Optimal pointwise estimates for derivatives of solutions to Laplace, Lamé and Stokes equations

GERSHON KRESIN
Department of Computer Science and Mathematics
Ariel University
44837 Ariel, Israel
kresin@ariel.ac.il

VLADIMIR MAZ’YA
Department of Mathematical Sciences
University of Liverpool, M&O Building
Liverpool, L69 3BX, UK
Department of Mathematics
Linköping University
SE-58183 Linköping, Sweden
vladimir.mazya@liu.se

Abstract. Various optimal estimates for solutions of the Laplace, Lamé and Stokes equations in multidimensional domains, as well as new real-part theorems for analytic functions are obtained.

2000 MSC. Primary: 35B30, 30A10; Secondary: 35J05, 30H10

Keywords: pointwise estimates, limit estimates, derivatives of analytic and harmonic functions, directional derivative and divergence of a vector field, elastic displacement field, pressure in a fluid

1 Introduction

In the present paper we extend our study of the best constants in certain inequalities for solutions of the Laplace, Lamé and Stokes equations (see Kresin and Maz’ya [10]). We also deal with optimal estimates for analytic functions in the spirit of our recent article [9]. Let us formulate some results obtained in the sequel.

By $|\cdot|$ we denote the Euclidean length of a vector or absolute value of a scalar quantity. Let Ω be a domain in \mathbb{R}^n. By d_x we mean the distance from a point $x \in \Omega$ to $\partial \Omega$ and by ω_n we denote the area of the $(n-1)$-dimensional unit sphere.

One of the results derived in Section 2 is the following pointwise estimate of the gradient of a bounded harmonic function in the complement Ω of a convex closed domain in \mathbb{R}^n:

$$|\nabla u(x)| \leq \frac{C_n}{d_x} \sup_{\Omega} |u|$$

for all $x \in \Omega$. Here

$$C_n = \frac{4(n-1)^{(n-1)/2} \omega_{n-1}}{n^{n/2} \omega_n}$$
is the best constant.

We also state here a limit estimate with the same best constant C_n, valid for arbitrary domains which is established in Section 2.

Let Ω be a domain in \mathbb{R}^n, and let $\mathcal{H}(\Omega)$ be the set of harmonic functions u in Ω with $\sup_{\Omega} |u| \leq 1$. Suppose that a point $\xi \in \partial \Omega$ can be touched by an interior ball B. Then

$$\limsup_{x \to \xi} \sup_{u \in \mathcal{H}(\Omega)} |x - \xi| |\nabla u(x)| \leq C_n,$$

where x is a point of the radius of B directed from the center to ξ.

In Section 3 we obtain pointwise estimates for the directional derivative $(\ell, \nabla)u$, where $u(x) = (u_1(x), \ldots, u_m(x))$ is a vector field whose components are harmonic in Ω. Assertions proved here are generalizations of the theorems given in Section 2. In Section 4 we present analogs of the theorems of Section 2 containing pointwise and limit estimates for $|\text{div } u(x)|$, $m = n$.

By $[C_b(\Omega)]^n$ we mean the space of vector-valued functions with n components which are bounded and continuous on Ω. This space is endowed with the norm $||u||_{[C_b(\Omega)]^n} = \sup\{|u(x)| : x \in \Omega\}$. By $[C^2(\Omega)]^n$ we denote the space of n-component vector-valued functions with continuous derivatives up to second order in Ω.

Next, in Section 5 we find an optimal estimate for $|\text{div } u(x)|$, where u is an elastic displacement vector in $\mathbb{R}^n_+ = \{x = (x', x_n) : x' \in \mathbb{R}^{n-1}, x_n > 0\}$. As a corollary, we obtain an optimal estimate for the pressure p in a viscous incompressible fluid in \mathbb{R}^n_+. We formulate two statements following from these results.

Let $\Omega = \mathbb{R}^n \setminus G$, where G is a convex domain in \mathbb{R}^n.

(i) Let $u \in [C^2(\Omega)]^n \cap [C_b(\Omega)]^n$ be a solution of the Lamé system

$$\Delta u + (1 - 2\sigma)^{-1} \text{grad div } u = 0$$

in Ω, where $\sigma \in (-\infty, 1/2) \cup (1, +\infty)$ is the Poisson coefficient. Then for any point $x \in \Omega$ the inequality

$$|\text{div } u(x)| \leq \frac{(1 - 2\sigma)E_n}{(3 - 4\sigma)d_x} \sup_{\Omega} |u|$$

holds, where

$$E_n = \frac{4\omega_{n-1}}{\omega_n} \int_0^{\pi/2} [1 + n(n - 2) \cos^2 \vartheta]^{1/2} \sin^{n-2} \vartheta d\vartheta$$

is the best constant.

(ii) Let $u \in [C^2(\Omega)]^n \cap [C_b(\Omega)]^n$ be a vector component of the solution $\{u, p\}$ to the Stokes system

$$\Delta u - \text{grad } p = 0, \quad \text{div } u = 0 \quad \text{in } \Omega$$

and let $p(x)$ be the pressure vanishing as $d_x \to \infty$. Then for any point $x \in \Omega$ the inequality

$$|p(x)| \leq \frac{E_n}{d_x} \sup_{\Omega} |u|$$

holds with the same best constant E_n as above.

The last Section 6 is dedicated to some new real-part theorems for analytic functions (see Kresin and Maz’ya [7] and the bibliography collected there). We derive the following results.
(i) Let $\Omega = \mathbb{C} \setminus G$, where G is a convex domain in \mathbb{C}, and let f be a holomorphic function in Ω with bounded real part. Then for any point $z \in \Omega$ the inequality

$$|f^{(s)}(z)| \leq \frac{K_s}{d_z} \sup_{\Omega} |\Re f|, \quad s = 1, 2, \ldots,$$

holds with $d_z = \text{dist}(z, \partial \Omega)$, where

$$K_s = \frac{s!}{\pi} \max_{\alpha} \int_{-\pi/2}^{\pi/2} \left| \cos \left(\alpha + (s + 1)\varphi \right) \right| \cos^{s-1} \varphi \, d\varphi \sup_{\Omega} |\Im f|,$$

is the best constant. In particular $K_{2l+1} = 2[(2l + 1)!]^2|\pi(2l + 1)|^{-1}$.

(ii) Let Ω be a domain in \mathbb{C}, and let $\mathcal{R}(\Omega)$ be the set of holomorphic functions f in Ω with $\sup_{\Omega} |\Re f| \leq 1$. Assume that a point $\zeta \in \partial \Omega$ can be touched by an interior disk D. Then

$$\limsup_{z \to \zeta} \sup_{f \in \mathcal{R}(\Omega)} |z - \zeta|^s |f^{(s)}(z)| \leq K_s, \quad s = 1, 2, \ldots,$$

where z is a point of the radius of D directed from the center to ζ. Here the constant K_s is the same as above and cannot be diminished.

More details concerning the above formulations can be found in the statements of corresponding theorems, propositions and corollaries in what follows.

2 Estimates for the gradient of harmonic function

We introduce some notation used henceforth. Let $\mathbb{B} = \{ x \in \mathbb{R}^n : |x| < 1 \}$, $\mathbb{B}_R = \{ x \in \mathbb{R}^n : |x| < R \}$, and $\mathbb{S}^{n-1} = \{ x \in \mathbb{R}^n : |x| = 1 \}$. By $h^\infty(\Omega)$ we denote the Hardy space of bounded harmonic functions on the domain Ω with the norm $||u||_{h^\infty(\Omega)} = \sup\{|u(x)| : x \in \Omega\}$.

Theorem 1. Let $\Omega = \mathbb{R}^n \setminus G$, where G is a convex domain in \mathbb{R}^n, and let u be a bounded harmonic function in Ω. Then for any point $x \in \Omega$ the inequality

$$|\nabla u(x)| \leq \frac{C_n}{d_x} \sup_{\Omega} |u| \tag{2.1}$$

holds, where

$$C_n = \frac{4(n - 1)(n-1/2)}{n^{n/2} \omega_n} \omega_{n-1} \tag{2.2}$$

is the best constant in the inequality

$$|\nabla u(x)| \leq C_n x_n^{-1} \|u\|_{L^\infty(\partial \mathbb{R}^n_+)}$$

for a bounded harmonic function u in the half-space \mathbb{R}^n_+. In particular,

$$C_2 = \frac{2}{\pi}, \quad C_3 = \frac{4}{3\sqrt{3}}.$$
Proof. Let $\xi \in \partial \Omega$ be a point at $\partial \Omega$ nearest to $x \in \Omega$ and let $T(\xi)$ be the hyperplane containing ξ and orthogonal to the line joining x and ξ. By \mathbb{R}^n_ξ we denote the open half-space with boundary $T(\xi)$ such that $\mathbb{R}^n_\xi \subset \Omega$.

