On parabolic Whittaker functions

Sergey Oblezin*

Abstract

We derive a Mellin-Barnes integral representation for solution to generalized (parabolic) quantum Toda lattice introduced in [GLO], which presumably describes the $S^1 \times U_N$-equivariant Gromov-Witten invariants of Grassmann variety.

Introduction

The \mathfrak{gl}_N-Whittaker functions, being solutions to the quantum cohomology D-module $QH^\ast(\text{Fl}_N)$ of the complete flag variety $\text{Fl}_N = GL_N(\mathbb{C})/B$, describe the corresponding equivariant Gromov-Witten invariants of Fl_N (see [Giv1], [Giv2] and references therein). However, the Givental’s approach to representation theory description of quantum cohomology of homogeneous spaces is inapplicable to generic incomplete flag variety $\text{Fl}_{m_1,\ldots,m_k}$ since no relevant Whittaker model (Toda lattice) associated with an incomplete flag variety was known.

From the other hand, in [HV] it was conjectured a description of quantum cohomology of Grassmannians in terms of (non-Abelian) gauged topological theories, together with a period-type integral representation for the corresponding generating function.

Recently, in [GLO] a generalization of the \mathfrak{gl}_N-Whittaker function to the case of the Grassmann variety $\text{Gr}_{m,N} = GL_N(\mathbb{C})/P_m$, $1 \leq m < N$ is proposed. Namely, in [GLO] it is defined a Toda-type D-module and its solution $\Psi^{(m,N)}_{\lambda_1,\ldots,\lambda_N}(x_1,\ldots,x_N)$ (referred to as $\text{Gr}_{m,N}$-Whittaker function), such that after specialization $x_2 = \ldots = x_N = 0$ the symbols of this D-module reproduce the small quantum cohomology algebra $qH^\ast(\text{Gr}_{m,N})$ according to [AS] and [K]. Conjecturally, the constructed generalized Whittaker function describe the equivariant Gromov-Witten invariants of $\text{Gr}_{m,N}$, and in [GLO] this conjecture is verified in particular case of projective space $\mathbb{P}^{N-1} = \text{Gr}_{1,N}$.

In this note we construct Mellin-Barnes type integral representation of the specialized $\text{Gr}_{m,N}$-Whittaker function, following an original generalization of Whittaker models to incomplete flag manifolds from [GLO]; this integral formula has been announced in [GLO]. Our derivation involves a generalization of the Gelfand-Zetlin realization to infinite-dimensional $\mathcal{U}(\mathfrak{gl}_N)$-modules introduced in [GKL]. Our main result (Theorem 2.1) generalizes Theorem 1.1 of [GLO] to arbitrary Grassmannian $\text{Gr}_{m,N}$. Moreover, our integral representation verifies the conjectural integral formula from [HV], although we construct another solution to the D-module with a different asymptotic behavior.

The paper is organized as follows. In Section 1 we review on parabolic Whittaker functions introduced in [GLO], and formulate our main results: the Mellin-Barnes integral representation for the specialized $\text{Gr}_{m,N}$-Whittaker function (Theorem 1.1), and its asymptotic behavior (Theorem 1.2). The second part of the text contains a detailed proof of the main results. In particular, we

*The work is partially supported by P. Deligne’s 2004 Balzan Prize in Mathematics, and by the RFBR 09-01-93108-NCNIL-a Grant.
recall the generalized Gelfand-Zetlin realization of the universal enveloping algebra $U(\mathfrak{gl}_N)$ from [GKL], and then we find out the Whittaker vectors (Proposition 2.1). In Section 3 we prove Theorems 1.1 and 1.2.

Acknowledgments: The author is thankful to A. Gerasimov and D. Lebedev for very useful discussions.

1 The $Gr_{m,N}$-Whittaker function and its integral representation

Let $\mathfrak{g}l_N$ be the Lie algebra of $(N \times N)$ real matrices with the Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}l_N$ of diagonal matrices, and let $\mathfrak{b}_s \subset \mathfrak{g}l_N$ be a pair of opposed Borel subalgebras containing \mathfrak{h}. Then one has the triangular decomposition $\mathfrak{g}l_N = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$, where $\mathfrak{n}_- \subset \mathfrak{b}_-$ are the nilpotent radicals given by strictly lower- and upper-triangular matrices. In this way, the set of roots $R \subset \mathfrak{h}^*$ decomposes into $R_+ \sqcup R_-$, where $R_+ \subset R \subset \mathfrak{h}^*$ is the set of positive roots. Identifying $\mathfrak{h} \simeq \mathbb{R}^N$ with coordinates $\underline{\mathfrak{x}} = (x_1, \ldots, x_N)$ one may write $R = \{ \alpha \in \mathfrak{h}^* | \alpha(\underline{\mathfrak{x}}) = x_i - x_j, i \neq j \}$ and $R_+ = \{ \alpha \in \mathfrak{h}^* | \alpha(\underline{\mathfrak{x}}) = x_i - x_j, i < j \}$. Clearly, positive roots span the Borel subalgebra \mathfrak{b}_+, and R_- span $\mathfrak{b}_- \subset \mathfrak{g}l_N$. Let $\Delta \subset R_+$ be the set of simple roots $\alpha_i(\underline{\mathfrak{x}}) = x_i - x_{i+1} \in \mathfrak{h}^*$, $1 \leq i \leq N - 1$, and let $\{ \omega_m, 1 \leq m \leq N \}$ be the non-reduced set of fundamental weights given by $\omega_m(\underline{\mathfrak{x}}) = x_1 + \ldots + x_m$. The Weyl group \mathfrak{S}_N is generated by simple reflections $s_i = s_{\alpha_i}$, and acts in \mathfrak{h}^* by linear transformations:

$$s_i(\beta) = \beta - (\alpha_i, \beta)\alpha_i, \quad \beta \in \mathfrak{h}^*.$$

In particular one has $\mathfrak{S}_N \cdot R_+ = R_-$. Let $I = \{1, 2, \ldots, N - 1\}$ be the set of vertices of Dynkin diagram, then given a subset $J \subseteq I$, let $\overline{J} = I \setminus J$, and let us consider the subgroup $\mathfrak{G}_J \subset \mathfrak{S}_N$ generated by $\{s_j, j \in \overline{J}\}$. Then let $R_J \subseteq R_+$ be a subset of positive roots defined by $\mathfrak{G}_J \cdot R_J = -R_J$, and let $\overline{R}_J = R_+ \setminus R_J$. Then the corresponding parabolic subalgebra is spanned by R_- and R_J, and the corresponding parabolic subgroup is denoted by P_J. In this paper we restrict ourselves to the case $J = \{m\} \subset \{1, 2, \ldots, N - 1\}$ with $\mathfrak{G}_m = \mathfrak{S}_m \times \mathfrak{S}_{N-m}$, and $GL_N(\mathbb{C})/P_m$ being isomorphic to the Grassmannian $Gr_{m,N}$. In this case we have $I = I' \sqcup I''$ with $I' = \{1, \ldots, m\}$ and $I'' = \{m+1, \ldots, N\}$, then \overline{R}_m is spanned by positive roots α of the form $\alpha(\underline{\mathfrak{x}}) = x_i - x_j; i \in I', j \in I''$.

