GREEN CORROSION INHIBITORS FOR MILD STEEL IN ACIDIC MEDIUM

Rekha N Nair

Professor & Dean (Academics), Department of Chemistry, Poornima College of Engineering, Jaipur (Rajasthan) INDIA

Abstract - Corrosion control of metals and their alloys is significant and an environmentally imperative matter. Extracts of plant material serve as the superior alternative to replace the environmentally hazardous organic and inorganic corrosion inhibitors. Literature review shows that corrosion of mild steel in acidic and other adverse environmental conditions can be inhibited by extracts of plant parts. Several organic compounds with heteroatom such as N, O, S and P present in the plant extracts are adsorbed directly onto the metals surface through polar atoms and thereby forming the protective layer. Their adsorption follows various adsorption isotherms. This paper discusses the different types of eco-friendly inhibitors for corrosion control of mild steel in acidic media.

Keywords - Corrosion inhibitors; Eco-friendly; non-toxic; plant materials; adsorption isotherms

I. INTRODUCTION

Mild steel is also called as the carbon steel which is a low carbon (0.3%) steel with superior strength. It is used when large amount of steel is needed and can be twisted and welded into an infinite range of shapes for uses in vehicles, construction material and vessels fabrication etc. In many industries, mild steel (MS) is the material of choice in the fabrication of reaction vessels, storage tanks etc. which get corroded easily in the presence of acids [1].

Hydrochloric acid solutions are widely used in several industrial processes, some of the important fields of application being acid pickling of steel, chemical cleaning and processing, ore production and oil well acidification. Because of the general aggression of acid solutions, inhibitors are commonly used to reduce the corrosive attack on metallic materials [2].

Acid solutions are commonly used in the chemical industry to remove mill scales from metallic surfaces. The inhibitors are adsorbed and depend on the structure and surface of metal atom. Among the methods of corrosion control, use of inhibitors is very popular due to the ease of application. Plant extracts contains several organic compounds with heteroatom such as N, O, S and P. They are adsorbed directly onto the metals surface through polar atoms and thereby forming the protective layer. Plant extracts have become important due to environmentally acceptable, non-toxic, readily available and are also renewable.

This paper reviews and discusses the use of different types of eco-friendly inhibitors for corrosion control of mild steel in acidic media reported in corrosion literature.

II. ECO-FRIENDLY INHIBITORS FOR CORROSION CONTROL OF MILD STEEL (MS)

In recent years several researchers have indicated the use of eco-friendly corrosion inhibitors for mild steel in different media. They forms complexes with metal ion onto the metal surface and thus forming a protective coating on the metal surface and protecting them from corrosive agents in different media.

Inhibition efficiency of these inhibitors in different media have been evaluated by employing different investigational techniques like weight loss method, electrochemical studies, Raman spectroscopy, gasometric techniques, potentiodynamic polarization, electrochemical impedance, polarization method, SEM, FTIR etc. are being used.
Various plant extracts that have been used as a corrosion inhibitor for mild steel in acidic medium is tabulated in Table 1.

Table 1: Various plant extracts that have been used as a corrosion inhibitor for mild steel in acidic medium

