Chronic administration of pharmacological doses of angiotensin 1-7 and iodoangiotensin 1-7 has minimal effects on blood pressure, heart rate, and cognitive function of spontaneously hypertensive rats

Filipe F. Stoyell-Conti1,2 | Alesa Chabbra3 | Joseph Puthentharayil3 | Katya Rigatto4,5 | Robert C. Speth1,6

Abstract
Cardiovascular diseases are the principal cause of death worldwide, with hypertension being the most common cardiovascular disease risk factor. High blood pressure (BP) is also associated with an increased risk of poor cognitive performance and dementia including Alzheimer’s disease. Angiotensin 1–7 (Ang 1-7), a product of the renin-angiotensin system (RAS), exhibits central and peripheral actions to reduce BP. Recent data from our lab reveals that the addition of a non-radioactive iodine molecule to the tyrosine in position 4 of Ang 1-7 (iodoAng 1-7) makes it ~1000-fold more potent than Ang 1-7 in competing for the 125I-Ang 1-7 binding site (Stoyell-Conti et al., 2020). Moreover, the addition of the non-radioactive iodine molecule increases (~4-fold) iodoAng 1-7’s ability to bind to the AT1 receptor (AT1R), the primary receptor for Ang II. Preliminary data indicates that iodoAng 1-7 can also compete for the 125I-Ang IV binding site with a low micromolar IC50. Thus, our aims were to compare the effects of chronic treatment of the Spontaneously Hypertensive Rat (SHR) with iodoAng 1-7 (non-radioactive iodine isotope) and Ang 1-7 on arterial pressure, heart rate, and cognitive function. For this study, male SHRs were divided into three groups and treated with Saline, Ang 1-7, or iodoAng 1-7 administrated subcutaneously using a 28-day osmotic mini pump. Systolic BP was measured non-invasively by the tail-cuff technique. Cognitive function was assessed by Y-Maze test and novel object recognition (NOR) test. We have demonstrated in SHRs that subcutaneous administration of high doses of iodoAng 1-7 prevented the increase in heart rate with age, while Ang 1-7 showed a trend toward preventing the increase in heart rate, possibly by improving baroreflex control of the heart. Conversely, neither Ang 1-7 nor iodoAng 1-7 administered subcutaneously affected BP nor cognitive function.

KEYWORDS
angiotensin 1-7, angiotensin IV, blood pressure, cognition, heart rate, iodoAngiotensin 1-7, memory, spontaneously hypertensive rat (SHR)
1 | INTRODUCTION

Cardiovascular diseases are the principal cause of death worldwide, with hypertension the most common cardiovascular disease risk factor. Approximately 33% of Americans have hypertension and 36% have prehypertension. High blood pressure (BP) is also associated with an increased risk of poor cognitive performance and dementia including Alzheimer’s disease (Iadecola et al. 2016). The role of the renin-angiotensin system (RAS) in the regulation of BP, volume homeostasis, and the pathophysiology of hypertension has been studied for many decades (Manrique et al., 2009; Takimoto-Ohnishi & Murakami, 2019). Increased RAS activity is also a major determinant for numerous pathologic conditions (Bavishi et al., 2016; Luft et al., 2012; Michel et al., 2016; Vadhan & Speth, 2020).

It is well documented that angiotensin II (Ang II) increases aldosterone and BP and contributes to the development of end-organ damage through direct effects on cardiac, vascular, and renal tissues as well as impairment of cognitive function (Paul et al., 2006). On the other hand, Angiotensin 1–7 (Ang 1-7), also a product of the RAS, exhibits central and peripheral actions to reduce BP and improve baroreflex sensitivity (Bennion et al., 2015; Gironacci et al., 2018; Iusuf et al., 2008), consistent with the concept that the ACE2/Ang 1-7/Mas axis is a counter-regulator of the ACE/Ang II/AT1/R axis (Chappell et al., 2014; Paz Ocaranza et al., 2020), thus it may be a means to reduce high BP.

For more than a decade, Mas has been viewed as the receptor for Ang 1-7. However, to date, the Mas receptor has not been pharmacologically characterized using radioligand binding in tissue membrane preparations. Our laboratory has demonstrated high affinity (low nanomolar KD) binding of 125I-Ang 1-7 in rat liver membranes, however, this binding is not pharmacologically specific in that the IC50 of Ang 1-7 is in the micromolar range and all angiotensin peptides compete for 125I-Ang 1-7 binding equivalently (Stoyell-Conti et al., 2020). Thus 125I-Ang 1-7 binding to liver, kidney, brain, and testes membrane preparations from both rats and mice is not a pharmacologically specific binding site for Ang 1-7.

It is known that SHR has cognitive impairments (Meneses et al., 1996), even at young ages (Cao et al., 2012; Gattu et al., 1997; Grünlblatt et al., 2015; Kantak et al., 2008; Tayebati et al., 2012). If these are a reflection of overactivity of the brain angiotensin system acting upon the AT1 receptor as suggested from radioligand binding assays (Gehlert et al., 1986; Gutkind et al., 1988) and mRNA determinations (Reja et al., 2006), then it is possible that Ang 1-7 could reverse these cognitive impairments. It is known that hypertension is linked to damage to the BBB as recently reviewed (Setiadi et al., 2018). Given that SHR develops hypertension at the early age of 4–5 weeks (Dickhout & Lee, 1998; Harrap et al., 1990; Heijnen et al., 2014) and the blood-brain-barrier (BBB) is compromised in young SHR due to the high BP exerted upon the brain vasculature (Ueno et al., 2004), Ang 1-7 may be able to enter the SHR brain to a greater extent than in normotensive rats.