Next, let us recall an original construction of $Gr_{m,N}$-Whittaker functions from [GLO]. Let $B = B_- \subset GL_N(\mathbb{C})$ be the Borel subgroup of lower-triangular matrices, and let us pick a character $\chi_\Delta: B_- \to \mathbb{C}$ defined by $\chi_\Delta = (\lambda_1, \ldots, \lambda_N) \in \mathbb{C}^N$. Then the associated Whittaker function is defined as a certain matrix element of a principle series representation $\mathcal{V}_\Delta = Ind^B_{B_-} \chi_\Delta$.

Let us associate with P_m a decomposition of the Borel subalgebra $\mathfrak{b}_+ \subset \mathfrak{g}l_N$

$$\mathfrak{b}_+ = \mathfrak{h}(m) \oplus \mathfrak{n}_+^{(m)},$$

into the commutative subalgebra $\mathfrak{h}(m) \subset \mathfrak{b}_+$ spanned by

$$H_1 = E_{11} + \ldots + E_{mm} ; \quad H_k = E_{1,k} , \quad 2 \leq k \leq m ;$$

$$H_{m+k} = E_{m+k,m} + \ldots + E_{m+1,m+1} + \ldots + E_{\ell+m,\ell+m} ; \quad (1.1)$$

and the Lie subalgebra $\mathfrak{n}_+^{(m)} \subset \mathfrak{b}_+$ generated by

$$\mathfrak{n}_+^{(m)} = \langle E_{1,\ell+m}; E_{1,m+1}; E_{m,\ell+m}; E_{kk}, 2 \leq k \leq N-1; E_{j,j+1}, 2 \leq j \leq N-2 \rangle . \quad (1.2)$$
Note that dim $\mathfrak{h}^{(m)} = \text{rank } \mathfrak{g}l_N = N$ and dim $\mathfrak{n}_+^{(m)} = N(N - 1)/2$. Let $H^{(m)}$ and $N_+^{(m)}$ be the Lie groups corresponding to the Lie algebras $\mathfrak{h}^{(m)}$ and $\mathfrak{n}_+^{(m)}$. An open part GL^0_N (the big Bruhat cell) of GL_N allows the following analog of the Gauss decomposition:

$$GL^0_N = N_- H^{(m)} N_+^{(m)}. \tag{1.3}$$

Let $\mathcal{U} = \mathcal{U}(\mathfrak{g}l_N)$ be the universal enveloping algebra of $\mathfrak{g}l_N$. The principal series representation V_{λ} admits a natural structure of \mathcal{U}-module, as well, as a module over the opposite algebra \mathcal{U}^{opp}. Let us assume that the action of the Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}l_N$ in V_{λ} is integrable to the action of the Cartan torus $H \subset GL_N(\mathbb{R})$. Below we introduce a pair of elements, $\langle \psi_L |, | \psi_R \rangle \in V_{\lambda}$ generating a pair of dual submodules, $W_L = \langle \psi_L | \mathcal{U}^{opp} \rangle$ and $W_R = \mathcal{U} | \psi_R \rangle$, in V_{λ} (we adopt the bra- and ket-vector notations to distinguish \mathcal{U} and \mathcal{U}^{opp}-modules structures on W_R and W_L respectively).

Definition 1.1 [GLO] The $Gr_{m,N}$-Whittaker vectors $\langle \psi_L | \in V_{\lambda}'$ and $| \psi_R \rangle \in V_{\lambda}$ are defined by the following conditions:

$$\langle \psi_L | E_{n+1,n} = h^{-1}(\psi_L), \quad 1 \leq n \leq N - 1, \tag{1.4}$$

$$\begin{cases}
E_{kk} | \psi_R \rangle = 0, & 2 \leq k \leq N - 1; \\
E_{k,k+1} | \psi_R \rangle = 0, & 2 \leq k \leq N - 2; \\
E_{1,m+1} | \psi_R \rangle = E_{m,N} | \psi_R \rangle = 0; \\
E_{1,N} | \psi_R \rangle = (-1)^{\epsilon(m,N)} \frac{1}{\hbar} | \psi_R \rangle
\end{cases} \tag{1.5}$$

where $\epsilon(m,N)$ is an integer number and $\hbar \in \mathbb{R}$.

Note that the equations (1.4) define a one-dimensional representation $\langle \psi_L |$ of the Lie algebra \mathfrak{n}_- of strictly lower-triangular matrices, and the equations (1.5) define a one-dimensional representation of $\mathfrak{n}_+^{(m)}$.

Definition 1.2 [GLO] The $Gr_{m,N}$-Whittaker function associated with the principal series representation $(\pi_{\lambda}, V_{\lambda})$ is defined as the following matrix element:

$$\Psi_{\lambda}^{(m,N)}(\underline{x}) = e^{-x^t \frac{m(N-m)}{2}} \langle \psi_L | \pi_{\lambda} (g(x_1, \ldots, x_N)) | \psi_R \rangle, \tag{1.6}$$

where the left and right vectors solve the equations (1.4) and (1.5) respectively. Here $g(\underline{x})$ is a Cartan group valued function given by

$$g(\underline{x}) = \exp \left\{- \sum_{i=1}^{N} x_i H_i \right\}, \tag{1.7}$$

where $\underline{x} = (x_1, \ldots, x_N)$ and the generators $H_i, i = 1, \ldots, N$ are defined by (1.1).

In [GLO] (Theorem 1.1) an integral representation of the $Gr_{m,N}$-Whittaker function (1.6) was constructed in the case of projective space \mathbb{P}^{N-1}, corresponding to $m = 1$. We generalize this construction to generic Grassmannians $Gr_{m,N}$.

3
Theorem 1.1 The specialized $\text{Gr}_{m,N}$-Whittaker function possesses the following integral representation:

$$
\Psi^{(m,N)}_{\lambda}(x,0,\ldots,0) = \int_{\mathcal{C}} d\gamma e^{-\frac{x}{\hbar} \sum_{i=1}^{m} \gamma_i \prod_{i,j=1}^{N} \Gamma(\gamma_i - \lambda_j | \hbar)} \prod_{i,k=1}^{m} \Gamma(\gamma_i - \gamma_k | \hbar),
$$

with $\gamma = (\gamma_1, \ldots, \gamma_m)$ and $\lambda = (\lambda_1, \ldots, \lambda_N) \in \mathbb{R}^N$. The integration contour is given by $\mathcal{C} = (i\mathbb{R} + \epsilon)^m$, where $\epsilon > \max_{1 \leq j \leq N} \{ \lambda_j \}$.

