Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction

Knut Müller¹,², Florian F. Krause¹,², Armand Béche³, Marco Schowalter¹,², Vincent Galioit⁴, Stefan Löffler⁵,⁶, Johan Verbeeck³, Josef Zweck⁴, Peter Schattschneider⁵,⁶ & Andreas Rosenauer¹,²

By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO₃ yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.
innovative nanoelectronic devices such as ferroelectric tunnel junctions1–2 in the field of nonvolatile memory technology, or gallium nitride (GaN)-based3–5 laser diodes in optoelectronic applications rely on electric properties at the atomic scale. In both fields, differential phase contrast (DPC) experiments6–8 are considered as a key for the understanding of tunnelling electronic bonding have been given6. Recently, impressive DPC experiments have been performed in which signatures of atomic electric fields, including ionicity, have been observed8 by recording portions of angular deflection of the STEM probe, leading to a characteristic ronchigram by exploiting the axioms of quantum theory and since Maxwell’s equations, furthermore, allow for the conversion properties in nanotechnology with aberration-corrected STEM this would be an important step as to studying electronic quantum mechanics, eigenvalues \(\mathbf{p}_i \) of the momentum operator are observable with probability \(\Psi^\ast \mathbf{p}_i \Psi \mathbf{p}_i \). This is the normalized intensity distribution \(I(\mathbf{p}_i) \) in the diffraction plane for a sufficiently large number of detected electrons. Furthermore, the quantum mechanical expectation value for the momentum is

\[
\langle \mathbf{p}_i \rangle = \int p_i I(\mathbf{p}_i) d\mathbf{p}_x d\mathbf{p}_y
\]

which equals the average momentum determined from repeated single-electron experiments for which \(\Psi(r_i) \) is a solution of the Schrödinger equation. Note that we assume \(\langle \mathbf{p}_i \rangle = 0 \) for the incident probe so that \(\langle \mathbf{p}_i \rangle \) is equivalent to the expectation value for the momentum transfer caused by interaction with the specimen. Equation (1) equals a centre of mass calculation formally, it becomes obvious that conventional DPC detectors as in Fig. 1b can fail to deliver \(\langle \mathbf{p}_i \rangle \) from the moment the ronchigram exhibits inhomogeneous intensity.

The diffraction patterns in Fig. 1d include momentum transfers calculated from equation (1) as crosses. This yields \(\langle \mathbf{p}_i \rangle = 0 \) and \(\langle \mathbf{p}_i \rangle = (3.32, 0.65)/\text{nm}^{-1} \) for positions 1 and 2, respectively, with Planck’s constant \(h = 6.6261 \times 10^{-34} \text{Js} \). Unlike the conventional DPC technique in Fig. 1b, this quantitatively exploits the detailed intensity redistributions caused by the electric field.

The Lorentz force is equal to momentum transfer per time in classical electrodynamics. According to Ehrenfest’s theorem19, this still holds in quantum mechanics for the expectation value \(\langle \mathbf{p}_i \rangle \) of the momentum transfer for the case considered here. Electrons with velocity \(v \) spend the time \(z/v \) in a specimen of thickness \(z \) from which we can derive the following simplified relation between momentum transfer and measured electric field \(\mathbf{E}_\parallel \):

\[
\mathbf{E}_\parallel = -\langle \mathbf{p}_i \rangle \frac{v}{eZ}.
\]

Here, \(e = 1.6022 \times 10^{-19} \text{C} \) is the elementary charge and \(\mathbf{E}_\parallel \) the projection average along the electron beam direction. We note here that the derivation of equation (2) formally involves the
Methodical study using GaN. The power of this concept is initially demonstrated in a theoretical case study of GaN in [1120] projection. Here atomic columns are each occupied by a single atomic species with a comparably high difference in atomic number \((Z_{Ga} = 31, Z_N = 7)\), making it suitable to study large and small electric fields at respective sites simultaneously. Contrary to SrTiO\(_3\) chosen in the experiment below because of the large separation of 195 pm of adjacent columns, GaN exhibits a very high electronic configuration, which is attractive in view of the derivation of charge- and electron densities.

