Material slow and fast light in a zero-dispersion configuration

Bruno Macke and Bernard Ségard

Laboratoire de Physique des Lasers, Atomes et Molécules, Université de Lille et CNRS, F-59655 Villeneuve d’Ascq, France
(Dated: April 11, 2019)

We study the propagation of light pulses in an absorbing medium when the frequency of their carrier coincides with a zero of the refractive index dispersion. Although slow light and, a fortiori, fast light are not expected in such conditions, we show that both can be obtained by selecting particular phase-components of the transmitted field. Analytical expressions of the resulting signals are obtained by a procedure of periodic continuation of the incident pulse and a proof of principle of the predicted phenomena is performed by means of a very simple electrical network, the transfer function of which mimics that of the medium.

I. INTRODUCTION

The one-dimensional propagation of coherent light pulses with a slowly varying envelope through a linear medium is usually analyzed by means of the group velocity [[1],[2]]. The latter generally reads \(v_g(\omega_c) = c/|n(\omega_c) + \omega_c (dn/d\omega_c)| \) where \(\omega_c, c, n \) and \(dn/d\omega_c \) respectively designate the carrier frequency of the pulses \([3]\), the light velocity in vacuum, the medium refractive index and its derivative at \(\omega_c \) (the refractive index dispersion). The dispersion can take very large values when the carrier frequency \(\omega_c \) of the pulses is equal or close to the frequency \(\omega_0 \) of a narrow and well-marked resonance of the medium. When \(dn/d\omega_c > 0 \) (normal dispersion), the group velocity is then very small compared to the phase velocity \(c/|n(\omega_c)| \) (slow light regime) while it becomes very large or even negative (fast last regime) when \(dn/d\omega_c < 0 \) (anomalous dispersion). The principle of causality implies that the two regimes can be obtained with a same medium, depending on the detuning \(\Delta = (\omega_c - \omega_0) \) \([4]\). We examine in the present article what occurs when the detuning is such that \(dn/d\omega_c = 0 \) (zero-dispersion configuration). Neither slow light nor fast light are expected in this case. We will however show that both can be observed by post-selecting particular phase components of the transmitted field, in analogy with the experiments involving post-selection of the field polarization \([7],[10]\). We specifically consider the reference case of a medium with a narrow absorption line. Convincing demonstrations of slow light \([11],[12]\) and fast light \([13],[17]\) have been performed with this system. The arrangement of our paper is as follows. In Section II we give the transfer functions for the electric field and for its relevant phase components. The envelopes of the corresponding transmitted pulses are determined in Section III and we give in Section IV a proof of principle of the predicted phenomena by means of a very simple electrical network. We conclude in Section V by summarizing our main results.

II. TRANSFER FUNCTIONS OF THE MEDIUM

For the sake of simplicity, we consider a dilute medium \((n \approx 1)\) of thickness \(\ell \) with a Lorentzian absorption line of half width at half maximum \(\gamma \ll \omega_0 \). Denoting \(\alpha \) the medium absorption coefficient on resonance for the amplitude \((\alpha \ll \omega_0/c)\), the transfer function relating the Fourier transform of the transmitted field to that of the incident field \([18]\) then takes the simple form

\[
H(\omega) = \exp \left[-\frac{\alpha \ell}{1 + i(\omega - \omega_0)/\gamma} \right]
\]

(1)

Notice that this result is obtained by using for the transmitted pulse a time retarded by the luminal transit time \(\ell/c \) (retarded time picture). This enables one to directly evidence possible fast or slow light effects. Denoting \(\Phi(\omega) \) the phase of \(H(\omega) \), the group advance (the opposite of the group delay) is given by the relation \([18]\)

\[
a_g(\omega_c) = \frac{\alpha \ell}{\gamma} \left[-\frac{1 - \Delta^2/\gamma^2}{1 + \Delta^2/\gamma^2} \right]
\]

