Funecionalidad de prótesis de mano impresa en 3D en adolescentes con amputación congénita parcial de mano: una serie de casos

3D-printed hand prostheses function in adolescents with congenital hand amputation: a case series

Jacqueline Dotea, Paula Nahuelhualb,c, Rodrigo Cubillosd, Gabriel Fuentesd, Jorge Zunigaef

aLaboratorio de Órtesis y Prótesis, teletón Chile, Santiago, Chile
bSubdirección de Investigación, teletón Chile, Santiago, Chile
cFacultad de Medicina, Universidad del Desarrollo, Clínica Alemana, Santiago, Chile
dUnidad de tecnología Asistiva, teletón Chile, Santiago, Chile
eUniversity of Nebraska Omaha, Department of Biomechnisics, USA
fFacultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile

Recibido: 5 de septiembre de 2019; Aceptado: 25 de noviembre de 2019

Resumen

Objetivo: Describir el efecto de la prótesis impresa en 3D Cyborg Beast en la funcionalidad de miembros superiores (MMSS) en adolescentes con amputación congénita parcial de mano. Casos Clínicos: Se seleccionaron 5 pacientes entre 12 y 17 años con amputación congénita parcial de mano en el Instituto Teletón Santiago. Los pacientes fueron entrenados en el uso de la prótesis por 4 sesiones. Se evaluó la función basal (sin prótesis), al mes y los 4 meses de uso de la prótesis con la pauta Bilan 400 points modificada y la percepción de funcionalidad de MMSS sin y con prótesis con la “Upper Extremity Function Index (UEFI)”. Al mes y 4 meses de uso, el porcentaje de cambio para funcionalidad de mano fue de -11% y -4% para la extremidad no afectada y de -9% y -2% para la afectada. El porcentaje de cambio para la percepción de funcionalidad de MMSS fue de -62%, Conclusiones: El uso de la prótesis de mano Cyborg Beast no fue una solución funcional para los 5 pacientes incluidos en este estudio. Futuras investigaciones son necesarias para poder mejorar la funcionalidad de estos diseños de prótesis impresa en tecnología 3D.
Introducción

Las amputaciones congénitas de extremidad superior, son alteraciones que se producen durante la etapa gestacional, en la etapa de embriogénesis, afectando el desarrollo y crecimiento de las extremidades superiores, ya sea parciales o completas, siendo la completa la ausencia del miembro superior y las parciales, aquellas en las que existe un segmento remanente de la extremidad. Algunas de ellas se presentan en el contexto de síndrome y pueden asociarse a otras deficiencias orgánicas corporales. Debido a la falta de un sistema mandatorio de registro, es difícil estimar la prevalencia precisa de este tipo de malformaciones. Estudios epidemiológicos publicados en Australia, Finlandia y Canadá han estimado la incidencia global de anomalías en las extremidades superiores como entre 3,4 y 5,3 x 10.000 nacidos vivos. En el caso particular de las malformaciones de manos, se han descrito una gran variedad de presentaciones que pueden afectar a uno varios dedos, parcial de carpo, duplicaciones y sobrecrecimiento. Actualmente, existe una diversidad de tipos de prótesis de extremidad superior, ya sean pasivas o activas. El contar con uno de estos dispositivos depende de diversos factores, tales como: acceso a contar con prótesis, tipo de prótesis, tipo de muñón, factores socioeconómicos, preferencias del niño y su familia. En general la aceptación de las prótesis en niños que son portadores de deficiencias transversales, 1/3 o 2/3 bajo codo, tiene buena adherencia al uso de sus prótesis mecánicas. En lo que se refiere al uso de prótesis mioeléctricas, el alto costo, hace que sean poco accesibles y además se ha visto que limitan las actividades de los niños, por lo delicado de su cuidado, lo que les impide su uso en actividades cotidianas.