Multislice\(^{17}\) simulations\(^{20}\) have been carried out at 80 \(\times\) 80 scan points in the red region of Fig. 1c (see Methods section for details). Ronchigrams at 1.3 nm specimen thickness have been arrayed with respect to the probe positions in Fig. 2a. Atomic sites become evident from the redistribution of intensities inside the ronchigrams that reflects the tendency of electrons to channel along atomic columns. This effect is enhanced near gallium because of a more-than-four times larger nuclear charge compared with nitrogen. If we look at ronchigrams near gallium more closely, we see that intensity is partly also transferred in the opposite direction to form a diffuse halo as indicated in yellow in Fig. 2a. This can be explained by the finite extension of the STEM probe according to Fig. 1c because different parts of the probe experience different electric fields.

However, regardless of the complex intensity patterns inside the ronchigrams, we can rely on equation (1). Performing this integration yields the vector field for the momentum transfer \(\mathbf{p}_m\) drawn as crosses. Length of the white scale bar is 10 mrad. Momentum space axes \(p_{x,y}\) have a length of 100 nm\(^{-1}\).

For the detailed derivation of equations (1–3) we refer to Supplementary Note 2.

![Figure 1 | Established view on STEM DPC experiments in contrast to typical data for GaN.](image)

(a) The electron beam is focused on a thin specimen. Conventionally, an electric field \(\mathbf{E}\) is thought to cause an angular deflection with respect to \(\mathbf{E} = 0\) (dashed). (b) Detector used in conventional DPC to detect the shift of the central disc in the diffraction pattern (ronchigram). Given a homogeneously filled disc, this shift is determined by intensity differences between opposite ring segments A–B and C–D. By calibration, this signal is converted to an angular deflection and to electric/magnetic fields finally. (c) Coulomb potential of a GaN crystal obtained by DFT\(^{21}\), projected along [1120]. The white line shows the intensity profile of the incident electron beam. The yellow region marks a GaN unit cell. Scale bar length is 100 pm. Diffraction patterns have been simulated for 80 \(\times\) 80 probe positions in the red region. Markers 1 and 2 refer to the probe positions for the diffraction patterns in d. Ronchigrams simulated at position 1 (top, nearly no electric field) and position 2 (bottom, high electric field varying across the probe). The ronchigram is neither shifted at non-zero field nor does it exhibit homogeneous intensity. Integration according to equation (1) yields the quantum mechanical momentum transfer \(\mathbf{p}_m\) drawn as crosses. Length of the white scale bar is 10 mrad. Momentum space axes \(p_{x,y}\) have a length of 100 nm\(^{-1}\).
Figure 2 | Simulations for the methodical study of GaN. (a) Ronchigrams of GaN simulated for 1.3 nm specimen thickness, arrayed with respect to the position of the STEM probe. The primary effect of the atomic electric field is a redistribution of intensity (Int., colour-coded) within the ronchigrams. The arrow denotes intensity transferred even to opposite direction. All data in this figure are based on these simulations. For better visibility, only subsets of the 80 × 80 raster are shown in a–d. (b) Vector field for the expectation value of the momentum transfer calculated from equation (1) and the ronchigrams in a. The momentum transfer correlates directly with the gradient of the Coulomb potential shown colour-coded and as white isolines (Volt units). Length of the black legend vector is 5 h nm⁻¹. (c) Electric field \(\mathbf{E}_p \), derived from the momentum transfer in b via equation (2), showing the radial characteristic at both sites. The field strength decreases near nuclei because of the extension of the STEM probe. Length of the black legend vector is 3 V pm⁻¹. (d) Electric field used in the simulation (negative gradient of potential in b), convolved with the probe intensity according to equation (3). It agrees nearly perfectly with part c with a maximum error of 0.1 V pm⁻¹. Length of the black legend vector is 3 V pm⁻¹. (e) Divergence of the momentum transfer in b, being proportional to the charge density according to equation (4). The inset depicts the theoretical result obtained by DFT. (f) Electron density calculated from the divergence of the momentum transfer in b according to equation (4) with the proton density entering as prior knowledge. The inset shows the electron density obtained directly by DFT, convolved with the probe intensity. Scale bars top left in b–f are 50 pm.

