Collaborative Competitive filtering II: Optimal Recommendation and Collaborative Games

Shuang Hong Yang
College of Computing,
Georgia Tech
Atlanta, GA 30318
shy@gatech.edu

ABSTRACT

Recommender systems have emerged as a new weapon to help online firms to realize many of their strategic goals (e.g., to improve sales, revenue, customer experience etc.). However, many existing techniques commonly approach these goals by seeking to recover preference (e.g., estimating ratings) in a matrix completion framework. This paper aims to bridge this significant gap between the clearly-defined strategic objectives and the not-so-well-justified proxy.

We show it is advantageous to think of a recommender system as an analogy to a monopoly economic market with the system as the sole seller, users as the buyers and items as the goods. This new perspective motivates a game-theoretic formulation for recommendation that enables us to identify the optimal recommendation policy by explicit optimizing certain strategic goals. In this paper, we revisit and extend our prior work, the Collaborative-Competitive Filtering preference model [32], towards a game-theoretic framework. The proposed framework consists of two components. First, a conditional preference model that characterizes how a user would respond to a recommendation action; Second, knowing in advance how the user would respond, how a recommender system should act (i.e., recommend) strategically to maximize its goals. We show how objectives such as click-through rate, sales revenue and consumption diversity can be optimized explicitly in this framework. Experiments are conducted on a commercial recommender system and demonstrate promising results.

Categories and Subject Descriptors
H.5.3 [Information Systems]: Web-based Interaction;
H.3.3 [Information Search and Retrieval]: Information filtering

General Terms
Algorithms, Performance

Keywords: Recommendation optimization, Collaborative games, Econometric model, Expected utility theory

1. INTRODUCTION

Recommender systems have become a core component for today’s online businesses. With the abilities of connecting merchant supply (i.e., items of various types such as retailing products, movies, articles, ads, experts, etc.) to market demands (i.e., potentially interested consumers), recommender systems are helping online firms (e.g., Amazon, Netflix, Yahoo!) to realize many of their hard-to-attain business goals (e.g., to boost sales, improve revenue, enhance customer experiences) [5, 6, 9, 30]. Compared to an offline market, online recommender system has the unbeatable convenience in control, intervention, monitoring and measurement of the market, and consequently the appealing opportunity to adjust its operational actions (i.e., recommendation policy) to optimize certain strategic objectives. Surprisingly, despite the fact that many of these goals are clearly defined, they are not optimized in today’s recommender systems in a well-justified way. Instead, research on recommendation has been focused almost exclusively on learning preference (e.g., estimating a user’s rating to a movie) in a matrix completion formulation [27, 22, 15, 8, 31]. It is rather unclear how preference learning, as a proxy, approximates these goals, or how a strategic intervention should be designed to achieve certain goals.

In this paper, we seek to bridge this significant gap. We show it is advantageous to look at the user-system interactions and think of a recommender system as an analogy to a monopoly economic market (i.e., system as the sole seller, users as buyers and items as goods) rather than user-item interactions as in the conventional matrix completion formulation. This new perspective motivates a novel game-theoretic formulation, upon which recommendation policy can be optimized strategically with respect to business objectives such as click-through rate, sales revenue and consumption diversity.

1.1 User-System Interactions

Recommender systems are commonly designed by analyzing the dyadic user-item interactions as can be recorded by a matrix, for example, users assigning ratings to movies. Research has thus been focused exclusively on estimating preference or equivalently completing the matrix of “who-like-what” [1, 27, 22, 31, 15, 8]. This matrix-completion formulation of recommendation has been extensively investigated and become especially popular thanks to the Netflix Prize Competition. Nonetheless, as we show in this paper, the formulation of recommendation as user-item interaction or matrix completion is inherently flawed — recommendation is not solely about what you know (i.e., knowledge about

1Hereafter, we will use interchangeably “system” and “seller”, “user” and “buyer”, “item” and “good”.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
1st submitted: Monday Feb. 6 2012; revised: Tuesday Jul. 31 2012.
the user), but more importantly about how you act (i.e., how to recommend items to serve the user or persuade the user to consume). Instead, it is advantageous to think of recommendation as an interaction between the system and the users and formulate it as an interdependent decision-making process (aka games) [16].

In a typical interaction, the system acts by providing a set of personalized recommendations, and user reacts by making choices, i.e., by choosing to consume some of the recommended items (e.g., click a link, rent a movie, view a News article, purchase a product). This process in many aspects resembles what happens in a monopoly market where the recommender system, as the sole seller, has absolute market power to manipulate the market, yet the utility it receives depends on the reaction of the buyers (i.e., users), e.g., the success of an advertising system is directly related to how users react (i.e., whether they click the ads or not). Clearly, the action of the seller and the reaction of the buyer are interdependent—the two players (i.e., seller and buyer) each has its own objective (i.e., utility) to achieve, yet how and to what extent they can achieve their own objectives depends also on the decision of the other player. Conventional matrix completion formulation for recommendation is inherently flawed as it is incapable to capture such interdependent decision making interactions. As a result, although many business objectives in e-commerce are clearly defined, how a recommender can be designed to optimize these goals hasn’t yet been explored.

1.2 Recommendation as Collaborative Games

In this paper, we present a game-theoretic formulation for recommendation, where the user-system interactions are modeled as a collection of coupled games with each game played between the seller and one buyer (i.e., between the system and one user). For the sake of statistical inference, it is nonetheless important not to model these games as mutually independent. We therefore bring forward the notion of “collaborative games” that similar games are expected to yield similar outcomes, which enables us to pool the sparse data across games to obtain reliable statistical estimation.

We extend our prior work on “Collaborative-Competitive Filtering” (CCF) preference model [32] towards a game-theoretic framework. The framework consists of two components: (1) a conditional model \(p_u(R|A) \) that characterizes the reaction \(R \) of a buyer \(u \) in the context of any given action \(A \) of the seller; this model enables us to predict in advance what the outcome of a game would be (e.g., how the buyer would respond); and (2) given \(p_u(R|A) \) for every buyer \(u \), a formulation for optimizing the seller’s action policy \(A \) w.r.t. a predefined payoff (e.g., a strategic goal).

To effectively model \(p_u(R|A) \), we revisit and extend the CCF preference model [32] that integrates latent factor models in collaborative filtering with choice models in econometrics. By using latent factor based utility parametrization, the model encodes the “collaboration effects” among games [17, 24] to advocate the notion of “collaborative games”. As the policy spaces are prohibitively large yet the observations are extremely sparse, this formulation is essential for reliable statistical inference because it enables the sparse data to be pooled across games. It also remarkably reduces the parametric complexity of \(p_u(R|A) \) significantly from a prohibitive high-order polynomial scale down to a linear scale.

