CATEGORIZATION OF QUANTUM GENERALIZED KAC-MOODY ALGEBRAS AND CRYSTAL BASES

SEOK-JIN KANG 1,2, SE-JIN OH 3,4, AND EUYONG PARK 1,2

ABSTRACT. We construct and investigate the structure of the Khovanov-Lauda-Rouquier algebras R and their cyclotomic quotients R^λ which give a categorification of quantum generalized Kac-Moody algebras. Let $U_q(g)$ be the integral form of the quantum generalized Kac-Moody algebra associated with a Borcherds-Cartan matrix $A = (a_{ij})_{i,j \in I}$ and let $K_0(R)$ be the Grothendieck group of finitely generated projective graded R-modules. We prove that there exists an injective algebra homomorphism $\Phi : U_{-A}(g) \rightarrow K_0(R)$ and that Φ is an isomorphism if $a_{ii} \neq 0$ for all $i \in I$. Let $B(\infty)$ and $B(\lambda)$ be the crystals of $U_q(g)$ and $V(\lambda)$, respectively, where $V(\lambda)$ is the irreducible highest weight $U_q(g)$-module. We denote by $B(\infty)$ and $B(\lambda)$ the isomorphism classes of irreducible graded modules over R and R^λ, respectively. If $a_{ii} \neq 0$ for all $i \in I$, we define the $U_q(g)$-crystal structures on $B(\infty)$ and $B(\lambda)$, and show that there exist crystal isomorphisms $B(\infty) \cong B(\infty)$ and $B(\lambda) \cong B(\lambda)$. One of the key ingredients of our approach is the perfect basis theory for generalized Kac-Moody algebras.

INTRODUCTION

In [24, 25] and [31], Khovanov-Lauda and Rouquier independently introduced a new family of graded algebras R which gives a categorification of quantum groups associated with symmetrizable Kac-Moody algebras. More precisely, let $U_q(g)$ be the quantum group associated with a symmetrizable Kac-Moody algebra and let $U_A(g)$ be the integral form of $U_q(g)$, where $A = \mathbb{Z}[q, q^{-1}]$. Then it was shown that the Grothendieck group $K_0(R)$ of finitely generated graded projective R-modules is isomorphic to $U_A^-(g)$, the negative part of $U_A(g)$. Furthermore, for symmetric Kac-Moody algebras, Varagnolo and Vasserot proved that the isomorphism classes of principal indecomposable R-modules correspond to Lusztig’s canonical basis (or Kashiwara’s lower global basis) under this isomorphism [35]. The algebra R is called the Khovanov-Lauda-Rouquier algebra associated with g.

For each dominant integral weight $\lambda \in P^+$, the algebra R has a special quotient R^λ which is called the cyclotomic quotient. It was conjectured that the cyclotomic quotient R^λ gives a categorification of the irreducible highest weight module $V(\lambda)$ [24]. For type A_∞ and $A^{(1)}_n$, this conjecture was proved...
in \cite{4,5}. In \cite{14}, Kang and Kashiwara proved Khovanov-Lauda categorification conjecture for all symmetrizable Kac-Moody algebras. Webster also gave a proof of this conjecture by a completely different method \cite{36}. In \cite{27}, the crystal version of this conjecture was proved. That is, in \cite{27}, Lauda and Vazirani investigated the crystal structure on the set of isomorphism classes of irreducible graded modules over R and R^{λ}, and showed that these crystals are isomorphic to the crystals $B(\infty)$ and $B(\lambda)$, respectively.

The purpose of this paper is to extend the study of Khovanov-Lauda-Rouquier algebras to the case of \textit{generalized Kac-Moody algebras}. The generalized Kac-Moody algebras were introduced by Borcherds in his study of Monstrous Moonshine \cite{2}, and they form an important class of algebraic structure behind many research areas such as algebraic geometry, number theory and string theory (see, for example, \cite{3, 6, 7, 10, 18, 29, 30, 32, 33}). In particular, the \textit{Monster Lie algebra}, a special example of generalized Kac-Moody algebras, played a crucial role in proving the Moonshine conjecture \cite{3}. Moreover, the generalized Kac-Moody algebras draw more and more attention among mathematical physicists due to their connection with string theory and other related topics. The quantum deformations of generalized Kac-Moody algebras and their integrable highest weight modules were constructed in \cite{13} and the crystal basis theory for quantum generalized Kac-Moody algebras was developed in \cite{11,12}. In \cite{21}, the canonical bases for quantum generalized Kac-Moody algebras were realized as certain semisimple perverse sheaves, and in \cite{10,17}, a geometric construction of crystals $B(\infty)$ and $B(\lambda)$ was given using Lusztig’s and Nakajima’s quiver varieties, respectively.

In this paper, we construct and investigate the structure of Khovanov-Lauda-Rouquier algebras R and their cyclotomic quotients R^{λ} which give a categorification of quantum generalized Kac-Moody algebras. Let $U_q(\mathfrak{g})$ be the quantum generalized Kac-Moody algebra associated with a Borcherds-Cartan matrix $A = (a_{ij})_{i,j \in I}$. We first define the Khovanov-Lauda-Rouquier algebra R in terms of generators and relations. A big contrast with the case of Kac-Moody algebras is that the nil Hecke algebras corresponding to the imaginary simple roots with norm ≤ 0 may have nonconstant twisting factors for commutation and braid relations. In this work, we choose any homogeneous polynomials $P_i(u,v)$ of degree $1 - a_{ii}^2$ and their variants \overline{P}_i and \overline{P}'_i ($i \in I$) as these twisting factors (see Definition \ref{2.1}). When $a_{ii} = 2$, we are reduced to the case of Kac-Moody algebras. The role of these twisting factors is still mysterious. For convenience, we also give a diagrammatic presentation of the algebra R.

Next, we show that there exists an injective algebra homomorphism $\Phi : U^-_q(\mathfrak{g}) \rightarrow K_0(R)$, where $K_0(R)$ is the Grothendieck group of finitely generated graded projective R-modules (Theorem \ref{3.4}). Thus $\text{Im} \Phi$ gives a categorification of $U^-_q(\mathfrak{g})$. To do this, we need to show that the quantum Serre relations are preserved by the map Φ. In general, Φ is not surjective even for the case $A = (0)$. The whole Grothendieck group seems rather large and nontrivial. However, if $a_{ii} \neq 0$ for all $i \in I$, we can show that Φ is an isomorphism (Theorem \ref{3.15}). As in the case of Kac-Moody algebras, we conjecture that, if the Borcherds-Cartan matrix $A = (a_{ij})_{i,j \in I}$ is symmetric and $a_{ii} \neq 0$ for all $i \in I$, then the isomorphism classes of graded projective indecomposable R-modules correspond to canonical
basis elements under the isomorphism Φ. We will investigate this conjecture in a forthcoming paper following the framework given in $[21, 35]$.

Now we focus on the crystal structures. We would like to emphasize that one of the key ingredients of our approach is the perfect basis theory for generalized Kac-Moody algebras and it can be applied to the Kac-Moody algebras setting as well. Our work is different from $[27]$ in this respect. In $[1]$, Berenstein and Kazhdan introduced the notion of perfect bases for integrable highest weight modules $V(\lambda)$ ($\lambda \in P^+$) over Kac-Moody algebras. They showed that the colored oriented graphs arising from perfect bases are all isomorphic to the crystal $B(\lambda)$. Their work was extended to the integrable highest weight modules over generalized Kac-Moody algebras in $[19]$. In this work, we define the notion of perfect bases for $U_q(g)$ as a module over the quantum boson algebra $B_q(g)$. The existence of perfect basis for $U_q(g)$ is provided by constructing the upper global basis (or dual canonical basis) of $U_q(g)$. We also show that the crystal arising from any perfect basis of $U_q(g)$ is isomorphic to the crystal $B(\infty)$ (Theorem 4.19).

With perfect basis theory at hand, we construct the crystal $B(\infty)$ as follows. Let $G_0(R)$ be the Grothendieck group of finite-dimensional graded R-modules and set $G_0(R)_{Q(q)} = Q(q) \otimes_A G_0(R)$. We denote by $B(\infty)$ the set of isomorphism classes of irreducible graded R-modules and define the crystal operators using induction and restriction functors. Moreover, we show that $G_0(R)_{Q(q)}$ has a $B_q(g)$-module structure and that if $a_{ii} \neq 0$ for all $i \in I$, then $B(\infty)$ is a perfect basis of $G_0(R)_{Q(q)}$. Therefore, by the main theorem of perfect basis theory, we obtain a crystal isomorphism (Theorem 5.4):

$$B(\infty) \simeq B(\infty).$$

For a dominant integral weight $\lambda \in P^+$, we define the cyclotomic Khovanov-Lauda-Rouquier algebra R^λ to be the quotient of R by a certain two-sided ideal depending on λ. Let $B(\lambda)$ denote the set of isomorphism classes of irreducible graded R^λ-modules and define the crystal operators using induction/restriction functors and projection/inflation functors. It was shown in $[12]$ that there exists a strict crystal embedding

$$B(\lambda) \hookrightarrow B(\infty) \otimes T_\lambda \otimes C.$$

If $a_{ii} \neq 0$ for all $i \in I$, using the above crystal embedding, we construct a crystal isomorphism (Theorem 5.14):

$$B(\lambda) \simeq B(\lambda).$$

In $[15]$, after this work was completed, Khovanov-Lauda cyclotomic conjecture was proved for all symmetrizable generalized Kac-Moody algebras.

This paper is organized as follows. Section 1 contains a brief review of quantum generalized Kac-Moody algebras and crystal bases. In Section 2, we define the Khovanov-Lauda-Rouquier algebra R associated with a Borcherds-Cartan matrix $A = (a_{ij})_{i,j \in I}$, and investigate its algebraic structure and representation theory. We construct a faithful polynomial representation of $R(\alpha)$ and prove the Khovanov-Lauda-Rouquier algebra version of the quantum Serre relations. In Section 3, we show that the algebra R gives a categorification of $U_q^- (g)$. We define a twisted bialgebra structure on $K_0(R)$ using induction and restriction functors, and show that there exists an injective algebra homomorphism.
\[\Phi : U_q^- (g) \rightarrow K_0 (R) \]. In particular, we prove that \(U_q^- (g) \cong K_0 (R) \) when \(a_{ii} \neq 0 \) for all \(i \in I \). Section 4 is devoted to the theory of perfect bases. We define the notion of perfect bases for \(U_q^- (g) \) as a \(B_q (g) \)-module and show that \(U_q^- (g) \) has a perfect basis by constructing the upper global basis of \(U_q^- (g) \). The main theorem in Section 4 asserts that the crystals arising from perfect bases are all isomorphic to \(B(\infty) \). In Section 5, we study the crystal structures on \(\mathcal{B}(\infty) \) and \(\mathcal{B}(\lambda) \). Using the theory of perfect bases, we prove that there exists a crystal isomorphism \(\mathcal{B}(\infty) \cong B(\infty) \) when \(a_{ii} \neq 0 \) for \(i \in I \). Furthermore, we define the cyclotomic quotient \(R^\lambda \) of \(R \), and investigate the basic properties of irreducible \(R^\lambda \)-modules. Combining the isomorphism \(\mathcal{B}(\infty) \cong B(\infty) \) with the strict embedding \(B(\lambda) \rightarrow B(\infty) \otimes T_\lambda \otimes C \), we obtain a crystal isomorphism \(\mathcal{B}(\lambda) \cong B(\lambda) \).

1. Quantum Generalized Kac-Moody Algebras

Let \(I \) be a countable (possibly infinite) index set. A matrix \(A = (a_{ij})_{i,j \in I} \) with \(a_{ij} \in \mathbb{Z} \) is called an even integral Borcherds-Cartan matrix if it satisfies (i) \(a_{ii} = 2 \) or \(a_{ii} \in 2\mathbb{Z}_{\geq 0} \), (ii) \(a_{ij} \leq 0 \) for \(i \neq j \), (iii) \(a_{ij} = 0 \) if and only if \(a_{ji} = 0 \). For \(i \in I \), \(i \) is said to be real if \(a_{ii} = 2 \) and is said to be imaginary otherwise. We denote by \(I^{re} \) the set of all real indices and by \(I^{im} \) the set of all imaginary indices. In this paper, we assume that \(A \) is symmetrizable; i.e., there is a diagonal matrix \(D = \text{diag}(s_i \in \mathbb{Z}_{>0} | i \in I) \) such that \(DA \) is symmetric.

A Borcherds-Cartan datum \((A, P, \Pi, \Pi^\vee) \) consists of

(1) a Borcherds-Cartan matrix \(A \),
(2) a free abelian group \(P \), the weight lattice,
(3) \(\Pi = \{ \alpha_i \in P \mid i \in I \} \), the set of simple roots,
(4) \(\Pi^\vee = \{ h_i \mid i \in I \} \subset P^\vee := \text{Hom}(P, \mathbb{Z}) \), the set of simple coroots,

satisfying the following properties:

(a) \(\langle h_i, \alpha_j \rangle = a_{ij} \) for all \(i, j \in I \),
(b) \(\Pi \) is linearly independent,
(c) for any \(i \in I \), there exists \(\Lambda_i \in P \) such that \(\langle h_j, \Lambda_i \rangle = \delta_{ij} \) for all \(j \in I \).

Let \(\mathfrak{h} = \mathbb{Q} \otimes \mathbb{Z} P^\vee \). Since \(A \) is symmetrizable, there is a symmetric bilinear form \((\ , \) \) on \(\mathfrak{h}^* \) satisfying

\[
(\alpha_i | \alpha_j) = s_i a_{ij} \quad (i, j \in I).
\]

We denote by \(P^+ := \{ \lambda \in P| \langle \lambda(h_i) \rangle \in \mathbb{Z}_{\geq 0}, i \in I \} \) the set of dominant integral weights. The free abelian group \(Q = \oplus_{i \in I} \mathbb{Z} a_i \) is called the root lattice. Set \(Q^+ = \sum_{i \in I} \mathbb{Z}_{\geq 0} a_i \). For \(\alpha = \sum k_i a_i \in Q^+ \), we denote by \(|\alpha| \) the height of \(\alpha \): \(|\alpha| = \sum k_i \).

Let \(q \) be an indeterminate and \(m, n \in \mathbb{Z}_{\geq 0} \). Set \(c_i = -\frac{1}{2} a_{ii} \) and \(q_i = q^{c_i} \) for \(i \in I \). If \(i \in I^{re} \), define

\[
[n]_i = \frac{q_i^n - q_i^{-n}}{q_i - q_i^{-1}}, \quad [n]_i! = \prod_{k=1}^{n} [k]_i, \quad \frac{m}{n}_i = \frac{[m]_i!}{[m-n]_i! [n]_i!}.
\]
If $a_{ii} < 0$, we define
\[
\{n\}_i = \frac{q_i^{e_i n} - q_i^{-e_i n}}{q_i^{e_i} - q_i^{-e_i}}, \quad \{n\}_i! = \prod_{k=1}^{n} \{k\}_i, \quad \binom{m}{n}_i = \frac{\{m\}_i!}{\{m-n\}_i! \{n\}_i!}.
\]
If $a_{ii} = 0$, we define
\[
\{n\}_i = n, \quad \{n\}_i! = n!, \quad \binom{m}{n}_i = \binom{m}{n}.
\]

Definition 1.1. The quantum generalized Kac-Moody algebra $U_q(g)$ associated with a Borcherds-Cartan datum (A, P, Π, Π') is the associative algebra over $\mathbb{Q}(q)$ with 1 generated by e_i, f_i ($i \in I$) and q^h ($h \in P'$) satisfying following relations:

1. $q^0 = 1, q^h q^{h'} = q^{h+h'}$ for $h, h' \in P'$,
2. $q^h e_i q^{-h} = q^{(h, \alpha_i)} e_i$, $q^h f_i q^{-h} = q^{-(h, \alpha_i)} f_i$ for $h \in P', i \in I$,
3. $e_i f_j - f_j e_i = \delta_{ij} K_i - K_i^{-1}$, where $K_i = q_i^h$,
4. $\sum_{r=0}^{1-a_{ij}} (-1)^r \left[\begin{array}{c} 1 - a_{ij} \\ r \end{array} \right] e_i^{1-a_{ij}-r} e_j e_i^r = 0$ if $i \in I^+$ and $i \neq j$,
5. $\sum_{r=0}^{1-a_{ij}} (-1)^r \left[\begin{array}{c} 1 - a_{ij} \\ r \end{array} \right] f_i^{1-a_{ij}-r} f_j f_i^r = 0$ if $i \in I^+$ and $i \neq j$,
6. $e_i e_j - e_j e_i = 0, f_i f_j - f_j f_i = 0$ if $a_{ij} = 0$.

Let $U_q^+(g)$ (resp. $U_q^-(g)$) be the subalgebra of $U_q(g)$ generated by the elements e_i (resp. f_i), and let $U_q^0(g)$ be the subalgebra of $U_q(g)$ generated by q^h ($h \in P'$). Then we have the triangular decomposition

\[
U_q(g) \cong U_q^-(g) \otimes U_q^0(g) \otimes U_q^+(g),
\]

and the root space decomposition

\[
U_q(g) = \bigoplus_{\alpha \in \mathbb{Q}} U_q(g)_\alpha,
\]

where $U_q(g)_\alpha := \{ x \in U_q(g) \mid q^h x q^{-h} = q^{(h, \alpha)} x \text{ for any } h \in P' \}$. Define a \mathbb{Q}-algebra automorphism $^\gamma: U_q^-(g) \rightarrow U_q^-(g)$ by

\[
ed_i \mapsto e_i, \quad f_i \mapsto f_i, \quad q^h \mapsto q^{-h}, \quad q \mapsto q^{-1}.
\]

Let $\mathbb{A} = \mathbb{Z}[q, q^{-1}]$. For $n \in \mathbb{Z}_{>0}$, set

\[
e_i^{(n)} = \begin{cases} \frac{q^n}{[n]^!} & \text{if } i \in I^+, \\ q^n & \text{if } i \in I^-, \end{cases} \quad f_i^{(n)} = \begin{cases} \frac{q^n}{[n]^!} & \text{if } i \in I^+, \\ f_i^n & \text{if } i \in I^-, \end{cases}
\]

and denote by $U_{q, \mathbb{A}}$ (resp. $U_{q, \mathbb{A}}^+(g)$) the \mathbb{A}-algebra of $U_q^-(g)$ generated by $f_i^{(n)}$ (resp. $e_i^{(n)}$).

Define a twisted algebra structure on $U_q^-(g) \otimes U_q^-(g)$ as follows:

\[
(x_1 \otimes x_2)(y_1 \otimes y_2) = q^{-(\beta_2 \gamma_1)}(x_1 y_1 \otimes x_2 y_2),
\]
where \(x_i \in U_q^- (\mathfrak{g}) \), \(y_i \in U_q^- (\mathfrak{g}) \), \(i = 1, 2 \). Then there is an algebra homomorphism \(\Delta_0 : U_q^- (\mathfrak{g}) \to U_q^- (\mathfrak{g}) \otimes U_q^- (\mathfrak{g}) \) satisfying
\[
\Delta_0 (f_i) := f_i \otimes 1 + 1 \otimes f_i \quad (i \in I).
\]

Fix \(i \in I \). For any \(P \in U_q^- (\mathfrak{g}) \), there exist unique elements \(Q, R \in U_q^- (\mathfrak{g}) \) such that
\[
e_i P - P e_i = \frac{K_i Q - K_i^{-1} R}{q_i - q_i^{-1}}.
\]
We define the endomorphisms \(e'_i, e''_i : U^- q (\mathfrak{g}) \to U^- q (\mathfrak{g}) \) by
\[
e'_i (P) = R, \quad e''_i (P) = Q.
\]
Consider \(f_i \) as the endomorphism of \(U_q^- (\mathfrak{g}) \) defined by left multiplication by \(f_i \). Then we have
\[
e'_i f_j = \delta_{ij} + q_i^{-a_{ij}} f_j e'_i.
\]

Definition 1.2. The quantum boson algebra \(B_q (\mathfrak{g}) \) associated with a Borcherds-Cartan matrix \(A \) is the associative algebra over \(\mathbb{Q}(q) \) generated by \(e'_i, f_i \) \((i \in I) \) satisfying the following relations:
\[
\begin{align*}
(1) & \quad e'_i f_j = q_i^{-a_{ij}} f_j e'_i + \delta_{ij}, \\
(2) & \quad \sum_{r=0}^{1-a_{ij}} (-1)^r \left[1 - a_{ij} \right] \left[1 - a_{ij} - r \right] e'_i f_j e'_i = 0 \quad \text{if} \quad i \in I^e, \quad i \neq j, \\
(3) & \quad \sum_{r=0}^{1-a_{ij}} (-1)^r \left[1 - a_{ij} \right] f_i f_j e'_i = 0 \quad \text{if} \quad i \in I^e, \quad i \neq j, \\
(4) & \quad e'_i e'_j - e'_j e'_i = 0, \quad f_i f_j - f_j f_i = 0 \quad \text{if} \quad a_{ij} = 0.
\end{align*}
\]

The algebra \(U_q^- (\mathfrak{g}) \) has a \(B_q (\mathfrak{g}) \)-module structure from the equation \((1.3) \quad (11) \quad (22)\).

Proposition 1.3.
\[
\begin{align*}
(1) & \quad \text{If} \quad x \in U_q^- (\mathfrak{g}) \quad \text{and} \quad e'_i x = 0 \quad \text{for all} \quad i \in I, \quad \text{then} \quad x \quad \text{is a constant multiple of} \quad 1. \\
(2) & \quad U_q^- (\mathfrak{g}) \quad \text{is a simple} \quad B_q (\mathfrak{g}) \quad \text{-module}.
\end{align*}
\]

Proof. The proof is almost the same as in \([22] \quad \text{Lemma 3.4.7, Corollary 3.4.9}. \quad \square
\]

Consider the anti-automorphism \(\varphi \) on \(B_q (\mathfrak{g}) \) defined by
\[
\varphi (e'_i) = f_i \quad \text{and} \quad \varphi (f_i) = e'_i.
\]
We define the symmetric bilinear forms \((,)_K \) and \((,)_L \) on \(U_q^- (\mathfrak{g}) \) as follows (cf. \([22] \quad \text{Proposition 3.4.4}, \quad [28] \quad \text{Chapter 1} \)):
\[
(1, 1)_K = 1, \quad (x, y)_K = (x, \varphi (b) y)_K, \\
(1, 1)_L = 1, \quad (f_i, f_j)_L = \delta_{ij} (1 - q_i^2)^{-1}, \quad (x, yz)_L = (\Delta_0 (x), y \otimes z)_L
\]
for \(x, y, z \in U_q^- (\mathfrak{g}) \) and \(b \in B_q (\mathfrak{g}) \).