It is important to note that in our receptor binding studies Ang 1-7 which contains an iodine molecule on the tyrosine in position 4 of Ang 1-7 may have different binding sites from Ang 1-7. However, those experiments were performed in vitro and the physiological effects of iodoAng 1-7 have not yet been studied in an animal model. Thus, considering that: 1) iodoAng 1-7 is ~4-fold more potent than Ang 1-7 in competing for 125I-SI-Ang II binding to the AT1 receptor and 2) the addition of an iodine molecule to the tyrosine in position 4 of Ang 1-7 makes it ~1000-fold more potent than Ang 1-7 in competing for the 125I-Ang 1-7 binding site (Stoyell-Conti et al., 2020), we hypothesize that iodoAng 1-7 can have antihypertensive effects and promote cognitive function to a greater extent than Ang 1-7 in the spontaneously hypertensive rat (SHR) model of high BP and memory impairment. The SHR is a well-characterized genetically-determined animal model for hypertension (Doris, 2017; Folkow, 1982), permitting the study of the causes, mechanisms, and pathology of hypertension as well as the dysfunctions associated with it.

2 | METHODS

2.1 | Animal model

Eighteen male SHR (Charles River Laboratories), 11–12 weeks of age were housed in a temperature (22 ± 2°C) and humidity-controlled (30%–40%) colony room maintained on a 12 h light:12 h dark cycle. Animals were allowed ad libitum access to chow and water. All animal experiments were carried out in accordance with the NIH guidelines for Use of Laboratory Animals and all procedures were performed under protocols approved by the Institutional Animal Care and Use Committee. The animal facility was accredited by the American Association for Accreditation of Laboratory Animal Care. Groups: Animals were randomly divided into three groups (n = 6): Saline (S), Ang 1-7 (A), and iodoAng 1-7 (IA).

2.2 | Competition binding assay

Frozen rat brain tissues were thawed, mechanically homogenized in hypotonic buffer (20 mM NaPO4, pH 7.2), and centrifuged at 40°C (20,000xg for 20 min) to isolate membranes in the pellet. The membrane pellet was resuspended in the incubation buffer by rehomogenization at a concentration of 25–100 mg initial wet weight/ml of incubation buffer. The membrane homogenates were incubated with 125I-Ang IV.
1 nM with or without 5 varying concentrations of Ang IV or iodoAng 1-7 for 60 min at room temperature (RT). The buffer used for the competition binding assay was 50 mM NaPO₄, 150 mM NaCl, 5 mM EDTA, 0.1 mM bacitracin, pH 7.2. Membrane-bound radioligand was separated from unbound radioligand by filtration over GF/B filters. Filter bound radioligand was analyzed with Graphpad PRISM software using a one-site competition model: \(B = B_0 \times \frac{I_{C50}}{I} \), to derive the IC₅₀ value where I is the competing ligand concentration, \(B = \) specifically bound radioligand and \(B_0 \) is the amount of specific binding in the absence of competing ligand.

2.3 Subcutaneous implantation of the osmotic mini pump

Beginning at 11–12 weeks of age, Ang 1-7, iodoAng 1-7 or saline were administrated subcutaneously using a 28-day osmotic mini pump (400 ng/kg/min) a dose used by previous investigators (Benter et al., 1995; Benter et al., 1995). The animals were anesthetized, shaved and their skin was washed over the implantation site. A mid-scapular incision was made. A hemostat was inserted into the incision and the subcutaneous tissue was spread to create a pocket for the pump by opening and closing the jaws of the hemostat. The pocket was large enough to allow some free movement of the pump (e.g., 1 cm longer than the pump). The filled pump was inserted into the pocket with the delivery portal first. This minimizes interaction between the compound delivered and the healing of the incision. The incision was closed with sutures.

2.4 Non-invasive blood pressure and heart rate measurement

The heart rate and BP were assessed in conscious rats by the tail-cuff method using the BP-2000 tail-cuff system (Visitech, Raleigh, North Carolina) before and after the osmotic minipump implantation. Prior to the beginning of the protocol, rats were adapted to the non-invasive tail-cuff plethysmography multi-channel system three times a week for 2 weeks at the same time of day to measure systolic BP. This adaptation assures familiarity of the rats with the system, reduces stress levels, and promotes consistency in sequential readings (Gordish et al., 2017). Once the rats were adapted to the procedure, the experimental protocols were initiated using the exact same methods. A single experimenter was designated to conduct all measurements. BP was measured before the osmotic minipump implantation and every other day starting on the second day after the osmotic minipump implantation (Figure 2). To test this hypothesis, SHR animals were implanted with osmotic minipump and received saline, Ang 1-7 or iodoAng 1-7 for 28 days. BP and heart rate were measured pre and at 3, 7, 18, and 27 days after drug administration.

2.5 Y-maze spontaneous alternation test

The Y-maze test was used to measure spatial working memory (Sierksma et al., 2014). The apparatus consists of three identical arms (45 × 12 × 35 cm) diverging at a 120° angle with an equilateral triangular central area. Each animal was placed in the center of the Y-maze and was free to explore the arena for 8 min. Rats tend to explore the least recently visited arm, and thus tend to alternate visits between the three arms. For efficient alternation, rats need to use working memory by maintaining an ongoing record of most recently visited arms and continuously updating such records (Wietrzch et al. 2005). An arm entry was scored when the rat placed its four paws within that arm. The following dependent variables were registered: total number of arm entries, number of triads (sequence of three consecutive visits to different arms), and percentage of alternation. An alternation was defined as an entry into three different arms on consecutive choices. The percentage of alternation was calculated as the ratio of actual to the maximum number of alternations. The maximum number of possible alternations was defined as the total number of arm entries minus 2. A low percentage of alternation is indicative of an impaired spatial working memory because the rat does not remember which arm it has just visited, and thus shows decreased spontaneous alternation. The Y-maze test was performed at the end of the protocol.

