University Student Satisfaction Analysis on Academic Services by Using Decision Tree C4.5 Algorithm (Case Study: Universitas Putra Indonesia “YPTK” Padang)

Febri Aldi, and Anita Ade Rahma

Universitas Putra Indonesia “YPTK” Padang, Padang, Indonesia

*anita_aderahma@upiyptk.ac.id

Abstract. Satisfaction is a dynamic process which can affect many things. Satisfaction can be achieved from many aspects. In higher education, student as a main customer and consumer of the university which has big role in growth of the university needs to be satisfied. Student satisfaction will have an impact to the sustainability of the university. Where satisfaction generally gotten from the services given by the university. This research focus on academic services by the university. Attributes of service quality such as tangibles, reliability, responsiveness, assurance, empathy and information system (as a new additional attribute which is rarely analyzed) are used to measure student satisfaction level. Data has been collected by distributing questionnaires to 100 UPI YPTK Padang students and then processed with decision tree c4.5 algorithm. The result revealed 82 students were satisfied and the remaining 18 students were dissatisfied. Moreover, 95% accuracy algorithm is obtained and categorized as very good classification.

1. Introduction
The world of education faces very difficult challenges due to rapid development of the era. There is very competitive competition in gathering students as a result of very large number of educational institutions [1, 2]. Thus, every educational institution must be able to compete and trying to be superior in the competition. Higher education institutions must take anticipatory steps to deal with the competition and are responsible for evaluating and improving all aspects of the services they have, including in terms of academic services. Academic service can be interpreted as an effort carried out by university to provide convenience in fulfilling the needs of students in matters relating to academic activities [2].

Teaching quality (academic) is the key factor on student satisfaction [3], [4] and administrative services should not be considered as trivial things if university want to increase student satisfaction [2], [5], [6]. Dissatisfaction can make the student to stop continuing the learning program or to even move to the other university. So that, management of university must concerns about understanding and handling student satisfaction [6].

Data mining is also called as a series of processes to explore added value in the form of knowledge that has not known manually from a collection data [7]–[13]. Data mining is often referred to as knowledge discovery in database (KDD). KDD is an activity which includes collection, data usage, historically to find order, pattern or relationship in the data set large size [14], [15]. Data mining is a technique of digging valuable information hidden or hidden in a very large data collection so that an interesting pattern that was previously unknown is found [16], [17].
C4.5 is the most widely used method of algorithm for producing decision trees [13], [18], [19] and in analyzing data about education and decision trees also applied because it can help researchers better in interpreting data information obtained [11], [12], [17], [20]. C4.5 algorithm can predict data accuracy with the best results [21]–[24]. In general the C4.5 algorithm for building a decision tree is as following [25]–[27]:
1. Select the attribute as root.
2. Create a branch for each value.
3. Share cases in branches.
4. Repeat the process for each branches up to all cases on the branch have the same class.

The decision tree is useful for classifying data [13], [18], [19]. Decision tree does not use distance vector to classify objects. Often observation data has attributes nominal value. For example the object is a collection of fruits can be distinguished based on form attributes, color, size and taste. The shape, color, size and taste are nominal quantities, which are of a nature categorically and each value cannot be added together or deductible. There are color attributes some possible values namely green, yellow, red. In the size attribute there is a value big, medium and small. With values this attribute, then a decision tree is made for determine an object including the type of fruit what if the value of each attribute is given [14]. With this decision tree, it can facilitate institutions in making decisions [25]. The concept of a decision tree is to convert data into decision trees and decision rules [27].

![Figure 1. The concept of Decision Tree](image)

Here are some studies that use the c4.5 algorithm in analyzing satisfaction.