Let $n \geq 3$. According to Theorem 1 [3], the inequality
$$\left| \nabla u(x) \right| \leq \frac{C_n}{\partial x} \| u \|_{H^\infty(\mathbb{R}^n_\xi)}$$
(2.3)
holds, where C_n is given by (2.2). Using (2.3) and the obvious inequality
$$\| u \|_{H^\infty(\mathbb{R}^n_\xi)} \leq \sup_{\Omega} \| u \|,$$
we arrive at (2.1).

The case $n = 2$ is considered analogously, the role of (2.3) being played by the estimate
$$|f'(z)| \leq \frac{2}{\pi |z|} \sup_{\mathbb{C}+} |f(z)|$$
(2.4)
(see [7], Sect. 3.7.3) by the change $f = u + iv$, $f'(z) = u'_x - iv'_y$, where f is a holomorphic function in $\mathbb{C}_+ = \{ z \in \mathbb{C} : \Im z > 0 \}$ with bounded real part.

In what follows, we assume that the Cartesian coordinates with origin O at the center of the ball are chosen in such a way that $x = |x|e_n$. By ℓ we denote an arbitrary unit vector in \mathbb{R}^n and by ν_x we mean the unit vector of exterior normal to the sphere $|x| = r$ at a point x. Let ℓ_r be the orthogonal projection of ℓ on the tangent hyperplane to the sphere $|x| = r$ at x. If $\ell_r \neq 0$, we set $\tau_x = \ell_r / ||\ell_r||$, otherwise τ_x is an arbitrary unit vector tangent to the sphere $|x| = r$ at x. Hence
$$\ell = \ell_r \tau_x + \ell_x \nu_x,$$
(5.5)
where $\ell_r = ||\ell_r||$ and $\ell_x = (\ell, \nu_x)$.

We premise Lemmas 1 and 2 to Theorem 2. In Lemma 1 we derive a representation for the sharp coefficient $K_n(x)$ in the inequality
$$\left| \nabla u(x) \right| \leq K_n(x) \| u \|_{L^\infty(\partial \Omega)} ,$$
(6.6)
where $x \in \mathbb{B}$ and $u \in H^\infty(\mathbb{B})$. Here and elsewhere we say that a certain coefficient is sharp if it cannot be diminished for any point x in the domain under consideration. The expression for $K_n(x)$, given below, contains two factors one of which is an explicitly given function increasing to infinity as $r \rightarrow 1$ and the second factor (the double integral) is a bounded function on the interval $0 \leq r \leq 1$.

Lemma 1. Let $u \in H^\infty(\mathbb{B})$, and let x be an arbitrary point in \mathbb{B}. The sharp coefficient $K_n(x)$ in inequality (6.6) is given by
$$K_n(x) = \frac{2n^{-2}(n - 2)}{\pi(1 + r)^{n-1}(1 - r)} \sup_{\gamma \geq 0} \frac{1}{1 + \gamma^2} \int_0^\pi \sin^{-3} \varphi \, d\varphi \int_0^{\pi/2} G_n(\vartheta, \varphi; r, \gamma) \, d\vartheta ,$$
(7.7)
where
$$G_n(\vartheta, \varphi; r, \gamma) = \frac{n \cos 2\vartheta + n \gamma \sin 2\vartheta \cos \varphi + (n - 2)r}{1 + \left(\frac{1 + r}{1 - r} \right)^{2} \tan^2 \vartheta \left(n - 2 \right)} \sin^{n-2} \vartheta .$$
(8.8)

4
Proof. 1. Representation for $K_n(x)$ by an integral over \mathbb{S}^{n-1}. Let u stand for a harmonic function in \mathbb{B} from the space $H^\infty(\mathbb{B})$. By Poisson formula we have

$$u(x) = \frac{1}{\omega_n} \int_{\mathbb{S}^{n-1}} \frac{1-r^2}{|y-x|^n} u(y) d\sigma_y .$$

(2.9)

Fix a point $x \in \mathbb{B}$. By (2.9)

$$\frac{\partial u}{\partial x_i} = \frac{1}{\omega_n} \int_{\mathbb{S}^{n-1}} \left[\frac{-2x_i}{|y-x|^n} + \frac{n(1-r^2)(y_i-x_i)}{|y-x|^{n+2}} \right] u(y) d\sigma_y ,$$

that is

$$\nabla u(x) = \frac{1}{\omega_n} \int_{\mathbb{S}^{n-1}} \frac{n(1-r^2)(y-x) - 2|y-x|^2x}{|y-x|^{n+2}} u(y) d\sigma_y .$$

Thus

$$(\nabla u(x), \ell) = \frac{1}{\omega_n} \int_{\mathbb{S}^{n-1}} \frac{(n(1-r^2)(y-x) - 2|y-x|^2x, \ell)}{|y-x|^{n+2}} u(y) d\sigma_y ,$$

and therefore

$$K_n(x) = \frac{1}{\omega_n} \sup_{|\ell|=1} \int_{\mathbb{S}^{n-1}} \frac{|n(1-r^2)(y-x) - 2|y-x|^2x, \ell|}{|y-x|^{n+2}} d\sigma_y .$$

(2.10)

Using (2.5), we obtain

$$K_n(x) = \frac{1}{\omega_n} \sup_{|\ell|=1} \int_{\mathbb{S}^{n-1}} \frac{|n(1-r^2)((y, \nu_x) - r) - 2r|y-x|^2\ell_x + n(1-r^2)(y, \tau_x)\ell_r|}{|y-x|^{n+2}} d\sigma_y .$$

The last expression can be written as

$$K_n(x) = \frac{a_n(r)}{\omega_n} \sup_{|\ell|=1} \int_{\mathbb{S}^{n-1}} \frac{|b_n(r)(y, \tau_x)\ell_x + (y_n - c_n(r))\ell_r|}{(1 - 2ry_n + r^2)^{(n+2)/2}} d\sigma_y ,$$

(2.11)

where

$$a_n(r) = n(1-r^2) + 4r^2 , \quad b_n(r) = \frac{n(1-r^2)}{n(1-r^2) + 4r^2} , \quad c_n(r) = \frac{n(1-r^2) + 2(1+r^2)}{n(1-r^2) + 4r^2} r .$$

(2.12)

2. Representation for $K_n(x)$ by a double integral. Introducing the function

$$H_n(s,t; r, \ell) = \frac{|b_n(r)(y, \tau_x)\ell_x + (y_n - c_n(r))\ell_r|}{(1 - 2rt + r^2)^{(n+2)/2}} ,$$

(2.13)

we write the integral in (2.11) as the sum

$$\int_{\mathbb{S}^{n-1}} H_n((y, \tau_x), y_n; r, \ell) d\sigma_y + \int_{\mathbb{S}^{n-1}} H_n((y, \tau_x), y_n; r, \ell) d\sigma_y ,$$

(2.14)

where $S^{n-1}_+ = \{ y \in \mathbb{S}^{n-1} : (y, e_n) > 0 \}, S^{n-1}_- = \{ y \in \mathbb{S}^{n-1} : (y, e_n) < 0 \}$.

Let \(y' = (y_1, \ldots, y_{n-1}) \in \mathbb{B}' = \{ y' \in \mathbb{R}^{n-1} : |y'| < 1 \} \). We put
\[
\tau'_x = \sum_{i=1}^{n-1} (\tau_x, e_i) e_i.
\]

Since \(y_n = \sqrt{1 - |y'|^2} \) for \(y \in S^{n-1}_+ \) and \(y_n = -\sqrt{1 - |y'|^2} \) for \(y \in S^{n-1}_- \) and since \(d\sigma_y = dy'/\sqrt{1-|y'|^2} \), it follows that each of integrals in (2.14) can be written in the form
\[
\int_{S^{n-1}_+} \mathcal{H}_n((y, \tau_x), y_n; r, \ell) d\sigma_y = \int_{\mathbb{B}'} \mathcal{H}_n\left((y', \tau_x'), \sqrt{1-|y'|^2}; r, \ell\right) \frac{dy'}{\sqrt{1-|y'|^2}},
\]
(2.15)
and
\[
\int_{S^{n-1}_-} \mathcal{H}_n((y, \tau_x), y_n; r, \ell) d\sigma_y = \int_{\mathbb{B}'} \mathcal{H}_n\left((y', \tau_x'), -\sqrt{1-|y'|^2}; r, \ell\right) \frac{dy'}{\sqrt{1-|y'|^2}}.
\]
(2.16)

