Perturbative Spectrum of Trapped Weakly Interacting Bosons in Two Dimensions

Velimir Bardek, Larisa Jonke, and Stjepan Meljanac *

*Theoretical Physics Division, Rudjer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, CROATIA

Abstract

We study a trapped Bose-Einstein condensate under rotation in the limit of weak, translational and rotational invariant two-particle interactions. We use the perturbation-theory approach (the large-N expansion) to calculate the ground-state energy and the excitation spectrum in the asymptotic limit where the total number of particles N goes to infinity while keeping the total angular momentum L finite. Calculating the probabilities of different configurations of angular momentum in the exact eigenstates gives us a clear view of the physical content of excitations. We briefly discuss the case of repulsive contact interaction.

PACS number(s): 03.75.Fi, 05.30.Jp, 03.65.Fd, 67.40Db

*e-mail address: bardek@thphys.irb.hr
larisa@thphys.irb.hr
meljanac@thphys.irb.hr
The study of low-lying excitations of the weakly interacting, trapped Bose-Einstein condensed gas under rotation is of considerable experimental [1,2] and theoretical interest [3]. Theoretical studies have focused on the Thomas-Fermi limit of strong interactions [3], as well as on the limit of weak interactions [4–7], which we consider in this paper. Wilkin et al. [4] studied the case of attractive interaction, and Mottelson and Kavoulakis et al. [5] developed a theory for repulsive interactions. They compared the mean-field approach and exact numerical results obtained by diagonalization in a subspace of degenerate states [6]. Bertsch and Papenbrock [7] performed numerical diagonalization for small systems and showed that the interaction energy of the lowest-energy states decreases linearly with angular momentum L. Nakajima and Ueda [8] found through an extensive numerical study, in the limit where the angular momentum per particle is much smaller than one, that low-lying excitation energies, measured from the energy of the lowest state are given by $0.795 n(n - 1)$, where n is the number of octupole excitations. Recently, Kavoulakis et al. [9] rederived these results analytically with use of the diagrammatic perturbation-theory approach in the asymptotic limit $N \to \infty$. In this paper we present a systematic method for calculating the excitation spectrum for the weak, translationally and rotationally symmetric interaction in the asymptotic limit, where the total number of particles N goes to infinity, while keeping the total angular momentum L finite. We also discuss the probabilities of different configurations of the angular momentum in the exact eigenstates.

Our starting point is the two-dimensional Hamiltonian $H = H_0 + V$, where

$$H_0 = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_i^2 + \frac{1}{2} r_i^2 \right)$$

is the one-particle part, including the kinetic energy of the particles, and the potential energy due to the trapping potential. The trapping potential is approximated by a two-dimensional, isotropic harmonic oscillator with the frequency set to one. The system is in the ground state for the motion in the direction of the axis of rotation. The two-body interaction between the particles is given by

$$V = \sum_{i<j} v(|r_i - r_j|),$$

where an arbitrary potential v possesses translational and rotational symmetries. We also assume that the interaction v is weak. This allows us to work within the subspace of single-particle states with no radial excitations

$$\psi_n(z) = (\pi n!)^{-1/2} z^n \exp\left(-\frac{1}{2} |z|^2 \right),$$

where $z = x + iy$ and n is the angular momentum quantum number. The energy levels and the corresponding wave functions are found by diagonalizing the interaction V in this Hilbert space. Basis functions for the many-body problem are $\psi(z_1, z_2, \ldots, z_N) = \varphi(z_1, z_2, \ldots, z_N) \prod_{i=1}^{N} \exp\left(-\frac{1}{2} |z_i|^2 \right)$, where φ is a homogeneous polynomial of degree L. For simplicity, we omit the exponentials from the wave functions. Suitable basis functions for such polynomials are given by

