Stress is often associated with pathophysiologic responses, like blood pressure (BP) reactivity, which when experienced repeatedly may be one pathway through which stress leads to poor physical health. Previous laboratory and field studies linking stress to physiological measures are limited by small samples, narrow demographics, and artificial stress manipulations, whereas large-scale studies often do not capture measures like BP reactivity in daily life. We examined perceived stress, emotions, heart rate, and BP during daily life using a 3-wk app-based study. We confirmed the validity of a smartphone-based optic sensor to measure BP and then analyzed data from more than 330,000 daily responses from over 20,000 people. Stress was conceptualized as the ratio of situational demands relative to individual resources to cope. We found that greater demands were associated with higher BP reactivity, but critically, the ratio of demands relative to resources predicted BP changes. When demands were higher and resources were lower, there was higher BP reactivity. Additionally, older adults showed greater discordance between self-reported stress and physiologic responses than younger adults. We also observed that physiologic reactivity was associated with current emotional state, and both valence and arousal mattered. For example, BP increased with high-arousal negative emotions (e.g., anger) and decreased with low-arousal positive emotions (e.g., contentment). Taken together, this work underscores the potential for expanding stress science beyond small laboratory or field studies with narrow participant demographics. Using an app-based research study and analyzing more than 330,000 daily responses from over 20,000 people, we show that momentary stress, conceptualized as the perception of demands relative to resources, is associated with greater BP and heart rate reactivity. High-arousal negative emotions are associated with increased physiologic reactivity whereas low-arousal positive emotions are associated with decreased reactivity. These data point to daily stress experiences as likely candidates for improving physical health.

Significance
Exaggerated blood pressure (BP) reactivity is associated with the development of hypertension and cardiovascular disease. Stress, and, to a lesser extent, emotions are suggested to be linked to BP reactivity, but this theorizing lacks robust evidence beyond small laboratory or field studies with narrow participant demographics. Using an app-based research study and analyzing more than 330,000 daily responses from over 20,000 people, we show that momentary stress, conceptualized as the perception of demands relative to resources, is associated with greater BP and heart rate reactivity. High-arousal negative emotions are associated with increased physiologic reactivity whereas low-arousal positive emotions are associated with decreased reactivity. These data point to daily stress experiences as likely candidates for improving physical health.

Author contributions: A.M.G. and W.B.M. designed research; W.B.M. performed research; A.M.G. analyzed data; and A.M.G. and W.B.M. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence may be addressed. Email: wendy.mendes@ucsf.edu or amieg@umich.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105573118/-/DCSupplemental.

Published July 29, 2021.
high demand coupled with low perceived control (11–13). In the present work, we examine the simultaneous appraisals of demands and resources for a more precise measure of psychological stress and the association between these appraisals and BP reactivity.

The second advance of this work is the focus on stress experienced in daily life compared to an artificial laboratory-based study. While there are field studies that examine ambulatory BP responses, the samples tend to be small and are often patient samples with existing cardiovascular problems (e.g., ref. 14). This is likely due to the difficulty in obtaining valid BP measurements in daily life, given the reliance on inflatable upper arm cuffs (oscillatory BP monitors), which are inconvenient and potentially disruptive. As such, traditional methods of BP measurement have constrained research on BP in daily life to small samples and/or short-term studies (i.e., a few days), so there is limited knowledge of how daily stress experiences affect BP changes. In this work, we utilize BP measurement via a specialized optic sensor embedded in smartphones developed for the sole purpose of measuring BP. This technology allowed for the collection of tens of thousands of samples with existing cardiovascular problems (e.g., ref. 14). This study. While there are field studies that examine ambulatory BP reactivity (18), there are not large-scale experience sampling studies that examine how a range of emotional experiences differ in valence (positive and negative) and arousal (high and low) affect physiology. By including these different dimensions of emotion, the current work examines if negative emotions are associated with higher BP reactivity in daily life and if positive emotions are associated with lower BP reactivity, as well as how arousal interacts with valence to influence BP reactivity (18).

In addition to understanding how stress and emotions get under the skin to influence BP changes, it is also important to understand for whom stress and emotions are most likely to have these effects. Some people may be particularly vulnerable to stress, whereas others may be more resilient (19). Prior research has also shown that as individuals age there is an overall reduction in concordance between psychological states, like self-reported stress and emotion, and physiologic reactions due to increased wisdom, lower defensiveness, and enhanced understanding of self (22, 23).