(2)

where \(\Delta = (\omega_c - \omega_0) \) is the detuning of the pulse carrier frequency from resonance. The group advance attains its maximum \(a_g(\omega_0) = \alpha \ell/\gamma \) for \(\Delta = 0 \), is positive (fast light regime) when \(|\Delta| < \gamma \) and negative (slow light regime) when \(|\Delta| > \gamma \). It cancels when \(\Delta = \pm \gamma \). We will consider in the following the case where \(\Delta = \gamma \). Quite similar results are obtained when \(\Delta = -\gamma \). Figure II shows the amplitude transmission \(|H(\omega)|\) and phase \(\Phi(\omega) \) as functions of the detuning \(\omega - \omega_0 \) in the reference case \(\alpha \ell = \pi/2 \). The vertical dash-dotted line indicates the carrier frequency \(\omega_c = \omega_0 + \gamma \) considered in the following. The use of the group velocity concept requires that the pulse envelope is slowly varying at the scale of \(1/\omega_c \). In a frame rotating at \(\omega_c \), the transfer function for the pulse envelopes resulting from Eq.(1) reads \([3]\):

\[
H_{\Delta}(\Omega) = \exp \left[-\frac{\alpha \ell}{1 + i(\Omega + \Delta)/\gamma} \right]
\]

(3)

where \(\Omega \ll \omega_c \). On exact resonance \((\Delta = 0)\), \(H_{\Delta}(\Omega) = H_0(\Omega) \) \((\Omega)\), the asterisk indicating complex conjugate. The
corresponding impulse response, inverse Fourier transform of $H_\theta (\Omega)$ is then real. If the envelope $x(t)$ of the incident pulse is real (unchirped pulse) as assumed in the following, the envelope $y(t)$ of the transmitted pulse will be also real or, otherwise said, the transmitted field will be in phase with the incident one. An experimental evidence of this point is reported in Ref. [10].

The group advance can then be identified to the advance of the center-of-gravity of $y(t)$ over that of $x(t)$ while $H_\theta (0)$ is the ratio of the two envelopes areas. These results hold whatever the pulse distortion is.

The situation is not so simple when $\Delta \neq 0$. The envelope $y(t)$ of the transmitted pulse is then complex. Its real and imaginary parts are then the envelopes of the components of the transmitted field, respectively, in phase (I) and in quadrature (Q) with the incident field. In the zero-dispersion configuration considered in the present article, the transfer functions relating the envelopes $y_{I,Q}$ of these two components to that of the incident pulse read:

\begin{align}
H_I (\Omega) &= \frac{1}{2} [H_\gamma (\Omega) + H_\gamma^* (-\Omega)] \quad (4) \\
H_Q (\Omega) &= \frac{1}{2i} [H_\gamma (\Omega) - H_\gamma^* (-\Omega)] \quad (5)
\end{align}

These transfer functions are closely related to those encountered in Ref. [10] where the post-selection was made on the field polarization. As $H_\theta (\Omega)$ in the resonant case, they are such that $H_{I,Q} (\Omega) = H_{I,Q} (-\Omega)$ and the envelopes $y_{I,Q}(t)$ of the (I,Q) components are obviously real. Figure 2 shows the corresponding amplitude transmissions $|H_{I,Q}(\omega)|$ and phases $\Phi_{I,Q}(\omega)$ in the reference case $\alpha l = \pi/2$. Quite generally the I-transmission (the Q-transmission) is minimal (maximal) at $\Omega = 0$ where $H_I = e^{-\theta} \cos \theta$ and $H_Q = e^{-\theta} \sin \theta$ with $\theta = \alpha t/2$. The group advances $a_{gI,gQ} = d\Phi_{I,Q}/d\Omega |_{\Omega=0}$ read $a_{gI} = (\theta \tan \theta)/\gamma > 0$ (fast light regime) and $a_{gQ} = -(\theta \cot \theta)/\gamma < 0$ (slow light regime) [21]. The reference case considered in Figs. [12] thus refers to the particular situation where $H_I (0) = H_Q (0) = e^{-\theta}/\sqrt{2}$, $a_{gI} = \theta/\gamma$ and $a_{gQ} = -a_{gI}$.

The previous values of $a_{gI,gQ}$ might lead to expect that advances as large as wanted could be obtained. As in the resonant case [21], these advances are only those of the center-of-gravity of the envelopes. Anyway, obtaining large absolute advances is not an aim per se and the challenge in slow and fast light experiments is to attain ratios of the advances over the pulse duration as large as possible with moderate distortion. The practical limitations to these fractional advances are examined in the following section.