No.	Author(s) and Year	Technique(s)	Tool(s)	Topic Focus
1	Wiers-Jenssen et al. 2002 [3]	Questionnaire	SPSS	Student satisfaction
2	Cotton et al. 2002 [28]	Questionnaire	SEM, Lisrel 8	Satisfaction, well being and performance
3	Kara and DeShields. 2004 [29]	Questionnaire	SPSS	Student satisfaction, intention and retention
4	Kao. 2007 [6]	Questionnaire, survey	SPSS	University student satisfaction
5	Dejeager et al. 2012 [1]	Data mining	-	Student satisfaction
6	Ravindran and Kalpana. 2012 [30]	Questionnaire, survey	SPSS	Student's Expectation, Perception and Satisfaction
7	Jiewanto et al. 2012 [31]	Questionnaire, survey	SEM, SPSS 16, and AMOS 16	Service quality to WOM Intention
8	Temizer and Turkyilmaz. 2012 [32]	Questionnaire, survey	SEM PLS	Student satisfaction index
9	Horstschräer. 2012 [33]	Questionnaire, survey	SPSS	University rankings
10	Jindal and Borah. 2013 [34]	EDM	Literature review	Survey on EDM
11	Khosravi et al. 2013 [35]	Questionnaire, Kaiser		Student
	Authors	Method	Tool	Objective
---	------------------	----------------	--------	---
12	Kaur et al. 2013 [36]	Survey, Data mining	Normalization, Descriptive statistic	Satisfaction, Questionnaire of student satisfaction
13	Mandala. 2013 [25]	Decision Tree, c4.5 algorithm	Estard Data Miner	Prediction of credit risk Student satisfaction
14	Shi et al. 2014 [37]	Questionnaire, survey	Minitab 16	Student satisfaction Customer satisfaction
15	Tama. 2015 [38]	C4.5, REANN	Java based	Student satisfaction from National Student Survey (NSS)
16	Lenton. 2015 [39]	Questionnaire, survey	Hefce, Hesa, Ons	Student satisfaction, achievement and absorption capacity
17	El-Hilali et al. 2015 [40]	Questionnaire, survey	SPSS	Service quality to customer loyalty Welfare Services
18	Iskandar et al. 2016 [41]	Questionnaire	SPSS	
19	Motefakker. 2016 [42]	Questionnaire, survey	SPSS	
20	Oktafianto. 2016 [2]	Decision tree, c4.5 algorithm	RapidMiner	Academic services Student satisfaction
21	Reina. 2016 [5]	Questionnaire, survey	SPSS	
22	Sudrajat et al. 2017 [18]	C4.5, ID3, decision tree	Matlab	Data mining classification Student satisfaction literature review
23	Weerasinghe et al. 2017 [43]	Data collection	Literature review	
24	Yuliana et al. 2017 [44]	C4.5 algorithm, Decision tree	RapidMiner	Student satisfaction to lecturer performance Exploratory research
25	Castro et al. 2017 [17]	Data collection	Descriptive statistic	Service quality to customer loyalty
26	Rahma. 2017 [45]	Questionnaire, survey	SPSS	Prediction of final school exam grades
27	Aldi. 2017 [46]	Neural Network, Backpropagation	Matlab	Customer satisfaction
28	Shiddiq et al. 2018 [24]	Decision Tree, c4.5 algorithm	Borland Delphi 7.0	Student academic evaluation Customer satisfaction
29	Budiman et al. 2018 [47]	Decision Tree, c4.5 algorithm	WEKA	
30	Tsami et al. 2018 [26]	Decision Tree, j48 algorithm	WEKA	
31	Ridho et al. 2018 [48]	K-Means algorithm	Dreamweaver, Xampp	Student satisfaction to learning process
From literature above, data mining was dominantly used to predict student satisfaction. By using decision tree C4.5 algorithm, expected to be able to know student satisfaction level and to know the most dominant dimensions of service quality that affect the quality of services given by the university, to help university management on analyzing and evaluating the services. So that, it can be used as a model for decision making.

2. Methodology
This study uses the results of questionnaires distributed to respondents in this case are students as primary data processed with Rapidminer software that produces a decision tree. Data processing stages are described in Figure 2.

![Figure 2. Data processing stages](image)

2.1. Data Collection
In this study data collection was done by distributing questionnaires to students. The questionnaire was distributed to 100 YPTK Padang UPI students. The attributes in this questionnaire are factors that influence student satisfaction such as tangibles, reliability, responsiveness, assurance, empathy and information system. Questionnaire is described in Figure 3.
2.2. Preliminary data processing

The initial data is processed using Microsoft Excel, where every aspect of the assessment of academic services has several points, which then get an average value from each aspect.

Figure 3. Items of questions on questionnaire

This questionnaire consisted of 40 items of questions using 5 values from the Likert scale namely 1 was “not satisfied”, 2 was “less satisfied”, 3 was “quite satisfied”, 4 was “satisfied” and 5 was “very satisfied”.

Figure 4. Preliminary data
2.3. Proposed model

The model proposed in this study is to use the c4.5 algorithm. Where C4.5 algorithm is used to convert data into decision trees, which later can produce the desired rules.

