Molecular heterogeneity of large-conductance calcium-activated potassium channels in canine intracardiac ganglia

This is the Published version of the following publication

Selga, E, Pérez-Serra, A, Moreno-Asso, Alba, Anderson, S, Thomas, Kristen, Desai, M, Brugada, R, Pérez, GJ and Scornik, FS (2013) Molecular heterogeneity of large-conductance calcium-activated potassium channels in canine intracardiac ganglia. Channels, 7 (4). 322 - 328. ISSN 1933-6950

The publisher’s official version can be found at http://www.tandfonline.com/doi/abs/10.4161/chan.25485
Note that access to this version may require subscription.
Molecular heterogeneity of large-conductance calcium-activated potassium channels in canine intracardiac ganglia

Elisabet Selga, Alexandra Pérez-Serra, Alba Moreno-Asso, Seth Anderson, Kristen Thomas, Mayurika Desai, Ramon Brugada, Guillermo J Pérez & Fabiana S Scornik

To cite this article: Elisabet Selga, Alexandra Pérez-Serra, Alba Moreno-Asso, Seth Anderson, Kristen Thomas, Mayurika Desai, Ramon Brugada, Guillermo J Pérez & Fabiana S Scornik (2013) Molecular heterogeneity of large-conductance calcium-activated potassium channels in canine intracardiac ganglia, Channels, 7:4, 322-328, DOI: 10.4161/chan.25485

To link to this article: http://dx.doi.org/10.4161/chan.25485
Molecular heterogeneity of large-conductance calcium-activated potassium channels in canine intracardiac ganglia

Elisabet Selga,1 Alexandra Pérez-Serra,1 Alba Moreno-Asso,1,‡ Seth Anderson,2,‡ Kristen Thomas,2,‡ Mayurika Desai,‡ Ramon Brugada,1 Guillermo J Pérez1,2,† and Fabiana S Scornik1,2,†,*

1Cardiovascular Genetics Center; Institut d’Investigació Biomèdica de Girona (IdIBGI); Department of Medical Sciences; School of Medicine; University of Girona (UdG); Girona, Spain; 2Masonic Medical Research Laboratory; Utica, NY USA

*Correspondence to: Fabiana S. Scornik; Email: fabianasilvia.scornik@udg.edu

Introduction

Large conductance calcium-activated potassium (BK) channels are widely expressed in the nervous system. We have recently shown that principal neurons from canine intracardiac ganglia (ICG) express a conspicuous BK current, which increases neuronal excitability. In the present work, we further explore the molecular constituents of the BK current in canine ICG. We found that the BI and B4 regulatory subunits are expressed in ICG. Single channel voltage-dependence at different calcium concentrations suggested that association of the BKα with a particular β subunit was not enough to explain the channel activity in this tissue. Indeed, we detected the presence of several splice variants of the BKα subunit. In conclusion, BK channels in canine ICG may result from the arrangement of different BKα splice variants, plus accessory β subunits. The particular combinations expressed in canine IC neurons likely rule the excitatory role of BK current in this tissue.

Keywords: BK channels, alternative splicing, β subunits, intracardiac neurons, autonomic

Abbreviations: BK channel, large-conductance calcium-activated potassium channel; IGC, intracardiac ganglia; I_{BK}, BK current; SS, splice site

Addendum to: Pérez GJ, Desai M, Anderson S, Scornik FS. Large-conductance calcium-activated potassium current modulates excitability in isolated canine intracardiac neurons. Am J Physiol Cell Physiol 2013; 304:C280-6; PMID:23195072; http://dx.doi.org/10.1152/ajpcell.00148.2012

Large conductance calcium-activated potassium (BK) channels are widely expressed in the nervous system. We have recently shown that principal neurons from canine intracardiac ganglia (ICG) express a conspicuous BK current, including action potential repolarization and afterhyperpolarization. Diverse properties have been reported for I_{BK} in different tissues, in different cells in a given tissue, in different regions of a single cell, and in the same cell under different stimuli.4,7 This behavior is accepted to be associated to heterogeneity in the molecular composition of BK channels, which can be achieved, among other mechanisms, by differential expression of BKβ subunits and BKα splice variants. BK channels are usually composed by four BKα pore-forming subunits and auxiliary β subunits. To date, four different BKβ subunits have been ascertained (encoded by KCNMB1 to 4), which display tissue-specific distribution and differentially modulate I_{BK}.8-13 On the contrary, BKα subunits are encoded by a single gene, KCNMA1, from which a wide diversity of variants can be originated through alternative splicing.14 At least 13 splice sites have been described for KCNMA1.6,15 Some of them have been identified in many species and tissues, and thus are considered to be ubiquitous and conserved across species (Table 1). However, the particular molecular composition of BK channels and how this identity modulates I_{BK} in different tissues still remains greatly unknown.

