Neonatal Deletion and Selective Expansion of Mouse T Cells by Exposure to Rabies Virus Nucleocapsid Superantigen

By Monique Lafon, Daniel Scott-Algara,* Patrice N. Marche, Pierre-André Cazenave, and Evelyne Jouvin-Marche

From Unité de la Rage, Unité d’Immunohématologie et d’Immunopathologie,* Unité d’Immunochimie Analytique,† CNRS UA 359, Institut Pasteur, 75724 Paris Cedex 15, France

Summary

The nucleocapsid (NC) of the rabies virus behaves as an exogenous superantigen (SAg) in humans. In the present report, we analyzed whether it is also a SAg in mice by studying the effect of NC on T cell receptor (TCR) Vβ expression in BALB/c mice. Repeated injection of NC in newborn BALB/c mice led to a marked reduction by two- to sixfold of Vβ6 expressing CD4+ T cells in spleen and in peripheral blood. Decrease of Vβ6-expressing CD3+ mature T cells was also observed in thymus. Single NC injection in footpad resulted in a three- to sixfold expansion of Vβ6 CD4+ T cells, but not of CD8+ T cells, in the draining lymph nodes of BALB/c mice. The intensity of the stimulation was dose dependent and was maximal 3 d after the NC injection. The clonal deletion of T cells bearing a particular Vβ demonstrates that NC is a SAg in mice. T cells, especially CD4+ T cells, are an essential factor in host resistance to rabies virus and also in the pathophysiology of paralysis; thus, we postulate that a rabies virus component, which stimulates T cells, such as a SAg, may increase virus immunopathogenicity. To evaluate this hypothesis, we compared the course of rabies in adult BALB/c lacking Vβ6, 7, 8.1, and 9 T cells and in normal BALB/c. Immune-related paralysis was decreased in BALB/c missing the NC target VβT cells. Transfer of Vβ6 but not of Vβ8.1-3 T cells into recipient mice lacking Vβ6, 7, 8.1, and 9 allowed the immune-related paralysis to evolve. Taken together, these results strongly support the hypothesis that T cells expressing rabies SAg-specific Vβ6 T cells, are involved in the genesis of the immunopathology that is characteristic of paralytic rabies.

Superantigens (SAgs) are defined by the capacity to stimulate a large fraction of T cells predominantly on the basis of the Vβ elements of the TCR (1). Unlike conventional antigens, they do not require antigen processing and bind outside the peptide binding groove by clamping the MHC class II and the TCR molecules (2, 3). The best studied SAgs are the bacterial enterotoxins produced by Staphylococcus aureus, the most potent T cell activators known so far (4). SAgs are also produced by other bacteria, mycoplasma (4, 5), and have been found to be encoded by exogenous and endogenous mouse mammary tumor retroviruses (MMTVs and MtvS, respectively) (6–8). Retroviruses are known to be potentially severe immunopathological agents. This fact has spurred the search for new superantigens of viral origin in humans. Although SAg-like properties have been suggested for HIV-1 (3, 9) this remains controversial (10). To date, the only viral SAg described in humans is the rabies virus nucleocapsid (NC) and its major component, the N protein (11). NC consists of a viral strand of RNA covered with the three rabies viral core proteins, N, NS, and L. NC can bind to MHC class II molecules without processing and can stimulate in vitro Vβ8 human T lymphocytes (11).

When SAgs are encountered during T cell development, they induce a decrease of reactive T cells by clonal deletion or by anergy (12, 13, 14). Vβ-specific deletions occur in mouse pups due to the integration in the germ line of endogenous SAg encoded by Mtv provirus (15, 16) or due to infection by MMTVs present in the milk (17, 18). Injection of the exogenous SAg staphylococcal enterotoxin B (SEB) into newborn animals also leads to clonal deletion (19). However, before deletion, SAgs usually induce expansion of the target T cells bearing specific Vβ. This was the case for exogenous SAgs encoded by MMTV(SW) or for endogenous Mtv-8 and -9 SAgs (6, 20). Expansion or deletion of entire Vβ subsets by a SAg is likely to exert a dramatic effect on pathogenesis of infection and host defense mechanisms and therefore on the outcome of infection. It has been shown that clonal dele-
Materials and Methods

Rabies Virus. Rabies virus infects almost all mammals including laboratory mice to which rabies virus strains have been adapted. T cells, especially CD4+ T cells, are an essential factor in host resistance to rabies virus (25) and also in the appearance of paralysis which is thought to be an inopportune consequence of the immune response (26, 27). Since SAg stimulates T cells, it could be expected that a rabies SAg could activate the immune process and thus exacerbate the physiopathological sequelae. An animal model is required to test this hypothesis.