Figures 2a–f depict (a) Ronchigrams of GaN simulated for 1.3 nm specimen thickness, arrayed with respect to the position of the STEM probe. The primary effect of the atomic electric field is a redistribution of intensity (Int., colour-coded) within the ronchigrams. The arrow denotes intensity transferred even to opposite direction. All data in this figure are based on these simulations. For better visibility, only subsets of the 80 × 80 raster are shown in a–d. (b) Vector field for the expectation value of the momentum transfer calculated from equation (1) and the ronchigrams in a. The momentum transfer correlates directly with the gradient of the Coulomb potential shown colour-coded and as white isolines (Volt units). Length of the black legend vector is 5 h nm⁻¹. (c) Electric field \(\mathbf{E}_p \), derived from the momentum transfer in b via equation (2), showing the radial characteristic at both sites. The field strength decreases near nuclei because of the extension of the STEM probe. Length of the black legend vector is 3 V pm⁻¹. (d) Electric field used in the simulation (negative gradient of potential in b), convolved with the probe intensity according to equation (3). It agrees nearly perfectly with part c with a maximum error of 0.1 V pm⁻¹. Length of the black legend vector is 3 V pm⁻¹. (e) Divergence of the momentum transfer in b, being proportional to the charge density according to equation (4). The inset depicts the theoretical result obtained by DFT. (f) Electron density calculated from the divergence of the momentum transfer in b according to equation (4) with the proton density entering as prior knowledge. The inset shows the electron density obtained directly by DFT, convolved with the probe intensity. Scale bars top left in b–f are 50 pm.

The overall charge density can be expressed as \(- \varepsilon \rho_e^- + \varepsilon \rho_p^+\) with \(\rho_e^-\) and \(\rho_p^+\) being the densities of electrons and protons, respectively. Compared with electrons, protons are spatially confined to the atomic sites that can be determined with picometre precision from the ronchigrams or from simultaneously acquired Z-contrast STEM images. Thereby, we find

\[
\rho_e^- + \mathbf{I}_{\text{probe}} = \frac{\varepsilon_0}{\varepsilon} \nabla \cdot \mathbf{E} = \frac{\varepsilon_0}{\varepsilon} \mathbf{E} = \rho_p^+ + \mathbf{I}_{\text{probe}}
\]

with the vacuum permittivity \(\varepsilon_0 = 8.8542 \times 10^{-12} \text{C(Vm)}^{-1}\). This shows that the measurement of \(\langle \mathbf{p}_z \rangle\) enables mapping of the electron density convolved with the STEM probe, provided that the atomic numbers and the probe intensity are known. The latter can be recorded in practice or it can be simulated as optical parameters for probe formation are well known in aberration-corrected STEM. The proton density \(\rho_p^+\) is set up by summing over Dirac's delta functions at atom positions, weighted by the atomic numbers and eventually blurred to a Gaussian to account for thermal vibrations of the atoms. For the formal derivation of equation (4) we refer to Supplementary Note 5.

Figure 2f depicts \(\rho_p^+ + \mathbf{I}_{\text{probe}}\), derived from equation (4), which is obviously composed of two nearly rotationally symmetric atomic densities at the gallium and nitrogen sites, respectively.

The inset shows the electron density calculated directly by DFT, convolved with the STEM probe. Since nearly perfect agreement is found here, it is conceivable to measure the faint redistribution of electrons because of chemical bonding by DPC, as has been shown recently using conventional high-resolution TEM.

