Regret Analysis of Causal Bandit Problems

Yangyi Lu
Department of Statistics, University of Michigan
yylu@umich.edu

Amirhossein Meisami
Adobe Inc.
meisami@adobe.com

Ambuj Tewari
Department of Statistics, University of Michigan
tewaria@umich.edu

Zhenyu Yan
Adobe Inc.
wyan@adobe.com

Abstract

We study how to learn optimal interventions sequentially given causal information represented as a causal graph along with associated conditional distributions. Causal modeling is useful in real world problems like online advertisement where complex causal mechanisms underlie the relationship between interventions and outcomes. We propose two algorithms, causal upper confidence bound (C-UCB) and causal Thompson Sampling (C-TS), that enjoy improved cumulative regret bounds compared with algorithms that do not use causal information. We thus resolve an open problem posed by Lattimore et al. (2016). Further, we extend C-UCB and C-TS to the linear bandit setting and propose causal linear UCB (CL-UCB) and causal linear TS (CL-TS) algorithms. These algorithms enjoy a cumulative regret bound that only scales with the feature dimension. Our experiments show the benefit of using causal information. For example, we observe that even with a few hundreds of iterations, the regret of causal algorithms is less than that of standard algorithms by a factor of three. We also show that under certain causal structures, our algorithms scale better than the standard bandit algorithms as the number of interventions increases.

1 INTRODUCTION

In a multi-armed bandit (MAB) problem, an agent adaptively learns to pull arms from a finite set of arms based on the past knowledge. At each pull, it observes a single reward corresponding to the arm pulled and its goal is to maximize the cumulative reward received within a time horizon. Bandit models are widely used in various applications, such as education (Williams et al., 2016), clinical trials (Villar et al., 2015; Tewari and Murphy, 2017) and marketing (Burtini et al., 2015; Mersereau et al., 2009).

There are many well-studied stochastic bandit algorithms, such as upper confidence bound (UCB) (Auer et al., 2002) and Thompson Sampling (TS) (Agrawal and Goyal, 2012), that can achieve a regret bound $O(\sqrt{KT})$ where K is the number of arms and T is the time horizon. However, in many real world applications where we search for good interventions, the number of actions is extremely large. An intervention here is defined as a forcible change to the value of a variable.

\tilde{O} ignores constant and poly-logarithmic factors.
As an example of a real world problem with a large space of available interventions, we focus on the email campaign problem. Online advertising companies are constantly looking for an optimal trade-off between exploration and exploitation efforts in order to convert a potential buyer to an actual buyer. In case of email campaigns, the overall target is to maximize the user interaction with the emails that could be defined as opening an email, clicking on a link or eventually buying a product. To achieve these goals, marketers adjust several variables in the process. For instance, they may know that the length of subject, the template, the time of day to send, the product and the type (promotion, online events, etc.) of an email can affect whether a customer who receives the email will click the links inside or not. Every possible assignment of values to these variables can be an intervention leading to an extremely large number of interventions. Therefore, strategic utilization of such interventions is necessary for maximizing the cumulative user conversion throughout the campaign horizon.

A natural approach to deal with a large number of interventions is to exploit relationships between the way different interventions affect the outcome. In this paper, we focus on causal relations among interventions. In particular, we use causal graphs (Pearl, 2000) to represent relationships between interacting variables in a complex system. We study the following problem: using previously acquired knowledge about the causal graph structure, how to quickly learn good interventions sequentially (Sen et al., 2017; Hyttinen et al., 2013)? Our goal is to optimize over a given set of interventions in a sequential decision making framework where the dependence among reward distribution of these interventions is captured through a causal structure.

Lattimore et al. (2016) proposed the first causal bandit algorithm. However, they only provided simple regret guarantees and their bounds scale with the number of interventions in the worst case. Indeed, one of the open problem in their paper is to design algorithms that enjoy a $\tilde{O}(\sqrt{T})$ cumulative regret bound, and utilize the causal structure at the same time. Cumulative regret is considered when both exploration and exploitation are needed, while simple regret is useful when it is important to identify a good intervention at the end of a pure exploration phase.

In many real world problems, we are not simply looking for the best intervention as quickly as possible without consideration of outcomes obtained during the exploration phase. In email campaign or clinical trials problems, a good policy should lead to high revenue and conversions or good health outcomes cumulatively, which are not what a pure exploration method can achieve. Thus we focus on cumulative regret in this paper.

1.1 Our Contributions

We propose two natural and efficient algorithms named as causal UCB (C-UCB) and causal TS (C-TS) by incorporating the available causal knowledge in UCB and TS for multi-armed bandit problems. We use causal knowledge to greatly reduce the amount of exploration needed for good performance.

Suppose there are N variables that are related to the reward and each of them takes on k distinct values, which means changing the value of any of these variables can affect the reward distribution. Note the number of interventions can be as large as $(k + 1)^N$, which means that standard bandit algorithms are only guaranteed to achieve $\tilde{O}(\sqrt{(k + 1)^NT})$ regret. Our proposed causal algorithms exploit the causal knowledge to achieve $\tilde{O}(\sqrt{(k + 1)^nT})$ regret where n is the number of variables

\footnote{Our regret bounds for confidence bound based algorithms will be frequentist while for Thompson sampling they will be Bayesian.}
that have direct causal effects on the reward. These bounds suggest that causal UCB and TS algorithms are preferable to standard UCB and TS algorithms when \(n \ll N \).

We further extend the causal bandit algorithms to linear bandit setting, that leads to our causal linear UCB (CL-UCB) and causal linear TS (CL-TS) algorithms. We show that CL-UCB and CL-TS both achieve \(O(d\sqrt{T}) \) regret, where \(d \) is the dimension of the linear coefficient vector.

To complement our upper bounds, we also provide a lower bound for multi-armed UCB algorithm. For some structured instances with \(n < N \), the regret of multi-armed UCB cumulative is lower bounded by \(\tilde{O}(\sqrt{(k + 1)NT}) \), which is much larger than the upper bounds of our proposed algorithms that utilize causal structures.

Our experiments show the benefit of using causal structure: we observe (see section 6, figure 2) that within hundreds of iterations, our causal algorithms are already achieving regret within \(1/3 \) of the standard algorithms’ regret. In addition, we validate numerically that for certain causal graph structure, C-UCB, C-TS, CL-UCB and CL-TS indeed scale better than standard multi-armed bandit algorithms as the size of intervention set grows.

1.2 Related Work

Causal bandit problems can be treated as multi-armed bandit problems by simply ignoring the causal structure information and the extra observations, so many existing bandit algorithms such as UCB (Auer et al., 2002) and TS (Agrawal and Goyal, 2012) can be applied here. However, causal information should help us learn about an intervention based on the performance of other interventions, which can accelerate the whole learning process.

Our work heavily builds on that of Lattimore et al. (2016). They studied the problem of identifying the best interventions in a stochastic bandit environment with known causal graph and some conditional probabilities of variables in the graph. They proposed two algorithms depending on the type of causal graphs: parallel graph/general graph, and proved two simple regret bounds accordingly. Both bounds scale with a measure for causal graph’s underlying distribution, which is small if every intervention has similar effect on the reward and can be as large as the number of interventions otherwise. Moreover, their algorithm for general graph contains as many parameters as the number of interventions, which are hard to tune. We focus on the cumulative regret and our algorithms are universal for all kinds of causal graphs with no tuning parameters other than that of standard MAB algorithms.

Another work (Sen et al., 2017) also considered best intervention identification via importance sampling, but their interventions are soft. Instead of forcing a node to take a specific value, soft intervention only changes the conditional distribution of a node given its parent nodes. They also only considered simple regret and their bounds scale with the number of interventions.

Sachidananda and Brunskill (2017) studied almost the same setting as our paper. They showed the effectiveness of their causal Thompson Sampling method, but did not provide any regret analysis. Lee and Bareinboim (2018) empirically showed that a brute-force way to apply standard bandit algorithms on all interventions can suffer huge regret. Therefore they proposed a way to carefully choose an intervention subset by observing the causal graph structures. Our lower bound (Theorem 4) provides a theoretical explanation for the phenomenon they observe, namely that brute-force algorithms that try all possible interventions can incur huge regret.
2 PROBLEM SETUP

We follow standard terminology and notation \cite{koller2009probabilistic} to state causal bandit problem introduced by \cite{lattimore2016causal}. A directed acyclic graph G is used to model the causal structure over a set of random variables $\mathcal{X} = \{X_1, \ldots, X_N\}$. P is the joint distribution over \mathcal{X} that factorizes over G. We assume each variable only takes on k distinct values. The parents of a variable X_i, denoted by Pa_{X_i}, is the set of all variables X_j such that there is an edge from X_j to X_i in G. A size m intervention (action) is denoted by $do(X = x)$, which assigns the values $x = \{x_1, \ldots, x_m\}$ to the corresponding variables $X = \{X_1, \ldots, X_m\} \subset \mathcal{X}$. An empty intervention is $do()$. The intervention on X also removes all edges from Pa_X to X_i for each $X_i \in X$. Thus the resulting underlying probability distribution that defines the graph is denoted by $P(X^c|do(X = x))$ over $X^c := \mathcal{X} - X$.

