Durvalumab and tremelimumab combination therapy versus durvalumab or tremelimumab monotherapy for patients with solid tumors
A systematic review and meta-analysis
Bi-Cheng Wang, MDa,∗, Peng-Cheng Li, MDa, Ji-Quan Fan, MSa, Guo-He Lin, MDb, Quentin Liu, MDb

Abstract
Background: The combination of durvalumab and tremelimumab results in clinical benefit, with a tolerable safety profile in patients with solid tumors.

Objective: To evaluate the efficacy and safety of durvalumab in combination with tremelimumab compared with either drug alone.

Methods: The online databases (PubMed, Web of Science, EMBASE, and Cochrane Library) were searched for potential clinical studies up to Nov 26, 2019. Eligible studies were prospective and registered clinical trials. Pooled odds ratios for objective response rate and disease control rate and pooled risk ratios for treatment-related adverse events were meta-analyzed. A random-effect model was used due to the synthesis of different cancer types.

Results: Overall, 5 studies were eligible for systematic review, 3 of which were further meta-analyzed. Durvalumab plus tremelimumab was superior to tremelimumab monotherapy in improving disease control rate in head and neck squamous cell carcinoma. However, there were no significant differences between dual immunotherapy and mono-immunotherapy in pancreatic ductal adenocarcinoma and gastric and gastroesophageal junction adenocarcinoma. Additionally, pooled analyses illustrated that no significant differences in treatment-related adverse events were displayed between the 2 groups.

Conclusion: Durvalumab and tremelimumab combination therapy had a good safety profile and resulted in clinical benefit in head and neck squamous cell carcinoma. Future explorations are needed to further confirm the application of durvalumab plus tremelimumab.

Abbreviations: 95% CI = 95% confidence interval, APC = antigen-presenting cell, CTLA-4 = cytotoxic T-lymphocyte antigen 4, DCR = disease control rate, GGA = gastric and gastroesophageal junction adenocarcinoma, HNSCC = head and neck squamous cell carcinoma, NSCLC = non–small cell lung cancer, OR = odds ratio, ORR = objective response rate, PD-1 = programmed cell death-1, PDA = pancreatic ductal adenocarcinoma, PD-L1 = programmed cell death ligand-1, PFS = progression-free survival = OS = overall survival, RR = risk ratio.

Keywords: durvalumab, immunotherapy, meta-analysis, solid tumor, tremelimumab

1. Introduction
Inhibitors of programmed cell death-1 (PD-1) and its ligand (PD-L1) have shown improved survival compared to chemotherapy on the treatment of advanced solid tumors.[1,2] However, survival outcomes still need to be improved in patients with recurrent or metastatic solid tumors.

During recent years, dual immune checkpoint inhibition has been a new treatment strategy for advanced patients.[3,4] PD-1
inhibitors and cytotoxic T-lymphocyte antigen 4 (CTLA-4) inhibitors are immune checkpoint antibodies with distinct but complementary mechanisms of action. Owing to the synergistic roles of the PD-1 or PD-L1 and CTLA-4 in T-cell activation, the combination of inhibitors targeting PD-1/PD-L1 and CTLA-4 signaling pathways warrants investigation.[5] The combination of nivolumab, a fully human anti-PD-1 inhibitor, and ipilimumab, a fully human anti-CTLA-4 inhibitor, has shown encouraging clinical benefit characterized by antitumor effects and tolerable safety profiles.[6–11]

Durvalumab plus tremelimumab is another combination regimen. Durvalumab is a highly selective human IgG1 monoclonal inhibitor that blocks interaction with PD-1 and CD80 to overcome blockage of primary human T-cell activation.[12] Remarkable clinical activity and manageable safety of durvalumab were reported in various solid tumors, including melanoma, lung cancer, head and neck cancer, breast cancer, and urothelial carcinoma.[13–19] Further, adding tremelimumab, a high affinity human IgG2 monoclonal antibody of CTLA-4,[20] to durvalumab therapy has also been under detection in different cancers.[21–26] Although combining durvalumab and tremelimumab results in clinical benefit, whether combination therapy is superior to durvalumab or tremelimumab monotherapy remains uncertain.

