A Machine Translation System from English to American Sign Language

Liwei Zhao, Karin Kipper, William Schuler, Christian Volger, Norman Badler, Martha Palmer

Department of Computer and Information Science
University of Pennsylvania

(Presented by Amber Wilcox-O’Hearn)
Overview

- ASL Linguistic Issues
 - Written Representation
 - Phonology
 - Morphology
 - Syntax
- Machine Translation
 - Architecture
 - Tree Adjoining Grammars
 - Synchronous TAGs
- TEAM
 - EMOTE system for graphical sign synthesis
- Areas for Improvement
- Contributions
ASL Linguistic Issues

- ASL linguistics is in its infancy
- Only recently was it recognized as a real language (Stokoe 1960).
 - Symbols, arbitrary or iconic, combined systematically, productively create meaning.
- Models for basic mechanisms are still in development and sometimes controversial.
- ‘Phonology’: study of the smallest contrastive units of language.
Written Representation

- The main difficulty is the simultaneous nature of signs.
 - Handshape, Location, Orientation, Movement, Local movement, Non-manual

- No standard written notation is accepted by the Deaf.
 - Difficult to obtain transcribed corpora
 - Statistical Approaches non-existent
 - Generation systems typically customize their own representation
 - Chosen abstraction directly constrains expressiveness of output
Written Representation (continued)

- Stokoe Notation
 - Orientation and location lumped together
 - Parameter values not specific enough
 - Omits non-manual signals
 - Changes in parameters in the course of a sign treated as secondary
 - Awkward representation of signs with more than one segment
 - Example: what is $\text{[]}^{x>x}$?
Written Representation (continued)

- HamNoSys
 - Stokoe derivative
 - Improved detail

 E.g. ‘TIRING’

- Movement-Hold Model - (see next slide)
 - Adequately descriptive
 - Not compact enough for reading or writing

- Sutton SignWriting
 - Intuitive graphical representation
 - Easy to read and write
 - May or may not catch on
ASL Phonology

Movement-Hold Model (Liddell and Johnson 1989)

- Sequence of segments: holds and movements
 - Hold segments - Articulatory Bundle:
 - Handshape
 - Location
 - Orientation
 - Local movement
 - Non-manual
 - Movement Segments
 - Transition of some aspect of articulation

Examples: KNOW/THINK, DRY/SUMMER, NUDE/RUDE, RAIN/SNOW, LATE/NOT-YET, CLEVER, HEARING
ASL Morphology

- Primarily incorporative, not concatenative
- Modify some aspect of the sign
- Inflection
 - aspect, manner, degree - e.g. ‘STUDY’
 - subject-object agreement - e.g. ‘GIVE’
- Derivation
 - noun-verb pairs - e.g. ‘SIT/CHAIR’
 - compounds - e.g. ‘BELIEVE = THINK+MARRY’
 - fingerspelled - e.g. ‘DOG’
 - numerical incorporation - e.g. ‘MINUTE’
 - classifier predicates
 - perspective verbs
ASL Morphology

- Primarily incorporative, not concatenative
- Modify some aspect of the sign
- Inflection
 - aspect, manner, degree - e.g. ‘STUDY’
 - subject-object agreement - e.g. ‘GIVE’
- Derivation
 - noun-verb pairs - e.g. ‘SIT/CHAIR’
 - compounds - e.g. ‘BELIEVE = THINK+MARRY’
 - fingerspelled - e.g. ‘DOG’
 - numerical incorporation - e.g. ‘MINUTE’
 - classifier predicates
 - perspective verbs
ASL Syntax

- Not well understood because of the role of non-manual signals
- SVO is the basic word order, despite earlier claims. (Neidle et al., 2000)
- Topicalization common.
- Non-manual negation, question, condition
- Lexical tense markers
- Morphological aspect markers
- Morphological and Non-manual agreement markers
Dorr, Jordan, and Benoit 1998. A Survey of Current Paradigms in Machine Translation

- MT architectural designs can be seen as falling on a spectrum of level of analysis:
 - Direct → Syntactic/Semantic Transfer → Interlingual
 - Direct systems translate word-for-word.
 - Syntactic and Semantic Transfer systems perform respective analyses before translating.
 - Interlingual systems produce a typically language-independent semantic representation before translating.
Tree Adjoining Grammars (TAGs)

S
 /\ \
 NP VP
 /\ \
 NP V
 /\ \
 N slept

VP
 /\ \
 VP* Ad
 /\ \\
 quietly
Tree Adjoining Grammars (TAGs)
Synchronous TAGs

Shieber and Schabes, 1990

- Given a derivation tree from parsing a sentence in the source language, the target derivation tree is built by a node to node correspondence.

- Originally, correspondences were between only elementary trees.

- In order to cope with other cases, correspondences are extended to partially derived trees.
 - Words in one language correspond to expressions in the other
 - Different syntactic constructions

- Even better would be to extend to feature structures.
Synchronous TAGs

Fig. 3. Untopicalized tree and topicalized tree for pronouns
(Translation from English to ASL by Machine)

- Phonology loosely based on Movement-Hold (Goal-Via)
- Syntactic/Semantic Transfer using STAGs
- EMOTE model for sign synthesis
Graphical Sign Synthesis

- EMOTE model (Chi, Costa, Zhao, Badler 2000)
 - Laban Movement Analysis
 - ‘Effort’ and ‘Shape’ phrasing across movement
 - Whole body engagement

Results in more natural-looking movement, because of body coordination.

Success in expressing some morphological derivations and inflections: noun-verb pairs, adverbials and verbal aspect.

Potential for incorporating more non-manual aspects of signing, such as head tilt.
Areas for Improvement

- Discourse factors strongly influence generation choices - not modelled here
- Monolithic sign representation prevents phonological blending between signs
- Phrase structure formalism inappropriately used (negation and other non-manual signals, directional verbs)
Contributions

- First implementation of an MT system from English to animated ASL
- Extensible to other signed languages
- EMOTE model for expressing adverbials and possibly incorporating non-manual signals