Putting
\[
\mathcal{M}_n(s, t; r, \ell) = \mathcal{H}_n(s, t; r, \ell) + \mathcal{H}_n(s, -t; r, \ell),
\]
(2.17)
and using (2.13)-(2.16), we rewrite (2.11) as
\[
\kappa_n(x) = \frac{a_n(r)}{\omega_n} \sup_{|s|=1} \int_{\mathbb{B}'} \mathcal{M}_n\left((y', \tau_x'), \sqrt{1-|y'|^2}; r, \ell\right) \frac{dy'}{\sqrt{1-|y'|^2}}.
\]
(2.18)
By the identity
\[
\int_{\mathbb{B}^n} g((y, \xi), |y|) d\nu = \omega_{n-1} \int_0^1 \rho^{n-1} d\rho \int_0^\pi g(|\xi| \rho \cos \varphi, \rho) \sin^{n-2} \varphi d\varphi
\]
(see, e.g., [13, 3.3.2(3)]), we transform the integral in (2.18):
\[
\int_{\mathbb{B}'} \mathcal{M}_n\left((y', \tau_x'), \sqrt{1-|y'|^2}; r, \ell\right) \frac{dy'}{\sqrt{1-|y'|^2}}
\]
(2.19)
\[
= \omega_{n-2} \int_0^1 \rho^{n-2} d\rho \int_0^\pi \mathcal{M}_n\left(\rho \cos \varphi, \sqrt{1-\rho^2}; r, \ell\right) \sin^{n-3} \varphi d\varphi.
\]
The change \(\rho = \sin \theta \) in (2.19) gives
\[
\int_{\mathbb{B}'} \mathcal{M}_n\left((y', \tau_x'), \sqrt{1-|y'|^2}; r, \ell\right) \frac{dy'}{\sqrt{1-|y'|^2}}
\]
(2.20)
\[
= \omega_{n-2} \int_0^{\pi/2} \sin^{n/2} \theta d\theta \int_0^\pi \mathcal{M}_n\left(\sin \theta \cos \varphi, \cos \theta; r, \ell\right) \sin^{n-3} \varphi d\varphi.
\]
Applying (2.13), (2.17) and introducing the notation
\[
\mathcal{F}_n(\theta, \varphi; r, \ell) = \mathcal{H}_n\left(\sin \theta \cos \varphi, \cos \theta; r, \ell\right)
\]
\[
= \frac{|b_n(r)\ell_r \sin \theta \cos \varphi + (\cos \theta - c_n(r)) \ell_{\nu}|}{(1 - 2r \cos \theta + r^2)^{(n+2)/2}},
\]

6
we write (2.20) as follows
\[\int_{\mathbb{B}} M_n^{(y,\tau)}(\sqrt{1-|y|^2};r,\ell) \frac{dy'}{\sqrt{1-|y'|^2}} = \omega_{n-2} \int_{\pi/2}^{\pi} \sin^{n-2} \theta d\theta \int_{0}^{\pi} \left(F_n(\theta,\varphi;r,\ell) + F_n(\pi-\theta,\varphi;r,\ell) \right) \sin^{n-3} \varphi \, d\varphi. \] (2.21)

Changing the variable \(\psi = \pi - \theta\), we obtain
\[\int_{\pi/2}^{\pi} \sin^{n-2} \theta d\theta \int_{0}^{\pi} F_n(\pi-\theta,\varphi;r,\ell) \sin^{n-3} \varphi \, d\varphi = \int_{\pi/2}^{\pi} \sin^{n-2} \psi d\psi \int_{0}^{\pi} F_n(\psi,\varphi;r,\ell) \sin^{n-3} \varphi \, d\varphi,\]
which together with (2.21) leads to the representation of (2.18):

\[K_n(x) = a_n(r) \omega_{n-2} \sup_{|\ell|=1} \int_{0}^{\pi} \sin^{n-2} \theta d\theta \int_{0}^{\pi} F_n(\theta,\varphi;r,\ell) \sin^{n-3} \varphi \, d\varphi. \] (2.22)

3. Transformation of representation for \(K_n(x)\). We make the change of variable
\[\theta = 2 \arctan \left(\frac{1-r}{1+r} \tan \vartheta \right)\]
in (2.22). Then
\[\sin \theta = \frac{2 \left(\frac{1-r}{1+r} \right) \tan \vartheta}{1 + \left(\frac{1-r}{1+r} \right)^2 \tan^2 \vartheta}, \] (2.23)
\[d\theta = \frac{2(1-r)}{(1+r) \cos^2 \vartheta \left(1 + \left(\frac{1-r}{1+r} \right)^2 \tan^2 \vartheta \right)} \, d\vartheta, \] (2.24)
\[1 - 2r \cos \theta + r^2 = \frac{(1-r)^2}{\cos^2 \vartheta \left(1 + \left(\frac{1-r}{1+r} \right)^2 \tan^2 \vartheta \right)}, \] (2.25)
\[b_n(r) \ell_r \sin \theta \cos \varphi + \left(\cos \theta - c_n(r) \right) \ell_\varphi = \frac{1-r)^2 [n \ell_r \sin 2\vartheta \cos \varphi + (n \cos 2\vartheta + (n-2)r) \ell_\varphi]}{[n(1-r^2) + 4r^2] \cos^2 \vartheta \left(1 + \left(\frac{1-r}{1+r} \right)^2 \tan^2 \vartheta \right)}. \] (2.26)

Substituting (2.23)-(2.26) in (2.22), we arrive at
\[K_n(x) = \frac{2^{n-2}(n-2)}{\pi(1+r)^{n-1}(1-r) \sup_{|\ell|=1} \int_{0}^{\pi} \sin^{n-3} \varphi \, d\varphi \int_{0}^{\pi/2} G_n(\theta,\varphi;r,\ell) \, d\theta}, \] (2.27)
where
\[G_n(\vartheta, \varphi; r, \ell) = \frac{n \ell \sin 2\vartheta \cos \varphi + (n \cos 2\vartheta + (n - 2)r) \ell \cos \varphi}{1 + \left(\frac{1 - r}{1 + r}\right)^2 \tan^2 \vartheta} \sin^{n-2} \vartheta. \]

Since the integrand in (2.10) does not change when the unit vector \(\ell \) is replaced by \(-\ell\), we may assume that \(\ell = (\ell, \nu_x) > 0 \) in (2.27). Introducing the parameter \(\gamma = \ell / \ell \) in (2.27) and using the equality \(\ell_\vartheta^2 + \ell_\nu^2 = 1 \), we arrive at (2.7) with \(G_n(\vartheta, \varphi; r, \gamma) \) given by (2.8).

By dilation, we obtain the following result, equivalent to Lemma 1 and involving the ball \(B_R \) with an arbitrary \(R \).

Lemma 2. Let \(u \in H^\infty(B_R) \), and let \(x \) be an arbitrary point in \(B_R \). The sharp coefficient \(K_{n,R}(x) \) in the inequality
\[|\nabla u(x)| \leq K_{n,R}(x) ||u||_{L^\infty(\partial B_R)} \]
is given by
\[K_{n,R}(x) = \frac{2 \pi (n - 2) R^{n-1}}{\pi R + |x| |R - |x||} \sup_{\gamma \geq 0} \frac{1}{\sqrt{1 + \gamma^2}} \int_0^\pi \sin^{n-3} \varphi \ d\varphi \int_0^{\pi/2} G_n(\vartheta, \varphi; \frac{|x|}{R}, \gamma) \ d\vartheta, \]
where
\[G_n(\vartheta, \varphi; r, \gamma) = \frac{n \gamma \sin 2\vartheta \cos \varphi + n \cos 2\vartheta + (n - 2)r}{1 + \left(\frac{1 - r}{1 + r}\right)^2 \tan^2 \vartheta} \sin^{n-2} \vartheta. \]

Now, we prove a limit estimate for the gradient of a bounded harmonic function.

Theorem 2. Let \(\Omega \) be a domain in \(\mathbb{R}^n \), and let \(\mathcal{H}(\Omega) \) be the set of harmonic functions \(u \) in \(\Omega \) with \(\sup_{\Omega} |u| \leq 1 \). Assume that a point \(\xi \in \partial \Omega \) can be touched by an interior ball \(B \). Then
\[\limsup_{x \to \xi} \sup_{u \in \mathcal{H}(\Omega)} |x - \xi| |\nabla u(x)| \leq C_n, \]
where \(x \) is a point at the radius of \(B \) directed from the center to \(\xi \). Here the constant \(C_n \) is the same as in Theorem 1.

Proof. Let \(n \geq 3 \). By Lemma 2, the relations
\[\limsup_{|x| \to R} \sup_{|u| \in \mathcal{H}(\Omega)} \left\{ (R - |x|)|\nabla u(x)| : ||u||_{L^\infty(\mathbb{R}^n)} \leq 1 \right\} \leq \lim_{|x| \to R} (R - |x|) K_{n,R}(x) = C_n \]
hold, where
\[C_n = \frac{n - 2}{2\pi} \sup_{\gamma \geq 0} \frac{1}{\sqrt{1 + \gamma^2}} \int_0^\pi \sin^{n-3} \varphi \ d\varphi \int_0^{\pi/2} |P_n(\vartheta, \varphi; \gamma)| \sin^{n-2} \vartheta \ d\vartheta, \]
with
\[P_n(\vartheta, \varphi; \gamma) = n \gamma \sin 2\vartheta \cos \varphi + n \cos 2\vartheta + (n - 2) \]
\[= 2 \left[n \gamma \cos \vartheta \sin \vartheta \cos \varphi + (n \cos^2 \vartheta - 1) \right]. \]
According to Proposition 1 in [8], the sharp coefficient \(C_n(x) \) in the inequality
\[
|\nabla u(x)| \leq C_n(x) ||u||_{h^\infty(\mathbb{R}^n_+)} ,
\] (2.31)
where \(u \) is a bounded harmonic function in the half-space \(\mathbb{R}^n_+ \), is equal to \(C_n(x) = C_n/x_n \) with the best constant \(C_n \) given by (2.30). By Theorem 1 in [8], the value of \(C_n \) is given by the formula
\[
C_n = \frac{4(n-1)(n-1/2) \omega_{n-1}}{n^{n/2} \omega_n} .
\] (2.32)

Let \(R \) denote the radius of the ball \(B \subset \Omega \) tangent to \(\partial \Omega \) at the point \(\xi \). We put the origin \(O \) at the center of \(B \). Let the point \(x \) belong to the interval joining \(O \) and \(\xi \). Then \(R - |x| = |x - \xi| \).