\[2\]
where the set \(\{ \lambda_1, \lambda_2, \ldots, \lambda_q \} \) denotes any partition of \(L \) such that \(\sum_{i=1}^q \lambda_i = L \) and \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_q > 0 \) for \(q \leq N \). The prime denotes the sum over mutually different indices \(i_1, i_2, \ldots, i_q \), while the numbers \(\nu_1, \nu_2, \ldots, \nu_p \) denote the frequencies of appearance of equal \(\lambda_i \)'s. Note that the number of distinct monomial terms \(z_1^{\lambda_1} z_2^{\lambda_2} \cdots z_q^{\lambda_q} \) in \(B_\lambda \) is given by \(d_\alpha = N(N-1)\cdots(N-q+1)/(\nu_1!\nu_2!\cdots\nu_p!) \), where \(\nu_1 + \nu_2 + \cdots + \nu_p = q \). Owing to the translational and rotational symmetries of the two-particle interaction \(v(|\mathbf{r}_i - \mathbf{r}_j|) \), for non-negative integers \(n \) and \(m \) we have

\[
v(|z_1 - z_2|) (z_1 + z_2)^n (z_1 - z_2)^2 m P(z_3, z_4, \ldots, z_N) = c_{2m} (z_1 + z_2)^n (z_1 - z_2)^2 m P(z_3, z_4, \ldots, z_N),
\]

(5)

where \(P \) denotes an arbitrary polynomial. The coefficient \(c_n \) is given by

\[
c_n = \frac{\int_0^\infty dr r^{2n+1} v(r) \exp(-r^2/2)}{\int_0^\infty dr r^{2n+1} \exp(-r^2/2)}.
\]

(6)

and represents the interaction energy \(v(r) \) of the relative motion of two bosons in the single-particle state \(r^n \exp(-r^2/2) \) with the angular momentum \(n \). To proceed, let us now define symmetric functions of two variables

\[
b_{ij}(z_1, z_2) = \frac{1}{2} (z_i^j z_2^j + z_1^j z_2^j), \quad i \geq j.
\]

(7)

The action of the potential \(v(|\mathbf{r}_i - \mathbf{r}_j|) \) on \(b_{ij} \) is given by

\[
v(|z_1 - z_2|) b_{ij}(z_1, z_2) = \sum_{l=0}^{[q]} \alpha_{ij}^{kl} b_{kl}(z_1, z_2),
\]

(8)

where \(i + j = k + l = n \). This restriction is a consequence of the conservation of total angular momentum for a rotationally symmetric potential. Also, the coefficients \(\alpha_{ij}^{kl} \)

\[
\alpha_{ij}^{kl} = \frac{2 - \delta_{kl}}{2} \sum_{p=0}^{[q]} c_{2p} S_{i,j}^{2p} S_{n-2p,2p},
\]

(9)

where

\[
S_{i,j}^q = \sum_{r+s=q} (-)^s \binom{i}{r} \binom{j}{s},
\]

(10)

satisfy the summation rule \(\sum_{l=0}^{[q]} \alpha_{ij}^{kl} = c_0 \), as a consequence of translational symmetry. The coefficients \(\alpha_{ij}^{kl} \) in fact represent the two-body matrix element \(V_{ijkl} \) (see Ref. [11]) of the interaction potential \(V \). Next, by using Eqs. (11) and (12) we obtain

\[
V B_1^n(z_1, z_2, \ldots, z_N) = c_0 \binom{N}{2} B_1^n(z_1, z_2, \ldots, z_N) \text{ for } B_1 = \sum_{i=1}^N z_i.
\]

(11)
As a result, $B^n_i(z_1, z_2, \ldots, z_N)$ is an exact eigenstate and the corresponding eigenvalue is $c_0 \binom{N}{2}$. Furthermore, owing to translational invariance the action of the potential V on the product $B^n_i B_\lambda$ reduces to

$$V B^n_i B_\lambda = B^n_i V B_\lambda$$

for any n and partition λ. Specially, if A is an eigenstate with energy E, then $B^n_i A$ is also an eigenstate with the same energy.

