Research Article

Noncoding RNAs Associated with PPARs in Etiology of MAFLD as a Novel Approach for Therapeutics Targets

Fatemeh Kazeminasab,1 Maryam Baharlooie,2 and Kamran Ghaedi2

1Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Ravand Street, Kashan 87317-35153, Iran
2Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Avenue, Azadi Sq., Isfahan 81746-73441, Iran

Correspondence should be addressed to Fatemeh Kazeminasab; f_kazemi85@yahoo.com

Received 2 March 2022; Revised 25 July 2022; Accepted 27 August 2022; Published 17 September 2022

Academic Editor: Stéphane Mandard

Copyright © 2022 Fatemeh Kazeminasab et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Metabolic associated fatty liver disease (MAFLD) is a complex disease that results from the accumulation of fat in the liver. MAFLD is directly associated with obesity, insulin resistance, diabetes, and metabolic syndrome. PPARγ ligands, including pioglitazone, are also used in the management of this disease. Noncoding RNAs play a critical role in various diseases such as diabetes, obesity, and liver diseases including MAFLD. However, there is no adequate knowledge about the translation of using these ncRNAs to the clinics, particularly in MAFLD conditions. The aim of this study was to identify ncRNAs in the etiology of MAFLD as a novel approach to the therapeutic targets.

Methods. We collected human and mouse MAFLD gene expression datasets available in GEO. We performed pathway enrichment analysis of total mRNAs based on KEGG repository data to screen the most potential pathways in the liver of MAFLD human subjects and mice model, and analyzed pathway interconnections via ClueGO. Finally, we screened disease causality of the MAFLD ncRNAs, which were associated with PPARs, and then discussed the role of revealed ncRNAs in PPAR signaling and MAFLD.

Results. We found 127 ncRNAs in MAFLD which 25 out of them were strongly validated before for regulation of PPARs. With a polypharmacology approach, we screened 51 ncRNAs which were causal to a subset of diseases related to MAFLD.

Conclusion. This study revealed a subset of ncRNAs that could help in more clear and guided designation of preclinical and clinical studies to verify the therapeutic application of the revealed ncRNAs by manipulating the PPARs molecular mechanism in MAFLD.

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is a complex disease that results from the accumulation of fat in the liver. In hepatic steatosis, fat in the form of triglycerides and cholesterol esters accumulate in hepatocytes [1]. NAFLD is also considered a “metabolic disease” since it is closely linked with metabolic disorders, including dyslipidemia, obesity, and type 2 diabetes [2]. The new terminology of NAFLD has been updated as metabolic associated fatty liver disease (MAFLD), which is used in this review article [3]. MAFLD is one of the most common causes of chronic liver disease, histologically classified as simple steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and liver cancer [4]. Prevalence of MAFLD is increasing every year, with 25% of adults worldwide being infected with this disease [5]. MAFLD is directly associated with obesity, insulin resistance (IR), diabetes, and metabolic syndrome [6]. The most important primary risk factors for MAFLD are high cholesterol, obesity, hyperlipidemia, and type 2 diabetes mellitus (T2DM), and other risk factors include hepatitis C and glucocorticoids [7]. Common management of MAFLD is based on the treatment of hepatic metabolic disorders, IR, and lifestyle improvements such as diet and physical activity for
weight loss. PPARγ ligands, including thiazolidinediones (TZD), such as pioglitazone and rosiglitazone are also used to treat this disease [8–10].

The cellular and molecular mechanisms involved in steatosis and MAFLD are not yet fully understood. However, evidence suggests that various factors, including inflammation of adipose tissue, hepatic lipogenesis, IR, mitochondrial abnormalities in the liver cells, and oxidative stress are involved in the progression of steatosis to fibrosis and cirrhosis [11–13].

The liver controls fat homeostasis through complex interactions between hormones, transcription factors, and nuclear receptors. In MAFLD, fat is stored as triglycerides due to molecular pathways. Due to an imbalance between lipid absorption and lipid excretion, fat accumulates in hepatocytes. Pathways such as circulating lipid uptake, fatty acid (FA) oxidation, de novo lipogenesis, and fat export in very-low-density lipoprotein (VLDL) are impaired in MAFLD [14].

In recent studies, a group of noncoding RNAs such as long noncoding RNA (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) has attracted the attention of many researchers due to the regulation of gene transcription. These noncoding RNAs play a critical role in various diseases such as diabetes [15], obesity [16] as well as liver diseases, including MAFLD [17–19].

IncRNAs as a subgroup of ncRNAs with more than 200 nt lengths that modulate the post-transcriptional stages of genes of degradation, splicing, and translation of target genes [20]. LncRNAs also play a key role in regulating epigenetics and gene transcription [21]. The other subgroup of ncRNAs stand small noncoding RNAs consisting of miRNAs and circular RNAs, which also take part in the regulation of target gene expression. miRNAs, mainly suppress gene expression by binding to the 3′-UTR of target mRNAs. On the other hand, circRNAs are known particularly to sponge miRNAs and protect target mRNAs, as lncRNAs also do. Nonetheless, inspecting these ncRNAs function as a network would help us better understand their roles and impact on a particular gene expression phenomenon. The aim of this study was to identify noncoding RNAs, including miRNAs, IncRNAs, and circRNAs in the etiology of MAFLD as novel approaches for therapeutic targets.

2. Methods

2.1. Bioinformatics Screening and Analysis. Articles were searched on PubMed and Google Scholar from 2010 to 2022. The search was performed with the keyword fatty liver disease. We collected human and mouse fatty liver disease gene expression datasets available in Gene Expression Omnibus (GEO) (Table 1), and reanalyzed them to examine and compare them with the pathways. Gene expression data were revealed from literature to explore novel potential interconnections for further studies. We selected datasets regarding human fatty liver disease subjects and mice treated with a high-fat diet developing fatty liver disease. Limma package was used in this tool and the significance threshold of expression changes were indicated with p-value<0.05 in the Benjamini & Hochberg test (false discovery rate).

2.2. Pathway Enrichment and Network ClueGO Analysis. We performed pathway enrichment analysis of total mRNAs using Database for Annotation, Visualization, and Integrated Discovery (DAVID) v6.8 (https://david.ncifcrf.gov/) based on Kyoto Encyclopedia of Genes and Genomes (KEGG) repository data to screen the most potential pathways in NAFLD mice liver. Then, we constructed and visualized the network via the ClueGO app, along with analyzing for protein-protein interactions by Cytoscape software, using interaction scores from STRING DB v11.0 set the threshold to 0.4 interaction score. The flowchart of the study is shown in Figure 1.

