Protein family review

The Rab GTPase family

Harald Stenmark* and Vesa M Olkkonen†

Addresses: *Department of Biochemistry, Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway. †Department of Molecular Medicine, National Public Health Institute, Biomedicum, FIN-00251, Helsinki, Finland.

Correspondence: Harald Stenmark. E-mail: stenmark@ulrik.uio.no

Published: 27 April 2001

Genome Biology 2001, 2(5):reviews3007.1–3007.7

The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2001/2/5/reviews/3007

© BioMed Central Ltd (Print ISSN 1465-6906; Online ISSN 1465-6914)

Summary

The Rab family is part of the Ras superfamily of small GTPases. There are at least 60 Rab genes in the human genome, and a number of Rab GTPases are conserved from yeast to humans. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they function as regulators of distinct steps in membrane traffic pathways. In the GTP-bound form, the Rab GTPases recruit specific sets of effector proteins onto membranes. Through their effectors, Rab GTPases regulate vesicle formation, actin- and tubulin-dependent vesicle movement, and membrane fusion.

The compartmentalization of eukaryotic cells requires the transport of lipids and proteins between distinct membrane-bounded organelles. This transport is tightly regulated and typically occurs through transport vesicles that bud from a donor compartment and fuse with an acceptor compartment. Rab GTPases (‘Ras-related in brain’ [1]), which belong to the Ras superfamily of small GTPases, have emerged as central regulators of vesicle budding, motility and fusion. Like other regulatory GTPases, the Rab proteins switch between two distinct conformations, one GTP-bound and the other GDP-bound (see Figure 1). The GTP-bound conformation is generally regarded as ‘active’ [2], as this is the form that interacts with downstream effector proteins [3].

Gene organization and evolutionary history

A recent analysis of the sequenced human genome and expressed sequence tags indicates that humans have at least 60 different Rab family members (Figure 2) [4]. This must be regarded as a minimum estimate, as a small part of the genome still remains to be sequenced and sequence annotations are still incomplete. Rab genes are widely distributed over the human chromosomes [4]. Rab GTPases have been found in all eukaryotes investigated, including

Saccharomyces cerevisiae (11 members), Caenorhabditis elegans (29 members) and Drosophila melanogaster (26

Figure 1

The Rab GTPase cycle. The Rab GTPase switches between GDP- and GTP-bound forms, which have different conformations. Conversion from the GDP- to the GTP-bound form is caused by nucleotide exchange, catalyzed by a GDP/GTP exchange factor (GEF). Conversion from the GTP-to the GDP-bound form occurs by GTP hydrolysis, facilitated by a GTPase-activating protein (GAP). The GTP-bound form interacts with effector molecules, whereas the GDP-bound form interacts with Rab escort protein (REP) and GDP dissociation inhibitor (GDI). Pi, inorganic phosphate.
Characteristics structural features

High-resolution structural information obtained by X-ray crystallography currently available for four Rab GTPases: mouse Rab3a [9,10], Plasmodium falciparum Rab6 [11], and S. cerevisiae Ypt1p [12] and Sec4p [13]. The Rabs share a fold that is, in gross terms, common to all small GTPases of the Ras superfamily. The fold consists of a six-stranded β sheet, comprising five parallel strands and one antiparallel one, surrounded by five α helices. In these structures the elements responsible for guanine nucleotide and Mg2+ binding, as well as GTP hydrolysis, are located in five loops that connect the α helices and β strands. The amino-acid residues that come together in space to form this active site are closely associated with either the phosphate groups of the bound nucleotide and Mg2+ or the guanine base (Figure 3) and are highly conserved within the entire Ras superfamily; they can easily be used to recognize any small GTPase.