By (2.29) with \(C_n \) from (2.32) on the right-hand side we conclude the proof in the case \(n \geq 3 \) by reference to the inequality
\[
||u||_{h^\infty(B)} \leq \sup_\Omega |u| .
\] (2.33)

The proof of Theorem 2 in the case \(n = 2 \) is analogous, estimate (2.29) follows from D. Khavinson’s [6] inequality
\[
|f'(z)| \leq \frac{4R}{\pi(R^2 - |z|^2)} \sup_{|\zeta| < R} |\Re f(\zeta)|
\] (2.34)
by the change \(f = u + iv, \ f'(z) = u'_x - iv'_y, \) where \(f \) is holomorphic in \(D_R = \{ z \in \mathbb{C} : |z| < R \} \).

The estimate (2.31) results from (2.4) by the change \(f = u + iv, \ f'(z) = u'_x - iv'_y, \) where \(f \) is holomorphic in \(\mathbb{C}_+ \).

Remark 1. The following inequality for the modulus of the gradient of a harmonic function is known (see [12], Ch. 2, Sect. 13)
\[
|\nabla u(x)| \leq \frac{A_n}{d_x} \osc_{\Omega}(u) ,
\]
where
\[
A_n = \frac{n\omega_{n-1}}{(n-1)\omega_n} .
\]
It is equivalent to the estimate
\[
|\nabla u(x)| \leq \frac{2A_n}{d_x} \sup_\Omega |u| ,
\] (2.35)
where \(u \) is a bounded harmonic function in \(\Omega \subset \mathbb{R}^n, \ n \geq 2, \) and \(\osc_{\Omega}(u) \) is the oscillation of \(u \) on \(\Omega \).

The coefficient on the right-hand side of (2.35) is less than that in the well known gradient estimate (see, e.g., [2], Sect. 2.7)
\[
|\nabla u(x)| \leq \frac{n}{d_x} \sup_\Omega |u| .
\]

By
\[
\frac{C_n}{2A_n} = \frac{2}{\sqrt{n}} \left(1 - \frac{1}{n} \right)^{(n+1)/2} < 1 ,
\]
inequality (2.1) with \(C_n \) from (2.2) improves (2.35) for domains complementary to convex closed domains.

Sharp estimates of derivatives of harmonic functions can be found in the books [7], [10]. We also mention the articles [1], [3], [5] dealing with estimates of harmonic functions.
3 Estimates for the maximum value of the modulus of directional derivative of a vector field with harmonic components

Let in the domain $\Omega \subset \mathbb{R}^n$, there is a m-component vector field $\mathbf{a}(x) = (a_1(x), \ldots, a_m(x))$, $m \geq 1$. Let, further $\ell = (\ell_1, \ldots, \ell_n)$ be a unit n-dimensional vector. The derivative of the field $\mathbf{a}(x)$ in the direction ℓ is defined by

$$\frac{\partial \mathbf{a}}{\partial \ell} = \lim_{t \to 0} \frac{\mathbf{a}(x + t\ell) - \mathbf{a}(x)}{t},$$

that is

$$\frac{\partial \mathbf{a}}{\partial \ell} = (\ell, \nabla) \mathbf{a}. \quad (3.1)$$

Let us introduce some notation used in the sequel. By $||u||_{L^\infty(\partial \Omega)} = \sup\{||u(x)|| : x \in \partial \Omega\}$ we denote the norm in the space $[L^\infty(\partial \Omega)]^m$ of vector-valued functions u on $\partial \Omega$ with m components from $L^\infty(\partial \Omega)$. By $[h^\infty(\Omega)]^m$ we mean the Hardy space of vector-valued functions $u(x) = (u_1(x), \ldots, u_m(x))$ with bounded harmonic components on Ω endowed with the norm $||u||_{h^\infty(\Omega)} = \sup\{||u(x)|| : x \in \Omega\}$.

It is known that any element of $[h^\infty(\mathbb{R}^n_+)]^m$ can be represented by the Poisson integral

$$u(x) = \frac{2}{\omega_n} \int_{\partial \mathbb{R}^n_+} \frac{x_n}{|y - x|^n} u(y)dy', \quad (3.2)$$

with boundary values in $[L^\infty(\partial \mathbb{R}^n_+)]^m$, where $y = (y', 0)$, $y' \in \mathbb{R}^{n-1}$.

Now, we find a representation for the sharp coefficient $C_{m,n}(x)$ in the inequality

$$\begin{align*}
\max_{|\ell| = 1} |(\ell, \nabla)u(x)| &\leq C_{m,n}(x)||u||_{L^\infty(\partial \mathbb{R}^n_+)}^m, \\
&= \mathcal{C}_{m,n}(x) ||u||_{L^\infty(\partial \mathbb{R}^n_+)}^m, \quad (3.3)
\end{align*}$$

where $u \in [h^\infty(\mathbb{R}^n_+)]^m$ and $x \in \mathbb{R}^n_+$.

Lemma 3. Let $u \in [h^\infty(\mathbb{R}^n_+)]^m$, and let x be an arbitrary point in \mathbb{R}^n_+. The sharp coefficient $C_{m,n}(x)$ in (3.3) is given by

$$C_{m,n}(x) = C_{m,n} x_n^{-1}, \quad (3.4)$$

where

$$C_{m,n} = \frac{1}{\omega_n} \max_{|\ell| = 1} \int_{\mathbb{S}^{n-1}} |(e_n - n(e_\sigma, e_n) e_\sigma, \ell)| d\sigma, \quad (3.5)$$

and e_σ stands for the n-dimensional unit vector joining the origin to a point σ on the sphere \mathbb{S}^{n-1}.

Proof. Let $x = (x', x_n)$ be a fixed point in \mathbb{R}^n_+. The representation (3.2) implies

$$\frac{\partial \mathbf{u}}{\partial x_j} = \frac{2}{\omega_n} \int_{\partial \mathbb{R}^n_+} \left[\frac{\delta_{nj}}{|y - x|^n} + \frac{nx_n(y_j - x_j)}{|y - x|^{n+2}} \right] u(y)dy',$$

that is, by (3.1),

$$\frac{\partial \mathbf{u}}{\partial \ell} = \frac{2}{\omega_n} \sum_{j=1}^n \ell_j \int_{\partial \mathbb{R}^n_+} \left[\frac{\delta_{nj}}{|y - x|^n} + \frac{nx_n(y_j - x_j)}{|y - x|^{n+2}} \right] u(y)dy',$$

$$= \frac{2}{\omega_n} \int_{\partial \mathbb{R}^n_+} \frac{\langle e_n - n(e_{xy}, e_n) e_{xy}, \ell \rangle}{|y - x|^n} u(y)dy,$$
Proposition 2. Let \(C \) holds, where the best constant we arrive at (3.7).

The case \(C \) where \(C \) is given by (2.2). Then, using the inequality
\[
\left| e - n(e_{xy}, e_{xy}, \ell) \right| \leq C \left| \frac{n}{y - x} \right|^n (u(y), z) dy.
\]

Hence,
\[
C_{m,n}(x) = \frac{2}{\omega_n} \max_{\ell \in \mathbb{R}^n} \int_{\partial \mathbb{R}^n} \left| \frac{n}{y - x} \right|^n dy

= \frac{1}{\omega_n} \max_{\ell \in \mathbb{R}^n} \int_{\mathbb{R}^n_+} \left| \frac{n}{y - x} \right|^n d\sigma.
\]
The last equality proves (3.4) and (3.5). \(\square \)

By Lemma 3, the sharp coefficient \(C_{m,n}(x) \) in inequality (3.3) does not depend on \(m \). Thus, \(C_{m,n}(x) = C_{1,n}(x) = C_n(x) \), where \(C_n(x) = C_n(x_n^{-1}) \) is the sharp coefficient in (2.31). Thus, we arrive at the following generalization of Theorem 1 in our paper [8], where the case \(m = 1 \) is treated.

Proposition 1. Let \(u \in [h^\infty(\mathbb{R}^n_+)]^m \) and let \(x \) be an arbitrary point in \(\mathbb{R}^n_+ \). The inequality
\[
\max_{|\ell| = 1} |(\ell, \nabla)u(x)| \leq C_n x_n^{-1} ||u||_{L^\infty(\partial \mathbb{R}^n_+)}^m
\]
holds, where the best constant \(C_n \) is the same as in Theorem 1.