2.6 Novel object recognition (NOR) test

The novel object recognition test was administered to assess non-spatial, long-term memory (Antunes & Biala, 2012; Martínez et al., 2014). Rats were placed in an open field 30 × 45 cm dimension in which two dissimilar objects were placed medially, 10 cm from the long ends of the open field. They were allowed to explore the environment and the objects placed in the open field for 5 minutes on day 1. One day later the rats were returned to the open field in which one of the objects had been replaced with a novel object. The rats were given 5 minutes to explore the environment again during which time their behavior was recorded with a digital camera. The time the rats spent exploring the novel object and the non-novel object was assessed by 3 observers blinded to which object was which. The average of the scores of the observers was used to determine the time spent with each object, from which the percent of time spent exploring the novel object of the total time spent exploring the objects was determined.

The timeline for these procedures is shown in Figure 1.
2.7 Statistical analysis

Data were expressed as mean ± SEM. The Shapiro-Wilks test was used to evaluate data homogeneity. A one-way or two-way analysis of variance followed by Tukey's multiple comparison test was used to compare groups.

3 RESULTS

There was an increase in BP in all three groups over the course of the protocol with no difference among the studied groups (Figure 2). HR increased in the saline group during the protocol (3 vs. 27 days), however, both Ang 1-7 and iodoAng 1-7 prevented this increase. The iodoAng 1-7 group presented lower HR than the saline group toward the end of the HR monitoring protocol (Figure 3). We also demonstrated that iodoAng 1-7 competes for 125I-Ang IV binding with a low micromolar IC$_{50}$ (1.4 µM), suggesting that it could have actions at the AT$_4$ receptor (Figure 4). As activation of the AT$_4$ receptor has been associated with improved short-term memory (Wright & Harding, 2004; Wright and Harding, 2008), we assessed the ability of Ang 1-7 and iodoAng 1-7 to improve spatial and short-term memory. As shown in Figures 5 and 6, neither Ang 1-7 nor iodoAng 1-7 treatment affected cognitive performance as measured in the Y-Maze ($F_{2,15} = 0.59, p = 0.57$) and NOR tests ($F_{2,15} = 1.9, p = 0.18$).
There were no significant changes in body weight or body weight gain of the different groups at the beginning or completion of the experiment (Table 1). The weights of the heart and kidney as well as the heart weight and kidney weight to body weight ratio did not differ between groups. The tissue weights of the brain, lungs, liver, intestines, colon, pancreas, spleen, adrenals epididymis, seminal vesicles, and adipose tissue also did not differ between groups (data not shown). However, there was a significant ($p < 0.05$) 17% increase in testis weight in the Ang 1-7 treated rats compared to control rats (Table 1).

DISCUSSION

This is the first study to measure the effect of chronic iodoAng 1-7 treatment on cardiovascular and cognitive function in the SHR and to compare it to an equivalent Ang 1-7 treatment. While there were no significant effects of iodoAng 1-7 and Ang 1-7 treatment on BP, iodoAng 1-7 reduced the increase in HR with age, while Ang 1-7 showed a trend toward preventing the increase in HR, possibly improving peripherally the parasympathetic control to the heart which is inhibited by Ang II (Scroop & Lowe, 1969).

SHR is reported to perform poorly on the Y maze test compared to other rat strains although this may be attributed to their having an attention deficit hyperactivity disorder (ADHD) rather than impaired memory (Kishikawa et al., 2014; Yabuki et al., 2014; Yoon et al., 2013). In those studies WKY rats showed ~65–75% of spontaneous alternations while the SHR, or SHRSP (Yabuki et al., 2014) showed 55%, 55%, and 60%, respectively, which was slightly better than the 48, 47, and 50% spontaneous alternation than the control, Ang 1-7 and iodoAng 1-7 groups, respectively, seen in this study. The performance of SHRs in the NOR test is less clear. When tested 30 minutes after exposure to the novel objects, SHRs showed impaired performance on the NOR test (47% recognition of the novel object) compared to WKYs (60% recognition of the novel object) (Leffa et al., 2016). Stroke-prone SHR also showed impaired novel object recognition in a 24 hour NOR test (32%) versus WKYs (67%) (Yabuki et al., 2014). However, in a 24-hour NOR test, SHRs spent more time exploring the novel object compared to WKYs, which the authors attributed to an ADHD trait (dela Peña et al., 2015). In a 72-hour interval test SHRs also showed better novel object recognition (67%) than the WKYs (61%) (Langen & Dost, 2011). The time spent examining the novel object by the rats in this study, 55%, 50.5%, and 65% for the control, Ang 1-7, and iodoAng 1-7 groups, respectively are within the range of the previous studies cited above. Whether the NOR test is assessing cognitive performance or ADHD behavior, our results show that neither experimental treatment altered this behavior.