III. ENVELOPES OF THE INCIDENT AND TRANSMITTED FIELDS

We consider an incident pulse of carrier frequency $\omega_c = \omega_0 + \gamma$ and of envelope

\begin{equation}
\hat{x}(t) = \cos^2 \left(\frac{\pi t}{2\tau} \right) \Pi \left(\frac{t}{2\tau} \right)
\end{equation}

where $\Pi(u)$ designates the rectangle function equal to 1 for $-1/2 < u < 1/2$ and 0 elsewhere. This pulse is very close to the Gaussian pulse usually considered in the literature. It has a full width at half maximum τ (taken as time unit in the following) and a strictly finite overall duration 2τ. We exploit this point by continuing the envelope $x(t)$ at every time by the periodic signal

\begin{equation}
\tilde{x}(t) = \cos^2 \left(\frac{\pi t}{2\tau} \right) = \frac{1 + \cos (\pi t/\tau)}{2}
\end{equation}

$\tilde{x}(t)$ contains only three frequencies, namely 0 and $\pm \Omega_1$ with $\Omega_1 = \pi/\tau$. As shows Fig. 3, the signals $\hat{y}_{I,Q}(t)$ obtained by substituting $\tilde{x}(t)$ to $x(t)$ reproduce very well the main features of the exact envelopes $y_{I,Q}(t)$ obtained.
by fast Fourier transform (FFT). We get:

$$\tilde{y}_{I,Q}(t) = \frac{1}{2} \left(|H_{I,Q}(0)| + |H_{I,Q}(\Omega_1)| \cos [\Omega_1 t + \Phi_{I,Q}(\Omega_1)] \right)$$ \hspace{1cm} (8)

$y_{I,Q}(t)$ has a maximum $A_{I,Q} = |H_{I,Q}(0)| + |H_{I,Q}(\Omega_1)|$ in advance over that of the incident pulse by $a_{I,Q} = \Phi_{I,Q}(\Omega_1)/\Omega_1$. The corresponding fractional advances read

$$a_{I,Q}/\tau = \Phi_{I,Q}(\Omega_1)/(\Omega_1 \tau) = \Phi_{I,Q}(\Omega_1)/\pi$$ \hspace{1cm} (9)

The advances $a_{I,Q}$ of the maximum have the same sign that the corresponding group advances $a_{gI,gQ}$ ($a_I > 0$, $a_Q < 0$). Since $H_I(0) < |H_I(\Omega_1)|$, the amplitude A_I of the advanced signal is larger than its asymptotic value $H_I(0)$ when $\Omega_1/\gamma \to 0$ ($\gamma \tau \to \infty$), the opposite occurring for the amplitude A_Q of the delayed signal $|A_Q < H_Q(0)|$.

Equation (8) also enables us to determine the full duration at half maximum τ_I and τ_Q of both signals. They read

$$\tau_{I,Q} = \left(\frac{2\tau}{\pi} \right) \arccos \left[\frac{|H_{I,Q}(\Omega_1)| - H_{I,Q}(0)}{2 |H_{I,Q}(\Omega_1)|} \right]$$ \hspace{1cm} (10)

with $\tau_I < \tau$ (pulse narrowing) and $\tau_Q > \tau$ (pulse broadening). All these results are consistent with those expected for systems having a dip or a peak of transmission.

In agreement with relativistic causality, both phase components start at the same time $-\tau$ that the incident pulse (see Fig.3). As soon as it has a significant amplitude, the component $y_Q(t)$ is simply broadened and the (negative) advance a_Q of its maximum is generally close to the group advance a_{gQ}. The behaviour of the in-phase component $y_I(t)$ is less simple. At the first order in $\alpha\ell$ the fractional advance $a_I/\tau = \Phi_I(\Omega_1)/\tau$ reads

$$\frac{a_I}{\tau} = \left(\frac{\alpha\ell}{\pi} \right) \left(\frac{\Omega^2/\gamma^3}{4 + \Omega^2/\gamma^4} \right)$$ \hspace{1cm} (11)

It attains its maximum when $\Omega_1 = 12^{1/4}/\gamma \approx 1.86\gamma$ ($\gamma \tau = 12^{1/4}/\pi \approx 1.69$). We then get an advance $a_I = (3/4)^{3/2}\alpha\ell/2\pi \approx 0.13\alpha\ell/2\pi$ larger than the group advance $a_{gI} = \theta^2/\gamma$, that is $a_{gI} = 12^{1/4}(\alpha\ell)^2/4\pi \approx 0.148(\alpha\ell)^2\tau$. It should be however noticed that both advances are then extremely small. When $\alpha\ell$ increases, $\Omega_1 \approx 1.86\gamma$ ($\gamma \tau \approx 1.69$) continues to maximize the fractional advance a_I/τ of the maximum for moderate thickness, say $\alpha\ell < 1.5$. For $\alpha\ell > 0.74$, $a_I < a_{gI}$ as usual.