In this work, we tested whether the NC SAg properties, already established in vitro with human T cells, existed also in mice. To do this, we analyzed whether NC can induce the expansion and the deletion of particular Vβ T cells in BALB/c mice. Then, we studied the role of NC-specific Vβ T lymphocytes in the development of the clinical syndrome of immune-related paralysis.

Rabies NC. NC was purified from rabies virus–infected hamster kidney cells clone SR (BSR) cell lysates through CsCl gradients as previously described (28). Cell cultures and virus seed lots were found to be mycoplasma free by specific hybridization, DNA staining and agarose isolation techniques.

Mice. Three types of mice were used in these experiments: (a) female BALB/c (H-2d, I-E+, Vβ3, 5, and 11 deleted) purchased from Janvier (St-Berthevin, France); (b) congenic BALB/D2 (H-2d, I-E+, Vβ3, 5, and 9 deleted) (29), a gift from Martine Brulay-Rosset (Villejuif, France); and (c) female BALB/c (H-2d, I-E+, Vβ3, 5, and 11 deleted) pur- chased from IFFA-Credo (l’Arbresle, France); and (c) female BALB/c (H-2d, I-E+, Mlsla: VB6, 7, 8.1, and 9 deleted) (29), a gift from J. Rolland, Institut Pasteur, Paris, France. Cells were analyzed in a FACScan® cytofluorometer (Becton Dickinson Co., Mountain View, CA). Mature thymocytes and blast LNCs were gated by forward and side-scatter analysis.

Infection of Mice with Rabies Virus. Mice were injected intramuscularly (i.m.) with 1 x 10⁷ infectious particles of rabies virus Pasteur Virus strain (PV4) in both hind legs. Signs of weakness and paralysis and death were recorded every day up to 16 d after the virus injection. Weakness was determined by measuring the animal’s ability to support its body weight with its hind legs. Paralysis was defined as a total loss of hind leg motility. In the rare cases of death, death by rabies was verified by checking for the presence of rabies virus in brains using immunofluorescence technique.

Table 1. Vβ-specific Monoclonal Antibodies

Vβ	Name	Species	Reference
2	B20.6	Rat	39
3	KJ25	Hamster	40
4	KT4	Rat	41
5	MR9-4	Mouse	42
6	RR4-7	Rat	43
7	TR31O	Rat	44
8.1,2	KJ16	Rat	45
8.1,2,3	F23.1	Mouse, C57L/J	46
9	MR10-2	Mouse, SWR	47
10	B21.5	Rat	39
11	RR3-15	Rat	48
14	I4.2	Rat	49
17	KJ23a	Mouse, SWR	1
Statistical Analysis. Differences between groups were analyzed using appropriate frequency analyses including student’s t-test and chi-square calculations.

Results

Neonatal Deletion in Newborn Mice. To assess the SAg property of rabies NC in mice, we searched for clonal deletions of T cells expressing particular Vβ after neonatal injection. Percentages of T cells expressing Vβ2 to 11, and 14 in thymus and spleen of both control and NC-injected animals were estimated by cytofluorometry. In thymus, 6 wk after birth, the Vβ6 CD3+ T cells from NC-injected mice showed a decrease compared to controls (Fig. 1, compare B and A). In spleen, 5 wk after birth, the number of CD4+ T cells expressing Vβ6 drops almost completely in the NC-injected compared to normal mice (Fig. 1, compare D with C). Means of percentages of T cells expressing Vβ2 to 11 and 14 are shown in Fig. 2. In thymus, (Fig. 2 A), a significant drop of Vβ6 in NC-treated animals occurred (t = 5.48, degree of freedom [df] = 8, and p = 0.0006) whereas the drop in Vβ7 NC-treated CD4+ T cells was not significant. In thymus, (Fig. 2 B) the percentage of Vβ6 was significantly reduced in NC-treated animals compared to sham-injected animals (t = 4.52, df = 5, p = 0.0062) whereas the drop of Vβ2 and Vβ7 CD3+ thymocytes was not significantly altered in comparison with normal littermates. The percentages of the other Vβ were not modified, although the total number of mature thymocytes was slightly lower in NC-injected animals (60%) compared to controls (80%) (Fig. 1, compare A and B). In summary, these results demonstrated that neonatal injections of NC induce deletions of Vβ6 CD3+ T cells in thymus.