The assertion below is an extension of Theorem 1.

Proposition 2. Let \(\Omega = \mathbb{R}^n \setminus G \), where \(G \) is a convex subdomain of \(\mathbb{R}^n \), and let \(u \) be a vector-valued function with \(m \) bounded harmonic components in \(\Omega \). Then for any point \(x \in \Omega \) the inequality
\[
\max_{|\ell| = 1} |(\ell, \nabla)u(x)| \leq C_n \frac{d_x}{d_x} \sup_{\Omega} |u|
\]
holds, where the constant \(C_n \) is the same as in Theorem 1.

Proof. Let \(\xi \in \partial \Omega \) be the point at \(\partial \Omega \) nearest to \(x \in \Omega \). Let the notation \(\mathbb{R}^n_\xi \) be the same as in the proof of Theorem 1. By Proposition 1
\[
\max_{|\ell| = 1} |(\ell, \nabla)u(x)| \leq C_n \frac{d_x}{d_x} ||u||_{[h^\infty(\mathbb{R}^n_\xi)]^m},
\]
where \(C_n \) is given by (2.2). Then, using the inequality
\[
||u||_{[h^\infty(\mathbb{R}^n_\xi)]^m} \leq \sup_{\Omega} |u|,
\]
we arrive at (3.7). \(\square \)

Any element of \([h^\infty(\mathbb{B})]^m \) can be represented as the Poisson integral
\[
u(x) = \frac{1}{\omega_n} \int_{\mathbb{R}^n_+} \frac{1 - r^2}{y - x} u(y) d\sigma_y
\]
with boundary values in \([L^\infty(\partial \mathbb{B})]^m \).

In the next assertion we find a representation for the sharp coefficient \(K_{m,n}(x) \) in the inequality
\[
\max_{|\ell| = 1} |(\ell, \nabla)u(x)| \leq K_{m,n}(x) ||u||_{[L^\infty(\partial \mathbb{B})]^m}.
\]
Lemma 4. Let \(u \in [h^{\infty}(\mathbb{B})]^m \), and let \(x \) be an arbitrary point in \(\mathbb{B} \). The sharp coefficient \(K_{m,n}(x) \) in (3.10) is given by

\[
K_{m,n}(x) = \frac{1}{\omega_n} \sup_{\ell \in \mathbb{S}^{n-1}} \int_{S^{n-1}} \frac{\left| (n \left(1 - r^2 \right) (y - x) - 2|y - x|^2 x, \ell \right) \right|}{|y - x|^{n+2}} d\sigma_y. \tag{3.11}
\]

Proof. Fix a point \(x \in \mathbb{B} \). By (3.9)

\[
\frac{\partial u}{\partial x_j} = \frac{1}{\omega_n} \int_{S^{n-1}} \left[\frac{-2x_j}{|y - x|^n} + \frac{n \left(1 - r^2 \right) (y_j - x_j)}{|y - x|^{n+2}} \right] u(y) d\sigma_y,
\]

that is

\[
\frac{\partial u}{\partial \ell} = (\ell, \nabla)u(x) = \frac{1}{\omega_n} \sum_{j=1}^n \ell_j \int_{S^{n-1}} \frac{n \left(1 - r^2 \right) (y_j - x_j) - 2|y - x|^2 x_j}{|y - x|^{n+2}} u(y) d\sigma_y.
\]

For any \(z \in S^{n-1} \) we have

\[
((\ell, \nabla)u(x), z) = \frac{1}{\omega_n} \int_{S^{n-1}} \frac{n \left(1 - r^2 \right) (y - x) - 2|y - x|^2 x, \ell \right) \right|}{|y - x|^{n+2}} (u(y), z) d\sigma_y,
\]

which implies (3.11). \(\square \)

The next assertion is a generalization of Theorem 2.

Proposition 3. Let \(\Omega \) be a domain in \(\mathbb{R}^n \). Let \(\mathfrak{U}(\Omega) \) be the set of \(m \)-component vector-valued functions \(u \) whose components are harmonic in \(\Omega \), with \(\sup_{\Omega} |u| \leq 1 \). Assume that a point \(\xi \in \partial \Omega \) can be touched by an interior ball \(B \). Then

\[
\limsup_{x \to \xi} \sup_{\mathfrak{U}(\Omega)} \max_{|\ell| = 1} |x - \xi|| (\ell, \nabla)u(x) | \leq C_n, \tag{3.12}
\]

where \(x \) is a point of the radius of \(B \) directed from the center to \(\xi \). Here the constant \(C_n \) is the same as in Theorem 1.

Proof. By Lemma 4 \(K_{m,n}(x) \) does not depend on \(m \) and therefore \(K_{m,n}(x) = K_{1,n}(x) = K_n(x) \), where \(K_n(x) \) is the sharp coefficient in (2.4). Hence (3.10) can be written in the form

\[
\max_{|\ell| = 1} | (\ell, \nabla)u(x) | \leq K_n(x)||u||_{L^\infty(\partial \mathbb{B})^m}.
\]

By dilation in the last inequality we obtain the analogue of Lemma 2

\[
\max_{|\ell| = 1} | (\ell, \nabla)u(x) | \leq K_{n,R}(x)||u||_{L^\infty(\partial \mathbb{B}_{R})^m}, \tag{3.13}
\]

where \(x \in \mathbb{B}_R \) and \(u \in [h^{\infty}(\mathbb{B}_R)]^m \). Now, (3.13) along with the representation of \(K_{n,R}(x) \) from Lemma 2 leads to the inequality

\[
\limsup_{|x| \to R} \sup_{|\ell| = 1} \left| (R - |x|)(\ell, \nabla)u(x) \right| : |\ell| = 1, ||u||_{h^{\infty}(\mathbb{B}_R)} \leq 1 \leq \lim_{|x| \to R} (R - |x|)K_{n,R}(x) = C_n,
\]

where \(C_n \) is given by (2.30). The proof is completed in the same way as that of Theorem 2, with the only difference that (2.33) is replaced by the inequality

\[
||u||_{h^{\infty}(\mathbb{B})} \leq \sup_{\Omega} |u|, \tag{3.14}
\]

\(\square \)
4 Estimates for the divergence of a vector field with harmonic components

Let $u(x) = (u_1(x), \ldots, u_n(x))$ be a vector field with n bounded harmonic components in $\Omega \subset \mathbb{R}^n$.

Proposition 4. Let $u \in [h^\infty(\mathbb{R}^n_+)]^n$, and let x be an arbitrary point in \mathbb{R}^n_+. The sharp coefficient $D_n(x)$ in the inequality

$$|\text{div} \ u(x)| \leq D_n(x)||u||_{L^\infty(\partial \mathbb{R}^n_+)}$$

is given by

$$D_n(x) = D_n x_n^{-1},$$

where

$$D_n = \frac{2\omega_{n-1}}{\omega_n} \int_0^{\pi/2} [1 + n(n-2) \cos^2 \vartheta]^{1/2} \sin^{n-2} \vartheta d\vartheta.$$

In particular,

$$D_2 = 1, \quad D_3 = 1 + \frac{\sqrt{3}}{6} \ln (2 + \sqrt{3}).$$

Proof. By (3.2),

$$\text{div} \ u = \frac{2}{\omega_n} \sum_{j=1}^n \int_{\partial \mathbb{R}^n_+} u_j(y) \frac{\partial}{\partial x_j} \left(\frac{x_n}{|y-x|^n} \right) dy' =$$

$$\frac{2}{\omega_n} \sum_{j=1}^n \int_{\partial \mathbb{R}^n_+} \left(\frac{\delta_{jn}}{|y-x|^n} + \frac{n x_n (y_j - x_j)}{|y-x|^{n+2}} \right) u_j(y) dy' =$$

$$\frac{2}{\omega_n} \sum_{j=1}^n \int_{\partial \mathbb{R}^n_+} \left(\delta_{jn} - n(e_{xy}, e_n) e_{xy}, u_j(y) \right) dy'.$$

which implies

$$\text{div} \ u = \frac{2}{\omega_n} \int_{\partial \mathbb{R}^n_+} \left(e_n - n(e_{xy}, e_n) e_{xy}, u(y) \right) \frac{y}{|y-x|^n} dy'.$$

This equality shows that the sharp coefficient $D_n(x)$ in (4.1) is represented in the form

$$D_n(x) = \frac{2}{\omega_n} \int_{\partial \mathbb{R}^n_+} \frac{|e_n - n(e_{xy}, e_n) e_{xy}|}{|y-x|^n} dy'.$$