We have recently shown that principal neurons from canine intracardiac ganglia (ICG) express a conspicuous BK current...
ARTICLE ADDENDUM

IAMG, lane 2). Their molecular

16-

Variants (aa)

MDALI-

α

MANG

DEC

Fig. 1Ba

Fig. 1Bc

19-

It

Fig.

-2+

Fig. 3A

-3

VYR,

Our

STREX

α

α

+3

www.landesbioscience.com Channels 323

is not due to intrinsic inactivation of

vation.

dependence, activation and deactivation

units modulate channel’s biophysical

BK channel

preparation.

the BK channel observed in this native

performed immunofluorescence staining

of partially dissociated ICG. IC neurons

expressed the β4 subunit (Fig. 1B), and

all those cells that expressed this subunit

also expressed the BK channel α subunit

(Fig. 1Bb). On the contrary, staining for

β2 and β3 subunits was only observed

in a low percentage of neurons (Fig. 1Bc

and 1Bd, respectively). These data are in

agreement with the lack of single channel

inactivation observed in our previous

article. In addition, they strongly suggest

that β4 subunit (and β1 to a lesser extent)

is a likely candidate for modulating \(I_{\text{BK}} \)
in these cells.

Calcium- and voltage-dependence of

single BK channels in IC neurons. Our

previous whole cell current studies could

not provide detailed information on BK

channel calcium- and voltage-dependence.

To cover this aspect, we studied the

single channel voltage-dependence at dif-

ferent calcium concentrations in excised

patch experiments from our native prepa-

ration. Figure 2 depicts examples of single

channel recordings at increasing calcium

concentrations and the open probabil-

ity (Po) vs. voltage relationship for the

calcium concentrations assayed. The

analysis of voltage- and calcium-depen-

dence led to \(V_{1/2 \text{ vs. Po}} \) values of

−35.7 ± 11.1 mV, 29.8 ± 2.2 mV and 70.0 ± 15.1 mV;
at 10, 3 and 0.3 μM Ca\(^{2+}\), respectively.

These results deviate from similar analy-

sis using heterologous expression of BKα

and either β1 or β4 subunits.8,9,17,18 These
deviations could be due to the possibility

that in our native preparation, more

than one β subunit modulates the BKα

subunit. Alternatively, or in addition, a

BKα isoform different from that used in

the heterologous expression studies could

be expressed in canine IC neurons.

A combination of BK channel

α-subunit variants is expressed in canine

ICG. Multiple splice sites (SS) have been
described for the BK channel α sub-

unit.6 Some of the resulting splice vari-

ants have been reported to modulate BK

channel electrophysiological properties.

In the present study, we have focused on
six particular SS (Table 1) to determine

which of the associated splice variants

were expressed in canine ICG. A sum-

mary of the results obtained is shown in

Table 2. Of note, PCR amplification of the

SS1 region originated two ampli-

cons (Fig. 3A, lane 2). Their molecular

weights were compatible with the SS1-

insertless variant (lower band) and the

variant bearing an insertion of 4aa at

the SS1 site (upper band). Sequencing

of both PCR products confirmed their

anticipated identities. When the SS2

region was amplified in ICG, we observed
a band compatible with the shorter

(58aa) STREX splice variant (Fig. 3A,
lane 3, upper band). Additionally, two

bands with lower mobility were also

observed in this tissue. Their molecular

weight was compatible with the Zero

and +4 variants. Their identities were

confirmed by sequencing. PCR analysis
of the SS3 region and sequencing of the
obtained band evidenced the expression
of the SS3-Zero variant. Regarding the

SS4 region, a band compatible with the

slo27 variant was detected (Fig. 3A,
lane 5, middle band). Two additional bands

were also observed. Sequencing of these

3 amplicons confirmed the expression of

the slo27 variant and the SS4-Zero vari-

ant (lower band). The upper band cor-

responded to a heteroduplex of Zero and
slo27, a phenomenon previously reported

by Lai and McCobb respect to SS2.19

We also determined the splicing vari-

ants at the N- and C-terminus of the

BK channel α subunit in canine ICG.