In this causal bandit problem, the reward variable Y is real-valued. A learner is given the causal model’s graph G, a set of interventions (actions) \mathcal{A} and conditional distributions of parent variables of Y given an intervention $a \in \mathcal{A}$: $P(Pa_Y|a)$. We denote the expected reward for action $a = do(X = x)$ by $\mu_a := E[Y|do(X = x)]$. The optimal action is defined as $a^* := \arg\max_{a \in \mathcal{A}} \mu_a$. We assume $\mu_a \in [0, 1]$ for every $a \in \mathcal{A}$. In round t, the learner pulls $a_t = do(X_t = x_t)$ based on previous round knowledge and causal information, then observes the reward Y_t and the values of Pa_Y, denoted by $Z(t) = \{z_1(t), \ldots, z_n(t)\}$, where n is the number of reward’s parent variables. However, in the work of \cite{lattimore2016causal}, they need to observe the values of all variables after taking an action. Thus, comparing to them, the problem we face is more challenging. We know there are k^n different value assignments on Pa_Y, for convenience, we denote them by Z_1, \ldots, Z_{k^n}, where each Z_i is a vector of length n.

The objective of the learner is to minimize the expected cumulative regret $E[R_T] = T\mu^* - \sum_{t=1}^{T} E[\mu_{a_t}]$ using causal knowledge. **Bayesian Regret:** Let $\omega \in \Omega$ denote the entire parameters of the distribution of $Y|Pa_Y = Z$. Reward can be expressed by $Y = E[Y|Pa_Y = Z] + \epsilon$, where ϵ is 1-subgaussian. Thus, the cumulative regret R_T for a given ω can be re-written as $R_T(\omega)$. We particularly focus on the case where ω is random with distribution Q and bound the Bayesian regret,

$$BR_T = E_{\omega \sim Q} E_\epsilon R_T(\omega).$$

Worst Case Regret: Using same notations as above, worst case regret can be expressed by:

$$\max_{\omega \in \Omega} E_\epsilon R_T(\omega).$$

We write the worst case regret as $E R_T$ from now for short. We focus on worst-case regret for causal UCB algorithms and Bayesian regret for causal TS algorithms.

3 CAUSAL BANDIT ALGORITHMS

In this section we propose and analyze algorithms for achieving minimal regret when causal information is known. We generalize standard UCB and standard TS algorithms to their causal counterparts in a natural way. We show how the regret bounds of the causal versions scale with a factor that can be much smaller than what would be the case for the standard algorithms. We

\footnote{Even though our algorithms take G as input, the only information used is the identity of Pa_Y variables.}
Algorithm 1 C-UCB

Input: Horizon \(T \), action set \(A \), \(\delta \), causal graph \(G \), number of parent variables \(n \), number of values each parent variable can take on: \(k \).

Initialization: Values assignment to parent variables: \(Z_j, \hat{\mu}_{Z_j}(0) = 0, T_{Z_j}(0) = 0 \), for \(j = 1, \ldots, k^n \).

for \(t = 1, \ldots, T \) do
 for \(j = 1, \ldots, k^n \) do
 \[
 \text{UCB}_{Z_j}(t-1) = \hat{\mu}_{Z_j}(t-1) + \sqrt{\frac{2\log(1/\delta)}{1\lor T_{Z_j}(t-1)}}.
 \]
 end for
 \(a_t = \arg\max_{a \in A} \sum_{j=1}^{k^n} \text{UCB}_{Z_j}(t-1) P(\text{Pa}_Y = Z_j | a) \)
 Pull arm \(a_t \) and observe reward \(Y_t \) and its parent nodes’ values \(Z(t) \).
 Update \(T_{Z_j}(t) = \sum_{s=1}^{t} 1\{Z(s) = Z_j\} \) and \(\hat{\mu}_{Z_j}(t) = \frac{1}{T_{Z_j}(t)} \sum_{s=1}^{t} Y_s 1\{Z(s) = Z_j\} \), for \(j = 1, \ldots, k^n \).
end for

also extend linear bandit algorithms to their causal version and demonstrate how it further helps us reduce the cumulative regret.

3.1 Algorithms with Known Causal Graph

In the first part of this section we present causal upper confidence bound algorithm (C-UCB) and causal Thompson Sampling algorithm (C-TS).

3.1.1 Causal UCB (C-UCB)

Without causal knowledge, UCB algorithm updates the confidence interval of reward mean for each arm. At every round, the learner chooses the arm with the highest upper confidence bound value. However, thanks to causal graph structures, we are able to make use of the formula

\[
\mu_a = \sum_{j=1}^{k^n} \mathbb{E}[Y | \text{Pa}_Y = Z_j] P(\text{Pa}_Y = Z_j | a).
\]

At every round \(t \), algorithm\[\square\] only updates the reward mean and upper confidence bound for every possible value assignments on reward’s parent variables denoted by \(\text{UCB}_{Z_j}(t-1) \) as \(P(\text{Pa}_Y = Z_j | a) \) terms are known. We choose \(a_t \) which can maximize \(\sum_{j=1}^{k^n} \text{UCB}_{Z_j}(t-1) P(\text{Pa}_Y = Z_j | a) \) over all \(a \in A \). There remains fewer upper confidence bound to construct since usually \(k^n < (k + 1)^N \), so it is reasonable to expect the cumulative regret can be reduced.

Theorem 1 (Regret Bound for C-UCB). Let \(Y | \text{Pa}_Y = Z_j = \mathbb{E}[Y | \text{Pa}_Y = Z_j] + \epsilon \), for \(j = 1, \ldots, k^n \), where \(\epsilon \) is a mean zero, 1-subgaussian distributed random error. If \(\delta = 1/T^2 \), the regret of policy defined in Algorithm\[\square\] is bounded by

\[
\mathbb{E}[R_T] = \tilde{O}\left(\sqrt{k^n T}\right). \quad (1)
\]
Algorithm 2 C-TS with Beta Prior (If $Y \in [0,1]$)

Input: Horizon T, action set A, causal graph G, all $P(Pay|a)$, number of parent variables n, number of values each parent variable can take on: k.

Initialization: Value assignments to parent variables: Z_j, $S^0_{Z_j} = F^0_{Z_j} = 1$, for $j = 1, \ldots, k^n$.

for $t \in \{1, \ldots, T\}$ do

Sample $\hat{\theta}_j(t)$ from beta distn with parameters $(S^t_{Z_j} - 1, F^t_{Z_j} - 1)$, for $j = 1, \ldots, k^n$.

for action $a \in A$ do

$\hat{\mu}_a = \sum_{j=1}^{k^n} \theta_j(t)P(Pay = Z_j|a)$

end for

$a_t = \text{argmax}_a \hat{\mu}_a$.

Pull arm a_t and observe reward \tilde{Y}_t and its parent nodes values of $Z(t)$. Perform a Bernoulli trial with success probability Y_t and observe the output Y_t.

if $Y_t = 1$ then

$S^t_{Z(t)} = S^{t-1}_{Z(t)} + 1$

else

$F^t_{Z(t)} = F^{t-1}_{Z(t)} + 1$

end if

end for

3.1.2 Causal TS (C-TS)

In multi-armed bandit problem, TS algorithm needs to update the posterior distributions for all arms. In this problem, there are $(k + 1)^N$ distributions to update. With causal information, the mean of every intervention $a \in A$ can be written as

$$\mu_a = \sum_{j=1}^{k^n} \mathbb{E}[Y|Pay = Z_j] P(Pay = Z_j|a).$$

In our C-TS algorithm, we only update the posterior distributions for $Y|Pay = Z_j, j = 1, \ldots, k^n$ as $P(Pay = Z_j|a)$ terms are known. Again, since $k^n < (k + 1)^N$ usually holds, it is reasonable to expect the cumulative regret can be reduced.

We provide two C-TS algorithms where algorithm 2 uses beta distribution as its prior and algorithm 3 uses Gaussian distribution as its prior. At every round t, both C-TS algorithms sample from the posterior distributions for $Y|Pay = Z_j, j = 1, \ldots, k^n$, then construct the estimated reward mean denoted by $\hat{\mu}_a$ for $\forall a \in A$. The intervention arm with the highest estimated reward will be pulled, reward Y_t and parent node values $Z(t)$ will be revealed accordingly. Parameters for Beta or Gaussian distribution will be updated according to Beta-Bernoulli and Gaussian-Gaussian prior-posterior updating formulas.

