Integrating niche-based process and spatial process in biogeography of magnetotactic bacteria

Wei Lin1,2, Yinzhang Wang1,2, Yuri Gorby3, Kenneth Nealson3,4 & Yongxin Pan1,2

1Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth’s Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China, 2France-China Bio-Mineralization and Nano-Structures Laboratory, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China, 3Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA, 4The J. Craig Venter Institute, 10355 Science Center Drive, San Diego, CA 92121, USA.

Microorganisms play key roles in biogeochemical and nutrient cycling in all ecosystems on Earth, yet little is known about the processes controlling their biogeographic distributions. Here we report an investigation of magnetotactic bacteria (MTB) designed to evaluate the roles of niche-based process and spatial process in explaining variation in bacterial communities across large spatial scales. Our results show that both environmental heterogeneity and geographic distance play significant roles in shaping dominant populations of MTB community composition. At the spatial scale in this study, the biogeography of MTB is relatively more influenced by environmental factors than geographic distance, suggesting that local conditions override the effects of dispersal history on structuring MTB community. Of note, we found that the strength of geomagnetic field may influence the biogeography of MTB. We argue that MTB have the potential to serve as a model group to uncover the underlying processes that influence microbial biogeography.

A major challenge in biogeography is to identify the factors that regulate diversity and distribution of organisms on Earth. Although biogeographic patterns for animals and plants are well documented, the diversity and distribution of microorganisms, which play key roles in all ecosystems, are poorly understood. Whether microorganisms represent cosmopolitan or ecologically restricted distribution is a contentious and hotly debated topic5. It was previously assumed that microorganisms have a random and cosmopolitan distribution because of their large population numbers, small sizes, short generation times, and high dispersal capabilities6. However, with the advent of molecular techniques, a rapidly growing body of evidence suggests that microorganisms may exhibit biogeographic patterns1,3,4. Niche-based process and spatial process are two alternative strategies proposed to generate and maintain microbial diversity7. The former emphasizes the importance of local environmental conditions and assumes that same environments should support similar microbial communities regardless of geographic distances, the so called “everything is everywhere, but, the environment selects” situation. In contrast, the latter strategy emphasizes the dependence of geographic distances rather than environmental gradients, which is the similar in concept to Hubbell’s neutral theory for macroorganisms that stochastic processes and dispersal limitation affect variation in species composition7.

Magnetotactic bacteria (MTB) are diverse microbes united by the ability to form intracellular magnetic crystals of magnetite and/or greigite usually arranged into one or more linear chains9. These magnetic inclusions called magnetosomes help these bacteria to sense and swim along the Earth’s magnetic field lines (a behavior known as magnetotaxis9. All known MTB are found within the Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, phylum Nitrospirae, or the candidate division OP37–10. MTB are able to accumulate up to 2–3% iron per cell by dry weight, which is several orders of magnitude higher than iron in Escherichia coli11. Considering their wide distribution in diverse aquatic and sedimentary ecosystems and high intracellular iron content, MTB may have global significance in iron cycling12,13 as well as bulk magnetization of sediments14,15.

Despite of their remarkable magnetic abilities and proposed ecological functions, our understanding of MTB biogeography remains very poor. Although several studies have found that some environmental factors, such as salinity16,17, temperature18, nitrate19, or sulfur compounds20, could explain MTB abundance or community differences at local or regional scales, little information is available concerning the biogeography of MTB across large
spatial scales21. In this study we have compared the diversity and distribution of MTB communities from different aquatic ecosystems ranging over a large spatial scale (Fig. 1 and Supplementary Table S1 online). The goals of the present study were to (i) describe the large-scale biogeographic pattern of MTB communities, (ii) identify environmental factors that may contribute to the distribution of MTB, and (iii) quantify the relative abundances of niche-based and spatial processes involved with the structuring of MTB communities. These results may provide a starting point for understanding the underlying mechanism(s) leading to the biogeography of these, and perhaps other, microorganisms.

