The Bacterium *Akkermansia muciniphila*: A Sentinel for Gut Permeability and Its Relevance to HIV-Related Inflammation

Jing Ouyang1,2,3†, John Lin1,2†, Stéphane Isnard1,2, Brandon Fombuena1,2,4, Xiaorong Peng1,2,5, André Marette6,7, Bertrand Routy8,9, Meriem Messaoudene8, Yaokai Chen3* and Jean-Pierre Routy1,2,10*

1 Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada, 2 Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada, 3 Chongqing Public Health Medical Center, Chongqing, China, 4 Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada, 5 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China, 6 Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Laval, QC, Canada, 7 Institute of Nutrition and Functional Foods, Laval University, Laval, QC, Canada, 8 Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada, 9 Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC, Canada, 10 Division of Hematology, McGill University Health Centre, Montréal, QC, Canada

Gut dysbiosis, namely dysregulation of the intestinal microbiota, and increased gut permeability lead to enhanced inflammation and are commonly seen in chronic conditions such as obesity and aging. In people living with HIV (PLWH), several lines of evidence suggest that a depletion of gut CD4 T-cells is associated with gut dysbiosis, microbial translocation and systemic inflammation. Antiretroviral therapy (ART) rapidly controls viral replication, which leads to CD4 T-cell recovery and control of the disease. However, gut dysbiosis, epithelial damage and microbial translocation persist despite ART, increasing risk of developing inflammatory non-AIDS comorbidities such as cardiovascular disease, diabetes mellitus, liver steatosis and cancer. In addition to ART, an emerging research priority is to discover strategies to improve the gut microbial composition and intestinal barrier function. Probiotic interventions have been extensively used with controversial benefits in humans. Encouragingly, within the last decade, the intestinal symbiotic bacterium *Akkermansia muciniphila* has emerged as the “sentinel of the gut.” A lower abundance of *A. muciniphila* has been shown in diabetic and obese people as well as in PLWH. Interventions with high levels of polyphenols such as tea or diets rich in fruit, the antibiotic vancomycin and the antidiabetic drug metformin have been shown to increase *A. muciniphila* abundance, contributing to improved metabolic function in diabetic and obese individuals. We hypothesize that gut microbiota rich in *A. muciniphila* can reduce microbial translocation and inflammation, preventing occurrences of non-AIDS comorbidities in PLWH. To this aim, we will discuss the protective effect of *A. muciniphila* and its potential applications, paving the way toward novel therapeutic strategies to improve gut health in PLWH.

Keywords: *Akkermansia muciniphila*, epithelial gut damage, inflammation, microbial translocation, HIV
INTRODUCTION

Gut microbiota is composed of a community of microorganisms gathered in the gastrointestinal (GI) tract. The number of micro-organisms is 1–10 times greater in the GI tract than the number of host cells in humans. Additionally, the number of microbial genes is 100 times greater than that of the human genome (1). In normal, healthy conditions, a state of eubiosis is attained when the composition of the gut microbiota is balanced. The gut microbiota is emerging as a prominent player in maintaining health through several metabolic and immune pathways. Dysregulation of gut microbiota composition, also known as dysbiosis, can be associated with gut barrier dysfunction and intestinal homeostasis disruption through translocation of microbial products and proinflammatory factors (2). Increasing evidence has put a spotlight on the contribution of gut dysbiosis and its related inflammation in obesity, diabetes mellitus (DM), cancer, aging and more recently, human immunodeficiency virus (HIV) infection (3–7).

In people living with HIV (PLWH), intestinal CD4 T-cells are a preferential target of the virus due to their high expression of CCR5, a chemokine co-receptor allowing for the entry of HIV, leading to their massive depletion during early infection (8, 9). This disruption in gut homeostasis results in dysbiosis, microbial translocation and systemic inflammation (10, 11). Antiretroviral therapy (ART) has transformed the lives of PLWH by rapidly controlling viral replication and allowing CD4 recovery, reducing morbidity and mortality. However, despite controlling viral load and CD4 T-cell count, long-term ART reduces but does not normalize gut dysbiosis, microbial translocation, immune activation and inflammation (12–14). In addition to HIV itself, co-infection with cytomegalovirus or viral hepatitis, leaky gut and microbial translocation also lead to inflammation which has been associated with the risk of non-AIDS comorbidities (13, 15–18). The direct influence of dysbiosis, microbiota by-products, epithelial barrier and local immune response will need further studies to define their distinctive role on systemic inflammation and subsequent development of non-AIDS comorbidities. Cardiovascular disease, DM, liver steatosis, neurocognitive disorders and cancer represent the most frequent manifestations of non-AIDS comorbidities, which represent a new frontier in the management of PLWH in today’s medical practice (19–21). Thus, in addition to ART, strategies to improve the gut microbial composition and intestinal barrier function are emerging as a research priority.

