Short Communication

Vitamin D3 and K2 and their potential contribution to reducing the COVID-19 mortality rate

Simon Goddek

Mathematical and Statistical Methods (Biometry), Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands

A R T I C L E I N F O

Article history:
Received 23 June 2020
Received in revised form 2 July 2020
Accepted 26 July 2020

Keywords:
Vitamin D
COVID-19
Coronavirus
Mortality rate
Immunology

A B S T R A C T

The world is desperately seeking for a sustainable solution to combat the coronavirus strain SARS-CoV-2 (COVID-19). Recent research indicated that optimizing Vitamin D blood levels could offer a solution approach that promises a heavily reduced fatality rate as well as solving the public health problem of counteracting the general vitamin D deficiency. This paper dived into the immunoregulatory effects of supplementing Vitamin D3 by elaborating a causal loop diagram. Together with D3, vitamin K2 and magnesium should be supplemented to prevent long-term health risks. Follow up clinical randomized trials are required to verify the current circumstantial evidence.

© 2020 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

The COVID-19 pandemic is a current pandemic of high international interest, caused by the coronavirus strain SARS-CoV-2. Up to date, there is no treatment to decrease the virus-caused infection and mortality rates (Cortegiani et al., 2020). More and more voices are being raised supporting the supplementation of Vitamin D3 to counter the pandemic outbreak with the correlated mortality rates as well as economic and social consequences (Grant et al., 2020). In a recently published review article, Sharma et al. (2020) have critically discussed the association of vitamin D with viral infections. A recent clinical study from Iran (n = 611) stated that there were no COVID-19 deaths in a hospital if serum 25(OH)D concentrations were higher than 41 ng/mL and patients were younger than 80 (Maghbooli et al., 2020). Russian hospitals observed that the likelihood to have severe COVID-19 increases by the factor of 5 if vitamin D is deficient (Karonova et al., 2020). Similar observations have been made by Panagiotou et al. (2020). Tan et al. (2020) observed a significant reduction in oxygen support for older clients when providing them with a relatively low daily dose of 1000 IU D3 OD, 150 mg magnesium OD, and 500 µg B12 OD upon admission. On the other hand, one retrospective cohort study that investigated the correlation between the mean D3 serum levels of different European countries and the COVID-19 mortality rate was not considered significant (Ali, 2020). An explanation for this could be that testing conditions differ in each European country, making it difficult to reach a conclusion in such a retrospective study. Also, the mean D3 serum levels do not necessarily apply to people who are especially vulnerable to that virus (e.g. aged and bedridden people). This assumption is supported by De Smet et al. (2020) who documented a significantly lower median D3 value in patients with COVID-19 compared to control subjects.

The obviously correlating vitamin D deficiency is linked to increasing the risk of many common and serious diseases (Holick, 2004). In a study conducted by Forrest and Stuhldreher (2011), vitamin D deficiency was defined as a serum 25(OH)D concentrations <20 ng/mL. 41.6% of the test subjects have been considered vitamin D deficient. Of the tested people of color (PoC) and Hispanics, the deficiency rate was even 69.2% and 82.1%, respectively. Similar observations with respect to patients’ ethnicity have been made by Holick (2002) and Darling et al. (2020). The latter also states that serum 25(OH)D concentrations were lower in obese people that were tested COVID-positive, which is most likely due to increased relative body volume. Haq et al. (2016) even report that 82.5% of studied patients in the sun-intensive Middle East were vitamin D deficient. These observations with respect to common vitamin D deficiency, together with evidence of several experimental studies (Bendix-Struve et al., 2010; Casteels et al., 1998; Holick, 2005; Seibert et al., 2013), indicates that vitamin D is essential in the modulation of immune function (Aranow, 2011; Sassi et al., 2018).