Results

Magnetic enrichment of MTB and their phylogenetic diversity. MTB were discovered from all 16 locations across various ecosystems (Supplementary Table S1 online). Different morphologies of MTB cells were identified, such as cocci, rods, vibrios, and spirilla (Fig. 2). Living MTB cells were concentrated and enriched by taking advantage of their motility and magnetotaxis through the “MTB trap” method22. The diversity of enriched bacterial samples was assessed by comparison of 16S rRNA genes. Nearly 700 sequences were retrieved after removing sequences of insufficient quality or potential chimeras. The most highly represented taxa were members of the phylum \textit{Proteobacteria} (\textasciitilde 90\%). Other sequences were identified to belong to the phyla \textit{Nitrospirae}, \textit{Bacteroidetes}, TM7, OD1, \textit{Actinobacteria}, \textit{Firmicutes}, or unclassified \textit{Bacteria}. It was noted that some fast-swimming non-magnetotactic bacteria could be collected during the magnetic enrichment23. In order to remove these potential contaminations, sequences most similar to non-magnetotactic organisms were arbitrarily attributed to contaminations and were removed from further analyses. We ended up with a total of 580 sequences, in which bacteria related to the order \textit{Magnetococcales} and the genus \textit{Magnetospirillum} in the \textit{Alphaproteobacteria} were the most dominant groups, representing 72% and 26% of all sequences, respectively. Consistent with previous studies7, bacteria related to the order \textit{Magnetococcales} dominated the MTB communities in most sampling locations, while bacteria related to the genus \textit{Magnetospirillum} were the major group in a few locations (e.g., L4, QJC and YYH) (Fig. 3). Sequences belonging to the \textit{Deltaproteobacteria} and the phylum \textit{Nitrospirae} were also detected (Figs. 3 and 4). Sequences in the \textit{Deltaproteobacteria} were identified to affiliate with the orders \textit{Desulfo bacterales} and \textit{Desulfovibrionales}, while \textit{Nitrospirae} sequences identified here were related to MTB sequences belonging to groups 1 and 3 as reported previously9.

In addition to sequence data generated from 16 locations in this study, we included our previously described data set of MTB communities from 9 locations across northern and southern China21, and compared all these MTB communities together (Fig. 1). It is appropriate to combine these two data sets because of similar sampling, enrichment, and experimental approaches performed in these studies. Together, a total of more than 900 MTB sequences from 25 locations were analyzed (Fig. 1). These sequences can be clustered into 170, 114 and 65 operational taxonomic units (OTUs) at 99%, 98% and 95% similarity cutoffs, respectively (Figs. 4 and 5). Rarefaction curves for all samples nearly reached an asymptote, indicating
that we successfully captured the major extent of MTB diversity (Fig. 5).

Analyzing the biogeographic pattern of the MTB. To investigate the biogeography of MTB across studied locations, we used two distinct approaches to determine pairwise community similarities between samples: the Sørensen index and the UniFrac index. The Sørensen index is a taxonomy-based approach that assesses community differences at a single level of taxonomic resolution by defining OTUs at an arbitrary sequence similarity level (e.g., 98% in this study)24. While, the phylogeny-based UniFrac index measures the overall degree of phylogenetic divergence between sets of communities, which allows us to compare community phylogenies in a more integrated manner than the taxonomy-based approach25.

It has been demonstrated that similarities between MTB communities significantly decreased with increasing geographic distance (Fig. 6a and c, \(P < 0.001 \)), reflecting the distance-decay relationship26. Thus, geographic distance plays a role in controlling MTB distribution similar to that seen in other microorganisms27,28. Changes of MTB community also significantly depend on environmental distance between sites (Fig. 6b and d, \(P < 0.001 \)), indicating that environmental conditions influence MTB species composition as well. In addition, we noted that although a few OTUs are shared by up to 8 locations, nearly 70% of OTUs are endemic, i.e., found at a unique sample location (Fig. 4). Taken together, these results provide strong evidence that the dominant populations of MTB communities at scales used in this study represent restricted distribution, and both local environment and dispersal history influence their biogeographic pattern. The patterns are similar irrespective of which methods (phylogeny-based UniFrac index or taxonomy-based Sørensen index) are used (Fig. 6).