Converging evidence has recently demonstrated the key role of commensal bacteria harbored in the GI tract. Interestingly, the bacterium Akkermansia muciniphila has been described as a protective ally against the development of metabolic diseases and colitis (22). A. muciniphila of the phylum Verrucomicrobia, was first isolated and characterized in 2004. This Gram-negative, anaerobic, non-motile, non-spore-forming bacterium has been considered to be a next-generation beneficial microbe (23). In humans, A. muciniphila colonizes the intestinal tract in infancy and will reach 1–4% of the fecal microbiota by adulthood (24–26). Furthermore, studies have shown a link between low A. muciniphila abundance and increased occurrence of inflammatory metabolic diseases such as diabetes, obesity, ulcerative colitis (UC) and Crohn’s disease (CD), all of which are associated with epithelial gut damage and high permeability (27–35). On the other hand, supplementation with A. muciniphila can help protect from specific metabolic disorders, inflammatory diseases and increase response to cancer immunotherapy (4, 36–43). Moreover, increasing A. muciniphila abundance with the antidiabetic drug metformin or with high polyphenol interventions such as tea or diets rich in fruit further improves metabolic function in diabetic and obese individuals (42, 44–50). The causal or consequential role of A. muciniphila in protection from various diseases in humans remains under debate. Some evidence points toward this symbiotic intestinal bacterium as an emerging “gatekeeper of the gut”, associated with gut barrier integrity and the regulation of inflammation (22, 51, 52). Herein, we discuss recent advances in the understanding of the protective effects of A. muciniphila and its potential relevance in HIV infection.

THE MULTIFUNCTIONAL PROPERTIES OF A. MUCINIPHILA

Akkermansia muciniphila encodes a particularly wide repertoire of mucin-degrading enzymes in its relatively small genome, uses mucin as its sole source of carbon and nitrogen, and its downstream glycan byproducts can cross-feed other gut bacteria (23, 53, 54). Based on its unique properties, the bacterium was named after the Dutch microbial ecologist Antoon DL Akkermans for his contributions to the field (55). Additionally, this bacterium exhibits multiple biological functions, including promoting gut barrier integrity, modulating immune response, inhibiting inflammation and cross-feeding, called syntrophy, with other microbiota species.

The gut barrier is organized as a multi-layered and complex system which allows nutrient absorption while preventing the translocation of microbes and their products. Disruption of the gut barrier leads to the transit of luminal contents into the bloodstream, activating the immune response and inducing inflammation (56). Mucus covers the outer intestinal epithelial cell layer and serves as physical protection from penetration of micro-organisms and harmful compounds (57). In addition to degrading mucins, A. muciniphila was also found to stimulate mucin production (42, 52). In animal models, A. muciniphila supplementation increased the thickness of the colonic mucus layer approximately 3-fold, significantly more than the thickness increased induced by the beneficial bacterium Lactobacillus plantarum (52). Furthermore, in vitro, A. muciniphila was found to improve enterocyte monolayer integrity by binding directly to the enterocytes (51). Ottman et al. also showed that the outer membrane protein Amuc_1100 of A. muciniphila improved epithelial cell monolayer integrity in an in vitro culture after 24 h (58).

There is evidence to show that A. muciniphila may regulate inflammation. Supplementation of this bacterium attenuated
inflammation in an accelerated aging mouse model (52). Other studies have also shown the anti-inflammatory properties of *A. muciniphila* in different mouse models including germ-free, liver injury and obesity models (59–64). Huck et al. (62) reported that *A. muciniphila* could reduce inflammation induced by *Porphyromonas gingivalis* in lean or obese mice. Ansaldoi et al. (59) demonstrated that *A. muciniphila* plays a context-dependent role in the induction of gut-resident T-cells during homeostasis in mice. Sessa et al. reported in a cross-sectional study of perinatally HIV-infected children and adolescents that *A. muciniphila* abundance was associated with elevated IL-6 and soluble CD14 (65).

Additionally, it should be noted that there are also other microbes which are commonly found in the mucus layer aside from *A. muciniphila*. These microbes include bacteria such as *Faecalibacterium prausnitzii*, *Eubacterium rectale*, *Roseburia intestinalis*, and *Anaerostipes caccae* which produce the anti-inflammatory short-chain fatty acid (SCFA) butyrate (66–69). Butyrate-producing bacteria do not have the ability to degrade mucus, but use carbon and nitrogen degraded by mucus-degraded species such as *A. muciniphila* (53). Belzer et al. (66) reported that coculturing *A. muciniphila* with non-mucus-degrading butyrate-producing bacteria *F. prausnitzii*, *A. caccae*, and *Eubacterium hallii* resulted in syntrophic growth and production of butyrate. Thus, not only does *A. muciniphila* play an important role by itself in protecting the gut epithelium, but also supports anti-inflammatory intestinal microbiota.

Due to this, and considering its relatively high abundance at all stages of life, *A. muciniphila* is considered a promising beneficial microbe for some diseases, including metabolic disorders and cancers.