The knowledge about users’ reaction behavior, as characterized by \(p_u(R|A) \), enables us to predict “future” (i.e., user’s reaction) with uncertainty and further to optimize the action (i.e., the recommendation policy) of the recommender system strategically [16]. For any input action \(A \), the possible outcomes of the games occur with probabilities defined upon \(p_u(R|A) \). Given a payoff (i.e., a function of the outcome) that is von Neumann-Morgenstern rational, the expected utility theory asserts that the best action is the one that maximizes the expected payoff [24]. We show how business objectives such as click-through rate, sales revenue and consumption diversity can be formulated explicitly as expected utilities and used in turn to optimize a recommender system’s action policy.

We also show that the CCF model is sequentially rational and thus approximates the perfect Nash equilibrium [16]. Experiments on a real-world commercial system demonstrate that the proposed CCF model not only outperforms CF models in both offline and online tests but is also highly effective in achieving satisfactory strategic goals.

Outline: The rest of the paper is structured as follows. We first briefly review the current matrix completion formulation and collaborative filtering in Section 2. We then present our new game-theoretic formulation in Section 3 and the CCF model in Section 4. Experiments are presented in Section 5 followed by summary and conclusion in Section 6.

2. USER-ITEM INTERACTIONS AND COLLABORATIVE FILTERING

Many existing approaches generally think of recommendation as user-item interactions and therefore aim to recover/estimate the preference of each individual user to the items. Given a set of \(N \) users

\[u \in \mathcal{U} := \{1, 2, \ldots, N\} \]

and a set of \(M \) items

\[i \in \mathcal{I} := \{1, 2, \ldots, M\}, \]

this is naturally formulated as a matrix completion problem, where we are given observations of dyadic responses \(\{(u, i, y_{ui})\} \) with each \(y_{ui} \) being an observed response indicating user’s preference (e.g., user’s rating to an item, or indication of whether user \(u \) likes item \(i \)), the goal is to complete the whole mapping:

\[(u, i) \rightarrow y_{ui} \quad \text{where} \quad u \in \mathcal{U}, i \in \mathcal{I} \]

which constitutes a large matrix \(Y \in \mathcal{Y}^{\mathcal{U} \times \mathcal{I}} \). Assume each item can be consumed multiple times, recommendations are usually done by a simple preference-based ranking according to \(Y \), i.e., recommending the items with highest \(y_{ui} \), scores to user \(u \). This formulation include both of the two major categories of approaches to recommendation, i.e., content-based filtering [4, 5] and collaborative filtering [24, 22, 11, 15], among which we briefly review the latter.

It is worth noting that the observed responses are often extremely sparse in realistic systems, i.e., while we might have millions of users and items, only a tiny proportion (considerably less than 1%) of the entries of the matrix \(Y \) are observable. This “data sparseness” issue has been widely recognized as one of the key challenges of recommender system [22, 11, 15]. To this end, collaborative filtering (CF) explores the notion of “collaboration effects”, i.e., similar users
have similar preferences to similar items. By encoding collaboration, CF pools the sparse observations in such a way that for predicting \(\hat{y}(u, i) \) it also borrows observations from other (similar) users/items. Generally speaking, existing CF methods fall into either of the following two categories.

Neighborhood models. A popular class of approaches to CF is based on propagating the observations of responses among items or users that are considered as neighbors. The model first defines a similarity measure between items/users. Then, an unseen response between user \(u \) and item \(i \) is approximated based on the responses of neighboring users or items \([27,22,15,31,17]\). However, as we discussed, this formulation is inherently flawed; instead, it is advantageous to model the neighboring responses with similarities as weights.

Latent factor models. This class of methods learns predictive latent factors to estimate the missing dyadic responses. The basic idea is to associate latent factors \(\phi_u \in \mathbb{R}^k \) for each user \(u \) and \(\psi_i \in \mathbb{R}^k \) for each item \(i \), and assume a multiplicative model for the dyadic response,

\[
p(y_{ui}|u, i) = p(y_{ui}|\phi_u, \psi_i; \Theta),
\]

where \(\Theta \) denotes the set of hyper-parameters. This way the factors could explain past responses and in turn make prediction for future ones. This model implicitly encodes the Aldous-Hoover theorem \([13]\) for exchangeable matrices – \(\phi_u \) and \(\psi_i \) are independent of each other given \(\phi_u \) and \(\psi_i \). In essence, it amounts to a low-rank approximation of the matrix \(Y \) that naturally embeds both users and items into a vector space in which the inner-products directly reflect the semantic relatedness.

To design a concrete model \([2,15,23,28]\), one needs to specify a distribution for the dependence. Afterwards, the model boils down to an optimization problem. For example two commonly-used formulations are:

- \(\ell_2 \) **regression** The most popular learning formulation is to minimize the \(\ell_2 \) loss within an empirical risk minimization framework \([15]\):

\[
\min_{\phi \in \mathbb{R}^k, \psi \in \mathbb{R}^k} \sum_{i \in I} \sum_{u \in U} (y_{ui} - \phi_u \psi_i)^2 + \lambda_u \sum_{i \in I} ||\phi_u||^2 + \lambda \sum_{i \in I} ||\psi_i||^2,
\]

where \(O \) denotes the set of \((u, i)\) dyads for which the responses \(y_{ui} \) are observed, \(\lambda_u \) and \(\lambda \) are regularization parameters.

- **Logistic** Another popular formulation \([23,1]\) is to use logistic regression by optimizing the cross-entropy:

\[
\min_{\phi \in \mathbb{R}^k, \psi \in \mathbb{R}^k} \sum_{(u, i) \in O} \log \left[1 + \exp(-\phi_u \psi_i) \right] + \lambda_u \sum_{i \in I} ||\phi_u||^2 + \lambda \sum_{i \in I} ||\psi_i||^2
\]

3. USER-SYSTEM INTERACTION AS COLLABORATIVE GAMES

Based on the perspective of **user-item interactions**, the matrix completion formulation for recommendation has led to numerous algorithms which excel at a number of data sets, including the prize-winning work of \([15]\) and many other successful collaborative filtering algorithms \([27,22,26,15,31,17]\). However, as we discussed, this formulation is inherently flawed; instead, it is advantageous to model the user-system interactions so as to capture the interdependent decision-making process between the system and the users. This motivates a novel game-theoretic formulation for recommendation and opens up a promising direction that enables us to optimize recommendation policy strategically in respect of important business objectives, which cannot be achieved otherwise with the conventional matrix completion formulation.