2.4. Test of C4.5 algorithm model

Testing is done using RapidMiner software by importing data in the form of excell, then tested with a decision tree model. So that it produces the decision tree and the rules.

2.5. Evaluation and validation of C4.5 algorithm model

Evaluation and validation of the tests that have been done is by using confusion matrix. Look for True Negative (TN), False Positive (FP), False Negative (FN), and True Positive (TP) values from the rule results, then find accuracy, precision and recall. And finally get the level of accuracy then categorize the results of the accuracy

3. Result and Discussion

The results of processing 100 data using RapidMiner Software such as Figure 6.

Figure 6. Student satisfaction meta data

From figure 6, there are numbers that show Student satisfaction as many as 82 people, and not satisfied as many as 18 people. From the data in figure 6, a Decision Tree can be generated like Figure 7 below.
Then it can be concluded that the Satisfied and Dissatisfied Rules based on the Decision Tree in Figure 7 are as follows:

RULES YES (SATISFIED)
Rule 1: IF Assurance > 3.100 AND Tangibles > 3.188 AND Reliability > 2.611 AND Tangible > 3.438
THEN Result = YES
Rule 2: IF Assurance > 3.100 AND Tangibles > 3.188 AND Reliability > 2.611 AND Tangible ≤ 3.438
AND Responsiveness > 2.917 THEN Result = YES
Rule 3: IF Assurance ≤ 3.100 AND Reliability ≤ 2.278 THEN Result = YES
Rule 4: IF Assurance ≤ 3.100 AND Reliability > 2.278 AND Information System ≤ 3 AND Information System > 2.750 THEN Result = YES

RULES NO (DISSATISFIED)
Rule 5: IF Assurance > 3.100 AND Tangibles ≤ 3.188 THEN Result = NO
Rule 6: IF Assurance > 3.100 AND Tangibles > 3.188 AND Reliability ≤ 2.611 THEN Result = NO
Rule 7: IF Assurance > 3.100 AND Tangibles > 3.188 AND Reliability > 2.611 AND Tangibles ≤ 3.438 AND Responsiveness ≤ 2.917 THEN Result = NO
Rule 8: IF Assurance ≤ 3.100 AND Reliability > 2.278 AND Information System > 3 THEN Result = NO
Rule 9: IF Assurance ≤ 3.100 AND Reliability > 2.278 AND Information System ≤ 3 AND Information System ≤ 2.750 THEN Result = NO

From the 9 Rules above, there are 4 Rules for Satisfied Students, and 5 Rules for Dissatisfied Students, so to measure the accuracy of the data for classification using RapidMiner Software, performance measurements can be performed using Confusion Matrix. There are 4 (four) terms as a representation of the results of the classification process. The four terms are True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN). True Negative Value (TN) is the number of negative data detected correctly, while False Positive (FP) is negative data but detected as positive data. Meanwhile, True Positive (TP) is positive data that is detected correctly. False Negative (FN) is the opposite of True Positive, so the data is positive, but it is detected as negative data. Then the results can be obtained as follows:
Table 2. Student Satisfaction

Amount of data	Error	True Positive (TP)	True Negative (TN)	False Positive (FP)	False Negative (FN)
100	5	79	16	2	3

Table 3. Student Dissatisfaction

Amount of data	Error	True Positive (TP)	True Negative (TN)	False Positive (FP)	False Negative (FN)
100	5	16	79	3	2

Based on the value of True Negative (TN), False Positive (FP), False Negative (FN), and True Positive (TP) values, Accuracy, Precision, and Recall can be obtained. Accuracy values describe how accurately the system can classify data correctly. In other words, the value of accuracy is a comparison between data that is correctly classified and the overall data. Accuracy values can be obtained by Equation 1. Precision values describe the number of positive category data that are classified correctly divided by the total data classified as positive. Precision can be obtained by Equation 2. Meanwhile, recall shows what percentage of the positive category data is correctly classified by the system. The recall value is obtained by Equation 3.

\[
\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN} \times 100\%
\]

\[
\text{Precision} = \frac{TP}{TP + FP} \times 100\%
\]

\[
\text{Recall} = \frac{TP}{TP + FN} \times 100\%
\]

Then from the formula above, the Confusion Matrix value is obtained in table 4.