2.3. ncRNA-mRNA Collection and Direct Interactions Prediction. In this study, data mining and bioinformatics analyses were used to evaluate if noncoding RNAs associated to MAFLD also target PPARs. We collected and integrated a
list of strongly validated associations of ncRNAs and MAFLD. Then, LncRRIssearch database was used to analyze data of lncRNA-mRNA interaction prediction [22]. With a binding energy threshold of -12 kcal/mol, we queried lncRNAs list to collect direct mRNA targets. We chose this threshold since we preferred to have a wide range of mRNAs for pathway enrichment analysis. Then in order to get an insight to the functions of these mRNA sets, we enriched each total target list in Enrich R tool.

2.4. Disease-Causality Screening. Finally, we screened disease associations of the common ncRNAs between MAFLD and PPARs using HMDD v3.2 (https://www.cuilab.cn/hmdd) and LncRNADisease v2.0 (http://www.rnanut.net/lncrnadisease).

KEGG pathways	Description	False discovery rate
hsa03320	PPAR signaling pathways	0.0340
hsa04920	Adipocytokine signaling pathways	0.0458
hsa05235	PD-L1 expression and PD-1 checkpoint pathways in cancer	0.0458
hsa04974	Protein digestion and absorption	0.0458
hsa04668	TNF signaling pathways	0.0458

Figure 2: KEGG pathway enrichment and protein-protein network of human MAFLD DEGs. (a) Top 5 enriched pathways with significant FDR score and (b) protein-protein network illustrating PPARs signaling genes as red and liver-expressed genes as blue nodes.
Figure 3: ClueGO results of interconnection between pathways in the network of human MAFLD DEGs. Hub pathways are shown as bigger nodes.

Figure 4: ClueGO results of interconnection between pathways in the network of mouse MAFLD DEGs. Hub pathways are shown as bigger nodes.
LncRNAs	Pathways (genes involved with pathways)	
H19	Lysine degradation (KMT2D; SETD1B; KMT2B; SETD1A)	Ras signaling pathway (SYNGAP1; IGF2; KSR2; GN5B; GRIN2B)
	IL-17 signaling pathway (MUC5B; MUC5AC)	Circadian entrainment (GN5B; GRIN2B)
	Lysine degradation (KMT2D; SETD1B; SETD1A)	Circadian entrainment (KCN6; GN5B; GRIN2B)
NEAT1	Ras signaling pathway (SYNGAP1; IGF2; KSR2; GN5B; GRIN2B)	Dopaminergic synapse (KCN6; GN5B; GRIN2B)
	Mature onset diabetes of the young (PDX1)	Peroxisome (MLYC2; PEX26)
	GABAergic synapse (GABBR1; GAD2; CACNA1F)	Beta-alanine metabolism (GAD2; MLYC2)
MEG3	GnRH secretion (GABBR1; CACNA1F)	Arrhythmogenic right ventricular cardiomyopathy (CACNG8; CACNA1F)
	Taurine and hypotaurine metabolism (GAD2)	Ras signaling pathway (FGF17; SYNGAP1; GN5B; GNG13)
HULC	Retrograde endocannabinoid signaling (NDUFA10; GN5B; GNG13)	Gastric cancer (FGF17; MUC2; WNT7B)
	Herpes simplex virus 1 infection (ZNF891; ZNF383; ZNF382; ZNF68; ZNF587; ZNF26; ZNF850)	Chagas disease (SMAD2; GNAI3; CFLAR)
	Bladder cancer (RPS6KA5; MDM2)	Hormonal responses to obesity (FGF17; MUC2; WNT7B)
FTX	Glycosaminoglycan biosynthesis (CHST12; ST3GAL2)	Signaling pathways regulating pluripotency of stem cells (SMAD2; NANO; BMPR1A)
	Hippo signaling pathway (SMAD2; WITP; BMPR1A)	p53 signaling pathway (MDM2; MDM4)
MALAT1	Ras signaling pathway (SYNGAP1; KSR2; GN5B)	IL-17 signaling pathway (MUC5B; MUC5AC)
	Beta-alanine metabolism (GAD2; MLYC2)	Focal adhesion (MYL5; RAP1A; PARVG; ITGA2)
	Arrhythmogenic right ventricular cardiomyopathy (CACNG8; CACNA1F)	Leukocyte transendothelial migration (MYL5; RAP1A; MAPK13)
MAYA	Platelet activation (RAP1A; ITGA2; MAPK13)	Regulation of actin cytoskeleton (NCKAP1; MYL5; ABI2; ITGA2)
AC012668	Spinal cord injury (ATXN3; PSMD11; GRIN2B)	Huntington disease (PSMD11; POLR2A; SDHC; GRIN2B)
	Bladder cancer (CDKN2A; MDM2)	Cell cycle (SMAD2; CDKN2A; MDM2)
	Cellular senescence (SMAD2; CDKN2A; MDM2)	Hepatocellular carcinoma (SMAD2; CDKN2A; IGF2)
CCAT1	Melanoma (CDKN2A; MDM2)	p53 signaling pathway (CDKN2A; DM2)
	Glioma (CDKN2A; MDM2)	Chronic myeloid leukemia (CDKN2A; MDM2)
	Chronic myeloid leukemia (CDKN2A; MDM2)	Pancreatic cancer (SMAD2; CDKN2A)
SNHG20	Maturity onset diabetes of the young (HNF1A)	Phototransduction (SLC24A1; CNGB1)
	Circadian entrainment (RYR1; GRIN2A; GRIN2B)	Nicotine addiction (GRIN2A; GRIN2B)
	Glutamatergic synapse (GRIN2A; GRIN2B; SHANK1)	AMPA signaling pathway (GRIN2A; ATP2B4; GRIN2B; CNGB1)
GM10804	Cocaine addiction (GRIN2A; GRIN2B)	Systemic lupus erythematosus (GRIN2A; CD80; GRIN2B)
	Spinal cord injury (ATXN3; PSMD11; GRIN2B)	Long-term potentiation (GRIN2A; GRIN2B)
	Amphetamine addiction (GRIN2A; GRIN2B)	Neuroblastoma (GRIN2A; GRIN2B)
We set screening criteria including experimental detection method, strong validation assays (such as ChIP, qPCR, Western blot, Luciferase reporter gene assay, Northern blot, and RNAi), a score of 0.5 to 1.0, and excluded noncausal associations. These results could help in more clear and guided designation of preclinical and clinical studies to verify the therapeutic application of the revealed ncRNAs.

2.5. Interaction Network Construction and Analysis. Finally, the resulted causal ncRNAs were used to construct a

Table 2: Continued.