Crystallographic analysis of p21Ras [14] and also recently of the yeast Rab Sec4p [13] in the GDP- and GTP-bound states shows that the proteins adopt two different conformations, with the major nucleotide-induced differences occurring in regions denoted switch I and switch II [15]. In the amino-acid sequence these switch regions are located in the loop 2 region and the loop 4-α2-loop 5 region, respectively, and in the three-dimensional structure they are found on the surface of the molecule. Numerous mutagenesis studies have shown that the putative switch regions are crucial for the interaction of Rab proteins with regulatory protein partners such as GDP/GTP exchange factors and GTPase-activating proteins (see ‘Localization and function’). Furthermore, the
A recent extensive sequence-analysis study shows the presence of five distinct amino-acid stretches that are characteristic of the Rab GTPases (Figure 3b) [6]. These so-called RabF regions (shown in red in Figure 3b) cluster in and around switch regions I and II and are suggested to provide a means of unequivocally identifying Rab proteins. In addition, four regions (RabSF regions, shown in dark blue in Figure 3b) have been identified that can be used to define the ten subfamilies of Rab GTPases mentioned above [6,7]. The RabSF regions are on two different surfaces of the GTPases; they probably allow specific binding of downstream effector molecules, which must recognize a specific Rab or Rab subfamily in addition to detecting the nucleotide-binding state. In support of this, the crystallographic study by Ostermeier and Brunger [10] showed that the well-characterized effector of Rab3a, rabphilin-3a, occupies two major binding interfaces on the surface of the GTPase. These regions of Rab3a have been named Rab complementarity-determining regions, and they involve both the switch regions and Rab superfamaily-specific motifs [6]. A model has therefore been suggested in which effectors and regulators bind both to the RabF motifs in the switch I and II regions, to discriminate between active and inactive conformations, and to RabSF regions for specificity.

**Localization and function**

**Localization and regulation**

Some Rabs are expressed ubiquitously in human tissues, whereas others are tissue-specific (Table 1). Within cells, they are localized to the cytosolic face of distinct intracellular membranes (see Figure 4 and Table 1). Their reversible membrane localization depends on the post-translational modification of a cysteine motif at the very carboxyl terminus (CXXX, CC, CXC, CCXX or CXXX where X is any amino acid), with one or two highly hydrophobic geranylgeranyl groups [16]. This post-translational modification requires the initial recognition of the newly synthesized Rab protein by a Rab escort protein (REP), which presents the Rab protein to the geranylgeranyl transferase. REP then functions as a chaperone that keeps the hydrophobic, geranylgeranylated Rab soluble and delivers it to the appropriate membrane [17]. The specific targeting of Rab GTPases is thought to rely on membrane receptors that recognize the complex between REP and specific Rabs [18], but so far no such receptors have been identified at the molecular level.

The REP-associated Rab GTPases are thought to be in the GDP-bound form, whereas membrane delivery is accompanied by the exchange of GDP with GTP, catalyzed by a GDP/GTP exchange factor (GEF), and the release of REP [17]. Upon GTP hydrolysis, which is catalyzed by a GTPase-activating protein (GAP), the Rab GTPase may be released from the membrane. This is mediated by Rab GDP-dissociation inhibitor (GDI), which is capable of retrieving the geranylgeranylated, GDP-bound Rab from intracellular membranes.
functions. For example, the Ran GTPase family controls the nucleocytoplasmic transport of proteins [19]. GDI has structural similarity to REP [20] and, like REP, GDI can present geranylgeranylated, GDP-bound Rab proteins to specific membranes [21]. GDI, which is more abundant than REP, thus serves as a recycling factor that allows several rounds of membrane association and retrieval of the Rab GTPases.

**Function**

A wealth of genetic and biochemical studies indicate that Rab GTPases function as regulators of specific intracellular traffic pathways (for a recent review, see [3]). The key to their function is the recruitment of effector molecules that bind exclusively to their GTP-bound form. Rab effectors are a very heterogeneous group of proteins: some are coiled-coil proteins involved in membrane tethering or docking, while others are enzymes or cytoskeleton-associated proteins. Two-hybrid screening for protein interactions and affinity chromatography have revealed that the endosomal GTPase Rab5a has several different effectors, and this is probably true for other Rabs as well [22-24]. This means that a Rab GTPase may be capable of regulating several molecular events at a restricted membrane location. For example, although initial studies showed that Rab5a regulates endocytic vesicle tethering and fusion, more recent evidence suggests that it also controls vesicle formation at the plasma membrane and microtubule-dependent motility of endocytic structures [25-27]. Even though effectors for many Rab GTPases have been identified, the identification and functional characterization of Rab effectors is still in an early phase. The introduction of an efficient affinity-chromatography protocol promises to speed up the identification of new effectors [24].