Generally, for any partition λ we find

$$V B_\lambda = \sum_\mu a^\mu_\lambda B_\mu,$$ \hspace{1cm} (13)

where μ is the partition obtained by substituting a pair of numbers $\{k, l\}$ for a $\{i, j\}$ in partition λ, such that $i \geq j$, $k \geq l$, and $i+j = k+l$, for all distinct pairs $\{i, j\}$ and all allowed $\{k, l\}$. Note that any partition $\lambda = \{\lambda_1, \ldots, \lambda_q\}$ can be written as $\lambda = 0^{n_0} 1^{n_1} 2^{n_2} \ldots l^{n_l} \ldots$, with $\sum_i n_i(\lambda) = N$ and $\sum_i \lambda_i n_i(\lambda) = L$. In the second quantized approach, the number $n_i(\lambda)$ can be interpreted as the number of particles with the angular momentum i in the partition λ. The diagonal coefficient is

$$a^\lambda_\lambda = \sum_{\{i,j\}} a_{ij}^{ij} \frac{2 - \delta_{i,j}}{2} n_i(\lambda)[n_j(\lambda) - \delta_{i,j}],$$ \hspace{1cm} (14)

where the sum goes over all distinct pairs $\{i, j\}$, $i \geq j \geq 0$ contained in partition λ. The sum contains $\binom{K_1}{2} + K_2$ terms, where K_1 is the number of n_i's greater than zero, and K_2 is the number of n_i's greater than one, in partition λ ($i \geq 0$). The nondiagonal coefficient can be expressed as

$$a^\mu_\lambda = \alpha_{ij}^{kl} \frac{2 - \delta_{i,j}}{2} n_k(\mu)[n_l(\mu) - \delta_{k,l}],$$ \hspace{1cm} (15)

where $\{i, j\}$ ($\{k, l\}$) are contained in partition λ (μ), respectively. The general matrix element has the form $a^\mu_\lambda = \alpha_{ij}^{kl} \delta_{\lambda_\mu} N^2 + \beta_{\lambda_\mu} N + \gamma_{\lambda_\mu}$. Note that this matrix is not Hermitian since our initial basis $\{B_\lambda\}$ is orthogonal but not orthonormal, i.e., $\langle B_\lambda | B_\mu \rangle = d_\lambda \prod_i \lambda_i!$. Since the interaction is Hermitian, changing the basis to orthonormal would render the matrix $\{a^\mu_\lambda\}$ Hermitian. The matrix $\{a^\mu_\lambda\}$ has dimension $\mathcal{P}(L)$, which is the number of partitions of L. It had been shown \[12,14\] that the eigenvalue problem can be reduced to $\mathcal{P}(L) - \mathcal{P}(L-1) - 1$ dimensions and recursively solved for the general interaction up to $L = 5$. For $L = 6$, the problem reduces to the diagonalization of the 3×3 matrix, which can be accomplished using the $1/N$ expansion. Motivated by this approach, in this paper we propose a similar strategy. In the limit where the angular momentum L is much smaller than the number of particles N we use perturbation theory in the large-N expansion to calculate the interaction energies and derive analytical results. In the zeroth order, the standard perturbation-theory approach gives $A_\lambda = B_\lambda$ for eigenstates and $E^{(0)}_\lambda = a^\lambda_\lambda$ for the corresponding energy. The eigenenergy with the first-order corrections is

$$E^{(1)}_\lambda = a^\lambda_\lambda + \sum_{\mu \neq \lambda} \frac{a^\mu_\lambda a^\lambda_\mu}{a^\lambda_\lambda - a^\mu_\mu},$$ \hspace{1cm} (16)
The above expression is applicable if the condition $a_0^0 a_0^0 \ll (a_0^0 - a_0^0)^2$ is satisfied for all partitions $\mu \neq \lambda$. It can be easily checked using relations (14) and (17) that $a_0^0 a_0^0 \leq N$ and $(a_0^0 - a_0^0)^2 \sim N^2$. One finds that the dominant contributions are those with j or l equal to zero, in Eq.(13), and they produce corrections to the energy of order N^0.