Factors influencing MTB biogeography. Permutation-based multiple regression on distance matrices (MRM) was performed to determine environmental variables that significantly contributed to explain the observed variation in dominant MTB communities (Table 1). When the UniFrac index was considered, the variables that significantly explained MTB patterns were salinity, Eh, sulfate, temperature, and strength of geomagnetic field. When the Sørensen index was used, in addition to the above-mentioned factors, total iron was also found to significantly contribute to variance in MTB communities (Table 1).

Quantification of the relative roles of niche-based and spatial processes. Regressing community similarity against selected environmental factors and geographic distance is an effective approach to quantify the relative roles of niche-based process and spatial process in control of community composition, and is widely applied in
biogeographic studies of macroorganisms. When this approach was used, it was possible to partition the variation in MTB community distance into four components. As shown in Figure 7, most of the explanatory power was pure environment (25.4% for UniFrac index) or both environmental heterogeneity and geographic distance (MIX) (13.9% for Sørensen index). Pure geographic distance alone explained only a minor portion of the variation in MTB communities (0.7% for UniFrac index and 3.6% for Sørensen index). Not surprisingly, more than half of the total variation (63.6–70.9%) remained unexplained by either measured environmental factors or spatial distances. Such poorly explained variance appears to be a common pattern for microorganisms, which may be either due to non-measured environmental variables or accounted for ecosystem productivity, biological interactions, historical events, and other factors that are not considered here.

Discussion

In this analysis, both environmental heterogeneity and geographic distance are found to play significant roles in shaping dominant populations of MTB community composition. This observation on MTB is in line with results from tropical forests and terrestrial vertebrates, suggesting that biogeographic patterns between dominant MTB communities and macroorganisms may not be fundamentally different. However, it must be considered that microorganisms are significantly different from macroorganisms in many aspects, such as body sizes, generation times, dispersal capabilities, and reproduction modes. One of the primary differences between them is the population abundance, i.e., the number of microorganisms on Earth is many orders-of-magnitude larger than that of macroorganisms. For microorganisms, low-abundance populations are normally difficult to detect due to masking by dominant species, which may lead to underestimation of low-abundance cosmopolitan microbes. We are aware that some MTB strains with slow motility may not be collected using magnetic enrichment approach in this study. Therefore, at this stage, our results only represent the distribution patterns of dominant MTB populations in the studied locations. Additional information will be necessary to fully assess the biogeography of low-abundance MTB with regard to their true ecological nature.

For environmental factors characterized here, salinity was found to contribute to a large part of regression coefficient ($R^2 = 0.123–0.301$, $P \leq 0.001$; Table 1). Salinity has been identified as a key determinant of overall microbial communities as well as MTB abundance and biogeography.Salinity is believed to directly affect microbial community structure by selecting groups adapted to a particular salt concentration. Alternatively, competitors or predators of MTB may change across locations with different salinity, which could influence the diversity and distribution of MTB as well. Therefore, the freshwater-saline boundary may be a difficult barrier for the MTB to cross. Temperature was another noteworthy significant factor in driving biogeography of MTB (Table 1). It extends the recent microcosm-based experiment that revealed community structure of MTB changed with elevated temperature to natural habitats, implying that climate changes may influence the diversity and distribution of MTB in nature.

One striking finding in this study was the significant correlation of MTB community with the gradient of the Earth’s magnetic field strength across the large spatial scale considered here ($P < 0.001$, Table 1). Since strength of geomagnetic field varies with latitude and temperature, the correlation between geomagnetic field strength and MTB community could be a result of co-variation with latitude or temperature. However, it was noted that geomagnetic field explains more variability ($R^2 = 0.106–0.128$) in MTB communities than latitude ($R^2 = 0.073–0.089$) and temperature ($R^2 = 0.035–0.042$). Moreover, the significant correlation between geomagnetic field and MTB community was not affected by removing effects of latitude or temperature using partial Mantel test ($P \leq 0.01$). All these results indicate that geomagnetic field is probably an important geophysical factor that may influence

