What is a preferred angiotensin II receptor blocker-based combination therapy for blood pressure control in hypertensive patients with diabetic and non-diabetic renal impairment?

Samir G Mallat

Abstract

Hypertension has a major associated risk for organ damage and mortality, which is further heightened in patients with prior cardiovascular (CV) events, comorbid diabetes mellitus, microalbuminuria and renal impairment. Given that most patients with hypertension require at least two antihypertensives to achieve blood pressure (BP) goals, identifying the most appropriate combination regimen based on individual risk factors and comorbidities is important for risk management. Single-pill combinations (SPCs) containing two or more antihypertensive agents with complementary mechanisms of action offer potential advantages over free-drug combinations, including simplification of treatment regimens, convenience and reduced costs. The improved adherence and convenience resulting from SPC use is recognised in updated hypertension guidelines. Despite a wide choice of SPCs for hypertension treatment, clinical evidence from direct head-to-head comparisons to guide selection for individual patients is lacking. However, in patients with evidence of renal disease or at greater risk of developing renal disease, such as those with diabetes mellitus, microalbuminuria and high-normal BP or overt hypertension, guidelines recommend renin-angiotensin system (RAS) blocker-based combination therapy due to superior renoprotective effects compared with other antihypertensive classes. Furthermore, RAS inhibitors attenuate the oedema and renal hyperfiltration associated with calcium channel blocker (CCB) monotherapy, making them a good choice for combination therapy. The occurrence of angiotensin-converting enzyme (ACE) inhibitor-induced cough supports the use of angiotensin II receptor blockers (ARBs) for RAS blockade rather than ACE inhibitors. In this regard, ARB-based SPCs are available in combination with the diuretic, hydrochlorothiazide (HCTZ) or the calcium CCB, amlodipine. Telmisartan, a long-acting ARB with preferential pharmacodynamic profile compared with several other ARBs, and the only ARB with an indication for the prevention of CV disease progression, is available in two SPC formulations, telmisartan/HCTZ and telmisartan/amlodipine. Clinical studies suggest that in CV high-risk patients and those with evidence of renal disease, the use of an ARB/CCB combination may be preferred to ARB/HCTZ combinations due to superior renoprotective and CV benefits and reduced metabolic side effects in patients with concomitant metabolic disorders. However, selection of the most appropriate antihypertensive combination should be dependent on careful review of the individual patient and appropriate consideration of drug pharmacology.

Keywords: Amlodipine, Angiotensin receptor II blocker, Diabetes mellitus, Hydrochlorothiazide, Hypertension, Renal impairment, Single-pill combination, Telmisartan
Introduction

Hypertension is a highly prevalent disease with a major associated risk for cardiovascular (CV) morbidity and mortality [1-3]. The majority of patients with hypertension require more than one antihypertensive agent to achieve and maintain guideline-recommended blood pressure (BP) goals [4-8]. Identifying the most appropriate combination therapy for each patient based on individual risk factors and comorbidities is important for risk management. Increasingly, single-pill combinations (SPCs) containing two or more antihypertensive agents with complementary mechanisms of action are available. These offer potential advantages, including simplification of treatment regimens, more convenient drug administration and reduced healthcare costs [5,9,10]. Evidence from meta-analyses has shown that the use of antihypertensive SPCs compared with corresponding free-drug combinations is associated with significantly greater rates of treatment adherence to medication and potential advantages in terms of BP improvements and adverse effects [11,12]. A large retrospective database study of an angiotensin II receptor blocker (ARB) plus a calcium channel blocker (CCB) in two-drug SPCs has also shown greater levels of adherence compared with the corresponding free-pill ARB/CCB regimens [13]. Treatment adherence is an important issue for a chronic disease such as hypertension, with improvements in adherence expected to result in better long-term clinical outcomes, including reduced CV and renal morbidity/mortality. This review will consider the choice of agents for combination therapy using two-drug SPCs and the rationale for using particular combinations in patients with hypertension and renal impairment.

Why should early combination therapy be considered?

Worldwide guidelines recommend combination therapy as a first-line treatment option for hypertension likely not to be controlled on monotherapy (e.g. 20/10 mmHg above target BP) because of evidence showing that only a minority of patients will achieve and maintain BP goals on monotherapy [5-8,14]. The recent re-appraisal of the European guidelines also recommended the preferential use of SPCs to improve adherence [7].

There are a number of compelling reasons why early combination therapy should be used in patients with hypertension (Table 1), including lack of efficacy with monotherapy, greater BP control and attenuation of side effects associated with monotherapeutic treatment [15-20]. In addition, hypertensive patients with comorbidities, such as renal disease, might benefit from additional effects of multiple antihypertensive agents, beyond those related to BP lowering [10].

What are the preferred drug classes for combination regimens?

A range of mostly two-drug antihypertensive SPCs is available [10]. Preferred drug classes for combination regimens target the renin-angiotensin system (RAS), such as ARBs and angiotensin-converting enzyme (ACE) inhibitors, CCBs and diuretics, with selection dependent on individual patient factors, including additional CV risk factors and comorbidities [4,7]. For example, in patients with diabetes and high-normal BP or overt hypertension, which together confer a greater risk of renal damage, combination therapy with a RAS blocker is preferred because these agents offer a superior protective effect against initiation and progression of nephropathy [6]. In patients with renal disease, antihypertensive therapy should aim to target a range of markers of renal (and CV) risk, such as serum creatinine, urine albumin:creatinine ratio, microalbuminuria and proteinuria, usually by RAS blockade, with a view to reducing and slowing progression to end-stage renal disease (ESRD) and CV events [6,20]. Microalbuminuria in particular is a marker of global CV risk and is very common in patients with hypertension [22]. Several position statements also recommend combined therapy that includes RAS blockers. The American Society of Hypertension indicated a preference for RAS blockers in combination with either a diuretic or CCB, with SPCs rather than separate agents preferred when convenience outweighs all other considerations [23]. In addition, the International Society on Hypertension in Blacks (IHSB) recommend a RAS blocker-diuretic or CCB combination in patients with BP > 15/10 mmHg above the target goal [24]. IHSB guidance extends to recommending combination with CCB over diuretics where appropriate (in absence of oedema and/or volume-overload states) due to superiority for hard clinical outcomes.

