Characterization of Chickpea (*Cicer arietinum* L.) Genotypes through RAPD Analysis

S. K. Rajoriya*, Arunabh Joshi, Devendra Jain, Amit Dadeech, Ganesh Rajamani and Prateek Sharma

Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur-313001, India

*Corresponding author

A B S T R A C T

Chickpea (*Cicer arietinum* L., 2n=16) is a legume of family *Fabaceae*, subfamily *Faboideae*. Chickpea is the second largest grown food legume of the world (Gaur et al., 2008). Genetic divergence among 28 genotypes of *Cicer arietinum* L. was assessed through RAPD molecular markers. RAPD analysis showed 93.36 per cent of polymorphism. A total of 159 amplified bands were obtained that ranged between 150 bp to 3200 bp, using 22 RAPD primers only 15 showed amplification. The 153 out of 159 bands were polymorphic. The average PIC (polymorphic information content) of RAPD was found 0.259. Jaccard’s similarity coefficient for RAPD lay between 0.31 and 0.79 (31% to 79%). Dendogram based on genetic distance calculated by UPGMA method segregated the 28 chickpea genotypes into three RAPD major clusters, respectively. Two and three dimension principal component analysis (PCA) showed similar clustering of 28 genotypes as evident from cluster tree analysis with dice similarity coefficients ranged from 0.58 to 0.85 (58% to 85%) for RAPD analysis. Based upon RAPD analysis of 28 genotypes with 15 primers genotype PBC-509, PBC-511, Pratap channa-1, Dohad yellow and Pratap Rajchana were identified as genetically diverse. Therefore, the results of the present study can prove helpful for implementation of chickpea improvement programmes.

Keywords *Cicer arietinum*, Molecular markers, RAPD, PIC, PCA, Dendrogram

Article Info

Accepted: 12 October 2020
Available Online: 10 November 2020

Introduction

Chickpea (*Cicer arietinum* L., 2n=16) is a legume of family *Fabaceae*, subfamily *Faboideae*. Chickpea is the second largest grown food legume of the world (Gaur et al., 2008). Chickpea cultivation in India covers an area of about 81.17 lakh hectares with a production of 59.01 lakh tonnes grains (FAOSTAT data, 2016). To develop high yielding varieties, assessment of variability is a first step in any breeding programme. Substantial diversity exists among cultivated chickpea genotypes for various morphological, physiological and agronomic traits (Stalker, 1992). Greater the diversity in germplasm, better are the chances of improvement, provided the heritability is high and genetic advance is more.

Many DNA based molecular marker techniques are present for characterization of
genetic diversity in plant species (Weising et al., 2005; Nybom et al., 2014). Among the available markers, randomly amplified polymorphic DNA (RAPD) has been most widely used for diversity studies, DNA fingerprinting, map construction and linkage analysis.

The enormous attraction of RAPDs is due to the nonrequirement for DNA probes, or for any sequence information for the design of specific primers. The procedure involves no blotting or hybridizing steps (Williams et al., 1990).

The power of RAPD is that it is a fast technique, easy to perform and comparatively cheap. It is immediately applicable to the analysis of most organisms because universal sets of primers are used without any need for prior sequence information (Hallden et al., 1996).

This marker system was used in many different applications involving the detection of DNA sequence polymorphisms, mapping in different types of populations (Carlson et al., 1991; Reiter et al., 1992), isolation of markers linked to various traits or specific targeted intervals (Giovannoni et al., 1991; Michelmore et al., 1991) and applications such as variety identification and analysis of parentage (Tinker et al., 1993; Mailer et al., 1994). In self pollinating crop species RAPD marker analysis is very useful technique with a relatively low level of intraspecific polymorphism, such as chickpea.

Considering the importance of chickpea in the State’s economy in terms of area stability, production, productivity and its large consumption, the present study was proposed using 28 diverse elite genotypes to analyze genetic diversity critically at molecular level with by using RAPD analysis.

Materials and Methods

Plant material

In the present investigation, leaf samples of 21 days old plants from 28 genotypes of chickpea (Cicer arietinum L.) were procured from field of Agricultural Research Station (ARS), MPUAT, Borwat Farm, Dahod Road, Banswara (Raj.) – 327001.

