Mean-field phase diagrams of AT_2X_2 compounds

M.L. Plumer

Centre de Recherche en Physique du Solide et Département de Physique

Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1

(June 1994)

Abstract

Magnetic-field – temperature phase diagrams of the axial next-nearest-neighbor Ising model are calculated within the framework of a Landau-type expansion of the free energy derived from molecular-field theory. Good qualitative agreement is found with recently reported results on body-centered-tetragonal UPd_2Si_2. This work is expected to also be relevant for related compounds.

75.10.Hk, 75.30.Kz, 75.50.Ee
There exists a large class of compounds with the body-centered-tetragonal (bct) structure of the generic formula \(AT_2X_2 \), where \(A \) represents either \(U \) or a rare-earth element, \(T \) is a transition metal, and \(X \) is either \(Si \) or \(Ge \). The materials of interest here have strong \(c \)-axial anisotropy, with the possibility of long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. It may thus be expected that the axial next-nearest-neighbor Ising (ANNNI) model and its extensions are relevant in cases where in-plane interactions are ferromagnetic.

It appears to be an empirical rule that such models yield a succession of \textit{principal} phases characterized by increasing periodicities as the temperature is increased. A counter example is found in the compound \(UNi_2Si_2 \), where a more complicated model was required to explain its observed sequence of magnetically ordered states (Ref. 1, hereafter referred to as I). Mean-field theory proved inadequate in this instance. All other relevant \(AT_2X_2 \) compounds, however, appear to exhibit magnetic structures consistent with expectations based on a mean-field approximation (see I). In the present work, the magnetic-field – temperature phase diagram of the ANNNI model is considered within the framework of a Landau-type free energy developed from molecular-field theory. Good qualitative agreement is found with recently reported results on \(UPd_2Si_2 \).

Magnetic interactions are assumed to be well described by a Heisenberg-type Hamiltonian of the form

\[
\mathcal{H} = -\frac{1}{2} \sum_{ij} J(r_i - r_j) \mathbf{s}(r_i) \cdot \mathbf{s}(r_j) - \mathbf{H} \cdot \sum_i \mathbf{s}(r_i),
\]

where the spin density \(\mathbf{s}(r_i) \), as well as the applied magnetic field \(\mathbf{H} \), are assumed to lie along the bct \(c \)-axis (\(\| \hat{z} \)). With ferromagnetic in-plane interactions \(J_0 > 0 \), the problem effectively becomes one-dimensional within mean-field theory. It is the magnetic ordering between the ferromagnetic planes separated by \(c' = \frac{1}{2}c \) which is of interest. A Landau-type free energy functional may be derived from molecular-field theory, based on the analysis of Bak and von Boehm (also see references in I), with results to sixth-order written as

\[
F = \frac{1}{2V} \int dzdz' A(\tau)s(z)s(z') + \frac{B}{4V} \int dz [s(z)]^4
+ \frac{C}{6V} \int dz [s(z)]^6 + \cdots - H \int dz s(z),
\]

(2)
where \(\tau = z - z' \) and

\[
A(z) = aT \delta(z) - j^2 J(z)/V, \quad (3)
\]

\(B = bT, \ C = cT \), with the coefficients \(a, b, c \) given in terms of the angular momentum \(j \) through the Brillouin function (see I). For simplicity, we take here the classical limit \(j \to \infty \) (with energies divided by \(j^2 \)) so that \(a = 3, b = \frac{9}{5}, c \simeq 1.697 \).

The ANNNI model with antiferromagnetic next-nearest-neighbor coupling, \(J_2 < 0 \), is frustrated. Numerous higher-order commensurate phases, as well an incommensurate state (IC), result from mean-field analyses of a model with near-neighbor interactions also antiferromagnetic, \(J_1 < 0 \), and with an additional small ferromagnetic third-neighbor coupling, \(J_3 > 0 \). Monte-Carlo simulations seem to suggest, however, that only a few principal commensurate phases survive the effects of critical fluctuations. For values of \(J_2/J_1 \) not too large, only two commensurate states appear: The period-2 \(\langle 1 \rangle \) state and the period-3 \(\langle 12 \rangle \) state (see Ref. for an explanation of the notation). It is precisely these two commensurate states which occur in the axial \(AT_2X_2 \) compounds (see I).

