Continental shelves and slopes comprise less than 20% of the world ocean area, yet they are proposed to be quantitatively important sources of the organic matter that fuels respiration in the open ocean’s interior. At least certain regions of the coastal ocean produce more organic carbon than they respire, suggesting that some fraction of this non-respired, unburied organic carbon is available for export from the coastal to the open ocean. Previous studies of carbon fluxes in ocean margins have not considered the potential roles of dissolved organic carbon (DOC) and suspended particulate organic carbon (POC_susp), even though considered the potential roles of dissolved organic carbon (DOC) as a result of nuclear weapons testing during the late 1950s and early 1960s. The radioisotopic form of carbon, 14C (half-life, 5,730 yr), can be used as an indicator of the average age of bulk marine organic carbon, and the 13C values (range: -21.3‰ to -22.4‰; J.E.B., unpublished data), this DO2C appears to be predominantly marine in origin (fully marine DOC has δ13C values ranging from about -2 to -18‰).

The Δ14C values of DOC from shallow surface waters (5 m depth) of the WNA continental slope were highly variable, ranging over 200‰ (Fig. 1a). In mid-depth slope waters (300 m and 750 m; Fig. 1a, b), Δ14C-DOC values were significantly lower than (that is, more negative in Δ14C) by 75 to 150‰ relative to DOC from similar depths in the central North Atlantic gyre (276 to -260‰ in the Sargasso Sea (SS)). At 1,000 m depth, the Δ14C-DOC profiles of WNA slope water and those of SS water converged towards similar values. These data indicate the presence of δ14C-depleted DOC at mesopelagic depths in WNA slope waters. On the basis of its δ13C values (δ13C range: -21.3‰ to -22.4‰; J.E.B., unpublished data), this DO2C appears to be predominantly marine in origin (fully marine DOC has δ13C values ranging from about -2 to -18‰).

The Δ14C values of POC_susp from the WNA ranged from -190 to +80‰ and were significantly lower than Δ14C of POC_susp from the SS (Fig. 1b). Δ14C values more positive than about -70 to -40‰ are considered to be post-bomb (that is, later than early 1950s to early 1960s). The average δ13C values in WNA slope waters were greater (more positive in δ13C) than in SS slope waters (Fig. 1a, b). The Δ14C-DOC profiles of Santa Monica basin were 20.0‰ to 24.9‰ of the average Δ14C for the temperate and tropical surface ocean was in this range. The δ13C values in POC_susp (range: -22.9‰ to -24.9‰; J.E.B., unpublished data) suggest that terrestrial carbon (with an assumed average δ13C = -27‰) may have contributed slightly more to POC_susp than to DOC in WNA slope waters. The similar offsets in Δ14C for both DOC and POC_susp between the WNA and the SS (Fig. 1a, b) suggest that the same or related mechanisms may control inputs of δ14C-depleted DOC and POC_susp to WNA slope waters. Similar to the WNA, profiles from the ENP also indicate a net depletion in δ14C (that is, more negative Δ14C values) of both DOC and POC_susp relative to the central North Pacific (CNP) gyre. The lowest Δ14C-DOC values in the ENP occurred, also like the WNA, at shallow to intermediate depths (0–700 m), and Δ14C-DOC values in the ENP were lower than in the CNP at all depths (Fig. 1c). The Δ14C-DOC values in Santa Monica basin were also, with the exception of the single 850-m sample, lower than values in the CNP (Fig. 1c). Significantly lower Δ14C values of POC_susp were likewise observed at all depths in both the ENP and Santa Monica Basin relative to the CNP gyre. The average difference in Δ14C-DOC between WNA and SS waters was greater than the corresponding margin-central gyre difference in the North Pacific (compare Fig 1a, c); the margin–central gyre offset in δ14C of POC_susp was also greater overall in the North Atlantic (compare Fig. 1b, d). The corresponding δ13C values for DOC (range: -20.5‰ to -21.7‰ (ref. 12)) and POC_susp (range: -20.0‰ to -22.9‰ (ref. 11)) in ENP waters were greater (more positive) as a whole than for DOC and POC_susp from the WNA.
Concentrations of DOC were greatest in shallow (0 to ~100 m) WNA (J.E.B., unpublished data) and ENP, slope and rise waters and decreased with increasing depth. With the exception of ~300 m depth in the WNA and 0 to 700 m depth in the ENP, DOC in slope and rise waters exceeded by 4–9 μM those concentrations measured previously in North Atlantic and Pacific central gyre waters3–8 (Table 1). Suspended POC concentrations were up to an order of magnitude higher in surface waters of the slope and rise than in surface waters of both the SS (J.E.B., unpublished data; ref. 9) and CNP. At depths ≥~500 m, POC susp concentrations in slope and rise waters were in all cases ~2–3 times (2–3 μg C l–1) greater than in the deep SS and CNP, where POC susp concentrations were ~0.6–1 μg C l–1 (Table 1).