Owing to the CV and renal protective effects of RAS inhibitors, dual RAS blockade is currently under investigation, i.e. ACE inhibitors, ARB combinations and direct renin inhibitor (DRI) combinations. However studies of double RAS blockade in high-risk patients have provided mixed results [25-28] and current evidence therefore, does not support this therapeutic approach [29].

SPCs containing an ARB may be preferred over those containing ACE inhibitors. ARBs have superior tolerability over ACE inhibitors, which inhibit the degradation of bradykinin, leading to adverse effects, such as dry cough and angioedema [30,31]. Several studies have shown that treatment with ARBs is associated with significantly lower rates of cough and angioedema versus ACE inhibitors [32,33]. Furthermore, ARBs (in particular telmisartan) are well tolerated in patients who are intolerant of ACE inhibitors [34]. Due to their superior tolerability, ARBs may be associated with a higher rate of adherence
Table 1: Rationale for and potential advantages of early SPC antihypertensive therapy [10,15,16,21]

Rationale:
1. Monotherapy is not effective at reaching and maintaining BP goal in most patients
2. Each difference of 20 mmHg usual SBP or 10 mmHg usual DBP is associated with a two-fold increase in vascular death
3. Using lower doses of each agent reduces the likelihood of adverse events experienced with a single agent used at a higher dose
4. Patients with comorbidities, such as renal disease, might benefit from the non-BP-lowering benefits of antihypertensive agents with complementary mechanisms of action

Potential advantages:
1. Simplified treatment regimen, which is particularly relevant in older patients with comorbid diseases requiring complicated polytherapy
2. Increased adherence and persistence compared with equivalent free-drug combinations
3. Additive effects on BP control of individual components with different, complementary mechanisms of action
4. Attenuation of recognised adverse events, such as reduced CCB-induced peripheral oedema and diuretic-induced metabolic changes with RAS blockers
5. Lower costs through increased BP reductions

Abbreviations: BP = blood pressure; CCB = calcium channel blocker; DBP = diastolic blood pressure; RAS = renin-angiotensin system; SBP = systolic blood pressure; SPC = single-pill combination

for selecting this drug class for combined treatment in diabetic patients with renal impairment. ARBs and ACE inhibitors are considered equivalent in patients with type II diabetes mellitus (T2DM) with microalbuminuria. However, in patients with T2DM with proteinuria and/or renal insufficiency, ARBs are recommended because randomised controlled trials have shown that ARBs delay the progression of nephropathy in these patients [57]. Furthermore, clinical data suggest that ARBs may delay development of diabetes in at-risk patients and therefore prevent CV events in high-risk patients [56,57].

The other RAS blocker for consideration is aliskiren, a direct renin inhibitor. SPCs comprising aliskiren with a CCB or diuretic are also available. Data suggest DRIIs and conventional RAS inhibitors exert similar levels of BP control [58]. However, unlike ACE inhibitors and ARBs, there is currently very limited data on the effect of aliskiren on CV and renal outcomes. The ALiskiren Trial in Type 2 diabetes Using carDio-renal Endpoints (ALTI- TUDE) study aimed to assess the effectiveness of aliskiren in reducing CVr and renal events in patients with T2DM [59], but it was stopped early due to lack of efficacy and increased side effects, such as non-fatal stroke, renal complications, hyperkalemia and hypotension. Ongoing studies will hopefully provide these much-needed data. As there is currently little evidence to support DRI use in this patient population, we will not consider it further in this review.

What are the preferred partners for ARB-based combinations, and why might telmisartan be a preferred ARB choice?

Most currently available ARB-based SPCs in Europe combine an ARB with either the thiazide diuretic, hydrochlorothiazide (HCTZ), or the CCB, amlodipine (Table 2) [23].
highest affinity for the AT1 receptor [70-72]. As the most half-life of approximately 24 hours (Table 3), as well as the effects of telmisartan compared with other ARBs are likely elimination [70,71]. The long-lasting anti-hypertensive distribution, bioavailability, biotransformation, plasma [70]. These differences relate to lipophilicity, volume of molecular differences, these agents demonstrate considerable variation in their pharmacokinetic and pharmacodynamic properties, which are likely to affect clinical efficacy [70]. These differences relate to lipophlicity, volume of distribution, bioavailability, biotransformation, plasma half-life, receptor affinity and resident time, as well as elimination [70,71]. The long-lasting anti-hypertensive effects of telmisartan compared with other ARBs are likely due to this agent having the lowest plasma elimination half-life of approximately 24 hours (Table 3), as well as the highest affinity for the AT1 receptor [70-72]. As the most lipophilic of the ARBs, telmisartan also has the highest volume of distribution, which facilitates tissue/organ penetration (Table 3) [70-73]. Moreover, as a partial agonist of peroxisome proliferator-activated receptor-gamma, telmisartan may offer advantages in patients with insulin resistance and glucose intolerance, as well as hypertension [74,75]. These unique characteristics of telmisartan manifest in a number of clinical advantages, such as long-lasting BP control and CV protection - consequently telmisartan has been identified as a gold-standard treatment and has been recommended as a preferred ARB treatment option [76,77]. Furthermore, telmisartan has been recognised as an important therapeutic option for type 2 diabetes patients in the optimisation of CV and renal prevention [78]. These endorsements nominate telmisartan as the preferred ARB choice in combination therapy.

Several studies have demonstrated the superiority of telmisartan compared with other ARBs regarding 24-hour BP-lowering efficacy, particularly in the early morning period [80-86]. When a smoothness index was used to evaluate the 24-hour antihypertensive efficacy of several agents, telmisartan 80 mg had a significantly higher smoothness index than the ARBs losartan and valsartan and the ACE inhibitor, ramipril, and was comparable with amlodipine [87]. Telmisartan effectively reduces BP when used alone [32,34,88,89] or in combination with HCTZ [86,90-94] or amlodipine [37,95,96]. Telmisartan/HCTZ has demonstrated superiority over losartan/HCTZ in patients with essential hypertension in terms of 24-hour ambulatory BP, including a BP-lowering effect during the last 6 hours of the dosing interval [92,97,98]. In the Study of Micardis® on Obese/Overweight Type-II diabetics with Hypertension (SMOOTH®), telmisartan/HCTZ demonstrated significantly greater reductions in mean ambulatory BP over the entire 24-hour dosing interval and during the last 6 hours compared with valsartan/HCTZ [93]. In two large, placebo-controlled trials, telmisartan/HCTZ also demonstrated antihypertensive superiority over valsartan/HCTZ in patients with stages 1 and 2 hypertension [86,94].