With the limited goal of describing these two commensurate, as well as the IC, states, the spin density can be written as

\[
s(z) = m + Se^{iQz} + S^*e^{-iQz}, \quad (4)
\]

where \(m \) is the uniform component, \(S \) is the complex polarization vector, and \(Q \) is the wave vector. Using this expression in (2) yields many types of Umklapp terms, non-zero only for \(nQ = G \), where \(G \) is a reciprocal lattice vector. For the purposes of the this work, contributions with \(n = 1 \) and \(n = 5 \) are omitted. It is instructive to present the many terms which are relevant, and to write these as

\[
F = F_2 + F_4 + F_6 - mH, \quad (5)
\]

with

\[
F_2 = \frac{1}{2}A_0m^2 + A_Q \mid S \mid^2 + \frac{1}{2}A_Q[S^2 + c.c.] \Delta_{2Q,G}, \quad (6)
\]
\[F_4 = \frac{1}{4} B \{ S_T^4 + 2 | S^2 |^2 + 8 | mS |^2 \]
\[+ 2 [2(mS)^2 + S_T^2 S^2 + c.c.] \Delta_{2Q,G} \]
\[+ 4 [mS^3 + c.c.] \Delta_{3Q,G} + [S^4 + c.c.] \Delta_{4Q,G} \}, \quad (7) \]

\[F_6 = \frac{1}{6} C \{ S_T^6 + 6 S_T^2 S^2 + 24 S_T^2 | mS |^2 + 12 [m^2 S^2 (S^*)^2 + c.c.] \]
\[+ 3 [4 S_T^2 (mS)^2 + S_T^4 S^2 + 8 | mS |^2 S^2 + | S^2 |^2 S^2 + c.c.] \Delta_{2Q,G} \]
\[+ 2 [6 S_T^2 mS^3 + 4 (mS)^3 + 3 (mS^*) S^4 + c.c.] \Delta_{3Q,G} \]
\[+ 3 [S_T^2 S^4 + 4 m^2 S^4 + c.c.] \Delta_{4Q,G} + [S^6 + c.c.] \Delta_{6Q,G} \}, \quad (8) \]

where \(S_T^2 = m^2 + 2 | S |^2 \). The coefficients in (6) are given by \(A_q = aT - J_q \), where \(J_q \) is the Fourier transform of the exchange integral,

\[J_q = 4 J_0 + 2 [J_1 \cos q + J_2 \cos(2q) + J_3 \cos(3q)], \quad (9) \]

with \(q = cQ \). The commensurate states \(\langle 1 \rangle \) and \(\langle 12 \rangle \) are represented here by \(q = \pi \) and \(q = \frac{2}{3} \pi \), respectively. The IC phase is determined by the value of \(q \) which maximizes \(J_q \). This is usually the first ordered state which occurs as the temperature is lowered from the paramagnetic (P) phase, with the Néel temperature \(T_{N1} = J_q/a \). Due to the Umklapp terms, the free energies of each of these ordered states must be evaluated separately. None of the Umklapp terms contribute to \(F \) of the IC-phase. All non-Umklapp terms, as well as those with \(n = 2, 4, \) and 6, must be included in the free energy for the \(\langle 1 \rangle \)-phase, whereas only non-Umklapp terms and those with \(n = 3 \) contribute to the \(\langle 12 \rangle \)-phase. These separate free energies must be minimized as a function of the relevant variables in each case: \(F_{IC}(m, | S |, q) \), \(F_{(1)}(m, S) \), and \(F_{(12)}(m, | S |, \phi) \), where \(S = | S | e^{i\phi} \). The stable phase as a function of temperature, magnetic field and exchange parameters, is then determined by comparing the numerical results for these free energies. For the \(\langle 12 \rangle \)-state, the free energy is minimized by a phase angle \(\phi = (2m + 1)\pi/3 \), where \(m \) is an integer.

It is convenient to consider phases which occur as a function of \(J_2/J_1 \), with \(J_3/J_1 \) set to a small value. In the absence of a magnetic field, a number of sequences of phases results
from the present model depending on J_2. With increasing temperature, the following can occur (see I) $\langle 1 \rangle \rightarrow P$, $\langle 1 \rangle \rightarrow IC \rightarrow P$, $\langle 1 \rangle \rightarrow \langle 12 \rangle \rightarrow IC \rightarrow P$, $\langle 12 \rangle \rightarrow IC \rightarrow P$. The resulting $J_2/J_1 - T$ phase diagram corresponds qualitatively to the Monte-Carlo simulation results (see Fig. 1 of Ref. [8]). (The sequence $\langle 12 \rangle \rightarrow \langle 1 \rangle \rightarrow IC \rightarrow P$ observed in UNi_2Si_2 cannot be explained by mean-field theory.) All transitions except for $IC - P$ are first order.