Figure 3a shows the envelopes $y_I(t)$ and $y_Q(t)$ obtained in the frontier case where $a_I = a_{gI}$. The pulse distortion of $y_I(t)$ is manifested in a narrowing (as above mentioned) and, moreover, in the appearance of a significant secondary lobe [22]. The latter is also well reproduced by the periodic model. Quite generally, its maximum occurs at $t = [\pi - \Phi(\Omega_1)]/\Omega_1$ and its relative amplitude compared to that of the main lobe reads

$$D = \frac{|H_I(\Omega_1)| - H_I(0)}{|H_I(\Omega_1)| + H_I(0)}$$ \hspace{1cm} (12)

D is a good indicator of the pulse distortion. It equals 10% in the conditions of Fig.3a and raises to 20% when $\alpha\ell \approx 1.18$ (Fig.3b). For $\alpha\ell > 1.18$, maximizing the advance leads to large pulse distortions, D tending to 100% when $\alpha\ell \to \pi$. We limit in the following D to the reasonable value 20% attained in the previous case (4% for the corresponding intensity profile). The duration τ_I and the amplitude A_I of $y_I(t)$ then read:

$$\tau_I = \left(\frac{2\tau}{\pi} \right) \arccos \left(\frac{D}{1+D} \right) = 0.893\tau$$ \hspace{1cm} (13)

$$A_I = \frac{H_I(0)}{1-D} = 1.25 H_I(0)$$ \hspace{1cm} (14)
Figure 4: Fractional advance a_t/τ (solid blue line, left scale) and amplitude A_I (dashed blue line, right scale) of the maximum of $y_I(t)$ vs. the optical thickness $\alpha \ell$ for $D = 20\%$.

Figure 5: Same as Fig.4 for the fractional delay $-a_Q/\tau$ (solid red line, left scale) and amplitude A_Q (dashed red line, right scale) of the maximum of $y_Q(t)$.

For a given distortion, relativistic causality imposes severe limitations to the fractional advance a_t/τ of $y_I(t)$. As for every fast light system, the larger is the dynam-ics of the system transmission, the larger is the fractional advance \[23\]. In the present case, the transmission dynamics [maximum over minimum of $|H_I(\Omega)|$] is reduced to $1/H_I(0)$. Eq.\[14\] thus involves that a_t/τ and A_I as functions of the optical thickness $\alpha \ell$ evolve in opposite directions. Figure 4 shows the results obtained for $D = 20\%$ when $\alpha \ell$ varies from 1.18 (conditions of Fig\[3b\]) to 31.3/32. In the reference case $\alpha \ell = \pi/2$ (conditions of Fig\[3c\]), we get $a_t/\tau \approx 0.166$ and $A_I \approx 0.403$ while $a_t/\tau \approx 0.215$ and $A_I \approx 0.147$ when $\alpha \ell = 3\pi/4$ (conditions of Fig\[3d\]). In the latter case, a sufficient amplitude is conciliated with a fractional advance which is not far below its asymptotic value and comparable to or even larger than those actually observed in optics.\[13\]-\[17\],\[22\]. For the sake of completeness, we give Fig.5 the results obtained in the conditions of Fig\[4\] for the delayed envelope $y_Q(t)$. The variations of its amplitude A_Q are moderate, while the fractional delay $-a_Q/\tau$ continuously decreases from 0.47 for $\alpha \ell = 1.18$ to 0 when $\alpha \ell \rightarrow \pi$. We additionally mention that, correspondingly, the pulse duration τ_Q (the ratio $a_Q/a_Q(t)$) regularly decreases (increases) from 1.18τ to τ (from 0.90 to 1).