SUPPLEMENTATION OF *A. MUCINIPHILA* IN THE CONTEXT OF METABOLIC DISORDERS AND CANCERS

As a strictly anaerobic bacterium, culture of *A. muciniphila* needs to be conducted under strict conditions. Advances in the culture and preparation of *A. muciniphila* have made it feasible for study as a beneficial microbe (36, 70). Supplements of this promising bacterium include live *A. muciniphila*, pasteurized (killed) *A. muciniphila* and *A. muciniphila*-derived extracellular vesicles (AmEVs) (4, 36, 38).

Obesity and metabolic disorders including DM are closely associated with low-grade inflammation and intestinal dysbiosis (71). Everard et al. reported that the abundance of *A. muciniphila* was 3,300-fold lower in obese mice than in their lean littermates. A 4-week oral gavage of live *A. muciniphila* in mice reversed high-fat diet-induced metabolic disorders, including fat-mass gain, metabolic endotoxemia, adipose tissue inflammation, and insulin resistance, and increased intestinal levels of endocannabinoids that controlled inflammation, increased gut mucus, and increased expression of gut antimicrobial peptides such as regenerating islet-derived 3-gamma (Reg3γ) for innate immunity (40). In addition, even when *A. muciniphila* is killed through pasteurization, supplementation demonstrated beneficial effects by protecting from ovariectomy-induced fat mass gain (72). In overweight insulin-resistant humans, a randomized, double-blind, placebo-controlled pilot study showed that daily oral supplementation of 10^{10} live or pasteurized *A. muciniphila* bacteria for 3 months was safe and well tolerated, and improved insulin sensitivity, reduced insulinemia, plasma total cholesterol, body weight, fat mass and hip circumference, without great changes in the overall gut microbiota composition (43). Furthermore, AmEV administration was reported to enhance tight junction function, reduce body weight gain and improve glucose tolerance in high-fat diet (HFD)-induced diabetic mice, suggesting that derivatives of the bacterium are sufficient to induce a protective response (38). These findings suggest the direct benefit of this bacterium on the gut barrier and the host metabolism.

Remarkably, the influence of the gut microbiota composition in modulating tumor responses to immunotherapy has also been reported in various cancers such as melanoma, lung and kidney cancer. This effect was observed in different geographic regions where microbiota might differ (North America, Europe, East Asia) (4, 73–75). Reconstitution of germ-free mice with fecal material from lung cancer immunotherapy responders led to increased T-cell responses, and greater efficacy of anti-PD-1 therapy (4). Oral supplementation with live *A. muciniphila* after fecal microbiota transplantation (FMT) with non-responder feces restored the efficacy of PD-1 blockade in murine models (4).

Although the long term effects of *A. muciniphila* supplementation are unknown with concerns over the translocation of probiotics (76), this bacterium may play a crucial role in increasing the efficacy of metabolic and cancer therapies and provide strong scientific rationale to launch microbiota-based clinical trials.

STRATEGIES TO INCREASE THE ABUNDANCE OF *A. MUCINIPHILA*

Supplementation of *A. muciniphila* may be difficult or costly, however, strategies to indirectly increase the abundance of *A. muciniphila* exist through dietary interventions, the antidiabetic drug metformin, selective antibiotics and FMT.

Dietary polyphenols are natural antioxidants, which may help protect obligate anaerobes by scavenging oxygen radicals. Gurley et al. reported that administration of green tea to mice, with comparable levels of polyphenols to those consumed by humans, resulted in significant modulation of gut microbiota, with the greatest increases observed in *A. muciniphila* (47). Concord grape, cranberry and the Amazonian fruit Camu Camu have been reported to increase the abundance of *A. muciniphila* in the intestinal tract approximately 7-fold, 15-fold, and 5-fold, respectively, reduced inflammation and body weight gain, and increased gut barrier integrity in obese mouse models (44, 45, 49). Although a currently unpopular option, caloric restriction such as intermittent fasting has shown increases in
A. muciniphila abundance (77). To scale up this approach, diet-mimetic medications are under intense scrutiny. Among the most commonly used in both animals and humans is the anti-diabetic drug metformin.

Metformin is the most commonly used drug to treat DM2 and recently has been shown to reduce inflammation, exert anti-aging effects and modify the gut microbiota composition (78). Although metformin acts primarily as a glucose mediator in the liver by inhibiting hepatic gluconeogenesis, accumulating evidence suggests that metformin also mediates changes in gut microbiota composition (79–81). Convergent reports showed that metformin significantly increased A. muciniphila abundance in animal models (42, 46, 82). The nitrogen-rich structure of metformin may also play a role in the nurturing of A. muciniphila, which requires nitrogen for proliferation and survival (80). Thus, the use of metformin is a strategy to enrich the abundance of A. muciniphila in the gut, among its other metabolic benefits as seen in DM2 (83).