Sequenceing of the PCR products obtained

upon amplification of the N-terminal

region evidenced the presence of tran-

scripts bearing the MSS translational

start site. As this start site is in frame

with the 3’ start site beginning MDALI,

we cannot ensure the presence of tran-

scripts starting with the latter start site
in ICG. Regarding the C-terminus, we

were able to detect the presence of the 3

most common variants at this site, end-

VYR, DEC and ERL. A schematic

Table 1. Description of the analyzed splice sites

Splice site	Variant (aa)	Named
5′	+66	MANG
	+36	MSS
	0	MDALI
SS1	+4	+4
	+58/61	STREX
SS2	+29	e22
	+3	+3
SS3	+8	+8
SS4	+27	Slo27
3′	+8	VYR
	+61	DEC
	+8	ERL

The table shows the more common variants described for each of the splice sites (SS) analyzed, the number of aminoacids (aa) added to originate each variant and the name by which they are usually known. The Zero variant, which corresponds to the absence of insertion, has been described for SS1 to SS4. The VYR and ERL splice variants have the same number of aa but different sequences.

\(I_{\text{BK}} \), which plays a role in their excitabil-

ity. We demonstrated that these channels do not present intrinsic inactivation and that the decline of the BK whole cell current was most likely dependent on the intracellular calcium concentration. In the present work, we aimed to further explore the molecular constituents of BK channels in canine IC neurons. Our results suggest that the presence of several splice variants of the BKα subunit, modulated by β4 and/or β1 subunits, may explain the voltage- and calcium-dependence of the BK channel observed in this native preparation.

Results

BK channel β1 and β4 regulatory sub-

units are expressed in canine ICG. It is

well known that BK channel β sub-

units modulate channel’s biophysical

properties, including activation voltage-

dependence, activation and deactivation

kinetics, and inactivation.16 In particular,

the β2 and β3 regulatory subunits are

known to be responsible for \(I_{\text{BK}} \) inacti-

vation.13 Our recent studies showed that

the inactivation of \(I_{\text{BK}} \) from canine ICG

is not due to intrinsic inactivation of
subunit has been reported to be mainly expressed in brain and has complex Ca$^{2+}$-dependent effects. However, the $V_{1/2}$ values obtained at different Ca$^{2+}$ concentrations in canine IC neurons do not completely match those previously reported in similar conditions in heterologous expression systems. (2) Multiple BKα splice
variants are expressed in canine ICG. We have characterized, for the first time, the BKα splice variants expressed in this native preparation. However, we cannot address to which extent each of them will effectively contribute to BK current in IC neurons. It is notable that the specific splice variants’ combination identified in canine ICG is somewhat different from that detected in canine brain (Table 2). This observation supports the accepted idea of the occurrence of BKα tissue-specific hallmarks given by a particular set of splice variants, which confer unique tissue-specific identity to I_{BK}. Interestingly, we have identified the presence of STREX at SS2 and of slo27 at SS4. These insertions result in the inclusion of 58 and 27 extra amino acids, respectively, and thus are suggested to cause bigger effects on I_{BK} than the shorter insertions that we identified in canine tissues. In fact, several studies have been published that show major effects of the independent inclusion of either variant on I_{BK}. Also, some attempts have been made to study the effects of the simultaneous presence of multiple variants. Again, our $V_{1/2}$ values obtained in canine IC neurons deviate from published results. Our observations suggest that the MSS N-terminus may be expressed in canine ICG, and that the original transcripts will carry one or more insertions. Although at present we cannot define the exact combination of BKα splice variants in ICG, the anticipated portrait is quite different from the expression vectors used in heterologous transfection experiments. Thus, the mismatching between the results presented here and those published elsewhere may not be unexpected. Moreover, one has to bear in mind that the heterologous expression studies are often performed with a single variant, which excludes the possibility of heterotetramers, a channel arrangement likely to occur in our native preparation. Additionally, up to four BKβ can be assembled with the BKα tetramer to render functional channels. Both the number of β subunits and its identity are unfixed and influence BK channel properties. Little is known about the interplay among alternatively spliced α subunit variants and β subunits. Petrik and Brenner performed an elegant characterization of the effects of β4 on STREX BK channels. These studies were performed using a mouse zero BKα subunit, a framework that does not resemble much the BKα in our native preparation. Also, Erxleben and collaborators studied the effects of STREX inclusion and β1 modulation on I_{BK}. Although their assays were performed in the BKα N-terminus MSS background, our results present differences with their observations in terms of calcium- and voltage-dependence, probably due to the predominant expression of β4 in IC neurons. Comparisons among native and heterologous expression preparations are difficult to interpret. Still, our molecular results suggest that BK channels expressed in canine ICG are probably composed of BKα bearing more than one splice variant plus β4 and/or β1. In this line, we recently demonstrated that 100 nM Iberiotoxin blocked BK channels in IC neurons. However, this block occurred at times between 3 and 14 min (data not shown). This behavior perhaps reflects the heterogeneous subunit arrangements of BK channels in ICG, in agreement with the molecular evidence presented here. This heterogeneous expression anticipated in canine ICG for both α and β subunits adds further complexity to the biophysical response of the channel, and warrants further investigation. For example, experiments showing inhibition
of BK current by Protein Kinase A, or an apparent sensitivity to inhibition by oxidation would be indicative of the predominance of BKα-STREX channels in IC neurons.

