Predicting water flow in fully and partially saturated porous media: a new fractal-based permeability model

Nguyen Van Nghia A. · Damien Jougnot · Luong Duy Thanh · Phan Van Do · Tran Thi Chung Thuy · Dang Thi Minh Hue · Nguyen Manh Hung

Abstract
Predicting the permeability of porous media in saturated and partially saturated conditions is of crucial importance in many geo-engineering areas, from water resources to vadose zone hydrology or contaminant transport predictions. Many models have been proposed in the literature to estimate the permeability from properties of the porous media such as porosity, grain size or pore size. This study develops a model of the permeability for porous media saturated by one or two fluid phases with all physically based parameters using a fractal upscaling technique. The model is related to microstructural properties of porous media such as fractal dimension for pore space, fractal dimension for tortuosity, porosity, maximum radius, ratio of minimum pore radius and maximum pore radius, water saturation and irreducible water saturation. The model is favorably compared to existing and widely used models from the literature. Then, comparison with published experimental data for both unconsolidated and consolidated samples shows that the proposed model estimates the permeability from the medium properties very well.

Keywords Permeability · Water saturation · Fractal · Porous media · Porosity

Introduction
Climate change, modification of land use, and groundwater and soil contamination present society with significant challenges when faced with increasing demand for water. Understanding and predicting water flow in critical zones, especially in aquifers and soils, is of primary concern for many environmental studies and research areas (e.g., Fan et al. 2019). Permeability is one of the most crucial parameters to describe fluid flow in porous media in general (e.g., Darcy 1856; Bear 1972). Laboratory studies have shown that the permeability depends on rock properties such as porosity, cementation, pore size, pore size distribution, pore shape and pore connectivity (e.g., Rahimi 1977; Lis 2019; Ghanbarian 2020a). The permeability or relative permeability of porous media saturated by one or two phases is the key parameter that governs fluid flow in porous material and therefore plays an important role in modeling and predictions in various environmental and resources engineering. Conventionally, the permeability of porous media is determined directly in the laboratory using steady-state or unsteady-state methods. Due to the complex geometric microstructure and multiscale pore structure of porous media, much effort has been devoted to predicting permeability. The experimental approaches for the permeability determination vary from simple measurements (e.g., Rahimi 1977; Boulin et al. 2012; Sander et al. 2017) to indirect methods such as nuclear magnetic resonance measurements (e.g., Coates et al. 1991; Hidajat et al. 2002; Ioannidis et al. 2006), mercury injection capillary pressure measurement (Swanson, 1981), electrical conductivity measurement (e.g., Doussan and Ruy 2009; Jougnot et al. 2010; Revil and Cathles 1999) or spectral induced polarization measurements (e.g., Revil and Florsch 2010; Koch et al. 2012; Revil et al. 2014; Maineult et al. 2018). In the literature, permeability prediction has been proposed through theoretical models with simplified pore geometries (e.g., Kozeny 1927; Carman 1938; Bear 1972; Dullien 1992) but also advanced schemes such as effective-medium approximations (e.g., Doyen 1988; Richesson and Sahimi 2019) or critical path analysis (e.g., Katz and Thompson 1986; Hunt 2001; Daigle 2016;
Ghanbarian 2020a; Ghanbarian 2020b). Additionally, explicit numerical methods such as the finite-element, finite-difference, finite-volume, lattice Boltzmann, or pore-network modeling have been applied to predict the permeability of porous materials (among many other references: Ngo and Tamma 2001; Benzi et al. 1992; Bryant and Blunt 1992; De Vries et al. 2017).

It is shown that porous media exhibit fractal properties and their pore spaces are statistically self-similar over several length scales (e.g., Mandelbrot 1982; Katz and Thompson 1985). Theory on fractal porous media has attracted much attention in different areas (e.g., Mandelbrot 1982; Feder and Aharony 1989). Therefore, the models based on capillary tubes in combination with the fractal theory have been applied to study transport phenomena in both fully and partially saturated porous media (e.g., Li and Horne 2004; Guarracino 2007; Cai et al. 2012a, b; Liang et al. 2014; Guarracino and Jougnot 2018; Soldi et al. 2017, 2019, 2020; Thanh et al. 2018, 2019, 2020a, b) or to study hydraulic conductivity and biological clogging in bio-amended variably saturated soils (e.g., Rosenzweig et al. 2009; Samsó et al. 2016; Carles et al. 2017). The fractal theory has already been used to develop permeability models for porous materials—for example, Yu and Cheng (2002), Yu and Liu (2004) and Guarracino et al. (2014) developed a fractal permeability model for porous media under both saturated and partially saturated conditions. However, their models do not take into account the irreducible water saturation that is very important for porous media containing small pores. Moreover, their models have not been strongly validated due to only a few experimental data points used for comparison. Chen and Yao (2017) developed an improved model for the permeability estimation as an extension of Yu and Cheng (2002) and Yu and Liu (2004) by considering irreducible water saturation. The Chen and Yao (2017) model was verified by comparison with experimental data for natural sandstone samples whose pore size distribution is stated to be broader than that of samples such as glass/sand grains (e.g., Daigle 2016; Ghanbarian 2020a). Li and Horne (2004) derived a universal capillary pressure model using fractal geometry of porous media and obtained a relative permeability model using both the Purcell and the Burdine approaches, therefore obtaining a model that diverges from the fractal theory. Soldi et al. (2017) and Chen et al. (2020) proposed models to describe unsaturated flow considering the hysteresis phenomena. They assumed that porous media can be represented by a bundle of capillary tubes with a periodic pattern of pore throats and pore bodies and a fractal pore size distribution. Their models have been validated using experimental data for the relative permeability and for the hysteretic saturation curves. However, Soldi et al. (2017) did not consider the variation of the capillary length with radius in their model. Chen et al. (2020) did consider that but they only focused on the relative permeability and the water retention curve rather than the intrinsic permeability. Additionally, Soldi et al. (2017) and Chen et al. (2020) did not use much experimental data to validate their models. Similarly, Xiao et al. (2018) obtained a model for the capillary pressure and water relative permeability in unsaturated porous rocks based on the fractal distribution of pore size and tortuosity of capillaries. It is seen that the relative permeability of the water phase is a function of water saturation, porosity and the fractal dimension of the pores; however, Xiao et al. (2018) did not consider irreducible water saturation and did not have much experimental data to validate the model for the relative permeability. Recently, Meng et al. (2019) presented models for both electrical conductivity and permeability based on fractal theory by introducing the critical porosity under saturated conditions. From the obtained model, Meng et al. (2019) could explain the fact that the permeability of porous media could approach zero at a nonzero percolation porosity corresponding to a certain critical pore diameter. However, their model was validated by only two experimental data sets for the permeability as a function of porosity.

This work develops a model for the permeability of porous media containing two fluid phases in which the fractal theory and capillary tube model are utilized. The model is related to microstructural properties of porous media such as fractal dimension for pore space, fractal dimension for tortuosity, porosity, maximum radius, ratio of minimum pore radius and maximum pore radius, water saturation and irreducible water saturation. All model parameters are physically based parameters. The proposed model takes into account irreducible water saturation, the variation of the capillary length with radius. Then, the model for the saturated permeability k_s and the relative permeability of the wetting phase k_w^* are validated using large published experimental data sets on 111 unconsolidated and consolidated samples. The proposed model is also compared to existing and widely used models from the literature.

