Improved survival with continuation of statins in bacteremic patients

Ajinkta M. Pawar
University of Rhode Island

Kerry L. LaPlante
University of Rhode Island, kerrylaplante@uri.edu

Tristan T. Timbrook

Aisling R. Caffrey
University of Rhode Island, aisling_caffrey@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/php_facpubs

Citation/Publisher Attribution

Pawar, A. M., LaPlante, K. L., Timbrook, T. T., & Caffrey, A. R. (2018). Improved survival with continuation of statins in bacteremic patients. *SAGE Open Medicine*. https://doi.org/10.1177/2050312118801707

Available at: https://doi.org/10.1177/2050312118801707

This Article is brought to you for free and open access by the Pharmacy Practice at DigitalCommons@URI. It has been accepted for inclusion in Pharmacy Practice Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
Improved survival with continuation of statins in bacteremic patients

Ajinkya M Pawar1, Kerry L LaPlante1,2, Tristan T Timbrook2 and Aisling R Caffrey1,2,3

Abstract

Objectives: Varying statin exposures in bacteremic patients have different impacts on mortality. Among patients with adherent statin use, we sought to evaluate the impact of statin continuation on inpatient mortality in bacteremic patients.

Methods: A retrospective cohort study was conducted using Optum ClinformaticsTM with matched Premier Hospital data (October 2009–March 2013). Patients with a primary diagnosis of bacteremia and 6 months of continuous enrollment prior to the admission, receiving antibiotics at least 2 days of antibiotics during the first 3 days of admission, were selected for inclusion. Furthermore, patients demonstrating adherent statin use based on 90 days of continuous therapy prior to admission were included. We then compared those continuing statin therapy for at least the first 5 days after admission and those not continuing during the admission.

Results: Simvastatin (53.2%) and atorvastatin (33.8%) were the most commonly used statins among the 633 patients who met our inclusion and exclusion criteria. Propensity score adjusted Cox proportional hazards regression models demonstrated significantly lower inpatient mortality among those continuing statin therapy compared with those not continuing (n = 232 vs 401, adjusted hazard ratio 0.25, 95% confidence interval 0.08–0.79).

Conclusion: Among patients adherent to their statin therapy prior to a bacteremia hospitalization, continued statin use after admission increased survival by 75% compared with those not continuing.

Keywords

Bacteremia, mortality, statins, exposure patterns, protective effects

Date received: 31 January 2018; accepted: 27 August 2018

Introduction

Statins have been associated with improved survival among patients with infections,1–7 in meta-analyses,8,9 randomized trials, and observational studies.4,5,7,10 The proposed pleiotropic effects with statins, including a reduced inflammatory response,11,12 suggest that the critical period of exposure would be from time of onset of infection through the initial period of antibiotic therapy.5,10,13 Importantly, that period of onset is likely to occur outside of the healthcare setting, and therefore there will be a delay between onset and presentation to receive care. In previous research, definitions of statin exposure vary widely between studies, tend to be overly broad, and rarely take into account statin therapy adherence.3–5 This study sought to evaluate the impact of statin continuation during hospital admission compared with non-continuation, in a cohort of adherent statin users.

Methods

A retrospective cohort study design was used to assess inpatient mortality among adherent statin users. This study was conducted using de-identified Optum ClininformaticsTM (OptumInsight, Eden Prairie, MN) with matched Premier Hospital data (October 2009–March 2013). Patients with a primary diagnosis of bacteremia and 6 months of continuous enrollment prior to the admission, receiving antibiotics at least 2 days of antibiotics during the first 3 days of admission, were selected for inclusion. Furthermore, patients demonstrating adherent statin use based on 90 days of continuous therapy prior to admission were included. We then compared those continuing statin therapy for at least the first 5 days after admission and those not continuing during the admission.

1 Department of Pharmacy Practice, College of Pharmacy, The University of Rhode Island, Kingston, RI, USA
2 Infectious Diseases Research Program, Veterans Affairs Medical Center, Providence, RI, USA
3 School of Public Health, Brown University, Providence, RI, USA

Corresponding author:

Aisling R Caffrey, Department of Pharmacy Practice, College of Pharmacy, The University of Rhode Island, 7 Greenhouse Road, Suite 265B, Kingston, RI 02881, USA.