We can label the exact interaction energies and eigenstates as E_λ and A_λ, respectively, such that in the limit $N \to \infty$ and finite L, the energy E_λ goes to $E_\lambda^{(0)}$ and A_λ goes to B_λ. For an exact eigenstate $A_\lambda(N, L)$, the state $B_\lambda' A_\lambda(N, L)$ is an exact eigenstate $A_\lambda(N, L + n)$, where $\lambda' = 0^{(n_0 - n)}1^{(n_1 + n)}2^{n_2} \ldots$. According to translational invariance, we obtain the exact identity for eigenenergies

$$E_{0^{(n_0 - n)}1^{(n_1 + n)}2^{n_2}} = E_{0^{n_0}1^{n_1}2^{n_2}}^{(0)}.$$

Hence, $A_{0^{n_0}1^{n_1}2^{n_2}} = B_1^{n_1} A_{0^{(n_0 + n_1)}2^{n_2}}$ and $E_{0^{n_0}1^{n_1}2^{n_2}}^{(0)} = E_{0^{(n_0 + n_1)}2^{n_2}}$. The part 1^{n_1} in the partition λ denotes n_1 unit angular momenta which can be realized only as the angular momenta due to the center-of-mass motion. Therefore we consider only the eigenstates with partition $\lambda = 0^{n_0}2^{n_2}3^{n_3} \ldots l^{n_l} \ldots$, i.e., the states involving quadrupoles, octupoles, and higher l poles. In this case, we have

$$E_\lambda^{(0)} = c_0 \left(\frac{n_0(\lambda)}{2} \right) + \sum_{i \geq 2} c_i^{-} n_i(\lambda) n_0(\lambda) + \sum_{i \geq j \geq 2} \frac{2 - \delta_{ij}}{2} n_i(\lambda)[n_j(\lambda) - \delta_{ij}].$$

For special partition $\lambda = 0^{(N-1)}1$, we obtain the excitation energy for a general weak interaction $E_\lambda^{(0)} - E_0^{(0)} = N(\alpha_{00}^0 - \alpha_{00}^0)$. In the case of contact interaction it reduces to the $\epsilon_l = -c_0 N(1 - 2^{-(l-1)})$. Now, we include corrections

$$E_\lambda^{(1)} = E_\lambda^{(0)} + \sum_{i \geq j \geq 2} c_{ij} n_i(\lambda)[n_j(\lambda) - \delta_{ij}][n_i(\lambda) + 1] - \sum_{i \geq j \geq 2} c_{ij} n_i(\lambda)[n_i(\lambda) + 1 + \delta_{i,j}][n_j(\lambda) + 1],$$

where

$$c_{ij} = \frac{\alpha_{ij}^{1+j,0} \alpha_{ij}^{2-j,0} - \delta_{i,j}}{\alpha_{00}^0 + \alpha_{ij}^{0} - \alpha_{ij}^{1+j,0} - \alpha_{ij}^{0} + \alpha_{ij}^{2-j,0} - \alpha_{ij}^{0}}. $$

In the case of repulsive delta interaction, Eqs. (18) and (19) simplify significantly, because all coefficients c_n are zero for $n \neq 0$, so $\alpha_{ij}^{kl} = 2^{(-n)}(2-\delta_{k,l}){n \choose k} c_0$, $n = i + j = k + l$. From Eq.(18) we easily find the lowest-order energy $E_\lambda^{(0)}$

$$E_\lambda^{(0)} = c_0 \left\{ \frac{N^2}{2} - N \left[\frac{L + 2}{4} - \sum_{i \geq 4} \left(\frac{i}{2^i - 1} - 1 \right) n_i \right] \right\}. $$

