ON SOME GENERIC CLASSES OF ERGODIC MEASURE PRESERVING TRANSFORMATIONS

ELI GLASNER, JEAN-PAUL THOUVENOT, AND BENJAMIN WEISS

Abstract. We answer positively a question of Ryzhikov, namely we show that being a relatively weakly mixing extension is a comeager property in the Polish group of measure preserving transformations. We study some related classes of ergodic transformations and their interrelations. In the second part of the paper we show that for a fixed ergodic T with property A, a generic extension \tilde{T} of T also has the property A. Here A stands for each of the following properties: (i) having the same entropy as T, (ii) Bernoulli, (iii) K, and (iv) loosely Bernoulli.

Contents

Introduction 1
1. Some general results concerning the classes mentioned in the introduction 4
2. RWM is generic 10
3. The relatively weakly mixing factors of a positive entropy T form a dense $G_δ$ set 13
4. A generic extension does not add entropy 15
5. A generic extension of a Bernoulli system is Bernoulli 16
6. A generic extension of a K system is K 18
7. A generic extension of a LB system is LB 22
References 23

Introduction

Motivated by a question of Valery Ryzhikov [37], regarding the nature of the class of ergodic transformations $X = (X, \mathcal{X}, \mu, T)$ which admit a proper factor $X \to Y$ with $Y = (Y, \mathcal{Y}, \nu, T)$ nontrivial and where the extension is relatively weakly mixing (we call this class RWM), we consider in this note the RWM property and some related classes as follows:

We view the collection MPT (measure preserving transformations) of invertible measure preserving transformations on a nonatomic standard probability space (X, \mathcal{X}, μ), as the group $\text{Aut}(\mu)$ of automorphisms of (X, \mathcal{X}, μ). The topology on $\text{Aut}(X, \mu)$ is

Date: August 20, 2021.

Key words and phrases. relative weak mixing, comeager properties, prime dynamical systems, Bernoulli systems, K-systems, loosely Bernoulli systems.

References: 46 entries. UDK: 517.987. 2010 MSC2010: 37A25, 37A05, 37A15, 37A20.
induced by a complete metric
\[D(S, T) = \sum_{n \in \mathbb{N}} 2^{-n}(\mu(SA_n \triangle TA_n) + \mu(S^{-1}A_n \triangle T^{-1}A_n)) , \]
with \(\{A_n\}_{n \in \mathbb{N}} \) a dense sequence in the measure algebra \((\mathcal{X}, d_\mu)\), where \(d_\mu(A, B) = \mu(A \triangle B) \). Equipped with this topology \(\text{Aut}(X, \mu) \) is a Polish topological group. The set \(MPT_e \subset \text{Aut}(\mu) \), comprising the ergodic transformations, is a dense \(G_\delta \) subset of \(\text{Aut}(\mu) \). Thus \(MPT = \text{Aut}(\mu) \) and we use the latter when we want to emphasise the group structure of this space.

0.1. Definitions. Given an ergodic system \(X \) we say that a factor map \(\pi : X \to Y \) is nontrivial when \(Y \) is not the trivial one point system and \(\pi \) is not an isomorphism. (We often refer to a factor map \(\pi : X \to Y \) from \(X \) to \(Y \) also as an extension of \(Y \).)

An ergodic dynamical system \(X = (X, \mathcal{X}, \mu, T) \) is:

1. RD (relatively distal) if there exists a nontrivial factor map \(\pi : X \to Y \) such that the extension is relatively distal. Every ergodic distal system which is not isomorphic to a cyclic permutation on \(\mathbb{Z}_p \) with \(p \) a prime number, is RD.

2. RWM (relatively weakly mixing), if there exists a nontrivial factor map \(\pi : X \to Y \) such that the extension is relatively weakly mixing; i.e. such that the relative product \(X \times Y \) is ergodic. By the Furstenberg-Zimmer theorem, every ergodic system which is neither distal nor weakly mixing is RWM.

3. TRD (totally relatively distal), if every nontrivial factor map \(\pi : X \to Y \) is relatively distal. Every distal system is TRD. Every prime system is (vacuously) TRD.

4. TRD~ if it is TRD, but not prime. Every distal system which is not isomorphic to \(\mathbb{Z}_p \) for some prime number \(p \), is TRD~. By Veech’s theorem every nonprime weakly mixing simple system is in TRD~ (see [15, Theorem 12.3]). The example in [7] is a weakly mixing system in TRD~ with no prime factor.

5. TRWM (totally relatively weakly mixing), if every factor map \(\pi : X \to Y \) which is nontrivial is relatively weakly mixing. Every prime system is (vacuously) TRWM, and probably also products of disjoint prime systems are TRWM, but it is not clear to us what else is there in this class. An ergodic system \(X \) in TRWM is either weakly mixing, or it admits the finite system \(\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z} \) as a factor, for some prime number \(p \geq 2 \), such that the extension \(X \to \mathbb{Z}_p \) is relatively weakly mixing and \(X \) is not of the form \(X = \mathbb{Z}_p \times W \) for a weakly mixing system \(W \). (An example of a system which has the latter form but is not TRWM is provided in [28].) In fact, by the Furstenberg-Zimmer structure theorem an ergodic system \(X \in \text{TRWM} \) has the structure \(X \to Y \), where \(Y \) is the maximal distal factor of \(X \) and the extension is relatively weakly mixing. If \(Y \) is the trivial system then \(X \) is weakly mixing. Otherwise, as \(X \) is TRWM, we must have \(Y = \mathbb{Z}_p \) for some prime \(p \geq 2 \). Finally \(X \) can not have the form \(X = \mathbb{Z}_p \times W \) for a weakly mixing system \(W \), since if it were the projection map \(X \to W \) would not be a relatively weakly mixing extension.

6. An ergodic system \(X \) is called 2-fold quasi-simple (2-fold distally simple) if every ergodic non-product 2-fold self-joining of it is compact (relatively distal
respectively) over the marginals. Every simple system (hence every weakly mixing MSJ system) is 2-fold quasi-simple.

For more details and results concerning these notions see (among other publications) the following list:

(i) In [32] Rudolph introduced the notion of MSJ (minimal self joinings), and in [46] Veech introduced 2-simple systems. Simple systems of higher order and their joinings were studied in [8]. In [23] King has shown that simplicity of order 4 implies simplicity of all orders and in [16] this was improved to showing that order 3 suffices.

(ii) Various generalizations of simplicity were introduced and previous results were sharpened in [10] and [36].

(iii) The first genericity type theorem was King’s paper [24] where he has shown that having roots of all orders is generic. This was followed by Ageev who first proved that, for every finite abelian group G, having G in the centraliser is generic [2]; thereby showing that the class of prime transformations is meager, and then in [4], that the generic system is neither simple nor semisimple.

(iv) Stronger and stronger results of this nature are to be found in [12], [42], [38], [11], [40], and [6].

For information concerning the Furstenberg-Zimmer theorem and structure theory in ergodic theory we refer to [15].

In Section 1 we present a preliminary study of the nature of these classes and their interrelations. In Section 2 we answer positively Ryzhikov’s question [37], namely we show that the property RWM is comeager.

In the second part of the paper, we change slightly the framework of our discussion. We mainly fix an ergodic transformation T with a certain property, and then consider either its family of factors, or its family of ergodic extensions.

In Section 3 we show that the relatively weakly mixing factors of any fixed positive entropy T form a dense $G_δ$ set. In Section 4 we show that a generic extension of any ergodic T does not add entropy. In Sections 5 we prove that for any fixed Bernoulli transformation of finite entropy the generic extension is Bernoulli. In Section 6 we show that for any fixed K-automorphism T, the generic extension is K, and it is relatively mixing over T. Finally, in Section 7 we show that for any fixed loosely Bernoulli transformation T, the generic extension is loosely Bernoulli.

We remind the readers that the classes of weakly mixing, Rank-1, rigid, $κ$-mixing and zero-entropy systems, are all comeager sets in MPT (see e.g. [20], [22] and [41])

Note that, whereas by Austin [5], every positive entropy ergodic T decomposes non-trivially as a direct product; Friedman’s result [13] that, for $0 < κ < 1$, a $κ$-mixing system admits no non-trivial product as a factor, combined with the fact that

For $κ ∈ [0, 1]$, T is said to be $κ$-mixing if there is a sequence $n_k ↗ ∞$ in N such that for any two measurable sets $A, B ∈ X$

$$\lim_{k \to ∞} μ(T^{n_k}A \cap B) = κμ(A)μ(B) + (1 − κ)μ(A \cap B).$$
\(k\)-mixing is comeager \([41]\), show that the generic (zero-entropy ergodic) \(T\) does not split (and moreover can not have a non-trivial product as a factor).

We would like to thank Valery Ryzhikov for bringing his question in \([37]\) to our attention and for several helpful e-conversations. We thank Oleg Ageev for a careful and thorough reading of a previous draft of the paper. His useful comments and corrections considerably improved our work. We also thank Tim Austin for pointing out an inaccuracy in the proof of Theorem 6.1 in an earlier version.

1. **Some general results concerning the classes mentioned in the introduction**

1. **Claim.** Every ergodic system with positive entropy is RD.

 Proof. It is well known that every Bernoulli system is RD. The case of a positive entropy ergodic system follows from the weak Pinsker theorem \([5]\). \(\square\)

2. **Claim.** The property TRD is inherited by factors.

 Proof. Let \(X\) be a TRD system and \(X \to Y\) a nontrivial factor. Suppose \(Y \to Z\) is a nontrivial factor of \(Y\). Let \(Y \to Z_{rd} \to Z\) be the diagram obtained by the Furstenberg-Zimmer structure theorem (the relative version); i.e \(Z_{rd}\) is the largest distal extension of \(Z\) in \(Y\) and \(Y \to Z_{rd}\) is a relatively weakly mixing extension. Now from the combined diagram

 \[
 X \to Y \to Z_{rd} \to Z
 \]

 and the fact that \(X\) is TRD, we deduce that the map \(X \to Z_{rd}\) is a relatively distal extension, and it follows that the intermediate extension \(Y \to Z_{rd}\) is also distal (this is a nontrivial result, see \([15, \text{Theorem 10.18}]\)). Thus the extension \(Y \to Z_{rd}\) is both relatively weakly mixing and relatively distal, hence an isomorphism. This means that indeed \(Y \to Z\) is a relatively distal extension, as claimed. \(\square\)

3. **Claim.** An ergodic \(X\) is not RWM iff it is TRD. Thus

 \[\text{MPT}_e = \text{RWM} \sqcup \text{TRD}.\]

 Proof. Suppose \(X\) is not RWM and \(X \to Y\) is a factor map, then by the Furstenberg-Zimmer structure theorem (the relative version) there is a canonical diagram \(X \to Y_{rd} \to Y\), where \(Y_{rd} \to Y\) is relatively distal and \(X \to Y_{rd}\) is relatively weakly mixing. However, by assumption the map \(X \to Y_{rd}\) is an isomorphism, so that \(X = Y_{rd} \to Y\) is relatively distal. The other inclusion is trivial: if \(X\) is TRD it can not be RWM. \(\square\)

4. **Claim.** Every 2-fold distally simple system is TRD. A fortiori, Every 2-fold quasi-simple system is TRD.