Kinetics of Deletion in Newborn BALB/c Mice. The kinetics of the NC-specific Vβ6 deletion were studied in the thymus
Figure 3. Kinetic of Vβ6 neonatal deletion in CD4⁺ splenocytes and circulating lymphocytes and in CD3⁺ thymocytes of BALB/c mice. Time course of Vβ6 percentages was followed 4–6, 9, and 11 weeks after birth in (A) CD4⁺ splenocytes, (B) circulating lymphocytes, and (C) CD3⁺ thymocytes of NC-injected mice (○) or control mice (*). Values are means +/- SD of percentages obtained for 4–2 mice (SPLLEEN and THYMUS) or values are percentages of pooled circulating lymphocytes taken from four mice (BLOOD).
Selective Expansion of Vβ6 and Vβ7 Expressing T Cells in Adult BALB/c Mice by NC Inoculation. To analyze whether NC preferentially expands particular Vβs, we used the local injection technique which leads to a very strong T cell proliferation in the draining LNs. Adult BALB/c, 8–11-wk-old mice, free of exogenous MMTV(SW), were given footpad injections of NC, CFA, or medium alone. 3 d after NC injection, the popliteal LNs of NC-injected mice increased in size about fivefold in comparison with LNs of naive, medium-injected mice. This increase was also observed after CFA injection but not after injection of medium alone. Popliteal LNs from both legs of NC- or CFA-injected mice, were removed and the percentages of CD4+ LNCs bearing Vβ2, 4, 6–8, 10, or 14 were estimated by cytofluorometry. Analysis of the size and granulometry indicated that the LN population obtained from control animals is homogeneous and is exclusively composed of resting lymphocytes. In contrast, activation with NC, in the test group, or CFA, in the control group, was characterized by the appearance of a blast population. Percentages of Vβs obtained in CFA blasts were similar to those obtained in resting LNCs of naive mice (data not shown), indicating that the Vβ repertoire is not modulated by a non-specific inflammatory process. As shown in Fig. 4, the number of CD4+ blasts expressing Vβ6 increased significantly from 9.6 ± 1.7% in CFA-injected to 25.4 ± 0.9% in NC-treated LNCs (t = 3.75, p < 0.0017). In two separate experiments, NC injection led to an increase of Vβ6 up to 62% of the CD4+ blasts in four animals. In these cases, percent of Vβ7 T cells was not modified, suggesting the existence of a compensatory mechanism during the expansion of particular Vβs (data not shown).

We demonstrated above that NC stimulates particular Vβ expressing CD4+ T cells. To test the effect of NC on CD8+ T cells, percentages of Vβ2, 6–8, and 14 were estimated among CD8+ LNCs. No significant changes of these Vβs could be observed between control and NC-injected LNCs (data not shown). This indicates that NC, in contrast to bacterial SAGs, does not stimulate peripheral mouse CD8+ T cells.

Kinetics of NC Vβ-specific Expansion and Dose-Response. Kinetics of expansion for Vβ6 and Vβ7 CD4+ LNCs were followed 3, 5, and 10 d after the local injection of NC. The expansion of Vβ6 and Vβ7 CD4+ LNCs was transitory with a peak response 3 d after the injection (data not shown). The effect of different doses of NC was tested in BALB/c mice using increasing doses from 3 μg up to 80 μg per hind leg. It was found that injection of a minimal dose of 3 μg induced an increase of 11 to 17% in the Vβ6 CD4+ T cells 3 d after treatment. A maximal increase of 33% was obtained with 30 μg of NC, whereas injection of doses higher than 30 μg produced no further increases in the Vβ6 percentages: 29% with 50 μg and 25% with 80 μg.

Role of Vδ6 T Lymphocytes in Rabies Virus Immunopathology. Inasmuch as Vβ6 and possibly Vβ7 CD4+ T cells are specific targets of NC, we addressed the question whether these Vδs may interfere with rabies virus immunopathology by comparing the magnitude of immune-related disease in BALB/c mice expressing different levels of Vβ6 and Vβ7 T cells. Both exogenous MMTV, the MMTV(SW) and endogenous Mtv, the Mtv 7 or 44, cause Vδ6 and Vδ7 T cells deletion in infected BALB/c. In a first set of experiments, BALB/c infected by MMTV(SW) were used as a source of mice missing the NC-specific VδT cells. Percentages of mice showing signs of rabies-specific immunopathology, consisting of weakness and paralysis of the hind limbs, were recorded in MMTV(SW)-infected and in normal BALB/c. In both groups, hind leg weakness was detectable as early as 5 d after infection and paralysis appeared between day 7 and 10 and remained unchanged thereafter. At day 13, significantly fewer (p < 0.05) Vδ6-deficient mice than normal BALB/c showed signs of disease (Fig. 5, top). To avoid possible interference between MMTV and rabies infections, a similar experiment was performed in BALB/D2 mice bearing an integrated Mtv provirus, and thus missing constitutively Vδ6, 7, 8.1, and 9 T cells. As shown in the middle of Fig. 5, the mice lacking these Vδs were significantly (p < 0.05) more resistant to r-
Figure 5. Impact of the percentages of Vβ6 T cells on the mouse susceptibility to rabies immunopathology. (Top) Percent of paralyzed mice bearing Vβ6 T lymphocytes (BALB/c) and in BALB/c mice missing Vβ6 as a consequence of MMTV(SW) infection (BALB/c SW). (Middle) Percent of paralyzed mice in BALB/c and in congenic BALB/D2 lacking Vβ6 because of the integration of the provirus Mr'v-7.9 and 14-wk-old BALB/D2 (9w and 14w, respectively) were tested. (Bottom) Percent paralyzed mice > in BALB/D2 transfused with either Vβ6 (BALB/D2 + Vβ6) or Vβ8.1-3 (BALB/D2 + Vβ8) splenocytes or nontransfused BALB/D2. Mice were infected in the hind limbs with rabies virus (1 x 10⁷ PFU/mouse). Percentages of paralyzed mice were recorded 13 d after rabies virus injection. Each group of mice was composed of 12 mice with the exception of Vβ6-reconstituted BALB/D2 groups which were composed of four.