When $\alpha \ell = \pi (1 - \varepsilon)$ with $\varepsilon \ll 1$, it is possible to obtain explicit analytical expressions of the pulse duration τ leading to a given value of D and of the resulting values of a_t/τ, A_I, a_Q/τ and A_Q. At the second order in ε, we get

\[
\frac{\Omega_1}{\gamma} = \frac{\pi}{\gamma \tau} = \beta \varepsilon \left(1 + \frac{\varepsilon}{2}\right)
\]
(15)

where $\beta = 2\sqrt{D}/(1 - D)$. That yields:

\[
a_t/\tau \approx \frac{1}{\pi} \arctan \left\{ \beta \left[1 - \left(1 + \beta^2 \frac{\varepsilon}{2}\right) \right] \right\}
\]
(16)

For $D = 20\%$, $\beta = \sqrt{5}/2$. We then get for $\alpha \ell = \pi (\varepsilon = 0)$ the following asymptotic values of the fractional advances and amplitudes, respectively, $a_t/\tau = 0.268$, $a_Q/\tau = 0$, $A_I = 0$ and $A_Q = e^{-\pi/2} \approx 0.208$. For $3\pi/4 < \alpha \ell < \pi (\varepsilon \leq 1/4)$, Eqs.\[16,19\] yield values of advances and amplitudes equal to the exact ones within a few percent.

We finally remark that the fact that $v_g(\omega_c) = c$ does not imply that the envelope $|y(t)| = \sqrt{y_I^2(t) + y_Q^2(t)}$ of the total field is not advanced or delayed. This is only true in the limit where $\Omega_1/\gamma = \pi/(\gamma \tau)$ is small enough. When $\Omega_1/\gamma \ll 1$, a calculation involving an expansion of $H_I(\Omega_1)$ and $H_Q(\Omega_1)$ at the third order in Ω_1/γ, yields the following fractional advance for the maximum of $|y(t)|$:

\[
a/\tau = \frac{\alpha \ell}{4\pi} \left(1 - \frac{\alpha \ell}{4}\right) \left(\frac{\Omega_1}{\gamma}\right)^3 = \left(1 - \frac{\alpha \ell}{4}\right) \frac{\alpha \ell \pi^2}{4\gamma^3 \tau^3}
\]
(20)

Note that this fractional advance is very small compared to that of $y_I(t)$ which appears at the first order in Ω_1/γ.

In the conditions of Fig\[3d\], e.g., $a/\tau \approx 3 \times 10^{-3}$ whereas $a_t/\tau \approx 0.215$ ($a/a_I \approx 1.4 \times 10^{-2}$).

IV. EXPERIMENTS WITH AN ELECTRICAL NETWORK

In the fast light experiments reported in \[22\], the determination of an eventual phase difference between trans-
mitted and incident fields is performed by means of frequency changes transposing the signals in the radiofrequency domain. On another hand, the phenomenon corresponding to fast light can be directly observed in the radiofrequency range by means of electrical networks with negative group delay (NGD). As back as 1961, Rupprecht [24] succeeded in evidencing significant advance of the envelope of the pulse transmitted by such a network over that of the incident pulse. See also [25]. After some lethargy, the NGD circuits have known a recent renewal of interest both in electronics and in optics. For explicit demonstrations of advanced pulse-envelope, see, e.g., [26–30].

We have used in our experiments the very simple four port network shown Fig. 6. As the absorbing medium, it is purely passive. The transfer function relating the Fourier transform of the output signal \(V_{\text{out}}(t) \) to that of the input signal \(V_{\text{in}}(t) \) reads

\[
H(\omega) = \frac{\eta + i(\omega - \omega_0)/\gamma}{\eta + i(\omega - \omega_0)/\gamma}
\]

(21)

where \(\eta = \sqrt{r/(r + R)} \) \((0 < \eta < 1)\), \(\omega_0 = 1/\sqrt{LC} \) and \(\gamma = \sqrt{r(R + r)/(2L)} \) with \(\gamma \ll \omega_0 \) (narrow resonance limit). The general relation \(a_g(\omega_c) = d\Phi/d\omega \) \(|\omega=\omega_c\) giving the group advance yields

\[
a_g(\omega_c) = \frac{[(1/\eta) - \eta] (1 - \Delta^2/\gamma^2)}{\gamma [1 + \Delta^2/(\eta \gamma)^2] [1 + (\eta \Delta^2/\gamma^2)]}
\]

