The Analysis of the LPG Storage Tank Planning Based on the Potential Demand in Belitung Island

Adiga Putra Alindita¹, Dwi Nurma Heitasari, S.H., M.H²*
¹,² Politeknik Energi & Mineral [PEM] Akamigas, Jln. Gadjah Mada No. 38, Cepu 58315

ABSTRACT
The growing demand for LPG has increased the number of LPG tanker ships/gas carriers entering X Port, resulting in queues that will impede the distribution of LPG to the people of Belitung Island. PT XYZ intends to construct an LPG tank in the X Port area to facilitate LPG distribution on Belitung Island. The tank capacity is expected to meet Belitung Island’s LPG demand for the next five years. The authors forecast the potential demand for the next five years using LPG revenue data from January 2019 to February 2021, with forecasting results from March 2021 to February 2026. The Time Series Method was used to forecast by comparing the smallest MAD (Mean Absolute Deviation) values between the Linear Trend Model and the Exponential Trend Model. According to the forecasting calculations conducted using the linear trend model, the potential demand for February 2026 is 973.4098 Tons with a ten-day stock resistance. According to these calculations, the proposed tank is a spherical tank with a capacity of 1000 tons, which means that the LPG tank stock resistance in the last period, namely February 2026, is 11 days, which is in compliance with the Regulation of the Ministry of Energy and Mineral Resources Number 26 of 2009 concerning the Provision and Distribution of Liquefied Petroleum Gas.

Keywords: LPG, LPG Tank, Forecasting, Demand

ARTICLE HISTORY
Received: 16 May 2022
Revised: 06 Jun 2022
Accepted: 05 Jul 2022

Correspondences Author:
dwinurmaheitsari1987@gmail.com

1. Introduction

The community uses LPG (Liquified Petroleum Gas) as cooking fuel. LPG began being marketed in 2007 as a fuel alternative to kerosene. LPG is more economical than kerosene, and it is also cleaner and more environmentally friendly. The government has successfully implemented energy conversion programs, as evidenced by the annual increase in national LPG consumption [6].

The current issue is that there is frequently a shortage of LPG in several areas due to demand exceeding supply. To ensure the resilience of LPG stocks, accurate forecasts of LPG demand for the following year are required. Incorrect calculations will result in complications. If storage capacity is insufficient, there will be a shortage of LPG. On the other hand, maintenance costs will be high if the storage facility exceeds the number of requirements.

LPG distribution can only be conducted by business entities that hold LPG commercial business licenses and conduct their operations in a fair, healthy, and transparent manner. Due to the nature of LPG cylinder filling activities (bottling plant) and ensuring business activities' security, business entities engaged exclusively in LPG cylinder filling activities must obtain an
LPG storage business license. Business entities engaged in the distribution of LPG are required to maintain a minimum LPG operational reserve of 11 days, which includes a minimum working reserve of 3 (three) days and a minimum operational reserve of 8 (eight) days calculated from the previous year’s average daily distribution volume\(^5\).

In connection with the above, PT XYZ is a multipurpose terminal operator with extensive experience in the loading and unloading of a variety of cargo types, including liquid bulk cargo, dry bulk, and general cargo\(^4\). Port X serves as the primary seaport for importing a variety of commodities to meet the needs of the people of Belitung Island. One of the commodities included in PT. X’s scope of business is the receipt of LPG (Liquified Petroleum Gas). According to the report of PT XYZ on the flow of LPG commodity goods for 2019-2021, the number of LPG receipts has always increased year after year. LPG is supplied to Belitung Island via cargo ships in the form of LPG cylinders, which are then distributed to LPG agents and finally to consumers. The growing demand for LPG has increased the number of ships bringing LPG cylinders into Port X, creating queues that impede the process of distributing LPG to the people of Belitung Island. As a result of this queue, it is necessary to alter the supply pattern in order to ensure that the community of Belitung Island’s LPG needs are met in the future.

PT XYZ intends to construct an LPG storage tank in the Port X area. Prior to constructing an LPG tank, it is necessary to perform a careful calculation to determine the capacity of the LPG tank to be constructed. Calculating and forecasting LPG receipts in the coming period is critical to ensuring that tank capacity can meet LPG needs at least until 2026. Choosing the appropriate LPG tank capacity will impact the tank’s distribution and availability of stock.

2. **Materials and methods**

The research flow in determining the capacity of the LPG tank includes: (1) Collecting data obtained from PT XYZ, (2) Forecasting by choosing the best method based on the smallest error value, (3) The results of the forecasting are used to calculate the planned capacity of the tank to be built, (4) Calculating stock resilience, which can be seen in Figure 1 as follows:
Figure 1. Research Study Flow Chart

A. Type of Research
This research was a quantitative study since the findings were based on mathematical calculations. The results of the calculation are believed to be correct and have been confirmed. The data source was PT XYZ's 2019-2021 LPG commodity flow report.