Experimental study of SrTiO₃. The applicability of our approach is evidenced in an experimental case study of Strontium titanate in [100] projection, where the distance of adjacent atomic columns is a factor of 1.8 larger than in GaN. In view of experimental constraints such as specimen drift and scan noise, this material is favourable because of a large ratio of intercolumnar distance to the STEM probe diameter. An aberration-corrected STEM instrument with a semi-convergence angle of 21 mrad was employed to scan over an SrTiO₃ unit cell region (see Methods section for details). Ronchigrams of a 20 × 20-pixel scan have been arrayed with respect to the probe positions in Fig. 3a with a STEM dark-field image and atomic sites of the perovskite unit cell as inset. By looking at the intensity redistributions inside the ronchigrams, atomic columns containing heavy atoms, such as Ti at the corners and Sr in the centre, are clearly identified by the eye at first glance. At the second glance, even pure oxygen columns emerge from the ronchigrams, as exemplified by the yellow arrows in Fig. 3a. At this stage, this experiment already confirms that atomic electric fields rather cause complex intensity variations inside the ronchigrams than global shifts.
Even the oxygen columns appear clear as marked by the yellow arrow. (ronchigrams shown in recorded on CCD with 4 min acquisition time. Atomic sites as indexed in the Z-contrast image (inset) are easily identified in the 20 × 20 ronchigram array. Even the oxygen columns appear clear as marked by the yellow arrow. (ronchigrams shown in recorded on CCD with 4 min acquisition time. Atomic sites as indexed in the Z-contrast image (inset) are easily identified in the 20 × 20 ronchigram array. Even the oxygen columns appear clear as marked by the yellow arrow. (ronchigrams shown in recorded on CCD with 4 min acquisition time. Atomic sites as indexed in the Z-contrast image (inset) are easily identified in the 20 × 20 ronchigram array. Even the oxygen columns appear clear as marked by the yellow arrow. (ronchigrams shown in recorded on CCD with 4 min acquisition time. Atomic sites as indexed in the Z-contrast image (inset) are easily identified in the 20 × 20 ronchigram array. Even the oxygen columns appear clear as marked by the yellow arrow. (ronchigrams shown in recorded on CCD with 4 min acquisition time. Atomic sites as indexed in the Z-contrast image (inset) are easily identified in the 20 × 20 ronchigram array. Even the oxygen columns appear clear as marked by the yellow arrow. (ronchigrams shown in recorded on CCD with 4 min acquisition time. Atomic sites as indexed in the Z-contrast image (inset) are easily identified in the 20 × 20 ronchigram array.

Figure 3 | Determination of the electric field in the experimental study of SrTiO₃. (a) Experimental ronchigrams of SrTiO₃ in a region of the unit cell recorded on CCD with 4 min acquisition time. Atomic sites as indexed in the Z-contrast image (inset) are easily identified in the 20 × 20 ronchigram array. Even the oxygen columns appear clear as marked by the yellow arrow. (b) Experimental momentum transfer obtained from equation (1) and the ronchigrams shown in a. Length of the black legend vector is 5h nm⁻¹. (c) Electric field E_\perp, derived from the momentum transfer in b via equation (2) using the measured specimen thickness of $z = 2.5$ nm, superimposed to the bright field intensity (BF Int.). Length of the black legend vector is 1 V pm⁻¹. Scale bars top left in b,c are 100 pm.

Figure 4 | Simulations corresponding to the experimental study of SrTiO₃. (a) Theoretical electric field calculated from the negative gradient of the Coulomb potential, convolved with the probe intensity according to equation (3). Length of the black legend vector is 1 V pm⁻¹. (b) Simulation of ronchigrams at 2.5 nm specimen thickness at 20 × 20 raster positions as in the experiment in Fig. 3a. (c) Simulated momentum transfer calculated from simulated ronchigrams in b at 2.5 nm thickness. Length of the black legend vector is 5h nm⁻¹. Scale bars top left are 100 pm. Scan noise has not been accounted for.

Next we applied equation (1) to calculate the momentum transfer (p_\perp) from the ronchigrams in Fig. 3a to obtain the vector field depicted in Fig. 3b. As expected, a deflection towards atomic sites is observed clearly with a magnitude depending on the atomic numbers. In particular, atomic columns containing Sr or Ti exhibit maximum momentum transfers of ~3h nm⁻¹, which is a factor two to three times larger compared with pure oxygen columns.

