An Empirical Evaluation of Four Algorithms for Multi-Class Classification: Mart, ABC-Mart, Robust LogitBoost, and ABC-LogitBoost

Ping Li
Department of Statistical Science
Faculty of Computing and Information Science
Cornell University
Ithaca, NY 14853
pingli@cornell.edu

Abstract
This empirical study is mainly devoted to comparing four tree-based boosting algorithms: mart, abc-mart, robust logitboost, and abc-logitboost, for multi-class classification on a variety of publicly available datasets. Some of those datasets have been thoroughly tested in prior studies using a broad range of classification algorithms including SVM, neural nets, and deep learning.

In terms of the empirical classification errors, our experiment results demonstrate:
1. Abc-mart considerably improves mart.
2. Abc-logitboost considerably improves (robust) logitboost.
3. (Robust) logitboost considerably improves mart on most datasets.
4. Abc-logitboost considerably improves abc-mart on most datasets.
5. These four boosting algorithms (especially abc-logitboost) outperform SVM on many datasets.
6. Compared to the best deep learning methods, these four boosting algorithms (especially abc-logitboost) are competitive.

1 Introduction
Boosting algorithms [16, 4, 5, 2, 17, 7, 15, 6] have become very successful in machine learning. In this paper, we provide an empirical evaluation of four tree-based boosting algorithms for multi-class classification: mart[6], abc-mart[11], robust logitboost[13], and abc-logitboost[12], on a wide range of datasets.

Abc-boost[11], where “abc” stands for adaptive base class, is a recent new idea for improving multi-class classification. Both abc-mart[11] and abc-logitboost[12] are specific implementations of abc-boost. Although the experiments in [11, 12] were reasonable, we consider a more thorough study is necessary. Most datasets used in [11, 12] are (very) small. While those datasets (e.g., pendigits, zipcode) are still popular in machine learning research papers, they may be too small to be practically very meaningful. Nowadays, applications with millions of training samples are not uncommon, for example, in search engines[14].

It would be also interesting to compare these four tree-based boosting algorithms with other popular learning methods such as support vector machines (SVM) and deep learning. A recent study[9] conducted a thorough empirical comparison of many learning algorithms including SVM, neural nets, and

\[\text{http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DeepVsShallowComparisonICML2007}\]
deep learning. The authors of [9] maintain a nice Web site from which one can download the datasets and compares the test mis-classification errors.

In this paper, we provide extensive experiment results using mart, abc-mart, robust logitboost, and abc-logitboost on the datasets used in [9], plus other publicly available datasets. One interesting dataset is the UCI Poker. By private communications with C.J. Lin (the author of LibSVM), we learn that SVM achieved a classification accuracy of $\leq 60\%$ on this dataset. Interestingly, all four boosting algorithms can easily achieve $> 90\%$ accuracies.

We try to make this paper self-contained by providing a detailed introduction to abc-mart, robust logitboost, and abc-logitboost in the next section.

2 LogitBoost, Mart, Abc-mart, Robust LogitBoost, and Abc-LogitBoost

We denote a training dataset by $\{y_i, x_i\}_{i=1}^N$, where N is the number of feature vectors (samples), x_i is the ith feature vector, and $y_i \in \{0, 1, 2, \ldots, K-1\}$ is the ith class label, where $K \geq 3$ in multi-class classification.

Both logitboost[7] and mart (multiple additive regression trees)[6] algorithms can be viewed as generalizations to logistic regression, which assumes class probabilities $p_{i,k}$ as

$$
p_{i,k} = \Pr(y_i = k | x_i) = \frac{e^{F_{i,k}(x_i)}}{\sum_{s=0}^{K-1} e^{F_{i,s}(x_i)}}. \tag{1}
$$

While traditional logistic regression assumes $F_{i,k}(x_i) = \beta^T x_i$, logitboost and mart adopt the flexible “additive model,” which is a function of M terms:

$$
F^{(M)}(x) = \sum_{m=1}^{M} \rho_m h(x; a_m), \tag{2}
$$

where $h(x; a_m)$, the base learner, is typically a regression tree. The parameters, ρ_m and a_m, are learned from the data, by maximum likelihood, which is equivalent to minimizing the negative log-likelihood loss

$$
L = \sum_{i=1}^{N} L_i, \quad L_i = -\sum_{k=0}^{K-1} r_{i,k} \log p_{i,k} \tag{3}
$$

where $r_{i,k} = 1$ if $y_i = k$ and $r_{i,k} = 0$ otherwise.

For identifiability, $\sum_{k=0}^{K-1} F_{i,k} = 0$, i.e., the sum-to-zero constraint, is routinely adopted [7, 6, 19, 10, 18, 21, 20].

2.1 Logitboost

As described in Alg. 1 [7] builds the additive model (2) by a greedy stage-wise procedure, using a second-order (diagonal) approximation, which requires knowing the first two derivatives of the loss function (3) with respective to the function values $F_{i,k}$. [7] obtained:

$$
\frac{\partial L_i}{\partial F_{i,k}} = - (r_{i,k} - p_{i,k}), \quad \frac{\partial^2 L_i}{\partial F_{i,k}^2} = p_{i,k} (1 - p_{i,k}). \tag{4}
$$
Those derivatives can be derived by assuming no relations among $F_{i,k}$, $k = 0$ to $K - 1$. However, [7] used the “sum-to-zero” constraint $\sum_{k=0}^{K-1} F_{i,k} = 0$ throughout the paper and they provided an alternative explanation. [7] showed (4) by conditioning on a “base class” and noticed the resultant derivatives are independent of the choice of the base.

Algorithm 1 LogitBoost[7, Alg. 6]. ν is the shrinkage.

0: $r_{i,k} = 1$, if $y_i = k$, $r_{i,k} = 0$ otherwise.
1: $F_{i,k} = 0$, $p_{i,k} = \frac{1}{K}$, $k = 0$ to $K - 1$, $i = 1$ to N
2: For $m = 1$ to M Do
3: For $k = 0$ to $K - 1$, Do
4: Compute $w_{i,k} = p_{i,k}(1 - p_{i,k})$.
5: Compute $z_{i,k} = r_{i,k} - p_{i,k} p_{i,k}(1 - p_{i,k})$.
6: Fit the function $f_{i,k}$ by a weighted least-square of $z_{i,k}$ to x_i with weights $w_{i,k}$.
7: $F_{i,k} = F_{i,k} + \nu \frac{K-1}{K} \left(f_{i,k} - \frac{1}{K} \sum_{k=0}^{K-1} f_{i,k} \right)$
8: End
9: $p_{i,k} = \frac{\exp(F_{i,k})}{\sum_{s=0}^{K-1} \exp(F_{i,s})}$
10: End

At each stage, logitboost fits an individual regression function separately for each class. This is analogous to the popular individualized regression approach in multinomial logistic regression, which is known [3, 1] to result in loss of statistical efficiency, compared to the full (conditional) maximum likelihood approach.