 Proof. Suppose \(X \to Y\) is a proper factor of a 2-fold distally simple system \(X\). Let \(X \to Y_{rd} \to Y\) be the corresponding Furstenberg-Zimmer diagram. Consider the factor map \(X \times_{Y_{rd}} X \to X\) defined by the projection map (on either the first or the
second coordinate). By definition the system $X \times X$ is ergodic and it is a non-
product self joining of X. By the definition of 2-fold distal simplicity the extensions $X_\text{Yrd} \times X_\text{Yrd}$ and hence also the intermediate extension

$$X_\text{Yrd} \times X_\text{Yrd} \cong X$$

are distal extensions.

On the other hand, by [15, Theorem 9.23], the extension $X_\text{Yrd} \times X_\text{Yrd}$ is weakly mixing, and therefore it is an isomorphism. In turn, this means that $X \to Y_\text{Yrd}$ is an isomorphism, so that the extension $X \to Y$ is relatively distal, as required. □

1.1. Problem. Is the example in [18] TRD?

1.2. Problem. What is the extent of the class TRWM?

5. Claim. Every TRWM system has zero entropy.

Proof. By Sinai’s theorem every ergodic positive entropy system, say X, admits a Bernoulli factor $X \to B$. The Bernoulli system B has a nontrivial factor $\sigma : B \to Z$, such that the extension σ is a compact group extension. Now the resulting factor map $X \to Z$ is not relatively weakly mixing. It follows that every TRWM system has zero entropy. □

By Krieger’s theorem every factor of an ergodic system $X \to Y$, with Y having entropy $< \log 2$, is determined by a partition $\alpha = \{A, X \setminus A\}$ for some $A \in \mathcal{X}$ of positive measure, so that $Y = \bigvee_{N \in \mathbb{N}} \bigvee_{j=-N}^N T^j \alpha$.

1.3. Proposition. If a dynamical system X is RWM then, for any $\delta > 0$, it has a factor $\pi : X \to Y$ such that (i) Y is infinite with entropy $< \delta$, and (ii) the extension π is nontrivial and relatively weakly mixing. In particular, taking $\delta = \log 2$, we conclude, by Krieger’s theorem, that Y can be taken as a subshift on two symbols; i.e. that Y admits a generator of the form $\{A, A^c\}$.

Proof. We give two proofs as follows:

(a) There is, by definition a factor map $\sigma : X \to Z$ with Z infinite and such that the extension σ is relatively weakly mixing. If Z has zero entropy there is nothing to prove. Otherwise there is a factor map $Z \to Y'$ with Y' infinite and having entropy $< \delta$. Let $Z \to Y \to Y'$ be the relative Fustenberg-Zimmer tower, so that Y is the maximal distal extension of Y' within Z. Now as the extensions $Z \to Y$ and $X \to Z$ are both relatively weakly mixing extensions, so is the iterated extension $X \to Y$. Finally, as distal extensions do not raise entropy, the entropy of Y is $< \delta$.

(b) By definition there is a nontrivial factor map $\sigma : X \to Z$ such that the extension σ is relatively weakly mixing. By the weak Pinsker property [5], we have a decomposition $Z = B \times Y$ with B a Bernoulli system and Y having entropy $< \delta$. Now clearly the composed map $X \to Y$ satisfies the assertion of the proposition. □
We denote by \mathbf{M} the measure algebra associated to (X, μ) consisting of equivalence classes of the relation $A \sim B \iff \mu(A \Delta B) = 0$, equipped with the complete metric $d_\mathbf{M}(A, B) = \mu(A \Delta B)$.

In [2] Ageev shows that the generic automorphism of a Lebesgue space is conjugate to a G-extension for any finite abelian group G. Thus, in particular it follows that the generic automorphism is not prime. In [4] he shows that the collection of 2-fold quasi-simple systems (and a fortiori that of simple systems) forms a meager subset of MPT or MPT_ϵ, the spaces of measure preserving and ergodic measure preserving transformations respectively.

1.4. Proposition. RWM is an analytic subset of MPT.

Proof. We consider the space MPT consisting of the invertible measure preserving transformations of a nonatomic standard probability space (X, \mathcal{X}, μ). Given an ergodic T in MPT, each positive set $A \in \mathcal{X}$, $0 < \mu(A) < 1$, determines a partition $\alpha = \{A, X \setminus A\}$ which, in turn, defines a T-invariant σ-algebra $\mathcal{A} = \bigvee_{j \in \mathbb{N}} \bigvee_{j \neq -N} T^j \alpha$. We let $\pi : X \to Y = (Y, \mathcal{Y}, \nu, T)$ be the corresponding factor map, so that $\mathcal{A} = \pi^{-1}(\mathcal{Y})$.

By Proposition 1.3 every RWM system X admits a nontrivial factor $\pi : X \to Y$ with π relatively weakly mixing and Y with a two-set generator as above.

Let $\mu = \int_Y \mu_y \, d\nu(y)$ be the disintegration of μ over ν, and let

$$\lambda = \int_Y (\mu_y \times \mu_y) \, d\nu(y),$$

be the relative product measure of μ with itself over ν. Using a Rohklin skew product representation for the ergodic system X as $(X, \mu) = (Y \times \mathbb{Z}, \nu \times \eta)$, we have $\mu_y = \eta$ for ν a.e. y, and for functions f and g in $L^\infty(\mu)$, we have

$$\int_{X \times X} f(x_1)g(x_2) \, d\lambda(x_1, x_2) = \int_Y \left(\int_{\mathbb{Z}} f(y, z_1) \, d\mu_y(z_1) \cdot \int_{\mathbb{Z}} g(y, z_2) \, d\mu_y(z_2) \right) \, d\nu(y).$$

Another way of writing $\int_{\mathbb{Z}} f(y, z) \, d\mu_y(z)$, is $\mathbb{E}(f|\mathcal{A})$, a function on X measurable with respect to \mathcal{A}. Therefore

$$\int_{X \times X} f(x_1)g(x_2) \, d\lambda(x_1, x_2) = \int_X \mathbb{E}(f|\mathcal{A})(x) \cdot \mathbb{E}(g|\mathcal{A})(x) \, d\mu(x).$$

If

$$\mathcal{P}_1 < \cdots < \mathcal{P}_n < \mathcal{P}_{n+1} < \cdots$$

is a sequence of finite partitions such that the corresponding algebras $\hat{\mathcal{P}}_n$ satisfy $\bigvee_{n \in \mathbb{N}} \hat{\mathcal{P}}_n = \mathcal{A}$ then, by the martingale convergence theorem,

$$\mathbb{E}(f|\mathcal{P}_n) \to \mathbb{E}(f|\mathcal{A}).$$

Now by definition the extension $\pi : X \to Y$ is a relatively weakly mixing extension when the measure λ is ergodic. This is the case if, for a dense sequence of pairs of sets $\{(C_n, D_n)\}_{n \in \mathbb{N}}$ in $\mathbf{M} \times \mathbf{M}$, we have for all $n \in \mathbb{N}$

$$\frac{1}{L} \sum_{i=0}^{L-1} (T \times T)^i(1_{C_n} \times 1_{D_n}) \overset{L_2}{\to} \int (1_{C_n} \times 1_{D_n}) \, d\lambda,$$
i.e. with \(a_n = \int (1_{C_n} \times 1_{D_n}) \, d\lambda \),

\[
\int \left| \frac{1}{L} \sum_{i=0}^{L-1} (T \times T)^i (1_{C_n} \times 1_{D_n}) - a_n \right|^2 \, d\lambda \to 0.
\]

Now expanding the expression

\[
\int \left| \frac{1}{L} \sum_{i=0}^{L-1} (T \times T)^i (1_{C_n} \times 1_{D_n}) - a_n \right|^2 \, d\lambda,
\]

writing \(1_{C_n} = f_n \) and \(1_{D_n} = g_n \), and using (1), we get

\[
\int \left| \frac{1}{L} \sum_{i=0}^{L-1} (T \times T)^i (f_n \times g_n) - a_n \right|^2 \, d\lambda
\]

\[
= \int \left| \frac{1}{L} \sum_{i=0}^{L-1} (T \times T)^i (f_n \times g_n) - a_n \right|^2 \, d\lambda
\]

\[
= \frac{1}{L^2} \sum_{i,j} \int (T^i f_n \times f_n) \times (T^j g_n \times g_n) \, d\lambda - a_n^2
\]

\[
= \frac{1}{L^2} \sum_{i,j} \int \mathbb{E}(T^i f_n \times f_n) \cdot \mathbb{E}(T^j g_n \times g_n) \, d\mu - a_n^2.
\]

Taking \(P_M = \bigvee_{j=-M}^M T^j \alpha \) and applying (2) we can approximate this by the corresponding sum

\[
\frac{1}{L^2} \sum_{i,j} \int \mathbb{E}(T^i f_n \times f_n) \cdot \mathbb{E}(T^j g_n \times g_n) \, d\mu - a_n^2,
\]

which we denote by

\(\mathbb{E}A(C_n, D_n, L, M) \).

Let \(\{E_m\}_{m=1}^{\infty} \) be a sequence of sets in \(\mathcal{X} \) which is dense in the subspace of \(M \) comprising sets \(E \) with \(\mu(E) > 1/10 \). Let \(\{(C_n, D_n)\}_{n=1}^{\infty} \) be a dense sequence in \(M \times M \). For positive integers, \(m, n, k, L, M, N \), we consider the set

\[
U(m, n, k, L, N, M) \subset M \times \text{MPT}_e,
\]

comprising those pairs \((A, T)\) of \(M \times \text{Aut}_e(\mu) \) that, with \(\alpha = \{A, X \setminus A\} \) \(0 < \mu(A) < 1 \), satisfy the following inequalities:

1. \(d_M(E_m, \bigvee_{j=-N}^N T^j \alpha) > 1/100 \).
2. \(\mathbb{E}A(C_n, D_n, L, M) < 1/k \),

where the distance \(d_M(E_m, \bigvee_{j=-N}^N T^j \alpha) \) is defined as the minimum of the distances \(d(E_m, B) \), when \(B \) ranges over the elements of the finite algebra generated by the partition \(\bigvee_{j=-N}^N T^j \alpha \).
The set $U(m, n, k, L, N, M)$ is open and we let

$$rwm = \bigcup_{m=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcup_{L=1}^{\infty} \bigcap_{M_0=1}^{\infty} \bigcup_{M=M_0}^{\infty} U(m, n, k, L, N, M).$$

Now, in view of Proposition 1.3, RWM is the projection of the set rwm in $\text{Aut}_e(\mu)$; i.e.

$$RWM = \{ T \in \text{Aut}(\mu) : \exists A \in M, (A, T) \in rwm \}.$$

As we have shown that the set rwm is Borel, it follows that the set RWM is analytic.