**Important mutants**

Gene knock-out studies in yeast have shown that some Rab GTPases are essential, whereas others are dispensable [28]. The only mammalian Rab knockout so far, that of the neuronal expressed Rab3a, resulted only in minor phenotypic changes in mice [29]. Several genetic diseases have been found to involve Rab GTPases or their interacting proteins, however [30,31].

Griscelli syndrome is an autosomal recessive disorder that causes partial albinism. There are two variants of this disease, one that is associated primarily with immunological defects and one associated with neurological dysfunctions. The syndrome with immunological defects is caused by missense mutations in the gene encoding Rab27a [32]. This GTPase regulates the movement of melanosomes to the cell periphery of melanocytes, and it also regulates the secretion of lytic granules in cytotoxic T lymphocytes [33,34]. The lack of Rab27a thus causes pigment anomalies and dysfunctional T lymphocytes, in agreement with the defects observed in the patients. The Griscelli syndrome with neurological symptoms is caused by mutations in the gene encoding the motor protein myosin Va [35], a putative Rab27a effector that drives the peripheral distribution of melanosomes along actin filaments [33]. As myosin Va does not participate in the exocytosis of lytic granules, the inactivation of this protein does not lead to immunological symptoms.
Choroideremia is an X-linked disease that involves the degeneration of the retinal pigment epithelium and the adjacent choroid and retinal photoreceptor cell layers, leading to blindness. The gene mutated in choroideremia is one of the two REP isoforms, REP-1 [36]. Although the other isoform, REP-2, seems to be sufficient for the geranylgeranylation of all Rab GTPases in all tissues except for the retinal pigment epithelium, REP-1 is essential for the efficient geranylgeranylation of Rab27a in this tissue. Thus, a lack of REP-1 leads to a lack of functional Rab27a specifically in the retinal pigment epithelium [37]. The degeneration of this epithelium and its adjacent layers may be due to deficient melanosome transport and consequently a lack of protection against harmful light exposure.

A subgroup of patients with X-linked nonspecific mental retardation have mutations in the gene for one of the GDI isoforms, GDI-α [38]. This isoform is particularly abundant in the brain, and dysfunctional membrane recycling of one or more Rab GTPases in brain synapses, leading to aberrant neurotransmission, is likely to underly the symptoms in this disease.

Frontiers

The Rab GTPases are a large family of proteins with a variety of regulatory functions in membrane traffic. The central role of these proteins has become clear during the past decade, as part of the progress in understanding in detail the mechanistic principles of transport vesicle formation, movement, and fusion. Sequencing of the human genome has allowed us to realize the diversity of the Rab gene family, though the functions of a majority of the gene products are unknown. The availability of complete genomic sequences, as well as important advances in molecular and cell biological methods, promise to bring a significant progress in our understanding of Rab function in the near future.

At the molecular level, the identification of novel GAPS, GEFs and effectors will yield information about the regulation of Rab GTPases and the molecular complexes they control. Crosstalk with regulatory mechanisms involving other members of the Ras GTPase superfamily is already becoming apparent. A key question concerns the targeting of the Rab GTPases. Which receptor molecules determine their specific intracellular distributions? A combination of biochemical and genetic approaches will hopefully illuminate this issue.

At the level of the membrane, several aspects of Rab GTPase function remain to be clarified. Are Rab GTPases confined to restricted membrane domains [3] and, if so, how is this determined? Furthermore, how do Rab GTPases and their effectors regulate membrane budding, motility and fusion? With respect to membrane fusion, the role of Rab effectors as membrane tethers is already being revealed, and it seems realistic to expect that Rab-dependent membrane fusion may be reconstituted in vitro from purified components in the near future.

Finally, comprehending the ways in which the regulatory actions of Rabs intertwine with cell-signaling cascades and developmental processes is an enormous task for cell biologists. Here, the natural mutant models provided by human
genetic diseases that have defects in Rab5 or their auxiliary proteins, as well as the novel genome-wide approaches for gene expression analysis, will be instrumental.

Acknowledgements
We are grateful to Tapani Ihalaenen for help in preparing Figure 4. This work was supported by the Research Council of Norway (H.S.), the Norwegian Cancer Society (H.S.), the Novo-Nordisk Foundation (H.S.), the Academy of Finland (grants 45817, 49987 and 50641 to V.M.O.), and the Sigrid Juselius Foundation (V.M.O.).