Theorem 2 (Bayesian Regret Bound for C-TS). Let $Y|\text{pay} = Z_j = \mathbb{E}[Y|Pay = Z_j] + \epsilon$, for $j = 1, \ldots, k^n$, where ϵ is a mean zero, 1-subgaussian distributed random error. Then the Bayesian regret of policies in Algorithm 2 and Algorithm 3 are both be bounded by:

$$BR_T = \tilde{O}\left(\sqrt{k^nT}\right).$$ (2)
Algorithm 3 C-TS with Gaussian Prior

Input: Horizon T, action set \mathcal{A}, causal graph \mathcal{G}, all $P(Pay|a)$, number of parent variables n, number of values each parent variable can take on: k.

Initialization: Value assignments to parent variables: $Z_j, kZ_j = 0, \hat{\mu}Z_j = 0$, for $j = 1, \ldots, k^n$.

for $t \in \{1, \ldots, T\} \textbf{ do}$

Sample $\hat{\theta}_j(t) \sim N(\hat{\mu}Z_j, \frac{1}{kZ_j+1})$ for $j = 1, \ldots, k^n$.

for action $a \in \mathcal{A}$ do

$\hat{\mu}_a = \sum_{j=1}^{k^n} \theta_j(t)P(Pay = Z_j|a)$

end for

$a_t = \arg\max_a \hat{\mu}_a$

Pull arm a_t and observe the parent nodes values of Y denoted by $Z(t)$ and reward Y_t.

Update $k_{Z_t} := k_{Z_t} + 1$

Update $\hat{\mu}_{Z_t} := \frac{\hat{\mu}_{Z_t}k_{Z_t}+Y_t}{k_{Z_t}+1}$

end for

4 CAUSAL LINEAR BANDIT ALGORITHMS

Previous section demonstrates how we use causal knowledge to improve the multi-armed bandit algorithms. In our setting, the reward Y directly depends on its n parent nodes, then a natural extension is to consider the linear modeling case:

$$Y|Pay=Z = f(Z)^T \theta + \epsilon,$$

where f denotes the feature function applied on the parent nodes of Y, θ denotes the linear coefficient and ϵ is a zero mean, 1-subgaussian distributed random error.

We can write the expected reward mean for $\forall a \in \mathcal{A}$ as:

$$\mu_a = \sum_{j=1}^{k^n} \mathbb{E}[Y|Pay = Z_j]P(Pay = Z_j|a)$$

$$= \sum_{j=1}^{k^n} f(Z_j)P(Pay = Z_j|a), \theta).$$

To this point, we demonstrate that linearly modeling the reward’s parent nodes is just a special case of standard linear bandit problem, where the feature vector for $a \in \mathcal{A}$ is $m_a := \sum_{j=1}^{k^n} f(Z_j)P(Pay = Z_j|a)$. Thus, we easily extend C-UCB and C-TS to this particular linear bandit setting.

4.1 Causal Linear UCB (CL-UCB) & Causal Linear TS (CL-TS)

CL-UCB and CL-TS are straightforward linear UCB and linear TS algorithms. It is helpful in the sense that the regret dependence on $\sqrt{k^n}$ can be further reduced to the dimension of linear coefficient θ denoted by d.

Theorem 3 (Regret Bound for CL-UCB & CL-TS adapted from Chapter 19 in Lattimore and Szepesvári (2018)). Assume that $\|\theta\|_2 \leq 1$ and $\|f(Z)\|_2 \leq 1$, the dimension of θ and $f(Z)$ are both
\(d\), then run CL-UCB with \(\beta = 1 + \sqrt{2\log(T) + d\log\left(1 + \frac{T}{d}\right)}\) and CL-TS, the regret of CL-UCB and Bayesian regret of CL-TS can both be bounded by
\[
\mathbb{E}[R_{T_{\text{CL-UCB}}}], BR_{T_{\text{CL-TS}}} = \tilde{O}\left(d\sqrt{T}\right).
\] (6)

5 LOWER BOUND

In this section, we demonstrate that for some structured bandit environment where the size of parents \((n)\) of reward variable is smaller than the size of all variables \((N)\), the lower bound of UCB’s regret still scales with \(N\). However, in Section 3 we show the regret upper bound of C-TS and C-UCB only scales with \(n\), it further proves our proposed algorithms outperform the existing multi-armed UCB algorithm.

Consider a bandit environment \(\nu\): \(N\) variables \(X_1, \ldots, X_N\), each can take on values from \(\{1, 2\}\). The marginal distribution for \(X_i\) is \(P(X_i = 1) = p_i\), for \(i = 1, \ldots, N\). The reward node \(Y\) is generated by \(Y = \Delta X_1 + \epsilon\), where \(\epsilon \sim N(0, 1)\).

Actions are denoted by \(do(X_1 = i_1, \ldots, X_N = i_N)\), where \(i_1, \ldots, i_N \in \{0, 1, 2\}\), 0 is an additional dimension for the case that we do not set any value for a variable.

In this example, there are three type of actions:

- Type 1: Actions with \(i_1 = 0\).
- Type 2: Actions with \(i_1 = 1\).
- Type 3: Actions with \(i_1 = 2\).

The expected reward for three types actions are \(2\Delta - p_1\Delta\), \(\Delta\) and \(2\Delta\) respectively. Type 3 actions are optimal arms, while the gaps for type 1 and type 2 are \(p_1\Delta\) and \(\Delta\) respectively.

Theorem 4 (UCB Lower Bound). For any \(\epsilon > 0\), there exists a constant \(C_\epsilon > 0\) such the following holds. In the structured bandit environment \(\nu\) described in the beginning of this section, running multi-arm UCB algorithm will incur regret \(\mathbb{E}R_T(UCB, \nu)\) lower bounded by \(C_\epsilon\sqrt{3^N T^{1/2}}\).

Note: For causal UCB (Algorithm 1) we show that the regret does not grow with \(N\), since there is only one parent node in the given structured bandit environment \(\nu\), its expected regret can be upper bounded by \(32\sqrt{3T\log(T)}\) which is independent of \(N\). Therefore, it is a much better rate than the UCB lower bound given in theorem 4.

6 EXPERIMENTS

We compare the performance of standard bandit with causal bandit algorithms to validate that causal information plays an important role in bandit algorithms. We also show that when the reward is truly generated using a linear combination of the reward’s parent node, CL-TS and CL-UCB can further achieve smaller regrets compared with C-TS and C-UCB that only use causal structures but not the linear property.
6.1 Pure Simulation

We set up a pure simulation environment that will allow us to run scaling experiments in order to qualitatively test the scaling predictions of our theory. Throughout our pure simulations, we use a model in which there is a reward variable Y, reward’s parent variables W_1, \ldots, W_n, taking values from $\{1, 2\}$, and non-parent variables X_1, \ldots, X_n, taking values from $\{1, \ldots, m\}$. Reward Y only depends on its parent variables W_1, \ldots, W_n, while each parent variable W_i only depends on the corresponding non-parent variable X_i ($i = 1, \ldots, n$). The causal graph is displayed in figure 1.

Intervention set: Denote an intervention by $a = \text{do}(X_1 = i_1, \ldots, X_n = i_n)$, where $i_1, \ldots, i_n \in \{0, 1, \ldots, m\}$, 0 is an additional dimension for the case that we do not set any value for a variable. That means only non-parent variables can be intervened, the parent variables of the reward are not under control.

Reward Y is generated by:

$$Y = \langle f(W_1, \ldots, W_n), \theta \rangle + \epsilon,$$

where f is a function applied on parent variables, θ is a n-dimensional vector, ϵ is a sub-gaussian random error.

6.1.1 A Gentle Start: $m = 3, n = 4$

We begin with a simple case where $m = 3, n = 4$. The marginal distributions for X_1, X_2, X_3, X_4 and conditional probabilities for $W_i = 1|X_i, i = 1, \ldots, 4$ are displayed in table 1. For simplicity, we set

$$f(W_1, W_2, W_3, W_4) := (W_1, W_2, W_3, W_4),$$

and the error is a Gaussian variable $\epsilon \sim N(0, 0.1^2)$.

UCB algorithms: The true linear coefficient θ is $(0.25, 0.25, -0.25, -0.25)$. To approximate the expected regret, for each UCB algorithm we plot the average regret over 20 simulations.

TS algorithms: We plot both of the frequentist regret under $\theta = (0.25, 0.25, -0.25, -0.25)$ and the Bayesian regret. For the frequentist one, the procedure is same as UCB algorithms described above.
Figure 2: Regret comparison for $m = 3, n = 4$. Left: UCB regrets. Middle: TS regrets. Right: TS Bayesian regrets.

