Thermal Power Plant Waste By-product and Its Utility in Concrete

S. R. Bhagat¹, Lomesh Mahajan²

¹ Department of Civil Engineering, Dr. Babasaheb Ambedkar Technological University Lonere, Maharashtra, India
² Department of Civil Engineering, R. C. Patel Institute of Technology, Shirpur, Maharashtra, India

E-mail: srbhagat@dbatu.ac.in

Abstract. Nearly 117 coal based thermal power station has working conditions in India. About 71% (169 x 103 MW) electricity is generated from four Indian regions i.e. Western, Northern, Eastern, and Southern. All these thermal power plant has produces by-product after burning coal as an energy inputs. The by-product obtained in the form of fine ash which has been known as fly ash and bottom ash. These by-products directly dump on the nearby area or thrown into low lying areas. The utility of these finer materials has proven a feasible substance in the concrete constituents. The paper presents possible advantages to incorporate it into concrete. Fly ash, bottom ash and pond ash has potential to act as a binding and filler agent in concrete.

1. Introduction
India is the 3rd biggest coal handling country in the globe and about 70% thermal power stations (TPP) consuming energy source as coal[1]. Coal is the prime necessary fuel source utilized in TPP for era of developing power. The basic few reasons for most of electricity generated from coal based TPP are as (i) coal based TPP can react to quickly changing loads easily. (ii) A parcel of the steam created can be utilized as a prepare steam in most of the industries. (iii) Steam motors and turbines can work beneath 25% of over-burden continuously and (iv) Fuel utilized is cheaper in generation taken a toll in comparison with that of diesel consuming TPS. These four reasons unknowingly promotes the use of coal for electricity generation But at the other end, All TPP has been generated enormous amount of coal burning ash in the granular and slurry form. The coal pond has limited capacity to store these unwanted ash and therefore coal ash transported to nearby dumping area. The transfer of ash from a huge capacity TPP is of also consuming vehicle fuel and cost. Due to unavailability of land for dumping ash, transportation distance increases upto 50-100km from TPP. Unfortunately, coal ash dealing with a major issue in society due to their huge amount storage in local residential areas. The coal ash generated by TPP categorized into two sorts, i.e., fly ash and bottom ash. Amid burning process of pulverized coal the tiny and light weighted particles extricated by the electrostatic precipitators. This ash trap at bottom of electrostatic precipitators generally identified as fly ash (FA). The fly ash has major part of burning ash as it weightage nearly 80% of total ash generation. Few heavier particle having coarser nature trapped downword direction at the base of furnace hopper and generally identify by the name as coal bottom ash (CBA). The quality of FA and CBA are depends upon the quality of raw coal properties.
FA and CBA is unwanted by product of TPP but it can used as successful supplementary construction material. Since starting of 21st century, many researchers has been took effort for searching applicability of it into construction material. As of now, more than 50% of the fly ash concrete used in United States. Many times the rates change as per class of fly ash and their reactivity chances. Ordinarily, Class ‘F’ FA utilized at 15% to 25% by mass of cementitious material, and Class ‘C’ at 15% to 40%. FA broadly utilized in generation of Pozzolanic Portland cement (PPC) and in fabricating mortar mix. FA also potential in concrete making as partial cement substitution [2-5]. Supplementary cementing fabric in generation of FA concrete moves forward its quality and toughness properties. While, CBA identified due to their coarser and more intertwined particles, where the FA appears less pozzolanic property. For the most part FA is considered as an idle fabric for cement replacement and unacceptable for utilize as supplementary coarser aggregate formation fabric. Since molecule measure conveyance of CBA is comparative to natural sand, it pulls in to utilize as substitution of sand in a few gracious designing applications. The various available modes and consumption of FA utilization in the year 2016-17 are mention in the following Table no.1

Sr. No	Sectors	Quantity of Fly Ash utilized (%)
1	Cement	23.98
2	Mine filling	6.96
3	Bricks & Tiles	8.81
4	Reclamation of low lying area	6.52
5	Ash Dyke Raising	7.02
6	Roads & flyovers	3.66
7	Agriculture	1.14
8	Concrete	0.45
9	Hydro Power Sector	0.01
10	Others	4.72
11	Unutilized Fly Ash	36.72
	Total	100.00

