Graphs with Sudoku number $n - 1$

Alexey Pokrovskiy *

June 20, 2022

Abstract

Recently Lau-Jeyaseeli-Shiu-Arumugam introduced the concept of the “Sudoku colourings” of graphs — partial $\chi(G)$-colourings of G that have a unique extension to a proper $\chi(G)$-colouring of all the vertices. They introduced the Sudoku number of a graph as the minimal number of coloured vertices in a Sudoku colouring. They conjectured that a connected graph has Sudoku number $n - 1$ if, and only if, it is complete. In this note we prove that this is true.

1 Introduction

All colourings in this note are vertex-colourings. A vertex colouring of a graph is proper if adjacent vertices receive different colours. The chromatic number, $\chi(G)$ is the minimal number of colours in a proper colouring of G. A partial proper colouring of a graph is a colouring of some subset of $V(G)$ which doesn’t give adjacent vertices the same colour. We say that a colouring ϕ extends a partial colouring ψ if all vertices coloured in ψ receive the same colour in ϕ. A variety of tasks can be encoded as taking a partial proper colouring in a graph and then extending it to a full proper colouring of all the vertices.

For example the well known “Sudoku puzzle” can be encoded in this form. Consider a graph G_{Sudoku} on 27 vertices that are identified with the cells in a 9×9 grid. Add an edge between any two vertices in the same column, between any two vertices in the same row, and between any two vertices in the same 3×3 box. It is easy to see that a proper 9-colouring of G_{Sudoku} exactly corresponds to filling in a 9×9 array according to the rules of Sudoku puzzles. Thus a Sudoku puzzle can be summarized as “you are given a partial colouring of G_{Sudoku} and need to complete it to a proper colouring of all the vertices of G_{Sudoku}.”

One of the conventions for designing Sudoku puzzles is that there should always be precisely one way of filling in the 9×9 array i.e. there should always exist one solution, and there shouldn’t exist multiple solutions. This motivates the definition of a Sudoku colouring of a graph. Lau-Jeyaseeli-Shiu-Arumugam defined it as follows in [1].

Definition 1. A Sudoku colouring of a graph G is a partial proper $\chi(G)$-colouring of G which has precisely one extension to a $\chi(G)$-colouring of G.

Sudoku colourings of G_{Sudoku} are thus in one-to-one correspondence with uncompleted Sudoku puzzles (that have unique completion). But we can also investigate Sudoku colourings of general graphs.

Lau-Jeyaseeli-Shiu-Arumugam [1] defined the Sudoku number of G, $sn(G)$ as the smallest number of coloured vertices in a Sudoku colouring of G. The motivation for this is that $sn(G_{\text{Sudoku}})$ now asks for the minimum number of clues (i.e. non-blank entries) in a Sudoku puzzle with unique solution. This number has been determined as $sn(G_{\text{Sudoku}}) = 17$ by McGuire, Tugemann, and Civario using a computer-assisted proof [2].

*Email: dr.alexey.pokrovskiy@gmail.com. Address: Department of Mathematics, University College London, UK.
For general graphs, Lau-Jeyaseeli-Shiu-Arumugam [1] determined $sn(G)$ for various classes of graphs G and obtained bounds for other classes. For example, they showed that $sn(G) = 1$ if, and only if, G is connected and bipartite. On the other extreme, they showed that $sn(G) \leq |G| - 1$ for all graphs and conjectured that for connected graphs, equality holds if, and only if, G is complete. Here we show that this is the case.

Theorem 2. A connected graph has $sn(G) = |G| - 1$ if, and only if, G is complete.

The backwards direction already appears in [1] (see Corollary 3.4), so we focus on proving the statement "let G be a connected graph with $sn(G) = |G| - 1$. Then G is complete". This amounts to showing that non-complete graphs have partial proper $\chi(G)$-colourings with ≥ 2 uncoloured vertices which have a unique extension to a full proper $\chi(G)$-colouring of G.

2 Proofs

In a k-coloured graph our set of colours will always be $|k| = \{1, \ldots, k\}$. For a colouring ϕ and vertices u_1, \ldots, u_k, we use $\phi - u_1 - \cdots - u_k$ to mean the partial colouring formed by uncolouring the vertices u_1, \ldots, u_k. For a partial colouring ϕ and a set of vertices S, we define $\phi(S) := \{\phi(s) : s \in S\}$ to mean the set of colours appearing in S. We use $N(v)$ to denote the set of vertices connected to v by an edge (our graphs are simple, so this never includes v itself).

The following is the tool we use for constructing Sudoku colourings in this note. It gives two kinds of Sudoku colourings with two uncoloured vertices.