S. No	Medium	Inhibitor	Technique	Findings	Ref
1	2M H2SO4	Medicago Sativa (alcoholic Extract)	Electrochemical Measurements, SEM, EIS, Weight loss method	Mixed-type inhibitor, Langmuir adsorption isotherm	3
2	1M HCl and 1M H2SO4	Spirulina platensis	SEM, spectroscopy measurements, potentiodynamic polarization	Temkin isotherm	4
3	1M HCl	Henna, L. inermis	Weight loss technique	Chemiabsorption	5
4	5% HCl	Z. alatum (plant extract)	Weight loss technique, Kinetic and thermodynamic techniques. Temp. 30-60 °C, KI and KSCN	Chemiabsorption	6
5	4 N HCl	Methanolic extract of A. pallens	Weight loss method, AC impedance and FTIR methods	Chemisorption	7
6	0.2M HCl	Mangifera Indica (extracts of leaf and bark of mango)	Weight loss method	IE	8
7	0.5 N HCl	Bryophyllum Pinnatum Leaves	Surface Analysis (SEM) & Weight Loss method	Langmuir Isotherm	9
8	HCl	Acid extract of Andrographis Paniculata	Mass loss method, Tafel polarization method	Freundlich and Temkin adsorption isotherms	10
9	H2SO4	Amaranthus	Weight loss method	Freundlich adsorption Chemisorption	11
No.	Acid	Plant/Extract	Method/Techniques/Equation	IE/Notes	
-----	------	---------------	-----------------------------	----------	
10	5% HCl	Ethanolic and aqueous extract of seven aloe plant	Weight loss methods	IE dependent upon the concentrations of the inhibitor and the acid.	
11	1M HCl	Mollugo cerviana	Potentiodynamic Polarization, Weight loss method, Surface Analysis	Mixed Type Inhibitor, Obeys Langmuir Adsorption Isotherm	
12	1M HCl	Seed extract of Cyamopsis tetragonoloba	Weight loss and potentiodynamic polarization techniques	Langmuir and Temkin adsorption isotherms	
13	H₂SO₄	Combretum bracteosum	Gravimetric and hydrogen evolution measurement.	Freundlich adsorption isotherm,	
14	HCl	Ginger	Weight loss techniques	IE increases with temperature. Activation energy of adsorption are determined.	
15	1M HCl	Mango, orange and cashew peels	Electrochemical impedance spectroscopy, potentiodynamic polarization curve, weight loss method.	Langmuir adsorption isotherm. IE increases with increase in extract concentration and decrease with temperature	
16	1M HCl	Phaseolus aureus seed	Weight loss, potentiodynamic polarization technique	Mixed type inhibitor, IE 93%	
17	1M HCl and H₂SO₄	Acidic extract of Solanum tuberosum	Electrochemical impedance spectroscopy, potentiodynamic polarization curve, weight loss method, SEM. Temp 303, 313 and 323K	Mixed type inhibitor, Temkin adsorption isotherms	
18	2M HCl and 1M H₂SO₄	Calyx extract of Hibiscus sabdariffa	Gasometric technique	Langmuir Isotherm and mixed inhibition	
19	NaCl	Thymus vulgar L. plant	potentiodynamic polarization curve, weight loss method	Temkin adsorption isotherms	
20	H₂SO₄	Arica papaya (leaves, seeds, heart wood and bark)	Gravimetric and Gasometric technique	Langmuir and Temkin adsorption Isotherm	
21	2M HCl and 1M	Baphia nitida plant	Hydrogen evolution	Cationic inhibition	
III. RESULTS AND CONCLUSIONS

The summarized and discussed concluded that the naturally occurring plant extracts are readily available, cheap and renewable and are both eco-friendly and ecologically acceptable. It is required to minimize and control metal corrosion which is a major industrial problem. Green Corrosion Inhibitors are found to be effective and can play major role over toxic corrosion inhibitors. The efficiency of corrosion inhibitor depends not only on the kind of the environment in which they act, the nature of the metal surface, and electrochemical potential at the interface, but also on the structure of the inhibitor itself, which includes the number of adsorption active centres in the molecule, their charge density, the molecular size, the mode of adsorption, the formation of metallic complexes, and the projected area of the inhibitor on the metallic surface. From the experimental studies it can thus be concluded that the main mechanism of corrosion inhibition follows the different adsorption isotherms and their adsorption further depends on the physical and chemical properties of the metal surface. Studies also revealed that the corrosion inhibition of mild steel in acidic medium is concentration dependent and the inhibition efficiency was found to increase with increase in the concentration of inhibitors [12].

Further the corrosion inhibition of mild steel occurs via adsorption of inhibitors molecules onto the corroding metal surface. The inhibition efficiency depends on the mechanical, structural and chemical characteristics of the adsorption layer formed under particular conditions. These adsorption studies follow Langmuir, Freundlich, Temkin adsorption isotherm or thermodynamic kinetic model. Corrosion Inhibition also depends on the structure of the inhibitor and number of adsorption active
centres in the inhibitor molecule, the charge density, the molecular size, the mode of adsorption and formation of metallic complexes [28, 29].