Table 4. Confusion Matrix

True Satisfied	True Dissatisfied	Precision	
Satisfied Prediction	79	16	97,53 %
Dissatisfied Prediction	16	79	84,21 %
Recall	96,34 %	88,88 %	

The value of table 4, Confusion matrix has an accuracy rate of 95%, with the value of precision in the predictions of satisfaction at 97.53% and the precision value of predictions not satisfied at 84.21%. Class recall for satisfaction at 96.34% and class recall for dissatisfaction at 88.88%

From the evaluation results in table 4. shows that the accuracy of the results is 95% or 0.95, so if it is classified in the following classification:

a. 0.90 - 1.00 = very good classification
b. 0.80 - 0.90 = good classification
c. 0.70 - 0.80 = sufficient classification
d. 0.60 - 0.70 = bad classification
e. 0.50 - 0.60 = wrong classification

Then it can be concluded according to the classification grouping into a very good classification for satisfaction data of UPI YPTK Padang Students.

4. Conclusion

Based on the results of this study, it can be concluded that the use of decision tree c4.5 algorithm is very good at accuracy in analyzing student satisfaction with academic services. The accuracy is
categorized as a very good classification. It is hoped that this research will be beneficial for universities in general and UPI YPTK specifically to make decisions in determining ways to increase student satisfaction in the future and also can be a reference for future researchers who process data mining regarding student satisfaction and other types of satisfaction. Furthermore, other researchers can further develop research not only from academic services but also in terms of infrastructure, lecturer performance, university support, etc.

Acknowledgement
We would like to thanks to Chairman of Yayasan Perguruan Tinggi Komputer (YPTK) and Rector of Universitas Putra Indonesia "YPTK" Padang for significant supporting in the term of finance and others.

Reference
[1] K. Dejeager, F. Goethals, A. Giangreco, L. Mola, and B. Baesens, “Gaining insight into student satisfaction using comprehensible data mining techniques,” Post-Print, 2012.
[2] Oktafianto, “Analisis Kepuasan Mahasiswa Terhadap Pelayanan Akademik Menggunakan Metode Algoritma C4 . 5,” Tim Darmajaya, vol. 02, no. 01, pp. 1–11, 2016.
[3] J. Wiers-Jenssen, B. Stensaker, and J. B. Grøgaard, “Student Satisfaction: Towards an empirical deconstruction of the concept,” Qual. High. Educ., vol. 8, no. 2, pp. 183–195, Jul. 2002.
[4] J. H. S. Cheng and H. W. Marsh, “National Student Survey: are differences between universities and courses reliable and meaningful?,” Oxford Rev. Educ., vol. 36, no. 6, pp. 693–712, Dec. 2010.
[5] R. Reina, “Faktor-Faktor yang Mempengaruhi Kepuasan Mahasiswa pada Universitas Bina Nusantara,” Binus Bus. Rev., vol. 3, no. 1, p. 563, 2016.
[6] T. Kao, “University Student Satisfaction : An Empirical Analysis,” 2007.
[7] D. B. Ananda and A. Wibisono, “C4.5 Decision Tree Implementation In Sistem Informasi Zakat (Sizakat) To Automatically Determining The Amount Of Zakat Received By Mustahik,” J. Inf. Syst., vol. 10, no. 1, pp. 29–36, 2014.
[8] A. H. Khaleel, G. A. Al-Suhail, and B. M. Hussan, “Application Tool based on C4 . 5 Decision Tree for Diagnosing Diabetes Infection Symptoms,” J. Commun. Technol. Electron. Comput. Sci., no. 22, pp. 7–15, 2019.
[9] S. Suhada and E. Setiawan, “Classification Needs Teachers,” pp. 408–414.
[10] S. O. N. G. Yan-yan and L. U. Ying, “Decision tree methods: applications for classification and prediction,” Shanghai Arch. Psychiatry, vol. 27, no. 2, pp. 130–135, 2015.
[11] T. A. Munandar and R. A. Ritonga, “Mapping Concept of Equitable Regional Development Using C4.5 Classification Method,” Int. J. Adv. Res. Comput. Sci., vol. 3, no. 2, pp. 44–49, 2012.
[12] M. Pandey and V. Kumar Sharma, “A Decision Tree Algorithm Pertaining to the Student Performance Analysis and Prediction,” Int. J. Comput. Appl., vol. 61, no. 13, pp. 1–5, 2013.
[13] K. Adhatrao, A. Gaykar, A. Dhawan, R. Jha, and V. Honrao, “Predicting Students’ Performance Using ID3 and C4.5 Classification Algorithms,” Int. J. Data Min. Knowl. Manag. Process, vol. 3, no. 5, pp. 39–52, 2013.
[14] B. Santosa, Data Mining : Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu, 2007.
[15] X. Wu et al., “Top 10 algorithms in data mining,” Knowl. Inf. Syst., vol. 14, no. 1, pp. 1–37, Jan. 2008.
[16] A. M. Siregar and A. Puspabhuana, DATA MINING: Pengolahan Data Menjadi Informasi dengan RapidMiner. CV Kekata Group, 2018.
[17] A. Castro, L. Garcia, D. Prata, M. Lisboa, and M. Prata, “An Exploratory Study on Data Mining in Education: Practiced Algorithms and Methods,” Int. J. Inf. Educ. Technol., vol. 7, no. 5, pp. 319–323, 2017.
[18] R. Sudrajat, I. Irianingsih, and D. Krisnawan, “Analysis of data mining classification by
comparison of C4.5 and ID algorithms Related content,” *IOP Conf. Ser. Mater. Sci. Eng.*, vol. 166, no. 012031, 2017.