Model development

Flow rate at the macroscale

Porous materials can be conceptualized as a bundle of tortuous capillaries following a fractal pore-size distribution (e.g., Yu and Cheng 2002; Soldi et al. 2019; Thanh et al. 2019, 2020c). To derive analytical expressions for the permeability of porous media, this study first considers a representative elementary volume (REV) of porous media as a cube with the length of L_0 (see Fig. 1). The pore radius R of the REV varies from a minimum value R_{min} to a maximum value R_{max} and conforms to the fractal scaling law. Namely, the cumulative size-distribution of pores is assumed to obey the following (e.g., Yu and Cheng 2002; Yu and Liu 2004):
Hydrogeol J (2021) 29:2017–2031

Fig. 1 A porous rock model composed of a large number of parallel capillary tubes that are either saturated by water or filled by air, depending on the capillary pressure. Note that the tortuosity of the capillaries depends on their radii.

\[N(R) = \left(\frac{R_{\text{max}}}{R} \right)^{D_t} \]

(1)

where \(N \) is the number of capillaries (whose radius \(\geq R \)) in the REV, \(D_t \) is the fractal dimension for pore space, \(0 < D_t < 2 \) in two-dimensional (2D) space, and \(0 < D_t < 3 \) in three-dimensional (3D) space. Differentiating Eq. (1) with respect to \(R \), one obtains the number of pores with radii between \(R \) and \(R + dR \) as

\[-dN = D_t R_{\text{max}}^{D_t} R^{-D_t - 1} dR \]

(2)

The negative sign in Eq. (2) implies that the number of pores decreases when the pore radius increases.

The real length of the capillary tubes \(L_\tau \) along the flow direction is generally greater than the length of the porous media \(L_0 \) (see Fig. 1). The length \(L_\tau \) is related to the pore radius \(R \) as (e.g., Yu and Cheng 2002; Yu and Liu 2004):

\[L_\tau(R) = R^{1-D_t} L_0^{D_t} \]

(3)

where \(D_t \) is the fractal dimension for the tortuosity \(1 \leq D_t \leq 2 \). From Eq. (3), the tortuosity \(\tau \) is determined as

\[\tau(R) = \frac{L_\tau}{L_0} = \left(\frac{L_0}{R} \right)^{D_t - 1} \]

(4)

The fractal dimensions \(D_t \) and \(D_\tau \) can be experimentally determined by a box-counting method (e.g., Yu and Cheng 2002; Yu and Liu 2004). In this work, they are estimated from properties of porous media. Namely, the expression for \(D_t \) is given by (e.g., Yu and Cheng 2002; Yu and Liu 2004)

\[D_t = 2 - \frac{\ln \phi}{\ln \alpha} \]

(5)

where \(\phi \) is the porosity of porous media and \(\alpha = R_{\text{min}}/R_{\text{max}} \). The expression for \(D_\tau \) is given by (e.g., Wei et al. 2015)

\[D_\tau = (3-D_\tau) + \frac{\ln \left(\frac{D_\tau}{2F\phi^2} \right)}{\ln \phi} \]

(6)

where \(F \) is the formation factor of porous media.

The REV under partially saturated conditions was considered. The REV is assumed to be initially fully saturated and then drained when it is subjected to a pressure head \(h \) (m). For a capillary tube, the pore radius \(R_{\text{h}} \) (m) is linked to a pressure head \(h \) by (Jurin 1719)

\[h = \frac{2\sigma \cos \beta}{\rho_w g R_{\text{h}}} \]

(7)

where \(\sigma \) (N/m) is the surface tension of the fluid, \(\beta \) is the contact angle, \(\rho_w \) (kg/m³) is the fluid density and \(g \) (m/s²) is the acceleration due to gravity. A capillary tube of porous material becomes fully desaturated under the pressure head \(h \) if its radius \(R \) is larger than \(R_{\text{h}} \) determined by Eq. (7). Hence, under the pressure head \(h \), the capillaries with radii in the range between \(R_{\text{min}} \) and \(R_{\text{h}} \) will be fully saturated.

For porous media containing small pores, the irreducible water saturation can be pretty significant since water is kept in micropores (e.g., Carsel and Parrish, 1988; Jougnot et al. 2012). This amount of water is considered in this work by setting an irreducible water radius of capillaries \(R_{\text{wirr}} \). Hence, the following is assumed: (1) for \(R_{\text{min}} \leq R \leq R_{\text{wirr}} \), the pores are filled by water that is immobile due to insufficient driving force, so it does not contribute to the water flow; (2) for \(R_{\text{wirr}} < R \leq R_{\text{h}} \), the pores are filled by mobile water, so it contributes to the water flow; (3) for \(R_{\text{h}} < R \leq R_{\text{max}} \), the pores are filled by air, so it does not contribute to the water flow (see Fig. 1). Note that film-bound water, which adheres to the pore wall because of the molecular forces acting on the hydrophilic mineral surface, is neglected in the pores with radius larger than \(R_{\text{wirr}} \). Under those assumptions, the irreducible water saturation is defined as

\[S_{\text{wirr}} = \frac{\int_{R_{\text{min}}}^{R_{\text{wirr}}} \pi R^2 L_\tau(-dN)}{\int_{R_{\text{min}}}^{R_{\text{max}}} \pi R^2 L_\tau(-dN)} \]

(8)

Combining Eqs. (2), (3) and (8) yields the following

\[S_{\text{wirr}} = \frac{R_{\text{wirr}}^{3-D_\tau - 1 - R_{\text{min}}^{3-D_\tau - 1}}}{R_{\text{max}}^{3-D_\tau - 1 - R_{\text{min}}^{3-D_\tau - 1}}} \]

(9)

Similarly, water saturation is defined as

\[S_w = \frac{\int_{R_{\text{h}}}^{R_{\text{wirr}}} \pi R^2 L_\tau(-dN)}{\int_{R_{\text{min}}}^{R_{\text{max}}} \pi R^2 L_\tau(-dN)} = \frac{R_{\text{h}}^{3-D_\tau - 1 - R_{\text{min}}^{3-D_\tau - 1}}}{R_{\text{max}}^{3-D_\tau - 1 - R_{\text{min}}^{3-D_\tau - 1}}} \]

(10)
Additionally, the volume flow rate in a single pore of radius \(R \) (m) and length \(L_c \) (m) is given by Poiseuille’s law

\[
q(R) = \frac{\rho g \pi R^4 \Delta h}{8 \eta L_c} \tag{11}
\]

where \(\rho \) (kg/m³), \(\eta \) (Pa·s) are the density and viscosity of fluid, respectively, and \(\Delta h \) (m) is the pressure head drop across the REV.

The volumetric flow rate through the REV is the sum of the volumetric flow rates over all individual capillary tubes filled with water (wetting phase) and given by

\[
Q_w^{REV} = \int_{R_{wir}}^{R_h} \rho g \pi R^4 \frac{\Delta h_w}{L_c(R)} \, (-dN) \tag{12}
\]

From Eqs. (2), (3), (11) and (12), the following was obtained

\[
Q_w^{REV} = \frac{\rho g \Delta h_w}{8 \eta_w \bar{\alpha} \pi D_f^3} \left(R_h^{3+D_f} - R_w^{3+D_f} \right) \frac{1}{3 + D_c - D_f} \tag{13}
\]

From Eqs. (8) and (10) one has

\[
\bar{\alpha} = R_{\text{max}} \left[\alpha^{3-D_c-D_f} + S_w (1-\alpha^{3-D_c-D_f}) \right] \frac{1}{3+D_c-D_f} \tag{14}
\]

and

\[
R_h = R_{\text{max}} \left[\alpha^{3-D_c-D_f} + S_w (1-\alpha^{3-D_c-D_f}) \right] \frac{1}{3+D_c-D_f} \tag{15}
\]

And recall that \(\alpha = R_{\text{min}}/R_{\text{max}} \). From Eqs. (13), (14) and (15), one obtains

\[
Q_w^{REV} = \frac{\rho g \Delta h_w \pi D_f R_{\text{max}}^{3+D_f \bar{\alpha}}}{8 \eta_w \bar{\alpha} \pi D_f^3} \times \left\{ \left[\alpha^{3-D_c-D_f} + S_w (1-\alpha^{3-D_c-D_f}) \right] \frac{1}{3+D_c-D_f} \right\} \tag{16}
\]

Permeability

The total volumetric flow rate through the REV can be expressed as (Buckingham 1907)

\[
Q_w^{REV} = \frac{\rho g \pi D_f^3}{\eta_w k_s k_w} \frac{\Delta h_w}{L_o} A_{REV} \tag{17}
\]

where \(k_s \) (m²) is the saturated permeability, \(k_w \) (no units) is the relative permeability for the wetting phase, and \(A_{REV} \) is the cross-sectional area of the REV.