2. Use of Fly ash (FA) material in Concrete
The many researchers successfully used TPP by product FA for alternative replacement option to cement for concrete. These forms and applications include expansion in binding materials which backbone of concrete products and cover fabric, roadway and asphalt to develop good source of low-density aggregate, infiltration boundary and eco-friendly material development. Cement is costlier and vitality seriously binder in concrete. The unit cost of concrete decreased by halfway substitution of FA. The utilization of FA remains pozzolana for halfway substitution of cement, and mostly since of its advantageous impacts, minimize water component for comparative workability, diminished dying, and advancement of warm. It has been utilized especially in huge mass concrete applications situation to control extension due to heat-hydration additionally makes a difference in diminishing splitting at 1-7 days curing. The major disadvantage of fiber-strengthened concrete is its moor workability. To solve this inadequacy, a fabric is required, make strides the workability, and no comprising quality. The utilize of FA improves the workability of concrete and being broadly suggested as halfway substitution of cement. As per the details of Bureau of Indian Guidelines FA upto 35% can be utilized in preparation of PPC, whereas around the world there are cases in other nations that allow upto 55% usage of FA in
PPC generation. Setting aside 25% of cement generation for OPC for such applications, the adjust 75% can be PPC with a normal FA substance of 30%. FA, produced due to coal vitality used for power generation, is a mechanical by-product as a natural toxin. Since of the natural issues displayed by the FA, impressive inquire about has been embraced around the world [2-3]. Antiohos et al. [3] examined FA concrete and found satisfactory advantages in strength scenario. A significant sum of investigate has been conducted utilizing FA for investigation on organic compounds, mercury, colors and other natural compounds in waters. The investigation suggested the fly ash is a promising adsorbent. FA, as a mixed cement component offers a for both crude material and coordinate concrete admixture use. Since FA inevitably in concrete, its characteristics need to be reasonable for that purpose. Be that as it may, since small or no alteration can be given at the concrete blending arrange, FA debris for utilize in mixed cements, which possess reliable and uniform FA characteristics.

3. Use of Bottom ash (BA) material in Concrete
A few authors have detailed the advantage of BA concrete as halfway substitution of portland cement [5-10] or as a fractional substitution of fine aggregates [11-14]. At the stage of beginning, strength gaining slower in bottom ash concrete specimens but as the curing time increases the strength also improve at some extent. In the initial phase of hydration of BA concrete, BA did not familiar with the property of calcium hydroxide. The pozzolanic characteristics does not create in early curing. A smaller size BA particles provide high density and ultimately good in packing density [16-18]. The plausibility of substituting normal fine aggregate with industrial by-product such as waste foundry sand and BA offers specialized, financial benefits, which are of extraordinary significance in the show setting of maintainability in infrastructural sector [14]. The nearness of BA expanded the amount of water loss and water discharge rate. The higher BA amount in the concrete, the higher impact. Researcher [15] reported that the distinctive shapes of BA blend with physical properties within the initial state of concrete BA is utilized as a substitution for characteristic aggregates [16-18]. In brief the FA and BA can be used to reduce environmental pollution and burden of concrete ingredient. Now days, FA-BA concrete gripped on replacement possibilities experienced. Author [19] verified the compressive strength for BA mixed concrete, the result found nearly half and full proportions about 40% lower strength. The strength of concrete thoroughly related to proportioning and properties of its inert materials.

The researcher [20] investigated that presence of BA for fine aggregate in concrete and recommended the use of BA. The reduction seen in strength of concrete because of porous nature of BA and higher water consumption. The strength can be controlled by controlling the water demand with the help of super plasticizers. Researchers [21, 22] experienced the same observation for modulus of elasticity (E) too. Inversely proportional behavior found with BA content. For 100% sand replacement, the range of (E) found 15% to 16% lower. The split strength (ft) of BA concrete have potential to get satisfactory range. Also detected that (ft) of specimens 20% BA for fine aggregate more results (CC) specimens were. The (ft) observations seen decremented effect with increase bottom ash by 20%, whereas researcher [13] is witnessed that no variation in the (ft) up to 10% fine aggregate replacement.

