CHROMATIC POLYNOMIALS OF GRAPHS FROM KAC-MOODY ALGEBRAS

R. VENKATESH AND SANKARAN VISWANATH

ABSTRACT. We give a new interpretation of the chromatic polynomial of a simple graph G in terms of the Kac-Moody Lie algebra g with Dynkin diagram G. We show that the chromatic polynomial is essentially the q-Kostant partition function of g evaluated on the sum of the simple roots. Applying the Peterson recurrence formula for root multiplicities of g, we obtain a new realization of the chromatic polynomial as a weighted sum of paths in the bond lattice of G.

1. Introduction

Let G be a simple graph on l vertices. Let g denote the Kac-Moody Lie algebra with Dynkin diagram G. In other words, define the $l \times l$ symmetric matrix $B := 2I - A$ where A is the adjacency matrix of G. Then B is a generalized Cartan matrix, and g is the Kac-Moody algebra constructed from B. We do not assume that G is connected; so the Lie algebra g is a direct sum of the Kac-Moody algebras corresponding to the connected components of G. In this paper, we obtain a new expression for the chromatic polynomial of G, in terms of the Lie algebra g.

Let the root space decomposition of g be

$$g = h \oplus \bigoplus_{\alpha \in \Delta^+} (g_\alpha \oplus g_{-\alpha})$$

where h is the Cartan subalgebra, Δ^+ is the set of positive roots, and $g_\alpha := \{ x \in g : [h, x] = \alpha(h) x \}$ for all $h \in h$ are the root spaces. Let $\text{mult}_\alpha := \dim g_\alpha$ be the multiplicity of the root α. We also let $n^\pm := \bigoplus_{\alpha \in \Delta^\pm} g_{\pm \alpha}$.

Let Π denote the set of simple roots of g. We identify Π with the vertex set of G. Given a subset $S \subset \Pi$, define

$$\beta(S) := \sum_{\alpha \in S} \alpha.$$

It is well-known that $\beta(S)$ is a root of g (i.e., $\text{mult} \beta(S) > 0$) iff the subgraph of G induced by S is connected. Further, $\text{mult} \beta(S)$ depends only on the subgraph induced by S, and not on the ambient graph G.

Now, let $\pi = \{ S_1, S_2, \ldots, S_k \}$ be a partition of Π, i.e., the S_i are non-empty pairwise disjoint subsets of Π such that $\bigcup_i S_i = \Pi$. Define

$$\text{mult} \pi := \prod_{i=1}^k \text{mult} \beta(S_i).$$
Thus \(\text{mult} \pi > 0 \) iff each \(S_i \) induces a connected subgraph of \(G \), or in other words, \(\pi \) is an element of the \emph{bond lattice} of \(G \). We recall \cite{30} that the bond lattice \(L_G \) of \(G \) is the set of all partitions \(\pi = \{ S_1, S_2, \cdots, S_k \} \) of \(\Pi \) such that each \(S_i \) induces a connected subgraph of \(G \) (such \(S_i \) will be called \emph{connected subsets} of \(\Pi \)). It is partially ordered by refinement, with \(\pi > \pi' \) iff \(\pi' \) refines \(\pi \). \(L_G \) is a ranked poset, with rank function \(l - |\pi| \), where \(|\pi| \) is the number of parts in \(\pi \) (= \(k \) if \(\pi = \{ S_1, S_2, \cdots, S_k \} \)). The partition \(0 \) of \(\Pi \) into \(l \) singleton subsets is the unique minimal element of \(L_G \).

Given a subset \(S \subset \Pi \), define \(G(S) \) to be the subgraph of \(G \) induced by \(S \). For \(\Sigma = \{ S_1, \cdots, S_k \} \in L_G \), we let \(G(\Sigma) \) denote the union of the subgraphs of \(G \) induced by \(S_i \), \(i = 1 \cdots k \). We let \(\chi(G; q) \) denote the chromatic polynomial of \(G \).

Our first main theorem relates the chromatic polynomial to root multiplicities of \(g \).