Lemma 1.4.
\[
(1) \quad \text{The bilinear form} \quad (,)_K \quad \text{on} \quad U_q^- (\mathfrak{g}) \quad \text{is nondegenerate}.
\]
(2) For homogeneous elements $x \in U_q^- (g)_{-\alpha}$ and $y \in U_q^- (g)_{-\beta}$, we have
\[
(x, y)_L = \prod_{i \in I} \frac{1}{(1 - q_i^2)} (x, y)_K,
\]
where $\alpha = \sum_{i \in I} k_i \alpha_i \in \mathbb{Q}^+$. Hence $(\ , \)_{L}$ is nondegenerate.

(3) For any $x, y \in U_q^- (g)$, we have
\[
(e'_i x, y)_L = (1 - q_i^2) (x, f_i y)_L.
\]

Proof. The assertion (1) is proved in [11].

It was shown in [11] (2.4) that the bilinear form $(\ , \)_K$ satisfies
\[
(x, y)_K = \sum_n (x^{(1)}_n, y)_{L} (x^{(2)}_n, z)_K,
\]
where $\Delta_0 (x) = \sum_n x^{(1)}_n \otimes x^{(2)}_n$. Then the assertion (2) can be proved by induction on $|\alpha|$.

To prove the assertion (3), without loss of generality, we may assume that $x \in U_q^- (g)_{-\alpha}$, where $\alpha = - \sum_{i} k_i \alpha_i \in -\mathbb{Q}^+$. Then by (2) and the definition of $(\ , \)_K$, we have
\[
(e'_i x, y)_L = \frac{1}{(1 - q_i^2)} \prod_{j \neq i} (1 - q_j^2)^{k_j} (e'_i x, y)_K
= \frac{1 - q_i^2}{(1 - q_i^2)} \prod_{j \neq i} (1 - q_j^2)^{k_j} (x, f_i y)_K
= (1 - q_i^2) (x, f_i y)_L,
\]
which proves the assertion (3). □

We now briefly review the crystal basis theory of quantum generalized Kac-Moody algebras which was developed in [11] [12]. For any homogeneous element $u \in U_q^- (g)$, u can be expressed uniquely as
\[
(1.5) \quad u = \sum_{l \geq 0} f_i^{(l)} u_l,
\]
where $e_i^{(l)} u_l = 0$ for every $l \geq 0$ and $u_l = 0$ for $l \gg 0$. We call it the i-string decomposition of u in $U_q^- (g)$. We define the lower Kashiwara operators $\hat{\epsilon}_i, f_i$ ($i \in I$) of $U_q^- (g)$ by
\[
\hat{\epsilon}_i u = \sum_{k \geq 1} f_i^{(k-1)} u_k, \quad \hat{f}_i u = \sum_{k \geq 0} f_i^{(k+1)} u_k.
\]

Let $\mathcal{A}_0 = \{ f/g \in \mathbb{Q}(q) \mid f, g \in \mathbb{Q}[q], g(0) \neq 0 \}$.

Definition 1.5. A lower crystal basis of $U_q^- (g)$ is a pair (L, B) satisfying the following conditions:

1. L is a free \mathcal{A}_0-module of $U_q^- (g)$ such that $U_q^- (g) = \mathbb{Q}(q) \otimes_{\mathcal{A}_0} L$ and $L = \bigoplus_{\alpha \in \mathbb{Q}^+} L_{-\alpha}$, where $L_{-\alpha} := L \cap U_q^- (g)_{-\alpha}$,

2. B is a \mathbb{Q}-basis of L/qL such that $B = \bigsqcup_{\alpha \in \mathbb{Q}^+} B_{-\alpha}$, where $B_{-\alpha} := B \cap (L_{-\alpha}/qL_{-\alpha})$,

3. $\hat{\epsilon}_i B \subset B \sqcup \{0\}$, $\hat{f}_i B \subset B$ for all $i \in I$,

4. For $b, b' \in B$ and $i \in I$, $b' = \hat{f}_i b$ if and only if $b = \hat{\epsilon}_i b'$.
Proposition 1.6. [11] Theorem 7.1] Let $L(\infty)$ be the free \mathbb{A}_0-module of $U_q^{-}(\mathfrak{g})$ generated by $\{f_i \cdots f_i 1 \mid r \geq 0, i_k \in I\}$ and let
\[B(\infty) = \{f_i \cdots f_i 1 + qL(\infty) \mid r \geq 0, i_k \in I\} \setminus \{0\}. \]
Then the pair $(L(\infty), B(\infty))$ is a unique lower crystal basis of $U_q^{-}(\mathfrak{g})$.

Let \mathcal{O}_{int} be the abelian category of $U_q(\mathfrak{g})$-modules defined in [11] Definition 3.1. For each $\lambda \in P^+$, let $V(\lambda)$ denote the irreducible highest weight $U_q(\mathfrak{g})$-module with highest weight λ. It is generated by a unique highest weight vector v_λ with defining relations:
\[
q^h v_\lambda = q^{(h,\lambda)} v_\lambda \text{ for all } h \in P^+, \\
e_i v_\lambda = 0 \text{ for all } i \in I, \\
f_i^{(h,\lambda)+1} v_\lambda = 0 \text{ for } i \in I^{\text{re}}, \\
f_i v_\lambda = 0 \text{ for } i \in I^{\text{im}} \text{ with } \langle h_i, \lambda \rangle = 0.
\]

It was proved in [11] Theorem 3.7 that the category \mathcal{O}_{int} is semisimple and that all the irreducible objects have the form $V(\lambda)$ for $\lambda \in P^+$.

Let M be a $U_q(\mathfrak{g})$-module in the category \mathcal{O}_{int}. For any $i \in I$ and $u \in M_\mu$, the element u can be expressed uniquely as
\[u = \sum_{k \geq 0} f_i^{(k)} u_k, \]
where $u_k \in M_{\mu+k\alpha_i}$ and $e_i u_k = 0$. We call it the i-string decomposition of u. We define the lower Kashiwara operators \tilde{e}_i, \tilde{f}_i ($i \in I$) by
\[\tilde{e}_i u = \sum_{k \geq 1} f_i^{(k-1)} u_k, \quad \tilde{f}_i u = \sum_{k \geq 0} f_i^{(k+1)} u_k. \]

Definition 1.7. A lower crystal basis of $U_q(\mathfrak{g})$-module M is a pair (L, B) satisfying the following conditions:

1. L is a free \mathbb{A}_0-module of M such that $M = \mathbb{Q}(q) \otimes_{\mathbb{A}_0} L$ and $L = \bigoplus_{\lambda \in P} L_{\lambda}$, where $L_{\lambda} := L \cap M_{\lambda}$,
2. B is \mathbb{Q}-basis of L/qL such that $B = \bigsqcup_{\lambda \in P} B_{\lambda}$, where $B_{\lambda} := B \cap L_{\lambda}/qL_{\lambda}$,
3. $\tilde{e}_i B \subset B \cup \{0\}$, $\tilde{f}_i B \subset B \cup \{0\}$ for all $i \in I$,
4. For $b, b' \in B$ and $i \in I$, $b' = \tilde{f}_i b$ if and only if $b = \tilde{e}_i b'$.

Proposition 1.8. [11] Theorem 7.1] For $\lambda \in P^+$, let $L(\lambda)$ be the free \mathbb{A}_0-module of $V(\lambda)$ generated by $\{f_i \cdots f_i v_\lambda \mid r \geq 0, i_k \in I\}$ and let
\[B(\lambda) = \{f_i \cdots f_i v_\lambda + qL(\lambda) \mid r \geq 0, i_k \in I\} \setminus \{0\}. \]
Then the pair $(L(\lambda), B(\lambda))$ is a unique lower crystal basis of $V(\lambda)$.
2. Khovanov-Lauda-Rouquier algebra \(R \)

In this section, we construct the Khovanov-Lauda-Rouquier algebra \(R \) associated with a Borcherds-Cartan matrix \(A \), and investigate its algebraic structure and representation theory.

2.1. The algebras \(R(\alpha) \).

Let \(\mathbb{F} \) be a field. For \(\alpha \in Q^+ \) with \(|\alpha| = d \), set

\[
\text{Seq}(\alpha) = \{ \mathbf{i} = (i_1 \ldots i_d) \in I^d \mid \alpha_{i_1} + \cdots + \alpha_{i_d} = \alpha \},
\]

\[
\text{Seqd}(\alpha) = \{ \mathbf{i} = (i_1^{(d_1)} \ldots i_r^{(d_r)}) \in I^d \mid d_1 \alpha_{i_1} + \cdots + d_r \alpha_{i_r} = \alpha \}.
\]

Then the symmetric group \(S_d = \langle r_i \mid i = 1, \ldots, d - 1 \rangle \) acts naturally on \(\text{Seq}(\alpha) \). For \(\mathbf{i} = (i_1 \ldots i_d) \in \text{Seq}(\alpha) \), \(\mathbf{j} = (j_1 \ldots j_d) \in \text{Seq}(\beta) \), we denote by \(\mathbf{i} \ast \mathbf{j} \) the concatenation of \(\mathbf{i} \) and \(\mathbf{j} \):

\[
\mathbf{i} \ast \mathbf{j} := (i_1 \ldots i_d j_1 \ldots j_d) \in \text{Seq}(\alpha + \beta).
\]

The symmetric group \(S_d \) acts on the polynomial ring \(\mathbb{F}[x_1, \ldots, x_d] \) by

\[
w \cdot f(x_1, \ldots, x_d) = f(x_{w(1)}, \ldots, x_{w(d)}) \quad \text{for } w \in S_d \text{ and } f(x_1, \ldots, x_d) \in \mathbb{F}[x_1, \ldots, x_d].
\]

For \(t = 1, \ldots, d - 1 \), define the operator \(\partial_t \) on \(\mathbb{F}[x_1, \ldots, x_d] \) by

\[
\partial_t(f) = \frac{r_t f - f}{x_t - x_{t+1}}
\]

for \(f \in \mathbb{F}[x_1, \ldots, x_d] \). We take a matrix \((Q_{i,j}(u, v))_{i,j} \) in \(\mathbb{F}[u, v] \) such that \(Q_{i,j}(u, v) = Q_{j,i}(v, u) \) and \(Q_{i,j}(u, v) \) has the form

\[
Q_{i,j}(u, v) = \begin{cases}
\sum_{p,q} t_{i,j;p,q} u^p v^q & \text{if } i \neq j, \\
0 & \text{if } i = j,
\end{cases}
\]

where the summation is taken over all \(p, q \in \mathbb{Z}_{\geq 0} \) such that \((\alpha_i \alpha_j) + s_i p + s_j q = 0 \) and \(t_{i,j;p,q} \in \mathbb{F} \). In particular, \(t_{i,j;-a_{ij},0} \in \mathbb{F}^x \). For each \(i \in I \), choose a nonzero polynomial \(P_i(u, v) \in \mathbb{F}[u, v] \) having the form

\[
P_i(u, v) = \sum_{p,q} h_{i;p,q} u^p v^q,
\]

where the summation is taken over all \(p, q \in \mathbb{Z}_{\geq 0} \) such that \(2 - a_{ii} - 2p - 2q = 0 \) and \(h_{i;p,q} \in \mathbb{F} \). In particular, \(h_{i; -\frac{s_i}{2}, 0}, h_{i; 0, -\frac{s_i}{2}} \in \mathbb{F}^x \).

Definition 2.1. Let \((A, P, \Pi, \Pi') \) be a Borcherds-Cartan datum. For \(\alpha \in Q^+ \) with height \(d \), the *Khovanov-Lauda-Rouquier algebra* \(R(\alpha) \) of weight \(\alpha \) associated with the data \((A, P, \Pi, \Pi') \), \((P_i)_{i \in I} \) and \((Q_{i,j})_{i,j \in I} \) is the associative graded \(\mathbb{F} \)-algebra generated by \(1_i \) (\(i \in \text{Seq}(\alpha) \)), \(x_k \) (\(1 \leq k \leq d \)),
where

\[\tau t = \begin{cases} \partial t \mathcal{P} t(x_t, x_{t+1}) \tau t_1 & \text{if } i_t = i_{t+1}, \\ \mathcal{Q}_{i_t, i_{t+1}}(x_t, x_{t+1}) \tau t_1 & \text{if } i_t \neq i_{t+1}, \end{cases} \]

(\tau t x_k - x_{r_t(k)} \tau t)_1 = \begin{cases} -\mathcal{P} t(x_t, x_{t+1}) \tau t_1 & \text{if } k = t \text{ and } i_t = i_{t+1}, \\ \mathcal{P} t(x_t, x_{t+1}) \tau t_1 & \text{if } k = t + 1 \text{ and } i_t = i_{t+1}, \\ 0 & \text{otherwise,} \end{cases}

(\tau t_1 + \tau t_{t+1} - \tau t_1 \tau t_{t+1}) \tau t_1

(2.2)

where

\[\mathcal{P}'_i(u, v, w) := \frac{\mathcal{P}_i(v, u) \mathcal{P}_i(u, w)}{(u - v)(u - w)} + \frac{\mathcal{P}_i(u, w) \mathcal{P}_i(v, w)}{(u - v)(v - w)} - \frac{\mathcal{P}_i(u, v) \mathcal{P}_i(v, w)}{(u - v)(v - w)}, \]

\[\mathcal{P}''_i(u, v, w) := -\frac{\mathcal{P}_i(u, v) \mathcal{P}_i(u, w)}{(u - v)(u - w)} + \frac{\mathcal{P}_i(u, w) \mathcal{P}_i(v, w)}{(u - v)(v - w)} + \frac{\mathcal{P}_i(u, v) \mathcal{P}_i(v, w)}{(u - v)(v - w)}, \]

\[\mathcal{Q}_{i, j}(u, v, w) := \frac{\mathcal{Q}_{i, j}(u, v) - \mathcal{Q}_{i, j}(u, v)}{u - w}. \]

Let \(R := \bigoplus_{\alpha \in Q^+} R(\alpha) \). The \(\mathbb{Z} \)-grading on \(R(\alpha) \) is given by

\[\deg(1_i) = 0, \quad \deg(x_k 1_i) = 2s_{it}, \quad \deg(\tau t 1_i) = -(\alpha_{it} | \alpha_{i_{t+1}}). \]

Note that \(\mathcal{P}'_i, \mathcal{P}''_i \) and \(\mathcal{Q}_{i, j} \) are polynomials. If \(i \in I^* \), then \(\mathcal{P}_i(u, v) \) is a nonzero constant, which will be normalized to be 1 in this paper. If \(I \) is finite and \(a_{ii} = 2 \) for all \(i \in I \), then the algebra \(R \) coincides with the Khovanov-Lauda-Rouquier algebra introduced in [24, 25, 31].

The algebra \(R \) can be defined by using planar diagrams with dots and strands. For simplicity, we assume that \(\mathcal{P}_i \) are symmetric and \(t_{i, j = a_{ij}, 0} = t_{i, j = 0, -a_{ij}} = 1 \) and \(t_{i, j; p, q} = 0 \) for other \(p, q \). Note that \(\partial_t \mathcal{P}_t(x_t, x_{t+1}) = 0 \). We denote by \(R \) the \(\mathbb{F} \)-vector space spanned by braid-like diagrams, considered up to planar isotropy, such that all strands are colored by \(I \) and can carry dots. The multiplication \(D \cdot D' \) of two diagrams \(D \) and \(D' \) is given by stacking of the diagram \(D \) on the diagram \(D' \) if the color on the top of \(D' \) matches with the color at the bottom of \(D \) and defined to be 0 otherwise. It is obvious that the following elements are generators of \(R(\alpha) \) \((\alpha \in Q^+, i = (i_1, \ldots, i_d) \in \text{Seq}(\alpha)) \):

\[
\begin{align*}
1_i := & \begin{array}{cccc}
\cdots & \cdots & \cdots & \\
\cdots & \cdots & 1_i & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
1_i & \cdots & \cdots & \cdots \\
\end{array}, \\
x_k 1_i := & \begin{array}{cccc}
\cdots & \cdots & \cdots & \\
\cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
\end{array}, \\
\tau t 1_i := & \begin{array}{cccc}
\cdots & \cdots & \cdots & \\
\cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
\end{array}.
\end{align*}
\]
The local relations are given as follows:

\[i \rightarrow j = \begin{cases}
0 & \text{if } i = j, \\
-\alpha_{ij} & \text{if } (\alpha_i | \alpha_j) = 0, \\
-\alpha_{ji} & \text{if } (\alpha_i | \alpha_j) \neq 0,
\end{cases} \tag{2.5} \]

\[i \rightarrow i - j = \begin{cases}
\mathcal{P}_1(x, y) & \text{if } i = j, \\
0 & \text{otherwise},
\end{cases} \tag{2.6} \]

\[i \rightarrow i - j = \begin{cases}
\mathcal{P}_1(x, y) & \text{if } i = j, \\
0 & \text{otherwise},
\end{cases} \tag{2.7} \]

(Here, \(x := \begin{array}{c} i \\
i \end{array} \) and \(y := \begin{array}{c} i \\
i \end{array} \))

\[i \rightarrow j - k = \begin{cases}
\mathcal{P}_1(x, z) - a_{ij} - a_{ik} - s & \text{if } i = k \neq j, a_{ij} \neq 0, \\
\overline{\mathcal{P}}_1(x, y, z) \left(\begin{array}{c} i \\
i \end{array} \right) & \text{if } i = j = k,
\end{cases} \tag{here, } x := \begin{array}{c} i \\
i \end{array}, \ y := \begin{array}{c} i \\
i \end{array}, \text{ and } z := \begin{array}{c} i \\
i \end{array} \]

For \(t = (t_1 \ldots t_d) \in \mathbb{Z}_{\geq 0}^d \) and a reduced expression \(w = r_{i_1} \cdots r_{i_s} \in S_d \), set
\[x^t = x_{i_1}^{t_1} \cdots x_{i_s}^{t_s} \] and \(\tau_w = \tau_{r_{i_1}} \cdots \tau_{r_{i_s}} \).

It follows from the defining relations that
\[\{ \tau_w x^t i_1 \mid t \in \mathbb{Z}_{\geq 0}^d, \ i \in \text{Seq}(\alpha), \ w : \text{reduced in } S_d \} \]
is a spanning set of \(R(\alpha) \).
Consider the graded anti-involution $\psi : R(\alpha) \to R(\alpha)$ which is the identity on generators. For a graded left $R(\alpha)$-module M, let M^* be the graded right $R(\alpha)$-module whose underlying space is M with $R(\alpha)$-action given by

$$v \cdot r = \psi(r)v \quad \text{for } v \in M^*, \ r \in R(\alpha).$$

We will investigate the structure of $R(m\alpha_i)$ ($m \geq 0$) in more detail. If $a_{ii} = 2$, then the defining relations for $R(m\alpha_i)$ reduce to

$$x_k x_l = x_l x_k, \quad \tau_t^2 = 0,$$

$$\tau_t \tau_{t+1} \tau_t = \tau_{t+1} \tau_t \tau_{t+1}, \quad \tau_t \tau_s = \tau_s \tau_t \quad \text{if } |t - s| > 1,$$

$$\tau_t x_t = x_t + 1, \quad \tau_t x_{t+1} = x_t + 1,$$

$$\tau_t x_k = x_k \tau_t \quad \text{if } k \neq t, t+1.$$

Hence the algebra $R(m\alpha_i)$ is isomorphic to the nil Hecke algebra NH_m, which is the associative algebra generated by x_k $(1 \leq k \leq m)$ and ∂_t $(1 \leq t \leq m-1)$ satisfying the following relations:

$$x_k x_l = x_l x_k, \quad \partial_t^2 = 0,$$

$$\partial_t \partial_{t+1} \partial_t = \partial_{t+1} \partial_t \partial_{t+1}, \quad \partial_t \partial_s = \partial_s \partial_t \quad \text{if } |t - s| > 1,$$

$$\partial_t x_t = x_t + 1, \quad \partial_t x_{t+1} = x_t \partial_t + 1,$$

$$\partial_t x_k = x_k \partial_t \quad \text{if } k \neq t, t+1.$$

Therefore, as was shown in [23], the algebra $R(m\alpha_i)$ has a primitive idempotent $\tau_{w_0} x_1^{m-1} \cdots x_{m-2} x_{m-1}$, where w_0 is the longest element in S_m, and has a unique (up to isomorphism and degree shift) irreducible module $L(i^m)$. The irreducible module $L(i^m)$ is isomorphic to the one induced from the trivial $\mathbb{F}[x_1, \ldots, x_m]$-module of dimension 1 over \mathbb{F}.

If $a_{ii} < 0$, then $P_i(u, v)$ is a homogeneous polynomial with degree $1 - \frac{a_{ii}}{2} > 1$, and $\overline{P}_i(u, v, w)$ and $\overline{P}''_i(u, v, w)$ have positive degree. By (2.4), $R(m\alpha_i)$ has positive grading and hence it has a unique idempotent $1_{(i, \ldots, i)}$. Thus there exists a unique irreducible $R(m\alpha_i)$-module $L(i^m) = \mathbb{F}v$ defined by

$$(2.8) \quad 1_{(i, \ldots, i)} \cdot v = v, \quad x_k \cdot v = 0, \quad \tau_t \cdot v = 0.$$

If $a_{ii} = 0$, then in general, $R(m\alpha_i)$ has many primitive idempotents, which means that there are many irreducible $R(m\alpha_i)$-modules. For example, if $m = 3$ and $P_3(u, v) = u - v$, then $\tau_1 \tau_2, \tau_2 \tau_1$ and $1 - \tau_1 \tau_2 - \tau_2 \tau_1$ are orthogonal primitive idempotents. The algebra $R(m\alpha_i)$ itself, not principal indecomposable modules, will serve as one of the projective modules that give our categorification. The whole Grothendieck group of the category of finitely generated projective $R(m\alpha_i)$-modules seems rather large and nontrivial. We hope to investigate it in a later work.

We now construct a faithful polynomial representation of $R(\alpha)$. First, we define an $R(m\alpha_i)$-module structure on $\mathbb{F}[x_1, \ldots, x_m]$ by

$$x_k \cdot f(x_1, \ldots, x_m) = x_k f(x_1, \ldots, x_m),$$

$$\tau_t \cdot f(x_1, \ldots, x_m) = P_i(x_t, x_{t+1}) \partial_t (f(x_1, \ldots, x_m)).$$
for \(x_k, \tau_l \in R(m\alpha_i), f(x_1, \ldots, x_m) \in \mathbb{F}[x_1, \ldots, x_m] \).

Lemma 2.2. \(\mathbb{F}[x_1, \ldots, x_m] \) is a faithful representation of \(R(m\alpha_i) \).