One can calculate the first-order correction for arbitrary partition, so, for example, the eigenenergy for the partition $\lambda = 0^{n_0}2^{n_2}3^{n_3}4^{n_4}$ is

$$E_\lambda^{(1)} = c_0 \left\{ \frac{N^2}{2} - \frac{N}{8} (2L + 4 - n_4) + \frac{27}{68} n_3(n_3 - 1) + n_4 \left(\frac{81}{52} n_2 + \frac{27}{41} n_3 + \frac{99}{194} n_4 + \frac{93}{388} \right) \right\} + O(1/N).$$

(22)
This result is in complete agreement with the results obtained in Refs. [11,12]. We see that in the special case of \(n_l = 0 \) for \(l \geq 4 \), the zeroth-order energy

\[
E^{(0)}_\lambda = c_0 \left[\frac{N^2}{2} - \frac{N(L + 2)}{4} \right]
\]

is degenerated, but the corrections \(\frac{27}{68} n_3 (n_3 - 1) \) remove this degeneracy if \(n_2 \geq 2 \). Hence, for the repulsive delta interaction the ground state is unique and defined by \(N = n_0 + n_2, L = 2n_2 \) or \(N = n_0 + n_2 + 1, L = 2n_2 + 3 \), depending on \(L \) being even or odd. Therefore, our analysis confirms the conjecture of Smith and Wilkin [11], in the limit of large \(L \). The exact eigenstates for \(L \leq 5 \) do not depend on details of interaction, and can be expanded in the standard basis \(B_\lambda \). For example, in the \(L = 2 \) case we have \(B_1^2 = B_2 + 2B_{11} \) and \(A_2 = \frac{1}{N} B_{11} - \frac{N-1}{2N} B_2 \) and in the \(L = 3 \) case we have

\[
\begin{align*}
B_1^3 &= B_3 + 3B_{21} + 6B_{111}, \\
B_1 A_2 &= -\frac{N - 1}{2N} B_3 - \frac{N - 3}{2N} B_{21} + \frac{3}{N} B_{111}, \\
A_3 &= \frac{(N - 1)(N - 2)}{3N^2} \left[B_3 - \frac{3}{N - 1} B_{21} + \frac{12}{(N - 1)(N - 2)} B_{111} \right].
\end{align*}
\]

It is interesting to consider the probability of the configuration \(B_\mu \) in the exact eigenstate \(A_\lambda \), since it gives us a physical picture of the excitations. One can easily calculate the probability using the formula

\[
w_\mu(A_\lambda) = \frac{\langle B_\mu | A_\lambda \rangle^2}{\langle B_\mu | B_\mu \rangle \langle A_\lambda | A_\lambda \rangle}. \tag{23}
\]

For the \(L = 3 \) case, the probabilities are given in Table 1. We see that the probability of the configuration \(B_1L \) in any exact state other than \(A_1L \) tends to zero, in the limit when \(N \to \infty \) and \(L \) finite. Of course, this is not a surprise, as we labeled the exact states to obey the condition \(w_\mu(A_\lambda) \to \delta_{\mu, \lambda} \) in the large-\(N \) limit.

The eigenstates \(\tilde{\epsilon}_L = \sum (z_{i_1} - B_1/N) \cdots (z_{i_L} - B_1/N) \), with \(L \leq N \) are common to all interactions and these are the ground states for the repulsive delta interaction [13,14]. There is a simple relation between these states and the exact eigenstates \(A_\lambda \) we have discussed up to now. Generally, \(\tilde{\epsilon}_L = A_{2L/2} \) for even \(L \) and \(\tilde{\epsilon}_L = A_{3(\lambda-3)/2} \) for odd \(L \). For \(L \ll N \) \(\tilde{\epsilon}_L \) is dominated by \(\{2^{L/2}\} \) or \(\{32^{(L-3)/2}\} \) configurations, depending on \(L \) being even or odd.