Theorem 1.1. Let \(G \) be a simple graph. With notation as above, we have

(a)
\[
\chi(G; q) = \sum_{\pi \in L_G} (-1)^{l-|\pi|} \text{mult} \pi \ q^{|\pi|}.
\]

(b) More generally, let \(\Sigma \in L_G \). Then
\[
\chi(G(\Sigma); q) = \sum_{\hat{\theta} \subseteq \pi \subseteq \Sigma} (-1)^{l-|\pi|} \text{mult} \pi \ q^{|\pi|}.
\]

We recall that \(\chi(G; q) \) is monic of degree \(l \) with coefficients that alternate in sign, and hence \(\bar{\chi}(G; q) := (-1)^l \chi(G; -q) \) has non-negative coefficients. The following is a pleasant consequence of theorem 1.1.

Corollary 1.2. Let \(G \) be a simple graph. Then \(\bar{\chi}(G; q) = K(\beta(\Pi); q) \), where \(K(\cdot; q) \) is the \(q \)-Kostant partition function of \(g \).

We recall that the \(q \)-Kostant partition function \(K(\beta; q) \) is defined to be the coefficient of \(e^{-\beta} \) in the product
\[
\prod_{\alpha \in \Delta_+} (1 - qe^{-\alpha})^{-\text{mult} \alpha}.
\]

It is the Hilbert series of the degree filtration on \((Un^+)_\beta\) (the \(\beta \) weight space of the universal enveloping algebra of \(n^+ \)).

We obtain a further corollary by considering special values of \(q \). First, recall that \(\bar{\chi}(G; 1) \) is the number of acyclic orientations of \(G \) \cite{31}, or equivalently the number of distinct Coxeter elements in the Weyl group \(W(g) \) \cite{32}. Similarly, if \(G \) is connected, then the coefficient of \(q \) in \(\bar{\chi}(G; q) \) is the number of conjugacy classes of Coxeter elements in \(W(g) \) \cite{33,34,35}.

Corollary 1.3. Let \(\beta := \beta(\Pi) \).

(1) The number of acyclic orientations of \(G \) equals \(K(\beta) \), where \(K(\cdot) \) is the Kostant partition function of \(g \). In other words, the number of distinct Coxeter elements in \(W(g) \) equals \(\dim (Un^+)_\beta \).

(2) If \(G \) is connected, then the number of conjugacy classes of Coxeter elements in \(W(g) \) equals \(n_\beta^+ \) (\(= \text{mult} \beta \)).
Theorem 1.3 and its corollaries are proved in section 2. We note that equation (1) closely resembles the classical result of Birkhoff and Whitney which essentially states that

$$χ(G; q) = \sum_{π \in LG} μ(\hat{0}, π) q^{|π|}$$

where $μ$ is the Möbius function of LG. The following proposition (proved in section 2) clarifies the relation between the two.

Proposition 1.4. For all $π \in LG$, $μ(\hat{0}, π) = (-1)^{|π|} \text{mult} π$.

Thus, the absolute value of the Möbius function is a product of certain root multiplicities of g. Now, root multiplicities are themselves quite mysterious in general (except when g is of finite or affine type), and it is natural to wonder if this interpretation sheds any further light on the chromatic polynomial. However, an important property of root multiplicities is that they satisfy the so-called Peterson recurrence (see section 3 below). This, together with theorem 1.4, allows us to find a new realization of the chromatic polynomial, as a weighted generating function of paths in the bond lattice.

In order to describe this realization more precisely, we require some definitions. For a subset S of $Π$, let $e(S)$ denote the number of edges in the subgraph induced by S (i.e., the number of edges of G both of whose ends are in S). Given $π ∈ LG$, let $d(π)$ denote the number of non-singleton subsets in the partition $π$, i.e., if $π = \{S_1, S_2, \ldots, S_k\}$, then

$$d(π) := \#\{1 ≤ i ≤ k : |S_i| > 1\}.$$

Observe that $d(π) = 0$ iff $π = \emptyset$.