LncRNAs	Pathways (genes involved with pathways)
GAS5	Ras signaling pathway (SYNGAP1; IGF2; KSR2; GNB5)
	Glycerolipid metabolism (GLYCTK; LIPG)
	Cocaine addiction (GRIN2A; DLG4; GRIN2B)
	Glutamatergic synapse (GRIN2A; DLG4; GRIN2B; SHANK1)
CTCFLOS	Nicotine addiction (GRIN2A; GRIN2B)
	Systemic lupus erythematosus (GRIN2A; CD80; GRIN2B)
	Long-term potentiation (GRIN2A; GRIN2B)
	Amphetamine addiction (GRIN2A; GRIN2B)
	Spliceosome (HNRNPA3; FUS; PRPF40B; HNRNPA1)
RP11-484N16.1	Amyotrophic lateral sclerosis (HNRNPA3; FUS; NEFM; HNRNPA1; GRIN2B)
PLATR4	Gastric acid secretion (KCNJ15; MYLK4)

Figure 5: Strongly validated association of ncRNAs and PPARs. ncRNAs that are involved in MAFLD pathophysiology are depicted as bold titles with bordered nodes.

Table 3: Causal LncRNAs and circRNAs associated with fatty liver disease and PPARs.

Causal ncRNAs	Interconnected disease with MAFLD	Strong evidence
H19	Hepatocellular carcinoma	Northern blot/qPCR/RIP/western blot
MALAT1	Hepatocellular carcinoma	Apoptosis assay/Luciferase reporter gene assay/metastasis assay/qPCR/qRT-PCR/transwell assay/western blot/wound healing assay
	Fatty liver disease	qPCR/RIP/western blot
CircRNA_0046366	Fatty liver disease	Luciferase reporter gene assay/qPCR/western blot
CircRNA_0046367	Fatty liver disease	Luciferase reporter gene assay/qPCR/western blot
network for representation of their interactions with the analyzed genes of fatty liver disease. We collected all mRNAs interacting with the causal ncRNAs by the seed region complementarity algorithm of miRNAs-mRNAs interactions in TargetScan Human 7.0 database, CircRNAs-mRNAs interactions in Circ-Interactome (https://circinteractome.nia.nih.gov/), and IncRNAs-mRNAs interactions in LncRRIsearch databases. We selected a subset of top 100 interactions among those that showed above 75% of total score. Then, we applied CytoScape 3.6.1 software to construct and analyze the interactions network based on Degree Centrality parameter.

3. Results

3.1. Genes Screening in GEO. We screened mRNAs from datasets GSE63067 and GSE85439, with differential expression in the liver using Limma package in GEO2R tool, based on criteria of log FC > 0.5, and adj p-value<0.05 for human patients vs. controls, and log FC > 2, and adj p-value<0.05 for mouse high-fat diet (HF) compared to low-fat (LF) diet groups. Moreover, GEO data analysis revealed 444 differentially expressed genes (DEGs) in human MAFLD, as well as 350 DEGs in mice MAFLD.

3.2. Pathway Enrichment and ClueGO Analysis. The most powerfully enriched KEGG pathway in the human MAFLD data was PPAR signaling pathway. Also, this pathway was significantly enriched in mouse MAFLD data, demonstrating its significance in MAFLD molecular pathology. The top three KEGG pathways enriched in human MAFLD data included hsa03320 PPAR signaling pathway, FDR = 0.034; hsa04668 TNF signaling pathway, FDR = 0.0458; and followed by hsa04920 the adipocytokine signaling pathway, FDR = 0.0458 which are all associated with the pathobiology of MAFLD. Figure 2 shows KEGG pathway enrichment and protein-protein network of human MAFLD DEGs. Also, Supplementary Figure 1 shows KEGG pathway enrichment and protein-protein network of mouse MAFLD DEGs.

Nevertheless, ClueGO analysis results of human data revealed that pathways corresponding to adipocytokine signaling pathway, insulin resistance, MAFLD, and T2DM have significant association via an Ontology gene connection with the PPAR signaling pathway as a hub node in the ClueGO pathway. Figures 3 and 4 are shown as ClueGO results of interconnection between pathways in the network of NAFLD DEGs in humans and mice, respectively.

Moreover, ClueGO analysis results of mouse data revealed that pathways corresponding to peroxisome, AMPK signaling, Glycolysis/Gluconeogenesis, Prolactin signaling, and Biosynthesis of unsaturated FAs have major association via an Ontology gene connection with the central axis of the PPAR signaling pathway.

3.3. Noncoding RNA Associated with MAFLD. A list of noncoding RNA associated with MAFLD were identified as 79 miRNAs (Supplementary Table 1), 32 lncRNAs (Supplementary Table 2), and 16 circRNAs (Supplementary Table 4: Causal miRNAs associated with fatty liver disease and PPARs.

Causal miRNAs	Interconnected disease with MAFLD
miR-29a	Hepatocellular carcinoma
miR-122	Hepatocellular carcinoma
miR-21	MAFLD, hepatocellular carcinoma
miR-34a	Liver diseases, MAFLD
miR-451	MAFLD, hepatocellular carcinoma
miR-33a	Fatty liver disease
miR-132	Hepatocellular carcinoma
miR-181a	Hepatocellular carcinoma
miR-222	Fatty liver disease, hepatocellular carcinoma
miR-375	Fatty liver disease, hepatocellular carcinoma
miR-26a	Fatty liver disease, hepatocellular carcinoma
miR-139	Hepatocellular carcinoma, MAFLD
miR-340	Hepatocellular carcinoma
miR-125a	Hepatocellular carcinoma
miR-182	Hepatocellular carcinoma, liver injury
miR-155	Hepatocellular carcinoma
miR-143	Hepatocellular carcinoma
miR-370	Hepatocellular carcinoma, liver cirrhosis
miR-200a	Liver cirrhosis
miR-200b	Hepatocellular carcinoma
miR-99b	Hepatocellular carcinoma
miR-27a	MAFLD, hepatocellular carcinoma
miR-30C	MAFLD
miR-15b	Liver failure
miR-19a	Hepatocellular carcinoma
miR-331	Hepatocellular carcinoma
miR-24	Hepatocellular carcinoma
miR-199a	Hepatocellular carcinoma
miR-145	Hepatocellular carcinoma
miR-223	Hepatocellular carcinoma
miR-144	MAFLD, hepatocellular carcinoma
miR-7	Hepatocellular carcinoma
miR-28	Hepatocellular carcinoma
miR-511	Hepatocellular carcinoma
miR-671	Hepatocellular carcinoma
miR-195	Hepatocellular carcinoma
miR-31	Liver cancer, hepatocellular carcinoma
miR-194	Hepatocellular carcinoma
miR-183	Hepatocellular carcinoma
miR-10b	Hepatocellular carcinoma
let-7a	Hepatocellular carcinoma
miR-217	Hepatocellular carcinoma
miR-106	Hepatocellular carcinoma
miR-124	Hepatocellular carcinoma
miR-301a	Hepatocellular carcinoma
miR-198	Hepatocellular carcinoma
Table 3) associated with fatty liver were listed. The lncRNAs-related pathways and genes are shown in Table 2. Moreover, common noncoding RNAs of MAFLD and PPARs were identified in this study. Figure 5 shows strongly validated associations between ncRNAs and PPARs. Subsequently, they were subjected to assess disease causality features by bioinformatics tools.