Consider a typical scenario of user-system interaction in a recommender system: we have \(N \) users \(u \in U := \{1, 2, \ldots, N\} \) and \(M \) items \(i \in I := \{1, 2, \ldots, M\} \); when a user \(u \) visits the site, the system recommends a set of items \(A = \{i_1, i_2, \ldots, i_l\} \) and \(u \) in turn chooses a (possibly empty) subset \(R \subseteq A \) for consumption (e.g., buys some of the recommended products). From now on, we refer to \(A \) as **action**, and \(R \) as **reaction**. For simplicity, we assume each action is fixed-size with a given length, \(|A| = l \), and that each reaction is either empty or contains exactly one choice, \(|R| = 1 \) or \(0 \). Therefore, we have \(A \in A = \mathcal{I}^l \) and \(R \in \mathcal{R} \subseteq \mathcal{I} = \mathcal{I} \cup \{\emptyset\} \). Table 1 shows an example trace of such interactions.

The behavior of the recommender system and that of the users are interdependent. On the one hand, since people make different decisions when facing different contexts, a user’s decision \(R \) depends crucially on the action of the system, \(A \), (i.e., what was provided to him). For instance, an item \(i \) would not have been chosen by \(u \) if it were not presented to him at the first place; likewise, user \(u \) could choose another item if the context \(A \) changes such that a better item was recommended to him. On the other hand, how a recommender system acts also depend on user’s behavior (i.e., response), because the success of recommendation (i.e., in terms of click-through, revenue, etc.) is defined directly on how users react to it (e.g., purchase a product, click an ad, rent a movie). It is therefore nature to formulate recommendation based on game theory, as analogy to a monopoly market where the recommender as the sole seller, a user as a buyer and the items as the goods.

Formally, the user-system interactions in a recommender system can be formulated as a set of \(N \) non-cooperative games \(G = \{G_n = (P_n, Z_n, U_n)\}, n = 1, 2, \ldots, N\). For each game \(G_n \), the player set \(P_n = \{S, u_n\} \) consists of two players, i.e., the system (i.e., seller) \(S \) and a user (i.e., buyer) \(u_n \); the policy space \(Z_n = A \times R \subseteq \mathcal{I}^l \times \mathcal{I} \) is the set of all possible action-reaction pairs \(Z_n = (A_n, R_n) \), where \(Z \) is called an outcome and \(X \) the outcome space; and the utility (i.e., payoff) function \(U_n = (U_n(Z_n), U_n(U_n)) \) consists of the system’s payoff \(U_S \) and the user’s payoff \(U_u \). At an interaction \(t \), a user \(u \) visits the system and the game \(G_u \) is played with outcome \(Z_t = (A_t, R_t) \) and utility output \(U(A_t, R_t) \). Since the users’ behavior is not in our control, our goal in designing a recommender system is to generate a system action (recommendations) \(A_t \) for an incoming visit

User	System Action	User Reaction
\(u_1 \)	\{1, 2, 3, 4, 5\}	\{2\}
\(u_2 \)	\{1, 3, 4, 5\}	\{6\}
\(u_3 \)	\{2, 3, 4, 5\}	\{3\}
\(u_4 \)	\{1, 2, 3, 4, 5\}	\{4\}
\(u_5 \)	\{1, 2, 3, 4, 5\}	\{6\}
\(u_6 \)	\{1, 2, 4, 5\}	\{6\}

Table 1: An example trace of user-system interactions in recommendation.
of user u_i so as to maximize the system’s payoff $U_u(Z_i)$. It is important to emphasize that the games in G should not be modeled as independent games. Particularly, since the outcome space can be very large, yet observations are typically sparse, it is practically important to still be able to leverage the collaboration effect such that similar games are expected to yield similar outcomes. This way it enables us to pool the sparse evidences across different but similar games and in turn obtain reliable statistical inference. For this reason, we term the formulation “collaborative games” with a slight abuse of terminology.

This game-theoretic formulation provides a novel perspective for recommendation. Particularly, since the strategies of the buyer and the seller are interdependent, to optimize the seller’s action, we have to (1) for each candidate action A, predict the buyer’s reaction R in advance; and then (2) find the best action A by maximizing the achievable payoff $U_i(A, R)$.

4. COLLABORATIVE COMPETITIVE FILTERING

Our recent work [32] established the first principled model for learning preference from user-system interactions in recommendation system. Unlike conventional preference learning models which are trained on the who-like-what matrix, our CCF preference model is trained on user-system interactions where the system action is used as a context in which a user’s reaction (e.g., “like”) R is made; in other word, CCF model doesn’t only capture who-like-what, but it also considers what are the options available to the user when the “like” decision is made. As demonstrated in our experiments [32] and many other successful applications (e.g., online test on Yahoo! and Netflix), the CCF preference model significantly improves recommendation performance on a variety of data sets. However, like many existing recommendation algorithms, our prior CCF model is still within the conventional matrix completion framework. To be precise, all these models only care about, and are only capable to model, the behavior of the user (i.e., what a user likes). These techniques are lacking as they largely ignore the interdependent or game-theoretic nature of the user-system interactions in recommendation, and consequently, none of them is able to optimize the recommendation policy explicitly in respect of a prescribed objective (although many strategic objectives for a recommender system are clearly defined).

In this paper, we extend our prior work and present a game-theoretic framework for recommendation. We would like to keep the name “Collaborative-Competitive Filtering” or CCF since the preference model we established in our prior work is revised and used as one essential component of this framework. The CCF framework consists of two components: (1) a model $P_u(R|A)$ that predicts in advance (with uncertainty) a buyer’s reaction R to a given action A; and (2) a formulation for finding the best action strategy (i.e., recommendation policy) for the seller.

4.1 Conditional User Reaction Modeling

The first part of the framework is to predict a buyer’s choice R in the context of any given action A of the seller’s. In a decision environment with imperfect information, this means to quantify the conditional distribution $p_u(R|A)$. The full parametrized version of this distribution requires $O(NM^{i+1})$ free parameters, statistical estimation of which is practically prohibitive since the observations are typically available only at a scale far less than $O(NM)$ (e.g., in matrix completion, usually less than 1% entries are observed). In this section, we revisit and extend our CCF preference model [32] by presenting a conditional reaction model with complexity $O(N + M)$.

4.1.1 Behavioral Axioms of Choice Process

We first present an axiomatic view of the choice process. We assume a good (i.e., item) i has a potential utility r_{ui} to a buyer u. Moreover, we assume a buyer u is a rational decision maker: he knows that his choice of a good i will be at the expense of other available alternatives $i' \in A$, therefore he compares among all the alternatives before making his choice. In other words, for each decision, u considers both revenue and opportunity cost, and decides which good to buy based on the potential profit of each good in A. Specifically, the opportunity cost c_{ui} is the potential loss of u from buying a good i that excludes him to buy other alternatives: $c_{ui} = \max\{r_{ui'} : i' \in A \setminus \{\}\}$; the profit $\pi_{ui} = r_{ui} - c_{ui}$ is the net gain of an decision. Based on the rational decision theory [15], we have the following axiom about the buyer’s choice reaction.