References
1. Touchot N, Chardin P, Tavitian A: Four additional members of the Ras-related family suggest a mechanism for membrane traffic: molecular cloning of YPT-related cDNAs from a rat brain library. Proc Natl Acad Sci USA 1987, 84:8210-8214.

2. Stenmark H, Parson RG, Steele-Mortimer O, Lütcke A, Gruenberg J, Zerial M: Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J 1994, 13:1287-1296.

3. Zerial M, McBride H: Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001, 2:107-117.

4. Bock JB, Matern HT, Peden AA, Scheller RH: A genomic perspective on membrane compartment organization. Nature 2001, 409:839-841.

5. Pereira-Leal JB, Seabra MC: The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs that are required for functional specificity in the Rab superfamily. J Mol Biol 2000, 301:1077-1087.

6. Moore I, Schell J, Palme K: A genomic perspective on membrane compartment organization. Nature 2001, 409:839-841.

7. Chavrier P, Gorvel JP, Stelzer E, Simons K, Gruenberg J, Zerial M: Structure Fold: subclasses of small GTPbinding proteins. Nature 1991, 353:769-772.

8. Ehrlich I, Schell J, Palme K: Subclass-specific sequence motifs identified in Rab GTPases. Trends Biochem Sci 1995, 20:10-12.

9. Chavrier P, Gorvel JP, Stelzer E, Simons K, Gruenberg J: Zerial M: Membrane traffic: definition of family and subfamily sequence motifs that are required for functional specificity in the Rab superfamily. J Mol Biol 2000, 301:1077-1087.

10. Zerial M, McBride H: Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001, 2:107-117.

11. Moore I, Schell J, Palme K: Subclass-specific sequence motifs identified in Rab GTPases. Trends Biochem Sci 1995, 20:10-12.

12. Chavrier P, Gorvel JP, Stelzer E, Simons K, Gruenberg J, Zerial M: Subclass-specific sequence motifs identified in Rab GTPases. Trends Biochem Sci 1995, 20:10-12.

13. Chavrier P, Gorvel JP, Stelzer E, Simons K, Gruenberg J, Zerial M: Subclass-specific sequence motifs identified in Rab GTPases. Trends Biochem Sci 1995, 20:10-12.

14. Desnoyers L, Machius M, Demeler B, Hansen JC, Westover KD, Deisenhofer J, Seabra MC: Mechanism of Rab geranylgeranylation: formation of the catalytic ternary complex. Biochemistry 1997, 36:12559-12568.

15. Schlichting I, Almo SC, Rapp G, Wilson K, Petratos K, Lendorf A, Wittinghofer A, Kabsch W, Pai EF, Petkso GA, Goody RS: Timesolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature 1990, 343:309-313.

16. Desnoyers L, Machius M, Demeler B, Hansen JC, Westover KD, Deisenhofer J, Seabra MC: Mechanism of Rab geranylgeranylation: formation of the catalytic ternary complex. Biochemistry 1997, 36:12559-12568.

17. Desnoyers L, Machius M, Demeler B, Hansen JC, Westover KD, Deisenhofer J, Seabra MC: Mechanism of Rab geranylgeranylation: formation of the catalytic ternary complex. Biochemistry 1997, 36:12559-12568.

18. Desnoyers L, Machius M, Demeler B, Hansen JC, Westover KD, Deisenhofer J, Seabra MC: Mechanism of Rab geranylgeranylation: formation of the catalytic ternary complex. Biochemistry 1997, 36:12559-12568.

19. Desnoyers L, Machius M, Demeler B, Hansen JC, Westover KD, Deisenhofer J, Seabra MC: Mechanism of Rab geranylgeranylation: formation of the catalytic ternary complex. Biochemistry 1997, 36:12559-12568.

20. Desnoyers L, Machius M, Demeler B, Hansen JC, Westover KD, Deisenhofer J, Seabra MC: Mechanism of Rab geranylgeranylation: formation of the catalytic ternary complex. Biochemistry 1997, 36:12559-12568.

21. Desnoyers L, Machius M, Demeler B, Hansen JC, Westover KD, Deisenhofer J, Seabra MC: Mechanism of Rab geranylgeranylation: formation of the catalytic ternary complex. Biochemistry 1997, 36:12559-12568.