The bond lattice LG can be thought of as a directed graph, with directed edges given by the covering relations, i.e., given $π, π′ ∈ LG$, we draw an edge from $π$ to $π′$ iff $π → π′$. We observe that if $π → π′$, then $|π′| = |π| + 1$; further, we can write $π = \{S_1, S_2, \ldots, S_k\}$ and $π′ = \{S_1′, S_2′, \ldots, S_{k+1}′\}$ with $S_i = S_i′$ for $1 ≤ i < k$ and $S_k = S_k′ \cup S_{k+1}$. Define a (rational valued) weight function on the edge $π → π′$ of LG as follows:

$$w(π, π′) := \frac{1}{d(π)} \frac{e(S_k′, S_{k+1}′)}{e(S_k)} = \frac{1}{d(π)} \left(1 - \frac{e(S_k′)}{e(S_k)} - \frac{e(S_{k+1}′)}{e(S_k)}\right)$$

where $e(S_k′, S_{k+1}′)$ is the number of edges of G which straddle $S_k′$ and S_{k+1}, i.e., one end of which lies in $S_k′$ and the other in S_{k+1}. Observe that $π$ covers an element of LG implies that $π ≠ 0$, and hence $d(π) ≠ 0$. Since S_k, $S_k′$ and S_{k+1} induce connected subgraphs of G, it is clear that $0 < w(π, π′) ≤ 1$, and $w(π, π′) = 1$ iff $π′ = 0$.

Now, given a (directed) path p in LG, say $p : π_1 → π_2 → \cdots → π_r$, we let start($p$) := $π_1$, end(p) := $π_r$, and len(p) := $r - 1$. Define the weight of p to be the product of the weights of edges in p, i.e.,

$$w(p) := \prod_{i=1}^{r-1} w(π_i, π_{i+1}).$$

If $r = 1$, i.e., p is a path of length zero, then this is an empty product, and $w(p) := 1$. We now have the following proposition, which arises from an iterated application of the Peterson recurrence formula. The proof appears in section 3.
Proposition 1.5. Let \(\pi \in L_G \). Then

\[
\text{mult} \, \pi = \sum_{\substack{p \text{ path in } L_G \\
\text{start}(p) = \pi \\
\text{end}(p) = \hat{0}}} w(p).
\] (5)

The terms appearing on the right hand side of equation (5) are all rationals between 0 and 1, and it seems somewhat remarkable that their sum finally works out to be an integer for every \(\pi \). If \(p \) is a path from \(\pi \) to \(\hat{0} \), then observe \(|\pi| = l - \text{len}(p) \).

Thus, theorem 1.1 and proposition 1.5 imply the following new realization of the chromatic polynomial.

Theorem 1.6.

\[
\chi(G; q) = \sum_{\substack{p \text{ path in } L_G \\
\text{end}(p) = \hat{0}}} (-1)^{\text{len}(p)} w(p) q^{l-\text{len}(p)}.
\]

Next, we define a square matrix \(W \) of order \(L := |L_G| \) (with rows and columns indexed by elements of \(L_G \)) as follows:

\[
W_{\pi, \pi'} := \begin{cases}
-w(\pi, \pi') & \text{if } \pi \to \pi' \\
q & \text{if } \pi = \pi' = \hat{0} \\
0 & \text{otherwise}.
\end{cases}
\]

It is clear that \(W \) is an upper triangular matrix (after rearranging the elements of \(L_G \) in decreasing order with respect to a linear extension) and has diagonal entries \(0, 0, \ldots, 0 \) (\(L - 1 \) times) and \(q \).

Let \(\zeta \) denote the column vector of length \(L \) all of whose entries are 1. Then it is easy to see that the following is an alternative formulation of theorem 1.6.

Corollary 1.7. \(\chi(G; q) = \zeta^T W^T \zeta \).

The rest of the paper is organized as follows. Section 2 contains preliminaries about Kac-Moody algebras, and the proofs of theorem 1.1, proposition 1.4 and corollaries 1.2, 1.3. In section 3 we describe the Peterson recurrence formula, and use it to prove proposition 1.5.