Here we use the following normalization of classical Gamma-function:

$$
\Gamma_1(z | \hbar) = \hbar^z \Gamma(z \hbar).
$$

We prove Theorem 1.1 in Section 3.

Clearly, the integral (1.8) converges absolutely due to the Stirling formula:

$$
\Gamma(z + \lambda) = \sqrt{2\pi} z^{z+\lambda-\frac{1}{2}} e^{-z} \left[1 + O(z^{-1}) \right], \quad z \to \infty,
$$

when $|\arg(z)| < \pi$.

Integral representation (1.8) coincides with the expected one (5.1) in [GLO]. Besides, a similar integral formula was conjectured in [HV] (see formulas (A.1) and (A.2) in Appendix), but with different integration measure $\tilde{\mu} = \prod_{i<j} (\gamma_i - \gamma_j)$. Our choice of measure (2.3) is provided by the generalized Gelfand-Zetlin realization [GKL], and it is crucial in our representation theory framework. Actually, the two solutions given by integral formulas (1.8) and the one from [HV], have different asymptotic behavior, and below we derive asymptotic of our solution.

Theorem 1.2 When $x \to -\infty$, the specialized $\text{Gr}_{m,N}$-Whittaker function has the following asymptotic behavior:

$$
\Psi^{(m,N)}_{\lambda}(x,0,\ldots,0) \sim m! \sum_{\sigma \in S_N / \mathfrak{S}_m} e^{-x(\sigma \cdot \omega_m(\lambda))} (\sigma \cdot c_m)(\lambda).
$$

with $\omega_m(\lambda) = \lambda_1 + \ldots + \lambda_m$, and

$$
c_m(\lambda) = \prod_{\alpha \in \mathbb{R}_m} \Gamma_1(\alpha(\lambda) | \hbar), \quad (\sigma \cdot c_m)(\lambda) = \prod_{\alpha \in \mathbb{R}_m} \Gamma_1(\sigma \cdot \alpha(\lambda) | \hbar).
$$

A proof of Theorem 1.2 is given in Section 3.1.

2 Construction of $\text{Gr}_{m,N}$-Whittaker vectors

In this Section we construct explicit solutions to (1.4) and (1.5) using the generalized Gelfand-Zetlin realization of principal series $U(g_{1N})$-modules from [GKL]. Namely, let $\gamma_1, \ldots, \gamma_m$ be a triangular array consisting of $N(N-1)/2$ variables $\underline{\gamma}_n = (\gamma_{m1}, \ldots, \gamma_{mn}) \in \mathbb{C}^n, n = 1, \ldots, N$. The following
operators define a representation π of \mathcal{U} in the space \mathcal{M}_N of meromorphic functions in $N(N - 1)/2$ variables $(\gamma_1, \ldots, \gamma_{N-1})$:

$$E_{kk} = \frac{1}{\hbar} \left(\sum_{j=1}^{n} \gamma_{n,j} - \sum_{i=1}^{n-1} \gamma_{n-1,i} \right), \quad 1 \leq k \leq N;$$

$$E_{n,n+1} = -\frac{1}{\hbar} \sum_{i=1}^{n} \frac{n^{n+1}}{\prod_{s \neq i}^{n} (\gamma_{n,i} - \gamma_{n,s})} e^{-\hbar \partial_{n,i}}, \quad 1 \leq n \leq N - 1;$$

$$E_{n+1,n} = \frac{1}{\hbar} \sum_{i=1}^{n} \frac{n^{n-1}}{\prod_{s \neq i}^{n} (\gamma_{n,i} - \gamma_{n-1,i} + \frac{\hbar}{2})} e^{\hbar \partial_{n,i}}, \quad 1 \leq n \leq N - 1,$$

where $E_{ij} = \pi(e_{ij})$, $1 \leq i, j \leq N$ for the standard elementary matrix units $e_{ij} \in \mathfrak{gl}_N$. This realization of universal enveloping algebra \mathcal{U} is referred to as generalized Gelfand-Zetlin realization.

Remark 2.1 Evidently the Weyl group \mathfrak{S}_N acts on E_{ij} in (2.1) by permutations of indices (i, j). This provides $N!$ different realizations of \mathcal{U}, and we use certain \mathfrak{S}_N-twisted generalized Gelfand-Zetlin realizations of \mathcal{U} in the next Section for derivation of Whittaker vectors (1.4), (1.5).

The universal enveloping algebra \mathcal{U} acts in $\mathcal{W}_R \subseteq \mathcal{M}_N$ by differential operators (2.1), and the opposite algebra \mathcal{U}^{opp} acts in $\mathcal{W}_L \subseteq \mathcal{M}_N$ via the adjoint operators:

$$E_{ij}^\dagger = \mu(\gamma)^{-1} E_{ij} \mu(\gamma), \quad 1 \leq i, j \leq N;$$

with

$$\mu(\gamma) = \prod_{n=2}^{N-1} \mu_n(\gamma_n) = \prod_{n=2}^{N-1} \prod_{i,j=1}^{n} \frac{1}{\Gamma\left(\frac{\gamma_{ni} - \gamma_{nj}}{\hbar}\right)}.$$

(2.3)

It was shown in [GKL] that there exist a non-degenerate pairing between the modules \mathcal{W}_L and \mathcal{W}_R with measure (2.3):

$$\langle \phi_1, \phi_2 \rangle = \int_{\mathbb{R}^{N(N-1)/2}} \phi_1(\gamma) \phi_2(\gamma) \mu(\gamma) \prod_{k,n=1}^{N} d\gamma_{nk},$$

(2.4)

where $\phi_1 \in \mathcal{W}_L$ and $\phi_2 \in \mathcal{W}_R$.

Proposition 2.1 For $1 < m < N$ the Whittaker vectors have the following expressions.

1. A solution to (1.4) is given by

$$\psi^{(m)}_L = e^{\pi \gamma_{11}} \prod_{i=1}^{m-1} \prod_{j=1}^{m} \frac{1}{\Gamma\left(\frac{\gamma_{m-1,i} - \gamma_{m,j} + \frac{\hbar}{2}}{\hbar}\right)}.$$

(2.5)
2. A solution to (1.5) is given by
\[\psi^{(m)}_R = \delta(\gamma_{11}) \prod_{i=1}^{m} \prod_{j=1}^{N} \Gamma_1(\gamma_{N-1,i} - \gamma_{N,j} + \frac{h}{2} | h) \cdot \prod_{a=1}^{m-1} \prod_{b=1}^{m} \Gamma_1(\gamma_{m-1,a} - \gamma_{mb} + \frac{h}{2} | h) \]
\[\times \prod_{n=2}^{N-1} \left[\delta(\sum_{j=1}^{n} \gamma_{nj} - \sum_{i=1}^{n-1} \gamma_{n-1,i}) \prod_{k=1}^{n-1} \delta(\gamma_{n-1,k} - \gamma_{nk} + \frac{h}{2}) \prod_{i,j=1}^{n} \Gamma_1(\gamma_{ij} - \gamma_{nj} | h) \right], \]
(2.6)

Further, substituting the Whittaker vectors (2.5) and (2.6) into the pairing (2.4) we arrive to the following integral representation.