Accordingly, we conducted this systematic review and meta-analysis to assess the efficacy and safety of durvalumab plus tremelimumab combination therapy versus durvalumab or tremelimumab monotherapy in solid tumors.

2. Methods

This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guideline.[27] The data used in the analysis were not original raw data but were based on the published clinical studies with ethical approvals. Therefore, ethical approval was not necessary.

2.1. Search strategy

The electronic databases PubMed, Web of Science, EMBASE and Cochrane Library were systematically searched for all relevant records until Nov 26, 2019. Search terms were “tremelimumab”, “durvalumab,” and “trial or clinical trial or clinical study.” Reference lists of relevant published studies and review articles were manually searched for more eligible trials.

2.2. Inclusion criteria and study selection

Eligible studies should meet all of the following criteria:

1. patients in the studies were diagnosed with solid tumors,
2. patients did not previously receive immunotherapy,
3. patients in 1 arm were treated with tremelimumab and durvalumab combination therapy,
4. studies were prospective and registered clinical trials,
5. the combination group did not include chemotherapy, target therapy, radiotherapy, or others,
6. efficacy and safety data were available.

We have no restrictions on language. Conference abstracts were excluded, due to the absence of raw data and the increase of heterogeneity. B-CW and P-CL independently conducted the selection process. Any discrepancies were resolved by discussion.

2.3. Data extraction

Detailed reviews of full-text articles regarding basic characteristics, outcomes and toxicities were performed by B-CW and P-CL independently. The first author, year of publication, register number, study design, county, cancer type, number of patients, mean age, lines of prior therapy, dosing schedule, objective response rate (ORR), disease control rate (DCR), overall survival (OS), progression-free survival (PFS), and treatment-related adverse events data reporting in the articles and supplementary materials were collected from each eligible study.

2.4. Statistical analysis

Data from randomized studies (ORR and DCR) was assessed by odds ratio (OR) and 95% confidence interval (CI). The treatment-related analyses were assessed by risk ratio (RR) and 95% CI. RevMan version 5.3 software (Cochrane Collaboration’s Information Management System) was used to meta-analyzed the above-mentioned data. Heterogeneity among the studies was tested by I² statistic percentages and the Cochran Q Chi-squared test. A random-effects model was applied in the analyses owing to the small size of enrolled studies.

2.5. Risk of bias assessment

For pooled analyses of the ORR and DCR in randomized studies, the Cochrane Risk of Bias Tool was applied to evaluate the risk of bias.

3. Results

3.1. Search results

Figure 1 displays the selection process. Four hundred eighty-seven potential records were included for the initial assessment. One hundred sixty-four duplicates were excluded. Further, 150 records were excluded after review of the titles and abstracts. One hundred seventy-three records underwent full-text assessment. We excluded 168 records because they were reviews/comments/letters/news (n = 53), conference abstracts (n = 109), case reports (n = 3), or unregistered studies (n = 1). Finally, 5 clinical studies were found to meet the inclusion criteria.[28–32] All the selected studies were included in the systematic review, and 3 of 5 were included in the meta-analysis.[28–30]

3.2. Characteristics

The basic characteristics of the 5 eligible studies are listed in Table 1. One study was phase 1b clinical trial, 1 was phase 1b/2 clinical trial, and three were phase 2 clinical trials. There were 5 cancer types including non-small cell lung cancer (NSCLC), mesothelioma, pancreatic ductal adenocarcinoma (PDA), head and neck squamous cell carcinoma (HNSCC), and gastric and gastroesophageal junction adenocarcinoma (GGA). All patients enrolled in the studies were diagnosed with advanced solid tumors. Most patients had received 1 line of prior systemic therapy. Three studies comprised durvalumab monotherapy and 2 studies contained tremelimumab monotherapy.

Table 2 showed the median PFS and OS in the studies. Mesothelioma patients treated with durvalumab plus tremelimumab had the longest median survival time (median PFS: 5.7 months, 95% confidence interval [CI] 1.7–9.7; median OS: 16.6
months, 95% CI 13.1–20.1). Although the median OS of patients with PDA, HNSCC, and GGA ranged from 3.1 to 10.6 months, the median PFS time was no more than 2 months.

