Cholinergic enhancement increases regional cerebral blood flow to the posterior cingulate cortex in mild Alzheimer's disease

Tomomichi Iizuka¹ and Masashi Kameyama²,³

¹Department of Neurology, Fukuyuji Hospital, Japan Anti-Tuberculosis Association, ²Division of Nuclear Medicine, Department of Radiology School of Medicine, Keio University, and ³Division of Nuclear Medicine, National Center for Global health and Medicine, Tokyo, Japan

Aim: The brain region that shows reductions in regional cerebral blood flow (rCBF) earliest is the posterior cingulate cortex (PCC), which is thought to have a relationship with cognitive function. We made a hypothesis that the PCC hypoperfusion is a result of cholinergic dysfunction and can be restored by cholinergic enhancement. This present longitudinal study aimed to detect the restoration of PCC rCBF in response to donepezil, an acetylcholine esterase inhibitor.

Methods: We evaluated rCBF changes in the PCC, precuneus and anterior cingulate cortex using perfusion single-photon emission computed tomography (SPECT), statistical analysis and region of interest analysis, prospectively. We allocated 36 patients with mild AD to either the responder or non-responder groups based on changes in Mini-Mental State Examination scores. The patients were followed up for 18 months.

Results: The PCC rCBF significantly increased in responders after 6 months of donepezil therapy. Statistical maps at baseline showed a typical decreased pattern of mild AD and obvious rCBF restoration in the bilateral PCC at 6 months in responders. Changes in Mini-Mental State Examination scores and the AD assessment scale cognitive scores significantly correlated with rCBF changes in the PCC of responders.

Conclusions: Cholinergic enhancement restored PCC rCBF under the three conditions of mild AD, responders and short follow-up interval, and that increase correlated with improved cognitive function. These findings support our hypothesis that PCC rCBF reflects cholinergic function in AD patients. Geriatr Gerontol Int 2017; 17: 951–958.

Keywords: Alzheimer's disease, donepezil, mild cognitive impairment, N-isopropyl-p-[¹²³I] iodoamphetamine, posterior cingulate cortex.

Introduction

The posterior cingulate cortex (PCC) is of particular interest, because it has dense structural connections to many other brain regions and could serve as a hub, and it is metabolically active with high regional cerebral blood flow (rCBF) in healthy individuals.¹–³ The region is thought to play an important role in cognition, although consensus about the nature of its role has not been reached.⁴ Reductions in rCBF and in the regional cerebral metabolic rate of glucose (rCMRglc) in the PCC comprise the earliest signs of Alzheimer's disease (AD).⁵,⁶ The mechanism of rCBF reduction in PCC is not still established. We made a hypothesis that decreased PCC rCBF is due to integration of cholinergic dysfunction, and is related to the impaired learning and memory associated with early AD.

If the PCC is indeed associated with the symptoms of AD, rCBF in the area should be restored with the use of an acetylcholine esterase inhibitor, such as donepezil. However, previous longitudinal single-photon emission computed tomography (SPECT) studies where donepezil has been administered have not shown an increase in PCC rCBF (Table 1).⁷–¹⁴

The present SPECT follow-up study aimed to determine whether PCC rCBF increases in response to donepezil and if so, to identify the optimal conditions for this to occur. As the PCC is one of the most vulnerable regions in AD and it is affected early during the course of the disease, we did not expect an increase in rCBF in this
Table 1 Single-photon emission computed tomography follow-up studies of donepezil therapy

Reference	Tracer	Image analysis	Treated patients (n)	Baseline MMSE	Follow-up MMSE	Subgroup analysis	Follow-up imaging	Regions with increased or preserved rCBF
Staff et al.7	99Tc-HMPAO 3D-ROI	12	Not referred	Not referred	No	35w	Overall increase in global CBF (most prominent in frontal lobes)	
Nakano et al.8	99Tc-ECD SPM	15	22.1 ± 3.3	19.9 ± 4.4	No	12m	Significantly preserved in bilateral ACC, right middle temporal gyrus, inferior parietal lobe and prefrontal lobe	
Nobili et al.9	99Tc-HMPAO SPM	25	19.8 ± 3.5	17.8 ± 4.1	No	11 ± 2.6m	No significant increase in any region	
Shimizu et al.10	123I-IMP 3D-SSP SEE	41	20.3 ± 4.1	23.8 ± 4.5	Yes	11.8 ± 1.3m	Significant increase in lateral and medial frontal lobes and orbital surface	
Ushijima et al.11	123I-IMP 3D-SSP	17	21.2 ± 4.9	22.5 ± 3.5	No	3m	Significant increase in relative rCBF in the frontal, parietal and temporal lobes	
Yoshida et al.12	123I-IMP 3D-SRT	29	18.5	Not referred	Yes	1m	Significant increase in anterior frontal lobe and parietal lobe	
Tateno et al.13	99Tc-ECD 3D-SRT	15	20.9 ± 4.7	18.7 ± 5.7	No	55.1 ± 11.0w	Significant increase in left callosomarginal, right central, bilateral pericallosal and lentical nucleus segments	
Kimura et al.14	99Tc-ECD 3D-SRT	31	20.7 ± 5.1	21.6 ± 4.8	Yes	24.5 ± 4.2m	No significant increase in any region	