On the other hand, in order to use trees as base learner, the diagonal approximation appears to be a must, at least from the practical perspective.

2.2 Adaptive Base Class Boost (ABC-Boost)

[11] derived the derivatives of the loss function (3) under the sum-to-zero constraint. Without loss of generality, we can assume that class 0 is the base class. For any $k \neq 0$,

$$\frac{\partial L_i}{\partial F_{i,k}} = (r_{i,0} - p_{i,0}) - (r_{i,k} - p_{i,k}), \quad \frac{\partial^2 L_i}{\partial F_{i,k}^2} = p_{i,0}(1 - p_{i,0}) + p_{i,k}(1 - p_{i,k}) + 2p_{i,0}p_{i,k}. \quad (5)$$

The base class must be identified at each boosting iteration during training. [11] suggested an exhaustive procedure to adaptively find the best base class to minimize the training loss (3) at each iteration.

[11] combined the idea of abc-boost with mart. The algorithm, named abc-mart, achieved good performance in multi-class classification on the datasets used in [11].

2.3 Robust LogitBoost

The mart paper[6] and a recent (2008) discussion paper [8] commented that logitboost (Alg. 1) can be numerically unstable. In fact, the logitboost paper[7] suggested some “crucial implementation protections” on page 17 of [7]:

- In Line 5 of Alg. 1 compute the response $z_{i,k}$ by $\frac{1}{p_{i,k}}$ (if $r_{i,k} = 1$) or $\frac{1}{1 - p_{i,k}}$ (if $r_{i,k} = 0$).
- Bound the response $|z_{i,k}|$ by $z_{max} \in [2, 4]$. The value of z_{max} is not sensitive as long as in [2, 4].
Note that the above operations were applied to each individual sample. The goal was to ensure that the response \(|z_{i,k}|\) should not be too large. On the other hand, we should hope to use larger \(|z_{i,k}|\) to better capture the data variation. Therefore, this thresholding operation occurs very frequently and it is expected that part of the useful information is lost.

The next subsection explains that, if implemented carefully, logitboost is almost identical to mart. The only difference is the tree-splitting criterion.

2.4 Tree-Splitting Criterion Using Second-Order Information

Consider \(N\) weights \(w_i\), and \(N\) response values \(z_i, i = 1\) to \(N\), which are assumed to be ordered according to the sorted order of the corresponding feature values. The tree-splitting procedure is to find the index \(s, 1 \leq s < N\), such that the weighted mean square error (MSE) is reduced the most if split at \(s\). That is, we seek the \(s\) to maximize

\[
Gain(s) = MSE_T - (MSE_L + MSE_R)
\]

where \(\bar{z} = \frac{\sum_{i=1}^{N} z_i w_i}{\sum_{i=1}^{N} w_i}, \bar{z}_L = \frac{\sum_{i=1}^{s} z_i w_i}{\sum_{i=1}^{s} w_i}, \bar{z}_R = \frac{\sum_{i=s+1}^{N} z_i w_i}{\sum_{i=s+1}^{N} w_i}\). After simplification, one can obtain

\[
Gain(s) = \left[\frac{\sum_{i=1}^{s} z_i w_i}{\sum_{i=1}^{s} w_i}\right]^2 + \left[\frac{\sum_{i=s+1}^{N} z_i w_i}{\sum_{i=s+1}^{N} w_i}\right]^2 - \left[\frac{\sum_{i=1}^{N} z_i w_i}{\sum_{i=1}^{N} w_i}\right]^2
\]

Plugging in \(w_i = p_{i,k}(1 - p_{i,k}), z_i = \frac{r_{i,k} - p_{i,k}}{p_{i,k}(1 - p_{i,k})}\) yields,

\[
Gain(s) = \frac{\sum_{i=1}^{s} (r_{i,k} - p_{i,k})^2}{\sum_{i=1}^{s} p_{i,k}(1 - p_{i,k})} + \frac{\sum_{i=s+1}^{N} (r_{i,k} - p_{i,k})^2}{\sum_{i=s+1}^{N} p_{i,k}(1 - p_{i,k})} - \frac{\sum_{i=1}^{N} (r_{i,k} - p_{i,k})^2}{\sum_{i=1}^{N} p_{i,k}(1 - p_{i,k})}
\]

Because the computations involve \(\sum p_{i,k}(1 - p_{i,k})\) as a group, this procedure is actually numerically stable.

In comparison, mart only used the first order information to construct the trees, i.e.,

\[
MartGain(s) = \left[\sum_{i=1}^{s} (r_{i,k} - p_{i,k})\right]^2 + \left[\sum_{i=s+1}^{N} (r_{i,k} - p_{i,k})\right]^2 - \left[\sum_{i=1}^{N} (r_{i,k} - p_{i,k})\right]^2
\]

Alg. describes robust logitboost using the tree-splitting criterion in Sec. 2.4. Note that after trees are constructed, the values of the terminal nodes are computed by

\[
\frac{\sum_{\text{node}} z_{i,k} w_{i,k}}{\sum_{\text{node}} w_{i,k}} = \frac{\sum_{\text{node}} (r_{i,k} - p_{i,k})}{\sum_{\text{node}} p_{i,k}(1 - p_{i,k})},
\]

which explains Line 5 of Alg.
For \(k = 0 \) to \(K - 1 \), \(i = 1 \) to \(N \)

2. At each boosting iteration, adaptively select the base class according to the training loss. [11] suggested an exhaustive search strategy.

[11] combined \(\text{abc-boost} \) with \(\text{mart} \) to develop \(\text{abc-mart} \). More recently, [12] developed \(\text{abc-logitboost} \), the combination of \(\text{abc-boost} \) with (robust) logitboost.

Algorithm 3 \textit{Abc-logitboost} using the exhaustive search strategy for the base class, as suggested in [11].

The vector \(B \) stores the base class numbers.