3.4. Causal ncRNAs Associated with MAFLD and PPARs. Table 3 shows causal lncRNAs and circRNAs associated with fatty liver disease and PPARs, and Table 4 shows causal miRNAs related to fatty liver disease and PPARs. These miRNAs are validated by strong methods.

3.5. Causal ncRNAs-Fatty Liver mRNAs Interaction Network. A network consisted of 191 Nodes and 203 Edges was constructed. Hub genes and hub ncRNAs based on degree centrality parameter were shown as bigger nodes. MiRNAs, mRNAs, circular RNAs, and lncRNAs are depicted as yellow, green, blue, and turquoise nodes, respectively (Figure 6).

4. Discussion

Retrospective literature mining provided evidence for association of PPARs with pathways of MAFLD. Recently, many efforts have been made to identify MAFLD genes and ncRNAs. Correspondingly, the importance of the PPAR signaling pathway has been recognized and discussed widely. In this pathway, PPARy and PPARα play significant roles in MAFLD development and alleviation. In agreement with previous studies, we identified the PPAR signaling pathways as a hub pathway in MAFLD gene expression data.

Adipocytokines, including tumor necrosis factor-α (TNF-α), resistin, leptin, and adiponectin are secreted from adipose tissue. These molecules act as chemokines for macrophages to accumulate in the adipose tissue. Accordingly, obesity makes a chronic low-grade inflammatory condition that is considered a risk factor for liver diseases [23]. Adipocytokine dysregulation also leads to a decrease in insulin resistance and an increase in proinflammatory cytokines.

Recent studies revealed that there is a crosstalk between adipocytokine and PPAR signaling, in such a way that hepatic lipo-inflammation is modulated by adiponectin-activated PPARs and PPAR-induced adiponectin. The PPARα and PPARy vastly function to reduce inflammation, while PPAR-beta(β) is a potential target for the treatment of insulin resistance [24].

Adiponectin activates hepatic adiponectin Receptor 2, then downstream AMP-activated protein kinase (AMPK) pathway is initiated, and triggers PPAR transcription factors.
This results in the upregulation of genes responsible for ameliorating oxidative status, inflammation, and high levels of triglycerides [25]. Furthermore, adiponectin is one of the upregulated genes by PPARγ agonists, rosiglitazone, and pioglitazone, which are reported to improve IR in diabetic patients [26]. PPARγ in adipocytes modifies target genes involved in fat uptake, lipid storage, the release of insulin-sensitive adipokines, and the production of inflammatory cytokines. PPARγ activation increases fat storage in adipose tissue and enhances insulin sensitivity [27]. The researchers showed that knockdown PPARγ in obese ob/ob mice reduced hepatic triglyceride contents compared to control mice. In this condition, excess fat delivery to other tissues, including the striated muscles, leads to increased insulin resistance and the development of T2DM [28]. On the other hand, studies have reported that PPARγ expression in the liver of patients with MAFLD increases and activates the expression of adipogenic genes and exacerbates hepatic steatosis. It is noteworthy that clinical studies have shown that treatment of fatty liver with TZD reduces hepatic steatosis. The reduction in steatosis is due to the e

Abbreviations

MAFLD: Metabolic associated fatty liver disease
NAFLD: Nonalcoholic fatty liver disease
NASH: Nonalcoholic steatohepatitis
IR: Insulin resistance
TZD: Thiazolidinediones
PPARγ: Peroxisome proliferator-activated receptor gamma
PPARα: Peroxisome proliferator-activated receptor alpha
VLDL: Very-low-density lipoprotein
lncRNAs: Long noncoding RNA
miRNAs: microRNAs
circRNAs: Circular RNAs
FA: Fatty acid
GEO: Gene Expression Omnibus
HF: High-fat diet
LF: Low-fat diet
DAVID: Database for Annotation, Visualization, and Integrated Discovery
KEGG: Kyoto Encyclopedia of Genes and Genomes
T2DM: Type 2 diabetes mellitus
TNF-α: Tumor necrosis factor-α
AMPK: AMP-activated protein kinase
HCC: Hepatocellular carcinoma.

Data Availability

All data generated or analyzed during this study are available upon request.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Supplementary Materials

Supplementary Figure 1: KEGG pathway enrichment and protein–protein network of mouse NAFLD DEGs. A. Top 4 enriched pathways with significant FDR score. B. protein–protein network illustrating PPARs signaling genes as red, metabolic pathway genes as blue, insulin signaling pathway genes as green, and glycolysis/gluconeogenesis genes as yellow nodes. Supplementary Table 1: the summary of fatty liver disease-related miRNAs [34–58], Supplementary Table 2: the summary of fatty liver disease-related lncRNAs [15, 58–87]. Supplementary Table 3: the summary of fatty liver disease-related circRNAs [88–99]. (Supplementary Materials)

References

[1] M. M. Yeh and E. M. Brunt, “Pathology of Nonalcoholic Fatty Liver Disease,” American Journal of Clinical Pathology, vol. 128, no. 5, pp. 837–847, 2007.
[2] Q. Huang, X. Zou, X. Wen, X. Zhou, and L. Ji, “NAFLD or MAFLD: which has closer association with all-cause and cause-specific mortality?—results from NHANES III,” Frontiers in Medicine, vol. 8, 2021.
[3] Z. M. Younossi, M. E. Rinella, A. J. Sanyal et al., “From NAFLD to MAFLD: implications of a premature change in terminology,” Hepatology, vol. 73, no. 3, pp. 1194–1198, 2021.

[4] T. Wong, K. Dang, S. Ladhani, A. K. Singal, and R. J. Wong, “Prevalence of alcoholic fatty liver disease among adults in the United States, 2001-2016,” Jama, vol. 321, no. 17, pp. 1723–1725, 2019.