Para los pacientes con amputaciones parciales de mano, existen soluciones y tratamientos quirúrgicos, cuyo objetivo final es poder dotar al niño de una mejor funcionalidad, para la presión y agarre de objetos, lo cual implica muchas cirugías durante su vida, en su resultado influye el número de dedos remanentes funcionales y la localización de éstos en la mano. En los pacientes en que existe conservación de la función de flexo-extensión de muñeca, con sensibilidad conservada a distal, no es frecuente el uso de prótesis, ya que dado el tratamiento quirúrgico y de rehabilitación asociado, incorporan su extremidad en mayor o menor forma a sus actividades funcionales. Paralelamente, si bien existen soluciones ortoprotésicas, algunas de ellas sirven para realizar sus actividades de la vida diaria y otras son sólo cosméticas, en general no existe buena adherencia a su uso, prefiriendo el uso de la extremidad libre. En el área de las órtesis y prótesis, la introducción de la impresión 3D para su fabricación, ha significado nuevas propuestas en relación a disminución de costos, mejor accesibilidad y personalización de diseños. La masificación de impresión 3D junto a la existencia de diseños disponibles en la web, permite que personas de diferentes disciplinas se interese por desarrollar sus propios productos.

Dentro de los modelos que han sido desarrollados, la prótesis de mano Cyborg Beast (figura 1) se caracteriza por ser de bajo costo y de fácil fabricación. La prótesis para su diseño requiere mínimas medidas antropométricas de la extremidad superior, para un apropiado escalamiento y ajuste. Previamente, en el diseño, los expertos han sugerido que este diseño podría tener un potencial impacto positivo en la funcionalidad en la vida diaria, adicionalmente, no se reportaron efectos adversos asociados a su uso. El uso de las prótesis de mano impresas en 3D, ha sido muy difundida, sin embargo no existen estudios que evalúen su impacto en la funcionalidad específica en miembros superiores en los pacientes. Es por ello que la presente investigación tiene por objetivo describir el efecto en la funcionalidad de estas prótesis.
dad de MMSS del uso de la prótesis Cyborg Beast, en un grupo de pacientes del Instituto Teletón Santiago con amputación congénita parcial de mano.

Casos Clínicos

Participantes

La selección de pacientes para este estudio se realizó en el Instituto Teletón Santiago (Chile), que es una de las principales instituciones que realiza rehabilitación de niños y jóvenes portadores de condiciones de salud de origen congénito o adquirido, que ocasionan discapacidad física. Se consideraron todos aquellos pacientes con amputación parcial de mano congénita (izquierda o derecha) de 12 a 17 años de edad, que tuviesen carpo remanente y un rango mínimo de flexo-extensión de muñeca de 20°. La identificación de pacientes potencialmente elegibles se realizó a través de la revisión de la base de datos de pacientes activos del Instituto Teletón Santiago, filtrado por patología y edad. Las características de los participantes se detallan en la tabla 1.

Evaluaciones

Para evaluar la función de miembros superiores se aplicó la *Pauta Bilan 400 points* modificada 19, antes de la entrega de la prótesis, al mes y a los 4 meses de uso. Esta pauta se adaptó para su uso en población infantil. Cuantifica el grado de utilización de una mano lesionada, midiendo movilidad manual, fuerza de prensión, prensión mono manual, desplazamiento de objetos y función bimanual, aspectos que en su conjunto entregan un índice global y un indicador significativo de la funcionalidad de la mano.

Además se aplicó la pauta *Upper Extremity Functional Index (UEFI)* 20 para evaluar la funcionalidad percibida de MMSS antes del uso de la prótesis y a los 4 meses de estar usando la prótesis. Esta autoevaluación, el usuario califica 20 actividades de la vida diaria realizadas con miembros superiores y las califica dependiendo el nivel de independencia. El puntaje final se traduce en el porcentaje de independencia total.

Por otro lado, se realizó una descripción cualitativa de las experiencias de los pacientes y sus cuidadores principales 21.

Tabla 1. Características de los participantes
ID

1
2
3
4
5

![Figura 1. Prótesis Cyborg Beast.](image-url)
Protocolo

A los participantes seleccionados para este estudio se les hizo una evaluación basal de la funcionalidad objetiva y percibida de MMSS, junto a la toma de las medidas antropométricas necesarias para la confección de la prótesis. Una vez entregada la prótesis de mano, se realizó un entrenamiento para su uso de 2 sesiones semanales de 40 min por 2 semanas. Este se realizó enfocado en el manejo y uso de la prótesis, con énfasis en actividades de la vida diaria a realizar con la prótesis, además se realizó educación en su cuidado y prevención de posibles lesiones. Este proceso fue realizado por un terapeuta ocupacional de la unidad de Tecnología Asistida del Instituto Teletón Santiago. Se indicó a los pacientes que usaran la prótesis de mano al menos 2 h al día en el ambiente que ellos quisieran.