B. Data Processing
The data processing stage of this article was carried out quantitatively using the trend analysis method, which utilized historical data patterns to forecast future data patterns. Forecasting with the Time Series method could be accomplished by using the Linear Trend and Exponential Trend approaches. In this case, the Mean Absolute Deviation method was used to determine the best forecasting approach with the smallest error value. The forecasted LPG revenue for 2021-2026 was used to determine the capacity of the LPG tank and then the tank stock's resilience.

3. Results
A. LPG Revenue Data
The data comes from a report on the movement of goods for the LPG commodity of PT. XYZ. LPG Unloading Activities at PT. XYZ is a fully charged LPG cylinder that is reloaded into
an empty cylinder. As a result, it can be assumed that PT XYZ’s LPG revenue is the weight of LPG unloaded minus the weight of LPG loaded.

Table 1. LPG Revenue Data for 2019-2021

MONTH	LPG RECEIVED (Ton)		
	2019	2020	2021
JANUARY	48	401	914
FEBRUARY	86	500	515
MARCH	104	526	-
APRIL	61	687	-
MAY	238	493	-
JUNE	121	574	-
JULY	477	602	-
AUGUST	310	796	-
SEPTEMBER	358	758	-
OCTOBER	395	877	-
NOVEMBER	518	763	-
DECEMBER	605	706	-
TOTAL	3321	7683	1429

B. Forecasting LPG Revenue in 2021-2026

Mean Absolute Deviation (MAD) measures forecasting accuracy by averaging the absolute value of forecasting error. Errors are measured in the same units of measure as the original data. MAD is used to measure the accuracy of the estimated value of the model expressed in the form of the absolute average error and to compare the predictions between different forecasting methods [7]. The following is a comparison of the MAD (Mean Absolute Deviation) value between the linear trend and the exponential trend obtained from the Minitab Software calculation. A comparison of the MAD values was performed to determine the smallest MAD value, indicating the correct method to use as a basis for forecasting. MAD value for the linear trend method is 83.6, while MAD value for the exponential trend method is 132.7. As a result of the Minitab software’s calculations, it is clear that the MAD value for the linear trend method is less, and thus the method becomes the basis for the analysis.

Due to the fact that the MAD value for the linear trend is less than the MAD value for the exponential trend, the linear trend model was chosen to forecast LPG revenues. Forecasting will be done using the planned tank capacity available for 60 months or five years in the future. The results of the forecasting presented graphically, as follows:

Figure 2. Forecasting Graph of LPG Revenue
According to the forecast results, the potential demand for LPG will continue to grow continuously over the next 60 months if operational activities proceed normally and without impediments or other impediments.

C. Determining LPG Tank Capacity

After forecasting LPG revenue for the next five years, it is clear that revenue will increase. The LPG tank is planned to meet Belitung Island's LPG needs for the next five years. Its capacity was calculated using a minimum stock holding of 11 days in accordance with Regulation of Ministry of Energy and Mineral Resources Number 26 of 2009.

According forecasted data results, the anticipated value of LPG in February 2026, or the 60th period, is 2,654,7538 Tons. The following is the calculation for determining the LPG tank capacity.

LPG revenue in the 60th period:
1 Month = 2,654,7538 Ton
Average per day = 2,654,7538/30
= 88,4918 Ton

LPG Received for 11 days:
LPG Received for 11 days = Average per day × 11
LPG Received for 11 days = 88,4918 × 11
LPG Received for 11 days = 973,4098 Ton

According to the above calculations, the estimated LPG revenue for the 60th period and the average of 11 days is 973,4098 Tons. When determining the capacity of the LPG tank, rounding is required to match the Spherical Tank Type. The value from 973,4098 Tons was rounded up to 1000 Tons.

D. LPG Tank Stock Resistance

Based on the calculation of LPG revenue forecasting for 60 periods in Figure 2, then the LPG tank stock resistance is calculated. LPG tank stock resistance is the ratio between daily throughput and tank capacity.

\[
\text{Stock Resilience} = \frac{\text{Tank Capacity}}{\text{Average Throughput Per Day}}
\]

The results of the calculation of the resilience of the LPG tank stock are as follows:

YEAR	MONTH	NEEDS LPG (Ton)	AVERAGE PER DAY	STOCK RESILIENCE (Day)
2021	MARCH	883.4831	29.4494	34
	APRIL	913.5046	30.4502	33
	MAY	943.5262	31.4509	32
	JUNE	973.5477	32.4516	31
	JULY	1003.5692	33.4523	30
	AUGUST	1033.5908	34.4530	29

