Molecular Mechanisms of Mild and Severe Pneumonia: Insights from RNA Sequencing

Sai Huang*
Cong Feng*
Li Chen*
Zhi Huang*
Xuan Zhou
Li-li Wang
Wei Chen
Fa-qin Lv#
Tan-shi Li#

* Sai Huang, Cong Feng, Li Chen and Zhi Huang contributed equally to this work as co-first authors
Tan-shi Li, Fa-qin Lv and Wei Chen contributed equally to this work

Background: This study aimed to uncover the molecular mechanisms underlying mild and severe pneumonia by use of mRNA sequencing (RNA-seq).

Material/Methods: RNA was extracted from the peripheral blood of patients with mild pneumonia, severe pneumonia, and healthy controls. Sequencing was performed on the HiSeq4000 platform. After filtering, clean reads were mapped to the human reference genome hg19. Differentially expressed genes (DEGs) were identified between the control group and the mild or severe group. A transcription factor-gene network was constructed for each group. Biological process (BP) terms enriched by DEGs in the network were analyzed and these genes were also mapped to the Connectivity map to search for small-molecule drugs.

Results: A total of 199 and 560 DEGs were identified from the mild group and severe group, respectively. A transcription factor-gene network consisting of 215 nodes and another network consisting of 451 nodes were constructed in the mild group and severe group, respectively, and 54 DEGs (e.g., S100A9 and S100A12) were found to be common, with consistent differential expression changes in the 2 groups. Genes in the transcription factor-gene network for the mild group were mainly enriched in 13 BP terms, especially defense and inflammatory response (e.g., S100A8) and spermatogenesis, while the top BP terms enriched by genes in the severe group include response to oxidative stress (CCL5), wound healing, and regulation of cell differentiation (CCL5), of the cellular protein metabolic process.

Conclusions: S100A9 and S100A12 may have a role in the pathogenesis of pneumonia: S100A9 and CXCL1 may contribute solely in mild pneumonia, and CCL5 and CXCL11 may contribute in severe pneumonia.

MeSH Keywords: Genes, vif • Pneumonia, Aspiration • Sequence Analysis, RNA • Small Molecule Libraries

Full-text PDF: http://www.medscimonit.com/abstract/index/idArt/900782
Background

Pneumonia, especially community-acquired pneumonia (CAP), is the leading cause for adult hospitalization in low- and middle-income countries [1]. *Streptococcus pneumoniae* (pneumococcus) is believed to be the main cause [2]. According to Said et al., the actual burden of bacteremic pneumococcal pneumonia in adults is significantly underestimated [3].

Expression profiling under different physiological conditions has been employed to investigate the molecular mechanisms underlying various diseases [4, 5] and to provide potential biomarkers for targeted therapy [6, 7]. Microarrays and RNA sequencing (RNA-seq) are both available for genomic profiling. Notably, RNA-seq allows the detection of new transcripts [8]. Additionally, RNA-seq avoids the introduction of related biases during hybridization of microarrays. Thus, we used this technique to detect gene expression profiles associated with mild and severe pneumonia in order to deepen our insights into the molecular mechanisms underlying these 2 diseases.

Material and Methods

Patient enrollment and sampling

This study was approved by the Medical Ethics Committee of the General Hospital of the People’s Liberation Army (301 Hospital). From June 2013 to December 2013, 18 adult patients with pneumonia were included in this study, including 9 cases with mild pneumonia and 9 cases with severe pneumonia. In addition, 9 healthy adult volunteers were recruited as normal controls. Patients meeting any of the following symptoms were considered to have severe pneumonia: (1) disturbance of consciousness; (2) respiratory rate ≥30 times/min, (3) PaO$_2$ <60 mm Hg, PaO$_2$/FiO$_2$ <300, requiring mechanical ventilation; (4) systolic blood pressure <90 mm Hg; (5) concurrent septic shock; (6) X-ray showing bilateral or multi-lobe involvement, or pulmonary involvement expanding ≥50% within 48 h after hospitalized; and (7) oliguria (urine volume <20 ml/h, or <80 ml/4 h, or concurrent acute renal failure and requiring dialysis).