rabies paralysis (22 or 0%) than normal BALB/c (75%), indicating that absence of NC-specific Vβ T cells protect mice against immune disorders. Age is an important co-factor in resistance to rabies morbidity in Vβ6-deficient mice, since none of the 14-wk-old BALB/D2 developed signs of disease whereas 22% of 9-wk-old BALB/D2 became paralyzed (Fig. 5, middle).

To demonstrate the role of rabies SAg-target Vβ T cells in rabies immunopathology, Vβ6 or Vβ8.1-3 T cells were transfused into BALB/D2 mice which normally lack these cells. Efficiency of Vβ6 reconstitution was checked 1 wk after transfer by analyzing circulating CD3+ blood cells (Fig. 6). Range of Vβ6 CD3+ T cells counts were as follows: Vβ6 transfused mice: 2.5–5.6% (Fig. 6 E) nontransfused BALB/D2 controls: 0.6–0.7% (Fig. 6 A) and BALB/c, control 9–11% (Fig. 6 G). In mice transfused with Vβ8 T cells, a few Vβ6 T cells, 1.7%, were detectable indicating that <1% (1.7–0.7%) of Vβ6 T cells were co-transferred with the Vβ8 T cells (Fig. 6 C). Reconstitution with Vβ8.1-3 T cells did not modify the percentage of circulating Vβ8 T cells, since the percent of Vβ8 T cells in Vβ8-reconstituted mice was similar, (24–27% in Fig. 6 D) to the Vβ8 percentage in Vβ6-reconstituted mice (25–28% in Fig. 6 F) or in the non-reconstituted mice (28% in Fig. 6 B). It is noteworthy that the anti-Vβ8 mAb, F23-1, which reacts with all three subsets of Vβ8 did not detect the well-documented decrease of Vβ8-1 in BALB/D2 (28% of Vβ8 are shown both in BALB/c and BALB/D2). This could be due to a better affinity of mAb F23-1 for the Vβ8.2 and Vβ8.3 than for the Vβ8.1 subset. Alternatively this may reflect compensatory mechanisms which keep constant the overall percentage of Vβ8 T cells. Rabies immunopathology was compared in the Vβ6, the Vβ8-transfused BALB/D2- and in nontransfused BALB/D2 (Fig. 5, bottom). All of the Vβ6-reconstituted BALB/D2 mice showed signs of severe paralysis as early as day 5, whereas all four of the nonreconstituted BALB/D2 mice remained free of paralysis. Among the Vβ8-reconstituted mice, only one, the one with 1.7% of Vβ6 T cells showed limb weakness which progressed to paralysis by day 10 (1/4:25%). Taken together these results demonstrate that rabies immunopathology is dependent on the presence of Vβ6 T cells.

Figure 6. Efficiency of Vβ6 T cells transfer in BALB/D2 mice. Percentages of Vβ6 and Vβ8 T cells in circulating CD3+ T cells were estimated by cytofluorometry as described in Fig. 1. (A and B) BALB/D2 mice missing Vβ6 and Vβ8.1; (C and D) BALB/D2 mice transfused with Vβ8(1-3) T cells; (E and F) BALB/D2 transfused with Vβ6 T cells, and (G and H) normal BALB/c. Results shown in this figure are representative data for mouse of each group.
Discussion

Recognition of a SAg by an host is a two-step reaction: first, SAg triggers the expansion of certain TCR Vβ subsets and later on, the expanded T cells enter into an unresponsive state and then die. An encounter at birth with SAg leads to a loss of most T cells expressing the reactive TCR Vβs during maturation in thymus (15). Clonal deletion of some entire Vβ subsets is regarded as a perquisite for a SAg. By showing that NC deletes T cells bearing particular Vβs in mice, we demonstrated that NC is a superantigen and we strengthened the previous results obtained in vitro with human lymphocytes where NC expands Vβ T cells, binds to surface class II molecules, probably by the α chain, and does not require processing (11). Taken together, these data lead to the conclusion that NC behaves as a SAg in both humans and mice and emphasize the point that viruses other than mouse retrovirus can also encode SAgs.