In patients with renal impairment, there are limited data on the efficacy of telmisartan/HCTZ compared with placebo, telmisartan monotherapy or other ARB-based combinations. The Diabetics Exposed to Telmisartan And enalapril (DETAIL®) study, in which more than 80% of enrolled patients had microalbuminuria, confirmed the efficacy of telmisartan in combination with a diuretic [99]. Switching patients with poorly controlled hypertension and mild-to-moderate chronic kidney disease from high-dose ARBs to telmisartan 40 mg/HCTZ 12.5 mg provided additional BP reductions and reduced urinary protein excretion, suggesting the combination is effective in this patient population [100]. Telmisartan/HCTZ has also demonstrated excellent tolerability. A retrospective safety analysis of 50 studies that evaluated telmisartan either as monotherapy or combined with HCTZ confirmed that the addition of HCTZ did not have a negative impact on the excellent tolerability profile of telmisartan, which is comparable with placebo [101]. Similar tolerability profiles have been reported for other ARB/HCTZ combinations [102-104].

Studies have also confirmed the therapeutic advantages of telmisartan and amlodipine combined therapy versus the monotherapies on reaching and maintaining BP goals in hypertensive patients [37,95,96,105]. Subgroup analysis of a trial conducted in patients with moderate-to-severe hypertension demonstrated that the telmisartan/amlo- dine combination yielded reductions in mean seated trough systolic BP (SBP)/diastolic BP of up to -25.7/-19.5 mmHg in patients with mild renal impairment (estimated glomerular filtration rate [GFR] ≥ 60 ml/min/1.73 m²) and -26.5/-20.8 mmHg in patients with moderate-to-severe renal impairment (estimated GFR < 60 ml/min/1.73 m²) [106]. The BP goal of < 140/90 mmHg was achieved in up

Table 2: Currently authorised ARB-based two-drug SPC antihypertensive therapy in Europe in 2011 [69]

ARB	HCTZ combination	CCB combination
Telmisartan	✓	✓
Valsartan	✓	✓
Olmesartan	✓	✓
Losartan	✓	✓
Ibresartan		
Candesartan		
Eprosartan		
Azilsartan		

Abbreviations: ARB = angiotensin II receptor blocker; CCB = calcium channel blocker; HCTZ = hydrochlorothiazide; SPC = single-pill combination
to 76.6% of patients with mild renal impairment and in up to 75.0% of those with moderate-to-severe renal impairment [106]. In a separate 8-week, randomised, double-blind trial in patients with T2DM and stages 1 or 2 hypertension (SBP > 150 mmHg), the telmisartan/amlodipine combination was superior as initial therapy compared with amlodipine 10 mg [107]. The BP goal of 140/90 mmHg was reached by 71.4% of patients treated with the telmisartan/amlodipine SPC compared with 53.8% of those treated with amlodipine 10 mg alone. For the more stringent BP goal of ≤ 130/80 mmHg, these rates were 36.4% and 17.9% for the telmisartan and amlodipine groups, respectively.

Further to the beneficial outcomes on BP, the addition of telmisartan has been shown to reduce the incidence of peripheral oedema induced by amlodipine [37]. This effect is thought to be mediated by the reduction of CCB-induced renal hyperfiltration and proteinuria - in a recent clinical study, where a 70% decrease in the urine albumin-to-creatinine ratio (UACR) was seen in those patients treated with a telmisartan and amlodipine combination compared with amlodipine 10 mg alone. For the more stringent BP goal of ≤ 130/80 mmHg, these rates were 36.4% and 17.9% for the telmisartan/amlodipine and amlodipine 10 mg groups, respectively.

What is the preferred combination therapy for patients with renal impairment?

RAS blockers are the recommended choice of treatment for patients with renal impairment [108]. When faced with hypertensive patients with evidence of renal damage, the physician should consider the use of an ARB-based SPC, for tolerability reasons. Choices are numerous but often result in a choice between ARB/CCB and ARB/HCTZ, and it is therefore prudent to consider the evidence for these two combination types in patients with renal impairment.

In a randomised, open-label study that compared urinary albumin excretion in 207 hypertensive patients during treatment with the ARB, olmesartan, in combination with either HCTZ or the CCB, azelnidipine, ARB/HCTZ decreased UACR significantly more. This was clearly associated with greater reductions in night-time SBP, suggesting that the differential renal effects were due to differences in BP lowering [109]. In the Avoiding Cardiovascular events through COMbination therapy in Patients LIving with Systolic Hypertension (ACCOMPLISH) trial involving 11,506 patients, treatment with the ACE inhibitor, benazepril, combined with amlodipine was associated with a significant risk reduction for renal disease progression, as well as CV disease events, compared with benazepril/HCTZ in hypertensive
patients at high risk for CV events. Indeed, 2.0% of patients experienced chronic kidney disease progression in the benazepril/amlodipine group compared with 3.7% in the benazepril/HCTZ group (HR, 0.52; 95% CI, 0.41-0.65; p < 0.0001) [110]. Around 18% of patients enrolled in the ACCOMPLISH trial had an estimated GFR of < 60 ml/min/1.73 m², suggestive of renal disease and 6.1% were defined as having renal disease based on serum creatinine levels or the presence of macroalbuminuria [111]. The differences in the renoprotective effects of the two combinations are unlikely to be due to differences in the level of BP control because 24-hour ambulatory BP control was comparable in the two treatment arms [112,113]. The significantly greater renoprotective effects provided by the RAS blocker combined with amlodipine rather than HCTZ are more likely due to metabolic or haemodynamic properties of the specific combination [112,113].

The view that thiazide diuretics reduce GFR and have lower efficacy in the renally impaired may also impact the efficacy and renoprotective outcome of combined therapy. Consequently, loop diuretics rather than thiazide diuretics are specifically recommended in patients with ESRD/proteinuria because they more readily increase diuresis at lower GFRs [6,7].