A. muciniphila is resistant to vancomycin, metronidazole, and penicillin (84). Selective antibiotic treatment with vancomycin was shown to dramatically increase A. muciniphila abundance in young non-obese diabetic (NOD) mice, reducing their glucose levels and the diabetes incidence when compared with untreated NOD mice (85). In two patients from the intensive care unit of Marseille, France, broad spectrum antibiotics increased A. muciniphila abundance to more than 40% in stools, without inducing gastrointestinal disorders (84). Furthermore, Uribe-Herranz et al. reported that in pre-clinical models to study the immune-based off-target (abscopal) effect of radiotherapy, oral supplementation with vancomycin increased A. muciniphila which was associated with tumor growth inhibition in mouse models (86). Although further explorations are required in humans, vancomycin treatment appears safe and able to increase A. muciniphila abundance in the gut microbiota.

Fecal microbiota transplantation is also effective in restoring eubiosis in colitis and metabolic diseases. Zhang et al. showed that transplanting fecal bacteria from people with normal glucose tolerance into DM2 mice downregulated levels of fasting blood glucose, postprandial glucose, total cholesterol, triglyceride, and low-density lipoprotein-cholesterol and increased the abundance of A. muciniphila (87). Huang et al. reported that FMT improved gastrointestinal symptoms and alleviated depression and anxiety in irritable bowel syndrome (IBS) patients. Further, gut microbiota analyses revealed that Methanobrevibacter and A. muciniphila were the most abundant fecal microbiota a month after compared to before FMT (88).

These animal models and human epidemiological studies suggest methods to increase A. muciniphila abundance in humans, but efforts to scale up its abundance in PLWH, and in turn improving their gut health and various metabolic factors, are yet unexplored (89).

LEAKY GUT AND DYSBIOSIS IN PLWH

HIV infection is characterized by a rapid decline in CD4 T-cell count, early gut mucosal damage, and subsequent translocation of microbial products through the now more permeable epithelium (10, 90). Circulating levels of lipopolysaccharide (LPS) and (1→3)-β-D-Glucan (BDG) are two clinically significant markers that assess the level of bacterial and fungal translocation, respectively, of which high levels lead to metabolic endotoxemia (89). Our group and others have shown that LPS and BDG translocation are correlated with immune dysfunction in PLWH and increased risk of non-AIDS comorbidities (91–94). Moreover, we and others have evaluated circulating intestinal fatty acid binding protein (I-FABP) and regenerating islet-derived protein-3α (REG3α) as two gut damage markers in PLWH (14, 95). I-FABP, an intracellular protein constitutively expressed in enterocytes, is released upon cell death and subsequently detected in the blood (96, 97). REG3α is an antimicrobial peptide secreted by intestinal Paneth cells into the gut lumen and upon gut damage, translocates into the blood (14). We observed that these two gut damage markers were correlated with HIV disease progression, microbial translocation and immune activation in PLWH (14). These findings point to the leaky gut as a significant contributor to chronic inflammation and non-AIDS comorbidities in PLWH.

Recently, accumulating evidence has suggested that the gut microbiota is emerging as a prominent player in the regulation of host metabolism and chronic inflammation (98, 99). Bacterial communities residing in the intestine of HIV-infected individuals have been shown to differ from those of individuals not infected with HIV, independently of age, sex and sexual practice (6). Dysbiosis is associated with impaired intestinal barrier activity, impaired mucosal immunity function and worse clinical outcome in PLWH (6, 16, 100, 101). Moreover, A. muciniphila was significantly depleted in ART-naïve and ART-treated PLWH, compared to uninfected controls (101, 102). In one study, Mutlu et al. demonstrated that PLWH had significantly less A. muciniphila abundance regardless of ART, CD4 count or viral load, compared to healthy controls (102). Rocafort et al. confirmed and expanded these results by showing that A. muciniphila abundance was significantly higher in 49 recently infected PLWH and 55 healthy controls compared to 71 chronically infected untreated PLWH. Furthermore, in 27 chronically infected ART-treated PLWH, A. muciniphila abundance was similar to healthy controls (101). These findings suggest that chronic HIV infection leads to progressive depletion of A. muciniphila abundance, and following ART initiation, A. muciniphila abundance returns to levels similar to those of healthy controls. The causative role of A. muciniphila abundance in HIV infection with respect to gut integrity and inflammation needs to be further elucidated.

HYPOTHESIS: A. MUCINIPHILA AS A SENTINEL FOR GUT PERMEABILITY IN PLWH

HIV infection, metabolic disorders and cancer share common features such as chronic inflammation and dysbiosis, which includes the decreased abundance of A. muciniphila in the gut microbiota (4, 40, 71, 101–104). Given this decreased
abundance of \(A. \text{muciniphila} \) in PLWH, and considering the benefits of increasing \(A. \text{muciniphila} \) abundance in obesity, we hypothesize that \(A. \text{muciniphila} \) can act as a shield for gut permeability, preventing microbial translocation and reducing inflammation, with the aim toward decreasing risks of developing non-AIDS comorbidities in PLWH. Potential interventions that may increase \(A. \text{muciniphila} \) abundance in people living with HIV are shown in Figure 1.