Demonstration that NC is a SAg for the mouse provides an experimental means to further investigate the role of rabies SAg in vaccination and in host infection. In this paper, we focused our attention on the role of rabies SAg in rabies infection and more precisely in rabies immunopathology. After rabies virus enters both sensory and motor nerve ending, it replicates in the neuronal cell bodies of the ganglia. Then, the virus invades the central nervous system. Rabies can result in two forms of disease: the encephalitic disease and the paralytic (32). In contrast to the encephalitic form of rabies, the paralytic form of rabies is characterized by a rapid clearance of rabies virus and by an almost complete absence of lethal outcome. Limb paralysis results from a peripheral immunopathological process which causes mononuclear cells infiltration and destroys the sciatic nerve (32, 26). Paralysis is not observed in immunosuppressed mice or in nude mice but is seen after T cell reconstitution, indicating that T cells play a crucial role in the induction of rabies paralysis (26, 32, 33). The mechanism of this process remains unknown. At least, it is not mediated by cytotoxic CD8+ T cells, since removal of CD8+ T cells does not protect against paralysis (27). We postulate that a component of the rabies virus which can stimulate T cells strongly, such as the NC SAg, may play a role in this process. Our data strongly support this hypothesis; we found that: (a) rabies immunopathology was decreased in BALB/c missing the NC-specific Vβ3; (b) transfer of NC main targets Vβ6 T cells but not of Vβ8.1-3 T cells into deficient mice reactivated rabies virus immune-related pathology; and that (c) susceptibility to paralysis increases with the number of Vβ6 T cells. The finding that some of 9-wk-old BALB/D2 with 1.2% of Vβ6, were paralyzed whereas the 14-wk-old BALB/D2, with 0.6% of Vβ6) remain free of symptoms suggests that the 9-wk-old BALB/D2 show an immunopathological response to rabies because of the presence of a few remaining Vβ6 T cells (1.2%). In contrast the 14-wk-old BALB/D were protected because traces of Vβ6 (0.6%) were not sufficient to induce paralysis. Age dependence of the number of Vβ6 among BALB/D2 is consistent with the observation that complete deletion of Mtv targets Vβs is progressively acquired and only occurs after 10 wk (34). Similarly, Vβ8-transferred BALB/D2 mice expressing 1.7% of Vβ6 T cells were only partially paralyzed whereas all the mice expressing more than 2% of Vβ6 T cells were paralyzed. Thus, the threshold of Vβ6 T cells required for significant paralysis seems to be approximatively fixed around 2%. Altogether, these results strongly support the hypothesis that T cells expressing rabies SAg-specific Vβ6 T cells, are involved in rabies virus immunopathology.

We cannot rule out that other Vβ play a role in immunopathology since the mice which are less susceptible to rabies immunopathology also miss the Vβ7 T cells in addition to the Vβ6 T cells. These cells were also expanded in the periphery after NC injection (Fig. 4), however their expansion was less important than the Vβ6 T cells expansion. Moreover, the Vβ7 T cells were not significantly deleted after neonatal expansion (Fig. 2) suggesting that NC may have a better affinity for Vβ6 TCR than for Vβ7 TCR. The discrepancy between expansion and deletion of Vβ7 T cells by NC can be linked to the observation that expansion induced by superantigens, such as TSST-1, is not always followed by anergy and thus by deletion (35).

Previous observations that CD8+ T cells are not involved in rabies immunopathology and the present finding that CD8+ T cells are not specific targets of rabies SAg strongly support the hypothesis that SAg-related immunopathology is deserved only by the Vβ6 CD4+ T cells.