We finally proceed with the derivation of the electric field E_\perp from Fig. 3b by applying equation (2). Using an atom-counting procedure via quantitative high-angle annular dark-field (HAADF) STEM analysis the specimen thickness was determined to $z = 2.5 ± 0.4$ nm. Vectors in Fig. 3c show the resulting electric field together with the colour-coded bright-field signal calculated from the ronchigrams in Fig. 3a. Obviously, all atomic columns show up as sources of the electric field with maximum field strengths of 0.4 V pm⁻¹ near pure oxygen and 1 V pm⁻¹ at both Ti/O and Sr columns, respectively. Owing to the extension of the STEM probe, the measured field strength decreases at the exact positions of atomic columns according to equation (3). In the following, these results are discussed with respect to the accuracy of the electric field measurement and the distortions due to scan noise (that is, random deviations of the STEM probe from a regular scan grid) obviously present in Fig. 3b,c.

As to the accuracy of the measured electric field, we calculated the theoretical counterpart E_\perp for SrTiO₃ from the negative gradient of the Coulomb potential and convolved the result with the probe intensity as shown in Fig. 4a. Compared with the experimental field in Fig. 3c, quantitative agreement is found for the columns of pure oxygen. Essentially, this also holds for the Sr and Ti/O columns, except for very few vectors close to the respective sites where the theoretical field takes slightly larger values of up to 1.4 V pm⁻¹. This suggests that a smaller sample thickness would be preferable to enhance accuracy at these positions further as we start to leave the regime of small specimen thickness, at which equation (2) is valid for atomic columns with heavy atoms, such Ti and Sr. In that case, we nevertheless expect quantitative agreement of experimental momentum transfers in Fig. 3b with momentum transfers calculated from simulated ronchigrams at 2.5 nm specimen thickness, which are arrayed in Fig. 4b. Except for scan noise, the ronchigrams exhibit tight analogy to the experimental counterpart in Fig. 3a concerning the observed redistributions of ronchigram intensities towards atomic columns. In addition, the corresponding simulated momentum transfers in Fig. 4c take maximum values of ~3h nm⁻¹ as in the experiment of Fig. 3b.

To complement the discussion on the influence of specimen thickness, Fig. 5 has been added, which shows the electric field that is expected for an experiment performed at slightly lower...
In particular, ronchigrams have been simulated for that thickness, from which momentum transfer and, subsequently, electric field have been calculated via equations (1) and (2). This field is indeed practically identical with the theoretical one in Fig. 4a with a maximum error of 0.15 V pm\(^{-1}\).

Moreover, momentum transfer, electric field and bright-field intensity in Fig. 3b,c are not exactly rotationally symmetric with respect to atomic sites but exhibit a slight vertical elongation and a displacement of individual scan lines in vertical and horizontal directions. This can be explained by specimen drift during the relatively long acquisition time of 4 min despite the drift correction used, and by scan noise typically present in contemporary STEM data. To verify this interpretation, SrTiO\(_3\) ronchigrams have been simulated with positions of the STEM probe on an irregular grid chosen appropriately to the experimental drift rate and typical scan noise parameters. The resulting momentum transfers in Fig. 6 exhibit the same characteristic distortions as in Fig. 3b, which demonstrates that the observed artefacts must be attributed to residual instabilities of the instrument. Note that the magnitudes of experimental and simulated momentum transfers agree quantitatively.

In addition, the observation that oxygen in Fig. 3b emerges significantly as a sink of momentum transfer despite its low atomic number deserves further attention, since imaging light atoms is still a major challenge in contemporary materials science. As shown by the divergence of \(\langle p_\perp \rangle\) in an SrTiO\(_3\) experiment with a 25 × 25-pixel-large experimental scan in Fig. 7, all nine atomic columns of the perovskite unit cell in [100] projection (marked by the dashed black line) are imaged with remarkably high contrast, including columns of pure oxygen indicated by arrows. Note that these columns do not show significant contrast in both the annular dark-field STEM image in Fig. 3a (inset) and the bright-field STEM image in Fig. 3c.