3.3. Responses

The forest plots of odds ratios for ORR and DCR are shown in Figures 2 and 3. Pooled results showed that combining durvalumab and tremelimumab did not significantly improve the ORR compared with durvalumab (OR 1.12, 95% CI 0.43–2.90, \(P = .81\)) or tremelimumab (OR 2.40, 95% CI 0.47–12.32, \(P = .29\)) (Fig. 2). In addition, no statistically significant differences were observed in DCR when comparing combination therapy against monotherapy (durvalumab and tremelimumab versus durvalumab: OR 1.09, 95% CI 0.39–3.02, \(P = .87\); durvalumab and tremelimumab versus tremelimumab: OR 2.76, 95% CI 0.28–27.24, \(P = .38\)) (Fig. 3).

In subgroup analyses, durvalumab plus tremelimumab was shown to have a higher rate of disease control in HNSCC compared to tremelimumab alone (OR 9.41, 95% CI 1.22–72.41, \(P = .03\)). In PDA and GGA, durvalumab plus tremelimumab was not superior to durvalumab or tremelimumab monotherapy.

3.4. Treatment-related adverse events

The forest plots of risk ratios for any grade and grade \(\geq 3\) treatment-related adverse events are shown in Figures 4 and 5. Durvalumab plus tremelimumab showed similar risks of any grade treatment-related adverse events with durvalumab monotherapy (RR 1.01, 95% CI 0.69–1.49, \(P = .95\)) and tremelimumab monotherapy (RR 1.02, 95% CI 0.79–1.32, \(P = .87\)) (Fig. 4). In subgroup analysis, \(P\) value did not indicate statistical significance. However, compared with durvalumab, combination therapy exhibited higher risks of any grade treatment-related adverse events in PDA (RR 1.10) and GGA (RR 4.06). However, a lower risk of any grade treatment-related adverse events was seen in HNSCC (RR 0.92). While compared with tremelimumab monotherapy, combination therapy showed a higher risk of any grade treatment-related adverse events in HNSCC (RR 1.05) but a lower risk in GGA (RR 0.68).

In comparison with patients in monotherapy groups, patients in the durvalumab and tremelimumab combination therapy group showed no significant increases in grade \(\geq 3\) treatment-related adverse events (durvalumab and tremelimumab versus durvalumab: RR 1.64, 95% CI 0.86–3.13, \(P = .14\); durvalumab and tremelimumab versus tremelimumab: RR 0.87, 95% CI 0.46–1.65, \(P = .67\)) (Fig. 5). Although we failed to find the
Table 1
Basic characteristics of the selected prospective and registered clinical trials.

Study	Year	Register number	Design	Country	Cancer type	No. patients	Mean age (yr)	Lines of prior therapy	Dosage
Scott Antonia	2016	NCT02000947	A multicenter, non-randomized, open-label, phase 1b trial	The United States	Non-small cell lung cancer	102	67.0	≥ 0	
Luana Calabrò	2018	NCT02588131	A non-randomized, open-label, single-center trial	Italy	Mesothelioma	40	64.0	≤ 1	
Eileen M. O'Reilly	2019	NCT02558894	A multicenter, randomized, open-label, phase 2 trial	Canada, Germany, the Netherlands, South Korea, Spain, and the United States	Pancreatic ductal adenocarcinoma	65	61.0	1	
Lillian L. Siu	2019	NCT02319044	A randomized, open-label, multicenter, global phase 2 study	15 countries in North America, Europe, and Asia Pacific	Head and neck squamous cell carcinoma	267	61.0	1	
Ronan J. Kelly	2019	NCT02340975	A randomized, multicenter, open-label, phase 1b/2 study	Canada, Japan, Korea, Singapore, Taiwan/China, and the United States	Gastric and gastroesophageal junction adenocarcinoma	113	54.0-64.0	≤ 2	

*ClinicalTrials.gov identifier.

Table 2
Median progression-free survival and overall survival in the eligible studies.