Leaky gut has been considered one of the most important factors for microbial translocation and increased inflammation in PLWH (15). In three in vitro human cell line models, Caco-2, HT-29, and TIGK, \(A. \text{muciniphila} \) was reported to improve enterocyte monolayer integrity and increase the expression of cell–cell adhesion and tight junction molecules (51, 62). Furthermore, in an accelerated aging mouse model, the thickness of the colonic mucus layer increased approximately 3-fold after long-term \(A. \text{muciniphila} \) supplementation (52). Therefore, we propose that \(A. \text{muciniphila} \) might decrease inflammation by preserving gut barrier integrity and subsequently preventing microbial translocation in PLWH.

Furthermore, in PLWH, there is a lower abundance of butyrate-producing bacteria (105, 106). Butyrate plays an important role as an energy source for colonic epithelial cells and epithelial barrier integrity, T-cell activation, colonic regulatory T cell differentiation, gut and blood antigen presenting cell (APC) modulation (105–109). Lower abundance of butyrate-producing bacteria has been associated with poor clinical outcome in Crohn’s disease, ulcerative colitis and colon cancer (110, 111). Interestingly, \(A. \text{muciniphila} \) could promote butyrate-producing bacteria growth and butyrate production (66). We therefore suggest that \(A. \text{muciniphila} \), by supporting butyrate-producing bacteria, may also decrease inflammation in PLWH through this method (106, 109).

Moreover, antimicrobial peptides in the gut play a prominent role as host defense effector molecules. Specifically, the C-type lectin REG3\(\alpha \) secreted by human Paneth cells and its mouse ortholog REG3\(\gamma \) can bind peptidoglycan and serve as bactericidal agents against Gram-positive species (112). Live \(A. \text{muciniphila} \) supplementation showed an increased expression of the murine homolog REG3\(\gamma \) in an obese mouse model (40). Moreover, \(A. \text{muciniphila} \) was reported to induce immunoglobulin G1 (IgG1) antibodies, antigen-specific T-cell responses and intestinal adaptive immune responses (59). Therefore, \(A. \text{muciniphila} \) may improve intestinal homeostasis through the increased expression of REG3\(\alpha \) in Paneth cells and inducing intestinal adaptive immune responses in PLWH.

FIGURE 1 | Potential interventions to increase \(A. \text{muciniphila} \) abundance in people living with HIV.
CONCLUSION

Epithelial gut damage, microbial translocation and inflammation are considered common determinant mediators of inflammatory non-AIDS comorbidities in PLWH. *A. muciniphila* has emerged as the “sentinel of the gut” and has been shown to promote gut barrier integrity, modulate immune response, inhibit inflammation and enrich butyrate-producing bacteria. Supplementation of *A. muciniphila* and other strategies promoting the abundance of *A. muciniphila* have come into fruition, and we suggest that a gut microbiota enriched in *A. muciniphila* can reduce microbial translocation and inflammation, lowering the risk of developing non-AIDS comorbidities and improving quality-of-life in PLWH.

AUTHOR CONTRIBUTIONS

JO and JL wrote the first draft of the manuscript. SI, BE, XP, AM, BR, and MM provided critical revision of the manuscript.

ACKNOWLEDGMENTS

We are highly grateful to Angie Massicotte, Josée Girouard, and Cezar Iovi for coordination and assistance.