In summary, in the present addendum we provide molecular evidence for the presence, in canine ICG, of BK channel components known to affect channel function. Although our study does not cover all the possible splice variants reported for this type of channel, it is reasonable to postulate that the splice variants we identified collectively contribute to the functional effect of the BK channel on membrane excitability observed in this native tissue.

Materials and Methods

Canine IC ganglia and neuron isolation. Parasympathetic ganglia and neurons from the atrial ganglionic plexi of the dog were dissociated as previously described. Briefly, canine hearts were obtained, and the fat pads on the ventral, lateral and dorsal aspects of the atrium were quickly removed and placed in a normal Krebs (NK) solution in ice. Individual ganglia were removed from the fat pads and cleaned under a dissection scope. The ganglia were either flash-frozen in liquid N2 for subsequent RNA extraction or dissociated with 0.1% collagenase-elastase and 0.2% trypsin. Individual cells were obtained by triturating the remaining tissue with a Pasteur pipette. Cells were resuspended in Dulbecco’s modified eagle media (DMEM), supplemented with 1% fetal bovine serum, 100 μg/ml penicillin-streptomycin, 2 mM glutamax, 10 μg/ml S7 and 0.11 g/ml pyruvic acid; and plated on collagen coated bottom glass Petri dishes (MatTek Coorp., Ashland, MA). Cells were placed overnight in a CO2 incubator at 37°C. To obtain partially dissociated ganglia, the trituration step was minimized.

Immunohistochemistry. Partially dissociated ganglia were obtained as described above. Ganglia were mounted on glass slides and stained with a standard immunohistochemical technique. Briefly, after fixation with a 4% paraformaldeyde-0.2% picric acid solution and permeabilization with 0.2% Triton X-100, tissue was incubated overnight at 4°C with 1:100/200 dilutions of primary rabbit polyclonal antibodies against the BK channel α subunit or the neuronal marker PGP9.5 and a monoclonal antibody against the BK channel β subunits 2–4 (β2–4). Immunostaining of the β1 subunit was not performed due to the lack of availability of a reliable antibody. Tissue was then incubated with a 1:1,000 dilution of anti-rabbit Alexa-594 and/or antimouse Alexa-488-conjugated secondary antibodies for 2 h at room temperature. Specificity of polyclonal primary antibodies was assayed by preincubation with a control peptide antigen. Ganglia were mounted using Pro-Long antifade mounting media and visualized under a Fluoview Olympus laser scanning confocal microscope (40 oil immersion objective) equipped with argon and He/Ne lasers. Optical sections were taken through the entire volume of the cell with the XY frame set to 512 x 512 pixels and the Z-axis was changed in 0.5 to 1 micron increments. Sections were scanned sequentially to avoid bleaching artifacts. Images shown are individual confocal sections.