[5] I. Moghaddasifar, K. B. Lankarani, M. Moosazadeh et al., “Prevalence of non-alcoholic fatty liver disease and its related factors in Iran,” International Journal of Organ Transplantation Medicine, vol. 7, no. 3, p. 149, 2016.

[6] H. Tilg, A. R. Moschen, and M. Roden, “NAFLD and diabetes mellitus,” Nature Reviews Gastroenterology & Hepatology, vol. 14, no. 1, pp. 32–42, 2017.

[7] V. Martín-Domínguez, R. González-Casas, J. Mendoza-Jiménez-Ridruejo, L. García-Buey, and R. Moreno-Otero, “Pathogenesis, Diagnosis and Treatment of Non-alcoholic Fatty Liver Disease,” Revista Espanola de Enfermedades Digestivas, vol. 105, no. 7, pp. 409–420, 2013.

[8] R. Vuppulanchi and N. J. H. Chalasani, “Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: Selected practical issues in their evaluation and management,” Hepatology, vol. 49, no. 1, pp. 306–317, 2009.

[9] S. Shadid and M. D. Jensen, “Effect of pioglitazone on biochemical indices of non-alcoholic fatty liver disease in upper body obesity,” Clinical Gastroenterology and Hepatology, vol. 1, no. 5, pp. 384–387, 2003.

[10] T. A. Le and R. Loomba, “Management of non-alcoholic fatty liver disease and steatohepatitis,” Journal of Clinical and Experimental Hepatology, vol. 2, no. 2, pp. 156–173, 2012.

[11] T. Jelenik, K. Kaul, G. Séquaris et al., “Mechanisms of insulin resistance in primary and secondary nonalcoholic fatty liver,” Diabetes, vol. 66, no. 8, pp. 2241–2253, 2017.

[12] S. H. Caldwell, R. H. Swerdlow, E. M. Khan et al., “Mitochondrial abnormalities in non-alcoholic steatohepatitis,” Journal of Hepatology, vol. 31, no. 3, pp. 430–434, 1999.

[13] J. Du Plessis, J. Van Felt, H. Korf et al., “Association of adipose tissue inflammation with histologic severity of nonalcoholic fatty liver disease,” Gastroenterology, vol. 149, no. 3, pp. 635–648.e14, 2015.

[14] L. P. Bechmann, R. A. Hannivoort, G. Gerken, G. S. Hotamisligil, M. Trauner, and A. Canbay, “The interaction of hepatic lipid and glucose metabolism in liver diseases,” Journal of Hepatology, vol. 56, no. 4, pp. 952–964, 2012.

[15] F. Kazeminasab, S. M. Marandi, M. Baharlooie, M. H. Nasr-Esfahani, and K. Ghaedi, “Modulation and bioinformatic screening of hepatic miRNA-lncRNAs (HML) network associated with insulin resistance in prediabetic and exercised mice,” Nutrition & Metabolism, vol. 18, no. 1, pp. 1–16, 2021.

[16] F. Rey, V. Urrata, L. Gilardini et al., “Role of long non-coding RNAs in adipogenesis: State of the art and implications in obesity and obesity-associated diseases,” Obesity Reviews, vol. 22, no. 7, article e13203, 2021.

[17] M. Matboli, S. H. Gadallah, W. M. Rashed et al., “miRNA-miRNA-lncRNA Regulatory Network in Nonalcoholic Fatty Liver Disease,” International Journal of Molecular Sciences, vol. 22, no. 13, p. 6770, 2021.

[18] J. K. DiStefano and G. S. Gerhard, “Long noncoding RNAs and human liver disease,” Annual Review of Pathology: Mechanisms of Disease, vol. 17, 2022.

[19] A. G. Shabgah, F. Norouzi, M. Hedayati-Moghadam, D. Soleimani, N. Pahlavani, and J. G. Navashesag, “A comprehensive review of long non-coding RNAs in the pathogenesis and development of non-alcoholic fatty liver disease,” Nutrition & Metabolism, vol. 18, no. 1, pp. 1–15, 2021.

[20] G. Pisignano and M. Ladomery, “Post-Transcriptional Regulation through Long Non-Coding RNAs (lncRNAs),” Non-coding RNA, vol. 7, no. 2, p. 29, 2021.

[21] K. M. Heyt and J. J. T. N. Thakur, “Regulation of epigenetic processes by non-coding RNAs,” The Nucleus, vol. 64, no. 3, pp. 285–301, 2021.

[22] T. Fukunaga, J. Iwakiri, Y. Ono, and M. Hamada, “LncRRI-search: a web server for lncRNA-lncRNA interaction prediction integrated with tissue-specific expression and subcellular localization data,” Frontiers in Genetics, vol. 10, p. 462, 2019.

[23] Y. Kamada, T. Takehara, and N. Hayashi, “Adipocytokines and liver disease,” Journal of Gastroenterology, vol. 43, no. 11, pp. 811–822, 2008.

[24] L. Salvadó, E. Barroso, A. M. Gómez-Foix et al., “PPARβ/δ prevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism,” Diabetologia, vol. 57, no. 10, pp. 2126–2135, 2014.

[25] S. M. Ištiaq, H. Rashid, Z. Hussain, M. I. Arshad, and J. A. Khan, “Adiponectin and PPAR: a setup for intricate crosstalk between obesity and non-alcoholic fatty liver disease,” Reviews in Endocrine and Metabolic Disorders, vol. 20, no. 3, pp. 253–261, 2019.

[26] A. A. Ghadge, A. A. Khaire, and A. A. Kuvalake, “Adiponectin: a potential therapeutic target for metabolic syndrome,” Cytokine & Growth Factor Reviews, vol. 39, pp. 151–158, 2018.

[27] J. Skat-Rørdam, D. Højland Ipsen, J. Lykkefeldt, and P. Tveden-Nyborg, “A role of peroxisome proliferator-activated receptor γ in non-alcoholic fatty liver disease,” Basic & Clinical Pharmacology & Toxicology, vol. 124, no. 5, pp. 528–537, 2019.

[28] K. Matusue, M. Haluzik, G. Lambert et al., “Liver-specific disruption of PPARγ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes,” The Journal of Clinical Investigation, vol. 111, no. 5, pp. 737–747, 2003.

[29] T. Hashimoto, W. S. Cook, C. Qi, A. V. Yeldandi, J. K. Reddy, and M. S. Rao, “Defect in Peroxisome Proliferator-activated Receptor α-inducible Fatty Acid Oxidation Determines the Severity of Hepatic Steatosis in Response to Fasting,” Journal of Biological Chemistry, vol. 275, no. 37, pp. 28918–28928, 2000.