The next proposition is proved similarly and we use the notation of the previous proof.

1.5. Proposition. TRWM is a co-analytic subset of MPT.

Proof. By Claim 5 it suffices to show that $TRWM$ is a co-analytic subset of the G_δ set of 0-entropy ergodic transformations. We also recall that by Krieger’s theorem every such transformation admits a two-set generator.

Let $\{(C_n, D_n)\}_{n=1}^{\infty}$ be a dense sequence in $M \times M$. For positive integers, n, k, L, M we consider the set

$$U(n, k, L, M) \subset M \times \text{Aut}_e(\mu),$$

comprising those pairs $(A, T) \in M \times \text{Aut}_e(\mu)$ that, with $\alpha = \{A, X \setminus A\}$, $0 < \mu(A) < 1$, satisfy the following inequality:

$$EA(C_n, D_n, L, M) < 1/k.$$

The set $U(n, k, L, M)$ is open and we let

$$trwm = \bigcap_{n=1}^{\infty} \bigcap_{k=1}^{\infty} \bigcup_{L=1}^{\infty} \bigcup_{M_0=1}^{\infty} \bigcap_{M=M_0}^{\infty} U(n, k, L, M).$$

Now $TRWM$ is the collection of $T \in \text{Aut}_e(\mu)$ such that T has zero entropy and $(A, T) \in trwm$ for all $A \in M$, i.e.

$$\text{Aut}_e(\mu) \setminus TRWM = \{ T \in \text{Aut}(\mu) : \exists A \in M, (A, T) \notin trwm \}.$$

Ryzhikov’s question in [37], is whether the set RWM is co-meager.

1.7. Remark. In view of Definition 0.1 (4) and Claim 3 we have that

$$MPT_e = RWM \sqcup TRD = RWM \sqcup TRD^\sim \sqcup \text{PRIME}$$

and the last union is disjoint (note that the prime systems of the form Z_p do not belong to $\text{Aut}(\mu)$). Since by [2] the collection PRIME (which is shown to be co-analytic in [17]) is meager, we conclude, by the zero-one law (see [17]), that one of the, clearly invariant, collections RWM and TRD (or RWM and TRD^\sim) is meager and the other comeager. In the next section we will show that the set RWM is the comeager one.
In the next proposition we determine the, relatively low, complexity of the class PROP consisting of elements of MPT_e which admit a proper factor.

1.8. Proposition. (1) The set

$$\text{prop} = \{(A,T) : \alpha = \{A,X \setminus A\}, \ Y = \bigvee_{N \in \mathbb{N}} \bigvee_{j=-N}^N T^j \alpha \subsetneq \mathcal{X}\}$$

is a $G_{\delta,\sigma}$ subset of $\mathbf{M} \times \text{MPT}_e$ which is invariant under the diagonal action of $G = \text{Aut}(\mu)$ on $\mathbf{M} \times \text{MPT}_e$ defined by

$$g \cdot (A,T) = (gA, gTg^{-1}), \ A \in \mathbf{M}, \ T \in \text{MPT}_e.$$

(2) Its projection

$$\text{PROP} = \{T \in \text{MPT}_e : \exists \alpha, \ Y = \bigvee_{N \in \mathbb{N}} \bigvee_{j=-N}^N T^j \alpha \subsetneq \mathcal{X}\}$$

is a nonempty $G_{\delta,\sigma}$ subset of MPT_e.

Proof. (1) Let $\{E_m\}_{m=1}^\infty$ be sequence of sets in \mathcal{X} which is dense in the subspace of \mathbf{M} comprising sets E with $\mu(E) \geq 1/10$.

For positive integers, m,N set

$$U(m,N) = \{(A,T) \in \mathbf{M} \times \text{MPT}_e : d_{\mathbf{M}}(E_m, \bigvee_{j=-N}^N T^j \alpha) > 1/100\},$$

with $\alpha = \alpha(A) = \{A,X \setminus A\}$ (for $A \in \mathcal{X}$ of positive measure), The $U(m,N)$ is an open set and the set

$$U(m) = \bigcap_{N=1}^\infty U(m,N)$$

$$= \{(A,T) \in \mathbf{M} \times \text{MPT}_e : d_{\mathbf{M}}(E_m, \bigvee_{N \in \mathbb{N}, j=-N}^N T^j \alpha) > 1/100\}$$

is a G_δ set. Finally we have

$$\text{prop} = \bigcup_{m=1}^\infty U(m) = \{(A,T) \in \mathbf{M} \times \text{MPT}_e : \bigvee_{N \in \mathbb{N}, j=-N}^N T^j \alpha \neq \mathcal{X}\},$$

is a $G_{\delta,\sigma}$ set. The invariance is clear.

(2) The projection $P : \mathbf{M} \times \text{MPT}_e \to \text{MPT}_e$ is an open homomorphism of Polish dynamical systems. Therefore each $P(U(m,N))$ is an open set, so that the image $\text{PROP} = P(\text{prop})$ is a non-empty invariant $G_{\delta,\sigma}$ subset of MPT_e.

\square
2. RWM is Generic

Let \((X, \mathcal{X}, \mu)\) be a standard Lebesgue space, were the probability measure \(\mu\) has no atoms. Let \(\mathcal{B}\) denote the \(W^*\)-algebra of bounded linear operators on the Hilbert space \(L_2(\mu)\), equipped with the strong operators topology. It is easy to see that the space MPT, comprising the Koopman operators corresponding to the invertible measure preserving transformations of \((X, \mathcal{X}, \mu)\) is a closed subset of \(\mathcal{B}\). Let \(\mathcal{P}\) be the set of positive projections, i.e., those elements \(P\) of \(\mathcal{B}\) such that \(\|P\| = 1, P^2 = P, P(1) = 1\), and \(Pf \geq 0\) for every \(0 \leq f \in L_2(\mu)\). This is a closed subset of \(\mathcal{B}\).

A sub-\(\sigma\)-algebra \(\mathcal{Y} \subset \mathcal{X}\) determines a standard probability space \((Y, \mathcal{Y}, \nu)\), a closed subspace \(H = H(\mathcal{Y}) \subset L_2(\mu)\), and a positive projection \(P : L_2(\mu) \to H\). More precisely, a positive projection \(P\) can be identified with a conditional expectation operator over the subspace \(H = PL_2(\mu)\) that can be described as the set of functions in \(L_2(\mu)\) which are measurable with respect to a sub-\(\sigma\)-algebra \(\mathcal{Y} \subset \mathcal{X}\). As was shown by Rokhlin, we can realize the latter inclusion as a map \((X, \mathcal{X}, \mu) \to (Y, \mathcal{Y}, \nu)\), where \((Y, \mathcal{Y}, \nu)\) is a standard Lebesgue space, so that the projection \(P\) has the form

\[
(Pf)(y) = \int_Y f(x) d\mu_y(x), \quad \text{for } \nu \text{ a.e. } y \in Y.
\]

Clearly the collection of projections \(P\) whose range has dimension \(\leq k\) for \(k \in \mathbb{N}\) is a closed set and it follows that the collection \(\mathcal{P}_i\) of projection whose range is infinite dimensional forms a \(G_\delta\) subset of \(\mathcal{P}\). We denote by \(\mathcal{P}_e\) the set of \(P \in \mathcal{P}\) such that, \(P \neq \text{Id}\), and such that in the corresponding Rokhlin representation, in the disintegration \(\mu = \int_Y \mu_y d\nu(y)\), a.e. \(\mu_y\) has no atoms. Finally let \(\mathcal{Q} = \mathcal{P}_i \cap \mathcal{P}_e\).

We denote by \(\mathcal{T}\) the collection of weakly mixing MPT’s, which we often identify with their Koopman operators. By Halmos’ theorem \(\mathcal{T}\) is a dense \(G_\delta\) subset of MPT. Thus we view the elements of both \(\mathcal{P}\) and \(\mathcal{T}\) as operators in \(\mathcal{B}\). Note that if \(T\) is weakly mixing and \((X, \mathcal{X}, \mu, T) \to (Y, \mathcal{Y}, \nu, T \upharpoonright \mathcal{Y})\) is a nontrivial factor, then the corresponding \(P\) is necessarily in \(\mathcal{P}_i\). The group \(G = \text{Aut } (\mu)\) acts continuously on \(\mathcal{B}\) by conjugations, and both \(\mathcal{T}\) and \(\mathcal{Q}\) are invariant subsets under this action. Let

\[
\mathcal{L} = \{(T, P) : PT = TP, \ P \in \mathcal{Q}, \ T \in \mathcal{T}\}.
\]

and we will consider the diagonal action of \(\text{Aut } (\mu)\) on \(\mathcal{L}\). Denote by \(\pi_1\) and \(\pi_2\) the projections of \(\mathcal{L}\) on its first and second coordinates, respectively. Note that if \(T = \pi_1(T, P)\) for \((T, P) \in \mathcal{L}\), then \(T\) is weakly mixing and is not prime, and if \(P = \pi_2(T, P)\) for \((T, P) \in \mathcal{L}\) then the operator \(TP\), defined on the infinite dimensional space \(PL_2(\mu)\), is a factor of \(T\) and is therefore weakly mixing on \(L_2(Y, \mathcal{Y}, \nu)\) with \(\nu\) atomless.

2.1. Lemma. A pair \((T, P)\) is in \(\mathcal{L}\) iff \(T\), as a transformation in MPT, is weakly mixing and it admits a factor map \(\mathcal{X} = (X, \mathcal{X}, \mu, T) \to \mathcal{Y} = (Y, \mathcal{Y}, \nu, S)\) with \(PL_2(\mu) \cong L_2(\nu) = L_2(\mathcal{Y})\), where \(\nu\) has no atoms, and \(\mathcal{X}\) has the form of a Rokhlin skew product

\[
(X, \mathcal{X}, \mu, T) = (Y \times Z, \mathcal{Y} \otimes \mathcal{Z}, \nu \times \eta, \hat{S}),
\]

where \((Z, \mathcal{Z}, \eta, T)\) is a standard Lebesgue space with \(\eta\) atomless, and \(S : Y \to \text{Aut } (Z, \eta)\) is a measurable cocycle with \(\hat{S}(y, z) = (Ty, S_yz)\) \(\mu\)-a.e.