22. Desnoyers L, Machius M, Demeler B, Hansen JC, Westover KD, Deisenhofer J, Seabra MC: Mechanism of Rab geranylgeranylation: formation of the catalytic ternary complex. Biochemistry 1997, 36:12559-12568.

23. Desnoyers L, Machius M, Demeler B, Hansen JC, Westover KD, Deisenhofer J, Seabra MC: Mechanism of Rab geranylgeranylation: formation of the catalytic ternary complex. Biochemistry 1997, 36:12559-12568.

24. Desnoyers L, Machius M, Demeler B, Hansen JC, Westover KD, Deisenhofer J, Seabra MC: Mechanism of Rab geranylgeranylation: formation of the catalytic ternary complex. Biochemistry 1997, 36:12559-12568.
20. Schalk I, Zeng K, Wu SK, Stura EA, Matteson J, Huang MD, Tandon A, Wilson IA, Balch WE: Structure and mutational analysis of Rab GDP-dissociation inhibitor. Nature 1996, 381:42-48.

21. Ullrich O, Honnichi H, Buccic C, Zerial M: Membrane association of Rab5 mediated by GDP-dissociation inhibitor and accompanied by GDP/GTP exchange. Nature 1994, 368:157-160.

22. Stenmark H, Vitale G, Ullrich O, Zerial M: Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell 1995, 83:423-432.

23. Simonsen A, Lippé R, Christoforidis S, Gaullier J-M, Brech A, Callaghan J, Tcho B-H, Murphy C, Zerial M, Stenmark H: EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 1998, 394:494-498.

24. Christoforidis S, McBride HM, Burgoyne RD, Zerial M: The Rab5 effector EEA1 is a core component of endosome docking. Nature 1999, 397:621-626.

25. Gorvel JP, Chavrier P, Zerial M, Stenmark H: Rab5 mediates motility of early endosomes on microtubules. Nat Cell Biol 1999, 1:376-382.

26. Lazar T, Götte M, Gallwitz D: Vesicular transport: how many Ypt/Rab GTPases make a eukaryotic cell? Trends Biochem Sci 1997, 22:468-472.

27. Mutaion in Rab27a cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet 2000, 25:173-176. The first demonstration of a Rab gene mutated in genetic disease.

28. Hume AN, Collinson LM, Rapak A, Gomes AQ, Hopkins CR, Seabra MC: Rab27a regulates the peripheral distribution of melanosomes in melanocytes. J Cell Biol 2001, 152:795-808. Provides evidence for the role of Rab27a in the peripheral distribution of melanosomes in melanocytes, and for myosin Va as a Rab27a effector. Rab27a was found to colocalize with myosin Va on melanosomes in melanoma cells. Dominant-negative Rab27a mutants have a perinuclear distribution of melanosomes. Rab27a and myosin Va were found to communoprecipitate.

29. Seabra MC, Ho YK, Anant JS: Deficient geranylgeranyltransferase of Rab27b in choroideremia. J Biol Chem 1995, 270:289-292. Shows the importance of Rab27 for the function of cytoxic T lymphocytes. Lymphocytes from ashen mice with a loss-of-function mutation in the Rab27a gene show reduced polarization and reduced release of cytoxic granules upon stimulation.

30. Seabra MC, Brown MS, Goldman ML: Retinal degeneration in choroideremia: deficiency of geranylgeranyltransferase. Science 1993, 259:377-381. Shows that lymphoblasts from choroideremia patients are deficient in an isoform of component A of geranylgeranyl transferase, now known as REP-1.

31. Seabra MC, Ho YK, Anant JS: Deficient geranylgeranylation of RamI/Rab27 in choroideremia. J Biol Chem 1995, 270:23620-23627. Identifies Rab27 as a Rab GTPase that is inefficiently geranylgeranylated in choroideremia, in the absence of REP-1. Rab27b is found in the retinal pigment epithelium, which is affected in choroideremia.

32. Deacon SW, Gelfand VI: Of yeast, mice and men: Rab proteins and organelle transport. J Cell Biol 2001, 152:F21-F24. Discusses several recent articles that implicate Rab27a in the intracellular transport of lytic granules and melanosomes.