Figure 3: Cumulative regret v.s. m, fix $n = 4$, time horizon $T = 5000$.

For the Bayesian one, the “true” parameter θ is generated from its prior distribution $N(0, 0.1^2 I_4)$ for 20 times as Monte Carlo simulation. Then we plot the averaged regret over these 20 simulations to approximate the Bayesian regret.

Regret comparison plots are displayed in figure 2.

6.1.2 Scaling with Non-Parent Variables’ Range: m

In this section, we fix $n = 4$ while changing the range of non-parent variables m from 2 to 6 and see how it affects the performance of all six algorithms.

In each simulation, the marginal probabilities for each non-parent variable X_i: $\{P(X_i = j)\}_{j=1}^m$ are generated from independent Dirichlet distributions with parameter $\alpha = 1_m$ and the conditional probabilities $P(W_i = 1|X_i = j), i = 1, \ldots, n; j = 1, \ldots, m$ are generated randomly from $[0, 1]$. Throughout we fix the $\theta = (0.25, 0.25, -0.25, -0.25)$. For each algorithm, the final regret is averaged over 20 simulations. Regret comparison plot is displayed in figure 3.
6.1.3 Scaling with Size of Parent Variables n

In this section we fix $m = 3$ while changing the number of parent/non-parent variables n from 2 to 6. Since X_i takes value from $\{1, 2, 3\}$ and W_i takes value from $\{1, 2\}$, by adding additional pair $W_i \sim X_i$, the intervention size increases much faster than the number of value assignments on parent variables. We compare the performance of six algorithms.

In each simulation, the marginal probabilities for each non-parent variable $\{P(X_i = j)\}_{j=1}^m$ and conditional probabilities for each parent variable $P(W_i = 1|X_i = j), j = 1, \ldots, m$ are sampled in the same way as section 6.1.2. To keep the reward at the same scale as m varies, we use $\theta = (1, 0, \ldots, 0)$, where only the first element of linear coefficient is 1 and other elements are all zeros. For each algorithm, the final regret is averaged over 20 simulations. Regret comparison plot is displayed in figure 4.

6.1.4 Conclusion of Pure Simulation

In figure 2, the left and middle plots demonstrate the performance of algorithms for a fixed causal bandit environment. We observe that for UCB and TS, causal linear algorithms outperform the “non-linear” causal algorithms moderately and all causal algorithms outperform the standard bandit algorithms significantly. In the third plot, we demonstrate the performance using Bayesian regret for three TS algorithms, and their performance order matches with the first two plots.

In figure 3, we fix n and the time horizon T and compare the performance of the algorithm as m increases. The regret of C-UCB, C-TS, CL-UCB and CL-TS do not vary as m increases as their regret only depends on the size of parent variable value assignments. However, the regret of UCB and TS keeps increasing as m grows. Thus, we validate that the performance of our causal algorithms are not affected by the number of interventions on non-parent variables.

In figure 4 we fix m and time horizon T and compare the performance of all algorithms as n grows. The regret of four causal algorithms does not vary a lot as n increases. We show in our theorem that in worst case, the regret of C-TS and C-UCB grow with \sqrt{Kn} and the regret of CL-TS and CL-UCB grow with d for fixed time horizon. But we also observe in this simulation that for certain coefficient such as $\theta = (1, 0, \ldots, 0)$, the growth is even slower. Clearly the regret of standard...
UCB and TS algorithms keeps increasing as \(n \) grows.

6.2 Email Campaign Data

The experimental set up in this section is inspired by the email campaign data from Adobe. The reward variable is binary: whether the commercial links inside the email are clicked or not by the recipient. Features under control are "product", such as Photoshop, Acrobat XI Pro, Adobe Stock, etc., "purpose", such as awareness, promotion, operation, nurture, etc., "send out time" that includes morning, afternoon and evening. Even though these features are highly correlated with the reward variable, but they are not the direct causes. The variables that are actually causing the email links clicking are: the subject length, two different email templates, send out time, and we set these as reward’s parent variables. The three features in blue that can be intervened are further connected with reward’s parent variables as in figure 5. Each combination of product and purpose has an email pool, once they are fixed, the company pick out emails from the pool. So subject length and email body template cannot be intervened, they depend on the emails picking out from the pool, which is a random process.

![Figure 5: Causal Graph for Email Campaign: only blue nodes are under control.](image)

From historical knowledge, email with “subject length” fewer than 7 words are more likely to be opened, so we denote “subject length” by \(Z_1 \), taking values from \(\{1, 2\} \), representing “less than 7 words” or not. “Template” is denoted by \(Z_2 \), taking values from \(\{1, 2\} \), representing template indices “1” or “2”. “Send out time” is denoted by \(Z_3 \), taking values from \(\{1, 2, 3\} \), representing “morning”, “afternoon” and “evening”. We consider “Photoshop” (1), “Acrobat XI Pro”(2), “Adobe Stock” (3) for the “product” variable, denoted by \(X_1 \); “Operational” (1), “Promo” (2), “Nurture” (3) and “Awareness” (4) for purpose variable, denoted by \(X_2 \).

The marginal probabilities for \(X_1 \) and \(X_2 \) and \(Z_3 \), conditional distributions for \(Z_1, Z_2 \) are displayed in Table 2. The reward follows a Bernoulli distribution, with parameter \(1 - (Z_1 + Z_2 + Z_3)/9 \).

Interventions are denoted by \(do(X_1 = i_1, X_2 = i_2, X_3 = i_3) \), where \(i_1, i_3 \in \{0, 1, 2, 3\} \), \(i_2 \in \{0, 1, 2, 3, 4\} \). 0 means no intervention on a variable.

In figure 6, we compare the performance of UCB, C-UCB, TS (beta prior) and C-TS (beta prior). We plot the average regret over 20 simulations to approximate the expected cumulative regret. Clearly both of C-UCB and C-TS outperforms UCB and TS significantly. We also observe that TS algorithms perform better than UCB algorithms, which is consistent with previous empirical discoveries (Chapelle and Li 2011).
7 DISCUSSION & FUTURE WORK

We propose C-UCB and C-TS algorithms and show that their regret can be bounded by $\tilde{O}(\sqrt{knT})$. We further extend linear bandit algorithm to their causal version and show the regret bound of CL-UCB and CL-TS can be reduced to $\tilde{O}(d\sqrt{T})$. There are several interesting directions that we left as future work:

Worst case regret bound for C-TS and CL-TS: In this paper, we analyze Bayesian regret for TS related algorithms. We also observe from pure simulation results in figure 2 and email campaign results in figure 6 such that C-TS and CL-TS work well not only in Bayesian setting, but also in a frequentist setting (true bandit distribution is fixed). It will be a step forward if one can show the worst case regret bound for C-TS and CL-TS.

Extension to MDPs: We plan to extend our causal bandit framework to the MDP (Markov decision process) setting. The key feature in this setting is that the information also depends on a state variable which can be affected by the previous intervention. In many practical settings, including mobile health and online education, each intervention will affect the status of the patient/student in the future. Therefore, using an MDP model is more appropriate for this setting.

Learning causal structure: In many cases the causal structure is not known beforehand or only partially understood. Therefore it is desirable to develop methods that can recover the underlying causal structure and minimize the cumulative regret at the same time. An ideal algorithm that can efficiently learn the causal structure and the bandit together should achieve lower regret than normal bandit algorithms when the time horizon T is large. Ortega and Braun (2014) empirically shows that TS can recover causal structures in some cases. We think that combining causal learning algorithm with those that minimize cumulative regret is an interesting direction to investigate.

8 ACKNOWLEDGEMENTS

Part of this work was done while Yangyi Lu was visiting Adobe. Ambuj Tewari would like to acknowledge the support of a Sloan Research Fellowship and NSF grant CAREER IIS-1452099.
References

Agrawal, S. and Goyal, N. (2012). Analysis of thompson sampling for the multi-armed bandit problem. In Conference on Learning Theory, pages 39–1.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47(2-3):235–256.

Burtini, G., Loeppky, J. L., and Lawrence, R. (2015). Improving online marketing experiments with drifting multi-armed bandits. In ICEIS (1), pages 630–636.

Chapelle, O. and Li, L. (2011). An empirical evaluation of thompson sampling. In Advances in neural information processing systems, pages 2249–2257.

Hyttinen, A., Eberhardt, F., and Hoyer, P. O. (2013). Experiment selection for causal discovery. The Journal of Machine Learning Research, 14(1):3041–3071.

Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles and techniques. MIT press.

Lattimore, F., Lattimore, T., and Reid, M. D. (2016). Causal bandits: Learning good interventions via causal inference. In Advances in Neural Information Processing Systems, pages 1181–1189.