Axiom 1 [Local Optimality of Choice]: A rational decision is a decision maximizing the profit: $i^* = \arg \max_{i \in A} \pi_{ui}$.

This axiom implies a local competitive effect: the buyer u turns to choose the good that is locally the best in the context of the available alternatives in A. Unfortunately, the axiom restricts the utility function only up to an arbitrary order-preserving transformation (e.g. a monotonically increasing function), and hence cannot yield a unique solution [19]. Another issue is that it is deterministic, less useful since we don’t have perfect information about how users react. To this end, we draw a stochastic counterpart of this axiom from the random utility theory [13, 21].

Axiom 2 [Independence of Irrelevant Alternatives]: For any given context set A, the relative odds of a user u’s selecting an item $i \in A$ over another item $j \in A$ should be independent of the presence or absence of any irrelevant items, i.e.,

$$\frac{p_u(i|\{i, j\})}{p_u(j|\{i, j\})} = \frac{p_u(i|A)}{p_u(j|A)}$$

(1)

Note that this axiom brings the parametric complexity of $p_u(R|A)$ significantly down from $O(NM^{i+1})$ to $O(NM^2)$.

4.1.2 User Utility Parametrization

In the spirit of the random utility theory [13, 21], we decompose the buyer’s utility function into two parts, i.e., $U_u(i) = r_{ui} + c_{ui}$, where: (1) r_{ui} is a deterministic component characterizing the intrinsic interest of the buyer u to the good i; (2) the second part c_{ui} is a stochastic unobserved error term reflecting the uncertainty, richness and complexity of the choice process. Under very mild conditions, it has been shown that the error terms c_{ui} are independently and identically distributed with the Weibull (extreme point) distribution [11]:

$$P(c_{ui} \leqslant \epsilon) = e^{-e^{-\epsilon}}.$$

(2)

Furthermore, to encode the collaborative effect such that the observed evidences could be pooled across similar games, we
parametrize the deterministic utilities, \(r_{ui} \), with the multiplicative latent factor model \([15, 1]\):

\[
 r_{ui} = \phi_u \psi_i
\]

where \(\phi_u \in \mathbb{R}^k \) and \(\psi_i \in \mathbb{R}^k \) are low-rank latent profiles for user \(u \) and item \(i \) respectively, just as in the collaborative filtering models we described in Section 2.

4.1.3 The Multinomial Logit Factor Model

The behavioral axiom and the low-rank parametrization together lead to the following theorem.

Theorem 1: Suppose the utility function \(U_u(i) = r_{ui} + \epsilon_{ui} \), where \(\epsilon \) are i.i.d. Weibull variables, then the distribution of selecting one item that satisfies Axiom 2 is given by \(p_u(i|A) = \epsilon_i^{|A|} / \sum_{j \in A} \epsilon_j^{|A|} \) for any \(i \in A \).

Proof. c.f. [21].

The above model is well-known as the **multinomial logit model**, which has been extensively used for modeling conventional offline consumer choice behavior (e.g., choice of occupation, brand, housing) in econometrics [21, 19], sociometrics [15] and marketing science [10, 12]. We adapt it for modeling online game-theoretic interactions in recommender systems. In contrast to the traditional choice models, where the deterministic part of the utility \(r_{ui} \) is a linear mapping \(w^\top x_{ui} \) of observed features \(x_{ui} \) (i.e., measured user and item features), here we employ the multiplicative latent factor parametrization. The formulation proposed here seamlessly integrate two distinct methodologies—choice models in econometrics and factorization models in collaborative filtering. This integration is significant because it enables us to model the seller-buyer games collaboratively, rather than independently as in conventional choice models. That is, it enables us to pool data across games such that the interactions engaging similar users, similar actions and similar reactions are dealt with in a similar way.

Moreover, in conventional choice models, it is assumed that in each interaction \(t \), the buyer will take at least one item \(i^* \in A_t \). This assumption is, however, not true in our case since user’s visit to a recommender system does not always yields a response. For example, users frequently visit online e-commerce website without making any purchase, or browse a news portal without clicking on any ad. Actually, such nonresponded visits may account for a vast majority of the traffic that an recommender system receives. More interestingly, different users may have different propensities for giving a response. It is important to reflect this in the model as well. To this end, we add a scalar latent factor, \(\theta_u \), for each user \(u \) to capture the response propensity of the buyer \(u \). At an interaction \(t \), we assume buyer \(u_t \) makes an effective purchase only if he feels that the overall quality of the offered goods \(A_t \) are good enough. In other words, there is a certain reserve utility that needs to be exceeded for a user to respond. In keeping with the multinomial logit model and the latent factor parametrization, we have the following model

\[
p_u(R = i|A) = \frac{\exp(\phi_u \psi_i)}{\exp(\theta_u) + \sum_{j \in A} \exp(\phi_u \psi_j)}, \forall i \in A; \tag{4}
\]

\[
p_u(R = \emptyset|A) = \frac{\exp(\theta_u)}{\exp(\theta_u) + \sum_{j \in A} \exp(\phi_u \psi_j)} \quad \text{otherwise (5)}
\]

which we refer to as **multinomial logit factor or MLF model**.

Note that this new formulation reduces the parametric complexity of \(p_u(R|A) \) significantly to linear scale, i.e., \(O(k(N + M) + N) \approx O(N + M) \), where \(k \) is the dimensionality of the latent factor \(\phi \in \mathbb{R}^k \) and \(\psi \in \mathbb{R}^k \), which is generally a small number (usually up to a few hundreds).

4.1.4 Position Bias

An important factor that was overlooked by the MLF model yet is important in practice is the **position bias**. In particular, the choice of a buyer depends not only on the utilities of the available alternatives but also on how they are placed (i.e., the positions), e.g., users usually pay attentions only to a few top-ranked goods and totally disregard the others. Such position bias is evident in many online decision making scenarios, e.g., Web search, recommendation, advertising. We extend the MLF model by adding a set of position-specific latent factors \(\{\beta_p\}, p = 1, \ldots, l \) via:

\[
p_u(R = i|A) = \frac{\exp(\phi_u \psi_i, \beta_{p(i)})}{\exp(\theta_u) + \sum_{j \in A} \exp(\phi_u \psi_j, \beta_{p(j)})}, \quad (6)
\]

where \(p(i) \) denotes the position of item \(i \), \(\phi \circ \psi \circ \beta = \sum_{p=1}^l \phi \circ \psi \circ \beta_p \) is a three-way inner product, \(\circ \) denotes Hadamard (aka element-wise) product.