2.1 Proof of Proposition

Due to the action of the Weyl group \(S_N \), actually one has \(N! \) realizations of \(U(\mathfrak{g}_N) \) defined by
\[E^w_{ij} := wE_{ij}w^{-1}, \quad w \in S_N, \quad i, j = 1, \ldots, N. \]
(2.7)

Let us call these realizations of \(U(\mathfrak{g}_N) \) the \(w \)-twisted Gelfand-Zetlin realizations.

Given the simple reflections \(s_i \in S_N, i \in I \), let us introduce the Coxeter elements \(c_n = s_n \cdots s_1, n \in I \). In particular, one has \(c_1 = s_1 \), and for the longest element \(w_0 \in S_N \) the following decomposition holds:
\[w_0 = c_1c_2 \cdots c_{N-1}. \]

Proof of Proposition 2.1. Given \(m > 1 \) let us solve the defining relations (1.4), (1.5), using the \(c_{m-1} \)-twisted Gelfand-Zetlin realization (2.7).

2.1.1 Let us start from solving the equations (1.4) for the left \(Gr_{m,N} \)-Whittaker vector. Namely, one has to check that (2.5) satisfies (1.4):
\[(E^{c_{m-1}}_{k+1,k}) \psi^{(m)}_L = h^{-1}\psi^{(m)}_L, \quad 1 \leq k < N. \]
(2.8)

Actually, one has to check only two relations:
\[-(E^{c_{m-1}}_{21}) \psi^{(m)}_L = (E^{c_{m-1}}_{m+1,m}) \psi^{(m)}_L = h^{-1}\psi^{(m)}_L, \]
(2.9)

and the other relations are evidently true, since the difference operators \(E^{c_{m-1}}_{k+1,k}, k \neq 1, m \) act trivially on \(\psi^{(m)}_L = \psi^{(m)}_L(\gamma_{m-1}, \gamma_m) \). The relations (2.9) can be verified using the following combinatorial formulas.

Lemma 2.1 Given a set of variables \(\gamma = (\gamma_1, \ldots, \gamma_n) \) the following identities hold:

1. \[\sum_{i=1}^{n} \gamma_i^m \prod_{i \neq k}^{n} \frac{1}{\gamma_i - \gamma_k} = \delta_{m,n-1}, \quad m < n; \]
(2.10)

More generally, one has
\[\sum_{i=1}^{n} \gamma_i^m \prod_{i \neq k}^{n} \frac{1}{\gamma_i - \gamma_k} = \sum_{k_1+\cdots+k_n=n+1-m} \gamma_1^{k_1} \cdots \gamma_n^{k_n}. \]
2. \[
\sum_{i=1}^{n} \frac{1}{\gamma_i - \gamma_k} = 1, \tag{2.11}
\]
for any constant c.

Proof. We have
\[
\sum_{i=1}^{n} \gamma_i^m \prod_{i \neq k} \frac{1}{\gamma_i - \gamma_k} = \int d\lambda \frac{\lambda^m}{A_n(\lambda)}, \quad A_n(\lambda) = \prod_{i=1}^{n} (\lambda - \gamma_i).
\]
Taking the residue at infinity we get
\[
\int d\lambda \frac{\lambda^{m-n}}{1 + \sum_{k=1}^{n} (-1)^k \sigma_k(\gamma) \lambda^{-k}} = \chi_{n+1-m}(\gamma) \Theta(m + 1 - n),
\]
where
\[
\sigma_k(\gamma) = \sum_{i_1 < \cdots < i_k} \gamma_{i_1} \cdots \gamma_{i_k}, \quad \chi_k(\gamma) = \sum_{i_1 + \cdots + i_n = k} \gamma_{i_1} \cdots \gamma_{i_k}
\]
are the characters of finite-dimensional representations \(\mathfrak{h}^k \mathbb{C}^n\) and \(\text{Sym}^k \mathbb{C}^n\) respectively.

The other identity can be proved similarly. \(\square\)

Then for the second relation in (2.9) one readily derives the following:
\[
(E_{m+1,m})_{\uparrow} \psi_L^{(m)} = E_{m+1,m-1} \psi_L^{(m)} = \frac{1}{\hbar} \sum_{i=1}^{m} \prod_{k_1 \neq i_1} \frac{1}{\gamma_{m,i_1} - \gamma_{m,k_1}} \times \prod_{i_2=1}^{m-1} \prod_{k_2 \neq i_2} \frac{(\gamma_{m,i_2} - \gamma_{m-1,k_2} - \hbar)}{\gamma_{m-1,i_2} - \gamma_{m-1,k_2}} \prod_{j=1}^{m-2} \left(\gamma_{m-1,i_2} - \gamma_{m-2,j} - \hbar \right) e^{-\hbar(\delta_{m,i_1} + \delta_{m-1,i_2})} \psi_L^{(m)}
\]
\[
= \frac{1}{\hbar} \sum_{i_1=1}^{m} \prod_{k_1 = 1}^{m} \frac{1}{\gamma_{m,i_1} - \gamma_{m,k_1}} \sum_{i_2=1}^{m-1} \prod_{k_2 \neq i_2} \frac{(\gamma_{m-1,i_2} - \gamma_{m,j_2} - \hbar)}{\gamma_{m-1,i_2} - \gamma_{m-1,k_2}} \prod_{j_2=1}^{m-2} \left(\gamma_{m-1,i_2} - \gamma_{m-2,j} - \hbar \right) \psi_L^{(m)} = \ldots
\]
Using (2.10) we have
\[
\ldots = \frac{1}{\hbar} \sum_{i_1=1}^{m} \prod_{k_1 = 1}^{m} \frac{\gamma_{m,k_1}}{\gamma_{m,i_1} - \gamma_{m,k_1}} \sum_{i_2=1}^{m-1} \prod_{k_2 \neq i_2} \frac{-\gamma_{m-1,i_2}}{\gamma_{m-1,i_2} - \gamma_{m-1,k_2}} \psi_L^{(m)} = \ldots
\]
and finally we apply (2.11) and obtain
\[
\frac{1}{\hbar} \sum_{i_1=1}^{m} \prod_{k_1 = 1}^{m} \frac{-\gamma_{m,k_1}}{\gamma_{m,i_1} - \gamma_{m,k_1}} = \frac{1}{\hbar} \psi_L^{(m)}.
\]
The first relation in (2.9) reads as follows:

\[
(E^{c_{m-1}}_{21})^† \psi^{(m)}_L = E^{†}_{1m} \psi^{(m)}_L = -\frac{1}{\hbar} \sum_{i_1=1}^{m-1} \left(\gamma_{m-1,i_1} - \gamma_{m,j_1} + \frac{\hbar}{2} \right) \sum_{j_2=1}^{m-2} \left(\gamma_{m-2,i_2} - \gamma_{m-1,j_2} + \frac{\hbar}{2} \right) \times \ldots
\]