Lemma 3. Let ψ be a partial proper $\chi(G)$-colouring with exactly two uncoloured vertices u, v. Suppose that either of the following holds:

(i) uv is a nonedge and $|\phi(N(u))| = |\phi(N(v))| = \chi(G) - 1$.

(ii) uv is an edge, $|\phi(N(u))| = \chi(G) - 1$, $|\phi(N(v))| = \chi(G) - 2$, and $\phi(N(v)) \subset \phi(N(u))$.

Then ψ is a Sudoku colouring.

Proof. In case (i), there is precisely one colour missing from $N(u)$ and precisely one colour missing from $N(v)$. In a proper $\chi(G)$-colouring, u and v must receive exactly these colours, and so the extension is unique.

In case (ii), there are two colours c, d missing from $N(v)$ and one of these colours (say c), is missing from $N(u)$. To complete the colouring u must receive colour c, and v must receive colour d, so the extension is unique. □

The following definition is crucial for us.

Definition 4. Let ϕ be a proper $\chi(G)$-colouring of G. A vertex is **full** if it is adjacent to vertices of all colours (aside from its own) i.e. if $\phi(N(v)) = [\chi(G)] \setminus \phi(v)$ (or equivalently if $|\phi(N(v))| = \chi(G) - 1$).

In graphs with Sudoku number $|G| - 1$, it turns out that the full vertices form a complete subgraph.

Lemma 5. Let $sn(G) = |G| - 1$ and let ϕ be a proper $\chi(G)$-colouring of G. Then any two full vertices are connected by an edge.

Proof. Let u, v be full and suppose for contradiction that uv is not an edge in G. Consider the partial colouring $\psi := \phi - u - v$. Since u, v are full, we have $|\phi(N(u))| = |\phi(N(v))| = \chi(G) - 1$. Since uv is a non-edge, the neighbours of u, v all remain coloured in ψ and so $|\psi(N(u))| = |\psi(N(v))| = \chi(G) - 1$. Thus, by Lemma 3 (i), ψ is a Sudoku colouring. It has two uncoloured vertices, contradicting $sn(G) = |G| - 1$. □
We say that a proper \(k \)-colouring of \(G \) is \(c \)-minimal if it has as few colour \(c \) vertices as possible (for a \(k \)-colouring of \(G \)). The following lemma shows that there are a lot of full vertices around all \(c \)-coloured vertices in a \(c \)-minimal colouring.

Lemma 6. Let \(\phi \) be a 1-minimal proper \(\chi(G) \)-colouring of \(G \). Let \(v \) be a vertex with \(\phi(v) = 1 \). Then for every colour \(c = 2, \ldots, \chi(G) \), the vertex \(v \) has at least one colour \(c \) neighbour \(u \) with \(u \) full. In particular, \(v \) is full.

Proof. First notice that it is impossible that \(v \) has no colour \(c \) neighbours -- indeed otherwise, we could recolour \(v \) with colour \(c \) to get a proper colouring with one fewer colour 1 vertex (contradicting 1-minimality). This proves the “in particular \(v \) is full” part — since we’ve shown that every colour other than \(\phi(v) = 1 \) appears on \(N(v) \).

Now let the set of colour \(c \) neighbours of \(v \) be \(\{u_1, \ldots, u_k\} \). Suppose for contradiction that none of these are full — equivalently there are colours \(c_1, \ldots, c_k \in [\chi(G)] \setminus c \) with \(c_i \) missing from \(N(u_i) \). Note that \(c_i \neq 1 \) for all \(i \), since \(v \in N(u_i) \) and \(\phi(v) = 1 \). Note that \(\{u_1, \ldots, u_k\} \) is an independent set since all these vertices have colour \(c \) and the colouring is proper.

Now recolour \(u_i \) by \(c_i \) for each \(i \) and recolour \(v \) by \(c \). Notice that this colouring is proper. To show this, we need to check that the recoloured vertices \(v, u_1, \ldots, u_k \) have different colours to all their neighbours (everywhere else the colouring remains proper just because \(\phi \) was proper).

Indeed \(v \) has no colour \(c \) neighbours since \(\{u_1, \ldots, u_k\} \) was the set of all colour \(c \) neighbours of \(v \) and these have all been recoloured by colours \(c_i \neq c \). Vertex \(u_i \) has no colour \(c_i \) neighbour since it initially had no colour \(c_i \) neighbours and the only neighbour of \(u_i \) that was recoloured was \(v \) (which received colour \(c \neq c_i \)).

But the new colouring we have has one fewer colour 1 vertex, contradicting 1-minimality.