Figure 3 | Taxonomic classification of MTB sequences retrieved from 16 locations in this study. Refer to Supplementary Table S1 online for detailed sample information.
diversity and/or activities of MTB in the studied locations. There are several possible mechanisms that may account for the influence of geomagnetic field. The strength of geomagnetic field may directly affect the growth, metabolism, swimming behavior or biomineralization of MTB and thus plays a role in regulating their community composition. In addition, for life on Earth, the geomagnetic field acts as an important protective barrier against cosmic radiation. Regions of relatively weak geomagnetic field strength are likely to experience an increased influence of cosmic radiation at the Earth’s surface, which may affect biological processes of MTB communities. Since our studied samples are all from the Northern Hemisphere, it is necessary in future studies to analyze and compare MTB communities from the Southern Hemisphere, as well as higher latitude regions, and to confirm whether variations of geomagnetic field would affect the global distribution of MTB. In addition, further experimental analyses in lab are also necessary to address the underlying mechanisms of magnetic field effects on MTB activity and/or diversity. To our knowledge, this is the first report of potential effects of the Earth’s magnetic field on the biogeography of microorganisms in nature, which may improve our understanding links between variation of the Earth’s magnetic field and evolution of life on Earth.

Figure 4 | Heatmap showing the abundance and distribution of operational taxonomic units (OTUs at 98% threshold similarity) for 25 16S rRNA gene clone libraries of MTB communities that are compared in this study. The abundance of each OTU in each library is indicated by different colors. On the left-hand side, a neighbor-joining phylogenetic tree shows the phylogenetic relationship between OTUs.

Figure 5 | Rarefaction curves for sequences at 99%, 98%, and 95% sequence similarity levels, respectively.
This study on MTB contributes to the current debate in microbial biogeography about the relative roles of niche-based process and spatial process in structuring microbial communities. Some studies have found that environmental heterogeneity, like pH or salinity, is a primary factor influencing microbial distribution, while others have suggested that the distribution of microbial communities is largely controlled by geographic distance. In the present study, MRM-based variation partitioning analyses have quantitatively revealed that pure environmental factors (for UniFrac index) or MIX (for Sørensen index) explain more of the variation in community similarity of MTB than do pure geographic distances (Fig. 7). The fraction of MIX is a consequence of co-variation of environmental and spatial variables in nature, and can be interpreted as a spatially structured environmental condition. Thus a high fraction of MIX suggests that environmental heterogeneity could be of great importance in shaping community composition. It thus appears that the niche-based process has stronger influence on MTB community distribution than the spatial process of dispersal history, which is consistent with several studies that emphasize the importance of local environmental conditions in structuring microbial communities.

It is important to recognize that in this study geographic distance plays a minor but significant role that should not be ignored. This result indicates that while microbes are thought to have high dispersal capabilities (e.g., transport by migrating animals or water currents), spatial process of dispersal limitation and/or historical events still play a role in MTB distribution over the spatial scale considered in this study. A number of studies on macroorganisms have concluded that the relative importance of environment and geographic distance is spatial scale dependent, and a similar conclusion was recently reached for microorganisms as well. Taken together, our study highlights the importance of integrating both niche-based and spatial processes in investigations of microbial biogeography.

One should be aware that the data presented here are based on magnetic enrichment of MTB cells followed by comparison and classification of 16S rRNA genes. This may introduce some potential biases. For example, some slow motile MTB may not be captured through magnetic enrichment, or those sequences not similar to any known MTB populations that were discounted in this study may be...

Figure 6 | Correlations of MTB community similarity with geographic and environmental distances. Both phylogeny-based UniFrac index and taxonomy-based Sørensen index were used as community similarity. Environmental distances are normalized. All correlations are statistically significant (P < 0.001).

Table 1 | Permutation-based multiple regression on distance matrices of MTB community distances, based on the UniFrac index or the Sørensen index, with geographic distance and environmental factors between sampling sites

Variable	UniFrac index	Sørensen index
Ln-transformed geographic distance	0.110***	0.175***
Geomagnetic field strength	0.106***	0.128***
Salinity	0.301***	0.123***
Sulfate	0.179***	0.099***
Temperature	0.042**	0.035*
Eh	0.062***	0.026*
Iron	0.015 [n.s.]	0.045*
Nitrate	0.010 [n.s.]	0.011 [n.s.]
Phosphate	0.007 [n.s.]	0.000 [n.s.]
Nitrite	0.024 [n.s.]	0.021 [n.s.]
pH	0.001 [n.s.]	0.002 [n.s.]