Peripheral blood samples were collected from each patient and volunteer. Blood samples from 3 randomly selected patients were mixed at 1: 1: 1 as a final sequencing sample. Thus, there were 3 samples for patients with severe pneumonia (numbered WLL1, WLL2, WLL3), 3 samples for patients with mild pneumonia (WLL4, WLL5, WLL6), and 3 for normal controls (WLL7, WLL8, WLL9). Written informed consent was provided by each patient and volunteer before sampling.

Total RNA extraction, library construction, and sequencing

Total RNA was extracted from the plasma of these 9 samples using the miRNeasy Serum/Plasma Kit (QIAGEN, Hilden, Germany). Then, RNA was removed using Epicenter RibozeroTM Kit (Illumina Inc., San Diego, CA) and the remaining RNA (polyA$^+$, polyA$^-$) was recovered and purified. Afterwards, the purified RNA was broken into short segments using random fragmentation reagent (Fragmentation Buffer). Next, reverse transcription was performed to construct a cDNA library. RNA concentration was measured with a Qubit® 2.0 Fluorometer and the RNA integrity number (RIN) was measured by use of Bioanalyzer 2100 (Agilent, CA, USA). Sequencing was performed on the HiSeq4000 platform to generate paired-end reads (150 bp in length).

Sequence quality control and alignment

First, reads were filtered by removing the bases with continuous quality value <10 at both ends, and reads including less than 80% bases with quality value >Q20, and reads shorter than 50 nt, as well as rRNA sequences. Sequence quality control was done with the Fastx toolkit. Next, clean reads were mapped to the human reference genome hg19 using TopHat 2.1.1 software (download site: http://ccb.jhu.edu/software/tophat/index.shtml).

Identification of differentially expressed genes correlated with mild and severe pneumonia

Gene differential expression analysis was performed between the normal control and the mild or severe group using the edgeR package of R (version 3.1.0) [9]. | logFC | >1 and p<0.05 were used as cutoffs for a differentially expressed gene (DEG). Volcanic plots were used to visualize gene expression differences, and a heat map was also drawn to display the gene expression profile of differentially expressed genes based on the hierarchical clustering results using Euclidean distance [10] with the pheatmap package of R [11].

The correlation coefficient of any 2 genes based on their gene expression values in each group was calculated, and only gene pairs with absolute correlation coefficients >0.9 were retained. A heat map was used to visualize the expression correlation matrix.

Prediction of transcription factors and construction of transcription factor-gene network

Transcriptional regulators are responsible for the transcriptional regulation of gene expression [12]. To find the key transcriptional regulators of the DEGs we identified above, we searched the TRED database (Transcriptional Regulation Element Database,
http://rulai.cshl.edu/TRED), which includes both cis- and trans-regulatory elements and provides both promoter sequences and transcription factor binding information [13]. Only experimentally validated data were used in our study. Next, a transcription factor-gene network containing transcription factors and their target genes was constructed, which was further visualized using software Cytoscape2.8.0 [14].

Functional annotation of genes in the transcription factor-gene network

Genes in the transcription factor-gene network were mapped to the GO functional nodes, and the biological process (BP) terms enriched by these genes were predicted using GOstat (P value <0.05 as cutoff) [15].

Screening of small-molecule drugs

DEGs in the transcription factor-gene network were also mapped to the Connectivity map (Cmap) to search for small-molecule drugs [16,17]. Only drugs with | score | >0.8 were retained.

Table 1. Quality statistics of reads.