(2.13)

\[
\times \sum_{i_2=1}^{2} \sum_{k_1 \neq i_1}^{m-1} \sum_{k_2 \neq i_2}^{m-2} \left(\gamma_{i_1,i_2} - \gamma_{j_1,j_2} + \frac{\hbar}{2} \right) \prod_{j_1=1}^{m-1} \prod_{k_1 \neq i_1}^{m-2} \left(\gamma_{i_1,j_1} - \gamma_{j_1,k_1} \right) \prod_{j_2=1}^{m-2} \prod_{k_2 \neq i_2}^{m-2} \left(\gamma_{i_2,j_2} - \gamma_{j_2,k_2} \right)
\]

Thus we have to check the following identity:

\[
\frac{1}{\hbar} \sum_{i_1=1}^{m-1} \sum_{i_2=1}^{m-2} \prod_{j_1=1}^{m-1} \prod_{k_1 \neq i_1}^{m-2} \left(\gamma_{i_1,i_2} - \gamma_{j_1,j_2} + \frac{\hbar}{2} \right) \prod_{j_2=1}^{m-2} \prod_{k_2 \neq i_2}^{m-2} \left(\gamma_{i_2,j_2} - \gamma_{j_2,k_2} \right)
\]

(2.14)

\[
\times \sum_{i_2=1}^{2} \sum_{k_1 \neq i_1}^{m-1} \sum_{k_2 \neq i_2}^{m-2} \left(\gamma_{i_1,i_2} - \gamma_{j_1,j_2} + \frac{\hbar}{2} \right) \prod_{j_1=1}^{m-1} \prod_{k_1 \neq i_1}^{m-2} \left(\gamma_{i_1,j_1} - \gamma_{j_1,k_1} \right) \prod_{j_2=1}^{m-2} \prod_{k_2 \neq i_2}^{m-2} \left(\gamma_{i_2,j_2} - \gamma_{j_2,k_2} \right)
\]

This identity can be verified by induction over \(m \). Indeed, for \(m = 2 \) (2.13) reads

\[
(E^{c_{m}}_{21})^† \psi^{(2)}_L = E^{†}_{12} \psi^{(2)}_L
\]

(2.15)

\[
= -\frac{1}{\hbar} \left(\gamma_{11} - \gamma_{21} + \frac{\hbar}{2} \right) \left(\gamma_{11} - \gamma_{22} + \frac{\hbar}{2} \right) e^{\frac{\hbar}{2} \gamma_{11}} \cdot e^{\textrm{i} \pi \gamma_{11}} \prod_{i=1}^{2} \frac{1}{\hbar} \left(\gamma_{11} - \gamma_{2i} + \frac{\hbar}{2} \right)
\]

\[
= \frac{1}{\hbar} \psi^{(2)}_L.
\]

The inductive step directly follows the reasoning from (2.12), using the combinatorial identities (2.14) and (2.15).

2.1.2 Let us check that the expression (2.6) satisfies the relations the \(c_{m-1} \)-twisted relations (1.5):

\[
E^{c_{m-1}}_{nm} \psi^{(m)}_R = 0, \quad n = 2, \ldots, N - 1; \quad E^{c_{m-1}}_{k,k+1} \psi^{(m)}_R = 0, \quad k = 2, \ldots, N - 2;
\]

\[
E^{c_{m-1}}_{1,m+1} \psi^{(m)}_R = E^{c_{m-1}}_{m,1} \psi^{(m)}_R = 0; \quad E^{c_{m-1}}_{1,N} \psi^{(m)}_R = (-1)^{\epsilon(m,N)} \psi^{(m)}_R.
\]

The relations corresponding to Cartan generators \(E^{c_{m-1}}_{nm} \psi^{(m)}_R = 0, n = 2, \ldots, N - 1 \) hold due to the delta-factors

\[
\delta(\gamma_{11}) \prod_{n=2}^{N-1} \delta \left(\sum_{j=1}^{n} \gamma_{n,j} - \sum_{i=1}^{n-1} \gamma_{n-1,i} \right)
\]

in (2.16), and since

\[
E^{c_{m}}_{kk} = E_{k-1,k-1}, \quad k = 2, \ldots, m; \quad E^{c_{m}}_{kk} = E_{kk}, \quad k = m + 1, \ldots, N - 1.
\]
Similarly, the relations $E^{m-1}_{k,k+1} \psi_R^{(m)} = 0$, $k = 2, \ldots, N - 2$ hold due to the delta-factors

$$\prod_{n=2}^{N-1} \prod_{k=1}^{n-1} \delta \left(\gamma_{n-1,k} - \gamma_{nk} + \frac{\hbar}{2} \right)$$

(2.17)

in (2.6), and since

$$E^{m-1}_{k,k+1} = E_{k-1,k}, \quad k = 2, \ldots, m; \quad E^{m-1}_{k,k+1} = E_{k,k+1}, \quad k = m + 1, \ldots, N - 2.$$

Due to the same delta-factor (2.17), one has $E^{m-1}_{1,m+1} \psi_R^{(m)} = E_{m,m+1} \psi_R^{(m)} = 0$.

Thus we have to check the remaining two relations:

$$E^{m-1}_{m,N} \psi_R^{(m)} = E_{m-1,N} \psi_R^{(m)} = 0, \quad E^{m-1}_{1,N} \psi_R^{(m)} = E_{m,N} \psi_R^{(m)} = \frac{(-1)^m}{\hbar} \psi_R^{(m)}.$$ (2.18)

Lemma 2.2 For $n = 1, \ldots, N - 1$ the following holds:

$$E_{n,N} = -\frac{1}{\hbar} \sum_{i_1=1}^{N-1} \prod_{j_1=1}^{N-1} \left(\gamma_{N-1,i_1} - \gamma_{N,j_1} - \frac{\hbar}{2} \right) \prod_{k_1=i_1}^{N-1} \left(\gamma_{N-1,i_1,k_1} - \gamma_{N-1,j_1,k_1} - \frac{\hbar}{2} \right) \prod_{i_2=1}^{N-2} \prod_{k_2=i_2}^{N-2} \left(\gamma_{N-2,i_2,j_2} - \gamma_{N-2,k_2} - \frac{\hbar}{2} \right) \times \ldots$$

$$\times \sum_{i_{N-n}=1}^{N+1-n} \prod_{j_{N-n}=1}^{N+1-n} \left(\gamma_{n,i_{N-n}} - \gamma_{n+1,j_{N-n}} - \frac{\hbar}{2} \right) \prod_{k_{N-n}=i_{N-n}}^{N+1-n} \left(\gamma_{n,i_{N-n}} - \gamma_{n,k_{N-n}} - \frac{\hbar}{2} \right) e^{-\hbar \sum_{a=n}^{N-1} \partial_{a,i_{N-a}}}.$$ (2.19)