Email: aislingcaffrey@uri.edu
Hospital data (1 October 2009–31 March 2013), which is an administrative claims database from a large commercial health plan (Optum Clinformatics) matched with hospital data (Premier). Included in the analysis were adult patients (>18 years) with a primary diagnosis of bacteremia (International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) codes 003.1, 020.2, 022.3, 036.2, 038.0, 038.1, 038.10–038.12, 038.19, 038.2, 038.3, 038.40–038.44, 038.49, 038.8, 038.9, 054.5, 449, 771.81, 995.91, 995.92, and 790.7). We only included patients with hospital admissions between 1 April 2010 and 31 March 2013, to allow for a continuous enrollment period of 6 months prior to admission. Antibiotic therapy for each patient during the hospital stay was assessed. Patients who received at least 2 consecutive days of at least one antibiotic therapy for bacteremia within the first 3 days of the admission were included. For patients with multiple admissions for bacteremia, only the first admission was included. Medication use was identified from both outpatient prescriptions and medications given during the hospital stay. Charlson and Elixhauser comorbidity scores were defined using diagnosis codes.

Using pharmacy claims, we identified prevalent statins users demonstrating adherence to their statin therapy, which was defined as patients who, irrespective of their statin initiation time, had at least 90 days of continuous statin exposure (i.e. atorvastatin, lovastatin, pravastatin, rosuvastatin, and simvastatin) in the 90 days prior to hospitalization. In terms of adherence measures, the proportion of days covered was therefore 100% for all included patients, at least 90 days of supply dispensed in the 90 days prior to admission. The proportion of days covered (PDC) of ≥80% is commonly considered as good adherence for statins. Statin exposure was further categorized as statin continuation, with at least 5 days of statin therapy after admission, and non-continuation after admission. Inpatient mortality was defined as death occurring during the hospital stay.

To identify baseline differences between the statin continuation and non-continuation groups, we reviewed demographic and clinical data including current and prior comorbidities. For categorical variables, if the assumptions for the chi-square test were not met, the Fisher’s exact test was utilized. For continuous variables, the non-parametric Wilcoxon Rank Sum test was used.

We developed a propensity score for statin continuation versus non-continuation. The propensity score was therefore the predicted probability of statin therapy continuation, as calculated from the baseline covariates included in an unconditional logistic regression model which was built with manual backward elimination. Patients from the statin continuation and non-continuation groups were stratified by propensity score quintile to achieve homogeneity between exposure groups within quintiles of the predicted probability of statin continuation. To evaluate the association of continued statin use and in-hospital mortality, we used a Cox proportional hazards model. All statistical analyses were performed using SAS version 9.4 (SAS Institute, Cary, NC) and statistical significance was considered a p-value of ≤0.05. This study was reviewed and approved as exempt by the University of Rhode Island’s Institutional Review Board.

Results

We identified 633 patients who met our inclusion and exclusion criteria (Figure 1). This included 232 patients with statin continuation and 401 with non-continuation. In comparing the statin continuation and non-continuation groups (Table 1), age (median 62 vs 61 years) and gender (43% vs 44% females) were similar. The median Charlson comorbidity index during admission (2.0 vs 2.0, p=0.57; Table 2) and during the 6 months prior to admission (3.0 vs 3.0, p=0.97) was the same in both the groups. Admission from the emergency room occurred for 97% of patients with statin continuation and 95% with non-continuation (p=0.29). Marital status, race, region, and admitting physician specialty were also similar between the statin continuation versus non-continuation groups. Simvastatin (53.2%) and atorvastatin (33.8%) were the most commonly used statins. Inpatient mortality was significantly lower (2.59% vs 10.97%, p=0.0002) and length of stay was higher (median 6.0, interquartile range (IQR) 5.0–9.0 vs 5.0 days, IQR 3.0–9.0, p<0.0001) in those continuing statins compared with those not continuing. The final propensity score model c-statistic was 0.88, suggesting a strong model for predicting the probability of statin continuation. Among bacteremic patients with adherent statin use prior to...
admission, the propensity score adjusted Cox proportional hazards regression model evaluating time to inpatient mortality demonstrated significantly lower inpatient mortality among those continuing statin therapy (hazard ratio (HR) 0.25, 95% CI 0.08–0.79) compared with those not continuing after admission.