\[
\phi = \frac{V_{\text{pore}}}{V_{\text{REV}}} = \frac{\pi R_{\text{max}}^2 L_c (-dN)}{L_o A_{REV}} \tag{18}
\]

Combining Eqs. (16), (17) and (18), the following is obtained

\[
k_w = \frac{R_{\text{max}}^{3D_f}}{8 L_o \phi \Delta h_w} \frac{1}{3 + D_c - D_f} \left\{ \left[\alpha^{3-D_c-D_f} + S_w (1-\alpha^{3-D_c-D_f}) \right] \frac{1}{3+D_c-D_f} \right\} \tag{19}
\]

Using Eq. (19) and invoking \(k_w = 1 \) at \(S_w = 1 \), the following is obtained

\[
k_i = \frac{R_{\text{max}}^{3D_f}}{8 L_o \phi \Delta h_w} \frac{1}{3 + D_c - D_f} \left\{ \left[\alpha^{3-D_c-D_f} + S_w (1-\alpha^{3-D_c-D_f}) \right] \frac{1}{3+D_c-D_f} \right\} \tag{20}
\]

Equation (20) can be written as

\[
k_i = \frac{R_{\text{max}}^{3D_f}}{8 L_o \phi \Delta h_w} \frac{1}{3 + D_c - D_f} \left\{ \left[\alpha^{3-D_c-D_f} + S_w (1-\alpha^{3-D_c-D_f}) \right] \frac{1}{3+D_c-D_f} \right\} \tag{22}
\]

where \(\tau^{eff} \) is given by

\[
\tau^{eff} = \left(\frac{L_o}{R_{\text{max}}} \right)^{D_f-1} \tag{23}
\]

and that is defined as the effective tortuosity of the porous medium as inferred from Eq. (4) (Thanh et al. 2019, 2020c).

The length of the cubic REV is related to the cross-section area of the REV by

\[
L_o^2 = A_{REV} \tag{24}
\]

From Eqs. (18), (23) and (24), one has

\[
\tau^{eff} = \left[1 - \frac{\pi D_f}{\phi} \right]^{D_f-1} \tag{25}
\]

Equations (21) and (22) are the key contributions of this work. These equations show that the saturated permeability
and the relative permeability for the wetting phase are functions of microstructural parameters of porous media ($D_r, D_c, \phi, \alpha, R_{\text{max}}$), S_w and S_{wirr}. Therefore, the proposed model provides an insight into the dependence of the saturated permeability (k_s) and the relative permeability (k_r^w) on the microstructural parameters of the porous media and it may reveal more mechanisms affecting the k_s and k_r^w than other models. In particular, the proposed model contains physically based parameters and that is different from some other models in literature (see Table 2) with empirical parameters such as m in the RC model, b which is normally taken as 180 in the KC model, a and m in the RGPZ model or c which is normally taken as 72.2 in the CPA model.

In the case of $R_{\text{max}} >> R_{\text{min}}$ ($\alpha \rightarrow 0$), which is normally acceptable for porous rocks (see Guarracino, 2007; Soldi et al. 2019), and the negligible irreducible water saturation $S_{\text{wirr}} = 0$, Eqs. (21) and (22), respectively, become

$$k_r^w = S_w^{\frac{1-D_r-D_c}{3-D_r-D_c}}$$ \hspace{1cm} (26)

and

$$k_s = \frac{R_{\text{max}}^2 \phi (3-D_r-D_c)}{8(\tau_{\text{eff}})^2 (3 + D_c-D_r)}$$ \hspace{1cm} (27)

It is seen that Eq. (26) is similar to the power law of the Burdine-Brooks-Corey model (Brooks and Corey 1964; Burdine 1953) that is given by Ghanbarian et al. (2017a):

$$k_r^w = S_w^{\mu+1+\frac{1}{2}}$$ \hspace{1cm} (28)

where μ is the empirical tortuosity-connectivity exponent and λ is the pore size distribution index. Obviously, the number of parameters in Eq. (26) (S_w, D_r and D_c) is the same as that in Eq. (28) (S_w, μ and λ). Equation (27) has five parameters ($R_{\text{max}}, \tau_{\text{eff}}, \phi, D_r$ and D_c) which are comparable with the number of parameters in some other models in the literature as reported in Table 2 (e.g., three parameters of d, m and F in the RC model, four parameters of d, ϕ, a and m in the RGPZ model, three parameters of d_c, c and F in the CPA model).

If one does not consider the variation of tortuosity with the capillary radius then $D_c = 1$ and Eq. (26) becomes

$$k_r^w = S_w^{\frac{4-D_c}{3-D_c}}$$ \hspace{1cm} (29)

Equation (29) is the same as that in Soldi et al. (2019).

Results and discussion

To predict k_r^w from Eq. (21) and k_s from Eq. (22), one needs to know parameters: $D_b, D_c, R_{\text{max}}, \phi, F, \alpha, S_w$ and S_{wirr}. Note that these model parameters are physically-based parameters. For example, the fractal dimension of the capillary size distribution D_f represents the heterogeneity of the porous medium. The greater the fractal dimension, the more heterogeneous the porous media (e.g., Li and Horne 2004; Othman et al. 2010; Zainaldin et al. 2017). The fractal dimension of the tortuosity τ_f represents the extent of convolutedness of capillary pathways for fluid flow through porous media; $D_c = 1$ corresponds to straight capillary paths and a higher value of D_c corresponds to a highly tortuous capillary in porous media (e.g., Yu and Cheng 2002; Yu and Liu 2004; Othman et al. 2010). The other parameters such as R_{max}, ϕ, F and S_w and S_{wirr} can be determined in the lab—for example, the porosity ϕ can be measured by different methods such as the mercury porosimetry, helium pycnometry, image analysis and water absorption, among other ones (e.g., Andreola et al. 2000; Nnaemeka 2010). The grain diameter d can be determined by techniques such as the sieve analysis, the laser diffraction, the microscopy technique and others (e.g., Li et al. 2005; Abbireddy and Clayton 2009). The formation factor F can be measured by an approach presented by Jouniaux et al. 2000 or Vinogradov et al. 2010, for example. In the context of a bundle of capillary tubes model, R_{min} and R_{max} correspond to the sizes of pores invaded by the nonwetting phase at the maximum and minimum values of capillary pressure. Therefore, they can be estimated by measuring the maximum capillary pressure and the minimum capillary pressure, respectively, then using the Young–Laplace equation (e.g., Ghanbarian et al. 2017b). Additionally, Daigle 2016 determined $R_{\text{min}}, R_{\text{max}}$ and therefore α from the micro-CT images and the nuclear magnetic resonance (NMR) measurements. He combined the micro-CT and the NMR data to provide a continuous pore size distribution in pores and therefore obtained $R_{\text{min}}, R_{\text{max}}$ and α. Note that S_{wirr} can be obtained from the soil-water retention curves that are measured by methods such as the pressure plate, tensiometers, or pressure membranes, for example (e.g., Lourenço et al. 2007; Abeykoon et al. 2017).

If the pore size distribution is unknown, the R_{max} for nonconsolidated granular media can be estimated by the following (Cai et al. 2012a; Liang et al. 2014):

$$R_{\text{max}} = \frac{d}{8} \left[\left(\frac{2\phi}{1-\phi} \right) + \left(\frac{\phi}{1-\phi} \right) + \sqrt{\frac{\pi}{4(1-\phi)^3}} \right]$$ \hspace{1cm} (30)

Based on the published work from Ghanbarian 2020a or Reviland Cathles 1999, this study uses $S_{\text{wirr}}=0$ for the intrinsic permeability to simplify parameter optimization. For the relative permeability estimation, S_{wirr} is obtained through an optimization procedure. Namely, the optimization of parameters is based on data fitting and then calculating the root-mean-square error (RMSE). Model parameters are then
determined by seeking a minimum RMSE through the “fminsearch” function in MATLAB. This work uses the “fminsearch” function to optimize parameters of \(\alpha \), \(D_\tau \) and \(D_r \) for the intrinsic permeability and to optimize parameters of \(\alpha \), \(D_\tau \), \(D_r \) and \(S_{wirr} \) for the relative permeability.