Our results reinforce the statement that Ang 1-7 is the most pleiotropic component of the RAS (Santos et al.,

TABLE 1

Group	Pre-treatment Body Weight	Post-treatment Body Weight	Weight gain	Heart Weight	Kidney Weight	Testis weight
control	250 ± 18	298 ± 23	48	1.21 ± 0.11	1.90 ± 0.16	2.70 ± 0.17
Ang 1-7	263 ± 33	313 ± 38	50	1.19 ± 0.11	2.00 ± 0.25	3.16 ± 0.09*
iodoAng 1-7	258 ± 12	307 ± 12	49	1.22 ± 0.07	1.94 ± 0.20	2.87 ± 0.11

* $p < 0.05$ greater than control by Dunnett’s multiple comparison test.
predictive value of elevated HR for the development of hy-
age and the level of elevated BP at 6-wk, indicating the
rostral ventrolateral medulla (RVLM), an important site in
the brain that regulates sympathetic nervous system activ-
ity, increases mean arterial pressure and renal sympathetic
nerve activity in renovascular hypertensive rats (Li et al.,
2013).

There is a positive correlation between HR at 3-wk of
age and the level of elevated BP at 6-wk, indicating the
predictive value of elevated HR for the development of hy-
pertension in the SHR (Dickhout & Lee, 1998). Therefore,
the increase in the arterial BP in SHR is likely induced by
a central sympathetic dominance that possibly opposes
the important parasympathetic balance in these animals.
Older SHR has normal sympathetic, but reduced vagal
capacity to control HR in response to changes in mean
arterial pressure; this deficit not being dependent on the
absolute level of BP (Head & Adams, 1992). In any case, it
is very important to consider that the parasympathetic ner-
vous system presents a powerful vasodilatory mechanism
for cerebral blood flow (Roloff et al., 2016). Because the
SHR has reduced parasympathetic brainstem innervation
(Roloff et al., 2018), this suggests that it may have a com-
promised vasodilatory capacity as well as vagal influence
on heart rate. This could partially explain why the brain-
stem is severely hypoxic when BP is reduced to normal lev-
els in SHRs (Marina et al., 2015) as the hypoxia stimulates
sympathetic activity in an attempt to increase blood flow
to the brainstem.

Systemic injection of 125I-angiotensin II only reaches
the Ang II receptors of the circumventricular organs that
are not protected by the BBB (van Houten et al., 1980).
Intravertebral artery administration of Ang II has been
shown to act upon the area postrema, a circumventricular
organ in the dorsal medulla to reduce parasympathetic ac-
tivity (Joy & Lowe, 1970). It is likely that other circulating
angiotensins also only reach BBB-deficient brain regions
(Roncevic, 2012). Thus, the same principle might apply to
Ang 1-7 and iodoAng 1-7. But, if there are no receptors
for Ang 1-7 and iodoAng 1-7 in circumventricular organs,
then these peptides would not directly act upon the brain.
Sustained hypertension is known to compromise the BBB
(Setiadi et al., 2018), and, as the rats in this study were
11–12 weeks of age at the start of the experiment it is un-
certain whether their BBB was still functioning normally,
interact, as well as their respective effects on the body, are far from being fully understood. Future investigations are required to clarify the role of RAS peptides in cardiovascular physiopathology.

ACKNOWLEDGMENTS
This work was funded by a grant from Nova Southeastern University Health Professions Division. The authors thank Zakariya Mujeeb and Gwen Tsiakilos for technical assistance.

CONFLICT OF INTEREST
The authors report no conflict of interest.

AUTHOR CONTRIBUTIONS
FFSC designed the experiments, conducted all of the experimental procedures, analyzed the data, co-wrote the manuscript, and approved the final submission; AC assisted in the experimental procedures assisted in writing the manuscript and approved the final submission; JP assisted in the experimental procedures assisted in writing the manuscript and approved the final submission; KR analyzed the data, co-wrote the manuscript and approved the final submission; RCS assisted in experimental design, assisted in the experimental procedures assisted in writing the manuscript and approved the final submission; AC assisted in the experimental procedures assisted in writing the manuscript and approved the final submission; KR analyzed the data, co-wrote the manuscript and approved the final submission; JP assisted in the experimental procedures, analyzed the data, co-wrote the manuscript and approved the final submission; AC assisted in the experimental procedures assisted in writing the manuscript and approved the final submission; KR analyzed the data, co-wrote the manuscript and approved the final submission; RCS assisted in experimental design, assisted in the experimental procedures analyzed the data, co-wrote the manuscript and approved the final submission.

ORCID
Filipe F. Stoyell-Conti https://orcid.org/0000-0002-0464-7878
Alesa Chabbra https://orcid.org/0000-0002-5790-3652
Katya Rigatto https://orcid.org/0000-0001-7773-2902
Robert C. Speth https://orcid.org/0000-0002-6434-2136