ECD, ethyl cysteinate dimer; d, day; HMPAO, hexamethylpropyleneamine oxime; IMP, N-isopropyl-p-iodoamphetamine; m, month; n, number of patients; rCBF, regional cerebral blood flow; ROI, region of interest; SEE, stereotactic extraction estimation; SPM, statistical parametric mapping; SRT, stereotaxic ROI template; SSP, stereotactic surface projections; w, week.
region of advanced AD patients in response to donepezil. Therefore, a higher initial Mini-Mental State Examination (MMSE) score would be essential for the selection of patients who would be likely to benefit from and respond to donepezil with increased PCC rCBF. Furthermore, it was hypothesized that a rCBF increase in the PCC is more likely to manifest in responders presenting with cognitive improvements on donepezil therapy and that, inversely, non-responders might show limited augmentation of rCBF in the region. Considering its role in cognition, an increase of PCC rCBF would have considerable clinical importance.

Methods

Patient selection

We carried out a prospective study. All procedures adhered to the clinical study guidelines of Fukujuji Hospital, Tokyo, Japan, and were approved by the hospital ethics review board. Patients or their families provided written informed consent for the present study to enroll 36 consecutive outpatients attending Fukujuji Hospital (16 men and 20 women; age 69–89 years; mean age 77.6 years) between 2011 and 2012. The patients were diagnosed with probable mild AD according to the diagnostic criteria of the National Institute of Neurological and Communicative Disorders and Strokes–Alzheimer’s Disease and Related Disorders Association, the Diagnostic and Statistical Manual of Mental Disorders-IV-Text Revision and the International Classification of Disease, World Health Organization, 10th Revision. Major cerebral infarction was not seen on magnetic resonance imaging from any of the patients, and all of them had Hachinski Ischemic Scores ≤5, confirming that cerebrovascular factors were not involved in the pathophysiology of the disease. Scores on the MMSE, which is used to screen for dementia, ranged from 21 to 26 (mean 23.6). None of the patients used tranquilizers, anti-anxiety agents or antidepressants that would affect the central nervous system. The patients were given donepezil orally (3 mg/day for 2 weeks, followed by 5 mg/day for 18 months). All patients tolerated the higher dose without serious adverse reactions, and cohabiting family members confirmed their compliance. The MMSE and the Japanese version of the AD assessment scale-cognitive scale (ADAS-Jcog) were assessed at baseline, and at 6 and 18 months later. The patients were allocated to responder or non-responder subgroups based on an increase of ≥1 or a decrease of ≥2 compared with baseline MMSE scores at 6 months after therapy. According to Doody et al., the mean annual change in the MMSE scores of patients with untreated AD is −3.7 ± 4.6 (mean ± SD). As an annual MMSE score change of 0.9 (mean ± SD) as a cut-off was adequate, half of this value seemed suitable for an interval of 6 months. However, we selected a score of 1 as a cut-off for changes in MMSE scores, because the scores change by 1 point. We also included nine age-matched healthy controls defined as being free of cognitive complaints, and having a clinical dementia rating (CDR) of 0 and MMSE scores ≥28.

Brain perfusion SPECT imaging

Resting patients with closed eyes and unplugged ears were assessed using N-isopropyl-p-[123I] iodoamphetamine (123I-IMP) and an E-CAM gamma camera (Toshiba Medical Systems Corporation, Otawara, Japan) with fan beam collimators at baseline, and after 6 and 18 months of donepezil therapy initiation. From 15 min after an intravenous infusion of 167 MBq of 123I-IMP, SPECT images were acquired in a 128 × 128 matrix with a slice thickness of 1.95 mm (1 pixel) over a period of 30–40 min. The images were reconstructed using filtered back projection with Butterworth filter, attenuation was corrected using Chang’s method (attenuation coefficient = 0.1 cm⁻¹) and scatter was corrected with the triple energy window method.