These findings suggest that a RAS blocker, combined with a CCB rather than HCTZ, may be the combination of choice for high CV risk hypertensive patients, such as those with coronary artery disease with or without stable angina, patients with a metabolic risk profile (e.g. diabetes, obesity or metabolic syndrome) and, in particular, those with renal disease. In addition, it should be noted that some data suggests thiazide diuretics may impair glucose homeostasis and that treatment is associated with a greater incidence of diabetes compared with other antihypertensives [114,115]. Furthermore, compared with olmesartan/HCTZ, olmesartan/amlodipine treatment was associated beneficial metabolic and inflammatory effects and a lower-risk of new onset diabetes in non-diabetic patients with metabolic syndrome [116]. These data reinforce the suggestion that ARB/CCB combinations may be a preferred treatment combination, especially in patients with concomitant metabolic disorders, such as diabetes.

The renoprotective effects of ARBs and ACE inhibitors are mediated via their ability to block RAS activity [117]. This makes RAS blockers the treatment of choice in patients with diabetic kidney disease and non-diabetic kidney disease with proteinuria [108]. For the ARBs, evidence for guideline recommendations came from a number of clinical trials (predominantly in patients with chronic kidney disease) that showed ARBs to be renoprotective, independent of their BP-lowering effects (Table 4). For example, the IRbesartan in patients with type II diabetes and MicroAlbuminurie (IRMA2) study demonstrated that irbesartan, added to other antihypertensive agents, could prevent the development of diabetic nephropathy in hypertensive patients with T2DM and persistent microalbuminuria [118]. Also in patients with T2DM, the Irbesartan in Diabetic Nephropathy Trial (IDNT) demonstrated that irbesartan significantly reduced the risk of the composite primary endpoint of a doubling of serum creatinine, ESRD or death compared with placebo and amlodipine [119]. Losartan also demonstrated renoprotective effects in the Angiotensin II Antagonist Losartan (RENAAL) study [120]. In addition, the MicroAlbumuniria Reduction with VALsartan (MARVAL) study showed greater reduction in urinary albumin excretion rate with valsartan than amlodipine for the same BP reduction [106,121].

In hypertensive patients, telmisartan has demonstrated renoprotective effects. In the DETAIL® study, telmisartan was not inferior to the ACE inhibitor, enalapril, in providing long-term renoprotection as measured by change in GFR in patients with T2DM [99]. The InVestigate the efficacy of telmisartan versus VALsartan in hypertensive type II DIabetic patients with overt nephropathy (VIVALDI®) study demonstrated that telmisartan and valsartan provided similar levels of renoprotection in T2DM patients with overt nephropathy, as measured by changes in 24-hour urinary protein excretion rate, 24-hour urinary albumin excretion rate and estimated GFR [124]. In contrast, telmisartan demonstrated superior efficacy in reducing proteinuria compared with losartan, despite similar BP reductions in hypertensive T2DM patients with overt nephropathy [122].

Telmisartan has also shown efficacy in non-hypertensive patients. Based on the findings of the OnGOing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial (ONTARGET®), which randomised 25,620 patients with vascular disease or diabetes with end-organ damage, to receive either telmisartan or the reference standard ACE inhibitor, ramipril, or a combination of the two agents [32], telmisartan is the only ARB with an indication for CV prevention independent of BP, including diabetes patients with established end organ damage such as renal disease. ONTARGET® demonstrated that the two agents were equally effective in reducing the primary composite outcome of CV death, myocardial infarction, stroke or hospitalisation due to heart failure (relative risk, 1.01; 95% CI, 0.94-1.09), but that telmisartan was better tolerated than ramipril [32]. Previously, ramipril had demonstrated CV prevention properties in the Heart Outcomes Prevention Evaluation (HOPE) study [125]. Evidence from the ONTARGET® and the Telmisartan Randomized Assessment of Management in Atherosclerosis (TRANSCEND®) trials also
Table 4 Results of clinical trials indicating the renoprotective nature of ARBs

Study	Patients	n	Treatment	Duration	Principle findings
AMADEO® [122]	Hypertension and diabetic nephropathy	860	Telmisartan or losartan	52 weeks	Telmisartan was superior to losartan in reducing proteinuria
CALM [25]	Type 2 diabetes with hypertension and microalbuminuria	199	Candesartan, lisinopril or both	24 weeks	Candesartan was as effective as lisinopril in reducing UACR than monotherapy
DETAIL® [99]	Hypertension, Type 2 diabetes and early nephropathy	250	Telmisartan or enalapril	5 years	Telmisartan was not inferior to enalapril in providing long-term renoprotection
IDNT [119]	Hypertension and diabetic nephropathy	1715	Irbesartan, amlodipine or placebo	Mean 26 years	Irbesartan was superior to amlodipine and placebo in preventing primary composite end point of: a doubling of the base-line serum creatinine concentration, the development of ESRD, or death from any cause. This was independent of BP
IRMA 2 [118]	Hypertension, type 2 diabetes and microalbuminuria	590	Irbesartan or Placebo	2 years	Irbesartan was superior to placebo in preventing diabetic nephropathy
MARVAL [121]	Diabetic nephropathy with and without hypertension	332	Valsartan or amlodipine	24 weeks	Valsartan was superior to amlodipine in reducing microalbuminuria
RENAAL [120]	Diabetic nephropathy	1513	Losartan or placebo	Mean 3.4 years	Losartan was superior to placebo in preventing increases in UACR and progression to ESRD. There was no difference in mortality
ROADMAP [123]	Type 2 diabetes with normoalbuminuria	4449	Olmesartan or placebo	Median 3.2 years	Olmesartan delayed the time to onset of microalbuminuria (statistical significance lost on adjustment for blood pressure difference)
VIVALDI® [124]	Hypertension and diabetic nephropathy	885	Telmisartan or valsartan*	52 weeks	Telmisartan and valsartan provided similar renoprotection

Abbreviations: AMADEO® = A trial to compare telmisartan 40 mg titrated to 80 mg versus losartan 50 mg titrated to 100 mg in hypertensive type 2 Diabetic patients with overt nephropathy; ARB = angiotensin II receptor blocker; BP = blood pressure; CALM = Candesartan and Lisinopril Microalbuminuria; DETAIL® = Diabetics Exposed to Telmisartan And enalapril Study; ESRD, end-stage renal disease; IDNT = Irbesartan type II Diabetic Nephropathy Trial; IRMA2 = Irbesartan in patients with type 2 diabetes and microalbuminuria; MARVAL = MicroAlbuminuria Reduction with VALsartan trial; RENAAL = Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan; ROADMAP = Randomized Olmesartan And Diabetes Microalbuminuria Prevention; UACR = urine albumin:creatinine ratio; VIVALDI® = A trial to investigate the efficacy of telmisartan versus VALsartan in hypertensive type 2 Diabetic patients with overt nephropathy.