The elevated DOC and POC susp concentrations in slope (in the WNA) and rise (in the ENP) waters, together with lower δ14C values in both pools, indicate that organic matter older than that in the North Atlantic and Pacific central gyres is present in ocean margins and that it is potentially available for export to the open ocean. The origin(s) of this old, 14C-depleted carbon to continental slope and rise waters is (are) not known, but several possibilities may be considered. In the WNA, the reintroduction to the water column of old sedimentary organic carbon (both as DOC and POC susp) from weathered shelf and upper slope sediments16–17 may contribute to the highly 14C-depleted (δ14C as low as about ~700‰) colloidal and dissolved organic carbon observed in near-bottom waters in the Middle Atlantic Bight18 as well as to the 14C-depleted POC susp (Fig. 1b). The WNA may also at times be influenced by upwelled Antarctic Intermediate Water19 which could contain a component of older, higher-concentration DOC. However, this mechanism is unlikely to account for the elevated concentrations of 14C-depleted POC susp also found in the WNA (Fig. 1b). Finally, the presence of trace amounts of hydrocarbons (with δ13C of about 1,000‰) from submarine seeps off California20 could impart lower-than-average δ14C values to the DOC pool (but less likely so to the POC susp pool) of the ENP compared with areas remote from seepage (such as the CNP). Thus, the older DOC and POC susp in these two ocean margin systems may arise from multiple system-specific sources or from a common source such as weathered shelf and slope sediments.

The DOC and POC susp in North Atlantic and North Pacific waters can be shown conceptually to consist of a mixture of both old, conservative material that has aged in the deep ocean and of young labile material recently which was significantly greater. All POC susp samples from the WNA slope were significantly depleted in δ14C relative to the Sargasso Sea δ14C-POC susp profile, with the exception of the single 750-m sample, which was not significantly different. c, Values of δ14C of DOC (open circles with solid line-of-best-fit added), and d, POC susp (filled circles) from the eastern North Pacific (ENP) including a continental rise site off central California at 34°50’N, 123°00’W and Santa Monica basin (star symbols) in the southern California continental borderlands. Symbols for δ14C of DOC in the ENP (open circles) represent individual samples measured on six separate occasions between July 1991 and July 1993. Symbols for δ14C of POC susp in the ENP (solid circles) represent mean values (±1σ) of four profiles measured between February 1992 and July 1993 (ref. 11). Also shown are profiles of δ14C-DOC and δ14C-POC susp (both dashed lines) determined previously for the central North Pacific (CNP)17. Errors associated with δ14C AMS analyses of both DOC and POC susp are smaller than symbols and averaged ±6‰. a, Values of δ13C of DOC (open circles with solid line-of-best-fit added), and b, POC susp (filled circles) from the western North Atlantic (WNA). Also shown are δ13C-DOC and δ13C-POC susp profiles determined previously for the Sargasso Sea. DOC and POC susp collection and sample-processing techniques are given in refs 9 and 12. Briefly, DOC samples (650 ml of 0.7-μm-filtered sea water) were oxidized to CO2 by high-energy (2,400 W) ultraviolet irradiation for 2 h. POC susp samples were collected from up to several thousand litres of sea water using in situ pumps with 0.7-μm quartz-fibre filters followed by sealed-tube combustion of sample filters to produce CO2. Procedures for conversion of sample CO2 to graphite and subsequent 14C analysis by accelerator mass spectrometry (AMS) are presented in ref. 30. All δ13C data are corrected for sample δ13C (data not shown) and are reported using the conventions of Stuiver and Polach13. Errors associated with δ13C AMS analysis are smaller than the symbols and averaged ±6‰. Errors due to blank corrections for DOC and POC susp samples from the WNA only (filled symbols) are as follows: 5-m samples, ±1 ‰; 300–1,000-m samples, ±20–60 ‰, with the exception of one 300-m sample (–171 ‰), which had an error of ~80 ‰. The DOC concentrations of the WNA slope were significantly depleted in δ13C relative to the SS δ13C-DOC profile, with the exception of the single 1,000-m sample (δ13C = – 0.48‰) which has not significantly different, and the single 5-m sample (δ13C = – 107 ‰) which was significantly greater. All POC susp samples from the WNA slope were significantly depleted in δ13C relative to the Sargasso Sea δ13C-POC susp profile, with the exception of the single 750-m sample, which was not significantly different.
produced in the photic zone. Using a mass-balance approach, it has been calculated that surface seawater $\Delta ^{14}C$ values for the central North Pacific and North Atlantic Oceans are -155% and -214%, respectively, which agree well with measured values of -153% and -210%, respectively. A similar calculation is made here for surface (5 m) slope water of the central WNA, which has the highest $\Delta ^{14}C$-DOC value (-107%). All WNA slope waters examined. The background DOC from deeper (300–1,000 m) waters of the central WNA slope has a mean concentration of 52 μM (J.E.B., unpublished data) and a mean $\Delta ^{14}C$ of -421% (Fig. 1a).

