纳米材料因其独特的尺寸和形状效应而受到了越来越多的关注。贵金属纳米催化剂（金纳米簇，钯纳米颗粒，铂纳米颗粒等）作为纳米材料的重要组成部分，在许多领域具有广泛的应用，例如环境催化，光热疗法，碳-碳偶联反应等。在这些应用中，因为环境催化尤其是水处理的生态价值较高，所以其具有重要意义。到目前为止，Fe₃O₄@SiO₂-Ag，Au@SiO₂，Au/TiO₂，AgNPs/SiNSs 和许多其他贵金属纳米催化剂已用于水处理。但是，贵金属催化剂在应用时经常陷入两难境地：难以同时保持高催化效率和高可重复使用性。用于水处理的催化剂可分为两类：液相催化剂和固相催化剂。液相催化剂通常具有高催化效率，但是在使用后将其与废水分离具有一定挑战性。例如，Au/TiO₂，Au 胶体溶液和水溶性 Pd-8 纳米团簇能够在对硝基苯酚 (4-NP) 还原反应中具有高催化性能，但难以回收，导致可重复使用性低。另一方面固相催化剂具有较高的可重用性，但催化效率远低于液相催化剂。

对于催化剂载体而言，其中一类独特的材料便是多孔色谱纸（或者滤纸）。它表面具有丰富的羟基，能够和贵金属纳米材料较好地结合，同时其便宜易得。美国德克萨斯大学（University of Texas at El Paso, UTEP）的李秀军团队前期研究中也将 Au/Paper 材料用于微流控芯片设计。然而，该团队在实验中发现，
Au/Paper 材料与多数固相催化剂类似，其虽然能够轻易地与反应容易分离，但效率相对较低。与此同时，随着催化剂使用次数的增加，其物理结构会逐渐被破坏，因此研究人员通常会认为催化剂在重复使用多次后即成为废弃催化剂。

李秀军教授与成员金奇杰共同商议后认为：纸张具有独特的相态转换特性，可以轻松且可逆地转换其液相（即纸浆）和固相。当纸张转化为纸浆时，纸浆可以均匀地悬浮在水中，从而增加了催化剂和反应物之间的接触面积，从而提高了催化效率。另一方面，当纸浆干燥时，它将变成固相（即所谓的纸张）。催化剂被捕获在固体纸上，因此可以容易地回收。通过重复该过程，纸质催化剂可以多次使用，从而具有出色的可重复使用性和催化高效性。该团队称这种基于纸质相态变化上的催化体系为智能纸质“变形金刚”（Smart Paper Transformer, 即 s-PAT，见 Figure 1）。

然后该团队利用智能纸质“变形金刚”上的金纳米海绵（AuNS）作为一个例子来展示 s-PAT 在催化方面的优点：不仅具有高催化效率而且还有出色的重复使用率。金纳米海绵（AuNS）具有三维开放多孔结构，能够暴露出大量的催化活性位点。较大的比表面积和大量活性位点的存在有利于形成优异的催化活性。最后，纸浆中的纤维素表面具有丰富的 –OH 官能团，因此可确保纸与 Au 纳米材料之间的牢固结合强度。因此，智能变形纸张（s-PAT）同时具有高效和高可重复使用性，为解决当前贵金属催化剂的重要问题提供了非凡的解决方案。

Figure 1. 智能纸质“变形金刚”示意图

鉴于 s-PAT 的上述特性，智能纸质“变形金刚”可以使载有贵金属纳米材料的色谱纸催化剂（例如 AuNS（AuNS/纸浆））具有高催化效率和高可重复使用性。为了验证该假设，李秀军团队选择了对硝基苯
酚（4-NP）（一种水污染物）的催化还原作为AuNS/纸浆催化剂在水处理中的应用模型。众所周知，4-NP是导致环境问题恶化的重要因素，例如水污染导致诱变剂，致畸物，致癌物等。另外，对氨基苯酚（4-AP）是催化反应产物，是重要的工业中间体。AuNS/纸浆催化剂不仅比各种固相催化剂表现出更高的催化效率，而且比液相催化剂表现出更高的可重复使用性。在最佳条件下，在6分钟内4-NP的转化率达到近100%，而即使经过15次循环，催化效率仍然很高。该团队还与常规纸质上的催化效率在相同条件下做了比较，发现金纳米海绵在s-PAT的催化性能比常规纸质提高了220%（Figure 2）。在AuNS的制备和催化反应过程中，色谱纸的微观结构得以保留。这一发现提供了一个新的平台，以寻求有效的催化剂，用于环境拯救，生物质转化，纳米材料等方面的各种应用。

![Figure 2. 金纳米海绵在智能纸质“变形金刚”上（a）和平常纸质上（b）催化性能的比较](image)

这一成果近期发表在Chemical Science上，文章的第一作者是曾经于德克萨斯大学埃尔帕索分校访学联培的金奇杰博士生。

论文信息

- **Smart Paper Transformer: New insight for enhanced catalytic efficiency and reusability of noble metal nanocatalysts**
 Qijie Jin, Lei Ma, Wan Zhou, Yuesong Shen, Olivia Fernandez-Delgado, Hamed Tavakoli, XiuJun Li*(李秀军, 美国德克萨斯大学埃尔帕索分校)
 Chem Sci., 2020
 http://dx.doi.org/10.1039/C9SC05287A
论文通讯作者

李秀军 教授

美国德克萨斯大学埃尔帕索分校（The University of Texas at El Paso）终身副教授，博士生导师

李秀军，美国德克萨斯大学埃尔帕索分校（University of Texas at El Paso，缩写 UTEP）终身副教授，2008 年于加拿大西蒙弗雷泽大学（Simon Fraser University，SFU）取得博士学位，2008 至 2009 年在美国加州大学伯克利分校（UC Berkeley）从事博士后研究，2010 年至 2011 年在哈佛大学（Harvard University）师从著名的 George Whitesides 教授从事博士后研究，2012 年初就职于 UTEP。

课题组链接 http://li.utep.edu

注：本新闻为 RSC “宅家读文献，分享赢奖励” 活动参赛作品，感谢稿件作者同意 RSC China 微信官方公众号对外发布。
关于 Chemical Science

Our flagship journal is essential reading for research and education in the chemical sciences. Chemical Science is the flagship journal of the Royal Society of Chemistry, publishing the highest quality research in all areas of chemistry.

IF: 9.556 *

Chemical Science

英国皇家化学会旗舰期刊，发表化学领域最前沿、最重要、最具挑战性的高影响力研究成果

IF: 9.556 *

https://mp.weixin.qq.com/s?__biz=MzAxNjE4NTE5MQ==&mid=2651091897&idx=1&sn=0d58f0b7286b34089ecae04d82999794&chksm=800871b1b7...
Essential reading for chemists in all areas

HIGH QUALITY

We feature only cutting-edge solutions to today's global challenges. Our fast times to publication mean rapid visibility for your work. Our peer review process is rigorous and fair.
We’re open access so there is no pay wall to prevent your research reaching everyone. We’re the only flagship journal that’s free to read. We don’t chase trends, but cover all areas of chemistry.
Our board has members from four continents and our reviewers are evenly spread across the world. Our download statistics show that your work will reach the broadest possible audience.
智能纸质“变形金刚” | 贵金属纳米催化剂的催化效率与重复利用率的新视角

Read more