1. \(F_{i,k} = 0 \), \(p_{i,k} = \frac{1}{K} \), \(k = 0 \) to \(K - 1 \), \(i = 1 \) to \(N \)
2. For \(m = 1 \) to \(M \) Do
3. For \(b = 0 \) to \(K - 1 \), Do
4. For \(k = 0 \) to \(K - 1 \), \(k \neq b \), Do
5. \(\{R_{j,k,m}\}_{j=1}^{J} = J\text{-terminal node regression tree from } \{r_{i,k} - p_{i,k} \text{, } x_i\}_{i=1}^{N}, \)
6. \(\beta_{j,k,m} = \frac{1}{K} \sum_{x_i \in R_{j,k,m}} r_{i,k} - p_{i,k} \)
7. \(F_{i,k} = F_{i,k} + \nu \sum_{j=1}^{J} \beta_{j,k,m} 1_{x_i \in R_{j,k,m}} \)
8. End
9. \(G_{i,b,b} = -\sum_{k \neq b} G_{i,k,b} \)
10. \(q_{i,k} = \exp(G_{i,b,b}) / \sum_{b=0}^{K-1} \exp(G_{i,b,b}) \)
11. \(L(b) = -\sum_{i=1}^{N} \sum_{k=0}^{K-1} r_{i,k} \log(q_{i,k}) \)
12. End
13. \(B(m) = \arg\min_{b} L(b) \)
14. \(F_{i,k} = G_{i,k,B(m)} \)
15. \(p_{i,k} = \exp(F_{i,k}) / \sum_{s=0}^{K-1} \exp(F_{i,s}) \)
16. End
2.6 Main Parameters

Alg. 2 and Alg. 3 have three parameters \((J, \nu \text{ and } M)\), to which the performance is in general not very sensitive, as long as they fall in some reasonable range. This is a significant advantage in practice.

The number of terminal nodes, \(J\), determines the capacity of the base learner. \[6\] suggested \(J = 6\). [7][21] commented that \(J > 10\) is unlikely. In our experience, for large datasets (or moderate datasets in high-dimensions), \(J = 20\) is often a reasonable choice; also see [14] for more examples.

The shrinkage, \(\nu\), should be large enough to make sufficient progress at each step and small enough to avoid over-fitting. \[6\] suggested \(\nu \leq 0.1\). Normally, \(\nu = 0.1\) is used.

The number of boosting iterations, \(M\), is largely determined by the affordable computing time. A commonly-regarded merit of boosting is that, on many datasets, over-fitting can be largely avoided for reasonable \(J\), and \(\nu\).

3 Datasets

Table 1 lists the datasets used in our study. [11][12] provided experiments on several other (small) datasets.

dataset	\(K\)	\# training	\# test	\# features
Covertype290k	7	290506	290506	54
Covertype145k	7	145253	290506	54
Poker525k	10	525010	500000	25
Poker275k	10	275010	500000	25
Poker150k	10	150010	500000	25
Poker100k	10	100010	500000	25
Poker25kT1	10	25010	500000	25
Poker25kT2	10	25010	500000	25
Mnist10k	10	10000	60000	784
M-Basic	10	12000	50000	784
M-Rotate	10	12000	50000	784
M-Image	10	12000	50000	784
M-Rand	10	12000	50000	784
M-RotImg	10	12000	50000	784
M-Noise1	10	10000	2000	784
M-Noise2	10	10000	2000	784
M-Noise3	10	10000	2000	784
M-Noise4	10	10000	2000	784
M-Noise5	10	10000	2000	784
M-Noise6	10	10000	2000	784
Letter15k	26	15000	5000	16
Letter4k	26	4000	16000	16
Letter2k	26	2000	18000	16

3.1 Covertype

The original UCI Covertype dataset is fairly large, with 581012 samples. To generate Covertype290k, we randomly split the original data into halves, one half for training and another half for testing. For
Covertype145k, we randomly select one half from the training set of Covertype290k and still keep the test set.

3.2 Poker

The UCI Poker dataset originally used only 25010 samples for training and 1000000 samples for testing. Since the test set is very large, we randomly divide it equally into two parts (I and II). Poker25kT1 uses the original training set for training and Part I of the original test set for testing. Poker25kT2 uses the original training set for training and Part II of the original test set for testing. This way, Poker25kT1 can use the test set of Poker25kT2 for validation, and Poker25kT2 can use the test set of Poker25kT1 for validation. As the two test sets are still very large, this treatment will provide reliable results.

Since the original training set (about 25k) is too small compared to the size of the test set, we enlarge the training set to form Poker525k, Poker275k, Poker150k, and Poker100k. All four enlarged training datasets use the same test set as Pokere25kT2 (i.e., Part II of the original test set). The training set of Poker525k contains the original (25010) training set plus Part I of the original test set. Similarly, the training set of Poker275k / Poker150k / Poker100k contains the original training set plus 250k/125k/75k samples from Part I of the original test set.

The original Poker dataset provides 10 features, 5 “suit” features and 5 “rank” features. While the “ranks” are naturally ordinal, it appears reasonable to treat “suits” as nominal features. By private communications, R. Cattral, the donor of the Poker data, suggested us to treat the “suits” as nominal. C.J. Lin also kindly told us that the performance of SVM was not affected whether “suits” are treated nominal or ordinal. In our experiments, we choose to use “suits” as nominal feature; and hence the total number of features becomes 25 after expanding each “suite” feature with 4 binary features.

3.3 Mnist

While the original Mnist dataset is extremely popular, this dataset is known to be too easy[9]. Originally, Mnist used 60000 samples for training and 10000 samples for testing.

Mnist10k uses the original (10000) test set for training and the original (60000) training set for testing. This creates a more challenging task.

3.4 Mnist with Many Variations

[9] (www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DeepVsShallowComparisonICML2007) created a variety of much more difficult datasets by adding various background (correlated) noise, background images, rotations, etc, to the original Mnist dataset. We shortened the notations of the generated datasets to be M-Basic, M-Rotate, M-Image, M-Rand, M-RotImg, and M-Noise1, M-Noise2 to M-Noise6.

By private communications with D. Erhan, one of the authors of [9], we learn that the sizes of the training sets actually vary depending on the learning algorithms. For some methods such as SVM, they retrained the algorithms using all 120000 training samples after choosing the best parameters; and for other methods, they used 10000 samples for training. In our experiments, we use 12000 training samples for M-Basic, M-Rotate, M-Image, M-Rand and M-RotImg; and we use 10000 training samples for M-Noise1 to M-Noise6.

Note that the datasets M-Noise1 to M-Noise6 have merely 2000 test samples each. By private communications with D. Erhan, we understand this was because [9] did not mean to compare the statistical significance of the test errors for those six datasets.
3.5 Letter

The UCI Letter dataset has in total 20000 samples. In our experiments, Letter4k (Letter2k) use the last 4000 (2000) samples for training and the rest for testing. The purpose is to demonstrate the performance of the algorithms using only small training sets.

We also include Letter15k, which is one of the standard partitions of the Letter dataset, by using 15000 samples for training and 5000 samples for testing.

4 Summary of Experiment Results

We simply use logitboost (or even logit in the plots) to denote robust logitboost.