Abbreviation: n.s., not significant; *P < 0.05; **P < 0.01; ***P < 0.001.
from totally novel MTB strains not yet described. Therefore, further culturing efforts, fluorescence in situ hybridization or single-cell analyses will be necessary to better understand the overall diversity of MTB in nature. Nevertheless, in spite of these potential biases, this study represents one of the largest cross-site surveys of MTB communities across different locations, suggesting that 16S rRNA gene analysis of magnetically enriched MTB is still an effective approach to compare the general diversity of dominant MTB communities in nature. Nevertheless, in spite of these potential biases, this study represents one of the largest cross-site surveys of MTB biogeo-}

Methods

Site sampling, MTB enrichment, and microscopic observation. Surface sediment samples from sixteen locations were collected across different ecosystems in China and USA (Supplementary Table S1 online). Geographic distances between sampling sites ranged from 0.026 km to 12,240 km. At each sampling site, surface sediments from the top 5–20 cm were collected. The existence of MTB in sediment samples was checked through the “hanging-drop” method. MTB were magnetically enriched using the “MTB trap” method as described previously. For TEM observation, 20 μl of MTB enrichments were deposited on Formvar-carbon-coated copper grids and were imaged using a JEM-1400 microscope operating at 80 kV.

Environmental factors analysis. Several environmental factors of bulk surface sediments were measured. Salinity and pH were measured using a HQ40d salinity meter (HACH, Loveland, Colorado, USA) and a Mettler Toledo Delta 320 pH meter (Mettler-Toledo, Greifensee, Switzerland), respectively. Nitrate, nitrite, sulfate, phosphate, and total iron in pore water were also analyzed spectrophotically using a DR2800 Spectrophotometers (HACH, Loveland, Colorado, USA) and powder pillows detection kits (HACH, Loveland, Colorado, USA) based on the cadmium reduction method, diazotization method, SulfaVer 4 method, ascorbic acid method, and the FerroMo method, respectively, by following the manufacturer’s instructions. Redox potential (Eh) was measured using a Metrohm 842 titrando Eh meter (Metrohm, Herisau, Switzerland). The geomagnetic field intensity of each sampling site was acquired from NOAA’s National Geophysical Data Center using the model IGRF 11 (the 11th International Geomagnetic Reference Field). We also included five-year mean land surface temperature (2007–2011) of each site as a climatic factor. The temperature data set was from MODIS Land Product Subsets (http://daac.ornl.gov/MODIS/MODIS-menu/).

16S rRNA gene sequences amplification and analysis. 16S rRNA genes were directly amplified from the magnetically enriched MTB using bacterial universal primers 27F (''AGATTTGTATCCTGGCTCAG-3'') and 1492R (''GGTTACCTTGTTACGACTT-3'') as previously described. Each 20 μl PCR mixture contained 1 μl of template, 10 μl of DreamTaq PCR Master Mix (MBI Fermentas, Vilnius, Lithuania), and 8 pmol of each primer. PCR was performed using a T-Gradient thermocycler (Whatman Biometra, Göttingen, Germany). The PCR amplification program consisted of 95°C for 5 min, 30 cycles of 92°C for 1.5 min, 50°C for 1 min, and 72°C for 2 min, and a final 10-min extension at 72°C. To avoid potential sample biases, triplicate PCR products for each sample were pooled and purified by 0.8% (w/v)
agrogeal gel electrophoresis. Purified PCR products were cloned into the pMD19-T vector (Takara, Dalian, China) and chemically DH5α competent cells (Tiangen, Beijing, China) by following the manufacturer’s instructions. Randomly selected clones were sequenced using the 27F primer (Beijing Genomics Institute, Beijing, China).

After removing vector contaminations and low-quality sequences, the rest were screened for chimeras using the Greengenes chimera-check tool (Bellerophon ser)

The Geographical coordinates and the ‘Haversine’ formula 56. Environmental resemblance matrices were computed using Euclidean distance and selected environmental factors as independent matrices (\textit{R}^2_3) and both geographic distance and environmental distances were calculated, respectively. We used permutation-based multiple regression on matrices or MRM to quantify the relative contributions of measured environmental factors and geographic distance to the biogeography of MTB communities. In brief, the community similarity was partitioned into four components by MRM as suggested by Duivenvoorden et al. and Jones et al. (i) variation explained by pure environmental heterogeneity, (ii) variation explained by pure geographic distance, (iii) variation explained by both environmental heterogeneity and distance (MIX), and (iv) unexplained variation.