Saturated permeability

To study the model sensitivity with model parameters such as \(\phi \), \(\alpha \), \(S_{wirr} \) and \(D_\tau \), from Eq. (22) it is possible to predict the variation of \(k_s \) with porosity as shown in Fig. 2a and with irreducible water saturation as shown in Fig. 2b. Figure 2a is obtained with \(S_{wirr} = 0 \), \(D_\tau = 1.1 \), \(R_{\text{max}} = 40 \mu\text{m} \) and three values of \(\alpha \) (0.0001, 0.001 and 0.01). Figure 2b is obtained with \(\alpha = 0.01 \), \(\phi = 0.2 \), \(R_{\text{max}} = 40 \mu\text{m} \) and three values of \(D_\tau \) (1.1, 1.15 and 1.2). Note that the input parameters for Fig. 2 are normally in the range reported in literature for porous media—for example, \(\alpha \) is commonly between 0.0001 and 0.01 (e.g., Wei et al. 2015; Thanh et al. 2020c); \(D_\tau \) is normally reported to be around 1.1 (e.g., Chen et al. 2020) and \(R_{\text{max}} \) is reported to be tens of micrometers in geological media (e.g., Hu et al. 2017). It is seen that the permeability \(k_s \) is sensitive to \(\phi \), \(\alpha \), \(S_{wirr} \) and \(D_\tau \). Namely, \(k_s \) increases with increasing porosity as expected by other models (e.g., Kozeny 1927; Revil and Cathles 1999) and with increasing \(\alpha \) as predicted by Xu and Yu (2008). Additionally, \(k_s \) decreases with an increase of \(S_{wirr} \). This is attributed to the fact that the larger \(S_{wirr} \) causes the total flow rate of the wetting phase to be smaller and therefore the permeability decreases. It is also seen that \(k_s \) decreases with an increase of \(D_\tau \). The reason is that when \(D_\tau \) increases, the flow pathways are more tortuous, causing more resistance for flow and lowers the permeability of the porous media. It should be noted that in Fig. 2, \(D_\tau \) is estimated from Eq. (5) with the knowledge of \(\phi \) and \(\alpha \).

Symbols \(d \), \(\phi \), \(F \), \(\alpha \), \(D_\tau \) and \(k_s \) stand for the grain diameter, porosity, formation factor, ratio of minimum and maximum radius, fractal dimension for pore space, fractal dimension for the tortuosity and permeability of samples, respectively. Superscripts ‘a’ measured quantities, ‘b’ estimated ones from Archie (1942), ‘c’ optimized ones by the “fminsearch” function in Matlab and ‘d’ predicted ones from Eqs. (5) and (6).

Figure 3 shows the comparison between the predicted permeability by Eq. (22) and the measured permeability for 111 uniform packs from different sources: (1) for glass beads (data from Bolève et al. 2007; Johnson et al. 1986; Chauveteau and
Table 1 Properties of the glass bead and sand packs used in this work

Pack	\(d^a (\mu m)\)	\(\phi^a\) (no units)	\(F^a, b\) (no units)	\(k_{\alpha s} \times 10^{-12} (m^2)\)	\(\alpha\)	\(D_T\)	\(D_T\)	Source	Shown in
Glass bead									
56	0.4	3.3^a	2.0	0.0103^c	1.803^c	1.05^c	Bolève et al.	Fig. 3a	
72	0.4	3.2^a	3.1	1.789^d	1.11^d		(2007)		
93	0.4	3.4^a	4.4	from	from				
181	0.4	3.3^a	27	Eq. (5)	Eq. (6)				
256	0.4	3.4^a	56	from	from				
512	0.4	3.4^a	120						
3000	0.4	3.6^a	14,000						
Glass bead									
75	0.43	3.55^b	5.3	0.0090^c	1.900^c	1.14^c	Johnson et al.	Fig. 3a	
110	0.41	3.81^b	8.6	1.814^d	1.11^d		(1986)		
500	0.41	3.81^b	174.6	from	from				
Glass bead									
11.5	0.41	3.81^b	0.11	0.0091^e	1.904^c	1.13^c	Chauveteau and Zaitoun (1981)	Fig. 3a	
15	0.41	3.81^b	0.21		1.809^d	1.11^d			
25	0.41	3.81^b	0.66	from	from				
45	0.41	3.81^b	2.4	Eq. (5)	Eq. (6)				
90	0.4	3.95^b	8.4						
225	0.4	3.95^b	36.0						
450	0.4	3.95^b	137						
Glass bead									
20	0.4009	3.90^a	0.24	0.0095^c	1.793^c	1.15^c	Glover et al.	Fig. 3a	
45	0.3909	4.02^a	1.6		1.797^d	1.12^d	(2006)		
106	0.3937	4.05^a	8.1		from				
250	0.3982	3.98^a	50.5		Eq. (5)	Eq. (6)			
500	0.3812	4.09^a	186.8						
1,000	0.3954	3.91^a	709.9						
2,000	0.3856	4.14^a	2,277.3						
3,350	0.3965	3.93^a	7,706.9						
Glass bead									
3,000	0.398	4.21^a	4,892	0.0092^e	1.736^c	1.26^c	Glover and Walker (2009)	Fig. 3a	
4,000	0.385	4.38^a	6,706		1.896^d	1.12^d			
5,000	0.376	4.65^a	8,584		from				
6,000	0.357	5.31^a	8,262		Eq. (5)	Eq. (6)			
256	0.399	4.01^a	41.2						
512	0.389	4.36^a	164						
181	0.382	4.39^a	18.6						
Glass bead									
115	0.366	4.09^a	8.8	0.0097^e	1.753^c	1.11^c	Kimura (2018)	Fig. 3b	
136	0.364	4.20^a	10.7		1.780^d	1.11^d			
162	0.363	4.13^a	18.3		from				
193	0.364	4.04^a	26.7		Eq. (5)	Eq. (6)			
229	0.362	4.20^a	33.0						
273	0.358	4.17^a	51.0						
324	0.358	4.15^a	67.4						
386	0.356	4.36^a	102.1						
459	0.358	4.30^a	134.3						
545	0.36	4.06^a	246.2						
648	0.358	4.18^a	299						
771	0.357	4.29^a	510.4						
917	0.356	4.15^a	611.9						
Silica sand									
115	0.379	4.02^a	7.0	0.0066^e	1.789^c	1.15^c			
136	0.378	4.27^a	10.9		1.808^d	1.11^d			
162	0.378	4.21^a	16.6		from				
Pack	\(d^a (\mu m)\)	\(\phi^a\) (no units)	\(F^a, b\) (no units)	\(k_s^a \times 10^{-12} (m^2)\)	\(\alpha\)	\(D_r\)	\(D_t\)	Source Shown in	
----------------	------------------	------------------------	------------------------	----------------------------------	-------------	--------	--------	----------------	
193	0.378	4.16^a						Eq. (5)	Eq. (6)
229	0.38	4.24^a						Eq. (5)	Eq. (6)
273	0.38	4.15^a						Eq. (5)	Eq. (6)
324	0.38	4.07^a						Eq. (5)	Eq. (6)
386	0.38	4.12^a						Eq. (5)	Eq. (6)
459	0.381	4.17^a						Eq. (5)	Eq. (6)
545	0.383	4.09^a						Eq. (5)	Eq. (6)
648	0.385	4.12^a						Eq. (5)	Eq. (6)
771	0.388	4.10^a						Eq. (5)	Eq. (6)
917	0.389	3.95^a						Eq. (5)	Eq. (6)
Fujikawa sand	162	0.442	3.75^a	14.4	0.0093^c	1.757^c	1.20^c	–	–
	229	0.421	3.83^a	27.8	1.814^d	1.12^d		Eq. (5)	Eq. (6)
	273	0.419	3.79^a	42.9	from	from		Eq. (5)	Eq. (6)
	324	0.416	3.88^a	56.5	Eq. (5)	Eq. (6)		Eq. (5)	Eq. (6)
	386	0.413	3.90^a	81.8				Eq. (5)	Eq. (6)
	459	0.414	3.93^a	123.8				Eq. (5)	Eq. (6)
Sand	150	0.45	3.92^a	6.7	0.0092^c	1.612^c	1.31^c	Biella et al.	Fig. 3c
	300	0.43	4.10^a	49.2				Eq. (5)	Eq. (6)
	500	0.40	4.05^a	107.7				Eq. (5)	Eq. (6)
	800	0.41	4.29^a	205.1				Eq. (5)	Eq. (6)
	1,300	0.40	4.20^a	810.2				Eq. (5)	Eq. (6)
	1,800	0.39	4.31^a	1,261.4				Eq. (5)	Eq. (6)
	2,575	0.37	4.77^a	2,563.8				Eq. (5)	Eq. (6)
	3,575	0.38	4.88^a	5,127.6				Eq. (5)	Eq. (6)
	4,500	0.37	4.64^a	5,640.4				Eq. (5)	Eq. (6)
	5,650	0.37	4.70^a	8,204.2				Eq. (5)	Eq. (6)
	7,150	0.37	4.70^a	12,306.3				Eq. (5)	Eq. (6)
Sand	192	0.383	4.22^b	21.4	0.0095^c	1.780^c	1.14^c	Moghadasi et al. (2004)	Fig. 3c
	265	0.383	4.22^b	60.3				Eq. (5)	Eq. (6)
	410	0.384	4.20^b	121				Eq. (5)	Eq. (6)
Quartz sand	180	0.47	3.77^a	17.6	0.007^c	1.460^c	1.41^c	Koch et al. (2012)	Fig. 3d
	270	0.45	3.55^a	53.1				Eq. (5)	Eq. (6)
	660	0.47	3.25^a	129				Eq. (5)	Eq. (6)
	180	0.48	3.14^a	20.8				Eq. (5)	Eq. (6)
	240	0.49	3.40^a	33.0				Eq. (5)	Eq. (6)
	320	0.49	3.26^a	67.5				Eq. (5)	Eq. (6)
	500	0.49	3.12^a	171				Eq. (5)	Eq. (6)
	680	0.48	3.10^a	280				Eq. (5)	Eq. (6)
	870	0.49	3.34^a	394				Eq. (5)	Eq. (6)
	870	0.49	3.34^a	394				Eq. (5)	Eq. (6)
	180	0.39	4.12^a	11.1				Eq. (5)	Eq. (6)
	270	0.39	3.75^a	24.0				Eq. (5)	Eq. (6)
	660	0.41	3.97^a	75.0				Eq. (5)	Eq. (6)
	180	0.40	3.23^a	11.7				Eq. (5)	Eq. (6)
	240	0.40	3.55^a	19.8				Eq. (5)	Eq. (6)
	320	0.42	3.64^a	38.1				Eq. (5)	Eq. (6)
	500	0.42	3.52^a	105.0				Eq. (5)	Eq. (6)
Zaitoun 1981; Glover et al. 2006; Glover and Walker 2009), (2) for glass beads and silica sands (data from Kimura 2018), (3) for silica sands (data from Biella et al. 1983; Moghadasi et al. 2004), and (4) for sand grains (data from Koch et al. 2012). The sample properties (d, ϕ and F) as well as the measured k_s are summarized in Table 1. The formation factor F is not available for the samples reported by Johnson et al. (1986), Chauveteau and Zaitoun (1981), Moghadasi et al.