Enhancement of rabies immunopathology by NC may be obtained because NC triggers an efficient Vβ6 CD4+ T cell–mediated immune response which destroys the infected neurons in the periphery. Neurons normally do not express MHC class II molecules. INF-γ is able to stimulate MHC class II production. It cannot be excluded that SAgs which are known to make T cells to release large amounts of cytokines (36, 37), could trigger MHC class II expression on neuronal cells which became suitable targets for cytotoxic T cells. Alternatively, destruction of neurons could be obtained indirectly by killer microglia cells with the help of antibodies, via the mechanism of antibody-dependent cell cytotoxicity, the ADCC. Evidence has been obtained in mice that NC stimulates the production of neutralizing antibodies directed against the rabies virus envelope protein (38) suggesting that rabies SAg can induce cognate T-B interactions. In this hypothesis, rabies SAg could enhance the antibody response and induce an antibody-related immunopathology. It is not yet clear whether this immune response is sufficient to rid the nervous system of rabies virus. In the case of rabies, the balance between the immune response and the virus infection seems to play a key role in the issue of the disease. Several reports have noted that infected individuals died of rabies despite a strong immune
response suggesting that, most of the time, the immune response is launched too late to be efficient. Delay in the establishment of the immune response could explain the discrepancy observed between the issue of the transfer experiment, where BALB/D2 + Vβ6 died, and the experiment where NC induces protection (38). In our reconstitution experiment, Vβ6-transfused mice died despite a strong paralysis, whereas after the injection of NC a few hours or days before virus, paralyzed mice were protected (38).

The finding that NC can exacerbate the rabies immunopathology in mice raises the questions about a possible role for NC in producing the high incidence of neurological complications that follows vaccination in humans using rabies vaccines prepared in animal brain. Rabies infection can be prevented in humans exposed to rabid animals by prompt administration of rabies vaccine. In several countries, such as Brazil or India, economic reasons necessitate the use of rabies vaccines prepared from inactivated rabies-infected animal brains despite the neurological complications. Multiple injections of this vaccine over a 2-wk period are required to trigger an efficient immune response. We found that, in contrast to rabies vaccine prepared in tissue culture, the animal brain vaccine contains large amounts of NC (Montano-Hirose, J. A., and M. Lafon, manuscript in preparation).

More experiments are needed to establish whether neuropathological vaccine disorders may be linked to the presence of NC in brain rabies vaccines and to understand the mechanisms that can allow protection to rabies infection. The answers to these questions, in addition giving new insights in the role of SAg in infection, will have considerable consequence for vaccine design.

The authors acknowledge Mireille Lafage, Danielle Voegtlé, and Jean-Philippe Corre for their excellent technical assistance, Martine Brulay-Rosset for the gift of BALB/D2, and Benjamin Natelson for his critical review of the manuscript.

This work was supported by institutional grants from Institut Pasteur and specific grants 920607 and 930607 from Institut National de la Santé et de la Recherche Médicale (INSERM). E. Jouvin-Marche and P. N. Marche are investigators from INSERM.

Address correspondence to Monique Lafon, Institut Pasteur, Unité de la Rage, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.

Received for publication 9 November 1994 and in revised form 13 May 1994.

References

1. Kappler, J.W., T. Wade, J. White, E. Kushnir, M. Blackman, J. Bill, N. Roehm, and P. Marrack. 1987. A T cell receptor Vβ segment that imparts reactivity to a class II major histocompatibility complex product. Cell. 49:263.

2. Dellabona, P., J. Peccoud, J. Kappler, P. Marrack, C. Benoist, and D. Mathis. 1990. Superantigens interact with MHC class II molecules outside the binding groove. Cell. 62:1115.

3. Janeway, C.A. 1991. Immune recognition: Mls- makes a little sense. Nature (Lond.). 349:459.

4. Marrack, P., and J. Kappler. 1990. The staphylococcal enterotoxins and their relatives. Science (Wash. DC). 248:705.

5. Cole, B.C., and C.L. Atkins. 1991. The Mycoplasma arthritidis T cell mitogen, MAM: a model superantigen. Immunol. Today. 12:271.

6. Acha-Orbea, H., W. Held, G.A. Waanders, A.N. Shakhov, L. Scarpellino, R.K. Lees, and H.R. MacDonald. 1993. Exogenous and endogenous mouse mammary tumor virus superantigens. Immunol. Rev. 131:5.

7. Huber, B.T. 1992. Mls genes and self-superantigens. Trends Genet. 8:399.

8. Acha-Orbea, H. 1992. Retroviral superantigens. In Biological Significance of Superantigens. B. Fleisher, editor. Chem. Immunol. 55:65.

9. Pantaleo, G., C. Graziosi, and A. Fauci. 1993. The immunopathogenesis of human immunodeficiency virus infection. N. Engl. J. Med. 328:327.

10. Posnett, D.N., S. Kabak, A.S. Hodtsev, E.A. Goldberg, and A. Asch. 1993. T cell antigen receptor Vβ subsets are not preferentially deleted in AIDS. AIDS. 7:625.