Discussion

In the strict sense, Fig. 7 ought to be proportional to the charge density in analogy to the GaN counterpart in Fig. 2e. However, calculating the divergence relies on numerical differences between momenta of adjacent scan pixels, which is critical in the presence of scan noise. For this reason we restricted our interpretation to the detection of light atoms, such as oxygen. Quantitative
charge- and electron density mapping will therefore profit from ongoing improvements of the stability of the scan coils of STEM instruments, or require subsequent image processing23. Moreover, detection quantum efficiency and readout time of current CCDs impose an upper limit of a few hundred scan points of the STEM probe to minimize drift, specimen damage and contamination. This constraint can be expected to improve drastically with the recent development of ultrafast direct electron detectors27 working at kHz readout rates, which are in prototype state currently. For the present, drift in the range of the STEM probe diameter during several minutes must be accepted. These experimental limitations have been pointed out already in recent psychography work28, which essentially uses a similar four-dimensional data set to obtain a complex-valued object transmission function by dedicated algorithms29–31. However, psychographic studies have as yet focused on enhancing the microscope resolution beyond the diffraction limit instead of electric field mapping so that we leave a respective methodological comparison as a future task.

The calculation is different for DPC microscopy. Being a well-established approach especially for magnetic field mapping, we shall comment on its previous success despite the classical interpretation of recorded data and the current segmented detector design. For fields that are practically constant across the diameter of the STEM probe, interaction with the specimen is indeed well described by multiplication with a phase wedge, leading to a shift of the diffraction pattern as a whole without redistributions of intensity inside the Ronchigram. This condition is justified for fields varying on micrometre scale as mentioned in the introduction.

To conclude, we have demonstrated how to push DPC to atomic electric field quantification in a comprehensive simulation study of GaN and both an experimental and simulation study of the important ceramics SrTiO₃. By relating diffracted intensities to the expectation value of the momentum transfer via axioms of quantum mechanics, and furthermore converting the result to the electric field by virtue of Ehrenfest’s theorem, this constitutes a fundamentally new view on DPC experiments.

Methods

Simulation details. We used the multislice algorithm¹⁷ implemented in the STEMsim software²⁸ to simulate thickness-dependent diffraction patterns of GaN and SrTiO₃, with electron beam incidences along [1120] and [100], respectively (assumed parallel to the z direction). This algorithm especially takes multiple scattering of electrons in the specimen into account.

For the GaN study, a contemporary aberration-corrected STEM probe with a semiconvergence angle of 21 mrad was simulated for 300 kV energy. We assumed a residual spherical aberration of Cs = 40 μm and a condenser operated under Scherzer conditions (giving the white intensity profile in Fig. 1c). Multislice results at a regular grid of 80 × 80 positions of the STEM probe in the red patch of Fig. 1c have been converged with respect to the lateral extension of the crystal supercell (being 15 × 15 the yellow patch in Fig. 1c), the slice thickness Δz (being 0.32 nm) and the step in reciprocal space (being 90 nm⁻¹, corresponding to nine times the Ronchigram radius). Before the multislice simulations, we used DFT as implemented in the WIEN2K²¹ software for the calculation of the electron density in GaN and SrTiO₃/grooves of ±0.001 Å² for Ti and ±0.001 Å² for O (accounting for the thermal movement of the atoms in the atoms in the framework of Debye–Waller damping). The mean squared displacements of 0.0032 and 0.0037 Å² (according to 300 K) have been used. Scan noise in Fig. 5 was accounted for by rastering the STEM probe over an irregular grid given by random deviations from the regular positions corresponding to a Gaussian distribution with a s.d. of 20 pm. This is a rather conservative estimate as literature²⁴ gives 30 pm for a typical s.d. The 2D potential shown in Figs 1c and 2b was derived using

\[
V_z(r_z) = \frac{1}{2\pi} \int \frac{V(z')}{\Delta z} \, dz'
\]

This is the Coulomb potential of one slice, averaged along the z direction. It is important to note that all other quantities indexed this way \(E_z, E_z', \rho_z, \rho_z'\) analogously refer to their average along the z direction.

All simulations shown in the article have been conducted in absorptive potential approximation by adding an imaginary part²⁵ to the Coulomb potential derived from the squared displacements. This accounts for the damping of the elastic signal due to thermal diffuse scattering with increasing specimen thickness and is known to be accurate up to much higher thicknesses than considered here. To verify this, thermal diffuse scattering is explicitly treated in Supplementary Note 4.