Análisis de datos

Los datos fueron tabulados en Microsoft Excel. Se realizó un análisis descriptivo de los datos por cada participante.

Ética

Este trabajo fue aprobado por el comité ético científico de la Sociedad Pro Ayuda del Niño Lisado (proyecto nº 43/2014). Todos los participantes contaron con asentimiento y consentimiento informado firmado por sus padres.

Funcionalidad de mano

La funcionalidad de mano medida a través de la pauta Bilan 400 points modificada se detalla por dimensión en tabla 2. Las dimensiones 1, 2 y 4 evalúan cada mano por separado, la dimensión 3 de actividades funcionales evalúa la ejecución de actividades bimanuales.

En las figuras 2 y 3 se muestra la evaluación de la función global para la mano derecha e izquierda respectivamente.
pectivamente. Al mes y 4 meses de uso, la mediana del porcentaje de cambio para funcionalidad de mano fue de -11% y -4% para la extremidad no afectada y de -9% y -2% para la afectada. El detalle por participante es el siguiente:

P1: El porcentaje total de funcionalidad en el MMSS afectado subió de 39% a 43%, sin embargo, el porcentaje en la mano no afectada bajó de 100% a 91%, esto principalmente por la baja en el puntaje en la dimensión de actividades bimanuales.

P2: Reporta una disminución del porcentaje total de la funcionalidad de la mano afectada del 68% al 42% al mes, y un 43% a los 4 meses de uso de la prótesis. En el caso de la extremidad no afectada, esta presenta una disminución de 100% a 90% al mes de uso, la que aumenta a 9% a los 4 meses.

P3: La variación en la funcionalidad total en la mano afectada es de un 45% al 47% al mes, y de un 44% a los 4 meses. En el caso del lado indemne, este se mantiene en una funcionalidad sobre 100%.

P4: En este caso el MMSS afectado refiere una mejora en la funcionalidad del 39% al 44% a los 4 meses de uso de la prótesis., sin embargo la mano no afectada disminuye de un 93% al 84% al mes y al 89% a los 4 meses.

P5: La funcionalidad en la mano afectada disminuye de un 64% a un 35% al mes y a un 34% a los 4 meses, en el caso de la mano indemne el porcentaje de funcionalidad varía de un 101% a un 97% a los 4 meses.

Funcionalidad percibida de MMSS

La funcionalidad percibida de MMSS evaluada a través de la UEFI, se detalla en la figura 4. La mediana del porcentaje de cambio fue de -62%, siendo los participantes 2 y 5 los que mayor diferencia tuvieron respecto de la medición basal sin prótesis. El detalle por participante se desglosa en la figura 4.

Eventos adversos

Cuatro de los cinco participantes presentaron puntos de presión a raíz del uso de la prótesis, los cuales fueron reparados por el terapeuta ocupacional a cargo del entrenamiento, usando elementos para disminuir el roce entre la prótesis y la piel durante su uso.

Tres de los cinco participantes tuvieron problemas con elementos estructurales de la prótesis, en dos de ellos se desprendió la pieza de regulación ubicada en el antebrazo y en un caso se rompió el pulgar de la prótesis. Las piezas de regulación se repararon y se reimprimió el pulgar.

Discusión

Los resultados de la presente investigación, muestran que el uso de la prótesis de mano Cyborg Beast no fue una solución funcional para los pacientes que participaron en este estudio, tanto para la funcionalidad objetiva de mano como para la percepción de funcionalidad de MMSS.

En el caso de funcionalidad de mano evaluada con la pauta Bilan 400 points modificada, que entrega un índice global de función de las extremidades superiores, muestra que hubo un mejor desempeño al 4° mes de uso de la prótesis en comparación con el 1º, sin embargo, ninguno de los pacientes superó el puntaje basal sin prótesis. Los mejores resultados los presentaron los pacientes 1, 3 y 4 en la dimensión 2 de desplazamien-
to, estos pacientes aumentan su puntaje en relación al basal, debido a que la prótesis permite efectuar la presión por efecto tenodesis, al realizar el movimiento de flexo extensión de muñeca; esto permite, de acuerdo al tamaño de la mano, coger objetos cilíndricos, esféricos, cúbicos, gruesos y livianos.