[30] J. Xu, G. Xiao, C. Trujillo et al., “Peroxisome Proliferator-activated Receptor α (PPARα) Influences Substrate Utilization for Hepatic Glucose Production,” Journal of Biological Chemistry, vol. 277, no. 52, pp. 50237–50244, 2002.

[31] B. Staels, A. Rubenstrunk, B. Noel et al., “Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis,” Hepatology, vol. 58, no. 6, pp. 1941–1952, 2013.

[32] I. Frades, E. Andreasson, J. M. Mato, E. Alexandersson, R. Matthiasen, and M. L. Martínez-Chantar, “Integrative genomic signatures of hepatocellular carcinoma derived from non-alcoholic fatty liver disease,” PLoS One, vol. 10, no. 5, article e0124544, 2015.

[33] L. Yang, P. Li, W. Yang et al., “Integrative transcriptome analyses of metabolic responses in mice define pivotal LncRNA
metabolic regulators," *Cell Metabolism*, vol. 24, no. 4, pp. 627–639, 2016.

[34] H.-Y. Lin, Y. L. Yang, P. W. Wang, F. S. Wang, and Y. H. Huang, "The emerging role of microRNAs in NAFLD: high-light of microRNA-29a in modulating oxidative stress, Inflammation, and Beyond," *Cells*, vol. 9, no. 4, p. 1041, 2020.

[35] H. Xu, Y. Tian, D. Tang et al., "An endoplasmic reticulum stress–microRNA-26a feedback circuit in NAFLD," *Hepatology*, vol. 73, no. 4, pp. 1327–1345, 2021.

[36] M. Zhang, Y. Tang, E. Tang, and W. Lu, "MicroRNA-103 represses hepatic de novo lipogenesis and alleviates NAFLD via targeting FASN and SCD1," *Biochemical and Biophysical Research Communications*, vol. 524, no. 3, pp. 716–722, 2020.

[37] M. Gjorgjieva, C. Sobolewski, D. Dolicka, M. C. de Sousa, and M. G. Flynn, "A micro-RNA expression signature for human NAFLD progression," *Journal of Gastroenterology*, vol. 51, no. 10, pp. 1022–1030, 2016.

[38] C. J. Pirola, T. Fernández Gianotti, G. O. Castaño et al., "Hepatic lipid metabolism and alleviates NAFLD via repressing FAS and SCD1," *Scientific Reports*, vol. 7, no. 1, pp. 1–10, 2017.

[39] M. López-Riera, I. Conde, G. Quintas et al., "Non-invasive prediction of NAFLD severity: a comprehensive, independent validation of previously postulated serum microRNA biomarkers," *Scientific Reports*, vol. 8, no. 1, pp. 1–15, 2018.

[40] A. Baranova, D. Maltsева, and A. Tonevitsky, "Adipose may actively delay progression of NAFLD by releasing tumor-suppressing, anti-fibrotic miR-122 into circulation," *Obesity Reviews*, vol. 20, no. 1, pp. 108–118, 2019.

[41] Y. Tian, M. Mok, P. Yang, and A. Cheng, "Epigenetic activation of Wnt/β-Catenin signaling in NAFLD-associated hepatocarcinogenesis," *Cancers*, vol. 8, no. 8, p. 76, 2016.

[42] C. Y. Lai, K. Y. Yeh, C. Y. Lin et al., "MicroRNA-21 plays multiple oncometabolic roles in the process of NAFLD-related hepatocellular carcinoma via PI3K/AKT, TGF-β, and STAT3 signaling," *Cancers*, vol. 13, no. 5, p. 940, 2021.

[43] A. Turchinovich, A. Baranova, O. Drapkina, and A. Tonevitsky, "Cell-free circulating nucleic acids as early biomarkers for NAFLD and NAFLD-associated disorders," *Frontiers in Physiology*, vol. 9, p. 1256, 2018.

[44] E. Raidoharju, I. Seppälä, L. P. Lyytkäinen et al., "Blood hsa-miR-122-5p and hsa-miR-885-5p levels associate with fatty liver and related lipoprotein metabolism–The Young Finns Study," *Scientific Reports*, vol. 6, no. 1, pp. 1–13, 2016.

[45] C. J. Pirola, T. Fernández Gianotti, G. O. Castaño et al., "Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis," *Gut*, vol. 64, no. 5, pp. 800–812, 2015.

[46] Y. Tan, G. Ge, T. Pan, D. Wen, and J. Gan, "A pilot study of serum microRNAs panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease," *PloS One*, vol. 9, no. 8, article e105192, 2014.

[47] Y. He, S. Hwang, Y. Cai et al., "MicroRNA-223 ameliorates nonalcoholic steatohepatitis and cancer by targeting multiple inflammatory and oncogenic genes in hepatocytes," *Hepatology*, vol. 70, no. 4, pp. 1150–1167, 2019.

[48] P. Dongiovanni, M. Meroni, M. Longo, S. Fargion, and A. L. Fracanzani, "miRNA signature in NAFLD: a turning point for a non-invasive diagnosis," *International Journal of Molecular Sciences*, vol. 19, no. 12, p. 3966, 2018.

[49] A. J. Tijsen, I. van der Made, M. M. van den Hoogenhof et al., "The microRNA-15 family inhibits the TGFβ-pathway in the heart," *Cardiovascular Research*, vol. 104, no. 1, pp. 61–71, 2014.

[50] G. Szabo and T. Csk, "Role of MicroRNAs in NAFLD/NASH," *Digestive Diseases and Sciences*, vol. 61, no. 5, pp. 1314–1324, 2016.

[51] G. A. Michelotti, M. V. Machado, and A. M. Diehl, "NAFLD, NASH and liver cancer," *Nature Reviews Gastroenterology & Hepatology*, vol. 10, no. 11, pp. 656–665, 2013.

[52] Y. Guo, Y. Xiong, Q. Sheng, S. Zhao, J. Wattacheril, and C. R. Flynn, "A micro-RNA expression signature for human NAFLD progression," *Journal of Gastroenterology*, vol. 51, no. 10, pp. 1022–1030, 2016.

[53] J. H. Pan, H. Cha, J. Tang et al., "The role of microRNA-33 as a key regulator in hepatic lipogenesis signaling and a potential serological biomarker for NAFLD with excessive dietary fructose consumption in C57BL/6N mice," *Food & Function*, vol. 12, no. 2, pp. 656–667, 2021.

[54] N. Sudom, G. Kumar, S. L. Bojja, N. Kumar, and C. M. Rao, "Epigenetics in NAFLD/NASH: Targets and therapy," *Pharmacological Research*, vol. 167, article 105484, 2021.