Proof. If \(i \in I^\omega \), our assertion was shown in [24, Example 2.2]. Assume that \(i \in I^{im} \) and let \(x_k \) be the endomorphism of \(\mathbb{F}[x_1, \ldots, x_m] \) defined by

\[
x_k(f(x_1, \ldots, x_m)) = x_kf(x_1, \ldots, x_m)
\]

for \(f(x_1, \ldots, x_m) \in \mathbb{F}[x_1, \ldots, x_m] \). Note that

\[
\{ \partial_{j_1} \cdots \partial_{j_k} x^t \mid t \in \mathbb{Z}_{\geq 0}^m, \ r_{j_1} \cdots r_{j_k} \text{ is a reduced expression in } S_m(k \geq 0) \}
\]

is a linearly independent subset of \(\text{End}(\mathbb{F}[x_1, \ldots, x_m]) \). Let

\[
\iota : R(m\alpha_i) \rightarrow \text{End}(\mathbb{F}[x_1, \ldots, x_m])
\]

be the map defined by \(\iota(x_k) = x_k \) and \(\iota(\tau_l) = P_l(x_k, x_{k+1}) \cdot \partial_{l} \).

We first show that \(\iota \) is well-defined. Since \(P_l(u, v) \) is a homogeneous polynomial, it is easy to verify that the relations \([2.1]\) hold. To check the relations in \([2.2]\), for simplicity, we assume that \(m = 3 \) and let \(x = x_1, y = x_2, z = x_3, P(u, v) = P_l(u, v) \).

Set

\[
P(u, v) = \frac{P(u, v)}{u - v}.
\]

By a direct computation, we have

\[
\iota(\tau_1 \tau_2 \tau_3) = P(x, y)P(y, z)P(x, z)(r_2 r_1 r_2 - r_2 r_1 - r_1 r_2 + r_1) - P(y, z)P(x, y)P(z, x)(1 - r_2) + P(x, y)P(y, z)^2(r_2 - 1),
\]

\[
\iota(\tau_1 \tau_2 \tau_1) = P(x, y)P(y, z)P(x, z)(r_1 r_2 r_1 - r_2 r_1 - r_1 r_2 + r_2) - P(x, y)P(y, x)P(z, x)(1 - r_1) + P(x, y)^2P(y, z)(r_1 - 1).
\]

As \(\iota(\tau_k) = P(x_k, x_{k+1})(r_k - 1) \) for \(k = 1, 2, \)

\[
\iota(\tau_2 \tau_1 \tau_2) - \iota(\tau_1 \tau_2 \tau_1) = (-P(x, y)P(x, z) + P(y, z)P(x, z) - P(x, y)P(y, z))\iota(\tau_1)
\]

\[
+ (P(x, y)P(y, z) + P(z, y)P(x, z) - P(x, y)P(x, z))\iota(\tau_2),
\]

which shows that the relation \([2.2]\) holds. It remains to show that \(\iota \) is injective. Take a nonzero element

\[
y = \tau_{w_1} f_1 + \cdots + \tau_{w_t} f_t \quad (0 \neq f_k \in \mathbb{F}[x_1, \ldots, x_m], \ w_k \text{ is a reduced expression in } S_m)
\]

of \(R(m\alpha_i) \) such that \(w_i \neq w_j \) if \(i \neq j \) and \(\ell(w_1) \geq \ell(w_k) \) for \(0 \leq k \leq t \). Write the reduced expression of \(w_1 \) as \(w_1 = r_{i_1} \cdots r_{i_t} \). Then, \(\iota(y) \) can be written as

\[
\iota(y) = \partial_{i_1} \cdots \partial_{i_t} f' + \cdots \text{ lower terms} \cdots
\]

for some nonzero polynomial \(f' \), which implies that \(\iota(y) \) is nonzero. Therefore \(\iota \) is injective. \(\square \)
Now we consider the general case $R(\alpha)$ with $\alpha \in Q^+$. Take a total order \prec on I. Let
\[
\mathcal{P}(\alpha) = \bigoplus_{i \in \text{Seq}(\alpha)} \mathbb{F}[x_1(i), \ldots, x_d(i)].
\]
For any polynomial $f \in \mathbb{F}[u_1, \ldots, u_d]$, let $f(i)$ be the polynomial in $\mathbb{F}[x_1(i), \ldots, x_d(i)]$ obtained from f by replacing u_k by $x_k(i)$. We define an $R(\alpha)$-module structure on $\mathcal{P}(\alpha)$ as follows: for $i \in \text{Seq}(\alpha)$ and $f \in \mathbb{F}[u_1, \ldots, u_d]$, we define
\[
\begin{align*}
1_i \cdot f(i) &= \delta_{ij}f(i) \quad (j \in \text{Seq}(\alpha)), \\
x_k \cdot f(i) &= x_k(i)f(i), \\
\tau_t \cdot f(i) &= \left\{ \begin{array}{ll}
\mathcal{P}_i(x_1(r_t i), x_{t+1}(r_t i))\partial_t f(r_t i) & \text{if } i_t = i_{t+1}, \\
\mathcal{Q}_{i_{t+1}, i_t}(x_t(r_t i), x_{t+1}(r_t i))\tau_t f(r_t i) & \text{if } i_t \neq i_{t+1}, i_t \succ i_{t+1}, \\
\tau_t f(r_t i) & \text{if } i_t \neq i_{t+1}, i_t \prec i_{t+1}.
\end{array} \right.
\end{align*}
\]
(2.9)

\textbf{Lemma 2.3.} $\mathcal{P}(\alpha)$ is a well-defined $R(\alpha)$-module.

\textit{Proof.} We verify the defining relations of $R(\alpha)$. The relations (2.1) can be verified in a straightforward manner. In the proof of Lemma 2.2, we already proved our assertion when $i_t = i_{t+1} = i_{t+2}$. Thus it suffices to consider the following three cases in (2.2):
(i) $i_t = i_{t+2} \neq i_{t+1}$, (ii) i_t, i_{t+1}, i_{t+2} are distinct, (iii) $i_t = i_{t+1}$ and $i_t \neq i_{t+2}$. For simplicity, let $d = 3$, $i = (i, j, k)$ and $f(u, v, w) = u^a v^b w^c$. Set $x = x_1(i)$, $y = x_2(i)$ and $z = x_3(i)$.

Case (i): Let $i = (i, j, i)$ with $i \neq j$. Without loss of generality, we may assume $i < j$. Then, by a direct computation, we have
\[
\begin{align*}
\tau_1 \tau_2 \tau_1(x^a y^b z^c) &= \mathcal{P}_i(x, z)\mathcal{Q}_{ij}(x, y)\frac{x^cy^b z^a - x^ay^b z^c}{x - z}, \\
\tau_2 \tau_1 \tau_2(x^a y^b z^c) &= \mathcal{P}_i(x, z)\mathcal{Q}_{ij}(x, y)\frac{x^cy^b z^a - x^ay^b z^c}{x - z},
\end{align*}
\]
which yield
\[
(\tau_2 \tau_1 \tau_2 - \tau_1 \tau_2 \tau_1)(x^a y^b z^c) = \mathcal{P}_i(x, z)\frac{\mathcal{Q}_{ij}(x, y) - \mathcal{Q}_{ij}(z, y)}{x - z}x^ay^b z^c.
\]

Case (ii): Let $i = (i, j, k)$ such that i, j, k are distinct. Since the other cases are similar, we will only prove our assertion when $i \succ j \succ k$. Then we have
\[
\begin{align*}
\tau_1 \tau_2 \tau_1(x^a y^b z^c) &= \mathcal{Q}_{ij}(y, z)\mathcal{Q}_{jk}(x, y)\mathcal{Q}_{ik}(x, z)x^cy^b z^a, \\
\tau_2 \tau_1 \tau_2(x^a y^b z^c) &= \mathcal{Q}_{ij}(y, z)\mathcal{Q}_{jk}(x, y)\mathcal{Q}_{ik}(x, z)x^cy^b z^a,
\end{align*}
\]
which implies that $(\tau_2 \tau_1 \tau_2 - \tau_1 \tau_2 \tau_1)(x^a y^b z^c) = 0$.

Case (iii): Similarly as above, we consider $i = (i, i, j)$ with $i \succ j$ only. Then
\[
\begin{align*}
\tau_1 \tau_2 \tau_1(x^a y^b z^c) &= \mathcal{Q}_{ij}(x, y)\mathcal{Q}_{ij}(x, z)\mathcal{P}_i(y, z)\frac{x^cy^b z^a - x^cy^a z^b}{y - z}, \\
\tau_2 \tau_1 \tau_2(x^a y^b z^c) &= \mathcal{Q}_{ij}(x, y)\mathcal{Q}_{ij}(x, z)\mathcal{P}_i(y, z)\frac{x^cy^b z^a - x^cy^a z^b}{y - z}.
\end{align*}
\]
Hence we have $(\tau_2 \tau_1 \tau_2 - \tau_1 \tau_2 \tau_1)(x^a y^b z^c) = 0$, which completes the proof. \square
Note that $R(\alpha) = \bigoplus_{i,j \in \text{Seq}(\alpha)} jR(\alpha)_i$, where $jR(\alpha)_i := 1_jR(\alpha)_1$. Given each $w \in S_d$, fix a minimal representative \underline{w} of w. For $i,j \in \text{Seq}(\alpha)$, let

$$jS_i = \{\underline{w} \mid w \in S_d, \ w(i) = j\}.$$

It follows from the defining relations that

$$jB(\alpha)_i := \{\tau_{\underline{w}}x^t1_1 \mid t \in \mathbb{Z}_{\geq 0}^d, \ \underline{w} \in jS_i\}$$

is a spanning set of $jR(\alpha)_i$. Moreover, we have the following proposition.

Proposition 2.4.

1. The set $jB(\alpha)_i$ is a homogeneous basis of $jR(\alpha)_i$.
2. $\mathfrak{pol}(\alpha)$ is a faithful representation of $R(\alpha)$.

Proof. Let $<$ be the lexicographic order of $\text{Seq}(\alpha)$ arising from the order $<$ of I, and let j_1w_1, be the minimal element in $j_2S_{j_1}$ for $j_1, j_2 \in \text{Seq}(\alpha)$. Let

$$\Upsilon : R(\alpha) \rightarrow \text{End}(\mathfrak{pol}(\alpha))$$

be the algebra homomorphism given in (2.9). We will show that $\Upsilon(jB(\alpha)_i)$ is linearly independent, which would imply the set $jB(\alpha)_i$ is linearly independent. The injectivity of Υ would also follow immediately. We prove our claim using induction on the lexicographic order $<$ on $\text{Seq}(\alpha)$.

Let $i \in \text{Seq}(\alpha)$, and let

$$j = (j_1 \ldots j_1 j_2 \ldots j_2 \ldots j_r) \in \text{Seq}(\alpha)$$

such that $j_1 > j_2 > \cdots > j_r$. Note that j is a maximal element in $\text{Seq}(\alpha)$.

Let m be a linear combination of $jB(\alpha)_i$ such that $\Upsilon(m) = 0$. Note that m can be expressed as

$$m = \sum_s \tau_{w_s}1_j x^{k_s}1_1$$

for some $k_s \in \mathbb{Z}_{\geq 0}^d$ and some $w_s \in S_{d_1} \times \cdots \times S_{d_r}$. It follows from (2.9) that $\Upsilon(\tau_{jw_s}1_1)$ can be viewed as a linear map from $F[x_1(i), \ldots, x_d(i)]$ to $F[x_1(j), \ldots, x_d(j)]$ sending 1_1 to 1_j. Hence,

$$\Upsilon(m) = 0 \quad \text{if and only if} \quad \Upsilon(\sum_s \tau_{w_s}x^{jw_s(k_s)}1_1) = 0.$$

Since $\Upsilon(\sum_s \tau_{w_s}x^{jw_s(k_s)}1_1)$ can be regarded as a linear map in $\bigoplus_{k=1}^d \text{End}(F[x_1, \ldots, x_{d_k}])$, by Lemma 2.2 we have

$$\Upsilon(\sum_s \tau_{w_s}x^{jw_s(k_s)}1_1) = 0 \quad \text{if and only if} \quad \sum_s \tau_{w_s}x^{jw_s(k_s)}1_1 = 0,$$

which implies $m = 0$. Therefore, $\Upsilon(jB(\alpha)_i)$ is linearly independent.

We now consider the case when j is an arbitrary sequence in $\text{Seq}(\alpha)$. This step can be proved by a similar induction argument as in [24, Theorem 2.5], which completes the proof. \hspace{1cm} \square
For any \(\alpha, \beta \in Q^+ \), let
\[
1_\alpha = \sum_{i \in \text{Seq}(\alpha)} 1_i, \\
1_{\alpha, \beta} = \sum_{i \in \text{Seq}(\alpha), j \in \text{Seq}(\beta)} 1_{i+j}.
\]
Then \(1_{\alpha, \beta} R(\alpha + \beta) \) has a natural graded left \(R(\alpha) \otimes R(\beta) \)-module structure.

Corollary 2.5. \(1_{\alpha, \beta} R(\alpha + \beta) \) is a free graded left \(R(\alpha) \otimes R(\beta) \)-module.

Proof. Let \(d := |\alpha|, d' := |\beta| \), and \(S_d \times S_{d'} \setminus S_{d+d'} \) be the set of minimal right \(S_d \times S_{d'} \)-coset representatives of \(S_{d+d'} \). For \(w \in S_d \times S_{d'} \setminus S_{d+d'} \), set
\[
\tilde{r}_w = \sum_{i \in \text{Seq}(\alpha), j \in \text{Seq}(\beta)} 1_{i+j} \tau_w 1_{w^{-1}(i+j)}.
\]
Then, it follows from Proposition 2.4 that
\[
\{ \tilde{r}_w \mid w \in S_d \times S_{d'} \setminus S_{d+d'} \}
\]
is a basis of \(1_{\alpha, \beta} R(\alpha + \beta) \) as a left \(R(\alpha) \otimes R(\beta) \)-module. \(\square \)

For a graded \(R(\alpha) \)-module \(M = \bigoplus_{i \in \mathbb{Z}} M_i \), let \(M(k) \) denote the graded \(R(\alpha) \)-module obtained from \(M \) by shifting the grading by \(k \); i.e., \(M(k) := \bigoplus_{i \in \mathbb{Z}} M_{i+k} \). Given \(\alpha, \alpha', \beta, \beta' \in Q^+ \) with \(\alpha + \beta = \alpha' + \beta' \), let
\[
\alpha_{\beta} R_{\alpha', \beta'} := 1_{\alpha, \beta} R(\alpha + \beta) 1_{\alpha', \beta'}.
\]
We write \(\alpha_{\beta} R_{\alpha', \beta'} \) (resp. \(\alpha_{\beta} R_{\alpha', \beta'} \)) for \(\alpha_{\beta} R_{\alpha', \beta'} \) if \(\beta = 0 \) (resp. \(\beta' = 0 \)). Note that \(\alpha_{\beta} R_{\alpha', \beta'} \) is a graded \((R(\alpha) \otimes R(\beta), R(\alpha') \otimes R(\beta')) \)-bimodule. Now we obtain the Mackey’s Theorem for Khovanov-Lauda-Rouquier algebras.

Proposition 2.6. The graded \((R(\alpha) \otimes R(\beta), R(\alpha') \otimes R(\beta')) \)-bimodule \(\alpha_{\beta} R_{\alpha', \beta'} \) has a graded filtration with graded subquotients isomorphic to
\[
\alpha_{\beta} R_{\alpha, \gamma} \otimes \beta_{\rho, \gamma'} \otimes \beta_{\gamma, \beta'} \otimes R'_{\alpha', \rho, \gamma, \rho'} \otimes \gamma_{\alpha', \gamma, \beta'} R_{\beta} ((\gamma | \beta + \gamma - \beta')),
\]
where \(R' = R(\alpha - \gamma) \otimes R(\gamma) \otimes R(\beta + \gamma - \beta') \otimes R(\beta' - \gamma) \) for all \(\gamma \in Q^+ \) such that every term above lies in \(Q^+ \).

Proof. The proof is almost identical to that of [24] Proposition 2.18. \(\square \)

For \(\alpha = \sum_{i \in I} k_i \alpha_i \in Q^+ \) with \(|\alpha| = d \), we define
\[
\text{Pol}(\alpha) = \prod_{i \in \text{Seq}(\alpha)} \mathbb{F}[x_{1,i}, \ldots, x_{d,i}].
\]
Then the symmetric group \(S_d \) acts on \(\text{Pol}(\alpha) \) by \(w \cdot x_{k,i} := x_{w(k),i} \) for \(w \in S_d \). Let
\[
\text{Sym}(\alpha) = \text{Pol}(\alpha)^{S_d}.
\]
Note that \(\text{Sym}(\alpha) \cong \bigotimes_{i \in I} \mathbb{F}[x_1, \ldots, x_{k_i}]^{S_{k_i}} \). Considering \(\text{Sym}(\alpha) \) as a subalgebra of \(\text{R}(\alpha) \) via the natural inclusion \(\text{Pol}(\alpha) \hookrightarrow \text{R}(\alpha) \) sending \(x_{k,i} \) to \(x_k 1_i \), we have the following lemma.
Lemma 2.7.

(1) $\text{Sym}(\alpha)$ is the center of $R(\alpha)$.
(2) $R(\alpha)$ is a free module of rank $(d!)^2$ over its center $\text{Sym}(\alpha)$.

Proof. We first consider the case when $\alpha = m\alpha_i$ for $i \in I$. If $i \in I^\text{re}$, it follows from $R(m\alpha_i) \simeq NH_m$ that $\text{Sym}(\alpha)$ is the center of $R(m\alpha_i)$. Suppose that $i \in I^\text{im}$. By Lemma 2.2, $R(\alpha)$ can be considered as a subalgebra of $\text{End}(\mathbb{F}[x_1, \ldots, x_d])$. Let x_k be the endomorphism of $\mathbb{F}[x_1, \ldots, x_m]$ defined by multiplication by x_k. It is obvious that $\text{Sym}(\alpha)$ is contained in the center of $R(\alpha)$ and $\mathbb{F}[x_1, \ldots, x_m] \subset R(\alpha)$.

For $f \in \mathbb{F}[x_1, \ldots, x_m]$, from the defining relations, we have
\[
f_{\tau_{i_1} \cdots \tau_{i_k}} = \tau_{i_1} \cdots \tau_{i_k} (r_{i_k} \cdots r_{i_1} f) + \cdots \text{ lower terms } \cdots
\]
with respect to the Bruhat order. Let $y = \sum \tau_{w_i} f_i$ be an element in the center of $R(\alpha)$. We assume $\ell(w_1) \geq \ell(w_k)$ for all k. Take j such that $w_j(j) \neq j$. Then
\[
yx_j - x_j y = y(x_j - x_{w_1(j)}) + \cdots \text{ lower terms } \cdots,
\]
which implies $\tau_{w_i} = 1$ for all i. Since y commutes with all τ_i, y should be a symmetric polynomial. Therefore, the center of $R(\alpha)$ is $\text{Sym}(\alpha)$.

We now deal with the general case when $\alpha \in Q^+$. In this case, using the fact that $\text{Sym}(m\alpha_i)$ is the center of $R(m\alpha_i)$ for $i \in I$, our assertion can be proved in the same manner as in [24, Theorem 2.9, Corollary 2.10].

\[\square\]

2.2. Quantum Serre relations.

Let $R(\alpha)$-mod (resp. $R(\alpha)$-pmod, $R(\alpha)$-fmod) be the category of arbitrary (resp. finitely generated projective, finite-dimensional) graded left $R(\alpha)$-modules. The morphisms in these categories are homogeneous homomorphisms. Let
\[
K_0(R) = \bigoplus_{\alpha \in Q^+} K_0(R(\alpha)\text{-pmod}) \quad \text{and} \quad G_0(R) = \bigoplus_{\alpha \in Q^+} G_0(R(\alpha)\text{-fmod}),
\]
where $K_0(R(\alpha)\text{-pmod})$ (resp. $G_0(R(\alpha)\text{-fmod})$) is the Grothendieck group of $R(\alpha)$-pmod (resp. $R(\alpha)$-fmod). Then $K_0(R)$ and $G_0(R)$ have the A-module structure given by $q[M] = [M(-1)]$, where $[M]$ is the isomorphism classes of an $R(\alpha)$-module M. For $M, N \in R(\alpha)$-mod, let $\text{Hom}(M, N)$ be the F-vector space of homogeneous homomorphisms of degree 0, and let $\text{Hom}(M(k), N) = \text{Hom}(M, N(-k))$ be the F-vector space of homogeneous homomorphisms of degree k. Define
\[
\text{HOM}(M, N) = \bigoplus_{k \in \mathbb{Z}} \text{Hom}(M, N[k]).
\]

Let $\text{Sym}^+(\alpha)$ be the maximal ideal of $\text{Sym}(\alpha)$. Since $\text{Sym}^+(\alpha)$ acts on any irreducible graded $R(\alpha)$-module trivially, the isomorphism classes of irreducible graded modules over $R(\alpha)$ are in 1-1 correspondence with the isomorphism classes of irreducible graded modules over the quotient
\(R(\alpha)/\text{Sym}^+(\alpha)R(\alpha) \). It follows from Lemma 2.7 that there are only finitely many irreducible \(R(\alpha) \)-modules, and all irreducible \(R(\alpha) \)-modules are finite-dimensional. Note that \(R(\alpha) \) has the Krull-Schmidt unique direct sum decomposition property for finitely generated modules since each graded part of \(R(\alpha) \) is finite-dimensional. Hence irreducible \(R(\alpha) \)-modules form a basis of \(G_0(R(\alpha)\text{-fmod}) \) as an \(\mathbb{A} \)-module, which implies that the projective covers of irreducible \(R(\alpha) \)-modules form a basis of \(K_0(R(\alpha)\text{-pmod}) \) as an \(\mathbb{A} \)-module.

Let us consider the \(\mathbb{A} \)-bilinear pairing \((\ ,\) : K_0(R(\alpha)) \times G_0(R(\alpha)) \to \mathbb{A}\) defined by

\[
(\lfloor P \rfloor, \lfloor M \rfloor) = \dim_q (P^* \otimes_{R(\alpha)} M),
\]

where \(\dim_q(N) := \sum_{i \in \mathbb{Z}} (\dim_{\mathbb{F}} N_i)q^i \) for a \(\mathbb{Z} \)-graded module \(N = \bigoplus_{i \in \mathbb{Z}} N_i \). Then, the paring \((\ ,\)\) is perfect. Thus \(K_0(R(\alpha)) \) and \(G_0(R(\alpha)) \) are dual to each other with respect to the pairing \((\ ,\)\). By Lemma 2.7 the pairing \((2.10)\) can be extended to an \(\mathbb{A} \)-bilinear form \((\ ,\) : K_0(R(\alpha)) \times K_0(R(\alpha)) \to \mathbb{Q}(q)\) given by

\[
(\lfloor P \rfloor, \lfloor Q \rfloor) = \dim_q (P^* \otimes_{R(\alpha)} Q).
\]

Since the pairing \((2.10)\) is perfect and \(P^* \otimes_{R(\alpha)} Q \simeq Q^* \otimes_{R(\alpha)} P \), we conclude that the pairing \((2.11)\) is a nondegenerate symmetric bilinear form on \(K_0(R(\alpha)) \).