Respecto de la fuerza prensora, los 3 pacientes (2, 3 y 5) que tenían fuerza prensora remanente, es decir, que realizan algún tipo de pinza o agarre, la pierden al usar la prótesis.

Cabe mencionar que, a diferencia de lo esperado, el puntaje en actividades bimanuales (dimensión 3) disminuye en los 5 casos respecto del basal. Esto puede deberse a que estos pacientes ya han desarrollado estrategias a lo largo de su vida, que les permiten ser funcionales en actividades bimanuales, sin usar prótesis.

La percepción de funcionalidad evaluada a través de la aplicación de la UEFI, entrega la respuesta directa del paciente en relación a si tiene o no dificultades para realizar actividades de la vida diaria con o sin la prótesis, en este estudio fue la que mostró mayores diferencias. Si bien todos los pacientes bajaron sus puntajes al usar la prótesis, los peores resultados obtenidos, los presentaron los pacientes que tenían función de pinza remanente, esto porque la prótesis finalmente entorpecía la actividad de prensión fina.

Esto se explica porque estos pacientes, ya eran hábiles en sus actividades funcionales de vida diaria, sin prótesis. Además es importante mencionar que su muñón remanente posee intacta la sensibilidad superficial y profunda.

Los resultados de este trabajo, coinciden con investigaciones previas, en que usuarios de prótesis mecánicas de mano, han reportado que este tipo de prótesis genera dificultades para el movimiento y para la presión de objetos, lo que se traduce en una baja adherencia en su uso.

Las posibles limitaciones se relacionan con la variabilidad entre los participantes y la presencia de pinza remanente en dos pacientes (pacientes 2 y 5). Estos fueron elegidos en función de la disponibilidad de las prótesis y los criterios de inclusión. Es posible que la poca funcionalidad de la prótesis este relacionada con la presencia de pinza remanente en conjunto con el diseño de la prótesis. También se debe señalar, que el uso correcto de este tipo de prótesis no está exento de dificultades para los usuarios, por lo que es necesario entrenamiento y acompañamiento terapéutico.

Es posible que incluso durante el entrenamiento, sea necesario reimpresión partes y piezas y/o ajustar el diseño según los requerimientos de cada paciente. Se recomienda la supervisión de personal especializado para el ajuste y entrenamiento de este tipo de mano impresa en tecnología 3-D.

Los resultados de la presente investigación, son un primer acercamiento a la funcionalidad en que se puede lograr en pacientes con amputaciones parciales de mano al usar la prótesis de mano impresa en tecnología 3-D (en este caso el diseño Cyborg Beast). Futuras investigaciones deberían abordar aspectos relacionados con el diseño, funcionalidad y adherencia a este tipo de prótesis.