Lattimore, T. and Szepesvári, C. (2018). Bandit algorithms. preprint.

Lee, S. and Bareinboim, E. (2018). Structural causal bandits: where to intervene? In Advances in Neural Information Processing Systems, pages 2568–2578.

Mersereau, A. J., Rusmevichientong, P., and Tsitsiklis, J. N. (2009). A structured multiarmed bandit problem and the greedy policy. IEEE Transactions on Automatic Control, 54(12):2787–2802.

Ortega, P. A. and Braun, D. A. (2014). Generalized thompson sampling for sequential decision-making and causal inference. Complex Adaptive Systems Modeling, 2(1):2.

Pearl, J. (2000). Causality: models, reasoning and inference. Cambridge University Press.

Sachidananda, V. and Brunskill, E. (2017). Online learning for causal bandits. [Online; accessed 2017].

Sen, R., Shanmugam, K., Dimakis, A. G., and Shakkottai, S. (2017). Identifying best interventions through online importance sampling. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 3057–3066. JMLR. org.

Tewari, A. and Murphy, S. A. (2017). From ads to interventions: Contextual bandits in mobile health. In Mobile Health, pages 495–517. Springer.

Villar, S. S., Bowden, J., and Wason, J. (2015). Multi-armed bandit models for the optimal design of clinical trials: benefits and challenges. Statistical science: a review journal of the Institute of Mathematical Statistics, 30(2):199.

Williams, J. J., Kim, J., Rafferty, A., Maldonado, S., Gajos, K. Z., Lasecki, W. S., and Heffernan, N. (2016). Axis: Generating explanations at scale with learnersourcing and machine learning. In Proceedings of the Third (2016) ACM Conference on Learning@ Scale, pages 379–388. ACM.
A Proof for Theorems

We prove theorem 2 before theorem 1 since the former one includes more technical steps and main body of the two proofs are similar.

A.1 Proof of Theorem 2 (C-TS)

Proof. By definition, \(\mu_a := E[Y|a] = \sum_{i=1}^{k^n} E[Y|Pa_Y = Z_i] P(Pa_Y = Z_i|a), \) \(a^* = \text{argmax}_a \mu_a. \)

Define:

\[
T_Z(t) := \sum_{s=1}^{t} 1_{\{Z(s) = Z\}},
\]

\[
\hat{\mu}_Z(t) := \frac{1}{T_Z(t)} \sum_{s=1}^{t} Y_s 1_{\{Z(s) = Z\}},
\]

\[
\mu_Z := E[Y|Pa_Y = Z],
\]

where \(Z(s) \) denotes the observed values of parent nodes for \(Y \), in round \(s \). Note that \(\hat{\mu}_Z(t) = 0 \) when \(T_Z(t) = 0 \).

Let \(E \) be the event that for all \(t \in [T], i \in [k^n] \) such that \(\text{max}_{a \in A} P(Pa_Y = Z_i|a) > 0 \), we have

\[
|\hat{\mu}_Z(t) - \mu_Z| \leq \sqrt{\frac{2\log(1/\delta)}{1 \lor T_Z(t)}}.
\]

For fixed \(t \) and \(i \), by Sub-Gaussian property, we can show

\[
P \left(\left| \hat{\mu}_Z(t) - \mu_Z \right| \geq \sqrt{\frac{2\log(1/\delta)}{1 \lor T_Z(t)}} \right) \leq \mathbb{E} \left[P \left(\left| \hat{\mu}_Z(t) - \mu_Z \right| \geq \sqrt{\frac{2\log(1/\delta)}{1 \lor T_Z(t)}} \right| Z(t) \right].
\]

By union bound, we have \(P(E^c) \leq 2\delta T k^n \).

The Bayesian regret is represented by

\[
BR_T = \mathbb{E} \left[\sum_{t=1}^{T} (\mu_{a^*} - \mu_{a_t}) \right] = \mathbb{E} \left[\sum_{t=1}^{T} \mathbb{E} [\mu_{a^*} - \mu_{a_t} | F_{t-1}] \right],
\]

where \(F_{t-1} = \sigma (a_1, Z_1, Y_1, \ldots, a_{t-1}, Z_{t-1}, Y_{t-1}) \).

The key insight is to notice that by definition of Thompson Sampling,

\[
P (a^* = \cdot | F_{t-1}) = P (a_t = \cdot | F_{t-1}).
\]

Further, define \(\text{UCB}_a(t) := \sum_{j=1}^{k} \text{UCB}_{Z_j}(t) P(Pa_Y = Z_j|a) \), we can bound the conditional expected difference between optimal arm and the arm played at round \(t \) using equation (8) by

\[
\begin{align*}
\mathbb{E} [\mu_{a^*} - \mu_{a_t} | F_{t-1}] &= \mathbb{E} [\mu_{a^*} - \text{UCB}_{a_t}(t-1) + \text{UCB}_{a_t}(t-1) - \mu_{a_t} | F_{t-1}] \\
&= \mathbb{E} [\mu_{a^*} - \text{UCB}_{a^*}(t-1) + \text{UCB}_{a_t}(t-1) - \mu_{a_t} | F_{t-1}].
\end{align*}
\]
Next by tower rule, we have

\[BR_T = E \left[\sum_{t=1}^{T} (\mu_{a^*} - \text{UCB}_{a^*}(t - 1) + \text{UCB}_{a_t}(t - 1) - \mu_{a_t}) \right]. \]

On event \(E^c \), by the original definition of \(BR_T \) we have \(BR_T \leq 2T \). On event \(E \), the first term is negative showing by the definition of \(\text{UCB}_{Z_j}, j = 1, \ldots, k^n \) and

\[\mu_{a^*} - \text{UCB}_{a^*}(t - 1) = \sum_{j=1}^{k^n} (E[Y|Pa_Y = Z_j] - \text{UCB}_{Z_j}(t - 1)) P(Pa_Y = Z_j|a^*) \leq 0, \]

because \(E[Y|Pa_Y = Z_j] - \text{UCB}_{Z_j}(t - 1) \leq 0 \) on event \(E \). Also on event \(E \), the second term can be bounded by

\[
\begin{align*}
\mathbb{1}_E \sum_{t=1}^{T} (\text{UCB}_{a_t}(t - 1) - \mu_{a_t}) &= \mathbb{1}_E \sum_{t=1}^{T} \sum_{j=1}^{k^n} (\text{UCB}_{Z_j}(t - 1) - E[Y|Pa_Y = Z_j]) P(Pa_Y = Z_j|a_t) \\
&\leq \mathbb{1}_E \sum_{t=1}^{T} \sum_{j=1}^{k^n} \sqrt{\frac{8 \log(1/\delta)}{1 \vee T_{Z_j}(t - 1)}} P(Pa_Y = Z_j|a_t) \\
&\leq \mathbb{1}_E \sum_{t=1}^{T} \sum_{j=1}^{k^n} \sqrt{\frac{8 \log(1/\delta)}{1 \vee T_{Z_j}(t - 1)}} \left(P(Pa_Y = Z_j|a_t) - \mathbb{1}_{\{Z(t) = Z_j\}} + \mathbb{1}_{\{Z(t) = z_j\}} \right).
\end{align*}
\]

The second part of equation 9 can be bounded by

\[
\begin{align*}
\mathbb{1}_E \sum_{t=1}^{T} \sum_{j=1}^{k^n} \sqrt{\frac{8 \log(1/\delta)}{1 \vee T_{Z_j}(t - 1)}} \mathbb{1}_{\{Z(t) = Z_j\}} &\leq \mathbb{1}_E \sum_{j=1}^{k^n} \int_{0}^{T_{Z_j}(T)} \sqrt{\frac{8 \log(1/\delta)}{s}} ds \\
&\leq \sum_{j=1}^{k^n} \sqrt{32 T_{Z_j}(T) \log(1/\delta)} \\
&\leq \sqrt{32 k^n T \log(1/\delta)}.
\end{align*}
\]

For the first part of equation 9 we define \(X_t := \sum_{s=1}^{t} \sum_{j=1}^{k^n} \sqrt{\frac{8 \log(1/\delta)}{1 \vee T_{Z_j}(s - 1)}} \left(P(Pa_Y = Z_j|a_s) - \mathbb{1}_{\{Z(s) = Z_j\}} \right), \)

\(X_0 := 0 \). Note that \(\{X_t\}_{t=0}^{T} \) is a martingale sequence and we have

\[
|X_t - X_{t-1}|^2 = \left| \sum_{j=1}^{k^n} \sqrt{\frac{8 \log(1/\delta)}{1 \vee T_{Z_j}(t - 1)}} \left(P(Pa_Y = Z_j|a_t) - \mathbb{1}_{\{Z(t) = Z_j\}} \right) \right|^2 \\
\leq 32 \log(1/\delta).
\]

By applying Azuma inequality we have

\[
P(|X_T| > \sqrt{k^n T \log(T) \log(T)}) \leq \exp \left(-\frac{k^n \log^3(T)}{32 \log(1/\delta)} \right).
\]
We take $\delta = 1/T^2$, combine the first and second part of equation \[9\] we show that with probability

$$1 - P(E^c) - \exp \left(-\frac{k^n \log^2(T)}{64} \right) = 1 - 2k^n/T - \exp \left(-\frac{k^n \log^2(T)}{64} \right),$$

$$R_T \leq 16\sqrt{k^nT \log(T) \log(T)}.$$

Thus the Bayesian regret can be bounded by:

$$\mathbb{E}[R_T] \leq P(E^c) \times 2T + \exp \left(-\frac{k^n \log^2(T)}{64} \right) \times 2T + \sqrt{64k^nT \log(T) \log(T)} \leq C\sqrt{k^nT \log(T) \log(T)}.$$

where C is a constant, above inequality holds for large T. Thus we prove $\mathbb{E}[R_T] = \tilde{O}\left(\sqrt{k^nT} \right)$.