[55] Q. Su, Y. Kumar, N. Sud, and R. L. Mahato, "MicroRNAs in the pathogenesis and treatment of progressive liver injury in NAFLD and liver fibrosis," *Advanced Drug Delivery Reviews*, vol. 129, pp. 54–63, 2018.

[56] G. Szabo, "Exosomes and MicroRNA-223 at the Intersection of Inflammation and Fibrosis in NAFLD," *Hepatology (Baltimore, Md).* vol. 74, no. 1, p. 5, 2021.

[57] J. Liu, T. Tang, G. D. Wang, and B. Liu, "LncRNA-H19 promotes hepatic lipogenesis by directly regulating miR-130a/PPARγ axis in non-alcoholic fatty liver disease," *Bioscience Reports*, vol. 39, no. 7, 2019.

[58] X. Wang, "Down-regulation of IncRNA-NEAT1 alleviated the non-alcoholic fatty liver disease via mTOR/S6K1 signaling pathway," *Journal of Cellular Biochemistry*, vol. 119, no. 2, pp. 1567–1574, 2018.

[59] X. Chen, X. R. Tan, S. J. Li, and X. Z. Xiang, "LncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ROCK1 in nonalcoholic fatty liver disease," *Life Sciences*, vol. 235, article 116829, 2019.

[60] Y. Sun, Y. Song, C. Liu, and J. Geng, "LncRNA NEAT1-MicroRNA-140 axis exacerbates nonalcoholic fatty liver through interrupting AMPK/SREBP-1 signaling," *Biochemical and Biophysical Research Communications*, vol. 516, no. 2, pp. 584–590, 2019.

[61] S. S. Jin, X. F. Lin, J. Z. Zheng, Q. Wang, and H. Q. Guan, "IncRNA NEAT1 regulates fibrosis and inflammatory response induced by nonalcoholic fatty liver by regulating miR-506/GLI3," *European Cytokine Network*, vol. 30, no. 3, pp. 98–106, 2019.

[62] M. J. Hu, M. Long, and R. J. Dai, "Acetylation of H3K27 activated IncRNA NEAT1 and promoted hepatic lipid accumulation in non-alcoholic fatty liver disease via regulating miR-212-5p/GRIA3," *Molecular and Cellular Biochemistry*, vol. 477, no. 1, pp. 191–203, 2021.

[63] X. Chen, Y. Xu, D. Zhao et al., "LncRNA-AK012226 Is Involved in Fat Accumulation in db/db Mice Fatty Liver and Non-alcoholic Fatty Liver Disease Cell Model," *Frontiers in Pharmacology*, vol. 9, p. 888, 2018.
[65] P. Huang, F. Z. Huang, H. Z. Liu, T. Y. Zhang, M. S. Yang, and C. Z. Sun, "LncRNA MEG3 functions as a ceRNA in regulating hepatic lipogenesis by competitively binding to miR-21 with LRP6," *Metabolism*, vol. 94, pp. 1–8, 2019.

[66] X. Shen, H. Guo, J. Xu, and J. Wang, "Inhibition of IncRNA HULC improves hepatic fibrosis and hepatocyte apoptosis by inhibiting the MAPK signaling pathway in rats with nonalcoholic fatty liver disease," *Journal of Cellular Physiology*, vol. 234, no. 10, pp. 18169–18179, 2019.

[67] M. Ma, R. Duan, L. Shen et al., "The IncRNA Gm15622 stimulates SREBP-1c expression and hepatic lipid accumulation by sponging the miR-742-3p in mice [S]," *Journal of Lipid Research*, vol. 61, no. 7, pp. 1052–1064, 2020.

[68] T. T. Ma, C. Huang, Y. Ni, Y. Yang, and J. Li, "ATP citrate lyase and LncRNA NONMMUT10685 play crucial role in nonalcoholic fatty liver disease based on analysis of microarray data," *Cellular Physiology and Biochemistry*, vol. 51, no. 2, pp. 871–885, 2018.

[69] H. Wu, Z. Zhong, A. Wang et al., "LncRNA FTX represses the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma via regulating the M1/M2 polarization of Kupffer cells," *Cancer Cell International*, vol. 20, pp. 1–11, 2020.

[70] F. Leti, C. Legendre, C. D. Still et al., "Altered expression of MALAT1 IncRNA in nonalcoholic steatohepatitis fibrosis regulates CXCL5 in hepatic stellate cells," *Translational Research*, vol. 190, p. 25, 2017.

[71] P. Yuan, X. Qi, A. Song et al., "LncRNA MAYA promotes iron overload and hepatocyte senescence through inhibition of YAP in non-alcoholic fatty liver disease," *Journal of Cellular and Molecular Medicine*, vol. 25, no. 15, pp. 7354–7366, 2021.

[72] Y. Chen, X. Chen, J. Gao et al., "Long noncoding RNA FLRL2 alleviated nonalcoholic fatty liver disease through Arntl-Sirt1 pathway," *The FASEB Journal*, vol. 33, no. 10, pp. 11411–11419, 2019.

[73] L. Ye, D. Zhao, Y. Xu et al., "LncRNA-Gm9795 promotes inflammation in non-alcoholic steatohepatitis via NF-κB/NFκB pathway by endoplasmic reticulum stress," *Journal of Translational Medicine*, vol. 19, pp. 1–15, 2021.

[74] Y. Chi, Z. Gong, H. Xin, Z. Wang, and Z. Liu, "Long noncoding RNA IncARSR promotes nonalcoholic fatty liver disease and hepatocellular carcinoma by promoting YAP1 and activating the IRS2/AKT pathway," *Journal of Translational Medicine*, vol. 18, pp. 1–11, 2020.

[75] M. Zhang, X. Chi, N. Qu, and C. Wang, "Long noncoding RNA IncARSR promotes hepatic lipogenesis via Akt/SREBP-1c pathway and contributes to the pathogenesis of nonalcoholic steatohepatitis," *Biochemical and Biophysical Research Communications*, vol. 499, no. 1, pp. 66–70, 2018.

[76] R. Albadawy, S. H. A. Agwa, E. Khairy et al., "Clinical significance of HSPD1/MMP14/ITGB1/miR-6881-5p/Lnc-SPARC1-1:2 RNA panel in NAFLD/NASH Diagnosis: Egyptian Pilot Study," *Biomedicines*, vol. 9, no. 9, p. 1248, 2021.

[77] G. Chen, D. Yu, X. Nian et al., "LncRNA SRA promotes hepatic steatosis through repressing the expression of adipose triglyceride lipase (ATGL)," *Scientific Reports*, vol. 6, pp. 1–13, 2016.