Experimental details. Experiments were performed at 300 kV in STEM mode on the Qu-Ant-TEM, an FEI Titan3 with probe and image aberration correctors, a monochromator and an X-FEG. The standard 50 nm condenser aperture was selected as limiting aperture with the monochromator slightly defocused to limit the beam current to ~30 pA. The SrTiO₃ sample was thinned in the [100] direction using an FEI Helios Nanolab focused ion beam instrument with a beam energy of 30 kV.

A final cleaning step was performed at low energy (2 kV) to reduce the amorphous layer thickness.

A beam semiconvergence angle of 21 mrad was used. The corrector was tuned such that the aberrations given in Table 1 have been measured.

All ronchigrams have been recorded on CCD camera with a 50 ms frame time and a sampling of 128 × 128 pixels. The SrTiO₃ unit cell was scanned with samplings of 20 × 20 and 25 × 25 raster positions of the STEM probe because beam-induced specimen damage was observed for higher sampling rates of 30 × 30 pixels. This has been verified by comparing Z-contrast images recorded before and after acquisition of the ronchigram series, respectively. After each scan line, a drift correction has been performed by cross-correlating with a Z-contrast image of 2 × 2 SrTiO₃ unit cells taken cells at 2 to 5 nm distance from the region of interest.

Specimen thickness was measured from quantitative analysis of a HAADF STEM image of the region of interest using the atom-counting procedure²³ taking into account the response of the HAADF detector. In particular, a thickness of 5–7 unit cells (2–3 nm) was found. In addition, we checked this result by comparing the experimental annular bright-field signal with the corresponding signal extracted from simulated ronchigrams.