The threshold of Vitamin D deficiency is a continuous subject of discussion. Whereas the European Food Safety Authority recommends a minimum serum level of 25(OH)D of 25 mmol/L (i.e. 10 ng/mL) (EFSA, 2016), many scholars consider this value way too conservative. A study that was conducted in Kenya on healthy black
males showed that 25(OH)D levels <30 ng/mL were associated with a significant rise in physiological markers such as parathyroid hormone (PTH) (Kagotto et al., 2018). Thus, desirable 25(OH)D levels are rather to be found between 30–48 ng/mL (Bischoff-Ferrari, 2008; Raftery and O’Sullivan, 2015; Vieth, 2011), i.e. 3–5 times higher than recommended by the European authorities. Looking into optimal 25(OH)D serum levels from an epidemiological and evolutionary perspective could be another approach to getting a rough indication on these levels (Carlberg, 2019; Luxwolda et al., 2012). It has been shown that traditional African hunter-gatherers had an average serum level of 48 ng/mL.

This publication set out to show the metabolic pathways behind the immunomodulating effect of vitamin D by following a systems thinking approach. The output will also give advice on which other dietary supplements one should consider.

Methodology

One of the basic principles that is used to combine valuable scientific findings and knowledge from often interdisciplinary domains is called systems analysis. Causal loop diagrams (CLDs) functioned as a tool to illustrate the principle of causality of 25(OH)D serum levels on the human metabolism and form the basis for systems analysis (Mabin et al., 2006). Such causal loop diagrams are powerful instruments for problem identification and problem resolving purposes by breaking down a comprehensive system into fragments in order to enhance its comprehensibility (Haraldsson, 2004).

Visualizing concepts makes it much easier to understand complex correlations and casualties (i.e. cause and effect mechanisms). The problem (in this case immune systems that have difficulties coping with COVID-19) stands in the center of the systems analysis. Data on the impact of vitamin D3 on the immune system have been collected and elaborated in the results and discussion section. Based on these findings, the CLDs have been created and digitized using the Vensim software (Ventana Systems, 2015).

Results and Discussion

Figure 1 illustrates a causal loop diagram coping with the effects of vitamin D3 and K2 supplementation. The diagram will be elaborated and discussed throughout this section.

In a simplified scheme, the majority of the previtamin D3 is both acquired in the human skin from the conversion of 7-dehydrocholesterol through cutaneous solar ultraviolet radiation (Kheiri

Figure 1. Causal loop diagram of the impact of vitamin D3 on the immune system.
et al., 2018), and to a lesser extent through dietary supplementation (D2 and D3). The metabolic pathway continues in the liver where D2 and D3 are hydroxylated to 25(OH)D. 25(OH)D is eventually transformed into 1,25(OH)2Vitamin D3 (the physiologically active form of vitamin D) in the kidneys (Keane et al., 2018). The high degree of vitamin D deficiency may not be due solely to the modern office-lifestyle (i.e. home - car - office - car - home; repeat) but also depend on factors such as higher latitude, degree of skin pigmentation, seasons (i.e. winter) and dietary intake (i.e. fatty fish, liver, fermented foods, etc.) (Mithal et al., 2009).

Orol supplementation of D2 is the easiest means to prevent deficiencies. A frequent argument against supplementation of vitamin D is that an increased intake could lead to a vitamin D toxicity, also called hypervitaminosis D (Orme et al., 2016). This again can cause hypercalcemia, which is the buildup of calcium in the blood leading to vascular calcification, osteoporosis, and kidney stones. However, it has been reported that the reason for hypercalcemia rather lays in a vitamin K2 deficiency (Flore et al., 2013; Vermeer and Theuwissen, 2011), as K2 activates the bone gamma-carboxyglutamic acid-containing protein (osteocalcin) through carboxylation. Activated osteocalcin deposits calcium in the bones, whereas non-activated osteocalcin inhibits calcium absorption by the bones. As the osteocalcin synthesis rate is increased by higher 25(OH)D serum levels, K2 is required as a natural antagonist (Yasui et al., 2006; Dofferhoff et al., 2020).