Image analyses

Three-dimensional stereotactic surface projections (3D-SSP) created with Neurological Statistical Image Analysis Software (NEUROSTAT) developed by Minoshima et al. were applied to the 123I-IMP SPECT images to generate Z-score maps. Two-sample t-test values compared on a pixel-by-pixel basis between healthy controls and responders or non-responders (at baseline, and at 6 and 18 months) were transformed into Z-scores by probability integral transformation using NEUROSTAT. The rCBF distribution at baseline between the responders and the non-responders was compared. Statistical maps of changes in rCBF between values at baseline and at 6 months were also generated. We applied region of interest (ROI) analysis to measure PCC rCBF together with the adjacent precuneus and in the anterior cingulate cortex (ACC) using stereotaxic extraction estimation (SEE; version 2.1) software (Nihon Mediphysics, Tokyo, Japan). The precuneus and the ACC were selected as reference regions, because they are closely connected with PCC, and are less vulnerable than the PCC in mild AD in terms of rCBF decrease. The mean rCBF in each segment was automatically measured after segmentation based on anatomical classification of the standard brain (Fig. S1). We selected segments of the PCC (BA23 and BA31) and ACC (BA24) using Brodmann’s area (BA) level. We defined the boundary of the precuneus using gyrus level instead of BA7, considering that the precuneus is the mesial extent of BA7, which also contains several other regions. Relative CBF was determined by dividing the accumulation in each segment by global mean.
Statistical analysis

We used a one-way ANOVA to assess mean age and years of education among three groups. We applied the Tukey–Kramer test to correct the multiple comparison findings of changes in MMSE and ADAS-Jcog scores. Changes in relative CBF between baseline and 6 months were calculated using a paired t-test, with the Bonferroni correction. Correlations between rCBF changes in each segment and changes in MMSE or ADAS-Jcog scores were analyzed using the Pearson product-moment correlation coefficient.

Results

Demographic characteristics

Table 2 compares the demographic features of the patients with mild AD and healthy controls. Age and years of education did not significantly differ among the three groups. The MMSE scores at baseline also did not significantly differ among responders, non-responders and healthy controls. Mean MMSE and ADAS-Jcog scores were significantly improved at 6 months after baseline in the responders ($P < 0.05$), but deteriorated at 18 months.

The decline in mean MMSE and ADAS-Jcog scores between baseline and 18 months was consistent in the non-responders (Fig. S2).

The rCBF distribution at baseline was not significantly different between the responders and the non-responders (Fig. S3).

Changes in rCBF between baseline and 6 months later in patients with mild AD

We compared relative CBF in the bilateral PCC (BA23 and BA31), precuneus, and ACC (BA24) in segments of 3D brain images acquired at baseline and 6 months later from all patients (Table 3). Regional CBF was elevated in the left BA23 and bilateral BA31 ($P < 0.01$) and in the right BA23 ($P < 0.05$).

Statistical maps of responders compared with healthy controls

A comparison of rCBF on 3D-SSP images between responders and healthy controls showed relative hypoperfusion in the bilateral PCC, precuneus, right parietal lobe and left orbitofrontal cortex at baseline in the responders (Fig. 1). This distribution of decreased rCBF was typical of mild AD. Six months...
later, although relative hypoperfusion was evident in the bilateral PCC, left precuneus and right parietal lobe, the findings were less remarkable than at baseline. At 18 months, rCBF was obviously decreased in the bilateral PCC, precuneus and parietal lobe, findings that were typical of AD.

Statistical maps of non-responders compared with healthy controls

Comparisons of rCBF on 3D-SSP images from non-responders and healthy controls showed relative hypoperfusion in the bilateral PCC, precuneus, parietal lobe and temporal lobe at baseline of non-responders (Fig. 1). These findings became more remarkable at 18 months later.

Statistical maps of rCBF changes between baseline and 6 months in responders

Surface images of relative changes in rCBF between baseline and 6 months showed increased rCBF in the bilateral PCC, precuneus, ACC, thalamus and right dorsolateral prefrontal cortex of responders with mild AD (Fig. S4a). There was a significant increase in rCBF in the rostral region of the bilateral PCC. Peak Z was observed in the PCC (Talairach coordinates: x = −4; y = −30; z = 34; Z-score, 4.36; Fig. S4b).