4.1.5 Conditional Maximum Likelihood Estimation

Given a collection of training interactions \(\{(u_t, A_t, R_t)\} \), the latent factors, \(\phi \) and \(\psi \), can be estimated using penalized conditional maximum likelihood estimation via

\[
\min_{\phi, \psi, \beta} : \sum_t \{ \log \{ \exp(\theta) + \sum_{j \in A_t} \exp(\phi \circ \psi \circ \beta_j) \} - (1 - \delta_{R_t, 0}) \langle \phi \circ \psi \circ \beta_p \rangle \}
\]

\[
- \delta_{R_t, 0} \| \theta_u \|^2 + \lambda u \sum_{u \in U} \| \phi_u \|^2 + \lambda \xi \sum_{i \in I} \| \psi_i \|^2 + \lambda p \sum_{p=1}^l \| \beta_p \|^2.
\]

where \(\delta_{R_t, 0} = 1 \) if \(R_t = 0 \), or 0 otherwise.

4.1.6 Distributed Stochastic Optimization

Due to the use of bilinear multiplications, although the conditional likelihood is convex w.r.t. \(r_{ui} \) as each of the objective terms is strongly concave, it is nonetheless nonconvex w.r.t. the latent factors \(\phi \) and \(\psi \). Moreover since the interactions evolve over time, it is desirable to have algorithms that are sufficiently efficient and preferably capable to update dynamically so as to reflect upcoming data streams, therefore excluding offline learning algorithms such as classical SVD-based factorization algorithms [15] or spectral eigenvalue decomposition methods [17]. Here, we use a distributed stochastic gradient variant based on the Hadoop MapReduce framework. The infrastructure is analogous to what was proposed in [33].

The basic module is a stochastic gradient descent algorithm, which loops over all the observations and updates the parameters by moving in the direction defined by negative gradient. For example, for a given response session \((u, A, i^*) \), we can carry out the following to update the latent factors on each machine separately:

- For \(u \) do:

\[
\phi_u \leftarrow \phi_u - \eta \sum_{i \in A} \ell'(u, i) \times \psi_i \circ \beta_{p_i} \quad \text{or MLF model}.
\]
For each \(i \in A\) do:
\[
\psi_i \leftarrow \psi_i - \eta \left[\psi'(u, i) - \left(\phi_u \circ \beta_p + \lambda \beta \right) \right].
\]
For each \(p \in \{1, \ldots, l\}\) do:
\[
\beta_p \leftarrow \beta_p - \eta \left[\psi'(u, i_p) - \psi_i - \left(\phi_u \circ \beta_p + \lambda \beta \right) \right].
\]
where \(\eta\) is the learning rate. The gradient is given by:
\[
\psi'(u, i) = \frac{exp(\phi_u \circ \beta_p)}{\sum_{j \in A} exp(\phi_u \circ \beta_p)} - \delta_{u,i}.
\]

4.2 Strategic System Action Optimization

The distribution \(p_u(R | A)\) characterizes (in probability) how a buyer would react to a given action. Knowing this enables us to optimize the seller’s action strategy (i.e., recommendation policy) by maximizing its utility (payoff) \(U_S\).

In this section, we show that this can be formulated based on von Neumann-Morgenstern’s expected utility theory. We then specify the formulation in terms of three example payoff objectives, i.e., click-through rate, sales revenue and consumption diversity.

4.2.1 Expected Utility Maximization

Because of the uncertainty/risk inherent in the game, it is natural to formulate action optimization as decision making under uncertainty. Consider a given game \(G_u\) between the seller \(S\) and a specific buyer \(u\), the action space is the set of all possible combinations of \(l\) goods, \(A = \mathbb{T}^l\). An action \(A \in A\) yields an outcome \(Z = (A, R) \in Z = A \times R\) with probability distribution \(p(Z)\) (aka lottery), where the reaction space \(R = A \cup \{\emptyset\}\). Because our knowledge about the environment is imperfect, we would rather adopt a probabilistic action strategy such that actions for \(G_u\) are sampled according to a distribution \(p_u(A)\) (defined over the action space \(A\), any \(A \in A\) is taken with probability \(p_u(A)\)), then we have \(p_u(Z) = p_u(A)p_u(R | A)\), where we specify the dependence on the user with a subscript to emphasize the fact that the action is customized for each user.

A utility function \(U_S(Z)\) is a mapping \(U_S: Z \rightarrow \mathbb{R}\), which defines a preference relation \(\succ\) over the outcome space \(Z\) such that \(Z \succ Z'\) if and only if \(U_S(Z) \geq U_S(Z')\). Without loss of generality, we assume \(\succ\) is von Neumann-Morgenstern rational, i.e., it satisfies the four axioms: completeness, transitivity, independence and continuity. The von Neumann-Morgenstern (vNM) theorem defines the best outcome of a decision in an environment under uncertainty as follows [25].

Theorem 2 [Expected Utility]: Suppose \(\succ\) is a preference defined by an utility function \(U_S\) that satisfies the 4 axioms, for any two distributions (lotteries) \(p(Z)\) and \(q(Z)\), we have: \(p \succ q\) if and only if \(E_p(U_S) \geq E_q(U_S)\).

Proof. c.f. [25].

Based on the vNM theorem, the optimal action strategy \(p_u(A)\), given \(p_u(R | A)\), can be achieved by the following linear optimization:
\[
\max_{p_u(A) \in \mathcal{A}} \sum_{A \in A} p_u(A) \sum_{R \in \mathcal{R}} p_u(R | A) U_S(A, R) \tag{8}
\]
\[
s.t.: \sum_{A \in A} p_u(A) = 1, \text{ and } p_u(A) \geq 0.
\]

\(\eta\) is the learning rate. The gradient is given by:
\[
\psi'(u, i) = \frac{exp(\phi_u \circ \beta_p)}{\sum_{j \in A} exp(\phi_u \circ \beta_p)} - \delta_{u,i}.
\]

A simplex solution for the above is given simply by:
\[
p_u(A) = \delta_{A,A^*} \text{ where } A^* = \arg \max_A \sum_{R \in \mathcal{R}} p_u(R | A) U_S(A, R).
\]

In practice, it is usually favorable, (e.g., for risk-robustness reasons) to choose a less sparse distribution (i.e., a portfolio [20]) rather than the singular distribution as defined by a simplex solution, the discussion of which is, however, beyond the scope of this work.