4. Advantages in Fresh Concrete
The particles of fly ash (FA) being spherical and uniform in size similar to a cement particle, the water required for preparation and placing of concrete is lesser compared to concrete prepared without using FA. In the case of precast concrete, the use of FA gives better workability which results in sharp, distinctive corners and edges with a smooth surface appearance. This also makes it possible to prepare elements with intricate shapes and patterns. The use of FA in precast concrete elements reduce the overall permeability, thereby making it more durable. The finer particles of FA reduces bleeding and segregation, and improves pumpability and finishing, especially in lean mixes.

5. Advantages in Hardened Concrete
The compressive strength of concrete depends on many factors, the most important of which is the ratio of water to cement. Good quality of FA generally improves the workability of concrete or for the same
workability, the required water-cement ratio is less. The reduction in the water-cement ratio leads to improved strength. Good quality of FA possesses reactive characteristics that take part in the hydration process along with portland cement leading to better strength. It has been observed that the ordinary FA when partially replaced with cement influence the early strength gain of concrete, however at a later age the pozzolanic reaction between FA and the calcium hydroxide from cement takes place leading to improve in compressive strength. Properly proportioned concrete containing FA will lead to the overall economy in producing concrete. The improved impermeability of FA concrete leads to a reduction in steel reinforcement corrosion. Sulfate and other chemical attacks reduced when FA is added in producing concrete [17-18].

6. Experimental Evaluation of Concrete Specimens
The compressive strength (CS) of FA mixed concrete evaluated with considering the water cementitious ratio 0.5, 0.55, and 0.6. The size of a 20 mm sieve used for coarse aggregates selection. The FA contents varied according to a 10 percent interval from 0 to 50%. For getting greater accuracy of work, sample specimens cured and tested in the control condition at 28 days. Lean mix to high performance concrete evaluation took into account by considering binder content 300kg/m3, 375kg/m3, and 450kg/m3. CTM machine used for testing the 150mm x 150 mm size cube specimens. Class F (IS: 3812 (2003) Part – I) [23] FA used with a specific gravity (SG) 2.15 for concrete making. OPC 53 grade cement with SG 3.15 was used. The effect of replacement of FA to cement for concrete making is graphically recorded in the following Figure 1, 2, and 3.

7. Result and Discussion
The experimental investigation was made for computing CS of 28 days for fly replacement at 0, 10, 20, 30, 40, and 50% by OPC. Considering the result of mechanical property, i.e. CS of FA-based concrete specimens for an average of three cubes at every interval of replacement shows that as the FA amount increases the strength decreases considerably after 30%. For w/cm ratio 0.4 and 0.5 the results are quite better than 0.55 as the C-S-H gel formation process more effectively developed between these phases. All the specimens show the permissible range for 20 and 30% FA incorporation but as FA concentration proportionally affects final CS results. Results are higher in lower binder content specimens compared to 450kg/m³.

Figure 1. Fly ash replacement (%) Vs 28-day Compressive strength at binder content of 300 kg/m³.
5

8. Conclusion
It has a known fact around the world that the utilization of an enormous sum of fossil powers has made different antagonistic effects on the environment, counting corrosive rain and worldwide warming. This paper has endeavoured wide range of information with small experimental investigation so that the perused fly ash utilization has potential to better mix of concrete with satisfactory strength approach. For Binder content 300 kg/m3 and 375 kg/m3 is more applicability to consume high fly ash with satisfactory results. The w/cm ratio 0.4 and 0.45 has found similar results in all concrete specimens. At the 30% replacement of FA found 23% reduction as compared with fully OPC used concrete specimens. As considering economy and mass concrete places, FA mixing is good solution at partial level. Fly ash, even though posturing natural contamination, it is a significant crude fabric for different applications. Among the regulation and legitimate obstructions is the need for knowledge of potential cinder employments, scattered information on environmental and wellbeing impacts, compositional irregularities within the products, belief that other raw thermal power plant waste materials are promptly accessible. The topics motivates us for thermal ash utilization in various structural application and increase the integrated FA and BA amount in the concrete.
References