Sample	Raw reads	Raw bases	Q20 value	Clean reads	Clean base	Clean rate
WLL1	52831743	792853200	99.99%	50735720	7609666306	0.960326446
WLL1	58572433	792853200	97.10%	4421351	6662121716	0.758400304
WLL2	103035876	15455381400	99.98%	98747743	14810817868	0.958382137
WLL2	103035876	15455381400	97.50%	87943761	13189434520	0.8532563
WLL3	47936143	7190421450	99.97%	45842678	6875831673	0.956328047
WLL3	47936143	7190421450	96.67%	39203922	5879662949	0.817836387
WLL4	55117713	8267656950	99.97%	52810671	7920931057	0.958143365
WLL4	55117713	8267656950	96.86%	45772099	686490206	0.830442638
WLL5	42414859	636228850	99.97%	40625314	6093303572	0.957808536
WLL5	42414859	636228850	96.49%	34754331	5212336104	0.819390464
WLL6	52831743	7924761450	99.97%	50675720	7600736984	0.959190765
WLL6	52831743	7924761450	96.38%	43274947	6490230720	0.819108826
WLL7	54142181	8121327150	99.99%	51811388	7771187924	0.956950515
WLL7	54142181	8121327150	97.28%	44077521	6610710884	0.814106861
WLL8	58572433	8785864950	99.99%	56266066	8439365160	0.960623678
WLL8	58572433	8785864950	97.30%	48447586	7266131771	0.827139723
WLL9	42047930	6307189500	99.99%	40469826	6070080949	0.962468925
WLL9	42047930	6307189500	97.23%	34410808	5160914737	0.818371035

Results

Quality control of reads and statistics

A total of 346G data were generated from the 9 samples. After quality control, all the clean reads had one end containing >99.97% Q20 bases and the other end >96.38% Q20 bases (Table 1). The proportion of clean reads from the 2 ends was larger than 95% and 75%.

With reference to the human reference genome hg19, more than 70% clean reads were aligned in each sample, each with coverage rate of >70%, mostly above 80%, and sequencing depth of >3.4, mostly 4–5.5 (Table 2).

DEGs associated with mild and severe pneumonia and screening of co-expressed genes

A total of 199 and 560 DEGs were identified from the mild group and severe group, respectively (Figure 1). Overall, the identified DEGs could distinguish the pneumonia samples from the control sample (Figure 2).
The correlation coefficient of any 2 DEGs based on their gene expression values was calculated in each group, and a 199×199 matrix and a 560×560 correlation coefficient matrix were obtained, respectively, as shown in Figure 3. Using a cutoff of 0.9, 1128 gene pairs and 1170 gene pairs were retained in the mild group and severe group, respectively.

Construction of transcription factor-gene network

A total of 36 and 93 of transcription factor-gene pairs were obtained, respectively. Taking into account the co-expressed gene pairs identified above, a transcription factor-gene network consisting of 215 nodes and another network consisting of 451 nodes were constructed in the mild group and severe group, respectively (Figure 4). In the former, S100A9 (24), S100A8 (20), S100A12 (20), DAZ1 (24), DAZ4 (23), and DAZ3 (18) were found to be co-expressed with more DEG-encoded proteins; in the latter network, PSMA1 (8), CCL5 (6), and CXCL11 (2) were co-expressed with more proteins.

We further compared the DEGs in the transcription factor-gene network between the mild group and severe group and found 54 common genes that showed consistent differential expression changes in the 2 groups (Table 3).

GO functional annotation of genes in the transcription factor-gene network

The genes in the transcription factor-gene network for the mild group were mainly enriched in 13 biological process terms, especially defense and inflammatory response (e.g., CXCL1, CD36, S100A8, S100A9, ANXA1, LYZ, VSIG4, S100A12) and spermatogenesis (e.g., DAZ3, DAZ4, DAZ1, BPY2C, CDY1B, DNAJA1, BRCA2, BPY2, CDY2A, CDY1) (Table 4A). In contrast, the top BP
Figure 2. Heat maps showing the gene expression profile of differentially expressed genes based on hierarchical clustering. (A) Mild pneumonia group; (B) Severe pneumonia group.

Figure 3. Correlation coefficient matrix based on correlation coefficient of any 2 DEGs based on their gene expression values. (A) Mild pneumonia group; (B) Severe pneumonia group.
Figure 4. Transcription factor-gene network consisting of transcription factor and co-expressed genes. (A) Mild pneumonia group; (B) Severe pneumonia group.
Table 3. The common differentially expressed genes shared by mild pneumonia and severe pneumonia.