*Additional hypertensive treatment was allowed in VIVALDI®.

Guidelines recommend RAS blockers, such as ACE inhibitors and ARBs, as the treatment of choice for patients with renal impairment [108]. Other antihypertensives may be added if BP is not controlled. In addition, the issue of tolerability and adverse events, particularly the occurrence of ACE inhibitor-induced cough, supports the use of ARBs rather than ACE inhibitors in combination therapy in patients with renal impairment [129].

Summary and conclusion
It is now accepted that most hypertensive patients will not reach and maintain BP goal on monotherapy. Therefore, initial combination therapy is being increasingly used and recommended by guidelines, particularly for patients with CV risk factors, such as a history of prior CV events, comorbid diabetes mellitus, microalbuminuria and evidence of organ damage, such as renal disease [7]. Guidelines also recommend the use of SPCs over free-drug combinations due to their improved adherence [7]. In patients with evidence of renal disease or in those with a greater risk of developing renal disease, such as those with diabetes and high-normal BP or overt hypertension, guidelines clearly recommend RAS blocker-based combination therapy due to superior renoprotective effects compared with other classes of antihypertensive agent [7]. Combinations containing an ARB rather than an ACE inhibitor may be preferred because ARBs are associated with superior tolerability, which may lead to improved adherence. In patients with T2DM with proteinuria and/or renal insufficiency, ARB-based treatment is recommended because these agents delay the progression of nephropathy (Table 5).

Two-drug, ARB-based SPCs are available in combination with either HCTZ or amlodipine. Telmisartan, a long-acting ARB with superior 24-hour BP-lowering efficacy compared with several other ARBs, and the only ARB with an indication for the prevention of CV disease progression, is available in two SPC formulations: telmisartan/HCTZ and telmisartan/amlodipine. Reaching a decision about which of these to use in a hypertensive patient with evidence of renal impairment is difficult in the absence of clinical trial data. However, evidence from the ACCOMPLISH trial supports the use of a RAS blocker combined with a CCB, rather than HCTZ, for high CV risk hypertensive patients, such as those with coronary artery disease with or without stable angina, patients with a metabolic...
Table 5 Preferred antihypertensive agents based on subclinical organ damage, clinical events and comorbid conditions [6]

Condition	ARBs	ACE inhibitors	CCBs	Diuretics	β-blockers
Uncomplicated hypertension	+	+	+	+	-
Renal dysfunction	+	+	-	-	
ESRD/proteinuria	+	+	-	-	Loop diuretics
Metabolic syndrome	+	+	-	-	
Diabetes mellitus	+	+	-	-	
Isolated systolic hypertension in the elderly	-	-	+	+	

Abbreviations: ACE = angiotensin-converting enzyme; ARBs = angiotensin II receptor blockers; CCBs = calcium channel blockers; ESAs = erythropoietin-stimulating agents; SBP: Systolic blood pressure; SMOOTHTM: Study of Micardis® on Obese/Overweight: Type-2 diabetes with hypertension; SPC: Single-pill combination; t½: Terminal elimination half-life; T2DM: Type 2 diabetes mellitus; tmax: Time to maximum plasma concentration; TRANSCEND®: Telmisartan Randomized AssessmeNt Study in ACE-I Nonresponder subjects with cardiovascular disease; UACR: Urine albumin-to-creatinine ratio; Vd: Volume of distribution; VIVALDI®: A trial to invesTigate the efficacy of telmisartan versus VALsartan in hypertensive type 2 Diabetic patients with overt nephropathy.

risk profile and particularly for those with renal disease [110,111]. Data demonstrating beneficial metabolic and inflammatory effects with ARB/CCB combined therapy (versus ARB/HCTZ therapy), may also lead to the preferred use of RAS blocker-CCB combinations to achieve further BP reductions whilst avoiding further metabolic disturbances and protecting the kidneys from further damage [116]. However, in hypertensive patients at increased CV risk requiring an antihypertensive agent that specifically reduces blood volume, the combination of an ARB to protect the kidneys and a thiazide diuretic might be the treatment of choice.

There is a wide range of antihypertensive combinations to choose from and selecting the most appropriate treatment regimen for an individual patient with, or at risk of, renal impairment must depend on a number of considerations: careful review of the patient; the pharmacokinetic/pharmacodynamics properties of the available treatment agents; and the available clinical evidence from outcome studies.

Author information
Division of Nephrology and Hypertension, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut 1107 2020, Lebanon.

Abbreviations
ACE: Angiotensin-converting enzyme; ACCOMPLISH: Avoiding Cardiovascular Events through Combination Therapy in Patients Living with Systolic Hypertension; AMADEO®: A trial to compare telmisartan 40 mg titrated to 80 mg versus lisinopril 50 mg titrated to 100 mg in hypertensive type 2 Diabetic patients with overt nephropathy; ARB: Angiotensin II receptor blocker; BP: Blood pressure; CALM: Candesartan and Lisinopril Microalbuminuria; CCB: Calcium channel blocker; CI: Confidence interval; CV: Cardiovascular; DBP: Diastolic blood pressure; DETAIL®: Diabetics Exposed to Telmisartan And enalapril®; DRI: Direct renin inhibitor; ESRA: End-stage renal disease; GFR: Glomerular filtration rate; HCTZ: Hydrochlorothiazide; HOPE: Heart outcomes prevention evaluation; HR: Hazard ratio; IDNT: Irbesartan in Diabetic Nephropathy Trial; IHSB: International Society on Hypertension in Blacks; IRMA2: Irbesartan in patients with type 2 diabetes and Microalbuminuria; MARVAL: Microalbuminuria Reduction with VALsartan; ONTARGET®: Ongoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial; RAS: Renin-angiotensin system; RENAAL: Reduction of endpoints in NIDDM with the angiotensin II antagonist losartan; ROADMAP: Randomized olmesartan and diabetes microalbuminuria prevention; SBP: Systolic blood pressure; SMOOTHTM: Study of Micardis® on Obese/Overweight: Type-2 diabetes with hypertension; SPC: Single-pill combination; t½: Terminal elimination half-life; T2DM: Type 2 diabetes mellitus; tmax: Time to maximum plasma concentration; TRANSCEND®: Telmisartan Randomized AssessmeNt Study in ACE-I Nonresponder subjects with cardiovascular disease; UACR: Urine albumin-to-creatinine ratio; Vd: Volume of distribution; VIVALDI®: A trial to invesTigate the efficacy of telmisartan versus VALsartan in hypertensive type 2 Diabetic patients with overt nephropathy.