REFERENCES
Antunes, M., & Biala, G. (2012). The novel object recognition memory: neurobiology, test procedure, and its modifications. Cognitive Processing, 13(2), 93–110. https://doi.org/10.1007/s10339-011-0430-z
Bavishi, C., Bangalore, S., & Messerli, F. H. (2016). Renin angiotensin aldosterone system inhibitors in hypertension: Is there evidence for benefit independent of blood pressure reduction? Progress in Cardiovascular Diseases, 59(3), 253–261. https://doi.org/10.1016/j.pcad.2016.10.002
Bennion, D. M., Haltigan, E., Regenhardt, R. W., Steckelings, U. M., & Summers, C. (2015). Neuroprotective mechanisms of the ACE2-angiotensin (1–7)-Mas axis in stroke. Current Hypertension Reports, 17(2), 3. https://doi.org/10.1007/s11906-014-0512-2
Benter, I. F., Diz, D. I., & Ferrario, C. M. (1995). Pressor and reflex sensitivity is altered in spontaneously hypertensive rats treated with angiotensin-(1–7). Hypertension, 26, 1138–1144.
Benter, I. F., Ferrario, C. M., Morris, M., & Diz, D. I. (1995). Antihypertensive actions of angiotensin-(1–7) in spontaneously hypertensive rats. American Journal of Physiology-Heart and Circulatory Physiology, 269(1), H313–H319. https://doi.org/10.1152/ajpheart.1995.269.1.H313
Botelho-Santos, G. A., Sampaio, W. O., Reudelhuber, T. L., Bader, M., Campagnole-Santos, M. J., & Souza dos Santos, R. A. (2007). Expression of an angiotensin-(1–7)-producing fusion protein in rats induced marked changes in regional vascular resistance. American Journal of Physiology. Heart and Circulatory Physiology, 292(5), H2485–H2490. https://doi.org/10.1152/ajpheart.01245.2006
Burghi, V., Fernandez, N. C., Gandola, Y. B., Piazza, V. G., Quiroga, D. T., Guilhen Mario, E., Felix Braga, J., Bader, M., Santos, R. A. S., Dominici, F. P., & Munoz, M. C. (2017). Validation of commercial Mas receptor antibodies for utilization in Western Blotting, immunofluorescence and immunohistochemistry studies. PLoS One, 12(8), e0183278.
Campagnole-Santos, M. J., Heringer, S. B., Batista, E. N., Khosla, M. C., & Santos, R. A. (1992). Differential baroreceptor reflex modulation by centrally infused angiotensin peptides. American Journal of Physiology, 263(1 Pt 2), R89–R94. https://doi.org/10.1152/ajprenal.1992.263.1.R89
Cao, A. H., Yu, L., Wang, Y. W., Wang, J. M., Yang, L. J., & Lei, G. F. (2012). Effects of methylphenidate on attentional set-shifting in a genetic model of attention-deficit/hyperactivity disorder. Behavioral and Brain Functions, 8(1), 10. https://doi.org/10.1186/1744-9081-8-10
Chappell, M. C., Marshall, A. C., Alzayedneh, E. M., Shaltout, H. A., & Diz, D. I. (2014). Update on the Angiotensin converting enzyme 2-Angiotensin (1–7)-MAS receptor axis: fetal programing, sex differences, and intracellular pathways. Front Endocrinol (Lausanne), 4, 201. https://doi.org/10.3389/fendo.2013.00201
dela Peña, I., Gonzales, E. L., de la Peña, J. B., Kim, B.-N., Han, D. H., Shin, C. Y., & Cheong, J. H. (2015). Individual differences in novelty-seeking behavior in spontaneously hypertensive rats: Enhanced sensitivity to the reinforcing effect of methylphenidate in the high novelty-prefering subpopulation. Journal of Neuroscience Methods, 252, 48–54. https://doi.org/10.1016/j.jneumeth.2014.08.019
Dickhout, J. G., & Lee, R. M. (1998). Blood pressure and heart rate development in young spontaneously hypertensive rats. American Journal of Physiology, 274(3), H794–H800. https://doi.org/10.1152/ajpheart.1998.274.3.H794
Doris, P. A. (2017). Genetics of hypertension: an assessment of progress in the spontaneously hypertensive rat. Physiological Genomics, 49(11), 601–617. https://doi.org/10.1152/physiolgenomics.00065.2017
Feterik, K., Smith, L., & Katusic, Z. S. (2000). Angiotensin-(1–7) causes endothelium-dependent relaxation in canine middle cerebral artery. Brain Research, 873(1), 75–82. https://doi.org/10.1016/S0006-8993(00)02482-3
Folkow, B. (1982). Physiological aspects of primary hypertension. Physiological Reviews, 62(2), 347–504. https://doi.org/10.1152/physrev.1982.62.2.347
Gattu, M., Pauly, J. R., Boss, K. L., Summers, J. B., & Buccafusco, J. J. (1997). Cognitive impairment in spontaneously hypertensive rats: role of central nicotinic receptors. I. Brain Research, 771(1), 89–103. https://doi.org/10.1016/S0006-8993(97)00793-2
Gehlert, D. R., Speth, R. C., & Wamsley, J. K. (1986). Quantitative autoradiography of angiotensin II receptors in the SHR brain. Peptides, 7(6), 1021–1027. https://doi.org/10.1016/0196-9781(86)90132-4
Gironacci, M. M., Vicario, A., Cerezo, G., & Silva, M. G. (2018). The depressor axis of the renin-angiotensin system and brain disorders:
a translational approach. *Clinical Science (Lond)*, **132**(10), 1021–1038. https://doi.org/10.1042/CS20180189

Gordish, K. L., Kassem, K. M., Ortiz, P. A., & Beierwaltes, W. H. (2017). Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide. *Physiological Reports*, **5**(7), e13162. https://doi.org/10.14814/phy2.13162

Grünblatt, E., Bartl, J., Iuhos, D. I., Knezovic, A., Trkulja, V., Riederer, P., Waltitza, S., & Salkovic-Petrisic, M. (2015). Characterization of cognitive deficits in spontaneously hypertensive rats, accompanied by brain insulin receptor dysfunction. *Journal of Molecular Psychiatry*, **3**(1), 6. https://doi.org/10.1186/s40303-015-0012-6

Gutkind, J. S., Kurihara, M., Castren, E., & Saavedra, J. M. (1988). Increased concentration of angiotensin II binding sites in selected brain areas of spontaneously hypertensive rats. *Journal of Hypertension*, **6**(1), 79–84. https://doi.org/10.1097/00004872-198801000-00012