Common differentially expressed genes	Mild group	Severe group		
	logFC	P value	logFC	P value
AGKP1	1.17	3.01E-02	1.50	7.48E-05
ARSP1	1.26	3.59E-02	1.88	1.14E-05
ATP5F1P1	1.00	4.87E-02	1.09	4.47E-04
BDH2	1.16	2.41E-02	1.24	2.76E-04
BPY2	1.26	8.97E-03	1.39	8.45E-07
BPY2C	1.35	1.76E-02	1.62	2.51E-04
BRCA1	3.37	3.72E-12	1.67	7.64E-13
BRCA2	3.82	9.92E-15	2.14	1.66E-20
C1orf137	1.11	2.81E-02	1.32	3.36E-05
CCAT1	1.06	2.53E-02	1.18	6.74E-06
CCDC58P1	1.18	3.68E-02	2.13	4.65E-07
CDC26	1.36	2.31E-02	1.52	2.65E-04
CDY1	1.34	6.00E-03	1.14	8.35E-05
CDY10P	2.09	2.40E-04	1.80	1.20E-05
CDY18P	1.44	5.01E-03	1.39	2.08E-05
CDY19P	1.47	4.18E-03	1.38	2.49E-05
CDY1B	1.34	6.00E-03	1.09	2.20E-04
CDY2A	1.08	2.28E-02	1.11	4.07E-05
CLUHP1	1.35	4.03E-03	1.30	4.51E-07
CLUHP2	1.18	1.14E-02	1.32	2.01E-07
CYCSP39	1.18	4.50E-02	1.42	9.89E-04
CYCSP55	1.17	2.63E-02	1.27	2.70E-04
DAOA	1.25	1.37E-02	1.66	3.06E-07
DAZ3	1.26	5.43E-03	1.13	1.20E-06
DDX3Y	1.39	3.11E-02	1.32	8.88E-03
DNM1P24	1.13	2.63E-02	1.22	2.27E-04
DUX4P1	1.52	3.05E-03	1.43	3.22E-05
EXT1P1	1.44	3.80E-02	1.63	4.93E-03
EZH2P1	1.41	1.19E-02	1.42	1.33E-03
GAPDH1P1	2.01	3.06E-03	2.84	9.80E-10
GTF3AP5	1.74	5.70E-03	1.97	1.26E-04
HOMER2P1	1.09	2.79E-02	1.35	3.48E-06
terms enriched by genes in the severe group were much different, including response to oxidative stress (GPX2, PRDX6, PTGS1, SNCA, CLU, PDLIM1, CCL5, ETV5), wound healing (GP1BB, KLKB1, F13A1, APOH, SERPINB2, PF4, ITGB3, NRG1), and regulation of cell differentiation (PF4, ITGB3, MBNL3, CNTF, DLX5, CLU, GNAS, PF4, NRG1, CCL5, CD74), and of cellular protein metabolic process (DAZ3, UBE2C, BRCA1PSMA1, PSMA5, SOCS1, SNCA, SERPINB10, ITGB3, CDC26, UBE2C, TIMP1) (Table 4B).

Prediction of relevant small-molecule drugs

Using |score| >0.8 as cutoff, 9 small-molecule drugs were found to be negatively correlated with DEGs in the mild group, of which mevalolactone had the maximum correlation coefficient, and 3 were found in the severe group, of which alsterpaullone had the maximum correlation coefficient (Table 5).

Discussion

Based on the transcriptome data from RNA-seq, we first identified DEGs associated with mild and severe pneumonia, and also the co-expressed ones in each group, and then constructed a transcription factor-gene network based on the predicted transcription factors. Furthermore, we tried to uncover which biological pathways the DEGs in the network are involved. Finally, we predicted 2 potential small-molecule drugs for the treatment of mild pneumonia and severe pneumonia.

Table 3 continued. The common differentially expressed genes shared by mild pneumonia and severe pneumonia.