References

1. Wen, Z., Li, C., Wu, D., Li, A. & Ming, N. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater. 12, 617–621 (2013).
2. Tsymbal, E. Y. & Kohlstedt, H. Tunneling across a ferroelectric. Science 313, 181–183 (2006).
3. Nakamura, S., Mukai, T. & Senoh, M. Candela-class high-brightness InGaN/AlGaN multiple-quantum-well blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687–1689 (1994).
4. Iso, K. et al. High brightness blue InGaN/GaN light emitting diode on nonpolar m-plane bulk GaN substrate. Jpn. J. Appl. Phys. 46, L960–L962 (2007).
5. Masui, H. et al. Effects of piezoelectric fields on optoelectronic properties of InGaN/GaN quantum-well light-emitting diodes prepared on nonpolar (1010) and semipolar [1122] orientations. J. Phys. D: Appl. Phys. 42, 135106 (2009).
6. Nellist, P. D. Electron microscopy: atomic resolution comes into phase. Nat. Phys. 8, 586–587 (2012).
7. Lohr, M. et al. Differential phase contrast 2.0—opening new fields for an established technique. Ultramicroscopy 117, 7–14 (2012).
8. Shibata, N. et al. Differential phase-contrast microscopy at atomic resolution. Nat. Phys. 8, 611–615 (2012).
9. Tsymbal, E. Y. & Grueverman, A. Ferroelectric tunnel junctions: beyond the barrier. Nat. Mater. 12, 602–604 (2013).
10. Takeuchi, T. et al. Quantum-confined stark effect due to piezoelectric fields in GaN strained quantum wells. Jpn. J. Appl. Phys. 36, L382–L385 (1997).
11. Cross, R. P., Chapman, J. N., Thompson, A. M., Zweck, J. & Hoffmann, H. Investigation of the micromagnetic structure of cross-tie walls in permalloy. J. Appl. Phys. 73, 2447–2452 (1993).
12. Zvezkov, J., Zimmerman, T. R. & Schubert, T. TEM imaging and evaluation of magnetic structures in Co/Cu multilayers. Ultramicroscopy 67, 153–162 (1997).
13. Sandweg, C. W. et al. Direct observation of domain wall structures in curved permalloy wires containing an antinotch. J. Appl. Phys. 103, 093906 (2008).
14. Rose, H. Nonstandard imaging methods in electron microscopy. Ultramicroscopy 2, 251–267 (1977).
15. Chapman, J., Ratson, P., Waddell, E. & Ferrier, R. The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. Ultramicroscopy 3, 203–214 (1978).
16. Shibata, N. et al. New area detector for atomic-resolution scanning transmission electron microscopy. J. Electron Microsc. (Tokyo) 59, 473–479 (2010).
17. Cowley, J. M. & Moodie, A. F. The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr. A 10, 609–619 (1957).
18. Bethe, H. Theorie der Beugung von Elektronen an Kristallen. Ann. Phys. 87, 55–129 (1928).
19. Ehrenfest, P. Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. Phys. 45, 455–457 (1927).
20. Rosenauer, A. & Schowalter, M. In Springer Proceedings in Physics vol. 120 (eds Cullis, A. G. & Midgley, P. A.) 169–172 (Springer, 2007).
21. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D. & Luitz, J. Wien2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Technische Universität Wien, Austria, 2001).
22. Meyer, J. C. et al. Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. Nat. Mater. 10, 209–215 (2011).
23. Van Aert, S., Batenburg, K. J., Rossell, M. D., Erni, R. & Van Tendeloo, G. Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470, 374–377 (2011).
24. Jones, L. & Nellist, P. D. Identifying and correcting scan noise and drift in the scanning transmission electron microscope. Microsc. Microanal. 19, 1050–1060 (2013).
25. Jia, C. L. & Urban, K. Atomic-resolution measurement of oxygen concentration in oxide materials. Science 303, 2001–2004 (2004).
26. Findlay, S. D. et al. Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy 110, 903–923 (2010).
27. Müller, K. et al. Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device. Appl. Phys. Lett. 101, 212110 (2012).
28. Humphry, M. J., Kraus, B., Hurst, A. C., Maiden, A. M. & Rodenburg, J. M. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging. Nat. Commun. 3, 730 (2011).
29. Rodenburg, J. M. & Bates, R. H. T. The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Phil. Trans. R Soc. A 339, 521–533 (1992).
30. Rodenburg, J. M., McCallum, B. C. & Nellist, P. D. Experimental tests on double-resolution coherent imaging via STEM. Ultramicroscopy 48, 304–314 (1993).
31. Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009).
32. Mott, N. F. The scattering of electrons by atoms. Proc. R. Soc. Lond. A 127, 658–665 (1930).
33. Rosenauer, A., Schowalter, M., Glas, F. & Lamoen, D. First-principles calculations of 002 structure factors for electron scattering in strained In_xGa_1-xAs. Phys. Rev. B 72, 085326 (2005).
34. Schowalter, M., Rosenauer, A., Tiantah, J. & Lamoen, D. Temperature-dependent Debye-Waller factors for semiconductors with the wurtzite-type structure. Acta Crystallogr. A 65, 227–231 (2009).
35. Weikenmeier, A. & Kohl, H. Computation of absorptive form factors for high-energy electron diffraction. Acta Crystallogr. A 47, 590–597 (1991).

Acknowledgements
K.M. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG) under contract No. MU 3660/1-1. This work was also supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant no. 246791—COUNTATOMS and ERC starting grant no. 278516—VORTEX. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. We acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative, reference no. 312483-ESTEEM2. A.R. thanks the DFG for funding under contract no. RO 2057/8-1. S.L. and P.S. acknowledge financial support by the Austrian Science Fund (FWF) under grant no. I543-N20.

Author contributions
K.M. wrote the article and did the DFT calculations. Elastic simulations and evaluations of the data have been carried out by K.M. and F.F.K. A.B. and J.V. performed the STEM experiments on SrTiO3 and processed the experimental data. M.S. and A.R. developed the simulation software. V.G. analysed the impact of electric field gradients. S.L. and P.S. simulated and interpreted inelastic scattering effects. The work was initiated by A.R., J.Z. and P.S. The key idea to relate DPC with the quantum mechanical momentum transfer was conceived during discussions among all authors.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Müller, K. et al. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction. Nat. Commun. 5:5653 doi: 10.1038/ncomms6653 (2014).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/