For a finite-dimensional \(R(\alpha) \)-module \(M \), we define the \textit{character} \(\chi_q(M) \) of \(M \) to be

\[
\chi_q(M) = \sum_{i \in \text{Seq}(\alpha)} (\dim_q(1_i M)) \iota_i.
\]

For \(i = (i_1^{(d_1)}, \ldots, i_r^{(d_r)}) \in \text{Seq}(\alpha) \), let

\[
i_i := 1_{i_1, d_1} \otimes \cdots \otimes 1_{i_r, d_r},
\]

where

\[
i_{i, d} := \begin{cases} \tau_{w_0} x_1^{d-1} \cdots x_{d-1} 1_{(i \ldots, i)} & \text{if } i \in I^r, \\ 1_{(i \ldots, i)} & \text{if } i \in I^m,
\end{cases}
\]

and \(w_0 = r_1 r_2 r_1 \cdots r_{d-1} \cdots r_1 \) is the longest element in \(S_d \). Since each \(1_{i_k, d_k} \) is an idempotent in \(R(d_k \alpha_{i_k}) \) \((k = 1, \ldots, r)\), \(1_i \) is an idempotent. Define an \(R(\alpha) \)-module \(P_i \) corresponding to \(i = (i_1^{(d_1)}, \ldots, i_r^{(d_r)}) \in \text{Seq}(\alpha) \) by

\[
P_i := R(\alpha) 1_i \left(\sum_{k=1}^{r} \frac{d_k(d_k - 1)(\alpha_{i_k} | \alpha_{i_k})}{4} \right).
\]

Note that \(P_i \) is a projective graded \(R(\alpha) \)-module. By construction, if \(i \in I^m \), then

\[
P_{(i^{(d)})} = P_{(i \ldots, i)}. \]

For a finitely generated graded projective \(R(\alpha) \)-module \(P \), define

\[
\mathcal{P} = \text{HOM}(P, R(\alpha))^*.
\]
Note that P is a graded projective left $R(\alpha)$-module and that $P_1(\alpha) \simeq P_1(-\alpha)$ for $i \in \text{Seqd}(\alpha)$. Hence we get a \mathbb{Z}-linear involution $- : K_0(R) \to K_0(R)$.

We now prove the quantum Serre relations on $K_0(R)$. Suppose that $i \in I^e, j \in I$ and $a_{ij} \neq 0$. Let $N = 1 - a_{ij}$ and take nonnegative integers $a, b \geq 0$ with $a + b = N$. Define the homogeneous elements

Choose a pair of sequences i_1 and i_2 such that $i_1 \ast (i(a) j^i(b)) \ast i_2 \in \text{Seqd}(\alpha)$, and write $P_{\ast(i(a) j^i(b)) \ast i_2}$ for $P_{i_1 \ast(i(a) j^i(b)) \ast i_2}$. Then these elements give rise to homomorphisms of graded projective modules

$$d^+_{a,b} : P_{\ast(i(a) j^i(b))} \longrightarrow P_{\ast(i(a+1) j^i(b-1))},$$

$$m \longmapsto m \cdot 1_i \otimes \alpha^+_{a,b} \otimes 1_{i_2},$$

$$d^-_{a,b} : P_{\ast(i(a) j^i(b))} \longrightarrow P_{\ast(i(a-1) j^i(b+1))},$$

$$m \longmapsto m \cdot 1_i \otimes \alpha^-_{a,b} \otimes 1_{i_2}.$$

Set $d^+_{N,0} = 0$ and $d^-_{0,N} = 0$. Then we have

$$0 \overset{\text{Seqd}}{\longrightarrow} P_{\ast(i(0) j^i(N))} \overset{\text{Seqd}}{\longrightarrow} \cdots \overset{\text{Seqd}}{\longrightarrow} P_{\ast(i(a-1) j^i(b+1))} \overset{\text{Seqd}}{\longrightarrow} \cdots \overset{\text{Seqd}}{\longrightarrow} P_{\ast(i(N) j^i(0))} \overset{\text{Seqd}}{\longrightarrow} 0.$$

Lemma 2.8.

1. $d^+_{a,b} \circ d^-_{a-1,b+1} = 0, \quad d^-_{a,b} \circ d^+_{a+1,b-1} = 0$ for $a, b > 0$.
2. $d^-_{1,N-1} \circ d^-_{N,0} = t_{i,j} - a_{ij} \cdot \text{id}, \quad d^-_{1,N-1} \circ d^+_{0,N} = (-1)^{N-1} t_{i,j} - a_{ij} \cdot \text{id}$.
3. For $1 < a, b < N$, we have

$$d^-_{a-1,b+1} \circ d^+_{a,b} - d^+_{a-1,b+1} \circ d^-_{a,b} = (-1)^{b-1} t_{i,j} - a_{ij} \cdot \text{id}.$$

Proof. If $j \in I^e$, this lemma was proved in [25 31]. We will prove our lemma when $j \in I^{im}$.

Let $d = 2 - a_{ij}$ and let $e_{a,b} = 1_i \otimes 1_j \otimes 1_k$ for $a, b \geq 0$. Since $i \in I^e$ and $P_i(u, v) = 1$, it follows from [25 31] that

$$\alpha^+_{a,b} = \tau_d - 1 \cdots \tau_{a+1} \cdot e_{a+1,b-1} = e_{a,b} \tau_d - 1 \cdots \tau_{a+1} \cdot e_{a+1,b-1},$$

$$\alpha^-_{a,b} = \tau_1 \cdots \tau_{a-1} \cdot e_{a-1,b+1} = e_{a,b} \tau_1 \cdots \tau_{a-1} \cdot e_{a-1,b+1}.$$
By a direct computation, we have
\[\alpha_{a-1,b+1}^+ \alpha_{a,b}^+ = \alpha_{a-1,b+1} \tau_{d-1} \cdots \tau_a \epsilon_{a,b} \epsilon_{a,b} \tau_{d-1} \cdots \tau_a + 1 \epsilon_{a+1,b-1} = \alpha_{a-1,b+1} \tau_{d-1} \cdots \tau_a \epsilon_{a+1,b-1} = 0. \]
In the same manner, we get \(\alpha_{a+1,b-1}^+ \alpha_{a,b}^- = 0. \)

On the other hand, using the same argument as in [25], for \(a, b > 0 \), we obtain
\[\alpha_{a,b}^+ \alpha_{a-1,b-1}^+ = \tau_1 \cdots \tau_{a-1} \tau_{d-1} \cdots \tau_a \epsilon_{a+1,b} \epsilon_{a,b} \tau_{d-1} \cdots \tau_a + 1 \epsilon_{a+1,b}, \]
\[\alpha_{a,b}^- \alpha_{a-1,b+1}^- = \tau_1 \cdots \tau_{a-1} \tau_{d-1} \cdots \tau_a \epsilon_{a-1,b+1} \epsilon_{a,b} \tau_{d-1} \cdots \tau_a + 1 \epsilon_{a+1,b}, \]
which implies
\[\alpha_{N,0}^+ \alpha_{N-1,1}^- = t_{i,j,-a_{ij},0} \epsilon_{N,0}, \quad \alpha_{0,N}^+ \alpha_{1,N-1}^- = (-1)^N t_{i,j,-a_{ij},0} \epsilon_{0,N}, \]
and
\[\alpha_{a,b}^+ \alpha_{a-1,b-1}^- - \alpha_{a,b}^- \alpha_{a-1,b+1}^+ = \tau_1 \cdots \tau_{a-1} \tau_{d-1} \cdots \tau_a + 2 (\tau_a + 1 \tau_a + 1) \epsilon_{a,b} \]
\[= \tau_1 \cdots \tau_{a-1} \tau_{d-1} \cdots \tau_a + 2 (\tilde{Q}_{i,j} (x_a, x_{a+1}, x_{a+2})) \epsilon_{a,b} = (-1)^{b-1} t_{i,j,-a_{ij},0} \epsilon_{a,b}. \]
Therefore, we obtain
\[\alpha_{a-1,b+1}^+ \alpha_{a,b}^+ = 0, \quad \alpha_{a+1,b-1}^- \alpha_{a,b}^- = 0, \]
\[\alpha_{N,0}^+ \alpha_{N-1,1}^- = t_{i,j,-a_{ij},0} \epsilon_{N,0}, \quad \alpha_{0,N}^+ \alpha_{1,N-1}^- = (-1)^N t_{i,j,-a_{ij},0} \epsilon_{0,N}, \]
\[\alpha_{a,b}^+ \alpha_{a+1,b-1}^- - \alpha_{a,b}^- \alpha_{a+1,b+1}^+ = (-1)^{b-1} t_{i,j,-a_{ij},0} \epsilon_{a,b}, \]
as desired. \(\square \)

Theorem 2.9.

1. If \(a_{ij} = 0 \), then \([P_{\cdots ij \cdots}] = [P_{\cdots ji \cdots}].\)
2. If \(i \in I^* \) and \(j \in I \) with \(i \neq j \), then
\[\sum_{k=0}^{1-a_{ij}} (-1)^k [P_{\cdots i(k)j i^{(1-a_{ij}-k)} \cdots}] = 0. \]

Proof. If \(a_{ij} = 0 \), let \(\tau^- \) (resp. \(\tau^+ \)) be the element in \(R \) changing \((ij) \) to \((ji) \) (resp. \((ji) \) to \((ij) \)) and define
\[d^- : P_{\cdots ij \cdots} \to P_{\cdots ji \cdots} \] (resp. \(d^+ : P_{\cdots ji \cdots} \to P_{\cdots ij \cdots} \)) to be the map given by right multiplication by \(t_{i,j;0,0} \tau^- \) (resp. \(t_{j,i;0,0} \tau^+ \)). From the defining relation \([2.1]\), we see that \(d^+ \) and \(d^- \) are inverses to each other. Hence
\[[P_{\cdots ij \cdots}] = [P_{\cdots ji \cdots}]. \]
Suppose that $a_{ij} \neq 0$ and $i \in I^e$. By Lemma 2.8, the complex $(P_{(\ldots ;i^{(a)} j^{(b)} \ldots)}, d^+_a,b)$ becomes an exact sequence with the splitting maps $(-1)^{b-1} t_{ij-a_{ij},0} d_{a,b}^-$. Therefore, our assertion follows from the Euler-Poincarè principle.

\[\square \]

3. Categorification of $\mathbb{C}^\gamma (\mathfrak{g})$

In this section, we show that the Khovanov-Lauda-Rouquier algebra R gives a categorification of $\mathbb{C}^\gamma (\mathfrak{g})$.

3.1. Induction and restriction.

For $\alpha, \beta \in \mathbb{Q}^+$, consider the natural embedding

\[\iota_{\alpha, \beta} : R(\alpha) \otimes R(\beta) \hookrightarrow R(\alpha + \beta), \]

which maps $1_\alpha \otimes 1_\beta$ to $1_{\alpha, \beta}$. For $M \in R(\alpha) \otimes R(\beta)$-mod and $N \in R(\alpha + \beta)$-mod, we define

\[\text{Ind}_{\alpha, \beta} M = R(\alpha + \beta) \otimes_{R(\alpha) \otimes R(\beta)} M, \]
\[\text{Res}_{\alpha, \beta} N = 1_{\alpha, \beta} N. \]

Then it is straightforward to verify that the Frobenius reciprocity holds:

\begin{equation}
\text{HOM}_{R(\alpha + \beta)}(\text{Ind}_{\alpha, \beta} M, N) \cong \text{HOM}_{R(\alpha) \otimes R(\beta)}(M, \text{Res}_{\alpha, \beta} N).
\end{equation}

When there is no ambiguity, we will simply write Ind and Res for $\text{Ind}_{\alpha, \beta}$ and $\text{Res}_{\alpha, \beta}$, respectively.

Given $i \in \text{Seq}(\alpha)$ and $j \in \text{Seq}(\beta)$, a sequence $k \in \text{Seq}(\alpha + \beta)$ is called a string of i and j if k is a permutation of $i * j$ such that i and j are subsequences of k. For a string k of $i \in \text{Seq}(\alpha)$ and $j \in \text{Seq}(\beta)$, let

\[\deg(i, j, k) = \deg(\tau w 1_{i,j}), \]

where w is the element in $S_{|\alpha|+|\beta|}/S_{|\alpha|} \times S_{|\beta|}$ corresponding to k. Given $X = \sum x_i i$ and $Y = \sum y_j j$, the shuffle product $X \star Y$ of X and Y is defined to be

\[X \star Y = \sum_k \left(\sum_{i,j} q^{\deg(i,j,k)} x_i y_j \right) k, \]

where k runs over all the shuffles of i and j. Then, by Proposition 2.4, we have

\begin{equation}
\text{ch}_q(\text{Ind}_{\alpha, \beta} M \boxtimes N) = \text{ch}_q(M) \star \text{ch}_q(N)
\end{equation}

for $M \in R(\alpha)$-fmod and $N \in R(\beta)$-fmod.

By Corollary 2.8, $\text{Ind}_{\alpha, \beta}$ and $\text{Res}_{\alpha, \beta}$ take projective modules to projective modules. Since $1_{\alpha, \beta}$ is an idempotent, $\text{Ind}_{\alpha, \beta}$ and $\text{Res}_{\alpha, \beta}$ can be viewed as exact functors between the categories of projective modules. Hence we obtain the linear maps

\[\text{Ind}_{\alpha, \beta} : K_0(R(\alpha)) \otimes K_0(R(\beta)) \longrightarrow K_0(R(\alpha + \beta)), \]
\[\text{Res}_{\alpha, \beta} : K_0(R(\alpha + \beta)) \longrightarrow K_0(R(\alpha)) \otimes K_0(R(\beta)). \]
It follows from Proposition 2.6 that
\[\text{Ind}_{\alpha,\beta}(P_i \otimes P_j) \simeq P_{i+j} \quad \text{for } i \in \text{Seq}(\alpha), \ j \in \text{Seq}(\beta), \]
\[\text{Res}_{\alpha,\beta}P_k \simeq \bigoplus_{i,j} P_i \otimes P_j(- \deg(i,j,k)) \quad \text{for } k \in \text{Seq}(\alpha + \beta), \]
where the sum is taken over all \(i \in \text{Seq}(\alpha), \ j \in \text{Seq}(\beta) \) such that \(k \) can be expressed as a shuffle of \(i \) and \(j \). We extend the linear maps \(\text{Ind}_{\alpha,\beta} \) and \(\text{Res}_{\alpha,\beta} \) to the whole space \(K_0(R) \) by linearity:
\[\text{Ind} : K_0(R) \otimes K_0(R) \to K_0(R) \quad \text{given by} \quad ([M], [N]) \mapsto [\text{Ind}_{\alpha,\beta}M \otimes N], \]
\[\text{Res} : K_0(R) \to K_0(R) \otimes K_0(R) \quad \text{given by} \quad [L] \mapsto \sum_{\alpha',\beta' \in Q^+} [\text{Res}_{\alpha',\beta'}L]. \]
We denote by \([M][N]\) the product \(\text{Ind}([M],[N]) \) of \([M]\) and \([N]\) in \(K_0(R) \).

Proposition 3.1.

1. The pair \((K_0(R), \text{Ind})\) becomes an associative unital \(\mathbb{A}\)-algebra.
2. The pair \((K_0(R), \text{Res})\) becomes a coassociative counital \(\mathbb{A}\)-coalgebra.

Proof. Our assertions on associativity and coassociativity follow from the transitivity of induction and restriction. Define
\[\iota : \mathbb{A} \to K_0(R) \quad \text{by} \quad \iota(\sum_k a_k q^k) = \sum_k a_k q^k 1, \]
\[\epsilon : K_0(R) \to \mathbb{A} \quad \text{by} \quad \epsilon(M) = \dim_q(M_0), \]
where \(M_0\) is the image of \(M\) under the natural projection \(K_0(R) \to K_0(R(0))\). Then one can verify that \(\iota\) (resp. \(\epsilon\)) is the unit (resp. counit) of \(K_0(R)\).

We define the algebra structure on \(K_0(R) \otimes K_0(R)\) by
\[([M_1] \otimes [M_2]) \cdot ([N_1] \otimes [N_2]) = q^{-\beta_2\gamma_1}[M_1][N_1] \otimes [M_2][N_2] \]
for \(M_i \in K_0(R(\beta_i)), \ N_i \in K_0(R(\gamma_i)) \) \((i = 1, 2)\). Using Proposition 2.6 we prove:

Proposition 3.2. \(\text{Res} : K_0(R) \to K_0(R) \otimes K_0(R)\) is an algebra homomorphism.

Let us recall the bilinear paring \((\ , \) : K_0(R) \otimes K_0(R) \to \mathbb{Q}(q)\) given in (2.11) and the projective modules \(P_i\) for \(i \in \text{Seq}(\alpha)\) defined in (2.12). We denote by \(1\) the 1-dimensional \(R(0)\)-module of degree 0.

Proposition 3.3. The bilinear paring \((\ , \) : K_0(R) \otimes K_0(R) \to \mathbb{Q}(q)\) satisfies the following properties:

1. \((1, 1) = 1\),
2. \([P_i][P_j]\) \(= \delta_{ij}(1 - q^2)^{-1}\) for \(i, j \in I\),
3. \([L][M][N] = (\text{Res}[L], [M] \otimes [N])\) for \([L], [M], [N] \in K_0(R)\),
4. \([L][M], [N] = ([L] \otimes [M], \text{Res}[N])\) for \([L], [M], [N] \in K_0(R)\).
Proof. The assertions (1) and (2) follow from the \mathbb{Z}-grading on $R(\alpha)$. Suppose that $L \in R(\alpha+\beta)$-pmod, $M \in R(\alpha)$-pmod and $N \in R(\beta)$-pmod. Then we have

$$([L], [M][N]) = \dim_q(L^* \otimes_{R(\alpha+\beta)} \text{Ind}_{\alpha, \beta} M \boxtimes N)$$

$$= \dim_q((\text{Res}_{\alpha, \beta} L)^* \otimes_{R(\alpha)} M \boxtimes N) = (\text{Res}_{\alpha, \beta} L, M \boxtimes N),$$

which yields that $([L], [M][N]) = (\text{Res}[L], [M] \otimes [N])$.

The assertion (4) can be proved in the same manner.

Define a map $\Phi : U^-_\Delta (\mathfrak{g}) \longrightarrow K_0(R)$ by

$$f^{(d_1)}_{i_1} \cdots f^{(d_r)}_{i_r} \mapsto [P_{(i^{(d_1)}_1) \cdots i^{(d_r)}_r}].$$

Theorem 3.4. The map Φ is an injective algebra homomorphism.

Proof. By Theorem 2.5, Φ is an algebra homomorphism. Since both of Δ_0 and Res are algebra homomorphisms and

$$\Delta_0(f_i) = f_i \otimes 1 + 1 \otimes f_i, \quad \text{Res}(P_{(i)}) = P_{(i)} \otimes 1 + 1 \otimes P_{(i)} (i \in I),$$

by (1.3) and Proposition 3.3 we have

$$(x, y)_L = (\Phi(x), \Phi(y)) \text{ for all } x, y \in U^-_\Delta (\mathfrak{g}).$$

Hence $\text{Ker}\Phi$ is contained in the radical of the bilinear form $(\ , \)_L$, which is nondegenerate. The assertion follows immediately.

Therefore, $\text{Im}\Phi$ gives a categorification of $U^-_\Delta (\mathfrak{g})$. In general, the homomorphism Φ is not surjective. However, if $a_{ii} \neq 0$ for all $i \in I$, then Φ is an isomorphism as will be shown in the next subsection.

3.2. Surjectivity of Φ.

In this subsection, we assume that $a_{ii} \neq 0$ for all $i \in I$. We have seen in Section 2 that the algebra $R(ma_i)$ has a unique irreducible graded module $L(i^m)$. If $i \in I^c$, we have

$$L(i^m) \simeq \text{Ind}^R_{R[\mathbb{F}[x_1, \ldots, x_m]]} 1,$$

where 1 is the trivial $\mathbb{F}[x_1, \ldots, x_m]$-module of dimension 1 over \mathbb{F}. Note $\dim_q(1) = 1$. If $i \in I^m$, then $L(i^m)$ is isomorphic to the trivial graded $R(ma_i)$-module with defining relations given in (2.8). We know $\text{ch}_q(L(i^m)) = (i \cdots i)$.

For $M \in R(\alpha)$-mod and $i \in I$, define

$$\Delta_i M = 1_{\delta_i, n-\delta_i}, M \in R(\alpha) \otimes R(\delta_i - \alpha_i)-\text{mod},$$

$$\varepsilon_i(M) = \max\{k \geq 0 \mid \Delta_i M \neq 0\},$$

$$\hat{\mathcal{C}}_i(M) = \text{soc}((\text{Res}_{\alpha_i, \delta_i} \circ \Delta_i(M)) \in R(\alpha - \alpha_i)-\text{mod},$$

$$\hat{f}_i(M) = \text{hdInd}_{\alpha_i, \alpha_i}(L(i) \boxtimes M) \in R(\alpha + \alpha_i)-\text{mod}. $$

Note that they are defined in the opposite manner to (2.3) and (2.4). By the Frobenius reciprocity, we have

$$\text{HOM}_{R(\alpha)}(\text{Ind}_{\alpha_i, \alpha-ma_i} L(i^m) \boxtimes N, M) \simeq \text{HOM}_{R(ma_i) \otimes R(\alpha-ma_i)}(L(i^m) \boxtimes N, \Delta_i M).$$
for \(N \in R(\alpha - m\alpha_i)\)-mod and \(M \in R(\alpha)\)-mod.

Lemma 3.5. For \(i \in \Pi^m \), take \(m_1, \ldots, m_k \in \mathbb{Z}_{>0} \) and set \(m = m_1 + \cdots + m_k \). Then the following statements hold.

1. \(\text{Res}_{m_1\alpha_1, \ldots, m_k\alpha_k} L(i^m) \) is isomorphic to \(L(i^{m_1}) \otimes \cdots \otimes L(i^{m_k}) \).
2. \(\text{Ind}_{m_1\alpha_1, \ldots, m_k\alpha_k} (L(i^{m_1}) \otimes \cdots \otimes L(i^{m_k})) \) has an irreducible head, which is isomorphic to \(L(i^m) \).

Proof. The assertion (1) follows from the definition \(2.8 \). To prove (2), for simplicity, we assume \(k = 2 \). Let \(i = (i, \ldots, i) \) and \(L = \text{Ind}L_1 \otimes L_2 \), where \(L_j := L(i^{m_j}) \) \((j = 1, 2)\). Set \(L' = \{ x \in L | \deg(x) > 0 \} \).