Harrap, S. B., Van der Merwe, W. M., Griffin, S. A., Macpherson, F., & Lever, A. F. (1990). Brief angiotensin converting enzyme inhibitor treatment in young spontaneously hypertensive rats reduces blood pressure long-term [see comments]. *Hypertension*, **16**, 603–614. https://doi.org/10.1161/01.HYP.16.6.603

Hay, M., Poll, R., Heien, M. L., Vanderah, T. W., Largent-Milnes, T. M., Rodgers, K., Falk, T., Bartlett, M. J., Doyle, K. P., & Konhilas, J. P. (2019). A novel angiotensin-(1–7) glycosylated mas receptor agonist for treating vascular cognitive impairment and inflammation-related memory dysfunction. *Journal of Pharmacology and Experimental Therapeutics*, **369**(1), 9–25. https://doi.org/10.1124/jpet.118.254854

Head, G. A., & Adams, M. A. (1992). Characterization of the baroreceptor heart rate reflex during development in spontaneously hypertensive rats. *Clinical and Experimental Pharmacology and Physiology*, **19**(8), 587–597. https://doi.org/10.1111/j.1440-1681.1992.tb00509.x

Heijnen, B. J. F., Van Essen, H., Schalkwijk, C. G., Janssen, B. J. A., & Struijker-Boudier, H. A. J. (2014). Renal inflammatory markers during the onset of hypertension in spontaneously hypertensive rats. *Hypertension Research*, **37**(2), 100–109. https://doi.org/10.org/10.1038/hr.2013.99

Iadecola, C., Yaffe, K., Biller, J., Bratzke, L. C., Faraci, F. M., Gorenlick, P. B., Gulati, M., Kamel, H., Knopman, D. S., Launer, L. J., Saczynski, J. S., Seshadri, S., & Zeki Al Hazzouri, A. (2016). The renin-angiotensin system: Role in aging and hypertension on learning, memory, and activity in rats. *Hippocampus*, **26**(2), 368–377. https://doi.org/10.1002/hipo.21405

Iyer, S. N., Ferrario, C. M., & Chappell, M. C. (1998). Angiotensin-(1–7) contributes to the antihypertensive effects of blockade of the renin-angiotensin system. *Hypertension*, **31**(1 Pt 2), 356–361. https://doi.org/10.1161/01.HYP.31.1.356

Joy, M. D., & Lowe, R. D. (1970). Evidence that the area postrema mediates the central cardiovascular response to angiotensin II. *Nature*, **228**, 1303–1304. https://doi.org/10.1038/2281303a0

Kantak, K. M., Singh, T., Kerstetter, K. A., Dembro, K. A., Mutebi, M. M., Harvey, R. C., Deschepper, C. F., & Dwoskin, L. P. (2008). Advancing the spontaneous hypertensive rat model of attention deficit/hyperactivity disorder. *Behavioral Neuroscience*, **122**(2), 340–357. https://doi.org/10.1037/0735-7044.122.2.340

Kishikawa, Y., Kawahara, Y., Yamada, M., Kaneko, F., Kawahara, H., & Nishi, A. (2014). The spontaneously hypertensive rat/Izm (SHR/ Izm) shows attention deficit/hyperactivity disorder-like behaviors but without impulsive behavior: therapeutic implications of low-dose methylphenidate. *Behavioral Brain Research*, **274**, 235–242. https://doi.org/10.1016/j.bbr.2014.08.026

Langen, B., & Dost, R. (2011). Comparison of SHR, WKY and Wistar rats in different behavioural animal models: effect of dopamine D1 and alpha2 agonists. *ADHD Attention Deficit and Hyperactivity Disorders*, **3**(1), 1–12. https://doi.org/10.1007/s12402-010-0034-y

Leal, M. C., Pinheiro, S. V., Ferreira, A. J., Santos, R. A., Bordoni, L. S., Alenina, N., Bader, M., & França, L. R. (2009). The role of angiotensin-(1–7) receptor Mas in spermatogenesis in mice and rats. *Journal of Anatomy*, **214**(5), 736–743. https://doi.org/10.1111/j.1469-7580.2009.01058.x

Leffar, D. T., de Souza, A., Scarabelot, V. L., Medeiros, L. F., de Oliveira, C., Grevet, E. H., Caumo, W., de Souza, D. O., Rohde, L. A. P., & Torres, I. L. S. (2016). Transcranial direct current stimulation improves short-term memory in an animal model of attention-deficit/hyperactivity disorder. *European Neuropsychopharmacology*, **26**(2), 368–377. https://doi.org/10.1016/j.euroneuro.2015.11.012

Li, P., Sun, H. J., Cui, B. P., Zhou, Y. B., & Han, Y. (2013). Angiotensin-(1–7) in the rostral ventrolateral medulla modulates enhanced cardiac sympathetic afferent reflex and sympathetic activation in renovascular hypertensive rats. *Hypertension*, **61**(4), 820–827. https://doi.org/10.1161/HYPERTENSIONAHA.111.00191

Luft, F. C., Dechend, R., & Müller, D. N. (2012). Immune mechanisms in angiotensin II-induced target-organ damage. *Annals of Medicine*, **44**(Suppl 1), S49–54. https://doi.org/10.3109/078539011.2011.653396

Manrique, C., Lastra, G., Gardner, M., & Sowers, J. R. (2009). The renal angiotensin aldosterone system in hypertension: roles of insulin resistance and oxidative stress. *Medical Clinics of North America*, **93**(3), 569–582. https://doi.org/10.1016/j.mcna.2009.02.014