Proof. If \((T, P) \in \mathcal{L}\) then \(T\) is weakly mixing, hence ergodic and it then follows that the Rokhlin presentation has this form (see e.g. [15, Theorem 3.18]). Conversely,
clearly if \(T \) is a weakly mixing skew product as described then the corresponding pair \((T, P)\) is in \(L \).

2.2. Proposition. (1) \(Q \) is a \(G_\delta \) subset of \(B \).
(2) \(G \) acts transitively on \(Q \).
(3) \(T \) is a \(G_\delta \) subset of \(B \).
(4) The action of \(G \) on the Polish space \(T \) is minimal.
(5) \(L \) is a closed subset of the Polish space \(T \times Q \).
(6) \(G \) acts minimally on \(L \).

Proof. (1) We already observed that the condition (i) that \(PL_2(\mu) \) be infinite dimensional defines a \(G_\delta \) subset, \(P_i \) of \(B \). Thus a positive projection \(P \in P_i \) is in \(Q \) iff it is in \(P_{ci} \). We claim that this is equivalent to the following condition:

For all positive measure sets \(A \in X \) there exist sets \(B \) and \(C \) such that

(i) \(1_A = 1_B + 1_C \);
(ii) \(P(1_B) = P(1_C) \).

Now we can express this property as the intersection of a countable collection of open sets as follows. Let \(\{A_n\} \) be a dense sequence in the measure algebra and define:

\[U(N, n, i, j) = \{ P \in P : \mu(A_n \triangle (A_i \cup A_j)) < 1/N, \|P(1_{A_i}) - P(1_{A_j})\| < 1/N, \& \mu(A_i \cap A_j) < 1/N \}. \]

Now set

\[P_{ci} = \bigcap_{n \geq 1} \bigcap_{N \geq 1} \bigcup_{(i, j)} U(N, n, i, j). \]

To see that this intersection captures the property that the conditional measures are continuous we argue by contradiction. If \(\{\mu_y\}_{y \in Y} \) are the conditional measures associated to the projection \(P \), and for a set \(B \subset Y \) with \(\nu(B) > 0 \), there are atoms of \(\mu_y \) for all \(y \in B \) with measure \(\geq c > 0 \), then there is a measurable function \(f : B \to X \) such that \(\mu(\{f(y)\}) \geq c, y \in B \). The range \(A = f(B) \) is a measurable subset of \(X \) and

\[(P1_A)(y) = \mu_y(\{f(y)\}). \]

Now we take \(1/N \ll \mu(A) \) and \(A_{m_0} \) such that \(\mu(A \triangle A_{m_0}) < 1/N \). We see that if

\[\mu(A \triangle (A_{m_0} \cup A_{j_0})) < 1/N \]

then the approximate equality \(P1_{A_{m_0}} \approx P1_{A_{j_0}} \) cannot hold. Thus \(P \) is not in the intersection \(P_{ci} \), as required.

To prove Claim (2) observe that \(P \) determines a Rokhlin decomposition of \(X \) over \(Y \) as explained above, and that clearly any two such decompositions are measurably isomorphic. Claim (3) is well known. Claim (4) follows from Halmos’ Conjugacy Lemma [20, page 77], which asserts that the conjugacy class of each aperiodic element of \(\text{Aut}(\mu) \) is dense. Claim (5) is easy to check. Finally claim (6) can be easily deduced from claim (2) and [19, Proposition 2.3], which is a relative analogue of Halmos’ conjugacy lemma.

2.3. Remark. In the definition of \(Q \) we excluded the two extreme cases, when \(H = L_2(\mu) \) (i.e. when \(P = \text{Id} \)) and when \(H \) is finite dimensional. We note however that due to this exclusion, in the projection of \(L \) on the \(T \) coordinate, the weakly mixing transformations that are missing are: (i) The prime transformations, which according
to Ageev [2] form a meager subset of T. (ii) Those weakly mixing transformation for which every factor map $X \to Y$ is finite to one. Such transformations are in TRD, and e.g. by Ageev [3], or by Stepin and Eremenko — who show in [42] that the generic ergodic transformation admits the infinite torus in its centralizer, form a meager set.

Recall the following (see [27, Appendix A] and [26, Definition 2.7, Definition 2.4]).

2.4. Definition. Let Y, Z be Polish spaces and let $f : Y \to Z$ be a continuous map.

1. We say that f is category-preserving if it satisfies the following condition: For any comeager $A \subseteq Z$, $f^{-1}(A)$ is comeager in Y.

2. A point $y \in Y$ is a point of local density for f if for any neighborhood U of y the set $f(U)$ is a neighborhood of $f(y)$.

We then have the following ([26, Proposition 2.8], see also Tikhonov’s work [44]):

2.5. Proposition. Let Y, Z be Polish spaces and $f : Y \to Z$ a continuous map. Then f is category-preserving if and only if the set of points which are locally dense for f is dense in Y.

We also recall the following well known observation called Dougherty’s lemma (see e.g. [24] and [26, Proposition 2.5]):

2.6. Proposition. Let Y, Z be Polish spaces, $f : Y \to Z$ a continuous map such that the set of points which are locally dense for f is dense in Y. Let $B \subseteq Y$ be a comeager subset of Y. Then $f(B)$ is not meager in Z.

The following statement is shown in [27].

2.7. Theorem. Let Y, Z be Polish spaces, and $f : Y \to Z$ be a category-preserving map. Let also A be a subset of Y with the property of Baire. Then the following assertions are equivalent:

(i) A is comeager in Y.
(ii) $\{z \in Z : A \cap f^{-1}(z) \text{ is comeager in } f^{-1}(z)\}$ is comeager in Z.

Next we have a dynamical version of the Kuratowski-Ulam theorem, [26, Proposition 2.10]:

2.8. Proposition. Let H be a Polish group, Y, Z be two Polish H-spaces and $f : Y \to Z$ a H-map. Assume that Y is minimal (i.e. every orbit is dense) and $f(Y)$ is not meager. Then f is category-preserving.

2.9. Remark. An older result of Veech [45, Proposition 3.1] shows this result for compact topological systems. See also [14, Lemma 5.2] where a topological analogue of simplicity was studied.

The next theorem answers positively Ryzhikov’s question.

2.10. Theorem. The property RWM is generic.

Proof. We first show that RWM is comeager. Consider the closed set $L \subseteq T \times Q$.

By [39] (see also [19, Theorem 1.3]) we know that for every fixed $P \in Q$ the set of
The elements $T \in \mathbf{T}$ such that T is a relatively weakly mixing extension of $T \upharpoonright \mathcal{Y}$, where \mathcal{Y} is the σ-algebra determined by P, is a dense G_δ subset of \mathbf{L}^P, where

$$\mathbf{L}^P = \{ T \in \mathbf{T} : (T, P) \in \mathbf{L} \}.$$

Consider the set

$\mathbf{L}_{RWM} = \{ (T, P) \in \mathbf{L} : T \text{ is relatively weakly mixing over the factor determined by } P \}$.

By Proposition 1.4 the set $RWM \cap \mathbf{T}$ is an analytic subset of \mathbf{T}, hence has the BP. Denoting by π_1 the projection from $\mathbf{T} \times \mathbf{Q}$ onto \mathbf{T} we observe that $\mathbf{L}_{RWM} = \mathbf{L} \cap \pi_1^{-1}(RWM)$ and as \mathbf{L} is a closed subset of $\mathbf{T} \times \mathbf{Q}$, we conclude that \mathbf{L}_{RWM} has the BP.

Applying Proposition 2.8 to the minimal Polish system (\mathbf{L}, G) and the projection map $\pi_2 : (\mathbf{L}, G) \to (\mathbf{Q}, G)$, we conclude that the map π_2 is category preserving. (Note that $\pi_2(\mathbf{L}) = \mathbf{Q}$.) Applying Theorem 2.7 to $\mathbf{L}_{RWM} \subset \mathbf{L}$, we conclude that \mathbf{L}_{RWM} is comeager in \mathbf{L}.

Now by the same token also the other projection map $\pi_1 : (\mathbf{L}, G) \to (\mathbf{T}, G)$ is category preserving and so, by Dougherty’s lemma, Proposition 2.6, the image of the set \mathbf{L}_{RWM} under π_1, namely the subset $\pi_1(\mathbf{L}_{RWM}) \subset \mathbf{T}$, is not meager in $\pi_1(\mathbf{L}) \subset \mathbf{T}$. Since this subset is also invariant, it follows from the zero-one law that it is comeager in \mathbf{T}. We now note that this subset is exactly the set of nonprime, weakly mixing systems which are RWM and, in view of Remark 2.3, it follows that the set $RWM \cap \mathbf{T}$ is indeed comeager in $\pi_1(\mathbf{L}) \subset \mathbf{T}$. □

2.1. Remark. Our proof of Theorem 2.10 uses Ageev’s result, which asserts that the class PRIME is meager, so of course it does not provide a new proof of this statement. However note that whereas Ageev’s proof demonstrates the prevalence of group extensions, ours demonstrates the prevalence of relatively weakly mixing extensions.

3. The relatively weakly mixing factors of a positive entropy T form a dense G_δ set

In the second part of the paper, Sections 3 to 7, we change slightly the framework of our discussion. We mainly fix an ergodic transformation T with a certain property, and then consider either its family of factors, as in the present section, or its family of ergodic extensions, as in Sections 4 to 7.

Recall that \mathbf{P} denotes the G_δ set of positive projections in \mathbf{B}, the W^*-algebra of bounded linear operators on $L_2(\mu)$.

3.1. Proposition. For a fixed $T \in \text{MPT}_e$, the set \mathbf{W}_T of those $P \in \mathbf{P}$ such that $TP = PT$, and such that T is relatively weakly mixing over the factor determined by P, is a G_δ set.

Proof. Let \mathbf{P}_T denote the closed subset of \mathbf{P} comprising the projections P satisfying $TP = PT$. First note that for two bounded functions functions f, g in $L_2(\mu)$ the integral of the product $f(x_1)g(x_2)$ with respect to the relative product measure $\lambda =$
\(\mu \times \mu \) over the factor \(Y \) defined by \(P \in P_T \) is given by:

\[
 \int f(x_1)g(x_2) \, d\lambda(x_1, x_2) = \int Pf(x)Pg(x) \, d\mu(x).
\]

Now we fix a sequence \(\{f_i\} \) of bounded functions that are dense in \(L_2(\mu) \) and then define the sets

\[
U(k, N, i, j) = \left\{ P \in P_T : \int \left| 1/N \sum_{n=0}^{N-1} T^n Pf_i(x)T^n Pf_j(x) - a_{ij} \right|^2 \, d\mu(x) < 1/k \right\}
\]

where \(a_{ij} = \int Pf_i(x)Pf_j(x) \, d\mu(x) \). These are open sets and we let

\[
W = \bigcap_{(i,j) \geq 1} \bigcup_{N \geq 1} U(N, n, i, j).
\]

Now \(W \) is a \(G_\delta \) set and if \(P \in W \) then \(T \) is RWM. Clearly also when \(P \in P \) is such that \(PT = TP \) and the extension over the factor determined by \(P \) is weakly mixing, then \(P \in W \). Thus \(W = W_T \).