The non-toxic and eco-friendly inhibitors can therefore be considered as the most essential and advantageous for both men and environment. Thus it may be concluded that the eco-friendly or green inhibitor obtained from plant extracts have a broad span and they can be used as a replacement of hazardous and toxic inorganic and organic chemicals.

REFERENCES

[1] P.B. Raja, M. G.Sethuraman “Inhibition of corrosion of mild steel in sulphuric acid medium by Calotropis procea”, Pigm. Resin. Technol., vol.38, pp. 33-37, 2009.
[2] I.L. Rozenfeld, “Corrosion Inhibitors”, Mcgraw Hill, New York, 1981.
[3] A.M.Al-Turkustani, S.T.Arab, L.S.S.Al-Qarni, “Medicago Sativae plant as safe inhibitor on the corrosion of steel in 2.0M H2SO4 solution”, J. Saudi Chem. Soc., vol.15, pp. 73-82, 2010.
[4] C. Kamal, M.G. Sethuraman, “Spirulina platensis – A novel green inhibitor for acid corrosion of mild steel”, Arabian J. Chem., vol. 5, pp. 155-161, 2010.
[5] A. Ostovari, S.M. Hoseiniieh, M. Peikari, S.R. Shadizadeh, S.J.Hashemi, “Corrosion inhibition of mild steel in 1M HCl solution by Henna extract:a comparative study of the inhibition by henna and its constituents”, Corros. Sci. Vol. 51, pp. 1935-1949, 2009.
[6] L.R. Chauhan, G. Gunasekaran, “Corrosion inhibition of mild steel by plant extract in dilute HCl medium”, Corros. Sci. Vol.49, pp. 1143-1161, 2007.
[7] P. Kalaiselvi, S. Chhillarmal, S. Palanichary, G. Subramanian, “Artemisia pallens as corrosion inhibitor for mild steel in HCl medium”, Mater. Chem. Phys. Vol. 120, pp. 643-648, 2010.
[8] C.A. Loto, “The effect of mango bark and leaf extract solution additives on the inhibition of mild steel in dilute sulphuric acid – part I”. Corrosion Prevention and Control, 48(1), pp.38-41, 2001.
[9] Dakeshwar Kumar Verma, Falmida Khan, “Corrosion Inhibition of Mild Steel by Extract of Bryophyllum Pinnatum Leaves in Acidic Solution”, Chemistry and Material Research, Vol. 7, pp. 2225-0956, 2015
[10] S.P.Ramesh, K.P.Vinod Kumar, M.G.Sethuraman, “Extract and andrographis paniculata as corrosion inhibitor of mild steel in acid medium”. Bulletin of Electrochemistry vol. 7,pp. 141-144, 2001.
[11] N.Nigam, K.Srivastava, “Role of amaranthus-A wild plant on the dissolution of mild steel in acidic medium”, Journal of the Institution of Engineers (India) Chemical Engineering Division vol.68, pp.89-92, 1998.
[12] R.M.Saleh, And A.El Alim, Mahesan, A.A.EI Hosary, “Corrosion inhibition by naturally occurring substances: Constitution and inhibiting property of Aloe plants” Corrosion prevention and Control, vol. 30, pp.9-10, 1983
[13] P. Arrockiasamy, X. Queen Rosary Sheela, G. Themmozhi, M. Franco, J. Wilson Sahayaraj, R. Jaya Santhi, “Evaluation of Corrosion Inhibition of Mild Steel in 1 M Hydrochloric Acid Solution by Mollugo cerviana”, International Journal of Corrosion , Article ID 679192, 2014.
[14] S.Subbshahini, R.Rajalakshmi, A. Prithibha, Mathina, “Corrosion mitigating effect of Cyanopsis Tetragonaloba seed extract on mild steel in acid medium”. E-Journal of Chemistry 7(4), (2010) pp.1133-1137.
[15] P.C.Okafor, O.O.Uwah,E.E.Ekerenam, U.J.Ekepe, “Combretum bracteosum extracts as eco-friendly corrosion inhibitor for mild steel in acidic medium”. Pigment and Resin Technology 38(4), (2009), pp.236-241.
[16] A.Bouyanzer, B.Hammouit, “Naturally occurring ginger as corrosion inhibitor for steel in molar hydrochloric acid at 353 K”. Bulletin of Electrochemistry 20(2), (2004), pp.63-65.
[17] J.C.Da Rocha, J.A.da Cunha Onciao Gomes, E.D’Elia, “Corrosion inhibition of carbon steel in hydrochloric acid solution by fruit peel aqueous extracts”. Corrosion Science 52(7), (2010) pp.2341-2348.
[18] R.Rajalakshmi, S.Subbshahini, S.Leelavathi, R.F. Mary, “Efficacy of sprouted seed extracts of Phaseolus aureus on the corrosion inhibition of mild steel in 1m HCl”. Oriental Journal of Chemistry 24(3), (2008), pp.1085-1090.
[19] P.Bothi Raja, M.G.Sethuraman, “Solanum tuberosum as an inhibitor of mild steel corrosion in acid media”. Iranian Journal of Chemistry and Chemical Engineering 28(1), (2009), pp.77-84.
[20] E.E Oguzie, “Corrosion inhibitive effect and adsorption behaviour of Hibiscus sabdariffa on mild steel in acidic media”. Portuguese Electrochimica Acta 26(3), (2008), pp.303-314.
[21] P.Premkumar, K.Kannan, M. Natesan, “Thyme extract of Thymus vulgar L. as volatile corrosion inhibitor for mild steel in NaCl environment”. Asian Journal of Chemistry 20(1), (2008), pp.445-451.
[22] P.C.Okafor, E.E.Ebenso, “Inhibitive action of Carica papaya extracts on the corrosion of mild steel in acidic media and their adsorption characteristics”. Pigment and Resin Technology 36(3), (2007), pp.134-140.
[23] V.O.Njoku, E.E.Oguzie. “Inhibitory properties of Baphia nitida extract in acid mild steel corrosion”. European Corrosion Congress 2009, EUROCORR 2009 2, (2009), pp.849-870
[24] I.E.Uwah, P.C.Okafor, V.e.Ebibkpe. “Inhibitive action of ethanol extracts from Nauclea latifolia on the corrosion of mild steel in H2SO4 solutions and their adsorption characteristics”, Arabian Journal of Chemistry, (2010).
[25] P.K.Kasthuri, A.Arulanantham, “Eco-friendly extract of Euphorbia hirta as corrosion inhibitor on mild steel in sulphuric acid medium”. Asian Journal of Chemistry 22(1), (2010), pp.430-434.
[26] N.O. Eddy, S.A. Odoemelam, “Inhibition of corrosion of mild steel in acidic medium using ethanol extract of Aloe vera”. Pigment and Resin Technology 38(2), (2009), pp.111-115.