Marina, N., Ang, R., Machhada, A., Kasyrov, V., Karagiannis, A., Hosford, P. S., Mosienko, V., Teschemacher, A. G., Vihko, P., Paton, J. F., Kasparov, S., & Gourine, A. V. (2015). Brainstem hypoxia contributes to the development of hypertension in the spontaneously hypertensive rat. *Hypertension*, **65**(4), 775–783. https://doi.org/10.1161/HYPERTENSIONAHA.114.04683

Martínez, M. C., Villar, M. E., Ballarini, F., & Viola, H. (2014). Retroactive interference of object-in-context long-term memory: role of dorsal hippocampus and medial prefrontal cortex. *Hippocampus*, **24**(12), 1482–1492. https://doi.org/10.1002/hipo.22328

Meneses, A., Castillo, C., Ibarra, M., & Hong, E. (1996). Effects of aging and hypertension on learning, memory, and activity in rats. *Physiology and Behavior*, **60**(2), 341–345. https://doi.org/10.1016/S0031-9384(96)80002-3

Metzger, R., Bader, M., Ludwig, T., Berberich, C., Bunnemann, B., & Ganten, D. (1995). Expression of the mouse and rat mas proto-oncogene in the brain and peripheral tissues. *FEBS Letters*, **357**(1), 27–32.

Michel, M. C., Brunner, R. H., Foster, C., & Huo, Y. (2016). Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease. *Pharmacology and Therapeutics*, **164**, 1–81. https://doi.org/10.1016/j.pharmthera.2016.03.019
Paton, J. F., Wang, S., Polson, J. W., & Kasparov, S. (2008). Signalling across the blood brain barrier by angiotensin II: novel implications for neurogenic hypertension. *Journal of Molecular Medicine*, 86(6), 705–710.

Paul, M., Poyan, M. A., & Kreutz, R. (2006). Physiology of local renin-angiotensin systems. *Physiological Reviews*, 86(3), 747–803. https://doi.org/10.1152/physrev.00036.2005

Paz Ocaranza, M., Riquelme, J. A., García, L., Jalil, J. E., Chiong, M., Santos, R. A. S., & Lavanderdo, S. (2020). Counter-regulatory renin-angiotensin system in cardiovascular disease. *Nature Reviews Cardiology*, 17(2), 116–129. https://doi.org/10.1038/s41569-019-0244-8

Reis, A. B., Araujo, F. C., Pereira, V. M., dos Reis, A. M., Santos, R. A., & Reis, F. M. (2010). Angiotensin (1–7) and its receptor Mas are expressed in the human testis: implications for male infertility. *Journal of Molecular Histology*, 41(1), 75–80. https://doi.org/10.1007/s10735-010-9264-8

Reja, V., Goodchild, A. K., Phillips, J. K., & Pilowsky, P. M. (2006). Upregulation of angiotensin AT1 receptor and intracellular kinase gene expression in hypertensive rats. *Clinical and Experimental Pharmacology and Physiology*, 33(8), 690–695.

Rollof, E. V., Tomiak-Baquiero, A. M., Kasparov, S., & Paton, J. F. (2016). Parasympathetic innervation of vertebrobasilar arteries: Is this a potential clinical target? *Journal of Physiology*, 594(22), 6463–6485.

Rollof, E. V. L., Walas, D., Moraes, D. J. A., Kasparov, S., & Paton, J. F. R. (2018). Differences in autonomic innervation to the vertebrobasilar arteries in spontaneously hypertensive and Wistar rats. *Journal of Physiology*, 596(16), 3505–3529. https://doi.org/10.1113/JP275973

Roncovic, D. (2012). Does angiotensin II cross the blood-brain barrier? *Hypertension Research*, 35(7), 775. https://doi.org/10.1038/hr.2012.55

Santos, R. A., Campagnole-Santos, M. J., & Andrade, S. P. (2000). Angiotensin(1–7): an update. *Regulatory Peptides*, 91(1–3), 45–62. https://doi.org/10.1016/S0167-0115(00)00138-5

Santos, R. A., Ferreira, A. J., Nadu, A. P., Braga, A. N., de Almeida, A. P., Campagnole-Santos, M. J., Baltatu, O., Iliescu, R., Reudelhuber, T. L., & Bader, M. (2004). Expression of an angiotensin(1–7)-producing fusion protein produces cardioprotective effects in rats. *Physiological Genomics*, 17(3), 292–299. https://doi.org/10.1152/physiogenomics.00227.2003

Santos, R. A. S., Silva, A. C. S. E., Maric, C., Silva, D. M. R., Machado, R. P., de Buhr, I., Heringer-Walther, S., Pinheiro, S. V. B., Lopes, M. T., Bader, M., Mendes, E. P., Lemos, V. S., Campagnole-Santos, M. J., Schultheiss, H. P., Speith, R., & Walther, T. (2003). Angiotensin(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. *Proceedings of the National Academy of Sciences of the United States of America*, 100(14), 8258–8263. https://doi.org/10.1073/pnas.1432869100

Scroop, G. C., & Lowe, R. D. (1969). Efferent pathways of the cardio-vascular response to vertebral artery infusions of angiotensin in the dog. *Clinical Science*, 37, 605–619.