Discussion

In this retrospective cohort study among privately insured patients with bacteremia, we observed higher survival among the statin continuation group compared with the non-continuation group. These results support statin continuation through the period of inflammation, as the inflammatory response has been found to be lower among patients taking statins around the time the infection develops.25,26 The specific mechanism by which mortality is reduced among statin users with bacteremic infections still remains undefined, however, a proposed mechanism has been the moderation of the overall inflammatory response.27 Other previously observed anti-inflammatory effects with statins have included lowering of C-reactive protein (CRP), chemokine release (MCP-1, RANTES), cytokines (IL-1β, TNF α, IL-6, IL-8), and adhesion molecules (P-selectin, VLA 4, CD11a, CD11b, CD18).28,29 Statins may also have a direct antimicrobial effect,30 and possible antibacterial activity of statins against a variety of pathogens may be attributed to their ability to suppress cell growth, and to promote apoptosis.31–33

Contrary to our findings, a recent randomized controlled trial (RCT) did not observe benefits of statin continuation on inflammatory parameters and sepsis among adherent statin users.34 However, the aforementioned study has several
methodological issues as pointed out in a correspondence by Bostock and Vizcaychipi, including a vague primary end-point, lack of information regarding previous statin therapy duration, and use of the Mann–Whitney test to evaluate the matched groups. The limitations of a number of previous studies evaluating protective effects of statins were (a) control for few confounders, (b) lack of information about pre-hospitalization medication use, (c) combined incident and adherent statin use, and (d) combined pre-hospital and post-hospital use. These limitations may explain the conflicting findings between studies in regard to the impact of statin use on mortality among patients with infections.

In terms of contrasting results between studies assessing the effects of statin continuation, a prospective cohort study conducted in Spain evaluated the survival benefits with statin use in *S. aureus* bacteremic (SAB) patients with at least 30 days prior statin use and continuation until SAB

Table 2. Clinical characteristics and health service utilization among adherent statin users prior to admission.

Characteristics	Statin continuation (N = 232)	Non-continuation (N = 401)	p value
Comorbidities (during admission)			
Charlson score (median and IQR)	2	2	0.5708
Elixhauser score (median and IQR)	4	4	0.3973
Chronic renal disease	61	78	0.0451
Coagulation and hemorrhagic disorders	27	84	0.0030
Coagulopathy	25	75	0.0084
Congestive heart failure nonhypertensive	64	60	0.0001
Coronary atherosclerosis and other heart diseases	87	115	0.0218
Diabetes mellitus with complication	61	69	0.064
Dyslipidemia including hyperlipidemia	161	208	<0.0001
Infective arthritis	15	11	0.0230
Liver disease	12	47	0.0063
Malignant neoplasm	6	54	<0.0001
Metastatic cancer	3	30	0.0003
Mild liver disease	11	40	0.0197
Obesity	69	83	0.0103
Poisoning by medication and drugs	20	69	0.0027
Solid tumor without metastasis	5	49	<0.0001
Weight loss	22	68	0.0095
Medication use (during admission)			
Anti-hypertensive medication	207	274	<0.0001
Comorbidities (6 months prior to admission)			
Charlson score (median and IQR)	3	3	0.9720
Elixhauser score (median and IQR)	6	5	0.7992
History of any cancer	35	102	0.0023
History of chronic kidney disease	47	57	0.048
History of condition with dizziness or vertigo	32	25	0.0014
History of dyslipidemia including hyperlipidemia	175	263	0.0097
History of history of other Immunocompromise	14	46	0.0244
History of maintenance chemotherapy radiotherapy	8	43	0.0012
History of malignant neoplasm	24	76	0.0042
History of metastatic cancer	7	37	0.0031
History of other and ill-defined cerebrovascular	15	12	0.0372
diseases			
History of other eye disorder	27	28	0.0451
History of solid tumor without metastasis	24	74	0.0066
Medication use history (6 months prior to admission)			
History of diabetic medication	74	112	0.0081
History of anti-hypertensive medication	199	317	0.0357