2. Proof of theorem 1.1

2.1. Fix a simple graph \(G \) on \(l \) vertices, with vertex set \(\Pi \). We first recall some standard notions about chromatic polynomials. A non-empty subset \(K \subset \Pi \) is said to be independent if no two vertices in \(K \) have an edge between them. For \(k \geq 1 \), let \(P_k(G) \) denote the set of ordered partitions of \(\Pi \) into \(k \) independent sets, i.e., \(P_k(G) \) is the set of ordered \(k \)-tuples \((J_1, \ldots, J_k)\) such that (a) the \(J_i \)'s are non-empty pairwise disjoint subsets of \(\Pi \), (b) \(\bigcup_{i=1}^{k} J_i = \Pi \), and (c) each \(J_i \) is independent. Let \(c_k(G) := |P_k(G)| \). Then, the chromatic polynomial of \(G \) has the following well-known expression:

\[
\chi(G; q) = \sum_{k \geq 1} c_k(G) \binom{q}{k}.
\] (6)
2.2. We freely use the notations of the introduction in the rest of the paper. Thus, \(g \) will denote the Kac-Moody algebra with Dynkin diagram \(G \). Let \(h \) be its Cartan subalgebra and \(\Delta \), the set of positive roots. The simple roots of \(g \) will be identified with \(\Pi \). The Weyl group \(W \) of \(g \) is the subgroup of \(h^* \) generated by the simple reflections \(\{ s_\alpha : \alpha \in \Pi \} \). We let \(Q_+ := \oplus_{\alpha \in \Pi} \mathbb{Z}_{\geq 0} \alpha \) be the positive part of the root lattice. We also have a natural symmetric bilinear form on \(h^* \) [3]. On the simple roots, it is given by \((\alpha \mid \beta) = 2 \) if \(\alpha = \beta, -1 \) if \(\alpha \) and \(\beta \) are adjacent vertices in \(G \), and 0 otherwise. We let \(\rho \in h^* \) denote the Weyl vector of \(g \); this satisfies \((\rho \mid \alpha) = 1 \) for all \(\alpha \in \Pi \).

2.3. Let \(\mathcal{P} \) denote the collection of sets \(\{ \beta_1, \ldots, \beta_k \} \) such that (i) each \(\beta_i \in \Delta_+ \) and (ii) \(\sum \beta_i = \beta(\Pi) \). We partially order \(\mathcal{P} \) by refinement, i.e., given \(\gamma = \{ \beta_1, \ldots, \beta_k \} \) and \(\gamma' = \{ \beta'_1, \ldots, \beta'_r \} \) in \(\mathcal{P} \), define \(\gamma > \gamma' \) if there exist pairwise disjoint sets \(K_i (1 \leq i \leq k) \) such that \(\bigcup K_i = \{ 1, \ldots, r \} \) and \(\beta_i = \sum_{j \in K_i} \beta'_j \) for all \(1 \leq i \leq k \). The covering relation in \(\mathcal{P} \) is thus obtained by \(\gamma \to \gamma' \) iff \(r = k + 1 \) and (after possibly reordering indices) \(\beta_i = \beta'_i \) for \(1 \leq i < k \) and \(\beta_k = \beta'_k + \beta'_{k+1} \).

We make the following simple observation.

Lemma 2.1. The map \(\phi : L_G \to \mathcal{P} \) defined by \(\{ S_1, \ldots, S_k \} \mapsto \{ \beta(S_1), \ldots, \beta(S_k) \} \) is an isomorphism of posets.

Proof. We recall that \(S \) is a connected subset of \(\Pi \) iff \(\beta(S) \in \Delta_+ \). Thus \(\phi \) is well defined. The fact that it is an isomorphism is clear. \(\square \)

We can thus identify \(L_G \) and \(\mathcal{P} \). We will let \(\hat{0} \) also denote the unique minimal element of \(\mathcal{P} \) (the set of all simple roots of \(g \)). For \(\gamma = \{ \beta_1, \ldots, \beta_k \} \in \mathcal{P} \), we let \(\text{mult} \gamma := \prod_{i=1}^{k} \text{mult} \beta_i \).

The Weyl-Kac denominator formula gives:

\[
U_0 := \sum_{w \in W} \varepsilon(w) e^{w\rho - \rho} = \prod_{\alpha \in \Delta_+} (1 - e^{-\alpha})^{\text{mult} \alpha}.
\]

(7)

where \(\varepsilon \) is the sign character of \(W \).