Study Overview

In this work, we leveraged the use of a built-in optic sensor available on some smartphones and developed an app to conduct an experience momentum assessment study that measured participants’ BP responses and HR along with their self-reported experiences three times a day for 21 d. During the first wave of data collection (March 2018 to June 2019), we gathered data from 91,972 participants who completed 460,023 BP measurements with accompanying emotional, psychosocial, and behavioral data. After exclusions (primarily people who did not complete three or more daily check-ins, reference SI Appendix, Fig. S2 for data cleaning procedures), we retained a final sample of 21,923 participants who completed 331,716 measurements. Participants were able to join the study if they had an eligible smartphone (i.e., a Samsung phone with a built-in optic sensor, which acted as a photoplethysmograph to estimate BP) and downloaded the MyBP Lab app through the US Google Playstore. Participant demographics and sample sizes are shown in Table 1. Participants completed onboarding, which included an affirmation of eligibility (over 18), informed consent, demographics, and an initial calibration with an external BP monitor. For participants who did not calibrate with an external device, the app only displayed their percentage change in BP. In cases when calibration values were not provided, the algorithm to estimate BP used default values (for more on BP cleaning, see Methods and SI Appendix, Main Study: Dating Cleaning Procedure), and these BP values were stored in the database and only accessible to the researchers. After onboarding, participants received notifications three times a day (morning, afternoon, and evening) to complete a check-in, which included BP and HR measurements and a short survey. Survey questions rotated within and across days to minimize participant fatigue and maximize data collection. In the current analyses, we focus on questions about stress (demands and resources) that were collected every third morning and a different set of stress questions collected every afternoon (see Methods for more details). Questions about emotions were also collected during the same

Table 1. Sample demographics

Sample demographics	Final sample	Final sample calibrated†
Participant N	21,923	
Gender		
Male	17,281	87.8%
Female	4,642	20.5%
Another gender identity	57	0.3%
Age*		
18 to 29	5,609	25.6%
30 to 49	12,306	56.1%
50 to 64	3,296	15.0%
65+	630	2.9%
Identified as:		
White	14,598	66.6%
Asian or Pacific Islander	3,583	16.3%
Black or African American	1,604	7.3%
American Indian or Alaskan Native	278	1.3%
Another race	2,336	10.7%
Education		
Elementary school	272	1.2%
High school	3,762	17.2%
College	5,452	24.9%
Two-year degree	2,192	10.7%
Four-year degree	5,035	23.0%
Graduate school	4,528	20.7%
Self-reported health		
Poor	709	3.2%
Fair	4,493	20.5%
Good	10,089	46.0%
Very good	5,134	23.4%
Excellent	1,215	5.5%
Regularly exercise (3x/wk)	8,528	38.9%
Yes	13,095	95.7%
No	128.87	81.26
BMI*		
Underweight (<18.5)	368	1.7%
Normal weight (18.5 to 24.9)	6,077	27.6%
Overweight (25 to 29.9)	7,442	33.8%
Obese I (30 to 34.9)	3,910	17.8%
Obese II and III (35+)	3,493	15.9%

Note: Ethnicity was select all that apply; some variables have missing data; for BP and HR: All Ns = 323,914 to 331,716 from 21,923 Ps; for calibrated: Ns = 182,976 to 187,852 from 11,850 participants.

†Age filtered to >91, BMI filtered to >14.99 and <60.

Removing 29,142 check-ins in which P exercised within 30 min of physio measurement.

2 of 7 | PNAS
https://doi.org/10.1073/pnas.2105573118

Gordon and Mendes

A large-scale study of stress, emotions, and blood pressure in daily life using a digital platform
check-in every afternoon (reference SI Appendix, Table S9 for sample sizes). Before we describe the results of the main study, we present the assessment of the reliability and validity of the optic sensor to measure BP and HR.

Results

Assessing the Reliability and Validity of the Optic Sensor. We assessed the optic sensor’s reliability and validity by recruiting 123 participants to take part in a multimethod study that required frequent BP measurements in the laboratory and field using both the phone-based optic sensor and a Food and Drug Administration-approved BP cuff (AKD UA-651BLE monitor). We assessed BP measurements from the two devices near simultaneously on opposite arm and hand to allow for temporal precision. Sample characteristics, detailed procedures, and additional analyses are available as supplemental materials (SI Appendix). Data, syntax, and supplemental material are available online https://osf.io/dbve5/.