Table 2 summarizes the test mis-classification errors. For all datasets except Poker25kT1 and Poker25kT2, we report the test errors with the tree size $J=20$ and shrinkage $\nu = 0.1$. For Poker25kT1 and Poker25kT2, we use $J = 6$ and $\nu = 0.1$. We report more detailed experiment results in Sec. 5.

For C Uncovertype290k, Poker525k, Poker275k, Poker150k, and Poker100k, as they are fairly large, we only train $M = 5000$ boosting iterations. For all other datasets, we always train $M = 10000$ iterations or terminate when the training loss (3) is close to the machine accuracy. Since we do not notice obvious over-fitting on those datasets, we simply report the test errors at the last iterations.

Table 2: Summary of test mis-classification errors.

Dataset	mart	abc-mart	logitboost	abc-logitboost	# test
Covertype290k	11350	10454	10765	9727	290506
Covertype145k	15767	14665	14928	13986	290506
Poker525k	7061	2424	2704	1736	500000
Poker275k	15404	3679	6533	2727	500000
Poker150k	22289	12340	16163	5104	500000
Poker100k	27871	21293	25715	13707	500000
Poker25kT1	43575	34879	46789	37345	500000
Poker25kT2	42935	34326	46600	36731	500000
Mnist10k	2815	2440	2381	2102	60000
M-Basic	2058	1843	1723	1602	50000
M-Rotate	7674	6634	6813	5959	50000
M-Image	5821	4727	4703	4268	50000
M-Rand	6577	5300	5020	4725	50000
M-RotImg	24912	23072	22962	22343	50000
M-Noise1	305	245	267	234	2000
M-Noise2	325	262	270	237	2000
M-Noise3	310	264	277	238	2000
M-Noise4	308	243	256	238	2000
M-Noise5	294	244	242	227	2000
M-Noise6	279	224	226	201	2000
Letter15k	155	125	139	109	5000
Letter4k	1370	1149	1252	1055	16000
Letter2k	2482	2220	2309	2034	18000
4.1 \(P\)-Values

Table 3 summarizes the following four types of \(P\)-values:

- \(P_1\): for testing if \(abc\)-mart has significantly lower error rates than \(mart\).
- \(P_2\): for testing if (robust) logitboost has significantly lower error rates than \(mart\).
- \(P_3\): for testing if \(abc\)-logitboost has significantly lower error rates than \(abc\)-mart.
- \(P_4\): for testing if \(abc\)-logitboost has significantly lower error rates than (robust) logitboost.

The \(P\)-values are computed using binomial distributions and normal approximations. Recall, if a random variable \(z \sim \text{Binomial}(n, p)\), then the probability parameter \(p\) can be estimated by \(\hat{p} = \frac{z}{n}\), and the variance of \(\hat{p}\) can be estimated by \(\hat{p}(1 - \hat{p})/n\). The \(P\)-values can then be computed using normal approximation of binomial distributions.

Note that the test sets for \(M\)-Noise1 to \(M\)-Noise6 are very small because [9] originally did not intend to compare the statistical significance on those six datasets. We compute their \(P\)-values anyway.

Table 3: Summary of test \(P\)-Values.

Dataset	\(P_1\)	\(P_2\)	\(P_3\)	\(P_4\)
Covertype290k	\(3 \times 10^{-10}\)	\(3 \times 10^{-6}\)	\(9 \times 10^{-8}\)	\(8 \times 10^{-14}\)
Covertype145k	\(4 \times 10^{-11}\)	\(4 \times 10^{-7}\)	\(2 \times 10^{-5}\)	\(7 \times 10^{-9}\)
Poker525k	0	0	0	0
Poker275k	0	0	0	0
Poker150k	0	0	0	0
Poker100k	0	0	0	0
Poker25kT1	0	---	---	0
Poker25kT2	0	---	---	0
Mnist10k	\(5 \times 10^{-8}\)	\(3 \times 10^{-10}\)	\(1 \times 10^{-7}\)	\(1 \times 10^{-5}\)
M-Basic	\(2 \times 10^{-4}\)	\(1 \times 10^{-8}\)	\(1 \times 10^{-5}\)	0.0164
M-Rotate	0	\(5 \times 10^{-15}\)	\(6 \times 10^{-11}\)	\(3 \times 10^{-16}\)
M-Image	0	0	\(2 \times 10^{-7}\)	\(7 \times 10^{-7}\)
M-Rand	0	0	\(7 \times 10^{-10}\)	\(8 \times 10^{-4}\)
M-RotImg	0	0	\(2 \times 10^{-6}\)	\(4 \times 10^{-5}\)
M-Noise1	0.0029	0.0430	0.2961	0.0574
M-Noise2	0.0024	0.0072	0.1158	0.0583
M-Noise3	0.0190	0.0701	0.1073	0.0327
M-Noise4	0.0014	0.0090	0.4040	0.1935
M-Noise5	0.0102	0.0079	0.2021	0.2305
M-Noise6	0.0043	0.0058	0.1189	0.1002
Letter15k	0.0345	0.1718	0.1449	0.0268
Letter4k	\(2 \times 10^{-6}\)	0.008	0.019	\(1 \times 10^{-5}\)
Letter2k	\(2 \times 10^{-5}\)	0.003	0.001	\(4 \times 10^{-6}\)

The results demonstrate that \(abc\)-logitboost and \(abc\)-mart considerably outperform logitboost and \(mart\), respectively. In addition, except for Poker25kT1 and Poker25kT2, we observe that \(abc\)-logitboost outperforms \(abc\)-mart, and logitboost outperforms \(mart\).
4.2 Comparisons with SVM and Deep Learning

For UCI Poker, we know that SVM could only achieve an error rate of about 40% (by private communications with C.J. Lin). In comparison, all four algorithms, mart, abc-mart, (robust) logitboost, and abc-logitboost, could achieve much smaller error rates (i.e., < 10%) on Poker25kT1 and Poker25kT2.

Figure 1 provides the comparisons on the six (correlated) noise datasets: M-Noise1 to M-Noise6. Table 4 compares the error rates on M-Basic, M-Rotate, M-Image, M-Rand, and M-RotImg.

Figure 1: Six datasets: M-Noise1 to M-Noise6. Left panel: Error rates of SVM and deep learning [9]. Middle and right panels: Errors rates of four boosting algorithms. X-axis: degree of correlation from high to low; the values 1 to 6 correspond to the datasets M-Noise1 to M-Noise6.

Table 4: Summary of error rates of various algorithms on the modified Mnist dataset[9].