Then, since \(1 \otimes (L_1 \otimes L_2) \not\subset L' \), \(L' \) is a unique maximal submodule of \(L \); i.e., \(L/L' \simeq L(i^m) \) as a graded module. We will show that \(\text{hd}L \) is irreducible. By a direct computation,

\[
\text{ch}_q(L) = \sum_{w \in S_{m_1+m_2}/S_{m_1} \times S_{m_2}} q^{-\ell(w)(\alpha_1|\alpha_2)} i
\]

\[
= i + (\ldots \text{other terms with } q^t \ldots) \ (t \in \mathbb{Z}_{>0}).
\]

Note that \(\text{ch}_q(L_1 \otimes L_2) = i \). For any quotient \(Q \) of \(L \), by the Frobenius reciprocity \(3.11 \), we have an injective homomorphism of degree 0

\[
L_1 \otimes L_2 \hookrightarrow \text{Res}_{m_1\alpha_1, m_2\alpha_2} Q,
\]

which yields

\[
\text{ch}_q(Q) = i + (\ldots \text{other terms with } q^t \ldots) \quad \text{for } t \in \mathbb{Z}_{>0}.
\]

Therefore, \(\text{hd}L \) has only one summand, and hence it is irreducible. \(\square \)

Lemma 3.6. Let \(M \) be an irreducible \(R(\alpha)\)-module and let \(L(i^m) \otimes N \) be an irreducible submodule of the \(R(m\alpha_1) \otimes R(\alpha - m\alpha_1)\)-module \(\Delta_m M \). Then \(\varepsilon_i(N) = \varepsilon_i(M) - m \).

Proof. If \(i \in \Pi^m \), then the proof is the same as that of \(24 \text{ Lemma 3.6} \). If \(i \in \Pi^m \), by the definition, we have \(\varepsilon_i(N) \leq \varepsilon_i(M) - m \). From the equation \(3.5 \), we obtain

\[
0 \to K \to \text{Ind}L(i^m) \otimes N \to M \to 0
\]

for some submodule \(K \) of \(\text{Ind}L(i^m) \otimes N \). It follows from \(3.2 \) and the exactness of \(\Delta_\alpha \) that \(\varepsilon_i(N) \geq \varepsilon_i(M) - m \), which yields our assertion. \(\square \)

Lemma 3.7. Let \(N \) be an irreducible \(R(\alpha)\)-module with \(\varepsilon_i(N) = 0 \) and let \(M = \text{Ind}L(i^m) \otimes N \). Then we have

1. \(\Delta_m M \simeq L(i^m) \otimes N \),
2. \(\text{hd}M \) is an irreducible module with \(\varepsilon_i(\text{hd}M) = m \),
3. for all other composition factors \(L \) of \(M \), we have \(\varepsilon_i(L) < m \).

Proof. Our assertion can be proved in the same manner as in \(24 \text{ Lemma 3.7} \). \(\square \)
Lemma 3.8. Let M be an irreducible $R(\alpha)$-module and let $\varepsilon = \varepsilon_i(M)$. Then $\Delta_i M$ is isomorphic to $L(i^\varepsilon) \boxtimes N$ for some irreducible $R(\alpha - \varepsilon \alpha_i)$-module N with $\varepsilon_i(N) = 0$.

Proof. Our assertion can be proved in the same manner as in [26, Lemma 5.1.4] (cf. [24, Lemma 3.8]). □

Lemma 3.9. Suppose that $i \in I^\text{im}$ and N is an irreducible $R(\alpha)$-module with $\varepsilon_i(N) = 0$. Let

$$M = \text{Ind}_L(i^{m_1}) \boxtimes \cdots \boxtimes L(i^{m_k}) \boxtimes N$$

for some positive integers $m_1, \ldots, m_k \in \mathbb{Z}_{>0}$ and set $m = m_1 + \cdots + m_k$. Then

1. $\text{hd} M$ is irreducible,
2. $\varepsilon_i(\text{hd} M) = m$.

Proof. By the definition, we have

$$\Delta_{i^m} M = (\text{Ind}_L(i^{m_1}) \boxtimes \cdots \boxtimes L(i^{m_k})) \boxtimes N.$$

In the Grothendieck group $G_0(R(m \alpha_i) \otimes R(\alpha - m \alpha_i))$ of the category of finite-dimensional graded $R(m \alpha_i) \otimes R(\alpha - m \alpha_i)$-modules, we have

$$[\Delta_{i^m} M] = \sum_w q^{-f(w)(\alpha_i|\alpha_i)}[L(i^m) \boxtimes N],$$

where w runs over all the elements in $S_m/S_{m_1} \times \cdots \times S_{m_k}$. By the Frobenius reciprocity, for any quotient Q of M, there is a nontrivial homomorphism of degree 0

$$\Delta_{i^m} M = (\text{Ind}_L(i^{m_1}) \boxtimes \cdots \boxtimes L(i^{m_k})) \boxtimes N \rightarrow \Delta_{i^m} Q.$$

By Lemma 3.9 (2), we have

$$[\Delta_{i^m} Q] = [L(i^m) \boxtimes N] + (\cdots \text{other terms with } q^t \cdots),$$

in the Grothendieck group $G_0(R(m \alpha_i) \otimes R(\alpha - m \alpha_i))$. Therefore, by the same argument as in Lemma 3.9, $\text{hd} M$ is irreducible and $\varepsilon_i(\text{hd} M) = m$. □

Lemma 3.10. Let N be an irreducible $R(\alpha)$-module and let $M = \text{Ind}_L(i^m) \boxtimes N$.

1. $\text{hd} M$ is an irreducible module with $\varepsilon_i(\text{hd} M) = \varepsilon_i(N) + m$.
2. If $i \in I^\text{re}$, then for all other composition factors L of M, we have $\varepsilon_i(L) < \varepsilon_i(N) + m$.

Proof. If $i \in I^\text{im}$, then the proof is identical with that of [26, Lemma 5.1.5] (cf. [24, Lemma 3.9]). Suppose that $i \in I^\text{im}$. Let $\varepsilon = \varepsilon_i(N)$. By Lemma 3.8, we have

$$\Delta_{i^\varepsilon} N = L(i^\varepsilon) \boxtimes K$$

for some irreducible $R(\alpha - \varepsilon \alpha_i)$-module K with $\varepsilon_i(K) = 0$. By the Frobenius reciprocity, there is a surjective homomorphism

$$\text{Ind}_L(i^\varepsilon) \boxtimes K \twoheadrightarrow N,$$
which yields

$$\text{Ind} L(i^m) \boxtimes L(i^2) \boxtimes K \rightarrow \text{Ind} L(i^m) \boxtimes N.$$

Therefore, our assertion follows from Lemma 3.9 \(\square\)

Lemma 3.11. Let \(M\) be an irreducible \(R(\alpha)\)-module. Then, for \(0 \leq m \leq \varepsilon_i(M)\), the submodule \(\text{soc}\Delta_{i^{-m}}M\) of \(M\) is an irreducible module of the form \(L(i^m) \boxtimes L\) with \(\varepsilon_i(L) = \varepsilon_i(M) - m\) for some irreducible \(R(\alpha - ma_i)\)-module \(L\).

Proof. If \(i \in \mathcal{I}^e\), then the proof is the same as that of [26 Lemma 5.1.6] (cf. [24 Lemma 3.10]). If \(i \in \mathcal{I}^m\), let \(\varepsilon = \varepsilon_i(M)\). Note that every summand of \(\text{soc}\Delta_{i^{-m}}M\) has the form \(L(i^m) \boxtimes L\) for some irreducible \(R(\alpha - ma_i)\)-module \(L\). It follows from Lemma 3.10 that

$$\varepsilon_i(L) = \varepsilon - m,$$

so \(L(i^m) \boxtimes \Delta_{i^{-m}}(L) \neq 0\). It is clear that \(\text{Res}_{\Delta_{i^{-m}}(L)}^{\Delta_{\alpha,\alpha - \varepsilon}} \Delta_{i^{-m}}(L)\) has \(L(i^m) \boxtimes L\) as a submodule. On the other hand, by Lemma 3.5 and Lemma 3.8, there exists an irreducible \(R(\alpha - \varepsilon)\)-module \(N\) such that

$$\text{Res}_{\Delta_{i^{-m}}(L)}^{\Delta_{\alpha,\alpha - \varepsilon}} \Delta_{i^{-m}}(L) \simeq L(i^m) \boxtimes L(i^{-m}) \boxtimes N,$$

which is irreducible. Hence \(\text{soc}\Delta_{i^{-m}}M\) is irreducible and isomorphic to \(L(i^m) \boxtimes L\). \(\square\)

By Lemma 3.10 and Lemma 3.11 the operators \(\tilde{e}_i\) and \(\tilde{f}_i\) take irreducible modules to irreducible modules or 0, and

$$\varepsilon_i(M) = \max\{k \geq 0 \mid \tilde{e}_i^k M \neq 0\}, \quad \varepsilon_i(\tilde{f}_i M) = \varepsilon_i(M) + 1.$$

Lemma 3.12. Let \(M\) be an irreducible \(R(\alpha)\)-module. Then we have

1. \(\text{soc}\Delta_{i^{-m}}M \simeq L(i^m) \boxtimes (\tilde{e}_i^m M),\)
2. \(\text{Ind} \text{Ind}(L(i^m) \boxtimes M) \simeq \tilde{f}_i^m M.\)

Proof. If \(i \in \mathcal{I}^e\), then the proof is the same as in [26 Lemma 5.2.1]. Suppose that \(i \in \mathcal{I}^m\). We first focus on the assertion (1). Since the case \(m > \varepsilon_i(M)\) is trivial, we may assume that \(m \leq \varepsilon_i(M)\). Since \(L(i) \boxtimes \tilde{e}_i M \hookrightarrow \Delta_i M\), we have

$$\underbrace{L(i) \boxtimes \cdots \boxtimes L(i)}_{m} \boxtimes \tilde{e}_i^m M \hookrightarrow \text{Res}_{\alpha,0,\alpha - \varepsilon}^{\alpha,\alpha - \varepsilon} \Delta_{i^{-m}} M,$$

which implies there is a nontrivial homomorphism

$$\text{Ind}(L(i) \boxtimes \cdots \boxtimes L(i)) \boxtimes \tilde{e}_i^m M \rightarrow \Delta_{i^{-m}} M.$$

Since any quotient of \(\text{Ind}(L(i) \boxtimes \cdots \boxtimes L(i))\) has a 1-dimensional submodule, \(\Delta_{i^{-m}} M\) has a submodule which is isomorphic to \(L(i^m) \boxtimes \tilde{e}_i^m M\). Hence the assertion (1) follows from Lemma 3.11.

For the assertion (2), by the definition of \(\tilde{f}_i\), there is a nontrivial homomorphism

$$\text{Ind}(\text{Ind}(L(i) \boxtimes \cdots \boxtimes L(i)) \boxtimes M) \rightarrow \tilde{f}_i^m M.$$
Using the same argument in the proof of Lemma 3.10 we have
\[\text{hdInd}(\text{Ind}(L(i) \boxtimes \cdots \boxtimes L(i)) \boxtimes M) \simeq \tilde{f}_i^m M. \]

On the other hand, the nontrivial homomorphism
\[\text{Ind}(L(i) \boxtimes \cdots \boxtimes L(i)) \rightarrow L(i^m) \]
induces a nontrivial homomorphism
\[\text{Ind}(\text{Ind}(L(i) \boxtimes \cdots \boxtimes L(i)) \boxtimes M) \rightarrow \text{Ind}(i^m) \boxtimes M. \]

Therefore, we conclude \(\text{hdInd}(L(i^m) \boxtimes M) \simeq \tilde{f}_i^m M. \)

Lemma 3.13. Let \(M \) be an irreducible \(R(\alpha) \)-module and let \(N \) be an irreducible \(R(\alpha + \alpha_i) \)-module. Then we have
\[\tilde{f}_i M \simeq N \text{ if and only if } M \simeq \tilde{e}_i N. \]

Proof. Using Lemma 3.12 our assertion can be proved in the same manner as in [26, Lemma 5.2.3] \(\square \)

Let \(\mathbb{A}\text{Seq}(\alpha) \) (resp. \(\mathbb{Q}(q)\text{Seq}(\alpha) \)) be the free \(\mathbb{A} \)-module (resp. \(\mathbb{Q}(q) \)-module) generated by \(\text{Seq}(\alpha) \). For an irreducible \(R(\alpha) \)-module \(M \), the character \(\text{ch}_q(M) \) can be viewed as an element in \(\mathbb{A}\text{Seq}(\alpha) \). Using the above lemmas, one can prove the following proposition in the same manner as in [26, Theorem 5.3.1].

Proposition 3.14. The character map
\[\text{ch}_q : G_0(R(\alpha)) \rightarrow \mathbb{A}\text{Seq}(\alpha) \]
is injective.

Let \(\mathcal{F} \) be the free associative algebra over \(\mathbb{Q}(q) \) generated by \(f_i \) \((i \in I)\) and consider the natural projection \(\pi : \mathcal{F} \rightarrow U_q^-(\mathfrak{g}) \) given by \(f_i \mapsto f_i \) \((i \in I)\). Then the vector space \(\mathbb{Q}(q)\text{Seq}(\alpha) \) can be regarded as the dual space of \(\mathcal{F}_\alpha := \pi^{-1}(U_q^-(\mathfrak{g})_\alpha) \) for \(\alpha \in Q^+ \). Set
\[K_0(R)_{\mathbb{Q}(q)} = \mathbb{Q}(q) \otimes_{\mathbb{A}} K_0(R), \quad K_0(R(\alpha))_{\mathbb{Q}(q)} = \mathbb{Q}(q) \otimes_{\mathbb{A}} K_0(R(\alpha)), \]
\[G_0(R)_{\mathbb{Q}(q)} = \mathbb{Q}(q) \otimes_{\mathbb{A}} G_0(R), \quad G_0(R(\alpha))_{\mathbb{Q}(q)} = \mathbb{Q}(q) \otimes_{\mathbb{A}} G_0(R(\alpha)), \]
and denote by \(\Phi_{\mathbb{Q}(q)} : U_q^-(\mathfrak{g}) \rightarrow K_0(R)_{\mathbb{Q}(q)} \) the algebra homomorphism induced by \(\Phi : U_q^-(\mathfrak{g}) \rightarrow K_0(R) \). Then \(\text{ch}_q \) is the dual map of \(\Phi_{\mathbb{Q}(q)} \circ \pi \), which yields the following diagram:

\[
\begin{array}{ccc}
\mathcal{F}_\alpha & \xrightarrow{\pi} & U_q^-(\mathfrak{g})_\alpha \\
\downarrow\text{dual} & & \downarrow\text{dual w.r.t. (,)} \\
\mathbb{Q}(q)\text{Seq}(\alpha) & \xrightarrow{\text{ch}_q} & G_0(R(\alpha))_{\mathbb{Q}(q)} \\
\end{array}
\]

Combining Theorem 3.3 with Proposition 3.14 we conclude
\[\Phi_{\mathbb{Q}(q)} : U_q^-(\mathfrak{g}) \rightarrow K_0(R)_{\mathbb{Q}(q)} \]
is an isomorphism.
Theorem 3.15. The map $\Phi : U^-_\Lambda(g) \to K_0(R)$ is an isomorphism if $a_{ii} \neq 0$ for all $i \in I$.

Proof. It suffices to show that $\Phi_{Q(q)}(U^-_\Lambda(g)) = K_0(R)$. Choose a sequence $(i_k)_{k \geq 0}$ of I such that, for each $i \in I$, i appears infinitely many times in $(i_k)_{k \geq 0}$. Let B_α be the set of all isomorphism classes of irreducible $R(\alpha)$-modules. We fix a representative S_b for each $b \in B_\alpha$. To each $b \in B_\alpha$, we assign the sequence $p_b := p_0p_1 \cdots$ given as follows: if $M_0 := S_b$, define

$$p_k = \varepsilon_{i_k}(M_k)$$

and

$$M_{k+1} = e_{i_k}^p(M_k) \quad (k \geq 0)$$

inductively. For $b \in B_\alpha$, let

$$P_b = P_{i_b},$$

where $i_b := (i_k)_{k \geq 0}$. Note that P_b is well-defined since i_b has only finitely many nonnegative integers. Define a total order \prec on B_α by

$$b \prec c$$

if and only if $p_b <_{\text{lex}} p_c,$

where $<_{\text{lex}}$ is the lexicographic order. Then it follows from the definition of the pairing (2.10) that

$$(P_b, S_c) = 0 \text{ if } b \succ c \quad \text{and} \quad (P_b, S_b) = q^t$$

for some $t \in \mathbb{Z}$. Hence, any projective module $[P]$ in $K_0(R(\alpha))$ can be written as an Λ-linear combination of $\{P_b \mid b \in B_\alpha\}$, which implies $\Phi_{Q(q)}(U^-_\Lambda(g)) = K_0(R)$. \hfill \Box

4. Crystals and Perfect bases

In this section, we develop the theory of perfect bases for $U^-_q(g)$ as a $B_q(g)$-modules. We prove that the negative part $U^-_q(g)$ has a perfect basis by constructing the upper global basis. We also show that the crystals arising from perfect bases of $U^-_q(g)$ are all isomorphic to the crystal $B(\infty)$.

4.1. Crystals.

We review the basic theory of abstract crystals for quantum generalized Kac-Moody algebras introduced in [12].

Definition 4.1. An abstract crystal is a set B together with the maps $\text{wt} : B \to \mathbb{P}$, $\varphi_i, \varepsilon_i : B \to \mathbb{Z} \sqcup \{-\infty\}$ and $\tilde{e}_i, \tilde{f}_i : B \to B \cup \{0\}$ ($i \in I$) satisfying the following conditions:

1. $\varphi_i(b) = \varepsilon_i(b) + \langle h_i, \text{wt}(b) \rangle$,
2. $\text{wt}(\tilde{e}_i b) = \text{wt}(b) + \alpha_i$, $\text{wt}(\tilde{f}_i b) = \text{wt}(b) - \alpha_i$ if $\tilde{e}_i b, \tilde{f}_i b \in B$,
3. for $b, b' \in B$ and $i \in I$, $b' = \tilde{e}_i b$ if and only if $b = \tilde{f}_i b'$,
4. for $b \in B$, if $\varphi_i(b) = -\infty$, then $\tilde{e}_i b = \tilde{f}_i b = 0$,
5. if $b \in B$ and $\tilde{e}_i b \in B$, then

$$\varepsilon_i(\tilde{e}_i b) = \begin{cases} \varepsilon_i(b) - 1 & \text{if } i \in I^w, \\ \varepsilon_i(b) & \text{if } i \in I^m, \end{cases} \quad \varphi_i(\tilde{e}_i b) = \begin{cases} \varphi_i(b) + 1 & \text{if } i \in I^w, \\ \varphi_i(b) + a_{ii} & \text{if } i \in I^m, \end{cases}$$
(6) if \(b \in B \) and \(\tilde{f}_i b \in B \), then
\[
\varepsilon_i(\tilde{f}_i b) = \begin{cases}
\varepsilon_i(b) + 1 & \text{if } i \in \mathbb{R}^e, \\
\varepsilon_i(b) & \text{if } i \in \mathbb{R}^m, \\
\varphi_i(\tilde{f}_i b) = \begin{cases}
\varphi_i(b) - 1 & \text{if } i \in \mathbb{R}^e, \\
\varphi_i(b) - a_{ii} & \text{if } i \in \mathbb{R}^m.
\end{cases}
\end{cases}
\]

Example 4.2.

(1) For \(b \in B(\infty) \), define \(\text{wt}, \varepsilon_i, \) and \(\varphi_i \) as follows:
\[
\text{wt}(b) = -\langle \alpha_i, \epsilon_i \rangle + qL(\infty),
\]
\[
\varepsilon_i(b) = \begin{cases}
\max\{k \geq 0 | \varepsilon_i^k b \neq 0\} & \text{for } i \in \mathbb{R}^e, \\
0 & \text{for } i \in \mathbb{R}^m.
\end{cases}
\]
\[
\varphi_i(b) = \varepsilon_i(b) + \langle h_i, \text{wt}(b) \rangle.
\]

Then \((B(\infty), \text{wt}, \varepsilon_i, \tilde{f}_i, \varepsilon_i, \varphi_i) \) becomes an abstract crystal.

(2) For \(b \in B(\lambda) \), define \(\text{wt}, \varepsilon_i, \) and \(\varphi_i \) as follows:
\[
\text{wt}(b) = \lambda - \langle \alpha_i, \epsilon_i \rangle + qL(\lambda),
\]
\[
\varepsilon_i(b) = \begin{cases}
\max\{k \geq 0 | \tilde{e}_i^k b \neq 0\} & \text{for } i \in \mathbb{R}^e, \\
0 & \text{for } i \in \mathbb{R}^m.
\end{cases}
\]
\[
\varphi_i(b) = \begin{cases}
\max\{k \geq 0 | f_i^k b \neq 0\} & \text{for } i \in \mathbb{R}^e, \\
\langle h_i, \text{wt}(b) \rangle & \text{for } i \in \mathbb{R}^m.
\end{cases}
\]

Then \((B(\lambda), \text{wt}, \varepsilon_i, \tilde{f}_i, \varepsilon_i, \varphi_i) \) becomes an abstract crystal.

(3) For \(\lambda \in P \), let \(T_\lambda = \{\lambda\} \) and define
\[
\text{wt}(t_\lambda) = \lambda, \quad \varepsilon_i(t_\lambda) = \tilde{f}_i t_\lambda = 0 \quad \varepsilon_i(t_\lambda) = \varphi_i(t_\lambda) = -\infty \text{ for all } i \in I.
\]

Then \((T_\lambda, \text{wt}, \varepsilon_i, \tilde{f}_i, \varepsilon_i, \varphi_i) \) is an abstract crystal.

(4) Let \(C = \{c\} \) and define
\[
\text{wt}(c) = 0, \quad \varepsilon_i c = \tilde{f}_i c = 0 \quad \varepsilon_i(c) = \varphi_i(c) = 0 \text{ for all } i \in I.
\]

Then \((C, \text{wt}, \varepsilon_i, \tilde{f}_i, \varepsilon_i, \varphi_i) \) is an abstract crystal.

Definition 4.3.

(1) A crystal morphism \(\phi \) between abstract crystals \(B_1 \) and \(B_2 \) is a map from \(B_1 \) to \(B_2 \cup \{0\} \) satisfying the following conditions:

(a) if \(b \in B_1 \) and \(\phi(b) \in B_2 \), then \(\text{wt}(\phi(b)) = \text{wt}(b), \varepsilon_i(\phi(b)) = \varepsilon_i(b) \) and \(\varphi_i(\phi(b)) = \varphi_i(b) \),

(b) if \(b \in B_1 \) and \(i \in I \) with \(\tilde{f}_i b \in B_1 \), then we have \(\tilde{f}_i \phi(b) = \phi(\tilde{f}_i b) \).