It has also been observed that D3 supplementation led to an increase in anti-inflammatory and immunoregulating interleukin 10 (IL-10) cytokines and reduced frequency in Th17 cells (Allen et al., 2012), which in turn leads to a decrease in IL-17 and the proinflammatory cytokine TNFα production, decreasing inflammatory effects in the host (Ferreira et al., 2020; Latella and Viscido, 2020). Also, Zheng et al. (2014) reported that TNFα promotes pathogenic Th17 cell differentiation. On the other hand, IL-10 reduces the activity of the TNF-α-converting enzyme (TACE) (Brennan et al., 2008). Brennan et al. (2008) also observed that lipopolysaccharides (LPS) in the bloodstream enhanced TNFα values.

Whereas Th1 and Th17 cells are proinflammatory, regulatory T-cells (Tregs) (Tregs) have anti-inflammatory effects. Prieti et al. (2013, 2010) proclaim that vitamin D3 supplementation showed an increase in regulatory Tregs and a more tolerogenic immunological status in general. As illustrated in Figure 1, a chronic D3 deficit would shift the T-cell ratio towards the inflammatory pathway. Given the fact that an abundance of Th17 cells are highly associated with autoimmune diseases (Waite and Skokos, 2011; Yasuda et al., 2019), it is therefore unsurprising that many fatal cases showed comorbidities.

There are many follow-up studies required to substantiate and consolidate the hypothesis that there is a strong correlation between low 25(OH)D serum concentrations and mortality rates. But what we know is that people with “sufficient” vitamin D blood serum levels tend to have considerably less severe symptoms caused by COVID-19 (Pugach & Pugach, 2020).

Dietary considerations

Given that vitamin D3 is an immunoregulating hormone and can be considered safe when supplementing it together with K2, Table 1 provides a rough guideline on how to raise vitamin D levels to desired values. Supplementation of magnesium (200–250 mg/day) should also be considered, as all enzymes that metabolize vitamin D seem to require magnesium (Uwitonze and Razaqaque, 2018).

Other dietary supplementations to consider are: (1) lipic acid has been shown to inhibit pro-inflammatory IL-6 and IL-17 production (Salinthone et al., 2010); (2) omega-3 fatty acids that are anti-inflammatory and reduce kinase excretion. Consume as a supplement or in form of cod liver oil or fatty fish (such as salmon) once or twice per week (Vasquez, 2016); (3) Cannabidiol (CBD) that promotes anti-inflammatory IL-10 secretion (Joffre et al., 2020) while preventing LPS-induced microbial inflammation (dos-Santos-Pereira et al., 2020); and (4) Green Tea, since epigallocatechin-3-gallocatechin is the most biologically active catechin in green tea. It reduces Th17 cells and increases regulatory T-cells (Byun et al., 2014).

Conclusions

Recent COVID-19-related data evaluation showed indications that a high 25(OH)D blood serum level might have an impact on the mortality rate of coronavirus patients. Even though ethical issues might arise (Muthuswamy, 2013), the paper’s hypothesis requires clinical randomized trials to verify the circumstantial evidence. This publication illustrated the metabolic mechanisms behind that observed phenomenon. It is highly suggested to also consider K2 and magnesium intake to avoid unintended long-term side-effects such as arteriosclerosis and osteoporosis.

Conflict of interests

The author declares that they have no competing interests in this section.

Ethics approval and consent to participate

Not applicable.

Consent of publication

Not applicable.

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Table 1

Tabular indicator for raising the 25(OH)D blood serum levels from 20 ng/mL to 40 ng/mL and maintaining them after consultation with the physician (von Helden, 2011).

Body weight	10 days fill up	Daily D3 supplementation (IU)	Daily K2 (MK7) supplementation (µg)
50	14,000	2,200	100
60	16,800	2,600	120
70	19,600	3,000	140
80	22,400	3,500	160
90	25,200	3,950	180
100	28,000	4,380	200
110	30,800	4,820	220
Holick MF. Vitamin D: importance of the prevention of osteoporosis, cardiovascular heart disease, type 1 diabetes, autoimmune diseases, and some cancers. South Med J 2005;98:1024-8.

Holick MF. Vitamin D: importance of the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am J Clin Nutr 2004;79:362–71; http://dx.doi.org/10.1093/ajcn/79.3.362.