REFERENCES

1. Cornejo-Pareja I, Munoz-Garach A, Clemente-Postigo M, Tinahones FJ. Importance of gut microbiota in obesity. *Eur J Clin Nutr.* (2019) 72:26–37. doi: 10.1038/s41430-018-0306-8
2. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. *Nutrients.* (2011) 3:858–76. doi: 10.3390/nu3100858
3. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreassen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. *PLoS One.* (2010) 5:e9085. doi: 10.1371/journal.pone.0009085
4. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. *Science.* (2018) 359:91–7. doi: 10.1126/science.aan3706
5. Choi J, Hur TY, Hong Y. Influence of altered gut microbiota composition on aging and aging-related diseases. *J Lifestyle Med.* (2018) 8:1–7. doi: 10.15280/jlm.2018.8.1.1
6. Vujkovic-Cvijin I, Somsouk M. HIV and the gut microbiota: composition, consequences, and avenues for amelioration. *Curr HIV/AIDS Rep.* (2019) 16:204–13. doi: 10.1007/s11904-019-00441-w
7. Serino M. Molecular paths linking metabolic diseases, gut microbiota dysbiosis and enterobacteria infections. *J Mol Biol.* (2018) 430:581–90. doi: 10.1016/j.jmb.2018.01.010
8. Mehandru S, Tenner-Racz K, Racz P, Markowitz M. The gastrointestinal tract is critical to the pathogenesis of acute HIV-1 infection. *J Allergy Clin Immunol.* (2005) 116:419–22. doi: 10.1016/j.jaci.2005.05.040
9. Brenchley JM, Douek DC. HIV disease progression: immune activation, microbes, and a leaky gut. *Top HIV Med.* (2007) 15:114–7.
10. Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG, Broadhurst MJ, et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and cryptopath catabolism. *Sci Transl Med.* (2013) 5:193ra91. doi: 10.1126/scitranslmed.3006438
11. Gogokhia L, Taur Y, Juluru K, Yagan N, Zhu YS, Pamer E, et al. Intestinal dysbiosis and markers of systemic inflammation in viscerally and generally obese persons living with HIV. *J Acquir Immune Defic Syndr.* (2020) 83:81–9. doi: 10.1097/QAI.0000000000002229
12. Duffau P, Ouzanne A, Bonnet F, Lazaro E, Cazanave C, Blanco P, et al. Multimorbidity, age-related comorbidities and mortality: association of activation, senescence and inflammation markers in HIV adults. *AIDS (London, England).* (2018) 32:1651–60. doi: 10.1097/qad.0000000000001875
13. Hsu DC, Sereti I. Serious Non-AIDS events: therapeutic targets of immune activation and chronic inflammation in HIV infection. *Drugs.* (2016) 76:533–49. doi: 10.1007/s40265-016-0546-7
14. Brown TT, Cole SR, Li X, Kingsley LA, Palella FJ, Riddler SA, et al. Multicenter AIDS cohort study. *AIDS.* (2005) 19:1365–71. doi: 10.1093/archmed/165.10.1179
15. Krahn T, Sebastiani G. Non alcoholic fatty liver disease in human immunodeficiency virus: the (Not So) new kid on the block? *Clin Infect Dis.* (2019). doi: 10.1093/cid/ciz929 [Epub ahead of print].
16. de Vos WM. Microbe profile: *Akkermansia muciniphila*: a conserved intestinal symbiont that acts as the gatekeeper of our mucosa. *Microbiology.* (2017) 163:646–8. doi: 10.1099/mic.0.000444

YC and J-PR conceived and designed the manuscript. All authors approved it for publication.

FUNDING

This work was funded by the Canadian Institutes of Health Research (CIHR; grants MOP 103230 and PTJ 166049), the Vaccines & Immunotherapy Core of the CIHR Canadian HIV Trials Network (CTN, grant CTN 257 and CTN PT027), the CIHR-funded Canadian HIV Cure Enterprise (CanCURE) Team Grant HB2-164064, and the Chinese National Science and Technology Major Project during the 13th Five-Year Plan (No. 2018ZX10302104). AM holds a CIHR/Pfizer Research Chair in the pathogenesis of insulin resistance and cardiovascular complications was supported by a CIHR Foundation grant.
23. Derrien M, Vaughan EE, Plouge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. (2004) 54:1469–76. doi: 10.1099/ijs.0.02873-0

24. Collado MC, Derrien M, Isolauri E, de Vos WM, Salminen S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol. (2007) 73:7767–70. doi: 10.1128/AEM.01477-07

25. Cheng J, Ringel-Kulka T, Heikamp-de Jong I, Ringel Y, Carroll I, de Vos WM, et al. Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children. ISME J. (2016) 10:1002–14. doi: 10.1038/ismej.2015.177

26. Derrien M, Collado MC, Ben-Amor K, Salminen S, de Vos WM. The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol. (2008) 74:1646–8. doi: 10.1128/AEM.01226-07

27. Thomas S, Hoxha K, Alexander W, Gilligan J, Dilbarova R, Whittaker K, et al. Intestinal barrier tightening by a cell-penetrating antibody to Bn1, a candidate target for immunotherapy of ulcerative colitis. J Cell Biochem. (2019) 120:4225–37. doi: 10.1002/jcb.27716

28. Scharl M, Paul G, Weber A, Jung BC, Docherty MJ, Hausmann M, et al. Protection of epithelial barrier function by the Crohn’s disease associated gene protein tyrosine phosphatase n2. Gastroenterology. (2009) 137:2030–40.e5. doi: 10.1053/j.gastro.2009.07.078

29. Png CW, Linden SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, et al. Gut microbiota features and metabolic markers in postmenopausal women. Proc Natl Acad Sci USA. (2013) 110:9066–71. doi: 10.1073/pnas.1201308110

30. Cheng J, Ringel-Kulka T, Heikamp-de Jong I, Ringel Y, Carroll I, de Vos WM, et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS ONE. (2013) 8:e76520. doi: 10.1371/journal.pone.0076520

31. Shi N, Lee J, Kim MS, Whon TW, Lee MS, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. (2014) 63:727–35. doi: 10.1136/gutjnl-2012-303388

32. Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. (2019) 25:1096–103. doi: 10.1038/s41591-019-0495-2

33. Anhe FF, Roy D, Pilon G, Duguay S, Matamoros S, Varin T, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut. (2015) 64:872–83. doi: 10.1136/gutjnl-2014-307142

34. Roopchand DE, Carmody RN, Kuhn P, Moskal K, Rojas-Silva P, Turnbaugh PJ, et al. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes. (2015) 64:2847–58. doi: 10.2337/db14-1916