Statistical maps of rCBF changes between baseline and 6 months in non-responders

Surface images of relative changes in rCBF between baseline and 6 months showed increased rCBF in the bilateral ACC, thalamus and right dorsolateral prefrontal cortex of non-responders with mild AD (Fig. S4c). The rCBF did not significantly increase (Fig. S4d).

Correlations between changes in rCBF and in MMSE and ADAS-Jcog scores in responders after 6 months of donepezil therapy

Table 4 shows that the rCBF in bilateral PCC (BA31) significantly correlated with MMSE and ADAS-Jcog scores ($P < 0.01$). The rCBF in the left PCC (BA23) and right ACC significantly correlated with MMSE scores, and those in the left PCC (BA23) and bilateral ACC correlated with ADAS-Jcog scores ($P < 0.05$).

Discussion

The present SPECT follow-up study successfully showed that rCBF increased transiently in the PCC of patients with AD who had relatively high baseline MMSE scores and cognitive improvement (responders). Statistical maps between baseline and 6 months showed obvious rCBF restoration mainly in the bilateral rostral part of the PCC, which
correlated with improvements in cognitive function. Statistical maps of responders compared with normal individuals showed a typical decrease in the rCBF associated with AD at baseline and at 18 months. These findings showed that rCBF can be restored in the PCC, and that it is associated with transient cognitive improvement.

The findings from the present study do not necessarily contradict those of previous studies (Table 1). Presumable causes of differences between the previous and the present findings are baseline MMSE, subgroup analysis, interval to follow-up imaging, tracers, and imaging analysis. In particular, we considered that three conditions of high vulnerability of the PCC rCBF, because of the vulnerability of the

cerebral cortex; Rt., right.

The rCBF in the PCC has not previously been measured in studies using ROI analyses, because the PCC was included in a larger ROI along with other regions. For example, the pericallosal region on a 3D stereotaxic ROI template includes the upper precuneus, ACC and the PCC. ROI should be placed on PCC properly.

Changes in MMSE and ADAS-Jcog scores significantly correlated with rCBF changes in the PCC. Previous studies have found that changes in MMSE scores and rCBF correlate in a large left fronto-temporal region, the left frontal lobe and limbic lobe, as well as in the parietal and temporal segment. Among these three studies, the patients in a study by Shimizu et al. had mild AD, which was essentially identical to the patients described herein, and

| Table 4 Correlation coefficients (r) between regional cerebral blood flow changes and changes in Mini-Mental State Examination and Japanese version of the Alzheimer’s disease assessment scale-cognitive scale scores from baseline to 6 months later in responders |
|----------------|---------|----------------|
| | MMSE | ADAS-Jcog |
| PCC (BA23) | | |
| Rt. | 0.293 | -0.387 |
| Lt. | 0.469* | -0.511* |
| PCC (BA31) | | |
| Rt. | 0.690† | -0.665† |
| Lt. | 0.701† | -0.662† |
| Precuneus | | |
| Rt. | 0.418 | -0.423 |
| Lt. | 0.301 | -0.375 |
| ACC (BA24) | | |
| Rt. | 0.509* | -0.495* |
| Lt. | 0.411 | -0.496* |

*P < 0.05; †P < 0.01.ACC, anterior cingulate cortex; ADAS-Jcog, Japanese version of the Alzheimer’s disease assessment scale-cognitive scale; BA, Brodmann’s area; Lt., left; MMSE, Mini-Mental State Examination; PCC, posterior cingulate cortex; Rt., right.
their MMSE scores increased after therapy.10 The ROI of the limbic lobe in their study included the PCC, which might have contributed to the positive correlation between the changes in MMSE scores and limbic ROI. In contrast, the patients in the other two studies had more advanced AD, and their MMSE scores declined with therapy.9,14 The PCC in the patients in these studies might have become unresponsive to donepezil, which led to the subsequent disappearance of the correlation with MMSE scores. Thus, brain regions where changes in rCBF and MMSE correlated might vary according to clinical stage.

Changes in the PCC rCBF could be associated with connective changes in the region, considering the abundance of connections between PCC and the whole brain. The mechanisms of the reduced rCBF and metabolism in the PCC of patients with AD have been attributed to disconnection rather than focal volume loss.28 Our finding that donepezil evoked restoration of rCBF in the PCC of responders might have relevance to restored connectivity to cholinergic nucleus.