[44]
YEAR	MONTH	NEEDS LPG (Ton)	AVERAGE PER DAY	STOCK RESILIENCE (Day)
2022	SEPTEMBER	1063.6123	35.4537	28
	OCTOBER	1093.6338	36.4545	27
	NOVEMBER	1123.6554	37.4552	27
	DECEMBER	1153.6769	38.4559	26
	JANUARY	1183.6985	39.4566	25
	FEBRUARY	1213.7200	40.4573	25
	MARCH	1243.7415	41.4581	24
	APRIL	1273.7631	42.4588	24
	MAY	1303.7846	43.4595	23
	JUNE	1333.8062	44.4602	22
	JULY	1363.8277	45.4609	22
	AUGUST	1393.8492	46.4616	22
	SEPTEMBER	1423.8708	47.4624	21
	OCTOBER	1453.8923	48.4631	21
	NOVEMBER	1483.9138	49.4638	20
	DECEMBER	1513.9354	50.4645	20
2023	JANUARY	1543.9569	51.4652	19
	FEBRUARY	1573.9785	52.4659	19
	MARCH	1604.0000	53.4667	19
	APRIL	1634.0215	54.4674	18
	MAY	1664.0431	55.4681	18
	JUNE	1694.0646	56.4688	18
	JULY	1724.0862	57.4695	17
	AUGUST	1754.1077	58.4703	17
	SEPTEMBER	1784.1292	59.4710	17
	OCTOBER	1814.1508	60.4717	17
	NOVEMBER	1844.1723	61.4724	16
	DECEMBER	1874.1938	62.4731	16
2024	JANUARY	1904.2154	63.4738	16
	FEBRUARY	1934.2369	64.4746	16
	MARCH	1964.2585	65.4753	15
	APRIL	1994.2800	66.4760	15
	MAY	2024.3015	67.4767	15
	JUNE	2054.3231	68.4774	15
	JULY	2084.3446	69.4782	14
	AUGUST	2114.3662	70.4789	14
	SEPTEMBER	2144.3877	71.4796	14
	OCTOBER	2174.4092	72.4803	14
	NOVEMBER	2204.4308	73.4810	14
	DECEMBER	2234.4523	74.4817	13
2025	JANUARY	2264.4738	75.4825	13
	FEBRUARY	2294.4954	76.4832	13
	MARCH	2324.5169	77.4839	13
	APRIL	2354.5385	78.4846	13
	MAY	2384.5600	79.4853	13
	JUNE	2414.5815	80.4861	12
	JULY	2444.6031	81.4868	12
As shown in Table 4, the resilience of the LPG tank stock always decreases from the first to the sixty-fifth periods, owing to the increasing demand for LPG. In the 60th period, the LPG tank stock resilience is 11 days, which is in accordance with the Regulation of Ministry of Energy and Mineral Resources Number 26 of 2009 and sufficient to meet LPG distribution needs for the next five years.

4. Conclusion

From the results of this study entitled “The Analysis of the LPG Storage Tank Planning Based on Potential Demand in Belitung Island”, the following conclusions can be drawn:

1. Due to the pattern of LPG revenue data from January 2019 to February 2021 has a trend, the calculation was performed using the time series method with a linear trend model and an exponential trend model and then compared using the model with the smallest error value.

2. Based on the smallest Mean Absolute Deviation (MAD) value, which is 83.6, the linear trend model was used as a model in forecasting.

3. The proposed capacity for constructing an LPG tank at PT Pelabuhan Tanjung Priok Tanjungpandan Branch is 1000 Tons with the Spherical Tank type.

4. The LPG tank stock resilience in the last period of the 5th year is 11 days, meaning that the stock resistance is in accordance with the Ministry of Energy and Mineral Resources Number 26 Year of 2009 and can still meet the needs of LPG distribution for up to 5 years.

References

[1] Zaenuddin, Muhammad, 2020, “Statistik Terapan Untuk Ekonomi Dan Bisnis (Teori Dan Praktik Komputer Dengan Menggunakan SPSS & Excel)”, Yogyakarta, Deepublish Publisher.
[2] Yudaruddin, Rizky, 2019. “Forecasting: untuk Kegiatan Ekonomi dan Bisnis”, Samarinda, RV Pustaka Horizon.
[3] Heizer, J., Render, B., & Munson, C., 2017. “Operations management: sustainability and supply chain management’, Boston, Pearson.
[4] XYZ. 2021. Company Profil PT XYZ.
[5] Kementrian ESDM 2009. Peraturan Kementrian Energi dan Sumber Daya Mineral Nomor 26-year 2009 Tentang Penyediaan dan Pendistribusian.
[6] Robial, Siti Muawanah. 2018. “Perbandingan Model Statistik Pada Analisis Metode Peramalan Time Series (Studi Kasus: PT. Telekomunikasi Indonesia, TBK Kandatel Sukabumi)”. Universitas Muhammadiyah Sukabumi. Sukabumi