Data are median and interquartile range (IQR) or number and percent of patients.
having received an antibiotic which may be used for bactere-
type and we were only able to use general inclusion criteria of
pathogen, but we identified organisms using ICD-9 codes,
Microbiology data was not available for a potential causative
exactly known and it may vary for different pathogens.
causative pathogen, since the mechanism of action is not
having a different impact on clinical outcomes based on the
assumed outpatient statin exposure to be equivalent to filling
sizes. In our review of statin doses, dispensing quantity in
incident users mostly reflected moderate to high doses. As we
used an administrative claims database for our analysis, we
assumed outpatient statin exposure to be equivalent to filling
prescription. Furthermore, there is a possibility of statins
having a different impact on clinical outcomes based on the
causative pathogen, since the mechanism of action is not
exactly known and it may vary for different pathogens.
Microbiology data was not available for a potential causative
pathogen, but we identified organisms using ICD-9 codes,
where available. Bacteremic treatment varies by organism
type and we were only able to use general inclusion criteria of
having received an antibiotic which may be used for bactere-
ia.15–18 Since we only evaluated a general bacteremic popu-
lation, our results may not be generalized to pathogen-specific
bacteremias. Despite using propensity scores to control for
confounding, we could not control for unmeasured confounding.
Specifically, bacteremia severity scores and bacteremia
source were not available from the data source, although we
did control for ventilation status and sepsis severity using
diagnosis-related groups (DRG).

In conclusion, our retrospective cohort study quantified
the effect of adherent statin continuation on clinical out-
comes such as inpatient mortality and hospital length of stay
among bacteremic patients in a real-world clinical popula-
tion. We observed significant reduction in inpatient morality
among adherent statin continuation for at least the first few
days after hospitalization compared with non-continuation
during admission. Our results possibly hint at the necessity
of statin exposure through the period of inflammation devel-
opment as the inflammatory response has been found to be
decreasing among patients consuming statins at the same
time as developing infection.25,26 Further unaddressed ques-
tions related to this research question include appropriate
statin exposure time and duration needed for the maximum
clinical benefits, and differences in the magnitude of each
statin’s protective effects.

Authors’ note
Tristan T Timbrook is now affiliated with Department of Pharmacy,
University of Utah Health, Salt Lake City, Utah, USA.

Acknowledgements
The views expressed in this article are those of the authors and do
not necessarily reflect the position or policy of the United States
Department of Veterans Affairs. Substantial contributions to the
conception and design of the work, or the acquisition, or analysis
and interpretation of data are as follows. Design: A.M.P., K.L.L.,
and A.R.C.; Data: A.M.P., K.L.L., T.T.T., and A.R.C. Drafting the
manuscript or revising it critically for important intellectual content:
A.M.P., K.L.L., T.T.T., and A.R.C. Final approval of the version to
be published: A.M.P., K.L.L., T.T.T., and A.R.C. Accountable for
all aspects of the work in ensuring that questions related to the accu-
rracy or integrity of any part of the work are appropriately investigat-
ged and resolved: A.M.P. and A.R.C. Presented, in part, at the
32nd International Conference on Pharmacoepidemiology and
Therapeutic Risk Management, 28 August 2016.

Declaration of conflicting interests
The author(s) declared the following potential conflicts of interest
with respect to the research, authorship, and/or publication of this article:
Ajinkya Pawar has no conflicts to disclose. Aisling Caffrey
has received research funding from Pfizer, Merck (Cubist), and
The Medicines Company. Tristan Timbrook has received honoraria for
speaking and/or consulting from BioFire Diagnostics, GenMark
Diagnostics, and Roche Diagnostics. Kerry LaPlante has received
research funding or acted as a scientific advisor for Allergan, Bard,
Merck (Cubist), Pfizer, and The Medicines Company.