Across both the laboratory and field, there was moderate to strong agreement between the optic sensor and the cuff. Distributions, descriptive values, and correlations for the primary BP measurement are shown in Fig. 1 and additional descriptive and correlational analyses are in SI Appendix, Fig. S1 and Tables S1–S7.

Having established the phone-based optic sensor provides acceptable reliable and valid BP responses similar to those obtained by FDA-approved arm-based external cuffs, we used it to explore the ways in which daily experiences of stress and emotions influence BP and HR reactivity in daily life.

Data Analytic Plan. Given that check-ins were nested within individuals, we utilized multilevel modeling (i.e., mixed-effects models; lme4 package in RStudio 1.2.5019 and mixed models in SPSS version 27, further details in SI Appendix) in which check-ins were nested within participants. To assess physiological reactivity, we subtracted a “baseline” measure from every estimate. Baseline was determined by identifying the check-in during which participants exhibited the lowest HR (suggesting a relaxed state) and subtracting it from all of their measurements. For example, to calculate systolic BP (SBP) reactivity, we first found the minimum HR for an individual across all their check-ins and then took the SBP value from that check-in to subtract from each of the SBP values.

In this study, our focus was on within-person variation. That is, we wanted to test the extent to which people exhibited a change in their BP and HR from baseline when experiencing changes in their stress and emotions relative to how they typically feel. To do this, we utilized a contextual model in which we controlled for between-person differences by entering person-level aggregates for each of our main predictors. This approach unconfounds within- and between-person effects while maintaining the original scaling (reference SI Appendix for more details). All random effects were modeled, including covariances between random effects. Below are sample equations for our main stress analyses (syntax for all key analyses are available at: https://osf.io/dbve5/):

Main effects of demands and resources (PM = person mean):

\[
\text{SBP Reactivity}_{it} = \beta_0 + \beta_1 \times \text{DEMANDS}_{it} + \beta_2 \times \text{RESOURCES}_{it} + \epsilon_{it}
\]

Moderation of demands/resources ratio by age:

\[
\text{SBP Reactivity}_{it} = \beta_0 + \beta_1 \times \text{DEMANDS}_{it} + \beta_2 \times \text{RESOURCES}_{it} + \beta_3 \times \text{DEMANDS}_{it} \times \text{RESOURCES}_{it} + \beta_4 \times \text{AGE}_{it} + \epsilon_{it}
\]

Descriptive Analyses. The right side of Table 1 depicts BP and HR estimates by demographic group. BP and HR estimates from the optic sensor tracked with epidemiological trends. For example, females had lower estimated BP and higher HR than males, BP was higher and HR was lower among older ages, and both BP and HR were higher as Body Mass Index (BMI) increased and self-reported health decreased. Reference SI Appendix, Table S9 for descriptive values of our primary variables.

Main Results. Daily stress and physiological reactivity. In order to determine the associations between demands and resources and physiological reactivity in daily life, we followed prior research (24, 25) and conducted two different sets of analyses. In our first model we entered demands and resources as simultaneous predictors of BP and HR to determine whether they uniquely contributed to helping explain changes in physiology from baseline. Then, in a separate model, we entered the ratio of demands and resources as a single predictor. As shown in Fig. 2 (and SI Appendix, Tables S10 and S11 and Fig. S3), in line with prior work on challenge and threat responses to stress, we found consistent evidence across two separate measures of demands and resources (assessed in the morning and

![Fig. 1. Violin plots depicting SBP and DBP distributions and descriptive information of primary measurements from the laboratory assessment of reliability and validity of the optic sensor.](https://doi.org/10.1073/pnas.2105573118)
Emotions and physiological reactivity. We also examined how emotions tracked BP reactivity. To measure emotions, we presented an emotion grid with two dimensions: valence (negative and positive) and arousal (low and high). Participants selected one of the quadrants that best represented their current feelings and then reported on the intensity of that emotional state. All quadrants were selected at some point, but positive emotions were selected more often than negative emotions: low-arousal positive, 47%; high-arousal positive, 30%; high-arousal negative, 12%; and low-arousal negative, 11%.