References
1. Egan BM, Zhao Y, Axon RN: US trends in prevalence, awareness, treatment, and control of hypertension, 1998-2008. JAMA 2010, 303(20):2043-2050.
2. Ezzati M, Oza S, Danesi G, Murray CJ: Trends and cardiovascular mortality effects of state-level blood pressure and uncontrolled hypertension in the United States. Circulation 2008, 117(7):905-914.
3. Ostchega Y, Dillon CF, Hughes JP, Carroll M, Yoon S: Trends in hypertension prevalence, awareness, treatment, and control in older U.S. adults: data from the National Health and Nutrition Examination Survey 1988 to 2004. J Am Geriatr Soc 2007, 55(7):1056-1065.
4. Krause T, Lovibond K, Caulfield M, McCormack T, Williams B: Management of hypertension: summary of NICE guidance. BMJ 2011, 343:d4891.
5. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ: Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003, 42(6):1206-1252.
6. Mancia G, De BG, Dominiczak A, Cifkova R, Fagard R, Germano G, Grassi G, Heagerty AM, Kjeldsen SE, Laurent S, Narkiewicz K, Ruløpe L, Rydnækwick A, Schmieder RE, Boudier HA, Zanchetti A, Vahanian A, Camp J, De CR, Dean V, Dickstein K, Filippatos G, Funch-Brentano C, Helleman L, Kristensen SD, McGregor K, Sechtem U, Silber S, Tendler M, Widsmyk P, Zamorano JL, Erdine S, Kovski W, Agabiti-Rosei E, Ambrosioni E, Lindholm LH, Virginnia M, Adamopoulos S, Agabiti-Rosei E, Ambrosioni E, Bertomeu V, Clement D, Erdine S, Farsang C, Gaita D, Lip G, Mallion JM, Manolis AJ, Nilsson PM, O’Brien E, Ponikowski P, Redon J, Ruschitzka F, Tamargo J, Van ZP, Waeber B, Williams B: 2007 Guidelines for the Management of Arterial Hypertension: The Task Force for the
42. Pedrinelli R, Dell’Omo G, Mariani M. Calcium channel blockers, postural vasodeconstriction and dependent oedema in essential hypertension. J Hum Hypertens 2001, 15(7):455-461.

43. de la Serra A. Mitigation of calcium channel blocker-related oedema in hypertension by antagonists of the renin-angiotensin system. J Hum Hypertens 2009, 23(8):503-511.

44. Makni H, Bangalore S, Romero J, Wever-Pinzon O, Messerli FH. Effect of renin-angiotensin system blockade on calcium channel blocker-associated peripheral edema. Am J Med 2011, 124(2):128-135.

45. Fagan R, Mugellini A, Zappi A, Lazzar P, Destro M, Rinaldi A, Preti P. Effect of telmisartan/hydrochlorothiazide vs lisinopril/hydrochlorothiazide combination on ambulatory blood pressure and cognitive function in elderly hypertensive patients. J Hum Hypertens 2006, 20(3):177-185.

46. Gosspe P, Neutel JM, Schumacher H, Lacourciere Y, Williams B, Davids G. The effect of telmisartan and ramipril on early morning blood pressure surge: a pooled analysis of two randomized clinical trials. Blood Press Monit 2007, 12(3):141-147.

47. Lacourciere Y, Neutel JM, Davids G, Koval S. A multicenter, 14-week study of telmisartan and ramipril in patients with mild-to-moderate hypertension using ambulatory blood pressure monitoring. Am J Hypertens 2006, 19(1):104-112.

48. Nalbantgil I, Nalbantgil S, Ozerkan F, Yilmaz H, Gurgun C, Zoghi M, Aytinur M, Ghasi M, Bardakci G. The efficacy of telmisartan compared with perindopril in patients with mild-to-moderate hypertension. Int J Clin Pract Suppl 2004, 143:50-54.

49. Ragot S, Ezzaheer A, Meunier A, Poterre M, Bourkaib R, Herpin D: Antihypertensive efficacy and tolerability of two fixed-dose combinations of valsartan and hydrochlorothiazide compared with valsartan monotherapy in patients with stage 2 or 3 systolic hypertension: a 8-week, randomized, double-blind, parallel-group trial. Clin Ther 2005, 27(7):1013-1021.

50. Ram CV. Antihypertensive efficacy of angiotensin receptor blockers in combination with hydrochlorothiazide: a review of the factorial-design studies. J Clin Hypertens (Greenwich) J 2004, 6(10):569-577.

51. Brachmann J, Ansai A, Mahlia G, Handrock R, Klebs S. Effective and safe reduction of blood pressure with the combination of amlopidine 5 mg and valsartan 160 mg in hypertensive patients not controlled by calcium channel blocker monotherapy. Adv Ther 2008, 25(5):399-411.

52. Chrysant SG, Melino M, Karli S, Lee J, Heyraman R. The combination of olmesartan medoxomil and amlopidine besylate in controlling high blood pressure: COACH, a randomized, double-blind, placebo-controlled, 8-week factorial efficacy and safety study. Clin Ther 2010, 24:587-604.

53. Chrysant SG, Lee J, Melino M, Karli S, Heyraman R. Efficacy and tolerability of amlopidine plus olmesartan medoxomil in patients with difficult-to-treat hypertension. J Hum Hypertens 2010, 24(11):730-738.

54. Hasebe N, Kikuchi K. Controlled-release nilvadipine and candesartan low-dose combination therapy in patients with essential hypertension: the NICE Combi (Nilvadipine and Candesartan Combination) Study. J Hypertens 2005, 23(2):445-453.