Algorithm	M-Basic	M-Rotate	M-Image	M-Rand	M-RotImg
SVM-RBF	3.05%	11.11%	22.61%	14.58%	55.18%
SVM-POLY	3.69%	15.42%	24.01%	16.62%	56.41%
NNET	4.69%	18.11%	27.41%	20.04%	62.16%
DBN-3	3.11%	10.30%	16.31%	6.73%	47.39%
SAA-3	3.46%	10.30%	23.00%	11.28%	51.93%
DBN-1	3.94%	14.69%	16.15%	9.80%	52.21%
mart	4.12%	15.35%	11.64%	13.15%	49.82%
abc-mart	3.69%	13.27%	9.45%	10.60%	46.14%
logitboost	3.45%	13.63%	9.41%	10.04%	45.92%
abc-logitboost	3.20%	11.92%	8.54%	9.45%	44.69%
4.3 Performance vs. Boosting Iterations

Figure 2 presents the training loss, i.e., Eq. (3), on \textit{Covertype290k} and \textit{Poker525k}, for all boosting iterations. Figures 3 and 4 provide the test mis-classification errors on \textit{Covertype}, \textit{Poker}, \textit{Mnist10k}, and \textit{Letter}.

![Figure 2: Training loss, Eq. (3), on \textit{Covertype290k} and \textit{Poker525k}.](image1)

![Figure 3: Test mis-classification errors on \textit{Mnist10k}, \textit{Letter15k}, \textit{Letter4k}, and \textit{Letter2k}.](image2)
Figure 4: Test mis-classification errors on Covertype and Poker.
5 More Detailed Experiment Results

Ideally, we would like to demonstrate that, with any reasonable choice of parameters J and ν, abc-mart and abc-logitboost will always improve mart and logitboost, respectively. This is actually indeed the case on the datasets we have experimented. In this section, we provide the detailed experiment results on Mnist10k, Poker25kT1, Poker25kT2, Letter4k, and Letter2k.

5.1 Detailed Experiment Results on Mnist10k

For this dataset, we experiment with every combination of $J \in \{4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 30, 40, 50\}$ and $\nu \in \{0.04, 0.06, 0.08, 0.1\}$. We train the four boosting algorithms till the training loss (3) is close to the machine accuracy, to exhaust the capacity of the learner so that we could provide a reliable comparison, up to $M = 10000$ iterations.

Table 5 presents the test mis-classification errors and Table 6 presents the P-values. Figures 5, 6, and 7 provide the test mis-classification errors for all boosting iterations.

Table 5: Mnist10k. Upper table: The test mis-classification errors of mart and abc-mart (bold numbers). Bottom table: The test mis-classification errors of logitboost and abc-logitboost (bold numbers)

	mart	abc-mart										
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
$J = 4$	3356 3060	3329 3019	3318 2855	3326 2794	3287 2720	3308 2812	3330 2874	3339 2896	3329 2812	3318 2855	3308 2720	
$J = 6$	3815 3086	3093 2626	3129 2656	3217 2590	3287 2720	3318 2855	3372 2900	3412 2940	3372 2720	3318 2855	3372 2900	
$J = 8$	3049 2558	3054 2555	3054 2534	3035 2577	3287 2720	3318 2855	3372 2900	3412 2940	3372 2720	3318 2855	3372 2900	
$J = 10$	3020 2547	2973 2521	2990 2520	2978 2506	3287 2720	3318 2855	3372 2900	3412 2940	3372 2720	3318 2855	3372 2900	
$J = 12$	2927 2499	2917 2457	2945 2480	2907 2490	3287 2720	3318 2855	3372 2900	3412 2940	3372 2720	3318 2855	3372 2900	
$J = 14$	2925 2487	2901 2471	2877 2470	2884 2454	3287 2720	3318 2855	3372 2900	3412 2940	3372 2720	3318 2855	3372 2900	
$J = 16$	2899 2478	2893 2452	2873 2465	2860 2451	3287 2720	3318 2855	3372 2900	3412 2940	3372 2720	3318 2855	3372 2900	
$J = 18$	2857 2469	2880 2460	2870 2437	2855 2454	3287 2720	3318 2855	3372 2900	3412 2940	3372 2720	3318 2855	3372 2900	
$J = 20$	2833 2441	2834 2448	2834 2444	2815 2440	3287 2720	3318 2855	3372 2900	3412 2940	3372 2720	3318 2855	3372 2900	
$J = 22$	2840 2447	2827 2431	2801 2427	2784 2455	3287 2720	3318 2855	3372 2900	3412 2940	3372 2720	3318 2855	3372 2900	
$J = 30$	2826 2457	2822 2443	2828 2470	2807 2450	3287 2720	3318 2855	3372 2900	3412 2940	3372 2720	3318 2855	3372 2900	
$J = 40$	2837 2482	2809 2440	2836 2447	2782 2506	3287 2720	3318 2855	3372 2900	3412 2940	3372 2720	3318 2855	3372 2900	
$J = 50$	2813 2502	2826 2459	2824 2469	2786 2499	3287 2720	3318 2855	3372 2900	3412 2940	3372 2720	3318 2855	3372 2900	
Table 6: *Mnist10k*; *P*-values. See Sec. 4.1 for the definitions of P1, P2, P3, and P4.