Then

$$D_n(x) = \frac{2}{\omega_n x_n} \int_{\partial \mathbb{R}^n_+} \frac{|e_n - n(e_{xy}, e_n) e_{xy}|}{|y-x|^n} dy' = \frac{D_n}{x_n},$$

where

$$D_n = \frac{2}{\omega_n} \int_{S^{n-1}} |e_n - n(e_\sigma, e_n) e_\sigma| d\sigma = \frac{1}{\omega_n} \int_{S^{n-1}} |e_n - n(e_\sigma, e_n) e_\sigma| d\sigma.$$

The identity

$$|e_n - n(e_\sigma, e_n) e_\sigma|^2 = 1 + n(n-2)(e_\sigma, e_n)^2,$$
along with (4.7) leads to the formula

\[D_n = \frac{1}{\omega_n} \int_{S^{n-1}} \left(1 + n(n-2)(\mathbf{e}_n, \mathbf{e}_n)^2 \right)^{1/2} d\sigma. \]

(4.9)

Using

\[\int_{S^{n-1}} f((\xi, y)) d\sigma = \omega_{n-1} \int_{-1}^{1} f(|\xi|) (1 - t^2)^{(n-3)/2} dt \]

(see, e.g., [14, 4.3.2(2)] and the change of variable \(t = \cos \vartheta \)), we obtain

\[\int_{S^{n-1}} \left(1 + n(n-2)(\mathbf{e}_n, \mathbf{e}_n)^2 \right)^{1/2} d\sigma = 2\omega_{n-1} \int_{0}^{\pi/2} \left[1 + n(n-2) \cos^2 \vartheta \right]^{1/2} \sin^{n-2} \vartheta \sin d\vartheta. \]

(4.11)

By (4.6), (4.9) and (4.11), we arrive at (4.2) and (4.3). \(\square \)

The next assertion is analogous to Proposition 2. Here the divergence replaces the directional derivative.

Proposition 5. Let \(\Omega = \mathbb{R}^n \setminus \overline{G} \), where \(G \) be a convex subdomain of \(\mathbb{R}^n \), and let \(u \) be a \(n \)-component vector-valued function with bounded harmonic components in \(\Omega \). Then for any point \(x \in \Omega \) the inequality

\[|\text{div} \ u(x)| \leq \frac{D_n}{d_x} \sup_{\Omega} |u| \]

(4.12)

holds, where the constant \(D_n \) is the same as in Proposition 4.

Proof. Let \(\xi \in \partial \Omega \) be a point at \(\partial \Omega \) nearest to \(x \in \Omega \). Let the notation \(\mathbb{R}^n_\xi \) be the same as in the proof of Theorem 1. By Proposition 4

\[|\text{div} \ u(x)| \leq \frac{D_n}{d_x} \left(\left| u \right|_{L^\infty(\mathbb{R}^n_\xi)} \right)^n, \]

where \(D_n \) is defined by (4.3). Then by (3.3) with \(m = n \), we arrive at (4.12). \(\square \)

Lemma 5. Let \(u \in [L^\infty(\mathbb{B})]^n \), and let \(x \) be an arbitrary point in \(\mathbb{B} \). The sharp coefficient \(T_n(x) \) in the inequality

\[|\text{div} \ u| \leq T_n(x) \left| u \right|_{L^\infty(\partial \mathbb{B})} \]

(4.13)

is given by

\[T_n(x) = \frac{2^{n-1} \omega_{n-1}}{\omega_n (1+r)^{n-1}} \int_0^{\pi/2} \left[\left(n - (n-2)r \right)^2 + 4n(n-2)r \cos^2 \vartheta \right]^{1/2} \frac{\sin^{n-2} \vartheta \sin d\vartheta}{1 + \left(\frac{r-x}{1+r} \right)^2 \tan^2 \vartheta}. \]

(4.14)

In particular,

\[T_2(x) = \frac{2}{1-r^2}, \quad T_3(x) = \frac{1}{1-r^2} \left(2 + \frac{3-r^2}{2\sqrt{3}} \ln \frac{\sqrt{3}+r}{\sqrt{3}-r} \right). \]
Finally, setting which leads to the formula

\[
div \mathbf{u} = \frac{1}{\omega_n} \int_{S^{n-1}} \left(\frac{-2x_j}{|y-x|^n} + \frac{n(1-r^2)(y_j-x_j)}{|y-x|^{n+2}} \right) u_j(y) d\sigma_y.
\]

Therefore,

\[
div \mathbf{u} = \frac{1}{\omega_n} \int_{S^{n-1}} \left(\frac{-2x}{|y-x|^n} + \frac{n(1-r^2)(y-x)}{|y-x|^{n+2}} , \mathbf{u}(y) \right) d\sigma_y.
\]

This implies that the sharp coefficient \(T_n(x) \) in (4.13) has the form

\[
T_n(x) = \frac{1}{\omega_n} \int_{S^{n-1}} \frac{|-2x| y - x|^2 + n(1-r^2)(y-x)|}{|y-x|^{n+2}} d\sigma_y,
\]

which leads to the formula

\[
T_n(x) = \frac{1}{\omega_n} \int_{S^{n-1}} \frac{(4r^2 + a^2(r) - 4a(r)(x,y))^{1/2}}{(1 - 2(x,y) + r^2)^{(n+1)/2}} d\sigma_y, \tag{4.15}
\]

where \(a(r) = 2r^2 + n(1-r^2) \). Transforming the integral in (4.15) with help of (4.10), we obtain

\[
T_n(x) = \frac{\omega_{n-1}}{\omega_n} \int_{-1}^{1} \frac{(4r^2 + a^2(r) - 4a(r)t)^{1/2}}{(1 - 2rt + r^2)^{(n+1)/2}} (1 - t^2)^{(n-3)/2} dt.
\]

Changing the variable \(t = \cos \theta \), we derive

\[
T_n(x) = \frac{\omega_{n-1}}{\omega_n} \int_{0}^{\pi} \frac{(4r^2 + a^2(r) - 4a(r) \cos \theta)^{1/2}}{(1 - 2r \cos \theta + r^2)^{(n+1)/2}} \sin^{n-2} \theta d\theta. \tag{4.16}
\]

Finally, setting

\[
\theta = 2 \arctan \left(\frac{1-r}{1+r} \tan \vartheta \right)
\]

in (4.16) and using (2.23) - (2.25), we arrive at (4.14). \(\square \)

By dilation in Lemma 5, we obtain

Lemma 6. Let \(\mathbf{u} \in [h^\infty(\mathbb{B}_R)^n] \), and let \(x \) be an arbitrary point in \(\mathbb{B}_R \). The sharp coefficient \(T_{n,R}(x) \) in the inequality

\[
|div \mathbf{u}(x)| \leq \mathcal{T}_{n,R}(x)||\mathbf{u}||_{L^\infty(\partial\mathbb{B}_R)^n}
\]

is given by

\[
T_{n,R}(x) = \frac{2^{n-1} \omega_{n-1} R^{n-1}}{\omega_n (R + |x|)^{n-1}(R - |x|)} \int_{0}^{\pi/2} Q_n \left(\vartheta; \frac{|x|}{R} \right) \sin^{n-2} \vartheta d\vartheta,
\]

where

\[
Q_n(\vartheta; r) = \left[\frac{(n - (n-2)r)^2 + 4n(n-2)r \cos^2 \vartheta}{1 + (\frac{1-r}{1+r})^2 \tan^2 \vartheta} \right]^{(n-2)/2}.
\]

15
Proposition 6. Let Ω be a domain in \mathbb{R}^n and let $\mathfrak{U}(\Omega)$ be the set of n-component vector-valued functions \mathbf{u} whose components are harmonic in Ω, and $\sup_{\Omega} |\mathbf{u}| \leq 1$. Suppose that a point $\xi \in \partial \Omega$ can be touched by an interior ball B. Then
\[
\limsup_{x \to \xi} \sup_{\mathbf{u} \in \mathfrak{U}(\Omega)} |x - \xi| |\text{div} \mathbf{u}(x)| \leq D_n ,
\]
where x is a point of the radius of B directed from the center to ξ. Here the constant D_n is the same as in Proposition 4.

Proof. By Lemma 6, the relations
\[
\limsup_{|x| \to R} \sup_{\mathbf{u}} \{ (R - |x|) |\text{div} \mathbf{u}(x)| : ||\mathbf{u}||_{\mathcal{H}(\mathcal{S}_R^n)} \leq 1 \} \leq \lim_{|x| \to R} (R - |x|) \mathcal{T}_{n,R}(x) = D_n \quad (4.17)
\]
hold, where D_n is the same as in Proposition 4.

Using the notation introduced in Theorem 2, by (4.17) and (3.14) with $m = n$ the result follows. \qed

5 Estimates for the divergence of an elastic displacement field and the pressure in a fluid

Let $[C_b(\partial \mathbb{R}^n_+)]^n$ be the space of vector-valued functions with n components which are bounded and continuous on $\partial \mathbb{R}^n_+$. This space is endowed with the norm $||\mathbf{u}||_{[C_b(\partial \mathbb{R}^n_+)]^n} = \sup \{ |\mathbf{u}(x)| : x \in \partial \mathbb{R}^n_+ \}$.