For MRM analyses, we first identify those environmental factors that significantly contribute to the variation in MTB community similarity. To do so, MRM was performed using each environmental factor as independent matrix. Those factors with significant contribution were selected for further analysis (as shown in Table 1). We used permutation-based multiple regression on matrices or MRM to quantify the relative contributions of measured environmental factors and geographic distance to the biogeography of MTB communities. In brief, the community similarity was partitioned into four components by MRM as suggested by Duivenvoorden et al. and Jones et al. (i) variation explained by pure environmental heterogeneity, (ii) variation explained by pure geographic distance, (iii) variation explained by both environmental heterogeneity and distance (MIX), and (iv) unexplained variation.

For MRM analyses, we first identify those environmental factors that significantly contribute to the variation in MTB community similarity. To do so, MRM was performed using each environmental factor as independent matrix. Those factors with significant contribution were selected for further analysis (as shown in Table 1). We used permutation-based multiple regression on matrices or MRM to quantify the relative contributions of measured environmental factors and geographic distance to the biogeography of MTB communities. In brief, the community similarity was partitioned into four components by MRM as suggested by Duivenvoorden et al. and Jones et al. (i) variation explained by pure environmental heterogeneity, (ii) variation explained by pure geographic distance, (iii) variation explained by both environmental heterogeneity and distance (MIX), and (iv) unexplained variation.

For MRM analyses, we first identify those environmental factors that significantly contribute to the variation in MTB community similarity. To do so, MRM was performed using each environmental factor as independent matrix. Those factors with significant contribution were selected for further analysis (as shown in Table 1).

Finally, we performed permutation-based multiple regression on matrices or MRM to quantify the relative contributions of measured environmental factors and geographic distance to the biogeography of MTB communities. In brief, the community similarity was partitioned into four components by MRM as suggested by Duivenvoorden et al. and Jones et al. (i) variation explained by pure environmental heterogeneity, (ii) variation explained by pure geographic distance, (iii) variation explained by both environmental heterogeneity and distance (MIX), and (iv) unexplained variation.

For MRM analyses, we first identify those environmental factors that significantly contribute to the variation in MTB community similarity. To do so, MRM was performed using each environmental factor as independent matrix. Those factors with significant contribution were selected for further analysis (as shown in Table 1). We used permutation-based multiple regression on matrices or MRM to quantify the relative contributions of measured environmental factors and geographic distance to the biogeography of MTB communities. In brief, the community similarity was partitioned into four components by MRM as suggested by Duivenvoorden et al. and Jones et al. (i) variation explained by pure environmental heterogeneity, (ii) variation explained by pure geographic distance, (iii) variation explained by both environmental heterogeneity and distance (MIX), and (iv) unexplained variation.

For MRM analyses, we first identify those environmental factors that significantly contribute to the variation in MTB community similarity. To do so, MRM was performed using each environmental factor as independent matrix. Those factors with significant contribution were selected for further analysis (as shown in Table 1). We used permutation-based multiple regression on matrices or MRM to quantify the relative contributions of measured environmental factors and geographic distance to the biogeography of MTB communities. In brief, the community similarity was partitioned into four components by MRM as suggested by Duivenvoorden et al. and Jones et al. (i) variation explained by pure environmental heterogeneity, (ii) variation explained by pure geographic distance, (iii) variation explained by both environmental heterogeneity and distance (MIX), and (iv) unexplained variation.

For MRM analyses, we first identify those environmental factors that significantly contribute to the variation in MTB community similarity. To do so, MRM was performed using each environmental factor as independent matrix. Those factors with significant contribution were selected for further analysis (as shown in Table 1). We used permutation-based multiple regression on matrices or MRM to quantify the relative contributions of measured environmental factors and geographic distance to the biogeography of MTB communities. In brief, the community similarity was partitioned into four components by MRM as suggested by Duivenvoorden et al. and Jones et al. (i) variation explained by pure environmental heterogeneity, (ii) variation explained by pure geographic distance, (iii) variation explained by both environmental heterogeneity and distance (MIX), and (iv) unexplained variation.