Common differentially expressed genes	Mild group	Severe group		
	logFC	P value	logFC	P value
KIR3DL3	1.03	2.91E-02	1.03	1.47E-04
MED14P1	2.05	4.70E-02	2.74	2.37E-03
MRPS17P5	2.08	1.13E-02	2.26	3.87E-03
MRPS35P2	1.26	4.71E-02	2.34	7.88E-07
MRPS6P2	1.11	4.57E-02	2.40	6.68E-09
NAC3P	1.46	5.06E-03	1.23	3.39E-04
NCR1P2	1.63	1.20E-02	2.02	6.70E-05
NDUFB11P1	1.20	2.04E-02	1.05	2.88E-03
PRDX3P4	1.81	2.44E-03	1.60	3.90E-04
PRYP3	1.26	1.25E-02	1.08	7.27E-04
RMRP	1.03	2.91E-02	-1.48	9.21E-07
S100A12	2.26	2.36E-04	2.56	1.19E-08
S100A9	1.86	5.29E-05	1.27	2.92E-08
SLC25A15P1	2.04	4.71E-03	2.60	2.00E-05
SMCO2	1.03	3.93E-02	1.24	1.91E-04
SRY	1.13	3.18E-02	1.34	2.48E-04
TAS2R43	2.66	3.62E-05	2.55	5.32E-07
TAS2R42	1.62	1.61E-03	1.27	2.37E-03
TCEAL7	-1.18	2.64E-02	-1.00	3.79E-03
TEX26	1.56	5.94E-03	1.21	4.55E-03
TEMEM167AP1	3.16	1.89E-03	3.15	1.97E-03
TPTE2P4	1.42	3.24E-03	1.94	8.38E-12
Table 4A. GO functional annotation of genes in the transcription factor-gene network for the mild pneumonia group.

Biological process term	Gene number	P value	Gene
GO: 0009611–response to wounding	8	0.007259044	CXCL1, CD36, S100A8, S100A9, ANXA1, LYZ, VSIG4, S100A12
GO: 0006952–defense response	8	0.015612576	CXCL1, S100A8, S100A9, ANXA1, LYZ, IFNA14, VSIG4, S100A12
GO: 0006954–inflammatory response	7	0.002598886	CXCL1, S100A8, S100A9, ANXA1, LYZ, VSIG4, S100A12
GO: 0019953–sexual reproduction	7	0.013338106	DAZ3, DAZ4, DAZ1, BPY2C, CDY1B, DNAJA1, XKRY, BRCA2, BPY2, CDY2A, CDY1
GO: 0048232–male gamete generation	6	0.010136281	DAZ3, DAZ4, DAZ1, BPY2C, CDY1B, DNAJA1, BRCA2, BPY2, CDY2A, CDY1
GO: 0007283–spermatogenesis	6	0.010136281	DAZ3, DAZ4, DAZ1, BPY2C, CDY1B, DNAJA1, BRCA2, BPY2, CDY2A, CDY1
GO: 0007276–gamete generation	6	0.026768941	DAZ3, DAZ4, DAZ1, BPY2C, CDY1B, DNAJA1, BRCA2, BPY2, CDY2A, CDY1
GO: 0032270–positive regulation of cellular protein metabolic process	5	0.017614315	DAZ3, DAZ4, DAZ1, PSME1, CLCF1, CDC26, BRCA1
GO: 0051247–positive regulation of protein metabolic process	5	0.020217214	DAZ3, DAZ4, DAZ1, PSME1, CLCF1, CDC26, BRCA1
GO: 0051052–regulation of DNA metabolic process	4	0.012850438	S100A11, TP53, BRCA2, BRCA1
GO: 0030155–regulation of cell adhesion	4	0.020911374	EGFLAM, CD36, SERPIN1, SERPIN2
GO: 0031401–positive regulation of protein modification process	4	0.046097288	PSME1, CLCF1, CDC26, BRCA1

The transcription factor-gene network for the mild group and that for the severe group consisted of 215 and 451 nodes, respectively, which shared 54 common DEGs (e.g., BRCA1, BRCA2, CDY1B, CDY2A, S100A12, S100A9) with consistent differential expression change in the 2 groups, indicating the similarity in molecular mechanisms between mild pneumonia and severe pneumonia.