4.2.2 Action Strategy Parametrization

Although the simplex solution looks simple, exhaustive search throughout the outcome space is still something practically prohibitive as there are \(O(NM^{l+1})\) extreme points. To this end, we propose to parametrize the action distribution in terms of a small set of parameters \(\Theta\), e.g., to assume action \(A\) is sampled from a parametric distribution \(p_u(A; \Theta)\). In this way, we can search \(A\) efficiently by optimizing \(\Theta\) instead. As a preliminary study, here we devise a simple parametrization by randomizing a utility-based ranking scheme with a scalar parameter \(\alpha\). Particularly, for any given user \(u\), assume the top-ranked \(l\) items (i.e., items with highest payoffs) are denoted \(\{i_1^*, \ldots, i_l^*\}\), we generate the action \(A\) as follows:
\[
\bullet \quad A = \emptyset.
\]
\[
\bullet \quad \text{For } j \text{ from } 1 \text{ to } l \text{ do:}
\]
\[
\begin{align*}
\text{ - With probability } (1 - \alpha) & \text{ add } i_j^* \text{ to } A \\
\text{ - With probability } \alpha & \text{ add an random item to } A
\end{align*}
\]

This way, action optimization in Eq(8) become a one-dimensional optimization, to which the solution can be obtained efficiently, e.g., via golden-section search.

A more flexible parametrization is to factorize \(p(A)\) sequentially \(p(A) = p(i_1)p(i_2 | i_1) \ldots p(i_l | i_1, i_2, \ldots, i_{l-1})\), with a few simplifications, we can search the action space by dynamic programming. We leave this for future research.

4.2.3 Strategic Payoff Specification

So far, our discussion of action optimization is in terms of an abstract payoff function \(U_S\). We now specify our formulation with three concrete strategic objectives.

Payoff #1: Click-Through Rate (CTR). Click-through rate or CTR is the ratio of responses (i.e., \(R_e \neq \emptyset\)) out of all the interactions. CTR is the most important measure of success for many real-world recommender systems because it crucially determines so many important factors ranging from traffic, revenue to user base. For example, it corresponds to the advertisement click rate in Google, the movie rental rate in Netflix, the order placement rate in Amazon, and the rate of friend connection in Facebook Friend-Finder. CTR can be formulated in the CCF framework as follows:
\[
\text{CTR} = \mathbb{E}_u [\mathbb{E}_A [p_u(R \neq \emptyset | A)]]
\]
\[
= \sum_{u \in U} f_u \sum_{A \in A} p_u(A) p_u(R \neq \emptyset | A) \tag{9}
\]
where \(f_u\) is a measure of user loyalty (e.g., user \(u\)’s visit frequency), \(p_u(R \neq \emptyset | A) = 1 - \frac{1}{\sum_{i \in A} \exp(\phi_u(i) \sum_{j \in A} \exp(\phi_u(j))})\).

Payoff #2: Sales Revenue (SR). Another important measure of success is sales revenue or SR, which is the revenue that a recommender system receives from the transactions (interactions) with the users. SR is a weighted version...
of CCF, i.e., each click is assigned a weight of importance. Based on CCF, SR can be formulated via:

\[
SR = \mathbb{E}_u[\mathbb{E}_i[c_ip_u(R = i|A)]] = \sum_{u \in U} \sum_{A \in A} f_u p_u(A) \sum_{i \in A} c_ip_u(R = i|A)
\]

where \(c_i\) denotes the price (weight) of an item \(i\).

Payoff #3: Consumption Diversity (CD). It is widely believed that recommender systems are the key contributor to market power and price discrimination in the industry from what used to be a highly concentrated “blockbuster” towards a highly diversified long-tail (niche) market. Recent research shows that this is, however, not entirely true — a recommender system, if designed improperly, could reinforce consumption concentrations. In order not to turn our society to a echo chamber, it is important to encourage consumption diversity, i.e., to ensure the consumptions of the whole population are not narrowly concentrated. Moreover, CD is also important to online firms to help them gain profit from long-tail market. CD can be formulated based on the CCF framework in terms of expected choice entropy:

\[
CD = \mathbb{E}_u[\mathbb{E}_i[H_u(R|A)]] = -\sum_{u \in U} \sum_{A \in A} p_u(A) \sum_{i \in A} p_u(R = i|A) \log p_u(R = i|A)
\]

where \(H_u(R|A) = \sum_{i \in A} p_u(R = i|A) \log p_u(R = i|A)\) is the entropy of user \(u\)'s choice in the context of \(A\). Note that consumption diversity is an aggregate measure (i.e., the diversity of the consumptions of the whole population), which is different from the traditional individual diversity (i.e., the dissimilarity of items recommended to an individual user).

4.3 Implications of CCF and Future Work

We finally remark that there are some interesting properties of the proposed CCF model. Firstly, since the games in user-system interactions are finite, there exists an equilibrium point (i.e., a stable strategy). As a matter of fact, since the reaction to a given action is rational and that the action given \(p_u(R|A)\) is vNM-rational, it can be shown that the CCF model approximates the perfect Nash equilibrium. From a practical point of view, it is, however, possible to optimize the recommender systems more aggressively beyond the market equilibrium. Particularly, the analogy of recommender system to a monopoly market provides a number of important perspectives, e.g., the reflection of price discrimination in recommender system — how recommender system can exploit its market power to transfer the consumer surplus. Another interesting topic is to explore the correlation and conflict of goods, and optimize action \(A\) as a bundle based on portfolio theory. We would rather leave these interesting discussions for future research.

5. EXPERIMENTS

We test the proposed CCF framework on a real-world commercial recommender system. Because CCF is comprised of two components, it is necessary to test each of them separately — otherwise, it would be difficult to tell if a change of performance is due to one component or the other or both. Our experiments therefore consist of two test-beds. Firstly, we compare the proposed conditional reaction model (i.e., the Multinomial logit factor model) in our CCF framework (referred to as CCF II) with the plain CCF preference model proposed in our prior work [32] (referred to as CCF I) as well as state-of-the-art CF baselines in terms of their abilities in preference estimation; to maintain a fair comparison, recommendations are done without action optimization for CCF II, i.e., via simple utility-based ranking. This comparison gives us an idea on how effective our MLF model for \(p_u(R|A)\) is compared with state-of-the-art CF models. Furthermore, we compare the CCF framework (i.e., MLF + Action optimization) and the conventional recommendation scheme (i.e., CF + utility-based ranking). This comparison further demonstrates how the game-theoretic formulation, particularly how action optimization, further enhance the recommendation performance.