It is important to note that the $n = 3$ Umklapp terms in (7) and (8) are linear in m. As a consequence, the spin density of the $\langle 12 \rangle$ phase has a non-zero uniform component even in the absence of an applied field. It is this coupling between m and S which enhances the stability of this state in the presence of a magnetic field.

Magnetic phase diagrams were calculated in the manner described above. Exchange parameters were set to $J_0 = 1$, $J_1 = -1$, and $J_3 = 0.03$. With these values, phases $\langle 1 \rangle$ and $\langle 12 \rangle$ are degenerate in energy at $T = 0$ with $J_2 \lesssim 0.35$ and the ordering wave vector in the IC phase is approximately $\frac{3}{4}\pi$, as observed experimentally in some AT_2X_2 compounds (such as UPd_2Si_2). There is no temperature or field dependence of the IC wave vector within the present model. This may be included by adding biquadratic exchange (see I).

Typical results shown in Figs. 1 and 2 demonstrate the increasing stability of the $\langle 12 \rangle$-phase with increasing field. (This feature is also observed in UNi_2Si_2, see I.) The phase diagram of Fig. 1 corresponds qualitatively to experimental results on UPd_2Si_2. Only relatively low field strengths were available in this experiment and the merging of the $\langle 12 \rangle - IC$ and $IC - P$ boundary lines was not observed, although there is clear indication of this tendency. For smaller values of J_2/J_1, the $\langle 12 \rangle$-phase may not occur at available field strengths. At even smaller values of this parameter, the IC-phase also disappears. For larger J_2/J_1, only the $\langle 12 \rangle$-state, and perhaps a small region of the IC-state, will occur in the phase diagram. At sufficiently large values of this parameter, a period-4 state is stabilized.

In conclusion, a simple mean-field model based on a Landau-type free energy derived from molecular-field theory has been shown to capture the essential features of the ANNNI model in a magnetic field. It describes many of the sequences of magnetically ordered states which occur in axial AT_2X_2 compounds. In particular, the magnetic phase diagram of
UPd_2Si_2 is well described by this model. It is hoped that this work will serve to stimulate further experimental investigation of magnetic field effects in this class of materials.

ACKNOWLEDGMENTS

The author is grateful to M.F. Collins for making available preprints of Refs. 3 and 4 prior to publication. This work was supported by NSERC of Canada and FCAR du Québec.
REFERENCES

1 A. Mailhot, M.L. Plumer, A. Caillé, and P. Azaria, Phys. Rev. B 45, 10399 (1992).

2 W. Selke, Phys. Rep. 170, 213 (1988); J. Yeomans, in Solid State Physics, edited by H. Ehrenreich and D. Turnbull (Academic, New York, 1988), Vol. 41; W. Selke, in Phase Transitions and Critical Phenomena, edited by C. Domb and J.L. Lebowitz (Academic, New York, 1992), Vol. 15.

3 B. Shemirani et al., Phys. Rev. B 47, 8672 (1993).

4 M.F. Collins et al., Phys. Rev. B 48, 16500 (1993).

5 P. Bak and J. von Boehm, Phys. Rev. B 21, 5297 (1980).

6 Y. Yamada and N. Hamaya, J. Phys. Soc. Jpn. 52, 3466 (1983); W. Selke, M. Barreto, and J. Yeomans, J. Phys. C 18, L393 (1985).

7 W. Selke and M.E. Fisher, J. Mag. Mag. Materials 15-18, 403 (1980).

8 G.N. Hassold, J.F. Dreitlein, P.D. Beale, and J.F. Scott, Phys. Rev. B 33, 3581 (1986).

9 L. Rebelsky et al., Physica B 180-181, 43 (1992).
FIGURES

FIG. 1. Magnetic phase diagram with exchange parameters $J_0 = 1$, $J_1 = -1$, $J_2 = -0.30$, and $J_3 = 0.03$. Solid and broken curves represent first-order and continuous transitions, respectively.

FIG. 2. As in Fig. 1, with $J_2 = -0.35$.