In the half-space \mathbb{R}^n_+, $n \geq 2$, consider the Lamé system
\[
\Delta \mathbf{u} + (1 - 2\sigma)^{-1} \text{grad} \text{div} \mathbf{u} = 0 , \quad (5.1)
\]
and the Stokes system
\[
\Delta \mathbf{u} - \text{grad} p = 0 , \quad \text{div} \mathbf{u} = 0 , \quad (5.2)
\]
with the boundary condition
\[
\mathbf{u}|_{x_n = 0} = \mathbf{f} , \quad (5.3)
\]
where σ is the Poisson coefficient, $\mathbf{f} \in [C_b(\partial \mathbb{R}^n_+)]^n$, $\mathbf{u} = (u_1, \ldots, u_n)$ is the displacement vector of an elastic medium or the velocity vector of a fluid, and $p(x)$ is the pressure in the fluid vanishing as $x_n \to \infty$.

We assume that $\sigma \in (-\infty, 1/2) \cup (1, +\infty)$ which means the strong ellipticity of system (5.1). By λ and μ we denote the Lamé constants. Since $\sigma = \lambda/2(\lambda + \mu)$ the strong ellipticity is equivalent to the inequalities $\mu > 0, \lambda + \mu > 0$ and $-\mu < \lambda + \mu < 0$.

A unique solution $\mathbf{u} \in [C^2(\mathbb{R}^n_+)]^n \cap [C_b(\overline{\mathbb{R}^n_+})]^n$ of problem (5.1), (5.3) and the vector component $\mathbf{u} \in [C^2(\mathbb{R}^n_+)]^n \cap [C_b(\overline{\mathbb{R}^n_+})]^n$ of a solution $\{\mathbf{u}, p\}$ to problem (5.2), (5.3) admit the representation (see, e.g., [10], pp. 64-65)
\[
\mathbf{u}(x) = \int_{\partial \mathbb{R}^n_+} \mathcal{H} \left(\frac{y - x}{|y - x|} \right) \frac{x_n}{|y - x|^n} \mathbf{f}(y') dy' , \quad (5.4)
\]
where $x \in \mathbb{R}^n_+$, $y = (y', 0)$, $y' \in \mathbb{R}^{n-1}$. Here \mathcal{H} is the $(n \times n)$-matrix-valued function on \mathbb{S}^{n-1} with elements
\[
2 \omega_n \left((1 - \kappa)\delta_{jk} + n\kappa \frac{(y_j - x_j)(y_k - x_k)}{|y - x|^2} \right) , \quad (5.5)
\]
where $\kappa = 1$ for the Stokes system and $\kappa = (3 - 4\sigma)^{-1}$ for the Lamé system.

16
Proposition 7. (i) Let \(u \in [C^2(\mathbb{R}_+^n)]^n \cap [C_b(\mathbb{R}_+^n)]^n \) be a solution of the Lamé system in \(\mathbb{R}_+^n \). The sharp coefficient \(E_n(x) \) in the inequality

\[
|\text{div } u(x)| \leq E_n(x)||u||_{[C_b(\partial \mathbb{R}_+^n)]^n}
\]

is given by

\[
E_n(x) = \frac{1 - 2\sigma}{3 - 4\sigma} E_n x_n^{-1},
\]

where

\[
E_n = \frac{4\omega_{n-1}}{\omega_n} \int_0^{\pi/2} [1 + n(n - 2) \cos^2 \vartheta]^{1/2} \sin^{n-2} \vartheta \, d\vartheta.
\]

In particular,

\[
E_2 = 2, \quad E_3 = 2 \left(1 + \frac{\sqrt{3}}{6} \ln (2 + \sqrt{3})\right).
\]

(ii) Let \(u \in [C^2(\mathbb{R}_+^n)]^n \cap [C_b(\mathbb{R}_+^n)]^n \) be the vector component of a solution \(\{u, p\} \) of the Stokes system (1.2) in \(\mathbb{R}_+^n \) and \(p(x) \) be the pressure vanishing as \(x_n \to \infty \). The sharp coefficient \(S_n(x) \) in the inequality

\[
|p(x)| \leq S_n(x)||u||_{[C_b(\partial \mathbb{R}_+^n)]^n}
\]

is given by

\[
S_n(x) = E_n x_n^{-1},
\]

where the constant \(E_n \) is defined by (5.8).

Proof. (i) Proof of inequality (5.6). By (5.4) and (5.5),

\[
u_j(x) = \frac{2}{\omega_n} \int_{\partial \mathbb{R}_+^n} \left(1 - \kappa\right) e_j + n\kappa \frac{(y_j - x_j)(y - x)}{|y - x|^2}, f(y') \right) \frac{x_n}{|y - x|^n} \, dy'.
\]

Noting that \(y_n = 0 \) in (5.11), we find

\[
\sum_{j=1}^n \frac{\partial}{\partial x_j} \left(\frac{(y_j - x_j)(y - x, f(y')) x_n}{|y - x|^{n+2}}\right) = \sum_{j=1}^n \frac{(n + 2)(y_j - x_j)^2(y - x, f(y')) x_n}{|y - x|^{n+4}} + \\
\sum_{j=1}^n \frac{-(y - x, f(y')) x_n + (y_j - x_j)f(y') x_n + (y_j - x_j)(y - x, f(y')) \delta_{nj}}{|y - x|^{n+2}} = \\
\frac{-n(y - x, f(y')) x_n - (y - x, f(y')) x_n + (y_n - x_n)(y - x, f(y')) + (n + 2)(y - x, f(y'))}{|y - x|^{n+2}} = 0.
\]

This together with (5.11) gives

\[
\text{div } u(x) = \frac{2}{\omega_n} (1 - \kappa) \sum_{j=1}^n \int_{\partial \mathbb{R}_+^n} f_j(y') \frac{\partial}{\partial x_j} \left(\frac{x_n}{|y - x|^n}\right) \, dy'.
\]

Hence using (4.4), (4.5) and \(\kappa = (3 - 4\sigma)^{-1} \), we have

\[
\text{div } u(x) = \frac{4(1 - 2\sigma)}{\omega_n (3 - 4\sigma)} \int_{\partial \mathbb{R}_+^n} \left(e_n - n(e_{xy}, e_n)e_{xy}, f(y')\right) \frac{x_n}{|y - x|^n} \, dy'.
\]
Therefore the sharp coefficient $\mathcal{E}_n(x)$ in (5.6) is represented in the form
\[
\mathcal{E}_n(x) = \frac{4(1 - 2\sigma)}{\omega_n(3 - 4\sigma)} \int_{\partial \mathbb{R}^n_+} \frac{|e_n - n(e_{xy}, e_n) e_{xy}| x_n}{|y - x|^n} dy' .
\]

Thus,
\[
\mathcal{E}_n(x) = \frac{4(1 - 2\sigma)}{\omega_n(3 - 4\sigma)x_n} \int_{\partial \mathbb{R}^n_+} |e_n - n(e_{xy}, e_n) e_{xy}| \frac{x_n}{|y - x|^n} dy' = \frac{(1 - 2\sigma) E_n}{(3 - 4\sigma)x_n} ,
\]

where
\[
E_n = \frac{4}{\omega_n} \int_{S^{n-1}} |e_n - n(e_{\sigma}, e_n) e_{\sigma}| d\sigma = \frac{2}{\omega_n} \int_{S^{n-1}} |e_n - n(e_{\sigma}, e_n) e_{\sigma}| d\sigma .
\]

Using (1.8), we write the last equality as
\[
E_n = \frac{2}{\omega_n} \int_{S^{n-1}} \left(1 + n(n - 2)(e_{\sigma}, e_n)^2 \right)^{1/2} d\sigma .
\]

By (5.13), (5.14) and (4.11), we arrive at (5.7) and (5.8).