Ethical approval
This study, which used existing de-identified data, was determined to
be exempt from 45 CFR Part 46 by the University of Rhode Island’s
Institutional Review Board per exemption 45 CFR 46.1010(b)(4).

Funding
The author(s) received no financial support for the research, author-
ship, and/or publication of this article.

Informed consent
Informed consent is not required in research determined to be
exempt from 45 CFR Part 46.

ORCID iD
Aisling R Caffrey https://orcid.org/0000-0002-4180-027X
References

1. Mortensen EM, Restrepo MI, Copeland LA, et al. Impact of previous statin and angiotensin II receptor blocker use on mortality in patients hospitalized with sepsis. *Pharmacotherapy* 2007; 27: 1619–1626.

2. Dobesh PP, Klepser DG, McGuire TR, et al. Reduction in mortality associated with statin therapy in patients with severe sepsis. *Pharmacotherapy* 2009; 29: 621–630.

3. Tseng MY, Hutchinson PJ, Czosnyka M, et al. Effects of acute pravastatin treatment on intensity of rescue therapy, length of inpatient stay, and 6-month outcome in patients after aneurysmal subarachnoid hemorrhage. *Stroke* 2007; 38: 1545–1550.

4. Lopez-Cortes LE, Galvez-Acebal J, Del Toro MD, et al. Effect of statin therapy in the outcome of bloodstream infections due to *Staphylococcus aureus*: a prospective cohort study. *PLoS ONE* 2013; 8: e82958.

5. Kruger P, Fitzsimmons K, Cook D, et al. Statin therapy is associated with fewer deaths in patients with bacteremia. *Intensive Care Med* 2006; 32: 75–79.

6. Hsu J, Andes DR, Kansinski V, et al. Statins are associated with improved outcomes of bloodstream infection in solid-organ transplant recipients. *Eur J Clin Microbiol Infect Dis* 2009; 28: 1343–1351.

7. Liappis AP, Kan VL, Rochester CG, et al. The effect of statins on mortality in patients with bacteremia. *Clin Infect Dis* 2001; 33: 1352–1357.

8. Ma Y, Wen X, Peng J, et al. Systematic review and meta-analysis on the association between outpatient statins use and infectious disease-related mortality. *PLoS ONE* 2012; 7: e51548.

9. Janda S, Young A, Fitzgerald JM, et al. The effect of statins on mortality from severe infections and sepsis: a systematic review and meta-analysis. *J Crit Care* 2010; 25: 656.e7–652.e7.

10. Thomasen RW, Hundborg HH, Johnsen SP, et al. Statin use and mortality within 180 days after bacteremia: a population-based cohort study. *Crit Care Med* 2006; 34: 1080–1086.

11. Fehr T, Kahlerl C, Fierz W, et al. Statin-induced immunomodulatory effects on human T cells in vivo. *Atherosclerosis* 2004; 175: 83–90.

12. Kwak B, Muhlaupt F, Myit S, et al. Statins as a newly recognized type of immunomodulator. *Nat Med* 2000; 6: 1399–1402.

13. Caffrey AR, Timbrook TT, Noh E, et al. Evidence to support continuation of statin therapy in patients with *Staphylococcus aureus* bacteremia. *Antimicrob Agents Chemother* 2017; 61: e02228–16.

14. *Clinical Classifications Software (CCS) Healthcare Cost Utilization Project (HCUP)*. Rockville, MD: Agency for Healthcare Research and Quality, 2009. http://www.hcup-us.ahrq.gov/toolssoftware/ccs/AppendixASingleDX.txt (accessed 27 November 2015).

15. Hooton TM, Bradley SF, Cardenas DD, et al. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 international clinical practice guidelines from the Infectious Diseases Society of America. *Clin Infect Dis* 2010; 50: 625–663.

16. Solomkin JS, Mazuski JE, Bradley JS, et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. *Surg Infect (Larchmt)* 2010; 11: 79–109.

17. Stevens DL, Bisno AL, Chambers HF, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. *Clin Infect Dis* 2014; 59: e10–e52.