Holick MF. Vitamin D: the underappreciated D-lightful hormone that is important for skeletal and cellular health. Curr Opin Endocrinol Diabetes Obes 2002;9:87–98.

Josse J, Yeh C-C, Wong E, Thete M, Xu F, Zlatanova I, et al. Activation of CB1R promotes lipopolysaccharide-induced IL-10 secretion by monocytye myeloid- derived suppressor cells and reduces acute inflammation and organ injury. J Immunol Author Choice 2020;204:3339–50; http://dx.doi.org/10.4049/jimmunol.2000213.

Kapoor S, Omurge G, Okinda N, Owyang P. Vitamin D status in healthy black African adults at a tertiary hospital in Nairobi, Kenya: a cross sectional study. BMC Endocr Disord 2018;18; http://dx.doi.org/10.1186/s12902-018-0296-5.

Karonova TL, Andreeva AT, Vashukova MA. уродченито кости у больных COVID-19. Оригинальное исследование 2020;12: http://dx.doi.org/10.22625/2072-6732-2020-12-3-21-2.

Keane JT, Elangovan H, Stokes RA, Gunton JE. Vitamin D and the liver—correlation or cause? Nutrients 2018;10; http://dx.doi.org/10.3390/nu10040496.

Kheiri B, Abdalla A, Osman M, Ahmed S, Hassam M, Bachuwa G. Vitamin D deficiency and risk of cardiovascular diseases: a narrative review. Clin Hypertens 2018;24; http://dx.doi.org/10.1186/s40885-018-0094-4.

Latella G, Viscido A. Controversial contribution of Th17/Th1 toward the immune response and intestinal fibrosis. Dig Dis Sci 2020;65:1299–306; http://dx.doi.org/10.1007/s10620-020-06161-1.

Lukwolda MF, Kuipers R, Kema IP, Dijkstra-Brouwer DJ, Muskiet FAJ. Traditionally living populations in East Africa have a mean serum 25-hydroxyvitamin D concentration of 115 nmol/L. Br J Nutr 2018;120:1557–61; http://dx.doi.org/10.1017/S0007114517001653.

Mabn VJ, Davies J, Cox JF. Using the theory of constraints thinking processes to complement system dynamics’ causal loop diagrams in developing fundamental solutions. Int Trans Op Res 2006;13:33–57; http://dx.doi.org/10.1111/j.1467-9847.2005.00532.x.

Maghbooli Z, Ebrahimi M, Shirvani A, Nasiri M, Paskozi M, Kafan S, et al. Vitamin D Sufficient Reduced Risk for Morbidity and Mortality in COVID-19 Patients (SPIDER Scholarly Paper No. 181; Rochest; Research Triangle Science Research Network 2020; http://dx.doi.org/10.2139/sr.2019.s61008.

Mithal A, Wahl DA, Bonjour JP, Burckhardt P, Dawson-Hughes B, Esman JA, et al. Global vitamin D status and deficiency. Lancet 2011;378:26–37.

Mubarek A, Goddek S, Holick MF. D-Lightful: a vitamin D-based intervention for osteoporosis. J Estab Result Cole Eur Found Osteoporos Natl Osteoporos Found USA 2009:1807–20; http://dx.doi.org/10.1080/0956086090349545-6.

Muthuswamy V. Ethical issues in clinical research. Perspect Clin Res 2013;4:9–13; http://dx.doi.org/10.4103/2229-3485.106369.

Orme RP, Middelditch C, Waite L, Fricke RA. Chapter Eleven – The Role of Vitamin D in the Development and Neuroprotection of Midbrain Dopamine Neurons. In: Litwack G, editor. Vitamins & hormones. vitamin D hormone. Academic Press; 2016. p. 273–97; http://dx.doi.org/10.1016/bs.vithorm.2015.10.007.

Panagiotou G, Tee SA, Islah Y, Athar W, Marchitelli G, Kelly D, Boot CS, Stock N, Macfarlane J, Martinou AR, Burns G, Quinon R, Low serum 25-hydroxyvitamin D (25(OH)D) levels in patients hospitalised with COVID-19 are associated with poor disease severity. Clin Endocrinol 2020; http://dx.doi.org/10.1111/cen.14276.