Referencias

1. Dy CJ, Swarup I, Daluiski A. Embryology, diagnosis, and evaluation of congenital hand anomalies. Current reviews in musculoskeletal medicine. 2014;7(1):60-7.
2. Kozin SH. Upper-extremity congenital anomalies. The Journal of Bone & Joint Surgery. 2003;85(8):1564-76.
3. Bourke G. Congenital hand anomalies. Orthopaedics and Trauma. 2011;25(2):143-54.
4. Froster UG, Baird PA. Upper limb deficiencies and associated malformations: A population-based study. American journal of medical genetics. 1992;44(6):767-81.
5. Giele H, Giele C, Bower C, Allison M. The incidence and epidemiology of congenital upper limb anomalies: a total population study. The Journal of hand surgery. 2001;26(4):628-34.
6. Koskimies E, Lindfors N, Gissler M, Peltonen J, Niemsovaara Y. Congenital upper limb deficiencies and associated malformations in Finland: a population-based study. The Journal of hand surgery. 2011;36(6):1058-65.
7. Davids JR, Wagner LV, Meyer LC, Blackhurst DW. Prosthetic management of children with unilateral congenital below-elbow deficiency. The Journal of Bone & Joint Surgery. 2006;88(6):1294-300.
8. Krebs DE, Edelstein JE, Thornby MA. Prosthetic management of children with limb deficiencies. Physical therapy. 1991;71(12):920-34.
9. Kuyper M, Breedijk M, Mulders A, Post M, Prevo A. Prosthetic management of children in The Netherlands with upper limb deficiencies. Prosthetics and orthotics international. 2001;25(3):228-34.
10. Davids JR, Wagner LV, Meyer LC, Blackhurst DW. Prosthetic management of children with unilateral congenital below-elbow deficiency. J Bone Joint Surg Am. 2006;88(6):1294-300.
11. Bidiss EA, Chau TT. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthetics and orthotics international. 2007;31(3):236-57.
12. Watson S. The principles of management of congenital anomalies of the upper limb. Archives of disease in childhood. 2000;83(1):10-7.
13. Buffart LM, Roebroek ME, Pesch-Batenburg JM, Janssen WG, Stam HJ. Assessment of arm/hand functioning in children with a congenital transverse or longitudinal reduction deficiency of the upper limb. Disability & Rehabilitation. 2006;28(2):85-95.
14. Meurs M, Maathuis C, Lucas C, Hadders-Algra M, Van der Sluis C. Prescription of the first prosthesis and later use in children with congenital unilateral upper limb deficiency: A systematic review. Prosthetics and orthotics international. 2006;30(2):165-73.
15. Tanaka KS, Lightdale-Miric N. Advances in 3D-Printed Pediatric Prostheses for Upper Extremity Differences. J Bone Joint Surgery. 2015;97(13):1325-31.
Surg Am. 2016;98(15):1320-6.
16. Zúñiga J, Katsavelis D, Peck J, Stollberg J, Petrykowski M, Carson A, et al. Cyborg beast: a low-cost 3d-printed prosthetic hand for children with upper-limb differences. BMC research notes. 2015;8(1):1-9.
17. Zúñiga JM, Carson AM, Peck JM, Kalina T, Srivastava RM, Peck K. The development of a low-cost three-dimensional printed shoulder, arm, and hand prostheses for children. Prosthetics and orthotics international. 2016;309364616640947.
18. Zúñiga JM, Peck J, Srivastava R, Katsavelis D, Carson A. An Open Source 3D-Printed Transitional Hand Prosthesis for Children. JPO: Journal of Prosthetics and Orthotics. 2016.
19. Olguín JN, D’Angelo PE, Flores FS, Peñailillo PSM. Pauta funcional de mano Bilan 400 points validada en población de 7 a 17 años de edad portadora de discapacidad neuro-músculo-esquelética. Rehabilitación. 2014;48(3):151-9.
20. Wright FV, Hubbard S, Naumann S, Jutai J. Evaluation of the validity of the prosthetic upper extremity functional index for children. Archives of physical medicine and rehabilitation. 2003;84(4):518-27.
21. Giaconi C, Nahuelhual P, Dote J, Cubillos R, Fuentes G, Zúñiga J. Experiencias del uso de ortoprótesis de mano impresa en 3D (Cyborg Beast) en adolescentes con amputación congénita de mano y sus cuidadores principales: Un estudio de casos. Revista Chilena de Pediatría. 2019;90(5).
22. Michielsen A, Van Wijk I, Ketelaar M. Participation and quality of life in children and adolescents with congenital limb deficiencies: A narrative review. Prosthet Orthot Int. 2010;34(4):351-61.
23. Biddiss E, Chau T. Upper-limb prosthetics: critical factors in device abandonment. American journal of physical medicine & rehabilitation. 2007;86(12):977-87.
24. Biddiss E, Chau T. The roles of predisposing characteristics, established need, and enabling resources on upper extremity prosthesis use and abandonment. Disability and Rehabilitation: Assistive Technology. 2007;2(2):71-84.
25. Millstein S, Heger H, Hunter G. Prosthetic use in adult upper limb amputees: a comparison of the body powered and electrically powered prostheses. Prosthetics and orthotics international. 1986;10(1):27-34.
26. Kejlaa G. Consumer concerns and the functional value of prostheses to upper limb amputees. Prosthetics and orthotics international. 1993;17(3):157-63.