J	P1	P2	P3	P4
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
4	7×10^{-3}	3×10^{-3}	7×10^{-10}	1×10^{-12}
6	8×10^{-9}	1×10^{-10}	9×10^{-11}	0
8	9×10^{-12}	4×10^{-12}	5×10^{-13}	2×10^{-10}
10	4×10^{-11}	2×10^{-10}	4×10^{-11}	3×10^{-11}
12	1×10^{-9}	7×10^{-11}	1×10^{-10}	3×10^{-9}
14	6×10^{-10}	1×10^{-9}	6×10^{-9}	9×10^{-10}
16	2×10^{-9}	3×10^{-10}	6×10^{-9}	5×10^{-9}
18	3×10^{-8}	2×10^{-9}	6×10^{-10}	9×10^{-9}
20	2×10^{-8}	3×10^{-8}	2×10^{-8}	6×10^{-8}
24	2×10^{-8}	1×10^{-8}	6×10^{-8}	2×10^{-6}
30	1×10^{-7}	5×10^{-8}	2×10^{-7}	2×10^{-7}
40	3×10^{-7}	1×10^{-7}	2×10^{-8}	5×10^{-5}
50	6×10^{-6}	1×10^{-7}	3×10^{-7}	3×10^{-5}
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
4	2×10^{-8}	2×10^{-6}	6×10^{-6}	3×10^{-6}
6	1×10^{-10}	4×10^{-8}	9×10^{-9}	8×10^{-12}
8	4×10^{-10}	2×10^{-9}	1×10^{-10}	1×10^{-9}
10	7×10^{-11}	4×10^{-10}	3×10^{-11}	2×10^{-11}
12	1×10^{-10}	2×10^{-10}	2×10^{-11}	3×10^{-10}
14	2×10^{-11}	8×10^{-12}	2×10^{-10}	3×10^{-11}
16	1×10^{-11}	8×10^{-11}	7×10^{-12}	3×10^{-11}
18	5×10^{-11}	9×10^{-12}	9×10^{-12}	9×10^{-12}
20	2×10^{-10}	2×10^{-9}	1×10^{-9}	4×10^{-10}
24	1×10^{-8}	3×10^{-9}	3×10^{-8}	1×10^{-7}
30	2×10^{-7}	2×10^{-8}	5×10^{-9}	2×10^{-7}
40	3×10^{-5}	1×10^{-5}	4×10^{-6}	2×10^{-4}
50	0.0026	0.0023	3×10^{-4}	0.0013
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
4	3×10^{-9}	5×10^{-9}	4×10^{-6}	7×10^{-6}
6	4×10^{-13}	2×10^{-8}	2×10^{-10}	3×10^{-8}
8	2×10^{-9}	3×10^{-10}	3×10^{-10}	6×10^{-11}
10	1×10^{-10}	8×10^{-10}	6×10^{-11}	4×10^{-10}
12	2×10^{-10}	2×10^{-8}	1×10^{-9}	1×10^{-9}
14	5×10^{-10}	6×10^{-9}	4×10^{-10}	4×10^{-10}
16	2×10^{-8}	2×10^{-7}	1×10^{-8}	1×10^{-8}
18	4×10^{-9}	8×10^{-9}	6×10^{-8}	3×10^{-8}
20	1×10^{-6}	2×10^{-7}	6×10^{-8}	2×10^{-7}
24	2×10^{-5}	9×10^{-6}	3×10^{-6}	9×10^{-7}
30	5×10^{-4}	0.0011	1×10^{-4}	2×10^{-5}
40	0.0056	0.0103	0.0024	1×10^{-4}
50	0.0145	0.0707	0.0218	0.0102
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
4	1×10^{-3}	2×10^{-7}	4×10^{-10}	5×10^{-12}
6	5×10^{-11}	7×10^{-11}	1×10^{-12}	6×10^{-13}
8	4×10^{-11}	5×10^{-13}	2×10^{-12}	8×10^{-12}
10	6×10^{-11}	5×10^{-10}	8×10^{-11}	7×10^{-10}
12	2×10^{-9}	6×10^{-9}	6×10^{-9}	1×10^{-8}
14	1×10^{-8}	4×10^{-7}	1×10^{-8}	9×10^{-9}
16	1×10^{-6}	5×10^{-7}	3×10^{-6}	9×10^{-7}
18	1×10^{-6}	8×10^{-7}	2×10^{-6}	8×10^{-6}
20	4×10^{-5}	2×10^{-6}	8×10^{-7}	1×10^{-5}
24	3×10^{-5}	3×10^{-5}	7×10^{-6}	1×10^{-5}
30	3×10^{-4}	0.0016	0.0012	2×10^{-5}
40	2×10^{-4}	5×10^{-4}	6×10^{-5}	3×10^{-5}
50	9×10^{-5}	7×10^{-5}	2×10^{-4}	4×10^{-4}
Figure 5: Mnist10k. Test mis-classification errors of four algorithms. \(J = 4, 6, 8, 10. \)
Figure 6: Mnist10k. Test mis-classification errors of four algorithms. $J = 12, 14, 16, 18$.
Figure 7: **Mnist10k**. Test mis-classification errors of four algorithms. $J = 20, 24, 30, 40, 50$.
The experiment results illustrate that the performances of all four algorithms are stable on a wide-range of base class tree sizes J, e.g., $J \in [6, 30]$. The shrinkage parameter ν does not affect much the test performance, although smaller ν values result in more boosting iterations (before the training losses reach the machine accuracy).

We further randomly divide the test set of $Mnist10k$ (60000 test samples) equally into two parts (I and II). We then test algorithms on Part I (using the same training results). We name this “new” dataset $Mnist10kT1$. The purpose of this experiment is to further demonstrate the stability of the algorithms.

Table 7 presents the test mis-classification errors of $Mnist10kT1$. Compared to Table 5, the mis-classification errors of $Mnist10kT1$ are roughly 50% of the mis-classification errors of $Mnist10k$ for all J and ν. This helps establish that our experiment results on $Mnist10k$ provide a very reliable comparison.

Table 7: $Mnist10kT1$

Upper table: The test mis-classification errors of $mart$ and $abc-mart$ (bold numbers). Bottom table: The test mis-classification errors of $logitboost$ and $abc-logitboost$ (bold numbers). $Mnist10kT1$ only uses a half of the test data of $Mnist10k$.

J	$mart$	$abc-mart$	$logitboost$	$abc-logitboost$				
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$				
4	1682	1514	1668	1505	1666	1416	1663	1380
6	1573	1382	1523	1320	1533	1329	1582	1288
8	1501	1263	1515	1257	1523	1250	1491	1279
10	1492	1270	1457	1248	1470	1239	1459	1236
12	1432	1244	1427	1234	1444	1228	1436	1227
14	1424	1237	1420	1231	1407	1223	1419	1212
16	1430	1226	1426	1224	1411	1223	1418	1204
18	1400	1222	1413	1218	1390	1210	1404	1211
20	1398	1213	1381	1205	1388	1213	1382	1198
24	1402	1221	1366	1201	1372	1199	1346	1205
30	1384	1211	1374	1208	1368	1224	1366	1205
40	1397	1244	1375	1220	1397	1222	1365	1246
50	1371	1239	1380	1221	1382	1223	1362	1242

J	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$				
4	1419	1299	1449	1281	1446	1251	1460	1244
6	1313	1111	1313	1114	1326	1101	1317	1097
8	1278	1058	1287	1050	1270	1036	1262	1058
10	1252	1061	1244	1057	1237	1040	1229	1041
12	1224	1020	1219	1049	1217	1053	1224	1047
14	1213	1038	1207	1050	1201	1039	1198	1026
16	1185	1050	1205	1058	1189	1044	1178	1041
18	1186	1048	1184	1038	1184	1046	1167	1056
20	1185	1077	1199	1063	1183	1042	1184	1045
24	1208	1095	1196	1083	1191	1064	1194	1068
30	1225	1113	1201	1117	1190	1113	1211	1087
40	1254	1159	1247	1145	1248	1127	1249	1127
50	1292	1177	1284	1174	1275	1161	1276	1176
5.2 Detailed Experiment Results on Poker25kT1 and Poker25kT2

Recall the original UCI Poker dataset used 25010 samples for training and 1000000 samples for testing. To provide a reliable comparison (and validation), we form two datasets Poker25kT1 and Poker25kT2 by equally dividing the original test set into two parts (I and II). Both use the same training set. Poker25kT1 uses Part I of the original test set for testing and Poker25kT2 uses Part II for testing.