Prielit B, Pizl S, Wolf M, Tomashchitz A, Obermayr-Pietsch B, Graninger W, et al. Vitamin D supplementation and regulatory T cells in apparently healthy subjects: vitamin D treatment for autoimmune diseases? Isr Med Assoc J [IMJA] 2010;12:136–9.

Prielit B, Treiber G, Pieber TR, Amrein K. Vitamin D and immune function. Nutrients 2013;5:2502–21; http://dx.doi.org/10.3390/nu5122502.

Pugach IZ, Pugach S. Strong correlation between prevalence of severe vitamin D deficiency and population mortality rate from COVID-19 in Europe. medRxiv 2020; http://dx.doi.org/10.1101/2020.06.24.20138364 In preparation.

Raftery T, D’Ossullivan M. Optimal vitamin D levels in Crohn’s disease: a review. Proc Nutr Soc. 2015;74:56–66; http://dx.doi.org/10.1017/S0029665114001591.

Salinathone S, Yadav V, Schillace RV, Bourdette DN, Carr DW. Lipocid acid attenuates inflammation via cAMP and protein kinase a signaling. PLoS One 2010;5, http://dx.doi.org/10.1371/journal.pone.0011935.

Sassi F, Tamone C, D’Amelio P. Vitamin D: nutrient, hormone, and immunomodulator. Nutrients 2018;10:1656; http://dx.doi.org/10.3390/nu10101656.

Seibert E, Heine GH, Ulrich C, Seiler S, Köhler H, Gründt M. Influence of cholesterol supplementation on cholesterol homeostasis in hemodialysis patients. A randomized, double-blind, placebo-controlled clinical trial. Nephron Clin Pract 2013;123:209–19; http://dx.doi.org/10.1159/000345717.

Tan CH, Ho LP, Kalimu KD, Then S, et al. A cohort study to evaluate the effect of combination vitamin D and Magnesium and vitamin B12 (DBM) on progression to severe outcome in older COVID-19 patients. medRxiv 2020; http://dx.doi.org/10.1101/2020.06.12.20112334 In preparation.

Uwintoone AM, Razzaque MS. Role of magnesium in vitamin D activation and function. J Am Osteopath Assoc 2018;118:181–9; http://dx.doi.org/10.7559/jaoa.2018.0137.

Vazquez A. Inflammation mastery. 4th ed. International College of Human Nutrition and Functional Medicine; 2016.
Vermeer C, Theuwissen E. Vitamin K, osteoporosis and degenerative diseases of ageing. Menopause Int 2011;17:19–23, doi:http://dx.doi.org/10.1258/mi.2011.011006.

Vieth R. Why the minimum desirable serum 25-hydroxyvitamin D level should be 75 nmol/L (30 ng/ml). Best Pract Res Clin Endocrinol Metab Vitamin D Classical and Novel Actions 2011;25:681–91, doi:http://dx.doi.org/10.1016/j.bepm.2011.06.009.

von Helden R. Gesund in sieben Tagen – Erfolge mit der Vitamin-D-Therapie. 30th ed. Dresden: Hygeia-Verlag; 2011.

Waltje JC, Skokos D. Th17 response and inflammatory autoimmune diseases [WWW Document]. Int J Inflamm 2011;, doi:http://dx.doi.org/10.1155/2012/819467.

Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol 2019;41:283–97, doi:http://dx.doi.org/10.1007/s00281-019-00733-8.

Yasui T, Miyatani Y, Tomita J, Yamada M, Uemura H, Miura M, et al. Effect of vitamin K2 treatment on carboxylation of osteocalcin in early postmenopausal women. Gynecol Endocrinol 2006;22:455–9, doi:http://dx.doi.org/10.1080/09513590600900402.

Zheng Y, Sun L, Jiang T, Zhang D, He D, Nie H. TNFα promotes Th17 cell differentiation through IL-6 and IL-1β produced by monocytes in rheumatoid arthritis [WWW Document]. J Immunol Res 2014;2014:, doi:http://dx.doi.org/10.1155/2014/385352.