RAPD analysis

The genomic DNA was extracted from 21 days old leaves of 28 genotypes of chickpea by CTAB extraction method of Doyle and Doyle (1990), with slight modifications. A set of 22 random decamer primers (Bangalore Genei, India) with more than 60% GC content were selected out of which 15 primers were selected for data analysis. The best amplified products were obtained using 20 µl of reaction mixture which specifically contained 50 ng template DNA, 0.5µM primer, 200µM of dNTPs mix, 2.5 mM MgCl₂, 1X Taq Polymerase buffer, 1 U Taq Polymerase. PCR amplification was performed to fulfill 35 cycles after an initial denaturation at 94 °C for 5 min. RAPD patterns were analysed by scoring presence (1) or absence (0) of bands for estimation of similarity among all tested samples. The matrix of similarity (Jaccard) and similarity of coefficients were calculated and the dendrogram obtained by clustering according to the Unweighted Pair-Group Method with Arithmetic averages (UPGMA) using NTSYS-pc software. Principal component analysis along with 2D and 3D plots were constructed using eigen values and vectors.

Results and Discussion

An attempt has been made to estimate molecular diversity of chickpea genotypes, which would help in framing an effective
breeding programme. Isolated and purified DNA was subjected to PCR based molecular marker (RAPD) for assessment of genetic diversity in the genotypes of *C. arietinum*. DNA fingerprinting has become an essential tool for studying evolution and identification of crop germplasm, since this technological intervention is more precise, economical and least affected by environmental factors.

Out of 22 primers only 15 showed amplification. A total of 159 amplified bands were obtained out of which 153 were polymorphic, thus showing 93.36% polymorphism (Table 1 and Fig. 1).

The DNA amplicon size and polymorphism generated among the twenty eight genotypes of *Cicer arietinum* using RAPD primers are presented in Table 1. The total number of amplified bands varied between 5 (primer OPP-05) and 16 (primer OPF-19) with an average of 10.6 bands per primer.

The polymorphism amongst 28 genotypes of *Cicer arietinum* was 93.36% and the overall size of PCR amplified products ranged between 150 bp to 3200 bp. The per cent polymorphism ranged from as low as 66.67 (OPP-01) to as high as 100 (OPA-01, OPA-02, OPA-04, OPD-05, OPD-12, OPF-13, OPF-17, OPF-19, OPP-02, OPP-07, OPP-10). The average PIC was 0.2591 ranging from 0.1508 to 0.408. The lowest and the highest PIC values were recorded for primers OPA-03 and OPF-17, respectively.

Table 1 DNA amplification pattern and polymorphism generated in *Cicer arietinum* using 15 RAPD primers

S. No.	Primer code	Molecular weight range (bp)	Total number of scorable bands (a)	Total number of polymorphic band (b)	Polymorphism (%) b/a X 100	PIC value
1.	OPA-01	400-1800	7	7	100	0.3008
2.	OPA-02	325-1600	15	15	100	0.1761
3.	OPA-03	150-1500	9	8	72.00	**0.1508**
4.	OPA-04	250-2000	13	13	100	0.2774
5.	OPD-05	350-2600	8	8	100	0.3037
6.	OPD-12	150-1800	12	12	100	0.2831
7.	OPF-13	175-2100	13	13	100	0.2772
8.	OPF-17	150-1800	9	9	100	**0.408**
9.	OPF-19	200-3100	**16**	16	100	0.3642
10.	OPP-1	450-1500	6	4	**66.67**	0.1518
11.	OPP-2	300-2500	9	9	100	0.2288
12.	OPP-3	200-2300	11	9	81.81	0.2467
13.	OPP-05	500-1800	**5**	4	80.00	0.1664
14.	OPP-07	175-2700	13	13	100	0.3063
15.	OPP-10	450-3200	13	13	100	0.2448
Total			**159**	**153**	**93.36**	**0.2591**
Table 2: Molecular weight range and unique alleles obtained using RAPD primers

S. No.	Primer code	Total number of unique bands	Genotype	Size of bands (bp)
1.	OPA-01	2	PBC-525	1800
2.	OPA-02	4	PBC-502	1400
			PBC-508	1250
			PBC-511	600
			PBC-504	450
3.	OPP-02	2	PBC-518	1900, 2500
Total				08

Fig. 1: RAPD profiles generated by primer OPD-05 and OPD-12. The numbers (1-28) corresponding to genotypes at the top of each lane.

Fig. 2: Dendrogram generated for *Cicer arietinum* genotypes for RAPD using UPGMA cluster analysis based on Jaccard similarity coefficient.

Lane M1 (100bp) & M2 (1000bp) are the Molecular Weight Markers.
Fig. 3(a, b) A two dimensional and three dimensional plot of principal component analysis based on RAPD primer in chickpea genotypes

A total of 8 unique bands (band which is present only in one genotype but absent in rest of the genotypes) were detected in six genotypes. The size of these unique bands ranged from 450-2500 bp (Table 2). Reddy et al., (2008) narrated that cultivars with sharp DNA profiles are probable to contain the greatest number of novel alleles. Therefore, these genotypes are likely to uncover the largest number of unique and potential agronomically useful alleles. The value of similarity coefficient ranged from 0.31 to 0.79, i.e. 31-79% on the basis of RAPD similarity data matrix. Maximum similarity value of 0.79 was observed between genotypes PBC-514 and PBC-520. The RAPD cluster tree analysis of 28 C. arietinum genotypes showed that they could be divided into 3 major clusters at a similarity coefficient of 0.51 (Fig. 2). Two and three dimension PCA based on RAPD data (Fig. 3) showed similar clustering of 28 genotypes, as evident from the cluster tree analysis. Dice similarity coefficients for 28 genotypes ranged from 0.58 to 0.85. Most of the genotypes tended to cluster mainly into 5 clusters.