Proof. Direct calculation using (2.1). \square

At first let us note that due to the delta-factors

$$\prod_{n=m+1}^{N-1} \prod_{k=1}^{n} \delta \left(\gamma_{n-1,k} - \gamma_{nk} + \frac{\hbar}{2} \right)$$

...
in (2.6) one gets only \(m \) non-vanishing terms in (2.19) (for \(n = m \)):

\[
E_{1,N}^{c_{m-1}} \psi_R^{(m)} = E_{m,N} \psi_R^{(m)}
\]

\[
= -\frac{1}{\hbar} \left\{ \sum_{i_1=1}^{N-1} \prod_{j_1=1}^{N} \left(\gamma_{N-1,i_1} - \gamma_{N,j_1} - \frac{\hbar}{2} \right) \prod_{k_1 \neq i_1}^{N-1} \left(\gamma_{N-1,i_1} - \gamma_{N-1,k_1} \right) \prod_{i_2=1}^{N-2} \prod_{j_2 \neq i_1}^{N-1} \left(\gamma_{N-2,i_1} - \gamma_{N-1,j_2} - \frac{\hbar}{2} \right) \prod_{j_2 \neq i_1}^{N-1} \left(\gamma_{N-2,i_1} - \gamma_{N-2,k_2} \right) \right\} \times \ldots
\]

\[
\times \sum_{i_{N-m}=1}^{m} \prod_{j_{N-m}=1}^{N-m} \prod_{k_{N-m} \neq i_{N-m}}^{N-m} \left(\gamma_{m,i_{N-m}} - \gamma_{m+1,j_{N-m}} - \frac{\hbar}{2} \right) \left(\gamma_{m,i_{N-m}} - \gamma_{m,i_{N-m}} - \frac{\hbar}{2} \right) \ldots \times \prod_{k_{N-m} \neq i_{N-m}}^{m} \prod_{i_{N-m}}^{N} \left(\gamma_{m,i_{N-m}} - \gamma_{m,k_{N-m}} \right) \right\} \psi_R^{(m)}
\]

(2.20)

Secondly, taking into account that

\[
e^{-\hbar \partial_{N-1,i}} \cdot m \prod_{a=1}^{N} \prod_{b=1}^{N} \Gamma_{1} \left(\gamma_{N-1,a} - \gamma_{N,b} + \frac{\hbar}{2} \right)
\]

\[
= \prod_{j=1}^{N} \frac{1}{\gamma_{N-1,i} - \gamma_{N,j}} \frac{1}{\frac{\hbar}{2}} \prod_{a=1}^{N} \prod_{b=1}^{N} \Gamma_{1} \left(\gamma_{N-1,a} - \gamma_{N,b} + \frac{\hbar}{2} \right) \cdot e^{-\hbar \partial_{N-1,i}}
\]

(2.21)

and due to the factors \(m \prod_{a=1}^{N} \prod_{b=1}^{N} \Gamma_{1} \left(\gamma_{N-1,i} - \gamma_{N,j} \right) \) in (2.6) one has

\[
\ldots = -\frac{1}{\hbar} \left\{ \sum_{i_1=1}^{N-1} \prod_{j_1=1}^{N} \left(\gamma_{N-1,i_1} - \gamma_{N-1,j_1} - \frac{\hbar}{2} \right) \prod_{k_1 \neq i_1}^{N-1} \left(\gamma_{N-1,i_1} - \gamma_{N-1,k_1} \right) \prod_{i_2=1}^{N-2} \prod_{j_2 \neq i_1}^{N-1} \left(\gamma_{N-2,i_1} - \gamma_{N-1,j_2} - \frac{\hbar}{2} \right) \prod_{j_2 \neq i_1}^{N-1} \left(\gamma_{N-2,i_1} - \gamma_{N-2,k_2} \right) \right\} \times \ldots
\]

\[
\times \sum_{i_{N-m}=1}^{m} \prod_{j_{N-m}=1}^{N-m} \prod_{k_{N-m} \neq i_{N-m}}^{N-m} \left(\gamma_{m,i_{N-m}} - \gamma_{m+2,j_{N-m}} - \frac{\hbar}{2} \right) \prod_{j_{N-m} = 1}^{m+2} \prod_{j_{N-m} \neq i_{N-m}}^{N-m} \left(\gamma_{m,i_{N-m}} - \gamma_{m+1,j_{N-m}} - \frac{\hbar}{2} \right) \ldots \times \prod_{k_{N-m} \neq i_{N-m}}^{m} \prod_{i_{N-m}}^{N} \left(\gamma_{m,i_{N-m}} - \gamma_{m,k_{N-m}} \right) \right\} \psi_R^{(m)}
\]

(2.22)
Next, since
\[
\prod_{j_{a+1} = 1, \quad i_{a+1} \neq a+1}^{N-a} \left(\gamma_{N-a-1, i_{a+1}} - \gamma_{N-a, j_{a+1}} - \frac{\hbar}{2} \right) \equiv \prod_{k_a \neq i_a} (\gamma_{N-a, i_a} - \gamma_{N-a, k_a} - \hbar) \quad \text{mod} \prod_{n=m+1}^{N-1} \prod_{k=1}^{n-1} \delta \left(\gamma_{n-1, k} - \gamma_{nk} - \frac{\hbar}{2} \right)
\]
and since the factor \(\prod_{a=1}^{m-1} \prod_{b=1}^{m} \Gamma_1 \left(\gamma_{m-1, a} - \gamma_{m, b} + \frac{\hbar}{2} \right) \) in (2.6) produces
\[
eq \prod_{r=1}^{m-1} \prod_{a=1}^{m-1} \prod_{b=1}^{m} \Gamma_1 \left(\gamma_{m-1, r} - \gamma_{m, i} - \frac{\hbar}{2} \right) \prod_{a=1}^{m-1} \prod_{b=1}^{m} \Gamma_1 \left(\gamma_{m-1, a} - \gamma_{m, b} + \frac{\hbar}{2} \right) \cdot e^{-\hbar \partial_{m, i}},
\]
one arrives to the following:
\[
\ldots = \frac{1}{\hbar} \sum_{i_1 = 1}^{m} \prod_{k_1 = 1}^{N-1} \left(\gamma_{N-1, i_1} - \gamma_{N-1, k_1} - \hbar \right) \psi^{(m)}_R = \frac{(-1)^m}{\hbar} \psi^{(m)}_R,
\]
where the last equality follows from (2.10).