Table 1 (continued)

Pack	d^a (μm)	ϕ^a (no units)	F^a, b (no units)	$k_s^a 10^{-12}$ (m2)	α	D_r	D_t	Source	Shown in
Glass bead	1.05	0.411	3.80b	0.00057	0.009	1.80d	1.12d	Glover and Walker (2009)	from Dery (2010)
	2.11	0.398	3.98b	0.00345				Eq. (5)	
	5.01	0.380	4.27b	0.0181				Eq. (6)	
	11.2	0.401	3.94b	0.0361					
	21.5	0.383	4.22b	0.228					
	31	0.392	4.07b	0.895					
	47.5	0.403	3.91b	1.258					
	104	0.394	4.04b	6.028					
	181	0.396	4.01b	21.53					
	252	0.414	3.75b	40.19					
	494	0.379	4.29b	224					
	990	0.385	4.19b	866.7					
Average					0.0090				

a Measured quantities
b Estimated from Archie (1942)
c Optimized using the “fminsearch” function in Matlab
d Predicted values from Eqs. (5) and (6)

Fig. 3 Comparison between measured permeability reported in literature and the one estimated by Eq. (22) in which sample properties are given in Table 1 with $S_{wirr} = 0$: a glass beads (data from Bolèvre et al. 2007; Johnson et al. 1986; Chauveteau and Zaitoun 1981; Glover et al. 2006; Glover and Walker 2009), b glass beads and silica sands (data from Kimura, 2018), c silica sands (data from Biella et al. 1983; Moghadasi et al. 2004), and d sand grains (data from Koch et al. 2012). The solid lines represent the 1:1 line.
Table 2 Some of the models for the grain-size-based permeability estimation

Model	Equation	Reference
RC model	$k_s = \frac{\phi}{(\alpha D_c)^\gamma} \left[\frac{1}{2(2-D_c)} \right]^{1+D_c}$	Revil and Cathles (1999); Koch et al. (2012)
KC model	$k_s = \frac{\phi^\gamma}{(1+\phi)^2} \left[\frac{1}{2(2-D_c)} \right]^{1+D_c}$	Kozeny (1927); Revil and Cathles (1999)
RGPZ model	$k_s = \frac{\phi^\gamma}{(1+\phi)^2} \left[\frac{1}{2(2-D_c)} \right]^{1+D_c}$	Glover et al. (2006)
XY model	$k_s = \left(\frac{\pi D_c^{1-D_c}}{2[4(2-D_c)]^{1+D_c}} \right)^{\frac{2}{32(3+D_c-D_c)(\frac{\phi}{\alpha})^{1+D_c}}}$	Xu and Yu (2008)
CPA model	$k_s = \frac{d_c^2}{\tau}$	Ghanbarian (2020a)

(2004) and Glover and Dery (2010). Therefore, F is estimated from ϕ by the relation $F = \phi^{-m}$ (Archie 1942) with $m = 1.5$ for spherical grains (e.g., Sen et al. 1981). Model parameters of α, D_c, D_a, are optimized using the “fminsearch” function in MATLAB for Fig. 3 as mentioned previously and are shown in Table 1 with the superscript ‘c’. R_{max} is determined from Eq. (30) with the knowledge of d and ϕ (see columns 2 and 3 in Table 1). The average optimized value for α is around 0.009. That value is in good agreement with $\alpha = 0.01$ which has been effectively applied for unconsolidated samples such as sand packs or glass beads (e.g., Cai et al. 2012a; Liang et al. 2015; Thanh et al. 2018, 2019). Additionally, it is possible to also predict D_c from ϕ and the optimized value α using Eq. (5) and predict D_a from D_c, ϕ and F using Eq. (6). The predicted values are shown in Table 1 with the superscript ‘d’. It is seen that the predicted values for D_c, D_a, are close to the optimized ones by the “fminsearch” (average difference by 4%). The comparison in Fig. 3 shows that the model predictions are in quite good agreement with experimental data Fig. 3.

Recall that d is the grain diameter, ϕ is the porosity, F is the formation factor, m and a are parameters taken as 1.5 and 8/3 for spherical grain samples (e.g., Sen et al. 1981; Glover et al. 2006). Note that d_c and c in the CPA model are the critical pore diameter and a constant coefficient equal to 72.2 (e.g., Ghanbarian 2020a).

Figure 4 shows the comparison between the predictions of various models from literature and the proposed model given by Eq. (22) for a data set of glass beads reported by Glover and Dery (2010). Sample properties are also shown in Table 1 for the glass beads of Glover and Dery (2010). Table 2 lists some of the models available for the grain-size-based permeability estimation: the RC model proposed by Revil and Cathles (1999), the KC model proposed by Kozeny (1927), the RGPZ model proposed by Glover et al. (2006), the XY model proposed by Xu and Yu (2008) based on the fractal theory and the CPA model proposed by Ghanbarian (2020a) using the critical path analysis. The common values for m and a in the RC model and the RGPZ model are taken to be 1.5 and 8/3 for glass beads, respectively (e.g., Sen et al. 1981; Glover et al. 2006). In the CPA model, d_c is the critical pore diameter that is related to the grain diameter d by $d_c = 0.42d$, and c is a constant coefficient that is equal to 72.2 (e.g., Ghanbarian 2020a).