The concentration of surface slope water is 91% μM (J.E.B., unpublished data), giving a calculated $\Delta ^{14}C$ of the ‘excess’ surface DOC component (with a concentration of 91 μM, minus 52 μM, or 39 μM) of $+311\%$. This $\Delta ^{14}C$ value is high and similar to previous measurements of humic substances in Amazon river water (refs 7–9) and reflects the input of post-bomb, terrestrial carbon to shallow central WNA slope waters which are influenced by inputs from rivers and estuaries.

The same calculation when applied to shallow WNA waters yields a different conclusion. Using a deep, background mean DOC concentration of 51 μM (J.E.B., unpublished data) and a $\Delta ^{14}C$-DOC value of -435% (Fig. 1a), and a DOC concentration and $\Delta ^{14}C$-DOC value in shallow slope waters of 83 μM (J.E.B., unpublished data) and -306% (Fig. 1a), respectively, then the $\Delta ^{14}C$ of the ‘excess’ surface DOC component (with a concentration of 83 μM minus 51 μM, or 32 μM) is calculated to be -100%. This $\Delta ^{14}C$-depleted component of excess DOC added to southern WNA surface slope water (about 400 μM lower than the ‘excess’ component in central WNA slope surface waters) is reflective of an older source of carbon to the surface DOC pool, perhaps originating from shelf and slope porewaters and sediments that are advected seaward. Similar calculations for POC susp using this simple model are not justified because of the ~10-fold greater concentrations of POC susp in surface compared with deeper waters. For DOC, however, it is clear that sources having highly disparate $\Delta ^{14}C$ may contribute to the surface ocean pool, leading to the high degree of variability observed in the WNA.

The existence of positive concentration gradients between the margins and deep open ocean and between the surface and deep open oceans indicates that both margins and the surface ocean may serve as sources of DOC and POC susp to the deep central gyres (Table 1). We can estimate by ^{14}C mass balance the relative potential contributions of each of these sources to the deep North Atlantic and Pacific using the following simplifying assumptions: (1) the deep central North Atlantic and Pacific are in steady state with respect to $\Delta ^{14}C$ values and concentrations of DOC and POC susp (refs 7–9); (2) the two dominant sources of DOC and POC susp to the deep central gyres are lateral inputs of ^{14}C-depleted material derived from the margins and vertical inputs of ‘modern’, ^{14}C-enriched material derived from surface ocean production; and (3) the margin-to-deep open ocean and surface-to-deep open ocean gradients observed in these studies are representative of the North Atlantic and Pacific as a whole. We find that in order to maintain the observed average DOC $\Delta ^{14}C$ values in the deep central gyres, the input of DOC from the margins is calculated to be as much as 25–100 times that of modern, surface ocean-derived carbon; for POC susp, the contribution from margins is smaller than that for DOC but still 5–19 times greater than the contribution of material from the surface (Table 1). These estimates of margin and surface contributions to the deep open ocean have two principal implications: (1) inputs of ‘aged’ organic carbon from the margins to the deep open ocean may surpass inputs derived from recent surface ocean production; and (2) in view of the much larger surface-to-deep than margin-to-deep concentration gradients, most young, surface-derived material must be degraded, allowing a smaller but more highly refractory margin component to contribute proportionally more to the deep central gyres.

Lateral transport of organic matter from margins to pelagic and abyssal environments has been invoked previously to help explain carbon and oxygen anomalies in the deep ocean. Transport of ^{14}C-depleted DOC and even POC susp from ocean margins to the central gyres may be facilitated by isopycnal (that is, lateral) eddy diffusion, which can be $10^6–10^7$ times greater than vertical eddy diffusive transport. Although vertical transport of recently produced surface material to the central gyres may also be enhanced by such processes as seasonal thermocline breakdown and rapidly sinking organic particles, we would expect this younger organic carbon to be relatively more susceptible to microbial remineralization; and older margin-derived material. Thus, although the open ocean undoubtedly receives inputs from both its margins and surface production, the $\Delta ^{14}C$ and concentration profiles of DOC and POC susp in the deep central gyres may be maintained by greater relative inputs from the margins than from recent surface production.