[19] S. Perveen, M. Shahbaz, A. Guergachi, and K. Keshavjee, “Performance Analysis of Data Mining Classification Techniques to Predict Diabetes,” *Procedia Comput. Sci.*, vol. 82, pp. 115–121, 2016.

[20] C. J. Mantas and J. Abellán, “Credal-C4.5: Decision tree based on imprecise probabilities to classify noisy data,” *Expert Syst. Appl.*, vol. 41, pp. 4625–4637, 2014.

[21] G. I. Salama, M. B. Abdelhalim, and M. A. Zeid, “Breast Cancer Diagnosis on Three Different Datasets Using Multi-Classifiers,” *Int. J. Comput. Inf. Technol. (2277 – 0764) Vol.*, vol. 1, no. 1, pp. 36–43, 2012.

[22] W. Jia and L. J. Huang, “Improved C4.5 decision tree,” *Int. Conf. Internet Technol. Appl. ITAP 2010 - Proc.*, vol. 3, no. 3, pp. 341–345, 2010.

[23] N. Lutfiyana, “Penerapan Algoritma C4.5 Berbasis Particle Swarm Optimization Untuk Prediksi Result Layanan Kemudahan,” *Pilar*, vol. 14, no. 1, pp. 103–110, 2018.

[24] A. Shiddiq, R. K. Niswatin, and I. N. Farida, “Analisa Kepuasan Konsumen Menggunakan Klasifikasi Decision Tree Di Restoran Dapur Solo (Cabang Kediri),” vol. 2, no. 1, pp. 9–18, 2018.

[25] E. P. W. Mandala, “Penerapan Algoritma C 4.5 Dalam Memperoleh Decision Tree Untuk Memprediksi Penentuan Resiko Kredit Pada Bank Bpr Bukittandang Mandiri Padang Menggunakan Estard Data Miner,” vol. 20, no. 1, pp. 12–16, 2013.

[26] M. Tsami, G. Adamos, E. Nathanail, E. Budilovich, I. Yatskiv, and V. Magginas, “A decision tree approach for achieving high customer satisfaction at urban interchanges,” *Transp. Telecommun.*, vol. 19, no. 3, pp. 194–202, 2018.

[27] Kusrini, “Design And Implementation Of Building Decision Tree Using C4.5 Algorithm,” *Proc. SEAMS-GMU Conf.*, 2007.

[28] S. J. Cotton, M. F. Dollard, and J. De Jonge, “Stress and Student Job Design : Satisfaction , Well-Being , and Performance in University Students,” vol. 2002, no. July, pp. 147–162, 2002.

[29] A. Kara and O. DeShields, “Business student satisfaction, intentions and retention in higher education: An empirical investigation,” *Mark. Educ. Q.*, vol. 53, no. 3, pp. 211–228, 2004.

[30] S. D. Ravindran and M. Kalpana, “Student’s Expectation, Perception and Satisfaction towards the Management Educational Institutions,” *Procedia Econ. Financ.*, vol. 2, no. Af, pp. 401–410, 2012.

[31] A. Jiewanto, C. Laurens, and L. Nelloh, “Influence of Service Quality, University Image, and Student Satisfaction toward WOM Intention: A Case Study on Universitas Pelita Harapan Surabaya,” *Procedia - Soc. Behav. Sci.*, vol. 40, pp. 16–23, 2012.