Of special interest are "vortex" states \(\tilde{\epsilon}_{L=N} \). The probability that every particle carries a unit of angular momentum is easily calculated for low \(N \) and is given by \(w_{11} (\tilde{\epsilon}_2) = 1/2, w_{13} (\tilde{\epsilon}_3) = 4/9, w_{15} (\tilde{\epsilon}_4) = 15/32, w_{15} (\tilde{\epsilon}_5) = 296/625 \). It seems that \(w_{1N} (\tilde{\epsilon}_N) \approx 1/2 \), and this is in contrast with the naive expectation that all particles contribute with a unit of angular momentum in the vortex state \(\tilde{\epsilon}_N \) [11]. Note that in this case our perturbative approach is not valid, hence the probabilities of configurations \(\{2^{L/2}\} \) and \(\{32^{(L-3)/2}\} \) are small.

In conclusion, we studied a trapped Bose-Einstein condensate under rotation in the limit of weak, translational and rotational invariant two-particle interactions. We have used the perturbation-theory approach to calculate the ground-state energy and the excitation spectrum in the asymptotic limit where the total number of particles \(N \) goes to infinity while
keeping the total angular momentum L finite. Calculating the probabilities of configurations B_μ in the exact eigenstates A_λ gives us a clear view on the physical content of excitations A_λ. In addition, we have briefly discussed the case of repulsive delta interaction.

Acknowledgment

This work was supported by the Ministry of Science and Technology of the Republic of Croatia under Contract No. 00980103.
REFERENCES

[1] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 83, 2498 (1999).
[2] K. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).
[3] D. A. Butts and D. S. Rokhsar, Nature (London) 397, 5412 (1999).
[4] N. K. Wilkin, J. M. Gunn, and R. A. Smith, Phys. Rev. Lett. 80, 2265 (1998).
[5] B. Mottelson, Phys. Rev. Lett. 83, 2695 (1999); G. M. Kavoulakis, B. Mottelson, and C. J. Pethick, Phys. Rev. A 62, 063605 (2000).
[6] A. D. Jackson, G. M. Kavoulakis, B. Mottelson, and S. Reimann, Phys. Rev. Lett. 86, 945 (2001.)
[7] G. F. Bertsch and T. Papenbrock, Phys. Rev. Lett. 83, 5412 (1999).
[8] T. Nakajima and M. Ueda, Phys. Rev. A 63, 043610 (2001).
[9] G. M. Kavoulakis, B. Mottelson, and S. Reimann, Phys. Rev. A 63, 055602 (2001).
[10] J. G. Macdonald, Symmetric Functions and Hall Polynomials (Oxford Univ. Press, Oxford, 1995), 2nd ed.
[11] R. A. Smith and N. K. Wilkin, Phys. Rev. A 62, 61602 (2000).
[12] V. Bardek and S. Meljanac, e-print cond-mat/0011430.
[13] W. J. Huang, Phys. Rev. A 63, 015602 (2001).
[14] T. Papenbrock and G. F. Bertsch, J. Phys. A 34, 603 (2001).
TABLE I. The probabilities of configurations B_μ in exact states A_λ for the $L = 3$ case.

	B_{111}	B_{21}	B_3
B_1^3	$(1 - \frac{1}{N})(1 - \frac{2}{N})$	$\frac{3}{N}(1 - \frac{1}{N})$	$\frac{1}{N^2}$
B_1A_2	$\frac{3}{N}(1 - \frac{2}{N})$	$(1 - \frac{3}{N})$	$\frac{3}{N}(1 - \frac{1}{N})$
A_3	$\frac{4}{N^2}$	$\frac{3}{N}(1 - \frac{2}{N})$	$(1 - \frac{1}{N})(1 - \frac{2}{N})$