Proposition 2.2. The coefficient of \(e^{-\beta(\Pi)} \) in \(U_0^\beta \) equals \((-1)^l \chi(G; q) \).

Proof. We have \(U_0^\gamma = \sum_{k \geq 0} \left(\frac{\gamma}{k} \right) \xi^k \) where \(\xi := U_0 - 1 = \sum_{w \neq e} \varepsilon(w) e^{w\rho - \rho} \). From equation [1], it is clear that we only need to show that the coefficient of \(e^{-\beta(\Pi)} \) in \(\xi^k \) equals \((-1)^l c_k(G) \).

For \(w \in W \), let \(\rho - w\rho = \sum_{\alpha \in \Pi} b_{\alpha}(w) \alpha \); we have \(b_{\alpha}(w) \in \mathbb{Z}_{\geq 0} \). We also define \(I(w) := \{ \alpha \in \Pi : s_\alpha \text{ appears in a reduced word for } w \} \); this is a well defined subset of \(\Pi [2] \). Let \(\mathcal{I} := \{ w \in W \setminus \{ e \} : I(w) \text{ is an independent set} \} \). The following lemma is a special case of lemma 2 of [III].

Lemma 2.3. Let \(w \in W \). Then

(a) \(I(w) = \{ \alpha \in \Pi : b_{\alpha}(w) \geq 1 \} \).

(b) If \(w \in \mathcal{I} \), then \(b_{\alpha}(w) = 1 \) for all \(\alpha \in I(w) \).

(c) If \(w \notin \mathcal{I} \cup \{ e \} \), then there exists \(\alpha \in I(w) \) such that \(b_{\alpha}(w) > 1 \).

Given an independent subset \(K \) of \(\Pi \), there is a unique element \(w(K) \in \mathcal{I} \) with \(I(w(K)) = K \); \(w(K) \) is the product of the commuting simple reflections
\(\{s_\alpha : \alpha \in K\} \). Now, it follows from lemma 2.1 that the coefficient of \(e^{-\beta(\Pi)} \) in \(\xi^k \) equals
\[
\sum_{(w_1, \ldots, w_k)} \varepsilon(w_1 w_2 \cdots w_k)
\]
where the sum ranges over \(k \) tuples \((w_1, \ldots, w_k)\) from \(\mathcal{I} \) such that \((I(w_1), \ldots, I(w_k)) \in P_k(G)\). In this case, \(w_1 w_2 \cdots w_k \) is a Coxeter element of \(W \) and has sign \((-1)^l\). Thus, the required coefficient is \((-1)^l c_k(G)\), and proposition 2.2 is proved.

We remark that lemma 2.1 was the key ingredient used in [10] to prove a unique factorization result for tensor products. In fact, the occurrence of the deletion-contraction recurrence in [10] was what suggested a possible connection to chromatic polynomials.

Now, using the product side of the Weyl-Kac denominator formula (equation (7)), we obtain
\[
U^q_0 = \prod_{\alpha \in \Delta_+} (1 - e^{-\alpha}) q^{\text{mult} \alpha} = \prod_{\alpha \in \Delta_+} (1 - e^{-\alpha} q \text{ mult} \alpha + O(q^2)).
\]
Observe that the terms involving \(q^2 \) (and higher powers) also involve \(e^{-n\alpha} \) for \(n \geq 2 \), and do not contribute to the coefficient of \(e^{-\beta(\Pi)} \). Thus the coefficient of \(e^{-\beta(\Pi)} \) in \(U^q_0 \) is \(\sum_{\gamma \in \mathcal{P}} (-q)^{|\gamma|} \text{ mult} \gamma \). Lemma 2.1 and proposition 2.2 now complete the proof of theorem 1.1(a).

To prove theorem 1.1(b), observe that for \(\Sigma \in L_G \), we can identify the poset \(L_{G(\Sigma)} \) with the interval \(\{ \pi \in L_G : 0 \leq \pi \leq \Sigma \} \). Further the multiplicity of a root \(\beta(S) \) only depends on the subgraph induced by \(S \). This means for \(\pi \in L_{G(\Sigma)} \), mult \(\pi \) is the same whether we consider the Kac-Moody algebra associated to \(G \) or to \(G(\Sigma) \). Thus theorem 1.1(b) follows from 1.1(a).