A.2 Proof of Theorem 1 (C-UCB)

Proof. Let E be the event that for all $t \in [T]$, $j \in [k^n]$, we have

$$\left| \hat{\mu}_{Z_j}(t-1) - \mathbb{E}[Y|Pa_Y = Z_j] \right| \leq \frac{2 \log(1/\delta)}{1 \vee T_{Z_j}(t-1)}.$$

Use same proof idea in Theorem 2 we have $P(E^c) \leq 2\delta T k^n$. Define $\text{UCB}_a(t) := \sum_{j=1}^{k^n} \text{UCB}_{Z_j}(t) P(Pa_Y = Z_j|a)$, the regret can be rewritten as

$$R_T = \sum_{t=1}^{T} (\mu^* - \mu_a)$$

$$= \sum_{t=1}^{T} (\mu_a^* - \text{UCB}_{a}(t-1) + \text{UCB}_{a}(t-1) - \mu_a).$$

On event E^c, $R_T \leq 2T$. On event E we can show

$$\mu_a^* - \text{UCB}_{a}(t-1) = \sum_{j=1}^{k^n} \mathbb{E}[Y|Pa_Y = Z_j] P(Pa_Y = Z_j|a^*) - \sum_{j=1}^{k^n} \text{UCB}_{Z_j}(t-1) P(Pa_Y = Z_j|a_t)$$

$$\leq \sum_{j=1}^{k^n} \text{UCB}_{Z_j}(t-1) P(Pa_Y = Z_j|a^*) - \sum_{j=1}^{k^n} \text{UCB}_{Z_j}(t-1) P(Pa_Y = Z_j|a_t) \leq 0,$$

17
where the last inequality follows by the way to choose \(a_t \) in Algorithm 1, the second last inequality follows by the definition of event \(E \). Thus on event \(E \) we have

\[
R_T \leq \sum_{t=1}^{T} (UCB_{a_t}(t-1) - \mu_{a_t})
\]

\[
= \sum_{t=1}^{T} \sum_{j=1}^{k} (UCB_{Z_j}(t-1) - \mathbb{E}[Y|Pa_Y = Z_j]) P(Pa_Y = Z_j|a_t)
\]

\[
\leq \sum_{t=1}^{T} \sum_{j=1}^{k} \sqrt{\frac{8 \log(1/\delta)}{1 \vee T_{Z_j}(t-1)}} P(Pa_Y = Z_j|a_t)
\]

\[
\leq \sum_{t=1}^{T} \sum_{j=1}^{k} \sqrt{\frac{8 \log(1/\delta)}{1 \vee T_{Z_j}(t-1)}} \left(P(Pa_Y = Z_j|a_t) - \mathbb{1}_{Z_{(t)}=Z_j} + \mathbb{1}_{Z_{(t)}=Z_j} \right).
\] \((10) \)

The second part of Equation (10) can be bounded by

\[
\sum_{t=1}^{T} \sum_{j=1}^{k} \sqrt{\frac{8 \log(1/\delta)}{1 \vee T_{Z_j}(t-1)}} \mathbb{1}_{(Z_{(t)}=Z_j)} \leq \sum_{j=1}^{k} \int_{0}^{T_{Z_j}(T)} \sqrt{\frac{8 \log(1/\delta)}{s}} ds
\]

\[
\leq \sum_{j=1}^{k} \sqrt{32T_{Z_j}(T)} \log(1/\delta)
\]

\[
\leq \sqrt{32kT} \log(1/\delta).
\]

For the first part of equation (10) we define \(X_t := \sum_{s=1}^{t} \sum_{j=1}^{k} \sqrt{\frac{8 \log(1/\delta)}{1 \vee T_{Z_j}(s-1)}} \left(P(Pa_Y = Z_j|a_s) - \mathbb{1}_{Z_{(s)}=Z_j} \right) \), \(X_0 := 0 \). Note that \(\{X_t\}_{t=0}^{T} \) is a martingale sequence.

\[
|X_t - X_{t-1}|^2 = \left| \sum_{j=1}^{k} \sqrt{\frac{8 \log(1/\delta)}{1 \vee T_{Z_j}(t-1)}} \left(P(Pa_Y = Z_j|a_t) - \mathbb{1}_{Z_{(t)}=Z_j} \right) \right|^2
\]

\[
\leq 32 \log(1/\delta).
\]

By applying Azuma inequality we have

\[
P(|X_T| > \sqrt{kT} \log(T) \log(T)) \leq \exp \left(-\frac{k \log^3(T)}{64 \log(1/\delta)} \right).
\]

We take \(\delta = 1/T^2 \), combine the first and second part of equation (10) with probability \(1 - P(E^c) = \exp \left(-\frac{k \log^2(T)}{64} \right) = 1 - 2k/T - \exp \left(-\frac{k \log^2(T)}{64} \right) \), the regret can be bounded by

\[
R_T \leq 16 \sqrt{kT} \log(T) \log(T).
\]

Thus the expected regret can be bounded by:

\[
\mathbb{E}[R_T] \leq P(E^c) \times 2T + \exp \left(-\frac{k \log^2(T)}{64} \right) \times 2T + \sqrt{64kT \log(T) \log(T)}
\]

\[
\leq C \sqrt{kT} \log(T) \log(T)
\]

where \(C \) is a constant, above inequality holds for large \(T \). Thus we prove \(\mathbb{E}[R_T] = \tilde{O} \left(\sqrt{kT} \right) \). \(\square \)
A.3 Proof of Theorem 3 (CL-TS)

Lemma 1. (Lattimore and Szepesvári, 2018) Notations same as algorithm 4 and algorithm 5. Let \(\delta \in (0, 1) \). Then with probability at least \(1 - \delta \) it holds that for all \(t \in \mathbb{N} \),

\[
\|\hat{\theta}_t - \theta\|_{V_t(\lambda)} \leq \sqrt{\lambda} \|\theta\|_2 + \sqrt{2 \log \left(\frac{1}{\delta} \right) + \log \left(\frac{\det V_t(\lambda)}{\lambda^d} \right)}.
\]

Furthermore, if \(\|\theta^*\| \leq m_2 \), then \(P(\exists t \in \mathbb{N}^+ : \theta^* \notin C_t) \leq \delta \) with

\[
C_t = \left\{ \theta \in \mathbb{R}^d : \|\hat{\theta}_{t-1} - \theta\|_{V_{t-1}(\lambda)} \leq m_2 \sqrt{\lambda} + \sqrt{2 \log \left(\frac{1}{\delta} \right) + \log \left(\frac{\det V_{t-1}(\lambda)}{\lambda^d} \right)} \right\}.
\]

Lemma 2. (Lattimore and Szepesvári, 2018) Let \(x_1, \ldots, x_T \in \mathbb{R}^d \) be a sequence of vectors with \(\|x_t\|_2 \leq L < \infty \) for all \(t \in [T] \), then

\[
\sum_{t=1}^{T} \left(1 \wedge \|x_t\|_{V_{t-1}}^2 \right) \leq 2 \log (\det V_T) \leq 2d \log \left(1 + \frac{TL^2}{d} \right),
\]

where \(V_t = I_d + \sum_{s=1}^{t} x_s x_s^T \).