(2) A crystal morphism \(\phi : B_1 \to B_2 \) is called strict if
\[
\phi(\varepsilon_i b) = \tilde{e}_i \phi(b) \quad \text{and} \quad \phi(\tilde{f}_i b) = \tilde{f}_i \phi(b)
\]
for all \(i \in I \) and \(b \in B_1 \).
The tensor product of two crystals is defined as follows: for given two crystals B_1 and B_2, their tensor product $B_1 \otimes B_2$ is the set $\{b_1 \otimes b_2 \mid b_1 \in B_1, b_2 \in B_2\}$ with the maps $\text{wt}, \varepsilon_i, \varphi_i, \tilde{e}_i$ and \tilde{f}_i given by

$$\begin{align*}
\text{wt}(b_1 \otimes b_2) &= \text{wt}(b_1) \otimes \text{wt}(b_2), \\
\varepsilon_i(b_1 \otimes b_2) &= \max \{\varepsilon_i(b_1), \varepsilon_i(b_2) - \langle h_i, \text{wt}(b_1) \rangle\}, \\
\varphi_i(b_1 \otimes b_2) &= \max \{\varphi_i(b_1) + \langle h_i, \text{wt}(b_2) \rangle, \varphi_i(b_2)\}, \\
\tilde{f}_i(b_1 \otimes b_2) &= \begin{cases} \\
\tilde{f}_i(b_1) \otimes b_2 & \text{if } \varphi_i(b_1) > \varepsilon_i(b_2), \\
b_1 \otimes \tilde{f}_i(b_2) & \text{if } \varphi_i(b_1) \leq \varepsilon_i(b_2),
\end{cases} \\
(4.1) & \quad \text{for } i \in I^e, \\
\tilde{e}_i(b_1 \otimes b_2) &= \begin{cases} \\
\tilde{e}_i(b_1) \otimes b_2 & \text{if } \varphi_i(b_1) \geq \varepsilon_i(b_2), \\
b_1 \otimes \tilde{e}_i(b_2) & \text{if } \varphi_i(b_1) < \varepsilon_i(b_2),
\end{cases} \\
& \quad \text{for } i \in I^e, \\
\tilde{e}_i(b_1 \otimes b_2) &= \begin{cases} \\
\tilde{e}_i(b_1) \otimes b_2 & \text{if } \varphi_i(b_1) > \varepsilon_i(b_2) - \alpha_{ii}, \\
0 & \text{if } \varepsilon_i(b_2) - \varphi_i(b_1) \leq \varepsilon_i(b_2) - \alpha_{ii}, \\
b_1 \otimes \tilde{e}_i(b_2) & \text{if } \varphi_i(b_1) \leq \varepsilon_i(b_2).
\end{cases} \\
& \quad \text{for } i \in I^m.
\end{align*}$$

It was proved in [12] Lemma 3.10 that $B_1 \otimes B_2$ becomes an abstract crystal. Moreover, they proved the recognition theorem of $B(\lambda)$ ($\lambda \in P^+$) using the abstract crystal structure of $B(\infty)$.

Proposition 4.4. [12] Theorem 5.2] For $\lambda \in P^+$, the crystal $B(\lambda)$ is isomorphic to the connected component of $B(\infty) \otimes T_\lambda \otimes C$ containing $1 \otimes t_\lambda \otimes c$.

4.2. Perfect bases.

We revisit the algebra $U_q^-(\mathfrak{g})$. We analyze $U_q^-(\mathfrak{g})$ as a $B_q(\mathfrak{g})$-module and develop the perfect basis theory for $U_q^-(\mathfrak{g})$. The crystal structure is revealed when e_i' acts on a perfect basis.

Let

$$e_i'^{(n)} = \begin{cases} \\
(e_i')^n & \text{if } i \in I^e, \\
\frac{(e_i')^n}{\{n\}_{ii}!} & \text{if } i \in I^m.
\end{cases}$$

Then we obtain the following commutation relations:

$$
\begin{align*}
\tilde{e}_i'^{(n)} f_j'^{(m)} &= \begin{cases} \\
\sum_{k=0}^{n} q_i^{-2nm+(n+m)k-k(k-1)/2} \binom{n}{k} f_i^{(m-k)} e_i'^{(n-k)} & \text{if } i = j \text{ and } i \in I^e, \\
\sum_{k=0}^{m} q_i^{-c_i(-2nm+(n+m)k-k(k-1)/2)} \binom{m}{k} f_i^{(m-k)} e_i'^{(n-k)} & \text{if } i = j \text{ and } i \in I^m, \\
q_i^{-n\alpha_{ii}} f_j'^{(m)} e_i'^{(n)} & \text{if } i \neq j.
\end{cases}
\end{align*}
$$

For $i \in I$ and $v \in U_q^-(\mathfrak{g})$, let

$$\ell_i(v) = \min\{n \in \mathbb{Z}_{\geq 0} \mid e_i'^{n+1} v = 0\}.$$
Note that \(\ell_i \) is well-defined since \(e'_i \) is locally nilpotent (see [13]). Then, for \(i \in I \) and \(k \in \mathbb{Z}_{\geq 0} \),

\[
U_q(\mathfrak{g})_{<k} := \{ v \in U_q(\mathfrak{g}) \mid \ell_i(v) < k \}
\]

becomes a \(\mathbb{Q}(q) \)-vector space.

Definition 4.5. A basis \(B \) of \(U_q(\mathfrak{g}) \) is said to be perfect if

1. \(B = \bigsqcup_{\mu \in Q^-} B_\mu \), where \(B_\mu := B \cap U_q(\mathfrak{g})_\mu \),
2. for any \(b \in B \) and \(i \in I \) with \(e'_i(b) \neq 0 \), there exists a unique \(e_i(b) \in B \) such that
 \[
e_i'(b) \in e_i(b) + U_q(\mathfrak{g})_{<\ell_i(b)-1} \text{ for some } c \in \mathbb{Q}(q)^\times,
 \]
3. if \(e_i(b) = e_i(b') \) for \(b, b' \in B \), then \(b = b' \) (\(i \in I \)).

Now, we define the upper Kashiwara operators for the \(B_q(\mathfrak{g}) \)-module \(U_q(\mathfrak{g}) \). Let \(u \in U_q(\mathfrak{g}) \) such that \(e'_i u = 0 \). Then, for \(n \in \mathbb{Z}_{\geq 0} \), we define the upper Kashiwara operators \(\tilde{E}_i, \tilde{F}_i \) by

\[
\tilde{E}_i(f_i^{(n)}u) = \begin{cases}
q_i^{-(n-1)}f_i^{(n-1)}u & \text{if } i \in I^\text{re}, \\
\{n\}q_i^{c_i(n-1)}f_i^{(n-1)}u & \text{if } i \in I^\text{im},
\end{cases}
\]

\[
\tilde{F}_i(f_i^{(n)}u) = \begin{cases}
q_i^n[n+1]f_i^{(n+1)}u & \text{if } i \in I^\text{re}, \\
1f_i^{(n)}u & \text{if } i \in I^\text{im}.
\end{cases}
\]

From the \(i \)-string decomposition (1.10), the upper Kashiwara operators \(\tilde{E}_i \) and \(\tilde{F}_i \) can be extended to the whole space \(U_q(\mathfrak{g}) \) by linearity.

Definition 4.6. An upper crystal basis of \(U_q(\mathfrak{g}) \) is a pair \((L^\vee, B^\vee)\) satisfying the following conditions:

1. \(L^\vee \) is a free \(\mathbb{A}_0 \)-module of \(U_q(\mathfrak{g}) \) such that \(U_q(\mathfrak{g}) = \mathbb{Q}(q) \otimes_{\mathbb{A}_0} L^\vee \) and \(L^\vee = \bigoplus_{\alpha \in Q^+} L^\vee_\alpha \), where \(L^\vee_{-\alpha} := L^\vee \cap U_q(\mathfrak{g})_{-\alpha} \),
2. \(B^\vee \) is a \(\mathbb{Q} \)-basis of \(L^\vee / qL^\vee \) such that \(B^\vee = \bigsqcup_{\alpha \in Q^+} B^\vee_{-\alpha} \), where \(B^\vee_{-\alpha} := B^\vee \cap (L^\vee_{-\alpha} / qL^\vee_{-\alpha}) \),
3. \(\tilde{E}_i B^\vee \subset B^\vee \cup \{0\} \), \(\tilde{F}_i B^\vee \subset B^\vee \) for all \(i \in I \),
4. For \(b, b' \in B^\vee \) and \(i \in I \), \(b^\vee = \tilde{F}_i b^\vee \) if and only if \(b^\vee = \tilde{E}_i b^\vee \).

We have the following lemma which is the \(U_q(\mathfrak{g}) \)-version of [19] Lemma 4.3.

Lemma 4.7. For any \(u, v \in U_q(\mathfrak{g}) \), we have

\[
(f_i u, v)_K = (u, \tilde{E}_i v)_K, \quad (\tilde{e}_i u, v)_K = (u, \tilde{F}_i v)_K.
\]

Lemma 4.8. Let \(u \in U_q(\mathfrak{g}) \), and \(n \) be the smallest integer such that \(e'_i u = 0 \). Then we have

\[
e_i^n u = \begin{cases}
n! \tilde{E}_i^n u & \text{if } i \in I^\text{re}, \\
\tilde{E}_i^n u & \text{if } i \in I^\text{im}.
\end{cases}
\]
Definition 4.10. A triple \((A,q,L^-)\) is a balanced triple if
\begin{enumerate}
\item \(U_q^-(\mathfrak{g}) \cong K_q \otimes K \cong K \otimes K_{\infty} \cong K_{\infty} \otimes K \) as \(K_q\)-vector spaces,
\item the natural \(K_q\)-linear map \(E \rightarrow L/qL\) is an isomorphism, where \(E := U_q^\wedge \cap L \cap L^\wedge\).
\end{enumerate}

It was shown in \cite{22} that the condition (2) is equivalent to saying that there are natural isomorphisms \(U_q^\wedge \cong A_0 \otimes E, \ L \cong A_0 \otimes E, \ L^\wedge \cong A_{\infty} \otimes E\).

Let \(U_q^0(\mathfrak{g})\) be the \(A\)-subalgebra of \(U_q(\mathfrak{g})\) generated by \(q^h, \prod_{k=1}^m \frac{1-q^kq^{-h}}{1-q^k}\) for all \(m \in \mathbb{Z}_{\geq 0}, \ h \in P^\vee\) and let \(U_q^\wedge(\mathfrak{g})\) be the \(A\)-algebra generated by \(U_q^0(\mathfrak{g}), \ U_q^+(\mathfrak{g})\) and \(U_q^-(\mathfrak{g})\).

Proposition 4.11 \cite{11}. \((U_q^\wedge(\mathfrak{g}), L(\infty), L(\infty)^\wedge)\) is a balanced triple for \(U_q^-(\mathfrak{g})\).

Recall the \(K_q\)-algebra automorphism \(\sim: U_q^-(\mathfrak{g}) \rightarrow U_q^-(\mathfrak{g})\) given in \cite{22}. Define
\begin{align*}
U_q^\wedge(\mathfrak{g}) &= \{ u \in U_q^-(\mathfrak{g}) \mid (u, U_q^-(\mathfrak{g}))_K \subset A \}, \\
L(\infty) &= \{ u \in U_q^-(\mathfrak{g}) \mid (u, L(\infty))_K \subset A_0 \}, \\
L(\infty)^\wedge &= \{ u \in U_q^-(\mathfrak{g}) \mid (u, L(\infty)^\wedge)_K \subset A_{\infty} \}.
\end{align*}
By the same argument as in [23], one can verify that \((U_q^{-}(g)^\vee, L(\infty)^\vee, \overline{L(\infty)^\vee}) \) is a balanced triple for \(U_q^{-}(g) \). Hence there is a natural isomorphism
\[
E^\vee := U_q^{-}(g)^\vee \cap L(\infty)^\vee \cap \overline{L(\infty)^\vee} \xrightarrow{\sim} L(\infty)^\vee / qL(\infty)^\vee.
\]

Let \(G^\vee \) denote the inverse of this isomorphism and set
\[
\mathcal{B}(\infty) = \{ G^\vee(b^\vee) \mid b^\vee \in B(\infty)^\vee \}.
\]

Lemma 4.12. Let \(b^\vee \in L(\infty)^\vee / qL(\infty)^\vee \) and \(n \in \mathbb{Z}_{\geq 0} \).

1. If \(\tilde{E}_i^{n+1}b^\vee = 0 \), then \(e_i^nG(b^\vee) = \begin{cases} [n]!G(\tilde{E}_i^n b^\vee) & \text{if } i \in \mathcal{I}^e, \\ G(\tilde{E}_i^n b^\vee) & \text{if } i \in \mathcal{I}^m. \end{cases} \)

2. \(e_i^{n+1}G^\vee(b^\vee) = 0 \) if and only if \(\tilde{E}_i^{n+1}b^\vee = 0 \).

Proof. We first prove the assertion (1). Let \(i \in \mathcal{I}^e \). Since \(\varphi\left(\frac{1}{[n]!}e_i^n\right) = f_i^{(n)} \), by Lemma 4.8 we obtain
\[
\frac{1}{[n]!}e_i^nG^\vee(b^\vee) = \tilde{E}_i^nG^\vee(b^\vee) \in U_q^{-}(g)^\vee \cap L(\infty)^\vee \cap \overline{L(\infty)^\vee},
\]
which yields \(\frac{1}{[n]!}e_i^nG^\vee(b^\vee) = G^\vee(\tilde{E}_i^n b^\vee) \).

Similarly, for \(i \in \mathcal{I}^m \), it follows from \(\varphi(e_i^n) = f_i^{(n)} \) that
\[
e_i^nG^\vee(b^\vee) = \tilde{E}_i^nG^\vee(b^\vee) \in U_q^{-}(g)^\vee \cap L(\infty)^\vee \cap \overline{L(\infty)^\vee}.
\]
Thus we have \(e_i^nG^\vee(b^\vee) = G^\vee(\tilde{E}_i^n b^\vee) \).

For the assertion (2), it is obvious that \(e_i^{n+1}G^\vee(b^\vee) = 0 \) implies \(\tilde{E}_i^{n+1}b^\vee = 0 \). To prove the converse, suppose \(e_i^{n+1}G^\vee(b^\vee) \neq 0 \) and take the smallest \(m > n \) such that \(e_i^{m+1}G^\vee(b^\vee) = 0 \). By (1), we have
\[
e_i^mG^\vee(b^\vee) = \begin{cases} [m]!G^\vee(\tilde{E}_i^m b^\vee) = 0, & \text{if } i \in \mathcal{I}^e, \\ G^\vee(\tilde{E}_i^m b^\vee) = 0, & \text{if } i \in \mathcal{I}^m, \end{cases}
\]
which is a contradiction to the choice of \(m \). Hence we conclude \(e_i^{n+1}G^\vee(b^\vee) = 0 \). \(\square \)

For \(b^\vee \in B(\infty)^\vee \), we define
\[
e_i^\alpha(b^\vee) = \min\{ n \in \mathbb{Z}_{\geq 0} \mid \tilde{E}_i^{n+1}b^\vee = 0 \},
\varphi_i^\alpha(b^\vee) = \min\{ n \in \mathbb{Z}_{\geq 0} \mid \tilde{E}_i^{n+1}b^\vee = 0 \}.
\]
Proposition 4.13. For $b^\vee \in B(\infty)^\vee$, we have

\begin{align*}
\epsilon_i G^\vee (b^\vee) &= \begin{cases} \left[e_i^{\sigma}(b^\vee) \right] \sum_{k \leq i} E_{b^\vee, b^\vee} G^\vee (b^\vee) & \text{if } i \in I^{re}, \\
G^\vee (\tilde{E}_i b^\vee) + \sum_{i < b^\vee} E_{b^\vee, b^\vee} G^\vee (b^\vee) & \text{if } i \in I^{im}, \\
\end{cases} \\
f_i G^\vee (b^\vee) &= \begin{cases}
q_i^{-\epsilon_i^{\sigma}(b^\vee) \epsilon_i^{\sigma}(b^\vee) + 1} G^\vee (\tilde{F}_i b^\vee) + \sum_{i \leq b^\vee} F_{b^\vee, b^\vee} G^\vee (b^\vee) & \text{if } i \in I^{re}, \\
\{ q_i^{2} e_i^{(n+1)} \} \sum_{i \leq b^\vee} G^\vee (\tilde{F}_i b^\vee) + \sum_{i \leq b^\vee} F_{b^\vee, b^\vee} G^\vee (b^\vee) & \text{if } i \in I^{im}.
\end{cases}
\end{align*}

for some $E_{b^\vee, b^\vee}^{i}, F_{b^\vee, b^\vee}^{i} \in \mathbb{Q}(q)$.

Proof. If $i \in I^{re}$, our assertions were proved in [23]. We will prove the case when $i \in I^{im}$. Set $n = \epsilon_i^{\sigma}(b^\vee)$. By Lemma 4.12 and Definition 4.6 (4), we have

\[e_i^n G^\vee (b^\vee) = G^\vee (\tilde{E}_i b^\vee) = G^\vee (\tilde{E}_i^{n-1} \tilde{E}_i b^\vee) = e_i^{n-1} G^\vee (\tilde{E}_i b^\vee), \]

which implies

\[e_i G^\vee (b^\vee) - G^\vee (\tilde{E}_i b^\vee) \in \text{Ker}(e_i^{n-1}). \]

Using the equation (1.2), we get

\[e_i G^\vee (b^\vee) = (q_i^{2} e_i^{(n+1)} f_i G^\vee (b^\vee) + q_i^{2} e_i^{(n+1)} + q_i^{2} e_i^{(n+1)} G^\vee (b^\vee). \]

Hence Lemma 4.12 yields

\[e_i^{(n+1)} f_i G^\vee (b^\vee) = \frac{1}{\{ n \}_1} q_i^{2} e_i^{(n+1)} G^\vee (b^\vee) = \frac{1}{\{ n \}_1} q_i^{2} e_i^{(n+1)} G^\vee (\tilde{E}_i b^\vee). \]

Using Lemma 4.12 again, we obtain

\[\frac{1}{\{ n \}_1} q_i^{2} e_i^{(n+1)} G^\vee (\tilde{E}_i^{n+1} \tilde{F}_i b^\vee) = \frac{1}{\{ n \}_1} q_i^{2} e_i^{(n+1)} G^\vee (\tilde{F}_i b^\vee) = \{ n + 1 \}_1 q_i^{2} e_i^{(n+1)} G^\vee (\tilde{F}_i b^\vee). \]

Thus we have

\[f_i G^\vee (b^\vee) - \{ n + 1 \}_1 q_i^{2} e_i^{(n+1)} G^\vee (\tilde{F}_i b^\vee) \in \text{Ker}(e_i^{n+1}) \]

as desired. \hfill \square

Combining Proposition 4.9 and Proposition 4.13, we obtain the existence of perfect basis for $U_q^{-} (\mathfrak{g})$.

Proposition 4.14. $\mathbb{B}(\infty)$ is a perfect basis of the $B_q(\mathfrak{g})$-module $U_q^{-} (\mathfrak{g})$.

Let B be a perfect basis of $U_q^{-} (\mathfrak{g})$. For $b \in B$, define $\text{wt}(b) = \mu$ if $b \in B_\mu$ and

\[f_i (b) = \begin{cases} \delta_{i} (b') & \text{if } e_i (b') = b \\
0 & \text{otherwise}, \end{cases} \]

\[\varphi_i (b) = \epsilon_i (b) + \langle h_i, \text{wt}(b) \rangle. \]
Then it is straightforward to verify that \((B, \text{wt}, e_i, f_i, \varepsilon_i, \varphi_i)\) is an abstract crystal. The graph obtained from the crystal \((B, \text{wt}, e_i, f_i, \varepsilon_i, \varphi_i)\) is called a perfect graph of \(U_q^- (g)\). The following proposition asserts that the perfect basis \(B(\infty)\) yields the crystal \(B(\infty)\).

Proposition 4.15. There exist crystal isomorphisms

\[
\mathbb{B}(\infty) \cong B(\infty)^\vee \cong B(\infty).
\]

Proof. Let \(\vee : B(\infty) \to B(\infty)^\vee\) defined by \(b \mapsto b^\vee\). Then

\[
\tilde{f}_b = b' \iff (\tilde{f}_b, b^\vee)_K = 1 \iff (b, \tilde{E}_i b^\vee)_K = 1 \iff b^\vee = \tilde{E}_i b^\vee \iff \tilde{F}_i b^\vee = b'^\vee.
\]

Hence we have \(B(\infty)^\vee \cong B(\infty)\) from Lemma 4.4 and Lemma 4.7.

By Proposition 4.13, we have \(\tilde{E}_i b^\vee = b'^\vee \iff e_i G^\vee (b^\vee) = G^\vee (\tilde{E}_i b^\vee) = G^\vee (b'^\vee)\).

Hence the map \(G^\vee\) gives a crystal isomorphism between \(\mathbb{B}(\infty)\) and \(B(\infty)^\vee\). \(\square\)

In the rest of this section, we will show that the perfect graph arising from any perfect basis of \(U_q^- (g)\) is isomorphic to the crystal \(B(\infty)\). Our argument follows the outline given in [19, Section 6].

Let \(B\) be a perfect basis of \(U_q^- (g)\). For each sequence \(i = (i_1, \ldots, i_m) \in I^m (m \geq 1)\), we define a binary relation \(\preceq_i\) on \(U_q^- (g) \setminus \{0\}\) as follows:

\[
\text{if } i = (i), \text{ then } v \preceq_i v' \iff \ell_i (v) \leq \ell_i (v')
\]

\[
\text{if } i = (i; i') \text{, then } v \preceq_i v' \iff \begin{cases} \ell_i (v) < \ell_i (v') & \text{or} \\ \ell_i (v) = \ell_i (v') & e_i^\text{top} (v) \leq e_i^\text{top} (v')(v'). \end{cases}
\]

We write \(v \equiv_i v'\) if \(v \preceq_i v'\) and \(v' \preceq_i v\). For a given \(i = (i_1, \ldots, i_m) \in I^m\), define the maps \(e_i^\text{top} : U_q^- (g) \to U_q^- (g)\) and \(e_i^\text{top} : B \to B \cup \{0\}\) as follows:

\[
e_i^\text{top} (v) = e_i^\text{top} (v) \text{ for } m = 1 \quad \text{and} \quad e_i^\text{top} = e_i^\text{top} \circ \cdots \circ e_i^\text{top} \text{ for } m > 1,
\]

\[
e_i^\text{top} (b) = e_i^\text{top} (b) \text{ for } m = 1 \quad \text{and} \quad e_i^\text{top} = e_i^\text{top} \circ \cdots \circ e_i^\text{top} \text{ for } m > 1.
\]

By Proposition 4.3, we identify \(\mathbb{Q}(q)\) with \(\{v \in U_q^- (g) | e_i (v) = 0 \text{ for all } i \in I\}\). Note that \(\mathbb{Q}(q) \cap B = \{1\}\). For each \(v \in U_q^- (g)\), there exists a sequence \(i\) such that \(e_i^\text{top} (v) \in \mathbb{Q}(q)\). From [19], one can check that the following statements hold.