For MRM analyses, we first identify those environmental factors that significantly contribute to the variation in MTB community similarity. To do so, MRM was performed using each environmental factor as independent matrix. Those factors with significant contribution were selected for further analysis (as shown in Table 1). We used permutation-based multiple regression on matrices or MRM to quantify the relative contributions of measured environmental factors and geographic distance to the biogeography of MTB communities. In brief, the community similarity was partitioned into four components by MRM as suggested by Duivenvoorden et al. and Jones et al. (i) variation explained by pure environmental heterogeneity, (ii) variation explained by pure geographic distance, (iii) variation explained by both environmental heterogeneity and distance (MIX), and (iv) unexplained variation.

For MRM analyses, we first identify those environmental factors that significantly contribute to the variation in MTB community similarity. To do so, MRM was performed using each environmental factor as independent matrix. Those factors with significant contribution were selected for further analysis (as shown in Table 1). We used permutation-based multiple regression on matrices or MRM to quantify the relative contributions of measured environmental factors and geographic distance to the biogeography of MTB communities. In brief, the community similarity was partitioned into four components by MRM as suggested by Duivenvoorden et al. and Jones et al. (i) variation explained by pure environmental heterogeneity, (ii) variation explained by pure geographic distance, (iii) variation explained by both environmental heterogeneity and distance (MIX), and (iv) unexplained variation.

For MRM analyses, we first identify those environmental factors that significantly contribute to the variation in MTB community similarity. To do so, MRM was performed using each environmental factor as independent matrix. Those factors with significant contribution were selected for further analysis (as shown in Table 1). We used permutation-based multiple regression on matrices or MRM to quantify the relative contributions of measured environmental factors and geographic distance to the biogeography of MTB communities. In brief, the community similarity was partitioned into four components by MRM as suggested by Duivenvoorden et al. and Jones et al. (i) variation explained by pure environmental heterogeneity, (ii) variation explained by pure geographic distance, (iii) variation explained by both environmental heterogeneity and distance (MIX), and (iv) unexplained variation.

For MRM analyses, we first identify those environmental factors that significantly contribute to the variation in MTB community similarity. To do so, MRM was performed using each environmental factor as independent matrix. Those factors with significant contribution were selected for further analysis (as shown in Table 1). We used permutation-based multiple regression on matrices or MRM to quantify the relative contributions of measured environmental factors and geographic distance to the biogeography of MTB communities. In brief, the community similarity was partitioned into four components by MRM as suggested by Duivenvoorden et al. and Jones et al. (i) variation explained by pure environmental heterogeneity, (ii) variation explained by pure geographic distance, (iii) variation explained by both environmental heterogeneity and distance (MIX), and (iv) unexplained variation.

For MRM analyses, we first identify those environmental factors that significantly contribute to the variation in MTB community similarity. To do so, MRM was performed using each environmental factor as independent matrix. Those factors with significant contribution were selected for further analysis (as shown in Table 1). We used permutation-based multiple regression on matrices or MRM to quantify the relative contributions of measured environmental factors and geographic distance to the biogeography of MTB communities. In brief, the community similarity was partitioned into four components by MRM as suggested by Duivenvoorden et al. and Jones et al. (i) variation explained by pure environmental heterogeneity, (ii) variation explained by pure geographic distance, (iii) variation explained by both environmental heterogeneity and distance (MIX), and (iv) unexplained variation.

For MRM analyses, we first identify those environmental factors that significantly contribute to the variation in MTB community similarity. To do so, MRM was performed using each environmental factor as independent matrix. Those factors with significant contribution were selected for further analysis (as shown in Table 1). We used permutation-based multiple regression on matrices or MRM to quantify the relative contributions of measured environmental factors and geographic distance to the biogeography of MTB communities. In brief, the community similarity was partitioned into four components by MRM as suggested by Duivenvoorden et al. and Jones et al. (i) variation explained by pure environmental heterogeneity, (ii) variation explained by pure geographic distance, (iii) variation explained by both environmental heterogeneity and distance (MIX), and (iv) unexplained variation.
40. Wang, X. K. et al. Effects of hypomagnetic field on magnetosome formation of Magnetospirillum magneticum AMB-1. *Geomicrobiol. J.* 25, 296–303 (2008).