Table 1	Relative contributions of margin and surface ocean organic carbon to the deep central gyres					
Dissolved organic carbon	Margin component	Modern surface component	Margin fraction*	Surface fraction*	Margin: surface ratio	
North Atlantic	$\Delta ^{14}C_{POC,SS}$	$\Delta ^{14}C_{DOC,SS}$	$\Delta ^{14}C_{POC,SS}$	$\Delta ^{14}C_{DOC,SS}$	$\Delta ^{14}C_{POC,SS}$	$\Delta ^{14}C_{DOC,SS}$
North Atlantic	$\Delta ^{14}C_{POC,SS}$	$\Delta ^{14}C_{DOC,SS}$				
North Pacific	$\Delta ^{14}C_{POC,SS}$	$\Delta ^{14}C_{DOC,SS}$				
North Pacific	$\Delta ^{14}C_{POC,SS}$	$\Delta ^{14}C_{DOC,SS}$				

Estimates of the relative contributions of margin and surface ocean-derived DOC and suspended POC to the deep central North Atlantic and Pacific gyres. Shown are DOC and suspended POC, $\Delta ^{14}C$ and concentration gradients between the deep open North Atlantic and North Pacific Oceans, their respective margins (WNA and ENP, respectively), and modern surface ocean organic carbon. Also shown are the fractions of margin and surface ocean DOC and POC required to maintain the observed steady-state $\Delta ^{14}C$ profiles of DOC and suspended POC in the deep North Atlantic and Pacific central gyres.

* Relative contributions of margin and surface-derived DOC and POC required to maintain the observed average $\Delta ^{14}C$ values of DOC and POC in the deep central North Atlantic and Pacific gyres. The contribution of each component is described by the mass balance equation (here shown for DOC): $\Delta ^{14}C_{DOC,SS} = \Delta ^{14}C_{DOC,SS,SS} + \Delta ^{14}C_{DOC,SS,S} + \Delta ^{14}C_{DOC,SS,M}$, where $\Delta ^{14}C_{DOC,SS,SS}$ is the surface component, $\Delta ^{14}C_{DOC,SS,S}$ is the surface-to-deep component, and $\Delta ^{14}C_{DOC,SS,M}$ is the margin-to-deep component.

† Mean observed gradients of $\Delta ^{14}C$ values of DOC and POC between margins and deep central gyres.

‡ Mean observed gradients of $\Delta ^{14}C$ values of DOC and POC between surface (average of 0–20 m depth for DOC; average of particle maximum zone for POC susp, typically 20–85 m depth) and deep (~1,000 m depth) central gyre waters.

§ Mean observed gradients of DOC and POC between surface (average of 0–20 m depth for DOC; average of particle maximum zone for POC susp, typically 20–85 m depth) and deep (~1,000 m depth) central gyre waters.

Excludes shallowest depths sampled where concentrations were up to 30 times greater in margins.
Shallow continental shelf and slope waters may also act as low-salinity conduits of younger terrestrial organic matter (J.E.B., unpublished data, and ref. 18), where margins are affected significantly by rivers and estuaries. However, most of this material must also be degraded in nearshore waters or sequestered in sediments as it does not appear to comprise a significant component of open ocean DOC and POC句话。The isotope signatures of DOC and POC句话。The coastal–open ocean boundaries (that is, slope and rise) here indicate that this carbon has mainly a non-recent marine origin and is older than organic carbon from the North Atlantic and Central Pacific gyres. If this material propagates seaward, possibly along isopycnal surfaces, it may represent a source of old DOC and POC to intermediate and deep waters of the interior ocean.

Received 11 September 1997; accepted 21 January 1998.

1. Walsh, J., Rowe, G., Iverson, R. & McRoy, C. Biological export of shelf carbon is a sink of the global CO cycle. Nature 292, 196–201 (1981).
2. Smith, S. & Mackenzie, T. The ocean as a net heterotrophic system: implications for the carbon biogeochemical cycle. In "The Carbon Cycle" (eds Manton, R., Martin, J.-M. & Wallasch, R.J.) 381–385 (Wiley, New York, 1991).
3. Chmura, P., Hagg, C. & Falkowski, P. The Shelf Edge Exchange Processes experiment, SEEP-II: an introduction to hypotheses, results and conclusions. Deep-sea Res. II 41, 231–252 (1994).
4. Chmura, P., Chmura-Hagel, G. The 1983–1984 Shelf Edge Exchange Processes (SEEP-II) experiment: hypotheses and highlights. Cont. Shelf Res. 18, 435–456 (1998).