[1] Sahu S, Bhangare R, Ajmal P, Sharma S, Pandit G and Puranik V 2009 Characterization and quantification of persistent organic pollutants in fly ash from coal fueled thermal power stations in India Microchemical Journal 92 92-6

[2] Bouzoubaa N, Zhang M-H and Malhotra V 2001 Mechanical properties and durability of concrete made with high-volume fly ash blended cements using a coarse fly ash Cement Concrete Research 31 1393-402

[3] Antiohos S, Papageorgiou D, Chaniotakis E and Tsimas S 2007 Mechanical and durability characteristics of gypsum-free blended cements incorporating sulphate-rich reject fly ash Cement Concrete Composites 29 550-8

[4] Mahajan L and Bhagat S 2020 Hardened behaviour of fly ash incorporated concrete with bottom ash as partial replacement of fine aggregate International journal of innovative technology and exploring engineering 9 2898-907

[5] Kurama H and Kaya M 2008 Usage of coal combustion bottom ash in concrete mixture Construction building materials 22 1922-8

[6] Lomesh Mahajan and S.R.Bhagat 2020 The Contribution of Bottom Ash toward Filler Effect with Respect to Mortar Lecture Notes in Civil Engineering Springer 72 145-154

[7] Kula I, Olgun A, Sevinc V and Erdogan Y 2002 An investigation on the use of tincal ore waste, fly ash, and coal bottom ash as Portland cement replacement materials Cement Concrete Research 32 227-32

[8] Yüksel İ and Bilir T 2007 Usage of industrial by-products to produce plain concrete elements Construction Building Materials 21 686-94

[9] Yüksel İ, Bilir T and Özkan O 2007 Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate Building Environment 42 2651-9

[10] Bai Y, Darcy F and Basheer P 2005 Strength and drying shrinkage properties of concrete containing furnace bottom ash as fine aggregate Construction Building materials 19 691-7

[11] Bai Y and Basheer P 2003 Influence of furnace bottom ash on properties of concrete Proceedings of the Institution of Civil Engineers-Structures Buildings 156 85-92

[12] Ghafoori N and Cai Y 1998 Laboratory-made roller compacted concretes containing dry bottom ash: Part ii—long-term durability Materials Journal 95 244-51

[13] Ghafoori N and Buchole J 1997 Properties of High-Calcium Dry Bottom Ash for Structural Concrete Materials Journal 94 90-101

[14] Aggarwal Y and Siddique R 2014 Microstructure and properties of concrete using bottom ash and waste foundry sand as partial replacement of fine aggregates Construction Building Materials 54 210-23

[15] Andrade L, Rocha J and Cherifia M 2009 Influence of coal bottom ash as fine aggregate on fresh properties of concrete Construction Building Materials 23 609-14

[16] Siddique R 2004 Performance characteristics of high-volume Class F fly ash concrete Cement Concrete Research 34 487-93

[17] Mahajan L and Bhagat S 2020 Fly Ash Effects on Fresh Concrete International journal of innovative technology and exploring engineering 9 1247-1252

[18] Mahajan L and Bhagat S 2020 Hardened behaviour of fly ash incorporated concrete with bottom ash as partial replacement of fine aggregate International journal of innovative technology and exploring engineering 9 2898-2907

[19] M. Singh, R. Siddique 2013 Effect of coal bottom ash as partial replacement of sand on properties of concrete, Resour. Conserv. Recycl. 72 , 20– 32.

[20] Mahajan Lomesh, Bhagat S.R. 2020, The Contribution of Bottom Ash Toward Filler Effect with Respect to Mortar, Lecture Notes in Civil Engineering, Springer Nature, Vol. 72, 145-154.

[21] K. Arumugam R Ilangoovan, M.D. James 2011 A study on characterization and use of pondash as fine aggregate in concrete. Int. J. Concrr. Struct. Mater. 2 , 466–74.
[22] I. Yuksel, A. Genc 2007 Properties of concrete containing non ground ash and slag as fine aggregate. *ACI Materials Journal* 104(4), 397–403.

[23] IS 3812 Part 2 (2003), Specification for pulverized fuel ash part 2. For use as admixture in cement mortar and concrete, *Bureau of Indian Standard*, New Delhi