GO functional annotation revealed that genes involved in defense and inflammatory responses and spermatogenesis may have important roles in the pathogenesis of mild pneumonia. Among them, 3 S100 gene family members (S100A8, S100A9, and S100A12) showed upregulated expression in patients with mild pneumonia (the latter 2 were also upregulated in severe pneumonia), suggesting minor difference in the roles of this family between different pneumonia types. The proteins encoded by this gene family are also known as migration inhibitory-related proteins (MRP), which are mainly expressed in granulocytes, macrophages, activated endothelial cells, and epithelial cells. S100A8 and S100A9 in the form of heteromeric dimer calprotectin (S100A8/A9) can chelate Zn²⁺ to inhibit the growth of a wide variety of microorganisms [18–20]. Raquil et al. reported high expression of S100A8 and S100A9 proteins in the alveolar walls of lungs of mice infected with *S. pneumoniae*, and confirmed that both proteins have an important role in leukocyte migration, strongly suggesting their involvement in the transepithelial migration of macrophages and neutrophils [21]. S100A12 can activate the receptor for advanced glycation end-products (RAGE), which is expressed ubiquitously in the lungs, mainly on endothelial and respiratory epithelial cells [22], and activation of RAGE triggers NF-kB signaling pathway [23,24], resulting in the transcription of proinflammatory factors. Elevated S100A12 level has been detected in patients with bacterial pneumonia [25], in patients with sepsis due to pneumonia [26], and in patients with acute respiratory distress syndrome [23]. Taken together, these 3 S100 gene family members have critical roles in the pathogenesis of pneumonia, although they may function in pneumonia of varying severity.

Raquil et al. also observed an opposite trend in the expression of S100A8 and S100A9 and CXCL1, a member of the CXC (C-X-C motif) chemokine family [27]. In the present study we also found CXCL1 expression was downregulated. According to the functional annotation, CXCL1 may play a role in mild pneumonia via BP terms in response to wounding, defense response,
Table 4B. GO functional annotation of genes in the transcription factor-gene network for the severe pneumonia group.