Electrophysiological recordings. Current measurements were obtained using the patch-clamp technique in excised patch configuration. Solutions were applied with a gravity flow system (speed 1–3 ml/min) to a 150 μl bath chamber. Electrode shanks were coated with dental wax and tips fire polished to a tip diameter of aprox. 1 μm. Electrode resistances were 8–10 MΩ. Data acquisition and analysis: Experiments were controlled with an Axopatch 200A amplifier and pClamp 9.0/Digidata 1440A acquisition system (Molecular Devices). All experiments were acquired online for later analyses with Clampfit (Molecular Devices). Voltage activation curves for single-channel experiments were fitted with a two state Boltzmann equation of following form: Po = Po_max + (Po_min - Po_max)/1 + exp([V - V1/2]/dV), where Po_max and Po_min are the maximum and minimum Po asymptotes, respectively, V is the holding potential, V1/2 is the voltage for half maximal activation, and dV represents the slope factor. Single channel data analysis was performed using Clampfit as previously described in Scornik et al. Briefly, Po was determined by either all-point amplitude histogram or event detection with 50% amplitude criteria. All recordings were performed at 20–22°C.

Table 2. Splice variants identified in canine ICG and brain

Splice site	Splice variant	ICG	Brain
5′	MANG	−	−
	MSS	+	+
	MDALI	+ (?)	+ (?)
SS1	ZERO	−	+
	+4	+	+
	−3	+	+
SS2	STREX	+	−
	e22	−	−
SS3	ZERO	+	+
	+8	−	−
SS4	ZERO	+	+
	Slo27	+	+
3′	VYR	+	+
	DEC	+	+
	ERL	+	+

The table displays the results of sequencing the RT-PCR products for canine ICG and brain, as described in methods. The presence (+) or the absence (−) of each splice variant is indicated. Question marks are used to state that we cannot ensure the presence of transcripts starting with the MDAL1 start site (the three start sites are in the same reading frame, and cDNA sequencing does not allow discrimination). The STREX variant identified in ICG corresponds to the short isoform published (+58aa).
NeuroMab and secondary Alexa conjugated antibodies were from Invitrogen.

RT-PCR. Total RNA was extracted from ICG using the RNasy Micro Kit (Qiagen) and from brain using the RNasy Fibrous tissue Mini Kit (Qiagen), following the manufacturer’s recommendations. DNase treatment of the RNA samples was performed using the DNA-free Kit from Ambion. Reverse transcription was performed using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) as per manufacturer’s directions. Primers used are available upon request. The PCR products were analyzed by electrophoresis on 2% agarose gels.

Sequencing. DNA was extracted from bands in the agarose gels using the PCR clean-up Gel extraction kit (Macherey-Nagel GmbH and Co. KG). All DNAs were directly sequenced in both directions by electrophoresis on 2% agarose gels.

Expected amplicons, in bp: SS1: 107 (without insert, −) and 119 (including insert, +); SS2: 172 (−), 346 (+, STREX-short isoform), 355 (+, STREX-long isoform), 259 (+, e22), and 181 (+, +3); SS3: 79 (−) and 103 (+); SS4: 208 (−) and 289 (+). n = 1–4.

Schematic representation of the genomic organization that leads to the alternative C-terminus identified in canine ICG. The uppermost scheme (a) illustrates the genomic organization of KCNMA1 C-terminus (not in actual scale). The schemes below represent the assemblies identified in ICG (b, c and d) and those previously reported for canine tissue (d and e). Boxes represent exons and are labeled with roman numbers, and dashed lines represent introns. Arrowheads mark the approximate localization of stop codons. Exons that are included in a given splice variant are connected by solid lines. Exons not included are dashed. In e, the box labeled “del a” indicates a deletion of an adenine at the indicated splice site. The resulting aminoacid sequences are shown on the right. The arrows indicate splice sites and asterisks mark stop codons. Note that only one of the assemblies previously described (d) was present in ICG. The other two assemblies identified (b and c) had not been formerly reported in canine tissue.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

The authors would like to thank Yuesheng Wu for technical assistance in initial molecular biology experiments. This work was supported in part by a National Institute of Health grant HL073161 to GJP, an American Heart Association grant 0335446T to FSS, a grant from the Obra Social “La Caixa” to RB and a Sara Borrell postdoctoral fellowship CD11/00063 from the Instituto de Salud Carlos III to ES.