55. Smith TR, Philip E, Vaisey B, Bakis GL, Wernsing M, Yen J, Glazer A. Amlodipine and valsartan combined and as monotherapy in stage 2, elderly, and black hypertensive patients: subgroup analyses of 2 randomized, placebo-controlled studies. J Clin Hypertens (Greenwich) 2007, 9(5):355-364.

56. European Medicines Agency: List of authorised medicines for hypertension. 2011, Available from: European Medicines Agency, 2011.

57. Burnier M. Telmisartan: a different angiotensin II receptor blocker protecting a different population? J Int Med Res 2009, 37(6):1662-1679.

58. Song JC, White CM. Olmesartan medoxomil (CS-866). An angiotensin II receptor blocker for treatment of hypertension. Formulary 2001, 35:487-499.

59. Aytun M, Ogur R, Sancar EM, Yagish K. Telmisartan has the strongest binding affinity to angiotensin II type 1 receptor: comparison with other angiotensin II type 1 receptor blockers. Int J Clin Pharmacol Res 2005, 25(1):41-46.

60. Wienen W, Entzeder M, an Meel JCA. A review on telmisartan: a novel, long-acting angiotensin II receptor antagonist. Cardiovasc Drug Rev 2000, 18:127-154.

61. Juddt B. Clinical effectiveness of telmisartan alone or in combination therapy for controlling blood pressure and vascular risk in the elderly. Clin Interv Aging 2010, 5:403-416.

62. Tuck ML. Angiotensin-receptor blocking agents and the peroxisome proliferator-activated receptor-gamma system. Curr Hypertens Rep 2005, 7(4):240-243.

63. Garziano A, Capogrosso C, Di MS, Galzerano A, Papaleo P, Lama D, Gaudio C. New standards in hypertension and cardiovascular risk management: focus on telmisartan. Vasc Health Risk Manage 2010, 6:113-133.

64. Unger T, Paulis L, Sca DA. Therapeutic perspectives in hypertension: novel means for renin-angiotensin-aldosterone system modulation and emerging device-based approaches. Eur Heart J 2011, 32(22):2759-2747.

65. Cao Z, Cooper ME. Efficacy of renin-angiotensin system (RAS) blockers on cardiovascular and renal outcomes in patients with type 2 diabetes. Acta Diabetol 2011.

66. Azilsartan Medoxomil Prescribing Information. 2012.

67. Ding PY, Chu KM, Chiang HT, Shu KH. Azilsartan Medoxomil Prescribing Information. 2011.

68. Lacourciere Y, Ntisenski JM, White WB, Davids G, Schumacher H. Sustained antihypertensive activity of telmisartan compared with valsartan, Blood Press Monit 2004, 9(4):203-210.

69. Mallon JM, Baguet JP, Siche JP, Trelmel F, De GR. Cardiovascular and renal remodelling: effect of angiotensin antagonists. J Hypertens 1999, 13(Suppl 1):S35-S41.

70. Nishimura T, Hashimoto J, Ohdouki T, Kikuya M, Metoki H, Asayama K, Totsune K, Imai Y. Efficacy and duration of action of the four selective...
angiotsin II subtype 1 receptor blockers, losartan, candesartan, valsartan and telmisartan, in patients with essential hypertension determined by home blood pressure measurements. Clin Exp Hypertens 2005, 27(6):477-489.

84. Sasaki T, Noda Y, Yasuoka Y, Iino H, Abe H, Adachi H, Hatton S, Kitada H, Morisawa D, Miyatake K. Comparison of the effects of telmisartan and olmesartan on home blood pressure, glucose, and lipid profiles in patients with hypertension, chronic heart failure, and metabolic syndrome. Hypertens Res 2008, 31(5):921-929.

85. Smith DR, Cramer M, Neutel JM, Hettiarachchi R, Koval S. Comparison of telmisartan versus losartan: meta-analysis of titration-to-response studies. Blood Press Monit 2003, 8(3):111-117.

86. White WB, Lacourciere Y, Davidi G. Effects of the angiotensin II receptor blockers telmisartan versus valsartan on the circadian variation of blood pressure: impact on the early morning period. Am J Hypertens 2004, 17(4):347-353.

87. Parati G, Schumacher H, Bilo G, Mancia G. Evaluating 24-h antihypertensive efficacy by the smoothness index: a meta-analysis of an ambulatory blood pressure monitoring database. J Hypertens 2010, 28(11):2177-2183.

88. Littlejohn T, Mrozek W, Marbury T, VanderMaelen CP, Dubel RF. A prospective, randomized, open-label trial comparing telmisartan 80 mg with valsartan 80 mg in patients with mild to moderate hypertension using ambulatory blood pressure monitoring. Can J Cardiol 2000, 16(9):1123-1132.

89. Sharma AM, Hollander A, Koster J. Telmisartan in patients with mild/moderate hypertension and chronic kidney disease. Clin Nephrol 2005, 63(4):250-257.

90. Lacourciere Y, Tytus R, O’Keefe D, Lennis J, Orchard R, Martin K. Efficacy and tolerability of a fixed-dose combination of telmisartan plus hydrochlorothiazide in patients uncontrolled with telmisartan monotherapy. J Hum Hypertens 2001, 15(11):763-770.

91. McGill JB, Reilly PA. Telmisartan plus hydrochlorothiazide versus telmisartan or hydrochlorothiazide monotherapy in patients with mild to moderate hypertension: a multicenter, randomized, double-blind, placebo-controlled, parallel-group trial. Clin Ther 2001, 23(6):833-850.

92. Neutel JM, Littlejohn TW, Chrysant SG, Singh A. Telmisartan/ Hydrochlorothiazide in comparison with losartan/hydrochlorothiazide in managing patients with mild-to-moderate hypertension. Hypertens Res 2005, 28(7):555-563.

93. Sharma AM, Davidson J, Koval S, Lacourciere Y. Telmisartan/ hydrochlorothiazide versus valsartan/hydrochlorothiazide in obese hypertensive patients with type 2 diabetes: the SMOOTH study. Cardiov Diabetol 2007, 6:28.

94. White WB, Davidi G, Schumacher H. Impact of angiotensin receptor blockade in combination with hydrochlorothiazide 25 mg in 2121 patients with stage 1-2 hypertension. J Hum Hypertens 2009, 23(12):817-823.

95. Littlejohn TW III, Majul CR, Ogegan W, Olvera R, Seeber M, Schumacher H. Efficacy and tolerability of telmisartan plus amlopidine in added-risk hypertensive patients. Can Med Res Open 2011, 27(10):1995-2008.