Due to the similarity between the samples of Glover and Dery (2010) and those reported in Fig. 3 (they are all made up of glass beads or sands), this study uses $\alpha = 0.009$ as an average optimized value in Table 1. Values of D_c, D_a, are predicted from Eq. (5) and Eq. (6) in the same manner as previously mentioned (see superscript ‘d’ in Table 1). The root-mean-square deviation (RMSD) values for the proposed model, KC model, RC model, RGPZ model, XY model and CPA model are calculated to be 18×10^{-12} m2, 13×10^{-12} m2, 118×10^{-12} m2, 89×10^{-12} m2, 2351×10^{-12} m2 and 85×10^{-12} m2, respectively. The representative comparison shows that the proposed model provides a remarkably good prediction with experimental data reported by Glover and
Dery (2010) and with those predicted from the other models. Note that the XY model gave a worse result compared to the others with R_{max} predicted from Eq. (30). However, the prediction from the XY model could be much improved by calibrating R_{max} (which is predicted from Eq. 30) using a factor of 1/3 (dividing R_{max} by a factor 3), as shown by circle symbols in Fig. 4 (RMSD = 40×10^{-12} m2). It suggests that the proposed model and the XY model, which are related to R_{max}, could be improved by calibrating R_{max}.

Equation (22) is also tested in Fig. 5 for a large data set of permeability measurements on similar grain size sediments of different porosity from Chilindar (1964) using the same approach as performed for Fig. 4. The average grain diameter $d = 235 \mu$m is taken from Revil and Cathles (1999) for the fine-grained sandstone. Additionally, the KC model, RC model and RGPZ model are also used to explain experimental data reported by Chilindar (1964) and to compare with the proposed model. For the RC model and RGPZ model, m is taken as 1.7 as proposed by Revil and Cathles (1999). For the proposed model, the formation factor is determined from porosity using $F = \phi^m$ with $m = 1.7$. Feng et al. (2004) and Wei et al. 2015 analyzed the best fit regression parameters to find D_f using Eq. (5) for natural and artificial porous media from different studies. They found that $\alpha = 0.001$ gives the best estimate of D_f. Additionally, the maximum pressure ($P_{\text{max}} = 22.6$ MPa) and the minimum pressure ($P_{\text{min}} = 0.009$ MPa) are obtained from the capillary pressure measurement of Li and Horne (2006a) for a Berea core sample. Applying the Young–Laplace equation as performed in Ghanbarian et al. (2017b), one obtains $\alpha = R_{\text{min}}/R_{\text{max}} = P_{\text{max}}/P_{\text{min}} = 0.0004$, which is approximately the same order as 0.001. Therefore, $\alpha = 0.001$ is rather relevant for consolidated samples and applied in this work.

The calculated RMSD values for the proposed model, KC model, RC model and RGPZ model are 68.4×10^{-14} m2, 104×10^{-14} m2, 7.2×10^{-14} m2 and 14.8×10^{-14} m2, respectively. It is seen that the proposed model can reproduce the main trend of experimental data but less accurate than the RC model and the RGPZ model. The reason may be that Eq. (30) for determining R_{max} from d works quite well for unconsolidated samples that are made up of monosized spherical grains as shown in Fig. 3 or Fig. 4. However, for the consolidated samples of sandstone, the rock texture consists of mineral grains of various shapes and sizes and its pore structure is extremely complex; therefore, Eq. (30) may not be suitable. In this case, one can estimate R_{max} by measuring the capillary pressure and then using the Young–Laplace equation (e.g., Ghanbarian et al. 2017b) or using the micro-CT images and

![Fig. 5](Image)

Fig. 5 Variation of permeability with porosity for the fine-grained sandstones obtained from Chilindar (1964) (see symbols). The proposed model given by Eq. (22) with $\alpha = 0.001$, $S_{\text{wirr}} = 0$ and $F = \phi^{-2.2}$ and other ones are used for the prediction.

![Fig. 6](Image)

Fig. 6 Variation of the relative permeability with water saturation. The symbols are experimental data from Li and Horne (2006b) for Berea sandstone. The solid and dashed lines are predicted from Eq. (21) with $D_f = 1.4$, $D_\tau = 1.05$ and $\alpha = 0.001$ and the model of Brooks and Corey (1964) with $\lambda = 1.9$, respectively.
nuclear magnetic resonance measurements (e.g., Daigle 2016). Another reason may be due to the variation of sample to sample (here $\alpha = 0.001$ is used for all samples).

Relative permeability

Figure 6 shows the variation of the relative permeability for the wetting phase with water saturation experimentally obtained from Li and Horne (2006b) for a plug of Berea sandstone (see symbols). Equation (21) is applied to predict the variation of k_r^w with S_w (see solid line). The irreducible water saturation S_{wirr} is reported to be 0.18 (Li and Horne 2006b). Using the same approach as applied for Fig. 3, $D_t = 1.4$ and $D_r = 1.05$ are obtained. Note that α is taken as 0.001 for all consolidated rocks in this work as previously mentioned. Additionally, the model of Brooks and Corey (1964) $k_r^w = \left(\frac{S_w - S_{wirr}}{1 - S_{wirr}}\right)^{3+2/\lambda}$ with $\lambda = 1.9$ (best fit) is also used to explain experimental data (see dashed line). The calculated RMSD values for the proposed model and the model of Brooks and Corey are 0.0043 and 0.0041, respectively. The proposed model is in a very good agreement with experimental data and prediction from the model of Brooks and Corey (1964).

Figure 7 shows the variation of the k_r^w with S_w from different sources. The symbols are experimental data and the solid lines are predicted from Eq. (21). Figure 7a is obtained from data in Cerepi et al. (2017) for the Brauvilliers limestone with model parameters: $D_t = 1.1, D_r = 1.05, \alpha = 0.001, S_{wirr} = 0.28$, and for the LS2 dolostone with model parameters: $D_t = 1.3, D_r = 1.05, \alpha = 0.001, S_{wirr} = 0.37$. Figure 7b is obtained from data in Mahiya (1999) for the fired Berea core sample with model parameters: $D_t = 1.3, D_r = 1.05, \alpha = 0.001, S_{wirr} = 0.29$. Figure 7c is obtained from data in Jougnot et al. (2010) for two Callovo-Oxfordian clay-rock samples with model parameters: $D_t = 1.3, D_r = 1.05, \alpha = 0.001, S_{wirr} = 0.23$. It should be noted that all values for irreducible water saturation S_{wirr} mentioned previously are taken from corresponding sources (Cerepi et al. 2017; Mahiya 1999; Jougnot et al. 2010). It is seen that the model can provide a rather good prediction of the variation of the relative permeability with water saturation.

Conclusions

A new model is proposed to predict the permeability of porous media saturated by one or two fluids based on a bundle of capillary tubes model and the fractal theory for porous media. The model is related to microstructural properties of porous media (fractal dimension for pore space, fractal dimension for tortuosity, porosity, maximum radius, ratio of minimum pore radius and maximum pore radius), water saturation and irreducible water saturation. By comparison with 111 samples of uniform glass bead and sand packs in literature, this study shows that the proposed model estimated the saturated permeability very well from sample properties. The proposed model is also compared to existing and widely used models from the literature. These results show that the proposed model is in good agreement with the others. The main advantage of the proposed model is that the input parameters are physically based parameters; therefore, it may provide an insight into the dependence of the saturated permeability (k_s) and the relative permeability (k_r^w) on the microstructural parameters of the porous media and it may reveal more mechanisms affecting the k_s and k_r^w than other models. Additionally, the model prediction for the relative permeability has been successfully
validated using experimental data for the consolidated media in literature.

Acknowledgements This research is funded by Thuyloi University Foundation for Science and Technology under grant number TLU.STF.19-08.