Lemma 4.16. For any sequence \(i = (i_1, \ldots, i_m) \in I^m (m \geq 1)\), we have

1. \(e_i^\text{top} (b) \in \mathbb{Q}(q)^\times e_i^\text{top} (b)\) for any \(b \in B\),
2. if \(e_i^\text{top} (b) \in \mathbb{Q}(q)^\times \) for some \(b \in B\), then \(e_i^\text{top} (b) \in \mathbb{Q}(q)^\times\),
3. if \(b \equiv_i b'\) and \(e_i^\text{top} (b) = e_i^\text{top} (b')\), then \(b = b'\) for all \(b, b' \in B\).

Definition 4.17. Let \(B, B'\) be perfect bases of \(U_q^- (g)\). A perfect morphism \([\phi, \tilde{\phi}, c] : (U_q^- (g), B) \to (U_q^- (g), B')\) is a triple \((\phi, \tilde{\phi}, c)\), where

1. \(\phi : U_q^- (g) \to U_q^- (g)\) is a \(B(\mathfrak{g})\)-module endomorphism such that \(0 \notin \phi (B)\),
2. \(\tilde{\phi} : B \to B'\) is a map satisfying \(\tilde{\phi}(1) = \phi(1)\).
graded modules over R.

The crystal we define a crystal structure on B similar argument in [19, Lemma 6.5], for a given proof.

Since the proof is almost the same as [19, Theorem 6.6], we only give a sketch of proof. By a construction of crystals B.

Let $\tilde{\phi} : B \to B'$ and a unique map $c : B \setminus \{1\} \to \mathbb{Q}(q)^\times$ satisfying $\tilde{\phi}(\mathbf{1}) = 1$ and

\[b - c(b)\tilde{\phi}(b) \prec_i b \]

for each $b \in B \setminus \{1\}$ and any sequence $i = (i_1, \ldots, i_m)$ such that $e_i^{\text{top}}(b) \in \mathbb{Q}(q)$.

Lemma 4.18. Let ϕ be a $B_q(\mathfrak{g})$-endomorphism of $U_q^{-}(\mathfrak{g})$.

1. If a perfect morphism $[\phi, \tilde{\phi}, c]$ exists, then $\tilde{\phi}$ and c are uniquely determined.
2. For a given perfect morphism $[\phi, \tilde{\phi}, c] : (U_q^{-}(\mathfrak{g}), B) \to (U_q^{-}(\mathfrak{g}), B')$, the map $\tilde{\phi}$ is a crystal morphism.

Proof. This lemma is essentially the same as [19] Lemma 6.3, Lemma 6.4. However, since our algebra $U_q^{-}(\mathfrak{g})$ is considered as a $B_q(\mathfrak{g})$-module, Proposition [1.3] plays a key role in proving this lemma. Then our assertions follow by a similar argument in [19]. □

Now we state and prove the main result of this section.

Theorem 4.19. Let B and B' be two perfect bases of $U_q^{-}(\mathfrak{g})$. Then the identity map $\text{id} : U_q^{-}(\mathfrak{g}) \to U_q^{-}(\mathfrak{g})$ induces a perfect isomorphism from $(U_q^{-}(\mathfrak{g}), B)$ to $(U_q^{-}(\mathfrak{g}), B')$. That is, there exists a unique crystal isomorphism $\tilde{\phi} : B \to B'$ and a unique map $c : B \setminus \{1\} \to \mathbb{Q}(q)^\times$ satisfying $\tilde{\phi}(\mathbf{1}) = 1$ and

\[b - c(b)\tilde{\phi}(b) \prec_i b \]

for each $b \in B \setminus \{1\}$ and any sequence $i = (i_1, \ldots, i_m)$ with $e_i^{\text{top}}(b) = 1$.

Proof. Since the proof is almost the same as [19] Theorem 6.6, we only give a sketch of proof. By a similar argument in [19] Lemma 6.5, for a given $b \in B \setminus \{1\}$, one can show that there exist unique $b' \in B'$, $v \in U_q^{-}(\mathfrak{g})$ and $k \in \mathbb{Q}(q)^\times$ satisfying

1. $b \equiv_i b'$,
2. $b = v + kb'$,
3. $v = 0$ or $v \prec_i b$, $v \prec_i b'$

for any sequence i with $e_i^{\text{top}}(b) \in \mathbb{Q}(q)^\times$. Then the maps $\text{id} : U_q^{-}(\mathfrak{g}) \to U_q^{-}(\mathfrak{g})$, $\tilde{\phi} : B \to B'$ and $c : B \setminus \{1\} \to \mathbb{Q}(q)^\times$ defined by $b \mapsto b'$ and $b \mapsto k$ give rise to a perfect isomorphism. □

5. Construction of crystals $\mathfrak{B}(\infty)$ and $\mathfrak{B}(\lambda)$

In this section, we investigate the crystal structures on the sets of isomorphism classes of irreducible graded modules over R and its cyclotomic quotient R^λ. We assume that $a_{ii} \neq 0$ for all $i \in I$.

5.1. The crystal $\mathfrak{B}(\infty)$.

Let $\mathfrak{B}(\infty)$ be the set of isomorphism classes of irreducible graded R-modules. In this subsection, we define a crystal structure on $\mathfrak{B}(\infty)$ and show that it is isomorphic to the crystal $B(\infty)$ using the perfect basis theory given in Section [12]
Let $\alpha \in Q^+$. For any $P \in R(\alpha)$-mod and $M \in R(\alpha)$-fmod, we define

$$f_i(P) = \text{Ind}_{\alpha_i, \alpha}(P_i \boxtimes P), \quad e'_i(P) = P^* \otimes_{R(\alpha)} L(i),$$

$$F_i(M) = \text{Ind}_{\alpha_i, \alpha}(L(i) \boxtimes M), \quad E'_i(M) = \text{Res}^{\alpha_i \ominus \alpha_i}_\alpha \circ \Delta_i M,$$

where $R'(\alpha_i) := R(\alpha_i) \otimes 1_{\alpha - \alpha_i} \hookrightarrow R(\alpha_i) \otimes R(\alpha - \alpha_i) \subset R(\alpha)$. Here, the $(R(\alpha_i), R(\alpha - \alpha_i))$-bimodule structure of P^* is given as follows: for $v \in P^*$, $r \in R(\alpha - \alpha_i)$ and $s \in R(\alpha_i)$,

$$r \cdot v := (1_{\alpha_i} \otimes r) v, \quad v \cdot s := \psi(s \otimes 1_{\alpha - \alpha_i}) v.$$

Since f_i and e'_i (resp. F_i and E'_i) take projective modules to projective modules (resp. finite-dimensional modules to finite-dimensional modules), they induce the linear maps

$$f_i : K_0(R) \rightarrow K_0(R), \quad e'_i : K_0(R) \rightarrow K_0(R),$$

$$F_i : G_0(R) \rightarrow G_0(R), \quad E'_i : G_0(R) \rightarrow G_0(R).$$

Then we have the following lemma, which is the Khovanov-Lauda-Rouquier algebra version of the equation [1,3].

Lemma 5.1.

1. $e'_i f_j = \delta_{ij} + q_i^{-\alpha_i} f_j e'_i$ on $K_0(R)$.
2. $E'_i F_j = \delta_{ij} + q_i^{-\alpha_i} F_j E'_i$ on $G_0(R)$.

Proof. (1) Fix $i \in \text{Seq}(\alpha)$ and let $i' = (j) \ast i \in \text{Seq}(\alpha + \alpha_j)$. By the equation [1,2],

$$\Delta_i P_i \simeq \sum_{\text{shuffles of } (i) \text{ and } j} P_{(i)} \boxtimes P_{(j)(\deg((i), j, i'))}$$

$$\simeq \delta_{ij} P_{(i)} \boxtimes P_i + \sum_{\text{shuffles of } (i) \text{ and } k} P_{(i)} \boxtimes P_{(j) \ast k}(- \deg((i), k, i) + (\alpha_i | \alpha_j)),$$

which yields

$$e'_i f_j [P_i] = e'_i [P_i]$$

$$= [P_i^* \otimes_{R'(\alpha_j)} L(i)]$$

$$= [((\Delta_i P_i)^* \otimes_{R'(\alpha_j)} L(i))$$

$$= \delta_{ij} [P_i] + q^{-(\alpha_i | \alpha_j)} f_j [\text{Res}^{\alpha_i \ominus \alpha_i}_\alpha (P_i^* \otimes_{R'(\alpha_j)} L(i)))]$$

$$= \delta_{ij} [P_i] + q^{-(\alpha_i | \alpha_j)} f_j e'_i [P_i].$$

(2) For an irreducible $R(\alpha)$-module M, it follows from Proposition 2.6 that

$$E'_i F_j [M] = E'_i ([\text{Ind}_{\alpha_j, \alpha} L(j) \boxtimes M])$$

$$= [E'_i(L(j))][M] + [\text{Ind}_{\alpha_j, \alpha - \alpha_i} L(j) \boxtimes E'_i(M)((\alpha_j | \alpha_i))]$$

$$= \delta_{ij} [M] + q^{-(\alpha_i | \alpha_j)} F_j E'_i [M].$$

We also have analogues of the equation [1,3] and Lemma 1.4 (3).
Lemma 5.2.

1. For $[P], [Q] \in K_0(R)$, we have
 \[(e'_i[P], [Q]) = (1 - q^2)([P], f_i[Q]).\]

2. For $[P] \in K_0(R)$ and $[M] \in G_0(R)$, we have
 \[(f_i[P], [M]) = ([P], E'_i[M]), \quad (e'_i[P], [M]) = ([P], F_i[M]).\]

Proof. (1) Let $P, Q \in R(\alpha)$-mod. Then
 \[
 ([P], f_i[Q]) = \text{dim}_q(P^* \otimes_{R(\alpha + \alpha_i)} \text{Ind}_{P(i)}(Q)) \\
 = \text{dim}_q((\Delta_i P)^* \otimes_{R(\alpha)} (P(i) \boxtimes Q)) \\
 = (1 - q^2)^{-1} \text{dim}_q((e'_i P)^* \otimes_{R(\alpha)} Q) \\
 = (1 - q^2)^{-1}(e'_i[P], [Q]).
 \]

(2) Let $P \in R(\alpha)$-pmod and $M \in R(\alpha + \alpha_i)$-fmod. By definition, we have the first assertion:
 \[
 (f_i[P], [M]) = \text{dim}_q((\text{Ind}_{P(i)}(P) \boxtimes P)^* \otimes_{R(\alpha + \alpha_i)} M) \\
 = \text{dim}_q((P(i) \boxtimes P)^* \otimes_{R(\alpha)} \Delta_i M) \\
 = \text{dim}_q(P^* \otimes_{R(\alpha)} \text{Res}_{\alpha^*}^\alpha \Delta_i M) \\
 = ([P], E'_i[M]).
 \]

In a similar manner, we have
 \[
 (e'_i[P], [M]) = \text{dim}_q \left(((P^* \otimes_{R(\alpha)} L(i)) \otimes_{R(\alpha)} M) \right) \\
 = \text{dim}_q \left((\Delta_i P)^* \otimes_{R(\alpha)} L(i) \boxtimes M \right) \\
 = \text{dim}_q \left(P^* \otimes_{R(\alpha + \alpha_i)} \text{Ind}_{L(i)} M \right) \\
 = ([P], F_i[M]).
 \]

We now define a $B_q(\mathfrak{g})$-module structure on $K_0(R)_{Q(q)}$ and $G_0(R)_{Q(q)}$ as follows:
 \[
 e'_i \cdot [P] := e'_i[P], \quad f_i \cdot [P] := f_i[P] \quad \text{for } [P] \in K_0(R)_{Q(q)}, \]
 \[
 e'_i \cdot [M] := E'_i[M], \quad f_i \cdot [M] := F_i[M] \quad \text{for } [M] \in G_0(R)_{Q(q)}.
 \]

By the same argument as in the proof of \cite{22} Lemma 3.4.2, it follows from Lemma 5.1 Lemma 5.2 and Theorem 2.9 that $K_0(R)_{Q(q)}$ and $G_0(R)_{Q(q)}$ are well-defined $B_q(\mathfrak{g})$-modules. Consider the $B_q(\mathfrak{g})$-module homomorphism
 \[
 \Phi_{Q(q)}^\vee : U_q^{-}(\mathfrak{g}) \longrightarrow G_0(R)_{Q(q)}
 \]
 given by
 \[
 \Phi_{Q(q)}^\vee(f_i) = L(i) \quad \text{for } i \in I.
 \]
Then, by Theorem 3.15, we obtain the following diagram.

\[
\begin{array}{ccc}
\Phi_{\mathbb{Q}(q)} & : & U_q^{-}(\mathfrak{g}) \\
\downarrow_{\text{dual w.r.t. } (,)_K} & & \downarrow_{\text{dual w.r.t. } (,)} \\
\Phi_{\mathbb{Q}(q)}' & : & U_q^{+}(\mathfrak{g}) \\
\end{array}
\]

\[K_0(R)_{\mathbb{Q}(q)} \sim \leftarrow \leftarrow \]

\[G_0(R)_{\mathbb{Q}(q)} \sim \leftarrow \leftarrow \]

Therefore, \(K_0(R)_{\mathbb{Q}(q)}\) and \(G_0(R)_{\mathbb{Q}(q)}\) are well-defined \(B_q(\mathfrak{g})\)-modules, which are isomorphic to \(U_q^{-}(\mathfrak{g})\).

The following lemma is the Khovanov-Lauda-Rouquier algebra version of Proposition 1.13.

Lemma 5.3. Let \(M\) be an irreducible \(R(\alpha)\)-module and \(\varepsilon = \varepsilon_i(M)\). Then we have

\[E_i' [M] = \begin{cases} q_i^{-\varepsilon+1} [\varepsilon_i M] + \sum_k c_k [N_k] & \text{if } i \in I^e, \\ [\varepsilon_i M] + \sum_k c'_k [N'_k] & \text{if } i \in I^m, \end{cases}\]

where \(c_k, c'_k \in \mathbb{Q}(q)\) and \(\varepsilon_i(N_k), \varepsilon_i(N'_k) < \varepsilon - 1\).

Proof. If \(i = I^e\), then the assertion can be proved in the same manner as \([20, \text{Lemma } 3.9]\). Suppose that \(i \in I^m\). By Lemma 3.38,

\[\Delta_i M \simeq L(i^\varepsilon) \boxtimes N\]

for some irreducible module \(N\) with \(\varepsilon_i(N) = 0\). Then, from (3.5), we have an exact sequence

\[0 \to K \to \text{Ind}_{\alpha_i,\alpha-\varepsilon_i} L(i^\varepsilon) \boxtimes N \to M \to 0\]

for some \(R(\alpha)\)-module \(K\). Note that \(\varepsilon_i(K) < \varepsilon\).

On the other hand, it follows from \(\varepsilon_i(N) = 0\) and Lemma 3.38 that

\[[\Delta_i \text{Ind}_{\alpha_i,\alpha-\varepsilon_i} L(i^\varepsilon) \boxtimes N] = [\text{Ind}_{\alpha_i,\alpha-\varepsilon_i,\alpha-\varepsilon_i} L(i) \boxtimes L(i^{\varepsilon-1}) \boxtimes N].\]

By Lemma 3.37, Lemma 3.32, and Lemma 3.38, we have

\[\text{hd} (\text{Ind}_{\alpha_i,\alpha-\varepsilon_i} L(i) \boxtimes L(i^{\varepsilon-1}) \boxtimes N) \simeq L(i) \boxtimes (\tilde{\varepsilon}_i^{-1} N) \simeq L(i) \boxtimes \varepsilon_i M\]

and all the other composition factors of \(\text{Ind}_{\alpha_i,\alpha-\varepsilon_i} L(i) \boxtimes L(i^{\varepsilon-1}) \boxtimes N\) are of the form \(L(i) \boxtimes L\) with \(\varepsilon_i(L) < \varepsilon - 1\). Moreover, since \(\varepsilon_i(K) < \varepsilon\), all composition factors of \(\Delta_i(K)\) are of the form \(L(i) \boxtimes L'\) with \(\varepsilon_i(L') < \varepsilon - 1\). Therefore, applying the exact functor \(\Delta_i\) to (5.2), we have

\[E_i' [M] = [\varepsilon_i M] + \sum_k c'_k [N'_k]\]

for some \(R(\alpha)\)-modules \(N'_k\) with \(\varepsilon_i(N'_k) < \varepsilon - 1\). \(\square\)

For an element \([M] \in \mathfrak{B}(\infty)\), we define

\[\text{wt}([M]) = -\alpha \quad \text{if } M \in R(\alpha)\text{-mod},\]

\[\varepsilon_i([M]) = \begin{cases} \max \{ k \geq 0 \mid \varepsilon_i^{k} M \neq 0 \} & \text{if } i \in I^e, \\ 0 & \text{if } i \in I^m, \end{cases}\]

\[\varphi_i([M]) = \varepsilon_i(b) + \langle h_i, \text{wt}([M]) \rangle.\]
Then we have the following theorem.

Theorem 5.4. The sextuple \((\mathcal{B}(\infty), \text{wt}, \hat{e}_i, \hat{f}_i, \varepsilon_i, \varphi_i)\) becomes an abstract crystal, which is isomorphic to the crystal \(B(\infty)\) of \(U_q^- (\mathfrak{g})\).

Proof. It follows from Lemma 3.13 and Lemma 5.3 that the pair \((\mathcal{B}(\infty), \{\hat{e}_i\}_{i \in I})\) is a perfect basis for the \(B_q(\mathfrak{g})\)-module \(G_0(R)\mathbb{Q}(q)\). Hence by Theorem 4.19, \(\mathcal{B}(\infty)\) is isomorphic to \(B(\infty)\). □

5.2. Cyclotomic quotients \(R^\lambda\) and their crystals \(\mathcal{B}(\lambda)\).

In this subsection, we define the cyclotomic quotient \(R^\lambda\) of \(R\) for \(\lambda \in P^+\), and investigate the crystal structure on the set of isomorphism classes of irreducible \(R^\lambda\)-modules.

For \(\alpha \in Q^+\) with \(|\alpha| = d\) and \(\lambda \in P^+\), let \(I^\lambda(\alpha)\) denote the two-sided ideal of \(R(\alpha)\) generated by

\[
\{x_d^{(h_{i\alpha}, \lambda)} I_i | i = (i_1, \ldots, i_d) \in \text{Seq}(\alpha)\}
\]

Note that it is defined in the opposite manner to [24, Section 3.4]. We define \(R^\lambda(\alpha) = R(\alpha)/I^\lambda(\alpha)\).

The algebra \(R^\lambda := \bigoplus_{\alpha \in Q^+} R^\lambda(\alpha)\) is called the **cyclotomic Khovanov-Lauda-Rouquier algebra** of weight \(\lambda\). For an irreducible \(R(\alpha)\)-module \(M\), let

\[
\varepsilon_i^\gamma(M) = \max\{k \geq 0 | 1_{\alpha-k\alpha, \lambda} M \neq 0\}.
\]

This definition is also the opposite to [27, (5.6)]. Combining Lemma 3.7 and Lemma 3.12 with (2.8) and the fact that \(x_m^k L(i_m) = 0\) for \(k \geq m, \ i \in I^e\), we obtain

\[
I^\lambda(\alpha) \cdot M = 0 \text{ if and only if } \begin{cases}
\varepsilon_i^\gamma(M) \leq \langle h_i, \lambda \rangle & \text{for } i \in I^e, \\
\varepsilon_i^\gamma(M) = 0 & \text{for } i \in I^m \text{ with } \langle h_i, \lambda \rangle = 0,
\end{cases}
\]

where \(M\) is an irreducible \(R(\alpha)\)-module.

Lemma 5.5. Let \(M\) be an irreducible \(R(\alpha)\)-module.

1. For \(i \in I\), either \(\varepsilon_i^\gamma(\hat{f}i M) = \varepsilon_i^\gamma(M)\) or \(\varepsilon_i^\gamma(M) + 1\).
2. For \(i, j \in I\) with \(i \neq j\), we have \(\varepsilon_i^\gamma(\hat{f}_j M) = \varepsilon_i^\gamma(M)\).

Proof. The proof is the same as that of [27, Proposition 6.2]. □

For \(M \in R^\lambda(\alpha)\)-fmod and \(N \in R(\alpha)\)-fmod, let \(\text{infl}^\lambda M\) be the inflation of \(M\), and \(\text{pr}^\lambda N\) be the quotient of \(N\) by \(I^\lambda(\alpha) N\). Let \(\mathcal{B}(\lambda)\) denote the set of isomorphism classes of irreducible graded
R^λ-modules. For $M \in R^\lambda(\alpha)$-fmod, define

$$
\text{wt}^\lambda(M) = \lambda - \alpha,
\tilde{e}_i^\lambda M = \text{pr}^\lambda \circ \tilde{e}_i \circ \text{infl}^\lambda M,
\tilde{f}_i^\lambda M = \text{pr}^\lambda \circ \tilde{f}_i \circ \text{infl}^\lambda M,
$$

(5.5)

$$
\varepsilon_i^\lambda(M) = \begin{cases}
\max\{k \geq 0 \mid (\tilde{e}_i^\lambda)^k M \neq 0\} & \text{for } i \in \check{I}^e, \\
0 & \text{for } i \in \check{I}^m,
\end{cases}
$$

$$
\varphi_i^\lambda(M) = \begin{cases}
\max\{k \geq 0 \mid (\tilde{f}_i^\lambda)^k M \neq 0\} & \text{for } i \in \check{I}^e, \\
\langle h_i, \text{wt}^\lambda(M) \rangle & \text{for } i \in \check{I}^m.
\end{cases}
$$

We will show that $(\mathcal{B}(\lambda), \text{wt}^\lambda, \tilde{e}_i^\lambda, \tilde{f}_i^\lambda, \varepsilon_i^\lambda, \varphi_i^\lambda)$ is an abstract crystal. For this purpose, we need several lemmas.

Lemma 5.6. Let $i \in \check{I}^e$ and $\lambda, \mu \in P^+$. For $[M], [N] \in \mathcal{B}(\infty)$ with $\text{pr}^\lambda M \neq \emptyset$, $\text{pr}^\lambda N \neq \emptyset$, $\text{pr}^\mu M \neq \emptyset$, $\text{pr}^\mu N \neq \emptyset$, we have

$$
\varphi_i^\lambda(M) - \varphi_i^\lambda(N) = \varphi_i^\mu(M) - \varphi_i^\mu(N).
$$

Proof. The assertion can be proved in the same manner as in [27] Proposition 6.6, Remark 6.7. □

Lemma 5.7. Let $i \in \check{I}^e$ and $j \in I$ with $a_{ij} < 0$.