[78] Q. Zhang, J. Wang, H. Li et al., "LncRNA Gm12664–001 ameliorates nonalcoholic fatty liver through modulating miR-295-5p and CAV1 expression," *Nutrition & Metabolism*, vol. 17, pp. 1–8, 2020.

[79] X. Chen, H. Ma, Y. Gao et al., "Long non-coding RNA AC012668 suppresses non-alcoholic fatty liver disease by competing for microRNA miR-380-5p with lipoprotein-related protein LRP2," *Bioengineered*, vol. 12, no. 1, pp. 6738–6747, 2021.

[80] F. Huang, H. Liu, Z. Lei et al., "Long noncoding RNA CCAT1 inhibits miR-613 to promote nonalcoholic fatty liver disease via increasing LXR transcription," *Journal of Cellular Physiology*, vol. 235, no. 12, pp. 9819–9833, 2020.

[81] B. Wang, X. Li, W. Hu, Y. Zhou, and Y. Din, "Silencing of IncRNA SNHG20 delays the progression of nonalcoholic fatty liver disease to hepatocellular carcinoma via regulating liver Kupffer cells polarization," *IUBMB Life*, vol. 71, no. 12, pp. 1952–1961, 2019.

[82] T. Li, X. Huang, Z. Yue, L. Meng, and Y. Hu, "Knockdown of long non-coding RNA Gm10804 suppresses disorders of hepatic glucose and lipid metabolism in diabetes with non-alcoholic fatty liver disease," *Cell Biochemistry and Function*, vol. 38, no. 7, pp. 839–846, 2020.

[83] M. H. Han, J. H. Lee, G. Kim et al., "Expression of the long noncoding RNA GASS correlates with liver fibrosis in patients with nonalcoholic fatty liver disease," *Genes*, vol. 11, no. 5, pp. 545, 2020.

[84] B. Zhang, H. Li, D. Li, H. Sun, M. Li, and H. Hu, "Long noncoding RNA Mirt2 upregulates USP10 expression to suppress hepatic steatosis by sponging miR-34a-5p," *Gene*, vol. 700, pp. 139–148, 2019.

[85] X. Lan, L. Wu, N. Wu et al., "Long noncoding RNA Inc-HC regulates PPARy-mediated hepatic lipid metabolism through miR-130b-3p," *Molecular Therapy-Nucleic Acids*, vol. 18, pp. 954–965, 2019.

[86] B. Atanasovska, S. S. Rensen, M. R. van der Sijde et al., "A liver-specific long noncoding RNA with a role in cell viability is elevated in human nonalcoholic steatohepatitis," *Hepatology*, vol. 66, no. 3, pp. 794–808, 2017.

[87] Y. Lin, S. Wang, L. Gao et al., "Oscillating IncRNA Pltr4 regulates NLRP3 inflammasome to ameliorate nonalcoholic steatohepatitis in mice," *Theranostics*, vol. 11, no. 1, pp. 426–444, 2021.

[88] X.-Y. Guo, C. X. He, Y. Q. Wang et al., "Circular RNA profiling and bioinformatic modeling identify its regulatory role in hepatic steatosis," *BioMed Research International*, vol. 2017, Article ID 5936171, 13 pages, 2017.

[89] X.-Y. Guo, F. Sun, J. N. Chen, Y. Q. Wang, Q. Pan, and J. G. Fan, "circRNA_0046366 inhibits hepatocellular steatosis by normalziation of PPAR signaling," *World Journal of Gastroenterology*, vol. 24, no. 3, pp. 323–337, 2018.

[90] X.-Y. Guo, J. N. Chen, F. Sun, Y. Q. Wang, Q. Pan, and J. G. Fan, "circRNA_0046367 prevents hepatotoxicity of lipid peroxidation: an inhibitory role against hepatic steatosis," *Oxidative Medicine and Cellular Longevity*, vol. 2017, Article ID 3960197, 16 pages, 2017.

[91] X. Yuan, J. Diao, A. du, S. Wen, L. Zhou, and Y. Pan, "Circular RNA expression profiles and features in NAFLD mice: a study using RNA-seq data," *Journal of Translational Medicine*, vol. 18, no. 1, pp. 1–12, 2020.

[92] P. Li, K. Shan, Y. Liu, Y. Zhang, L. Xu, and L. Xu, "CircScd1 promotes fatty liver disease via the Janus kinase 2/signal transducer and activator of transcription 5 pathway," *Digestive Diseases and Sciences*, vol. 64, no. 1, pp. 113–122, 2019.

[93] X. Jin, J. Gao, R. Zheng et al., "Antagonizing circRNA_002581-miR-122-CPEB1 axis alleviates NASH through..."
restoring PTEN–AMPK–mTOR pathway regulated autophagy,” *Cell Death & Disease*, vol. 11, no. 2, pp. 1–13, 2020.

[94] Q. Ou, Y. Zhao, J. Zhou, and X. Wu, “Comprehensive circular RNA expression profiles in a mouse model of nonalcoholic steatohepatitis,” *Molecular Medicine Reports*, vol. 19, no. 4, pp. 2636–2648, 2019.

[95] X. Jin, C. Y. Feng, Z. Xiang, Y. P. Chen, and Y. M. Li, “CircRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of nonalcoholic steatohepatitis,” *Oncotarget*, vol. 7, no. 41, pp. 66455–66467, 2016.

[96] L. Zhu, T. Ren, Z. Zhu et al., “Thymosin-β4 mediates hepatic stellate cell activation by interfering with CircRNA-0067835/miR-155/FoxO3 signaling pathway,” *Cellular Physiology and Biochemistry*, vol. 51, no. 3, pp. 1389–1398, 2018.

[97] X. Chen, H. D. Li, F. T. Bu et al., “Circular RNA circFBXW4 suppresses hepatic fibrosis via targeting the miR-18b-3p/ FBXW7 axis,” *Theranostics*, vol. 10, no. 11, pp. 4851–4870, 2020.

[98] W. Yang, J. Zhao, Y. Zhao et al., “Hsa_circ_0048179 attenuates free fatty acid-induced steatosis via hsa_circ_0048179/miR-188-3p/GPX4 signaling,” *Aging (Albany NY)*, vol. 12, no. 23, article 23996, 2020.

[99] X. Chen, Q. Q. Tan, X. R. Tan, S. J. Li, and X. X. Zhang, “Circ_0057558 promotes nonalcoholic fatty liver disease by regulating ROCK1/AMPK signaling through targeting miR-206,” *Cell Death & Disease*, vol. 12, no. 9, pp. 1–12, 2021.