Figure 3. Multiple BK channel splice variants are expressed in canine ICG. (A) Picture depicts the results of RT-PCRs performed as described in Methods using specific primers for some BK channel splice sites (SS). A molecular marker (MK) and the PCR products were resolved in 2% agarose gels. Expected amplicons, in bp: SS1: 107 (without insert, −) and 119 (including insert, +); SS2: 172 (−), 346 (+, STREX-short isoform), 355 (+, STREX-long isoform), 259 (+, e22), and 181 (+, +3); SS3: 79 (−) and 103 (+); SS4: 208 (−) and 289 (+). n = 1–4. (B) Schematic representation of the genomic organization that leads to the alternative C-terminus identified in canine ICG. The uppermost scheme (a) illustrates the genomic organization of KCNMA1 C-terminus (not in actual scale). The schemes below represent the assemblies identified in ICG (b, c and d) and those previously reported for canine tissue (d and e). Boxes represent exons and are labeled with roman numbers, and dashed lines represent introns. Arrowheads mark the approximate localization of stop codons. Exons that are included in a given splice variant are connected by solid lines. Exons not included are dashed. In e, the box labeled “del a” indicates a deletion of an adenine at the indicated splice site. The resulting aminoacid sequences are shown on the right. The arrows indicate splice sites and asterisks mark stop codons. Note that only one of the assemblies previously described (d) was present in ICG. The other two assemblies identified (b and c) had not been formerly reported in canine tissue.

References

1. Franciosini F, Hogg R, Catracuzzo L, Peters A, Trequattrini C, Adams DJ. Large-conductance calcium-activated potassium channels in neonatal rat intracardiac ganglion neurons. Pfuiers Arch 2001; 441:629-38; PMID:11294244; http://dx.doi.org/10.1007/s004240000471.
2. Mervia LA, Sconnik FS, Parsons RL. Ca(2+)-induced Ca(2+)-release activates spontaneous miniatures outward currents (SMOCs) in parasympathetic cardiac neurons. J Neurophysiol 1999; 82:540-50; PMID:10444654.
3. Pérez-GJ, Desai M, Anderson S, Sconnik FS. Large-conductance calcium-activated potassium current modulates excitability in isolated canine intracardiac neurons. Am J Physiol Cell Physiol 2013; 304:C280-6; PMID:23195072; http://dx.doi.org/10.1152/ajpcell.00148.2012.
4. Chen L, Tian L, MacDonald SH, McClafferty H, Hammond MS, Huibant JM, et al. Functionally diverse complement of large conductance calcium- and voltage-activated potassium channel (BK) alpha-subunits generated from a single site of splicing. J Biol Chem 2005; 280:35599-609; PMID:16081418; http://dx.doi.org/10.1074/jbc.M505383200.
5. Ha TS, Jeong SY, Cho SW, Jeon Hk, Roh GS, Cho WS, et al. Functional characteristics of two BKCa channel variants differentially expressed in rat brain tissues. Eur J Biochem 2000; 267:910-8; PMID:10651830; http://dx.doi.org/10.1046/j.1432-1327.2000.01076.x.
6. Poulsen AN, Wulf H, Hay-Schmidt A, Jansen-Olesen I, Olesen J, Klaerke DA. Differential expression of BK channel isoforms and beta-subunits in rat neuro-vascular tissues. Biochim Biophys Acta 2009; 1788:380-9; PMID:18992709; http://dx.doi.org/10.1016/j.bbamem.2008.10.001.
7. Xie J, McCobb DP. Control of alternative splicing of potassium channels by stress hormones. Science 1998; 280:443-6; PMID:9545224; http://dx.doi.org/10.1126/science.280.5362.443.
8. Behrens R, Nolting A, Reimann F, Schwarz M, Waldschütz R, Pongs O. hKCNMB3 and hKCNMB4, cloning and characterization of two members of the large-conductance calcium-activated potassium channel beta subunit family, FEBS Lett 2000; 474:99-106; PMID:10828459; http://dx.doi.org/10.1016/S0014-5793(00)01584-2.
9. Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW. Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem 2000; 275:6453-61; PMID:10692449; http://dx.doi.org/10.1074/jbc.275.9.6453.
10. Conterras GF, Neely A, Alvarez O, Gonzalez C, Latorre R. Modulation of BK channel voltage gating by different auxiliary β subunits. Proc Natl Acad Sci U S A 2012; 109:18991-6; PMID:23132204; http://dx.doi.org/10.1073/pnas.1216953109.