11. Lafon, M., M. Lafage, A. Martinez-Arends, R. Ramirez, F. Vuiller, D. Charron, V. Lottreau, and D. Scott-Algara. 1992. Evidence in humans of a viral superantigen. Nature (Lond.). 358:507.

12. Schwartz, R.H. 1989. Acquisition of immunological self-tolerance. Cell. 57:1073.

13. Webb, S., C. Morris, and J. Sprent. 1990. Extrathymic tolerance of mature T cells: Clonal elimination as a consequence of immunity. Cell. 63:1249.

14. Dannercker, G., S. Mecheri, L. Staiano-Coico, and M.K. Hoffmann. 1991. A characteristic Mls-1 response precedes Mls-1b energy in vivo. J. Immunol. 146:2083.

15. Kappler, J.W., U. Staerz, J. White, and P. Marrack. 1988. Self-tolerance eliminated T cells specific for Mls-modified products of the major histocompatibility complex. Nature (Lond.). 332:35.

16. Acha-Orbea, H., A.N. Shakhov, L. Scarpellino, E. Kolb, V. Müller, A. Vessaz-Shaw, R. Fuchs, K. Blöchinger, P. Rollini, J. Billole, M. Sarafidou, H.R. MacDonald, and H. Diggemann. 1991. Clonal deletion of Vβ14-bearing T cells in mice transgenic for mammary tumor virus. Nature (Lond.). 350:307.

17. Marrack, P., E. Kushnir, and J. Kappler. 1991. A maternally inherited superantigen encoded by a mammary tumour virus. Nature (Lond.). 349:524.
18. Held, W., A.N. Shakhov, G. Waanders, L. Scarpellino, R. Luethy, J.-P. Kraehenbuhl, H.R. MacDonald, and H. Acha-Orbea. 1992. An exogenous mouse mammary tumor virus with properties of Mls-1a (Mtv-7). J. Exp. Med. 175:1623.

19. White, J., A. Herman, A.M. Pullen, R. Kubo, J.W. Kappler, and P. Marrack. 1989. The Vβ3-specific superantigen staphylococcal enterotoxin B stimulation of mature T cells and clonal deletion in neonatal mice. Cell. 56:27.

20. Webb, S.R., and J. Sprent. 1993. Factors controlling the reactivity of immature and mature T cells to Mls1a antigens in vivo. Immunol. Rev. 131:169.

21. Golovkina, TV., A. Chervonsky, J.P. Dudley, and S.R. Ross. 1992. Transgenic MMTV superantigen expression prevents viral infection. Cell. 69:637.

22. Hainsaut, P., M. Castellazi, D. Gonzales, N. Clause, J. Hilgers, and M. Crépin. 1990. A congenic line of BALB/c mouse strain with the endogenous mammary tumour virus proviral gene Mtv-3: tissue specific resistance to mouse mammary virus infection and tumorgenesis. Cancer Res. 50:3754.

23. Acha-Orbea, H., and E. Palmer. Mls- a retrovirus exploits the immune system. 1991. Immunol. Today. 12:356.

24. Held, W., A.N. Shakhov, S. Izui, G.A. Waanders, L. Scarpellino, H.R. MacDonald, and H. Acha-Orbea. 1993. Superantigen-reactive CD4+ T cells are required to stimulate B cells after infection with mouse mammary tumor virus. J. Exp. Med. 177:359.

25. Perry, L.L., and D.L. Lodmell. 1991. Role of CD4+ and CD8+ T cells in murine resistance to street rabies virus. J. Virol. 65:3429.

26. Smith, J. 1981. Mouse model for abortive rabies infection of the central nervous system. Infect. Immun. 31:297.

27. Sugamata, M., M. Miyazawa, S. Mori, G.J. Spangrude, L.C. Ewalt, and D.L. Lodmell. 1992. Paralysis of street rabies virus-infected mice is dependent on T lymphocytes. J. Virol. 66:1252.

28. Lafon, M., and T.J. Wiktor. 1985. Antigenic structure of the rabies virus NC. J. Gen. Virol. 66:2125.

29. Berumen, L., O. Halle-Pannenko, and H. Festenstein. 1983. Strong histocompatibility and cell-mediated cytotoxic effects of a single Mls difference demonstrated using a new congenic mouse strain. Eur. J. Immunol. 13:292.

30. Lussow, A.R., T. Crompton, O. Karapetian, and H.R. MacDonald. 1993. Peripheral clonal deletion of superantigen-reactive T cells is enhanced by cortisone. Eur. J. Immunol. 23:578.