References

Abbireddy COR, Clayton CRI (2009) A review of modern particle sizing methods. Geotech Eng 162:193–201
Abeykoon T, Udukumburage R, Gallage C, Uchimura T (2017) Comparison of direct and indirect measured soil-water characteristic curves for a silty sand. Int J GEOMATE 13:9–16
Andreola F, Leonelli C, Romagnoli M, Miselli P (2000) Techniques used to determine porosity. Am Ceram Soc Bull 79:49–52
Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Petroleum Trans AIME 146:54–62
Bear J (1972) Dynamics of fluids in porous media. Dover, New York
Benzi R, Succi S, Vergassola M (1992) The lattice Boltzmann equation: theory and applications. Phys Rep 222:145–197
Biella G, Lozej A, Tabacco I (1983) Experimental study of some hydrogeophysical properties of unconsolidated porous media. Groundwater 21:741–751
Bolève A, Crespy A, Revil A, Janod F, Mattiuzzo JL (2007) Streaming potentials of granular media. Influence of the Dhukin and Reynolds numbers. J Geophys Res B08204
Boulín PF, Bretonnier P, Gland N, Lombard JM (2012) Contribution of the steady state method to water permeability measurement in very low permeability porous media. Oil Gas Sci Technol 67:387–401
Brooks R, Corey A (1964) Hydraulic properties of porous media and their relation to drainage design. Trans ASAE 7:28–28
Bryant S, Blunt M (1992) Prediction of relative permeability in simple porous media. Phys Rev A 46(4):2004–2011
Buckingham E (1907) Studies on the movement of soil moisture. US Department of Agriculture, Bureau of Soils no. 38, USDA, Washington, DC, 61 pp
Burdine N (1953) Relative permeability calculations from pore size distribution data: Journal of Petroleum Technology 5:71–78
Cai JC, Hu XY, Standnes DC, You LJ (2012a) An analytical model for spontaneous imbibition in fractal porous media including gravity. Colloids Surf A: Physicochem Eng Aspects 414:228–233
Cai JC, You LJ, Hu XY, Wang J, Peng RH (2012b) Prediction of effective permeability in porous media based on spontaneous imbibition effect. Int J Modern Phys C 23. https://doi.org/10.1142/S0129183112500544
Cai J, Boming Y (2011) A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transpor Porous Media 89:251–263
Carles BA, Sanchez-Vila X, Freixa A, Romani AM, Rubol S, Garcia DF (2017) A mechanistic model (BCC-PSSICO) to predict changes in the hydraulic properties for bio-amended variably saturated soils. Water Resour Res 53:93–109
Carman P (1938) Determination of the specific surface of powders, part II. J Soc Chem Industry 57:225–234
Carsel RF, Parrish RS (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour Res 24:755–769
Cerepi A, Cherubini A, Garcia B, Deschamps H, Revil A (2017) Streaming potential coupling coefficient in unsaturated carbonate rocks. Geophys J Int 210:291–302
Chauveuta G, Zaitoun A (1981) Basic rheological behavior of xanthan polysaccharide solutions in porous media: effect of pore size and polymer concentration. Proc. of the third European Symposium on Enhanced Oil Recovery, Bournemouth, UK, September 1981, pp 197–212
Chen H, Chen K, Yang M, Xu P (2020) A fractal capillary model for multiphase flow in porous media with hysteresis effect. Int J Multiphase Flow 125:103208
Chen X, Yao G (2017) An improved model for permeability estimation in low permeable porous media based on fractal geometry and modified Hagen-Poiseuille flow. Fuel 210:748–757
Chilindar GV (1964) Relationship between porosity, permeability and grain size distribution of sands and sandstones: deltaic and shallow marine deposits, vol I. Elsevier, Amsterdam, pp 71–75
Coates GR, Peveraro R, Hardwick A, Roberts D (1991) The magnetic resonance imaging log characterized by comparison with petrophysical properties and laboratory core data. Society of Petroleum Engineers, Richardson, TX
Daigle H (2016) Application of critical path analysis for permeability prediction in natural porous media. Adv Water Resour 96:43–54
Darcy H (1856) Les fontaines publiques de la ville de Dijon [The public fountains of the village of Dijon], Dalmont, Paris
De Vries E, Raoof A, Gemuchten M (2017) Multiscale modelling of dual-porosity porous media: a computational pore-scale study for flow and solute transport. Adv Water Resour 105:82–95
Dousnan C, Ruy S (2009) Prediction of unsaturated soil hydraulic conductivity with electrical conductivity. Water Resour Res 45
Doyen PM (1988) Permeability, conductivity, and pore geometry of sandstone. J Geophys Res: Solid Earth 93:7729–7740
Dullien FAL (1992) Porous media: fluid transport and pore structure. Academic, San Diego
Fan Y, Grant G, Anderson SP (2019) Water within, moving through, and shaping the earth’s surface: introducing a special issue on water in the critical zone. Hydrolog Processes 33:3146–3151
Feder J, Aharony A (1989) Fractals in physics: essays in Honour of Benoit Mandelbrot. North Holland, Amsterdam
Feng YJ, Yu BM, Zou MQ, Zhang DM (2004) A generalized model for the effective thermal conductivity of porous media based on self-similarity. J Phys D Appl Phys 37:3030–3040
Feng Y, Boming Y (2007) Fractal dimension for tortuous streamtubes in porous media. Fractals 15(04):385–390. https://doi.org/10.1142/S0218348X07003654
Ghanbarian B (2020a) Applications of critical path analysis to uniform grain packings with narrow conductance distributions: I single-phase permeability. Adv Water Res 137:103529
Ghanbarian B (2020b) Applications of critical path analysis to uniform grain packings with narrow conductance distributions: II water relative permeability. Adv Water Res 137:103524
Ghanbarian B, Ioannidis MA, Hunt AG (2017a) Theoretical insight into the empirical tortuosity-connectivity factor in the Burdine-Brooks-Corey water relative permeability model. Water Res Res 53(12):10395–10410. https://doi.org/10.1002/2017WR021753
Ghanbarian B, Allen H, Todd S, Nicholas J (2017b) Upscaling soil saturated hydraulic conductivity from pore throat characteristics. Adv Water Resour 104:105–113
Glover P, Zadjali II, Frew KA (2006) Permeability prediction from MICP and NMR data using an electrokinetic approach. Geophysics 71: F49–F60
Glover PWJ, Dery N (2010) Streaming potential coupling coefficient of quartz glass bead packs: dependence on grain diameter, pore size, and pore throat radius. Geophysics 75:F225–F241
Glover PWJ, Walker E (2009) Grain-size to effective-pore-size transformation derived from electrokinetic theory. Geophysics 74(1):E17–E29
Guarracino L (2007) Estimation of saturated hydraulic conductivity K_s from the Van Genuchten shape parameter. Water Resour Res 43, W11S02

Guarracino L, Jougnot D (2018) A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media. J Geophys Res: Solid Earth 123: 52–65

Guarracino L, Rotting T, Carrera J (2014) A fractal model to describe the evolution of multiphase flow properties during mineral dissolution. Adv Water Resour 67:78–86

Hidajat I, Singh M, Cooper J, Mohanty KK (2002) Permeability of porous media from simulated NMR response. Transp Porous Media 48:225–247

Hu X, Hu S, Jin F, Huang S (2017) Physics of petroleum reservoirs. Springer, Heidelberg

Hunt A (2001) Applications of percolation theory to porous media with distributed local conductances. Adv Water Resour 24:279–307

Ioannidis MA, Chatzis I, Lemaire C, Perumarkilli R (2006) Unsaturated hydraulic conductivity from nuclear magnetic resonance measurements. Water Resour Res 42(7). https://doi.org/10.1029/2006WR004955

Johnson DL, Plona TJ, Kojima H (1986) Probing porous media with 1st sound, 2nd sound, 4th sound and 3rd sound: physics and chemistry of porous media, vol II. AIP Conf Proceeded 154:245. https://doi.org/10.1063/1.36398

Jougnot D, Revil A, Linde N, Wayllace A (2010) Transport properties of the Callovo Oxfordian clay rock under partially saturated conditions. Water Resour Res 46, W08S14