Fig. 3 illustrates the associations between the intensity of these four emotion dimensions and BP and HR reactivity (reference SI Appendix, Table S16; also reference SI Appendix, Tables S17 and S18 and Fig. S6 for moderations by age). When people reported more intense high-arousal negative emotions (like anger and fear; relative to when they had less intense experiences of these emotions), they showed significantly greater BP and HR reactivity. The intensity of people’s experiences of low-arousal negative emotions (like sadness and disgust) were not associated with changes in BP but were associated with greater HR reactivity. In contrast, when people experienced more intense low-arousal positive emotions (like calmness and serenity), they showed significantly lower BP reactivity but little change in HR. Finally, when people reported more intense high-arousal positive emotions (like excitement and happiness), there was no significant change in SBP but lower DBP and greater HR reactivity. These results suggest that both valence and arousal are important when considering how emotions are associated with physiological reactivity, particularly when examining across multiple physiological signals (e.g., BP and HR).

Our emotion analyses focused on within-person differences in emotion intensity for each of the four quadrants of emotions, removing concerns about between-person differences driving our effects. Nonetheless, we examined whether there were individual differences in emotional experience (reference SI Appendix, Table S19) and found some descriptive evidence for demographic differences. For example, younger participants (ages 18 to 29) made up a larger subset of participants who reported low-arousal negative emotions compared to their representation in other emotion quadrants, and older adults (ages 50 to 64 and 65+) made up a larger subset of people reporting positive emotions compared to their representation for negative emotions. Rerunning our emotion analyses with only the 1,502 participants who selected all four emotion quadrants during the study (72,855 check-ins) returned the same pattern of results as with the full sample (SI Appendix, Table S20).

Discussion
Experiences of stress and emotion can alter physiologic responses like BP and HR, but large-scale studies examining these changes in daily life and across a broad age range are rare. We examined the validity of an optic sensor embedded in phones and found acceptable validity when compared to FDA-approved BP monitors and then developed an app-based research study in which we assessed stress, emotion, and BP multiple times a day. This study...
approach allowed us to develop a database to examine within-person changes in stress, emotions, and physiology.

There are three primary messages from the analyses presented here. First, we find that not all stress reports are created equal. Self-reported appraisals of situational demands are related to higher BP reactivity, as expected, but critically individuals’ resource appraisals were associated with lower BP responses, and models which include both demands and resources were more reliably associated with BP reactivity than models with demands alone. Returning to the analogy, a CEO might report a demanding life, but their assessed resources are likely to be a strong buffer to BP reactivity that would unlikely be observed among individuals with fewer personal, psychological, and financial resources.

Second, although we found strong main associations between stress and BP, we also found heterogeneity in these responses, with not all participants showing the same relationship between stress and BP. In line with this evidence that not everyone responds to stress in the same way, we find that there is greater concordance (agreement) between self-reported stress and BP in older adults compared to younger adults as indicated by stronger correlations between self-reports and physiology among older adults. It may be the case that older adults, more than younger adults, used the information from the sensor reporting on their BP and HR reactivity to guide their self-reported affective responses. Though speculative, this general idea would be consistent with the observation that older adults have poorer interoception (ability to sense internal states) and may rely more on external cues in their assessment of body states.

Finally, we observed significant relationships between emotions and physiology. Extending past work with smaller samples, high-arousal negative emotions (e.g., anger) were associated with increased BP reactivity. We also found that low-arousal positive emotions (e.g., calmness, serenity) were associated with decreased BP reactivity. Positive emotions are less studied than negative emotions, yet these results suggest that low-arousal positive emotion is a critical observation to make.

Constraints on Generality. While this work boasts a large sample size for an experience sampling study with physiologic responses, there are critical constraints on generality that are important to contextualize the findings. First, there are issues related to sample characteristics. The app was available on Google Playstore, so we had no control over who joined the study other than excluding people under the age of 18. It might be the case that individuals who selected to be in this study might be more concerned with their health given the primary distinguishing factor was the ability to measure BP, which might result in an overall healthier sample than the general population. The demographics were skewed toward younger white males with a particular smartphone (Samsung), which is consistent with the customer demographics of this phone brand. We did test for moderation by sex and did not observe any meaningful interactions, but the relatively larger male than female sample might be exaggerating some BP reactivity differences given males tend to have both higher BP and greater BP reactivity. Relatedly, while our sample did not exclude older adults, the majority of the sample was midlife (30 to 49) and less than 3% was 65 and older. This younger sample likely is healthier, so these data are limited in how well then can characterize how stress and emotion affect BP reactivity in the very old (80 and older).