Next, equation (3) shows that \(K(\beta(\Pi); q) = \sum_{\gamma \in \mathcal{P}} q^{\text{mult} \gamma} \). Corollary 1.2 now follows similarly, using the isomorphism of lemma 2.1. Corollary 1.3 follows from the easy observations that (i) the \(q \)-Kostant partition function reduces to the usual Kostant partition function at \(q = 1 \), and (ii) the coefficient of \(q^1 \) in \(K(\beta; q) \) is mult \(\beta \).

Finally, we prove proposition 1.4. We only need to show that \((-1)^{|-|\pi|} \text{ mult} \pi \) satisfies the following defining relations of the Möbius function: (i) \(\mu(0, 0) = 1 \), and (ii) \(\sum_{0 \leq \pi \leq \Sigma} \mu(0, \pi) = 0 \) for all \(\Sigma \neq 0 \). We have mult \(0 = 1 \) since each simple root is of multiplicity 1. Further, for \(\Sigma = \{S_1, \cdots, S_k\} \in L_G \), we have \(\sum_{0 \leq \pi \leq \Sigma} (-1)^{|\pi|} \text{ mult} \pi = \chi(G(\Sigma); 1) \) by theorem 1.1(b). If \(\Sigma \neq 0 \), then there exists \(j \) for which \(S_j \) has two or more vertices. Thus \(\chi(G(\Sigma); 1) = 0 \), and hence \(\chi(G(\Sigma); 1) = \prod_{i=1}^k \chi(G(S_i); 1) = 0 \).

\[\square \]

3. The Peterson recurrence formula

For \(\beta \in Q_+ \), set \(c_\beta := \sum_{n \geq 1} n^{-1} \text{ mult} (\beta/n) \). Then the Peterson recurrence formula [3] says:
\[
(\beta \mid \beta - 2\rho) c_\beta = \sum_{(\beta', \beta'') \in Q_+ \times Q_+} (\beta' \mid \beta'') c_{\beta'} c_{\beta''}.
\]
Let $B := \{ \beta(S) : S \text{ is a connected subset of } \Pi \}$. For $\beta = \beta(S) \in B$, we let $\text{supp } \beta := S$. It is easy to see that for $\beta \in B$, equation (9) becomes:

$$
(\beta \mid \beta - 2\rho) \cdot \text{mult } \beta = 2 \sum_{\beta', \beta'' \in B \atop \beta' + \beta'' = \beta} (\beta' \mid \beta'') \cdot \text{mult } \beta' \cdot \text{mult } \beta''.
$$

(10)

where the factor of 2 arises by taking unordered, rather than ordered, pairs β', β'' in the sum. Now, $(\beta \mid \beta - 2\rho) = -2e(\text{supp } \beta)$ and $(\beta' \mid \beta'') = -e(\text{supp } \beta', \text{supp } \beta'')$.

Suppose β is not a simple root, i.e., $|\text{supp } \beta| > 1$, then $\text{supp } \beta$ has at least one edge, and equation (10) gives:

$$
\text{mult } \beta = \sum_{\beta', \beta'' \in B \atop \beta' + \beta'' = \beta} \frac{e(\text{supp } \beta', \text{supp } \beta'')}{e(\text{supp } \beta)} \cdot \text{mult } \beta' \cdot \text{mult } \beta''.
$$

(11)

Now, if $\gamma = \{ \beta_1, \ldots, \beta_k \} \in P$, let $\gamma^{\dagger} := \{ \beta \in \gamma : \beta \text{ is not a simple root} \}$. Given $\gamma, \gamma' \in P$ with $\gamma \rightarrow \gamma'$, we write $\gamma = \{ \beta_1, \ldots, \beta_k \}$ and $\gamma' = \{ \beta_1', \ldots, \beta_k' \}$ such that $\beta_i = \beta_i'$ for $1 \leq i < k$ and $\beta_k = \beta_k' + \beta'_{k+1}$ (thus $\beta_k \in \gamma^{\dagger}$). Define

$$
w(\gamma, \gamma') := \prod_{1 \leq i < k} \frac{2(\beta_k \mid \beta'_{k+1})}{|\gamma|^1 (\beta_k \mid \beta_k - 2\rho)} = \frac{1}{|\gamma|^1} \frac{e(\text{supp } \beta_k', \text{supp } \beta_{k+1})}{e(\text{supp } \beta_k)}.
$$

(12)

We now have the following lemma.