96. Sharma AM, Bakris G, Neutel JM, Littlejohn TW, Kobe M, Ting N, Levy L. Single Pill Combination of Telmisartan/Amlodipine vs Amlopidine Monotherapy in Diabetic Hypertensive Patients: An 8-week randomised, parallel group, double blind trial. Clin Ther 2011.

97. Kidney Disease Outcomes Quality Initiative (K/DOQI): K/DOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease. Am J Kidney Dis 2004, 43(5 Suppl 1):S51-5290.

98. Matsui Y, Eguchi K, Ishikawa J, Shimada K, Kario K. Urinary albumin excretion during angiotensin II receptor blockade: comparison of combination treatment with a diuretic or a calcium-channel blocker. Am J Hypertens 2011, 24(4):466-473.

99. Bakris GL, Sanafidis PA, Weir MR, Dahlof B, Pitt B, Jamerson K, Velazquez EJ, Staikos-Byrne L, Kelly RF, Shi V, Chiang YT, Weber MA. Renal outcomes with different fixed-dose combination therapies in patients with hypertension at high risk for cardiovascular events (ACCOMPLISH): a prespecified secondary analysis of a randomised controlled trial. Lancet 2010, 375(9721):1173-1181.

100. Jamerson K, Weber MA, Bakris GL, Dahlof B, Pitt B, Vich V, Hester A, Gupra J, Gatlin M, Velazquez EJ. Benazepril plus amlopidine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med 2008, 359(23):2417-2428.

101. Jamerson KA, Bakris GL, Weber MA: 24-hour ambulatory blood pressure in the ACCOMPLISH trial. N Engl J Med 2010, 363(1):98.

102. Jamerson KA, Devereux R, Bakris GL, Dahlof B, Pitt B, Jamerson K, Velazquez EJ, Stam livose-Bryan L, Kelly RF, Shi V, Chiang YT, Weber MA: Renal outcomes with different fixed-dose combination therapies in patients with hypertension at high risk for cardiovascular events (ACCOMPLISH): a prespecified secondary analysis of a randomised controlled trial. Lancet 2010, 375(9721):1173-1181.

103. Cooper-Dohoff RM, Pacanowski MA, Pepine CJ. Cardiovascular therapies and associated glucose homeostasis: implications across the dysglycemia continuum. J Am Coll Cardiol 2009, 53(5 Suppl):S283-S34.

104. Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet 2007, 369(957):201-207.

105. Martinez-Martin FJ, Rodriguez-Rosas H, Peiro-Martinez J, Solano-Perea P, Pedrines-Martín P, Comín-Díaz C. Olmesartan/amlopidine vs olmesartan/hydrochlorothiazide in hypertensive patients with metabolic syndrome: the OLAS study. J Hum Hypertens 2011, 25(6):346-353.

106. Touyz RM. Intracellular mechanisms involved in vascular remodelling of resistance arteries in hypertension: role of angiotensin II. Exp Physiol 2005, 90(4):449-455.

107. Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen P, Arner P. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 2001, 345(12):870-878.

108. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz E, Atkins RC, Rohde R, Raz I. Renoprotective effect of the angiotensin-
receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. *N Engl J Med* 2001, 345(12):851-860.

120. Brenner BM, Cooper ME, de ZD, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapin SM, Zhang Z, Shahinfar S: Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. *N Engl J Med* 2001, 345(12):861-869.

121. Viberti G, Wheeldon NM: Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus: a blood pressure-independent effect. *Circulation* 2002, 106(6):672-678.

122. Bakris G, Burgess E, Weir M, Davdadi G, Koval S: Telmisartan is more effective than losartan in reducing proteinuria in patients with diabetic nephropathy. *Kidney Int* 2008, 74(3):364-369.

123. Haller H, Ito S, Izzo JL Jr, Januszewicz A, Katayama S, Menne J, Mimran A, Rabelink TJ, Ritz E, Rump LC, Viberti G: Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. *N Engl J Med* 2011, 364(10):907-917.

124. Galle J, Schwedhelm E, Pinnetti S, Boger RH, Warner C: Antiproteinuric effects of angiotensin receptor blockers: telmisartan versus valsartan in hypertensive patients with type 2 diabetes mellitus and overt nephropathy. *Nephrol Dial Transplant* 2008, 23(10):3174-3183.

125. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais GR: Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. *N Engl J Med* 2000, 342(3):145-153.

126. Mann JF, Schmieder RE, Dyal L, cQueen M, Schumacher H, Pogue J, Wang X, robisfield JL, Avezum A, Cardona-Munoz E, Dagenais GR, Diaz R, Fodor G, Maillon JM, Rydén L, Yu CM, Teo KK, Yusuf S, TRANSCEND (Telmisartan Randomised Assessment Study in ACE Intolerant Subjects with Cardiovascular Disease) Investigators: Effect of telmisartan on renal outcomes: a randomized trial. *Ann Intern Med* 2009, 151(1):1-10.

127. Mann JF, Schmieder RE, McQueen M, Dalal L, Schumacher H, Pogue J, Wang X, Maggioni A, Budaj A, Chaitiraphan S, Dickstein K, Keltai M, Metsarinte K, Oto A, Parkhomenko A, Pievas LS, Swensden TL, Teo KK, Yusuf S: Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. *Lancet* 2008, 372(9638):547-553.

128. Ritz E, Schmieder RE, Pollock CA: Renal protection in diabetes: lessons from ONTARGET. *Cardiovasc Diabetol* 2010, 9:60.

129. Malacco E, Santonastaso M, Varma NA, Gargiulo A, Spagnuolo V, Benocchi F, Palatini P: Comparison of valsartan 160 mg with lisinopril 20 mg, given as monotherapy or in combination with a diuretic, for the treatment of hypertension: the Blood Pressure Reduction and Tolerability of Valsartan in Comparison with Lisinopril (PREVAIL) study. *Clin Ther* 2004, 26(6):855-865.

doi:10.1186/1475-2840-11-32

Cite this article as: Mallat: What is a preferred angiotensin II receptor blocker-based combination therapy for blood pressure control in hypertensive patients with diabetic and non-diabetic renal impairment? *Cardiovascular Diabetology* 2012 11:32.