Table 8 and Table 9 present the test mis-classification errors, for $J \in \{4, 6, 8, 10, 12, 14, 16, 18, 20\}$ and $\nu \in \{0.04, 0.06, 0.08, 0.1\}$. Comparing these two tables, we can see the corresponding entries are very close to each other, which again verifies that the four boosting algorithms provide reliable results on this dataset.

For most J and ν, all four algorithms achieve error rates $< 10\%$. For both Poker25kT1 and Poker25kT2, the lowest test errors are attained at $\nu = 0.1$ and $J = 6$. Unlike Mnist10k, the test errors, especially using mart and logitboost, are slightly sensitive to the parameters.

Note that when $J = 4$ (and ν is small), only training $M = 10000$ steps would not be sufficient in this case.

Table 8: Poker25kT1. Upper table: The test mis-classification errors of mart and abc-mart (bold numbers). Bottom table: The test mis-classification errors of logitboost and abc-logitboost (bold numbers)

	mart	abc-mart		logitboost	abc-logit
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$	
$J = 4$	145880.90323	132526.67417	124283.49403	113985.49403	
$J = 6$	71628.38017	59046.36839	48064.35467	43573.34879	
$J = 8$	64090.39220	53400.37112	47360.36407	44131.35777	
$J = 10$	60456.39661	52464.38547	47203.36990	46351.36647	
$J = 12$	61452.41362	52697.39221	46822.37723	46965.37345	
$J = 14$	58348.42764	56047.40993	50476.40155	47935.37780	
$J = 16$	63518.44386	55418.43360	50612.41952	49179.40050	
$J = 18$	64426.46463	55708.45607	54033.45838	52113.43040	
$J = 20$	65528.49577	59236.47901	56384.45725	53506.44295	

	logitboost	abc-logit		
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
$J = 4$	147064.102905	140068.71450	128161.51226	117085.42140
$J = 6$	81566.43156	59324.39164	51526.37954	48516.37546
$J = 8$	68278.46076	56922.40162	52532.38422	46789.37345
$J = 10$	63796.44830	55834.40754	53262.40486	47118.38141
$J = 12$	66732.48412	56867.44886	51248.42100	47485.39798
$J = 14$	64263.52479	55614.48093	51735.44688	47806.43048
$J = 16$	67092.53363	58019.51308	53746.47831	51267.46968
$J = 18$	69104.57147	56514.55468	55290.50292	51871.47986
$J = 20$	68899.62345	61314.57677	56648.53696	51608.49864
Table 9: Poker25kT2. Upper table: The test mis-classification errors of \textit{mart} and \textit{abc-mart} (bold numbers). Bottom table: The test mis-classification errors of \textit{logitboost} and \textit{abc-logitboost} (bold numbers).

\begin{tabular}{cccccc}
\hline
 & \textit{mart} & \textit{abc-mart} \\
\hline
 & $\nu = 0.04$ & $\nu = 0.06$ & $\nu = 0.08$ & $\nu = 0.1$ \\
\hline
$J = 4$ & 144020 & 89608 & 131243 & 67071 & 123031 & 48855 & 113232 & 41688 \\
$J = 6$ & 71004 & 37567 & 58487 & 36345 & 47564 & 34920 & 42935 & 34326 \\
$J = 8$ & 63452 & 38703 & 52990 & 36586 & 46914 & 35836 & 43647 & 35129 \\
$J = 10$ & 60061 & 39078 & 52125 & 38025 & 46912 & 36455 & 45863 & 36076 \\
$J = 12$ & 61098 & 40834 & 52296 & 38657 & 46458 & 37203 & 46698 & 36781 \\
$J = 14$ & 57924 & 42348 & 55622 & 40363 & 50243 & 39613 & 47619 & 37243 \\
$J = 16$ & 63213 & 44067 & 55461 & 45133 & 53652 & 45308 & 51870 & 42485 \\
$J = 18$ & 64056 & 46050 & 55461 & 45133 & 53652 & 45308 & 51870 & 42485 \\
$J = 20$ & 65215 & 49046 & 58911 & 47430 & 56099 & 45390 & 53213 & 43888 \\
\hline
\end{tabular}

\begin{tabular}{cccccc}
\hline
 & \textit{logitboost} & \textit{abc-logit} \\
\hline
 & $\nu = 0.04$ & $\nu = 0.06$ & $\nu = 0.08$ & $\nu = 0.1$ \\
\hline
$J = 4$ & 145368 & 102014 & 138734 & 70886 & 126980 & 50783 & 116346 & 41551 \\
$J = 6$ & 80782 & 42699 & 58769 & 38592 & 51202 & 37397 & 48199 & 36914 \\
$J = 8$ & 68065 & 45737 & 56678 & 39648 & 52504 & 37935 & 46600 & 36731 \\
$J = 10$ & 63153 & 44517 & 55419 & 40286 & 52835 & 40044 & 46913 & 37504 \\
$J = 12$ & 66240 & 47948 & 56619 & 44602 & 50918 & 41582 & 47128 & 39378 \\
$J = 14$ & 63763 & 52063 & 55238 & 47642 & 51526 & 44296 & 47545 & 42720 \\
$J = 16$ & 66543 & 52937 & 57473 & 50842 & 53287 & 47578 & 51106 & 46635 \\
$J = 18$ & 68477 & 56803 & 57070 & 55166 & 54954 & 49956 & 51603 & 47707 \\
$J = 20$ & 68311 & 61980 & 61047 & 57383 & 56474 & 53364 & 51242 & 49506 \\
\hline
\end{tabular}
5.3 Detailed Experiment Results on *Letter4k* and *Letter2k*

Table 10: *Letter4k*. Upper table: The test mis-classification errors of *mart* and *abc-mart* (bold numbers). Bottom table: The test mis-classification errors of *logitboost* and *abc-logitboost* (bold numbers)

	mart		*abc-mart*					*logitboost*		*abc-logit*						
	ν = 0.04	*ν* = 0.06	*ν* = 0.08	*ν* = 0.1	*ν* = 0.04	*ν* = 0.06	*ν* = 0.08	*ν* = 0.1	*ν* = 0.04	*ν* = 0.06	*ν* = 0.08	*ν* = 0.1				
J = 4	1681	1415	1660	1380	1671	1368	1655	1323	1460	1296	1471	1241	1452	1202	1446	1208
J = 6	1618	1320	1584	1288	1588	1266	1577	1240	1390	1143	1394	1117	1382	1090	1374	1074
J = 8	1531	1266	1522	1246	1516	1192	1521	1184	1383	1174	1406	1174	1401	1177	1404	1209
J = 10	1499	1228	1463	1208	1479	1186	1470	1185	1458	1211	1455	1224	1441	1233	1454	1215
J = 12	1420	1213	1434	1186	1409	1170	1437	1162	1426	1204	1415	1234	1295	1202	1220	1057
J = 14	1410	1190	1388	1156	1377	1151	1396	1160	1426	1204	1415	1234	1295	1202	1220	1057
J = 16	1395	1167	1402	1156	1396	1157	1387	1146	1458	1211	1455	1224	1444	1233	1454	1215