A limitation of the present study was that we could not clarify causes of the difference between responders and non-responders. Although baseline MMSE and years of education did not significantly differ between the two groups, non-responders might have decreased cognitive reserve, considering baseline parietal non-significant hypoperfusion (Fig. S4). The apolipoprotein Eε4 allele that might have promoted the progress of AD was not examined in the present study. Furthermore, the environment29 and lifestyle30 factors might also have affected the response.

In conclusion, brain perfusion SPECT identified increased rCBF in the PCC after 6 months of donepezil therapy. This increase was evident in patients with responders and high baseline MMSE. The restoration of PCC rCBF correlated with cognitive function. These present findings support our hypothesis that PCC hypoperfusion reflects integration of cholinergic dysfunction.

Acknowledgments

This study was supported in part by a Grant of the National Center for Global Science to MK. The authors thank the technical staffs at the Department of Nuclear Medicine at Fukujuji Hospital, especially Makoto Fukasawa and Hiroyo Inoue for invaluable technical assistance, and thank Ms Natalie Okawa for editing the English for this manuscript.

Disclosure statement

The authors declare no conflict of interest.

References

1. Hagmann P, Cammoun L, Gigandet X et al. Mapping the structural core of human cerebral cortex. PLoS Biol 2008; 6: e159.
2. Pfefferbaum A, Chanaud S, Pitel AL et al. Cerebral blood flow in posterior cortical nodes of the default mode network decreases with task engagement but remains higher than in most brain regions. Cereb Cortex 2011; 21: 233–244.
3. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. P Natl Acad Sci USA 2001; 98: 676–682.
4. Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain 2014; 137: 12–32.
5. Kumakura Y, Momose T, Oku S, Ohtake T, Nishikawa J, Ontomo K. Stepwise analysis of cerebral blood flow SPECT imaging on standard brain atlas in patients with dementia of Alzheimer’s type. Kaku Igaku 1998; 35: 843–848.
6. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997; 42: 85–94.
7. Staff RT, Gemmell HG, Shanks MF, Murray AD, Venneri A. Changes in the rCBF images of patients with Alzheimer’s disease receiving Donepezil therapy. Nucl Med Commun 2000; 21: 37–41.
8. Nakano S, Asada T, Matsuda H, Uno M, Takasaki M. Donepezil hydrochloride preserves regional cerebral blood flow in patients with Alzheimer’s disease. J Nucl Med 2001; 42: 1441–1445.
9. Nobili F, Vitali P, Canfora M et al. Effects of long-term Donepezil therapy on rCBF of Alzheimer’s patients. Clin Neurophysiol 2002; 113: 1241–1248.
10. Shimizu S, Hanyu H, Iwamoto T, Koizumi K, Abe K. SPECT follow-up study of cerebral blood flow changes during Donepezil therapy in patients with Alzheimer’s disease. J Neuromadiology 2006; 16: 16–23.
11. Ushijima Y, Okuyama C, Mori S, Kubota T, Nakai T, Nishimura T. Regional cerebral blood flow in Alzheimer’s disease: comparison between short and long-term donepezil therapy. Ann Nucl Med 2006; 20: 425–429.
12. Yoshida T, Ha-Kawa S, Yoshimura M, Nobuhara K, Kinoshita T, Sawada S. Effectiveness of treatment with donepezil hydrochloride and changes in regional cerebral blood flow in patients with Alzheimer’s disease. Ann Nucl Med 2007; 21: 257–265.
13. Tatemoto K, Kobayashi S, Utsumi K, Morii H, Fujii K. Quantitative analysis of the effects of donepezil on regional cerebral blood flow in Alzheimer’s disease by using an automated program, 3DSRT. Neuroradiology 2008; 50: 723–727.
14. Kimura N, Kumamoto T, Masuda T, Hanaoka T, Okazaki T, Arakawa RJ. Evaluation of the regional cerebral blood flow changes during long-term donepezil therapy in patients with Alzheimer’s disease using 3DSRT. J Neuroimaging 2012; 22: 299–304.
15. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease-report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 1984; 34: 939–944.
16. Wade J, Hachinski V. Revised ischemic score for diagnosing multi-infarct dementia. J Clin Psychiatry 1986; 47: 437–438.
17. Doody RS, Dunn JK, Clark CM et al. Chronic donepezil treatment is associated with slowed cognitive decline in Alzheimer’s disease. Dement Geriatr Cogn Disord 2001; 12: 295–300.
18. Minoshima S, Frey KA, Koepepe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three
dimensional stereotactic surface projections of fluorine-18-FDG PET, J Nucl Med 1995; 36: 1238–1248.