3.2. Theorem. If \(T \in \text{MPT}_\epsilon \) has positive and finite entropy then among the positive projections \(P \) which commute with \(T \) (i.e. among the factors of \(T \)), for a dense \(G_\delta \) set the corresponding extension over the factor determined by \(P \) is relatively weakly mixing.

Proof. This is just the set \(W_T \) above and hence, by Proposition 3.1, it is a \(G_\delta \) set.

To see that it is dense we use the fact that is proved by Thouvenot for a \(T \) with the weak-Pinsker property [43, Lemma 7]. Namely, given \(\epsilon > 0 \) one can perturb by no more than \(\epsilon \) any partition \(Q \) to a partition \(\bar{Q} \) so that the the new partition splits off with a Bernoulli complement \(\bar{B} \):

1. \(|\bar{Q} - Q| < \epsilon \),
2. \((Q)_T \perp (\bar{B})_T \),
3. \((Q)_T \lor (\bar{B})_T = X \),
4. The partitions \(T^i\bar{B} \), \(i \in \mathbb{Z} \), are independent.

Now given a projection \(P \in P_T \) that one wants to approximate, we find a generator \(Q \) for the factor determined by \(P \) and apply Thouvenot’s lemma.

However, to make sure that the Bernoulli part of Thouvenot’s splitting is not trivial we first modify the generator \(Q \) by a little bit so that the entropy of the new \(\bar{Q} \) is strictly less than the entropy of \(T \). Then we choose the \(\epsilon \) in the conclusion of [43, Lemma 7] so small that the factor defined by \(\bar{Q} \) still has less than full entropy. Now we are sure that the Bernoulli complement is non-trivial. Finally, by Austin’s recent result [5], the weak Pinsker property always holds and our proof is complete.

3.3. Problem. Can one prove an analogous claim for relative Bernoulli extensions ?
4. A GENERIC EXTENSION DOES NOT ADD ENTROPY

In the last few sections of the paper we show that for a fixed ergodic T with property A, a generic extension \hat{T} of T also has the property A. Here A stands for each of the following properties: (i) having the same entropy as T, (ii) Bernoulli, (iii) K, and (iv) loosely Bernoulli.

4.1. Theorem. For any fixed ergodic transformation T, the generic extension does not increase entropy.

Proof. Let $X = (X, \mathcal{X}, \mu, T)$ be an ergodic system with finite entropy, which for convenience we assume it equals 1. Let $\mathcal{R} \subseteq \mathcal{X}$ be a finite generating partition with entropy 1. Let S be the collection of Rokhlin cocycles with values in $\text{MPT}(I, \lambda)$, where λ is the normalized Lebesgue measure on the unit interval $I = [0, 1]$. Thus an element $S \in S$ is a measurable map $x \mapsto S_x \in \text{MPT}(I, \lambda)$, and we associate to it the skew product transformation

$$\hat{S}(x, u) = (Tx, S_x u), \quad (x \in X, u \in I).$$

Let $Y = X \times I$ and set $Y = (Y, \mathcal{Y}, \mu \times \lambda)$, with $\mathcal{Y} = X \otimes \mathcal{B}$.

We recall that, by Rokhlin’s theorem, every ergodic extension $Y \to X$ either has this form or it is n to 1 a.e for some $n \in \mathbb{N}$ (see e.g. [15, Theorem 3.18]). Thus the collection S parametrises the ergodic extensions of X with infinite fibers. This defines a Polish topology on S which is inherited from $\text{MPT}(X \times I, \mu \times \lambda)$. Of course a finite to one extension does not add entropy and thus it suffices to show that for a dense G_δ subset $S_0 \subset S$ we have $h(\hat{S}) = 1$ for every $S \in S_0$.

For each $n \in \mathbb{N}$ let Q_n denote the dyadic partition of $[0, 1]$ into intervals of size $1/2^n$, and let

$$P_n = \mathcal{R} \times Q_n.$$

Clearly, for any $S \in S$ we have $h(P_n, \hat{S}) \geq 1$.

4.2. Lemma. For any $\epsilon > 0$, the set

$$U(n, \epsilon) = \{S \in S : h(P_n, \hat{S}) < 1 + \epsilon\},$$

is open.

Proof. Let $S_0 \in U(n, \epsilon)$. Then, there exists N such that

$$\frac{H(\bigvee_0^{N-1} S_0^{-i} P_n)}{N} = 1 + a,$$

with $0 \leq a < \epsilon$. If $\delta = \frac{\epsilon - a}{2}$ and S is sufficiently close to S_0, then

$$\left| \frac{H(\bigvee_0^{N-1} S^{-i} P_n)}{N} - \frac{H(\bigvee_0^{N-1} S_0^{-i} P_n)}{N} \right| < \delta,$$

so that S will be in $U(n, \epsilon)$.

It follows from the lemma that

$$S_0 = \bigcap_{n \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} U(n, 1/k),$$

is a G_δ subset of S consisting of those $S \in S$ such that $h(\hat{S}) = 1$. Clearly S_0 is nonempty; e.g. we can take S to be the constant cocycles with a fixed value R_α, an
irrational rotation on the circle. Thus by the relative Halmos theorem \cite[Proposition 2.3]{19}, it follows that S_0 is a dense $G_δ$ subset of S, as claimed. □

Using the classical Kuratowski-Ulam theorem we can “lift” this theorem to the collection of ergodic transformations which commute with a fixed $P ∈ Q$ (see Section 2).

As usual let $(X, X, µ)$ be a standard atomless Lebesgue space and let $Y ⊂ X$ be a $σ$-algebra such that $ν = µ | Y$ is atomless and such that

$$(X, X, µ) = (Y × Z, Y ⊗ Z, ν × η),$$

where $(Z, Z, η)$ is a standard Lebesgue space with $η$ atomless. Let $P ∈ P$ be the projection of $L_2(µ)$ on $L_2(Y)$.

Set

$$N = \{T ∈ Aut (µ) : T leaves the $σ$-algebra Y invariant\} = \{T ∈ Aut (µ) : TP = PT\},$$

and let

$$N_0 = \{T ∈ N : T is ergodic and does not add entropy to $T | Y$\}.$$

As the collection of ergodic transformations is a dense $G_δ$ subset of $Aut(ν)$, Theorem 4.1, combined with the Kuratowski-Ulam theorem \cite[Theorem 15.4]{30}, immediately yield the following result:

4.3. Corollary. The collection N_0 forms a residual subset of N.

5. A generic extension of a Bernoulli system is Bernoulli

5.1. Theorem. For any fixed Bernoulli transformation T of finite entropy the generic extension is Bernoulli.

Proof. We first recall the following:

5.2. Definition. A finite measurable partition P of X is called very weak Bernoulli (VWB for short) if for every $ε > 0$, there is a positive integer N such that for all $k ≥ 1$, there is a collection G_k of atoms of the partition $\bigvee_{i=-k}^{-1} T^{-i}P$ such that

1) $µ(\bigcup\{A ∈ G_k\}) > 1 - ε$,

2) $d_N (\bigvee_{i=0}^{-1} T^{-i}P, \bigvee_{i=0}^{-1} T^{-i}P | A) < ε$, for every atom A of G_k.

Here d_N is the normalized Hamming distance of distributions, and $\bigvee_{i=0}^{-1} T^{-i}P | A$ is the conditional distribution of $\bigvee_{i=0}^{-1} T^{-i}P$ restricted to the atom A of the partition $\bigvee_{i=-k}^{-1} T^{-i}P$.

As the inverse limit of Bernoulli systems is Bernoulli, to show that a transformation T on $(X, X, µ)$ is Bernoulli it suffices to show that for a refining sequence of partitions

$$P_1 ≺ ⋯ ≺ P_n ≺ P_{n+1} ≺ ⋯$$

such that the corresponding algebras P_n satisfy $\bigvee_{n∈N} P_n = X$, for each n, the process (T, P_n) is VWB.
With no loss of generality we assume that the entropy of the Bernoulli transformation T is 1. We keep the notations of the previous section (Section 4) and we will show that the generic element of the space S_0 is Bernoulli. By Theorem 4.1 for every $S \in \mathcal{S}$ the corresponding extension \hat{S} of T has entropy 1. We want to show that for a generic set of $S \in S_0$, the corresponding \hat{S} is Bernoulli. To do this we need to express the fact that the partition P_n is VWB in a “finite way”.

The problem is that in the definition of the VWB property the inequality

$$\bar{d}_N (\bigvee_{i=0}^{N-1} T^{-i} P_n, \bigvee_{i=0}^{N-1} T^{-i} P_n | \ A) < \epsilon,$$

for $A \in S_k$, has to hold for all large k. The key to being able to express this with one value of k_0 lies in the fact that we know that the entropy of P_n with respect to \hat{S} for $S \in S_0$ equals 1. This is done as follows.

5.3. Definition. For two labeled partitions $P = \{P_1, \ldots, P_a\}$, $Q = \{Q_1, \ldots, Q_b\}$ of (X, μ) we say that P is ϵ-independent of Q if there is a set of indices $J \subset \{1, \ldots, b\}$ such that

1. $\sum_{j \in J} \mu(Q_j) > 1 - \epsilon$.
2. $\sum_{i=1}^{a} |\mu(P_i|Q_j) - \mu(P_i)| < \epsilon$ for each $j \in J$.

One can use entropy to express independence since $H(P|Q) = H(P)$ if and only if P is independent of Q. If the number of elements of P is fixed then the following is also well known. Given $\epsilon > 0$ there is a $\delta > 0$ such that if $H(P) < H(P|Q) + \delta$, then P is ϵ-independent of Q. The conditional version of this also holds. Namely, if R is a third partition, given $\epsilon > 0$ there is a $\delta > 0$ such that if

$$H(P|R) < H(P|R \lor Q) + \delta,$$

then P conditioned on R is ϵ-independent of Q. That is, there is a set of atoms A of R whose union has total measure $> 1 - \epsilon$, such that conditioned on A, P is ϵ-independent of Q.

