). Recently, Khanuja et al. [12] classified short stems according with fixation principles and location of proximal loading. The authors distinguished four categories: 1) femoral neck fixation; 2) calcar loading; 3) lateral flare and calcar loading; and 4) shortened tapered. In this classification system, the resurfacing was not included.

All current designs of short stems demonstrated excellent survival rate, ranging from 98% to 100%, in both short and midterm [6,8,13,14]. Although the current designs showed good survival in the short term, they can be associated with malalignment, incorrect stem sizing, and intraoperative fractures. For this reason, the surgical technique plays a critical role to prevent these complications. The femoral neck cut is strongly related with the design of the stem. Authors supporting the Proxima™ suggested to perform the resection starting at the head-neck junction in the medial side [13,15]. Moreover, METHA® [16] and other designs [17,18] present a resection level of the neck higher than those required by Proxima™. On the other hand, for the GTS™ stem, the femoral neck cut should be performed perpendicular to the neck axis in order to respect the native shape of the femur. Therefore, the level of resection is lower when compared with other conservative stems. However, Schmidutz et al. [19] demonstrated that the neck-preserving technique has been correlated with a higher incidence of increased limb length when compared with conventional THA [19].

The definitive alignment of the stem is strongly related with the preparation of the femur. Several conservative stems need femoral compaction rasps that may be inserted following the curve of the femoral medial cortex, gradually increasing the size until proper fit is achieved. Because of the rasps are not introduced straight into the femoral canal but should follow the medial curve of the femur, the stem can be placed in a varus position. Coronal malalignment of the stem, particularly in varus position, has been reported in studies investigating short stems, with a rate ranging from 5% to 56% [13,20-22].

Intraoperative periprosthetic fracture is another complication that occurs with a variable prevalence in literature. Banerjee et al. [8] showed that the mean rate of fracture is greater with the Mayo design (4.2%) compared with Proxima™ and shortened stems (2.4% and <1%, respectively). Finally, Morales de Cano et al. [22] reported a rate of 1.2% with the GTS™ design. Although the design of the rasps and definitive stems aim to spare the bone stock in the trochanteric region, we believe that the experience of the surgeon is particularly relevant in determining the proper size of the stem preventing intraoperative fracture.

In conclusion, the short stems have reported very good clinical outcomes and survivorship rates, similar to those demonstrated by the conventional uncemented stems for the primary THA. However, no studies with long follow-up are currently available in literature. Therefore, comparative studies with longer follow-up are required to demonstrate that short stems can provide the same results of clinically well-established uncemented stems in the long term. Moreover, a standardized classification system for conservative stems should be developed to compare the clinical and radiographic outcomes of these implants each other.

Mattia Loppini*
Department of Orthopaedic and Trauma Surgery, Humanitas Research Hospital, Italy

Corresponding author: Mattia Loppini, Department of Orthopaedic and Trauma Surgery, Hip Diseases and Lower Limb Replacement Unit, Humanitas Research Hospital, Rozzano, Milan, Italy. Tel: +39-06-9388526; +39-3384673618; Email: mattia.loppini@gmail.com