5.1 Data

We collected a large-scale set of user-system interaction traces from a commercial News article recommender system. In each interaction, the system offers four personalized articles to the visiting user, and the user chooses one of them by clicking to read that article. The recommendations are dynamically changing over time even during the user’s visit. The system regularly logs every click event of every user visit. It also records the articles being presented to users at a series of discrete time points. To obtain the action set for each user-system interaction, we therefore trace back to the closest recording time point right before the user-click, and we use the articles presented at that time point as the action set for the current session. We collected such interaction traces from logged records of over one month. We use a random subset containing 3.6 million users, 2500 items and over 110 million interaction traces. Learning an effective recommender on this data set is particularly challenging as the article pool is dynamically refreshing, and each article only has a lifetime of several hours — it only appears once within a particular day, is then pulled out from the pool afterward and never appears again.

5.2 CCF Without Action Optimization

We first evaluate CCF without action optimization (CCF II) with comparison to the plain CCF preference model (i.e., CCF I) and the two CF models described in Section where recommendations are made by utility-based ranking. We consider the following two evaluation settings, one offline and the other online.

Offline evaluation We evaluate the learned recommender models in terms of the top-k ranking performance on a hold-out test subset. We use three standard information retrieval measures as evaluation metrics, i.e., average-precision at position \(n\) (AP@n), average-recall at \(n\) (AR@n) and normalized-discounted-cumulative-gain at \(n\) (nDCG@n), where \(n = 4\), the default recommendation size used in the news recommender system.

Online evaluation We further conduct an online test. In particular, for each incoming interaction, we use the
trained models to predict user choice reaction, i.e., which item among the four recommended ones will be taken by the user. This prediction directly assesses the accuracy of the MLF model in user reaction modeling.

Offline test results. In this setting, we train each model on progressive proportions of 30%, 50% and 70% randomly-sampled training data respectively, and evaluate each trained model in terms of offline top-k ranking performance. The results are reported in Table 2. Since the data set is fairly large, we compared the average performance of each compared model by assessing their predictions of user reaction. In particular, for each of the incoming responded visits \((u_t, A_t, \tilde{t}_t)\), we ask the question: “among all the recommended items \(i \in A_t\), which one will most likely be clicked?” We use the trained model to rank the items in \(A_t\) and compare the top-ranked item with the actual choice of the user (i.e., \(\tilde{t}_t\)). We evaluate the results in terms of the prediction accuracy. The results are given in Table 3. Because the size of each offer set in the current data set is 4, a random predictor yields 0.25. As can be seen from the table, while both the two CF models and the two CCF models obtain significantly better predictions than the random predictor, the two CCF models further dramatically outperform the two CF baselines, with CCF II performs consistently the best. In particular, CCF II improves the reaction prediction accuracy: compared with the least square CF by 13.7%, with the logistic CF by 12.7% and with CCF I by 1.6%. According to a t-test with significance level 0.01, all the improvements are statistically significant.

Impact of position bias. We observe significant position bias in the News recommender system. As shown in Figure 1 (top), the left-most and right-most positions (i.e., position 1 and 4) receive significantly higher click rate than the two middle ones (i.e., position 2 and 3). In the bottom figure, we show the recommendation performance of the CCF (i.e., MLF) model before and after incorporating bias factors (i.e., \(\beta\) in Eq (6)). We can see from this figure that the performance improvements from CCF I to CCF II can be attributed mostly to the position bias factor. Further experiments confirm that the propensity factor only contributes a marginal improvement in nDCG.

Impact of parameters. The performance of the MLF model is affected by the parameter settings of the latent dimensionality, \(k\), as well as the regularization weights, \(\lambda_2\) and

Table 2: Offline test: comparison of top-k ranking performance.

Model	30% Training	50% Training	70% Training
CF-ℓ_2	0.245	0.261	0.255
CF-Logistic	0.246	0.263	0.257
CCF I	0.262	0.278	0.274
CCF II	0.267	0.279	0.278

Table 3: Online test: comparison of conditional reaction prediction accuracy.

Model	30%train	50%train	70%train
Random	0.250		
CF-ℓ_2	0.337	0.343	0.347
CF-Logistic	0.341	0.345	0.347
CCF I	0.377	0.385	0.391
CCF II	0.383	0.387	0.392

Figure 1: Top: Position bias in user choice reaction; Bottom: Comparison of recommendation performance before and after modeling position bias.
where we use the same value for both \(\lambda \) (top) and regularization weight \(k \) (bottom).

Here we only reported the results with nDCG@4 measure because the results show similar tendency when other measures (including the reaction accuracy) are used. As can be seen from the Figure, the nDCG curves are typically in the inverted U-shape with the optimal values achieved at the middle. In particular, for the MLF model, the dimensionality around 50–100 and regularization weight around 0.0001 yield the best performance, which is also the default parameter setting we used in obtaining the results reported in the current paper.

5.3 CCF With Action Optimization

We move on to evaluate the entire CCF framework (i.e., MLF + action optimization) to assess its ability to achieve the three strategic goals.

Evaluation metrics. We test a recommendation model by applying it on top of the algorithm in production and comparing the results with the production baseline. To assess performance, we report the relative surplus. In particular, let \(m \) denote one of the three measures (i.e., click-through rate, sales revenue and consumption diversity), a relative surplus score is defined by:

\[
\text{relative surplus} = \frac{m(\text{model}) - m(\text{production})}{m(\text{production})}
\]

Evaluation protocol. To illustrate how effective action optimization could be, we compare CCF with action optimization (CCF+AO), to CCF without action optimization (CCF-AO) as well as the conventional recommendation scheme (collaborative filtering with utility-based ranking or CF+RK). For each model, we simulate its relative surplus score by applying the model to the production output. In particular, we take the top 50K users who visit our website most frequently as test probes and trace them for one month.

For each of these user \(u \) and each of the dates \(d \), we maintain a positive set \(P_{u,d} \) and a negative set \(N_{u,d} \) by including all the articles that user \(u \) reads on date \(d \) into \(P_{u,d} \) and any other items in the content pool of date \(d \) into \(N_{u,d} \). We assume user \(u \) turns to take items only from \(P_{u,d} \) and ignores those in \(N_{u,d} \) on date \(d \). Specifically, the reaction of user \(u \) on date \(d \) to any action \(A \) is assumed as follows: for any item \(i \in A \), if \(A \cap P_{u,d} \neq \emptyset \) and \(i \in A \cap P_{u,d} \), \(u \) takes \(i \) with probability \(\frac{1}{|A \cap N_{u,d}|} \) or otherwise ignores it; a nonresponded session occurs when \(P_{u,d} = \emptyset \). To compute sales revenue, we randomly assign to each item a positive number as “price”, which is predefined and never changed throughout the evaluation. Moreover, maximizing consumption diversity alone leads to meaningless random recommendations; to this end, we impose a hard constraint to ensure that the decreases in CTR is no more than 0.5%.