There are also technological constraints with the use of on-demand measures. When notified for a “check-in,” participants had to be able to stop and take a BP measurement, and it is likely that when stress was especially high, participants could not stop what they were doing to complete the check-in. Wearables that allow for continued measurement will be able to overcome this barrier, at least as it relates to a sensor measure, but this is a clear limitation with phone-based sensors.

We have limited control over the quality of measurement. BP is sensitive to body position and movement—body position, sensor location relative to the heart. In the validation study, we were able to give instructions directly to our participants and train them face-to-face. All of this instruction was moved to videos and written instructions within the app, which limited our control over the measurement quality. Without question, there is measurement error in our study that likely leads us to underestimate effect sizes. As technological advances develop that include geospatial awareness and movement minimization, we will increase our ability to obtain greater precision in BP measurement.

Finally, we focused on changes in BP reactivity in daily life and how self-reported stress and emotions were associated with those changes. However, most research examining how BP is related to morbidity and mortality focuses on baseline/resting BP levels rather than BP reactivity (ref. 27, cf. ref. 6; 7). Indeed, BP increases upon exposure to acute stressful tasks can indicate engagement and approach motivation (28, 29). This noted, exaggerated and/or sustained BP reactivity has been linked to the development of hypertension and cardiovascular disease, so it remains an important question to pursue the relative contribution of resting BP levels and BP reactivity to the development of physical diseases.

In conclusion, we find that optic sensors embedded in smartphones can reliably and accurately measure BP. Furthermore, we find with tens of thousands of people using hundreds of thousands of check-ins that while “stress” increases BP in the moment,
stress is not a unitary construct. Instead, stress is best understood in its relation to the resources that individuals have. Similarly, the associations between emotions and physiological changes are better captured when considering both valence and arousal.

Methods

Participants. Individuals who downloaded the app, MyBP lab, through the US Google Playstore between March 15, 2018 and June 30, 2019 (N = 91,892) were considered for the analyses presented here. * As incentive, participants received feedback about their BP, and those who completed at least 21 check-ins within 3 wk were entered into a lottery to win 1 of 20 new Samsung smartphones. Sample characteristics for both the initial sample and final sample are shown in Table 1. The only exclusions to participating in this study were that participants had to be at least 18 y of age, fluent in English (because we did not offer the app in other languages), and have a compatible phone with the embedded optic sensor (Samsung S9 or Note 9). For the current analyses, additional exclusions included the following: participants who completed less than three check-ins (because we were calculating individual reactivity scores using one of the check-ins as a baseline measurement) and check-ins in which participants indicated they had exercised in the past 30 min because exercise acutely increases BP levels. For more details on the data analytic plan and data cleaning procedures, reference [SI Appendix]. These decisions resulted in a final sample of 21,923 participants who completed 331,716 measurements.

Procedure. After downloading the app, participants confirmed their age and English fluency by taking a short comprehension quiz. They completed the consent form and basic demographics and received email authorization to participate. Participants then completed an initial BP measurement to calibrate the optic sensor on the phone. Participants were encouraged to calibrate using an external cuff. If they did not have a BP monitor to calibrate the sensor, they were able to use the app and we collected their raw BP estimates, but participants only saw percent changes in BP relative to their initial sensor, they were able to use the app and we collected their raw BP estimates. Participants were encouraged to calibrate the cuff at any time during the study. Once enrolled in the study, participants could complete up to three daily check-ins during set time windows (morning: 7 AM to 10 AM; afternoon: 10 AM to 4 PM; evening: 8 PM to 11 PM), which included BP and HR measurements and survey questions. Participants could also take on-demand BP measurements at any time. The app included an optional section where participants could complete surveys assessing individual differences. The app was designed to be a 21-d study, although participants could continue participating after 21 d. The study was approved by the Human Research Protection Program at the University of California, San Francisco (International Review Board No. 17-24159).

Daily Check-In Measures. Each check-in included a BP measurement, ~30 seconds, and then questions assessing participant's location, who they were with, and whether they had exercised vigorously in the past 30 min. The other survey questions varied across check-ins to minimize fatigue, with two different sets of rotating morning check-in questions, one set of afternoon check-in questions, and seven sets of rotating evening check-in questions.