[32] L. Temizer and A. Turkyilmaz, “Implementation of Student Satisfaction Index Model in Higher Education Institutions,” *Procedia - Soc. Behav. Sci.*, vol. 46, pp. 3802–3806, 2012.

[33] J. Horstschriër, “University rankings in action? The importance of rankings and an excellence competition for university choice of high-ability students,” *Econ. Educ. Rev.*, vol. 31, no. 6, pp. 1162–1176, Dec. 2012.

[34] R. Jindal and M. D. Borah, “A Survey on Educational Data Mining and Research Trends,” *Int. J. Database Manag. Syst.*, vol. 5, no. 3, pp. 53–73, 2013.

[35] A. A. Khosravi, K. Poushaneh, A. Roozegar, and N. Sohrabifard, “Determination of Factors Affecting Student Satisfaction of Islamic Azad University,” *Procedia - Soc. Behav. Sci.*, vol. 84, pp. 579–583, 2013.

[36] H. Kaur, K. Bala, P. I. Kaur, and H. Kaur, “A Questionnaire of student satisfaction from college using data Mining,” *Int.J.Computer Technol. Appl.*, vol. 4, no. 2, pp. 244–247, 2013.

[37] W. Shi, J. Drzymalski, and J. Guo, “Measuring College Student Satisfaction: Analyzing Interactions among Student Attributes,” *Proc. 2014 Ind. Syst. Eng. Res. Conf.*, no. June 2014, p. 2075, 2014.

[38] B. A. Tama, “Data Mining for Predicting Customer Satisfaction,” *J. Theor. Appl. Inf. Technol.*, vol. 75, no. 1, pp. 3–7, 2015.

[39] P. Lenton, “Determining student satisfaction: An economic analysis of the National Student
Survey,” *Econ. Educ. Rev.*, vol. 47, pp. 118–127, 2015.

[40] N. El-Hilali, S. Al-Jaber, and L. Hussein, “Students’ Satisfaction and Achievement and Absorption Capacity in Higher Education,” *Procedia - Soc. Behav. Sci.*, vol. 177, no. July 2014, pp. 420–427, 2015.

[41] R. Iskandar, W. Afriyenis, N. Pratiwi, and A. A. Rahma, “The Influence of Satisfaction on Quality Dimensions Services Financing Mudharabah to Customers Loyalty of Shariah Bank,” vol. 1, no. 1, pp. 61–74, 2016.

[42] N. Motefakker, “The Study of the Level of Satisfaction of the Students of the Faculty of Social Sciences with Welfare Services of Imam Khomeini International University of Qazvin,” *Procedia Econ. Financ.*, vol. 36, no. 16, pp. 399–407, 2016.

[43] I. S. Weerasinghe, R. Lalitha, and S. Fernando, “Students’ satisfaction in higher education literature review,” *Am. J. Educ. Res.*, vol. 5, no. 5, pp. 533–539, 2017.

[44] A. Yuliana and D. B. Pratomo, “Memprediksi Kepuasan Mahasiswa Terhadap Kinerja Dosen Politeknik TEDC Bandung,” *Semnasinotek 2017*, pp. 377–384, 2017.

[45] A. A. Rahma, “Pengaruh Kualitas Pelayanan (Yang Dirasakan), Kualitas Produk Dan Promosi Terhadap Loyalitas Pelanggan Operator Seluler Telkomsel Di Grapari Kios Telkomsel Padang,” *EKOBISTEK UPI “YPTK” PADANG*, vol. 5, no. 2, Feb. 2017.

[46] F. Aldi, “Jaringan Syaraf Tiruan Menggunakan Algoritma Backpropagation Untuk Memprediksi Nilai Ujian Akhir Sekolah (Studi Kasus Di MAN 2 Padang),” *J. Teknol.*, vol. 7, no. 2, pp. 183–192, 2017.

[47] E. Budiman, Haviluddin, N. With, A. H. Kridalaksana, M. Wati, and Purnawansyah, “Performance of Decision Tree C4.5 Algorithm in Student Academic Evaluation,” *R. Alfred al. ICCST 2017*, vol. 488, no. February, pp. 380–389, 2018.

[48] M. Ridho A. and K. Hastuti, “Implementasi Algoritma K-Means Untuk Mengukur Tingkat Kepuasan Siswa Terhadap Proses Pembelajaran,” 2018.