Setiadi, A., Korim, W. S., Elsaafien, K., & Yao, S. T. (2018). The role of the blood-brain barrier in hypertension. *Experimental Physiology*, 103(3), 337–342. https://doi.org/10.1113/EP086434

Sierksma, A. S., van den Hove, D. L., Pfüßl, F., Philppens, M., Bruno, O., Fedele, E., Ricciarelli, R., Steinbusch, H. W., Vannierlo, T., & Prickaerts, J. (2014). Improvement of spatial memory function in APPswt/PS1dE9 mice after chronic inhibition of phosphodiesterase type 4D. *Neuropharmacology*, 77, 120–130. https://doi.org/10.1016/j.neuropharm.2013.09.015

Stoyell-Conti, F. F., Itzy, S., Abraham, C., Rigatto, K., West, C. A., & Speth, R. C. (2020). 125I-Angiotensin I–7 binds to a different site than angiotensin I–7 in tissue membrane preparations. *Endocrine*, 1–7. https://doi.org/10.1007/s12020-020-02572-2

Sueta, D., Kobuchi, N., Hasegawa, Y., Toyama, K., Uekawa, K., Katayama, T., Ma, M., Nakagawa, T., Waki, H., Maeda, M., Ogawa, H., & Kim-Mitsuyama, S. (2014). Blood pressure variability, impaired autonomic function and vascular senescence in aged spontaneously hypertensive rats are ameliorated by angiotensin blockade. *Atherosclerosis*, 236(1), 101–107.

Takimoto-Ohnishi, E., & Murakami, K. (2019). Renin-angiotensin system research: from molecules to the whole body. *The Journal of Physiological Sciences*, 69(4), 581–587. https://doi.org/10.1007/s12176-019-00679-4

Tayebati, S. K., Tomassoni, D., & Amenta, F. (2012). Spontaneously hypertensive rat as a model of vascular brain disorder: microanatomy, neurochemistry and behavior. *Journal of the Neurological Sciences*, 322(1–2), 241–249.

Ueno, M., Sakamoto, H., Tomimoto, H., Akiuguichi, I., Onodera, M., Huang, C. L., & Kanenishi, K. (2004). Blood-brain barrier is impaired in the hippocampus of young adult spontaneously hypertensive rats. *Acta Neuropathologica*, 107(6), 532–538. https://doi.org/10.1007/s00401-004-0845-z

Vaidhan, J. D., & Speth, R. C. (2020). The role of the brain renin-angiotensin system (RAS) in mild traumatic brain injury (TBI). *Pharmacology and Therapeutics*, 218, 107684. https://doi.org/10.1007/j.00102.2020.107684

van Houten, M., Schiffrin, E. L., Mann, J. F. E., Posner, B. I., & Boucher, R. (1980). Radioautographic localization of specific binding sites for blood-borne angiotensin II in the rat brain. *Brain Research*, 186, 480–485. https://doi.org/10.1016/0006-8993(80)90995-6

Wietrzych, M., Meziane, H., Sutter, A., Ghyselinck, N., Chapman, P. F., Chambon, P., & Krezel, W. (2005). Working memory deficits in retinoid X receptor gamma-deficient mice. *Learning & Memory*, 12(3), 318–326.

Wright, J. W., & Harding, J. W. (2004). The brain angiotensin system and extracellular matrix molecules in neural plasticity, learning, and memory. *Progress in Neurobiology*, 72(4), 263–293. https://doi.org/10.1016/j.pneurobio.2004.03.003

Wright, J. W., & Harding, J. W. (2008). The angiotensin AT4 receptor subtype as a target for the treatment of memory dysfunction associated with Alzheimer’s disease. *Journal of the Renin-Angiotensin-Aldosterone System*, 9(4), 226–237.

Yabuki, Y., Shioda, N., Maeda, T., Hiraide, S., Tosaki, H., & Fukunaga, K. (2014). Aberrant CaMKII activity in the medial prefrontal cortex is associated with cognitive dysfunction in AD/HD model rats. *Brain Research*, 1557, 90–100. https://doi.org/10.1016/j.brainres.2014.02.025

Yoon, S. Y., dela Peña, I., Kim, S. M., Woo, T. S., Shin, C. Y., Son, K. H., Park, H., Lee, Y. S., Ryu, J. H., Jin, M., Kim, K.-M., & Cheong, J. H. (2013). Oroxylin A improves attention deficit hyperactivity disorder-like behaviors in the spontaneously hypertensive rat and inhibits reuptake of dopamine in vitro. *Archives of Pharmacal Research*, 36(1), 134–140. https://doi.org/10.1007/s12272-013-0099-6
Young, D., O'Neill, K., Jessell, T., & Wigler, M. (1988). Characterization of the rat mas oncogene and its high-level expression in the hippocampus and cerebral cortex of rat brain. *Proceedings of the National Academy of Sciences of the United States of America, 85*(14), 5339–5342.

Zhang, F., Xu, Y., Pan, Y., Sun, S., Chen, A., Li, P., Bao, C., Wang, J., Tang, H., & Han, Y. (2019). Effects of Angiotensin-(1-7) and Angiotensin II on Acetylcholine-Induced Vascular Relaxation in Spontaneously Hypertensive Rats. *Oxidative Medicine and Cellular Longevity, 2019*, 6512485. https://doi.org/10.1155/2019/6512485

How to cite this article: Stoyell-Conti FF, Chabbra A, Puthenthalayil J, Rigatto K, Speth RC. Chronic administration of pharmacological doses of angiotensin 1-7 and iodoangiotensin 1-7 has minimal effects on blood pressure, heart rate, and cognitive function of spontaneously hypertensive rats. *Physiol Rep.* 2021;9:e14812. https://doi.org/10.14814/phy2.14812