Here is another general fact. If the entropy of a partition P in (X, \mathcal{X}, μ, T) equals h, then for all N,

$$H(\bigvee_{i=0}^{N-1} T^{-i} P | \bigvee_{i=-\infty}^{-1} T^{-i} P) = Nh,$$

hence

$$Nh \leq H(\bigvee_{i=0}^{N-1} T^{-i} P | \bigvee_{i=-k}^{-1} T^{-i} P) = H(\bigvee_{i=0}^{N-1} T^{-i} P | (\bigvee_{i=-k_0}^{-1} T^{-i} P) \lor (\bigvee_{i=-k}^{-1} T^{-i} P)), \text{ for all } k > k_0 \geq 1.$$

Now in the inequality (3) we let $P = \bigvee_{i=0}^{N-1} T^{-i} P$, $R = \bigvee_{i=-k_0}^{-1} T^{-i} P$ and $Q = \bigvee_{i=-k}^{-1} T^{-i} P$. It follows that, given $\epsilon > 0$, there is a $\delta > 0$ such that, if k_0 is sufficiently large so that

$$H(\bigvee_{i=0}^{N-1} T^{-i} P | \bigvee_{i=-k_0}^{-1} T^{-i} P) < Nh + \delta,$$

then, by (4),

$$H(\bigvee_{i=0}^{N-1} T^{-i} P | \bigvee_{i=-k_0}^{-1} T^{-i} P) < H(\bigvee_{i=0}^{N-1} T^{-i} P | (\bigvee_{i=-k_0}^{-1} T^{-i} P) \lor (\bigvee_{i=-k}^{-1} T^{-i} P)) + \delta,$$

hence, by (3), $\bigvee_{i=0}^{N-1} T^{-i} P$ conditioned on $\bigvee_{i=-k_0}^{-1} T^{-i} P$, is ϵ-independent of $\bigvee_{i=-k}^{-1} T^{-i} P$, for all $k > k_0$.

With this background we come to the main step of the proof. Define the set $U(n, N_1, N_2, \epsilon, \delta)$ to consist of those $S \in S_0$ that satisfy:
We claim that the sets U is in

S is the trivial σ-field. Thus this can be expressed by the property that for all N and $\epsilon > 0$ there is a k_0 such that $\lambda_{i=0}^{N-1} [S^{-i} \mathcal{P}] \geq \epsilon$-independent of $\lambda_{i=-\infty}^{-k} T^{-i} \mathcal{P}$ for all $k \geq k_0$.

As we have seen one can express the ϵ-independence in terms of entropy so that the K-property can also be expressed by saying that for all N and $\epsilon > 0$, there is a k_0 such that for all $k \geq k_0$

\begin{equation}
H(\lambda_{i=0}^{N-1} [S^{-i} \mathcal{P}] \lambda_{i=-\infty}^{-k} T^{-i} \mathcal{P}) > H(\lambda_{i=0}^{N-1} T^{-i} \mathcal{P}) - \epsilon.
\end{equation}

To rid ourselves of the need for (5) for all $k \geq k_0$, notice that for all n if k_1 is sufficiently large then

\begin{equation}
H(\lambda_{i=-k}^{N-1} [S^{-i} \mathcal{P}] \lambda_{i=-k_1}^{-1} T^{-i} \mathcal{P}) < nh + \delta = n + \delta,
\end{equation}

where $h = 1$ is the entropy of the process (T, \mathcal{P}). Now given ϵ if we take k_0 as above and for $n = N + k_0$ and δ sufficiently small find k_1 so that (6) holds then (5) for $k = k_0 + k_1$ will imply (5) with 2ϵ, instead of ϵ for all $k \geq k_1 + k_1$.

Remark too that if a system is K for each member of a refining sequence of partitions then it is K, as the inverse limit of K automorphisms is K.

So, keeping the notations of Section 5, we define $U(n, N, k_0, k_1, \epsilon, \delta)$ to consist of those $S \in S_0$ that satisfy

(1) $H(\lambda_{i=0}^{N_i-1} [S^{-i} \mathcal{P}] \lambda_{i=-N_2}^{N_2-1} [S^{-i} \mathcal{P}]) < N_1 + \delta$,

(2) $d_{N_1} (\lambda_{i=0}^{N_i-1} [S^{-i} \mathcal{P}] \lambda_{i=-N_2}^{N_2-1} [S^{-i} \mathcal{P}]) < \epsilon$ for a set S_{N_2} of atoms $A \in \lambda_{i=-N_2}^{N_2-1} [S^{-i} \mathcal{P}]$ such that $(\mu \times \lambda)(\bigcup \{ A : A \in S_{N_2} \}) > 1 - \epsilon$.

We claim that the sets $U(n, N_1, N_2, \epsilon, \delta)$ are open (easy to check) and that the G_δ set

$S_1 = \bigcap_{n,k,l} U(n, N_1, N_2, 1/k, 1/l)$

comprises exactly the elements $S \in S_0$ for which the corresponding \hat{S} is Bernoulli. Thus, if $S \in S_0$ is such that \hat{S} is Bernoulli, then for every n, ϵ, δ, there are N_1, N_2 such that $S \in U(n, N_1, N_2, \epsilon, \delta)$, and conversely, every for Bernoulli \hat{S} the corresponding S is in S_1.

Note that (1) holds for any N_1 and δ if only N_2 is sufficiently large, because for $S \in S_0$

$H(\lambda_{i=0}^{N_i-1} [S^{-i} \mathcal{P}] \lambda_{i=-\infty}^{N_1-1} [S^{-i} \mathcal{P}]) = N_1$.

Finally the collection S_1 is nonempty; e.g. by a deep result of Rudolph [33, 34], every weakly mixing group extension of T is in S_1. In fact an explicit example of such an extension of the 2-shift is given by Adler and Shields, [1].

Again we now apply the relative Halmos theorem [19, Proposition 2.3], to deduce that S_1 is a dense G_δ subset of S, as claimed. \hfill \Box

6. A GENERIC EXTENSION OF A K SYSTEM IS K

6.1. Theorem. For any fixed K transformation T, the generic extension is K.

Proof. The process (T, \mathcal{P}) is a K-process if it has a trivial tail, i.e.

$$\bigcap_{k=1}^{\infty} \bigvee_{i=-\infty}^{-k} T^{-i} \mathcal{P}$$

is the trivial σ-field. Thus this can be expressed by the property that for all N and $\epsilon > 0$ there is a k_0 such that $\lambda_{i=0}^{N-1} T^{-i} \mathcal{P}$ is ϵ-independent of $\lambda_{i=-\infty}^{-k} T^{-i} \mathcal{P}$ for all $k \geq k_0$.

As we have seen one can express the ϵ-independence in terms of entropy so that the K-property can also be expressed by saying that for all N and $\epsilon > 0$, there is a k_0 such that for all $k \geq k_0$

(5) $H(\lambda_{i=0}^{N_i-1} T^{-i} \mathcal{P} \lambda_{i=-\infty}^{N_1-1} T^{-i} \mathcal{P}) > H(\lambda_{i=0}^{N_i-1} T^{-i} \mathcal{P}) - \epsilon$.

To rid ourselves of the need for (5) for all $k \geq k_0$, notice that for all n if k_1 is sufficiently large then

(6) $H(\lambda_{i=0}^{n-1} T^{-i} \mathcal{P} \lambda_{i=-k_1}^{1} T^{-i} \mathcal{P}) < nh + \delta = n + \delta$,

where $h = 1$ is the entropy of the process (T, \mathcal{P}). Now given ϵ if we take k_0 as above and for $n = N + k_0$ and δ sufficiently small find k_1 so that (6) holds then (5) for $k = k_0 + k_1$ will imply (5) with 2ϵ, instead of ϵ for all $k \geq k_1 + k_1$.

Remark too that if a system is K for each member of a refining sequence of partitions then it is K, as the inverse limit of K automorphisms is K.

So, keeping the notations of Section 5, we define $U(n, N, k_0, k_1, \epsilon, \delta)$ to consist of those $S \in S_0$ that satisfy
It is now easy to check that the set \(\mathcal{U} \) to show that it is not empty.

By Rokhlin cocycle with values in MPT, when has the same entropy as \(T \) and we conclude that the generic circle extension of the K-automorphism is K. By a theorem of Jones and Parry [21, Theorem 6], a generic circle extension of a weakly mixing system is weakly mixing and we conclude that the generic circle extension of the K-automorphism \(T \) is K.

Finally, applying again the relative Halmos theorem [19, Proposition 2.3], we deduce that \(S_1 \) is a dense \(G_\delta \) subset of \(S \), as claimed. \(\square \)

In the context of factors of Bernoulli shifts the following question is open. Can there be a full entropy factor \((Y,S)\) of a Bernoulli shift \((X,T)\) such that the relative product \(X \times Y \) is ergodic but not a K-automorphism — i.e. can this relative product have a nontrivial zero entropy factor? We will next show that for any finite entropy K-automorphism \((X,T)\) the generic extension \((\hat{X},\hat{T})\) is such that the relative product \(\hat{X} \times \hat{X} \) is also K. We use (a bit modified) notation as in Section 4.

6.2. Theorem. Let \(X = (X,X,\mu,T) \) be a finite entropy K-automorphism, and \(S \) a Rokhlin cocycle with values in MPT(I, \(\lambda \)), where \(I = [0,1] \) and \(\lambda \) is Lebesgue measure on \(I \). We denote by \(\hat{S} \) the transformation on the relative independent product \(X \times I \times I \) defined by

\[
\hat{S}(x,u,v) = (Tx,S_xu,S_xv), \quad (x,u,v) \in X \times I \times I.
\]

Then for a generic \(S \in \mathcal{S} \) the transformation \(\hat{S} \) is a K-automorphism.

Proof. As usual the proof divides into two parts, showing that our property is a \(G_\delta \) subset of \(\mathcal{S} \) and then showing that it is nonempty.

Now \(Q_n \) will denote the product dyadic partition of \(I \times I \) into squares of size \(\frac{1}{2^n} \times \frac{1}{2^n} \) and if \(\mathcal{R} \) is a generating partition of \((X,T) \), we denote by \(\mathcal{P}_n = \mathcal{R} \times Q_n \). It follows from Section 4 that for a dense \(G_\delta \) subset \(S_0 \subset \mathcal{S} \), the corresponding \(\hat{S} \) for \(S \in S_0 \), has the same entropy as \(T \). With this change of notation the proof of Theorem 6.1 shows that the set of \(S \in S_0 \) such that \(\hat{S} \) is a K-automorphism is a \(G_\delta \) set. It remains to show that it is not empty.