Biological process term	Gene number	P value	Genes
GO: 0006979—response to oxidative stress	8	0.00498357	GPX2, PRDX6, PTGS1, SNCA, CLU, PDLIM1, CCL5, EVT5
GO: 0042060—wound healing	8	0.011168559	GP1BB, KLKB1, F13A1, APOH, SERPINB2, PF4, ITGB3, NRG1
GO: 0045596—negative regulation of cell differentiation	8	0.02053092	PTHLH, CNTF, PF4, ITGB3, MBNL3, HIST1H4, OSGM, CD74
GO: 0045597—positive regulation of cell differentiation	8	0.02716175	CNTF, DLX5, CLU, GNAS, PF4, NRG1, CCL5, CD74
GO: 0032270—positive regulation of cellular protein metabolic process	8	0.02945066	DAZ3, PSMA1, CNTF, PSMA5, KLKB1, CDC26, UBE2C, BRCa1
GO: 0051247—positive regulation of protein metabolic process	8	0.035793321	DAZ3, PSMA1, CNTF, PSMA5, KLKB1, CDC26, UBE2C, BRCa1
GO: 0032269—negative regulation of cellular protein metabolic process	9	0.002127619	PSMA1, PSMA5, SOCS1, SNCA, SERPINB10, ITGB3, CDC26, UBE2C, TIMP1
GO: 0009617—response to bacterium	9	0.003271572	GPX2, PPBP, CCL20, DEFB113, SOCS1, SNCA, CCL5, S100A12, B2M
GO: 0007017—microtubule-based process	9	0.015645909	TUBB5P, OPA1, CKS2, BRCa2, TUBB1, UBE2C, BRCa1, SPAST, KIF2A
GO: 0007626—locomotory behavior	9	0.023984998	PPBP, CCL20, SNCA, S100A9, PF4, CXCL11, CCL5, XCL2, NOVA1
GO: 0051248—negative regulation of protein metabolic process	10	6.45E-04	PSMA1, PSMA5, SOCS1, SNCA, SERPINB10, ITGB3, CDC26, UBE2C, TIMP1
GO: 0031399—regulation of protein modification process	10	0.013193547	PRKAR2B, PSMA1, CNTF, PSMA5, SOCS1, SNCA, CDC26, UBE2C, PDCD4, BRCa1
GO: 0007610—behavior	13	0.0167272	TASSR1, TASSR5, IL18, S100A9, SNCA, PF4, CXCL11, CCL5, XCL2, NOVA1
GO: 0032268—regulation of cellular protein metabolic process	16	0.001064045	DAZ3, PRKAR2B, PSMA1, CNTF, PSMA5, KLKB1, SOCS1, SNCA, SERPINB10, ITGB3, CDC26, UBE2C, PDCD4, BRCa1, TIMP1
GO: 0009611—response to wounding	16	0.003144496	F13A1, S100A9, CLU, PF4, ITGB3, CCLX11, CCL5, S100A12, CCL20, GP1BB, FCN2, KLKB1, SERPINB2, APOH, VCAN, NRG1
GO: 0006952—defense response	18	0.002159946	IFNA21, CLU, SNCA, S100A9, HLA-B, CCLX11, CCL5, CD74, S100A12, PAGE1, PPBP, IFNA7, CCL20, DEFB113, FCN2, KLKB1, BNIPL3, HLA-DR
GO: 0010605—negative regulation of macromolecule metabolic process	18	0.01223182	SNCA, SOCS1, BRCa2, PF4, ITGB3, UBE2C, CDC26, PDCD4, BRCa1, FLNA, TIMP1, PSMA1, PSMA5, BNIPL3, HBZ, SERPINB10, NRG1, ENO1
GO: 0042127—regulation of cell proliferation	19	0.011317448	IL18, CLU, PTG51, MMP7, NAP111, BRCa2, SPARc, PRRX2, BRCa1, FTH1, TIMP1, PTHLH, CTH, CNTF, DLX5, APOH, GLMN, EMP3, NRG1
GO: 0006955—immune response	23	6.37E-05	HLA-DRB1, IL18, ENPP3, CLU, SNCA, TNFRSF17, PF4, HLA-B, PF4V1, CCLX11, CCL5, FTH1, CD74, B2M, PPBP, CCL20, FCN2, BNIPL3, HLA-DRB5, NFL3, FCGR3B, XCL2, HLA-DR
Table 5. Small-molecule drugs were found negatively correlated with differentially expressed genes with coefficient <-0.8.

Cmap	Mild		
Mevalolactone	–0.988	0.01935	
Vincamine	–0.98	0.0002	
Dipivefrine	–0.969	0.00571	
Lycorine	–0.86	0.00146	
Sulmazole	–0.858	0.0291	
Etaicrynic Acid	–0.829	0.04122	
Pentamidine	–0.828	0.00312	
Prestwick-691	–0.81	0.04994	
Vanoxerine	–0.801	0.01675	
Fenoterol	0.823	0.01094	
Depudecin	0.857	0.04119	
Sanguinarine	0.867	0.03599	
Rifabutin	0.906	0.00174	

Cmap	Severe pneumonia group		
Alsterpaullone	–0.997	0	
Valdecoxib	–0.899	0.00192	
Clofibrate	–0.861	0.03845	
Lycorine	0.82	0.0004	
Riboflavin	0.842	0.00101	
Carmustine	0.848	0.00663	
Docosahexaenoic acid ethyl ester	0.862	0.03839	
Atracurium besilate	0.884	0.00316	
Retrorsine	0.907	0.00008	
Anisomycin	0.931	0.00004	
Emetine	0.963	0	
Cephaeline	0.996	0	

Inflammatory response, and cytoskeleton organization. Despite these findings, the role of CXCL1 needs to be further investigated.