Applying the above lemma to a graph with Sudoku number \(|G| - 1 \) gives even more structure in a minimal colouring.

Lemma 7. Let \(sn(G) = |G| - 1 \) and let \(\phi \) be a 1-minimal proper \(\chi(G) \)-colouring of \(G \). Then there is precisely one colour 1 vertex. Additionally, this vertex \(v \) is full and has \(|N(v)| = \chi(G) - 1 \).

Proof. Let \(v \) be a colour 1 vertex. By Lemma 6 \(v \) is full. There can’t be another colour 1 vertex \(z \) — because otherwise \(z \) would also be full, which would give two disconnected full vertices (contradicting Lemma 5).

Suppose that \(|N(v)| > \chi(G) - 1 \). Then, by the pigeonhole principle there must be some colour \(c \) which occurs more than once on \(N(v) \). By Lemma 6 \(v \) has some full colour \(c \) neighbour \(u \). Let \(w \) be some other colour \(c \) neighbour of \(v \). Now let \(\psi := \phi - u - v \). Note that \(\psi(N(v)) = \phi(N(v)) = [\chi(G)] \setminus 1 \) (the first equality holds because precisely one neighbour \(u \) of \(v \) was uncoloured, but that neighbour \(u \) had colour \(c \) which is still present at \(w \). The second equality holds because \(v \) is full and has colour 1). Also \(\psi(N(u)) = \phi(N(u)) \setminus 1 = [\chi(G)] \setminus \{1, c\} \) (the first equality holds because precisely one neighbour \(v \) or \(u \) was uncoloured, and that neighbour had colour 1 which isn’t present anywhere else in the graph. The second equality holds because \(\phi(N(u)) = [\chi(G)] \setminus c \) since \(u \) is full and has colour \(c \)). Thus by Lemma 3 (ii), \(\psi \) is a Sudoku colouring with two uncoloured vertices, contradicting \(sn(G) = |G| - 1 \).

We are ready to prove our main theorem.

Proof of Theorem 2. The backwards direction already appears in [1] (see Corollary 3.4), so it remains to prove that every connected \(G \) with \(sn(G) = |G| - 1 \) is complete. To that end, let \(G \) be connected with \(sn(G) = |G| - 1 \).

Consider a 1-minimal proper \(\chi(G) \)-colouring of \(G \). By Lemma 7, there is precisely one colour 1 vertex, call it \(v \). Also by Lemma 7, \(v \) is full and \(|N(v)| = \chi(G) - 1 \) — which, using the definition of “full”, implies that all neighbours of \(v \) have different colours. By Lemma 6, we have that all neighbours of \(v \) are full. Now we have that all vertices in \(v \cup N(v) \) are full, and so Lemma 5 tells us that \(v \cup N(v) \) is complete.
Unless G is complete, then, by connectedness, there is some vertex w outside $v \cup N(v)$ with a neighbour u in $N(v)$. Now construct a colouring ψ by recolouring w by colour 1 and uncolouring u, v. First notice that this is a proper (partial) colouring — indeed w has no colour 1 neighbours since v is the unique colour 1 vertex and $w \notin N(v)$. We have that $\psi(N(v)) = \phi(N(v)) \setminus \phi(u) = [\chi(G)] \setminus \{1, \phi(u)\}$ (the first equality holds because the neighbour u of v was uncoloured and $\phi(u)$ doesn’t appear anywhere else on $N(v)$ since the neighbours of v have different colours. The second equality holds because $\phi(N(v)) = [\chi(G)] \setminus 1$ since v is full and has colour 1). Also $\psi(N(u)) = [\chi(G)] \setminus \{\phi(u)\}$ (colour 1 is present on $N(u)$ in ψ because $\psi(w) = 1$ and $w \in N(u)$. All colours in $[\chi(G)] \setminus \{1, \phi(u)\}$ are present on $N(u)$ in ψ because the vertices of $N(v) \setminus u$ have exactly these colours in ϕ, u is connected to all of them, and their colours don’t change going from ϕ to ψ). Thus by Lemma 3 (ii), ψ is a Sudoku colouring with two uncoloured vertices, contradicting $sn(G) = |G| - 1$.

References

[1] Gee-Choon Lau, J. Maria Jeyaseeli, Wai-Chee Shiu, and S. Arumugam. Sudoku number of graphs. arXiv:2206.08106, 2022.

[2] Gary McGuire, Bastian Tugemann, and Gilles Civario. There is no 16-clue sudoku: Solving the sudoku minimum number of clues problem via hitting set enumeration. Experimental Mathematics, 23(2):190–217, 2014.