Fix a mixing zero entropy system \(Z = (Z,\mathcal{Z},\nu,R) \) and an independent partition \(\{C_0,C_1,C_-\} \) of \(X \) such that \(\mu(C_1) = \mu(C_-) < 1/4 \), define \(f(x) \) by setting \(f(x) = i \) for \(x \in C_i, \quad i = 0,1,-1 \), so that \(\int f d\mu = 0 \), and define \(T_f : X \times Z \times Z \to X \times Z \times Z \) by

\[
T_f(x,z_1,z_2) = (Tx,R^f(x)z_1,R^f(x)z_2).
\]

An easy version of the proof by Meilijson [25], shows that \(T_f \) is ergodic. Now, according to Rudolph [35, Corollary 8], when \(T \) is a K-automorphism and \(R \) (hence also \(R \times R \)) is mixing, then if \(T_f \) is ergodic, it must be K.
Another way to see this is as follows. Use Austin’s result [5] to write the K-system X as a product $X = Y \times B$ with Y a K-system and B Bernoulli. Let Z be a mixing system and apply Meilijson’s construction [25], to obtain a skew product extension on $B \times Z$ which is K. Now the system \hat{X} on $\hat{X} = X \times Z = Y \times (B \times Z)$ is K and the independent relative product

$$\hat{X} \times \hat{X} = (Y \times B \times Z) \times (Y \times B \times Z) \cong Y \times ((B \times Z) \times (B \times Z)),$$

is also a K system.

Again an application of the relative Halmos theorem [19, Proposition 2.3], finishes the proof. □

Let us recall the definition of relative mixing.

6.3. Definition. A factor map $\pi : X \to Y$ is called relatively mixing if for $f, g \in L_\infty(X)$

$$(7) \lim_{n \to \infty} \|E(T^n f \cdot g \mid Y) - E(T^n f \mid Y)E(g \mid Y)\|_2 = 0.$$

When g is Y-measurable then

$$E(T^n f \cdot g \mid Y) - gE(T^n f \mid Y)E(g \mid Y) = gE(T^n f \mid Y) - gE(T^n f \mid Y) = 0,$$

so we can replace in equation (7), g by $g - E(g \mid Y)$, whose conditional expectation is zero. Thus an equivalent condition is: for $f, g \in L_\infty(X)$ with $E(g \mid Y) = 0$,

$$(8) \lim_{n \to \infty} \|E(T^n f \cdot g \mid Y)\|_2 = 0.$$

It is well known that the set of mixing transformations is meager (see [20]). In the paper [39] by Mike Schnurr, the following relative version is proved (theorem 6): the set of transformations T acting on the product $X_1 \times X_2$ and leaving the σ-algebra X_2 invariant, in such a way that T is relatively mixing with respect to X_2, is meager.

However, as a consequence of Theorem 6.2, we will show that, when T acting on X is K, then the generic extension of T will be relatively mixing over X.

Let us mention that this result sheds some light on the following old question, originally due to D. Ornstein: given a Bernoulli shift T, does there exist a factor of T relative to which T is weakly mixing but not strongly mixing? Now, in view of the following theorem, there is no hope of using Baire category arguments to resolve this question, as was done historically in the “absolute” case.

6.4. Theorem. Let $X = (X, X, \mu, T)$ be a K-automorphism, then the generic extension of X is relatively mixing over X.

Proof. This result is a consequence of Theorem 6.2. and the following lemma:

6.5. Lemma. Let X be ergodic and Y be a factor of X with factor map $\pi : X \to Y$. Then the following are equivalent:

1. X is a relatively mixing extension of Y.
2. In the relatively independent product $Y \times X$, the Koopman operator restricted to $L_2(Y)^\perp$ is mixing.
Proof. Let $X = Y \times Z$ be the Rohlin representation of X over Y and let $\mu = \int_Y \mu_y \, d\nu(y)$ be the disintegration of μ over ν. Let

$$W := X \times X = \{(x_1, x_2) \in X \times X : \pi(x_1) = \pi(x_2)\},$$

and let the relative product measure λ, supported on W, be given by

$$\lambda = \int_Y \mu_y \times \mu_y \, d\nu(y).$$

Thus for $F \in L_2(\lambda)$

$$\int F(x_1, x_2) \, d\lambda(x_1, x_2) = \int_Y \left(\int_{X \times X} F(x_1, x_2) \, d\mu_y(x_1) \, d\mu_y(x_2) \right) \, d\nu(y).$$

Note that a function $F(x_1, x_2) \in L_2(\lambda)$ is in $L_2(Y)^\perp$ iff

$$\mathbb{E}(F \mid Y)(y) = \int_X F(x_1, x_2) \, d\mu_y(x_1) \, d\mu_y(x_2),$$

is ν a.e. 0.

$(1) \Rightarrow (2)$. Given $f_1, f_2, g_1, g_2 \in L_\infty(X)$, let

$$f_1 \otimes f_2(x_1, x_2) = f_1(x_1) f_2(x_2), \quad g_1 \otimes g_2(x_1, x_2) = g_1(x_1) g_2(x_2),$$

and note that, e.g., $\mathbb{E}(f_1 \otimes f_2 \mid Y) = \mathbb{E}(f_1 \mid Y) \mathbb{E}(f_2 \mid Y)$. Let

$$F = f_1 \otimes f_2 - \mathbb{E}(f_1 \mid Y) \mathbb{E}(f_2 \mid Y)$$

$$G = g_1 \otimes g_2 - \mathbb{E}(g_1 \mid Y) \mathbb{E}(g_2 \mid Y).$$

Since linear combinations of functions of the form $f_1 \otimes f_2$ are dense in $L_2(\lambda)$, mixing in $L_2(Y)^\perp$ will follow from

$$\left| \int_W T^n F \cdot G \, d\lambda \right| \to 0$$

(where we write $T^n F$ for the diagonal action of T on $X \times X$). Expanding the left hand side of the last formula we get

$$\int_Y \mathbb{E}([T^n(f_1 \otimes f_2) - T^n(\mathbb{E}(f_1 \mid Y) \mathbb{E}(f_2 \mid Y))] [g_1 \otimes g_2 - \mathbb{E}(g_1 \mid Y) \mathbb{E}(g_2 \mid Y)] \mid Y) \, d\nu.$$

There are four terms in the product $T^n F \cdot G$. The first one is:

$$\int_W T^n(f_1 \otimes f_2) \cdot g_1 \otimes g_2 \, d\lambda = \int_Y \left(\int_X T^n f_1(x_1) g_1(x_1) \, d\mu_y(x_1) \right) \left(\int_X T^n f_2(x_2) g_2(x_2) \, d\mu_y(x_1) \right) \, d\nu(y).$$

By (1), i.e. by relative mixing (7) (and boundedness of the functions), for large n, we can replace, with only a small error, the expression $\int_X T^n f_1(x_1) g_1(x_1) \, d\mu_y(x_1)$ by $\mathbb{E}(T^n f_1 \mid Y) \mathbb{E}(g_1 \mid Y)$.

Similarly the other three terms can be replaced by the same expression, one with plus sign, two with minus sign, and thus the total is indeed close to zero, as claimed.
(2) ⇒ (1) Assuming \(E(g | Y) = 0 \), we need to show that equation (8) holds. Now under this assumption, with \(f = f_1 = f_2 \) and \(g = g_1 = g_2 \), real valued functions, equation (9) reads

\[
\int_W T^n f(x_1) T^n f(x_2) \cdot g(x_1) g(x_2) d\lambda = \int_Y E(T^n f \cdot g | Y) \cdot E(T^n f \cdot g | Y) d\nu(y)
\]

\[
=\| E(T^n f \cdot g | Y) \|_2^2 \to 0.
\]

□

Applying the lemma to the relative independent product in Theorem 6.2, and recalling the fact that every K-automorphism is mixing, these arguments complete the proof of Theorem 6.4.

\[\square\]

7. A generic extension of a LB system is LB

7.1. Theorem. For any fixed loosely Bernoulli transformation \(T \), the generic extension is loosely Bernoulli.

Proof. We recall first one of the definitions of Loosely Bernoulli (LB) transformations. There are two kinds, one with zero entropy and the other having positive entropy.

For the latter; \((X, \mathcal{X}, \mu, T)\) is called loosely Bernoulli if there is some set \(A \in \mathcal{X} \) such that the induced transformation \(T_A \) is isomorphic to a Bernoulli shift. The zero entropy loosely Bernoulli are defined in a similar fashion except that now \(T_A \) is required to be isomorphic to an irrational rotation. For the basic theory and facts that we will use see [29].

There is a characterization of process that define LB transformations similar to the VWB condition, but with the \(d_n \) metric replaced by the \(f_n \) metric which we proceed to define.

For two words \(u, v \in \{1, 2, \ldots, a\}^n \) we define

\[
\tilde{f}_n(u, v) = 1 - \frac{k}{n},
\]

where \(k \) is the maximal integer for which we can find subsequences \(0 \leq i_1 < i_2 < \cdots i_k \leq n - 1 \) and \(0 \leq j_1 < j_2 < \cdots j_k \leq n - 1 \), with

\[
u(i_r) = v(j_r), \quad 1 \leq r \leq k.
\]

This defines a metric on words and using it instead of the normalized Hamming metric we also define the \(\tilde{f}_n \) metric on probability distributions on \(\{1, 2, \ldots, a\}^n \).

7.2. Definition. A finite measurable partition \(\mathcal{P} \) of \(X \) is called very loosely Bernoulli (VLB for short) if for every \(\epsilon > 0 \), there is a positive integer \(N \) such that for all \(\epsilon \geq 1 \), there is a collection \(\mathcal{G}_k \) of atoms of the partition \(\bigvee_{i=-k}^{N-1} T^{-i} \mathcal{P} \) such that

\[
(1) \quad \mu(\bigcup \{A \in \mathcal{G}_k\}) > 1 - \epsilon.
\]

\[
(2) \quad \tilde{f}_N \left(\bigvee_{i=0}^{N-1} T^{-i} \mathcal{P}, \bigvee_{i=0}^{N-1} T^{-i} \mathcal{P} \upharpoonright A \right) < \epsilon, \text{ for every atom } A \text{ of } \mathcal{G}_k.
\]

Here \(\tilde{f}_N \) is the normalized \(\tilde{f}_N \) distance of distributions, and \(\bigvee_{i=0}^{N-1} T^{-i} \mathcal{P} \upharpoonright A \) is the conditional distribution of \(\bigvee_{i=0}^{N-1} T^{-i} \mathcal{P} \) restricted to the atom \(A \) of the partition \(\bigvee_{i=-k}^{N-1} T^{-i} \mathcal{P} \).
For zero entropy LB there is a simpler formulation as follows.