(22)

where \(\Delta = \omega_c - \omega_0 \) is the detuning of the pulse carrier frequency from resonance. As for the absorbing medium, the group advance is positive when \(|\Delta| < \gamma \), is negative when \(|\Delta| > \gamma \), cancels when \(|\Delta| = \gamma \) and is maximum on resonance where it takes the simple form \(a_g(\omega_0) = [(1/\eta) - \eta]/\gamma \). The experimental transmission and phase obtained for \(\eta = 0.226 \), \(\omega_0/2\pi = 274.9 \) kHz and \(\gamma/2\pi = 8.53 \) kHz are shown Fig. 7. They are in excellent agreement with those derived from Eq. (21). Note, however, that the values of \(\eta, \omega_0 \) and \(\gamma \) somewhat differ from those given below Eq. (21) which are obtained by considering ideal components without including the self-resonant behaviour of the capacitor and inductor [28].

In the time-resolved experiments, we use a waveform generator (Agilent 33500B) delivering both the sine wave signal of frequency \(\omega_c \) and the modulation signal. It is used in the burst mode (single-shot experiment). The signals \(V_{\text{in}}(t) \) and \(V_{\text{out}}(t) \) are sent on two channels of a numerical oscilloscope (Keysight InfiniVision DSOX4024A) and both are acquired on 16000 points with a 10 bit vertical resolution. Figure 8 gives an example of signals obtained in the resonant case \((\omega_c = \omega_0) \) with the parameters of Fig. 7. As expected, the maximum of \(V_{\text{out}}(t) \) is significantly in advance over that of \(V_{\text{in}}(t) \) but the two signals are in phase [22, 23]. On the other hand, Fig 8 obtained in the zero-dispersion configuration \((\omega_c = \omega_0 + \gamma) \), confirms that the advance is then negligible but that the two signals are not in phase.

The transfer functions \(H_r(\Omega), H_I(\Omega) \) and \(H_Q(\Omega) \) for the envelopes in the zero-dispersion configuration \((\Delta = \gamma) \) are derived from \(H(\omega) \) as those of the absorbing medium. For the electrical network \(H_\gamma(\Omega) \) reads

\[
H_\gamma(\Omega) = \frac{\eta + i + i \Omega/\gamma}{1/\eta + i + i \Omega/\gamma}.
\]

(23)

The transfer functions \(H_I(\Omega) \) and \(H_Q(\Omega) \) are deduced from \(H_\gamma(\Omega) \) by Eqs. (16). For the sake of completeness, we give below their values at \(\Omega = 0 \) and the corresponding group advances:

\[
H_I(0) = \frac{2\eta^2}{1 + \eta^2}
\]

(24)

\[
\gamma a_{gf} = \frac{(1 - \eta^2)^2}{2\eta (1 + \eta^2)}
\]

(25)

\[
H_Q(0) = \frac{\eta (1 - \eta^2)}{1 + \eta^2}
\]

(26)
To facilitate the comparison with the results obtained in the absorbing medium for $D = 20\%$, the input signal $V_{in}(t)$ is given for reference. Parameters as in Fig[9] and $\tau = 295 \mu s$ ($\gamma \tau = 15.8$). The advance of the maximum of $V_{out}(t)$ over that of $V_{in}(t)$ is $a = 0.221 \tau$ (corresponding group advance $a_g = 0.266 \tau$) while its relative amplitude is $A = 0.052$. Inset: comparison of the two signals in the vicinity of $t = 0$ showing that they are in phase.

The post-selection of the in-phase and quadrature components of the output signal $V_{out}(t)$ is experimentally performed as follows. The data collected by the numerical oscilloscope are treated by computer. In a first step, we generate a continuous sinewave, the frequency and phase of which coincide with those of the input signal $V_{in}(t)$. This continuous sinewave is next multiplied by the output signal $V_{out}(t)$ to deliver the envelope $y_I(t)$ of the in-phase component (I), the harmonic at $2\omega_c$ and the high frequency noise being eliminated by a finite impulse response (F.I.R.) filter. The used low pass filter (IGOR software Blackman 367) insures a rejection better than 70 dB for $\omega/(2\pi) > 200 kHz$. The envelope $y_Q(t)$ of the quadrature component is similarly derived by using a continuous sinewave in quadrature with that used to obtain $y_I(t)$.