1. If $m \leq -a_{ij}$, then for each $0 \leq k \leq m$, there exists a unique irreducible $R(m\alpha_i + \alpha_j)$-module $L(i^k j^{m-k})$ with

$$
\varepsilon_i(L(i^k j^{m-k})) = k \quad \text{and} \quad \varepsilon_i^\vee(L(i^k j^{m-k})) = m - k.
$$

2. If $0 \leq k \leq -a_{ij}$, then the module

$$
\text{Ind}L(i^s) \boxtimes L(i^k j^{-a_{ij}}) \simeq \text{Ind}L(i^k j^{-a_{ij}}) \boxtimes L(i^s)
$$

is irreducible for all $s \geq 0$.

3. If $0 \leq k \leq -a_{ij} \leq c$ and N is an irreducible $R(c\alpha_i + \alpha_j)$-module with $\varepsilon_i(N) = k$, then we have $c + a_{ij} \leq k \leq c$ and

$$
N \simeq \text{Ind}L(i^{c+a_{ij}}) \boxtimes L(i^{k-c-a_{ij}}).
$$

Proof. To prove (1), we consider the induced module $\text{Ind}L(i^k) \boxtimes L(j) \boxtimes L(i^{m-k})$ for $0 \leq k \leq m$. Let

$$
K = \text{Span}_F \{ \tau_w \otimes (t \otimes u \otimes v) \mid w \in S_{m+1}, \ell(w) > 0, t \in L(i^k), u \in L(j), v \in L(i^{m-k}) \}.
$$

By the same argument as in [27] Proposition 6.11, we deduce that K is a proper maximal submodule of $\text{Ind}L(i^k) \boxtimes L(j) \boxtimes L(i^{m-k})$, and that $\text{hd} \text{Ind}L(i^k) \boxtimes L(j) \boxtimes L(i^{m-k})$ is the quotient module $\text{Ind}L(i^k) \boxtimes L(j) \boxtimes L(i^{m-k})/K$ which is irreducible. We denote it by $L(i^k j^{m-k})$. By the Frobenius reciprocity (8.1), we have

$$
\varepsilon_i(L(i^k j^{m-k})) = k \quad \text{and} \quad \varepsilon_i^\vee(L(i^k j^{m-k})) = m - k.
$$

(5.6)
On the other hand, there is a surjective homomorphism of degree 0
\[\text{Ind} L(i^k) \otimes L(j) \otimes L(i^{m-k}) \rightarrow \tilde{e}_i^k \tilde{e}_j \tilde{e}_i^{m-k} 1, \]
which implies that \(L(i^k j i^{m-k}) \simeq \tilde{e}_i^k \tilde{e}_j \tilde{e}_i^{m-k} 1 \). By Theorem 5.3
\[\{ \tilde{e}_i^k \tilde{e}_j \tilde{e}_i^{m-k} 1 \mid 0 \leq k \leq m \} \]
is a complete set of irreducible \(R(m \alpha_i + \alpha_j) \)-module. Therefore, \(L(i^k j i^{m-k}) \) is a unique irreducible \(R(m \alpha_i + \alpha_j) \)-module satisfying (5.6).

The assertion (2), (3) can be proved by the same argument as in [27, Theorem 6.10]. □

Fix \(i \in I^e \) and \(j \in I \) with \(i \neq j, a_{ij} \neq 0 \) and let
\[\mathcal{L}(k) = L(i^k j i^{a_{ij} - k}) \] for \(0 \leq k \leq -a_{ij} \).

Lemma 5.8. Let \(c, d \in \mathbb{Z}_{\geq 0} \) with \(c + d \leq -a_{ij} \).

1. We have
\[\text{hdInd}(i^m) \otimes L(i^c j i^d) \simeq \tilde{f}_i^m L(i^c j i^d) \simeq \tilde{f}_i^{m+c} L(j)^d \]
\[\simeq \begin{cases}
\text{Ind} L(i^{m+a_{ij}+c+d}) \otimes \mathcal{L}(-a_{ij} - d) & \text{if } m \geq -a_{ij} - c - d, \\
\mathcal{L}(i^{m+c} j i^d) & \text{if } m < -a_{ij} - c - d.
\end{cases} \]

2. Suppose that there is a nonzero homomorphism
\[\text{Ind} L(i^m) \otimes \mathcal{L}(c_1) \otimes \cdots \otimes \mathcal{L}(c_r) \rightarrow Q \]
where \(Q \) is irreducible. Then
\[\varepsilon_i(Q) = m + \sum_{t=1}^r c_t \text{ and } \varepsilon_i^\vee(Q) = m + \sum_{t=1}^r (-a_{ij} - c_t). \]

3. Let \(M \) and \(Q \) be irreducible. Suppose that there is a nonzero homomorphism \(\text{Ind}\mathcal{L}(k) \otimes M \rightarrow Q \). Then \(\varepsilon_i(Q) = \varepsilon_i(M) + k. \)

Proof. The proof is identical to that of [27, Lemma 6.13]. □

Lemma 5.9.

1. If \(N \) is an irreducible \(R(c \alpha_i + a \alpha_j) \)-module with \(\varepsilon_i(N) = 0 \), then there exist \(r \in \mathbb{Z}_{>0} \) and \(b_t \leq -a_{ij} \) for \(1 \leq t \leq r \) such that
\[\text{Ind} L(j i^{b_1}) \otimes \cdots \otimes L(j i^{b_r}) \rightarrow N. \]

2. Let \(a := -a_{ij} \). Suppose that we have a surjective homomorphism
\[\text{Ind} L(j^b) \otimes L(j i^{b_1}) \otimes \cdots \otimes L(j i^{b_r}) \rightarrow Q, \]
where \(Q \) is irreducible.
(a) If $h \geq \sum_{i=1}^{r}(a - b_i)$, then we have a surjective homomorphism

$$\text{Ind} L(i^9) \otimes L(a - b_1) \otimes \cdots \otimes L(a - b_r) \to Q,$$

where $g := h - \sum_{i=1}^{r}(a - b_i)$.

(b) Otherwise, we have

$$\text{Ind} L(a - b_1) \otimes \cdots \otimes \text{Ind} L(a - b_{s-1}) \otimes L(j^i j^b_1) \otimes L(j^{s+1}) \otimes \cdots \otimes L(j^{b_1}) \to Q,$$

where $g' = h - \sum_{i=1}^{s-1}(a - b_i)$ and s is such that

$$\sum_{i=1}^{s-1}(a - b_i) \leq h < \sum_{i=1}^{s}(a - b_i).$$

Proof. The assertions can be proved in the same manner as in [27, Lemma 6.14, Lemma 6.15].

Proposition 5.10. Let $i \in I^e$ and $j \in I$ with $i \neq j$. Let M be an irreducible $R(c_{a_j} + d\alpha_j)$-module, and $\lambda \in P^+$ such that $\text{pr}^\lambda(M) \neq 0$ and $\text{pr}^\lambda(f_j M) \neq 0$. Then we have

$$\varepsilon_i^\lambda(f_j M) = \varepsilon_i^\lambda(M) + a_{ij} + k, \quad \varphi_i^\lambda(f_j M) = \varphi_i^\lambda(M) + k$$

for some $0 \leq k \leq -a_{ij}$.

Proof. Using the argument in [27, Theorem 6.19] with Lemma 5.6, Lemma 5.7, Lemma 5.8 and Lemma 5.9 our assertion follows.

Proposition 5.11. Let $i \in I^e$, and M be an irreducible $R(\alpha)$-module with $\text{pr}^\lambda(M) \neq 0$.

1. For $j \in I$ with $i \neq j$, we have

$$\varphi_i^\lambda(f_j M) - \varepsilon_i^\lambda(f_j M) = -\langle h_i, \alpha_j \rangle + \varphi_i^\lambda(M) - \varepsilon_i^\lambda(M).$$

2. Moreover, we have

$$\varphi_i^\lambda(M) = \varepsilon_i^\lambda(M) + (h_i, \text{wt}^\lambda(M)).$$

Proof. Combining [27, Proposition 6.20] with Proposition 5.10 we obtain the assertion (1). Since $\varphi_i^\lambda(1) = \varepsilon_i^\lambda(1) + \langle h_i, \lambda \rangle$, the assertion (2) follows by induction on $|\alpha|$ combined with the assertion (1).

Combining Proposition 5.11 with (5.5), we obtain the following proposition.

Proposition 5.12. The sextuple $(\mathfrak{B}(\lambda), \text{wt}^\lambda, \varepsilon_i^\lambda, f_i^\lambda, \varphi_i^\lambda)$ is an abstract crystal.

We would like to show that $\mathfrak{B}(\lambda)$ is isomorphic to the crystal $B(\lambda)$. For this purpose, we first prove the following lemma.

Lemma 5.13. Let $i \in I^e$ and M be an irreducible $R^\lambda(\alpha)$-module. Then

$$\langle h_i, \text{wt}^\lambda(M) \rangle \leq 0 \quad \text{if and only if} \quad f_i^\lambda M = 0.$$
Proof. Let $\alpha = \sum_{j \in I} k_j \alpha_j$ with $|\alpha| = d$. For simplicity, we identify M with $\text{infl}^\lambda M$.

We first assume that $\langle h_i, \text{wt}^\lambda(M) \rangle \leq 0$. Since $\langle h_i, \lambda \rangle \geq 0$ and $\langle h_i, -\alpha_j \rangle \geq 0$ for all $j \in I$, we have
\[\langle h_i, \lambda \rangle = 0 \quad \text{and} \quad k_j = 0 \text{ for } j \in I \text{ with } a_{ij} \neq 0. \]

Take an element $\mathbf{j} = (j_1 \ldots j_d) \in \text{Seq}(\alpha)$ such that $1_{\mathbf{j}} M \neq 0$. Note that $a_{ij_k} = 0$ for all $k = 1, \ldots, d$. By the Frobenius reciprocity (3.5), we have an embedding
\[L(i) \boxtimes M \hookrightarrow \Delta_i \tilde{f}_i M, \]
which implies that $1_{(i)\mathbf{j}} (\tilde{f}_i M) \neq 0$. Since $a_{ij_1} = 0$, it follows from the quantum Serre relations that
\[1_{(i)j_2 \ldots \mathbf{j}d} (\tilde{f}_i M) \neq 0. \]

Repeating this process, we have
\[1_{\mathbf{j}_0} (\tilde{f}_i M) \neq 0, \]
which yields that $I^\lambda(\alpha + \alpha_i) \tilde{f}_i M \neq 0$ since $1_{\mathbf{j}_0} \in I^\lambda(\alpha + \alpha_i)$. Therefore, we have the only if part of our assertion.

We now prove the converse. We will actually prove the contrapositive:
\[\langle h_i, \text{wt}^\lambda(M) \rangle > 0 \quad \Rightarrow \quad \tilde{f}_i^\lambda M \neq 0. \]

Assume that $\langle h_i, \text{wt}^\lambda(M) \rangle > 0$.

First consider the case $\langle h_i, -\alpha \rangle = 0$. In this case, $\langle h_i, \lambda \rangle > 0$ and $k_j = 0$ for $j \in I$ with $a_{ij} \neq 0$. Take a nonzero element $v \in L(i)$. By definition, we have
\[\text{Ind}L(i) \boxtimes M = \text{Span}_{\mathbb{F}}\{r_1 \cdots r_t \otimes (v \otimes m) \mid m \in M, \ 0 \leq t \leq d\}. \]

Since $I^\lambda(\alpha) M = 0$ and $k_j = 0$ for $j \in I$ with $a_{ij} \neq 0$, it follows from the definition (5.3) that
\[I^\lambda(\alpha + \alpha_i)(\text{Ind}L(i) \boxtimes M) = 0. \]

Hence we have $\tilde{f}_i^\lambda M \neq 0$.

Now we suppose that $\langle h_i, -\alpha \rangle > 0$. Take a nonzero element v in $L(i)$, and define N to be the submodule of $\text{Ind}L(i) \boxtimes M$ generated by
\[N = \{ x_{d+1}^{(h_i, \lambda)} \tau_d \cdots \tau_1 1_{(i)\mathbf{k}} \otimes (v \otimes m) \mid 0 \leq t \leq d, \ m \in M, \ \mathbf{k} \in \text{Seq}(\alpha) \}. \]

As $\langle h_i, -\alpha \rangle > 0$, we have
\[\deg(x_{d+1}^{(h_i, \lambda)} \tau_d \cdots \tau_1 1_{(i)\mathbf{k}} \otimes (v \otimes m)) > \deg(1 \otimes v \otimes m). \]

Then, as M is $R^\lambda(\alpha)$-module, we have $I^\lambda(\alpha + \alpha_i)(\text{Ind}L(i) \boxtimes M) \subset N$. Hence $(\text{Ind}L(i) \boxtimes M)/N$ is $R^\lambda(\alpha + \alpha_i)$-module. To prove $\tilde{f}_i^\lambda M \neq 0$, it suffices to show that $(\text{Ind}L(i) \boxtimes M)/N$ is nontrivial; i.e., N is proper.
Take $m_0 \in M$ such that $\deg(m_0) \leq \deg(m)$ for all $m \in M$. We claim that $1 \otimes (v \otimes m_0) \notin N$. Suppose that $1 \otimes (v \otimes m_0) \in N$. Since $I^\lambda(\alpha)M = 0$, it follows from the defining relations \[\eqref{eq:2.1} \] and \[\eqref{eq:2.2} \] that
\[
x_r(x_{d+1}^{(h_i, \lambda)} \tau_d \cdots \tau_1 1_{(i)k} \otimes (v \otimes m)) = x_{d+1}^{(h_i, \lambda)} \tau_d \cdots \tau_1 (x_{r+1}^{(h_i, \lambda)} \tau_d \cdots \tau_1 (x_{d+1}^{(h_i, \lambda)} \tau_d \cdots \tau_1 1_{(i)k} \otimes (v \otimes m)),
\]
\[
x_s(x_{d+1}^{(h_i, \lambda)} \tau_d \cdots \tau_1 1_{(i)k} \otimes (v \otimes m)) = x_{d+1}^{(h_i, \lambda)} \tau_d \cdots \tau_1 (x_{d+1}^{(h_i, \lambda)} \tau_d \cdots \tau_1 1_{(i)k} \otimes (v \otimes m))
\]
for $m \in M$, $1 \leq r \leq d$ and $1 \leq s \leq d - 1$. So, the element $1 \otimes (v \otimes m_0)$ can be written as
\[
1 \otimes (v \otimes m_0) = \sum_j \tau_{i_j} \tau_{i_j+1} \cdots \tau_d x_{d+1}^k n_j,
\]
for some $n_j \in \mathbb{N}$, $t_j, k \in \mathbb{Z}_{\geq 0}$. Since $\langle h_i, -\alpha \rangle > 0$ and m_0 is minimal, we have
\[
\deg(1 \otimes (v \otimes m_0)) < \deg(n_j) \leq \deg(\tau_{i_j} \tau_{i_j+1} \cdots \tau_d x_{d+1}^k n_j),
\]
which gives a contradiction. Therefore, $1 \otimes (v \otimes m_0)$ is not contained in N and N is proper. □

We are now ready to state and prove the crystal version of categorification of $V(\lambda)$. Define a map $\Psi_\lambda : \mathcal{B}(\lambda) \to \mathcal{B}(\infty) \otimes T_\lambda \otimes C$ by
\[
[M] \mapsto [\text{infl}^M] \otimes t_\lambda \otimes c.
\]

Theorem 5.14.

1. Ψ_λ is a strict crystal embedding.
2. The crystal $\mathcal{B}(\lambda)$ is isomorphic to the crystal $B(\lambda)$.

Proof. To prove (1), let M be an irreducible $R^\lambda(\alpha)$-module and let $M_0 = \text{infl}^\lambda M$. Note that
\[
\varepsilon_i^\lambda(M) = \varepsilon_i(M_0), \quad \varphi_i(M_0) = \varepsilon_i(M_0) + \langle h_i, \lambda \rangle = \varphi_i^\lambda(M) \geq 0.
\]
By the tensor product rule \[\eqref{eq:4.1} \] and Proposition \[\ref{prop:5.12} \] we have
\[
\text{wt}(\Psi_\lambda(M)) = \text{wt}(M_0 \otimes t_\lambda \otimes c) = \lambda - \alpha = \text{wt}^\lambda(M),
\]
\[
\varepsilon_i(\Psi_\lambda(M)) = \varepsilon_i(M_0 \otimes t_\lambda \otimes c) = \max\{\varepsilon_i(M_0), -\langle h_i, \lambda - \alpha \rangle\} = \varepsilon_i^\lambda(M),
\]
\[
\varphi_i(\Psi_\lambda(M)) = \varphi_i(M_0 \otimes t_\lambda \otimes c) = \max\{\varphi_i(M_0) + \langle h_i, \lambda \rangle, 0\} = \varphi_i^\lambda(M).
\]
On the other hand, it follows from Lemma \[\ref{lem:5.13} \] that
\[
\langle h_i, \lambda - \alpha + \alpha_i \rangle \leq 0 \implies \hat{e}_i^\lambda M = 0.
\]
By a direct computation, we have
\[
\hat{f}_i(M_0 \otimes t_\lambda \otimes c) = \begin{cases}
 (\hat{f}_iM_0) \otimes t_\lambda \otimes c & \text{if } \varphi_i^\lambda(M) > 0, \\
 0 & \text{if } \varphi_i^\lambda(M) \leq 0,
\end{cases}
\]
\[
\hat{e}_i(M_0 \otimes t_\lambda \otimes c) = \begin{cases}
 (\hat{e}_iM_0) \otimes t_\lambda \otimes c & \text{if } i \in I^m, \ \varphi_i^\lambda(M) \geq 0, \\
 (\hat{e}_iM_0) \otimes t_\lambda \otimes c & \text{if } i \in I^m, \langle h_i, \lambda - \alpha + \alpha_i \rangle > 0, \\
 0 & \text{if } i \in I^m, \langle h_i, \lambda - \alpha + \alpha_i \rangle \leq 0.
\end{cases}
\]
By (5.7) and Lemma 5.13 we get
\[
\tilde{e}_i(\Psi_\lambda(M)) = \Psi_\lambda(\tilde{e}_i^\lambda(M)) \quad \text{and} \quad \tilde{f}_i(\Psi_\lambda(M)) = \Psi_\lambda(\tilde{f}_i^\lambda(M)),
\]
which completes the proof of (1).

Since \(\Psi_\lambda\) takes 1 to \(1 \otimes t_\lambda \otimes c\), the assertion (2) follows from (1) and Proposition 4.4.

\[\square\]

References

1. A. Berenstein and D. Kazhdan, Geometric and unipotent crystals. II. From unipotent bicrystals to crystal bases, Quantum groups, 13–88, Contemp. Math., 433, Amer. Math. Soc., Providence, RI, 2007.
2. R. E. Borcherds, Generalized Kac-Moody algebras, J. Algebra 115 (1988), no. 2, 501–512.
3. J. Brundan and A. Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math. 178 (2009), no. 3, 451–484.
4. J. Borcherds, Graded decomposition numbers for cyclotomic hecke algebras, Adv. Math. 222 (2009), no. 6, 1883–1942.
5. J. Fuchs, U. Ray, and C. Schweigert, Some automorphisms of generalized Kac-Moody algebras, J. Algebra 191 (1997), no. 2, 518–540.
6. V. A. Gritsenko and V. V. Nikulin, Automorphic forms and Lorentzian Kac-Moody algebras. II, Internat. J. Math. 9 (1998), no. 2, 153–199.
7. J. A. Harvey and G. Moore, Algebras, BPS states, and strings, Nuclear Phys. B 463 (1996), no. 2-3, 315–368.
8. S.-J. Kang, S.-j. Oh, and E. Park, Perfect bases for integrable modules over generalized Kac-Moody algebras, Adv. Math. 200 (2006), no. 2, 455–478.
22. M. Kashiwara, *On crystal bases of the q-analogue of universal enveloping algebras*, Duke Math. J. **63** (1991), no. 2, 465–516.
23. ____________, *Global crystal bases of quantum groups*, Duke Math. J. **69** (1993), no. 2, 455–485.
24. M. Khovanov and A. Lauda, *A diagrammatic approach to categorification of quantum groups I*, Represent. Theory **13** (2009), 309–347.
25. ____________, *A diagrammatic approach to categorification of quantum groups II*, Trans. Amer. Math. Soc. **363** (2011), no. 5, 2685–2700.
26. A. Kleshchev, *Linear and Projective Representations of Symmetric Groups*, Cambridge Tracts in Math., 163, Cambridge University Press, Cambridge, 2005.
27. A. Lauda and M. Vazirani, *Crystals from categorified quantum groups*, Adv. Math. **228** (2011), no. 2, 803–861.
28. G. Lusztig, *Introduction to Quantum Groups*, Progress in Mathematics, 110, Birkhäuser Boston, Inc., Boston, MA, 1993.
29. G. Moore, *String duality, automorphic forms, and generalized Kac-Moody algebras*, Nuclear Phys. B Proc. Suppl. **67** (1998), 56–67.
30. S. Naito, *Kazhdan-Lusztig conjecture for generalized Kac-Moody algebras. II. Proof of the conjecture*, Trans. Amer. Math. Soc. **347** (1995), no. 10, 3891–3919.
31. R. Rouquier, *2 Kac-Moody algebras*, arXiv:0812.5023 (2008).
32. N. R. Scheithauer, *Generalized Kac-Moody algebras, automorphic forms and Conway’s group. I*, Adv. Math. **183** (2004), no. 2, 240–270.
33. ____________, *On the classification of automorphic products and generalized Kac-Moody algebras*, Invent. Math. **164** (2006), no. 3, 641–678.
34. B. Sevenhant and M. Van Den Bergh, *A relation between a conjecture of Kac and the structure of the Hall algebra*, J. Pure Appl. Algebra **160** (2001), no. 2-3, 319–332.
35. M. Varagnolo and E. Vasserot, *Canonical bases and KLR algebras*, J. Reine Angew. Math. **659** (2011), 67–100.
36. B. Webster, *Knot invariants and higher dimensional representation theory I: diagrammatic and geometric categorification of tensor products*, arXiv:1001.2020 (2010).

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea

E-mail address: sjkang@math.snu.ac.kr

Department of Mathematical Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea

E-mail address: sj092@snu.ac.kr

School of Mathematics, Korea Institute for Advanced Study, 87 Hoegiro, Dongdaemun-gu, Seoul 130-722, Korea

E-mail address: eypark@kias.re.kr