Jougnot D, Linde N, Revil A, Doussan C (2012) Determination of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils. Vadose Zone J 11:272–286

Jouniaux L, Bernard ML, Zamora M, Pozzi JP (2000) Streaming potential and permeability of water-saturated unconsolidated glass beads and sands. J Acoustical Soc Am 117:3154–3168

Jurin J (1719) II. An account of some experiments shown before the royal society; with an enquiry into the cause of the ascent and suspension of water in capillary tubes. Philos Trans R Soc Lond 30:739–747

Katz AJ, Thompson AH (1985) Fractal sandstone pores: implications for conductivity and pore formation. Phys. Rev. Lett 54(12):1325–1328

Katz AJ, Thompson AH (1986) Quantitative prediction of permeability in porous rock. Phys Rev B 34(11):8179–8181

Kimura M (2018) Prediction of tortuosity, permeability, and pore radius of water-saturated unconsolidated glass beads and sands. J Acoustical Soc Am 141:3154–3168

Koch K, Revil A, Holliger K (2012) Relating the permeability of quartz sands to their grain size and spectral induced polarization characteristics. Geophys J Int 190:230–242

Kostek S, Schwartz LM, Johnson DL (1992) Fluid permeability in porous media: comparison of electrical estimates with hydrodynamical calculations. Phys Rev B 45(1):186–195

Kozeny J (1927) Über kapillare Leitung des Wassers im Boden Aufstiegsversuche und Anwendung auf die Bemassungung. Math-naturw 136, Sitzber. Akad. Wiss., Vienna, pp 271–306

Li K, Horne RN (2004) Universal capillary pressure and relative permeability model from fractal characterization of rock. Proceedings, twenty-ninth workshop on geothermal reservoir engineering, Stanford University, Stanford, CA

Li K, Horne RN (2006a) Fractal modeling of capillary pressure curves for the geysers rocks. Geothermics 35:198–207

Li K, Horne RN (2006b) Comparison of methods to calculate relative permeability from capillary pressure in consolidated water-wet porous media. Water Resour Res 42(6). https://doi.org/10.1029/2005WR004482

Li M, Wilkinson D, Patchigolla K (2005) Comparison of particle size distributions measured using different techniques. Particulate Sci Technol 23:265–284

Liang M, Yang S, Yu B (2014) A fractal streaming current model for charged microscale porous media. J Electrost 72(6):441–446

Liang M, Yang S, Miao T, Yu B (2015) Analysis of electroosmotic characters in fractal porous media. Chem Eng Sci 127:202–209

Lis SA (2019) Petrophysical rock typing and permeability prediction in tight sand stone reservoir. Acta Geophysica 67:1895–1911

Lourenço S, Gallipoli D, Toli D, Evans F, Medero G (2007) Determination of the soil water retention curve with tensiometers. In: Schanz T (eds) Experimental unsaturated soil mechanics. Springer Proceedings in Physics 112. Springer, Heidelberg. https://doi.org/10.1007/978-3-540-69873-6_9

Maiineult A, Jougnot D, Revil A (2018) Variations of petrophysical properties and spectral induced polarization in response to drainage and imbibition: a study on a correlated random tube network. Geophys J Int 212:1398–1411

Mandelbrot BB (1982) The fractal geometry of nature. Freeman, New York

Meng H, Shi Q, Liu T, Liu F, Chen P (2019) The percolation properties of electrical conductivity and permeability for fractal porous media. Energies 12:1085

Moghadasi J, Muller Steinhagen H, Jamialahmadi M, Sharif A (2004) Theoretical and experimental study of particle movement and deposition in porous media during water injection. J Pet Sci Eng 43:163–181

Ngo N, Tamma K (2001) Microscale permeability predictions of porous fibrous media. Int J Heat Mass Transf 44:3135–3145

Nnaemeka Ezekwe (2010) Petroleum reservoir engineering practice. Prentice Hall, Upper Saddle River

Othman M, Helwani Z, Martunus (2010) Simulated fractal permeability and the effective-medium approximation for porous membranes. Appl Math Model 34:2452–2464

Rahimi H (1977) Comparison of direct and indirect methods for determining the coefficient of permeability of clays. PhD Thesis, Oklahoma State University, Stillwater, OK

Revil A, Cathles LM III (1999) Permeability of shaly sands. Water Resour Res 35:651–662

Revil A, Florsch N (2010) Determination of permeability from spectral induced polarization in granular media. Geophys J Int 181:1480–1498

Revil A, Kessouri P, Torres-Verdin C (2014) Electrical conductivity, induced polarization, and permeability of the Fontainebleau sandstone. Geophysics 79:D301–D318

Richesson S, Sahimi M (2019) Hertz-Mindlin theory of contacting grains and the effective-medium approximation for the permeability of deforming porous media. Geophys Res Lett 46:8039–8045

Rosenzweig R, Shavit U, Furman A (2009) The influence of biofilm spatial distribution scenarios on hydraulic conductivity of unsaturated soils. Vadose Zone J 8:1080–1084

Sander R, Pan Z, Connell LD (2017) Laboratory measurement of low permeability unconventional gas reservoir rocks: a review of experimental methods. J Natural Gas Sci Eng 37:248–279

Samsó R, Garcia J, Molle P, Forquet N (2016) Modelling bioclogging in the geysers rocks. Geothermics 35:198–207

Sen P, Scala C, Cohen MH (1981) A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. J Soil Mech Found Division 46:781–795

Soldi M, Guarracino L, Jougnot D (2017) A simple hysteretic constitutive model for unsaturated flow. Transp Porous Media 120:271–285
Soldi M, Guarracino L, Jougnot D (2019) An analytical effective excess charge density model to predict the streaming potential generated by unsaturated flow. Geophys J Int 216:380–394
Soldi M, Guarracino L, Jougnot D (2020) An effective excess charge model to describe hysteresis effects on streaming potential. J Hydrol 588, 124949
Swanson BF (1981) A simple correlation between permeabilities and mercury capillary pressures. J Petrol Technol 33(12):2498–2504
Thanh LD, Jougnot D, Van Do P, Van Nghia AN (2019) A physically based model for the electrical conductivity of water-saturated porous media. Geophys J Int 219:866–876
Thanh L, Jougnot D, Do P, Ca N, Hien N (2020a) A physically based model for the streaming potential coupling coefficient in partially saturated porous media. Water 12:1588
Thanh L, Jougnot D, Do P, Mendieta M, Ca N, Hoa V, Hien N (2020b) Electroosmotic coupling in porous media, a new model based on a fractal upscaling procedure. Transp Porous Media 134:249–274
Thanh LD, Jougnot D, Van Do P, Van Nghia AN, Tuyen VP, Ca NX, Hien NT (2020c) A physically-based model for the electrical conductivity of partially saturated porous media. Geophys J Int 223(3):993–1006
Thanh LD, Van Do P, Van Nghia N, Ca NX (2018) A fractal model for streaming potential coefficient in porous media. Geophys Prospect 66:753–766
Vinogradov J, Jaafar MZ, Jackson MD (2010) Measurement of streaming potential coupling coefficient in sandstones saturated with natural and artificial brines at high salinity. J Geophys Res 115. https://doi.org/10.1029/2010JB007593
Wei W, Cai J, Hu X, Han Q (2015) An electrical conductivity model for fractal porous media. Geophys Res Lett 42:4833–4840
Xiao B, Zhang X, Wang W, Long G, Chen H, Kang H, Ren W (2018) A fractal model for water flow through unsaturated porous rocks. Fractals 26:1840015
Xu P, Yu B (2008) Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry. Adv Water Resour 31:74–81
Yu B, Cheng P (2002) A fractal permeability model for bi-dispersed porous media. Int J Heat Mass Transf 45:2983–2993
Yu B, Liu W (2004) Fractal analysis of permeabilities for porous media. AIChE J 50:46–57
Zainaldin SA, Glover PWJ, Lorinczi P (2017) Synthetic fractal modelling of heterogeneous and anisotropic reservoirs for use in simulation studies: implications on their hydrocarbon recovery prediction. Transp Porous Med 116:181–212

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.