Figure \[\text{10}\] shows the envelopes $y_I(t)$ and $y_Q(t)$ experimentally observed in the zero-dispersion configuration ($\Delta = \gamma$) in two representative cases. As it was made to obtain Fig[9] also as Figs. [8, 9] for the absorbing medium, the durations τ of the incident pulse are chosen such that $D = 20\%$ for the I-component. The envelopes shown Fig[10] are observed in the conditions of Fig[9]. The envelopes are quite comparable to those obtained theoretically with an absorbing medium of optical thickness $\alpha \ell = 3\pi/4$ (see Fig[3]). In particular, the advance a_I is significantly larger than the delay $-a_Q$. On another hand, the amplitudes of the two components are such that $A_Q/A_I \approx 1.7$ and this explains why no secondary lobe is visible Fig[9] in the over-
all envelope \(y(t) = \sqrt{y_1^2(t) + y_Q^2(t)} \). As a second example, Fig. [10] shows the envelopes experimentally observed when \(\eta = 0.450 \) and \(\gamma/(2\pi) = 7.45 \) kHz. In this case \(|a_1/A_Q| \) and \(A_Q/A_1 \) are both close to unity and the envelopes are now comparable to those obtained in the case \(\alpha\ell = \pi/2 \) taken as reference for the absorbing medium (see Fig. [9]). In case a) as in case b), the observed envelopes are in very good agreement with the envelopes derived by FFT using the transfer function \(H_2(\Omega) \) given Eq. (23). In addition, the advances, amplitudes and pulse durations are exactly determined by the periodic model with, in particular, \(\tau_I = 0.893 \tau \) and \(A_I = 1.25 \). (as predicted by Eqs. (13,14).

V. CONCLUSION

The dilute medium with a narrow absorption line is a reference system for the observation of fast and slow light. Fast light is obtained when the carrier frequency of the incident pulse coincides or is close to resonance while slow light is observed when this frequency lies in the line wings. There are thus two intermediate carrier frequencies for which the group velocity equals that of the light in vacuum. Paradoxically enough, we have shown that, in such a case, fast and slow light can be simultaneously observed. This is achieved by post-selecting particular phase components of the transmitted field. Fast light is obtained by selecting the component in phase with that of a pulse travelling the same distance in vacuum while slow light is observed on the quadrature component. The general properties of fast and slow light are retrieved with this arrangement. A particular attention is paid to fast light to which the relativistic causality imposes the most severe constraints. As usual, evidencing significant fast light effects with moderate distortion requires large transmission dynamics of the medium and long incident pulses. Finally the theoretical results obtained in optics with an absorbing medium are experimentally reproduced by using a passive electrical network running in the radiofrequency range. We expect that our work will stimulate direct demonstrations in optics or microwave. In this purpose, we emphasize that the phase post-selection procedure introduced in the present article can be applied to different frequency configurations and systems.

ACKNOWLEDGEMENTS

This work has been partially supported by the Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation, the Conseil Régional des Hauts de France and the European Regional Development Fund (ERDF) through the Contrat de Projets État-Région (CPER) 2015-2020, as well as by the Agence Nationale de la Recherche through the LABEX CEMPI project (ANR-11-LABX-0007).