[27] R. Saratha, S.V. Priya, P. Thilagavathy, “Investigation of citrus aurantiifolia leaves extract as corrosion inhibitor for mild steel in 1 M HCl”. E-Journal of Chemistry 6(3), (2009), pp.785-795.

[28] P.C. Okafor, U.J. Ekpe, E.E. Ebenso, E.M. Umoren, K.E. Leizou, “Inhibition of mild steel corrosion in acidic medium by Allium sativum extracts”. Bulletin of Electrochemistry 21(8), (2005), pp.347-352.

[29] Cleophas A. Loto1, Roland T. Loto, Ohwofasa J. Oshogbunu, “Corrosion inhibition effect of Allium sativum extracts on mild steel in HCl and H2SO4”, Journal of Chemical and Pharmaceutical Research, vol. 8, pp. 216-230, 2016.

[30] E.E. Oguzie, “Adsorption and corrosion inhibitive properties as Azadirachta indica in acid solutions”. Pigment and resin Technology 35(6), (2006), pp.334-340.

[31] Rekha N Nair, Shashi Sharma, IK Sharma, PS Verma, Alka Sharma “Inhibitory efficacy of piper nigrum linn. extract on corrosion of AA1100 in HCL”, Rasayan J. Chem, vol.3, pp 783-795, 2010.