35. Lee H, Ko G. Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol. (2014) 80:5935–43. doi: 10.1128/AEM.01357-14

36. Gurley BJ, Miousse IR, Nookaew I, Ewing LE, Skinner CM, Jenjaroenpun P, et al. Decaffeinated green tea extract does not elicit hepatotoxic effects and modulates the gut microbiome in lean B6C3F1(1) mice. Nutrients. (2019) 11:776. doi: 10.3390/nu10040776

37. Ushiroda C, Naito Y, Takagi T, Uchiyama K, Mizushima K, Higashimura Y, et al. Green tea polyphenol (epigallocatechin-3-gallate) improves gut dysbiosis and serum bile acids dysregulation in high-fat diet-fed mice. J Clin Biochem Nutr. (2019) 65:34–46. doi: 10.1016/j.jcbn.2018.11-016

38. Brahe IL, Le Chatelier E, Prifti E, Pons N, Kennedy S, Hansen T, et al. Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutr Diabetes. (2015) 5:e159. doi: 10.1038/nutdiab.2015.5

39. Vassour M, Lim MY, Yun HS, Tickle TL, Sung J, Song YM, et al. Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes. Genome Med. (2016) 8:17. doi: 10.1186/s13073-016-0271-6

40. Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nutr Med. (2017) 23:859–68. doi: 10.1038/nm.4358

41. Cani PD, Everard A. [Akkermansia muciniphila: a novel target controlling obesity, type 2 diabetes and inflammation?]. Med Sci (Paris). (2014) 30:125–7. doi: 10.1051/medsci/20140300203

42. Anhe FF, Pilon G, Roy D, Desjardins Y, Levy E, Marette A. Triggering Akkermansia with dietary polyphenols: a new weapon to combat the metabolic syndrome? Gut Microbes. (2016) 7:146–53. doi: 10.1080/19490976.2016.1104230

43. Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. (2017) 23:107–13. doi: 10.1038/nm.4236

44. Hänninen A, Toivonen R, Poyshti S, Belzer C, Plovier H, Ouwerkerk JP, et al. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut. (2018) 67:1445–53. doi: 10.1136/gutjnl-2017-314508

45. Chelakkot C, Choi Y, Kim DK, Park HT, Ghim J, Kwon Y, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med. (2018) 50:e450. doi: 10.1038/ emm.2017.282

46. Li J, Lin S, Vanhoutte PM, Woo CW, Xu A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe-/- Mice. Circulation. (2016) 133:2434–46. doi: 10.1161/CIRCULATIONAHA.115.019945

47. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. (2013) 110:9066–71. doi: 10.1073/pnas.1214951110

48. Kung CS, Ban M, Choi EJ, Moon HG, Jeon JS, Kim DK, et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, ...
during homeostasis. Science. (2019) 364:1179–84. doi: 10.1126/science.aaw7479
60. Wu W, Lv L, Shi D, Ye J, Fang D, Guo F, et al. Protective effect of Akkermansia muciniphila against immune-mediated liver injury in a mouse model. Front Microbiol. (2017) 8:1804. doi: 10.3389/fmicb.2017.01804
61. Derrien M, Van Baarlen P, Hoeiveld G, Norin E, Muller M, de Vos WM. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front Microbiol. (2021) 2:166. doi: 10.3389/fmicb.2021.00166
62. Huck O, Mulhall H, Rubin G, Kizielnek Z, Iyer R, Perpich JD, et al. Akkermansia muciniphila reduces Porphyromonas gingivalis-induced inflammation and periodontal bone destruction. J Clin Periodontol. (2019) 47:202–12do. doi: 10.1111/jcpe.13214
63. Schneeberger M, Everard A, Gomez-Valades AG, Matamoros S, Ramirez S, Delzenne NM, et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. (2015) 5:16663. doi: 10.1038/srep16663
64. Katiraei S, de Vries MR, Costain AH, de Vries MR, Costain AH, Thiem K, Hoving LR, van Houten HJ. Cultured representatives of two major phylogroups of human colonic bacteria for therapeutic interventions. J Appl Microbiol. (2016) 20:401–8. doi: 10.1111/1751-2980.12756
65. Lopez-Siles M, Khan TM, Duncan SH, Harmsen HJ, Garcia-Gil LJ, Flint HP. Unique species specifically colonize mucus in an in vitro gut model. ISME J. (2013) 7:949–58. doi: 10.1038/ismej.2012.158
66. Belzer C, Chia LW, Alavink S, Chlamalagn B, Pitronen V, Knol J, et al. Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B12 production by intestinal symbionts. mBio. (2017) 8:e00770-17. doi: 10.1128/mBio.00770-17
67. Van den Abbeele P, Belzer C, de Vos WM, Thas O, et al. Butyrate-producing Clostridium cluster XVa species specifically cluster XIVa species specifically colonize mucus in an in vitro gut model. ISME J. (2013) 7:949–58. doi: 10.1038/ismej.2012.158
68. Lopez-Siles M, Khan TM, Duncan SH, Harmsen HJ, Garcia-Gil LJ, Flint HP. Cultured representatives of two major phylogroups of human colonic Fecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol. (2012) 78:420–8. doi: 10.1128/AEM.00588-11
69. Chen L, Wang W, Zhou R, Ng SC, Li J, Huang M, et al. Characteristics of fecal and mucosa-associated microbiota in Chinese patients with inflammatory bowel disease. Medicine (Baltimore). (2014) 93:e51. doi: 10.1097/MD.0000000000000351
70. Ouwerkerk JP, Aalvink S, Belzer C, De Vos WM. Preparation and preservation of viable Akkermansia muciniphila cells for therapeutic interventions. Benef Microbes. (2017) 8:163–9. doi: 10.3920/BM2016.0096
71. Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Neyrinck AM, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. (2020) 69:2775–86. doi: 10.2337/db11-0127
72. Lawenius L, Scheffler JM, Gustafsson KL, Henning P, Nilsson KH, Collin H, et al. Pasteurized Akkermansia muciniphila protects from fat mass gain but not from bone loss. Am J Physiol Endocrinol Metab. (2020) 318:E480–91. doi: 10.1152/ajpendo.00425.2019
73. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J Immunother Cancer. (2019) 7:193. doi: 10.1186/s40425-019-0560-9
74. Belzer C, De Vos WM, Akkermansia muciniphila and HIV. Frontiers in Immunology | www.frontiersin.org 8 April 2020 Volume 11 Article 645
100. Ceccarelli G, Statzu M, Santinelli L, Pinacchio C, Bitossi C, Cavallari EN, Gonzalez-Hernandez LA, Ruiz-Briseno MDR, Sanchez-Reyes K, Alvarez-Estrada V, Gonzalez N. Gut microbiota in diabetes and HIV: inflammation is associated with microbial translocation and immune activation. *AIDS* (London, England). (2017) 31:511–21. doi: 10.1097/QAD.0000000000001366

101. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous *Clostridium* species. *Science*. (2011) 331:337–41. doi: 10.1126/science.1198469

102. Mutlu EA, Keshavarzian A, Losurdo J, Swanson G, Siewe B, Forsyth C, et al. Challenges in the management of HIV infection: update on the role of probiotic supplementation as a possible complementary therapeutic strategy for cART treated people living with HIV/AIDS. *BMC Infect Dis* (2019) 19:234–35. doi: 10.1186/s12879-019-3867-9

103. Segain JP, Rainegar de la Bletiere D, Bouresseille A, Leray V, Gervois N, Rosales C, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. *Gut*. (2000) 47:397–403. doi: 10.1136/gut.47.3.397

104. Wang HB, Wang PY, Wang X, Wan YL, Liu YC. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. *Dig Dis Sci*. (2012) 57:3126–35. doi: 10.1007/s10620-012-2259-4

105. Hague A, Butt AJ, Paraskeva C. The role of butyrate in human colonic epithelial cells: an energy source or inducer of differentiation and apoptosis? *Proc Nutr Soc*. (1996) 55:937–43.

106. Dillon SM, Kibbie J, Lee EJ, Guo K, Santiago ML, Austin GL, et al. Low abundance of colonic butyrate-producing bacteria in HIV infection is associated with microbial translocation and immune activation. *AIDS* (London, England). (2017) 31:511–21. doi: 10.1097/QAD.0000000000001366

107. Frank DN, Robertson CE, Hamm CM, Kpadeh Z, Zhang T, Chen H, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. *Inflamm Bowel Dis*. (2011) 17:179–84. doi: 10.1002/ibd.21339

108. Hague A, Butt AJ, Paraskeva C. The role of butyrate in human colonic epithelial cells: an energy source or inducer of differentiation and apoptosis? *Proc Nutr Soc*. (1996) 55:937–43.

109. Wang HB, Wang PY, Wang X, Wan YL, Liu YC. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. *Dig Dis Sci*. (2012) 57:3126–35. doi: 10.1007/s10620-012-2259-4

110. Segain JP, Rainegar de la Bletiere D, Bouresseille A, Leray V, Gervois N, Rosales C, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. *Gut*. (2000) 47:397–403. doi: 10.1136/gut.47.3.397

111. Frank DN, Robertson CE, Hamm CM, Kpadeh Z, Zhang T, Chen H, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. *Inflamm Bowel Dis*. (2011) 17:179–84. doi: 10.1002/ibd.21339

112. Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. *Nat Rev Microbiol*. (2011) 9:536–68. doi: 10.1038/nrmicro2546

113. Routy JP, Isnard S, Mehraj V, Ostrowski M, Chomont N, Ancuta P, et al. Effect of metformin on the size of the HIV reservoir in non-diabetic ART-treated individuals: single-arm non-randomised Lilac pilot study protocol. *BMJ Open*. (2019) 9:e028444. doi: 10.1136/bmjopen-2018-028444

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Ouyang, Lin, Isnard, Fombuena, Peng, Marette, Routy, Meszauaudene, Chen and Routy. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.