7.3. Definition. Let \(\mathcal{P} = \{P_1, \ldots, P_a\} \) be a measurable partition of \(X \). Given \(\alpha \in \{1, 2, \ldots, a\}^n \), we set \([\alpha] = \cap_{i=0}^{N-1} T^{-i} P_{\alpha_i} \). A zero entropy process, defined by \(\mathcal{P} = \{P_1, \ldots, P_a\} \), is very loosely Bernoulli if given \(\varepsilon > 0 \) there is an \(N \) and a a subset \(G_N \subset \{1, 2, \ldots, a\}^N \) such that

1. \(\sum \{\mu([\alpha]) : \alpha \in G_N\} > 1 - \varepsilon \).
2. for all \(\alpha, \alpha' \in G_N \), \(f_N(\alpha, \alpha') < \varepsilon \).

Once again it suffices to show that there is refining sequence of partitions
\[
\mathcal{P}_1 \prec \cdots \prec \mathcal{P}_n \prec \mathcal{P}_{n+1} \prec \cdots
\]
such that the corresponding algebras \(\hat{\mathcal{P}}_n \) satisfy \(\bigvee_{n \in \mathbb{N}} \hat{\mathcal{P}}_n = \mathcal{X} \), and such that for each \(n \), the process \((T, \mathcal{P}_n) \) is VLB.

In zero entropy, to see that a generic extension of a LB \(T \) is LB, we keep notations from previous sections and define, for each \(n, N, \varepsilon \)
\[
U(n, N, \varepsilon) = \{S \in \mathcal{S}_0 : \text{the process } (\hat{S}, \mathcal{P}_n) \text{ satisfies (1) and (2)}\}.
\]
These are open sets and the set
\[
\bigcap_{n,k} \bigcup_{N=1}^{\infty} U(n, N, 1/k)
\]
is a \(G_\delta \) set and consists of LB transformations. To see that it is not empty we can use the fact that for any LB transformation \(T \) with zero entropy, a compact abelian group extension is also LB [29, Theorem 7.3].

For the positive entropy case we repeat exactly the same argument as in Section 5 with \(\bar{f}_N \) replacing \(\bar{d}_N \). The fact that there are relative zero entropy extensions of any LB transformation of positive entropy again follows from the fact that, in positive entropy, any ergodic isometric extension of a LB transformation is LB [33, Corollary 8].

\[\Box\]

References
[1] R. L. Adler and P. C. Shields, Skew products of Bernoulli shifts with rotations, Israel J. Math. 12, (1972), 215–222.
[2] Oleg N. Ageev, The generic automorphism of a Lebesgue space conjugate to a G-extension for any finite abelian group \(G \), (Russian) Dokl. Akad. Nauk 374 (2000), no. 4, 439–442.
[3] Oleg N. Ageev, On the genericity of some nonasymptotic dynamic properties, (Russian) Uspekhi Mat. Nauk 58, (2003), no. 1(349), 177–178; translation in Russian Math. Surveys 58, (2003), no. 1, 173–174.
[4] Oleg N. Ageev, A typical dynamical system is not simple or semisimple, Ergod. Th. & Dynam. Sys. (2003), 23, 1625–1636.
[5] Tim Austin, Measure concentration and the weak Pinsker property, Publ. Math. IHES 128, (2018), 1–119.
[6] Jon Chaika and Bryna Kra, A prime system with many self-joinings, arXiv:1902.02421v2.
[7] Andrés del Junco, A simple map with no prime factors, Israel J. of Math. 104, (1998), 301–320.
[8] Andrés del Junco and Daniel Rudolph, On ergodic actions whose self-joinings are graphs, Ergod. Th. & Dynam. Sys. (1987), 7, 531–557.
[9] Andrés del Junco and Daniel Rudolph, *Residual behavior of induced maps*, Israel J. Math. **93**, (1996), 387–398.

[10] Andrés del Junco, M. Lemańczyk and M. K. Mentzen, *Semisimplicity, joinings and group extensions*, Studia Math. **112**, (1995), 141–164.

[11] Danilenko A. I. *On simplicity concepts for ergodic actions*, J. Anal. Math. **102**, (2007), 77–117.

[12] Thierry de la Rue and José de Sam Lazaro, *Une transformation générique peut être insérée dans un flot*, Ann. Inst. H. Poincaré Probab. Statist., **39**, No. 1, (2003), 121–134.

[13] Nathaniel A. Friedman, *Partial mixing, partial rigidity, and factors*. Measure and measurable dynamics, (Rochester, NY, 1987), 141–145, Contemp. Math., **94**, AMS, Providence, RI, 1989.

[14] Eli Glasner, *A topological version of a theorem of Veech and almost simple flows*, Ergod. Th. & Dynam. Sys. **10**, (1990), 463–482.

[15] Eli Glasner, *Ergodic Theory via joinings*, Math. Surveys and Monographs, AMS, **101**, 2003.

[16] E. Glasner, B. Host and D. Rudolph, *Simple systems and their higher order self-joinings*, Israel J. of Math. **78**, (1992), 131-142.

[17] Eli Glasner and Jonathan L. King, *A zero-one law for dynamical properties*, Topological dynamics and applications (Minneapolis, MN, 1995), 231–242, Contemp. Math., **215**, AMS, Providence, RI, 1998.

[18] Eli Glasner and Benjamin Weiss, *A weakly mixing upside-down tower of isometric extensions*, Ergod Th. & Dynam. Sys. (1981), 1, 151–157.

[19] Eli Glasner and Benjamin Weiss, *Relative weak mixing is generic*, Sci. China Math. **62**, (2019), no. 1, 69–72.

[20] P. R. Halmos, *Lectures on ergodic theory*, Publications of the Mathematical Society of Japan, no. 3, The Mathematical Society of Japan 1956.

[21] Roger Jones and William Parry, *Compact abelian group extensions of dynamical systems II*, Compositio Mathematica, tome **25**, no 2 (1972), p. 135–147.

[22] A. Katok and A. Stepin, *Approximations in ergodic theory*, Uspekhi Matematicheskikh Nauk **22**, (1967), 81–106; Engl. Transl.: Russian Mathematical Surveys **22**, (1967), No. 5, 77–102.

[23] Jonathan L. F. King, *Ergodic properties where order 4 implies infinite order*, Israel. J. of Math. **80**, (1992), 65–86.

[24] Jonathan L. King, *The generic transformation has roots of all orders*, Colloq. Math., 84/85 (part 2) (2000), 521–547.

[25] Isaac Meilijson, *Mixing properties of a class of skew-products*, Israel J. Math. **19**, (1974), 266–270.

[26] Julien Melleray, *Extensions of generic measure-preserving actions*, Annales de l’institut Fourier, Tome **64**, no 2 (2014), 607–623.

[27] Julien Melleray and Todor Tsankov, *Generic representations of abelian groups and extreme amenability*, Israel J. Math. **198**, (2013), no. 1, 129–167.

[28] Donald S. Ornstein, *A K-automorphism with no square root and Pinsker’s conjecture*, Advances in Math. **10**, (1973), 89–102.

[29] D. S. Ornstein, D. J. Rudolph and B. Weiss, *Equivalence of measure preserving transformations*, Mem. Amer. Math. Soc. **37**, (1982), no. 262, xii+116 pp.

[30] Oxtoby, John C. *Measure and category*. A survey of the analogies between topological and measure spaces. Second edition. Graduate Texts in Mathematics, 2. Springer-Verlag, New York-Berlin, 1980.

[31] W. Parry, *Ergodic properties of affine transformations and flows on nilmanifolds*. Amer. J. Math. **91**, (1969), 757–771.

[32] D. J. Rudolph, *An example of a measure preserving map with minimal self-joinings, and applications*, J. Analyse Math. **35**, (1979), 97–122.

[33] D. J. Rudolph, *Classifying the isometric extensions of a Bernoulli shift*. J. Analyse Math. **34** (1978), 36–60 (1979).
[34] D. J. Rudolph, *k-fold mixing lifts to weakly mixing isometric extensions*, Ergodic Theory Dynam. Systems, 5, (1985), no. 3, 445–447.

[35] D. J. Rudolph, *Z^n and R^n cocycle extensions and complementary algebras*, Ergodic Theory Dynam. Systems, 6, (1986), no. 4, 583–599.

[36] V. V. Ryzhikov, *Around simple dynamical systems. Induced joinings and multiple mixing*, J. Dynam. Control Systems, 3, No. 1, (1997), 111–127.

[37] V. V. Ryzhikov, *Factors, rank, and embedding of a generic Z^n-action in an R^n-flow*, (Russian) Uspekhi Mat. Nauk 61, (2006), no. 4(370), 197–198. ; translation in Russian Math. Surveys 61, (2006), no. 4, 786–787.

[38] V. V. Ryzhikov and J.-P. Thouvenot, *Disjointness, divisibility, and quasi-simplicity of measure-preserving actions*, (Russian) Funktsional. Anal. i Prilozhen. 40, (2006), no. 3, 85–89; translation in Funct. Anal. Appl. 40, (2006), no. 3, 237–240.

[39] Mike Schnurr, *Generic properties of extensions*, Ergod. Th. & Dynam. Sys. 39, (2019), 3144–3168.

[40] Slawomir Solecki, *Closed subgroups generated by generic measure automorphisms*, Ergod. Th. & Dynam. Sys. (2014), 34, 1011–1017.

[41] A. M. Stepin, *Spectral properties of typical dynamic systems*, Izv. Akad. Nauk SSSR. Ser. Matem., 50, No. 4, (1986), 801–834.

[42] A. M. Stepin and A. M. Eremenko, *Non-unique inclusion in a flow and the vast centralizer of a generic measure-preserving transformation*, (Russian) Mat. Sb. 195, (2004), no. 12, 95–108; translation in Sb. Math. 195, (2004), no. 11-12, 1795–1808.

[43] J.-P. Thouvenot, *On the stability of the weak Pinsker property*, Israel J. of Math. 27, No. 2, (1977), 150–162.

[44] S. V. Tikhonov, *Embeddings of lattice actions in flows with multidimensional time*, Mat. Sb. 197, (2006), no. 1, 97–132; translation in Sb. Math. 197, (2006), no. 1-2, 95–126.

[45] W. A. Veech, *Point-distal flows*, Amer. J. Math. 92, (1970), 205–242.

[46] W. A. Veech, *A criterion for a process to be prime*, Monatsh. Math. 94, (1982), 335–341.

Department of Mathematics, Tel-Aviv University, Ramat Aviv, Israel
Email address: glasner@math.tau.ac.il

Laboratoire de Probabilités, Université Statistique et Modélisation, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France
Email address: jean-paul.thouvenot@upmc.fr

Mathematics Institute, Hebrew University of Jerusalem, Jerusalem, Israel
Email address: weiss@math.huji.ac.il