To test our questions regarding stress in daily life, and specifically how demands and resources collectively are associated with BP, we focused on the questions most relevant to our interests, which were measured during one of the mornings and every afternoon. The morning items for demands and resources (assessed every 3 d) were as follows: "I feel stressed," "anxious, overwhelmed" and "I feel in control, coping well, on top of things" (0 = Not at all, 1 = A little bit, 2 = Somewhat, 3 = Moderately, and 4 = Very much). The afternoon item assessing demand was, "Do you feel like things are overwhelming right now?" The item assessing resources was, "Do you feel like things are unpredictable right now?" Both items were measured on a five-point scale (resources were reverse scored; higher numbers are more predictability; 0 = No, not at all, 1 = Not really; 2 = Neutral; 3 = A little bit; and 4 = Yes, a great deal). In order to calculate the ratio of demands to resources, we added 1 to each variable to avoid having 0 as part of the division, then divided demands by resources following previous research (24, 28). We analyzed these two measures of stress separately, treating the afternoon data as an additional dimension to conceptually replicate morning responses given there was no reason to expect morning appraisals would be different from afternoon appraisals.

To test our questions regarding emotions in daily life, participants completed two steps: First, they selected which one of four quadrants of an emotion grid best represented their current emotional state (high-arousal negative emotions, low-arousal negative emotions, high-arousal positive emotions, or low-arousal positive emotions). Then they completed a follow-up question ascertaining the intensity of those feelings (0 = Not at all, 1 = A little bit, 2 = Moderately, 3 = A lot, or 4 = Extremely). We focused on the association between emotion intensity and physiological reaction, examining intensity separately for each emotion quadrant ([SI Appendix, Table S9]). These questions were asked in the afternoon during the same check-in as the afternoon stress questions.

Within-person reactivity. For daily level analyses, we looked at change from a baseline value for both BP and HR. Baseline for both BP and HR was set as the measurement with the lowest HR value for each person. The corresponding SBP, DBP, and HR values from that measurement (adjusted for the calibration offset for BP) were subtracted from each check-in measurement to create a reactivity score. These reactivity scores serve as our main dependent variables.

Data Availability. Anonymized data files have been deposited in OSF ([https://osf.io/63pf5/?view_only=1fd1deed6e667e47c0845bf5e5f437dcd]). Data, syntax, and supplemental material are all available online https://osf.io/dbve5/. All other study data are included in the article and/or [SI Appendix].

ACKNOWLEDGMENTS. This research was supported by the National Institute on Aging (R24AG048029) and the Greater Good Science Center. Software and hardware support was provided by Samsung Electronics Co., Ltd. and Samsung Research America. The MyBP lab app was programmed by Bionetworks.

*Although the app was only available on the US Google Playstore, data from the Playstore suggests that participants in a number of other countries ended up accessing and downloading the app, either when visiting the United States or through side loading the app.