At last we have to verify the remaining first relation in (2.18). Following the same reasoning as in (2.20)-(2.22) above, we obtain the following:
\[
E_{m, N}^{c_{m-1, \psi}}(m) = E_{m, N}^{c_{m-1, \psi}}(m)
\]
\[
= \frac{1}{\hbar} \left\{ \sum_{i_1 = 1}^{m} \prod_{k_1 = 1}^{N-1} \left(\gamma_{N-1, i_1} - \gamma_{N-1, k_1} - \hbar \right) \prod_{j_2 \neq i_1}^{N-1} \left(\gamma_{N-2, i_1} - \gamma_{N-2, j_2} - \frac{\hbar}{2} \right) \times \ldots \right. \]
\[
\left. \prod_{j_{m-1} = 1}^{m+2} \left(\gamma_{m+1, i_1} - \gamma_{m+2, j_{m-1}} - \frac{\hbar}{2} \right) \prod_{j_{m-1} = 1}^{m+1} \left(\gamma_{m, i_1} - \gamma_{m+1, j_{m-1}} - \frac{\hbar}{2} \right) \times \ldots \times \prod_{k_{m-1} = 1}^{m} \left(\gamma_{m+1, i_1} - \gamma_{m+1, k_{m-1}} - \hbar \right) \prod_{k_{m-1} = 1}^{m} \left(\gamma_{m, i_1} - \gamma_{m, k_{m-1}} \right) \right. \]
\[
\left. \times \prod_{j_{m-1} = 1}^{m+1} \left(\gamma_{m+1, i_1} - \gamma_{m+1, j_{m-1}} - \frac{\hbar}{2} \right) \prod_{k_{m-1} = 1}^{m} \left(\gamma_{m+1, i_1} - \gamma_{m+1, k_{m-1}} - \hbar \right) \right. \]
\[
\left. \times \prod_{j_{m-1} = 1}^{m+1} \left(\gamma_{m+1, i_1} - \gamma_{m+1, j_{m-1}} - \frac{\hbar}{2} \right) \prod_{k_{m-1} = 1}^{m} \left(\gamma_{m+1, i_1} - \gamma_{m+1, k_{m-1}} - \hbar \right) \left. \right\} \cdot \psi_R^{(m)} = \ldots
\]
Then we make cancelations due to the factors \(\prod_{n=m+1}^{N-1} \prod_{i \neq j}^{m} \Gamma_1 (\gamma_{ni} - \gamma_{nj} | \hbar) \) in (2.6) and relation (2.23),
take into account the factor \(\prod_{a=1}^{m-1} \prod_{b=1}^{m} \Gamma_1 (\gamma_{m-1,a} - \gamma_{mb} + \frac{\hbar}{2} | \hbar) \) in (2.6) satisfying the relation:

\[
e^{-b \left(\partial_{m-1,j} + \partial_{m,i} \right)} \cdot \prod_{a=1}^{m-1} \prod_{b=1}^{m} \Gamma_1 (\gamma_{m-1,a} - \gamma_{m,b} + \frac{\hbar}{2} | \hbar) \cdot e^{-h \left(\partial_{m-1,j} + \partial_{m,i} \right)},
\]

and then arrive to the following:

\[
\ldots = -\frac{1}{\hbar} \sum_{i_1=1}^{m} \prod_{k_{N-m} = 1}^{m} \frac{1}{\gamma_{m,i_1} - \gamma_{m,k_{N-m}}}
\]

\[
\times \sum_{i_{N+1-m} = 1}^{m-1} \prod_{j \neq i_{N+1-m}}^{m-1} \left(\gamma_{m-1,j} - \gamma_{m,i_1} - \frac{\hbar}{2} \right) \left(\gamma_{m-1,i_{N+1-m}} - \gamma_{m-1,k_{N+1-m}} - \hbar \right) e^{-h \sum_{a=m}^{N-1} \partial_{a,i_1} - \partial_{m-1,i_{N+1-m}} \cdot \psi^{(m)}} \psi_R
\]

\[
= -\frac{1}{\hbar} \sum_{i_{N+1-m} = 1}^{m-1} \prod_{k_{N+1-m} = 1}^{m} \frac{1}{\gamma_{m-1,i_{N+1-m}} - \gamma_{m-1,k_{N+1-m}} - \hbar}
\]

\[
\times \sum_{i_1=1}^{m} \prod_{k_{N-m} = 1}^{m} \frac{1}{\gamma_{m,i_1} - \gamma_{m,k_{N-m}}} \left(\gamma_{m-1,j} - \gamma_{m,i_1} - \frac{\hbar}{2} \right) e^{-h \sum_{a=m}^{N-1} \partial_{a,i_1} - \partial_{m-1,i_{N+1-m}} \cdot \psi^{(m)}} = 0,
\]

where the sum above vanishes due to (2.10). This completes the proof of Proposition.
3 Mellin-Barnes integral and its asymptotic

Now we are ready to construct the integral representation for the Gr\(_{m,N}\)-Whittaker function (1.6). Let us substitute (2.5) and (2.6) into (1.6) and then obtain:

\[
\Psi^{(m,N)}(x) = e^{-x\frac{m(N-m)}{2}} \int S \prod_{n=1}^{N-1} d\gamma_n \prod_{i,j=1}^{m} \prod_{i \neq j}^{N} \frac{1}{\Gamma(\gamma_{mj}-\gamma_{nj}|h)} e^{-\frac{m}{\pi} \sum_{k=1}^{m} \gamma_{mk}} \\
\times \delta(\gamma_{11}) \prod_{i=1}^{m} \Gamma\left(\gamma_{N-1,i} - \gamma_{Nj} + \frac{\hbar}{2}|h\right) \cdot \prod_{a=1}^{m-1} \prod_{b=1}^{m} \Gamma\left(\gamma_{m-1,a} - \gamma_{mb} + \frac{\hbar}{2}|h\right) \\
\times \prod_{n=2}^{N-1} \left[\delta\left(\sum_{j=1}^{n} \gamma_{nj} - \sum_{i=1}^{n-1} \gamma_{n-1,i}\right) \prod_{k=1}^{n-1} \delta(\gamma_{n-1,k} - \gamma_{nk} + \frac{\hbar}{2}) \cdot \prod_{i,j=1}^{n} \Gamma\left(\gamma_{mi} - \gamma_{nj}|h\right) \right] \\
\times e^{i\pi \gamma_{11}} \prod_{n=2}^{N} \prod_{i \neq j} \Gamma\left(\gamma_{m-1,i} - \gamma_{mj} + \frac{\hbar}{2}|h\right) \\
= e^{-x\frac{m(N-m)}{2}} \int S \prod_{n=1}^{N-1} d\gamma_n \prod_{k=m+1}^{N} d\gamma_{N-1,k} e^{-\frac{m}{\pi} \sum_{k=1}^{m} \gamma_{mk}} \prod_{i,j=1}^{m} \Gamma\left(\gamma_{N-1,i} - \gamma_{Nj} + \frac{\hbar}{2}|h\right) \\
\times \delta(\gamma_{11}) e^{i\pi \gamma_{11}} \prod_{n=2}^{N-1} \left[\delta\left(\sum_{j=1}^{n} \gamma_{nj} - \sum_{i=1}^{n-1} \gamma_{n-1,i}\right) \prod_{k=1}^{n-1} \delta(\gamma_{n-1,k} - \gamma_{nk} + \frac{\hbar}{2}) \right] = \ldots
\]