Study	Groups	mPFS	mOS
Scott Antonia	D + T	5.7 mo (95% CI 1.7–9.7)	16.6 mo (95% CI 13.1–20.1)
Luana Calabrò	D + T	1.5 mo (95% CI 1.2–1.5)	3.1 mo (95% CI 2.2–4.6)
Eileen M. O'Reilly	D + T; D	2.0 mo (95% CI 1.9–2.1) (95% CI 1.8–2.8)	7.6 mo (95% CI 4.9–10.6) (95% CI 4.0–11.3)
Lillian L. Siu	D + T; D; T	1.8 mo (95% CI 1.0–1.8)	7.0–10.6 mo (95% CI 1.7–4.4)
Ronan J. Kelly	D + T; D; T	1.7 mo (95% CI 0.8–5.3)	7.7 mo (95% CI 2.1–13.7)

Cl = confidence interval, D = durvalumab, mOS = median overall survival, mPFS = median progression-free survival, NR = not reported, T = tremelimumab.
statistical differences, subgroup analyses showed that combination therapy exerted higher risks of grade ≥ 3 treatment-related adverse events in 3 cancer types (PDA: RR 3.5; HNSCC: RR 1.28; GGA: RR 1.74) against durvalumab monotherapy. Nevertheless, durvalumab plus tremelimumab displayed lower risks of grade ≥ 3 treatment-related adverse events against tremelimumab monotherapy (HNSCC: RR 0.93; GGA: RR 0.34).

3.5. Bias assessment
All studies were open-label clinical trials, with 2 non-randomized and 3 randomized trials. The randomized clinical studies had reported all their pre-defined results. Accordingly, the meta-analyses of ORR and DCR were at moderate risk of reporting bias (Fig. 6).

4. Discussion
In this study, the combination therapeutic regimen showed no significant increase in treatment-related adverse events. However, higher effects were not observed in the combination therapy group. In the eligible studies, for advanced gastric and gastroesophageal junction adenocarcinoma, the combining durvalumab and tremelimumab displayed a numerically higher ORR than durvalumab monotherapy. Nevertheless, durvalumab plus tremelimumab showed similar efficacy to durvalumab monotherapy in recurrent or metastatic head and neck
squamous cell carcinoma and pancreatic ductal adenocarcinoma. It is important to assess what factors might have contributed to the failure of combinatorial therapy.

Tumor cells elude recognition and destruction by the immune system via activating the immune checkpoint signaling pathway. Nowadays, immune checkpoint inhibitors have revolutionized the treatment of patients with solid tumors. Both CTLA-4 and PD-1 are able to regulate the activation of T-cell, however, the mechanisms of action were distinct. The action mechanism of CTLA-4 remains less clear. To our minds, CTLA-4 was used by regulatory T (Treg) cells to elicit suppression; however, CTLA-4 also operates to trigger inhibitory signals in conventional T cells. T cell motility is increased by CTLA-4 via limiting contact time between T cells and antigen-presenting cells (APCs). In this condition, CTLA-4 ligation transmits “arrest” signals between T cells and APC. Another study has demonstrated that anti-CTLA-4 treatment increases the action of Treg and CD4 T cells but decreases the action of CD8 T cells. Accordingly, blockage of CTLA-4 might overcome immune resistance in the host peripheral immune system.

PD-1 is frequently expressed on tumor-infiltrating lymphocytes (especially CD4+ T cells). PD-1 limits the activation of T-cell through suppressing the induction of cytokines and the expression of anti-apoptotic proteins. PD-1 is also over-expressed on intra-tumoral Treg cells and might enhance the immunosuppressive capability. PD-L1 is
mainly upregulated on the surface of cancer cells. In addition, PD-L1 is expressed in tumor-infiltrating immune cells. These basic characteristics suggest that anti-PD-1/PD-L1 therapeutics could reverse immune resistance in the tumor microenvironment.[47]

Consequently, dual inhibition of CTLA-4 and PD-1/PD-L1 might be a reasonable and potentially synergistic therapeutic modality advanced cancer patient. In a randomized, double-blind, phase II study, the response rates of melanoma patients were significantly higher in nivolumab plus ipilimumab group (61%) than in ipilimumab group (11%) (P < .001).[48] A phase III clinical study, Checkmate-067, showed a median PFS of 11.5 months in patients treated with nivolumab and ipilimumab combination therapy, compared with 2.9 and 6.9 months in patients treated with ipilimumab or nivolumab monotherapy, respectively.[13] Another open-label, phase III trial displayed that nivolumab plus ipilimumab prolong median OS compared to chemotherapy in advanced NSCLC patients regardless of the status of PD-L1 (17.1 versus 13.9 months), and suggested combining nivolumab and ipilimumab as a first-line treatment for advanced NSCLC.[6]

The blockage of CTLA-4 and PD-1 exerts critical anti-tumor effects.[49] However, such benefits were not observed when solid tumor patients were treated with durvalumab and tremelimumab in our study.