18. Timsit JF and Laupland KB. Update on bloodstream infections in ICUs. *Curr Opin Crit Care* 2012; 18: 479–486.

19. Kronish IM, Ross JS, Zhao H, et al. Impact of hospitalization for acute myocardial infarction on adherence to statins among older adults. *Circ Cardiovasc Qual Outcomes* 2016; 9: 364–371.

20. Shrouf A and Powles JW. Adherence and chemoprevention in major cardiovascular disease: a simulation study of the benefits of additional use of statins. *J Epidemiol Community Health* 2010; 64: 109–113.

21. D’Agostino RB Jr. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. *Stat Med* 1998; 17: 2265–2281.

22. Rubin DB. Estimating causal effects from large data sets using propensity scores. *Ann Intern Med* 1997; 127: 757–763.

23. Hosmer DW and Lemeshow S. *Applied logistic regression*. 2nd ed. New York: Wiley, 2000.

24. Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. *Multivariate Behav Res* 2011; 46: 399–424.

25. Falagas ME, Makris GC, Matthaiou DK, et al. Statins for infection and sepsis: a systematic review of the clinical evidence. *J Antimicrob Chemother* 2008; 61: 774–785.

26. Almog Y, Novack V, Eisinger M, et al. The effect of statin therapy on infection-related mortality in patients with atherosclerotic diseases. *Crit Care Med* 2007; 35: 372–378.

27. O’Neal HR Jr, Koyama T, Koehler EA, et al. Prehospital statin and aspirin use and the prevalence of severe sepsis and acute lung injury/acute respiratory distress syndrome. *Crit Care Med* 2011; 39: 1343–1350.

28. De Loecker I and Preiser JC. Statins in the critically ill. *Ann Intensive Care* 2012; 2: 19.

29. Arnaud C, Burger F, Steffens S, et al. Arterioscler Thromb Vasc Biol 2007; 7: 358–368.

30. Terblanche M, Almog Y, Rosenson RS, et al. Statins and sepsis: multiple modifications at multiple levels. *Lancet Infect Dis* 2007; 7: 358–368.

31. Yamazaki H, Suzuki M, Aoki T, et al. Influence of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors on ubiquinone levels in rat skeletal muscle and heart: relationship to cytoxicity and inhibitory activity for cholesterol synthesis in human skeletal muscle cells. *J Atheroscler Thromb* 2006; 13: 295–307.

32. Muck AO, Seeger H and Wallwiener D. Class-specific pro-apoptotic effect of statins on human vascular endothelial cells. *Z Kardiol* 2004; 93: 398–402.

33. Tapia-Perez JH, Kirches E, Mawrin C, et al. Cytotoxic effect of different statins and thiazolidinediones on malignant glioma cells. *Cancer Chemother Pharmacol* 2011; 67: 1193–1201.

34. Kruger PS, Harward ML, Jones MA, et al. Continuation of statin therapy in patients with presumed infection:
a randomized controlled trial. Am J Respir Crit Care Med 2011; 183: 774–781.
35. Bostock GD and Vizcaychipi MP. Continuation of statin therapy in patients with presumed infection. Am J Respir Crit Care Med 2012; 185: 456.
36. Leung S, Pokharel R and Gong MN. Statins and outcomes in patients with bloodstream infection: a propensity-matched analysis. Crit Care Med 2012; 40: 1064–1071.
37. Schmidt H, Hennen R, Keller A, et al. Association of statin therapy and increased survival in patients with multiple organ dysfunction syndrome. Intensive Care Med 2006; 32: 1248–1251.
38. Yang KC, Chien JY, Tseng WK, et al. Statins do not improve short-term survival in an oriental population with sepsis. Am J Emerg Med 2007; 25: 494–501.
39. Kruger P, Bailey M, Bellomo R, et al. A multicenter randomized trial of atorvastatin therapy in intensive care patients with severe sepsis. Am J Respir Crit Care Med 2013; 187: 743–750.
40. Ouellette DR, Moscoso EE, Corrales JP, et al. Sepsis outcomes in patients receiving statins prior to hospitalization for sepsis: comparison of in-hospital mortality rates between patients who received atorvastatin and those who received simvastatin. Ann Intensive Care 2015; 5: 9.