Received: December 21, 2015 | Published: January 5, 2015
References

1. Dunbar MJ (2009) Cemented femoral fixation: the North Atlantic divi-
dothopedics 32(9).
2. AOA (2014) Australian Orthopaedic Association National Joint Re-
placement Registry. Annual Report, Adelaide, Australia.
3. Spotorno L, Romagnoli S, Ivaldo N, Grappiolo G, Bibbiani E, et al.
(1993) The CLS system. Theoretical concept and results. Acta Orthop
Bolg 59 Suppl 1: 144-148.
4. Grappiolo G, Lahia DJ, Gruen TA, Bunastero G, Spotorno L (2002) Pri-
mary total hip arthroplasty using a grit-blasted, press-fit femoral pros-
thesis. Long-term results with survivorship analysis. Hip Int 12(2):55-72.
5. Goebel D, Schultz W (2009) The Mayo cementless femoral component
in active patients with osteoarthritis. Hip Int 19(3): 206-210.
6. Morrey BF, Adams RA, Kessler M (2000) A conservative femoral re-
placement for total hip arthroplasty. A prospective study. J Bone Joint
Surg Br 82(7): 952-958.
7. Rometsch E, Bos PK, Koes BW (2012) Survival of short hip stems with
a "modern", trochanter-sparing design - a systematic literature review.
Hip Int 22(4): 344-354.
8. Banerjee S, Pivec R, Issa K, Harwin SF, Mont MA, Khanuja HS (2013)
Outcomes of short stems in total hip arthroplasty. Orthopedics 36(9):
700-707.
9. Nadorf J, Thomsen M, Gantz S, Sonntag R, Kretzer JP (2014) Fixation of
the shorter cementless GTS stem: biomechanical comparison between
a conventional and an innovative implant design. Arch Orthop Trauma
Surg 134(5): 719-726.
10. Pepke W, Nadorf J, Everbeck V, Streit MR, Kinkel S, et al. (2014) Pri-
mary stability of the Fitmore stem: biomechanical comparison. Int Or-
thop 38(3): 483-488.
11. McTighe T, Stubberg SD, Kepler L, Keggi J, Kennon R, et al. (2013) A
Classification System for Short Stem Uncemented Total Hip Arthro-
plasty. Bone Joint J 95(Suppl 15): 260.
12. Khanuja HS, Banerjee S, Jain D, Piwec R, Mont MA (2014) Short
bone-conserving stems in cementless hip arthroplasty. J Bone Joint
Surg Am 96(20): 1742-1752.
13. Kim YH, Kim JS, Park JW, Joo JH (2011) Total hip replacement with a
short metaphyseal-fitting anatomical cementless femoral component
in patients aged 70 years or older. J Bone Joint Surg Br 93(5): 587-592.
14. Santori PS and Santori N (2010) Mid-term results of a custom-made
short proximal loading femoral component. J Bone Joint Surg Br92(9):
1231-1237.
15. Töth K, Mécs L, Kellermann P (2010) Early experience with the Depuy
Proxima short stem in total hip arthroplasty. Acta Orthop Belg 76(5):
613-648.
16. Florckemeier T, Tischueschner N, Caliess T, Exechieli M, Florckemeier
S, et al. (2012) Cementless short stem hip arthroplasty METHA as an
ecouraging option in adults with osteonecrosis of the femoral head.
Arch Orthop Trauma Surg 132(6): 1125-1131.
17. Briem D, Schneider M, Bogner N, Botha N, Gebauer M, et al. (2011)
Mid-term results of 155 patients treated with a collum femoris preserv-
ing (CFP) short stem prosthesis. Int Orthop 35(5): 655-660.
18. Ettinger M, Ettinger P, Lerch M, Radtke K, Budde S, et al. (2011) The
NANOS short stem in total hip arthroplasty: a mid term follow-up. Hip
Int 21(5): 583-586.
19. Schmidtutz F, Beirer M, Weber P, Mazzoohan F, Fottnner A, et al. (2012)
Biomechanical reconstruction of the hip: comparison between modu-
lar short-stem hip arthroplasty and conventional total hip arthroplas-
ty. Int Orth 36(7): 1341-1347.
20. Gilbert RE, Salehi-Bird S, Gallacher PD, Shaylor P (2009) The Mayo
Conservative Hip: experience from a district general hospital. Hip Int
19(3): 211-214.
21. Ghera S, Pavan L (2009) The DePuy Proxima hip: a short stem for total
hip arthroplasty. Early experience and technical considerations. Hip
Int 19(3): 215-220.
22. Morales de Cano JJ, Gordo C, Illorbé JM (2014) Early clinical results
of a new conservative hip stem. Eur J Orthop Surg Traumatol 24(3):
359-363.