19 Mizumura S, Kumita S, Cho K et al. Development of quantitative analysis method for stereotactic brain image: assessment of reduced accumulation in extent and severity using anatomical segmentation. Ann Nucl Med 2003; 17: 289–295.

20 Lancaster JL, Rainey LH, Summerlin JL et al. Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Hum Brain Mapp 1997; 5: 238–242.

21 Kemppainen NM, Aalto S, Wilson IA et al. PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology 2007; 68: 1603–1606.

22 Mosconi L, Berri V, Glodzik L, Pupi A, Dc Santi S, de Leon MJ. Pre-clinical detection of Alzheimer’s disease using FDG-PET, with or without amyloid imaging. J Alzheimers Dis 2010; 20: 843–854.

23 Kemppainen K, Wolf H, Meyer PM et al. Decreased cerebral α4β2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer’s disease assessed with positron emission tomography. Eur J Nucl Med Mol Imaging 2011; 38: 515–525.

24 Homma A, Takeda M, Imai Y et al. Clinical efficacy and safety of donepezil on cognitive and global function in patients with Alzheimer’s disease. A 24-week, multicenter, double-blind, placebo-controlled study in Japan. E2020 Study Group. Dement Geriatr Cogn Disord 2010; 29: 184–195.

25 Rogers SL, Doody RS, Pratt RD, Ieni JR. Long-term efficacy and safety of donepezil in the treatment of Alzheimer’s disease: final analysis of a US multicentre open-label study. Eur Neuropsychopharmacol 2006; 16 (3): 195–203.

26 Iida H, Akutsu T, Endo K et al. A multicenter validation of regional cerebral blood flow quantitation using [123I] iodoamphetamine and single photon emission computed tomography. J Cereb Blood Flow Metab 1996; 16: 781–793.

27 Kameyama M. Lassen’s equation is a good approximation of permeability-surface model: new α values for HMPAO and 99mTc-ECD. J Cereb Blood Flow Metab 2014; 34 (7): 1157–1161.

28 Chételat G, Villain N, Desgranges B, Eustache F, Baron JC. Posterior cingulate hypometabolism in early Alzheimer’s disease: what is the contribution of local atrophy versus disconnection? Brain 2009; 132: e133.

29 Lazarov O, Robinson J, Tang YP et al. Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 2005; 120: 701–713.

30 Barnard ND, Bush AI, Ceccarelli A et al. Dietary and lifestyle guidelines for the prevention of Alzheimer’s disease. Neurobiol Aging 2014; 35: S74–S78.

Supporting information

Additional supporting information may be found in the online version of this article at the publisher’s web site:

Figure S1 Image maps of stereotactic extraction estimation on the medial surface. (a) BA23 (orange), (b) BA31 (red), (c) precuneus (red) and (d) BA24 (yellow).

Figure S2 Change of Mini-Mental State Examination and Alzheimer’s disease assessment scale-cognitive scale scores in responders and non-responders. *P < 0.05 and †P < 0.05 denotes significant difference compared with non-responders and baseline, respectively (Tukey–Kramer multiple comparison test).

Figure S3 Statistical maps of baseline regional cerebral blood flow (rCBF) difference between responders and non-responders. (a) Relative difference in rCBF between responders and non-responders (two-sample t-test). The rCBF in the blue (decreasing) regions of non-responders is smaller than that of responders. (b) Statistical map of relative increase in rCBF with cut-off Z-score of 1.96 (corresponding to P ≤ 0.05; two-tailed test). There were no regions that showed a significant difference between the two cohorts.

Figure S4 Statistical maps of regional cerebral blood flow (rCBF) changes in responders and non-responders. (a) Relative change in rCBF of responders from baseline to 6 months (two-sample t-test). (b) Statistical map of relative increase in rCBF of responders with cut-off Z-score of 1.96 (corresponding to P ≤ 0.05; two-tailed test). The rCBF in the bilateral posterior cingulate cortex was increased significantly. (c) Relative change in rCBF of non-responders from baseline to 6 months (two-sample t-test). (d) Statistical maps of relative increase in rCBF of non-responders with cut-off Z-score of 1.96.