Interestingly, the expression of CXCL11, another CXC chemokine family member, was overexpressed in patients with severe pneumonia in the present study. McAllister et al. found that CXCL11 were undetectable at day 0 but was detectable at days 7 and 14 after *Pneumocystis* infection in mice with pneumonia caused by this strain [28], showing that the expression of this chemokine may be related to pneumonia severity. However, we found another C-C chemokine, CCL5 [29], showing a downregulated expression in severe pneumonia. Palaniappan et al. reported that CCL5 is an essential factor for the induction and maintenance of protective pneumococcal immunity [30]. Singh et al. further pointed out that CCL5 blockade altered humoral and cellular pneumococcal immunity via modulating PspA (Pneumococcal surface protein A)-specific T helper cells during *S. pneumonia*-induced carriage [31]. According to functional annotation, CCL5 was thought to contribute to the pathogenesis of severe pneumonia via response to oxidative stress, positive regulation of cell differentiation, response to bacterium, locomotory behavior, response to wounding, and defense response. In addition, genes involved in the regulation of cellular protein metabolic process and positive regulation of...
protein metabolic process (e.g., DAZ3, PSMA1, CNTF, PSMA5, KLRB1, CDC26, UBE2C, and BRCA1) are also speculated to have a role in the pathogenesis of severe pneumonia, although their involvement in this disease has not been reported yet.

Finally, we predicated that mevalolactone and alsterpaullone may be used as potential drugs for the treatment of mild pneumonia and severe pneumonia, respectively. In fact, alsterpaullone, which is a GSK3 (glycogen synthase kinase-3) inhibitor, can inhibit the replication of influenza virus [29], and it has been used for the prevention and treatment of pneumonia caused by influenza virus [30], further validating the credibility of our prediction. Thus, the use of mevalolactone in the therapy of mild pneumonia may be feasible, although there is no report on the role of mevalolactone in pneumonia treatment (mevalolactone is the precursor of in vivo synthesis of terpene compounds and steroids [31]). However, this needs more clinical evidence.

References:

1. Zar H, Madhi S, Aston S, Gordon S: Pneumonia in low and middle income countries: Progress and challenges. Thorax, 2013; 68(1): 1052–56
2. Örtqvist Å, Hedlund J, Kalin M: Streptococcus pneumoniae: Epidemiology, risk factors, and clinical features. In: Seminars in respiratory and critical care medicine. Copyright© 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA, 2005; 563–74
3. Said MA, Johnson HL, Nonyane BA et al., AGEDD Adult Pneumococcal Burden Study Team: Estimating the burden of pneumococcal pneumonia among adults: A systematic review and meta-analysis of diagnostic techniques. PLoS One, 2011; 8: e60273
4. Solga AC, Pong WW, Walker J et al.: RNA-sequencing reveals oligodendrocyte and neuronal transcripts in microglia relevant to central nervous system disease. Glia, 2015; 63: 531–48
5. Ritchie ME, Phipson B, Wu D et al.: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res, 2015; 43(7): e47
6. Akat KM, Moore-McGriff DV, Morozov P et al.: Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers. Proc Natl Acad Sci USA, 2014, 111: 11151–56
7. Craciun FL, Bijol V, Ajay AK et al.: RNA sequencing identifies novel translational biomarkers of kidney fibrosis. J Am Soc Nephrol, 2016; 27: 1702–13
8. Zhao S, Fung-Leung WP, Bittner A et al.: Comparison of RNA-Seq and microarray profiling of activated T cells. PLoS One, 2014; 9: e78644
9. Robinson MD, McCarthy DJ, Smyth GK: edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2009; 25: 139–40
10. Deza E, Deza MM: Encyclopedia of Distances, Springer, 2013

Conclusions

By use of RNA-seq, we found some genes may contribute to the pathogenesis of both pneumonias (e.g., S100A9 and S100A12) and some may have more important roles in the pathogenesis of mild pneumonia (e.g., S100A9 and CXCL1) or severe pneumonia (e.g., CCL5 and CXCL11). Additionally, we predicated 2 small-molecule drugs, mevalolactone and alsterpaullone, that may have potential for the treatment of mild pneumonia and severe pneumonia, respectively. However, since most of our findings were drawn by bioinformatics analyses, more evidence is needed.

Conflicts of interest

None.