Lemma 3.1. For all $\hat{0} \neq \gamma \in P$, we have

$$
\text{mult } \gamma = \sum_{\gamma' \in P \atop \gamma \rightarrow \gamma'} w(\gamma, \gamma') \cdot \text{mult } \gamma'.
$$

Proof. For $\gamma = \{ \beta_1, \ldots, \beta_k \}$, equation (11) implies

$$
\text{mult } \gamma = \frac{1}{|\gamma|^1} \sum_{\beta_i \in \gamma^{\dagger}} \sum_{\beta', \beta'' \in B \atop \beta' + \beta'' = \beta_i} \frac{e(\text{supp } \beta', \text{supp } \beta'')}{e(\text{supp } \beta_i)} \cdot \text{mult } \beta' \cdot \text{mult } \beta'' \cdot \prod_{j \neq i} \text{mult } \beta_j.
$$

The proof now follows from the fact that the elements γ' covered by γ are obtained by picking each $\beta_i \in \gamma^{\dagger}$ and refining it into a sum of two elements of B in all possible ways. \hfill \Box

Since $\text{mult } \hat{0} = 1$, lemma 3.1 yields the following corollary on iteration.

Corollary 3.2. Let $\gamma \in P$. Then

$$
\text{mult } \gamma = \sum_{p \text{ path in } P \atop \text{start}(p) = \gamma \atop \text{end}(p) = \hat{0}} w(p).
$$

Here a path in P from γ to $\hat{0}$ is a sequence $\gamma = \gamma_1 \rightarrow \gamma_2 \cdots \rightarrow \gamma_r = \hat{0}$, and its weight is defined to be $w(p) = \prod_{i=1}^{r-1} w(\gamma_i, \gamma_{i+1})$. The empty path $(\gamma = \hat{0})$ is taken to have weight 1.

Clearly, corollary 3.2 is equivalent to proposition 1.5 via the isomorphism between P and L_G of lemma 2.1. As shown in the introduction, theorem 1.6 now follows. \hfill \Box
References

[1] Henrik Eriksson and Kimmo Eriksson. Conjugacy of Coxeter elements. *Electron. J. Combin.*, 16(2, Special volume in honor of Anders Björner), Research Paper 4, 7, 2009.

[2] James E. Humphreys. *Reflection groups and Coxeter groups*, volume 29 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 1990.

[3] V. G. Kac. *Infinite dimensional Lie algebras*. Cambridge University Press, third edition, 1990.

[4] Matthew Macauley and Henning S. Mortveit. On enumeration of conjugacy classes of Coxeter elements. *Proc. Amer. Math. Soc.*, 136(12):4157–4165, 2008.

[5] Gian-Carlo Rota. On the foundations of combinatorial theory. I. Theory of Möbius functions. *Z. Wahrscheinlichkeitstheorie und Verw. Gebiete*, 2:340–368 (1964), 1964.

[6] Jian-Yi Shi. The enumeration of Coxeter elements. *J. Algebraic Combin.*, 6(2):161–171, 1997.

[7] Jian-yi Shi. Conjugacy relation on Coxeter elements. *Adv. Math.*, 161(1):1–19, 2001.

[8] Richard P. Stanley. Acyclic orientations of graphs. *Discrete Math.*, 5:171–178, 1973.

[9] Richard P. Stanley. A symmetric function generalization of the chromatic polynomial of a graph. *Adv. Math.*, 111(1):166–194, 1995.

[10] R. Venkatesh and Sankaran Viswanath. Unique factorization of tensor products for Kac-Moody algebras. *Adv. Math.*, 231(6):3162–3171, 2012.

The Institute of Mathematical Sciences, CIT campus, Taramani, Chennai 600113, India.

E-mail address: rvenkat@imsc.res.in, svis@imsc.res.in