21
Table 11: Letter2k. Upper table: The test mis-classification errors of *mart* and *abc-mart* (bold numbers). Bottom table: The test mis-classification errors of *logitboost* and *abc-logitboost* (bold numbers).

	mart	abc-mart		logitboost	abc-logit			
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
$J = 4$	2694 2512	2598 2470	2684 2419	2689 2435	2629 2300	2598 2470	2684 2419	2689 2435
$J = 6$	2683 2360	2664 2321	2640 2313	2629 2321	2598 2470	2684 2419	2689 2435	2689 2435
$J = 8$	2569 2279	2603 2289	2563 2259	2571 2251	2598 2470	2684 2419	2689 2435	2689 2435
$J = 10$	2534 2242	2516 2215	2504 2210	2491 2185	2598 2470	2684 2419	2689 2435	2689 2435
$J = 12$	2503 2202	2516 2215	2473 2198	2492 2201	2598 2470	2684 2419	2689 2435	2689 2435
$J = 14$	2488 2203	2467 2231	2460 2204	2460 2183	2598 2470	2684 2419	2689 2435	2689 2435
$J = 16$	2503 2219	2501 2219	2496 2235	2500 2205	2598 2470	2684 2419	2689 2435	2689 2435
$J = 18$	2494 2225	2497 2212	2472 2205	2439 2213	2598 2470	2684 2419	2689 2435	2689 2435
$J = 20$	2499 2199	2512 2198	2504 2188	2482 2220	2598 2470	2684 2419	2689 2435	2689 2435
$J = 22$	2549 2200	2549 2191	2526 2218	2538 2248	2598 2470	2684 2419	2689 2435	2689 2435
$J = 24$	2579 2237	2566 2232	2574 2244	2574 2285	2598 2470	2684 2419	2689 2435	2689 2435
$J = 26$	2641 2303	2632 2304	2606 2271	2667 2351	2598 2470	2684 2419	2689 2435	2689 2435

Note: The values in bold indicate mis-classification errors.
6 Conclusion

Classification is a fundamental task in machine learning. This paper presents extensive experiment results of four tree-based boosting algorithms: \textit{mart}, \textit{abc-mart}, (robust) \textit{logitboost}, and \textit{abc-logitboost}, for multi-class classification, on a variety of publicly available datasets. From the experiment results, we can conclude the following:

1. \textit{Abc-mart} considerably improves \textit{mart}.
2. \textit{Abc-logitboost} considerably improves (robust) \textit{logitboost}.
3. (Robust) \textit{logitboost} considerably improves \textit{mart} on most datasets.
4. \textit{Abc-logitboost} considerably improves \textit{abc-mart} on most datasets.
5. These four boosting algorithms (especially \textit{abc-logitboost}) outperform SVM on many datasets.
6. Compared to the best deep learning methods, these four boosting algorithms (especially \textit{abc-logitboost}) are competitive.

References

[1] Alan Agresti. \textit{Categorical Data Analysis}. John Wiley & Sons, Inc., Hoboken, NJ, second edition, 2002.

[2] Peter Bartlett, Yoav Freund, Wee Sun Lee, and Robert E. Schapire. Boosting the margin: a new explanation for the effectiveness of voting methods. \textit{The Annals of Statistics}, 26(5):1651–1686, 1998.

[3] Colin B. Begg and Robert Gray. Calculation of polychotomous logistic regression parameters using individualized regressions. \textit{Biometrika}, 71(1):11–18, 1984.

[4] Yoav Freund. Boosting a weak learning algorithm by majority. \textit{Inf. Comput.}, 121(2):256–285, 1995.

[5] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. \textit{J. Comput. Syst. Sci.}, 55(1):119–139, 1997.

[6] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. \textit{The Annals of Statistics}, 29(5):1189–1232, 2001.

[7] Jerome H. Friedman, Trevor J. Hastie, and Robert Tibshirani. Additive logistic regression: a statistical view of boosting. \textit{The Annals of Statistics}, 28(2):337–407, 2000.

[8] Jerome H. Friedman, Trevor J. Hastie, and Robert Tibshirani. Response to evidence contrary to the statistical view of boosting. \textit{Journal of Machine Learning Research}, 9:175–180, 2008.

[9] Hugo Larochelle, Dumitru Erhan, Aaron C. Courville, James Bergstra, and Yoshua Bengio. An empirical evaluation of deep architectures on problems with many factors of variation. In \textit{ICML}, pages 473–480, Corvalis, Oregon, 2007.

[10] Yoonkyung Lee, Yi Lin, and Grace Wahba. Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data. \textit{Journal of the American Statistical Association}, 99(465):67–81, 2004.
[11] Ping Li. Abc-boost: Adaptive base class boost for multi-class classification. In ICML, Montreal, Canada, 2009.

[12] Ping Li. Abc-logitboost for multi-class classification. Technical report, Department of Statistical Science, Cornell University, 2009.

[13] Ping Li. Robust logitboost. Technical report, Department of Statistical Science, Cornell University, 2009.

[14] Ping Li, Christopher J.C. Burges, and Qiang Wu. Mcrank: Learning to rank using classification and gradient boosting. In NIPS, Vancouver, BC, Canada, 2008.

[15] Liew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Boosting algorithms as gradient descent. In NIPS, 2000.

[16] Robert Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227, 1990.

[17] Robert E. Schapire and Yoram Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3):297–336, 1999.

[18] Ambuj Tewari and Peter L. Bartlett. On the consistency of multiclass classification methods. Journal of Machine Learning Research, 8:1007–1025, 2007.

[19] Tong Zhang. Statistical analysis of some multi-category large margin classification methods. Journal of Machine Learning Research, 5:1225–1251, 2004.

[20] Ji Zhu, Hui Zou, Sharon Rosset, and Trevor Hastie. Multi-class adaboost. Statistics and Its Interface, 2(3):349–360, 2009.

[21] Hui Zou, Ji Zhu, and Trevor Hastie. New multiclass boosting algorithms based on multiclass fisher-consistent losses. The Annals of Applied Statistics, 2(4):1290–1306, 2008.