Proof. We define \(\beta = 1 + \sqrt{2 \log (T) + d \log \left(1 + \frac{T^T}{d} \right) } \) and \(V_t = I_d + \sum_{s=1}^{t} m_a m_a^T \) same as Algorithms 3, where \(m_a := \sum_{i=1}^{k_a} f(Z_i) P(Pay = Z_i | a) \). Define upper confidence bound \(UCB_t : A \rightarrow \mathbb{R} \) by

\[
UCB_t(a) = \max_{\theta \in C_t} \langle \theta, m_a \rangle = \langle \hat{\theta}_{t-1}, m_a \rangle + \beta \|m_a\|_{V_{t-1}}^2,
\]

where \(C_t = \left\{ \theta \in \mathbb{R}^d : \|\theta - \hat{\theta}_{t-1}\|_{V_{t-1}} \leq \beta \right\} \). By Lemma 1, we have

\[
P \left(\exists t \leq T : \|\hat{\theta}_{t-1} - \theta\|_{V_{t-1}} \geq 1 + \sqrt{2 \log (T) + \log (\det V_t)} \right) \leq \frac{1}{T}.
\]

And note \(\|m_a\|_2 \leq 1 \), thus by geometric means inequality we have

\[
\det V_t \leq \left(\frac{\text{trace} (V_t)}{d} \right)^d \leq \left(1 + \frac{T}{d} \right)^d.
\]

Thus, by \(\|\theta\|_2 \leq 1 \),

\[
P \left(\exists t \leq T : \|\hat{\theta}_{t-1} - \theta\|_{V_{t-1}} \geq 1 + \sqrt{2 \log (T) + \log \left(1 + \frac{T}{d} \right) } \right) \leq \frac{1}{T}.
\]
Let \(E_t\) be the event that \(\left\| \hat{\theta}_{t-1} - \theta \right\|_{V_{t-1}} \leq \beta\), \(E := \cap_{t=1}^{T} E_t\), \(a^* := \arg\max_a \sum_{i=1}^{k^n} (f(Z_i), \theta) P(P_{a^*} = Z_{i|a})\), which is a random variable in this setting because \(\theta\) is random. Then

\[
BR_T = \mathbb{E} \left[\sum_{t=1}^{T} \left(\sum_{i=1}^{k^n} f(Z_i) (P(P_{a^*} = Z_{i|a^*}) - P(P_{a^*} = Z_{i|a_t})) , \theta \right) \right]
\]

\[
= \mathbb{E} \left[\mathbb{1}_{E_t} \sum_{t=1}^{T} \left(\sum_{i=1}^{k^n} f(Z_i) (P(P_{a^*} = Z_{i|a^*}) - P(P_{a^*} = Z_{i|a_t})) , \theta \right) \right]
\]

\[
+ \mathbb{E} \left[\mathbb{1}_{E_t} \sum_{t=1}^{T} \left(\sum_{i=1}^{k^n} f(Z_i) (P(P_{a^*} = Z_{i|a^*}) - P(P_{a^*} = Z_{i|a_t})) , \theta \right) \right]
\]

\[
\leq 2TP(E^c) + \mathbb{E} \left[\mathbb{1}_{E_t} \sum_{t=1}^{T} \left(\sum_{i=1}^{k^n} f(Z_i) (P(P_{a^*} = Z_{i|a^*}) - P(P_{a^*} = Z_{i|a_t})) , \theta \right) \right]
\]

\[
\leq 2 + \mathbb{E} \left[\sum_{t=1}^{T} \mathbb{1}_{E_t} \left(\sum_{i=1}^{k^n} f(Z_i) (P(P_{a^*} = Z_{i|a^*}) - P(P_{a^*} = Z_{i|a_t})) , \theta \right) \right].
\]

Again, we know from equation 8 such that \(P(a^* = \cdot | \mathcal{F}_{t-1}) = P(a_t = \cdot | \mathcal{F}_{t-1})\), where \(\mathcal{F}_{t-1} = \sigma(Z_1, a_1, Y_1, \ldots, Z_{t-1}, a_{t-1}, Y_{t-1})\). Thus we have

\[
\mathbb{E} \left[\mathbb{1}_{E_t} \sum_{i=1}^{k^n} f(Z_i) (P(P_{a^*} = Z_{i|a^*}) - P(P_{a^*} = Z_{i|a_t})) , \theta \right]_{\mathcal{F}_{t-1}}
\]

\[
= \mathbb{1}_{E_t} \mathbb{E} \left[\sum_{i=1}^{k^n} f(Z_i) (P(P_{a^*} = Z_{i|a^*}) - P(P_{a^*} = Z_{i|a_t})) , \theta \right]_{\mathcal{F}_{t-1}}
\]

\[
= \mathbb{1}_{E_t} \mathbb{E} \left[\sum_{i=1}^{k^n} f(Z_i) P(P_{a^*} = Z_{i|a^*}) , \theta \right]_{\mathcal{F}_{t-1}} - UCB_t(a^*) + UCB_t(a_t) - \mathbb{E} \left[\sum_{i=1}^{k^n} f(Z_i) P(P_{a^*} = Z_{i|a_t}) , \theta \right]_{\mathcal{F}_{t-1}}
\]

\[
\leq \mathbb{1}_{E_t} \mathbb{E} \left[UCB_t(a_t) - \mathbb{E} \left[\sum_{i=1}^{k^n} f(Z_i) P(P_{a^*} = Z_{i|a_t}) , \theta \right]_{\mathcal{F}_{t-1}} \right]
\]

\[
\leq \mathbb{1}_{E_t} \mathbb{E} \left[\sum_{i=1}^{k^n} f(Z_i) P(P_{a^*} = Z_{i|a_t}) , \hat{\theta}_{t-1} - \theta \right]_{\mathcal{F}_{t-1}} + \beta \mathbb{E} \left[\sum_{i=1}^{k^n} f(Z_i) P(P_{a^*} = Z_{i|a}) \right]_{V_{t-1}}
\]

\[
\leq 2\beta \mathbb{E} \left[\sum_{i=1}^{k^n} f(Z_i) P(P_{a^*} = Z_{i|a}) \right]_{V_{t-1}}.
\]
Substituting into the second term of equation [11]
\[\mathbb{E} \left[\sum_{t=1}^{T} 1_{E_t} \left(\sum_{i=1}^{k^n} f(Z_i) \left(P(Pa_Y = Z_i|a^*) - P(Pa_Y = Z_i|a_i) \right), \theta \right) \right] \]
\[\leq 2 \mathbb{E} \left[\beta \sum_{t=1}^{T} \left(1 \wedge \left\| \sum_{i=1}^{k^n} f(Z_i) P(Pa_Y = Z_i|a) \right\|_{V_{t-1}}^{-1} \right) \right] \]
\[\leq 2 \sqrt{T} \mathbb{E} \left[\beta^2 \sum_{t=1}^{T} \left(1 \wedge \left\| \sum_{i=1}^{k^n} f(Z_i) P(Pa_Y = Z_i|a) \right\|^2_{V_{t-1}} \right) \right] \] (By Cauchy-Schwartz)
\[\leq 2 \sqrt{2dT} \beta \log \left(1 + \frac{T}{d} \right) \] (By Lemma 2).

Putting together we prove
\[BR_T \leq 2 + 2 \sqrt{2dT} \beta \log \left(1 + \frac{T}{d} \right) = \tilde{O} \left(d \sqrt{T} \right). \quad (12) \]

A.4 Proof of Theorem 3 (CL-UCB)

Proof. Define \(\beta = 1 + \sqrt{2 \log (T) + d \log (1 + \frac{T}{d})} \), by Lemma 1 and above proof for CL-TS we have
\[P(\exists t \leq T : \left\| \hat{\theta}_{t-1} - \theta^* \right\|_{V_{t-1}} \geq \beta) \leq \frac{1}{T}, \]
\[P(\exists t \in \mathbb{N}^+ : \theta^* \notin C_t) \leq \frac{1}{T}, \]
where \(C_t = \left\{ \theta \in \mathbb{R}^d : \left\| \theta - \hat{\theta}_{t-1} \right\|_{V_{t-1}} \leq \beta \} \).