(ii) Proof of inequality (5.9). We write (5.1) as
\[
\Delta u - \text{grad } p = 0 , \quad p = - \frac{1}{1 - 2\sigma} \text{ div } u .
\]

It follows from (5.12) that $\text{div } u(x) \to 0$ for every $x \in \mathbb{R}^n_+$ as $\sigma \to 1/2$. We also see that
\[
p(x) = - \frac{1}{1 - 2\sigma} \text{ div } u(x) = - \frac{4}{\omega_n(3 - 4\sigma)} \int_{\partial \mathbb{R}^n_+} \left(e_n - n(e_{xy}, e_n) e_{xy}, f(y') \right) \frac{d\sigma}{|y - x|^n}
\]
tends to
\[
- \frac{4}{\omega_n} \int_{\partial \mathbb{R}^n_+} \frac{(e_n - n(e_{xy}, e_n) e_{xy}, f(y'))}{|y - x|^n} dy' .
\]
as $\sigma \to 1/2$. Hence
\[
p(x) = - \frac{4}{\omega_n} \int_{\partial \mathbb{R}^n_+} \frac{(e_n - n(e_{xy}, e_n) e_{xy}, f(y'))}{|y - x|^n} dy' .
\]
Replacing $\text{div } u(x)$ by $(2\sigma - 1)p(x)$ in (5.6), and taking the limit as $\sigma \to 1/2$, we arrive at (5.9) with the sharp coefficient (5.10). \hfill \Box

By Proposition 7 with the same argument as in Proposition 5, we derive

Corollary 1. Let $\Omega = \mathbb{R}^n \setminus \overline{G}$, where G is a convex domain in \mathbb{R}^n. Let $u, \psi \in [C^2(\Omega)]^n \cap [C_b(\Omega)]^n$ be a solution of the Lamé system in Ω. Then for any point $x \in \Omega$ the inequality
\[
|\text{div } u(x)| \leq \frac{(1 - 2\sigma) E_n}{(3 - 4\sigma)d_x} \sup_{\Omega} |u|
\]
holds, where the constant E_n is the same as in Proposition 7.
Corollary 2. Let $\Omega = \mathbb{R}^n \setminus \overline{G}$, where G is a convex domain in \mathbb{R}^n. Let $\mathbf{u} \in [C^2(\Omega)]^n \cap [C_b(\overline{\Omega})]^n$ be the vector component of a solution $\{\mathbf{u}, p\}$ of the Stokes system (5.2) in Ω and let $p(x)$ be the pressure vanishing as $d_x \to \infty$. Then for any point $x \in \Omega$ the inequality

$$|p(x)| \leq \frac{E_n}{d_x} \sup_\Omega |\mathbf{u}|$$

holds, where the constant E_n is the same as above.

6 Real-part estimates for derivatives of analytic functions

Theorem 3. Let $\Omega = \mathbb{C} \setminus \overline{G}$, where G is a convex domain in \mathbb{C}, and let f be a holomorphic function in Ω with bounded real part. Then for any point $z \in \Omega$ the inequality

$$|f^{(s)}(z)| \leq \frac{K_s}{d_z^s} \sup_\Omega |\Re f|, \quad s = 1, 2, \ldots ,$$

holds with $d_z = \text{dist} (z, \partial \Omega)$, where

$$K_s = \frac{s!}{\pi} \max_\alpha \int_{-\pi/2}^{\pi/2} \left| \cos (\alpha + (s + 1)\varphi) \right| \cos^{s-1} \varphi \, d \varphi$$

(6.2)

is the best constant in the inequality

$$|f^{(s)}(z)| \leq \frac{K_s}{(3z)^s} \|\Re f\|_{L^\infty(\partial \mathbb{C}_+)}$$

(6.3)

for holomorphic functions f in the half-plane $\mathbb{C}_+ = \{z \in \mathbb{C} : \Re z > 0\}$ with bounded real part.

In particular,

$$K_{2l+1} = \frac{2((2l + 1)!!)^2}{\pi (2l + 1)},$$

(6.4)

and

$$K_2 = \frac{3\sqrt{3}}{2\pi},$$

(6.5)

$$K_4 = \frac{3(16 + 5\sqrt{5})}{4\pi}.$$

(6.6)

Proof. Inequality (6.3) with the best constant (6.2) can be found in [9]. Let $\zeta \in \partial \Omega$ be the point nearest to $z \in \Omega$ and let $T(\zeta)$ be the line containing ζ and orthogonal to the line passing through z and ζ. By \mathbb{C}_ζ we denote the half-plane with the boundary $T(\zeta)$ which is contained in Ω. Then by (5.3),

$$|f^{(s)}(z)| \leq \frac{K_s}{d_z^s} \|\Re f\|_{h^\infty(\mathbb{C}_\zeta)},$$

(6.7)

where K_s is given by (6.2). Using

$$\|\Re f\|_{h^\infty(\mathbb{C}_\zeta)} \leq \sup_\Omega |\Re f|,$$

we obtain (6.1).
Theorem 4. Let Ω be a domain in \mathbb{C}, and let $\mathcal{R}(\Omega)$ be the set of holomorphic functions f in Ω with $\sup_{\Omega} |\Re f| \leq 1$. Assume that a point $\zeta \in \partial \Omega$ can be touched by an interior disk D. Then

$$ \limsup_{z \to \zeta} \sup_{f \in \mathcal{R}(\Omega)} |z - \zeta|^s |f^{(s)}(z)| \leq K_s, \quad s = 1, 2, \ldots ,$$

where z is a point of the radius of D directed from the center to ζ. Here the constant K_s is the same as in Theorem 3 and cannot be diminished.

Proof. In Theorem 7.1 of paper [9] (see also Corollary 1 in [11]) the limit relation was proved:

$$ \lim_{r \to R} (R - r)^s \mathcal{H}_s(z) = K_s, \quad (6.8) $$

where $r = |z|$, K_s is the best constant in inequality (6.3), and $\mathcal{H}_s(z)$ is the sharp coefficient in the inequality

$$ |f^{(s)}(z)| \leq \mathcal{H}_s(z)||\Re f||_{L^\infty(\partial D_R)}. \quad (6.9) $$

Here f is an analytic function with bounded real part in the disk $D_R = \{ z \in \mathbb{C} : |z| < R \}$.

Therefore, by (6.8) and (6.9), the relations

$$ \limsup_{r \to R} \sup \{ (R - r)^s |f^{(s)}(z)| : ||\Re f||_{L^\infty(\partial D_R)} \leq 1 \} \leq \lim_{|z| \to R} (R - r)^s \mathcal{H}_s(z) = K_s \quad (6.10) $$

hold.

Let R be the radius of the interior disk D tangent to $\partial \Omega$ at a point ζ. We place the origin O at the center of D. Let z belong to the interval connecting O and ζ. Then $R - r = |z - \zeta|$. By (6.10) and the inequality

$$ ||\Re f||_{L^\infty(\partial D_R)} \leq \sup_{\Omega} ||\Re f||, $$

the result follows. \qed

Remark 2. We note that the estimate

$$ |f^{(s)}(z)| \leq \frac{4s!}{\pi d_z^s} \sup_{\Omega} ||\Re f||, \quad s = 1, 2, \ldots , $$

with a rougher constant than in (6.1), holds for an arbitrary domain $\Omega \subset \mathbb{C}$. The estimate follows from the sharp inequality

$$ |f^{(s)}(0)| \leq \frac{4s!}{\pi R^s} \sup_{|\zeta| < R} ||\Re f(\zeta)|| $$

obtained in [7], Section 5.3. Certain estimates for $|f^{(s)}(z)|$ in an arbitrary complex domain are obtained in [4].

Acknowledgments. The research of the first author was supported by the KAMEA program of the Ministry of Absorption, State of Israel, and by the Ariel University.
References

[1] M.P. Aldred and D.H. Armitage, Inequalities for derivatives of functions in harmonic Hardy spaces, *J. Math. Anal. and Appl.*, 253, 2001, 651–670.

[2] D. Gilbarg and N.S. Trudinger, *Elliptic partial differential equations of second order*, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.

[3] D. Kalaj and M. Markovic, Optimal estimates for harmonic functions in the unit ball, *Positivity*, 16:4, 2012, 771–782, [arXiv:1102.3995](http://arxiv.org/abs/1102.3995).

[4] D. Kalaj and N. D. Elkies, On real part theorem for the higher derivatives of analytic functions in the unit disk, *Computational Methods and Function Theory*, 13:2, 2013, 189–203.

[5] D. Kalaj and M. Markovic, Optimal estimates for the gradient of harmonic functions in the unit disk, *Complex Analysis and Operator Theory*, 7:4, 2013, 1167–1183.

[6] D. Khavinson, An extremal problem for harmonic functions in the ball, *Canad. Math. Bull.*, 35:2, 1992, 218–220.

[7] G. Kresin and V. Maz’ya, *Sharp Real-Part Theorems. A Unified Approach*. Lect. Notes in Math., 1903, Springer-Verlag, Berlin-Heidelberg-New York, 2007.

[8] G. Kresin and V. Maz’ya, Optimal estimates for the gradient of harmonic functions in the multidimensional half-space, *Discrete and Continuous Dynamical Systems, series B*, 28:2 (2010), 425–440.

[9] G. Kresin and V. Maz’ya, Sharp real-part theorems for high order derivatives, *J. Math. Sc. (New York)*, 181:2 (2012), 107–125.

[10] G. Kresin and V. Maz’ya, *Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems*, Math. Surveys and Monographs, 183, Amer. Math. Soc., Providence, Rhode Island, 2012.

[11] G. Kresin, Sharp and maximized real-part estimates for derivatives of analytic functions in the disk, *Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend. Lincei (9) Mat. Appl.*, 24:1 (2013), 95–110.

[12] M.H. Protter and H.F. Weinberger, *Maximum Principles in Differential Equations*, Prentice-Hall, Inc, Englewood Cliffs, New Jersey (1967); Springer, Berlin-Heidelberg-New York (1984).

[13] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, *Integrals and Series, Vol. 1: Elementary Functions*, Gordon and Breach Sci. Publ., New York, 1986.

[14] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, *Integrals and Series, Vol. 3: More Special Functions*, Gordon and Breach Sci. Publ., New York, 1989.