[1] W.K. Hamilton, Researches respecting Vibration, connected with the Theory of Light, Proceedings of the Royal Irish Academy 1, 341 (1839). The “velocity of propagation of vibratory motion = ds/dk” introduced in this communication (p.348) is nothing else that the group velocity.
[2] L. Brillouin, Wave propagation and group velocity (Academic Press, New York 1960).
[3] C.G.B. Garrett and D.E. McCumber, Propagation of a Gaussian Light Pulse through an Anomalous Dispersion Medium, Phys. Rev. A 1, 305 (1970).
[4] R.W. Boyd and D.J. Gauthier, “Slow” and “Fast light”, Prog. Opt. 43, 497 (2002).
[5] All the frequencies considered in the article are angular frequencies. Lower case (upper case) letters are used to designate high (low) frequencies.
[6] E.L. Bolda, R.Y. Chiao, and J. Garrison, Two theorems for the group velocity in dispersive media, Phys. Rev. A 48, 3890 (1993).
[7] D.R. Solli, C.F. McCormik, C. Ropers, J.J. Morehead, R.Y. Chiao, and J.M. Hickmann, Demonstration of Superluminal Effects in an Absorptionless, Nonreflective System, Phys. Rev. Lett. 91, 143906 (2003).
[8] N. Brunner, V. Scarani, M. Wegmüller, M. Legré, and N. Gisin, Direct Measurement of Superluminal Group Velocity and Signal Velocity in an Optical Fiber, Phys. Rev. Lett. 93, 203902 (2004).
[9] P. Bianucci, C.R. Fitz, J.W. Robertson, G. S. Shvets, and C.K. Shi, Observation of simultaneous fast and slow light, Phys. Rev. A 77, 053816 (2008).
[10] B. Macke and B. Ségard, Simultaneous slow and fast light involving the Faraday effect, Phys. Rev. A 94, 043801 (2016).
[11] D. Grischkowsky, Adiabatic following and slow optical pulse propagation in rubidium vapor, Phys. Rev. A 7, 2006 (1973).
[12] P. Siddons, N.C. Bell, Y. Cai, C.S. Adams, and I.G. Hughes, A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect, Nature Photonics 3, 225 (2009).
[13] S. Chu and S. Wong, Linear pulse propagation in an absorbing medium, Phys. Rev. Lett. 48, 738 (1982).
[14] B. Ségard and B. Macke, Observation of negative velocity pulse propagation, Phys. Lett. 109A, 213 (1985).
[15] H. Tanaka, H. Niwa, K. Hayami, S. Furuie, K. Nakayama, T. Kohmoto, M. Kunitomo, and Y. Fukuda, Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapour, Phys. Rev. A 68, 053801 (2003).
[16] J. Keaveney, I.G. Hughes, A. Sargsyan, and C.S. Adams, Maximal refraction and superluminal propagation in a gaseous nanolayer, Phys. Rev. Lett. 109, 233001 (2012).
[17] S. Jennewein, Y.R.P. Sortais, J.F. Greffet, and A. Browaeys, Propagation of light through small clouds of
cold interacting atoms, Phys. Rev. A 94, 053828 (2016).
[18] We use the definitions, sign convention and results of
the linear system theory. See, for example, A. Papoulis,
The Fourier integral and its applications (Mc Graw Hill,
New York, 1987). Note that a different sign convention
is often used in optics. The passage from one convention
to the other is made by replacing the complex quantities
by their conjugates. The phases are then changed in their opposites but the final results obviously do not depend
on the used convention.
[19] M.D. Crisp, Propagation of Small-Area Pulses of Coherent Light through a Resonant Medium, Phys. Rev. A 1,
1604 (1970).
[20] B. Macke and B. Ségard, On-resonance material fast
light, Phys. Rev. A 97, 063830 (2018).
[21] Keep in mind that we use a retarded time picture.
[22] Y.S. Lee, H.J. Lee, and H.S. Moon, Phase measurement
of fast light pulse in electromagnetically induced absorp-
tion, Opt. Express 21, 22464 (2013).
[23] B. Macke, B. Ségard, and F. Wielonsky, Optimal super-
luminal systems, Phys. Rev. E 72, 035601(R) (2005).
[24] W. Rupprecht, Lineare Netzwerke mit negativer Grup-
penlaufzeit, Dissertation. (Technische Hochschule Karl-
sruhe, 1961). See Fig. 5.18b.
[25] K. Steinbuch and W. Rupprecht, Nachrichtentechnik:
eine einführende Darstellung (Springer, Berlin 1967). See
Fig.6.22.
[26] M. W. Mitchell and R. Y. Chiao, Causality and Negative Group Delays in a Simple Bandpass Amplifier, Am. J.
Phys 66, 14 (1998).
[27] H. Cao, A. Dogariu, and L.J. Wang, Negative Group De-
lay and Pulse Compression in Superluminal Pulse Propa-
gation, IEEE J. Sel. Top. Quantum Electron. 9, 52
(2003).
[28] O. F. Siddiqui, S. J. Erickson, G. V. Eleftheriades, and
M. Mojahedi, Time-Domain Measurement of Negative Group Delay in Negative-Refractive-Index Transmission-
Line Metamaterials, IEEE Trans. Microw. Theory Techn.
52, 1449 (2004).
[29] B. Ravelo, “Methodology of elementary negative group
delay active topologies identification”, IET Circuits De-
vices Syst. (CDS) 7, 105 (2013).
[30] B. Ravelo, Similitude between the NGD function and fil-
ter gain behaviours, Int. J. Circ. Theor. Appl. 42, 1016
(2014).