31. Leo, O., M. Foo, D.S. Sachs, L.E. Samelson, and J.A. Bluestone. 1987. Identification of a monoclonal antibody specific for murine T. Proc. Natl. Acad. Sci. USA. 84:1374.

32. Weiland, F., J.H. Cox, S. Meyer, E. Dahme, and M.J. Reddihase. 1992. Rabies virus neuritic paralysis: Immunopathogenesis of nonfatal paralytic rabies. J. Virol. 66:5096.

33. Iwasaki, Y., W. Gerhard, and H.F. Clark. 1977. Role of host immune response in the development of either encephalitic or paralytic disease after experimental rabies infection in mice. Infect. Immun. 18:220.

34. Schneider, R., R.K. Lees, T. Pedrazzini, R.M. Zinkernagel, H. Hengartner, and H.R. MacDonald. 1989. Postnatal disappearance of self reactive (Vβ6+) cells from the thymus of Mls mice: implications for T cell development and autoimmunity. J. Exp. Med. 169:2149.

35. Ochi, A., K. Yuh, and K. Migita. 1993. Not every superantigen induces tolerance in vivo. Semin. Immunol. 5:57.

36. Cardell, S., J. Höiden, and G. Möller. 1993. Manipulation of the superantigen-induced lymphokine response. Selective induction of interleukin-10 or interferon-γ synthesis in small resting CD4+ T cells. Eur. J. Immunol. 23:523.

37. Nagelkerken, L., K.J. Gollob, M. Tielemans, and R. Coffman. 1993. Role of transforming growth factor-β in the preferential induction of T helper cells of type 1 by staphylococcal enterotoxin B. Eur. J. Immunol. 23:2306.

38. Dietzschold, B., H. Wang, C.E. Rupprecht, E. Celis, M. Tollis, H. Ertl, E. Heber-Katz, and H. Koprowski. 1987. Induction of protective immunity against rabies by immunization with rabies virus ribonucleoprotein. Proc. Natl. Acad. Sci. USA. 84:9165.

39. Necker, N., N. Rebai, M. Matthes, E. Jouvin-Marche, P.-A. Cazenave, P. Swarnwarwong, E. Palmer, H.L. MacDonald, and B. Malissen. 1991. Monoclonal antibodies raised against engineered soluble mouse T cell receptors and specific for Vα8, Vβ2- or Vβ10-bearing T cells. Eur. J. Immunol. 21:3035.

40. Pullen, A.M., P. Marrack, and J.W. Kappler. 1988. The T cell repertoire is heavily influenced by tolerance to polymorphic self-antigen. Nature (Lond.). 335:796.

41. Tomonari, K., E. Lovering, and S. Spencer. 1990. Correlation between the Vβ4+ CD8+ T-cell population and the H-2 haplotype. Immunogenetics. 31:333.

42. Woodland, D., M.P. Happ, J. Bill, and E. Palmer. 1989. Requirement for co-tolerogenic gene products in the clonal deletion of H-2 reactive T cells. Science (Wash. DC). 247:964.

43. Kanagawa, O., E. Palmer, and J. Bill. 1989. The T cell receptor Vβ6 domain imparts reactivity to the Mls-1a antigen. Cell. Immunol. 119:412.

44. Okada, G.Y., B. Holzmann, C. Guidos, E. Palmer, and L.L. Weissman. 1990. Characterization of a rat monoclonal antibody specific for a determinant encoded by the Vβ7 gene segment. Depletion of Vβ7+ T cells in mice with Mls-1a haplotype. J. Immunol. 144:3473.

45. Staers, U.D., H.G. Rammensee, J.G. Benedetto, and M.J. Bevan. 1985. Characterization of a murine monoclonal antibody specific for an allotype determinant on T cell antigen receptor. J. Immunol. 134:3994.

46. Haskins, K., R. Kubo, J. White, M. Pigeon, J.W. Kappler, and P. Marrack. 1984. The major histocompatibility complex-restricted antigen receptor on T cells. I. Isolation with a monoclonal antibody. J. Exp. Med. 157:1149.

47. Utsunomiya, Y., H. Kosaka, and O. Kanagawa. 1991. Differential reactivity of Vβ9 T cells to minor lymphocyte stimulating antigen in vivo and in vitro. Eur. J. Immunol. 21:1007.

48. Bill, J., O. Kanagawa, D.E. Woodland, and E. Palmer. 1989. The MHC molecule I-E is necessary but not sufficient for the clonal deletion of Vβ11-bearing T cells. J. Exp. Med. 169:1405.

49. Liao, N.-S., J. Maltzman, and D.H. Ranlet. 1989. Positive selection determine T cell receptor VβH gene usage by CD8+ T cells. J. Exp. Med. 170:135.