Results and analysis. The aggregate results on the 50K probe users are depicted in Figure 3. Applying a traditional recommendation scheme (CF + preference based ranking) on top of the production baseline only yields marginal improvements in CTR and SR. In contrast, CCF gains up to 4.5% and 3.9% surplus in CTR and SR respectively; and action optimization further significantly enhances these numbers. Interestingly, in terms of consumption diversity, our experiment confirms the findings of [9]. For example, applying CF and CCF-AO directly without consideration of CD inevitably leads to consumption concentration, as shown by the negative surplus scores in Figure 3. In contrast, CCF + AO is the only one among the three models that yields positive surplus in CD. In particular, with less than 0.5% reduction of CTR, it gains up to 3.2% improvement of diversity. These observations are somewhat surprising considering that the preliminary action parametrization we used in the experiment is a bit overly-simplistic — it merely contains one single parameter \(\alpha \) for simple randomization (c.f. Section 4.2.2). In future work, we plan to explore more flexible forms of action parametrization such as the sequential factorization model mentioned in [12,22] we expect to have even more promising results.

6. SUMMARY

We presented a novel game-theoretic framework for recommendation by viewing the user-system interactions at recommender system as buyer-seller interactions in a monopoly.
economic market. Since the decisions of the user and the buyer are interdependent, this new perspective motivates us to optimize the action strategy of the system by first predicting users’ reaction and then adapting its action to maximize the expected payoff. The extended CCF framework consists two essential components: (1) a model for $p_u(R|A)$ that integrates choice models in econometrics and latent factor model in collaborative filtering to encode the notion of collaborative games; and (2) a formulation for optimizing system action A in terms of expected strategic payoffs such as click-through rate, sales revenue and consumption diversity. Experiments on a real-world commercial recommender system have demonstrated the effectiveness and appealing promise of the proposed framework.

7. REFERENCES

[1] D. Agarwal and B.-C. Chen. Regression-based latent factor models. In *ACM SIG KDD*, pages 19–28, 2009.

[2] E. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing. Mixed membership stochastic blockmodels. In *NIPS 20*, pages 33–40, 2008.

[3] Y. Bakos and E. Brynjolfsson. Bundling and competition on the internet. *Marketing Science*, 19(1):63–82, 2000.

[4] M. Balabanović and Y. Shoham. Fab: content-based, collaborative recommendation. *Communications of the ACM*, Vol. 40, No. 3, pages 66–72, 1997.

[5] E. Brynjolfsson, Y. J. Hu, and M. D. Smith. Consumer surplus in the digital economy: Estimating the value of increased product variety at online booksellers. *Management Science*, 49(11):1580–1596, 2003.

[6] E. Brynjolfsson, Y. J. Hu, and D. Simester. Goodbye Pareto principle, hello long tail: the effect of search costs on the concentration of product sales, *Management Science*, Jan 2011.

[7] D. E. Byrne. *The attraction paradigm*. Academic Press, 1971.

[8] Y. Chen, D. Pavlov, and J. F. Canny. Large-scale behavioral targeting. In *ACM SIG KDD*, pages 209–218, 2009.

[9] D. M. Fleder and K. Hosanagar. Recommender systems and their impact on sales diversity. In *EC’07: Proceedings of the 8th ACM conference on Electronic commerce*, pages 192–199, 2007.

[10] D. H. Gensch and W. W. Recker. The multinomial, multiattribute logit choice model. *Journal of Marketing Research* Vol. 16, No. 1, pp. 124–132. Feb. 1979.

[11] E. J. Gumbel. Statistical theory of extreme values and some practical applications. *Applied Mathematics Series*, Vol. 33, National Bureau of Standards. 1954

[12] P. M. Guadagni and J. D. Little. A logit model of brand choice calibrated on scanner data. *Marketing Science*, 2(3):203–238, 1983.

[13] O. Kallenberg. *Probabilistic symmetries and invariance principles*. Springer, 2005.

[14] Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In *ACM SIG KDD*, pages 426–434, 2008.

[15] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. *Computer*, 42(8):30–37, 2009.

[16] K. Leyton-Brown and Y. Shoham. Essentials of game theory a concise multidisciplinary introduction. Morgan & Claypool Publishers, 2008.

[17] N. N. Liu and Q. Yang. Eigenrank: a ranking-oriented approach to collaborative filtering. In *ACM SIGIR*, pages 83–90, 2008.

[18] R. D. Luce. *Individual choice behavior*. Wiley, 1959.

[19] C. F. Manski. Maximum score estimation of the stochastic utility model of choice. *Journal of Econometrics*, (3):205–228, August 1975.

[20] H. M. Markowitz. Portfolio selection: efficient diversification of investments, Yale University Press, 1970.

[21] D. McFadden. Conditional logic analysis of qualitative choice behavior. In *Frontiers of econometrics*, Academic Press, 1974.

[22] M. R. McLaughlin and J. L. Herlocker. A collaborative filtering algorithm and evaluation metric that accurately model the user experience. In *ACM SIGIR*, pages 329–336, 2004.

[23] M. McPherson, L. S. Lovin, and J. M. Cook. Birds of a feather: Homophily in social networks. *Annual Review of Sociology*, 27(1):415–444, 2001.

[24] K. Miller, T. Griffiths, and M. Jordan. Nonparametric latent feature models for link prediction. In *NIPS*, pages 1276–1284, 2009.

[25] J. von Neumann and O. Morgenstern. *Theory of games and economic behavior*. Princeton University Press, 1944.

[26] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. In *ICML*, pages 880–887, 2008.

[27] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative filtering recommendation algorithms. In *WWW*, pages 285–295, 2001.

[28] A. Singh and G. Gordon. A unified view of matrix factorization models. In W. Daelemans, B. Goethals, and K. Morik, editors, *ECML*, pages 358–373. Springer, 2008.

[29] J. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. In *ICML*, 2005.

[30] T. F. Tan and S. Netessine. Is tom cruise threatened? using netflix prize data to examine the long tail of electronic commerce. *Working paper 1361, Wharton school, University of Pennsylvania*, 2010.

[31] M. Weimer, A. Karatzoglou, Q. Le, and A. Smola. Cofirank - maximum margin matrix factorization for collaborative ranking. In *NIPS*, pages 1593–1600, 2007.

[32] S.-H. Yang, B. Long, A. Smola, H. Zha, and Z. Zheng. Collaborative-competitive filtering: learning recommender using context of user choice In *ACM SIGIR*, 2011.

[33] M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient descent. In *NIPS*, 2010.