11. Meera P, Wallner M, Toro L. A neuronal beta subunit (KCNM6) makes the large conductance, voltage- and Ca^{2+}-activated K^+ channel resistant to charybdotoxin and iberiotoxin. Proc Natl Acad Sci U S A 2000; 97:5562-7; PMID:10792058; http://dx.doi.org/10.1073/pnas.1001895.

12. Orio P, Torres Y, Rojas P, Carvacho I, Garcia ML, Toro L, et al. Structural determinants for functional coupling between the beta and alpha subunits in the Ca^{2+}-activated K^+ (BK) channel. J Gen Physiol 2006; 127:191-204; PMID:16446507; http://dx.doi.org/10.1085/jgp.200509370.

13. Xia XM, Ding JP, Lingle CJ. Molecular basis for the inactivation of Ca^{2+}- and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells. J Neurosci 1999; 19:5255-64; PMID:10377337.

14. Tseng-Crank J, Foster CD, Krause JD, Mertz R, Godinot N, DiChiara TJ, et al. Cloning, expression, and distribution of functionally distinct Ca(2+)-activated K^+ channel isoforms from human brain. Neuron 1994; 13:1315-30; PMID:7993625; http://dx.doi.org/10.1016/0896-6273(94)90418-9.

15. Fodor AA, Aldrich RW. Convergent evolution of alternative splices at domain boundaries of the BK channel. Annu Rev Physiol 2009; 71:19-36; PMID:18694345; http://dx.doi.org/10.1146/annurev.physiol.010908.163524.

16. Orio P, Rojas P, Ferreira G, Latorre R. New disguises for an old channel: MaxiK channel beta-subunits. News Physiol Sci 2002; 17:156-61; PMID:12136044.

17. Gruslova A, Semenov I, Wang B. An extracellular domain of the accessory β1 subunit is required for modulating BK channel voltage sensor and gate. J Gen Physiol 2012; 139:57-67; PMID:22155735; http://dx.doi.org/10.1085/jgp.201110698.

18. Petrik D, Brenner R. Regulation of STREX exon large conductance, calcium-activated potassium channels by the beta4 accessory subunit. Neuroscience 2007; 149:789-803; PMID:17945424; http://dx.doi.org/10.1016/j.neuroscience.2007.07.066.

19. Lai GJ, McCobb DP. Regulation of alternative splicing of Slo K^+ channels in adrenal and pituitary during the stress-hyporesponsive period of rat development. Endocrinology 2006; 147:3961-7; PMID:16675526; http://dx.doi.org/10.1210/en.2005-1551.

20. Erxleben C, Everhart AL, Romeo C, Florance H, Bauer MB, Alcorta DA, et al. Interacting effects of N-terminal variation and strex exon splicing on slo potassium channel regulation by calcium, phosphorylation, and oxidation. J Biol Chem 2002; 277:27045-52; PMID:12016222; http://dx.doi.org/10.1074/jbc.M203087200.

21. Jones EM, Gray-Keller M, Fetiprole R. The role of Ca^{2+}-activated K^+ channel spliced variants in the tonotopic organization of the turtle cochlea. J Physiol 1999; 518:653-65; PMID:10420004; http://dx.doi.org/10.1111/j.1469-7793.1999.0653p.x.

22. Ramanathan K, Michael TH, Fuchs PA. beta subunits modulate alternatively spliced, large conductance, calcium-activated potassium channels of avian hair cells. J Neurosci 2000; 20:1675-84; PMID:10684869.

23. Wang YW, Ding JP, Xia XM, Lingle CJ. Consequences of the stoichiometry of Slo1 alpha and auxiliary beta subunits on functional properties of large-conductance Ca^{2+}-activated K^+ channels. J Neurosci 2002; 22:1550-61; PMID:11880485.

24. Scornik FS, Bucciero RS, Wu Y, Selga E, Bosch Calero C, Brugada R, et al. DiBAC4(3) hits a “sweet spot” for the activation of arterial large-conductance Ca^{2+}-activated potassium channels independently of the β1-subunit. Am J Physiol Heart Circ Physiol 2013; 304:H1471-82; PMID:23542916; http://dx.doi.org/10.1152/ajpheart.00939.2012.