Even nivolumab and durvalumab are working to block the PD-1/PD-L1 signaling pathway, the combining sites are different. Nivolumab is a PD-1 inhibitor, whereas durvalumab is a PD-L1 inhibitor. There are now lacking the head-to-head clinical studies.
comparing the efficacy between anti-PD-1 therapy and anti-PD-L1 therapy. According to previously published studies, PD-1 antibodies and PD-L1 antibodies showed unequal treatment effects.\(^{[50-52]}\)

The lack of efficacy of adding tremelimumab to durvalumab may be attributed to the mechanism of action, as tremelimumab is an IgG2 monoclonal antibody that does not cause lysis of regulatory T cells through the way of antibody-dependent cell-mediated cytotoxicity, which is observed with ipilimumab.\(^{[53]}\)

For patients treated previously systematic chemotherapeutics in the eligible studies, the immune microenvironment might have been changed. Tumor-infiltrating lymphocytes are associated with the response to immunotherapy.\(^{[54-56]}\) However, T cell exhaustion could drive a decline in the ability of T cells to kill tumor cells. A recent study indicated that T cells were stored in dense antigen-presenting-cell niches within the tumor microenvironment, but tumors that failed to form these immune niches were not extensively infiltrated by T cells. Patients with advanced or recurrent disease lack these niches, suggesting that niche breakdown in tumor tissues may be a key factor of immune resistance or escape.\(^{[57]}\)

Several limitations exist in this analysis. All enrolled studies are phase I or II clinical trials, whereas data from randomized controlled phase III studies are lacking. In addition, open-label studies might increase publication bias even the trials were conducted in various centers. The analysis of ORR and DCR

Figure 5. Forest plots of risk ratios for grade ≥ 3 treatment-related adverse events in advanced solid tumors. (A) Durvalumab plus tremelimumab (D+T) versus durvalumab (D); (B) Durvalumab plus tremelimumab (D+T) versus tremelimumab (T).
comprised 3 types of cancers that might not fully represent the efficacy of combination therapy in solid tumors. The type of tumors was complex and different cancer types had different inflamed and tumor mutation burden backgrounds, which could directly diminish the interpretability of the meta-analysis.

5. Conclusion
Durvalumab and tremelimumab combination therapy appeared active for the treatment of HNSCC. However, future studies are also needed to identify the patients that most possibly benefit from dual immune checkpoint inhibitors.

Acknowledgment
We thank the members of the BCSNOWELL STUDIO for providing statistical supports and helping to improve the grammar and spelling.

Author contributions
Study design, data extraction, and data analysis: BW, GL, and PL; manuscript writing and edition: BW, JF and QL.
Conceptualization: Bi-Cheng Wang, Peng-Cheng Li, Guo-He Lin.
Data curation: Bi-Cheng Wang, Peng-Cheng Li, Guo-He Lin.
Formal analysis: Bi-Cheng Wang.
Funding acquisition: Bi-Cheng Wang, Guo-He Lin.
Investigation: Bi-Cheng Wang.
Methodology: Bi-Cheng Wang, Guo-He Lin.
Project administration: Bi-Cheng Wang.
Resources: Bi-Cheng Wang.
Software: Bi-Cheng Wang, Peng-Cheng Li, Guo-He Lin.
Supervision: Bi-Cheng Wang, Ji-Quan Fan, Quentin Liu.
Validation: Bi-Cheng Wang.
Visualization: Bi-Cheng Wang.
Writing – original draft: Bi-Cheng Wang, Ji-Quan Fan, Quentin Liu.
References

[1] Wang BC, Cao RB, Li PD, et al. The effects and safety of PD-1/PD-L1 inhibitors on head and neck cancer: a systematic review and meta-analysis. Cancer Med 2019;8:5969–78.