41. Pan, Y. et al. Reduced efficiency of magnetotaxis in magnetotactic cocoid bacteria in higher than geomagnetic fields. *Biophys. J.* 97, 986–991 (2009).

42. Steinhilber, F. et al. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. *Proc. Natl. Acad. Sci. U. S. A.* 109, 5967–5971 (2012).

43. Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. *Proc. Natl. Acad. Sci. U. S. A.* 103, 626–631 (2006).

44. Whitaker, R. J., Grogan, D. W. & Taylor, J. W. Geographic barriers isolate endemic populations of hyperthermophilic Archaea. *Science* 301, 976–978 (2003).

45. Reche, I., Pulido-Villena, E., Morales-Baquero, R. & Casamayor, E. O. Does ecosystem size determine aquatic bacterial richness? *Ecology* 86, 1715–1722 (2005).

46. Green, J. L. et al. Spatial scaling of microbial eukaryote diversity. *Nature* 432, 747–750 (2004).

47. Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. *Ecology* 73, 1045–1055 (1992).

48. Smith, T. W. & Lundholm, J. T. Variation partitioning as a tool to distinguish between niche and neutral processes. *Ecography* 33, 648–655 (2010).

49. Flies, C. B., Peplies, J. & Schlu ¨rer, D. Combined approach for characterization of uncultivated magnetotactic bacteria from various aquatic environments. *Appl. Environ. Microbiol.* 71, 2723–2731 (2005).

50. Greenberg, M., Canter, K., Mahler, I. & Tornheim, A. Observation of magnetoreceptive behavior in a multicellular magnetotactic prokaryote in higher than geomagnetic fields. *Biophys. J.* 88, 1496–1499 (2005).

51. Lin, W., Li, J., Schulier, D., Jogler, C. & Pan, Y. Diversity analysis of magnetotactic bacteria in Lake Miyun, northern China, by restriction fragment length polymorphism. *Syst. Appl. Microbiol.* 32, 342–350 (2009).

52. DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. *Appl. Environ. Microbiol.* 72, 5069–5072 (2006).

53. Baker, G. C., Smith, J. J. & Cowan, D. A. Review and re-analysis of domain-specific 16S primers. *J. Microbiol. Methods* 55, 541–555 (2003).

54. Cole, J. R. et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. *Nucleic Acids Res.* 37, D141–D145 (2009).

55. Tamura, K. et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol. Biol. Evol.* 28, 2731–2739 (2011).

56. Sinnott, R. W. Virtues of the Haversine. *Sky & Telescope* 68, 159 (1984).

57. Borgatti, S. P., Everett, M. G. & Freeman, L. C. Ucinet 6 for Windows: software for social network analysis. (Analytic Technologies, Harvard, MA, 2002).

58. Rosenberg, M. S. & Anderson, C. D. PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2. *Methods Ecol. Evol.* 2, 229–232 (2011).

Acknowledgments
We thank Andrea Cheung, Yuedong Huang, Wayne Harris, Haitao Chen, and Youliang Su for assistance with sample collection; and Greig Paterson for helpful discussions about data analysis. This work was supported by the CAS/SAFEA International Partnership Program for Creative Research Teams (KZCX2-YW-T10), the CAS project, and the NSFC grants 40821091 and 41104041. Wei Lin is grateful to the NASA Planetary Biology Internship for supporting his study in University of Southern California in Los Angeles, CA.

Author contributions
W.L., Y.P. and K.N. designed research; W.L., Y.W. and Y.G. performed field work; W.L. and Y.W. performed research; W.L. analyzed data; W.L., Y.G., Y.P. and K.N. wrote the paper.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

How to cite this article: Lin, W., Wang, Y., Gorby, Y., Nealson, K. & Pan, Y. Integrating niche-based process and spatial process in biogeography of magnetotactic bacteria. *Sci. Rep.* 3, 1643; DOI:10.1038/srep01643 (2013).