Let \(\tilde{\theta}_t \) denote a \(\theta \) that satisfies \(\langle \tilde{\theta}_t, a_t \rangle = UCB_t(a_t) \). Again let \(E_t \) be the event that \(\left\| \hat{\theta}_{t-1} - \theta^* \right\|_{V_{t-1}} \leq \beta \), let \(E = \bigcap E_t \), \(a^* = \arg\max_a \sum_{j=1}^{k^n} \langle f(Z_j), \theta \rangle P(Pa_Y = Z_j|a) \). Then on event \(E_t \), using the fact that \(\theta^* \in C_t \) we have
\[\langle \theta^*, \sum_{j=1}^{k^n} f(Z_j) P(Pa_Y = Z_j|a^*) \rangle \leq UCB_t(a^*) \leq UCB_t(a_t) = \langle \hat{\theta}_t, \sum_{j=1}^{k^n} f(Z_j) P(Pa_Y = Z_j|a_t) \rangle \]
Thus we can bound the difference of expected reward between optimal arm and a_t by

$$\mu_{a^*} - \mu_{a_t} = \langle \theta^*, \sum_{j=1}^{k^n} f(Z_j) P(Y = Z_j | a^*) \rangle - \langle \theta^*, \sum_{j=1}^{k^n} f(Z_j) P(Y = Z_j | a_t) \rangle$$

$$\leq \langle \tilde{\theta}_t - \theta^*, \sum_{j=1}^{k^n} f(Z_j) P(Y = Z_j | a_t) \rangle$$

$$\leq 2 \wedge 2\beta \left(\sum_{j=1}^{k^n} f(Z_j) P(Y = Z_j | a_t) \right)_{V_t^{-1}}$$

So the expected regret can be further bounded by:

$$\mathbb{E}[R_T] = \mathbb{E} \left[\sum_{t=1}^{T} (\mu_{a^*} - \mu_{a_t}) \right] = \mathbb{E} \left[\mathbb{1}_E \sum_{t=1}^{T} (\mu_{a^*} - \mu_{a_t}) \right] + \mathbb{E} \left[\mathbb{1}_{E^c} \sum_{t=1}^{T} (\mu_{a^*} - \mu_{a_t}) \right]$$

$$\leq \mathbb{E} \left[\sum_{t=1}^{T} (\mu_{a^*} - \mu_{a_t}) \mathbb{1}_E \right] + \mathbb{E} \left[\mathbb{1}_{E^c} \sum_{t=1}^{T} (\mu_{a^*} - \mu_{a_t}) \right]$$

$$\leq 2\beta \sum_{t=1}^{T} \left(1 \wedge \left\| \sum_{j=1}^{k^n} f(Z_j) P(Y = Z_j | a_t) \right\|_{V_t^{-1}} \right) + 2TP(E^c)$$

$$\leq 2 + 2\beta \sqrt{2dT \log \left(1 + \frac{T}{d} \right)} \quad \text{(By Cauchy-Schwartz)}$$

A.5 Proof of Theorem 4

Definition 1 (p-order Policy). For Gaussian unit variance environments $\mathcal{E} := \mathcal{E}_K(N)$ and policy π, whose regret, on any $\nu \in \mathcal{E}$, is bounded by CT^p for some $C > 0$ and $p > 0$. Call this class $\Pi(\mathcal{E}, C, n, p)$, the class of p-order policies. Note that UCB is in this class with $C = C'\sqrt{K}$ and $p = 1/2 + \epsilon$ with some $C'_\epsilon > 0$.

Theorem 5 (Finite-time, instance-dependent lower bound for p-order policies (Lattimore and Szepesvári, 2018)). Take \mathcal{E} and $\Pi(\mathcal{E}, C, n, p)$ as in the previous definition. Then for any $\pi \in$
\(\Pi(\mathcal{E}, C, n, p) \) and \(\nu \in \mathcal{E} \), the regret of \(\pi \) on \(\nu \) satisfies:

\[
\mathbb{E} R_T(\pi, \nu) \geq \frac{1}{2} \sum_{i: \Delta_i > 0} \left(\frac{(1 - p) \log(T) + \log(\Delta_i)}{\Delta_i} \right)^+,
\]

where \((x)^+ = \max(x, 0) \) is the positive part of \(x \in \mathbb{R} \).

Proof of Theorem 4. Consider the bandit environment \(\nu \) described at the beginning of this section. The size of three types of actions are all \(\frac{3N}{3} \). For Type 2 actions, its gap compared to the optimal actions is \(\Delta \), for Type 1 actions, gap is \(p_1 \Delta \). Plugging into the results of Theorem 5 we have

\[
\mathbb{E} R_T(\pi, \nu) \geq \frac{1}{2} \frac{3N}{3} \left(\frac{(1 - p) \log(T) + \log(\Delta_i)}{\Delta} \right)^+ + \frac{1}{2} \frac{3N}{3} \left(\frac{(1 - p) \log(T) + \log\left(\frac{p_1 \Delta}{8C}\right)}{p_1 \Delta} \right)^+.
\]

In particular, choose \(\Delta = 8\rho CT^{p-1} \), we get

\[
(1 - p) \log(T) + \log\left(\frac{\Delta}{8C}\right) = \log(\rho),
\]

\[
(1 - p) \log(T) + \log\left(\frac{\Delta}{8C}\right) = \log(p_1 \rho).
\]

Note that \(\sup_{\rho > 0} \log(\rho)/\rho = \exp(-1) \approx 0.35 \), and we next plug above two equations in Equation ?? to get

\[
\mathbb{E} R_T(\pi, \nu) \geq \frac{3N}{3} \frac{0.35}{8CT^{p-1}}.
\]

Now consider \(\pi \) to be UCB, by plugging in \(C = C' \sqrt{3N} \) and \(p = 1/2 + \epsilon \) we have

\[
\mathbb{E} R_T(UCB, \nu) \geq \frac{0.35}{24C'_e} \sqrt{3N} T^{1/2 - \epsilon}.
\]

\[\square\]

B Causal Linear Algorithms

C Tables in Experiments
Algorithm 4: Causal Linear UCB (CL-UCB)

Input: horizon T, action set A, all $P(Pa_Y|a)$.

Initialization: $V_0 = I_d$, $\hat{\theta}_0 = 0_d$, $g = 0_d$, $\beta = 1 + \sqrt{2 \log (T) + d \log (1 + \frac{T}{d})}$.

for $t = 1, \ldots, T$ do
 for $a \in A$ do
 $\text{UCB}_a(t) = \max_{\theta \in \mathcal{C}_t} \langle \theta, m_a \rangle = \langle \hat{\theta}_{t-1}, m_a \rangle + \beta \|m_a\|_{V_{t-1}}$, where $\mathcal{C}_t = \left\{ \theta \in \mathbb{R}^d : \|\theta - \hat{\theta}_{t-1}\|_{V_{t-1}} \leq \beta \right\}$
 end for
 $a_t = \arg\max_{a \in A} \text{UCB}_a(t)$
 Pull arm a_t and observe the parent nodes values of Y denoted by $Z(t)$ and reward Y_t.
 Update $V_t = V_{t-1} + m_{a_t} m_{a_t}^T$, $g = g + m_{a_t} Y_t$, $\hat{\theta}_t = V_t^{-1} g$
end for

Algorithm 5: Causal Linear Thompson Sampling (CL-TS)

Input: Horizon T, action set A, all $P(Pa_Y|a)$, standard deviation parameter v.

Initialization: $V_0 = I_d$, $\hat{\theta}_0 = 0_d$, $g = 0_d$.

for $t \in \{1, \ldots, T\}$ do
 Sample $\hat{\theta}_t \sim N(\hat{\theta}, v^2 V_t^{-1})$
 for action $a \in A$ do
 $\hat{\mu}_a(t) = \sum_{i=1}^{k} f(Z_i)^T \hat{\theta}_t P(Pa_Y = Z_i|a) = \langle m_a, \hat{\theta}_t \rangle$
 end for
 $a_t = \arg\max_{a \in A} \hat{\mu}_a(t)$
 Pull arm a_t and observe the parent nodes values of Y denoted by $Z(t)$ and reward Y_t.
 Update $V_t = V_{t-1} + m_{a_t} m_{a_t}^T$, $g = g + m_{a_t} Y_t$ and $\hat{\theta} = V_t^{-1} g$
end for

i	1	2	3	
$P(X_1 = i)$	0.3	0.4	0.3	
$P(X_2 = i)$	0.3	0.3	0.4	
$P(X_3 = i)$	0.5	0.3	0.2	
$P(X_4 = i)$	0.25	0.25	0.5	
$P(W_1 = 1	X_1 = i)$	0.2	0.5	0.8
$P(W_2 = 1	X_2 = i)$	0.3	0.2	0.8
$P(W_3 = 1	X_3 = i)$	0.4	0.6	0.5
$P(W_4 = 1	X_4 = i)$	0.3	0.5	0.6

Table 1: Marginal and conditional probabilities for pure simulation experiment in section 6.1.1, numbers are randomly selected.
Table 2: Marginal and conditional probabilities for email campaign causal graph.

i	1	2	3	4	
$P(X_1 = i)$	0.2	0.2	0.6		
$P(X_2 = i)$	0.05	0.6	0.3	0.05	
$P(Z_3 = i)$	0.5	0.2	0.3		
$P(Z_1 = 1	X_2 = i)$	0.7	0.7	0.3	0.3
$P(Z_2 = 1	X_1 = 3, X_2 = i)$	0.6	0.7	0.6	0.5
$P(Z_2 = 1	X_1 \neq 3, X_2 = i)$	0.8	0.9	0.5	0.2