[2] Wang BC, Zhang ZJ, Fu C, et al. Efficacy and safety of anti-PD-1/PD-L1 agents vs chemotherapy in patients with gastric or gastrointestinal junction cancer: a systematic review and meta-analysis. Medicine (Baltimore) 2019;98:e18034.

[3] Nizam A, Aragón-Ching JB. Frontline immunotherapy treatment with nivolumab and ipilimumab in metastatic renal cell cancer: a new standard of care. Cancer Biol Ther 2019;20:6–7.

[4] Reck M, Borgiaie H, O’Byrne KJ. Nivolumab plus ipilimumab in non-small-cell lung cancer. Future Oncol 2019;15:2287–302.

[5] Das R, Verma R, Senol M, et al. Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo. J Immunol 2015;194:590–9.

[6] Hellmann MD, Paz-Ares L, Bernabe Caro R, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med 2019;381:2020–31.

[7] Ready N, Hellmann MD, Awad MM, et al. First-line nivolumab plus ipilimumab in advanced non-small-cell lung cancer (CheckMate 568): outcomes by programmed death ligand 1 and tumor mutational burden as biomarkers. J Clin Oncol 2019;37:992–1000.

[8] Park MS, Schenker M, Lee KH, et al. Nivolumab plus ipilimumab versus chemotherapy as first-line treatment in advanced non-small-cell lung cancer with high tumour mutational burden: patient-reported outcomes results from the randomised, open-label, phase III CheckMate 227 trial. Eur J Cancer 2019;116:137–47.

[9] Morse MA, Overman MJ, Hartman L, et al. Safety of nivolumab plus low-dose ipilimumab in previously treated microsatellite instability-high/mismatch repair-defective metastatic colorectal cancer. Oncologist 2019;24:1453–61.

[10] Hellmann MD, Rizvi NA, Goldman JW, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol 2017;18:31–41.

[11] Antonia S, Lopez-Martin JA, Bendell J, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 study. Lancet Oncol 2016;17:883–95.

[12] Stewart R, Morrow M, Hammond SA, et al. Identification and characterization of MDMRI6, an antagonistic anti-PD-L1 monoclonal antibody. Cancer Immunol Res 2015;3:1052–62.

[13] Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab in untreated melanoma. N Engl J Med 2015;373:23–34.

[14] Antonia S, Villegas A, Daniel D, et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med 2018;379:2342–50.

[15] Garassino MC, Cho BC, Kim JH, et al. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study. Lancet Oncol 2018;19:521–36.

[16] Segal NH, Ou SI, Balmanoukian A, et al. Safety and efficacy of durvalumab in patients with head and neck squamous cell carcinoma: results from a phase III expansion cohort. Eur J Cancer 2019;109:154–61.

[17] Lohl S, Uttch M, Burcharth N, et al. A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: clinical results and biomarker analysis of GeparNuevo study. Ann Oncol 2019;30:1279–88.

[18] Powles T, O’Donnell PH, Massard C, et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase I/II open-label study. JAMA Oncol 2017;3:172411.

[19] Massard C, Gordon MS, Sharma S, et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol 2016;34:3119–25.

[20] Ribas A, Camacho LH, Lopez-Beresten G, et al. Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J Clin Oncol 2005;23:8968–77.

[21] Venkatraman D, Anderson A, Digumarthy S, et al. Phase 2 study of tremelimumab plus durvalumab for previously-treated malignant pleuropulmonary mesothelioma (MPM). J Clin Oncol 2019;37:

[22] Senan S, Shire N, Mak G, et al. ADRATIC: a phase III trial of durvalumab 6 tremelimumab after concurrent chemoradiation for patients with limited stage small cell lung cancer. Ann Oncol 2019;30:

[23] Lee JJ, Yotthers G, George TJ, et al. Phase II study of dual immune checkpoint blockade (ICB) with durvalumab (Durva) plus tremelimumab (T) following palliative hypofractionated radiotherapy (SBRT) in patients (pts) with microsatellite-stable (MSS) metastatic colorectal cancer (mCRC) progressing on chemotherapy; NSABP FC-9. Cancer Res 2019;79:

[24] Grande E, Guerrero F, Puente J, et al. DUTRENEO Trial: A phase II randomized trial of DURvalumab and Tremelimumab as NEOadjuvant approach in muscle-invasive urothelial bladder cancer (MIBC) patients prospectively selected by immune signature scores. J Clin Oncol 2019;37:

[25] Sonpavde G, Peters S, Nordquist LT, et al. A phase 3b safety study of fixed-dose durvalumab + tremelimumab or durvalumab monotherapy in advanced solid malignancies (STRONG): urothelial and non-urothelial urinary tract carcinoma module A. J Clin Oncol 2018;36:

[26] Nucchi A, Mariani L, Rago D, et al. APACHE: an open label, randomized, phase II study of Durvalumab (Durva), alone or in combination with Tremelimumab (Trem) in patients (pts) with advanced germ cell tumors (GCT): results at the end of first stage. Cancer Res 2018;78:

[27] Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Open Med 2009;3:e123–30.

[28] Siu LL, Even C, Mesaris R, et al. Safety and efficacy of durvalumab with or without tremelimumab in patients with PD-L1-low/negative recurrent or metastatic HNSCC: the phase 2 CONDOR randomized clinical trial. JAMA Oncol 2019;5:195–203.

[29] O’Reilly EM, Oh DY, Dhami N, et al. Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol 2019;5:1431–8.

[30] Kelly RJ, Lee J, Bang YJ, et al. Safety and efficacy of durvalumab and tremelimumab alone or in combination in patients with advanced gastric and gastroesophageal junction adenocarcinoma. Clin Cancer Res 2019;25:846–54.

[31] Calabro L, Morra A, Giannarelli D, et al. Tremelimumab combined with durvalumab in patients with mesothelioma (NIBIT-MESO-1): an open-label, non-randomised, phase 2 study. Lancet Resp Med 2018;6:676–680.

[32] Antonia S, Goldberg SR, Balmanoukian A, et al. Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: a multicentre, phase Ib study. Lancet Oncol 2016;17:299–308.

[33] Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoeediting: from immunosurveillance to tumor escape. Nat Immunol 2002;3:991–8.

[34] Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol 2006;90:51–81.

[35] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–74.

[36] Topalian SL, Weiner GJ, Pardoll DM. Cancer immunotherapy comes of age. J Clin Oncol 2011;29:4828–36.

[37] Li Z, Chen L, Rubinstein MP. Cancer immunotherapy: are we there yet? Exp Hematol 2013;41:32–33.

[38] Schneider H, Downey J, Smith A, et al. Reversal of the TCR stop signal by CTLA-4. Science 2006;313:1972–5.

[39] Miska J, Abdulreda MH, Devarajan P, et al. Real-time immune cell interactions in target tissue during autoimmune-induced damage and graft tolerance. J Exp Med 2014;211:441–56.

[40] Mora JR, von Andrian UH. T-cell homing specificity and plasticity: new concepts and future challenges. Trends Immunol 2006;27:235–43.

[41] Ott PA, Hodi FS, Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res 2013;19:5300–9.

[42] Kerr ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008;26:677–704.

[43] Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 2010;236:219–42.
Okazaki T, Chikuma S, Iwai Y, et al. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 2013;14:1212–8.

Fife BT, Pauken KE, Eagar TN, et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol 2009;10:1185–92.

Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000;192:1027–34.

Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1 (PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 2012;24:207–12.

Postow MA, Chesney J, Pavlick AC, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 2015;372:2006–17.

Wei Y, Du Q, Jiang X, et al. Efficacy and safety of combination immunotherapy for malignant solid tumors: a systematic review and meta-analysis. Crit Rev Oncol Hematol 2019;138:178–89.

Cohen EEW, Soulieres D, Le Tourneau C, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet 2019;393:156–67.

Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016;375:1856–67.

Schmid P, Adams S, Rugo HS, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 2018;379:2108–21.

Romano E, Kasio-Kobiak M, Foukas PG, et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc Natl Acad Sci U S A 2015;112:6140–5.

Eroglu Z, Zaretsky JM, Hu-Lieskovan S, et al. High response rate to PD-1 blockade in desmoplastic melanomas. Nature 2018;553:347–50.

Savas P, Virassamy B, Ye C, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med 2018;24:986–93.

Peranzoni E, Lemoine J, Vimeux L, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci U S A 2018;115:E4041–50.

Jansen CS, Prokhnevskaya N, Master VA, et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 2019;576:463–70.