In conclusion the RAPD patterns obtained from our study can serve as a vital input to the conventional method of varietal identification, future germplasm management, and marker assisted selection to improve the efficiency of new cultivar development in future breeding programs that relies solely on morphological
characters. Interestingly collections originating from various parts of the country did not form well defined distinct groups and were interspersed with each other, indicating no association between RAPD pattern and the geographic origin of accession.

References

Carlson, J.E., Tulsieram, L.K., Glubitz, J.C., Luk, V.W.K., Kuffeldt, C. and Tutledge, R. 1991. Segregation of random amplified DNA markers in F1 progeny of conifers. Theor Appl Genet, 83: 194-200.

Doyle, J.J. and Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochemical Bulletin, 19: 11-15.

FAOSTAT (Food and Agricultural Organization Statistical Databases), 2016. Statistical Poket book World food and Agriculture: Crop Production. http://faostat.fao.org/3ai4691e.pdf

Gaur, P.M. Kumar, J. Gowda, C.L.L. Pande, S. Siddique, K.H.M. Khan, T.N. Warkentin, T.D. Chaturvedi, S.K. Than, A.M. and Ketema, D. 2008. Breeding chickpea for early phenology: perspectives, progress and prospects. In Proceedings of Fourth International Food Legumes Research Conference, 18-22 October 2005, Indian Agricultural Research Institute, New Delhi, India.

Giovannoni, J.J., Wing, R.A., Ganal, M.W. and Tanksley, S. 1991. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res, 19: 6553-6558.

Halden, C., Hansen, M., Nilsson, N.O., Hejrdin, A., Sall, T. 1996. Competition as a source of errors in RAPD analysis. Theor Appl Genet, 93: 1185-1192.

Jaccard, P. 1908. Nouvelles recherches Sur la distribution florale. Bulletin de la Société vaudoise des Sciences Naturelles, 44: 223-270. (The English version)

Mailer, R.J., Scarth, R. and Fristenski, B. 1994. Discrimination among cultivars of rapeseed (Brassica napus L.) using DNA polymorphisms amplified from arbitrary primers. Theor Appl Genet, 87: 697-704.

Michelmore, R.W., Paran, I. and Kesseli R.V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 88: 9828-9832.

Nybom, H., Weising, K. and Rotter B. 2014. DNA fingerprinting in botany: past, present, future. Investig genet, 5(1): 1-35.

Reddy, K.S., Souframanien, J., Reddy, K.S. and Dhanasekar, P. 2008. Genetic diversity in mung bean as revealed by SSR and ISSR markers. Journal of Food Legumes, 21(1): 15-21.

Reiter, R.S., Williams, J.G.K., Feldmann, K.A., Rafalksi, J.A., Tingey, S.V. and Scolnik P.A. 1992. Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs. Proc. Natl Acad Sci USA, 89: 1477-1481.

Rholf, F.J. 2000. NTYSYS-PC ver. 2.02 Numerical taxonomy and multivariate analysis system. Exeter software, Setauket, New York.

Stalker, S.T. 1992. Utilizing Arachis germplasm resources. Pages 281–295 in Groundnut – a global perspective: proceedings of an international
workshop, 25–29 Nov 1991, ICRISAT Center, India (Nigam SN, ed.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Tinker, N.A., Fortin, M.G. and Mather, D.E. (1993): Random amplified polymorphic DNA and pedigree relationships in spring barley. *Theor Appl Genet*, 85: 976-984.

Weising, K., Nybom, H., Wolff, K. and Kahl, G. 2005. DNA Fingerprinting in Plants (2nd eds): *Principles, Methods and Applications*, 2: 444.

Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. *Nucleic Acids Research*, 18(22): 6531-6535.

How to cite this article:

Rajoriya, S. K., Arunabh Joshi, Devendra Jain, Amit Dadech, Ganesh Rajamani and Prateek Sharma. 2020. Characterization of Chickpea (*Cicer arietinum* L.) Genotypes through RAPD Analysis. *Int.J.Curr.Microbiol.App.Sci*. 9(11): 1366-1372.

doi: https://doi.org/10.20546/ijcmas.2020.911.161