References

1. American Psychological Association, Stress in America: Stress and Current Events. Stress in America Survey (APA, 2019).
2. American Psychological Association, Stress in America: Coping with Change. Part 1. Stress in America TM Survey (APA, 2020).
3. J. R. Jennings et al., Exaggerated blood pressure responses during mental stress are prospectively related to enhanced carotid atherosclerosis in middle-aged Finnish men. *Circulation* 110, 2198–2203 (2004).
4. T. W. Kamarck et al., Exaggerated blood pressure responses during mental stress are associated with enhanced carotid atherosclerosis in middle-aged Finnish men: Findings from the Kuopio Ischemic Heart Disease Study. *Circulation* 96, 3842–3848 (1997).
5. T. W. Kamarck et al., Experiences of demand and control in daily life as correlates of subclinical carotid atherosclerosis in a healthy older sample. *Psychol. Bull.* 123, 24–32 (2004).
6. K. A. Matthews et al., Blood pressure reactivity to psychological stress predicts hypertensin in the CARDIA study. *Circulation* 110, 74–78 (2004).
7. K. A. Matthews, K. L. Woodall, M. T. Allen, Cardiovascular reactivity to stress predicts future blood pressure status. *Hypertension* 22, 479–485 (1993).
8. S. Folkman, Lazarus, Stress, Appraisal, and Coping (Springer, 1984).
9. J. Blascovich, J. Tomaka, The biopsychosocial model of arousal regulation. *Adv. Exp. Soc. Psychol.* 28, 1–51 (1996).
10. J. Blascovich, W. B. Mendes, “Social psychophysiology and embodiment” in Handbook of Social Psychology, S. T. Fiske, D. T. Gilbert, Eds. (John Wiley & Sons, ed. 5, 2010), pp. 194–227.
11. M. D. Lin, Self-efficacy and perceived control: Cognitive mediators of pain tolerance. *J. Pers. Soc. Psychol.* 54, 149–160 (1988).
12. N. G. Harnett et al., Affective state and locus of control modulate the neural response to threat. *Neuroimage* 121, 217–226 (2015).
13. J. C. Pruessner et al., Self-esteem, locus of control, hippocampal volume, and cortisol regulation in young and old adulthood. *Neuroimage* 28, 815–826 (2005).
14. D. Janicki-Deverts, T. W. Kamarck, “Ambulatory blood pressure monitoring” in Handbook of Physiological Research Methods in Health Psychology, L. J. Luecken, L. C. Gallo, Eds. (Sage Publications, 2008), pp. 159–182.
15. P. H. Cascio, W. C. Costa Jr., Relationship of trait anger to resting blood pressure: A meta-analysis. *Health Psychol.* 14, 444–456 (1995).
16. R. W. Levenson, “Autonomic specificity and emotion” in Handbook of Affective Sciences, R. Davidson, K. Scherer, H. H. Goldsmith, Eds. (Oxford University Press, 2003), pp. 212–224.
17. E. H. Tugel et al., Emotion fingerprints or emotion populations? A meta-analytic investigation of autonomic features of emotion categories. *Psychol. Bull.* 144, 343–393 (2018).

Gordon and Mendes

A large-scale study of stress, emotions, and blood pressure in daily life using a digital platform
18. M. N. Shiota, S. L. Neufeld, W. H. Yeung, S. E. Moser, E. F. Perea, Feeling good: Autonomic nervous system responding in five positive emotions. Emotion 11, 1368–1378 (2011).

19. G. A. Bonanno, C. L. Burton, Regulatory flexibility: An individual differences perspective on coping and emotion regulation. Perspect. Psychol. Sci. 8, 591–612 (2013).

20. L. L. Carstensen, J. A. Mikels, At the intersection of emotion and cognition: Aging and the positivity effect. Curr. Dir. Psychol. Sci. 14, 117–121 (2005).

21. R. W. Levenson, L. L. Carstensen, W. V. Friesen, P. Ekman, Emotion, physiology, and expression in old age. Psychol. Aging 6, 28–35 (1991).

22. A. D. Crosswell, L. Whitehurst, W. B. Mendes, Effects of acute stress on cognition in older versus younger adults. Psychol. Aging 36, 241–251 (2021).

23. S. Scheibe, L. L. Carstensen, Emotional aging: Recent findings and future trends. J. Gerontol. B Psychol. Sci. Soc. Sci. 65B, 135–144 (2010).

24. W. B. Mendes, H. M. Gray, R. Mendoza-Denton, B. Major, E. S. Epel, Why egalitarianism might be good for your health: Physiological thriving during stressful intergroup encounters. Psychol. Sci. 18, 991–998 (2007).

25. W. B. Mendes, B. Major, S. McCoy, J. Blascovich, How attributional ambiguity shapes physiological and emotional responses to social rejection and acceptance. J. Pers. Soc. Psychol. 94, 278–291 (2008).

26. W. B. Mendes, Weakened links between mind and body in older age: The case for maturational dualism in the experience of emotion. Emot. Rev. 2, 240–244 (2010).

27. R. S. Vasan et al., Impact of high-normal blood pressure on the risk of cardiovascular disease. N. Engl. J. Med. 345, 1291–1297 (2001).

28. R. A. Wright, L. D. Kirby, Effort determination of cardiovascular response: An integrative analysis with applications in social psychology. Adv. Exp. Soc. Psychol. 33, 255–307 (2001).

29. J. Tomaka, J. Blascovich, R. M. Kelsey, C. L. Leitzen, Subjective, physiological, and behavioral effects of threat and challenge appraisals. J. Pers. Soc. Psychol. 65, 248–260 (1993).