Making integration over \(\prod_{n=1}^{N-2} d\gamma_n \prod_{k=m+1}^{N} d\gamma_{N-1,k}\) we integrate out the delta-functions and arrive to

\[
\ldots = e^{-x\frac{m(N-m)}{2}} \int S \prod_{n=1}^{N-1} d\gamma_n e^{-\frac{m}{\pi} \sum_{k=1}^{m} \left(\gamma_{N-1,k} - \frac{N-1-m}{N} \gamma_{Nj}\right)} \prod_{i,j=1}^{m} \Gamma\left(\gamma_{N-1,i} - \gamma_{Nj} + \frac{\hbar}{2}|h\right) / \prod_{i,j=1}^{m} \Gamma\left(\gamma_{mi} - \gamma_{nj}|h\right). \hspace{1cm} (3.2)
\]

Finally, we shift the integration contour by \(\gamma_k = \gamma_{N-1,k} + \frac{\hbar}{2}, k = 1, \ldots, m\), and readily get (1.8).

\[\square\]

3.1 Asymptotic of \(\Psi^{(m,N)}(x,0,\ldots,0)\)

To complete the analysis of integral representation (1.8) let us derive its asymptotic when \(x \to -\infty\).

Proof of Theorem 2.2. The contour of integration \(\mathcal{C} = \mathcal{C}_m\) is a product of \(m\) copies of contour \(\mathcal{C}_1\), corresponding to integration over \(\gamma_k, k = 1, \ldots, m\), going from \(\epsilon - i\infty\) to \(\epsilon + i\infty\) with \(\epsilon > \max\{\lambda_1, \ldots, \lambda_N\}\). Let us enclose \(\mathcal{C}_1\) by a half-circle of infinitely large radius in the left half-plane, then the closed contour \(\mathcal{C}_1\) embraces all the poles of gamma-factors

\[
\prod_{j=1}^{N} \Gamma\left(\gamma_k - \lambda_j|\hbar\right)
\]
in (1.8). Actually, we can replace the integration over C_1 by integration over C_1, since the contribution over the half-circle of infinitely large radius vanishes due to the exponent $e^{-\hbar^{-1}x\gamma_k}$ in the integrand of (1.8). Then this transformation of integration contour allows to calculate the integral as the sum over the residues at poles of Gamma-factors. Namely, each Gamma-function $\Gamma_1(\gamma_k - \lambda_j | h)$ has the poles at $\gamma_k = \lambda_j - n\hbar$, $n = 0, 1, 2, \ldots$, and therefore integration over γ_k implies the following:

$$e^{-x\gamma_k} \prod_{j=1}^{N} \Gamma_1(\gamma_k - \lambda_j | h) = \sum_{i=1}^{N} \sum_{n=0}^{\infty} n! \ e^{-x(\lambda_j - n\hbar)} \prod_{j=1}^{N} \Gamma_1(\lambda_i - \lambda_k - n\hbar | h).$$

When $x \to -\infty$ only the terms with $n = 0$ give contributions into the asymptotic:

$$e^{-x\gamma_k} \prod_{j=1}^{N} \Gamma_1(\gamma_k - \lambda_j | h) \sim \sum_{i=1}^{N} \prod_{j=1}^{N} \Gamma_1(\lambda_i - \lambda_j | h), \quad x \to -\infty.$$

At the next step we obtain:

$$e^{-x(\gamma_1 + \gamma_2)} \prod_{j=1}^{N} \Gamma_1(\gamma_1 - \lambda_j | h) \Gamma_1(\gamma_2 - \lambda_j | h)$$

$$\sim \sum_{i_1=1}^{N} \prod_{j=1}^{N} \Gamma_1(\lambda_{i_1} - \lambda_j | h) \sum_{i_2=1}^{N} \prod_{j=1}^{N} \Gamma_1(\lambda_{i_2} - \lambda_j | h) \prod_{j \neq i_1}^{N} \Gamma_1(\lambda_{i_1} - \lambda_{i_2} | h) \prod_{j \neq i_1}^{N} \Gamma_1(\lambda_{i_2} - \lambda_i | h)$$

$$= \sum_{i_1=1}^{N} \prod_{j=1}^{N} \Gamma_1(\lambda_{i_1} - \lambda_j | h) \sum_{i_2=1}^{N} \prod_{j \neq i_1}^{N} \Gamma_1(\lambda_{i_2} - \lambda_j | h) \prod_{j \neq i_1}^{N} \Gamma_1(\lambda_{i_1} - \lambda_{i_2} | h).$$

In this way we proceed step by step over k, making cancelations of Gamma-factors in measure $\mu_m(\gamma)$, and finally we arrive to $N!$ terms (with multiplicities $m!$) that can be arranged into the S_N/\mathfrak{W}_m-orbit of the term

$$m! e^{-x(\gamma_1 + \ldots + \gamma_m)} \prod_{i=1}^{m} \prod_{k=1}^{N-m} \Gamma_1(\lambda_i - \lambda_{m+k} | h).$$

Thus we obtain (1.9). □

References

[AS] A. Astashkevich, V. Sadov, Quantum cohomology of partial flag manifolds F_{n_1,\ldots,n_k}, Commun. Math. Phys. 170 (1995) 503–528. [hep-th/9401103]

[HV] K. Hori, C. Vafa, Mirror Symmetry, Preprint [hep-th/0002222], 2000, 92 pages.

[GLO] A. Gerasimov, D. Lebedev, S. Oblezin, Parabolic Whittaker functions and Topological field theories I, Preprint [hep-th/1002.2622], 2010, 46 pages.
[GKL] A. Gerasimov, D. Lebedev, S. Kharchev, Representation theory and Quantum inverse scattering method: the open Toda chain and the hyperbolic Sutherland model, Int. Math. Res. Notices 17 (2004) 823-854. [math.QA/0204206]

[Giv1] A. Givental, Homological geometry and mirror symmetry, Proc. ICM in Zürich, 1994, Birkhäuser, 1995, 1 472-480.

[Giv2] A. Givental, Stationary Phase Integrals, Quantum Toda Lattices, Flag Manifolds and the Mirror Conjecture. Topics in Singularity Theory, Amer. Math. Soc. Transl. Ser., 2 180, AMS, Providence, Rhode Island, 1997, 103–115. [math.AG/9612001].

[K] B. Kim, Quantum cohomology of partial flag manifolds and a residue formula for their intersection pairings, Int. Math. Res. Notices 1 (1995) 1–16. [hep-th/9405056]

Institute for Theoretical and Experimental Physics,
Bol. Cheremushkinskaya 25, Moscow 117218,
E-mail address: Sergey.Oblezin@itep.ru